Species composition, community and population dynamics of two gallery forests from the Brazilian Cerrado domain

Markus Gastauer‡, Roosevelt P Almado§, Angela S Miazaki¶, Écio S Diniz‡, Luís C B Moreira‡, João A.A. Meira-Neto‡

‡ Laboratory of Plant Ecology and Evolution, Department of Plant Biology, Federal University of Viçosa, Viçosa, Brazil
§ ArcelorMittal Bioflorestas, Belo Horizonte, Brazil
¶ State University of Minas Gerais, Campus Frutal, Frutal, Brazil

Corresponding author: Markus Gastauer (markus.gastauer@ufv.br)
Academic editor: Quentin Groom
Received: 15 Mar 2016 | Accepted: 15 Jul 2016 | Published: 18 Jul 2016
Citation: Gastauer M, Almado R, Miazaki A, Diniz É, Moreira L, Meira-Neto J (2016) Species composition, community and population dynamics of two gallery forests from the Brazilian Cerrado domain. Biodiversity Data Journal 4: e8503. doi: 10.3897/BDJ.4.e8503

Abstract

Background

To understand the impacts of global changes on future community compositions, knowledge of community dynamics is of crucial importance. To improve our knowledge of community composition, biomass stock and maintenance of gallery forests in the Brazilian Cerrado, we provide two datasets from the 0.5 ha Corrego Fazendinha Gallery Forest Dynamics Plot and the Corrego Fundo Gallery Forest Dynamics Plot situated in the Bom Despacho region, Minas Gerais, Southeastern Brazil.

New information

We report diameter at breast height, basal area and height measurements of 3417 trees and treelets identified during three censuses in both areas.

© Gastauer M et al. This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Keywords

Gallery Forest, Brazilian Cerrado, savanna vegetation, species richness, tropical forests, forest inventory

Introduction

Although the Brazilian Cerrado is a hotspot of biodiversity (Mendonça et al. 2008, Myers et al. 2000) and holds carbon stocks of nearly 300 Mg per hectare (Batlle-Bayer et al. 2010, Paiva et al. 2011), its species richness, diversity and biomass are still threatened by habitat loss, fragmentation, biological invasion and climate change (e.g., Lapola et al. 2013, Jantz et al. 2015, Rossi et al. 2014). Within the Cerrado domain, gallery forests accompany the borders of rivers, creeks and streams, forming important corridors for wildlife among patches of remaining vegetation (Silveira et al. 2014) that also protect aquatic ecosystems from substrate input, reducing water temperatures and erosion of river banks (Monteiro et al. 2016, Londe and Silva 2014). Furthermore, gallery forests have the highest above ground biomass per hectare in the Cerrado domain (Moreira-Burger and Delitti 1999). Worldwide, these forests are threatened by human activities, including domestic livestock, which prevent tree seedling establishment, and the construction of dams and weirs, which cause flooding or interference with natural stream flow (FAO 2010). Long-term monitoring studies, so-called community dynamics, are necessary to outline and understand the impacts of these disturbances on vegetation communities and on carbon stocks (Couvet et al. 2011, Fidelis et al. 2012, Pocock et al. 2015).

Therefore, the aim of this data paper is to make available data from forest dynamics from two gallery forest dynamics plots from the Bom Despacho region, Minas Gerais, Southeastern Brazil, to increase knowledge about community composition, biomass stock and maintenance of such forests in the Brazilian Cerrado.

Project description

Title: Population and community dynamics of two gallery forests from the Bom Despacho Region, Minas Gerais, Brazil

Study area description: The study was carried out in the counties of Quartel Geral and Dores do Indaiá, Bom Despacho region, Minas Gerais, Brazil. Cattle pasture, corn and eucalyptus plantations characterize the land-use of both counties. According to the Köppen system, the climate is humid subtropical (Cwa, Peel et al. 2007), with warm and moist conditions in the summer months, dry winters and an annual precipitation of approximately 1,170 mm. The predominant soils are deeply weathered latosols. According to Veloso et al. (1991), the vegetation is characterized as savanna vegetation.
Within the municipality, two study sites were selected within properties owned by the ArcelorMittal Bioflorestas company. The Corrego Fazendinho Gallery Forest, situated 5.5 km west of Quartel Geral center, covers approximately 50 ha on both sides of the upper 5 km of Fazendinho Creek (Fig. 1). It is surrounded on all sides by eucalypt plantations from ArcelorMittal Bioflorestas.

The second study site, the Corrego Fundo Gallery Forest, is situated approximately 10 km southeast of the Corrego Fazendinho Gallery Forest (Fig. 1). It is a forest remnant that flanks the complete upper Fundo Creek. The mean width of the gallery forest is approximately 80 m. On its northern side, the forest adjoins native Cerrado vegetation belonging to the ArcelorMittal Bioflorestas legal reserve, while cattle pastures are found beyond its southern limit.

Funding: JAAMN received a CNPq productivity fellowship. ArcelorMittal Bioflorestas, FAPEMIG and CNPq financed this study.

Sampling methods

Sampling description: Within each of the gallery forests, two plots of 50 x 50 m were delimited and divided into 25 subplots of 10 x 10 m (24 plots in the second plot from the Corrego Fundo Gallery Forest). All plots are situated at the northern part of the gallery forests (see Fig. 1).

Within these plots, three censuses in four-year intervals of all trees with a diameter at breast height (dbh) greater than 3.2 cm were carried out (Table 1). Trees fulfilling the inclusion criterion were tagged and identified. Tree diameter (dbh) was measured and
basal area was calculated; for multiple stem individuals, we calculated basal area at breast height for all shoots, summed these, and calculated from that the pooled dbh.

