Cannabinoids in Chronic Pain: Therapeutic Potential Through Microglia Modulation

Nynke J. van den Hoogen1,2,3, Erika K. Harding1,2,3, Chloé E. D. Davidson1,2,3 and Tuan Trang1,2,3*

1 Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, Canada, 2 Department of Comparative Biology and Experimental Medicine, University of Calgary, Calgary, AB, Canada, 3 Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada

Chronic pain is a complex sensory, cognitive, and emotional experience that imposes a great personal, psychological, and socioeconomic burden on patients. An estimated 1.5 billion people worldwide are afflicted with chronic pain, which is often difficult to treat and may be resistant to the potent pain-relieving effects of opioid analgesics. Attention has therefore focused on advancing new pain therapies directed at the cannabinoid system because of its key role in pain modulation. Endocannabinoids and exogenous cannabinoids exert their actions primarily through Gαi/o-protein coupled cannabinoid CB1 and CB2 receptors expressed throughout the nervous system. CB1 receptors are found at key nodes along the pain pathway and their activity gates both the sensory and affective components of pain. CB2 receptors are typically expressed at low levels on microglia, astrocytes, and peripheral immune cells. In chronic pain states, there is a marked increase in CB2 expression which modulates the activity of these central and peripheral immune cells with important consequences for the surrounding pain circuitry. Growing evidence indicate that interventions targeting CB1 or CB2 receptors improve pain outcomes in a variety of preclinical pain models. In this mini-review, we will highlight recent advances in understanding how cannabinoids modulate microglia function and its implications for cannabinoid-mediated analgesia, focusing on microglia-neuron interactions within the spinal nociceptive circuitry.

Keywords: microglia, chronic pain, cannabinoid, analgesia, nociceptive circuitry

INTRODUCTION

Acute nociceptive pain functions as an alarm system that protects us from serious injury. Chronic pain, however, can be likened to a dysfunctional alarm system: it may persist for months and years after an injury has healed. Silencing this alarm can be difficult, or paradoxically, it may sound even in the absence of injury. One in five people worldwide are affected by chronic pain, which is characterized by spontaneous pain, allostynia (a painful experience of a non-painful stimuli), and hyperalgesia (an increased pain experience to a painful stimuli). Converging evidence indicates that chronic pain arises because of maladaptive plasticity resulting in sensitization of nociceptive circuitry within the peripheral and central nervous system (CNS). Overall, these adaptations shift the balance between excitatory and inhibitory signals in the spinal dorsal horn, a hub for nociceptive processing, toward excitation (Coull et al., 2005; Knabl et al., 2008; Liu et al., 2008; Bonin and De Koninck, 2014; Hildebrand et al., 2016). This shift can result in aberrant amplification of sensory
input and output from the spinal cord, which gives rise to exaggerated pain responses that underlie chronic pain. The increase in nociceptive drive is causally linked to a constellation of cellular and molecular processes that alter neuronal excitability and fundamentally change activity of glia, such as microglia and astrocytes (Tsuda et al., 2005; Zhuang et al., 2005; Hains and Waxman, 2006; Sorge et al., 2015; Nam et al., 2016; Kohro et al., 2020; reviewed in Tsuda, 2016; Ji et al., 2019). In this mini-review, we will focus on microglia, immune cells that reside within the CNS and account for 5–20% of the total cell population (Lawson et al., 1990; Perry, 1998). Microglia are exquisitely sensitive to perturbations of the nervous system, responding to injury, disease, or infection. A feature of this microglia response is increased reactivity, which is associated with a plethora of changes in receptors, intracellular proteins, and transcription factors that a causally implicated in the development and maintenance of chronic pain (Chen et al., 2018b; Inoue and Tsuda, 2018).

Effective management of chronic pain remains one of the most difficult clinical challenges, as it is often refractory to conventional therapies like opioids (Dellmijn, 1999; Kalso et al., 2004; O’connor and Dworkin, 2009). To manage pain, some people turn to cannabis and cannabinoid products, making pain the most common medical reason for cannabis use (Mucke et al., 2018; Voelker, 2018; Boehnke et al., 2019; Solomon and Solomon, 2019). The efficacy of cannabis in treating chronic pain is contentious and often stigmatized. Indeed, the International Association for the Study of Pain (IASP) does not currently endorse the use of cannabis or cannabinoids for pain relief purposes (IASP Presidential Task Force on Cannabis, 2021). However, there is evidence suggesting cannabis may provide some relief from cancer pain and neuropathic pain (Andreade et al., 2015; Whiting et al., 2015; Mucke et al., 2018; Wang et al., 2020). Most medical cannabis products are phytocannabinoids, which are derived from plants of the cannabis genus. While over 60 active compounds can be found in cannabis plants, phytocannabinoids (CBs) like Δ9-tetrahydrocannabinol (THC) and cannabidiol (CBD) are the most well studied. These compounds typically act upon the endogenous cannabinoid receptors type 1 (CB1R) and type 2 (CB2R). CB1Rs are found at key nodes along the pain pathway, and their activity modulates both the sensory and affective components of pain, while CB2Rs are expressed (albeit typically at low levels) on immune cells (Pertwee, 2001; Guindon and Hohmann, 2009). Both the CB1R and CB2R are G protein-coupled and inhibitory, with activation resulting in the inhibition of calcium channels through G protein signaling, activation of potassium channels, and the inhibition of adenylate cyclase activity (Howlett et al., 2002; Guindon and Hohmann, 2009). Among the most well characterized endogenous CB receptor ligands are anandamide (AEA) and 2-arachidonoyl-glycerol (2-AG). AEA is a high-affinity, partial agonist of the CB1R and CB2R (reviewed in Stella, 2010; Biringer, 2021). 2-AG has moderate affinity for both CB receptors as a full agonist. The endogenous cannabinoid system also encompasses their synthesizing enzymes, N-acyl-phosphatidylcholine-phospholipase (NAPE-PLD) and diacylglycerol lipase (DAGL), and metabolic enzymes, fatty acid amide hydrolase (FAAH) and monoacylglycerol lipase (MAGL) (Lu and Mackie, 2021). Endocannabinoids regulate diverse brain functions like memory, feeding, reward, neuroprotection, neural development, sleep, and pain (Lu and Mackie, 2021). Notably, activation of CB1R and CB2R in the spinal dorsal horn modulates nociceptive transmission (Finn et al., 2021; Soliman et al., 2021). CB1R expression has been detected on spinal primary and secondary afferents, and on astrocytes (Hohmann et al., 1998, 1999). By contrast, CB2Rs are mostly expressed on cells of the immune system and upregulated in inflammatory or disease states, including chronic pain (Zhang et al., 2003; Walczak et al., 2006; Romero-Sandoval and Eisenach, 2007; Racz et al., 2008b; Brownjohn and Ashton, 2012; Naguib et al., 2012; Shiue et al., 2017). Both CB1R and CB2R agonists have been shown to attenuate pain behaviors in a variety of animal pain models (for a comprehensive review of preclinical studies, see Finn et al., 2021; Soliman et al., 2021). In addition, CB2Rs are immunomodulatory and their activation decreases neuroinflammatory responses in a microglia-dependent manner (Lu and Mackie, 2021), making it a potential target for refractory pain.

