Stability and Convergence of a Randomized Model Predictive Control Strategy

Danieł W. M. Veldman, Alexandra Borkowski, and Enrique Zuazua

Abstract—RBM-MPC is a computationally efficient variant of model predictive control (MPC) in which the random batch method (RBM) is used to speed up the finite-horizon optimal control problems at each iteration. In this article, stability and convergence estimates are derived for RBM-MPC of unconstrained linear systems. The obtained estimates are validated in a numerical example that also shows a clear computational advantage of RBM-MPC.

Index Terms—Error estimates, model predictive control (MPC), random batch method (RBM), receding horizon control, stability.

I. INTRODUCTION

Model predictive control (MPC) is a well-established and widely used method to control complex dynamical systems, see, e.g., [1], [2], and [3] for an overview of the large body of research in this area. MPC requires the real-time solution of a sequence of optimal control problems (OCPs) on a finite time horizon, which can be computationally demanding. This is, for example, the case when the model is the result of the (spatial) discretization of a partial differential equation (PDE) or in the simulation of interaction particle systems.

One recently-proposed numerically-efficient approximation method is the random batch method (RBM) [4], which is closely related to the stochastic algorithms, such as stochastic gradient descent (SGD). In the RBM-dynamics, a random subset/batch of interconnections between degrees of freedom (DOFs) is considered during small time intervals.

This can reduce the computational cost significantly and leads to a good approximation of the original dynamics when these time intervals are chosen sufficiently small, see, e.g., [4]. Recently, this idea has been extended to infinite-dimensional systems [5]. RBM-constrained OCPs have been analyzed in [6].

The RBM can be used to speed up the solution of the finite-horizon OCPs in MPC. The feedback nature of MPC also makes more robustness against the accumulating error in the RBM approximation (see, e.g., [6]). The effectiveness of this combination of model predictive control with random batch method (RBM-MPC) for nonlinear interacting particle systems has been demonstrated in [7], but a rigorous stability and convergence analysis is still missing.

The RBM in RBM-MPC fulfills a similar role as the reduced-order models (ROM) in MPC based on ROMs. There has been research on stability guarantees for MPC based on ROMs in constrained linear systems, see, e.g., [8] and [9]. The RBM is typically easier to apply than ROM techniques, but the analysis of RBM-MPC is nonetheless involved due to the stochasticity introduced by the RBM.

In this article, we provide the first rigorous analysis of the RBM-MPC algorithm. Our analysis is limited to the unconstrained linear quadratic setting and, thus, extends the open-loop analysis from [6] to a closed-loop setting. The obtained error estimates demonstrate the influence of the different parameters in RBM-MPC on the expected performance, and the obtained convergence rates are validated in a numerical example.

The rest of this article is structured as follows. The RBM-MPC algorithm is presented in Section II. After the introduction of preliminary estimates and notation in Section III, the stability and convergence of RBM-MPC are proven in Sections IV and V, respectively. The convergence rates are validated in a numerical example in Section VI. Finally, the discussions in Section VII conclude this article.

We will use the following notation. The (Euclidean) norm of a vector $x \in \mathbb{R}^n$ is $|x| = \sqrt{x^\top x}$. For a matrix $M \in \mathbb{R}^{n \times m}$, we write $\|M\| = \sup_{x \neq 0} |Mx|$. For symmetric $M \in \mathbb{R}^{n \times n}$, $M \succeq 0$ or $M \preceq 0$ indicates that M is positive semidefinite or positive-definite, respectively. For $M \succ 0$, $|x|_M = \sqrt{x^\top Mx}$.

II. RBM-MPC ALGORITHM

The RBM-MPC algorithm analyzed in this article is a way to approximate the control $u_\infty(t)$ that minimizes

$$J_\infty(u) = \int_0^\infty \left(|x(t)|_Q^2 + |u(t)|_W^2 \right) dt$$

subject to the dynamics

$$\dot{x}(t) = Ax(t) + Bu(t), \quad x(0) = x_0$$

where the state $x(t)$ evolves in \mathbb{R}^n starting from the initial condition x_0, the control $u(t)$ evolves in \mathbb{R}^m, $0 \leq t < \bar{t}$, and $W \in \mathbb{R}^{m \times m}$, $A \in \mathbb{R}^{n \times n}$, and $B \in \mathbb{R}^{n \times m}$. It is assumed that (A, B) is stabilizable and (A, Q) is detectable.
The OCP (1) and (2) can be approximated using MPC. In MPC, two parameters arise: The prediction horizon T and the shorter control horizon τ. Set $\tau_i := i\tau$ (with $i \in \mathbb{N}$) and let $u_T^J(t; x_{i-1}, \tau_i)$ and $x_T^J(t; x_{i-1}, \tau_i)$ denote the control and state trajectory that minimize
\[J_T(u_T; x_{i-1}, \tau_i) = \left| x_T^J(\tau_i + T) \right|^2 + \int_{\tau_i}^{\tau_i+T} \left| x_T^J(t) \right|_Q^2 + \left| u_T(t) \right|_W^2 \, dt \] (3)
where $F > 0$ and $x_T(t)$ fulfills $t \in [\tau_i-1, \tau_i-1 + T]$.

When n is large and A not sparse, finding $u_T^J(t; x_{i-1}, \tau_i)$ and $x_T^J(t; x_{i-1}, \tau_i)$ is computationally demanding. We, therefore, replace A by a randomized sparser matrix A_R.

The randomized matrix $A_R(\omega, t)$ is constructed as follows. First, A is written as the sum of sparse submatrices A_m
\[A = \sum_{m=1}^{M} A_m. \] (5)

Next, the subsets of $\{1, 2, \ldots, M\}$ are enumerated as S_1, S_2, \ldots, S_M and a probability $p_m \in [0, 1]$ is assigned to each subset S_m ($\omega \in \{1, 2, \ldots, 2^M\}$), such that $\sum_m p_m = 1$.

