Handling Skew in Multiway Joins in Parallel Processing

Foto N. Afrati†, Jeffrey D. Ullman†, Angelos Vasilakopoulos‡
†National Technical University of Athens, ‡Stanford University
afрати@softlab.ece.ntua.gr, avasilako@gmail.com, ullman@gmail.com

Abstract: Handling skew is one of the major challenges in query processing. In distributed computational environments such as MapReduce, uneven distribution of the data to the servers is not desired. One of the dominant measures that we want to optimize in distributed environments is communication cost. In a MapReduce job this is the amount of data that is transferred from the mappers to the reducers. In this paper we will introduce a novel technique for handling skew when we want to compute a multiway join in one MapReduce round with minimum communication cost. This technique is actually an adaptation of the Shares algorithm [3].

1. Introduction

Systems such as Pig or Hive that implement SQL or relational algebra over MapReduce have mechanisms to deal with joins where there is significant skew; i.e., certain values of the join attribute(s) appear very frequently (see, e.g., [8, 7, 6]). These systems use a two-round algorithm, where the first round identifies the heavy hitters (HH), those values of the join attribute(s) that occur at least some given fraction of the tuples. In the second round, tuples that do not have a heavy-hitter for the join attribute(s) are handled normally. That is, there is one reducer for each key, which is associated with a value of the join attribute(s). Since the key is not a heavy hitter, this reducer handles only a small fraction of the tuples, and thus will not cause a problem of skew. For tuples with heavy hitters, new keys are created that are handled along with the other keys (normal or those for other heavy hitters) in a single MR job. The new keys in these systems are created with a simple technique as in the following example:

Example 1.1. We have to compute the join $R(A, B) \bowtie S(B, C)$ using a given number, k, of reducers. Suppose value b for attribute B is identified as a heavy hitter. Suppose there are r tuples of R with $b = b$ and there are s tuples of S with $b = b$. Suppose also for convenience that $r > s$. The distribution to k buckets/reducers is done in earlier approaches by partitioning the data of one of the relations in k buckets (one bucket for each reducer) and sending the data of the other relation to all reducers. Of course since $r > s$, it makes sense to choose relation R to partition. Thus values of attribute A are hashed to k buckets, using a hash function h, and each tuple of relation R with $B = b$ is sent to one reducer – the one that corresponds to the bucket that the value of the first argument of the tuple was hashed. The tuples of S are sent to all the k reducers. Thus the number of tuples transferred from mappers to reducers is $r + ks$.

The approach described above appears not only in Pig and Hive, but dates back to [9]. The latter work, which looked at a conventional parallel implementation of join rather than a MapReduce implementation, uses the same (non-optimal) strategy of choosing one side to partition and the other side to replicate. In particular, these techniques are not optimal with respect to communication cost (i.e., the number of inputs transferred from the mappers to the reducers [2, 1]).

Our contribution: In Example 1.2 we show how we can do significantly better than the standard technique of Example 1.1. In the rest of the paper we show how the idea in Example 1.2 can be extended to apply on any multiway join and for any number of heavy hitters. In particular, we show how to adapt Shares algorithm [9] to find a solution that minimizes communication cost in the case there are heavy hitters.

Example 1.2. We take again the join $R(A, B) \bowtie S(B, C)$. We partition the tuples of R with $B = b$ into x groups and we also partition the tuples of S with $B = b$ into y groups, where $xy = k$. We use one of the k reducers for each pair (i, j) for a group i from R and for a group j from S. Now we are going to partition tuples from R and S and we use hash functions h_r and h_s to do the partitioning. We send each tuple (a, b) of R to all reducers of the form (i, q), where $i = h_r(a)$ is the group in which tuple (a, b) belongs and q ranges over all y groups. Similarly, we send each tuple (b, a) of R to all reducers of the form (q, i), where $i = h_s(a)$ is the group in which tuple (b, a) belongs and q ranges over all x groups. Thus each tuple with $B = b$ from R is sent to y reducers and each tuple with $B = b$ from S is sent to x reducers. Hence the communication cost is $ry + sx$. We

