Anti-echinococcal effect of verapamil involving the regulation of the calcium/calmodulin-dependent protein kinase II response in vitro and in a murine infection model

Hai-Jun Gao¹,²,³, Xu-Dong Sun¹, Yan-Ping Luo¹, Hua-Sheng Pang⁴, Xing-Ming Ma¹, Ting Zhang²,⁴*, Tao Jing¹*, Wei Hu², Yu-Juan Shen² and Jian-Ping Cao²

Abstract

Background: Echinococcosis, which is caused by the larvae of cestodes of the genus Echinococcus, is a parasitic zoonosis that poses a serious threat to the health of humans and animals globally. Albendazole is the drug of choice for the treatment of echinococcosis, but it is difficult to meet clinical goals with this chemotherapy due to its low cure rate and associated side effects after its long-term use. Hence, novel anti-parasitic targets and effective treatment alternatives are urgently needed. A previous study showed that verapamil (Vepm) can suppress the growth of Echinococcus granulosus larvae; however, the mechanism of this effect remains unclear. The aim of the present study was to gain insight into the anti-echinococcal effect of Vepm on Echinococcus with a particular focus on the regulatory effect of Vepm on calcium/calmodulin-dependent protein kinase II (Ca²⁺/CaM-CaMKII) in infected mice.

Methods: The anti-echinococcal effects of Vepm on Echinococcus granulosus protoscoleces (PSC) in vitro and Echinococcus multilocularis metacestodes in infected mice were assessed. The morphological alterations in Echinococcus spp. induced by Vepm were observed by scanning electron microscopy (SEM), and the changes in calcium content in both the parasite and mouse serum and liver were measured by SEM-energy dispersive spectrometry, inductively coupled plasma mass spectrometry and alizarin red staining. Additionally, the changes in the protein and mRNA levels of CaM and CaMKII in infected mice, and in the mRNA levels of CaMKII in E. granulosus PSC, were evaluated after treatment with Vepm by immunohistochemistry and/or real-time quantitative polymerase chain reaction.

Results: In vitro, E. granulosus PSC could be killed by Vepm at a concentration of 0.5 μg/ml or higher within 8 days. Under these conditions, the ultrastructure of PSC was damaged, and this damage was accompanied by obvious calcium loss and downregulation of CaMKII mRNA expression. In vivo, the weight and the calcium content of E. granulosus metacestodes in infected mice were significantly reduced after treatment with Vepm. The changes in the protein and mRNA levels of CaM and CaMKII in infected mice, and in the mRNA levels of CaMKII in E. granulosus PSC, were evaluated after treatment with Vepm by immunohistochemistry and/or real-time quantitative polymerase chain reaction.
multilocularis metacestodes from mice were reduced after treatment with 40 mg/kg Vepm, and an elevation of the calcium content in the sera and livers of infected mice was observed. In addition, downregulation of CaM and CaMKII protein and mRNA expression in the livers of mice infected with E. multilocularis metacestodes was found after treatment with Vepm.

Conclusions: Vepm exerted a parasiticidal effect against Echinococcus both in vitro and in vivo through downregulating the expression of Ca2+/CaM-CaMKII, which was over-activated by parasitic infection. The results suggest that Ca2+/CaM-CaMKII may be a novel drug target, and that Vepm is a potential anti-echinococcal drug for the future control of echinococcosis.

Keywords: Verapamil, Echinococcus, Calmodulin, Calcium-calmodulin-dependent protein kinases

Background
Echinococcosis is a serious but neglected helminthic zoonosis caused by members of the genus Echinococcus, and mainly by Echinococcus granulosus, which causes cystic echinococcosis (CE), and Echinococcus multilocularis, which causes alveolar echinococcosis (AE) [1]. CE occurs globally, and AE occurs in the northern hemisphere and imposes a heavy disease burden [2]. According to data from central Asia, at least 270 million people are exposed to Echinococcus, and the prevalence of the disease in some areas of Tibet in western China ranges from 0.8 to 11.9% [3]. Higher pathogenicity and case fatality rate are notably associated with AE due to its tumor-like growth [3]. The clinical treatment strategies for echinococcosis include surgery and chemotherapy. Albendazole (ABZ), a benzimidazole derivative, is the main chemotherapy drug used for the treatment of human echinococcosis [4]; it exerts an anti-parasitic effect by disrupting microtubule polymerization and biochemical processes, such as glucose and energy metabolism, in the parasite [5]. However, ABZ exerts parasitostatic rather than parasiticidal effects [6], has poor gastrointestinal absorption and is associated with severe side effects [7, 8]. Hence, new drugs for the treatment of this parasitosis have been investigated, such as traditional Chinese medicines derived from botanical extracts [9], antineoplastic chemotherapeutics [7, 10], and immunosuppressants [11, 12]. However, only a few of these agents, such as mefloquine and amphotericin B alone or in combination with nitazoxanide, have been used as auxiliary treatments for human echinococcosis [6]. Therefore, investigation of novel anti-Echinococcus drugs and drug targets is urgently needed.

