A Family of Integer-Point Ternary Parametric Subdivision Schemes

Ghulam Mustafa,1 Muhammad Asghar,1 Shafqat Ali,1 Ayesha Afzal,2 and Jia-Bao Liu3

1Department of Mathematics, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
2Department of Mathematics, NCBA & E Sub-Campus Bahawalpur, Bahawalpur, Pakistan
3School of Mathematics and Physics, Anhui Jianzhu University, Hefei 230601, China

Correspondence should be addressed to Jia-Bao Liu; liujiabaoad@163.com

Received 24 April 2021; Revised 6 September 2021; Accepted 28 September 2021; Published 14 October 2021

1. Introduction

Computer aided geometric design (CAGD) is a field which is related to computational mathematics. Subdivision schemes are the important tool of CAGD. Subdivision schemes are used for the generation of smooth curves from initial polygon. In the field of subdivision, the subdivision schemes having three rules are called ternary subdivision schemes. To improve the flexibility of subdivision schemes, some parameters are used in subdivision schemes. Here, we present a brief survey of the parametric ternary subdivision schemes.

In 2002, Hassan et al. [1] purposed a family of interpolating 3-point ternary subdivision schemes with C^1-continuity. They also compare with binary subdivision schemes. Wang and Qin [2] proposed an improved ternary interpolating subdivision scheme. They also discussed the parameterizations and manipulate the split joint problem with interpolating ternary subdivision scheme. Ko et al. [3] derived a 4-point ternary scheme from cubic polynomial interpolation which has smaller support and higher smoothness, comparing to binary 4-point and 6-point schemes and ternary 3-point and 4-point schemes.

Mustafa and Ashraf [4] presented and analyzed the 6-point ternary scheme with the parameter. The proposed scheme has C^2 continuous over the parametric interval. Mustafa et al. [5] described the general formula for odd-point parametric ternary subdivision schemes. They proved that the cubic B-spline scheme was a particular case of the suggested ternary scheme. They also demonstrated the effect of the parameter on the limit curve. Pan et al. [6] derived the relation between combined approximating and interpolating subdivision scheme. The resulting curve from the combined subdivision scheme was C^3 continuous, when analyzed by Laurent polynomial. Siddiqi et al. [7–9] introduced a family of ternary interpolatory and approximating subdivision scheme with one parameter. It was used to generate fractal curves and surfaces. They also presented an algorithm which produced ternary m-point approximating subdivision schemes by taking m as integer greater than 2 with the help of uniform B-spline blending functions.
Rehan and Siddiqi [10] presented a family of 3-point and 4-point ternary approximating subdivision schemes. They also analyzed degree of smoothness of a family of ternary 3-point and 4-point subdivision schemes which are C^1 and C^3 continuity, respectively. Ashraf et al. [11, 12] presented and analyzed the geometrical properties of the 4-point ternary interpolating subdivision scheme. This scheme involves a tension parameter. They derived the conditions on the tension parameter and initial control polygon that permitted the creation of positivity and monotonicity-preserving curves after a finite number of subdivision steps.

In 2021, Tan and Tong [13] presented a nonstationary 4-point ternary interpolating subdivision scheme. They also discussed the shape preserving properties of the proposed subdivision scheme. Tariq et al. [14] presented a new unified class of combined subdivision schemes with two-shape control parameters in order to grow versatility for overseeing valuable necessities. Hameed et al. [15] presented a new method to construct a family of $(2N+2)$-point binary subdivision schemes with one tension parameter. Mustafa et al. [16] presented a subdivision collocation method to resolve Bratu’s boundary value problem by using the approximating subdivision scheme.

1.1. Our Contributions. The main purpose of this work is to present a generalized formula for derivation of parametric ternary subdivision schemes. Our proposed high complexity schemes have high values of continuity, degree of generation, and degree of reproduction of polynomials. The claim is proved in comparison section (see Table 1). Our schemes give better approximation and smoothness when compared with the same type of exiting subdivision schemes (see Figure 1).

The paper is organized as follows. In Section 2, we present the general formula and derivations of family of ternary subdivision schemes. Analysis of the proposed family is presented in Section 3. Section 4 is for comparison of proposed family of subdivision schemes with exiting subdivision schemes. Conclusions are drawn in Sections 5.

