Comprehensive Cellular-Resolution Atlas of the Adult Human Brain

Song-Lin Ding,1* Joshua J. Royall,1 Susan M. Sunkin,1 Lydia Ng,1 Benjamin A.C. Facer,1 Phil Lesnar,1 Angie Guillozet-Bongaarts,1 Bergen McMurray,1 Aaron Szafer,1 Tim A. Dolbeare,1 Allison Stevens,2 Lee Tirrell,2 Thomas Benner,2 Shiella Caldejon,1 Rachel A. Dalley,1 Nick Dee,1 Christopher Lau,1 Julie Nyhus,1 Melissa Reding,1 Zackery L. Riley,1 David Sandman,1 Elaine Shen,1 Andre van der Kouwe,2 Ani Varjabedian,2 Michelle Write,2 Lilla Zolli,2 Chinh Dang,1 James A. Knowles,3 Christof Koch,1 John W. Phillips,1 Nenad Sestan,4 Paul Wohoutkula,1 H. Ronald Zielke,5 John G. Hohmann,1 Allan R. Jones,1 Amy Bernard,1 Michael J. Hawrylycz,1 Patrick R. Hof,6 Bruce Fischl,2 and Ed S. Lein1*

1Allen Institute for Brain Science, Seattle, Washington 98109
2Department of Radiology, Harvard Medical School, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts 02129
3Zilkha Neurogenetic Institute, and Department of Psychiatry, University of Southern California, Los Angeles, California 90033
4Department of Neurobiology and Kavli Institute for Neuroscience, Yale University School of Medicine, New Haven, Connecticut 06510
5Department of Pediatrics, University of Maryland School of Medicine, Baltimore, Maryland 21201
6Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York 11029

ABSTRACT

Detailed anatomical understanding of the human brain is essential for unraveling its functional architecture, yet current reference atlases have major limitations such as lack of whole-brain coverage, relatively low image resolution, and sparse structural annotation. We present the first digital human brain atlas to incorporate neuroimaging, high-resolution histology, and chemoarchitecture across a complete adult female brain, consisting of magnetic resonance imaging (MRI), diffusion-weighted imaging (DWI), and 1,356 large-format cellular resolution (1 μm/pixel) Nissl and immunohistochemistry anatomical plates. The atlas is comprehensively annotated for 862 structures, including 117 white matter tracts and several novel cyto- and chemoarchitecturally defined structures, and these annotations were transferred onto the matching MRI dataset. Neocortical delineations were done for sulci, gyri, and modified Brodmann areas to link macroscopic anatomical and microscopic cytoarchitectural parcellations. Correlated neuroimaging and histological structural delineation allowed fine feature identification in MRI data and subsequent structural identification in MRI data from other brains. This interactive online digital atlas is integrated with existing Allen Institute for Brain Science gene expression atlases and is publicly accessible as a resource for the neuroscience community. J. Comp. Neurol. 524:3127–3481, 2016.

© 2016 The Authors The Journal of Comparative Neurology Published by Wiley Periodicals, Inc.

INDEXING TERMS: brain atlas; cerebral cortex; hippocampal formation; thalamus; hypothalamus; amygdala; cerebellum; brainstem; MRI; DWI; cytoarchitecture; parvalbumin; neurofilament protein; RRIDs: AB_10000343; AB_2314904; SCR_014329
The advent and improvement of noninvasive techniques such as magnetic resonance imaging (MRI), functional (f)MRI, and diffusion-weighted imaging (DWI) have vastly enriched our understanding of the structure, connectivity, and localized function of the human brain in health and disease (Glover and Bowtell, 2009; Evans et al., 2012; Amunts et al., 2014). Interpretation of these data relies heavily on anatomical reference atlases for localization of underlying anatomical partitions, which also provides a common framework for communicating within and across allied disciplines (Mazziotta et al., 2001; Toga et al., 2006; Bonnici et al., 2012; Evans et al., 2012; Caspers et al., 2013a; Annese et al., 2014). While neuroimaging data are typically registered to probabilistic reference frameworks (Das et al., 2016) to deal with interindividual variation, they lack the cytoarchitectural resolution of single-brain histological reference atlases (Evans et al., 2012; Caspers et al., 2013a), which is essential for more detailed studies of structural and cellular organization of the brain. There is therefore a strong need to bridge these levels of resolution to understand structure-function relationships in the human brain (Caspers et al., 2013a; Pascual et al., 2015).

A tremendous amount of effort has been dedicated to histology-based parcellation of discrete regions of the human brain, including the frontal, parietal, temporal, occipital, cingulate, and perihinal cortices (Hof et al., 1995a; Van Essen et al., 2001; Vogt et al., 2001; Öngür et al., 2003; Schepervjas et al., 2008; Zilles and Amunts, 2009; Ding et al., 2009; Ding and Van Hoesen, 2010; Goebel et al., 2012; Petrides and Pandya, 2012; Caspers et al., 2013b), and other regions such as the thalamus, amygdala, hippocampus, and brainstem (e.g., De Olmos, 2004; García-Cabezas et al., 2007; Jones, 2007; Morel, 2007; Mai et al., 2008; Ding et al., 2010; Paxinos et al., 2012; Ding and Van Hoesen, 2015). Currently available large-scale histological reference atlases of the human brain vary substantially in their degree of brain coverage, information content, and structural annotation (Table 1), and much of the more recent work is absent in these atlases. The most commonly used cytoarchitecture-based human brain atlas is Brodmann’s cortical map (Brodmann, 1909; Talairach and Tournois, 1988; Šimić and Hof, 2015), particularly for its use in annotating fMRI data, although von Economo’s (von Economo and Koskinas, 1925) and Sarkisov’s (Sarkisov et al., 1955) cortical maps are also still referenced. More recently developed large-scale atlases possess greater anatomical coverage and multimodal information content, but are generally limited by their degree of structural delineation, particularly for neocortical areas that are often referenced only by gyral patterning (Duvernoy, 1999; Fischl et al., 2004; Damasio, 2005; Mai et al., 2008; Naidich et al., 2008; Destrieux et al., 2010; Nowinski and Chua, 2013). To overcome these limitations, a 3-dimensional (3D) model of an adult human brain based on whole-brain serial sectioning, silver staining, and MRI (Amunts et al., 2013) was recently created, and a probabilistic cytoarchitectural atlas (JuBrain; see Caspers et al., 2013a) is also being generated. However, the staining of these specimens is limited, the imaging of the histology data currently lacks cellular resolution, and detailed annotation or parcellation of all brain regions based on cytoarchitecture remains to be performed. Additional efforts have used ultra-high-resolution MRI of ex vivo brains to build intrinsically 3D models of cytoarchitectural boundaries, and quantify the predictive power of macroscopic features for localizing microscopically defined boundaries (Augustinack et al., 2005, 2010, 2012, 2013, 2014; Fischl et al., 2008, 2009; Iglesias et al., 2015). While these latter atlases represent major advances, currently available resources still lack many features of modern atlases available in rodents and nonhuman primates such as multimodality, dynamic user interfaces with scalable resolution and topographic interactivity, and brain-wide anatomic delineation with ordered hierarchical structural ontologies.

We aimed to develop an adult human brain atlas with many of the features of modern digital atlases in model organisms (Lein et al., 2007; Saleem and Logothetis, 2012; Papp et al., 2014). First, the atlas requires whole-brain coverage with neuroimaging (MRI, DWI) and histology using multiple stains in the same brain, allowing brain parcellation based on convergent evidence from cyto- and chemoarchitecture, to reflect functional properties of corresponding brain regions more accurately (Ding et al., 2009; Amunts et al., 2010; Caspers et al., 2013a,b; Pascual et al., 2015). Second, we aimed for true cellular resolution (1 μm/pixel) on histological images to link microscopic features with the macroscopic scales more common in neuroimaging studies. Most critically, we performed comprehensive structural annotation at a very detailed level, based on a hierarchical structural ontology and using multiple forms of neocortical annotations to link gross anatomical (gyral, sulcal) and histology-based parcellation schemes modified from Brodmann. Finally, these data are combined in an interactive, publicly accessible online application with direct linkage to other large-scale human brain gene expression databases (http://human.brain-map.org; Hawrylycz et al., 2012).

MATERIALS AND METHODS

Specimen

The brain used for this reference atlas was from a 34-year-old female donor with no history of neurological
Coverage	This atlas	Brodmann (1909)	von Economo and Koskinas (1925)	Talairach and Tournoux (1988)	Duvernoy (1999)	Mai et al. (2008)	Caspers et al. (JuBrain, 2013a)³
Datasets	Whole brain	Cerebral cortex	Cerebral cortex	Cerebrum	Cerebrum	Cerebrum	10 brains (mainly cerebral cortex)
Data formats	Nissl	Nissl	Based on Brodmann’s map	Brain slices and MRI (not from the same brain)	Static+electronic version	Digital	
Resolution	Digital (up to 1 μm/pixel)	Static	Static	Static	Static	Static	Digital
Density of annotated plates	106 coronal plates	Very limited photographs	Limited photographs	38 coronal plates	86 coronal plates	69 coronal plates	Not known
Cortical parcellation	Modified Brodmann’s areas	Brodmann’s areas	Von Economo’s areas	Brodmann’s areas	Cortical sulci & gyri only	Cortical sulci & gyri only	Cytoarchitectural areas
Labeled fiber tracts	No	No	Large fiber tracts (~117)	Large fiber tracts (~15)	Large fiber tracts (~10)	Major fiber tracts (~40)	Large fiber tracts (~11)
Brainstem annotation	Nuclei, subdivisions, and fiber tracts	Not available	Not available	Not annotated	Basically not available²	Basically not available²	Not available
Cerebellum annotation	Lobules, zones, deep nuclei, and fiber tracts	Not available	Not available	Not annotated	Not available	Not available	Not available
Total annotated structures	~862 (including nearly all gyri and sulci)	~50	~107	~65	Nearly all gyri and sulci	Nearly all gyri and sulci	~60 structures available so far
Dimension	2D	2D	2D	2D	2D	2D	3D
Interactivity	Highly interactive	No	No	No	No	Somewhat interactive (electronic form)	Interactive
Accessibility	Free to public (no registration needed)	Book	Book	Book	Book	Book	Free

¹Many human brain MRI atlases generated on basis of gross anatomy were not included.
²Only a small portion of the superior colliculus regions was available.
³BigBrain (Amunts et al., 2013) from this group is a whole brain 3D model based on silver stain with a resolution at 20 μm/pixel but little anatomical annotation was applied to it so far.
diseases or remarkable brain abnormality obtained from the University of Maryland Brain and Tissue Bank, a brain and tissue repository of the NIH NeuroBioBank. All work was performed according to guidelines for the research use of human brain tissue and with approval by the Human Investigation Committees and Institutional Ethics Committees of the University of Maryland, the institution from which the sample was obtained.

General tissue processing

A general workflow for generating this atlas is shown in Figure 1. After the brain was removed from the skull, 4% periodate-lysine-paraformaldehyde (PLP) was injected into the internal carotid and vertebral arteries following a phosphate-buffered saline (PBS) flush. The brain was then suspended and immersed in 4% PLP at 4°C. This preparation appeared to result in a slight elongation of the brain. Following complete fixation (48 hours), the brain was subjected to MRI and DWI (see details below) and stored in PLP at 4°C until further processing. The fixed brain was bisected through the midline. Following agarose embedding, each hemisphere was cut with a flexi-slicer in the anterior to posterior direction, resulting in eight 2-cm-thick slabs. The slabs were cryoprotected in PBS containing 10%, 20%, and 30% sucrose, respectively and then frozen in a dry ice/isopentane bath (between −50°C and −60°C). Finally, the frozen slabs were placed in plastic bags that were vacuumed sealed, labeled, and stored at −80°C until histological sectioning.

Sectioning was performed by Neuroscience Associates (Knoxville, TN). The slabs were individually thawed rapidly in PBS, treated overnight with 20% glycerol and 3% dimethylsulfoxide to prevent freezing artifacts, and rapidly in PBS, treated overnight with 20% glycerol and 3% dimethylsulfoxide. The blocks were then processed with nickel-diaminobenzidine tetrahydrochloride (DAB) and hydrogen peroxide.

Antibody characterization

The antibody against NFP (BioLegend, Cat.# SMI-32, RRID: AB_2314904) is a mouse monoclonal IgG1 recognizing a double band at MW 200,000 and 180,000, which merge into a single neurofilament H line on 2D blots (Sternberger and Sternberger, 1983) (Table 2). The immunostaining of sections through human temporal cortex produced a pattern of NFP labeling that was identical to previous descriptions (Ding et al., 2009). In human and monkey cerebral cortex, the antibody stains a subpopulation of large pyramidal neurons with the labeling largely restricted to dendritic processes and soma (Campbell and Morrison, 1989; Hof et al., 1995a,b; Nimchinsky et al., 1997; Ding et al., 2003, 2009).

The anti-PV antibody is a mouse monoclonal IgG1 (Swant, Cat.# 235, RRID: AB_10000343) is a mouse monoclonal IgG1 recognizing a double band at MW 200,000 and 180,000, which merge into a single neurofilament H line on 2D blots (Sternberger and Sternberger, 1983) (Table 2). The immunostaining of sections through human temporal cortex produced a pattern of NFP labeling that was identical to previous descriptions (Ding et al., 2009). In human and monkey cerebral cortex, the antibody stains a subpopulation of large pyramidal neurons with the labeling largely restricted to dendritic processes and soma (Campbell and Morrison, 1989; Hof et al., 1995a,b; Nimchinsky et al., 1997; Ding et al., 2003, 2009).

The anti-PV antibody is a mouse monoclonal IgG1 (Swant, Cat.# 235, RRID: AB_10000343). This antibody was produced by immunizing mice with PV from carp muscle and hybridizing mouse spleen cells with myeloma cell lines. This antibody specifically stained the 1999Ca-binding “spot” of PV (MW 12,000) from rat cerebellum on 2D immunoblot assays (Celio et al., 1988).
(Table 2). No staining was observed when the antibody was used to stain cortical tissues from PV knockout mice. This antibody labels subsets of nonpyramidal neurons in cerebral cortex of many species including human (Hof et al., 1999; Nimchinsky et al., 1997; Ding and Van Hoesen, 2010, 2015).

Digitization of all stained sections

A custom-designed large-format microscopy system was created to allow digital imaging and processing of all histologically stained sections (Nikon, Melville, NY). The system operates by collecting hundreds of images in lengthwise strips, which are montaged to create a
single hemispheric image at 1 \mu m/pixel resolution. A total of 1,356 sections on 3 × 5-inch slides were digitized for this resource, of which a single section (representative dimension: \(\sim 3.2 \times 4.3 \) m) typically took 6–8 hours to complete. Exposure time, white balance, and flat-field correction were set independently for each slide. The Nikon NIS-Elements Advanced Research (AR) microscope imaging software suite (RRID: SCR_014329) was used for acquisition of ND2 format image files that were subsequently converted to TIFF format.

Digital atlas design and annotation

For detailed anatomical delineation, 106 Nissl-stained sections were selected out of 679. Sampling intervals varied from 0.4 to 3.4 mm across the full anterior–posterior (A-P) extent of the entire left hemisphere. Sparser sampling (3.4 mm) was selectively applied to the most anterior (prefrontal) and posterior (occipital) cortical levels that primarily contain cortex and a few large subcortical structures. Where smaller subcortical structures are more abundant, a much denser sampling was used (0.4–1.0-mm interval). In total, 862 brain structures were digitally annotated on the 106 whole-hemisphere images using 11,398 polygons.

Anatomical delineations were performed on posterior-sized printouts of Nissl-stained sections and then digitally scanned and registered to the original Nissl images. Structure outlines were converted to digital polygons using Adobe (San Jose, CA) Creative Suite 5, and converted to Scalable Vector Graphics (SVG) format for web utilization. Polygons were linked to the hierarchical structural ontology and color-coded according to the ontology color scheme such that related structures fall into similar color groups. Furthermore, hues were assigned according to the relative cellular density of the structure: the higher the density, the deeper the shade (i.e., addition of black to hue); the lower the density, the deeper the tint (i.e., addition of white to hue).

Magnetic resonance and diffusion-weighted imaging

High-resolution structural imaging was performed using special coils designed to optimize signal-to-noise and contrast-to-noise ratios (SNR and CNR, respectively) in fixed specimens by reducing large spacing between the coil elements and the sample. DWI was performed using standard Siemens head coils. Sample packing was performed by vacuum-sealing the brain specimen in a polyethylene storage bag surrounded by PLP to avoid any artifacts caused by the interface between air and tissue. Diffusion-weighted images were collected on a 3 T Tim Trio whole-body scanner (Siemens Medical Solutions, Erlanger, Germany) with a Siemens 32 channel head coil. High-resolution structural images were acquired using a 7 T scanner (Siemens Medical Solutions) with a custom 30-channel receive-array coil designed to image the entire adult brain, utilizing a 36-cm head gradient coil.

For the 7 T scans, custom pulse sequence software was used to measure k-space in “chunks” small enough to be held in the scanner hard disk buffer, and a system was developed to stream each “chunk” of data from the buffer to a multiterabyte RAID array in parallel with it being measured by the scanner. Systems integration and custom software were developed for fast, reliable network and RAID connections and data stream management. Images from each coil channel were reconstructed and combined into a single image using a noise-weighted combination to optimize SNR.

The noise covariance matrix for a coil array is estimated from a noise-only measurement collected in the absence of any RF excitation. This acquisition lasts about 20 seconds and provides enough thermal noise samples to accurately estimate the noise covariance matrix for the 30-channel coil and describes the thermal noise coupling between the individual coil channel images for unaccelerated acquisitions. The final combined image is then computed as a noise-weighted sum of the complex-valued individual coil channel images and is given by

\[
I = \sqrt{\Psi^T \Psi} s
\]

where \(I \) represents the combined image intensity at a given pixel, \(\Psi \) represents the \(N \times N \) noise covariance matrix, and \(s \) represents the \(N \times 1 \) vector of complex-valued image intensities at a given pixel across the \(N \)
coils of the array (Roemer et al., 1990; Wright and Wald, 1997).

For 7 T images, gray and white matter CNR was optimized, to best distinguish these tissue classes as well as discern laminar intracortical architecture. Structural data were acquired using a multiecho flash sequence (TR = 50 ms, $\alpha = 20^\circ, 40^\circ, 60^\circ, 80^\circ$, 6 echoes, TE = 5.49 ms, 12.84 ms, 20.19 ms, 27.60
ms, 35.20 ms, 42.80 ms, at 200-μm isotropic resolution).

Diffusion-weighted data were acquired over two averages using a 3D steady-state free precession (SSFP) sequence (TR = 29.9 ms, α = 60°, TE = 24.96 ms, 900-μm isotropic resolution). Diffusion weighting was applied along 44 directions distributed over the unit sphere (effective b-value = 3,686 s/mm²) (Miller et al., 2012) with eight b = 0 images. The two acquisitions were coregistered using FSL’s FLIRT to correct for B₀ drift and eddy-current distortions (Jenkinson and Smith, 2001) and then averaged before further processing. DWI analysis was done using Diffusion Toolkit (dtk), and Trackvis was used for visualization of tracts (http://trackvis.org/) (Wang et al., 2007). The fiber tracking algorithm is based on the fiber assignment by continuous tracking (FACT) algorithm (Mori et al., 1999). Diffusion-weighted images were rotated to the same orientation as the MRI volume to allow generation of plane-matched MRI and DWI images for the atlas, and the corresponding transformation was applied to the gradient table used to acquire the images. Tracts were created using a 60° angular threshold, masked so tracts are only contained within the approximate brain volume. The primary eigenvectors of the diffusion tensor were overlaid on the fractional anisotropy (FA) map in Freeview (part of the FreeSurfer software package, http://freesurfer.net) to create color FA images. Tractography images were generated in TrackVis with a tract threshold of 20 mm and 90% skip applied, using a Y filter to select all tracts that pass through each coronal plane.

RESULTS

Whole-brain multimodal data generation

To obtain multimodal datasets from the same specimen, ex vivo MRI and DWI scans (at 7 T and 3 T, respectively) of both hemispheres were collected (Fig. 2A,B) prior to histological processing. For anatomic atlasing, the left hemisphere including the connected brainstem and cerebellum (Fig. 2C) was coronally divided into 2-cm slabs, and each slab was serially sectioned at 50 μm (Fig. 2D). Every fourth section (200-μm sampling interval) was stained for Nissl substance (Fig. 2E), and every eighth section was immunostained for NFP (400-μm interval) or PV (400-μm interval) to facilitate accurate delineation of the Nissl-stained sections (Fig. 3A–C). Histological sections were imaged at cellular resolution allowing neuronal soma, dendrites, and axons to be clearly identified (Fig. 2F). A subset of Nissl-stained sections was selected for detailed anatomical delineation with sampling density higher in regions with greater structural complexity. This strategy enabled adequate sampling of small but functionally critical structures such as the suprachiasmatic nucleus.
Figure 4. Detailed delineation of the human hypothalamus. A high sampling density (about 40 plates total, with 20 shown here) covering the entire anterior–posterior (A–T) extent of the hypothalamus was employed to ensure sampling and annotation of even the smallest structures such as the suprachiasmatic nucleus (SCN in A–C). For abbreviations see the hypothalamic part of the ontology in Table 3. Scale bar = 1,940 μm in T (applies to A–T).
in the hypothalamus (Fig. 4) and the area postrema in the medulla.

