Improving the electrochemical performance of a natural molybdenite/N-doped graphene composite anode for lithium-ion batteries via short-time microwave irradiation†

Shuonan Wang, a,b Yun Hai, a Bin Zhou, b Hao Liu b and Libing Liao a *

In the present work, low-cost natural molybdenite was used to make a MoS2/N-doped graphene composite through coulombic attraction with the aid of (3-aminopropyl)-triethoxysilane and the electrochemical performance was greatly improved by solvent-free microwave irradiation for tens of seconds. The characterization results indicated that most (3-aminopropyl)-triethoxysilane can decompose and release N atoms to further improve the N-doping degree in NG during the microwave irradiation. In addition, the surface groups of N-doped graphene were removed and the particle size of MoS2 was greatly decreased after the microwave irradiation. As a result, the composite electrode prepared with microwave irradiation exhibited a better rate performance (1077.3 mA h g⁻¹ at 0.1C and 638 mA h g⁻¹ at 2C) than the sample prepared without microwave irradiation (1013.6 mA h g⁻¹ at 0.1C and 459.1 mA h g⁻¹ at 2C). Therefore, the present results suggest that solvent-free microwave irradiation is an effective way to improve the electrochemical properties of MoS2/N-doped graphene composite electrodes. This work also demonstrates that natural molybdenite is a promising low-cost anode material for lithium-ion batteries.

1. Introduction

Molybdenite (MoS2), as a typical transition metal sulfide, is a promising anode material for lithium-ion batteries. It has a high theoretical specific capacity of 670 mA h g⁻¹.1 After the initial cycle, MoS2 decomposes and forms Li₂S and Mo atoms, and Mo atoms used to be considered to have no capacity.2 But a lot of studies have shown that the reversible capacity of MoS2 can reach 1000 mA h g⁻¹, and extra capacity arises from the Mo atoms accommodating six Li⁺ ions over the prolonged discharge process,3 so molybdenite has great potential in lithium-ion batteries. However, MoS2 nanosheets are often subject to poor cycling stability and inferior rate capability because of their irreversible restacking, volume variation and poor electronic conductivity.4,6

Integrating MoS2 with N-doped graphene (NG) can combat these drawbacks.1,4,5,7-9 First, NG can form a network to alleviate the aggregation and volume expansion of nanomaterials.10,11 In addition, N-doping can improve the electrical conductivity of carbon-based materials and offer ion transportation passages, which contribute to achieving a better rate performance during cycling.12-14 Furthermore, nitrogen doping in graphene can generate defects and active sites which enable the effective trapping of lithium polysulfides produced during lithiation of MoS2, leading to improvement of the cycling performance.15-18 Previous work has shown that NG can significantly improve the electrochemical properties of MoS2 anodes.1,19

A compact interface between these two materials is essential for charge transfer during the charging/discharging processes.20,21 Because of the negative surface charge of MoS2 and graphene,22-25 chemical modifiers or cross-linkers are usually used to ensure a compact interface through coulombic attraction26 or cross-linking.19 These chemicals can hinder the charge transfer process and can always be removed after the formation of the composite through traditional heating methods.7,19,26 For example, Li et al.26 fabricated a 3D MoS2@C/RGO composite through a surface-modification triggered self-assembly process. In order to disperse MoS2 into GO solution and trigger the self-assembly process between MoS2 and GO, polydopamine (PDA) coating of MoS2 was carried out based on π-π stacking and hydrogen bonding interactions. A sintering process at 400 °C was applied to transform PDA into N-doped amorphous carbon. As a result, the composite had a high capacity and good rate performance.

In contrast to traditional heating methods, microwave irradiation is an energy-efficient and fast heating method for
material synthesis. Solvents usually need to be microwave absorbing and thermally conductive materials.27–31 For the last decade, solvent-free microwave irradiation synthesis methods have been gradually developed32–38 and some novel uses of solvent-free microwave irradiation have been explored such as microwave carbonization39 and the synthesis of nanoparticles.40 Previous studies showed that graphene can effectively absorb microwaves and generate a lot of heat and the temperature can rapidly rise above 1000 °C in a few seconds, and the particles loaded on the graphene can transform into nanoparticles from microparticles.41 These facts inspire us to use this method to treat MoS\textsubscript{2}/graphene composites or similar configurations to remove the chemical modifiers or cross-linkers and reduce graphene in a short time to improve the electrochemical performance of composite electrodes.

