The effect of black cumin seed oil consumption on the platelets and leukocytes number in healthy smokers in rural area Yogyakarta

Titiek Hidayati, Endang Darmawan, Indrayanti, Sunny Sun

ABSTRACT

Background: The high number of smokers in rural areas is a public health problem in Indonesia. Tobacco smoke exposure is associated with the incidence of cardiovascular disease and cancer. Smoking increases the activity of the hematological system, characterized by an increase in the number of platelets and leukocytes. Platelet and leukocytes are essential cells in thrombus formation and hemostasis. As an immunomodulatory supplement, black cumin seed oil (BCSO) has been used in various studies, affecting the blood cell formation system. The purpose of the study was to determine the effect of administration of BCSO preparation for 30 days on platelet and leukocytes.

Methods: The 15 patients were placed into two groups in this open-label Randomized Controlled Trial. Group 1 received a placebo (3x1 capsules per day), and group 2 received BCSO (3x1 capsules per day). For 30 days, the intervention was carried out. Blood was obtained for analysis on the 31st day. The average amount of platelets and leukocytes in each group was compared using one-way ANOVA.

Results: The test results are said to have no difference in platelets and leukocytes number between groups with 30 days of BCSO consumption, with their respective values being 0.848 in the placebo group and 0.211 in the treatment group.

Conclusions: The homeostatic condition of subjects who consumed BCSO 3x2 capsules/day for 30 days remained stable and balanced.

Keywords: Black cumin seed, Healthy smoker, Homeostatic, Leukocytes, Platelets.

INTRODUCTION

The black cumin seed oil (BCSO) capsule contains many linoleic, linolenic fatty acids, and essential oils. The active substances of the essential oil are thymoquinone, nigelin, and nigellone. In vitro and in vivo, thymoquinone has been shown to have anti-cancer, antibacterial, antioxidative, anti-diabetic, chemoprevention, and anti-hepatotoxic effects. Meanwhile, thymoquinone has an immunomodulatory effect on T helper with Suppressor T cells, increases macrophage activity through toll-like receptors (TLR) and Suppressor T cells, and reduces platelet aggregation by inhibiting cyclooxygenase and lipoperoxidase pathways.

Smoking has become a particular concern in the world. Indonesia occupies the first position in the country with the most significant percentage of male smokers aged 15 years and over globally, namely 66%. A person who smokes ten or more cigarettes per day has an average life expectancy of 5 years shorter and 20 times higher risk of developing lung cancer than those who have never smoked. Smoking increases the number of erythrocytes, leukocytes, platelets, and hemoglobin in the blood. The previous study showed that acute cigarette smoke exposure increases the secretion of inflammatory mediators from various cell types, including epithelial cells, macrophages, and neutrophils. Cigarette smoke contains gaseous components and particles that can cause free radicals, such as carbon monoxide, nitrogen oxide, and hydrocarbon compounds, during inhalation. It causes platelet aggregation, causing blood vessels to become sticky. This study is a phase 1 clinical trial in which the subjects used are healthy-smoker volunteers. The goal of phase 1 is to determine the size of a dose that is acceptable, meaning that it does not cause serious side effects. Based on these descriptions, this study was conducted to determine the impact of 30 days of administration of BCSO on the leukocyte and platelet counts in healthy-smoker volunteers.

METHODS

Research Design and Variables
An observational analytic investigation was carried out. We reviewed the laboratory data from the trial of giving black cumin oil capsules versus placebo in healthy smokers by the health worker of Jetis I Public Health Center. Subjects
consumed 3x1. BCSO and a placebo 3x1 for 30 days. This pilot test was conducted in Jetis I Primary Health Care, Bantul, Yogyakarta, namely Sindet and Blawong I Hamlets. Measurement of vital signs, filling case report form, and blood collection was carried out at residents’ homes. In addition, a complete blood count was carried out at the clinical laboratory of Nur Hidayah hospital. We observed the study’s primary outcome, namely the number of leukocytes and platelets, and the secondary outcomes, namely the hemogram profile, liver function, kidney function, and vital signs.

