Draft genome sequence of *Vibrio vulnificus* H1828/94, a clinical isolate of multidrug-resistant emerging pathogenic isolates

D. P. R. Herlemann¹ and V. Kisand¹-²

¹ Estonian University of Life Sciences, Centre for Limnology, EE61101, Elva, Tartu County and ² Institute of Technology, University of Tartu, 50411, Tartu, Estonia

Keywords: Brackish water, Climate change, Vibriosis

Original Submission: 2 November 2021; **Revised Submission:** 9 August 2022; **Accepted:** 29 August 2022

Article published online: 6 September 2022

Corresponding author: Daniel Philipp Ralf Herlemann , Microbial Ecophysiology, Chair of Hydrobiology and Fishery, Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 5, Tartu, 51006, Estonia.

E-mail: Daniel.Herlemann@emu.ee

Dear Editor,

Here we report the draft genome of *V. vulnificus* H1828/94, a clinical isolate from Hamburg, Germany. Based on the genome we predicted 16 potential antimicrobial resistant genes including multidrug resistance and 43 virulence genes.

The genus *Vibrio* belongs phylogenetically to the Gammaproteobacteria and consists typically of facultative anaerobic, motile, curved rods with single polar flagellum. Among the members of this genus, twelve species have been reported to be pathogenic to humans. From those, only *Vibrio cholerae* serotypes O1/O139 cause the disease cholera. Other most important potentially pathogenic *Vibrio* species are subtypes of *V. cholera* (different non-O1/O139 serotypes NOVC), *V. vulnificus*, *V. parahaemolyticus* and *V. alginolyticus*. These organisms are common planktonic and benthic bacteria found in the freshwater-saltwater transitions and can cause infections in humans which are usually associated with the consumption of raw or undercooked shellfish or by direct contact with water. In contrast to other pathogens are infections caused by *V. vulnificus* currently strongly increasing since it prefers to grow in brackish, (< 25 g/L NaCl) warmer (> 15°C) water and therefore profit from current climate change [1].

A paired-end library was prepared from the genomic DNA of *V. vulnificus* H1828/94, which was isolated from an infected patient. The high number of virulence genes is expected since *V. vulnificus* H 1828/94, was isolated from an infected patient.

Determining whether *Vibrio vulnificus* is a potential pathogen when isolated from the environment is difficult since also strains that phylogenetically belong to the species *Vibrio vulnificus* can be nonpathogenic despite different biotypes. A commonly used gene for phylogenetic assignment is HSP60 [3]. The HSP60 phylogeny of revealed a high identity with *V. vulnificus* FDAARGOS 119, *V. vulnificus* CG27, *V. vulnificus* CG62, *V. vulnificus* MO6-24/O and *Vibrio vulni* H1828/94, was isolated from an infected patient.

In conclusion, the genome of *V. vulnificus* H1828/94 carries clinically significant genes associated with pathogenicity and antimicrobial resistance. HSP60 gene analysis of *V. vulnificus* H1828/94 supports the assumption that *Vibrio vulnificus* lineage (based on HSP60) contains strains with a significant potential for infection [5].
H1828/94 revealed a close relationship to environmental and clinical strains that all contain essential pathogenicity factors.

Transparency declaration

The authors state no conflict of interest.

Acknowledgment

We thank the Leibniz-Institute DSMZ—German Collection of Microorganisms and Cell Cultures and the Hygiene Inst. Hamburg for providing the strain *V. vulnificus* H1828/94. DH and VK were supported by the European Regional Development Fund/Estonian Research Council funded “Mobilitas Plus Top Researcher grant MOBTT24.” In addition, VK was supported by Estonian Research Council grant PUT1389. This study was supported by the EMÜ grant P200028PKKH (DPRH) and the WORLDCOM project of the One Health European Joint Programme (OHEJP) consortium and received funding from the European Union’s Horizon 2020 Research and Innovation programme [grant number 773830] (VK). DPRH is funded by the European Regional Development Fund/Estonian Research Council funded “Mobilitas Plus Top Researcher grant MOBTT24.”

References

[1] Hartnell R, Stockley L, Keay W, Rosec J-P, Hervio-Heath D, Van den Berg H, et al. A pan-European ring trial to validate an International Standard for detection of *Vibrio cholerae*, *Vibrio parahaemolyticus* and *Vibrio vulnificus* in seafoods. International Journal of Food Microbiology 2019;288:58–65.

[2] Aun E, Kisand V, Laht M, Telling K, Kalmus P, Väli Ü, et al. Molecular characterization of *Enterococcus* isolates from different sources in Estonia reveals potential transmission of resistance genes among different reservoirs. Frontiers in Microbiology 2021;12:601490.

[3] Jesser KJ, Noble RT. *Vibrio* ecology in the Neuse River Estuary, North Carolina, characterized by next-generation amplicon sequencing of the gene encoding heat shock protein 60 (hsp 60). Applied and Environmental Microbiology 2018;84. e00333-18.

[4] Kim H-J, Cho J-C. Genotypic diversity and population structure of *Vibrio vulnificus* strains isolated in Taiwan and Korea as determined by multilocus sequence typing. PloS One 2015;10:e0142657.

[5] Guerrero A, Licea-Navarro AF, González-Sánchez R, Lázarraga-Partida ML. Whole-genome comparison between reference sequences and oyster *Vibrio vulnificus* C-genotype strains. Plos One 2019;14:e0220385.