Implications of Topoisomerase (TOP1 and TOP2α) Expression in Patients With Breast Cancer

MISATO OGINO1,2,3, TAKAAKI FUJII1,2, YUKO NAKAZAWA1,2, TORU HIGUCHI4, YUKIO KOIBUCHI3, TETSUNARI OYAMA5, JUN HOGUCHI6 and KEN SHIRABE2

1Division of Breast and Endocrine Surgery, 2Department of General Surgical Science, Graduate School of Medicine, Gunma University, Gunma, Japan; 3Department of Breast and Endocrine Surgery, National Hospital Organization Takasaki General Medical Center, Gunma, Japan; 4Department of Breast Surgery, Japanese Red Cross Saitama Hospital, Saitama, Japan; 5Department of Diagnostic Pathology, Gunma University, Gunma, Japan; 6Department of Breast Surgery, International University of Health and Welfare, Chiba, Japan

Abstract. Background/Aim: We evaluated the usefulness of topoisomerases (TOPs) expression as prognostic predictors in breast cancer. Patients and Methods: We retrospectively investigated sixty cases with primary breast cancer. We evaluated the tumor and non-tumor mRNA levels of TOP1 and TOP2α using quantitative reverse-transcription polymerase chain reaction. TOP1/TOP2α positivity was defined as the ratio of the mRNA expression of cancer/normal tissue of >1 for both TOP1 and TOP2α. Results: TOP1 and TOP2α were markedly overexpressed in breast cancer tissues compared to normal breast tissues. Of the 60 cases, 46 (76.7%) were positive for TOP1/TOP2α. The relapse-free survival was relatively shorter for patients with positive TOP1/TOP2α. There was no recurrent disease among the 14 patients who were negative for TOP1/TOP2α, whereas four of the 46 TOP1/TOP2α-positive patients had disease recurrence. Conclusion: Negative TOP1 or TOP2α expression may be useful for predicting better prognoses in breast cancer patients.

Breast cancer (BC) is the most common cancer in women and it is a leading cause of mortality worldwide (1, 2). BC is a heterogenous group of tumors with large variations in prognosis and sensitivity to treatments (3, 4). Identification of additional biomarkers is needed to stratify BC for individualized treatment. The topoisomerases (TOP) are able to change DNA topology to facilitate replication and transcription (5-7). There are two types of TOPs: topoisomerase I (TOP1) and topoisomerase II (TOP2), classified according to their ability to make transient single- or double-stranded breaks in DNA (5-8). TOPs play key roles in DNA function and are potential targets for cancer therapy. Several TOP inhibitors are used in clinical setting (8, 9). For example, TOP2 alpha (TOP2α) is a molecular target of anthracycline, which is one of the key drugs in BC therapy (3, 10-15). Although TOP1 and TOP2α have been reported to play key roles in tumor progression in various types of cancer (8), the clinicopathological features and significance of TOP1 and TOP2α in BC have not been well elucidated. In this study, we investigated the correlations between the expression of TOP1 and TOP2α and the clinicopathological features of cases with BC, and we evaluated the usefulness of their expression for the prognosis of BC, focusing on the differential expression between cancer tissue and non-cancerous tissue.

Patients and Methods

We retrospectively investigated sixty cases with primary BC who had undergone radical breast surgery. Breast cancer tissue and paired normal tissue were obtained at the Division of Breast and Endocrine Surgery, Gunma University between March 2009 and January 2012. Cases who received neoadjuvant chemotherapy, cases with synchronous bilateral breast cancer, male cases, and cases with incomplete clinical information were excluded. Written informed consent was obtained from all cases for the use of their records, samples and images in future studies, and this was approved by the Clinical Ethics Committee of Gunma University.
The patient’s age, histology, size of invasive primary tumor, lymphatic (ly) or vascular invasion (v), nuclear grade, estrogen receptor (ER) and progesterone receptor (PgR) expression status, human epidermal growth factor receptor 2 (HER2) score of the primary tumor, axillary lymph node status, and the use of adjuvant chemotherapy or hormone-therapy were extracted from the database. The ER and PgR statuses and the HER2 scores of the primary tumors were assessed as previously described (16). We evaluated the tumor and non-tumor mRNA levels of TOP1 and TOP2α using quantitative reverse-transcription polymerase chain reaction (RT-qPCR) (17).

