Wenzhi ZENG1,3*, Yuchao LU1, Amit Kumar SRIVASTAVA2, Thomas GAISER2 and Jiesheng HUANG1

PARAMETER SENSITIVITY AND UNCERTAINTY OF RADIATION INTERCEPTION MODELS FOR INTERCROPPING SYSTEM

Abstract: Estimating the interception of radiation is the first and crucial step for the prediction of production for intercropping systems. Determining the relative importance of radiation interception models to the specific outputs could assist in developing suitable model structures, which fit to the theory of light interception and promote model improvements. Assuming an intercropping system with a taller and a shorter crop, a variance-based global sensitivity analysis (EFAST) was applied to three radiation interception models (M1, M2 and M3). The sensitivity indices including main (Si) and total effects (STi) of the fraction of intercepted radiation by the taller (ftaller), the shorter (fshorter) and both intercrops together (fall) were quantified with different perturbations of the geometric arrangement of the crops (10-60 %). We found both ftaller and fshorter in M1 are most sensitive to the leaf area index of the taller crop (LAI_taller). In M2, based on the main effects, the leaf area index of the shorter crop (LAI_shorter) replaces LAI_taller and becomes the most sensitive parameter for fshorter when the perturbations of widths of taller and shorter crops (W_taller and W_shorter) become 40 % and larger. Furthermore, in M3, ftaller is most sensitive to LAI_taller while fshorter is most sensitive to LAI_shorter before the perturbations of geometry parameters becoming larger than 50 %. Meanwhile, LAI_taller, LAI_shorter, and K_taller are the three most sensitive parameters for fall in all three models. From the results we conclude that M3 is the most plausible radiation interception model among the three models.

Keywords: intercropping, global sensitivity analysis, Extended Fourier Amplitude Sensitivity Test, radiation interception, uncertainty analysis

Introduction

Intercropping is an agricultural practice of cultivating two or more crop species simultaneously in the same field [1]. Compared to sole cropping, one of the main advantages of intercropping is an increase of the interception of solar radiation [2, 3]. Zhang et al. [4] compared four wheat and cotton intercropping systems with sole cropping systems and found the accumulated light interception per unit cultivated area in intercropping systems were higher than sole-cropping systems. Coll et al. [5] also indicated that maize-soybean and sunflower-soybean intercrops resulted in an improved radiation productivity compared with soybean sole crops. Meanwhile, many studies have shown

1 State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan 430072, China, phone +86 02768772215
2 Crop Science Group, Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Katzenburgweg 5, D-53115 Bonn, Germany
3 State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing 100038, China
* Corresponding author: zengwenzhi1989@whu.edu.cn
relationships between dry matter production and cumulative intercepted photosynthetically active radiation (PAR) [6-9]. Haverkort and Bicamumpala [10] defined the slope of the relationship between total dry matter in periodic harvests and corresponding cumulative intercepted radiation up to the time of harvest as radiation use efficiency (RUE) and many crop models simulate crop production based on the RUE. Therefore, it is important to determine intercepted PAR in both sole and intercropping systems. Generally, intercepted PAR in sole cropping system could be easily obtained by experiments. However, measurement of radiation interception in intercropping systems is difficult due to the spatially heterogeneous canopy [11]. For reducing the labour cost, it is necessary to develop modelling approaches to simulate PAR interception for intercropping systems. Another motivation for modelling intercepted PAR of intercrops is the optimization of intercropping arrangement, which also has significant effects for the interception of PAR, but it is very time-consuming and costly to be totally determined by experiments [2, 11]. Meanwhile, good models for intercepted PAR of intercrops also benefit regional or large scale assessment of the impact of monoculture versus intercropping. In the past few decades, several mathematical models for radiation capture in the intercropping system were developed. For example, Sinoquet and Bonhomme [12] proposed a radiation-transfer model based on a turbid-medium analogy; Tsubo and Walher [13] developed an explanatory model to quantify instantaneous radiation transmission in the maize-soybean intercropping system. However, due to a large number of input variables and complicated mathematics is required, these models were not widely used although they might give satisfactory descriptions of light distribution in intercropping systems. To increase the practicability, Tsubo and Walher [13] also proposed a statistical model (hereafter noted as M1 model) based on the assumption that the canopy structure of an additive intercropping system could be divided into several distinct layers by height and they also did some experiments and proved that the statistical model is equal to the geometrical model for radiation simulation. However, researches also pointed out that M1 model may result in large errors for strip intercropping systems [14, 15] and proposed an improved row-crop radiation-transmission model (hereafter noted as M2 model) based on the approach first developed by Gijzen and Goudriaan [16] considering both architectural and geometrical relationships. Many other researchers also developed radiation inception model for intercropping system based on the same approach and the model developed by Gou et al. [11] is one typical representative (hereafter noted as M3 model). However, due to the huge cost of intercropping experiments, data used for validating these models are usually limited. For example, in the study of Wang et al. [15], actual measurements of PAR were only conducted on a few days, and no model evaluation was shown. Furthermore, models might have some structure shortcomings and could give some errors when extreme inputs were given, but this issue is hard to be detected by limited experiments. Sensitivity analysis is an approach for evaluating the response of model outputs to variation in model input parameters, for quantifying the importance of input parameters, and for exploring model structure [17, 18]. Sensitivity analysis can be classified into local and global categories according to the strategy used to explore the parameter space [19-21]. Local methods change one parameter at a time around a basis point while keeping the other parameters at nominal values. Although the local method has a low computational cost, it has a crucial shortcoming that it could not detect interactions between parameters which are very common in crop models. But global sensitivity analysis overcomes this drawback and can explore the entire multi-dimensional parameter space simultaneously and quantified both the single and
interactive effects of parameters for specific output [22]. In this study, we applied the extended Fourier Amplitude Sensitivity Test (EFAST) global sensitivity analysis to study the sensitivity of three outputs - (1) fraction of intercepted PAR by taller crop (f_{taller}), (2) fraction of intercepted PAR by shorter crop ($f_{shorter}$), and (3) fraction of PAR intercepted by two intercrops (f_{all}) - to different crop parameters in three widely used radiation interception models. The effects of parameter variation ranges and the uncertainty in the three outputs were also evaluated. The results were verified by interpretation against the structure of the three radiation interception models and the advantages and limitations of these models were also discussed.