Ca2+, a pivotal second messenger, controls physiological processes in cells, such as proliferation, differentiation and migration [13]. The complex consisting of Ca2+ and calmodulin (CaM) can specifically bind to CaM-dependent protein kinases (CaMKs; including CaMKI, CaMKII, CaMKIII and CaMKIV) to activate the Ca2+/CaM-CaMK cascade, which can promote signal transduction in cells [14]. Previous studies in tumors have shown that the Ca2+/CaM-CaMK cascade controls tumorigenesis and tumor progression [13, 15, 16]. Furthermore, the Ca2+/CaM-CaMK cascade has been suggested to be closely related to the pathogenesis of many hepatic parasites. For example, in Schistosoma mansoni, the IQ motif of SmCav1B, which is a voltage-gated calcium channel, can interact with two CaMs, SmCaM1 and SmCaM2, to promote growth [17], and RNA interference silencing of a calcium-regulated protein affects the morphology and vitality of Schistosoma japonicum [18]. Two voltage-gated calcium channel β-subunits, CsCaβ1 and CsCaβ2, boost the parasiticidal effect of praziquantel on Clonorchis sinensis [19], and FhCaM dyshomeostasis can clearly block growth and motility in Fasciola hepatica [20]. Therefore, Ca2+/CaM-CaMKs are potential therapeutic targets in cancers and parasitosis, and calcium channel inhibitors, such as verapamil (Vepm) and praziquantel, have been confirmed to have anti-tumorigenic and anti-parasitic effects [13, 15, 21, 22]. Furthermore, Vepm has been shown to alleviate atrial fibrillation in rats by downregulating the expression of over-activated Cav1.2-CaM-CaMKII [23]. In E. granulosus protoscolecies (PSC), the presence of calcareous corpuscles indicate that calcium sources are required for hydatid cyst development [24], and the calcium level in hydatid cysts has been shown to be higher than that in the serum or plasma of the host [25]. Previous studies have confirmed that Vepm suppresses the growth of E. granulosus larvae [26, 27]; however, it is unclear whether this compound has similar anti-parasitic effects on E. multilocularis, which has a tumor-like larval stage, and is more harmful to humans. The mechanism of action of Vepm against Echinococcus has never been investigated, and it is unclear whether the inhibitory effects of Vepm on E. granulosus are mediated by the regulation of Ca2+/CaM-CaMKII. Hence, this study aimed to investigate the efficacy and mechanism of action of Vepm against Echinococcus.
Methods

Biochemical reagents
Vepm (V111249), ABZ (A131023), albendazole sulfoxide (ABZ-SO; 35395) and pentobarbital sodium were purchased from Sigma (MI) and Aladdin (Shanghai, China). Antibodies and polymerase chain reaction (PCR) primers were purchased from Abcam (Cambridge, MA) and Beijing Genomics Institute (Beijing). Enzyme-linked immunosorbent assay (ELISA) kits for CaM and CaMKII were purchased from CUSABIO (Wuhan, China). All culture reagents were purchased from Gibco (Wisent, Canada). Extraction kits for total RNA and PCR kits were purchased from Takara (Tokyo).

Separation and culture of *E. granulosus* PSC in vitro
E. granulosus PSC were obtained from the livers of naturally infected sheep from the slaughterhouse of Xining City, Qinghai Province, China. The PSC were rinsed with phosphate buffered saline (PBS), resuspended in Dulbecco’s modified Eagle’s medium containing 1% penicillin-streptomycin, and then incubated in 24-well culture plates (100 PSC/well) at 37°C, 5% CO₂. Morphological alterations in the PSC were observed under an inverted microscopy (BX43; Olympus, Japan), and the survival rate of PSC was recorded daily.

Mouse infection with *E. multilocularis*
Kunming mice 6–8 weeks of age were purchased from the Laboratory Animal Center of Lanzhou University and housed in a high-efficiency particulate air-filtered and temperature-controlled environment under a light/dark cycle at 22-25 °C. The mice were fed a rodent diet (Beijing Keao; Beijing) *ad libitum* under specific-pathogen-free laboratory conditions. *E. multilocularis* PSC were aseptically isolated from anaesthetized *E. multilocularis* infected gerbils in our laboratory as described previously [28]. Finally, the microstructure of the PSC was observed by scanning electron microscopy (SEM) (JSM-5600LV; JEOL, Japan).

