Analysis of the coupled Navier-Stokes/Biot problem

Aycil Cesmelioglu

Oakland University, Department of Mathematics and Statistics, 146 Library Drive, Rochester, MI 48309

Abstract

We analyze a weak formulation of the coupled problem defining the interaction between a free fluid and a poroelastic structure. The problem is fully dynamic and is governed by the time-dependent incompressible Navier-Stokes equations and the Biot equations. Under a small data assumption, existence and uniqueness results are proved and a priori estimates are provided.

Keywords: Navier-Stokes, Darcy, Biot, poroelastic, weak formulation, existence

35Q30, 35Q35

1. Introduction.

We consider a fully dynamic model for the interaction of an incompressible Newtonian fluid with a poroelastic material where the boundary is assumed to be fixed. The fluid flow is governed by the time-dependent incompressible Navier-Stokes equations. For the poroelastic material we use the Biot system with appropriate flow and stress couplings on the interface between the fluid and the poroelastic regions. This problem is a fully dynamic coupled system of mixed hyperbolic-parabolic type and inherits all the difficulties mathematically and numerically involved in the standard fluid-structure interaction and Stokes/Navier-Stokes-Darcy coupling.

The literature is rich in works on related coupled problems and here we provide only a partial list of relevant publications. One related problem deals with the interaction of an incompressible fluid with a porous material and modeled by the coupling of the Stokes/Navier-Stokes equations to the Darcy
equations. The steady-state case of this problem is analyzed mathematically in [20, 15, 2] and the time-dependent case in [13, 10, 11].

Another related problem is that of the fluid-structure interaction. The analysis of a weak solution for the time dependent coupling of the Stokes and the linear elasticity equations is discussed in [16] and for the flow of a coupling of time-dependent 2D incompressible NSE to the linearly viscoelastic or the linearly elastic Koiter shell in [27]. The two layered structure version of this problem is discussed in [28, 29].

In geosciences, aquifers and oil/gas reservoirs are porous and deformable affecting groundwater and oil/gas flow, respectively [25, 23, 18]. In biomedical sciences, blood flow is influenced by the porous and deformable nature of the arterial wall [3, 7, 8]. Therefore, mathematical models that are used to simulate these flow problems must account for both the effects of porosity and elasticity. The Navier-Stokes/Biot system is investigated numerically in [3] using a monolithic and a domain decomposition technique and the Stokes/Biot system is investigated in [9] using an operator splitting approach and in [12] using an optimization based decoupling strategy. In [31], variational formulations for the the Stokes/Biot system are developed using semi-group methods. Also a two-layered version was studied in [8].

In this paper, we focus on the coupling of the fully dynamic incompressible Navier-Stokes equations (for the free fluid) with the Biot system (for the poroelastic structure completely saturated with fluid). This coupled problem is the nonlinear version of the problem presented in [9, 12]. We construct a weak formulation and show the existence and uniqueness (local) of its solution under small data assumption. We note that this small data assumption is not needed if the fluid is represented by the linear Stokes equations rather than the Navier-Stokes equations and the result would also be global. We assume that the boundaries and the interface between the fluid and the poroelastic material are fixed. The proof proceeds by constructing a semi-discrete Galerkin approximations, obtaining the necessary a priori estimates, and passing to the limit. To the author’s knowledge, there is no such analysis for this fully dynamic nonlinear coupled system.

The outline of this paper is as follows: In Section 2, we introduce the equations governing the problem and appropriate interface, boundary and initial conditions. The next section is devoted to notation and some well-known results that are used in the forthcoming sections. Section 4 sets the assumptions on data, presents the weak formulation and shows that it is equivalent to the problem. Section 5 summarizes the main result of the
paper. Section 6 contains the proof of the existence and uniqueness results and a priori estimates for the weak solution.

2. Fluid-poroelastic model equations

Let $\Omega \subset \mathbb{R}^d$, $d = 2, 3$ be an open bounded domain with Lipschitz continuous boundary $\partial \Omega$. The domain Ω is made up of two regions Ω_f, the fluid region, and Ω_p, the poroelastic region, separated by a common interface $\Gamma_f = \partial \Omega_f \cap \partial \Omega_p$. Both Ω_1 and Ω_2 are assumed to be Lipschitz. See Figure 1. The first region Ω_f is occupied by a free fluid and has boundary Γ_f such that $\Gamma_f = \Gamma_{\text{in}}^f \cup \Gamma_{\text{out}}^f \cup \Gamma_{\text{ext}}^f \cup \Gamma_I$, where Γ_{in}^f and Γ_{out}^f represent the inlet and outlet boundary, respectively. The second region Ω_p is occupied by a saturated poroelastic structure with boundary Γ_p such that $\Gamma_p = \Gamma_s^p \cup \Gamma_{\text{ext}}^p \cup \Gamma_I$, where $\Gamma_s^p \cup \Gamma_{\text{ext}}^p$ represents the outer structure boundary.

Fluid flow is governed by the time-dependent incompressible Navier-Stokes equations:

$$\rho_f \dot{\mathbf{u}}_f - 2\mu_f \nabla \cdot \mathbf{D}(\mathbf{u}_f) + \rho_f \mathbf{u}_f \cdot \nabla \mathbf{u}_f + \nabla p_f = f_f \quad \text{in } \Omega_f \times (0,T), \quad (1a)$$

$$\nabla \cdot \mathbf{u}_f = 0 \quad \text{in } \Omega_f \times (0,T). \quad (1b)$$

Here \mathbf{u}_f denotes the velocity vector of the fluid, p_f the pressure of the fluid, ρ_f the density of the fluid, μ_f the constant fluid viscosity, and f_f the body force acting on the fluid. We used the dot above a symbol to denote the time derivative. The strain rate tensor $\mathbf{D}(\mathbf{u}_f)$ is defined by:

$$\mathbf{D}(\mathbf{u}_f) = \frac{1}{2} \left(\nabla \mathbf{u}_f + (\nabla \mathbf{u}_f)^T \right).$$

Figure 1: Fluid-poroelastic domain
The Cauchy stress tensor is given by:

$$\sigma_f = 2\mu_f D(\mathbf{u}_f) - p_f \mathbf{I}. \quad (2)$$

So (1a) can also be written as

$$\rho_f \dot{\mathbf{u}}_f - \nabla \cdot \sigma_f + \rho_f \mathbf{u}_f \cdot \nabla \mathbf{u}_f = \mathbf{f}_f.$$

Equation (1a) represents the conservation of linear momentum, while equation (1b) is the incompressibility condition that represents the conservation of mass.

The poroelastic system is a fully dynamic coupled system of mixed hyperbolic-parabolic type represented by the Biot model [5, 6]:

$$\rho_p \ddot{\eta} - 2\mu_s \nabla \cdot \mathbf{D}(\eta) - \lambda_s \nabla \cdot (\nabla \cdot \eta) + \alpha \nabla p_p = f_s \quad \text{in } \Omega_p \times (0, T), \quad (3a)$$

$$\left(s_0 \dot{\mathbf{p}}_p + \alpha \nabla \cdot \dot{\mathbf{u}} \right) - \nabla \cdot \mathbf{K} \nabla p_p = f_p \quad \text{in } \Omega_p \times (0, T), \quad (3b)$$

where η is the displacement of the structure, p_p is the pore pressure of the fluid, and \mathbf{u}_p is the fluid velocity in the pores. Here, f_p is the source/sink term and f_s is the body force. The parameters ν_s and λ_s denote the Lamé constants for the solid skeleton. The density of the saturated medium is denoted by ρ_p, and the hydraulic conductivity by \mathbf{K}. In the Biot model, the first equation, (3a), is the momentum equation for the balance of forces and the second equation, (3b), is the diffusion equation of fluid mass. The total stress tensor for the poroelastic structure is given by:

$$\sigma_p = \sigma_p^E - \alpha p_p \mathbf{I},$$

where σ_p^E is the elasticity stress tensor defined by $\sigma_p^E = 2\mu_s \mathbf{D}(\eta) + \lambda_s (\nabla \cdot \eta) \mathbf{I}$. Therefore, (3a) can also be written as

$$\rho_p \ddot{\eta} - \nabla \cdot \sigma_p = f_s.$$

The constrained specific storage coefficient is denoted by s_0 and the Biot-Willis constant by α, the latter is usually close to unity. In the subsequent discussion, we assume that the motion of the structure is small enough so that the domain is fixed at its reference position. All the physical parameters are assumed to be constant in space and time. Next, we prescribe boundary, interface and initial conditions where \mathbf{n}_f and \mathbf{n}_p denote the outward unit normal vectors of Ω_f and Ω_p, respectively and \mathbf{n}_I is the unit normal vector of the interface Γ_I pointing from Ω_f to Ω_p. Hence, $\mathbf{n}_{\Gamma_I} = \mathbf{n}_f|_{\Gamma_I} = -\mathbf{n}_p|_{\Gamma_I}$. Furthermore \mathbf{t}_I^l, $l = 1, \ldots, d - 1$ denotes an orthonormal set of unit vectors on the tangent plane to Γ_I.

4
Boundary conditions:

Since the boundary conditions have no significant effect on the fluid poroelastic interaction, for simplicity they are chosen such that the normal fluid stress is prescribed on the inlet and outlet boundaries, the poroelastic structure is assumed to be fixed at the inlet and outlet boundaries and have zero tangential displacement on the external structure boundary, that is,

\[\text{on } \Gamma_{in} \times (0, T), \quad \sigma_f n_f = -P_{in}(t)n_f, \]
\[\text{(4a)} \]
\[\text{on } \Gamma_{out} \times (0, T), \quad \sigma_f n_f = 0, \]
\[\text{(4b)} \]
\[\text{on } \Gamma_{ext} \times (0, T), \quad u_f = 0, \]
\[\text{(4c)} \]
\[\text{on } \Gamma_{ext} \times (0, T), \quad \{ \begin{array}{l}
P_p = 0, \quad n_p \cdot \sigma_p n_p = 0, \\
t_p \cdot \eta = 0, \quad 1 \leq l \leq d - 1.
\end{array} \]
\[\text{(4d)} \]

Initial conditions:

As initial conditions, we assume that everything is at rest in the beginning.

At \(t = 0 \) : \(u_f = 0, \quad p_p = 0, \quad \eta = 0, \quad \dot{\eta} = 0. \)
\[\text{(5)} \]

Interface conditions on \(\Gamma_I \times (0, T) \):

The interface conditions are given by

\[u_f \cdot n_\Gamma = (\dot{\eta} - K \nabla p_p) \cdot n_\Gamma, \]
\[\text{(6a)} \]
\[\sigma_f n_\Gamma = \sigma_p n_\Gamma, \]
\[\text{(6b)} \]
\[n_\Gamma \cdot \sigma_f n_\Gamma = -p_p, \]
\[\text{(6c)} \]
\[n_\Gamma \cdot \sigma_f t_\Gamma^l = -\beta(u_f - \dot{\eta}) \cdot t_\Gamma^l, \quad 1 \leq l \leq d - 1, \]
\[\text{(6d)} \]

where \(\beta \) denotes the resistance parameter in the tangential direction. Condition (6a) is the continuity of normal flux that satisfies mass conservation, condition (6b) is the balance of stresses, that is, the total stresses of the fluid and the poroelastic medium must match at the interface. Condition (6c) guarantees the balance of normal components of the stress in the fluid phase across the interface. Finally condition (6d) is the Beavers-Joseph-Saffman
condition [4, 30, 22] which assumes that the tangential stress of the fluid is proportional to the slip rate. More details on the interface conditions can be found in [26, 31].

3. Notation and useful results.

Let $\Omega \subset \mathbb{R}^d$, $d = 2, 3$ be a bounded, open connected domain with a Lipschitz continuous boundary $\partial \Omega$. Let $\mathcal{D}(\Omega)$ be the space of all infinitely differentiable functions with compact support in Ω. For $s \in \mathbb{R}$, $H^s(\Omega)$ denotes the standard Sobolev space of order s equipped with its standard seminorm $| \cdot |_{s,\Omega}$ and norm $\| \cdot \|_{s,\Omega}$. We denote the vector- and matrix-valued Sobolev spaces as follows:

$$H^s(\Omega) := [H^s(\Omega)]^d, \quad \mathbb{H}^s(\Omega) := [H^s(\Omega)]^{d \times d}$$

and still write $| \cdot |_{s,\Omega}$ and $\| \cdot \|_{s,\Omega}$ for the corresponding seminorms and norms. When $s = 0$, instead of $H^0(\Omega)$, $H^0(\Omega)$ and $H^0(\Omega)$ we write $L^2(\Omega)$, $L^2(\Omega)$ and $L^2(\Omega)$ and instead of $| \cdot |_{0,\Omega}$ and $\| \cdot \|_{0,\Omega}$ we write $| \cdot |_{0}$ and $\| \cdot \|_{0}$. The scalar product of $L^2(\Omega)$ is denoted by $(\cdot, \cdot)_\Omega$. The spaces $H(\text{div}; \Omega) = \{ v \in L^2(\Omega) : \nabla \cdot v \in L^2(\Omega) \}$ and $H^{1/2}(\text{div}; \Omega) = \{ v \in L^2(\Omega) : \nabla \cdot v \in L^{3/2}(\Omega) \}$ are equipped with the graph norm. If $\Gamma \subset \partial \Omega$, and $v \in H^{1/2}(\Gamma)$, we define the extension \tilde{v} of v as $\tilde{v} = v$ on Γ, $\tilde{v} = 0$ on $\partial \Omega \setminus \Gamma$ and define the space of traces of all functions of $H^1(\Omega)$ that vanish on $\partial \Omega \setminus \Gamma$ as follows:

$$H^{1/2}_{00}(\Gamma) = \{ v \in L^2(\Gamma) : \tilde{v} \in H^{1/2}(\partial \Omega) \}.$$

We also define for any $1 \leq r \leq \infty$,

$$L^r(a,b; X) = \{ f \text{ measurable in } : \| f \|_{L^r(a,b; X)} < \infty \}$$

equipped with the norm

$$\| f \|_{L^r(a,b; X)} = \left(\int_a^b \| f(t) \|_X^r dt \right)^{1/r}$$

for $1 \leq r < \infty$ and

$$\| f \|_{L^\infty(a,b; X)} = \text{ess sup}_{t \in [a,b]} \| f(t) \|_X.$$

Furthermore, $C(0,T; X)$ denotes the set of all functions that are continuous into X and finally we define

$$H^1(a,b; X) = \{ f \in L^2(a,b; X) : \dot{f} \in L^2(a,b; X) \}.$$
3.0.1. Useful results.

