Variability of measurement of patellofemoral indices with knee flexion and quadriceps contraction - A MRI-based anatomical study.

Poster No.: P-0093
Congress: ESSR 2013
Type: Scientific Exhibit
Authors: S. Purushothamdas¹, F. Almallah², R. Kundra¹; ¹Walsall/UK, ²WS2 9PS/UK
Keywords: Physiological studies, MR, Musculoskeletal joint, Extremities, Athletic injuries
DOI: 10.1594/essr2013/P-0093

Any information contained in this pdf file is automatically generated from digital material submitted to EPOS by third parties in the form of scientific presentations. References to any names, marks, products, or services of third parties or hypertext links to third-party sites or information are provided solely as a convenience to you and do not in any way constitute or imply ECR's endorsement, sponsorship or recommendation of the third party, information, product or service. ECR is not responsible for the content of these pages and does not make any representations regarding the content or accuracy of material in this file.

As per copyright regulations, any unauthorised use of the material or parts thereof as well as commercial reproduction or multiple distribution by any traditional or electronically based reproduction/publication method ist strictly prohibited.
You agree to defend, indemnify, and hold ECR harmless from and against any and all claims, damages, costs, and expenses, including attorneys' fees, arising from or related to your use of these pages.
Please note: Links to movies, ppt slideshows and any other multimedia files are not available in the pdf version of presentations.
www.essr.org
Purpose

The objective of this study was to measure the variability of patellofemoral indices on MR images with knee in full extension and 25 degree flexion with and without quadriceps contraction.

Methods and Materials

15 patients undergoing MRI scan of the knee for non-patellar pathology were identified from a pool of referrals made to the departments of trauma and orthopaedics and radiology. Inclusion criteria of the study were isolated pathology of the knee which is non-patellar related, age group of 15-40 years and a body mass index of less than 30. Exclusion criteria included patella related pathology, presence of connective tissue disorder and previous surgery or injury to the knee. Only 10 patients fitted the inclusion criteria.

Axial and sagittal sequences were done in full extension with relaxed quadriceps, full extension with contracted quadriceps, 25 degree flexion of knee with relaxed quadriceps and 25 degree flexion of knee with contracted quadriceps.

Bisect offset, patella tilt angle and sulcus angle were measured on the axial scans. Insall-Salvati ratio and Caton-Deschamps Index were measured on the sagittal images of the magnetic resonance scans.

Bisect offset angle is the percentage of patellar width lateral to a line drawn perpendicular to the posterior condylar line AB and passing through the deepest point of the trochlea groove. (Figure 1)

Patellar tilt was defined as the angle formed by lines joining the maximum width of the patella (AB) and the posterior femoral condyles (BC). (figure 2)

The Insall-Salvati ratio is the ratio of the patella tendon length (A) to the length of the patella (B). (figure 3)

The Caton-Deschamps index is the ratio between the distance of the lower edge of the patellar joint surface to the upper edge of the tibial plateau (A) and the length of the patellar articular surface (B). (figure 4)
Subjects were defined to have excessive bisect offset if their bisect offset at full extension during the weight-bearing task was >65%. Subjects were defined as having excessive patellar tilt if their patellar tilt at extension during the weight-bearing task was >15 degrees.

Images for this section:

Fig. 1: Measurement of Bisect offset (figure 1) and Patella tilt (figure 2)
Fig. 2: Measurement of Insall-Salvati Index (figure 3) and Caton-Deschamps Index (figure 4)
The results of the Patella tilt, Bisect offset, Insall-Salvati Index and Caton-Deschamps Index with various positions of the knee and state of the quadriceps are tabulated below:

Position of knee + state of quads	Patella tilt	Bisect Ofset
Normal values	< 15 °	<65%
Knee ext + relax quads	15 (8-27.7)	62% (54%-85%)
Knee ext + contracted quads	20.3 (6.2-47.7)	70% (51%-96%)
Knee 25° flex + relax quads	9.5 (3.2-21.8)	56% (50%-69%)
Knee 25° flex + contracted quads	10.6 (3.4-26.4)	58% (49%-73%)

Position of knee + state of quads	Insall-Salvati Index	Caton-Deschamps Index
Normal values	0.8-1.2	0.6-1.3
Knee ext + relax quads	1.14 (0.96-1.22)	1.27 (1.05-1.40)
Knee ext + contracted quads	1.20 (0.96-1.45)	1.33 (0.99-1.43)
Knee 25° flex + relax quads	1.18 (0.97-1.34)	1.22 (0.83-1.40)
Knee 25° flex + contracted quads	1.16 (0.91-1.44)	1.18 (0.86-1.39)

Two patients had abnormal patellofemoral indices however, they were included in the study as they fitted the inclusion criteria and were asymptomatic at the time of scanning for any patellofemoral pathology.

Patella tilt was of normal values in knee kept in 25 degrees flexion with or without contraction of the quadriceps and in extended knee with relaxed quadriceps. In extension of the knee with quadriceps contraction, patella tilt increased by 5.3 degrees.

Bisect offset was within normal limits (less than 65%) in knees with full extension but relaxed quadriceps and knees in 25 degrees flexion with or without quadriceps
contraction. However, the bisect offset increased to 70% with contraction of the quadriceps in full extension of the knee.

Insall-Salvati Index was normal in knees with full extension as well as 25 degrees of flexion with or without contraction of quadriceps.

Caton-Deschamps Index increased in knee with full extension and quadriceps contraction compared to normal values in full extension of the knee and relaxed quadriceps with 25 degrees of flexion of knee with or without contraction of quadriceps.

Conclusion

We conclude, from our study, that additional information regarding patellar tilt is obtained in patients with patellofemoral instability when MRI is done with knee in full extension, knee in full extension with contraction of the quadriceps and knee in 25 degrees of flexion with or without contraction of the quadriceps.

References

Colvin AC, West RV. Patellar Instability. J Bone Joint Surg Am. 2008;90:2751-62

Draper CE, Besier TF, et. al. Differences in Patellofemoral Kinematics between Weight-Bearing and Non-Weight-Bearing Conditions in Patients with Patellofemoral Pain. J Orthop Research, March 2011:312-317

Mirza Tolouei F , Afshar A , Salarilak S, Sina A . CT Patellar Cortex Tilt Angle: A Radiological Method to Measure Patellar Tilt.Iran. J. Radiol., Autumn 2005;3(1):17-21

WilsonNA, Sheehan FT. Dynamic In Vivo Quadriceps Lines-of-Action. J Biomech. 2010 August 10; 43(11): 2106-2113

Personal Information