Lycopene and Risk of Prostate Cancer
A Systematic Review and Meta-Analysis

Ping Chen, MD, Wenhao Zhang, MD, Xiao Wang, MD, Keke Zhao, MD, Devendra Singh Negi, MD, Li Zhuo, MD, Mao Qi, MD, Xinghuan Wang, MD, and Xinhua Zhang, MD, PhD

Abstract: Prostate cancer (PCa) is a common illness for aging males. Lycopene has been identified as an antioxidant agent with potential anticancer properties. Studies investigating the relation between lycopene and PCa risk have produced inconsistent results. This study aims to determine dietary lycopene consumption/circulating concentration and any potential dose–response associations with the risk of PCa. Eligible studies published in English up to April 10, 2014, were searched and identified from Pubmed, Sciedirect Online, Wiley online library databases and hand searching. The STATA (version 12.0) was applied to process the dose–response meta-analysis. Random effects models were used to calculate pooled relative risks (RRs) and 95% confidence intervals (CIs) and to incorporate variation between studies. The linear and nonlinear dose–response relations were evaluated with data from categories of lycopene consumption/circulating concentrations. Twenty-six studies were included with 17,517 cases of PCa reported from 563,299 participants. Although inverse association between lycopene consumption and PCa risk was not found in all studies, there was a trend that with higher lycopene intake, there was reduced incidence of PCa (P = 0.078). Removal of one Chinese study in sensitivity analysis, or recalculation using data from only high-quality studies for subgroup analysis, indicated that higher lycopene consumption significantly lowered PCa risk. Furthermore, our dose–response meta-analysis demonstrated that higher lycopene consumption was linearly associated with a reduced risk of PCa with a threshold between 9 and 21 mg/day. Consistently, higher circulating lycopene levels significantly reduced the risk of PCa. Interestingly, the concentration of circulating lycopene between 2.17 and 85 μg/mL was linearly inversely with PCa risk whereas there was no linear association >85 μg/mL. In addition, greater efficacy for the circulating lycopene concentration on preventing PCa was found for studies with high quality, follow-up >10 years and where results were adjusted by the age or the body mass index. In conclusion, our novel data demonstrates that higher lycopene consumption/circulating concentration is associated with a lower risk of PCa. However, further studies are required to determine the mechanism by which lycopene reduces the risk of PCa and if there are other factors in tomato products that might potentially decrease PCa risk and progression.

INTRODUCTION
Prostate cancer (PCa) is the second most common cancer and fifth leading cause of death in men. There were 1.1 million patients diagnosed with PCa worldwide in 2012 accounting for 15% of the total diagnosed cancers in men and 307,000 deaths, representing 6.6% of the total male cancer mortality. Diet, lifestyle, environment, and genetics are regarded as risk factors for PCa. A case-control study in Western Australia found that a Western dietary pattern with high intake of red or processed meats, fried fish, chips, high-fat milk and white bread was associated with a higher risk for PCa. In recent decades, growth of the Chinese economy accompanied with a shift towards western lifestyle has been associated with an increased prevalence of PCa in China. The overall incidence of PCa in China increased from 3.80/100,000 in 2001 to 7.10/100,000 in 2011 and in urban areas from 4.49/100,000 to 10.06/100,000. The World Cancer Research Fund has reported that a high intake of fruit and vegetable may be beneficial in reducing the risk of cancer including PCa. Tomatoes and tomato products, which contain abundant lycopene, are in particular recommended for PCa prevention. Lycopene, a 40-carbon carotenoid molecule, has been identified as an antioxidant agent with potential anticancer properties and no obvious side effects.

A number of studies have investigated lycopene in relation to PCa risk. Some studies supported an inverse association, whereas others presented null findings. At present there are 2 meta-analyses studying the association between lycopene and PCa. In a meta-analysis published in 2003, Etmann et al found an inverse association. However a study published in 2013 by Chen et al found no effect. Moreover, these 2 meta-analyses did not evaluate the dose–response association with risk reduction or determine a beneficial range of consumption and both suggested a further study was needed to determine the type and quantity of tomato products for preventing PCa. In 2014, a high-quality 24-years follow-up nested case-control (NCC) study including 51,529 US healthy men suggested a reduced odds of PCa for those with highest lycopene intake when compared to those with lowest

DOI: 10.1097/MD.0000000000001260

Meta-Analyses of Observational Studies in Epidemiology
lycopene intake (hazard ratio [HR] 0.91, 95% confidential interval [CI] 0.84 to 1.00). As inconsistencies between studies may relate to different exposure levels, it is important to determine the shape of the dose–response curve. It is also possible that only those individuals with a low baseline lycopene intake or status may benefit from higher lycopene consumption. However, none of previous reviews have investigated these issues. Therefore we conducted an updated systematic review to clarify whether lycopene intake or serum concentration is inversely related to PCa, with particular emphasis on the shape of the dose–response curve.

METHOD

Search Strategy

Based on the Meta-analysis of Observational Studies in Epidemiology (MOOSE), we carried out and reported the present study. Case-control (CC) or NCC or prospective cohort studies that examined the associations of lycopene intake or circulating (plasma/serum) concentrations with the risk of PCa were analyzed. Databases, including PubMed (from 1950), Sciencedirect Online (from 1998), Wiley online library (from 1960) were searched for articles published up to 10 April 2014. The key search terms used were as follows: “lycopene,” “intake,” “consumption,” “lycopene concentrations,” “prostate,” “neoplasms,” “humans,” “case-control studies,” “follow-up studies,” “prospective studies” and their variants. Reference lists from published studies were manually searched to identify additional articles. The approval by an institutional review board is not required because this study was based on published studies.

Eligibility Criteria

Two independent investigators (WHZ, XW) conducted an initial screening of article titles and abstracts to remove duplicate references, letters, comments, reviews, ecological studies, animal studies, single case reports, and meta-analyses. Reviewers used prespecified guidelines to ensure a consistent approach. Then 2 independent investigators (PC and ZL) evaluated all potentially relevant articles based on full text reviews using a structured flow chart and detailed guidelines to determine eligibility for inclusion. Any disagreement was settled by a third reviewer (QM).

Studies were included if they meet the following criteria: first, patients in the case group must be diagnosed with PCa and free of PCa in the control group or the non-case group; second, there was documentation of lycopene intake or circulating concentrations; third, PCa was diagnosed by histology, pathology, biopsy, or histopathology; fourth, original research from observational studies, such as CC, NCC, or cohort studies; fifth, complete data was provided, such as relative risk (RR), risk ratio (RO), odd risk (OR) or HR, number of cases, controls or noncases or person years; finally, there were at least 3 quantitative categories of lycopene intake or circulating concentrations. Studies were excluded if they did not meet all criteria.

Multiple reports from the same cohort study were reviewed and papers with the longest follow-up for identical outcomes were included. If longer follow-up but insufficient data were presented, we chose those complete shorter follow-up ones. Different studies with sufficient data from one article were also included.

Data Extraction and Quality Assessment

Three reviewers (PC, KKZ and DSN) independently performed the data extraction by using a standardized data collection form. We extracted the information as follows: first author, cohort name, publication year, country, age, duration of follow-up, study design, clinical classification of PCa, numbers of cases, numbers of controls or noncases or person years, dose categories, adjusted or crude RR, OR or HR with 95% CI and adjusted variables that entered into the multivariable model as potential confounders. If studies already reported a linear dose–response trend with CI or standard error, they were used directly. For dose–response meta-analysis, the term RR will be used as a generic term for RO (cumulative incidence data), rate ratio (incidence-rate data), odds ratio (CC data) and HR. The mean value or midpoint of the upper and lower boundaries of each category was used to estimate assigned dose. For the lowest quartile, lower boundary was assumed to be 0 if it was not provided. For the open-ended upper category, the assigned dose which was the cut point multiplied by 1.5 was evaluated. Any potential inconsistencies were resolved through discussion.

Methodological quality of studies was evaluated using the Newcastle–Ottawa Scale. Other aspects of study quality, such as follow-up duration, study types, study location, adjustment for various important confounders and clinical classification, were investigated through subgroup analysis.

