Effect of Modic Changes in Cervical Degenerative Disease

Objective: Modic changes are signal intensity changes in adjacent vertebral bone marrow on magnetic resonance imaging. Few studies have investigated these changes with regard to the cervical spine. In this study, we investigated the associations between cervical degenerative disease and Modic changes.

Methods: We conducted a retrospective collection of radiological data in patients with neck pain at Pusan National University Yangsan Hospital from January 2010 to December 2014. A total of 169 patients were included in this study. Disc herniation grade, disc space height and global cervical lordosis (C2-C7 Cobb angle) were measured and analyzed. If Modic changes were present, we recorded the Modic change type based on the literature, vertebral level, age, sex, and surgical requirement.

Results: Sixty-six patients exhibited Modic changes in the cervical spine. Out of these 66 patients, Modic change type II (56 patients, 84.8%) and C5–6 vertebral level (23 patients, 34.8%) were the most predominant categories. Patients with Modic change showed worse outcomes in regard to disc herniation grade, disc space height and global cervical lordosis than patients without (p<0.01). Among 169 patients, 18 patients had undergone anterior cervical discectomy with fusion (ACDF). Patients with Modic changes (10 of 66 patients, 15.1%) had a greater probability of undergoing ACDF than those without (6 of 103 patients, 7.8%; p<0.01).

Conclusion: Modic changes refer cervical degenerative changes, and incidence of ACDF is higher when the Modic changes are occurred.

Key Words: Cervical vertebrae, Intervertebral disc degeneration, Magnetic resonance imaging

INTRODUCTION

Cervical degenerative disease is a chronic degenerative process. The incidence of cervical spine degenerative disease has been rising owing to the increasing aging population. Magnetic resonance imaging (MRI) has been used to determine cervical degenerative diseases in patients with axial symptoms. Modic changes (MCs) comprise signal intensity alterations in adjacent vertebral bone marrow on MRI. Since these changes were first introduced by Modic et al. in 1988, many studies have investigated their relationship with spinal degenerative diseases. MCs have not been shown to reflect spinal tumor, pyogenic spondylitis, or rheumatic disease, but have been found to be associated with pathological changes in bone marrow composition. MCs have been divided into three types by MRI: type I: low signal intensity on T1-weighted imaging and high signal intensity on T2-weighted imaging (Fig. 1), type II: high signal intensity on T1-weighted and T2-weighted imaging (Fig. 2), and type III: low signal intensity on T1-weighted and T2-weighted imaging (Fig. 3). Modic type I is an inflammatory phase in which the vertebral endplates become cracked and disrupted, eventually converting to type II within 3 years. Modic type II is a fatty involution phase that is more common in the lumbar spine and replaced with yellow fatty marrow in vertebral endplates. Modic type III is a cicatrization phase; there is little marrow owing to replacement with bony sclerosis. Many studies have attempted to investigate MCs in the lumbar spine. However, few studies have assessed these changes in regard to the cervical spine. In this study, we investigated the associations between cervical degenerative disease and MCs.

MATERIALS AND METHODS

1. Patients

We conducted a retrospective collection of radiological data in patients with one-level cervical degenerative diseases at Pusan National University Yangsan Hospital from January 2010 to December 2014. Patients were included if they fulfilled the following criteria: (1) no his
Modic changes are categorized into three types: type I, type II, and type III. A total of 169 patients were included in this study. The patient study group comprised 79 men and 90 women; the mean age was 50.7±10.3 years (range, 30–80 years). Classification of MCs was based on the literature and mixed types were not considered.

