Abstract

Background: Primary spinal primitive neuroectodermal tumors (PNET) and/or spinal extraskeletal Ewing’s sarcoma family tumors (ESET) are rare lesions appearing in the spinal extradural space. One hundred forty-one primary spinal PNETs, including 29 intramedullary lesions, have been reported in the literature. Encountering a case of primary epidural EES/peripheral PNET (pPNET) in sacral level, which is the fifth one occurring at this level in the literature, we have tried to conduct a meta-analysis of the reported cases.

Case Description: A 44-year-old lady with epidural EES/pPNET is reported here. She was once operated for L5/S1 herniated disc, which did not ameliorate her symptoms. The clinical, imaging, surgical, and histopathologic characteristics of our case are presented and wide search of the literature is also done. All the reports were level 3 or less evidences and most of the series had missing parts. 106 cases of primary intraspinal (extradural/extramedullary-intradural) EES/pPNET and 29 cases of primary intramedullary PNET (CNS-PNET) have been reported in the literature. The most common clinical presentation in both entities was muscle weakness proportionate to the tumor location. Distant metastasis occurred in 38 of 99 (38%) cases of primary intraspinal EES/pPNET, while the rate of metastasis was 48% in patients with PNETs occurring in the intramedullary region (P > 0.05).

One-year survival rate of the patients who underwent chemo-radiation after total or subtotal resection was better than those who did not receive chemotherapy or radiotherapy, or did not have total or subtotal resection. However, this difference was not repeated in 2-year survival rate in any of the tumor groups.

Conclusion: It seems that total or subtotal removal of the tumor and adjuvant chemo- and radiation therapy can improve the outcome in these patients.

Key Words: Ewing’s sarcoma, primitive neuroectodermal tumor, spine
INTRODUCTION

Primary spinal primitive neuroectodermal tumors (PNET) and/or spinal extraskeletal Ewing’s sarcoma family tumors (ESET) are rare lesions appearing in the spinal extradural space.\(^2,81,116\) Undifferentiated round cell tumors include an inhomogeneous group of malignant tumors which may arise in any organ because of their embryonic origin. A subgroup of these tumors named “PNET” may affect the CNS primarily\(^2,94\). The origin of PNET in CNS seems to be the matrix or germinal cells of the embryonic neural tube. The well-known tumor of this subgroup is medulloblastoma which is a primary cerebellar tumor and the most common primary posterior fossa tumor in children, comprising 20% of all the intracranial tumors in this age group.\(^9\) The classification of tumors of CNS published by World Health Organization (WHO) in 1993 designated other cerebral medulloblastoma-like tumors as supratentorial PNET.\(^13,65,64\) In the more recent classification by WHO, these tumors were subdivided under medulloblastoma as CNS-PNETs.\(^65,76\) Even though spine seeding secondary to intracranial medulloblastoma is common, primary spinal intramedullary CNS-PNET occurs rarely\(^2,81,116\) and only 29 cases have been reported in 22 series so far [Table 1]. Among the undifferentiated round cell tumors such as neuroblastoma, non-Hodgkin’s lymphoma, and rhabdomyosarcoma, it seems that PNETs have similarities to Ewing’s sarcoma (ES).\(^21,34\) ES is

Author	Year	Age/Sex	Location of Tumor	Treatment	Follow-up (month)	Out come	CD99	CD99 t (11:22)
Kosnic et al.	1978	<10y/NA	Conus Medullaris	STR/CT/RT	<12	Dead	NA	NA
Jackche et al.	1988	15y/F	Conus Medullaris	STR/CT/RT	18	Dead	NA	NA
Freyer et al.	1989	7y/M	T4 – S3	Biopsy/CT/RT	20	Dead	NA	NA
Kwon et al.	1996	3m/F	T7 – L5	Biopsy/CT	15 Days	Dead	NA	NA
Deme et al.	1997	22y/F	Conus Medullaris	STR/CT/RT	15	Alive	NA	NA
Mottle et al.	1997	<17y/F	C3 – L2	Biopsy/CT/RT	NA	NA	NA	NA
Miller et al.	1997	NA	NA	NA	NA	NA	NA	NA
Miller et al.	1997	NA	NA	NA	NA	NA	NA	NA
Meltzer et al.	1998	25y/M	C3 – Conus Medullaris	STR/CT/RT	60	Dead	NA	NA
Papdatos et al.	1998	23y/F	T10 – T11	STR/CT/RT	12	Alive	NA	NA
Weil et al.	2001	21y/M	T10 – T11	STR/CT/RT	30	Alive	+	+
Mawrin et al.	2002	69y/M	C7 – T3	STR/RT	3	Dead	NA	NA
Mawrin et al.	2002	38y/M	NA	STR/CT/RT	18	Dead	NA	NA
Albrecht et al.	2003	29y/F	T2 & T10 – T11	Biopsy/CT/RT	17	Dead	_	_
Chen et al.	2005	19y/F	Cervico-thoracic	Biopsy/RT	9	Dead	_	NA
Kampman et al.	2006	3y/M	C2 – C6	STR	1	Dead	_	_
Jain et al.	2006	54y/F	C2 – C5	STR/RT	NA	NA	_	_
Detommasi et al.	2006	38y/M	T1 – T3	Biopsy/CT	18	Dead	_	_
Kumar et al.	2007	9y/F	T9 – L1	TTR/CT/RT	18	Alive	NA	NA
Kumar et al.	2007	18y/M	Cervico-thoracic	Biopsy/CT/RT	6	Alive	_	_
Han et al.	2008	17y/M	Conus Medullaris	STR/CT/RT	24	Dead	NA	NA
Han et al.	2008	40y/F	Conus Medullaris	TTR/CT/RT	8	Alive	NA	NA
Oto-Rodriguez et al.	2009	1.5y/M	T3 – T10	STR/CT	6	Alive	_	_
Benesh et al.	2010	1.5y/F	Medulla Oblongata – T3	TTR/CT	6	Dead	_	_
Benesh et al.	2010	14.5y/F	C2 – C1	STR/CT/RT	44	Alive	_	_
Benesh et al.	2010	10m/F	T10 – L2	Biopsy/CT	6	Dead	_	_
Benesh et al.	2010	2y/M	T7 – T10	Biopsy/CT/RT	40	Alive	_	_
Ellis et al.	2011	27y/F	C5 – C6	STR/CT	28	Alive	_	_
Gollard et al.	2011	27y/F	T5 – T11	Biopsy/CT/RT	132	Alive	_	_

CT: Chemo therapy, F: Female, M: Male, NA: Not Available, RT: Radiotherapy, STR: Sub-total tumor resection, TTR: T otal tumor resection, y: year
one of the childhood tumors mostly affecting skeletal tissues.[63,108] Tefft et al. in 1969 introduced the first case of ES without skeletal involvement,[108] and since then, several cases of extraskeletal ES (EES) have been reported. Osseous ES, EES, Askin’s tumor, and peripheral PNET (pPNET) are nowadays generally known as Ewing’s sarcoma family tumors (ESFTs).[67,84,109] Occurrence of CNS-PNET (as we call it in our report) or primary intraspinal EES/pPNET (extradural/intradural) in the spine is unusual, and we intend to report our case of EES/pPNET which is the \textit{fifth one occurring in the sacral level}, describe the clinical presentation, and make a meta-analysis of the reports in the literature.

