The chemistries and consequences of DNA and RNA methylation and demethylation

Franziska R. Traube and Thomas Carell
Department of Chemistry, Ludwig-Maximilians-Universität München, Butenandtstrasse, Munich, Germany

ABSTRACT

Chemical modification of nucleobases plays an important role for the control of gene expression on different levels. That includes the modulation of translation by modified rRNA-bases or silencing and reactivation of genes by methylation and demethylation of cytosine in promoter regions. Especially dynamic methylation of adenine and cytosine is essential for cells to adapt to their environment or for the development of complex organisms from a single cell. Errors in the cytosine methylation pattern are associated with most types of cancer and bacteria use methylated nucleobases to resist antibiotics. This Point of View wants to shed light on the known and potential chemistry of DNA and RNA methylation and demethylation. Understanding the chemistry of these processes on a molecular level is the first step towards a deeper knowledge about their regulation and function and will help us to find ways how nucleobase methylation can be manipulated to treat diseases.

Since the discovery of (deoxy)adenosine (dA, A), (deoxy)cytidine (dC, C), (deoxy)guanosine (dG, G), (deoxy)thymidine (dT, T), and uracil (U) in the early 20th century as the information carrying building blocks, which form the basis for RNA and DNA, various modifications of these nucleosides were discovered (Fig. 1). Particularly in transfer-RNA (tRNA) but also in rRNA (rRNA), modified bases are central elements, needed to fine tune the translation of the genetic code. In RNA of bacterial pathogens, many methylated bases are present to block binding of small molecules that work as translation inhibitors, resulting in a resistance against antibiotics such as aminoglycosides. More recently it was discovered that also mRNA (mRNA) contains modified bases. Although it is not yet fully understood what the function of these bases are, it was revealed that the modification chemistry is to some extent reversible. This suggests that the modification and de-modification chemistry has a novel and yet unexplored regulatory function. In this regard N6-methylated adenine (m6A) is the best analyzed modification, but most recently also the reversible formation of N6, C2'-dimethyl adenine (m6Am) was discovered. According to current knowledge, reversible chemistry on modified RNA bases is limited to methyl groups, which are introduced by methyltransferases and removed by demethylases. DNA, in contrast, as the prime carrier of genetic information in the biosphere, is structurally less complex and only few modified bases are known. Most prominent is the methylated base 5-methyl deoxy-cytosine (5mC). Ideas about the potential chemistry of methylations and demethylation are the focus of this review. For other aspects, the following excellent reviews can be consulted. In mammals, 5mC typically reaches global levels between 1 and 5% in genomic DNA. Methylated adenine (6mA), which is the DNA equivalent to m6A in RNA, is another DNA modification that is under intensive investigation at the moment. Whereas 6mA is a well-characterized modification in bacterial DNA, its presence was only recently shown in several higher eukaryotic organisms. In Caenorhabditis elegans, where 5mC is not detectable, 6mA is dynamically regulated and linked to other epigenetic marks and in early embryos of Drosophila melanogaster. 6mA levels are high, but decrease fast during development, resulting in very low 6mA levels in adult tissue. In the unicellular green alga Chlamydomonas reinhardtii, 6mA was discovered in 84% of the genes, where it is mainly located at transcription start sites. Recently, it was reported that mammalian DNA, including human and mouse, also contains 6mA. There, 6mA seems to be distributed across the genome, but absent in gene exons, and 6mA-demethylation in mouse embryonic stem cell (mESC) DNA was shown to correlate with ALKBH1 depletion. These findings question the previous paradigm that DNA modifications in mammalian genome are limited to cytosine residues. However, when our group tried to confirm these results by a novel ultrasensitive UHPLC-MS method, we were not able to detect 6mA in mESC DNA or DNA from mouse tissue, whereas Chlamydomonas DNA, which served as a positive control, delivered the expected positive result. These observations suggest that 6mA might be present at defined time points in mammalian DNA, but is not an epigenetic mark. In the coming years, the question whether 6mA is a relevant modification in mammalian DNA or not will thus certainly be under intensive investigation.

ARTICLE HISTORY
Received 10 January 2017
Revised 4 April 2017
Accepted 6 April 2017

KEYWORDS
Cytosine modifications; DNA modifications; Epigenetics; methyltransferases; RNA modifications; TET enzymes
Chemistry of RNA and DNA base methylation

The addition of the methyl-group to DNA and RNA bases (Fig. 2) is catalyzed by DNA- and RNA-methyltransferases that use S-adenosyl-methionine (SAM) as an active methyl-group donor. While the methyltransferases that methylate RNA bases are now under extensive investigations, the enzymes that catalyze the methylation of dC in DNA are well characterized. In mammalian cells, 3 active DNA-methyltransferases (DNMTs: DNMT1, DNMT3a and DNMT3b) exist. DNMT3a and 3b are de novo DNMTs, which methylate canonical dC bases. In contrast, DNMT1 maintains the methylation status during cell division. DNMT1 operates on hemi-methylated DNA during replication, where the template strand is already methylated, but the newly synthesized strand is lacking methylation. As such, DNMT1 converts the methylation of dC into an inheritable modification that can be transferred during reproduction.

