A New Yield Simulator for Transiting Planets and False Positives: Application to the Next Generation Transit Survey

Maximilian N. Günther1⋆, Didier Queloz1, Brice-Olivier Demory1, Francois Bouchy2
1Astrophysics Group, Cavendish Laboratory, J.J. Thomson Avenue, Cambridge CB3 0HE, UK
2Observatoire de Genève, Université de Genève, 51 Ch. des Maillettes, 1290 Sauverny, Switzerland

ABSTRACT

We present a yield simulator to predict the number and characteristics of planets, false positives and false alarms in transit surveys. The simulator is based on a galactic model and the planet occurrence rates measured by the Kepler mission. It takes into account the observation window function and measured noise levels of the investigated survey. Additionally, it includes vetting criteria to identify false positives. We apply this simulator to the Next Generation Transit Survey (NGTS), a wide-field survey designed to detect transiting Neptune-sized exoplanets. We find that red noise is the main limitation of NGTS up to 14th magnitude, and that its obtained level determines the expected yield. Assuming a red noise level of 1 mmag, the simulation predicts the following for a four-year survey:

- 4 ± 3 Super-Earths,
- 19 ± 5 Small Neptunes,
- 16 ± 4 Large Neptunes,
- 55 ± 8 Saturn-sized planets and
- 150 ± 10 Jupiter-sized planets, along with
- 4688 ± 45 eclipsing binaries and
- 843 ± 75 background eclipsing binaries.

We characterize the properties of these objects to enhance the early identification of false positives and discuss follow-up strategies for transiting candidates.

Key words: planets and satellites: detection, eclipses, occultations, surveys, (stars:) binaries: eclipsing, methods: numerical

1 INTRODUCTION

Exoplanets transiting their host star give insight into their formation, bulk composition and atmospheric properties. Dedicated wide-field transit surveys, both from the ground (e.g. HAT Bakos et al. 2002 and WASP Pollacco et al. 2006) and from space (e.g. CoRoT Baglin et al. 2002 and Kepler Borucki et al. 2010), have discovered ~2700 exoplanets.1

Transit-like shape variability in the lightcurve may not only be caused by planets. False alarms introduced by correlated noise may cause a time-periodicity with a pattern similar to a transit shape. In addition, false positive transit events related to an eclipsing astrophysical object can cause a transit signal of small amplitude that may be interpreted as a planetary transit (see e.g. Cameron 2012). Eclipsing binaries (EBs) can be very expensive in telescope time to follow up. First, low-mass companions such as Brown dwarfs and very low mass stars can be of similar size as gas giant planets. Distinguishing them from planets necessitates radial velocity follow-up to measure the mass, and may be aided by measuring ellipsoidal effects or obtaining color information during transit and eclipse. Second, EBs with grazing events lead to transit depths mimicking a planet-sized object even if the secondary is significantly larger. Another class of false positives are background eclipsing binaries (BEBs), which are faint and distant EBs that are aligned along the line of sight behind a bright target star and hence diluted. The dilution reduces the apparent transit depth onto a planet-like scale, making BEBs one of the most difficult false positives to rule out. Similar to this are triple and higher-order star systems with one or more pairs of stars eclipsing, referred to as hierarchical EBs. In wide-field transit surveys, false positives can be up to two orders of magnitude more prevalent than planets (see e.g. Almenara et al. 2009; Hartman et al. 2011).

Estimating the yield of a transit experiment provides a way to assess the false positive to planet ratio in detail. Brown (2003) raised awareness of the contamination impact by false positives in upcoming surveys, but most yield simulations have focused on the number of planets only. As one of the first, Brown & Latham (2008) applied false positive

⋆ E-mail: mg719@cam.ac.uk
1 http://exoplanetarchive.ipac.caltech.edu/ (17 Aug 2016)
models to predict the yield of the TESS mission. Recently, Sullivan et al. (2015) estimated the planet yield, false positives contamination rates and the success of ad-hoc vetting methods for the TESS mission. In addition to enabling insight into future surveys, yield simulations can be used to evaluate how well current instruments achieve their possibilities, as well as how current observing strategies may be optimized.

Here, we develop a yield simulator with the goal of estimating the planet merit and the impact of false signals applicable to any upcoming transit survey. The simulations specifically take into account red noise, false alarms and false positives. In order to assess the impact of various observing strategies, the simulation takes as input: target list, telescope parameters, bandpass, field of view, cadence, noise models and detection criteria. To mimic the vetting processes for false positives we implement methods examining the transit parameters (depth, shape and duration), secondary eclipses, centroid movement, and the feasibility of planet follow-up and characterization.

We apply our simulator to estimate the yield of planets and false positives for the recent Next Generation Transit Survey (NGTS) (Wheatley et al., in prep., Wheatley et al. 2013; Chazelas et al. 2012). Previous ground-based facilities have limited photometric precision, for example 10–50 mmag for HAT (Bakos et al. 2002) and 3–30 mmag for WASP (Pollacco et al. 2006), and are hence more prone to detect Hot Jupiters. NGTS is designed to be the first ground-based exoplanet survey to reach sub-mmag photometry. It aims at detecting transiting Neptunes with short orbital periods around small stars. The survey had its first light in early 2015 in Paranal, Chile\(^2\), and started its full science operation in early 2016. The facility consists of twelve independent 20 cm telescopes with a 7.4 sq deg each, the total field of view adds up to 88.8 sq deg, similar to Kepler. NGTS covers a new field of this size every few months, allowing it to survey many bright stars for short orbit planets. The sensitivity is optimized between 500–900 nm to maximize observation efficiency of K and early-M stars.

We organize this paper in two major parts. Part one describes the computational layout and the mechanisms of the simulations, which are adoptable to any transit survey. Part two applies the simulations to the example of NGTS. We describe our simulations and the set of priors in section 2. In section 3 we describe the validation process of our code using the results from Kepler. In section 4 we examine the case of NGTS, the effects of different red noise levels and detection criteria, and the expected planets and false positives. We estimate the feasibility to identify false positives with NGTS’ photometric data alone, and provide an outlook into the necessary follow-up facilities for planet candidates. Finally, we discuss our findings and conclude this work in sections 5 and 6.

