Arsenic biotransformation by a cyanobacterium Nostoc sp. PCC 7120

Xi-Mei Xue a, Yu Yan a, b, Chan Xiong c, Georg Raber c, Kevin Francesconi c, Ting Pan a, b, Jun Ye a, Yong-Guan Zhu a, d, e

a Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
b University of Chinese Academy of Sciences, Beijing 100049, China
c Institute of Chemistry, University of Graz, Graz, 8010, Austria
d State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China

ARTICLE INFO
Article history:
Received 9 March 2017
Received in revised form 28 April 2017
Accepted 2 May 2017
Available online 18 May 2017

Keywords:
Nostoc
Arsenic
Arsenosugars
Arsenosugar phospholipids

ABSTRACT

Nostoc sp. PCC 7120 (Nostoc), a typical filamentous cyanobacterium ubiquitous in aquatic system, is recognized as a model organism to study prokaryotic cell differentiation and nitrogen fixation. In this study, Nostoc cells incubated with arsenite (As(III)) for two weeks were extracted with dichloromethane/methanol (DCM/MeOH) and the extract was partitioned between water and DCM. Arsenic species in aqueous and DCM layers were determined using high performance liquid chromatography - inductively coupled plasma mass spectrometer/electrospray tandem mass spectrometry (HPLC-ICPMS/ESIMSMS). In addition to inorganic arsenic (iAs), the aqueous layer also contained monomethylarsonate (MAs(V)), dimethylarsinate (DMAs(V)), and the two arsenosugars, namely a glycerol arsenosugar (Oxo-Gly) and a phosphate arsenosugar (Oxo-PO4). Two major arsenosugar phospholipids (AsSugPL982 and AsSugPL984) were detected in DCM fraction. Arsenic in the growth medium was also investigated by HPLC/ICPMS and shown to be present mainly as the inorganic forms As(III) and As(V) accounting for 29%–38% and 29%–57% of the total arsenic respectively. The total arsenic of methylated arsenic, arsenosugars, and arsenosugar phospholipids in Nostoc cells with increasing As(III) exposure were not markedly different, indicating that the transformation to organoarsenic in Nostoc was not dependent on As(III) concentration in the medium. Our results provide new insights into the role of cyanobacteria in the biogeochemical cycling of arsenic.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Arsenic is a ubiquitous and carcinogenic toxic element, and has both acute and chronic toxicity effects on humans. The bioavailability of arsenic and its resultant toxicity are influenced to a great extent by its species (Smedley and Kinniburgh, 2002; Sharma and Sohn, 2009). Inorganic arsenic, the major form of arsenic in water and soils, is transformed into organic arsenic species or in reverse in natural biological processes, and microorganisms play a critical role in arsenic biogeochemical cycle (Zhu et al., 2014; Zhang et al., 2017).

To survive in arsenic-enriched environments, organisms have evolved various mechanisms to utilize or detoxify arsenic (Stolz et al., 2006). Following the absorption of As(V) into cells via phosphate transport systems, a two-step pathway is invoked by organisms to decrease arsenic levels in cells. As(V) is first reduced to As(III), and then As(III) is either pumped out via membrane proteins or stored in vacuoles (Tamaki and Frankenberger, 1992). Methylated arsenic species are also widely found in organisms, especially in many photosynthetic organisms (Ye et al., 2012). Although trivalent methylated arsenic, methylarsonous acid (MAS(III)) and dimethylarsinic acid (DMA(III)), are much more toxic than As(III), As(III) methylation is considered as a process of detoxification eventually producing MAs(V), DMAs(V), and trimethylarsine oxide (TMAO) (Qin et al., 2006, 2009; Yin et al., 2011). Man-made organoarsenic (e.g. herbicide, roxarsone, nitarson, and p-arsanilic acid) are widely used in the agriculture, and could be biodegraded to inorganic arsenic by microbes, worsening food and water pollution (Yoshinaga and Rosen, 2014; Yoshinaga and Cai, 2011; Chen and Rosen, 2016).