Statistics Analysis

To derive a linear dose–response curve, the distribution of cases and person-years, or cases and non–cases with RRs and estimates of uncertainty (such as CIs) for at least 3 categories of quantified lycopene intake or circulating concentrations was required to be presented in the included studies. If the total number of cases or person-years was presented without distribution, we estimated the distribution on the basis of definitions of the quantiles. If the unit for circulating concentrations was μmol/L, it was multiplied by 536.85 (relative molecular weight of lycopene) and adjusted to μg/L.

STATA version 12.0 (StataCorp LP, College Station, TX) was applied to analyze the data. RR and 95% CI were used as a measure of the effect size for all studies, as HR and OR would be approximately regarded as RR for low incidence of diseases. The RR and relevant 95% CI of highest vs. lowest category of lycopene intake or circulating concentrations was pooled and an estimated dose–response trend was derived for each study with method recommended by Greenland and Longnecker. These trends were then combined with using random effects meta-analysis, as a random effects model can provide more conservative results than a fixed one for variation between studies. Based on data presented for each category of lycopene intake or circulating concentrations, study specific slopes (with 95% CIs) were generated.

In addition, we examined linear and nonlinear associations between lycopene intake or circulating concentrations and PCa by plotting linear and nonlinear dose–response curves using restricted cubic splines, with 3 knots at fixed centiles (10%, 50%, and 90%) of the distribution. Considering the correlation between each published RR, a restricted cubic spline model was estimated with a generalized least squares regression. Then study-specific estimates were combined with the restricted maximum likelihood method.

Heterogeneity among studies was explored with Cochran’s Q test and I^2 was applied to quantify the proportion of the total variation in study estimates resulted from that heterogeneity. Sensitivity analyses and subgroup analysis were made to determine whether the results were robust and evaluate the sources of heterogeneity. In sensitivity analyses, the influence of
individual studies on the overall risk was carried out by sequentially omitting one study at each turn. Other methodological features were also evaluated through subgroup analysis, including geographical location (North America, Europe or others); follow-up duration (<10 years or ≥10 years); study quality scores (< 8 or ≥8), study type, clinical classification (advanced PCa or nonadvanced PCa) as well as confounders, such as age, family history, energy intake, and body mass index (BMI).

Potential publication bias was assessed by using contour-enhanced funnel plots with Egger’s linear regression test and Begg’s rank correlation test of asymmetry. If evidence of asymmetry was indicated, the trim and fill method was used to recalculate the adjusted estimates with the addition of the missing studies.

RESULTS

Search Results and Study Characteristics

Figure 1 depicts the literature search and the study selection process. We identified 319 articles from the PubMed database, 959 articles from the Scisencedirect database, and 1037 articles from Wiley online library. After excluding duplicates and papers that did not meet the inclusion criteria, 37 full articles of 38 potentially relevant studies were obtained. When full text was reviewed, we further excluded the following articles: 1 article in which the unit for estimate of trend was g/1000 kcal; 3 random control trials with different outcomes; 5 studies about lycopene and PCa progression; 1 before-after study in which there was no control group; 5 studies containing 2 different studies (CLUE I and CLUE II) in total we identified 25 articles containing 26 studies which met our criteria, with 9 CC studies, 17 NCC or cohort studies. Totally, 17,517 cases of PCa reported from 563,299 participants were analyzed.

These studies were performed primarily in 2 different regions: North America (18 studies) and Europe (5 studies) with other regions, such as New Zealand, Portugal, Australia and China represented by only 1 study. The main characteristics were presented in Table 1. Table 2 and Table 3 describe detailed outcomes on lycopene intake and circulating concentrations with RRs of PCa risk, respectively.

Quality Assess

The Newcastle–Ottawa Scale was applied to assess the quality of included studies. As described in Table 4, the mean score was 7 (highest 8 and lowest 6) and 8 (highest 9 and lowest 6) for CC studies and cohort/NCC studies, respectively.

Lycopene Intake and Risk of PCa

A total of 13 studies reported the relevant risk of PCa with lycopene supplementation, including 8 CC studies and 5 NCC or cohort studies. All of these studies provided complete data allowing dose–response meta-analysis.

As shown in Figure 2, the pooled RR of highest vs. lowest category of total lycopene intake was 0.910 (95% CI 0.819 to 1.011, 0.078) for all studies, 0.813 (95% CI 0.629 to 1.052, 0.015) for CC studies, 0.939 (95% CI 0.880 to 1.003, 0.061) for NCC or cohort studies. Although no statistical significance was found, higher lycopene intake showed a trend to reduce the incidence of PCa. We further carried out several sensitivity analyses. Heterogeneity between studies was mainly caused by 1 Chinese study. After this study was excluded, there was no longer any evidence of significant heterogeneity for highest vs. lowest categories of total lycopene intake (I² changed from 45.5% to 0.0%). Moreover, the overall pooled estimates (RR 0.935, 95% CI 0.881 to 0.993, 0.030) became significant without this study (Figure 3). The heterogeneity test showed moderate heterogeneity (I² = 45.5%, 0.037) among all studies, moderate heterogeneity (I² = 60.6%, 0.013) among CC studies and little heterogeneity (I² = 0.0%, 0.504) among NCC or cohort studies (Table 5).

Dose–response meta-analysis further showed each 5 mg/day increase of lycopene intake decreased the risk of PCa with RR 0.975 (95% CI 0.940 to 1.010, 0.100) for all studies, 0.894 (95% CI 0.774 to 1.032, 0.126) for CC studies and 0.979 (95% CI 0.961 to 0.997, 0.023) for NCC or cohort studies (Figure 4). The heterogeneity test showed moderate heterogeneity (I² = 50.2%, 0.020) among all studies. Again, as shown in Figure 5, there was no longer any evidence of significant heterogeneity for each 5 mg/day increase of lycopene intake on decreasing risk of PCa (I² changed from 50.2% to 0.0%) when excluded the Chinese study with pooled estimate (RR 0.979, 95% CI 0.962 to 0.996, 0.017) for all studies quite similar to the pooled estimate (RR 0.979, 95% CI 0.961 to 0.997, 0.023) for NCC or cohort studies or consistent with the pooled estimate (RR 0.975, 95% CI 0.959 to 0.995, 0.013) of high-quality studies (study quality score ≥ 8). Figure 5 also demonstrated that PCa incidence almost lowered by 2.1%. The linear test showed there was a linear relationship between each 5 mg/day increase of lycopene intake on decreasing PCa risk (chi-square = 6.29, 0.012) without any heterogeneity (P = 0.109). Accordingly, the nonlinear test showed there was no nonlinear relationship (chi-square = 0.00, 0.953). Compared with reference dose (0.1 mg), the approximate RRs of each dose of lycopene intake were as follows: 0.99 (95% CI 0.96 to 1.01) for 3 mg, 0.97 (95% CI 0.93 to 1.01) for 6 mg, 0.96 (95% CI 0.92 to 1.00) for 9 mg,
TABLE 1. Characteristics of the Identified Studies Included in the Meta-Analyses on the Lycopene Status and Prostate Cancer

