Toxicological Effects of Petroleum Refinery Sludge on the Terrestrial Environment Using Bacteria and Earthworm as Bio Indicators

Tudararo-Aherobo Laurelta* and Atuayan Ernest

1Department of Environmental Management and Toxicology, Federal University of Petroleum Resources Effurun, Delta State, Nigeria.
2Department of Microbiology, University of Benin, Benin City, Nigeria.

Authors’ contributions
This work was carried out in collaboration between both authors. Author TAL designed the study, performed the statistical analysis, wrote the protocol and wrote the first draft of the manuscript. Author AE managed the analyses of the study, read and approved the final manuscript.

Article Information
DOI: 10.9734/JAMB/2020/v20i430234
Editor(s):
(1) Dr. Ana Cláudia Correia Coelho, University of Trás-os-Montes and Alto Douro, Portugal.
(2) Sainudeen Pattazhy, University of Kerala, India.
Reviewers:
(1) Sainudeen Pattazhy, University of Kerala, India.
(2) Igiebor Francis Aibuedefe, Wellspring University, Nigeria.
Complete Peer review History: http://www.sdiarticle4.com/review-history/56623

Received 20 February 2020
Accepted 25 April 2020
Published 06 May 2020

ABSTRACT

Aim: The aim of the study is to assess the sublethal (chronic) Ecotoxicological effects of petroleum refinery sludge pollution on the biota of the terrestrial environment using the effects on bacteria nitrogen transformation activity and growth rate of the soil fauna, Earthworm (Aporrectodea longa) as bioindicators.

Place and Duration of Study: Department of Environmental Management and Toxicology, Federal University of Petroleum Resources, Effurun, between 2017 and 2018.

Methodology: The OECD TG 216 (2000) test method was used to determine the chronic effects (% inhibition and EC50) of the petroleum sludge on the nitrogen transformation activity of Nitrobacter sp. in the soil, while the methods of Sandoval et al. [13] and OECD, 207 was used for the chronic effects of the sludge on the growth rate of the earthworms. Bioconcentration factor (BCF) of the sludge in the earthworms was also determined. Both tests were conducted for 28 days. Results from the test with multiple concentrations were analyzed using a regression model (ANOVA). EC50 was also determined using the Probit analytical software. Analyses were done using ASTM methods.
Results: Analysis of the Nigerian petroleum refinery sludge used for this research indicated that the sludge was acidic with a pH value of 5.91 and had a high TPH content of 340,000 mg/kg made mainly of between 10-40 carbon unit compounds. There was a progressive increase in the percentage (%) inhibition of the nitrogen transformation activities of the bacteria, from 18.0% (3125 mg/kg) to 79.30% (5000mg/kg) with increase in concentration and time. The effective concentration that decreased 50% (EC_{50}) of the nitrogen transformation activity was 13761.059 mg/kg. The growth rate of the test earthworms decreased from 9.19x10^2 g/day (375 mg/kg) to 3.55x10^2 g/day (3000 mg/kg) for the test period. The BCF decreased from 5.168 (375 mg/kg) to 1.22 (3000 mg/kg) in the earthworms, while the EC_{50} for the earthworms was 825.02mg/kg as the concentration of the sludge increased with time.

Conclusion: The sludge inhibited the nitrogen transformation activity of Nitrobacter sp. because it exceeded the 25% inhibition limit for chemicals with the potential to cause chronic effects on soil microbial activities as specified in OECD TG 216. Similarly, the sludge reduced the growth rate of the earthworm progressively as the sludge concentration increased in relation to the control. Bioaccumulation factor also increased with increasing sludge concentration and time.

Keywords: Petroleum oily sludge; chronic effects; bioindicators; environment.

1. INTRODUCTION

Petroleum sludges are oily and viscous residues, which are formed during production, transportation, refining of petroleum and storage and are composed of basically oil, water and solids [1]. Due to their characteristics, such as varied composition, their neutralization become difficult and confer on them high recalcitrance. This recalcitrance can be ascribed to the presence of aromatics, polycyclic aromatic hydrocarbons (PAHs) and complex compounds such as asphaltenes. Some of these compounds act as solvents of microbial membranes and could impair biodegradation [2].

