On the Approximability of Geometric and Geographic Generalization and the Min-Max Bin Covering Problem

Wenliang Du* David Eppstein† Michael T. Goodrich† George S. Lueker†

Abstract

We study the problem of abstracting a table of data about individuals so that no selection query can identify fewer than \(k \) individuals. As is common in existing work on this \(k \)-anonymization problem, the means we investigate to perform this anonymization is to generalize values of quasi-identifying attributes into equivalence classes. Since such data tables are intended for use in data mining, we consider the natural optimization criterion of minimizing the maximum size of any equivalence class, subject to the constraint that each is of size at least \(k \). We show that it is impossible to achieve arbitrarily good polynomial-time approximations for a number of natural variations of the generalization technique, unless \(P = NP \), even when the table has only a single quasi-identifying attribute that represents a geographic or unordered attribute:

- Zip-codes: nodes of a planar graph generalized into connected subgraphs
- GPS coordinates: points in \(\mathbb{R}^2 \) generalized into non-overlapping rectangles
- Unordered data: text labels that can be grouped arbitrarily.

These hard single-attribute instances of generalization problems contrast with the previously known NP-hard instances, which require the number of attributes to be proportional to the number of individual records (the rows of the table). In addition to impossibility results, we provide approximation algorithms for these difficult single-attribute generalization problems, which, of course, apply to multiple-attribute instances with one that is quasi-identifying. We show theoretically and experimentally that our approximation algorithms can come reasonably close to optimal solutions. Incidentally, the generalization problem for unordered data can be viewed as a novel type of bin packing problem—\(\text{min-max bin covering} \)—which may be of independent interest.

1 Introduction

Data mining is an effective means for extracting useful information from various data repositories, to highlight, for example, health risks, political trends, consumer spending, or social networking. In addition, some public institutions, such as the U.S. Census Bureau, have a mandate to publish data about U.S. communities, so as to benefit socially-useful data mining. Thus, there is a public interest in having data repositories available for public study through data mining.

Unfortunately, fulfilling this public interest is complicated by the fact that many databases contain confidential or personal information about individuals. The publication of such information is therefore constrained by laws and policies governing privacy protection. For example, the U.S. Census Bureau must limit

*Department of Electrical Engineering and Computer Science, Syracuse University, 3-114 Sci-Tech Building. Syracuse, NY 13244. wedu(at)syr.edu
†Department of Computer Science, University of California, Irvine. Irvine, CA USA 92697-3435. {eppstein,goodrich,lueker}@ics.uci.edu.
its data releases to those that reveal no information about any individual. Thus, to allow the public to benefit from the knowledge that can be gained through data mining, a privacy-protecting transformation should be performed on a database before its publication.

One of the greatest threats to privacy faced by database publication is a linking attack \[25, 24\]. In this type of attack, an adversary who already knows partial identifying information about an individual (e.g., a name and address or zip-code) is able to identify a record in another database that belongs to this person. A linking attack occurs, then, if an adversary can “link” his prior identifying knowledge about an individual through a non-identifying attribute in another database. Non-identifying attributes that can be subject to such linking attacks are known as quasi-identifying attributes.

To combat linking attacks, several researchers \[20,24,25,22,2,6,32,5\] have proposed generalization as a way of specifying a quantifiable privacy requirement for published databases. The generalization approach is to group attribute values into equivalence classes, and replace each individual attribute value with its class name. Of course, we desire a generalization that is best for data mining purposes. Thus, we add an additional constraint that we minimize the cost, C, of our chosen generalization, where the cost of a set of equivalence classes \(\{E_1, E_2, \ldots, E_m\}\) is $C = \sum_{i=1}^{m} c(E_i)$, where c is a cost function defined on equivalence classes and the summation is defined in terms of either the standard “+” operator or the “max” function.

The cost function c should represent an optimization goal that is expected to yield a table of transformed data that is the best for data mining purposes, e.g., while preserving k-anonymity and/or l-diversity \[21\]. Thus, we define the cost function c in terms of a generalization error, so, for an equivalence class $E = \{x_1, x_2, \ldots, x_q\}$,

$$c(E) = \sum_{i=1}^{q} d(x_i, E),$$

where d is a measure of the difference between an element and its equivalence class, and the summations are defined in terms of either the standard “+” operator or the “max” function. For example, using $d(x_i, E) = 1$, and taking “+” in the definition of C to be “max”, amounts to a desire to minimize the maximum size of any equivalence class. Alternatively, using $d(x_i, E) = |E| - k$ and standard addition in the definition of C will quadratically penalize larger equivalence classes. In this paper we focus on generalization methods that try to minimize the maximum size of any equivalence class, subject to lower bounds on the size of any equivalence class. This should also have the side effect of reducing the number of generalizations done, but we focus on minimizing the maximum equivalence class here, as it leads to an interesting type of bin-packing problem, which may be of interest in its own right.

Since most prior work on k-anonymization algorithms has focused on numeric or ordered data, we are interested in this paper on techniques that can be applied on geographic and unordered data. Such data commonly occurs in quasi-identifying attributes, but such attributes seem harder to generalize to achieve k-anonymity. Thus, we are interested in the degree to which one can approximate the optimal way of generalizing geographic and unordered data, using natural generalization schemes.

Related Prior Results. The concept of k-anonymity \[25,24\], although not a complete solution to linking attacks, is often an important component of such solutions. In this application of generalization, the equivalence classes are chosen to ensure that each combination of replacement attributes that occurs in the generalized database occurs in at least k of the records. Several researchers have explored heuristics, extensions, and adaptations for k-anonymization (e.g., see \[20,2,6,32,5,29\]).

As mentioned above, generalization has become a popular way of altering a database (represented as a table) so that it satisfies the k-anonymity requirement, by combining attribute values into equivalence
classes. To guide this “combining” process for a particular attribute, a generalization hierarchy (or concept hierarchy) is often specified, which is either derived from an ordering on the data or itself defines an ordering on the data.