Author and year	Country	Study Name	Study Type	Age	Follow-up	Measure of Associations	Assessment Method	Endpoints	Case/control
Norrish 2000⁴	New Zealand	Auckland Prostate study	PB-CC	40–80	N/A	OR	FFQ	Histology	281/442
Deneo-Pellergrini 1999³	Uruguay	HH-CC	40–89	N/A	OR	FFQ	Histology	175/233	
Jain 1999⁶	Canada	Nutrient intake in Canada	PB-CC	69.8	N/A	OR	validated FFQ	Histology	617/636
Cohen 2000⁷	America	N/A	HB-CC	40–64	N/A	OR	FFQ	Histology	654/625
Jain 2005⁵	China	HB-CC	>45	N/A	OR	validated FFQ	Pathology	130/270	
Lu 2001⁷	America	MSKCC	HB-CC	59.98	N/A	OR	HHHQ dietary questionnaire	Pathology	65/132
Key 1997³⁰	Britain	EPIC	PB-CC	68.1	N/A	OR	EPIC FFQ	Histology	328/328
Hodge 2004¹¹	Australia	N/A	PB-CC	N/A	OR	FFQ	Histopathology	858/905	
Kirsh 2006¹³	America	PLCO Cohort	63.3	42	RR	validated FFQ	Pathology	1338/29361	
Agalliu 2011¹⁴	Canada	CSDLH	NCC	66.2	7	HR	validated FFQ	Pathology	661/1864
Kristal 2010¹⁵	America and Canada	PCPT	NCC	63.6	10	validated FFQ	History or pathology	1703/17415	
Schuurman 2002¹⁶	Netherlands	NLCS Cohort	55–69	63	RR	validated FFQ	Histology or microscopy	642/58179	
Zu 2014¹⁷	America	HPFS NCC	40–75	24	OR	semiquantitative FFQ	Histology	5728/47898	
Circulating concentration Kristal 2011¹⁸	America	PCPT NCC	63.6	10	OR	validated FFQ	Pathology	1683/1751	
Vogt 2002¹²	America	N/A	PB-CC	40–79	N/A	OR	validated FFQ	Histology	209/228
Key 2007⁵⁹	8 European countries	EPIC Cohort	60.4	8	RR	validated FFQ	Histology	966/1064	
Nomura 1997²⁰	America	N/A	NCC	62	21	OR	N/A	Pathology	142/142
Peters 2007²¹	America	PLCOC NCC	64.7	8	N/A	OR	N/A	Pathology	692/844
Gann 1999²²	America	Physicians’ Health Study NCC	60.7	13	N/A	OR	N/A	Pathology	578/1294
Huang 2003²³	America	CLUE I NCC	45–64	22	OR	N/A	Histology	182/361	
Huang 2003²³	America	CLUE II NCC	45–64	22	OR	N/A	Histology	142/284	
Hsing 1999²⁴	America	N/A	NCC	71	12	OR	N/A	Histology	103/103
Wu 2004²⁵	America	HPFS NCC	40–75	5	OR	N/A	Histology	450/450	
Beilby 2010²⁶	Australia	N/A	NCC	69.8	14	OR	N/A	Histology	96/225
Lu 2001¹⁷	Finland	MSKCC	HB-CC	59.98	2	OR	N/A	Pathology	65/132
Karppi 2009²⁷	Finland	KIHDRF	NCC	56.2	12.6	RR	N/A	Histology	55/856
Goodman 2003²⁸	America	CARET NCC	45–69	5	OR	N/A	Biopsy	205/205	

CARET = β-Carotene and Retinol Efficacy Trial, CC = case-control study, CLUE II = Campaign Against Cancer and Heart Disease, CSDLH = Canadian Study of Diet, Lifestyle and Health, EPIC = European Prospective Investigation into Cancer and Nutrition, FFQ = food frequency questionnaire, HB-CC = population-based case–control study, HPFS = Health Professionals Follow-up Study, HR = hazard ratio, KIHDRF = Kuopio Ischaemic Heart Disease Risk Factor cohort, MSKCC = Memorial Sloan-Kettering Cancer Center, N/A = Not Applicable, NCC = nested case-control study, NLCS = Netherlands Cohort Study, OR = odd risk, PB-CC = population-based case-control study, PCPT = Prostate Cancer Prevention Trial, PLCO = Prostate, Lung, Colorectal, and Ovarian, PLCOCS = Prostate, Lung, Colorectal, and Ovarian Cancer Screening, RR = relative risk.
TABLE 2. Detailed Outcomes on Lycopene Intake and RRs of Prostate Cancer

Author and Year	Country	Study Type	Dose (mg/d)	RR (95% CI)	RR (95% CI)	RR (95% CI)	Confounders
Key 1997¹³	Britain	CC	<0.402	1	NA	NA	Social class
			0.402–0.717	0.90 (0.63–1.29)	NA	NA	Age, residence, urban/rural status, education, family history of prostate cancer, body mass index and total energy intake
			> 0.717	0.99 (0.68–1.45)	NA	NA	
Deneo-Pellegrini 1998⁸	Uruguay	CC	<1.301	1	NA	NA	
			1.301–2.501	1.6 (0.9–2.8)	NA	NA	
			2.502–3.300	0.8 (0.4–1.4)	NA	NA	
			> 3.300	1.2 (0.7–2.2)	NA	NA	
Jain 1999⁹	Canada	CC	<2.103	1	NA	NA	Total energy, vasectomy, age, ever-smoked, marital status, study area, BMI, education, ever-used multivitamin supplements
			2.103–5.251	0.90 (0.68–1.19)	NA	NA	
			5.252–12.681	0.90 (0.68–1.19)	NA	NA	
			> 12.681	1.01 (0.76–1.35)	NA	NA	
Cohen 2000¹⁰	America	CC	<4.900	1	NA	NA	Fat, energy, race, age, family history of prostate cancer, body mass index, prostate-specific antigen tests in previous 5 years, and education
			4.900–6.599	0.93 (0.64–1.35)	NA	NA	
			6.600–9.900	1.23 (0.86–1.76)	NA	NA	
			> 9.900	0.89 (0.60–1.31)	NA	NA	
Norrish 2000⁷	New Zealand	CC	<0.662	1	1	NA	Age, height, total nonsteroidal anti-inflammatory drugs, and socioeconomic status
			0.662–1.212	0.77 (0.50–1.19)	NA	NA	
			1.213–1.994	0.86 (0.56–1.32)	NA	NA	
			> 1.994	0.76 (0.50–1.17)	0.76 (0.50, 1.17)	NA	
Lu 2001¹²	America	CC	<1.458	1	NA	NA	
			1.458–2.370	1.14 (0.36–3.62)	NA	NA	
			2.371–3.450	0.91 (0.27–3.11)	NA	NA	
			> 3.450	0.69 (0.23–2.08)	NA	NA	
Schuurman 2002¹⁹	Netherlands	Cohort	0.1	1	1	NA	Age, family history of prostate cancer, socioeconomic status, and alcohol from white or fortified wine
			0.4	0.79 (0.57–1.09)	0.80 (0.49–1.31)	NA	
			0.7	1.08 (0.80–1.47)	1.09 (0.69–1.71)	NA	
			1.1	0.99 (0.72–1.36)	0.94 (0.59–1.50)	NA	
			2.0	0.98 (0.71–1.34)	0.92 (0.57–1.47)	NA	
Hodge 2004¹⁴	Australia	CC	< 4.092	1	NA	NA	Atate, age group, year, country of birth, socioeconomic group, and family history of prostate cancer
			4.092–5.848	0.9 (0.6–1.2)	NA	NA	
			5.849–8.224	0.8 (0.6–1.0)	NA	NA	
			8.225–11.088	0.9 (0.6–1.2)	NA	NA	
			> 11.088	0.8 (0.6–1.2)	NA	NA	
NCC or cohort studies (Table 6). Sensitivity analyses showed the pooled RR and relevant 95% CI of highest vs. lowest circulating concentrations was 0.821 (95% CI 0.711 to 0.949, square $I^2 = 16.9\%$, $P = 0.269$) among all studies, middle heterogeneity ($I^2 = 63.2\%$, $P = 0.099$) among CC studies and little heterogeneity ($I^2 = 0.0\%$, $P = 0.490$) among NCC or cohort studies (Table 6). Sensitivity analyses showed the overall evaluation was robust by removing each study.

As depicted in Figure 8, dose–response meta-analysis of 11 studies included in 10 articles$^{12,21,22,24–27,29–31}$ further showed the RR and relevant 95% CI of each 10 μg/dL increase of circulating concentrations was 0.970 (95% CI 0.943 to 0.997, $P = 0.030$) with a middle heterogeneity ($I^2 = 43.7\%$, $P = 0.059$). Consistent with lycopene intake, higher circulating concentrations significantly reduced the risk of PCa by 3.0%. The nonlinear test showed a nonlinear relationship (chi-square $= 3.88$, $P = 0.049$) between circulating concentrations and the risk of PCa without any heterogeneity ($P = 0.260$).

