Standardization and Chemical Characterization of Intravenous Therapy in Adult Patients: A Step Further in Medication Safety

Silvia Manrique-Rodríguez1,2,3 · Irene Heras-Hidalgo1,2 · M. Sagrario Pernia-López1,2,3 · Ana Herranz-Alonso1,2,3 · M. Camino del Río Pisabarro4,5 · M. Belén Suárez-Mier4,6 · M. Antonia Cubero-Pérez4,7 · Verónica Viera-Rodríguez4,8 · Noemí Cortés-Rey4,9 · Elizabeth Lafuente-Cabero4,10 · M. Carmen Martínez-Ortega4,11 · Esther Bermejo-López12,13 · Cristina Díez-Sáenz14 · Piedad López-Sánchez3,15 · M. Luisa Gaspar-Carreño3,16 · Rubén Achau-Muñoz3,16 · Juan F. Márquez-Peiró3,17 · Marta Valera-Rubio3,18 · Esther Domingo-Chiva3,19 · Irene Aquerreta-González3,20 · Ignacio Pellín Ariño1,2,21 · M. Cruz Martín-Delgado12,21 · Manuel Herrera-Gutiérrez12,22 · Federico Gordo-Vidal12,23 · Pedro Rascado-Sedes12,24 · Emilio García-Prieto12,25 · Lucas J. Fernández-Sánchez26 · Sara Fox-Carpentieri27 · Carlos Lamela-Piteira3,28 · Luis Guerra-Sánchez29 · Miguel Jiménez-Aguado29 · María Sanjurjo-Sáez1,2,3

Accepted: 9 November 2020 © The Author(s) 2020, corrected publication 2021

Abstract

Background Intravenous drug administration is associated with potential complications, such as phlebitis. The physiochemical characteristics of the infusate play a very important role in some of these problems.

Aim The aim of this study was to standardize the dilutions of intravenous drugs most commonly used in hospitalized adult patients and to characterize their pH, osmolarity and cytotoxic nature to better guide the selection of the most appropriate vascular access.

Methods The project was conducted in three phases: (i) standardization of intravenous therapy, which was conducted using a modified double-round Delphi method; (ii) characterization of the dilutions agreed on in the previous phase by means of determining the osmolarity and pH of each of the agreed concentrations, and recording the vesicant nature based on the information in literature; and (iii) algorithm proposal for selecting the most appropriate vascular access, taking into account the information gathered in the previous phases.

Results In total, 112 drugs were standardized and 307 different admixtures were assessed for pH, osmolarity and vesicant nature. Of these, 123 admixtures (40%), had osmolarity values >600 mOsm/L, pH < 4 or > 9, or were classified as vesicants. In these cases, selection of the most suitable route of infusion and vascular access device is crucial to minimize the risk of phlebitis-type complications.

Conclusions Increasing safety of intravenous therapy should be a priority in the healthcare settings. Knowing the characteristics of drugs to assess the risk involved in their administration related to their physicochemical nature may be useful to guide decision making regarding the most appropriate vascular access and devices.

1 Introduction

The intravenous line is an essential device in medicine and is sometimes the only option for the delivery of medication and patient monitoring. It has been estimated that over 80% of hospitalized patients receive intravenous therapy [1,2]. The most common reasons for intravenous therapy are to replace and maintain fluids and the electrolyte balance; to administer medications, blood or blood products; and to deliver nutrients and nutritional supplements [3]. Administration of intravenous therapy is performed through vascular access devices (VADs), either peripheral (including short peripheral catheters and midline catheters inserted into the upper arm) [4] or central (CVADs), including peripherally inserted central catheters, tunneled catheters, non-tunneled catheters and implanted ports [5].

The selection of a VAD depends on the clinical circumstances; a peripheral catheter is associated with fewer complications in venous access, and it is preferred if intravenous therapy is required for only a short period, provided the patient’s venous patrimony and medication needs are
Key Points

To our knowledge, this is the first nationwide approach towards intravenous therapy standardization in our country. The list of drugs and standard concentrations we present here are the result of a multidisciplinary team consensus in order to reduce variability and increase safety regarding intravenous drug management.

There is no information in literature related to pH or osmolarity in dilution of the most common drugs that are delivered through an intravenous line. This is the most extensive study addressing the osmolarities and pH of standard drug concentrations.

Current recommendations about vascular access selection include aspects such as length of therapy and patients’ requirements. This paper suggests adding different risk levels depending on pH and osmolarity of drugs to better guide the most appropriate vascular access for each patient.

Suitable for peripheral intravenous infusion [6]. CVADs, on the other hand, are the devices of choice for long-term therapies, for administering drugs that are potentially harmful to the vascular endothelium due to their physicochemical characteristics, or in cases of the inability or the failure of other forms of venous access [6, 7].

The use of VADs is associated with several complications, including phlebitis, infiltration and extravasation, nerve injuries, VAD occlusion, infection, air embolism and thrombosis [5]. While some of these complications, such as catheter-related bloodstream infections or venous air embolisms, are uncommon [8, 9], phlebitis has been reported to have an incidence of 31 per 100 catheters, and severe phlebitis occurs in 3.6% of patients [10]. The occurrence of these complications has an important impact on patients and society since they are associated with treatment delays, increased patient discomfort and dissatisfaction, and may result in suboptimal health care outcomes, including injury, permanent disability and death [4].

Factors associated with the occurrence of these complications are patient-related (advanced age, female sex, fragility, immunosuppression); use-related, which is closely related with staff training (suboptimal placement or inappropriate device management); and device-related (a large catheter diameter in relation to the vein size, a poorly secured device, the infusion set and the catheter composition). In addition to these factors, the physicochemical characteristics of the infusate play a very important role in phlebitis. Some infusates can harm tissues through direct venous damage (cytotoxic drugs), direct vasoconstriction, or by exposing cells to osmotic stress or a nonphysiologic pH [4, 11–13]. While oncology drug properties and their influence in VAD selection have been widely documented [14–18], there is limited data available regarding nononcologic drugs.

The objective of the work we present was to standardize the dilutions of nononcologic drugs that are most commonly used in hospitalized adult patients and to characterize these dilutions regarding their pH, osmolarity and cytotoxic nature to complement current knowledge in order to guide the selection of the most appropriate vascular access for each one.

2 Methods

A multidisciplinary team, the Expert Advisory Group (EAG), was created with 10 members from several scientific societies: one physician from the Spanish Society of Intensive, Critical and Coronary Care Medical Units (SEMICYUC); one physician from the Spanish Society for Preventive Medicine, Public Health and Hygiene (SEMPSPH); three nurses from the Spanish Society of Infusion and Vascular Access (SEINAV); and five pharmacists, four of them from the Spanish Society of Hospital Pharmacy (SEFH). One pharmacist experienced in intensive care drug management proposed a list of the drugs most commonly used in hospitalized and/or critically ill adults that are administered intravenously by continuous or intermittent infusion. Every member of the EAG reviewed the proposal and made suggestions according to their clinical experience to comprise the definitive list of drugs of the study. Drugs that required direct intravenous administration or those from a specific therapeutic area such as oncology, radiology, or pediatrics, were excluded.

The project was conducted in three phases: (i) standardization of intravenous therapy, (ii) characterization of the dilutions agreed on in the previous phase and (iii) algorithm proposal for selecting the most appropriate VAD, taking into account the information gathered in the previous phases.

2.1 Standardization of the Intravenous Therapy

After agreeing on the list of drugs, two pharmacists experienced in pharmacy practice risk management proposed one or more potential concentrations for each drug based on the recommendations available in the literature [19, 20], national or international intravenous therapy protocols [21–23] and their own experience. The drug concentrations suggested should encompass a broad range of clinical scenarios and fluid load requirements. All drug concentrations would be obtained by diluting the drug with sodium chloride 0.9% (NS) or dextrose 5% in water (D5W) (the two diluents most

△ Adis
The osmolarity and pH of each of the agreed concentrations were determined.

Osmotic pressure can be expressed as either osmolality or osmolarity. These concepts are usually misused by health professionals. Osmolality is defined as the number of milliosmoles of solute per kilogram of solvent and can be calculated experimentally using sodium chloride equivalents or determined with an osmometer [11, 26]. Osmolarity is the number of milliosmoles per liter of solution; it cannot be measured experimentally but instead can be calculated from osmolality using a conversion factor [11, 26]:

\[
\text{Osmolarity (mOsm/L)} = \text{osmolality (mOsm/kg)} \times \text{solution density (g/mL)}.
\]

This method of expressing density seems to be an optimum combination of accuracy and practicality [27].

In clinical practice, osmolarity is preferred over osmolality since it expresses concentration as a function of volume [11, 26].

Osmolarity was experimentally measured using the Fiske Model 210 Micro Osmometer (John Morris Scientific Pty Ltd., Australia) that determines the osmolality of solutions using freezing point depression. The osmometer was calibrated with its specific calibration solution in the range of 0–2000 mOsm/kg H2O. The repeatability of the instrument was 0–400 mOsm/kg H2O: ±2 mOsm/kg H2O (1 standard deviation [SD]); 400–2000 mOsm/kg H2O: ±0.5% (1 SD). The resolution was 1 mOsm/kg H2O.

Every drug concentration to be tested was prepared using the drugs available at the Pharmaceutical Technology Unit of the Hospital General Universitario Gregorio Marañón, Madrid, Spain. B. Braun Medical NS and D5W were used as diluents for every agreed concentration in order to study their influence on the physicochemical characteristics.

Density was measured with a Gay-Lussac pycnometer, with a capacity of 25 mL that was calibrated with bidistilled water at a temperature of 25 °C, and used the following equation:

\[
\text{Density} = \frac{\text{weight of the solution (g)}}{\text{volume of the solution (mL)}}.
\]

Osmolarity was then calculated with the above-mentioned equations and expressed as the mean (±SD) of three different measures.

pH was measured with a pH meter (Crismon 2006, Hach Lange Spain, S.L.U., Spain) and expressed as the mean (±SD) of three different measures.

For each agreed dilution, aliquots of 50 mL were prepared. Then, 25 mL was used for the density determination by the pycnometer method, 60 µL divided into three aliquots of 20 µL was used to obtain three osmolality measures, and the remaining volume was used in the pH determinations.

Each drug was also characterized according to its vesicant nature based on the information provided in the corresponding summary of product characteristics and the published information [19, 20, 28, 29].

In cases where the osmolality of the admixture was higher than 450 mOsm/L (see the Results and Discussion sections), and there was no other admixture at the same concentration with an osmolality value <450 mOsm/L, the drug was diluted with 0.45% hypotonic saline solution (1/2S) to assess
the potential changes in osmolarity and pH. Compatibility of the drug–diluent was checked against standard databases [19, 20, 24] and in case the admixture had not been tested, it was kept 8 hours under visual observation in order to assess precipitation or color changes.

If different brand names of the same drugs were available at the hospital at the time of this study, their osmolarity and pH were assessed in order to analyze the potential influence of different brands or excipients on their physicochemical properties.