Creation of a unified structural brain ontology

An essential component of modern interactive digital atlases is a unifying hierarchical structural ontology that provides unique IDs (and colors for representation) for each structure in a parent–child architecture. We created a whole-brain ontology spanning all adult structures (Table 3) and including a developmental axis for transient structures observed during the specification and cytoarchitectural maturation (Miller et al. 2014). The ontology is fundamentally divided into the basic subdivisions of forebrain, midbrain, and hindbrain, further divided into four major branches comprising gray matter, white matter, ventricles, and surface features. For example, daughter structures of “gray matter of forebrain” (Fig. 2G) include the telencephalon, diencephalon, and transient structures of forebrain (e.g., subplate and ventricular zone of the neocortex), while “white matter of forebrain” includes nearly all commissural and long ipsilateral fiber tracts. “Ventricles of forebrain” includes the lateral and third ventricles and related structures, while “surface structures of forebrain” includes important gross landmark features such as cortical gyri and sulci.

For cortical structures, we aimed to accommodate both gyral and sulcal parcellation common to neuroimaging studies as well as cytoarchitectural parcellation based on histology, for which two basic terminologies based on Brodmann (Brodmann, 1909) and von Economo (von Economo and Koskinas, 1925; von Economo, 1927) are in usage. We used Brodmann’s nomenclature as the primary reference because it is more commonly used, with modifications based on modern literature (see below) and the combined whole-brain large-scale cyto- and chemoarchitectural analysis here. Specifically, the following sources were used to modify the Brodmann scheme: for the frontal and cingulate cortex: Hof et al. (1995a), Vogt et al. (1995), Vogt et al. (2001), Öngür et al. (2003), Petrides and Pandya (2012), and Vogt and Palomero-Gallagher (2012); for parietal, temporal, and occipital cortices (mostly changed to Brodmann’s terminology where other nomenclature was used): Caspers et al. (2013b), Ding et al. (2009), Ding and Van Hoesen (2010), Schepersjans et al. (2008), Van Essen et al. (2001), Zilles and Amunts (2009), and Goebel et al. (2012). The terminology for the hippocampal formation is derived from Ding and Van Hoesen (2015) and Ding (2013, 2015). For a few cortical areas that Brodmann (1909) did not parcellate in detail (Simić and Hof, 2015), such as posterior parahippocampal areas (areas TH, TL, and TF), we adopted a modified nomenclature from von Economo and Koskinas (1925; see Ding and Van Hoesen, 2010). Another example of modification of Brodmann’s areas is the orbitofrontal cortex, where Brodmann’s large area 11 was replaced with smaller areas 14, 11, and 13 according to a few modern anatomical studies in human (Hof et al., 1995a; Öngür et al., 2003) and our own investigation of Nissl preparations and PV- and NFP-immunostained sections. In addition, some of Brodmann’s areas were further subdivided according to recent literature and the analysis here. For instance, Brodmann’s areas 22 and 21 (roughly corresponding to von Economo’s areas TA and TEd) were subdivided into rostral, intermediate, and caudal parts based on different staining intensity in PV-stained sections (Ding et al., 2009). Finally, for the insular cortex that was not numbered by Brodmann in human (1909; see Simić and Hof, 2015), three major subdivisions were delineated and these included agranular, dysgranular, and granular insula (e.g., Bauernfeind et al., 2013; Morel et al., 2013), with the latter two further divided into rostral and caudal parts.

Structures from the ontology were delineated as polygons on each Nissl digital image (Fig. 2H), and these structures include both gyral (Fig. 211) and modified Brodmann areas (Fig. 212) of the neocortex. Together, this comprehensive ontology covers all brain regions and can be used interactively to browse and search delineated structure polygons. It also provides enhanced interlinking capabilities among a broad range of datasets including adult (Hawrylycz et al., 2012) and developing (Miller et al., 2014) human brain transcriptional atlases included in the Allen Brain Atlas (www.brain-map.org).

Delineation of cortical and subcortical gray matter

Anatomical delineation for the 106 selected plates (Fig. 2H) was based on a combined analysis of cyto- (Nissl stain) and chemoarchitecture (NFP and PV immunohistochemistry). For example, the boundaries between areas 29 and the neighboring suprasplenial subiculum (SuS) and caudal presubiculum (PrSc; also known as the postsubiculum [PoS]) were confidently identified based on staining features revealed in Nissl- (Fig. 5A), and adjacent PV- and NFP- (Fig. 5B and inset) immunostained sections. Dark NFP and PV immunoreactivity highlights SuS and PrSc, respectively, and these complementary and corroborating data allowed a consensus digital annotation of these regions (Fig. 5C). Similarly, in the ventral temporal neocortex, the border between areas 36 and 20 can be more accurately defined with PV immunostaining than Nissl alone, as area 20 (20i) displays significantly stronger PV immunoreactivity than area 36 (Fig. 5D,E).
Figure 5. Defining cortical boundaries with a combined analysis of Nissl-, NFP-, and PV-stained sections. A, B, and inset in B: Boundary determining of the indusium griseum (IG), supracallosal subiculum (SuS), retrosplenial areas 29 (A29) and 30 (A30), and caudal presubiculum (PrSc; or postsubiculum [PoS]). C: Color-coded map of the region shown in A and B. cc, corpus callosum. PV and NFP immunostaining patterns help delineate neocortical borders and white matter tracts. D, E: Differences in PV immunolabeling intensity helps define the boundaries between area 36 and area 20 (20i). Scale bar = 1,106 μm in C (applies to A-C) and E (applies to D, E).
Figure 6. Defining boundaries of cortical and subcortical structures with NFP- (A–F) and PV- (G) stained sections. A–C: NFP staining patterns in primary motor cortex (M1C), primary somatosensory cortex (S1C), and the rostro dorsal portion of area 40 (A40rd). The locations of these three cortical areas were marked with *, **, and *** respectively in Figure 8A. Arabic numbers specify cortical layers. D: NFP staining pattern in the thalamus (Thal) defines Pf, CM, and adjoining structures. CM, centromedian nucleus; MD, mediadorsal nucleus; Pf, parafascicular nucleus. VPI, ventral posterior inferior nucleus; VPM, ventral posterior medial nucleus; VPMpc, parvocellular part of VPM. E, F: NFP is observed in select white matter tracts in the brainstem including the facial (r7 in E) and trochlear (r4 in F) nerve roots. 6N, abducens nucleus; r7, facial nerve root; x4, decussation of trochlear nerve roots (r4 in F). G: PV is selectively expressed in the commissure of the inferior colliculus (cmic). Scale bar = 777 μm in C (applies to A–C), D, and E; 277 μm in F; 88 μm in G.
NFP immunoreactivity was in many cases more informative than Nissl stain for delineation of cortical regions based on the selective labeling of pyramidal neuron populations in different layers. For example, many large pyramidal neurons in layer 5 of the primary motor cortex (M1C; Fig. 6A) are NFP-immunoreactive, while only a small number of medium-sized neurons are observed in that layer of the primary somatosensory cortex (S1C; Fig. 6B). In contrast, the inferior parietal area (rostrodorsal area 40 [area 40rd], located posterior

Figure 7. Defining white matter fiber tracts and subcortical structures with combined analysis of NFP and PV stains. A–C: Combined analysis of NFP immunoreactivity (A) and Nissl staining (B) in the medulla leading to anatomical parcellation (C). NFP clearly delineates specific cranial nuclei (e.g., 10N, 12N) and fiber tracts (e.g., r12). D,E: PV-immunoreactive axons in the external part of sagittal stratum/optic radiation ("or" in D and inset) compared with the internal part of the sagittal stratum (ssti) and tapetum of the corpus callosum (tap) that do not show PV immunoreactivity. Inset: High-magnification view of PV-immunoreactive axons in the optic radiation (*). 10N, dorsal motor nucleus of vagus nerve; 12N, hypoglossal nucleus; iLV, inferior horn of the lateral ventricle; IO, inferior olive; r12 and r10, hypoglossal and vagus nerve roots; Scale bar = 777 µm in A (applies to A,B); 1,554 µm in D.
to S1C; Fig. 6C), has a narrower band of superficial layer labeling and a stronger bilaminar pattern. The combined analysis of Nissl staining and NFP or PV immunolabeling was also useful in defining many subcortical regions and subdivisions such as ventroposterior inferior (VPI), parafascicular (Pf), and centromedian (CM) nuclei in the thalamus (Thal; Fig. 6D) and cranial motor nuclei of the brainstem (Figs. 6E, 7A–C).

Localisation and delineation of white matter tracts
We also aimed for a comprehensive delineation of white matter tracts and cranial nerves (117 total), aided by NFP and PV fiber immunostaining. Motor roots of the cranial nuclei in the brainstem are clearly delineated by NFP staining (Figs. 6E, G, 7A). PV immunoreactivity shows similar discernment of a variety of fiber tracts and trajectories, such as the commissure of the inferior colliculus (Fig. 6F) and the optic radiation (Fig. 7D,E). A representative fully annotated atlas plate is shown in Figure 8A, with complete cyto- and chemoarchitecture-based parcellation and colorization superimposed on the original Nissl image (Fig. 8C). To relate macroscopic (landmarks) and microscopic (histology) cortical anatomy, parallel plates were created with parcellation by gyri and sulci (Fig. 8B) or modified Brodmann areas (Fig. 8A). The denser sampling of subcortical regions allowed comprehensive detailed annotation of fine nuclear architecture for all major regions, as illustrated for the hypothalamus (Fig. 4) and the amygdala (Fig. 9).

Identification of novel brain subregions
In addition to confirming previously identified structures, the combination of high image resolution and dense (200-μm-interval) Nissl sampling made it possible to reveal or clarify a number of complex or smaller brain structures, while the linkage to the Allen Human Brain Atlas (Hawrylycz et al., 2012) allowed corroboration of these structures with other gene expression data. One example is in the mediodorsal nucleus (MD) of the thalamus, where we observed a group of densely packed larger cells between the paraventricular nucleus (PaV) and the main portion of the MD, which we named the anteromedial subdivision of the MD (MDam in Fig. 10A). In situ hybridization data of both acetylcholinesterase (ACHE) and neurotensin (NTS) supports this partition, as they are selectively enriched in this region compared with the main part of the MD (Fig. 10B and inset). Similarly, we identified a novel subdivision of the basomedial nucleus (BM) of the amygdala. This

Figure 8. Alternate schemes for cortical parcellation. Modified Brodmann’s areas (A) or sulci and gyri (B) were annotated on the same Nissl-stained plate (C) to show micro- and macrostructural relationships. Examples of how cortical areas were delineated are given in Figures 5 and 6. The markers (*, **, ***) and (#) in A indicate the locations of pictures in Figure 6A–C and Figure 5D,E, respectively. For abbreviations see the ontology in Table 3. Inset is a schematic representation of the whole hemisphere based on MRI, with the red vertical lines in A and B indicating the location of the section plate. Both modified Brodmann’s areas and gyral/sulcal mapping of the cerebral cortex are available online at www.branspan.org. Scale bar = 3,108 μm in A–C.
Figure 9. Detailed parcellation of the human amygdalar complex. Shown are ten of the 18 annotated plates covering the A-P extent (A–J) of the amygdala. For abbreviations see the amygdalar portion of the ontology in Table 3. Scale bar = 3,102 μm in J (applies to A–J).
Figure 10. Novel subdivisions of the mediodorsal nucleus (MD) of the thalamus and basomedial nucleus (BM) of the amygdala. A: Nissl staining reveals a group of larger cells (termed MDam, labeled with * in high magnification image and overview atlas plate (inset)) located between the paraventricular nucleus (PaV) and anterior mediodorsal nucleus (MDm) of the thalamus distinct from neighboring regions. B: Distinct molecular specificity of MDam is demonstrated by ISH for ACHE and NTS (inset in B). C,D: Novel subdivision of amygdalar basomedial nucleus differentiated by smaller and relatively lightly Nissl-stained cells (termed BMm, labeled with * in high magnification image and overview atlas plate (inset) in C) and selective enrichment for the GABA receptor subunit E (GABRE, in D) compared with neighboring dorsal and ventral regions (BMD and BMV) and posterior cortical nucleus (CoP). Scale bar = 1,109 μm in B (applies to A,B); 1,550 μm in D (applies to C,D).
subdivision is located medial to the dorsal and ventral subdivisions of the BM (BMD and BMV) and was termed BMm (medial subdivision of BM; Fig. 10C and inset). The BMm displays enriched cellular expression of the \(\gamma \)-aminobutyric acid (GABA) receptor subunit E (\(\text{GABRE} \)) compared with the neighboring BMD and BMV (Fig. 10D). The homologs of MDam and BMm in other species have not been reported.

Another new area was identified running along the side of lateral olfactory stria, situated medially to the piriform cortex (Pir) and laterally to the substantia innominata (SI). This was termed the lateral olfactory area (LOA) and was found to have distinct histological features from the neighboring Pir and SI (Fig. 11). Compared with the Pir, the LOA does not have a dark, densely packed layer 2 on Nissl stain and has much stronger NFP immunoreactivity. In Nissl-stained materials, the SI contains many cellular patches of differing sizes, packing densities, and staining intensities, with cells of contrasting shapes and sizes, compared with...
Figure 12. Location and topographic relationship of area prostriata (APro). APro (labeled as Pro) is adjoined by the retrosplenial cortex (areas 29 and 30, not shown), postsubiculum (PoS in A), posterior cingulate cortex (area 23 in B–D) anterodorsally, and dorsal secondary visual cortex (V2d in D–G) posterodorsally. Anteroventrally, APro is adjoined by the ventral secondary visual cortex (V2 in A–D). Posteroventrally and posteriorly, APro is adjoined by the anteroventral part of the primary visual cortex (V1v in E–H). Scale bar = 4,420 μm in H (applies to A–H).
the LOA (Fig. 11A). In sections immunostained for NFP, only the largest neurons are labeled (Fig. 11B). The SI does not display laminar organization, while the LOA has a clear but discontinuous layer 2 and one deep layer. In contrast, the Pir has a dark and continuous layer 2 and a less darkly stained layer 3.

Two other structures described previously only in non-human primates were identified as well, such as area prostriata (APro) and the basal interstitial nucleus of the cerebellum (BLCb). APro is a region located at the junction of the retrosplenial, post- and parasubiculum, posterior cingulate, and anterior-dorsal primary visual cortices. It has been described in detail in macaque monkey (Morecraft et al., 2000; Ding et al., 2003) and is important for fast procession of peripheral vision (Yu et al., 2012). Although its existence in the human brain was briefly described, its exact location and extent has not been reported in detail so far. Our mapping indicates that APro is much larger in human (Fig. 12) than in macaque monkey (Ding et al., 2003). The BLCb in the human brain is located deep to the medial interpositus nucleus (InPM; globose nucleus) of the cerebellum and consists of scattered large NFP-immunoractive neurons (Fig. 13).

Identifying anatomical landmarks in MRI data

Transposing the Nissl-based anatomical delineations into full 3D annotations registered to the accompanying MRI volume is challenging due to the incomplete and nonuniform sampling of those annotations. However, individual Nissl plates can be matched to corresponding planes of the MRI data to allow the identification of features of specific structures that can then be mapped onto MRI data from other brains without accompanying architecture-based delineations. The utility of this approach can be demonstrated in the case of the medial geniculate nucleus (MG) and the dorsal lateral geniculate nucleus (DLG). A comparison of the architecture-based atlas (Fig. 14A) and the corresponding MRI plate (Fig. 14B) from the same brain shows that the MG has high and the DLG low signal intensity. Combining these features with basic spatial topography, the MG and DLG in the MRI scans from other brains from the Allen Human Brain Atlas (Hawrylycz et al., 2012) are clearly discerned (Fig. 14C,D). The MG is so similar in signal intensity to the adjoining white matter (consistently high signal intensity in T1-weighted images) that it would probably be misidentified as white matter if the extracted feature (i.e., high signal intensity) was not used. With the topography of the histology-based parcellation as a guide, many fine structures can be similarly identified in MRI data that would otherwise be difficult to identify and discriminate, thus extending the value of this single brain atlas to the interpretation of neuroimaging data (Fig. 15).

Whole-brain histology-based atlas with corresponding MRI and DWI

The complete set of histology-based atlas plates is presented in Figures 16 and 17. These include a plate locator (Fig. 16) marking the A-P sampling locations of all 106 annotated atlas plates and selected corresponding Nissl-
stained and adjacent NFP and PV immunohistological plates (Fig. 17). To translate the atlas structural delineations onto the MRI dataset, a set of 76 coronal MRI slices at 2-mm intervals (Fig. 18) from the same hemisphere was selected and annotated (Fig. 19, left column). Macroscopic landmarks such as cortical sulci and gyri were used as guides to match histological and MRI planes of section, and local topography was used (e.g. see Figs. 14, 15) to label identifiable structures including all neocortical areas and major subcortical regions.

Some well-known white matter tracts such as the optic radiation (“or” in Fig. 19, levels 42–69) and auditory radiation (“ar”) are clearly visible in the 7 T MRI images and can be clearly followed for a long distance due to their darker appearance than the surrounding white matter. Interestingly, a corresponding part of the somatosensory radiation (named here the “sr”) is also clearly visible (Fig. 19, levels 38–46). The “sr” is normally treated as part of the superior radiation in the literature and mainly originates from the ventroposterior lateral nucleus of the
thalamus and targets the primary somatosensory cortex. In this 7 T MRI dataset, like the “or” and “ar,” the “sr” is observed to stand out from surrounding white matter and thus deserves an independent term (i.e., somatosensory radiation) as do optic and auditory radiations.

Finally, color-coded orientation maps and tractography maps of both hemispheres from the same brain are also available and are presented in Figure 19 (right column). By comparison with the accompanying MRI plates, some white matter fiber tracts can be identified. For example, at level 40 of Figure 19, the callosal and cingulate bundles, superior longitudinal fasciculus (sif-r, sif-l, and sif-l), and somatosensory radiation can be easily localized with the guide of the annotated MRI atlas.

For convenience Figures 16-19 are presented, together with Table 3, after the literature list at the end of the paper.

DISCUSSION

Brain reference atlases are essential resources for neuroscience research, serving to identify and annotate the complex anatomical architecture of the brain and allow communication across laboratories and various research disciplines attempting to link structure to function (Fischl et al., 1999; Toga et al., 2006; Amunts et al., 2007; Evans et al., 2012). Ideally, modern digital atlases should comprise 3D reference frameworks with comprehensive anatomical coverage and cellular resolution cyto- and chemoarchitectural histology-based structural annotation using hierarchical ontologies, and correlated histological and neuroimaging data (Toga et al., 2006; Destrieux et al., 2010; Evans et al., 2012; Caspers et al., 2013a). All currently available human brain reference atlases lack some of these features.
Parcellation of the human neocortex presents a particular challenge, as several different schemes based on cortical gyri and sulci or histological delineation are in common usage (Brodmann, 1909; Talairach and Touroux, 1988; Fischl et al., 2004; Duvernoy, 1999; Damasio, 2005; Mai et al., 2008; Destrieux et al., 2010; Petrides, 2012), and the relationship between cortical geometry and architectonic identity is variable across the cortex (Fischl et al., 2008). To serve both communities, we chose to perform multiple annotations of the same dataset. The first is based on macroscopic annotation of gyri and sulci, while the second is based on microscopic analysis of combined cyto- and chemoarchitectural data to create a modified Brodmann parcellation. This unique human dataset of interleaved Nissl staining, and NFP and PV immunolabeling in a whole hemisphere, allowed a complete parcellation based on variations in overall cell density, NFP immunolabeling of subsets of long-range excitatory projection neurons, and PV-expressing neurons and neuropil. In many cases this parcellation agrees with other techniques such as receptor autoradiography and Nissl-based gray-level indices (Zilles and Amunts, 2009; Amunts et al., 2010; Vogt et al., 2013). For example, the inferior parietal lobule has been consistently divided into three basic regions based on cellular and receptor architecture (Caspers et al., 2013b), and our analysis of cyto- and chemoarchitecture corroborates this tripartite delineation (albeit with a different nomenclature). In many other cases these data allowed a detailed parcellation of regions that had not yet been examined in detail by others, such as the area prostriata and other structures described above. In principle, this dataset could be reannotated by other researchers to provide alternate interpretations. Finally, this dataset could be aligned to new functional parcellations based on neuroimaging data, such as a recent analysis from the Human Brainnetome Atlas (Fan et al., 2016) and the Human Connectome Project (www.humanconnectome.org; Glasser et al., 2016), opening up new possibilities for linking cytoarchitecture and function at microscopic and macroscopic scales.