Compared with reference dose (2.15 μg/dL), Figure 9 showed the approximate RRs of each dose of circulating concentration were as follows: 0.95 96 (95% CI 0.93 to 0.99) for 10 μg/dL to 0.92 (95% CI 0.86 to 0.97) for 20 μg/dL, 0.88 (95% CI 0.80 to 0.96) for 30 μg/dL, 0.86 (95% CI 0.77 to 0.95) for 40 μg/dL, 0.85 (95% CI 0.76 to 0.94) for 50 μg/dL, 0.84 (95% CI 0.76 to 0.94) for 60 μg/dL, 0.82 (95% CI 0.76 to 0.94) for 70 μg/dL, 0.80 (95% CI 0.77 to 0.93) for 80 μg/dL, 0.78 (95% CI 0.76 to 0.93) for 90 μg/dL. The risk of PCa was increased by 2.15 to 85 μg/dL circulating concentrations which could decrease PCa incidence.

Circulating Lycopene Concentrations and Risk of PCa

Author and Year	Country	Study Type	Dose (mg/d)	RR (95%CI) Advanced	RR (95%CI) Nonadvanced	RR (95%CI)	Confounders
Jian 200511	China	CC	< 1.609	1	NA	NA	Age at interview, locality, education, family income, marital status, number of children, family history, BMI, tea drinking, caloric intake, fat intake
Kirsh 200616	America	Cohort	7.56	1.10 (0.93–1.30)	1.25 (0.96–1.63)	0.99 (0.78–1.25)	Age, BMI, education and family history of prostate cancer
Kristal 201018	America and Canada	NCC	3.999–6.646	NA	NA	NA	Age, race/ethnicity, treatment arm, and body mass index
Agalliu 201117	Canada	NCC	2.451	1	1	1	Age at baseline, race, BMI, exercise activity, and education
Zu 201420	America	NCC	0–3.687	1	1	NA	Age, height, body mass index, race, family history of prostate cancer, vigorous activity, smoking status, dietary intakes total calories

CC = case-control study, CI = confidence interval, NA = Not Applicable, NCC = nested case-control study, RR = relative risk.
Author and year	Country	Study	Lycopene Concentration (µg/dL)	RR (95%CI) Advanced	RR (95%CI) Nonadvanced	Confounders	
Gann 1999²⁵	America	NCC	Plasma	< 26.17	1	1	NA
				26.17–35.36	0.89 (0.64–1.23)	0.64 (0.40, 1.03)	NA
				35.36–51.29	0.90 (0.65–1.24)	0.71 (0.44, 1.15)	NA
				44.29–58.01	0.87 (0.63–1.19)	0.70 (0.44, 1.10)	NA
				> 58.01	0.75 (0.54–1.06)	0.56 (0.34, 0.92)	NA
Huang 2003²⁶	America	NCC	Plasma	< 21.7	1	NA	NA
				21.7–31.1	0.86 (0.51–1.47)	NA	NA
				31.1–41.1	0.74 (0.41–1.33)	NA	NA
				41.1–54.9	0.96 (0.55–1.67)	NA	NA
				> 54.9	0.83 (0.46–1.48)	NA	NA
Huang 2003²⁶	America	NCC	Plasma	< 24.3	1	NA	NA
				24.3–35.2	0.88 0.45–1.70	NA	NA
				35.2–48.8	0.77 0.40–1.47	NA	NA
				48.8–62.8	0.83 0.42–1.62	NA	NA
				> 62.8	0.79 0.41–1.54	NA	NA
Key 2007²²	8 European Cohort	NCC	Plasma countries	< 15.04	1	1	1
				15.04–24.32	1.36 (1.02–1.83)	1.35 (0.67, 2.74)	1.31 (0.87, 1.97)
				24.32–34.75	1.25 (0.93–1.68)	1.19 (0.62, 2.29)	1.36 (0.90, 2.05)
				34.75–49.37	1.11 (0.83–1.49)	0.93 (0.47, 1.85)	1.05 (0.69, 1.59)
				> 49.37	0.97 (0.70–1.34)	0.40 (0.19, 0.88)	1.40 (0.89, 2.21)
Peters 2007²⁴	America	NCC	Serum	< 26.3	1	1	NA
				26.3–36.0	1.00 (0.72–1.40)	0.74 (0.45, 1.20)	NA
				36.0–46.6	0.93 (0.66–1.31)	0.95 (0.59, 1.52)	NA
				> 46.6	0.88 0.41–1.54	0.52 (0.30, 0.91)	0.92 (0.52, 1.62)
Kristal 2011²¹	America	NCC	Serum	< 26.3	1	1	1
				26.3–36.0	0.82 (0.64–1.04)	1.10 (0.77, 1.56)	0.64 (0.48,0.86)
				36.0–46.6	0.70 (0.55–0.91)	0.84 (0.58, 1.23)	0.58 (0.43,0.79)
				> 46.6	0.78 (0.61–1.01)	0.99 (0.68, 1.54)	0.65 (0.48,0.88)
Hsing 1990²⁷	America	NCC	Serum	< 20	1	NA	NA
				20–32	0.81 (0.38–1.73)	NA	NA
				32–47	0.55 (0.23–1.34)	NA	NA
				> 47	0.50 (0.20–1.29)	NA	NA
Goodman 2003³¹	America	NCC	Serum	< 22.9	1	NA	NA
				22.9–32.1	0.65 (0.36–1.15)	NA	NA
				32.1–41.7	0.47 (0.26–0.87)	NA	NA
				> 41.7	1.04 (0.61–1.77)	NA	NA
Lu 2001²²	America	CC	Serum	< 0.179	1	NA	NA
				0.179–0.275	0.64 (0.23–1.75)	NA	NA
				0.275–0.401	0.29 (0.09–0.90)	NA	NA
Subgroup Analyses

As shown in Table 5, subgroup analyses found lycopene intake and the risk of PCa did not differ substantially according to location, study type, duration of follow-up, clinical classification, adjustment for various important confounders such as age, family history, energy intake, BMI. However, it became statistically different with the overall pooled estimate 0.927 (95% CI 0.866 to 0.992, P = 0.029) when stratifying by study quality. We also found an inverse association between each 5 mg/day increase of lycopene intake and decreased risk of PCa only for high-quality studies (RR 0.850, 95% CI 0.748 to 0.955, P = 0.013). Similarly, Table 6 shows subgroup analyses of circulating concentrations and risk of PCa. There was no significant difference when stratified by location, clinical classification, and adjustment for family history or energy intake. But significant difference was found when classified by study quality, study type, follow-up duration, and adjustment for age or BMI. The inverse associations between circulating concentrations and decreased risk of PCa were indicated for high-quality studies (RR 0.805, 95% CI 0.692 to 0.936, P = 0.005), NCC or cohort studies (RR 0.850, 95% CI 0.748 to 0.965, P = 0.012), studies in which follow-up duration ≥ 10 years (RR 0.891, 95% CI 0.681 to 0.942, P = 0.007), studies adjusted by age (RR 0.828, 95% CI 0.696 to 0.984, P = 0.032) and studies adjusted by BMI (RR 0.848, 95% CI 0.767 to 0.915, P = 0.003).

Publication Bias

For dose–response meta-analysis of each 5 mg/day increase of lycopene intake and the risk of PCa, Begg’s rank correlation test (P = 0.200) and Egger’s linear regression test (P = 0.220) indicated no publication bias. For dose–response meta-analysis of each 10 μg/dL increase of circulating concentrations and the risk of PCa, Begg’s rank correlation test (P = 0.350) also indicated no publication bias whereas Egger’s linear regression test (P = 0.026) indicated publication bias existed. Trim and fill methods were used to recalculate our pooled risk estimate and found the imputed risk estimate was 0.970 (95% CI 0.943 to 0.997) in the random model and 0.980 (95% CI 0.963 to 0.997) in the fixed model, which is identical to our original risk estimate. No missing studies were imputed in the contour enhanced funnel plot.