On the other hand, most reported MoS\textsubscript{2} anode materials are synthesized with a relatively high cost.42 Nevertheless, molybdenite can be formed in nature and the reserves of molybdenite ore are abundant. High purity (>98.5%) but low cost natural molybdenite ($14.50–18.20 per kg vs. ~$140 per kg for synthesized MoS\textsubscript{2}, Aladdin Co., >98%) can be obtained by using appropriate purification processes such as exfoliation43,44 and flotation.41,44 Several reports have demonstrated that natural molybdenite anodes can exhibit excellent electrochemical properties by size-controlling45 and selecting a suitable binder.46 Because the introduction of NG to form composites has many advantages, it is worth exploring the electrochemical properties of a natural molybdenite/NG composite electrode and the influence of microwave irradiation on this type of electrode.

In this work, we synthesized a natural molybdenite/NG composite and the natural molybdenite and NG were combined through coulombic attraction with the assistance of (3-aminopropyl)-triethoxysilane (APTES). This composite was further irradiated using microwaves for tens of seconds to enhance the interfacial interaction and the electronic conductivity through the removal of APTES and surface groups on NG. Therefore, the rate performance of this type of composite was greatly improved. This work not only demonstrated that the electrochemical performance of the MoS\textsubscript{2}/NG composite or similar composites can be improved through solvent-free microwave irradiation for a short time, but also showed the potential application prospects of natural molybdenite ore as a promising low-cost anode material for lithium-ion batteries.

2. Experimental

2.1 Materials

Natural molybdenite ore was obtained from Guangzhou Haoyu stone craft firm. (3-Aminopropyl)-triethoxysilane (APTES) was purchased from Aladdin Industrial Corporation, Shanghai, China. N-doped graphene was supplied by Nanjing XFNano Materials Tech Co., Ltd.

2.2 Synthesis of MoS\textsubscript{2}/NG and MoS\textsubscript{2}/NG-MW

As shown in Fig. 1, natural molybdenite was crushed and sieved (50 mesh), and the sieved powder was ball-milled for 4 h at 560 rpm in a planetary ball mill (QM-3SP2, Nanjing NanDa Instrument Plant). 0.1546 g molybdenite was dispersed in 50 ml ethanol–water mixture (volume ratio, 1 : 1), and the suspension was ultrasonicated for 5 min. 0.3 ml APTES was added to the molybdenite suspension under magnetic stirring for 1 h. 30 mg N-doped graphene was dispersed in 50 ml ethanol–water mixture (volume ratio, 1 : 1), and the suspension was ultrasonicated for 1 h. The two suspensions above were mixed under magnetic stirring for 1.5 h. The solid was obtained via centrifugation and dried at 60 °C for 12 h. Finally, the mixture was heated under argon flow to 250 °C with a heating rate of 5 °C min−1 and maintained at this temperature for 2 h. This sample was marked as MoS\textsubscript{2}/NG. Then, the MoS\textsubscript{2}/NG was put in a glass bottle and sealed with a balloon in the glove box. The bottle was put into a microwave oven (Midea, M1-L213B, 700 W) on full power for 30 s. This sample was marked as MoS\textsubscript{2}/NG-MW.

2.3 Characterization

The structural characteristics of the as-prepared samples were investigated by X-ray diffraction (XRD, D8 Advance, Bruker, Germany) with Cu Kz radiation (\(\lambda = 0.15406 \) Å) at a voltage of 40 kV and a current of 100 mA, as well as X-ray photoelectron spectroscopy (XPS, K-Alpha, Thermo Scientific, America). The Raman spectra were obtained using a Laser Micro-Raman Spectrometer (Raman, Labram HR Evolution, Horiba Jobin Yvon, France) with a 532 nm laser. Fourier transform infrared spectra (FT-IR, Spectrum One, PerkinElmer, America) were obtained using the KBr pellet method. The morphology and
composition information were characterized by scanning electron microscopy (FESEM, MERLIN VP Compact, ZEISS, Germany) with energy-dispersive spectroscopy (EDS), transmission electron microscopy (TEM, FEI G2 F20 S-TWIN TMP, America) and thermogravimetric analysis (TGA, TGA/DSC-1, Mettler-Toledo, Switzerland) carried out at a heating rate of 10 °C min⁻¹ from 25 to 700 °C.