Census	Dates	BA [m²]	Number of trees	Number of species	BA ≥ 10 cm [m²]	Number of trees ≥ 10 cm	Number of species (≥ 10 cm dbh)
First	June 2007	12.61	1597	110	9.35	405	67
Second	August 2011	14.06	1711	113	10.70	428	69
Third	August 2015	14.85	1478	101	11.93	434	66

Specimens not recognized during fieldwork were collected, deposited in the Herbarium of the Federal University of Viçosa (VIC) and identified with the help of material from the VIC or by consultation of specialists and literature sources (Lorenzi 1992). Species names were verified using the Taxonomic Name Resolution Service (TNRS) proposed by Boyle et al. (2013); species classification follows the Angiosperm Phylogeny Group III guidelines (APG III 2009).

Diversity indices as well as Jaccard similarity between study sites were computed using EstimateS (Colwell and Coddington 1994). Mortality and recruitment rates, as well as gains and losses of the basal area, were calculated according to Sheil (1995).

Geographic coverage

Description: This study was carried out in the Counties Quartel Geral and Dores do Indaíá, Bom Despacho region, Minas Gerais, Brazil (Fig. 1).

Coordinates: -19.343498 and -19.2575 Latitude; -45.49603 and -45.451609 Longitude.
Taxonomic coverage

Description: Altogether, 3413 trees and treelets belonging to 158 species, 96 genera and 41 families were detected in both study sites during all censuses. Thirty species were identified to genus level only, two to family level, and three species remain unidentified.

With a total of 1862 trees and treelets from 114 species (70 genera, 35 families) from three censuses, species richness and stem density in the Corrego Fazendinha Gallery Forest was higher than in the Corrego Fundo Gallery Forest (1551 trees and treelets, 89 species, 67 genera, 35 families, Table 1). Forty-five species occur in both study sites, yielding a Jaccard similarity between the study sites of 0.28. More than 75% of species and around 80% of basal area belongs to common species.

Due to higher species richness, diversity is also higher in the Corrego Fazendinha Gallery Forest than in the Corrego Fundo Gallery Forest. While the basal area increased from the first to the third census in the Corrego Fazendinha Gallery Forest, it declined in the Corrego Fundo Gallery Forest (Tables 1, 2).

Table 2.

Gallery forest plots diversity and species richness summary Tally (third censuses). N is number of individual trees, S is number of species, G is number of genera, F is number of families, H' is Shannon-Wiener diversity index using log₁₀, and α is Fisher’s α. Basal area (BA) includes all multiple stems for each individual.

Size Class [cm dbh]	BA [m²]	N	S	G	F	H'	α ±DP
≥ 3.2	14.85	1478	101	64	31	3.41	24.54 ±1.29
≥ 10	11.93	434	66	48	26	3.12	21.66 ±1.75
≥ 30	2.86	26	9	9	7	1.83	4.87 ±1.52
Corrego Fundo Gallery Forest							
≥ 3.2	11.34	1268	88	64	35	3.43	21.49 ±1.21
≥ 10	8.61	292	51	40	23	3.02	17.87 ±1.72
≥ 30	3.46	25	5	5	5	1.10	1.87 ±0.61

With regards to basal area and abundance, Vochysiaceae, Fabaceae, Myrtaceae, Lauraceae and Anacaridaceae are among the five dominant families in the Corrego Fazendinha and Corrego Fundo gallery forests (Tables 3, 4). Furthermore, Fabaceae, Myrtaceae and Anacardiaceae are the most species-rich families in both study sites. *Callisthene*, *Myrcia* and *Copaifera* had the highest basal area among genera, while
Callisthene, Siparuna and Myrcia showed the highest abundance. Finally, Myrcia, Machaerium and Aspidosperma are the most species-rich genera in both study sites (Tables 5, 6). Callisthene major and Copaifera langsdorffii have the highest basal area in both study sites, followed by Piptadenia gonoacantha, Siparuna guianensis and Myrcia tomentosa in the Corrego Fazendinha Gallery Forest and Terminalia glabrescens, Tapirira guianensis and Pera glabrata in the Corrego Fundo Gallery Forest. The most abundant species in both study sites are C. major and S. guianensis, followed by Campomanesia xanthocarpa, Myrcia tomentosa and Dalbergia brasiliensis in the Corrego Fazendinha Gallery Forest and Licania kunthiana, Myrcia rostrata and Alibertia edulis in the Corrego Fundo Gallery Forest (Tables 7, 8).

Table 3.
Corrego Fazendinha Gallery Forest rankings by family according to basal area (BA, including all multiple stems for each individual), number of individuals (N) and number of species (S), data from the third census.

Rank	Family	BA	% BA	% N	Family	N	% N	Family	S
1	Vochysiaceae	5.21	35.08	22.73	Vochysiaceae	336	22.73	Fabaceae	21
2	Fabaceae	3.08	20.76	13.53	Siparunaceae	274	18.54	Myrtaceae	16
3	Myrtaceae	1.59	10.74	16.24	Myrtaceae	240	16.24	Anacardiaceae	6
4	Lauraceae	0.91	6.12	4.80	Fabaceae	200	13.53	Rubiaceae	6
5	Anacardiaceae	0.79	5.31	4.06	Lauraceae	71	4.80	Annonaceae	5
6	Siparunaceae	0.65	4.40	18.54	Anacardiaceae	60	4.06	Vochysiaceae	5
7	Meliaceae	0.46	3.12	0.61	Aquifoliaceae	48	3.25	Apocynaceae	4
8	Annonaceae	0.42	2.83	2.77	Annonaceae	41	2.77	Araliaceae	3
9	Aquifoliaceae	0.21	1.44	3.25	Myristicaceae	36	2.44	Meliaceae	3
10	Salicaceae	0.21	1.43	1.15	Araliaceae	27	1.83	Aquifoliaceae	2
11	Combretaceae	0.17	1.13	0.41	Lacistemataceae	19	1.29	Chrysobalanaceae	2
12	Araliaceae	0.14	0.96	1.83	Rubiaceae	18	1.22	Combretaceae	2
13	Myristicaceae	0.12	0.80	2.44	Salicaceae	17	1.15	Erythroxylaceae	2
14	Arecaceae	0.09	0.63	0.14	Chrysobalanaceae	10	0.68	Euphorbiaceae	2
15	Chrysobalanaceae	0.09	0.60	0.68	Meliaceae	9	0.61	Lacistemataceae	2
16	Asteraceae	0.08	0.55	0.41	Malvaceae	7	0.47	Lauraceae	2
Rank	Family	BA	%BA	%N	Family	N	%N	Family	S
------	--------------	-----	-----	----	------------	-----	-----	------------	----
1	Vochysiaceae	3.78	33.30	2.63	Vochysiaceae	240	18.93	Myrtaceae	14
2	Fabaceae	1.53	13.49	1.06	Myrtaceae	148	11.67	Fabaceae	12
3	Combretaceae	0.77	6.82	0.54	Siparunaceae	132	10.41	Malvaceae	6
4	Anacardiaceae	0.76	6.67	0.53	Fabaceae	88	6.94	Rubiaceae	6
5	Myrtaceae	0.75	6.57	0.52	Chrysobalanaceae	84	6.62	Anacardiaceae	4
6	Malvaceae	0.48	4.26	0.34	Rubiaceae	69	5.44	Apocynaceae	4

