Synergistic Activity of Paclitaxel, Sorafenib, and Radiation Therapy in advanced Renal Cell Carcinoma and Breast Cancer

Kyung Hwa Choi*, Jeong Yong Jeon†,‡, Young-Eun Lee*, Seung Won Kim†,§, Sang Yong Kim†, Yeo Jin Yun¶ and Ki Cheong Park†,‡

*Department of Urology, CHA Bundang Medical Center, CHA University, Seongnam 463-712, Republic of Korea; †Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine, Seoul 120-752, South Korea; ‡Department of Nuclear medicine, Yonsei University College of Medicine, 50-1, Yonsei-ro, Seodaemun-gu, Seoul, 120-752, Republic of Korea; §Severance Biomedical Science Institute, Yonsei University College of Medicine, 50-1, Yonsei-ro, Seodaemun-gu, Seoul, 120-752, Republic of Korea; ¶Holosmedic Inc, 925Ho, ITECO, Jojeing-daero, Hanam-si, Gyeonggi-do, Republic of Korea, 12930; #Department of Surgery, Yonsei University College of Medicine, 50-1, Yonsei-ro, Seodaemun-gu, Seoul, 120-752, Republic of Korea

Abstract

Advanced cancer has been shown to be associated with a higher percentage of epigenetic changes than with genetic mutations. Preclinical models have shown that the combination of paclitaxel, sorafenib, and radiation therapy (RT) plays a crucial role in renal cell carcinoma (RCC) and breast cancer. This study aimed to investigate the involvement of mitochondrial cytochrome c-dependent apoptosis in the mechanism of action of a combination of paclitaxel, sorafenib, and RT in RCC and breast cancer. RCC and breast cancer cell lines were exposed to paclitaxel and sorafenib alone or combined in the presence of radiation, and cell viability was determined using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. The synergistic anticancer effects of the combination therapy on cell cycle and intracellular signaling pathways were estimated using flow cytometry and immunoblot analysis. RCC and breast cancer cell line xenograft models were used to examine the antitumor activity in vivo. Our results suggest that paclitaxel, sorafenib, and RT synergistically decreased the viability of RCC and breast cancer cells and significantly induced their apoptosis, as shown by caspase-3 cleavage. Paclitaxel, sorafenib, and radiation cotreatment reduced antiapoptotic factor levels in these cells and, thereby, significantly reduced the tumor volume of RCC and breast cancer cell xenografts. The current study suggests that paclitaxel, sorafenib, and radiation cotreatment was more effective than cotreatment with paclitaxel or sorafenib and radiation. These findings may offer a new therapeutic approach to RCC and breast cancer.

Translational Oncology (2019) 12, 381–388

Introduction

Over the past several decades, research and development of cancer chemotherapy have significantly improved, notably after the discovery of a few small molecule inhibitors; however, the control of human malignancies is still a critical concern [1–4]. Breast cancer is the most common type of malignancy in women [5]. Approximately 20%-30% of patients with early-stage breast cancers will experience a recurrence with distant metastatic disease [6]. Renal cell carcinoma (RCC) is the most common kidney cancer, accounting for 2%-3% of
all adult malignancies [7–9]. In addition, in approximately 30% of
patients, RCC has the propensity to spread to other organs, usually the
brain (11%), adrenal glands (15%), liver (41%), bone (42%), lymph
nodes (55%), and lungs (70%) [7–9]. Established research studies
indicate that metastasis to the breast from extramammary cancer is still
less common with primary breast tumors (1%-2% of breast cancers)
[10–12], and RCC metastasis to the breast is rare, occurring only in 3%
of all cases [13,14]. Traditional cancer therapy, radiation therapy (RT),
and chemotherapy are not efficacious in the treatment of advanced
breast cancer and RCC [15]. The American Thyroid Association
recommends surgery with locoregional RT with or without systemic
therapy in cases of resectable disease, and RT with or without systemic
chemotherapy in cases of unresectable disease [16]. The combination
of chemotherapy and RT might treat micrometastatic disease and influence
long-term survival [17,18]. Nevertheless, it also potentially induces
moribundity and mortality. The anticancer effects of paclitaxel and sorafenib
are already well known. The current study provides evidence that
cotherapy with paclitaxel, sorafenib, and RT has significant anticancer
activity in preclinical models, suggesting it could be a potential novel
clinical approach for patients with advanced thyroid cancer.