2. A Family of Integer-Point Ternary Schemes

In this section, we propose a general formula for integer-point ternary approximating subdivision schemes with one parameter in the form of Laurent polynomial:

$$A_m(z) = \frac{1}{3^{2m-1}}(1 + z + z^2)^{2m+1} \left[\frac{1}{12} + w + \frac{1}{6} - 2w \right] z + \left(\frac{1}{12} + w \right) z^2,$$ \hspace{1cm} (1)

where $m = 0, 1, 2,$ and 3. By putting $m = 0$ in (1), we get the Laurent polynomial of a 2-point interpolating subdivision scheme:

$$A_0(z) = \left[\frac{1}{4} + 3w + \left(\frac{3}{4} - 3w \right) z + z^2 + \left(\frac{3}{4} - 3w \right) z^3 + \left(\frac{1}{4} + 3w \right) z^4 \right].$$ \hspace{1cm} (2)

The scheme corresponding to the Laurent polynomial (2) is

$$f^{k+1}_{2i} = f^k_i,$$

$$f^{k+1}_{3i+1} = \left(\frac{3}{4} - 3w \right) f^k_i + \left(\frac{1}{4} + 3w \right) f^k_{i+1},$$

$$f^{k+1}_{3i+2} = \left(\frac{3}{4} - 3w \right) f^k_i + \left(\frac{1}{4} + 3w \right) f^k_{i+1}.$$ \hspace{1cm} (3)

By putting $m = 1$ in (1), we get the Laurent polynomial of a 3-point approximating subdivision scheme:

$$A_1(z) = \left[\frac{1}{36} + \frac{1}{3} w \right] z + \left[\frac{1}{36} + \frac{1}{3} w \right] z^2 + \frac{13}{18} \left(\frac{3}{4} - 3w \right) z^3 + \frac{11}{18} \left(\frac{3}{4} - 3w \right) z^4 + \frac{11}{18} \left(\frac{3}{4} - 3w \right) z^5 + \frac{13}{36} \left(\frac{3}{4} - 3w \right) z^6 + \frac{5}{36} \left(\frac{3}{4} - 3w \right) z^7 + \frac{1}{36} \left(\frac{3}{4} - 3w \right) z^8.$$ \hspace{1cm} (4)

The scheme corresponding to the Laurent polynomial (4) is

$$f^{k+1}_{3i} = \left(\frac{13}{36} + \frac{1}{3} w \right) f^k_{i-1} + \frac{11}{18} \left(\frac{3}{4} - 3w \right) f^k_i + \frac{1}{36} \left(\frac{3}{4} - 3w \right) f^k_{i+1},$$

$$f^{k+1}_{3i+1} = \left(\frac{5}{36} + \frac{1}{3} w \right) f^k_{i-1} + \frac{13}{18} \left(\frac{3}{4} - 3w \right) f^k_i + \frac{5}{36} \left(\frac{3}{4} - 3w \right) f^k_{i+1},$$

$$f^{k+1}_{3i+2} = \left(\frac{1}{36} + \frac{1}{3} w \right) f^k_{i-1} + \frac{11}{18} \left(\frac{3}{4} - 3w \right) f^k_i + \frac{13}{36} \left(\frac{3}{4} - 3w \right) f^k_{i+1}.$$ \hspace{1cm} (5)

By putting $m = 2$ in (1), we get the Laurent polynomial of a 5-point approximating subdivision scheme:

$$A_2(z) = \left[\frac{1}{324} + \frac{1}{27} w \right] z + \left[\frac{7}{324} + \frac{1}{9} w \right] z^2 + \frac{13}{162} \left(\frac{3}{4} - 3w \right) z^3 + \frac{5}{324} \left(\frac{3}{4} - 3w \right) z^4 + \frac{19}{36} \left(\frac{3}{4} - 3w \right) z^5 + \frac{16}{27} \left(\frac{3}{4} - 3w \right) z^6 + \frac{4}{9} \left(\frac{3}{4} - 3w \right) z^7 + \frac{19}{36} \left(\frac{3}{4} - 3w \right) z^8 + \frac{65}{324} \left(\frac{3}{4} - 3w \right) z^9 + \frac{13}{162} \left(\frac{3}{4} - 3w \right) z^{10} + \frac{7}{324} \left(\frac{3}{4} - 3w \right) z^{11} + \left(\frac{1}{324} + \frac{1}{27} w \right) z^{12}.$$ \hspace{1cm} (6)

The scheme corresponding to the Laurent polynomial (6) is
Table 1: The comparison of a family of ternary schemes S_m, where C_s, C, and G_d are complexity, continuity analysis, and generation degree of subdivision schemes, respectively.