Table 4.
Corrego Fundo Gallery Forest rankings by family according to basal area (BA, including all multiple stems for each individual), number of individuals (N) and number of species (S), data from the third census.
7	Euphorbiaceae	0.47	4.12	0.32	Anacardiaceae	63	4.97	Sapindaceae	4
8	Sapindaceae	0.35	3.12	0.25	Lacistemataceae	49	3.86	Chrysobalanaceae	3
9	Burseraceae	0.32	2.85	0.22	Sapindaceae	49	3.86	Salicaceae	3
10	Siparunaceae	0.31	2.72	0.21	Burseraceae	39	3.08	Anonaceae	2
11	Apocynaceae	0.27	2.39	0.19	Combretaceae	34	2.68	Araliaceae	2
12	Chrysobalanaceae	0.27	2.39	0.19	Euphorbiaceae	33	2.60	Bignoniaceae	2
13	Annonaceae	0.26	2.32	0.18	Myristicaceae	30	2.37	Lauraceae	2
14	Rubiaceae	0.24	2.15	0.17	Apocynaceae	26	2.05	Primulaceae	2
15	Myristicaceae	0.13	1.18	0.09	Ebenaceae	25	1.97	Sapotaceae	2
16	Ebenaceae	0.12	1.02	0.08	Malvaceae	25	1.97	Aquifoliaceae	1
17	Bignoniaceae	0.10	0.92	0.07	Annonaceae	24	1.89	Burseraceae	1
18	Araliaceae	0.09	0.77	0.06	Araliaceae	19	1.50	Calophyllaceae	1
19	Lacistemataceae	0.07	0.61	0.05	Bignoniaceae	17	1.34	Celastraceae	1
20	Lamiaceae	0.05	0.43	0.03	Sapotaceae	12	0.95	Combretaceae	1
21	Sapotaceae	0.05	0.42	0.03	Aquifoliaceae	8	0.63	Ebenaceae	1
22	Salicaceae	0.03	0.26	0.02	Lamiaceae	8	0.63	Erythroxylaceae	1
23	Solanaceae	0.03	0.24	0.02	Salicaceae	8	0.63	Euphorbiaceae	1
24	Ochnaceae	0.02	0.22	0.02	Ochnaceae	7	0.55	Lacistemataceae	1
25	Lauraceae	0.01	0.13	0.01	Primulaceae	6	0.47	Lamiaceae	1
26	Aquifoliaceae	0.01	0.13	0.01	Lauraceae	5	0.39	Malpighiaceae	1
27	Primulaceae	0.01	0.11	0.01	Celastraceae	4	0.32	Meliaceae	1
28	Nyctaginaceae	0.01	0.10	0.01	Nyctaginaceae	4	0.32	Myristicaceae	1
29	Urticaceae	0.01	0.09	0.01	Solanaceae	4	0.32	Nyctaginaceae	1
30	Celastraceae	0.01	0.08	0.01	Calophyllaceae	2	0.16	Ochnaceae	1
31	Malpighiaceae	0.00	0.04	0.00	Malpighiaceae	2	0.16	Simaroubaceae	1
32	Erythroxylaceae	0.00	0.03	0.00	Erythroxylaceae	1	0.08	Siparunaceae	1
33	Calophyllaceae	0.00	0.02	0.00	Meliaceae	1	0.08	Solanaceae	1
Table 5.
Corrego Fazendinha Gallery Forest ranking by genus according to basal area (BA, including all multiple stems for each individual), number of individuals (N) and number of species (S), data from the third census.