DISCUSSION

To our knowledge, this is the first dose–response meta-analysis to systematically and quantitatively evaluate the association of lycopene intake or circulating concentrations and PCa risk. Our novel data demonstrates lycopene could significantly reduce the incidence of PCa with a linear and nonlinear dose–response effect for its intake and circulating concentration, respectively.

Although we did not find an inverse association between lycopene consumption and the risk of PCa incidence for all studies, there was a trend for higher lycopene levels to reduce the incidence of PCa with a linear and nonlinear dose–response effect for its intake and circulating concentration, respectively. For dose–response meta-analysis further...
TABLE 4. Quality Assessment of Studies Included in Meta-Analyses, Using the Newcastle-Ottawa Scale for Assessing Cohort Studies

Authors Year	Year	Quality Indicators From Newcastle-Ottawa Scale	Score
C C 1 23456789			
Norrish 20007	2000		8
Deneo-Pellegrini 19998	1999		6
Jain 19999	1999		7
Cohen 200010	2000		8
Jian 200511	2005		6
Lu 200112	2001		7
Key 199713	1997		7
Hodge 200414	2004		8
Vogt 200215	2002		6
cohort or NCC			
Kirsh 200616	2006		7
Agalliu 201117	2011		8
Kristal 201018	2010		8
Schuurman 200219	2002		8
Zu 201420	2014		9
Kristal 201121	2011		9
Key 200722	2007		6
Nomura 199723	1997		7
Peters 200724	2007		8
Gann 199925	1999		8
Huang (CLUE I) 200326	2003		9
Huang (CLUE II) 200326	2003		9
Hsing 199027	1990		8
Wu 200428	2004		8
Beilby 201029	2010		9
Karppi 200930	2009		8
Goodman 201131	2011		7
Key 200732	2007		6
Nomura 199733	1997		7
Peters 200734	2007		8
Gann 199935	1999		8
Huang (CLUE I) 200336	2003		9
Huang (CLUE II) 200336	2003		9
Hsing 199037	1990		8
Wu 200438	2004		8
Beilby 201039	2010		9
Karppi 200940	2009		8
Goodman 201141	2011		7

For case-control studies, 1 indicates cases independently validated; 2, cases are representative of population; 3, community controls; 4, controls have no history of prostate cancer disease; 5, study controls for age; 6, study controls for additional factor(s); 7, ascertainment of exposure by blinded interview or record; 8, the same method of ascertainment used for cases and controls; and 9, non-response rate the same for cases and controls. For cohort studies, 1 indicates exposed cohort truly representative; 2, non-exposed cohort drawn from the same community; 3, ascertainment of exposure; 4, outcome of interest not present at start; 5, study controls for age; 6, study controls for any additional factor(s); 7, quality of outcome assessment; 8, follow-up long enough for outcomes to occur; and 9, complete accounting for cohorts.

FIGURE 2. Forest plot for the association of highest vs. lowest categories of dietary lycopene consumption and the risk of prostate cancer (PCa). The association was indicated as relative risk (RR) estimate with the corresponding 95% confidence interval (CI). The RR estimate of each study is marked with a solid black square. The size of the square represents the weight that the corresponding study exerts in the meta-analysis. The CIs of pooled estimates are displayed as a horizontal line through the diamond. RR < 1 indicates decreased risk of PCa.

FIGURE 3. Forest plot for dose–response association of highest vs. lowest categories of dietary lycopene consumption and the risk of prostate cancer (PCa) after sensitivity analysis and removing one Chinese study. The association was indicated as relative risk (RR) with the corresponding 95% confidence interval (CI). The RR estimate of each study is marked with a solid black square. The size of the square represents the weight that the corresponding study exerts in the meta-analysis. The CIs of pooled estimates are displayed as a horizontal line through the diamond. RR < 1 indicates decreased risk of PCa.
TABLE 5. Study Subgroup Pooled Risk Estimates for Lycopene Intake and Prostate Cancer

Highest vs. Lowest	Each 5 mg per day increase								
No.	OR (95% CI)	P*	I²	No.	RR [95% CI]	P*	I²		
Overall	13	0.910 [0.819–1.011]	0.078	45.5%	13	0.975 [0.940–1.010]	0.160	50.2%	
Location:									
North America	7	0.939 [0.880–1.011]	0.053	0.0%	7	0.981 [0.963–0.998]	0.030	0.0%	
Europe	2	0.984 [0.772–1.255]	0.897	0.0%	2	1.056 [0.598–1.866]	0.850	0.0%	
Others	4	0.655 [0.377–1.137]	0.132	79.2%	4	0.692 [0.411–1.165]	0.116	82.5%	
Study type									
CC	8	0.813 [0.629–1.052]	0.115	60.6%	8	0.894 [0.774–1.032]	0.126	67.7%	
NCC or Cohort	5	0.939 [0.880–1.003]	0.061	0.0%	5	0.979 [0.961–0.997]	0.023	0.881	
Follow-up time (years):									
≥10	2	0.960 [0.819–1.011]	0.539	58.7%	2	0.982 [0.949–1.015]	0.276	48.0%	
<10	11	0.869 [0.745–1.074]	0.075	47.4%	11	0.958 [0.898–1.022]	0.192	54.9%	
Study quality score:									
≥8	6	0.927 [0.866–0.992]	0.029	42.3%	6	0.975 [0.955–0.995]	0.013	0.0%	
<8	7	0.858 [0.661–1.114]	0.251	64.9%	7	0.919 [0.795–1.063]	0.258	74.0%	
Adjusted for age	Yes	12	0.903 [0.807–1.010]	0.074	49.8%	12	0.974 [0.939–1.011]	0.165	54.3%
No	1	0.990 [0.678–1.446]	0.959	99.9%	1	0.833 [0.105–6.604]	0.863		
Adjusted for family history	Yes	8	0.866 [0.729–1.029]	0.103	59.3%	8	0.954 [0.896–1.016]	0.142	65.1%
No	5	0.978 [0.877–1.091]	0.692	48.1%	5	0.996 [0.964–1.029]	0.820	69.4%	
Adjusted for energy intake	Yes	3	0.996 [0.804–1.234]	0.971	0.0%	3	1.010 [0.940–1.084]	0.780	0.0%
No	10	0.885 [0.781–1.004]	0.058	56.8%	10	0.968 [0.929–1.009]	0.126	62.2%	
Adjusted for BMI	Yes	8	0.912 [0.792–1.051]	0.203	64.9%	8	0.979 [0.940–1.020]	0.312	67.3%
No	5	0.882 [0.738–1.054]	0.168	78.2%	5	0.927 [0.842–1.020]	0.121	83.7%	
Clinical classification:									
Advanced	6	0.936 [0.774–1.134]	0.501	35.8%	6	0.977 [0.924–1.032]	0.404	28.6%	
Non-advanced	3	0.936 [0.783–1.118]	0.463	20.4%	3	0.984 [0.943–1.027]	0.456	57.2%	

BMI = body mass index, CC = case-control study, CI = confidence interval, NCC = nested case-control study, No. = means number, P* = significance within each subgroup, P# = Heterogeneity within each subgroup, RR = relative risk.

FIGURE 4. Forest plot for dose–response association of each 5 mg/day increase of lycopene intake with the risk of prostate cancer (PCa). The association was indicated as relative risk (RR) with the corresponding 95% confidence interval (CI). The RR estimate of each study is marked with a solid black square. The size of the square represents the weight that the corresponding study exerts in the meta-analysis. The CIs of pooled estimates are displayed as a horizontal line through the diamond. RR < 1 indicates decreased risk of PCa.

