CASE REPORT

Unpredicted clinical manifestation of COVID-19: a unique case report and review of literature

Raid M. Al-Ani1* and Rasheed Ali Rashid2

Abstract

Background: Cervical lymphadenopathy in children is a common problem in daily clinical practice. Many cases of cervical lymphadenopathy after the COVID-19 vaccine were reported. However, there is yet no reporting a case of supraclavicular cervical lymphadenopathy due to COVID-19.

Case presentation: A 12-year-old girl presented with fever, cough, fatigue, anosmia, and ageusia. COVID-19 was confirmed by real-time PCR. The symptoms were resolved within 10 days. Seven days later, she complained of supraclavicular swelling. Physical examination revealed painless, multiple, and mobile supraclavicular lymph nodes. Ultrasound and fine-needle aspiration cytology were suspicious. Therefore, an excisional biopsy of the largest node was performed. The specimen was sent for histopathology and immunohistochemistry evaluation which confirmed the benign nature of the lymph node.

Conclusion: To our best knowledge, this is the first case of supraclavicular lymphadenopathy in a child with COVID-19. It is essential to put COVID-19 in the differential diagnosis of cervical lymphadenopathy.

Keywords: COVID-19, Supraclavicular lymph node, Cervical lymphadenopathy, Case report
(PCR) test of the nasopharyngeal swab. The test was positive for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Chest X-ray revealed a right-sided upper zone pneumonic patch. Supportive treatment in the form of antipyretic and tonic as well as antibiotics (azithromycin) was given as per the protocol of COVID-19 treatment approved by the Iraqi Ministry of Health.

The patient became well, and all presenting symptoms disappeared entirely during the 10-day follow-up.

One week later, a right supraclavicular lump appeared; it was painless and gradually increased in size (Fig. 1). Physical examination revealed a non-tender neck mass in the right supraclavicular region, oval in shape, 2×1.5 cm, freely mobile, with no scar, and no skin changes over the swelling or surrounding areas. There were no focal infective areas, masses, or other lymph node enlargement in the body. The patient took a 5-day antibiotic course but without benefit. Ultrasound examination revealed multiple cervical lymph nodes in the right supraclavicular area, the largest of 18×10 mm in diameter. These nodes showed abnormal fatty hilum, abnormal round index, and exaggerated hypo-echoic texture, as shown in Fig. 2. The possible differential diagnosis could be infectious mononucleosis, toxoplasmosis, cytomegalovirus infection, and less likely tuberculosis or lymphoma. No abnormalities were found on abdominal and axillary sonographic examination. Laboratory tests revealed all are normal apart from high IgM against SARS-CoV-2 and lymphocytosis. Fine needle aspiration cytology revealed a suspicion of abnormal cells. Excisional biopsy was subjected to histopathological examination and immunohistochemistry study. These examinations revealed reactive hyperplasia with no abnormal cells (Figs. 3 and 4). There was no lesion recurrence at the 2-month follow-up visit, and the patient made her normal daily living well. The possible cause of her neck swelling was COVID-19 owing to the patient’s clinical presentation, positive real-time PCR test of the nasopharyngeal swab, the result of the serological test of SARS-CoV-2, and no features on physical examination, and investigation supported other causes as listed in the differential diagnosis. The parents gave informed consent to publish the case.
Discussion

The head and neck contain around 2/3rd of the lymph nodes in the body. Besides, the inflammatory or malignant process in any area can reach the neck through the lymphatic system. Therefore, there is a huge list of causes of cervical lymphadenopathy (enlargement of a node > 1 cm in diameter) [7]. Cervical lymphadenopathy is common in the pediatric population, and most of the cases are benign. The first systematic review about the causes of cervical lymphadenopathy in children by Deosthali et al. [7] reported that 67.8% of the 2687 cases are due to nonspecific benign causes, followed by Epstein-Barr virus (8.86%), malignancy (4.69%), and granulomatous disease (4.06%). In the presenting case, the histopathology and immunohistochemistry evaluations revealed the reactive benign nature of the supraclavicular lymph node. The high possible cause of this cervical lymphadenopathy was COVID-19 because the patient was diagnosed as COVID-19 by real-time PCR of the nasopharyngeal swab and high IgM as well as an absence of indicators of other pathologies in the history, examination, and investigations. Accordingly, COVID-19 can lead to reactive cervical lymph node enlargement.