Rank	Genus	BA	% BA	% N	Genus	N	% N	Genus	S						
1	*Callisthene*	5.066	34.12	21.11	*Callisthene*	312	21.11	*Myrcia*	7						
	(Vochysiaceae)				(Vochysiaceae)			(Myrtaeae)							
2	*Myrcia*	1.003	6.75	7.24	*Siparuna*	274	18.54	*Machaerium*	5						
	(Myrtaeae)				(Siparunaceae)			(Fabaceae)							
3	*Copaihera*	0.955	6.43	2.98	*Myrcia*	107	7.24	*Aspidosperma*	4						
	(Fabaceae)				(Myrtaeae)			(Apocynaceae)							
4	*Piptadenia*	0.686	4.62	1.08	*Campomanesia*	96	6.50	*Pterogyne*	4						
	(Fabaceae)				(Myrtaeae)			(Fabaceae)							
5	*Siparuna*	0.654	4.40	18.54	*Dalberia*	49	3.32	*Xylopia*	4						
	(Siparunaceae)				(Fabaceae)			(Annonaceae)							
6	*Ocotea*	0.518	3.49	1.76	*Ilex*	48	3.25	*Eugenia*	3						
	(Lauraceae)				(Aquifoliaceae)			(Myrtaeae)							
7	*Machaerium*	0.462	3.11	1.96	*Nectandra*	45	3.04	*Astronium*	2						
	(Fabaceae)				(Lauraceae)			(Anacardiaceae)							
8	*Cedrela*	0.449	3.03	0.41	*Copaihera*	44	2.98	*Campomanesia*	2						
	(Meliaceae)				(Fabaceae)			(Myrtaeae)							
9	*Campomanesia*	0.443	2.98	6.50	*Virola*	36	2.44	*Cassia*	2						
	(Myrtaeae)				(Myristicaceae)			(Fabaceae)							
10	*Nectandra*	0.391	2.64	3.04	*Xylopia*	35	2.37	*Dendropanax*	2						
	(Lauraceae)				(Annonaceae)			(Araliaceae)							
11	*Xylopia*	0.355	2.39	2.37	*Svartzia*	32	2.17	*Erythroxylum*	2						
	(Annonaceae)				(Fabaceae)			(Erythroxylaceae)							
12	*Lithraea*	0.334	2.25	1.01	*Machaerium*	29	1.96	*Ilex*	2						
	(Anacardiaceae)				(Fabaceae)			(Aquifoliaceae)							
13	*Svartzia*	0.273	1.84	3.32	*Ocotea*	26	1.76	*Lacistema*	2						
	(Fabaceae)				(Lauraceae)			(Lacistemataceae)							
14	*Qualea*	0.266	1.79	2.17	*Ochysia*	24	1.62	*Licania*	2						
	(Vochysiaceae)				(Chrysobalanaceae)			(Chrysobalanaceae)							
	Genus/Species	TRC	HEC	SEP	NCD	Genus/Species	TRC	HEC	SEP	NCD					
---	--------------------------------	-------	------	------	-------	--------------------------------	-------	------	------	-------	--------------------------------	-------	------	------	-------
15	*Ilex* (Aquifoliaceae)	0.214	1.44	3.25	21	*Protium* (Burseraceae)	1.42								
16	*Casearia* (Salicaceae)	0.212	1.43	1.15	19	*Randia* (Rubiaceae)	1.29								
17	*Myracrodruon* (Anacardiaceae)	0.174	1.17	0.68	19	*Sclerolobium* (Fabaceae)	1.29								
18	*Terminalia* (Combretaceae)	0.168	1.13	0.41	18	*Acrocomia* (Arecaceae)	1.22								
19	*Astronium* (Anacardiaceae)	0.156	1.05	1.08	17	*Tabebuia* (Bignoniaceae)	1.15								
20	*Qualea* (Vochysiaceae)	0.143	0.96	1.62	17	*Tapirira* (Anacardiaceae)	1.15								
21	*Tapirira* (Anacardiaceae)	0.124	0.84	1.29	16	*Vitex* (Lamiaceae)	1.08								
22	*Virola* (Myristicaceae)	0.118	0.80	2.44	16	*Acrocomia* (Arecaceae)	1.08								
23	*Andira* (Fabaceae)	0.117	0.78	0.81	15	*Alchornea* (Euphorbiaceae)	1.01								
24	*Acrocomia* (Arecaceae)	0.093	0.63	0.14	12	*Alibertia* (Rubiaceae)	0.81								
25	*Licania* (Chrysobalanaceae)	0.089	0.60	0.68	11	*Andira* (Fabaceae)	0.74								
26	Not identified	0.087	0.59	1.22	10	*Licania* (Chrysobalanaceae)	0.68								
27	*Peltophorium* (Fabaceae)	0.087	0.58	0.20	10	*Callisthene* (Vochysiaceae)	0.68								
28	*Schefflera* (Araliaceae)	0.082	0.56	0.41	6	*Casearia* (Salicaceae)	0.41								
29	*Vernonia* (Asteraceae)	0.082	0.55	0.41	6	*Cedrela* (Meliaceae)	0.41								
30	*Picramnia* (Picramniaceae)	0.082	0.55	0.14	6	*Copalifera* (Fabaceae)	0.41								
31	*Vitex* (Lamiaceae)	0.079	0.53	0.20	6	*Cupania* (Sapindaceae)	0.41								
32	*Pera* (Euphorbiaceae)	0.075	0.50	0.27	6	*Dalbergia* (Fabaceae)	0.41								
	Species	Family	Density	Height	Diameter	Species	Family	Density	Height	Diameter					
---	--------------------------	------------------	---------	--------	----------	--------------------------	------------------	---------	--------	----------					
33	*Tabebuia* (Bignoniaceae)		0.070	0.47	0.41	*Tabebuia* (Bignoniaceae)		6	0.41	1					
34	*Sclerolobium* (Fabaceae)		0.069	0.46	0.07	*Terminalia* (Combretaceae)		6	0.41	1					
35	*Dialium* (Fabaceae)		0.062	0.42	0.41	*Vernonia* (Asteraceae)		6	0.41	1					
36	*Dendropanax* (Araliaceae)		0.061	0.41	1.42	*Cupania* (Sapindaceae)		5	0.34	1					
37	*Eugenia* (Myrtaceae)		0.053	0.35	1.15	*Erythroxylum* (Erythroxylaceae)		5	0.34	1					
38	*Rollinia* (Anonaceae)		0.043	0.29	0.14	*Guazuma* (Malvaceae)		5	0.34	1					
39	*Guazuma* (Malvaceae)		0.041	0.27	0.34	*Protium* (Burseraceae)		5	0.34	1					
40	*Pterogyne* (Fabaceae)		0.040	0.27	0.07	*Guatteria* (Annonaceae)		4	0.27	1					
41	*Cupania* (Sapindaceae)		0.036	0.24	0.34	*Pera* (Euphorbiaceae)		4	0.27	1					
42	*Aspidosperma* (Apocynaceae)		0.036	0.24	0.41	*Psidium* (Myrtaeaceae)		4	0.27	1					
43	*Luehea* (Malvaceae)		0.026	0.18	0.14	*Cassia* (Fabaceae)		3	0.20	1					
44	*Alibertia* (Rubiaceae)		0.026	0.18	0.74	*Marlieria* (Myrtaeaceae)		3	0.20	1					
45	*Lacistema* (Lacistemataceae)		0.024	0.16	1.29	*Peltophorun* (Fabaceae)		3	0.20	1					
46	*Cassia* (Fabaceae)		0.023	0.16	0.20	*Rudgea* (Rubiaceae)		3	0.20	1					
47	*Randia* (Rubiaceae)		0.022	0.15	0.07	*Vitex* (Lamiaceae)		3	0.20	1					
48	*Guatteria* (Annonaceae)		0.022	0.15	0.27	*Acrocomia* (Areaceae)		2	0.14	1					
49	*Senna* (Fabaceae)		0.021	0.14	0.14	*Heteropteris* (Malpighiaceae)		2	0.14	1					
50	*Protium* (Burseraceae)		0.020	0.13	0.34	*Luehea* (Malvaceae)		2	0.14	1					
51	*Plathymenia* (Fabaceae)		0.018	0.12	0.07	*Picramnia* (Picramniaceae)		2	0.14	1					
Rank	Genus	BA	%BA	%N	Genus	N	%N	Genus	S						
------	-------------------	------	------	-----	-------------------	-----	------	---------	-----						
1	*Callisthene*	3.78	33.30	18.93	*Callisthene*	240	18.93	*Myrcia*	5						