Here we state inequalities and results to be used throughout the paper. More details can be found in [1, 17]. We define the following spaces for the weak solution:

\[X_f = \{ v \in H^1(\Omega_f) : v = 0 \text{ on } \Gamma^e_f \}, \]
\[V_f = \{ v \in X_f : \nabla \cdot v = 0 \}, \]
\[X_p = \{ \xi \in H^1(\Omega_p) : \xi = 0 \text{ on } \Gamma^s_p, t^I_p \cdot \xi = 0, 1 \leq l \leq d - 1 \text{ on } \Gamma^e_p \}, \]
\[Q_f = L^2(\Omega_f), \]
\[Q_p = \{ r \in H^1(\Omega_p) : r = 0 \text{ on } \Gamma^e_p \}. \]

On these spaces, we have the following trace inequalities:

\[\forall v \in X_f, \quad \| v \|_{\Gamma_f} \leq T_1 |v|_{1, \Omega_f}, \quad \| v \|_{\Gamma_p} \leq T_2 |v|_{1, \Omega_f} \] (7)
\[\forall q \in Q_p, \quad \| q \|_{H^{1/2}(\Gamma_f)} \leq T_3 |q|_{1, \Omega_p}, \quad \| q \|_{\Gamma_p} \leq T_4 |q|_{1, \Omega_p} \] (8)
\[\forall v \in X_p, \quad \| \eta \|_{\Gamma_f} \leq T_5 |\eta|_{1, \Omega_p}, \] (9)

the Poincaré inequalities:

\[\forall v \in X_f, \quad \| v \|_{\Omega_f} \leq P_1 |v|_{1, \Omega_f}, \] (10)
\[\forall \eta \in X_p, \quad \| \eta \|_{\Omega_p} \leq P_2 |\eta|_{1, \Omega_p}, \] (11)
\[\forall q \in Q_p, \quad \| q \|_{\Omega_p} \leq P_3 |q|_{1, \Omega_p}, \] (12)

a Sobolev inequality:

\[\forall v \in X_f, \quad \| v \|_{L^4(\Omega_f)} \leq S_f |v|_{H^1(\Omega_f)}, \] (13)

and finally a Korn’s inequality:

\[\forall v \in X_f, \quad |v|_{1, \Omega_f} \leq K_f \| D(v) \|_{\Omega_f}, \] (14)

where \(T_1 - T_5, P_1 - P_3, S_f \) and \(K_f \) are positive constants depending only on their corresponding domain.

Theorem 3.1 (Gronwall’s inequality in integral form). [21] Let

\[\zeta(t) \leq B + C \int_0^t \zeta(s)ds, \text{ a.e. } t \in (0, T) \] (15)

where \(\zeta \) is a continuous nonnegative function and \(B, C \geq 0 \) are constants. Then

\[\zeta(t) \leq Be^{Ct}. \]
The next theorem is a compactness result that provides a strong convergence result which is used to pass to the limit in the nonlinear terms of the Galerkin solution.

Theorem 3.2. [32, Corollary 4] Let X, B and Y be Banach spaces such that $X \subset B \subset Y$ where the imbedding of X into B is compact. Let F be a bounded set in $L^p(0, T; X)$ where $1 \leq p < \infty$ and let the set $\{ \frac{\partial f}{\partial t} \}_{f \in F}$ be bounded in $L^1(0, T; Y)$. Then F is relatively compact in $L^p(0, T; B)$.

4. Weak Formulation.

In this section we derive the weak formulation of the problem. But first, we introduce additional notation and present assumptions on the problem data. We assume that $K \in L^\infty(\Omega_p)$ is independent of time, uniformly bounded and positive definite. There exists $K_{\min}, K_{\max} > 0$ such that

$$\forall x \in \overline{\Omega}_p, \quad K_{\min} x \cdot x \leq K x \cdot x \leq K_{\max} x \cdot x. \quad (16)$$

Further, we assume that $f_f \in L^2(0, T; L^2(\Omega_f)), f_s \in L^2(0, T; L^2(\Omega_p)), f_p \in L^2(0, T; L^2(\Omega_p))$ and $P_{in} \in L^2(0, T; H^{1/2}(\Gamma^p))$. The weak formulation we propose for the problem is the following:

(WF1) Find $u_f \in L^\infty(0, T; L^2(\Omega_f)) \cap L^2(0, T; X_f), p_f \in L^1(0, T; Q_f), \eta \in W^{1, \infty}(0, T; L^2(\Omega_p)) \times H^1(0, T; X_p)$ and $p_p \in L^\infty(0, T; L^2(\Omega_p)) \cap L^2(0, T; Q_p)$ where $u_f \in L^1(0, T; L^2(\Omega_f))$, such that for all $v \in X_f, q \in Q_f, \xi \in X_p$ and $r \in Q_p$,

$$\langle (\rho_f u_f, v)_{\Omega_f} + (2\mu_f D(u_f), D(v))_{\Omega_f} + \rho_f (u_f \cdot \nabla u_f, v)_{\Omega_f} - (p_f, \nabla \cdot v)_{\Omega_f}$$

$$+ (\rho_s \eta, \xi)_{\Omega_p} + (2\mu_s D(\eta), D(\xi))_{\Omega_p} + (\lambda_s \nabla \cdot \eta, \nabla \cdot \xi)_{\Omega_p} - (\sigma_p, \nabla \cdot \xi)_{\Omega_p}$$

$$+ (s_p p_p + \alpha \nabla \cdot \eta, r)_{\Omega_p} + (K \nabla p_p, \nabla r)_{\Omega_p} + \langle p_p n_{ri}, v - \xi \rangle_{\Gamma_i} + \sum_{i=1}^{d-1} \langle \beta (u_f - \hat{\eta}) \cdot t_{ri}, (v - \xi) \cdot t_{ri} \rangle_{\Gamma_i} + \langle (\hat{\eta} - u_f \cdot n_{ri}, r)_{\Gamma_i}$$

$$= -\langle P_{in}(t) n_{ri}, v \rangle_{\Gamma_i} + (f_f, v)_{\Omega_f} + (f_s, \xi)_{\Omega_p} + (f_p, r)_{\Omega_p},$$

a.e. in $(0, T)$, and

$$u_f(0) = 0 \text{ a.e. in } \Omega_f, \quad \eta(0) = 0, \quad \eta(0) = 0, \quad p_p(0) = 0 \text{ a.e. in } \Omega_p.$$

The reason for looking for a solution in $L^\infty(0, T; L^2(\Omega_i)), i = f, p$ may not seem obvious at this point, since typically the solutions are sought in $L^2(0, T; X)$ where X is an appropriate Sobolev space, but we will prove that such a solution exists.
4.1. Equivalence of the weak formulation (WF1).

The following proposition establishes the equivalence between the coupled problem and the weak formulation (WF1) proposed in the previous section.

Proposition 4.1. Let the data satisfy the assumptions listed in the previous section. Then each solution $u_f \in L^\infty(0,T;L^2(\Omega_f)) \cap L^2(0,T;X_f)$ such that $\dot{u}_f \in L^1(0,T;L^2(\Omega_f))$, $p_f \in L^1(0,T;Q_f)$, $\eta \in W^{1,\infty}(0,T;L^2(\Omega_p)) \cap H^1(0,T;X_p)$ and $p_p \in L^\infty(0,T;L^2(\Omega_p)) \cap L^2(0,T;Q_p)$ of the problem defined by (1a)-(1b), (3a)-(3b) and (4a)-(6d) is also a solution of the variational problem (WF1) and conversely.

Proof. We first show sufficiency. To simplify the presentation, we included in Appendix A the justification of using Green’s formula in the following proof.

Let (u_f,p_f,η,p_p) be a solution of the coupled problem defined by (1a)-(1b), (3a)-(3b), (4a)-(6d) satisfying the regularity stated in the proposition. We multiply (1a) by $v \in X_f$. After integration by parts:

\[(\rho_f \dot{u}_f,v)_{\Omega_f} + (2\mu_f D(u_f),D(v))_{\Omega_f} + \rho_f (u_f \cdot \nabla u_f,v)_{\Omega_f} - (p_f,\nabla \cdot v)_{\Omega_f} - \langle \sigma_f n_f,v \rangle_{\partial \Omega_f} = (f_f,v)_{\Omega_f},\]

Using (4a), $v = 0$ on Γ_f^{ext} and $n_f = n_{\Gamma_f}$ on Γ_f, we have

\[(\rho_f \dot{u}_f,v)_{\Omega_f} + (2\mu_f D(u_f),D(v))_{\Omega_f} + \rho_f (u_f \cdot \nabla u_f,v)_{\Omega_f} - (p_f,\nabla \cdot v)_{\Omega_f} - \langle \sigma_f n_f,v \rangle_{\Gamma_f} = (f_f,v)_{\Omega_f} - \langle P_m(t),v \rangle_{\Gamma_f}.\] \quad (17)

Next we multiply (1b) by $q \in Q_f$ and integrate to get

\[(\nabla \cdot u_f,q)_{\Omega_f} = 0.\] \quad (18)

Multiplying (3a) by $\xi \in X_p$ and integrating by parts yields:

\[(\rho_p \ddot{\eta},\xi)_{\Omega_p} + (2\mu_s D(\eta),D(\xi))_{\Omega_p} + (\lambda_s(\nabla \cdot \eta),\nabla \cdot \xi)_{\Omega_p} - (\alpha_p,\nabla \cdot \xi)_{\Omega_p} - \langle \sigma_p n_p,\xi \rangle_{\partial \Omega_p} = (f_s,\xi)_{\Omega_p}.\]

Observe that (4e) implies $\sigma_p n_p = \sigma_p^{E} n_p = \sum_{l=1}^{d-1} (t_p^l \cdot \sigma_p^{E} n_p) \cdot t_p^l$ on Γ_p^{ext}. Then since $t_p^l \cdot \xi = 0$ on Γ_p^{ext}, $\xi = 0$ on Γ_p and $n_p = -n_{\Gamma_p}$ on Γ_p, we have

\[(\rho_p \ddot{\eta},\xi)_{\Omega_p} + (2\mu_s D(\eta),D(\xi))_{\Omega_p} + (\lambda_s(\nabla \cdot \eta),\nabla \cdot \xi)_{\Omega_p} - (\alpha_p,\nabla \cdot \xi)_{\Omega_p} + \langle \sigma_p n_p,\xi \rangle_{\Gamma_p} = (f_s,\xi)_{\Omega_p}.\] \quad (19)
Multiplying (3b) by $r \in Q_p$ and integrating over Ω_p, we obtain

$$(s_0 \dot{p} + \alpha \nabla \cdot \dot{\eta}, r)_{\Omega_p} + (K \nabla_p p, \nabla r)_{\Omega_p} - (K \nabla_p n, r)_{\partial \Omega_p} = (f_p, r)_{\Omega_p}.$$

Using (4d), $r = 0$ on Γ^ext, and $n_p = -n_G$ on Γ_I, we have

$$(s_0 \dot{p} + \alpha \nabla \cdot \dot{\eta}, r)_{\Omega_p} + (K \nabla_p p, \nabla r)_{\Omega_p} + (K \nabla_p n, r)_{\Gamma_I} = (f_p, r)_{\Omega_p}. \quad (20)$$

Next, we rewrite the interface integrals using the interface conditions (6a)-(6d). On Γ_I, by (6c) and (6d), we have

$$\sigma_f n_G = (n_G \cdot \sigma_f n_G) n_G + \Sigma_{t=1}^{d-1} (t^1_G \cdot \sigma_f n_G) t^1_G = -p_p n_G - \Sigma_{t=1}^{d-1} (\beta(u_f - \dot{\eta}) \cdot t^1_G) t^1_G. \quad (21)$$

(Note here that since σ_f is symmetric, $t^1_G \cdot \sigma_f n_G = n_G \cdot \sigma_f t^1_G$.) Adding (17), (18), (19) and (20) while using (21) for $\langle \sigma_f n_G, v \rangle_{\Gamma_I}$, (6a) for $(K \nabla_p n, r)_{\Gamma_I}$ and (6b) and (21) for $\langle \sigma_p n_G, \xi \rangle_{\Gamma_I}$ gives the weak formulation (WF1).

For the converse, let (u_f, p_f, η, p_p) be a solution of (WF1). We pick first $v \in D(\Omega_f)$, $r = 0$ and $\xi = 0$, second $v \in 0$, $r \in D(\Omega_p)$ and $\xi = 0$ and last $v = 0$, $r = 0$ and $\xi \in D(\Omega_p)$. This gives (1a) on Ω_f and (3a) and (3b) on Ω_p in the sense of distributions. Next we multiply (1a) with $v \in X_f$, (3a) with $\xi \in X_p$ and (3b) with $r \in Q_p$ and apply Green’s formulas and add the outcomes to get

$$(\rho_f \ddot{u}_f, v)_{\Omega_f} + (2\mu_f D(u_f), D(v))_{\Omega_f} + \rho_f (u_f \cdot \nabla u_f, v)_{\Omega_f} - (p_f, \nabla \cdot v)_{\Omega_f}$$

$$+ (\rho_s \ddot{\eta}, \xi)_{\Omega_p} + (2\mu_s D(\eta), D(\xi))_{\Omega_p} + (\lambda_s \nabla \cdot \eta, \nabla \cdot \xi)_{\Omega_p} - (\alpha_p, \nabla \cdot \xi)_{\Omega_p}$$

$$+ (s_0 p_p + \alpha \nabla \cdot \dot{\eta}, r)_{\Omega_p} + (K \nabla_p p, \nabla r)_{\Omega_p}$$

$$- \langle \sigma_f n_G, v \rangle_{\Gamma^\text{ext} \cup \Gamma^\text{int} \cup \Gamma_I} - \langle \sigma_p n_p, \xi \rangle_{\Gamma^\text{ext} \cup \Gamma_I} - (K \nabla_p n, r)_{\Gamma^\text{ext} \cup \Gamma_I}$$

$$= (f_f, v)_{\Omega_f} + (f_s, \xi)_{\Omega_p} + (f_p, r)_{\Omega_p}.$$

Comparing this with (WF1) gives

$$\langle p_p n_G, v - \xi \rangle_{\Gamma_I} + \Sigma_{t=1}^{d-1} (\beta(u_f - \dot{\eta}) \cdot t^1_G, (v - \xi) \cdot t^1_G)_{\Gamma_I}$$

$$+ (\dot{\eta} - u_f) \cdot n_G, r)_{\Gamma_I} + (P_{ps}(t) n_f, v)_{\Gamma_f}$$

$$= -\langle \sigma_f n_G, v \rangle_{\Gamma^\text{ext} \cup \Gamma^\text{int} \cup \Gamma_I} - \langle \sigma_p n_p, \xi \rangle_{\Gamma^\text{ext} \cup \Gamma_I} - (K \nabla p_p \cdot n_p, r)_{\Gamma^\text{ext} \cup \Gamma_I} \quad (22)$$

for all $(v, \xi, r) \in X_f \times X_p \times Q_p$. If we let $v = 0$, $\xi = 0$ in (22), we get

$$- (K \nabla p_p \cdot n_p, r)_{\Gamma^\text{ext} \cup \Gamma_I} = (\dot{\eta} - u_f) \cdot n_G, r)_{\Gamma_I}, \forall r \in Q_p. \quad (23)$$
The choice \(r \in Q_p \) such that \(r|_{\Gamma_I} = 0 \) yields

\[
\langle K \nabla p_p : n_p, r \rangle_{\Gamma_p} = 0
\]

which implies the first condition of (4d). Using this in (23), we get

\[
-\langle K \nabla p_p : n_p, r \rangle_{\Gamma_I} = \langle (\dot{\eta} - u_f) : n_r, r \rangle_{\Gamma_I}, \forall r \in Q_p
\]

which yields (6a). This reduces (22) to

\[
\langle p_p n_G, v - \xi \rangle_{\Gamma_I} + \sum_{l=1}^{d-1} \langle \beta (u_f - \dot{\eta}) : t^l_G, (v - \xi) : t^l_G \rangle_{\Gamma_I} + \langle P_{in}(t)n_f, v \rangle_{\Gamma_f} (24)
\]

\[
= -\langle \sigma_p n_p, v \rangle_{\Gamma_f}, \forall v \in X_f, \forall \xi \in X_p.
\]