Unfortunately, there is no obvious tree hierarchy for geographic and unordered data. So, for unordered data, several researchers have introduced heuristics for deriving hierarchies that can then be used for generalization. Security properties of the randomization schemes and privacy-preserving data mining in general are studied by Kargupta et al. [18], Kantarcioglu et al. [17], and Huang et al. [16]. (See also Fung [13].) Wang et al. [30] used an iterative bottom-up heuristic to generalize data.

The use of heuristics, rather than exact algorithms, for performing generalization is motivated by claims that k-anonymization-based generalization is NP-hard. Meyerson and Williams [22] assume that an input dataset has been processed into a database or table in which identical records from the original dataset have been aggregated into a single row of the table, with a count representing its frequency. They then show that if the number of aggregated rows is n and the number of attributes (table columns) is at least $3n$, then generalization for k-anonymization is NP-hard. Unfortunately, their proof does not show that generalization is NP-hard in the strong sense: the difficult instances generated by their reduction have frequency counts that are large binary numbers, rather than being representable in unary. Therefore, their result doesn’t actually apply to the original k-anonymization problem. Aggarwal et al. [2] address this deficiency, showing that k-anonymization is NP-hard in the strong sense for datasets with at least $n/3$ quasi-identifying attributes. Their proof uses cell suppression instead of generalization, but Byun et al. [6] show that the proof can be extended to generalization. As in the other two NP-hardness proofs, Byun et al. require that the number of quasi-identifying attributes be proportional to the number of records, which is typically not the case. Park and Shim [23] present an NP-hardness proof for a version of k-anonymization involving cell suppression in place of generalization, and Wong et al. [31] show an anonymity problem they call (α, k)-anonymity to be NP-hard.

Khanna et al. [19] study a problem, RTILE, which is closely related to generalization of geographic data. RTILE involves tiling an $n \times n$ integer grid with at most p rectangles so as to minimize the maximum weight of any rectangle. They show that no polynomial-time approximation algorithm can achieve an approximation ratio for RTILE of better than 1.25 unless $P = NP$. Unlike k-anonymization, however, this problem does not constrain the minimum weight of a selected rectangle. Aggarwal [1] studies the problem of generalizing multidimensional data using axis-aligned rectangles using probabilistic clustering techniques, and Hore et al. [15] study a heuristic based on the use of kd-tree partitioning and a search strategy optimized through the use of priority queues. Neither of these papers gives provable approximation ratios, however.

Our Results. In this paper, we study instances of k-anonymization-based generalization in which there is only a single quasi-identifying attribute, containing geographic or unordered data. In particular, we focus on the following attribute types:

- **Zip-codes**: nodes of a planar graph generalized into connected subgraphs
- **GPS coordinates**: points in \mathbb{R}^2 generalized into non-overlapping rectangles
- **Unordered data**: text labels that can be grouped arbitrarily (e.g., disease names).

We show that even in these simple instances, k-anonymization-based generalization is NP-complete in the strong sense. Moreover, it is impossible to approximate these problems to within $(1 + \epsilon)$ of optimal, where $\epsilon > 0$ is an arbitrary fixed constant, unless $P = NP$. These results hold a fortiori for instances with multiple quasi-identifying attributes of these types, and they greatly strengthen previous NP-hardness results
which require unrealistically large numbers of attributes. Nevertheless, we provide a number of efficient approximation algorithms and we show, both in terms of their worst-case approximation performance and also in terms of their empirical performance on real-world data sets, that they achieve good approximation ratios. Our approximation bounds for the zip-codes problem require that the graph has sufficiently strong connectivity to guarantee a sufficiently low-degree spanning tree.

The intent of this paper is not to argue that single-attribute generalization is a typical application of privacy protection. Indeed, most real-world anonymization applications will have dozens of attributes whose privacy concerns vary from hypersensitive to benign. Moreover, the very notion of \(k \)-anonymization has been shown to be insufficient to protect against all types of linking attack, and has been extended recently in various ways to address some of those concerns (e.g., see [10, 21, 31]); some work also argues against any approach similar to \(k \)-anonymization [12]. We do not attempt to address this issue here. Rather, our results should be viewed as showing that even the simplest forms of \(k \)-anonymization-based generalization are difficult but can be approximated. We anticipate that similar results may hold for its generalizations and extensions as well.

In addition, from an algorithmic perspective, our study of \(k \)-anonymization-based generalization has uncovered a new kind of bin-packing problem (e.g., see [9]), which we call Min-Max Bin Covering. In this variation, we are given a collection of items and a nominal bin capacity, \(k \), and we wish to distribute the items to bins so that each bin has total weight at least \(k \) while minimizing the maximum weight of any bin. This problem may be of independent interest in the algorithms research community.

Incidentally, our proof that \(k \)-anonymization is NP-hard for points in the plane can be easily adopted to show that the RTILE problem, studied by Khanna et al. [19], cannot be approximated in polynomial time by a factor better than 1.33, unless P=NP, which improves the previous non-approximability bound of 1.25.

2 Zip-code Data

The first type of quasi-identifying information we consider is that of zip-codes, or analogous numeric codes for other geographic regions. Suppose we are given a database consisting of \(n \) records, each of which contains a single quasi-identifying attribute that is itself a zip-code. A common approach in previous papers using generalization for zip-code data (e.g., see [6, 32]) is to generalize consecutive zip-codes. That is, these papers view zip-codes as character strings or integers and generalize based on this data type. Unfortunately, as is illustrated in Figure 1, when zip-codes are viewed as numbers or strings, geographic adjacency information can be lost or misleading: consecutive zip codes may be far apart geographically, and geographically close zip codes may be numerically far, leading to generalizations that have poor quality for data mining applications.

We desire a generalization algorithm for zip-codes that preserves geographic adjacency. Formally, we assume each zip-code is the name of a node in a planar graph, \(G \). The most natural generalization in this case is to group nodes of \(G \) into equivalence classes that are connected subgraphs. This is motivated, in the zip-code case, by a desire to group adjacent regions in a country, which would naturally have more likelihood to be correlated according to factors desired as outcomes from data mining, such as health or buying trends. So the optimization problem we investigate in this section is one in which we are given a planar graph, \(G \), with non-negative integer weights on its nodes (representing the number of records for each node), and we wish to partition \(G \) into connected subgraphs so that the maximum weight of any subgraph is minimized subject to the constraint that each has weight at least \(k \).
Figure 1: The US ZIPScribble Map, which connects consecutive zipcodes. Note the lack of proximity preservation in the West and the artificial separations in the East. (From http://eagereyes.org/Applications/ZIPScribbleMap.html.)

