Materials Research Express

PAPER

Dye extracted from Bael leaves as a photosensitizer in dye sensitized solar cell

Samah Alhorani¹, Sarvesh Kumar¹⁺, Mahaveer Genwa² and P L Meena³⁺

¹ Department of Applied Sciences (Physics), Faculty of Engineering and Technology, Manav Rachna International Institute of Research and Studies, Sector-43, Faridabad—121001, India
² Department of Chemistry, Deen Dayal Upadhyaya College, University of Delhi, Sector-3, Dwarka, New Delhi-110078, India
³ Department of Physics, Deen Dayal Upadhyaya College, University of Delhi, Sector-3, Dwarka, New Delhi-110078, India

* Authors to whom any correspondence should be addressed.

E-mail: plmeena@gmail.com, plmeena@ddu.du.ac.in and guptask10@gmail.com

Keywords: TLC, UV–visible spectroscopy, Ionic conductivity, DSSC, I-V measurement, Bael leaves dye

Abstract

This study has explored a new plant source, Bael tree leaves, as an efficient dye extraction towards green energy harvesting through dye-sensitized solar cells (DSSCs). The photosensitizers, photo-absorption, bandgap, and ionic conductivity characteristics of the extracted dye were determined using thin-layer chromatography (TLC), ultraviolet-visible spectroscopy, Tauc plot, and conductivity meter, respectively. Chlorophyll is the main constituent in the extracted dye confirmed by TLC analysis. An optimum concentration (0.2 g ml⁻¹) with ionic conductivity of 455 μS cm⁻¹ of the dye was used as a photoactive layer in DSSC, demonstrating power densities of 1.345 μW m⁻² and 8.078 μW m⁻² under the illumination of the LED lamp (1555 lx) and tungsten bulb (1926 lx), respectively. Additional parameters, including fill factor (0.26), ideality factor (1.25), characteristic resistance (309 Ω), series resistance (313 Ω), and shunt resistance (662 Ω) of the fabricated DSSC under tungsten illumination reveal that the novel Bael tree leaves-based dye can harvest green energy efficiently through DSSCs.

Introduction

Solar cells are certainly one of the most promising technologies in converting solar energy into electricity. To provide a convenient and equivalent testing environment for solar cells, traditionally tested under one Sun condition (100 mW cm⁻²) that is typically equivalent to 100,000 lx for simulating the outdoor conditions. However, indoor light is considered low or dim due to the low photon flux intensity, ranging from 300 to 2400 lx in offices and reading rooms [1].

Dye-sensitized solar cells (DSSCs) are one of the most promising indoor energy harvesting technologies. These can work effectively in low light such as the cloudy sky, indirect sunlight, or any light source found in the interior [1–4]. However, the low efficiency and stability have prevented them from existing in the bulk electricity power generation for outdoor applications [5]. Research on natural photosensitizers has been attractive for DSSCs due to easy and economical extraction and also being environmentally friendly. In nature, fruit, vegetable, and plant leaves have colorants that can be easily separated and employed in DSSCs [6]. The cells performance mainly depends on light source [4, 7], electrodes [8–10], dye [11, 12], and electrolyte [13].

Poulose & Sreejaya, 2018 [4] showed that the pomegranate juice–based DSSC tested under fluorescent light yielded a higher value of open-circuit voltage (V OCC) than diffused light among the three low light intensity sources, i.e., 35 W tungsten halogen lamp (430 lm), 12 W LED (40–45 lm), and mobile phone flashlight (60–80 lm). The DSSC under halogen lamp considerably provided the highest value of VOC. These VOC values exponentially increased as the distance between the cell and light sources decreased under constant light intensity [4]. Also, the rosella flower extracted dye-based cell tested under a 150 W halogen lamp enhanced the short circuit current (Isc). VOC and efficiency (η) decrease as the light source distance from DSSC decreases [14].
The papaya leaves extract-based DSSC tested under solar illumination (1.5 AM), cool daylight, and warm white LED. In these cases, the best values of I_{SC} and V_{OC} were observed under solar irradiation, and the cool daylight produces more I_{SC} and V_{OC} than warm LED [15]. However, no international standardization is used to characterize the solar cell for indoor applications [16].

The natural extract from plant materials at various concentrations is becoming a new pathway to obtain sensitizing pigments. Increasing dye concentration, increased absorption, exciton generation, and dye adsorption on the TiO$_2$ surface improved the electron injection that initiates the I_{SC} in the circuits [6, 17]. The performance of red cabbage-based DSSC increased by increasing the dye concentrations to the optimum level [18]. An increase in the dye concentration up to the optimum level, increases the number of inactive dye molecules due to aggregation on the surface of TiO$_2$, hence blocking the electron injection process and consequently reducing the efficiency [19]. Interestingly, the variations of concentration of dye solutions derived from papaya leaves did not show a considerable effect on the energy bandgap, HOMOs, LOMOs values, and the IR-functional groups [19]. Moreover, the photosensitizer requires at least one of the following groups: carbonyl (CO), carboxylic (COOH), and hydroxy (OH) groups that are essential for stable adsorption onto the TiO$_2$ thin film [20].

Bael (Aegle marmelos) is a well-known Wood apple belonging to the Rutaceae family and widely used in traditional medicines. The plant extract analysis shows the presence of coumarin, tannins, and flavonoids biomolecules [21]. Further investigations of Bael leave organic extracts reported that aegeline (a type of alkaloid amide) and 1,3-dimethylamylamine are dominant active constituents of these leaves [22].