Other, more complex, organoarsenic compounds such as arsenobetaine, arsenosugars and arsenolipids are also found in
Cyanobacteria are involved in arsenic biogeochemical cycle, and have been reported to have the ability to methylate inorganic arsenic (Ye et al., 2012; Guo et al., 2016), produce arsenosugars and arsenosugar phospholipids (Xue et al., 2014a). The previous studies showed that Nostoc methylated As(III) to DMAAs(V) and MAAs(O) (Yin et al., 2011), demethylated MAAs(V) and MAAs(III) into As(III) (Yan et al., 2015), and produced Oxo-Gly (Miyashita et al., 2012). Compared to the extraction with water or nitric acid, the extraction with dichloromethane/methanol (DCM/MeOH) will divide arsenic in cells into water-soluble (such as inorganic arsenic, methylated arsenic, arsenosugars, etc) and lipid-soluble arsenic (such as arsenosugar phospholipids, arsenic-containing fatty acids, arsenic-containing hydrocarbons, etc) (Glabonjat et al., 2014). In this study, HPLC-ICPMS/ESIMS was used to analyze water-soluble and lipid-soluble arsenic species of Nostoc from multiple perspectives. The Oxo-Gly and two arsenosugar phospholipids were found in Nostoc treated with As(III). For the first time, arsenic demethylation and arsenolipid biosynthesis were found to be co-occur in one organism. It has great implications for future studies aiming to fully understand arsenic transformation and fate in the environment.

2. Materials and methods

2.1. Cyanobacteria culture and harvesting

Axenic cultures of Nostoc were grown in 150 mL Erlenmeyer flasks containing 50 mL BG-11 medium without NaNO3 (Rippka et al., 1979) at 28 °C with shaking at 120 rpm under continuous light (40 μmol photons m−2 s−1). Nostoc cells at stationary phase (cell number remains constant during this phase) were treated with 0.1, 1, 10, 100 μM As(III) for two weeks; each treatment was performed in triplicate. Nostoc was harvested by centrifuging at 4700 g for 15 min at 4 °C. The sample was separated into two parts: growth medium and cells. The growth medium was filtered using syringe filters (0.2 μm Nylon membrane) (VWR International, West Chester, PA, USA), and stored at −80 °C until arsenic species and total arsenic analysis. The cells were transferred to 15 mL polypropylene tubes with screw-caps after being washed three times with cold MES buffer (Yin et al., 2011), then freeze-dried.

2.2. Fractionation of arsenic in Nostoc

The fractionation of arsenic in Nostoc was carried out as described in Fig. 1. About 30 mg of freeze-dried cells were weighed (to a precision of 0.1 mg) directly into a centrifuge tube (15 mL, polypropylene), and 5 mL of a mixture of DCM/MeOH (2:1, v/v) was added. The mixture was extracted on a rotary wheel overnight, and centrifuged at 4754 g and 4 °C for 15 min. 0.5 mL of 1% aqueous NH4HCO3 solution was added to the supernatant (4.5 mL), and the mixture was gently shaken. After standing for 30 min, the solution was separated into an aqueous layer (upper layer, MeOH and H2O) and DCM- MeOH layer (lower layer). The aqueous layer was transferred to 2 mL Eppendorf tubes, and stored at −80 °C for later total arsenic analysis and water-soluble arsenic species determination.

A portion of the DCM layer (2 mL) was applied to a 150 × 5 mm glass Pasteur pipet filled with silica gel 60 (to a height of 4 cm) that was pre-conditioned with 5 mL of 1% formic acid in acetone/MeOH (1 + 1, v/v). The column was washed with pure MeOH (5 mL) firstly, then the arsenolipids were eluted with 5 mL of pure MeOH containing 1% NH4H2O. The arsenolipid fraction was evaporated to dryness, and stored at 4 °C until analysis. 300 μL of ethanol (EtOH) were added to the arsenolipid fraction, and ultrasonicated for 30 min 200 μL of the arsenolipid fraction was used for analysis after centrifuging for 15 min and filtering with 0.2 μm Nylon filters (ProFilts, Markus Buckner Analysetechnik, Linz, Austria).

The pellet after DCM/MeOH extraction, dried using nitrogen stripping method, was added with 500 μL of H2O, sonicated for 15 min, and the mixture subjected to repetitive freeze-thawing (6 cycles) before being centrifuged for 15 min. Arsenic species and total arsenic concentration in the supernatant were analyzed. The residue after water extraction was dried for determination of total arsenic concentration.

