RESEARCH ARTICLE

Machine learning meets pKₐ [version 2; peer review: 2 approved]

Marcel Baltruschat, Paul Czodrowski

Faculty of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Strasse 6, 44227 Dortmund, Germany

Abstract

We present a small molecule pKₐ prediction tool entirely written in Python. It predicts the macroscopic pKₐ value and is trained on a literature compilation of monoprotic compounds. Different machine learning models were tested and random forest performed best given a five-fold cross-validation (mean absolute error=0.682, root mean squared error=1.032, correlation coefficient r^2 =0.82). We test our model on two external validation sets, where our model performs comparable to Marvin and is better than a recently published open source model. Our Python tool and all data is freely available at https://github.com/czodrowskilab/Machine-learning-meets-pKa.

Keywords

machine learning, pKₐ value, protonation, dissociation

This article is included in the Chemical Information Science gateway.

This article is included in the Mathematical, Physical, and Computational Sciences collection.

This article is included in the Python collection.
Corresponding author: Paul Czodrowski (paul.czodrowski@tu-dortmund.de)

Author roles: Baltruschat M: Conceptualization, Data Curation, Formal Analysis, Investigation, Methodology, Software, Validation, Visualization, Writing – Original Draft Preparation, Writing – Review & Editing; Czodrowski P: Conceptualization, Formal Analysis, Methodology, Project Administration, Supervision, Writing – Original Draft Preparation, Writing – Review & Editing

Competing interests: No competing interests were disclosed.

Grant information: The author(s) declared that no grants were involved in supporting this work.

Copyright: © 2020 Baltruschat M and Czodrowski P. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

How to cite this article: Baltruschat M and Czodrowski P. Machine learning meets pH [version 2; peer review: 2 approved]
F1000Research 2020, 9(Chem Inf Sci):113 https://doi.org/10.12688/f1000research.22090.2
First published: 13 Feb 2020, 9(Chem Inf Sci):113 https://doi.org/10.12688/f1000research.22090.1
Amendments from Version 1

We have made the following changes from version1 to version2:
- Figure 1 is now Figure 3 (requested by Reviewer1)
- Figure 2 is now Figure 4 (requested by Reviewer1)
- Figure2(A) and Figure 2(B) are new (requested by Reviewer2)
- Figure3 is now Figure1 (requested by Reviewer1)

We have transformed the text to the past tense (requested by Reviewer1). We also included text and Figure2A/Figure2B about the composition of the external Novartis test set.

As requested by Reviewer1: In the discussion section, the developed method is now discussed first before discussing its performance relative to other methods.

Any further responses from the reviewers can be found at the end of the article.

Introduction

The acid-base dissociation constant (pK$_a$) of a drug has a far-reaching influence on pharmacokinetics by altering the solubility, membrane permeability and protein binding affinity of the drug. Several publications summarize these findings in a very comprehensive manner1-4. An accurate estimation of pK$_a$ values is therefore of utmost importance for successful drug design. Several (commercial and non-commercial) tools and approaches for small molecule pK$_a$ prediction are available: MoKa5 uses molecular interaction fields, whereas ACD/Labs Percepta Classic6, Marvin7 and Epik8 make use of the Hammet-Taft equation. By means of Jaguar9, a quantum-mechanical approach to pK$_a$ prediction becomes possible. Recently, the usage of neural nets for pK$_a$ prediction became prominent10-13. In particular, the publication by Williams et al.14 makes use of a publicly available data set provided by the application DataWarrior15 and provides a freely available pK$_a$ prediction tool called OPERA.

As this article is part of a Python collection issue, we provide a pK$_a$ prediction method entirely written in Python16 and make it available open source (including all data). Our tool computes the macroscopic pK$_a$ value for a monoprotic compound. Our model solely differentiates between a base and acid based on the predicted pK$_a$ value; i.e., we do not offer separate models for acids and bases. In addition to pK$_a$ data from DataWarrior16, we also employ pK$_a$ data from ChEMBL17. As external validation sets, we use compound data provided by Novartis18 and a manually curated data set compiled from literature20-22, which are not part of the training data.

Methods

Data set preparation

A ChEMBL19 web search was performed to find all assays containing pK$_a$ measurement data. The following restrictions were made: it must be a physicochemical assay, the measurements must be taken from scientific literature, the assay must be in “small-molecule physicochemical format” and the organism taxonomy must be set to “N/A”. This results in a list of 1140 ChEMBL assays downloaded as CSV file.

Using a Python script, the CSV file was read in and processed further, extracting all additional information required from an internally hosted copy of the ChEMBL database via SQL. Only pK$_a$ measurements, i.e. ChEMBL activities, were taken into account that were specified as exact (“standard_relation” equals “=”)) and for which one of the following names was specified as “standard_type”: “pka”, “pka value”, “pka1”, “pka2”, “pka3” or “pka4” (case-insensitive). Measured values for which the molecular structure was not available were also sorted out. The resulting 8111 pK$_a$ measured values were saved as SDF file.

