BORSUK–ULAM THEOREMS FOR ELEMENTARY ABELIAN 2-GROUPS

M. C. CRABB

Abstract. Let G be a compact Lie group and let U and V be finite-dimensional real G-modules with $V^G = 0$. A theorem of Marzantowicz, de Mattos and dos Santos estimates the covering dimension of the zero-set of a G-map from the unit sphere in U to V when G is an elementary abelian p-group for some prime p or a torus. In this note, the classical Borsuk–Ulam theorem will be used to give a refinement of their result estimating the dimension of that part of the zero-set on which an elementary abelian p-group G acts freely or a torus G acts with finite isotropy groups. The methods also provide an easy answer to a question raised in [16].

Let G be a compact Lie group and let U and V be finite-dimensional real G-modules (which we may assume to be equipped with a G-invariant Euclidean inner product) with the fixed subspace V^G equal to zero. A theorem [15, Theorem 2.1] of Marzantowicz, de Mattos and dos Santos estimates the covering dimension of the zero-set of a G-map from $S(U)$, the unit sphere in U, to V when G is an elementary abelian p-group for some prime p or a torus. In this note, the classical Borsuk–Ulam theorem will be used to give a refinement of their result which estimates the dimension of that part of the zero-set on which an elementary abelian p-group G acts freely or a torus G acts with only finite isotropy groups.

Section 1 reviews the relevant Borsuk–Ulam theorems. Elementary abelian p-groups are considered in Section 2; we deal only with the case of the prime $p = 2$, but the same method works for odd primes. The results for the case when G has order 2 provide an easy answer to a question posed in [16, page 79]. Section 3 contains the analogous theory for actions of a torus and extends a Borsuk-Ulam for S^1 actions due to Fadell, Husseini and Rabinowitz [12, 11] to more general torus actions.

1. The Borsuk–Ulam theorem

We recall a version of the Borsuk–Ulam theorem.

Proposition 1.1. Let G be a finite group. Suppose that W is a compact, connected, smooth free G-manifold of dimension n and that V is a finite-dimensional real G-module of dimension k, with $V^G = 0$. Let ζ be the real vector bundle over the orbit space W/G associated with the representation V.

Suppose that the mod 2 cohomology Euler class $e(\zeta)$ is non-zero. Then, for any continuous G-map $f : W \to V$, the compact subspace

$$\text{Zero}(f) = \{ x \in W \mid f(x) = 0 \}$$

Date: January 2022.

2010 Mathematics Subject Classification. 55M20, 55M25, 55R25, 55M35, 55N91.

Key words and phrases. Borsuk–Ulam theorem, equivariant mapping, Euler class.
has covering dimension greater than or equal to \(n - k \).

Proof. We paste two copies of \(W \) together along the boundary \(\partial W \) to form a closed free \(G \)-manifold \(M = W \cup_{\partial W} W \), then form the orbit manifold \(\overline{M} = M/G \) and the associated vector bundle \(\xi = M \times_G V \) over \(\overline{M} \). This bundle is the pullback of the bundle \(\zeta \) over \(W/G \) through the folding map \(\pi : M \to W \).

Now the map \(f \) determines a section \(s \) of \(\xi = M \times_G V \): \(s([x]) = [x, f(\pi x)] \) for \(x \in M \). Since \(\overline{M} \) is a closed, connected \(n \)-manifold and \(e(\xi) \neq 0 \), by Poincaré duality there is a class \(a \in H^{n-k}(\overline{M}; \mathbb{F}_2) \) such that \(a \cdot e(\xi) = 1 \in \mathbb{F}_2 = H^n(\overline{M}; \mathbb{F}_2) \). By the classical Borsuk–Ulam theorem, as formulated for example in [8, Proposition 2.7], the cohomology group \(H^{n-k}(\overline{Z}; \mathbb{F}_2) \) of the zero-set \(\overline{Z} = \text{Zero}(s) \subseteq \overline{M} \) is non-zero. Hence the covering dimension of \(\overline{Z} \) is greater than or equal to \(n - k \). It follows that the inverse image \(Z \) of \(\overline{Z} \) under the projection \(M \to \overline{M} \) has covering dimension at least \(n - k \), because \(Z \to \overline{Z} \) is a finite cover. (See, for example, [14] or [7, Lemma 2.6].)

The set \(Z \) is a union of two copies of the compact space \(\text{Zero}(f) \) intersecting along \(\partial W \). So the covering dimension of \(\text{Zero}(f) \) is equal to the covering dimension of \(Z \) and is greater than or equal to \(n - k \). (Compare [9, Corollary 2.7].) \(\Box \)

There is a more general result for any compact Lie group \(G \) and an action that is not necessarily free. We give the formulation in rational cohomology.

Proposition 1.2. Let \(G \) be a compact Lie group. Suppose that \(W \) is a compact, connected, smooth, \(n \)-dimensional \(G \)-manifold and that \(W \) admits an orientation which is invariant under the action of \(G \).

