Blood Oxygen Level-Dependent Liver MRI: Can It Predict Microvascular Invasion in HCC?

Kartik S. Jhaveri, MD,1* Sean P. Cleary, MD, FRCPC,2 Sandra Fischer, MD, FRCPC,3 Masoom A. Haider, MD, FRCPC,1 Vivek Pargoankar, MD,1 Karim Khalidi, MD,1 Hadas Moshonov, PhD,1 and Steven Gallinger, MD, FRCPC2

Purpose: To assess Blood Oxygen Level-Dependent (BOLD) Magnetic Resonance Imaging (MRI) for noninvasive preoperative prediction of Microvascular Invasion (MVI) in Hepatocellular Carcinoma (HCC).

Materials and Methods: In this prospective, institutional review board approved study, 26 patients (21 men and 5 women age range, 34–77 years with mean age of 61 years) with HCC were evaluated preoperatively with liver MRI including baseline and post oxygen (O2) breathing BOLD MRI. Post processing of MRI data was performed to obtain R2* values (1/s) and correlated with histopathological assessment of MVI. Statistical analysis was performed to assess correlation of baseline R2*, post O2 R2* and R2* ratios to presence of MVI in HCC by binary logistic regression analysis.

Results: MVI was present in 15/26 (58%) of HCC on histopathology. The mean R2* values ± SD at baseline and post O2 with and without MVI were 35 ± 12, 36 ± 12, 38 ± 10, 42 ± 17. The R2* values between the groups with and without MVI were not significantly different statistically.

Conclusion: BOLD MRI is unable to accurately predict MVI in HCC. The noninvasive preoperative MRI detection of MVI in HCC remains elusive.

Key Words: hepatocellular carcinoma (HCC); magnetic resonance imaging (MRI); blood oxygen level dependent MRI (BOLD MRI); microvascular invasion (MVI); cirrhosis; liver transplantation

J. Magn. Reson. Imaging 2013;37:692–699.
© 2012 Wiley Periodicals, Inc.

LIVER RESECTION AND transplantation are the only curative treatment options currently available for hepatocellular carcinoma (HCC) (1–3). However, long-term survival is still poor as a result of a high rate of recurrence among other drawbacks, such as lack of reliable prognostic factors, phenotypic diversity of the disease, and the lack of effective systemic treatment. Given the limited organ availability as well as morbidity and or mortality risks associated with surgical options, it is critical to select patients who are likely to have long-term curative outcome without recurrence. Among many outcome prediction parameters such as tumor grade, differentiation, size, multiplicity, and vascular invasion (macro and microscopic), microvascular invasion (MVI) has been correlated to be one of the most significant independent risk factors affecting recurrence-free survival following curative resection and or liver transplantation (4). Preoperative prediction of microvascular invasion could allow appropriate patient selection for liver transplantation and predicting prognosis.

Although the combined use of imaging modalities, including MRI, computed tomography (CT), and ultrasonography, can detect tumor invasion of the major branches of the portal and hepatic veins in 81–95% of cases at the time of diagnosis, imaging studies currently do not have the ability to detect microvascular invasion (5–14). The diagnosis of MVI cannot be reliably achieved by a biopsy due to sampling errors (15) as only a small region of the tumor is being evaluated in a biopsy as compared to surgical pathology. Intratumoral hypoxia has been shown to enhance proliferation, angiogenesis, metastasis, chemoresistance, and radioresistance of HCC resulting in overall increased tumor invasiveness (16–18). Blood oxygen level dependent (BOLD) MRI is a noninvasive diagnostic method capable of assessing tumor oxygenation and indirectly hypoxia, by detecting signal changes secondary to changes in blood flow and oxygenation. The purpose of this study was to correlate prospectively the ability of BOLD MRI to predict MVI preoperatively compared with histopathology in patients with HCC who were undergoing liver resection.

MATERIAL AND METHODS

Patients

This was a prospective single center HIPAA compliant, institutional review board approved study with enrolled patients giving approval to participate by means
of written informed consent. Over a 2-year period from September 2009 to 2011, 28 patients with suspected HCC who were to undergo liver resection (partial hepatectomy) where accrued to this study and underwent routine staging liver MRI along with BOLD MR before surgery with an average time interval between MRI and surgery of 25 days (range, 1 to 138 days). Exclusion criteria included specifically lack of histopathology; prior tumor treatment such as transcatheter chemoembolization, radiofrequency ablation, or chemoradiation; and general contraindications to MRI and or gadolinium-based contrast agents. Two patients were excluded as their surgery was canceled. Thus, our final study cohort included 26 patients (21 men and 5 women age range, 34–77 years with mean age of 61 years) who underwent liver MRI and subsequent surgical resection and histopathology. Serum alpha fetoprotein (AFP) levels were in the range of 2–15408 μg/L with mean of 1101 μg/L. Chronic viral hepatitis B and or C was present in 65% of patients.

