Overview and risk factors for postcraniotomy surgical site infection: A four-year experience

Cristina Corsini Campioli MD1 , Douglas Challener MD1 , Isin Y. Comba MD1 , Aditya Shah MBBS1, Walter R. Wilson MD1, M. Rizwan Sohail MD1,4, Jamie J. Van Gompel MD2 and John C. O’Horo MD, MPH1,3

1Division of Infectious Diseases, Department of Medicine, Mayo Clinic, Rochester, Minnesota, 2Department of Otolaryngology—Head and Neck Surgery and Neurologic Surgery, Mayo Clinic, Rochester, Minnesota, 3Division of Pulmonary and Critical Care, Mayo Clinic, Rochester, Minnesota and 4Section of Infectious Diseases, Baylor College of Medicine, Houston, Texas

Abstract

Objective: Despite evidence favoring perioperative antibiotic prophylaxis (ABP) use in patients undergoing craniotomy to reduce rates of surgical site infections (SSIs), standardized protocols are lacking. We describe demographic characteristics, risk factors, and ABP choice in patients with craniotomy complicated with SSI.

Design: Retrospective case series from January 1, 2017, through December 31, 2020.

Setting: Tertiary-care referral center.

Patients: Adults who underwent craniotomy and were diagnosed with an SSI.

Methods: Logistic regression to estimate odds ratios and 95% confidence intervals to identify factors associated with SSIs.

Results: In total, 5,328 patients undergoing craniotomy were identified during the study period; 59 (1.1%) suffered an SSI. Compared with non-SSI cases, patients with SSI had a significantly higher frequency of emergency procedures: 13.5% versus 5.8% (OR = 2.52; 95% confidence interval [CI], 1.10–5.06; P = .031). Patients with SSI had a higher rate of a dirty (51.1% vs 0.9%) and lower rate of clean-contaminated (3.3% vs 14.5%) wound class than those without infection (P = .002). Nearly all patients received ABP before craniotomy (98.3% in the SSI group vs 99.6% in the non-SSI group; P = .10). Combination of vancomycin and cefazolin as dual therapy was more prevalent in the group of patients without infection (n = 1,761, 34.1%) than those with SSI (n = 4, 6.8%) (P < .001), associated with decreased odds for SSI (OR, 0.17; 95% CI, 0.005–0.42; P ≤ .001).

Conclusions: SSIs are frequently seen after an emergent neurosurgical procedure and a dirty wound classification. Combination of prophylactic cefazolin and vancomycin is associated with decreased risk for SSI.

(Received 17 November 2021; accepted 17 December 2021)
Nearly half of SSIs are preventable by implementing evidence-based strategies like parenteral ABP, glycemic control, perioperative normothermia, adequate volume replacement, and antibiotic prophylaxis at least the night before the operative day. Although 2 meta-analyses and 8 randomized studies have concluded in favor of perioperative ABP for craniotomy in decreasing infection rates, there is a lack of protocols for this practice. Therefore, we have described the demographic characteristics, microbiology, variable ABP regimens, and risk factors associated with SSI in a contemporary cohort of patients who underwent a craniotomy at our institution.

Methods

We retrospectively reviewed all adult (≥18 years of age) patients who underwent primary craniotomies and were diagnosed and not diagnosed with SSI at our institution between January 1, 2017, and December 31, 2020. Patients were identified using International Classification of Disease, Tenth Revision (ICD-10) codes for craniotomy and SSI. The medical records of those classified with SSI were manually revised. Patients’ electronic health records were reviewed, including demographic and clinical data, Charlson comorbidity index (CCI), American Society of Anesthesiologists classification of Physical Status (ASA) score, length of hospital stay (LOS), surgical diagnosis, emergency, wound contamination class, surgical procedure duration, and prophylactic antibiotic therapy used. All patients had consented to use their medical records for research purposes, and the study was approved by the Mayo Clinic Institutional Review Board.

