Foodservice systems and mealtime models in rehabilitation: Scoping review

Alice Pashley1 | Adrienne Young2,3 | Olivia Wright1,4

Aims: To describe current foodservice systems and mealtime care utilized in the rehabilitation setting. A secondary aim was to identify commonly used outcome measures in foodservice research in the rehabilitation setting.

Design: A scoping review.

Data sources: PubMed, CINAHL, Scopus, Embase, PsycINFO and Cochrane were searched until January 2022.

Review methods: The review was conducted according to Joanna Briggs Institute’s methodology for scoping reviews. Included studies were conducted in the inpatient rehabilitation setting, adult population ≥18 years old and provided a description of at least one element of the foodservice system, food and menu, waste and/or eating environment.

Results: Of 5882 articles screened, 37 articles were included, reporting 31 unique studies. Most rehabilitation units had cook-fresh production methods (50%), used decentralized bulk delivery methods (67%) had a communal dining room (67%) and had a 3-week menu cycle (71%). Mealtime care was predominantly provided by nursing staff, however few studies reported on specific activities. Nutritional intake was a key outcome measure across included studies (43%), with only six papers reporting on rehabilitation outcomes. Of the intervention studies (n = 9), all were aimed at improving nutritional intake through menu or mealtime care modifications; few (n = 3) studied changes in rehabilitation outcomes.

Conclusion: This scoping review identified a considerable lack of reporting of foodservice and mealtime care systems used in rehabilitation settings in the available literature. Further investigation is required to understand what models of mealtime care are provided to patients and to understand the impact of changes to foodservice and mealtime systems on patient outcomes.

Patient or public contribution: No patient or public contribution was necessary for this review.

KEYWORDS foodservices, health services research, mealtimes, model of care, nursing, rehabilitation, scoping review
1 | INTRODUCTION

Rehabilitation is the process of ‘optimising a patient’s self-rated quality of life and degree of social integration through optimising independence in activities, minimising pain and distress, and optimising the ability to adapt and respond to changes in circumstances’ (Wade, 2020). Quality nutrition care has long been considered essential for health and recovery and is an essential component of rehabilitation (Butterworth, 1974). Poor nutritional intake and malnutrition remain highly prevalent in the rehabilitation setting, with rates of 30–70% consistently reported since the mid-late 20th century (Arengo & Koch, 1986; Marshall, 2016; Strakowski et al., 2002). Consequences of poor nutritional intake include reduced immune function, poor wound healing, deconditioning and extended length of stay, all of which contribute to poorer patient outcomes (Bourke et al., 2016; Marshall et al., 2014; Wells et al., 2020). Further, people commonly require rehabilitation after an acute episode related to chronic disease (e.g. stroke, peripheral vascular disease), highlighting the secondary prevention role of nutrition during rehabilitation. Hospital foodservices play a vital role in providing meals and mealtime experiences during inpatient rehabilitation to optimize nutritional intake and status, promoting better patient outcomes. It is essential to have effective foodservice systems and models of care to support adequate nutritional intake as part of patients’ rehabilitation.

2 | BACKGROUND

Hospital foodservice relates to all aspects of the provision of food and nutrition to hospital patients, involving food production and distribution, the hospital menu (compliance with nutrition and food safety standards, meal ordering, delivery of main meals and snacks), and the eating environment (Collins et al., 2017; Walton et al., 2012). Production systems utilized in hospitals include ‘cook-serve’ (where food is cooked on-site and served directly to patients), ‘cook-chill’ or ‘cook-freeze’ (where food is prepared in bulk ahead of service, either on- or off-site, and re-thermalized for distribution at time of service) or a combination of both methods (Edwards & Hartwell, 2006; Olney, 2003; Porter & Cant, 2009). Delivery of meals to patients may be centralized (where meals are plated in the kitchen and then delivered to wards) or decentralized (where meal components are distributed to and plated on hospital wards at the time of meal service). Menu design is usually guided by menu standards for the jurisdiction (i.e. local, state or national guidelines) and encompasses decisions around cycle length, choice and variety, number of meals and snacks offered, portion sizes, meal order and meal delivery timing, and suitability for the population's needs (Nutrition and Menu Work Group, 2018). Cost, budgets, available technology, food quality, efficiency of operations and patient satisfaction have been cited as influential factors in designing configurations of foodservice systems (Assaf & Josiassen, 2012; Edwards & Hartwell, 2006) and may constrain the delivery of evidence-based nutritional care appropriate for all populations. In post-acute inpatient rehabilitation, the configuration of foodservice systems utilized is unclear, therefore warranting further exploration to identify these configurations and evaluate the extent to which they are evidence based.

Mealtime care, covering all activities provided to support, assist and facilitate patients’ mealtimes, is a key aspect in achieving optimal nutritional intake and in influencing a positive patient experience (McLaren-Hedwards et al., 2021). This is particularly important in the rehabilitation setting where a high proportion of patients experience barriers to nutritional intake and are dependent on staff to access their food. Eating difficulties in the rehabilitation population have been reported as high as 80% for stroke patients and older adults in rehabilitation, with up to 50% having trouble manipulating food (Westergren et al., 2001; Westergren, Unosson, et al., 2002). It is reported in the literature that competing priorities at mealtimes reduce nursing staff availability to provide appropriate and timely assistance to help patients to eat (Edwards et al., 2016; Xia & McCutcheon, 2006). For this reason, some hospitals have introduced strategies to increase patients’ access to mealtime assistance through nursing assistants, healthcare assistants and volunteers (Edwards et al., 2016). The evidence for feeding assistance is largely informed by research in acute care or residential aged care facilities; therefore, it is still unknown how mealtime care is structured and delivered to patients in rehabilitation, in practice.

Whilst there have been several systematic reviews of foodservice and mealtime care delivery across various settings (Dijxhoorn et al., 2019; Edwards et al., 2016), only one review has focused exclusively on the rehabilitation setting (Collins & Porter, 2015). This review determined the effect of various oral nutrition interventions on nutritional intake, however there was no consideration of system-wide interventions, with only food and menu interventions considered (Collins & Porter, 2015). Additionally, rehabilitation wards and/or patients have been included in other reviews examining a specific aspect of care (McLaren-Hedwards et al., 2021), but there has been no review to date that has mapped out all aspects foodservice and mealtime care in rehabilitation. There are key differences in the goals of nutritional care within rehabilitation (e.g. focus on restoring physical and cognitive function, compared to avoiding disease-related malnutrition in the acute hospital setting). As such, there remains a need to map out how foodservice and mealtime care systems are structured and delivered in the rehabilitation setting specifically, and what outcomes are being utilized in the assessment of foodservice and mealtime care research, to inform both research and practice.

3 | THE REVIEW

3.1 | Aims

The primary aim of this scoping review is to map and review current literature to describe foodservice systems and mealtime models of care in rehabilitation settings and to present the published evidence supporting each configuration. The secondary aim of this scoping
review is to identify frequently utilized outcome measures in food-
service and mealtime-based research in rehabilitation settings.

3.2 | Design

A scoping review methodology was used to address the aims of the study, to clarify the key characteristics of foodservices and mealtime models of care in rehabilitation and examine how evaluation of these models is conducted (Munn et al., 2018). The scoping review was conducted according to the revised methodology for scoping reviews by Levac and associates (Arksey & O’Malley, 2005; Levac et al., 2010), with the following five steps being undertaken: (1) identify the research question, (2) identify relevant studies, (3) study selection, (4) charting the data and (5) collating, summarizing and reporting the results. Stakeholders were not consulted in this review (sixth step deemed optional by Levac and associates). Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines were followed using the extension for scoping reviews (PRISMA-ScR) (Tricco et al., 2018). A protocol was not registered for this scoping review.

3.3 | Search methods

The search strategy was drafted by the first author in conjunction with an experienced academic librarian and further refined with the research team. An initial search was conducted to identify key papers in the area and in turn, identify key MeSH terms in PubMed. The search strategy was first constructed in PubMed using the key MeSH terms and then adapted for other databases. The strategy was revised by the research team and commenced in a systematic search of six databases: PubMed, CINAHL, Scopus, Embase, PsycINFO and Cochrane. The search was undertaken by the first author in January 2021 with no date restriction. Table 1 provides the core terms used to develop the search string.

Search strings for databases are included as File S1.

3.3.1 | Inclusion criteria

Primary research studies with empirical data of quantitative, qualitative and mixed methods manuscripts published in a peer-reviewed article, in English, up until January 2022 were considered. Where a relevant review paper was identified, the reference list was reviewed to identify any additional papers. Similarly, where protocols describing papers relevant to the review were identified, the full publication was included if available. As recommended by JBI methods, inclusion criteria were based on the participants, concept and context described in the following sections.

3.3.2 | Types of participants

Participants comprised any inpatient (≥18 years of age) admitted to a rehabilitation ward/unit.

3.3.3 | Concept

The primary concept of interest in this review was the description of foodservice systems and mealtime models of care. The description of foodservice systems was grouped into domains relating to the overall foodservice system (food production, food distribution), the menu (timing of meal orders and service, cycle length, menu items and nutrient composition), waste (production) and the eating environment (the physical and social environment patients’ meals are consumed in and type of assistance/care provided to patients). The secondary concept of interest was outcome measures that described foodservice systems and mealtime models of care. Outcomes were categorized as nutritional (e.g. nutritional status, nutritional intake, body composition), foodservice (feedback mechanisms and processes of the foodservice system, e.g. plate waste and satisfaction), rehabilitation (outcomes of rehabilitation services e.g. functional and cognition status), clinical and psychological (e.g. non-nutritional medical and well-being outcomes) or health service (e.g. cost).

3.3.4 | Context

Studies were included if they were conducted in a dedicated inpatient rehabilitation ward or unit. Rehabilitation conducted in the community and outpatient setting (e.g. pulmonary, cardiac) was excluded as patients do not typically receive meals in these settings. Rehabilitation provided in the acute care setting was excluded, due to different goals of care of the foodservice and mealtime care systems. Studies focusing on mental health, drug and

Key term	Synonym terms*
Rehabilitation	Convalescence, recovery of function
Hospital	Rehabilitation centre, rehabilitation facility
Subacute care	Post-acute care, progressive patient care, continuing care, long-term care
Foodservices, meal	Menu, food, intake, eating, patient satisfaction, nutrition policy

*Synonyms or alternative terms used internationally to describe key terms identified through MeSH headings or international publications.
alcohol rehabilitation, or the paediatric or adolescent population were also excluded.

3.3.5 | Screening

The screening of studies was supported by EndNote (Version X9.3.2, Clarivate Analytics, Boston Massachusetts) and Covidence systematic review (Veritas Health Innovation, Melbourne, Australia) software. All search results were compiled into EndNote where duplicates were removed and exported into Covidence to complete title/abstract and full-text screening. All remaining papers were screened independently by AP and a second reviewer (either OW, AY or another dietetics PhD candidate) at both the title/abstract and full-text phase. Conflicts were resolved by team discussion.

3.4 | Data abstraction

A data charting form was developed by the first author, components included were based on JBI recommendations and adapted to the aims of this review. Data extracted included title, authors, year published, country of origin, setting, population demographics, aims, methods, inclusion/exclusion criteria, foodservice element, description of foodservice element, intervention details if applicable, outcomes, how outcomes were measured, key findings relevant to the review and limitations. Descriptions of the foodservice systems refer to the standard care provided by the hospitals described in each paper. Data extraction was completed by one reviewer and reviewed by a second reviewer. The research team discussed results and continuously updated the data charting form in an iterative process.

3.5 | Quality appraisal

Quality appraisal of included sources of evidence was not conducted as it was not deemed relevant to the objectives of this review.

3.6 | Data synthesis

Results were synthesized and reported narratively, according to the concepts reported (foodservice domain and/or outcomes). Where multiple studies were published by the same authors, they were contacted to verify if the studies were conducted at the same location to avoid overrepresentation of those units in the descriptions.

4 | RESULTS

A total of 9546 papers were identified through database searches. Of these, 138 articles were included for full-text assessment of eligibility (refer to PRISMA diagram in Figure 1). In total, this review yielded 31 studies published across 37 publications dated between 1994 and 2021. Most publications originated from Australia (n = 18), followed by the United Kingdom (n = 5), Sweden (n = 5), Canada (n = 4), Japan (n = 2), and Denmark, Italy and Greece (each n = 1). Geriatric rehabilitation was the primary setting of included studies (n = 14), followed by mixed rehabilitation population (n = 11), general rehabilitation (n = 7), stroke rehabilitation (n = 2), orthopaedic rehabilitation (n = 1), acquired brain injury rehabilitation (n = 1) and spinal cord injury rehabilitation (n = 1).

