TWO-ORBIT K"AHLER MANIFOLDS AND MORSE THEORY

ANNA GORI AND FABIO PODESTÀ

Abstract. We deal with compact K"ahler manifolds M acted on by a compact Lie group K of isometries, whose complexification K^C has exactly one open and one closed orbit in M. If the K-action is Hamiltonian, we obtain results on the cohomology and the K-equivariant cohomology of M.

1. Introduction

Complete smooth complex algebraic varieties M with an almost homogeneous action of a linear algebraic group G have been studied by several authors (see e.g. [AK], [O], [HS]). When the complement N of the open G-orbit is homogeneous, the variety is called a two-orbit variety. Akhiezer ([AK]) gave a classification of two-orbit varieties in the case where N is a complex hypersurface, while Feldmüller ([F]) extended this classification under the hypothesis that N has codimension two and G is reductive. Recently, Cupit-Foutou ([C]) gave the full classification when G is reductive.

We will be dealing with a compact K"ahler manifold M, which is acted on by a compact Lie group K of isometries, whose complexification K^C acts on M with two orbits. Under the hypothesis that the K-action is Hamiltonian with moment map μ, we study the critical set of the squared moment map $|\mu|^2$, applying standard Morse-theoretic results due to Kirwan ([K]) and obtaining information on the cohomology and K-equivariant cohomology of M.

Our main result is the following.

Theorem 1. Let M be a compact K"ahler manifold and let K be a compact connected Lie group of isometries acting on M in a Hamiltonian fashion. If the complexification K acts on M with two orbits, then

i) K is semisimple and M is simply connected projective algebraic;

ii) the Hodge numbers $h^{p,q}(M) = 0$ if $p \neq q$;

iii) the function $f : M \to \mathbb{R}$ given by $|\mu|^2$, where $\mu : M \to \mathfrak{k}$ is the moment mapping, is a Bott-Morse function; it has only two critical submanifolds given by the closed G-orbit N, which realizes the maximum of f and by a K-orbit S, which realizes the minimum. The Poincaré polynomial $P_M(t)$ of M satisfies

$$P_M(t) = t^k \cdot P_N(t) + P_S(t) - (1 + t)R(t),$$

where k is the real codimension of N in M and $R(t)$ is a polynomial with positive integer coefficients. In particular $\chi(M) = \chi(N) + \chi(S)$;

iv) if $\chi(M) > \chi(N)$, then f is a perfect Bott-Morse function, i.e.

$$P_M(t) = t^k \cdot P_N(t) + P_S(t).$$

Key words and phrases. K"ahler manifold, moment mapping, stratifications.
v) The K-equivariant Poincaré series of M is given by
\[P^K_M(t) = t^k \cdot P^K_N(t) + P^K_S(t). \]

We remark here that the statement of the Theorem holds for every K-invariant Kähler form on M, not only for those which are induced by the Fubini-Study Kähler form of a projective space where the manifold might be K^C-equivariantly embedded.

In order to prove Theorem 1, we will need some properties of the critical point set of the squared moment map. In [1], it is proved that, given a compact Lie group acting holomorphically on some $\mathbb{P}(V)$ with moment map μ, then two critical points of $||\mu||^2$ which belong to the same K^C-orbit lie on the same K-orbit; the proof of this fact is essentially based on the explicit expression of the moment map for the K-action on the projective space endowed with its canonical Fubini-Study Kähler form. We slightly generalize such result to a class of compact Kähler manifolds which are acted on by a compact Lie group of isometries with moment map μ and we put the following

Definition 2. Given a compact Kähler manifold (M, ω) acted on by a compact Lie group K of isometries with moment map μ, we say that μ has the *Ness property* if two critical points for $||\mu||^2$ which are in the same G-orbit belong to the same K-orbit.

Note that if $0 \in \mu(M)$, then two points in $\mu^{-1}(0)$ which lie in the same G-orbit belong to the same K-orbit by a well-known fact due to [1], p.97.

The next proposition gives sufficient conditions in order to find invariant Kähler forms with the Ness property.

Proposition 3. Let M be a compact complex manifold and let K be a connected, compact semisimple Lie group of holomorphic transformations of M such that K^C has an open orbit in M. If ω is a K-invariant Kähler form, then there exists a K-invariant Kähler form ω' which is cohomologous to ω and whose corresponding moment map has the Ness property.