There is a fundamental schism between probabilistic reference atlases used in neuroimaging (Hammers et al., 2003; Ahsan et al., 2007; Schepersjans et al., 2008; Shattuck et al., 2008; Diedrichsen et al., 2009; Kuklisova-Murgasova et al., 2011), based on thousands of individuals, and detailed histological reference atlases based on exhaustive analysis and annotation of single representative brain specimens (Brodman, 1909; von Economo and Koskinas, 1925; Sarkisov et al., 1955). It is not currently possible to analyze large numbers of whole brains histologically and thus build a probabilistic histological atlas, although strong efforts are under way to move in the direction of generating probabilistic histological reference atlases using standard histological (JuBrain; Caspers et al., 2013a) as well as novel imaging techniques (Magnain et al., 2014, 2015; Wang et al., 2014; Zilles et al., 2016). Furthermore, human brains exhibit a remarkable amount of interindividual variability, particularly in the gyri and sulci of the cerebral cortex (Mazziotta et al., 2001; Uylings et al., 2005; Toga et al., 2006; Amunts et al., 2007; Ding and Van Hoesen, 2010; Zilles and Amunts, 2010, 2013). For instance, one brain may have area 35 located in the medial bank of a deep collateral sulcus (CoS), while another may have its area 35 in the lateral bank of a shallow CoS, or even the crown of the anterior fusiform gyrus (Ding and Van Hoesen, 2010). Thus it is not realistically meaningful to map histological annotations from a single specimen directly into a probabilistic reference space, even with advances in techniques for deformable registration. On the other hand, the current generation of both MRI and DWI data in the same specimen as the histological data allows the direct correlation of cytoarchitectural features with MRI features or landmarks. As we demonstrate, this dataset may thus allow feature extraction that can be applied to other brains to identify fine anatomical structures not otherwise identifiable, especially when higher resolution imaging techniques such as 9.4-Tesla MRI, optical coherence tomography, and polarized light microscopy become available (Fatterpekar et al., 2002; Magnain et al., 2015; Zilles et al., 2016).

In summary, we have created a cellular resolution, comprehensively annotated atlas for an entire adult human brain hemisphere (Fig. 17) based on a combined...
analysis of cyto- and chemoarchitectures and modern literature. This combination of anatomic completeness, multimodal histological cellular-resolution imaging, modified Brodmann’s areas delineations in neocortex, neuroimaging (Fig. 19), and intuitive digital interactivity provides an advance over other current large-scale human brain atlases. This versatile and publicly accessible resource gives a range of users a means to learn, teach, and investigate human brain structure and function, including the diagnosis and treatment of brain disease.

ACKNOWLEDGMENTS

We thank the Allen Institute founders, P.G. Allen and J. Allen, for their vision, encouragement, and support. We acknowledge NeuroScience Associates (Knoxville, TN) for sectioning and staining the human tissues. We are also grateful for the technical support of the staff members in the Allen Institute who are not part of the authorship of this paper. We thank Ling Li, M.D. (Office of the Chief Medical Examiner, Baltimore, Maryland) for assistance with obtaining the brain specimen used for the atlas. We acknowledge Gulgun Sengul for her comments on the brainstem part of the ontology, and Dan Fong and Gary Davis (Nikon USA) for their assistance with microscope customization. This work’s contents are solely the responsibility of the authors and do not necessarily represent the official views of the National Institutes of Health and the National Institute of Mental Health.

CONFLICT OF INTEREST

B.F. has a financial interest in CorticoMetrics, a company whose medical pursuits focus on brain imaging and measurement technologies. B.F.’s interests were reviewed and are managed by Massachusetts General Hospital and Partners HealthCare in accordance with their conflict of interest policies. The authors declare no competing financial interests.

ROLE OF AUTHORS

All authors had full access to all the data in the study and take full responsibility for the integrity of the data and the accuracy of the data analysis. ESL, S-LD, JRR, and BACF contributed significantly to the atlas design; S-LD generated the anatomic ontology, analyzed the cyto- and chemoarchitectural and MRI data, and delineated anatomical boundaries; JRR, BACF, PL, and BM performed the cartography and quality control; SMS managed the project, and tissue sectioning and staining via NeuroScience Associates; S-LD, SMS, and JRR quality-controlled the stained sections; AB and ND contributed to methods development; TB, AS, LT, AVDK, AV, MW, LZ, and BF contributed to MR and DWI imaging; AG-B and RAD linked this atlas to human brain gene expression datasets; RAD, ES, ZLR, and HRZ contributed to the processing of the human specimen; SC, JN, DS, and MR provided technical support; LN, TAD, and CD managed the creation of the data pipeline, visualization, and mining tools; LN, AS, and CD conducted informatics data processing and online database development; JGH managed the annotation team; ESL, MJH, JGH, AB, CD, PW, JAK, NS, JWP, PRH, CK, and ARJ contributed to the overall project design; ESL and MJH conceived the project, and the manuscript was written by S-LD and ESL with input from BF, PRH, JGH, MJH, and JRR.

LITERATURE CITED

Ahsan RL, Allom R, Gousias IS, Habib H, Turkheimer FE, Free S, Lemieux L, Myers R, Duncan JS, Brooks DJ, Koepp MJ, Hammers A. 2007. Volumes, spatial extents and a probabilistic atlas of the human basal ganglia and thalamus. Neuroimage 38:261-270.

Amunts K, Schleicher A, Zilles K. 2007. Cytoarchitecture of the cerebral cortex: more than localization. Neuroimage 37:1061–1065; discussion 1066–1068.

Amunts K, Lenzen M, Friederici AD, Schleicher A, Morosan P, Palomo-Gallagher N, Zilles K. 2010. Broca’s region: novel organizational principles and multiple receptor mapping. PLoS Biol 8:9.

Amunts K, Lepage C, Borgeat L, Mohlberg H, Dickscheid T, Rousseau ME, Bludau S, Bazin PL, Lewis LB, Oros-Peusquens AM, Shah NJ, Lippert T, Zilles K, Evans AC. 2013. BigBrain: an ultra-high-resolution 3D human brain model. Science 340:1472–1475.

Amunts K, Hawrylycz MJ, Van Essen DC, Van Horn JD, Harel N, Poline JB, De Martino F, Bjaalie JG, Dehaene-Lambertz G, Dehaene S, Valdes-Sosa P, Thrion B, Zilles K, Hill SL, Abrams MB, Tass PA, Vanduffel W, Evans AC, Eickhoff SB. 2014. Interoperable atlases of the human brain. Neuroimage 99:525–532.

Annese J, Schenker-Ahmed NM, Bartsch H, Maechler P, Sheh C, Thomas N, Kayano J, Ghatan A, Bresler N, Frosch MP, Klapring R, Corkin S. 2014. Postmortem examination of patient H.M.’s brain based on histological sectioning and digital 3D reconstruction. Nat Commun 5:3122.

Augustinack JC, van der Kouwe AJ, Blackwell ML, Salat DH, Wiggins CJ, Frosch MP, Wiggins GC, Potthast A, Wald LL, Fischl BR. 2005. Detection of entorhinal layer II using 7 Tesla magnetic resonance imaging. Ann Neurol 57:489–494.

Augustinack JC, Helmer K, Huber KE, Kakunoori S, Zollei L, Fischl B. 2010. Direct visualization of the perforant pathway in the human brain with ex vivo diffusion tensor imaging, Front Hum Neurosci 4:42.

Augustinack JC, Huber KE, Postelnicu GM, Kakunoori S, Wang R, van der Kouwe AJ, Wald LL, Stein TD, Frosch MP, Fischl B. 2012. Entorhinal verruca geometry is coincident and correlates with Alzheimer’s lesions: a combined neuropathology and high-resolution ex vivo MRI analysis. Acta Neuropathol 123:85–96.

Augustinack JC, Huber KE, Stevens AA, Roy M, Frosch MP, van der Kouwe AJ, Wald LL, Van Leemput K, McKee AC, Fischl B. 2013. Predicting the location of human perirhinal cortex, Brodmann’s area 35, from MRI. Neuroimage 64:32–42.
Augustinack JC, Magnain C, Reuter M, van der Kouwe AJ, Boas D, Fischl B. 2014. MRI parcellation of ex vivo medi-
tal temporal lobe. NeuroImage 93:252–259.

Bauernfeind AL, de Sousa AA, Avasthi T, Dobson SD, Raghanti MA, Lewandoski AH, Zilles K, Semendeferi K, Allman JM, Craig AD, Hol FR, Sherwood CC. 2013. A volumetric
comparison of the insular cortex and its subregions in
primates. J Hum Evol 64:263–279.

Bonnicci HM, Chadwick MJ, Kamaran D, Hassabis D, Weiskopf
N, Maguire EA. 2012. Multi-voxel pattern analysis in
human hippocampal subfields. Front Human Neurosci 6:290.

Brodmann K. 1909. Localisation in the cerebral cortex (Trans-
lated and edited by L. J. Garey, 1994). London: Smith-
Gordon.

Campbell MJ, Morrison JH. 1989. Monoclonal antibody to neu-
rofilament protein (SMI-32) labels a subpopulation of
pyramidal neurons in the human and monkey neocortex. J Comp Neurol 282:191–203.

Caspers S, Eickhoff SB, Zilles K, Amunts K. 2013a. Micro-
structural grey matter parcellation and its relevance for
connectome analyses. NeuroImage 80:18–26.

Caspers S, Schleicher A, Bacha-Trams M, Palermo-Gallagher
N, Amunts K, Zilles K. 2013b. Organization of the human inferior
parietal lobule based on receptor architectonics. Cereb Cortex 23:615–628.

Cepi MR, Baier W, Schärer L, de Viragh PA, Gerday C. 1988.
Monoclonal antibodies directed against the calcium binding
protein parvalbumin. Cell Calcium 9:81–86.

Damasio H. 2005. Human Brain Anatomy in Computerized
Images (2nd Edition). New York: Oxford University Press.

Das S, Glatard T, MacIntyre LC, Madjar C, Rogers C, Rousseau ME, Rioux P, MacFarlane D, Mohades Z,
Gnanasekaran R, Makowski C, Kostopoulos P, Adalat R,
Khalili-Mahani N, Niso G, Moreau JT, Evans AC. 2016. The
MNI data-sharing and processing ecosystem. Neuro-
Image 124:1188–1195.

De Olmos JS. 2004. Amygdala. In: Paxinos G, Mai JK, editors. The human nervous system (second edition). San Diego:
Academic Press, pp. 739–868.

Destrieux C, Fischl B, Dale A, Halgren E. 2010. Automatic par-
cellular of human cortical gyri and sulci using standard
anatomical nomenclature. NeuroImage 53:1–15.

Diedrichsen J, Balsters JH, Flavell J, Cussans E, Ramnani N,
Gregor BW, Haradon Z, Haynor DR, Hohmann JG,
Chong J, Dalley RA, Daly BD, Dang C, Datta S, Dee N,
Horvath S, Howard RE, Jeromin A, Jochim JM, Kinnunen
M, Lau C, Lazarz ET, Lee C, Lemon TA, Li L, Li Y, Morris
Malcolm Jenner, 2007. The human brain: surface, blood supply, and
three-dimensional anatomy, 2nd ed. New York: Springer.

Evans AC, Janke AL, Collins DL, Baillet S. 2012. Brain tem-
plates and atlases. NeuroImage 62:911–922.

Fan L, Li H, Zhuo J, Zhang Y, Wang J, Chen L, Yang Z, Chu C,
Xie S, Laird AR, Fox PT, Eickhoff SB, Yu C, Jiang T. 2016. The Human Brainnetome Atlas: A new brain atlas based
on connectional architecture. Cereb Cortex 26:3508–
3526.

Fatterpekar GM, Naidich TP, Delman BN, Aguinaldo JG,
Gultekin SH, Sherwood CC, Hof PR, Drayer BP, Fayad
ZA. 2002. Cytoarchitecture of the human cerebral cortex:
MR microscopy of excised specimens at 9.4 Tesla. AJNR Am J neuroradiol 23:1313–1321.

Fischl B, Sereno MI, Tootell RB, Dale AM. 1999. High-resolution intersubject averaging and a coordinate system for
the cortical surface. Hum Brain Mapp 8: 272–284.

Fischl B, van der Kouwe A, Destrieux C, Halgren E, Segonne
F, Salat DH, Buse A, Seidman LJ, Goldstein J, Kennedy D,
Caviness V, Makris N, Rose B, Dale AM. 2004. Automat-
cally parcellating the human cerebral cortex. Cereb Cortex 14:11–22.

Fischl B, Rajendran N, Buse A, Augustinack J, Hinds O, Yeo
BT, Mohrberg H, Amunts K, Zilles K. 2008. Cortical fold-
ing patterns and predicting cytoarchitecture. Cereb Cortex 18:1973–1980.

Garcia-Cabezas MA, Rico B, Sánchez-González MA, Cavada C.
2007. Distribution of the dopamine innervation in the
macaque and human thalamus. Neuroimage 34:965–
984.

Glasser MF, Coalson TS, Robinson EC, Hacker CD, Harwell J,
Yacoub E, Ugurbil K, Andersson J, Beckmann CF, Jenkinson M, Smith SM, Van Essen DC. 2016. A multi-
modal parcellation of the human cerebral cortex. Nature
536:171–178.

Glover P, Bowtell R. 2009. Medical imaging: MRI rides the
wave. Nature 457:971–972.

Goebel R, Muckli L, Kim D-S. 2012. Visual system.In: Mai JK,
Paxinos G, editors. The human nervous system, 3rd ed.
New York: Elsevier. p 1301–1327.

Hammers A, Allom R, Koepp MJ, Free SL, Myers R, Lemieux
L, Mitchell TN, Brooks DJ, Duncan JS. 2003. Three-
dimensional maximum probability atlas of the human brain, with particular reference to the temporal lobe.
Hum Brain Mapp 19:224–247.

Hawrylycz MJ, Lein ES, Guillozot-Bongaarts AL, Shen EH, Ng L,
Miller JA, van der Lajegaat LN, Smith KA, Ebbert A, Riley
ZL, Abajian C, Beckmann CF, Bernard A, Bertagnolli D,
Boe AF, Cartagena PM, Chakravarty MM, Chapin M,
Chong J, Dalley RA, Daly BD, Dang C, Datta S, Dee N,
Dolbeare TA, Faber V, Feng D, Fowler DR, Goldy J,
Gregor BW, Haradon Z, Haynor DR, Hohmann JG,
Hovarth S, Howard RE, Jeromin A, Jochim JM, Kinnunen
M, Lau C, Lazarz ET, Lee C, Lemon TA, Li L, Li Y, Morris
Ja, Overly CC, Parker PD, Parry SE, Reding M, Royall JJ,
Schulkin J, Sequeira PA, Slaughterbeck CR, Smith SC,
Sodt AJ, Sunkin SM, Swanson BE, Vawter MP, Williams D, Wohnoutka P, Zielke HR, Geschwind DH, Hof PR, Smith SM, Koch C, Grant SG, Jones AR. 2012. An anatomically comprehensive atlas of the adult human brain transcriptome. Nature 489:391–399.

Hof PR, Mufson EJ, Morrison JH. 1993a. Human orbitofrontal cortex: cytoarchitecture and quantitative immunohistochemical parcellation. J Comp Neurol 359:48–68.

Hof PR, Nimchinsky EA, Morrison JH. 1995b. Neurochemical phenotype of corticocortical connections in the macaque monkey: quantitative analysis of a subset of neurofilament protein-immunoreactive projection neurons in frontal, parietal, temporal, and cingulate cortices. J Comp Neurol 362:109–133.

Hof PR, Glezer II, Condé F, Flagg RA, Rubin MB, Nimchinsky EA, Vogt Weisenhorn DM. 1999. Cellular distribution of the calcium-binding proteins parvalbumin, calbindin, and calretinin in the neocortex of mammals: phylogenetic and developmental patterns. J Chem Neuroanat 16:77–116.

Iglesias JE, Augustinack JC, Nguyén K, Player CM, Player A, Wright M, Roy N, Frosch MP, McKee AC, Wald LL, Fischl B, Van Leemput K. 2015. A computational atlas of the hippocampal formation using ex vivo, ultra-high-resolution MRI: application to adaptive segmentation of in vivo MRI. NeuroImage 115:117–137.

Jenkinson M, Smith S. 2001. A global optimisation method for robust affine registration of brain images. Med Image Anal 5:143–156.

Jones EG. 2007. The thalamus. Cambridge: Cambridge University Press.

Kuklisova-Murgasova M, Aljabar P, Srivinasan L, Counsell SJ, Morecraft RJ, Rockland KS, Van Hoesen GW. 2000. Localization of area prostriata and its projection to the cingulate cortex. J Comp Neurol 384:597–620.

Lein ES, Hawrylycz MJ, Ao N, Ayres M, Bengsinger A, Bernard A, Boe AF, Boguski MS, Brockway KS, Byrnes EJ, Chen L, Chen L, Chen TM, Chin MC, Chong J, Crook BE, Czaplinska A, Dang CN, Datta S, Dee N, Desaki AL, Desta T, Diep E, Dolbeare TA, Donelan MJ, Dung HW, Dougherty JG, Duncan BJ, Ebbert AJ, Eichele G, Estin LK, Faber C, Facer BA, Fielde R, Fischer SR, Fliss TP, Freesly C, Gates SN, Glattfelder KJ, Halverson KR, Hart MR, Hohmann JG, Howell MP, Jeung DP, Johnson RA, Karr PT, Kawal R, Kidney JM, Knapik RH, Kuan CL, Lake JH, Laramee AR, Larsen KD, Lau C, Lemon TA, Liang AJ, Liu Y, Luong LT, Michaels J, Morgan JJ, Morgan RJ, Mortrud MT, Mosquera NF, Ng LL, Ng R, Orta GJ, Overy CC, Pak TH, Parry SE, Pathak SD, Pearson OC, Puchalski RB, Riley ZL, Rockett HR, Rowland SA, Royall J, Ruiz MJ, Sarno NR, Schaffnit K, Shapovalova NV, Sivisay T, Slaughterbeck CR, Smith SC, Smith KA, Sodt AJ, Sopka LA, Stadler E, Stumpp KR, Sunkin SM, Suram M, Tam A, Teemer CD, Thaller C, Thompson CL, Varnam LR, Visel A, Whitlock RM, Wohnoutka PE, Wolke CK, Wong VY, Wood M, Yaylaoglu MB, Young RC, Youngstrom BL, Yuan XF, Zhang B, Zwingman TA, Jones AR. 2007. Genome-wide atlas of gene expression in the adult human brain. Nature 445:168–176.

Magnain C, Augustinack JC, Reuter M, Wachinger C, Frosch MP, Ragan T, Akkin T, Wedeen VJ, Boas DA, Fischl B. 2014. Blockface histology with optical coherence tomography: a comparison with Nissl staining. NeuroImage 84:524–533.

Magnain C, Augustinack JC, Konukoglu E, Frosch MP, Sakadzic S, Varjabedian A, Garcia N, Wedeen VJ, Boas DA, Fischl B. 2015. Optical coherence tomography visualizes neurons in human entorhinal cortex. Neurophotonics 2:015004.

Mai JK, Paxinos G, Voss T. 2008. Atlas of the human brain, 3rd ed. New York: Elsevier Science.

Mazzotta J, Toga A, Evans A, Fox P, Lancaster J, Zilles K, Woods R, Paus T, Simpson G, Pike B, Holmes C, Collins L, Thompson P, MacDonald D, Iacoboni M, Schormann T, Amunts K, Palomero-Gallagher N, Geyer S, Parsons L, Narr K, Kabani N, Le Goualher G, Boomsma D, Cannon T, Kawashima R, Mazoyer B. 2001. A probabilistic atlas and reference system for the human brain: International Consortium for Brain Mapping (ICBM). Phil Trans R Soc Lond B Biol Sci 356:1293–1322.

Miller JD, Ding SL, Sunkin SM, Smith KA, Ng L, Szafer A, Ebbert A, Riley ZL, Royall JJ, Aiona K, Arnold JM, Bennett C, Bertagnolli D, Brouner K, Butler S, Caldejon S, Carey A, Cuhaciyan C, Dailey RA, Dee N, Dolbeare TA, Facer BA, Feng D, Fliss TP, Gee G, Goldy J, Gourley L, Gregor BW, Gu G, Howard RE, Jochim JM, Kuan CL, Lau C, Lee CK, Lee F, Lemon TA, Lesnar P, McMurray B, Mastan N, Mosqueda N, Nalau-Cecchini T, Ngo NK, Nyhus J, Olde A, Olson E, Parente J, Parker KD, Parry SE, Stevens A, Pletikos M, Reding M, Roll K, Sandman D, Sarreal M, Shapouri S, Shapovalova NV, Shen E, Sjoquist N, Slaughterbeck CR, Smith M, Sodt AJ, Williams D, Zollei L, Fischl B, Gerstein MB, Geschwind DH, Glass IA, Hawrylycz MJ, Hevritt RF, Huang H, Jones AR, Knowles JA, Levitt P, Phillips JW, Sestan N, Wohnoutka P, Dang C, Bernard A, Hohmann JG, Levin ES. 2014. Transcriptional landscape of the prenatal human brain. Nature 508:199–206.

Miller KL, McNab JA, Jbabdi S, Douaud G. 2012. Diffusion tractography of post-mortem human brains: optimization and comparison of spin echo and steady-state free precession techniques. NeuroImage 59:2284–2297.

Morecraft RJ, Rockland KS, Van Hoesen GW. 2000. Localization of area prostriata and its projection to the cingulate motor cortex in the rhesus monkey. Cereb Cortex 10:192–203.

Morel A. 2007. Stereotactic atlas of the human thalamus and basal ganglia. New York: Informa Healthcare USA.