Now we let \(v = 0 \) in (24). Then

\[
-\langle p_p n_G, \xi \rangle_{\Gamma_I} - \sum_{l=1}^{d-1} \langle \beta (u_f - \dot{\eta}) : t^l_G, \xi : t^l_G \rangle_{\Gamma_I} = -\langle \sigma_p n_p, \xi \rangle_{\Gamma_f}, \forall \xi \in X_p.
\]

Since \(p_p = 0 \) on \(\Gamma^p_{ext} \), the choice \(\xi \in X_p \) such that \(\xi = 0 \) on \(\Gamma_I \) implies

\[
0 = \langle \sigma_p n_p, \xi \rangle_{\Gamma_f} = \langle n_p : \sigma_p n_p, \xi : n_p \rangle_{\Gamma^{ext}_f} = \langle n_p : \sigma^E_p n_p, \xi : n_p \rangle_{\Gamma^{ext}_f}.
\]

Therefore we recover in the sense of distributions the second condition in (4e). This also yields

\[
-\langle p_p n_G - \sum_{l=1}^{d-1} \beta ((u_f - \dot{\eta}) : t^l_G) \rangle_{\Gamma_I} = -\langle \sigma_p n_p, \xi \rangle_{\Gamma_I}, \forall \xi \in X_p.
\]

Therefore

\[
- p_p n_G - \sum_{l=1}^{d-1} \beta ((u_f - \dot{\eta}) : t^l_G) = \sigma_p n_G
\]

holds in the sense of distributions. This reduces (24) to

\[
\langle p_p n_G, v \rangle_{\Gamma_I} + \sum_{l=1}^{d-1} \langle \beta (u_f - \dot{\eta}) : t^l_G, v : t^l_G \rangle_{\Gamma_I} + \langle P_{in}(t)n_f, v \rangle_{\Gamma_f}
\]

\[
= -\langle \sigma_f n_f, v \rangle_{\Gamma_f}, \forall v \in X_f.
\]
Letting \(v \in X_f \) such that \(v = 0 \) on \(\Gamma_I \) gives
\[
\langle P_{in}(t)n_f, v \rangle_{\Gamma_I}^- = -\langle \sigma_f n_f, v \rangle_{\Gamma_I^0 \cup \Gamma_I^{out}}.
\]

Picking \(v \) such that \(v = 0 \) on \(\Gamma_{out} \) implies (4a). If we plug this in the above equation we get 0 = \(-\langle \sigma_f n_f, v \rangle_{\Gamma_I^0 \cup \Gamma_I^{out}} \) concluding that \(\sigma_f n_f = 0 \) on \(\Gamma_{out} \times (0, T) \) in the distributional sense. This gives (4b) and also implies that
\[
\langle p_{p\Gamma}, v \rangle_{\Gamma_I} + \sum_{l=1}^{d-1} \langle \beta (u_f - \dot{\eta}) \cdot t_l^\Gamma, v \cdot t_l^\Gamma \rangle_{\Gamma_I} = -\langle \sigma_f n_f, v \rangle_{\Gamma_I}, \forall v \in X_f.
\]

Therefore
\[
p_{p\Gamma} + \sum_{l=1}^{d-1} \langle (\beta (u_f - \dot{\eta}) \cdot t_l^\Gamma) t_l^\Gamma, v \rangle_{\Gamma_I} = -\sigma_f n_f.
\]

This compared to (25) implies (6b) and also gives (6c) and (6d) after dotted with \(n^\Gamma \) and \(t_l^\Gamma \), \(1 \leq j \leq d - 1 \).

5. Main results.

This section summarizes the main results of this paper. First, for the sake of simplicity, we define the following functions of time:

\[
C_1(t) = \left(\frac{3T_2^2K_f^2}{4\mu_f} \| P_{in}(t) \|^2_{\Gamma_I^0} + \frac{3P_1^2K_f^2}{4\mu_f} \| f_f(t) \|^2_{\Omega_f} + \frac{P_3^2}{2K_{min}} \| f_p(t) \|^2_{\Omega_p} + \frac{1}{2} \| f_s(t) \|^2_{\Omega_p} \right)^{1/2},
\]

\[
C_2(t) = \left(\frac{3T_2^2K_f^2}{2\mu_f} \| \dot{P}_{in}(t) \|^2_{\Gamma_I^0} + \frac{3P_1^2K_f^2}{2\mu_f} \| \dot{f}_f(t) \|^2_{\Omega_f} + \frac{P_3^2}{2K_{min}} \| \dot{f}_p(t) \|^2_{\Omega_p} + \frac{1}{2} \| \dot{f}_s(t) \|^2_{\Omega_p} \right)^{1/2},
\]

a.e. in \((0, T) \), and the following constant:

\[
C_3 = \left(\frac{C_j^2}{\rho_f} \| P_{in}(0) \|^2_{H^{1/2}((\Gamma_f^0)^\prime)} + \frac{1}{\rho_f} \| f_f(0) \|^2_{\Omega_f} + \frac{1}{2s_0} \| f_p(0) \|^2_{\Omega_p} + \frac{1}{2s_1} \| f_s(0) \|^2_{\Omega_p} \right)^{1/2},
\]

where the constants \(T_2, K_f, P_1, P_3 \) are defined in Section 3.0.1 and \(C_j \) is the continuity constant of the continuous lifting operator from \(H^{1/2}(\partial \Omega_f) \to H^1(\Omega_f) \). Observe that \(C_1, C_2 \) and \(C_3 \) depend only on the data of the problem. We now present our main existence and uniqueness result.
Theorem 5.1. Assume that \(f_f \in H^1(0, T; L^2(\Omega_f)), f_s \in H^1(0, T; L^2(\Omega_s)), f_p \in H^1(0, T; L^2(\Omega_p)) \) and \(P \in H^1(0, T; H^{1/2}(\Gamma_i)) \) and that the following small data condition holds:

\[
(1 + \frac{T}{\rho_s} e^{T/\rho_s}) \| C_2 \|^2_{L^2(0,T)} + \frac{T}{\rho_s^2} e^{T/\rho_s} \| f_s(0) \|^2_{\Omega_p} \\
+ (1 + \frac{1}{\rho_s} e^{T/\rho_s} + \frac{T}{\rho_s^2} e^{T/\rho_s}) \| C_1 \|^2_{L^2(0,T)} + \| C_1 \|^2_{L^\infty(0,T)} < \frac{\mu_f^3}{9\rho_f^2 S_f^2 K_f^3}.
\]

(27)

Then, problem (WF1) has a unique solution \((u_f, p_f, \eta, p_p)\) such that

\[
\frac{\rho_f}{2} \| \dot{u}_f \|^2_{L^\infty(0,T; L^2(\Omega_f))} + \frac{\rho_s}{2} \| \dot{\eta} \|^2_{L^\infty(0,T; L^2(\Omega_s))} + \mu_s \| D(\eta) \|^2_{L^\infty(0,T; L^2(\Omega_p))} \\
+ \frac{s_0}{2} \| \dot{p}_p \|^2_{L^\infty(0,T; L^2(\Omega_p))} + \mu_f \| D(u_f) \|^2_{L^2(0,T; L^2(\Omega_f))} + \frac{1}{2} \| K^{1/2} \nabla \dot{p}_p \|^2_{L^2(0,T; L^2(\Omega_p))} \\
\leq \left(1 + \frac{T}{\rho_s} e^{T/\rho_s} \right) \| C_1 \|^2_{L^2(0,T)}.
\]

(28)

Furthermore,

\[
\| D(u_f) \|_{L^\infty(0,T; L^2(\Omega_f))} < \frac{\mu_f}{3\rho_f S_f^2 K_f^3},
\]

(29)

\[
\frac{\rho_f}{2} \| \dot{u}_f \|^2_{L^\infty(0,T; L^2(\Omega_f))} + \frac{\rho_s}{2} \| \dot{\eta} \|^2_{L^\infty(0,T; L^2(\Omega_s))} + \mu_s \| D(\eta) \|^2_{L^\infty(0,T; L^2(\Omega_p))} \\
+ \frac{s_0}{2} \| \dot{p}_p \|^2_{L^\infty(0,T; L^2(\Omega_p))} + \mu_f \| D(\dot{u}_f) \|^2_{L^2(0,T; L^2(\Omega_f))} + \frac{1}{2} \| K^{1/2} \nabla \dot{p}_p \|^2_{L^2(0,T; L^2(\Omega_p))} \\
\leq \left(1 + \frac{T}{\rho_s} e^{2T/\rho_s} \right) \| C_2 \|^2_{L^2(0,T)} + \frac{T e^{2T/\rho_s}}{2} \| C_3 \|
\]

and

\[
\| p_f \|_{L^\infty(0,T; L^2(\Omega_f))} \leq \frac{1}{\kappa} \left(\rho_f \| \dot{u}_f \|_{L^\infty(0,T; L^2(\Omega_f))} + 2\mu_f \| D(u_f) \|_{L^\infty(0,T; L^2(\Omega_f))} \\
+ S_f^2 \| u_f \|^2_{L^\infty(0,T; H^1(\Omega_f))} + T_1 T_3 \| p_p \|_{L^\infty(0,T; H^1(\Omega_p))} + \beta T_1^2 \| u_f \|_{L^\infty(0,T; H^1(\Omega_f))} \\
+ \beta T_1 T_5 \| \eta \|_{L^\infty(0,T; H^1(\Omega_s))} + T_2 \| P_i \|_{L^\infty(0,T; L^2(\Gamma^i_f))} + \| f_f \|_{L^\infty(0,T; L^2(\Omega_f))} \right).
\]

(30)

The constants \(T_1 - T_5, K_f, S_f, P_1, P_3 \) used in the above estimates are defined in Section 3.0.1.
6. Proof of Theorem 5.1

The proof consists of multiple steps. The main idea is to use Galerkin’s method on the divergence-free version of the weak problem (WF1) in which the fluid pressure p_f is eliminated. We will first present the divergence-free formulation (WF2) and introduce its Galerkin approximation (GF). Next we prove that there exists a unique maximal Galerkin solution by writing (GF) as a system of first order equations and applying the theory of ordinary differential equations. However this existence result holds only on a finite subinterval of $[0, T]$. Demonstrating a priori bounds for the Galerkin solution guarantees the validity of this existence result on the entire interval $[0, T]$ and also allows us to pass to the limit. At the end of this process, we obtain a solution u_f, η and p_p of the divergence-free weak formulation. We conclude the proof using an inf-sup condition to recover the fluid pressure p_f that was eliminated from the weak formulation, proving the equivalence of (WF2) and (WF1). This last step also provides a priori estimates for p_f.

6.1. A divergence-free weak formulation.

For the analysis of the problem, we will focus on the following divergence free version of the formulation (WF1).

(WF2) Find $u_f \in L^\infty(0, T; L^2(\Omega_f)) \cap L^2(0, T; X_f), \eta \in W^{1,\infty}(0, T; L^2(\Omega_p)) \times H^1(0, T; X_p)$ and $p_p \in L^\infty(0, T; L^2(\Omega_p)) \cap L^2(0, T; Q_p)$ with

\[
\begin{align*}
\dot{u}_f &\in L^1(0, T; L^3(\Omega_f)) \text{ such that for all } v \in V_f, \xi \in X_p \text{ and } r \in Q_p, \\
(\rho_f \dot{u}_f, v)_{\Omega_f} &+ (2\mu_f D(u_f), D(v))_{\Omega_f} + \rho_f (u_f \cdot \nabla u_f, v)_{\Omega_f} \\
+ (\rho_s \dot{\eta}, \xi)_{\Omega_p} &+ (2\mu_s D(\eta), D(\xi))_{\Omega_p} + (\lambda_s \nabla \cdot \eta, \nabla \cdot \xi)_{\Omega_p} - (\alpha p_p, \nabla \cdot \xi)_{\Omega_p} \\
+ (s_0 \dot{p}_p + \alpha \nabla \cdot \dot{\eta}, r)_{\Omega_p} &+ (K \nabla p_p, \nabla r)_{\Omega_p} \\
+ \langle p_p n_\Gamma, v - \xi \rangle_{\Gamma_f} + \sum_{l=1}^{d-1} \langle \beta(u_f - \eta) \cdot t_l^\Gamma, (v - \xi) \cdot t_l^\Gamma \rangle_{\Gamma_l} + \langle (\dot{\eta} - u_f) \cdot n_\Gamma, r \rangle_{\Gamma_f} \\
&= -\langle P_{in}(t) n_\Gamma, v \rangle_{\Gamma_f} + (f_f, v)_{\Omega_f} + (f_s, \xi)_{\Omega_p} + (f_p, r)_{\Omega_p}
\end{align*}
\]

a.e. in $(0, T)$, and

\[
\begin{align*}
\dot{u}_f(0) &= 0 \text{ a.e. in } \Omega_f, \quad \eta(0) = 0, \quad \dot{\eta}(0) = 0, \quad p_p(0) = 0 \text{ a.e. in } \Omega_p.
\end{align*}
\]

Note that the unknown pressure p_f is no longer in the weak formulation. Furthermore, it is obvious that any solution of (WF1) is a solution of (WF2). The converse will be proved in Section 6.6 using an inf-sup condition.
6.2. A semi-discrete Galerkin formulation of (WF2).