SPINAL MICROGLIA: CONTRIBUTORS TO CHRONIC PAIN

Microglia are resident immune cells of the CNS with diverse functions, including the maintenance and pruning of synapses, providing trophic support of neurons, glutamate uptake, and phagocytosis of extracellular debris (Latremoliere and Woolf, 2009; Burke et al., 2016; Harte et al., 2018). Under homeostatic conditions, microglia possess a highly ramified morphology characterized by a small soma and long branching processes that survey the microenvironment (Nimmerjahn et al., 2005). In response to injury or disease of the CNS, microglia shift toward a reactive phenotype that releases proinflammatory cytokines, chemokines, and other immune mediators (Inoue and Tsuda, 2018). This microglia-mediated neuroimmune response critically contributes to chronic pain (Coull et al., 2005; Hains and Waxman, 2006; Beggs et al., 2012; Echeverry et al., 2017; Chen et al., 2018a). Several mechanisms are known to drive microglia reactivity observed in neuropathic and inflammatory pain conditions, including the activation of CSF1, P2X4, and P2X7 receptors (Tsuda et al., 2003; Chessell et al., 2005; Guan et al., 2016). For example, nerve injury resulting in mechanical allodynia gives rise to reactive spinal microglia characterized by the de novo synthesis of P2X4 receptors (Tsuda et al., 2003; Trang et al., 2009; Mapplebeck et al., 2018). ATP activation of P2X4R+ reactive microglia evokes the release of brain derived neurotrophic factor (BDNF), which in turn downregulates the potassium-chloride cotransporter 2 (KCC2) in spinal laminae I/II neurons (Beggs et al., 2012). The disruption of chloride homeostasis results in enhanced excitation and diminished inhibition of spinal nociceptive output, implicated in the aberrant mechanical pain sensitivity following nerve injury (Coull et al., 2005; Mapplebeck et al., 2019; Ferrini et al., 2020). In addition, reactive microglia act through P2X7 receptors,
the production of nitric oxide (NO), and the release of pro-inflammatory cytokines like tumor necrosis factor \(\alpha \) (TNF\(\alpha \)), interleukin-1\(\beta \) (IL-1\(\beta \)), and cathepsin S (CTSS) (Clark et al., 2007; Guan et al., 2016; Kobayashi et al., 2016; Kanda et al., 2017; Dalgaro et al., 2018; Mousseau et al., 2018). Thus, a myriad of microglia mechanisms involving diverse signaling pathways and pro-inflammatory cytokines (Figure 1) contribute to central sensitization underlying the aberrant nociceptive processing associated with chronic pain (Coull et al., 2005; Kawasaki et al., 2008).

MICROGLIAL CB2R IN NOCICEPTIVE SIGNALING

Converging evidence indicates that CB2Rs play an important role in regulating chronic pain states, although their exact expression pattern has been a topic of intense debate (Rogers, 2015). Resting microglia typically express low levels of CB2R (Duffy et al., 2021), but this expression is markedly increased in inflammatory and neuropathic pain states (Zhang et al., 2003; Walczak et al., 2006; Romero-Sandoval and Eisenach, 2007; Racz et al., 2008b; Brownjohn and Ashton, 2012; Naguib et al., 2012; Shiue et al., 2017; Grenier et al., 2021). The extent of this CB2R increase appears to be dependent on the pain model used (Zhang et al., 2003) and may promote microglia to switch toward a more anti-inflammatory phenotype (Bie et al., 2018; Komorowska-Muller and Schmole, 2020). Studies employing CB2R agonists (e.g., JWH-015, JWH-133, HU-308, or AM1241) report marked antinociception in a variety of preclinical pain models, including spinal transection (Romero-Sandoval et al., 2008), postsurgical pain (Romero-Sandoval and Eisenach, 2007; Grenald et al., 2017), sciatic nerve injury (Beltramo et al., 2006; Cabanero et al., 2020), bone cancer pain (Lu et al., 2015; Wang et al., 2020), chronic constriction injury (Niu et al., 2017), and formalin (Hanus et al., 1999; Grenald et al., 2017). However, pharmacologically discerning the specific contribution of CB2Rs has been difficult because many CB2R agonists also have activity on CB1Rs, which are more abundantly expressed. Specifically, JWH-015, JWH-133, and AM1241 are between 26 and 200 times more selective for CB2R compared to CB1R, but these agonists can still activate CB1Rs. Thus, conclusions about CB2R involvement in these chronic pain models have been strengthened by using CB2R antagonists such as SR144528 or AM630 (Hanus et al., 1999; Beltramo et al., 2006; Naguib et al., 2008; Romero-Sandoval et al., 2008; Lu et al., 2015). Furthermore, studies using global CB2R knockout or myeloid specific CB2R knockout found increased hyperalgesia and allodynia in sciatic nerve injury models (Racz et al., 2008a,b; La Porta et al., 2013; Nent et al., 2019), while overexpression in hematopoietic cells, including microglia, leads to an overall decrease in pain behaviors (Racz et al., 2008b). These experiments also demonstrate that CB2R activation restrict microglia activity to the ipsilateral dorsal horn, as knockout of the CB2R leads to a spread of hypersensitivity and microgliosisis to the contralateral dorsal horn after sciatic nerve injury or in arthritis induced by monoiodoacetate (Racz et al., 2008a; La Porta et al., 2013; Nent et al., 2019). Double knockout of CB2R and interferon gamma (IFN-\(\gamma \)) blunted the spread of hypersensitivity, suggesting the effect is mediated by the pro-inflammatory cytokine (Racz et al., 2008a).

