Impact of COVID-19 on surgical emergencies: nationwide analysis

A. Lazzati, M. Raphael Rousseau, S. Bartier, Y. Dabi, A. Challine, B. Haddad, N. Herta, E. Souied, M. Ortala, S. Epaul, M. Masson, N. Salan-Penquer, A. Coste, and C. Jung

1Department of General and Digestive Surgery, Intercommunal Hospital of Créteil, Créteil, France
2INSERM U955, IMRB, Créteil, France
3Department of Medical Informatics, Intercommunal Hospital of Créteil, Créteil, France
4University Paris-Est Créteil, School of Medicine, Créteil, France
5Department of Oto-rhino-laryngology Head and Neck Surgery, Intercommunal Hospital of Créteil, Créteil, France
6Department of Oto-rhino-laryngology Head and Neck Surgery, Paris Public Hospitals, Henri Mondor Hospital, France
7CNRS, ERL 7240, Créteil, France
8Department of Obstetrics and Gynaecology, Intercommunal Hospital of Créteil, Créteil, France
9Department of Digestive, Hepatobiliary and Pancreatic Surgery, AP-HP, Université de Paris, Cochin Hospital, France
10Department of Ophthalmology, Intercommunal Hospital of Créteil, Créteil, France
11Kaduceo SAS, Toulouse, France
12Clinical Research Centre, Intercommunal Hospital of Créteil, Créteil, France

*Correspondence to: Department of General and Digestive Surgery, Centre Hospitalier Intercommunal de Créteil, 40 Avenue de Verdun, 94000 Créteil, France (e-mail: andrea.lazzati@chicreteil.fr)
Presented to the Congress of the French Society of Digestive Surgery webinar, November 2020

Abstract

Background: The COVID-19 pandemic has had a major impact on healthcare in many countries. This study assessed the effect of a nationwide lockdown in France on admissions for acute surgical conditions and the subsequent impact on postoperative mortality.

Methods: This was an observational analytical study, evaluating data from a national discharge database that collected all discharge reports from any hospital in France. All adult patients admitted through the emergency department and requiring a surgical treatment between 17 March and 11 May 2020, and the equivalent period in 2019 were included. The primary outcome was the change in number of hospital admissions for acute surgical conditions. Mortality was assessed in the matched population, and stratified by region.

Results: During the lockdown period, 57,589 consecutive patients were admitted for acute surgical conditions, representing a decrease of 20.9 per cent compared with the 2019 cohort. Significant differences between regions were observed: the decrease was 15.6, 17.2, and 26.8 per cent for low-, intermediate- and high-prevalence regions respectively. The mortality rate was 1.92 per cent during the lockdown period and 1.81 per cent in 2019. In high-prevalence zones, mortality was significantly increased (odds ratio 1.22, 95 per cent c.i. 1.06 to 1.40).

Conclusion: A marked decrease in hospital admissions for surgical emergencies was observed during the lockdown period, with increased mortality in regions with a higher prevalence of COVID-19 infection. Health authorities should use these findings to preserve quality of care and deliver appropriate messages to the population.

Introduction

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2; COVID-19) pandemic has had profound effects on healthcare systems globally. Hospitals, in particular, have been overwhelmed by the massive influx of infected patients. To cope with the burden of disease, hospital workforce was reallocated and elective surgery significantly delayed. Various countries implemented a national lockdown, with major restrictions on all non-essential travel outside the home. In France, an initial lockdown was declared from 17 March to 11 May 2020.

Few studies have reported on the impact on emergency department visits for acute illnesses not related to COVID-19 during the lockdown period, although decreased attendances have been described for myocardial infarction, trauma, and acute gastrointestinal conditions including appendicitis and acute cholecystitis.

Although individual centres and specialties rapidly identified the impact of COVID-19 on surgical services, there remains a lack of information on its effect on emergency surgery at a nationwide level during lockdown.

This study investigated how the sudden disruption of usual healthcare during the lockdown period affected acute surgery. The aim was to quantify changes in hospital admissions for emergency surgical conditions according to the regional...
prevalence of COVID-19, comparing the lockdown period with the same time interval in 2019. Potential changes in mortality were investigated.

Methods
This was an observational, analytical study of the impact of a national lockdown during the SARS-CoV-2 pandemic on the rate of surgical emergencies. Data were extracted from a national discharge database, the Programme De Médicalisation des Systèmes d’Information (PMSI), which collects all discharge reports from all hospitals in France, irrespective of facility ownership or academic affiliation. Discharge reports are mandatory and represent the basis for hospital funding. The database is comprehensive for all reimbursed surgical interventions in the country.