C_s	Schemes	Type	C	G_d
3-point	A_1 scheme Approx		C^2 for $w \in (-3/36, 9/36)$	Quadratic
3-point	Scheme [17] Approx		C^1 for $w \in (0, 1/2)$	Linear
3-point	Scheme [18] Approx		C^1	Linear
3-point	Scheme [10] Approx		C^1	Linear
3-point	Scheme [5] Approx		C^2 for $w \in (-1/12, 11/2)$	—
5-point	A_2 scheme Approx		C^4 for $w \in (-3/36, 9/36)$	Quartic
5-point	Scheme [17] Approx		C^4 for $w \in (0, 1/2)$	Quartic
5-point	Scheme [18] Int		C^4	Linear
5-point	Scheme [5] Approx		C^3 for $\mu \in (53/8748, 187/17496)$	Cubic
6-point	A_3 scheme Approx		C^6 for $w \in (-3/36, 9/36)$	Sextic
6-point	Scheme [4] Int		C^2	Linear
6-point	Scheme [9] Approx		C^5	Quadratic

Figure 1: (a–d) Comparison of limit curves for close polygons produced by 3-point schemes S_0, S_1, and G_3.
\[f_{3i+1}^{k+1} = \left(\frac{13}{162} + \frac{2}{9} w \right) f_{3i+2}^k + \left(\frac{19}{36} - \frac{1}{3} w \right) f_{3i+1}^k + \frac{10}{27} f_i^k \]
\[+ \left(\frac{7}{324} + \frac{1}{9} w \right) f_{3i+1}^k, \]
\[f_{3i+1}^{k+1} = \left(\frac{7}{324} + \frac{1}{9} w \right) f_{3i+2}^k + \frac{10}{27} f_{3i+1}^k + \left(\frac{19}{36} - \frac{1}{3} w \right) f_i^k \]
\[+ \left(\frac{13}{162} + \frac{2}{9} w \right) f_{3i+1}^k, \]
\[f_{3i+2}^{k+1} = \left(\frac{1}{324} + \frac{1}{27} w \right) f_{3i+2}^k + \left(\frac{65}{324} + \frac{5}{27} w \right) f_{3i+1}^k \]
\[+ \left(\frac{16}{27} - \frac{4}{9} w \right) f_i^k \]
\[+ \left(\frac{65}{324} + \frac{5}{27} w \right) f_{3i+1}^k + \left(\frac{1}{324} + \frac{1}{27} w \right) f_{3i+2}^k. \]

By putting \(m = 3 \) in (1), we get the Laurent polynomial of a 6-point approximating subdivision scheme:
\[A_3(z) = \left(\frac{1}{2916} + \frac{1}{243} w \right) z + \left(\frac{1}{324} + \frac{5}{243} w \right) z^2 \]
\[+ \left(\frac{43}{2916} + \frac{5}{81} w \right) z^3 + \left(\frac{35}{729} + \frac{28}{243} w \right) z^4 \]
\[+ \left(\frac{665}{2916} + \frac{7}{243} w \right) z^5 \]
\[+ \left(\frac{175}{486} - \frac{14}{243} w \right) z^6 + \left(\frac{1373}{2916} - \frac{55}{243} w \right) z^7 \]
\[+ \left(\frac{125}{243} - \frac{8}{27} w \right) z^8 \]
\[+ \left(\frac{1373}{2916} - \frac{55}{243} w \right) z^9 + \left(\frac{175}{486} - \frac{14}{243} w \right) z^{10} \]
\[+ \left(\frac{665}{2916} + \frac{7}{243} w \right) z^{11} \]
\[+ \left(\frac{343}{2916} + \frac{35}{243} w \right) z^{12} + \left(\frac{35}{729} + \frac{28}{243} w \right) z^{13} \]
\[+ \left(\frac{43}{2916} + \frac{5}{81} w \right) z^{14} \]
\[+ \left(\frac{1}{324} + \frac{5}{243} w \right) z^{15} + \left(\frac{1}{2916} + \frac{1}{243} w \right) z^{16}. \]

