Multicomponent Crystal of Trimethoprim and Citric Acid: Solid State Characterization and Dissolution Rate Studies

Salman Umar, Rido Farnandi, Hulwa Salsabila, Erizal Zaini*

Department of Pharmaceutics, Faculty of Pharmacy, Universitas Andalas, Padang, Indonesia

Abstract

BACKGROUND: Trimethoprim is a broad-spectrum antimicrobial agent with low solubility in water which causes low bioavailability in the systemic circulation.

AIM: This study aimed to increase the solubility and dissolution rate of trimethoprim by preparing multicomponent crystals of trimethoprim and citric acid.

MATERIALS AND METHODS: Multicomponent crystals were prepared by the solvent evaporation method. Characterizations of multicomponent crystalline solid phase properties were carried out by powder X-ray diffraction (PXRD) analysis, differential scanning calorimetry (DSC), FT-IR spectroscopy, scanning electron microscopy (SEM). Solubility and dissolution rate tests were carried out in an aqueous medium.

RESULTS: The PXRD characterization results showed a new X-ray diffraction pattern in the multicomponent crystal phase. DSC analysis showed the formation of a new endothermic peak. This indicates the formation of multicomponent crystal phase between trimethoprim and citric acid. The results of the SEM analysis indicate the formation of a new crystal habit. Solubility of multi-component crystal phase of trimethoprim increased seven times compared to intact trimethoprim. The dissolution of trimethoprim and multicomponent crystals in 0.1 N HCl medium at 60 min was 56.36% and 95.57% and the CO2-free distilled water medium was 43.03% and 88.26%, respectively.

CONCLUSIONS: Based on the results of this study, it could be concluded that the novel multicomponent phase of trimethoprim crystals with citric acid successfully increases the solubility and dissolution rate of trimethoprim significantly.

Introduction

Solubility is one of the most important physicochemical properties of drug compounds in predicting drug absorption in the gastrointestinal tract. Drugs that have low solubility in water often show low bioavailability and dissolution rate is a determining step in the drug absorption process [1]. One of the active pharmaceutical ingredients with low solubility properties is trimethoprim. According to Biopharmaceutical Classification System, trimethoprim is classified under class II along with other drugs with low solubility and high permeability [2]. Trimethoprim acts by inhibiting enzyme dihydrofolate reductase in the reduction of dihydrofolate to tetrahydrofolate which causes bacteria to lack essential di- and tetrahydrofolic acids in their biosynthesis [3]. Trimethoprim is administered through various routes, including intravenous, intramuscular, and oral. However, due to its low solubility, oral solid preparation of trimethoprim has low bioavailability even though it has high gastrointestinal tolerability and low side effects [4]. Previous studies have reported several approaches in attempt to enhance solubility and dissolution rate of trimethoprim, including solid dispersion system with hydrophilic polymers, inclusion complexes formation with cyclodextrins, and spherical crystallization [2], [4], [5].

One of the recent strategies applied to enhance physicochemical properties of active pharmaceutical compounds is by forming a multi-component crystal phase with an inert and safe coformer. This approach has shown successful improvement in solubility, dissolution rate, physical and chemical stability, and compressibility [6], [7], [8], [9], [10]. Multicomponent crystal phase between active pharmaceutical compounds and coformers could be formed due to non-covalent intermolecular interactions such as van der Waals bonds and hydrogen bonds [11].

Several multi-component crystal phases of trimethoprim include cocrystals, some of which have been reported including salts with sulfamethoxazole, mefenamic acid, cinnamic acid, formic acid, acetic acid, maleic acid, and malic acid [8], [12], [13], [14], [15], [16], [17]. However, so far there has been no report of multicomponent crystal phases of trimethoprim with citric acid. Citric acid is a safe excipient categorized by the food and drug administration as generally recognized as safe. This study aimed to prepare a multicomponent crystal phase of trimethoprim with citric acid by the solvent
evaporation method. Solid-state properties were characterized by powder X-ray diffraction (PXRD), differential scanning calorimetry (DSC), scanning electron microscopy (SEM), and FT-IR spectroscopy. Solubility and dissolution rate were evaluated in aqueous medium, compared to intact trimethoprim.