Population and Subjects

The population in this study were healthy adult males, smokers, and willing to sign the informed consent. The exclusion criteria were if the subject had a history of chronic disease, experienced an allergic reaction to BCSO, and had psychiatric disorders. We recruited 18 subjects according to the selection criteria and obtained informed consent from each subject. We exclude participation if the test subjects did not attend the study until the end and were unavailable for a blood sample on the 31st day. At the end of study 15 active smokers met the selection criteria. There were three subjects who were dropped out for various technical reasons. At the time of testing, a subject traveled out of town, so he stopped taking medication, and two subjects were not willing to take blood samples on day 31. The number of subjects is following the recommendations of the Food and Drug Supervisory Agency of the Republic of Indonesia and based on the minimum sample size of the Lemeshow formula.19

Materials and Instruments

This study used BCSO soft capsules and placebo capsules. BCSO soft capsules are produced by the traditional medicine industry (CV Al Afiat). They have received a TR number from the Food and Drug Supervisory Agency of the Republic of Indonesia. The production process of BCSO soft capsules follows good manufacturing product (GMP) guidelines. The certified pharmaceutical industry prepared both types of tablets. The official certificate was obtained from the Drug and Food Regulatory Agency of the Republic of Indonesia. Blood pressure measuring devices and thermometers to monitor participants’ vital signs. Blood collection devices and complete blood count procedures were used to check the number of leukocytes and platelets with the hematology analyzer. The analyzer works because the blood sample is washed 200 times and then mixed with hemolyzing Solution, then the tool will calculate the hemoglobin and white blood cells. We use the case report form to record the daily progress of the participants.

Research Procedures

Participants were recruited from two hamlets in the Jetis I Primary Health Care working area, namely Blawong and Sindet Hamlets. Recruitment of participants was done randomly using selection criteria. Simple random sampling was done by writing down the number of each member of the population on a piece of paper, then taking a number of pieces of paper with your eyes closed. We obtained informed consent from all participants individually. An explanation of the objectives, direct benefits of participating, and possible risks are given separately. Health practitioners of Jetis I Primary Health Care were also informed about the public use of the research.

We randomly assigned the Subjects into two groups, namely placebo (n=6) and treatment (n=9). Three placebo subjects have dropped out. The placebo group received three times one placebo capsule per day, whereas the placebo capsules were without any active ingredients. In contrast, the treatment group received BCSO with three soft capsules per day. Both BCSO and placebo capsules were administered for 30 days, three times daily. Demographic data, smoking habits, and lifestyle were obtained through interviews using a list of questions. Height and weight were checked before and after the intervention. Trained health workers visit “participants’ homes to monitor blood pressure, body temperature, respiration rate, health complaints, and side effects 2x/ week. Health workers used WhatsApp, a smartphone-based messenger application, as the media to report if they experienced health developments and side effects. On the 31st day, blood samples were taken, and the number of platelets and leukocytes was examined at The Clinical Laboratory of Nur Hidayah Hospital. Demographic and lifestyle data are collected using the CRF.

Statistical Analysis

The data were evaluated, presented descriptively, and then bivariate analysis was performed. We used dependent and independent t-test to analyze the difference in the mean number of platelets and leukocytes, random blood sugar, triglyceride, blood pressure, and body mass index among groups with a significance level of 0.05.

Research Ethics

The study was authorized by the local Institutional Review Board and was done following Good Clinical Practice. It was necessary to explain the research purpose and objective to all possible subjects, the anticipated advantages and uses, the repercussions for responders, and the rights and obligations of the themes previously discussed. The written informed consents from each subject before entering the have been obtained. The study protocol and interview guidelines have been reviewed and approved by the Research Ethics Committee, the Universitas Muhammadiyah Yogyakarta (078/EP-FKIK-UMY/III/ 2021).

RESULT

Subject characteristic

Table 1 summarized the demographic characteristics of research subjects by gender, education, marital status, occupation, smoking status, age, duration of smoking, number of cigarettes consumed, and number of leukocytes and platelets. There were 15 subjects followed to the end in this study. Three participants stated that they had withdrawn from the study due to technical reasons, so they could not participate until the end (Table 1).

Table 2 shows the subjects’ general examination results before the intervention. Male smokers made up 100% of the subjects, the majority of whom graduated from high school (58.3%), were married (66.7%), and worked as laborers (47.2%). The average age of the
Table 1. Demographic characteristics of the subjects.

Demographic Categories	Frequency (n = 15)	Percentage (%)
Sex		
Male	15	100
Education		
Primary school	1	11.1
Junior high school	3	16.7
High school	9	58.3
University	2	13.9
Marital status		
Married	10	66.7
Not Married	5	33.3
Occupation		
Government worker	1	6.6
Private worker	2	13.3
Entrepreneur	3	20
Peasant	2	13.3
Labor	7	46.8
Smoking status		
Smoker	15	100
Non-smoker	0	0

Table 2. Baseline clinical characteristic of subject.

