Importance of thermal diffusion in the gravomagnetic limit cycle

James E. Owen1* and Philip J. Armitage2,3

1Canadian Institute for Theoretical Astrophysics, 60 St George Street, Toronto, ON M5S 3H8, Canada
2JILA, University of Colorado and NIST, 440 UCB, Boulder, CO 80309-0440, USA
3Department of Astrophysical and Planetary Sciences, University of Colorado, Boulder, CO 80309-0391, USA

Accepted 2014 September 12. Received 2014 September 11; in original form 2014 August 1

ABSTRACT
We consider the role of thermal diffusion due to turbulence and radiation on accretion bursts that occur in protoplanetary discs which contain dead-zones. Using 1D viscous disc models, we show that diffusive radial transport of heat is important during the gravomagnetic limit cycle, and can strongly modify the duration and frequency of accretion outbursts. When the Prandtl number is large – such that turbulent diffusion of heat is unimportant – radial radiative diffusion reduces the burst duration compared to models with no diffusive transport of heat. When the Prandtl number is small $\lesssim 25$, we find that turbulent diffusion dominates the radial transport of heat, reducing the burst duration to $\lesssim 10^3$ yr as well as increasing the burst frequency. Furthermore, inclusion of radial transport of heat extends the range of infall rates under which the disc undergoes accretion bursts from 10^{-8} to 10^{-6} M_\odot yr$^{-1}$ with no diffusion, to 10^{-6} to 10^{-4} M_\odot yr$^{-1}$ with radiative and strong turbulent diffusion. The relative roles of radiative and turbulent thermal diffusion are likely to vary during an accretion burst, but simple estimates suggest that the expected Prandtl numbers are of the order of 10 in protoplanetary discs, and hence that turbulent diffusion is likely to be an important process during accretion outbursts due to the gravomagnetic limit cycle.

Key words: accretion, accretion discs – magnetohydrodynamics (MHD) – turbulence – stars: pre-main-sequence.

1 INTRODUCTION
A subset of protostellar systems exhibits large amplitude variations in disc luminosity that appear to reflect discrete accretion episodes through the inner disc and on to the star (Audard et al. 2014). The most dramatic known events are those that occur in FU Orionis systems (Hartmann & Kenyon 1996), while in EXor systems both the amplitude and duration of accretion bursts are reduced. Given the sparsity of historical observations, it is possible that all protostars undergo outbursting behaviour (and that additional classes of very long duration outbursts remain unrecognized). Indeed, statistical arguments based on a comparison between the observed integrated luminosity of protostars and their final mass (the ‘protostellar luminosity problem’; Kenyon et al. 1990; Evans et al. 2009) are frequently taken to imply that large-scale variability is ubiquitous.

The reason or reasons why protostellar discs show outbursts has not been definitively established. One class of models attributes the outbursts to an instability in discs that contain a dead-zone (Gammie 1996), which in the simplest (original) description is a radial region where the strength of vertically integrated turbulence is suppressed by Ohmic damping of the magnetorotational instability (MRI; Balbus & Hawley 1998). Outside the thermally ionized inner disc, Ohmic damping can potentially reduce the maximum accretion capacity of the disc near 1 au such that it is unable to match the higher mass-accretion rates at larger radii. This can give rise to a limit cycle, in which the inner disc alternates between a thermally ionized high state and a low state in which mass is accumulating within the dead-zone (Armitage, Livio & Pringle 2001). Bursts are triggered when the growing surface density exceeds the threshold for gravitational instability (Toomre 1964). This gravomagneto cycle is distinct from the thermal instability of dwarf nova accretion discs, but can be characterized locally using an identical ‘S-curve’ formalism (Zhu, Hartmann & Gammie 2009a; Martin & Lubow 2011, 2014). A number of one- and two-dimensional simulations show that the gravomagneto cycle can lead to global large-amplitude instabilities of protostellar accretion (Armitage et al. 2001; Zhu et al. 2009b, 2010a; Martin & Lubow 2013; Bae et al. 2013a).

The leading source of uncertainty in gravomagneto instability models arises from physics that was not included in the original dead-zone calculations (for reviews, see Armitage 2011; Turner et al. 2014). There is strong evidence for the importance of additional non-ideal magnetohydrodynamic effects (ambipolar diffusion and the Hall effect) other than Ohmic diffusion (Mohanty, Ercolano

*E-mail: jowen@cita.utoronto.ca
Importance of thermal diffusion

2 OVERVIEW

In this work, we want to investigate the role of radial thermal diffusion in the gravomagneto limit cycle for protoplanetary discs that contain a dead-zone (e.g. Gammie 1996; Armitage et al. 2001; Zhu et al. 2010a; Martin & Lubow 2013, 2014), as it has been shown to be important in previous models of accretion disc variability caused by radiative and turbulent diffusion terms. We argue that the latter is most consistently written in terms of the disc’s radial entropy (or ‘potential temperature’) gradient. In Section 3, we describe the one-dimensional disc model, which is used in Section 4 to generate a parameter study of discs with varying mass infall rates and Prandtl numbers. In Section 5, we present analytic estimates of the relative importance of radiative and turbulent diffusion terms. Section 6 contains our conclusions.

through a term that is proportional to the temperature gradient (e.g. Hameury et al. 1998):

\[\tilde{F}_{\text{turb}} \propto D_\text{th}(R) \frac{\partial T}{\partial R} \]

where \(D_\text{th} \) is the diffusion constant and \(T_\text{m} \) is the disc’s mid-plane temperature. However, as discussed by Balbus (2000), in the context of vertical transport, turbulent heat flux is not sensitive to the background temperature gradients, but rather the background entropy gradient. This arises since gas parcels moving radially due to the turbulence will move along adiabats over a certain length-scale (\(\ell \)), before exchanging heat with the surroundings. Thus, after the gas parcel has moved a distance \(\ell \), the relevant temperature gradient is the one between the gas parcel and the surroundings, which is set by the adiabat along which the gas parcel has moved. Thus, the heat flux will be proportional to the disc’s background entropy gradient and the length-scale over which the turbulence has moved the gas parcel before it transfers its heat to the surrounding disc. This implies that the term describing the vertically averaged heat flux due to turbulence is of the form:

\[\tilde{F}_{\text{turb}} \propto D_\text{th}(R) \frac{\partial s}{\partial R} \]

where \(s \) is the disc’s entropy per unit mass, \(v \) is the kinematic viscosity, \(\Sigma \) is the disc’s surface density and the uncertainty in the length-scale over which turbulent heat transport takes place has been encapsulated in the non-dimensional Prandtl number (Pr), which measures the ratio of angular momentum to heat transport.