A heterogeneous range of study designs were utilized, the most common being observational study designs with cross-sectional (n = 8), audit (n = 5), cohort (n = 2), observational (n = 2), longitudinal (n = 2) and case series, case–control (n = 1 each) being employed. Nine studies utilized interventional design, and seven utilized qualitative design. Most studies aimed to describe or study associations related to foodservices (n = 26), with the mealtime environment (n = 11), menus (n = 9) and the overall foodservice systems (n = 6) being the most studied. Study participants, setting, aims, study design, methods and outcomes are summarized in Table 2. Sample sizes were variable in included studies, ranging from 3 to 313 participants.

4.1 | Foodservices and Mealtime Model Description

4.1.1 | Foodservice Systems

There were 15 papers which provided a description of the foodservice system covering 20 unique hospital sites (Table 3), reporting on food production and food distribution systems and timing of meal services. No studies tested changes to or compared differences between foodservice systems. All studies reported that rehabilitation inpatients were provided three main meals; however, frequency of between-meal snacks varied from none to three times per day. The most common meal delivery method in rehabilitation units was bulk food delivery to the ward with decentralized plating (n = 8/12), followed by centralized plating in the kitchen and delivery to the bedside (n = 4/12). Studies reported using a range of cook fresh (n = 5/10), cook freeze (n = 3/10) and cook chill (n = 2/10) production systems.

4.1.2 | Menu and food items

Menu and food item descriptions were provided about 20 rehabilitation sites discussed in 16 publications, which reported on menu cycle length, fortification, energy and protein content of hospital menus, food items provided to patients and texture modification classifications. All studies reporting on menu cycle length reported a three-week menu cycle (n = 6/6). Timing of meal choices was provided at point of service (n = 2/7), one day ahead of service (n = 4/7) or two days ahead of service (n = 1/7), with two studies reporting...
that meal orders are placed ahead of service without an indication of timing. Energy and protein content of standard hospital menus ranged from 1550 to 2270 kcal and 65–90 g protein per day. For ‘high energy and high protein’ menus, the menu content ranged from 2200 to 2650 kcal and 80–110 g protein. Studies reporting on a menu intervention were meals fortified with either energy and protein (n = 4/6), fibre content (n = 1/6) or thickened fluids (n = 1/6). All interventions aimed to maintain a similar dietary pattern and choices to the standard hospital menu. Nine studies provided a summary of the proportion of patients on special diets (Table 4), suggesting that dietary modification is common in rehabilitation. The most common dietary modification was therapeutic modification of nutrients (e.g. reduction of carbohydrate, sodium, potassium content) prevalent in 10–41% of study participants, followed by texture modification in 2–34.6%, and a diet high in protein and energy in 4.5–29%.

4.1.3 Waste (production)

There were no papers identified that focused on the management of food waste in rehabilitation.

4.1.4 Eating environment

The rehabilitation mealtime environment was reported in 20 publications covering 15 unique rehabilitation units. The location of meal consumption was reported for all 15 rehabilitation units, with four sites reporting communal dining room model only, five sites with bedside dining only and the remaining six sites having both bedside and communal dining options available to patients. Where there was a communal dining room model, this was available at all meals in one.
Reference	Methodology	Setting	Population characteristics	Aim
Bannerman et al. (2016)	Audit	Geriatric Orthopaedic Rehabilitation; United Kingdom	$N = 175; 62$ males and 113 females; age >65 years	To evaluate food provision and consumption in elderly orthopaedic rehabilitation settings to determine whether nutrition standards are being met
Baptiste et al. (2014)	Semi-structured interview	Geriatric Rehabilitation Unit; Canada	$N = 8; 3$ males and 5 females; age >65 years	To explore geriatric patients' perceptions regarding eating at bedside versus in the common dining room
Barton et al. (2000)	Randomized cross-over trial	Geriatric Rehabilitation Unit; United Kingdom	$n = 35; 13$ males and 22 females; mean age $75-78$ years in control and intervention groups	To compare food wastage and intake between the normal hospital menu and one where more energy dense, but smaller portions were provided
Campbell et al. (2013)	Non-randomized control study with three arms	Geriatric and Rehabilitation Unit; Australia	$N = 98; 42$ males and 56 females; control mean 80.6 ± 6.9 years and intervention mean 75.8 ± 8.1 years $+79.9 \pm 2.3$ years	To compare three delivery systems of nutrition support to older adult rehabilitation patients and to determine the most effective method based on clinical (weight change, protein and energy intake) and patient-centred outcomes (consumption, quality of life, satisfaction)
Collins et al. (2017)	Parallel controlled pilot study	Geriatric Rehabilitation Unit; Australia	$N = 122; 61$ males and 61 females; control median age 83 (IQR $75-87$) years, intervention median age 84 (IQR $75-88$) years	To investigate the effect of a higher energy and protein menu and nourishing mid-meal service intervention has on nutrition-related and clinical outcomes, and patients' satisfaction, and; to estimate the additional cost
Collins et al. (2019)	Secondary analysis of parallel controlled pilot study	Geriatric Rehabilitation Unit; Australia	$N = 39; 21$ males and 18 females; median age 82 (78–87) years	To explore the longitudinal change in patients' daily energy and protein intake over two weeks and one month of rehabilitation and identify factors associated with change in intake
Donini et al. (2008)	Before and after study, mixed methods	Rehabilitation Unit; Italy	Mean age 67.0 ± 10 in 2002; mean age 53.4 ± 16 years in 2006	To verify over a 5-year period, the catering services quality, checking the effectiveness of the quality improvement interventions undertaken
Dubé et al. (2007)	Observational cohort study	Geriatric Rehabilitation Unit; Canada	$N = 32; 11$ males and 21 females; 53% aged between 65 and 79, 47% aged >80	To examine the nutritional implications of the interactions taking place between patients and care providers during mealtimes in hospital settings. Specifically, we tested research propositions that the amount and nature of interpersonal behaviours exchanged between patients and providers impact patients' food intake
Reference	Methodology	Setting	Population characteristics	Aim
---------------------------	---------------------------	--	----------------------------	--
Gaff et al. (2015)	Audit	Post-Acute Long-stay hospital (Orthopaedic Rehabilitation); Scotland	$N = 58$; 12 males and 46 females; age ≥ 65 years	To evaluate fluid provision and consumption in elderly patients (>65 years) in a long-stay Scottish hospital and to identify whether current strategies meet the appropriate requirements or whether there is a need for any modifications
Grant (1999)	Audit	Geriatric Rehabilitation Unit; United Kingdom	$N = 3$; 3 females; age not reported	To audit the use of laxatives on one elderly rehabilitation ward; to assess the average fibre and fluid content of hospital menus over 3 days; and to assess the fibre and fluid intakes of three patients over one day
Iyer et al. (2018)	Cross-sectional	Spinal Cord Injury Centre; Australia	$N = 50$; 35 males and 15 females; 50% aged between 18 and 50 years, 50% aged >50 years	To explore nutrition knowledge and dietary intake in adults with spinal cord injury (pre and post morbidity), comparing dietary intake to National Guidelines, and; to determine the association between nutrition knowledge and dietary practices, to inform health promotion initiatives in rehabilitation settings to minimize cardiovascular disease risk in spinal cord injury
Jong et al. (2021)	Ethnographic	Subacute wards (general and geriatric rehabilitation); Australia	N/A	To understand and explore staffs’ perspectives and experiences of communal dining in subacute care, and the impacts on staff mealtime practice
Kozica-Olenski et al. (2021)	Repeated cross-sectional survey	Rehabilitation (and acute) hospital Australia	$N = 40$; 25 males and 15 females; mean age 72.6 (13.7) years	To understand patient-reported experience related to mealtime care and food access in the local setting, aiming to evaluate current performance, as well as identify and prioritize future improvement work, in acute and rehabilitation settings
Lorefält et al. (2005)	Case series	Geriatric Rehabilitation Unit; Sweden	$N = 10$; 4 males and 6 females; mean age 81.7 ± 3.2 years	To investigate if smaller but energy and protein-enriched meals could improve energy and nutrient intakes in elderly geriatric patients
Markovski et al. (2017)	Prospective observational pilot study	Rehabilitation units (elderly patients); Australia	$N = 34$; 9 males and 24 females; mean age 79.1 (11.8) years	To investigate the effect of the 'Dining with Friends' programme on energy and protein intake in hospitalized elderly patients, identify whether patient groups at risk of malnutrition could benefit from a communal dining environment and identify patients' preferred environment for meal consumption
Reference	Methodology	Setting	Population characteristics	Aim
---------------------	-----------------	---	-----------------------------	--
Mathiesen et al. (2021)	Multiphase Pilot trial	Specialized Rehabilitation ward (acquired brain injury); Denmark	$N = 17; n = 11$ males, $n = 6$ females; mean age 64.47 (9.19) years	To identify and resolve issues in the existing acoustic environment of a common dining area of a hospital ward; to explore how improvements to the acoustic eating environment, including music playback, affects patients' mealt ime experience, behaviour and food intake, and; to examine various musical genres and their appropriateness for eating situations in hospital settings
Monou et al. (2020)	Cross-sectional survey	Rehabilitation Unit; Greece	$N = 30; 73.3\%$ men; mean age 53 (17.3) years	To estimate the prevalence of malnutrition in inpatients admitted to a sub-acute rehabilitation unit; to study the association between malnutrition and pressure ulcers; to explore parameters related to development of malnutrition in a rehabilitation setting, and; to estimate the percentage of patients who were offered Oral Nutrition Supplements (ONS) or fortified meals/snacks
Murray et al. (2015)	Cohort study	Inpatient rehabilitation units (stroke patients); Australia	$N = 86; 55$ males and 31 females; 34% aged 41–64 years, 30% aged 65–75 years, 36% aged >75 years	To measure the average daily beverage intake and hydration status of a cohort of hospitalized patients presenting without dysphagia following stroke to determine whether and to what extent they are at risk of dehydration and adverse health outcomes
Nip et al. (2011)	Cohort study	Stroke Rehabilitation; Australia	$n = 100; \text{mean age } 69 (15)$ years	To describe nutritional status and dietary consumption in stroke patients within 2 weeks of hospital admission and before discharge, and by investigating the effects of nutritional and dietary factors on rehabilitation outcomes
O’Hara et al. (1997)	Cross-sectional survey	Continuing Care Units, Geriatric Rehabilitation Units, and Physical Rehabilitation Units; Canada	$N = 65; 26$ males and 39 females; mean age 66.9 (14.7) years	To identify food, service and patient variables associated with high satisfaction with foodservices in a continuing-care hospital that serves, primarily, geriatric patients and patients undergoing physical rehabilitation
Ogawa et al. (2021)	Case–control	Rehabilitation Wards; Japan	$N = 179; 20.1\%$ men and 79.9% women; mean age 86.6 ± 4.5 years	To evaluate skeletal muscle mass changes in patients aged ≥80 years with Vertebral Compression Fracture’s (VCF) undergoing rehabilitation, and; to evaluate factors associated with increased skeletal muscle mass in patients with VCFs
Reference	Methodology	Setting	Population characteristics	Aim
------------------------	------------------------------	---	-----------------------------	--
Ottrey et al. (2018)	Ethnographic	Subacute wards (general and geriatric rehabilitation); Australia	N/A	To explore and understand patterns of mealtimes
				from the perspective of staff, volunteers and visitors on the hospital ward
Ottrey et al. (2019)	Ethnographic	Subacute wards (general and geriatric rehabilitation); Australia	N/A	To explore the relationships, roles and responsibilities of staff involved at hospital mealtimes, and their impact on nutrition care
Patch et al. (2003)	Randomized control trial	Rehabilitation Hospital; Australia	N/A	To assess the efficacy of commercial versus domestically prepared thickened fluids in improving fluid intake for dysphagic patients
Porter et al. (2017)	Pragmatic step-wedged	Subacute wards (general and geriatric rehabilitation); Australia	n = 149; Control: n = 82, 33 males and 49 females; mean age 80.5 ± 10.7 years; Intervention: n = 105, 36 males and 69 females, mean age 78.6 ± 12.9 years	To determine if the implementation of Protected Mealtimes (PM) can close the energy deficit of 1900 kJ between estimated requirements and actual energy intake identified in the pilot study for this research
Porter, Wilton, et al. (2016)	Cross-sectional	Subacute wards (general and geriatric rehabilitation); Australia	N = 109; mean age 81.6 ± 8 years	To gain insight into subacute ward practices at mealtimes under usual conditions where no protected mealtimes policy was implemented
Shimizu et al. (2018)	Cross-sectional	Rehabilitation Unit; Japan	n = 188; 71 males and 117 females; mean age 80.6 ± 7.5 year	To clarify the association between Texture-Modified Diet (TMD) intake and decreased skeletal muscle mass, and to identify other factors related to TMD
Sidenvall et al. (1994)	Ethnographic	Rehabilitation and Long-Term Hospital (Geriatric); Sweden	Period 1: n = 18; 5 males and 13 females, mean age 81.5 ± 8 years. Period 2: n = 42; 19 males and 23 females; mean age 76.6 ± 6.5 years	To examine and explain the institutional organization of meals, drawing on Goffman’s theory of institutionalized culture, Elias’ theory of civilization, Douglas’ theory of purity and order and Bourdieu’s key concept ‘habitus’
Sidenvall et al. (1996)	Ethnographic	Rehabilitation and Long-Term Hospital (Geriatric); Sweden	n = 18; 5 males and 13 females; mean age 81.5 ± 8 years	To investigate individual patients’ meals in geriatric care with respect both to the intentions of the nursing staff and assessments of patients, as well as to those patients’ experiences and the extent to which they expected to be able to influence the meal situation regarding behaviour and table manners, eating competence and diet