CASE REPORT

A 44-year-old woman was referred to an orthopedic clinic in a city hospital, complaining of low back pain (LBP) of several years duration. Her severe sciatalgia had exacerbated since 6 months before admission. The diagnosis of L5/S1 disc herniation compressing S1 root on the left side was made and she underwent operation. It was a no-contrast standard lumbosacral magnetic resonance imaging (MRI). At operation, L5 and partial S1 laminectomy followed by bilateral S1 foraminotomy, and bilateral L5/S1 discectomy was performed. Two weeks after the operation, the patient’s symptoms exacerbated and paresthesia appeared in the left buttoc. Paresthesia of the perineal region and urinary incontinency were also added to her previous complaints. On admission to our department, the muscle forces of the lower limb were intact both proximally and distally, but pin prick sensation was disturbed in S1, S2, and S3 dermatomes, and Achilles tendon reflex was absent in the left side. However, anal sphincter tone was intact. Re-evaluation of the previous preoperative lumbosacral MRI revealed that in addition to the L5/S1 bulged disc, there was an extradural dorsally located mass at S1, S2, and S3 levels. The new contrast-enhanced MRI revealed a 3 × 2 × 2 cm extradurally located tumor, extending from lower edge of S1 down to S2/S3 interspace. The tumor was hypointense in both T1 and T2 images and enhanced homogenously after contrast material injection. Scalloping of the posterior aspect of the S2 vertebra was also detectable [Figure 1a–d]. In the second operation, the previous laminectomy was extended from lower edge of L5 down to S3. A reddish gray tumor located in the extradural space, extending from S1 root axilla down to the S3 root, could be excised totally. There was neither tumor invasion to the dura or intradural space, nor any bone involvement detectable under microscopic observation. Histopathologic examination revealed a highly cellular neoplasm composed of diffuse sheets of tumor cells having monomorphic, round to oval, finely vesicular nuclei and occasional nucleoli with indistinct cytoplasmic border. Delicate fibrovascular septae surrounded the tumor mass along with intra tumoral extensions. In some foci, tumor cells gathered in groups around small vessels (pseudo-rosette appearance). There were nerve bundle entrapments within the tumor nests. Several groups of mitotic figures were noted, but no necrosis was detected [Figure 2a and b].

Immunohistochemical (IHC) staining showed that the tumor cells stained positively for neuron-specific enolase, synaptophysin, and chromogranin, suggestive of neuronal differentiation of the tumor. Tumor cells also expressed CD99, consistent with the diagnosis of ES/PNET [Figure 2c]. Ki-67 proliferative index showed about 10–15% proliferative activity. Other markers such as leukocyte common antigen (LCA), epithelial membrane antigen (EMA), cytokeratin (CK), desmin, smooth muscle actin (SMA), and myogenin were negative. Fluorescence \textit{in situ} hybridization and chromosomal study were not performed.

The postoperative course was uneventful and all her symptoms including radicular pain and sphincter problems improved rapidly. The patient was referred for radiotherapy as the adjuvant therapy. In the last re-evaluation of the patient after 18 months, there was no sign of tumor recurrence in MRI.
Method

Article selection

After our wide search using Tehran University of Medical Sciences electronic resources (www.tums.ac.ir) and motor searches of Pubmed, Ovid, and EBSCO using the key words, spinal primitive neuroectodermal tumor and spinal extraskeletal Ewing sarcoma, 106 abstracts were found in the form of case series and case reports, which reported 141 cases of primary intraspinal EES/pPNET. Full texts of all the articles were collected from different electronic and paper archives including English, French, Spanish, and Italian articles. The earliest articles were published by Smith et al. [106] and Tefft et al. [108] in 1969 and the latest by Gollard et al. [37] in Feb 2011. Patients’ information including age, sex, clinical signs and symptoms, duration of symptoms, family history, location of the tumor, metastasis, recurrences, therapeutic methods, duration of follow-up, and eventual outcome were all extracted from resources. As the articles were reported from various clinical departments (e.g. Neurosurgery, Orthopedics, Radiology, Oncology, Pathology, Pediatrics), different aspects of the disease were reviewed in each, and this led to neglecting some other aspects resulting in missed values regarding some subjects. In some of them with missing data about the mode of therapy, final outcome, or follow-up of the patients, the authors were contacted via e-mail directly for the required information. In spite of sending e-mail to 20 authors, only one reply was received [89].

Statistical analysis

After collecting and classifying the information, the data were analyzed utilizing SPSS version 13.0.

For analysis of the numeric variables such as age, Kolmogorov–Smirnov test was used to evaluate normal distribution of the data upon which we could decide to utilize parametric versus non-parametric tests to compare the data. Chi-square test (χ^2) was used when comparing two nominal or ordinal variables such as 1-year survival in patients receiving different therapies. Independent sample t-test was used to evaluate numerical variable among two populations (e.g. age in different subgroups). P-values less than 0.05 were considered statistically significant.

RESULTS OF THE META-ANALYSIS

Considering the rarity of primary intraspinal EES/pPNET as a pathologic diagnosis and scarce information on this entity in the references, we decided to review the literature on the issue. By now, 106 cases [1-5,7-9,12-14,16,17,19,23,25-32,36,38,41-50,52-54,56-62,66-68,70,71,73,75-79,81,84,86-90,92,93,95,97-113,115,116] of primary intraspinal EES/pPNET (extradural/intradural extramedullary lesions) and 29 cases [3,11,18,20,22,28,35,37,40,51,52,55,69,71,72,80,82,83,85,91,94,114] of primary intramedullary PNET (CNS-PNET) have been reported in the literature [Tables 1 and 2]. In some studies, neither intra- nor extramedullary location of the tumor was mentioned, so they were not included in any of the groups in our review (i.e. 135 cases out of 141). [10,15,69,96]

The average age of occurrence for primary intraspinal EES/pPNET was 22.9 ± 13.9 and for CNS-PNET was 19.5 ± 12.8, and this difference was not statistically significant (χ^2, $P > 0.05$). The youngest and the eldest patients with primary intraspinal EES/pPNET were 40 days and 70 years old, respectively, whereas these age extremes for CNS-PNET patients were 3 months and 69 years. The proportion of primary intraspinal EES/pPNET and CNS-PNET in different age groups is summarized in Table 3. Our case was 41 years old and present in the elder side of the reported cases.

