Quantification of 242Pu with a Microcalorimeter Gamma Spectrometer

David J. Mercer$^{a, *}$, Ryan Winklera, Katrina E. Koehlera,b, Daniel T. Beckerc, Douglas A. Bennettd, Matthew H. Carpentere, Mark P. Crocee, Krystel Iris M. de Castro*, Eric A. Feisslea, Joseph W. Fowlerc,d, Johnathon D. Gardd, John A. B. Matesd, Daniel G. McNeele, Nathan J. Ortizc,d, Daniel Schmidte, Katherine A. Schreiberb, Daniel S. Swetzd, Joel N. Ullomc,d, Leila R. Valed, Sophie L. Weidenbennera, and Abigail L. Wesselse

aLos Alamos National Laboratory, Los Alamos, New Mexico
bHoughton College, Houghton, New York
cUniversity of Colorado, Boulder, Colorado
dNational Institute of Standards and Technology, Boulder, Colorado
eAteneo de Manila University, Quezon City, Philippines
*Corresponding author, Mercer@LANL.gov

Abstract: We report measurements of the 103-keV and 159-keV gamma ray signatures of 242Pu using microcalorimetry. This is the first observation of these gamma rays in a non-destructive measurement of an unprepared sample, and so represents an important advance in nuclear material accountancy. The measurement campaign also serves as the first demonstration of a field campaign with a portable microcalorimeter gamma-ray spectrometer. For the 103-keV gamma ray we report an improved centroid energy and emission probability.

Introduction

Plutonium-242 is a challenge for nondestructive assay (NDA) because of its low specific activity and low gamma emission probability per decay. Neutron multiplicity methods are suitable for quantification but can only be used after the isotopic ratios have been determined [1]. For these ratios, one must depend on destructive measurements, correlation estimates (which can be inaccurate for high-burnup samples) [2], or direct measurement of the gamma ray signatures. The latter has never been achieved successfully except with carefully prepared, thin, unshielded laboratory samples. The only direct gamma rays from 242Pu are at 45, 103, and 159 keV, and all are weak. The lowest energy line is of limited use because of potential attenuation within the sample and/or container. The two higher-energy lines are masked by gamma rays from 238-241Pu, 241Am, and/or fluorescent X-rays, making them all but impossible to measure with high-purity germanium (HPGe) detectors except under very special circumstances.

Microcalorimetry (μCal) [3][4][5][6] offers a potential method for NDA of 242Pu. The energy resolution of μCal detectors is extraordinary, with 70-eV full-width at half-maximum (FWHM) now routinely achieved. Although efficiency is lower, the resolution allows for direct observation of the 103- and 159-keV signatures. In this demonstration we use these signatures to quantify 242Pu in a packaged item with no special sample preparation.

Prior Gamma Measurements of 242Pu

In 1986, Vaninbroukx et al. [7] measured the γ emission probabilities for 242Pu using HPGe detectors with a FWHM resolution of 495–520 eV at 122 keV, which is near the best achievable for HPGe. Specially-prepared ultra-pure samples (99.85% Wt% 242Pu) were measured in a configuration designed for negligible photon attenuation. The 242Pu peaks were not resolvable from interfering components from 241Am, 241Pu, and 240Pu decay, whose contributions were computed and subtracted.

In 2011, Berlizov et al. performed measurements on a 99.7 Wt% 242Pu sample with a HPGe detector [8] in response to a suspected discrepancy. Their value for the γ_{159} emission probability was 35% smaller than Vaninbroukx et al.’s. No attempt was made to use the 45- and 103-keV lines. They considered the 159-keV line as “the only practical alternative” for quantitative analysis of 242Pu, but no practical method was developed.

In 2012, Wang made measurements on a 99.97% Wt% 242Pu sample evaporated onto a thin foil [9]. An HPGe detector was used in coincidence with a Si(Sb) alpha detector; the α-γ coincidence mode allowed a reduction of interferences, mostly from 240Pu β-decay. Values for the emission probabilities were determined for all three 242Pu lines. The results are shown in Table I in comparison with Vaninbroukx et al., Berlizov et al., and the present work.
In 2016, Bates et al. successfully observed the 45-keV line with a metallic magnetic calorimeter (MMC, a type of microcalorimeter) [10]. The sample was 10.81 Wt% 242Pu, prepared as a solution dried onto a thin foil, and measured through a low-attenuation window. A FWHM resolution of 140 eV was achieved, and a quantitative measurement of the 242Pu concentration was reported in agreement with the declared value. This was a remarkable achievement, but the sample preparation and low-attenuation requirements are impractical for most NDA applications.

