Studies on Bioactive Actinomycetes in a Niche Biotope, Nambul River in Manipur, India

Debananda S. Ningthoujam*, Suchitra Sanasam and Salam Nimaichand

Microbial Biotechnology Biotechnology Laboratory (MBRL), Department of Biochemistry, Manipur University, Canchipur, Imphal 795003, India

Abstract

As part of our ongoing studies on actinomycete diversity in Manipur, an underexplored zone falling in the Indo-Burma biodiversity hotspot, this paper reports bioactivity screening and characterization of bioactive actinomycetes from Nambul River. Bioprospecting studies on actinobacteria have been largely focused on terrestrial and, more recently, on marine ecosystems but freshwater habitats have been largely neglected and studies on freshwater actinomycetes are very scanty in India. Hence we investigated the actinomycete diversity in one of the freshwater rivers of Manipur, Nambul River in Manipur, India. A total of 156 actinomycetes were isolated from three samples of Nambul River. Based on the results of primary screening, 23 isolates were selected for secondary screening. Nine strains showed significant antibacterial or broad spectrum antifungal activities in the secondary screening. Phylogenetic analyses indicated that a majority of them were Streptomyces species though some rare actinobacteria were also recovered. Seven strains were identified as Streptomyces spp. while one strain each was identified as Nocardia sp. and Micromonospora sp. Three strains showed promising antifungal activities against human and plant pathogens. This study highlights the potential for discovering bioactive actinomycetes in underexplored niche biotopes such as river sediments.

Keywords: Nambul river; Bioactive; Antifungal; Novel species; Streptomyces

Introduction

Actinomycetes are a group of physiologically versatile, high GC, gram-positive, filamentous bacteria found in most environments including terrestrial and aquatic habitats [1]. Streptomyces has been reported as the dominant genus in freshwater habitats whereas Micromonospora and related genera are predominant in freshwater and marine sediments [2].

There is increasing realization of the potential for wetlands as sources of actinomycetes that produce useful bioactive compounds. Cross [3] reported freshwater habitats as promising sources of bioactive actinomycetes. Okami [4] reported that actinomycetes of freshwater origin produce novel bioactive substances. There is an urgent need for screening of novel bioactive compounds from underexplored biotopes such as freshwater habitats. This is also dictated by the rise of emerging diseases and antibiotic-resistant human pathogenic bacteria such as multidrug resistant (MDR) strains of M. tuberculosis, vancomycin resistant enterococci (VRE), methicillin resistant Staphylococcus aureus (MRSA), Pseudomonas aeruginosa and Candida albicans [5] etc. The focus is increasing towards novel biotopes, niche ecosystems and extreme environments for isolating novel bioactive strains [6] especially actinobacteria which produce nearly 80% of all known antibiotics [7]. Additionally the microbial profiles also serve as an indicator of freshwater ecological health [8].

Materials and Methods

Sampling and pretreatment

Sampling was done from three different sites of the Nambul River, which is one of the major rivers in Manipur (62.7 km in length), originating from Kangchup Hill range in the western side at an elevation of 1830 m above mean sea level. The river flows through the thickly populated area of the city and ultimately discharges into the Loktak Lake. The potentially polluted stretch of the river is within the Imphal Municipality area for a length of about 1.45 km and its tributary Naga Nala for a length of about 1 km. Soils and sediment samples were collected from the Nambul river bank, river bed and the rhizospheric sediments of river water vegetation in polyethylene bags, closed tightly, and stored in a refrigerator before processing.

Pretreatment of the soil samples were carried out by air-drying them at room temperature for about four weeks [9,10].

