New Gap Equation for A Marginal Fermi Liquid

Yunkyu Bang
Dept. of Physics, Chonnam National University, Kwangju 500-757, Korea

Assuming a phenomenological self-energy $\text{Im} \Sigma(\omega) \sim |\omega|^\beta$, ($\beta = 1$), which becomes gapped below T_c, we derived a new gap equation. The new gap equation contains the effect of the kinetic energy gain upon developing a superconducting order parameter. However, this new kinetic energy gain mechanism works only for a repulsive pairing potential leading to a s-wave state. In this case, compared to the usual potential energy gain in the superconducting state as in the BCS gap equation, the kinetic energy gain is more effective to easily achieve a high critical temperature T_c, since it is naturally Fermi energy scale. In view of the experimental evidences of the d-wave pairing state in the hole-doped copper-oxide high-T_c superconductors, we discuss the implications of our results.

PACS numbers: 74, 74.20, 74.20.Fg, 74.20.Mn
Numerous transport measurements of the high-T_c superconductors \cite{1} indicate a very strong quasi-particle scattering rate $(1/\tau(\omega)) \sim 20000cm^{-1}$ or even higher up at the normal state, which is definitely electronic origin and is a source of most of the anomalous normal state properties such as ac/dc conductivity, NMR, Knight shift, ARPES, Raman spectra, etc \cite{2}. This unique quasi-particle scattering rate is a fingerprint of a poor metallic state due to the nearness to the Mott insulator. On the other hand, this strong scattering rate is gapped below the superconducting critical temperature T_c or some higher temperature $(T^*>T_c)$ for most of the underdoped compounds, as indicated by all of the experiments above mentioned. Therefore, there is a clear indication that the quasi-particle scattering rate is suppressed as a kind of gap develops in the electronic channel and this gap is closely related to the superconducting gap \cite{2}.

On the other hand, many theories have been proposed to account for such high critical temperature in the high-T_c cuprates. Certainly, it is beyond the scope of this paper to judge the level of success of these theories. One of the common ingredients of many theories is that such a strong correlation effect, as indicated in the many normal state properties, should somehow be involved in the superconducting pairing mechanism. Along this line of thinking, perhaps the Interlayer Pair Tunneling (IPT) theory, proposed early on by P.W. Anderson et. al. \cite{4}, most actively exploited this idea to the limit, such that this theory requires a spin-charge separated non-Fermi liquid ground state (called a Luttinger liquid). As a result, the c-axis normal transport is dynamically blocked (named as confinement) but only a momentum conserving pair tunneling process is allowed via virtual process \cite{5}. More intuitive account of this theory is that the frustrated kinetic energy along the c-axis in the normal state, because of its Luttinger liquid ground state, is liberated in the superconducting state and this kinetic energy gain is the main source of the high critical temperature \cite{6}. In this theory, however, there are some of the issues yet to be cleared out, such as a realization of the Luttinger liquid ground state, for example. Nevertheless, the idea of the kinetic energy gain as a source of superconducting condensation energy seems to be supported with various experiments, in particular, such as the c-axis ac conductivity and the c-axis penetration depth measurements \cite{7}.

In this paper, we take a phenomenological approach to the problem how to incorporate the kinetic energy gain upon entering a superconducting phase in the superconducting pairing mechanism, not necessarily confining in the c-axis kinetic energy. We assume that the kinetic energy frustration of the system is represented by a self-energy $\text{Im} \Sigma(\omega) \sim |\omega|^\beta$, and this self-energy becomes gapped upon developing a superconducting order parameter. We considered mainly \(\beta = 1\) case since it is the most relevant case for high-T_c superconductors \cite{8}.

We obtained a new gap equation as a natural extension of the BCS gap equation when the condensation energy is drained not only from the potential energy but also from the kinetic energy as possibly realized with the above assumption. Oddly enough, the new gap equation shows that the kinetic energy gain works only for a repulsive pair potential and best for an isotropic s-wave state. For an attractive pair potential it works destructively and with a strong anisotropy of the order parameter the effect quickly disappears. We show some numerical results of T_c as a function of the strength of kinetic energy frustration both for a s-wave and a d-wave state in a model T_c equation. The results indicate possible competition between a s-wave and a d-wave state in high-T_c superconductors. We discuss the implications of our results in view of experiments.