A flat file from DataWarrior16 named “pKalInWater.dwar” was used in addition. In this case, the file was converted to an SDF file only and contains 7911 entries with valid molecular structures.

These data sets were concatenated for the purpose of this study and preprocessed as follows:

- Removal of all salts from molecules
- Removal of molecules containing nitro groups, Boron, Selenium or Silicium
- Filtering by Lipinski’s rule of five (one violation allowed)
- Keeping only pK$_a$ data points between 2 and 12
- Tautomer standardization of all molecules
- Protonation of all molecules at pH 7.4
- Keeping only monoprotic molecules regarding the specified pK$_a$ range
- Combination of data points from duplicated structures while removing outliers

All steps up to filtering out all pK$_a$ values outside the range of 2 to 12 were performed with Python and RDKit23. The QuacPac24 Tautomer tool from OpenEye was used for tautomer standardization and setting the protonation state to pH 7.4. The Marvin10 tool from ChemAxon was used to filter out the multiprotic compounds. It predicted the pK$_a$ values of all molecules in the range 2 to 12 and then retained only those molecules where Marvin did not predict more than one pK$_a$ in that range.

The removal of the outliers is performed in two steps. First, before combining multiple measurements for the same molecules, all entries where the pK$_a$ predicted by ChemAxon’s Tool Marvin differs from the experimental value by more than four log units were removed. All molecules were then combined on the basis of the canonical isomeric SMILES. In the second step, when combining several measured values of a molecule, all those values that deviate from the mean value by more than two standard deviations are removed. The remaining values are arithmetically averaged.

After all, 5994 unique monoprotic molecules with experimental pK$_a$ values remained. The distribution of pK$_a$ values is given in Figure 1. The same preprocessing steps were also performed on the external Novartis data set.

Discussion

The use of a Python script allowed us to perform the necessary data preprocessing with minimal effort. As a result, we were able to create a data set that can be used for the further development of an accurate pK$_a$ prediction tool.

The resulting data set contains 8111 pK$_a$ measured values and 7911 flat file entries from DataWarrior. Both data sets were used to develop a prediction method entirely written in Python. The method can be used to predict pK$_a$ values for small molecules in a very comprehensive manner.
performed on an external test data set provided to us by Novartis (280 molecules) and a manual curation (123 molecules) from literature. The Novartis data set consists of 280 unique molecules with a molecular weight between 129 and 670 daltons (mean value 348.68, standard deviation 94.17). The calculated LogP values vary between -1.54 and 6.30 (mean value 3.01, standard deviation 1.41). The 280 molecules spread over 228 unique Murcko Scaffolds. The ten most common murcko scaffolds cover 15% of the molecules of the total data set (42/280). A histogram of the pairwise comparison between the training set and the two external test sets (Fingerprint: 4096 bit MorganFeatures radius=3) is given in Figure 2(A) and Figure 2(B).

Learning
First, to simplify cross-validation, a class “CVRegressor” was defined, which can serve as a wrapper for any regressor implementing the Scikit-Learn interface. This class simplifies cross-validation itself, training and prediction with the cross-validated model. Next, 196 of the 200 available RDKit descriptors (“MaxPartialCharge”, “MinPartialCharge”, “MaxAbsPartialCharge” and “MinAbsPartialCharge” were not used because they are computed as “NaN” for many molecules), and a 4096-bit long MorganFeature fingerprint with radius 3 were calculated for the training data set. Random forest (RF), support vector regression (SVR, two configurations), multilayer perceptron (MLP, three configurations) and XGradientBoost (XGB)
First of all the repository folder has to be entered and the created conda environment must be activated. Additionally the Marvin commandline tool cxcalc and the QUACpac commandline tool tautomers have to be added to the PATH variable.

Also the environment variables OE_LICENSE (containing the path to the OpenEye license file) and JAVA_HOME (referring to the Java installation folder, which is needed for cxcalc) have to be set.

After preparation a small usage information can be displayed with bash run_pipeline.sh -h. Examplary call:

```
bash run_pipeline.sh --train datasets/chembl25.sdf
--test datasets/novartis_cleaned_mono_unique_notraindata.sdf
```

Prediction tool

First of all the repository folder has to be entered and the created conda environment must be activated. To use the prediction tool the machine learning model using 12 cpu cores. If the number of cores has to be adjusted the train_model.py can be edited by changing the value of the variable EST_JOBS.

```
python train_model.py
```

To use the prediction tool with the trained model QUACpac/Tautomers have to be available as mentioned in the section above.