DNMTs and thus cytosine methylation is essential in those multicellular organisms, where it exists. The presence or absence of 5mdC is associated with various important cellular functions, such as transcription control, X-chromosome silencing and genomic imprinting. A global deletion of only one of the 3 DNMTs leads to severe cellular aberrations and is therefore lethal in early embryogenesis (DNMT1 and 3b) or postnatal (DNMT3a). During differentiation the "methylome" is highly dynamic and a celltype-characteristic 5mdC pattern is established during this process. While 5mdC is located to a CpG-dinucleotide context in the majority of somatic cells, non-CpG methylation is also present in embryonic stem cells, many pluripotent progenitor cells and adult brain. However, CpG-methylation is also dominating here. Cytosine-methylation in vertebrates occurs in all types of DNA sequence contexts, including repetitive and regulatory sequences, genes and transposable elements; in contrast to invertebrates, where mostly repetitive sequences are methylated. The majority of cytosines in a CpG-context, depending on the cell type up to 80%, are methylated, leaving so-called CpG islands (CGI) of actively transcribed genes as unmethylated patterns in a CpG-context.
CGIs are regions of high CpG frequency over a length of at least 500 base pairs compared with the bulk genomic DNA and found in 40% of promoter regions in the mammalian genome, with even higher levels (60%) in the human genome. Symmetric methylation of CpG:GpC islands is consequently a hallmark of silenced genes.

The enzymatic mechanism of how methyltransferases methylate DNA and RNA bases is shown in Fig. 2. Centers with a certain nucleophilicity like the amino group of the RNA base A can attack the SAM coenzyme directly leading to immediate methylation. This type of direct methylation is certainly operating for the formation of 6m2A, 4mC or m6Am. SAM as nature’s ‘methyl iodide’ is hence reactive enough to methylate even weak nucleophilic centers such as the exocyclic amino groups of A, which feature, as an sp2-hybridized N-atom only a very weak nucleophilic lone pair at the N-atom. This type of direct methylation creates bases, which possess the methyl group attached to a heteroatom establishing a het-CH3 system. This will be important in the context of active demethylation (vide infra).

In contrast to the formation of het-CH3 connections, methylation of the dC base in DNA at position C5 is far more complex. The C5-center features no nucleophilicity at all, making direct methylation impossible. Nature solves this problem by exploiting a helper nucleophile (R-SH, Fig. 2). The DNMT enzymes attack the dC base first with a nucleophilic thiol in a 1,6 addition reaction. This establishes a nucleophilic enamine substructure (green in Fig. 2), which can subsequently be methylated with the SAM cofactor. Importantly, the helper nucleophile is subsequently eliminated, thereby re-establishing the aromatic system. This more complex enzymatic transformation allows nature to methylate non-nucleophilic carbon atoms to create C-CH3 connectivities which feature a strong and stable C-C single bond.

Chemistry of demethylation

To establish the reversibility needed for switching biochemical processes, nature requires to remove the attached methyl groups. Removal of het-CH3 groups found predominantly in RNA was found to occur with the help of α-ketoglutarate (α-KG) dependent oxidases. These proteins contain a reactive Fe(II) center, which reacts to a strongly oxidizing Fe(IV) = O species with oxygen under concomitant decarboxylation of α-KG to succinate (Fig. 3). The Fe(IV) = O species is able to abstract a H-atom from the het-CH3 group to form a het-stabilized het-CH2• radical, which reacts with the Fe-bound hydroxylradical to form a het-CH2-OH hemiaminal/acetal functionality.

However, these structures are unstable. In water, they decompose in a spontaneous reaction under loss of formaldehyde to give the unmethylated compound. It is interesting that formaldehyde is formed as a byproduct of this reaction because it is typically a rather toxic compound. It needs to be seen how this molecule is detoxified in the context of the demethylation reaction. Particularly well studied is the removal of the N6-methyl group from m6A to revert into the canonical RNA base A. So far 2 α-KG dependent oxidases were found to catalyze the oxidation. One is the fat mass and obesity-associated protein (FTO) protein and the second is ALKBH5. It was shown, that knockdown of FTO led to increased amounts of m6A and in turn overexpression of FTO resulted in decreased m6A levels. Alkbh-deficient mice had a similar effect as FTO knockdown in human cells and resulted in increased m6A levels of the mRNA. The demethylation activity of both proteins is comparable, although ALKBH5 shows direct demethylation, whereas FTO-mediated demethylation is supposed to create hm6A and f6A as intermediates.