Let \(V \) be a finite-dimensional real \(G \)-module of dimension \(k \) admitting an orientation that is fixed by \(G \), and let \(f : W \to V \) be a continuous \(G \)-map.

Suppose that either (i) the image of the Borel cohomology Euler class \(e(V) \in H^n_B(*) ; \mathbb{Q} \) in \(H^n_B(W; \mathbb{Q}) \) is non-zero or (ii) the restriction of \(f \) to the boundary \(\partial W \) is nowhere zero and the associated relative Euler class in \(H^n_B(W, \partial W; \mathbb{Q}) \) is non-zero.

Then the compact subspace

\[
\text{Zero}(f) = \{ x \in W \mid f(x) = 0 \}
\]

has covering dimension greater than or equal to \(n - k \).

The Euler classes in the statement are determined by a choice of orientation for the vector space \(V \).

Proof. Choose a faithful representation \(G \subseteq \text{U}(\mathbb{C}^r) \) and write \(P = \text{U}(\mathbb{C}^r, \mathbb{C}^{r+N}) \) for the complex Stiefel manifold of isometric linear maps \(\mathbb{C}^r \hookrightarrow \mathbb{C}^{r+N} \). With the action of \(G \subseteq \text{U}(\mathbb{C}^r) \), \(P \) is a closed free \(G \)-manifold of dimension \(m + n \), say.

Again form the \(G \)-manifold \(M = W \cup_{\partial W} W \) as a union of two copies of \(W \). The connected manifold \(\overline{M} = (P \times M)/G \) of dimension \(m + n \) is orientable, and the map \(f \) determines a section \(s \) of the vector bundle \(\xi = (P \times M \times V)/G \) over \(\overline{M} \) with zero-set \(\overline{Z} = (P \times Z)/G \), where \(Z \) is the union of two copies of \(\text{Zero}(f) \).

If \(N \) is sufficiently large (so that \(P \) approximates the classifying space \(EG \) of \(G \)), then under the hypothesis (i) \(e(\xi) \in H^k(\overline{M}; \mathbb{Q}) \) is nonzero. We deduce from the Borsuk-Ulam argument that \(H^{m+n-k}((P \times Z)/G; \mathbb{Q}) \) is non-zero. Since the Grassmann manifold \(P/G \) has dimension \(m \), it follows that \(H^{n-k+i}(Z; \mathbb{Q}) \) is non-zero for some \(i \geq 0 \). Thus, \(Z \) and so also \(\text{Zero}(f) \) have covering dimension \(\geq n - k \).
For (ii), let \(W \) be the manifold \((P \times W)/G\) with boundary \(\partial W = (P \times \partial W)/G\), and let \(\xi \), now, be the vector bundle \((P \times W \times V)/G\) over \(W \). The section \(s \) of \(\xi \) given by \(f \) is non-zero on \(\partial W \) and the relative Euler class \(e(s; \partial W) \in H^k(W, \partial W; \mathbb{Q}) \) is non-zero if \(N \) is large. There is a dual class \(a \in H^{m+n-k}(W; \mathbb{Q}) \) such that \(a \cdot e(s; \partial W) = 1 \in \mathbb{Q} = H^{m+n}(W, \partial W; \mathbb{Q}) \). The restriction of \(a \) to the zero-set \(\text{Zero}(s) = (P \times \text{Zero}(f))/G \subseteq W - \partial W \) is non-zero. So again the covering dimension of \(\text{Zero}(f) \) must be at least \(n - k \). \(\square \)

2. Elementary abelian 2-groups

In this section we consider the case in which \(G \) is a non-trivial elementary abelian 2-group \(E \), considered as an \(F_2 \)-vector space of dimension \(l \geq 1 \).

Suppose that \(0 = E_0 \subseteq E_1 \subseteq \cdots \subseteq E_l = E \) is a flag in \(E \), with \(\dim_{F_2} E_i = i \). The dual vector space \(E^* \) parametrizes the 1-dimensional real representations of \(E \). For a real representation \(U \) of \(E \), we write \(U^{\alpha} \) for the \(\alpha \)-summand, so that \(U = \bigoplus_{\alpha \in E^*} U^{\alpha} \). The annihilator in \(E^* \) of a vector subspace \(F \subseteq E \) is denoted by \(F^0 \subseteq E^* \); it is isomorphic to \((E/F)^* \). Set \(E^i = E_{l-i} \), so that \(0 \leq E^0 \subseteq \cdots \subseteq E^1 \subseteq \cdots \subseteq E^l = E^* \) is a flag in \(E^* \). We introduce the subspaces

\[
U_i = \bigoplus_{\alpha \in E^*, \alpha \notin E^i} U^{\alpha} \quad \text{for} \quad 1 \leq i \leq l.
\]

Thus \(U = U^E \oplus \bigoplus_{i=1}^l U_i \), where \(U^E (= U^0) \) is the fixed subspace. This decomposition depends, of course, on the choice of the flag in \(E \).

