Correlative study on the JAK-STAT/PSMβ3 signal transduction pathway in asthenozoospermia

JUNGUO LI1, LI ZHANG2 and BING LI3

1Reproductive Medicine Center and Departments of 2Information, and 3Obstetrics and Gynecology, General Hospital of Beijing Military Region, Beijing 100700, P.R. China

Received April 28, 2016; Accepted November 17, 2016

DOI: 10.3892/etm.2016.3959

Abstract. The aim of the present study was to investigate the possible mechanism of Janus kinase (JAK)-signal transduction and activator of transcription (STAT)/PSMβ3 signaling in the occurrence of asthenozoospermia. We examined seminal fluid samples from 30 cases of asthenozoospermia and 30 healthy controls. Sperm was collected using the Percoll density gradient centrifugation method. The expression of JAK, STAT and PSMβ3 mRNA was assessed by reverse-transcription quantitative PCR and the protein levels of p-JAK, p-STAT and PSMβ3 were measured by western blot analysis. The PSMβ3 mRNA and protein expression levels were also measured after application of a JAK inhibitor, AG-490, to the control group, with a FITC-labeled monoclonal rabbit anti-human PSMβ3 primary antibody. The cells were observed under a laser confocal microscope. The mRNA levels of JAK, STAT and PSMβ3 in asthenozoospermia were decreased significantly (P<0.05). The protein levels of p-JAK, p-STAT and PSMβ3 in asthenozoospermia were also reduced and the differences were statistically significant (P<0.05). The PSMβ3 mRNA and protein expression levels were decreased in the control group after treatment with the JAK inhibitor, and levels were approximately equal to those of the asthenozoospermia group. PSMβ3 was mainly expressed in round-headed sperm, and less in asthenozoospermia. In conclusion, the JAK-STAT/PSMβ3 signaling transduction pathway may be involved in the pathogenic mechanism of asthenozoospermia.

Introduction

Statistically, male sterility accounts for 40-50% of total infertility. Low sperm motility and asthenozoospermia, account for up to 30-50% of male sterility (1). Analysis of differential proteins by sperm dimensional electrophoresis found that GP130 and Proteasomeβ3 (PSMβ3) were expressed abnormally (2). PSMβ3, also known as plasma membrane calcium (Ca2+) ATPase (PMCA3), is an important enzyme for Ca2+ transport in and out of cells (3). Ca2+ plays an important role in a series of processes, including sperm maturation, capacitation and sperm-egg binding (4). The PMCA3 gene, located on the X chromosome, is thought to be associated with sperm motility (5). Research on GP130 found that the Janus kinase (JAK)-signal transduction and activator of transcription (STAT) and RAS-MAPK signaling pathways play vital roles in the pathogenic mechanism of asthenozoospermia (6). The present study examined the possible mechanism of JAK-STAT/PSMβ3 signal transduction pathways in asthenozoospermia, providing new theoretical bases and therapeutic targets for clinical study.

Materials and methods

Patients. Thirty cases of male sterility, diagnosed with asthenozoospermia at the General Hospital of Beijing Military Region (Beijing, China) from June 2015 to January 2016, were selected. After 3-5 days of abstinence, 3 ml semen samples obtained by masturbation were analyzed by a sperm quality analyzer, BD-8000G (Xuzhou City Beidou Technology & Trading Co., Ltd., Xuzhou, China). With reference to World Health Organization (WHO) standards on the diagnostic criteria of asthenozoospermia, the percentage of forward moving sperm (grade A + B) was <50% or grade A sperm movement was <25%. The age range of patients was 21-33 years, with an average age of 26.2±5.3 years. The age difference between the two groups of the General Hospital of Beijing Military Region and we received informed consent from all participating patients.

Percoll density gradient centrifugation for sperm collection. One and a half milliliters of 90% and 1.5 ml of 45% Percoll solutions were added to 15 ml centrifuge tubes (90% below, 45% above). Subsequently, 3 ml of semen was added. After
centrifugation (200 x g for 20 min), the supernatant was removed and sperm sediment at the bottom was washed with IVF-20 culture medium twice. The sperm precipitate was collected for later use.