Equation (2) is similar to the form used in planetary atmospheres to capture turbulent transport of heat, where the entropy is often characterized in terms of the ‘potential temperature’ (\(\Theta \); e.g. Tritton 1988), a form we will adopt in Section 2.1. We note that as is the case for radiative diffusion, the turbulent transport in the vertical direction is likely to exceed the radial transport. The vertical transport may well impact the evolution of disc instabilities (Zhu & Narayan 2013) but here we focus on the radial term. We show that the radial transport of heat by radiative and turbulent diffusion can have a strong impact on the properties of the accretion bursts.

2.1 Basic thermal evolution

As discussed above, turbulent diffusion of heat in a protoplanetary disc is likely to be sensitive to the radial entropy gradient in the disc, rather than the radial temperature gradient. Thus, in order to derive an evolution equation for the thermal state of the disc, we begin with the entropy equation:

\[\rho T \frac{Ds}{Dt} = D - \nabla \cdot F_r, \]

where \(s \) is the specific entropy, \(\rho \) is the mass density and \(D = \frac{9}{4}v \rho \Omega^2 - \Omega^2 \) being the Keplerian angular velocity – is the heating rate per unit volume due to viscous dissipation. The final term on the right-hand side represents heat transport due to radiation, where \(F_r \) is the radiation flux, which in the diffusion approximation is given by

\[F_r = -\frac{a \sigma c T^3}{k \rho} \nabla T, \]

where \(a \) is the radiation constant, \(c \) the speed of light and \(k \) the opacity. The entropy is given by

\[s = C_v \log (\Theta) + \text{const}, \]
where C_V is the heat capacity at constant volume and Θ is a thermodynamic quantity that is conserved during an adiabatic process. By analogy with vertical heat transport in planetary atmospheres, we call Θ the 'potential temperature' (e.g. Tritton 1988) and define Θ such that it has units of temperature. We assume Θ as we do for temperature – that it can be defined as a 1D property of the disc, that depends only on radius. The potential temperature is a much easier variable to work with than entropy so we proceed in re-writing equation (3) as

$$\rho C_V T \frac{D\Theta}{Dt} = D - \nabla \cdot F_\Theta, \quad (6)$$

2.2 Including turbulent heat transport

We may introduce a phenomenological term for the turbulent diffusion of potential temperature as

$$\rho C_V T \left(\frac{D\Theta}{Dt} + \frac{\nabla \cdot F_\Theta}{\rho} \right) = D - \nabla \cdot F_\Theta, \quad (7)$$

where F_Θ is the diffusive flux of potential temperature due to turbulence. The entropy equation including a turbulent heat flux is then given by

$$\rho T \frac{DS}{Dt} = D - \nabla \cdot F_r = -\frac{C_V T}{\Theta} \nabla \cdot F_\Theta. \quad (8)$$

Under the assumption of an ideal gas, and neglecting compressional heating due to PdV work which is negligible for the velocities in protoplanetary discs, equation (8) can be written in an explicit form for the evolution of the temperature as

$$C_p \rho \frac{dT}{dt} - D + \nabla \cdot F_r = -\frac{C_V T}{\Theta} \nabla \cdot F_\Theta, \quad (9)$$

where C_p is the heat capacity at constant pressure. To obtain the 1D disc equation, we vertically integrate equation (9) following Faulkner et al. (1983) and Cannizzo (1993), where the terms of the left-hand side are vertically averaged in the standard way, with

$$\int_{z_{\infty}}^{\infty} \frac{d z}{t} C_p \rho \frac{dT}{dz} \approx C_p \Sigma \frac{dT_{\infty}}{dz}, \quad (10)$$

and

$$\int_{z_{\infty}}^{\infty} \frac{d z}{t} \nabla \cdot F_r \approx \frac{16}{3 \tau} \sigma_b T_m^3 + \frac{2H}{R} \frac{\partial}{\partial R} \left(R \frac{4 \alpha_c T_m^3}{\kappa \rho_m} \frac{dT_m}{\partial R} \right), \quad (11)$$

where ρ_m is the mid-plane density of the disc, σ_b is the Stefan–Boltzmann constant, H is the disc’s scaleheight and $\tau = \Sigma \kappa / 2$ is the vertical optical depth. Finally, we assume that there is no vertical turbulent energy flux through the surface of the disc and vertically integrate the radial flux term for the potential temperature following Mineshige (1986), Cannizzo (1993) and Hameury et al. (1998),\footnote{Note that these authors use a vertically averaged flux term that depends on temperature, rather than potential temperature; however, the procedure is identical.} such that

$$\int_{z_{\infty}}^{\infty} \frac{d z}{t} \frac{C_V T}{\Theta} \nabla \cdot F_\Theta \approx \frac{C_V T_m}{\Theta_m R} \frac{\partial}{\partial R} \left(R \tilde{F}_\Theta \right), \quad (12)$$

where Θ_m is the mid-plane potential temperature, and \tilde{F}_Θ is the vertically averaged turbulent heat flux. Thus, the vertically averaged equation for the evolution of the mid-plane temperature, including turbulent heat flux becomes

$$\frac{\partial T_m}{\partial t} = -\nu_p \frac{\partial T_m}{\partial R} + \frac{1}{\Sigma} \left[\Gamma \frac{\kappa \rho_m}{\Sigma C_p} - \frac{T_m}{\gamma \Theta_m R} \frac{\partial}{\partial R} \left(R \tilde{F}_\Theta \right) \right]$$

$$- \left(\frac{2H}{\Sigma RC_p} \right) \frac{\partial}{\partial R} \left(R \frac{4 \alpha_c T_m^3}{\kappa \rho_m} \frac{\partial T_m}{\partial R} \right), \quad (13)$$

