Glioblastoma multiforme (GBM), as one of the most common malignant brain tumors, was limited in its treatment effectiveness with current options. Its invasive and infiltrative features led to tumor recurrence and poor prognosis. Effective treatment and survival improvement have always been a challenge. With the exploration of genetic mutations and molecular pathways in neuro-oncology, gene therapy is becoming a promising therapeutic approach. Therapeutic genes are delivered into target cells with viral vectors to act specific antitumor effects, which can be used in gene delivery, play an oncolysis effect, and induce host immune response. The application of engineering technology makes the virus vector used in genetics a more prospective future. Recent advances in viral gene therapy offer hope for treating brain tumors. In this review, we discuss the types and designs of viruses as well as their study progress and potential applications in the treatment of GBM. Although still under research, viral gene therapy is promising to be a new therapeutic approach for GBM treatment in the future.

Keywords: gene therapy, viral therapy, glioblastoma multiforme, viral vector, treatment strategy
blood-brain barrier (BBB) limited the entry of therapeutic drugs into the central nervous system (CNS) (14–16). Glioblastoma stem cells supported tumor self-renewal which contributed to GBM resistance to radiotherapy (17–19). So even with standard treatment, the outcome of patients with GBM was still very poor. The median survival of patients diagnosed with GBM was just about 15 months (20–22). The clinical use of additional therapies, including local adjuvant therapy with Carmustine wafers and tumor-angiogenesis inhibition with Bevacizumab, were tried to improve the outcome (23–26). However, the survival rate was still less than 5% within five years of diagnosis (27, 28).

Therefore, the application of new treatment methods to get rid of the limitations of conventional treatment has been necessary. Growing evidence has proved that tumor is a kind of genetic disease (29, 30). With the exploration in the treatment of other diseases, viral gene therapy has brought hope for the treatment of GBM (31–33). Both wild-type viruses and engineered viruses could be used for viral gene therapy. Non-lytic viruses were used for gene therapy and lytic viruses exert anti-tumor effects by inducing tumor cell lysis (34). Moreover, the lytic viruses exposed GBM antigens to the host immune system which stimulated a specific immune response to tumor cells (35). The natural sensitivity of GBM cells to virus infection has made viral therapy a promising prospect. The viral vectors were designed according to the characteristic of target cells, the size of therapeutic gene, and the ability of long-term gene expression. In this review, we will focus on the types of viral vectors and demonstrate the versatility of gene therapy for GBM treatment. In this review, we will focus on the types of viral vectors (Table 1) and demonstrate the versatility of gene therapy for GBM treatment.

**VIRAL VECTORS**

Retrovirus

Because of the special biological characteristics, retrovirus vectors were first attempted in gene therapy for glioma. Replicating retroviral vectors were able to deliver the prodrug activator genes, which were also called suicide genes, into tumor cells and integrate into host genomes (36, 37). When a prodrug was given, the protein expressed by the gene could convert the non-toxic drug into a cytotoxic substance, which led to GBM cell death (38). Even as tumor cells escape the killing of cytotoxic drugs, they could also be used as an integrated retrovirus set and continue to play a role in the events of GBM recurrence (39). Therefore, this method was also known as “suicide gene therapy”. In the initial clinical trial, the therapeutic effect of retroviral vectors encoding herpes simplex virus thymidine kinase (HSV-tk) on malignant brain tumors was evaluated. The researchers found that HSV-tk could convert ganciclovir (GCV) into an active form of GCV triphosphate, which inhibited DNA replication and cell division in tumor cells, resulting in an

![Table 1](image.png)