We start with a usual BCS Hamiltonian.

$$H = \sum_{k,\sigma} \xi_k c_{k,\sigma}^\dagger c_{k,\sigma} + V \sum_{|\xi_k|,|\xi_{k'}|<\omega_D} c_{k,\uparrow}^\dagger c_{-k,\downarrow}^\dagger c_{-k',\downarrow} c_{k',\uparrow},$$

(1)

where c^\dagger and c are the electron creation and annihilation operators, ξ_k is the electron energy including chemical potential, V is a two body pair potential. Now, assuming U(1) symmetry breaking order parameter, $\Delta = V \sum_{k'|\xi_{k'}|<\omega_D} c_{k',\downarrow} c_{-k',\uparrow}$, and introducing the Nambu spinor, $\psi = (c_{\uparrow}, c_{-\downarrow}, c_{-\uparrow}, c_{\downarrow})$, we can readily obtain the free energy in the Matsubara frequency summation as follows.

$$F(\Delta, \tau) = -\left[\frac{\Delta^*\Delta}{V} + \tau \sum_k \sum_n \ln[\omega_n^2 + (\xi_k^2 + \Delta^*\Delta)]\right].$$

(2)

where $\tau = k_B T$ and $\omega_n = \pi \tau (2n + 1)$ is the Matsubara frequencies.

Now, minimizing the above free energy with respect to Δ, i.e., $\delta F/\delta \Delta = 0$, we obtain the usual BCS gap equation as follows.

$$\Delta = -V \tau \sum_n \sum_{k,|\xi_k|<\omega_D} \frac{\Delta}{(\omega_n^2 + E_k^2)},$$

(3)

where $E_k^2 = (\xi_k^2 + \Delta^*\Delta)$.

This is a standard procedure to obtain the self-consistent mean field equation for the order parameter presumed for a given Hamiltonian. We want now to include the frustrated kinetic energy and its regaining effect in the superconducting state in the above derivation of the gap equation. We do this by including the quasi-particle renormalization parameter $Z(\omega_n, \Delta)$ in the above free energy and minimizing it with respect to Δ with special attention to the Δ dependence of $Z(\omega_n, \Delta)$. We assume the form of a self-energy as follows, which is both experimentally \cite{8} and theoretically motivated \cite{8}.
\[Im\Sigma(\omega) = \alpha|\omega| \quad \text{for} \quad 3\Delta < |\omega| < \omega_c \]
\[0 \quad \text{for} \quad |\omega| < 3\Delta \] \hspace{1cm} (4)

where \(\omega_c \) is an ultraviolet cutoff. For a d-wave gap, more reasonable one would be like \(Im\Sigma(\omega) \sim \omega^4 \) for \(|\omega| < 3\Delta \).

However, even in that case, we can use the above simplification because it makes no qualitative change in our main results [8].

The self-energy in the Matsubara frequency, \(\Sigma(\omega_n, \Delta) \), is obtained by the spectral representation,

\[\Sigma(\omega_n, \Delta) = -\frac{1}{\pi} \left[\int_{-\omega_c}^{\omega_n} - \int_{-3\Delta}^{0} \right] \frac{\alpha|\omega|}{i\omega_n - \omega} d\omega' \] \hspace{1cm} (5)

and \(\omega_n \) is accordingly renormalized.

\[\omega_n \rightarrow \tilde{\omega}_n = \omega_n Z_n = \omega_n \left[1 + \frac{\alpha}{\pi} \ln \frac{\omega_n^2 + \omega_c^2}{\omega_n^2 + (3|\Delta|)^2} \right] \] \hspace{1cm} (6)

With this \(\tilde{\omega}_n \) in the free energy, Eq.(2), we get

\[-\frac{\delta F}{\delta \Delta^z} = \frac{\Delta}{V} + \tau \sum_k \sum_n \frac{\Delta}{\omega_n^2 Z_n^2 + E_k^2} \]
\[+ \tau \sum_k \sum_n \frac{2\omega_n^2 Z_n^2 \delta Z_n}{\omega_n^2 Z_n^2 + E_k^2} \] \hspace{1cm} (7)

Finally, we obtain the gap equation for a s-wave order parameter, \(\Delta = \text{const.} \)

\[\Delta = -V\tau \sum_n \sum_{k, \xi_k < \omega_D} \left[1 - \frac{\frac{18}{\pi} \omega_n^2 Z_n}{\omega_n^2 + E_k^2} \right] \Delta \] \hspace{1cm} (8)

The \(T_c \) equation is obtained by taking \(\Delta \rightarrow 0 \) limit.

\[1 = -V\tau \sum_n \sum_{k, \xi_k < \omega_D} \left[1 - \frac{\frac{18}{\pi} Z_n^{(0)}}{\omega_n^2 + \xi_k^2} \right] \] \hspace{1cm} (9)

where \(Z_n^{(0)} = Z_n(\Delta = 0) \). This is our main result and now let’s analyze the above gap equation. The term, \(\frac{18}{\pi} Z_n^{(0)} \), in the numerator in the right-hand side of Eq. (9) is the new term originating from the kinetic energy gain; otherwise, Eq. (9) is a simple BCS \(T_c \) equation with just an ordinary self-energy correction, \(Z_n \), in the denominator. As well known, if not the new term, the above equation can have a solution only for an attractive interaction (i.e. \(V < 0 \)). However, with the new term, it can have a solution even with a purely repulsive interaction (i.e. \(V > 0 \)) since \(\frac{18}{\pi} \sim 2.9 \) with \(\alpha \sim 0.5 \) (which is a reasonable value for the high-\(T_c \) cuprates [8]) and \(Z_n > 1 \) always. What if \(V < 0 \) then? It is a disaster. The new kinetic energy gain term works only for a repulsive pair potential but it works destructively for an attractive pair potential. Therefore I think that the newly found self-energy derived term contains some more physics than the kinetic energy gain, as discussed later.