A search was conducted using an advanced cohort explorer tool developed by Mayo Clinic using the term “craniotomy” and “surgical site infection.” According to the Centers for Disease Control (CDC) guidelines, we defined surgical site infections as those occurred near or at the incision site or deeper underlying tissue spaces and organs within 30 days of a surgical procedure, or up to 90 days for implanted prosthetics. We excluded cases where infection was suspected prior to the procedure. ASA status classification was defined as a system for assessing the fitness of a patient’s physiological status to help predict operative risk. Wound class was defined as the degree of contamination of a surgical wound at the operation time. Antibiotic prophylaxis was defined as an antibiotic regimen used before contamination by surgical incision has occurred and given with the intention of preventing infection. Antibiotic prophylaxis was started within 1–2 hours prior to incision. Clindamycin was given <1 hour prior to incision. Vancomycin started within 1–2 hours prior to incision. Clindamycin was given <1 hour prior to incision. Antibiotics were stopped 24 hours after the procedure. Microbiologic information that included infection culture results and 16S broad-range ribosomal RNA PCR and sequencing was collected. Types of pre-existing central nervous system (CSF) hardware included metal plates, ventriculoperitoneal shunts, leads, and electrodes.

Statistical analysis

Descriptive information about patients who underwent craniotomy was reported as frequencies and proportions for categorical variables or median (interquartile range [IQR]) and mean (standard deviation [SD]) for continuous variables. Kruskal-Wallis rank-sum test and the Fisher exact test were used whenever appropriate. Statistical tests were 2-tailed, with P < .05 considered statistically significant. To identify factors associated with SSI, we used logistic regression to estimate odds ratios (ORs) and 95% confidence interval (CI). Variables included in the logistic regression model included age, sex, surgery duration, whether the surgery was an emergency surgery, the CCI, and the prophylactic antibacterial regimen. Other variables were not considered for inclusion in the model due to concerns of collinearity with the CCI (BMI, diabetes mellitus, ASA classification) and few numbers (wound classification, endoscopic approach). To fulfill the assumptions of logistic regression, continuous variables (age, CCI, and duration of surgery) were assessed for a linear relationship with the log odds of an SSI. Follow-up in the study period was complete. This model was purely for descriptive purposes. All observations were independent. Statistical analysis was performed using R, version 4.1.024.

Results

Demographics and surgical characteristics of patients who underwent craniotomy are summarized in Table 1. In total, 5,328 adult patients had craniotomy during the study period. Of these, 59 (1.1%) suffered an SSI. There were no statistically significant differences in the demographic characteristics between patients with and without SSI. The median patient age for those with SSI was 51 years (interquartile range [IQR], 36–65.5); the median patient age for those without an SSI was 56 years (IQR, 40–66) (P = .20). Most were males in both groups (57.6% vs 50.9%; P = .30). Compared with the cases without infection, patients with SSI had a higher body mass index (BMI) of 29.2 (IQR 25.7–35.4) versus 27.9 kg/m² (IQR, 24–32.5; P = .07) and CCI score (1 ± 1.9; P = .07); however, the absolute rate of diabetes mellitus in the patients with SSI was lower than those with non-SSI (0% vs 5%; P = .10).

The most common indications for craniotomy in the cases complicated with SSI included glial tumor (22%), meningioma (22%), CSF shunt surgery (11.8%), subdural hematoma (10%), and vascular surgery (10%); whereas for the cases without infection, indications encompassed glial tumor (26%), meningioma (18.8%), and CSF shunt surgery (11%) (P = .40). Hardware implantation cases were uncommon (n = 128, 2.4%), and 2 cases (1.6%) were complicated with SSIs.

Compared to the patients without infection, the frequency of emergency procedures was significantly higher in cases with SSI (13.5% vs 5.8%; P = .02), with a median duration of 2.8 (IQR, 1.6–4.4) versus 2.7 hours (IQR, 1.6–4.3), respectively (P = .70). The endoscopic approach was more common in cases without SSI (14.3% vs 6.7%; P = .10) than those with SSI.

There was no significant difference in the ASA classification between comparison groups, class III being the most frequent (50.8% vs 52.4%; P = .80). On the contrary, patients with SSI had a significantly higher rate of a dirty wound class [n = 3 (5.1%) vs n = 51 (9.9%)] and lower rate of clean-contaminated wound class [n = 2 [3.3%] vs n = 768 (14.5%)] compared to those without infection (P = .002). The mean time from craniotomy to the SSI occurrence was 26 days (SD, 16.4). Hospital LOS was similar in both groups, with a median of 2 days (P = .10).