The existence result is proved by constructing a sequence of approximate problems and then passing to the limit, that is, using the Galerkin method. Separability of $V_f \times X_p \times Q_p$ implies the existence of a basis $\{(v_i, \xi_i, r_i)\}_{i \geq 0}$ consisting of smooth functions. We define

$$V_f^m = \text{span}\{v_i : i = 1, \ldots, m\},$$
$$X_p^m = \text{span}\{\xi_i : i = 1, \ldots, m\},$$
$$Q_p^m = \text{span}\{r_i : i = 1, \ldots, m\},$$

and use the following Galerkin approximations for the unknowns u_f, η and p_p:

$$u_m(x, t) = \sum_{j=1}^m \alpha_j(t)v_j(x), \quad \eta_m(x, t) = \sum_{j=1}^m \beta_j(t)\xi_j(x), \quad p_m(x, t) = \sum_{j=1}^m \gamma_j(t)r_j(x). \quad (32)$$

Then, we can write the Galerkin approximation of the problem (WF2) as follows:

\textbf{(GF)} Find $u_m \in C^1(0, T; V_f^m)$, $\eta_m \in C^2(0, T; X_p^m)$, $p_m \in C^1(0, T; Q_p^m)$ such that

$$\begin{align*}
(\rho_f \ddot{u}_m, v)_{\Omega_f} + (2\mu_f D(u_m), D(v))_{\Omega_f} + \rho_f (u_m \cdot \nabla u_m, v)_{\Omega_f} + (\rho_s \dot{\eta}_m, \xi)_{\Omega_p} \\
+ (2\mu_s D(\dot{\eta}_m), D(\dot{\xi}))_{\Omega_p} + (\lambda_s \nabla \cdot \eta_m, \nabla \cdot \xi)_{\Omega_p} - (\alpha_p \nabla \cdot \eta_m, \nabla \cdot \xi)_{\Omega_p} \\
+ (s_0 p_m + \alpha \nabla \cdot \eta_m, r)_{\Omega_p} + (K \nabla p_m, \nabla r)_{\Omega_p} + \langle p_m n_{\Gamma_f}, v - \xi \rangle_{\Gamma_f} \\
+ \sum_{i=1}^{d-1} \langle \beta(u_m - \dot{\eta}_m) \cdot t_i, (v - \xi) \cdot t_i \rangle_{\Gamma_f} + \langle (\dot{\eta}_m - u_m) \cdot n_{\Gamma_f}, r \rangle_{\Gamma_f} \\
= -\langle P_m(t)n_{\Gamma_f}, v \rangle_{\Gamma_f} + \langle f_f, v \rangle_{\Omega_f} + \langle f_s, \xi \rangle_{\Omega_p} + \langle f_p, r \rangle_{\Omega_p},
\end{align*}$$

for all $(v, \xi, r) \in V_f^m \times X_p^m \times Q_p^m$, a.e. $t \in (0, T)$ and

$$u_m(0) = 0, \quad \eta_m(0) = 0, \quad \dot{\eta}_m(0) = 0, \quad p_m(0) = 0. \quad (33)$$

\textbf{Lemma 6.1.} For each positive integer m, the formulation (GF) has a unique maximal solution $(u_m, \eta_m, p_m) \in C^1(0, T_m; V_f^m) \times C^2(0, T_m; X_p^m) \times C^1(0, T_m; Q_p^m)$ for some time T_m where $0 < T_m \leq T$.

\textbf{Proof.} Using the Galerkin expansions given in (32), the problem (GF) can be represented in matrix form. The following is a standard finite-dimensional
argument which is basically defining the problem as a square first order system of ordinary differential equations (ODE) with an initial condition. For the integrals on the left hand side for \(1 \leq i,j \leq m\), we define

\[
A^f_{ij} = \rho_f(v_j, v_i)\Omega_f, \quad B^f_{ij} = 2\mu_f(D(v_j), D(v_i))\Omega_f + \sum_{t=1}^d \beta(v_j \cdot t^f_\Gamma, v_i \cdot t^f_\Gamma)\Gamma_f,
\]

\[
N_i = (\rho_f(v_j \cdot \nabla v_k, v_i)\Omega_f)_{1 \leq j,k \leq m},
\]

\[
A^s_{ij} = \rho_s(\xi_j, \xi_i)\Omega_p, \quad B^s_{ij} = 2\mu_s(D(\xi_j), D(\xi_i))\Omega_p + \lambda_s(\nabla \cdot \xi_j, \nabla \cdot \xi_i)\Omega_p,
\]

\[
A^p_{ij} = s_0(r_j, r_i)\Omega_p, \quad B^p_{ij} = (K\nabla r_j, \nabla r_i)\Omega_p,
\]

\[
C_{ij} = \alpha(r_j, \nabla \cdot \xi_i)\Omega_p + \langle r_j n_\Gamma, \xi_i \rangle_{\Gamma_f}, \quad D_{ij} = \langle r_j n_\Gamma, v_i \rangle_{\Gamma_f},
\]

\[
E_{ij} = \sum_{t=1}^d \beta(\xi_j, t^i_\Gamma, v_i, t^f_\Gamma)\Omega_f, \quad F_{ij} = \sum_{t=1}^d \beta(\xi_j, t^i_\Gamma, t^f_\Gamma, v_i)\Omega_f.
\]

And finally for the right hand side integrals we define

\[
a_i = -\langle P_m(t) n_f, v_i \rangle_{\Omega_f}, \quad b_i = (f_s, \xi_i)\Omega_p, \quad c_i = (f_p, r_i)\Omega_p.
\]

The unknowns are \(\alpha_i = \alpha_i(t)\), \(\beta_i = \beta_i(t)\) and \(\gamma_i = \gamma_i(t), i = 1, \ldots, m\) and we define a vector that holds these unknowns and \(\theta = \beta\) as follows:

\[
w(t) = \begin{bmatrix} \alpha(t) \\ \beta(t) \\ \gamma(t) \\ \theta(t) \end{bmatrix}
\]

and set \((N(w))_i = N_i \alpha \cdot \alpha\). With these definitions, \((GF)\) is equivalent to finding \(\alpha, \beta, \gamma\) such that

\[
A^f\dot{\alpha} + B^f\alpha + N(w) + D\dot{\gamma} - E\dot{\beta} = a
\]

\[
A^s\ddot{\beta} + B^s\dot{\beta} - C\gamma - E^T\alpha + F\dot{\beta} = b
\]

\[
A^p\dot{\gamma} + B^p\gamma + C^T\dot{\beta} - D^T\alpha = c
\]

where \(\alpha(0), \beta(0)\) and \(\gamma(0)\) are given. We can rewrite this as a system of first order equations as follows:

\[
Mw + Nw = d(w),
\]

where

\[
M = \begin{bmatrix} A^f & 0 & 0 & 0 \\ 0 & I & 0 & 0 \\ 0 & 0 & A^p & 0 \\ 0 & 0 & 0 & A^s \end{bmatrix}, \quad N = \begin{bmatrix} B^f & 0 & D & -E \\ 0 & 0 & 0 & -I \\ -D^T & 0 & B^p & C^T \\ -E^T & B^s & -C & 0 \end{bmatrix}
\]

16
and
\[
d(w) = \begin{bmatrix}
a - N(w) \\
0 \\
c \\
b
\end{bmatrix}.
\]

Since \(\rho_f, \rho_s\) and \(s_0\) are positive, \(A^f, A^p\) and \(A^s\) are symmetric positive definite implying that \(M\) is invertible. This defines an autonomous ODE in \(w(t)\) such that
\[
\dot{w} = M^{-1}d(w) - M^{-1}Nw =: g(w), \quad \text{where } w(0) \text{ is given.}
\]

The matrices \(M, N\) are \(4m \times 4m\) and the vectors \(d, w\) have length \(4m\). It is obvious that the function \(g\) is continuous in time and locally Lipschitz continuous in \(w\). Then, it follows from the theory of ordinary differential equations \([14]\) that there is a unique maximal solution \(w\) in the interval \([0, T_m]\) for some \(T_m\) such that \(0 < T_m \leq T\) such that each component of \(w\), i.e., each component of \(\alpha, \beta, \gamma\) and \(\theta = \dot{\beta}\) belongs to \(C^1(0, T_m)\).

We need a priori bounds on the Galerkin solution to conclude that \(T_m = T\). We discuss this next in Section 6.3.

Remark 6.2. Note that if we consider the Stokes problem for the fluid part, so if there is no nonlinearity, an existence and uniqueness result will be global on \([0, T]\).

6.3. A priori estimates for the Galerkin solution.

We begin by stating the main result of this section.

Theorem 6.3. Suppose that \(f_f \in H^1(0, T; L^2(\Omega_f)), f_s \in H^1(0, T; L^2(\Omega_p)), f_p \in H^1(0, T; L^2(\Omega_p))\) and \(P_m \in H^1(0, T; H^{1/2}_0(\Gamma_f^0))\). In addition, assume that the small data condition \([27]\) holds. Then, problem (GF) has a unique solution \((u_m, \eta_m, p_m)\) in the interval \([0, T]\). Furthermore, it satisfies the following bounds:

\[
\frac{\rho_f}{2} \|u_m\|^2_{\Omega_f} + \frac{\rho_s}{2} \|\dot{\eta}_m\|^2_{\Omega_p} + \mu_s \|D(\eta_m)\|^2_{\Omega_p} + \frac{\lambda_s}{2} \|\nabla \cdot \eta_m\|^2_{\Omega_p} + \frac{s_0}{2} \|p_m\|^2_{\Omega_p} + \frac{1}{2} \|K^{1/2} \nabla p_m\|^2_{L^2(0,T; L^2(\Omega_p))} + \mu_f \|D(u_m)\|^2_{L^2(0,T; L^2(\Omega_f))} \\
\leq \left(1 + \frac{T}{\rho_s} e^{T/\rho_s}\right) \|C_1\|^2_{L^2(0,T)}
\]

(34)
for all \(t \in [0, T] \),
\[
\| D(u_m) \|_{\Omega_f} < \frac{\mu_f}{3\rho_f S_f^2 K_f^3},
\]
and
\[
\frac{\rho_f}{2} \| \dot{u}_m \|_{\Omega_f}^2 + \frac{\rho_s}{2} \| \dot{\eta}_m \|_{\Omega_p}^2 + \mu_s \| \nabla \cdot \dot{\eta}_m \|_{\Omega_p}^2 + \frac{\lambda_s}{2} \| \nabla \cdot \dot{\eta}_m \|_{\Omega_p}^2 + \frac{s_0}{2} \| \dot{p}_m \|_{\Omega_p}^2
\]
\[
+ \mu_f \| D(\dot{u}_m) \|_{L^2(0,T; L^2(\Omega_f))}^2 + \frac{1}{2} \| K^{1/2} \nabla \dot{p}_m \|_{L^2(0,T; L^2(\Omega_p))}^2
\]
\[
\leq (1 + \frac{T}{\rho_s} e^{2T/\rho_s^2}) \| C_2 \|_{L^2(0,T)}^2 + \frac{T e^{2T/\rho_s^2}}{2} C_3.
\]
Here \(C_1, C_2 \) and \(C_3 \) are defined in (26).

Remark 6.4. These bounds imply that \(\{ u_m \} \) is bounded in \(H^1(0, T; H^1(\Omega_f)) \), \(\{ \eta_m \} \) is bounded in \(H^1(0, T; H^1(\Omega_p)) \), \(\dot{\eta}_m \) is bounded in \(L^\infty(0, T; L^2(\Omega_p)) \) and \(\{ p_m \} \) is bounded in \(H^1(0, T; H^1(\Omega_p)) \).

In the next few sections, we verify the bounds (34), (35) and (36) in the interval \([0, T_m]\) which will then imply the global existence of the maximal solution \((u_m, \eta_m, p_m)\) in the interval \([0, T]\) as stated in the theorem.