Material and Methods

Materials

Materials used include trimethoprim (Wako Pure Chemical Industries, Japan), citric acid (TCI-EP, Tokyo Japan), ethanol (Merck, Germany), methanol (Merck, Germany), hydrochloric Acid (Bratachermal, Indonesia), and CO₂-free distilled water (Brataco).

Preparation of multicomponent crystal phase

Multi-component crystals of trimethoprim and citric acid were prepared by solvent evaporation method with an equimolar ratio (0.290 g: 0.192 g). Then trimethoprim was dissolved with methanol and citric acid was dissolved in ethanol, then the two materials were quickly mixed at 85 rpm in a magnetic stirrer. After that, it was dried in a desiccator to form a crystalline solid.

PXRD analysis

Analyses were carried out on trimethoprim, citric acid, and multi-component crystals. X-ray diffraction analyses of the samples were performed at room temperature using an X-ray diffractometer (Philips X’Pert Powder, The Netherland) with Cu K radiation (λ = 1.54178Å), current 40 mA, voltage 40 kV. Samples were measured in reflection mode at 0.05 theta with an angle range of 5°–40° theta at a scan speed of 5°/min.

Dissolution rate profile study

The dissolution rate study of trimethoprim and multicomponent crystals used the paddle method (Hanson Research SR08, USA) at 37 ± 0.5°C at a speed of 100 rpm for 60 min with two mediums namely 0.1 N HCl and CO₂-free distilled water. Five mL of each dissolution medium was pipetted at 5, 10, 15, 30, 45, 60 min. The absorbance of the solution that had been pipetted from the dissolution medium was measured using UV-visible spectrophotometer (at 287 nm) to determine the amount of trimethoprim dissolved.
phase which is unique and different from the X-ray diffraction pattern of trimethoprim and citric acid coformer compounds. There are several new peaks, namely at 2θ = 13.13, 21.53 and 24.01. These results show the formation of a new crystalline phase as a consequence of the interaction between trimethoprim and citric acid. Multicomponent crystal phase between the two solid phases is very possible because of the presence of functional groups between the two molecules that can be bonded through weak non-covalent bonds. Based on the ΔpKa rule theory, if the pKa difference between the active pharmaceutical compound and the coformer is greater than (>3), then the interaction can form a salt type of multicomponent crystal [19], [20]. pKa difference between trimethoprim and citric acid of 4.17 makes it possible to form a salt-type multicomponent crystal.

Thermal analysis is an analysis used to evaluate the physical and chemical properties of a substance as a function of temperature. The existence of solid-state interactions is indicated by a change in the melting point between a binary mixture of active pharmaceutical ingredients and coformers.

Figure 2a displays a thermogram of trimethoprim which shows an endothermic peak at 202.82°C as the melting point of this solid compound. Citric acid thermogram (Figure 2b) shows a single sharp endothermic peak at 157.72°C, which is also a melting event of citric acid. Multicomponent crystals of trimethoprim-citric acid show several endothermic peaks of 90–120°C which is either loss of solvent or dehydration of the solid. While the sharp endothermic peak at a temperature of 171.40°C is the new melting point of the multi-component crystal phase. The results of the DSC thermal analysis supported the PXRD analysis, that between trimethoprim and citric acid, a new multi-component crystal phase was formed [21].

FT-IR spectroscopic analysis is one of the important techniques used to evaluate intramolecular interactions in multicomponent crystal systems. The presence of solid-state interactions between components in a crystalline multicomponent system is indicated by the presence of a new or a shifting transmittance peak. The presence of hydrogen bonds formed between the two solid substances is indicated by a shift in the wavenumber [21], [22].