Enrichment and isolation

To further enrich the actinomycete population, 1.0 g air-dried sediment was mixed with 0.1 g of CaCO₃ and kept at ambient temperature for a week to enrich actinomycetes which usually prefer alkaline conditions and also to reduce the contamination of molds and fungi [11]. 1.0 g air-dried sediment was suspended in 99.0 ml of sterile distilled water and incubated in an orbital shaker at room temperature at 150 rpm for 30 minutes. The soil suspension was then serially diluted and 0.1 ml of 10⁻¹ to 10⁻⁷ dilutions were spread plated in duplicates on Starch Casein Nitrate Agar (SCNA, pH 7.2) plates [12] supplemented with 50 µg/mL³ each of nystatin and cycloheximide [13] and finally incubated at 28-30°C for up to 4 weeks.

Selected actinomycete colonies were further purified on SCNA plates and pure isolates were maintained on modified Bennet’s agar.
slants at 4°C and as spore suspensions on 20% (v/v) glycerol at -20°C for further studies.

Antimicrobial assay

Test organisms: The test bacteria used were the Gram positive organisms *Staphylococcus aureus* (MTCC 96), *Micrococcus luteus* (MTCC 106), and the Gram negative bacteria *Escherichia coli* (MTCC 739) and *Pseudomonas species* (DN1); and the test fungi used were *Candida albicans* (MTCC 227) and *Aspergillus niger* (MTCC 1344). All the reference strains were procured from Microbial Type Culture Collection (MTCC), Institute of Microbial Technology (IMTECH), Chandigarh, India except for DN1 [16] which is a strain isolated in our laboratory.

Initial antimicrobial assay of the putative actinomycete isolates was carried out using the cross-streak technique [17,18]. Actinomycete isolates which showed inhibition of >50% against the test organisms in the primary screening were further subjected to secondary screening by Kirby Bauer method [19] against the above test organisms. The actinomycete strains showing positive antimicrobial activities were subjected to phenotypic and genotypic characterization.

Biocontrol assay of the bioactive strains

Fungal pathogens were procured from MTCC, Chandigarh except for LSMU1 (procured from Life Science Department, Manipur University). The bioactive strains were tested for biocontrol activity by dual culture method [20] against the rice pathogens, *Fusarium oxysporum* MTCC 287, *Pyricularia oryzae* MTCC 1477, *Curvularia oryzae* MTCC 2605 and *Bipolaris oryzae* LSMU1.

Table 1: Secondary Screening profile of the selected isolates exhibiting good antimicrobial activity in primary screening.

Test isolates	Test organisms	Gram positive bacteria	Gram negative bacteria	Yeast/fungi				
	MTCC 96	MTCC 106	MTCC 121	MTCC 739	DN1*	MTCC 227	MTCC 1344	
	Inhibition zone (in mm diameter)	Erythromycin 16	Penicillin-G 18	Amikacin 18	Streptomycin 18	Rifampicin 12	Amphotericin-B 16	Nystatin 13
NRB1-1	-	13±0.29	16±0.76	-	-	-	-	-
NRB1-9	-	-	15±0.29	-	-	-	11±0.58	
NRB1-19	17±0.29	18±0.76	19±1.0	-	-	15±0.76		
NRB1-20	-	15±0.58	-	-	-	-	-	-
NRB1-25	-	16±1.0	-	-	-	-	-	-
NRB1-29	-	15±0.58	13±1.5	-	-	-	-	-
NRB1-33	-	13±0.29	16±0.58	-	-	-	-	-
NRB1-44	16±1.0	-	18±0.76	-	-	-	17±1.0	
NRP1-5	-	13±0.58	14±0.5	11±0.76	-	-	-	-
NRP1-13	-	18±1.0	-	-	-	-	20±0.76	
NRP1-14	-	-	-	-	20±1.0	-	21±0.58	
NRP1-18	21±0.58	16±0.5	15±0.76	-	-	-	17±0.29	
NRP1-20	-	-	15±1.0	-	-	-	-	-
NRP1-26	22±0.58	15±0.29	16±0.5	18±1.0	12±0.76	18±0.76		
NRP1-28	-	16±0.29	-	-	-	-	-	-
NRP1-29	-	15±0.76	-	-	-	-	-	-
NRP1-35	-	18±0.5	16±1.0	-	-	-	18±0.76	
NRP1-40	-	13±1.0	-	-	-	-	-	-
NRS1-1	-	12±1.5	15±0.29	-	-	-	-	-
NRS1-11b	18±0.58	20±0.29	17±1.0	18±0.76	-	-	-	-
NRS1-18	13±0.58	15±0.58	17±0.29	-	-	-	-	-
NRS1-30	-	14±1.0	-	-	-	-	-	-
NRS1-39	-	16±0.58	15±0.29	-	-	-	-	-

