Exact minimum and maximum of yield with a finite number of
decoy light intensities

Toyohiro Tsurumaru
Mitsubishi Electric Corporation, Information Technology R&D Center
5-1-1 Ofuna, Kamakura-shi, Kanagawa, 247-8501, Japan

*Alexandre Soujaeff and Shigeki Takeuchi
Research Institute for Electronic Science, Hokkaido University,
Kita-12 Nishi-6, Kita-ku, Sapporo 060-0812, Japan

In this paper, for the decoy state method using a finite number of decoy light
intensities, we present an improved upper and lower bounds for the asymptotic yield
y_n for n-photon states. In particular if all the light intensities are less than or equal
to one, they are not only a lower or upper bound, but in fact are the exact minimum
or maximum.

I. INTRODUCTION

The decoy state method is a technique used in quantum key distribution (QKD) for
determining the possible range of the yield y_1 and the error rate e_1, by a statistical test
using several different light intensities [1, 2, 3]. Here the yield y_n is the probability that
an n-photon state emitted by Alice is detected in Bob’s apparatus, and e_n the error rate
caused solely by the n-photon states. In this method, Alice first chooses the average photon
number of each of her coherent light pulses randomly out of μ_1, \ldots, μ_M, and Bob records
every detection events. After quantum communications are completed, Alice reveals the
average photon number of each pulse over an authenticated public channel. Then referring
to these data, Bob calculates the detection rates corresponding to each μ_i, and estimates
a lower bound or the minimum of y_1 that is consistent with them. Similarly, he can also
estimate an upper bound or the maximum of e_1.

These values are then used to calculate the key generation rate R by plugging them

* Now with Thales Laser Japan.
into well-known formulae, e.g., $R = Q(\mu)f(E(\mu))H_2(E(\mu)) + Q_0(\mu) + Q_1(\mu)[1 - H_2(e_1)]$ for the BB84 protocol [4]. Here $Q(\mu)$ is the overall detection rate in Bob’s detector, and $Q_0(\mu), Q_1(\mu)$ are the contributions to it from the pulses containing zero and one photon respectively. $E(\mu)$ is the overall error rate, and $H_2(e)$ the binary entropy function $H_2(e) = -e \log_2 e - (1 - e) \log_2(1 - e)$, hence $H_2(E(\mu))$ corresponds to the length of a syndrome consumed to correct bit errors. The factor $f(E(\mu))$ is inserted to take into account the information rate of practical error correcting codes which is usually below the Shannon limit.

Lower bounds on y_1 with a finite number of decoy intensities have been discussed in many papers (see, e.g., [2, 5, 6, 7] and references therein), and the best and the most general one is due to Hayashi [7]. Adding to these results, in this paper we present an improved upper and lower bounds X_n, Z_n for the asymptotic yield y_n. In particular if all the light intensities μ_i are less than or equal to one, X_n, Z_n are not only a lower or an upper bound, but in fact are the exact minimum or the maximum.

The main difference between preceding approaches and ours is as follows. The original decoy problem is an optimization problem involving an infinite number of variables y_n. In order to reduce the number of variables to finite, Wang devised a decomposition of a phase-randomized coherent state [2], which was later generalized to the case of an arbitrary number of decoy light intensities by Hayashi [7]; What they did was to decompose the state ρ sent by Alice as a sum $\rho = \sum_{n=1}^{N} a_n \rho_n$ of mixed states ρ_n. Then by regarding a_n as independent variables and using a linear-programming-like approach [8], Hayashi presented a general algorithm for obtaining the minimum of y_1, which is linear in a_n. At first this method may seem general enough and capable of giving the exact minimum of y_n. So what needs to be improved further? The answer is that a_n cannot be considered as independent in reality since ρ_n are not completely distinguishable to each other. Thus by regarding that way they give Eve more power than she actually has, and there is no guarantee that the obtained minimum is also that of the original problem involving an infinite number of y_n.

In contrast, in this paper we present a method for finding the minimum of y_1 without reducing the variable concerned, i.e., we treat all y_n’s independently as in the original decoy method problem. The key observation here is that when regarding variables y_n as an infinite-dimensional vector y, the difference Eve can make to y without being noticed by Alice or Bob can be expanded by a set of basis vectors $w^{(m)}$, each of which is written in a simple
form with the Schur polynomials.

What is remarkable about our result is that the configuration of y_n leading to the smallest y_1 varies depending on whether the number M of decoy light intensities (including the signal) is even or odd. The analysis is especially simple for M even and $\mu_i \leq 1$; Because of the positivity of the Schur polynomials, it is readily seen that y_1 is minimized when $y_n = 0$ for $n > M$ and that the problem is automatically reduced to that involving only a finite number of variables; y_1, \ldots, y_M. Thus by simply inverting a matrix, the minimum of y_1 is expressed in an explicit and simple form. On the other hand for M odd, the analysis turns out to be somewhat more complicated, however, we can still specify the configuration that corresponds to the smallest y_1 and write down an explicit algorithm for finding it out within a finite number of steps.

The paper is organized as follows. In Section III we define our problem of the decoy state method and present our main result. Section III analyzes configuration X_n which is in particular useful in determining the minimum of y_1 when an even number M of decoy light intensities are used. Subsequently in Section IV we discuss the properties of Z_n which is useful for M odd. Finally we conclude in Section V.