Morel A, Gallay MN, Baechler A, Wyss M, Gallay DS. 2013. The human insula: architectonic organization and post-mortem MRI registration. NeuroImage 84:455–466.

Mori S, Crain BJ, Chacko VP, van Zijl PC. 1999. Three-dimensional tracking of axonal projections in the brain by magnetic resonance imaging. Ann Neurol 45:265–269.

Naidich TP, Duvernoy HM, Delman BN, Sorensen AG, Kollias SS, Haacke EM. 2008. Duvernoy's atlas of the human brain stem and cerebellum: high-field MRI, surface anatomy, internal structure, vascularization and 3D sectional anatomy. Vienna: Springer.

Nimchinsky EA, Vogt BA, Morrison JH, Hof PR. 1997. Neurofilament and calcium-binding proteins in the human cingulate cortex. J Comp Neurol 384:597–620.

Nowinski W, Chua BC. 2013. Bridging neuroanatomy, neuroradiology and neurology: three-dimensional interactive atlas of neurological disorders. Neurorad J 26:252–262.

Öngür D, Ferry AT, Price JL. 2003. Architectonic subdivision of the human orbitofrontal cortex. J Comp Neurol 460:425–449.

Papp EA, Leergaard TB, Calabrese E, Johnson GA, Bjaalie JG. 2014. Waxholm space atlas of the Sprague Dawley rat brain. NeuroImage 97:374–386.

Pascual B, Masdeu JC, Hollenbeck M, Makris N, Insauti R, Ding SL, Dickerson BC. 2015. Large-scale brain networks of the human left temporal pole: a functional connectiv-ity MRI study. Cereb Cortex 25:680–702.
Paxinos G, Huang XF, Sengul G, Watson C. 2012. Organization of human brainstem nuclei. In: Mai JK, Paxinos G, editors. The human nervous system, 3rd ed. New York: Elsevier. p 326–327.

Petrides M. 2012. The human cerebral cortex: an MRI atlas of the sulci and gyri in MNI stereotaxic space. New York: Elsevier.

Petrides M, Pandya DN. 2012. The frontal cortex.In: Mai JK, Paxinos G, editors. The human nervous system, 3rd ed. New York: Elsevier. p 943–987.

Roemer PB, Edelstein WA, Hayes CE, Souza SP, Mueller OM. 1990. The NMR phased array. Magn Reson Med 16: 192–225.

Saleem KS, Logothetis NK. 2012. A combined MRI and histology atlas of the rhesus monkey brain in stereotaxic coordinates, 2nd ed. San Diego: Academic Press.

Sarkisov SA, Filimonoff IN, Kononova EP, Preobraschenskaja IS, Kukuew LA. 1955. Atlas of the cytoarchitectonics of the human cerebral cortex. Moscow: Medgiz.

Shattuck DW, Adisetiyo V, Hojatkashani C, Salamon G, Narr KL, Poldrack RA, Bilder RM, Toga AW. 2008. Construction of a 3D probabilistic atlas of human cortical structures. NeuroImage 39:1064–1080.

Simić G, Hof PR. 2015. In search of the definitive Brodmann’s map of cortical areas in human. J Comp Neurol 523:5–14.

Sternberger LA, Sternberger NH. 1983. Monoclonal antibodies distinguish phosphorylated and non-phosphorylated forms of neurofilaments in situ. Proc Natl Acad Sci U S A 80:6126–6130.

Talairach J, Tournoux P. 1988. Co-planar stereotaxic atlas of the human brain. New York: Thieme Medical Publishers.

Toga AW, Thompson PM, Mori S, Amunts K, Zilles K. 2006. Towards multimodal atlases of the human brain. Nat Rev Neurosci 7:952–966.

Uylings HB, Rajkowska G, Sanz-Arigita E, Amunts K, Zilles K. 2005. Consequences of large interindividual variability for human brain atlases: converging macroscopic imaging and microscopical neuroanatomy. Anat Embryol 210: 423–431.

Van Essen DC, Lewis JW, Drury HA, Hadjikhani N, Tootell RB, Bakircioglu M, Miller Ml. 2001. Mapping visual cortex in monkeys and humans using surface-based atlases. Vision Res 41:1359–1378.

Vogt BA, Palomero-Gallagher N. 2012. Cingulate cortex.In: Mai JK, Paxinos G, editors. The human nervous system, 3rd ed. New York: Elsevier. p 943–987.

Vogt BA, Nimchinsky EA, Vogt LJ, Hof PR. 1995. Human cingulate cortex: surface features, flat maps, and cytoarchitecture. J Comp Neurol 359:490–506.

Vogt BA, Vogt LJ, Perl DP, Hof PR. 2001. Cytology of human caudomedial cingulate, retrosplenial, and caudal parahippocampal cortices. J Comp Neurol 438:353–376.

Vogt BA, Hof PR, Zilles K, Vogt LJ, Herold C, Palomero-Gallagher N. 2013. Cingulate area 32 homologies in mouse, rat, macaque and human: cytoarchitecture and receptor architecture. J Comp Neurol 521:4189–4204.

von Economo C. 1927. L’architecture cellulaire normale de l’ecorce cerebrale. Paris, Masson.

von Economo C, Koskinas GN. 1925. Die Cytoarchitektonik der Hirnrinde des erwachsenen Menschen. Berlin: Springer.

Wang H, Zhu J, Reuter M, Vinke LN, Yendiki A, Boas DA, Fischl B, Akkin T. 2014. Cross-validation of serial optical coherence scanning and diffusion tensor imaging: a study on neural fiber maps in human medulla oblongata. NeuroImage 100:395–404.

Wang R, Benner T, Soresen AG, Wedeen VJ. 2007. Diffusion Toolkit: a software package for diffusion imaging data processing and tractography. Proceedings of 15th Annual Meeting of International Society for Magnetic Resonance in Medicine, p 3720.

Wright SM, Wald LL. 1997. Theory and application of array coils in MR spectroscopy. NMR Biomed 10:394–410.

Yu HH, Chaplin TA, Davies AJ, Verma R, Rosa MG. 2012. A specialized area in limbic cortex for fast analysis of peripheral vision. Curr Biol 22:1351–1357.

Zilles K, Amunts K. 2009. Receptor mapping: architecture of the human cerebral cortex. Curr Opin Neurobiol 20:331–335.

Zilles K, Amunts K. 2010. Centenary of Brodmann’s map—conception and fate. Nat Rev Neurosci 11:139–145.

Zilles K, Amunts K. 2013. Individual variability is not noise. Trends Cogn Sci 17:153–155.

Zilles K, Palomero-Gallagher N, Gräf Bel D, Schöpfer P, Cremer M, Woods R, Amunts K, Axer M. 2016. High-resolution fiber and fiber tract imaging using polarized light microscopy in the human, monkey, rat, and mouse brain.In: Rockland KS, editor. Axons and brain architecture. San Diego, CA: Elsevier. p 369–389.
TABLE 3.
Whole Brain Structure Ontology and Abbreviations

Acronym	Description
NT	neural tube
Br	brain
F	forebrain (prosencephalon)
FGM	gray matter of forebrain
Tel	telencephalon
Cx	cerebral cortex
NCx	neocortex (isocortex)
FCx	frontal neocortex
PFC	prefrontal cortex
A10	frontal polar cortex (area 10)
A10m	medial subdivision of area 10
A10l	lateral subdivision of area 10
A10o	orbital subdivision of area 10
DFC	dorsolateral prefrontal cortex
A8	caudal portion of DFC (area 8, area FC)
A8ld	laterodorsal subdivision of area 8
A8lv	lateroventral subdivision of area 8
A8m	medial subdivision of area 8
A9	rostroventral portion of DFC (area 9)
A9l	lateral subdivision of area 9
A9m	medial subdivision of area 9
A9/46	intermediate portion of DFC (area 9/46)
A9/46d	dorsal subdivision of A9/46
A9/46v	ventral subdivision of A9/46
A46	rostroventral portion of DFC (area 46)
A46d	dorsal subdivision of area 46
A46v	ventral subdivision of area 46
VFC	ventrolateral prefrontal cortex (Broca's area)
A44	caudal portion of VFC (area 44)
A44d	dorsal subdivision of area 44
A44v	ventral subdivision of area 44
A44op	opercular subdivision of area 44
A45	rostral portion of VFC (area 45)
A45r	rostral subdivision of A45
A45c	caudal subdivision of A45
A45op	opercular subdivision of A45
OFC	orbital frontal cortex
OFCm	medial orbital frontal cortex (area 14)
A14r	rostral subdivision of area 14
A14c	caudal subdivision of area 14
OFCi	intermediate orbital frontal cortex
A11	rostral division of OFCi (area 11)
Abbreviation	Description
--------------	-------------
A11m	medial subdivision of area 11
A11l	lateral subdivision of area 11
A13	caudal division of OFCi (area 13)
A13m	medial subdivision of area 13
A13l	lateral subdivision of area 13
OFCi	lateral orbital frontal cortex (area 12/47)
A12/47m	medial subdivision of area 12/47
A12/47l	lateral subdivision of area 12/47
PoFC	posterior frontal cortex (motor cortex)
M1C (A4)	primary motor cortex (area M1, area 4, area FA)
PMC	premotor cortex (area 6, area FB)
A6ld	laterodorsal subdivision of area 6
A6lv	lateroventral subdivision of area 6
A6m	medial subdivision of area 6 (area MII)
A6/32	area 6/32
PCx	parietal neocortex
S1C (A3,1,2)	primary somatosensory cortex (area S1, areas 3,1,2)
ScC (A43)	subcentral cortex (gustatory cortex, area 43)
PoPC	posterior parietal cortex
SPC	posterodorsal (superior) parietal cortex
A5	rostral division of SPC (area 5)
A5ci	cingulate subdivision of area 5
A5l	lateral subdivision of area 5
A5m	medial subdivision of area 5
A7	caudal division of SPC (area 7, area PE)
A7r	rostral subdivision of area 7
A7m	medial subdivision of area 7
A7c	caudal subdivision of area 7
A7pc	postcentral subdivision of area 7
A7ip	intraparietal subdivision of area 7 (A7ip)
A7ipr	area 7ip, rostral part (A7ipr)
A7ipc	area 7ip, caudal part (A7ipc)
IPC	posteroventral (inferior) parietal cortex
A40	rostral division of IPC (area 40, area PF)
A40rd	rostroventral subdivision of area 40
A40rv	rostroventral subdivision of area 40
A40in	inferior subdivision of area 40
A40/39	intermediate division of IPC (area 40/39, area PFG)
A40/39r	rostral subdivision of area 40/39
A40/39c	caudal subdivision of area 40/39
A39	caudal division of IPC (area 39, area PG)
A39r	rostral subdivision of area 39
A39c	caudal subdivision of area 39
RI	retroinsular cortex
TCx	temporal neocortex
DLTC	dorsolateral temporal neocortex
A1C	primary auditory cortex (core)
A41	main portion of A1C (area TC, area 41)
-------	-------------------------------------
A1Cr	rostral portion of A1C
A42	secondary auditory cortex (belt, area 42, area TB)
SLTC	superolateral temporal cortex
ASTC (A22r)	anterior (rostral) superior temporal cortex (area 22r)
ISTC (A22i)	intermediate superior temporal cortex (area 22i)
STC (A22c)	posterior (caudal) superior temporal cortex (area 22c)
PSTC (A22p)	polysensory temporal cortex (area 22p)
A22pr	rostral division of 22p (area 22pr)
A22pi	intermediate division of 22p (area 22pi)
A22pc	caudal division of 22p (area 22pc)
PI	parainsular cortex (area 52)
VLTC	ventrolateral temporal neocortex
MTC (A21)	midlateral temporal cortex (area TEd, area 21)
A21r	rostral subdivision of area 21
A21i	intermediate subdivision of area 21
A21c	caudal subdivision of area 21
ITC (A20)	inferolateral temporal cortex (area TEv, area 20)
A20r	rostral subdivision of area 20
A20i	intermediate subdivision of area 20
A20c	caudal subdivision of area 20
MITC	midinferior (fusiform) temporal cortex
A36	rostral division of MITC (area 36)
A36r	rostral subdivision of area 36
A36c	caudal subdivision of area 36
TF	caudal division of MITC (area TF)
PPHC	posterior parahippocampal cortex
TH	medial division of PPHC (area TH)
TL	lateral division of PPHC (area TL)
TFO	medial temporal-occipital cortex (area TFO)
TFO-m	area TFO, medial part
TFO-l	area TFO, lateral part (fusiform face area)
A37	lateral temporal-occipital cortex (area 37)
A38	temporal polar cortex (area TG, area 38)
V5/MT	area V5 (mid temporal area)
Ocx	occipital neocortex
Pro	area prostriata
V1C	primary visual cortex (striate cortex, area V1/17, area OC)
ESOC	extrastriate occipital cortex
Vx	area x of visual cortex
V2 (A18)	parastriate cortex (area V2, area 18, area OB)
PSC (A19)	peristriate cortex (area 19, area OA)
V3	area V3 of peristriate cortex
VP	area VP (V3V) of peristriate cortex
V3A	area V3A of peristriate cortex
V4D	area V4D of peristriate cortex
V4	area V4 of peristriate cortex
V3B	area V3B of peristriate cortex
------	--------------------------------
V6	area V6 of peristriate cortex
V6A/PO	area V6 of peristriate cortex (parieto-occipital area)
V7	area V7 of peristriate cortex
LO	lateral occipital area
ICx	insular neocortex
Idg	dysgranular insular cortex
RIdg	rostral dysgranular insular cortex
Cldg	caudal dysgranular insular cortex
Ig	granular insular cortex
Rlg	rostral granular insular cortex
Clg	caudal granular insular cortex
CCx	cingulate neocortex
MFC (ACC)	anterior (rostral) cingulate cortex (ventromedial prefrontal cortex)
A24	ventral division of MFC (area 24, area LA)
A32	dorsorostral division of MFC (area 32)
A25	subgenual (subcallosal) division of MFC (area 25, area FL)
MCC	midcingulate cortex
A24mc	ventral division of MCC (area 24mc)
A32mc	dorsal division of MCC (area 32mc)
PCC	posterior (caudal) cingulate cortex
A23	ventral division of PCC (area 23, area LC2)
A31	dorsal division of PCC (area 31, area LC1)
PACx	periallocortex
PArCx	periarchicortex
A35	perirhinal cortex (area 35)
A35r	rostral subdivision of area 35
A35c	caudal subdivision of area 35
EC	entorhinal cortex
LEC	lateral (anterior) entorhinal cortex
EO	olfactory part of entorhinal cortex
ER	rostral part of entorhinal cortex
ELR	laterorostral part of entorhinal cortex
EMI	medial intermediate part of entorhinal cortex
MEC	medial (posterior) entorhinal cortex
ELI	lateral intermediate part of entorhinal cortex
Ec	caudal part of entorhinal cortex
ECL	caudal limiting part of entorhinal cortex
ELC	latero- caudal part of entorhinal cortex
PaS	parasubicular cortex (parasubiculum)
PaSb	proximal parasubiculum
PaSa	distal parasubiculum
PrS	presubicular cortex (presubiculum)
PrSr	rostral presubiculum
PrSc	caudal presubiculum (postsubiculum)
RSC	retrosplenial cortex
A29	area 29 of retrosplenial cortex
A30	area 30 of retrosplenial cortex
------	---------------------------------
PPCx	peripaleocortex
Iag	agranular insular cortex (area Ia)
Fl	frontal agranular insular cortex (area Fl)
TI	temporal agranular insular cortex (area Ti)
ACx	allocortex
ArCx	archicortex
HIP	hippocampus (hippocampal formation)
DG	dentate area (dentate gyrus)
DGU	uncal dentate gyrus
DGUmo	molecular layer of uncal dentate gyrus
DGUgr	granular layer of uncal dentate gyrus
DGUsg	subgranular zone of uncal dentate gyrus
DGUpf	polymorphic layer of uncal dentate gyrus
DGR	rostral dentate gyrus
DGRmo	molecular layer of rostral dentate gyrus
DGRgr	granular layer of rostral dentate gyrus
DGRsg	subgranular zone of rostral dentate gyrus
DGRpf	polymorphic layer of rostral dentate gyrus
DGC	caudal dentate gyrus
DGCmo	molecular layer of caudal dentate gyrus
DGCgr	granular layer of caudal dentate gyrus
DGCsg	subgranular zone of caudal dentate gyrus
DGCpf	polymorphic layer of caudal dentate gyrus
Hipp	hippocampal proper
CA1	CA1 region of hippocampus
CA1U	uncal CA1
CA1UsIm	stratum lacunosum-moleculare of uncal CA1
CA1Usmo	stratum moleculare of uncal CA1
CA1Usla	stratum lacunosum of uncal CA1
CA1Usr	stratum radiatum of uncal CA1
CA1Usp	stratum pyramidale of uncal CA1
CA1Uso	stratum oriens of uncal CA1
CA1R	rostral CA1
CA1RsIm	stratum lacunosum-moleculare of rostral CA1
CA1Rsro	stratum moleculare of rostral CA1
CA1Rsra	stratum lacunosum of rostral CA1
CA1Rsr	stratum radiatum of rostral CA1
CA1Rsp	stratum pyramidale of rostral CA1
CA1Rso	stratum oriens of rostral CA1
CA1C	caudal CA1
CA1Cslm	stratum lacunosum-moleculare of caudal CA1
CA1Csmo	stratum moleculare of caudal CA1
CA1Csla	stratum lacunosum of caudal CA1
CA1Csr	stratum radiatum of caudal CA1
CA1Csp	stratum pyramidale of caudal CA1
CA1Cso	stratum oriens of caudal CA1
CA2	CA2 region of hippocampus
------------	---------------------------
CA2U	uncal CA2
CA2Uslm	stratum lacunosum-moleculare of uncal CA2
CA2Usmo	stratum moleculare of uncal CA2
CA2Usla	stratum lacunosum of uncal CA2
CA2Usr	stratum radiatum of uncal CA2
CA2Usp	stratum pyramidale of uncal CA2
CA2uso	stratum oriens of uncal CA2
CA2R	rostral CA2
CA2Rslm	stratum lacunosum-moleculare of rostral CA2
CA2Rsmo	stratum moleculare of rostral CA2
CA2Rsla	stratum lacunosum of rostral CA2
CA2Rsr	stratum radiatum of rostral CA2
CA2Rsp	stratum pyramidale of rostral CA2
CA2Rso	stratum oriens of rostral CA2
CA2C	caudal CA2
CA2Cslm	stratum lacunosum-moleculare of caudal CA2
CA2Csmo	stratum moleculare of caudal CA2
CA2Csla	stratum lacunosum of caudal CA2
CA2Csr	stratum radiatum of caudal CA2
CA2Csp	stratum pyramidale of caudal CA2
CA2Cso	stratum oriens of caudal CA2
CA3	CA3 region of hippocampus
CA3U	uncal CA3
CA3Uslm	stratum lacunosum-moleculare of uncal CA3
CA3Usmo	stratum moleculare of uncal CA3
CA3Usla	stratum lacunosum of uncal CA3
CA3Usr	stratum radiatum of uncal CA3
CA3Usi	stratum lucidum of uncal CA3
CA3Usp	stratum pyramidale of uncal CA3
CA3uso	stratum oriens of uncal CA3
CA3R	rostral CA3
CA3Rslm	stratum lacunosum-moleculare of rostral CA3
CA3Rslo	stratum moleculare of rostral CA3
CA3Rsia	stratum lacunosum of rostral CA3
CA3Rsr	stratum radiatum of rostral CA3
CA3Rsi	stratum lucidum of rostral CA3
CA3Rsp	stratum pyramidale of rostral CA3
CA3Rso	stratum oriens of rostral CA3
CA3C	caudal CA3
CA3Cslm	stratum lacunosum-moleculare of caudal CA3
CA3Csmo	stratum moleculare of caudal CA3
CA3Csla	stratum lacunosum of caudal CA3
CA3Csr	stratum radiatum of caudal CA3
CA3Csi	stratum lucidum of caudal CA3
CA3Csp	stratum pyramidale of caudal CA3
CA3Cso	stratum oriens of caudal CA3
TABLE 3. Continued