**Table 1** Modifications and mechanisms of the viral vectors used for GBM gene therapy.

| Viral vector | Agent | Modification | Mechanism |
|--------------|-------|--------------|-----------|
| Retrovirus   | HSV-tk| suicide gene therapy, thymidine kinase (TK) gene transfer | converting ganciclovir (GCV) into active form GCV triphosphate |
|             | TOCA511| suicide gene therapy, cytosine deaminase (CD) gene transfer | converting 5-fluorocytosine (5-FC) into active antineoplastic 5-fluorouracil (5-FU) |
| Lentivirus   | shRNA-lentivirus | sh-Bcl2 and S-TRAIL transfer | down-regulating Bcl-2 and inducing S-TRAIL expression |
|             | sh-SirT1 lentivirus | sh-SirT1 transfer | silencing SirT1 in CD133+ cells to improve radiotherapeutic sensitivity |
|             | miR-100 lentivirus | miR-100 transfer | regulating FGFR3 to inhibit tumor growth and increase sensitivity to chemotherapy |
|             | GAS1-PTEN | growth arrest specific 1 (GAS1) and phosphatase and tensin homolog (PTEN) gene transfer | expressing GAS1 and PTEN equally to perform superimposed anti-tumor effect |
| Adenovirus   | ONYX-015 | E1B gene deletion | replicating in p53 pathway altered tumor cells |
|             | Delta-24 | E1A gene partial deletion, Delta-24 RGD: Arg-Gly-Asp peptide sequence incorporation | replicating in Rb/p16 tumor suppressor pathway defective GBM cells |
| Herpes simplex virus | HSV1716 | RL1 gene (g34.5) loci deletion | Delta-24 RGD: expressing e1 integrins to enhance infectivity targeting cells with defects in PKR pathway |
|             | C134 | RL1 gene (g34.5) loci deletion, human cytomegalovirus (HCMV) IRS1 gene transfer | expressing IRS1 protein to enhance replication |
|             | G207 | RL1 gene (g34.5) and UL39 gene deletion | inhibiting viral replication in non-dividing cells |
|             | rQNestin34.5v.2 | RL1 gene (g34.5) loci deletion, RL1 gene under control of nestin promoter. | replicating in PKR-deficient, nestin-positive tumor cells |
| Oncolytic viruses | Peiareovep (REOLYSIN) | wild-type reovirus | replicating specifically in Ras pathway activated tumor cells |
|             | TG6002 | ribonucleotide reductase genes deletion vaccinia, suicide gene therapy, FCU1 gene transfer | direct oncolysis effect and prodrug conversion |
|             | H-1PV | wild-type parvovirus | clathrin-mediated endocytosis, DNA damage response, and cell-cycle arrest |
|             | PVS-RIPO | poliovirus-rhinovirus chimera | restrict replicating in CD155-expressing tumor cells |
anti-tumor effect (40). However, the results also indicated the limitations in transfection inefficiency of retroviral vectors was inefficient (41).

Retroviral vector TOCA511 has been used to deliver cytosine deaminase (CD) gene into tumor cells (42). CD enzyme converted the prodrug 5-fluorocytosine (5-FC) to active antineoplastic 5-fluorouracil (5-FU) which caused the death of tumor cells. The preclinical studies observed that TOCA511 did not lead to widespread or uncontrolled replication, which proved the safety of TOCA511 treatment. The safety and activity of TOCA511 were further supported by molecular analyses (43). Moreover, another study found that in addition to direct cytotoxic effects, TOCA511 could also be used as a radiosensitizing agent (44). TOCA511 could increase the intratumor concentration of 5-FU and induce T cell-mediated antitumor immunity (45, 46). TOCA 511 has been shown to be safe and provide a significant survival benefit in the clinical trial (47). Recent results from the Phase III clinical trial showed that TOCA511 treatment significantly improved survival in patients with two or more recurrences (48).