Figure 3 display the FT-IR spectra of trimethoprim, citric acid, and a multi-component crystal phase. The peak transmittance of trimethoprim at wave numbers (OH) 311.19 cm⁻¹, (NH) 3468.07 cm⁻¹, (CH) 2929.92 cm⁻¹, (C=N) 1634.70 cm⁻¹ and (C=H) 1464.00 cm⁻¹. Citric acid at wave number (OH) 3493.15 cm⁻¹, (C=O) 17421.71 cm⁻¹, (C=N) 1424.45 cm⁻¹ and the peak multicomponent crystal transmittance at wavenumber (OH) 3388.89 cm⁻¹, (NH) 3573.19 cm⁻¹, (CH) 3132.45 cm⁻¹, (C=O) 1734.04 cm⁻¹, (C=N) 1589.37 cm⁻¹, and (C=H) 1322.23 cm⁻¹. The shift in the wavenumber of trimethoprim in the multicomponent crystal in the OH group from 3101.59 cm⁻¹ to 3388.89 cm⁻¹, the NH group from 3468.07 cm⁻¹ to 3573.19 cm⁻¹, the CH group from 2929.92 cm⁻¹ to 2843.12 cm⁻¹, the C=N group from 1636.70 cm⁻¹ to 1452.42 cm⁻¹.

The results of the analysis of trimethoprim, citric acid, and multi-component crystals by SEM can
be seen in Figure 4. Based on observations, it can be seen that trimethoprim crystals are irregular cubic crystals, citric acid is rigid prismatic crystals, while multicomponent crystals show a new crystal habit as long rod-shaped.

Orally administered drugs that are poorly soluble in water generally have limited bioavailability since solubility plays an important role in gastrointestinal absorption. The formation of multicomponent crystals with coformers could modify active pharmaceutical ingredients’ properties and increase solubility and pharmacological effectiveness [1], [11]. The main advantage of this approach is the ability to maintain its thermodynamic stability and retain the drug in the solid crystalline phase. Moreover, this method does not change the pharmacophore structure of the active pharmaceutical ingredients [23].

Solubility studies (Table 1) show that the multicomponent crystals of trimethoprim are 7 times more soluble than intact trimethoprim alone. The dissolution rate profiles of trimethoprim and multicomponent crystals were performed by paddle method at 100 rpm for 60 min at 37 ± 0.5°C with 0.1 N HCl medium and CO₂-free distilled water. The increase in the rate profile of trimethoprim and multicomponent crystals of 0.1 N HCl medium can be seen in Figure 5. Moreover, the increase in the rate profile of trimethoprim and multicomponent crystalline CO₂-free distilled water media can be seen in Figure 6 with an increase in dissolution efficiency of 2.45 times. The formation of salt has been proven to improve the physicochemical properties of drug, especially dissolution rate and solubility. Earlier studies have reported improved dissolution rate and solubility of trimethoprim through multicomponent crystalline phase with several excipients [12], [13], [14], [15], [16], [17], [24].

Table 1: Solubility of trimethoprim and its multicomponent with citric acid (n = 3)

Compound	Solubility ± SD (mg/100mL)
Trimethoprim	1.08 ± 0.233
Multicomponent Crystals	7.05 ± 0.110

Some factors may contribute to the increment of solubility and dissolution rate of multicomponent crystals of trimethoprim and citric acid. First, solid phase of multicomponent crystals is more hydrophilic so it has a better affinity for the aqueous medium. The salt form dissociates into cationic and anionic ions once in contact with aqueous media. Second, in terms of solid-state properties, lower melting point of the crystal phase and change in the crystal structure indicates weaker lattice energy that binds the molecules in the unit cell. Weaker lattice energy of the crystal phase leads to a faster dissolution rate [8], [19], [23].

Conclusions

In this current research, the salt-type multicomponent crystal of trimethoprim and citric acid were successfully prepared and characterized its solid-state properties. Novel trimethoprim – citric acid
multicomponent crystal phase significantly improves solubility and dissolution rate of trimethoprim in compared to intact trimethoprim.