2.3 Developing an Algorithm for Catheter Selection

The published literature regarding the influence of different factors on the selection of the type of vascular access and catheter was reviewed. Most national and international algorithms available consider the patient’s venous patrimony, duration of therapy and osmolarity of the drug to be infused. However, the role of pH, vesicant properties of nononcologic drugs and possible scenarios of different risk levels are not usually taken into account [30–35].

The EAG, led by the experienced nurses from the Spanish Society of Infusion and Vascular Access, agreed on three different risk levels (low, medium and high) regarding the osmolarity and pH of the infusate drugs in order to include all these items, together with the ones mentioned before, in an updated version of the vascular access selection algorithm.

3 Results

3.1 Standardization of the Intravenous Therapy

Table 1 shows the results regarding the number of drugs and concentrations included and selected during the Delphi consensus. An initial list of 111 drugs was suggested by two pharmacists. Of these, 46 (41.4%) were for continuous administration and 71 (63.9%) for intermittent administration. Some drugs had concentrations for both continuous and intermittent infusions. In addition, 13 of these 111 drugs were provided as ready-to-use medications and were not subjected to the standardization discussion. Therefore, 98 drugs, a total of 205 concentrations, were included in the Delphi.

After the first round, there was no agreement for any of the concentrations of five suggested drugs (alprostadil, lidocaïne, octreotide, procainamide and tacrolimus), and therefore, these five drugs were directly excluded from the study. On the other hand, 82 specific concentrations out of 205 directly reached consensus as they were selected by at least 70% of the panel experts.

In the second round, 77 different concentrations that had been selected by 40–69% of respondents, together with four additional new ones suggested by several panel members, were the subject of discussion. Finally, the whole panel agreed that all of them should be included as they were necessary to represent different feasible scenarios in clinical practice.

After Delphi consensus, 106 drugs were included with 183 different concentrations (including ready-to-use drugs), 67 (36.6%) for continuous infusion and 116 (63.4%) for intermittent infusion.

Table 1 Double-round Delphi results
Initial proposal^a

Number of drugs^c
Continuous infusion
Intermittent infusion
Number of concentrations
Continuous infusion
Intermittent infusion

Agreement for a definite concentration was achieved after the first round if it was selected by at least 70% of the panel members
Final agreement was achieved after the second round when concentrations with 40–69% votes were discussed
^aReady-to-use drugs included (13 drugs; 16 different strengths)
^bReady-to-use drugs excluded
^cSome of the drugs are included in both continuous and intermittent infusions
Table 2 Agreed standard concentrations and physicochemical characterization

DRUG	CONCENTRATION	DILUENT	MEAN OSMOLALITY	MEAN DENSITY	MEAN OSMOLARITY	pH	VESICANT
ACYCLOVIR (amp 25 mg/ml 10 mL)	5 mg/mL (500 mg/100 mL)	D5W	287±0.58	1.043	300	10.46±0.02	YES
TEDEC-MEJI FARMA, S.A.		NS	279±2.08	1.032	288	11.04±0.03	YES
ALBUMIN HUMAN (5% vial 250 mL, 20% ALBUNORM® vial 100 mL)	5%	-	274±1.53	1.042	286	7.12±0.02	NO
OCTAPHARMA	20%	-	274±0.58	1.059	290	7.04±0.01	NO
AMIKACIN (vial 500 mg/2 mL)	5 mg/mL (500 mg/100 mL)	D5W	308±1.00	1.047	322	4.42±0.01	NO
B.BRAUN MEDICAL, S.A.		NS	283±1.53	1.034	293	4.87±0.01	NO
	10 mg/ml	-	304±2.31	1.037	316	4.55±0.03	NO
AMIODARONE (TRANGOREX® amp 150 mg/3 mL)	2.4 mg/mL (600 mg/250 mL)	D5W	298±1.53	1.020	304	3.84±0.01	YES
SANOFI-AVENTIS, S.A.	3.6 mg/mL (900 mg/250 mL)	D5W	298±1.53	1.020	304	3.80±0.01	YES
AMOXICILLIN SODIUM-CLAVULANATE (vial 1 g)	10 mg/mL (500 mg/50 mL)	NS	350±1.53	1.036	363	8.91±0.01	NO
SANDOZ FARMACEUTICA, S.A.	20 mg/mL (2 g/100 mL)	NS	425±0.58	1.040	442	8.90±0.03	NO
AMPICILLIN (GOBEMICINA® vial 500 mg, vial 1 g)	10 mg/mL (1 g/100 mL)	NS	309±0.58	1.034	320	9.03±0.01	NO
LABORATORIOS NORMON	20 mg/mL (2 g/100 mL)	NS	347±2.08	1.038	360	9.04±0.03	NO
AMPHOTERICIN B (AMBISOME® vial 50 g)	1 mg/mL (50 mg/50 mL)	D5W	298±1.53	1.024	305	5.64±0.01	NO
GILEAD SCIENCES S.L.	2 mg/mL (100 mg/50 mL)	D5W	300±2.31	1.028	309	5.60±0.01	NO
DRUG	CONCENTRATION	DILUENT	MEAN OSMOLALITY	DENSITY	MEAN OSMOLARITY	pH	VESICANT
-----------------------------	--	---------	----------------	---------	----------------	-------------	----------
ANIDULAFUNGIN	100 mg/130 mL (0.77 mg/mL)	D5W	258±1.53	1.042	269	4.57±0.02	NO
PFIZER, S.L.U	NS	258±1.15	1.035	267	4.49±0.05	NO	
AZITHROMYCIN	2 mg/mL (500 mg/250 mL)	D5W	320±1.53	1.022	327	7.21±0.01	NO
PFIZER, S.L.U	NS	299±1.53	1.009	301	6.90±0.02	NO	
AZTREONAM	20 mg/mL (1 g/50 mL)	D5W	383±2.31	1.031	395	5.18±0.03	NO
BRISTOL MYERS SQUIBB S.A.	NS	361±2.52	1.020	369	5.05±0.01	NO	
CALCIUM CHLORIDE	2 mg/mL (1,000 mg/500 mL)	D5W	318±0.58	1.022	325	4.15±0.00	YES
B.BRAUN MEDICAL, SA.	NS	296±1.00	1.008	298	5.60±0.01	YES	
	10 mg/mL (1,000 mg/100 mL)	D5W	391±1.53	1.023	400	4.30±0.01	YES
	NS	357±2.31	1.009	361	4.55±0.05	YES	
CALCIUM FOLINATE	0.2 mg/mL (50 mg/250 mL)	D5W	300±1.53	1.022	306	5.54±0.01	NO
TEVA PHARMA, S.L.U.	NS	285±2.00	1.012	288	5.99±0.04	NO	
	0.5 mg/mL (50 mg/100 mL)	D5W	299±0.58	1.021	306	5.97±0.01	NO
	NS	286±1.53	1.008	289	6.31±0.01	NO	
Table 2 (continued)

DRUG	CONCENTRATION	DILUENT	MEAN OSMOLALITY	DENSITY	MEAN OSMOLARITY	pH	VESICANT
	0.2 mg/mL (1 amp/500 mL)		300±0.58	1.021	307	5.65±0.01	YES
	NS		281±1.00	1.008	283	6.40±0.01	YES
CALCIUM GLUCONATE							
(SUPLECAL® amp 4.6 mEq mg/10 mL)	B.BRAUN MEDICAL, SA.						
	0.4 mg/mL (2 amp/500 mL)	D5W	305±1.00	1.022	312	5.84±0.01	YES
	NS		284±1.00	1.009	287	6.39±0.02	YES
	1 mg/mL (1 amp/100 mL)	D5W	308±1.53	1.024	316	6.16±0.01	YES
	NS		295±1.00	1.010	298	6.28±0.01	YES
	2 mg/mL (2 amp/100 mL)	D5W	319±1.53	1.027	327	6.20±0.02	YES
	NS		312±1.00	1.017	317	6.69±0.01	YES
CASPOFUNGIN							
(vial 50 mg/10 mL)							
TEVA PHARMA, S.L.U.	0.28 mg/mL (70 mg/250 mL)	NS	264±0.00	1.006	266	6.19±0.01	NO
	0.5 mg/mL (50 mg/100 mL)	NS	254±1.00	1.006	256	6.36±0.01	NO
CEFAZOLIN							
(vial 1 g)							
LABORATORIO REIG JOFRE	20 mg/mL (2 g/100 mL)	D5W	317±2.52	1.026	326	5.04±0.01	NO
	NS		309±1.15	1.017	315	4.94±0.03	NO
DRUG	CONCENTRATION	DILUENT	MEAN OSMOLALITY	DENSITY	MEAN OSMOLARITY	pH	VESICANT
------	---------------	---------	----------------	---------	----------------	----	----------
CEFEPIME	20 mg/mL (1 g/50 mL)	D5W	442±1.53	1.033	457	4.10±0.03	NO
		NS	415±1.53	1.018	422	4.26±0.01	NO
	40 mg/mL (2 g/50 mL)	D5W	558±2.08	1.041	581	4.11±0.04	NO
ACCORD HEALTHCARE, S.L.U.		NS	539±2.52	1.030	556	4.30±0.01	NO
	1/2S		387±0.58	1.022	396	4.30±0.01	NO
CEFOTAXIME	20 mg/mL (1 g/50 mL)	D5W	353±1.53	1.027	363	5.41±0.25	NO
		NS	334±2.31	1.015	339	5.26±0.02	NO
	40 mg/mL (2 g/50 mL)	D5W	398±2.08	1.033	411	5.41±0.09	NO
LABORATORIO REIG JOFRE		NS	383±1.00	1.023	392	5.33±0.01	NO
CFEFTAZIDIME	20 mg/mL (1 g/50 mL)	D5W	317±1.53	1.023	324	6.71±0.01	NO
		NS	307±0.58	1.015	311	6.95±0.01	NO
	40 mg/mL (2 g/50 mL)	D5W	332±1.73	1.028	341	6.61±0.01	NO
FRESENIUS KABI ESPAÑA, S.A		NS	325±0.58	1.022	332	6.93±0.01	NO
CEFTAZIDIME/AVIBACTAM	20 mg/mL (2 g/100 mL)	D5W	374±2.00	1.031	386	6.73±0.18	NO
(ZAVICEFTA® vial 2 g/0.5 g)		NS	356±1.15	1.017	362	6.66±0.01	NO