Materials and Methods

Cell Culture

Caki-1 and MDA-MB-231 cells were obtained from American Type
Culture Collection and grown in Roswell Park Memorial Institute-1640
medium with 10% fetal bovine serum. The cells were authenticated using
short tandem repeat profiling, karyotyping, and isoenzyme analysis.

Cell Viability Assay

Cell proliferation was measured using the 3-(4,5-dimethylthiazol-2-yl)-2,5-
diphenyltetrazolium bromide (MTT) assay and trypan blue staining.
Cells were seeded in 96-well plates at 5 × 10^3 cells/well and incubated
overnight to achieve 70% confluency, and they were incubated with the
various treatments for the indicated times prior to cell viability
determination using the MTT reagent according to the manufacturer’s
protocol. The absorbance was measured at 550 nm. The data were
expressed as a percentage of the signal observed in vehicle-treated cells and
presented as the mean ± SEM of triplicate experiments.

Irradiation

For in vitro experiments, Caki-1 and MDA-MB-231 cells were
irradiated using a Faxitron X-ray system (Faxitron Biopics, Tucson,
AZ) at 5 Gy in combination with paclitaxel or sorafenib or either
agent alone. For in vivo experiments, the mice were treated using the
small animal radiation research platform (high-resolution, small
animal radiation research platform with x-ray tomographic guidance
capabilities/PMID: 18640502). The tumors were irradiated using a
circular beam with a 1-cm diameter with three consecutive daily
exposures to 3 Gy.

Flow Cytometry Analysis of Cell Cycle

Cells were treated with RT plus paclitaxel or sorafenib, or a
combination of both agents in Roswell Park Memorial Institute-1640
medium containing 10% fetal bovine serum for 40 hours, harvested
by trypsinization, and then fixed with 70% ethanol. The cells were
stained for total DNA using phosphate-buffered saline (PBS)
containing 40 μg/ml propidium iodide and 100 μg/ml RNase I for
30 minutes at 37°C. The cell cycle distribution was then analyzed
using the FACSCalibur flow cytometer (BD Biosciences, San Jose,
CA). The proportions of cells in the sub-G₀/G₁, G₀/G₁, S, and G₂/M
phases were analyzed using the FlowJo v8 software for MacOSX (Tree
Star, Ashland, OR). This experiment was repeated thrice, and the
results were averaged.

Immunoblot Analysis

Equal amounts of protein (20 μg) were separated using 10% sodium
dodecyl sulfate-polyacrylamide gel electrophoresis. The antibodies
against cyclin D1 and p21 were obtained from Abcam
(Cambridge, UK). B-cell lymphoma-2 (Bcl-2), Apaf-1, caspase-3, and
β-actin antibodies were obtained from Santa Cruz Biotechnology
(Santa Cruz, CA). Antibodies for CCAAT/enhancer-binding protein
homologous protein (CHOP) and Bcl-2-associated X protein (BAX)
were purchased from Cell Signaling Technology (Danvers, MA).

Immunofluorescence Analysis and Confocal Imaging

Cytochrome c release from the mitochondria was analyzed using
immunofluorescence staining. Cells were grown in glass-bottom dishes
(MatTek, Ashland, MA), fixed with 4% formaldehyde solution (R&D
Systems, Abingdon, UK) for 10 minutes, and then permeabilized with
0.5% Triton X-100 (in PBS) for 10 minutes. The slides were air-dried,
washed with PBS, and incubated with anti–cytochrome c (1:25;
Abcam, Cambridge, UK) in 3% bovine serum albumin in PBS. After
washing with PBS, the slides were incubated with Alexa 488 (1:200;
Molecular Probes, Eugene, OR), and the nuclei were stained with
Hoechst 33342 (Life Technologies, Grand Island, NY) for visualiza-
tion. The images were observed under a confocal microscope (LSM
Meta 700, Zeiss, Oberkochen, Germany) and were analyzed using the
Zeiss LSM image browser, version 4.2.0121.