Examination	Unit	Mean ± SD
Age	year	38.69±11.659
Smoking duration	year	20.92±10.81
Cigarette consumption	stick(s)/day	10.61±7.680
Total leucocyte	cell/mm³	9.02±1.96
Thrombocyte	cell/mm³	244.42±57.50
Hemoglobin	%	14.66±1.35
Erythrocyte	Cell/mm³	5.01±0.45
SGOT	IU/L	22.47±7.54
SGPT	IU/L	22.98±17.50
Random blood glucose	mg/dL	142.91±60.32
Triglyceride	mg/dL	174.44±92.79
BMI (body mass index)	kg/m²	24.47±4.92
Blood pressure systolic	mmHg	136.00±18.75
Blood pressure in the diastole	mmHg	86.08±12.47
Pulse	bpm	81.21±11.45
Temperature	Celsius degree	35.91±0.73

Effect of 30 days BCSO Consumption

Table 3 describes healthy smokers’ blood pressure, hemogram, and blood chemistry after consuming 3x1 BCSO capsules or a placebo for 30 days (Table 3).

Table 3 shows that blood pressure, hemogram profile, random blood sugar (RBS), cholesterol, triglycerides, serum glutamic oxaloacetic transaminase (SGOT), serum glutamic pyruvic transaminase (SGPT), urea, and creatinine in pre-and post-treatment groups were normal, except for urea levels. Consumption of BCSO for 30 days did not affect blood pressure, hemogram profile, cholesterol, triglyceride, creatinine, and urea levels but did affect RBS levels. Consumption of 3x1 capsules for 30 days can increase RBS levels from 115.22±14.99 mg/dL to 143.56±56.07 mg/dL (p<0.05), but there is no difference in RBS levels between treatment groups with placebo (p>0.05) and the increase in RBS is still within the normal range of values. BCSO consumption decreased platelet count (Table 3).

Platelet count in the BCSO group was lower than the placebo group (p<0.05), but there was no difference in pre-post platelet count in the BCSO group (p>0.05), and the platelet count was within normal limits. In the intervention group, urea levels after BCSO administration were higher than before but not statistically significant (p>0.05). After treatment, urea levels in the placebo group were higher than before treatment and were statistically significant (p<0.05). There was no difference in urea levels in the placebo and BCSO groups, both pre-and post-intervention. Pre-post treatment changes in urea levels seemed influenced by the intervention and other factors, namely lack of drinking fluids.

DISCUSSION

Based on the research findings, it can be concluded that taking BCSO 3x1 capsules for 30 days does not affect homeostasis. Blood pressure, hemogram profile, RBS, cholesterol, triglycerides, creatinine, SGOT, and SGPT were within normal limits. There was a change in urea levels in the placebo group, namely an increase in urea levels after the intervention. Changes in urea levels in the placebo group indicate that urea levels are most likely to lack fluid...
intake. Most of the participants have jobs as builders.

According to the results of previous studies, the research data also shows that the side effects of consuming BCSO are relatively mild. The health monitoring results that we did during the provision of BCSO did not find any complaints or health problems from the volunteers. Three volunteers complained of feeling sleepy more often after consuming BCSO. At the initial consumption, there were complaints of nausea in two volunteers, more often belching in two volunteers, and one volunteer complained of diarrhea; however, it was not severe and could be overcome immediately. Most of the volunteers stated that their bodies felt better, increased their appetite, and reduced stomach complaints.

Data from several researchers show that smoking increases leukocytes and hematological levels. Nicotine causes leukocytosis by increasing hormones, such as epinephrine and cortisol. In addition, cigarettes can stimulate hormone secretion, accumulate of blood cells, and platelet aggregation. Leukocytes are a type of white blood cell involved in the body’s defense system. Normal leukocyte counts of aiding in preventing and treating many infections; the usual percentage of lymphocytes in the blood is between 20% and 35%. Several factors, however, can influence leukocyte counts, including physical activity, bacterial and fungal infections, malnutrition, severe stress, and congenital disorders. As shown in Table 3, BCSO administration did not generally affect platelet counts since they remained normal; however, BCSO administration at a dose of 3x1 capsules/day resulted in a lower platelet count than the placebo group. However, there was no difference in platelet count between the BCSO and non-BCSO groups (p>0.05). Therefore, based on the data in Table 2, it can be concluded that the administration of BCSO for 30 days in healthy-smoker volunteers does not affect the platelet count.