In 2009 it was found that also 5mdC is further enzymatically oxidized in a stepwise fashion to give first 5-hydroxymethyldeoxytrosine (5hmC), followed by 5-formyldeoxytrosine (5fdC) and 5-carboxydeoxytrosine (5cadC). “Ten-11 translocation” (TET) enzymes, which are Fe2+/α-KG dependent dioxygenases, were discovered to catalyze this iterative 5mdC oxidation reaction. Regarding the first oxidation step that transforms 5mdC to 5hmC, the Fe2+/α-KG catalyzed reaction generates a stable C-CH2-OH connectivity, which is as a primary alcohol stable in water (Fig. 3). 5hmC is consequently a
stable DNA base modification and it was suggested that the base has indeed epigenetic functions. For example, 5hmCdC constitutes 0.6% of all nucleotides in Purkinje neurons, a special neural cell type of the cerebellum, and 0.032% of all nucleotides in embryonic stem (ES) cells.45,47 The highest 5hmCdC levels in fully differentiated tissues were found in the brain with up to 1% of all cytosines.48,49 Evidence accumulates that 5hmCdC in a given gene is able to accelerate transcription and it is not surprising that 5hmCdC is mainly present in the promoter of actively transcribed genes.50,51

TET enzymes are in this sense required to orchestrate the transcriptional activity of genes. In vertebrates, TET proteins exist in 3 different types (TET1 – TET3) that do not differ regarding their chemistry, but seem to have different spatio-temporal activity. Whereas TET1 is mostly expressed in stem cells, TET3 is upregulated during differentiation and the most abundant TET enzyme in fully differentiated cells.52-54 A global TET3-knockout is lethal in embryogenesis, because it prevents epigenetic reprogramming during differentiation.55 It is interesting, that the presence of 5hmCdC in mammalian DNA was described first already in 1972.56 It took more than 30 y to confirm that 5hmCdC is really present in substantial amounts that are highly depending on the cell and tissue type.57

The further oxidized bases 5fdC and especially 5cadC (Fig. 4) could not be associated yet with distinct cellular functions, but for 5fdC it was reported that it might have regulatory purposes and is also a stable epigenetic mark.58 In accordance with these previous findings, a recently reported single-cell 5fdC-sequencing method called CLEVER-seq revealed that the generation of 5fdC in promoter regions precedes the upregulation of gene expression.59 Despite this faint evidence for epigenetic functions, 5fdC and 5cadC are currently mainly considered to be intermediates on the way of an active DNA demethylation process. DNA demethylation is a crucial process of cell development. Especially during fertilization (paternal part of the genome), early embryogenesis (maternal part of the genome) and the development of germ cells, DNA demethylation takes place in a genome-wide manner, allowing a broad reprogramming of the fertilized oocyte and the cells in the early embryo.60-62 But not only during development, also in fully differentiated cells, it occurs at specific sites of the genome. In brain, for example, locus-specific DNA demethylation and de novo methylation is induced by neural activation, arguing that DNA demethylation is important for normal brain function, including memory formation and learning.63-65 DNA demethylation can take place either actively, which means replication-independent, or passively when DNMT1 does not methylate the nascent DNA strand in hemi-methylated DNA after replication. Passive demethylation occurs, when DNMT1 is absent or blocked during the replication process, which happens for example during early embryogenesis to ensure the demethylation of the maternal genome.65 Interestingly, 6mA demethylation in Drosophila is catalyzed by Drosophila’s TET homolog (DMAD or dTet). DMAD depletion results in higher 6mA levels, but unchanged 5mCdC patterns, and is lethal at pupa stage or shortly after.16 DMAD and TET possess similar catalytic active Cys-rich and DSBH domains, however, 6mA-demethylation activity was not observed yet for mammalian TET enzymes.16

Although oxidation of 5hmCdC to 5fdC and 5cadC creates stable molecules due to the lack of a het-atom in β-position, it is discussed that both could be turned into unstable structures.
upon further chemical manipulation. A chemically attractive mechanism requires that 5fdC and 5cadC are attacked by a helper nucleophile, preferentially a thiol group at the C6 position, in a Michael-type reaction (Fig. 4). Hydratization of 5fdC and tautomerization of the reacted 5fdC and 5cadC allows us to formulate a ‘β-imino-type’ substructure that is prone to deformylation and decarboxylation (red arrows in Fig. 4). Indeed, we could show that reaction of 5fdC and 5cadC with a thiol-nucleophile leads to spontaneous deformylation and decarboxylation showing that the suggested chemistry is feasible. There is currently no evidence that this type of chemistry occurs in vivo but we could show that stem cell lysates feature a decarboxylating activity.68 Interesting is the observation that deformylation and decarboxylation of 5fdC and 5cadC after reaction with a thiol nucleophile leads to a reaction intermediate (boxed in Fig. 2 and 4) that is the key intermediate observed already during methylation of dC to 5mdC by the DNMTs. It is therefore tempting to speculate that DNMT enzymes are involved in the deformylation and decarboxylation maybe followed by immediate re-methylation. Although this reaction sequence would follow chemical logic, it needs to clarified in the near future, if such reactions occur indeed in nature. It was, however, shown that C5-DNA-methyltransferases are indeed able to remove formaldehyde from 5hmC, converting 5hmC directly to dC, therefore supporting these ideas.69