Abbreviation	Description
CA4	CA4 region of hippocampus
CA4Upy	pyramidal cells of uncal CA4
CA4Rpy	pyramidal cells of rostral CA4
CA4Cpy	pyramidal cells of caudal CA4
Sub	subiculum
S-U	uncal subiculum
S-R	rostral subiculum
S-C	caudal subiculum
ProS	prosubiculum
ProU	uncal prosubiculum
ProR	rostral prosubiculum
ProC	caudal prosubiculum
SuS	supracallosal subiculum
IG	indusium griseum
TT	taenia tecta
PalCx	paleocortex (semicortex)
OB	olfactory bulb
AON	anterior olfactory nucleus
NLOT	nucleus of lateral olfactory tract
OT	olfactory tubercle
LOA	lateral olfactory area
LOAlc	lightly-stained cell islands of lateral olfactory area
LOAdc	darkly-stained cell islands of lateral olfactory area
Pir	piriform cortex
Pir1	layer I of piriform cortex
Pir2	layer II of piriform cortex
Pir3	layer III of piriform cortex
PEA	piriform-entorhinal-amygdaloid area
PEA1	layer I of piriform-entorhinal-amygdaloid area
PEA2	layer II of piriform-entorhinal-amygdaloid area
PEA3	layer III of piriform-entorhinal-amygdaloid area
CN	cerebral nuclei
AMY	amygdaloid complex
AAA	anterior amygdaloid area
AAAAd	dorsal part of AAA
AAAv	ventral part of AAA
CEN	central nuclear group
CEm	medial subdivision of central nucleus
CEmd	dorsal part of CEm
CEmv	ventral part of CEm
CEI	lateral subdivision of central nucleus
CEIap	apical part of CEI
CEIca	capsular part of CEI
CEIpc	paracapsular part of CEI
CEIcn	central part of CEI
CMN	corticomedial nuclear group
Acronym	Description
---------	--
Co	cortical amygdaloid nuclei
CoA	anterior cortical nucleus
CoAd	dorsal subdivision of CoA
CoAv	ventral subdivision of CoA
CoA-m	marginal layer of anterior cortical nucleus
CoP	posterior cortical nucleus
CoPd	dorsal subdivision of CoP
CoPv	ventral subdivision of CoP
CoP-m	marginal layer of posterior cortical nucleus
Me	medial nucleus
MeR	rostral subdivision of medial nucleus
MeC	caudal subdivision of medial nucleus
MeCd	dorsal part of caudal medial nucleus
MeCv	ventral part of caudal medial nucleus
Me-m	marginal layer of medial amygdaloid nucleus
AHA	amygda1ohippocampal area
AHAmc	magnocellular part of amygdalohippocampal area
AHApc	parvocellular part of amygdalohippocampal area
AHA-m	marginal layer of amygdalohippocampal area
BLN	basolateral nuclear group
La	lateral nucleus
LaD	dorsal division of lateral nucleus
LaDr	dorsal rostral subdivision of lateral nucleus
LaDi	dorsal lateral subdivision of lateral nucleus
LaCom	comb-like part of LaDi
LaDm	dorsal medial subdivision of lateral nucleus
LaI	intermediate division of lateral nucleus
LaV	ventral division of lateral nucleus
LaVI	ventral lateral subdivision of lateral nucleus
LaVm	ventral medial subdivision of lateral nucleus
LaVglo	glomerular subdivision of lateral nucleus
BL	basolateral nucleus (basal nucleus)
BLD	dorsal (magnocellular) division of basolateral nucleus
BLDI	dorsal lateral subdivision of basolateral nucleus
BLI	intermediate division of basolateral nucleus
BLV	ventral (parvocellular) division of basolateral nucleus
BLVI	ventral lateral subdivision of basolateral nucleus
BLVm	ventral medial subdivision of basolateral nucleus
BM	basomedial nucleus (accessory basal nucleus)
BMD	dorsal division of basomedial nucleus
BMDI	dorsolateral subdivision of basomedial nucleus
BMDm	dorsomedial (magnocellular) subdivision of basomedial nucleus
BMV	ventral division of basomedial nucleus
BMVI	ventrolateral (parvocellular) subdivision of basomedial nucleus
BMVvm	ventromedial subdivision of basomedial nucleus
BMm	medial division of basomedial nucleus
BV	basoventral nucleus
Abbreviation	Description
--------------	-------------
PL	paralaminar nucleus
PLglo	glomerular part of paralaminar nucleus
En	endopiriform nucleus
INA	intercalated nucleus of amygdala
IMG	intramedullary gray of the amygdala
ATA	amygdaloid transition areas
AHTA	amygdalohippocampal transition area
ASTA	amygdalostrial transition area
ACTA	amygdalocortical (corticoamygdaloid) transition area
SA	supra-amygdaloid area
EXA	extended amygdala
BNST	bed nucleus of stria terminalis
BNSTm	medial subdivision of BNST
BSTmr	rostral subdivision of BNSTm
BSTmc	caudal subdivision of BNSTm
BSTmcl	lateral subdivision of BNSTmcl
BSTmm	medial subdivision of BNSTmm
BSTmv	ventral subdivision of BNSTmv
BNSTl	lateral subdivision of BNSTl
BSTlj	juxtacapsular subdivision of BNSTl
BSTld	dorsal subdivision of BNSTld
BSTlv	ventral subdivision of BNSTlv
BSTlcn	central subdivision of BNSTlcn
BSTlcn-s	shell of central subdivision of BNSTlcn
BSTlc	caudal subdivision of BNSTlc
BSTlcm	medial subdivision of BNSTlcm
BSTlcd	dorsal subdivision of BNSTlcd
BSTlcv	ventral subdivision of BNSTlcv
BNSTsc	supracapsular division of BNST
BSTsc	lateral column of BNSTsc
BSTscm	medial column of BNSTscm
BNSTin	intercalated nuclei of BNST
SLEA	sublenticular extended amygdala
SLEAm	medial division of sublenticular extended amygdala
SLEAc	central division of sublenticular extended amygdala
IPAC	interstitial nucleus of posterior limb of anterior commissure
BN	basal nuclei (basal ganglia)
STR	striatum
Ca	caudate nucleus
CaH	head of caudate
CaB	body of caudate
CaT	tail of caudate
Eca	peri-caudate ependymal and subependymal zone
CaPu	caudate-putamen cell bridges
Pu	putamen
PuR	rostral putamen
PuRv	ventral part of rostral putamen
Abbreviation	Description
-------------	---
PuC	caudal putamen
Plld	laterodorsal part of putamen
Pint	intermediate part of putamen
Pmv	medioventral part of putamen
PuPV	posteroventral putamen
PuMG	marginal subdivision (cell groups) of putamen
NAC	nucleus accumbens
NACc	core of nucleus accumbens
NACcl	lateral portion of the core
NACcm	medial portion of the core
NACs	shell of nucleus accumbens
NACsl	lateral portion of the shell
NACsi	intermediate portion of the shell
NACsm	medial portion of the shell
GP	globus pallidus
GPe	external segment of globus pallidus
GPi	internal segment of globus pallidus
GPic	central portion of GPi
GPip	peripheral portion of GPi
EnPN	entopeduncular nucleus
VeP	Ventral pallidus
Cla	claustrum
CLd	Dorsal claustrum
CLv	ventral claustrum
Clt	temporal claustrum
BF	basal forebrain
SEP	septal nuclei
MSN	medial septal nucleus
LSN	lateral septal nucleus
LSnD	dorsal division of lateral septal nucleus
LSnI	intermediate division of lateral septal nucleus
LSnV	ventral division of lateral septal nucleus
CSN	caudal septal nucleus
SFi	septofimbrial nucleus
TSN	triangular septal nucleus
SHi	septohipocampal nucleus
Ld	lambdoid septal zone
Pld	paralambdoid septal nucleus
SHy	septohypothalamic nucleus
BNM	basal nucleus of Meynert
BNMI	lateral cell groups of basal nucleus
BNMM	medial cell groups of basal nucleus
NDB	nucleus of diagonal band
NDBv	vertical subdivision of nucleus of diagonal band
NDBh	horizontal subdivision of nucleus of diagonal band
NSP	nucleus subputaminalis
IsCj	islands of Calleja
Abbreviation	Description
--------------	-------------
IsCjm	major island of Calleja
IsCJs	scattered islands of Calleja
SI	substantia innominata
SI-pc	lightly-stained parvocellular islands of SI
SI-nc	darkly-stained nanocellular islands of SI
Die	diencephalon
THM	thalamus
DTH	dorsal thalamus
ANC	anterior nuclear complex of thalamus
AD	anterodorsal nucleus of thalamus
AM	anteromedial nucleus of thalamus
AV	anteroventral nucleus of thalamus
LD	lateral dorsal nucleus of thalamus
MNC	medial nuclear complex of thalamus
MD	mediadorsal nucleus of thalamus
MDd	densocellular (paralamellar) division of MD
MDm	magnocellular (medial) division of MD
MDam	anteromedial large-celled island of MD
MDI	multiform (lateral) division of MD
MDc	parvocellular (central) division of MD
MDv	ventral division of MD
Re	reuniens nucleus (medioventral nucleus) of thalamus
Pt	parataenial nucleus of thalamus
LNC	lateral nuclear complex of thalamus
DLN	dorsal group of lateral nucleus
LP	lateral posterior nucleus of thalamus
Pul	pulvinar of thalamus
Pulr	anterior nucleus of pulvinar
Pulm	medial nucleus of pulvinar
Pull	lateral nucleus of pulvinar
Puli	inferior nucleus of pulvinar
Pulil	lateral subdivision of Puli
Pulim	medial subdivision of Puli
VLN	ventral group of lateral nucleus
VA	ventral anterior nucleus of thalamus
VApr	parvocellular division of VA
VAmc	magnocellular division of VA
VL	ventral lateral nucleus of thalamus
VLR	rostral division of VL
VLC	caudal division of VL
VLCD	dorsal subdivision of VLC
VLCv	ventral subdivision of VLC
VLCx	medial subdivision of VLC (thalamic nucleus X)
VPT	ventral posterior nucleus of thalamus
VPL	ventral posterior lateral nucleus
VPLr	rostral division of ventral posterior lateral nucleus
VPLc	caudal division of ventral posterior lateral nucleus
Abbreviation	Description
--------------	-------------
VPM	ventral posterior medial nucleus
VPmpc	parvocellular division of VPM
VPI	ventral posterior inferior nucleus
VMb	basal ventral medial nucleus
VM	ventral medial nucleus of thalamus
PoN	posterior nuclear complex of thalamus
LG	lateral geniculate nucleus
DLG	dorsal lateral geniculate nucleus
DLGmc	magnocellular layer of DLG
DLG1	layer 1 of DLG
DLG2	layer 2 of DLG
DLGpc	parvocellular layer of DLG
DLG3	layer 3 of DLG
DLG4	layer 4 of DLG
DLG5	layer 5 of DLG
DLG6	layer 6 of DLG
DLGs	S layer of DLG
DLGk	koniocellular layer of DLG
PG	pregeniculate nucleus
MG	medial geniculate nuclei
DMG	dorsal medial geniculate nucleus
DMGad	anterodorsal subdivision of DMG
DMGpd	posterodorsal subdivision of DMG
VMG	ventral medial geniculate nucleus
MMG	magnocellular (medial) nucleus
LimG	limitans part of medial geniculate nucleus
Po	posterior nucleus of thalamus
LSG	limitans/suprageniculate nucleus
Lim	limitans nucleus
SGN	suprageniculate nucleus of thalamus
ILN	intralaminar nuclear complex
AILN	anterior group of intralaminar nuclei
CL	central lateral nucleus of the thalamus
CLm	medial division of central lateral nucleus
CLI	lateral division of central lateral nucleus
CLs	dorsal division of central lateral nucleus
CLc	caudal division of central lateral nucleus
CeM	central medial nucleus of thalamus
PC	paracentral nucleus of thalamus
CD	central dorsal nucleus of thalamus
PILN	posterior group of intralaminar nuclei
CM	centromedian nucleus of thalamus
CMI	lateral division of centromedian nucleus of thalamus
CMm	medial division of centromedian nucleus of thalamus
Pf	parafascicular nucleus of thalamus
Pfl	lateral division of parafascicular nucleus of thalamus
Pfm	medial division of parafascicular nucleus of thalamus
Abbreviation	Description
--------------	-------------
SPF	subparafascicular nucleus of thalamus
RPF	retroparafascicular area of thalamus
Fa	fasciculosis nucleus of thalamus
MiN	midline nuclear complex
Rh	rhomboid (central) nucleus of thalamus
PeVA	periventricular area of thalamus
IAM	interanteromedial nucleus of thalamus
IMD	intermediodorsal nucleus of thalamus
ETH	epithalamus
HN	habenular nuclei
LHN	lateral habenular nucleus
LHNmc	magnocellular division of lateral habenular nucleus
LHNpc	parvicellular division of lateral habenular nucleus
MHN	medial habenular nucleus
PaV	paraventricular nucleus
PaVr	rostral subdivision of paraventricular nucleus
PaVc	caudal subdivision of paraventricular nucleus
Pin	pineal body
VTH	ventral thalamus
FF	nucleus of the field of Forel
ZI	zona incerta
ZId	zona incerta, dorsal division
ZIv	zona incerta, ventral division
EnP	endopeduncular nucleus
PSTh	parasubthalamic nucleus
R	reticular nucleus of thalamus
Rmc	magnocellular division of reticular nucleus
Rpc	parvocellular division of reticular nucleus (perireticular nucleus)
SubTH	subthalamus
STH	subthalamic nucleus
STHm	medial portion of STH
STHId	laterodorsal portion of STH
STHlv	lateroventral portion of STH
HTH	hypothalamus
HTHpo	preoptic region of HTH
PeVpo	periventricular nucleus, preoptic portion
DPe	dorsal periventricular nucleus
AVPe	anteroventral periventricular nucleus
AMPO	anteromedial preoptic nucleus
MPA	medial preoptic area
MPN	medial preoptic nucleus
LPA	lateral preoptic area
IMH	intermediate (sexually dimorphic) hypothalamic nuclei
MnPO	median preoptic nucleus
HTHso	supraoptic region of HTH
PeVso	periventricular nucleus, supraoptic portion
AHN	anterior hypothalamic nucleus
AnHA	anterior hypothalamic area
PV	paraventricular nucleus of hypothalamus
PVd	descending division of paraventricular nucleus
PVmc	magnocellular division of paraventricular nucleus
PVpc	parvicellular division of paraventricular nucleus
PVpoo	posterior division of paraventricular nucleus
UnN	uncinate nucleus
SCN	suprachiasmatic nucleus
SCNd	dorsal part of suprachiasmatic nucleus
SCNc	central part of suprachiasmatic nucleus
RCN	retrochiasmatic nucleus
SO	supraoptic nucleus
SOn	medial part of supraoptic nucleus
SOl	lateral part of supraoptic nucleus
LHAA	lateral hypothalamic area, anterior part
SuV	subventricular nucleus
SPZ	subparaventricular zone
HTHtub	tuberal region of HTH
PeVtub	periventricular nucleus, tuberal portion
JPLH	juxtaventricular lateral hypothalamic area
DHA	dorsal hypothalamic area
DMH	dorsomedial hypothalamic nucleus
DMHc	compact part of dorsomedial hypothalamic nucleus
DMHd	diffuse part of dorsomedial hypothalamic nucleus
VMH	ventromedial hypothalamic nucleus
VMHd	dorsal part of ventromedial hypothalamic nucleus
VMHv	ventral part of ventromedial hypothalamic nucleus
VMHc	central part of ventromedial hypothalamic nucleus
PMH	posteromedial hypothalamic nucleus
Arc	arcuate nucleus of hypothalamus
LT	lateral tuberal nuclei
LHA tub	lateral hypothalamic area, tuberal part
LHC	magnocellular nucleus of lateral hypothalamic area
LHCc	accessory secretory cells of lateral hypothalamus
PalHy	pallidohypothalamic area
NCN	nanocellular hypothalamic nucleus
ME	median eminence
MEEx	external portion of median eminence
MEI	internal portion of median eminence
HTHma	mammillary region of HTH
TM	tuberomammillary nucleus
SUM	supramammillary nucleus
MN	mammillary nucleus
MM	medial mammillary nucleus
MMI	lateral part of medial mammillary nucleus
MMm	medial part of medial mammillary nucleus
MMb	basal division of medial mammillary nucleus
TABLE 3. Continued

Abbreviation	Description
LM	lateral mammillary nucleus
PHN	posterior hypothalamic nucleus
LHAp	lateral hypothalamic area, posterior part
PeF	perifornical nucleus
PMN	premammillary nucleus
RMA	retromammillary area
Pit	pituitary body
FWM	white matter of forebrain
FCFT	forebrain commissural fiber tracts
ac	anterior commissure
cc	corpus callosum
ccr	rostrum of corpus callosum
ccg	genu of corpus callosum
ccg-mi	forceps minor (frontalis)
ccb	body of corpus callosum
ccb-r	body of cc, rostral portion
ccb-i	body of cc, intermediate portion
ccb-c	body of cc, caudal portion
ccs	splenium of corpus callosum
ccs-ma	forceps major (occipitalis)
ccs-in	forceps inferior
ccrd	radiations of corpus callosum
tap	tapetum of corpus callosum
hac	habenular commissure
hic	hippocampal commissure
dhic	dorsal hippocampal commissure
vhic	ventral hippocampal commissure
smc	supramammillary commissure
FIFT	forebrain ipsilateral fiber tracts
alv	alveus
amtg	amygdalotegmental tract
ar	acoustic radiation
agb	angular bundle
al	ansa lenticularis
ap	ansa peduncularis
af	arcuate fasciculus
bx	bundle X
cb	cingulum bundle
cb-cx	cingulum bundle in cingulate cortex
cb-tx	cingulum bundle in temporal cortex
comb	comb fibers
cor	corona radiata
cor-a	anterior portion of corona radiata
cor-s	superior portion of corona radiata
cor-p	posterior portion of corona radiata
cbu-sc	corticobulbar tract, supracapsular part
cpa	corticopallidal tract
Abbreviation	Description
--------------	-------------
cst	corticostriate tract
dpa	dentatopallidal tract
dlb	diagonal band
dlf	dorsal longitudinal fasciculus
doh	dorsal occipital bundle
extC	external capsule
emlgp	external medullary lamina of globus pallidus
emth	external medullary lamina of thalamus
extrC	extreme capsule
fim	fimbria
fx	fornix
fx-co	column of the fornix
fx-cr	column of the fornix, rostral portion
fx-c-c	column of the fornix, caudal portion
fx-b	body of the fornix
fx-cr	crus of the fornix
hyhyp	hypothalamo-hypophyseal tract
ilf	inferior longitudinal fasciculus
ithp	inferior thalamic peduncle
ic	internal capsule
aic	anterior limb of internal capsule
pfpf	prefrontopontine fibers
athf	anterior thalamic radiation
gic	genu of internal capsule
cbu-ic	corticobulbar fibers
cre	corticoreticular fibers
pic	posterior limb of internal capsule
lthp	lenticulothalamic portion
csp	corticospinal fibers
fpn	frontopontine fibers
sthr	superior thalamic radiation
cte	corticotectal fibers
cru	corticorubral fibers
relp	retrolenticular portion
pthtr	posterior thalamic radiation
or-ri	optic radiation (geniculocalcarine tract)
pnp	parietopontine fibers
opn	occipitopontine fibers
oco	occipitocollicular fibers
sulp	sublenticular portion
ar-sl	auditory radiation
tepn	temporopontine fibers
imlgp	internal medullary lamina of globus pallidus
imth	internal medullary lamina of thalamus
ils	lateral longitudinal stria
lf	lenticular fasciculus
mp	mammillary peduncle
Abbreviation	Description
--------------	-------------
mtg	mammillotegmental tract
mtt	mammillothalamic tract
mcht	medial corticohypothalamic tract
mfb	medial forebrain bundle
mls	medial longitudinal stria
or-lp	Meyer's loop of optic radiation
mlf	middle longitudinal fasciculus
npa	nigropallidal tract
nst	nigrostriate tract
off	occipitofrontal fasciculus
offi	inferior occipitofrontal fasciculus
offs	superior occipitofrontal fasciculus
olt	olfactory tract
ost	olfactory striae
lost	lateral olfactory stria
most	medial olfactory stria
ox	optic chiasm
on	optic nerve
or	optic radiation
ot	optic tract
opt	orbito-polar tract
pni	pallidoniogral tract
ptg	pallidotegmental tract
pth	pallidothalamic tract
perf	perforant path
perp	perpendicular fasciculus
ponb	pontine bundle
rthp	rostral thalamic peduncle
sst	sagittal stratum
ssst	external sagittal stratum
ssti	internal sagittal stratum
saf	short association fibers
sr	somatosensory radiation
szt	stratum zonale of thalamus
smt	stria medullaris of thalamus
st	stria terminalis
spa	striopallidal tract
sni	strionigral tract
sth	striothalamic tract
scf	subcallosal fasciculus
sthf	subthalamic fasciculus
sprs	superficial presubiculbar path
slf	superior longitudinal fasciculus
slf-m	superior longitudinal fasciculus, medial portion
slf-i	superior longitudinal fasciculus, intermediate portion
slf-l	superior longitudinal fasciculus, lateral portion
sox	supraoptic dicussation
Abbreviation	Description
--------------	-------------
tpsl	temporopulvinar bundle
thf	thalamic fasciculus
thpa	thalamopallidal tract
thst	thalamostriate tract
tuin	tuberoinfundibular path
unf	uncinate fasciculus
vamy	ventral amygdaloidefferent path
vof	vertical occipital fasciculus
FV	ventricles of forebrain
LV	lateral ventricles
aLV	anterior horn of lateral ventricle
bLV	body of lateral ventricle
xLV	atrium of lateral ventricle
pLV	posterior horn of lateral ventricle
iLV	inferior horn of lateral ventricle
olr	olfactory recess
3V	third ventricle
ifr3V	infundibular recess of 3V
por3V	preoptic recess of 3V
pir3V	pineal recess of 3V
spr3V	suprapineal recess of 3V
mmr3V	mammillary recess of 3V
IVF	interventricular foramen
FSS	surface structures of forebrain
CeS	cerebral sulci
PriS	primary sulci
cas	calcarine fissure (sulcus)
cas-r	rostral (common) portion of calcarine fissure
cas-c	caudal portion of calcarine fissure
cas-cs	superior ramus of caudal calcarine fissure
cas-ci	inferior ramus of caudal calcarine fissure
cals	callosal sulcus
cs	central sulcus
cis	cingulate sulcus
mr	marginal ramus of cingulate sulcus
csr	circular sulcus of Reil
csr-u	upper limiting sulcus
csr-l	lower limiting sulcus
cols	collateral sulcus
cols-r	collateral sulcus, rostral segment (rhinal sulcus, ventral part)
cols-c	collateral sulcus, caudal segment (medial occipitotemporal sulcus)
hf	hippocampal fissure
ips	intraparietal sulcus
las	lateral (sylvian) fissure (sulcus)
las-h	lateral fissure, horizontal (rostral) ramus
las-a	lateral fissure, ascending (middle) ramus
las-m	lateral fissure, main (caudal) ramus
Term	Description
------	-------------
lof	longitudinal fissure
ots	occipitotemporal sulcus (lateral occipitotemporal sulcus)
ols	olfactory sulcus
ors	orbital sulcus
ors-m	medial orbital sulcus
ors-i	intermediate orbital sulcus
ors-p	posterior orbital sulcus
ors-l	lateral orbital sulcus
ors-t	transverse (arcuate) orbital sulcus
pos	parietooccipital fissure (sulcus)
pos-le	parietooccipital fissure, lateral extension
pocs	postcentral sulcus
prcs	precentral sulcus
sts	superior temporal sulcus
sts-a	superior temporal sulcus, mid-ascending branch
tranf	transverse cerebral fissure
SecS	secondary sulci
aos	anterior occipital sulcus
aos-d	anterior occipital sulcus, dorsal ramus
aos-v	anterior occipital sulcus, ventral ramus
ascS	anterior subcentral sulcus
cfts	caudal transverse fusiform sulcus (posterior transverse collateral sulcus)
csin	central sulcus of insula
ds	diagonal sulcus
ers	endorhinal sulcus
fimd	fimbriodentate sulcus
fms	frontomarginal sulcus
fps	frontopolar sulcus
fps-d	dorsal frontopolar sulcus
fps-v	ventral frontopolar sulcus
ifs	inferior frontal sulcus
its	inferior temporal sulcus
imfs	intermediate frontal sulcus
ios	inferior occipital sulcus
itos	inferior transverse occipital sulcus
ans	angular sulcus
mcs	mid-cuneal sulcus
mffs	mid-fusiform sulcus (fusiform sulcus)
mos	middle (lateral) occipital sulcus
mligs	mid-lingual sulcus
mprcs	mid-precuneal sulcus
lus	lunate sulcus
mfs	medial frontal sulcus
pacs	paracentral sulcus
pacis	paracingulate sulcus
phlgs	parahippocampo-ligual sulcus
pols	parolfactory sulcus
Abbreviation	Definition
--------------	------------
pols-r	rostral parolfactory sulcus
pols-c	caudal parolfactory sulcus
prin	precentral sulcus of insula
poin	postcentral sulcus of insula
poscs	posterior subcentral sulcus
rs	rhinal sulcus (dorsal part)
rtfs	rostral transverse fusiform sulcus (posterior transverse collateral sulcus)
ros	rostral sulcus
ros-s	superior rostral sulcus
ros-i	inferior rostral sulcus
ss	semiannular sulcus
sps	subparietal (splenial) sulcus
sfs	superior frontal sulcus
spas	superior parietal sulcus
sms	supramarginal sulcus
tps	temporopolar sulcus
tps-m	medial temporopolar sulcus
tps-l	lateral temporopolar sulcus
trps	transverse parietal sulcus
tts	transverse temporal sulcus
atts	anterior transverse temporal sulcus
pttts	posterior transverse temporal sulcus
ims	intermediate transverse temporal sulcus
tttts-le	lateral extension of transverse temporal sulcus
tros	transverse occipital sulcus
trs	triangular sulcus
us	uncal sulcus
CeG	cerebral gyri and lobules (colors for this group are for online gyral version only)
FroL	frontal lobe
PrCG	precentral gyrus
SFG	superior frontal gyrus
MFG	middle frontal gyrus
IFG	inferior frontal gyrus
IFGr	inferior frontal gyrus, triangular part
IFGop	inferior frontal gyrus, opercular part
IFGor	inferior frontal gyrus, orbital part
ReG	gyrus rectus (straight gyrus)
MOrG	medial orbital gyrus
AOrG	anterior intermediate orbital gyrus
PORG	posterior intermediate orbital gyrus
LOrG	lateral orbital gyrus
PClr	paracentral lobule, rostral part
PaCG	paracingulate gyrus
FrO	frontal operculum
OrO	orbital operculum
RoG	rostral gyrus
SROG	superior rostral gyrus
TABLE 3. Continued