Human Breast Cancer and RCC Xenografts

MDA-MB-231 (breast cancer) and Caki-1 (RCC) cells were cultured
in vitro and then injected subcutaneously into the upper left flank region
of female BALB/c nude mice (2.0 × 10^7 cells/mouse). After 7 days,
tumor-bearing mice were grouped randomly (n = 10/group) and
treated with 25 μg/kg paclitaxel (intraperitoneally), 60 mg/kg
sorafenib (orally), or a combination of 15 mg/kg paclitaxel and
25 mg/kg sorafenib. The paclitaxel or sorafenib was administered
every 2 days for a total of 10-12 injections. The tumor size was
measured every other day using calipers, and the tumor volume was
estimated using the following formula: L × S^2/2 (where L and S are the
longest and shortest diameters, respectively). Animals were maintained
under specific pathogen-free conditions, and all experiments were
approved by the Animal Experiment Committee of Yonsei University.

Immunohistochemistry

All relevant tissues samples were fixed in 10% neutral-buffered
formalin and embedded in paraffin wax following standard protocols,
tissue sections (5 μm) were cut and dewaxed, and then antigen retrieval
was performed in citrate buffer (pH 6) using an electric pressure cooker
set at 120°C for 5 minutes. The sections were incubated for 5 minutes
in 3% hydrogen peroxide to quench the endogenous tissue peroxidase,
and all tissue sections were counterstained with hematoxylin,
dehydrated, and mounted on slides for observation.

Image Analysis

The ImageJ 4.6 software (Universal Imaging Co., Downingtown,
PA) was used for computerized quantification of the immunostained
target proteins.
Statistical Analysis

The statistical analyses were performed using the GraphPad Prism software (GraphPad Software Inc., La Jolla, CA). The results were analyzed using a one-way analysis of variance followed by Bonferroni post hoc test. Values are expressed as means ± SEM, and \(P \)-values \(<.05\) were considered statistically significant.

Results

Synergistic Anticancer Effects of Cotreatment with Paclitaxel, Sorafenib, and RT in RCC and Breast Cancer

To estimate the synergistic anticancer effects of paclitaxel or sorafenib and RT on RCC and breast cancer cells, we examined the proliferation of Caki-1 and MB-231 cells in the presence and absence of the compounds with or without RT (Figure 1). The combination of paclitaxel and sorafenib suppressed cell proliferation more effectively than either agent did alone or with RT (Figure 1, A and C) in a dose-dependent manner (Figure 1, B and D). Paclitaxel, sorafenib, and RT cotreatment had a lower half-maximal inhibitory concentration (IC\(_{50}\)) than that of paclitaxel or sorafenib with RT treatment in RCC and breast cancer cells (Table 1).

These results indicate that this cotreatment may offer a new approach for targeting RCC and breast cancer using low doses of anticancer drugs.

Paclitaxel, Sorafenib and RT in Combination Induced Cell Cycle Arrest in RCC and Breast Cancer Cells

The most important process in cancer cell growth is the cell cycle progression. We next determined the synergistic anticancer effects of paclitaxel or sorafenib with and without RT as well as RT alone on cell cycle progression using propidium iodide staining and flow cytometry. Cotreatment with paclitaxel and sorafenib with RT significantly increased the sub-G\(_0\)/G\(_1\) phase arrest more than RT alone.

Table 1. IC\(_{50}\) Determination Using a Cell Proliferation Assay

Cell Line	Histopathology	Animal	Cell Proliferation IC\(_{50}\)				
			Paclitaxel (nM)	Sorafenib (μM)	Paclitaxel + RT	Sorafenib + RT	Paclitaxel + Sorafenib + RT
Caki-1	Kidney cancer	Human	7.3 (±0.3)	10.5 (±0.2)	5.6 (±0.3)	7.8 (±0.4)	3.1 (±0.5) + 5.2 (±0.1)*
MB-231	Breast cancer	Human	4.1 (±0.1)	7.5 (±0.4)	3.6 (±0.4)	5.9 (±0.3)	2.2 (±0.2) + 3.5 (±0.3)*

Paclitaxel, Sorafenib, and RT combination treatment has a lower IC\(_{50}\) than each agent used alone or Paclitaxel and Sorafenib with RT combination. Each data point represents the mean of three independent MTT assays for IC\(_{50}\) performed in triplicate.
or either paclitaxel or sorafenib with RT did \((P < .05)\). This observation suggests that this cotreatment induced cell cycle arrest and apoptosis of RCC and breast cancer cells (Table 2, A and B). Furthermore, this result also showed that paclitaxel, sorafenib, and RT induced the most potent apoptosis of the tested treatments. Moreover, the synergistic anticancer effect of paclitaxel, sorafenib, and RT was remarkably observed at lower doses than required for either drug with RT.