In this context, it is interesting to note that 5hmC and 5fC were also discovered in RNA. In human cells at rRNA position C34, the oxidation of the corresponding RNA base 5mC to 5frC is catalyzed by the Fe²⁺/α-KG dependent enzyme ALKBH1, which is also responsible for m1 A demethylation in mammalian rRNA.70,71 Interestingly, 5hmR was not detected as an intermediate in the ALKBH1-dependent 5mrC oxidation.70 In Drosophila, 5hmR was discovered in polyadenylated RNA and is associated with enhanced mRNA-translation efficiency back to normal level, when 5mR has lowered the efficiency.72 Surprisingly, the oxidation reaction is catalyzed by Drosophila’s TET homolog dTet that is also responsible for 6mA demethylation, but does not oxidize 5mdC.16,72 Moreover, there is evidence that TET enzymes are also responsible for 5mR oxidation,73,74 but at the moment it is not clear whether TET-mediated 5hmR or 5frC formation are stable or rather transient modifications.

In contrast to the chemical mechanism of active demethylation discussed above, strong evidence exists that active demethylation via formation of 5fdC and 5cadC is also linked to base excision repair (BER), which repairs also mismatches caused by deamination of 5hmdC to 5hmdU (Fig. 5). This mechanism includes excision of 5fdC or 5cadC and subsequent activation of BER. The dG/dT mismatch specific thymine DNA glycosylase (TDG) recognizes dG/dT mismatches, but with an even higher activity it excises 5fdC or 5cadC, but not 5mdC and 5hmdC, in vitro.75 This reactivity was not observed for other DNA glycosylases. Evidence that TDG excises 5fdC and 5cadC also in vivo is given by the fact that 5fdC and 5cadC levels are 5–10 times increased in TDG-deficient ES cells compared with the wildtype.76 However, TET/TDG-mediated demethylation is very unlikely to be the only demethylation mechanism. It rather occurs at defined promoter regions in the genome than in a genome-wide manner. First, TDG-activity causes abasic sites.77 If this happened genome-wide, it may impair genomic stability, which is crucial for correct development. Second, TDG knockout starts to be lethal not before embryonic day 12.5 and TDG levels are very low in the zygote, where the paternal genome is demethylated.78,79

Most recently it was suggested that nature may not need to oxidize 5mdC to 5fdC and 5cadC for demethylation and that a third TET-independent pathway has to exist. In the zygote, the most drastic demethylation occurs when 5mdC is globally erased from the paternal part of the genome, while the maternal part is shielded from demethylation. DNA-demethylation of
the paternal pro-nuclei is replication- and TET-independent, since 5hmCd levels increase after 5mCd levels have dropped and global demethylation can be detected in Tet3-deficient zygotites.80 It might be that deamination of genomic 5mCd to dT and subsequent dT/dG mismatch repair are the mechanism behind this observation.81 However, this would also impair genomic stability.

Implication of misguided methylation and demethylation

Whereas the distribution of 5mCd and 5hmCd is tightly regulated to ensure the anticipated functionality of a cell and its response to DNA damage, one hallmark of cancer cells is their completely different methylation and hydroxymethyl-methylation pattern.82,83 In many cancer types, the global methylation levels are decreased, while promoter regions of important regulatory and tumor suppressor genes are hypermethylated and therefore silenced.84 One example is the hypermethylation of the promoter region of HIC1, which is a transcriptional repressor of cell genesis, but also tumor hypoxia is responsible for reduced TET activity.99 Recent results show that not only mutations in TET genes or 5mCd are completely different methylation and hydroxymethyl-methylation related to ensure the anticipated functionality of a cell and its role in regulatory and learning processes in brain, but also during investigation and for DNA, especially the functions of 5hmCd levels positively and therefore increase TET3 activity.104 Glutamate and glutamine metabolism increases 5mCd levels, leading to self-renewal in pluripotent mouse embryonic stem cells, while succinate supply leads to differentiation.105 Additionally, succinate and also fumarate, another 2 intermediates of TCA cycle, show an inhibitory effect on TET enzymes in vitro.105

In the future, it will be challenging not only to prove the existence, but to reveal the distinct biologic functions of the various DNA and RNA modifications that exist. The role of the modified bases in mRNA are currently under extensive investigation and for DNA, especially the functions of 5hmCd in regulatory and learning processes in brain, but also during development and in cancer cells are of great interest.