Overall, there is compelling evidence that activation of CB2R critically modulates microglial immune function by switching to a more anti-inflammatory state, characterized by limited migration (Walter et al., 2003; Eljaschewitsch et al., 2006), phagocytosis (Tolton et al., 2009), increased production of anti-inflammatory mediators, and decreased production of pro-inflammatory mediators (Figure 2) (Ehrhart et al., 2005; Ashton and Glass, 2007; Racz et al., 2008a; Malek et al., 2015; Ma et al., 2021). Specifically, the activation of CB2R on microglia, either through the action of endogenous cannabinoid AEA, or exogenous cannabinoids like THC and CB2R agonists, has been shown to inhibit the production and release of pro-inflammatory molecules causally involved in central sensitization (Eljaschewitsch et al., 2006; Correa et al., 2009). For example, activation of the CB2R (i) upregulates the AMP kinase pathway to decrease synthesis of nitric oxide (Giri et al., 2004), (ii) downregulates the p38 MAP kinase pathway to reduce synthesis of IL-1\(\beta \), TNF-\(\alpha \) and BDNF (Ji and Suter, 2007; Niu et al., 2017), and (iii) suppresses ERK-mediated microglia proliferation (Zhuang et al., 2005; Calvo et al., 2011; Naguib et al., 2012). Indeed, CB2R activation in a paclitaxel model of chemotherapy-induced neuropathy leads to decreased IL-6, BDNF, P2X4, and TNF\(\alpha \) receptor expression, and increased release of the anti-inflammatory cytokine IL-10 (Burgos et al., 2012; Wu et al., 2019). This cannabinoid-induced release of IL-10 by microglia is a phenomenon shared with other areas of the CNS (Correa et al., 2010; Hernangómez et al., 2012). Additionally, activation of CB2R by exercise-induced AEA release reduces levels of TNF\(\alpha \) and IL-1\(\beta \) in the spinal cord of mice with carrageenan-induced pain hypersensitivity (dos Santos et al., 2019). In these studies, the reduced release of pro-inflammatory cytokines and increased release of anti-inflammatory cytokines by microglia was associated with reduced pain behavior.

Another contributor to microglial-dependent central sensitization is the activation of microglial purinergic receptors. Specifically, P2X4 and P2X7 receptor activation is linked to development of several chronic pain conditions (Tsuda et al., 2003; Trang et al., 2006; Ulmann et al., 2008; Beggs et al., 2012; Sorge et al., 2012; Masuda et al., 2016), albeit in a sexually dimorphic manner (Sorge et al., 2015; Mapplebeck et al., 2018). Treatment with a CB2R agonist reduces P2X4 upregulation in paclitaxel-induced neuropathy (Wu et al., 2019), providing another mechanism through which CB2R activation can reduce microglial contributions to pain.

MICROGLIAL PRODUCTION OF AEA AND 2-AG

Microglia not only express CB2Rs and respond to cannabinoid agonists, but they also possess the cellular machinery to produce endocannabinoids (Carrier et al., 2004; Walter and Stella, 2004; Witting et al., 2004). Remarkably, microglia may be the main endogenous source of endocannabinoids, as they can produce...
up to 20-times more endocannabinoids than other glial cells or neurons in vitro (Walter et al., 2003). The synthesis of AEA and 2-AG is dependent on an increase in intracellular calcium levels (Di Marzo, 2008). In microglia, this increase in calcium may be achieved by activation of purinergic receptors such as P2X4 and P2X7 (Witting et al., 2004; Di Marzo, 2008). Endocannabinoids are highly lipophilic molecules and as a result they are released soon after production (Alger and Kim, 2011). AEA binds preferentially to CB1R in vitro, but also displays a low binding affinity for transient receptor potential cation channel subfamily V member 1 (TRPV1), which is highly expressed in the nociceptive system (Zygmont et al., 1999; Storozhuk and Zholos, 2018). 2-AG activates both CB1R and CB2R. Spinal sensory neurons mainly express CB1R, although there is evidence for neuronal CB2R expression in chronic pain states (Wotherspoon et al., 2005). In these neurons, CB1R activation reduces presynaptic vesicular release into the spinal dorsal horn through reduction of calcium entry via Cav2.2 and potassium efflux through KCC2 (Howlett et al., 2004; Zamponi, 2016). In addition, binding of (endogenous) cannabinoids at the spinal level inhibits the activity of adenylyl cyclase, preventing the conversion of ATP to cAMP, thereby reducing nociceptive signaling to higher order neurons. Moreover, endocannabinoids reduce nociceptive signaling by directly inhibiting serotonergic receptor 5-HT3 (Fan, 1995; Barann et al., 2002) and reducing sodium influx (Nicholson et al., 2003), and endogenous cannabinoids such as AEA may directly block the voltage-gated calcium channel Cav3.2, located at the presynaptic terminal between primary
afferents and the superficial dorsal horn (Chemin et al., 2001; Barbara et al., 2009; Zamponi, 2016).

Under neuropathic pain conditions, activated spinal microglia increase their production of AEA and 2-AG significantly by upregulating NAPE-PLD and DAGL, while degrading enzyme FAAH is downregulated (see Figure 1) (Eljaschewitsch et al., 2006; Garcia-Ovejero et al., 2009; Mecha et al., 2015). The increased release of endogenous cannabinoids in turn drives CB1R and CB2R activity to dampen nociceptive signaling. In addition, 2-AG and AEA upregulates the expression of microglial CB2R, and possibly CB1R, promoting a neuroprotective phenotype. Although reactive microglia are considered proinflammatory and exacerbate pain phenotypes, the increase in endocannabinoid release and upregulation of CB2Rs appear to be compensatory mechanisms that keep microglia reactivity in-check and reduce neuronal hyperexcitation.