(Continues)
Reference	Methodology	Setting	Population characteristics*	Aim
Sidenvall (1999)	Ethnographic	Rehabilitation and Long-Term Hospital (Geriatric); Sweden	\(n = 42; \) 19 males and 23 females; mean age 76 ± 6.5 years	To investigate how patients' culturally imprinted values and ideas concerning table manners were expressed in relation to their own deficient ability as well as that of their table mates. Furthermore, the aim was to study the elderly’s perceptions of food habits in contrast to food served in the common dining room.
St-Arnaud-McKenzie et al. (2004)	Longitudinal	Geriatric Rehabilitation; Canada	\(n = 32; \) 11 males and 21 females; mean age 78.8 ± 6.5 years	To study the relationship between hunger and aversion and their respective contribution to food intake; to acquire knowledge on the relationships between each drive and other contemporaneous facets of subjective experience preceding the meal, such as the perception of good physical health, positive mood and pain, and; to study moderators of the relationships between drives and intakes to identify population segments in whom the two drives have the most powerful impact on patients’ food intake.
Walton et al. (2007)	Audit	Rehabilitation Unit; Australia	\(N = 30; \) 14 males and 16 females; mean age 79.2 ± 9.2 years	To calculate the estimated daily energy and protein requirements, and compare these with the provision of foods ordered and consumed by patients; to calculate the contribution of supplements to intakes, and; to identify opportunities for interventions to improve the nutritional care of long-stay inpatient.
Walton et al. (2013)	Observational	Rehabilitation Unit (elderly); Australia	\(N = 30; \) 14 males and 16 females; mean age 79.2 ± 9.2 years	To describe ward activities which have a positive or negative influence on dietary intakes; to determine the times taken to start and complete meals, and; to make recommendations that would make the ward environment more conducive to eating at mealtimes.
Williams et al. (2011)	Audit	Geriatric Orthopaedic Unit; United Kingdom	\(N = 58; \) 12 males and 46 females; age > 65 years	To evaluate food provision and consumption in an elderly orthopaedic rehabilitation setting to determine the role different eating occasions play in energy and nutrient intakes in this setting.
TABLE 2 (Continued)

Reference	Methodology	Setting	Population characteristics*	Aim
Wisten and Messner (2005)	Randomized trial	Geriatric Rehabilitation Units; Sweden	$N = 20$; Intervention: $n = 10$; 6 males and 4 females; mean age 74.9 ± 13.6 years. Control: $n = 10$; 4 males and 6 females; mean age 78.4 ± 8.5 years.	To study the effects of a daily consumption of a fruit- and fibre-rich porridge on stool frequency, perceived well-being and the costs for laxatives, when compared with traditional treatment with laxatives, in geriatric patients.
Wright et al. (2010)	Cross-sectional survey	Geriatric and Rehabilitation Units and Residential Aged Care Facilities; Australia	$n = 313$ ($n = 103$ geriatric/rehabilitation); 72.1% female; median age 84 (48–102) years	To develop a foodservice satisfaction instrument for residential aged care and geriatric rehabilitation units.
Wright et al. (2013)	Cross-sectional survey	Geriatric and Rehabilitation Units and Residential Aged Care Facilities; Australia	$n = 313$ ($n = 103$ geriatric/rehabilitation); 72.1% female; median age 84 (48–102) years	To conduct a comprehensive analysis of the factors affecting resident satisfaction in the long-term care setting and demonstrate the value of a detailed foodservice satisfaction instrument for quality management.

Abbreviations: PM, Protected Mealtimes; ONS, Oral Nutrition Support; TMD, Texture-Modified Diet; VCF, Vertebral Compression Fractures.

*Patient characteristics included in table as reported in each study.

4.2 | Outcomes

Quantitative outcomes were identified in 20 publications and encompassed nutrition ($n = 15$), body composition ($n = 6$), clinical and psychological measures ($n = 5$), and health service outcomes ($n = 4$). Nutritional outcomes included dietary intake of energy ($n = 16$), protein ($n = 10$), fat ($n = 7$), fibre ($n = 4$), over-all food weight consumed ($n = 14$), and weight change/BMI ($n = 8$). Rehabilitation outcomes involved handgrip strength ($n = 4$), mealtime practices and environment ($n = 8$), mealtime assistance ($n = 8$), and plate waste ($n = 4$). Rehabilitation outcomes involved handgrip strength ($n = 4$), mealtime practices and environment ($n = 8$), mealtime assistance ($n = 8$), and plate waste ($n = 4$).

4.1.5 | Mealtime assistance

Details of mealtime assistance were discussed in 11 papers. Eight of these papers discussed which staff groups were responsible for providing mealtime assistance in 10 unique rehabilitation units. This was reported commonly as a nursing task ($n = 8$), followed by foodservice staff ($n = 2 / 8$), healthcare assistants ($n = 2 / 8$), volunteers ($n = 1 / 8$), and other patients ($n = 1 / 8$). Skill numbers were only discussed in Dubé et al. (2007), who reported a provider-to-patient ratio of 1:9 (95% CI, 8.9–10.9), with providers being noted as nursing staff and orderlies ($n = 2 / 8$), dietitians ($n = 2 / 8$), occupational therapists ($n = 2 / 8$), and physiotherapists ($n = 1 / 8$). Staff numbers were only discussed in Dubé et al. (2007), who reported a provider-to-patient ratio of 1:9 (95% CI, 8.9–10.9), with providers being noted as nursing staff and orderlies ($n = 2 / 8$), dietitians ($n = 2 / 8$), occupational therapists ($n = 2 / 8$), and physiotherapists ($n = 1 / 8$). One intervention study compared the nutritional intake of patients eating in a communal dining setting with bedside dining (Markovski et al., 2017), and another compared differences in patient’s food intake and fluid intake, experiences and noise level in a multiphase trial (Mathiesen et al., 2021).
TABLE 3 Foodservice and mealtime care description

Reference	Foodservice systems			Menu	timing of meal choice	Menu cycle	
	Food production	Food distribution	Meal patterns				
Bannerman et al. (2016)	Cook fresh	Centralized plating	3 main meals 3 snacks	Two days ahead of service	3 weeks		
	Cook-freeze	Bulk trolley service	3 main meals 3 snacks	Point of Service	3 weeks		
	Cook-freeze	Bulk trolley service	3 main meals 3 snacks	One day ahead of service	3 weeks		
Baptiste et al. (2014)							
Barton et al. (2000)							
Collins et al. (2017, 2019)	Cook chill	Centralized plating, trolley for mid meals	—	Ahead of service, mid meals ordered at point of service	—		
Campbell et al. (2013)		Bulk service	—	—	—		
Donini et al. (2008)		Decentralized plating	3 main meals and 1-2 snacks	—	—		
Dubé et al. (2007)					Ahead of service	—	
Gaff et al. (2015)							
Grant (1999)					3 weeks		
Iyer et al. (2018)	Cook fresh	Bulk service	3 main meals, no mid-meal service	Point of service	—		
Jong et al. (2021), Ottrey et al. (2018, 2019), Porter et al. (2017), Porter, Wilton, et al. (2016)		Centralized plating	3 main meals, 2 mid meals	—	—		
Kozica-Olenski et al. (2021)					One day ahead of service	—	
Menu choice offered	Energy and protein provided	Fluid provision	Mealtimes	Eating environment	Mealtime assistance		
---------------------	-----------------------------	----------------	----------	-------------------	--------------------		
Yes	1760 kcal and 68 g protein\(^a\)	—	Bf: 8 am Lunch: 12.30 pm Dinner: 6 pm	—	—		
Yes	1251 kcal and 41 g protein\(^a\)	—	BF: 8 am Lunch: 12.30 pm Dinner: 5 pm	—	Care assistants provided help with menu selection; Nursing staff facilitated meal service		
Yes	1551 kcal and 49 g protein\(^a\)	—	Bf: 8 am Lunch: 12 pm Dinner: 5 pm	—	—		
	2270 kcal and 70.3 g protein\(^b\)	—	—	—	Staff available when assistance required		
Yes	7450 KJ and 85 g protein\(^b\)	—	—	Bedside dining	—		
No	~2000 kcal and ~90 g protein\(^b\)	—	Bf: 8.15 am Lunch: 12.15 pm Dinner: 6.00 pm	Bedside dining in medical wards Aged care wards had bedside dining	—		
	—	—	—	Communal Dining room Nursing staff and orderlies present during meal service to perform service and provide assistance (average patient-to-provider ratio: 8.9, 95% CI: 8.7–9.2)	—		
	1 L water jugs offered 1-2x/day, fluids from trolley offered 5-5x/day	—	—	—	—		
	—	—	—	—	—		
	—	—	—	—	—		

\(^a\) Energy and protein provided.
\(^b\) Fluid provision.
Reference	Foodservice systems	Menu			
	Food production	Distribution	Meal patterns	timing of meal choice	Menu cycle
Lorefält et al. (2005)	–	–	3 main meals, 2 mid meals	–	–
Markovski et al. (2017)	–	–	–	–	–
Mathiesen et al. (2021)	–	–	–	3 weeks	
Murray et al. (2015)	–	–	–	–	–
Nip et al. (2011)	–	–	–	–	–
O’Hara et al. (1997)	–	–	–	–	–
Ogawa et al. (2021)	–	–	3 main meals	–	–
Shimizu et al. (2018)	–	–	–	–	–
Sidenvall (1999),	–	–	Decentralized plating	–	–
Sidenvall et al. (1994),					
Sidenvall et al. (1996)					
St-Arnaud-McKenzie et al. (2004)					
Walton et al. (2007) and Walton et al. (2013)	Cook chill	–	–	–	
	–	–	–	–	–
Cook fresh					
Cook fresh					
Williams et al. (2011)	–	–	3 main meals, 3 mid meals	–	–
Wright et al. (2010) and Wright et al. (2013)	Cook-freeze	–	–	One day ahead of service	
	–	–	Decentralized	One day ahead of service	One week
	Cook-fresh	–	Decentralized	One day ahead of service	One week

Note: Data are derived based on the standard care described in papers, interventions or special diets were not used in descriptions. Some papers included descriptions of multiple rehabilitation sites, each new line represents a unique rehabilitation site. Where one rehabilitation site was described across multiple publications, these were grouped together to avoid overrepresentation.

a Based on patient data.
b Based on foodservice data.
c Two wards reported on, however unable to distinguish systems used in each to report on separately.
Menu choice offered	Energy and protein provided	Fluid provision	Mealtimes	Eating environment	Mealtime assistance
No	2150 kcal\(^a\)	—	Bf: 8 am	Bedside dining	—
		—	Lunch: 12 pm		—
		—	Dinner: 5 pm		—
No	1 L water jug 1x/day, 150-250ml drinks provided 6x/day	—	—	Communal and Bedside dining available	—
Yes	6500kJ and 65g protein\(^a\)	—	—	—	—
No	1600kcal and 55g protein\(^a\)	—	—	—	—
No	—	—	—	Communal dining for all meals	—
—	10,103kJ +95g protein\(^a\)	—	—	—	—
—	—	—	—	—	—
—	—	—	—	—	—
Yes	1760kcal and 68g protein\(^a\)	—	—	—	—

Note: Data are derived based on the standard care described in papers, interventions or special diets were not used in descriptions. Some papers included descriptions of multiple rehabilitation sites, each new line represents a unique rehabilitation site. Where one rehabilitation site was described across multiple publications, these were grouped together to avoid overrepresentation.

\(^a\) Based on patient data.

\(^b\) Based on foodservice data.

