On the possible virtual state nature of the LHCb $P_c(4312)^+$ signal

J. A. Silva-Castro
Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Ciudad de México 04510, México
E-mail: jorge.silva@correo.nucleares.unam.mx

Abstract. In this contribution we study the nature of the new $P_c(4312)^+$ signal reported by LHCb collaboration in the $J/\psi p$ spectrum. We use S-matrix principles to perform a minimum-bias analysis of the data, focusing on the analytic properties that can be related to the microscopic origin of the $P_c(4312)^+$ peak. Using the scattering length approximation we find evidence for interpretation of the signal as a virtual state generated by the attractive effect of the $\Sigma_c^+ D^0$ channel opening.

1. Introduction
Searching for and understanding of exotic hadron states, say, those that go beyond the minimal quark model combination of three quarks for baryons and a quark-antiquark pair for mesons, has become a relevant topic in physics over the recent years, because of the insight that these states can provide on the strong interaction in the hadronic energy regime [1, 2, 3]. These states are allowed within Quantum Chromodynamics (QCD), as the fundamental theory of the strong interaction only requires that hadrons are color singlets without limiting the number of quarks. In this way, baryons that go beyond the three quark picture are not precluded by QCD.

In the baryon sector, the only exotic candidates so far are the hidden-charm pentaquarks recently found by the LHCb collaboration in the $\Lambda_b \rightarrow J/\psi p K^-$ decay [4, 5, 6], labeled as $P_c(4312)^+$, $P_c(4380)^+$, $P_c(4440)^+$, and $P_c(4457)^+$. In this work we focus our attention in the $P_c(4312)^+$ candidate [6], which is approximately 5 MeV below the $\Sigma_c^+ D^0$ threshold. There are several interpretations of this signal, such as a $\Sigma_c^+ D^0$ molecule [7, 8, 9, 10, 11, 12, 13, 14, 15], a compact pentaquark [16, 17, 18, 19], and a virtual state as we suggest [20].

To reach the conclusion that the virtual state interpretation was a plausible one, we used a data-driven approach based on S-matrix theory and minimally biased methods as shown in the next section. The detailed description of the method and the full results can be found in [20].

2. Analysis of the $P_c(4312)^+$ region
A thoroughgoing analysis of the $P_c(4312)^+$ signal, for example, to determine its quantum numbers would require a full six-dimensional amplitude analysis fitting both the energy and angular dependencies. Nonetheless, the manifestation of the this signal in the experimental

\footnote{A virtual state is produced for example by an attractive interaction which is not strong enough to bind a state, as in the neutron-neutron scattering [21, 22].}
data allows a one dimensional analysis because it stands out as a narrow peak \((\sim 10 \text{ MeV})\) in what otherwise appears to be a smooth background. The closeness of the \(\Sigma_c^+\bar{D}^0\) channel opening indicates that it could be the driving effect behind the appearance of the peak. If it is so, the \(P_c(4312)^+\) would likely be either a molecule or a virtual state.

Thereby, we consider a coupled channel amplitude between the \(J/\psi p\) and \(\Sigma_c^+\bar{D}^0\) channels and restrict the analysis to the 4250-4380 MeV region where the \(P_c(4312)^+\) signal is found. We assume that the \(P_c(4312)^+\) signal has a well defined spin i.e., it appears in a single partial wave \(F(s)\), furthermore, the background from all other partial waves \(\mathcal{B}(s)\) is added incoherently and parametrized as a linear polynomial \(\mathcal{B}(s) = b_0 + b_1 s\), which also encodes the contribution from further singularities.\(^2\)

Hence, the events distribution is given by:

\[
\frac{dN}{ds} = \rho(s) \left[|F(s)|^2 + \mathcal{B}(s) \right] = \rho(s) \left[|P_1(s)T_{11}(s)|^2 + b_0 + b_1 s \right],
\]

where \(\rho(s)\) is the phase space factor for the decay \(\Lambda_c^0 \rightarrow J/\psi p K^-\), given by \(\rho(s) = m_{\Lambda_c} p q\) with \(p = \lambda^{1/2}(s, m_{\Lambda_c}^2, m_K^2)/2m_{\Lambda_c}\) and \(q = \lambda^{1/2}(s, m_{\Lambda_c}^2, m_{D^0}^2)/2\sqrt{s}\), where \(\lambda(x,y,z) = x^2 + y^2 + z^2 - 2xy - 2xz - 2yz\) is the Källén function. This expression assumes that the signal is on the \(S\)-wave, and remains valid even if the signal is on another \(\ell\) wave. This would imply adding a term \(q^\ell\) in front of \(F(s)\), which in practice remains constant due to \(q\) does not change on the energy range considered.