The time interval $[0, T]$ is divided into K time intervals of equal length h. For each of the K time intervals, an element $\omega_{i,k} \in \{1, 2, \ldots, 2^M\}$ of the vector ω is selected according to the probabilities p_m. The matrix A_R is now defined as follows:
\[A_R(\omega, t) = \sum_{m \in \omega_{i,k}} A_m, \quad t \in [(k-1)h, kh). \] (6)
The scaling factors π_m are defined, such that the expected value of $A_R(\omega, t)$ is equal to A. In particular, π_m denotes the probability of having the index m in the selected subset
\[\pi_m := \sum_{\omega \in \{1, 2, \ldots, 2^M\}} p_m. \] (7)

The definition of A_R, thus, requires that the probabilities p_m are selected, such that $\pi_m > 0$ for all $m \in \{1, 2, \ldots, M\}$.

The dynamics generated by $A_R(\omega, t)$ is in expectation close to the dynamics generated by A for h sufficiently small (see [6]) and replacing A by $A_R(\omega, t)$ reduces the computational cost when $A_R(\omega, t)$ is much sparser than A. Consider, therefore, the control $u_R^J(\omega, t; x_{i-1}, \tau_i)$ and state trajectory $x_R^J(\omega, t; x_{i-1}, \tau_i)$ that minimize
\[J_R(u_R; \omega, x_{i-1}, \tau_i) = \left| x_R^J(\omega, \tau_i + T) \right|^2 + \int_{\tau_i}^{\tau_i+T} \left| x_R^J(\omega, t) \right|_Q^2 + \left| u_R(t) \right|_W^2 \, dt \] (8)
where $x_R(t)$ fulfills $t \in [\tau_i-1, \tau_i-1 + T]$.
\[x_R^J(\omega, t) = A_R(\omega, t - \tau_i) x_R(\omega, t) + B u_R(t) \]
\[x_R(\omega, \tau_i - 1) = x_{i-1}. \] (9)

It has been proven in [6] that $u_R^J(\omega, t; x_{i-1}, \tau_i)$ is (in expectation) close to $u_T^J(t; x_{i-1}, \tau_i)$ for h small enough, see also Section III. Because $u_R^J(\omega, t; x_{i-1}, \tau_i)$ is used to control the dynamics generated

by A, consider also the solution $y_R^J(\omega, t; x_{i-1}, \tau_i)$ of
\[y_R^J(\omega, t) = A y_R^J(\omega, t) + B u_R^J(t; x_{i-1}, \tau_i) \]
\[y_R(\omega, \tau_i - 1) = x_{i-1}. \] (10)

where $y_R^J(\omega, t)$ denotes $y_R^J(\omega, t; x_{i-1}, \tau_i)$ for brevity.

The RBM-MPC algorithm now computes the control $u_{R,M}(t)$ and state trajectory $x_{R,M}(t)$ on $[0, \infty)$ as follows:
1) Initialize $x_{R,M}(0) = x_0$ and $i = 1$;
2) Select a random vector $\omega_i \in \{1, 2, \ldots, 2^M\}$;
3) Compute $u_R^j(\omega_i, t; x_{R,M}(\tau_i - 1), \tau_i)$ and $y_R^j(\omega_i, t; x_{R,M}(\tau_i - 1), \tau_i)$ on $[\tau_i - 1, \tau_i - 1 + T]$;
4) Set $u_{R,M}(t) = u_R^j(\omega_i, t; x_{R,M}(\tau_i - 1), \tau_i)$ and $x_{R,M}(t) = y_R^j(\omega_i, t; x_{R,M}(\tau_i - 1), \tau_i)$ on $[\tau_i - 1, \tau_i]$; and
5) Set $i = i + 1$ and go to Step 2.

Note that RBM-MPC reduces to standard MPC when $A_R(\omega, t) = A$ and that $x_{R,M}(\tau_i)$ depends on the previously selected sequences ω_j with $j \leq i$, which are denoted by
\[\Omega := (\omega_1, \omega_2, \ldots, \omega_i) \in \{1, 2, \ldots, 2^M\}^i. \] (11)

The construction of the matrix $A_R(\omega, t)$ leaves freedom in the choice of the submatrices A_m, the probabilities p_m, and the grid spacing h. As for the submatrices A_m, splittings of the form (5) are standard in operator-splitting methods, which are well-established in numerical analysis, see, e.g., [10]. The specific choice of the A_m’s is often guided by physical insight. In many finite-dimensional examples, each A_m represents an interaction between two degrees of freedom (DOFs), so that $M \leq n(n-1)/2$. Regarding the grid spacing h, note that the estimates in Theorems 1 and 2 below are proportional to $\sqrt{\text{Var}[A_R]}$, where
\[\text{Var}[A_R] := \sum_{\omega=1}^{2^M} \left| A - \sum_{m \in S_\omega} A_m \right| \sum_{\omega=1}^{2^M} \left| A - \sum_{m \in S_\omega} A_m \right|^2 p_\omega. \] (12)

Reducing $\text{Var}[A_R]$, thus, enables us to use a larger step size h. Finally, note that assigning nonzero probabilities p_m to larger subsets S_ω reduces $\text{Var}[A_R]$, but will also make $A_R(\omega, t)$ less sparse and, thus, potentially increases the computational cost, see [6, Sec. 2.3] for further discussions and examples.

Error estimates for the RBM, as in Section III and in Theorems 1 and 2, require a uniform quasidissipativity bound on A_R in the tradition of [11], i.e., we fix a $\mu_R \geq 0$ such that
\[x^T A_R(\omega, t)x \leq \mu_R |x|^2 \] (13)
for all $x \in \mathbb{R}^n$, $\omega \in \{1, 2, \ldots, 2^M\}^K$, and $t \in [0, T]$. Note that this condition implies that the eigenvalues of the symmetric part of $A_R(\omega, t)$ do not exceed μ_R.