Phenotypic and genotypic characterization

The various morphological, physiological and biochemical characterization tests were carried out using the standard procedures [21-24]. The micromorphologies of the spore chains and the spore surfaces of 14 days old culture grown on *Streptomyces* agar were determined using Carl Zeiss microscope (AxioScope A.1, Germany, magnification 600X). The cultural properties of the strains were evaluated according to the guidelines of the International Streptomyces Project (ISP) as described by Shirlin & Gottlieb [24].

16S rDNA amplification and sequencing were carried out for the bioactive isolates (having an inhibition zone of more than 17 mm diameter against the test organisms) using the primers (8F, 5’-AGAGTTTGATCCTGGCTCAG-3’; 357F, 5’-CTCCTACGGGAGCGACGCA-3’; 1100R, 5’-GGTTTGGCGCTCGTTG-3’; 1492R, 5’-GGTTACCTTGTAGACTTGC-3’). The 16S rDNA sequences were submitted to EzTaxon server version 2.1 [25], which contain manually curated databases of type strains of prokaryotes, for sequence analysis. Related strains were selected for alignment by CLUSTAL W program and phylogenetic analyses were done according to the neighbour-joining method [26] using the MEGA version 4.1 [27,28]. To determine the support of each clade, bootstrap analysis was performed with 1000 replications [29].

Results and Discussion

Isolation of actinomycetes

A total of 156 actinomycetes were isolated from the Nambul River, of which 47 (NRB1-1 to NRB1-47) were from the bank, 69 (NRS1-1 to NRS1-69) from the river bed, and 40 (NRP1-1 to NRP1-40) from the aquatic rhizospheric samples.
Antimicrobial assay

Based on the results of primary screening, 23 strains (11.1%) showed an inhibition zone of more than 50%, against one or more of the test pathogens. These isolates were then shortlisted for secondary screening (Table 1). Of 23 strains subjected to secondary screening, 9 (39.1%) isolates (NRB1-19, NRB1-44, NRP1-13, NRP1-14, NRP1-18, NRP1-26, NRP1-35, NRS1-11b and NRS1-18) showed good antimicrobial activities with inhibition zone diameters of 17 mm or more against one or more of the test organisms. Among these bioactive isolates, 2 (NRS1-26, NRP1-35, NRS1-11b and NRS1-18) showed good antimicrobial activities with inhibition zone diameters of 17 mm or more against one or more of the test organisms.

Table 1: Biochemical and physiological tests of the bioactive actinomycete isolates.

Table 2: Plant growth promoting characteristics of the antagonistic actinomycete isolates.

Table 3: Biochemical and physiological tests of the bioactive actinomycete isolates.

from sediments of Krishna River in Andhra Pradesh, India, of which 16 (53.3%) exhibited excellent antagonistic properties in cross-streak method. On detailed submerged fermentation studies, it was found that 12 isolates (40.0%) had antibacterial and 9 (30%) had antifungal activities. Five (16.6%) isolates showed both antibacterial and antifungal activities. Singh et al. [31] isolated 37 actinomycetes from phoomdi (floating putrefying vegetation) in Loktak Lake in Manipur, India. Twentyone (56.7%) isolates showed antifungal activities against test microorganisms in primary screening. Of these, 12 (32.4%) were found to have broad spectrum (antibacterial and antifungal) activities.