Lentivirus
Lentiviruses belonged to the retroviridae family (49, 50). Exogenous genes or shRNAs could be effectively integrated into the genomes of dividing or non-dividing cells to achieve the effect of persistent expression of the target sequence (51). Compared with retroviral vectors, lentiviral vectors were more stable and less prone to insertion mutation. The active transportation of pre-integration complex through the nucleopore was the unique mechanism of lentiviral vectors (52). Researchers constructed a lentiviral vector expressing shRNA to downregulate Bcl-2 and S-TRAIL to induce apoptosis in glioma cells. The result showed that lentivirus-mediated apoptosis resulted in an increase in the expression of activated caspase-3 and caspase-7, which accelerated the apoptosis of tumor cells (53). The transfection of target genes by lentiviral vectors could improve sensitivity of GBM to radiotherapy. The CD133+ cells in GBM were resistant to radiotherapy. A study down-regulated the expression of sirtuin 1(Sirt1) in CD133+ by a lentiviral vector expressing shRNA (sh-SirT1). The results showed that the silence of SirT1 significantly enhanced the inhibition of tumor growth by radiotherapy and improved the mean survival rate of GBM (54).

Specific miRNAs were proved to be associated with the increase of proliferation, invasiveness, angiogenesis, and apoptosis resistance in GBM. A study has shown that with the transfection of lentiviral vectors, the overexpression of miR-100 significantly inhibited the growth and migration of GBM, and increased the sensitivity to chemotherapy. And the delivered miR-100 played an anti-tumor effect on GBM by regulating FGFR3 directly (55). The latest genome editing technology could also be used for GBM treatment by lentiviral vector transfection. It has shown that editing the sequence of vascular laminin-411 overexpressed in GBM could suppress tumor growth and improve survival of GBM (56). Researchers constructed lentiviral vectors with an equal expression of growth arrest specific 1 (GAS1) and phosphatase and tensin homolog (PTEN) via the versatility of expression cassettes allocation. Both of the transgenes were regulated by the same promoter. The result showed that the anti-tumor effect of GAS1 could be superimposed with the inhibitory effect of PTEN on Akt pathway, and this could significantly inhibit the growth of GBM (57).

Adenovirus
Adenovirus is a non-enveloped double-stranded DNA virus (58, 59). Adenoviruses selected for gene therapy were serotypes 2 and 5 (60). Adenoviral vectors used coxackie-adenovirus receptor (CAR) to mediate cell tropism and internalize adenovirus vectors by the interactions between penton protein and host cell surface integrins (61–63). After endocytosis into the tumor cells, adenoviruses did not integrate into the host genome and remained episomal while gene expression (64).

The E1 and E3 regions of adenovirus genome were conventionally deleted to eliminate the expression-related toxicity by adenovirus infection. The latest generation of adenoviral vectors could minimize the anti-adenovirus immune response by removing all the endogenous virus coding regions to induce more stable transgene expression (65). The deficiency of non-replicative adenoviruses was that epimuses might be diluted due to cell division, resulting in a rapid decline in transgene expression. Conditional replication adenoviruses, as tumor-specific agents, were designed to selectively replicate within and kill the tumor cells (66). Moreover, the replicated transgenes could spread the therapeutic effect to other neighboring tumor cells. The genetically modified adenovirus ONXY-015 was a recombinant chimeric Ad2 and Ad5 vector with selective replication ability. The protein encoded by adenovirus E1B gene interacted with tumor suppressor p53 and the transcriptional activity was blocked (67). Due to the decreased expression of p53 in GBM, ONXY-015 was able to replicate effectively. Previous studies showed that ONXY-015 administration was safe and effective (68). And the phase I clinical trial has shown that no serious adverse events were observed in patients treated with ONXY-015 and ONXY-015 therapy could significantly inhibit tumor growth (69).

Delta-24 was designed to selectively replicate in cells deficient in the Rb/p16 tumor suppressor pathway. The deletion of retinoblastoma (Rb) binding domain fragment in E1A gene inhibited the interaction between E1A and Rb. Rb protein negatively regulates cell growth by blocking E2F. Rb/p16 tumor suppressor pathway deficiency likely occurred in GBM cells, which made it possible for Delta-24 selective replication in GBM cells but not in the normal cells (70). Furthermore, it was difficult for adenoviral vectors transfection due to the poor expression of CAR in tumor cells, which reduced the therapeutic effect. By mortifying an Arg- Gly-Asp peptide sequence in the HI loop of the fiber, the vectors were allowed to bind on integrins to enter the tumor cells, thus enhancing the infectivity of the virus (71). Delta-24 and its modified versions have shown encouraging results in clinical trials (72).