Data collected included patient demographics (age, sex, postal code, admission and discharge dates) along with primary and associated diagnoses based on ICD-10.

Participants
All adult patients aged at least 18 years admitted during the period of lockdown between 17 March and 11 May 2020 and the equivalent period in 2019 (19 March and 13 May) were considered. Patients were identified in the database through the diagnosis-related group classification, used to identify any hospital stay in which a surgical event occurred. Only emergency admissions were considered, defined as any admission passing through the emergency department. In the case of multiple admissions for the same patient, all hospital stays were included.

Exposures and confounders
The exposure variable was the year of admission, 2019 versus 2020, the year 2019 being the reference group. Potential confounders in readmission destination were assessed at several levels. Baseline patient characteristics included age, sex, BMI, and co-morbidities, according to the Charlson Co-morbidity Index (using Bannay weighting)6. Regional differences were based on the reported ratios of hospital admissions for COVID-19 infection per 100,000 inhabitants. Three regional groups were established based on the number of admissions: 30 or more per 100,000 in high-prevalence regions, 15–29 per 100,000 in intermediate-prevalence regions, and fewer than 15 per 100,000 in low-prevalence regions7.

In the ICD-10 catalogue, diagnosis codes have a hierarchical classification in four levels6 based on 22 chapters, each using a letter code. Each chapter is divided into blocks of homogenous three-character categories (for instance, codes K35–K38 represent diseases of appendix). In this study, these two first levels of classification are referred to as chapters and blocks. Within each block, ICD-10 codes are classified into three-character categories (K35 represents acute appendicitis) and four-character subcategories (K35.2 represents acute appendicitis with generalized peritonitis), defining disease characteristics in increased detail. In this study, the last four-character level is referred to as a subcategory.

In the present study, 90 per cent of the most frequent diagnoses using the four-character subcategories of ICD-10 codes were selected, reducing the number of diagnoses from over 10,000 to approximately 500. Complete attrition is reported in Fig. S1.

Outcomes
The main outcome of this study was the rate of admission for adult surgical emergencies during the lockdown period in France compared with the same interval in 2019. A secondary outcome was in-hospital mortality after admission. Mortality was assessed irrespective of the time between the day of admission and death. The impact of active SARS-CoV-2 infection on mortality was assessed in a subgroup analysis.

Data access and linkage
In the PMSI database, each patient is assigned a unique identifier, which remains unchanged over time, making linkage between hospital stays in different hospitals possible. Because the identifier is anonymous, patient consent was not required. Access to the database was submitted for authorization by the National Commission on Informatics and Liberty (authorization number 01947391).

Statistical analysis
The balance among patient co-variables was assessed using standardized mean differences (SMDs); a difference of 10 per cent or less was considered a well balanced result1. The paired-samples Wilcoxon signed-rank test was used to examine the difference in median number of emergencies between lockdown and control periods.

Potential confounders among measured co-variables were assessed by propensity score analysis. The probability of each patient being admitted during the lockdown was calculated by logistic regression incorporating all patient variables. Matching between the lockdown and control groups was performed using the nearest neighbour for propensity score and the exact method for the diagnosis code (using the 3-character category), sex, and age group. In the matched cohort, the balance between co-variables was also assessed using the SMD. Mortality odds ratios (ORs) for each surgical disease were estimated by means of a logistic univariable regression model.

A similar method was used to calculate the OR for mortality associated with COVID-19. Patients with COVID-19 from the lockdown period were matched with those admitted during the same interval using the propensity score, as described above. An adjusted OR for mortality with confidence interval was calculated using the logistic regression model. All statistical analyses were done with R software (R Foundation for Statistical Computing, Vienna, Austria).

Results
During the lockdown, 57,589 emergency surgical admissions occurred in France, representing a decrease of 20.9 per cent compared with the same period in 2019 (72,819 admission). The nadir of admissions was observed during week 12 (–36.1 per cent), followed by gradual increases, until the first week after the end of lockdown (week 20), when the difference between 2019 and 2020 was negligible (Fig. 1a).

The decrease in emergency surgical admissions differed between regions, reflecting the overall prevalence of admissions for COVID-19 infection. This amounted to 15.6 and 17.2 per cent decreases for low- and intermediate-prevalence regions respectively, with a 26.8 per cent decrease for high-prevalence regions where the nadir in week 13 was 42.3 per cent (Fig. 1b).