2 LAYOUT OF THE SIMULATIONS

The overall sketch of the simulation layout as described below is shown in Fig.1. The simulation input contains a list of stars in the field of view as well as the instrument specifications. An example input file can be found in appendix A. From this we calculate the collected flux for each object (section 2.1). We first randomly assign host stars with planets, and compute the signals of transiting planets as well as eclipsing binaries (depth, duration, shape, visibility, and possible dilution; section 2.2). Second, we calculate the total noise for each observation and compute which systems would be detectable (section 2.3). Third, we rule out false positives if detectable from photometric data (section 2.4). Finally, we assess the feasibility to follow-up planetary signals with radial velocity instruments (section 2.5).

2.1 Stars and photometry

The simulation considers an input catalog with information about the multiplicity, radius, mass, effective temperature, and magnitude of all stars in the field of view. The input catalog is built using the TRILEGAL galaxy model (Girardi et al. 2005), up to \(V = 23 \). We keep the preset adjustments of TRILEGAL referring to the standard Milky Way model and simulate binaries with a fraction of 33% (Ragavan et al. 2010). While this value was estimated for solar-type stars, it is also consistent with predictions for low-mass stars given the dispersion reported in the literature (see e.g. Duchêne & Kraus 2013, and references therein). The binary mass ratio \(q \) of the secondary and primary mass, \(q = M_s/M_p \), is drawn uniformly between 0.08 and 1. To include higher-order multiples we randomly select single stars and assign them to be higher-order multiples. This way, at the end the input catalog consists of 56% single stars, 33% binaries and 11% higher order multiples (Ragavan et al. 2010).

From this input catalog we identify a target list of stars according to magnitude and spectral type as listed in Table 1. We assume all input catalog stars are randomly distributed across the field of view. Then we compute the photometric flux using the effective temperatures and V-band magnitudes of the input catalog and the transmission function of the telescope. The stellar parameters are converted into photometric flux using spectrophotometric reference stars from Pickles (1998). The zero-point of the V-band is defined by models of Vega from the Kurucz atlas (Kurucz 1993). The Johnson V-band model is adopted from Buser & Kurucz (1978). Any other stars lying in the photometric aperture of the target star are considered as background stars for the particular target.

2.2 Transiting binaries and planets

2.2.1 Binaries

For all input catalog stars identified as binaries, we draw orbital periods \(P \) in days from a log-normal distribution with mean of 4.8 and a standard deviation of 2.3 (Duquennoy & Mayor 1991). The eccentricities follow a uniform distribution with a maximum eccentricity given by \(\epsilon_{\text{max}} = 0.4 \cdot \log P - 0.2 \) (approximated from Raghavan et al. 2010). Only detached eclipsing binaries are considered using the Roche limits as criteria. Contact eclipsing binaries are evident from the lightcurves and can be readily ruled out. We do not consider eclipses within triple or higher-order hierarchical eclipsing binaries.
We define orbit and transit parameters following Winn (2011). In a binary system, if star 1 is fully transited by star 2, we compute the transit depth as

$$\delta_1 = \frac{A}{A_1} \cdot F_1 + F_2,$$

where $A = \min(A_1, A_2)$. In the case of a grazing eclipse we replace A with the overlapping area of two circles with radii R_1, R_2 and midpoint distance y.

2.2.2 Planets

The planet occurrence rates are based on the results of the Kepler mission as by Fressin et al. (2013) for FGK stars and by Dressing & Charbonneau (2015) for small planets around M dwarfs. While recent results made progress on long period and small planets (Burke et al. 2015), in the planet regime targeted by all-sky surveys Fressin et al. (2013) provides to date still the most complete study. The occurrence rates denote the average number of planets per star binned by planet radius and orbital period. In Fressin et al. (2013) they are discretely sampled in radius and period: Earths ($< 1.25 \, R_\oplus$), Super-Earths ($< 2 \, R_\oplus$), Small Neptunes ($< 4 \, R_\oplus$), Large Neptunes ($< 6 \, R_\oplus$), and giant planets ($< 22 \, R_\oplus$), as well as ten logarithmically spaced period ranges. We randomly assign a value for period and radius within each discrete interval. The period is drawn within each interval from a logarithmic distribution. We draw the radius within each interval from a uniform distribution, except for the last interval ($> 6 \, R_\oplus$), in which we draw from a logarithmic distribution for consistency with empirical findings (see e.g. Grether & Lineweaver 2006, and Exoplanetarchive).

We assign planets to all stars, single or binary, in the input catalog according to the occurrence rate (which may be greater than 1), except when binary systems have orbital periods shorter than 5 days. Although these short-orbit binary systems are frequent (Slawson et al. 2011) and theoretically can host circumbinary planets, these planets are likely undetectable (Munoz & Lai 2015). These constraints lead to a smaller number of assigned planets around close-in binaries than for wide binaries or single stars. Note that there is no evidence that wide binaries affect the occurrence rate of short orbit planets Deacon et al. (2015). We do not consider planets around the 11% of higher order multiples in our target list, as in most cases their transit signals will be diluted too much by the other stars in the system to be detectable. In cases where there is more than one planet assigned to the same star, the orbital parameters of planets are drawn completely independently. This avoids influencing the yield by setting criteria for multiplanetary systems while leading to the same statistical average over all stars of the field. For all remaining planets in binary systems we compute stability criteria following Holman & Wiegert (1999) and reject planets in unstable orbits ($< 1\%$ of all planets).

We investigate the impact of eccentric planetary orbits by assigning various mean eccentricities between 0 and 0.5 and find a consistent planet yield as with circular orbits. We therefore employ circular orbits for all planets considering the short orbit sensitivity of all-sky transit surveys.

We define orbit and transit parameters following Winn (2011). For grazing geometry the overlapping area of the two objects is computed instead. If the host system is part of a binary system, we account for dilution by the other star.