MR Imaging

MR imaging was performed on all subjects on a 1.5 Tesla (T) MR system (Siemens Avanto, Siemens Healthcare, Erlangen, Germany). Torso phased-array coils were used. All subjects underwent a routine Liver MR protocol (Table 1) that included coronal single-shot T2-weighted HASTE, fat suppressed motion corrected axial T2 fast spin echo (BLADE), fat suppressed axial single-shot T2 HASTE (long TE), axial gradient-refocused echo T1-weighted in-phase and out-of-phase, axial diffusion-weighted imaging (DWI), and three-dimensional (3D) T1-weighted imaging (T1WI) before and after IV injection of gadolinium contrast material. Bold MR imaging was an addition to this routine liver protocol before gadolinium contrast injection. The BOLD MR imaging comprised of a 12 multiecho gradient refocused echo (GRE) T2* imaging pulse sequence with TE ranging from 1 to 41 ms. BOLD MR Imaging was performed before and after inhalation of oxygen. Oxygen (100%, 5L/min) was administered through a nasal mask for 5 min before a repeat BOLD acquisition was obtained following oxygenation. The post oxygenation BOLD imaging was followed by multiphasic gadolinium enhanced T1WI.

Imaging Analysis

Primary Analysis

The primary analysis comprised of quantitative estimations of R2*. All the MRI scans including the BOLD data were anonymized and saved to a password protected encrypted hard drive for analysis purposes. R2* Analysis was obtained using commercial software (Image J, NIH) (Fig. 1). Multiple ROIs were placed on HCC, liver, and muscle on multiple slices to obtain T2* and thereafter R2* (1/T2* in 1/s) for HCC, liver, and muscle. Areas of obvious susceptibility artifacts were excluded from ROI measurement. The ROI tracing was performed manually taking care to be within confines of tumor at all times. Multiple R2* indices such as ratios and or differences in R2* between tumor and liver before and after oxygenation were

Table 1

Technical Parameters of the Liver MRI Protocol Utilized

Pulse sequence	TR (ms)	TE (ms)	Slice thickness (mm)	No. of slices	Matrix	Averages	Parallel imaging factor	Time (min:s)
T2 HASTE BREATHING LOC	1000	84	8	10	256x192	1	2	0:20
T2 HASTE BH LOC	1000	84	8	10	256x192	1	2	0:20
T2 COR HASTE BH	1000	181	8	40	320X256	1	2	0:40
T2 AX HASTE FS	1000	181	8	40	320X256	1	2	0:42
T1 AX IN/OUT PHASE	174	2.2, 4.5	5	40	256X216	1	2	0:43
T2 AX BLADE FS TE 90	7910	92	8	30	320X320	1	2	2:22
DWI (b100,600)	5300	68	8	30	192X144	6	2	3:27
GRE BOLD (12 echo) pre O2	80	1,35,7,...,41	8	4	128X128	2	2	0:49
GRE BOLD (12 echo) post O2	80	1,35,7,...,41	8	4	128X128	2	2	0:49
AX T1 VIBE Pre Contrast	3.5	1.31ms	5	48	320X192	1	2	0:21
Care_Bolus	35.08	1.43ms	8	1	256	1	Off	1:42
AX T1 VIBE Spair Dynamic	3.5	1.31ms	5	48	320X192	1	2	1:04
AX T1 VIBE Spair 5 min. delay	3.5	1.31ms	5	48	320X192	1	2	0:21

Figure 1. R2* map of the liver generated using ImageJ software. The trace demarcates the HCC. Note the visual difference in gray scale shade of the tumor from the background liver.
calculated to seek discriminative thresholds for prediction of MVI.

Secondary Analysis

The secondary imaging analysis included multiparametric clinical, morphological, and DWI assessment. Detailed morphological observations were recorded performed by two readers in consensus using the departmental PACS viewer for review regarding the tumor size, shape location, signal intensity on T1- and T2-weighted images, multiphasic enhancement patterns and contrast washout, presence or absence of tumoral capsule, satellite nodules of tumor, and intra and extrahepatic metastatic disease. DWI analysis was done by a single observer calculating the ADC values from the ADC maps generated during the DWI imaging acquisition. Regions of interest (ROIs) were drawn on the ADC maps in areas of interest encompassing the tumor as well as background liver on a MRI postprocessing workstation (Siemens Healthcare, Erlangen, Germany).