Detection of JAK, STAT and PSMβ3 mRNA by reverse transcriptase quantitative polymerase chain reaction (RT-qPCR). Total RNA was extracted using RNA Pure, a high purity, total RNA, rapid extraction TRIZol reagent (Sigma-Aldrich, St. Louis, MO, USA), and cDNA was synthesized after assessing the purity and concentration of RNA. The primer concentrations were 10 pmol/µl. Primers were designed using Primer Premier 5.0 and were produced by Sangon Biotech Co. Ltd. (Shanghai, China). Primer sequences used were: JAK forward, 5'-TGCTGCAAGCAAGAAGTCG-3' and reverse, 5'-TTCTGCACCGTCTCTCTTCTTCT-3'; STAT forward, 5'-TAA CGAGGAACTGGTTTGAGT-3' and reverse, 5'-GCTTGC GTGTCAAGAAGTTT-3'; PSMβ3 forward, 5'-GAAATC GCATCATATAGTC-3' and reverse, 5'-CTGTGAGGAGT GACCTTG-3'; and β-actin forward, 5'-ATGTTTGAGAC GCTAAC-3' and reverse, 5'-GGCCATCCTTGGTCGGA GTCC-3'. According to the Applied Biosystems StepOne system, the reaction mixture contained 10 µl of 2X Smart Green PCR mix, 0.2 µl of each 10 pmol/µl primer, 1 µl of cDNA template, and 8.6 µl of ddH₂O for a total volume of 20 µl. The thermal profile was 40 cycles of pre-denaturation at 95°C for 10 min, denaturation at 94°C for 15 sec, 60°C for 1 min and extension at 72°C for 30 sec. The 2^(-∆∆Cq) relative quantitative method was used to show the relative expression levels of each target gene.

Measurement of p-JAK, p-STAT and PSMβ3 by western blot analysis. Each well of the plate was treated by 200 µl lysis buffer and maintained in an ice bath for 1 h. Total samples were then centrifuged for 15 min at 4°C. Protein concentration of the centrifuged supernatant was determined by Coomassie Brilliant Blue staining, and preserved at -80°C. Total protein (50 µg) from each sample was separated by electrophoresis. The samples were then transferred to PVDF membranes (90 V, 1.5 h at low temperature). Rabbit anti-human p-JAK (dilution: 1:500; cat. no.: ab138005), rabbit monoclonal STAT (dilution: 1:500; cat no.: ab32143) and mouse monoclonal PSMβ3 (dilution: 1:500; cat no.: ab28094), purchased from Abcam (Cambridge, MA, USA), were added after blocking and incubated at 4°C overnight, following four washes with phosphate-buffered saline (PBS). Horseradish peroxidase-conjugated goat anti-rabbit IgG (dilution: 1:2000; Abcam; cat no.: ab6721) was added to membranes and incubated at 4°C overnight. After three washes with PBS, the ECL enhanced chemiluminescence reagent kit was used for signal development. After thorough scanning of negative film, a semi-quantitative analysis was carried out on the bands by Shanghai Tianeng gel imaging processing system software. Data were normalized to levels of β-actin.

JAK inhibitor intervention. Cases without asthenozoospermia were randomly divided into the non-treated control group (n=15) and JAK inhibitor-treated group (n=15). The levels of PSMβ3 mRNA and protein were measured after application of the JAK inhibitor, AG-490. Immunofluorescent staining of PSMβ3 was observed by a laser confocal microscope. The cells were stained as follows: 25-min incubation with 0.25% H₂O₂, 15 min with 0.3% Triton X-100, three washes with PBS for 5 min, and 30-min incubation with 10% normal goat serum. Rabbit anti-human PSMβ3 monoclonal antibody (1:200) was then added and allowed to incubate at 4°C overnight. The samples were washed three times for 5 min, and biotin-labeled goat anti-rabbit IgG (1:100) was added and left to incubate at room temperature for 30 min. Three 5 min washes with PBS were performed again, and streptavidin-biotin complex-fluorescein isothiocyanate (SABC-FITC)-labeled secondary antibody (1:100) was added, and incubated at room temperature for 30 min. Next, we performed three washes with PBS for 5 min. The samples were stained with DAPI for 5 min, washed in PBS, and mounted using antifade mounting solution. Staining was observed under a confocal microscope (Nikon, Tokyo, Japan). For the blank control group, PBS was used instead of PSMβ3 antibody as described above.