Relocation and Installation of the Instrument

For our measurements of 242Pu, we used the microcalorimeter array instrument SOPHIA (Spectrometer Optimized for Facility Integrated Applications) [11]. The instrument was designed to be re-locatable and this was our first experience with moving it to a different site. The instrument was moved from Los Alamos National Laboratory (LANL) Technical Area 35 Building 02 to LANL Technical Area 55 Building PF-4. Figure 1 is a photograph of the instrument and supporting hardware loaded for transport. Major components consist of (left to right in Figure 1) a compact milliKelvin cryostat housing the detector, electronics rack, and helium compressor.

![Figure 1. SOPHIA and supporting hardware loaded for transport.](Image)

SOPHIA uses no liquid cryogens and requires only 220V, single phase power for the air-cooled helium pulse tube cryocooler. Suitable electrical power was readily available in the new location. Existing work authorization for gamma ray measurements in PF-4 was determined to cover operations as the instrument presents no unique hazards. No significant issues were encountered during the move and installation, and performance was verified to be consistent with that observed in the TA-35 laboratory.

242Pu Sample Characteristics

The 242Pu item used for the present measurements is “STDB242C8,” consisting of 113.6 g of PuO$_2$ (99.75 g of Pu) in a steel “food-pack” can of unspecified wall thickness inside a SAVY container [12]. At the time of measurement the item was 86.85 Wt% 242Pu (see Table II). The packaged item was simply placed in front of the instrument with no preparation, consistent with a routine NDA procedure, as shown in Figure 2. It is notable that all prior gamma measurements of 242Pu involved bare or very lightly attenuated samples, and most involved ultra-pure (>99.5 Wt%) 242Pu, but the purpose of these measurements was to demonstrate the utility of the µCal instrument for routine nondestructive quantification.

![Figure 2. Sample STDB242C8 being placed in its measurement configuration by co-author Eric Feissle.](Image)

Table I: Reported γ-emission probabilities for 242Pu lines

Reference	45 keV	103 keV	159 keV
Vaninbroux 1986	$3.72(7)E-4$	$2.63(9)E-5$	$2.98(20)E-6$
Berlizov 2011	—	—	$2.20(8)E-6$
Wang 2012	$4.37(6)E-4$	$2.79(8)E-5$	$2.25(8)E-6$
Present Work*	$2.69(3)E-5$	$2.10(14)E-6$	

*Explained in Quantification Results section

Table II: Declared isotopic concentrations for STDB242C8.

Isotope (units)	10-Nov-88*	30-Aug-21
239Pu (Wt%)	0.996 ± 0.007	0.790 ± 0.006
239Pu (Wt%)	1.437 ± 0.008	1.476 ± 0.008
240Pu (Wt%)	9.97 ± 0.02	10.21 ± 0.02
241Pu (Wt%)	3.10 ± 0.01	0.652 ± 0.002
242Pu (Wt%)	84.48 ± 0.02	86.85 ± 0.02
244Pu (Wt%)	0.020 ± 0.001	0.021 ± 0.001
241Am (μg/gPu)	350 ± 0.8	24793 ± 57

*Values were measured by mass spectrometry on this date [13] and are decay-corrected to match the µCal measurement dates.

103-keV Peak

The spectrum in this region is complex with overlapping features, but the energy resolution (70-eV FWHM) achieved with SOPHIA is sufficient to extract the area of
We extracted the peak areas in this region using the software SAPPY [5][19][20][21]. Component fits are shown in Figure 4. The 103.436-keV peak and nearby cluster are fit very well. The high-energy side of the 241Am 102.966-keV peak is fit poorly, suggesting that unexplored structure is likely present. This is a topic for future investigation but has a negligible effect on the 242Pu peak analysis.

Figure 4: Fits of the 103-keV region using the software SAPPY.

The nearby 241Pu 103.68-keV peak is of practical interest for plutonium isotopic analysis. It arises directly from 241Pu α-decay (241Pu → 237U), unlike most signatures for this radionuclide, which involve the 241Pu → 241Am → 237Np and/or 241Pu → 237U → 237Np chains. The direct decay means that the signature is time-independent and therefore reliable for very freshly separated plutonium. Fluorescent Pu Kα1 X-rays at 103.74 keV interfere with this 241Pu peak (as well as the 242Pu peak), but SAPPY is able to isolate the individual components.