2.2.3 Observation Window Function

For each transiting planet we estimate the number of transits that can be detected. The time of the first transit is set randomly between 0 and the orbital period P. To compute the observation window we calculate the average visibility duration per night of each field. We implement average weather information at the telescope location and reject a certain fraction of nights to simulate bad conditions.
2.2.4 Dilution

Background stars in the aperture of a target star affect its extracted photometry. First, they decrease the transit depth of a planet orbiting the target star and might make the signal undetectable. Second, if the target star or any background star is an eclipsing binary, its eclipse depth will be decreased and it may appear planet-like. The dilution D for a certain source is the ratio of its stellar flux F_0 and the total flux in the aperture $\sum_i F_i$. We evaluate D for each system, with F_0 being either the flux of a single star or the whole multiple system in which the transit/eclipse occurs. The theoretical transit depth δ_0 from sections 2.2.1-2.2.2 is then reduced to the measured transit depth

$$\delta = \delta_0 \cdot \frac{F_0}{\sum_i F_i}. \quad (2)$$

2.3 Transit detection

The total noise of the extracted photometric flux can be described as a composition of uncorrelated and correlated noise, referred to as white and red noise (Pont et al. 2006). White noise scales with exposure time, aperture, and flux. We calculate it as the sum of individual white noise sources,

$$\sigma^2_{\text{white}} = \tau_{\exp} N_\alpha + n_{\text{pix}} \left(\tau_{\exp} N_{\text{sky}} + \tau_{\exp} N_{\text{dark}} + N^2_{\text{read}} \right) + \sigma^2_{\text{scint}}. \quad (3)$$

where n_{pix} is the number of pixels in the aperture, and τ_{\exp} the exposure time. N_α is the photon count received from a given source and N_{sky} the sky background. N_{dark} and N_{read} are the counts contributed by dark and readout noise. σ_{scint} describes the scintillation noise, evaluated following Dravins (1998).

White noise averages out by the square root of the number of exposures per transit, N_{\exp}. The total noise in one transit is given by the squared quadratic sum of the binned white noise and the red noise. Red noise is composed of various sources that are not entirely known, such as weather patterns, meteors, the scintillation noise, evaluated following Dravins (1998), and software influence. We assume the driving red noise patterns are correlated on one-night time scales, and are to first order uncorrelated over timescales of multiple days. Therefore, red noise of measurements on different days (or different transits) average out, and we get the total noise

$$\sigma^2_{\text{tot}} = \frac{\sigma^2_{\text{white}}/N_{\exp} + \sigma^2_{\text{read}}}{N_\alpha}, \quad (4)$$

for a phase-folded lightcurve with N_α transit events.

We require two criteria for the detection of a transit signal. First, at least three transit events must be visible, $N_\alpha \geq 3$ (section 2.2.3). Second, the signal-to-noise ratio, SNR, of the phase-folded lightcurve must exceed a minimum requirement. We refer to this minimum SNR as the detection threshold, in the following denoted by the acronym DT:

$$\text{SNR} = \frac{\delta_{\text{occ}}}{\sigma_{\text{tot}}} > \text{DT}. \quad (5)$$

In here, δ_{occ} denotes the depth of the transit or occultation signal.

2.4 Ruling out false positives

Signals caused by eclipsing binaries are the most common astrophysical false positives in wide-field surveys for transiting planets (Cameron 2012, review). To identify this configuration we define criteria based on the work of the Kepler team (Batalha et al. 2010 and 2012, Bryson et al. 2013), which can potentially be implemented in any survey’s pipeline. We consider that a transit signal event originates from a false positive when

- we measure transit depths greater than a given threshold ($2 \ R_\text{Jup}$), assuming the radius of the host star is known,
- we detect a secondary eclipse δ_{occ} and clearly distinguish it from the transit signal δ_0, if both criteria are met:

$$\frac{\delta_{\text{occ}}}{\sigma_{\text{occ}}} > \text{DT} \quad \text{and} \quad \frac{\delta_0 - \delta_{\text{occ}}}{\sqrt{\sigma^2_{\text{occ}} + \sigma^2_{\text{trans}}}} > \text{DT}. \quad (6)$$

As introduced in section 2.3, DT denotes the detection threshold, and σ^2_{occ} and σ^2_{trans} the noise of the transit and occultation signals.

- there are ellipsoidal variations in their lightcurve, a typical feature of close binaries. We use the criteria from Sullivan et al. (2015) for the simulations of the TESS yield and employ the model of photometric variations from Mazeh (2008), using limb darkening from Claret et al. (2012) and Claret et al. (2013) as well as gravity darkening from Lucy (1967) to calculate the signal caused by ellipsoidal variations.

- their in-/egress time equals the transit duration and the transit depth is less than 10% reduced by dilution, such that the V-shape remains clearly detectable in the lightcurve. Given that planet transits can be V-shaped as well, this criteria can not be used alone (see section 4.5).

- if during their eclipse the center of flux in the aperture (centroid) shifts more than a given fraction of a pixel. This aims to identify background eclipsing binaries.

- their transit duration is significantly different than what is expected for a planet. For this purpose we calculate the theoretical transit duration of a gas giant planet ($2 \ R_\text{Jup}$) that orbits the target star with the detected period. We approximate the orbit to be circular, which is justified for short-period planets. The impact parameter b dictates the transit duration and is unknown. However, it is possible to estimate a maximum transit duration by setting $b = 0$. We identify whether the detected transit duration is greater than this maximum value.

2.5 Predicted radial velocity amplitudes

Assessing the feasibility of radial velocity follow-up for transit surveys is important to anticipate follow-up strategies. We assume a radius versus mass relationship following Weiss &Marcy (2014) for objects below 3 R_\oplus. For planets of 3-6 R_\oplus we adopt a Neptune density of 2.64 g/cm^3. For 6-11 R_\oplus we adopt a Jupiter density of 1.33 g/cm^3, and for larger planets a Jupiter mass of $M_{\text{Jup}} = 1.898 \times 10^{27} \text{ kg}$ as a mean value. To reflect the intrinsic diversity of planetary composition and structure we distribute the masses following a log-normal distribution with deviation 0.5 around the mean. Finally, we estimate
the radial velocity semi-amplitude using the parameters assigned to the planet systems and compare to the limits of current facilities.