Among 107 patients with primary intraspinal EES/pPNET, 71 (66%) were males, whereas of 26 patients with CNS-PNET, 12 (46%) were males and the gender of three patients was unidentified. Duration of symptoms before diagnosis was 4.52 ± 7.01 months and 2.80 ± 3.40 months, respectively, in patients with primary intraspinal EES/pPNET and CNS-PNET. The most common clinical
Table 2: Summary of the cases of primary spinal primitive neuroectodermal tumors-Ewing’s sarcoma family tumors reported in the literature

Author	Reference number	Year	Age/Sex	Location of Tumor	Treatment	Follow-up (month)	Outcome	CD99 t (11:22)
Smith et al.	106	1969	24 y/M	Cauda Equina	STR/RT	10	Dead	NA
Tefft et al.	108	1969	6 y/F	L4/ Extradural	STR/RT/CT	48	Dead	NA
Angervali et al.	7	1975	17 y/M	S1-S2/ Extradural	TTR	1	Dead	NA
Angervali et al.	7	1975	20 y/M	T2-T5/ Extradural	STR/RT/CT	12	Dead	NA
Angervali et al.	7	1975	18 y/F	L5/ Extradural	STR/RT/CT	6	Dead	NA
Scheithauer et al.	100	1978	18 y/M	L1/ Extradural	TTR/RT/CT	16	Alive	NA
Scheithauer et al.	100	1978	27 y/F	T4-T6/ Extradural	STR/RT/CT	132	Alive	NA
Mahoney et al.	78	1978	23 y/M	S1/ Extradural	Biopsy/RT/CT	12	Dead	NA
Fink et al.	32	1979	19 y/M	L2-L3/ Extradural	STR/RT/CT	12	Alive	NA
Simonati et al.	105	1981	13 y/M	L3/ Extradural	TTR/RT/CT	15	Alive	NA
N’Golet et al.	88	1982	29 y/M	T1-T3/ Extradural	TTR/RT/CT	6	Alive	NA
N’Golet et al.	88	1982	47 y/F	L4/ Extradural	TTR/RT/CT	4	Dead	NA
Spaziano et al.	107	1983	10 y/M	L4-L5/ Extradural	STR/RT/CT	15	Dead	NA
Demeocq et al.	23	1983	16 y/F	L3-L4/ Extradural	STR/CT	NA	NA	NA
Kepes et al.	58	1985	24 y/M	Cauda Equina	TTR/RT/CT	18	Dead	NA
Kepes et al.	58	1985	56 y/M	Cauda Equina	STR/RT	36	Alive	NA
Kepes et al.	58	1985	39 y/M	Cauda Equina	STR/RT	42	Dead	NA
Ruelle et al.	98	1986	17 y/M	L3-L4/ Extradural	STR/RT/CT	9	Dead	NA
Sharma et al.	102	1986	18 y/M	T10/ Extradural	STR/RT/CT	42	Dead	NA
Machin Valtuena et al.	77	1987	4 y/M	L1/ Extradural	TTR	5	Dead	NA
Liu et al.	73	1987	26 y/F	L5-S1/ Extradural	STR/RT	6	Alive	NA
Sevich et al.	101	1987	26 y/M	C2-C3/Intradural-Extradural	TTR/RT	36	Dead	NA
Jaksche et al.	52	1988	26 y/M	T8-L2/ Intradural-Extradural	STR/RT/CT	36	Dead	NA
Benmeir et al.	12	1991	16 y/F	T8-T10/ Extradural	TTR/RT/CT	6	Alive	NA
Kaspers et al.	56	1991	7 y/M	T12-L1/ Extradural	STR/CT	40	Alive	NA
Ogasawara et al.	90	1992	16 y/F	Cauda Equina	STR/RT/CT	29	Alive	NA
Kinsella et al.	62	1993	14 y/F	NA	STR/RT/CT	48	Alive	NA
Mc Dermott et al.	81	1994	47 y/M	Cauda Equina	Biopsy/RT/CT	16	Dead	NA
Wasserberg et al.	112	1994	41 y/M	T1-T7/ Intradural-Extradural	TTR	36	Alive	NA
Allam et al.	5	1994	15 y/F	T12-L2/ Extradural	Biopsy/NA	NA	NA	NA
Christie et al.	19	1997	36 y/F	Lumbar/ Extradural	STR/RT	96	Dead	NA
Hisoaka et al.	44	1997	14 y/M	Cauda Equina	STR	3	Alive +	+
Koot et al.	68	1998	2 y/F	C1-C6/ Intradural-Extradural	STR	3 Days	Dead	NA
Akai et al.	1	1998	4 y/M	T8-T9/ Extradural	TTR/RT/CT	76	Alive	NA
Dorfmuller et al.	26	1999	17 y/M	L3-L4/ Extradural	TTR/RT/CT	23	Alive	+
Isotalo et al.	48	2000	52 y/M	Cauda Equina	STR/RT	12	Alive	+
Kennedy et al.	57	2000	24 y/M	C1-C5/ Extradural	STR/RT/CT	13	Alive	NA
Izycha-swieszewka et al.	50	2001	13 y/F	C7-T11/ Extradural	Biopsy/RT/CT	31	Alive	+
Shin et al.	103	2001	38 y/M	C5-C7/ Extradural	STR/CT	17	Alive	+
Shin et al.	103	2001	22 y/F	C7-T1/ Extradural	STR/CT	48	Alive	+
Mukhopadhyay et al.	86	2001	29 y/F	C3-C5/ Extradural	STR/RT/CT	30	Alive	+
Mukhopadhyay et al.	86	2001	18 y/M	T8/ Extradural	STR/RT/CT	18	Alive	+
Mukhopadhyay et al.	86	2001	22 y/M	L5-S1/ Extradural	Biopsy/RT/CT	15	Alive	+
Mukhopadhyay et al.	86	2001	31 y/M	L3-L4/ Extradural	STR/RT/CT	32	Alive	+
Mukhopadhyay et al.	86	2001	13 y/M	C3-C5/ Extradural	STR/RT/CT	11	Alive	+