2.3. Determination of total arsenic concentration

The lyophilized Nostoc (about 15 mg), part of all sample extracts, the residue after water extraction, and CRM 7405-a (certified reference material) were analyzed for total arsenic concentration as follows. The samples were weighed into polypropylene digest tubes (50 mL), and 2 mL of a solution of internal standards (100 μg L−1 Ge, In, Te in 1% HNO3) and 2 mL conc. HNO3 were added. The samples were transferred to a microwave-accelerated reaction system (Mars CEM, CEM Corporation, Matthews, NC, USA), and digested according to the following temperature program; 0–10 min, 80 °C; 10–30 min, 120 °C; 30–60 min, 160 °C. The clear digest solutions were transferred to polypropylene tubes (15 mL), and diluted with Mill-Q water to 10 mL after being cooled to room temperature.

Determination of total arsenic concentration in the digested solutions were carried out using an Agilent 7500cx ICP-MS in collision cell mode (He, 5 mL min−1) to avoid interferences from 40Ar35Cl on 75As. The digest and analytical methods were validated against the certified reference material CRM 7405-a (Hijiki), with a certified value for arsenic of 35.8 ± 0.9 mg As kg−1; we obtained 36.2 ± 0.8 mg As kg−1 (n = 3) in this work.

2.4. HPLC-ICPMS/ESIMS analysis of water-soluble arsenic species

Anion-exchange HPLC (Agilent 1100 HPLC system) was carried out with a PRP-X100 column (4.6 × 150 mm; 5 μm particle size;
Hamilton Company, Reno, Nevada, USA) and a Hamilton PEEK pre-column at 40 °C, and a mobile phase of (200 mM NH₄HCO₃) under gradient elution conditions: 0–6 min, 30 mM; 6–10 min, 30–200 mM; 10–15 min, 200 mM; 15.1–20 min, 30 mM to re-equilibrate the column prior to the next injection. The flow rate was 1 mL min⁻¹, and the injection volume was 20 μL. Quantification was performed using external calibration against the mixtures of As(V), MAs(V) and DMAAs(V). The effluent flow from the anion-exchange column was split to the IPCMS (Agilent 7900) (10%) and to the Triple Quadrupole MS System (Agilent 6460) (90%) (Agilent Technologies, Waldbronn, Germany). Arsenic species were identified both by retention time matching experiments with standard arsenic species (As(III), As(V), MAs(V), DMAAs(V)), extracts of Fucus serratus containing the four most common arsenosugars (Oxo-Gly, Oxo-PO₄, sulfonate arsenosugar (Oxo-SO₃), sulfate arsenosugar containing the four most common arsenosugars (Oxo-Gly and Oxo-PO₄)), extracts of Nostoc sp. PCC 6803 (Xue et al., 2014a) and brown macroalgae (García-Salgado et al., 2012). Arsenic-containing compounds in the DCM layers were characterized (Table 1). Arsenic in the aqueous layers, consisting of inorganic arsenic, methylated arsenic, and arsenosugars (Fig. 2A), accounted for 1.7%–7.1% of the total arsenic accumulated by Nostoc cells exposed to As(III). The total concentration of arsenosugars in Nostoc cells with increasing As(III) exposure were not markedly different (Fig. S1). The arsenic in DCM layer which consisted mainly of arsenosugar phospholipids (Fig. 3) accounted for 0.4%–30% of the total arsenic concentration in cells. Inorganic arsenic which was detected in the water layer after the pellet was re-extracted with water (Fig. S2A) accounted for 9.7%–29.7% of the total arsenic concentration in cells (Table 1). After being extracted with DCM/MeOH and water, more than half of the total arsenic still remained in the residues (4.0–805 mg kg⁻¹) (Table 1).

3.2. Arsenic partitioning in different fractions of Nostoc cells

Each sample of Nostoc cells was separated into four fractions: the aqueous layer, the DCM layer, the water layer, and the residue after water extraction (Fig. 1), and total arsenic in each layer was determined (Table 1). Arsenic in the aqueous layers, consisting of inorganic arsenic, methylated arsenic, and arsenosugars (Fig. 2B), accounted for 1.7%–7.1% of the total arsenic accumulated by Nostoc cells exposed to As(III). The total concentration of arsenosugars in Nostoc cells with increasing As(III) exposure were not markedly different (Fig. S1). The arsenic in DCM layer which consisted mainly of arsenosugar phospholipids (Fig. 3) accounted for 0.4%–30% of the total arsenic concentration in cells. Inorganic arsenic which was detected in the water layer after the pellet was re-extracted with water (Fig. S2A) accounted for 9.7%–29.7% of the total arsenic concentration in cells (Table 1). After being extracted with DCM/MeOH and water, more than half of the total arsenic still remained in the residues (4.0–805 mg kg⁻¹) (Table 1).