Antibiotic prophylaxis

Perioperative antibiotic selection is summarized in Table 2. Most patients received ABP before craniotomy (58 [98.3%] in SSI group vs 521 [99.6%] in non-SSI group; P = .10). The most common antibiotic used was cefazolin (47 [81%] vs 2659 [51.4%]), followed by vancomycin (6 [10.3%] vs 578 [11.1%]), respectively. The combination of vancomycin and cefazolin as dual therapy was most
common in the group of patients without infection (n = 1,761, 34.1%) than those with SSI (n = 4, 6.8%) (P < .001).

Risk for surgical site infections

Logistic regression predicting subsequent SSI is summarized in Table 3. Six independent risk factors were included: age, male sex, CCI, surgical duration, emergency procedure, and ABP regimen. An emergency procedure was the strongest risk factor associated with postoperative infection in the univariate (unadjusted OR, 2.52; 95% CI, 1.10 to 5.06; P = .031); however, the significance disappeared in multivariate model (unadjusted OR, 1.97; 95% CI, 0.73–4.53; P = .14). Additionally, no other risk factors increased the odds of SSIs in multivariate analysis. The use of vancomycin and cefazolin as a dual therapy was associated with decreased odds for SSI (adjusted OR, 0.17; 95% CI, 0.005–0.42; P ≤ .001). Although males, prolonged surgery, and those with higher CCI score made up most SSI cases, those were not statistically significant risk factors.

Microbiology

Among the patients with SSI, 50 (84.7%) had a positive intraoperative culture result. The most common pathogens identified were

Table 1. Demographics and Surgical Characteristics of Patients Undergoing Craniotomy

Characteristic	No Surgical Site Infection (n = 5269)	Surgical Site Infection (n = 59)	P Value
Age, median y (IQR)	56 (40–66)	51 (36–65.5)	.20a
Male, no. (%)	2,685 (50.9)	34 (57.6)	.30b
BMI median kg/m² (IQR)	27.9 (24.1–32.5)	29.2 (25.7–35.4)	.07c
CCI, mean (SD)	0.7 (1.9)	1 (1.8)	.07d
Diabetes mellitus, no. (%)	267 (5.1)	0 (0)	.10e
ASA classification, no. (%)			.8
I	66 (1.2)	0 (0)	
II	2,149 (40.8)	25 (42.4)	
III	2,759 (52.4)	30 (50.8)	
IV	236 (4.5)	4 (6.7)	
V	59 (1.1)	0 (0)	
Wound classification, no. (%)			.002f
Clean	4,438 (84.2)	54 (91.5)	
Clean-contaminated	768 (14.5)	2 (3.3)	
Contaminated	12 (0.2)	0 (0)	
Dirty	51 (0.9)	3 (5.1)	
Surgical diagnosis, no. (%)			.40g
CSF shunt surgery	591 (11.2)	7 (11.8)	
Functional surgery	543 (10.3)	4 (6.7)	
Glioblastoma	1,376 (26.1)	13 (22)	
Head surgery	450 (8.5)	5 (8.4)	
Meningioma	991 (18.8)	13 (22)	
Metastasis	276 (5.2)	5 (8.4)	
Neurinoma	271 (5.1)	0 (0)	
Subdural hematoma	331 (6.2)	6 (10.1)	
Vascular surgery	440 (8.3)	6 (10.1)	
Hardware implantation	126 (2.4)	2 (3.4)	
Emergency procedure, no. (%)	309 (5.8)	8 (13.5)	.02h
Endoscopic approach, no. (%)	753 (14.3)	4 (6.7)	.10i
Duration of surgery, median h (IQR)	2.7 (1.6–4.3)	2.8 (1.6–4.4)	.70j
Hospital LOS, median d (IQR)	2 (2–4)	2 (2–3)	.10k

Note. ASA, American Society of Anesthesiologists; BMI, body mass index; CCI, Charlson comorbidity index; CNS, central nervous system; CSF, cerebrospinal fluid; IQR, interquartile range; LOS, length of stay; SD, standard deviation.

aKruskal-Wallis rank-sum test.
bFisher exact test for count data.
cFisher exact test for count data with simulated P value.

dFisher exact test for count data with simulated P value.