We will also need the following result, which might have an independent interest (see also [1]).

Proposition 4. Let M be a compact Kähler manifold which is acted on by a compact connected Lie group K of isometries in a Hamiltonian fashion with moment map μ. If a point $x \in M$ realizes the maximum of $||\mu||^2$, then the orbit $K \cdot x$ is complex.

We remark here that Cupit-Foutou [1] has deduced from her classification of two-orbit varieties that all such manifolds are spherical, i.e. a Borel subgroup of G has an open orbit. Using the fact that the moment map relative to K separates orbits when M is spherical (see [1], [1]), we see that the critical sets C_β of $f = ||\mu||^2$ (see section 2 for basic definitions) consist of single K-orbits, making the study of the Ness property unnecessary. We preferred to avoid using the fact that two-orbit varieties are spherical, with the hope of finding a new classification of such manifolds with a symplectic approach.

2. **Basics on moment mappings and Morse theory**

We here briefly recall some basic results due to F.Kirwan [1] about the geometry of the moment map; namely we will first deal with a compact Kähler manifold M
which is acted on effectively by a compact connected group of isometries K; we recall that K acts automatically by holomorphic transformations and there is a holomorphic action on M of the complex Lie group $G := K^\mathbb{C}$.

A smooth map $\mu : M \to \mathfrak{t}^*$ is said to be a moment map if

$$d\mu_x(X)(\xi) = \omega_x(X, \hat{\xi})$$

for all $\xi \in \mathfrak{t}$ and $X \in T_xM$, where we denote by $\hat{\xi}$ the fundamental Killing vector field on M induced by the one parameter subgroup $\exp(t\xi)$ for $\xi \in \mathfrak{t}$. If μ is equivariant, then we will call μ an equivariant moment map; it is known (see [HW]) that an equivariant moment map exists if and only if K acts trivially on the Albanese torus $\text{Alb}(M)$. In the sequel we will identify $\mathfrak{t} \cong \mathfrak{t}^*$ by means of a $Ad(K)$-invariant scalar product $\langle \cdot, \cdot \rangle$ on the Lie algebra \mathfrak{t} and we will consider μ as a \mathfrak{t}-valued map.

The critical points of the function $f : M \to \mathbb{R}$ given by $f(x) := ||\mu||^2$, where $||\cdot||$ is the norm on \mathfrak{t} induced by the scalar product $\langle \cdot, \cdot \rangle$, are given by those points $p \in M$ such that $\mu(p)_p = 0$; the function f is in general not a Bott-Morse function, while for every $\beta \in \mathfrak{t}\setminus\{0\}$ the height function $\mu_\beta := (\mu, \beta)$ is (see [AM]). According to [K], if $\beta \in \mathfrak{t}$, $\beta \neq 0$, we denote by Z_β the union of those connected components of the critical set of μ_β on which μ_β assumes the value $||\beta||^2$, while the Morse stratum Y_β associated to Z_β consists of all points of M whose paths of steepest descent under μ_β converge to points of Z_β. The subset Y_β is a complex submanifold (see [K], p. 89) and the Hessian $H(\mu_\beta)$ restricted to $T_xY_\beta \times T_xY_\beta$ is positive semi-definite, where $x \in Z_\beta$.

In [K] it is proved that f, although not nondegenerate in the sense of Bott, induces nevertheless a smooth stratification $\{S_\beta \mid \beta \in B\}$ of M for some appropriate choice of a K-invariant metric on M. The stratum to which a point of M belongs is determined by the limit set of its positive trajectory under the flow $-\text{grad} f$; the indexing set B is a finite subset of the positive Weyl chamber \mathfrak{t}_+. The strata S_β are all locally closed K-invariant submanifolds of M of even dimension. In [K] it is also proved that the set of critical points of f is the disjoint union of the closed subset $\{C_\beta = K(Z_\beta \cap \mu^{-1}(\beta)) \mid \beta \in B\}$ of M, and the image, under μ, of each connected component of the critical set of f is a single adjoint orbit in $\mathfrak{t} \cong \mathfrak{t}^*$. More precisely, for each $\beta \in B$, C_β consists of those critical points of f whose image under μ lies in the adjoint orbit of β; thus the function f takes the constant value $||\beta||^2$ on C_β.