Drug treatment in vivo
Three months after infection with *E. multilocularis* PSC, the infected mice were divided into the following groups for oral drug administration: (i) infected mice treated daily with honey/PBS (1:1 v/v) (*n* = 5); (ii) infected mice treated daily with 40 mg/kg ABZ in honey/PBS (1:1 v/v) (*n* = 5); (iii) infected mice treated daily with 40 mg/kg Vepm in honey/PBS (1:1 v/v) (*n* = 5). (iv) The uninfected mice were treated daily with honey/PBS (1:1 v/v) (*n* = 5). After 4 months of treatment, *E. multilocularis* cysts, sera and livers were harvested from the mice to measure the calcium content and CaM and CaMKII protein and mRNA expression.

Calcium content analysis by inductively coupled plasma mass spectrometry, SEM-energy dispersive spectrometry and alizarin red staining
i. For inductively coupled plasma mass spectrometry (ICP-MS) analysis, equal amounts of tissue or serum/culture supernatant samples were prepared for calcium analysis. Tissue digestion was performed with a microwave digestion system using UltraClave (Milestone; Sorisole, Italy), and sample analysis was performed as described previously [29].

ii. For SEM-energy dispersive X-ray spectroscopy (SEM-EDS) analysis, changes in the calcium content in *E. granulosus* PSC and in the germinal layer cells of *E. multilocularis* metacestodes were observed after treatment with Vepm by a LEO Gemini field emission gun scanning electron microscope (JEOL, Japan) as described previously [30].

iii. For alizarin red staining, *E. multilocularis* metacestodes and mouse livers were fixed with 4% paraformaldehyde for 2 weeks, and then stained with alizarin red to detect calcification, as described previously [31]. The percentage of positively stained calcium deposits in the images was calculated by using ImageJ software (National Institutes of Health, Bethesda, MD).
Analysis of CaM and CaMKII protein expression analysis by immunohistochemistry-paraffin and ELISA

i. For immunohistochemistry-paraffin (IHC-P), 4-μm-thick sections of *E. multilocularis* metacestodes and mouse livers were processed to evaluate the expression of CaM or CaMKII, as described previously [32, 33]; immunostaining was performed using rabbit anti-CaM/CaMKII antibodies (Bios; Beijing) at 1:300/1:200 dilution and secondary antibodies (goat anti-rabbit immunoglobulin G; Bioss) at 1:800 dilution. Finally, the slides were imaged under a fluorescence microscopy (Olympus, Japan). Semi-quantitative analysis was performed by using ImageJ software.

ii. For ELISA, PBS (pH = 7.2) containing phenylmethylsulfonyl fluoride (10 mmol/l) was added to serum and tissue samples, which were then rapidly homogenized and centrifuged at 1000 g for 10 min to measure the protein concentrations of CaM and CaMKII according to the ELISA kit protocols.

Analysis of CaM and CaMKII mRNA expression by real-time quantitative PCR

The expression of CaM or/and CaMKII mRNA in *E. granulosus* PSC, mouse livers and *E. multilocularis* cysts was measured by real-time quantitative PCR (RT-qPCR), and β-actin mRNA was used as the internal standard. Nucleic acid was isolated from various tissues by using TRIzol reagent (Invitrogen, San Diego, CA), and reverse-transcribed into cDNA; amplification of cDNA was performed by using rabbit anti-CaM/CaMKII antibodies (Bios; Beijing) at 1:300/1:200 dilution and secondary antibodies (goat anti-rabbit immunoglobulin G; Bioss) at 1:800 dilution. The expression of mRNA in or/and quantitative PCR

Analysis of CaM and CaMKII mRNA expression by real-time quantitative PCR

The expression of CaM or/and CaMKII mRNA in *E. granulosus* PSC, mouse livers and *E. multilocularis* cysts was measured by real-time quantitative PCR (RT-qPCR), and β-actin mRNA was used as the internal standard. Nucleic acid was isolated from various tissues by using TRIzol reagent (Invitrogen, San Diego, CA), and reverse-transcribed into cDNA; amplification of cDNA was performed by using rabbit anti-CaM/CaMKII antibodies (Bios; Beijing) at 1:300/1:200 dilution and secondary antibodies (goat anti-rabbit immunoglobulin G; Bioss) at 1:800 dilution. The expression of mRNA in or/and quantitative PCR

Results

Effect of Vepm on *E. granulosus* PSC in vitro

The survival rate of *E. granulosus* PSC after treatment with various concentrations of Vepm (0.5, 1, 2, 5, 10, 20, 40, 80 or 100 μg/ml) within 8 days is shown in Fig. 1a. The mortality of PSC upon exposure to 0.5–40 μg/ml Vepm was time dependent; all PSC were killed within 2 days by 40 μg/ml Vepm or within 4 days by 20 μg/ml Vepm. However, ABZ-SO had killed only 13% of PSC on day 2 when administrated at a concentration of 40 μg/ml and 21% of PSC on day 4 when administrated at a concentration of 20 μg/ml; 4% of PSC in the vehicle group were dead on day 2, and 8% of PSC were dead on day 4.