Now the python script can be called with an SDF file and an output path:

```
python predict_sdf.py my_test_file.sdf my_output_file.sdf
```
It should be noted that this model was built for monoprotic structures regarding a pH range of 2 to 12. If the model is used with multiprotic structures, the predicted values will probably not be correct.

Results

Different experimental methods

One crucial point in the field of pKₐ measurements (and its usage for pKₐ predictions) was linked to the different experimental methods. Based on the Novartis set, the correlation between capillary electrophoresis and potentiometric measurements (for 15 data points) was convincing enough (mean absolute error (MAE)=0.202, root mean squared error (RMSE)=0.264, correlation coefficient r²=0.981) for us to combine pKₐ measurements from these different experimental methods (see Figure 3).

We also compared the pKₐ values of 187 monoprotic molecules contained in both the ChEMBL and DataWarrior data sets. Due to the missing annotation, it remained unclear if different experimental methods were used or multiple measurements with the same experimental method have been performed (or a mixture of both). Either way, this comparison was an additional proof-of-concept that the ChEMBL and DataWarrior pKₐ data sources can be combined after careful curation. The aforementioned intersection is given in Figure 4. The correlation coefficient between the annotated pKₐ values for these two data sets r² was 0.949, the MAE was 0.275, and the RMSE was 0.576.

The compounds for which the pKₐ values between the different sources deviate by more than two units are as follows:

- **Hydralazine:**
 - pKₐ (DataWarrior) 5.075
 - pKₐ (ChEMBL25) 7.3

- **Edaravone:**
 - pKₐ (DataWarrior) 11.3
 - pKₐ (ChEMBL25) 6.9

- **Trifluoromethanesulfonamide:**
 - pKₐ (DataWarrior) 6.33
 - pKₐ (ChEMBL25) 9.7

Since the annotation about the experimental settings is not given in the DataWarrior file, we can only hypothesize that these differences are due to the different experimental settings.

Machine Learning

The statistics for a five-fold cross-validation are given in Table 1. In terms of the mean absolute error, a random forest with scaled MorganFeatures (radius=3) and descriptors gave the best performing model (MAE=0.682, RMSE=1.032, r²=0.82). For the two external test sets (see Table 2), a random forest with FeatureMorgan (radius=3) gave the best model:

- **Novartis:** MAE=1.147, RMSE=1.513, r²=0.569
- **LiteratureCompilation:** MAE=0.532, RMSE=0.785, r²=0.889

Figure 3. Correlation of Novartis compounds measured in potentiometric and high-throughput (capillary electrophoresis) set-up. MAE, mean absolute error; RMSE, root mean square error.

Figure 4. Intersection between ChEMBL and DataWarrior data sets. MAE, mean absolute error; RMSE, root mean square error.
Table 1. Statistics of the five-fold cross-validation of the machine learning models. The two best and worst performing models are highlighted in green and red. For those neural networks where the values were specified as “not available” (“NA”), the weights could not be optimized properly due to the large value range of the RDKit descriptors, so training failed here.