Analysis of mRNA expression. Immediately after breast surgery, breast cancer tissue and paired normal breast tissue were obtained for RNA extraction. RNA was isolated from the tumor tissue and non-tumor tissue separately. cDNA was prepared using the High Capacity Reverse Transcription kit (Life Technologies, Carlsbad, CA, USA) according to the manufacturer’s instructions. The TOP1 and TOP2α expression levels were determined by TaqMan real-time PCR (TaqMan array card; Life Technologies) after TaqMan assay-based pre-amplification, as described (17). Beta-actin was used as an internal control for normalization. The gene expression levels are expressed as ratios (i.e., the differences between the Ct values) between the target gene and the control gene.

The assay IDs used in this study are as follows. TOP1 (mRNA: TOPOI, assay ID: Hs0023259_m1, gene symbol: TOP1, gene name: DNA topoisomerase I) and TOP2α (mRNA: TOPOII, assay ID: Hs0357333_g1, gene symbol: TOP2α, gene name: DNA topoisomerase II alpha). We calculated the TOP1 and TOP2α expression ratios of paired cancer tissue and non-cancerous tissue. Samples were TOP1/TOP2α positive when the ratio of mRNA expression in cancer vs. normal tissue was >1 for both TOP1 and TOP2α. The samples were negative for TOP1/TOP2α when either TOP1 or TOP2α was negative.

Statistical analysis. In order to examine whether the clinicopathological features associated with the TOP1/TOP2α expression, we divided the BC cases into two groups based on the positive/negative TOP1/TOP2α status. We performed a univariate analysis to investigate the correlations between TOP1/TOP2α expression and various clinicopathologic variables.

Of the 60 eligible patients, 46 (76.7%) had positive TOP1 and TOP2α expressions; i.e., both TOP1 and TOP2α mRNA expression levels in cancer tissue were higher than those in normal tissue. There was no significant correlation between positive TOP1/TOP2α status and any of the patients’ clinicopathological variables. The Kaplan–Meier curves showed that the DFS was relatively shorter for the cases with positive TOP1/TOP2α, but there was no significant difference (p=0.276) (Figure 2). The overall median follow-up period was 73.1 months (range=3.2-90.0 months). There was no recurrent disease among the 14 patients with negative TOP1/TOP2α, whereas of the 46 patients with positive TOP1/TOP2, four patients had disease recurrence. It is interesting that the negative TOP1/TOP2α patients had no recurrent disease although the differences were not significant in any clinicopathological features between positive and negative TOP1/TOP2α cases.

Results

In total, 60 cases with paired cancer and normal tissue were included in the analysis. The expression levels of TOP1 and TOP2α in cancer and non-cancerous tissues are shown in Figure 1. TOP1 and TOP2α were both markedly overexpressed in the cancerous tissue compared to the non-cancerous tissue in cases with BC. The characteristics of the two patient groups based on positive/negative TOP1/TOP2α status are summarized in Table I, which also provides the results of the univariate analysis conducted to investigate the relationships between TOP1/TOP2α expression and various clinicopathologic variables.

Table I. Clinicopathological features associated with relative expression of TOP1/TOP2α.

Clinicopathological Feature	TOP1/TOP2α negative (n=14)	TOP1/TOP2α positive (n=46)	p-Value
Age (y.o., median)	64 (30-87)	59 (37-87)	0.534
Histology (n)			0.623
Invasive ductal carcinoma	11	38	
Invasive lobular carcinoma	2	3	
Others	1	5	
Tumor size (±SD) (mm)	2.5±0.9	2.7±2.1	0.716
Lymph node metastasis (n)	4	21	0.206
ER positive (n)	12	37	0.498
PgR positive (n)	12	33	0.247
HER2 positive (n)	3	5	0.272
Nuclear grade 3 (n)	6	24	0.381
ly positive (n)	9	36	0.918
v positive (n)	1	13	0.096
Adjuvant chemotherapy	5	21	0.367
Adjuvant hormoneotherapy	11	35	0.580

TOP: Topoisomerase; n: number; ER: estrogen receptor; PgR: progesterone receptor; HER2: human epidermal growth factor receptor 2; ly: lymphatic invasion; v: vascular invasion.