Pathological Assessment

Tumor characteristics were evaluated by review of the pathological specimens. Tumor size was measured as the largest diameter of the major tumor in centimeters. Macrovascular invasion is defined as gross vascular invasion into major portal vessels or hepatic veins. Microvascular invasion was determined on pathologic analysis as microscopic vascular invasion of small vessels within the peritumoral parenchyma of the liver (Figs. 2, 3). The predominant histopathologic grade of differentiation of the tumors was assessed according to Edmondson-Steiner criteria (G1, well differentiated; G2, moderately differentiated; G3, poorly differentiated; G4, undifferentiated). Immunohistochemistry using the monoclonal antibody QBEnd10 (anti-CD34) was performed in cases microvascular invasion is suspected but not unequivocal to help to confirm or exclude microvascular invasion. For the purpose of this study, sections from the blocks that had already been used for routine histological examination were stained by the streptavidin-biotin complex immunohistochemical technique. The slides were counterstained with hematoxylin, and blindly and randomly examined by two pathologists who had already evaluated hematoxylin and eosin (HE) sections. The presence of neoplastic cells inside the lumina of the vessels whose endothelium had been immunohistochemically stained at the periphery of the HCC nodules was carefully searched for the presence of attached tumor embolus.

Data and Statistical Analysis

Binary logistic regression was used to assess the ability of R2 parameters and quantitative morphological parameters to predict MVI. Stepwise variable selection in the context of binary logistic regression was also performed to evaluate the combination of MRI and morphological parameters in predicting MVI. Furthermore, BOLD MRI parameters (R2* values) and quantitative morphological outcomes (AFP value, length dimension, volume, and ADC values) were compared by means of the Wilcoxon rank-sum test (also known as the Mann-Whitney U test). Fisher’s exact test was used to compare between patients with and without MVI in regards to the qualitative morphological parameters. The analysis was done using the statistical software IBM SPSS Version 20.

RESULTS

Histopathologic Findings

All 26 patients who had surgical resection for presumed HCC were confirmed at histology. The tumor size ranged from 1.5 cm to 14 cm with mean size of
5.84 cm. The degree of differentiation in HCC was as follows: 01 (3.8%) well differentiated, 22 (84.6%) moderately differentiated, and 3 (11.6%) poorly differentiated. The grade of liver fibrosis was as follows: Grade 1 = 1, (3.8%), Grade 2 = 3 (11.5%), Grade 3 = 3 (11.5%), Grade 4 = 13 (50%), No fibrosis = 3 (11.5%), Regressed cirrhosis = 3 (11.5%). The degree of fatty infiltration exhibited by the background liver parenchyma was as follows: Fatty liver was present in 19 (73.1%) cases and background liver was non fatty in 7 (26.9%) cases. Iron deposition was noted in 11 (42.3%) cases. MVI was present in 15 tumors (57.7 %) and absent in 11 (42.3 %). No macroscopic vascular invasion was seen.

MRI Findings and Analysis

All 26 HCC were identified and imaging analysis was performed both quantitatively as well as qualitatively for primary and secondary analysis as described in the methods section. In the primary analysis, the mean baseline (preoxygenation) R2* values (1/s) in tumors with and without MVI were 35 ± 12 (24–74) and 38 ± 12 (25–58), respectively. The mean post oxygenation R2* values (1/s) in tumors with and without MVI were 36 ± 10 (24–72) and 42 ± 17 (24–83), respectively. The mean difference (delta) in R2* values (1/s) before and after oxygenation with and without MVI were −1 (−15 to +7) and −4 (−50 to +26). Various other indices to reflect R2* ratios between the HCC and liver before and after oxygenation as well ratios of difference in R2* values between HCC and liver were calculated to seek any discriminative threshold of correlation with presence or absence of MVI on histopathology. Table 2 displays descriptive information about the MRI parameters of interest in each group and the P value from the Wilcoxon rank-