△ Adis
DRUG	CONCENTRATION	DILUENT	MEAN OSMOLALITY	DENSITY	MEAN OSMOLARITY	pH	VESICANT
CEFTOLOZANE/TAZOBACTAM (ZERBAXA® vial 1 g-0.5 g)	10 mg/mL (1 g/100 mL)	D5W	504±1.53	1.032	520	5.98±0.01	NO
		NS	478±0.58	1.021	488	6.06±0.02	NO
		1/2S	374±1.00	1.016	380	5.93±0.01	NO
MERCK SHARP & DOHME DE ESPAÑA, S.A.	20 mg/mL (1 g/50 mL)	D5W	392±1.73	1.031	404	6.57±0.03	NO
		NS	371±1.00	1.018	378	6.61±0.08	NO
		1/2S	303±0.00	1.016	310	6.36±0.01	NO
CEFTRIAXONE (vial 1g, 2 g)	40 mg/mL (2 g/50 mL)	D5W	474±1.53	1.041	494	6.66±0.06	NO
LABATORIO REIG JOFRE		NS	454±1.00	1.028	467	6.72±0.02	NO
		1/2S	303±0.00	1.016	310	6.36±0.01	NO
CEFTRIAXONE (vial 1g, 2 g)	15 mg/mL (750 mg/50 mL)	D5W	329±1.00	1.027	338	6.04±0.03	NO
LABATORIO REIG JOFRE		NS	318±1.53	1.013	322	6.81±0.03	NO
		D5W	355±1.73	1.028	365	6.41±0.03	NO
		NS	346±1.53	1.019	353	6.73±0.03	NO
CEFUROXIME (vial 750 mg)	30 mg/mL (1.500 mg/50 mL)	D5W	593±1.00	1.020	605	6.61±0.01	NO
LABATORIO REIG JOFRE		NS	546±1.53	1.007	550	6.50±0.01	NO
		1/2S	430±1.53	1.007	433	5.09±0.01	NO
CICLOSPORIN (SANDIMMUN® amp 250 mg/5 mL)	2.5 mg/mL (250 mg/100 mL)	D5W	546±1.53	1.007	550	6.50±0.01	NO
NOVARTIS FARMACEUTICA SA		NS	546±1.53	1.007	550	6.50±0.01	NO
		1/2S	430±1.53	1.007	433	5.09±0.01	NO
Table 2 (continued)

DRUG	CONCENTRATION	DILUENT	MEAN OSMOLALITY	DENSITY	MEAN OSMOLARITY	pH	VESICANT
CIPROFLOXACINE (bag 200 mg/100 mL) ALTAN PHARMACEUTICALS S.A.U.	2 mg/ml	-	290±1.53	1.043	303	4.30±0.01	NO
CISATRACURUM (NIMBEX FORTE® vial 150 mg/30 mL, amp 20 mg/10 ml) ASPEN PHARMACARE ESPAÑA S.L.U. (vial) PFIZER, S.L.U (amp 20 mg)	1.2 mg/mL (300 mg/250 mL)	D5W	226±0.58	1.016	230	3.79±0.01	NO
		NS	118±0.58	1.004	119	3.53±0.02	NO
	2 mg/mL (100 mg/50 mL)	-	2±0.58	1.002	2	3.33±0.01	NO
CLARITHROMYCIN (KLACID® vial 500 mg) MYLAN PHARMACEUTICALS, S.L.	2 mg/mL (500 mg/250 mL)	D5W	294±1.15	1.021	301	5.21±0.02	NO
		NS	273±1.53	1.008	275	5.36±0.04	NO
CLINDAMYCIN (vial 300 mg/2 mL, vial 600 mg/4 mL) LABORATORIOS NORMON	9 mg/mL (900 mg/100 mL)	D5W	329±2.08	1.024	337	6.43±0.01	NO
		NS	305±1.53	1.011	308	6.27±0.02	NO
LABORATORIOS NORMON	12 mg/mL (600 mg/50 mL)	D5W	341±1.00	1.025	350	6.81±0.01	NO
		NS	318±1.53	1.013	322	6.69±0.02	NO
CLOXACILLIN (vial 1 g) LABORATORIOS NORMON	20 mg/mL (1 g/50 mL)	D5W	266±2.08	1.020	271	4.91±0.03	NO
		NS	258±1.15	1.012	261	4.90±0.01	NO
COLISTIMETHATE SODIUM (vial 1,000,000 UI) ALTAN PHARMACEUTICALS S.A.U.	1.6 mg/mL (80 mg/50 mL)	D5W	304±1.15	1.020	310	8.26±0.02	NO
		NS	292±1.73	1.008	294	8.29±0.02	NO
Table 2 (continued)

DRUG	CONCENTRATION	DILUENT	MEAN OSMOLALITY	DENSITY	MEAN OSMOLARITY	pH	VESICANT	
COTRIMOXAZOLE (SOLTRIM® vial 800 mg sulfamethoxazole/160 mg trimethoprim)	3.2 mg/mL (800 mg/250 mL)	D5W	408±1.00	1.023	417	8.61±0.01	NO	
ALMIRALL, S.A.		NS	388±2.00	1.011	392	8.73±0.02	NO	
DAPTOMYCIN (CUBICIN® vial 350 mg, 500 mg)	7 mg/mL (350 mg/50 mL)	NS	289±1.53	1.008	292	4.53±0.01	NO	
MERCK SHARP & DOHME DE ESPAÑA, S.A.	10 mg/mL (500 mg/50 mL)	NS	295±1.15	1.008	297	4.50±0.01	NO	
DEXKETOPROFEN (ENANTYUM® amp 50 mg/2 mL)	1 mg/mL (50 mg/50 mL)	D5W	390±1.53	1.019	397	7.18±0.02	NO	
LABORATORIOS MENARINI		NS	373±0.58	1.009	376	7.31±0.02	NO	
DEXMEDETOMIDINE (DEXDOR® amp 200 µg/2 mL)	4 µg/mL (5 amp/250 mL)	D5W	298±1.73	1.017	303	4.18±0.01	NO	
ORION PHARMA, S.L.		NS	278±0.58	1.006	279	5.60±0.02	NO	
		D5W	300±2.08	1.018	306	4.20±0.01	NO	
		NS	277±0.58	1.006	279	5.54±0.01	NO	
DRUG	CONCENTRATION	DILUENT	MEAN OSMOLALITY 1	DENSITY 2	MEAN OSMOLARITY 1	pH	VESICANT	
--------------------------	------------------------	---------	-------------------	-----------	-------------------	-------	----------	
DIGOXIN (amp 0.5 mg/2 mL)	5 µg/mL (0.5 mg/100 mL)	D5W	446±0.58	1.019	455	6.03±0.03	YES	
KERN PHARMA, S.L.		NS	418±2.08	1.006	421	6.09±0.05	YES	
	10 µg/mL (0.5 mg/50 mL)	D5W	608±2.00	1.019	620	6.25±0.02	YES	
		NS	568±2.08	1.007	572	6.14±0.04	YES	
		1/2S	458±1.73	1.004	460	6.12±0.01	YES	
DIPOTASSIUM PHOSPHATE	1 amp/250 mL	D5W	378±1.53	1.026	387	9.28±0.01	YES	
(amp 1 M 10 mL)		NS	359±1.15	1.013	363	9.53±0.01	YES	
FRESENIUS KABI ESPAÑA, S.A	2 amp/250 mL	D5W	447±1.15	1.030	461	9.41±0.01	YES	
		NS	434±0.58	1.020	443	9.63±0.01	YES	
DOBUTAMINE (amp 250 mg/20 mL)	1 mg/mL (250 mg/250 mL)	D5W	282±1.53	1.018	287	3.95±0.01	YES	
PFIZER, S.L.U		NS	266±1.73	1.007	268	4.55±0.01	YES	
	2 mg/mL (500 mg/250 mL)	D5W	264±0.58	1.017	269	3.83±0.01	YES	
		NS	250±0.58	1.007	251	4.17±0.01	YES	
DOPAMINE (amp 200 mg/5 mL)	1.6 mg/mL (400 mg/250 mL)	D5W	312±1.73	1.020	318	4.30±0.01	YES	
GRIFOLS MOVACO S.A.		NS	289±1.53	1.007	291	4.80±0.01	YES	
DRUG	CONCENTRATION	DILUENT	MEAN OSMOLALITY	DENSITY	MEAN OSMOLARITY	pH	VESICANT	
------	---------------	---------	-----------------	---------	-----------------	----	---------	
EPINEPHRINE (amp 1 mg/mL)	40 µg/mL (10 mg/250 mL)	D5W	295±2.08	1.020	301	3.89±0.01	YES	
		NS	276±0.58	1.008	279	3.91±0.01	YES	
	100 µg/mL (10 mg/100 mL)	D5W	298±2.08	1.019	303	3.76±0.01	YES	
		NS	277±0.58	1.008	280	3.72±0.01	YES	
EPROSTENOL (FLOLAL® vial 0.5 mg)	5 µg/mL (0.5 mg/100 mL)	NS	198±0.58	1.006	199	11.88±0.01	NO	
	10 µg/mL (1 mg/100 mL)	NS	117±0.58	1.005	117	12.15±0.01	NO	
ERTROMYCIN (PANTOMICINA® vial 1 g)	2 mg/mL (1 g/500 mL)	NS	284±0.58	1.008	287	6.98±0.01	NO	
	2.5 mg/mL (250 mg/100 mL)	NS	284±0.00	1.008	286	7.09±0.02	NO	
	5 mg/mL (500 mg/100 mL)	NS	283±0.58	1.010	286	7.30±0.01	NO	
ERTAPENEM (INVANZ® vial 1 g)	20 mg/mL (1 g/50 mL)	NS	388±1.53	1.018	395	7.76±0.01	NO	
ESMOLOL (BREVIBLOC® 10 mg/mL bag 250 mL)	10 mg/ml	-	305±1.53	1.030	314	5.01±0.00	YES	
		D5W	296±1.00	1.019	302	4.23±0.01	NO	
		NS	278±0.58	1.007	280	5.17±0.01	NO	
		D5W	294±1.53	1.019	299	4.31±0.02	NO	
		NS	279±0.58	1.007	281	4.82±0.01	NO	
DRUG	CONCENTRATION	DILUENT	MEAN OSMOLALITY	DENSITY	MEAN OSMOLARITY	pH	VESICANT	
------	---------------	---------	-----------------	---------	-----------------	----	---------	
FLECAINIDE (TAMBOCOR® amp 150 mg/15 mL) MYLAN PHARMACEUTICALS, S.L.	2 mg/mL (300 mg/150 mL)	D5W	295±0.58	1.018	300	5.79±0.01	NO	
FLUCONAZOLE (400 mg/200 mL bag) LABORATORIOS NORMON	2 mg/ml	-	290±0.58	1.031	299	5.50±0.03	NO	
FLUMAZENIL (ANEXATE® amp 1 mg/10 mL) LABORATORIOS RUBIÓ S A	0.04 mg/mL (2 mg/50 mL)	D5W	300±0.58	1.016	305	4.07±0.01	NO	
		NS	289±1.15	1.008	292	4.13±0.01	NO	
			297±0.58	1.007	299	3.97±0.01	NO	
			294±0.58	1.019	299	7.57±0.00	NO	
FOSCARNET (vial 6.000 mg/250 mL) CLINIGEN HEALTHCARE ltd	12 mg/mL (6000 mg/500 mL)	NS	281±0.58	1.012	285	7.46±0.01	NO	
	24 mg/mL (6000 mg/250 mL)	-	281±1.53	1.016	285	7.45±0.01	NO	
FOSPHOMYCIN (vial 1 g) LABORATORIOS ERN, S.A.	20 mg/mL (1 g/30 mL)	NS	547±2.08	1.026	562	7.75±0.01	NO	
			455±1.53	1.022	465	7.64±0.01	NO	
DRUG (CONCENTRATION)	DILUENT	MEAN OSMOLITY	DENSITY	MEAN OSMOLARITY	pH	VESICANT		
---------------------	---------	---------------	---------	----------------	----	---------		
2 mg/mL (500 mg/250 mL)	D5W	299±1.00	1.017	304	8.85±0.01	NO		
NS	279±0.58	1.007	281	9.37±0.01	NO			
FUROSEMIDE (SEGURIL® 250 mg/25 mL)	SANOFI-AVENTIS, S.A.	5 mg/mL (250 mg/50 mL)	D5W	291±1.73	1.019	297	8.44±0.02	NO
NS	282±0.58	1.013	286	8.67±0.01	NO			
10 mg/mL (500 mg/50 mL)	-	284±1.00	1.019	289	8.94±0.01	NO		
GANCICLOVIR (CYMEVENE® amp 500 mg)	KERN PHARMA, S.L.	5 mg/mL (500 mg/100 mL)	D5W	302±1.53	1.023	309	10.52±0.01	NO
NS	288±1.15	1.009	290	10.88±0.01	NO			
GENTAMICIN (240 mg/80 mL)	B.BRAUN MEDICAL, SA.	3 mg/ml	-	297±0.58	1.033	307	4.62±0.02	NO
HALOPERIDOL (amp 5 mg/mL)	PENSA PHARMA, S.A.U.	0.05 mg/mL (2.5 mg/50 mL)	D5W	297±0.58	1.021	303	3.91±0.01	NO
0.1 mg/mL (5 mg/50 mL)	D5W	297±0.58	1.021	303	3.80±0.02	NO		
DRUG	CONCENTRATION	DILUENT	MEAN OSMOLALITY	DENSITY	MEAN OSMOLARITY	pH	VESICANT	
---------------------------	---------------------	---------	-----------------	---------	-----------------	-----------	----------	
HEPARIN SODIUM	20 UI/mL (5.000/250 mL)	D5W	293±1.15	1.020	299	6.03±0.02	NO	
	NS	276±0.58	1.005	277	5.88±0.01	NO		
LABORATORIO REIG JOFRE								
HEPARIN SODIUM	40 UI/mL (10.000/250 mL)	D5W	292±1.00	1.020	298	6.55±0.01	NO	
	NS	276±1.00	1.006	278	5.65±0.01	NO		
HEPARIN SODIUM	100 UI/mL (25.000/250 mL)	D5W	292±1.53	1.020	298	6.56±0.01	NO	
	NS	276±1.53	1.006	278	5.79±0.01	NO		
HYDROCORTISONE	2 mg/mL (100 mg/50 mL)	D5W	296±1.53	1.019	302	7.47±0.01	NO	
(**ACTOCORTINA® vial 100 mg**)								
TAKEDA FARMACEUTICA	4 mg/mL (200 mg/50 mL)	D5W	292±1.00	1.018	297	7.74±0.01	NO	
ESPAÑA, S.A.	NS	268±1.00	1.006	270	7.83±0.01	NO		
IMIPENEM-CILASTATIN	5 mg/mL (500 mg/100 mL)	D5W	386±0.58	1.026	396	7.56±0.01	NO	
(**vial 500 mg/500 mg**)	NS	358±1.53	1.015	364	7.43±0.02	NO		
FRESENIUS KABI ESPAÑA, S.A.								
INSULIN HUMAN REGULAR	1 UI/mL (100 UI/100 mL)	D5W	280±1.00	1.011	283	4.93±0.03	NO	
(**ACTRAPID® vial 100 UI/mL**)								
NOVO NORDISK PHARMA, S.A.								