The introduction of the submanifolds S_β is given in [K] in the general setting of symplectic manifolds. If we restrict our attention on Kähler ones, one can give a different characterization of the submanifolds S_β: a point x belongs to S_β if and only if β is the closest point to the origin of $\mu(Gx) \cap \mathfrak{t}_+$ ([K], p. 90).

3. Proof of the main results

We start proving Proposition 3, which will be useful in proving Theorem 1.

Proof of Proposition 3: First of all we note that the Albanese map $\alpha : M \to \text{Alb}(M) := \text{Alb}(M)$ is K-equivariant and it induces a surjective homomorphism $\alpha_* : G \to \text{Aut}(\text{Alb}(M)) \cong \text{Aut}(M)$ by [P], where $G = K^\mathbb{C}$; since G is semisimple, we have that $\text{Aut}(M) = \{0\}$, i.e. the first Betti number $b_1(M) = 0$. It then follows from [O] that M, being G-almost homogeneous, is simply connected algebraic and $h^{2,0}(M) = 0$. This implies that $H^2(M, \mathbb{C}) = H^1(M, \Omega^1_M)$ and therefore
\[H^2(M, \mathbb{R}) = H^{(1,1)}(M, \mathbb{R}), \] where \(H^{(1,1)}(M, \mathbb{R}) = H^2(M, \mathbb{R}) \cap H^1(M, \Omega^1_M) \). Since \(H^2(M, \mathbb{Z}) \) is a lattice of maximal rank in \(H^2(M, \mathbb{R}) \), there exists a basis \(c_1, \ldots, c_m \) of \(H^2(M, \mathbb{R}) \) with each \(c_i \in H^2(M, \mathbb{Z}) \cap K \), where \(K \) denotes the open Kähler cone in \(H^2(M, \mathbb{R}) \). So, given a Kähler form \(\omega \), we can find positive real numbers \(a_j \) such that \(|\omega| = \sum a_j c_j \); since each \(c_j \) is the Chern class of a positive line bundle, this means that there exist embeddings \(\phi_j : M \to \mathbb{P}(V_j) \) such that \(\omega \) is cohomologous to

\[\omega' := \sum_j \lambda_j \cdot (\phi_j)^*(\omega_{FS}(\mathbb{P}(V_j))), \]

where \(\omega_{FS}(\mathbb{P}(V_j)) \) denotes the Kähler form of the Fubini-Study Kähler metric on \(\mathbb{P}(V_j) \) and \(\lambda_j \) are real positive numbers. Note that \(K \) acts trivially on \(H^1(M, \mathcal{O}^*) \) since \(b_1(M) = 0 \) implies that \(H^1(M, \mathcal{O}^*) \to H^2(M, \mathbb{Z}) \); this means that the projective embeddings can be taken to be \(G \)-equivariant.

We will now prove that the moment map \(\mu' \) corresponding to \(\omega' \) has the Ness property, following the lines of the proof in [K], p.1303; we will prove almost all her statements in full generality, while we will use the special form of \(\omega' \) only in Lemma 6. Note that the semisimplicity of \(K \) implies the existence and the uniqueness of \(\mu' \).

We now consider \(x \) and \(y \) two critical points that belong to the same \(G \)-orbit. Recall that we can assume that \(\mu'(x), \mu'(y) \neq 0 \). First, note that if \(f' = \|\mu'\|^2 \) then \(f'(y) = f'(x) \). In fact, \(x \in C_\beta \subset S_\beta \), where \(\beta = \mu'(x) \) and, by the \(G \)-invariance of \(S_\beta \), \(y = g \cdot x \in S_\beta \), since \(y \) is critical it must lie in \(C_\beta \) on which \(f' \) is constant. We can also assume that \(\beta \in \mathfrak{t}_+ \). Let now take \(P \) the parabolic subgroup corresponding to \(\beta \); by the Levi decomposition \(P = L \cdot U \), where \(L = K_\beta^C \) is the Levi subgroup of \(P \), and \(U \) its unipotent radical. We have that \(G = KPU \), hence \(y = g \cdot x = klu \cdot x \), for some \(k \in K, l \in L \) and \(u \in U \). Since \(y \) is a critical point of \(f' \) if and only if the \(K \)-orbit of \(K \cdot y \) consists of critical points of \(f' \), it is enough to prove the result for \(y = lu \cdot x \). Using this notation we state

Lemma 5. If \(\alpha \in \mathfrak{t} \setminus \mathfrak{k}_e \), then \(\mu'_\alpha(\exp t\mathfrak{i} \alpha \cdot x) \) is a strictly increasing function of \(t \).

