old. There was a significant reduction in the median time to viral clearance with favipiravir (4 days; IQR = 2.5–9) compared with lopinavir/ritonavir (11 days; IQR = 8–13; P < 0.001). Further, by day 14, 91.4% of patients in the favipiravir arm had radiographic improvement versus 62.2% in the lopinavir/ritonavir arm. There was a significantly lower rate of adverse events in patients receiving favipiravir (11.4% versus 55.6%; P < 0.01).

Given the demonstrated in vitro activity of favipiravir against SARS-CoV-2 and signals of benefit in early clinical experience for COVID-19, further studies are urgently needed. The results of several ongoing randomized controlled trials to assess the efficacy of favipiravir (11 days; IQR 2.5–9) compared with lopinavir/ritonavir (4 days; IQR 8–13; P < 0.001). Further, by day 14, 91.4% of patients in the favipiravir arm had radiographic improvement versus 62.2% in the lopinavir/ritonavir arm. There was a significantly lower rate of adverse events in patients receiving favipiravir (11.4% versus 55.6%; P < 0.01).

Given the demonstrated in vitro activity of favipiravir against SARS-CoV-2 and signals of benefit in early clinical experience for COVID-19, further studies are urgently needed. The results of several ongoing randomized controlled trials to assess the efficacy of favipiravir for COVID-19 will further elucidate the role of favipiravir in the management of the ongoing coronavirus pandemic.

Funding

No funding was obtained specifically for this article.

Transparency declarations

E.A.C. is a co-investigator on applications to conduct a clinical trial of favipiravir for COVID-19. H.H.: none to declare.

References

1 Wang C, Horby PW, Hayden FG et al. A novel coronavirus outbreak of global health concern. Lancet 2020; 395: 470–3.
2 Furuta Y, Gowen BB, Takahashi K et al. Favipiravir (T-705), a novel viral RNA polymerase inhibitor. Antiviral Res 2013; 100: 446–54.
3 Wang M, Cao R, Zhang L et al. Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Res 2020; 30: 269–71.
4 Shiraki K, Daikoku T. Favipiravir, an anti-influenza drug against life-threatening RNA virus infections. Pharmacol Ther 2020; 209: 107512.
5 Oesterreich L, Ludtke A, Wurr S et al. Successful treatment of advanced Ebola virus infection with T-705 (favipiravir) in a small animal model. Antiviral Res 2014; 105: 17–21.
6 Smither SJ, Eastough LS, Steward JA et al. Post-exposure efficacy of oral T-705 (favipiravir) against inhalational Ebola virus infection in a mouse model. Antiviral Res 2014; 104: 153–5.
7 Sissocko D, Laouenan C, Folkesson E et al. Experimental treatment with favipiravir for Ebola virus disease (the JIKI trial): a historically controlled, single-arm proof-of-concept trial in Guinea. PLoS Med 2016; 13: e1001967.
8 Bai CQ, Mu JS, Kargbo D et al. Clinical and virological characteristics of Ebola virus disease patients treated with favipiravir (T-705)—Sierra Leone, 2014. Clin Infect Dis 2016; 63: 1288–94.
9 Jacobs M, Aarons E, Bhagani S et al. Post-exposure prophylaxis against Ebola virus disease with experimental antiviral agents: a case-series of health-care workers. Lancet Infect Dis 2015; 15: 1300–4.
10 Cai Q, Yang M, Liu D et al. Experimental treatment with favipiravir for COVID-19: an open-label control study. Engineering 2020; doi:10.1016/j.leng.2020.03.007.

COVID-19 infection also occurs in patients taking hydroxychloroquine

M. Lahouati1,2, E. Mériglier1, L. Martin3, S. Bouchet4, A. Desclaux3 and F. Bonnet1,5*

1 CHU de Bordeaux, Hôpital Saint-André, Service de Médecine Interne et Maladies Infectieuses, F-33000 Bordeaux, France; 2 CHU de Bordeaux, Hôpital Saint-André, Service de Pharmacologie Clinique, F-33000 Bordeaux, France; 3 CHU de Bordeaux, Hôpital Pellegrin, Service de Maladies Infectieuses et Tropicales, F-33000 Bordeaux, France; 4 CHU de Bordeaux, Hôpital Pellegrin, Service de Pharmacologie, F-33000 Bordeaux, France; 5 Université de Bordeaux, Bordeaux Population Health, INSERM U1219, F-33000 Bordeaux, France

Sir,

Hydroxychloroquine is a synthetic antimalarial drug that has also been used for its immunomodulatory activity in lupus erythematosus, rheumatoid arthritis and other inflammatory diseases for years.

Two in vitro studies in China have demonstrated the inhibitory activity of hydroxychloroquine against SARS-CoV-2, with a greater potency compared with chloroquine, in addition to its immunomodulatory activity.