3.3. Nostoc produced both arsenosugars and arsenosugar phospholipids

Arsenic species in the aqueous layers were analyzed, with two arsenosugars (Oxo-Gly and Oxo-PO₄) being observed following As(III) exposure (Fig. S3). The relative proportion of arsenosugars in total aqueous arsenic species in Nostoc cells was 0.5%–13% for Oxo-Gly and 0.7%–8% for Oxo-PO₄, and decreased with increasing As(III) exposure (Fig. 2A).

Arsenic-containing compounds in the DCM layers were characterized after performing a clean-up procedure with silica. HPLC/IPCMS analysis of the fraction showed the presence of arsenolipids, and analysis using ESI-MSMS revealed that the [M+H]⁺ of two main arsenic-containing compounds were 983 and 985 (Fig. 3). The chromatographic behavior was the same as that reported previously for arsenosugar phospholipids (C₄₇H₈₈O₁₄AsP (AsSugPL982) and C₄₇H₉₀O₁₄AsP (AsSugPL984) in Synechocystis sp. PCC 6803 (Xue et al., 2014a) and brown macroalgae (García-Salgado et al., 2012). Fig. 4 shows the structures of arsenosugars and arsenosugar phospholipids produced by Nostoc.

3.4. Arsenic species in the growth medium

Arsenic species in the growth medium with and without Nostoc incubation were determined after incubation with As(III) for 2 weeks (Fig. 2B and Fig. S2B). In the growth medium with Nostoc incubation, inorganic arsenic was the main arsenic species As(III) and As(V) accounting for 29%–38% and 29%–57% of the total arsenic respectively. The contributions of organoarsenic including DMAs and arsenosugars in the medium decreased with increasing As(III) exposure (Fig. 2B). About 16% of total arsenic in the medium containing 0.1 or 1 μM As(III) were DMAs and arsenosugars. While DMAs and arsenosugars accounted for 4% and 1.3% of total arsenic in the medium containing 10 μM As(III) (Fig. 2B). Furthermore, traces of DMAs and Oxo-PO₄ were detected in the medium containing 100 μM As(III) (Fig. 2B). In the medium without Nostoc incubation (as the control), inorganic arsenic species alone were detected, and a certain amount of As(III) was oxidized into As(V) in the air after two weeks (Fig. S2B).

4. Discussion

Freshwater cyanobacteria can produce organoarsenic...
phospholipids. Two species of arsenosugar phospholipids, AsSugPL982 and AsSugPL984, as previously characterized in Syn
echocystis sp. PCC 6803 (Xue et al., 2014a), were identified in Nostoc treated with As(III) for two weeks. In contrast to other studies (Yin et al., 2011; Miyashita et al., 2012), our study found that Nostoc cells exposed to As(III) produced Oxo-PO4 and arsenosugar phospholipids. The discrepancy in the results from Nostoc could be related to differences in treatment time and sample extraction methods. Miyashita et al. (2012) treated Nostoc cells with As(V) for 24 h, and found that Oxo-Gly alone was present in Nostoc extracts obtained by sonicating the cells with water. Moreover, the extraction yield was generally around 100% of total arsenic suggesting that arsenolipids were not produced by the Nostoc cells during the 24 h exposure to As(V). Freshwater organisms, including the green algae Cladophora glomerata from the Hayakawa River and Chlamydomo
nas reinhardtii incubated with As(V) for 3 days, were considered to possess water-unextractable or lipid-soluble arsenic species to some extent because the extraction yields of the water-soluble arsenic from the alga were quite low (16% for C. glomerata, 32% for C. reinhardtii) (Miyashita et al., 2009). In Yin’s work (2011) with Nostoc cultured with As(III), arsenic-containing compounds in cells were extracted using 1% HNO3 and microwave heating, treatment that would likely degrade arsenosugars (Nischwitz and Pergantis, 2007) and arsenosugar phospholipids.