Lemma 6. Suppose \(x \) and \(y = lu \cdot x \) are critical points of \(f' \) with \(f'(x) = f'(y) \neq 0 \). Then \(u = e_G \), the identity in \(G \).

Assuming the lemmas, we will deduce our claim. By Lemma 5, \(y = l \cdot x \); if \(l \in G_x \) then \(y = x \) and we are done. Otherwise \(y = l \cdot x \) and \(l \notin G_x \). We will show that this implies that \(f'(y) > f'(x) \), a contradiction. Since \(K_\beta^C/K_\beta \) is a symmetric space, there is a geodesic joining the cosets \([e] \) and \([l] \). Thus there is a one parameter subgroup \(\exp(t\alpha_1) \), with \(\alpha_1 \in \mathfrak{k}_\beta \), such that \(l = \exp(t\alpha_1)k_1 \) for \(k_1 \in K_\beta \) and \(t_0 \in \mathbb{R}^+ \). It suffices to prove the result for \(y = \exp(t\alpha_1) \cdot x \). Since \(\beta \neq 0 \) we take \(\alpha_0 = -\beta \). We can assume \(\alpha_1 \) to be of length 1 and perpendicular to \(\alpha_0 \), otherwise we substitute \(\alpha_1 \) with its component in \(\mathfrak{k}_\beta \cap (\mathbb{R} \cdot \beta)^\perp \). Complete \(\alpha_0, \alpha_1 \) to an orthonormal basis \(\{\alpha_0, \alpha_1 \ldots \alpha_m\} \) of \(\mathfrak{k} \). We have

\[f'(z) = \|\mu'(z)\|^2 = \sum_{i=0}^m \mu'^2_{\alpha_i}(z) \]

and

\[\|\mu'(y)\|^2 = \|\mu'(\exp(t\alpha_1) \cdot x)\|^2 \geq \mu'^2_{\alpha_0}(\exp t\alpha_1 \cdot x) + \mu'^2_{\alpha_1}(\exp t\alpha_1 \cdot x). \]
One can easily prove that $\mu'^2_{\alpha_0}(\exp t\alpha \cdot x)$ is constant and equal to $||\mu'(x)||^2$; on the other hand, $\mu'_\alpha(x) = 0$ and $\mu'_\alpha(\exp t\alpha \cdot x)$ is strictly increasing, by Lemma 6, so that $\mu'^2_{\alpha_1}(\exp t\alpha \cdot x)$ is positive. Hence $f'(y) > f'(x)$. This contradiction proves Proposition 3. □

Now we prove the two lemmas.

Proof of Lemma 4. We will show that $\frac{d}{dt}\mu'_\alpha(\exp(it\alpha) \cdot x) > 0$. Using the definition of μ'_α we get
\[
\frac{d}{dt}\mu'_\alpha(\exp(it\alpha) \cdot x) = \frac{d}{dt} < \mu'(\exp(it\alpha) \cdot x), \alpha >= < \mu'_{\exp t\alpha \cdot x}(J\alpha), \alpha >
\]
then, using the definition of μ', we have that the last term is equal to $\omega'_{\exp t\alpha \cdot x}(J\alpha, \alpha)$ and then equal to $g_{\exp t\alpha \cdot x}(\alpha, \alpha)$ which is strictly positive. □