Remark 1: Note that $\mu_R = 0$ when $x^T A_R x \leq 0$ for all $x \in \mathbb{R}^n$ and all $m \in \{1, 2, \ldots, M\}$, i.e., when all A_m are dissipative. The latter condition can be achieved in many examples, see, e.g., Section VI and [6, Sec. 4].

Remark 2: Condition (13) readily extends to a setting in which the A_m are quasidissipative bounded operators on a Banach space, see, e.g., [11]. However, the appearance of the operator norm $\| \cdot \|$ in (12) is an indication that extending the RBM to such setting is not trivial, see, e.g., [5].

III. Preliminary Estimates

In the following, C denotes a constant depending only on A, B, Q, W, and F. The notation C_T indicates that the constant also depends on T. The constants C and C_T may vary from expression to expression,
e.g., $(\|A\| + T)C_T \leq C_T$. Because we are interested in the limit $h\text{Var}[A_R] \to 0$, we will only consider the lowest power of $h\text{Var}[A_R]$ in our estimates. The following lemma now directly follows from (13).

Lemma 1: The solution $x_R(\omega_i, t)$ of (9) satisfies for all $\tau_{i-1} \leq t \leq \tau_{i-1} + T$ and all $\omega_i \in \{1, 2, \ldots, 2^M\}^K$

$$|x_R(\omega_i, t)| \leq C_T e^{hR(t - \tau_{i-1})} (|\omega_i|_1 + |u_R(\omega_i)|_{L^2(\tau_{i-1}, t; \mathbb{R}^p)}).$$

(14)

Proof: Differentiate $|x_R(\omega_i, t)|^2$ using (9), use (13), integrate from τ_{i-1} to t, apply Cauchy–Schwarz in $L^2(\tau_{i-1}, t; \mathbb{R}^p)$ and then Gronwall’s lemma.

Our analysis will use Riccati theory. For the infinite-horizon OCP (1) and (2), let P_∞ denote the (unique) symmetric positive-definite solution of the algebraic Riccati equation

$$A^T P_\infty + P_\infty A - P_\infty B W^{-1} B^T P_\infty + Q = 0. \quad (15)$$

It is, then, well-known that, e.g., [12, Section 5.1]

$$u^*_R(t) = -W^{-1} B^T P_\infty x^*_R(t). \quad (16)$$

Therefore, $x^*_R(t)$ follows the dynamics generated by

$$A_{\infty} = A - B W^{-1} B^T P_\infty \quad (17)$$

which is stable, i.e., there exist $M_{\infty} \geq 1$ and $\mu_{\infty} > 0$

$$\|e^{A x}\| \leq M_{\infty} e^{-\mu_{\infty} t}. \quad (18)$$

For the finite-horizon OCP (3) and (4), let $P_2(t)$ solve the Riccati differential equation

$$-\dot{P}_2(t) = A^T P_2(t) + P_2(t) A^T - P_2(t) B W^{-1} B^T P_2(t) + Q, \quad P_2(T) = F \quad (19)$$

on $t \in [0, T]$. It is well-known that, see, e.g., [12, Section 5.2]

$$u^*_2(t; x_{i-1}, \tau_{i-1}) = - W^{-1} B^T P_2(t - \tau_{i-1}) x^*_2(t; x_{i-1}, \tau_{i-1}). \quad (20)$$

For the randomized OCP (8) and (9), let $P_R(\omega_i, t)$ solve the randomized Riccati differential equation on $[0, T]$

$$\dot{P}_R(\omega_i, t) = A_R(\omega_i, t)^T P_R(\omega_i, t) + P_R(\omega_i, t) A_R(\omega_i, t) - P_R(\omega_i, t) B W^{-1} B^T P_R(\omega_i, t) + Q, \quad P_R(\omega_i, t) = F. \quad (21)$$

Similarly as in (20), it holds that

$$u^*_R(\omega_i, t; x_{i-1}, \tau_{i-1}) = - W^{-1} B^T P_R(\omega_i, t - \tau_{i-1}) x^*_R(\omega_i, t; x_{i-1}, \tau_{i-1}). \quad (22)$$

The following lemma shows that $P_2(t) \to P_\infty$ for $T \to \infty$.

Lemma 2: If (A, B) is stabilizable, (A, Q) is detectable, and μ_{∞} is as in (18), then, for all $t \in [0, T]$

$$\|P_2(t) - P_\infty\| \leq C \|F - P_\infty\| e^{-2\mu_{\infty}(T - t)}. \quad (23)$$

Proof: See [13]. A shorter proof for the case that (A, B) is controllable and (A, Q) is observable is given in [14].

Remark 3: Because $\|P_\infty\| \leq C$, Lemma 2 implies that $\|P_2(t)\| \leq C$ for all t.

Let V be a vector space. The expected value of a random variable $X : \{1, 2, \ldots, 2^M\}^K \to V$ depending on ω_i is

$$\mathbb{E}_i[X] = \sum_{\omega_i \in \{1, 2, \ldots, 2^M\}^K} X(\omega_i) p(\omega_i). \quad (24)$$

where $p(\omega_i) = p_{i1} p_{i2} \cdots p_{ik}$. The expected value of a random variable $X : \{1, 2, \ldots, 2^M\}^K \to V$ is denoted by

$$\mathbb{E}[X] = \sum_{\omega_i \in \{1, 2, \ldots, 2^M\}^K} X(\omega_i) p(\omega_i). \quad (25)$$

For the expected value of a random variable $X(\Omega_i)$ w.r.t. the last ω_i, we write $\mathbb{E}_i[X(\Omega_{i-1})]$ to indicate that the result depends on Ω_{i-1}. For random variables $X(\Omega_i)$ and $Y(\Omega_i)$,

$$\mathbb{E}[XY] \leq \sqrt{\mathbb{E}[X^2] \mathbb{E}[Y^2]} \quad (26)$$

$$\sqrt{\mathbb{E}[(X + Y)^2]} \leq \sqrt{\mathbb{E}[X^2]} + \sqrt{\mathbb{E}[Y^2]} \quad (27)$$

Similar expressions hold for the expectation \mathbb{E}_i.