Treatment [As(III)] (μM)	Total As (mg kg\(^{-1}\)) Total	DCM/MeOH supernatant	DCM/MeOH pellet	DCM layer (mg kg\(^{-1}\))	aqueous layer (mg kg\(^{-1}\))	Residue (mg kg\(^{-1}\))	Water layer (mg kg\(^{-1}\))
0.1	11.3 ± 1.8	2.9 ± 0.7	0.8 ± 0.1	4.0 ± 0.5	1.1 ± 0.3		
1	101 ± 6	4.3 ± 1.3	2.8 ± 0.1	54.0 ± 3.8	17.3 ± 0.5		
10	225 ± 19	4.4 ± 0.7	8.4 ± 1.4	134 ± 4.7	67.2 ± 7.2		
100	1523 ± 315	5.2 ± 0.8	25.5 ± 2.9	805 ± 112	396 ± 72		

The amount of arsenic is expressed as mg kg\(^{-1}\) (dry mass). The results are shown as mean ± standard deviation from triplicate culturing samples.

Fig. 2. Arsenic species percentages in the aqueous layer (A) and the growth medium (B) after Nostoc was treated with 0.1, 1, 10, or 100 μM As(III) for two weeks The error bars represent the standard error of three independent culture experiments.
Multiple arsenic speciation biotransformation pathways co-occur in Nostoc. Microbes have evolved various mechanisms to utilize or detoxify arsenic. Known mechanisms include arsenic redox changes, arsenic methylation and demethylation, As(III) efflux, and the production of complex organoarsenic. The previous proteomics analysis of Nostoc under As(V) stress showed that the expression of two genes, alr1097 (encoding an As(III) efflux protein; arsB) and alr1105 (encoding an As(V) reductase; arsC) (Pandey et al., 2012), was up-regulated, illustrating that Nostoc was capable of performing As(V) uptake, As(V) reduction, and As(III) excretion. Yin et al. (2011) investigated the ability of arsenic methylation by Nostoc and arsenic (III) S-adenosylmethionine methyltransferase (ArsM) from Nostoc by chemotrapping volatile TMA(III). Moreover, our other study showed that Nostoc was able to demethylate MAs(III) rapidly to As(III) using ArsI that is a C:As lyase responsible for MAs(III) demethylation, and also could demethylate MAs(V) slowly to As(III) (Yan et al., 2015), suggesting that MAs(V) reduction and MAs(III) demethylation occurred in Nostoc. However, MAs(III) oxidation in Nostoc cannot be regarded to be catalyzed by an enzyme because ArsH homologous compound oxidizing MAs(III) (Chen et al., 2015a) was not found via blasting against the Nostoc proteome with ArsH of Synechocystis sp. PCC 6803 (Xue et al., 2014b), and we did not ensure that there was As(III) oxidation catalyzed by As(III) oxidase in Nostoc because most of As(III) in the culture medium was oxidized by oxygen after long time culture (Fig. S2B) and there was not As(III) oxidase identified in Nostoc. In addition, Nostoc was found to produce low quantities of arsenosugars and arsenolipids (Table 1).