Under light microscopy, comparison with the natural morphology of PSC in the vehicle group indicated mild morphological alterations of PSC in the ABZ-SO (20 μg/ml) group and substantial morphological alterations (i.e., disappearance of calcareous corpuscles) of PSC after exposure to 20 μg/ml Vepm for 4 days (Fig. 1b, a–c). Additionally, PSC in the Vepm (20 μg/ml) group were stained with trypan blue on day 4, unlike the viable PSC in the ABZ-SO (20 μg/ml) and vehicle groups (Fig. 1b, d–f). SEM showed that the ultrastructural changes that occurred in PSC exposed to Vepm (20 μg/ml) for 4 days were shedding of the tegument, disappearance of hooks and the presence of numerous blebs; however, PSC in the vehicle and ABZ-SO (20 μg/ml) groups remained intact (Fig. 1b, g–i).

Changes in the calcium content in *E. granulosus* PSC exposed to Vepm in vitro

The calcium distribution in *E. multilocularis* PSC treated with Vepm (20 μg/ml) for 4 days was measured and compared with that in the vehicle group, as determined by SEM-EDS (Fig. 2a). Semiquantitative analysis showed that the calcium level in PSC decreased after treatment with Vepm (Fig. 2b). In addition, a clear dose-dependent increase in the calcium content in the culture supernatant of the Vepm group compared with the vehicle group was observed (Fig. 2c).

Effect of Vepm on *E. multilocularis* metacestodes in vivo

E. multilocularis-infected mice were treated with Vepm (40 mg/kg) or ABZ (40 mg/kg) for 4 months in vivo. The wet weights of *E. multilocularis* cysts isolated from the Vepm (0.98 ± 0.33 g) and ABZ groups (1.04 ± 0.14 g) were significantly lower than those from the infected group (5.90 ± 0.75 g) (P = 0.000; Table 1).

Changes in the calcium content in *E. multilocularis*-infected mice after Vepm treatment

The calcium concentration in the sera of *E. multilocularis*-infected mice was 4.92 ± 0.77 mg/l, which represented a twofold decrease compared with that in the
uninfected group (9.89 ± 1.92 mg/l); treatment with Vepm for 4 months induced a recovery of the calcium concentration to 6.39 ± 0.79 mg/l (Table 2). Similarly, the level of calcium in the livers of mice decreased, from 296.72 ± 9.43 mg/l to 172.72 ± 16.63 mg/l, due to *E. multilocularis* metacestode infection. Interestingly, the calcium content in the livers increased to 226.78 ± 43.93 mg/l after treatment with Vepm ($P = 0.009$). The ICP-MS assay showed that the calcium level in *E. multilocularis* cysts isolated from the infected group was 3182.28 ± 190.77 mg/l; the level decreased to 3013.98 ± 115.80 mg/l after treatment with Vepm for 4 months ($P = 0.13$). Additionally, changes in the calcium level in *E. multilocularis* cysts were evaluated by SEM-EDS (Fig. 3a), which showed that the percentage of calcium by weight in *E. multilocularis* cysts rapidly decreased from 14.28% to 8.66% after treatment with Vepm; these differences were statistically significant ($P = 0.000$) (Fig. 3b). The results of alizarin red staining showed that calcium deposition around the portal area of the liver in infected mice was significantly increased compared with that in the uninfected group (Fig. 4). The decrease in calcium content in the infected livers was not reversed by treatment with Vepm. The calcium content in *E. multilocularis* cysts was not obviously reduced ($P > 0.05$); however, a reduction in the number of PSC was observed.

Analysis of CaM and CaMKII protein levels in *E. multilocularis*-infected mice treated with Vepm

IHC-P staining revealed high expression of CaM in the livers of infected mice compared with those of uninfected mice (Fig. 5a); however, pathological progression was inhibited by Vepm, and the differences were statistically significant ($P < 0.05$). Furthermore, ELISA showed that the CaM protein concentration in mouse serum and liver increased significantly from 13.81 ± 1.65 to 22.25 ± 5.55 μg/ml and from 3.42 ± 0.27 to 6.06 ± 1.83 μg/ml, respectively, after *E. multilocularis* infection; however, after treatment with Vepm, CaM protein expression was clearly inhibited in the serum (8.13 ± 1.26 μg/ml) and liver (1.60 ± 0.68 μg/ml) but not in the cysts (from 2.36 ± 0.87 to 1.68 ± 0.10 μg/ml) (Table 3).