In this work, photosensitizer was extracted from the leaves of the Bael tree using the solvent extraction method and characterized by TLC, ultraviolet-visible spectroscopy, and ionic conductivity measurement. Here we first establish and report the current–voltage characteristic measurements of the dye under the illumination with the tungsten bulb and LED.

Material and methods

Dye extraction

Fresh leaves picked from the Bael tree were cleaned with tap water, dried in the open air at room temperature, and then grinding in an electrical grinder. 6 g of leaves powder soaked in 30 ml ethanol for 1 h and grinded with the help of mortar and pestle. Then, dye solution was diluted with ethanol in different ratios [1:4, 1:8, 1:12, 1:16, and 1:20 (V/V)] to observe the effect of dye concentrations on the optical and electrical (ionic) parameters. Insoluble particles were separated from the liquid using filter paper. Then dye solution (dark green with black shades) was stored in an ember-colored bottle to protect the dye from direct light.

Electrodes

For working electrode, first titanium dioxide (TiO$_2$) paste prepared by addition of 5 ml mixture of solvent (chloroform, ethanol and deionized water; 6.5:3.5:1.0) to 0.6 g commercially available TiO$_2$ powder dispersed in Agate mortar and pestle and then grinded till obtaining consistency paste. Then this paste was coated on fluorine-doped tin oxide (FTO) conductive glass by the doctor blade technique. Then this TiO$_2$ thin film is heated in the muffle furnace at 460 °C for 15 min. After cooling, this film was submerged into extracted photosensitizer for 24 h.

For a counter electrode, graphite paste in ethanol was bladed on FTO glass using the same technique and then heated in the muffle furnace at 460 °C for 15 min.

Cell assembly

A drop of the electrolyte solution [comprising iodide/iodine as a source of (I$^-$/I$_3^-$) and inorganic sodium nitrate salt in acetonitrile/water as solvent] was spotted separately between the working and counter electrodes using capillary to avoid leakage. Then both electrodes were clamped together into a sandwich-type cell using two paper binder clips. The schematic diagram of the DSSC fabrication process is shown in figure 1.

Characterization techniques

Thin-layer chromatography was used to identify the presence of photosensitizers through the separation of different pigments in the dye. The extracted dye was characterized by using 60 F$_{254}$ TLC on the aluminum plate as a stationary phase. Initially, three tiny drops of the concentrated dye (0.2 g ml$^{-1}$) solution was put on the TLC plate at baseline using glass capillary and then dried at ambient conditions for 2–3 min. Then this plate was vertically immersed in the glass beaker containing solvent of chloroform, ethanol, and deionized water in the ratios (6.5:3.5:1) as a mobile phase for 12–15 min. After the mobile phase and pigment run, this plate was...
removed from the beaker and dried for 10 min. The active compounds of extracted dye were observed on the plates. The whole process of TLC development (step by step) is shown in figure 2.

Ultraviolet-visible (UV–vis) spectroscopy measurements were performed to investigate the radiation absorption by the extracted dye. The extracted dye solutions [1:4, 1:8, 1:12, 1:16, and 1:20 (V:V)] were characterized by UV–vis spectroscopy (UV-1800, Shimadzu photo-spectrometer) in the wavelength range of 300–700 nm at room temperature.

The ionic conductivity of the extracted dye (0.2 g ml$^{-1}$) and diluted solutions was measured at room temperature using a conductivity meter (Elico CM 180). For this the conductivity cell was cleaned thoroughly with deionized water before use. The conductivity cell was then immersed in a beaker containing the dye solution and moved up and down to remove the bubbles from the conductivity cell. During the measurements, the vent holes were submerged entirely in the dye solution. After then the cell constant was fixed at 1, and the
data read mode was turned on and set to measure conductivity. Finally, the conductivity value is observed directly by the meter. After each measurement, the conductivity cell was cleaned carefully with deionized water.

The current-voltage (I-V) characteristics of DSSC were recorded using Keithley source meter in the presence of LED lamp and tungsten bulb illumination. A specific arrangement of a carton box with dimensions 68 cm × 30 cm × 60 cm was made for I-V measurements. The light intensity was measured using the FLUKE 941 light meter at the cell location point. An active area of 2.565 cm² of the assembled cell was measured using Vernier Caliper.

Results and discussion

Thin-layer chromatography of extracted dye is shown in figure 2(c). It is observed that the separated pigments did not show regular circles after migration in the solvent, which indicates a concentrated amount on the TLC plate (figure 2(a)). However, a green/yellow color migration was observed. This color indicates the presence of chlorophyll and its derivatives pigments in the extracted dye [23]. The wide diffusion of color on the plate in different regions indicates the pigments’ activeness, which suggests that ethanol can be considered a suitable solvent for chlorophyll and its derivatives [24]. It is also clear that the three spots on the plate can be moved independently without affecting each other and indicate a single TLC plate can be used for different concentrations of the same or different pigments simultaneously.

UV-vis spectra of dye solutions in the range of 300 to 700 nm are shown in figure 3(a). In the UV region \((\lambda < 400 \text{ nm})\), one prominent absorption band was observed at wavelength 327 nm for all concentrations and indicating the presence of n-π* electronic transition in C=O or C=C functional groups (anchoring molecules) to facilitate their adsorption onto TiO₂ surfaces and enhancing the electron injection into TiO₂. These transitions can initiate the electrical circuit in DSSCs [25, 26]. Two prominent bands were observed in the visible region \((\lambda > 400 \text{ nm})\) at 410 nm (visible blue region) and 663 nm (visible red region) for all concentrations and indicating the presence of chlorophyll pigment in the dye solutions. These observed band positions are agreed and very close to the reported result on chlorophyll pigment extracted from Star Gooseberry leaves in ethanol solvent [12]. An additional three bands were also observed in the blue-red region at 505 nm, 536 nm, and 608 nm for all concentrations, indicating the pheophytin fraction (chlorophyll derivatives and/or degradation products) in the extract [27]. It is also clear from the inset of figure 3(a) that the absorbance is directly proportional to the dye concentration from Bael leaves and following Beer–Lambert Law [23].