Abbreviation	Description
IRoG	inferior rostral gyrus
LOG	lateral olfactory gyrus
FMG	frontomarginal gyrus
FP	frontal pole
ParL	parietal lobe
PoCG	postcentral gyrus
SPL	supraparietal lobule
IPL	inferior parietal lobule
SMG	supramarginal gyrus
AnG	angular gyrus
PrCun	precuneus
PClc	paracentral lobule, caudal part
PaO	parietal operculum
TemL	temporal lobe
STG	superior temporal gyrus
MTG	middle temporal gyrus
ITG	inferior temporal gyrus
FuGt	occipitotemporal (fusiform) gyrus, temporal part
PRG	perirhinal gyrus (rostral part of FuGt)
TTG	transverse temporal gyrus (Heschl's gyrus)
TTGr	rostral (anterior) transverse temporal gyrus
TTGc	caudal (posterior) transverse temporal gyrus
PLT	planum temporale
TP	temporal pole
PRL	perirhinal lobule
PLP	planum polare
OccL	occipital lobe
OP	occipital pole
OPR	occipitoparietal transition region
OTR	occipitotemporal transition region
Cun	cuneus
LiG	lingual gyrus (medial occipitotemporal gyrus)
FuGo	(lateral) occipitotemporal (fusiform) gyrus, occipital part
IOG	inferior occipital gyrus
SOG	superior occipital gyrus
InL	insular lobe
LiG	long insular gyri
SIG	short insular gyri
LimL	limbic lobe
CgG	cingulate gyrus
CgGr	cingulate gyrus, rostral (anterior) part
CgGc	cingulate gyrus, caudal (posterior) part
CgGrS	cingulate gyrus, retrospleninal part
IsCPH	cingulo-parahippocampal isthmus
SCG	subcallosal gyrus (parolfactory gyrus)
PTG	paraterminal gyrus
PHG	parahippocampal gyrus
Abbreviation	Description
--------------	--
APH	anterior parahippocampal gyrus
PPH	posterior parahippocampal gyrus
UN	uncus of parahippocampal gyrus
AG	gyrus ambiens
BG	band of Giacomini
ILG	intralimbic gyrus
SLG	semilunar gyrus
HiF	hippocampal gyrus (formation)
HiH	head of hippocampus
HiD	digitations of hippocampus
HiB	body of hippocampus
HiT	tail of hippocampus
FaG	fasciolar gyrus
Retz	Retzius' gyrus
Subx	subicular complex
PrPir	prepiriform region
APS	anterior perforated substance
HaTr	habenular triangle
InF	infundibular stalk
Li	limen insula
MB	mammillary body
PrN	preoccipital notch
TPUJ	temporopolar uncal junction
TN	tentorial notch
TC	tuber cinereum
ASFV	adjoining structures of forebrain ventricles
CalA	calcar avis
ChoLV	choroid plexus of lateral ventricle
Cho3V	choroid plexus of 3V
ChoF	choroid fissure
CoE	collateral eminence
CoT	collateral trigone
hyths	hypothalamic sulcus
InTh	interthalamic adhesion (massa intermedia)
LaT	lamina terminalis
OVLT	organum vasculosum laminae terminalis
SFO	subfornical organ
Pell	septum pellucidum
cpell	cavum septi pellucidi
vip	velum interpositum
fbv	blood vessels of forebrain
M	midbrain (mesencephalon)
MGM	gray matter of midbrain
PTR	pretectal region
PTN	pretectal nuclear complex
DPT	dorsal (posterior/sublentiform) pretectal nucleus
MPT	medial pretectal nucleus
Acronym	Description
---------	-------------
NOP	nucleus of the optic tract (lentiform nucleus)
OPT	olivary pretectal nucleus
APT	anterior (ventral /principal) prectectal division
APTc	anterior prectectal nuclei, compact division
APTr	anterior prectectal nuclei, reticular division
AOP	accessory nuclei of optic tract
AOPd	accessory nuclei of optic tract, dorsal nucleus (dorsal terminal nucleus)
AOPI	accessory nuclei of optic tract, lateral nucleus (lateral terminal nucleus)
AOPm	accessory nuclei of optic tract, medial nucleus (medial terminal nucleus)
MTg	midbrain tegmentum
MEN	efferent nuclei of the cranial nerves in the midbrain
EW	Edinger-Westphal nucleus (accessory oculomotor nucleus)
3N	oculomotor nucleus
3AM	anterior median oculomotor nucleus
3CC	caudal central oculomotor nucleus
3C	central oculomotor nucleus
3D	dorsal oculomotor nucleus
3M	medial oculomotor nucleus
3Vn	ventral oculomotor nucleus
4N	trochlear nucleus
4N	supratrochlear nucleus
MAN	afferent nuclei of the cranial nerves in midbrain
Me5	mesencephalic trigeminal nucleus
PAG	periaqueductal gray substance
PAGD	periaqueductal gray substance, dorsolateral portion
PAGdm	periaqueductal gray substance, dorsomedial division
PAGdl	periaqueductal gray substance, dorsolateral division
PAGl	periaqueductal gray substance, lateral division
PAGvl	periaqueductal gray substance, ventrolateral division
PAGpl	periaqueductal gray substance, pleiogliial division
PAGV	periaqueductal gray substance, ventral portion
DRC	cap of dorsal raphe nucleus
Dk	nucleus of Darkschewitsch
PC3	parvicellular oculomotor nucleus
Su3C	supraoculomotor cap
Su3	supraoculomotor nucleus
MRa	midbrain raphe nuclei
DR	dorsal raphe nucleus
DRC	dorsal raphe nucleus, caudal part
DRD	dorsal raphe nucleus, dorsal part
DRI	dorsal raphe nucleus, interfascicular part
DRL	dorsal raphe nucleus, lateral part
DRV	dorsal raphe nucleus, ventral part
DRVL	dorsal raphe nucleus, ventrolateral part
Lin	linear nucleus of the midbrain
CLIZ	caudal linear nucleus of the raphe
CLinAz	caudal linear nucleus of the raphe, azygos part
Table 3. Continued	

CLinZ	caudal linear nucleus of the raphe, zygos part
RLin	rostral linear nucleus of the raphe
MnR	median raphe nucleus
PMnR	paramedian raphe nucleus
PDR	posterodorsal raphe nucleus
Rbd	rhabdoid nucleus
isRt	isthmic reticular formation
MRF	midbrain reticular formation
CnF	cuneiform nucleus
PrCnF	precuneiform area
U	nucleus U
PTg	pedunculopontine tegmental nucleus
PTgC	pedunculopontine tegmental nucleus, compact part
PTgD	pedunculopontine tegmental nucleus, dissipated part
SubCn	subcuneiform nucleus
Lth	lithoid nucleus
RN	red nucleus
RNdm	red nucleus, dorsomedial part
RNmc	red nucleus, magnocellular part
RNpc	red nucleus, parvicellular part
SN	substantia nigra
SNC	substantia nigra, compact part
SNCd	substantia nigra, compact part, dorsal subdivision
SNCm	substantia nigra, compact part, medial subdivision
SNCv	substantia nigra, compact part, ventral subdivision
SNL	substantia nigra, lateral part
SNR	substantia nigra, reticular part
VTR	ventral tegmental region of midbrain
VTA	ventral tegmental area
IF	interfascicular nucleus
PBP	parabrachial pigmented nucleus
PIF	parainterfascicular nucleus
PaN	paranigral nucleus
IP	interpeduncular nucleus
IPA	interpeduncular nucleus, apical subnucleus
IPC	interpeduncular nucleus, caudal subnucleus
IPdm	interpeduncular nucleus, dorsomedial subnucleus
IPI	interpeduncular nucleus, intermediate subnucleus
IPL	interpeduncular nucleus, lateral subnucleus
IPr	interpeduncular nucleus, rostral subnucleus
XMTg	other nuclei in midbrain tegmentum
CeMe	central mesencephalic nucleus
CTF	central tegmental field
DA8	dopamine cells A8
I3	interoculomotor nucleus
InC	interstitial nucleus of Cajal
Lt	lateral terminal nucleus of accessory optic tract
Abbreviation	Description
--------------	-------------
MCPC	magnocellular nucleus of the posterior commissure
MA3	medial accessory oculomotor nucleus
MiTg	microcellular tegmental nucleus
p1Rt	p1 reticular formation
PaC	paracollicular tegmentum
PaP	parapeduncular nucleus
Pa4	paratrochlear nucleus
PP	peripeduncular nucleus
PDTg	posterodorsal tegmental nucleus
PrC	precommissural nucleus
PrEW	pre-Edinger-Westphal nucleus
RiS	retroisthmic nucleus
RRF	retrorubral field
SubB	subbrachial nucleus
MTc	midbrain tectum
SC	superior colliculus
SCS	superficial layer of superior colliculus
SCSon	optic nerve layer of superior colliculus
SCSg	superficial gray layer of superior colliculus
SCsw	superficial white layer of superior colliculus
SCsz	zonal layer of superior colliculus
SCI	intermediate layer of the superior colliculus
SCIg	intermediate gray layer of superior colliculus
SCiw	intermediate white layer of superior colliculus
SCD	deep layer of colliculus
SCDg	deep gray layer of superior colliculus
SCDw	deep white layer of superior colliculus
BrSC	nucleus of branchium of superior colliculus
IC	inferior colliculus
CxIC	cortex of inferior colliculus
CICd	dorsal cortex of inferior colliculus
CICe	external cortex of inferior colliculus
CIC	central nucleus of inferior colliculus
ICN	intercollicular nucleus
INPC	interstitial nucleus of posterior commissure
MxTZ	matrix layer of the tectal zone
BrIC	nucleus of the brachium of inferior colliculus
PBG	parabigeminal nucleus
Sag	sagulum nucleus
SCO	subcommissural organ
MWM	white matter of midbrain
bic	brachium of inferior colliculus
bsc	brachium of superior colliculus
cttg-m	central tegmental tract, midbrain portion
cpd	cerebral peduncle (crus cerebri)
cpn-m	corticospinal fibers, midbrain portion
fpn-m	frontal pontine fibers, midbrain portion
Abbreviation	Description
--------------	---
potpn-m	parieto-occipito-temporal pontine fibers, midbrain portion
py-m	pyramidal tract, midbrain portion
cbu-m	corticobulbar tract, midbrain portion
cmic	commissure of inferior colliculus
cme	cortico mesencephalic fibers
xrsp	decussation of rubrospinal tract
xscp	decussation of superior cerebellar peduncle
x4	decussation of trochlear nerve fibers
dlf-m	dorsal longitudinal fasciculus, midbrain portion
xdtg	dorsal tegmental decussation
dtth-m	dorsal trigeminothalamic tract, midbrain portion
fr	fasciculus retroflexus (habenulo-interpeduncular tract)
hysp-m	hypothalamospinal fibers, midbrain portion
iptg	interpedunculotegmental tract
issp-m	interstitiospinal tract, midbrain portion
ll-m	lateral lemniscus, midbrain portion
ml-m	medial lemniscus, midbrain portion
mlf-m	medial longitudinal fasciculus, midbrain portion
mtg-m	medial tegmental tract, midbrain portion
me5-m	mesencephalic trigeminal tract, midbrain portion
poc	posterior commissure
rubu-m	rubrobulbar (rubro nuclear) tract, midbrain portion
rol-m	rubro-olivary tract, midbrain portion
rsp-m	rubrospinal tract, midbrain portion
sl-m	spinal lemniscus, midbrain portion
scp	superior cerebellar peduncle (brachium conjunctivum)
cbru	cerebellorubral tract
cbth	cerebellothalamic tract
dtth	dentatothalamic tract
geru	globose-emboliform-rubral tract
rucb	rubrocerebellar fibers
tcb	tectocerebellar fibers
vscb-m	ventral spinocerebellar tract, midbrain portion
tbu-m	tectobulbar tract, midbrain portion
tol	tecto-olivary fibers
tpn	tectopontine tract
tsp-m	tectospinal tract, midbrain portion
xvtg	ventral tegmental decussation
vttm-m	ventral trigeminothalamic tract, midbrain portion
wmmtg	white matter of tegmentum
MV	ventricle of midbrain
Aq	cerebral aqueduct
MSS	surface structures of midbrain
fsmv	frenulum of the superior medullary velum
ipf	interpeduncular fossa
pops	posterior perforated substance
icr	infracollicular recess
Abbreviation	Description
--------------	-------------
ocs	oculomotor sulcus
qgb	quadrigeminal body
r3	root of oculomotor nerve
r4	root of trochlear nerve
trill	trigone of lateral lemniscus (acoustic trigone)
H	hindbrain (rhombencephalon)
HGM	gray matter of the hindbrain
Met	metencephalon
CB	cerebellum
CBC	cerebellar cortex
CBV	cerebellar vermis
VeA	vermis, anterior lobe portion
VeAm	molecular layer of VeA
VeAp	Purkinje cell layer of VeA
VeAg	granular cell layer of VeA
VePo	vermis, posterior lobe portion
VePs	vermis, posterior lobe portion, superior part
VePsm	molecular layer of VePs
VePsp	Purkinje cell layer of VePs
VePs g	granular cell layer of VePs
VePi	vermis, posterior lobe portion, inferior part
VePim	molecular layer of VePi
VePig	Purkinje cell layer of VePi
VePig	granular cell layer of VePi
VeF	vermis, flocculonodular lobe portion (nodulus)
VeFm	molecular layer of VeF
VeFp	Purkinje cell layer of VeF
VeFg	granular cell layer of VeF
CBH	cerebellar hemisphere
CBPV	paravermis of cerebellum
PVA	paravermis, anterior lobe portion
PVAm	molecular layer of PVA
PVAp	Purkinje cell layer of PVA
PVAg	granular cell layer of PVA
PVP	paravermis, posterior lobe portion
PVPs	paravermis, posterior lobe portion, superior part
PVPsm	molecular layer of PVPs
PVPsp	Purkinje cell layer of PVPs
PVPsg	granular cell layer of PVPs
PVPi	paravermis, posterior lobe portion, inferior part
PVPim	molecular layer of PVPi
PVPip	Purkinje cell layer of PVPi
PVPig	granular cell layer of PVPi
PVF	paravermis, flocculonodular lobe portion
PVFm	molecular layer of PVF
PVFp	Purkinje cell layer of PVF
PVFg	granular cell layer of PVF
Abbreviation	Description
--------------	-------------
CBL	lateral hemisphere of cerebellum
CBLA	lateral hemisphere, anterior lobe portion
CBLAm	molecular layer of CBLA
CBLAp	Purkinje cell layer of CBLA
CBLAg	granular cell layer of CBLA
CBLP	lateral hemisphere, posterior lobe portion
CBLPs	lateral hemisphere, posterior lobe portion, superior part
CBLPsms	molecular layer of CBLPs
CBLPsp	Purkinje cell layer of CBLPs
CBLPsg	granular cell layer of CBLPs
CBLPi	lateral hemisphere, posterior lobe portion, inferior part
CBLPim	molecular layer of CBLPi
CBLPip	Purkinje cell layer of CBLPi
CBLPig	granular cell layer of CBLPi
CBLF	lateral hemisphere, flocculonodular lobe portion
CBLFm	molecular layer of CBLF
CBLFp	Purkinje cell layer of CBLF
CBLFg	granular cell layer of CBLF
ChDN	cerebellar deep nuclei
DT	dentate (lateral) nucleus
DTiv	dentate nucleus, lateroventral part
DTmd	dentate nucleus, mediodorsal part
InP	interpositus (intermediate) nucleus
InPM	medial interpositus (globose) nucleus
InPL	lateral interpositus (emboliform) nucleus
Fas	fastigial (medial) nucleus
FasL	fastigial nucleus, lateral part
FasM	fastigial nucleus, medial part
Blcb	basal interstitial nucleus of cerebellum
Pn	pons
PnBa	basilar part of pons
PN	pontine nucleus
PNd	dorsal nucleus
PNdI	dorsolateral nucleus
PNdIm	dorsomedial nucleus
PNI	lateral nucleus
PNm	median nucleus
PNpar	paramedian nucleus
PNPed	peduncular nucleus
RTg	reticulotegmental nucleus
PnTg	pontine tegmentum
PnEN	efferent nuclei of cranial nerves in pons
6N	abducens nucleus
Acs7	accessory facial nucleus
7N	facial nucleus
7D	facial nucleus, dorsal subnucleus
7VI	facial nucleus, ventrointermediate subnucleus
TABLE 3. Continued