Similar to that of CaM, the IHC-P assay indicated that the overexpression of CaMKII in the livers and cysts in *E. multilocularis*-infected mice was significantly suppressed by Vepm treatment (Fig. 5b). Additionally, an increase in CaMKII content in mouse serum (22.87 ± 4.23 ng/ml) and liver (4.25 ± 1.84 ng/ml) was observed after *E. multilocularis* infection; the CaMKII content decreased to 5.13 ± 1.74 ng/ml and 1.97 ± 0.56 ng/ml, respectively, after Vepm treatment. However, only a mild decrease in CaMKII content in the cysts (from 2.65 ± 1.24 to 1.79 ± 0.36 ng/ml) was observed after Vepm treatment ($P > 0.05$; Table 3).

Analysis of CaM and CaMKII mRNA expression in the parasite and in *E. multilocularis*-infected mice after treatment with Vepm

The changes in Ca$^{2+}$/CaM-CaMKII expression in parasite-infected mice after treatment with Vepm were evaluated based on the changes in CaM and/or CaMKII mRNA expression in the mouse liver and in *Echinococcus*, as measured by using RT-qPCR. CaM and CaMKII mRNA expression in the mouse liver increased fourfold...
and sixfold, respectively, after infection with *Echinococcus* (Fig. 6a, b). Overexpression of *CaM* and *CaMKII* mRNA in the liver was significantly suppressed by Vepm (*P* = 0.000). After treatment with Vepm, *CaMKII* mRNA expression was clearly downregulated, while *CaM* mRNA expression was mildly reduced (*P* > 0.05). Furthermore,
CaMKII (ng/ml) in vitro was clearly downregulated (Fig. 6c).

Discussion

Echinococcus granulosus and *Echinococcus multilocularis* metacestodes tend to parasitize the liver, and *E. multilocularis* metacestodes, which exhibit tumor-like growth, become more noticeable and lead to death if untreated [34]. While its intestinal absorption is poor and it is associated with severe side effects [7], ABZ, which exerts a parasitostatic rather than a parasitcidal effect, has long been used to treat human echinococcosis. Hence, new anti-echinococcal targets and therapeutic options should be urgently explored.

The Ca\(^{2+}\)/CaM-CaMK pathway is a potential therapeutic target for cancers, and is closely monitored in many cases of parasitosis. However, as it is unclear how Ca\(^{2+}\)/CaM-CaMKII regulates the growth and development of *Echinococcus* spp., this needs to be explored to identify potential drugs for the treatment of echinococcosis at early stages of the disease.

The results of the present study indicated that the anti-echinococcal effect of Vepm on *E. granulosus* PSC was time- and dose-dependent, similar to the inhibitory effects of this drug on tumor proliferation. Calcareous corpuscles in PSC can persistently provide abundant calcium sources to promote the development of PSC into cysts [24]. In the present study, rapid disappearance of calcareous corpuscles and a decrease in the calcium content in *E. granulosus* PSC were induced by exposure to Vepm, indicating that Vepm kills *E. granulosus* PSC by promoting calcium loss.

AE is often called “parasitic cancer” due to the distinctive tumor-like growth (metacestode) of *E. multilocularis* larvae; in AE, approximately 70% of the metacestodes are found in the right lobe of the patient’s liver. The germinal layer cells in *E. multilocularis* metacestodes have high regenerative capacity and can develop into new multicellular structures, such as PSC, which can further develop into new metacestodes. Therefore, *E. multilocularis* metacestodes can infiltrate the whole liver of the host [35]. In this study, an infection model was established by *in situ* surgical intrahepatic implantation to reproduce the natural onset and development of AE in mice as closely as possible. After *E. multilocularis*-infected mice were treated with 40 mg/kg Vepm for 4 months, the weight of *E. multilocularis* cysts was significantly decreased, suggesting that the growth of the metacestodes was suppressed. This finding is similar to those reported by Cao on the effect of Vepm in mice with CE [26]. Infection with *E. multilocularis* metacestodes was reported to reduce serum calcium levels in both mice and humans [25, 36]. Interestingly, our results revealed that the reduction in the calcium content in *E. multilocularis*-infected mice was significantly reversed after administration of Vepm, and an apparent mild increase was observed in the liver but not in the serum or cysts. The calcium content in *E. multilocularis* metacestodes was substantially higher than those in the host liver and serum, indicating that the development of *E. multilocularis* PSC into metacestodes...
requires continuous absorption of calcium from the host. Furthermore, the results of the SEM-EDS assay showed that treatment with Vepm clearly reduced the calcium content and the number of germinal layer cells. Thus, we speculate that the proliferation of germinal layer cells is regulated by calcium supply in infected mice and can be disrupted by the calcium channel inhibitor Vepm. However, the detailed mechanism by which Vepm suppresses the growth of germinal layer cells by regulating the Ca$^{2+}$/CaM-CaMK cascade requires additional investigation. Furthermore, the results of alizarin red staining and ICP-MS suggested that E. multilocularis metacestodes cause calcium translocation from mice into the parasite, and that a calcium channel inhibitor (Vepm) reverses calcium loss in E. multilocularis-infected mice. In addition, abundant lymphocytes surrounded the E. multilocularis cysts in the liver after treatment with Vepm, which may have been associated with an increase in the calcium content in the livers of E. multilocularis-infected mice after treatment with Vepm, probably because a sufficient level of calcium can promote the proliferation and polarization of T cells [37]. However, the abnormal changes in lymphocyte development caused by calcium loss in Echinococcus-infected mice are over-activated by Echinococcus infection, and this effect is alleviated by oral administration of Vepm. Thus, our findings provide new information by identifying Ca$^{2+}$/CaM-CaMKII as the target of the anti-Echinococcus effects of Vepm. Investigation of the functions of Ca$^{2+}$/CaM-CaMKII in the growth and development of Echinococcus and the chronic toxicity of Vepm is currently in progress in our laboratory.