Let us write

\[
e(U) = \prod_{\alpha \in E^*} \alpha^{\dim U^\alpha} \in S^*(E^*) = H^*_E(\ast; F_2) \quad \text{(and} \quad e(0) = 1)\]

in the symmetric algebra of \(E^* \) or the Borel cohomology ring of \(E \).

We shall need an elementary algebraic result.

Lemma 2.1. Let \(a \) be an ideal in a commutative ring \(A \), and let \(u(T), v(T) \in A[T] \) be non-zero polynomials with invertible leading coefficient.

(i). If \(a(T) \in A[T] \) is a polynomial such that \(a(T)u(T) \in a[T] \), then \(a(T) \in a[T] \).

(ii). Suppose that \(\deg(u(T)) > \deg(v(T)) \). Then, if \(a \in A \), but \(a \notin a, \) we have \(a \cdot v(T) \notin a[T] + (u(T)) \).

Proof. By passing to the quotient \(A/a \) one can reduce to the case in which \(a = 0 \). \(\square \)

Lemma 2.2. Suppose that \(U \) is a real representation of \(E \) such that \(U_i \neq 0 \) for \(i = 1, \ldots, l \). Then \(E \) acts freely on

\[
\tilde{X} = \prod_{i=1}^l S(U_i) \subseteq U = U^E \oplus \bigoplus_{i=1}^l U_i
\]

and the cohomology ring of the orbit space \(X = \tilde{X}/E \) is

\[
H^*(X; F_2) = S^*(E^*)/(e(U_1), \ldots, e(U_l)).
\]

Suppose, further, that \(V \) is an \(E \)-module with \(V^E = 0 \), and let \(\xi \) be the vector bundle \(\tilde{X} \times E V \) over \(X \). Then the \(F_2 \)-Euler class \(e(\xi) \) is non-zero if \(\dim U_i > \dim V_i \) for \(i = 1, \ldots, l \).
Proof. Notice that U_i and V_i for $i \leq j$ are E/E_{l-j}-modules.

Suppose that $v \in E$ and $x = (x_1, \ldots, x_l) \in X$ with $v \cdot x = x$. Now E_{l-i+1}/E_{l-i} acts freely on $S(V_i)$ for $i = 1, \ldots, l$. So, since $v \cdot x_i = x_i$ if $v \in E_{l-i+1}$, we can conclude that $v \in E_{l-i}$. The deduction that $v = 0$ is achieved in l steps.

The \mathbb{F}_2-cohomology ring $H^*(X) = \check{H}^*_E(X)$ is calculated step-by-step using the long exact sequences

$$
\cdots \to \check{H}^j_{E/E_{l-j}}\left(\prod_{i=1}^{j-1} S(U_i) \right) \xrightarrow{e(U_j)} \check{H}^j_{E/E_{l-j}}\left(\prod_{i=1}^{j-1} S(U_i) \right) \to \check{H}^j_{E/E_{l-j}}\left(\prod_{i=1}^j S(U_i) \right) \to \cdots
$$

in Borel cohomology.

At the jth step, starting with $j = 1$, we apply Lemma 2.1 with $A = S^*(E^{l-j+1})$ and $a = (e(U_1), \ldots, e(U_{j-1}))$. Choose $\alpha \in E^{l-j}$, $\alpha \notin E^{l-j-1}$, so that we can identify $S^*(E^{l-j})$ with the polynomial ring $A[T]$ on $T = \alpha$. Take $u(T) = e(U_j)$ and $v(T) = e(V_j)$.

Part (i) of Lemma 2.1 establishes the injectivity of multiplication by $e(U_j)$ in the exact sequence and so calculates $\check{H}^j(X; \mathbb{F}_2) = H^*(X; \mathbb{F}_2)$.

Part (ii), with $a = e(V_1) \cdots e(V_{j-1}) \in A$, so that $v(T) = a \cdot e(V_j) \in A[T]$, gives the non-vanishing of $e(\xi)$. \hfill \Box

Example 2.3. (Compare [13, Theorem 1.2] and [2, Section 2.7].) Suppose that $\varphi : \tilde{X} \to \mathbb{R}^m$ is a continuous map and that $\dim U_i > m2^{i-1}$ for $i = 1, \ldots, l$. Then φ is constant on some E-orbit in \tilde{X}.

Proof. Writing $\mathbb{R}[E]$ for the group ring of E, set $V = (\mathbb{R}[E]/\mathbb{R})^m$. Then $\dim V_i = m2^{i-1}$. The E-map $\tilde{X} \to V$: $x \mapsto [\sum_{e \in E} \varphi(ex)e]$ determines a section of \check{X}. Since $e(\xi) \neq 0$, the section must have a zero, and this zero in X is the required E-orbit. \hfill \Box

As a first application of Lemma 2.1 we deduce some results about group actions on Stiefel manifolds.

Lemma 2.4. Let P and Q be finite dimensional Euclidean E-modules with $P^E = 0$, $\dim P_i = 1$ for $i = 1, \ldots, l$, and $Q^E = 0$. Then, for a given integer $n > l$, the group E acts freely on the Stiefel manifold $\check{Y} = O(P, \mathbb{R}^n)$ of isometric linear maps $P \to \mathbb{R}^n$. Let η be the real vector bundle over the orbit space $Y = \check{Y}/E$ associated with the representation Q.