The oil industry is responsible for the generation of high amounts of oily sludge as waste by-product. However; one of the problems faced by the oil industry is the safe disposal of the oily waste generated. It is estimated that approximately 1% of the total oil processed in a refinery is discarded as oily sludge [1]. These oily wastes are expensive to store or destroy and previously contaminated areas have required expensive remediation processes to minimize contaminant dispersion. Improper disposal leads to environmental pollution, particularly soil contamination, and poses a serious threat to groundwater. Many of the constituents are carcinogenic and immunotoxicants [3]. The polynuclear aromatic hydrocarbons (PAHs) have also been known to impair chemoreceptors functions in aquatic lives and hence lead to extinction of some species. They have also been known to bioaccumulate up the food chain, resulting in cancers and other genetic malfunctioning in man and other higher animals [4].

Information about in situ toxicity of the bioavailable pools of adsorptive soil pollutants is a prerequisite for proper ecological risk assessment in contaminated soils. Petroleum sludge is known to have strong adsorptive properties in soil and the bioavailability and in situ toxicity of such a pollutant to the soil microorganisms may thus be affected differently by dissolved and adsorbed pools in the soil [5]. On the other hand, many recent reports have suggested that the adsorbed pollutant pool may also be at least partially available for the microorganisms, both in terms of causing toxic effects [6-8] and serving as substrates for biodegradation [5].

Toxicity tests are used to expose test organisms (fish, shrimps, microorganisms, earthworm) to a medium—water, sediment, or soil—and evaluate the effects of contamination on the survival, growth, reproduction, behaviour and/or other attributes of these organisms. Chronic toxicity tests generally are longer-term tests that measure the effects of exposure to relatively lower, less toxic concentrations. For a chronic toxicity test the measurement endpoint concerns a sublethal effect or both lethal and sublethal effect. Sublethal effects may include growth reduction, reproductive impairment, nerve function impairment, lack of motility, behavioural changes, inhibition of enzyme activities and the development of terata, which are structural abnormalities.
Microorganisms play an important role in the breakdown and transformation of organic matter in fertile soils with many species contributing to different soil fertility through biogeochemical cycles such as nitrogen cycle. Any long-term interference with these biochemical processes could potentially interfere with nutrient cycling and this could alter soil fertility. Nitrogen transformation occurs in all fertile soil. This process can be used to detect long-term (Chronic test) adverse effects of a substance such as petroleum sludge in aerobic surface soils [9].

Sentinels are biological indicators that can help define the ecotoxicological effects of environmental contaminants [10]. These are sensitive organisms in the environment that indicate early warnings to measure pollutant effects and area affected and thus transplant them into waste pollution gradients [11]. Sentinels could be microorganisms, shrimp, fish, gastropods among others.

The suitability of earthworms as sentinel in soil toxicity is largely due to the fact that they ingest large quantity of the soil and are in full contact with the substrate they consume [12,13]. Earthworms are superb ‘barometers’ or ‘sentinels’ providing an early warning of deterioration in soil quality. Earthworms have been recommended as a critical (suitable) representative of soil organisms and an indicator of soil health [14].

Nitrobacter hamburgensis is a gram-negative bacterium which inhabit soil, building sandstone, and sewage sludge. They are mostly pear-shaped. _N. hamburgensis_ gains energy from oxidation of nitrite to nitrate via the enzyme nitrite oxidoreductase (NOR).

2. MATERIALS AND METHODS

2.1 Sample Collection

2.1.1 Collection of petroleum refinery sludge

The petroleum sludge used for this research was collected from the Petroleum sludge holding tank of Warri Refinery and Petrochemical Company Ltd, Warri, Ekpan, Delta State, Nigeria in 2L glass bottles and preserved at 4°C until required for use. It was analyzed for its physicochemical parameters using standard methods.

2.1.2 Collection of _Nitrobacter_ sp.

The _Nitrobacter_ sp. used was isolated from Aladja River, Aladja, Delta State, in Southern Nigeria. DSMZ heterotrophic nitrobacter medium was used for the isolation of the bacteria. Isolates that are grayish, mucoid, flat, Gram negative, pear shaped and aerobic were selected according to the scheme of [15]. Subcultures were made into slants of DSMZ Nitrobacter agar and stored at 4°C until required for use.