Conclusions

The results of our study suggested that Vepm has parasiticidal effects on E. granulosus PSC in vitro by promoting calcium loss, and on E. multilocularis metacestodes in vivo by inhibiting calcium translocation from mice to parasites. Furthermore, Ca$^{2+}$/CaM-CaMKII in mice is over-activated by Echinococcus infection, and this effect is alleviated by oral administration of Vepm. Thus, our findings provide new information by identifying Ca$^{2+}$/CaM-CaMKII as the target of the anti-Echinococcus effects of Vepm. Investigation of the functions of Ca$^{2+}$/CaM-CaMKII in the growth and development of Echinococcus and the chronic toxicity of Vepm is currently in progress in our laboratory.

Abbreviations

ABZ: Albendazole; ABZ-SO: Albendazole sulfoxide; AE: Alveolar echinococcosis; CaM: Calmodulin; CaMKII: Ca$^{2+}$/calmodulin-dependent protein kinase II; CE: Cystic echinococcosis; DMSO: Dimethylsulfoxide; ELISA: Enzyme-linked immunosorbent assay; ICP-MS: Inductively coupled plasma mass spectrometry; IHC-P: Immunohistochemistry-paraffin; PBS: Phosphate buffered saline; PSC: Protoscoleces; RT-qPCR: Real-time quantitative polymerase chain reaction; SEM-EDS: Scanning electron microscopy–energy dispersive X-ray spectrometry; Vepm: Verapamil.
Acknowledgements
The authors would like to thank Dr. H. B. Zhang, B. Jiang and L. L. Huo (National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Key Laboratory of Parasite and Vector Biology of the Chinese Ministry of Health, National Center for International Research on Tropical Diseases, WHO Collaborating Centre for Tropical Diseases, China) for their technical assistance.

Authors’ contributions
TJ, TZ and HG conceived and designed the experiments; HG and YPL performed the experiments; HG and TZ performed the analysis and contributed reagents and materials, XDS and HSP participated in developing the animal model; HG and TZ wrote the paper. All the authors read and approved the final manuscript.

Funding
This study was financially supported by the Foundation of National Science and Technology Major Program (no. 2018ZX10171001-004), the National Natural Science Foundation of China (no. 81171632 and 81210131S), the Fundamental Research Funds for the Central Universities (no. Iuzjby-2014-m02), the Foundation of Shanghai Municipal Health Commission (no. 201940302) and the Non-profit Central Research Institute Fund of Chinese Academy of Medical Sciences (no. 2019PT20004). The funders had no role in the study design, data collection, data analysis, data interpretation, or the writing of this report.

Availability of data and materials
The datasets supporting the conclusions of this article are included within the article.

Ethics approval and consent to participate
This study was conducted in accordance with the Chinese Laboratory Animal Administration Act, and the study protocol was approved by the Experimental Animal Ethics Committee of the School of Basic Medical Sciences, Lanzhou University (permit no. 2014-12-003).

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Author details
1 School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, Gansu Province, People’s Republic of China. 2 National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, WHO Collaborating Center for Tropical Diseases, National Center for International Research on Tropical Diseases, Key Laboratory of Parasite and Vector Biology of the Chinese Ministry of Health, Shanghai 200025, People’s Republic of China. 3 Ganz Tibet Autonomous Prefecture Center for Disease Control and Prevention, WHO Collaborating Center for Tropical Diseases, National Center for International Research on Tropical Diseases, Key Laboratory of Parasite and Vector Biology of the Chinese Ministry of Health, Shanghai 200025, People’s Republic of China. 4 National Health Commission Key Laboratory of Echinococcosis Prevention and Control, Tibet Autonomous Region Center for Disease Control and Prevention, Lhasa 850000, Tibet Autonomous Region, People’s Republic of China.