In this paper, we use the term reducer to mean the application of the Reduce function to a key and its associated list of values. It should not be confused with a Reduce task, which typically executes the Reduce function on many key and their associated values.
can show (see [3]) that by minimizing \(ry + sx \) under the constraint \(ry = k \), we achieve communication cost equal to \(\sqrt{2krs} \), which is always less than what we found in Example 1.1, which was \(r + ks \). The proof is easy: \(\sqrt{2krs} \leq r + ks \) or \(0 \leq \sqrt{rs} - \sqrt{2k} + k \sqrt{s/r} \), which is a second order polynomial wrt \(\sqrt{k} \) as unknown and it is positive for any \(k \). Moreover observe that the improvement is significant: The optimal communication cost grows as \(\sqrt{k} \), while \(r + ks \) grows linearly with \(k \).

Related Work There is a lot of work over the decades about how to handle skew when we process queries. We will limit ourselves here to recent work that considers joins in MapReduce or discusses the Shares algorithm. In [4] it is proven that with high probability the Shares algorithm distributes tuples evenly on uniform databases (these are defined precisely in [4] to be databases which resemble the case of random data). Then, [5] generalizes and enhances results in [4] and [2]. [5] describes how the Shares algorithm behaves on skewed data: it shows that the algorithm is resilient to skew, and gives an upper bound even on skewed databases. However this resilience applies to ordinary joins that use many of the attributes in one relation allowing thus the tuples with a heavy hitter to be distributed in many reducers. However this is not the case in the 2-way join example we gave — and many others.

2. Shares Algorithm

The algorithm is based on a schema according to which we distribute the data to a given number of \(k \) reducers. Each reducer is defined by a vector, where each component of the vector corresponds to an attribute. The algorithm uses a number of independently chosen random hash functions \(h_i \) one for each attribute \(X_i \). Each tuple is sent to a number of reducers depending on the value of \(h_i \) for the specific attribute \(X_i \) in this tuple. If \(X_i \) is not present in the tuple, then the tuple is sent to all reducers for all \(h_i \) values. For an example, suppose we have the 3-way join \(R_1(X_1, X_2) \bowtie R_2(X_2, X_3) \bowtie R_3(X_3, X_1) \). In this example each reducer is defined by a vector \((x, y, z) \). A tuple \((a, b)\) of \(R_1 \) is sent to a number of reducers and specifically to reducers \((h_1(a), h_2(b), i)\) for all \(i \). I.e., this tuple needs to be replicated a number of times, and specifically in as many reducers as is the number of buckets into which \(h_3 \) hashes the values of attribute \(X_3 \).

When the hash function \(h_i \) hashes the values of attribute \(X_i \) to \(x_i \) buckets, we say that the share of \(X_i \) is \(x_i \). The communication cost is calculated to be, for each relation, the size of the relation times the replication that is needed for each tuple of this relation. This replication can be calculated to be the product of the shares of all the attributes that do not appear in the relation. In order to keep the number of reducers equal to \(k \), we need to calculate the shares so that their product is equal to \(k \).

Thus, in our example, the communication cost is \(r_1 x_3 + r_2 x_1 + r_3 x_2 \) and we must have \(x_1 x_2 x_3 = k \). (We denote the size of a relation \(R_i \) by \(r_i \).) In [3], it is explained how to use the Lagrangean method to find the shares that minimize the communication cost, for any multiway join.

We are going to need an important observation that was proven in [3]. An attribute \(A \) is dominated by attribute \(B \) in the join if \(B \) appears in all relations where \(A \) appears. It is shown that if an attribute is dominated, then it does not get a share, or, in other words, its share is equal to 1.

2.1 Our Setting

We saw how to compute the 2-way join in Example 1.2 for the tuples which have one HH. For this join, we took two sets of keys:

- The set of keys as presented in Example 1.2 which send tuples with HH to a number of reducers in order to compute the join of tuples with HH.
- The set of keys which send tuples without HH to a number of reducers in order to compute the join of tuples without HH. This second set is formed exactly as in the Shares algorithm.