\(^c\) Two wards reported on, however unable to distinguish systems used in each to report on separately.
TABLE 4 Proportion of included study participants on different hospital diet codes

Reference	Full (%)	High protein/high energy (%)	Vegetarian (%)	Texture modification* (%)	Therapeutic modification* (%)	Combination (%)	Nil by mouth (%)
Collins et al. (2017)	54.1	—	1.6	9.8	34.4	—	—
Collins et al. (2019)	54	—	—	5	41	—	—
Iyer et al. (2018)	84	—	4	2	10	—	—
Markovski et al. (2017)	27	29	—	3	33	9	—
Monou et al. (2020)	84.7	11.5	—	—	—	—	3.8
O’Hara et al. (1997)	35	—	—	15	39	11	—
Shimizu et al. (2018)	65.4	—	—	34.6	—	—	—
Walton et al. (2007)	40	13	—	13	—	34	—
Wright et al. (2010)*	72.5	4.5	—	4.8	15.4	—	—

*Texture modification refers to soft and bite sized, minced and moist, and pureed according to International Dysphagia Diet Standardization Initiative.

Therapeutic modification refers to sodium, potassium, phosphate, diabetic diets, fluid restriction and other restrictions.

2.9% of participants were not sure of diet code, or item was missing from the survey.

measures of functional ability (n = 6), therapy time (n = 1) and index of rehabilitation efficiency (n = 1). Clinical outcomes were reported in four publications and comprised length of stay, urinary tract infection, dehydration/hypernatremia, constipation, stool frequency, use of laxative therapy, abdominal discomfort and discharge destination. Psychological outcomes included quality of life (n = 1) and psychosocial changes (n = 1). Health service outcomes covered cost assessments (cost of implementation and cost efficiency assessment) (n = 2). Table 5 displays outcome details of each study and key results.

Three qualitative studies reported over seven papers (Baptiste et al., 2014; Jong et al., 2021; Ottrey et al., 2018, 2019; Sidenvall, 1999; Sidenvall et al., 1994; Sidenvall et al., 1996) and one mixed-methods study (Mathiesen et al., 2021) discussed outcomes related to the eating environment (n = 8). Attitudes and perspectives, and actions and behaviours were explored in three studies each, and values and beliefs were explored in two studies. Six publications reported on two separate ethnographic studies investigating mealtime culture, environment and relationships. Two further publications utilized semi-structured interview methods to discuss perspectives on the mealtime environment, specifically the physical location (Baptiste et al., 2014), and the acoustics and presence of background music in the communal dining space (Mathiesen et al., 2021). One of the ethnographic studies collected data from the staff perspective, including all healthcare staff, visitors and volunteers, involved in nutrition care or were present during mealtimes (Jong et al., 2021; Ottrey et al., 2018, 2019). The other ethnographic study examined both patient and staff perspectives, for which the latter involved nursing and orderlies (Sidenvall, 1999; Sidenvall et al., 1994, 1996).

5 | DISCUSSION

The aims of this review were to identify the variety of foodservice systems underpinning mealtime care in the rehabilitation setting and to collate the breadth of outcome measures used in this setting. The findings from the 37 included publications indicated rehabilitation settings utilized a range of different models of care with varying combinations of foodservice systems. No study provided a complete description of the foodservice system and mealtime care, with areas including specific mealtime care activities performed and waste management omitted. Overall, mealtime care appeared to be provided in an unstructured manner on an ad hoc basis, primarily by nursing staff. Most studies were observational descriptive studies (n = 28), with few (n = 9) focusing on interventions. Importantly, of these intervention studies, all were aimed at improving nutritional intake through menu or mealtime environment and care modifications, with few (n = 3) focusing on how these changes impacted patients’ rehabilitation outcomes. It remains unclear whether changes to foodservice systems influence rehabilitation outcomes for patients, highlighting a clear gap in the literature.

Health service delivery is typically informed by evidence from the published literature or local ‘best practice’ guidelines. However, in the rehabilitation setting, the scientific evidence base for foodservice is limited and often extrapolated from other settings or based on expert opinion (Queensland Health, 2020). Most studies (75%) reported the use of decentralized bulk service plating, which is considered best practice in relation to improved nutritional intake with point of service meal ordering and provision (Kelly, 1999; Mahoney et al., 2009; Wilson et al., 2001). The use of hospital menus with variable amounts of choice and ordering 1–3 days ahead of service were not in line with best practice or available evidence from other hospital settings. Latest evidence from the acute care setting indicates visual or spoken order collection at the point of service using electronic systems is associated with better nutritional intake, decreased waste and higher levels of patient satisfaction (MacKenzie-Shalders et al., 2020; Mahoney et al., 2009; Maunder et al., 2015; Ottrey & Porter, 2017). Both production and plate waste are important feedback mechanisms within the foodservice system, with higher rates demonstrating significant implications for the nutritional
Table 5: Included studies outcome measures and key outcomes

Reference	Foodservice domain	Outcomes/measures	Results
Bannerman et al. (2016)	Foodservice systems; Menu; eating environment	Nutritional outcomes; Intake measured through weighed plate waste	Hospital A - provision of 1760 kcal 68 g protein and consumption of 1349 kcal 51 g protein; Hospital B - provision of 1251 kcal 41 g protein and consumption of 990 kcal 32 g protein; Hospital C - provision of 1551 kcal 49 g protein and consumption of 1087 kcal and 35 g protein. Patients consumed on average 74% of food provided to them, regardless of provision amount.
Baptiste et al. (2014)	Eating environment	Foodservice outcomes; semi-structured interviews	Themes related to ‘factors influencing dining location’, ‘benefits of communal dining room’, ‘benefits of bedroom dining’ and ‘preferences for dining location’.
Barton et al. (2000)	Menu; eating environment	Nutritional outcome; Intake measured through weighed plate waste	The fortified menu provided 332 kcal ($p < 0.001$) + 2.1 g protein more than the normal menu, and the cooked breakfast menu provided 365 kcal ($p < 0.001$) + 12.8 g protein ($p < 0.05$) more than normal menu. The fortified menu had statistically significant reductions in plate waste of 281 g (27%) compared to 420 g (34%) and 420 (36%) in the normal and cooked breakfast menu, respectively.
Campbell et al. (2013)	Foodservice system	Nutritional outcomes; Intake assessed via dietitian analysis of food charts, weight change	Traditional supplements yielded no significant changes, however when assessed by kcal/kg and percentage of total requirements proved to be more efficacious (107 ± 26, 128 ± 35%) ($p = 0.003$) compared to mid-meal trolley; MedPass increased overall QoL by 12.4 points ($p < 0.05$), intake was higher than mid-meal trolley (109 ± 28, 126 ± 38%) ($p < 0.001$); Mid-meal trolley had higher satisfaction, improved QoL on the EQ-Index by 0.31 points ($p < 0.05$) and was the most cost efficient ($0.81/100 kcal consumed), however patients did not meet energy or protein requirements (85 ± 25, 88 ± 26%).
Collins et al. (2017)	Foodservice systems; menu	Nutritional outcome; Weight change, energy and protein intake measured via visual estimation of plate waste Rehabilitation outcome; Hand Grip Strength (HGS) measured with hand dynamometer; functional ability measured via Functional Independence Measure (FIM) tool Foodservice outcome; Foodservice Satisfaction measured via the Acute Hospital Foodservice Satisfaction Questionnaire (AHFSQ) Clinical outcomes; Length of Stay (LOS), discharge destination Health service outcome; Cost of implementation	Weight change - 1.4 vs 1.7 kg ($p = 0.798$); Energy intake - 7217 kJ/day vs 7795 kJ/day ($p = 0.218$), 105 kJ/kg/day vs 132 kJ/kg/day ($p = 0.003$); Protein intake - 76 g/day vs 80 g/day ($p = 0.598$), 1.1 g/kg/day vs 1.4 g/kg/day ($p = 0.035$); HGS - 1.4 kg vs 1.7 kg ($p = 0.798$); Foodservice Satisfaction - high in both groups with no significant difference between groups for food quality ($p = 0.743$), meal service ($p = 0.599$) or staffing and service ($p = 0.816$) scores, however physical environment was significantly higher in the intervention group ($p = 0.013$); Discharge Destination - discharged to higher level of care intervention $n = 23$, 53.5%; control $n = 20$, 43.5%, $p = 0.345$; Cost of implementation - £4.15/participant/day, consisting of labour (1.25 h/day for 16 participants costing £16.94/day) and food and drink costs (£3.09/participant/day cost difference between a default intervention and standard menu). Linear regression modelling for FIM - $R^2 = 0.098$, adjusted $R^2 = 0.047$, SEE = 13.391; and LOS - $R^2 = 0.134$, adjusted $R^2 = 0.086$, SEE = 13.844