where $\Gamma / 2$ is the net heating rate per unit area, $\gamma = C_p / C_V$ is the ratio of heat capacities. We have manipulated the energy equation into this form as our 1D viscous evolution code already contains routines to integrate the temperature equation (Owen 2014) as well as being similar to those used in other studies (Cannizzo 1993; Armitage et al. 2001; Zhu et al. 2010a; Zhu, Hartmann & Gammie 2010b). This allows for consistency within our numerical method as well as allowing us to easily switch on and off the additional diffusive transport terms of interest. Without radiative and turbulent diffusion, equation (13) is identical to that used by Armitage et al. (2001) to study bursts in the dead-zone accretion scenario of protoplanetary discs and similar to those used by Zhu et al. (2010a), Zhu et al. (2010b) and Martin & Lubow (2013, 2014). Ultimately, the turbulent heat-transport term will only be important when the disc is out of local thermal equilibrium, i.e. when instabilities arise from the activation or quenching of material in the dead-zone which results in accretion bursts.

2.2.1 Choice of ‘potential temperature’

Given that we want our choice of potential temperature to be invariant under an adiabatic process that moves a fluid element in a disc radially, we start from the standard adiabatic relation $T^1 / \gamma \approx \text{const}$. Thus, replacing $\rho_s \propto \Sigma / H$ and remembering $H \propto T^{1 / 2} / \Omega$, where Ω is the angular velocity of the gas (taken to be Keplerian), we find that an appropriate form for the mid-plane potential temperature for an accretion disc is

$$\Theta_m \propto T_m (\Sigma \Omega)^{2(1+\gamma)} \quad (14)$$

where we note that the form of the vertically averaged turbulent heat transport term in equation (13) is independent of the chosen scaling for the potential temperature. To prevent overflow/underflow errors in our numerical model described in Section 3.2, we choose to normalize the surface density and angular velocity to the minimum mass solar nebula values at 1 au.

Furthermore, by dimensional arguments coupled with comparisons with the angular momentum flux due to the turbulence, we define the vertically averaged potential temperature flux as (cf. Mineshige 1986; Cannizzo 1993; Hameury et al. 1998)

$$\tilde{F}_\Theta = -\frac{3 \nu \Sigma}{\Pr} \frac{\partial \Theta_m}{\partial R}, \quad (15)$$

where the most naive expectation would be $\Pr = 1$.

3 ONE-DIMENSIONAL DISC MODEL

In order to investigate the effect of turbulent heat diffusion on accretion burst that can occur in protoplanetary discs with dead-zones, we numerical integrate the disc equations using a simple one-layer approach. Thus, following Armitage et al. (2001), we integrate the diffusion equation for the surface density for a disc around a solar mass star:

$$\frac{\partial \Sigma}{\partial t} = \frac{3}{R} \left(R^{3 / 2} \frac{\partial}{\partial R} \left[(\Sigma_{\text{ac}} + \Sigma_G) R^{1 / 2} \right] \right) + \hat{\Sigma}_{\text{m}}, \quad (16)$$

Σ_{ac} and Σ_G are the accretion and gas surface densities, respectively.
where v_i is the kinematic viscosity due to the MRI and/or self-gravity which we detail in Section 3.1 and Σ_{ac} is the rate of material falling on to the disc. Σ_{ac} is the surface density that is ‘MRI active’ and is given by

$$
\Sigma_{\text{ac}} = \begin{cases}
\Sigma & \text{if } T_{\text{in}} > T_{\text{crit}} \text{ or } \Sigma < 2\Sigma_{\text{layer}}, \\
2\Sigma_{\text{layer}} & \text{otherwise}.
\end{cases}
$$

(17)

For all our models, we choose $T_{\text{crit}} = 800$ K and $\Sigma_{\text{layer}} = 10^3$ g cm$^{-2}$.

The temperature evolution of the disc is given by equation (13) where the net heating rate (Γ) is given by

$$
\Gamma = \frac{9}{4} \frac{1}{\Sigma} \Omega^2 \frac{\Omega}{2} \sigma_T T^4.
$$

(18)

For our model, we adopt the Bell et al. (1997) opacities. Finally, following Armitage et al. (2001), when a region of the disc makes the transition to the layered state, we do not attempt to treat the vertical structure but simply replace the expression for the optical depth by $\tau = \Sigma_{\text{layer}} \kappa$.

In all calculations, we assume an idea equation of state with $\gamma = 7/5$ and a mean-molecular weight (μ) of 2.35 as the majority of disc material we are interested in remains molecular and neutral.

3.1 Viscosity and self-gravity

We treat the viscosity using an ‘alpha’ model such that

$$v_i = \alpha_i c_s H,$$

(19)

where c_s is the isothermal sound speed. For MRI turbulence, we set $\alpha_{\text{MRI}} = 0.01$ and for angular momentum transport due to self-gravity, we follow Lin & Pringle (1987) and Armitage et al. (2001) and set α_{SG} to

$$\alpha_{\text{SG}} = \begin{cases}
0.01 \left(\frac{Q_{\text{crit}}}{Q} - 1 \right) & \text{if } Q \leq Q_{\text{crit}}, \\
0 & \text{if } Q > Q_{\text{crit}},
\end{cases}
$$

(20)

where $Q_{\text{crit}} = 2$ and Q is the Toomre parameter (Toomre 1964) given by

$$Q = \frac{c_s \Omega}{\pi G \Sigma}.$$

(21)

The form of α_{SG} is not important and is merely designed to keep $Q \sim Q_{\text{crit}}$ (e.g. Lin & Pringle 1987, 1990; Zhu et al. 2010a) as suggested by simulations of self-gravitating discs (e.g. Lodato & Rice 2004, 2005).

3.2 Numerical method

Our numerical code is based on the method detailed in Owen (2014); equations (13) and (16) are integrated explicitly using a scheme that is second order in space and first order in time, where advective fluxes are reconstructed using a second order method and a Van Leer limiter. We use a non-uniform radial grid (uniformly spaced in $R^{1/2}$) with 200 cells with an inner boundary at 0.047 au and an outer boundary at 66.7 au. The chosen grid has high enough resolution so that the results are converged. At the inner boundary, we apply a zero shear boundary condition for the surface density and a reflection boundary condition for the temperature. At the outer boundary, we apply a zero mass-flux boundary condition for the surface density and a reflection boundary condition for the temperature. We initialize the simulations with the gas temperature at 10 K, and the gas surface density set to the numerical floor value $\Sigma = 10^{-20}$ g cm$^{-3}$. Additionally, the gas temperature is not allowed to fall below 10 K at any time during the integration.