II. SETUPS AND STATEMENT OF THE MAIN RESULT

A. Decoy method

Throughout the paper, for the sake of simplicity, we consider the case where y_0 is already known precisely by using vacuum decoy states, and we discuss the minimum and maximum of y_1 under the condition that

$$Q_+(\mu_i) := e^{-\mu_i} \sum_{n=1}^{\infty} \frac{\mu_i^n}{n!} y_n$$

is satisfied for $i = 1, \ldots, M$. Note, however, our analysis in the subsequent sections is equally valid even without vacuum decoy states. $Q_+(\mu_i)$ appearing in (1) denotes the contribution from non-zero photon number state to the detection rate in Bob’s detector, i.e., $Q_+(\mu) := Q(\mu) - e^{-\mu} y_0$. Being a probability, each y_n is of course constrained as

$$0 \leq y_n \leq 1 \text{ for all } n \geq 1.$$
The explicit form of the detection rate $Q_+(\mu)$ depends on the physical model that one employs for describing the quantum channel. In this paper, we assume that in the absence of Eve, the yield takes the value $y_n = q_n$ with

$$
q_n := A\eta_n + B, \quad \eta_n := 1 - (1 - \eta)^n,
$$

and that each parameters are conditioned as

$$
0 \leq A \leq 1, \quad 0 \leq B \leq \eta \leq 1/10.
$$

Here η is the channel transmission rate including the quantum efficiency of Bob’s detector, and B is roughly the dark count rate p_{dark}. Note that for practical QKD systems, (4) is not really a restriction; η is already around 0.1 at 0km due to the detector efficiency. On the other hand for sufficiently small η, we have $B \leq \frac{1}{2}Q(\mu_i)E(\mu_i) \approx \frac{1}{2}\eta\mu_i E(\mu_i) \leq \frac{1}{2}\eta\mu_i$. Thus with the signal light intensity (say μ_1) normally being around 0.5 or less, $B \leq \eta$ is automatically satisfied.

According to Lo et al. [3] and Hayashi [7], these are $A = 1$, $B = p_{\text{dark}}$, from which we have

$$
Q(\mu_i) = 1 - \exp(-\eta\mu_i) + p_{\text{dark}},
$$

whereas in some other references (e.g., [4]), slightly different models such as $A = 1 - p_{\text{dark}}$ and $B = p_{\text{dark}}$ are used [11].

The decoy state method is similarly effective in lower bounding the error rate e_1 from pulses containing a single photon; By recording the overall error rate $E(\mu_i)$ for each decoy light intensity μ_i and using the relation

$$
Q(\mu_i)E(\mu_i) - \frac{1}{2} e^{-\mu_i} y_0 = e^{-\mu_i} \sum_{n=1}^{\infty} \frac{\mu_i^n}{n!} b_n
$$

with $b_n := y_n e_n$, one can determine the range of $b_1 = y_1 e_1$. This case can also be treated with [3] by redefining parameters A, B. For instance in [3, 7], the value on the left hand side of Eq. (5) takes the form

$$
Q(\mu_i)E(\mu_i) = e_{\text{det}} (1 - \exp(-\eta\mu_i)) + \frac{1}{2}p_{\text{dark}},
$$

which corresponds to $A = e_{\text{det}}, B = p_{\text{dark}}/2$. A slightly different error models are also used, e.g., in [4]. In what follows we do not distinguish between all these cases, whether of yields
or of error rates, and analyze them on an equal footing as an optimization problem regarding Eq. (3) with given values of A, B satisfying (4).

B. Main result

Under these settings, we present upper and lower bounds on y_n in terms of quantities X_n and Z_n; for any M and $n < M$,

$$X_n \leq y_n \leq Z_n \quad \text{if } M - n \text{ is odd,}$$

$$Z_n \leq y_n \leq X_n \quad \text{if } M - n \text{ is even,}$$

where X_n are expressed in a simple form (see Eq. (10)). For instance, X_1 takes the form

$$X_1 = \sum_{i=1}^{M} \frac{\exp(\mu_i)Q_+(\mu_i)}{\mu_i} \prod_{j=1, j \neq i}^{M} \frac{\mu_j}{\mu_j - \mu_i}. \quad (8)$$

On the other hand Z_n cannot be written in a simple form as X_n, however, as we shall demonstrate in Section IV, they can always be obtained by a numerical calculation within a finite number of steps.

In addition, it can be shown that at least when $\mu_i \leq 1$, Eve can actually attain $y_n = X_n$ and $y_n = Z_n$ in (6) and (7). Hence they are not only a lower (resp. upper) bound, but in fact are the minimum (resp. maximum) of y_1.

In order to demonstrate how effective our approach is, take a typical set of experimental parameters, e.g., $A = 1$, $\eta = 10^{-2}$, $B = p_{\text{dark}} = 10^{-5}$, $M = 3$, and $(\mu_1, \mu_2, \mu_3) = (0.07, 0.2, 0.5)$. It turns out that $Z_1 = 0.993 \times 10^{-2} \leq y_1 \leq 1.003 \times 10^{-2} = X_1$, where the yield in the absence of Eve is $y_1 = q_1 = 1.001 \times 10^{-2}$. Hence by using only four decoy light intensities including vacuum, we can determine y_1 within accuracy of less than one percent.

III. MINIMUM OF y_1 FOR M EVEN

First in this section, we discuss the property of X_n as lower or upper bounds as stated in Sec. II B. This is in particular useful in determining the minimum of y_1 when there are an even number of constraints, that is, for M even.

For $M = 2$ Hwang [1] pointed out that Eve’s best attack strategy is to set $y_n = 0$ for all $n \geq 3$, and hence the problem is reduced to solving an linear equation of y_1, y_2. Here
we shall show that this can in fact be generalized to any even value of M, i.e., in order to obtain the minimum y_1, it suffices to set $y_n = 0$ for all $n > M$ and calculate y_1 compatible with

$$
\begin{pmatrix}
\mu_1 & \mu_1^2 & \cdots & \mu_1^M \\
\mu_2 & \mu_2^2 & \cdots & \mu_2^M \\
\vdots & \vdots & \ddots & \vdots \\
\mu_M & \mu_M^2 & \cdots & \mu_M^M \\
\end{pmatrix}
\begin{pmatrix}
y_1/1! \\
y_2/2! \\
\vdots \\
y_M/M! \\
\end{pmatrix} =
\begin{pmatrix}
\exp(\mu_1)Q_+(\mu_1) \\
\exp(\mu_2)Q_+(\mu_2) \\
\vdots \\
\exp(\mu_M)Q_+(\mu_M) \\
\end{pmatrix}
$$

(9)

by inverting the Vandermonde matrix. For the rest of the paper, we denote the solution y_n to Eq. (9) as X_n. For $n > M$, we set $X_n = 0$ formally for later convenience.

Theorem 1

- For M even, X_1 is a lower bound of y_1 which is consistent with Eq. (7).

- More generally, for any M and any $n \leq M$, X_n is a lower (resp. upper) bound of y_n if $M - n$ is an odd (resp. even) number.