The absorption bandgap of the extracted dye is the critical parameter to determine the spectral energy range in which the dye absorbs photons, which is an alternative means of current [6]. The type of optical transitions, the value of optical energy bandgap, and the band theory commonly describe the electronic transitions in organic dye and crystal molecular structure. In which the valence band is represented by the combination of the highest occupied molecular orbitals (HOMOs; \(\pi^*\) orbitals), whereas the conduction band is represented by the lowest unoccupied molecular orbitals (LUMOs; \(\pi^*\) orbitals) [28]. Through these contexts, the value of the optoelectronic energy bandgap \(E_g^{\text{opt}}\) of the organic dye can be obtained using \(E_g^{\text{opt}} \approx 1240/\lambda\) [where \(\lambda = \lambda_{\text{max}}\) is the maximum wavelength and \(\lambda = \lambda_{\text{edge}}\) is the value of the absorption spectra in the direction of longer wavelength] [26], and Tauc assumptions for indirect transitions through \((\alpha h\nu) = C(h\nu - E_g)\) [here \(h\nu\) is the photon energy (in eV), \(C\) is a constant and \(\alpha\) is the absorption coefficient (in cm⁻¹)] [29]. The absorption coefficient \(\alpha\) can be calculated from the well-known formula \(\alpha = 2.303 A w^{-1}\) (where \(A\) is the absorbance, and \(w\) is the UV–vis cuvette width, equal to 1.0 cm) [30]. It is clear from these relations that the energy bandgaps can be obtained from concluding to zero, a linear part of a plot \((\alpha h\nu)^2 \text{versus } h\nu\), as shown in figure 3(b) for all concentrations. The values of \(\lambda_{\text{max}}\), \(\lambda_{\text{edge}}\), \(\alpha\), and \(E_g^{\text{opt}}\) were determined from the UV–vis spectra, Tauc plot method, and derivatives spectroscopy for dye 1:20 concentration is shown in table 1.

The first transition can be found in the low-energy regions (1–2.1 eV), representing the optical bandgap corresponding to the absorption in the blue, red regions or singlet excitation [24, 28]. It has been known that chlorophyll absorbs the photon and transfer their energy to the reaction center as ‘Excitons’ [24]. The second transition can be found in energy regions (2.2–4 eV), which represent the fundamental energy bandgap or the frontiers orbitals (HOMOs-LUMOs) in the chlorophyll pigment [24, 28]. These transitions indicate the presence of chlorophyll-a [31]. The first transition was found at 1.83 eV for all concentrations and agreed with the experimental and calculated bandgap of chlorophyll-a extracted in ethanol by Hedayatifar et al 2016 [24]. The second transition was observed at 2.75 eV, and the value agreed with the calculated bandgap of chlorophyll-a without the phytol group or pheophytin-a [32]. The \(E_g\) is close to the original TiO₂ bandgap (2.8–4 eV) regions [33]. The extracted dye can be absorbed light in the same wavelength range of TiO₂. Therefore, the dye can act as an optimal photosensitizer for DSSCs.
The third transition was observed at 3.36 eV for the lowest dye concentration 1:20 and decreases as the concentration of dye increases (figure 3(b)), indicating the optical behavior of dye solutions. This fundamental absorption at 3.36 eV occurs due to the excitation of electrons in the dye. The conventional Tauc plot method gives the approximate values of E_g, as shown in table 1. However, the Tauc equations assume an ideal parabolic band structure and in the case of broadening of the absorption edges, this method may underestimate the values of E_g\[34\]. Also, the Tauc method depends on the type of transition, as seen in table 1. Therefore, the corrected values of E_g were determined by an alternative method using derivative spectroscopy of the absorbance (A) as the

![Figure 3](image-url)

Figure 3. (a) UV–vis spectra of Bael leaves dye for various concentrations, and the inset of the figure indicates an absorbance variation with concentrations at 410 nm and 663 nm. (b) Tauc plot of various concentrations with inset of the figure shows the plot of \((\alpha h\nu)^2\) versus \(h\nu\), typically for 1:20 (V:V) concentration.

Methods --	Absorption spectrum	Tauc plot	UV–vis derivatives				
	A versus λ	$1240/\lambda$	$(\alpha h\nu)^2$ versus $h\nu$	dA/dE versus $h\nu$	d^2A/dE^2 versus $h\nu$		
S. No.	λ_{max} (nm)	λ_{edge} (nm)	λ_{max}	λ_{edge}	E_g^{opt} (eV)	E_g (eV)	E_g (eV)
---	---	---	---	---	---	---	---
1	327	387	3.80	3.20	3.36	3.56	---
2	410	471	3.02	2.63	2.75	3.02	---
3	505	546	2.46	2.27	---	2.35	2.45
4	536	570	2.50	2.18	---	2.33	2.31
5	608	663	2.04	1.87	---	2.04	2.05
6	663	681	1.87	1.82	1.83	1.88	1.87