6.3.1. Proof of (34).

We let \(v = u_m, \xi = \eta_m, r = p_m \) in the Galerkin formulation (GF). Then the Cauch-Schwarz inequality, inequalities (7), (10), (12), (13), (14) and assumption (16) on \(K \) imply (after neglecting the \(\beta \) term which is nonnegative)
\[
\rho_f (\dot{u}_m, u_m)_{\Omega_f} + 2 \mu_f \| D(u_m) \|_{\Omega_f}^2 + \rho_s (\dot{\eta}_m, \eta_m)_{\Omega_p} + 2 \mu_s (D(\eta_m), D(\eta_m))_{\Omega_p}
\]
\[
+ \lambda_s (\nabla \cdot \eta_m, \nabla \cdot \eta_m)_{\Omega_p} + s_0 (\dot{p}_m, p_m)_{\Omega_p} + \| K^{1/2} \nabla p_m \|_{\Omega_p}^2
\]
\[
\leq \rho_f S_f^2 K_f^3 \| D(u_m) \|_{\Omega_f}^2 + T_2 K_f \| P_m(\xi) \|_{\Gamma_p} \| D(u_m) \|_{\Omega_f} + P_1 K_f \| f_f \|_{\Omega_f} \| D(u_m) \|_{\Omega_f} + \| f_s \|_{\Omega_p} \| \dot{\eta}_m \|_{\Omega_p} + \frac{P_3}{K_{min}^{1/2}} \| f_p \|_{\Omega_p} \| K^{1/2} \nabla p_m \|_{\Omega_p}.
\]
Here the only problematic terms on the right hand side are \(\| D(u_m) \|_{\Omega_f}^3 \) and \(\| \dot{\eta}_m \|_{\Omega_p} \). The rest can easily be hidden in the left hand side. Observe that since \(u_m(0) = 0 \) and \(u_m \) is continuous, there exists a time \(T_m, 0 < T_m \leq T_m \) such that
\[
\| D(u_m) \|_{\Omega_f} < \frac{\mu_f}{3\rho_f S_f^2 K_f^3} \quad \forall t \in [0, T_m].
\]
In fact, this condition holds true on \([0, T_m]\). For the sake of presentation, we postpone this proof to Section 6.3.2. Using this condition together with Young’s inequality with \(\epsilon > 0\), we obtain

\[
\rho_f(\dot{u}_m, u_m)\Omega_f + 2\mu_f\|D(u_m)\|_\Omega_f^2 + \rho_s(\dot{\eta}_m, \dot{\eta}_m)\Omega_p + 2\mu_s(D(\eta_m), D(\dot{\eta}_m))\Omega_p \\
+ \lambda_s(\nabla \cdot \eta_m, \nabla \cdot \dot{\eta}_m)\Omega_p + s_0(\dot{p}_m, p_m)\Omega_p + \|K^{1/2}\nabla p_m\|_\Omega_p^2
\]

\[
\leq \frac{\mu_f}{3}\|D(u_m)\|_\Omega_f^2 + \frac{\epsilon T^2_f K^2_f}{2}\|P_m(t)\|_\Omega_p^2 + \frac{1}{2\epsilon}\|D(u_m)\|_\Omega_f^2 + \frac{\epsilon P^2 K^2_f}{2}\|f_\ell\|_\Omega_f^2
\]

\[
+ \frac{1}{2\epsilon}\|D(u_m)\|_\Omega_f^2 + \frac{1}{2}\|f_s\|_\Omega_p^2 + \frac{1}{2}\|\dot{\eta}_m\|_\Omega_p^2 + \frac{P^2}{2\epsilon}\|f_p\|_\Omega_p^2 + \frac{1}{2}\|K^{1/2}\nabla p_m\|_\Omega_p^2
\]

for all \(t \in [0, T_m]\). Picking \(\epsilon = \frac{3}{2\mu_f}\), we get

\[
\rho_f(\dot{u}_m, u_m)\Omega_f + 2\mu_f\|D(u_m)\|_\Omega_f^2 + \rho_s(\dot{\eta}_m, \dot{\eta}_m)\Omega_p + 2\mu_s(D(\eta_m), D(\dot{\eta}_m))\Omega_p \\
+ \lambda_s(\nabla \cdot \eta_m, \nabla \cdot \dot{\eta}_m)\Omega_p + s_0(\dot{p}_m, p_m)\Omega_p + \|K^{1/2}\nabla p_m\|_\Omega_p^2
\]

\[
\leq \mu_f\|D(u_m)\|_\Omega_f^2 + \frac{1}{2}\|K^{1/2}\nabla p_m\|_\Omega_p^2 + \frac{3T^2_f K^2_f}{4\mu_f}\|P_m(t)\|_\Omega_p^2 + \frac{3P^2 K^2_f}{4\mu_f}\|f_\ell\|_\Omega_f^2
\]

\[
+ \frac{P^2}{2\epsilon}\|f_p\|_\Omega_p^2 + \frac{1}{2}\|f_s\|_\Omega_p^2 + \frac{1}{2}\|\dot{\eta}_m\|_\Omega_p^2 = C_1^2(t) + \frac{1}{2}\|\dot{\eta}_m\|_\Omega_p^2 \tag{39}
\]

where \(C_1\) is defined in (26). Integrating with respect to \(t\), due to (33), we get:

\[
\frac{\rho_f}{2}\|u_m\|_\Omega_f^2 + \frac{\rho_s}{2}\|\dot{\eta}_m\|_\Omega_p^2 + \frac{\mu_s}{2}\|D(\eta_m)\|_\Omega_p^2 + \frac{\lambda_s}{2}\|\nabla \cdot \eta_m\|_\Omega_p^2 + \frac{s_0}{2}\|p_m\|_\Omega_p^2
\]

\[
+ \mu_f \int_0^t \|D(u_m)\|_\Omega_f^2 dt + \frac{1}{2} \int_0^t \|K^{1/2}\nabla p_m\|_\Omega_p^2 dt
\]

\[
\leq \|C_1\|_{L^2(0,T)}^2 + \frac{1}{2} \int_0^t \|\dot{\eta}_m(s)\|_\Omega_p^2 ds. \tag{40}
\]

So

\[
\|\dot{\eta}_m(t)\|_\Omega_p^2 \leq \frac{2}{\rho_s}\|C_1\|_{L^2(0,T)}^2 + \frac{1}{\rho_s} \int_0^t \|\dot{\eta}_m(s)\|_\Omega_p^2 ds.
\]

Therefore, since \(\eta_m \in C^2(0, T; X^m_p), \|\dot{\eta}_m(t)\|_\Omega_p^2 \in C^1(0, T)\) and applying Gronwall’s inequality (15) with \(\zeta(t) = \|\dot{\eta}_m(t)\|_\Omega_p^2, C = \frac{1}{\rho_s}\) and \(B = \frac{2}{\rho_s}\|C_1\|_{L^2(0,T)}^2\)

19
yields
\[\| \dot{\eta}_m(t) \|^2_{\Omega_p} \leq \frac{2}{\rho_s} e^{T/\rho_s} \| C_1 \|^2_{L^2(0,T)}. \]
(41)

Plugging this in (39), we have
\[\rho_f (\dot{u}_m, u_m)_{\Omega_f} + \mu_f \| D(u_m) \|^2_{\Omega_f} + \rho_s (\dot{\eta}_m, \dot{\eta}_m)_{\Omega_p} + 2 \mu_s (D(\eta_m), D(\dot{\eta}_m))_{\Omega_p} \]
\[+ \lambda_s (\nabla \cdot \eta_m, \nabla \cdot \dot{\eta}_m)_{\Omega_p} + s_0 (\dot{p}_m, p_m)_{\Omega_p} + \frac{1}{2} \| K^{1/2} \nabla p_m \|^2_{\Omega_p} \]
\[\leq C_1^2(t) + \frac{1}{\rho_s} e^{T/\rho_s} \| C_1 \|^2_{L^2(0,T)} \]
(42)

or
\[\frac{\rho_f}{2} \frac{d}{dt} \| D(u_m) \|^2_{\Omega_f} + \mu_f \| D(u_m) \|^2_{\Omega_f} + \rho_s \frac{d}{dt} \| \dot{\eta}_m \|^2_{\Omega_p} + \mu_s \frac{d}{dt} \| D(\eta_m) \|^2_{\Omega_p} \]
\[+ \lambda_s \frac{d}{dt} \| \nabla \cdot \eta_m \|^2_{\Omega_p} + s_0 \frac{d}{dt} \| p_m \|^2_{\Omega_p} + \frac{1}{2} \| K^{1/2} \nabla p_m \|^2_{\Omega_p} \]
\[\leq C_1^2(t) + \frac{1}{\rho_s} e^{T/\rho_s} \| C_1 \|^2_{L^2(0,T)} \]
(43)

for all \(t \in [0, T_m] \). After integrating with respect to \(t \) and using (33) implies the bound (34).

6.3.2. Proof of (35) and (36).

Proof. Recalling (38), assume for a contradiction that there exists \(T^* \in (0, T_m] \) such that
\[\forall t \in [0, T^*), \ |D(u_m)(t)|_{\Omega_f} < \frac{\mu_f}{3 \rho_f S_f^2 K_f^3}, \ |D(u_m)(T^*)|_{\Omega_f} = \frac{\mu_f}{3 \rho_f S_f^2 K_f^3}. \]

Similar arguments leading to (42) and using Young’s inequality yield
\[2 \mu_f \| D(u_m) \|^2_{\Omega_f} \]
\[\leq \frac{\rho_f}{2} \| \dot{u}_m \|^2_{\Omega_f} + \rho_s \| \dot{\eta}_m \|^2_{\Omega_p} + \mu_s \| D(\eta_m) \|^2_{\Omega_p} + \lambda_s \| \nabla \cdot \eta_m \|^2_{\Omega_p} + \frac{1}{2} \| \nabla \cdot \eta_m \|^2_{\Omega_p} + \frac{1}{2} \| \dot{p}_m \|^2_{\Omega_p} \]
\[+ \frac{\rho_f}{2} \| u_m \|^2_{\Omega_f} + \rho_s \| \dot{\eta}_m \|^2_{\Omega_p} + \mu_s \| D(\dot{\eta}_m) \|^2_{\Omega_p} + \lambda_s \| \nabla \cdot \dot{\eta}_m \|^2_{\Omega_p} + \frac{1}{2} \| \dot{p}_m \|^2_{\Omega_p} \]
\[+ C_1^2(t) + \frac{1}{\rho_s} e^{T/\rho_s} \| C_1(t) \|^2_{L^2(0,T)} \]
(45)
for all $t \in [0,T^*]$. To bound the first five terms we differentiate (\mathbf{GF}) with respect to time. The specifics of this technique can be found in [24].

$$(\rho_f \dot{u}_m, v)_{\Omega_T} + (2\mu_f D(\dot{u}_m), D(v))_{\Omega_T} + \rho_f (\dot{u}_m \cdot \nabla u_m, v)_{\Omega_T} + \rho_f (u_m \cdot \nabla \dot{u}_m, v)_{\Omega_T}$$

$$+ (\rho_s \ddot{\eta}_m, \xi)_{\Omega_P} + (2\mu_s D(\ddot{\eta}_m), D(\xi))_{\Omega_P} + (\lambda_s \nabla \cdot \dot{\eta}_m, \nabla \cdot \xi)_{\Omega_P} - (\alpha p_m, \nabla \cdot \xi)_{\Omega_P}$$

$$+ (s_0 \dot{p}_m + \alpha \nabla \cdot \dot{\eta}_m, r)_{\Omega_P} + (K \nabla \dot{p}_m, \nabla r)_{\Omega_P} + \langle \dot{p}_m n_{\Gamma_f}, v - \xi \rangle_{\Gamma_f}$$

$$+ \sum_{t=1}^{d-1} \langle \beta (\dot{u}_m - \ddot{\eta}_m) \cdot t^1_{\Gamma_f}, (v - \xi) \cdot t^1_{\Gamma_f} \rangle_{\Gamma_f} + \langle (\ddot{\eta}_m - \dot{u}_m) \cdot n_{r}, r \rangle_{\Gamma_f}$$

$$= -\langle \dot{P}_m n_{\Gamma_f}, v \rangle_{\Gamma^m_f} + \langle \dot{f}_f, v \rangle_{\Omega_f} + \langle \dot{f}_s, \xi \rangle_{\Omega_P} + \langle \dot{f}_p, p \rangle_{\Omega_P}.$$

We let $v = \dot{u}_m$, $r = \dot{p}_m$ and $\xi = \ddot{\eta}_m$ in the above, use the Cauchy-Schwarz inequality, assumption (14), inequalities (7), (10), (12), (13), (14) and assumption (16) on K to get (neglecting the nonnegative β term)

$$\frac{\rho_f}{2} \frac{d}{dt} \| \dot{u}_m \|^2_{\Omega_T} + 2\mu_f \| D(\dot{u}_m) \|^2_{\Omega_T} + \frac{\rho_s}{2} \frac{d}{dt} \| \ddot{\eta}_m \|^2_{\Omega_P} + \mu_s \frac{d}{dt} \| D(\ddot{\eta}_m) \|^2_{\Omega_P}$$

$$+ \frac{\lambda_s}{2} \frac{d}{dt} \| \nabla \cdot \dot{\eta}_m \|^2_{\Omega_P} + \frac{s_0}{2} \frac{d}{dt} \| \dot{p}_m \|^2_{\Omega_P} + \| K^{1/2} \nabla \dot{p}_m \|^2_{\Omega_P}$$

$$\leq -\rho_f (\dot{u}_m \cdot \nabla u_m, \dot{u}_m)_{\Omega_T} - \rho_f (u_m \cdot \nabla \dot{u}_m, \dot{u}_m)_{\Omega_T}$$

$$- \langle \dot{P}_m n_{\Gamma_f}, \dot{u}_m \rangle_{\Gamma^m_f} + \langle \dot{f}_f, \dot{u}_m \rangle_{\Omega_T} + \langle \dot{f}_s, \ddot{\eta}_m \rangle_{\Omega_P} + \langle \dot{f}_p, \dot{p}_m \rangle_{\Omega_P}.$$

$$\leq 2\rho_f S_f^2 K_f^3 \| D(\dot{u}_m) \|^2_{\Omega_T} + T_2 K_f \| \dot{P}_m \|_{\Gamma^m_f} \| D(\dot{u}_m) \|_{\Omega_T}$$

$$+ P_1 K_f \| f_f \|_{\Omega_f} + \| \dot{f}_s \|_{\Omega_P} \| \ddot{\eta}_m \|_{\Omega_P} + \frac{P_3}{K_{\min}^{1/2}} \| \dot{f}_p \|_{\Omega_P} \| K^{1/2} \nabla \dot{p}_m \|_{\Omega_P}$$

$$\leq \frac{2\mu_f}{3} \| D(\dot{u}_m) \|^2_{\Omega_f} + \frac{1}{2\epsilon} \| D(\dot{u}_m) \|^2_{\Omega_f} + \left(\frac{\epsilon T_2^2 K_f^2}{2} \| \dot{P}_m \|^2_{\Gamma^m_f} + \frac{1}{2\epsilon} \| D(\dot{u}_m) \|^2_{\Omega_f} \right)$$

$$+ \frac{\epsilon P^2_1 K_f^2}{2} \| f_f \|^2_{\Omega_f} + \| \dot{f}_s \|_{\Omega_P} \| \ddot{\eta}_m \|_{\Omega_P} + \frac{1}{2} \| K^{1/2} \nabla \dot{p}_m \|^2_{\Omega_P} + \frac{P^2_3}{2K_{\min}} \| \dot{f}_p \|^2_{\Omega_P}.$$
Therefore, this yields:

\[
\mu_f \frac{d}{dt} \| \dot{u}_m \|^2_{\Omega_f} + \mu_f \| D(\dot{u}_m) \|^2_{\Omega_f} + \mu_s \frac{d}{dt} \| \dot{\eta}_m \|^2_{\Omega_p} + \frac{\rho_s}{2} \frac{d}{dt} \| \dot{\eta}_m \|^2_{\Omega_p} + \frac{\lambda_s}{2} \| \nabla \cdot \dot{\eta}_m \|^2_{\Omega_p} + s_0 \frac{d}{dt} \| \dot{p}_m \|^2_{\Omega_p} + \frac{1}{2} \| K^{1/2} \nabla \dot{p}_m \|^2_{\Omega_p} \\
\leq \frac{3T^2 K^2}{2\mu_f} \| \dot{p}_m \|^2_{\Gamma^\eta} + \frac{3P^2 K^2}{2\mu_f} \| \dot{f}_s \|^2_{\Omega_f} + \frac{1}{2} \| \dot{f}_s \|^2_{\Omega_p} + \frac{1}{2} \| \dot{\eta}_m \|^2_{\Omega_p} + \frac{P^2}{2K_{\min}} \| \dot{f}_p \|^2_{\Omega_p} \\
= C_2(t) + \frac{1}{2} \| \ddot{\eta}_m \|^2_{\Omega_p},
\]