Model (seed=24)	Train Configuration	Cross-Validation	MAE (mean)	MAE (std)	RMSE (mean)	RMSE (std)	R^2 (mean)	R^2 (std)
Random Forest (n_estimators=1000)	Desc (196 RDKit)	0.718	0.022	1.077	0.021	0.804	0.01	
	FCFP6 (4096 bit)	0.708	0.021	1.094	0.029	0.797	0.008	
	Desc + FCFP6	**0.683**	**0.017**	**1.032**	**0.013**	**0.82**	**0.005**	
	Desc (196 RDKit) (scaled)	0.717	0.022	1.076	0.022	0.804	0.011	
	FCFP6 (4096 bit) (scaled)	0.708	0.021	1.094	0.029	0.797	0.008	
	Desc + FCFP6 (scaled)	**0.682**	**0.017**	**1.032**	**0.013**	**0.82**	**0.005**	
Support Vector Machine	Desc (196 RDKit)	2.1	0.037	2.436	0.035	-0.004	0.004	
	FCFP6 (4096 bit)	0.851	0.025	1.24	0.035	0.74	0.012	
	Desc + FCFP6	**2.1**	**0.037**	**2.436**	**0.035**	**-0.004**	**0.004**	
	Desc (196 RDKit) (scaled)	0.876	0.033	1.282	0.047	0.722	0.015	
	FCFP6 (4096 bit) (scaled)	1.09	0.034	1.466	0.041	0.637	0.014	
	Desc + FCFP6 (scaled)	1.02	0.037	1.4	0.047	0.668	0.016	
Support Vector Machine (gamma='auto')	Desc (196 RDKit)	2.016	0.042	2.362	0.039	0.056	0.009	
	FCFP6 (4096 bit)	1.612	0.031	1.926	0.033	0.373	0.007	
	Desc + FCFP6	1.642	0.061	2.052	0.06	0.288	0.027	
	Desc (196 RDKit) (scaled)	0.882	0.035	1.288	0.048	0.719	0.016	
	FCFP6 (4096 bit) (scaled)	1.09	0.034	1.465	0.041	0.637	0.014	
	Desc + FCFP6 (scaled)	1.019	0.037	1.4	0.047	0.669	0.016	
Multilayer Perceptron (hidden_layer_sizes=(500, 500))	Desc (196 RDKit)	#NA	#NA	#NA	#NA	#NA	#NA	
	FCFP6 (4096 bit)	0.866	0.025	1.27	0.047	0.727	0.019	
	Desc + FCFP6	#NA	#NA	#NA	#NA	#NA	#NA	
	Desc (196 RDKit) (scaled)	0.726	0.018	1.102	0.05	0.794	0.022	
	FCFP6 (4096 bit) (scaled)	1.037	0.045	1.457	0.057	0.64	0.024	
	Desc + FCFP6 (scaled)	0.968	0.032	1.383	0.04	0.677	0.014	
Multilayer Perceptron (hidden_layer_sizes=(500, 500), early_stopping=True)	Desc (196 RDKit)	#NA	#NA	#NA	#NA	#NA	#NA	
	FCFP6 (4096 bit)	0.894	0.024	1.297	0.04	0.715	0.016	
	Desc + FCFP6	#NA	#NA	#NA	#NA	#NA	#NA	
	Desc (196 RDKit) (scaled)	0.768	0.034	1.161	0.09	0.77	0.038	
	FCFP6 (4096 bit) (scaled)	1.031	0.037	1.447	0.057	0.645	0.026	
	Desc + FCFP6 (scaled)	0.984	0.029	1.404	0.035	0.666	0.017	
Multilayer Perceptron (hidden_layer_sizes=(250, 250, 250), early_stopping=True)	Desc (196 RDKit)	#NA	#NA	#NA	#NA	#NA	#NA	
	FCFP6 (4096 bit)	0.869	0.023	1.265	0.039	0.729	0.016	
	Desc + FCFP6	#NA	#NA	#NA	#NA	#NA	#NA	
	Desc (196 RDKit) (scaled)	0.775	0.008	1.158	0.033	0.773	0.013	
	FCFP6 (4096 bit) (scaled)	1.026	0.038	1.455	0.053	0.642	0.022	
	Desc + FCFP6 (scaled)	0.973	0.035	1.388	0.053	0.674	0.023	
	Desc (196 RDKit)	1.02	0.014	1.353	0.021	0.691	0.007	
	FCFP6 (4096 bit)	1.094	0.027	1.423	0.036	0.657	0.011	
	Desc + FCFP6	1.018	0.01	1.346	0.022	0.694	0.005	
	Desc (196 RDKit) (scaled)	1.02	0.014	1.353	0.021	0.691	0.007	
	FCFP6 (4096 bit) (scaled)	1.094	0.027	1.423	0.036	0.657	0.011	
	Desc + FCFP6 (scaled)	1.018	0.01	1.346	0.022	0.694	0.005	

MAE, mean absolute error; RMSE, root mean square error.
Table 2. Predictive performance of the machine learning models on the two external test sets. The two best and worst performing models are highlighted in green and red. For those neural networks where the values were specified as "not available" ("#NA"), the weights could not be optimized properly due to the large value range of the RDKit descriptors, so training failed here.