Contd...
Author	Reference number	Year	Age/Sex	Location of Tumor	Treatment	Follow-up (month)	Outcome	CD99	t (11:22)
Virani et al.	111	2002	5 y/M	T1-T4/ Extradural	TTR/RT	8	Alive	NA	NA
Yavus et al.	116	2002	18 y/F	Cauda Equina	STR/RT/CT	25	Alive	NA	NA
Reihani-Kermani et al.	97	2002	22 y/F	T12/ Intradural-Extraduromy	TTR/RT	9	Alive	NA	NA
Martinez-Quinones et al.	79	2002	40 y/M	Cauda Equina	NA	NA	NA	NA	NA
Kadri et al.	54	2002	15 y/F	L2-L3/ Extradural	STR/RT/CT	8	Alive	+	NA
Uesaka et al.	110	2002	11 y/F	C7-T1/ Intradural-Extraduromy	STR/RT/CT	8	Alive	+	NA
Izyczka-swieszewska et al.	49	2003	26 y/M	C4-C6/ Intradural-Extraduromy	STR/RT	3	Dead	+	-
Albrecht et al.	3	2003	49 y/F	Cauda Equina	TTR/RT/CT	23	Alive	+	NA
Harimaya et al.	42	2003	10 y/M	C6-T3/ Extradural	STR/RT/CT	14	Dead	NA	NA
Harimaya et al.	42	2003	30 y/F	C2-C4/ Intradural-Extraduromy	STR/RT/CT	14	Dead	NA	NA
Harimaya et al.	42	2003	14 y/M	Cauda Equina	STR/CT	67	Alive	NA	NA
Gandhi et al.	36	2003	33 y/M	T5-T9/ Extradural	TTR/RT/CT	3	Alive	+	NA
Aydin et al.	9	2004	16 y/M	Thoracic/ Extradural	TTR/RT/CT	7	Alive	NA	NA
Akyuz et al.	2	2004	31 y/F	Cauda Equina	STR/RT/CT	4	Dead	NA	NA
Kim et al.	61	2004	17 y/M	Cauda Equina	STR/RT	4	Alive	NA	NA
Weber et al.	113	2004	26 y/M	L1/ Extradural	TTR/RT/CT	16	Alive	+	NA
Kogawa et al.	67	2004	7 y/F	C2-C4/ Extradural	TTR/RT/CT	16	Alive	+	NA
Bohn Sarmiento et al.	13	2005	37 y/M	Cauda Equina	STR/RT	6	Dead	NA	NA
Woestenborghs et al.	115	2005	11 y/M	C4-T2/ Intradural-Extraduromy	STR/CT	NA	NA	+	+
Siami-Namini et al.	104	2005	15 y/F	T3-T7/ Extradural	STR/RT/CT	NA	NA	NA	+
Mobely et al.	84	2006	32 y/M	Cauda Equina	TTR/RT/CT	12	Dead	+	+
Faber et al.	30	2006	70 y/M	Cauda Equina	TTR/RT/CT	12	Dead	+	+
Koudelova et al.	70	2006	28 y/F	L1-L2/ Extradural	STR/RT/CT	24	Alive	NA	NA
Athanassiadou et al.	8	2006	13 y/M	T9/ Extradural	STR/RT/CT	NA	NA	+	+
Isefuku et al.	47	2006	20 y/M	L5-S1/ Extradural	STR/CT	15	Dead	+	+
Nutman et al.	89	2007	19 y/F	Cauda Equina	STR/RT/CT/	78	Alive	+	NA
Kumar et al.	71	2007	8 y/M	C2-C4/ Intradural-Extraduromy with	TTR	8	Alive	NA	NA
Perry et al.	95	2007	27 y/M	Cauda Equina	STR/RT/CT	72	Alive	+	-
Perry et al.	95	2007	16 y/F	Cauda Equina	STR/RT/CT	5	Alive	+	+
He et al.	43	2007	8 y/F	L4-L5/ Extradural	STR/RT/CT	10	Dead	+	NA
Sahu et al.	99	2007	11 y/M	NA/ Intradural-Extraduromy	STR/RT/CT	NA	NA	+	NA
Ozturk et al.	93	2007	18 y/M	C6-T1/ Extradural	TTR/CT	13	Alive	+	NA
Bozkurt et al.	14	2007	28 y/M	C3-C5/ Extradural	TTR/RT/CT	18	Alive	+	NA
Erkutlu et al.	29	2007	7 y/M	C5-T1/ Extradural	TTR/RT/CT	108	Alive	+	NA
Feng et al.	31	2008	24 y/M	T8-T10/ Extradural	TTR/RT	14	Alive	+	-
Mushal et al.	87	2008	27 y/M	S1-S2/ Extradural	TTR/RT/CT	24	Alive	NA	NA
Cai et al.	16	2008	3 y/M	NA/ Extradural	TTR/RT/CT	6	Alive	+	NA

Contd...
presentation in both entities was muscle weakness proportionate to the tumor location. Other clinical symptoms and their incidences are summarized in Table 4. Our case was a lady complaining of LBP of about 4 years duration who presented with aggravation of sciatalgia during the previous 6 months and signs compatible with the location of the tumor.

The incidence of primary intraspinal EES/pPNET in lumbar region is twice as much as in thoracic and cervical regions. Only 5% of these tumors have been reported in sacral spine and our case is one of these rare occurrences. On the other hand, CNS-PNET is distributed equally throughout the spine [Table 5]. Distant metastasis occurred in 38 of 99 (38%) cases of primary intraspinal EES/pPNET, while this rate was 12 of 25 (48%) patients with CNS-PNET (χ^2, $P > 0.05$). However, extra-CNS distant metastases were significantly more common in patients with primary intraspinal EES/pPNET [Table 6]. In our case which was an extradural intraspinal EES/pPNET, there has been no evident metastasis in 18 months follow-up.
Pathology: The occurrence of CNS-PNET and primary intraspinal EES/pPNET in spine is unusual, and if it happens, the pathological distinction is difficult. The authors had adopted the general term of primary spinal PNET or spinal EES before 2000. Advances in the recent decade in cytogenetic and IHC methods have shown chromosomal translocations especially in t(11;22) (q24;q12) gene and CD99 expression to be characteristics for ES, while in CNS-PNET a normal chromosomal arrangement is observed and the tumor cells are negative for ES, while in CNS-PNET a normal chromosomal arrangement is observed and the tumor cells are negative for ES. We undertook radiotherapy as the adjuvant mode of therapy and have not encountered any sign of local recurrence or distant metastasis after 18 months follow-up.

DISCUSSION

Duration of follow-up for patients with primary intraspinal EES/pPNET and CNS-PNET was 20.5 ± 23.2 and 21.0 ± 23.3 months, respectively, in different series reported in the literature. One-year and 2-year survival rates of the patients (without considering modality of therapy) were not significantly different between the two tumor types (χ², P > 0.05) [Table 7].

Among the 106 patients with primary intraspinal EES/pPNET who underwent surgery, 5 (5%) had only biopsy taken, 57 (54%) had subtotal, and 44 (41%) had total tumor excision. Eighty patients (75%) with primary intraspinal EES/pPNET had radiotherapy and 77 (75%) received chemotherapy as the adjuvant therapy. Of 27 patients with CNS-PNET, 10 (37%) cases had biopsy, 14 (52%) had subtotal, and 3 (11%) had total tumor resection. Eighteen patients with CNS-PNET (67%) underwent radiotherapy and 23 (85%) had chemotherapy after surgery. Among patients with primary intraspinal EES/pPNET, 64 cases received both radio- and chemotherapies after total/subtotal tumor resection. Fifteen patients with CNS-PNET were managed in a similar way. We managed our case with gross total excision of the tumor and radiotherapy only.