An abbreviated biosynthesis pathway of arsenosugar phospholipids in Nostoc was hypothesized as described in Fig. 5. The methyl groups from S-adenosyl-l-methionine (SAM) are transferred to As(III) (which is absorbed directly by cells or arises from As(V) reduced by ArsC), by ArsM to produce trivalent methylated arsenic. Some of MAs(III) and DMAs(III) bound to ArsM are further methylated into DMAs(III) and TMA(III). In addition, the adenosyl group from SAM is transferred to DMAs(III) falling off ArsM to generate the key intermediate of arsenosugar synthesis, namely dimethylarsinyladenosine (AsAd). AsAd undergoes glycosidation to produce Oxo-Gly which acts as a precursor to Oxo-PO₄ produced later by cyanobacteria. Finally, fatty acids were added to Oxo-PO₄ to produce arsenosugar phospholipids by unknown enzymes. Up to now, arsenic methylation is the most thoroughly studied arsenic biotransformation pathway. Cullen et al. (1994, 1995) verified that SAM was the methyl donor in the arsenic biological methylation in a marine alga Polysiphonia peniculosa and a microorganism Apiotrichum humicola by adding L-methionine-methyl-d3 in the culture medium. Marapakala et al. (2012) applied protein fluorescence of a single-tryptophan mutant to report the binding rate of trivalent arsenic species with ArsM from the thermophilic eukaryotic alga Cyanidioschyzon sp. 5508, and analyzed the crystal structures of co-crystallizing ArsM with the aromatic arsenicals PhAs(III) or Rox (III) successively (Marapakala et al., 2015). A model was proposed for the catalytic mechanism of ArsMs in which the products were maintained in the trivalent state by utilizing four conserved cysteine residues of ArsM in the disulfide-bond cascade, and DMAs(III) was accumulated as the principal product (Marapakala et al., 2015). The current results with other ArsMs, such as from Methanosarcina acetivorans C2A (Wang et al., 2014) and Spirulina platensis (Guo et al., 2016), can be explained by the above model. Moreover, part of DMAs(III) bound to ArsM was
Further methylated into TMA (III) (Qin et al., 2006, 2009; Yin et al., 2011). Since arsenosugars (Oxo-Gly, Oxo-PO₄, and Oxo-SO₃) were found in a freshwater green alga Chlorella vulgaris exposed to As(V) (Murray et al., 2003), a freshwater unicellular green alga C. reinhardtii (Miyashita et al., 2011), freshwater cyanobacteria Nostoc and Synechocystis sp. PCC 6803 (Miyashita et al., 2012) were used to carry out short-term experiments (up to 24 h) to uncover the detailed arsenosugar biosynthesis processes in cells. In this study, Nostoc was treated with As(III) for two weeks. The Oxo-PO₄, which was not found in Nostoc incubated with As(V) for 24 h (Miyashita et al., 2012), was detected in Nostoc incubated with As(III) for two weeks. Combining with the results that Nostoc can produce arsenosugar phospholipids, we proposed that the Oxo-PO₄ biosynthesis started from Oxo-Gly, and Oxo-PO₄ was the precursor to arsenosugar phospholipids. However, the further evidences of molecular biology will be needed to unravel the biosynthesis process of arsenosugar phospholipids.

For the first time, arsenic demethylation and arsenosulfid biosynthesis were found to be co-occurring in one organism. The more toxic MAS(III) is considerably as a transient intermediate of arsenic methylation involved in arsenic detoxification (Qin et al., 2006). When more MAS(III) resistance genes including arsI (Yoshinaga and Rosen, 2014), arsR (Chen et al., 2015a), and arsP (Chen et al., 2015b) were identified, MAS(III) was proposed to be a primordial antibiotic (Li et al., 2016). The reason of coexistence of two opposite arsenic metabolism pathway, demethylation and methylation, is unknown (Yan et al., 2017). Moreover, Synechocystis sp. PCC 6803 and Nostoc matched marine algae by being able to produce arsenosugar phospholipids, but the freshwater cyanobacteria phospholipids contained saturated and unsaturated 17-carbon fatty acid groups, instead of the palmitic acid derivatives identified in marine algae (Morita, 1988; Garcia-Salgado et al., 2012; Raab et al., 2013). Arsenic-containing hydrocarbons, which have been identified in four species of marine algae (Garcia-Salgado et al., 2012; Glabonjat et al., 2014; Petursdottir et al., 2016), were not detected in the cyanobacteria (Xue et al., 2014a). More work is required to determine the reasons for these differences between arsenosilipids from freshwater organisms and marine organisms and the evolution of arsenic demethylation in Nostoc.

In summary, our study revealed that the model organism cyanobacterium Nostoc can produce Oxo-PO₄ and arsenosugar phospholipids when exposed to As(III), and the production of complex organoarsenic and arsenic demethylation co-exist in Nostoc. Moreover, we proposed the biosynthesis pathway of arsenosugar phospholipids in Nostoc. These results provide new insights into the function of cyanobacteria in arsenic biogeochemical cycle. Future studies will focus on identifying and characterizing other unknown genes encoding enzymes involved in arsenic biotransformation using Nostoc as an experimental model organism.

Acknowledgments

Our research is supported by 1) the National Natural Science Foundation of China, China (21507125), 2) the National Key Research and Development Program of China, China (2016YFD0800706), and 3) the Austrian Science Fund project, Austria (23761-N17).