Model (seed=24)	Train Configuration	Novartis	AvLiLuMoVe
	Desc (196 RDKit)	1.259	0.513
	FCFP6 (4096 bit)	1.147	0.569
	Desc + FCFP6	1.2	0.558
	Desc (196 RDKit) (scaled)	1.259	0.513
	FCFP6 (4096 bit) (scaled)	1.147	0.569
Random Forest (n_estimators=1000)	Desc + FCFP6 (scaled)	1.198	0.558
	Support Vector Machine	2.177	2.451 -0.132
	Desc (196 RDKit)	1.243	0.435
	FCFP6 (4096 bit)	1.277	2.451 -0.132
	Desc + FCFP6	1.182	0.433
Support Vector Machine (gamma='auto')	Desc (196 RDKit) (scaled)	1.735	0.433
	FCFP6 (4096 bit) (scaled)	1.429	0.499
	Desc + FCFP6	1.771	0.219
	Desc (196 RDKit)	1.746	0.235
	FCFP6 (4096 bit)	1.746	0.235
	Desc + FCFP6	1.746	0.235
Multilayer Perceptron (hidden_layer_sizes=(500, 500))	Desc + FCFP6 (scaled)	1.744	0.236
	Desc (196 RDKit)	2.162	2.428 -0.111
	FCFP6 (4096 bit)	2.162	2.428 -0.111
	Desc + FCFP6	2.161	2.422 -0.124
	Desc (196 RDKit) (scaled)	2.162	2.428
	FCFP6 (4096 bit) (scaled)	2.162	2.428
	Desc + FCFP6 (scaled)	1.744	0.236
Multilayer Perceptron (hidden_layer_sizes=(500, 500), early_stopping=True)	Desc + FCFP6 (scaled)	1.744	0.236
	Desc (196 RDKit)	1.414	1.773 0.407
	FCFP6 (4096 bit)	1.414	1.773 0.407
	Desc + FCFP6	1.318	1.634 0.497
	Desc (196 RDKit) (scaled)	1.318	1.634
	FCFP6 (4096 bit) (scaled)	1.318	1.634
	Desc + FCFP6 (scaled)	1.454	1.941 0.29 1.001 1.427 0.634
Multilayer Perceptron (hidden_layer_sizes=(250, 250, 250), early_stopping=True)	Desc + FCFP6 (scaled)	1.542	1.941 0.29 1.001 1.427 0.634
	Desc (196 RDKit)	1.404	1.772 0.408
	FCFP6 (4096 bit)	1.404	1.772 0.408
	Desc + FCFP6	1.298	1.626 0.502
	Desc (196 RDKit) (scaled)	1.298	1.626
	FCFP6 (4096 bit) (scaled)	1.298	1.626
	Desc + FCFP6 (scaled)	1.605	1.998 0.248 0.987 1.365 0.665
XGBoost	Desc (196 RDKit)	1.363	1.717 0.445 0.86 1.164 0.757
	FCFP6 (4096 bit)	1.363	1.717 0.445 0.86 1.164 0.757
	Desc + FCFP6	1.354	1.705 0.452 0.777 1.057 0.799
	Desc (196 RDKit) (scaled)	1.354	1.705
	FCFP6 (4096 bit) (scaled)	1.354	1.705
	Desc + FCFP6 (scaled)	1.581	1.963 0.274 0.953 1.352 0.672
ChemAxon Marvin (V20.1.0)	Desc (196 RDKit)	1.367	1.04 0.819 0.806
	FCFP6 (4096 bit)	1.367	1.04 0.819 0.806
	Desc + FCFP6	1.28	0.503 1.624 0.782 0.823 0.992
	Desc (196 RDKit) (scaled)	1.28	0.503
	FCFP6 (4096 bit) (scaled)	1.28	0.503
	Desc + FCFP6 (scaled)	1.293	0.495 1.637 0.774 0.822 0.995
OPERA (V2.5)*	ChemAxon Marvin (V20.1.0)	0.856	1.166 0.744 0.566 0.865 0.866
	OPERA (V2.5)*	2.272	3.039 -0.754 1.737 2.192 0.124

*For OPERA 6 molecules from AvLiLuMoVe and 31 molecules from Novartis were left out because OPERA predicted either two or zero pKₐ values. MAE, mean absolute error; RMSE, root mean square error.
The predictive performance for Marvin10 and the OPERA tool13 were as follows:
- Novartis
 - Marvin: MAE=0.856, RMSE=1.166, \(r^2=0.744 \)
 - OPERA: MAE= 2.274, RMSE= 3.059, \(r^2=-0.754 \)
- LiteratureCompilation10-24
 - Marvin: MAE= 0.566, RMSE= 0.865, \(r^2=0.866 \)
 - OPERA: MAE= 1.737, RMSE= 2.182, \(r^2=0.124 \).

This showed that our model had a slightly better performance than Marvin for the LiteratureCompilation, but Marvin performed better for the Novartis dataset. For both data sets, our models17 had a better predictive performance than the OPERA tool. Since some molecules had to be omitted for prediction with OPERA due to none or multiple predicted pK\textsubscript{a} values, no consistent significance test could be performed for all comparisons.

Discussion and conclusions
The developed model offers the possibility to predict pK\textsubscript{a} values for monoprotic molecules with good accuracy. However, since the model has been trained exclusively with monoprotic molecules, only monoprotic molecules can be predicted properly. In this respect the model is limited. Nevertheless, the results show that the performance for monoprotic molecules can compete with the performance of existing prediction tools. The good performance of Marvin on the Novartis set is interesting to note: the RMSE was almost 0.4 units better than our top performing model. This could be because Marvin’s training set is much larger than our own training set. This provides a better foundation for the training of the Marvin model. In contrast, Marvin performed slightly worse than our top model on the LiteratureCompilation. The OPERA tool performed significantly worse than our model on both external test sets. We assume that the addition of 2470 ChEMBL pK\textsubscript{a} – datapoints to our training set which were not part of the OPERA training set led to this drop in predictive performance. In addition, the pre-processing of the data was performed differently by OPERA in comparison to our pre-processing procedure.

As next step for the enhancement and improvement of our pK\textsubscript{a} prediction model17, we are currently expanding it to multiprotic molecules. We are also investigating the impact of different neural net architectures and types (such as graph neural nets) and the development of individual models for acids and bases. From a chemistry perspective, an analysis of pK\textsubscript{a} effects of different functional groups (e.g. by means of matched molecular pairs analysis) is an on-going effort for a future publication.