Discussion

Topoisomerases (TOP1 and TOP2α) are potential targets for cancer treatment. TOP1 and TOP2α are expressed in various tumors, including breast cancer (6). Several studies have reported that TOP1 and TOP2α are tumor drivers in various cancers (8). The key observations obtained in the present study were as follows: 1) TOP1/TOP2α expression was not
associated with various clinicopathological characteristics or with the prediction of poor prognosis in breast cancer patients, and 2) the cases with negative TOP1/TOP2α had no recurrent disease. Our results suggest that TOP1/TOP2α expression may be an indicator of disease recurrence in cases with operable BC, and cases with negative TOP1/TOP2 may have a lower risk of disease recurrence. In some types of cancers, elevated TOP1 and TOP2α expressions were significantly associated with poor survival (7), which is consistent with our present findings.

Elevated expression of TOP1 and TOP2α is used as a potent biomarker for the response to chemotherapy drugs in multiple cancers. In BC, TOP2α is well known as a biomarker of anthracyclines treatment, which are some of the most widely used chemotherapeutic agents for BC. However, the evidence of a prognostic role of TOP2α in BC is controversial (14, 15), as is that for TOP1 (18, 19). The topology of DNA is regulated by both TOP1 and TOP2α. We, thus, assessed the value of the combination of TOP1 and TOP2α in this study, and our analyses revealed that there was no recurrence of disease when either TOP1 or TOP2α expression was negative. Therefore, an elevated expression of either TOP1 or TOP2α may not reflect an increased risk for recurrent disease in cases with BC.

The DNA topoisomerases TOP1 and TOP2α regulate the topology of DNA in cancer tissue and normal tissue (5). Herein, we focused on the differential expressions between tumor tissue and non-tumor tissue. The gene expression ratio of cancerous tissue to non-cancerous tissue from the same case provides more information and reduces the effects of individuality (20). Gene expressions in cancer tissue alone may be insufficient for indicating clinicopathological features. In fact, several comparisons of gene expression profiling between cancer tissue and paired normal tissue have suggested that the gene expression ratio of cancer and normal tissue predicts clinical outcome more efficiently (20-22).

This study has some potential limitations, the major ones is that it is a retrospective analysis with a relatively small number of cases. However, to the best of our knowledge, this is the first report to describe TOP1 and TOP2α expression focused on the ratios of tumor vs. non-tumorous tissue in cases with BC. The expression rate may provide more information even with small numbers of patients. The negative TOP1/TOP2α status in breast cancer patients may be predictor of a lower risk of disease recurrence. Additional research is needed to explore possible benefits of determining the TPO1 and TOP2α expression of primary BC.

In conclusion, the results of our present analyses demonstrated that negative TOP1 or TOP2α expression in primary BC may be effective for predicting better prognoses among cases with BC, and this finding could be useful in identifying the subset of cases with negative TOP1/TOP2α

Figure 1. The expression levels of TOP1 and TOP2α in cancer and non-cancerous tissue are shown. (a) TOP1 and (b) TOP2α are markedly overexpressed in the cancer tissue compared to the non-cancerous tissue in cases with breast cancer.

Figure 2. The disease-free survival (DFS) shown by the Kaplan–Meier curves is relatively but not significantly shorter for the cases with positive TOP1/TOP2α (p=0.276). Among the negative TOP1/TOP2α cases, there was no recurrent disease. The overall median follow-up period was 73.1 months (range=3.2-90.0 months).
expression for the purpose of improving prognostic accuracy. Large studies are warranted to further evaluate the relationship between the combination of these two factors and BC recurrence.

Conflicts of Interest

The Authors declare that they have no competing interests in relation to this study.

Authors’ Contributions

MO and TF analyzed data and TF wrote the initial draft of the manuscript. YN, TH, YK, TO and JH collected data and were involved in the initial study conception and design. TF and KS interpreted the results and were involved in drafting the work and revising it critically for important intellectual content. TF approved the final version to be published. All Authors have read and approved the final manuscript.