Herpes Simplex Virus
Herpes simplex viral vectors used for gene therapy were mainly modified from Herpes Simplex virus type 1 (HSV-1), an
enveloped double-stranded DNA virus (73). Due to the
neurotropic nature, HSV vectors are attractive for gene
transduction in central nervous system tumors. The 152kbp
genome length made it possible to carry a sufficient payload (68).

RL1 gene (γ34.5) was a necessary gene for effective replication
of HSV. RL1 gene encodes The Infected Cell Protein 34.5
(ICP34.5), also known as Neurovirulence factor ICP34.5, was
encoded by RL1. Phosphorylation of translation initiation factor
eIF2α by protein kinase R (PKR) inhibited the translation
process and blocked the production of viral proteins.
Moreover, PKR could activate transcription factor NF-kB by
inducing the degradation of negative regulator IkB to stimulate
the antiviral immune response. ICP34.5 reversed this process
by activating phosphatase-1 (74). The PKR pathway was often
inhibited in GBM, so it did not restrict the replication of HSV
vectors with the modification of ICP 34.5. For example, the
recombinant vector HSV1716 removed both copies of RL1 to
allow its selective replication in tumor cells (75). Clinical studies
have proved that HSV-1716 can effectively improve the survival
of patients (76, 77). C134 vectors deleted RL1 gene and inserted
human cytomegalovirus IRS1 gene to enhance replication (78).

Another important gene UL39 encoded the large subunit of
ribonucleotide reductase (RR), also known as ICP6. This protein
converts ribonucleotide into deoxyribonucleotide allowing viral
DNA replication, and the UL39-deficient vectors were unable to
replicate in non-dividing cells. However, the host ribonucleotide
reductase could compensate for the function loss of viral RR in
dividing cells. Combining the two mechanisms above, the
deletion of RL1 gene in G207 allowed the virus to target GBM
cells, and the mutation in UL39 gene eliminated the replication
in normal non-dividing cells (79). The result of the clinical
studies has shown the safety of G207 in GBM treatment, and
the favorable therapeutic effect of the combination with G207
and radiotherapy in recurrent GBM treatment (80, 81). Due to
the specific up-regulation of nestin promoter in gliomas,
rQNestin34.5v.2 vectors were designed within an insertion
with a copy of RL1 gene under the transcriptional control of
nestin promoter. The combination of the vectors and
cyclophosphamide was proved to increase virus replication in
tumors and improve the survival rate of patients (82).

**Oncolytic Virus**

Oncolytic viruses had dual anti-tumor effects, which not only
destroyed tumor cells directly but activated tumor-specific
immune response. Current clinical trials have demonstrated
the feasibility of OV-specific tumor infection. By selective
transfection and replication (83, 84), tumor cell lysis was
induced without damage to normal cells. Furthermore,
oncolytic viruses were also able to infect tumor vascular
endothelial cells, inhibit tumor-related angiogenesis, and cause
hypoxic death of tumor cells (85). Meanwhile, oncolytic viruses
induced systemic anti-tumor immunity by releasing tumor-
associated antigens (86).