Data availability
Source data
Zenodo: czodrowskilab/Machine-learning-meets-pKa article. https://doi.org/10.5281/zenodo.366224517.

The following data sets were used in this study:
- AvLiLuMoVe.sdf - Manually combined literature pK\textsubscript{a} data.
- chembl25.sdf - Experimental pK\textsubscript{a} data extracted from ChEMBL25.
- datawarrior.sdf - pK\textsubscript{a} data shipped with DataWarrior.
- combined_training_datasets_unique.sdf - Preprocessed and combined data from datasets chembl25.sdf and datawarrior.sdf, used as training dataset.
- AvLiLuMoVe_cleaned_mono_unique_notrain-data.sdf - used as external testset.
- novartis_cleaned_mono_unique_notrain-data.sdf - inhouse dataset provided by Novartis10, used as external testset.

The data sets are also available at https://github.com/czodrowskilab/Machine-learning-meets-pKa.

License: MIT license.

Software availability
The source code is available at https://github.com/czodrowskilab/Machine-learning-meets-pKa.

Archived source code at time of publication: https://doi.org/10.5281/zenodo.366224517.

License: MIT license.

Acknowledgments
Ed Griffen (MedChemica) is acknowledged for his investigations on our initial data set which revealed some wrongly annotated data points. We thank Bob Clark, Eric Jamois and Michael Lawless (Simulations Plus) for their support and advise in terms of data curation. Alpha Lee and Matt Robinson (Cambridge University) are appreciated for fruitful discussions.

References
1. Manallack DT: The PK Distribution of Drugs: Application to Drug Discovery. Perspect Medizin Chem. 2007; 1: 25–38. Published Abstract | Publisher Full Text | Free Full Text
2. Manallack DT, Yuriev E, Chalmers DK: The influence and manipulation of acid/base properties in drug discovery. Drug Discov Today Technol. 2018; 27: 41–47. Published Abstract | Publisher Full Text
3. Manallack DT, Prankerd RJ, Yuriev E, et al: The significance of acid/base properties in drug discovery. Chem Soc Rev. 2013; 42(2): 485–496. PubMed Abstract | Publisher Full Text | Free Full Text
4. Meanwell NA: Improving drug candidates by design: a focus on physicochemical properties as a means of improving compound disposition and safety. Chem Res Toxicol. 2011; 24(9): 1420–1456. PubMed Abstract | Publisher Full Text
5. Gleeson MP: Generation of a set of simple, interpretable ADMET rules of
thumb. J Med Chem. 2008; 51(4): 817–834.

6. Leeson PD, St-Gallay SA, Wenlock MC: Impact of Ion Class and Time on Oral Drug Molecular Properties. Med Chem Commun. 2011; 2(2): 91–105. Published Full Text

7. Charlson PS, Walters WP: Acidic and basic drugs in medicinal chemistry: a perspective. J Med Chem. 2014; 57(23): 9701–9717. Published Abstract | Publisher Full Text

8. Milletti F, Storchi L, Storna G, et al.: New and original pKₐ prediction method using grid molecular interaction fields. J Chem Inf Model. 2007; 47(8): 2172–2181. Published Abstract | Publisher Full Text

9. ACD/Percepta, Advanced Chemistry Development, Inc. Toronto, On Canada, www.acdlabs.com, 2019. Reference Source

10. Marvin 20.1.0, 2020. ChemAxon. Reference Source

11. Shelley JC, Cholleti A, Frye LL, et al.: Epik: a software program for pKₐ prediction and protonation state generation for drug-like molecules. J Comput Aided Mol Des. 2007; 21(12): 681–691. Published Abstract | Publisher Full Text

12. Bochevarov AD, Watson MA, Greenwood JR, et al.: Multiconformation, Density Functional Theory-Based pKₐ Prediction in Application to Large, Flexible Organic Molecules with Diverse Functional Groups. J Chem Theory Comput. 2016; 12(12): 6001–6019. Published Abstract | Publisher Full Text

13. Frazekwicz R, Lobel M, Goller AH, et al.: Best of both worlds: combining pharma abstract and state of the art modeling technology to improve in Silico pKₐ prediction. J Chem Inf Model. 2015; 55(2): 389–397. Published Abstract | Publisher Full Text

14. Rozsik R, Baker W, Molga K, et al.: Rapid and Accurate Prediction of pKₐ Values of C-H Acids Using Graph Convolutional Neural Networks. J Am Chem Soc. 2019; 141(43): 17142–17149. Published Abstract | Publisher Full Text