The 240Pu peak at 104.23 keV is also of practical interest for improving precision of isotopic analysis. This peak is cleanly separated and its area is easy to extract. A drawback is interference from Sn kα1 and kα2 escape lines at 104.03 and 104.25 keV (too weak to be seen here but stronger for lower-burnup samples). Software techniques to deconvolve the escape peaks will be necessary to take full advantage of this 240Pu signature.

Although SOFIA is able to measure relative centroid energies with a precision better than 0.0005 keV, a limiting factor is the uncertainty in adopted centroids of nearby peaks needed for calibration, especially 241Am. Our 241Pu centroid shown above is interpolated using 241Am at 102.966 ± 0.005 keV [15] and Pu Kα1 at 103.734 ± 0.0006 keV [16]. Many databases adopt the 241Am centroid as 102.980 ± 0.020 keV [17]; if this value is used instead of our interpolation, then our calculated 241Pu centroid becomes 103.440 ± 0.008 keV. A secondary limitation for centroid determination is nonlinearities that are potentially introduced during processing of the μCal data (see Yoho et al. 2020 [18]), which is a topic of future interest if this instrument will be used to improve nuclear data tables. Even with these limitations, our new value is considerably more reliable than the previously adopted value.
159-keV Peak

The 159-keV region includes cleanly-separated peaks from 242Pu at 159.02 keV, 241Pu at 159.96 keV (which arises directly from 241Pu α-decay), and 240Pu at 160.31 keV. See Figure 5. Vaninbroukx et al., Berlizov et al., and Wang observed this region as an unresolved triplet, and Bates did not report observations in this region. Our measurement of the centroid energy is 159.032 ± 0.042 keV, which is consistent with Berlizov’s value of 159.018 ± 0.016 keV [8] but our measurement does not improve upon their uncertainty. As with the 103-keV peak, our uncertainty is limited by systematic uncertainty in the adopted values for nearby peaks needed for calibration. The FWHM energy resolution is 76 eV in this region. Because the peaks are well-separated, no special technique is required for area extraction.

45-keV Peak

We were unable to observe the 44.91-keV peak from 242Pu. Although our energy resolution is 60 eV at this energy, attenuation from the thick PuO$_2$ sample and thick steel container reduced the efficiency of detection to a level far below what would be necessary to see the peak. A 152Eu source, which produces Gd and Sm X-rays, was added during Run 4 to confirm the energy calibration and resolution in this region.

Efficiency Calibration

Relative efficiency calibration as a function of energy is necessary for accurate quantification even though the extrapolation distance from 240Pu (or 241Pu) to 242Pu peak energies is less than 1.5 keV. The calibration involves the intrinsic detector efficiency, attenuation by the steel container, and self-attenuation within the PuO$_2$ sample. Intrinsic detector efficiency is determined using a separate 133Ba source and includes four free parameters in the form $\exp(a_0 + a_1 \ln E + a_2 \ln^2 E + a_3 \ln^3 E)$ where E is γ-ray energy in keV. Two additional free parameters that account for container thickness and sample self-

attenuation are found using a single gamma ray peak from 237U, two each from 238Pu and 240Pu, four from 241Pu, and seven from 241Am, using the test item itself as the source of radiation. The calibration assumes that the declared values in Table II are correct (excepting 242Pu, which is treated as an unknown). Many other peaks are available, but for simplicity we avoided any that involve multiple decay channels (such as 208.00 keV, which has components from both 237U and 241Am). Net peak areas were extracted using SAPPY in the complex 103-keV region. A simple tailless Voigt function is used for isolated singlet peaks. The result for Run 1 is shown in Figure 6. The units on the efficiency axis are detected counts per photon emitted from the radionuclide.

![Figure 5: Spectrum detailing the 159-keV region. The peak of interest is highlighted. A typical-quality HPGe spectrum of the same region and same item is shown above the μCal spectrum.](image)

![Figure 6: Efficiency calibration curve derived from five radionuclides within the sample. Some points are overlapping. The discontinuity near 120 keV is from the plutonium K-edge.](image)

![Figure 7: The 221.80-keV peak from 237U is cleanly separated from the 221.46-keV 241Am peak. A spectrum from a pure americium source is shown below, which lacks the 237U peak.](image)
energy). This peak arises from the 281.37-keV level in 237Np, which is apparently not populated by α-decay of 241Am.