△ Adis
DRUG	CONCENTRATION	DILUENT	MEAN OSMOLALITY	DENSITY	MEAN OSMOLARITY	pH	VESICANT
ISOPOrenaline	4 µg/mL (1 mg/250 mL)	D5W	297±0.58	1.019	302	3.66±0.01	NO
ISOPRENALINE	NS	278±0.58	1.007	280	4.47±0.01	NO	
ISOPRENALINE	1 mg/mL (100 mg/100 mL)	NS	328±0.58	1.018	334	10.67±0.01	NO
ISOPRENALINE	2 mg/mL (200 mg/100 mL)	NS	385±1.00	1.020	393	10.82±0.01	NO
KETAMINE	2 mg/mL (500 mg/250 mL)	NS	308±1.00	1.000	312	4.23±0.01	NO
KETAMINE	5 mg/mL (500 mg/100 mL)	NS	287±0.58	1.007	289	4.81±0.01	NO
Labetalol	1 mg/mL (250 mg/250 mL)	NS	228±1.00	1.005	229	4.20±0.02	NO
Labetalol	2 mg/mL (500 mg/250 mL)	NS	177±1.53	1.006	178	4.19±0.01	NO
LEVOFLOXACIN (bag 500 mg/100 mL)	5 mg/ml	-	303±2.08	1.032	312	5.16±0.01	NO
Levosimendan	25 µg/mL (12.5 mg/500 mL)	D5W	472±1.00	1.016	480	3.46±0.01	NO
LEVOSIMENDAN	50 µg/mL (25 mg/500 mL)	D5W	669±1.53	1.017	680	3.29±0.01	NO
DRUG	CONCENTRATION	DILUENT	MEAN OSMOLALITY a	DENSITY b	MEAN OSMOLARITY c	pH	VESICANT
-------------------------------------	--------------------------------------	---------	-------------------	-----------	-------------------	------	----------
	5 mg/mL (500 mg/100 mL)	D5W	318±0.58	1.020	325	5.17±0.01	NO
	NS		302±0.58	1.007	304	5.52±0.01	NO
LEVETIRACETAM	10 mg/mL (1000 mg/100 mL)	D5W	343±2.31	1.020	350	5.32±0.01	NO
ACCORD HEALTHCARE, S.L.U.	NS		325±1.53	1.011	329	5.47±0.01	NO
	15 mg/mL (1500 mg/100 mL)	D5W	366±1.53	1.021	374	5.34±0.01	NO
	NS		346±0.58	1.009	349	5.47±0.01	NO
LEVETIRACETAM	2 mg/ml (vial 500 mg/5 mL)		296±1.53	1.043	309	4.83±0.01	NO
	30 mg/mL (15.000 mg/500 mL)	D5W	384±1.53	1.030	396	5.63±0.01	NO
	NS		354±1.00	1.022	362	5.77±0.02	NO
MAGNESIUM SULFATE	75 mg/mL (7.500 mg/100 mL)	D5W	483±1.73	1.046	505	5.05±0.01	NO
(SULMETIN SIMPLE® amp 1500 mg/10 mL)	NS		469±0.58	1.039	488	5.63±0.01	NO
SANOFI-AVENTIS, S.A			400±1.15	1.037	414	5.50±0.01	NO
	20%		1253±1.15	1.066	1335	6.29±0.01	YES
MANNITOL (OSMOFUNDINA® 20 % 250 mL)	FRESENIUS KABI ESPAÑA, S.A		439±2.31	1.028	451	7.91±0.02	NO
(vial 500 mg, 1 g)	FRESENIUS KABI ESPAÑA, S.A		409±0.58	1.015	415	7.87±0.00	NO

△ Adis
DRUG	CONCENTRATION	DILUENT	MEAN OSMOLALITY	DENSITY	MEAN OSMOLARITY	pH	VESICANT
20 mg/mL (2 g/100 mL)	D5W	372±0.58	1.024	381	6.62±0.01	NO	
METAMIZOL MAGNESIUM (NOLOTIL® amp 2 g/5 ml)	NS	351±1.53	1.018	357	7.08±0.01	NO	
BOEHRINGER INGELHEIM ESPAÑA S.A.							
160 mg/mL (8 g/50 mL)	D5W	786±1.53	1.054	829	7.05±0.01	NO	
	NS	772±1.73	1.043	805	7.18±0.01	NO	
	1/2S	753±1,00	1.041	784	6.84±0.01	NO	
METHYLprednisolone (SOLU MODERIN® amp 8mg, amp 125 mg, amp 500 mg)	D5W	299±2.08	1.021	305	7.46±0.01	NO	
PFIZER, S.L.U	NS	279±0.58	1.015	283	7.59±0.01	NO	
2.5 mg/mL (250 mg/100 mL)	D5W	302±0.58	1.021	309	7.72±0.01	NO	
	NS	284±0.00	1.018	289	7.53±0.01	NO	
5 mg/mL (250 mg/50 mL)	D5W	310±0.58	1.021	316	7.75±0.01	NO	
	NS	290±0.58	1.009	292	7.62±0.01	NO	
	D5W	316±0.58	1.022	323	7.74±0.01	NO	
	NS	298±1.53	1.012	301	7.64±0.01	NO	
METOCLOPRAMIDE (amp 10 mg/2 mL)	D5W	295±1.53	1.019	301	4.13±0.01	NO	
KERN PHARMA, S.L.	NS	274±1.15	1.007	276	5.64±0.01	NO	
DRUG	CONCENTRATION	DILUENT	MEAN OSMOLALITY	DENSITY	MEAN OSMOLARITY	pH	VESICANT
-------------------------------	---------------	---------	----------------	---------	----------------	------	----------
METRONIDAZOLE (FLAGYL® bag 500 mg/100 mL) SANOFI-AVENTIS, S.A.	5 mg/ml	-	274±1.53	1.035	284	5.35±0.05	NO
MICAFUNGIN (MYCAMINE® vial 100 mg) ASTELLAS PHARMA, S.A.	D5W	301±0.58	1.020	307	4.35±0.01	NO	
MIDAZOLAM (amp 50 mg/10 mL) ACCORD HEALTHCARE, S.L.U.	NS	279±1.15	1.007	281	5.90±0.01	NO	
MILRINONE (COROTROPE® amp 10 mg/10 mL) SANOFI-AVENTIS, S.A.	D5W	275±1.15	1.017	280	3.55±0.01	NO	
MONOPOTASSIUM PHOSPHATE (amp 1 M 10 mL) B.BRAUN MEDICAL, SA.	NS	280±0.58	1.010	282	3.52±0.01	NO	
MONOPOTASSIUM PHOSPHATE (1 amp/250 mL) B.BRAUN MEDICAL, SA.	D5W	364±0.58	1.024	372	4.36±0.01	YES	
MONOPOTASSIUM PHOSPHATE (2 amp/250 mL) B.BRAUN MEDICAL, SA.	NS	340±0.58	1.011	344	4.34±0.01	YES	
MONOPOTASSIUM PHOSPHATE (2 amp/250 mL) B.BRAUN MEDICAL, SA.	D5W	422±1.00	1.027	433	4.35±0.01	YES	
DRUG	CONCENTRATION	DILUENT	MEAN OSMOLALITY	DENSITY	MEAN OSMOLARITY	pH	VESICANT
------------------------------------	---------------	---------	-----------------	---------	-----------------	----	----------
MORPHINE HYDROCHLORIDE		D5W	287±0.58	1.019	292	4.25±0.00	NO
(amp 1% 10 mg/mL, amp 2% 40 mg/2 mL)		NS	276±1.53	1.007	278	5.78±0.02	NO
B.BRAUN MEDICAL, SA.	0.2 mg/mL (20 mg/100 mL)	D5W	285±2.00	1.018	290	4.34±0.04	NO
(amp 1% 10 mg/mL, amp 2% 40 mg/2 mL)		NS	275±1.00	1.006	277	5.70±0.01	NO
	0.5 mg/mL (50 mg/100 mL)	D5W	283±1.53	1.018	288	4.39±0.01	NO
		NS	277±1.00	1.007	279	5.56±0.01	NO
MYCOPHENOLATE MOFETIL	6 mg/mL (1 vial/84 mL)	D5W	307±1.73	1.023	314	3.80±0.01	NO
(CELLCEPT® vial 500 mg)							
ROCHE FARMA, S.A.							
NIMODIPINE	200 µg/ml	-	1.032	-*	-*	6.94±0.03	NO
(vial 10 mg/50 mL)							
ALTAN PHARMACEUTICALS S.A.U.							
NITROGLYCERIN							
(SOLINITRINA® amp 5 mg/5 mL)							
KERN PHARMA, S.L.							
	100 µg/mL (50 mg/500 mL)	D5W	0.999	-*	-*	4.25±0.01	NO
		NS	2151±43.21	0.991	2132	5.45±0.01	NO
	1/2S	2021±1.15	0.990	2000	5.46±0.01		
NITROGLYCERIN							
(SOLINITRINA® amp 5 mg/5 mL)							
KERN PHARMA, S.L.							
	200 µg/mL (50 mg/250 mL)	D5W	0.988	-*	-*	4.28±0.01	NO
		NS	2168±23.63	0.980	2125	5.42±0.01	NO
	1/2S	0.977		-*		6.21±0.02	NO
DRUG	CONCENTRATION	DILUENT	MEAN OSMOLALITY	DENSITY	MEAN OSMOLARITY	pH	VESICANT
-----------------------------	---------------------	---------	-----------------	---------	-----------------	-----	----------
NITROPRUSSIDE (vial 50 mg)	50 µg/mL (50 mg/1000 mL)	D5W	298±0.58	1.018	304	6.29±0.01	NO
MYLAN PHARMACEUTICALS, S.L.	200 µg/mL (50 mg/250 mL)	D5W	299±1.00	1.019	305	6.97±0.01	NO
	80 µg/mL (40 mg/500 mL)	D5W	297±1.00	1.013	300	4.02±0.01	YES
	NS	279±1.53	1.006	280	3.92±0.01	YES	
NOREPINEPHRINE (amp 0.1% 10 mg/10 mL)	120 µg/mL (30 mg/250 mL)	D5W	296±0.58	1.014	300	3.80±0.01	YES
B.BRAUN MEDICAL, SA.	NS	278±0.58	1.006	280	3.82±0.00	YES	
	240 µg/mL (60 mg/250 mL)	D5W	289±0.58	1.016	294	3.68±0.01	YES
	NS	279±1.15	1.006	280	3.67±0.02	YES	
OMEPRAZOLE (vial 40 mg)	0.4 mg/mL (40 mg/100 mL)	D5W	296±1.00	1.020	302	9.45±0.01	NO
LABORATORIOS NORMON	NS	265±1.00	1.007	267	9.80±0.01	NO	
	0.48 mg/mL (120 mg/250 mL)	D5W	303±0.58	1.020	309	9.60±0.00	NO
	NS	282±1.15	1.006	284	9.90±0.01	NO	
Table 2 (continued)