Staphylococcus aureus (n = 14, 28%), including 11 methicillin-susceptible Staphylococcus aureus (MSSA) isolates (22%), and 3 methicillin-resistant Staphylococcus aureus (MRSA) isolates (6%), followed by 8 coagulase-negative staphylococci isolates (CoNS, 16%), 8 Cutibacterium acnes isolates (16%), 5 Klebsiella spp (10%), and 4 Pseudomonas aeruginosa (8%). Also, 19 cultured specimens (38%) had >2 bacterium isolated: CoNS (42%), Cutibacterium acnes (21%), Staphylococcus aureus (11%), and Klebsiella spp (11%). In total, 19 intraoperative pathogens identified (38%), including CoNS, Klebsiella spp, and Cutibacterium acnes, were identified exclusively using PCR and sequencing.

Among the 2 patients with hardware implantation, MSSA was identified in both cases. Of 59 patients, 4 (7%) had a secondary bloodstream infection.

Table 2. Perioperative Prophylactic Antibiotic Selection in Patients With Craniotomy

Antibiotic Treatment	No Surgical Site Infection (n = 5,269) No. (%)	Surgical Site Infection (n = 59) No. (%)	P Value
Perioperative antibiotic prophylaxis	5,251 (99.6)	58 (98.3)	.10*
Perioperative antibiotic regimen	<.001		
Cefazolin	2,659 (51.4)	47 (81)	
Vancomycin	578 (11.1)	6 (10.3)	
Clindamycin	148 (2.8)	1 (1.7)	
Vancomycin + cefazolin	1,761 (34.1)	4 (6.8)	
Vancomycin + cefepime	23 (0.4)	0 (0)	

Note. SD, standard deviation.
*a*Fisher exact test for count data.
*b*Fisher exact test for count data with simulated P value.

Among the surgical diagnosis in our study, meningioma, subdural hematoma, and brain metastasis surgery appeared to be more frequently at risk than other reasons for craniotomy, which is like previous studies. However, 1 case-control study indicated a negative correlation with SSIs. The immunosuppression in patients with brain metastasis and the closure difficulties in subdural hematoma and meningioma surgeries may explain why nontraumatic surgeries lead to SSI, yet the exact mechanism is still not fully understood. Conversely, wound classification and emergency surgery are predisposing factors for SSI. However, all patients with emergency surgery received ABP in our study, and it was still associated with an increased risk for SSIs in the univariate analysis (OR, 2.52; 95% CI, 1.10–5.06). Notably, the use of prespecified criteria for diagnosing wound infection should lessen the bias resulting from the surgeon’s use of personal criteria.

Surgical characteristics

Among the surgical diagnosis in our study, meningioma, subdural hematoma, and brain metastasis surgery appeared to be more frequently at risk than other reasons for craniotomy, which is like previous studies. However, 1 case-control study indicated a negative correlation with SSIs. The immunosuppression in patients with brain metastasis and the closure difficulties in subdural hematoma and meningioma surgeries may explain why nontraumatic surgeries lead to SSI, yet the exact mechanism is still not fully understood. Conversely, wound classification and emergency surgery are predisposing factors for SSI. However, all patients with emergency surgery received ABP in our study, and it was still associated with an increased risk for SSIs in the univariate analysis (OR, 2.52; 95% CI, 1.10–5.06). Notably, the use of prespecified criteria for diagnosing wound infection should lessen the bias resulting from the surgeon’s use of personal criteria.

Duration of surgery is a major factor in the National Nosocomial Infections Surveillance system report, reflecting either surgeon experience, surgical difficulties, or intraoperative complications. In our SSI cohort, the duration of surgery was somewhat longer than that without infection, but it was not a significant independent risk factor (OR, 1.91; 95% CI, 0.90–1.21). Our institution is a referral center, overall receiving more complex surgical cases, which may explain this observation.