Variable	MVI = YES (n = 15)	MVI = NO (n = 11)	P value						
	Mean	SD	Min	Max	Mean	SD	Min	Max	
HCC PRE	35	12	24	74	38	10	25	58	0.30
HCC POST	36	12	24	72	42	17	24	83	0.47
HCC PRE – HCC POST	-1	0.5	-15	7	-4	1.9	-50	26	0.54
HCC PRE/LIVER PRE	0.705	0.170	0.496	1.131	0.696	0.192	0.402	1.055	0.96
HCC POST/LIVER POST	0.732	0.148	0.543	1.121	0.821	0.505	0.410	2.113	0.64
HCC POST/HCC PRE	1.039	0.168	0.821	1.414	1.151	0.526	0.562	2.535	0.57
LIVER PRE – HCC PRE	14	9	-9	27	19	17	-3	58	0.88
LIVER POST – HCC POST	12	7	-8	20	14	27	-44	56	0.47
LIVER POST – HCC POST/LIVER PRE	0.949	0.295	0.546	1.668	-0.567	2.857	-7.496	1.363	0.47
PERCENT CHANGE	3.91%	16.79%	-17.9%	41.38%	15.1%	52.6%	-43.8%	153.5%	0.57
sum test comparing the two groups. A series of logistic regression models were examined to identify which of the baseline R2 and post oxygenation R2 variables can significantly predict MVI status. However, none of the R2 variables (HCC or liver) were statistically significant. The insignificant results may be due to the relative small sample size in each group. Nevertheless, bootstrap methods for logistic regression that are appropriate for small data sets were applied as well yielding insignificant results.

Thus, overall, no significant differences were found between those who had MVI and those who did not with regard to the BOLD MRI parameters (R2*).

Secondary analysis included multiparametric clinical and morphological qualitative and quantitative analysis including ADC values from DWI acquisition. Morphological included assessment of tumor size, volume, T1 and T2 signal intensities, enhancement patterns, tumor margins, capsule characteristics if present, satellite lesions, and ADC values. The mean tumor size was 5.8 cm (1.5–14 cm) with 15 tumors located in the right lobe (57.7%), 9 in the left lobe (34.6%), and 2 (7.7%) straddling both lobes. Six of 26 (23%) tumors were at least partially in an exophytic location in relation to the liver surface. Thirteen of 26 (50%) had smooth margins, while 5 (19%) had irregular or 8 (31%) had lobulated margins. Sixteen of 26 (61.5%) were hypointense, 5 (19%) hyperintense, 1 (3.8%) isointense, and 4 (15.7%) had mixed signal intensity on T1. Twenty-one of 26 (88.5%) had hyperintense signal, 2 (7.7%) had hypointense signal, while 1 (3.8%) and 2 (7.7%) had mixed signal intensity on T2. Twenty-three of 26 (88.5%) tumors were hyper enhancing while 3 (11.5%) were hypoenhancing on arterial phase. Portal venous phase hypoenhancement (washout) was noted in 25 (96%) and only 1 (4%) tumor did not display this characteristic. All (100%) tumors were hypointense on the 5-min delayed post-contrast phases. Tumoral capsule (Fig. 4) was identified in 22 (85%) and absent in 4 (15%) of cases. When present, the capsule was incomplete in 8 (36%) and complete in 14 (64%). Satellite lesions were observed in only 2 (8%) HCC. The mean ADC value of HCC was 1.040×10^{-3} mm2 s$^{-1}$ (range, 0.417×10^{-3} mm2 s$^{-1}$ to 1.354×10^{-3} mm2 s$^{-1}$) while that of background liver parenchyma was 0.981×10^{-3} mm2 s$^{-1}$ (range, 0.728×10^{-3} mm2 s$^{-1}$ to 1.293×10^{-3} mm2 s$^{-1}$). The clinical and morphological variables are displayed in Table 3. There was no statistically significant difference in morphological variables between those who had MVI and those who did not. Clinical variables assessed for prediction of MVI such as AFP level and tumor differentiation/grade were also not statistically significant between the two groups of tumors with and without MVI.

DISCUSSION

Treatment decisions for HCC currently based on tumor number, size, and liver function continue to be hampered by poor long-term survival and high recurrence rates (19–21). The combination of tumor recurrence with vascular invasion limits additional attempts at various therapies, such as repeat hepatic resections, percutaneous ethanol injection, microwave coagulation therapy, and radiofrequency ablation, thereby contributing to poor survival (22–24). Tumor invasion into microscopic branches of the portal and/or hepatic veins (MVI) is associated with increased risk of early tumor recurrences following surgical

Table 3

Predicted Microvascular Invasion in Patients With HCC Using Morphological, Clinical, and Histological Parameters