ROLE OF MICROGLIAL CB1R AND OTHER CANNABINOID RECEPTORS IN NOCICEPTIVE SIGNALING

The localization of CB1R vs. CB2R has been a major debate fueled by limitations in available tools to discern anatomical and cell specific expression profiles. Early studies relied on antibody approaches to map CBR expression, but it was later determined that these antibodies may lack specificity (Atwood and Mackie, 2010; Baek et al., 2013; Zhang et al., 2019). To overcome this problem, groups have developed highly selective agonists and antagonists directed against the CB1R and CB2R, as well as engineered a variety of transgenic mice targeting key nodes within the endocannabinoid system (Glass and Northup, 1999; Griffin et al., 1999). Sequencing studies from single cells and tissues have also provided important insights into the localization of CBRs (Carlisle et al., 2002; Pietr et al., 2009). These technological advances suggest that in addition to CB2R, microglia may express other CB receptors. For example, CB1Rs are found throughout the CNS and primarily on neurons and astrocytes, but low levels of CB1R mRNA have also been reported in cultured microglia from rodent brain cortex (Waksman et al., 1999; Stella, 2010). Activation of these receptors by CP55940 blocks NO release after microglial activation using endotoxin E. coli lipopolysaccharide (LPS). This effect was blocked by CB1R antagonist SR141716, suggesting CB1R expression on microglia (Waksman et al., 1999). However, the presence of CB1R expression has not been found in human microglia to date (Stella, 2010; Mecha et al., 2016). Microglia also appear to express CB receptors that are neither CB1R nor CB2R. For example, CB receptor agonist levonantradol reduces LPS-induced expression of proinflammatory cytokines like IL-1β and TNF-α, an effect that was not reversed by blocking CB1R and CB2R with selective antagonists SR141716A and SR144528 (Puffenbarger et al., 2000). Similarly, treatment with cannabinoid agonist WIN55212-2 inhibited TNF-α release in a CB1R and
CB2R independent manner (Facchinetti et al., 2003). These results suggest the presence of non-classical CB2Rs in microglia that may also be involved in the cannabinoid modulation of pro-inflammatory protein expression. Indeed, a G-protein coupled receptor GPR55 expressed on microglia has been shown to be activated by cannabinoid agonists, HU-210, G405833, and L-α-lysophosphatidylinositol (LPI) (Oka et al., 2007; Ryberg et al., 2007; Henstridge et al., 2010; Anavi-Goffer et al., 2012). Interestingly, treatment with CB1R inverse agonist SR141716 has produced opposing effects on GPR55 activity, with some studies reporting an activation (Henstridge et al., 2010) while others demonstrating an inhibition of the receptor (Lauckner et al., 2008). Adding further to this puzzle, CBD appears to suppress GPR55 activity (Whyte et al., 2009). Recently, the fatty acid ethanolamide palmitoylethanolamide (PEA) has gained interest because of its anti-inflammatory and antinociceptive properties (Re et al., 2007; Guida et al., 2017). While it does not bind to CB1R or CB2R, PEA may directly or indirectly stimulate CB2 and CB1 receptors (Re et al., 2007; Lin et al., 2015; Guida et al., 2017), and its anti-inflammatory actions are blocked by selective CB2 antagonist SR144528 (Iannotti et al., 2016). Interestingly, PEA increases CB2R expression by activating PPAR-alpha and thereby induces microglial phagocytosis and migration, providing another feedback loop by which cannabinimimetic compounds engage the endocannabinoid system to modulate neuropathic pain (Franklin et al., 2003; Guida et al., 2017). These findings collectively point to the complexity of CBR pharmacology and open the possibility that microglia activity may be modulated by a complement of classical and non-classical CB2Rs with diverse signaling pathways.

CONCLUSIONS AND FUTURE PERSPECTIVES

Many studies, using a variety of rodent pain models, point to the analgesic efficacy of cannabinoids and their impact on microglia function. There has been particular focus on CB2Rs, which are markedly increased in spinal microglia in chronic pain states, and selective activation of these receptors dampens microglia reactivity and alleviates pain hypersensitivity. Attention has therefore shifted to developing CB2R directed therapies to mitigate the psychoactive side-effects associated with CB1R strategies. However, the effects of CB2R may not be entirely dictated by its actions on the central nervous system or solely by its inhibition of microglia reactivity. For instance, peripheral nerve injury can also induce CB2R expression in rat sensory neurons and a variety of immune cells (Wotherspoon et al., 2005). Indeed, there are important hurdles to overcome to translate CB2R discoveries into realized pain therapies. Notably, there is the question of whether microglial activation patterns (and upregulation of CB2R expression) are differentially impacted in the various chronic pain states. In addition, it will be important to determine whether the side effects of cannabinoid use in a clinical setting can be decreased, while maintaining the analgesic effect. Finally, unraveling the interactions between CB1R and CB2R expression and function, as well as the interplay between neurons, microglia, and astrocytes, will be critical for harnessing the full potential of cannabinoids as a possible treatment for chronic pain and for discerning whether different pain modalities will be more responsive than others. Recent technological advances in vape delivery of phytocannabinoids, and the availability of human microglia cultures from induced pluripotent stem cells, provide new tools to study the full potential of cannabinoids in treating chronic pain and its impact on microglia.

AUTHOR CONTRIBUTIONS

NvdH wrote the first draft of the manuscript. EH designed the figures. NvdH, EH, and TT wrote sections of the manuscript. TT provided supervision. All authors contributed to manuscript revision, read, and approved of the submitted version.

FUNDING

This work was supported by an Alberta Innovates mCANNABIS grant to TT. NvdH was funded by an Alberta Innovates Postgraduate Fellowship. EH was funded by an Eyes High University of Calgary Fellowship, and CD was funded by a Cumming School of Medicine studentship.

REFERENCES

Alger, B. E., and Kim, J. (2011). Supply and demand for endocannabinoids. Trends Neurosci. 34, 304–315. doi: 10.1016/j.tins.2011.03.003

Anavi-Goffer, S., Baillie, G., Irving, A. J., Gertsch, J., Greig, I. R., Pertwee, R. G., et al. (2012). Modulation of L-alpha-lysophosphatidylinositol/GPR55 mitogen-activated protein kinase (MAPK) signaling by cannabinoids. J. Biol. Chem. 287, 91–104. doi: 10.1074/jbc.M111.296020

Andreae, M. H., Carter, G. M., Shaparin, N., Suslov, K., Ellis, R. J., Ware, M. A., et al. (2015). Inhaled cannabis for chronic neuropathic pain: a meta-analysis of individual patient data. J. Pain 16, 1221–1232. doi: 10.1016/j.jpain.2015.07.009

Ashton, J. C., and Glass, M. (2007). The cannabinoid CB2R receptor as a target for inflammation-dependent neurodegeneration. Curr. Neuropharmacol. 5, 73–80. doi: 10.2174/157015907780866884

Barann, M., Molderings, G., Bruss, M., Bonisch, H., Urban, B. W., and Gothert, M. (2002). Direct inhibition by cannabinoids of human 5-HT3A receptors: probable involvement of an allosteric modulatory site. Br. J. Pharmacol. 137, 589–596. doi: 10.1038/sj.bjp.0704829

Boek, J. H., Darlington, C. L., Smith, P. F., and Ashton, J. C. (2013). Antibody testing for brain immunohistochemistry: brain immunolabeling for the cannabinoid CB(2) receptor. J. Neurosci. Methods 216, 87–95. doi: 10.1016/j.jneumeth.2013.03.021

Burge, R. P., Spengler, A. C., and Tracey, I. K. (2010). The role of interleukin-18 in pain and inflammation. Br. J. Anaesth. 104, 714–720. doi: 10.1093/bja/aeq022

Cumming School of Medicine studentship.