Biocontrol assay of the bioactive strains

Three of the bioactive isolates, i.e. NRP1-14, NRP1-18 and NRP1-26, showed antagonistic activity against one or more rice fungal pathogens [32]. These strains also exhibited phosphate solubilizing, siderophore, ammonia production and chitinase activities, showing their potential...
Table 4: Growth morphology on different ISP and other actinomycete specific media.

Media	Isolate	NRB1-19	NRB1-44	NRP1-13	NRP1-14	NRP1-18	NRP1-26	NRP1-35	NRS1-11b	NRS1-18	
ISP1	AM	Cream	Grey	Magenta	Off White	Cream	Cream	Grey	Sandal wood	Reddish	
	SM	Cream	Light Grey	Magenta	Cream	Cream	Grey	Cream	Reddish		
ISP2	AM	Pale cream	Cream	Magenta	Cream	Pale Cream	Pale Cream	Grey	Sandal wood	Reddish brown	
	SM	Cream	Light Yellow	Magenta	Light Yellow	Cream	Cream	Brown	Light Yellow	Reddish Brown	
ISP3	AM	Cream	Cream	P.G.	Pale Cream	Grey	Grey	Grey	Cream	Reddish Brown	
	SM	Cream	Brown	P.G.	Cream	Grey	Grey	Brown	Cream	Reddish Brown	
ISP4	AM	Cream	Grey	P.G.	Off White	Grey	Grey	Grey	Sandalwood	P.G.	
	SM	Cream	Light Grey	P.G.	Light Grey	Grey	Grey	Grey	Brown	Cream	P.G.
ISP5	AM	White	Off White	Light range	Off White	White	White	Grey	Cream	P.G.	
	SM	White	Light Orange	White	Cream	Cream	Grey	Cream	P.G.		
ISP6	AM	White	Pale Cream	Magenta	Cream	Pale Cream	Pale Cream	Grey	Cream	Reddish Brown	
	SM	Pale Cream	Cream	Brown	Pale Cream	Pale Cream	Dark Brown	Cream	Reddish Brown		
ISP7	AM	Off White	Cream	P.G.	Light Grey	Grey	Grey	Grey	Sandal wood	P.G.	
	SM	Off White	Light Grey	P.G.	Grey	Grey	Grey	Light grey	Cream	P.G.	
SCNA	AM	Off White	Grey	Light Orange	Grey	Grey	Grey	Grey	Off White	Orange	
	SM	Grey	Brown	Orange	White	Yellow	Yellow	Brown	Yellow	Brown	
SA	AM	Cream	Cream	Magenta	Pale Cream	Cream	Cream	Grey	Sandal Wood	Reddish Brown	
	SM	Cream	Light Brown	Cream	Light Brown	Light Yellow	Black	Cream	Brown		
TSA	AM	Pale Cream	Off White	Cream	P.G.						
	SM	Pale Cream	Light Grey	Pale Cream	P.G.						

ISP- International Streptomyces Project, SA – Streptomyces Agar, TSA- Tryptone Soya Agar
AM- Aerial mycelium, SM- Substrate mycelium
P.G. – Poor Growth

Figure 1: Morphological feature of the bioactive Nambul actinomycetes (NRB1-19, NRB1-44, NRP1-13, NRP1-14, NRP1-18, NRP1-26, NRP1-35, NRS1-11b, NRS1-18) and their micromorphologies.
for plant growth promotion and biocontrol of pathogens (Table 2). These strains also had IAA producing abilities, with the exception of NRP1-14.

Phenotypic and genotypic characterization

Phenotypic characteristics of the bioactive strains and their growth morphologies on different ISP and other actinomycete specific media are shown in (Tables 3, 4.) The gross morphologies of the bioactive strains grown on SCNA media and their micromorphologies are shown in Figure 1.