These findings suggest that this cotreatment would enable the use of lower doses of these anticancer drugs than those currently used, which would reduce their associated side effects and toxicity.

Synergistic Anticancer Effect of Paclitaxel, Sorafenib, and RT Was Induced by Endoplasmic Reticulum Stress–Dependent Cell Cycle Arrest in RCC and Breast Cancer Cells

To further assess the synergistic anticancer effect of paclitaxel, sorafenib, and RT, immunoblot analysis was carried out to examine levels of well-known cell cycle– and apoptosis-related markers. Following treatment with the test combination, proapoptotic signaling pathway molecules were evaluated to determine the effects on induction of cell-cycle progression (cyclin D1) and arrest (p21), endoplasmic reticulum stress (CHOP), and apoptosis (BAX, Apaf-1, and cleaved-caspase 3), as well as antia apoptotic protein levels (Bcl-2), using immunoblot analysis in RCC (Figure 2A) and breast cancer cell lines (Figure 2B). Cotreatment with paclitaxel, sorafenib, and RT remarkably increased p21, CHOP, BAX, Apaf-1, and cleaved-caspase 3 expression levels, whereas the antia apoptotic protein Bcl-2 was significantly reduced.

Consequently, these data proved that paclitaxel, sorafenib, and RT effectively induced cell cycle arrest and apoptosis of RCC and breast cancer cell lines, and the synergistic effect was likely mediated via caspase cleavage and inhibition of the Bcl-2 pathway.

Cotreatment with Paclitaxel, Sorafenib, and RT Induced Cytochrome C Released into RCC and Breast Cancer Cell Cytosol

Cytochrome c release into the cytosol from the mitochondria is a crucial event in the apoptotic process. Moreover, DNA damage induces apoptosis by releasing cytochrome c from the mitochondria.

Table 2. Combination Treatment of Paclitaxel, Sorafenib and RT Induced Sub-G0/G1 Phase (Apoptotic Cells) in RCC and Breast Cancer Cells

Status	Sub-G0G1	G0G1	S	G2/M
Control	1.7 ± 0.02	34.8 ± 0.01	37.2 ± 0.03	26.3 ± 0.03
RT	4.5 ± 0.01	66.5 ± 0.02	32.3 ± 0.03	16.7 ± 0.01
Sorafenib + RT	18.9 ± 0.03	39.5 ± 0.02	34.4 ± 0.03	7.2 ± 0.02
Paclitaxel + RT	27.8 ± 0.01	38.5 ± 0.04	29.2 ± 0.03	4.5 ± 0.01
Paclitaxel + sorafenib + RT	54.1 ± 0.02	27.9 ± 0.03	16.6 ± 0.02	1.4 ± 0.01

A. Caki-1

B. MB-231

Cell cycle analysis for quantitation of DNA content with propidium iodide (RCC: Table 2A and breast cancer cell: Table 2B). Cells were exposed to the indicated inhibitors, harvested, and stained with propidium iodide before analysis using flow cytometry and FlowJo v8 software. Experiments were repeated at least three times, with similar results.

Figure 2. RT, paclitaxel, and sorafenib combination was the most induced cancer cell cycle arrest and apoptosis. Cell cycle analysis of the indicated cell lines following exposure to various combinations of paclitaxel, sorafenib, and RT. Paclitaxel, sorafenib, and RT combination potently induced cell cycle arrest and apoptosis of RCC (Caki-1; A) and breast cancer (MB-231; B) cells. Cells were exposed to the indicated inhibitors.
To evaluate the apoptotic mechanisms of cotreatment with paclitaxel, sorafenib, and RT, we next carried out immunofluorescence to assess the expression of cytochrome c. Immunofluorescent cytochemical staining showed that the level of cytochrome c released into the cytosol of the RCC and breast cancer cell lines was significantly increased by cotreatment with paclitaxel, sorafenib, and RT than any of the other treatments. This result suggests that cotreatment with paclitaxel, sorafenib, and RT induced apoptosis through a cytochrome c-dependent pathway in RCC (Figure 3A) and breast cancer (Figure 3B) cells.

Therefore, the apoptosis induced by the synergistic anticancer effect of the cotreatment was likely mediated through cytochrome c-dependent pathways in RCC and breast cancer cells.