3 VERIFYING THE SIMULATION ON THE EXAMPLE OF KEPLER

Using our simulations, we estimate the yield of Kepler and compare our results to the Kepler candidates and confirmed Kepler planets. We use two approaches: 1) we draw the target stars from version 10 of the Kepler Input Catalog (Brown et al. 2011), and use the TRILEGAL galaxy model to simulate background stars and distribute them randomly in the Kepler field of view; 2) we use solely TRILEGAL and create an ad-hoc target list from all FGKM stars brighter than $V = 15$. In both cases the CCD parameters and noise levels of Kepler are adopted from Gilliland et al. (2011) and the Kepler bandpass from Koch et al. (2010).

We find that the two approaches are consistent in their yield predictions. In both cases we obtain a total of \sim3000 planets to be discovered with Kepler. These comprise \sim600 Earths, \sim1000 Super-Earths, \sim1000 Small Neptunes, \sim100 Large Neptunes, and \sim200 giant planets. Currently there are \sim4700 objects listed as Kepler candidates, out of which \sim2300 have so far been confirmed as planets4.

When comparing the statistics of Kepler candidates and confirmed Kepler planets with the simulated yield we find a good agreement. First, the total number of simulated planets agrees with the actual findings. Second, the balance of planet types is in agreement with the statistics drawn from both the Kepler candidates as well as the confirmed Kepler planets. Hence, our yield results for Kepler verify our models and assumptions in the simulations. The code solely requires changing a set of priors to be used for other transit surveys. These priors contain the target list, telescope bandpass, noise levels, as well as the observation window and strategy.

4 ESTIMATING THE YIELD OF NGTS

4.1 NGTS facility, target list and background stars

NGTS is based at the European Southern Observatory’s Paranal Observatory in Chile. The facility is made of twelve fully-robotic 20 cm telescopes with a 7.4 sq.deg. field of view each and can be operated independently. Each CCD is a deep depleted 2k \times 2k Ikon-L produced by Andor, with pixel size of 13.5 μm (4.97 arcsec). The telescopes have a constant PSF FWHM of 12 μm across the field of view. More details may be found in Chazelas et al. (2012) and Wheatley et al. (2013).

In our yield simulation we consider the situation where each telescope observes a separate neighboring field, such that the total field of view is 88.8 sq deg combined (hereafter called NGTS-field). We assume the survey covers three different NGTS-fields per year within four years operation of the mission. In total 12 NGTS-fields will be observed. In

Table 1. Settings for NGTS in the yield simulation. The target list is chosen from all FGKM stars bright enough for follow-up. The presented noise values and CCD parameters are based on observed data from both test and commissioning phases (Walker 2013, and private correspondence within the NGTS consortium).

Target list	Noise levels
$V < 15$	$N_{\text{sky \ moon}} = 65$ $e^{-}\text{s}^{-1}\text{px}^{-1}$
$R_K < 2$	$N_{\text{sky \ day}} = 600$ $e^{-}\text{s}^{-1}\text{px}^{-1}$
$T_{\text{exp}} < 10^5$ K	$N_{\text{median \ sky}} = 125$ $e^{-}\text{s}^{-1}\text{px}^{-1}$
log $g < 6.5$	$N_{\text{dark}} = 0.06$ $e^{-}\text{s}^{-1}\text{px}^{-1}$
$N_{\text{real}} = 10$ $e^{-}\text{pix}^{-1}$	
$\sigma_{\text{red}} = 0 - 2$ mmag	

Paranal, in average 78% of the night time is of photometric quality. A typical night lasts 10.5h during winter and 7.5h during summer5. Considering the observation duration of an NGTS-field is four months and detectable transit periods are less than two weeks, we may assume all phase-folded light curves will be randomly uniformly sampled. We select a typical NGTS-field at $l = 285^\circ, b = +20^\circ$, which is representative of the targeted stellar population. The simulation input file we employ to model NGTS can be found in appendix A.

4.2 Red noise as the dominant limitation

We compute the white noise using Eq. 3 and the parameters shown in Table 1 (see also appendix A). Based on the design of NGTS, we consider circular apertures with a 3 pixel radius. The sky noise varies strongly with lunar phase; we adopt the median value during a lunar cycle. We compute the scintillation noise using Dravins (1998) for 20 cm telescopes, an average airmass of 1.5 and location at 2400m above sea level.

Scintillation noise is the main white noise component for a single exposure for stars brighter than $V = 11$ (Fig. 2). For fainter targets, stellar and background noise become driving factors, with the latter dominating at the faint end for $V > 13.5$.

Correlated noise and systematics, referred to as red noise, affect photometric measurements on timescales comparable to the transit duration (few hours). NGTS tests in Geneva and La Palma demonstrated its ability to achieve 1 mmag sensitivity and better (Wheatley et al. 2013). The upper panel of Fig. 3 illustrates the white noise binned up per single transit, $\sigma_{\text{white}} / N_{\text{exp}}$ (section 2.3). Considering a single-transit, a red noise level of 1 mmag dominates the total noise for objects $V < 14$, a red noise of 0.5 mmag dominates for objects $V < 13$. Note that for phase-folded light-curves of bright targets a white noise model would underestimates the total noise by up to an order of magnitude compared to a model taking 1 mmag of red noise into account (Fig. 3, lower panel).

4 http://exoplanetarchive.ipac.caltech.edu/ (17 Aug 2016)

5 https://www.eso.org/sci/facilities/paranal (17 Aug 2016)
consider. In this section we estimate the optimal detection noise. The impact of red noise depends on the timescale we considered. On the contrary, lowering the detection threshold decreases the number of false alarms. These are commonly caused by systematic errors referred to as red noise. The impact of red noise depends on the timescale we consider. In this section we estimate the optimal detection threshold for NGTS as a function of the estimated number of false alarms.