Materials and methods

Radiation interception models

Three radiation interception models were evaluated in our study. The first model ($M1$) was proposed by Tsubo and Walher [13].

![Schematic illustration of the three radiation interception models applied in a stripwise intercropping system: a) model 1, b) model 2 and c) model 3](image-url)
In *M1*, two canopy layers are defined in an intercropping system and their boundaries are determined by the canopy heights of the two intercrops. The upper layer comprises only the taller crop while the lower layer consists of both crops. The fractions of radiation intercepted by the intercrops are determined by crop heights (*H*) and *LAI* (*Fig. 1a*) by directly applying the Beer’s law:

\[
I_j = I_{j0} \left[1 - \exp \left(-k_j LAI_{j1} - k_j LAI_{j2} \right) \right]
\]

where \(I_j\) is the daily amount of light intercepted within layer \(j\); \(I_{j0}\) is amount of solar radiation entering the top of layer \(j\) and \(k_{j1}, k_{j2}\) and \(LAI_{j1}, LAI_{j2}\) are the radiation extinction coefficients and leaf area indices contained within layer \(j\) for two crops respectively.

![Schematic diagram of the determination of fractions of PAR intercepted by intercrops in model 2](image)

The second model (*M2*) was constructed by Wang et al. [15] for strip intercropping systems (*Fig. 1b*). In *M2*, the development of intercrops was separated into three phases. More exactly, phase 1 is the period after the emergence of crop 1 and before the emergence of crop 2 (crop 1 only); phase 2 is the period after the emergence of crop 2 and before the harvest of crop 1 (co-growth period); phase 3 is after the harvest of crop 1 and before the harvest of crop 2 (crop 2 only). For calculating the intercepted radiation of intercrops, the incident *PAR* on intercropped canopy is divided into 10 different parts (*Fig. 2*) and
Parameter sensitivity and uncertainty of radiation interception models for intercropping system

the values of each part were calculated separately by combining the strip-planted model with a horizontally homogeneous mixed canopy model based on the studies of Brutsaert et al. [23], Keating and Carberry [2], Pronk et al. [24] and Zhang et al. [4]. Besides, H and LAI, the inputs of $M2$ also include the width of intercrops (Fig. 1b). The basic theories for the third model ($M3$) are similar with $M2$. However, two additional phases containing the exchange of height of crop 1 and crop 2 and the height of crop 1 becomes equal to crop 2 are considered. In addition, $M3$ also considers the space between different crop strips (S_{taller} and $S_{shorter}$, Fig. 1c). For derivations and details of $M1$, $M2$, and $M3$, please refer to Tsubo and Walher [13], Wang et al. [15], and Gou et al. [11].