Table 6.
Corrego Fundo Gallery Forest ranking by genus according to basal area (BA, including all multiple stems for each individual), number of individuals (N) and number of species (S), data from the third census.
Species	Count	Mean	S.D.										
Copaifera (Fabaceae)	132	10.41	Not identified										
Siparuna (Siparunaceae)	104	8.20	Aspidosperma (Apocynaceae)										
Myrcia (Myrtaceae)	74	5.84	Eugenia (Myrtaceae)										
Tapirira (Anacardiaceae)	52	4.10	Machaerium (Fabaceae)										
Pera (Euphorbiaceae)	50	3.94	Casearia (Salicaceae)										
Protium (Burseraceae)	49	3.86	Dalbergia (Fabaceae)										
Siparuna (Siparunaceae)	49	3.86	Lacistema (Lacistemataceae)										
Aspidosperma (Apocynaceae)	39	3.08	Licania (Chrysobalanaceae)										
Dilodendron (Sapindaceae)	34	2.68	Matayba (Sapindaceae)										
Pera (Euphorbiaceae)	33	2.60	Swartzia (Fabaceae)										
dilodendron (Sapindaceae)	30	2.37	Tabebuia (Bignoniaceae)										
Licania (Chrysobalanaceae)	30	2.37	Eugenia (Myrtaceae)										
Alibertia (Rubiaceae)	30	2.37	Alibertia (Rubiaceae)										
Virola (Myristicaceae)	26	2.05	Andira (Fabaceae)										
Diospyros (Ebenaceae)	25	1.97	Apeiba (Malvaceae)										
Xylopia (Annonaceae)	23	1.81	Ardisia (Primulaceae)										
Eugenia (Myrtaceae)	17	1.34	Astronium (Anacardiaceae)										
Cupania (Sapindaceae)	15	1.18	Aureliana (Solanaceae)										
#	Species	Genus	Family	Height	DBH	Species	Genus	Family	Height	DBH	Species	Genus	Family
---	---------	-------	--------	--------	------	---------	-------	--------	--------	------	---------	-------	--------
20	Guazuma	Malvaceae	0.09	0.80	0.87	Ixora	Rubiaceae	15	1.18	Bowdichia	Fabaceae	1	
21	Cupania	Sapindaceae	0.07	0.63	1.18	Swartzia	Fabaceae	15	1.18	Byrsonima	Malpighiaceae	1	
22	Lacistema	Lacistemataceae	0.07	0.61	3.86	Dendropanax	Araliaceae	11	0.87	Calisthene	Vochysiaceae	1	
23	Apeiba	Malvaceae	0.07	0.59	0.24	Guazuma	Malvaceae	11	0.87	Calophyllum	Calophyllaceae	1	
24	Ixora	Rubiaceae	0.07	0.58	1.18	Hirtella	Chrysobalanaceae	10	0.79	Calyptranthes	Myrtaceae	1	
25	Not identified		0.05	0.45	0.63	Micropholis	Sapotaceae	10	0.79	Campomanesia	Myrtaceae	1	
26	Andira	Fabaceae	0.05	0.45	0.63	Andira	Fabaceae	8	0.63	Cecropia	Urticaceae	1	
27	Vitex	Lamiaceae	0.05	0.43	0.63	Ilex	Aquifoliaceae	8	0.63	Copaifera	Fabaceae	1	
28	Campomanesia	Myrtaceae	0.04	0.39	0.24	Schefflera	Araliaceae	8	0.63	Cupania	Sapindaceae	1	
29	Dendropanax	Araliaceae	0.04	0.39	0.87	Vitex	Lamiaceae	8	0.63	Dendropanax	Araliaceae	1	
30	Micropholis	Sapotaceae	0.04	0.39	0.79	Not identified		8	0.63	Dilodendron	Sapindaceae	1	
31	Schefflera	Araliaceae	0.04	0.38	0.63	Casearia	Salicaceae	7	0.55	Diospyros	Ebenaceae	1	
32	Lithraea	Anacardiaceae	0.04	0.36	0.39	Machaerium	Fabaceae	7	0.55	Duguetia	Annonaceae	1	
33	Eriotheca	Malvaceae	0.04	0.35	0.39	Ouratea	Ochnaceae	7	0.55	Endlicheria	Lauraceae	1	
34	Bowdichia	Fabaceae	0.04	0.35	0.24	Astronium	Anacardiaceae	6	0.47	Eriotheca	Malvaceae	1	
35	Machaerium	Fabaceae	0.03	0.30	0.55	Eriotheca	Malvaceae	5	0.39	Erythroxylum	Erythroxylaceae	1	
36	Hirtella	Chrysobalanaceae	0.03	0.27	0.79	Lithraea	Anacardiaceae	5	0.39	Guapira	Nyctaginaceae	1	