15. Mansouri K, Cariello NF, Korovov A, et al.: Open-Source QSAR Models for pKa Prediction Using Multiple Machine Learning Approaches. J Cheminform. 2019; 11(1): 60. Published Full Text | Free Full Text

16. Sander T, Freyss J, von Korf M, et al.: DataWarrior: an open-source program for chemistry aware data visualization and analysis. J Chem Inf Model. 2015; 55(2): 460–473. Published Abstract | Publisher Full Text

17. Lewis RA, Rodde S: Novartis Pharma AG, Basel, Switzerland.

18. Settimo L, Belman K, Kriegel HM: Comparison of the accuracy of experimental and predicted pKa values of basic and acidic compounds. Pharm Res. 2014; 31(4): 1082–1095. Published Abstract | Publisher Full Text

19. Liao C, Nicklaus MC: Comparison of nine programs predicting pKₐ values of pharmaceutical substances. J Chem Inf Model. 2005; 45(12): 2801–2812. Published Abstract | Publisher Full Text
Open Peer Review

Johannes Kirchmair

Department of Pharmaceutical Chemistry, Faculty of Life Sciences, University of Vienna, Vienna, Austria

Baltruschat and Czodrowski report on the development of a Python-based tool for the prediction of \(pK_a \) values. The tool is made available open source and will certainly be useful to the scientific community.

- Could the authors please comment on the structural relationship between the training and the test data (how far apart are these datasets, e.g. measured by the distribution of pairwise Tanimoto coefficients based on molecular fingerprints)?

- Could the authors please confirm statistical significance of the key statements made in the first paragraph of the Results section, starting with "This shows that our model slightly outcompetes..."?

- In the Abstract, please name the open source model that was tested as part of the comparative performance analysis.

- It is not clear from the manuscript text whether capillary electrophoresis and potentiometric measurements were the only two experimental methods considered in this work (or, for the Novartis dataset only).

- Please revise the sentence starting with "We also compare the overlap...".

- "make use of a" should be replaced by "makes use of a".

- Please explain where DataWarrior’s data originates from.

- Please comment on the outliers observed in Figure 2.

- Please explain the procedure that was followed to ensure that there was no overlap.
between the training data and the external validation sets (the Novartis dataset in particular).

- "isomeric SMILES": is it canonical as well?
- Avoid using "you" in the Implementation section (use "one [can]..." instead).
- The part starting with "For the two external test sets..." is difficult to read. Could the authors find a more simple way to describe this and enable readers to compare the individual values more easily?

Is the work clearly and accurately presented and does it cite the current literature?
Yes

Is the study design appropriate and is the work technically sound?
Yes

Are sufficient details of methods and analysis provided to allow replication by others?
Yes

If applicable, is the statistical analysis and its interpretation appropriate?
Partly

Are all the source data underlying the results available to ensure full reproducibility?
Yes

Are the conclusions drawn adequately supported by the results?
Yes

Competing Interests: No competing interests were disclosed.

Reviewer Expertise: cheminformatics

I confirm that I have read this submission and believe that I have an appropriate level of expertise to confirm that it is of an acceptable scientific standard.

Author Response 15 Apr 2020

Paul Czodrowski, TU Dortmund University, Otto-Hahn-Strasse 6, Germany

Could the authors please comment on the structural relationship between the training and the test data (how far apart are these datasets, e.g. measured by the distribution of pairwise Tanimoto coefficients based on molecular fingerprints)?

We have included new figures (2A and 2B) with pairwise Tanimoto coefficients (4096 bit MorganFeatures radius=3).

Could the authors please confirm statistical significance of the key statements made in the
first paragraph of the Results section, starting with "This shows that our model slightly outcompetes..."?

A thorough test of the statistical significance is hindered by the fact the external open source tool OPERA cannot process all molecules of our external test sets. We therefore decided to rephrase “This showed that our model slightly outcompeted Marvin for the LiteratureCompilation” to “his showed that our model has a slightly better performance than Marvin for the LiteratureCompilation”.

In the Abstract, please name the open source model that was tested as part of the comparative performance analysis.

The open source model is now mentioned in the abstract.

It is not clear from the manuscript text whether capillary electrophoresis and potentiometric measurements were the only two experimental methods considered in this work (or, for the Novartis dataset only).

We mention this already in the section “Different experimental methods”: “Due to the missing annotation, it remained unclear if different experimental methods were used or multiple measurements with the same experimental method have been performed (or a mixture of both)”.

Please revise the sentence starting with “We also compare the overlap...”.

Changed "We also compared the overlap of the filtered (see next section) ChEMBL and DataWarrior data sets, 187 monoprotic molecules could be identified in both sources." To "We also compared the pKa values of 187 monoprotic molecules contained in both the ChEMBL and DataWarrior data sets."

"make use of a" should be replaced by "makes use of a".

Done

Please explain where DataWarrior's data originates from.

We cannot make any statement about the origin, because it is not included in the DataWarrior file.