For $0 \leq s < t \leq T$, let $S_R(\omega_i, t, s)$ be the evolution operator generated by $A_R(\omega_i, t)$, i.e., $S_R(\omega_i, t, s)x = x(\omega_i, t)$ where

$$\dot{x}(\omega_i, t) = A_R(\omega_i, t)x(\omega_i, t), \quad x(\omega_i, s) = x. \quad (28)$$

The following lemma from [6], then, shows that $S_R(\omega_i, t, s)$ is (in expectation) close to $e^{-A(t-s)}$ when $h\text{Var}[A_R]$ is small.

Lemma 3: Let $\text{Var}[A_R]$ and μ_R be as in (12) and (13) and $0 \leq s \leq t \leq T$, then

$$\mathbb{E}_i[\|S_R(\omega_i, t, s) - e^{-A(t-s)}\|^2] \leq C_T e^{\mu_R(t-s)} h\text{Var}[A_R]. \quad (29)$$

Proof: See [6, Theorem 1 and Corollary 1].

With Lemma 3, it is also possible to bound the difference between controlled state trajectories.

Lemma 4: Let $u_R : \{1, 2, \ldots, 2^M\}^K \times [\tau_{i-1}, \tau_{i-1} + T] \to \mathbb{R}^n$ be a random control and $x_{i-1} : \{1, 2, \ldots, 2^M\}^K \to \mathbb{R}^n$ a random initial condition. If $x_R(\omega_i, t)$ and $y_R(\omega_i, t)$ satisfy

$$\dot{x}_R(\omega_i, t) = A x_R(\omega_i, t) + B u_R(\omega_i, t) \quad (30)$$

$$\dot{y}_R(\omega_i, t) = A_R(\omega_i, t - \tau_{i-1}) y_R(\omega_i, t) + B u_R(\omega_i, t) \quad (31)$$

then

$$\mathbb{E}[\|u_R(t; x_i, \tau_i) - x_R(t; x_i, \tau_i)\|^2] \leq C_T e^{2\mu_R(t-\tau_i)} \times h\text{Var}[A_R] \left(\max_{\omega_i} \|x_{i-1}(\omega_i)\| + \max_{\omega_i} \|u_R(\omega_i)\|_{L^2(\tau_{i-1}, t; \mathbb{R}^p)} \right)^2. \quad (33)$$

Proof: By a slight modification of [6, Th. 2] in which the random initial condition was not considered.

Although Riccati theory will be used in the analysis, the OCPs in Section II are typically more efficiently solved by a gradient-based algorithm, especially when n is large.

IV. STABILITY ANALYSIS

For the stability result in Theorem 1 at the end of this section, we first establish two lemmas. Consider $i \in \mathbb{N}$ and $t \in [\tau_{i-1}, \tau_i]$. Because $x_{R-M}(\Omega_i, t)$ satisfies (10)

$$\dot{x}_{R-M}(\Omega_i, t) = A_{x-M} x_{R-M}(\Omega_i, t) + r(\Omega_i, t) \quad (34)$$

with A_{x-M} as in (17) and

$$r(\Omega_i, t) = BW^{-1} B^T P_{x-R-M}(\Omega_i, t) + Bu_{x-M}(\omega_i, t) \leq BW^{-1} B^T (P_{x-M} - P_R(t - \tau_{i-1})) x_{R-M}(\Omega_i, t) \quad (35)$$

For the expected value of a random variable $X(\Omega_i)$ w.r.t. the last ω_i, we write $\mathbb{E}_i[X(\Omega_{i-1})]$ to indicate that the result depends on Ω_{i-1}. For random variables $X(\Omega_i)$ and $Y(\Omega_i)$,
+ B \left(\begin{bmatrix} W^{-1} B^T P_T (t - \tau_{i-1}) x_{R-M} (\Omega_1, t) + u_{R}^i (\omega_1, t) \end{bmatrix} \right) \right] \}

\left. \right\rangle_{\omega_1}^{g(\Omega_1, t)} \quad \text{(35)}

where \(u_{R}^i (\omega_1, t) \) denotes \(u_{R}^i (\omega_1, t; x_{R-M} (\Omega_1, \tau_{i-1}, \tau_{i-1})) \) for brevity. The first auxiliary lemma is now as follows.

Lemma 5: Let \(P_R (\omega_1, t) \) and \(P_T (t) \) satisfy (21) and (19), then, for \(t \in [0, T] \)

\[
E_i \| P_R (t) - P_T (t) \| \leq C_T e^{2 \mu_r T} \sqrt{\operatorname{Var}[\varphi R]}.
\]