The third transition was observed at 3.36 eV for the lowest dye concentration 1:20 and decreases as the concentration of dye increases (figure 3(b)), indicating the optical behavior of dye solutions. This fundamental absorption at 3.36 eV occurs due to the excitation of electrons in the dye. The conventional Tauc plot method gives the approximate values of E_g as shown in table 1. However, the Tauc equations assume an ideal parabolic band structure and in the case of broadening of the absorption edges, this method may underestimate the values of E_g\[34\]. Also, the Tauc method depends on the type of transition, as seen in table 1. Therefore, the corrected values of E_g were determined by an alternative method using derivative spectroscopy of the absorbance (A) as the
function of photon energy \((E = h\nu) \). The first-order \(\frac{dA}{dE} \), and second-order \(\frac{d^2A}{dE^2} \), for all concentrations as shown in figures 4(a) and (b), respectively, and are given in table 1. It is clearly observed that the \(E_g \) values are the same for all concentrations, and the rate of absorbance, \(\frac{dA}{dE} \), and \(\frac{d^2A}{dE^2} \) increases as the concentration increase and strongly agree with the calculated value from UV–vis spectra at \(\lambda_{\text{max}} \) except the value at 3.36 eV due to the red-shifted toward 350 nm.

Specifically, the bands at 1.83 eV split into two negative and positive maxima’s in the first-order derivatives (figure 4(a)) and one sharp negative maximum with two positive small bands observed in the second-order derivatives (figure 4(b)). These two bands are called ‘satellite valleys’ (satellite bands), as shown in figure 4(b). These valleys can act as high-energy channels for electron transport in the DSSCs [35].

The Bael leaves dye exhibited intermediate transition bands at 2.33 eV (536 nm) and 2.55 eV (505 nm) corresponding to metal to ligand charge transfer (MLCT) states. These ligands were able to enhance the light-harvesting capacity of the dye by increasing their visible light absorption at low energy (MLCT at 2.33 eV). This circumstance causes a large electronic interaction (coupling) between the \(\pi^* \)-orbital of the ligand and the d-orbital of TiO\(_2\), resulting in electron injection from the dye into the conduction band (CB) of TiO\(_2\) [20, 35].

Figure 5 shows a schematic diagram of Beal leaves dye energy levels, electron transfer processes, and photocurrent generation in a DSSC. An interfacial charge transfer, electron transfer kinetics, charge carrier dissociation, and recombination in dye/TiO\(_2\) as described by Klein et al (2016) in DSSC containing N719 or B1 (MLCT at 525 nm). Ultrafast electron transfer from the MLCT photo-excited state of dyes to the conduction band of TiO\(_2\) can arise from a singlet (\(^1\text{MLCT}\)) state as well as from the triplet (\(^3\text{MLCT}\)) state as a result of the dye interacting with metal ions [36].

Ionic conductivity measurements were applied to determine the extracted dye is ionic or molecular compounds through a comparison of dye with ethanol shown in table 2. The higher conductivity values for the extract indicate that the dye is ionic. The ionic compound can easily break down into ions and conduct electricity. Therefore, ionic solutions are suitable to apply as sensitizers in DSSC applications [37].

Figure 4. (a) First derivative (\(\frac{dA}{dE} \)) and (b) second derivative (\(\frac{d^2A}{dE^2} \)) of UV–vis absorbance spectra of Bael leaves dye for various concentrations versus energy (\(E = h\nu \)).
maximum ionic conductivity of 455 μS cm⁻¹ was found for extracted dye (0.2 g ml⁻¹) and decreased from 145 μS cm⁻¹ (1 ml as the extracted dye in 4 ml ethanol) to 141 μS cm⁻¹ (1 ml as the extracted dye in 20 ml ethanol) with increasing concentration of solvent. The high conductivity indicates the presence of a high amount of Mg ions in the dye solutions. Arifin et al (2018) [38] also reported that the chlorophyll pigment contains magnesium ions in the centre of the porphyrin ring, and the high concentration contains more ions in the extracted dye. For the DSSC, short-circuit current and consequently efficiency was found proportional to the concentration of dye sensitizer up to optimum level. So, the more current was related to the more dye adsorption through the TiO₂ photoelectrodes [39]. Therefore, the dye solution with conductance of 455 μS cm⁻¹ was used to fabricate DSSC.

The current-voltage (I-V) and power voltage (P-V) characteristic curves are shown in figure 6. The value of the short-circuit currents (I_SC), open-circuit voltages (V_OC), maximum current (I_MP) and voltage (V_MP) was calculated from these curves. The fill factor (FF) and efficiency (η%) was calculated using the following formulas [40, 41]:

\[
FF = \frac{I_{MP} \times V_{MP}}{I_{SC} \times V_{OC}}
\]

Table 2. Ionic conductivity of solvent and extracted dye solutions for various concentrations.

Compounds	Concentration	Ionic conductivity (μS cm⁻¹)
Solvent (ethanol)	30 ml	0.73
Dye Solution	0.2 g ml⁻¹	455
Diluted dye solutions	1:4 (V:V)	145
	1:8 (V:V)	144
	1:12 (V:V)	143
	1:16 (V:V)	142
	1:20 (V:V)	141

Figure 5. The schematic diagram for electron transfer and charge carrier dissociation mechanism of Bael leaves dye/TiO₂ in a DSSC.
and

\[\eta = \frac{I_{SC} \times V_{OC} \times FF}{I_{IN} \times A} \times 100\% \]

here, \(I_{IN} \) is the incident light intensity (\(W \text{ cm}^{-2} \)), irradiance, and \(A \) is the cell area (\(\text{cm}^2 \)). The illuminance rather than irradiance is the best way to quantify the level of light for an indoor environment but creates conversion problems [42]. There is no standard method for conversion between (lux, illuminance) and (\(W \text{ m}^{-2} \), irradiance) in the light spectrum because there is a different conversion factor for every wavelength that can be determined from the spectral analysis of the light composition [42, 43]. Taking into consideration the fact that the illuminance considers only the visible spectrum where 555 nm is the maximum considering wavelength, the spectral irradiance of the most room light sources show peaks near 550 nm, and the peak of the eye-sensitivity curve is mainly at 555 nm [3, 42]. Therefore, the irradiance can be approximately estimated from the following relation and can be used for efficiency calculations where the efficiency of the cell is not a critical point [42];

\[I (\frac{W}{m^2}) = 1.464 \times 10^{-3} \times I(\text{lx}) \]