Parameter	Placebo (n=6)	Group	Treatment/BCSO (n=9)	P2			
	pre	post	p1	pre	post	p1	
WBC	8.81±2.32	9.86±1.27	0.21	8.73±1.88	8.28±1.56	0.78	0.09
RBC	5.05±0.45	4.98±0.48	0.89	5.01±0.50	4.91±0.47	0.71	0.76
Hb	14.85±0.81	14.56±0.91	0.80	14.62±1.28	14.33±1.13	0.81	0.80
Hct	42.98±2.18	42.25±2.14	0.82	42.12±3.27	41.14±2.95	0.79	0.46
MCV	85.36±3.97	85.11±4.64	0.84	84.30±3.21	83.88±3.37	0.78	0.28
MCH	29.48±1.68	29.36±1.86	0.88	29.24±0.99	29.20±1.01	0.82	0.81
MCHC	34.55±0.79	34.48±1.13	0.86	34.13±103.41	34.81±0.60	0.81	0.80
Platelet	255.50±69.99	261.67±32.62	0.11	215.44±49.92	213.33±31.18	0.80	0.02*
Lymphocyte	34.83±9.20	34.88±7.09	0.81	35.82±5.62	38.84±9.67	0.75	0.27
MXD	8.01±3.30	9.01±2.13	0.35	9.33±2.89	8.55±2.46	0.65	0.47
Neutrophile	48.13±17.55	56.10±8.39	0.13	54.84±5.42	52.60±10.21	0.78	0.25
PLR	7.54±6.00	11.44±4.90	0.65	7.43±6.71	8.13±4.19	0.76	0.17
NLR	1.76±0.77	2.35±0.88	0.55	1.74±1.07	2.25±1.83	0.65	0.79
SGOT	28.90±12.09	31.18±7.67	0.55	21.52±4.71	25.00±7.40	0.55	0.12
SGPT	32.80±29.33	45.65±41.68	0.45	19.00±10.37	24.22±15.29	0.39	0.17
Urea	22.71±3.03	33.30±11.63	0.01*	24.84±5.10	33.94±6.84	0.53	0.68
Creatinine	1.11±0.28	1.16±0.16	0.75	1.01±0.16	1.08±0.10	0.85	0.78
RBS	130.00±28.60	130.50±16.50	0.85	115.22±14.99	143.56±56.07	0.01*	0.59
Cholesterol	159.50±52.56	161.33±48.01	0.69	146.44±24.32	151.22±30.81	0.35	0.62
Triglyceride	229.0±157.36	193.50±73.14	0.12	143.56±55.60	143.89±78.22	0.80	0.23
SBP	131.83±16.24	135.00±10.31	0.78	130.88±12.47	139.71±14.59	0.35	0.65
DBP	85.00±6.78	90.40±9.44	0.67	83.88±12.99	91.57±11.34	0.75	0.74

Table 3. Average leukocyte count after 30 days of placebo and BCSO administration in healthy-smoker volunteers.

Note: p1*=p<0.05, pre-post test in one group; p2*=p<0.05 post to post-test between-group

Table 3. Average leukocyte count after 30 days of placebo and BCSO administration in healthy-smoker volunteers.

According to the results of previous studies, the research data also shows that the side effects of consuming BCSO are relatively mild. The health monitoring results that we did during the provision of BCSO did not find any complaints or health problems from the volunteers. Three volunteers complained of feeling sleepy more often after consuming BCSO. At the initial consumption, there were complaints of nausea in two volunteers, more often belching in two volunteers, and one volunteer complained of diarrhea; however, it was not severe and could be overcome immediately. Most of the volunteers stated that their bodies felt better, increased their appetite, and reduced stomach complaints.

Data from several researchers show that smoking increases leukocytes and hematological levels. Nicotine causes leukocytosis by increasing hormones, such as epinephrine and cortisol. In addition, cigarettes can stimulate hormone secretion, accumulate of blood cells, and platelet aggregation. Leukocytes are a type of white blood cell involved in the body’s defense system. Normal leukocyte counts of aiding in preventing and treating many infections; the usual percentage of lymphocytes in the blood is between 20% and 35%. Several factors, however, can influence leukocyte counts, including physical activity, bacterial and fungal infections, malnutrition, severe stress, and congenital disorders. As shown in Table 3, BCSO administration did not generally affect platelet counts since they remained normal; however, BCSO administration at a dose of 3x1 capsules/day resulted in a lower platelet count than the placebo group. However, there was no difference in platelet count between the BCSO and non-BCSO groups (p>0.05). Therefore, based on the data in Table 2, it can be concluded that the administration of BCSO for 30 days in healthy-smoker volunteers does not affect the platelet count.

