Research article

Aplastic anemia: Quo vadis?

Carmelo Gurnaria,b, Jaroslaw P. Maciejewskia,c,*

a Translational Hematology and Oncology Research Department, Taussig Cancer Center, Cleveland Clinic, Cleveland, OH
b Department of Biomedicine and Prevention, PhD in Immunology, Molecular Medicine and Applied Biotechnology, University of Rome Tor Vergata, Rome, Italy
c Leukemia Program, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH

\textbf{A R T I C L E I N F O}

Keywords:
Aplastic anemia
Paroxysmal nocturnal hemoglobinuria

\textbf{A B S T R A C T}

In the last 30 years, the field of aplastic anemia (AA), and more generally bone marrow failure syndromes, has undergone a multitude of new discoveries. The application of modern and sophisticated sequencing techniques unveiled a variety of genes associated with these disorders and contributed to a better understanding of the disease pathobiology. This advancement was paralleled by the discovery, clinical testing and subsequent approval of new drugs for the treatment of AA and associated disorders. Several additional agents are currently under evaluation for possible therapies. Herein, we look at the potential future avenues of research in AA through a brief summary of an intergenerational Socratic dialogue between the mentor, who witnessed and actively contributed to the milestones achieved in the last 30 years, and his fellow, who would himself go on to become the mentor of a new generation of AA researchers.

© 2021 Elsevier Inc. All rights reserved.

“Man cannot search either for what he knows or for what he does not know; He cannot search for what he knows—since he knows it, there is no need to search—nor for what he does not know, for he does not know what to look for…” (Meno, Plato [380 BC]) \cite{1}. Socrates and Plato still represent one of the most famous and paradigmatic examples of teacher-student relationship. Through the “dialectic”, the “art of dialogue”, Plato unfolds the Socratic method of teaching, which involves an interactive conversation, a cooperative back and forth between two interlocutors, emphatically aiming at guiding students towards a better understanding of their inner knowledge (a process called “maieutic art”).

As a teacher and a Nestor of the field, Dr Neal Young has cultivated a tradition of scientific disputes about aplastic anemia (AA), engaging with his students, typically after the hours dedicated to the clinical management of patients. About 30 years ago, Dr Jaroslaw Maciejewski (Jarek) had the privilege to be a partner in these dialogues, which Neal used to generate ideas for new research paths \cite{2}. Today, Jarek, now a teacher himself following in the steps of his mentor, conversed with a young student (Dr Carmelo Gurnari) about the future of the AA field, recreating the beautifully instructive moments he has been inspired by during his scientific career. “If the same discussion I had with Neal were to take place today with you, Carmelo, which questions should the new generation of AA researchers focus on? Remember to appreciate that you may not know future capabilities, as I did not back then, nor even dream about which capabilities will become available!”

The biggest mystery of AA remains unsolved

\textbf{What triggers this disease} \cite{2}?. Despite a lot of effort, a successful approach to solve this etiologic mystery has not been found, but this quest will likely constitute the promise of “el Dorado” gold, prompting new explorations. For instance, existing technologies and those of the future should revisit the issue of exogenous etiologic agents, \textit{for example}, by deep sequencing of viral capture libraries or by reverse engineering of T cell receptor (TCR) “antigenomes”. Modern serologic techniques may finally confirm that cell reactivity has to be accompanied by detectable antibody responses, perhaps illuminating the shadowlands of AA diagnosis \cite{3}. Similarly, the old theory of AA viewed as an “over-controlled” leukemia should be re-examined using deep error-corrected and single cell sequencing technologies, possibly enabling a precise definition of its clonal architecture. Should there be some truth to this theory, the latter avenue may have tremendous practical implications. Indeed, if AA represents a hyper-efficient tumor surveillance reaction, can it be redirected taking advantage of the lesson derived from its postulated ontogeny? New classes of TCR-redirected CAR-T cells, with appropriate safety switch technologies and in a proper clinical setting, such as allogeneic stem cell transplant, would answer the question Jarek posed to Carmelo: Would AA
cytotoxic T cells “take care” of leukemia? After all, without medi-
cal countermeasures, they are capable of efficient obliteration of an
entire organ: the bone marrow [4]. A provocative question would be:
do we even need to know the antigenic triggers? For instance,
we use ATG and still do not know how it exactly works. Provision
of proof-of-concepts may be a first step and the answers as to the
trigger peptide may come sooner than we think.

New treatment agents

ATG in its efficacy and pharmacological crudeness inspires a
new series of future tasks, which involve the improvement of the
existing therapeutic arsenal. Definitely, following the progresses
in other autoimmune diseases, we currently have a multitude of
novel, elegant, immunosuppressive agents targeting “old” cytokines
such as interferon-γ, but also a seemingly never-ending litany of
new anti-interleukins or their receptors. Clearly, design of new tri-
als will be a challenge, especially if we consider the already good
overall response rate achieved with the available therapies [5]. Par-
ticularly, the improvement made so far in the first-line treatment
paradoxically constitutes a major limiting factor for the develop-
ment of new drugs or the design of a clinical trial in the de novo
setting [6]. Nevertheless, in the context of the novel opportunities
emerging with the advent of modern genetic diagnostic capabili-
ties, we should not forget the insights that may be derived from
the traditional immunologic research in AA, which in recent years
has been largely overshadowed by the genetic revolution.