The characteristics of patients admitted during the lockdown were similar to those of patients admitted during the same interval in 2019, with a mean(?) SMD of 0.015(0.013); no co-variable had a SMD larger than 0.100 (Table 1).

Trends in admission by chapter and category are reported in Table 2. The decrease in number of emergency admissions...
affected all chapters, except other reasons for admission, where numbers were relatively small. Admissions related to the injury and digestive system chapters were the most prevalent, and decreases of 27 and 19 per cent respectively were noted \((P < 0.001) \). Chapters that had the greatest decrease were eye and adnexa \((–40.5 \text{ per cent}; P = 0.002) \) and respiratory system \((–40.7 \text{ per cent}; P < 0.001) \), whereas the least affected were neoplasms and pregnancy \((8.5 \text{ and } 7.5 \text{ per cent decrease respectively}; \ P = 0.032 \text{ and } 0.014) \).

Diseases were classified in 78 blocks of categories. Among these, admissions decreased in 71 categories \((91 \text{ per cent}) \) and increased in seven \((9.0 \text{ per cent}) \), although these increases were not significant compared with 2019. Among the most common categories requiring emergency surgery, the greatest reduction was observed for injuries to the knee and lower leg \((–43.8 \text{ per cent}; P < 0.001) \) and injuries to the shoulder and upper arm \((–32.2 \text{ per cent}; P < 0.001) \). An important reduction for diseases of appendix was also observed \((–21.0 \text{ per cent}; P < 0.001) \), and admissions related to disorders of gallbladder, biliary tract, and pancreas decreased by 5.6 per cent, although this was not significantly different from 2019 \((P = 0.089) \). Urolithiasis had a moderate increase \((0.7 \text{ per cent}) \), but the rate was not significantly different from that in 2019 \((P = 0.860) \).

Subcategories occurring in at least 400 admissions are reported in \textbf{Table 3}, and the complete list is available in \textbf{Table S1}. The number of operations for fractures, notably fracture of head and neck of femur \((–20.5 \text{ per cent}) \), peritrochanteric fracture \((–16.8 \text{ per cent}) \), fracture of lower leg, including ankle (irrespective of location: \(–56.0 \text{ per cent} \) for upper end of tibia, \(–53.0 \text{ per cent} \) for shaft of tibia, \(–41.4 \text{ per cent} \) for lateral malleolus, \(–38.5 \text{ per cent} \) for other fractures of lower leg) as well as fracture of shoulder and upper arm \((\text{upper end of humerus – 28.7 per cent}, \text{shaft of humerus – 36.5 per cent}) \) all decreased significantly compared with 2019.

Mortality

Some 2433 deaths \((1.87 \text{ per cent}) \) were identified in the original population and 2129 \((1.87 \text{ per cent}) \) in the matched population \((\textbf{Table S2}) \). After matching, the overall mortality rate was 1.92 per cent \((1096 \text{ of 56 982}) \) during the lockdown period and 1.81 per cent \((1033 \text{ of 56 982}) \) in 2019. The adjusted OR for death in the matched population was 1.06 \((95 \text{ per cent c.i. } 0.97 \text{ to } 1.15) \). A significant increase in mortality rate was seen in high-prevalence zones \((\text{OR } 1.22, 1.06 \text{ to } 1.40) \); there were no changes in the low- and intermediate-prevalence zones \((\textbf{Table 4}) \).

Patients with COVID-19

In the subgroup of 863 patients with a diagnosis of COVID-19 infection, the overall mortality rate was 4.0 per cent among those with asymptomatic infection \((\text{OR } 1.21, 95 \text{ per cent c.i. } 0.44 \text{ to } 2.80) \) and 12.3 per cent for those with symptomatic infection \((\text{OR } 4.00, 2.60 \text{ to } 6.32) \).
Table 1 Baseline characteristics