Proof of Lemma 5. Let $y = lu \cdot x$. Using the uniqueness of μ' we have that
\[
\mu'(x) = \sum_i \lambda_i \mu'_i
\]
where λ_i are real positive numbers, that have been already introduced, and μ'_i are the moment maps corresponding to the forms $(\phi_i)^*(\omega_{F_S}(P(V_i)))$. Using the same arguments as in [5], p.1305, we have that, if $u \neq e$, for each μ'_i the following strict inequality holds
\[
(3.1) \quad \mu'_{\alpha_0}(lu \cdot x) > \mu'_{\alpha_0}(x).
\]
We compute $\mu'_{\alpha_0}(lu \cdot x)$ and we prove that it is positive: indeed
\[
\mu'_{\alpha_0}(lu \cdot x) = \sum_i \lambda_i < \mu'_i(lu \cdot x), \alpha_0 > = \sum_i \lambda_i \mu'_{\alpha_0}(lu \cdot x)
\]
and, applying the strict inequality (3.1), we have that the last term is strictly greater than $\sum_i \lambda_i \mu'_{\alpha_0}(x) = \mu'_{\alpha_0}(x) = ||\mu'(x)|| > 0$. Hence
\[
f'(y) = ||\mu'(lu \cdot x)||^2 > \mu'^2_{\alpha_0}(lu \cdot x) > \mu'^2_{\alpha_0}(x) = ||\mu'(x)||^2 = f'(x)
\]
so u must be e and Lemma 5 is proved. □

We next prove Proposition 4.

Proof of Proposition 4. Let $\beta = \mu(x)$, which we can suppose to lie in t_+. Then $x \in C_\beta = K \cdot (Z_\beta \cap \mu^{-1}(\beta))$. We now claim that $Z_\beta = \mu^{-1}(\beta)$. Indeed, if $p \in Z_\beta$, then $\mu_\beta(p) = ||\beta||^2$ and
\[
||\beta||^2 \leq \langle \mu(p), \beta \rangle \leq ||\mu(p)|| \cdot ||\beta|| \leq ||\beta||^2,
\]
and therefore $\mu(p) = \beta$, i.e. $p \in \mu^{-1}(\beta)$). Viceversa, if $p \in \mu^{-1}(\beta)$, then $||\mu(p)||^2$ is the maximum value of $f := ||\mu||^2$ and therefore $\beta p = 0$; moreover $\mu_\beta(p) = ||\beta||^2$ and therefore $p \in Z_\beta$. This implies that $\mu^{-1}(\beta)$ is a complex submanifold and that $C_\beta = K \cdot \mu^{-1}(\beta)$. We now claim that $S_\beta = C_\beta$. Indeed, if $\gamma_t(q)$ denotes the flow of $-\text{grad}(f)$ through a point q belonging to the stratum S_β, then $\gamma_t(q)$ has a limit point in the critical subset C_β: since $f(\gamma_t(q))$ is non-increasing for $t \geq 0$ and $f(C_\beta)$ is the maximum value of f, we see that $f(\gamma_t(q)) = ||\beta||^2$ for all $t \geq 0$, that is $S_\beta \subseteq C_\beta$ and therefore $S_\beta = C_\beta$. 5
This implies that $C_\beta = S_\beta$ is a smooth complex submanifold of M (see [K], p. 89) and for every $y \in \mu^{-1}(\beta)$, we have
\[T_y S_\beta = T_y(K \cdot y) + T_y(\mu^{-1}(\beta)). \]
Now, if $v \in T_y(\mu^{-1}(\beta))$, then $v = Jw$ for some $w \in T_y(\mu^{-1}(\beta))$ and for every $X \in \mathfrak{g}$ we have
\[0 = \langle d\mu_y(w), X \rangle = \omega_y(w, \dot{X}_y) = \omega_y(Jv, \dot{X}_y) = g_y(v, \dot{X}_y), \]
meaning that $T_y(\mu^{-1}(\beta))$ is g-orthogonal to $T_y(K \cdot y)$. Since both S_β and $\mu^{-1}(\beta)$ are complex, this implies that $K \cdot y$ is a complex orbit. \hfill \Box

Proof of Theorem 1. We will first prove that K is semisimple. Let \mathfrak{g} be the Lie algebra of the center of \mathfrak{k}, the Lie algebra of K, and let $X \in \mathfrak{g}$ be a vector such that $\exp(X)$ generates the torus $Z^0(K)$. We will show that X acts trivially on M; let C denote the zero set of X.

If $\mu : M \to \mathfrak{g}$ denotes a moment mapping for the K-action, then $\phi : \pi \circ \mu : M \to \mathbb{R} \cdot X$, where $\pi : \mathfrak{g} \to \mathbb{R} \cdot X$ denotes the orthogonal projection w.r.t. an $\text{Ad}(K)$-invariant scalar product on \mathfrak{g}, is a function such that $d\phi_X(Y) = \omega(Y, X)$ for all $Y \in T_x M$ and all $x \in M$, where ω is the Kähler form of M. Since critical points of ϕ are exactly the zeros of X in M, we have that there are at least two connected components of the zero set of X; on the other hand if $x \in \Omega$ is a point where X vanishes and $\Omega = G/H$ is the open G-orbit, then $\mathfrak{g} \cap \mathfrak{h}$ and therefore $Z^0(K)$ acts trivially on Ω, hence on the whole M. But then the zero set of X lies in the closed orbit N, which is connected, so that $C = N$, a contradiction.