Involvement of the axillary and/or supraclavicular lymph nodes on the same side is a frequent adverse effect of the vaccines against COVID-19. This is due to local activation of the immune response [8–10]. Moreover, Distinguing et al. reported 3 cases of cervical lymphadenopathy in group 2 (upper jugular group) on magnetic resonance imaging (MRI) in patients with COVID-19. All those patients have complained of otorhinological symptoms (anosmia, aguesia, nasal obstruction, rhinorrhea, and sore throat). These symptoms are due to inflammation of the nose, nasopharynx, and oropharynx caused by SARS-CoV-2. As a result of this inflammation, a local immune reaction occurs, resulting in lymph node enlargement of the Waldeyer’s ring, neck, and parotid regions [6]. Interestingly, we presented the first case in the world of unilateral supraclavicular enlargement in a patient with COVID-19. Although the mechanism of supraclavicular lymphadenopathy is not yet known, it is necessary to put COVID-19 in the differential diagnosis of supraclavicular lymphadenopathy.

Identifying the possible ways of transmitting the SARS-CoV-2 has a major role in understanding the mechanism of the infection with its further treatment options. The specific coronavirus receptor (ACE-2 receptor) is distributed in all body tissues, including the lymph nodes [11]; therefore, it is possible to find the virus in the lymph node as in the presenting case, leading to inflammation and enlargement of the node. Another possible mechanism of getting enlargement of the supraclavicular lymph node is a local immune response in the lung.

According to the American College of Radiology (ACR) recommendations, chest X-rays and computerized tomography (CT) should not be used as a screening or first diagnostic tool for COVID-19 owing to the similarity of the radiological signs among various lung conditions. However, radiological investigation in the

Fig. 3 Showing a benign reactive lymph node, which has a mantle zone (red arrow) that is surrounding a pale germinal center (blue arrow). A H&E x 40 and B H&E x 100

Fig. 4 Showing positive immunohistochemical (IHC) expression of BCL-2 in the mantle zones and negative brownish discoloration of the nuclear and cytoplasmic stain. Besides, positive IHC expression of BCL-6 in the germinal centers of the lymph node with reactive hyperplasia, with a brownish discoloration of the nuclear stain.
pediatric population plays an essential role in the diagnosis and management of patients presenting with cervical lymphadenopathy. In our patient, the presence of COVID-19 vaccine side effects further supported the diagnosis of a benign condition.

Conclusion

Supravacular lymphadenopathy due to COVID-19 was not described in the literature. However, it might be a case of COVID-19 vaccine administered simultaneously with the primary disease. In our case, the child's clinical presentation and the histopathological analysis of the excisional biopsy of the lymph node revealed a benign finding, consistent with a reactive lymphoid hyperplasia.

Acknowledgements

We would like to thank Dr. Omar M. Sultan, Dr. Nadia A. Gheni, and Dr. Ahmed M. Mohammedi for preparing Figs. 2, 3, and 4, respectively.

Authors’ contributions

RFA analyzed and interpreted the patient data regarding the clinical, laboratory, radiological, and pathological findings as well as writing the case presentation. ARM was a major contributor in writing the manuscript. The authors read and approved the final manuscript.

Funding

No funding.

Availability of data and materials

Data sharing is not applicable to this article as no datasets were generated or analysed during the current study.

Declarations

Ethics approval and consent to participate

This study was approved by the ethical committee of the University of Anbar. Written informed consent was obtained from the patient’s father for the publication of this case report and accompanying images.

Consent for publication

The patient’s father gave written informed consent for the publication of the data and materials contained within this study.

Competing interests

The authors declare that they have no competing interests.

Author details

1 Department of Surgery/Otolaryngology, College of Medicine, University Of Anbar, Ramadi, Iraq. 2 Department of Surgery/Otolaryngology, College of Medicine, Tikrit University, Tikrit, Iraq.