To estimate the number of false alarms, we begin our argument with a time series of N_{det} data points in which each point corresponds to an average of the measurements taken over a duration equal to the typical transit duration $(1 - 4\text{~h})$. The chance that Gaussian noise causes one data point to lie off the mean (looking like a transit) by a standard deviation more than $x \sigma$ is given by

$$p_{\text{outlier}}(x) = \frac{1 - \text{erf}(x/\sqrt{2})}{2},$$

whereby erf denotes the error function. We assume there is a number of $N > 3$ outliers in the time series. In order to mimic a transit pattern these N outliers must be distributed in a time periodic manner. The probability for such a configuration is given by

$$p_{\text{N outliers}} = \left(p_{\text{outlier}}(x) \cdot \frac{N_{\text{det}}}{N} \right)^N \cdot p_{\text{outlier}}(x)^{N-2} \quad (N > 3).$$

In here, the first term $(p_{\text{outlier}}(x) \cdot \frac{N_{\text{det}}}{N})$ corresponds to the probability of the first and last outlier. The time periodicity is defined by the total number of outliers and the positions of the first and last outlier in the time series. The outliers in-between consequently have determined locations in the time series and the probability of this to happen is expressed by the second term of the equation. For example, if $N = 3$ the first outlier may be located anywhere in the first third of the time series ($N_{\text{det}}/3$ possible locations), while the last outlier may be located anywhere in the last third of the time series. The second outlier has to lie exactly in the middle between the first and last outlier.

For NGTS, the total error on each data point is dominated by red noise (see section 4.2). Assuming red noise is uncorrelated on multi-day timescales and follows a Gaussian error distribution, it averages out with the number of transit events, and we can approximate $x \approx \Delta T / \sqrt{N}$. For example, with a detection threshold $\Delta T = 5$ and requiring $N = 3$ outliers, from Eq. 7 follows that $p_{\text{outlier}}(x) \approx \text{erf}(3/\sqrt{885}) \approx 1.9 \times 10^{-3}$. In our estimation for NGTS we have $\Delta T = 885 \text{~h}$. Assuming transit-like timescales $T \approx 2\text{~h}$ this leads to $N_{\text{det}} \approx 440$

Finally, with the example of $N = 3$ outliers we obtain from Eq. 8 that $p_{\text{N=3 outliers}} \approx 1.7 \times 10^{-4}$.

The false alarm probability for one time series of data points is then the sum over $p_{\text{N=3 outliers}}$ for all possible N, which happens to converge quickly with increasing N. As a false alarm can be triggered for each object in the target list, the total number of false alarms, N_{FA}, scales with the number of objects in the observed field, N_{obj}, and the number of covered NGTS-fields, leading to

$$N_{\text{FA}} = \sum_{\text{fields}} \left(\sum_{N=3}^{N_{\text{det}}} p_{\text{N outliers}} \cdot N_{\text{obj}} \right).$$

We compute Eq. 9 for a range of typical transit-like timescales from $T = 1 - 4\text{~h}$ to evaluate the impact of the detection threshold on the yield versus false alarms. With a total of 12 NGTS-fields, each containing $N_{\text{obj}} \approx 10^5$, $\Delta T = 5$ leads to a number of false alarms on the order of 10^2 among the planet candidates. This suggests a detection threshold of at least $\Delta T = 5$ should be used.
4.4 Expected yield and major influencing factors

4.4.1 A multitude of Neptunes and giants

We categorize the yield by object categories: eclipsing binaries (EB), background eclipsing binaries (BEB) and planet types (shown in Table 2). For the application to NGTS we subdivide the category of giant stars from section 2.2.2 into Saturns (6-10 R_\oplus) and Jupiters (10-22 R_\oplus). The simulation over the entire survey time of four years is repeated ten times using the same parameters and input to estimate the mean values and standard deviations of the total number of expected planets and false positives (Fig. 4). We account for uncertainties in the planet and binary priors via error propagation. Statistical errors caused by re-running the TRILEGAL galaxy model for the same field are found to be negligible in comparison.

Table 2. Planet classification based on the radius.

Type	Range
Super-Earths	1.25 – 2 R_\oplus
Small Neptunes	2 – 4 R_\oplus
Large Neptunes	4 – 6 R_\oplus
Saturns	6 – 10 R_\oplus
Jupiters	10 – 22 R_\oplus

NGTS’ combined fields over four years contain tens of thousands of planets and binary systems that transit in the line of sight (Fig. 4). After accounting for visibility, noise, and detection criteria, only a small fraction triggers a detectable signal. A detection threshold $DT = 5$ for a 1 mmag red noise leads to the detection of ~35 small and large Neptunes as well as ~200 of giant planets.

4.4.2 Impact of red noise and detection criteria

The impact of the red noise level and detection threshold is significant for Neptune-sized planets (Table 3). If we decrease the red noise from 1 mmag to 0.5 mmag, the sensitivity for small planets increases by a factor of three (see also Fig. 4). Omitting red noise leads to ~ 250 – 300 additional small planets. Increased red noise levels lead to a loss of most small planets.

Maintaining the assumption of a 1 mmag red noise and reducing the detection threshold from $DT = 5$ to 3 leads to a comparable increase as dividing the red noise by two, but increases the number of false alarms by several magnitudes as discussed in section 4.3. In contrast, increasing the detection threshold from $DT = 5$ to 7 leads to the loss of small planets comparable to doubling the red noise.

For the purpose of the following sections we assume a detection threshold $DT = 5$ and, confirm with the design goal of NGTS, a 1 mmag red noise unless otherwise stated.

4.5 False positives and false negatives

NGTS finds a significant number of false positives, consisting of ~4700 EBs and ~850 of BEBs (Table 3, Fig. 4). To copy the screening process to identify them, we use the series of criteria described in section 2.4. We only vet target stars for ellipsoidal variations, assuming lightcurve features of diluted background stars are undetectable with NGTS. The centroiding sensitivity for NGTS is set to 1/100 pixel.

The most efficient criteria are depth, secondary eclipses and ellipsoidal variations for EBs, as well as centroiding and secondary eclipses for BEBs (Fig. 5). Overall we estimate 96% of EBs and 48% of BEBs can be identified by the vetting process. These values include vetting for the transit duration, which can be used to identify 5% of false positives, including 2% that can not be detected with another method. V-shaped transits can be detected for 54% of EBs, including 5% that can not be ruled out with other methods.
Here, we do not use the V-shape alone to reject an object, as planets can cause V-shaped transits as well.

