Topological Computation without Braiding

H. Bombín and M.A. Martin-Delgado
Departamento de Física Teórica I, Universidad Complutense, 28040. Madrid, Spain.

We show that universal quantum computation can be performed within the ground state of a topologically ordered quantum system, which is a naturally protected quantum memory. In particular, we show how this can be achieved using brane-net condensates in 3-folexes. The universal set of gates is implemented without selective addressing of physical qubits and, being fully topologically protected, it does not rely on quasiparticle excitations or their braiding.

PACS numbers: 03.67.-a, 03.67.Lx

Topological quantum computation offers the possibility of implementing a fault-tolerant quantum computer avoiding the extremely low threshold error rates found with the standard quantum circuit model [1], [2], [3], [4]. Physical systems exhibiting a topological quantum ordered state [5], [6] can be used as naturally protected quantum memories [1], [7], [8]. Characteristic properties of topologically ordered systems are the energy gap between ground state and excited states, topology-dependent ground state degeneracies, braiding statistics of quasi-particles, edge states, etc. [7]. The idea is then to place the information in the topologically degenerate ground state of such a system, so that the protection of the encoded information comes from the gap and the fact that local perturbations cannot couple ground states. In fact, the probability of tunneling between orthogonal ground states is exponentially suppressed by the system size and vanishes in the thermodynamic limit.

A stabilizer code [10], [11] can be topological. The best known example are Kitaev’s surface codes [1], [5]. In general a code is topological if its stabilizer has local generators and non-detectable errors are topologically non-trivial (in the particular space where the qubits are to be placed). Given such a code, one can always construct a local Hamiltonian such that the resulting system is topologically ordered and the error correcting code corresponds to the ground state. An explicit example of this Hamiltonian construction is given later on eq. (3). Errors in the code amount to excitations.

Although the storage of quantum information is interesting by itself, one would like to perform computations on it. A natural approach in this context is that of considering a topological stabilizer code in which certain operators can be implemented transversally, which avoids error propagation within codes. In terms of the corresponding topologically ordered system, this means that operations are implemented without selective addressing of the physical subsystems that make up each memory. This is important for physical applications.

Unfortunately, surface codes only allow the transversal implementation of the CNot gate. Then the problem arises of whether there exists a topological stabilizer code in which a universal set of gates can be performed transversally. In fact, even at the level of general codes it is a difficult task to find such codes [12]. For most codes, additional tricks such as the generation of large cat states are unavoidable. However, quantum Reed-Muller codes have the very special property of allowing the transversal implementation of the gates:

\[
K^{1/2} = \begin{pmatrix} 1 & 0 \\ 0 & i^{1/2} \end{pmatrix}, \Lambda = \begin{pmatrix} I_2 & 0 \\ 0 & X \end{pmatrix}, \tag{1}
\]

where \(X\) is the usual \(\sigma_3\) Pauli matrix. Complemented with the ability to initialize eigenstates of \(X\) and \(Z\) and to measure this operators, these gates are enough to perform arbitrary computations. In particular, the Hadamard gate can be reconstructed and the set of gates \(\{H, K^{1/2}, \Lambda\}\) is known to be universal [12].

In this paper we will construct a 3-dimensional system showing topological quantum order in which the gates (1) can be implemented. The ground state of the system is a topological stabilizer code. No other topological code of any dimension is known such that the transversal implementation of a universal set of gates is possible. In fact, a key ingredient in our approach is the appearance of membranes [13]. Our system is a 3-dimensional lattice with qubits located at the sites, and the operations on the ground state are implemented without any selective addressing of these physical qubits. This is in contrast with the current approach to topological computation which relies on the topological properties of quasiparticle excitations instead of ground states properties and needs a selective braiding of quasiparticles to produce quantum gates. In fact our system is abelian, in the sense that monodromy operations on excitations can give rise only to global phases. In contrast, in the context of quasiparticle braiding abelian systems can never give universal computation. Therefore, our results enlarge the range of applicability of the topological approach to quantum computation.