DRUG	CONCENTRATION	DILUENT	MEAN OSMOLALITY	DENSITY	MEAN OSMOLARITY	pH	VESICANT
ONSANSETRON (amp 8 mg/4 mL)	0.08 mg/mL (4 mg/50 mL)	D5W	297±1.53	1.020	303	4.09±0.01	NO
		NS	280±0.58	1.003	281	4.26±0.01	NO
ACCORD HEALTHCARE, S.L.U.	0.16 mg/mL (8 mg/50 mL)	D5W	300±0.58	1.021	306	3.97±0.01	NO
		NS	288±0.58	1.007	290	4.06±0.01	NO
PARACETAMOL (vial 1,000 mg/100 mL) FRESNIEUS KABI ESPANA, S.A	10 mg/ml	-	275±2.08	1.039	286	6.47±0.27	NO
PENICILLIN G SODIUM (SODIOPEN® vial 2,000,000 UI, vial 5,000,000 UI) LABORATORIO REIG JOFRE	40,000 UI/mL	NS	380±0.58	1.014	385	5.81±0.01	NO
	100,000 UI/mL	NS	610±1.73	1.031	629	6.13±0.01	NO
		1/2S	421±1.00	1.021	436	6.12±0.01	NO
PENTAMIDINE ISETIONATE (PENTACARINAT® vial 300 mg) SANOFI-AVENTIS, S.A	1.2 mg/mL (300 mg/250 mL)	D5W	290±1.53	1.020	295	4.25±0.01	YES
		NS	278±1.53	1.007	280	5.65±0.01	YES
Table 2 (continued)

DRUG	CONCENTRATION	DILUENT	MEAN OSMOLALITY	DENSITY	MEAN OSMOLARITY	pH	VESICANT
PHENYTOIN	2 mg/mL (100 mg/50 mL)	NS	577±1.15	1.007	581	11.24±0.01	YES
	1/2S	427±1.00	1.005	429	11.38±0.02	YES	
LA BOTICA DE VILLAVEDE	3 mg/mL (150 mg/50 mL)	NS	715±1.15	1.008	720	11.50±0.01	YES
	1/2S	592±1.00	1.006	596	11.63±0.01	YES	
	5 mg/mL (250 mg/50 mL)	NS	1036±0.58	1.010	1046	11.86±0.00	YES
	1/2S	899±1.00	1.007	905	11.86±0.01	YES	
PIPERACILLIN/TAZOBACTAM	40 mg/mL (2 g/50 mL)	D5W	402±1.15	1.031	415	5.53±0.01	NO
FRESENIUS KABI ESPAÑA, S.A		NS	381±1.53	1.023	390	5.68±0.01	NO
	D5W	480±1.53	1.044	501	5.77±0.02	NO	
	NS	464±1.53	1.037	482	5.78±0.01	NO	
	1/2S	442±1.15	1.036	458	5.31±0.01	NO	
Table 2 (continued)

DRUG	CONCENTRATION	DILUENT	MEAN OSMOLALITY	DENSITY	MEAN OSMOLARITY	pH	VESICANT
	0.04 mEq/mL (4 amp/1,000 mL)	D5W	373±0.58	1.021	380	4.11±0.00	YES
		NS	352±1.00	1.009	355	5.53±0.01	YES
POTASSIUM CHLORIDE							
(amp 2 M 10 mEq/5 mL)							
B.BRAUN MEDICAL, SA.							
	0.06 mEq/mL (6 amp/1,000 mL)	D5W	398±1.53	1.025	408	4.36±0.01	YES
		NS	389±0.58	1.009	392	6.45±0.01	YES
	0.2 mEq/mL (2 amp/100 mL)	D5W	631±1.00	1.027	648	4.21±0.01	YES
		NS	628±0.58	1.017	639	5.54±0.01	YES
		1/2S	510±1.53	1.015	518	5.26±0.01	YES
	0.4 mEq/mL (4 amp/100 mL)	D5W	990±2.00	1.036	1026	4.30±0.01	YES
		NS	973±1.00	1.024	996	5.74±0.01	YES
		1/2S	871±1.53	1.024	892	5.27±0.01	YES
	1%	-	307±0.01	0.999	307	8.08±0.01	NO
	2%	-	335±2.00	1.022	342	7.88±0.07	NO
PROPOFOL (2% vial 50 mL, 1%							
vial 50 mL)							
FRESENIUS KABI ESPAÑA, S.A							
RANITIDINE (amp 50 mg/5 mL)							
LABORATORIOS NORMON							
	1 mg/mL (50 mg/50 mL)	D5W	274±0.58	1.018	279	6.64±0.01	NO
		NS	256±1.00	1.007	258	7.22±0.02	NO
DRUG	CONCENTRATION	DILUENT	MEAN OSMOLALITY a	DENSITY b	MEAN OSMOLARITY c	pH	VESICANT
--	-------------------------	---------	---------------------	------------	---------------------	----	----------
REMIFENTANIL							
(vial 1 mg, vial 5 mg)							
LABORATORIOS NORMON (vial 1 mg)	20 µg/mL (1 mg/50 mL)	D5W	287±0.00	1.020	293	3.50±0.01	NO
		NS	283±0.58	1.007	285	3.70±0.01	NO
	50 µg/mL (5 mg/100 mL)	D5W	286±1.00	1.019	291	3.60±0.01	NO
		NS	285±0.58	1.007	287	3.69±0.00	NO
	100 µg/mL (5 mg/50 mL)	D5W	285±1.53	1.020	291	3.41±0.01	NO
		NS	285±1.00	1.007	287	3.47±0.01	NO
RIFAMPICIN							
(RIFALDIN® vial 600 mg)							
SANOFI-AVENTIS, S.A.	6 mg/mL (600 mg/100 mL)	D5W	282±2.08	1.020	288	8.28±0.01	NO
		NS	262±2.00	1.009	264	8.31±0.01	NO
ROCURONIUM							
(vial 50 mg/5 mL)							
FRESENIUS KABI ESPANA, S.A.	2.4 mg/mL (600 mg/250 mL)	D5W	295±1.15	1.017	300	4.05±0.01	NO
		NS	279±1.00	1.007	281	3.99±0.00	NO
	5 mg/mL (500 mg/100 mL)	D5W	294±0.58	1.015	298	4.02±0.01	NO
		NS	283±0.00	1.008	285	3.98±0.00	NO
SODIUM BICARBONATE							
(VENOFUYESN® frasco 1M (8.4%) 250 mL)	8.40%	-	1567±1.00	1.081	1694	8.34±0.00	YES
FRESENIUS KABI ESPAÑA, S.A.							
SODIUM CHLORIDE							
(amp 20% 10 mL)							
B.BRAUN MEDICAL, S.A.	8 mg/mL (1 amp/250 mL)	NS	516±0.58	1.012	523	5.94±0.01	YES
	20 mg/mL (1 amp/100 mL)	NS	874±1.15	1.020	892	5.72±0.01	YES
DRUG	CONCENTRATION	DILUENT	MEAN OSMOLALITY	DENSITY	MEAN OSMOLARITY	pH	VESICANT
--	---------------	---------	-----------------	---------	-----------------	------	----------
SODIUM CHLORIDE (2% 500 mL HYPERTONIC) FRESENIUS KABI ESPAÑA, S.A.	2%	-	636±2.00	1.038	660	5.09±0.03	YES
		D5W	297±0.58	1.021	303	7.48±0.02	NO
		NS	280±0.58	1.006	282	7.49±0.01	NO
TEICOPLANIN (TARGOCID® vial 400 mg) SANOFI-AVENTIS, S.A.	4 mg/mL (200 mg/50 mL)	D5W	297±1.53	1.022	304	7.73±0.01	NO
		NS	282±2.52	1.008	284	7.50±0.01	NO
	8 mg/mL (400 mg/50 mL)	D5W	297±1.15	1.022	304	7.73±0.01	NO
		NS	282±2.52	1.008	284	7.50±0.01	NO
THIOPENTAL (vial 1 g/20 mL) B.BRAUN MEDICAL, SA.	20 mg/mL (1 g/50 mL)	D5W	400±1.00	1.023	409	10.74±0.01	NO
		NS	392±1.53	1.013	397	11.16±0.01	NO
	0.5 mg/mL (50 mg/100 mL)	D5W	283±1.53	1.020	289	4.96±0.09	NO
		NS	268±0.58	1.008	270	5.39±0.01	NO
TIGECYCLINE (TYGACIL® vial 50 g) PFIZER, S.L.U	1 mg/mL (100 mg/100 mL)	D5W	275±1.00	1.020	281	5.05±0.01	NO
		NS	257±0.58	1.007	259	5.40±0.02	NO
TOBRAMYCIN (240 mg/80 mL bag) B.BRAUN MEDICAL, S.A.	3 mg/mL (240 mg/80 mL)	-	313±0.58	1.010	316	5.12±0.01	NO
TRANEXAMIC ACID (AMCHAFIBRIN® amp 500 mg/5 mL) MYLAN PHARMACEUTICALS, S.L.	10 mg/mL (500 mg/50 mL)	D5W	340±2.08	1.020	346	6.65±0.01	NO
		NS	314±1.15	1.009	316	7.09±0.02	NO
DRUG	CONCENTRATION	DILUENT	MEAN OSMOLALITY	DENSITY	MEAN OSMOLARITY	pH	VESICANT
------	---------------	---------	-----------------	---------	-----------------	----	----------
D5W	802±0.58	1.016	815	6.12±0.01	NO		
D5W	695±1.15	1.007	700	5.95±0.01	NO		
D5W	1610±2.00	1.012	1629	6.18±0.01	NO		
D5W	334±1.00	1.018	340	6.95±0.01	NO		
D5W	705±1.15	1.022	720	6.82±0.01	NO		
D5W	691±1.53	1.014	701	6.81±0.00	NO		
1/2S	592±2.00	1.009	597	6.80±0.01	NO		
NS	1025	1.005	1030	6.88±0.01	NO		
DRUG	CONCENTRATION	DILUENT	MEAN OSMOLALITY	DENSITY	MEAN OSMOLARITY	pH	VESICANT
--------------------------	--------------------------------	---------	----------------	---------	----------------	---------	----------
VANCOMYCIN	4 mg/mL (1.000 mg/250 mL)	D5W	279±1.00	1.020	285	3.61±0.01	YES
		NS	261±1.15	1.009	263	3.74±0.02	YES
	5 mg/mL (500 mg/100 mL)	D5W	273±0.58	1.020	278	3.70±0.01	YES
		NS	255±1.00	1.009	257	3.72±0.01	YES
VORICONAZOLE	2 mg/mL (200 mg/100 mL)	D5W	335±0.58	1.025	343	4.20±0.00	NO
		NS	321±1.00	1.016	326	5.38±0.01	NO
KERN PHARMA, S.L.	4 mg/mL (400 mg/100 mL)	D5W	378±1.53	1.028	389	4.48±0.02	NO
		NS	359±1.00	1.016	365	5.44±0.01	NO