The maximum power is equal to \(I_{SC} \times V_{OC} \times FF \), and thus the efficiency is equal or very close to the photogenerated power density [7]. Therefore, to simplify the comparison, we report only the output power rather than the energy conversion efficiency, then it is easy to infer or confirm the best-suited conditions for device work, where the maximum power densities (\(P_{\text{MAX}} \)) can be calculated as [1];

\[P_{\text{MAX}} = \frac{I_{MP} \times V_{MP}}{A} \]

The key performance parameters of DSSC under LED lamp and tungsten bulb were presented in table 3. It is clear from figure 6 and table 3 that all the observed values of \(I_{IN}, I_{SC}, V_{OC}, I_{MP}, V_{MP}, \) FF, and \(P_{\text{MAX}} \) for assembled DSSCs increase as light intensity (by the source of light) increase under LED illumination and tungsten bulb irradiation. It is clear also that the maximum photogenerated \(P_{\text{MAX}} \) seems to be proportional to the source of light and/or the light intensity. The key parameters of assembled DSSC are compared with different DSSCs as

![Figure 6. Current and power versus voltage characteristics of DSSC illuminated under (a) LED lamp and (b) tungsten bulb.](image-url)
Light Source	I$_{IN}$ (lx)	I$_{IN}$ (W/m2)	ISC (μA)	VOC (mV)	IMP (μA)	VMP (mV)	FF	P MAX (μW/m2)	η%	References
LED Lamp	1555	2.28	1.36	1.00	0.69	0.50	0.25	1.345	0.058	Present work
Tungsten Bulb	1926	2.82	4.92	1.65	2.59	0.80	0.26	8.078	0.273	Present work
Tungsten halogen lamp	—	30,000	2.10	363	—	—	—	~651	—	—
White light	100,000	833	63.2	159	37.4	96.0	0.36	—	—	[43]
LED Lamp	30,000	—	2.10	363	—	—	—	—	—	—
Tungsten halogen lamp	—	300	175	360	—	—	—	—	—	[8]
reported in the literature, as shown in table 3. The fabricated DSSC illuminated under tungsten bulb shows
better performance than the jatropha leaves-based DSSC illuminated under (30000 lx) may be due to better
transparency and low resistance of FTO relative to ITO surface for visible light and difference in thickness of the
TiO2 layer [44]. However, the output key parameters for cell may depend on the nature of the light source and
lighting conditions [4, 9], type of sensitizers [11, 12], working electrode thickness [44], and compositions of the
counter electrode [8].

The maximum parameters were obtained under tungsten bulb light illumination. The I-V characteristics
were recorded with varying distances of the cell from the tungsten bulb as shown in figure 7(a) and table 4, where
the light cooperated on the top of the carton wood box as shown in the inset of figure 7(b). The cell moved
vertically toward the light using a wood basement with the illumination of 30–40 s to avoid the dye degradation
and effect of heat generation. Since the DSSC is very sensitive to the temperature generated by light, which may
cause the increase of the VOC predicted theoretically and widely reported experimentally. This behavior
indicates strong temperature dependents of ideality factor (n) that limits the VOC [45, 46]. The effect of
temperature on the stability of natural dye-based cells can also vary under light and temperature based on the

Table 4. Key parameters of DSSC at different distance from the tungsten bulb.

Distance (cm)	\(I_{SC} \) (μA)	\(V_{OC} \) (mV)	\(IS_{MP} \) (μA)	\(V_{MP} \) (mV)	FF	\(P_{MAX} \) (μW/m²)
10	11.92	4.00	5.98	2.00	0.251	46.63
15	9.93	3.30	5.17	1.60	0.252	32.25
25	7.22	2.40	3.51	1.25	0.253	17.11
60	4.92	1.65	2.59	0.80	0.260	8.08

Figure 7. (a) Current and power versus voltage characteristics and (b) variation of short circuit current \((I_{SC}) \) with the distance of DSSC illuminated under a tungsten bulb and inset of the figure indicates carton box for measurements.
The chemical structure of the pigments [47, 48]. It is clear from figure 7 and table 4 that the photogenerated current and power are increased with a decrease in the distance between DSSC and light source, and the result is agreeing or very close to the reported results [4, 14]. Thus, the best suitable distance of the cell is closer to the light source due to the increase of intensity as with reduces the distance between the DSSC and source [49].