NRP1-13 grew at 25-42°C, pH 5.2-10, and tolerated up to 7% NaCl while NRS1-18 grew at 25-37°C, pH 7-10 and could tolerate < 2% NaCl. NRB1-19 and NRS1-11B grew well at 15-37°C, pH 5.2-10 and tolerated up to 7% NaCl. Four isolates (NRB1-44, NRP1-18, NRP1-26 and NRP1-35) grew at 25-42°C, pH 5.2-10 (though NRP1-35 grew poorly at pH 10) and tolerated 2-7% NaCl (NRP1-35 could grow even at 10% NaCl). NRP1-14 grew well at 15-42°C, pH 5.2-10 and tolerated 2-10% NaCl. Most isolates were positive for casein as well as starch hydrolysis, except for NRP1-35, which was negative for casein hydrolysis, and NRP1-14, which was negative for both casein and starch hydrolysis.

Results of phylogenetic analyses (Figure 2) of the bioactive actinomycetes revealed that *Streptomyces* was the predominant actinomycete genus among the Nambul river strains, though *Micromonospora* and *Nocardia* were also recovered. Seven strains were identified as *Streptomyces* species. NRB1-19 was most closely related to *Streptomyces parvus* (similarity index 100%), NRB1-44 to *Streptomyces thinghirensis* (similarity index 100%), NRP1-14 to *Streptomyces mutabilis* (similarity index 99.805 %), NRP1-18 to *Streptomyces subrutilis* (similarity index 100%), NRP1-26 to *Streptomyces enissocaesilis* (similarity index 99.728%), NRP1-35 to *Streptomyces drozdowiczii* (similarity index 99.428%) and NRS1-11B *Streptomyces fragilis* (similarity index 100%). NRP1-13 was found to be most closely related to *Nocardia asiatica* (similarity index 99.780%) and NRS1-18 to *Micromonospora chalcea* (similarity index 99.659%).

Rifaat [33] reported the predominance of *Streptomyces* in water sample and that of *Micromonospora* in sediments of the Nile.
River. These *Streptomyces* strains were reported to have significant antimycotic activity. Elliah et al. [30] observed that *Streptomyces* strains, from Krishna river sediments in India, had significant antibacterial and antifungal activities. Our group had earlier showed potential for obtaining bioactive actinomycetetes from niche habitats in Manipur including Nambul River [34]. The present study reemphasizes the promise of Nambul as source of antimicrobial actinomycetes. Although, freshwater habitats have been long ignored for actinomycete exploration, several recent reports corroborate the importance of such ecosystems for the search of antibiotic producing actinomycetes. A *Streptomyces* sp. AZ-NIOFD1, with broad-spectrum antimicrobial activity, was isolated from water sample of the Nile River in Egypt by Atta et al. [35]. Cwala et al. [36] reported *Actinopolyspora* sp. TR008, from Tyume River in South Africa which was active against both Gram positive and Gram negative bacteria. Sibanda et al. [37] recently stressed the significance of freshwater habitats as source of bioactive actinomycetes. They obtained actinomycete species belonging to *Sacharopolyspora* and *Actinosynemma* from Tyume River, South Africa. Crude extracts of these strains were found to exhibit potent antibacterial activity against both Gram positive and Gram negative bacteria.

Our preliminary findings showed promise of obtaining bioactive (antibacterial and antifungal) actinomycetes in an underexplored habitat, Nambul River in Manipur, India. Further studies on actinomycete population in the plethora of wetlands in Manipur-lakes, rivers, ponds, and marshes etc.- hold promise for obtaining novel actinomycete species belonging to *Sacharopolyspora* and *Actinosynemma* from Tyume River, South Africa. From the above results, it is evident that freshwater habitats can be a potential source for obtaining bioactive actinomycetes. The present work may also serve as a guide for the isolation of unique bioactive actinomycetes from aquatic environments of the Eastern Cape Province of South Africa.

Acknowledgements

The authors acknowledge the kind help of Dr. S. Shrivaji, Scientist (Deputy Director), CCMB, Hyderabad and Dr. S. Mayilraj, Scientist, MTCC, IMTECH, Chandigarh for providing the DNA sequencing facility.