The scheme corresponding to the Laurent polynomial (8) is
\[f_{3i+1}^{k+1} = \left(\frac{43}{2916} + \frac{5}{81} w \right) f_{3i+2}^k + \left(\frac{665}{2916} + \frac{7}{81} w \right) f_{3i+1}^k \]
\[+ \left(\frac{125}{243} - \frac{8}{27} w \right) f_i^k \]
\[+ \left(\frac{665}{2916} + \frac{7}{81} w \right) f_{3i+1}^k + \left(\frac{43}{2916} + \frac{5}{81} w \right) f_{3i+2}^k, \]
\[f_{3i+2}^{k+1} = \left(\frac{1}{324} + \frac{5}{243} w \right) f_{3i+2}^k + \left(\frac{343}{2916} + \frac{35}{243} w \right) f_{3i+1}^k \]
\[+ \left(\frac{1373}{2916} - \frac{55}{243} w \right) f_i^k \]
\[+ \left(\frac{175}{486} - \frac{14}{243} w \right) f_{3i+1}^k + \left(\frac{35}{729} + \frac{28}{243} w \right) f_{3i+2}^k \]
\[+ \left(\frac{1}{324} + \frac{5}{243} w \right) f_{3i+3}^k, \]
\[f_{3i+3}^{k+1} = \left(\frac{1}{2916} + \frac{1}{243} w \right) f_{3i+2}^k + \left(\frac{35}{729} + \frac{28}{243} w \right) f_{3i+1}^k \]
\[+ \left(\frac{175}{486} - \frac{14}{243} w \right) f_i^k \]
\[+ \left(\frac{35}{729} + \frac{28}{243} w \right) f_{3i+1}^k + \left(\frac{343}{2916} + \frac{35}{243} w \right) f_{3i+2}^k \]
\[+ \left(\frac{1}{324} + \frac{5}{243} w \right) f_{3i+3}^k. \]

Similarly by substituting the different values of \(m \), we get the family members of ternary subdivision schemes. Table 2 contains the mask of proposed family members of ternary subdivision schemes corresponding to \(m = 0, 1, 2, \) and 3.

3. Analysis of Integer-Point Ternary Schemes

This section contains analysis of important properties of proposed subdivision schemes. Laurent polynomial [19] is used to compute the degree of generation, degree of reproduction, and continuity analysis. While Rioul’s method [20] is used to compute lower and upper bounds on Hölder regularity of the scheme corresponding to \(A_m(z) \).

Theorem 1. Whenever convergent and generating cubic polynomials, the family of ternary subdivision schemes (1) has cubic degree of reproduction with respect to the primal parametrization.

Proof: By taking the derivative of (1) with respect to \(z \), we obtain
Hence, by \([19]\), the subdivision schemes corresponding to (1) have primal parametrization. Furthermore, for different values of \(m\), we can easily verify that

\[
A_m(z) = \frac{1}{3^{2m-1}\left(1 + z + z^2\right)} \left(1 + z + z^2\right)^{2m+1} (2m+1)(1+2z) \left(\frac{1}{12} + w\right) + \left(\frac{1}{6} - 2w\right)z + \left(\frac{1}{12} + w\right)z^3 + \left(\frac{1}{6} + w\right)z^4.
\]

(10)

After substituting \(z = 1\) in (4) and (10), we get \(A_m(1) = 3\) and \(A_m'(1) = 6m + 6\). After taking the first three derivatives of (10) and substituting \(z = 1\), we have

\[
A_m''(1) = 12m^2 + 22m + \frac{19}{2} + 18w,
\]

\[
A_m(1) = 24m^3 + 60m^2 + 45m + \frac{21}{2} + 108mw + 54w.
\]

(11)

The value of shift parameter \(\tau = (A_m'(1)/3) = 2m + 2\). Hence, by [19], the subdivision schemes corresponding to (1) have primal parametrization. Furthermore, for different values of \(m\), we can easily verify that

\[
A_m^k(1) = 3 \sum_{j=0}^{k-1} (2m + 2 - j) \quad \text{for all} \quad k = 1, 2, 3.
\]

(12)

Hence, by [19], the schemes corresponding to \(A_m(z)\) have cubic degree of reproduction with respect to the primal parametrization.