- If $\mu_1, \ldots, \mu_M \leq 1$, we have $0 \leq X_n \leq 1$ for all n. That is, Eve can actually achieve $y_n = X_n$. Hence X_n is not only a lower (resp. upper) bound, but is also the minimum (resp. maximum) of y_n for $M - n$ odd (resp. even).

The proof will be given in Section III B. Using Cramer’s rule, the solution X_n to Eq. (9) can be expressed explicitly as

$$
\frac{X_n}{n!} = \frac{\begin{vmatrix}
\mu_1 & \cdots & \mu_1^{n-1} & \exp(\mu_1)Q_+(\mu_1) & \mu_1^n & \cdots & \mu_1^M \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
\mu_M & \cdots & \mu_M^{n-1} & \exp(\mu_M)Q_+(\mu_M) & \mu_M^n & \cdots & \mu_M^M \\
\end{vmatrix}}{D(\mu_1, \ldots, \mu_M)},
$$

(10)

$$
D(\mu_1, \ldots, \mu_M) := \left(\prod_{i=1}^{M} \mu_i \right) \Delta(\mu_1, \ldots, \mu_M)
$$

(11)

with $\Delta(\mu_1, \ldots, \mu_M)$ being the Vandermonde determinant

$$
\Delta(\mu_1, \ldots, \mu_M) :=
\begin{vmatrix}
1 & \cdots & \mu_1^{M-1} \\
\vdots & \ddots & \vdots \\
1 & \cdots & \mu_M^{M-1} \\
\end{vmatrix}
$$

(12)

In particular, X_1 takes the form of Eq. (8).
A. Mathematical preliminary

As a preliminary to the proof of Theorem 1, we define the Schur polynomials \(s_\lambda \) (see, e.g., Ref. [9, 10]) and difference vectors \(w_n^{(m)} \).

Definition 1 Choose an integer partition \(\lambda = (\lambda_1, \ldots, \lambda_k) \) satisfying \(\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_k > 0 \), and \(k \leq M \). For \(n > k \), set \(\lambda_n = 0 \) formally. The Schur polynomial \(s_\lambda \) in variables \(\mu_1, \ldots, \mu_M \) is defined as

\[
s_\lambda(\mu_1, \ldots, \mu_M) := \frac{\prod_{1 \leq i < j \leq M} (\mu_i - \mu_j)^{\lambda_{ij}}}{\Delta(\mu_1, \ldots, \mu_M)},
\]

where \(\Delta(\mu_1, \ldots, \mu_M) \) is the Vandermonde determinant defined in Eq. (12).

For example, if the partition \(\lambda \) is empty, i.e., \(\lambda_1 = \lambda_2 = \cdots = 0 \), both the numerator and the denominator equal \(\Delta(\mu_1, \ldots, \mu_M) \) and we have \(s_\emptyset = 1 \). For \(\lambda = (1, 1, \ldots, 1) \) with 1 repeating \(M \) times \(s_{(1,1,\ldots,1)} = \prod_{i=1}^{M} \mu_i \). In what follows, we denote integer partitions with greek letters \(\lambda, \alpha, \ldots \) with the only exception of \(\mu \) that is used for average photon numbers.

Now using \(s_\lambda \) thus defined, we consider difference vectors \(\Delta y = (\Delta y_1, \Delta y_2, \ldots) \) to \(y = (y_1, y_2, \ldots) \) which preserve the constraint (1). In other words \(\Delta y \) are those vectors satisfying

\[
\sum_{n=1}^{\infty} \frac{\mu_n}{n!} \Delta y_n = 0
\]

for all \(1 \leq i \leq M \). Hence if \(y \) is a solution to (1), \(y + \Delta y = (y_1 + \Delta y_1, y_2 + \Delta y_2, \ldots) \) is also a solution when disregarding the constraints \(0 \leq y_n \leq 1 \). The set of vectors \(W := \{ \Delta y \text{ satisfying Eq. (13)} \} \) clearly forms a subspace of the vector space \(V \) consisting of all vectors [12]. For our present purposes, it is convenient to choose the following non-orthogonal basis for \(W \).

Definition 2 We define a set of vectors \(w_n^{(m)} = (w_1^{(m)}, w_2^{(m)}, \ldots) \) labeled by \(m > M \) as

\[
w_n^{(m)} = \begin{cases} (-1)^{M-n+1} \frac{n!}{m!} s_{\alpha(m-M,M-n)}(\mu_1, \ldots, \mu_M) & \text{for } n < M, \\ 1 & \text{for } n = m, \\ 0 & \text{otherwise,} \end{cases}
\]

where \(\alpha \) denotes an integer partition \(\alpha(a,b) := (a,1,1,\ldots,1) \) with 1’s repeating \(b \) times.
Lemma 1 Vectors \(w^{(m)} \) form a linear basis of \(W \). That is, \(w^{(m)} \) are solutions to Eq. (15), and conversely, any solution to Eq. (13) can be uniquely expressed as a superposition of \(w^{(m)} \) as

\[
\Delta y = \sum_{m=M+1}^{\infty} \Delta y_m w^{(m)}. \tag{15}
\]

The proof is given in Appendix B. With the help of this lemma, we see that given any solution \(y = (y_1, y_2, \ldots) \) to Eq. (1), \(X - y \) is written uniquely as a superposition of \(w^{(m)} \) as

\[
y_n - X_n = \sum_{m=M+1}^{\infty} w^{(m)}_n (y_m - X_m) = \sum_{m=M+1}^{\infty} w^{(m)}_n y_m. \tag{16}
\]

We will use this relation repeatedly in the following sections.

B. Proof of Theorem 1

In this subsection we will prove Theorem 1, but before going into details, let us give an intuitive explanation. Eve’s goal is to minimize \(y_1 \) while keeping the measured value of \(Q_+ (\mu_i) \) intact so that her attack will not be noticed by Alice and Bob. Hence the difference \(\Delta y \) she makes to the yield \(y \) must satisfy (13), and as we have seen in Lemma 1, it can always be considered as a sum of the basis vector \(w^{(m)} \). Now note that the Schur polynomial \(s_\alpha(a,b) \) being always positive in Eq. (14), the element of \(w^{(m)}_n \) alternates its signs with as \(n \) increases as \(n = 1, \ldots, M \) and \(m \). In particular if \(M \) is even, both \(w^{(m)}_1 \) and \(w^{(m)}_m \) are positive for any \(m \) (see Fig. 1). Thus we see that minimizing \(y_n \) for \(n > M \), or equivalently, taking \(\Delta y_n \leq 0 \) will always decrease \(y_1 \). As a result, the best configuration for Eve turns out to be the one with \(y_n = 0 \) for all \(n > M \), i.e., \(X_n \).