(Continues)
Reference	Foodservice domain	Outcomes/measures	Results
Collins et al. (2019)	Foodservice systems; menu; eating environment	Nutritional outcome; Intake measured via visual estimation of plate waste	Admission vs day 14 (n = 39): 6177 (1879) kJ + 63.7 g vs 7213 (1903) kJ + 76.4 (23) g (p < 0.001, p = 0.003, respectively). Admission vs day 14 vs day 28 (n = 12): 6021 (2392) kJ/day + 58.4 (30.4) g vs 048 (2379) kJ/day and 57.3 (24.8) g vs 6431 (2656) kJ/day and 69.4 (32.8) g (p = 0.099, p = 0.129)
Donini et al. (2008)	Foodservice system; menu; eating environment	Foodservice outcomes; Objective measures: meal order accuracy, proper distribution of food, route time, food weight, food temperature; plate waste and quantitative/qualitative errors	572 meals (objective) and 591 interviews (subjective) were completed in total over the 5 years. Results are reported as 2002 vs 2006 results. OBJECTIVE: Significant reductions in errors for food weight portioned in both regular and therapeutic diets for lunch and dinners in first course (R:16.2% vs 2.5%, T:40.2% vs 5%) and second course (R:17.8% vs 7.5%, T: 50.8% vs 7.5%), increases in errors for regular diets with side dish (16.8% vs 25%), bread (1.3% vs 5%) and fruit (1.3% vs 17.5%). No significant changes in qualitative errors, however substantial differences between ‘no respect for timetables’ (2.8% vs 39%) and ‘improper trolley supply’ (87.5% vs 28.3%). Temperature significantly increased for regular diets in the first (39.1°C vs 70.6°C) and second (35.2°C vs 51°C) courses, and in therapeutic diets for first course (32.2°C vs 53.2°C) and second course (38.3°C vs 48.2°C), however significantly decreased in the therapeutic side dish (62°C vs 46.3°C). SUBJECTIVE: Significant increases to proportion of patients satisfied with variability of menus (4.3% vs 44.8%, p < 0.05), presentation of dishes (22.2% vs 37.9%, p < 0.05), satisfaction with utensils (9.6% vs 69%, p < 0.05), optimal food temperature (41.2% vs 75.9%, p < 0.05), well-cooked food (35.3% vs 56.6%, p < 0.05), hygienic service (32.2% vs 75.9%, p < 0.05), and overall rating of day of survey completions food (18.1% vs 48.3%, p < 0.05) and significant decreases were shown in satisfaction with consideration of place of meals (64% vs 48%, <0.05), timeliness of meal distribution (79.6% vs 72.4%, p < 0.05), quantity of salt (63.3% vs 41.4%, p < 0.05)
Dubé et al. (2007)	Foodservice system; eating environment	Clinical and psychological outcome; Interpersonal behaviour - assessment based on the Interpersonal Circumplex Model for bidirectional behaviour between staff and patients was recorded. Nutritional outcome; Food intake via visual estimation using the Comstock scale Hunger scored on continuous visual analogue scale with sliding rules	N = 1420 meals observed. Meals with more frequent interpersonal behaviours demonstrated more positive deviations from protein and energy intake (0.087, CI 0.013, 0.161, p = 0.022). Participant’s agency score was associated with positive deviations from protein (0.321, CI 0.045, 0.596, p = 0.023) and energy (6.702, CI 0.864, 12.540, p = 0.025). Greater communion behaviours shown by both patients and providers resulted in positive deviations from protein intake (0.230, CI 0.050, 0.410, p = 0.013)
Gaff et al. (2015)	Menu	Nutritional outcome; Intake was measured by deducting any leftover fluids in patients’ cups and deducting from the provision amount.	Mean overall fluid provision = 2379 (82) ml, from jugs = 1396 (54) ml, from trolley beverages = 956 (44) ml Mean overall consumption = 1032 (60) ml, from jugs = 514 (36), ml, from trolley beverages = 770 (46) ml
Reference	Foodservice domain	Outcomes/measures	Results
----------------------------	--------------------	-------------------	---
PASHLEY et al. (1999)	Menu	Nutritional outcomes; Fluid and fibre content assessed using Englyst and Southgate methods, intake measured via weighed plate waste	Englyst method shows that the normal diet provides adequate fibre, the soft diet does not. No patient met the recommended intake of 18 g fibre/day. Fluid intake of two patients was unsatisfactory
Iyer et al. (2018)	Foodservice systems; menu	Nutritional outcomes; Nutrition knowledge measured through General Nutrition Knowledge Questionnaire-Revised (GNKQ-R), dietary intake assessed via visual estimation of plate waste.	Overall mean GNKQ-R score of 59 (69%) out of 85
Jong et al. (2021)	Eating environment	Foodservice outcome: ethnographic observations and interviews	Themes related to ‘benefits to patients’, ‘logistical and practical limitations’ and ‘supportive cultural factors’
Kozica-Olenski et al. (2021)	Menu; eating environment	Foodservice outcome: Mealtime experiences measured using validated mealtime experience tool were administered to patients	3 (8%) had difficulties in food choice, 1 (3%) reported difficulties in organizational barriers, 0 reported difficulties in hunger, 5 (13%) reported difficulties with physical assistance, 3 (8%) reported difficulties with food quality. Rehabilitation patients' highest reported item was 'I have difficulty opening packets and unwrapping food' (n = 13, 32.5%) and 'Choosing the right food is difficult because menu staff do not provide enough information about options' (n = 9, 22.5%)
Lorefält et al. (2005)	Menu	Nutritional outcome; Intake assessed via 3-day food records	Standard Hospital (SH) menu - average intake of 1864±513 kcal/day, 562±133 kcal/lunch, 391±123 kcal/supper, 70% had intake <80 g/p/day, 6 patients had intake below requirements; energy and protein-enriched (EPE) menu - 2562±490 kcal/day, 794±171 kcal/lunch, 822±196 kcal/supper, 90% had intake >80 g/p/day; comparison - Daily energy intake higher in EPE menu (2562±490 kcal/day) than SH menu (1864±513 kcal/day) (p < 0.01) and protein intake was significantly higher in EPE menu (~90 g/day) than the SH menu (~75 g/day) (p < 0.05)
Markovski et al. (2017)	Eating environment	Nutritional outcome; Intake measured via visual estimation of plate waste	Intake (CD vs BD); Overall - 2158.3kJ (813) + 28.2 (13.3) vs 1723.1 (872.8) + 22.5 (14.3), difference of 435kJ (136.4, 734) + 5.7 (1.3, 10.2), p = 0.006 + 0.01; Dining location preference: dining room 23 (68%), bedside 7 (23%), both 1 (3%), either 1 (3%), unsure 1 (3%)
Mathiesen et al. (2021)	Eating environment; menu	Nutritional outcomes; weighed plate waste Overall sound pressure level; Mealtime Behaviour; social interaction on a 5-point Likert scale from no (1) to lots of interaction (5), influence of intervention on behaviour on a 5-point Likert scale from negative (1) to positive (5), with the midpoint as neutral (4)	Food Intake (Phase 1 vs Phase 2 vs Phase 3): 334.906 (107.87) g vs 359.7 (99.83) g vs 338.5 (100.31) g. Fluid Intake: 282.42 (60.89) ml vs 327.61 (143.42) ml vs 342.23 (89.32) ml. Sound pressure: dB(A) = 64.49 vs 62.47 vs 62.9, dB(C) = 67.85 vs 65.53 vs 66.7. Social Interaction: 4.77 (0.95) vs 4.30 (1.49) vs 4.6 (0.84). Behavioural response to intervention: 3 vs 4.52 (0.79) vs 4.9 (0.3). Themes related to ‘music panels enhance inter-patient and staff communication’, 'acoustic panels enhance physical environment aesthetics and promote ‘cosiness’ and pleasantness’, ‘music enhances the physical environment, prolongs meal duration, and the social aspects of the meal activity’ and ‘patient and staff views on music in hospital settings’
Reference	Foodservice domain	Outcomes/Measures	Results
-------------------------	--------------------	--	---
Monou et al. (2020)	Menu	Nutritional and Foodservice Outcomes;	Nutritional Status: 33.33% malnourished, 6.67% at risk. Food Intake: 70% of patients consumed almost all their breakfast, 20% consumed half, 10% consumed very little (<1/4) or nothing. 66.7% of patients consumed almost all their lunch, 20% consumed half, 13.3% consumed very little (<1/4) or nothing. 66.7% of patients consumed almost all their lunch, 13.3% consumed half, 20% consumed very little (<1/4) or nothing. 60% of patients consumed food that was not offered by the hospital. Amongst patients consuming little (<1/4) or nothing, 30% declared that they did not like the kind of food offered, 30% that they did not like the smell/taste, 25% that had anorexia, 5% had problems chewing/swallowing and 5% that the food offered was not adhering to their religious beliefs.
		Food intake, nutritional status, nutritional risk parameters and reasons for poor food consumption measured via a modified ESPEN Nutrition Day Questionnaire	
Murray et al. (2015)	Menu	Nutritional outcome; Fluid consumption assessed by recording all beverages consumed	Mean fluid intake of who cohort 1504 ml (359 ml). For those with a weight documented only 4 (7.3%) reached required fluid intake, on average participants achieved 67% of their required intake.
		Clinical and psychological outcome; Hydration status was assessed via biochemical analysis for blood urea nitrogen (BUN) and creatine ration, a BUN/Cr ratio of >20 was used as the cut-off for dehydration, recorded at day 0 and 7, dehydration-related adverse outcomes of dehydration, hypernatraemia, urinary tract infection and constipation were retrieved from medical notes	
Nip et al. (2011)	Menu	Nutritional outcome; Nutritional status assessed via Mini-Nutritional Assessment (MNA) and anthropometric indices Nutritional outcome; Nutritional Intake assessed via weighed diet records Rehabilitation outcome; functional ability assessed by the change in Barthel Index (BI) score collected from medical records between admission and discharge, and the Rehabilitation Efficiency index	Nutritional Status - 27% on admission and 13% on discharge classified as well-nourished, overall MNA scores decreased from 21.5 (19.6–24.0) to 19.7 (18.0–23.0) from admission to discharge, p = 0.005. Nutritional Intake - overall intake of 5792 (2883) kJ + 53.6 (20.4) g protein on admission, and for those with data at both time points nutritional intake increased by a mean of 335 kJ + 1.4 g protein per day, however this was not significant (p = 0.451, p = 0.285). 10% at both admission and discharge had adequate energy intake, 55% at admission and 61% on discharge met required nutrient intake of protein.
O’Hara et al. (1997)	Menu; eating environment	Foodservice outcome; Foodservice satisfaction measured using a hospital department-developed satisfaction survey with 8 items related to aspects of food and foodservices (Q1) presentation of meals, (Q2) taste of food, (Q3) Is hot food hot, (Q4) Is cold food cold, (Q5) temperature of tea/coffee, (Q6) accuracy of meal trays, (Q7) quantity of food, (Q8) overall satisfaction) All items except Q7 were scored from 1 to 5. For Q1, Q2 and Q3, 1 = very poor and 5 = excellent. For Q4, Q5 and Q6, 1 = never and 5 = always. For Q7, 1 = too much/not enough and 2 = just enough	N = 40 was less/not satisfied, and n = 21 were very satisfied with the overall foodservices. Individual item scores for less/not satisfied participants' responses: (Q1) 3.9 ± 0.8, (Q2) 3.4 ± 0.9, (Q3) 3.7 ± 1.1, (Q4) 3.9 ± 1.1, (Q5) 4.0 ± 1.0, (Q6) 3.8 ± 1.0, (Q7) 0.6 ± 0.5. Individual item scores for satisfied: (Q1) 4.5 ± 0.6, (Q2) 4.3 ± 0.9, (Q3) 4.6 ± 0.9, (Q4) 4.8 ± 0.7, (Q5) 4.6 ± 0.9, (Q6) 4.5 ± 0.9, (Q7) 0.6 ± 0.5. Meal presentation was only item found to predict overall satisfaction explaining 26% of variance (F = 17.6, p < .001). Logistic regression identified taste of food (Q2) and cold food cold enough (Q4) as predictors of overall satisfaction.
Reference	Foodservice domain	Outcomes/measures	Results
----------------------------	--------------------	--	---
Ottrey et al. (2018)	Eating environment	Foodservice outcomes; ethnographic observations and interviews regarding the eating environment	Themes related to the 'system', 'patient-centredness' and the 'disharmonious interrelationship between patient-centredness and system’
Ottrey et al. (2019)	Eating environment	Foodservice outcomes; ethnographic observations and interviews regarding the eating environment	Themes related to ‘defining mealt ime roles and maintaining boundaries’, ‘balancing the need for teamwork and having time and space’ and ‘effective communication supports role completion and problem-solving’
Patch et al. (2003)	Waste	Foodservice outcome; Wastage estimated by nutrition assistant using a clear cup calibrated into 10 ml increments	Differences were observed in intake between snack and meal times for both the commercial supplement (37.9 ± 11 ml and 168.7 ± 12 ml, p < 0.01) and domestically made supplement (17.3 ± 10 ml and 167.2 ± 11 ml, p < 0.01). No significant difference observed between supplement types. A total of 1500 ml of fluids provided to each patient per day, of this 37% was consumed by patients receiving the commercially prepared product and 41% consumed by patients receiving domestically prepared product
Porter et al. (2017)	Eating environment	Nutritional outcome; Intake measured via visual estimation of plate waste, nutritional status measured via Subjective Global Assessment (SGA) Rehabilitation outcome; HGS measured with hand dynamometer within 24 h of SGA and intake assessment, functional ability via Functional Independence Measure (FIM) score attained from medical records	Intake - control intake 6532 ± 2328 kJ + 67.0 ± 25.2 vs intervention intake 6479 ± 2486 kJ + 68.6 ± 26.0 g protein. Intervention deficits from requirements for control 1392 ± 3037 kJ + 7.1 ± 32.1 g protein and intervention 1116 ± 2967 kJ + 2.6 ± 30.1. Protected Mealt ime Fidelity - Positive interruptions (C) n = 805 for 18 (5–50) s vs (I) N = 1016 for 20 (8–52) s; negative interruptions (C) n = 579 for 50 (23–132) s vs (I) n = 477 for 54 (23–140) s. Themes related to
Porter, Wilton, et al. (2016)	Eating environment	Foodservice outcome; Mealtime assistance determined by observers as participants who were unable to complete any aspect of the meal set-up or self-feeding independently, recorded as yes/no per meal service, Interruptions were recorded for each meal service as yes/no, timed with a stopwatch, and categorized as positive if related to encouragement of intake, and negative if hindered food intake. Nutritional outcome; Food intake was measured using the one-quarter portion method of plate waste analysis	N = 40 participants required mealtime assistance, of which 37 (92.5%) received assistance at every meal where it was required and the remaining 3 (7.5%) received assistance only some of the times or none of the times where it was required. N = 59 (59%) of participants had positive interruptions for an average time of 6.3 (3–19) min/participant/ per day. N = 60 (76.2%) of participants had negative interruptions for an average time of 5.4 (2.6–11.3) min/participant/day. Mean intake of 5900 ± 2074 kJ and 62.9 ± 22.4 g protein meeting 78.7 ± 31.3% of energy requirements and 89.9 ± 39.7% of protein requirements
Shimizu et al. (2018)	Menu	Nutritional outcome; Nutritional status assessed via BMI and MNA-SF, Nutritional intake assessed by dietitian using food records, body composition assessed via DEXA Rehabilitation outcomes; functional ability assessed by FIM score	Nutritional Status (well-nourished/at risk/ malnourished): Normal - 14 (11.4%)/65 (52.8%)/44 (35.8%), ANT - 1 (2.3%)/17 (39.5%)/25 (58.1%), TMD - 0 (0.0%)/9 (40.9%)/13 (59.1%). Nutritional Intake: Normal - 1346.5 ± 372.3 kcal + 46.3 ± 13.3 g pro, ANT - 1169.3 ± 324.2 kcal + 40.7 ± 11.8 g pro, TMD - 956.8 ± 408.5 kcal + 33.1 ± 13.9 g pro
Sidenvall et al. (1994)	Eating environment	Foodservice outcomes; ethnographic observations and interviews regarding the eating environment	Themes identified related to ‘nursing intentions’ for independent and dependent patients, and ‘patient experiences’ for those who eat with ease, have moderate eating difficulties, and severe eating difficulties
Reference	Foodservice domain	Outcomes/measures	Results
--------------------	--------------------	--	--
Sidenvall et al. (1996)	Eating environment	Foodservice outcomes; ethnographic observations and interviews regarding the eating environment	Themes identified related to ‘mind your manners’, ‘appetite for food’ and ‘be contented and do not complain’
Sidenvall (1999)	Eating environment	Foodservice outcomes; ethnographic observations and interviews regarding the eating environment	Themes identified related to ‘elderly patients’ cultural values’, ‘nurses and institutionalized culture’, ‘joint cultural ideas’, elderly patients lost habitus’, ‘nurse’ habitus at meals’, and ‘defective nursing’
St-Arnaud-McKenzie et al. (2004)	Eating environment	Nutritional outcome; Energy and protein intake measured via visual estimation of leftovers using Comstock scale, nutritional status assessed by Thomas’s Protein-Energy Malnutrition Index Clinical and psychological outcomes; cognitive status assessed by Mini-Mental State Examination (MMSE) and depression assessed by Geriatric Depression Scale-15. Clinical variables - self-reported appetite (1 = good/normal, 0 = diminished), Rehabilitation outcomes; Functional status assessed by the Functional Independence Measure (FIM), severity of impairment assessed by treating team using the Cumulative Illness Rating Scale and use of multiple medications	N = 1477 meals observed. Inverse correlation of hunger and aversion was low (r = −0.113, p = 0.001). Hunger and aversion uniquely contributed to food intake (p = 0.017 and p = 0.032, respectively). Protein intake was more sensitive to feelings of hunger and aversion (BIC = −4764). Hunger directly related to perception of being in good physical health (r = 0.21, p = 0.001) and in a good mood (r = 0.26, p = 0.001). Pain correlated with aversion (r = 0.17, p = 0.001)
Walton et al. (2013)	Eating environment	Foodservice outcomes; Eating location recorded as in bed, bedside or at dining room, mealtime assistance recorded as who provided assistance and how many times assistance at meals was provided. Negative and positive influences were calculated as percentage of each type of influence observed for each meal service. Meal timings were recorded as time taken from tray delivery to when patient starts to eat, and time taken to eat meals. Questionnaire was administered to 11 patients, 10 nurses and 1 doctor	Eating location: bedside was most popular at breakfast, dining room most popular at lunch, similar preference for bedside and dining room for dinner. Breakfast was the most negatively influenced meal (40% from difficulty with packaging, 34.5% from medication round, 22% from inappropriate positioning of patient/tray), similar levels of negative influences at lunch and dinner. Nutrition assistants provided the most positive influence at breakfast (14.5%), dietitian at lunch (10%) and visitors at dinner (38%). Occasions of mealtime assistance provided by nursing staff (61), food service assistant (14), visitors (8) researchers (7) and other patients (3). Breakfast took on average 4.5 min (±7.9) to commence (p = 0.040). Each meal took roughly 20 min to consume. Packages. 40% of patients preferred to eat in a dining room
Walton et al. (2007)	Foodservice systems; menu	Nutritional outcome; Provision of energy and protein from hospital meals was assessed through recording of food items ordered by patients from the tray tickets and comparison to energy and protein provided as determined through assessment of standard serves nutrient analysis. Intake assessed via weighed plate waste. All supplements provided to patients were commercially prepared with known weights and nutrient composition, leftover amounts were deducted from that provided to assess consumption	Energy and protein provided 10,103 kJ (±2686) + 95 g (±32) vs 7029 kJ (±2233) + 67 g (±25) energy and protein consumed, difference of 3074 kJ + 28 g protein (p = 0.000), reflecting ~70% consumed of what was ordered
status of patients, financial and environmental concerns (Edwards & Hartwell, 2003; Williams & Walton, 2011). No studies provided detail on production waste management, highlighting a significant gap in the monitoring of foodservice system sustainability. Integrating sustainable practices into hospital foodservice systems is becoming increasingly important to support both human and environmental health (Carino et al., 2020; Huang et al., 2011). Based on findings in this review, rehabilitation units are providing foodservice systems supported by some evidence-based recommendations, however this is conducted inconsistently. Our findings have international application for facilities delivering rehabilitation care to increase menu choice and reduce timing between meal orders and meal services.