Material then falls on to the disc at a steady value \dot{M}_∞, where \dot{M}_∞ is taken to be a Gaussian profile of width 1 au and centred at 10 au (outside the location of any dead-zone). We then evolve the system to 5 Myr, during which either a steady disc profile with an accretion rate profile $M(R) = M_\infty$ or a steadily repeating limit cycle is achieved, typically this takes 0.5–2 Myr to reach. Mean burst properties are determined by averaging the simulation results from 2 to 5 Myr.

4 RESULTS

We perform a series of simulations where we vary the input infall rate, Prandtl number and whether or not radial radiative diffusion is included. In Fig. 1, we show the temporal evolution of the mass-accretion rate on to the star ($\dot{M}_* \equiv M$ for an infall rate of $M = 1.4 \times 10^{-6} M_\odot$ yr$^{-1}$, where we switch on and off the different thermal diffusion effects. We switch off radiative diffusion entirely for simulations with no radiative diffusion, for cases with no turbulent diffusion, we just set the Prandtl number to 106.

The top panel shows a simulation with no radial diffusion. The second panel shows a simulation with turbulent diffusion ($Pr = 1$) and no radiative diffusion. The third panel shows a simulation with radiative diffusion but no turbulent diffusion and the final panel shows a simulation with both radiative and turbulent diffusion ($Pr = 1$). Fig. 1 clearly shows that thermal diffusion has a strong impact on the properties of the gravomagnetic limit cycle, where thermal diffusion shortens the burst duration significantly from $\sim 2 \times 10^3$ yr with no diffusion to $\sim 10^3$ yr in the case of turbulent diffusion. Fig. 1 also indicates that while radiative diffusion alone decreases the burst duration, it does not increase the frequency

![Figure 1](https://academic.oup.com/mnras/article-abstract/445/3/2800/1049222/1049222)

Figure 1. Time evolution of the mass-accretion rate at the inner boundary with an infall accretion rate of $1.4 \times 10^{-6} M_\odot$ yr$^{-1}$; the origin of the x-axis has been reset to zero after a steady limit cycle has been reached. The top panel shows a simulation with no radiative diffusion and no turbulent diffusion. The second panel shows a simulation with no radiative diffusion and turbulent diffusion with $Pr = 1$. The third panel shows a simulation with radiative diffusion and no turbulent diffusion and the bottom panel shows a simulation with both radiative diffusion and turbulent diffusion with $Pr = 1$.

of bursts significantly, whereas the addition of turbulent diffusion also increases the burst frequency. Finally, we note that with strong turbulent diffusion ($Pr = 1$), it dominates over radiative diffusion, and the simulation with both radiative and turbulent diffusion is almost identical to the simulation with just turbulent diffusion.

4.1 Parameter study

Since the mass-accretion rate in protoplanetary discs varies by many orders of magnitude during the evolution of a protoplanetary disc (e.g. Hartmann et al. 1998; Ercolano et al. 2014) and the Prandtl number is an unknown parameter, in the next set of simulations we vary both the infall rate on to the disc from 10^{-4}–$10^{-9} M_\odot$ yr$^{-1}$ and the Prandtl number from 10 to 0.1 in a series of simulations where we include both radiative diffusion and turbulent diffusion. Most simulations show the time evolution shown in Fig. 1, where the disc quiescently accretes through the active surface layers above the dead-zone at $M_* \sim 10^{-8} M_\odot$ yr$^{-1}$. The dead-zone is then heated above the activation temperature and the mass-accretion rates increases dramatically, with the star accreting at $\gtrsim 10^{-4} M_\odot$ yr$^{-1}$ for a short period before the disc returns to quiescence.

In the majority of our calculations, the disc temperature remains above the value expected for a passively heated disc (e.g. Kenyon & Hartmann 1987; Chiang & Goldreich 1997; D’Alessio, Calvet & Hartmann 2001) in the region of interest; justifying our use a purely viscously heated disc. However, we note that for the lowest infall rates $\lesssim 10^{-8} M_\odot$ yr$^{-1}$, the disc’s temperature drops below the Chiang & Goldreich (1997) passively heated temperature profile outside ~ 2 au. Therefore, in order to model the full evolution of a disc (something we do not attempt here), then heating of the disc due to stellar irradiation will need to be taken into account. Since, the aim of this work is purely to analyse the effect of thermal diffusion on gravomagnetic limit cycle, neglecting stellar irradiation (for the small range of parameters where it may be important) does not affect our results or the inferences we draw from them.

We use the simulations to measure several parameters of interest including the average burst duration, the average time between bursts and the duty cycle (the percentage of time the disc spends in a burst). In Figs 2–4, we show the burst length, time between bursts and duty-cycle for the set of simulations without radiative diffusion.

These results show that for Prandtl numbers less than ~ 1000, the limit-cycle properties are significantly altered. The general trend discussed previously that turbulent diffusion leads to significantly shorter bursts that occur more frequently is seen for the full range of parameters. With Prandtl numbers of order unity, the burst duration is approximately an order of magnitude shorter – ~ 1000 yr – compared to simulations with low levels of turbulent diffusion. Additionally, the range of accretion rates that are unstable to the limit cycle increases at higher accretion rates, where without turbulent diffusion discs with infall rates $\gtrsim 2 \times 10^{-6} M_\odot$ yr$^{-1}$ are stable to bursts; however, with Prandtl numbers of order unity, this appears to extend for the full simulated range up to infall rates of $10^{-4} M_\odot$ yr$^{-1}$. While we see the individual burst properties appear to be significantly altered, the duty-cycle is not as greatly changed where in general even with the lowest Prandtl numbers it within a factor of 2 of the value without turbulent diffusion.