Facchinetti, F., Cassidy, J., Snell, J., and Pacher, P. (2003). Pharmacology and open the possibility that microglia activity may be modulated by a complement of classical and non-classical CB2Rs with diverse signaling pathways.
Beggs, S., Trang, T., and Salter, M. W. (2012). P2X4R+ microglia drive neuropathic pain. *Nat. Neurosci.* 15, 1068–1073. doi: 10.1038/nn3155

Beltramo, M., Bernardini, N., Bertorelli, R., Campanella, M., Nicolussi, E., Freduzzi, S., et al. (2006). CB2R receptor-mediated antihyperalgesia: possible direct involvement of neural mechanisms. *Eur. J. Neurosci.* 23, 1530–1538. doi: 10.1111/j.1460-9568.2006.04684.x

Bie, R., Wu, J., Foss, J. F., and Naguib, M. (2018). An overview of the cannabinoid type 2 receptor system and its therapeutic potential. *Curr. Opin. Anaesthesiol.* 31, 407–414. doi: 10.1097/ACO.0000000000000166

Biringer, R. G. (2021). Endocannabinoid signaling pathways: beyond CB1R and CB2R. *J. Cell Commun. Signal.* 15, 335–360. doi: 10.1007/s40270-021-00622-6

Boehnke, K. F., Clauw, D. J., and Haffajee, R. L. (2019). Medical cannabis and pain: the authors reply. *Health Aff.* 38:694. doi: 10.1377/hlthaff.2019.00183

Bonin, R. P., and De Koninck, Y. (2014). A spinal analog of memory reconsolidation enables reversal of hyperalgesia. *Nat. Neurosci.* 17, 1043–1045. doi: 10.1038/nn.3758

Brownjohn, P. W., and Ashton, J. C. (2012). Spinal cannabinoid CB2 receptors as a target for neuropathic pain: an investigation using chronic constriction injury. *Neuroscience* 203, 180–193. doi: 10.1016/j.neuroscience.2011.12.028

Burgos, E., Gomez-Nicola, D., Pascual, D., Martin, M. I., Nieto-Sampedro, M., and Goicoechea, C. (2012). Cannabinoid agonist WIN 55,212-2 prevents the development of paclitaxel-induced peripheral neuropathy in rats. Possible involvement of spinal gial cells. *Eur. J. Pharmacol.* 682, 62–72. doi: 10.1016/j.ejphar.2012.02.008

Burke, N. C., Fan, P., and Trang, T. (2016). Microglia in health and pain: impact of noxious early life events. *Exp. Physiol.* 101, 1003–1021. doi: 10.1113/EP085714

Cabanero, D., Ramirez-Lopez, A., Drews, E., Schmole, A., Otte, D. M., Wawrzczak-Correa, F., Hernangomez, M., Mestre, L., Loria, F., Spagnolo, A., Docagne, F., Correa, F., Docagne, F., Mestre, L., Clemente, D., Hernangómez, M., Lória, F., et al. (2021). Dalgarno, R., Leduc-Pessah, H., Pilapil, A., Kwon, C. H., and Trang, T. (2018). Intrathecal delivery of a palmitoylated peptide targeting Y382-384 within the P2X7 receptor alleviates neuropathic pain. *Mol. Pain* 14:1744806918795793. doi: 10.1177/1744806918795793

Dellerman, P. (1999). Are opioids effective in relieving neuropathic pain? *Pain* 80, 453–62. doi: 10.1016/S0304-3959(98)00256-5

Di Marzo, V. (2008). Targeting the endocannabinoid system: to enhance or reduce? *Nat. Rev. Drug Discov.* 7, 438–455. doi: 10.1038/nrd2553

dos Santos, R. S., Sorgi, C. A., Peti, A. P. F., Veras, F. P., Faccioli, L. H., and Galdino, G. (2019). Involvement of spinal cannabinoid CB2R receptors in exercise-induced antinociception. *Neuroscience* 418, 177–188. doi: 10.1016/j.neuroscience.2019.08.041

Duffy, S. S., Hayes, J. P., Fiore, N. T., and Moalem-Taylor, G. (2021). The cannabinoid system and microglia in health and disease. *Neuropharmacology* 190:108555. doi: 10.1016/j.neuropharm.2021.108555

Echeverry, S., Shi, X. Q., Yang, M., Huang, H., Wu, Y., Lorenzo, L.-E., et al. (2017). Spinal microglia are required for long-term maintenance of neuropathic pain. *Pain* 158, 1792–1801. doi: 10.1016/j.pain.2017.05.017

Ehrhart, J., Obregon, D., Mori, T., Hsu, H., Sun, N., Bai, Y., et al. (2005). Stimulation of cannabinoid receptor 2 (CB2R) suppresses microglial activation. *J. Neuroinflammation* 2:9. doi: 10.1186/1742-204-2-9

Elsheiekhwisht, E., Witting, A., Mawrin, C., Lee, T., Schmidt, P. M., Wolf, S., et al. (2006). The endocannabinoid anandamide protects neurons during CNS inflammation by induction of MKP-1 in microglial cells. *Neuron* 49, 67–79. doi: 10.1016/j.neuron.2005.11.027

Facchinetti, F., Del Giulio, E., Furegato, S., Passarotto, M., and Leon, A. (2003). Cannabinoids ablate release of TNFalpha in rat microglial cells stimulated with lipopolysaccharide. *Glia* 41, 161–168. doi: 10.1002/glia.10177

Fan, P. (1995). Cannabinoid agonists inhibit the activation of 5-HT3 receptors in rat nodose ganglion neurons. *J. Neurophysiol.* 73, 907–910. doi: 10.1152/jn.1995.73.2.907

Ferrini, F., Perez-Sanchez, J., Feeland, S., Lorenzo, L. E., Godin, A. G., Plascencia-Fernandez, I., et al. (2020). Differential chloride homeostasis in the spinal dorsal horn locally shapes synaptic plasticity and modulatory-sensitivity specification. *Nat. Commun.* 11:3935. doi: 10.1038/s41467-020-17824-y

Finn, D. P., Haroutontian, S., Hohmann, A. G., Krane, E., Soliman, N., and Rice, A. S. C. (2021). Cannabinoids, the endocannabinoid system, and pain: a review of preclinical studies. *Pain* 162, S5–S25. doi: 10.1097/j.pain.0000000000002268