2.1.3 Collection of earthworms (Aporrectoda longa)

The earthworm, _Aporrectoda longa_ commonly found in southern Nigeria was collected from a farm at Ubogo, Delta State, Southern Nigeria. The worms were collected according to the method describe by several authors [16,17].

2.2 Sublethal (Chronic Toxicity) Effects of Petroleum Sludge Pollution on Nitrogen Transformation Activity in the Soil

The OECD TG 216 [9] test method was used for this test. This test was used to detect long-term (chronic) adverse effects of Petroleum sludge to the process of nitrogen transformation activity in the soil. The soil was dried, sieved and amended with 5 g/kg compost and treated with five concentrations (3125 mg/kg, 6250 mg/kg, 12500 mg/kg, 25000 mg/kg, and 50000mg/kg) of Petroleum sludge or left untreated (control). After day 0, 7, 14 and 28, treated and control composite samples were extracted and analyzed for ammonia, nitrate and Nitrobacter sp. counts. The rate of ammonia nitrate formation in treated soil was compared with the rate in the controls and the percent deviation of the treated from control was calculated. Results from the test with multiple concentrations was analyzed using a regression model (ANOVA) and the EC_{50} was calculated. The bioconcentration factor (BCF) of the TPH in the earthworms was also determined. All analyses were done by ASTM Method. Three replicates for both treatments and control were used.

The rate of nitrate formation in treated samples were compared with the rate in the controls, and the percent deviation/Inhibition of the treated from the control was calculated after 28 days using the formula below [18].

\[
\% \text{ inhibition} = (\frac{C_{\text{ref}} - C_{\text{sample}}}{C_{\text{ref}}}) \times 100
\]
Where,

\[C_{\text{ref}} \] is concentration of nitrate formed in control,

\[C_{\text{sample}} \] concentration of nitrate in samples.

2.3 Chronic Toxicity Effects of Petroleum Sludge on the Growth and Survival of the Earthworm, *Apporectoda longa*

Experimental procedure for this test was conducted in accordance with the procedures detailed in [13, 19]. The selected worms were acclimatized for 1-7 days in the soil from the organism's habitat. During this period the worms were fed with cellulose.

The test medium and control were analysed for pH, TPH content, at the start of the experiment and weekly for 28 days. In addition to death, weight loss, behavioural symptoms and pathological symptoms were recorded. Each test and control chamber was checked for dead or affected earthworms and observations recorded weekly for 28 days. The sublethal effects (weight loss) data were used to plot concentration-response curves and calculate the EC\(_{50}\) value. ANOVA was used to test for significant differences between treatment means and the control. The worms were also analysed for bioaccumulation of TPH at the end of the test.

3. RESULTS AND DISCUSSION

3.1 Results

3.1.1 Physicochemical characteristics of the petroleum sludge

The petroleum refinery sludge used for the experiment was acidic with a pH value of 5.81 and had a high TPH content of 340,000 mg/kg made mainly of between 10-40 carbon unit compounds (Fig. 1). The physicochemical and microbial qualities of Nigerian petroleum refinery oily sludge shown in Table 1 indicates the sludge has Polyaromatic hydrocarbon (PAH) content of was 0.075 ± 0.02 mg/kg and high values of 26.04 ± 1.02 mg/kg and 21.65 ± 1.21 mg/kg for nitrate and ammonium respectively. The heterotrophic bacteria and fungi counts were 5.86E + 05 and 4.72E + 05 cfu/g, respectively. Hydrocarbon degrading bacteria and fungi counts were 2.85E + 02 and 2.75E + 02 cfu/g, respectively. Zinc recorded the highest concentration of 100.65 ± 2.30 mg/kg for the metals analyzed.