References

1. Kawabata Y, Wada K, Nakatani M, Yamada S, Onoue S. Formulation design for poorly water-soluble drugs based on biopharmaceutics classification system: Basic approaches and practical applications. Int J Pharm. 2011;420(1):1-10. https://doi.org/10.1016/j.ijpharm.2011.08.032. PMid:21884771

2. Li N, Zhang YH, Wu YN, Xiong XL, Zhang YH. Inclusion complex of trimethoprim with beta-cyclodextrin. J Pharm Biomed Anal. 2005;39(3-4):824-9. https://doi.org/10.1016/j.jpba.2005.05.011. PMid:16011886

3. Hawker S, Locuio S, Islam K. Dihydrofolate reductase inhibitors as antibacterial agents. Biochem Pharmacol. 2006;71(7):941-8. https://doi.org/10.1016/j.bjcp.2005.10.052. PMid:16359642

4. Gupta RL, Kumar R, Singla AK. Enhanced dissolution and absorption of trimethoprim from cocrystals with polyethylene glycols and polyvinylpyrrolidone. Drug Dev Ind Pharm. 1991;17(3):463-8.

5. Pawar PH, Pawar AP, Mahadik KR, Paradkar AR. Evaluation of tabletting properties of agglomerates obtained by spherical crystallisation of trimethoprim. Indian J Pharm Sci. 1998;60(1):24-8.

6. Nugrahani I, Fisandra F, Horikawa A, Uekusa H. New sodium mefenamate-nicotinamide multicomponent crystal development to modulate solubility and dissolution: Preparation, structural, and performance study. J Pharm Sci. 2021;110(9):324-60. https://doi.org/10.1016/j.xphs.2021.05.022. PMid:34090898

7. Zaini E, Afriyani A, Fitriani L, Ismed F, Horikawa A, Uekusa H. Improved solubility and dissolution rates in novel multicomponent crystals of piperic acid with succinic acid. Sci Pharm. 2020;88(2):21.

8. Zaini E, Fitriani L, Sari RY, Rosaini H, Horikawa A, Uekusa H. Multicomponent crystal of mephenamic acid and m-nicotinil-D-glucamine: Crystal structures and dissolution study. J Pharm Sci. 2019;108(7):2341-8. https://doi.org/10.1016/j.xphs.2019.02.003. PMid:30779887

9. Thakur TS, Thakuria R. Crystalline multicomponent solid; An alternative for addressing the hygroscopicity issue in pharmaceutical materials. Cryst Growth Des. 2020;20(9):6245-65.

10. Aminofiq A, Mauludin R, Mudhakir D, Umeda D, Soewandhi SN, Putra OD, et al. Improving mechanical properties of desloratadine via multicomponent crystal formation. Eur J Pharm Sci. 2018;111:65-72. https://doi.org/10.1016/j.ejps.2017.09.035. PMid:28958892

11. Putra OD, Uekusa H. Pharmaceutical multicomponent crystals: Structure, design, and properties. In: Advances in Organic Crystal Chemistry. Singapore: Springer; 2020. p. 153-84.

12. Zaini E. Formation and characterization of sulfmethoxazole-trimethoprim cocrystal by milling process. J Appl Pharm Sci. 2018;7(12):169-73. https://doi.org/10.7324/JAPS.2017.71224

13. Muthiah PT, Francis S, Rychlewksa U, Warzajtis B. Crystal engineering of analogues and homologous organic compounds: Hydrogen bonding patterns in trimethoprim hydrogen phthalate and trimethoprim hydrogen adipate. Beilstein J Org Chem. 2006;2:8. https://doi.org/10.1016/1109-5539-2-8. PMid:16603061

14. Bryan RF, Haltiwanger RC, Woode MK. Trimethoprim acetate. Acta Crystallogr Sect C. 1987;43(12):2412-5.

15. Umadevi B, Prabakaran P, Muthiah PT. A pseudo-quadruple hydrogen-bonding motif consisting of six NH$_2$O hydrogen bonds in trimethoprim formate. Acta Crystallogr C. 2002;58(8):o510-2. https://doi.org/10.1107/S0108270102011150. PMid:12154314