Generalization for Zip-codes is Hard. Converting this to a decision problem, we can add a parameter K and ask if there exists a partition into connected subgraphs such that the weight of each subgraph in G is at least k and at most K. In this section, we show that this problem is NP-complete even if the weights are all equal to 1 and $k = 3$. Our proof is based on a simple reduction that sets $K = 3$, so as to provide a reduction from the following problem:

3-Regular Planar Partition into Paths of Length 2 (3PPPL2): Given a 3-regular planar graph G, can G be partitioned into paths of length 2? That is, is there a spanning forest for G such that each connected component is a path of length 2?

This problem is a special case of the problem, “Partition into Paths of Length-2 (PPL2)”, whose NP-completeness is included as an exercise in Garey and Johnson [14]. Like PPL2, 3PPPL2 is easily shown to be in NP. To show that 3PPPL2 is NP-hard, we provide a reduction from the 3-dimensional matching (3DM) problem:

3-Dimensional Matching (3DM): Given three sets X, Y, and Z, each of size n, and a set of triples $\{(x_1, y_1, z_1), \ldots, (x_m, y_m, z_m)\}$, is there a subset S of n triples such that each element in X, Y, and Z is contained in exactly one of the triples?

Suppose we are given an instance of 3DM. We create a vertex for each element in X, Y, and Z. For each tuple, (x_i, y_i, z_i), we create a tuple subgraph gadget as shown in Figure 2, with nodes $t_{i,x}$, $t_{i,y}$, and $t_{i,z}$, which correspond to the representatives x_i, y_i, and z_i, respectively, in the tuple. We then connect each $t_{i,x}$, $t_{i,y}$ and $t_{i,z}$ vertex to the corresponding element vertex from X, Y, and Z, respectively, using the connector gadget in Figure 2b.

This construction is, in fact, a version of the well-known folklore reduction from 3DM to PPL2, which solves an exercise in Garey and Johnson [14]. Note, for example, that the vertices in the triangle in the tuple gadget must all three be completely included in a single group or must all be in separate groups. If they are all included, then grouping the degree-1 vertices requires that the corresponding x, y, and z elements must all be included in a group with the degree-1 vertex on the connector. If they are all not included, then the corresponding x, y, and z elements must be excluded from a group in this set of gadgets.

Continuing the reduction to an instance of 3PPPL2, we make a series of transformations. The first is to embed the graph in the plane in such a way that the only crossings occur in connector gadgets. We then
take each crossing of a connector, as shown in Figure 3a, and replace it with the cross-over gadget shown in Figure 3b.

There are four symmetric ways this gadget can be partitioned into paths of length 2, two of which are shown in Figures 5a and 5b. Note that the four ways correspond to the four possible ways that connector "parity" can be transmitted and that they correctly perform a cross-over of these two parities. In particular, note that it is impossible for opposite connectors to have the same parity in any partition into paths of length 2. Thus, replacing each crossing with a cross-over gadget completes a reduction of 3DM to planar partition in paths of length 2.

Next, note that all vertices of the planar graph are degree-3 or less except for the "choice" vertices at the center of cross-over gadgets and possibly some nodes corresponding to elements of X, Y, and Z. For each of these, we note that all the edges incident on such nodes are connectors. We therefore replace each vertex of degree-4 or higher with three connector gadgets that connect the original vertex to three binary trees whose respective edges are all connector gadgets. This allows us to "fan out" the choice semantics of the original vertex while exclusively using degree-3 vertices. To complete the reduction, we perform additional simple transformations to the planar graph to make it 3-regular. In particular, we add to each degree-1 vertex the "cap" gadget shown in Figure 4a. Likewise, we add to each degree-2 vertex the cap shown in Figure 4b. Note that in both cases, these subgraphs must be partitioned into paths of length 2 that do not extend outside the subgraph. Thus, adding these subgraphs to the original graph does not alter a partition into paths of length 2 for the original graph. This completes the reduction of 3DM to 3PPPL2.
An Approximation Algorithm for Zip-codes. In this section we provide an approximation algorithm for k-anonymization of zip-codes. Suppose, therefore, that we are given a connected planar graph G with non-negative integer vertex weights, and we wish to partition G into connected subgraphs of weight at least k, while minimizing the maximum weight of any subgraph.

We start by forming a low-degree spanning tree T of G; let d be the degree of T. We note that 3-connected planar graphs are guaranteed to have a spanning tree of degree three [4], giving $d = 3$, while Tutte [27] proved that 4-connected planar graphs are always Hamiltonian, giving $d = 2$; see [7,8,26] for algorithms to construct T efficiently in these cases. We then find an edge e such that removing e from T leaves two trees T_1 and T_2, both of weight at least k, with the weight of T_1 as small as possible. If such an edge exists, we form one connected subgraph from T_1 and continue to partition the remaining low-degree tree T_2 in the same fashion; otherwise, we form a single connected subgraph from all of T.

Let $\kappa = \max(k, x_1, x_2, \ldots)$ where x_i are the individual item sizes; clearly, the optimal cost of any solution is at least κ.

Lemma 1 If the algorithm outlined above cannot find any edge e to split T, then the cost of T is at most $\kappa + d(k - 1)$.

Proof: Orient each edge e of T from the smaller weight subtree formed by splitting at e to the larger weight subtree; if a tie occurs break it arbitrarily. Then T must have a unique vertex v at which all edges are oriented inwards. The weight of v is at most κ, and it is adjacent to at most d subtrees each of which has weight at most $k - 1$ (or else the edge connecting to that subtree would have been oriented outwards) so the total weight of the tree is at most $\kappa + d(k - 1)$ as claimed. ■

Lemma 2 If the algorithm above splits tree T into two subtrees T_1 and T_2, then the cost of T_1 is at most $\kappa + (d - 1)(k - 1)$.