In Figs 5–7, we show the same information on burst length, frequency and duty-cycle, but for the set of simulations that additionally include radiative diffusion. Again these simulations show the
Importance of thermal diffusion

Figure 5. Same as Fig. 2, but for simulations that include radiative diffusion.

Figure 6. Same as Fig. 3, but for simulations that include radiative diffusion.

Figure 7. Same as Fig. 4, but for simulations that include radiative diffusion.

Figure 8. Time evolution of a mass-accretion rate on to the star during a simulation with an infall rate of 1.86×10^{-5} M_\odot yr$^{-1}$ and $Pr = 0.518$. The time has been reset to zero after a steady cycle was achieved.

We have shown that radial diffusion of heat by turbulence (or radiation) has a significant impact on the length and frequency of accretion burst due to the gravomagnetic limit cycle arising from dead-zones in protoplanetary discs. In particular, we find that turbulent diffusion with Prandtl numbers $\lesssim 1000$ significantly shortens the burst duration and increases the burst frequency. With Prandtl numbers of order unity, the burst length can be up to an order of magnitude shorter than previously reported values (e.g. Armitage et al. 2001; Zhu et al. 2010a).

Our simulations occasionally show the onset of thermal instability during the ‘high-state’ (the variability in the accretion rate during the burst shown in Fig. 1 is indicative of this), as has been seen in other simulations (Zhu et al. 2009b, 2010a). Radial heat diffusion does modify the thermal instability, an effect that has been studied in detail previously (Faulkner et al. 1983; Cannizzo 1993; Hameury et al. 1998; Ludwig & Meyer 1998).

5 DISCUSSION

5.1 Turbulent versus radiative diffusion

One of the clearest results from the simulations is that at $Pr \lesssim 25$, turbulent diffusion dominates over radiative diffusion in setting the burst properties. This is in contrast to previous results on the thermal instability which suggested that the terms had a similar role.

same general features as expected from the results discussed above. Thermal diffusion leads to shorter burst durations. Additionally the range of infall rates over which accretion bursts occur is extended to higher accretion rates, with burst presents at accretion rates an order of magnitude higher at $\sim 10^{-5}$ M_\odot yr$^{-1}$ at high Prandtl numbers. However, it is clear that while radiative diffusion is important if turbulent diffusion is unimportant for Prandtl numbers smaller than ~ 25, the similarities between the simulations with and without radiative diffusion indicate that turbulent diffusion dominates the transport of heat over radiative diffusion.

Finally, we note at small Prandtl numbers $\lesssim 10$ and high infall rates $\gtrsim 10^{-5}$ M_\odot yr$^{-1}$, the properties of the burst are different from the standard burst profile. The mass-accretion rate as a function of time is shown for one such case with an infall rate of 1.86×10^{-5} M_\odot yr$^{-1}$ and $Pr = 0.518$ in Fig. 8. Where the disc does not return to a quiescent level of accretion at a rate of 10^{-8} M_\odot yr$^{-1}$, but rather rapidly oscillates between an accretion rate of $\sim 5 \times 10^{-7}$ and 10^{-4} M_\odot yr$^{-1}$.
Temperature (top) and potential temperature (bottom) panel

for $Pr = 1$ (Cannizzo 1993). Thus, radiative and turbulent diffusion play different roles when there are large temperature or viscosity gradients. Noting that in thermal equilibrium, one can calculate the ‘Prandtl number’ for radiative diffusion (Pr_{rd}; Paardekooper, Baruteau & Kley 2011) – finding $Pr_{rd} \sim 1$ in the optically thick limit – it may seem surprising that in the simulations, turbulent diffusion dominates over radiative diffusion. In order to investigate this further, we plot the various heating rates during quiescence (bottom) and during the burst (top) in Fig. 9 for the simulation shown in Fig. 1 (bottom panel) with an infall rate of 1.4×10^{-6} M_\odot yr$^{-1}$ and Prandtl number of 1 including radiative diffusion. We note that in all cases heating/cooling due to advection is negligible. This indicates that turbulent diffusion does indeed dominate the heating/cooling in regions where the disc is out of local thermodynamic equilibrium. The main difference between the gravomagnetic burst discussed here and the thermal instability is that in this situation temperature is rather continuous through the front, but we have large changes in the viscosity. Whereas in the thermal stability, there are larger changes in temperatures across the instability front which also gives rise to large changes in the viscosity. Since the thermal ‘diffusivity’ constant in the turbulent transport case is sensitive the viscosity, whereas the thermal ‘diffusivity’ constant in the radiative diffusion case is sensitive to temperature, then for large changes in viscosity across the dead-zone and a comparatively continuous temperature distribution, the heating rate for turbulent diffusion is going to dominate over the heating rate for radiative diffusion. Whereas, in the case of the thermal instability, they are likely to be comparable across the heating front as suggested by previous simulations. Finally, we note that since heat transport due to thermal diffusion is only likely to dominate out of thermal equilibrium and the high power of T in the radiative diffusion ‘diffusivity’ constant means that an analysis assuming thermodynamic equilibrium can only crudely capture the results; something we discuss further in Section 5.3.

Finally, we note that the 2D simulations of Zhu et al. (2009b) indicated that when the thermal instability was triggered during an outburst it could lead to vigorous convection. This process could certainly be affected by the radial transport seen here and further modelling is warranted.

5.2 Role of thermal diffusion

Diffusion of heat by turbulence or radiation plays a major role when the disc is out of local thermal equilibrium (i.e. when viscous heating is not balanced by vertical cooling). This can occur in the dead zone; prior to the burst, viscous heating is stronger than radiative cooling (which results in a temperature increase – triggering the burst) and during the burst, vertical radiative cooling is stronger than viscous heating (which results in a temperature decrease – shutting off the burst).

In Fig. 10, we show the temperature (top) and potential temperature (bottom) structure in the dead-zone region during quiescence (solid) and during the burst (dashed). This indicates that during quiescence, thermal diffusion (turbulent and radiative) will heat-up the dead-zone region from both sides triggering the burst faster. During the burst, the dead-zone region is hotter than the surrounding disc – at the outer edge for temperature (thus important for radiative diffusion) and both sides for potential temperature (thus important for turbulent diffusion) – thus thermal diffusion will cool the dead-zone region shutting off the burst quicker.