To achieve this goal, we start with a brief description of the topologically ordered 3-dimensional condensed matter systems [14] that we need for our construction. Consider a lattice with coordination number 4 in which links are colored with four colors as in Fig. (1a). Color is introduced as a bookkeeping tool to keep track of the different sites, links, faces and cells in the 3D lattice. We will use red, green, blue and yellow labels (r,g,b,y) as colors. Assume that the cells can also be colored, in such a way that, for example, the boundary links of a red cell is a...
introduce the string operator B or quasiparticles at those q-cells. A face lying between a r- and a y-cell has a boundary link made up of g- and b-links. We call such a face a ry-face.

At each site of the lattice we place a qubit. We will be considering operators of the form

$$B^q_i := \bigotimes_{s=1}^n \sigma^{f_s}_i, \quad \sigma = X, Z, \quad f_i = \begin{cases} 0 & i \notin S, \\ 1 & i \in S \end{cases},$$

where S is a given set of qubits in the system, n the total number of qubits. The Hamiltonian proposed in [17] is

$$H = -\sum_{c \in C} B^X_c - \sum_{f \in F} B^Z_f,$$

where C and F are the cells and faces of the lattice, respectively. It gives rise to topological order. In particular, the degeneracy of the ground state is 2^k with $k = 3h_1$, where h_1 is the number of independent cycles of the 3-manifold in which the lattice is built. In particular, in a 3-sphere $h_1 = 0$ and there is no degeneracy at all, whereas in a 3-torus $h_1 = 3$. In topology, h_1 is known as a Betti number [18].

The ground states $|\psi\rangle$ of [18] are characterized by the conditions

$$\forall c \in C \quad B^X_c |\psi\rangle = |\psi\rangle, \quad (4)$$

$$\forall f \in F \quad B^Z_f |\psi\rangle = |\psi\rangle. \quad (5)$$

In fact cell and face operators commute, and the ground state is a stabilizer quantum error correcting code [10, 18, 1]. Those eigenstates $|\psi\rangle$ for which any of the conditions (4), (5) are violated is an excited state or, in code terms, an erroneous state.

Both excitations and degeneracy are best understood introducing string and membrane operators. A q-string, for some color $q \in \{r, g, b, y\}$, is a collection of q-links, as in Fig. 2(a). Strings can have endpoints, which are always located at q-cells. Along with every q-string s we introduce the string operator B^Z_s. If $|\psi\rangle$ is a ground state, then $B^Z_s |\psi\rangle$ is in general an excited state, with excitations or quasiparticles at those q-cells that are endpoints of s.

If s is closed, that is, if it has no endpoints, B^Z_s commutes with the Hamiltonian (3).

Similarly, a collection of pq-faces, for any colors p and q, is a pq-membrane, as in Fig. 2(b). For any pq-membrane m the corresponding membrane operator is B^X_m. If $|\psi\rangle$ is a ground state and m a rg-membrane, for example, then $B^X_m |\psi\rangle$ is in general an excited state, with excitations at those by-faces that form the border of m. These excitations are closed fluxes crossing the excited faces. As an example, consider a ry-membrane such as the one in Fig. 2(b). Its border will create a ry-flux, which will cross those bg-faces at the border of the membrane. If m is closed, that is if it has no borders, then B^X_m commutes with the Hamiltonian (3).

As long as we consider closed manifolds in 3D, closed strings and membranes are enough to form a basis from which any operator that leaves the ground state invariant can be constructed. There are three key points here. First, any two string or membrane operators which are equal up to a deformation have the same action on the ground state, which is in itself a uniform superposition generated by all the possible local deformations. Second, a q-string operator B^Z_q and a pq-membrane operator B^X_m anticommute iff s crosses m an odd number of times. Otherwise, they commute and the same is true if they do not share any color. Third, not all colors are independent. For example, the combination of a r-, a g- and a b-string gives a y-string. In fact, there are exactly 3 independent colors for strings and 3 independent color combinations for membranes. Therefore, all that matters about strings and membranes is their color and topology, and the appearance of the number 3 in the degeneracy is directly related to the number of independent colors.