Proof: Let v be the node in T_1 adjacent to the cut edge e. Then the weight of v is at most κ, and v is adjacent to at most $d - 1$ subtrees of T_1 (because it is also adjacent to e). Each of these subtrees has weight
at most $k - 1$, or else we would have cut one of the edges connecting to them in preference to the chosen edge e. Therefore, the total weight is at most $\kappa + (d - 1)(k - 1)$ as claimed. ■

Theorem 3 There is a polynomial-time approximation algorithm for k-anonymization on planar graphs that guarantees an approximation ratio of 4 for 3-connected planar graphs and 3 for 4-connected planar graphs. It is not possible for a polynomial-time algorithm to achieve an approximation ratio better than 1.33, even for 3-regular planar graphs, unless $P=NP$.

Proof: For 3-connected planar graphs, $d = 3$, and the lemmas above show that our algorithm produces a solution with quality at most $\kappa + 3(k - 1) \leq 4\kappa \leq 4$ OPT. Similarly, for 4-connected planar graphs, $d = 2$ and the lemmas above show that our algorithm produces a solution with quality at most $\kappa + 2(k - 1) \leq 3\kappa \leq 3$ OPT.

The inapproximability result follows from the NP-completeness result in the main text of the paper, as the graph resulting from that reduction either has a partition into 3-vertex connected subgraphs or some subgraph requires four or more vertices. ■

3 GPS-Coordinate Data

Next we treat geographic data that is given as geographic coordinates rather than having already been generalized to zip-codes. Suppose we are given a table consisting of n records, each of which contains a single quasi-identifying attribute that is itself a GPS coordinate, that is, a point (x, y) in the plane. For example, the quasi-identifying attribute could be the GPS coordinate of a home or elementary school. Suppose further that we wish to generalize such sets of points using axis-aligned rectangles.
Generalizing GPS-Coordinates is Hard. Converting this to a decision problem, we can add a parameter K and ask whether there exists a partition of the plane into rectangles such that the weight of the input points within each rectangle is at least k and at most K. In this section, we show that this problem is NP-complete even when we set k and K equal to 3. Our proof is based on a simple reduction from 3-dimensional matching (3DM).

Suppose we are given an instance of 3DM. We first reduce this instance to a rectangular k-anonymization problem inside a rectilinear polygon with holes; we show later how to replace the edges of the polygon by points. We begin by creating a separate point for each element in X, Y, and Z. For each tuple, (x_i, y_i, z_i), we create a tuple gadget as shown in Figure 6a; the three points in the interior must all be contained in a single rectangle or each of them must be in a separate rectangle joining the two points that sit in the “doorway” of a “corridor.” Inside the corridor, we alternatively place singleton points and pairs of points, placing each singleton or pair at a corner of the corridor, so that the only way to cover three points within the corridor is to use both points of a pair and one nearby singleton point; thus, any covering of all of the points of the corridor by rectangles containing exactly three points must preserve the parity of the connections at the adjacent doorways. For each tuple (x_i, y_i, z_i), we route the corridors from our tuple gadget to each of the points x_i, y_i, and z_i, so that the corridors for any point, such as x_i, meet in a chooser gadget as shown in Figure 6b. Note: if the degree of a point grows to more than three, we can fan-in the corridors in binary trees whose internal nodes are represented with chooser gadgets. Of course, some corridors may cross each other in this drawing, in which case we replace each corridor crossing with the crossing gadget shown in Figure 6c.

![Figure 6: Gadgets for reducing 3DM to rectangular k-anonymization in the plane. (a) the tuple gadget; (b) the chooser gadget; (c) the cross-over gadget.](image)

When we have completed this construction, we will have reduced 3DM to a rectangle k-anonymization problem inside a rectilinear polygon P containing holes that has its points and polygon vertices on a polynomial-sized integer grid.

To complete the construction, then, we place 3 (identical) points at every grid location that is not properly in the interior of P. Each such set of three points must be partitioned into a separate rectangle, which will block any rectangle containing points properly inside P from crossing the boundary of P without increasing its weight greater than k. Thus, we can “erase” P at this point and we will have reduced 3DM to an instance of rectangular k-anonymization in the plane, for $k = 3$.

An Approximation Algorithm for GPS Coordinates. In this subsection, we provide an approximation algorithm for GPS coordinates. Suppose, therefore, that we are given a set of points S and we wish to
partition the plane into axis-aligned rectangles so as to minimize the maximum weight of any rectangle. We construct a kd-tree on S, using the cutting rule of always splitting a rectangle with an axis-aligned cutting line if it is possible to create two subrectangles each of weight at least k. When we can no longer cut rectangles, satisfying this criterion, we stop. We note that this will produce a good approximation to the optimal solution, with a worst-case degenerate case being four points of multiplicity $k - 1$ placed at the N, S, E, and W directions of a point of multiplicity k. It may be possible for such a configuration to be partitioned into rectangles of size k, whereas our approximation may, in the worst case, produce a rectangle of weight $5k - 4$ in this case. Therefore, we have the following:

Theorem 4 There is a polynomial-time approximation algorithm for rectangular generalization, with respect to k-anonymization in the plane, that achieves an approximation ratio of 5 in the worst case. It is not possible for a polynomial-time algorithm to achieve an approximation ratio better than 1.33 unless $P=NP$.

We note that a similar reduction to the one we give above can be used to show that no polynomial-time algorithm can achieve an approximation ratio better than 1.33 for the RTILE problem, unless $P=NP$, which improves the previous lower bound for this problem of 1.25 [19].

4 The Min-Max Bin Covering Problem

In this section, we examine single-attribute generalization, with respect to the problem of k-anonymization for unordered data, where quasi-identifying attribute values are arbitrary labels that come from an unordered universe. (Note that if the labels were instead drawn from an ordered universe, and we required the generalization groups to be intervals, the resulting one-dimensional k-anonymization problem could be solved optimally in polynomial time by a simple dynamic programming algorithm.) Our optimization problem, then, is to generalize the input labels into equivalence classes so as to minimize the maximum size of any equivalence class, subject to the k-anonymization constraint.