Quantification Results

The sample measurement was repeated four times. Run duration varied between 12.5 h and 21.4 h. Because the efficiency calibration relies on declared Wt% values for 235U, 239Pu, 240Pu, 241Pu, and 241Am, it is most meaningful to report 242Pu quantity relative to one of these. 240Pu is the second-most abundant radionuclide in the sample (10.21 Wt%) and it produces well-separated high-statistics peaks very close to 103 and 159 keV, so it will serve as the denominator. Results are shown in Table III.

The γ_{103} and γ_{159} emission probabilities from Wang (Table I) are used in the calculations. The uncertainties reported in the table are from our measurements only; they do not include Wang’s uncertainties. Our uncertainties are 1σ, and are dominated by counting statistics for the 242Pu peaks, but also include statistical uncertainty from the subtracted background and efficiency curve.

Measurement	242Pu/240Pu Weight Ratio from 103 keV	from 159 keV
Run 1	8.15 ± 0.16	8.47 ± 1.16
Run 2	8.39 ± 0.12	6.77 ± 0.74
Run 3	8.21 ± 0.19	10.37 ± 1.48
Run 4	8.31 ± 0.14	8.21 ± 0.97
Weighted Avg.	8.29 ± 0.07	8.30 ± 0.50

For both energies the weighted average results are slightly lower than the declared 239Pu/240Pu weight ratio of 8.50 ± 0.02 (derived from Table II). The most precise results are achieved using the 103-keV peak despite the need to deconvolve the overlapping spectral region. Berlizov et al. [8] asserted that this peak is intractable with HPGe detectors; however, with μCal’s excellent resolution, not only is use of the 103-keV peak possible, it is likely the best option for quantification in many circumstances.

We were able to extract the 103-keV net area with a 1σ statistical uncertainty of 2% after a 12.5-hour measurement with a 100-gram sample. Better sensitivity may be possible with samples that are more diffuse, such as solutions, reducing interference from the Pu X-ray at 103.74 keV. Interference from the 241Pu peak at 103.68 keV also limits sensitivity. Due to these interferences, and barring substantial technological advances, the 103-keV 242Pu peak will be useful only for items with high Wt% 240Pu; the peak would be challenging to extract for weapons-grade and even high-burnup reactor-grade Pu with SOPHIA’s current capabilities. The 159 keV region requires no deconvolution and suffers no significant interferences, but the γ_{159} emission probability is less favorable for quantification. We were able to extract the 159-keV 242Pu peak with a 1σ uncertainty of 14% after a 12.5-hour measurement. This higher-energy peak may have an advantage for quantification of high-mass or heavily-shielded items, and a planned upgrade to double SOPHIA’s efficiency and will make its use more practical. For very thin containment, the 44.91-keV peak from 242Pu may become available for quantification, as demonstrated by Bates et al.[10], but a steel thickness of just 1/8 inch attenuates this peak by a factor of 1000, so it will remain unavailable in many NDA scenarios.

Conclusion

We have successfully demonstrated the utility of μCal for 242Pu isotopic quantification, which meets a long-standing NDA challenge. This is the first time the 103- and 159-keV gamma ray peaks have been observed in a sample that was not specially prepared, and is the highest-resolution observation ever reported by any method. We have also found a more precise value for the 103-keV centroid, a more precise value for the γ_{103} emission probability, and demonstrated portability of the SOFIA instrument.

Our 103-keV results are most consistent with a γ_{103} emission probability of 2.69 (3) × 10$^{-5}$, which is between the values of Vaninbroukx et al. [7] and Wang [9] and within 1σ of both of them. Likewise, our 159-keV results are most consistent with a γ_{159} emission probability of 2.10 (14) × 10$^{-6}$, which is within 1σ of both Wang and Berlizov et al., but disagrees with Vaninbroukx et al. We improve upon the uncertainty for the emission probability for γ_{103} but not for γ_{159}. See Table I.

Acknowledgments

This work was supported by Technology Evaluation & Demonstration funding from Los Alamos National Laboratory (LANL). The SOFIA instrument was developed under the U. S. Department of Energy, Office of Nuclear Energy, Material Protection Accounting and Control Technologies (MPACT) Program. LANL is managed by Triad National Security, LLC under Contract No. 89233218CNA000001 with the U. S. Department of Energy/ National Nuclear Security Administration. This work would not be possible without the partnership of the University of Colorado and the National Institute of Standards and Technology (NIST) Quantum Sensors Group, and support from the NIST Innovations in Measurement Science program and the DOE NEUP program. The U. S. Government retains a non-exclusive, irrevocable, worldwide license to publish or reproduce this manuscript or to allow others to do so.