It is convenient to see these two sets of keys as corresponding to two joins which we call residual joins, and which actually differ only on the subset of the data they are applied. One applies the original join on the data with HH and the other applies the original join on the data without HH.

The method we presented in Example 1.2 is actually based on the Shares algorithm. To see this, we can be equivalently thought as: We replace each tuple of relation \(R \) with a tuple where \(B \) has distinct fresh values \(b_1, b_2, \ldots \) and the same for the tuples of relation \(S \) with \(B \) having values \(b_1', b_2', \ldots \). Now we can apply the Shares algorithm to find the shares and distribute the tuples to reducers normally. The only problem with this plan is that the output will be empty because we have chosen \(b_1, b_2, \ldots \) and \(b_1', b_2', \ldots \) to be all distinct. This problem however has an easy solution, because, we can keep this replacement to the conceptual level, just so to create a HH-free join and be able to apply the Shares algorithm and compute the shares optimally. When we transfer the tuples to the reducers, however, we transfer the original tuples and thus, we produce the desired output. We explain this conceptual structure in Section 3.

Our setting is as follows: We have \(k \) reducers to use for computing all residual joins. We assume each residual join \(J \) uses \(k_i \) of those reducers, thus one constraint is \(k_1 + k_2 + \cdots = k \). For each residual join, we need to compute the communication cost expression. The objective function to minimize is the sum of the cost expressions over all residual joins, under the constraint: for each residual join \(J \), the product of the attribute shares must be equal to \(k_i \).

The aim of this paper is to show how to systematically apply the idea explained for the 2-way join on any multiway join with any number of HH. The structure of the rest of the paper is the following:

1. We decompose into residual joins, i.e., we partition the data into subsets and we view a residual join as the original join applied on one of the subsets (Section 3).
2. We explain how to form a HH-free residual join and how to compute the communication cost expression for each residual join (Section 4).
3. We show how the cost expression for each residual join is written in a simple and effective way (Section 5).
3. Decomposition wrto HH

First we need some definitions.

For each attribute X_i we define a set L_{X_i} of types:

- If X_i has no values that are heavy hitters, then L_{X_i} comprises of only one type, T_-, called the ordinary type.
- If X_i has p_i values that are heavy hitters, then L_{X_i} comprises of $1 + p_i$ types: one type T_b for each heavy hitter, b, of X_i, and one ordinary type T_-.

A combination of types, C_T, is an element of the Cartesian product of the sets L_{X_i}, $i = 1, 2, \ldots$ and defines a residual join.

E.g., for the query in in Example 1.2, we consider two residual joins, one for type combination $C_T = \{ A : T_-, B : T_-, C : T_+ \}$ (without HH) and one for type combination $C_T = \{ A : T_-, B : T_b, C : T_+ \}$ (with HH).

Each C_T defines a residual join which is the join computed only on a subset of the data. Specifically, if an attribute X has ordinary type in the current C_T we exclude the tuples for which $X = HH$. E.g., if there are two HH $X = b_1$ and $X = b_2$, then we exclude (from all relations) all tuples with $X = b_1$ and $X = b_2$. If attribute X is of type T_b then we exclude (from all relations) the tuples with value $X \neq b$.

Example 3.1. We take as our running example the 3-way join: $J = R(A, B) \bowtie S(B, E, C) \bowtie T(C, D)$

Suppose attribute B has two HHs, $B = b_1$ and $B = b_2$, and attribute C has one HH, and $C = c_1$. Thus attribute B has three types, T_-, T_{b_1} and T_{b_2}, attribute C has two types, T_- and T_{c_1} and the rest of the attributes have a single type, T_+. Thus we have $3 \times 3 = 9$ residual joins, one for each combination. By r, s, t we denote the sizes of the relations that are relevant in each residual join, i.e., the number of tuples from each relation that contribute in the particular residual join. We list the residual joins:

1. All attributes of type T_-. Here r is the number of only those tuples of relation R for which $B \neq b_1$ and $B \neq b_2$, s is the number of only those tuples of relation S for which $B \neq b_1$ and $B \neq b_2$ and $C \neq c_1$, and t is the number of those tuples in relation T for which $C \neq c_1$.