Received: 12 November 2020 Accepted: 29 January 2021
Published online: 15 February 2021

References
1. Wang H, Li J, Guo B, Zhao L, Zhang Z, McManus DP, et al. In vitro culture of Echinococcus multilocularis producing protoscoleces and mouse infection with the cultured vesicles. Parasites Vectors. 2016;9:411.
2. Rong T, Deplazes P, Jenkins D, Giraudoux P, Massolo A, Craig PS, et al. Ecology and life cycle patterns of Echinococcus species. Adv Parasitol. 2017;95:213–314.
3. Li ZD, Mo XJ, Yan S, Wang D, Xu B, Guo J, et al. Multiplex cytokine and antibody profile in cystic echinococcosis patients during a three-year follow-up in reference to the cyst stages. Parasites Vectors. 2020;13:133.
4. Kern P, Meneza da Silva A, Akhan O, Mullhart B, Vozchicki KA, Bucke C, et al. The echinococcoses: diagnosis, clinical management and burden of disease. Adv Parasitol. 2017;96:259–369.
5. Horton J. Albendazole: a review of anthelmintic efficacy and safety in humans. Parasitology. 2000;121:513–32.
6. Fabbri J, Pensel PE, Albani CM, Arce VB, Martire DO, Ellisondo MC. Drug repurposing for the treatment of alveolar echinococcosis in vitro and in vivo effects of silica nanoparticles modified with dichloroethane. Parasitology. 2019;146:1620–30.
7. Yuan M, Luo Y, Xin Q, Gao H, Zhang G, Jing T. Efficacy of ione for Echinococcus granulosus in vitro and Echinococcus multilocularis in vivo. Vet Parasitol. 2016;226:38–43.
8. Stamatakis M, Sangedi C, Stefanaki C, Sahlofoe C, Mattheopoulou I, Sahlofoe M. Anthelmintic therapy: an adjuvant therapeutic strategy against Echinococcus granulosus. Parasitol Int. 2009;58:115–20.
9. Abdel-Baki AA, Elalmi M, Mansour L, Al-Quarishy S. In vitro scoliciocal effects of Salvadora persica root extract against protoscoleces of Echinococcus granulosus. Korean J Parasitol. 2016;54:61–6.
10. Nicolao MC, Elissondo MC, Denegri GM, Goya AB, Cumino AC. In vitro and in vivo effects of tamsulosin against larval stage Echinococcus granulosus. Antimicrob Agents Chemother. 2014;58:5146–54.
11. Colebrook AL, Jenkins DJ, Jones MK, Tatarczuch L, Lightowlers MW. Effect of cyclosporin A on the survival and ultrastructure of Echinococcus granulosus protoscoleces in vitro. Parasitology. 2004;129:497–504.
12. Reuter S, Mekle M, Brehm K, Kern P, Manfra B. Effect of amphotericin B on larval growth of Echinococcus multilocularis. Antimicrob Agents Chemother. 2003;47:670–5.
13. Lamshanova G, Fiorio Pla A, Prazervskaya N. Molecular mechanisms of tumour invasion: regulation by calcium signals. J Physiol. 2017;595:3063–75.
14. Billker O, Lourido S, Sibley LD. Calcium-dependent signaling and kinases in apicomplexan parasites. Cell Host Microbe. 2009;56:612–22.
15. Cui C, Merritt P, Fu L, Pan Z. Targeting calcium signaling in cancer therapy. Acta Pharm Sin B. 2017;7:13–17.
16. Hu Y, Liu P, Kang L, Li J, Li R, Liu T. Mechanism of Marsdenia tenacissima extract promoting apoptosis of lung cancer by regulating Ca(2+)/CaM/CaMK signaling. J Ethnopharmacol. 2020;215:1125–35.
17. Thomas CM, Timson DJ. Calmodulins from Schistosoma mansoni: biochemical analysis and interaction with IQ-motifs from voltage-gated calcium channels. Cell Calcium. 2016;74:1–13.
18. Zou X, Jin Y, Liu P, Wu Q, Liu J, Lin J. RNAi silencing of calcium-regulated heat-stable protein of 24 kDa in Schistosoma japonicum affects parasite growth. Parasitol Res. 2010;108(3):567–72.
19. Cho PY, Yoo WG, Kim TI, Ahn SK, Cho SH, Kim TS, et al. Molecular characterization of voltage-gated calcium channel beta-subunits of Clonorchis sinensis. Parasitol Res. 2014;113(1):121–9.
20. McCannick EM, McVeigh P, McCusker P, Timson DJ, Morphew RM, Brophy PM, et al. Calmodulin disruption impacts growth and motility in juvenile liver fluke. Parasites Vectors. 2016;9:496.
21. Zhao L, Zhao Y, Schwarz B, Milszweitz J, Hartig R, Cama P, et al. Verapamil inhibits tumor progression of chemotherapy-resistant pancreatic cancer side population cells. Int J Oncol. 2016;49(1):99–110.
22. Harun MSR, Marsh V, Elsaid NA, Webb KF, Elsheikh MA. Effects of Toxoplasma gondii infection on the function and integrity of human cerebrovascular endothelial cells and the influence of verapamil treatment in vitro. Brain Res. 2020;1746:147002.
23. Zhang YT, Hu HH, Chen W, Shi S, Weng W. Influence of wenxin granule on atrial myocytes calcium-handling. Can J Physiol Pharmacol. 2017;95(2):246–9.
24. Rodrigues JJS, Ferreira HB, Farias SE, Zaha A. A protein with a novel calcium-binding domain associated with calcareous corpuscles in Echinococcus granulosus. Biochem Biophys Res Commun. 1997;237(2):451–6.
25. Desser SS. Calcium accumulation in larval Echinococcus multilocularis. Can J Zool. 1963;41(6):1055–6.
26. Cao D, Bai H, Zhao H. Effects of verapamil hydrochloride on the ultrastructures of secondary cysts of Echinococcus granulosus in mice. J Parasit Biol. 2010;5(6):448–9 (In Chinese).
27. Cao D, Shi D, Bao G. Observation on verapamil and albendazole against Echinococcus granulosus protoscolices in vitro. Endemic Dis Bull. 2004;19(1):23–4 (In Chinese).
28. Naguleswaran A, Spicher M, Vorlaufen N, Ortega-Mora LM, Torgerson P, Gottstein B, et al. In vitro metacercidial activities of genistein and other isoflavones against Echinococcus multilocularis and Echinococcus granulosus. Antimicrob Agents Chemother. 2006;50(11):3770–8.
29. Orct T, Jurasovic J, Micek V, Karaica D, Sabolic I. Macro- and microelements in the rat liver, kidneys, and brain tissues; sex differences and effect of blood removal by perfusion in vivo. J Trace Elem Med Biol. 2017;40:104–11.