Literature describing the infection rate following an endoscopic approach in neurosurgery is limited, especially restricted to SSIs. Kassam et al reported a rate of infectious complications of 1.9% in 800 patients undergoing endoscopic endonasal skull-base surgery. In our cohort, despite the small number of individuals having an endoscopic approach (14.2%), only 4 patients (0.53%) had an SSI, suggesting a virtual benefit with these surgical techniques. However, this finding was not significant and might be confounded by different patient characteristics and surgical circumstances.
Microbiologic etiology of surgical site infections

Most reports agree that the most common organisms causing SSIs are MRSA, CoNS, *Pseudomonas aeruginosa*, and *Enterococcus* spp. 32,33 However, Wang et al.34 retrospectively analyzed >900 head and facial plastic surgery SSI cases.34 The most causative organisms in their study were *Pseudomonas aeruginosa* and *Klebsiella pneumoniae*, suggesting pathogen-specific prevalence based on the type of procedure. In our cohort, the most common offending organism was *Staphylococcus aureus*, followed by CoNS, and *Citrobacter* *acnes*, which is concordant with previous reports.35,36 As seen in our study, commensal skin flora microorganisms account for many responsible bacteria in infected patients. An interesting finding in this study was that anaerobes, *Acinetobacter* spp, or *Candida* spp were not causes of SSI, differing from the findings of previous reports.6,47,38

Antibiotic prophylactic therapy to prevent surgical site infections

To target and effectively prevent the infection caused by the most common microorganisms, the development of appropriate strategies, including ABP and infection prevention practices, are essential to improve the morbidity and mortality associated with SSI.11 The causative pathogens associated with SSIs in US hospitals have changed over the past 2 decades, including an increased proportion of MRSA39; hence, appropriate ABP effectiveness should be evaluated periodically based on the local prevalence. The American Society of Health-System Pharmacists therapeutic guidelines recommends using cefazolin, vancomycin, or clindamycin in neurosurgery.40 For procedures in which pathogens other than staphylococci and streptococci are likely, an additional agent with activity against those pathogens could be considered; however, the strength of recommendation varies from evidence from large, well-conducted, randomized, controlled clinical trials or a meta-analysis to expert opinion or data extrapolated from evidence for general principles and other procedures; leaving the ultimate antibiotic selection to the practitioner’s idiosyncrasy.

In our study, cefazolin was the most common antibiotic of choice for prophylaxis (52%), followed by the combination of cefazolin and vancomycin (34%). The combination prophylaxis was associated with decreased risk of SSIs (OR, 0.17; 95% CI, 0.005–0.42). *Staphylococcus aureus* and CoNS are 77% and 40% susceptible to oxacillin in our institution, respectively, potentially accounting for the decreased infection rate when vancomycin is added. Reported risk for devastating complications associated with infections in neurosurgery can be up to 17%,41 which may explain the practice variation in ABP selection. As this study was observational, we cannot draw any conclusion regarding the comparative efficacy of these regimens. Selection biases may have led to the broader antibiotic use. Prospective study protocols are indicated to better differentiate where alternative prophylaxis regimens may be appropriate.

This study had several limitations. The study’s retrospective nature with a case determination based on a claim data set is a potential limitation that over- or underestimate the incidence of SSI. Individual patient management was based on the discretion of attending physicians. Relatively few events limited the number of risk factors that could be statistically assessed. Because PCR is a highly sensitive technique, any sample contamination can produce misleading results. We did not examine individual bacterial isolates from the SSIs to assess the relationship between antimicrobial susceptibility and individual prophylactic regimen and antimicrobial side effects. Moreover, as a tertiary-care institution, our center has neurosurgery services readily available that may expedite management and could influence patient outcomes.

In conclusion, in our retrospective review, the combination of prophylactic cefazolin and vancomycin is associated with decreased risk for SSI. National guidelines and a prospective study evaluating the benefits and outcomes of monotherapy versus dual antimicrobial prophylaxis to prevent SSI in craniotomy is warranted.

Acknowledgments. None.

Financial support. No financial support was provided relevant to this article.