In the case of d-wave order parameter, \(H_{int} \) and \(\Delta(k) \) is defined as follows.

\[H_{int} = \sum_{k, k'} V(k, k') c_{k, \uparrow}^\dagger c_{-k', \downarrow} \]
\[\Delta(k) = < \sum_{k'} V(k, k') c_{k', \uparrow} c_{-k', \downarrow} > \] \hspace{1cm} (10)

Here, \(V(k, k') \) is a positive definite pair potential in momentum space and \(\Delta(k) \) is a sign-changing order parameter of d-wave symmetry. The gap equation can be derived similarly by taking a variation of the free energy, \(F_D-\text{wave} \), with respect to \(\Delta(k) \); it is slightly more involved than the s-wave case since the order parameter has a structure. The result is written as,

\[\Delta(k) = -\tau \sum_n \sum_{k'} V(k, k') \frac{\Delta(k')}{\omega_n^2 Z_n^2 + E_k^2} \]
\[+ \tau \sum_k \sum_{k'} \frac{V(k, k') \Delta(k')}{\omega_n^2 Z_n^2 + E_k^2} \Delta_{\text{max}} \frac{\delta \Delta_{\text{max}}}{\delta \Delta(k')} \] \hspace{1cm} (11)

Note that the second term contains now \(\frac{\delta \Delta_{\text{max}}}{\delta \Delta(k')} \), which has just measure zero since it equals \(\delta k_{\text{max}} \text{sgn}(k') \); it would be just 1 in the s-wave case. Therefore, the new kinetic energy gain term practically has no contribution in the d-wave gap equation; more generally, its effect quickly vanishes for any anisotropic gap \(\Delta(k) \) unless \(\Delta_{\text{max}} \) has a finite support in \(k- \) space [10].

Now in order to gain some more insight about the newly found term, we recall the self-consistency definition of the order parameter, \(\Delta(k) = < \sum_{k'} V(k, k') c_{k', \uparrow} c_{-k', \downarrow} > \). At first sight, the second term in Eq. (11) appears to be a redundant term. Although it is not rigorously proved here, this extra term doesn’t ruin the self consistency but actually completes it. We note that the right-hand side of Eq. (11) is the pair susceptibility (a kind of response function) with respect to the U(1) symmetry breaking source, \(\Delta(k) \). The first term in the right-hand side of Eq. (11) is the usual pair susceptibility including the self-energy correction, \(Z(\omega_n, \Delta) \). It is well known that a vertex correction is necessary whenever a self-energy correction is included in order to satisfy some continuity equation (or underlying symmetry) for any response function. Therefore, we can consider the self-energy derived second term as a corresponding vertex correction – it indeed looks like so. And in this sense, the new extra term should contain not only the kinetic energy gain effect but also some other complicate effect (general backflow).

Now let us show some numerical results of a model \(T_c \) equation. All calculations are performed in two dimensional momentum space assuming a circular Fermi surface for simplicity of calculations. In Fig.(1) we show \(T_c \) as a function of \(\alpha \), the strength of inelastic scattering, both for s-wave and d-wave states with different values
of the coupling constant, \(\lambda \) \((\lambda = VN(0), N(0) \) is the density of states at Fermi level). For all calculations, the ultraviolet cutoff scale \(\omega_c \) is taken to be 0.5\,eV and the BCS potential cutoff \(\omega_D \) to be 0.5\,eV since the source of the pairing interactions must be an electronic origin. This choice of parameters is mainly for exemplary purpose, though. For a s-wave state, the results of \(\lambda = 0.1 \) and 0.2 are shown – extremely weak repulsive potentials, otherwise we would get much too high \(T_c \). The message is clear; we can easily achieve several hundreds K of \(T \) for \(|\Delta| \). We get a comparable \(\langle \text{order of magnitude stronger interaction} \rangle \) and \(\Delta \) \((\text{a pure speculation and viewing our numerical results, it may be that the s-wave instability and the d-wave instability closely compete in the marginal Fermi liquid state depending on the potential strength of the s-wave and d-wave channels. Then our results might be relevant to the electron-doped high-\(T_c \) compound} \).\)