Sensitivity analysis method

The extended Fourier Amplitude Sensitivity Test ($EFAST$) is used as a global sensitivity analysis method in our study. $EFAST$ is a variance-based method which uses a variance ratio to estimate the importance of parameters based on the variance decomposition. When applying it to $M1$, $M2$, and $M3$, the variance of the output Y can be decomposed into the effects of the input parameters (P_1, P_2, \ldots, P_k):

$$V(Y) = \sum_{i=1}^{k} V_i + \sum_{i=1}^{k} \sum_{j>i}^{k} V_{ij} + \cdots + V_{1,2,\ldots,k}$$ (2)

where V_i denotes the variance allocated to the i^{th} parameter P_i. V_{ij} denotes the variance allocated to the interactions between P_i and P_j. $V(Y)$ is the total variance of Y caused by the uncertainties of all parameters. The sensitivity of output Y to P_i is quantified by the ratio of the variance caused by P_i to the $V(Y)$ %, which is the first-order effects (S_i, Eq. (3)):

$$S_i = \frac{V_i}{V(Y)} = \frac{V[E(Y|P_i)]}{V(Y)}$$ (3)

where $E(Y|P_i)$ is the conditional expectation of Y with a specific P_i value. Furthermore, the total-order sensitivity index of a single parameter (index i) and the interaction of more parameters that involve index i and at least one index $j \neq i$ from 1 to k:

$$ST_i = \sum_{j>i} S_j + \sum_{j \neq i} S_{ij} + \sum_{1}^{k} S_{1...k}$$ (4)

Generally, ST_i only contained the first two terms in Eq. (4). The first-order (main sensitivity) index (S_i) reflects the sensitivity of parameter i by itself while total-order (total sensitivity) index (ST_i) indicates the contributions of parameter i and the interactions between parameter i and other parameters for the outputs. For more details about $EFAST$, please refer to Sobol [25], Zhao et al. [22], Varella et al. [17], and Wang et al. [26].

Sensitivity analysis numerical experiment

The parameters for the three models could be divided into two types named crop growth parameters and intercropping geometry parameters, respectively. The range of crop growth parameters were determined from a very small value to a very large value based on both common sense and previous researches. More exactly, the lower and upper limit for crop height (H_{taller} and $H_{shorter}$) were set as 0.01 m to 2 m based on the height of typical cereal crops such as wheat [4, 8] and maize [13-15]. Similarly, the lower and upper limit for leaf area index (LAI_{taller} and $LAI_{shorter}$) were set as 0.01 to 10 respectively. The range of
extinction coefficient (K_{taller} and $K_{shorter}$) was determined as 0.32 to 1 from Gonzalez-Amaro et al. [27]. Different from the crop growth parameters, the default values for intercropping geometry parameters were based on Gou, et al. [11]. In addition, a more detailed numerical experiment is performed on the intercropping geometry parameters (W and S for model 2 and model 3 respectively). The geometry parameters variation ranges are separately set to those cases, which are $\pm 10\%$, $\pm 20\%$, $\pm 30\%$, $\pm 40\%$, $\pm 50\%$, and $\pm 60\%$ perturbations of the default values (Table 1). In fact, these cases proportionally magnify the lower and upper boundaries of the range of the geometry parameters, and with the boundary condition amplified, the parameter space is also enlarged. The outputs of the three radiation interception models are fraction of \textit{PAR} intercepted by the taller crop (f_{taller}), fraction of \textit{PAR} intercepted by shorter crop ($f_{shorter}$), and fraction of \textit{PAR} intercepted by both intercrops (f_{all}).

Table 1

Variables	Default	10%	20%	30%	40%	50%	60%
W_{taller} [m]	0.75	0.65	0.56	0.44	0.39	0.31	0.25
$W_{shorter}$ [m]	0.63	0.56	0.48	0.40	0.35	0.31	0.26
S_{taller} [m]	0.44	0.39	0.35	0.31	0.29	0.26	0.22
$S_{shorter}$ [m]	0.44	0.39	0.35	0.31	0.29	0.26	0.22

Uncertainty analysis

We set the sample size $N = 1000$ for the sensitivity analysis to attain a stable convergence. So a total number of 10^4 (1000×2×6+1000) simulations were run, with 1 perturbation for model 1 and 6 perturbations for model 2 and model 3 respectively. The parameter generation and indices calculation of \textit{EFAST} were applied by SimLab software with reference to Shi et al. [28], Wang et al. [26] and Sellier et al. [29]. We also collected the results for three output variables of fraction of \textit{PAR} intercepted by taller crop (f_{taller}), fraction of \textit{PAR} intercepted by shorter crop ($f_{shorter}$), and fraction of \textit{PAR} intercepted by both intercrops (f_{all}) of three models. Box plot was used to illustrate the uncertainty in outputs derived from the variation in the crop growth and intercropping geometrical parameters.