If $\dim Q_i \leq n - i$ for each $i = 1, \ldots, l$, then the Euler class $e(\eta)$ is non-zero.

Proof. Set $U = \text{Hom}(P, \mathbb{R}^n)$, so that $U_i = \text{Hom}(P_i, \mathbb{R}^n)$ has dimension n. Let

$$
h = (h_{i,j}) : U \to R = \bigoplus_{1 \leq i < j \leq l} P_i^* \otimes P_j^*
$$

be given by the inner product on \mathbb{R}^n: $h_{i,j}(u_1, \ldots, u_l) = \langle u_i, u_j \rangle$. The zero-set of h restricted to \tilde{X} is exactly the Stiefel manifold $\check{Y} = O(P, \mathbb{R}^n)$. Notice that $R^E = 0$ and $\dim R_i = i - 1$.

Take $V = Q \oplus R$. Then $\xi = \alpha \oplus \beta$, where α and β are the vector bundles over X associated with Q and R. By assumption, $\dim U_i = n > \dim V_i = \dim Q_i + i - 1$. So the Euler class $e(\xi) = e(\alpha) \cdot e(\beta)$ is non-zero.

Now the E-map h determines a section of β with zero-set equal to Y. By the Borsuk-Ulam theory [8, Proposition 2.7], the restriction, $e(\eta)$, of $e(\alpha)$ to Y is non-zero. \hfill \Box
Proposition 2.5. (Compare [11, Theorem 5.4], [6, Theorem 1.1].) Suppose that P and Q are E-modules as in Lemma 2.4 such that $\dim Q_i \leq n-i$ for $i = 1, \ldots, l$. Let $f : O(P, \mathbb{R}^n) \to Q$ be a continuous E-equivariant map. Then the zero-set of f is non-empty and has covering dimension greater than or equal to $ln - l(l - 1)/2 - \dim Q$.

In particular, we may take $Q_i = \mathbb{R}^{n-i} \otimes P_i$.

Proof. We can apply Proposition 1.1 to the manifold $W = O(P, \mathbb{R}^n)$ and the representation $V = Q$ using Lemma 2.4.

Remark 2.6. The space $Y = O(P, \mathbb{R}^n)/E$ in Lemma 2.4 can be identified with the space of flags $0 = D^0 \subset D^1 \subset \cdots \subset D^l \subset \mathbb{R}^n$, where D^i is an \mathbb{R}-subspace of dimension j, in \mathbb{R}^n: send the orbit of $a \in O(P, \mathbb{R}^n)$ to the flag with $D^i = a(P_1 \oplus \cdots \oplus P_l)$. Let δ_i be the canonical $(n-i)$-dimensional real vector bundle over B with fibre at the flag (D^i) the orthogonal complement of D^i.

It is easy to deduce from the lemma that the product of the Euler classes

$$e(\delta_1) \cdots e(\delta_l) \in H^{ln-l(l+1)/2}(Y; \mathbb{F}_2) = \mathbb{F}_2$$

is non-zero.

Proof. By consideration of the projection from the space of flags of length n to the space of flags of length l we see that it is enough to deal with the case $l = n$.

So with $l = n$, let τ_i be the line bundle over Y associated with the representation P_i. Then δ_i is the direct sum $\bigoplus_{j=i+1}^n \tau_j$. So $e(\delta_1) \cdots e(\delta_n) = t_0^i \cdots t_0^{i-1} \cdots t_0^{i-1}$, where $t_i = e(\tau_i)$.

Taking $Q_i = \mathbb{R}^{n-i} \otimes P_i$ in Lemma 2.4 we deduce that $e(\eta) = t_0^{i-1} \cdots t_0^{n-i} \cdots t_0^n$ is non-zero.

The result follows from the S_n-symmetry of $P = P_1 \oplus \cdots \oplus P_n$.

Example 2.7. It follows that the l sections s_i of δ_i, $i = 1, \ldots, l$, over the flag manifold Y have a common zero. One can write down an example with exactly one zero. Choose linearly independent v_1, \ldots, v_l in \mathbb{R}^n and define the value of s_i at (D^j) to be component of v_i in the orthogonal complement of D^j in the decomposition $\mathbb{R}^n = D^j \oplus (D^j)^\perp$. Then \bigcap_i Zero(s_i) is precisely the flag (D^j) with $D^j = \mathbb{R}v_1 \oplus \cdots \oplus \mathbb{R}v_j$.

Remark 2.8. (Compare [3, Section 3].) Similar methods can be used to describe the cohomology ring of the flag manifold as

$$H^*(O(P, \mathbb{R}^n)/E; \mathbb{F}_2) = \mathbb{F}_2[t_1, \ldots, t_l]/(e_1, \ldots, e_l),$$

where $e_i = \sum_{r_1 + \cdots + r_i = n-i+1} t_1^{r_1} \cdots t_l^{r_l}$.