In conclusion, assuming a phenomenological self-energy, \(\text{Im}\Sigma(\omega) \sim |\omega|^\beta \) \((\beta = 1)\), we derived a new gap equation which includes the kinetic energy gain effect. It is argued that the new gap equation is a natural extension of the BCS gap equation with a consistent vertex correction when the self-energy is a functional of the gap function. For the corresponding \(T_c \) equation, it is also shown that the new kinetic energy gain term becomes relevant only when \(\beta \leq 1 \), and \(\beta = 1 \) is the marginal case. When \(\beta = 1 \), the new \(T_c \) equation can provide surprisingly high critical temperature for the case of an isotropic s-wave order parameter with a pure repulsive potential. For the d-wave case, the new kinetic-energy gain term drops from the \(T_c \) equation because of the anisotropy of the order parameter. Numerical results indicate that there can be a competition between the s-wave and d-wave instabilities in a marginal Fermi liquid state depending on the strength of pair potential in s-wave and d-wave channels. In view of the facts that there is a substantial strength of repulsive interaction in s-wave channel besides the interaction in d-wave channel in the Hubbard or t-J model and its relevance to high-\(T_c \) superconductors, our results may have some relevance to the electron-doped high-\(T_c \) compound. Considering the unexpected behaviors of the new gap equation, it is desirable to have further investigations of it.

The author thank Jae H. Kim for discussing about related experiments. He acknowledge the financial support of the Korea Research Foundation, 1996, the Korean Science and Engineering Foundation (KOSEF) Grant No. 961-0208-048-1, and the KOSEF through the SRC program of SNU-CTP.

1. Z. Schlesinger et al., Phys. Rev. Lett. 65, 801 (1990); D. B. Tanner and T. Timusk, Physical Properties of HTSC III, p363, edited by D. H. Ginsberg (World Scientific, 1992).
2. C. M. Varma et al., Phys. Rev. Lett. 63, 1996 (1989).
3. Chen Renner et al., Phys. Rev. Lett. 80, 149 (1998); R. Nemetschek et al., ibid 78, 4837 (1997); H. Ding et al., cond-mat/971210X.
4. J. M. Wheatley, T. C. Hsu, and P. W. Anderson, Phys. Rev. B 37, 5897 (1988); S. Chakravarty et al., Science 261, 337 (1993); A. Sudbo and A. P. Strong, Phys. Rev. B 51, 1338 (1995).
5. S. Chakravarty and P. W. Anderson, Phys. Rev. Lett. 72
3859 (1994).

P. W. Anderson, *The Theory of Superconductivity in the high-Tc Cuprates*, Princeton University Press, Princeton (1997).

S. Uchida et. al., Phys. Rev. B 53, 14558 (1996); Shibauchi et. al., Phys. Rev. Lett. 72, 2263 (1994); There are some experiments against this claim, though. For example, J. R. Kirtley et. al., cond-mat/9803312.

C. T. Rieck et. al., Phys. Rev. B 51, 3772 (1995).

The approximate treatment of $\text{Im} \Sigma(\omega)$ for $|\omega| < 3\Delta$ is irrelevant for the T_c equation as far as $\gamma > 1$ in $\text{Im} \Sigma(\omega) \sim |\omega|^\gamma$ for $|\omega| < 3\Delta$ since the effect of any higher power term ($\gamma > 1$) drops out in the T_c equation as taking $\Delta \to 0$ limit. However, it makes a difference for the determination of gap value $\Delta(T)$ from the gap equation.

$\frac{\delta \Delta_{\text{max}}}{\delta \Delta(k)}$ in Eq.(11) is correct only for the T_c equation because of the same reason as explained in [9]. In general, we need a functional derivative, $\frac{\delta Z}{\delta \Delta(k)}$. Then $\Delta(k) < \Delta_{\text{max}}$ would contribute to the detailed shape of $\text{Im} \Sigma(\omega)$ for $|\omega| < 3\Delta_{\text{max}}$ and quite generally we can guess $\text{Im} \Sigma(\omega) \sim |\omega|^\gamma$ with $\gamma > 1$ for any anisotropic order parameter. Then as argued in [9], only Δ_{max} part matters for the T_c equation. A possible exception is the case when Δ_{max} spans a finite region in momentum space.

Some might argue that the s-wave channel should be attractive in real metals if the phonon mediated interaction and the retardation are taken into account. The retardation is not compulsory, though. If the system can lower the energy by developing superconducting order parameter without taking advantage of the retardation, it will do so.

Most of experiments on the electron-doped compound (NCCO) indicate a s-wave state; however, the normal state properties of it show more Fermi liquid like behaviors (private communication with Jae H. Kim).

![Fig. 1](image-url)