Results and discussion

Sensitivity of outputs to crop and parameters

In $M1$, the effects of the six parameters on three fractions of intercepted \textit{PAR} and the sum of these are similar except of some small difference. f_{taller} is most sensitive to LAI_{taller} when considering both S_i and ST_i (Fig. 3). Furthermore, based on S_i, K_{taller} is the second sensitive parameter for f_{taller} in $M1$ (Fig. 3a). The reasons of the order of LAI_{taller} and K_{taller} are both LAI_{taller} and K_{taller} are the exponential terms of the formulas in $M1$ [13]. Meanwhile, the S_i value of $f_{shorter}$ indicates that $f_{shorter}$ is also most sensitive to LAI_{taller} (Fig. 4a). This finding is caused by the theory of $M1$, which divides intercrops’ canopy into two layers and the shade of the taller crop could significantly affect the \textit{PAR} interception of the shorter crop. However, this is not in accordance with our common sense and some previous studies [30-32]. $LAI_{shorter}$ is the most sensitive parameter for $f_{shorter}$ because it is also in the
exponential term of the formulas in $M1$ [13]. For f_{taller}, LAI_{taller} and LAI_{shorter} are again the first two most sensitive sensitive parameters, which indicates that the taller crop plays more important role in PAR interception between intercrops and is also in accordance with f_{taller} and f_{shorter} (Fig. 5). However, the sensitivity order of parameters determined by S_i and ST_i for f_{taller} and f_{shorter} are not the same except for the most sensitive parameter (Figs. 3b and 4b). It is caused by the interactive effects of different parameters in the formulas in $M1$.

Fig. 3. Main and total sensitivity indices of the fraction of light interception of the taller crop ($FPAR_{\text{taller}}$) as affected by six input variables in model 1 (K is extinction coefficient; H is crop height; LAI is leaf area index)
Fig. 4. Main and total sensitivity indices of the fraction of light interception of the shorter crop (FPAR_{shorter}) as affected by six input variables in model 1 (K is extinction coefficient; H is crop height; LAI is leaf area index)

In M_2, similar to M_1, LAI_{taller} is also the most sensitive parameters for f_{taller} in both S_i and ST_i because it is part of the exponential term of the formulas in M_2 [15] (Fig. 6). An interesting finding is that $LAI_{shorter}$ replaces LAI_{taller} and becomes the most sensitive parameter for $f_{shorter}$ when the perturbations of W_{taller} and $W_{shorter}$ become 40% or larger based on S_i (Fig. 7a).
According to the theory of M_2, the PAR above shorter crop can be attenuated by shorter crop’s canopy before reaching the soil surface, and the attenuated fraction is calculated from H_{shorter} and W_{shorter}, which is one component of f_{shorter} ($FI7$ in Fig. 2). Meanwhile, LAI_{taller} has no effect on the calculation of $FI7$ [15]. In addition, the S_i and ST_i of LAI_{shorter} and LAI_{taller} are very close to each other in f_{shorter}, which is different but more reasonable than in $M1$ (Fig. 7). S_i and ST_i for the fraction f_{all} in $M2$ indicate that the taller crop is more important and LAI_{taller} is the most sensitive parameter for PAR interception in $M2$ (Fig. 8).
In M_3, LAI_{tall} is the most sensitive parameter for f_{tall} and K_{tall} and W_{tall} are additional sensitive parameters for f_{tall} (Fig. 9). Furthermore, when the perturbation of W_{tall} becomes 60%, the sensitivity of W_{tall} is larger than K_{tall} for f_{tall} based on S_i (Fig. 9a). Meanwhile, H_{tall} and H_{short} also have high ST_i for f_{tall} which is caused by the interactive effects of parameters in M_3 (Fig. 9b).
Furthermore, for the effects on f_{shorter}, W_{shorter} replaces LAI_{shorter} and becomes the most sensitive parameter based on S_j when the perturbation of W_{shorter} becomes 60% (Fig. 10a). This finding is because the contribution of W_{shorter} increases with its perturbation in the calculation of compressed LAI of shorter crops [11]. Meanwhile, the sensitivity of W_{taller}, W_{shorter}, S_{taller}, and S_{shorter} also increases with perturbation for f_{taller}, f_{shorter}, and f_{all} when considering both S_j and ST_i (Figs. 9 and 10).
Fig. 8. Main and total sensitivity indices of the fraction of light interception of the two crops ($FPAR_{all}$) as affected by six input variables in model 2 (K is extinction coefficient; H is crop height; LAI is leaf area index; W is the width of crop strips; S is the space between crop strips)