More symmetrically, we can replace the classes e_i by

$$\bar{e}_i = \sum_{r_1 + \cdots + r_i = n-i+1} t_1^{r_1} \cdots t_i^{r_i} = e_i + \sum_{i < j \leq l} a_{i,j} e_j,$$

where $a_{i,j} = \sum_{r_j + \cdots + r_i = n-i+1} t_j^{r_j} \cdots t_i^{r_i}$.

The top-dimensional class is represented by $\prod_{i=1}^l t_i^{n-i}$.

Proof. Consider the sphere-bundles

$$S(P_i^* \otimes \zeta_i) \to O(P_1 \oplus \cdots \oplus P_i, \mathbb{R}^n) \to O(P_1 \oplus \cdots \oplus P_{i-1}, \mathbb{R}^n),$$

for $1 \leq i \leq l$, where ζ_i is an E-vector bundle of dimension $n-i+1$ with $P_1 \oplus \cdots \oplus P_{i-1} \oplus \zeta_i = \mathbb{R}^n$. The computation is effected by induction using the H^*_E-Gysin
sequences of the sphere-bundles and Lemma 2.1(i). The generator e_i corresponds to the Euler class $e(P_i \otimes \zeta_i) = w_{n-i+1}(-(P_1 \oplus \cdots \oplus P_i))$

Write, for $j \geq i$ and $j \leq l$,

$$e_i[j] = \sum_{r_1+\cdots+r_j=n-i+1} t_1^{r_1} \cdots t_j^{r_j},$$

so that $e_i = e_i[i]$ and $e_i[j+1] = e_i[j] + t_{j+1} e_{i+1}[j+1]$. One easily shows by induction on k that

$$e_i[i+k] = \sum_{i \leq j \leq i+k} \left(\sum_{s_j+\cdots+s_{i+k}=j-i} t_j^{s_j} \cdots t_{i+k}^{s_{i+k}} \right) e_j.$$

This then establishes the formula for η_i.

The generator of $H^{n-l(l-1)/2}(Y; \mathbb{F}_2)$ was identified as $e(\eta)$ in Remark 2.9 above.

Remark 2.9. (Compare [6] Corollary 3.4.) At the cost of losing the S_l-symmetry, suppose given integers $1 \leq n_1 \leq \cdots \leq n_i \leq \cdots \leq n_l \leq n$ such that $n_i \geq i$. Consider the submanifold

$$\tilde{Y}' = \{ a \in O(P, \mathbb{R}^n) \mid D^j = a(P_1 \oplus \cdots \oplus P_j) \subseteq \mathbb{R}^n_j \subseteq \mathbb{R}^n, \ j = 1, \ldots, l \}$$

of $\tilde{Y} = O(P, \mathbb{R}^n)$ and the quotient $Y' = \tilde{Y}'(\mathbb{F}_2) \subseteq Y$. Let η' denote the restriction of η to Y'. Then the arguments used in Remark 2.8 and Lemma 2.4 show that

$$H^*(Y'; \mathbb{F}_2) = \mathbb{F}_2[t_1, \ldots, t_l]/(e'_1, \ldots, e'_l),$$

where $e'_i = \sum_{r_1+\cdots+r_j=n_i-i+1} t_1^{r_1} \cdots t_j^{r_j}$, and that the Euler class $e(\eta')$ is non-zero if $\dim Q_1 \leq n_i - i$ for $i = 1, \ldots, l$.

Our primary application of Lemma 2.2 concerns the covering dimension of the zero-set of an E-map from U to V.

Proposition 2.10. Suppose that U and V are E-modules as in Lemma 2.2 with $\dim U_i > \dim V_i$ for $i = 1, \ldots, l$. Let $f : U \to V$ be a continuous E-map. Then the zero-set of f contains a compact free E-subspace with covering dimension greater than or equal to $\dim U - \dim V$.

Proof. We can apply Proposition 1.1 to an equivariant tubular neighbourhood $W = X \times D(U(E) \oplus \mathbb{R}^l)$ of X in U, using Lemma 2.2.

This implies the following result established in [15] Theorem 2.1.

Corollary 2.11. Suppose that U and V are E-modules with $V = 0$ and $\dim U - \dim V > \dim U^E$, and suppose that $F \leq E$ is a maximal subgroup such that $\dim U^F - \dim V^F > \dim U - \dim V$.

Let $f : U \to V$ be a continuous E-map. Then the zero-set of f restricted to U^F contains a compact free E/F-subspace with covering dimension greater than or equal to $\dim U - \dim V$.