Statistical analysis. Data were analyzed using SPSS 19.0 statistical software (Chicago, IL, USA), and quantitative data are presented as mean ± standard deviation. Comparisons between groups were analyzed by one-way ANOVA, and pairwise comparisons were analyzed using LSD or Bonferroni test. Differences were considered to indicate a statistically significant difference when P<0.05.

Results

Comparison of mRNA expression levels. The mRNA levels of JAK, STAT and PSMβ3 in asthenozoospermia were significantly lower than in the control group (P<0.05), and
the levels of PSMβ3 mRNA in the JAK inhibitor group were significantly downregulated when compared with the control non-treated group (P<0.05), which were approximately equal to the asthenozoospermia group (P>0.05) (Fig. 1).

Comparison of protein expression levels. The protein levels of JAK, STAT and PSMβ3 in asthenozoospermia were significantly lower than the control group (P<0.05), and the levels of PSMβ3 protein in the JAK inhibitor intervention group were significantly lower when compared with the control non-treated-group (P<0.05), which were approximately equal to the asthenozoospermia group (P>0.05) (Fig. 2).

Immunofluorescent staining of PSMβ3. PSMβ3 was mainly expressed in round-headed sperm, and less expressed in asthenozoospermia (Fig. 3).

Discussion

JAKs are a family of protein tyrosine kinases that are involved in cell signaling downstream of cytokine receptors, which can activate signal transduction and activator of transcription (STAT) proteins. A previous study reported that the JAK-STAT pathway was one of the most common signaling pathways in vivo (7). JAK-STAT signaling is involved in cell proliferation, differentiation, survival, apoptosis, mediating immune disorders and tumor formation. Wawersik et al found that the JAK-STAT pathway participates in the process of male germ cell proliferation and differentiation (8). Issigonis et al reported that the JAK-STAT pathway functions in maintaining the microenvironment necessary for germ cells to survive (9).

Previous studies have confirmed that the membrane voltage-dependent Ca^{2+} channels are involved in the capacitation of sperm and the acrosome reaction (10). In addition, the Ca^{2+}-dependent regulation of sperm motility is mainly mediated by related Ca^{2+} channels on the sperm cell membrane. Ca^{2+} channels are transmembrane protein complexes, generally composed of four subunits: α1, α2/δ, β and γ. The most important subunit is α1, which is the infiltration pathway component of all voltage-gated Ca^{2+} channels and is also the binding site of voltage-sensitive, channel-specific drugs and toxins (11). Mutations in the α1 subunit can lead to reduced sperm motility, causing asthenozoospermia and resulting in male infertility (12). Other studies found that sperm cation channel (CatSper) family proteins were specifically expressed on sperm cell membranes, and played an important role in the regulation of sperm hyperactivation (13). CatSper channels are known Ca^{2+} channels that are expressed in spermatogenic cells and mature sperm. CatSper1 and CatSper2 are considered to be necessary for mouse sperm motility and fertility, and their absence can result in infertility (14). There are two main modes for Ca^{2+} transport out of cells: Sodium-Ca^{2+} exchangers (NCX) and PMCs. PMCs have a high affinity for Ca^{2+}, but small capacity. PMCs are primarily responsible for the fine control of Ca^{2+} transport and play an important role in cell signal transduction (15). PMCs belongs to the p-type ATPase family and can form a high-energy phosphorylated intermediate in the reaction cycle. Phosphorylated PMCs exist in two conformational states, E1 and E2, each being alternative for the other (16). PMCs in mammals are encoded by four genes that encode PMCA1-4, and are located on human...
chromosomes 12, 3, 1 and X. The most important method of regulating PMCA activity is interaction with calmodulin (17). The combination of calmodulin and PMCA depends on Ca\(^{2+}\). When Ca\(^{2+}\) is lower than the Km value needed for the combination of PMCA and calmodulin, PMCA remains inactivated by calmodulin. Only when Ca\(^{2+}\) is higher than the Km value, can the two bind with each other in a Ca\(^{2+}\)-dependent manner. PMCAs play an important role in regulating the spatial and temporal dynamic distribution of intracellular Ca\(^{2+}\). Furthermore, they participate in multiple signaling pathways related to intracellular Ca\(^{2+}\). The interaction between PMCAs and other PDZ domain-containing proteins is one of the ways by which PMCAs participate in signal transduction (18).