In addition to wild-type viruses, engineered viruses could also
be used as oncolytic viruses, including reovirus, vaccinia virus,
parvovirus, poliovirus, vaccinia virus, Newcastle disease virus,
etc. And the anti-tumor immunity could be further enhanced by
encoding cytokines, chemokines, and tumor-associated antigens
(87). Currently, types of viruses have been involved in clinical
trials to verify the safety and therapeutic effectiveness. Reovirus
was a non-enveloped wild-type oncolytic virus with double-
stranded RNA genome. Reovirus Pelareorep (REOLYSIN)
could replicate specifically in Ras pathway activated tumor cells
(88). In the phase I clinical trial, no treatment-related adverse
reactions after intratumoral injection of reovirus were observed
(89). Reovirus therapy could lead to tumor leukocyte infiltration
and an increase in the expression of IFN, caspase 3, and PD-L1
(90). As an enveloped double-stranded DNA virus, the vaccinia
virus did not rely on cell receptors, but membrane fusion to enter
cells. Its rapid replication cycle and strong ability of intercellular
transmission made it a promising candidate for viral therapy
(91). TG6002 was modified from vaccinia virus, which was
designed as a combination of direct oncolysis effect and
prodrug conversion function. It mainly replicated in tumor
cells and transformed 5-FC into 5-FU. Its safety and oncolytic
activity have been confirmed in a large number of preclinical
studies (68). Parvovirus was a single-stranded DNA virus. As a
kind of parvovirus, H-1PV bound to the receptors on the surface
of host cells and entered within endocytosis mediated by clathrin,
inducing DNA damage and cell cycle arrest (92). The result of
clinical trials showed that H-1PV could cross the BBB to reach
the tumor and enhance the immunogenicity in tumor
microenvironment (93, 94). Poliovirus was a kind of
encapsidated viruses with a single strand RNA. Poliovirus
infected tumor cells by binding the cell adhesion molecule CD-
155 expressed in GBM (95). The phase I clinical trial showed that
PVS-RIPO (poliovirus-rhinovirus chimera) immunotherapy
significantly improved the survival rate of GBM patients (96).

**GENE THERAPY**

Gene therapy achieved the purpose of treatment by delivering
therapeutic genes or manipulating disease-related genes into target
cells. Based on the related therapeutic strategies, gene therapy has
been divided into suicide gene therapy, oncolytic viral gene
therapy, tumor suppressor gene therapy, immuno-stimulatory
therapy, and tumor microenvironmental regulation therapy (97,
98). Suicide gene therapy and oncolytic viral gene therapy have
been described above. The main function of tumor suppressor
genes included cell signal transduction and epigenetic regulation,
negative regulation of cell cycle, negative regulator expression,
regulation related to stem cell proliferation, and DNA mismatch
repair. Studies have shown that Rb, p53, PTEN, CDKN2A, and
other tumor suppressor genes played an important role in effective
GBM inhibition. However, the related clinical trials on tumor
suppressor gene therapy were limited. IFN-β (interferon β)
inhibited the growth and invasion of GBM with the effects of
anti-tumor immune modulation, anti-proliferation, and anti-
angiogenesis (99). IFN-β gene delivered by viral vectors showed
a widespread expression and distribution in astrocytes and
endothelial cells. A phase I clinical trial showed local
inflammation and tumor necrosis in IFN-β treatment (100). The
intra-tumor injection of angiostatin could effectively inhibit tumor
growth and vascularization (101, 102). Therefore, anti-angiogenic genes and tumor extracellular matrix regulatory genes made it possible to treat GBM via modulating tumor microenvironment.