Franklin, A., Parmentier-Batteur, S., Walter, L., Greenberg, D. A., and Stella, N. (2003). Palmitoylethanolamide increases after focal cerebral ischemia and potentiates microglial cell motility. *J. Neurosci.* 23, 7767–7775. doi: 10.1523/JNEUROSCI.23-21-2003

Garcia-Ovejero, D., Arevalo-Martin, A., Petrosino, S., Docagne, F., Hagen, C., Bisogno, T., et al. (2009). Involvement of spinal cannabinoid CB2 receptors in exercise-induced antinociception. *J. Neurosci.* 29, 137–147. doi: 10.1523/JNEUROSCI.4283-08.2009

Giri, S., Nath, N., Smith, B., Viollet, B., Singh, A. K., and Singh, I. (2004). 5-aminoimidazole-4-carboxamid-1-beta-4-ribofuranoside inhibits proinflammatory response in glial cells: a possible role of AMP-activated protein kinase. *J. Neurosci.* 24, 479–487. doi: 10.1523/JNEUROSCI.4283-03.2004

Glass, M., and Northup, J. K. (1999). Agonist selective regulation of G proteins by cannabinoid CB1(1) and CB(2) receptors. *Mol. Pharmacol.* 56, 1362–1369. doi: 10.1124/mol.56.6.1362

Grenald, S. A., Young, M. A., Wang, Y., Ossipov, M. H., Ibrahim, M. M., Largent-Milnes, T. M., et al. (2017). Synergistic attenuation of chronic pain using mu opioid and cannabinoid receptor 2 agonists. *Neuropharmacology* 116, 59–70. doi: 10.1016/j.neuropharm.2016.12.008

Grenier, P., Sanuvsky, A., and Olmstead, M. C. (2021). Morphine induces upregulation of neurally expressed CB2R receptors in the spinal dorsal horn of rats. *Cannab. Cannab. Res.* 6, 137–147. doi: 10.1098/can.2020.0044

Griffin, G., Wray, E. J., Tao, Q., Mcllister, S. D., Rorwer, W. K., Aung, M. M., et al. (1999). Evaluation of the cannabinoid CB2 receptor-selective antagonist, SR144528: further evidence for cannabinoid CB2 receptor absence
in the rat central nervous system. Eur. J. Pharmacol. 377, 117–125. doi: 10.1016/S0014-2999(99)00420-1

Guan, Z., Kuhn, J. A., Wang, X., Colquitt, B., Solorzano, C., Vaman, S., et al. (2016). Injured sensory neuron-derived CSF1 induces microglial proliferation and DAP12-dependent pain. Nat. Neurosci. 19, 94–101. doi: 10.1038/nn.4189

Guida, F., Luongo, L., Boccella, S., Giordano, M. E., Romano, R., Bellini, G., et al. (2017). Palmitoylethanolamide induces microglia changes associated with increased migration and phagocytic activity: involvement of the CB2 receptor. Sci. Rep. 7:3753. doi: 10.1038/s41598-017-03432-2

Guindon, J., and Hohmann, A. G. (2009). The endocannabinoid system and pain. CNS Neurol. Disord. Drug Targets 8, 403–421. doi: 10.2174/187152709789824660

Hains, B. C., and Waxman, S. G. (2006). Activated microglia contribute to the maintenance of chronic pain after spinal cord injury. J. Neurosci. 26, 4308–4317. doi: 10.1523/JNEUROSCI.0036-06.2006

Hanus, L., Breuer, A., Tchilibon, S., Shiloah, S., Goldenberg, D., Horowitz, M., et al. (1999). HU-308: a specific agonist for CB2, a peripheral cannabinoid receptor. Proc. Natl. Acad. Sci. USA. 96, 14222–14233. doi: 10.1073/pnas.96.25.14228

Harte, S. E., Harris, R. E., and Clauw, D. J. (2018). The neurobiology of central sensitization. J. Appl. Biobehav. Res. 23:e12137. doi: 10.1111/jabr.12137

Henstridge, C. M., Balenga, N. A., Schroder, R., Kargl, J. K., Platter, W., Martini, L., et al. (2010). GPR55 ligands promote receptor coupling to multiple signalling pathways. Br. J. Pharmacol. 160, 604–614. doi: 10.1111/j.1476-5381.2009.00625.x

Hernangómez, M., Mestre, L., Correa, F. G., Loría, F., Mecha, M., Iñigo, P. M., et al. (2016). Injured sensory neuron-derived CSF1 induces microglial proliferation in spinal cord. J. Neurosci. 36, 5189–5194. doi: 10.1523/JNEUROSCI.3358-07.2008

Knabl, J., Witschi, R., Hosl, K., Reinold, H., Zeilhofer, U. B., Ahmadi, S., et al. (2008). Reversal of pathological pain through specific spinal GABAA receptor subtypes. Nature 451, 330–334. doi: 10.1038/nature06493

Kobayashi, M., Konishi, H., Hayo, A., Takai, T., and Kiyama, H. (2016). TREM2/DAP12 signal elicits proinflammatory response in microglia and exacerbates neuropathic pain. J. Neurosci. 36, 11188–11150. doi: 10.1523/JNEUROSCI.1238-16.2016

Kohro, Y., Matuda, T., Yoshihara, K., Kohno, K., Koga, K., Katsuragi, R., et al. (2020). Spinal astrocytes in superficial laminae gate brainstorm sensing control of mechanosensory hypersensitivity. Nat. Neurosci. 23, 1376–1387. doi: 10.1038/s41593-020-00713-4

Koromoswka-Muller, J. A., and Schmole, A. C. (2020). CB2R receptor in microglia: the guardian of self-control. Int. J. Mol. Sci. 21:22. doi: 10.3390/ijms21200019

La Porta, C., Bura, S. A., Aracil-Fernandez, A., Manzanares, J., and Maldonado, R. (2013). Role of CB1R and CB2R cannabinoid receptors in the development of joint pain induced by monosodium iodoacetate. Pain 154, 160–174. doi: 10.1016/j.pain.2012.10.003

Laframboise, A., and Woolf, C. J. (2009). Central sensitization: a generator of pain hypersensitivity by central neural plasticity. J Pain 10, 895–926. doi: 10.1016/j.pain.2009.06.012

Lauckner, J. E., Jensen, J. B., Chen, H. Y., Lu, H. C., Hille, B., and Mackie, K. (2008). GPR55 is a cannabinoid receptor that increases intracellular calcium and inhibits M current. Proc. Natl. Acad. Sci. USA. 105, 2699–2704. doi: 10.1073/pnas.0711278105