One-year survival rate of the patients who underwent chemo-radiation therapy after total or subtotal resection of the lesion was better than that of those who did not receive chemotherapy or radiotherapy or did not have total or subtotal resection. This difference was statistically significant for patients with CNS-PNET (χ², P < 0.05) and marginally nonsignificant for primary intraspinal EES/pPNET patients (χ², P = 0.056). However, this difference was not repeated in 2-year survival rate in any of the tumor groups (χ², P > 0.05) [Table 8]. Again, combination of chemo-radiation and total/subtotal surgery reduced the rate of distant metastasis in CNS-PNET patients (χ², P < 0.05) but not in primary intraspinal EES/pPNET group (χ², P = 0.163) [Table 9].

Table 4: Summarizing the clinical findings of the cases in the two groups

	Motor deficit	Local pain	Gait disturbance	Radicular pain	Sphincter dysfunction	Myelopathy	Hydrocephalus
EES/pPNET	67 (71)	66 (70)	47 (50)	38 (40)	47 (50)	8 (9)	1 (1)
CNS-PNET	21 (84)	11 (44)	15 (60)	31 (33)	15 (60)	4 (16)	3 (2)

EES/pPNET: extraskeletal ES/peripheral primitive neuroectodermal tumor, CNS-PNET: Central nervous system-primitive neuroectodermal tumor, Figures in parentheses are in percentage.

Table 5: Demonstrating the distribution of the lesion along the spine

	Cervical	Thoracic	Conus medularis	Lumbosacral
EES/pPNET	23 (22)	27 (26.5)	-	26 (25.5)
CNS-PNET	8 (31)	9 (34.5)	9 (34.5)	22 (21)

EES/pPNET: extraskeletal ES/peripheral primitive neuroectodermal tumor, CNS-PNET: Central nervous system-primitive neuroectodermal tumor, Figures in parentheses are in percentage.

Table 6: Showing the rate of metastasis in different series

	CNS Metastasis	Distance Metastasis					
	Brain	Spine	Total	Lung	Bone	Multi organ	Total
EES/pPNET	9 (9)	13 (13)	18 (18)	11 (11)	7 (7)	5 (5)	23 (23)
CNS-PNET	7 (28)	8 (32)	12 (48)	0	0	1 (4)	1 (4)

EES/pPNET: extraskeletal ES/peripheral primitive neuroectodermal tumor, CNS-PNET: Central nervous system-primitive neuroectodermal tumor, Figures in parentheses are in percentage.

In our review, only 75 cases out of 135 patients underwent IHC evaluations for CD99, which were mostly after 2000 [Tables 1 and 2]. All the 61 patients with primary intraspinal EES/pPNET were positive for CD99, but this happened in only 2 of 14 patients with CNS-PNET. Chromosomal studies were performed in only 20 of 135 patients reviewed from the literature [Tables 1 and 2]. Considering these findings,
CD99 has a high specificity for primary intraspinal EES/pPNET. This may obviate the need for chromosomal studies, though their application can be complementary. The IHC and CD99 confirmed the presumptive diagnosis in our patient.

Demography: It seems that primary intraspinal EES/pPNET is more prevalent than CNS-PNET in spine as their reported cases were four times more common than CNS-PNET patients. Contrary to the previous belief that primary intraspinal EES/pPNET and CNS-PNET are more common in childhood, our evaluations and analysis showed that less than one-sixth of primary intraspinal EES/pPNET and less than one-third of CNS-PNET occur in children younger than 10 years of age, and they both occur mostly in young adults. Both primary intraspinal EES/pPNET and CNS-PNET occur rarely after 50 years of age. CNS-PNET occurs equally in both sexes, but primary intraspinal EES/pPNET shows a male sex propensity.

Presentation: The most common symptom in both tumor groups is muscle weakness. However, sensory symptoms, local pain, and radiculopathy are more common in primary intraspinal EES/pPNET. The symptoms mimic spinal disc herniation in any case. The same problem happened in our patient who first underwent discectomy while the tumor could hardly be diagnosed on MRI. Although CNS-PNET equally affects spine in different regions, around half of the primary intraspinal EES/pPNET cases happen in lumbar spine. Only five patients with sacral primary intraspinal EES/pPNET have been reported and they were all males. Our case is the first female patient with sacral epidural primary intraspinal EES/pPNET.

Clinical course: Primary intraspinal EES/pPNET and CNS-PNET follow completely different behavior regarding metastasis. Extra CNS metastasis in CNS-PNET is a rare event, while half of the patients developed metastasis to CNS during follow-up, which is the issue comparable with the medulloblastoma patients. Contrarily, CNS metastasis occurs in less than one-fifth of patients with primary intraspinal EES/pPNET, while extra CNS metastasis occurs frequently, with lung being the most common site, followed by the skeletal system. One-year survival is not different between the two tumor groups; however, two-year survival rate is slightly more in patients with primary intraspinal EES/pPNET.

Treatment options: No certain therapeutic protocol has been applied for all the patients with CNS-PNET or primary intraspinal EES/pPNET. This is mostly due to the limited number of the reported cases. Accordingly, primary intraspinal EES/pPNET and CNS-PNET of spine are treated as extraspatial ES and medulloblastoma, respectively. Surgical treatment is necessary to achieve diagnosis and decompression, which is usually followed by improvement of symptoms. Even though adjuvant chemotherapy is proposed both for ES and medulloblastoma, this was not performed in some of the reports mostly due to age limitations, early mortality, or lack of compliance of the patients. Our data analysis shows that chemotherapy improves 1- and 2-year survival rates after total or subtotal tumor resection in both primary intraspinal EES/pPNET and CNS-PNET patients, respectively. This difference was statistically significant only in 1-year survival rate of patients with CNS-PNET. Adjuvant chemotherapy may reduce CNS metastasis in cases with CNS-PNET [Table 9].

Prognosis: Primary intraspinal EES/pPNET and CNS-PNET are both aggressive malignant tumors leading to mortality within 2 years after diagnosis in nearly half and two-thirds of the patients, respectively. Age is one of the important prognostic factors in both tumors as survival reduces at both age extremes. However, survival did not show any differences regarding gender of the patients. It seems that total or subtotal tumor resection combined with both radiation and chemotherapy improves the outcome of the patients significantly.

CONCLUSION

The reported cases of undifferentiated small round cell tumors in the spine have increased in number in recent
years. Our review and analysis showed that CNS-PNET and EES/pPNET of spine have different clinical courses, necessitating further histopathologic evaluations including that of CD99 and t(11;22)(q24;q12) to distinguish these entities from each other. Tumor location is an important clue in differentiating the two, as CNS-PNETs are mostly intradural in contrast with EES/pPNETs which are often extramedullary.

Due to limited evidence regarding the therapeutic aspects of these tumors, no definite protocol can be formulated for their treatment and the best mode of therapy should be individualized for each case. However, our review supports the fact that total/subtotal tumor removal followed by adjuvant chemo-radiation is associated with the best clinical outcome.

Future studies should mainly focus on finding evidences denoting the best treatment strategies for these tumors. Autologous stem cell rescue besides adjuvant chemotherapy has been associated with prolonged survival in some reports,[27,29,72] which can be the matter of further investigation in the future.