We can gain some insight by calculating the relevant thermal time-scales for different processes. Taking the viscous time-scale to be $t_v = R^2/3\nu$, then the heating time-scale (t_{heat}) due to viscous processes is approximately

$$t_{heat} \approx \left(\frac{H}{R} \right)^2 t_v,$$

whereas the cooling time (t_{cool}) can be expressed as

$$t_{cool} = \left(1 + \frac{\delta T}{T_{eq}} \right)^{-4} t_{heat},$$

where $\delta T = T_m - T_{eq}$ and T_{eq} is the temperature of the disc in local thermal equilibrium.

However, the time-scale for heating/cooling due to diffusion (t_{diff}, turbulent or radiative) is given by

$$t_{diff} = Pr \left(\frac{1}{R} \right)^2 t_v,$$
The temperature profile for simulations with $Pr = 10^4$ (solid) and $Pr = 0.1$ (dashed) plotted at four stage during an accretion burst: just before the burst is triggered (left-hand panel), during the burst (second panel), just before the burst ends (third panel) and finally when the disc returns to quiescence (fourth panel). Both simulations have an infall rate of $1.4 \times 10^{-6} M_\odot \text{ yr}^{-1}$.

where l is the length-scale over which the diffusive fluxes vary. Fig. 10 indicates that at the dead-zone boundaries $l \ll R$ for the length-scale over which the temperature/potential temperature varies, indicating $t_{\text{diff}} \ll t_{\text{cool}}$ and that heating/cooling due to diffusion can become dominant. Furthermore, as discussed above in the case of turbulent diffusion there can be a large viscosity jump across the dead-zone boundary, in this case $l < H$, explaining why turbulent diffusion can be a dominant heat transport process for low Prandtl numbers $Pr \lesssim 25$.

Therefore, the results of our simulations can easily be interpreted. During quiescence the dead-zone is cooler than the surrounding disc and out of thermal equilibrium; thermal diffusion heats up the dead-zone region by transporting heat into it, thus, triggering the burst quicker than without thermal diffusion. During the burst, the dead-zone is hotter than the surrounding disc (particularly when considered in terms of potential temperature); thermal diffusion removes heat from the dead-zone shutting off the burst quicker. As such, the burst length and quiescent length are both shortened, resulting in a more rapidly varying limit cycle.

The effect of radial transport through the disc on the burst cycle is shown in Fig. 11, where we plot the temperature profile through the disc at four stages of the burst cycle: just before (~ 100 yr) the burst is triggered (first panel), during the burst (second panel), just before (~ 100 yr) the burst ends (third panel) and just after the disc has returned to quiescence (fourth panel). The solid lines show a simulation with a Prandtl number of 10^4 and the dashed line shows a simulation with a Prandtl number of 0.1, both simulations have an infall rate of $1.4 \times 10^{-6} M_\odot \text{ yr}^{-1}$.

We see that during most stages of the burst’s evolution, the dead-zone region ($\sim 1–5$ au) is hotter in the simulations with strong radial transport of heat compared to the simulation without strong radial transport of heat. Only during the burst are the temperature profiles very similar, due to the fact that the disc is fully active throughout the dead-zone and close to radiative equilibrium (negating the influence of radial transport). The fact that the dead-zone region is hotter (due to radial transport of heat into the dead-zone from the surroundings) means that it takes a shorter time and less viscous heating (from less disc material) to heat the dead-zone above the activation temperature (800 K) and trigger the accretion burst. The requirement of less heating from viscous dissipation due to heating from radial transport results in the faster burst cycle seen in the simulations with lower Prandtl numbers.

5.3 Estimate of the Prandtl number for turbulent diffusion

Since we have indicated that Prandtl numbers $\gtrsim 1000$ are important for affecting the properties of the accretion bursts, it is useful to estimate what kind of Prandtl numbers one might expect in protoplanetary discs. In order to approach this, we need to assume local radiative equilibrium (i.e. when thermal diffusion is unimportant for disc evolution); however, it should indicate whether the Prandtl number is of the order such that it is important or not. Thus, formally defining the Prandtl number as the ratio angular momentum transport to heat diffusion in the radial direction (D_{th}^R) as

$$Pr = \frac{\alpha c_s^2 \Omega^{-1}}{D_{\text{th}}^R}. \quad (25)$$

We consider a mixing length (MLT) approach where heat is transported by eddies of size l, velocity v_i and overturn time t_i. If the time-scale for a gas parcel in the eddy to come into thermal equilibrium (due to energy transport by radiation, t_i) is much longer than the eddy turnover time at that scale then such an eddy is able to diffuse heat over the scale l. Alternatively, if t_i is much shorter than the eddy overturn time, then the eddy will remain in thermodynamic equilibrium with surroundings and is unable to diffuse heat. Thus, in considering the range of possible Prandtl numbers one must evaluate $t_i(l)$ and compare it to t_i. For Kolmogorov turbulence $t_i = t_{\text{eddy}}(l/l_{\text{eddy}})^{5/3}$, where t_{eddy} and l_{eddy} are the time and length at the inertial scale of the turbulence, respectively.

One can estimate t_i following a MLT style argument (modified from the MLT derivation for convection in stars e.g. – Kippenhahn, Weigert & Weiss 2012). Consider a fluid parcel of size $\sim \delta R \delta \phi \delta z$ that has been displaced from its original location by an eddy of scale $\ell \sim \delta R/2$. Then the radiative flux from the fluid parcel – assuming the radiation field is optically thick – is given by

$$F_b = \left| \frac{c}{3 \kappa_b \rho_b} \nabla (\alpha T_b^4) \right|, \quad (26)$$

where the subscript b indicates the properties of the fluid parcel, rather than the surroundings. Assuming the temperature difference between the fluid parcel and surroundings is ΔT and taking $\nabla T_b \sim 2\Delta T/\ell$ then we find

$$F_b = \frac{8\alpha c T_b^3 \Delta T}{3 \kappa_b \rho_b} \frac{\Delta T}{\ell}. \quad (27)$$

Therefore, the thermal energy transferred between the fluid parcel and surroundings in t_i is

$$E_{\text{tran}} = \Delta T \frac{8\alpha c T_b^3 R \delta \phi \delta z}{3 \kappa_b \rho_b} \frac{\Delta T}{\ell} t_i. \quad (28)$$
Equating this to the thermal energy difference between the fluid parcel and surroundings ($C_p\rho_0\delta z\delta R\delta \phi \delta R\delta T$), one can obtain an expression for t_τ in terms of the eddy size ℓ:

$$t_\tau(\ell) = A \frac{C_p\rho_0^2k_b\ell^2}{12acT_i^2}, \quad (29)$$

where A is an order unity geometry factor describing the shape of the 'fluid' parcel and we have adopted the form factor describing the shape of the fluid parcel from Kippenhahn et al. (2012) to evaluate equation (29).