Thrombocytes or platelets are small, unnuclated fragments or pieces of the megakaryocytic cytoplasm. Platelets are formed in the bone marrow. Platelets are the most critical component in the hemostatic response, protecting against possible bleeding or blood loss. Platelets play an essential role in controlling bleeding. Smokers tend to experience
CONCLUSIONS

It was concluded that the consumption of BCSO 3x1 capsules/day for 30 days did not affect the number of platelets and leukocytes in healthy smoker volunteers. Consumption of BCSO 3x1 capsules/day for 30 days did not affect the subject's homeostasis. The issue can maintain a stable condition so that his body can function normally in a balanced manner.

CONFLICT OF INTEREST

There is no potential conflict of interest in this research.

ETHICAL CLEARANCE

The study protocol and interview guidelines have been reviewed and approved by the Research Ethics Committee, the Universitas Muhammadiyah Yogyakarta (078/EP-FKIK-UMY/III/2021).

FUNDING

This research was funded by The Minister of Education, culture, research and technology and the Research Agency of the Republic of Indonesia through the University Leading Applied Research Height (PTUPT) scheme (Number: PTM-036/SKPP.TT/LPPM UMY/VI/2021).

ACKNOWLEDGMENT

The research team expresses heartfelt appreciation and gratitude to all participants who volunteered to participate in the research study. Jetis I Primary Health Care leaders and employees were also recognized for their participation in the research and granting their permission and assistance throughout the process. We also appreciate and thank the Minister of Education, culture, research and technology, and the Research Agency of the Republic of Indonesia as the donor of this research.

AUTHOR CONTRIBUTION

Literatures search data acquisition, and analysis, TT, ED, SS; clinical studies, TT, II, SS; experimental studies, TT, ED. All authors contributed to conceptualization, design, the definition of intellectual content, statistical analysis, preparation, editing, and manuscript review. The first author serves as a guarantor for the current study.