The function \(F(s)\) is a product of a function \(P_1(s)\) which provides the production of \(J/\psi p K^-\) and also takes into account the effect of other signals projected onto the same partial wave of the \(P_c(4312)^+\), and the \(T_{11}(s)\) amplitude, which describes the \(J/\psi p \rightarrow J/\psi p\) scattering, where the \(P_c\) is.

Near the \(\Sigma_c^+\bar{D}^0\) threshold the two coupled channel \(T\) matrix can be written as \(^{21}\):

\[
\begin{align*}
T_{11}(s) &= \frac{M_{22} - ik_2}{(M_{11} - ik_1)(M_{22} - ik_2) - M_{12}^2}, \\
T_{12}(s) &= \frac{-M_{12}}{(M_{11} - ik_1)(M_{22} - ik_2) - M_{12}^2}, \\
T_{22}(s) &= \frac{M_{11} - ik_1}{(M_{11} - ik_1)(M_{22} - ik_2) - M_{12}^2},
\end{align*}
\]

where \(k_i = \sqrt{s - s_i}\), and \(s_1 = (m_{\psi} + m_p)^2\), \(s_2 = (m_{\Sigma_c^+} + m_{D^0})^2\) are the thresholds of the two channels. In this way, \(T_{11}(s)\) represents the reaction \(J/\psi p \rightarrow J/\psi p\), \(T_{22}(s)\) the reaction \(\Sigma_c^+\bar{D}^0 \rightarrow \Sigma_c^+\bar{D}^0\) and the off diagonal terms the channels \(T_{12}(s)\) \(J/\psi p \rightarrow \Sigma_c^+\bar{D}^0\) and \(T_{21}\) \(\Sigma_c^+\bar{D}^0 \rightarrow J/\psi p\).

Due to the unitarity condition, the elements of the real symmetric \(2 \times 2\) matrix \(M(s)\) are singularity free and can be Taylor expanded. In this work we focus in the scattering length approximation which results from keeping only the first term. The first-order effective range expansion, say \(M_{ij}(s) = m_{ij} - c_{ij} s\), is discussed in \(^{20}\). The function \(P_1(s)\) is analytic in the data region, and, given the small mass range considered, it can be parametrized with a first order polynomial \(P_1(s) = p_0 + p_1 s\). The \(M_{12}\) parameter is linked to the channel coupling. We stress that, since the \(J/\psi p\) threshold is far away from the region of interest, this channel can effectively absorb all the other channels with distant thresholds. In principle we should add\(^2\) more formally, an analytical function can be expanded into a Laurent series around a singularity in \(a\) as

\[
f(z) = \frac{b}{z^a} + c_0 + c_1 z + c_2 z^2 + \cdots,
\]

where \(b\) is the residue of the pole and \(c_i\) coefficients, far away from the singularity only the polynomial part contributes to the signal. With a linear polynomial in our analysis we have \(\chi^2/d.o.f. = 0.8\) with no improvements to higher orders.

\(^2\) More formally, an analytical function can be expanded into a Laurent series around a singularity in \(a\) as
I

Figure 1. (a) Fit to the cos θ_{Pc}-weighted $J/\psi p$ mass distribution from LHCb [6] in the scattering length approximation, (equations (1) and (2a)). The solid line and blue band show the result of the fit and the 1σ confidence level provided by the bootstrap analysis respectively. (b) Poles obtained from the 10^4 bootstrap fits in the scattering length approximation. The physical region is highlighted with a pink band. For each bootstrap fit only one pole appears in this region and the blue ellipse accounts the 68% of the cluster concentrating above threshold.