Appendix A. Supplementary data

Supplementary data related to this article can be found at http://dx.doi.org/10.1016/j.envpol.2017.05.005.

References

Chen, J., Rosen, B.P., 2016. Organosynchronous biotransformations by Shewanella putrefaciens. Environ. Sci. Technol. 50, 7956–7963.
Chen, J., Bhattacharjee, H., Rosen, B.P., 2016. ArS is an organoarsenic oxidase that confers resistance to trivalent forms of the herbicide monosodium methylarsenate and the poultry growth promoter roxarsone. Mol. Microbiol. 96, 1042–1052.
Chen, J., Madegowda, M., Bhattacharjee, H., Rosen, B.P., 2015b. ArsP: a methylarsenate efflux permease. Mol. Microbiol. 98, 625–635.
Cullen, W.R., Li, H., Pergantis, S.A., Eigendorf, G.K., Harrison, L.G., 1994. The methylation of arsenate by a marine alga Polysiphonia peniculus in the presence of L-methionine-methyl-d3. Chemosphere 28, 1009–1015.
Cullen, W.R., Li, H., Pergantis, S.A., Eigendorf, G.K., Mosi, A.A., 1995. Arsenic bio-methylation by the microorganism Apiotrichum humicolum in the presence of L-methionine-methyl-d3. Appl. Organomol. Chem. 9, 507–515.
Francesconi, K.A., 2005. Current perspectives in arsenic environmental and biological research. Environ. Chem. 2, 141–145.
Garcia-Salgado, S., Raber, G., Raml, R., Magnés, C., Francesconi, K.A., 2012. Arsenosugar phospholipids and arsenic hydrocarbons in two species of brown macroalgae. Environ. Chem. 9, 63–66.
Geiszinger, A., Goessler, W., Kuehnel, D., 1998. Determination of arsenic compounds in earthworms. Environ. Sci. Technol. 32, 2238–2243.
Glabonjat, R.A., Raber, G., Jensen, K.B., Eigendorf, J., Francesconi, K.A., 2014. Quantification of arsenosilipids in the certi fi ed reference material NMJ 7405 - a (Hjiiik) using HPLC/mass spectrometry after chemical derivatization. Anal. Chem. 86, 10282–10287.
Guo, X., Xue, Y., Yan, Y., Zhu, Y., Yang, G., Ye, J., 2016. Arsenic methylation by an arsenite S-adenosylmethionine methyltransferase from Spirulina platensis. J. Environ. Sci. 49, 162–168.
Li, J., Pawitwar, S.S., Rosen, B.P., 2016. The organosynchronous biocycle and the primordial antibiotic methylarsenate. Metallomics 8, 1047–1055.
Marapakala, K., Qin, J., Rosen, B.P., 2012. Identification of catalytic residues in the (As III) S-adenosylmethionine methyltransferase. Biochemistry 51, 944–951.
Marapakala, K., Packianathan, C., Ajees, A.A., Dheeman, D.S., Sankaran, B., Kandavelu, P., Rosen, B.P., 2015. A disulfide-bond cascade mechanism for arsenic(III) S-adenosylmethionine methyltransferase. Acta Crystallogr. Sect. D. Biol. Crystallogr. 71, 505–515.
Miyashita, S., Shimoya, M., Kamidate, Y., Kuroiwa, T., Shikino, O., Fujiwara, S., Miyashita, S.I., Fujiwara, S., Tsuzuki, M., Kaise, T., 2012. Cyanobacteria produce rapid biotransformation of arsenate to catalyze residues in the (As III) S-adenosylmethionine methyltransferase. Chemosphere 91, 1055–1057.
Miyashita, S., Shizuya, M., Yoon, E., Fujisawa, S., Francesconi, K.A., Kaise, T., 2009. Rapid determination of arsenic specie in freshwater organisms from the arsenic-rich Hayakawa River in Japan using HPLC-ICP-MS. Chemosphere 75, 1065–1073.
Miyashita, S., Fujiwara, S., Tsuzuki, M., Kaise, T., 2011. Rapid biotransformation of arsenate into oxo-arsenosugars by a freshwater unicellular green alga, Chlamydomonas reinhardtii. Biosci. Biotechnol. Biochem. 75, 522–530.
Miyashita, S.I., Fujiwara, S., Tsuzuki, M., Kaise, T., 2012. Cyanobacteria produce arsenosugars. Environ. Chem. 9, 664–674.
Morita, M., 1988. Isolation and identification of arseno-lipid from a brown alga, Undaria pinnatifida (Wakame). Chemosphere 1147.
Murray, L.A., Raab, A., Marr, I.L., Feldmann, J., 2003. Biotransformation of arsenate to catalyze residues in the (As III) S-adenosylmethionine methyltransferase. Acta Crystallogr. Sect. D. Biol. Crystallogr. 71, 505–515.
Nishiwaki, V., Yoneda, K., Shimoyama, M., Moriga, M., 2016. Arsenic biotransformation using the model organism cyanobacterium Nostoc. Appl. Organomol. Chem. 17, 669–674.
Nischwitz, V., Pergantis, S.A., 2007. Mapping of arsenic species and identification of a novel arsinosugar in giant clams Tridacna maxima and Tridacna derasa using advanced mass spectrometric techniques. Environ. Chem. 4, 187–196.
Pandey, S., Rai, R., Rai, L.C., 2012. Proteomics combines biological, physiological and biochemical attributes to unravel the survival strategy of Anabaena sp. PCC7120 under arsenic stress. J. Proteomics 75, 921–937.
Pandey, S., Shrivastava, A.K., Rai, R., Rai, L.C., 2013. Molecular characterization of Alr1105 a novel arsinosugar reductase of the diazotrophic cyanobacterium Anabaena sp. PCC7120 under arsenic stress. J. Proteomics 75, 921–937.
Fig. 5. Arsenic metabolism and potential biosynthetic pathways of arsenosugar phospholipids in Nostoc.