REFERENCES

1. Akai T, Iizuka H, Kadaya S, Nojima T, Kohno M. Primitive neuroectodermal tumor in the spinal epidural space: Case report. Neurol Med Chir (Tokyo) 1998;38:508-11.
2. Akyuz M, Demiral AN, Gurur IE, Uçar T, Tuncer R. Primary primitive neuroectodermal tumor of cauda equina with intracranial seeding. Acta Neurochir (Wien) 2004;146:625-8.
3. Albrecht CF, Weiss E, Schulz-Schaeffer WJ, Albrecht T, Fauser S, Winkboldt J, et al. Primary intraspinal primitive neuroectodermal tumor: Report of two cases and review of the literature. J Neurooncology 2003;61:113-20.
4. Alexander HS, Koleda C, Hunn MK. Peripheral Primitive Neuroectodermal Tumor (pPNET) in the cervical spine. J Clin Neurosurg 2010;17:259-61.
5. Allam K, Sze G. MR of primary extraspinal Ewing sarcoma. AJNR Am J Neuroradiol 1994;15:305-7.
6. Ambros IM, Ambros PF, Strehi S, Kvarov H, Gadner H, Salzer-Kuntschik M. MIC2 is a specific marker for Ewing's sarcoma and peripheral primitive neuroectodermal tumors. Evidence for a common histogenesis of Ewing's sarcoma and peripheral primitive neuroectodermal tumors from MIC2 expression and specific chromosome aberration. Cancer 1991;67:1886-93.
7. Angervall L, Enzinger FM. Extraskeletal neoplasm resembling Ewing's sarcoma. Cancer 1975;36:240-51.
8. Athanassiadou F, Tragianidis A, Kourtis M, Papageorgiou T, Kotoula V, Kontopoulos V, et al. Spinal epidural extraskeletal Ewing sarcoma in an adolescent boy: A case report. Pediatric Hematol Oncol 2006;23:263-7.
9. Aydin MV, Sen O, Ozel S, Kayasalciuk F, Caner H, Aktinors N. Primary primitive neuroectodermal tumor within the spinal epidural space: Report of a case and review of the literature. Neurol Res 2004;26:774-7.
10. Baum ES, Morgan ER, Dal Centro MC, West PM. Review of experience with primitive neuroectodermal tumors of childhood. In: Humphrey GB, Dehner LP, editors. Pediatric Oncology I. The Hague: Martinus Nijhoff; 1981. p. 239-42.
11. Beneschi M, Sperli D, von Bueren AO, Schmid I, von Hoff K, Warmuth-Metz M, et al. Central primitive neurological system primitive neuroectodermal tumors (CNS-PNETs) of the spinal cord in children: Four cases from the German HIT database with a critical review of the literature. J Neurooncology 2011;104:279-86.
12. Benneir P, Sai A, Hertzanu Y, Zirkin H, Rosenberg L, Peiser J, et al. Primary and secondary spinal epidural extraskeletal Ewing's sarcoma. Report of two cases and review of the literature. Spine (Phila Pa 1976) 1991;16:224-7.
13. Bohn Sarmiento U, Aguilar Bujanda D, Camacho Gallán R, Rivero Vera JC, Aguiar Morales J. Lumbar region intra-spinal primitive neuroectodermal tumor (PNET) combined with neurofibromatosis type 1. Clin Transl Oncol 2005;7:464-7.
14. Bozkurt G, Aghan S, Turk CC, Akyab A, Soylemezoglu F, Palouglu S. Primary extraspinal Ewing sarcoma of the cervical epidural space. Case illustration. J Neurosurg Spine 2007;6:192.
15. Bruno LA, Rorke LB, Norris DG. Primitive neuroectodermal tumors of infancy and childhood. In: Humphrey GB, Dehner LP, editors. Pediatric Oncology I. The Hague: Martinus Nijhoff; 1981. p. 265-7.
16. Cai C, Zhang Q, Shen C, Hu X. Primary intraspinal primitive neuroectodermal tumor: A case report and review of the literature. J Pediatr Neurosci 2008;3:154-6.
17. Chang SI, Tsai MC, Tsai MD. An unusual primary neuroectodermal tumor in the thoracic epidural space. J Clin Neurosci 2006;13:249-9.
18. Chen YC, Tang LM, Chen CJ, Jung SM, Chen ST. Intracranial hypertension as an initial manifestation of spinal neuroectodermal tumor. Clin Neurol Neurosurg 2005;107:408-11.
19. Christie DR, Bilous AM, Carr PJ. Diagnostic difficulties in extraspinal Ewing's sarcoma: A proposal for diagnostic criteria. Australas Radiol 1997;41:22-8.
20. De Tommasi A, De Tommasi C, Occhiogrosso G, Cimmino A, Parisi M, Sanguedolce F, et al. Primary intramedullary primitive neuroectodermal tumor (PNET): Case report and review of the literature. Eur J Neurol 2006;13:240-3.
21. Delatère O, Zucman J, Melot T, Garau XS, Zucker JM, Lenoir GM, et al. The Ewing family of tumors—a subgroup of small-round-cell tumors defined by specific chromosomal translocation. Cancer 1991;67:1169-75.
22. Deme S, Ang LC, Skaf G, Rowed DW. Primary intramedullary primitive neuroectodermal tumor of the spinal cord: Case report and review of the literature. Neurosurgery 1997;41:1417-20.
23. Demeoçoq F, Fonck Y, Legros M, Chazal J, Plagne R, Dauplat J. Extraskeletal Ewing's sarcoma. Anatomoclinical study of a new case. Pediatr 1983;38:475-8. (Article in French)
24. Dierck AM, Roels H, Langlois M. The immunophenotype of Ewing's sarcoma. An immunohistochemical analysis. Pathol Res Pract 1993;189:26-32.
25. Dugan S, Lekovic GP, Theodore N, Horn EM, Eschbach J, Rekate HL. Primary thoracolumbar Ewing's sarcoma presenting as isolated epidural mass. Spine (Phila Pa 1976) 2009;34:9-14.
26. Dume S, Ang LC, Skaf G, Rowed DW. Primary intramedullary primitive neuroectodermal tumor: Report of two cases and review of the literature. Acta Neurochir (Wien) 1999;141:1169-75.
27. Duan XH, Ban XH, Liu B, Zhong XM, Guo RM, Zhang F, et al. Intraspinal primitive neuroectodermal tumor: Imaging findings in six cases. Eur J Radiol 2011;80:426-31.
28. Ellis JA, Rothrock RJ, Moise G, McCormick PC. 2nd, Tanji K, Canoll P, et al. Primitive neuroectodermal tumors of the spine: A comprehensive review with illustrative clinical cases. Neurosurg Focus 2011;30:E1.
29. Erkiu M, Buyukhatipoglu H, Alptekin M, Ozsacar C, Buyukbese I, Gok A. Primary spinal extracranial Ewing's sarcoma mimicking a spinal abscess. Pediatr Hematol Oncol. J Clin Neurosci 2007;24:327-32.
30. Fabre E, Guillemin R, Chretien F, Le Guerinel C, Duffau H. Peripheral primitive neuroectodermal tumor of the cauda equina in an elderly patient. Case report. J Neurosurg Spine 2007;6:464-7.
31. Feng JF, Liang YM, Bao YH, Pan YH, Jiang JY. Multiple primary primitive neuroectodermal tumors within the spinal epidural space with non-concurrent onset. J Int Med Res 2008;36:366-70.
32. Fink LH, Meriwether MW. Primary epidural Ewing's sarcoma presenting as a lumbar disc protrusion. Case report. J Neurosurg 1979;51:120-3.
33. Fletcher CD, Unni KK, Mertens F. World Health Organization Classification of Tumors: Pathology and Genetics of Tumors of Soft Tissue and Bone. Lyon: IARC Press; 2002.
34. Folpe AL, Goldblum JR, Rubin BP, Shehata BM, Liu W, Dei Tos AP, et al. Morphologic and immunophenotypic diversity in Ewing family tumor families: A study of 66 genetically confirmed cases. Am J Surg Pathol 2005;29:1025-33.
35. Freyer DR, Hutchinson RJ, McKeever PE. Primary primitive neuroectodermal tumor of the spinal cord associated with neural tube defect. Pediatr Neurosci 1989;15:181-7.
36. Gandhi D, Goyal M, Belanger E, Modha A, Wolfe J, Miller W. Primary epidural Ewing's sarcoma: Case report and review of the literature. Can Assoc Radiol J 2003;54:109-13.
37. Gollard RP, Rosen L,anson J, Mason J, Khoury J. Intradural intramedullary PNET of the spine: Long-term survival after combined modality therapy and subsequent
Histological heterogeneity of Ewing's sarcoma/PNET: A clinicalpathologic study with bcl-2 and CD99 immunohistochemistry. Ann Diagn Pathol 1999;3:276-80.