References

1. Sticzczysz E, Rouault JW, Peterson EA (1969) Studies on Actinomycetes from Soils of Baffin Island. Arctic 22: 130-139.
2. Terkina IA, Parfenova VV, Ahr TS (2006) Antagonistic Activity of Actinomycetes from Lake Baikal. Appl Biochem Microbiol 42: 173-176.
3. Cross T (1981) Aquatic actinomycetes: a critical account of the occurrence, growth and role of actinomycetes in aquatic habitats. J Appl Bacteriol 50: 397-423.
4. Okami Y (1986) Marine microorganisms as a source of bioactive agents. Microbial Ecol 12: 65-78.
5. Quadri LEN (2007) Drug Discovery Process of the 21st Century. Infectious Disorders - Drug Targets 7: 230-237.
6. Goodfellow M, Fiedler H-P (2010) A guide to successful bioprospecting informed by actinobacterial systematics. Antonnie van Leeuwenhock J Microbial Biochem Technol 5(2): 217-221.
7. Rowbotham TJ, Cross T (1977) Ecology of Rhodococcus coprophilus and associated actinomycetes in freshwater and agricultural habitats. J Gen Microbiol 100: 231-240.
8. Williams ST, Shameemullah M, Watson ET, Mayfield CI (1972) Studies on the ecology of actinomycetes in soil VI. The influence of moisture tension on growth and survival. Soil Biology and Biochem 4: 215-225.
9. Saadoun I, Al-momani M, Malikawi H, Mohammad MJ (1999) Isolation, identification and analysis of antibacterial activity of soil streptomycetes isolates from North Jordan. Microbios 100: 41-46.
10. El-Nakeeb MA, Lechevalier HA (1963) Selective isolation of aerobic actinomycetes. Appl Microbiol 11: 75-77.
11. Kuster E, Williams ST (1964) Selection of media for isolation of streptomycetes. Nature 202: 928-929.
12. Williams ST, Davies FL (1965) Use of antibiotics for selective isolation and enumeration of actinomycetes in soil. J Gen Microbiol 38: 251-261.
13. Jones KL (1949) Fresh isolates of actinomycetes in which the presence of sporogenous aerial mycelia is a fluctuating characteristic. J Bacteriol 57: 141-145.
14. Wellington EMH, Williams ST (1978) Preservation of actinomycete inoculum in frozen glycerol. Microbios Letters 6: 151-157.
15. Ningthoujam DS, Shovaran N (2008) Isolation and Characterization of a *Pseudomonas aeruginosa* Strain DN1 degrading p-Nitrophenol Research Journal of Microbiology 3: 345-351.
16. Osay K, Tamer AU, Azeri C (2004) Antibacterial activity of some actinomycetes isolated from farming soils of Turkey. Afr J Biotechnol 39: 441-446.
17. Waksman SA (1961) The Actinomycetes: Classification, Identification and Description of Genera and Species. Baltimore: The Williams and Wilkins Company 2: 61-292.
18. Bauer AW, Kirby WM, Sherris JC, Turk M (1966) Antibiotic susceptibility testing by standard single disk method. Am J Clin Pathol 45: 493-496.
19. Hamdali H, Hafidi M, Viroille MJ, Ouhdouch Y (2008) Rock phosphate solubilizing Actinomycetes: screening for plant growth-promoting activities. World J Microbiol Biotechnol 24: 2565-2575.
20. Cappuccino JG, Sherman ML (2005) Microbiology: A Laboratory Manual, Pearson Education (Singapore), Indian Branch. New Delhi.
21. Gunasekaran P (2000) Laboratory Manual in Microbiology. New Age International, New Delhi.
22. MTCC, Actinomycetes-Lab Manual, IMTECH, Chandigarh 1998.
23. Atta HM, Dabour SM, Desoukey SG (2009) Sparsomycin Antibiotic Production by Streptomycetes Sp-NIOFD1: Taxonomy, Fermentation, Purification and Biological Activities. American-Eurasian J. Agri. &Environ. Sci 5 (3): 368-377.