Acronym	Description	
7VM	facial nucleus, ventromedial subnucleus	
7SH	facial nucleus, stylohyoid part	
7VL	facial nucleus, ventrolateral subnucleus	
Lac	lacrimal nucleus	
MoS	motor nucleus of trigeminal nerve	
MoSipt	motor nucleus of trigeminal nerve, lateral pterygoid part	
MoSma	motor nucleus of trigeminal nerve, masseter part	
MoSmp	motor nucleus of trigeminal nerve, medial pterygoid part	
MoSmy	motor nucleus of trigeminal nerve, mylohyoid part	
MoSte	motor nucleus of trigeminal nerve, temporalis part	
SuSV	superior salivary nucleus	
PnAN	afferent nuclei of cranial nerves in pons	
8Co	cochlear nuclei	
DCo	dorsal cochlear nucleus	
GrCo	granular cell layer of cochlear nuclei	
VCo	ventral cochlear nucleus	
VCoR	ventral cochlear nucleus, rostral part	
VCoC	ventral cochlear nucleus, caudal part	
Me5-p	mesencephalic nucleus of trigeminal nerve, pontine part	
PrS	principal sensory nucleus of trigeminal nerve	
PrSdm	dorsomedial nucleus of Pr5	
PrSvl	ventrolateral nucleus of Pr5	
SpSo	spinal nucleus of trigeminal nerve, oral subnucleus	
8Ve-p	vestibular nuclei in pons	
LVe	lateral vestibular nucleus	
LVeMC	lateral vestibular nucleus, magnocellular part	
LVePC	lateral vestibular nucleus, parvicellular part	
SuVe	superior vestibular nucleus	
VTg	ventral tegmental nucleus	
VTgR	ventral tegmental nucleus, rostral extension	
VTgl	ventral tegmental nucleus, infrafascicular part	
VTgP	ventral tegmental nucleus, principal part	
VTgS	ventral tegmental nucleus, suprafascicular part	
PnAR	auditory relay nuclei in pons	
LLN	nuclei of lateral lemniscus	
DLL	dorsal nucleus of lateral lemniscus	
ILL	intermediate nucleus of lateral lemniscus	
VLL	ventral nucleus of lateral lemniscus	
TrZ	nucleus of trapezoid body	
TrZI	lateral nucleus of trapezoid body	
TrZm	medial nucleus of trapezoid body	
TrZv	ventral nucleus of trapezoid body	
SOC	superior olivary complex	
POI	periolivary nuclei	
LPOI	lateral periolivary nucleus	
MPOI	medial periolivary nucleus	
RO	retro-olivary cell group	
Abbreviation	Description	
--------------	--	
SOI	superior olivary nucleus	
LSO	lateral superior olivary nucleus	
MSO	medial superior olive	
SPO	superior paraolivary nucleus	
PrO	preolivary nucleus	
PnRa	raphe pontis nucleus	
DR-p	dorsal raphe nucleus	
MnR-p	median raphe nucleus	
PMnRt	paramedian raphe nucleus, reticular part	
PRn	raphe pontis nucleus	
RIP	raphe interpositus nucleus	
PnRF	pontine reticular formation	
PB	parabrachial nuclei	
LPB	lateral parabrachial nucleus	
LPBc	lateral parabrachial nucleus, central part	
LPBd	lateral parabrachial nucleus, dorsal part	
LPBe	lateral parabrachial nucleus, external part	
LPBs	lateral parabrachial nucleus, superior part	
MPB	medial parabrachial nucleus	
MPBe	medial parabrachial nucleus, external part	
MPBm	medial parabrachial nucleus, medial part	
SPP	subpeduncular pigmented nucleus	
SPB	subparabrachial nucleus	
PnRt	reticular nuclei of pons	
PnC	pontine reticular nucleus, caudal part	
PnO	pontine reticular nucleus, oral part	
PLN	paralemniscal nucleus	
PMn	paramedian reticular nucleus	
RtTg	reticulotegmental nucleus	
RtTgD	reticulotegmental nucleus, dorsal part	
PnNA	group of noradrenergic neurons in pons	
NC	nucleus coeruleus	
SubC	subcoeruleus nucleus	
SubCd	subcoeruleus nucleus, dorsal part	
SubCv	subcoeruleus nucleus, ventral part	
XpNtG	other nuclei in pontine tegmentum	
Acs5	accessory trigeminal nucleus	
AlnS	alar interstitial nucleus	
B9	B9 serotonin cells	
Bar	Barrington's nucleus	
PnCG	central gray of pons	
CAT	central nucleus of acoustic tract	
DTg	dorsal tegmental nucleus	
DTgC	dorsal tegmental nucleus, central part	
DTgP	dorsal tegmental nucleus, pericentral part	
DMTg	dorsomedial tegmental area	
PnE	ependyma and subependymal layers of pons	
Lower-case Code	Anatomical Structure	
-----------------	----------------------	
EpC	epicoeruleus nucleus	
PnG	pontine gamma nucleus	
IIMLF	intermediate interstitial nucleus of medial longitudinal fasciculus	
IMLF	interstitial nucleus of medial longitudinal fasciculus	
IS	intertrigeminal nucleus	
JxO	juxtaolivary nucleus	
KF	Koelliker-Fuse nucleus	
LDTg	laterodorsal tegmental nucleus	
LDTgD	laterodorsal tegmental nucleus, dorsal part	
LDTgV	laterodorsal tegmental nucleus, ventral part	
NI	nucleus incertus	
K	nucleus K	
L	nucleus L	
Pa6	paraabducens nucleus	
PCuN	pericuneate nuclei	
LPCu	lateral pericuneate nucleus	
MPCu	medial pericuneate nucleus	
PF7	perifacial zone	
PnBi	pontobulbar nucleus, inferior part	
P5	peritrigeminal zone	
R7	retrofacial nucleus	
RTz	retrotrapezoid nucleus	
5N	trigeminal nuclei	
VLTg	ventrolateral tegmental nucleus	
SGe	supragenual nucleus	
Mo	myelencephalon (medulla oblongata)	
MoPy	pyramidal part of medulla oblongata	
Ar	arcuate nucleus of medulla oblongata	
Ct	conterminal nucleus	
MoTg	tegmentum of medulla oblongata	
MoEN	efferent nuclei of cranial nerves in the medulla oblongata	
Amb	ambiguus nucleus	
AmbC	ambiguus nucleus, compact part	
AmbL	ambiguus nucleus, loose part	
AmbSC	ambiguus nucleus, semicompact part	
12N	hypoglossal nucleus	
12GH	hypoglossal nucleus, geniohyoid part	
12L	hypoglossal nucleus, lateral part	
12M	hypoglossal nucleus, medial part	
12V	hypoglossal nucleus, ventral part	
InSV	inferior salivatory nucleus	
10N	dorsal motor nucleus of the vagus (vagal nucleus)	
10Cal	dorsal motor nucleus of vagus, caudointermediate part	
10Cel	dorsal motor nucleus of vagus, centrointermediate part	
10DI	dorsal motor nucleus of vagus, dorsointermediate part	
10DR	dorsal motor nucleus of vagus, dorsorostral part	
10F	dorsal motor nucleus of vagus, medial fringe	
Abbreviation	Description	
--------------	---	
10VI	dorsal motor nucleus of vagus, ventrointermediate part	
10VR	dorsal motor nucleus of the vagus, ventroorostral part	
MoAN	afferent nuclei of cranial nerves in medulla oblongata	
Sol	solitary nucleus	
SolC	solitary nucleus, commissural part	
SolD	solitary nucleus, dorsal part	
SolDL	solitary nucleus, dorsolateral part	
SolG	solitary nucleus, gelatinous part	
SolIM	solitary nucleus, intermediate part	
SolI	solitary nucleus, interstitial part	
SolM	solitary nucleus, medial part	
SolPaC	solitary nucleus, paracommissural part	
SolV	solitary nucleus, ventral part	
SolVL	solitary nucleus, ventrolateral part	
SSol	subsolitary nucleus	
PSol	parasolitary nucleus	
Sp5	spinal trigeminal nucleus	
Sp5C	spinal trigeminal nucleus, caudal part	
DM5	dorsomedial spinal trigeminal nucleus	
Sp5ip	spinal trigeminal nucleus, interpolar part	
8Ve	vestibular nuclei in medulla	
I8	interstitial nucleus of the vestibulocochlear nerve	
MVe	medial vestibular nucleus	
MVeMC	medial vestibular nucleus, magnocellular part	
MVePC	medial vestibular nucleus, parvcellular part	
EVe	nucleus of origin of vestibular efferents of vestibular nerve	
SpVe	spinal (inferior) vestibular nucleus	
PaVe	paravestibular nucleus	
MoSR	sensory relay nuclei in medulla oblongata	
ECu	external (accessory/lateral) cuneate nucleus	
Cu	cuneate nucleus	
CuR	cuneate nucleus, rotundus part	
CuT	cuneate nucleus, triangular part	
Gr	gracile nucleus	
GrC	gracile nucleus, central part	
GrR	gracile nucleus, rostral part (shell)	
PrCbn	precerebellar nuclei	
Crb	cribriform nucleus	
DPMn	dorsal paramedian nucleus	
CDPMn	caudal dorsal paramedian nucleus	
ODPMn	rostral (oral) dorsal paramedian nucleus	
IO	inferior olive	
IODM	inferior olive, dorsomedial cell group	
IOBe	inferior olive, beta nucleus	
IOD	inferior olive, dorsal nucleus	
IODC	inferior olive, dorsal nucleus, caudal part	
IOM	inferior olive, medial nucleus	
Abbreviation	Description	
--------------	-------------	
IOK	Cap of Kooy of medial nucleus	
IOA	subnucleus A of medial nucleus	
IOB	subnucleus B of medial nucleus	
IOC	subnucleus C of medial nucleus	
IOPr	inferior olive, principal nucleus	
IOVL	ventrolateral outgrowth of inferior olive	
InM	intercalated nucleus of medulla	
IPo	interpositus nucleus	
PnbN	pontobulbar nucleus	
PrH	prepositus hypoglossal nucleus	
MoRF	medullary reticular formation	
DRt	dorsal reticular nucleus	
IRt	intermediate reticular nucleus	
CVL	caudoventrolateral reticular nucleus	
NA/A	noradrenaline/adrenaline cell group 1	
RVRG	rostral ventral respiratory cell group	
RVL	rostroventrolateral reticular nucleus of hindbrain	
GiRt	gigantocellular reticular nuclei	
GiRtA	alpha gigantocellular reticular nucleus	
LPGi	lateral paragigantocellular nucleus	
PGI	paragigantocellular nucleus	
APGi	alpha part of paragigantocellular nucleus	
DPGi	dorsal paragigantocellular nucleus	
GiRtV	ventral gigantocellular reticular nucleus	
LMRt	lateral reticular nuclei	
LRT	lateral reticular nucleus (principal part)	
LRTMC	lateral reticular nucleus, magnocellular part	
LRTC	lateral reticular nucleus, parvocellular part	
LRTSS	lateral reticular nucleus, subtrigeminal part	
Li	linear nucleus of hindbrain	
MdD	medullary reticular nucleus, dorsal part (ventral reticular nucleus)	
MdV	medullary reticular nucleus, ventral part (medial reticular nucleus)	
PCrt	parvocellular reticular nucleus	
PCrta	alpha division of parvocellular reticular nucleus	
MoRa	raphe nuclei in medulla oblongata	
RMg	raphe magnus nucleus	
ROb	raphe obscurus nucleus	
RPa	raphe pallidus nucleus	
NPRa	nucleus paraparaphales	
XMoTg	other nuclei in medullary tegmentum	
Au	austral nucleus	
Bi	basal interstitial nucleus	
Bo	Bötzinger complex	
CGL	central glial substance	
MoCG	central gray of medulla oblongata	
DPO	dorsal periolivary nucleus	
MoE	ependyma and subependymal layers of the medulla	
Abbreviation	Description	
--------------	--	
EL	endolemniscal nucleus	
EF	epifascicular nucleus	
IF12	interfascricular hypoglossal nucleus	
IB	internal basal nucleus	
Nt	notocuneate nucleus	
Z	nucleus Z (posterodorsal subnucleus)	
Y	nucleus Y	
X	nucleus X (preaccessory cuneate nucleus)	
Ro	nucleus of Roller	
Pa5	paratrigeminal nucleus	
PeCu	pericuneate nucleus	
PeS	peritrigeminal nucleus	
PrBo	pre-Bötzinger complex	
RAMb	retroambigous nucleus	
SSFp	spinal accessory (supraspinal) nucleus	
SuL	supralemniscal nucleus	
HWM	white matter of hindbrain	
AMI	amiculum of the olive	
AF7	ascending fibers of the facial nerve	
CTG	central tegmental tract	
CPN	cortico-pontine fibers, pontine part	
CUF	cuneate fasciculus	
XMl	decussation of medial lemniscus	
Das	dorsal acoustic stria	
Def	dorsal external fibers	
Dlf-H	dorsal longitudinal fasciculus	
Dtgth	dorsal trigeminothalamic tract	
EAF	external arcuate fibers	
G7	genu of the facial nerve	
Gr	gracile fasciculus	
HIO	hilus of the inferior olive	
Hypsp	hypothalamospinal tract	
ICP	inferior cerebellar peduncle	
RSF	restiform body	
CBRF	cerebelloreticular fibers	
CBVF	cerebellovestibular fibers	
CUCB	cuneocerebellar tract	
DSC	dorsal spinocerebellar tract	
OCB	olivocerebellar tract	
RCBTM	reticulocerebellar tract, medullary division	
SCT	spinocerebellar tract	
JX	juxta-vestiform body	
FASR	fastigial reticular tract	
FASV	fastigial vestibular tract	
TGCB	trigemino-cerebellar tract	
VECB	vestibulocerebellar tract	
IAS	intermediate acoustic stria	
Abbreviation	Description	
--------------	-------------	
iaf	internal arcuate fibers	
issp	interstitiospinal tract	
lbrs	lateral bulboreticulospinal tract	
lcs	lateral corticospinal tract	
ll	lateral lemniscus	
lvs	lateral vestibulospinal tract	
lfpn	longitudinal fasciculus of the pons	
ml	medial lemniscus	
mlf	medial longitudinal fasciculus	
metg	medial tegmental tract	
mvet	medial vestibulospinal tract	
me5	mesencephalic trigeminal tract	
mcp	middle cerebellar peduncle	
pncb	pontocerebellar tract, pontine division	
olcob	olivocochlear bundle	
xpy	pyramidal decussation	
py	pyramidal tract	
cbu-h	corticobulbar tract	
cre-h	corticoreticular tract	
csp-h	corticospinal tract	
rsp	raphespinal tract	
lrsp	lateral raphespinal tract	
vrsp	ventral raphespinal tract	
rbb	rubrobulbar tract	
rol	rubro-olivary tract	
rusp	rubrospinal tract	
sol	solitary tract	
slih	spinal lemniscus in hindbrain	
spb	spinobulbar tract	
sphy	spinohypothalamic tract	
spme	spinomesencephalic tract	
spre	spinoreticular tract	
sptth	spinothalamic tract	
spve	spinovestibular tract	
tbu	tectobulbar tract	
sp5	spinal trigeminal tract	
spol	spino-olivary tract	
sm4V	stria medulaires of the fourth ventricle	
tsp	tectospinal tract	
tfp	transverse fibers of pons	
tz	trapezoid body	
tri5	trigeminothalamic tract	
ubcb	uncinate (hooked) bundle of cerebellum	
vcsd	ventral corticospinal tract	
vexf	ventral external fibers	
vresp	ventral reticulospinal tract	
Abbreviation	Description	
-------------	---	
vscb	ventral spinocerebellar tract	
vtg	ventral tegmental tract	
vth	ventral trigeminotralamic tract	
veme	vestibulomesencephalic tract	
HV	ventricles of hindbrain	
4V	fourth ventricle	
4Vro	roof of fourth ventricle	
4Vrf	lateral recess of fourth ventricle	
4VfI	floor of fourth ventricle (rhomobd fossa)	
cec	central canal of medulla oblongata	
HSS	surface structures of hindbrain	
CbSS	surface structures of cerebellum	
cbf	cerebellar fissures	
prcf	precentral (postlingual) fissure	
pocf	postcentral (preculminate) fissure	
icf	intraculminate fissure	
prif	primary (anterior superior) fissure	
psf	posterior superior (postclival) fissure	
hof	horizontal (intercrural) fissure	
apf	ansoparamedian fissure	
prpy	prepyramidal (prebiventral) fissure	
ibif	intrabiventral fissure	
popy	secondary (post pyramidal) fissure	
polf	posterolateral (postnodular) fissure	
CBLl	cerebellar lobes and lobules	
ACB	anterior lobe	
Cbl	lobule I (lingula)	
CblI	lobule II (central lobule and wing, anterior part)	
CblII	lobule III (central lobule and wing, posterior part)	
CblIV	lobule IV (culmen and quadrangular lobule, anterior part)	
CblV	lobule V (culmen and quadrangular lobule, posterior part)	
PCB	posterior lobe	
CblVI	lobule VI (declive and simplex lobule)	
CblVIIa1	lobule VIIA/crus I (folium and superior semilunar lobule)	
CblVIIa2	lobule VIIAt/crus II (tuber and inferior semilunar lobule)	
CblVIIb	lobule VIIB (gracile lobule)	
CblVIIIa	lobule VIII A (pyramid and biventral lobule, anterior part)	
CblVIIIb	lobule VIII B (pyramid and biventral lobule, posterior part)	
CblX	lobule IX (uvula and tonsil)	
FNCb	flocculonodular lobe	
Cbx	lobule X (nodulus and flocculus)	
PnSS	surface structures of pons	
bas	basilar sulcus	
IsRh	isthmus of rhombencephalon	
pbr	parabrachial recess	
pmed	pontomedullary sulcus	
pmes	pontomesencephalic sulcus	
Term	Description	
--------	--	
r6	root of abducens nerve	
r7	root of facial nerve	
r7m	motor root of facial nerve	
r7in	root of intermediate nerve	
r5	root of trigeminal nerve	
r5m	motor root of trigeminal nerve	
r5s	sensory root of trigeminal nerve	
r8	root of vestibulocochlear nerve	
r8co	cochlear root of vestibulocochlear nerve	
r8ve	vestibular root of vestibulocochlear nerve	
rmv	rostral (anterior) medullary velum	
AS4V	adjoining structures of fourth ventricle	
AP	area postrema	
Cho4V	choroid plexus of the fourth ventricle	
FaC	facial colliculus	
FovI	fovea inferior	
FovS	fovea superior	
FnS	funiculus separans	
12Tr	hypoglossal trigone	
la4V	lateral aperture (foramen of Luschka)	
LC	locus coerulesus	
MEM	medial eminence	
ma4V	median aperture (foramen of Magendie)	
MSul	median sulcus	
Obx	obex	
SulL	sulcus limitans	
Tae	taenia cinerea	
10Tr	vagal trigone	
MOSS	surface structures of medulla	
alms	anterolateral medullary sulcus	
pros	preolivary sulcus	
cutu	cuneate tubercle	
dmms	dorsal (posterior) median medullary sulcus	
fce	foramen caecum	
grtu	gracile tubercle (clava)	
imv	inferior (caudal) medullary velum	
dims	dorsal intermediate medullary sulcus	
dlims	dorsal lateral medullary sulcus	
posos	postolivary sulcus	
r11	root of accessory nerve	
r11cr	cranial root of accessory nerve	
r11sp	spinal root of accessory nerve	
r12	root of hypoglossal nerve	
r9	root of glossopharyngeal nerve	
r10	root of vagus nerve	
vmms	ventral (anterior) median medullary sulcus	
SpC	spinal cord	
Figure 16. Anteroposterior position of the 106 annotated plates shown in Figure 17. Major macroscopic landmarks (sulci and gyri) on the medial aspect of the left hemisphere are indicated (flipped to show the plate levels (plates 1–106) in an anterior-to-posterior order). General locations of slabs 1–8 were also marked at the top. Note that in slabs 4–7, only the alternative plates were indicated, to avoid busy lines. For abbreviations see Table 3. Scale bar = 2 cm.

Figure 17. Human brain atlas plates. 106 plates with matching histological sections are displayed in anterior-to-posterior (A-P) order. The matching histological images include 50 Nissl-stained, and 50 NFP- and 6 PV-immunostained sections. The 106 plate images, corresponding to the A-P positions delineated in Figure 16, combine the cortical annotation of modified Brodmann areas and traditional gyri and sulci. At each level, a color-coded atlas plate ("a" series; 1a–106a) and a histological image ("b" series; 1b–106b) are presented. The inset diagram at the top right corner of each atlas plate shows the A-P position (red line) of that plate on a schematic representation of the whole hemisphere based on MRI. The green lettering along the cortical surface indicates cortical sulci (lower case, often with black arrowheads) and gyri (upper case), which were generally defined by adjacent sulci. Modified Brodmann areas were labeled within the cortical gray matter with differential color coding. In plates containing cerebellar cortex, alternative plates were annotated for three cerebellar cortical zones (vermis, paravermis, and lateral hemisphere) and 10 lobules (lobules I–X), respectively. Other subcortical structures were also labeled with differential color coding. The general locations of most white matter tracts are indicated by a circled "W". Fiber tracts with clear boundaries, such as ac, mtt, ot, sste/or, fx, fr, scp, py, and ml, were outlined by black lines without color code (white). The parcellation and subdivisions of different brain regions as well as the parent–daughter relationship and abbreviation of each structure are detailed in Table 3. Note that two separate versions of this atlas for modified Brodmann areas and traditional gyri and sulci, respectively, are available in the online version of this atlas (www.brainspan.org or http://brainspan.org/static/atlas). For abbreviations see Table 3. Scale bar = 5 mm (at levels 1b–106b).