Since $t_\tau \propto \ell^2$ and $t_\tau \propto \ell^{2/3}$, then the ratio of the eddy overturn time to the time-scale on which the eddies reach thermodynamic equilibrium scales as $t_\tau/t_{\text{eddy}} \propto \ell^{4/3}$. This scaling means that as one moves to smaller scales in the turbulent cascade, the eddies reach radiative equilibrium with their surroundings faster.

This result implies that whatever t_τ, heat transport is most likely to be dominated at the inertial scale, since the largest eddies maintain their entropy for longer – by reaching thermodynamic equilibrium with the background slower – and move larger distances. Thus, the ratio of most interest is t_τ/t_{eddy}, where $t_\tau = t_\tau(\ell_{\text{eddy}})$. MRI turbulence suggests that $t_{\text{eddy}} \sim \Omega^{-1}$ and $\ell_{\text{eddy}} \sim \sqrt{\alpha H}$ (e.g. Zhu, Stone & Bai 2014). Therefore, comparing the ratio of thermal time at the inertial scale to inertial time, we find

$$\frac{\tau_\tau}{t_{\text{eddy}}} = A \frac{C_p\rho_0^2k_bH^2\Omega}{12acT_i^2}, \quad (30)$$

where since ρ, T and κ are slowly varying with radius (changing on a scale of R) and $t_{\text{eddy}} < H \ll R$, then to lowest order in ℓ we can neglect the difference between the density, temperature and opacity between the fluid parcel and background to calculate τ_τ. Now assuming local thermal equilibrium, the temperature profile for a steady-alpha disc is

$$T^4 = \frac{27}{128\gamma} \kappa \Sigma^2 \Omega \alpha c_s^2 \quad (31)$$

and remembering $\Sigma \propto \rho H$, then we can re-write the ratio $\tau_\tau/t_{\text{eddy}}$ as

$$\frac{\tau_\tau}{t_{\text{eddy}}} \approx \frac{A}{10} \quad (32)$$

for $\gamma = 7/5$. This suggests that the integral scale of MRI turbulence is able to move fluid parcels adiabatically through the disc, allowing for the diffusion of heat. However, since the eddy returns before the fluid parcel is able to radiate all its extra heat into the surroundings, then the integral scale will not be fully efficient at diffusing heat. In fact, each overturn will be able to approximately transfer the fraction t_τ/t_{eddy} of the heat to the surroundings. Thus, we may write D^2_{in} dimensionally as

$$D^2_{\text{in}} = (u_R^2)\tau_\tau \quad (33)$$

provided $\tau_\tau < t_{\text{eddy}}$. Using the result for MRI turbulence that $u_R^2 \sim \alpha c_s^2$ and $t_{\text{eddy}} \sim \Omega^{-1}$ (e.g. Zhu et al. 2014), this suggest that a reasonable estimate of the Prandtl number is

$$Pr = \frac{t_{\text{eddy}}}{\tau_\tau} \approx 10 \frac{A}{0.05} \quad (34)$$

indicating that turbulent diffusion of heat is likely to be extremely important in the properties of accretion bursts. We note that we have used a steady disc approximation to evaluate the ratio of τ_τ/t_τ; however, thermal diffusion is most important when the disc out of thermal equilibrium. Therefore, we suspect the Prandtl number may not be constant during the evolution. In particular, just prior to a burst, the disc is cooler than one would expect from the steady disc approximation, so $t_{\text{eddy}}/\tau_\tau$ would be smaller than our approximation suggests, decreasing the Prandtl number and increasing the transport of heat due to turbulence. Alternatively as the burst comes to an end, the steady disc approximation will overestimate the disc temperature and consequence the Prandtl number will be larger than our steady disc estimate suggest. This scenario would result in bursts being trigger quicker and lasting longer than simulations with constant Prandtl number indicate. The strong sensitivity of t_τ/t_{eddy} on temperature for fixed surface density (in the range of a few hundred to thousand $\kappa \sim T$) results in $t_\tau/t_{\text{eddy}} \sim 1/T^2$, indicating that a non-constant Prandtl number may have dynamically interesting consequences of the gravomagnetic limit cycle.

6 CONCLUSIONS

We have investigated the role of thermal diffusion due to turbulence and radiation in the gravomagnetic limit cycle in protoplanetary discs with a dead-zone using 1D numerical simulations. Our main conclusions are as follows.

(i) Thermal diffusion strongly affects the time-scale of the limit cycle, where its conclusion decreases the burst length and increases the burst frequency.

(ii) Thermal diffusion increases the range of accretion rates over which a limit cycle is obtained rather than steady accretion, with a limit cycle found for the range of infall rates from 10^{-5} to $10^{-8} M_\odot$ yr$^{-1}$ for high Prandtl numbers and for small Prandtl numbers, we found non-steady accretion above $10^{-8} M_\odot$ yr$^{-1}$ up to the maximum simulated infall rate of $10^{-4} M_\odot$ yr$^{-1}$.

(iii) For Prandtl numbers $\lesssim 25$, we find turbulent diffusion is more important than radiative diffusion.

(iv) For Prandtl numbers of unity, the burst length is significantly shorter than previously simulated values with burst lengths $\sim 10^3$ yr.

(v) The duty-cycle is generally insensitive to the Prandtl number, except at low accretion rates (a few $10^{-8} M_\odot$ yr$^{-1}$) where turbulent diffusion decreases the duty-cycle.