3. Results and discussion

Due to the square roots in the denominator, the amplitude in Eq. (2a) has branch cuts opening at the two thresholds. It turns out that there are four Riemann sheets, and in the scattering length approximation any pole can only appear on either the II or the IV sheets [21]. This parameterization allows for the description of bound molecules and unbound virtual states. When we turn off the coupling between the two channels, i.e. $M_{12} \rightarrow 0$, a molecular interpretation occurs if the pole moves to the real axis of the physical sheet below the heavier threshold, and a virtual state occurs if the pole moves onto the real axis of the unphysical sheet (see also Fig. 2 of Ref. [23] and the corresponding description). We note that the pole movement is model dependent, as the parameters are not independent but related by the underlying QCD dynamics. This is a problem common to every model or effective hadron theory.

We fit the cos θ_{Pc}-weighted spectrum $dN/d\sqrt{s}$ measured in [6], with \sqrt{s} being the $J/\psi p$ invariant mass, using MINUIT [24], considering the experimental resolution reported in [6]. This spectrum is obtained by applying cos θ_{Pc}-dependent weights to each candidate to enhance the P_c^+ signal, where θ_{Pc} is the angle between the K^- and J/ψ in the P_c^+ rest frame (the P_c helicity angle [6, 25]).

To estimate the sensitivity of the pole positions to the uncertainties in the data, we use the bootstrap technique [26, 27]; i.e. we generate 10^4 pseudodata sets and fit each one of them. The statistical fluctuations in data reflect into the the uncertainty band plotted in Fig. 1(a).

Moreover, for each of these fits, we determine the pole positions, as shown in Fig. 1(b).

In this analysis it is possible to identify a cluster of virtual state poles across the II and IV sheet above the $\Sigma_c^+ D^0$ threshold (see also the discussion in Ref. [25]). If we use the customary definition of mass and width, $M_P = \text{Re} \sqrt{s_P}$, $\Gamma_P = -2 \text{Im} \sqrt{s_P}$ the main cluster has $M_P = 4319.7 \pm 1.6$ MeV, $\Gamma_P = -0.8 \pm 2.4$ MeV, where positive or negative values of the
width correspond to II or IV sheet poles, respectively. To establish the nature of this singularity, we track down the movement of the poles as the coupling between the two channels is reduced. By taking $m_{12} \rightarrow 0$, we can see how the cluster moves over to the upper side of the IV sheet and ends up on the real axis below the $\Sigma_c^+ \bar{D}^0$ threshold \[29\]. The fraction of poles that reach the real axis from the lower side of the II sheet is 0.7% only, and thus not significant. This result reinforces the interpretation of the pole as an unbound virtual state, meaning that the binding between the Σ_c^+ baryon and the \bar{D}^0 meson is enough to generate a signal, but insufficient to form a bound molecule.

As a cross-check we also analyze the unweighted $J/\psi p$ spectrum in the same region, both with and without the $m_{Kp} > 1.9$ GeV cut. All the results are consistent.

4. Conclusions

We have studied the $P_c(4312)^+$ signal reported by LHCb in the $J/\psi p$ spectrum by considering a reaction amplitude which satisfies the general principles of S-matrix theory, restricting the analysis to the scattering length approximation. The analytic properties of the amplitudes can be related to the microscopic origin of the signal. We fitted the LHCb mass spectrum in the 4312 MeV mass region including the experimental resolution. The statistical uncertainties in the data were propagated to the extracted poles using the bootstrap technique. We do not find support for a bound molecule, we conclude that the most likely interpretation of the $P_c(4312)^+$ peak is a virtual (unbound) state.

Acknowledgments

This work is part of the efforts of the Joint Physics Analysis Center (JPAC) collaboration. The author thanks his colleagues and co-authors of the original publication: César Fernández-Ramírez, Alessandro Pilloni, Miguel Albaladejo, Andrew Jackura, Vincent Mathieu, Mikhail Mihhasenko, and Adam Szczepaniak. This work was supported by PAPIIT-DGAPA (UNAM, Mexico) Grant No. IA101819, and CONACYT (Mexico) Grants No. 734789 and No. A1-S-21389. The author also thanks the organizers for their invitation to the conference and their warm hospitality at Cocoyoc.