**DISCUSSION**

Glioblastoma has been a common, highly aggressive, and heterogeneous brain tumor. The infiltration of GBM to the surrounding tissue made it impossible to eliminate by surgical intervention. The inefficient delivery of BBB reduced the therapeutic effect of chemotherapy. The abnormal vascularization promoted the proliferation of tumor cells. And immunosuppressive status in tumor microenvironment severely limited the anti-tumor response to GBM. Therefore, we urgently need new treatment strategies to face the challenges of this disease and improve the prognosis of patients. Gene therapy aimed to treat GBM by targeting and regulating oncogenes and tumor suppressor genes in tumor cells. The latest understanding of genetic material and molecular alteration provided an accurate theoretical basis for gene therapy. Due to the high transfection efficiency and the development of vector engineering techniques, viruses were widely used in the researches of GBM gene therapy. Viral vectors-mediated gene therapy could be combined with current treatment methods to improve therapeutic outcomes. The transmission of suicide genes has been evaluated in clinical trials to overcome the resistance of chemotherapy. HSV-tk and TOCA511 converted the prodrugs into active form and mediate trials to overcome the resistance of chemotherapy. HSV-tk and The transmission of suicide genes has been evaluated in clinical treatment methods to improve therapeutic outcomes. Viral vectors-mediated gene therapy could be combined with current treatment methods to improve therapeutic outcomes. The transmission of suicide genes has been evaluated in clinical trials to overcome the resistance of chemotherapy. HSV-tk and TOCA511 converted the prodrugs into active form and mediate the anti-tumor response. The transfection of sh-siRT1 vectors in CD133+ GBM cells significantly improved the resistance to radiotherapy. The extensive replication of oncolytic viruses in tumor cells, including ONYX-015, Delta-24, and PVS-RIPO, led to cytolysis and induced an anti-tumor immune response. Furthermore, the expression of cytokines could enhance the therapeutic effectiveness of viral vectors by improving anti-tumor immunity. However, there are still some concerns that need to resolve in viral gene therapy before its application in clinical therapy. The first is the transduction efficiency and expression stability of target genes. As we mentioned, the expression level of receptors and the efficiency of membrane fusion affected the entry of the virus into tumor cells. How well the viruses entered the cells would determine the effectiveness of gene therapy. Non-replicative viruses, including adenoviral vectors, were not integrated into the host genome, the expression level of the transgenes might decrease with cell divisions. Secondly, viral vectors needed to be further optimized to improve tumor targeting especially in radiotherapy and chemotherapy-resistant GBM cells, and avoid entering normal cells. Multiforme implied that heterogeneity existed among the GBM cells within the same tumor. It has been necessary to explore the common mechanism of viral replication. Moreover, the use of engineering technology to eliminate the immunogenicity of virus was worth considering, which could avoid antiviral immunity. Currently, several preclinical trials and clinical trials have proved the safety of viral therapy. However, the effectiveness of its treatment in clinical trials was still unclear, so large clinical trials have been needed. Undeniably, viral gene therapy provided a new therapeutic approach and perspective in GBM treatment.

**CONCLUSION**

Viral gene therapy has shown strong therapeutic potential in GBM treatment. In the future, studies need to focus on the therapeutic efficacy and monitor adverse events before viral vectors widely use in clinical practice. Furthermore, the combination of viral gene therapy with other new treatment methods needs further research. Although the road ahead may be challenging, gene therapy has brought new hope for patients with GBM.

**AUTHOR CONTRIBUTIONS**

All authors listed have made a substantial, direct, and intellectual contribution to the work, and approved it for publication.
87. Chiocca EA, Rabkin SD. Oncolytic Viruses and Their Application to Cancer Immunotherapy. Cancer Immunol Res (2014) 2(4):295–300. doi: 10.1158/2326-6066.cir-14-0015

88. Biederer C, Ries S, Brandts CH, McCormick F. Replication-Selective Viruses for Cancer Therapy. J Mol Med (Berlin Germany) (2002) 80(3):163–75. doi: 10.1007/s00109-001-0295-1

89. Forryth P, Roldán G, George D, Wallace C, Palmer CA, Morris D, et al. A Phase I Trial of Intratumoral Administration of Reovirus in Patients With Histologically Confirmed Recurrent Malignant Gliomas. Mol Ther J Am Soc Gene Ther (2008) 16(3):627–32. doi: 10.1038/sj.mt.6300403

90. Samson A, Scott KJ, Taggart D, West EJ, Wilson E, Nuevo GJ, et al. A Phase I Trial of Intratumoral Administration of Reovirus in Patients With Histologically Confirmed Recurrent Malignant Gliomas. Mol Ther J Am Soc Gene Ther (2008) 16(3):627–32. doi: 10.1038/sj.mt.6300403