Table 3 summarizes the results of degree of generations, shift parameter, degree of reproductions, and parametrization of proposed family of integer-point ternary subdivision schemes. Here, \(m, G_d, \tau, \) and \(R_d\) and parametrization denote the positive integer, degree of generation, shift parameter, degree of reproduction, and parametrization of the scheme, respectively.

Theorem 2. The family of ternary approximating subdivision schemes (1) has \(C^{2m}\) continuity when \(w \in (-3/36, 9/36)\).

Proof. For \(C^{2m}\) continuity of the schemes corresponding to \(A_m(z)\), consider the Laurent polynomial:

\[
A_m^1(z) = \left(\frac{3z^2}{1 + z + z^2}\right)^{2m+1} A_m(z),
\]

(13)

where \(A_m(z)\) is defined in (1). This implies

\[
A_m(z) = \left(\frac{3z^2}{1 + z + z^2}\right)^{2m+1} \frac{1}{3^{2m-1}}(1 + z + z^2)^{2m+1}
\]

\[
\cdot \left[\frac{1}{12} + w + \left(\frac{1}{6} - 2w\right)z + \left(\frac{1}{12} + w\right)z^3\right] \quad \text{(14)}
\]

After simplification, we obtain...
\[A_m(z) = 9z^{4m+2} \left[\frac{1}{12} + w + \left(\frac{1}{6} - 2w \right) z + \left(\frac{1}{12} + w \right) z^2 \right]. \]

(15)

Let \(A_m^1 \) be the mask of the scheme \(S_m \) corresponding to \(A_m(z) \); then, we have

\[A_m^1 = \left[\frac{9}{12} + 9w, -\frac{9}{12} - 18w, \frac{9}{12} + 9w \right]. \]

(16)

The scheme corresponding to \(A_m^1(z) \) is \(C^{2m} \) continuous if \(\| (1/3)S_m \|_\infty < 1 \), for this, we have to check that

\[\frac{1}{3} \left| \frac{9}{36} + 3w, \frac{9}{18} - 6w, \frac{9}{36} + 3w \right| < 1. \]

(17)

When \(\| (1/3)S_m \|_\infty < 1 \), then \(S_m \) is defined as

\[\mu = \frac{3}{2} - 18w, \quad \text{if} \quad \frac{3}{36} < w \leq \frac{1}{36}, \]

\[\mu = \frac{3}{4} + 9w, \quad \text{if} \quad \frac{1}{36} < w < \frac{9}{36}. \]

(18)

Theorem 3. The Hölder regularity of a family of schemes \(S_m \) corresponding to (1) is \(r = 2m + 1 - \log_3(\mu) \), where \(\mu \) is defined as

\[\left\{ \begin{array}{ll} \mu = \frac{3}{2} - 18w, & \text{if} \quad \frac{3}{36} < w \leq \frac{1}{36}, \\ \mu = \frac{3}{4} + 9w, & \text{if} \quad \frac{1}{36} < w < \frac{9}{36}. \end{array} \right. \]

Proof. The Laurent polynomial (1) can be written as

\[A_m(z) = \left(\frac{1 + z + z^2}{3} \right)^{2m+1} b_m(z), \]

where

\[b_m(z) = \left[\frac{3}{4} + 9w + \left(\frac{9}{6} - 18w \right) z + \left(\frac{3}{4} + 9w \right) z^2 \right]. \]

(20)