2.4 Electrochemical measurements

CR2032 coin-type lithium half-cells were assembled in a glove box filled with a highly pure Ar atmosphere (O₂ and H₂O levels <0.5 ppm), using metallic lithium as the counter electrode with a polypropylene separator (Celgard 2000), and 1 M LiPF₆ in ethylene carbonate (EC) and dimethyl carbonate (DMC) (volume ratio, 1:1) (provided by Nanjing Mojiesi Energy Technology Co., Ltd) as the electrolyte. The anode preparation was mixed with 90% MoS₂/NG-MW and 10% binder (sodium alginate) additive, using deionized water as the solvent for blending the mixture. Then, the homogenous slurry was uniformly painted on copper foil and subsequently dried at 60 °C for 12 h in a vacuum oven before obtaining the final working electrode. The pristine MoS₂ electrode was made using 70% molybdenite, 20% conductive agent (acetylene black) and 10% binder (sodium alginate) additive. The mass loading of active material (MoS₂) was 1.0 mg cm⁻². The half-cells were allowed to stand for 12 h before the electrochemical measurements. The electrochemical impedance spectroscopy (EIS) tests were performed on an electrochemical workstation (Ivium-Vertex, Ivium Technologies, Holland) in the frequency range from 0.1 Hz to 100 kHz. The cyclic voltammetry (CV) was performed on an electrochemical work station (CS150, CorrTest, China) in the voltage range 3.0–0.1 V at a scan rate of 5 mV s⁻¹. The galvanostatic charge/discharge tests and rate performance were carried out on a battery testing system (CT-4008, Neware, China).

3. Results and discussion

The phase identification was carried out by X-ray Powder Diffraction (XRD). As shown in Fig. 2(a), there are 9 peaks at 14.4°, 32.7°, 33.5°, 35.9°, 39.5°, 44.2°, 49.8°, 58.3° and 60.1°. All the diffraction peaks can be matched to the standard card of 2H-MoS₂ (JCPDS no. 37-1492), indicating that the primary component of the three samples is 2H-MoS₂. Compared with pristine MoS₂, the relative intensities of the diffraction peaks of the (002) planes of MoS₂/NG and MoS₂/NG-MW are lower, indicating that the degree of preferred orientation of MoS₂ in these two samples decreased. On the other hand, the diffraction peak of NG is very weak because of the low content of NG in MoS₂/NG and MoS₂/NG-MW.

The detailed morphology and layer structure of the materials were investigated by SEM. As shown in Fig. 2(b), the pristine MoS₂ is an aggregate of layered MoS₂ and the particle size is 2–5 μm. As shown in Fig. 2(c) and the EDS analysis of MoS₂/NG, the atomic ratio of S to Mo is 2.02 : 1, which is consistent with the atomic ratio of MoS₂. But in Fig. 2(d) and the EDS analysis of MoS₂/NG-MW, the atomic ratio of S to Mo is 1.53 : 1, indicating that MoS₂ decomposed and this caused the loss of S. As shown in Fig. 2(c) and (d), MoS₂ is interspersed with NG, the composite presents a flower-like structure and the MoS₂ particles in the composite material do not show agglomeration. The surface modification with APTES results in the presence of amino groups on the MoS₂ surface, and the electrostatic attraction between the amino groups and graphene reduced the
The preferential orientation of MoS₂ is weak, which is consistent with the XRD pattern. By comparing Fig. 2(c) and (d), it can be clearly observed that after microwaving, the particle size of MoS₂ decreased from 2–5 μm to 0.5–1 μm. Besides, the existence of microspheres in MoS₂/NG-MW also indicates that some MoS₂ decomposed and recombined. The structural information was further revealed by TEM and the results are shown in Fig. 3. It can be clearly observed that there are MoS₂ nanosheets with particle sizes ranging from...
several hundred nanometers to one micrometer (Fig. 3(a) and (b)). The high-resolution transmission electron microscopy (HRTEM) image of MoS2/NG-MW is displayed in Fig. 3(c), and the interplanar spacing is 0.274 nm which corresponds to the (100) plane of 2H-MoS2. Fig. 3(d) shows the elemental distributions of Mo, S, C and N elements, revealing that the MoS2 (bright parts in the STEM image) was wrapped in graphene (gray parts in the STEM image). Therefore, the above TEM results agree with the previous SEM and XRD results.

Furthermore, XPS spectra were used to distinguish the elements’ oxidation states and the results are shown in Fig. 4. Mo, S, C and O are seen in the total spectra in Fig. 4(a), but the peak of N (~399 eV) cannot be observed in the total spectra because of the presence of a nearby strong Mo 3p peak (~395 eV). According to the Mo 3d spectra of pristine MoS2, MoS2/NG and MoS2/NG-MW in Fig. 4(b), the three peaks at 232.6, 229.4 and 226.5 eV are attributed to Mo 3d3/2, Mo 3d5/2, and S 2s, respectively, corresponding with 2H-MoS2. The S 2p spectra of pristine MoS2, MoS2/NG and MoS2/NG-MW are shown in Fig. 4(c), and the two peaks at 162.2 and 163.4 eV correspond to the S 2p3/2 and S 2p1/2 states of elemental S, which correspond to the S 2p3/2 and S 2p1/2 states of elemental S. The Mo 3d spectra of MoS2/NG and MoS2/NG-MW are attributed to the oxidation of MoS2 to MoO3 and SO2. The remaining weights of MoS2/NG and MoS2/NG-MW were 1.36 and 1.25 respectively, a reduction of almost 7% compared to the pristine MoS2. This peak disappeared after microwave irradiation, indicating that microwave irradiation caused a high temperature so that some of the MoS2 decomposed and elemental S was released. The oxygen functional groups on the NG surface were removed during this process. This coincides with the results of FT-IR and XPS.