	Control group (2019) (n = 72,819)	Lockdown group (2020) (n = 57,589)	SMD
Age (years)*			
< 30	56.49 (23.08)	57.34 (23.01)	0.037
30–39	13.104 (18.0)	9.461 (16.4)	
40–49	10.611 (14.6)	8.744 (15.2)	
50–59	7.203 (9.9)	5.658 (9.8)	
60–75	8.127 (12.2)	6.318 (11.0)	
> 75	14.294 (19.6)	11.178 (19.4)	
Women			
0	54.382 (74.7)	42.275 (73.4)	
1–2	15.578 (21.4)	12.856 (22.3)	
> 3	28.80 (4.0)	24.58 (4.3)	
Myocardial infarction			
	875 (1.2)	676 (1.2)	0.003
Congestive heart failure			
	36.98 (5.1)	31.40 (5.5)	0.017
Peripheral vascular disease			
	2046 (2.8)	1738 (3.0)	0.012
Cerebrovascular disease			
	1700 (2.3)	1352 (2.3)	0.001
Dementia	3027 (4.2)	2293 (4.2)	
Chronic pulmonary disease			<0.001
	2413 (3.3)	2228 (3.9)	0.030
Rheumatic disease	350 (0.5)	300 (0.5)	0.006
Peptic ulcer disease			
	427 (0.6)	317 (0.6)	0.005
Mild liver disease	684 (0.9)	608 (1.1)	0.012
Diabetes without chronic complication			
	5172 (7.1)	4276 (7.4)	0.013
Diabetes with chronic complication			
	1399 (1.9)	1009 (1.8)	0.013
Hemiplegia or paraplegia			<0.001
	1281 (1.8)	1014 (1.8)	
Renal disease	2518 (3.5)	2119 (3.7)	0.012
Any malignancy, including lymphoma and leukaemia, except malignant neoplasm of skin			
	3380 (4.6)	2933 (5.1)	0.024
Moderate or severe liver disease			
	156 (0.2)	154 (0.3)	0.011
Metastatic solid tumour			
	1321 (1.8)	1119 (1.9)	0.01
AIDS/HIV	81 (0.1)	54 (0.1)	0.005
Obesity	3588 (4.9)	3026 (5.3)	0.015

Values in parentheses are percentages unless indicated otherwise; *values are mean(s.d.). SMD, standardized mean difference; AIDS/HIV, acquired immune deficiency syndrome/human immunodeficiency virus.

Discussion

This study reports a major decrease in emergency procedures during the COVID-19 pandemic lockdown period in France. The comprehensive data have permitted an in-depth analysis at a national level. There was a 20.9 per cent reduction in emergency surgical admissions to hospital between the 2020 lockdown and the corresponding interval in 2019. Over the weeks after the end of lockdown, no significant difference was observed between the two periods, suggesting a progressive return to usual surgical practices. The decrease in hospital admissions was associated with the regional prevalence of COVID-19, with the greatest reduction seen in the zones of highest prevalence. As no difference was observed between low- and intermediate-COVID-19 prevalence regions, two levels of impact on emergency surgeries were evident: a major impact in high-prevalence regions and a significantly lower level for all other regions. After matching on all available data, in-hospital mortality was slightly and significantly greater in the lockdown group than in the control group in high-prevalence zones. Additionally, the curve for the number of urgent operations week by week during the lockdown was a mirror image of the curve for number of hospital admissions for COVID-19, suggesting that the availability of hospital beds and operating rooms, requisitioned at the peak of the epidemic, had an impact on the operating capacities of the hospitals.

These findings seem to confirm other experiences reported in the media in the early lockdown periods regarding the dramatic and unexpected reduction in non-COVID emergencies.8,10

The present data are consistent with preliminary reports on acute-care surgery in other countries. In Spain, a 60 per cent decrease in acute surgery activity during the acute phase of the pandemic was reported by three tertiary hospitals in Madrid and Barcelona.11 Similarly, an important reduction in traumatic injuries (almost 38 per cent compared with 2019) was observed in a major trauma centre in the UK. A multicentre study12 from 18 general surgery units in a red zone of COVID-19 contagion reported a 45 per cent decrease in admissions for emergency surgical disease and a 41 per cent decrease in operations, despite no discernible differences in overall management approaches to patients who were admitted during the lockdown.

Several factors have been put forward to explain the reduction in emergency surgery. The most common is the patients’ fear of being taken to hospitals receiving people with COVID-19 and the risk of contracting the virus in that environment. This fear has probably been nourished by worrying information transmitted by the media about the situation in hospitals, such as being overwhelmed by patients with COVID and facing equipment shortages including personal protection, and the lack of reassuring messages from hospitals on the management of patients without COVID. Precise reasons for hospital avoidance remain unclear; only indirect evidence is available. A study13 from the UK reported that people with low-risk conditions were less likely to present to an emergency department whereas the numbers of non-deferrable emergencies remained constant.