2. All attributes of type T_-, except B of type T_{b_1}. For each attribute X_i, the ones that are not heavy hitters.

3. All attributes of type T_-, except B of type T_{b_2}.

4. All attributes of type T_-, except C of type T_{c_1}.

5. All attributes a of type T_-, except B of type T_{b_1} and C of type T_{c_1}.

6. All attributes of type T_-, except B of type T_{b_2} and C of type T_{c_1}.

Each residual join is treated by the Shares algorithm as a separate join and a set of keys are defined that hash each tuple as follows: A tuple t of relation R_i is sent to reducers of combination C_T only if the values of the tuple satisfy the constraints of C_T as concerns values of HH.

Example 3.2. We continue from Example 3.1. Each tuple is sent to a number of reducers according to the keys created for each residual join (we will provide more details later in the paper). E.g., a tuple t from relation R is sent to reducers as follows:

1. If t has $B = b_1$ then it is sent to reducers created in items (2) and (5) in Example 3.1.

2. If t has $B \neq b_1$ and $B \neq b_2$ then it is sent to reducers created in items (1) and (4).

3. If t has $B = b_2$ then it is sent to reducers created in items (3) and (6).

4. Writing the Cost Expression

In this section we will explain how to form a HH-free residual join and how to compute the communication cost expression for each residual join. The structure we use in this section is conceptual, for the sake of showing how to write the cost expression. In practice, we do not materialize $R(A, B)_i$ and $S(B_S, C)$ or the auxiliary relation (definitions of these will be given shortly) – as we will explain in the next section. We begin with an example:

Example 4.1. We consider the residual join with $HH B = b$ for the join of Example 1.3 which we rewrite here: $R(A, B) \bowtie S(B, C)$. In order to do that, we will equivalently imagine that we have to compute:

1. A join $R(A, B_R) \bowtie R_{aux}(B_R, B_S) \bowtie S(B_S, C)$

2. On new database D' which comes from D: We populate $R(A, B_R)$ with the same number of tuples as the original $R(A, B)$ has: For each tuple t with $B = b$, we add in $R(A, B_R)$ a tuple where we have replaced the $B = b$ with $B_R = b.t.R$. We do similarly for $S(B_S, C)$ replacing $B = b$ in tuple t by $B_S = b.t.S$. The relation $R_{aux}(B_R, B_S)$ is the Cartesian product of R_B and B_S.

- Observation 1: Database D' now has no heavy hitters. So, we can apply the original Shares algorithm. The introduction of auxiliary attributes and relations may seem now as if complicates things significantly, but, as we shall show in Section 5 it does not.

Thus if, in the database D, relation R is $\{(1,2), (3,2), (4,2)\}$ and S is $\{(2,5), (2,6)\}$ then, in the database D' we have (assuming $B = 2$ qualifies for HH):

- $R(A, B_R)$ is $\{(1,2.1.R), (3,2.3.R), (4,2.4.R)\}$.

- $S(B_S, C)$ is $\{(2.5.S,5), (2.6.S,6)\}$. (I.e., we conveniently identify the tuple of R with the value of its first argument and the tuple of S with the value of its second argument.)

- The auxiliary relation $R_{aux}(B_R, B_S)$ is $\{(2.1.R,2.5.S), (2.3.R,2.5.S), (2.4.R,2.5.S), (2.1.R,2.6.S), (2.3.R,2.6.S), (2.4.R,2.6.S)\}$

The residual join computation has no heavy hitters, thus, we apply the original Shares algorithm, only that, when we compute the cost expression we ignore the communication cost for the auxiliary relation\(^3\). Thus the communication cost of the residual join is again $ry + sx$, which is the same expression as in Example 1.3.