Arguing as in the proof of Proposition 3, we see that the first Betti number $b_1(M) = 0$. It then follows from [Q] that M, being G-almost homogeneous, is simply connected and projective algebraic.

We now consider the function $f := ||\mu||^2$ and its critical set C. We first note that C does not coincide with M, i.e. the function f is not constant; indeed otherwise, by Proposition 4, every K-orbit would be complex, contrary to the uniqueness of the closed G-orbit.

By Proposition 4, we see that the closed orbit N consists exactly of those points at which the function f realizes the maximum value; we denote by β_{max} the point $\mu(N) \cap t_+$. We now denote by β_{min} the point in the convex polytope $\mu(M) \cap t_+$ which is the closest point to the origin; then $||\beta_{\text{min}}||^2$ is the minimum value of f. Moreover we know ([K]) that a point x belongs to the stratum S_β for some $\beta \in t_+$ if and only if β is the closest point to the origin of $\mu(G \cdot x) \cap t_+$; it then follows that the whole orbit $G \cdot x$ belongs to $S_{\beta_{\text{min}}}$ and therefore there are exactly two critical values of f, that is $||\beta_{\text{max}}||^2$ and $||\beta_{\text{min}}||^2$; moreover $S_{\beta_{\text{min}}} = \Omega$, where Ω is the open G-orbit.

Since $M = S_{\beta_{\text{max}}} \cup S_{\beta_{\text{min}}}$, we see that a critical point of f must lie either in the closed orbit N or in $C_{\beta_{\text{min}}}$. We here prove that $C_{\beta_{\text{min}}}$ consists of a single K-orbit. Indeed we have seen in Proposition [K] that there exists a Kähler form ω' on M which is cohomologous to ω and whose corresponding moment map has the Ness property. Since $\omega_t = tw' + (1 - t)\omega$, $t \in [0, 1]$, is a homotopy by symplectic forms connecting ω with ω', by the equivariant Moser homotopy Theorem ([MS], p. 91) there exists a K-equivariant symplectomorphism
\[F : (M, \omega) \to (M, \omega'). \]
Now note that the (unique) moment map corresponding to ω is $\mu = \mu' \circ F$, hence the critical points of f are taken by F to critical points of f'. Using the same arguments as above, we see that $\Omega = S_{\beta_{\min}}'$, where S' denotes the stratum w.r.t. μ'; hence the Ness property implies that the minimal critical set for f' consists of a single K-orbit and, using the K-equivariance of F, we conclude that also $C_{\beta_{\min}}$ consists of a single K-orbit. We have thus proved the following

Proposition 7. The inverse images $\mu^{-1}(K; \beta_{\max})$ and $\mu^{-1}(K; \beta_{\min})$ consist exactly of two K-orbits and the first one is the closed G-orbit.

We will call S the K-orbit such that $\mu(S) = K; \beta_{\min}$. We now consider a maximal torus T inside K and prove the following easy Lemma.

Lemma 8. The fixed point set M^T is contained in the critical set of f.

Proof. Indeed if $x \in M^T$, then $T \subseteq K_x$ and by the K-equivariance of μ, we have that $\text{Ad}(T)\mu(x) = \mu(x)$. Since T is maximal, we have that $\mu(x) \in t$, where t is the Lie algebra of T, and therefore $\mu(x) \in \xi_x$.

From this we see that the set M^T is finite, because a maximal torus of K fixes at most a finite number of points in a K-homogeneous space. Using [CL], we deduce that the Hodge numbers $h^{p,q} = 0$ for $p \neq q$.

We have now to prove that the function f is a Bott-Morse function and the rest of the statement (iii) will follow from standard Morse theory.