Lemma 2 For \(M \) even, \(X_1 \) is a lower bound on \(y_1 \) of Eq. (7). More generally, for any \(n \leq M \), if \(M - n \) is odd (resp. even), \(X_n \) is a lower (resp. upper) bound on \(y_n \).

Proof: Since the proof is essentially the same for all cases, we consider here only the case of \(n = 1 \) and \(M \) being even. During the proof, we suppress the constraint \(0 \leq y_n \leq 1 \) for \(n = 1, \ldots, M \) and let them take an arbitrary value. For \(n > M \) we still require \(y_n \geq 0 \). Then in fact \(X_1 \) is the minimum of \(y_1 \) under these requirements, and is also a lower bound under the full constraint (2). This can be seen by looking at the \(n = 1 \) element of Eq. (16); Given
FIG. 1: Image of $w_n^{(m)}$ for M even. The element changes signs as n increases from 1 to M and then to m.

an arbitrary solution $y = (y_1, y_2, \ldots)$ to Eq. (1), the difference of its first element with X’s takes the form

$$y_1 - X_1 = \sum_{m=M}^{\infty} w_1^{(m)} y_m.$$

Obviously this is always greater than or equal to zero because $y_m \geq 0$ and $w_1^{(m)} > 0$ for M even. Hence X_1 is the minimum of y_1 under the requirements that we introduced at the beginning. This completes the proof.

From this proof we see that if all of X_1, \ldots, X_M satisfy $0 \leq X_n \leq 1$ for a particular choice of A and B, they are indeed the true minima (resp. maxima) under the full constraints (2). One can always verify this by numerical calculations, and doing so may be useful in practice. However, we can in fact verify it analytically for a sufficiently wide range of parameters.

Lemma 3 For $\mu_1, \ldots, \mu_M \leq 1$, we have $0 \leq X_n \leq 1$ for all n.

Proof: Substituting $y_n = q_n$ in Eq. (16) and using Eq. (14), we obtain

$$\frac{X_n}{n!} = \frac{q_n}{n!} + (-1)^{M-n} I_n,$$

$$I_n : = \sum_{m=M+1}^{\infty} \frac{q_m}{m!} s_{\alpha(m-M,M-n)}(\mu_1, \ldots, \mu_M)$$

for $n \leq M$. According to the positivity of q_n and the Schur polynomials s_{λ}, we have $I_n \geq 0$. From this it is immediate that $y_n \geq 0$ for $M - n$ even, and $y_n \leq 1$ for $M - n$ odd. No that so far we did not use the condition $\mu_i \leq 1$.
On the contrary, in order to see $y_n \leq 1$ for $M - n$ even and $y_n \geq 0$ for $M - n$ odd, we need to bound I_n from above using $\mu_i \leq 1$. By inequality (A2) and $\eta_n \leq n\eta$,

$$I_n \leq \sum_{m=M+1}^{\infty} \frac{Am\eta + B}{m!} \mu_{m-n}^{m-n} \frac{(m-n-1)!}{(M-n)!(m-M-1)!}$$

$$\leq \sum_{m=M+1}^{\infty} \frac{Am\eta + B}{(m-1)!} \mu_{m}^{m-n} \frac{(m-n-1)!}{(M-n)!(m-M-1)!}$$

$$= \frac{\mu_{M-n}^{M-n+1}(Am + B)}{M!} \sum_{k=0}^{\infty} \frac{Am + B}{k!} \mu_{M}^{k} \frac{M \cdots (M-n+1)}{(k+M) \cdots (k+M-n+1)},$$

(18)

thus for $\mu_i \leq 1$,

$$I_n \leq \frac{Am + B}{M!} \sum_{k=0}^{\infty} \frac{1}{k!} = \frac{e(Am + B)}{M!}$$

(19)

for all M and $n \leq M$. On the contrary, inequality (18) for $M = 2$ and $n = 1$ in particular yields

$$I_1 \leq (Am + B) \sum_{k=0}^{\infty} \frac{k+1}{(k+2)!}$$

$$= (Am + B) \sum_{k=0}^{\infty} \left(\frac{1}{(k+1)!} - \frac{1}{(k+2)!} \right)$$

$$= Am + B.$$

(20)

Therefore, combining (19) and (20) we obtain for $M - n$ odd,

$$I_n \leq \frac{Am + B}{(M-1)!}.$$

(21)

Now by using (19) for $M - n$ even, or $n = M, M-2, \ldots > 0$, we have

$$X_n \leq q_n + \frac{n!e}{M!} (Am + B) \leq \left(1 + \frac{n!e}{M!} \right) (Am + B) \leq (1 + e)(Am + B).$$

The second inequality follows from $\eta_n \leq n\eta$ and thus $q_n/n! \leq Am + B$. Then using condition (4) we see

$$X_n \leq (1 + e)(Am + B) \leq (1 + e)2\eta < 1.$$

for all even $n \leq M$. Similarly for $M - n$ odd, or $n = M - 1, M-3, \ldots > 0$, by using (21) we find

$$X_n \geq \frac{q_n}{n!} - \frac{Am + B}{(M-1)!} \geq \frac{1}{(M-1)!} (q_{M-1} - (Am + B)).$$

In the second inequality, we used the fact that $q_n/n!$ is monotonically decreasing in n. Since

$$q_{M-1} - (Am + B) = A(\eta_{M-1} - \eta) \geq 0$$

for $M \geq 2$, we have finally $X_n \geq 0$ for $M - n$ odd. This completes the proof.
IV. MINIMUM OF y_1 FOR M ODD

For M odd as well, by using a similar argument as used in the previous section, the configuration y_n giving the minimum value of y_1 can be determined if $\mu_1, \ldots, \mu_M \leq 1$. In what follows we denote this configuration as $Z = (Z_1, Z_2, \ldots)$. Z includes a set of variables (L, a) that can be specified (as far as we know) only by numerical calculations, and cannot be written in a simple form as Eq. (8). Still, as shown below, it can always be determined within a finite number of steps.