2. Assessment of Degenerative Change

All of radiological assessments were performed by 2 independent observers highly experienced in spinal diseases. Disc herniation (DH) at each level was assessed by examining T2-weighted sagittal images. DH grade was divided into 4 grades according to modified Matsumoto's classification as follows: grade 1, disc bulging beyond the posterior margin of the vertebral body; grade 2, disc bulging over half of epidural space; grade 3, disc protrusion bordering the spinal cord; and grade 4, disc protrusion compressing the spinal cord. To evaluate the global cervical lordosis (C2–C7 Cobb angle) (GCL) and disc space height (DSH), we measured the lateral radiographs of the cervical spine in neutral position. DSH was evaluated by measuring the mean value of anterior and posterior DSHs at each level. GCL is the angle formed between a line drawn parallel to the inferior endplate of C2 vertebral body and a line drawn parallel to the inferior endplate of C7 vertebral body. If MCs were present, we recorded the Modic type, vertebral level, age, sex, and surgical requirement.

3. Statistical Analysis

Results are presented as mean±standard deviation. Statistical analysis was performed using the software package IBM SPSS ver. 18.0 (IBM Co., Armonk, NY, USA). Intergroup results were compared using the Kolmogorov-Smirnov test, chi-square test, Shapiro-Wilk test, independent t-test, and Mann-Whitney U-test. A p-value of <0.05 was considered statistically significant.

RESULTS

MRI scans of the 169 patients were reviewed; 66 patients exhibited MCs in the cervical spine (29.7%). The mean age of patients with MCs was 49.8±10.7 years (range, 30–74 years), the sex distribution was 36:30 (men:women). Out of these 66 patients, 3 patients (4.5%) were classified with Modic type I on MRI. The most common MC observed was type II, 56 patients (84.8%). 7 patients (10.6%) were classified with Modic type III. The most common cervical level in patients with MCs was C5–6 (29 patients, 43.9%); C6–7 (22 patients, 33.3%) showed the second largest number of MCs. The prevalence of MCs are summarized in Table 1.

DH grade and DSH were statistically significantly different between patients with MCs and those without (p<0.01 for DH grade and DSH). The outcomes of GCL also showed a statistically significant difference in patients with MCs as compared those without.

Variable	Type I (n=3)	Type II (n=56)	Type III (n=7)
Sex, men:women	3:0	30:26	3:4
Mean age (yr), mean±SD	31.0±1.0	54.1±8.4	56.4±5.7
C2–3	-	3	1
C3–4	-	1	-
C4–5	-	8	2
C5–6	2	23	4
C6–7	1	21	-

SD, standard deviation.
The most common cervical level to experience disc degeneration is C5 because it has the greatest level of hyperactivity10. Mechanical stress such as repetitive loading or neck activity can lead to injury of the endplate and discs. In the present study, we evaluated the radiologic outcomes in single-level cervical degenerative disease. The findings from the present study also showed a higher frequency of MCs occurring with C5–6 (41.4% of patients) followed by C6–7 (29.3% of patients). Peterson et al.9 reported that the most common level to exhibit MCs was C5–6. This indicates that structural deterioration due to mechanical stress may influence MCs. Hayashi et al.4 reported that patients showing MCs had more severe disc degeneration than with those without, which may aggravate spinal cord compression and result in loss of range of motion. The present study also showed that patients with MCs had more aggravated outcomes than those without in regard to DH grade, DSH and GCL. Torkki et al.7 reported that discs with MCs had higher amounts of cytokines (interleukin-6, interleukin-8, and tumor necrosis factor alpha), which increased level of osteoclastic factors (RANKL, M-CSF, NFATc1, RUNX1, and OSCAR), than those without MCs. We hypothesized that cytokines and other factors in the disc promoted the MCs of the vertebral body and increased the likelihood of surgery with mechanical compression. In this study, ACDF rate was significantly higher in patients with MC (15.1%, 10 of 66) as compared to without. Only 8 of 103 patients (7.8%) without MCs underwent ACDF (p<0.01).