FIGURE 5. Forest plot for dose–response association of each 5 mg/day increase of lycopene intake with the risk of prostate cancer (PCa) after sensitivity analysis and removing one Chinese study. The association was indicated as relative risk (RR) with the corresponding 95% confidence interval (CI). The RR estimate of each study is marked with a solid black square. The size of the square represents the weight that the corresponding study exerts in the meta-analysis. The CIs of pooled estimates are displayed as a horizontal line through the diamond. RR < 1 indicates decreased risk of PCa.
demonstrated that higher lycopene consumption (9 to 21 mg/d) was linearly associated with a reduced risk of PCa by 2.1%. A randomized controlled trial (RCT) with 40 participants conducted by Mohanty et al.\(^59\) found that 8 mg/d lycopene intake for 1 year was not inversely associated with PCa risk (RR 0.33, 95% CI 0.08 to 1.46). The ideal daily intake of lycopene is unknown, although it has been suggested that a daily intake of 6 mg may be sufficient.\(^60\)

Moreover, the association did not differ substantially between subgroups stratified by location, study type, duration of follow-up, or clinical classification. For various important confounders such as age, family history, energy intake, and BMI, there was no statistical difference if they were adjusted. The heterogeneity could contribute to the insignificance. When one Chinese study was excluded or just high-quality studies were analyzed, lycopene intake was observed to significantly decrease the risk of PCa.

As variations of lycopene content in food, long-term dietary intake of lycopene cannot be accurately estimated via food–frequency questionnaire, diet records, or diet history, circulating concentrations might provide a more accurate estimation of intake. Indeed, little heterogeneity was found for all studies on circulating lycopene levels and PCa risk. Consistently, higher circulating lycopene levels significantly reduced the risk of PCa. Interestingly, our dose–response meta-analysis further proved higher circulating concentrations had a nonlinear association with the decreased PCa incidence by 3.0% for each 10 μg/dL rise of its circulating levels with a threshold around 2.17 to 110 μg/dL. The concentration of circulating lycopene between 2.17 and 85 μg/dL was linearly inversely with PCa risk whereas there was no linear association >85 μg/dL. The value effect for doses >85 μg/dL was hampered because there were only 3 different doses >85 μg/dL (87.02, 94.20, and 108.40) in the current analysis. After these 3 doses removed, a linear inverse association existed within the threshold 2.17 to 85 μg/dL (chi-square = 6.06, \(P = 0.014\)) without any heterogeneity (\(P = 0.177\)), completely consistent with the curve of lycopene consumption described above. In addition, more evidence for the efficacy of circulating concentrations of lycopene on preventing PCa was found for high-quality studies including NCC or cohort studies, studies following-up >10 years and studies adjusted by age or BMI. Thus, age and BMI were assumed as independent risk factors for PCa, which is consistent to a clinical investigation conducted by Jose et al.\(^62\) and a recent dose-response meta-analysis conducted by Hu et al.\(^63\) Jose et al depicted that prevalence of PCa was estimated to increase on average from 16% in men aged 50–59 years to 69% in men aged 90–99 years. Hu et al observed a 5 kg/m\(^2\) increase in BMI was associated with a 15% higher risk of PCa detection (OR, 1.15; 95% CI, 0.98–1.34). As there was only 6 (advanced) and 3 (nonadvanced) studies reported RR of lycopene and PCa, the null effect of lycopene on PCa progression could result from the limited studies.

The current review of 26 studies with 563,299 participants found both lycopene supplementation and circulating concentrations exhibited a preventive effect on PCa. Also, the meta-analysis of 21 observational studies from 1950s to 2003 by Etminan et al.\(^15\) demonstrated both the highest category of lycopene intake (RR 0.89, 95% CI 0.81 to 0.98) and circulating concentrations (RR 0.74, 95% CI 0.59 to 0.92) were associated with a significant lower risk of PCa, although no dose-effect was analyzed. In contrast, a recent meta-analysis of 17 studies published in 2013 by Chen et al.\(^20\) reported the highest category of lycopene intake or circulating concentrations did not prevent PCa risk (OR 0.93, 95% CI 0.86 to 1.01 and OR 0.97, 95% CI 0.88 to 1.08, respectively). This study did not include the case control studies nor perform dose–response analysis. However, Chen et al still concluded that tomatoes do play a modest role in the prevention of PCa and suggested further research would be needed. Indeed, a 24-years follow-up high-quality NCC study,\(^20\) including 51,529 US healthy men was published in 2014 and suggested reduced odds of PCa for those with highest lycopene

FIGURE 6. Dose–response analysis of lycopene consumption and risk of prostate cancer. The solid black line and 2 dotted black lines are the restricted cubic spline for the published relative risks (RR) and 95% confidence intervals (CIs); the short dash straight line is the linear fitting curve used for linear and nonlinear analysis.
TABLE 6. Study Subgroup Pooled Risk Estimates for Plasma/Serum Lycopene Concentration and Prostate Cancer

Highest vs. Lowest	Each 10 μg/dL increase						
No. OR (95% CI)	P*	P#	I²	No. OR (95% CI)	P*	P#	I²
Overall 14 0.821 [0.711–0.949] 0.008 0.269 16.9% 11 0.970 [0.943–0.997] 0.030 0.059 43.7%							
Location:							
North America 11 0.793 [0.669–0.955] 0.015 0.148 31.4% 8 0.964 [0.928–1.001] 0.056 0.014 60.2%							
Europe 2 0.937 [0.696–1.263] 0.670 0.601 00% 2 0.980 [0.934–1.029] 0.419 0.725 0.0%							
Others 1 0.770 [0.402–1.476] 0.431 – – 1 0.973 [0.898–1.055] 0.513 – –							
Study type:							
CC 2 0.399 [0.112–1.412] 0.154 0.099 63.2% 1 0.700 [0.521–0.879] 0.005 – –							
NCC or Cohort 12 0.850 [0.748–0.965] 0.012 0.490 0.0% 10 0.980 [0.963–0.998] 0.035 0.289 16.7%							
Follow-up time (years):							
≥10 8 0.801 [0.681–0.942] 0.007 0.901 0.0% 6 0.958 [0.934–0.982] 0.001 0.907 0.0%							
<10 6 0.757 [0.538–1.064] 0.109 0.030 59.6% 5 0.977 [0.919–1.038] 0.448 0.024 68.3%							
Study quality score:							
≥8 9 0.805 [0.692–0.936] 0.005 0.404 3.7% 8 0.974 [0.947–1.001] 0.060 0.148 35.2%							
<8 5 0.848 [0.599–1.199] 0.351 0.146 43.7% 3 0.930 [0.827–1.046] 0.228 0.035 70.3%							
Adjusted for age:							
Yes 11 0.828 [0.696–0.994] 0.032 0.195 26.1% 8 0.970 [0.933–1.009] 0.129 0.037 53.0%							
No 3 0.765 [0.571–1.024] 0.072 0.420 0.0% 3 0.967 [0.937–0.999] 0.044 0.379 0.0%							
Adjusted for family: history							
Yes 3 0.495 [0.261–0.936] 0.031 0.186 40.5% 2 0.790 [0.602–1.037] 0.090 0.178 44.9%							
No 11 0.862 [0.758–0.980] 0.024 0.642 0.0% 9 0.977 [0.955–0.999] 0.040 0.211 25.1%							
Adjusted for energy intake:							
Yes 1 0.170 [0.038–0.751] 0.019 – – 0 – – – –							
No 13 0.839 [0.741–0.935] 0.006 0.509 0.0% 11 0.970 [0.943–0.997] 0.030 0.060 43.7%							
Adjusted for BMI:							
Yes 6 0.792 [0.679–0.925] 0.003 0.524 0.0% 6 0.959 [0.937–0.982] 0.012 0.185 33.5%							
No 8 0.837 [0.634–1.105] 0.209 0.162 33.3% 5 0.994 [0.958–1.031] 0.744 0.328 13.5%							
Clinical classification:							
Advanced 4 0.739 [0.501–1.088] 0.126 0.068 58.0% 4 0.960 [0.905–1.018] 0.168 0.045 62.8%							
Non-advanced 2 0.848 [0.689–1.044] 0.121 0.299 7.4% 2 0.982 [0.963–1.001] 0.061 0.234 29.3%							

BMI = body mass index, CC = case-control study, CI = confidence interval, NCC = nested case-control study, No. = means number, P# = heterogeneity within each subgroup, P* = significance within each subgroup, RR = relative risk.