37	Swartzia	Fabaceae	0.03	0.26	1.18	Aureliana	Solanaceae	4	0.32	Guazuma	Malvaceae	1	
No.	Species	Family	Density	Height	Canopy Cover	Other Species	Notes						
-----	------------------------------	------------------	---------	--------	--------------	---------------	----------------------------						
38	*Casearia*	(Salicaceae)	0.03	0.25	0.55	*Calyptranthes* (Myrtaceae)	4 0.32 *Guettarda* (Rubiaceae) 1						
39	*Aureliana*	(Solanaceae)	0.03	0.24	0.32	*Guapira* (Nyctaginaceae)	4 0.32 *Hirtella* (Chrysobalanaceae) 1						
40	*Ouratea*	(Ochnaceae)	0.02	0.22	0.55	*Matayba* (Sapindaceae)	4 0.32 *ilex* (Aquifoliaceae) 1						
41	*Luehea*	(Malvaceae)	0.02	0.19	0.24	*Rapanoea* (Primulaceae)	4 0.32 *Lacistema* (Lacistemataceae) 1						
42	*ilex*	(Aquifoliaceae)	0.01	0.13	0.63	*Salacia* (Celastraceae)	4 0.32 *Lithraea* (Anacardiaceae) 1						
43	*Matayba*	(Sapindaceae)	0.01	0.12	0.32	*Apeiba* (Malvaceae)	3 0.24 *Luehea* (Malvaceae) 1						
44	*Sterculia*	(Malvaceae)	0.01	0.12	0.08	*Bowdichia* (Fabaceae)	3 0.24 *Micropholis* (Sapotaceae) 1						
45	*Platypodium*	(Fabaceae)	0.01	0.11	0.24	*Campomanesia* (Myrtaceae)	3 0.24 *Ocotea* (Lauraceae) 1						
46	*Ocotea*	(Lauraceae)	0.01	0.10	0.24	*Luehea* (Malvaceae)	3 0.24 *Ouratea* (Ochnaceae) 1						
47	*Guapira*	(Nyctaginaceae)	0.01	0.10	0.32	*Ocotea* (Lauraceae)	3 0.24 *Pera* (Euphorbiaceae) 1						
48	*Rapanoea*	(Primulaceae)	0.01	0.09	0.32	*Platypodium* (Fabaceae)	3 0.24 *Piptadenia* (Fabaceae) 1						
49	*Cecropia*	(Urticaceae)	0.01	0.09	0.08	*Ardisia* (Primulaceae)	2 0.16 *Platypodium* (Fabaceae) 1						
50	*Salacia*	(Celastraceae)	0.01	0.08	0.32	*Byrsonima* (Malpighiaceae)	2 0.16 *Pouteria* (Sapotaceae) 1						
51	*Dalbergia*	(Fabaceae)	0.01	0.08	0.16	*Calophyllum* (Calophyllaceae)	2 0.16 *Protium* (Burseraceae) 1						
52	*Calyptranthes*	(Myrtaceae)	0.01	0.06	0.32	*Dalbergia* (Fabaceae)	2 0.16 *Pseudobombax* (Malvaceae) 1						
53	*Byrsonima*	(Malpighiaceae)	0.00	0.04	0.16	*Endicheria* (Lauraceae)	2 0.16 *Rapanoea* (Primulaceae) 1						
54	*Pouteria*	(Sapotaceae)	0.00	0.04	0.16	*Guettarda* (Rubiaceae)	2 0.16 *Rudgea* (Rubiaceae) 1						
55	*Erythroxylum*	(Erythroxylaceae)	0.00	0.03	0.08	*Pouteria* (Sapotaceae)	2 0.16 *Salacia* (Celastraceae) 1						
Rank	Species	BA	%BA	%N	Species	BA	%BA	%N					
------	------------------------------	-----	-----	-----	------------------------------	-----	-----	-----					
1	Callisthene major Mart.	5.07	34.12	21.11	Callisthene major Mart.	312	21.11						
	(Vochysiaceae)				(Vochysiaceae)								
2	Copaifera langsdorffii Desf.	0.95	6.43	2.98	Siparuna guianensis Aubl.	274	18.54						
	(Fabaceae)				(Siparunaceae)								
3	Piptadenia gonoacantha (Mart.)	0.69	4.62	1.08	Campomanesia xanthocarpa (Mart.) O.Berg (Myrtaceae)	94	6.36						
	J.F.Macbr. (Fabaceae)												
4	Siparuna guianensis Aubl.	0.65	4.40	18.54	Myrcia tomentosa (Aubl.) DC. (Myrtaceae)	61	4.13						
	(Siparunaceae)				(Myrtaceae)								
5	Myrcia tomentosa (Aubl.) DC. (Myrtaceae)	0.60	4.05	4.13	Dalbergia brasiliensis Vogel (Fabaceae)	49	3.32						
6	Ocotea corymbosa (Meisn.) Mez (Lauraceae)	0.52	3.49	1.76	Nectandra oppositifolia Nees & Mart. (Lauraceae)	45	3.04						