Pathobiology of hematopoietic stem cell, germline
predisposition and clonal evolution

AA has taught us much about hematopoietic stem cell biology.
Especially with regard to induced pluripotent and embryonic stem
cells, the progress has been tremendous, and the reward of studies
on stem cell compartment in AA may also be very lucrative. For
instance, the limits of stem cell re-expansion can be overcome ex vivo and in vivo (eg. by increasing the probability of symmetric
division at a stem cell level) using new drugs. Agents with
such a potential may open new opportunities to generate graft li-
braries for hematopoietic transplantation or to combat aging of the
hematopoietic system. What if, in such a scenario, autologous stem
cell transplant following in vitro expansion of hematopoietic stem
cells—similar to what is currently attempted with umbilical cord
blood—would not be just a pipe dream?

Another lesson in the setting of stem cell biology and disease
mechanisms is represented by the recognition of a strong genetic
predisposition, observed in younger patients and associated to a
variety of newly discovered germline alterations. Marrow failure is
indeed the clinical leitmotiv of a multitude of constitutional ge-
netic syndromes, such as Fanconi anemia or telomeropathies, and
modern genome scanning techniques unveiled several new genes
associated with the spectrum of AA-related disorders (eg. GATA2,
SAMD9/9L) [7]. An interesting aspect of both constitutional and
acquired AA is their dynamics of clonal evolution, characterized by
the acquisition of invariant cytogenetic lesions, such as chro-
mosome 7 aberrations, reminiscent of childhood myelodysplastic
syndromes and typically recurring in the context of constitutional
bone marrow failure defects.

AA and paroxysmal nocturnal hemoglobinuria (PNH): A
chicken or egg causality dilemma

PNH is intimately connected with AA as many patients can ei-
ther present with features of both disorders or evolve from one
to the other throughout the disease course. This fluid nosological
spectrum historically generated a Sphinx’s riddle: where does PNH
stand in the ontogeny of AA [8]? What if PNH is investigated as
a trigger of AA exuberant destruction of hematopoietic stem cells?
Or is PNH instead a “blessing in disguise” in the relentless auto-
immune attack operated by cytotoxic T cells in the marrow [9]? Some
considerations on the ontogeny and on the regenerative potential
of the PNH clone, which represents a semi-adaptive response to AA
immune attack, may stem from the fascinating, rare instance of
its spontaneous remission [10]. According to the postulated theory
of a “finite life span”, the retraction of the PNH clone would be asso-
ciated with the recurrence of AA, should normal stem cells be ab-
sent [11]. However, a contrasting hypothesis (“neutral drift theory”)
posits the absence of a better fitness of the PIGA-mutant clone, ex-
plaining its expansion without assigning an environmental growth
advantage to the PNH clone under immune attack.

As we see today, as it was 30 years ago, a variety of biolog-
ical and clinical issues in the field of AA still needs to be fully
elucidated. Experienced investigators are now relaying the Olympic
Torch to the youngsters in a continuum of shared inspiration, pas-
sion and commitment, which along with the availability of novel
techniques and the pace of modern research capabilities will help
us advance towards a brighter future for AA patients.

Disclosure

The authors declare that they have no known competing financi-
Al interests or personal relationships that could have appeared to
influence the work reported in this paper.

References

[1] Plato. Meno. In: Grube tbGMA, editor. Meno. Indianapolis: Hackett; 380 BC. p. Line 80e.
[2] Young NS, Maciejewski J. The pathophysiology of acquired aplastic anemia. N Engl J Med 1997;336(19):1365–72.
[3] MT Tiina Kelkka, Lundgren Sofie, Feng Xingmin, et al. Anti-COX-2 autoantibody
is a novel diagnostic marker of aplastic anemia. Blood 2021;138(Supplement 1):1125 Abstract ASH Meeting 2021.
[4] Ristiano AM, Maciejewski JP, Green S, Plasilova M, Zeng W, Young NS. In vivo dominant immune responses in aplastic anemia: molecular tracking of puta-

tively pathogenic T-cell clones by TCR beta-CDR3 sequencing. Lancet (Lon-
don, England) 2004;363(9431):355–64.
[5] Young NS. Current concepts in the pathophysiology and treatment of aplastic
anemia. Hematology 2013;2013(1):76–81.
[6] Townsley DM, Scheinberg P, Winkler T, et al. El trombopag Added to Standard
Immunosuppression for Aplastic Anemia. N Engl J Med 2017;376(16):1540–50.
[7] Young NS. Aplastic Anemia. 2018; 379(17):1643-56.
[8] Young NS, Maciejewski JP. Genetic and environmental effects in paroxysmal

nocurnal hemoglobinuria: this little PIG-A goes “Why? Why? Why?”. J Clin
Invest 2000;106(5):637–41.
[9] Luzzatto L, Bessler M, Rotoli B. Somatic mutations in paroxysmal nocturnal

hemoglobinuria: a blessing in disguise? Cell 1997;88(1):1–4.
[10] Gurnari C, Pagluca S, Kewan T, et al. Is nature truly healing itself? Spon-
taneous remissions in Paroxysmal Nocturnal Hemoglobinuria. Blood Cancer J
2021;11(11):187.
[11] Hillmen P, Lewis SM, Bessler M, Luzzatto L, Dacie JV. Natural history of parox-

ysmal nocturnal hemoglobinuria. N Engl J Med 1995;333(19):1253–8.