While individual criteria can already give a hint towards possible false positives, at least two criteria can be met in parallel for about three quarters of all EBs and one quarter of all BEBs. All criteria are effective for a wide range of EBs, but are less applicable for systems with faint secondaries. Faint BEBs are strongly diluted, which decreases the ability to identify them with any method.

The search for false positives can lead to false negatives. Giant planets undergoing grazing eclipses can still trigger detectable NGTS signals. We estimate 10% of all planet detections show a distinguishable V-shape. The transit depth is a reliable measure assuming the stellar properties of the target star are known well. Secondary eclipses, ellipsoidal variations and centroid shifts for planets are not expected to be detectable with NGTS.

4.6 Characteristics of NGTS candidates

4.6.1 Distinguishing remaining false positives from planets

After the candidate vetting process described above, the majority of false positives will be identified but the undetected ones may still outnumber the planet candidates. EBs that remain undetected in the candidate list are expected to consist of binaries with low mass companions, such as M-stars or Brown Dwarf secondaries (Fig. 6). Small M stars or Brown Dwarfs are the same size as gas giants (Fortney et al. 2011) and hence pollute the sample of giant planets but scarcely affect the population of smaller planets (Fig. 7). These systems cannot be ruled out based on a transit lightcurve, but need radial velocity follow-up and mass measurements.

Remaining BEBs can show more variety due to different degrees of dilution of their transit signals (Fig. 6). They can mimic planetary radii over a large range but especially pollute the sample of planets in the Neptune-sized regime (Fig. 7). In addition, this is the regime where statistical false alarms will pollute the sample most.

Fig. 7 further illustrates that it will be difficult to filter out Planets below 2-day orbital periods. The planet occurrence rates suggest planets are unlikely to have orbital periods of less than 1–2 days (Fressin et al. 2013; Dressing & Charbonneau 2015). Many binary systems, in contrast, are known to orbit on time scales of only a few hours, including detached systems (see e.g. Norton et al. 2011; Soszyński et al. 2015).

4.6.2 Expected planet properties

97 ± 1% of all predicted NGTS planets are found at orbital periods shorter than two weeks, and 60 ± 3% orbit at less
than 5 days (Fig. 8). Decreasing the red noise by half leads to an increase of NGTS’ sensitivity to detect small planets with longer orbital periods. K stars are found to be typical hosts for NGTS’ smallest planets, such as Small Neptunes and Super-Earths (Figs. 8 and 9). Large Neptunes can be detected around G stars. Fig. 9 further illustrates the sensitivity cutoff of NGTS as a function of planet over stellar radius. The paucity of giant planets detected around small stars is a direct consequence of the planet occurrence rates estimated from the results of the Kepler mission (Fressin et al. 2013; Dressing & Charbonneau 2015).

We estimate that 57 ± 17% of planets detected with NGTS orbit single stars, and 34 ± 12% (8 ± 5%) orbit the primary (secondary) stars of binary systems. Most of the planets detected in binary systems are Jupiters and inflated giants, as only large planets are still detectable given the strong dilution of the transit signal by the light of the binary companion. Dilution decreases the transit depth by 20% or more for 21% of Jupiters, 11% of Saturns and 8% of smaller planets. Circumbinary planets are not detected due to the limited sensitivity of NGTS for long-period transiting planets.

20 ± 5 planets are detected with NGTS around background stars. These consist of systems with a faint target star and a small background star orbited by an inflated giant planet.

4.6.3 Radial velocity follow-up and characterization of NGTS planets

We estimate the planetary masses and radial velocity (RV) signals following section 2.5. The bulk of detected planets lies in magnitude between Corot 7b and GJ 1412b (Fig. 10). Instruments like Coralie (Queloz et al. 2000) are important for vetting false positives, and enable mass measurement of 43 ± 2% of predicted Jupiter-sized planets. HARPS (Mayor et al. 2003) can confirm 99 ± 0% of all predicted Jupiter-sized, 92 ± 1% of Saturn-sized planets, and 51 ± 2% of Large Neptunes. ESPRESSO (Pepe et al. 2014) will reach the sensitivity to measure RV signals of all NGTS planets. It is worth mentioning that most stars hosting small planets are K dwarfs (Fig. 9) and are brighter in the infrared. Future characterization of these objects may hence be easier in that wavelength.

5 DISCUSSION

5.1 Red noise limitation, detection criteria and planet merit

Red noise is a limiting factor in searching for small planets around bright stars. According to our simulation at least a 1 mmag precision is essential to detect Neptune-sized planets (see Table 3). In this work we assume major components of the red noise are only short-time (nightly) correlated and average out over a whole season. This assumption is based on early NGTS test data (private communication within the NGTS consortium), and extrapolated from WASP results (Pollacco et al. 2006) and recent studies with EulerCam at La Silla (Lendl et al. 2013). Early results from NGTS data suggest this assumption is realistic (Weathley et al. 2016 in prep.).

Red noise is the dominant factor for bright objects (see Fig. 3). Decreasing it by half increases the overall number of small planets and allows to find more of them around bright stars; however, it does not significantly change the number of giant planets, as the detection of giants is limited by the observation window function rather than the noise threshold.

The detection efficiency and false alarm rate depend on the chosen detection criteria, as well as on the final version of detrending and lightcurve fitting algorithms. Assuming false alarms can well be ruled out by visual inspection, an
optimize for a higher yield of Neptunes and Super-Earths beneficial to stay distant from the galactic plane in order to
out for Neptunes and smaller planets. It would therefore be
ber of targets. The results suggest these two factors average
small planets in crowded fields. Sparse fields lead to a higher
as their signals are still detectable even in a crowded en-
and giant planets scales with the crowdedness of the field,
number of false positives. Specifically, the yield of EBs, BEBs,
struments’ sensitivity, implying at least 10 independent RV meas-
3
2
the criterion \(2K > 3\sigma_{RV}\). This reflects the minimum signal that
can be detected with 3 \(\sigma\) for an 1 h exposure considering the in-
strument’s sensitivity, implying at least 10 independent RV mea-
measurements per target. The ESPRESSO sensitivity is taken from
(Fepe et al. 2014), values for HARPS and Coralie are established
for 1 h exposures on non-rotating and non-active stars compiled
from published results. The planets Corot7b (C) and GJ 1412b
(G), for which masses were measured with HARPS, are shown for
comparison.