Disclosure of potential conflicts of interest

No potential conflicts of interest were disclosed.

Acknowledgments

FRT thanks the Boehringer Ingelheim Fonds for a PhD fellowship. We thank the Deutsche Forschungsgemeinschaft for financial support through the programs: SFBs 646, 749 and 1032, as well as the SPP1784. Further support is acknowledged from the Excellence Cluster CiPSM (Center for Integrated Protein Science).

References

1. Breiling A, Lyko F. Epigenetic regulatory functions of DNA modifications: 5-methylcytosine and beyond. Epigenetics Chromatin 2015; 8:24; PMID:26195987; https://doi.org/10.1186/s13072-015-0016-6
2. Chen K, Zhao BS, He C. Nucleic acid modifications in regulation of gene expression. Cell Chem Biol 2016; 23:74-85; PMID:26933737; https://doi.org/10.1016/j.chembiol.2015.11.007
3. Duechler M, Leszczynska G, Sochacka E, Nawrot B. Nucleoside modifications in the regulation of gene expression: Focus on tRNA. Cell Mol Life Sci 2016; 73:3075-95; PMID:27094388; https://doi.org/10.1007/s00018-016-2217-y
4. Penzo M, Galbiati A, Trere D, Montanaro L. The importance of being (slightly) modified: The role of rRNA editing on gene expression control and its connections with cancer. Biochim Biophys Acta 2016; 1866:330-8; PMID:27815156; https://doi.org/10.1016/j.bbcan.2016.10.007
5. Sloan KE, Warda AS, Sharma S, Entian KD, Lafontaine DL, Bohn- sack MT. Tuning the ribosome: The influence of RNA modification on eukaryotic ribosome biogenesis and function. RNA Biol 2016;1-16; PMID:27911188; https://doi.org/10.1080/15476286.2016.1259781
6. El Yacoubi B, Bailly M, de Crecy-Lagard V. Biosynthesis and function of posttranscriptional modifications of transfer RNAs. Annu Rev Genet 2012; 46:69-95; PMID:22905870; https://doi.org/10.1146/annurev-genet-110711-155641
7. Liyo VS, Goussard S, Guerineau V, Yoon E-J, Courvalin P, Galimand M, Grillot-Courvalin C. Aminoglycoside resistance 16S RNA methytransferases block endogenous methylation, affect translation efficiency and fitness of the host. RNA 2014; 20:382-91; PMID:24398977; https://doi.org/10.1261/rna.042572.113

There is more and more evidence that epigenetics and metabolism are closely connected not only via D-2HG in cancer metabolism, but also in normal cells.100,101 As an intermediate in the tricarboxylic acid (TCA) cycle and part of nitrogen catabolism through deamination of glutamate, \(\alpha\)-KG is one of the key metabolites. Since it is the co-substrate of TET enzymes and other dioxygenases involved in epigenetic regulation, such as histone lysine demethylase, it links epigenetics directly to metabolism. Levels of \(\alpha\)-KG are rate limiting for TET activity and higher \(\alpha\)-KG levels result in higher TET activity with direct impact on differentiation processes.102 Depending on the cell type and status, \(\alpha\)-KG can either promote self-renewal or induce differentiation.103 In brown adipose tissue (BAT) development, for example, TET3 mediates commitment to BAT by demethylating the Prdm16 promoter. AMP activated protein kinase \(\alpha1\) (AMPK\(\alpha1\)) influences \(\alpha\)-KG levels positively and therefore increase TET3 activity.104 Glutamate and glutamine metabolism increases \(\alpha\)-KG levels, leading to self-renewal in pluripotent mouse embryonic stem cells, while succinate supply leads to differentiation.105 Additionally, succinate and also fumarate, another 2 intermediates of TCA cycle, show an inhibitory effect on TET enzymes in vitro.105
8. Ehrlich M, Wang R-Y-H. 5-Methylcytosine in eukaryotic DNA. Science 1981; 212:1350-7; PMID:6262918; https://doi.org/10.1126/science.6262918

9. Karamanoglou C, Prieto AI, Khedkar S, Haase B, Gupta A, Benes V, Fraser GM, Luscombe NM, Seshasayee AS. Genomics of DNA cytosine methylation in escherichia coli reveals its role in stationary phase transcription. Nat Commun 2012; 3:3886; PMID:22673913; https://doi.org/10.1038/ncomms1878