It is convenient in this context to use the terminology of bin packing; henceforth in this section we refer to the input labels as *items*, the equivalence classes as *bins*, and the entire generalization as a *packing*. The *size* of an item corresponds in this way to the number of records having a given label as their attribute value. Thus the problem becomes the following, which we call the *Min-Max Bin Covering Problem*:

Input: Positive integers x_1, x_2, \ldots, x_n and an integer nominal bin capacity $k > 0$.

Output: A partition of $\{1, 2, \ldots, n\}$ into subsets S_j, satisfying the constraint that, for each j,

$$\sum_{i \in S_j} x_i \geq k, \quad (1)$$

and minimizing the objective function

$$\max_j \sum_{i \in S_j} x_i. \quad (2)$$

We will say that a partition satisfying (1) for all j is *feasible*, and the function shown in (2) is the *cost* of this partition. Note that any feasible solution has cost at least k.

10
Hardness Results. In this subsection, we show that Min-Max Bin Covering is NP-hard in the strong sense. We begin by converting the problem to a decision problem by adding a parameter K, which is intended as an upper bound on the size of any bin: rather than minimizing the maximum size of an bin, we ask whether there exists a solution in which all bins have size at most K. This problem is clearly in NP.

We show that Min-Max Bin Covering is NP-hard by a reduction from the following problem, which is NP-complete in the strong sense [14].

- **3-Partition.** Given a value B, and a set S of $3m$ weights w_1, w_2, \ldots, w_{3m} each lying in $(B/4, B/2)$, such that $\sum_{i=1}^{3m} w_i = mB$, can we partition $\{1, 2, \ldots, 3m\}$ into sets S_j such that for each j, $\sum_{i \in S_j} w_i = B$? (Note that any such family of sets S_j would have to have exactly m members.)

For the reduction we simply let $x_i = w_i$ and $k = K = B$. If the 3-Partition problem has answer yes, then we can partition the items into m sets each of total size $k = K = B$ so the Min-Max Bin Covering problem has answer yes. If, on the other hand, the 3-Partition problem has answer no, no such partition is possible, so we have

Theorem 5 Min-Max Bin Covering is NP-complete in the strong sense.

In the preprint version of this paper [11], we show that there are limits on how well we can approximate the optimum solution (unless P = NP):

Theorem 6 Assuming $P \neq NP$, there does not exist a polynomial-time algorithm for Min-Max Bin-Covering that guarantees an approximation ratio better than 2 (when inputs are expressed in binary), or better than $4/3$ (when inputs are expressed in unary).

Achievable Approximation Ratios. While the previous section shows that sufficiently small approximation ratios are hard to achieve, in this section we show that we can establish larger approximation bounds with polynomial time algorithms. The algorithms in this section can handle inputs that are expressed either in unary or binary, so they are governed by the stronger lower bound of 2 on the approximation ratio given in Theorem 6. If A is some algorithm for Min-Max Bin Covering Problem, and I is some instance, let $A(I)$ denote the cost of the solution obtained by A. Let $Opt(I)$ denote the optimum cost for this instance.

Note that if $\sum_{i=1}^{n} x_i < k$, there is no feasible solution; we will therefore restrict our attention to instances for which

$$\sum_{i=1}^{n} x_i \geq k.$$ \hspace{1cm} (3)

An approximation ratio of three is fairly easy to achieve.

Theorem 7 Assuming (3) there is a linear-time algorithm A guaranteeing that

$$A(I) \leq \max(k - 1 + \max_{i=1}^{n} x_i, 3k - 3).$$

Proof: Put all items of size k or greater into their own bins, and then, with new bins, use the Next Fit heuristic for bin covering (see [3]) for the remaining items, i.e., add the items one at a time, moving to a new bin once the current bin is filled to a level of at least k. Then all but the last bin in this packing have level at most $2k - 2$, as they each have level at most $k - 1$ before the last item value is added and this last item has size less than k. There may be one leftover bin with level less than k which must be merged with some other bin, leading to the claimed bound. \blacksquare
With a bit more effort we can improve the approximation ratio. For convenience, in the remainder of this section we scale the problem by dividing the item sizes by \(k \). Thus each bin must have level at least 1, and the item sizes are multiples of \(1/k \).

Lemma 8 Suppose we are given a list of numbers \(x_1, x_2, \ldots, x_n \), with each \(x_i \leq 1/2 \) and \(\sum_{i=1}^{n} x_i = 1 \). Then we can partition the list into three parts each having a sum of at most \(1/2 \).

Proof: Omitted.

Theorem 9 There is a polynomial algorithm to solve Min-Max Bin Packing with an approximation factor of \(5/2 \).

Proof: We will assume without loss of generality that \(\text{Opt}(I) \geq 6/5 \), since otherwise the algorithm of Theorem 7 could give a \(5/2 \)-approximation.

Assume the items are numbered in order of decreasing size. Pack them greedily in this order into successive bins, moving to a new bin when the current bin has level at least 1. Note that then all of the bins will have levels less than 2, and all of the bins except the last will have level at least 1. If the last bin also has level at least 1, this packing is feasible and has cost less than 2, so it is within a factor of 2 of the optimum.

Next suppose that the last bin has level less than 1. We omit the details for the case in which we have formed at most 3 bins, and subsequently we assume we have formed at least 4 bins.

Now let \(f \) be size of the largest item in the final bin, and let \(r \) be the total size of the other items in the last bin. Call an item oversize if its size is at least 1, large if its size is in \((1/2, 1)\), and small if its size is at most \(1/2 \). Consider two cases.

Case 1. \(f \leq 1/2 \). Then all items in the last bin are small, so by Lemma 8 we can partition them into three sets, each of total size at most \(1/2 \). Add each of these sets to one of the first three bins, so no bin is filled to more than \(5/2 \), unless it was one of the bins containing an oversize item. (We no longer use the last bin.) Thus we have achieved an approximation ratio of \(5/2 \).