Table 7. Corrego Fazendinha Gallery Forest ranking by species according to basal area (BA) and number of individuals (N), data from the third census.
	Species name	Diameter (cm)	Height (m)	DBH (m)	Index					
7	Cedrela fissilis Vell. (Meliaceae)	0.45	3.03	0.41	4.97					
8	Campomanesia xanthocarpa (Mart.) O.Berg. (Myrtaceae)	0.43	2.88	6.36	2.77					
9	Nectandra oppositifolia Nees & Mart. (Lauraceae)	0.39	2.64	3.04	2.57					
10	Myrica splendens (Sw.) DC. (Myrtaceae)	0.37	2.46	2.57	2.44					
11	Lithraea molleoides (Vell.) Engl. (Anacardiaceae)	0.33	2.25	1.01	2.10					
12	Machaerium villosum Vogel (Fabaceae)	0.31	2.06	1.35	1.76					
13	Dalbergia brasiliensis Vogel (Fabaceae)	0.27	1.84	3.32	1.69					
14	Swartzia sp (Fabaceae)	0.26	1.78	2.10	1.35					
15	Xylopia aromatica (Lam.) Mart. (Annonaceae)	0.24	1.63	1.69	1.35					
16	Casearia sylvestris Sw. (Salicaceae)	0.21	1.43	1.15	1.22					
17	Ilex cerasifolia Reissek (Aquifoliaceae)	0.19	1.31	2.77	1.15					
18	Myracrodruon urundeuva Allemão (Anacardiaceae)	0.17	1.17	0.68	1.08					
19	Tapirira guianensis Aubl. (Anacardiaceae)	0.12	0.80	1.22	1.08					
20	Virola sebifera Aubl. (Myristicaceae)	0.12	0.80	2.44	1.01					
21	Andira fraxinifolia Benth. (Fabaceae)	0.12	0.78	0.81	1.01					
22	Xylopia sericea A.St.-Hil. (Annonaceae)	0.11	0.77	0.68	0.95					
23	Astronium fraxinifolium Schott (Anacardiaceae)	0.10	0.65	1.01	0.88					
24	Acrocomia aculeata (Jacq.) Lodd. ex Mart. (Areceaceae)	0.09	0.63	0.14	0.81					
	Species	Relative weight	Weight	Frequency						
---	--	-----------------	--------	-----------	---	---				
25	Machaerium isadelphum (E.Mey.)Standl. (Fabaceae)	0.09	0.63	0.27		12	0.81			
26	Andira fraxinifolia Benth. (Fabaceae)	0.09	0.58	0.20		11	0.74			
27	Xylopia sericea A.St.-Hil. (Annonaceae)	0.09	0.57	0.07		10	0.68			
28	Myracrodruon urundeuva Allemão (Anacardiaceae)	0.08	0.56	0.41		10	0.68			
29	Ilex sp (Aquifoliaceae)	0.08	0.55	0.34		7	0.47			
30	Veronia sp (Asteraceae)	0.08	0.55	0.41		6	0.41			
31	Schefflera morototoni (Aubl.) Maguire, Steyerm. & Frodin (Araliaceae)	0.08	0.55	0.14		6	0.41			
32	Piper arboeum Aubl. (Piperaceae)	0.08	0.54	0.95						
33	Licania kunthiana Hook.f. (Chrysobalanaceae)	0.08	0.53	0.20		6	0.41			
34	Handroanthus ochraceus (Cham.) Mattos (Bignoniaceae)	0.07	0.50	0.27		6	0.41			
35	Dialium sp (Fabaceae)	0.07	0.47	0.41		6	0.41			
36	Cedrela fissilis Vell. (Meliaceae)	0.07	0.46	0.07		6	0.41			
37	Terminalia glabrescens Mart. (Combretaceae)	0.07	0.45	0.88		5	0.34			
38	Qualea multilora Mart. (Vochysiaceae)	0.06	0.42	0.41		5	0.34			
39	Protium heptaphyllum (Aubl.) Marchand (Burseraceae)	0.06	0.40	1.35		5	0.34			
40	Guazuma ulmifolia Lam. (Malvaceae)	0.06	0.40	0.07		5	0.34			
41	Cupania vernalis Cambess. (Sapindaceae)	0.06	0.39	0.41		5	0.34			
42	Qualea sp (Vochysiaceae)	0.04	0.29	0.81		4	0.27			
No.	Species Name	Family	0.02	0.03	0.04	Species Name	Family	0.02	0.03	0.04
-----	-------------------------------	--------------	------	------	------	-------------------------------	--------------	------	------	------
43	Machaerium nyctitans	Fabaceae	0.04	0.28	0.14	Pera glabrata (Schott) Poepp. ex Baill. (Euphorbiaceae)	4	0.27		
44	Guazuma ulmifolia Lam.	Malvaceae	0.04	0.27	0.34	Machaerium isadelphum (E.Mey.)Standl. (Fabaceae)	4	0.27		
45	Pterogyne sp (Fabaceae)	Fabaceae	0.04	0.27	0.07	Licania sp (Chrysobalanaceae)	4	0.27		
46	Cupania vernalis Cambess.	Sapindaceae	0.04	0.24	0.34	Guatteria sellowiana Schltld. (Annonaceae)	4	0.27		
47	Qualea sp (Vochysiaceae)	Vochysiaceae	0.03	0.22	0.27	Erythroxylum pelleterianum A.St.-Hil. (Erythroxylaceae)	4	0.27		
48	Licania sp (Chrysobalanaceae)	Chrysobalanaceae	0.03	0.21	0.27	Vitex sellowiana Cham. (Lamiaceae)	3	0.20		
49	Rollinia laurifolia Schltld.	Annonaceae	0.03	0.21	0.07	Rudgea viburnoides (Cham.) Benth. (Rubiacae)	3	0.20		
50	Luehea grandiiflora Mart.	Malvaceae	0.03	0.18	0.14	Psidium guajava L. (Myrtaceae)	3	0.20		