(46)

where \(C_2 \in L^2(0, T) \) is defined in \([26]\). Now we need a bound for \(\ddot{\eta}_m \). Since by assumption \(\dot{\eta} \) is continuous, we can use Gronwall’s inequality \((15)\) again. Integrating from 0 to \(t \) for any \(t \in [0, T^*] \) and recalling \((33)\) we obtain

\[
\frac{\rho_f}{2} \| \ddot{u}_m \|^2_{\Omega_f} + \frac{\rho_s}{2} \| \ddot{\eta}_m \|^2_{\Omega_p} + \frac{\lambda_s}{2} \| \nabla \cdot \ddot{\eta}_m \|^2_{\Omega_p} + \frac{s_0}{2} \| \ddot{p}_m \|^2_{\Omega_p} \\
\leq \frac{\rho_f}{2} \| \dot{u}_m(0) \|^2_{\Omega_f} + \frac{\rho_s}{2} \| \dot{\eta}_m(0) \|^2_{\Omega_p} + \frac{s_0}{2} \| \dot{p}_m(0) \|^2_{\Omega_p} \\
+ \| C_2 \|^2_{L^2(0,T)} + \frac{1}{\rho_s} \int_0^t \| \ddot{\eta}_m(s) \|^2_{\Omega_p} ds.
\]

(47)

Now we need bounds for \(\| \ddot{u}_m(0) \|^2_{\Omega_f} \), \(\| \ddot{\eta}_m(0) \|^2_{\Omega_p} \) and \(\| \ddot{p}_m(0) \|^2_{\Omega_p} \). For that purpose we let \(v = 0, r = 0 \) and \(\xi = \ddot{\eta}_m(0) \) in \((GF)\) at \(t = 0 \). Due to \((33)\) this yields:

\[
\rho_s \| \ddot{\eta}_m(0) \|^2_{\Omega_p} = \langle f_s(0), \ddot{\eta}_m(0) \rangle_{\Omega_p} \leq \| f_s(0) \|_{\Omega_p} \| \ddot{\eta}_m(0) \|_{\Omega_p}.
\]

Therefore,

\[
\| \ddot{\eta}_m(0) \|_{\Omega_p} \leq \frac{1}{\rho_s} \| f_s(0) \|_{\Omega_p}.
\]

(48)

Now let \(v = \eta = 0 \) and \(r = \dot{p}_m(0) \) and \(t = 0 \) in \((GF)\). Then by \((33)\) we have

\[
\| \dot{p}_m(0) \|_{\Omega_p} \leq \frac{1}{s_0} \| f_p(0) \|_{\Omega_p}.
\]

(49)

Furthermore if we let \(\eta = 0, r = 0, v = \dot{u}_m(0) \) and \(t = 0 \) in \((GF)\), we get

\[
\rho_f \| \dot{u}_m(0) \|^2_{\Omega_f} = -\langle P_{\Gamma^m}(0) n_{\Gamma^m}, \dot{u}_m(0) \rangle_{\Gamma^m} + \langle f_f(0), \dot{u}_m(0) \rangle_{\Gamma_f}.
\]

22
We need a good bound for $\langle P_m n_F, \dot{u}_m(0) \rangle_{\Gamma_F^n}$ because otherwise $\|\dot{u}_m(0)\|_{\Gamma_F^n}$ cannot be hidden in the left hand side. Assuming $P_m \in L^2(0, T; H^{1/2}(\Gamma_F^n))$, its extension \tilde{P}_m by zero to $\partial \Omega_f$ is in $L^2(0, T; H^{1/2}(\partial \Omega_f))$. Then we can use the continuous lifting operator $j : L^2(0, T; H^{1/2}(\partial \Omega_f)) \to L^2(0, T; H^1(\Omega_f))$ with continuity constant C_j. Since $\nabla \cdot \dot{u}_m = 0$

\[
\langle P_m n_F, \dot{u}_m(0) \rangle_{\Gamma_F^n} = \langle j(\tilde{P}_m(0)) n_F, \dot{u}_m(0) \rangle_{\partial \Omega_f} = (\nabla (j(\tilde{P}_m(0))), \dot{u}_m(0))_{\Omega_f}
\]

\[
\leq \|\nabla (j(\tilde{P}_m(0)))\|_{\Omega_f} \|\dot{u}_m(0)\|_{\Omega_f} \leq \|j(\tilde{P}_m(0))\|_{H^1(\Omega_f)} \|\dot{u}_m(0)\|_{\Omega_f}
\]

\[
\leq C_j \|\tilde{P}_m(0)\|_{H^{1/2}(\partial \Omega_f)} \|\dot{u}_m(0)\|_{\Omega_f} = C_j \|P_m(0)\|_{H^{1/2}(\Gamma_F^n)} \|\dot{u}_m(0)\|_{\Omega_f}.
\]

Then

\[
\|\dot{u}_m(0)\|_{\Omega_f} \leq \frac{C_j}{\rho_f} \|P_m(0)\|_{H^{1/2}(\Gamma_F^n)} + \frac{1}{\rho_f} \|\mathbf{f}(0)\|_{\Omega_f}.
\] (50)

Plugging these in (47),

\[
\frac{\rho f}{2} \|\ddot{u}_m\|_{\Omega_F}^2 + \frac{\rho s}{2} \|\dot{\eta}_m\|_{\Omega_p}^2 + \mu_s \|\mathbf{D}(\dot{u}_m)\|_{\Omega_p}^2 + \frac{\lambda_s}{2} \|\nabla \cdot \dot{\eta}_m\|_{\Omega_p}^2 + \frac{s_0}{2} \|\dot{m}_p\|_{\Omega_p}^2
\]

\[
\leq \frac{C_j^2}{\rho_f} \|P_m(0)\|_{H^{1/2}(\Gamma_F^n)}^2 + \frac{1}{\rho_f} \|\mathbf{f}(0)\|_{\Omega_f}^2 + \frac{1}{2\rho_s} \|\mathbf{f}_s(0)\|_{\Omega_p}^2 + \frac{1}{2s_0} \|f_p(0)\|_{\Omega_p}^2
\]

\[
+ \|\mathbf{C}_2\|_{L^2(0,T)}^2 + \frac{1}{\rho_s} \int_0^t \|\dot{\eta}_m(s)\|_{\Omega_p}^2 ds
\]

\[
= \mathbf{C}_3 + \|\mathbf{C}_2\|_{L^2(0,T)}^2 + \frac{1}{\rho_s} \int_0^t \|\dot{\eta}_m(s)\|_{\Omega_p}^2 ds,
\]

where \mathbf{C}_3 is defined in (26). If we neglect all terms other than the second one on the left hand side of the above equation we get

\[
\|\ddot{\eta}_m\|_{\Omega_p}^2 \leq \frac{2}{\rho_s} \mathbf{C}_3 + \frac{2}{\rho_s} \|\mathbf{C}_2\|_{L^2(0,T)}^2 + \frac{2}{\rho_s^2} \int_0^t \|\dot{\eta}_m(s)\|_{\Omega_p}^2 ds.
\]

Using Gronwall’s inequality (13) with $B = \frac{2}{\rho_s} \mathbf{C}_3 + \frac{2}{\rho_s} \|\mathbf{C}_2\|_{L^2(0,T)}$, $C = \frac{2}{\rho_s^2}$ and $\zeta(t) = \|\ddot{\eta}_m(t)\|_{\Omega_p}^2$,

\[
\|\ddot{\eta}_m(t)\|_{\Omega_p}^2 \leq e^{2T/\rho_s^2} \left(\frac{2}{\rho_s} \|\mathbf{C}_2\|_{L^2(0,T)} + \frac{2}{\rho_s} \mathbf{C}_3 \right).
\]

23
Therefore, putting this in (46) we have

\[
\frac{\rho_f}{2} \frac{d}{dt} \| \hat{u}_m \|^2_{\Omega_f} + \mu_f \| \mathbf{D}(\hat{u}_m) \|^2_{\Omega_f} + \frac{\rho_s}{2} \frac{d}{dt} \| \hat{\eta}_m \|^2_{\Omega_p} + \mu_s \frac{d}{dt} \| \mathbf{D}(\hat{\eta}_m) \|^2_{\Omega_p} \\
+ \frac{\lambda_s}{2} \frac{d}{dt} \| \nabla \cdot \hat{\eta}_m \|^2_{\Omega_p} + \frac{s_0}{2} \frac{d}{dt} \| \hat{p}_m \|^2_{\Omega_p} + \frac{1}{2} \| \mathbf{K}^{1/2} \nabla \hat{p}_m \|^2_{\Omega_p} \\
\leq C_2^2(t) + \frac{e^{2T/\rho_f^2}}{\rho_s} \left(\| \mathbf{C}_2 \|_{L^2(0,T)}^2 + C_3 \right). \tag{51}
\]

Integrating from 0 to \(t \) in \([0,T^*]\) and recalling the bounds (48), (49) and (50) we obtain

\[
\frac{\rho_f}{2} \| \hat{u}_m \|^2_{\Omega_f} + \frac{\rho_s}{2} \| \hat{\eta}_m \|^2_{\Omega_p} + \frac{\mu_s}{2} \| \mathbf{D}(\hat{\eta}_m) \|^2_{\Omega_p} + \frac{\lambda_s}{2} \| \nabla \cdot \hat{\eta}_m \|^2_{\Omega_p} + \frac{s_0}{2} \| \hat{p}_m \|^2_{\Omega_p} \\
+ \int_0^t \mu_f \| \mathbf{D}(\hat{u}_m) \|^2_{\Omega_f} dt + \int_0^t \frac{1}{2} \| \mathbf{K}^{1/2} \nabla \hat{p}_m \|^2_{\Omega_p} dt \\
\leq \| \mathbf{C}_2 \|_{L^2(0,T)}^2 + \frac{T}{\rho_s} e^{2T/\rho_f^2} \| \mathbf{C}_2 \|_{L^2(0,T)}^2 + \frac{T e^{2T/\rho_f^2}}{2} C_3 \\
= (1 + \frac{T}{\rho_s} e^{2T/\rho_f^2}) \| \mathbf{C}_2 \|_{L^2(0,T)}^2 + \frac{T e^{2T/\rho_f^2}}{2} C_3, \tag{52}
\]

which implies (36). Neglecting all terms on the left hand side other than the first we find

\[
\| \hat{u}_m \|^2_{\Omega_f} \leq \frac{2}{\rho_f} \left((1 + \frac{T}{\rho_s} e^{2T/\rho_f^2}) \| \mathbf{C}_2 \|_{L^2(0,T)}^2 + \frac{T e^{2T/\rho_f^2}}{2} C_3 \right). \tag{53}
\]

To find a bound for \(\| u_m \|_{\Omega_f} \) in (45), we recall (37), use assumption (44) to get (43) for all \(t \in [0,T^*] \). Neglecting the terms other than the ones with \(d/dt \) on the left hand side, we integrate (43) from 0 to \(t \) where \(t \in [0,T^*] \). Since the initial conditions are zero, we have

\[
\frac{\rho_f}{2} \| u_m \|^2_{\Omega_f} + \frac{\rho_s}{2} \| \eta_m \|^2_{\Omega_p} + \mu_s \| \mathbf{D}(\eta_m) \|^2_{\Omega_p} + \frac{\lambda_s}{2} \| \nabla \cdot \eta_m \|^2_{\Omega_p} + \frac{s_0}{2} \| p_m \|^2_{\Omega_p} \\
\leq (1 + \frac{T}{\rho_s} e^{T/\rho_s}) \| \mathbf{C}_1 \|_{L^2(0,T)}^2. \tag{54}
\]
Therefore using (53) and (54) in (45) we get
\[
\|D(u_m)\|_{\Omega_f}^2 \leq \frac{1}{2\mu_f} \left(C_1^2(t) + (1 + \frac{1}{\rho_s} e^{T/\rho_s} + \frac{T}{\rho_s} e^{T/\rho_s}) \|C_2\|_{L^2(0,T)}^2 + (1 + \frac{T}{\rho_s} e^{2T/\rho_s^2}) \|C_2\|_{L^2(0,T)}^2 + \frac{T e^{2T/\rho_s^2}}{2} C_3 \right)
\]
for all \(t \in [0,T^*] \). So if the data satisfy
\[
\frac{1}{2\mu_f} \left(\|C_1\|_{L^\infty(0,T)}^2 + (1 + \frac{1}{\rho_s} e^{T/\rho_s} + \frac{T}{\rho_s} e^{T/\rho_s}) \|C_1\|_{L^2(0,T)}^2 + (1 + \frac{T}{\rho_s} e^{2T/\rho_s^2}) \|C_2\|_{L^2(0,T)}^2 + \frac{T e^{2T/\rho_s^2}}{2} C_3 \right) < \frac{\mu_f^3}{9\rho_f S_f^4 K_f^6},
\]
then we have
\[
\|D(u_m)\|_{\Omega_f} < \frac{\mu_f^2}{3\rho_f S_f^2 K_f^3}
\]
for all \(t \in [0,T^*] \) which contradicts with the assumption. \(\square \)

Remark 6.5. Note that if \(P_{in}(0) = 0 \), we immediately get \(\|\dot{u}_m(0)\|_{\Omega_f} \leq \frac{1}{\rho_f} \|f_f(0)\|_{\Omega_f} \) rather than (50). In that case, it is not necessary to assume that \(P_{in} \in L^2(0,T; H_{00}^{1/2}(\Gamma_{in}^f)) \).