Received: 15 March 2022 Accepted: 19 August 2022

Published online: 07 September 2022

References

1. Al-Ani RM (2020) Sniff and taste abnormalities due to COVID-19. Al-Anbar Med J 16(1):1–2.
2. Lechien JR, Chetrit A, Chekkoury-Idrissi Y, Distinguin L, Circiu M, Saussez S et al (2020) Parotitis-like symptoms associated with COVID-19, France, March–April 2020. Emerg Infect Dis 26(9):2270.
3. Castellana G, Aldè M, Consonni D, Zuccotti G, Di Berardino F, Barozzi S et al (2021) Prevalence of dysphonia in non-hospitalized patients with COVID-19 in Lombardy, the Italian epicenter of the pandemic. J Voice 50(621–1997/21):00108–9.
4. Kim B, Park Y, Kim EK, Lee SH (2021) Supraclavicular lymphadenopathy after COVID-19 vaccination in Korea: serial follow-up using ultrasonography. Clin Imaging 79:201–203.
5. Mitchell OR, Dave R, Bekker J, Brennan PA (2021) Supraclavicular lymphadenopathy following COVID-19 vaccination: an increasing presentation to the two-week wait neck lump clinic? Br J Oral Maxillofac Surg 59(3):384–385.
6. Distinguin L, Ammar A, Lechien JR, Chetrit A, Idrissi YC, Ciricu M et al (2020) MRI of patients infected with COVID-19 revealed cervical lymphadenopathy: SAGE Publications Sage CA, Los Angeles, CA.
7. Deoghati A, Donches K, Delvecchio M, Aroff S (2019) Etiologies of pediatric cervical lymphadenopathy: a systematic review of 2687 subjects. Glob Pediatr Heal 6:2333794X19865440.
8. Lehman CD, D’Alessandro HA, Mendoza DR, Succi MD, Kambadakone A, Lamb JR (2021) Unilateral lymphadenopathy after COVID-19 vaccination: a practical management plan for radiologists across specialties. J Am Coll Radiol 18(6):843–852.
9. Fernández-Prada M, Rivero-Calle I, Calvache-González A, Martín-Torres F (2021) Acute onset supravacular lymphadenopathy coinciding with intramuscular mRNA vaccination against COVID-19 may be related to vaccine injection technique, Spain, January and February 2021. Eurosurveillance 26(10):2100193.
10. Mehta N, Sales RM, Babagbemi K, Levy AD, McGrath AL, Drotman M et al (2021) Unilateral axillary adenopathy in the setting of COVID-19 vaccine. Clin Imaging 75:12–15.
11. Hamming I, Timens W, Bulthuis MIL, Lely AT, van Nisv GJ, van Goor H (2004) Distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis. J Pathol A J Pathol Soc Gt Britain Irel 203(2):631–7.
12. Foust AM, McAdam AJ, Chu WC, Garcia-Peña P, Phillips GS, Plut D et al (2020) Practical guide for pediatric pulmonologists on imaging management of pediatric patients with COVID-19. Pediatr Pulmonol 55(9):2213–2224
13. Parisi GF, Indolfi C, Decimo F, Leonardi S, Del Giudice MM (2020) COVID-19 pneumonia in children: from etiology to management. Front Pediatr 8:61622
14. Palabiyik F, Kokurcan SO, Hatipoglu N, Cebeci SO, Inci E (2020) Imaging of COVID-19 pneumonia in children. Br J Radiol 93(1113):20200647
15. Becker AS, Perez-Johnston R, Chikamatsue SA, Chen MM, El Homsi M, Feigin KN, Gallagher KM, Hanna EY, Hicks M, Ilica AT, Mayer EL (2021) Multidisciplinary recommendations regarding post-vaccine adenopathy and radiologic imaging: radiology scientific expert panel. Radiology
16. Lang S, Kansy B (2014) Cervical lymph node diseases in children. GMS Curr Top Otorhinolaryngol Head Neck Surg 13:Doc08

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.