Color legend: Red-High risk; Orange-Moderate risk; Green-low risk

1/2S: sodium chloride 0.45%; D5W: dextrose 5% in water; NS: sodium chloride 0.9%

a Mean osmolality expressed in mOsm/kg as the mean ± standard deviation of three different measures

b Density expressed as g/mL

c Osmolarity expressed in mOsm/L

* Osmolalinity values were above the osmometer calibration range

-There is no diluent specified in ready to use drugs
3.2 Characterization of the Agreed-on Infusion Solutions

The characteristics of the 106 drugs, corresponding to 183 different concentrations and 307 different admixtures, are shown in Table 2.

Most admixtures (281 [91.5%), corresponding to 101 drugs) had an osmolarity <600 mOsm/L. On the other hand, 26 admixtures, corresponding to 15 drugs, had an osmolarity > 600 mOsm/L.

Regarding the pH, 142 admixtures [46.25%], corresponding to 60 drugs, had a pH between 5 and 7.5. However, 68 admixtures [20.15%] corresponding to 27 drugs had an extreme pH < 4 (18 drugs) or > 9 (9 drugs).

Admixtures prepared with D5W had an osmolarity slightly higher than those prepared with NS. The pH was more similar among admixtures prepared with D5W than among those prepared with NS.

Nineteen drugs were categorized as vesicants, irrespective of their concentration, but only eight had extreme pH values (three drugs had at least one admixture with pH values > 9; five drugs had at least one admixture with pH values < 4).

Based on the literature [11, 32, 36, 37] and the experience of this panel of experts, drugs were categorized into different levels of tissue damage risk:

- ‘high risk’ drugs: osmolarity > 600 mOsm/L, pH < 4 or > 9, or a vesicant;
- ‘moderate risk’ drugs: osmolarity 450–600 mOsm/L, or pH 4–5 or 7.5–9 and not a vesicant;
- ‘low risk’ drugs: osmolarity < 450 mOsm/L, pH 5–7.5 and not a vesicant.

Overall, 123 (40.0%) of the admixtures involving 45 (40%) of the drugs were categorized as ‘high risk’. In contrast, 99 (32.2%) admixtures involving 47 (44.3%) drugs were categorized as ‘low risk’.

To assess the influence of the diluents, Table 2 also shows the change in osmolarity and pH for the same concentrations of drugs that only had osmolarity values > 450 mOsm/L when diluted in sodium chloride 0.45% to yield the same concentration. Some of these drugs are usually delivered through a peripheral line but were classified as moderate or high risk according to their osmolarity and pH values. None of the drugs diluted in sodium chloride 0.45% seemed to be incompatible with this diluent according to our study.

Table 3 Different brand-name drugs comparison

DRUG CONCENTRATION	DILUENT	MEAN OSMOLALITYa	DENSITYb	MEAN OSMOLALITYc	pH	DRUG CONCENTRATION	DILUENT	MEAN OSMOLALITYa	DENSITYb	MEAN OSMOLALITYc	pH
ACYCLOVIR						**ACYCLOVIR**					
5 mg/mL (500 mg)	D5W	247±0.56	1.043	390	442.1±0.03	5 mg/mL (500 mg)	D5W	324±0.00	1.022	331	452.1±0.03
	NS	274±0.28	1.012	288	434.1±0.03		NS	316±1.00	1.069	321	454.2±0.03
AMOXICILLIN						**AMOXICILLIN**					
10 mg/mL (500 mg)	NS	354±1.53	1.076	365	8.04±0.03	5 mg/mL (500 mg)	NS	301±0.53	1.013	355	6.4±0.01
	20 mg/mL (500 mg/L)	425±0.13	1.046	442	8.06±0.05		NS	417±0.58	1.016	423	6.4±0.01
	D5W	355±1.53	1.027	365	5.41±0.25	20 mg/mL (500 mg/L)	D5W	354±0.56	1.027	364	5.33±0.01
	NS	334±2.31	1.053	339	5.26±0.02		NS	341±1.04	1.015	344	5.38±0.01
CEFOTAXIME						**CEFOTAXIME**					
	D5W	396±2.00	1.033	411	5.41±0.09		D5W	407±1.00	1.053	420	5.47±0.01
	NS	343±1.08	1.023	392	5.33±0.01		NS	363±0.60	1.025	403	5.45±0.00
HALOPERIDOL						**HALOPERIDOL**					
	D5W	297±0.55	1.021	305	5.31±0.01		D5W	284±1.00	1.019	294	5.31±0.02
	NS	293±1.00	1.021	303	5.74±0.02		NS	285±1.15	1.019	290	5.30±0.01

D5W dextrose 5% in water, NS sodium chloride 0.9%

a Mean osmolality expressed in mOsm/kg as the mean ± standard deviation of three different measures
b Density expressed as g/mL
c Osmolarity expressed in mOsm/L

Color legend: Red high risk, Orange moderate risk, Green low risk
Table 3 shows the comparative osmolarity and pH measurements for the same drugs with different brand names. This approach could only be carried out for acyclovir, amoxicillin/clavulanate, cefotaxime and haloperidol, as these were the only drugs with different brand names for different doses available at the center. All of the paired brands received the same categorization of risk.

3.3 Developing an Algorithm for the Catheter Selection

Based on the drugs’ risk classification, the quality of the patients’ venous access, and the duration of the therapy, the group of experts included some specific recommendations regarding osmolarity and pH risk in the general management of VADs and agreed on an updated proposed algorithm for the selection of the venous access, which is presented in Fig. 1.

According to this and on a general basis, three different types of catheters can be used:

CVADs are the preferred choice for long-term therapies, patients with difficult venous access, vesicant drugs and infusions with high osmolarity values (> 600 mOsm/L) or extreme pH values (< 4 or > 9). Peripherally inserted central catheters (PICCs), tunneled, non-tunneled and implanted ports could be selected depending on other factors regarding therapy, catheter indications and patient characteristics, that were not the subject of study in this paper.

Short peripheral catheters are the preferred choice for short-term therapies, provided the osmolarity and pH of the infusate are at low risk for at least one of these features and the patient’s venous patrimony is in good condition.

Midline catheters play a role for intermediate length therapies and could also be a suitable choice for drugs with an osmolarity and pH of moderate risk that are intended to be delivered in short course treatments.

4 Discussion

4.1 Standardizing Intravenous Therapy

Intravenous therapy can be administered in a wide range of different settings. Although it is delivered to the vast majority of hospitalized patients, it is well known that intravenous administration is potentially associated with relevant complications [5, 38]. It has been reported that in certain settings, more than half of the adverse drug events are associated with...
intravenous medications [39, 40], and almost 60% of them occur during the administration phase, mainly due to the use of incorrect intravenous concentrations [40]. Therefore, it is widely recognized that there is a need for standards that may serve as a guide for safe practice to ensure the best patient outcomes [5, 41–43]. Standardization of infusion therapy may reduce variability in clinical practice and minimize the opportunity for errors [44]. Although there is an increasing interest in this strategy among national and international institutions, there is still room for improvement. The Institute for Safe Medication Practices (ISMP) recommends standardization of high-risk intravenous drugs in order to increase safety in this area [45]. In response to the release of this guideline, The American Society of Health-System Pharmacists (ASHP) has become the first professional association to promote a nationwide initiative, known as ‘Standardize 4 Safety’, aimed at achieving the same objective [46].

There are several local groups that have addressed this subject. However, nationwide leadership is needed in order to accomplish this goal. Our study is consistent with this identified need and has been based on the same methodology followed by other international institutions [47].

The drugs and concentrations that finally reached a consensus were those most frequently used in hospitalized adult patients, seemed to cover all possible clinical conditions and are consistent with other concentrations suggested and published in the literature [21, 48]. However, if drug standardization protocols are compared among institutions, differences might be noticed due to variations in procedures, preferences and the availability of different brand drug names that may influence the choice of one drug strength over another.

Limited experience with the five drugs excluded from the study led to a higher variability in possible concentrations that could not reach the consensus threshold and therefore could not be taken into account in the characterization process.