Cotreatment with Paclitaxel, Sorafenib, and RT Suppressed Tumor Growth of Mouse Xenografts In Vivo

Cotreatment with paclitaxel, sorafenib, and RT significantly suppressed Caki-1 (RCC, Figure 4A) and MB-231 (breast cancer, Figure 4D) cell xenograft tumors. No evidence of systemic toxicity or treatment-related death was found in the RCC (Figure 4B) and breast
cancer (Figure 4E) cells. Furthermore, there was no significant effect on the body weight of the mice cotreated with paclitaxel, sorafenib, and RT. Furthermore, the tritherapy group showed remarkably smaller tumor volumes than those of the groups treated with paclitaxel or sorafenib and RT (Figure 4, C and F).

This result suggests that the paclitaxel, sorafenib, and RT combination induced the most efficient tumor shrinkage of mouse xenografts among the tested combinations.

Figure 4. RT, paclitaxel, and sorafenib combination induced highest tumor shrinkage of cancer cell xenografts in vivo. Combination of paclitaxel, sorafenib, and RT induced more potent inhibition of tumor progression than paclitaxel or sorafenib with RT or RT only did in RCC (Caki-1; A) and breast cancer (MDA-MB-231; D) cell xenografts (n = 10 mice/group). Athymic nude mice with established tumors were treated with the indicated drugs or RT. Data represent the mean tumor volumes. The compounds had no significant effect on body weight in RCC (Caki-1; B) and breast cancer (MDA-MB-231, E) cell xenografted mice. Cotreatment with paclitaxel, sorafenib, and RT showed the highest reduction of tumor weights of the dissected weight in RCC (Caki-1, C) and breast cancer (MDA-MB-231, F) cell xenografts. *P < .05, **P < .01, and ***P < .005 vs. control.

Cotreatment with Paclitaxel, Sorafenib, and RT Suppressed Tumor Growth by Downregulating Antia apoptotic Factor Expression in RCC and Breast Cancer Xenografts

The determination of antia apoptotic activity is a crucial factor in evaluating the biological behavior of tumorigenesis. In particular, Bcl-2 is the most characterized protein involved in the control of apoptotic cell death. Therefore, we detected this marker in RCC (Caki-1) and breast cancer (MB-231) cell xenograft tumors using immunohistochemistry and found that the paclitaxel, sorafenib, and the RT–cotreated group showed the highest decrease in Bcl-2 expression (Figure 5, A and B) among the tested combinations, further confirming the potent anticancer activity of the tritherapy in the RCC and breast cancer cell xenograft models.

Discussion

RCC has been identified to contribute to approximately 3% of adult malignancies and 90%-95% of neoplasms developed in the kidney [19]. Breast cancer is the most frequently diagnosed life-threatening cancer in women and the leading cause of cancer-related deaths among women [5]. These diseases are characterized by a scarcity of early warning signals, diverse clinical manifestations, and resistance to radiation therapy and chemotherapy.

RCC and breast cancer are malignancies with a very high mortality rate. Complete surgical removal in combination with adjuvant therapy (such as RT and chemotherapy) is the standard treatment [20,21]. However, this strategy is inadequate, and despite such treatment interventions, the mortality rate remains extremely high because of drug resistance [22–24]. Studies have evaluated the effect of combining chemotherapeutic agents and tyrosine kinase inhibitors [25–27], and a recent research proved that sorafenib, a tyrosine kinase inhibitor, potentiated the effect of paclitaxel against ovarian cancer [28]. The
Cotreatment synergistically inhibited colony formation and tumor growth, while it increased cell cycle arrest and apoptosis [29]. The synergistic anticancer effect of sorafenib and paclitaxel was investigated in experimental models of breast cancer with bone metastases, which revealed antiangiogenic, anticancer, and antiresorptive effects [30]. Moreover, sorafenib sensitized hepatocellular carcinoma cells to lethal doses of paclitaxel by reducing hepatoma upregulated protein, which correlates with paclitaxel resistance [31]. Paclitaxel is well known to have radiosensitizing effect in numerous cancers, and at low doses, it showed a better effect in combination with RT than that of chemotherapy or RT alone [32]. Therefore, using paclitaxel as a cytotoxic drug and a radiosensitizer might be a valuable strategy in reducing radiotoxicity by decreasing the radiation dose.