As in $M3$, S_i and ST_i of $LAI_{shorter}$ for fall is much larger than LAI_{taller}, $M3$ seems to be more reasonable for calculating PAR interception of intercrops than $M1$ and $M2$ (Figs. 9 and 10). Similar with $M2$, the taller crop in $M3$ is more important and LAI is the most sensitive parameter for PAR interception in intercropping systems (Fig. 11).
Parameter sensitivity and uncertainty of radiation interception models for intercropping system

449

Fig. 9. Main and total sensitivity indices of the fraction of light interception of the taller ($F_{\text{PAR}_{\text{taller}}}$) as affected by six input variables in model 3 (K is extinction coefficient; H is crop height; LAI is leaf area index; W is the width of crop strips; S is the space between crop strips)

This finding is also in accordance with $M2$ (Figs. 6 and 7) and indicates that the effects of widths and spaces on PAR interception can be reasonably reflected in both $M2$ and $M3$. In addition, both S_{taller} and S_{shorter} have smaller S_t and ST_t than W_{taller} and W_{shorter} for f_{taller} and f_{shorter} respectively (Figs. 9 and 10). But this phenomenon might be caused by the lower and upper boundaries of space both being smaller than width (Table 1).
Fig. 10. Main and total sensitivity indices of the fraction of light interception of the shorter (FPAR$_{shorter}$) as affected by six input variables in model 3 (K is extinction coefficient; H is crop height; LAI is leaf area index; W is the width of crop strips; S is the space between crop strips).
Parameter sensitivity and uncertainty of radiation interception models for intercropping system

Uncertainty of the outputs resulting from cultivar parameters

The fractions of intercepted PAR are about 0-1, 0-0.9, and 0-0.8 for the taller crop in M_1, M_2, and M_3 respectively (Fig. 12). For the shorter crop, the ranges are 0-0.9, 0-0.8, and 0-0.5 in M_1, M_2, and M_3 respectively. These findings indicate that M_3 has the smallest uncertainty for the fractions of intercepted PAR. Furthermore, the uncertainty of the fractions of intercepted PAR increased slightly but are generally stable with the increase of perturbation in both M_2 and M_3 (Fig. 12).
Fig. 12. The empirical frequency distributions for the fractions of intercepted PAR for taller, shorter and the two intercrops in three different models. The line in the box is the median, the edges of the box are lower hinge (the 25%) and the upper hinge (the 75%), the up and low boundary line out of the box indicate the maximum and minimum value and the cross symbols near the up and low boundaries are the 99% and 1% hinges respectively. Sub-plots a), b), and c) indicate model 1, model 2, and model 3 respectively.

Based on the median value in Figure 12, the fraction of intercepted PAR for taller and two intercrops decreases from M_1 to M_3. For example, the median fraction of intercepted PAR for the taller crop in M_1 is about 0.82, while it is only about 0.64 and 0.38 in M_2 and M_3 respectively. Meanwhile, the fraction of intercepted PAR for shorter crop in M_1, M_2, and M_3 is about 0.18, 0.28, and 0.22 respectively. Therefore, in M_1 the two crops intercept almost 100% of PAR while in M_2 and M_3 they intercept about 90 and 60% of PAR. The difference of intercepted PAR among M_1, M_2, and M_3 is because M_2 considers the
width of crop strips and M_3 considers both width of crop strips and space between intercrops. The experimental data presented by Gou et al. [11] and Wang et al. [15] pointed out that M_1 could overestimate the intercepted PAR in intercropping systems, thus confirming our results.

Advantages and limitations of the radiation interception models

Among all three models analyzed in our study, M_1 needs the lowest number of parameters. But it can only consider a horizontally homogeneous leaf area and cannot simulate strip intercropping systems. Meanwhile, LAI_{taller} is the most sensitive parameter for $f_{shorter}$ in M_1, which is not plausible and indicates that there might be some shortcomings in the structure of the equations governing M_1. M_2 can take account for the width of strip intercropping systems but it still cannot consider the spaces between different crop strips. This shortcoming of M_2 is improved by M_3, which can consider both width and space between intercrops. Meanwhile, the medians of intercepted PAR in M_1 and M_2 are both higher than 90%, which is obviously an overestimation compared with previous studies [33-35]. In addition, M_2 also has some structural shortcomings that might give us significantly unreasonable estimation of intercepted PAR. This is shown in the following example of an intercropping system with the crop and arrangement parameters listed in Table 2.