4.2 Characterizing the Physicochemical Properties of Standard Therapy

Characterization of the physicochemical properties of standard therapies could provide very useful information that could guide the selection of the most appropriate vascular access for the patient. Despite an increasing body of evidence regarding the management of intravenous therapy, most of the recommendations on this topic are based on a low level of evidence, and the precise role of drugs according to their physicochemical characteristics remain uncertain.

Unfortunately, human tolerance of pH and osmolarity has not been well studied, but general recommendations exist in this regard for minimization or prevention of vascular damage due to extremes of pH or osmolarity [5, 11].

The administration of intravenous solutions that are not isotonic, especially hypertonic solutions, may induce osmotic changes that, in turn, may lead to several adverse events, including erythrocyte destruction, phlebitis and even necrosis at the injection site [26, 49]. Reducing the osmolarity may reduce the risk of thrombophlebitis [50]. Taking osmolarity into account is, therefore, important when preparing medication for intravenous infusion [26]. Although osmolarity can be measured without major difficulties, in clinical practice osmolarity is preferred as a measure of the osmotic properties of the solution since it expresses the concentration as a function of volume [11, 26]. For dilute solutions, the difference between osmolarity and osmolality is insignificant, and this is the most common scenario in intravenous therapy.

The labels and literature for products for which osmotic strength is important should state the osmolality, and in many cases, the osmolarity. However, real-world evidence shows these data are often missing in the summary of product characteristics.

The physicochemical properties of the admixtures presented in this work had to be determined experimentally due to the lack of published data, both in the literature and in the labels of the drugs. The data presented in this study have been obtained from pharmaceutical commercial presentations available at the center at the time of the study, which are stated in Table 2.

To date, as far as we know, the work we are presenting is the most extensive study addressing the osmolarities and pH of standard drug concentrations.

In our analysis of the 307 admixtures of 106 drugs, we found that osmolality and osmolarity are almost interchangeable since the density of the solutions was close to 1.0 g/mL (Table 2).

Although the type of infusion fluid may affect the osmolarity and pH [51], overall, we found that these parameters did not differ much between admixtures prepared with D5W or NS. Osmolarity was slightly higher in D5W and pH was slightly more acidic in D5W. Differences from theoretical data may be justified due to the non-ideal behavior of solutions that may not completely dissociate and may have ionic attractions or solvations [27]. Therefore, the selection of the preferred infusion fluid should not be based only on these characteristics.

Among drugs with different concentrations, drug dilution did not seem to modify pH in a significant manner.

Most admixtures had an osmolarity < 600 mOsm/L, but when osmolarity was > 450 mOsm/L, changing the NS diluent to hypotonic sodium chloride proved to be a valuable strategy for some drugs in order to reduce their osmolarity and subsequent potential risks. This finding is consistent
with other authors’ work demonstrating that for drugs with high osmolarities, 0.45% sodium chloride or sterile water may be used as the diluent for injection [26] (Table 2). None of the drugs diluted in sodium chloride 0.45% seemed to be incompatible with this diluent. However, this study was not aimed to assess drug–diluent compatibility, so in case of lack of information in literature these findings should be interpreted with caution.

The osmolarity that peripheral veins are able to tolerate depends not only on the osmolarity value but also on the infusion rate [52]. Therefore, modifying the infusion rate and diluting the drug further might be effective strategies aimed at reducing the risk of phlebitis associated with infusion solutions [53].

Regarding pH, 68 admixtures (22.2%) corresponding to 27 drugs had a pH < 4 or > 9, which is usually, but not always, associated with the vesicant nature of the drug. Vesicant drugs can also be in the physiological range of pH and osmolarity and still induce tissue damage via alternative mechanisms of toxicity [54]. Very acidic or basic drugs can damage the vein’s delicate inner layer, so proper dilutions and the correct VAD selection are of critical importance.

These results show almost half of the drugs most commonly used in hospitalized adult patients may be delivered at a concentration that might put patients’ venous patrimony at risk, so this is a key point to take into account when selecting the right venous access and the most appropriate VAD in order to minimize potential harm.

To assess the potential influence of different brand-name drugs on osmolarity and pH values, a comparative analysis among five different drugs for which different brand names were available at the center was carried out. Although this subanalysis represents a tiny percentage of all of the drugs included, it seems that changes in brand-name drugs do not alter the risk level assigned to each drug as osmolarity and pH slightly vary.

Although they are not expected to identify important differences between different commercial brands, as shown in Table 3, we should be cautious when interpreting this information.

4.3 Selecting VADs

There is literature proposing decision algorithms for the selection of vascular access, mainly taking into account the duration of the therapy, the conditions of the patient’s venous patrimony, the osmolarity and the vesicant nature of the solutions to be infused. In this sense, there is unanimity in recommending central catheters for patients with poor vascular access, long treatments and/or hyperosmolar drugs; however, the osmolarity threshold above which a drug is not considered optimal for peripheral infusion, as well as the role of the pH of the intravenous mixtures, are not well defined [33–35].

The current ‘Infusion Therapy Standard of Practice’ considers an osmolarity of 900 mOsm/L as a threshold for selecting central venous access but makes no recommendation on pH [5]. A previous version of this manual recommended an osmolarity threshold value for central venous access of 600 mOsm/L and a pH range of 5–9 [33]. The available literature varies regarding recommendations on the osmolarity limit for solutions suitable for peripheral infusions, and some authors suggest a threshold of approximately 600 mOsm/L [11, 32, 36].

This group of experts, consistent with the recommendations of other authors [55–57], considered a threshold of 450–600 mOsm/L more appropriate for avoiding irritant solutions for peripheral administration. Due to variability in recommendations, it seems reasonable to define different risk levels. Therefore, drugs with an osmolarity value <450 mOsm/L would be of low risk, moderate risk if osmolarity was 450–600 mOsm/L and high risk if osmolarity was >600 mOsm/L [11, 36, 55–57].

As far as pH is concerned, experimental studies have suggested that if the pH is not lower than 6.5, peripheral veins are able to tolerate the infusion without phlebitis [58]. The plasma pH is between 7.35 and 7.45; however, because of the plasma’s buffering power, it seems reasonable to state that drugs with a pH between 5 and 7.5 can be suitable for peripheral administration.

Although pH is not considered a restrictive factor on its own for the peripheral administration of intravenous medications, some authors believe its influence could be relevant, especially when the pH is <4 or >9 [59, 60]. Taking all this into account, the authors believe it seems reasonable to define three risk levels regarding pH: high risk (pH < 4 or > 9), low risk (pH 5–7.5) and moderate risk for those intermediate situations when pH is 4–5 or 7.5–9 in order to improve the rational and safe use of VADs [11, 32, 36].

The drug nature should also be assessed. It has been proven that vesicant drugs may damage tissues even though their osmolarity and pH values are within a physiological range. Though oncology drugs are well characterized [61], there is no accepted standard for classifying a noncytotoxic solution or medication as a vesicant, and therefore clinicians should rely on the information provided in the summary of product characteristics, case reports and the published literature. The Nurse Infusion Society published a review of vesicant non-cytotoxic drugs with higher evidence in the literature [62] that allowed the authors in this project to identify vesicants drugs in Table 2.

In view of this evidence and controversy, agreeing on different risk levels and including them in classical decision support algorithms might be a useful approach [37].
According to the expert panel and consistent with current evidence, CVADs should be used when delivering drugs with an osmolarity >600 mOsm/L, extreme pH drugs, vesicant drugs, long treatments or patients with a poor vascular access condition [33–35].

Peripheral catheters should be used for short therapies, patients with a good vascular access condition and drugs with osmolarity and/or pH of low-moderate risk. Midline catheters are peripheral catheters inserted into the upper arm via the basilic, cephalic, or brachial vein [5]. They play their part in treatments involving peripherally appropriate solutions that will likely exceed 6 days and for patients requiring infusions of up to 14 days [63, 64]. What this paper adds is that these catheters might be an alternative to short peripheral catheters and a good choice for drugs of a moderate osmolarity and pH risk that are intended to be delivered through a peripheral line for short course treatments.

The suggested algorithm does not differ from the current recommendations regarding peripheral or central access when including risk levels of pH and osmolarity of infusates. However, having a deeper knowledge of the physicochemical properties of therapies can help ensure a safe and suitable decision is made according to the therapy, type of patient and available resources.

This algorithm is a general approach that applies in ideal situations with low complexity patients, availability of resources and trained personnel. If these recommendations cannot be followed due to emergency scenarios, lack of resources or failure to canilize a central venous access safely, some effective strategies that might minimize the potential harm of a vesicant drug or one with extreme osmolarity or pH include assessing the dilution, in order to change the diluent or increase the dilution, and slowing the rate of infusion [5, 59].

5 Conclusions

Ensuring the safety of intravenous drug administration should be a priority in all health care organizations. It should be noted that when categorizing admixtures based on the pH, osmolarity and vesicant nature of the infusates, it was found that 40% of the admixtures involving one-third of the drugs were categorized as ‘high risk’. This highlights the importance of properly characterizing intravenous solutions and medications in order to guarantee patient safety and preserve their venous patrimony. Having tools that allow health professionals to know the characteristics of the drugs to be administered and to assess the risk involved in their administration in relation to other possible patient-related factors can be useful to guide decision making regarding the most suitable type of vascular access and device of choice in each particular case.

Acknowledgments The authors thank all healthcare professionals that participated in this study for their involvement in the project. Thanks to Becton Dickinson, S.A. for supporting the study. The corresponding author would like to acknowledge the work of Fernando Rico-Villademoros for his help in writing and editing this manuscript.

Declarations

Funding This study was funded by Sociedad Española de Farmacia Hospitalaria.

Conflicts of interest/Competing interests Author Irene Heras-Hidalgo has received a research grant from Becton Dickinson S.A.

Availability of data and material All data generated or analyzed during this study are included in this published article.

Code availability Not applicable.

Authors’ contributions Conceptualization: SMR, AHA, MSS. Formal analysis and investigation: SMR, IHH, MSPL, MDCRP, MBMS, MACP; VVR, NCR, ELC, MDCMO, EBL, CDS, PLS, MLGC, RAM, JFMP, MVR, EDC, IAG, IPA, MHG, FGV, PRS, EGP, LJFS, SFC, CLP, LGS, MJA. Writing: SMR. Review and editing: IHH, AHA, MSS, MDCRP, MBMS, MACP, MDCMO, MCMD. Funding acquisition: AHA.

Ethics approval Because data related to patient management was not the subject of this study, the Hospital Ethics Committee exempted the project from approval.

Consent to participate Not applicable.

Consent to publish Not applicable.

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License, which permits any non-commercial use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc/4.0/.

References

1. Dychter SS, Gold DA, Carson D, Haller M. Intravenous therapy: a review of complications and economic considerations of peripheral access. J Infus Nurs. 2012;35:84–91.
2. Zingg W, Pittet D. Peripheral venous catheters: an under-evaluated problem. Int J Antimicrob Agents. 2009;34(Suppl 4):S38–42.
3. Doyle GR, McCutcheon A. Clinical procedures for safer patient care. Victoria: BCCampus; 2018.
4. Mattox EA. Complications of peripheral venous access devices: prevention, detection, and recovery strategies. Crit Care Nurse. 2017;37:e1-14.
5. Gorski L, Hadaway L, Hagle ME, McGoldrick M, Orr M, Doellman D. Infusion therapy. Standard of practice J Infus Nurs. 2016;39:S1-15.