Parameter	MVI Present (n = 15)	MVI absent (n = 11)	P value
Tumor size (cm) Mean +/- SD	5 +/- 2.4	6.2 +/- 4.1	0.73
Capsule present (n)	14 (93.3%)	8 (72.7%)	0.28
Incomplete capsule (n)	7 (50%)	1 (12.5%)	0.17
Irregular, Lobulated margins (n)	9 (60%)	4 (36.4%)	0.120.43
Satellite nodule present (n)	2 (13.3%)	0	0.5
Exophytic tumor location (n)	4 (26.7%)	2 (18.2%)	1
T1 signal -hyper or hypo (n)	13 (86.7%)	8 (72.7%)	0.850.62
T2 signal -hyper or hypo (n)	13 (86.7%)	10 (90.9%)	0.561
Arterial hyperenhancement (n)	13 (86.7%)	10 (90.9%)	1
Venous hypoenhancement (n)	15 (100%)	10 (90.9%)	0.42
ADC (mm2/s) Mean	1.32 x 10-3	1.03 x 10-3	0.35
Serum AFP level (ug/L) mean	1325	787	0.15
Moderately or poorly differentiated tumor (n)	15 (100%)	10 (90%)	0.750.42
treatment of HCC and shorter survival (25–32). Accurate prediction of MVI would impact treatment decisions based on anticipated tumor biology, therapeutic response and clinical outcomes, but because current imaging techniques as well as preoperative biopsy are unable to accurately predict MVI in HCC, this important prognostic marker remains unconsidered while making treatment decisions for HCC.

Lack of sufficient oxygenation, hypoxia, is a common tumor microenvironmental characteristic caused by the imbalance between oxygen supply by abnormal tumor vasculature and demand by rapidly proliferating tumor cells. Evidence suggests that the heterodimeric transcription factor hypoxia inducible factor 1a (HIF-1a) controls the expression of a variety of genes, which play crucial roles in the acute and chronic adaptation of tumor cells to oxygen deficiency, including enhanced erythropoiesis and upregulated glycolysis, promotion of cell survival, inhibition of apoptosis, inhibition of cell differentiation, and increased angiogenesis. Hypoxic stress accelerates the invasion of hepatoma by up-regulating ETS-1 and the matrix metalloproteinases family by the HIF-1a-independent pathway. These adaptive changes of gene expression in neoplastic cells result in tumor invasion, metastases, and chemoradiation resistance (33–37). Specifically related to the liver, fibrogenesis associated with cirrhosis reduces hepatic blood flow leading to hypoxia. High proliferation of tumor cells also induces local hypoxia within HCC also stimulating angiogenesis to support the tumor growth by inducing the expression of angiogenic factors (16,17). To summarize, hypoxia enhances proliferation, angiogenesis, metastasis, and chemo- and radioresistance of HCC resulting in increased tumor invasiveness (MVI), which is essentially the primary step for future development of macrovascular invasion and or metastases in HCC. Thus, the level of intratumoral oxygenation, precisely hypoxia, could be a contributing factor to development of MVI.

BOLD MRI is a noninvasive technique that could estimate tumor oxygenation would find broad applications in prediction of MVI in HCC. The blood oxygen level-dependent (BOLD) MRI imaging technique has the unique capability to study tumor pathophysiology noninvasively. By accentuating the susceptibility effect of deoxyhemoglobin (dHb) in the blood with gradient-echo techniques, image contrast reflects the blood oxygen level. Changes in R2 (1/T2) reflect the capillary microvasculature whereas R2* (1/T2*) is sensitive to both microand macrovasculature (38). Some studies have shown a linear relationship between R2* and content of deoxyhemoglobin while others have reported a quadratic function between blood R2* and oxygen saturation, suggesting that the technique should be more sensitive in regions with low oxygen saturation, e.g., in tumors (39,40). Tumor basal R2* may potentially be considered as an intrinsic marker of pO2, because it is related to the oxygenation state of hemoglobin and to the arterial blood pO2, which is in equilibrium with tissue pO2. MRI using R2* quantification (BOLD MRI) has been reported to be a promising tool for noninvasive imaging of prostate cancer hypoxia (41,42).