Let $Z_{\beta_{\min}}$ be the subset of Z_{β} consisting of those points $x \in Z_{\beta}$ such that the limit points of the path of steepest descent from x for the function $\|\mu - \beta\|^2$ on Z_{β} lie in $Z_{\beta} \cap \mu^{-1}(\beta)$, and let $Y_{\beta_{min}}$ be the inverse image of $Z_{\beta_{min}}$ under the retraction $p_{\beta}: Y_{\beta} \to Z_{\beta}$. Then $Y_{\beta_{min}}$ is an open subset of Y_{β} and retracts to $Z_{\beta_{min}}$.

With this notation we recall (see [K]) that the G-open orbit Ω has the structure of a fiber bundle $G \times_{P_{\beta}} Y_{\beta_{min}}$, where P_{β} is the parabolic subgroup of G such that $G/P_{\beta} = K/K_{\beta}$ and we recall also that $T_pY_{\beta} \cap T_p(K \cdot p) = T_p(K_{\beta} \cdot p)$ (see Lemma 4.10, p. 48 in [K]).

We start showing that the Hessian of f at a critical point p belonging to the minimum orbit S is non degenerate; we can suppose that $\mu(p) = \beta$, where we have put $\beta = \beta_{\min}$. We have

$$\dim K/K_{p} + \dim Y_{\beta} - \dim (T_p Y_{\beta} \cap T_p(K \cdot p)) =$$

$$= \dim K/K_{p} + \dim Y_{\beta} - \dim (K_{\beta}/K_{p}) = \dim K/K_{\beta} + \dim Y_{\beta} = \dim M,$$

hence

$$T_p(K \cdot p) + T_pY_{\beta} = T_pM.$$

If we consider $W_p := (T_p(K_{\beta} \cdot p))^\perp \cap T_pY_{\beta}$, then W_p is a complement of $T_p(K \cdot p)$ in T_pM; we will compute the Hessian of f on vectors $X \in W_p$, namely we will show that $H(f)_p(X, X) > 0$ if $X \in W_p$, $X \neq 0$.

We fix an orthonormal basis $\{X_1, \ldots, X_l\}$ of the Lie algebra ξ w.r.t. the invariant scalar product $\langle \cdot, \cdot \rangle$; then we can write for all $x \in M$, $\mu(x) = \sum_i \mu_i(x) X_i$. Moreover we denote by M the vector field on M given by $M_x = \mu(x)$ for $x \in M$, where for any $X \in \xi$ we denote by \tilde{X} the induced Killing vector field on M. Then we have

$$df_x(X) = 2\langle d\mu(x)(X), \mu(x) \rangle = 2\omega_x(X, M_x).$$

It follows that

$$H(f)_x(X, X) = \omega_x(X, \nabla_X M),$$
where ∇ denotes the Levi Civita connection of the Kähler metric g. We then have that

$$H(f)_p(X, X) = 2 \sum_i \omega_p(X, X(\mu_i)\hat{X}_i + \mu_i(p)\nabla_X \hat{X}_i).$$

Now we observe that

$$\omega_p(X, \hat{X}_i) = \langle d\mu_X(X), X_i \rangle = X(\mu_i)$$

and therefore

$$H(f)_p(X, X) = 2 \sum_i \omega_p(X, \hat{X}_i)^2 + \omega_p(X, \nabla_X \hat{\beta}).$$

If μ_β denotes as usual the height function (μ, β), we see that $H(\mu_\beta)_p(X, X) = 2\omega_p(X, \nabla_X \hat{\beta})$, so that

$$H(f)_p(X, X) = 2 \sum_i \omega_p(X, \hat{X}_i)^2 + 2H(\mu_\beta)_p(X, X).$$

We now distinguish two cases, whether $\beta = 0$ or $\beta \neq 0$.

If $\beta = 0$, then $H(\beta)_p(X, X) = 2 \sum_i \omega_p(X, \hat{X}_i)^2$ for all $X \in T_p(K \cdot p)^\perp$ and therefore X belongs to the nullity of $H(\beta)_p$ if and only if JX is orthogonal to the tangent space $T_p(K \cdot p)$. But $\beta = 0$ implies that $J(T_p(K \cdot p))$ is contained in the normal space $T_p(K \cdot p)^\perp$; this together with the fact that p belongs to the open K-orbit implies that $J(T_p(K \cdot p)) = T_p(K \cdot p)^\perp$ and therefore $X = 0$. This shows that $H(f)_p$ is non degenerate.