Table 1. Physicochemical and microbiological properties of Nigerian petroleum refinery oily sludge

Parameter	Mean (± S.E.)
pH	5.81 ± 0.28
Conductivity, us/cm\(^2\)	466.65 ± 25.25
Sulphate, mg/kg	4.83 ± 0.64
Nitrate, mg/kg	26.40 ± 1.02
Phosphate, mg/kg	7.73 ± 0.88
Total Nitrogen, mg/kg	0.12 ± 0.5
Total Petroleum Hydrocarbon, mg/kg	340,000 ± 50,000
Polyaromatic Hydrocarbon, mg/kg	0.075 ± 0.02
Ammonium, mg/kg	21.65 ± 1.21
Copper, mg/kg	5.53 ± 0.20
Chromium, mg/kg	8.68 ± 0.03
Nickel, mg/kg	3.36 ± 0.02
Cadmium, mg/kg	0.32 ± 0.5
Zinc, mg/kg	100.65 ± 2.30
Heterotrophic Bacteria, cfu/g	5.86E + 05
Heterotrophic Fungi, cfu/g	4.72E + 05
Hydrocarbon Degrading Bacteria, cfu/g	2.75E + 05
Hydrocarbon Degrading fungi, cfu/g	2.85E + 02
3.1.2 Chronic effect of petroleum sludge pollution on nitrogen transformation in soil

The chronic toxicity effects of petroleum sludge to nitrogen transformation activities in soils showed that the percentage (%) inhibition of nitrogen transformation in petroleum sludge contaminated soils in relation to the control increased with increasing sludge concentration. It ranged from 18.0% to 79.37% from the lowest concentration of 3125 mg/kg to the highest concentration of 50000 mg/kg respectively (Fig. 2). As stipulated in the test guideline, OECD TG 216 [9], since the difference between the lowest and highest % inhibition is greater than 25%, the sludge has the potential to inhibit nitrogen transformation. Chronic toxicity profile of nitrogen transforming bacteria exposed to petroleum sludge at day 28 recorded an EC\textsubscript{50} of 13761.059 mg/kg (Table 2). This concentration resulted in 50% inhibition of the nitrogen transformation activity of the \textit{Nitrobacter} sp. in the test soil samples.

3.1.3 Chronic toxicity test of petroleum sludge on earthworm (\textit{Apporectoda longa})

The Earthworm (\textit{Apporectoda longa}) was successfully used as a bioindicator to determine the chronic effect of petroleum sludge on terrestrial fauna by exposure to four sludge concentrations (375 mg/kg, 750 mg/kg, 1500 mg/kg, 3000 mg/kg). The growth rate decreased progressively from 9.19 x 105 g/day (375 mg/kg) to 3.55 x 105 g/day (3000 mg/kg) at the end of the test period (Fig. 3). The growth rate of the organisms in the control increased at the end of the test duration when compared to those in the sludge contaminated soils. The average weight increased steadily from 7.58 x 105 g/day to 9.76 x 105 g/day (Fig. 3). The % growth inhibition also increased from 37.91% (375 mg/kg) to 76.01% (3000 mg/kg), while 825.02 mg/kg was obtained as the EC\textsubscript{50} at the end of 28 days (Table 3). This concentration reduced the growth rate of the test earthworms by 50%. In comparison with toxicity rating of chemicals to Earthworms [20], the EC\textsubscript{50} value indicates the sludge as slightly toxic (Table 3). The reduction of growth at higher concentrations showed it reduced growth progressively as the sludge concentration increased and could eventually lead to death. Bio concentration factor (BCF) of TPH in the test Earthworms was also determined. The BCF decreased as the sludge concentration increased; an indication of higher bio-accumulation at higher sludge concentration (Table 4). It decreased from 5.168 (375 mg/kg) to 1.22 (3000 mg/kg). The BCFs obtained were much lower than the EPA stipulated limit of 1000 for persistence of chemicals.

\textbf{Fig. 1.} Overlay of petroleum sludge and a chromatogram of a mixture of even numbered \textit{n}-alkanes between C10 and C40
Fig. 2. Percentage (%) inhibition of nitrogen transformation in petroleum refinery sludge contaminated soils

Table 2. Chronic toxicity profile of nitrogen transforming bacteria exposed to petroleum refinery sludge for 28 days

Days	EC$_{50}$(mg/kg)	Confidence limit	Probit equation	Slope
28	13761.059	11244.102 to 16961.715mg/kg	0.544 + 1.340 xLOG(conc)	5.484