The structural features of the as-obtained samples were further explored through Raman spectroscopy. As shown in Fig. 5(b), the two distinct Raman peaks at 384 cm\(^{-1}\) and 409 cm\(^{-1}\) are attributed to the typical E\(_{2g}\) and A\(_{1g}\) vibration modes of hexagonal MoS2 crystals. The weight loss of pristine MoS2 is attributed to the oxidation of MoS2 to MoO3 and SO2. The remaining weights of MoS2/NG and MoS2/NG-MW were 1.36 and 1.25 respectively, suggesting that MoS2/NG has better crystallinity. For the D band and G band of NG, the D band corresponds to the stretching mode of sp\(^2\) bonded carbon, and is ascribed to the APTES. Nevertheless, the N–H peaks almost disappear indicating that the N–H stretching vibrations of amino groups, N–H bond bending of amino groups and Si–O–C, are ascribed to the APTES. Moreover, the N–H peaks almost disappear and the intensity of the Si–O–C peak greatly decreases in MoS2/NG-MW, indicating that most of the APTES decomposed during the process of microwave irradiation. The FT-IR results agree with the previous XPS results.

In order to know the amount of each component in the sample, TGA was performed and the results are shown in Fig. 5(c). The main temperature range for weight loss is 400–500 °C. The weight loss of pristine MoS2 is attributed to the oxidation of MoS2 to MoO3 and SO2. The weight losses of MoS2/NG and MoS2/NG-MW are attributed to the oxidation of MoS2 and NG to MoO3, SO2 and CO2. The remaining weights of pristine MoS2, MoS2/NG and MoS2/NG-MW were 89.1%, 68.1% and 65.4%, respectively, after heating to 700 °C. The mass fraction of MoS2 is found to be around 76.3% and 73.4% in MoS2/NG and MoS2/NG-MW, respectively. The mass fraction of MoS2 in MoS2/NG-MW is lower than in MoS2/NG, which is
associated with the decomposition of MoS$_2$ during microwave irradiation. Therefore, the TGA results coincide with the previous EDS and XPS results.

The CV curves of pristine MoS$_2$ and MoS$_2$/NG-MW electrodes are shown in Fig. 6(a) and (b). For the first cyclic curve, two pronounced reductions at 0.85 V and 0.4 V are observed. The peak at 0.85 V can be ascribed to the intercalation of Li$^+$ into MoS$_2$ interlayers and the resulting 2H-MoS$_2$ to 1T-MoS$_2$ phase transition: MoS$_2$ + xLi$^+$ + xe^{-}/C$_0$/Li$_x$MoS$_2$. The peak at 0.4 V can be attributed to the reduction of Li$_x$MoS$_2$ to Mo particles and Li$_2$S: Li$_x$MoS$_2$ + ($4 - x$)Li$^+$ + ($4 - x$)e$^{-}$ → Mo + 2Li$_2$S. The oxidation peak at 2.35 V can be ascribed to the decomposition of Li$_2$S: Li$_2$S + 2e$^{-}$ → 2Li$^+ + S$. In the subsequent cyclic curve, there are three distinct reduction peaks at 1.9 V, 1.1 V and 0.3 V, which can be assigned to the following three reactions: 2Li$^+$ + S + 2e$^{-}$ → Li$_2$S, MoS$_2$ + xLi$^+$ + xe$^{-}$ → Li$_x$MoS$_2$, Li$_2$MoS$_2$ + ($4 - x$)Li$^+$ + ($4 - x$)e$^{-}$ → Mo + 2Li$_2$S. The charge–discharge profiles of the pristine MoS$_2$ and MoS$_2$/NG-MW electrodes are shown in Fig. 6(c) and (d).