100:1 false alarm ratio is a realistic compromise between
a high planet yield and practicality. In the simulation we
settled for a detection threshold of 5 \(\sigma\). In systems where
a transit has already been found (e.g. by the TESS survey)
or other planets are known, additional transit signals with
lower signal-to-noise ratio may be considered.

5.2 Selecting the target list
The number of transiting planets scales with the number of
stars in the field of view and hence decreases with distance
form the galactic plane. Conversely, there will be more back-
ground stars, leading to increased dilution and therefore a
decrease of the transit depth as well as an increased num-
ber of false positives. Specifically, the yield of EBs, BEBs,
and giant planets scales with the crowdedness of the field,
as their signals are still detectable even in a crowded en-
vironment. In contrast, Neptunes and smaller planets show
a saturation behavior since dilution limits the detection of
small planets in crowded fields. Sparse fields lead to a higher
detection efficiency for small planets but a decreased num-
ber of targets. The results suggest these two factors average
out for Neptunes and smaller planets. It would therefore be
beneficial to stay distant from the galactic plane in order to
optimize for a higher yield of Neptunes and Super-Earths
while reducing the contamination by false positives.

5.3 Follow-up and characterization of NGTS candidates
We estimate for NGTS that the majority of EBs and BEBs
can be identified without necessitating further follow-up
measurements. EBs that can not be identified by the vetting
process usually have a low-mass secondary such as an M-
dwarf or Brown dwarf. They can mimic planets with sizes of
Jupiter or greater. It will require RV follow-up to determine
the mass of the companion and reject a planet hypothesis.
While some of the remaining BEBs can have low-mass com-
panions and hence mimic various planetary signals, the ma-
majority consists of binary companions with comparable mass.
These systems cause very deep transit signals, but are di-
uted onto a planetary scale. Follow-up of these systems can
be achieved with high-precision multi-color photometry to
investigate the color dependence of the transit/eclipse depth.

Here, we focused on EBs and BEBs, but it can be as-
sumed hierarchical eclipsing binaries lead to similar num-
bers as BEBs, as shown for example in the yield simulations
for TESS by Sullivan et al. (2015). Additionally considering
\(10^5\) false alarms, we expect 97\% of all initially detected
NGTS transit signals are caused by false positives and false
alarms. After the candidate vetting, we expect to remain
with 82\% of NGTS planet candidates being caused by false
positives that need to be identified by follow-up. In compar-
ison, CoRoT’s initial detections contained 98\% of false
positives (Almenara et al. 2009). After the vetting process
the follow-up candidates included 88\% of false positives.
Existing ground-based surveys like WASP and HAT are even
more limited in detecting false positives in their photomet-
ric data. In the RV and photometric vetting of HAT candi-
dates a typical frequency of 95\% of false positives was found
(Latham et al. 2009; Hartman et al. 2011). In their estimations
for TESS’ full-frame images mode (Sullivan et al. 2015)
find a contamination by false positives of 97\% in the detec-
ted signals and 81\% after the ad-hoc vetting process.

Dilution by background stars can lead to an underes-
timation of planetary radii around target stars. Especially
planets in binary systems are more difficult to detect and
may appear smaller, as the light from the binary compan-
does the transit signal further. Hence, gas giants
may be misclassified as Neptunes or Super Earths. Here,
we do not treat these diluted planets as false negatives, but
the findings raise awareness of the importance of follow-up
measurements to resolve multiple star systems and blended
objects.

Precise knowledge of neighboring objects as well as tar-
get star radii is crucial for the vetting and characterization
of planets. Current results from the Gaia-ESO survey (Gilmore
et al. 2012; Randich et al. 2013) provide astrometric infor-
mation on more than two million stars, enabling the screening
of NGTS targets for nearby background stars. Upcoming
data releases will provide precise parallax measurements, en-
hancing the precision on spectroscopic properties of target
stars.

6 CONCLUSION
We developed a comprehensive simulation to investigate the
impact of observing strategies, target fields, and noise prop-
properties on the planet and false positive yields of transit survey programs. We considered the NGTS facility, and showed that the yield is strongly dependent on the red noise level and detection threshold.

According to our simulation we show NGTS will fulfill its design purpose by finding $\sim 240 \pm 320$ close-in planets and providing a new sample of $\sim 40 \pm 110$ characterizable Neptune-sized and smaller planets for the anticipated four-year survey.

ACKNOWLEDGEMENTS

We thank Peter Weathley and Simon Walker for introducing us to their previous estimations of the NGTS yield and the NGTS data, as well as Richard West, James McCormac, and Daniel Bayliss for useful discussions about NGTS. We are grateful to Ed Gillen for helpful comments on the manuscript. We further thank Courtney Dressing for providing a fine-grid version of the occurrence rate of small planets around small stars. Figures 2, 3, 7, and 10 were created using the cubehelix color scheme provided in Green (2011).

Maximilian N. Günther is supported by the UK Science and Technology Facilities Council (STFC) as well as the Isaac Newton Studentship.