Fig. 3. Growth rate of earthworms exposed to petroleum sludge at day 28
Table 3. Chronic toxicity profile of petroleum sludge on the growth rate of Apporectoda longa

Test sample	Time (days)	EC₅₀, mg/kg	OECD(2003) earthworm toxicity
Petroleum Sludge	7	Cannot be determined not up to 50% deaths	1 Super toxic < 1.0
Petroleum Sludge	14	Cannot be determined not up to 50% deaths	2 Extremely toxic 1.0 – 10
Petroleum Sludge	21	1655	3 Very toxic 10- 100
Petroleum Sludge	28	825.024	4 Slightly toxic 100 -1000
			5 Practically non-toxic >1000

Table 4. Bioconcentration factor of TPH in earthworm exposed to different concentrations of petroleum sludge for 28 days

TPH concentration, mg/kg in soil	TPH concentration in earthworm	BCF
375	1938	5.168
750	2052	2.738
1500	2660	1.773
3000	3651	1.217

3.2 Discussion

The high concentration of TPH analysed in the test sludge (340,000 ±50,000mg/kg) and Zinc concentration (100.00 ±2.30mg/kg) were similar to findings by Prakash et al. [21] who recorded a high sludge concentration of >380,000mg/kg and a high Zinc content of 1321.7 ± 529.9 mg kg^{−1} at variance with the EU guidelines. According to the EU guidelines, the sludge was not allowed to be disposal even in landfills for hazardous waste due to its toxic nature [22]. The hazardous nature of the sludge was hence assessed using sensitive bioindicators in this terrestrial environment. The Nitrobacter sp. is involved in the very important biogeochemical nitrogen cycle, while the earthworm helps to improve the structure and oxygen content of the soil.

3.2.1 Nitrobacter bioassay

The discharge of untreated petroleum refinery sludge into the environment have been shown to have acute and chronic effects on the biotic and abiotic components of the aquatic and terrestrial environments [23-25].

Nitrobacter strains are ubiquitous in nature and have been found in several environments including soil, freshwater and sewage sludge [26,27]. The genus Nitrobacter belongs to a variety of nitrite -oxidizing bacteria which are responsible for the second step of the nitrification process (oxidation of nitrite to nitrate) in the treatment of wastewaters [28-30]. This second step of nitrification is particularly sensitive. Inhibition of this step under uncontrolled conditions may lead to accumulation of nitrite nitrogen which is toxic [31]. Chronic effect of petroleum sludge pollution on nitrogen transformation in soil was determined since microorganisms play an important role in breakdown and transformation of organic matter in fertile soils and any long-term interference with thesebiogeochemical processes could potentially interfere with nutrient cycling and this could affect soil fertility [9]. Percentage (%) inhibition of nitrate formation ranged from 18.0% to 79.37% from the lowest concentration (3750 mg/kg) to the highest concentration (50000mg/kg) respectively. The observed increase in inhibition of transformed nitrogen as the concentration of petroleum sludge increased could be due to the increase of some physicochemical properties of the sludge such as PAHs, TPH and metals [32,33]. High TPH concentrations have also been shown to be lethal to microbial activity, thus limiting their biodegradation potential [34]. Similar findings by Suschka et al. [35], showed that the presence of PAHs (BTEX) which is a component of TPH produced a negative effect on the efficiency of the nitrification process. It could also be due to the toxic effect of accumulated nitrite nitrogen as a result of the inhibition of the nitrification process as the sludge concentration increased [30]. The EC50 obtained (13761.059
mg/kg) is higher than the DPR Intervention limit (5000mg/kg) for hydrocarbon contaminated soils.

3.2.2 Earthworm bioassay

Earthworms are associated with a healthy soil and their absence is an indication of poor soil health [36-38]. Earthworms have been used in environmental risk assessment as good indicator organisms for toxicity [39-42], as they ingest large quantities of soil and are in full contact with the substrate they consume. In addition, they constitute up to 92% of the invertebrate biomass of soils and participate in many food chains, acting as a food source for a variety of organisms [43-44]. The chronic effect studies of petroleum sludge on earthworms showed that the sludge led to a reduction of growth progressively as the concentration of the sludge increased. Growth rate was inhibited from 37.91% (375 mg/kg) to 76.01% (3000 mg/kg) at the end of 28 days. Similar findings were recorded by [25], who observed that body weight of earthworms reduced to 48.91% on exposure to 1.5% TPH. The mechanism of toxicity of hydrocarbons to earthworms was observed to be based on the ability of hydrocarbons to bind at the polar regions in biogeneous membranes and to disorganize them [45]. Furthermore, being lipophylic, they act as endocrine disruptors and disrupt processes related to the organism’s growth, immune system function, sexual development, reproduction and malformation [13].