Proof: We will only prove (36) for \(t = 0 \). The result for \(t > 0 \) can be obtained similarly. By definition,

\[
\| P_R (\omega_1, 0) - P_T (0) \| = | \bar{\omega}(\omega_1) \|^T (P_R (\omega_1, 0) - P_T (0)) \bar{\omega}(\omega_1)
\]

\[
= \left| J_R (\omega_1, u^R_1 (\omega_1); \bar{\omega}(\omega_1), 0) - J_T (u^T_2 (\omega_1); \bar{\omega}(\omega_1), 0) \right|
\]

where \(\bar{\omega}(\omega_1) = \arg \max_{\omega_1} \omega_1 \right)\right\| P_R (\omega_1, 0) - P_T (0) \| = \left| J_R (\omega, u^R_1 (\omega_1); \bar{\omega}(\omega_1), 0) - J_T (u^T_2 (\omega_1); \bar{\omega}(\omega_1), 0) \right| \quad \text{(37)}

because \(u_{R}^i (\omega_1, t) = u_{R}^i (\omega_1) \) and \(u_{R}^i (\omega_1) \) minimizes \(J_R (\omega_1, \omega_1) \). Similarly, when \(J_R (\omega_1, u^R_1 (\omega_1)) < J_T (u^T_2 (\omega_1)) \)

\[
\| P_R (\omega_1, 0) - P_T (0) \| = \left| J_T (u^T_2 (\omega_1); \bar{\omega}(\omega_1), 0) - J_T (u^T_2 (\omega_1)) \right| \quad \text{(38)}
\]

because \(u_{R}^i (\omega_1, t) = u_{R}^i (\omega_1) \) and \(u_{R}^i (\omega_1) \) minimizes \(J_T (\omega_1, \omega_1) \). Combining (38) and (39), thus, shows that

\[
\| P_R (\omega_1, 0) - P_T (0) \| \leq \left| J_R (\omega_1, u^R_1 (\omega_1); \bar{\omega}(\omega_1), 0) - J_T (u^T_2 (\omega_1)) \right|
\]

\[
\leq \left| \left(y^R (\omega_1, T) \right) \right|^2 \quad \text{(40)}
\]

where \(\langle \cdot, \cdot \rangle_L \) denotes the \(L^2 \)-inner product on \([0, T] \) and \(e_{R} (\omega, t) \) is \(y^R (\omega_1, t) - x_{R} (\omega_1, t) \). Furthermore, when \(J_T (u^T_2 (\omega_1)) \leq J_R (\omega_1, u^R_1 (\omega_1)) \)

\[
\| x_{R} (\omega, T) \| \left(J_T (u^T_2 (\omega_1)) \right) \leq J_T (u^T_2 (\omega_1)) \leq C | \bar{\omega}(\omega_1) |^2.
\]

(41)
where $x_R(\omega, t; x_{i-1}, \tau_i)$ satisfies (9) with $u_R(t) = 0$ and $x_{i-1} = x_{R-M}(\Omega_{i-1}, \tau_{i-1})$ and the last inequality follows from Lemma 1. Lemma 4 now shows that

$$E[|x_{R-M}(\Omega_{i-1}, t) - x_R^*(t)|] \leq C\sqrt{\text{Var}[A_R]} e^{\mu_R t} \leq \frac{\sqrt{\text{Var}[A_R]}}{e^{\mu_R t}} |x_{R-M}(\Omega_{i-1}, \tau_{i-1})|.$$

To bound $|x_R^*(\omega, t)|$, note that $x_R^*(\omega, t)$ satisfies (9) with $u_R(\omega, t) = u_R(\omega, t)$ and $x_{R-M}(\Omega_{i-1}, \tau_{i-1})$. Inserting (48) into (14), thus, shows that for $t \in [\tau_{i-1}, \tau_i]$

$$|x_R^*(\omega, t)| \leq C\sqrt{\text{Var}[A_R]} e^{\mu_R(T+\tau)} |x_{R-M}(\Omega_{i-1}, \tau_{i-1})|.$$

Now insert (49), (36), and (50) into (47) to find (46).

We are now ready to prove the main stability result.

Theorem 1: If (A, B) is stabilizable, (A, Q) is detectable, and M_∞ and μ_∞ are as in (18), then

$$E[|x_{R-M}(t)|] \leq M_\infty e^{-\mu_M t} |x_0|$$

where

$$\mu_M = \mu_\infty - C\|F + P_\infty e^{-2\mu_\infty(T+\tau)}\|$$

$$- C_T e^{\mu_R(2T+\tau)} e^{\mu_\infty \tau} \sqrt{\text{Var}[A_R]}.$$

Proof: Applying the variation of constants formula to (34), taking the norm and the expectation yields

$$E[|x_{R-M}(t)|] \leq M_\infty e^{-\mu_\infty t} |x_0| + M_\infty \int_0^t e^{-\mu_\infty (t-s)} E[|r(s)|] ds$$

where (18) has been used. Taking the norm and the expectation (first w.r.t. $\omega_{i-s/\tau+1}$ and, then, w.r.t. to the other ω_j’s in (35) using Lemmas 2 and 6, it follows that:

$$E[|r(s)|] \leq C_1 E[|x_{R-M}(s)|] + C_2 E[|x_{R-M}(\tau_{i-1})|]$$

where we have introduced $C_1 = C\|F + P_\infty e^{-2\mu_\infty(T+\tau)}\|$ and $C_2 = C_T e^{\mu_R(2T+\tau)} \sqrt{\text{Var}[A_R]}$. By inserting (54) into (53) and writing $f(t) = E[|x_{R-M}(t)|]$, we obtain

$$f(t) \leq M_\infty e^{-\mu_\infty t} |x_0| + \int_0^t e^{-\mu_\infty(t-s)} \left(C_1 f(s) + C_2 f(\tau_{i-1})\right) ds.$$

Setting $\tilde{f}(t) = e^{\mu_\infty t} f(t)$, it follows that $\tilde{f}(t) \leq \tilde{F}(t)$ where

$$\tilde{F}(t) = M_\infty |x_0| + \int_0^t \left(C_1 \tilde{f}(s) + C_2 e^{\mu_\infty \tau} \tilde{f}(\tau_{i-1})\right) ds.$$

Because $\tilde{F}(t)$ is monotonically increasing and $\tilde{f}(t) \leq \tilde{F}(t)$

$$\tilde{F}(t) \leq M_\infty |x_0| + (C_1 + C_2 e^{\mu_\infty \tau}) \int_0^t \tilde{F}(s) ds.$$

By Gronwall’s lemma, we, thus, obtain that $e^{\mu_\infty t} f(t) = \tilde{f}(t) \leq \tilde{F}(t) \leq M_\infty |x_0| e^{(C_1 + C_2 e^{\mu_\infty \tau}) t}$

and the result follows.