References

Almenara J. M., et al., 2009, AAP, 506, 337
Baglin A., Auvergne M., Barge P., Buey J.-T., Catala C., Michel E., Weiss W., COROT Team 2002, in Battrick B., Favata F., Roxburgh I. W., Galadi D., eds, ESA Special Publication Vol. 485, Stellar Structure and Habitable Planet Finding. pp 17–24
Bakos G. A., Lázár J., Papp I., Sári P., Green E. M., 2002, PASP, 114, 974
Batalha N. M., Kepler Team 2012, in American Astronomical Society Meeting Abstracts #220. p. 306.01
Batalha N. M., et al., 2010, ApJL, 713, L103
Burukchi J. W., et al., 2010, Science, 327, 977
Brown T. M., 2003, ApJL, 593, L125
Brown T. M., Latham D. W., 2008, preprint, (arXiv:0812.1305)
Brown T. M., Latham D. W., Everett M. E., Esquerdo G. A., 2011, AJ, 142, 112
Bryson S. T., et al., 2013, PASP, 125, 889
Burke C. J., et al., 2015, The Astrophysical Journal, 809, 8
Buser R., Kurucz R., 1978, A&A, 70
Cameron A. C., 2012, Nature, 492, 48
Chazelas B., et al., 2012, in Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series. p. 0, doi:10.1117/12.925755
Claret A., Hauschildt P. H., Witte S., 2000, A&A, 546, A14
Claret A., Hauschildt P. H., Witte S., 2013, A&A, 552, A16
Deacon N. R., et al., 2015, preprint, (arXiv:1509.04712)
Dravins D. L. L. M. E. Y. A. T., 1998, PASP, 110, 610
Dressing C. D., Charbonneau D., 2015, ApJ, 807, 45
Duchêne G., Kraus A., 2013, ARA&A, 51, 269
Duquennoy A., Mayor M., 1991, A&A, 248, 485
Fortney J., Baraffe I., Militzer B., 2011, Exoplanets. University of Arizona Press
Fressin F., et al., 2013, ApJ, 766, 81
Gilliland R. L., et al., 2011, ApJS, 197, 6
Gilmore G., et al., 2012, The Messenger, 147, 25
Girardi L., Groenewegen M. A. T., Hatiriminaoglou E., da Costa L., 2005, AIP, 436, 895

Green D. A., 2011, Bulletin of the Astronomical Society of India, 39, 289
Grether D., Lineweaver C. H., 2006, ApJ, 640, 1051
Hartman J. D., Bakos G. Á., Torres G., 2011, in European Physical Journal Web of Conferences. p. 2002 (arXiv:1011.5659), doi:10.1051/epjconf/2010102002
Holman M. J., Wiepert P. A., 1999, AJ, 117, 621
Koch D. G., et al., 2010, The Astrophysical Journal Letters, 713, L79
Kurucz R., 1993
Latham D. W., et al., 2009, The Astrophysical Journal, 704, 1107
Lendl M., Gilson M., Queloz D., Alonzo R., Funel A., Jehin E., Naef D., 2013, A&A, 552, A2
Lucy L. B., 1967, Z. Astrophys., 65, 89
Mayor M., et al., 2003, The Messenger, 114, 20
Mazeh T., 2008, in Goupil M.-J., Zahn J.-P., eds, EAS Publications Series Vol. 29, EAS Publications Series. pp 1–65 (arXiv:0801.0134), doi:10.1051/0004-6361:200809001
Muñoz D. J., Lai D., 2015, preprint, (arXiv:1505.05514)
Norton A. J., et al., 2011, A&A, 528, A90
Pepe F., et al., 2014, preprint, (arXiv:1401.5918)
Pickles A. J., 1998, PASP, 110, 863
Pollacco D. L., et al., 2006, PASP, 118, 1407
Pont F., Zucker S., Queloz D., 2006, MN&S, 373, 231
Queloz D., et al., 2000, A&A, 354, 99
Raghavan D., et al., 2010, ApJ, 190, 1
Randich S., Gilmore G., Gaia-ESO Consortium 2013, The Messenger, 154, 47
Slawson R. W., et al., 2011, The Astronomical Journal, 142, 160
Soszyński I., et al., 2015, Acta Astron., 65, 39
Sullivan P. W., et al., 2015, preprint, (arXiv:1506.03845)
Walker S., 2013, PhD thesis, University of Warwick
Weiss L. M., Marcy G. W., 2014, ApJL, 783, L6
Wheatley P. J., et al., 2013, in European Physical Journal Web of Conferences. p. 13002 (arXiv:1302.6592), doi:10.1051/epjconf/20134713002
Winn J. N., 2011, Exoplanets. University of Arizona Press

MNRAS 000, 1–12 (2016)
APPENDIX A: INPUT FILE FOR THE YIELD SIMULATION ON THE EXAMPLE OF NGTS

Target list criteria

15. #MagV_target = 15. #upper limit on MagV for target stars
22.5 #magV_limit = 22.5 #upper limit on MagV for background stars
2. #Rs_limit = 2. #upper limit on stellar radius of target stars (in Rsun)
10000. #Teff_limit = 10000. #upper limit on effective temperature of target stars (in K)
6.5 #logg_limit = 6.5 #upper limit on logg of target stars

CCD resolution

50331648. #pixel_number = 12. * 2048.*2 #number of pixels in total; 12 cameras with 2048^2 pixel
4194304. #pixel_per_ccd = 2048*2048 #number of pixels per CCD; 1 camera with 2048^2 pixel

Observing strategy

88.8 #FoV = 12. * 7.4. #FoV that is observed (in sq.deg.)
365./3. #FoV_duration = 365./3. #time spent per FoV (in days)
4.*3. #N_FoVs = 4.*3. #number of FoVs surveyed in total (4 years * 3 fields per year)
7. #hours_per_night = 7. #average number of hours observed per night

Instrument parameters, noise, aperture

10. #exposure = 10. #exposure (in s)
1.49 #readout = 1.49 #CCD readout time (in s)
0.2 #a_tel = 0.2 #telescope aperture (in m)
1.5 #airmass = 1.5 #average airmass
2400. #h_tel = 2400. #height of the telescope above sea level (in m)
125. #noise_sky = 125. #sky noise (in e^-per s per pixel)
0.06 #noise_dark = 0.06 #dark noise (in e^-per s per pixel)
28.274338823 #N_apert_pixel = np.pi*(3.*2.) #number of pixels in aperture (in average)

Detection criteria

5. #detection_threshold = 5. #detection threshold DT (planet detected if signal-to-noise > DT)
0.001 #red_noise = 1./1000. #as fraction (1/1000 ~ 1 mmag)
3. #num_transits_threshold = 3. #minimum number of visible transits required for detection