In this study, we correlated the presence of MVI on histology by MRI estimation of BOLD effect (R2*) in HCC. We performed tumoral and background liver R2* estimations at baseline as well as after oxygen inhalation. Oxygen inhalation was performed to extract physiological changes induced in tumoral oxygen content which might allude to better determination of intratumoral hypoxia and thereby MVI. Our data analysis of absolute estimations of baseline R2* and postoxygenation R2* did not reveal a statistically significant threshold for prediction of MVI. We also assessed the difference in R2* before and after oxygenation, which also failed to provide a positive result statistically. Calculations of the ratios of R2* values between HCC and liver parenchyma both pre and post oxygenation were also unable to deliver a quantitative threshold to predict MVI. Finally, ratio of the delta R2* values between HCC and liver before and after oxygenation as well as percentage change in R2* values in HCC before and after oxygenation also did not result in a significant result. Our negative results, although disappointing, may be relevant to other investigators in this area. The use of BOLD contrast in tumors is a relatively new area of research and brings with its challenges of understanding and interpretation. As with any technique, BOLD MRI has both advantages and disadvantages. One advantage of BOLD MRI is that it is noninvasive BOLD MRI also has high spatial resolution, allowing it to address the issue of the spatial heterogeneity of the tumor response. To distinguish the contribution from the inflow and blood oxygenation to the BOLD signals, multiple gradient-echo imaging sequences is used instead of using conventional gradient-echo techniques. Carbogen induced changes in R2* or basal R2*, which reflect vascular development, may also be monitored with BOLD MRI to predict radiotherapy sensitivity. As for disadvantages, BOLD MRI is unfortunately an indirect method for monitoring tumor pO2. This is the result of the extreme sensitivity of changes in R2* to the basal state of tumor oxygenation and blood volume fraction. The intra- and intertumoral distribution of these parameters may be greatly heterogeneous, making it very difficult to compare estimated pO2 changes between two regions or individuals. Even more problematic is the fact that the change in R2* is not always indicative of the change in pO2 only. Concomitant changes in blood volume, blood pH, and metabolic status can lead to smaller-than-expected or even negative changes in R2*. In our secondary analysis, we also performed multiparametric morphological and DWI analysis to assess for any significant factors that could correlate with presence of MVI. However, neither of these parameters yield a statistically encouraging result. Although we did observe an association of MVI with the presence of an incomplete tumoral capsule (Figs. 4, 5) the correlation was not statistically relevant. This secondary result is, however, in keeping with prior and more recent studies (14) that have attempted to correlate tumoral morphologic characteristics with prediction of MVI and returned negative results.
is also not a static entity, but can be rather than
may interfere with the depiction of hypoxia. Hypoxia
accounted for by the complexity of hypoxia. Factors
relation between BOLD MR and MVI might be
that necessarily correlates with MVI. The lack of cor-
mitation could revolve around the simplistic assump-
could only worsen the results. Finally, a significant li-
result in temporal and spatial discrepancies and
acquisitions instead of breathheld acquisitions would
hold given the nature of multi-echo gradient echo ac-
ber of slices that can be obtained in a single breath-
estimation. There is a technical limitation to the num-
may be responsible for inaccurate oxygenation status
were larger than 5 cm, we may not be sampling the
limitations for BOLD evaluation. Because many tumors
and or morphological imaging methods remains
as well. The prediction of MVI by existing functional
ing is already known to be unable to determine MVI
as well. The prediction of MVI by existing functional
and morphological imaging methods remains elusive.

REFERENCES
1. Song TJ, Ip EW, Fong Y. Hepatocellular carcinoma: current surgic-
cal management. Gastroenterology 2004;127:S248–S260.
2. Mazzaferro V, Regalia E, Doci R, et al. Liver transplantation for
the treatment of small hepatocellular carcinomas in patients with
cirrhosis. N Engl J Med 1996;334:693–699.
3. Bismuth H, Chiche L. Comparison of hepatic resection and trans-
plantation in the treatment of liver cancer. Semin Surg Oncol
1993;9:341–345.
4. Sumie S, Kuromatsu R, Okuda K, et al. Microvascular invasion
in patients with hepatocellular carcinoma and its predictable
clinicopathological factors. Ann Surg Oncol 2006;13:1375–1382.
5. Bach AM, Hann LE, Brown KT, et al. Portal vein evaluation with
US: comparison to angiography combined with CT arterial por-
tography. Radiology 1996;201:149–154.
6. Hann LE, Schwartz LH, Panicek DM, et al. Tumor involvement in
hepatic veins: comparison of MR imaging and US for preoperative
assessment. Radiology 1998;206:651–656.
7. Nelson RC, Chezmar JL, Sugarbaker PH, et al. Preoperative local-
ization of focal liver lesions to specific liver segments: utility of CT
during arterial portography. Radiology 1990;176:89–94.
8. Esaola NF, Lauwers GY, Mirza NQ, et al. Predictors of microvas-
cular invasion in patients with hepatocellular carcinoma who are
candidates for orthotopic liver transplantation. J Gastrointest
Surg 2002;6:224–232.
9. Imaeda T, Yamawaki Y, Hirota K, Suzuki M, Seki M, Doi H.
Tumor thrombus in the branches of the distal portal vein: CT
demonstration. J Comput Assist Tomogr 1989;13:262–268.
10. Nishie A, Yoshimitsu K, Asayama Y, et al. Radiologic detectability
of minute portal venous invasion in hepatocellular carcinoma.
AJR Am J Roentgenol 2008;190:81–87.
11. Lim JH, Choi D, Park CK, Lee WJ, Lim HK. Encapsulated hepatocellu-
lar carcinoma: CT-pathologic correlations. Eur Radiol 2006;
16:2326–2333.
12. Ishigami K, Yoshimitsu K, Nishihara Y, et al. Hepatocellular car-
cinoma with a pseudocapsule on gadolinium-enhanced MR images:
correlation with histopathologic findings. Radiology 2009;250:435–443.
13. Kanematsu M, Semelka RC, Leonardou P, Mastropasqua M, Lee
JK. Hepatocellular carcinoma of diffuse type: MR imaging find-
ings and clinical manifestations. J Magn Reson Imaging 2003;18:
189–195.
14. Chandarana H, Robinson EJ, Haidu CH, Drozinlin L, Babb JS,
Taouli B. Microvascular invasion in hepatocellular carcinoma: is
it predictable with pretransplant MRI? AJR Am J Roentgenol
2011;196:1083–1089.
15. Bru C, Maroto A, Bruix J, et al. Diagnostic accuracy of fine-nee-
dle aspiration biopsy in patients with hepatocellular carcinoma.
Dig Dis Sci 1989;34:1765–1769.
16. Wu NZ, Xie GR, Chen DJ. Hypoxia and hepatocellular carcinoma:
the therapeutic target for hepatocellular carcinoma. Gastroenterol
Hepatol 2007;22:1178–1182.
17. Von Marschall Z, Cramer T, Hocker M, Finkenzeller G, Wieden-
mann B, Rosewicz S. Dual mechanism of vascular endothelial
growth factor upregulation by hypoxia in human hepatocellular
carcinoma. Gut 2001;48:87–96.
18. De Milto A, Fais S. Tumor acidity, chemoresistance and proton
pump inhibitors. Future Oncol 2005;1:779–786.
19. Jlovat JM, Bruix J. Novel advancements in the management of
hepatocellular carcinoma in 2008. Hepatology 2008;48(Suppl 1):
S20–S37.