Acknowledgements

The Authors would like to thank Ms. Fumie Takada and Ms. Harumi Kanai for their secretarial assistance. FT and HK belong to Department of General Surgical Science, Gunma University, Maebashi, Japan.

References

1 Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA and Jemal A: Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 68(6): 394-424, 2018. PMID: 30207593. DOI: 10.3322/caac.21492
2 Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M, Parkin DM, Forman D and Bray F: Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer 136(5): E359-386, 2015. PMID: 25220842. DOI: 10.1002/ijc.29210
3 An X, Xu F, Luo R, Zheng Q, Lu J, Yang Y, Qin T, Yuan Z, Shi Y, Jiang W and Wang S: The prognostic significance of topoisomerase II alpha protein in early stage luminal breast cancer. BMC Cancer 18(1): 331, 2018. PMID: 29587760. DOI: 10.1186/s12885-018-4170-7
4 Ignatiadis M and Sotiriou C: Luminal breast cancer: from biology to treatment. Nat Rev Clin Oncol 10(9): 494-506, 2013. PMID: 23881035. DOI: 10.1038/nrclinonc.2013.124
5 Bush NG, Evans-Roberts K and Maxwell A: DNA topoisomerases. EcoSal Plus 6(2), 2015. PMID: 26435256. DOI: 10.1128/ecosalplus.ESP-0010-2014
6 Heck MM, Hittelman WN and Earnshaw WC: Differential expression of DNA topoisomerases I and II during the eucharyotic cell cycle. Proc Natl Acad Sci USA 85(4): 1086-1090, 1988. PMID: 2829215. DOI: 10.1073/pnas.85.4.1086
7 Heestand GM, Schwaeaderle M, Gatalica Z, Arguello D and Kurzrock R: Topoisomerase expression and amplification in solid tumours: analysis of 24,262 patients. Eur J Cancer 83: 80-87, 2017. PMID: 28728050. DOI: 10.1016/j.ejca.2017.06.019
8 Liu LM, Xiong DD, Lin P, Yang H, Dang YW and Chen G: DNA topoisomerase I and 2A function as oncogenes in liver cancer and may be direct targets of nitidine chloride. Int J Oncol 53(5): 1897-1912, 2018. PMID: 30132517. DOI: 10.3892/ijo.2018.4531
9 Kathiravan MK, Kale AN and Nilewar S: Discovery and development of topoisomerase inhibitors as anticancer agents. Mini Rev Med Chem 16(15): 1219-1229, 2016. PMID: 27549098. DOI: 10.2174/1389557516666160822110819
10 Di Leo A and Isola J: Topoisomerase II alpha as a marker predicting the efficacy of anthracyclines in breast cancer: are we at the end of the beginning? Clin Breast Cancer 4(3): 179-186, 2003. PMID: 14499010.
11 Di Leo, A Desmedt C, Bartlett MM, Pieten F, Ejlersen B, Pritchard KI, Larsimont D, Poole C, Isola J, Earl H, Moursden H, O’malley FP, Cardoso F, Tanner M, Munro A, Twelves CJ, Sotiriou C, Shepherd L, Cameron D, Piccart MJ, Buyse M and HER2/TOP2A Meta-analysis Study Group: HER2 and TOP2A as predictive markers for anthracycline-containing chemotherapy regimens as adjuvant treatment of breast cancer: a meta-analysis of individual patient data. Lancet Oncol 12(12): 1134-1142, 2011. PMID: 21917518. DOI: 10.1016/S1470-2045(11)70231-5
12 Hellemans P, van Dam PA, Geyskens M, van Oosterom AT, Buytaert P and van Marck E: Immunohistochemical study of topoisomerase II-alpha expression in primary ductal carcinoma of the breast. J Clin Pathol 48(2): 147-150, 1995. PMID: 7745115. DOI: 10.1136/jcp.48.2.147
13 Coon JS, Marcus E, Gupta-Burt S, Seelig S, Jacobson K, Chen S, Rentz V, Fronda G and Preissler HD: Amplification and overexpression of topoisomerase II alpha predict response to anthracycline-based therapy in locally advanced breast cancer. Clin Cancer Res 8(4): 1061-1067, 2002. PMID: 11948114.
14 Shigematsu H, Ozaki S, Yasui D, Yamamoto H, Zaitsu J, Taniyama D, Saitou A, Kuraoka K, Hirata T and Taniyama K: Overexpression of topoisomerase II alpha protein is a factor for poor prognosis in patients with luminal B breast cancer. Oncotarget 9(42): 26701-26710, 2018. PMID: 29928479. DOI: 10.18632/oncotarget.25468
15 Du Y, Zhou Q, Yin W, Zhou L, Di G, Shen Z, Shao Z and Lu J: The role of topoisomerase Iio in predicting sensitivity to anthracyclines in breast cancer patients: a meta-analysis of published literatures. Breast Cancer Res Treat 129(3): 839-848, 2011. PMID: 21809115. DOI: 10.1007/s10549-011-1694-9
16 Obayashi S, Horiguchi J, Higuchi T, Katayama A, Handa T, Altan B, Bai T, Bao P, Bao H, Yokobori T, Nishiyama M, Oyama T and Kuwano H: Stathmin1 expression is associated with pathological complete response and secreted protein acidic and cysteine rich proteins expression and cancer stem cell marker expression in breast cancer patients. Int J Oncol 51(3): 781-790, 2017. PMID: 28766688. DOI: 10.3892/ijo.2017.4085
17 Nakazawa Y, Nakazawa S, Kuromizu S, Ogino M, Koibuchi Y, Odawara H, Oyama T, Horiguchi J, Fujii T and Shirabe K: The pathological complete response and secreted protein acidic and cysteine expression in patients with breast cancer receiving neoadjuvant nab-paclitaxel chemotherapy. Oncol Lett 19(4): 2705-2712, 2020. PMID: 32218821. DOI: 10.3892/ol.2020.11354
18 Larsen AK and Gobert C: DNA topoisomerase I in oncology: Dr Jekyll or Mr Hyde? Pathol Oncol Res 5(3): 171-178, 1999. PMID: 10491013. DOI: 10.1053/paor.1999.0290
19 Kübler I, Balslev E, Stenvang J, Brünnér N, Ejlersen B, Jakobsen EH and Nielsen DL: Two open-label, single arm, non-randomized phase II studies of irinotecan for the treatment of 87, 2017. PMID: 28728050. DOI: 10.1016/j.ejca.2017.06.019
metastatic breast cancer in patients with increased copy number of the topoisomerase I gene. BMC Cancer 19(1): 573, 2019. PMID: 31196001. DOI: 10.1186/s12885-019-5788-9