Conflicts of interest. J.C.O. has received consulting fees from Bates College and Elsevier Inc. not related to the present work. M.R.S. has received honoraria and consulting fees from Medtronic, Philips, and Aziyo Biologics, as well as a research grant from Medtronic not related to the present work.
References

1. Marion DW. Complications of head injury and their therapy. Neurosurg Clin N Am 1991;2:411–424.
2. Corsini Campioli C, Castillo Almeida NE, O’Horo JC, et al. Bacterial brain abscess: an outline for diagnosis and management. Am J Med 2021;134:1210–1217.
3. McClelland S, III, Hall WA. Postoperative central nervous system infection: incidence and associated factors in 2,111 neurosurgical procedures. Clin Infect Dis 2007;45:55–59.
4. Korinek AM, Golmard JL, Elcheick A, et al. Risk factors for neurosurgical site infections after craniotomy: a prospective multicenter study of 2,944 patients. The French Study Group of Neurosurgical Infections, the SEHP, and the C-CLIN Paris-Nord. Service Epidemiologie Hygiene et Prevention. Neurosurgery 1997;41:1073–1081.
5. National and state healthcare-associated infections progress report, 2019. Centers for Disease Control and Prevention website. https://www.cdc.gov/hai/data/portal/progress-report.html#Tables. Published 2019. Accessed January 4, 2022.
6. Korinek AM, Golmard JL, Elcheick A, et al. Risk factors for neurosurgical site infections after craniotomy: a critical reappraisal of antibiotic prophylaxis on 4,578 patients. Br J Neurosurg 2005;19:155–162.
7. Surgical site infection (SSI) event, 2017. Centers for Disease Control and Prevention website. http://www.cdc.gov/hsn/pdf/pscmanual/9psccsiscurrent.pdf. Published 2017. Accessed January 4, 2022.
8. Chen Y, Zhang L, Qin T, Wang Z, Li Y, Gu B. Evaluation of neurosurgical implant infection rates and associated pathogens: evidence from 1,118 post-operative infections. Neurosurg Focus 2019;47:E6.
9. Kaiser AB. Antimicrobial prophylaxis in surgery. N Engl J Med 1986;315:1129–1138.
10. Malis LI. Prevention of neurosurgical infection by intraoperative antibiotics. Neurosurgery 1979;5:339–343.
11. Berrios-Torres SI, Umscheid CA, Bratzler DW, et al. Centers for Disease Control and Prevention guideline for the prevention of surgical site infection, 2017. JAMA Surg 2017;152:784–791.
12. Barker FG, 2nd. Efficacy of prophylactic antibiotics for craniotomy: a meta-analysis. Neurosurgery 1994;35:484–491.
13. Fang C, Zhu T, Zhang P, Xia L, Sun C. Risk factors of neurosurgical site infection after craniotomy: a systematic review and meta-analysis. Am J Infect Control 2017;45:e123–e134.
14. Blomstedt GC, Kyttä J. Results of a randomized trial of vancomycin prophylaxis in neurosurgery. J Neurosurg 1989;68:216–220.
15. Bullock R, Vandellen JR, Ketelbe R, Reinaich SG. A double-blind placebo-controlled trial of perioperative prophylactic antibiotics for elective neurosurgery. J Neurosurg 1988;69:687–691.
16. Dindjian M, Lepresle E, Homs JB. Antibiotic-prophylaxis during prolonged clean neurosurgery—results of a randomized double-blind-study using oxacillin. J Neurosurg 1990;73:383–386.
17. Geraghty J, Feely M. Antibiotic-prophylaxis in neurosurgery—a randomized controlled trial. J Neurosurg 1984;60:724–726.
18. Quartery GRC, Polyzoids K. Intraoperative antibiotic-prophylaxis in neurosurgery—a clinical study. Neurosurgery 1981;8:669–671.
19. Savitz MH, Malis LI. Prophylactic clindamycin for neurosurgical patients. N Y State J Med 1976;64:64–67.
20. Vanek B, Dijkmans BAC, Vandulken H, Vanfurth R. Antibiotic-prophylaxis in craniotomy—a prospective double-blind placebo-controlled study. Scand J Infect Dis 1988;20:633–639.