The conceptual structure in the general case is as follows:

For each combination of types, C_T, we compute a HH-free residual join whose cost expression is written as follows:

\(^3\)We can ignore it because we know what are the tuples in the auxiliary relation and we can imagine that we can recreate them in the reducers.
We use the theorem: the cost expression for each residual join in a simple manner. The property of the dominance relation allows us to write

5.1. Theorem. The share of each auxiliary attribute is equal to 1 in the optimum solution.4

Proof. Each auxiliary attribute appears in one relation of the original join and in one auxiliary relation. Since we do not add a term in the cost expression for the auxiliary relation, we imagine that we write the cost expression for a join which is the residual join without the auxiliary relations. Hence, an auxiliary attribute appears only in one relation, hence it is dominated by a ordinary (non-HH in this residual join) attribute. There is the exception: when all attributes in a relation are auxiliary attributes. In this case there is only one tuple in the relation in this particular residual join, so all attributes in the relation get share = 1.

Thus we established that:

- The cost expression for each residual join can be derived from the cost expression of the original join (before dominance rule simplification) by making the shares of auxiliary attributes equal to 1.
- Each tuple is hashed to reducers according to the values of the non-HH attributes in this tuple.

Example 5.2. We continue from Example 5.1 for the same HH as there. Remember by a, b, c, d, e we denote the shares for each attribute A, B, C, D, E respectively and by r, s, t we denote the sizes of the relations that are relevant in each residual join, i.e., the number of tuples from each relation that contribute in the particular residual join. We always start with the cost expression for the original join, $rde + sad + tae$, and then simplify accordingly. We list the cost expression for every residual join (and in the same order as) in Example 5.1:

1. Here all attributes are ordinary, so we simplify the relation by observing that A is dominated by B and D is dominated by C, hence $a = 1$ and $d = 1$ and the expression is: $rc + s + tb$.
2. Here B is a non-ordinary attribute, hence $b = 1$ and then, from the remaining attributes only D is dominated by C, hence $d = 1$ and the expression is: $rc + sa + ta$.
3. $rc + sa + ta$, i.e., same as above, only the sizes of the relations will be different.
4. $rd + sd + tb$
5. Here we set both $b = 1$ and $c = 1$ and this gives us $rde + sad + tae$.
6. $rde + sad + tae$, i.e., same as above, only the sizes of the relations will be different.

6. References

[1] F. N. Afrati, M. Balazinska, A. D. Sarma, B. Howe, S. Salihoglu, and J. D. Ullman. Designing good algorithms for mapreduce and beyond. In SoCC, page 26, 2012.
[2] F. N. Afrati, A. D. Sarma, S. Salihoglu, and J. D. Ullman. Upper and lower bounds on the cost of a map-reduce computation. PVLDB, 6(4):277–288, 2013.
[3] F. N. Afrati and J. D. Ullman. Optimizing multiway joins in a map-reduce environment. IEEE Trans. Knowl. Data Eng., 23(9):1282–1298, 2011.
[4] P. Beame, P. Koutris, and D. Suciu. Communication steps for parallel query processing. In Proceedings of the 32nd ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems, PODS 2013, New York, NY, USA - June 22 - 27, 2013, pages 273-284, 2013.
[5] P. Beame, P. Koutris, and D. Suciu. Skew in parallel query processing. In Proceedings of the 33rd ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems, PODS’14, Snowbird, UT, USA, June 22-27, 2014, pages 212–223, 2014.
[6] A. Gates, O. Natkovich, S. Chopra, P. Kamath, S. Narayanan, C. Olston, B. Reed, S. Srinivasan, and U. Srivastava. Building a high level dataflow system on top of mapreduce: The pig experience. PVLDB, 2(2):1414–1425, 2009.
[7] C. Olston, B. Reed, U. Srivastava, R. Kumar, and A. Tomkins. Pig latin: a not-so-foreign language for data processing. In SIGMOD Conference, pages 1099–1110, 2008.
[8] A. Thusoo, J. S. Sarma, N. Jain, Z. Shao, P. Chakka, N. Zhang, S. Anthony, H. Liu, and R. Murthy. Hive - a petabyte scale data warehouse using hadoop. In ICDE, pages 996–1005, 2010.
[9] J. L. Wolf, D. M. Dias, and P. S. Yu. A parallel sort merge join algorithm for managing data skew. IEEE Trans. Parallel Distrib. Syst., 4(1):70–86, 1993.