There is already some evidence that avoidance of hospital attendance has led to delayed visits to an emergency department,
Chapter	Block code	Block label	Control group (2019)	Lockdown group (2020)	Difference (%)	P
Infectious diseases	A30–A49	Other bacterial diseases	111 (0.15)	72 (0.13)	-35.14	0.014
Neoplasms	C15-C26	Malignant neoplasms, digestive organs	671 (0.92)	641 (1.11)	-4.47	0.433
	C50-C58	Malignant neoplasms, breast and female genital organs	65 (0.09)	42 (0.07)	-35.38	0.040
	C60–C63	Malignant neoplasms of male genital organs	38 (0.05)	42 (0.07)	10.53	0.687
	C64–C68	Malignant neoplasms, urinary organs	276 (0.38)	263 (0.46)	-4.71	0.581
	C69–C72	Malignant neoplasms, eye, brain, and central nervous system	47 (0.06)	34 (0.06)	-27.66	0.206
	C76–C80	Malignant neoplasms, secondary and ill-defined	217 (0.3)	186 (0.32)	-14.29	0.087
	C81–C96	Malignant neoplasms, stated or presumed to be primary, of lymphoid, haematopoietic, and related tissue	47 (0.06)	42 (0.07)	-10.64	0.521
Nervous system	G00–G09	Inflammatory diseases of the central nervous system	1460 (2)	1335 (2.32)	-8.56	0.032
	G50–G59	Nerve, nerve root, and plexus disorders	25 (0.03)	18 (0.03)	-28	0.404
	G90–G99	Other disorders of the nervous system	76 (0.1)	49 (0.09)	-35.53	0.011
	H15–H19	Disorders of sclera and cornea	1011 (1.39)	897 (1.56)	-11.28	0.051
	J30–J39	Other diseases of upper respiratory tract	252 (0.36)	257 (0.41)	2.09	0.943
	J80–J85	Other disorders of the respiratory system	2817 (3.87)	2510 (3.83)	-10.78	0.001
Digestive system	K00–K14	Diseases of oral cavity, salivary glands, and jaws	22 (0.03)	18 (0.03)	-18	0.001
	K20–K31	Diseases of esophagus, stomach, and duodenum	835 (1.14)	769 (1.32)	-8.39	0.001
	K35–K38	Diseases of appendix	5520 (7.58)	5190 (7.57)	-5.68	0.001
	K40–K46	Hernia	1614 (2.22)	1578 (2.19)	-2.21	0.001
	K55–K59	Other diseases of intestines	3528 (4.84)	3278 (4.84)	-7.83	0.001
	K65–K67	Diseases of peritoneum	2394 (3.29)	2194 (3.29)	-8.83	0.001
	K60–K63	Diseases of peritoneum	2557 (3.51)	2539 (3.51)	-0.76	0.001
	K70–K79	Other diseases of the digestive system	14 980 (20.57)	13 790 (20.57)	-7.63	0.001
Skin and subcutaneous tissue	L00–L08	Infections of the skin and subcutaneous tissue	2383 (3.34)	2285 (3.34)	-4.11	0.001
	L60–L75	Other joint disorders	123 (0.17)	117 (0.19)	-5.56	0.001
Musculoskeletal system and connective tissue	M00–M03	Infectious arthropathies	24 (0.03)	14 (0.02)	-35.71	0.001
	M15–M19	Arthritis	37 (0.05)	32 (0.05)	-14.67	0.001
	M20–M25	Other joint disorders	29 (0.04)	24 (0.03)	-17.93	0.001
	M45–M49	Spondyloarthropathies	46 (0.06)	41 (0.06)	-11.36	0.001
	M50–M54	Other arthritides	224 (0.31)	216 (0.3)	-3.63	0.001
	M65–M68	Diseases of synovium and tendon	272 (0.37)	264 (0.37)	-3.03	0.001
	M70–M79	Other soft tissue disorders	371 (0.51)	374 (0.51)	0.84	0.001
	M80–M85	Diseases of bone density and structure	126 (0.17)	124 (0.17)	-1.62	0.001
	M86–M90	Other osteopathies	437 (0.61)	432 (0.59)	-1.13	0.001
	M95–M99	Other disorders of the musculoskeletal system and connective tissue	558 (0.77)	555 (0.77)	-0.52	0.001
Genitourinary system	N00–N08	Glomerular diseases	24 (0.03)	14 (0.02)	-35.71	0.001
		(continued)				
resulting in more advanced disease. The study\(^1\) from Spain reported an increased delay of almost 24 h from the onset of symptoms to arrival at a hospital compared with that of a historical control group. A report\(^3\) from three medical centres in the state of New York found an increase in paediatric perforated appendicitis compared with uncomplicated appendicitis during the surge of COVID-19 outbreak. Similarly, a number of reports have documented decreases in emergency visits for kidney stone disease, with an increase in severe presentations necessitating admission\(^14,15\). These data are consistent with the findings of the present study, where there was a moderate increase (0.7 per cent) in the category urolithiasis (N20–N23).