The values obtained as bioconcentration factor (BCF) for TPH concentration in the earthworms ranged from 0.122 to 0.517, from the lowest to highest sludge concentration respectively. This indicates that the sludge would be bioaccumulated into the tissues of terrestrial organisms as the sludge concentration increases. Similar observations were recorded by [46], who observed an inverse relationship between BCF and exposure concentrations of the test chemical and attributed this to the lipophilic nature of the sludge.

4. CONCLUSION

Results obtained from the chronic effect studies for both the bioassays on nitrogen transformation activity of the bacteria *Nitrobacter* sp. and the earthworm indicated that the petroleum refinery sludge pose serious risks to the biota of the terrestrial environment as well as the biogeochemical cycles that ensure a sustainable ecosystem at high concentrations.

Due to its effects on terrestrial biota as observed in the bioindicators studied, biodegradation/treatment of petroleum refinery sludge needs to be done before its disposal. This could be done *ex situ* in bioreactors, where it could be used to generate biogas that could be employed to increase the energy mix between fossil fuel and sustainable source of energy such as biogas. Alternatively, it could be treated by landfarming, but the sludge should be introduced at concentrations below the EC50 so as to protect the fragile and sensitive biota of the terrestrial environment.

DISCLAIMER

The products used for this research are commonly and predominantly use products in our area of research and country. There is absolutely no conflict of interest between the authors and producers of the products because we do not intend to use these products as an avenue for any litigation but for the advancement of knowledge. Also, the research was not funded by the producing company rather it was funded by personal efforts of the authors.

ACKNOWLEDGEMENT

The lead author wish to acknowledge Thermo steel Analytical laboratory, Warri, Delta State for availing me with their facilities for analysis. Also the laboratory staff of the Department of Environmental Management and Toxicology, Federal University of Petroleum Resources, Effurun, thank you.

COMPETING INTERESTS

Authors have declared that no competing interests exist.

REFERENCES

1. Ururahy AFP, Marins MDM, Vital RL, Therezinha 1, Pereira N Jr. Effect of Aeration on biodegradation of petroleum wastes. Reviews in Microbiology. 1998;29: 4.
2. Prince M, Sambasivam Y. Bioremediation of petroleum wastes from the refining of lubricant oils. Environmental Progress. 1993;12:5-11.
3. Prosp T, Iochmiller R, Qualls CW Jr, Mcbee K. *In situ* (mesocosm) assessment of immunotoxicity risks to small mammals inhabiting petrochemical waste sites. Chemosphere. 1999;38:1049-1067.

4. Atlas RM, Bartha R. Hydrocarbon biodegradation and oil pollution remediation, in K.C. Marshall (Ed). Advances in Microbial Ecology. New York: Plenum Press. 1993;12:287–338.

5. Knaebel DB, Federle TF, McAvoy DC, Vestal JR. The effect of mineral and organic soil constituents on the microbial mineralization of organic compounds in a natural soil. Applied and Environmental Microbiology. 1994;60:4500-4508.

6. Alexander M. Aging, bioavailability and overestimation of risk from environmental pollutants. Env. Sci & Technol. 2000;34:4259-4265.

7. Doherty FG. A review of the microtox R toxicity test system for assessing the toxicity of sediments and soils. Water Quality ResourcesJournal, Canada. 1995; 36(3):475–518.

8. Ronnapaeg K, Liš W, Ahlf W. Microbial bioassays to assess the toxicity of solid-associated contaminants. Ecotoxicology and Environmental Safety. 1995;31:99–103.

9. Organisation for Economic Co-operation and Development (OECD). Guidelines for testing of chemicals TG 216. C.21.Soil Microorganisms: Test Nitrogen Transformation. 2000;10.