From (20), the coefficients of \(z \) in \(b(z) \) are \(b_1 = (3/4) + 9w, b_1 = (9/6) - 18w, \) and \(b_2 = (3/4) + 9w \). The number of factors in \(A_m(z) \) are \(k = 2m + 1 \). The matrices \(B_n \) of order \(2 \times 2 \), where \(n = 0, 1, 2 \) and the elements of the matrices \(B_0, B_1, \) and \(B_2 \) can be derived by \(B_{ij} = b_{(2+n)i-3-j} \), for \(i, j = 1 \) and 2, we have

\[B_0 = \begin{pmatrix} \frac{3}{4} + 9w & 0 \\ 6 & -18w & 0 \end{pmatrix}, \]

\[B_1 = \begin{pmatrix} 6 & -18w & 0 \\ \frac{3}{4} + 9w & 0 & 1 \end{pmatrix}, \]

\[\& B_2 = \begin{pmatrix} \frac{3}{4} + 9w & 0 \\ 0 & \frac{3}{4} + 9w \end{pmatrix}. \]

(21)

The eigenvalues of \(B_0, B_1, \) and \(B_2 \) are \(\{0, (3/4) + 9w\}, \{0, (3/2) - 18w\}, \) and \(\{(3/4) + 9w, (3/4) + 9w\} \), respectively. For bounds on Hölder regularity, we calculate \(\rho(B_0), \rho(B_1), \rho(B_2) \leq \mu \leq \max \|B_0\|, \|B_1\|, \|B_2\| \) with \(\cdot \) denoting the infinity norm since \(\mu \) is bounded from below by the spectral radii and from above by the infinity norm of the metrics \(B_0, B_1, \) and \(B_2 \). So, \(\max \|B_0\|, \|B_1\|, \|B_2\| = \max \|((3/4) + 9w|, (3/2) - 18w) \) and \(\max \|B_0\|, \|B_1\|, \|B_2\| = \max \|((3/2) - 18w|, (3/4) + 9w) \). Then, by (20), we have \(\mu = \max \|((3/2) - 18w|, (3/4) + 9w) \). So, Hölder regularity of the scheme \(S_m \) is computed by \(r = 2m + 1 - \log_3(\mu) \), where \(\mu \) is defined as

\[\mu = \frac{3}{2} - 18w, \quad \text{if} \quad \frac{3}{36} < w \leq \frac{1}{36}, \]

\[\mu = \frac{3}{4} + 9w, \quad \text{if} \quad \frac{1}{36} < w < \frac{9}{36}, \]

(22)

which completes the proof.

Corollary 1. The family of schemes \(S_m \) corresponding to (1) is \(C^{2m} \) continuous if and only if \(1 \leq \mu < 3 \), i.e., if and only if \(-(3/36) < w < (9/36). \)

Theorem 4. The limit stencils providing the evaluations of the basic limit function of the 3-point scheme (5) at integers and half integers are

\[
\begin{pmatrix}
\left(\frac{36}{5}\right), & \left(\frac{36}{16}\right), & \left(\frac{36}{32}\right), \\
\left(\frac{36}{32}, \frac{36}{16}, \frac{36}{5}\right)
\end{pmatrix}
\]

(23)

respectively.

Proof. The local subdivision matrices for limit stencils of 3-point scheme (5) at integers and half integers are

\[
S_{1/2}^{(i)} = \begin{pmatrix}
\frac{w}{3} + \frac{13}{36} & \frac{2w}{3} + \frac{13}{36} & \frac{1}{3} \\
\frac{12}{36} & \frac{11}{36} & \frac{1}{3} \\
\frac{3}{36} & \frac{1}{3} & \frac{1}{3}
\end{pmatrix}
\]

\[
S_1 = \begin{pmatrix}
\frac{w}{3} + \frac{13}{36} & \frac{2w}{3} + \frac{13}{36} & \frac{1}{3} \\
\frac{12}{36} & \frac{11}{36} & \frac{1}{3} \\
\frac{3}{36} & \frac{1}{3} & \frac{1}{3}
\end{pmatrix}
\]

\[
f_1^{k+1} = \begin{pmatrix}
\frac{f_1^{k+1}}{f_1^k} \\
\frac{f_1^{k+1}}{f_1^k} \\
\frac{f_1^{k+1}}{f_1^k}
\end{pmatrix}
\]