Remark 4: Note that $\mu_M > 0$ will be positive for $h\text{Var}[A_R]$ and $\|F + P_\infty e^{-2\mu_\infty(T+\tau)}\|$ sufficiently small.

Remark 5: When $\mu_M > 0$, the RBM-MPC scheme is stabilizing with probability 1. To see this, note that Markov’s inequality and

$$\mathbb{P}[|x_{R-M}(t)| \geq \epsilon] \leq \frac{E[|x_{R-M}(t)|]}{\epsilon} \leq \frac{M_\infty e^{-\mu_M t} |x_0|}{\epsilon}.$$

Because $\mu_M > 0$, the probability that $x_{R-M}(t)$ is outside any ϵ-neighborhood of the origin approaches zero for $t \to \infty$.

V. CONVERGENCE

We first consider the convergence of MPC. Note that $x_M(t)$ follows the dynamics generated by the τ-periodic matrix

$$A_T(t) = A - BW^{-1} B^T P_T(t \mod \tau).$$

We then, have the following lemma.

Lemma 7: If (A, B) is stabilizable, (A, Q) is detectable and M_∞ and μ_∞ are as in (18), then, for all $0 \leq s \leq t$,

$$\|e^{\int_0^t A_T(s) \, ds \, \sigma}\| \leq M_\infty e^{-\mu_M t}.$$

Furthermore, if $\mu_M > 0$, then

$$|x_M(t) - x_\infty(t)| + |u_M(t) - u_\infty(t)| \leq C\|F + P_\infty e^{-2\mu_\infty(T+\tau)}|x_0|.$$

Remark 6: Lemma 7 shows that the dynamics generated by $A_T(t)$ is stable for $T - \tau$ sufficiently large or $\|F + P_\infty\|$ sufficiently small and that $(x_M(t), u_M(t)) \to (x_\infty(t), u_\infty(t))$ for $T - \tau \to \infty$ or $\|F - P_\infty\| \to 0$.

Proof: Let $x(t)$ denote the solution to $\dot{x}(t) = A_T(t)x(t)$ with initial condition $x(s) = x_s$. By (17),

$$\dot{x}(t) = (A_\infty + BW^{-1} B^T (P_\infty - P_T(t \mod \tau))) x(t).$$

The variation of constants formula, thus, shows that $x(t) = e^{A_\infty(t-s)} x_s$

$$+ \int_s^t e^{A_\infty(t-\sigma)} BW^{-1} B^T (P_\infty - P_T(\sigma \mod \tau)) x(\sigma) \, d\sigma.$$

Taking norms using (18) and Lemma 2, it follows that:

$$\|x(t)\| = M_\infty e^{-\mu_\infty t} |x_0| + C\|F - P_\infty\| e^{-2\mu_\infty(T+\tau)} \int_s^t \|x(\sigma)\| \, d\sigma.$$

Applying Gronwall’s lemma and noting that the initial condition x_s is arbitrary now yields (59). For the bound on $e_M(t) := x_M(t) - x_\infty(t)$ in (61), note that $\dot{x}_\infty(t) = A_\infty x_\infty(t)$ and that $x_M(t)$ satisfies (62), so that $e_M(t) = A_\infty e_M(t) - BW^{-1} B^T (P_T(t \mod \tau) - P_\infty) x_M(t)$.

Applying the variation of constants formula and taking the norm using (18), Lemma 2, and the inequality $|x_M(t)| \leq M_\infty |x_0| \leq C |x_0|$ when $\mu_M \geq 0$ by (59), it follows that:

$$\|e_M(t)\| \leq C\|F - P_\infty\| e^{-2\mu_\infty(T+\tau)} \int_0^t e^{-\mu_\infty(t-s)} ds |x_0|.$$

The bound on $e_M(t)$ follows because the remaining integral is bounded by $1/\mu_\infty \leq C$. For $u_M(t) - u_\infty(t)$, note that (20) implies that

$$\|u_M(t) - W^{-1} B^T P_T(t \mod \tau) x_M(t)\| \leq M_\infty e^{-\mu_M t} |x_0|.$$
Fig. 1. RBM-MPC control and state trajectory $u_{R-M}(\Omega_i, t)$ and $x_{R-M}(\Omega_i, t)$ for 20 realizations of Ω_i compared with $u_M(t)$, $x_M(t)$, $u_\infty(t)$, and $x_\infty(t)$ for $n=100$, $h=1$, $\tau=10$, and $T=15$. Lines for $|x_{R-M}(\Omega_i, t)|$ and $|x_M(t)|$ in Fig. 1(b) almost overlap. (a) Controls $u_{R-M}(\Omega_i, t)$, $u_M(t)$, and $u_\infty(t)$. (b) Norm of the state trajectories $x_{R-M}(\Omega_i, t)$, $x_M(t)$, and $x_\infty(t)$.

Fig. 2. Differences between the RBM-MPC state trajectory $x_{R-M}(\Omega_i, t)$, the MPC state trajectory $x_M(t)$, and the infinite horizon state trajectory $x_\infty(t)$ for $n=100$. The error bars indicate the 2σ confidence intervals estimated based on 20 realizations of Ω_i. (a) Varying h, $T=15$, $\tau=10$. (b) $h=1$, varying T, $\tau=10$. (c) $h=1$, $T=40$, varying τ.