Please comment on the outliers observed in Figure 2.

We include the name of the outliers and the different pKa values originating from different data sources, if they differ by more than two log units.

Please explain the procedure that was followed to ensure that there was no overlap between the training data and the external validation sets (the Novartis dataset in particular).

To ensure that no training data was contained in the test data sets, the canonical isomeric SMILES were checked for matches in both training and test data sets and corresponding hits were removed from the test data sets. Chirality was not included in this comparison.

"isomeric SMILES": is it canonical as well?

Yes, it is the canonical isomeric SMILES generated by RDKit.
Avoid using “you” in the Implementation section (use “one [can]...” instead).

Done

The part starting with “For the two external test sets...” is difficult to read. Could the authors find a more simple way to describe this and enable readers to compare the individual values more easily?

We have pulled most of the numbers apart and included bullet points which improves the readability and makes a comparison more feasible.

Competing Interests: No competing interests were disclosed.
Yes

Are sufficient details of methods and analysis provided to allow replication by others?
Yes

If applicable, is the statistical analysis and its interpretation appropriate?
Not applicable

Are all the source data underlying the results available to ensure full reproducibility?
Yes

Are the conclusions drawn adequately supported by the results?
Yes

Competing Interests: No competing interests were disclosed.

Reviewer Expertise: chemoinformatics

I confirm that I have read this submission and believe that I have an appropriate level of expertise to confirm that it is of an acceptable scientific standard.

Author Response 05 Mar 2020

Paul Czodrowski, TU Dortmund University, Otto-Hahn-Strasse 6, Germany

1. Past tense should be used consistently to describe the methods and results.*We have used past tense throughout the entire document.*

2. The “different experimental methods” should be moved to the results part as it contains results.*This part was moved accordingly.*

3. A short description of the molecules in the self-compiled data set and the Novartis set should be added. What type of molecules are contained in these sets? *We have added this information in the manuscript: "The Novartis data set consists of 280 unique molecules with a molecular weight between 129 and 670 daltons (mean value 348.68, standard deviation 94.17). The calculated LogP values vary between -1.54 and 6.30 (mean value 3.01, standard deviation 1.41). The 280 molecules spread over 228 unique Murcko Scaffolds. The ten most common murcko scaffolds cover 15% of the molecules of the total data set (42/280).”*

4. Why does the user need to train the model before making predictions? Could the trained model be provided to make the developed tool easier to use? *The user has to train the model again by himself or herself, because the model is larger than 1.7 GB as a file and therefore cannot be offered for download without paid services. Even with the best possible bzip2 compression, the file is still over 250 MB in size and thus larger than the 100 MB limit at GitHub. In addition, if the model is provided as a file, you must use exactly the same versions of the Python libraries used for training to load the model, otherwise inconsistencies may occur. However, if the model is trained again by yourself, only the minimum library requirements have to be met.*

5. In the discussion section, the developed method should be first discussed before discussing its performance relative to other methods.*This was done and is reflected in*
Comments on this article

Version 1

Author Response 05 Mar 2020

Paul Czodrowski, TU Dortmund University, Otto-Hahn-Strasse 6, Germany

Thanks for the comments, we will take a closer look at the distinction between acidic and basic pKa and the different OPERA models in a follow-up publication.

Currently, a check of the molecules to be predicted with respect to the applicability of the trained model is not implemented, because otherwise the Marvin tool from ChemAxon would also be required for the prediction. With Marvin the classification between mono- and multiprotic molecules is performed. However, we are considering adding an optional validation option for the input structures.

Competing Interests: No competing interests were disclosed.

Reader Comment 20 Feb 2020

Kamel Mansouri, ILS, USA

This is a good attempt to model pKa which is an important parameter to predict. This type of work is also a good addition to the existing free and open-source pKa predictors such as OPERA. The authors clearly state that their tool only works on monoprotic chemicals and doesn’t differentiate between acidic and basic pKa. However, in their comparison with other tools that do, the authors fail to make that differentiation. To compare the comparable, the authors should compare their predictions with OPERA predictions separately for acidic and basic pKa also because one of their data sources was DataWarrior (also used for OPERA training and testing) differentiates between the two (acidic Vs basic).

Since the model only works for monoprotic chemicals, is there an applicability domain assessment or some sort of error message that informs the user when they try to use for a multiprotic chemical? if not, it should be added.

Both the results and discussion sections should expanded further and clarify the strengths and limitations of the tool.
Competing Interests: I have no competing interests.

The benefits of publishing with F1000Research:

- Your article is published within days, with no editorial bias
- You can publish traditional articles, null/negative results, case reports, data notes and more
- The peer review process is transparent and collaborative
- Your article is indexed in PubMed after passing peer review
- Dedicated customer support at every stage

For pre-submission enquiries, contact research@f1000.com