Proof. Consider the action of E/F on U^F and V^F and the restriction of f to the fixed-points. We have $\dim U^F - \dim V^F > \dim(U^F)E = \dim U^E$. To simplify the notation, let us assume that $F = 0$ and make the abbreviation $d^\alpha = \dim U^\alpha - \dim V^\alpha$. We show that there is a flag (E_i) such that $\dim U_i > \dim V_i$ for $i = 1, \ldots, l$. The result will then follow from Proposition 2.10.
Suppose that E_i have been constructed for $j = l, \ldots, l - i + 1$ for some $i: 1 \leq i < l$.
By assumption $\dim U - \dim V > \dim U^{E_{l-i+1}} - \dim V^{E_{l-i+1}}$, that is,
$$\sum_{\alpha \in E^*_l : \alpha \notin E_{l-1}} d^\alpha = \sum_{E_{l-1} \subseteq \alpha \in E^*_l : \dim E' = i} (\sum_{\alpha \in E' : \alpha \notin E'_{l-1}} d^\alpha) > 0.$$
Choose a subspace E' such that $\sum_{\alpha \in E' : \alpha \notin E'_{l-1}} d^\alpha > 0$ and take E_{l-i} to be the annihilator of $E' = E''$.

Corollary 2.12. Suppose that V is a Euclidean E-module with $V^E = 0$ and that M is a closed E-manifold of dimension n, such that the fixed submanifold M^E is non-empty and has some component of codimension strictly greater than $\dim V$. Then the zero-set of any E-equivariant map $f : M \to V$ contains a compact subspace disjoint from M^E and of covering dimension at least $n - \dim V$.

Proof. Choose a point $x \in M^E$ in a component with codimension greater than $\dim V$. Take U to be the tangent space $\tau_x M$ at x embedded as an open E-subspace $U \hookrightarrow M$ using the exponential map given by an E-equivariant Riemannian metric on M (mapping $v \in U$ to $exp_x(\epsilon v/\sqrt{1 + \|v\|^2})$ for small $\epsilon > 0$). Now apply Corollary 2.11.

We finish this discussion of elementary abelian 2-groups with an example involving an infinite dimensional mapping space.

Proposition 2.13. Let U and V be finite-dimensional Euclidean E-modules such that $U \neq 0$, $\bigcap_{\alpha : U=\neq 0} \ker \alpha = 0$ and $V^E = 0$.
Consider the E-space $\operatorname{map}_*(S(\mathbb{R} \oplus U), \mathbb{R})$ of real-valued functions on the sphere $S(\mathbb{R} \oplus U)$ that are zero at the basepoint $(1, 0)$. Suppose that $f : \operatorname{map}_*(S(\mathbb{R} \oplus U), \mathbb{R}) \to V$ is an E-equivariant map.

Then, for any $d \geq 0$, the zero-set of f contains a compact free E-subspace with covering dimension greater than or equal to d.

Proof. We can choose $\alpha_1, \ldots, \alpha_l \in E^*$, one at a time, such that the intersection $\bigcap_{i=1}^l \ker \alpha_i$ has dimension $l - i$ for $i = 1, \ldots, l$ and then form the flag (E_i) in E such that $E_i^* = \bigcap_{j=1}^i \ker \alpha_j$. With respect to this flag, which we now fix, each U_i is non-zero.

It is easy to see that, for $j \geq 1$, the space $P[j] = S^{2j-1}(U^*)$ of homogeneous polynomial functions $U \hookrightarrow \mathbb{R}$ of odd degree $2j - 1$ satisfies $\dim P[j]_i \geq \dim U_i$ for $i = 1, \ldots, l$.

For $k \geq 1$, we can embed the E-module $U[k] = \bigoplus_{j=1}^k P[j]$ in the mapping space as a space of homogeneous polynomials (restricted to $S(\mathbb{R} \oplus U) \subseteq \mathbb{R} \oplus U$)

$$\sum_{j=1}^k \ell^{2k-2j} P[j] \subseteq \operatorname{map}_*(S(\mathbb{R} \oplus U), \mathbb{R})$$
of degree $2k - 1$, where t is the coordinate function on \mathbb{R}.

Since $U[k]_i \geq k \dim U_i$, the assertion follows by applying Proposition 2.10 for k sufficiently large, to the module $U[k]$ instead of U.

Remark 2.14. In the special case that $l = 1$, so that E has order 2, and U is the non-trivial 1-dimensional E-module \mathbb{R} with the involution -1, $\operatorname{map}_*(S(\mathbb{R} \oplus U), \mathbb{R})$ is the loop space $\Omega(\mathbb{R}, 0)$ with the involution that reverses loops. Since we can include $\Omega(\mathbb{R}, 0)$ in $\Omega(S^n, *)$ for any $n \geq 1$, Proposition 2.13 answers a question posed at the
end of [10] (although the method contradicts the assertion in Proposition 1 of that paper).

3. Tori

Let L be a free abelian group of dimension $l \geq 1$, and write $T = (\mathbb{R} \otimes L)/L$ for the associated homomorphism t.

Proof.

(See [4, Remark 4.4].) A T^l-equivariant and Zero(f) map $f : T \times \mathbb{R}^l \to \mathbb{R}^l$ such that $f(x) = (e^{2\pi i a x}, e^{2\pi i b y})$ and $V = C \otimes C$ with the action $(x, y) \mapsto (e^{2\pi i a x}, e^{2\pi i b y})$. Choose $a', b' \geq 1$ with $aa' - bb' = 1$. Then $f : T \to V$

is T-equivariant and Zero(f) = $\{0\}$.