References

[1] Esposito A, Pilloni A and Polosa A D 2017 Physics Reports 668 1 – 97
[2] Olsen S L, Skwarnicki T and Zieminska D 2018 Rev. Mod. Phys. 90(1) 015003
[3] Guo F K, Hanhart C, Meißner U G, Wang Q, Zhao Q and Zhou B S 2018 Rev. Mod. Phys. 90 015004
[4] Aaij R et al. (LHCb Collaboration) 2015 Phys. Rev. Lett. 115(7) 072001
[5] Aaij R et al. (LHCb Collaboration) 2016 Phys. Rev. Lett. 117(8) 082002
[6] Aaij R et al. (LHCb Collaboration) 2019 Phys. Rev. Lett. 122 222001
[7] Wu J J, Molina R, Oset E and Zhou B S 2010 Phys. Rev. Lett. 105 232001
[8] Wu J J, Molina R, Oset E and Zhou B S 2011 Phys. Rev. C84 015202
[9] Wang W L, Huang F, Zhang Z Y and Zhou B S 2011 Phys. Rev. C84 015203
[10] Yang Z C, Sun Z F, He J, Liu X and Zhu S L 2012 Chin. Phys. C36 6–13
[11] Xiao C W, Nieves J and Oset E 2013 Phys. Rev. D88 056012
[12] Yamaguchi Y, Giachino A, Hosaka A, Santopinto E, Takeuchi S and Takizawa M 2017 Phys. Rev. D96 114031
[13] Liu M Z, Pan Y W, Peng F Z, Sánchez M S, Geng L S, Hosaka A and Valderrama M P 2019 Phys. Rev. Lett. 122(24) 242001
[14] Burns T J and Swanson E S 2019 Phys. Rev. D 100(11) 114033
[15] Du M L, Baru V, Guo F K, Hanhart C, Meißner U G, Oller J A and Wang Q 2020 Phys. Rev. Lett. 124 072001
[16] Zhu R and Qiao C F 2016 Phys. Lett. B756 259–264
[17] Ali A and Parkhomenko A Ya 2019 Phys. Lett. B793 365–371
[18] Holma P and Ohlsson T 2020 Phys. Lett. B800 135108
[19] Maiani L, Polosa A D and Riquer V 2015 Phys. Lett. B749 289–291
[20] Fernández-Ramírez C, Pilloni A, Albaladejo M, Jackura A, Mathieu V, Mikhasenko M, Silva-Castro J A and Szczepaniak A P (JPAC) 2019 Phys. Rev. Lett. 123(9) 092001
[21] Frazer W R and Hendry A W 1964 Phys. Rev. 134 B1307–B1314
[22] Hammer H W and König S 2014 Phys. Lett. B736 208–213
[23] Pilloni A, Fernandez-Ramirez C, Jackura A, Mathieu V, Mikhasenko M, Nys J and Szczepaniak A P (JPAC) 2017 Phys. Lett. B772 200–209
[24] James F and Roos M 1975 Comput. Phys. Commun. 10 343–367
[25] Aaij R et al. 2015 Phys. Rev. Lett. 115 072001
[26] Press W H, Teukolsky S A, Vetterling W T and Flannery B P 2007 Numerical Recipes 3rd Edition: The Art of Scientific Computing 3rd ed (New York, NY, USA: Cambridge University Press) ISBN 0521880688, 9780521880688
[27] Efron B and Tibshirani R 1994 An Introduction to the Bootstrap Chapman & Hall/CRC Monographs on Statistics & Applied Probability (Taylor & Francis) ISBN 9780412042317
[28] Rodas A et al. (JPAC) 2019 Phys. Rev. Lett. 122 042002
[29] See Supplemental Material and http://cgl.soic.indiana.edu/jpac/pc4312.php for fit parameters, alternative parameterizations, and animations of the pole movements described in the text.