REFERENCES

1. Akrom A, Darmawan E. Tolerability and safety of black cumin seed oil (BCSO) administration for 20 days in healthy subjects. Biomed Res. 2017;28(9):4196–4201.
2. Begum S, Mannan A. A review on nigella sativa: a marvel herb. J Drug Deliv Ther. 2020;10(2). doi: 10.22270/jddt.v10i2.3913.
3. Islam MT, Khan MR, Mishra SK. An updated literature-based review: phytochemistry, pharmacology and therapeutic promises of Nigella sativa L. Oriental Pharmacy and Experimental Medicine. 2019;19(2).
4. Akrom RA, Nurfadjrin E, Darmawan, Hidayati T. Black cumin seed oil anti-diabetogenic by increasing pancreatic p53 expression. Int J Public Health. 2018;7(3):207. doi: 10.11591/ijphs.v7i3.13694.
5. Ahmad A, et al. Thymoquinone (2-Isopropyl-5-methyl-1, 4-benzoquinone) as a chemopreventive/anti-cancer agent: Chemistry and biological effects. Saudi Pharm J. 2019;xxxx. doi: 10.1016/j.sjps.2019.09.008.
6. Fajar DR, Akrom, Darmawan E. The influence of black cumin seed oil therapy with a dosage of 1.5 mL/day and 3 mL/day to interleukin-21 (IL-21) expression of the patients with metabolic syndrome risk. IOP Conference Series: Materials Science and Engineering. 2017;259(1). doi: 10.1088/1757-899X/259/1/012012.
7. Akrom, Mustofa. Black cumin seed oil increases phagocytic activity and secretion of IL-12 by macrophages. Biomed Res. 2017;28(12).
8. Hidayati T, Akrom, Indrayanti, Sagiran. Chemopreventive effect of black cumin seed oil (BCSO) by increasing p53 expression in dimethylbenzanthracene (DMBA)-induced Sprague Dawley rats. Res J Chem Environ. 2019;23(8).
9. Mahmoud YK. Cancer: Thymoquinone antioxidant/pro-oxidant effect as a potential anti-cancer remedy. Biomed Pharmacother. 2019;3(115):108783.
10. Hidayati T, Akrom A, Indrayanti I, Sun S. Thymoquinone increased expression of cd4cd25treq in Sprague-Dawley rats induced dimethylbenzanthracene. Open Access Med J Med Sci. 2021;9(4):87–91. doi: 10.3898/oajms.2021.5855.
11. Nazir MA, Al-Ansari A, Abbasi N, Almas K. Global prevalence of tobacco use in adolescents and its adverse oral health consequences. Open Access Med J Sci Med. 2019;7(21):3659–3666. doi: 10.3898/oajms.2019.542.
12. Salawati L, Husnaj H, Nawawi YS, Muchlisin ZA. Relationship between smoking activity and chronic obstructive pulmonary disease in the Zainoel Abidin General Hospital, Banda Aceh, Indonesia. Open Access Med J Med Sci. 2020;8:705–707. doi: 10.3898/oajms.2020.4527.
13. Tarigan SP, Soeroso NN, Tumanggor CAK, Gani S, Pradana A. Clinical profile of male patients with non-small cell lung cancer in Adam Malik General Hospital, Medan, Indonesia. Open Access Med J Med Sci. 2019;7(16):2612–2614. doi: 10.3898/oajms.2019.404.
14. Akrom A, Purnamasari TJ, Nurfaiz Z, Adnan, Darmawan E, Mukhlis. Nicotine level associated with decreasing treg number in smoker healthy volunteers. Int J Cancer. 2021;10(1):98– 96. doi: 11.1159/iijphs.v10i1.20570.
15. Christine T, Tarigan AP, Ananda FR. The correlation between levels of transforming growth factor-β with pulmonary fibrosis in post pulmonary tuberculosis in Medan, North Sumatera – Indonesia. Open Access Med J Med Sci. 2019;7(13):2075–2078. doi: 10.3898/oajms.2019.544.
16. Staplin N, et al. Smoking and adverse outcomes in patients with CKD: the study of heart and renal protection (SHARP). Am J Kidney Dis. 2016;68(3):371–380. doi: 10.1053/j. ajkd.2016.02.052.
17. Sanchez-Ramos JR. The rise and fall of tobacco as a botanical medicine. J Herb Med. 2019;22:100374. doi: 10.1016/j. hermed.2020.100374.
18. Pedersen KM, Çolak Y, Ellervik C, Hasselbalch HC, Bojesen SE, Hasselbalch HC, Bojesen SE, Hasselbalch HC. Residential area and cotinine levels with telomere length: a mendelian randomization approach in the Copenhagen general population study. Arterioscler Thromb Vasc Biol. 2019;39(5):965–977. doi: 10.1161/ATVBAHA.118.312338.
19. Li F, Tong G. Sample size estimation for modified Poisson analysis of cluster randomized trials with a binary outcome. Statistical Methods in Medical Research. 2021;30(5):1288-1305. doi: 10.1177/0962280219900415.
20. Khan RJ, Gebreab SY, Gaye A, Crespo PR, Xu R, Davis SK. Associations of smoking indicators and cotinine levels with telomere length: National Health and Nutrition Examination Survey. Prev Med Reports. 2019;15:100895. doi: 10.1016/j.pmedr.2019.100895.
21. Kalkhoran S, Benowzit NL, Rigotti NA. Prevention and treatment of tobacco use: JACC health promotion series. J Am Coll Cardiol. 2018;72(9):1030–1045. doi: 10.1016/j.jacc.2018.06.036.
22. Haspel JA, et al. Perfect timing: Circadian rhythms, sleep, and immunity — An NIH workshop summary. JCI Insight. 2020;5(1):1–14. doi: 11.1172/jci.insight.131487.
23. Hidayati T, Akrom A, Apriani L. The effect of physical activity on lymphocyte count in smokers who consume black cumin seed (Nigella sativa L.) oil. Int J Public Heal Sci. 2020;9(1):8. doi: 11.11591/ijphs.v9i1.20402.
24. Pogorzelska K, Krętowska A, Krawczuk-Rybak M, Sawicka-Zukowska M. Characteristics of platelet indices and their prognostic significance in selected medical condition – a systematic review. Adv Med Sci. 2020;65(2): 310–315. doi: 10.1016/j.advmns.2020.05.002.

25. Lin YC, Chang YH, Yang SY, Wu KD, Chu TS. Update of pathophysiology and management of diabetic kidney disease. Journal of the Formosan Medical Association. 2018;117(8):662–675. doi: 10.1016/j.jfma.2018.02.007.