91. Thorne SH, Bartlett DL, Kirn DH. The Use of Oncolytic Vaccinia Viruses in the Treatment of Cancer: A New Role for an Old Ally? Curr Gene Ther (2005) 5(4):429–43. doi: 10.2174/1566523054546215

92. Vihinen-Ranta M, Suikkanen S, Parrish CR. Pathways of Cell Infection by Parvoviruses and Adeno-Associated Viruses. J Virol (2004) 78(13):6709–14. doi: 10.1128/JVI.78.13.6709-6714.2004

93. Geletneky K, Hajda J, Angelova AL, Leuchs B, Capper D, Bartsch AJ, et al. Oncolytic H-1 Parvovirus Shows Safety and Signs of Immunogenic Activity in a First Phase I/IA Glioblastoma Trial. Mol Ther J Am Soc Gene Ther (2018) 26(12):2620–34. doi: 10.1016/j.ymthe.2017.08.016

94. Angelova AL, Barf M, Geletneky K, Unterberg A, Rommelaere J. Immunotherapeutic Potential of Oncolytic H-1 Parvovirus: Hints of Glioblastoma Microenvironment Conversion Towards Immunogenicity. Viruses (2017) 9(12):382. doi: 10.3390/v9120382

95. Merrill MK, Bernhardt G, Sampson JH, Wikstrand CJ, Bigner DD, Gromeier M. Poliovirus Receptor CD155-Targeted Oncolytics for Glioma. Neuro Oncol (2004) 6(3):208–17. doi: 10.1215/s1152851703000577

96. Desjardins A, Gromeier M, Herndon JE,2, Beaubier N, Bolognesi DP, Friedman AH, et al. Recurrent Glioblastoma Treated With Recombinant Poliovirus. New Engl J Med (2018) 379(2):150–61. doi: 10.1056/NEJMoa1716435

97. Kamran N, Calinescu A, Candolfi M, Chandran M, Mineharu Y, Asad A, et al. Recent Advances and Future of Immunotherapy for Glioblastoma. Expert Opin Biol Ther (2016) 16(10):1245–64. doi: 10.1080/14712598.2016.1212012

98. Zhang H, Wang R, Yu Y, Liu J, Luo T, Fan F. Glioblastoma Treatment Modalities Besides Surgery. J Cancer (2019) 10(20):4793–806. doi: 10.7150/jca.32475

99. GuhaSarkar D, Su Q, Gao G, Sena-Esteves M. Systemic AAV9-Ifnβ Gene Delivery Treats Highly Invasive Glioblastoma. Neuro-Oncology (2016) 18(11):1508–18. doi: 10.1093/neuonc/now097

100. Yoshida J, Mizuno M, Fuji M, Kajita Y, Nakahara N, Hatano M, et al. Human Gene Therapy for Malignant Gliomas (Glioblastoma Multiforme and Anaplastic Astrocytoma) by in Vivo Transduction With Human Interferon Beta Gene Using Cationic Liposomes. Hum Gene Ther (2004) 15(1):77–86. doi: 10.1089/10430340460732472

101. Tanaka T, Cao Y, Folkman J, Fine H. Viral Vector-Targeted Antiangiogenic Gene Therapy Utilizing an Angiostatin Complementary DNA. Cancer Res (1998) 58(15):3362–9.

102. Szentirmai O, Baker C, Bullain S, Lin N, Takahashi M, Folkman J, et al. Successful Inhibition of Intracranial Human Glioblastoma Multiforme Xenograft Growth Via Systemic Adenoviral Delivery of Soluble Endostatin and Soluble Vascular Endothelial Growth Factor Receptor-2: Laboratory Investigation. J Neurosurgery (2008) 108(3):979–88. doi: 10.3171/jns/2008/108/s1079

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2021 Li, Wang, Wang, Cao, Wang and Zhao. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.