Fig. 6 CV curves of (a) pristine MoS$_2$ and (b) MoS$_2$/NG-MW electrodes at a scanning rate of 0.5 mV s$^{-1}$; the galvanostatic charge and discharge profiles of (c) pristine MoS$_2$ and (d) MoS$_2$/NG-MW electrodes at 0.1C; (e) rate performance of pristine MoS$_2$, MoS$_2$/NG and MoS$_2$/NG-MW electrodes at various current densities; (f) cycling performance and coulombic efficiency of MoS$_2$, MoS$_2$/NG and MoS$_2$/NG-MW electrodes at 0.1C; (g) EIS curves of pristine MoS$_2$, MoS$_2$/NG and MoS$_2$/NG-MW electrodes; (h) the impedance parameters calculated from the equivalent circuit model fitting.
Fig. 6(c) and (d). As shown in Fig. 6(c) and (d), the two potential plateaus at 1.0 V and 0.5 V can be attributed to the intercalation of Li$^+$ into the MoS$_2$ interlayers and the reduction of Li$_2$MoS$_2$ to Mo particles and Li$_2$S. In the subsequent discharge curves, the two potential plateaus disappeared and a new potential plateau appeared at 1.9 V, in accordance with the formation of Li$_2$S. In the charge curves, the obvious potential plateau at about 2.3 V corresponds to the delithiation of Li$_2$S. Compared with the pristine MoS$_2$ electrode, the MoS$_2$/NG-MW electrode has charge-discharge profiles with better repeatability, indicating that the MoS$_2$/NG-MW electrode has better cycling performance. For the MoS$_2$/NG-MW electrode, the discharge capacities are 1470, 1098 and 1056 mA h g$^{-1}$ for the first three cycles. As for the pristine MoS$_2$ electrode, the discharge capacities are only 1185, 813 and 770 mA h g$^{-1}$ for the first three cycles. The capacity loss of about 30% in the first cycle was the result of an irreversible process such as the formation of an inorganic solid electrolyte interphase (SEI) film and the irreversibility of Li$_2$S.3

Rate performances were tested at different current densities and the results are shown in Fig. 6(e). At rates of 0.1, 0.2, 0.5, 1 and 2C, the MoS$_2$/NG-MW electrode exhibits average specific discharge capacities of 1013.6, 882.5, 723.8, 600.5 and 459.1 mA h g$^{-1}$, while the MoS$_2$/NG electrode exhibits better average specific discharge capacities of 1077.3, 956.7, 834, 745.5 and 638 mA h g$^{-1}$, respectively. In addition, the specific discharge capacities can recover to 879.5 and 918.4 mA h g$^{-1}$ for the MoS$_2$/NG and MoS$_2$/NG-MW electrodes when the current density goes back to 0.1C. In contrast, the capacity of the pristine MoS$_2$ electrode is only 509.4 mA h g$^{-1}$ at the same rate.

It is obvious that the MoS$_2$/NG-MW electrode has the best rate performance among these three electrodes. The cycling performances of pristine MoS$_2$, MoS$_2$/NG and MoS$_2$/NG-MW electrodes were measured at a rate of 0.1C. As shown in Fig. 6(f), the capacity of the pristine MoS$_2$ electrode decreased sharply for the first 30 cycles, and only 142.2 mA h g$^{-1}$ was preserved up to the 50th cycle. For the MoS$_2$/NG and MoS$_2$/NG-MW electrodes, the capacities apparently decreased for the first 70 cycles, but the capacities remained stable for the next 80 cycles, which can be attributed to the fact that the flower-like structure could reduce the loss of active material. After 70 and 150 cycles, the specific discharge capacities of the MoS$_2$/NG electrode are 387.4 and 366.6 mA h g$^{-1}$, and those of the MoS$_2$/NG-MW electrode are 459.8 and 453.7 mA h g$^{-1}$, respectively. The result confirms that MoS$_2$/NG-MW has a more compact interface between MoS$_2$ and NG, so the loss of active material is reduced, leading to the better cycling performance of MoS$_2$/NG-MW. The initial coulombic efficiency is about 85% and quickly increases to above 95% after several cycles.

To confirm the difference in the electrochemical performance of the pristine MoS$_2$, MoS$_2$/NG and MoS$_2$/NG-MW electrodes, EIS tests were performed. The Nyquist plots and fitted equivalent circuit are shown in Fig. 6(g). The semicircular loop at the high-medium frequencies is related to resistance R_{in} electrode/electrolyte interface resistance (CPE) and charge transfer resistance (R_{ct}), and the sloped line at low frequencies represents the Warburg impedance (Z_{w}), which is connected to the Li$^+$ diffusion in the electrode materials.45 The impedance parameters calculated from the equivalent circuit model fitting are shown in Fig. 6(h). The R_{in} and R_{ct} of the MoS$_2$/NG-MW electrode are 4.05 Ω and 43.4 Ω, which are much lower than those of the pristine MoS$_2$ electrode ($R_{in} = 12.31$ Ω, $R_{ct} = 251.9$ Ω) and the MoS$_2$/NG electrode ($R_{in} = 6.13$ Ω, $R_{ct} = 163.9$ Ω). This fact confirms that the electrical conductivity is improved. Nevertheless, the impedance spectra of the MoS$_2$/NG and MoS$_2$/NG-MW electrodes become similar after tens of cycles (Fig. S1, ESI†).