On the other hand, strings and membranes with a single color are not enough to describe excitations. In general, strings can form a net with branchpoints at which four strings meet, one for each color (see Figs. 3(a), 3(b)). Likewise, membranes can form nets in which, for example, a gb-, a br- and a rg-membrane meet along a line (see Fig. 3(c)). In order to study the exact properties of general excitations, one can consider the elementary excitations attached to the operators X and Z at any particular site i of the lattice. Let $|\psi\rangle$ be a ground state. Then the state $Z_i |\psi\rangle$ is an excited state with four quasiparticles, see Fig. 3(a). The state $X_i |\psi\rangle$ is an excited
state with six elementary fluxes which can be arranged in four single color closed fluxes, as in Fig. 3(b). From this class of elementary excitations one can build any general excitation.

If we restrict ourselves to closed manifolds, there is no way in which we can have a ground state with twofold degeneracy, or equivalently, that encodes a single qubit. However, we will now explain how one can obtain such a system by puncturing a 3-manifold. In particular, consider any 3-colex in a 3-sphere. The ground state in this case is non-degenerate. Now we choose any site in the system by puncturing a 3-manifold. In particular, concatenating strings and membranes. The surface of the system is considered the code encodes one qubit. This can also be understood using an orthogonal basis for the qubit state space. Let also \(|\psi\rangle := |v_1\rangle \otimes \cdots \otimes |v_n\rangle\) be a vector state for any binary vector \(v \in \mathbb{Z}_2^3\), \(\mathbb{Z}_2 = \{0, 1\}\). These binary vectors are usually introduced in error correcting codes. A basis for the protected qubit can be constructed as follows

\[
|0\rangle := \prod_c (1 + B^X_c)|0\rangle = \sum_{v \in \mathbb{Z}_2^3} |v\rangle,
\]

(6)

\[
|1\rangle := \prod_c (1 + B^X_c)|1\rangle = X|0\rangle = \sum_{v \in \mathbb{Z}_2^3} |v\rangle,
\]

(7)

where, \(0 := (0 \cdots 0), 1 := (1 \cdots 1), \psi := 1 + v, c\) runs over all cells in the lattice and \(V\) is the subspace spanned by vectors \(v_c\) such that \(|v_c\rangle = B^X_c|0\rangle\). In order to be able to apply the \(K^{1/2}\) gate to the protected qubit in the tetrahedral lattice, we must introduce a new requirement. We impose that faces (cells) must have a number of sites which is a multiple of four (eight). The simplest example of such a tetrahedral lattice is displayed in Fig. 4(d). As we will show below, it follows from these conditions that

\[
\forall v \in V \quad wt(v) \equiv 0 \mod 8,
\]

(8)

where the weight of a vector \(wt(v)\) is the number of 1s it contains. But then we have

\[
\hat{K}^{1/2}|0\rangle = |\tilde{0}\rangle, \quad \hat{K}^{1/2}|1\rangle = i^{l/2}|\tilde{1}\rangle
\]

(9)

where \(l \equiv n \mod 8, l \in \{1, 3, 5, 7\}\). This means that the global \(K^{1/2}\) operator can be used to implement \(K^{1/2}\) on the encoded qubit, by repeated application in the case that \(l \neq 1\).

We still have to prove \(8\). Let the weight of a Pauli operator be the number of sites on which it acts nontrivially, and let us work modulo 8. Then \(8\) says that for any product \(\pi = B^X_{f_1} \cdots B^X_{f_m}\), \(wt(\pi) \equiv 0\). This follows by induction on \(m\). The case \(m = 0\) is trivial. For the induction step, we first observe that if \(wt(\pi) \equiv 0\), then \(wt(\pi B^X_c) \equiv 0\) iïf \(\pi \) and \(B^X_c\) share \(s\) sites with \(s \equiv 0, 4\). But if \(f_1, \ldots, f_j\) are those faces of \(c\) shared with some cell of \(\pi\), then \(s = wt(B^X_{f_1} \cdots B^X_{f_j})\). These faces are part of the 2D color lattice that forms the boundary of the cell \(c\), from which it follows that \(s \equiv 0, 4\).