This study demonstrated the synergistic cytotoxicity of cotreatment with paclitaxel and sorafenib plus RT in RCC and breast cancer cell lines, both in vitro and in vivo. This cotreatment induced a more significant increase in RCC and breast cancer cell apoptosis than RT did with either sorafenib or paclitaxel. This result proposes a novel

Figure 5. RT, paclitaxel, and sorafenib combination affected antiapoptosis-related proteins in tumor tissues derived from RCC and breast cancer cells. Immunohistochemical analysis of Bcl-2 proteins in tumor tissues following the indicated treatments. Each assay was performed in triplicate, and representative images are displayed. \(P < .05, \ P < .01, \) and \(P < .005 \) vs. control. MetaMorph 4.6 image-analysis software was used to quantify the immunostained target protein.
clinical approach that targets RCC and breast cancer with low-dose anticancer drugs in combination with RT, which would reduce the toxic side effects of anticancer treatments.

Acknowledgements
The authors thank Dr. Seok-Mo Kim for critical brainstorming and assistance with the clinical research.

References

[1] Michaloglou C, Vredeveld LC, Mooi WJ, and Peiper DS (2008). BRAF(E600) in benign and malignant human tumours. *Oncoogene* 27(7), 877–895.

[2] Altomare DA and Testa JR (2005). Perturbations of the AKT signaling pathway in human cancer. *Oncoogene* 24(20), 7455–7464.

[3] Hoeldler S, Clarke PA, and Workman P (2012). Discovery of small molecule cancer drugs: successes, challenges and opportunities. *Mol Oncol* 6(2), 155–176.

[4] Gerber DE (2008). Targeted therapies: a new generation of cancer treatments. *Am Fam Physician* 77(3), 311–319.

[5] Sharma GN, Dave R, Sanadaya J, Sharma P, and Sharma KK (2010). Various types and management of breast cancer: an overview. *J Adv Pharm Technol Res* 1(2), 109–126.

[6] Early Breast Cancer Trialists’ Collaborative G (2005). Effects of chemotherapy and hormonal therapy for early breast cancer on recurrence and 15-year survival: an overview of the randomised trials. *Lancet* 365(9472), 1687–1717.

[7] Zanardi E, Verzoni E, Grassi P, Necchi A, Giannatempo P, Raggi D, De Braud F, and Procopio G (2015). Clinical experience with temsirolimus in the treatment of advanced renal cell carcinoma. *Ther Adv Urol* 7(3), 152–161.

[8] Wahner-Roedler DL and Sebo TJ (1997). Renal cell carcinoma: diagnosis based on metastatic manifestations. *Mayo Clin Proc* 72(10), 935–941.

[9] Tarrazá Jr HM, Melzter SE, DeCain M, and Jones MA (1998). Vaginal metastases from renal cell carcinoma: report of four cases and review of the literature. *Eur J Gynaecol Oncol* 19(1), 14–18.

[10] Aoki T, Kinoshita S, Shimada N, Miyake R, Suzuki M, and Takeyama H (2017). Breast metastasis nine years after nephrectomy for renal cell carcinoma: report of four cases and review of the literature. *Int J Surg Case Rep* 37, 145–149.

[11] Urdales-Vicedo M, Luque RJ, Valle F, and Martos-Padilla S (2016). Clear cell renal cell carcinoma metastasized by a breast ductal carcinoma. *Arch Esp Urol* 69 (4), 197–201.

[12] Huo Z, Gao Y, Yu Z, Zuo W, and Zhang Y (2015). Metastasis of breast cancer to renal cancer: report of a rare case. *Int J Clin Exp Pathol* 8(11), 15417–15421.

[13] Bortolacci A, De Francesco GP, and Di Stefano D (2013). Breast metastasis from clear cell renal carcinoma. *J Ultrasound* 16(3), 127–130.

[14] Mahrous M, Al Mofory W, Al-Hujaly A, and Al-Sulaimani S (2012). Breast metastasis from renal cell carcinoma: rare initial presentation of disease recurrence after 5 years. *J Breast Cancer* 15(2), 244–247.

[15] Krol M, Pawłowski KM, Majchrzak K, Szysko K, and Moryl T (2010). Why chemotherapy can fail. *Pol J Vet Sci* 13(2), 399–406.

[16] Smalridge RC, Ain KB, Aua SL, Bible KC, Brierley JD, Burman KD, Kebebew E, Lee NY, Nikiforov YE, and Rosenthal MS, et al (2012). American Thyroid Association guidelines for management of patients with anaplastic thyroid cancer. *Thyroid* 22(11), 1104–1139.