Most rehabilitation units provided both bedside and communal dining, with most of the mealtime care provided by nursing staff. One paper reported on staffing ratios during meal services (Dubé et al., 2007), and there was no clear indication of the type of care provided to patients at mealtimes. Whilst evidence for communal dining is limited, results typically indicate a preference for its use in rehabilitation to promote the return to a homelike situation, and for its benefits in supporting nutrional intake and socialization (McLaren-Hedwards et al., 2021). The dining location for rehabilitation patients can influence access to mealtine care. The complexity of activities involved in the mealtine process for patients in rehabilitation settings who have physical limitations is highlighted in the literature (Westergren et al., 2001; Westergren, Ohlsson, et al., 2002). There is a clear need for rehabilitation patients to receive supportive mealtime care to promote return of their functioning and independence, however it is unclear if this is being done in practice.

Qualitative studies reviewed identified independence and dignity is paramount to the psychological well-being of patients (Baptiste et al., 2014; Sidenvall et al., 1994, 1996). Furthermore, patients welcome mealtimes that support their limitations without impeding their independence (Jonsson et al., 2021). This review also suggested that mealtime care provided by staff may be mismatched to patients’ needs, resulting in completing tasks for patients, rather than supporting patients to complete the tasks themselves (Ottrey et al., 2018). Similarly, review findings identified a lack of clarity in

TABLE 5 (Continued)

Reference	Foodservice domain	Outcomes/measures	Results
Williams et al. (2011)	Foodservice systems; menu	Nutritional outcome; Provision and consumption of energy and protein was assessed via weighed plate waste over a 24 hr period. Snack consumption and provision was measured via visual observation	1760 (67) kcal +68 (2.6) g protein was provided to patients and 1349 (63) kcal +51 (2.4) g protein was consumed. Breakfast - 397 (15) kcal +9 (0.4) g protein provided and 316 (18) kcal +8 (0.5) g protein consumed. Lunch - 510 (25) kcal +23 (1.1) g protein provided and 380 (26) kcal +17 (1.1) g protein consumed. Dinner - 511 (20) kcal +28 (1.3) g protein provided, and 350 (17) kcal and 20 (1.2) g protein consumed. Snacks - 342 (30) kcal +8 (0.9) g protein provided and 310 (26) kcal +7 (0.8) g protein consumed
Wistten and Messner (2005)	Menu	Clinical and psychological outcome; Stool frequency and laxative use were recorded by ward staff as per protocol. Discomfort was self-reported following a visual analog scale from 0 to 10	Days of defaecation without laxatives: 10.7 (SD 4.1) vs 3.2 (5.5) p = 0.003; Days with defaecation with laxatives (osmotic/stimulant): 0.8 (SD 1.9) vs 5.2 (SD 4.4), p = 0.009. Discomfort: 2.5 (SD 1.8) vs 5.6 (SD 2.6) p = 0.008
Wright et al. (2010)	Foodservice systems; menu	Foodservice outcome; Foodservice satisfaction measured using 61 items on foodservice attributes tested rated on a 5-point Likert scale with a score of 5 representing ‘always’ and a score of 1 representing ‘never’	18 items about foodservices grouped into four factors of ‘Meal Quality and Enjoyment’ (α = 0.91), ‘Autonomy’ (α = 0.64), ‘staff consideration’ (α = 0.79), ‘hunger and food quantity’ (α = 0.67) and an additional 6 items analysed individually. The short version (24 items) explains 64% of variance in foodservice satisfaction
Wright et al. (2013)	Foodservice systems; menu	Foodservice outcomes; Influence of appetite, timing and amount of meal choice, menu selectivity, menu cycle, production system, meal delivery system and therapeutic diets on foodservice satisfaction	Patient and resident appetite (p < 0.01), the amount and timing of meal choice (p < 0.01), self-rated health (p < 0.01), accommodation style (p < 0.05) and age (p < 0.10) significantly moderated foodservice satisfaction. High protein/high energy therapeutic diets (p < 0.01), foodservice production (p < 0.01) and delivery systems (p < 0.01) were significant moderators for those with ‘fair’ self-rated health

Abbreviations: AHFSQ, Acute Hospital Foodservice Questionnaire; BI, Barthel Index; BMI, Body Mass Index; DEXA, Dual Energy X-Ray Absorptiometry; EPE, Energy and Protein Enriched; FIM, Functional Independence Measure; GNKQ-R, General Nutrition Knowledge Questionnaire-Revised; HGS, Handgrip Strength; LOS, Length of Stay; MMSE, Mini-Mental State Exam; MNA-SF, Mini Nutrition Assessment-Short Form; QoL, Quality of life; SGA, Subjective Global Assessment; SH, Standard Hospital.
the description of mealtime care activities, their intended purpose and importantly, the lack of interdisciplinary presence at mealtimes (Bannerman et al., 2016; Barton et al., 2000; Dubé et al., 2007; Kozica-Oleniski et al., 2021; Porter, Haines, et al., 2016; Porter, Wilton, et al., 2016; Walton et al., 2013). Communication between disciplines in coordinating patients’ care is an essential practice, however this review identified no studies reporting on interprofessional practice or communication to support mealtime care. There is a need to clearly define the role of nursing and other staff groups at mealtimes regarding their involvement in more structured, routine provision of mealtime care, communication of patient care needs, and ensuring mealtime care practices are in line with rehabilitation goals of care.

Mealtime experiences were explored across multiple studies included in this review, from both staff and patient perspectives (Baptiste et al., 2014; Jong et al., 2021; Kozica-Oleniski et al., 2021; Mathiesen et al., 2021; Ottrey et al., 2018, 2019; Porter, Haines, et al., 2016; Porter, Wilton, et al., 2016; Porter et al., 2017; Sidenvall, 1999; Sidenvall et al., 1994, 1996; Walton et al., 2013). An incongruence between what the system can provide and what patients need has been highlighted as a prominent issue across the qualitative studies. It was reported that patients often felt they needed to adapt to the system, rather than have the system be designed in a way that was best suited towards their needs (Ottrey et al., 2018). Whilst the structure and regimented process-driven work schedule is necessary for smooth and efficient work processes, it can often conflict with person-centred care (Olufson et al., 2021). This is a long-held issue, identified within two ethnographic studies demonstrating that healthcare decisions are largely driven by healthcare professionals rather than patients (Sidenvall, 1999; Sidenvall et al., 1994, 1996), and these system practices have not kept up with the paradigm shift in healthcare towards person-centred care (Ottrey et al., 2018).

Studies were commonly (43%) conducted with the aim of describing or improving nutritional intakes of the rehabilitation population, indicating nutritional intake is a key outcome across foodservice and mealtime care studies in rehabilitation. Included studies from this review demonstrated inadequate nutritional intake in the rehabilitation setting is still highly prevalent, although at varying degrees of inadequacy. Importantly, this review has identified that assessing the efficacy of interventions on overall nutritional intake alone makes it difficult to identify clinically relevant changes to intakes. Studies conducted by Collins et al. (2017), Campbell et al. (2013) and Porter et al. (2017) all showed insignificant differences in overall intake with their interventions, however when intake was evaluated against requirements or with consideration of body weight, results showed significant outcomes. This highlights the importance of the appropriate selection of outcome and evaluation measures to reveal clinically relevant improvements.

Interestingly, there were only two studies that investigated associations between nutritional status and diet modifications on rehabilitation outcomes (Nip et al., 2011; Shimizu et al., 2018), and only three that used rehabilitation outcomes in the evaluation their intervention (Collins et al., 2017; Mathiesen et al., 2021; Porter, Haines, et al., 2016; Porter, Wilton, et al., 2016). Nip et al. (2011) and Shimizu et al. (2018) both identified significant differences in FIM scores between studied populations, indicating a correlation between FIM and both texture modification and nutritional status, however directionality of the effect was unclear due to the observational nature of the studies. The insignificant differences found between intervention and control phases in both studies by Collins et al. (2017), Porter, Haines, et al. (2016), Porter, Wilton, et al. (2016) and Mathiesen et al. (2021) are likely due to the nature of the interventions being focused on changes to nutritional intake and not directly affect physical functioning. The strong focus on nutritional intake as outcome measures implies that mealtimes are viewed primarily as a method for delivery of nutrients to patients; however, this may be underplaying the therapeutic value of mealtimes beyond their ability to provide nutritional intake, particularly in the context of rehabilitation. There is a need to identify diet and nutrition-related associations with rehabilitation outcomes, such as functionality or goal attainment. Similarly, there is the need to identify and understand from the patients’ perspective, how diet and nutrition influence the patient experience and service outcomes, to provide a highly value-based and effective healthcare service. This is needed to understand if foodservice and mealtime care interventions have the capacity to influence rehabilitation outcomes directly or indirectly through improved nutrition-related outcomes.