6.4. Passing to the limit

Since we established the boundedness of the Galerkin solution \((u_m, \eta_m, p_m)\) that we stated in Remark 6.4, we can pass to the limit in (GF) to obtain a solution to (WF2). Reflexivity of \(V_f, X_p \) and \(Q_p \) and therefore of \(H^1(0,T; V_f), H^1(0,T; X_p) \) and \(H^1(0,T; Q_p) \) imply that there exists a subsequence of the Galerkin solution, still denoted by \(\{(u_m, \eta_m, p_m)\}_m \) such that
\[
\begin{align*}
 u_m &\rightharpoonup u_f \quad \text{in } H^1(0,T; H^1(\Omega_f)), \\
 \eta_m &\rightharpoonup \eta \quad \text{in } H^1(0,T; H^1(\Omega_p)), \\
 \dot{\eta}_m &\rightharpoonup \dot{\eta} \quad \text{in } L^2(0,T; L^2(\Omega_p)), \\
 p_m &\rightharpoonup p_p \quad \text{in } H^1(0,T; H^1(\Omega_p))
\end{align*}
\]
where \(\rightarrow \) stands for weak convergence. Note that due to the continuity of the trace operator we also have

\[
\begin{align*}
 u_m & \rightharpoonup u_f \quad \text{in} \quad L^2(0, T; H^{1/2}(\partial\Omega_f)), \\
 \eta_m & \rightharpoonup \eta \quad \text{in} \quad L^2(0, T; H^{1/2}(\partial\Omega_p)), \\
 p_m & \rightharpoonup p_p \quad \text{in} \quad L^2(0, T; H^{1/2}(\partial\Omega_p)).
\end{align*}
\]

We can pass to the limit in the linear terms with the convergence results above. However, the nonlinear term needs a stronger convergence result. To obtain such a result we recall that \(H^1(\Omega_f) \subset L^4(\Omega_f) \subset L^2(\Omega_f) \) and that \(H^1(\Omega_f) \) is compactly embedded in \(L^4(\Omega_f) \) due to the Sobolev embedding theorem. Furthermore, Remark 6.4 implies that the subsequence \(\{u_m\}_m \) is bounded in \(L^4(0, T; H^1(\Omega_f)) \) and \(\{\frac{\partial u_m}{\partial t}\}_m \) is bounded in \(L^1(0, T; L^2(\Omega_f)) \). Therefore, Theorem 3.2 implies that \(\{u_m\}_m \) has a subsequence, still denoted the same, such that

\[
u_m \rightharpoonup u_f \quad \text{strongly in} \quad L^4(0, T; L^4(\Omega_f)).
\]

Fix an integer \(k \geq 1 \). We multiply \((GF)\) by \(\psi(t) \in L^2(0, T) \) and integrate in time to obtain

\[
\begin{align*}
 &\int_0^T (\rho_f \dot{u}_m, \psi(t)v)_{\Omega_f} \, dt + \int_0^T (2\mu_f D(u_m), \psi(t)D(v))_{\Omega_f} \, dt \\
 &+ \int_0^T \rho_f (u_m \cdot \nabla u_m, \psi(t)v)_{\Omega_f} \, dt + \int_0^T (\rho_s \dot{\eta}_m, \psi(t)\xi)_{\Omega_p} \, dt \\
 &+ \int_0^T (2\mu_s D(\eta_m), \psi(t)D(\xi))_{\Omega_p} \, dt + \int_0^T (\lambda_s \nabla \cdot \eta_m, \psi(t)\nabla \cdot \xi)_{\Omega_p} \, dt \\
 &- \int_0^T (\alpha p_m, \psi(t)\nabla \cdot \xi)_{\Omega_p} \, dt + \int_0^T (s_0 \dot{p}_m + \alpha \nabla \cdot \eta_m, \psi(t)r)_{\Omega_p} \, dt \\
 &+ \int_0^T (K \nabla p_m, \psi(t)\nabla r)_{\Omega_p} \, dt + \int_0^T \langle p_m n_\Gamma, \psi(t)(v - \xi) \rangle_{\Gamma_f} \, dt \\
 &+ \sum_{i=1}^{d-1} \int_0^T \langle \beta (u_m - \dot{\eta}_m) \cdot t_i, \psi(t)(v - \xi) \cdot t_i \rangle_{\Gamma_f} \, dt \\
 &+ \int_0^T \langle (\dot{\eta}_m - u_m) \cdot n_\Gamma, \psi(t)r \rangle_{\Gamma_f} \, dt = - \int_0^T \langle P_m(t)n_\Gamma, \psi(t)v \rangle_{\Gamma_f} \, dt \\
 &+ \int_0^T \langle f_f, \psi(t)v \rangle_{\Omega_f} \, dt + \int_0^T \langle f_s, \psi(t)\xi \rangle_{\Omega_p} \, dt + \int_0^T \langle f_p, \psi(t)r \rangle_{\Omega_p} \, dt,
\end{align*}
\]

(55)
for all \((v, \xi, r) \in V_f^k \times X_p^k \times Q_p^k\), \(m \geq k\). Letting \(m \to \infty\) we obtain

\[
\int_0^T (\rho_f \dot{u}_f, \psi(t)v)_{\Omega_f} dt + \int_0^T (2\mu_f \mathbf{D}(u_f), \psi(t)\mathbf{D}(v))_{\Omega_f} dt \\
+ \int_0^T \rho_f (u_f \cdot \nabla u_f, \psi(t)v)_{\Omega_f} dt + \int_0^T (\rho_s \dot{\eta}, \psi(t)\eta)_{\Omega_p} dt \\
+ \int_0^T (2\mu_s \mathbf{D}(\eta), \psi(t)\mathbf{D}(\xi))_{\Omega_p} dt + \int_0^T (\lambda_s \nabla \cdot \eta, \psi(t)\nabla \cdot \xi)_{\Omega_p} dt \\
- \int_0^T (\alpha_p \psi(t)\nabla \cdot \xi)_{\Omega_p} dt + \int_0^T (s_0 \dot{P}_p + \alpha \nabla \cdot \dot{\eta}, \psi(t)\nabla v)_{\Omega_p} dt \\
+ \int_0^T (K \nabla p, \psi(t)\nabla r)_{\Omega_p} dt + \int_0^T (p_r, \psi(t)(v - \xi))_{\Gamma_1} dt \\
+ \sum_{l=1}^{l-1} \int_0^T \langle \beta (u_f - \dot{\eta}) \cdot t_l^1, \psi(t)(v - \xi) \cdot t_l^1 \rangle_{\Gamma_1} dt \\
+ \int_0^T \langle (\dot{\eta} - u_f) \cdot n_r, \psi(t)r \rangle_{\Gamma_1} dt = - \int_0^T \langle P_m(t) n_r, \psi(t)v \rangle_{\Gamma_{p_m}} dt \\
+ \int_0^T (f_f, \psi(t)v)_{\Omega_f} dt + \int_0^T (f_s, \psi(t)v)_{\Omega_p} dt + \int_0^T (f_p, \psi(t)r)_{\Omega_p} dt,
\]

for all \((v, \xi, r) \in V_f^k \times X_p^k \times Q_p^k\). Since any element of \(V, X_p, Q_p\) can be approximated by elements of \(V_f^k, X_p^k, Q_p^k\) and \(\psi \in L^2(0, T)\) is arbitrary, this also holds for all \((v, \xi, r) \in V_f \times X_p \times Q_p \) a.e. in \((0, T)\). Therefore we recover the equation in \((\text{WF}2)\).

Last, we check whether the initial conditions are satisfied. In \((56)\) we let \(\psi \in C^2([0, T])\) such that \(\psi(T) = 0\) and \(\dot{\psi}(T) = 0\) and integrate the first and the eighth terms once and the fourth term twice with respect to time. Then we do the same in \((55)\) and also take the limit as \(m \to \infty\) using the convergence properties established in the beginning of the proof and using \((33)\). Comparing the resulting equations yield:

\[
-(\rho_f u(0), \psi(0)v)_{\Omega_f} - (\rho_s \dot{\eta}(0), \psi(0)\eta)_{\Omega_p} + (\rho_s \dot{\eta}(0), \dot{\psi}(0)\xi)_{\Omega_p} \\
- (s_0 p(0), \psi(0)r)_{\Omega_p} = 0,
\]

for all \(v \in V, \xi \in X_p, r \in Q_p\). Since \(\psi(0)\) and \(\dot{\psi}(0)\) are arbitrary,

\[
-(\rho_f u(0), v)_{\Omega_f} - (\rho_s \dot{\eta}(0), \xi)_{\Omega_p} + (\rho_s \dot{\eta}(0), \xi)_{\Omega_p} - (s_0 p(0), r)_{\Omega_p} = 0,
\]

27
for all \(v \in V, \xi \in X_p, r \in Q_p \). This yields the initial conditions stated in (WF2). Finally passing to the limit in (34), (35) and (36), we obtain (28), (29) and (30).

6.5. Uniqueness.

For the Stokes flow, there is no issue of uniqueness. For the Navier-Stokes problem, we can only prove uniqueness for restricted solution.

Theorem 6.6 (Local uniqueness). Let \((u_f, \eta, p_f)\) be a solution of (WF2). Then if

\[
\|D(u)\|_{\Omega_f} \leq \frac{\mu}{S_f^2K_f^3},
\]

then \((u_f, \eta, p_f)\) is unique.

Proof. Let \((u_1, \eta_1, p_1)\) and \((u_2, \eta_2, p_2)\) be two solutions of (WF2). Then \(w = u_1 - u_2, \theta = \eta_1 - \eta_2\) and \(\phi = p_1 - p_2\) satisfy:

\[
(\rho_f \dot{w}, v)_{\Omega_f} + (2\mu_f D(w), D(v))_{\Omega_f} + \rho_f (u_1 \cdot \nabla u_1 - u_2 \cdot \nabla u_2, v)_{\Omega_f} - (\phi, \nabla \cdot v)_{\Omega_f}
\]

\[+ (\rho, \dot{\theta}, \xi)_{\Omega_p} + (2\mu, D(\theta), D(\xi))_{\Omega_p} + (\lambda_s \nabla \cdot \theta, \nabla \cdot \xi)_{\Omega_p} - (\alpha \phi, \nabla \cdot \xi)_{\Omega_p} + (s_0 \dot{\phi} + \alpha \nabla \cdot \dot{\theta}, r)_{\Omega_p} + (K \nabla \phi, \nabla r)_{\Omega_p} \]

\[+ (\phi n_r, v - \xi)_{\Gamma_i} + \sum_{l=1}^{d-1} (\beta(w - \dot{\theta}) \cdot t_i^l, (v - \xi) \cdot t_i^l)_{\Gamma_i} + ((\dot{\theta} - w) \cdot n_r, r)_{\Gamma_i}
\]

\[= 0
\]

for all \(v, \xi, r\). Let \(v = w, \xi = \dot{\theta}, r = \phi\) where \(w(0) = 0, \theta(0) = 0, \dot{\theta}(0) = 0, \phi(0) = 0\).

\[
\frac{\rho_f}{2} \frac{d}{dt} \|w\|^2_{\Omega_f} + 2\mu_f \|D(w)\|^2_{\Omega_f} + \frac{\rho_s}{2} \frac{d}{dt} \|\dot{\theta}\|^2_{\Omega_p} + \mu_s \frac{d}{dt} \|D(\theta)\|^2_{\Omega_p}
\]

\[+ \frac{\lambda_s}{2} \frac{d}{dt} \|\nabla \cdot \theta\|^2_{\Omega_p} + s_0 \frac{d}{dt} \|\phi\|^2_{\Omega_p} + \|K^{1/2} \nabla \phi\|^2_{\Omega_p} + \sum_{l=1}^{d-1} \beta \|w - \dot{\theta}\|_l \cdot t_i^l \|^2_{\Gamma_i}
\]

\[= -\rho_f (w \cdot \nabla u_1 + u_2 \cdot \nabla w, w)_{\Omega_f}
\]

\[\leq S_f^2K_f^3 \|D(w)\|^2_{\Omega_f} \|D(u_1)\|_{\Omega_f} + S_f^2K_f^3 \|D(u_2)\|_{\Omega_f} \|D(w)\|^2_{\Omega_f} \leq 2\mu_f \|D(w)\|^2_{\Omega_f}
\]

Therefore,

\[
\frac{\rho_f}{2} \frac{d}{dt} \|w\|^2_{\Omega_f} + \frac{\rho_s}{2} \frac{d}{dt} \|\dot{\theta}\|^2_{\Omega_p} + \mu_s \frac{d}{dt} \|D(\theta)\|^2_{\Omega_p} + \frac{\lambda_s}{2} \frac{d}{dt} \|\nabla \cdot \theta\|^2_{\Omega_p} + s_0 \frac{d}{dt} \|\phi\|^2_{\Omega_p} \leq 0
\]
which implies using the initial conditions:

\[\frac{\partial f}{2} \| w(t) \|^2_{\Omega_f} + \frac{\rho_s}{2} \| \dot{\theta}(t) \|^2_{\Omega_f} + \mu_s \| D(\theta(t)) \|^2_{\Omega_p} + \frac{\lambda_s}{2} \| \nabla \cdot \theta \|^2_{\Omega_p} + \frac{s_0}{2} \| \phi \|^2_{\Omega_p} \leq 0 \]

This implies

\[w = 0, \theta = 0, \phi = 0. \]

6.6. Existence of a Navier-Stokes pressure.

Next we prove that from any solution of (WF2) we can recover a solution of (WF1). In fact, an inf-sup condition is sufficient to show the existence of a \(p_f \) which was eliminated when we restricted the search space \(L^2(0, T; X_f) \) to \(L^2(0, T; V_f) \). The following inf-sup condition holds [20, 11]: There exists a constant \(\kappa > 0 \) such that

\[\inf_{q \in Q_f} \sup_{v \in X_f} \frac{(\nabla \cdot v, q)_{\Omega_f}}{\| v \|_{H^1(\Omega_f)} \| q \|_{L^2(\Omega_f)}} \geq \kappa. \]

Note that we can replace the supremum above with the supremum over all \((v, \xi, r) \in X_f \times X_p \times Q_p \). In fact, the supremum is attained when \(\xi = 0 \) and \(r = 0 \).

Lemma 6.7. If \((u_f, \eta, p_p)\) is a solution of problem (WF2), then there exists a unique \(p_f \in L^\infty(0, T; Q_f) \) such that \((u_f, p_f, \eta, p_p)\) is a solution of problem (WF1).