10. Ehrlich M, Gama-Sosa MA, Carreira LH, Ljungdahl LG, Kuo KC, Gehrke CW. DNA methylation in thermophylic bacteria: N4-methylcytosine, 5-methylcytosine, and N6-methyladenine. Nucleic Acids Res 1985; 13:1399-412; PMID:4000939; https://doi.org/10.1093/nar/13.4.1399

11. Ehrlich M, Gama-Sosa MA, Huang I-H, Midgett RM, Kuo KC, McCune RA, Gehrke C. Amount and distribution of 5-methylcytosine in human DNA from different types of tissues or cells. Nucleic Acids Res 1982; 10:2709-21; PMID:7079182; https://doi.org/10.1093/nar/10.8.2709

12. Globisch D, Münzel M, Müller M, Michalakis S, Wagner M, Koch S, Brückl T, Biehl M, Carell T. Tissue distribution of 5-hydroxymethylcytosine and search for active demethylation intermediates. PLoS One 2010; 5:e15367; PMID:21203455; https://doi.org/10.1371/journal.pone.0015367

13. Koziol MJ, Bradshaw CR, Allen GE, Frezza C, Gurdon JB. Identification of methylated deoxyadenosines in vertebrates reveals diversity in DNA modifications. Nat Struct Mol Biol 2016; 23:24-30; PMID:26689968; https://doi.org/10.1038/nsmb.3145

14. Liu J, Zhu Y, Luo GZ, Wang X, Yue Y, Wang X, Zong X, Chen K, Yin H, Fu Y. Abundant DNA 6mA methylation during early embryogenesis of zebrafish and pig. Nat Commun 2016; 7:13052; PMID:27713410; https://doi.org/10.1038/ncomms13052

15. Greer EL, Blanco MA, Gu L, Sendinc E, Liu J, Aristizabal-Corrales D, Hsu CH, Aravind L, He C, Shi Y. DNA methylation on N6-Adenine in C. elegans. Cell 2015; 161:868-78; PMID:25936839; https://doi.org/10.1016/j.cell.2015.04.005

16. Zhang G, Huang H, Liu D, Cheng Y, Liu X, Zang R, Zhang D, Zhang P, Liu J, et al. N6-methyladenine DNA modification in drosophila. Cell 2015; 161:893-906; PMID:25936838; https://doi.org/10.1016/j.cell.2015.04.018

17. Fu Y, Luo GZ, Chen K, Deng X, Yu M, Han D, Hao Z, Liu J, Lu X, Doré LG, et al. N6-methyldeoxyadenosines marks active transcription start sites in chlamydomonas. Cell 2015; 161:879-92; PMID:25936837; https://doi.org/10.1016/j.cell.2015.04.010

18. Wu TP, Wang T, Seetin MG, Lai Y, Zhu S, Shee K, Byrum SD, Rackers KE, Mackintosh SG, Zhong M, et al. DNA methylation on N(6)-adenine in mammalian embryonic stem cells. Nature 2016; 532:329-33; PMID:27027282; https://doi.org/10.1038/nature16740

19. Koziol MJ, Bradshaw CR, Allen GE, Costa AS, Frezza C, Gurdon JB. Identification of methylated deoxyadenosines in vertebrates reveals diversity in DNA modifications. Nat Struct Mol Biol 2016; 23:24-30; PMID:26689968; https://doi.org/10.1038/nsmb.3145

20. Schiffer S, Ebert C, Rahimoff R, Kosmatchev O, Steinbacher J, Bohne A-V, Spada F, Michalakis S, Nickelsen J, Müller M, et al. Quantitative LC–MS provides no evidence for m6da or m4dc in human methyl-directed DNA methyltransferases and the DNA (cytosine-5) methyltransferase. J Biol Chem 1999; 274:33000-34; PMID:10551141; https://doi.org/10.1038/s00004-0764(00)81656-6

21. Pradhan S, Bacolla A, Wells RD, Roberts RJ, Recombinant human DNA (Cytosine-5) methyltransferase. J Biol Chem 1999; 274:33002-10; PMID:10551186; https://doi.org/10.1074/jbc.274.46.33002

22. Klose RJ, Bird AP. Genomic DNA methylation: The mark and its mediators. Trends Biochem Sci 2006; 31:89-97; PMID:16403636; https://doi.org/10.1016/j.tibs.2005.12.008

23. Spada F, Haemmer A, Kuch D, Rothbauer U, Schermelleh L, Kremmer E, Carell T, Längst G, Leonhardt H. Dnmt1 but not its interaction with the replication machinery is required for maintenance of DNA methylation in human cells. J Cell Biol 2007; 176:565-71; PMID:17312023; https://doi.org/10.1083/jcb.200610062

24. Li E, Bester TH, Jaenisch R. Targeted mutation of the DNA methyltransferase gene results in embryonic lethality. Cell 1992; 69:915-26; PMID:1606615; https://doi.org/10.1006/nrge.1992.10611-F