Fig. 3. Differences between the RBM-MPC control $u_{R-M}(\Omega_i, t)$, the MPC control $u_M(t)$, and the infinite horizon control $u_\infty(t)$ for $n=100$. The error bars indicate the 2σ confidence intervals estimated based on 20 realizations of Ω_i. (a) Varying h, $T=15$, $\tau=10$. (b) $h=1$, varying T, $\tau=10$. (c) $h=1$, $T=40$, varying τ.

so that subtracting (16) shows that

$$u_M(t) - u_\infty(t) = W^{-1}B^\top(P_\infty - P_\tau(t \mod \tau))x_M(t) - W^{-1}B^\top P_\infty e_M(t).$$

Using Lemma 2 and that $|x_M(t)| \leq M_\infty|x_0| \leq C|x_0|$ for the first term, and the previously derived bound for $|e_M(t)|$ for the second, the result follows.

Now the convergence of RBM-MPC can be established.

Theorem 2: If (A, B) is stabilizable, (A, Q) is detectable, and μ_{R-M} in (52) is positive, then

$$\mathbb{E}[|x_{R-M}(t) - x_M(t)|] + \mathbb{E}[|u_{R-M}(t) - u_M(t)|]$$

$$\leq \frac{C_T}{\mu M} e^{\mu R(2T+\tau)} \sqrt{h \text{Var}[A_R|x_0|]}.$$

(67)
Proof: Consider \(i \in \mathbb{N} \) and \(t \in [\tau_{i-1}, \tau_i) \). For the bound on \(e_{R-M}(\Omega, t) = x_{R-M}(\Omega, t) - x_M(t) \), note that \(x_M(t) \) satisfies (62), so that (35) into (34) and subtracting (62) yields
\[
\dot{e}_{R-M}(\Omega, t) = A_c(t)e_{R-M}(\Omega, t) +Bg(t),
\]
and \(e_{R-M}(\Omega, 0) = 0 \). Applying the variation of constants formula, taking the norm and the expectation, thus, shows that
\[
\mathbb{E}[|e_{R-M}(t)|] = C \int_0^t \left(e^{\int_s^t A_c(r) dr} \right) \mathbb{E}[|g(s)|] s d s.
\]
By Lemma 6, it follows that:
\[
\mathbb{E}[|g(t)|] \leq C_T e^{C_T |t-T|} \sqrt{\text{Var}[A_R] \mathbb{E}[|x_{R-M}(\tau_{i/\varepsilon})|]} + \sqrt{\text{Var}[A_R] \mathbb{E}[|x_0|]}
\]
which has it been used that \(|x_{R-M}(\tau_{i/\varepsilon})| \leq M_\infty \mathbb{E}[x_0] \leq C_0 \mathbb{E}[x_0] \) by Theorem 1 because \(\mu_{R-M} \geq 0 \). Using (59) and (70) in (69), the bound for \(e_{R-M}(\Omega, t) \) follows because the integral of \(e^{C_T |t-T|} \) is bounded by \(1/\mu_M \).

To bound \(u_{R-M}(\Omega, t) - u_M(t) \), note that for \(t \in [\tau_{i-1}, \tau_i) \)
\[
u_{R-M}(\Omega, t) = u_R^{\tau_{i}}(\omega_i, t; x_{R-M}(\Omega_{i-1}, \tau_{i-1}), \tau_{i-1}).
\]
Subtracting (65) using the definition of \(g(\Omega, t) \) in (35) yields
\[
\nu_{R-M}(\Omega, t) - u_M(t) = g(\Omega, t) - W^{-1}B^TP(t \bmod \tau)e_{R-M}(\Omega_{i-1}, t)
\]
The bound now follows after taking the norm and the expected value, and then, using Lemma 6 to bound \(\mathbb{E}[|g(t)|] \) and the previously derived estimate for \(\mathbb{E}[|e_{R-M}(t)|] \).

Remark 7: Combining Theorem 2 and (61), one obtains estimates for \(\mathbb{E}[|x_{R-M}(\tau_{i/\varepsilon})|] + \mathbb{E}[|u_{R-M}(\Omega, t) - u_M(t)|] \).

The estimates also indicate a natural approach to tuning the parameters in RMB-MPC. First, \(T - \tau \) should be chosen such that the MPC strategy is stabilizing with sufficient margin, i.e., such that \(C^T [F - P]\mathbb{E}[|u_{R-M}(\tau_{i/\varepsilon})|] < \mu_{\infty} \). After that, \(h \) can be chosen such that \(\mu_{R-M} > 0 \) and \(h \) such that RMB-MPC leads to a sufficiently good approximation of MPC.

VI. NUMERICAL EXAMPLE

We consider a problem of the form (1) and (2) with \(n \in \{11, 101, 1001\} \) states and \(m = 1 \) input, \(A \in \mathbb{R}^{n \times n} \) is
\[
A = (n-1)^2\begin{bmatrix}
-2 & 1 & 0 & \cdots & 0 & 1 \\
1 & -2 & 1 & 0 & \cdots & 0 \\
0 & 1 & -2 & 0 & \cdots & 0 \\
\vdots & \ddots & \ddots & \ddots & \ddots & \ddots \\
0 & 0 & \cdots & -2 & 0 & \cdots \\
1 & 0 & 0 & \cdots & 1 & -2
\end{bmatrix}
\]
when the relative change in the control is below 10^{-5} or after 1000 iterations.

To construct the randomized matrix \(A_R(\omega_i, t) \), note that \(A \) can be written as the sum of \(M = n \) interconnection matrices as in (5), where the first \(n - 1 \) interconnection matrices \(A_{in} \) are zero except for a diagonal block of the form
\[
\begin{bmatrix}
-1 & 1 \\
1 & -1
\end{bmatrix}
\]
and the last interconnection matrix has only nonzero entries in its four corners. The sum of the first \(n - 1 \) interconnection matrices leads to a tridiagonal matrix, which reduces the computational cost for each time step to \(O(n) \), see, e.g., [10, Section 2.1.1]. In fact, the symmetry of the problem implies that omitting any one of the \(n \) submatrices \(A_{in} \) reduces the computational cost for one time step to \(O(n) \). A probability \(1/n \) is assigned to each subset of \(\{1, 2, \ldots, n\} \) of size \(n - 1 \). The probabilities \(\pi_{in} \) in (74) are, thus, \(\pi_{in} = 1/n - 1/n \). The grid spacing \(h \) is chosen as small as possible, so \(h = \Delta t \). All \(A_{in} \) are dissipative, so \(\mu_R = 0 \) by Remark 1.