Figure 5. Contrast enhanced T1 weighted MR image show-
ing focal capsule break (black arrow) and adjacent satellite
nodule (white arrow) in HCC which demonstrated MVI on
histology.

There are several limitations to our study that we
would like to acknowledge. First, is the small sample
size of only 26 subjects. However, this was an explora-
tory pilot study and herein we report our preliminary
findings. Second, a technical limitation may be due to
employment of a 1.5T MR system. Possibly higher
field strengths of 3T may widen the quantitative R2*
spectrum and perhaps have better statistical signifi-
cance. The choice of a 1.5T system was based on well
established MR image quality results for body imaging
and well established values of T2 and T2* for normal
liver tissue. A further limitation may be usage of nasal
oxygen as methods to induce changes in tumoral oxy-
genation. Perhaps this does not have the desired
impact, and there may be a need to explore stronger
stimuli such as carbogen or CO2 breathing. Further-
more, they may be limitations to detecting or demon-
strating hypoxia in HCC on the basis of fast blood
flow in these mostly hypervascular tumors that may
not allow enough time for hypoxia to be reflected in
the BOLD signal. Limitations relating to data analysis
include inclusion of only up to a maximum of five sec-
tions for BOLD evaluation. Because many tumors
were larger than 5 cm, we may not be sampling the
entire tumor for analysis and tumoral heterogeneity
may be responsible for inaccurate oxygenation status
estimation. There is a technical limitation to the num-
ber of slices that can be obtained in a single breath-
hold given the nature of multi-echo gradient echo ac-
quision. The move to free breathing or triggered
acquisitions instead of breathheld acquisitions would
result in temporal and spatial discrepancies and
could only worsen the results. Finally, a significant li-
mitation could revolve around the simplistic assump-
tion that BOLD contrast necessarily reflects hypoxia
that necessarily correlates with MVI. The lack of cor-
relation between BOLD MR and MVI might be
accounted for by the complexity of hypoxia. Factors
such as blood volume will affect BOLD contrast and
may interfere with the depiction of hypoxia. Hypoxia
is also not a static entity, but can be rather than
dynamic with perhaps acute and chronic hypoxic
states affecting BOLD contrast differently impacting
final results.