A. Definition of Z

In this subsection we define what the configuration Z looks like in two steps; First we give a configuration z involving parameters L, a and then define Z as its special case.

Definition 3 For a given set of an integer $L > M$ and a real number $0 < a \leq 1$, $z(L, a) = (z_1(L, a), z_2(L, a), \ldots)$ is configuration of the yield y, and is a solution to Eq. (1) satisfying the following conditions (see Fig. 2).

- $z_n = 0$ for $M < n < L$ and $z_n = 1$ for $L < n$.
- $z_L = a$.
- Constraint (2) is relaxed for $n = 1, \ldots, M - 1$. That is, z_1, \ldots, z_{M-1} can take an arbitrary value.

Let us supplement this definition. As we have seen in Eq. (16), once z_{M+1}, z_{M+2}, \ldots are all fixed, z_1, \ldots, z_M are uniquely determined as

$$
\frac{z_M(L, a)}{M!} = \frac{X_M}{L!} - \frac{a}{L!} s_{(M-M)}(\mu_1, \ldots, \mu_M) - \sum_{m=L+1}^{\infty} \frac{1}{m!} s_{(M-M)}(\mu_1, \ldots, \mu_M).
$$

(22)

The third item of Definition 3 means that we do not care whether the value thus obtained satisfy $0 \leq z_1(L, a), \ldots, z_M(L, a) \leq 1$ or not. Using this $z(L, a)$, we now define Z.

Definition 4 Configuration Z is $z(L, a)$ with the smallest L and the largest a satisfying $z_M(L, a) \geq 0$. In what follows we denote such (L, a) as (L_0, a_0), and thus $Z = z(L_0, a_0)$.

In order for this definition to make sense, we need to guarantee the existence and the uniqueness of \((L_0, a_0)\) for an arbitrary choice of \(A\) and \(B\). To see this, it is convenient to order the pairs \((L, a)\) such that \((L_1, a_1) > (L_2, a_2)\) if either (i) \(L_1 > L_2\) or (ii) \(L_1 = L_2\) and \(a_1 < a_2\). In terms of this ordering, \((L_0, a_0)\) just corresponds to the smallest \((L, a)\) satisfying \(z_M(L, a) \geq 0\). By definition, pairs \((L, a)\) are bounded from below by \((M + 1, 1)\), and as one can see from \((22)\), \(z_M(L, a)\) is monotonically increasing with respect to \((L, a)\). Hence \((L_0, a_0)\) can obviously be determined uniquely.

We can also show that \(L\) is finite. Indeed if \(z_M(L, 1) < 0\) for any finite \(L\), we would have \(X_M = \lim_{L \to \infty} z_M(L, 0) \leq 0\). However, this would never happen as we have seen in the first paragraph of the proof of Lemma 3.

![Diagram](image)

FIG. 2: Configuration of \(Z\) achieving the minimum \(y_1 = Z_1\) for \(M\) odd. It is a solution to Eq. \((11)\), such that (a) \(Z_M = 0\) (b) There exists a value \(L_0(\geq M)\); and \(Z_n = 0\) for \(M \leq n < L_0\), \(Z_n = 1\) for \(n > M\), and \(0 \leq Z_{L_0} = a_0 \leq 1\) are satisfied. (c) The constraints \(0 \leq y_n \leq 1\) are suppressed for \(Z_1, \ldots, Z_{M-1}\) and they can take an arbitrary value.

With this \(Z\) the following theorem holds.

Theorem 2

- **For** \(M \text{ odd, } Z_1 \text{ is a lower bound of } y_1 \text{ which is consistent with Eq. } (1).**

- **More generally,** for any \(M > 1\) and \(n \leq M\), \(Z_n\) is a lower (resp. upper) bound of \(y_n\) if \(M - n\) is even (resp. odd).

- **If** \(\mu_1, \ldots, \mu_M \leq 1\), we have \(0 \leq Z_n \leq 1\) for all \(n\). That is, Eve can actually achieve \(y_n = Z_n\). Hence \(Z_n\) is not only a lower (resp. upper) bound, but is also the minimum (resp. maximum) of \(y_n\) for \(M - n\) even (resp. odd).
The proof will be given in Section IV C.

B. An algorithm for finding Z_1

Next in order to demonstrate that Z_1 can be actually obtained within finite steps, we present an algorithm for calculating it. First note that for given L and a, by plugging $z(L, a)$ in Eq. (1) we obtain

$$G(\mu; L, a) = \sum_{n=1}^{M} \frac{\mu^n}{n!} z(L, a)$$

with

$$G(\mu; L, a) := e^{\mu Q_+} - \left(e^{\mu} - \sum_{n=0}^{L} \frac{\mu^n}{n!} + \frac{\mu^L}{L!} a \right).$$

Then by using Cramer’s rule as in Eq. (10), $z_n(a, L)$ for $1 \leq n \leq M$ is given as

$$z_n(L, a) = \frac{1}{n!} \begin{vmatrix} \mu_1 & \cdots & \mu_1^{n-1} & G(\mu_1; L, a) & \mu_1^{n+1} & \cdots & \mu_1^M \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ \mu_M & \cdots & \mu_M^{n-1} & G(\mu_M; L, a) & \mu_M^{n+1} & \cdots & \mu_M^M \end{vmatrix} / D(\mu_1, \ldots, \mu_M) \tag{23}$$

with $D(\mu_1, \ldots, \mu_M)$ defined in (11). Now that we have got rid of all infinite series, Z can be obtained numerically as follows.

Algorithm

1. Calculate $z_M(M + 1, 1)$ using Eq. (23). If $z_M(M + 1, 1) \geq 0$, let $L_0 = M + 1$, $a_0 = 1$ and go to Step 4.
2. Let $L = M + 1$.
3. If $z_M(L, 1) < 0$, let $L = L + 1$ and go to Step 3. Otherwise let $L_0 = L$ and find the root a_0 of $z_M(L_0, a_0) = 0$.
4. Calculate $Z_1 = z_1(L_0, a_0)$ and stop.