Table I compares 20 realizations of the RMB-MPC control \(u_{R-M}(\Omega, t) \) to the MPC control \(u_M(t) \) and the infinite horizon control \(u_M^{\infty}(t) \) for \(n = 100 \) spatial grid points. As can be seen, \(u_M^{\infty}(t) \) is smooth, \(u_M(t) \) jumps when \(t \) is a multiple of \(\tau = 10 \), and the realizations of \(u_{R-M}(\Omega, t) \) contain high-frequent oscillations related to the grid spacing \(\Delta t = h = 1 \). Fig. 1(b) shows that despite the relatively large deviations of \(u_{R-M}(\Omega, t) \) from \(u_M(t) \), \(|x_{R-M}(\Omega, t)| \) is very close to \(|x_M(t)| \) for all 20 considered realizations \(\Omega_i \). RMB-MPC, thus, leads to almost the same decay rate as the MPC here. Note that \(T = 15 \) is not much larger than \(\tau = 10 \), but the simulations indicate that MPC and RMB-MPC are stabilizing.

Table I shows that the running times for RMB-MPC are smaller than those for MPC, which are again smaller than those for solving the OCP on [0, 200] directly. The numbers between round brackets in Table I indicate the estimated standard deviation of the running times based on 20 runs. For \(n = 100 \), MPC is almost three times faster than a classical optimal control approach, and RMB-MPC is again almost three times faster than MPC. For \(n = 1000 \), MPC is still approximately three times faster than solving the OCP directly, but RMB-MPC is five times faster than MPC. Note that the relative speed-up of RMB-MPC compared with MPC may not always match theoretical estimates due to overhead and potential additional iterations in the RMB-constrained OCP compared with the original OCP.

These observations are particularly interesting because Table II shows that the errors do not increase significantly when \(n \) is increased. The numbers between round brackets in Table II indicate the estimated standard deviation based on 20 realizations of \(\Omega_i \). Here, \(\|x\|_{L^\infty} := \max_i \sqrt{\mathbb{E}[(x(t))]^2} \).

The convergence rates from Lemma 7 and Theorem 2 are validated in Figs. 2 and 3. Figs. 2(a) and 3(a) show that \(\|x_{R-M}(\Omega_i) - x_M\|_{L^\infty} \) and \(|u_{R-M}(\Omega_i) - u_M|_{L^\infty} \) decay as \(\sqrt{n} \) for \(h \to 0 \) and that \(x_{R-M}(\Omega_i) \) and \(u_{R-M}(\Omega_i) \) do not converge to \(x_M^* \) and \(u_M^* \) for \(h \to 0 \), as the
estimates from Section V indicate. Figs. 2(b) and 3(b) show that \(\| x_M - x^*_M \|_{L^\infty} \) and \(\| u_M - u^*_M \|_{L^2} \) are proportional to \(e^{-2\mu_{\infty} T} \), as Lemma 7 indicates. Increasing \(T \) increases \(\| x_{R-M}(\Omega_t) - x_M \|_{L^\infty} \) and \(\| u_{R-M}(\Omega_t) - u_M \|_{L^2} \), which confirms that the constant \(C_T \) in Theorem 2 increases with \(T \). Figs. 2(c) and 3(c) show that varying \(\tau \) does not affect \(\| x_{R-M}(\Omega_t) - x_M \|_{L^\infty} \) and \(\| u_{R-M}(\Omega_t) - u_M \|_{L^2} \) strongly and \(\| x_M - x^*_M \|_{L^\infty} \) and \(\| u_M - u^*_M \|_{L^2} \) increase with \(\tau \).

The code used to generate the results in this section can be found online.

VII. CONCLUSION

This article considers a randomized MPC strategy called RBM-MPC to efficiently approximate the solution of a large-scale infinite-horizon linear-quadratic OCP. In RBM-MPC, the finite-horizon OCPs in each MPC-iteration are simplified by replacing the system matrix \(A \) by a randomized one. The estimates in this article demonstrate that 1) RBM-MPC is stabilizing for \(h \text{Var}[A_R] \) sufficiently small and either \(T - \tau \) sufficiently large or \(\| F - P_k \| \) sufficiently small, and 2) RBM-MPC states and controls converge in expectation to their MPC counterparts for \(h \text{Var}[A_R] \to 0 \). In an example with \(n = 100 \) states, RBM-MPC is nine times faster than solving the OCP directly and three times faster than classical MPC. The estimates in this note form a natural starting point for the analysis of RBM-MPC in nonlinear and/or constrained settings in future works. The computational advantage of RBM-MPC has already been demonstrated in a nonlinear setting, see [7]. Because the training of residual deep neural networks (DNNs) can be seen viewed as a nonlinear OCP (see, e.g., [16] and [17]), RBM-MPC may also be applied to speed up the training of DNNs. RBM-MPC may also be used for the control of (networks of) PDEs, that, for example, appear in the modeling of gas transport, see, e.g., [18].

Finally, other variations of RBM-MPC could be considered. One variation would be to first fix a RBM approximation over the whole time axis \([0, \infty) \) and use this as the plant model for MPC. Another interesting variation would be to consider a new (independent) RBM approximation in each step of the gradient descent algorithm used to solve the (finite horizon) OCPs in MPC.