We have compared the obtained results with the literature (Table S1, ESI†) and found that the MoS$_2$/NG-MW composite possesses a good rate performance but the cycling performance is relatively poor. In order to know the reason for the poor cycling performance, SEM was performed and the results are

Fig. 7 SEM images of (a) MoS$_2$/NG-MW and (b) MoS$_2$/NG electrodes after 1 cycle; SEM images of (c) and (d) MoS$_2$/NG-MW and (e) MoS$_2$/NG electrodes after 150 cycles and EDS results of the MoS$_2$/NG and MoS$_2$/NG-MW electrodes.
shown in Fig. 7. As shown in Fig. 7(a–e), it is hard to find the layered structure of MoS$_2$ after 150 cycles, and a thick SEI film can be observed on the surface of the electrode. According to the EDS results, the content of sulfur in the MoS$_2$/NG and MoS$_2$/NG-MW electrodes greatly decreases after 150 cycles. According to the CV results and other reports, the reaction processes of MoS$_2$-based anode materials are similar to those of Li–S batteries after the first several cycles. Therefore, the problem of polysulfide dissolution has a great impact on the cycling stability of the electrodes. After long-term cycling, the content of sulfur in the MoS$_2$/NG and MoS$_2$/NG-MW electrodes greatly decreases due to this problem, leading to the poor cycling performance of these two electrodes. In addition, the difference between the MoS$_2$/NG and MoS$_2$/NG-MW electrodes becomes small after tens of cycles, leading to similar impedance of these two electrodes. Several measures can be taken to improve the electrochemical performance of our samples. For example, other binders, such as carboxymethyl cellulose (CMC), may be more suitable than sodium alginate for a MoS$_2$-based anode.

In addition, adding some porous or surface polarization materials, which can trap the soluble polysulfide ions, can further improve the electronic conductivity of the composite electrode or separator may also lead to an improvement of the cycling stability.

Based on the above results, it can be concluded that microwave irradiation can greatly improve the rate performance and cycling performance of the MoS$_2$/NG composite. Firstly, the APTES can decompose and the released N atoms enter into the NG layer during microwave irradiation. Therefore, MoS$_2$/NG-MW has a more compact interface and the N-doping degree is enhanced, which are beneficial for the charge transfer during the charging/discharging processes. Secondly, the functional groups on the NG surface are removed during microwave irradiation and this can further improve the electronic conductivity of the composite. Thirdly, the particle size of MoS$_2$ decreases from 2–5 μm to 0.5–1 μm and the transfer path for ions and electrons can be greatly shortened during cycling. Therefore, the rate performance of the MoS$_2$/NG-MW electrode has been improved by microwave irradiation.

4. Conclusions

In summary, a natural molybdenite/NG composite was synthesized with the assistance of APTES, and the electrochemical performance of the composite was improved via short-time microwave irradiation. The influence of microwave irradiation was verified and the results indicated that part of the MoS$_2$ was decomposed during microwave irradiation and its particle size decreased from 2–5 μm to 0.5–1 μm, which can greatly shorten the transfer paths for ions and electrons during cycling. Besides, most of the APTES decomposed and the released N atoms entered into the NG layer during microwave irradiation, which is beneficial for charge transfer during the charging/discharging processes. Furthermore, the functional groups on the NG surface are consumed during microwave irradiation and this can further improve the electronic conductivity of the composite. As a result, MoS$_2$/NG-MW exhibited a good rate performance (1077.3 mA h g$^{-1}$ at 0.1C and 638 mA h g$^{-1}$ at 2C) and good cycling performance (459.8 and 453.7 mA h g$^{-1}$ after 70 and 150 cycles at 0.1C), which are superior to those of MoS$_2$/NG. This work not only suggested that short-time solvent-free microwave irradiation could improve the electrochemical performance of the MoS$_2$/NG composite or similar NG composites, but also indicated that natural molybdenite ore is a promising low-cost anode material for lithium-ion batteries.

Conflicts of interest

There are no conflicts to declare.

Acknowledgements

This work is supported by the Fundamental Research Funds for the Central Universities (No. 2652019108) and the National Natural Science Foundation of China (No. 21875223).