25. Stadler MB, Murr R, Burger L, Ivanek R, Lienert F, Scholer H, Nimmgen W, Wirbels C, Oakey EJ, Goidatzis D, et al. DNA-binding factors shape the mouse methylome at distal regulatory regions. Nature 2011; 480:490-5; PMID:22170606; https://doi.org/10.1038/nature10716

26. Ramsahoye BH, Binsekiezwickz D, Lyko F, Clark V, Bird AP, Jaenisch R. Non-CpG methylation is prevalent in embryonic stem cells and may be mediated by DNA methyltransferase 3a. Proc Natl Acad Sci USA 2000; 97:5237-42; PMID:10805783; https://doi.org/10.1073/pnas.97.52.5237

27. Xie W, Barr CL, Kim A, Yue F, Lee AA, Eubanks J, Dempster EL, Ren B. Base-resolution analyses of sequence and parent-of-origin dependent DNA methylation in the mouse genome. Cell 2012; 148:8186-31; PMID:223241451; https://doi.org/10.1016/j.cell.2011.12.035

28. Suzuki MM, Bird A. DNA methylation landscapes: Provocative insights from epigenomics. Nat Rev Genet 2008; 9:495-76; PMID:18463664; https://doi.org/10.1038/nrg2341

29. Bird A, Taggart M, Frommer M, Miller OF, Macleod D. A fraction of the mouse genome that is derived from islands of nonmethylated CpG-rich DNA, Cell 1985; 40:91-9; PMID:2981636; https://doi.org/10.1006/jmb.2001.2936(85)/90321-5

30. Bird AP. CpG-rich islands and the function of DNA methylation. Nature 1986; 321:209-13; PMID:2423876; https://doi.org/10.1038/321209a0

31. Antequera F, Bird A. Number of CpG islands and genes in human and mouse. Proc Natl Acad Sci USA 1993; 90:11995-9; PMID:7505451; https://doi.org/10.1073/pnas.90.24.11995

32. Fatemi M, Pao MM, Jeong S, Gal-Yam EN, Egger G, Weisenberger DJ, Jones PA. Footprinting of mammalian promoters: Use of a CpG DNA methyltransferase revealing nucleosome positions at a single molecule level. Nucleic Acids Res 2005; 33:e176; PMID:16314307; https://doi.org/10.1093/nar/gki282

33. Boyes J, Bird A. DNA methylation inhibits transcription indirectly via a methyl-CpG binding protein. Cell 1991; 64:123-35; PMID:2004419; https://doi.org/10.1016/0036-8747(91)90267-3

34. Siegfried Z, Eden S, Mendelsohn M, Feng X, Tsuberi B-Z, Cedar H. DNA methylation represses transcription in vivo. Nat Genet 1999; 22:203-6; PMID:10369268; https://doi.org/10.1038/nrg1977

35. Zou S, Toh JDW, Wong HKH, Gao Y-G, Hong W, Woon ECY. N(6)-methyladenosine: A conformational marker that regulates the
51. Perera A, Eisen D, Wagner M, Laube SK, Kühnzel M, Mülzer M, Michalakis S, Wagner M, Koch S, Truss M. 5-Hydroxymethylcytosine is a predominantly stable DNA modification in mammalian DNA by ML1 partner TET1. Science 2009; 324:930-5; PMID:19372391; https://doi.org/10.1126/science.1170116

52. Costa Y, Ding J, Theunissen TW, Faiola F, Hore TA, Shliaha PV, Steinbacher J, Schulze E, Splith V, Mittermeier N, et al. TET3 is essential for epigenetic reprogramming by oocytes. Nature 2011; 477:606-10; PMID:21892189; https://doi.org/10.1038/nature11925

53. Koh KP, Yabuuchi A, Rao S, Huang Y, Cunniff K, Nardone J, Laiho M, Carell T. Mechanism and stem-cell activity of 5-carboxycytosine decarboxylation determined by isotope tracing. Angew Chem Int Ed Engl 2012; 51:1417-30; PMID:22644704; https://doi.org/10.1002/anie.201302583

54. Szwagierczak A, Bultmann S, Schmidt CS, Spada F, Leonhardt H. The nervous system. Cell 2012; 151:1417-30; PMID:23260135; https://doi.org/10.1016/j.ceb.2013.02.013

55. Gu TP, Guo F, Yang H, Wu HP, Xu GF, Liu W, Xie ZG, Shi L, He X, Jin SG, et al. The role of TET3 DNA dioxygenase in mitochondrial translation. EMBO J 2016; 35:2104-19; PMID:27497299; https://doi.org/10.15252/embj.201694885

56. Liu F, Clark W, Luo G, Wang X, Fu Y, Wei J, Wang X, Hao Z, Dai Q, Zheng G, et al. ALKBH1-mediated tRNA demethylation regulates translation. Cell 2016; 167:816-28.e16; PMID:27745969; https://doi.org/10.1016/j.cell.2016.09.038