Table 2

Variables	Unit	Values
K_{taller}	-	0.61
$K_{shorter}$	-	0.6
H_{taller}	[m]	1.2
$H_{shorter}$	[m]	1.18
LAI_{taller}	-	2.2
$LAI_{shorter}$	-	2
W_{taller}	[m]	0.2
$W_{shorter}$	[m]	0.8
S_{taller}	[m]	0
$S_{shorter}$	[m]	0

In this assumed intercropping system, the height H, LAI, and K of the taller crop are all larger than of the shorter crop while the W_{taller} and $W_{shorter}$ are 0.2 m and 0.8 m respectively. Based on our common sense, the f_{taller} should be larger than 20% of f_{all} while the estimated f_{taller} by M_2 accounts for only 17.98% of f_{all}. Meanwhile, if we use the same parameters as inputs for M_3, f_{taller} accounts for 20.93% of f_{all}. Therefore, we deem that M_3 is the optimal radiation interception model for intercropping systems among the three models. However, there are still some shortcomings of M_3. Firstly, although M_3 considers the space between strips of intercrops, it cannot consider the space between crops in the same strip and therefore it cannot consider plant density, which is also a factor affecting PAR interception [36]. Secondly, it is still ambiguous for determining the strip width in M_3. More exactly, it is reasonable to calculate strip width based on the canopy width of intercrops [37]. However, it is still difficult to simulate canopy width. Thirdly, M_3 also does not consider the boundary effects of PAR interception in an intercropping system which might have...
some complex effects [38]. Furthermore, the importance of parameters also change with the perturbations of geometry parameters (Figs. 9-11), which indicated that there are some unknown interactions between crop growth and geometry parameters on the light interception in M_3. In addition, all the three radiation interception models can not consider more than two intercrops and the light quality [3].

Conclusion

Sensitivity of three outputs (f_{taller}, $f_{shorter}$, and f_{all}) of three radiation interception models (M_1, M_2, and M_3) to different geometry and crop parameters for intercropping systems were analyzed using a variance-based global sensitivity analysis method (EFAST). LAI_{taller} is the most sensitive parameter for both f_{taller} and $f_{shorter}$ in M_1. Similarly, LAI_{taller} is still the most sensitive parameter for both f_{taller} and $f_{shorter}$ in M_2 until the perturbations of W_{taller} and $W_{shorter}$ become 40% and larger than 40%, then $LAI_{shorter}$ replaces LAI_{taller} and becomes the most sensitive parameter for $f_{shorter}$. However, in M_3, LAI_{taller} is the most sensitive parameter for f_{taller} while $LAI_{shorter}$ is the most sensitive parameter for $f_{shorter}$ before the perturbations of geometry parameters becoming larger than 50%. In both M_2 and M_3, the sensitivity of W_{taller}, $W_{shorter}$, S_{taller}, and $S_{shorter}$ increases with their perturbations for f_{taller}, $f_{shorter}$, and f_{all}. Meanwhile, LAI_{taller}, $LAI_{shorter}$, and K_{taller} are three most sensitive parameters for f_{all} in all three models. In addition, the inconsistency of the order of S_i and ST_i and the effects of perturbations also indicate there have some unknown interactions between crop growth and geometry parameters for the light interception in the intercropping systems. The sensitivity analysis also indicated some structure limitations for these radiation interception model, which were further proved by the uncertainly analysis. More exactly, M_1 and M_2 could overestimate the intercepted PAR for intercropping system and even though M_3 is the optimal method among the three, it still needs to be improved by considering plant density, canopy width, boundary effects, and more than two intercrops in future studies.

In addition, this study showed that EFAST can be employed to investigate the importance of parameter to various outputs in the radiation interception model. Meanwhile, it also give us some information about the limitations of model from the view of model theory and structure. This could be useful for improving the availability of radiation interception model and then benefiting the crop production prediction for intercropping systems by combining radiation interception models with process-based crop models.

Nevertheless, there are still some limitations of this study. Firstly, although we considered up to 60% of the intercropping geometry parameters and a relatively large range for the crop growth parameters, it was still inevitable to ignore some extreme scenarios, which might affect the results of the EFAST for sensitivity analysis. Secondly, the present study only indicated the sensitivity of the parameters in three radiation interception models from the view of mathematic. However, the mechanism of these parameters in the three models and their interactions still need further studies.