Lockdown restrictions led to unprecedented modifications in lifestyle, resulting in a reduction in road traffic collisions and consequent trauma. In the UK, road casualties decreased of 67 per cent compared with 2019\(^16\). Associations between acute diseases and other lifestyle changes such as food and alcohol consumption, or physical activity, is less straightforward.

Chapter Block code Block label	Control group (2019)	Lockdown group (2020)	Difference (%)	P
N10–N16 Renal tubulointerstitial diseases	1801 (2.47)	1714 (2.98)	−4.83	0.284
N17–N19 Renal failure	159 (0.22)	139 (0.24)	−12.58	0.265
N20–N23 Urolithiasis	2572 (3.53)	2590 (4.5)	0.7	0.860
N25–N29 Other disorders of kidney and ureter	27 (0.04)	32 (0.06)	18.52	0.442
N30–N39 Other diseases of urinary system	90 (0.12)	56 (0.1)	−37.78	0.012
N40–N51 Diseases of male genital organs	642 (0.88)	446 (0.77)	−30.53	<0.001
N60–N64 Disorders of breast	24 (0.03)	21 (0.04)	−12.5	0.655
N70–N77 Inflammatory diseases of female pelvic organs	720 (0.99)	539 (0.94)	−25.14	<0.001
N80–N98 Non-inflammatory disorders of female genital tract	408 (0.56)	293 (0.51)	−28.19	<0.001
Total	6467 (8.88)	5844 (10.15)	−9.63	<0.001
Pregnancy, childbirth, and the puerperium				
O00–O08 Pregnancy with abortive outcome	6467 (8.88)	5844 (10.15)	−9.63	<0.001
O10–O16 Oedema, proteinuria and hypertensive disorders in pregnancy, childbirth, and the puerperium	238 (0.33)	247 (0.43)	3.78	0.748
O20–O29 Other maternal disorders predominantly related to pregnancy	51 (0.07)	45 (0.08)	−11.76	0.565
O30–O48 Maternal care related to the fetus and amniotic cavity, and possible delivery problems	1841 (2.53)	1701 (2.95)	−7.6	0.123
O60–O75 Complications of labour and delivery	3118 (4.28)	2987 (5.19)	−4.2	0.331
O80–O84 Delivery	71 (0.1)	15 (0.03)	−78.87	0.3
O95–O99 Other obstetric conditions, not elsewhere classified	31 (0.04)	27 (0.05)	−12.9	0.684
Total	7511 (10.31)	6947 (12.06)	−7.51	0.014
Others symptoms and diseases				
R00–R09 Circulatory and respiratory systems	98 (0.13)	77 (0.13)	−21.43	0.253
R10–R19 Digestive system and abdomen	35 (0.05)	18 (0.03)	−48.57	0.024
R30–R39 Urinary system	202 (0.28)	162 (0.28)	−18.9	0.025
R50–R69 General symptoms and signs	14 (0.2)	112 (0.19)	−22.22	0.049
Total	479 (0.66)	369 (0.64)	−22.96	0.001
Injuries				
S00–S09 Injuries to the head	794 (1.09)	493 (0.86)	−37.91	<0.001
S10–S19 Injuries to the neck	46 (0.06)	22 (0.04)	−52.17	0.005
S20–S29 Injuries to the thorax	185 (0.25)	111 (0.19)	−40	0.019
S30–S39 Injuries to the abdomen, lower back, lumbar spine, and pelvis	684 (0.94)	366 (0.64)	−46.49	<0.001
S40–S49 Injuries to the shoulder and upper arm	2080 (2.86)	1411 (2.45)	−32.16	<0.001
S50–S59 Injuries to the elbow and forearm	4264 (5.85)	3016 (5.24)	−29.27	<0.001
S60–S69 Injuries to the wrist and hand	5049 (6.93)	4329 (7.52)	−14.26	0.002
S70–S79 Injuries to the hip and thigh	11695 (16.06)	9269 (16.1)	−20.74	<0.001
S80–S89 Injuries to the knee and lower leg	5506 (7.56)	3096 (5.38)	−43.77	<0.001
S90–S99 Injuries to the ankle and foot	353 (0.48)	277 (0.48)	−21.53	0.005
T79 Certain early complications of trauma	27 (0.04)	19 (0.03)	−29.63	0.133
T80–T88 Complications of surgical and medical care, not elsewhere classified	551 (0.76)	368 (0.64)	−33.21	<0.001
Total	31 234 (42.88)	22777 (39.55)	−27.08	<0.001
Other reasons for admission				
Z80–Z99 Persons with potential health hazards related to family and personal history, and certain conditions influencing health status	222 (0.3)	241 (0.42)	8.56	0.592
Total	222 (0.3)	241 (0.42)	8.56	0.762

Values in parentheses are percentages.
provide partly explain why the reduction in acute cholecystitis (K810, decrease of 5.6 per cent) was relatively modest.