(vi) An order of magnitude analysis suggests that Prandtl numbers of order 10 is a reasonable estimate for accretion discs, although it is unlikely to be constant and will depend on the thermodynamic state of the disc.

Since we have shown that if turbulent diffusion of heat is strong (Pr $\lesssim 25$), then it has important consequences for the properties of accretion bursts due to the gravomagnetic limit cycle. This result should motivate further work to estimate the Prandtl number for MRI turbulence. Our very simple estimates indicate that the Prandtl number does indeed lie in the range where turbulent transport of heat is important; however, our calculation assumed local thermal equilibrium, and as such only numerical simulations that include the relevant physics can properly assess the role of turbulent diffusion of heat in accretion bursts driven in protoplanetary discs that contain dead-zones.

ACKNOWLEDGEMENTS

We thank the referee for a helpful report that improved this manuscript. We are grateful to Shane Davis, Emmanuel Jacquet and Kristen Menou for useful discussions. The numerical calculations were performed on the Sunnyvale cluster at CITA, which is funded by the Canada Foundation for Innovation. PJA acknowledges support from NASA under grants NNX13AI58G and NNX14AB42G.
from the NSF under award AST 1313021 and from grant HST-AR-12814 awarded by the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., for NASA, under contact NAS 5-26555.

REFERENCES

Armitage P. J., 2011, ARA&A, 49, 195
Armitage P. J., Livio M., Pringle J. E., 2001, MNRAS, 324, 705
Audard M. et al., 2014, in Beuther H., Klessen R., Dullemont C., Henning Th., eds, Protostars and Planets VI. Univ. Arizona Press, Tucson, AZ, preprint (arXiv:1401.3368)
Bae J., Hartmann L., Zhu Z., Gammie C., 2013a, ApJ, 764, 141
Bae J., Hartmann L., Zhu Z., Gammie C., 2013b, ApJ, 774, 57
Bai X.-N., Stone J. M., 2013, ApJ, 769, 76
Balbus S. A., 2000, ApJ, 534, 420
Balbus S. A., Hawley J. F., 1998, Rev. Mod. Phys., 70, 1
Balbus S. A., Papaloizou J. C. B., 1999, ApJ, 521, 650
Bell K. R., Cassen P. M., Klahr H. H., Henning T., 1997, ApJ, 486, 372
Cannizzo J. K., 1993, ApJ, 419, 318
Chiang E. I., Goldreich P., 1997, ApJ, 490, 368
D’Alessio P., Calvet N., Hartmann L., 2001, ApJ, 553, 32
Ercolano B., Mayr D., Owen J. E., Rosotti G., Manara C. F., 2014, MNRAS, 439, 256
Evans N. J., II et al., 2009, ApJS, 181, 321
Faulkner J., Lin D. N. C., Papaloizou J., 1983, MNRAS, 205, 359
Fleming T., Stone J. M., 2003, ApJ, 585, 908
Gammie C. F., 1996, ApJ, 457, 355
Gammie C. F., 2001, ApJ, 553, 174
Hameury J.-M., Menou K., Dubus G., Lasota J.-P., Hure J.-M., 1998, MNRAS, 298, 1048
Hartmann L., Kenyon S. J., 1996, ARA&A, 34, 207
Hartmann L., Calvet N., Gullbring E., D’Alessio P., 1998, ApJ, 495, 385
Kenyon S. J., Hartmann L., 1987, ApJ, 323, 714
Kenyon S. J., Hartmann L. W., Strom K. M., Strom S. E., 1990, AJ, 99, 869
Kippenhahn R., Weigert A., Weiss A., 2012, Stellar Structure and Evolution, 2nd edn. Springer-Verlag, Berlin
Lasota J.-P., 2001, New Astron. Rev., 45, 449
Lesur G., Kunz M. W., Fromang S., 2014, A&A, 566, 56
Lin D. N. C., Pringle J. E., 1987, MNRAS, 225, 607
Lin D. N. C., Pringle J. E., 1990, ApJ, 358, 515
Lodato G., Rice W. K. M., 2004, MNRAS, 351, 630
Lodato G., Rice W. K. M., 2005, MNRAS, 358, 1489
Ludwig K., Meyer F., 1998, A&A, 329, 559
Martin R. G., Lubow S. H., 2011, ApJ, 740, L6
Martin R. G., Lubow S. H., 2013, MNRAS, 432, 1616
Martin R. G., Lubow S. H., 2014, MNRAS, 437, 682
Mineshige S., 1986, PASJ, 38, 831
Mohanty S., Ercolano B., Turner N. J., 2013, ApJ, 764, 65
Okuzumi S., Hirose S., 2011, ApJ, 742, 65
Owen J. E., 2014, ApJ, 789, 59
Paardekooper S.-J., Baruteau C., Kley W., 2011, MNRAS, 410, 293
Simon J. B., Bai X.-N., Stone J. M., Armitage P. J., Beckwith K., 2013, ApJ, 764, 66
Toomre A., 1964, ApJ, 139, 1217
Tritton D. J., 1988, Physical fluid dynamics, 2nd Revised and Enlarged Edition, Clarendon Press, Oxford
Turner N. J., Carballido A., Sano T., 2010, ApJ, 708, 188
Turner N. J., Fromang S., Gammie C., Klahr H., Lesur G., Wardle M., Bai X.-N., 2014, in Beuther H., Klessen R., Dullemont C., Henning Th., eds, Protostars and Planets VI. Univ. Arizona Press, Tucson, AZ, preprint (arXiv:1401.7306)
Zhu Y., Narayan R., 2013, MNRAS, 434, 2262
Zhu Z., Hartmann L., Gammie C., 2009a, ApJ, 694, 1045
Zhu Z., Hartmann L., Gammie C., Mc Kinney J. C., 2009b, ApJ, 701, 620
Zhu Z., Hartmann L., Gammie C. F., Book L. G., Simon J. B., Engelhard E., 2010a, ApJ, 713, 1134
Zhu Z., Hartmann L., Gammie C., 2010b, ApJ, 713, 1143
Zhu Z., Stone J. M., Bai X.-N., 2014, ApJ, preprint (arXiv:1405.2778)

This paper has been typeset from a TeX/LaTeX file prepared by the author.