Clinical data from case series and non-randomized controlled studies suggest hydroxychloroquine may have a positive impact on the outcome of COVID-19 infection and hydroxychloroquine has been largely introduced as a standard of care in many guidelines without formal proof of efficacy. Many ongoing trials are evaluating its efficacy versus standard of care and antivirals. It has also been suggested that hydroxychloroquine could prevent COVID-19 infection and other trials are evaluating hydroxychloroquine alone or in combination in a prevention strategy.

Here we report on two severe cases of COVID-19 in patients already using hydroxychloroquine for a long time to treat inflammatory disease.

Observation 1

A 64-year-old woman was admitted to hospital for fever. She had a long-term history of treatment by hydroxychloroquine 400 mg once daily for mixed connectivitis. She had been experiencing major headaches, myalgias, fever and nausea for 10 days. Family members had been previously

© The Author(s) 2020. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For permissions, please email: journals.permissions@oup.com.
A 58-year-old woman was admitted to the emergency department with complaints of fever and asthenia for one week. She was on a long-term regimen of hydroxychloroquine 400 mg once daily and prednisone 8 mg once daily for rheumatoid arthritis, with a good adherence to treatment. Two days prior to hospitalization she was prescribed azithromycin by her family doctor. On admission her body temperature was 39°C and oxygen saturation was 91% while breathing ambient air, which led to the initiation of oxygen therapy. CRP level was 185 mg/L. CT of the chest showed ground-glass opacities at a moderate stage.

COVID-19 was confirmed by RT–PCR performed on a nasopharyngeal swab. During hospitalization, hydroxychloroquine was continued and prednisone was stopped. At Day 1, the hydroxychloroquine plasma level was 407 ng/mL, indicating a massive impregnation of the drug before hospitalization. Clinical improvement was finally noted and supplemental oxygen could progressively be withdrawn.

These two observations, along with three additional cases in the series by Monti et al., are describing COVID-19 infection in patients already on a long-term hydroxychloroquine regimen. High plasma levels of hydroxychloroquine collected on admission in our cases confirm chronic exposure and adherence to hydroxychloroquine. These values are close to or higher than the EC50 described by Yao et al., not taking into account lung diffusion. Patients actually taking long-term hydroxychloroquine are potentially immunosuppressed patients since they are living with chronic inflammatory diseases and thus do not represent the general population exposed to COVID-19. However, these observational data are not in favour of a universal protective effect of hydroxychloroquine. Moreover, it is suggested that the immunomodulation generated by hydroxychloroquine may increase the risk of COVID-19 acquisition owing to the anti-inflammatory activity of hydroxychloroquine. Chloroquine and hydroxychloroquine inhibit IL-2 production and then T cell proliferation and differentiation. Thereafter, if the type 2 T-helper (TH-2) response could play a role in suppressing early inflammation in SARS-CoV-2 infection, it cannot be excluded that chloroquine and hydroxychloroquine negatively impact the early inflammatory response to the virus and the risk of acquisition of infection.

So, if hydroxychloroquine may have favourable effects thanks to its anti-viral and anti-inflammatory properties to prevent the cytokine storm occurring during COVID-19 infection, we believe that clinicians should use it carefully, awaiting the results of clinical trials, particularly in the context of prevention.

Funding

This study was carried out as part of our routine work.

Transparency declarations

None to declare.

References

1. Wang M, Cao R, Zhang L et al. Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Res 2020; 30: 269–71.
2. Yao X, Ye F, Zhang M et al. In vitro antiviral activity and projection of optimized dosing design of hydroxychloroquine for the treatment of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Clin Infect Dis 2020; doi: 10.1093/cid/ciaa237.
3. Zhou D, Sheng-Ming D, Tong Q. COVID-19: a recommendation to examine the effect of hydroxychloroquine in preventing infection and progression. J Antimicrob Chemother 2020; 75: 1667–70.
4. Monti S, Balduzzi S, Delvino P et al. Clinical course of COVID-19 in a series of patients with chronic arthritis treated with immunosuppressive targeted therapies. Ann Rheum Dis 2020; 79: 667–8.
5. Landewe RBM, Miltenburg AMM, Verdonk MA et al. Chloroquine inhibits T cell proliferation by interfering with IL-2 production and responsiveness. Clin Exp Immunol 1995; 102: 144–51.
6. Liao W, Schones DE, Oh J et al. Priming for T helper type 2 differentiation by interleukin 2-mediated induction of interleukin 4 receptor α chain expression. Nat Immunol 2008; 9: 1288–96.
7. Huang C, Wang Y, Li X et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020; 395: 497–506.
8. Guastalegname M, Vallone A. Could chloroquine/hydroxychloroquine be harmful in coronavirus disease 2019 (COVID-19) treatment? Clin Inf Dis 2020; doi:10.1093/cid/ciaa321.