FIGURE 8. Forest plot for dose–response association of each 10 μg/dL increase of circulating lycopene concentrations with the risk of prostate cancer (PCa). The association was indicated as relative risk (RR) with the corresponding 95% confidence interval (CI). The RR estimate of each study is marked with a solid black square. The size of the square represents the weight that the corresponding study exerts in the meta-analysis. The CIs of pooled estimates are displayed as a horizontal line through the diamond. RR < 1 indicates decreased risk of PCa.

FIGURE 9. Dose–response analysis of circulating lycopene concentrations and risk of prostate cancer. The solid black line and 2 dotted black lines are the restricted cubic spline for the published relative risks (RRs) and 95% confidence intervals (CIs); the short dash straight line is the linear fitting curve used for linear and nonlinear analysis.
intake when compared to those with lowest lycopene intake (HR 0.91, 95% CI 0.84 to 1.00). Current review incorporated this latest study, which further improved our meta-analysis.

As a powerful antioxidant agent with potential anticancer properties, lycopene has many biochemical actions of which antiproliferative insulin-like growth factor-1 inhibition, differential and apoptosis, connexin and gap junctional intercellular communication are identified as the most relevant in preventing carcinogenesis. Additionally, Zu et al. evaluated tumor biomarkers and found that high lycopene intake can suppress the neoangiogenesis in the tumor based on the vessel size and shape by regulating vascular endothelial growth factor. Elgass et al. reported lycopene inhibited angiogenesis in vitro by using human umbilical vein endothelial cells. Chen et al. showed the mechanism for antiangiogenic activity of lycopene may involve PI3K-Akt and ERK/p38 signaling pathways.

Strengths and Limitations

Generating dose–response curves along with comparisons of high and low lycopene intake or circulating concentrations strengthened the quality of this meta-analysis. The pooled estimates for adjusted models were used to reduce the heterogeneity. Sensitivity analyses and subgroup analyses were conducted to examine the sources of heterogeneity and evaluate robustness. However, several limitations should also be concentrated. Errors in measurement were inevitable for lycopene intake being assessed by food frequency questionnaires in different countries. In addition, the association between lycopene and PCa risk could be impacted for only several studies adjusted for family history. Furthermore, different classifications of lycopene from fruit and vegetables were used across studies.

CONCLUSIONS

In summary, our dose–response meta-analysis indicates a significant linear dose–response association between lycopene intake and PCa risk, but a significant nonlinear dose–response association between circulating concentrations and PCa risk. Further high-quality research data are required to substantiate these conclusions in populations with high lycopene intake and circulating concentrations.

ACKNOWLEDGMENTS

We thank Yi Guo who is an epidemiologist at school of public health in Wuhu University for his help to guide and ensure all analysis.

The authors thank Dr. Kelvin P. Davies, Professor and director of Department of Urology & Institute of Smooth Muscle Biology, Albert Einstein College of Medicine, for manuscript revision.

REFERENCES

1. Ferlay J, Soerjomataram I, Dikshit R, et al. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. *Int J Cancer*. 2015;136:E359–E386.

2. Ambrosini GL, Fritschi L, de Klerk NH, et al. Dietary patterns identified using factor analysis and prostate cancer risk: results from the Prostate Cancer Prevention Trial. *Cancer Epidemiol Biomarkers Prev.* 2011;20:638–646.

3. Chen W, Zheng R, Zeng H, et al. Annual report on status of cancer in China, 2011. *Chin J Cancer Res*. 2015;27:2–12.

4. Han S, Zhang S, Chen W, et al. Analysis of the status and trends of prostate cancer incidence in China. *Chin Clin Oncol*. 2013;18:330–334.

5. Kavanaugh CJ, Trumbo PR, Ellwood KC, et al. Food and Drug Administration’s evidence-based review for qualified health claims: tomatoes, lycopene, and cancer. *J Natl Cancer Inst*. 2007;99:1074–1085.

6. Rackley JD, Clark PE, Hall MC. Complementary and alternative medicine for advanced prostate cancer. *Urol Clin North Am*. 2006;33:237–246.

7. Norrish AE, Jackson RT, Sharpe SJ, et al. Prostate cancer and dietary carotenoids. *Am J Epidemiol*. 2000;151:119–123.

8. Deneo-Pellegrini H, De Stefani E, Ronco A, et al. Foods, nutrients and prostate cancer: a case-control study in Uruguay. *Br J Cancer*. 1999;80:591–597.

9. Jain MG, Hislop GT, Howe GR, et al. Plant foods, antioxidants, and prostate cancer risk: findings from case-control studies in Canada. *Nutr Cancer*. 1999;54:173–184.

10. Cohen JH, Kristal AR, Stanford JL. Fruit and vegetable intakes and prostate cancer risk. *J Natl Cancer Inst*. 2000;92:61–68.

11. Jain L, Du CJ, Lee AH, et al. Do dietary lycopene and other carotenoids protect against prostate cancer? *Int J Cancer*. 2005;113:1010–1014.

12. Lu QY, Hung JC, Heber D, et al. Inverse associations between plasma lycopene and other carotenoids and prostate cancer. *Cancer Epidemiol Biomarkers Prev.* 2001;10:749–756.

13. Key TJ, Silcocks PB, Davey GK, et al. A case-control study of diet and prostate cancer. *Br J Cancer*. 1997;76:678–687.

14. Hodge AM, English DR, McCredie MR, et al. Foods, nutrients and prostate cancer. *Cancer Causes Control*. 2004;15:11–20.

15. Vogt TM, Mayne ST, Graubard BI, et al. Serum lycopene, other serum carotenoids, and risk of prostate cancer in US Blacks and Whites. *Am J Epidemiol*. 2002;155:1023–1032.

16. Kirsh VA, Mayne ST, Peters U, et al. A prospective study of lycopene and tomato product intake and risk of prostate cancer. *Cancer Epidemiol Biomarkers Prev.* 2006;15:92–98.

17. Agalliu I, Kirsh VA, Kreiger N, et al. Oxidative balance score and risk of prostate cancer: results from a case-cohort study. *Cancer Epidemiol Biomarkers Prev.* 2011;35:353–361.

18. Kristal AR, Arnold KB, Neuhauser ML, et al. Diet, supplement use, and prostate cancer risk: results from the prostate cancer prevention trial. *Am J Epidemiol*. 2010;172:566–577.

19. Schuurman AG, Goldbohm RA, Brants HA, et al. A prospective cohort study on intake of retinol, vitamins C and E, and carotenoids and prostate cancer risk (Netherlands). *Cancer Causes Control*. 2002;13:573–582.

20. Zu K, Mucci L, Rosner BA, et al. Dietary lycopene, angiogenesis, and prostate cancer: a prospective study in the prostate-specific antigen era. *J Natl Cancer Inst*. 2014;106:dq430.

21. Kristal AR, Till C, Platz EA, et al. Serum lycopene concentration and prostate cancer risk: results from the Prostate Cancer Prevention Trial. *Cancer Epidemiol Biomarkers Prev.* 2011;20:638–646.

22. Key TJ, Appleby PN, Allen NE, et al. Plasma carotenoids, retinol, and tocopherols and the risk of prostate cancer in the European Prospective Investigation into Cancer and Nutrition study. *Am J Clin Nutr*. 2007;86:672–681.

23. Nomura AM, Stemmermann GN, Lee J, et al. Serum micronutrients and prostate cancer in Japanese Americans in Hawaii. *Cancer Epidemiol Biomarkers Prev.* 1997;6:487–491.

24. Peters U, Leitzmann MF, Chatterjee N, et al. Serum lycopene, other carotenoids, and prostate cancer risk: a nested case-control study in the prostate, lung, colorectal, and ovarian cancer screening trial. *Cancer Epidemiol Biomarkers Prev.* 2007;16:962–968.