Note that we need $z_M(M + 1, 1)$ and $z_M(L, 1)$ in Steps 1 and 3 only in order to check their plus or minus sign. Hence when actually running the algorithm, one may omit the division by $D(\mu_1, \ldots, \mu_M)$ appearing in Eq. (23) by ordering μ_i, for example, as $\mu_1 < \cdots < \mu_M$.

This algorithm stops within finite steps, since L is finite as shown in the previous subsection. Moreover, when $\mu_i \leq 1$, L_0 is bounded from above as $L_0(L_0 - M)! \leq Me/q_M$, as shown in Appendix D. Hence, e.g. for $M = 3$, $\eta = 10^{-3}$ and $A = 1$, we have $L_0 \leq 10$.
C. Proof of Theorem 2

In this subsection we prove Theorem 2. As in the previous section, we first show that Z_n are a lower or upper bound, and after that we demonstrate that Z_n satisfy constraint (2) if $\mu_i \leq 1$.

Lemma 4 For M odd, Z_1 is a lower bound on y_1. More generally for any M and any $n \leq M$, if $M - n$ is even (resp. odd), Z_n is a lower (resp. upper) bound on y_n.

Proof: Since the proof is essentially the same for all cases, we here consider only the case of $n = 1$ and M odd. During the proof we suppress constraint (2) for $n = 1, \ldots, M - 1$ and let y_1, \ldots, y_{M-1} take an arbitrary value. For $m \geq M$ we still assume $0 \leq y_m \leq 1$. Again, by showing that Z_1 is the minimum of y_1 with these requirements, we prove that it is a lower bound under the complete set of constraints (2). As in the proof of Lemma 2, the difference between any solution $y = (y_1, y_2, \ldots)$ and Z can be expanded as in Eq. (16). Thus the constraint $y_M \geq 0$ yields

$$y_M = X_M + \sum_{m=M+1}^{\infty} w_m^{(m)} y_m \geq 0,$$

which can be rewritten by using Eq. (14) as

$$\frac{X_M}{M!} \geq \sum_{m=M+1}^{\infty} \frac{y_m}{m!} s_{(m-M)}(\mu_1, \ldots, \mu_M).$$

(24)

Similarly, y_1 is expressed in terms of y_{M+1}, y_{M+2}, \ldots as

$$y_1 = X_1 + \sum_{m=M+1}^{\infty} \frac{y_m}{m!} s_{\alpha(m,M,M-1)}(\mu_1, \ldots, \mu_M).$$

(25)

Now Eve’s task is to minimize Eq. (25) by adjusting y_{M+1}, y_{M+2}, \ldots while maintaining inequality (24). Note that both the relations are linear in y_{M+1}, y_{M+2}, \ldots, and thus the best configuration that minimizes y_1 will be determined by their coefficients, $s_{(m-M)}(\mu_1, \ldots, \mu_M)/m!$ and $s_{\alpha(m,M,M-1)}(\mu_1, \ldots, \mu_M)/m!$. In fact, as we will show in Appendix C, the ratio of these two coefficients

$$K_m := \frac{s_{\alpha(m,M,M-1)}(\mu_1, \ldots, \mu_M)}{s_{(m-M)}(\mu_1, \ldots, \mu_M)}$$

(26)

increases monotonically with respect to m. Hence the minimum value is achieved by maximizing as many y_m’s as possible with larger m’s in such a way that is consistent with Eq.
If the equality can be achieved in (24) for some configuration of \(y_{M+1}, y_{M+2}, \ldots \), this amounts to finding \(L(>M) \) such that \(y_m = 1 \) for \(m \geq L \), \(y_m = 0 \) for \(M < m < L \), and \(0 \leq y_L \leq 1 \) for \(m = L \), and also \(y_M = 0 \) is satisfied. On the contrary if the equality does not hold for any configuration, \(y_1 \) is minimized when \(y_n = 1 \) for all \(n > M \). Both these cases corresponds to \(Z \) of Definition [4]. Hence \(Z \) thus obtained indeed gives the minimum of \(y_1 \) under our temporal constraints on \(y_n \).

Lemma 5 If \(\mu_1, \ldots, \mu_M \leq 1 \), then \(0 \leq Z_n \leq 1 \) is satisfied for all \(n \leq M \).

Proof: Recall \(0 \leq X_n \leq 1 \) when \(\mu_i \leq 1 \) from Lemma [3]. Substituting \(y_n = Z_n \) in (16), we find for \(n \leq M \),

\[
\frac{1}{n!} Z_n = \frac{1}{n!} X_n + (-1)^{M-n+1} \sum_{m=M+1}^{\infty} \frac{Z_m}{m!} s_{\alpha(M-M-n)}(\mu_1, \ldots, \mu_M). \tag{27}
\]

Now since the Schur polynomial \(s_{\alpha(M-M-n)} \) and \(Z_m \) for \(m > M \) being positive, it is clear that \(Z_n \leq 1 \) for \(M - n \) even, and \(Z_n \geq 0 \) for \(M - n \) odd.

On the other hand, in order to show \(Z_n \geq 0 \) for \(M - n \) even and \(Z_n \leq 0 \) for \(M - n \) odd, suppose we had \(M - 1 \) constraints, say, of \(\mu_1, \ldots, \mu_{M-1} \) from the beginning, and consider the corresponding \(X \) and \(w^{(m)} \), which we will denote in what follows as \(\bar{X} \) and \(\bar{w}^{(m)} \). Lemma [3] holds in this case as well and we have \(0 \leq \bar{X}_n \leq 1 \). By definition, \(\bar{X} \), as well as \(Z \), are a solution to Eq. (1) for \(i = 1, \ldots, M - 1 \). Hence we can apply the same argument as in the previous paragraph, using \(\bar{w}^{(m)} \) and \(\bar{X} \) this time, and express \(Z_n \) for \(n \leq M - 1 \) as

\[
\frac{1}{n!} Z_n = \frac{1}{n!} \bar{X}_n + (-1)^{M-n} \sum_{m=M}^{\infty} \frac{Z_m}{m!} s_{\alpha(M-M-1,M-n-1)}(\mu_1, \ldots, \mu_{M-1}). \tag{28}
\]

Again due to the positivity of the Schur polynomials and \(Z_m \), this shows \(Z_n \geq 0 \) for \(M - n \) even, and \(Z_n \leq 0 \) for \(M - n \) odd. This completes the proof.