20 Ishibashi Y, Hanyu N, Nakada K, Suzuki Y, Yamamoto T, Yanaga K, Ohkawa K, Hashimoto N, Nakajima T, Saito H, Matsushima M and Urashima M: Profiling gene expression ratios of paired cancerous and normal tissue predicts relapse of esophageal squamous cell carcinoma. Cancer Res 63(16): 5159-5164, 2003. PMID: 12941848.

21 Xu XR, Huang J, Xu ZG, Qian BZ, Zhu ZD, Yan Q, Cai T, Zhang X, Xiao HS, Qu J, Liu F, Huang QH, Cheng ZH, Li NG, Du JJ, Hu W, Shen KT, Lu G, Fu G, Zhong M, Xu SH, Gu WY, Huang W, Zhao XT, Hu GX, Gu JR, Chen Z and Han ZG: Insight into hepatocellular carcinogenesis at transcriptome level by comparing gene expression profile of hepatocellular carcinoma with those of corresponding noncancerous liver. Proc Natl Acad Sci USA 18(26): 15089-15094, 2001. PMID: 11752456. DOI: 10.1073/pnas.241522398

22 Moustafa AE, Alaoui-Jamali MA, Batist G, Hernandez-Perez M, Serruya C, Alpert L, Black MJ, Sladek R and Foulkes WD: Identification of genes associated with head and neck carcinogenesis by cDNA microarray comparison between matched primary normal and squamous carcinoma cells. Oncogene 21(17): 2634-2640, 2002. PMID: 11965536. DOI: 10.1038/sj.onc.1205351

Received July 7, 2020
Revised July 28, 2020
Accepted July 29, 2020