Notes and references

1. B. Chen, Y. Meng, F. He, E. Liu, C. Shi, C. He, L. Ma, Q. Li, J. Li and N. Zhao, *Nano Energy*, 2017, **41**, 154–163.
2. T. Stephenson, Z. Li, B. Olsen and D. Mitlin, *Energy Environ. Sci.*, 2014, **7**, 209–231.
3. L. Wang, Q. Zhang, J. Zhu, X. Duan, Z. Xu, Y. Liu, H. Yang and B. Lu, *Energy Storage Mater.*, 2019, **16**, 37–45.
4. K. Chang, D. Geng, X. Li, J. Yang, Y. Tang, M. Cai, R. Li and X. Sun, *Adv. Energy Mater.*, 2013, **3**, 839–844.
5. J. Jiao, K. Du, Y. Wang, P. Sun, H. Zhao, P. Tang, Q. Fan, H. Tian, Q. Li and Q. Xu, *Mater. Chem. Phys.*, 2020, **240**, 122169.
6. F. Tu, Y. Han, Y. Du, X. Ge, W. Weng, X. Zhou and J. Bao, *ACS Appl. Mater. Interfaces*, 2019, **11**, 2112–2119.
7. K. Chang and W. Chen, *ACS Nano*, 2011, **5**, 4720–4728.
8. L. Ma, J. Ye, W. Chen, D. Chen and J. Yang Lee, *Nano Energy*, 2014, **10**, 144–152.
9. B. Yu, Y. Chen, Z. Wang, D. Chen, X. Wang, W. Zhang, J. He and W. He, *J. Power Sources*, 2020, **447**, 227364.
10. D. Zhou, W.-L. Song, X. Li, L.-Z. Fan and Y. Deng, *J. Alloys Compd.*, 2017, **699**, 730–737.
11. N. Wu, W. Du, X. Gao, L. Zhao, G. Liu, X. Liu, H. Wu and Y. B. He, *Nanoscale*, 2018, **10**, 11460–11466.
12. X. Tang, G. Wen and Y. Song, *Appl. Surf. Sci.*, 2018, **436**, 398–404.
13. X. Ge, S. Liu, M. Qiao, Y. Du, Y. Li, J. Bao and X. Zhou, *Angew. Chem., Int. Ed.*, 2019, **58**, 14578–14583.
14. X. Zhou, L. Yu and X. W. D. Lou, *Adv. Energy Mater.*, 2016, **6**, 1600451.
15. D. Su, M. Cortie and G. Wang, *Adv. Energy Mater.*, 2017, **7**, 1602014.
16. X. Li, Y. Bai, M.-S. Wang, G. Wang, Y. Ma, L. Li, B. Xiao and J. Zheng, *Sustainable Energy Fuels*, 2019, **3**, 1427–1438.
17. C. Li, X.-L. Sui, Z.-B. Wang, Q. Wang and D.-M. Gu, *Ceram. Int.*, 2018, **44**, 13419–13425.
18. S.-K. Liu, X.-B. Hong, Y.-J. Li, J. Xu, C.-M. Zheng and K. Xie, *Chin. Chem. Lett.*, 2017, **28**, 412–416.
19 S. Xia, Y. Wang, Y. Liu, C. Wu, M. Wu and H. Zhang, Chem. Eng. J., 2018, 332, 431–439.
20 X. Liu, Q. Yang, M. Mi, W. Kong, Y. Ge, J. Ma and J. Hu, J. Alloys Compd., 2019, 800, 99–106.
21 W. Zhang, S. Fang, N. Wang, J. Zhang, B. Shi, Z. Yu and J. Yang, Inorg. Chem. Front., 2020, 7, 2487–2496.
22 J. H. Lee, S. H. Kwon, S. Kwon, M. Cho, K. H. Kim, T. H. Han and S. G. Lee, Nanomaterials, 2019, 9, 268.
23 M. Morant-Giner, I. Brotons-Alcázar, N. Y. Shmelev, A. L. Gushchin, L. T. Norman, A. N. Khlobystov, A. Alberola, S. Tatay, J. Canet-Ferrer, A. Forment-Aliaga and E. Coronado, Chem.–Eur. J., 2020, 26, 6670–6678.
24 C. Zhao, R. Wang, Y. Zhang, L. Chen, T. Li, X. Deng, P. Zhang and X. Lu, Electrochim. Acta, 2019, 320, 134591.
25 Y. Fang, Q. Huang, P. Liu, J. Shi and G. Xu, Colloids Surf., A, 2018, 540, 112–122.
26 S. Li, P. Liu, X. Huang, Y. Tang and H. Wang, J. Mater. Chem. A, 2019, 7, 10988–10997.