Case 2. \(f > 1/2 \). Note that in this case there must be an odd number of large items, since each bin except the last has either zero or exactly two large items. Note also that \(r \) in this case is the total size of the small items, and \(r < 1/2 \). Let \(x_1 \) be the first large item packed. If \(x_1 \) lies in the last bin, we must have packed at least one oversize item. Then moving all of the items from the last bin (which will no longer be used) into the bin with this oversize item guarantees a 2-approximation. Thus assume \(x_1 \) is not in the last bin.

Case 2.1. \(x_1 + r \geq 1 \). Then swap items \(x_1 \) and \(f \), so the last bin will be filled to a level \(x_1 + r \in [1, 2] \). Also, the bin now containing \(f \) will contain two items of size in the range \([1/2, 1]\) and thus have a level in the range \([1, 2]\). Thus we have a solution that meets the constraints and has cost at most 2.

Case 2.2. \(x_1 + r < 1 \). Since \(r \) is the total size of the small items, if any bin had only one large item it could not have level at least 1 (as required for feasibility) and at most \(6/5 \) (as required since \(\text{Opt}(I) \leq 6/5 \)). Thus the optimum solution has no bin containing only one large item. Since there are an odd number of large items, this means that the optimum solution has at least one bin with 3 or more large items, so the cost of the optimum solution is at least \(3/2 \). But then since the simple algorithm of Theorem 7 gives a solution of cost less than 3, it provides a solution that is at most twice the optimum. ■

A Polynomial Time Approximation Guaranteeing a Ratio Approaching 2. With more effort we can come arbitrarily close to the lower bound of 2 on the approximation factor given in Theorem 6 for the binary case, with a polynomial algorithm.
Theorem 10 For each fixed $\epsilon > 0$, there is a polynomial time algorithm A_ϵ that, given some instance I of Min-Max Bin Covering, finds a solution satisfying

$$A_\epsilon(I) \leq (1 + \epsilon)(\text{Opt}(I) + 1).$$

(The degree of the polynomial becomes quite large as ϵ becomes small.)

Proof: The idea of the proof is similar to many approximation algorithms for bin packing (see in particular [28, Chapter 9]); for the current problem, we have to be especially careful to ensure that the solution constructed is feasible.

We can assume that the optimum cost is at most 3, by the following reasoning. Say an item is nominal if its size is less than 1, and oversize if its size is greater than or equal to 1. First suppose the total size of the nominal items is at least 1 and some oversize item has size at least 3. Then the greedy algorithm of Theorem 7 achieves an optimum solution, so we are done. Next suppose the sum of the nominal items is at least 1 and no oversize item has size at least 3. Then the greedy algorithm of Theorem 7 achieves an optimum solution, so we are done. Finally suppose that the total size of the nominal items is less than 1. Then there must be an optimum solution in which every bin contains exactly one oversize item (and possibly some nominal items). Let t_0 (resp. t_1) be the size of the smallest (resp. largest) oversize item. If $t_1 - t_0 \geq 1$, then we can form an optimum solution by putting all nominal items in a bin with t_0. If on the other hand $t_1 - t_0 < 1$, we can reduce the size of all oversize items by $t_0 - 1$ without changing the structure of the problem, after which all oversize items will have size at most 2, and the optimum will be at most 3.

Now call those items that have size greater than or equal to ϵ large, and the others small. Let $b = \sum_{i=1}^{n} x_i$; note that $b \leq 3n$, and any feasible partition will have at most b bins. Let N be the largest integer for which $\epsilon(1 + \epsilon)^N$ is less than three; note that N is a constant depending only on ϵ. Let

$$\hat{S} = \{\epsilon(1 + \epsilon)^{\ell} : \ell \in \{0, 1, 2, \ldots, N\}\}.$$

For any item size x, define $\text{round}(x)$ to be the largest value in \hat{S} that is less than or equal to x. Let the type of a packing P, written $\text{type}(P)$, be the result of discarding all small items in P, and replacing each large x_i by $\text{round}(x_i)$. Note that any type can be viewed as a partial packing in which the bins contain only items with sizes in \hat{S}.

Since, for fixed ϵ, there are only a constant number of item sizes in \hat{S}, and each of these is at least ϵ, there are only finitely many ways of packing a bin to a level of at most 3 using the rounded values; call each of these ways a configuration of a bin. Since the ordering of the bins does not matter, we can represent the type of a packing by the number of times it uses each configuration. It is not hard to show that for fixed ϵ, as in the proof of [28, Lemma 9.4], there are only polynomially many types having at most b bins. (Of course, for small ϵ, this will be a polynomial of very high degree.) We will allow types that leave some of the bins empty, allowing them to be filled later.

The algorithm proceeds as follows. Enumerate all possible types T that can be formed using the rounded large item sizes. For each such type T carry out the following steps:

1. Let T' be the result of replacing each item x in T, which resulted from rounding some original input item x_i, by any one of the original items x_j such that $x = \text{round}(x_j)$, in such a way that the set of items in T' is the same as the set of large items in the original input. Note that there is no guarantee that $x_i = x_j$, since the rounding process does not maintain the distinct identities of different items that round to the same value in \hat{S}. However, we do know that $\text{round}(x_i) = \text{round}(x_j)$, so we can conclude that $x_j/x_i \in ((1 + \epsilon)^{-1}, 1 + \epsilon)$.
2. Pack the small items into \(T' \) by processing them in an arbitrary order, placing each into the bin with the lowest current level. Call this the greedy completion of \(T \).

3. Finally, while any bin has a level less than 1, merge two bins with the lowest current levels. Note that this will lead to a feasible packing because of \(4 \). Call the resulting packing \(\mathcal{F}(T) \), and let \(\text{cost}(\mathcal{F}(T)) \) be the maximum level to which any bin is filled.

Return the packing \(\mathcal{F}(T) \) that minimizes \(\text{cost}(\mathcal{F}(T)) \) over all \(T \).