DISCUSSION

Cervical degenerative diseases are defined as chronic degenerative processes associated with radiculopathy or myelopathy. The most common cervical level to experience disc degeneration is C5–6 because it has the greatest level of hyperactivity10. Mechanical stress such as repetitive loading or neck activity can lead to injury of the endplate and discs. In the present study, we evaluated the radiologic outcomes in single-level cervical degenerative disease. The findings from the present study also showed a higher frequency of MCs occurring with C5–6 (41.4% of patients) followed by C6–7 (29.3% of patients). Peterson et al.9 reported that the most common level to exhibit MCs was C5–6. This indicates that structural deterioration due to mechanical stress may influence MCs. Hayashi et al.4 reported that patients showing MCs had more severe disc degeneration than with those without, which may aggravate spinal cord compression and result in loss of range of motion. The present study also showed that patients with MCs had more aggravated outcomes than those without in regard to DH grade, DSH and GCL. Torkki et al.7 reported that discs with MCs had higher amounts of cytokines (interleukin-6, interleukin-8, and tumor necrosis factor alpha), which increased level of osteoclastic factors (RANKL, M-CSF, NFATc1, RUNX1, and OSCAR), than those without MCs. We hypothesized that cytokines and other factors in the disc promoted the MCs of the vertebral body and increased the likelihood of surgery with mechanical compression. In this study, ACDF rate was significantly higher in patients with MC (15.1%, 10 of 66) as compared to without. Only 8 of 103 patients (7.8%) without MCs underwent ACDF (p<0.01).

REFERENCES

1. Chung CB, Vande Berg BC, Tavernier T, Cotten A, Laredo JD, Valle C, et al: End plate marrow changes in the asymptomatic lumbosacral spine: frequency, distribution and correlation with age and degenerative changes. *Skeletal Radiol* 33:399-404, 2004
2. Dai L: Disc degeneration and cervical instability. Correlation of magnetic resonance imaging with radiography. *Spine (Phila Pa 1976)* 23:1734-1738, 1998
3. de Roos A, Kressel H, Spritzer C, Dalinka M: MR imaging of marrow changes adjacent to end plates in degenerative lumbar disk disease. *AJR Am J Roentgenol* 149:531-534, 1987
4. Hayashi T, Daubs MD, Suzuki A, Phan K, Shiha K, Wang JC: Effect of Modic changes on spinal canal stenosis and segmental motion in cervical spine. *Eur Spine J* 23:1737-1742, 2014
5. Mann E, Peterson CK, Hodler J: Degenerative marrow (modic) changes on cervical spine magnetic resonance imaging scans: prevalence, inter- and intra-examiner reliability and link to disc herniation. *Spine (Phila Pa 1976)* 36:1081-1085, 2011
6. Matsumoto M, Fujimura Y, Suzuki N, Nishi Y, Nakamura M, Yabe Y, et al: MRI of cervical intervertebral discs in asymptomatic subjects. *J Bone Joint Surg Br* 80:19-24, 1998
7. Mitra D, Cassar-Pullicino VN, McCall IW: Longitudinal study of vertebral type-I end-plate changes on MR of the lumbar spine. *Eur Radiol* 14:1574-1581, 2004
8. Modic MT, Steinberg PM, Ross JS, Masaryk TJ, Carter JR: Degenerative disk disease: assessment of changes in vertebral body marrow with MR imaging. *Radiology* 166 (1 Pt 1):193-199, 1988
9. Peterson CK, Humphreys BK, Pringle TC: Prevalence of modic degenerative marrow changes in the cervical spine. *J Manipul Physiol Ther* 30:5-10, 2007
10. Ross JS, Modic MT: Current assessment of spinal degenerative disease with magnetic resonance imaging. *Clin Orthop Relat Res* 279:68-81, 1992
11. Torkki M, Majuri ML, Wolff H, Koskelainen T, Haapea M, Niinimäki J, et al: Osteoclast activators are elevated in intervertebral disks with Modic changes among patients operated for herniated nucleus pulposus. *Eur Spine J* 25:207-216, 2016