V. CONCLUSION

In this paper, we presented an improved upper and lower bounds \(X_n, Z_n \) for the asymptotic yield \(y_n \) for the decoy state method using a finite number \(M \) of decoy light intensities. In particular if all the light intensities \(\mu_i \) are less than or equal to one, \(X_n, Z_n \) are not only a lower or upper bound, but in fact are the exact minimum or maximum.
Moreover, these X_n and Z_n can always be obtained by simple numerical calculation by using Eq. (8), (10) and by using the algorithm given in Sec. IV B.

Acknowledgment

This work was supported by the project “Research and Development on Quantum Cryptography of the National Institute of Information and Communications Technology, as part of Ministry of Internal Affairs and Communications of Japan’s program “R&D on Quantum Communication Technology.”

APPENDIX A: PROPERTIES OF THE SCHUR POLYNOMIALS

The Schur polynomial s_{λ} given in Definition 1 can also be expressed as a sum of monomials as

$$s_{\lambda}(\mu_1, \ldots, \mu_M) = \sum_T \mu_1^{t_1} \mu_2^{t_2} \cdots \mu_M^{t_M},$$

where T denotes a semistandard Young tableaux on a Young diagram λ, on which number $i \in \{1, \ldots, M\}$ appears t_i times (see, e.g., [9, 10]). Semistandard tableaux are those having entries which are strictly increasing vertically and weakly increasing horizontally [13]. For example, \[\begin{array}{c}
1 \\
2 \\
3
\end{array} \] \[\begin{array}{c}
1 \\
2 \\
3
\end{array} \] is semistandard whereas \[\begin{array}{c}
1 \\
2 \\
3
\end{array} \] \[\begin{array}{c}
2 \\
1 \\
3
\end{array} \] is not. The monomial corresponding to the former tableau is $\mu_1^2 \mu_2 \mu_3$. For $M = 3$ and $\lambda = (2, 1) = \begin{array}{c} 1 \\
2
\end{array} \begin{array}{c} 1 \\
3
\end{array}$, there are eight semistandard tableaux, \[\begin{array}{c}
1 \\
2 \\
3
\end{array} \] \[\begin{array}{c}
1 \\
3 \\
2
\end{array} \] \[\begin{array}{c}
2 \\
1 \\
3
\end{array} \] \[\begin{array}{c}
2 \\
3 \\
1
\end{array} \] \[\begin{array}{c}
3 \\
1 \\
2
\end{array} \] \[\begin{array}{c}
3 \\
2 \\
1
\end{array} \] \[\begin{array}{c}
1 \\
2 \\
3
\end{array} \] \[\begin{array}{c}
1 \\
3 \\
2
\end{array} \], and the Schur polynomial reads

$$s_{(2,1)}(\mu_1, \mu_2, \mu_3) = 2\mu_1 \mu_2 \mu_3 + \mu_1 \mu_2^2 + \mu_2 \mu_3^2 + \mu_3 \mu_1^2 + \mu_2^2 \mu_3 + \mu_3^2 \mu_1^2 = (\mu_1 + \mu_2)(\mu_2 + \mu_3)(\mu_3 + \mu_1),$$

which equals the one obtained from Definition 1.

If $\mu_1, \ldots, \mu_M > 0$, the polynomials s_{λ} are always positive since the coefficient of each monomial is positive in Eq. (A1). In this case there is a simple upper bound

$$s_{\lambda}(\mu_1, \ldots, \mu_M) \leq (\mu_{\text{max}})^d \cdot s_{\lambda}(1, \ldots, 1)$$

with $d := \sum_i \lambda_i$ and $\mu_{\text{max}} = \max \mu_i$. From this and using the formula

$$s_{\lambda}(1,1,\ldots,1) = \prod_{i<j} \frac{\lambda_i - \lambda_j + j - i}{j - i},$$
and for
\[\sum_{i<j} \lambda_i - \lambda_j + j - i \]
we find
\[s_\lambda(\mu_1, \ldots, \mu_M) \leq (\mu_{\text{max}})^d \prod_{i<j} \frac{\lambda_i - \lambda_j + j - i}{j - i}. \]

APPENDIX B: PROOF OF LEMMA 1

For \(m > M \), define \(x^{(m)} = (x_1^{(m)}, x_2^{(m)}, \ldots) \) as follows. For \(n = 1, \ldots, M \), let
\[
 x_n^{(m)} := (-1)^{M-n+1} n! \begin{vmatrix} \mu_1 & \cdots & \mu_1^n & \mu_1^{n+1} & \cdots & \mu_1^M & \mu_1^m \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ \mu_M & \cdots & \mu_M^n & \mu_M^{n+1} & \cdots & \mu_M^M & \mu_M^m \end{vmatrix}
\]
and for \(n = m \), let \(x_m^{(m)} \) be
\[
 x_m^{(m)} := m! \begin{vmatrix} \mu_1 & \cdots & \mu_M \\ \vdots & \ddots & \vdots \\ \mu_M & \cdots & \mu_M \\ \mu_1 & \cdots & \mu_1 \\ \vdots & \ddots & \vdots \\ \mu_M & \cdots & \mu_M \end{vmatrix} = m! D(\mu_1, \ldots, \mu_M).
\]

All other elements of \(x^{(m)} \) are zero. Then it is easy to see that for \(i = 1, \ldots, M \),
\[
 \sum_{n=1}^\infty \frac{\mu_i^n}{n!} x_n^{(m)} = \sum_{n=1}^M \frac{\mu_i^n}{n!} x_n^{(m)} + \frac{\mu_i^m}{m!} x_m^{(m)} = 0.
\]

\(w^{(m)} \) in Definition 2 is expressed as \(w_n^{(m)} = x_n^{(m)}/x_m^{(m)} \) and thus we have shown that \(w^{(m)} \) is indeed the solution.