The \(\Lambda\) gate \(1\), known as the CNot gate, is more straightforward. Imagine that we take two identical
tetrahedral lattices and superpose them so that corresponding sites get very near. Then we apply Λ, that is, we apply Λ pairwise. This can be achieved through single qubit operations and Ising interactions. As a result, it is easily checked that we get a Λ gate between the protected qubits.

As for measurements, the situation is the same as in any CSS code [20], [21]. If we measure each physical qubit in the Z basis, then we are also performing a destructive measurement in the Z basis. Then non-destructive measurements of Z can be carried out performing a CNot gate with the qubit to be measured as source and a $|0\rangle$ state as target, and measuring the target destructively. Similarly, if we measure each physical qubit in the X basis we are performing a measurement in the X basis. We can admit faulty measurements, since the faulty measurement of a qubit is equivalent to an error prior to it. Thus the measuring process is as robust as the code itself and is topologically protected [8]. The results of the measurements must be classically processed to remove errors and recover the most probable codeword.

Initialization is always a subtle issue in quantum computation, whether topological or not, and it certainly depends upon the physical implementation. In any case, even if perfectly pure $|0\rangle$ or $|+\rangle$ states cannot be provided, one can still purify them as much as necessary if their fidelity is above $\frac{1}{2}$. To do this, only the CNot gate Λ and measurements in the \hat{Z} and \hat{X} bases are necessary.

As a concluding remark, we observe that the lattice that we have described so far unifies the strategies used in fault tolerant computation, such as transversal operations, with the concept of a topologically protected quantum memory. Note that this approach is very different from the usual one in topological quantum computation, based on the braiding of non-abelian anyons in a two dimensional system. In fact, the topological order of the 3-dimensional system that we have described is Abelian. Acknowledgements We acknowledge financial support from an EJ-GV fellowship (H.B.), DGS grant under contract BFM 2003-05316-C02-01 and EU project INSTANS (M.A.MD.), and CAM-UCM grant under ref. 910758.

[1] A. Yu. Kitaev, Annals of Physics 303, 2 (2003).
[2] M.H. Freedman, Proc. Natl. Acad. Sci. USA 95, 98 (1998).
[3] M. H. Freedman, A. Kitaev, M. J. Larsen, Z. Wang, Bull. Amer. Math. Soc. 40, 31 (2003).
[4] M. Freedman, M. Larsen, Z. Wang, Comm. Math. Phys. 227, 605 (2002).
[5] J. Preskill, Lecture notes on Topological Quantum Computation, http://www.theory.caltech.edu/preskill/.
[6] X.-G. Wen and Q. Niu, Phys. Rev. B 41, 9377 (1990).
[7] X.-G. Wen, Quantum Field Theory of Many-body Systems, Oxford University Press, (2004).
[8] E. Dennis, A. Kitaev, A. Landahl, J. Preskill, J. Math. Phys. 43, 4452-4505 (2002).
[9] S. B. Bravyi, A. Yu. Kitaev, quant-ph/9811052.
[10] D. Gottesman, Phys. Rev. A 54, 1862 (1996).
[11] A. R. Calderbank, E. M. Rains, P. W. Shor, N. J. A. Sloane, Phys. Rev. Lett. 78, 405, (1997).
[12] E. Knill, R. Laflamme, W. Zurek; quant-ph/9610011.
[13] A. Hamma, P. Zanardi, X.-G. Wen, Phys. Rev. B 72, 035307 (2005).
[14] H. Bombin, M.A. Martin-Delgado., quant-ph/0605138.
[15] P.O. Boykin et al.; Information Processing Letters 75, 101 (2000); quant-ph/9906054.
[16] “Geometry, Topology and Physics”, M. Nakahara. (IOP 2003)
[17] H. Bombin, M.A. Martin-Delgado, cond-mat/0607736
[18] A.R. Calderbank et al. Phys. Rev. Lett. 78,405 (1997).
[19] E. Knill, R. Laflamme, W. Zurek; quant-ph/9610011.
[20] A. R. Calderbank, P. W. Shor, Phys. Rev. A 54, 1998, 1996.
[21] A. M. Steane, Proc. Roy. Soc. Lond. A 452 2551, 1996.