Supplementary data related to this article can be found at http://dx.doi.org/10.1016/j.envpol.2017.05.005.
Anabaena sp. PCC7120 and decoding its role in abiotic stress management in Escherichia coli. Plant Mol. Biol. 83, 417–432.

Petursdottir, A.H., Fletcher, K., Gunnaugdottir, H., Krupp, E., Kupper, F.C., Feldmann, J., 2016. Environmental effects on arsenosugars and arsenolipids in Ectocarpus (Phaeophyta). Environ. Chem. 13, 21–33.

Qin, J., Rosen, B.P., Zhang, Y., Wang, G., Franke, S., Rensing, C., 2006. Arsenic detoxification and evolution of trimethylarsine gas by a microbial arsenite S-adenosylmethionine methyltransferase. Proc. Natl. Acad. Sci. U. S. A. 103, 2075–2080.

Qin, J., Lehr, C.R., Yuan, C., Le, X.C., McDermott, T.R., Rosen, B.P., 2009. Biotransformation of arsenic by a Yellowstone thermoacidophilic eukaryotic alga. Proc. Natl. Acad. Sci. U. S. A. 106, 5213–5217.

Raber, G., Raml, R., Goessler, W., Francesconi, K.A., 2010. Quantitative speciation of arsenic compounds when using organic solvent gradients in HPLC-ICPMS. J. Anal. At. Spectrom. 25 (4), 570.

Ye, J., Bessing, C., Rosen, B.P., Zhu, Y.G., 2012. Arsenic biomethylation by photosynthetic organisms. Trends Plant Sci. 17, 155–162.

Yin, X.X., Chen, J., Qin, J., Sun, G.X., Rosen, B.P., Zhu, Y.G., 2011. Biotransformation and volatilization of arsenic by three photosynthetic cyanobacteria. Plant Physiol. 156, 1631–1638.

Yoshinaga, M., Rosen, B.P., 2014. A C as lyase for degradation of environmental organoarsenical herbicides and animal husbandry growth promoters. Proc. Natl. Acad. Sci. U. S. A. 111, 7701–7706.

Zhang, S., Williams, P.N., Luo, J., Zhu, Y., 2017. Microbial mediated arsenic biotransformation in wetlands. Front. Environ. Sci. Eng. 11 (1), 1–11.

Zhao, F.J., Rosen, B.P., 2014. Earth abides arsenic biotransformations. Annu. Rev. Earth Planet. Sci. 42, 443–467.