30. Jung M, Jang HB, Lee SE, Park JH, Hwang YS. In vitro micro-mineralized tissue formation by the combinatorial condition of adipose-derived stem cells, macroporous PLGA microspheres and a bioreactor. Macromol Res. 2013;21(1):47–57.

31. Mori F, Tanj K, Wakabayashi K. Widespread calcium deposits, as detected using the alizarin red S technique, in the nervous system of rats treated with dimethyl mercury. Neuropathology. 2000;20(3):210–5.

32. Xu B, Xing R, Huang Z, Yin S, Li X, Zhang L, et al. Excessive mechanical stress induces chondrocyte apoptosis through TRPV4 in an anterior cruciate ligament-transsected rat osteoarthritis model. Life Sci. 2019;228:158–66.

33. Yang WR, Li BB, Hu Y, Zhang L, Wang XZ. Oxidative stress mediates heat-induced changes of tight junction proteins in porcine sertoli cells via inhibiting CaMKKβ-AMPK pathway. Theriogenology. 2020;142:104–13.

34. Maria AC, Celina EM. Efficacy of albendazole in combination with thymol against *Echinococcus multilocularis* protoscoleces and metacestodes. Acta Trop. 2014;140:61–7.

35. Diaz A, Casaravilla C, Ingoin F, Lin G, Previato JO, Ferreira F. Understanding the laminated layer of larval *Echinococcus* I. Structure. Trends Parasitol. 2011;27(5):204–13.

36. Wang Y, Wang S, Pu Y, Zhu J, Zhao W. Observation of trace elements in serum of patients with hepatic echinococcosis. J Ningxia Med Univ. 2011;33(8):764–5 (in Chinese).

37. Vaeth M, Maus M, Klein-Hessling S, Freinkman E, Yang J, Eckstein M, et al. Store-operated Ca(2+) entry controls clonal expansion of T cells through metabolic reprogramming. Immunity. 2017;47(4):664–79.

38. Nawaratna SSK, You H, Jones MK, McManus DP, Gobert GN. Calcium and Ca(2+)-calmodulin-dependent kinase II as targets for helminth parasite control. Biochem Soc Trans. 2018;46(6):1743–51.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.