5.1 Limitations

As this review required included studies to provide a description of the foodservice system or model of mealtime care, there may be additional studies relevant to the topic of rehabilitation foodservice and mealtimes that have been excluded from this review. Additionally, foodservice and quality improvement research is rarely published in peer-reviewed journals, reflected by the considerable number of conference abstracts identified during the search (i.e. 21 potentially relevant studies excluded as only published as a conference abstract). Therefore, it may be important for future foodservice literature reviews to also include a search of the grey literature. The field of nutrition and dietetics is evolving rapidly. The lack of time limits on publication dates for this review allows us to see trends, but it may emphasize issues that may already be addressed. However, considering the topics raised in earlier papers are still often reported in recent papers (e.g. lack of appropriate and/or timely mealtime assistance), it can be concluded that these issues are still apparent in contemporary rehabilitation settings.

6 Conclusion

This scoping review has identified there is a paucity of research describing foodservice systems and mealtime care in rehabilitation
inpatient settings. Elements of foodservice systems in rehabilitation appear to align with best practice recommendations, however there is little empirical evidence that supports these. Research is needed to identify and evaluate evidence-based strategies related to all elements of rehabilitation foodservice systems, in particular production waste management and sustainability. Mealtime care is predominantly provided on an unstructured ad hoc basis, with little integration of therapeutic activities reported. The strong focus on nutritional intake across included studies indicates that mealtimes are primarily viewed as a method to deliver nutrients, reinforcing the minimization of the value of mealtimes. Further research is needed to explore the potential therapeutic value of food and mealtimes in rehabilitation to inform innovations in foodservice systems and mealtime models of care, with the inclusion of outcomes aligned to the goals of rehabilitation.

AUTHOR CONTRIBUTIONS
AP contributed to the conception of the study, literature search, data extraction, analyses and interpretation of data and drafting and writing of the manuscript. AY and OW contributed to the conception of the study, reviewing data extraction, analyses and interpretation of data, drafting and writing of the manuscript and overall supervision. All authors contributed to the critical revision of the manuscript. All authors have agreed on the final manuscript.

ACKNOWLEDGEMENTS
The author’s would like to thank librarian Tracy Bruce for her knowledge and expertise in supporting the refinement of search terms and database searching in this paper and to Renae Earle and Alannah Giles for their assistance in title and abstract screening. Open access publishing facilitated by The University of Queensland, as part of the Wiley - The University of Queensland agreement via the Council of Australian University Librarians.

FUNDING INFORMATION
This paper was completed as part of the primary author’s PhD. This research received no specific grant from any funding agency in the public, commercial or not-for-profit sectors. Foodservice systems and Mealtime Care in Rehabilitation: A Scoping Review

CONFLICT OF INTEREST
No conflict of interest has been declared by the author(s).

PEER REVIEW
The peer review history for this article is available at https://publons.com/publon/10.1111/jan.15379.

DATA AVAILABILITY STATEMENT
Data available within the article or its supplementary materials.

ORCID
Alice Pashley https://orcid.org/0000-0001-7984-7850

REFERENCES
Arego, D. E., & Koch, S. (1986). Malnutrition in the rehabilitation setting. Nutrition today (Annapolis), 21(4), 28. https://doi.org/10.1097/00017285-198607000-00007
Arksey, H., & O’Malley, L. (2005). Scoping studies: Towards a methodological framework. International Journal of Social Research Methodology, 8(1), 19–32.
Assaf, A. G., & Josiassen, A. (2012). Time-varying production efficiency in the health care foodservice industry: A Bayesian method. Journal of Business Research, 65(5), 617–625.
Bannerman, E., Cantwell, L., Gaff, L., Conroy, A., Davidson, I., & Jones, J. (2016). Dietary intakes in geriatric orthopaedic rehabilitation patients: Need to look at food consumption not just provision. Clinical Nutrition, 35(4), 892–899. https://doi.org/10.1016/j.clinu.2015.06.001
Baptiste, F., Egan, M., & Duboulou-Wilner, C. J. (2014). Geriatric rehabilitation patients’ perceptions of unit dining locations. Canadian Geriatrics Journal, 17(2), 38–44. https://doi.org/10.5770/cgj.17.54
Barton, A. D., Beigg, C. L., Macdonald, I. A., & Allison, S. P. (2000). A recipe for improving food intakes in elderly hospitalized patients. Clinical Nutrition, 19(6), 451–454. https://doi.org/10.1054/clnu.2000.0149
Bourke, C. D., Berkley, J. A., & Prendergast, A. J. (2016). Immune dysfunction as a cause and consequence of malnutrition. Trends in Immunology, 37(6), 386–398. https://doi.org/10.1016/j.it.2016.04.003
Butterworth, C. E. (1974). Malnutrition in the Hospital. JAMA: The Journal of the American Medical Association, 230(6), 879. https://doi.org/10.1001/jama.1974.0324060049034
Campbell, K. L., Webb, L., Vivanti, A., Varghese, P., & Ferguson, M. (2013). Comparison of three interventions in the treatment of malnutrition in hospitalised older adults: A clinical trial. Nutrition and Dietetics, 70(4), 325–331. https://doi.org/10.1111/1747-0080.12008
Carino, S., Porter, J., Malekpour, S., & Collins, J. (2020). Environmental sustainability of hospital foodservices across the food supply chain: A systematic review. Journal of the Academy of Nutrition and Dietetics, 120(5), 825–873. https://doi.org/10.1016/j.jand.2020.01.001
Collins, J., & Porter, J. (2015). The effect of interventions to prevent and treat malnutrition in patients admitted for rehabilitation: A systematic review with meta-analysis. Journal of Human Nutrition and Dietetics, 28(1), 1–15.
Collins, J., Porter, J., Truby, H., & Huggins, C. E. (2017). A foodservice approach to enhance energy intake of elderly subacute patients: A pilot study to assess impact on patient outcomes and cost. Age and Ageing, 46(3), 486–493. https://doi.org/10.1093/ageing/aww238
Collins, J., Porter, J., Truby, H., & Huggins, C. (2019). A prospective study identifying a change in energy and protein intake of older adults during inpatient rehabilitation. Nutrients, 11(2), 453. https://doi.org/10.3390/nu11020453
Dijxhoorn, D. N., Mortier, M. J. M., van den Berg, M. G. A., & Wanten, G. J. A. (2019). The currently available literature on inpatient foodservices: Systematic review and critical appraisal. Journal of the Academy of Nutrition and Dietetics, 119(7), 1118–1141.e1136. https://doi.org/10.1016/j.jand.2019.01.018
Donini, L. M., Castellaneta, E., De Guglielmi, S., De Felice, M. R., Savina, C., Coletti, C., Paolini, M., & Cannella, C. (2008). Improvement in the quality of the catering service of a rehabilitation hospital. Clinical Nutrition, 27(1), 105–114. https://doi.org/10.1016/j.clinu.2007.10.004
Dubé, L., Paquet, C., Ma, Z., McKenzie, D. S., Kergoat, M. J., & Ferland, G. (2007). Nutritional implications of patient-provider interactions in hospital settings: Evidence from a within-subject assessment of mealtime exchanges and food intake in elderly patients. European Journal of Clinical Nutrition, 61(5), 664–672. https://doi.org/10.1038/sj.ejcn.1602559
Edwards, D., Carrier, J., & Hopkinson, J. (2016). Mealtime assistance for older adults in hospital settings and rehabilitation units from the perspective of patients, families and healthcare professionals: A mixed methods systematic review. *JBI Database of Systematic Reviews and Implementation Reports*, 14(9), 261–357. https://doi.org/10.11124/jisr-2016-003100

Edwards, J., & Hartwell, H. (2003). Is there such a thing as ‘reasonable’ or acceptable levels of food wastage in hospital food service? *Food service technology*, 3(1), 23–27.

Edwards, J., & Hartwell, H. (2006). Hospital food service: A comparative analysis of systems and introducing the ‘Steamplicity’ concept. *Journal of Human Nutrition and Dietetics*, 19(6), 421–430.

Gaff, L., Jones, J., Davidson, I. H., & Bannerman, E. (2015). A study of fluid provision and consumption in elderly patients in a long-stay rehabilitation hospital. *Journal of Human Nutrition and Dietetics*, 28(4), 384–389. https://doi.org/10.1111/jhn.12294

Grant, E. (1999). An audit of laxative use and fibre/fluid intakes in a care of the elderly rehabilitation ward. *Journal of Human Nutrition and Dietetics*, 12(5), 409–413. https://doi.org/10.1046/j.1365-277x.1999.00182.x

Huang, E., Gregoire, M. B., Tangney, C., & Stone, M. K. (2011). Sustainability in hospital foodservice. *Journal of Foodservice Business Research*, 14(3), 241–255. https://doi.org/10.1080/15378020.2011.594386

Iyer, P., Beck, E., & Walton, K. (2018). Exploring food and nutrition knowledge, attitudes and behaviours of spinal inpatients in specialist rehabilitation. *Neurorehabilitation and Neural Repair*, 32(4–5), 522–523. https://doi.org/10.1177/1545968318765498

Jong, J., Porter, J., Palermo, C., & Ottrey, E. (2021). Meals beyond the bedside: An ethnographic exploration of staffs’ perspectives and experiences of communal dining in subacute care. *Nursing & Health Sciences*, 23(2), 372–380. https://doi.org/10.1111/nhs.12812

Jonsson, A. S., Nyberg, M., Jonsson, I. M., & Öström, Å. (2021). Older patients’ perspectives on mealtimes in hospitals: A scoping review of qualitative studies. *Scandinavian Journal of Caring Sciences*, 35(2), 390–404. https://doi.org/10.1111/scs.12866

Kelly, L. (1999). Audit of food wastage: Differences between a plated and bulk system of meal provision. *Journal of Human Nutrition and Dietetics*, 12(5), 415–424. https://doi.org/10.1046/j.1365-277x.1999.00183.x

Kozica-Olenksi, S., Trelaven, E., Hewitt, M., McRae, P., Young, A., Walsh, Z., & Mudge, A. (2021). Patient-reported experiences of mealtimes care and food access in acute and rehabilitation hospital settings: A cross-sectional survey. *Journal of Human Nutrition and Dietetics*, 34, 687–694. https://doi.org/10.1111/jhn.12854

Levac, D., Colquhourn, H., & O’Brien, K. K. (2010). Scoping studies: Advancing the methodology. *Implementation Science*, 5(1), 1–9.

Lorefält, B., Wissing, U., & Unosson, M. (2005). Smaller but energy and protein–enriched meals improve energy and nutrient intakes in elderly patients. *The Journal of Nutrition, Health & Aging*, 9(4), 243–247.

MacKenzie-Shalders, K., Maunder, K., So, D., Norris, R., & McCray, S. (2020). Impact of electronic bedside meal ordering systems on dietary intake, patient satisfaction, plate waste and costs: A systematic literature review. *Nutrition and Dietetics*, 77(1), 103–111. https://doi.org/10.1111/1747-0800.12600

Mahoney, S., Zuli, A., & Walton, K. (2009). Patient satisfaction and energy intakes are enhanced by point of service meal provision. *Nutrition & Dietetics*, 66(4), 212–220. https://doi.org/10.1111/j.1747-0800.2009.01373.x

Markovski, K., Nenov, A., Ottaway, A., & Skinner, E. (2017). Does eating environment have an impact on the protein and energy intake in the hospitalised elderly? *Nutrition and Dietetics*, 74(3), 224–228. https://doi.org/10.1111/1747-0800.12314

Marshall, S. (2016). Protein-energy malnutrition in the rehabilitation setting: Evidence to improve identification. *Maturitas*, 86, 77–85. https://doi.org/10.1016/j.maturitas.2016.01.014

Marshall, S., Bauer, J., & Isenring, E. (2014). The consequences of malnutrition following discharge from rehabilitation to the community: A systematic review of current evidence in older adults. *Journal of Human Nutrition and Dietetics*, 27(2), 133–141. https://doi.org/10.1111/j.1365-277x.2016.01372.x

Mathiesen, S. L., Aadal, L., Uldbaek, M. L., Astrup, P., Byrne, D. V., & Wang, Q. J. (2021). Music is served: How acoustic interventions in hospital dining environments can improve patient mealtime well-being. *Food*, 10(11), 2590. https://doi.org/10.3390/foods10112590

Maudner, K., Lazarus, C., Walton, K., Williams, P., Ferguson, M., & Beck, E. (2015). Energy and protein intake increases with an electronic bedside spoken meal ordering system compared to a paper menu in hospital patients. *Clinical Nutrition ESPEN*, 10(4), e134–e139.

McLaren-Hedwards, T., D’cunha, K., Elder-Robinson, E., Smith, C., Jennings, C., Marsh, A., & Young, A. (2021). Effect of communal dining and dining room enhancement interventions on nutritional, clinical and functional outcomes of patients in acute and sub-acute hospital, rehabilitation and aged-care settings: A systematic review. *Nutrition & Dietetics*, 79(1), 140–168.