(24)
The eigenvectors of local subdivision matrices and their inverse of eigenvectors are

\[S_{1/2} = \begin{bmatrix}
 0 & 2 & 0 & 1 \\
 3 & 3 & 3 & 3 \\
 1 & 3 & 2 & 0 \\
 0 & 0 & 0 & 0 \\
\end{bmatrix}, \]

\[f_{1/2}^k = \begin{bmatrix}
 f_{1/2}^{k+1} \\
 f_{1/2}^{k-1/2} \\
 f_{1/2}^{k+1} \\
 f_{1/2}^{k-1/2} \\
\end{bmatrix}, \]

\[f_{1/2}^k = \begin{bmatrix}
 f_{1/2}^{k+1} \\
 f_{1/2}^{k-1/2} \\
 f_{1/2}^{k+1} \\
 f_{1/2}^{k-1/2} \\
\end{bmatrix}. \]

For the decomposition of matrices \(S_I \) and \(S_{1/2} \), we need \(\Delta_I \) and \(\Delta_{1/2} \), respectively, where \(\Delta_I \) and \(\Delta_{1/2} \) are the scalar matrices in which eigenvalues are arranged diagonally. Therefore, now compute \(\lim_{k \to \infty} \Delta_I^k \) and \(\lim_{k \to \infty} \Delta_{1/2}^k \):

\[
\Delta_I^k = \begin{bmatrix}
 1 & 0 & 0 \\
 0 & \left(\frac{1}{9}\right)^k & 0 \\
 0 & 0 & \left(\frac{1}{3}\right)^k \\
\end{bmatrix},
\]

\[
\Delta_{1/2}^k = \begin{bmatrix}
 \left(\frac{1}{3}\right)^k & 0 & 0 \\
 0 & 1 & 0 \\
 0 & 0 & \left(\frac{1}{9}\right)^k \\
\end{bmatrix}.
\]

This implies

\[
\lim_{K \to \infty} \Delta_I^k = \begin{bmatrix}
 1 & 0 & 0 \\
 0 & 0 & 0 \\
 0 & 0 & 0 \\
\end{bmatrix},
\]

\[
\lim_{K \to \infty} \Delta_{1/2}^k = \begin{bmatrix}
 0 & 0 & 0 \\
 0 & 1 & 0 \\
 0 & 0 & 0 \\
\end{bmatrix}.
\]

Since \(f_{1/2}^{k+1} = S_I f_{1/2}^k \), therefore, \(f_{1/2}^{k+1} = S_I^k f_{1/2}^0 \). This implies...
Figure 2: Basic limit functions produced by the 3-point scheme corresponding to S_1 for different values of parameter w. The red line denotes the initial polyline and the blue, black, and green lines represent the basic limit function produced with $w = -(1/12), 0, (3/12)$, respectively. The circles denote the evaluations of the basic limit function at integers; the asterisks denote the evaluations of the basic limit function at half integers.

Figure 3: (a–d) Limit curves for close polygons produced by the scheme corresponding to S_1.

In this paper, we presented a general formula for derivation of parametric family of ternary subdivision schemes. We presented the complete analysis of the proposed family of parametric ternary subdivision schemes. We also presented the comparison with exiting ternary subdivision schemes. Comparison shows that our proposed family has high continuity, degree of generation and reproduction compared with the same type exiting subdivision schemes. From Table 1, we observed that our proposed 3-point and 5-point schemes have C^2 and C^4 continuity, respectively, which are similar to the schemes presented in [1, 5, 9, 10, 17, 18]. Our 6-point scheme has C^6 continuity which is greater than the 6-point schemes presented in [4, 9]. Similarly, the generation degree of our proposed schemes is also higher than the exiting schemes.

5. Conclusions

Data Availability

The data used to support the findings of the study are included within this paper.

Conflicts of Interest

The authors declare that they have no conflicts of interest regarding the publication of this paper.