We write

$$e(U) = \prod_{\alpha \in L^*} \alpha^{\dim U^\alpha} \in S^*(E^*) = H_T^*(\ast; \mathbb{Q})$$

for the Euler class in T-equivariant Borel cohomology.

Proposition 3.3. (Compare [12] Theorem (2.3)). Suppose that $U^T = 0$, $V^T = 0$, $\dim U > \dim V$ and $\varphi : U \to \mathbb{R}$ is a continuous T-map such that $\varphi(0) < 0$ and $\varphi(x) > 0$ for $\|x\|$ sufficiently large.

If $U : V \to T$ is a T-map, then the intersection Zero(f) \cap Zero(φ) has covering dimension greater than or equal to $2(\dim C U - \dim C V) - 1$.

Proof. (Compare [5] Section 5). Choose $v \in L$ such that $\alpha(v) \neq 0$ for all $\alpha \in L^* - \{0\}$ such that $U^\alpha \neq 0$ or $V^\alpha \neq 0$. Let $\rho : T = \mathbb{R}/\mathbb{Z} \to T = (\mathbb{R} \otimes L)/L$ be the associated homomorphism $t + \mathbb{Z} \mapsto tv + L$. Then $U^\rho(T) = 0$ and $V^\rho(T) = 0$.

Choose radii r and R, $0 < r < R$, such that $\varphi(x) < 0$ if $\|x\| = r$ and $\varphi(x) > 0$ if $\|x\| = R$. The annulus $W = \{x \in U \mid r \leq \|x\| \leq R\}$ is a compact manifold of dimension $n = 2 \dim U$ which is T-equivariantly diffeomorphic to $D(\mathbb{R}) \times SU$.

Write $k = 2 \dim V + 1$. Now apply Proposition 1.2 with condition (ii) and $G = T$ to the map $(\varphi, f) : W \to \mathbb{R} \oplus V$. The relative Euler class in $H^k_T(W, \partial W; \mathbb{Q}) = H^{k-1}_T(S(U); \mathbb{Q}) = \mathbb{Q}$ is the image of $e(V)$ and is non-zero (because $k-1 = 2 \dim V \leq 2(\dim U - 1)$).

Suppose that $0 = E_0 \subseteq \cdots \subseteq E_i \subseteq \cdots \subseteq E_l = E$, with $\dim_{\mathbb{Q}} E_i = i$, is a flag in the \mathbb{Q}-vector space E. Put $L_i = L \cap E_i$ and $T_i = (\mathbb{R} \otimes L_i)/L_i \leq T$. Writing $E^i = E^i_{l-i} \subseteq E^*$ for the annihilator of E_{l-i}, we define

$$U_i = \bigoplus_{\lambda \in P_0(E^i), \lambda \notin P_0(E^{i-1})} U \lambda .$$

So $U = U^T \oplus \bigoplus_{i=1}^l U_i$.

Lemma 3.4. Suppose that U is a complex representation of T such that $U_i \neq 0$ for all i. Then T acts with finite isotropy groups on

$$\tilde{X} = \prod_{i=1}^l S(U_i) \subseteq U = U^T \oplus \bigoplus_{i=1}^l U_i$$

and $H^*_T(\tilde{X}; \mathbb{Q}) = S^*(E^*)/(e(U_1), \ldots, e(U_l))$.

If V is a complex G-module with $V^T = 0$ and $\dim U_i > \dim V_i$ for $i = 1, \ldots, l$, then the image of $e(V)$ in $H^*_T(\tilde{X}; \mathbb{Q})$ is non-zero.

Proof. Consider $x = (x_1, \ldots, x_l) \in \tilde{X}$ fixed by $v + L \in T$, where $v \in \mathbb{R} \otimes L$. For each i, there is some $\alpha_i \in L^*$ with $\alpha_i \in E_i = E^*_{l-i}$, $\alpha_i \notin E^*_{i-1} = E_{l-i+1}^*$ such that the component of x_i in U^{α_i} is non-zero. Since $v + L$ fixes x_i, we have $\alpha_i(v) \in \mathbb{Z}$. Because the α_i form a \mathbb{Q}-basis of E^*, the vector $v \in \mathbb{R} \otimes L$ lies in $E = \mathbb{Q} \otimes L$ and $v + L \in T$ has finite order. Thus the isotropy group of x is finite.

The rest of the proof follows mutatis mutandis the argument in Lemma 2.2 using long exact sequences

$$\cdots \to H^*_T(T_{T_i}) \bigoplus_{i=1}^{j-1} S(U_i) \xrightarrow{e(U_j)} H^*_T(T_{T_{j-1}}) \bigoplus_{i=1}^{j-1} S(U_i) \to H^*_T(T_{T_{j-1}}) \bigoplus_{i=1}^j S(U_i) \to \cdots$$

in Borel cohomology. \hfill \square

There are complex analogues of Propositions 2.3 and 2.10.