The FF is an indicator of power loss, and the most important factors that affect the FF values are series resistance (R_S), parallel resistances (R_{SH}), recombination current, and the reverse saturation current [49, 50]. The calculated FF for the dye under two different light sources was varied from 0.25 to 0.26, and the distortion in the I-V characteristics from the preferable rectangular shape indicates the presence of series resistance (R_S) and shunt resistance (R_{SH}) in a solar cell device. Typically, a solar cell is considered as a single diode according to equivalent circuit in ideal cases and with the presence of R_S and R_{SH} in the experimental case as shown in the inset of figure 8(a) [49] and the current-voltage relations of the diode in and light is given below [51]:

$$I = I_{PH} - I_D - I_S = I_{PH} - I_S \left[\exp \left(\frac{V + IR_S}{nV_T} \right) - 1 \right] - \frac{V + IR_S}{R_{SH}}$$

where I_{PH} is the photogenerated current, I_S is the reverse saturation current, V_T is the thermal voltage equal to $k_B T/q \sim 26 \text{ mV}$ at the room temperature, and n is the ideality factor. The electrical values of R_S and R_{SH} of DSSC were estimated from the inverse slope of the I-V curve near V_{OC} and I_{SC}, respectively (inset of figure 8(b)) [49, 50]. Another type of resistance that reduces the FF and efficiency is the characteristic resistance ($R_{CH} = V_{MP}/I_{MP}$) for low fill factor devices [49]. The ideality factor is the indicator of the recombination processes.
inside the cell, and can be calculated under light from I-V curves by using $\ln [I' + I_{SC}] = \frac{q}{n k T} [V - R_s I'] + \ln (I_0)$ \cite{52,53}, here, $I' = I - GV$, and $G = dI/dV$ is the shunt conductance. The plot of $\ln [I' + I_{SC}]$ versus $[V - R_s I']$ is used to calculate n, as shown in figure 8. The values of R_{CH}, R_s, R_{SH}, and n for dye under two different light sources are presented in table 5. The R_s values are usually associated with resistance of (1) transparent conductive oxide electrodes, (2) bulk semiconductor material, and (3) metallic contact \cite{54}. The smallest R_s value of the assembled DSSC was observed under tungsten bulb illumination. It resulted in the higher I_{SC} or photogenerated current, and the large current values indicated a low recombination process inside the cell, which reflected with a smaller n. However, under LED illuminations, the higher value of n could be contributed by a potential drop at the interfacial layer and the recombination current \cite{51,54}, R_{SH} inside the cell is mainly caused by leakage current, crystal defect and/or impurities in the dye-photoanode interfacing region \cite{51,54}. The resulted R_{SH} values are considerably low and affect the overall performance. However, the best numerical values of R_s, R_{SH}, and n were observed by using the tungsten bulb, where R_s is small, R_{SH} is roughly large, and lower n, thus the overall performance of the cell has been enhanced. R_{CH} is becoming approximately equal to R_s, indicating that the DSSC work with its maximum power point under the tungsten bulb.

Conclusion

Bael tree leaves dye has been successfully extracted in ethanol medium and investigated for the progress of DSSC. The chlorophyll and its derivatives pigments were observed in the extracted dye. A high ionic conductivity value indicates a high amount of Mg ions in the dye solutions. The optoelectronic energy bandgap was measured using UV–vis spectrum, Tauc plot method, and derivatives spectroscopy for various dye solutions. The developed natural dye exhibits a broad absorption spectrum range of 300–700 nm with MLCT states and two satellite valleys from the 2nd derivative spectroscopy analysis. The illumination of a photosensitizer-based DSSC under a tungsten bulb has lowered the recombination process in the cell, thus improving the photogenerated current and showing potential merit. These outcomes are auspicious and could have an advantage in improving low-cost and eco-friendly solar cells.

Data availability statement

All data that support the findings of this study are included within the article (and any supplementary files).

ORCID iDs

Sarvesh Kumar https://orcid.org/0000-0002-3548-0193

P L Meena https://orcid.org/0000-0003-2937-9395

References

1. Liu Y-H, Chou H-H, Ho F-Y, Wei H-J, Wei T-C and Yeh C-Y 2016 A feasible scalable porphyrin dye for dye-sensitized solar cells under one sun and dim light environments J. Mater. Chem. A 4 11878–87

2. Tingare Y S, Vinh N S, Chou H-H, Liu Y-U, Long Y-S, Wu T-C, Wei T-C and Yeh C-Y 2018 New acetylene-bridged 9,10-conjugated anthracene sensitizers: application in outdoor and indoor dye-sensitized solar cells Adv. Energy Mater. 8 1700032

3. Rossi D F, Pontecorvo T and Brown T M 2015 Characterization of photovoltaic devices for indoor light harvesting and customization of flexible dye solar cells to deliver superior efficiency under artificial lighting Appl. Energy 156 413–22

4. Poulose P and Sreejaya P 2018 Indoor light harvesting using dye sensitized solar cell Int. Cet Conf. on Control, Communication, and Computing (IC4) (Thiruvananthapuram) pp 152–6

5. Kokkonen M, Talebi P, Zhou J, Asgari S, Soomro S A, Elsehrawy F, Halme J, Ahmad S, Hagfeldt A and Hashmi S G 2021 Advanced research trends in dye-sensitized solar cells J. Mater. Chem. A 9 10527