10. United States Environmental Protection Agency (USEPA). United States Environmental Protection Agency, Understanding Oil Spills and Oil Spill; 2004. Available:response.http://www.fundyforum.com/profile archives/profile 3.html.

11. Beeby A. What do sentinel stand for? Environmental Pollution. Beek, B. Bioaccumulation in aquatic systems. In Bioaccumulation in Aquatic Systems: Contributions to the Assessment, R. Nagel and R. Loskin (Eds), Weinheim, Germany. 2001;112:285–298.

12. Organisation for Economic Co-operation and Development (OECD). Earthworm, acute toxicity test. OECD Guideline for Testing Chemicals. OECD, Paris. 1984;207:1–9.

13. Sandoval MC, Veiga M, Hinton J, Klein B. Review of biological indicators for metal mining effluents: A proposed protocol using earthworms. Proceeding of the 25th Annual British Columbia Reclamation Symposium. 2001;67-79.

14. Culy MD, Berry EC. Toxicity of soil-applied granular insecticides to earthworm populations in cornfields. Down to Earth. 1995;50:20-25.

15. Colwell RR, Zambruski MS. Methods of Aquatic Microbiology. University Park Press, Baltimore. 1972;461.

16. Terhivuo J, Pankakoski E, Hyvarinen H, Koivistio. Lead uptake by ecologically dissimilar earthworms (*Lumbricidae*) species near a lead smelter in southern Finland. Environmental Pollution. 1994;85:87-96.

17. Spiegel H. Trace elements accumulation in selected bioindicators exposed to emission along the industrial facilities of Danube, lowland. Turk. J. Chem. 2002;26:815-823.

18. Grunditz C, Dalhammar G. Development of Nitrification inhibition assays using pure cultures of Nitrosomonas and Nitrobacter. Water Resources. 2001;35:433–440.

19. Organisation for Economic Co-operation and Development (OECD). Guidelines for testing of chemicals TG 222. Earthworm reproduction test. 2004;10.

20. Organisation for Economic Co-operation and Development OECD. Environment, HEALTH and safety publications series on pesticides persistent, bioaccumulative and toxic pesticides in OECD member countries results of survey on data requirements and risk assessment approaches. 2003;15:1–67.

21. Prakash Ved, Sarika Saxera, Ambika Sharma, Sunil Kwar Singh. Treatment of oily sludge contaminated by composting. Journal of Bioremediation and Biodegradation. 2015;6:28. DOI: 10.4172/2155-6199.1000284

22. Kriipsalu M, Marques M, Maastik A. Characterization of oily sludge from a wastewater treatment plant flotation-flotation unit in a petroleum refinery and its treatment implications. Journal of Material Cycles and Waste Management. 2008;10(1):79-86.

23. Wang W, Reed P. Nitrobacler bioassay for aquatic toxicity. Toxicity Screening Procedures Using Bacterial Systems. 1984;309-325.

24. Ma X, Ortolano L. Environmental regulation in China, Roman and littlefied. Publishers Inc. 2002;209.
25. Tang J, Lu X, Sun Q, Zhu W (2012). Aging effect of Petroleum Hydrocarbon in soil under different Attenuation conditions. Agric. Ecosysts. Environ. 2002;149:109-117.

26. Chafrain M, Rizet M, Faup G. Isolation of nitrobacter from sewage and drinking water. Water Resources. 1983;17:831-832.

27. Bock E, Koops HP, Harms H. Nitrifying bacteria. HG Schlegel, B Bowien (Eds). Autotrophic Bacteria, Science Tech., Publishers, Madison, WI. 1989;80-90.

28. Daims H, Nielsen JL, Nielsen PH, Schleifer KH, Wagner M. In situ characterisation of Nitrospiralike nitrite-oxidizing bacteria active in wastewater treatment plants. Applied and Environmental Microbiology. 2001;67:5273–5284.

29. Dionisi HM, Layton AC, Robinson KG, Brown JR, Gregory IR, Parker JJ, Sayler GJ. Quantification of Nitrosomonas oligotropha and Nitrosospira spp. Using competitive polymerase chain reaction in bench-scale wastewater treatment reactors operating at different solids retention times water environment research. Using Tools from Molecular Biology. 2002;74(5); 462-469.