Another issue may have been a shift, when possible, from surgical to medical treatment. This has been suggested for uncomplicated appendicitis or cholecystitis.18,19 This might also explain why some disorders for which there is no non-surgical alternative, such as incarcerated hernia or bowel perforation, showed a more moderate reduction13. In the absence of evidence of catching up at the end of the lockdown period in the present study, it can be argued that conservative treatment represented a feasible solution for some patients. This warrants further study in relevant conditions.

In many healthcare settings, elective surgery has been severely curtailed. Although this inevitably resulted in fewer complications requiring urgent surgical revision15,20 this must be set

8-week lockdown in France, a survey of 3000 adults found that men gained an average of 2.7 kg and women 2.3 kg17. If short-term weight gain influences the risk of cholecystitis, this might
against patients listed for elective surgery whose problems deteriorated, leading to an urgent surgical admission. Despite this, the reduction for some conditions remains difficult to explain, in particular for life-threatening diseases such as bowel perforation or incarcerated hernia.

The decrease in admissions for emergencies requiring surgical treatment in the present study was also related to the local prevalence of COVID-19. The analysis highlighted that the decrease in surgical emergencies was identical in zones with a low and intermediate prevalence of COVID-19 infection, and different from that in high-prevalence zones. The mortality rate was also associated with the regional prevalence of hospital admission for COVID-19, with an increased odds of a fatal event. This might suggest that, when a threshold is exceeded in emergency departments, the quality of care may be affected and the mortality rate increases. Previous studies\cite{2,11,12} with contradictory findings may have suffered from having relatively small sample sizes.

The present study has limitations. It was based on an administrative database using classification of disease (ICD-10) codes, rather than on clinical data. Although ICD codes can be extremely accurate, they are not always consistent with clinical classification; for instance, there is no correlation between the Hinchey classification for perforated diverticulitis and ICD codes\cite{21}. The use of a standardized classification does, however, facilitate reproducibility and comparison. Furthermore, admissions were classified only with respect to the main diagnosis, which seemed appropriate for most patients, but could be a simplification for complex emergencies, such as patients with multiple traumatic injuries. No information on conservative treatment in primary or secondary care or medical treatment for surgical emergencies is available. As a result, the decrease in surgical admissions might have overestimated the real incidence of acute surgical conditions. These limitations, however, must be seen in the context of a comprehensive data set at national level which, as a result of using ICD-10 codes, permits comparison with other countries.

The pandemic coupled with a national lockdown had a massive impact on emergency operations, especially in zones with a higher prevalence of COVID-19 infection, where in-hospital mortality increased significantly. Although the surgical community has the ability to adapt and cope with emerging viral infections, such as the human immunodeficiency virus and severe acute respiratory syndrome\cite{22}, it is essential that health authorities act to maintain adequate surgical services.

Disclosure. All authors declare no conflict of interest concerning the present study.

Supplementary material

Supplementary material is available at BJS Open online.

References

1. Mesnier J, Cottin Y, Coete P, Ferrari E, Schiele F, Lemesle G et al. Hospital admissions for acute myocardial infarction before and after lockdown according to regional prevalence of COVID-19 and patient profile in France: a registry study. Lancet Public Health 2020;5 e536-e542

2. Rajput K, Sud A, Rees M, Rutka O. Epidemiology of trauma presentations to a major trauma centre in the North West of England during the COVID-19 level 4 lockdown. Eur J Trauma Emerg Surg 2020;30 1–6

3. Fisher JC, Tomita SS, Ginsburg HB, Gordon A, Walker D, Kuenzler KA. Increase in Pediatric Perforated Appendicitis in the New York City Metropolitan Region at the Epicenter of the COVID-19 Outbreak. Ann Surg 2021;273 410–415

4. Cano-Valderrama O, Morales X, Ferrigni CJ, Martín-Antona E, Turrado V, García A et al. Reduction in emergency surgery activity during COVID-19 pandemic in three Spanish hospitals. Br J Surg 2020;107 e239