Lawson, L. J., Perry, V. H., Dri, P., and Gordon, S. (1990). Heterogeneity in the distribution and morphology of microglia in the normal adult mouse brain. Neuroscience 39, 151–170. doi: 10.1016/0304-3940(90)90229-W

Lin, T. Y., Lu, C. C., Wu, C. C., Huang, S. K., and Wang, S. J. (2015). Palmitoylethanolamide inhibits glutamate release in rat cerebrocortical nerve terminals. Int. J. Mol. Sci. 16, 5553–5571. doi: 10.3390/ijms16035555

Liu, X. J., Gingrich, J. R., Vargas-Caballero, M., Dong, Y. N., Sengar, A., Beggs, S., et al. (2008). Treatment of inflammatory and neuropathic pain by uncoupling Src from the NMDA receptor complex. Nat. Med. 14, 1325–1332. doi: 10.1038/nm.1883

Lu, C., Liu, Y., Sun, B., Sun, Y., Hou, B., Zhang, Y., et al. (2015). Intrathecal injection of JWH-015 attenuates bone cancer pain via time-dependent modification of pro-inflammatory cytokines expression and astrocytes activity in spinal cord. Inflammation 38, 1880–1890. doi: 10.1007/s10753-015-0168-3

Lu, H.-C., and Mackie, K. (2021). Review of the endocannabinoid system. Biol. Psychiatry Cogn. Neurosci. Neuroimag. 6, 607–615. doi: 10.1016/j.bpsc.2020.07.016

Ma, C., Zhang, M., Liu, L., Zhang, P., Liu, D., Zheng, X., et al. (2021). Low-dose cannabinoid receptor 2 agonist induces microglial activation in a cancer pain-morphine tolerance rat model. Life Sci. 264:118635. doi: 10.1016/j.lfs.2021.118635

Malek, N., Popiolek-Barczyk, K., Mika, J., Przewlocka, B., and Starowicz, K. (2015). Anandamide, acting via CB2Receptors, alleviates LPS-induced neuroinflammation in rat primary microglial cultures. Neural Plast. 2015, 1–10. doi: 10.1155/2015/130639

Mapplebeck, J. C. S., Dalgarno, R., Tu, Y., Moriarty, O., Beggs, S., Kwok, C. H. T., et al. (2018). Microglial P2X4-evoked pain hypersensitivity is sexually dimorphic in rats. Pain 159, 1752–1763. doi: 10.1097/j.pain.0000000000001265

Mapplebeck, J. C. S., Lorenzo, L. E., Lee, K. Y., Gauthier, C., Muley, M. M., De Konincx, Y., et al. (2019). Chloride dysregulation through downregulation of KCC2 mediates neuropathic pain in both sexes. J Neurosci. 39, 117–125. doi: 10.1523/JNEUROSCI.0064-17.2017