[17] Binder PS, Kuroki LM, Zhao P, Cusworth S, Divine LM, Hagemann AR, McCourt CK, Thaker PH, Powell MA, and Mutch DG, et al (2017). Benefit of combination chemotherapy and radiation stratified by grade of stage IIIC endometrial cancer. *Gynecol Oncol*. 147(2), 309–314

[18] Yamaguchi S, Wada T, Obu K, Yoshidohiro S, and Naito K (2001). Oral etoposide following combination chemotherapy and radiation therapy in a patient with advanced adult neuroblastoma led to long survival. *Int J Clin Oncol* 6(5), 259–261.

[19] Cairns P (2010). Renal cell carcinoma. *Cancer Biomark* 9(1–6), 461–473.

[20] Figlin RA, Leibovich BC, Stewart GD, and Negrin S (2018). Adjuvant therapy in renal cell carcinoma: does higher risk for recurrence improve the chance for success? *Ann Oncol* 29(2), 324–331

[21] Bradley JA and Mendenhall NP (2018). Novel radiotherapy techniques for breast cancer. *Annu Rev Med*. 69, 277–288

[22] Adelaiye-Ogala R, Budka J, Damayanti NP, Arrington J, Ferris M, Hsu CC, Chintala S, Orillon A, Miles KM, and Shen L, et al (2017). EZH2 modifies sunitinib resistance in renal cell carcinoma by kirome reprogramming. *Cancer Res* 77(23), 6651–6666.

[23] Yun EJ, Zhou J, Lin CJ, Xu S, Santoyo J, Hernandez E, Lai CH, Lin H, He D, and Hsieh JT (2017). The network of DAB2IP-mir-138 in regulating drug resistance of renal cell carcinoma associated with stem-like phenotypes. *Oncotarget* 8(40), 66975–66986.

[24] Maruyama NV, Sefror EA, Sefror REB, and Hendrix MJC (2017). Targeting the stem cell properties of adult breast cancer cells: using combinatorial strategies to overcome drug resistance. *Curr Med Biol Rep* 3(3), 159–164.

[25] Batson S, Mitchell SA, Windisch R, Damonte E, Munk VC, and Regnaar N (2017). Tyrosine kinase inhibitor combination therapy in first-line treatment of non–small-cell lung cancer: systematic review and network meta-analysis. *Oncotargets Ther* 10, 2473–2482.

[26] Ahn MJ, Sun JM, Lee SH, Ahn JS, and Park K (2017). EGFR TKI combination with immunotherapy in non–small cell lung cancer. *Expert Opin Drug Saf* 16(4), 465–469.

[27] D’Cunha R, Bae S, Murray DJ, and An G (2016). TKI combination therapy: strategy to enhance dasatinib uptake by inhibiting Pgp- and BCRP-mediated efflux. *Biopharm Drug Dispos* 37(7), 397–408.

[28] Hainsworth JD, Thompson DS, Bismayer JA, Gian VG, Merritt WM, Whorf RC, Finney LH, and Dudley BS (2015). Paclitaxel/carboplatin with or without sorafenib in the first-line treatment of patients with stage III/IV epithelial ovarian cancer: a randomized phase II study of the Sarah Cannon Research Institute. *Cancer Med* 4(5), 673–681.

[29] Li N, Zhang Y, Wu J, and Li M (2009). Schedule-dependent effects of sorafenib in combination with paclitaxel on human hepatocellular carcinoma cell line BEL-7402. *Ai Zheng* 28(8), 838–843.

[30] Merz M, Komiljenovic D, Zwick S, Semmler W, and Bauerle T (2011). Sorafenib tosylate and paclitaxel induce anti-angiogenic, anti-tumour and anti-resorptive effects in experimental breast cancer bone metastases. *Eur J Cancer* 47(2), 277–286.

[31] Kuo TC, Lu HP, and Chao CC (2011). The tyrosine kinase inhibitor sorafenib sensitizes hepatocellular carcinoma cells to taxol by suppressing the HURP protein. *Biochem Pharmacol* 82(2), 184–194.

[32] Zhang H, Hyrien O, Pandya KJ, Keng PC, and Chen Y (2008). Tumor response kinetics after schedule-dependent paclitaxel chemoradiation treatment for inoperable non-small cell lung cancer: a model for low-dose chemotherapy radiosensitization. *J Thorac Oncol* 3(6), 563–568.