References

[1] M. F. Hassan, I. P. Ivrissimitzis, N. A. Dodgson, and M. A. Sabin, “An interpolating 4-point C^2 ternary stationary subdivision scheme,” Computer Aided Geometric Design, vol. 19, no. 1, pp. 1–18, 2002.
[2] H. Wang and K. Qin, “Improved ternary subdivision interpolation scheme,” Tsinghua Science and Technology, vol. 10, no. 1, pp. 128–132, 2005.
[3] K. P. Ko, B.-G. Lee, and G. J. Yoon, “A ternary 4-point approximating subdivision scheme,” Applied Mathematics and Computation, vol. 190, no. 2, pp. 1563–1573, 2007.
[4] G. Mustafa and P. Ashraf, “A new 6-point ternary interpolating subdivision scheme and its differentiability,” Journal of Information and Computing Science, vol. 5, pp. 199–210, 2010.
[5] G. Mustafa, A. Ghaffar, and F. Khan, “The odd-point ternary approximating schemes,” American Journal of Computational Mathematics, vol. 1, no. 2, pp. 111–118, 2011.
[6] J. Pan, S. Lin, and X. Luo, “A combined approximating and interpolating subdivision scheme with C^2 continuity C^2 continuity,” Applied Mathematics Letters, vol. 25, no. 12, pp. 2140–2146, 2012.
[7] S. S. Siddiqi, U. Ildrees, and K. Rehan, “Generation of fractal curves and surfaces using ternary 4-point interpolatory subdivision scheme,” Applied Mathematics and Computation, vol. 246, pp. 210–220, 2014.
[8] S. S. Siddiqi, S. Siddiqui, and N. Ahmad, “Fractal generation using ternary 5-point interpolatory subdivision scheme,” Applied Mathematics and Computation, vol. 234, pp. 402–411, 2014.
[9] S. Siddiqi and M. Younis, “Construction of ternary approximating subdivision schemes,” UPB Scientific Bulletin, Series A, vol. 76, no. 1, pp. 1223–7027, 2014.
[10] K. Rehan and S. Siddiqi, "A family of ternary subdivision schemes for curves," Applied Mathematics and Computation, vol. 270, pp. 14–123, 2015.

[11] P. Ashraf, B. Nawaz, D. Baleanu et al., "Analysis of geometric properties of ternary four-point rational interpolating subdivision scheme," Mathematics, vol. 8, pp. 1–19, 2020.

[12] P. Ashraf, M. Sabir, A. Ghaffar, K. S. Nisar, and I. Khan, "Shape-preservation of the four-point ternary interpolating non-stationary subdivision scheme," Frontiers in Physics, vol. 202010 pages, 2020.

[13] J. Tan and G. Tong, "A nonstationary ternary 4-point shape-preserving subdivision scheme," Journal of Mathematics, vol. 2021, Article ID 6694241, 10 pages, 2021.

[14] H. M. Tariq, R. Hameed, and G. Mustafa, "A new paradigm to design a class of combined ternary subdivision schemes," Journal of Mathematics, vol. 2021, Article ID 6679201, 19 pages, 2021.

[15] R. Hameed, G. Mustafa, J. Deng, and S. Ali, "Recursive process for constructing the refinement rules of new combined subdivision schemes and its extended form," Journal of Mathematics, vol. 2021, Article ID 6639706, 23 pages, 2021.

[16] G. Mustafa, S. T. Ejaz, S. Kouser, S. Ali, and M. Aslam, "Subdivision collocation method for one-dimensional Bratu’s problem," Journal of Mathematics, vol. 2021, Article ID 3497017, 8 pages, 2021.

[17] M. Asghar and G. Mustafa, "Family of a-ary univariate subdivision schemes generated by Laurent polynomial," Mathematical Problems in Engineering, vol. 2018, Article ID 7824279, 11 pages, 2018.

[18] M. F. Hassan and N. A. Dodgson, "Ternary and three-point univariate subdivision schemes," in Curve and Surface Fitting: Sant-Malo 2002, A. Cohen, J. -L. Merrien, and L. L. Schumaker, Eds., pp. 199–208, Nashboro Press, Brentwood, TN, USA, 2003.

[19] N. Dyn and D. Levin, "Subdivision schemes in geometric modelling," Acta Numerica 2002, vol. 11, pp. 73–144, 2002.

[20] O. Rioul, "Simple regularity criteria for subdivision schemes," SIAM Journal on Mathematical Analysis, vol. 23, no. 6, pp. 1544–1576, 1992.