27 E. Alsharaeh, F. Ahmed, Y. Aldawsari, M. Khasawneh, H. Abuhimda and M. Alshahran, Sci. Rep., 2016, 6, 29854.
28 E. S. M. Duraia, A. Fahami and G. W. Beall, J. Electron. Mater., 2018, 47, 7288–7295.
29 S. Shi, X. Hua and H. Guo, Ceram. Int., 2018, 44, 13495–13501.
30 Y. Aldawsari, Y. Mussa, F. Ahmed, M. Arsalan and E. Alsharaeh, Materials, 2019, 12, 2248.
31 Z. W. Lu, Y. H. Wang, Z. Dai, X. P. Li, C. Y. Zhang, G. Z. Sun, C. S. Gong, J. X. Pan, W. Lan, J. Y. Zhou and E. Q. Xie, Electrochim. Acta, 2019, 325, 134920.
32 D. Voiry, J. Y. Jiang, J. Kupferberg, R. Fullon, C. Lee, H. Y. Jeong, H. S. Shin and M. Chhowalla, Science, 2016, 353, 1413–1416.
33 B. K. Barman and K. K. Nanda, ACS Sustainable Chem. Eng., 2018, 6, 4037–4045.
34 J. Xu, R. Zhang, S. Lu, H. Liu, Z. Li, X. Zhang and S. Ding, Nanotechnology, 2018, 29, 305708.
35 J. A. Rudd, C. E. Gowenlock, V. Gomez, E. Kazimierska, A. M. Al-Enizi, E. Andreoli and A. R. Barron, J. Mater. Sci. Technol., 2019, 35, 1121–1127.
36 S. Xu, G. Zhong, C. Chen, M. Zhou, D. J. Kline, R. J. Jacob, H. Xie, S. He, Z. Huang, J. Dai, A. H. Brozena, R. Shahbazian-Yassar, M. R. Zachariah, S. M. Anlage and L. Hu, Matter, 2019, 1, 759–769.
37 S. Liu, P. Yan, H. Li, X. Zhang and W. Sun, Front. Chem., 2020, 8, 104.
38 Y. Lin, D. W. Baggett, J.-W. Kim, E. J. Siochi and J. W. Connell, ACS Appl. Mater. Interfaces, 2011, 3, 1652–1664.
39 Q. Shi, D. Liu, Y. Wang, Y. Zhao, X. Yang and J. Huang, Small, 2019, 15, 1901724.
40 S. Chen, J. Gao, B. M. Srinivasan and Y.-W. Zhang, Acta Phys.-Chim. Sin., 2019, 35, 1119–1127.
41 W. Zhao, T. Jiang, Y. Shan, H. Ding, J. Shi, H. Chu and A. Lu, Nanomaterials, 2018, 8, 843.
42 N. Savjani, E. A. Lewis, R. A. D. Pattrick, S. J. Haigh and P. O’Brien, RSC Adv., 2014, 4, 35609–35613.
43 P. F. A. Braga, A. P. Chaves, A. B. Luz and S. C. A. França, Int. J. Miner. Process., 2014, 127, 23–27.
44 S. Li, H. Tang, P. Ge, F. Jiang, J. Zhou, C. Zhang, H. Hou, W. Sun and X. Ji, ACS Appl. Mater. Interfaces, 2018, 10, 6378–6389.
45 F. Jiang, S. Li, P. Ge, H. Tang, S. A. Khoso, C. Zhang, Y. Yang, H. Hou, Y. Hu, W. Sun and X. Ji, Front. Chem., 2018, 6, 389.
46 W. Chen, S. Qi, L. Guan, C. Liu, S. Cui, C. Shen and L. Mi, J. Mater. Chem. A, 2017, 5, 5332–5341.
47 C. Chen, Y. He, G. Xiao, Y. Xia, H. Li and Z. He, Appl. Surf. Sci., 2018, 444, 511–521.
48 S. Tao, D. Wu, S. Chen, B. Qian, W. Chu and L. Song, Chem. Commun., 2018, 54, 8379–8382.
49 Z. Jing, X. Dai, X. Xian, Q. Zhang, H. Zhong and Y. Li, Materials, 2020, 13, 2529.
50 J. Liu, A. X. Wei, M. Chen and X. Xia, J. Mater. Chem. A, 2018, 6, 3857–3863.
51 T. Liu, X. Zhang, B. Li, J. Ding, Y. Liu, G. Li, X. Meng, Q. Cai and J. Zhang, RSC Adv., 2014, 4, 50765–50770.
52 P. Krawczyk, B. Gürzeda and A. Bachar, Appl. Surf. Sci., 2019, 481, 466–472.
53 Y. Miki, D. Nakazato, H. Ikuta, T. Uchida and M. Wakahara, J. Power Sources, 1995, 54, 508–510.