5. Bannay A, Chaignot C, Blotière PO, Basson M, Weill A, Ricordeau P et al. The best use of the Charlson comorbidity index with electronic health care database to predict mortality. Med Care 2016;54 188–194

6. WHO. ICD-10 Version: 2010 http://apps.who.int/classifications/icd10/browse/2010/en (accessed 17 October 2020)

7. Austin PC, Stuart EA. Moving towards best practice when using inverse probability of treatment weighting (IPTW) using the propensity score to estimate causal treatment effects in observational studies. Stat Med 2015;34 3661–3679

8. Santé publique France. COVID-19: chiffres clés et évolution . https://www.sante Publique.fr/coronavirus-covid-19/chiffres-cles-et-evolution-de-la-covid-19-en-france-et-dans-le-monde (accessed 17 October 2020)

9. Le Monde. Journal de crise des blouses blanches: «Mais où sont passées les autres urgences?”. https://www.lemonde.fr/journal-des-blouses-blanches/article/2020/03/31/journal-de-crise-des-blouses-blanches-mais-o-ont-passees-les-autres-urgences_6035081_6033712.html (accessed 17 October 2020)

10. Feuer W. Doctors Worry the Coronavirus Is Keeping Patients Away From US Hospitals as ER Visits Drop. ‘Heart Attacks Don’t Stop’. https://www.cnbc.com/2020/04/14/doctors-worry-the-coronavirus-is-keeping-patients-away-from-us-hospitals-as-er-visits-drop-heart-attacks-dont-stop.html (accessed 18 October 2020)

11. Cano-Valderrama O, Morales X, Ferrigni CJ, Martín-Antona E, Turrado V, García A et al. Acute care surgery during the COVID-19 pandemic in Spain: changes in volume, causes and complications. A multicentre retrospective cohort study. Int J Surg 2020;80 157–161

12. Rausei S, Ferrara F, Zurleni T, Frattini F, Chiara O, Pietrabissa A et al. Dramatic decrease of surgical emergencies during COVID-19 outbreak. J Trauma Acute Care Surg 2020;89 1085–1091

13. McLean RC, Young J, Musabahi A, Lee JX, Hidayat H, Abdalla N et al. A single-centre observational cohort study to evaluate volume and severity of emergency general surgery admissions during the COVID-19 pandemic: Is there a “lockdown” effect? International Journal of Surgery 2020;83 259–266

14. Antonucci M, Recupero SM, Marzio V, De Dominics M, Pinto F, Foschi N et al. The impact of COVID-19 outbreak on urolithiasis emergency department admissions, hospitalizations and clinical management in central Italy: a multicentric analysis. Actas Urol Esp 2020;44 611–616

15. Tefik T, Guven S, Villa L, Gokce MI, Kallidonis P, Petkova K et al. Urolithiasis practice patterns following the COVID-19 pandemic: overview from the EULIS Collaborative Research Working Group. Eur Urol 2020;78 e21–e24

16. Department of Transport. Reported road casualties in Great Britain: provisional estimates year ending June 2020. Available at: https://www.gov.uk/government/statistics/reported-road-casualties-in-great-britain-provisional-estimates-year-ending-june-2020 (accessed 1 February 2021)
17. Darwin Nutrition. Sondage IFOP pour Darwin Nutrition: l’impact du confinement sur l’alimentation des Français.es. https://www.dar win-nutrition.fr/actualites/alimentation-francais/ (accessed 17 October 2020)

18. Collard M, Lakkis Z, Loriau J, Mege D, Sabbagh C, Lefevre JH et al. Antibiotics alone as an alternative to appendectomy for uncomplicated acute appendicitis in adults: Changes in treatment modalities related to the COVID-19 health crisis. J Visc Surg 2020;157:S33–S42

19. American College of Surgeons. COVID-19 Guidelines for Triage of Emergency General Surgery Patients. https://www.facs.org/covid-19/clinical-guidance/elective-case/emergency-surgery (accessed 17 October 2020)

20. Collard MK, Lefèvre JH, Batteux F, Parc Y, Peschaux F, Wind P et al., APHP/Universities/Inserm COVID-19 Research Collaboration. COVID-19 heath crisis: less colorectal resections and yet no more peritonitis or bowel obstruction as a collateral effect? Colorectal Dis 2020;22:1229–1230

21. Martellotto S, Challine A, Peveri V, Paolino L, Lazzati A. Trends in emergent diverticular disease management: a nationwide cohort study from 2009 to 2018. Tech Coloproctol 2021;25:549–558