21. Young RF, Lawner PM. Perioperative antibiotic-prophylaxis for prevention of postoperative neurosurgical infections—a randomized clinical-trial. J Neurosurg 1987;66:701–705.
22. 2022 NHSN ICD-10 operative procedure code mappings. Centers for Disease Control and Prevention website. https://www.cdc.gov/ncipcd/ncipc/npopc-icd10-icd10-icd10-nhsn-opc. Updated December 2021. Accessed January 5, 2021.
23. Doyle DJ, Goyal A, Bansal P, Garmon EH. American Society of Anesthesiologists Classification. 2021 Oct 9. In: StatPearls. Treasure Island, FL: StatPearls Publishing; 2021.
24. Smith JA. Head, neck, and orofacial infections. In: Perioperative Infection Control. New York: Elsevier Science; 2016.
25. R Coe Team. A language and environment for statistical computing. R Foundation for Statistical Computing website. https://www.R-project.org/. Published 2017. January 4, 2022.
26. Casqueiro J, Casqueiro J, Alves C. Infections in patients with diabetes mellitus: a review of pathogenesis. Indian J Endocrinol Metab 2012;16 suppl 1: S27–S36.
27. Falagas ME, Kompoti M. Obesity and infection. Lancet Infect Dis 2006;6:438–446.
28. Tenney JH, Vlahov D, Salcman M, Ducker TB. Wide variation in risk of wound infection following clean neurosurgery. Implications for perioperative antibiotic prophylaxis. J Neurosurg 1985;62:243–247.
29. Chiang HY, Kamath AS, Pottinger JM, et al. Risk factors and outcomes associated with surgical site infections after craniotomy or craniectomy. J Neurosurg 2014;120:509–521.
30. Cardo D, Horan T, Andrus M, et al. National Nosocomial Infections Surveillance (NNIS) System Report, data summary from January 1992 through June 2004, issued October 2004. Am J Infect Control 2004;32:470–485.
31. Kassam AB, Prevedello DM, Carrau RL, et al. Endoscopic endonasal skull base surgery: analysis of complications in the authors’ initial 800 patients. J Neurosurg 2011;114:1544–1568.
32. Owens CD, Stoessel K. Surgical site infections: epidemiology, microbiology and prevention. J Hosp Infect 2008;70 suppl 2:3–10.
33. Mundhada AS, Tenpe S. A study of organisms causing surgical site infections and their antimicrobial susceptibility in a tertiary-care government hospital. Indian J Pathol Microbiol 2015;58:195–200.
34. Wang G, Zhang S. The risk factors, etiology, and drug resistance of infection after plastic surgery, and corresponding measures. Minerva Chir 2017;72:499–504.
35. Balch RE. Wound infections complicating neurosurgical procedures. J Neurosurg 1967;26:41–45.
36. Brown EM. Antimicrobial prophylaxis in neurosurgery. J Antimicrob Chemother 1993;31 suppl B:49–63.
37. Radwan TAM, Fahmy RS, Hanna BN. Surveillance of the incidence and causative pathogens of meningitis and surgical site infection after craniotomies for brain tumors in neurosurgical ICU and ward: a cohort study. Ain Shams J Anesthes 2018;10.
38. Abode-Iyamah KO, Chiang HY, Winslow N, et al. Risk factors for surgical site infections and assessment of vancomycin powder as a preventive measure in patients undergoing first-time cranioplasty. J Neurosurg 2018;128:1241–1249.
39. Weigelt JA, Lipsky BA, Tabak YP, Derby KG, Kim M, Gupta V. Surgical site infections: Causative pathogens and associated outcomes. Am J Infect Control 2010;38:112–120.
40. Bratzler DW, Dellinger EP, Olsen KM, et al. Clinical practice guidelines for antimicrobial prophylaxis in surgery. Am J Health Syst Pharm 2013;70:195–283.
41. Patir R, Mahapatra AK, Banerji AK. Risk factors in postoperative neurosurgical infection. A prospective study. Acta Neurochir (Wien) 1992;119:80–84.