We now show that \(4 \) holds. Let \(P^* \) be a feasible packing achieving \(\text{Opt}(I) \), and let \(P_{\text{large}}^* \) be the result of discarding the small items in \(P^* \) (retaining any bins that become empty). Consider the type \(T \) obtained by rounding all large items in \(P_{\text{large}}^* \) down to a size in \(\hat{S} \). Note that this must be one of the types, say \(T \), considered in the algorithm. When we perform step 1 on \(T \), we obtain a packing \(T' \) such that \(\text{cost}(T') \leq (1 + \epsilon)\text{cost}(P^*) \).

If any level in the greedy completion is greater than \((1 + \epsilon)\text{Opt}(I) + \epsilon \), then during the greedy completion all bins must have reached a level greater than \((1 + \epsilon)\text{Opt}(I) \), so their total size would be greater than \((1 + \epsilon)\sum_{i=1}^{n} x_i \), contradicting the fact that the greedy completion uses each of the original items exactly once. Thus all bins in the greedy completion have level at most \((1 + \epsilon)\text{Opt}(I) + \epsilon \). Also, it cannot be that all bins in the greedy completion have level less than 1, since then the total size of the items would be less than the number of bins, contradicting the fact that the optimum solution covers all the bins.

During step 3, as long as at least two bins have levels below 1, two of them will be merged to form a bin with a level at most 2. If then only one bin remains with a level below 1, it will be merged with a bin with level in \([1, (1 + \epsilon)\text{Opt}(I) + \epsilon) \) to form a feasible packing with no bin filled to a level beyond \((1 + \epsilon)\text{Opt}(I) + 1 + \epsilon \), as desired. \(\blacksquare \)

Note that the bound of Theorem 10 implies \(\Delta_n(I) \leq 2(1 + \epsilon)\text{Opt}(I) \).

We also note that if one is willing to relax both the feasibility constraints and the cost of the solution obtained, a polynomial-time \((1 + \epsilon)\) approximation scheme of sorts is possible. (Of course, this would not guarantee \(k \)-anonymity.)

Theorem 11 Assume that all item sizes \(x_i \) in the input are expressed in binary, and let \(\epsilon > 0 \) be a fixed constant. There is a polynomial time algorithm that, given some instance \(I \) of Min-Max Bin Covering, finds a partition of the items into disjoint bins \(S_j \) such that

\[
\forall j \sum_{i \in S_j} x_i \geq 1 - \epsilon, \quad \text{and} \quad \max_{j} \sum_{i \in S_j} x_i \leq (1 + \epsilon)\text{Opt}(I).
\]

Proof: [sketch] Roughly, one can use an algorithm similar to that of the previous theorem but omitting the last phase in which we merge bins to eliminate infeasibility. We omit the details. \(\blacksquare \)

5 Experimental Results

In this section, we give experimental results for implementations and extensions of a couple of our approximation algorithms. Because of space limitations, we focus here on approximate \(k \)-anonymization for unordered data.

So as to represent a real distribution of quasi-identifying information, we have chosen to use the following data sets provided by the U.S. Census Bureau from the 1990 U.S. Census:

- **FEMALE-1990**: Female first names and their frequencies, for names with frequency at least 0.001%.
For each data set, we ran a number of experiments, so as to test the quality of the approximations produced by the method of Theorem 7, which we call Fold, and compare that with the quality of the approximations produced by a simplified version of the method of Theorem 9, which we call Spread, for all values of k ranging from the frequency of the most common name to the value of k that results in there being only two equivalence classes.

The simplification we implemented for the method of Theorem 9 involves the distribution of left-over items at the end of the algorithm. In this case, we distribute left-over items among existing equivalence classes using a greedy algorithm, where we first add items to classes that have less than the current maximum until adding an item to any class would increase the maximum. At that point, we then distribute the remaining items to equivalence classes in a round-robin fashion.

We tested both approaches on each of the above data sets, with the data being either randomly ordered or sorted by frequencies. For each test, we analyzed the ratio of the size of the largest equivalence class to k, the anonymization parameter, since this ratio serves as an upper bound on the algorithm’s approximation factor. The overfull ratios for each algorithm is reported for each of the above data sets in Figure 7.

There are number of interesting observations we can make from our experimental results, including the following:

- The Spread algorithm is superior to the Fold algorithm, for both randomly-ordered and sorted data.
- Generalizing data into equivalence classes based on a random ordering of the frequencies is often superior to a sorted order.
- When considering values of k in increasing order, there are certain threshold values of the parameter k where the number of equivalence classes drops by one, and this drop has a negative effect on the overfull ratio. The negative effect is especially pronounced for the Fold algorithm. (This behavior is what causes the increasing “jagginess” towards the right of the ratio plots.)
- The performance of both the Fold and Spread algorithms on these real-world data sets is much better than the worst-case analysis.

Thus, our algorithms confirm our intuition about the Spread algorithm being better than the Fold algorithm. In addition, our experimental analysis shows that the Spread algorithm performs quite well on real-world data sets.

6 Future Directions

There are a number of interesting directions for future work. For example, real world data sets often have two or three quasi-identifying attributes (such as zip-codes and disease name labels). Our results show that k-anonymization problems in such cases are NP-hard, but there are a host of open problems relating to how well such multi-attribute problems can be solved approximately in polynomial time.

Acknowledgments. We would like to thank Padhraic Smyth and Michael Nelson for several helpful discussions related to the topics of this paper. This research was supported in part by the NSF under grants 0830403, 0847968, and 0713046.
References

[1] C. C. Aggarwal. On k-anonymity and the curse of dimensionality. In VLDB ’05: Proceedings of the 31st international conference on Very large data bases, pages 901–909. VLDB Endowment, 2005.

[2] G. Aggarwal, T. Feder, K. Kenthapadi, R. Motwani, R. Panigrahy, D. Thomas, and A. Zhu. Anonymizing tables. In Database Theory - ICDT, volume 3363 of LNCS, pages 246–258. Springer, 2005.

[3] S. F. Assman, D. S. Johnson, D. J. Kleitman, and J. Y.-T. Leung. On a dual version of the one-dimensional bin packing problem. J. Algorithms, 5:502–525, 1984.

[4] D. Barnette. Trees in polyhedral graphs. Canadian Journal of Mathematics, 18:731–736, 1966.