If $\beta \neq 0$, then we choose $X \in W_p$. Denote by V the tangent space $T_p(K \cdot p)$. Note that $\omega_p(X, \hat{X}_i) = 0$ if and only if $d\mu_p(X) = 0$ i.e. if and only if $X \in (J\beta)^\perp$ and that $H(\mu_\beta)_p(X, X) = 0$ if and only if $X \in T_pZ_\beta$. We shall prove that, if $H(f)_p(X, X) = 0$, then X must be orthogonal to V; hence, since $V + JV = T_pM$, X must be 0. In fact, recall that p is a critical point for μ_β and we have $\hat{\beta}_p = 0$. We consider the skew operator $\nabla \hat{\beta} : T_pM \rightarrow T_pM$; since $e^{t\nabla \hat{\beta}} = d(exp(t\hat{\beta}))_p$, we have that $\nabla \hat{\beta}$ maps V into itself and $T_pZ_\beta = Ker\nabla \hat{\beta}$. The tangent space V then splits as the direct sum of $Ker(\nabla \hat{\beta})_{|V}$ and its orthogonal complement V'. Note that $\nabla \hat{\beta}_{|V'}$ is surjective on V', hence, if $Y \in V'$ we have $Y = \nabla \hat{\beta}(Y')$ for some $Y' \in V'$. Using that $\nabla \hat{\beta}$ is skew, we argue that $X \perp V'$. Finally note that $Ker(\nabla \hat{\beta})_{|V'} = T_p(K \cdot p)$, hence, since $X \in W_p$, it is orthogonal to $T_p(K \cdot p)$ and we get our claim.

The statements in (iii) and (v) follow from the general theory in [K]. As for (iv), we note that if $\chi(M) > \chi(N)$, then S is a compact homogeneous space of positive Euler characteristic; therefore all odd Betti numbers of S vanish (see [BH]) and therefore f is perfect.

References

[Ak] Akhiezer D. N.: Equivariant completions of homogeneous algebraic varieties by homogeneous divisors, Ann. Glob. Anal. and Geom. 2, (1983) 49–78

[At] Atiyah M.F.: Convexity and commuting Hamiltonians, Bull. London Math. Soc. 14, (1982) 1–15

[BH] Borel A., Hirzebruch F.: Characteristic classes and homogeneous spaces, II, Amer. J. Math. 81, (1959) 315–382

[Br] Brion M.: Sur l'image de l’application moment, Lect. Notes Math, (1987) 177–192

[CL] Carrell J.B., Lieberman D.I.: Holomorphic vector fields and Kähler manifolds, Inventiones math. 21 (1973) 303–309
[C] Cupit-Foutou S.: Classification of two-orbits varieties, preprint 2002

[F] Feldmüller D.: Two-orbit varieties with smaller orbit of codimension two, Arch. Math. 54, (1990) 582–593

[HS] Huckleberry A., Snow D.M.: Almost-homogeneous Kähler manifolds with hypersurface orbits, Osaka J. Math. 19, (1982) 763–786

[HW] Huckleberry, A.T., Wurzbacher, T.: Multiplicity-free complex manifolds., Math. Ann. 286, (1990) 261–280

[K] Kirwan F.: Cohomology of quotiens in symplectic and algebraic Geometry, Math. Notes 31, Princeton (1984)

[MS] MDuff D., Salamon D.: Introduction to symplectic topology, Oxford Math. Monogr. Clarendon, Oxford Univ. Press, New York (1995)

[N] Ness L.: A Stratification of the Null Cone via the moment map, Amer. Jour. of Math. 106, (1984) 1281–1329

[O] Oeljeklaus E.: Fast homogene Kählermannigfaltigkeiten mit verschwindender erster Bettizahl, manuscripta math. 7 (1972) 175–183

[P] Potters J.: On almost homogeneous compact complex surfaces, Invent. Math. 8 (1969) 244–266

[S] Stöcker C.: The structure of faces of the momentum image, Dissertation Bochum (1999)

Dipartimento di Matematica ‘U.Dini’, Viale Morgagni 67/A, 50100 Firenze, Italy
E-mail address: gori@math.unifi.it

Dipartimento di Matematica e Appl. per l’Architettura, Piazza Ghiberti 27, 50100 Florence, Italy
E-mail address: podesta@math.unifi.it