Han IH, Kuh SU, Chin DK, Kim KS, Jin BH, Cho YE. Surgical treatment of primary spinal tumors in the conus medullaris. J Korean Neurosurg Soc 2008;44:72-7.

Hareesh KP, Chinnikatti SK, Prabhakar R, Rishi A, Rath GK, Sharma DN, et al. A rare case of intradural extramedullary Ewing's sarcoma with skip metastasis in the neuraxis. Spinal Cord 2008;46:582-4.

Harimaya K, Oda Y, Masuda S, Tanaka K, Chuman H, Iwamoto Y. Primitive neuroectodermal tumor and extraskelatal Ewing's sarcoma arising primarily around the spinal column: Report of four cases and a review of the literature. Spine (Phila Pa 1976) 2003;28:E408-12.

He SS, Zhao J, Han KW, Hou TS, Hussain N, Zhang SM. Primitive neuroectodermal tumor of lumbar spine: Case report. Chin Med J (Engl) 2007;120:844-6.

Hisaoaka M, Hashimoto H, Murao T. Peripheral primitive neuroectodermal tumor with ganglioneurooma-like areas arising in the cauda equina. Virochs Arch 1997;43:365-9.

Hribar L, Kalita O, Svebovska H, Ehrmann J Jr, Hajduck M, Trojanec R, et al. Dumbbell-shaped peripheral primitive neuroectodermal tumor of the spine: Case report and review of the literature. J Neurooncol 2009;92:21-7.

Hsieh CT, Chiang YH, Tsai WC, Sheu LF, Liu MY. Primary spinal epidural Ewing sarcoma: A case report and review of the literature. Turk J Pediatr 2008;50:282-6.

Isefuku S, Seki M, Tajino T, Hakoziaki M, Asano S, Hojo H, et al. Ewing's sarcoma in the spinal nerve root: A case report and review of the literature. Tohoku J Exp Med 2000;209:369-77.

Isotalo PA, Agbi C, Davidson B, Girard A, Verma S, Robertson SJ. Primary primitive neuroectodermal tumor of the cauda equina. Hum Pathol 2000;31:1001-4.

Izycza-Swiezewska E, Debiec-Rychter M, Wasag B, Wozniak A, Gasecki D, Plata-Nazar K, et al. A unique occurrence of a cerebral atypical teratoid/rhabdoid tumor in an infant and a spinal canal primitive neuroectodermal tumor in her father. J Neurooncol 2003;61:129-35.

Izycza-Swiezewska E, Stefanowicz J, Debiec-Rychter M, Rzeplik R, Borowska-Lehman P. Peripheral primitive neuroectodermal tumor within the spinal epidural space. Neuropathology 2001;21:218-21.

Jain A, Jalali R, Nadkarni TD, Sharma S. Primary intramedullary primitive neuroectodermal tumor of the cervical spinal cord. Case report. J Neurosurg Spine 2006;4:497-502.

Jakische H, Wöckel W, Wernert N. Primary spinal medulloblastoma? Neurosurg Rev 1988;11:259-65.

Jingyu C, Jinning S, Hui M, Hua F. Intraspinal primitive neuroectodermal tumors: A clinicopathologic study with bcl-2 and CD99 immunohistochemistry. Appl Immunohistochem 2009;17:61-8.

Kadi P, Mello PM, Oliveira JG, Braga FM. Primary lumbar epidural Ewing's sarcoma: Case report. Arq Neuropsiquiatr 2002;60:145-9. (Article in Portuguese)

Kampann WA, Kros JM, De Jong TH, Lequin MH. Primitive neuroectodermal tumors (PNETs) in the spinal canal: The relevance of classification as central or peripheral PNET: Case report of a primary spinal PNET occurrence with a critical literature review. J Neurooncol 2006;77:65-72.

Kaspers GJ, Kamphorst W, van de Graaff M, van Alphen HA, Veerman AJ. Primary spinal epidural extraosseous Ewing's sarcoma. Cancer 1991;68:648-54.

Kennedy JG, Eustace S, Caullfield R, Fennelly DJ, Hurson B, O'Reourke KS. Extraskelatal Ewing's sarcoma: A case report and review of the literature. Spine (Phila Pa 1976) 2000;25:1996-9.

Kepes JJ, Belton K, Roessmann U, Ketcherside WJ. Primitive neuroectodermal tumors of the cauda equina in adults with no detectable primary intracranial neoplasm--Three case studies. Clin Neurophal 1985;4:41-4.

Kiatsoontorn K, Takami T, Ichinose T, Chouky I, Tsuyuguchi N, Ohsawa M, et al. Primary epidural peripheral primitive neuroectodermal tumor of the thoracic spine. Neurol Med Chir (Tokyo) 2009;49:542-5.

Kim SW, Shin H. Primary intradural extraosseous Ewing's sarcoma. J Korean Neurosurg Soc 2009;45:179-81.

Kim YW, Jin BH, Kim TS, Cho YE. Primary intraspinal primitive neuroectodermal tumor at conus medullaris. Yonsei Med J 2004;45:533-8.

Kinsella TJ.Extraskeletal Ewing's sarcoma.J Clin Oncol 1993;1:489.