Monou, M., Tsagari, A., Risvas, G., Daldas, I., Kotroni, A., & Kyriazis, I. (2020). Prevalence of malnutrition and use of nutritional care therapy in rehabilitation inpatients. *International Journal of Caring Sciences*, 13(3), 1662–1667.

Munn, Z., Peters, M. D., Stern, C., Tufanaru, C., McArthur, A., & Aromatari, E. (2018). Systematic review or scoping review? Guidance for authors when choosing between a systematic or scoping review approach. *BMJ Medical Research Methodology*, 18(1), 1–7.

Murray, J., Doelting, S., Miller, M., & Scholten, I. (2015). A descriptive study of the fluid intake, hydration, and health status of rehabilitation inpatients without dysphagia following stroke. *Journal of Nutrition in Gerontology and Geriatrics*, 34(3), 292–304. https://doi.org/10.1080/21551197.2015.1054573

Nip, W. F., Perry, L., McLaren, S., & Mackenzie, A. (2011). Dietary intake, nutritional status and rehabilitation outcomes of stroke patients in hospital. *Journal of Human Nutrition and Dietetics*, 24(5), 460–469. https://doi.org/10.1111/j.1365-277x.2011.01173.x

Nutrition and Menu Work Group, S. F. (2018). Queensland Health *Nutrition Standards for Meals and Menus*. Retrieved from https://www.health.qld.gov.au/__data/assets/pdf_file/0030/156288/qh-nutrition-standards.pdf

O’Hara, P. A., Harper, D. W., Kangas, M., Dubeau, J., Borsutzky, C., & Lemire, N. (1997). Taste, temperature, and presentation predict satisfaction with foodservices in a Canadian continuing-care hospital. *Journal of the American Dietetic Association*, 97(4), 401–405. https://doi.org/10.1002/s0002-8223(97)00100-4

Ogawa, T., Sueyoshi, Y., Taketomi, S., & Chijiwa, N. (2021). Factors associated with skeletal muscle mass increase by rehabilitation in older adults with vertebral compression fractures. *Journal of Aging and physical activity*, 1–6. https://doi.org/10.1123/japa.2020-0475

Olney, E. (2003). Design and analysis of meal assembly and delivery methods in hospital foodservice systems. Thesis, Rochester Institute of Technology. Retrieved from https://scholarworks.rit.edu/theses/5721/

Olufson, H. T., Young, A. M., & Green, T. L. (2021). The delivery of patient centred dietetic care in subacute rehabilitation units: A scoping review. *Journal of Human Nutrition and Dietetics*, 35, 134–144. https://doi.org/10.1111/j.1365-277x.2011.012940

Ottrey, E., & Porter, J. (2017). Exploring patients’ experience of hospital meal-ordering systems. *Nursing Standard*, 31(50), 41–51.

Ottrey, E., Porter, J., Huggins, C. E., & Palermo, C. (2018). “Meal realities” — An ethnographic exploration of hospital mealtime environment and practice. *Journal of Advanced Nursing*, 74(3), 603–613. https://doi.org/10.1111/jan.13477

Ottrey, E., Porter, J., Huggins, C. E., & Palermo, C. (2019). Ward culture and staff relationships at hospital mealtimes in Australia: An
Porter, J., & Cant, R. (2009). Exploring hospital patients’ satisfaction with
meal procedures in institutions for elderly people: a qualitative study using a
validating questionnaire. *Journal of foodservice*, 20(2), 81–89.

Porter, J., Haines, T., & Truby, H. (2016). Implementation of protected
mealtimes in the subacute setting: Stepped wedge cluster trial pro-
tocol. *Journal of Advanced Nursing*, 72(6), 1347–1356. https://doi.
org/10.1111/jan.12930

Porter, J., Haines, T. P., & Truby, H. (2017). The efficacy of protected
mealtimes in hospitalised patients: A stepped wedge cluster ran-
domised controlled trial. *BMC Medicine*, 15(1), 25. https://doi.
org/10.1186/s12916-017-0780-1

Porter, J., Wilton, A., & Collins, J. (2016). Mealt ime interruptions, as-
sistance and nutritional intake in subacute care. *Australian Health
Review*, 40(4), 415–419. https://doi.org/10.1071/ah15060

Queensland Health. (2020). *Food Service Best Practice Guideline*
Retrieved from https://www.health.qld.gov.au/__data/assets/pdf_
file/0023/655340/qh_gdi_448.pdf

Shimizu, A., Maeda, K., Tanaka, K., Ogawa, M., & Kayashita, J. (2018).
Texture-modified diets are associated with decreased muscle mass
in older adults admitted to a rehabilitation ward. *Geriatrics and
Gerontology International*, 18(5), 698–704. https://doi.org/10.1111/
ggi.13233

Sidenvall, B. (1999). Meal procedures in institutions for elderly people: a
theoretical interpretation. *Journal of Advanced Nursing*, 30(2), 319–
328. https://doi.org/10.1046/j.1365-2648.1999.01082.x

Sidenvall, B., Fjellström, C., & Ek, A.-C. (1994). The meal situation in geri-
atr ic care — Intentions and experiences. *Journal of Advanced Nursing*, 20(4), 613–621. https://doi.org/10.1046/j.1365-2648.1994.20040613.x

Sidenvall, B., Fjellström, C., & Ek, A.-C. (1996). Cultural perspectives of
meals expressed by patients in geriatric care. *International Journal of
Nursing Studies*, 33(2), 212–222. https://doi.org/10.1016/0020-7489(95)00042-9

St-Arnaud-McKenzie, D., Paquet, C., Kergoat, M., Ferland, G., & Dubé,
L. (2004). Hunger and aversion: drives that influence food intake of
hospitalized geriatric patients. *Journals of Gerontology Series A: Biological Sciences & Medical Sciences*, 59(12), 1304–1309. https://doi.
org/10.1093/gerona/59.12.1304

Strakowski, M. M., Strakowski, J. A., & Mitchell, M. C. (2002). Malnutrition in rehabilitation. *American Journal of Physical Medicine & Rehabilitation*, 81(1), 77–78. https://doi.org/10.1097/00002060-200201000-00016

Tricco, A. C., Lillie, E., Zarin, W., O’Brien, K. K., Colquhoun, H., Levac, D.,
Moher, D., Peters, M. D. J., Horsley, T., Weeks, L., Hemplen, S., Akl,
E. A., Chang, C., McGowan, J., Stewar t, L., Hartling, L., Aldcroft, A.,
Wilson, M. G., Gar, C., ... Straus, S. E. (2018). PRISMA extension for
scoping reviews (PRISMA-ScR): Checklist and explanation. *Annals of Internal Medicine*, 169(7), 467–473.

Wade, D. T. (2020). What is rehabilitation? An empirical investigation
leading to an evidence-based description. *Clinical Rehabilitation*, 34(5), 571–583. https://doi.org/10.1177/0269215520950112

Walten, K., Williams, P., & Tapsell, L. (2012). Improving food
services for elderly, long-stay patients in Australian hospitals:
Adding food fortification, assistance with packaging and feeding
assistance. *Nutrition and Dietetics*, 69(2), 137–144. https://doi.
org/10.1111/j.1747-0080.2012.01587.x

Walten, K., Williams, P., Tapsell, L., & Batterham, M. (2007). Rehabilitation
inpatients are not meeting their energy and protein needs. *e-SPEN, the
European e-Journal of Clinical Nutrition and Metabolism*, 2(6), e120–e126. https://doi.org/10.1016/j.eclnm.2007.09.001

Walton, K., Williams, P., Tapsell, L., Hoyle, M., Shen, Z., Gladman, L., &
Nurka, M. (2013). Observations of mealtimes in hospital aged care
rehabilitation wards. *Appetite*, 67, 16–21. https://doi.org/10.1016/j.
appet.2013.03.006

Wells, J. C., Sawaya, A. L., Wibaek, R., Mwangome, M., Poullas, M. S.,
Yajnik, C. S., & Demaio, A. (2020). The double burden of malnu-
trition: Aetiological pathways and consequences for health. *The Lancet*, 395(10217), 75–88.

Westergren, A., Karlsson, S., Andersson, P., Ohlsson, O., & Hallberg, I. R.
(2001). Eating difficulties, need for assisted eating, nutritional status
and pressure ulcers in patients admitted for stroke rehabilitation: Eating difficulties in stroke patients. *Journal of Clinical Nursing*, 10(2),
257–269. https://doi.org/10.1111/j.1365-2702.2001.00479.x

Westergren, A., Ohlsson, O., & Hallberg, I. R. (2002). Eating difficulties in
relation to gender, length of stay, and discharge to institutional care,
among patients in stroke rehabilitation. *Disability and Rehabilitation*,
24(10), 523–533. https://doi.org/10.1080/09638280110113430

Westergren, A., Unosson, M., Ohlsson, O., Lorefält, B., & Hallberg, I.
R. (2002). Eating difficulties, assisted eating and nutritional sta-
tus in elderly (> or =65years) patients in hospital rehabilitation. *International Journal of Nursing Studies*, 39(3), 341–351. https://doi.
org/10.1016/s0020-7489(01)00025-6

Williams, P., & Walton, K. (2011). Plate waste in hospitals and strategies
for change. *e-SPEN, the European e-Journal of Clinical Nutrition and
Metabolism*, 6(6), e235–e241.

Williams, L., Jones, J., Davidson, H. I. M., & Bannerman, E. (2011). An
investigation into food provision and consumption in an ortho-
paedic rehabilitation hospital in Scotland, UK. *Proceedings of the
Nutrition Society*, 70, E303. https://doi.org/10.1077/s002966511
1003880

Wilson, A., Evans, S., & Frost, G. (2001). The effect of changes in meal
service systems on macronutrient intake in acute hospitalized pa-
tients. *Food Service Technology*, 1(2), 121–122.

Wistén, A., & Messner, T. (2005). Fruit and fibre (Pajala porridge) in the
prevention of constipation. *Scandinavian Journal of Caring Sciences*,
19(1), 71–76. https://doi.org/10.1111/j.1471-6712.2004.00308.x

Wright, O. R., Capra, S., & Connelly, L. B. (2010). Foodservice satisfac-
tion domains in geriatrics, rehabilitation and aged care. *Journal of
Nutrition Health and Aging*, 14(9), 775–780. https://doi.org/10.1007/
s12603-010-0123-9

Wright, O. R. L., Connelly, L. B., Capra, S., & Hendrickz, J. (2013).
Determinants of foodservice satisfaction for patients in geriatrics/rehabilitation and residents in residential aged care. *Health Expectations*, 16(3),
251–265. https://doi.org/10.1002/hec.2518

Xia, C., & McCutcheon, H. (2006). Mealtimes in hospital - Who does
what? *Journal of Clinical Nursing*, 15(10), 1221–1227. https://doi.
org/10.1111/j.1365-2702.2006.01425.x

SUPPORTING INFORMATION
Additional supporting information can be found online in the
Supporting Information section at the end of this article.

How to cite this article: Pashley, A., Young, A., & Wright, O.
(2022). Foodservice systems and mealt ime models in
rehabilitation: Scoping review. *Journal of Advanced Nursing*,
78(11), 3559–3586. https://doi.org/10.1111/jan.15379
The *Journal of Advanced Nursing (JAN)* is an international, peer-reviewed, scientific journal. *JAN* contributes to the advancement of evidence-based nursing, midwifery and health care by disseminating high quality research and scholarship of contemporary relevance and with potential to advance knowledge for practice, education, management or policy. *JAN* publishes research reviews, original research reports and methodological and theoretical papers.

For further information, please visit *JAN* on the Wiley Online Library website: www.wileyonlinelibrary.com/journal/jan

Reasons to publish your work in JAN:

- **High-impact forum**: the world’s most cited nursing journal, with an Impact Factor of 2.561 – ranked 6/123 in the 2019 ISI Journal Citation Reports © (Nursing; Social Science).
- **Most read nursing journal in the world**: over 3 million articles downloaded online per year and accessible in over 10,000 libraries worldwide (including over 6,000 in developing countries with free or low cost access).
- **Fast and easy online submission**: online submission at http://mc.manuscriptcentral.com/jan.
- **Positive publishing experience**: rapid double-blind peer review with constructive feedback.
- **Rapid online publication in five weeks**: average time from final manuscript arriving in production to online publication.
- **Online Open**: the option to pay to make your article freely and openly accessible to non-subscribers upon publication on Wiley Online Library, as well as the option to deposit the article in your own or your funding agency’s preferred archive (e.g. PubMed).