25. Gann PH, Ma J, Giovannucci E, et al. Lower prostate cancer risk in men with elevated plasma lycopene levels: results of a prospective analysis. *Cancer Res*. 1999;59:1225–1230.
Chen et al
Medicine • Volume 94, Number 33, August 2015

26. Huang HY, Alberg AJ, Norkus EP, et al. Prospective study of antioxidant micronutrients in the blood and the risk of developing prostate cancer. Am J Epidemiol. 2003;157:335–344.

27. Hsing AW, Comstock GW, Abbey H, et al. Serologic precursors of cancer. Retinol, carotenoids, and tocopherol and risk of prostate cancer. J Natl Cancer Inst. 1990;82:941–946.

28. Wu K, Erdman JW Jr, Schwartz SJ, et al. Plasma and dietary carotenoids, and the risk of prostate cancer: a nested case-control study. Cancer Epidemiol Biomarkers Prev. 2004;13:260–269.

29. Beilby J, Ambrosio GL, Rossi E, et al. Serum levels of folate, lycopene, beta-carotene, retinol and vitamin E and prostate cancer risk. Eur J Clin Nutr. 2010;64:1235–1238.

30. Karppi J, Kurl S, Nurmi T, et al. Serum lycopene and the risk of cancer: the Kuopio Ischaemic Heart Disease Risk Factor (KIHD) study. Ann Epidemiol. 2009;19:512–518.

31. Goodman GE, Schaffer S, Omenn GS, et al. The association between lung and prostate cancer risk, and serum micronutrients: results and lessons learned from beta-carotene and retinol efficacy trial. Cancer Epidemiol Biomarkers Prev. 2003;12:518–526.

32. Etminan M, Takkouche B, Caiano-Isorna F. The role of tomato products and lycopene in the prevention of prostate cancer: a meta-analysis of observational studies. Cancer Epidemiol Biomarkers Prev. 2004;13:340–345.

33. Chen J, Song Y, Zhang L. Lycopene/tomato consumption and the risk of prostate cancer: a systematic review and meta-analysis of prospective studies. J Nutr Sci Vitaminol (Tokyo). 2013;59:211–223.

34. Stroup DF, Berlin JA, Morton SC, et al. Meta-analysis of observational studies in epidemiology: a proposal for reporting. Meta-analysis of Observational Studies in Epidemiology (MOOSE) group. JAMA. 2000;283:2008–2012.

35. Orsini N, Li R, Wolk A, et al. Meta-analysis for linear and nonlinear dose-response data: examples, an evaluation of approximations, and software. Am J Epidemiol. 2012;175:66–73.

36. Yoshimura I. The effect of measurement error on the dose-response curve. Environ Health Persp. 1990;87:173–178.

37. Wells GA, Shea B, O’Connell D, et al. The Newcastle-Ottawa Scale (NOS) for assessing the quality of nonrandomised studies in meta-analyses. 2011. www.ohri.ca/programs/clinical_epidemiology/oxford.asp. Accessed December 2014.

38. Greenland S, Longnecker MP. Methods for trend estimation from summarized dose-response data, with applications to meta-analysis. Am J Epidemiol. 1992;135:1301–1309.

39. Jackson D, White IR, Thompson SG. Extending DerSimonian and Laird’s methodology to perform multivariate random effects meta-analyses. Stat Med. 2010;29:1282–1297.

40. Harrell FE Jr, Lee KL, Pollock BG. Regression models in clinical studies: determining relationships between predictors and response. J Natl Cancer Inst. 1988;80:1198–1202.

41. Orsini N, Bellocco R, Greenland S. Generalized least squares for trend estimation of summarized dose-response data. Stat J. 2006;6:40–57.

42. Higgins JP, Thompson SG. Quantifying heterogeneity in a meta-analysis. Stat Med. 2002;21:1539–1558.

43. Peters JL, Sutton AJ, Jones DR, et al. Contour-enhanced meta-analysis funnel plots help distinguish publication bias from other causes of asymmetry. J Clin Epidemiol. 2008;61:991–996.

44. Egger M, Davey Smith G, Schneider M, et al. Bias in meta-analysis detected by a simple, graphical test. BMJ. 1997;315:629–634.

45. Beggg CB, Mazumdar M. Operating characteristics of a rank correlation test for publication bias. Biometrics. 1994;50:1088–1101.

46. Duval S, Tweedie R. Trim and fill: a simple funnel-plot-based method of testing and adjusting for publication bias in meta-analysis. Biometrics. 2000;56:455–463.

47. Stram DO, Hankin JH, Wilkens LR, et al. Prostate cancer incidence and intake of fruits, vegetables and related micronutrients: the multiethnic cohort study*. (United States). Cancer Causes Control. 2006;17:1193–1207.

48. Park E, Stacewicz-Sapuntzakis M, Shariri R, et al. Diet adherence dynamics and physiological responses to a tomato product whole-food intervention in African-American men. Br J Nutr. 2013;109:2219–2230.

49. Talvas J, Caris-Veyrat C, Guy L, et al. Differential effects of lycopene consumed in tomato paste and lycopene in the form of a purified extract on target genes of cancer prostate cells. Am J Clin Nutr. 2010;91:1716–1724.

50. van Bremenen RB, Shariri R, Viana M, et al. Antioxidant effects of lycopene in African American men with prostate cancer or benign prostate hyperplasia: a randomized, controlled trial. Cancer Prev Res (Phila). 2011;4:711–718.

51. Bowen P, Chen L, Stacewicz-Sapuntzakis M, et al. Tomato sauce supplementation and prostate cancer: lycopene accumulation and modulation of biomarkers of carcinogenesis. Exp Biol Med (Maywood). 2002;227:886–893.

52. Van Blarigan EL, Ma J, Kenfield SA, et al. Plasma antioxidants, genetic variation in SOD2, CAT, GPX1, GPX4, and prostate cancer survival. Cancer Epidemiol Biomarkers Prev. 2014;23:1037–1046.

53. Parsons JK, Newman V, Mohler JL, et al. The Men’s Eating and Living (MEAL) study: a Cancer and Leukemia Group B pilot trial of dietary intervention for the treatment of prostate cancer. Urology. 2008;72:633–637.

54. Parsons JK, Newman VA, Mohler JL, et al. Dietary modification in patients with prostate cancer on active surveillance: a randomized, multicentre feasibility study. BJU Int. 2008;101:1227–1231.

55. Kucuk O, Sarkar FH, Djuric Z, et al. Effects of lycopene supplementation in patients with localized prostate cancer. Exp Biol Med (Maywood). 2002;227:881–885.

56. Clark PE, Hall MC, Borden LS Jr et al. Phase II/I prospective dose-escalating trial of lycopene in patients with biochemical relapse of prostate cancer after definitive local therapy. Urology. 2006;67:1257–1261.

57. Giovanniucci E, Ascherio A, Rimm EB, et al. Intake of carotenoids and retinol in relation to risk of prostate cancer. J Natl Cancer Inst. 1995;87:1767–1776.

58. Giovanniucci E, Rimm EB, Liu Y, et al. A prospective study of tomato products, lycopene, and prostate cancer risk. J Natl Cancer Inst. 2002;94:391–398.

59. Mohanty NK, Saxena S, Singh UP, et al. Lycopene as a chemopreventive agent in the treatment of high-grade prostate intraepithelial neoplasia. Urol Oncol. 2005;23:383–385.

60. Porrini M, Riso P. What are typical lycopene intakes? J Nutr. 2005;135:2042S–2045S.

61. Leal J, Hamdy F, Wolstenholme J. Estimating age and ethnic variation in the histological prevalence of prostate cancer to inform the impact of screening policies. Int J Urol. 2014;21:786–792.

62. Hu MB, Xu H, Bai PD, et al. Obesity has multifaceted impact on the biochemical recurrence of prostate cancer: a dose-response meta-analysis of 36,927 patients. Int J Urol. 2015;22:893–904.

63. Yang CM, Yen YT, Huang CS, et al. Growth inhibitory efficacy of purified extract on target genes of cancer prostatic cells. Mol Nutr Food Res. 2012;56:889–899.