Supporting Information

Cu$_2$O@PNIPAM core-shell microgels as novel inkjet materials for the preparation of CuO hollow porous nanocubes gas sensing layers

He Jia, Haitao Gao, Shilin Mei, Janosch Kneer, Xianzhong Lin, Qidi Ran, Fuxian Wang, Stefan Palzer, Yan Lu*

Figure s1. The waveform used for jetting.

Figure s2. The photographs of the films of (a) bare Cu$_2$O nanocubes and (b) Cu$_2$O@PNIPAM core-shell nanoparticles with the same solid content of 0.026 wt. % on polystyrene (PS) substrates.
Figure s3. TGA spectra of Cu$_2$O@PNIPAM core-shell nanoparticles.

Figure s4. The photos of Cu$_2$O@PNIPAM core-shell nanoparticles and bare Cu$_2$O nanocubes kept in water at room temperature for different time.
Figure s5. The photos of the droplets kept for 30 min for different samples: (a) bare
Cu$_2$O nanocubes with 1.5 wt.% solid content, (b) Cu$_2$O@PNIPAM core-shell
nanoparticles with 1.5 wt.% solid content and (c) bare Cu$_2$O nanocubes with 8 wt.%
solid content.

Figure s6. (a, b, c) Overview SEM images of gas sensor devices of Cu$_2$O (1.5 wt.%),
Cu$_2$O (8 wt.%) and Cu$_2$O@PNIPAM (1.5 wt.%) before heating treatment. (d) Overview
SEM image of gas sensor device of Cu$_2$O@PNIPAM (1.5 wt.%) after heating treatment.
Figure s7. SEM image of CuO hollow porous sensing layers.