Acknowledgements

We are grateful for financial support from the Major Program of the National Natural Science Foundation of China (NSFC) (Grant Nos. 51879196 and 51790533) and the Open Research Fund of the State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin (China Institute of Water Resources and Hydropower Research) (Grant No. IWHR-SKL-KF201814).
Parameter sensitivity and uncertainty of radiation interception models for intercropping system

References

[1] Mead R, Willey RW. The concept of a ‘Land Equivalent Ratio’ and advantages in yields from intercropping. Experimental Agricult. 2008;16(3):217-28. DOI: 10.1017/S0014479700010978.

[2] Keating BA, Carberry PS. Resource capture and use in intercropping: solar radiation. Field Crops Res. 1993;34(3):273-301. DOI: 10.1016/0378-4920(93)90118-7.

[3] Liu X, Rahman T, Song C, Su B, Yang F, Yong T, et al. Changes in light environment, morphology, growth and yield of soybean in maize-soybean intercropping systems. Field Crops Res. 2017;200:38-46. DOI: 10.1016/j.fcr.2016.10.003.

[4] Zhang L, van der Werf W, Bastiaans L, Zhang S, Li B, Spiertz JHJ. Light interception and utilization in relay intercrops of wheat and cotton. Field Crops Res. 2008;107(1):29-42. DOI: 10.1016/j.fcr.2007.12.014.

[5] Coll L, Cerrudo A, Rizzalli, R, Monzon JP, Andrade FH. Capture and use of water and radiation in summer intercrops in the south-east Pampas of Argentina. Field Crops Res. 2012;134:105-13. DOI: 10.1016/j.fcr.2012.05.005.

[6] Zhou Z, Plauborg F, Kristensen K, Andersen MN. Dry matter production, radiation interception and radiation use efficiency of potato in response to temperature and nitrogen application regimes. Agricult Forest Meteorology. 2017;232:595-605. DOI: 10.1016/j.agrformet.2016.10.017.

[7] Kawasaki Y, Tanaka Y, Katsura K, Purcell LC, Shiraiwa T. Yield and dry matter productivity of Japanese and US soybean cultivars. Plant Production Sci. 2016;19(2):257-66. DOI: 10.1080/1343943X.2015.1133235.

[8] Sieling K, Böttcher U, Kage H. Dry matter partitioning and canopy traits in wheat and barley under varying N supply. Europ J Agron. 2016;74:1-8. DOI: 10.1016/j.eja.2015.11.022.

[9] Sadras VO, Villalobos FJ, Fereres E. Radiation Interception, Radiation Use Efficiency and Crop Productivity. In: Principles of Agronomy for Sustainable Agriculture. 2016;169-88. DOI: 10.1007/978-3-319-46116-8_13.

[10] Gijzen H, Goudriaan J. A flexible and explanatory model of light distribution and photosynthesis in row crops. Agricult Forest Meteorology. 1989;48(1):1-20. DOI: 10.1016/0168-1923(89)90004-X.

[11] Varella H, Guérif M, Buis S. Global sensitivity analysis measures the quality of parameter estimation: The case of soil parameters and a crop model. Environ Modelling Software. 2010;25(3):310-9. DOI: 10.1016/j.envsoft.2009.09.012.

[12] Gao L, Bryan BA, Nolan M, Connor JD, Song X, Zhao G. Robust global sensitivity analysis under deep uncertainty via scenario analysis. Environ Modelling Software. 2016;76:154-66. DOI: 10.1016/j.envsoft.2015.11.001.

[13] Iooos B, Lemaitre P. A Review on Global Sensitivity Analysis Methods. Uncertainty Management in Simulation-Optimization of Complex Systems. 2015;101-22. DOI: 10.1016/j.ijmpf.2015.01.011.

[14] Lei G, Zeng W, Zhu J, Zha Y, Fang Y, Song Y, et al. Quantification of leaf growth, height increase, and compensatory root water uptake of sunflower in heterogeneous saline soils. Agronomy J. 2019;111(3):1-18. DOI: 10.1016/j.agronj.2018.06.0418.

[15] Zeng W, Lei G, Zha Y, Fang Y, Wu J, Huang J. Sensitivity and uncertainty analysis of the HYDRUS-1D model for root water uptake in saline soils. Crop Pasture Sci. 2018;69:163-73. DOI: 10.1071/CP17020.