Next we prove that expansions in \(w^{(m)} \) are possible. For a given \(\Delta y \), define \(\Delta y' := \sum_{m=M+1}^\infty \Delta y_m w^{(m)} \) and consider \(v := \Delta y' - \Delta y \). With \(\Delta y \) and \(\Delta y' \) both being a solution to Eq. (13), \(v \) is also a solution. Then note that by definition \(v_n = 0 \) for all \(n > M \), and thus \(v_1, \ldots, v_M \) satisfy
\[
 \begin{pmatrix} \mu_1 & \cdots & \mu_M \\ \vdots & \ddots & \vdots \\ \mu_M & \cdots & \mu_M \end{pmatrix} \begin{pmatrix} v_1/1! \\ \vdots \\ v_M/M! \end{pmatrix} = 0.
\]
From this it follows \(v_n = 0 \) for \(n \leq M \) as well, due to the invertibility of the matrix on the left hand side. Hence we have shown \(\Delta y' = \Delta y \) and that any \(\Delta y \) can be expanded with \(u^{(m)} \).

In order to prove the uniqueness of the coefficients of \(u^{(m)} \), it suffices to show the linear independence of \(u^{(m)} \). This is obvious from the fact that for any \(n > M \), there is only one \(u^{(m)} \) with a nonzero value in the \(n \)-th element, i.e., \(w^{(n)} \).

APPENDIX C: \(K_m \) IS MONOTONICALLY INCREASING IN \(m \)

Proof: In this proof the variables of the Schur polynomials are always \(\mu_1, \ldots, \mu_M \), and we will omit them for the sake of brevity. It is immediate from Definition 1 that \(K_m \) can be rewritten as

\[
K_m = \left(\prod_{i=1}^{M} \mu_i \right) \frac{s(m-M-1)}{s(m-M)},
\]

and by using this we obtain

\[
K_{m+1} - K_m = \left(\prod_{i=1}^{M} \mu_i \right) \frac{(s(m-M))^2 - s(m-M+1)s(m-M-1)}{s(m-M)s(m-M+1)}. \tag{C1}
\]

Multiplication of two Schur polynomials \(s\lambda \) and \(s\nu \) is especially simple when the partition \(\nu \) (or equivalently \(\lambda \)) consists of a single number \(\nu = (b) \). That is,

\[
s\lambda \cdot s(b) = \sum_{\rho} s\rho,
\]

where the sum is over all partitions \(\rho \) that are obtained from \(\lambda \) by adding \(b \) boxes, with no two in the same raw (see, e.g., Section 2.2 of Ref. [10]). Hence for \(\lambda = (a) \) we have

\[
s(a) \cdot s(b) = \sum_{c=0}^{\min(a,b)} s(a+b-c,c),
\]

and from this it follows that the numerator of Eq. (C1) is positive; \((s(m-M))^2 - s(m-M+1)s(m-M-1) = s(m-M,m-M) > 0 \). Hence Eq. (C1) is also always positive, meaning that \(K_m \) is monotonically increasing.

APPENDIX D: UPPER BOUND ON \(L_0 \)

For \(\mu_i \leq 1 \), \(L_0 \) can be bounded from above as follows. If equality cannot hold in (24) for any configuration of \(y \), we have \(L_0 = M + 1 \) (cf. the argument below Eq. (26)). On the
contrary, if \(Z_M = z_M(L_0, a_0) = 0 \) for some \((L_0, a_0)\), we have from Eq. (22)

\[
\frac{X_M}{M!} \leq \sum_{m=L_0}^{\infty} \frac{1}{m!} s_{(m-M)}(\mu_1, \ldots, \mu_M).
\]

(D1)

Next using the upper bound of (A2) and applying a similar argument as in (18), we find

\[
\frac{X_M}{M!} \leq \sum_{m=L_0}^{\infty} \frac{1}{m!} \frac{(m-1)!}{(m-M)! (M-1)!}
\]

\[
= \sum_{k=0}^{\infty} \frac{1}{(L_0 + k)! (L_0 - M + k)! (M-1)!}.
\]

\[
= \frac{1}{(M-1)!} \sum_{k=0}^{\infty} \frac{k!}{k! (L_0 + k)! (L_0 - M + k)!}
\]

\[
\leq \frac{1}{L_0 (L_0 - M)! (M-1)!}\sum_{k=0}^{\infty} \frac{1}{k!}
\]

\[
= \frac{e}{L_0 (L_0 - M)! (M-1)!}.
\]

As can be seen from (17) \(X_M \) is bounded from below as \(X_M \geq q_M \), and \(L_0 \) is upper bounded as

\[
L_0 (L_0 - M)! \leq \frac{Me}{X_M} \leq \frac{Me}{q_M}.
\]

(D2)

[1] W. -Y. Hwang, Phys. Rev. Lett. 91, 057901 (2003).
[2] X. -B. Wang, Phys. Rev. Lett., 94, 230503 (2005).
[3] H. -K. Lo, X. Ma, and K. Chen, Phys. Rev. Lett. 94, 230504 (2005).
[4] H. Inamori et al., Euro. Phys. J. D 41, 599 (2007); D. Gottesman et al., Quant. Inf. Comput. 5, 325 (2004); R. Renner et al., Phys. Rev. A 72, 012332 (2005); M. Hayashi, Phys. Rev. A 76, 012329 (2007); M. Koashi, arXiv:quant-ph/0609180v1 (2006).
[5] X. -B. Wang, Phys. Rev. A 72, 012322 (2005).
[6] X. Ma et al., Phys. Rev. A72, 012326 (2005).
[7] M. Hayashi, New J. Phys, 9, 284 (2007).
[8] See, e.g., E. Kreyszig, Advanced Engineering Mathematics, Eighth Edition, (John Wiley & Sons, Inc., 1999).
[9] W. Fulton and J. Harris, Representation Theory, (Springer Verlag, 1991).
[10] W. Fulton, *Young Tableaux*, (Cambridge Univ. Press, 1997).

[11] In fact the former model can only be considered as an approximation valid for smaller values of \(n \), since \(y_n \) exceeds one for large enough \(n \). Hence in a strict sense, one needs to introduce a cut off \(N \) such that \(y_n \) may be neglected for \(n \geq N \), or use different definitions such as the latter.

[12] To be precise, we assume that \(V \) consists of \(v = (v_1, v_2, \ldots) \) satisfying \(\sum_{n=1}^{\infty} \mu^n v_n / n! < \infty \).

[13] In some textbooks (e.g., [10]), a semistandard tableau is simply called a ‘tableau.’