57. Delatte B, Wang F, Ngoc LV, Collignon E, Bonvin E, Deplus R, Calonne E, Hassabi B, Putmans P, Awe S, et al. Transcriptome-wide distribution and function of RNA hydroxymethylcytosine. Science 2016; 351:282-5; PMID:26681380; https://doi.org/10.1126/science.aac5253

58. Bachman M, Uribe-Lewis S, Yang X, Burgess HE, Iuliano S, Reik W, Murrell A, Balasubramanian S. 5-Formylcytosine can be a stable DNA modification in mammals. Nat Chem Biol 2015; 11:555-7; PMID:26096880; https://doi.org/10.1038/nchembio.1848

59. Zhu C, Gao Y, Guo H, Xia B, Song J, Wu X, Zeng H, Kee K, Tang F, Yi C. Single-cell 5-formylcytosine landscapes of mammalian early embryos and escs at single-base resolution. Cell Stem Cell 2017; 20:720-731.e5; PMID:28343982; https://doi.org/10.1016/j.stem.2017.02.013

60. Mayer W, Nivelreau A, Walter J, Fundele R, Haaf T. Embryogenesis: Demethylation of the zygotic paternal genome. Nature 2000; 403:501-2; PMID:10676950; https://doi.org/10.1038/sj.embor.4080056

61. Oswald J, Engemann S, Lane N, Mayer W, Olek A, Fundele R, Dean W, Reik W, Walter J. Active demethylation of the paternal genome in the mouse zygote. Curr Biol 2000; 10:475-8; PMID:10801417; https://doi.org/10.1016/S0960-9822(00)00448-6

62. Feng S, Jacobsen SE, Reik W. Epigenetic reprogramming in plant and animal development. Science 2010; 330:622-7; PMID:21030646; https://doi.org/10.1126/science.1190614

63. Sasaki H, Matsuji Y. Epigenetic events in mammalian germ-cell development: Reprogramming and beyond. Nat Rev Genet 2008; 9:129-40; PMID:18197165; https://doi.org/10.1038/nature11059

64. Guo JU, Ma DK, Mo H, Ball MP, Jang M-H, Bonaguidi MA, Balazer JA, Eaves HL, Xie B, Ford E, et al. Neonatal activity modifies the DNA methylation landscape in the adult brain. Nat Neurosci 2011; 14:1345-51; PMID:21874013; https://doi.org/10.1038/nn.2900

65. Morris MJ, Montegiaga LM. Role of DNA methylation and the DNA methyltransferases in learning and memory. Dialogues Clin Neurosci 2014; 16:559-71; PMID:23546246

66. Ma DK, Jang M-H, Guo JU, Kitabatake Y, Chang M-I, Pow-anpongknul K, Flavell RA, Lu B, Ming GL, Song H. Neonatal activity-induced gadd45b promotes epigenetic DNA demethylation and adult neurogenesis. Science 2009; 323:1074-7; PMID:19119186; https://doi.org/10.1126/science.1168639

67. Seisenberger S, Peat JR, Reik W. Conceptual links between DNA methylation reprogramming in the early embryo and primordial germ cells. Curr Opin Cell Biol 2013; 25:281-8; PMID:23510682; https://doi.org/10.1016/j.ceb.2013.02.013

68. Schieser S, Hackner B, Pfaffender T, Müller M, Hagemeier C, Truss M, Carell T. Mechanism and stem-cell activity of 5-carboxycytosine decarboxylation determined by isotope tracing. Angew Chem Int Ed Engl 2012; 51:6516-20; PMID:22644704; https://doi.org/10.1002/anie.201202583

69. Liutkevičaitė Z, Lukinavičius G, Masevičius V, Daujotytė D, Klimaūskauskas S. Cytosine-5-methyltransferases add aldehydes to DNA. Nat Chem Biol 2009; 5:400-2; PMID:19430486; https://doi.org/10.1038/nchembio.172

70. Haag S, Sloan KE, Ranjan N, Warda AS, Kretschmer J, Blessing C, Hübler B, Seikowski J, Dennerlein S, Reiling P, et al. NSUN3 and ABH1 modify the wobble position of mt-tRNA Met to expand codon recognition in mitochondrial translation. EMBO J 2016; 35:2104-19; PMID:27497299; https://doi.org/10.15252/embj.201694885

71. Liu F, Clark W, Luo G, Wang X, Fu Y, Wei J, Wang X, Hao Z, Dai Q, Zheng G, et al. ALKBH1-mediated tRNA demethylation regulates translation. Cell 2016; 167:816-28.e16; PMID:27745969; https://doi.org/10.1016/j.cell.2016.09.038