Proof. Let’s define a mapping \(F \) such that for all \((v, \xi, r) \in X_f \times X_p \times Q_p\)

\[F(v, \xi, r) = (\rho_f \dot{u}_f, v)_{\Omega_f} + (2 \mu_f D(u_f), D(v))_{\Omega_f} + \rho_f (u_f \cdot \nabla u_f, v)_{\Omega_f} + (\rho_s \dot{\eta}, \xi)_{\Omega_p} + (2 \mu_s D(\eta), D(\xi))_{\Omega_p} + (\lambda_s \nabla \cdot \eta, \nabla \cdot \xi)_{\Omega_p} - (\alpha p_p(t), \nabla \cdot \xi)_{\Omega_p} + (s_0 \dot{p}_p + \alpha \nabla \cdot \dot{\eta}, r)_{\Omega_p} + (K \nabla p_p, \nabla r)_{\Omega_p} + \langle p_p \nu_r, v - \xi \rangle_{\Gamma_f} + \sum_{i=1}^{d-1} \langle (u_f - \dot{\eta}) \cdot t_i, (v - \xi) \cdot t_i \rangle_{\Gamma_f} + \langle (\dot{\eta} - u_f) \cdot n_f, r \rangle_{\Gamma_f} + \langle P_{in}(t) n_f, v \rangle_{\Gamma_p} - (f_f, v)_{\Omega_f} - (f_s, \xi)_{\Omega_p} - (f_p, r)_{\Omega_p} \text{ a.e. in } (0, T). \]

It is straightforward to see that \(F \) is linear and continuous on \(X_f \times X_p \times Q_p \) for a.e. \(t \in (0, T) \). Furthermore, \(F(v, \xi, r) = 0 \) for any \((v, \xi, r) \in V_f \times X_f \times Q_p \) for a.e. \(t \in (0, T) \). Therefore, the theory of Babuska-Brezzi imply for a.e. \(t \in (0, T) \) that there exists a unique function \(p_f \in Q_f \) such that

\[(p_f, \nabla \cdot v)_{\Omega_f} = F(v, \xi, r), \forall (v, \xi, r) \in X_f \times X_f \times Q_p, \] (57)
that is, there is a unique $p_f \in L^\infty(0, T; Q_f)$ such that (u_f, p_f, η, p_p) is a solution of problem (WF1). Furthermore, letting $r = 0$, $\xi = 0$ in (57) and using the inf-sup condition again we have

$$\|p_f\|_{q_f} \leq \frac{1}{\kappa} \left(\rho_f \|\dot{u}_f\|_{q_f} + 2\mu_f \|\mathbf{D}(u_f)\|_{q_f} + S_f^2 \|u_f\|^2_{1,q_f} + T_1T_3\|p_p\|_{1,q_p} + \beta T_1^2 \|u_f\|_{1,q_f} + \beta T_1 T_2 \|\mathbf{\eta}\|_{1,q_p} + T_2\|P_m\|_{1,q_n} + \|f_f\|_{q_f} \right),$$

a.e. in $(0, T)$ which implies the bound (31) on p_f in Theorem 5.1.

This concludes the proof of Theorem 5.1.

Appendix A. The interface conditions.

In this section we prove that the interface conditions are meaningful for a solution of (1a), (1b), (3a) and (3b) and therefore justify the derivation of the weak formulation in the proof of Proposition 4.1.

Let us consider a solution of (1a), (1b), (3a) and (3b) such that $u_f \in L^2(0, T; X_f)$, $p_f \in L^1(0, T; Q_f)$, $\eta \in H^1(0, T; X_p)$ and $p_p \in L^2(0, T; Q_p)$ with $\dot{u}_f \in L^1(0, T; L^{3/2}(\Omega_f))$.

Interface conditions (6c) and (6d).

Since $u_f \in L^2(0, T; X_f)$ and $H^1(\Omega_f)$ is embedded continuously in $L^6(\Omega_f)$, for $d = 2, 3$, $u_f \in L^2(0, T; L^6(\Omega_f))$. Then Hölder’s inequality implies

$$\|u_f \cdot \nabla u_f\|_{L^1(0,T;L^{3/2}(\Omega_f))} \leq \|u_f\|_{L^2(0,T;L^6(\Omega_f))} \|u_f\|_{L^2(0,T;X_f)}.$$

Therefore, $u_f \cdot \nabla u_f \in L^1(0, T; L^{3/2}(\Omega_f))$. Then from (1a)

$$\nabla \cdot \sigma_f = f_f - \rho_f \dot{u}_f - u_f \cdot \nabla u_f \in L^1(0, T; L^{3/2}(\Omega_f)).$$

Also

$$\sigma_f = 2\mu_f \mathbf{D}(u_f) - p_f I \in L^1(0, T; L^2(\Omega_f)).$$

Hence, each row of σ_f belongs to $L^1(0, T; H^{3/2}(\text{div}; \Omega_f))$. Since $H^1(\Omega_f)$ is dense in $H^{3/2}(\text{div}; \Omega_f)$, the following Green’s formula hold:

$$\forall \mathbf{v} \in H^{3/2}(\text{div}; \Omega_f), \forall \phi \in H^1(\Omega_f), \langle \mathbf{v} \cdot \mathbf{n}_{\partial \Omega_f}, \phi \rangle_{\partial \Omega_f} = (\nabla \cdot \mathbf{v}, \phi)_{\Omega_f} + (\mathbf{v}, \nabla \phi)_{\Omega_f}.$$

This allows $\sigma_f \mathbf{n}_{\Gamma}$ to be defined in a weak sense on Γ_f. See also [11, p.541].
Next since $u \in L^2(0,T;X_f)$, $\dot{\eta} \in L^2(0,T;X_p)$ and $p_p \in L^2(0,T;Q_p)$ we have $(-p_p n_r - \sum_{l=1}^{d-1} (\beta_l (u_l - \dot{\eta} \cdot t^l_l) t^l_l) |_{\Gamma_I}) \in L^2(0,T;L^4(\Gamma_I))$ where t^l_l, t^l_I are the unit tangential vectors on Γ_I. With these the interface conditions (6c) and (6d) make sense.

For the rest of the interface conditions we use a global space-time argument in \mathbb{R}^{d+1}, $d = 2, 3$. We define new variables in \mathbb{R}^{d+1} by $\tilde{x} = (t, x_1, \ldots, x_d)$, $d = 2, 3$ and also define the cylindrical region $\tilde{\Omega}_p = [0, T] \times \Omega_p$.

Interface condition (6a).

Defining $\Theta = (-s_0 p_p + \alpha \nabla \cdot \eta, K \nabla p_p)$, the equation (3b) can be written as

$$-\nabla_{\tilde{x}} \cdot \Theta = f_p$$

where $\nabla_{\tilde{x}} = (\frac{d}{dt}, \nabla \cdot) T$.

Since $f_p \in L^2(\bar{\Omega}_p)$ and $\Theta \in L^2(\bar{\Omega}_p)$, we have $\Theta \in H(\text{div}; \bar{\Omega}_p)$. So $\Theta \cdot n_{\Omega_p} |_{\partial \Omega_p}$ is well-defined in $H^{-1/2}(\partial \Omega_p)$. Therefore the following Green’s formula holds [19]:

$$\forall \tilde{\phi} \in H^1(\bar{\Omega}_p), \quad (\nabla_{\tilde{x}} \cdot \Theta, \tilde{\phi})_{\Omega_p} = -(\Theta, \nabla_{\tilde{x}} \tilde{\phi})_{\Omega_p} + \langle (\Theta \cdot n_{\Omega_p}, \tilde{\phi}) \rangle_{\partial \Omega_p}$$

where n_{Ω_p} outward unit normal to $\bar{\Omega}_p$.

This allows the well-definition of $K \nabla p_p \cdot n_{\partial \Omega_p}$ in the weak sense on Γ_I.

Interface condition (6b).

From the above discussion it is enough to check whether $\sigma_p n_r$ is meaningful and we use a similar space-time argument. Defining $\Sigma = (-p_s \dot{\eta}, \sigma_p)$, the equation (3a) can be written as

$$-\nabla_{\tilde{x}} \cdot \Sigma = f_s.$$

Since $f_s \in L^2(\bar{\Omega})$ and $\Sigma \in L^2(\bar{\Omega}_p)$ we have $\Sigma \in H(\text{div}; \bar{\Omega}_p)$. Therefore the following Green’s formula holds [19]:

$$\forall \tilde{\phi} \in H^1(\bar{\Omega}_p), \quad (\nabla_{\tilde{x}} \cdot \Sigma, \tilde{\phi})_{\Omega_p} = -(\Sigma, \nabla_{\tilde{x}} \tilde{\phi})_{\Omega_p} + \langle (\Sigma \cdot n_{\Omega_p}, \tilde{\phi}) \rangle_{\partial \Omega_p}.$$

This allows the well-definition of $\sigma_p n_r$ in the weak sense on Γ_I.

31
References

[1] Adams, R. A., 1978. Sobolev spaces. Pure and applied mathematics. Academic Press, New York.

[2] Badea, L., Discacciati, M., Quarteroni, A., 2010. Numerical analysis of the Navier-Stokes/Darcy coupling. Numer. Math. 115 (2), 195–227.

[3] Badia, S., Quaini, A., Quarteroni, A., 2009. Coupling Biot and Navier-Stokes equations for modelling fluid-poroelastic media interaction. J. Comput. Phys. 228 (21), 7986–8014.

[4] Beavers, G., Joseph, D., 1967. Boundary conditions at a naturally impermeable wall. J. Fluid. Mech 30, 197–207.

[5] Biot, M. A., 1941. General theory of three dimensional consolidation. Journal of Applied Physics 12 (2).

[6] Biot, M. A., 1955. Theory of elasticity and consolidation for a porous anisotropic solid. J. Appl. Phys. 26, 182–185.

[7] Bodnár, T., Galdi, G. P., Nečasová, v. (Eds.), 2014. Fluid-structure interaction and biomedical applications. Advances in Mathematical Fluid Mechanics. Birkhäuser/Springer, Basel.

[8] Bukač, M., Yotov, I., Zunino, P., 2015. An operator splitting approach for the interaction between a fluid and a multilayered poroelastic structure. Numer. Methods Partial Differential Equations 31 (4), 1054–1100.

[9] Bukač, M., Yotov, I., Zakerzadeh, R., Zunino, P., 2015. Partitioning strategies for the interaction of a fluid with a poroelastic material based on a Nitsches coupling approach. Computer Methods in Applied Mechanics and Engineering 292, 138 – 170, special Issue on Advances in Simulations of Subsurface Flow and Transport (Honoring Professor Mary F. Wheeler).

[10] Cao, Y., Gunzburger, M., Hua, F., Wang, X., 2010. Coupled Stokes-Darcy model with Beavers-Joseph interface boundary condition. Commun. Math. Sci. 8 (1), 1–25.
[11] Cesmelioglu, A., Girault, V., Rivières, B., 2013. Time-dependent coupling of Navier-Stokes and Darcy flows. ESAIM Math. Model. Numer. Anal. 47 (2), 539–554.

[12] Cesmelioglu, A., Lee, H., Quaini, A., Wang K., Yi, S., 2016. Optimization-based decoupling algorithms for a fluid-poroelastic system. in press.

[13] Çeşmelioglu, A., Rivière, B., 2008. Analysis of time-dependent Navier-Stokes flow coupled with Darcy flow. J. Numer. Math. 16 (4), 249–280.

[14] Coddington, E. A., Levinson, N., 1955. Theory of differential equations. McGraw-Hill, New-York.

[15] Discacciati, M., Quarteroni, A., 2009. Navier-Stokes/Darcy coupling: modeling, analysis, and numerical approximation. Rev. Mat. Complut. 22 (2), 315–426.

[16] Du, Q., Gunzburger, M. D., Hou, L. S., Lee, J., 2003. Analysis of a linear fluid-structure interaction problem. Discrete and Continuous Dynamical Systems 9 (3), 633–650.

[17] Ern, A., Guermond, J.-L., 2004. Theory and practice of finite elements. Applied mathematical sciences. Springer, New York.

[18] Ganis, B., Mear, M. E., Sakhaee-Pour, A., Wheeler, M. F., Wick, T., 2014. Modeling fluid injection in fractures with a reservoir simulator coupled to a boundary element method. Comput. Geosci. 18 (5), 613–624.

[19] Girault, V., Raviart, P.-A., 1986. Finite element methods for Navier-Stokes equations : theory and algorithms. Springer series in computational mathematics. Springer-Verlag, Berlin, New York, extended version of : Finite element approximation of the Navier-Stokes equations.

[20] Girault, V., Riviére, B., 2009. DG approximation of coupled Navier-Stokes and Darcy equations by Beaver-Joseph-Saffman interface condition. SIAM Journal on Numerical Analysis 47 (3), 2052–2089.

[21] Gronwall, T. H., 1919. Note on the derivatives with respect to a parameter of the solutions of a system of differential equations. Annals of Mathematics 20 (4), 292–296.
[22] Jäger, W., Mikelić, A., 2000. On the interface boundary condition of Beavers, Joseph, and Saffman. SIAM J. Appl. Math. 60, 1111–1127.

[23] Lesinigo, M., D’Angelo, C., Quarteroni, A., 2011. A multiscale Darcy-Brinkman model for fluid flow in fractured porous media. Numer. Math. 117 (4), 717–752.

[24] Lions, J. L., 1961. Equations differentielles operationnelles. Springer-Verlag, Berlin, Heidelberg, New York.

[25] Martin, V., Jaffré, J., Roberts, J. E., 2005. Modeling fractures and barriers as interfaces for flow in porous media. SIAM J. Sci. Comput. 26 (5), 1667–1691 (electronic).

[26] Mikelić, A., Wheeler, M. F., 2012. On the interface law between a deformable porous medium containing a viscous fluid and an elastic body. Mathematical Models and Methods in Applied Sciences 22 (11), 1250031.

[27] Muha, B., Čanić, S., 2013. Existence of a weak solution to a nonlinear fluid-structure interaction problem modeling the flow of an incompressible, viscous fluid in a cylinder with deformable walls. Arch. Ration. Mech. Anal. 207 (3), 919–968.

[28] Muha, B., Čanić, S., 2014. Existence of a solution to a fluid-multi-layered-structure interaction problem. J. Differential Equations 256 (2), 658–706.

[29] Muha, B., Čanić, S., 2016. Existence of a weak solution to a fluid-elastic structure interaction problem with the Navier slip boundary condition. Journal of Differential Equations.

[30] Saffman, P., 1971. On the boundary condition at the surface of a porous media. Stud. Appl. Math. 50, 292–315.

[31] Showalter, R. E., 2005. Poroelastic filtration coupled to Stokes flow. In: Control theory of partial differential equations. Vol. 242 of Lect. Notes Pure Appl. Math. Chapman & Hall/CRC, Boca Raton, FL, pp. 229–241.

[32] Simon, J., 1987. Compact sets in the space $L^p(0, T; B)$. Ann. Mat. Pura Appl. (4) 146, 65–96.