[5] R. J. Bayardo and R. Agrawal. Data privacy through optimal k-anonymization. In Proc. of 21st Int. Conf. on Data Engineering (ICDE), pages 217–228. IEEE Computer Society, 2005.

[6] J.-W. Byun, A. Kamra, E. Bertino, and N. Li. Efficient k-anonymization using clustering techniques. In Proc. of the 12th International Conference on Database Systems for Advanced Applications (DASFAA), volume 4443 of LNCS, pages 188–200. Springer, 2007.

[7] N. Chiba and T. Nishizeki. The hamiltonian cycle problem is linear-time solvable for 4-connected planar graphs. Journal of Algorithms, 10:187–211, 1989.

[8] M. Chrobak and G. Kant. Convex grid drawings of 3-connected planar graphs. Int. J. Computational Geometry & Appl., 7:211–233, 1997.

[9] E. G. Coffman, Jr., M. R. Garey, and D. S. Johnson. Approximation algorithms for bin packing: a survey. In Approximation algorithms for NP-hard problems, pages 46–93. PWS Publishing Co., Boston, MA, USA, 1997.

[10] J. Domingo-Ferrer and V. Torra. A critique of k-anonymity and some of its enhancements. In ARES ’08: Proceedings of the 2008 Third International Conference on Availability, Reliability and Security, pages 990–993, Washington, DC, USA, 2008. IEEE Computer Society.

[11] W. Du, D. Eppstein, M. T. Goodrich, and G. S. Lueker. On the approximability of geometric and geographic generalization and the min-max bin covering problem. Electronic preprint arXiv:0904.3756, 2009.

[12] C. Dwork. An ad onmia approach to defining and achieving private data analysis. In PinKDD 2007, volume 4890 of LNCS, pages 1–13. Springer, 2008.

[13] B. C. M. Fung. Privacy-Preserving Data Publishing. PhD thesis, Simon Fraser University, Burnaby, BC, Canada, May 2007.

[14] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman, New York, NY, 1979.

[15] B. Hore, R. Jammalamadaka, and S. Mehrotra. Flexible anonymization for privacy preserving data publishing: A systematic search based approach. In Proceedings of the 2007 SIAM International Conference on Data Mining. SIAM Press, 2007.

[16] Z. Huang, W. Du, and B. Chen. Deriving private information from randomized data. In ACM SIGMOD Conference, Baltimore, Maryland, USA, June 14-16 2005.

[17] M. Kantarcioğlu, J. Jin, and C. Clifton. When do data mining results violate privacy? In Proceedings of the 10th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD 2004), Seattle, WA, USA, August 2004.

[18] H. Kargupta, S. Datta, Q. Wang, and K. Sivakumar. On the privacy preserving properties of random data perturbation techniques. In the IEEE International Conference on Data Mining, Melbourne, Florida, November 19 - 22, 2003.
[19] S. Khanna, S. Muthukrishnan, and M. Paterson. On approximating rectangle tiling and packing. In Proceedings of the 9th Annual ACM-SIAM Symposium on Discrete Algorithms SODA’98, pages 384–393, New York, 1998. ACM Press.

[20] K. LeFevre, D. J. Dewitt, and R. Ramakrishnan. Incognito: efficient full-domain k-anonymity. In Proceedings of the 2005 ACM SIGMOD, June 12 - June 16, 2005.

[21] A. Machanavajjhala, D. Kifer, J. Gehrke, and M. Venkitasubramaniam. L-diversity: Privacy beyond k-anonymity. ACM Trans. Knowl. Discov. Data, 1(1):3, 2007.

[22] A. Meyerson and R. Williams. On the complexity of optimal k-anonymity. In PODS ’04: Proceedings of the Twenty-Third ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems, pages 223–228, New York, NY, USA, 2004. ACM Press.

[23] H. Park and K. Shim. Approximate algorithms for K-anonymity. In SIGMOD ’07: Proceedings of the 2007 ACM SIGMOD International Conference on Management of Data, pages 67–78, New York, NY, USA, 2007. ACM.

[24] P. Samarati. Protecting respondents’ identities in microdata release. IEEE Transactions on Knowledge and Data Engineering, 13(6), 2001.

[25] P. Samarati and L. Sweeney. Protecting privacy when disclosing information: k-anonymity and its enforcement through generalization and suppression. Technical report, SRI, 1998.

[26] W.-B. Strothmann. Bounded Degree Spanning Trees. PhD thesis, Fachb. Math./Inf. & Heinz Nixdorf Inst., Univ.-Gesamthochschule Paderborn, 1997.

[27] W. T. Tutte. A theorem on planar graphs. Trans. Amer. Math. Soc., 82:99–116, 1956.

[28] V. V. Vazirani. Approximation Algorithms. Springer, Berlin, 2003.

[29] K. Wang and B. C. M. Fung. Anonymizing sequential releases. In KDD ’06: Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pages 414–423, New York, NY, USA, 2006. ACM.

[30] K. Wang, P. Yu, and S. Chakraborty. Bottom-up generalization: A data mining solution to privacy protection. In The Fourth IEEE International Conference on Data Mining(ICDM), Brighton, UK, November 2004.

[31] R. C.-W. Wong, J. Li, A. W.-C. Fu, and K. Wang. (α, k)-anonymity: an enhanced k-anonymity model for privacy preserving data publishing. In KDD ’06: Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pages 754–759, New York, NY, USA, 2006. ACM.

[32] S. Zhong, Z. Yang, and R. N. Wright. Privacy-enhancing k-anonymization of customer data. In PODS ’05: Proceedings of the Twenty-Fourth ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems, pages 139–147, New York, NY, USA, 2005. ACM Press.
Figure 7: Overfull ratios for the FEMALE-1990, MALE-1990, and LAST-1990 data sets, respectively. Maximum ratios are reported for each subrange with respect to four algorithms: Random Fold, which is the Fold algorithm on randomly-ordered data, Random Spread, which is the Spread algorithm on randomly-ordered data, Sorted Fold, which is the Fold algorithm on ordered data, Sorted Spread, which is the Spread algorithm on ordered data.