[16] Zhao G, Bryan BA, Song X. Sensitivity and uncertainty analysis of the APSIM-wheat model: Interactions between cultivar, environmental, and management parameters. Ecol Modelling. 2014;279:1-11. DOI: 10.1016/j.ecolmodel.2014.02.003.
[23] Brutsaert W. Heat and mass transfer to and from surfaces with dense vegetation or similar permeable roughness. Boundary-Layer Meteorology. 1979;16(4):365-88. DOI: 10.1007/bf02220492.

[24] Pronk AA, Goudriaan J, Stilma E, Challa H. A simple method to estimate radiation interception by nursery stock conifers: a case study of eastern white cedar. NJAS - Wageningen J Life Sci. 2003;51(3):279-95. DOI: 10.1016/S1573-5214(03)80020-9.

[25] Sobol IM. On sensitivity estimation for nonlinear mathematical models. Keldysh Appl Math Institute. 1990;2(1):112-8. DOI: 10.18287/0134-2452-2015-39-4-459-461.

[26] Wang F, Mladenoff DJ, Forrester JA, Keough C, Parton WJ. Global sensitivity analysis of a modified CENTURY model for simulating impacts of harvesting fine woody biomass for bioenergy. Ecol Modelling. 2013;259:16-23. DOI: 10.1016/j.ecolmodel.2013.03.008.

[27] González-Amaro RM, Martínez-Bernal A, Basurto-Peña F, Vibrans H. Crop and non-crop productivity in a traditional maize agroecosystem of the highland of Mexico. J Ethnobiol Ethnomedicine. 2009;5(1):38. DOI: 10.1186/1746-4269-5-38.

[28] Shi R, Zhang H, Sun J, Wei G, Zhuang D, Zheng N. Responses of plant biochemical substances to reflectance spectra at leaf and canopy scales. Proc SPIE - Int Soc Optical Eng. 2008;7083. DOI: 10.1117/12.794088.

[29] Sellier JM, Georgieva R, Dimov I. Sensitivity analysis of design parameters for silicon diodes. Numerical Methods Applications. 2014;34-43. DOI: 10.1007/978-3-319-15585-2_4

[30] Gou F, van Ittersum MK, van der Werf W. Simulating potential growth in a relay-strip intercropping system: Model description, calibration and testing. Field Crops Res. 2017;200:122-42. DOI: 10.1016/j.fcr.2016.09.015.

[31] Liu X, Rahman T, Yang F, Song C, Yong T, Liu J, et al. PAR interception and utilization in different maize and soybean intercropping patterns. PLOS ONE 2017;12(1):e0169218. DOI: 10.1371/journal.pone.0169218.

[32] Gou F, van Ittersum MK, Wang G, van der Putten PEL, van der Werf W. Yield and yield components of wheat and maize in wheat-maize intercropping in the Netherlands. Europ J Agron. 2016;76:17-27. DOI: 10.1016/j.eja.2016.01.005.

[33] Wu J, Ding Y, Wang G, Shen Y, Yusuke Y, Jumpei K. Energy balance of irrigated intercropping field in the middle reaches of Heihe River basin. Chin Geograph Sci. 2006;16(3):243-8. DOI: 10.1007/s11769-006-0243-7.

[34] Nassiri Mahallati M, Koocheki A, Mondani F, Feizi H, Amirmoradi S. Determination of optimal strip width in strip intercropping of maize (Zea mays L.) and bean (Phaseolus vulgaris L.) in Northeast Iran. J Cleaner Prod. 2015;106:343-50. DOI: 10.1016/j.jclepro.2014.10.099.

[35] Munz S, Graeff-Hönninger S, Lizaso JI, Chen Q, Claupein W. Modeling light availability for a subordinate crop within a strip-intercropping system. Field Crops Res. 2014;155:77-89. DOI: 10.1016/j.fcr.2013.09.020.

[36] Mao L, Zhang L, Evers JB, Henke M, van der Werf W, Liu S, et al. Identification of plant configurations maximizing radiation capture in relay strip cotton using a functional-structural plant model. Field Crops Res. 2016;187:1-11. DOI: 10.1016/j.fcr.2015.12.005.

[37] Tang L, Hou C, Huang H, Chen C, Zou J, Lin D. Light interception efficiency analysis based on three-dimensional peach canopy models. Ecol Informatics. 2015;30:60-7. DOI: 10.1016/j.ecoinf.2015.09.012.

[38] Yang F, Liao D, Wu X, Gao R, Fan Y, Raza MA, et al. Effect of aboveground and belowground interactions on the intercrop yields in maize-soybean relay intercropping systems. Field Crops Res. 2017;203:16-23. DOI: 10.1016/j.fcr.2016.12.007.