16. Prabakaran P, Robert J, Muthiah P, Bocelli G, Righi L, Aminopyrimidine-carboxylate interactions in trimethoprim maleate, an antifolate drug. Acta Crystallogr C. 2001;57(4):459-61. https://doi.org/10.1107/S01082701000269. PMid:11313594

17. Bhattacharya B, Das S, Lal G, Soni S, Ghosh A, Reddy C, et al. Screening, crystal structures and solubility studies of a series of multidrug salt hydrates and cocrystals of fenamic acids with trimethoprim and sulfamethazine. J Mol Struct. 2019;1199:127028.

18. Al Rahal O, Williams PA, Hughes CE, Kariuki BM, Harris KD. Structure determination of multicomponent crystalline phases of (S)-ibuprofen and l-proline from powder X-ray diffraction data, augmented by complementary experimental and computational techniques. Cryst Growth Des. 2021;21(4):2498-507.

19. Zaini E, Fitriani L, Sari RY, Rosaini H, Horikawa A, Uekusa H. Multicomponent crystal of mefenamic acid and n-methyl-D-glucamine: Crystal structures and dissolution study. J Pharm Sci. 2019;108(7):2431-4. https://doi.org/10.1016/j.xphs.2019.02.003. PMid:30779887

20. Ma D, Pei T, Bai Y, Zhou L, Bao Y, Yin Q, et al. Salts formation between ibuprofen and pyridine derivatives: Effect of amino group on supramolecular packing and proton transfer. J Mol Struct. 2019;1179:487-94.

21. Martins F, Guimarães F, Honorato S, Ayala A, Ellena J. Vibrational and thermal analyses of multicomponent crystal forms of the anti-HIV drugs lamivudine and zalcitabine. J Pharm Biomed Anal. 2015;110:76-82. https://doi.org/10.1016/j.jpba.2015.03.004. PMid:25808617

22. Ishihara S, Hattori Y, Otsuka M, Sasaki T. Cocrystal formation through solid-state reaction between ibuprofen and nicotinamide revealed using THz and IR spectroscopy with multivariate analysis. Crystals. 2020;10(9):780.

23. Dwichandra Putra O, Umeda D, Fujita E, Haraguchi T, Uchida T, Yonemochi E, et al. Solubility improvement of benexate through salt formation using artificial sweetener. Pharmaceutics. 2018;10(2):64. https://doi.org/10.3390/pharmaceutics10020064. PMid:29861459

24. Yuliandra Y, Hutabarat LJ, Ardila R, Octavia MD, Zaini E. Formulation design for poorly water-soluble drugs based on biopharmaceutics classification system: Basic approaches and practical applications. Int J Pharm. 2021;71224. https://doi.org/10.1016/j.ijpharm.2021.05.022. PMid:61. https://doi.org/10.1107/s0108270101000269

25. Martins F, Guimarães F, Honorato S, Ayala A, Ellena J. Vibrational and thermal analyses of multicomponent crystal forms of the anti-HIV drugs lamivudine and zalcitabine. J Pharm Biomed Anal. 2015;110:76-82. https://doi.org/10.1016/j.jpba.2015.03.004. PMid:25808617

26. Ishihara S, Hattori Y, Otsuka M, Sasaki T. Cocrystal formation through solid-state reaction between ibuprofen and nicotinamide revealed using THz and IR spectroscopy with multivariate analysis. Crystals. 2020;10(9):780.

27. Dwichandra Putra O, Umeda D, Fujita E, Haraguchi T, Uchida T, Yonemochi E, et al. Solubility improvement of benexate through salt formation using artificial sweetener. Pharmaceutics. 2018;10(2):64. https://doi.org/10.3390/pharmaceutics10020064. PMid:29861459

28. Yuliandra Y, Hutabarat LJ, Ardila R, Octavia MD, Zaini E. Enhancing solubility and antibacterial activity using multicomponent crystals of trimethoprim and malic acid. Pharm Educ. 2021;21(2):296-304.