30. Maron PA, Cœur C, Pink C, Clays-Josserand A, Lensi R, Richaume A, Potier P. Use of polyclonal antibodies to detect and quantify the NOR protein of nitrite oxidizers in complex environments. Journal of Microbioliological Methods. 2003;53:87–95.

31. Dokaniakis SN, Kornaros M, Lyberatos G. On the effect of xenobiotic on Bacterial Nitrite Oxidation. Proceedings of the 9th International Conference on Environmental science and technology. Rhodes Island, Greece; 2005.

32. Wilde EW, Soracco RJ, Mayack LA, Shealy RL, Broadwell TL, Steffen RF. Comparison of chloride and chlorine dioxide toxicity to fathead minnows and Bluegill. Water Resources. 1983;17(10):1327–1331.

33. Opokwasili GC, Odokuma LO. Response of Nitrobacter to oilfield dispersants and domestic detergents. Tropical Freshwater Biology. 1997;6:65-74.

34. Admon S, Green M, Avnimelech Y. Biodegradation kinetics of hydrocarbons in soil during land treatment of oily sludge. Bioremed. J. 2001;5:193–209.

35. Suschka J, Mrowiec B, Kuszmider G. Response of nitrobacter to toxicity of oil field dispersants and domestic detergents. Tropical Freshwater Biology. 1996;6:65-74.

36. Doube BM, Schmidt O. Can the abundance or activity of soil macrofauna be used to indicate the biological health of soils? In Biological Indicators of Soil Health. Eds. C Pankhurst, B Doube and V Gupta. CAB International, New York. 1997;265–295.

37. Edwards VM, Shipitalo MJ. Consequences of Earthworms in agricultural soils; Aggregation and Porosity. In Earthworm Ecology (Eds. CA Edwards). St. Lucie Press Boca Raton, Florida. 1998;147-161.

38. Parmelee RW, Crossley DA. Earthworm production and role in the nitrogen cycle of a no-tillage agroecosystem on the Georgia Piedmont. Pedobiologia. Parton WJ, Rasmussen, P.E. 1988;32:353–361.

39. Callahan CA, Menzie CA, Burmaster DE, Willborn DC, Ernst T. On-site methods for assessing chemical impact on the soil environment using earthworms: A case study at the Baird &and McGuire Superfund Site, Holbrook, Massachusetts. Environmental Toxicology and Chemistry. 1991;10(6);817-826.

40. Dorn PB, Salanitro JP. Temporal ecological assessment of oil contaminated soils before and after bioremediation. Chemosphere. 2000;40:419–426.

41. Eijsackers H. Earthworms in environmental research: Still a promising tool. In Earthworm Ecology. Ed. C A Edwards. St. Lucie Press, New York. 1998;295–323.

42. Reinecke AJ, Reinecke SA. The use of earthworms in ecotoxicological evaluation and risk assessment: New approaches. In Earthworm Ecology. Ed. CA Edwards.St. Lucie Press, New York. 1998;273–293.

43. Ireland MP. In: Earthworm Ecology: From Darwin to Verniculture (Satchell, J.E. Ed.). New York, Chapman and Hall. 1983;247-265.

44. Kraß JK, Mathes B, Breckling O, Lönker V, Schulz-Berend. Scale-up biologischer Reinigungsverfahren- Projekt-Abschlußbericht bmb+f; Bremen; 2000.

45. McGeer, JC, Brix KV, Skeaff JM, Deforest DK, Brigham Sl. Inverse relationship between bioconcentration factor and exposure concentration for metals: Implication for hazard assessment of metals in the aquatic environment.
Environmental Toxicology and Chemistry. 2003;22:1017-1037.

46. Atuanyen E, Tudararo-Aherobo L. Ecotoxicological effects of discharge of Nigerian petroleum refinery oily sludge on biological sentinels. African Journal of Environmental Science and Technology. 2015;9(2):95-103.

© 2020 Laurella and Ernest; This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Peer-review history:
The peer review history for this paper can be accessed here:
http://www.sdiarticle4.com/review-history/56623