Masuda, T., Ozono, Y., Mikurita, S., Kohno, Y., Tozaki-Saitoh, H., Iwatsuki, K., et al. (2016). Dorsal horn neurons release neuroinflammatory agents in a VNUT-dependent manner that underlies neuropathic pain. Nat. Commun. 7:12529. doi: 10.1038/ncomms12529
Nimmerjahn, A., Kirchhoff, F., and Helmchen, F. (2005). Resting microglial cells
O’connor, A. B., and Dworkin, R. H. (2009). Treatment of neuropathic
Niu, J., Huang, D., Zhou, R., Yue, M., Xu, T., Yang, J., et al. (2017). Activation of
Naguib, M., Xu, J. J., Diaz, P., Brown, D. L., Cogdell, D., Bie, B., et al.
Mecha, M., Carrillo-Salinas, F. J., Feliu, A., Mestre, L., and Guaza, C. (2016).
van den Hoogen et al. Microglia, Cannabinoids, and Chronic Pain
Naguib, M., Diaz, P., Xu, J. J., Astruc-Diaz, F., Craig, S., Vivas-Mejia, P., et al.
Re, G., Barbero, R., Miolo, A., and Di Marzo, V. (2007). Palmitoylethanolamide,
Racz, I., Nadal, X., Alferink, J., Banos, J., Rehnelt, J., Martin, M., et al.
Romero-Sandoval, A., Nuttle-Mcmeneny, N., and Deleo, J. (2008). Spinal microglial and perivascular cell cannabinoid receptor type 2 activation reduces behavioral hypersensitivity without tolerance after peripheral nerve injury.
Anesthesiology 108, 722–734. doi: 10.1097/ALN.0b013e318167af74
Ryberg, E., Larsson, N., Sjögren, S., Hjorth, S., Hermansson, N. O., Leonova, J., et al. (2007). The orphan cannabinoid receptor GBP3 is a novel cannabinoid receptor.
Br. J. Pharmacol. 152, 1092–1101. doi:10.1038/sj.bjp.0707460
Shiu, S. J., Peng, H. Y., Lin, C. R., Wang, S. W., Rau, R. H., and Cheng, J. K. (2017). Continuous intrathecal infusion of cannabinoid receptor agonists attenuates nerve ligation-induced pain in rats. Reg. Anesth. Pain Med. 42, 499–506. doi: 10.1097/AAP.0000000000000601
Soliman, N., Haroutounian, S., Hohmann, A. G., Krane, E., Liao, J., Macleod, M., et al. (2021). Systematic review and meta-analysis of cannabinoids, cannabis-based medicines, and endocannabinoid system modulators tested for antinociceptive effects in animal models of injury-related or pathological persistent pain. Pain 162, S26–S44. doi:10.1097/j.pain.0000000000003269
Solomon, G. D. and Solomon, C. S. (2019). Medical cannabis and chronic pain.
Health Aff. 38:694. doi:10.1377/hlthaff.2019.00170
Sorge, R. E., Mapplebeck, J. C., Rosen, S., Beggs, S., Taves, S., Alexander, J. K., et al. (2015). Different immune cells mediate mechanical pain hypersensitivity in male and female mice. Nat. Neurosci. 18, 1081–1083. doi:10.1016/j.nn.2015.09.098
Sorge, R. E., Trang, T., Dorfman, R., Smith, S. B., Beggs, S., Ritchie, J., et al. (2012). Genetically determined P2X7 receptor pore formation regulates variability in chronic pain sensitivity.
Nat. Med. 18, 599–595. doi:10.1038/nm.2710
Stella, N. (2010). Cannabinoid-like receptors in microglia, astrocytes, and astrocytomas.
Glia 58, 1017–1030. doi:10.1002/glia.20983
Storozhuk, M. V., and Zholos, A. V. (2018). TRP channels as novel targets for endogenous ligands: focus on endocannabinoids and nociceptive signaling.
Curr. Neuropharmacol. 16, 137–150. doi:10.1016/j.cnp.2017.05.007
Tsuda, M. (2016). Microglia in the spinal cord and neuropathic pain.
J. Diabet. Invest. 7, 17–26.
Tsuda, M., Inoue, K., and Salter, M. W. (2005). Neuropathic pain and spinal microglia: a big problem from molecules in “small” glia. Trends Neurosci. 28, 101–107. doi:10.1016/j.tins.2004.12.002
Tsuda, M., Shigemoto-Mogami, Y., Koizumi, S., Mizokoshi, A., Koizumi, S., Salter, M. W., et al. (2003). P2X4 receptors induced in spinal microglia gate tactile allodynia after nerve injury. Nature 424, 778–783. doi:10.1038/nature01786
Ulmann, L., Hatcher, J. P., Hughes, J. P., Chaumont, S., Green, P. J., Conquet, F., et al. (2008). Up-regulation of P2X4 receptors in spinal microglia after peripheral nerve injury mediates DNQX release and neuropathic pain.
J. Neurosci. 28, 11263–11268. doi:10.1523/JNEUROSCI.2880-08.2008
Voeller, R. (2018). States move to substitute opioids with medical marijuana to quell epidemic.
JAMA 320, 2408–2410. doi:10.1001/jama.2018.17329
Waksman, Y., Olson, J. M., Carlisle, S. J., and Cabral, G. A. (1999). The central cannabinoid receptor (CB1R) mediates inhibition of nitric oxide production by rat microglial cells.
J. Pharmacol. Exp. Ther. 288, 1357–1366.
Walczak, J. S., Pichtche, V., Leblond, F., Desbiens, K., and Beaulieu, P. (2006). Characterization of chronic constriiction of the saphenous nerve, a model of
neuropathic pain in mice showing rapid molecular and electrophysiological changes. *J. Neurosci.* 83, 1310–1322. doi: 10.1016/j.neuro.2008.21
Walter, L., Franklin, A., Witting, A., Wade, C., Xie, Y., Kunos, G., et al. (2003). Nonpsychotropic cannabinoid receptors regulate microglial cell migration. *J. Neurosci.* 23, 1398–1405. doi: 10.1523/JNEUROSCI.23-04-01398.2003
Walter, L., and Stella, N. (2004). Cannabinoids and neuroinflammation. *Br. J. Pharmacol.* 141, 775–785. doi: 10.1038/sj.bjp.0705667
Wang, C., Xu, K., Wang, Y., Mao, Y., Huang, Y., Liang, Y., et al. (2020). Spinal cannabinoid receptor 2 activation reduces hypersensitivity associated with bone cancer pain and improves the integrity of the blood-spinal cord barrier. *Reg. Anesth. Pain Med.* 45, 783–791. doi: 10.1136/rapm-2019-101262
Whiting, P. F., Wolff, R. F., Deshpande, S., Di Nisio, M., Duffy, S., Hernandez, A. V., et al. (2015). Cannabinoids for medical use: a systematic review and meta-analysis. *JAMA* 313, 2456–2473. doi: 10.1001/jama.2015.6358
Whyte, L. S., Ryberg, E., Sims, N. A., Ridge, S. A., Mackie, K., Greasley, P. J., et al. (2009). The putative cannabinoid receptor GPR55 affects osteoclast function in vitro and bone mass in vivo. *Proc. Natl. Acad. Sci. USA.* 106, 16531–16516. doi: 10.1073/pnas.0902743106
Witting, A., Walter, L., Wacker, J., Moller, T., and Stella, N. (2004). P2X7 receptors control 2-arachidonoylglycerol production by microglial cells. *Proc. Natl. Acad. Sci. USA.* 101, 3214–3219. doi: 10.1073/pnas.0306707101
Wotherspoon, G., Fox, A., McIntyre, P., Colley, S., Bevan, S., and Winter, J. (2005). Peripheral nerve injury induces cannabinoid receptor 2 protein expression in rat sensory neurons. *Neuroscience* 135, 235–245. doi: 10.1016/j.neuroscience.2005.06.009
Wu, J., Hocevar, M., Bie, B., Foss, J. F., and Naguib, M. (2019). Cannabinoid type 2 receptor system modulates paclitaxel-induced microglial dysregulation and central sensitization in rats. *J. Pain* 20, 501–514. doi: 10.1016/j.jpain.2018.10.007
Zamponi, G. W. (2016). Targeting voltage-gated calcium channels in neurological and psychiatric diseases. *Nat. Rev. Drug Discov.* 15, 19–34. doi: 10.1038/nrd.2015.5
Zhang, H. Y., Shen, H., Jordan, C. J., Liu, Q. R., Gardner, E. L., Bonci, A., et al. (2019). CB2R receptor antibody signal specificity: correlations with the use of partial CB2R-knockout mice and anti-rat CB2R receptor antibodies. *Acta Pharmacol. Sin.* 40, 398–409. doi: 10.1038/s41401-018-0037-3
Zhang, J., Hoffert, C., Vu, H. K., Groblewski, T., Ahmad, S., and O’donnell, D. (2003). Induction of CB2R receptor expression in the rat spinal cord of neuropathic but not inflammatory chronic pain models. *Eur. J. Neurosci.* 17, 2750–2754. doi: 10.1046/j.1460-9586.2003.02704.x
Zhuang, Z. Y., Gerner, P., Woolf, C. J., and Ji, R. R. (2005). ERK is sequentially activated in neurons, microglia, and astrocytes by spinal nerve ligation and contributes to mechanical allodynia in this neuropathic pain model. *Pain* 114, 149–159. doi: 10.1016/j.pain.2004.12.022
Zygmont, P. M., Petersson, J., Andresson, D. A., Chuang, H., Sorgard, M., Di Marzo, V., et al. (1999). Vanilloid receptors on sensory nerves mediate the vasodilator action of anandamide. *Nature* 400, 452–457. doi: 10.1038/22761

Conflict of Interest: TT is co-founder and CEO of AphioTx Inc., which is developing pannexin-1 channel targeted therapies. There is no overlap or conflict of interest as it relates to the contents of this manuscript.

The remaining authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher's Note: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

Copyright © 2022 van den Hoogen, Harding, Davidson and Trang. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.