6. Frank RL. Peripheral venous access in adults. UpToDate. 2020.

7. Jamshidi R. Central venous catheters: indications, techniques, and complications. Semin Pediatr Surg. 2019;28:26–32.

8. Gordy S, Rowell S. Vascular air embolism. Int J Crit Illn Inj Sci. 2013;3:73–6.

9. Delgado-Capel M, Capdevila-Morell JA, Saura-Subias G, Balister-Joya L, Vidal-Diez E, Yebenes-Reyes JC. Incidence of catheter-related bloodstream infection in a general hospital using two different detection methods. Enferm Infec Microbiol Clin. 2012;30:613–7.

10. Lv L, Zhang J. The incidence and risk of infusion phlebitis with peripheral intravenous catheters: a meta-analysis. J Vasc Access. 2020;21:342–9.

11. Stranz M, Kastango ES. A Review of pH and osmolarity. Int J Pharm Compd. 2002;6:216–20.

12. Reynolds PM, MacLaren R, Mueller SW, Fish DN, Kiser TH. Management of extravasation injuries: a focused evaluation of noncytotoxic medications. Pharmacotherapy. 2014;34:617–32.

13. Loubani OM, Green RS. A Review of pH and osmolarity. Int J Pharm. 2014;45:141–50.

14. Jackson-Rose J, Del Monte J, Groman A, Dial LS, Atwell L, Llull S. Factors affecting peripheral intravenous catheter selection: a systematic review. J Hosp Pharm. 1980;37:504–9.

15. Drayer C, Lovett L, Tucker D, Johnson B. Procedures and policies for infusion therapy. Norwood, MA: Infusion Nurses Society (INS); 2016.

16. Gallieni M, Pittiruti M, Biffi R. Vascular access in oncology patients. CA Cancer J Clin. 2008;58:323–46.

17. Castells Lao G, Rodriguez Reyes M, Roura Turet J, Prat Dot M, Juarez E, González A, et al. A clinical pathway for the management of difficult venous access. BMC Nurs. 2017;16:64.

18. Gallieni M, Pittiruti M, Biffi R. Vascular access in oncology patients. CA Cancer J Clin. 2008;58:323–46.

19. Trissel LA. Handbook on injectable drugs. Bethesda: American Society of Health-System Pharmacists; 2009.

20. Phillips MS. Standardizing i.v. infusion concentrations: National survey results. Am J Hosp Pharm. 2006;63:1766–71.

21. Vialle PH. Chemotherapy and cutaneous toxicities: implications for oncology nurses. Semin Oncol Nurs. 2006;22:144–51.

22. Gallieni M, Pittiruti M, Biffi R. Vascular access in oncology patients. CA Cancer J Clin. 2008;58:323–46.

23. Trissel LA. Handbook on injectable drugs. Bethesda: American Society of Health-System Pharmacists; 2009.

24. Stabilis®. Stabilité et compatibilité des médicaments. 2020. https://www.stabilis.org/. Accessed Sept 2020.

25. Diamond JR, Grant RC, Feldman BM, Pencharz PB, Ling SC, Moore AM, Wales PW. Defining consensus: a systematic review recommends methodologic criteria for reporting of Delphi studies. J Clin Epidemiol. 2014;67:401–9.

26. Wermeling DP, Rapp RP, DeLuca PP, Piccero JJ Jr. Osmolality of small-volume intravenous admixtures. Am J Hosp Pharm. 1985;42:1739–44.

27. Deardorff DL. Osmotic strength, osmolality, and osmolarity. Am J Hosp Pharm. 1980;37:504–9.

28. Agencia Española de Medicamentos y Productos Sanitarios. Centro de información online de medicamentos de la AEMPS - CIMA. 2020. https://cima.aemps.es/cima/publico/home.html. Accessed Sept 2020.

29. The Infusion Nurses Society (INS). Noncytotoxic vesicant medications and solutions. 2020. https://www.learningcenter.ins1.org/products/noncytotoxic-vesicant-medications-and-solutions. Accessed Sept 2020.

30. Vo V, McManus C, Millsin N, Frost SA, Ale J, Alexandrou E. A clinical pathway for the management of difficult venous access. BMC Nurs. 2017;16:64.

31. Registered Nurses’ Association of Ontario. Care and maintenance to reduce vascular access complications. 2005. https://rnao.ca/bpg/guidelines/care-and-maintenance-reduce-vascular-access-complications. Accessed Sept 2020.

32. Sociedad Española de Medicina Preventiva, Salud Pública e Higiene. Proyecto piloto multicéntrico estrategia multifactorial “flebitis zero” - resumen. 2020. https://www.semptph.com/es/noticias/calidad-seguridad-gestion/proyecto-piloto-multi-centrico-estrategia-multifactorial-de-reducir-flebitis-zero. Accessed Sept 2020.

33. Infusion Nurses Society. Infusion nursing standards of practice. 2020. incativ.es/documentos/guia/INS_Standards_of_Practice_2011[1].pdf. Accessed Sept 2020.

34. Alexander M. Infusion nursing. An evidence-based approach. St Louis: Saunders; 2010.

35. Infusion Nurses Society. Policies and procedures for infusion therapy. Norwood, MA: Infusion Nurses Society (INS); 2016.

36. Suárez Mier B, Carmen Martínez Ortega C. Prevención de complicaciones relacionadas con accesos vasculares de inserción periférica. Programa Flebitis Zero. Madrid, Spain: Agencia Española de Medicamentos y Productos Sanitarios (AEMPS); 2019.

37. Carballo M, Llinares M, Feijoo M. Flebitis en catéteres periféricos. Incidencia y factores de riesgo. ROL Enferm. 2004;27:585–92.

38. Lyons I, Furniss D, Blandford A, Chumbley G, Iacovides I, Wei L, Cox A, Mayer A, Vos J, Galal-Edeen GH, Schnick KO, Dykes PC, Bates DW, Franklin BD. Errors and discrepancies in the administration of intravenous infusions: a mixed methods multi-hospital observational study. BMJ Qual Saf. 2018;27:892–901.

39. Kaushal R, Bates DW, Landrigan C, McKenna KJ, Clapp MD, Federico F, Goldmann DA. Medication errors and adverse drug events in pediatric inpatients. JAMA. 2001;285:2114–20.

40. Ross LM, Wallace J, Paton JY. Medication errors in a paediatric teaching hospital in the UK: five years operational experience. Arch Dis Child. 2000:83:492–7.

41. Nickellite B. Peripheral intravenous access: applying infusion therapy standards of practice to improve patient safety. Crit Care Nurse. 2019;39:61–71.

42. Keeling P, Scales K, Keeling S, Borthwick M. Towards IV drug standardization in critical care. Br J Nurs. 2010;19:530–3.

43. Bullock J, Jordan D, Gawlinski A, Henneman EA. Standardizing IV infusion medication concentrations to reduce variability in medication errors. Crit Care Nurs Clin North Am. 2019;31:363–75.
Authors and Affiliations

Silvia Manrique-Rodríguez1,2,3 · Irene Heras-Hidalgo1,2 · M. Sagrario Pernia-López1,2,3 · Ana Herranz-Alonso1,2,3 · M. Camino del Río Pisabarro4,5 · M. Belén Suárez-Mier4,6 · M. Antonio Cubero-Pérez4,7 · Verónica Viera-Rodríguez4,8 · Noemí Cortés-Rey4,9 · Elizabeth Lafuente-Cabrero4,10 · M. Carmen Martínez-Ortega4,11 · Esther Bermejo-López12,13 · Cristina Díez-Sáenz14 · Piedad López-Sánchez15 · M. Luisa Gaspar-Carreño16 · Rubén Achau-Muñoz16 · Juan F. Márquez-Peiró17 · Marta Valera-Rubio18 · Esther Domingo-Chiva19 · Irene Aquerreta-González20 · Ignacio Pellín Ariño21 · M. Cruz Martín-Delgado22 · Manuel Herrera-Gutiérrez23 · Federico Gordo-Vidal24 · Pedro Rascado-Sedes25 · Emilio García-Prieto26,27 · Lucas J. Fernández-Sánchez26 · Sara Fox-Carpentieri27 · Carlos Lamela-Piteira28 · Luis Guerra-Sánchez29 · Miguel Jiménez-Aguado29 · María Sanjurjo-Sáez1,2,3

1 Pharmacy Department, Hospital General Universitario Gregorio Marañón, Madrid, Spain
2 Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
3 Sociedad Española de Farmacia Hospitalaria (SEFH), Madrid, Spain
4 Sociedad Española de Infusión y Acceso Vascular (SEINAV), Madrid, Spain
5 Nursing Department, Hospital Universitario Donostia, San Sebastián, Spain
6 Nursing Department, Hospital Universitario Central de Asturias, Oviedo, Spain
7 Nursing Department, Hospital Clínico San Carlos, Madrid, Spain
8 Nursing Department, Hospital Universitario i Politècnic La Fe, Valencia, Spain
9 Nursing Department, Complejo Hospitalario Universitario A Coruña, La Coruña, Spain
10 Nursing Department, Hospital del Mar, Barcelona, Spain
11 Preventive Medicine, Hospital Universitario Central de Asturias, Oviedo, Spain
12 Sociedad Española de Medicina Intensiva Crítica y Unidades Coronarias (SEMICYUC), Madrid, Spain
13 Intensive Care Department, Hospital General Universitario Gregorio Marañón, Madrid, Spain
14 Nursing Department (Intensive Care), Hospital General Universitario Gregorio Marañón, Madrid, Spain
15 Pharmacy Department, Hospital General de Tomelloso, Ciudad Real, Spain
16 Pharmacy Department, Hospital Intermutual de Levante, Valencia, Spain
17 Pharmacy Department, Hospital Perpetuo Socorro, Alicante, Spain
18 Pharmacy Department, Hospital Universitario Virgen de la Victoria, Málaga, Spain
19 Pharmacy Department, Complejo Hospitalario Universitario de Albacete, Albacete, Spain
20 Pharmacy Department, Clínica Universitaria de Navarra, Pamplona, Spain
21 Intensive Care Department, Hospital de Torrejón de Ardoz, Madrid, Spain
22 Intensive Care Department, Hospital Regional Universitario de Málaga, Málaga, Spain
23 Intensive Care Department, Hospital Universitario del Henares, Madrid, Spain
24 Intensive Care Department, Complejo Hospitalario Universitario de Santiago de Compostela, La Coruña, Spain
25 Intensive Care Department, Hospital Universitario Central de Asturias, Oviedo, Spain
26 Department of Anesthesia, Hospital Universitario Central de Asturias, Oviedo, Spain
27 Nursing Department, Hospital Universitario Nuestra Señora de Candelaria, Tenerife, Spain
28 Pharmacy Department, Hospital Álvarez-Buylla, Mieres, Spain
29 Nursing Department (Coronary Unit), Hospital General Universitario Gregorio Marañón, Madrid, Spain