Research subjects in most related studies are animals such as mice; thus, it remains to be further analyzed whether sperm vitality, Ca\(^{2+}\) channel status and Ca\(^{2+}\)-dependent regulation of PMCAs apply to humans (19). The present study demonstrates that the levels of JAK, STAT and PSMβ3 mRNA in asthenozoospermia were decreased significantly, and the levels of p-JAK, p-STAT and PSMβ3 protein in asthenozoospermia were also reduced. The differences were statistically significant. The mRNA and protein levels of PSMβ3 were decreased after the application of a JAK inhibitor in the control group, and were approximately equal to the asthenozoospermia group. PSMβ3 was mainly expressed in round-headed sperm, and less expressed in asthenozoospermia. This finding suggests that the JAK-STAT/PSMβ3 signal transduction pathway may be involved in the pathogenic mechanism of asthenozoospermia. Specifically how the JAK-STAT pathway regulates the expression of PSMβ3 requires further exploration.

References

1. Pan T and Huang YH: Ouabain and asthenospermia. Zhonghua Nan Ke Xue 21: 1129-1133, 2015 (In Chinese).
2. Shen S, Wang J, Liang J and He D: Comparative proteomic study between human normal motility sperm and idiopathic asthenozoospermia. World J Urol 31: 1395-1401, 2013.
3. Bader M and Steller H: Regulation of cell death by the ubiquitin-proteasome system. Curr Opin Cell Biol 21: 878-884, 2009.
4. Gunaratne HJ, Neill AT and Vacquier VD: Plasma membrane calcium ATPase is concentrated in the head of sea urchin spermatozoa. J Cell Physiol 207: 413-419, 2006.
5. Segawa K, Kurata S and Nagata S: Human type IV P-type ATPases that work as plasma membrane phospholipid flipases and their regulation by caspase and calcium. J Biol Chem 291: 762-772, 2016.
6. Ding YQ, Jiang H and Wang CL: ERK and P38MAPK expressions and human sperm motility. Zhonghua Nan Ke Xue 17: 809-812, 2011 (In Chinese).
7. DeMarco SJ and Strehler EE: Plasma membrane Ca\(^{2+}\)-ATPases: from generic Ca\(^{2+}\) sump pumps to versatile systems for fine-tuning cellular Ca\(^{2+}\). Biochem Biophys Res Commun 460: 26-33, 2015.
8. DeMarco SJ and Strehler EE: Plasma membrane Ca\(^{2+}\)-ATPase isoforms 2b and 4b interact promiscuously and selectively with members of the membrane-associated guanylate kinase family of PDZ (PSD95/Dlg/ZO-1) domain-containing proteins. J Biol Chem 276: 21594-21600, 2001.
9. Pérez-Cerezales S, López-Cardona AP and Gutiérrez-Adán A: Progesterone effects on mouse sperm kinetics in conditions of viscosity. Reproduction 151: 501-507, 2016.