Kleihues P, Burger PC, Scheithauer BW. The new WHO classification of brain tumors. Brain Pathol 1993;3:255-68.

Kleihues P, Cavenee WK. World Health Organization Classification of Tumors: Pathology and Genetics: Tumors of the Nervous System. Lyon: IARC Press; 1997.

Kleihues P, Cavenee WK. World Health Organization Classification of Tumors: Pathology and Genetics: Tumors of the Nervous System. 2nd ed. Lyon: IARC Press; 2000.

Kim J, Codd PJ, Grier H, Goumnerova LC. Primary pediatric intraspinal sarcomas. Report of 3 cases. J Neurosurg Pediatr 2009;4:222-9.

Kogawa M, Asazuma T, Iso K, Koike Y, Domoto H, Aida S, et al. Primary cervical spinal epidural Extra-osseous Ewing's sarcoma. Acta Neurolochir (Wien) 2004;146:1051-3.

Koot RW, Hennewel HT, Albright KG. [Two children with unusual causes of torticollis: Primitive neuroectodermal tumor and Grisel's syndrome.]. Ned Tijdscr Geneeskld 1998:142:1030-3. (Article in Dutch)

Kosnik EJ, Boessel CP, Bay J, Sayers MP. Primitive neuroectodermal tumors of the central nervous system in children. J Neurosurg 1978;48:741-6.

Koudelová J, Kunesová M, Koudelá K Jr, Matejka J, Nováček P, Prausová J. [Peripheral primitive neuroectodermal tumor--PNET]. Acta Chir Orthop Traumatol Cech 2006;73:39-44. (Article in Czech)

Kumar R, Reddy SJ, Wani AA, Pal L. Primary spinal primitive neuroectodermal tumor: Case series and review of the literature. Pediatr Neurosurg 2007;43:1-6.

Kwon OK, Wang KC, Kim CJ, Kim IO, Chi JG, Cho BK. Primary intramedullary spinal cord primitive neuroectodermal tumor with intracranial seeding in an infant. Childs Nerv Syst 1996;12:633-6.

Liu HM, Yang WC, Garcia RL, Noh JM, Malhotra V, Leeds NE. Intraspinal primitive neuroectodermal tumor arising from the sacral spinal nerve root. J Comput Tomogr 1987;11:350-4.

Llombart-Bosch A, Machado I, Navarro S, Bertoni F, Bacchini P, Alberghini M, et al. Histological heterogeneity of Ewing's sarcoma/PNET: An immunohistochecmical analysis of 415 genetically confirmed cases with clinical support. Virochs Arch 2009;455:397-411.

Llombart-Bosch A, Navarro S. Immunohistochemical detection of EWS and FLI-1 proteins in Ewing sarcoma and primitive neuroectodermal tumors: Comparative analysis with CD99 (MIC-2) expression. Appl Immunohistochem Mol Morphol 2001;9:255-60.

Louis DN, Ohgaki H, Wiestler OD, Cavenee WK. WHO Classification of Tumors of the Central Nervous System. 4th ed. Lyon: IARC; 2007.

Machin Valuela M, García-Sagredo JM, Muñoz Villa A, Lozano Giménez C, Aparicio Meix JM. IB8-syndrome and extraskeletal Ewing's sarcoma. J Med Genet 1997;34:426-8.

Mahoney JP, Ballinger WE Jr, Alexander RW. So-called extraskeletal Ewing's sarcoma. Report of a case with a ultrastructural analysis. Am J Clin Pathol 1970;70:926-31.

Martínez-Quiones JV, de Antonio A, Hernandez G, Moratinos P, Hijosa M. Primitive neuroectodermal tumor of the cauda equina. Report of a case. Neurocirugía (Astur) 2002;13:28-29.

Mawrin C, Synowitz HJ, Kirches E, Dietzmann K, Weis S. Primary spinal cord Ewing's sarcoma after intracranial relapse. J Pediatr Hematol Oncol 2011;33:107-12.

Mukhopadhyay P, Gairola M, Sharma M, Thulkar S, Julka P, Rath G. Primary spinal neuroectodermal tumor of lumbar nerve: Case report. J Med Trop 1997;49:185-6.

Mukhopadhyay P, Gairola M, Sharma M, Thulkar S, Julka P, Rath G. Primary spinal neuroectodermal tumor of lumbar nerve: Case report. J Med Trop 1997;49:185-6.

Mukhopadhyay P, Gairola M, Sharma M, Thulkar S, Julka P, Rath G. Primary spinal Neurosurg Soc 2009;45:179-81.
Surgical Neurology International 2012, 3:55

Sevick RJ, Johns RD, Curry BJ. Primary spinal primitive neuroectodermal tumor: Report of two cases. J Neurol Neurosurg Psychiatry 1978;41:1031-5.

94. Nutman A, Postovsky S, Zaidman I, Elhasid R, Vladovsky E, Kreiss Y, et al. Primary intraspinal primitive neuroectodermal tumor treated with autologous cell stem-cell transplantation: Case report and review of the literature. Pediatr Hematol Onccol 2007;24:53-61.

95. Ogasawara H, Kiy A, Kuros K, Mustaqin Z, Uozumi T, Sugiyama K, et al. Intracranial metastasis from a spinal cord primary neuroectodermal tumor: Case report. Surg Neurol 1992;37:197-201.

96. Otero-Rodriguez A, Hinojosa J, Esparza J, Munoz MJ, Iglesias S, Rodriguez-Gil Y, et al. Purely intramedullary spinal cord primitive neuroectodermal tumor: Case report and review of the literature. Neurocirugia (Astr) 2009;20:381-7.

97. Ozdemir N, Usta G, Minoglu M, Erbey AM, Bezircioglu H, Tunakan M. Primary primitive neuroectodermal tumor of the lumbar extradural space. J Neurosurg Pediatr 2008;2:215-21.

98. Ozturk E, Mutlu H, Sonmez G, Vardar Aker F, Inoha S, Takamatsu M, et al. Primary intraspinal primitive neuroectodermal tumor: Case report of a tumor arising from the sacral spinal nerve root and review of the literature. Am J Clin Oncol 2002;25:135-9.

99. Papadatos D, Albrecht S, Mohr G, del Carpio-O'Donovan R. Exophytic epidural extraskeletal Ewing sarcoma of the cervical spinal cord: Diagnostic value of genetic analysis. Int J Radiat Oncol Biol Phys 2003;56:122-5.

100. Perry R, Gonzales I, Finlay J, Zacharoulis S. Primary peripheral primitive neuroectodermal tumors of the spinal cord: Report of two cases and review of the literature. J Neurooncol 2007;81:259-64.

101. Priest J, Dehner LP, Sung JH, Nesbit ME. Primitive neuroectodermal tumors. Embryonal gliomas of childhood. In: Humphrey GB, Dehner LP, editors. Pediatric oncology. The Hague: Martinus Nijhoff; 1981. p. 247-64.