Proposition 3.5. Let P and Q be finite dimensional Hermitian T-modules with $P^T = 0$, $Q^T = 0$, and $\dim_{\mathbb{C}} P_i = 1$ for $i = 1, \ldots, l$. Suppose that, for some $n > l$, $f : U(P, \mathbb{C}^n) \to Q$ is a T-equivariant map from the complex Stiefel manifold of isometric \mathbb{C}-linear maps $P \hookrightarrow \mathbb{C}^n$ to Q and that $\dim_{\mathbb{C}} Q_i \leq n - i$ for each $i = 1, \ldots, l$. Then the zero-set of f is a non-empty free T-space with covering dimension at least $2ln - l^2 - 2\dim_{\mathbb{C}} Q$.

Proof. This can be established by using Proposition 1.2 with condition (i) taking $G = T$, $W = U(P, \mathbb{C}^n)$ and $V = Q$.
Proposition 3.6. Suppose that U and V are T-modules as in Lemma 3.4 with $\dim U_i > \dim V_i$ for $i = 1, \ldots, l$. Let $f : U \to V$ be a continuous T-map. Then the zero-set of f contains a compact T-subspace with finite isotropy groups and covering dimension greater than or equal to $2(\dim C_U - \dim C_V)$.

Proof. We can apply Proposition 1.2 with condition (i) to an equivariant tubular neighbourhood $W = \tilde{X} \times D(U^E \oplus \mathbb{R}^l)$ of \tilde{X} in U, using Lemma 3.4, with $k = 2\dim C_V$ and $n = 2\dim C_U$. The orientations, being determined by complex structures, are invariant under the action of $G = T$. □

Acknowledgment The idea of estimating the dimension of the free part of the zero-set can be found in [16], and I am grateful to Professor Miklaszewski for correspondence about his work.

References

[1] I. Axelrod-Freed and P. Soberón, Bisections of mass assignments using flags of affine spaces. arXiv math.CO: 2109.13106, 2021.
[2] P. V. M. Blagojević, A. S. Dimitrijević Blagojević and G. M. Ziegler, Polynomial partitioning for several sets of varieties. J. Fixed Point Theory Appl. 19 (2017), 1653–1660.
[3] P. V. M. Blagojević and R. Karasev, Extensions of theorems of Raĭtay and Makeev. Topol. Methods Nonlinear Anal. 40 (2012), 189–213.
[4] Z. Błaszczyk, W. Marzantowicz and M. Singh, Equivariant maps between representation spheres. Bull. Belg. Math. Soc. Simon Stevin 24 (2017), 621–630.
[5] Z. Błaszczyk, W. Marzantowicz and M. Singh, General Bourgin-Yang theorems. Top. Appl. 249 (2018), 112–126.
[6] Y. H. Chan, S. Chen, F. Frick and J. T. Hull, An optimal Borsuk–Ulam theorem for products of spheres and Stiefel manifolds. Topol. Methods Nonlinear Anal. 55 (2020), 553–564.
[7] M. C. Crabb, Connective K-theory and the Borsuk–Ulam theorem. In Algebraic Topology and Related Topics, M. Singh et al. (eds.), 51–66, Trends in Mathematics, Birkhäuser/Springer, 2019.
[8] M. C. Crabb and J. Jaworowski, Aspects of the Borsuk–Ulam theorem. J. Fixed Point Theory Appl. 13 (2013), 459–488.
[9] M. C. Crabb and M. Singh, Some remarks on the parametrized Borsuk–Ulam theorem. J. Fixed Point Theory Appl. 20 (2018), article 79.
[10] Z. Dzedzej, A. Idzik and M. Izydorek, Borsuk-Ulam type theorems on product spaces II. Topol. Methods Nonlinear Anal. 14 (1999), 345–352.
[11] E. Fadell and S. Husseini, An ideal-valued cohomological index theory with applications to Borsuk–Ulam and Bourgin–Yang theorems. Ergodic Theory and Dynam. Systems 8 (1988), 73–85.
[12] E. R. Fadell, S. Y. Husseini and P. H. Rabinowitz, Borsuk-Ulam theorems for arbitrary S^1 actions and applications. Trans. Amer. Math. Soc. 274 (1982), 345–360.
[13] L. Guth, Polynomial partitioning for a set of varieties. Math. Proc. Camb. Philos. Soc. 159 (2015), 459–469.
[14] J. Jaworowski, A continuous version of the Borsuk-Ulam theorem. Proc. Amer. Math. Soc. 82 (1981), 112–114.
[15] W. Marzantowicz, D. de Mattos and E. L. dos Santos, Bourgin–Yang versions of the Borsuk–Ulam theorem for p-toral groups. J. Fixed Point Theory Appl. 19 (2017), 1427–1437.
[16] D. Miklaszewski, Borsuk-Ulam theorem for the loop space of a sphere. Top. Appl. 250 (2018), 74–79.

Institute of Mathematics, University of Aberdeen, Aberdeen AB24 3UE, UK
Email address: m.crabb@abdn.ac.uk