SGM	laminar I of spinal cord
Spl	laminar II of spinal cord
SpII	laminar III and IV of spinal cord
SpIV	laminar V and VI of spinal cord
SpVII	laminar VII of spinal cord
CeCv	central cervical nucleus of spinal cord
SpVIII	laminar VIII of spinal cord
SpIX	laminar IX of spinal cord
SpX	laminar X of spinal cord
SWM	white matter of spinal cord
dfs	dorsal fasciculus of spinal cord
Ifs	lateral fasciculus of spinal cord
polt	posterior lateral tract of spinal cord
vfs	ventral fasciculus of spinal cord
SV	ventricle of spinal cord
cces	central canal and ependyma of spinal cord
SSS	surface structures of spinal cord
rsn	roots of spinal nerves
vmss	ventral (anterior) median spinal sulcus
Figure 17. Level 1a (01_111)

Link to online high resolution atlas plate
Link to online high resolution atlas plate (Nissl)
Figure 17. Level 1b (NFP (SMI-32))
Figure 17. Level 2a (01_179)

Link to online high resolution atlas plate
Link to online high resolution atlas plate (Nissl)
Figure 17. Level 2b (Nissl)
Figure 17. Level 3a (01_247)

Link to online high resolution atlas plate
Link to online high resolution atlas plate (Nissl)
Figure 17. Level 3b (NFP (SMI-32))
Figure 17. Level 4a (01_307)
Link to online high resolution atlas plate
Link to online high resolution atlas plate (Nissl)
Figure 17. Level 4b (Nissl)
Figure 17. Level 5a (02_111)

Link to online high resolution atlas plate

Link to online high resolution atlas plate (Nissl)
Figure 17. Level 5b (NFP (SMI-32))
Figure 17. Level 6a (02_111)

Link to online high resolution atlas plate
Link to online high resolution atlas plate (Nissl)
Figure 17. Level 6b (NFP (SMI-32))
Figure 17. Level 7a (02_175)

Link to online high resolution atlas plate
Link to online high resolution atlas plate (Nissl)
Figure 17. Level 7b (Nissl)
Figure 17. Level 8a (02_219)

Link to online high resolution atlas plate
Link to online high resolution atlas plate (Nissl)
Figure 17. Level 8b (NFP (SMI-32))
Figure 17. Level 9a (02_231)

Link to online high resolution atlas plate
Link to online high resolution atlas plate (Nissl)
Figure 17. Level 9b (NFP (SMI-32))
Figure 17. Level 10a (02_295)

Link to online high resolution atlas plate
Link to online high resolution atlas plate (Nissl)
Figure 17. Level 10b (Nissl)
Figure 17. Level 11a (02_335)

Link to online high resolution atlas plate
Link to online high resolution atlas plate (Nissl)
Figure 17. Level 11b (NFP (SMI-32))
Figure 17. Level 12a (02_359)

Link to online high resolution atlas plate
Link to online high resolution atlas plate (Nissl)
Figure 17. Level 13a (02_407)

Link to online high resolution atlas plate
Link to online high resolution atlas plate (Nissl)
Figure 17. Level 13b (Nissl)
Figure 17. Level 14a (03_031)

Link to online high resolution atlas plate
Link to online high resolution atlas plate (Nissl)
Figure 17. Level 14b (Parvalbumin)
Figure 17. Level 15a (03_095)

Link to online high resolution atlas plate
Link to online high resolution atlas plate (Nissl)
Figure 17. Level 15b (Nissl)
Figure 17. Level 16b (Nissl)
Figure 17. Level 17a (03_227)

Link to online high resolution atlas plate
Link to online high resolution atlas plate (Nissl)
Figure 17. Level 17b (Nissl)
Figure 17. Level 18a (03_291)

Link to online high resolution atlas plate

Link to online high resolution atlas plate (Nissl)
Figure 17. Level 18b (Nissl)
Figure 17. Level 19a (04_035)

Link to online high resolution atlas plate

Link to online high resolution atlas plate (Nissl)
Figure 17. Level 19b (Nissl)
Figure 17. Level 20a (04_051)

Link to online high resolution atlas plate
Link to online high resolution atlas plate (Nissl)
Figure 17. Level 20b (NFP (SMI-32))
Figure 17. Level 21a (04_059)

Link to online high resolution atlas plate
Link to online high resolution atlas plate (Nissl)
Figure 17. Level 21b (Nissl)
Figure 17. Level 22a (04_083)

Link to online high resolution atlas plate
Link to online high resolution atlas plate (Nissl)
Figure 17. Level 22b (Nissl)
Figure 17. Level 23a (04_095)

Link to online high resolution atlas plate
Link to online high resolution atlas plate (Nissl)
Figure 17. Level 23b (NFP (SMI-32))
Figure 17. Level 24a (04_115)

Link to online high resolution atlas plate
Link to online high resolution atlas plate (Nissl)
Figure 17. Level 24b (Nissl)
Figure 17. Level 25a (04_135)

Link to online high resolution atlas plate
Link to online high resolution atlas plate (Nissl)
Figure 17. Level 25b (NFP (SMI-32))
Figure 17. Level 26a (04_147)

Link to online high resolution atlas plate
Link to online high resolution atlas plate (Nissl)
Figure 17. Level 26b (Nissl)
Figure 17. Level 27a (04_167)

Link to online high resolution atlas plate
Link to online high resolution atlas plate (Nissl)
Figure 17. Level 27b (NFP (SMI-32))
Figure 17. Level 28a (04_179)
Figure 17. Level 28b (Nissl)
Figure 17. Level 29a (04_195)

Link to online high resolution atlas plate
Link to online high resolution atlas plate (Nissl)
Figure 17. Level 29b (NFP (SMI-32))
Figure 17. Level 30a (04_207)

Link to online high resolution atlas plate
Link to online high resolution atlas plate (Nissl)
Figure 17. Level 30b (Nissl)
Figure 17. Level 31a (04_215)

Link to online high resolution atlas plate
Link to online high resolution atlas plate (Nissl)
Figure 17. Level 31b (NFP (SMI-32))
Figure 17. Level 32a (04_231)

Link to online high resolution atlas plate
Link to online high resolution atlas plate (Nissl)
Figure 17. Level 32b (Nissl)
Figure 17. Level 33a (04_239)

Link to online high resolution atlas plate
Link to online high resolution atlas plate (Nissl)
Figure 17. Level 33b (Nissl)
Figure 17. Level 34a (04_251)

Link to online high resolution atlas plate
Link to online high resolution atlas plate (Nissl)
Figure 17. Level 34b (Nissl)
Figure 17. Level 35a (04_259)

Link to online high resolution atlas plate
Link to online high resolution atlas plate (Nissl)
Figure 17. Level 35b (NFP (SMI-32))
Figure 17. Level 36a (04_267)

Link to online high resolution atlas plate
Link to online high resolution atlas plate (Nissl)
Figure 17. Level 36b (Nissl)
Figure 17. Level 37a (04_279)

Link to online high resolution atlas plate
Link to online high resolution atlas plate (Nissl)
Figure 17. Level 37b (NFP (SMI-32))
Figure 17. Level 38a (04_291)

Link to online high resolution atlas plate
Link to online high resolution atlas plate (Nissl)
Figure 17. Level 38b (Nissl)
Figure 17. Level 39a (04_307)
Figure 17. Level 39b (NFP (SMI-32))
Figure 17. Level 40a (04_315)

Link to online high resolution atlas plate
Link to online high resolution atlas plate (Nissl)
Figure 17. Level 40b (Nissl)
Figure 17. Level 41a (04_327)

Link to online high resolution atlas plate
Link to online high resolution atlas plate (Nissl)
Figure 17. Level 41b (NFP (SMI-32))
Figure 17. Level 42a (04_335)

Link to online high resolution atlas plate
Link to online high resolution atlas plate (Nissl)
Figure 17. Level 42b (Nissls)
Figure 17. Level 43a (05_031)

Link to online high resolution atlas plate
Link to online high resolution atlas plate (Nissl)
Figure 17. Level 43b (Nissl)
Figure 17. Level 44a (05_047)
Figure 17. Level 44b (Nissl)
Figure 17. Level 45a (05_063)

Link to online high resolution atlas plate
Link to online high resolution atlas plate (Nissl)
Figure 17. Level 45b (NFP (SMI-32))
Figure 17. Level 46a (05_079)

Link to online high resolution atlas plate
Link to online high resolution atlas plate (Nissl)
Figure 17. Level 46b (NFP (SMI-32))
Figure 17. Level 47a (05_091)

Link to online high resolution atlas plate
Link to online high resolution atlas plate (Nissl)
Figure 17. Level 47b (NFP (SMI-32))
Figure 17. Level 48a (05_103)

Link to online high resolution atlas plate
Link to online high resolution atlas plate (Nissl)
Figure 17. Level 48b (Nissl)
Figure 17. Level 49a (05_123)

Link to online high resolution atlas plate
Link to online high resolution atlas plate (Nissl)
Figure 17. Level 49b (Nissl)
Figure 17. Level 50a (05_135)

Link to online high resolution atlas plate
Link to online high resolution atlas plate (Nissl)
Figure 17. Level 50b (NFP (SMI-32))
Figure 17. Level 51a (05_147)

Link to online high resolution atlas plate
Link to online high resolution atlas plate (Nissl)
Figure 17. Level 51b (Nissl)
Figure 17. Level 52a (05_159)

Link to online high resolution atlas plate
Link to online high resolution atlas plate (Nissl)
Figure 17. Level 52b (Nissl)
Figure 17. Level 53a (05_171)
Link to online high resolution atlas plate
Link to online high resolution atlas plate (Nissl)
Figure 17. Level 53b (Nissl)
Figure 17. Level 54a (05_187)

Link to online high resolution atlas plate
Link to online high resolution atlas plate (Nissl)
Figure 17. Level 54b (NFP (SMI-32))
Figure 17. Level 55a (05_203)

Link to online high resolution atlas plate
Link to online high resolution atlas plate (Nissl)
Figure 17. Level 56a (05_223)

Link to online high resolution atlas plate
Link to online high resolution atlas plate (Nissl)
Figure 17. Level 56b (Nissl)
Figure 17. Level 57a (05_235)

Link to online high resolution atlas plate
Link to online high resolution atlas plate (Nissl)
Figure 17. Level 57b (NFP (SMI-32))
Figure 17. Level 58b (NFP (SMI-32))
Figure 17. Level 59a (05_275)

Link to online high resolution atlas plate
Link to online high resolution atlas plate (Nissl)
Figure 17. Level 60a (05_287)

Link to online high resolution atlas plate
Link to online high resolution atlas plate (Nissl)
Figure 17. Level 60b (NFP (SMI-32))
Figure 17. Level 61a (05_303)

Link to online high resolution atlas plate
Link to online high resolution atlas plate (Nissl)
Figure 17. Level 61b (Parvalbumin)
Figure 17. Level 62a (05_311)

Link to online high resolution atlas plate
Link to online high resolution atlas plate (Nissl)
Figure 17. Level 62b (NFP (SMI-32))
Figure 17. Level 63a (05_323)

Link to online high resolution atlas plate
Link to online high resolution atlas plate (Nissl)
Figure 17. Level 63b (Nissl)
Figure 17. Level 64a (06_035)

Link to online high resolution atlas plate
Link to online high resolution atlas plate (Nissl)
Figure 17. Level 64b (Parvalbumin)
Figure 17. Level 65a (05_047)

Link to online high resolution atlas plate
Link to online high resolution atlas plate (Nissl)
Figure 17. Level 66a (06_063)

Link to online high resolution atlas plate
Link to online high resolution atlas plate (Nissl)
Figure 17. Level 66b (NFP (SMI-32))
Figure 17. Level 67a (06_083)

Link to online high resolution atlas plate
Link to online high resolution atlas plate (Nissl)
Figure 17. Level 67b (Nissl)
Figure 17. Level 68a (06_095)

Link to online high resolution atlas plate
Link to online high resolution atlas plate (Nissl)
Figure 17. Level 68b (NFP (SMI-32))
Figure 17. Level 69a (06_107)
Link to online high resolution atlas plate
Link to online high resolution atlas plate (Nissl)
Figure 17. Level 69b (Parvalbumin)
Figure 17. Level 70a (06_119)

Link to online high resolution atlas plate
Link to online high resolution atlas plate (Nissl)
Figure 17. Level 70b (NFP (SMI-32))
Figure 17. Level 71a (06_131)

Link to online high resolution atlas plate
Link to online high resolution atlas plate (Nissl)
Figure 17. Level 71b (Nissl)
Figure 17. Level 72a (06_147)

Link to online high resolution atlas plate
Link to online high resolution atlas plate (Nissl)
Figure 17. Level 72b (Parvalbumin)
Figure 17. Level 73a (06_159)

Link to online high resolution atlas plate
Link to online high resolution atlas plate (Nissl)
Figure 17. Level 73b (NFP (SMI-32))
Figure 17. Level 74b (NFP (SMI-32))
Figure 17. Level 75a (06_195)

Link to online high resolution atlas plate
Link to online high resolution atlas plate (Nissl)
Figure 17. Level 75b (Nissl)
Figure 17. Level 76a (06_207)

Link to online high resolution atlas plate
Link to online high resolution atlas plate (Nissl)
Figure 17. Level 76b (NFP (SMI-32))
Figure 17. Level 77a (06_223)

Link to online high resolution atlas plate
Link to online high resolution atlas plate (Nissl)
Figure 17. Level 77b (Parvalbumin)
Figure 17. Level 78b (Nissl)
Figure 17. Level 79a (06_255)

Link to online high resolution atlas plate
Link to online high resolution atlas plate (Nissl)
Figure 17. Level 79b (NFP (SMI-32))
Figure 17. Level 80a (06_271)

Link to online high resolution atlas plate
Link to online high resolution atlas plate (Nissl)
Figure 17. Level 80b (NFP (SMI-32))
Figure 17. Level 81a (06_291)

Link to online high resolution atlas plate
Link to online high resolution atlas plate (Nissl)
Figure 17. Level 81b (NFP (SMI-32))
Figure 17. Level 82a (06_299)

Link to online high resolution atlas plate
Link to online high resolution atlas plate (Nissl)
Figure 17. Level 82b (Nissl)
Figure 17. Level 83a (07_027)

Link to online high resolution atlas plate
Link to online high resolution atlas plate (Nissl)
Figure 17. Level 83b (Nissl)
Figure 17. Level 84a (07_043)

Link to online high resolution atlas plate
Link to online high resolution atlas plate (Nissl)
Figure 17. Level 84b (NFP (SMI-32))
Figure 17. Level 85a (07_059)

Link to online high resolution atlas plate
Link to online high resolution atlas plate (Nissl)
Figure 17. Level 85b (NFP (SMI-32))
Figure 17. Level 86a (07_075)

Link to online high resolution atlas plate
Link to online high resolution atlas plate (Nissl)
Figure 17. Level 86b (Nissl)
Figure 17. Level 87a (07_091)

Link to online high resolution atlas plate
Link to online high resolution atlas plate (Nissl)
Figure 17. Level 88a (07_111)

Link to online high resolution atlas plate

Link to online high resolution atlas plate (Nissl)
Figure 17. Level 88b (NFP (SMI-32))
Figure 17. Level 89a (07_123)

Link to online high resolution atlas plate
Link to online high resolution atlas plate (Nissl)
Figure 17. Level 89b (Nissl)
Figure 17. Level 90a (07_147)

Link to online high resolution atlas plate
Link to online high resolution atlas plate (Nissl)
Figure 17. Level 90b (NFP (SMI-32))
Figure 17. Level 91a (07_163)

Link to online high resolution atlas plate
Link to online high resolution atlas plate (Nissl)
Figure 17. Level 91b (NFP (SMI-32))
Figure 17. Level 92a (07_171)

Link to online high resolution atlas plate
Link to online high resolution atlas plate (Nissl)
Figure 17. Level 92b (Nissl)
Figure 17. Level 93a (07_191)

Link to online high resolution atlas plate
Link to online high resolution atlas plate (Nissl)
Figure 17. Level 93b (NFP (SMI-32))
Figure 17. Level 94a (07_207)

Link to online high resolution atlas plate
Link to online high resolution atlas plate (Nissl)
Figure 17. Level 95a (07_223)

Link to online high resolution atlas plate
Link to online high resolution atlas plate (Nissl)
Figure 17. Level 95b (Nissl)
Figure 17. Level 96a (07_235)

Link to online high resolution atlas plate
Link to online high resolution atlas plate (Nissl)
Figure 17. Level 96b (NFP (SMI-32))
Figure 17. Level 97a (07_251)

Link to online high resolution atlas plate
Link to online high resolution atlas plate (Nissl)
Figure 17. Level 97b (Nissl)
Figure 17. Level 98a (07_267)

Link to online high resolution atlas plate
Link to online high resolution atlas plate (Nissl)
Figure 17. Level 98b (NFP (SMI-32))
Figure 17. Level 99a (07_287)

Link to online high resolution atlas plate
Link to online high resolution atlas plate (Nissl)
Figure 17. Level 99b (Nissl)
Figure 17. Level 100a (07_299)

Link to online high resolution atlas plate
Link to online high resolution atlas plate (Nissl)
Figure 17. Level 100b (Nissl)
Figure 17. Level 101a (07_315)

Link to online high resolution atlas plate
Link to online high resolution atlas plate (Nissl)
Figure 17. Level 101b (NFP (SMI-32))
Figure 17. Level 102a (08_039)

Link to online high resolution atlas plate
Link to online high resolution atlas plate (Nissl)
Figure 17. Level 102b (Nissl)
Figure 17. Level 103a (08_103)

Link to online high resolution atlas plate
Link to online high resolution atlas plate (Nissl)
Figure 17. Level 103b (NFP (SMI-32))
Figure 17. Level 104a (08_167)

Link to online high resolution atlas plate
Link to online high resolution atlas plate (Nissl)
Figure 17. Level 104b (Nissl)
Figure 17. Level 105a (08_231)

Link to online high resolution atlas plate
Link to online high resolution atlas plate (Nissl)
Figure 17. Level 105b (NFP (SMI-32))
Figure 17. Level 106a (08_291)

Link to online high resolution atlas plate
Link to online high resolution atlas plate (Nissl)
Figure 17. Level 106b (Nissl)
Figure 19. MRI and DWI plates from the same brain. Left column: Seventy-six sequential 7T MRI slices from the same left hemisphere as the atlas shown in Figure 17 were annotated according to the atlas plates in Figure 17. The interval between each slice is 2 mm. The MRI images were annotated for easily predicted and/or identified structures through correspondence to the annotated histological atlas. Several clearly delineated fiber tracts are annotated as well, including the optic radiation ("or" at levels 42–69) and somatosensory radiation ("sr" at levels 38–46). For abbreviations see Table 3. Right column: Top panel shows colorized fractional anisotropy (FA) maps of the corresponding plane of section in the DWI dataset, representing the primary eigenvectors of the diffusion tensor data overlaid on the FA map. Bottom panel shows tractography images created in TrackVis showing all tracts passing through the represented plane of section (90% of tracts omitted with only tracts longer than 20 mm displayed). Scale bars = 5 mm.

Figure 18. Gross anatomy of the left hemisphere and anteroposterior position of the 76 annotated MRI images shown in Figure 19. Main macroscopic landmarks (sulci and gyri) on dorsal (A), lateral (B), and ventral (C) aspects of the left hemisphere are indicated. The A-P locations (levels 1–76) of the 76 MRI images are marked with black lines 1–76 in B. * and # indicate two corresponding regions. For abbreviations see Table 3. Scale bar = 2 cm in A (applies to A–C).
Figure 18.
Figure 19. Level 10

Adult human brain atlas
Figure 19. Level 16 Adult human brain atlas
Figure 19. Level 18

Adult human brain atlas
Figure 19. Level 19
Figure 19. Level 20

Adult human brain atlas
Figure 19. Level 24

Adult human brain atlas
Figure 19. Level 25
Figure 19. Level 28
Adult human brain atlas
Figure 19. Level 30

Adult human brain atlas
Figure 19, Level 32

Adult human brain atlas
Figure 19. Level 34

Adult human brain atlas
Figure 19. Level 36

Adult human brain atlas
Figure 19. Level 37
Figure 19. Level 51
Figure 19. Level 54

Adult human brain atlas
Adult human brain atlas
Figure 19. Adult human brain atlas
Figure 19. Level 64

Adult human brain atlas
Figure 19. Level 66

Adult human brain atlas
Figure 19. Level 74

Adult human brain atlas
WILEY ONLINE LIBRARY
Access this journal and thousands of other essential resources.

Featuring a clean and easy-to-use interface, this online service delivers intuitive navigation, enhanced discoverability, expanded functionalities, and a range of personalization and alerting options.

Sign up for content alerts and RSS feeds, access full-text, learn more about the journal, find related content, export citations, and click through to references.