6. Ahmadian R 2011 Estimating the impact of dye concentration on the photoelectrochemical performance of anthocyanin-sensitized solar cells: a power law model J. photolics Energy. 1 011123
[7] Selvaraja P et al 2018 Enhancing the efficiency of transparent dye-sensitized solar cells using concentrated light Sol. Energy Mater. Sol. Cells 175 29–34
[8] Bazargan M H 2009 Performance of nano structured dye sensitized solar cell utilizing natural sensitizer operated with platinum and carbon coated counter electrodes Digest Journal of Nanomaterials and Biostructures 4 723–7 (https://www.chalcogen.ro/723_Hossein.pdf)
[9] El-Agez T M, El Tayyan A A, Al-Khalout A, Taya S A and Abdel-Latif M S 2012 Dye-sensitized solar cells based on ZnO films and natural dyes International Journal of Materials and Chemistry 2 105–10
[10] Cho S I, Sung H K, Lee S J, Kim W H, Kim D H and Han Y S 2019 Photovoltaic performance of dye-sensitized solar cells containing ZnO:micromods Nanomaterials, 9 1613
[11] Samanchandra A R, Tharanga D and Sewandi G A 2017 Fabrication of dye sensitized solar cells using locally available sensizers Moratuwa Engineering Research Conf. (MERCon) pp 390–4
[12] Dhafina W A, Salhe H, Daud M Z and Ali N 2018 The application of sensitizers from red frangipani flowers and star gooseberry leaves in dye-sensitized solar cells J. Phys. Conf. Ser. 102 012016
[13] Orhan E, Go’kcan M and Taran S 2021 Effect of the photoanode fabrication condition, electrolyte type and illumination type on dye-sensitized solar cells performance Bull. Mater. Sci. 44 60
[14] Andari A 2020 Distance variation of light source effects toward dye sensitized solar cell (DSSC) performance using anthocyanin extract from rosella flower JPSJ (Journal of Physical Science and Engineering) 5 32–6
[15] Pramono S H, Maulana E, Pravogy A F and Djatmika R 2015 Characterization of dye-sensitized solar cell (DSSC) based on chlorophyll dye International Journal of Applied Engineering Research 10 193–205 (http://www.maulana.lecture.ub.ac.id/files/2014/01/ijavaer10n1_17.pdf)
[16] Minnaert B and Veelent V P 2014 A proposal for typical artificial light sources for the characterization of indoor photovoltaic applications Energies 7 1500–16
[17] Ashok A, Mathew S E, Shivaram S B, Shankarappa S A, Nair S V and Shanmugam M 2018 Cost effective natural photo-sensitizer from upcircled jackfruit rags for dye sensitized solar cells Journal of Science: Advanced Materials and Devices 3 321–33
[18] Chien C-Y and Hsu B-D 2013 Optimization of the dye-sensitized solar cell with anthocyanin as photosensitizer Sol. Energy 98 203–11
[19] Ariffin Z, Soepraman S, Widyasuryawidwan D, Sutanto B and Suyitno 2017 Performance enhancement of dye-sensitized solar cells (DSSCs) using a natural sensitizer AIP Conf. Proc. 1788 030123
[20] Sharma K, Sharma V and Sharma S S 2018 Dye-sensitized solar cells: fundamentals and current status Nanoscale Res. Lett. 13 381
[21] Bashir F, Akhter J, Anjum N, Alam S and Kumar P 2018 Pharmacological Investigations on Bael (Aegle Marmelos Linn.): an Unani Medicinal Plant JEPMR 5 214–9 (https://storage.googleapis.com/journals.utm.my/article_issue/1525069580.pdf)
[22] Derfa A, Sharma A, Bharate S B and Chaudhuri B 2019 Aegeline, a natural product from the plant Aegle marmelos, mimics the yeast SNARE protein Sec22p in suppressing α-synuclein and Bax toxicity in yeast Bioorganic & Medicinal Chemistry Letters 29 454–60
[23] Li Y, Scales N, Blankenship R E, Willows R D and Chen M 2012 Extinction coefficient for red-shifted chlorophyll chlorophyll d and chlorophyll b Biochem. Biophys. Acta - Bioenerg. 1817 1292–9
[24] Hedayatifar L et al 2016 Optical absorption and electronic spectra of chlorophylls a and b RSC Adv. 6 109778
[25] Zhang L and Cole JM 2015 Anchoring groups for dye-sensitized solar cells ACS Appl. Mater. Interfaces 7 3427–35
[26] Akash M S H and Rehman K 2020 Ultra violet - Visible (UV–VIS) spectroscopy. In Essentials of Pharmaceutical Analysis (Singapore: Springer Nature Singapore Pte Ltd) (https://doi.org/10.1007/978-981-15-1547-7_3)
[27] Milenkovic S M, Zvezdanovic J B, Andelkovic T D and Markovic D Z 2012 The identification of chlorophyll and its derivatives in the pigment mixtures; HPLC-chromatography, visible and mass spectroscopy Studies, Adv. Technol. 116 (https://www.bf.msi.ac.rs/casopis-archiva/veska1/62.pdf)
[28] Dongol M, El-Nahas M M, El-Denglawey A, Elhady A F and Abuewafa A A 2012 Optical properties of nano 5,10,15,20-tetraphenyl-