In conclusion, BOLD MR imaging does not appear to
be promising as an accurate method for preopera-
tive prediction of MVI in HCC under the circumstan-
ces wherein it was tested by us. Morphological imag-
ing is already known to be unable to determine MVI
as well. The prediction of MVI by existing functional
and or morphological imaging methods remains
elusive.
20. Forner A, Hessheimer AJ, Isabel Real M, Bruix J. Treatment of hepatocellular carcinoma. Crit Rev Oncol Hematol 2006;60:89–98.
21. Villanueva A, Toffanin S, Llovet JM. Linking molecular classification of hepatocellular carcinoma and personalized medicine: preliminary steps. Curr Opin Oncol 2008;20:444–453.
22. Lei HJ, Chau PYL, Llovet JM. Prognostic value and clinical relevance of the 6th edition 2002 American Joint Committee on Cancer staging system in patients with resectable hepatocellular carcinoma. J Am Coll Surg 2006;203:426–435.
23. Pawlik TM, Gleisner AL, Anders RA, et al. Prooperative assessment of hepatocellular carcinoma tumor grade using needle biopsy: implications for transplant eligibility. Ann Surg 2007;245:435–442.
24. Park JW, Koh RC, Choi MS, et al. Analysis of risk factors associated with early multinodular recurrences after hepatic resection for hepatocellular carcinoma. Am J Surg 2006;192:29–33.
25. Poon RT, Fan ST, Ng IO, et al. Different risk factors and prognosis for early and late intrahepatic recurrence after resection of hepatocellular carcinoma. Cancer 2000;89:500–507.
26. Shah SA, Greig PD, Gallinger S, et al. Factors associated with early recurrence after resection for hepatocellular carcinoma and outcomes. J Am Coll Surg 2006;202:275–283.
27. Portolani N, Coniglio A, Ghidoni S, et al. Early and late recurrence after liver resection for hepatocellular carcinoma: prognostic and therapeutic implications. Ann Surg 2006;243:229–235.
28. Shirabe K, Kanematsu T, Matsumata T, et al. Factors linked to early recurrence of small hepatocellular carcinoma after hepatectomy: univariate and multivariate analyses. Hepatology 1991;14:802–805.
29. Harada T, Shigemura T, Kodama S, Higuchi T, Ikeda S, Okazaki M. Hepatic resection is not enough for hepatocellular carcinoma. A follow-up study of 92 patients. Clin Gastroenterol 1992;14:245–250.
30. Zhou L, Rui J, Wang SH, et al. Clinicopathological features, post-surgical survival and prognostic indicators of elderly patients with hepatocellular carcinoma. Eur J Surg Oncol 2006;32:767–772.
31. Edmondson HA, Steiner PE. Primary carcinoma of the liver: a study of 100 cases among 48,900 necropsies. Cancer 1954;7:462–503.
32. Rondo K, Chijiwa K, Makino I, et al. Risk factors for early death after liver resection in patients with solitary hepatocellular carcinoma. J Hepatobiliary Pancreat Surg 2005;12:399–404.
33. Gillies RJJ, Robey I, Gatenby RA. Causes and consequences of increased glucose metabolism of cancers. J Nucl Med 2008;49(Suppl 2):42S–42S.
34. Dewhirst MW, Cao Y, Moeller B. Cycling hypoxia and free radicals regulate angiogenesis and radiotherapy response. Nat Rev Cancer 2008;8:425–437.
35. Vaupel P, Harrison L. Tumor hypoxia: causative factors, compensatory mechanisms, and Cellular response. Oncologist 2004;9(Suppl 5):4–9.
36. Overgaard J. Hypoxic radiosensitization: adored and ignored. J Clin Oncol 2007;25:4066–4074.
37. Dewhirst MW, Cao Y, Moeller B. Cycling hypoxia and free radicals regulate angiogenesis and radiotherapy response. Nat Rev Cancer 2008;8:425–437.
38. Boxerman JL, Hamberg LM, Rosen BR, Wcisloff RM. MR contrast due to intravascular magnetic susceptibility perturbations. Magn Reson Med 1995;34:555–566.
39. Baudelet C, Gallez B. How does blood oxygen level dependent (BOLD) contrast correlate with oxygen partial pressure (pO2) inside tumors? Magn Reson Med 2002;48:980–986.
40. Li D, Wang Y, Wang J, et al. Blood oxygen saturation assessment in vivo using T2* estimation. Magn Reson Med 1998;39:685–690.
41. Hoskin PJ, Carnell DM, Taylor DJ, et al. Hypoxia in prostate cancer: correlation of BOLD-MRI with pimonidazole immunohistochemistry-initial observations. Int J Radiat Oncol Biol Phys 2007;68:1065–1067.
42. Chopra S, Foltz WD, Milosevic MF, et al. Comparing oxygen-sensitive MRI (BOLD R2*) with oxygen electrode measurements: a pilot study in men with prostate cancer. Int J Radiat Biol 2009;85:805–813.