21H,23H-prophyrin nickel (II) thin films Curr. Appl. Phys. 12 1178–84
[29] Makula P, Pacia M and Mayck W 2018 How to control the band gap energy of optimized semiconductor photocatalysts based on UV–vis spectra J. Phys. Chem. B 112 9681–74
[30] Al-saad T M, Hussein B H, Hasan A B and Shehab A A 2019 Study the structural and optical properties of Cr doped SnO2 nanoparticles synthesized by sol-gel method Energy Procedia 157 457–65
[31] Reimers J R, Cai Z-L, Kobayashi R, Ra ‘tsep M, Freeberg A and Krausz E 2013 Assignment of the Q-bands of the chlorophyll : coherence loss via Q2 mixing Scientific Report Nature 3 2761
[32] Sundholm D 2000 Comparison of the electronic excitation spectra of chlorophyll a and phycocyanin a calculated at density functional theory level Chem. Phys. Lett. 317 545–52
[33] Verma R, Gangwar J and Sivastava A K 2017 Multiphase TiO2 nanostructures: a review of efficient synthesis, growth mechanism, probing capabilities, and applications in biosafety and health RSC Adv. 7 44199
[34] Segura A, Sanchez-Royo J F, Garcia-Domene J F, Garcia-Domene B and Almonacid G 2011 Current understereotyping of the optical gap and Burstein-Moss shift in CdO thin films: a consequence of extended misuse of a2+ versus-hu plots Appl. Phys. Lett. 99 2–5
[35] Piccardo M, Martinelli I, Iveland J, Young N, Deniks S, Nakamura S, Speck J S, Weibusch C and Perret J 2014 Determination of the first satellite valley energy in the conduction band of wurtzite GaN by near-band-gap photoemission spectroscopy Phys. Rev. B 89 235214
[36] Klein M, Pankivcakova R, Zalas M and Stampor W 2016 Magnetic field effects in dye sensitized solar cells controlled by different cell architecture Scientific Repo Rts 6 30007
[37] Setyawati H, Darmokoesoemo H, Ngintas A T A, Kadiym Y, Elmeslem H and Kusuma H S 2017 Effect of metal ion Fe (III) on the performance of chlorophyll as photosensitizers on dye sensitized solar cell Results in Physics 7 2907–18
[38] Ariffin Z, Soepraman S, Widyasuryawidwan D, Sutinto and Setayaj A T 2018 Improving stability of chlorophyll as natural dye for dye-sensitized solar cells J. Teknol. 88 27–33 (https://journals.utm.my/jurnalTeknologi/article/view/10258/6309)
[39] Pratwi D D, Nurosyif D, Kubusamandari, Suprijanto A and Suryana R 2017 Performance improvement of dye-sensitized solar cells (DSSC) by using dyes mixture from chlorophyll and anthocyanin J. Phys. Conf. Ser. 909 012025
[40] Elgami R A, Hilo M H M, Al Hassan A and Abdallah M D 2013 Effect of doping concentration on the performance of solar cell constructed from (Muscovite/TiO2/Dye/Al) Natural Science 5 52–6
[41] Gong J, Sumathy K, Qiao Q and Zhou Z 2017 Review on dye-sensitized solar cells (DSSCs): advanced techniques and research trends Renew. Sustain. Energy Rev. 68 234–46
[42] Vignati S 2012 Solutions for Indoor Light Energy Harvesting [Master’s Thesis] KTH Information and Communication Technology Stockholm, Sweden pp 81 (http://www.diva-portal.org/smash/get/diva2:578896/FULLTEXT01.pdf)
[43] Nouman A S, Chokhachian A, Santucci D and Auer T 2019 Prototyping of environmental kit for georeferenced transient outdoor comfort assessment ISPRS Int. J. Geo-Inf 8 76

[44] Pramono S H, Maulana E and Sembiring M A R 2015 The effect of photo electrode TiO2 layer thickness to the output power of chlorophyll-based dye-sensitized solar cell (DSSC) IEEE Int. Seminar on Intelligent Technology and Its Applications (ISITIA) pp 107–12 2015

[45] Aboulouard A, Jouaiti A and Elhadadi B 2017 Modelling and simulation of the temperature effect in dye sensitized solar cells Der Pharma Chemica 9 94–9 (https://www.derpharmachemica.com/pharma-chemica/modelling-and-simulation-of-the-temperature-effect-in-dye-sensitized-solar-cells.pdf)

[46] Tresas W, Yavari M, Domanski K, Yadav P, Niesen B, Baena J P C, Hagfeldt A and Graetzel M 2018 Interpretation and evolution of open circuit voltage, recombination, ideality factor and sub gap defect states during reversible light-soaking and irreversible degradation of perovskite solar cells Energy Environ. Sci. 11 151–65

[47] Lim A, Manaf N H, Tennakoon K, Chandrakanthi R L N, Lim L B L, Sarath Bandara J M R and Ekanayake P 2015 Higher performance of DSSC with dyes from cladophora sp. as mixed co-sensitizer through synergistic effect J Biophysics 8 510467

[48] Suyitno, Agustia Y V, Hidajat L L G, Kristiawan B and Wibowo A H 2018 Effect of light and temperature on the efficiency and stability of curcumin-dye-sensitized solar cells International Energy Journal 18 53–60 (http://www.ericjournal.ait.ac.th/index.php/eric/article/view/1664/666)

[49] Pizzichetti A R P 2019 Heteroleptic Copper (I) Complexes as Photosensitizers in Dye-Sensitized Solar Cells [Master’s Thesis] KTH Royal Institute of Technology School of Chemical Science and Engineering, Stockholm, Sweden pp 81 (http://www.diva-portal.org/smash/get/diva2:1362307/FULLTEXT01.pdf)

[50] Kutlu N 2020 Investigation of electrical values of low-efficiency dye-sensitized solar cells (DSSCs) Energy 199 117222

[51] Hafez H S, Yahia I S, Sakr G B, Abdel-Mottaleb M S A and Yakuphanoglu F 2012 Extraction of the DSSC parameters based TiO2 under dark and illumination conditions Adv. Mater. Corros. 1 8–13 (http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.978.8323&rep=rep1&type=pdf)

[52] Bisquert J and Mora-Sero` ʹI 2010 Simulation of steady-state characteristics of dye sensitized solar cells and the interpretation of the diffusion length J. Phys. Chem. Lett. 1 450–6

[53] Lu H T, Ou C Y and Lu C H 2018 (Ag,Cu)(In,Ga)Se2 thin films fabricated on flexible substrates via non-vacuum process J. Mater. Sci.: Mater. Electron. 29 1614–22

[54] Safirani L, Nurrida A, Mulyana C, Susilawati T, Bahtiar A and Aprilia A 2017 Calculation of DSSC parameters based on ZnO nanorod/TiO2 mesoporous photoanode IOP Conf. Ser.: Earth Environ. Sci. 75 012004