51	Alibertia edulis (Rich.) A.Rich. ex DC. (Rubiaeae)	0.03	0.18	0.74	Peltophorum dubium (Spreng.) Taub. (Fabaceae)	3	0.20			
52	Randia armata (Sw.) DC.	Rubiaceae	0.02	0.15	0.07	Not identified 1	3	0.20		
53	Guatteria sellowiana Schltld.	Annonaceae	0.02	0.15	0.27	Marlieria sp (Myrtaceae)	3	0.20		
54	Machaerium opacum Vogel	Fabaceae	0.02	0.14	0.14	Lacistema sp (Lacistemataceae)	3	0.20		
55	Aspidosperma olivaceum Müll. Arg. (Apocynaceae)	0.02	0.14	0.20	Eugenia dysenterica DC. (Myrtaceae)	3	0.20			
56	Ilex sp (Aquifoliaceae)	Apocynaceae	0.02	0.13	0.47	Aspidosperma olivaceum Müll.Arg. (Apocynaceae)	3	0.20		
57	Protium heptaphyllum (Aubl.) Marchand (Burseraceae)	0.02	0.13	0.34	Trichilia palida Sw. (Meliaceae)	2	0.14			
58	Lacistema hasslerianum Chodat (Lacistemataceae)	0.02	0.13	1.08	Picramnia parvifolia Engl. (Picramniaceae)	2	0.14			
59	Plathymenia reticulata Benth. (Fabaceae)	0.02	0.12	0.07	Myrcia sp1 (Myrtaceae)	2	0.14			
60	Cassia ferruginea (Schrad.)DC. (Fabaceae)	0.02	0.12	0.14	Myrcia multiflora (Lam.) DC. (Myrtaceae)	2	0.14			
	Species and Family	W	H	L	ﺜ					
---	---	---	---	---	---	---	------			
61	Qualea multiflora Mart. (Vochysiaceae)	0.02	0.12	0.34	Myrcia guianensis (Aubl.) DC. (Myrtaceae)	2	0.14			
62	Campomanesia velutina (Cambess.) O.Berg (Myrtaceae)	0.02	0.11	0.14	Machaerium opacum Vogel (Fabaceae)	2	0.14			
63	Myrcia multiflora (Lam.) DC. (Myrtaceae)	0.02	0.11	0.14	Machaerium nyctitans (Fabaceae)	2	0.14			
64	Psidium guajava L. (Myrtaceae)	0.01	0.09	0.20	Luehea grandiflora Mart. (Malvaceae)	2	0.14			
65	Qualea multiflora subsp. pubescens (Mart.) Staffeu (Vochysiaceae)	0.01	0.08	0.07	Heteropterys byronimifolia A.Juss. (Malpighiaceae)	2	0.14			
66	Rollinia sp (Annonaceae)	0.01	0.08	0.07	Eugenia sp (Myrtaceae)	2	0.14			
67	Marlieria sp (Myrtaceae)	0.01	0.08	0.20	Cassia ferruginea (Schrad.)DC. (Fabaceae)	2	0.14			
68	Not identified 2	0.01	0.08	0.07	Campomanesia velutina (Cambess.) O.Berg (Myrtaceae)	2	0.14			
69	Senna sp2 (Fabaceae)	0.01	0.07	0.07	Acrocomia aculeata (Jacq.) Lodd. ex Mart. (Areaceae)	2	0.14			
70	Senna sp1 (Fabaceae)	0.01	0.07	0.07	Terminalia argentea Mart. (Combretaceae)	1	0.07			
71	Aspidosperma sp1 (Apocynaceae)	0.01	0.06	0.07	Tapirira obtusa (Benth.) J.D.Mitch. (Anacardiaceae)	1	0.07			
72	Diospyros sp (Ebenaceae)	0.01	0.06	0.07	Swartzia myrtifolia Sm. (Fabaceae)	1	0.07			
73	Myrcia ruflipes DC. (Myrtaceae)	0.01	0.05	0.07	Senna sp2 (Fabaceae)	1	0.07			
74	Piper arboreum Aubl. (Piperaceae)	0.01	0.05	0.41	Senna sp1 (Fabaceae)	1	0.07			
75	Erythroxylum pelleterianum A.St.-Hill. (Erythroxylaceae)	0.01	0.05	0.27	Sclerolobium paniculatum Vogel (Fabaceae)	1	0.07			
76	Guarea sp (Meliaceae)	0.01	0.05	0.07	Rubiaceae sp (Rubiaceae)	1	0.07			
77	Ouratea sp (Ochnaceae)	0.01	0.05	0.07	Rollinia sp (Annonaceae)	1	0.07			
78	Trichilia pallida Sw. (Meliaceae)	0.01	0.04	0.14	Rollinia laurifolia Schltdl. (Annonaceae)	1	0.07			
79	Eugenia dysenterica DC. (Myrtaceae)	0.01	0.04	0.20	Randia armata (Sw.) DC. (Rubiaceae)	1	0.07			
	Species	Density	Dominance	Importance Value	Relative Abundance					
----	---	---------	-----------	------------------	--------------------					
80	Myrcia sp1 (Myrtaceae)	0.01	0.04	0.14	1					
	Qualea multiflora subsp. *pubescens* (Mart.) Stafileu (Vochysiaceae)									
81	Heteropterys byronimifolia A.Juss. (Malpighiaceae)	0.01	0.04	0.14	1					
	Pterogyne sp (Fabaceae)									
82	*Erythroxylum citrifolium* A.St.-Hil. (Erythroxylaceae)	0.01	0.04	0.07	1					
	Psidium rufum Mart. ex DC. (Myrtaceae)									
83	*Cassia* sp (Fabaceae)	0.00	0.03	0.07	1					
	Plathymenia reticulata Benth. (Fabaceae)									
84	Tapirira obtusa (Benth.) J.D.Mitch. (Anacardiaceae)	0.00	0.03	0.07	1					
	Ouratea sp (Ochnaceae)									
85	Not identified 1	0.00	0.03	0.20	1					
	Not identified 2									
86	*Lacistema* sp (Lacistemataceae)	0.00	0.03	0.20	1					
	Myrcia sp2 (Myrtaceae)									
87	*Myrcia guianensis* (Aubl.) DC. (Myrtaceae)	0.00	0.03	0.14	1					
	Myrcia rupestris DC. (Myrtaceae)									
88	*Eugenia* sp (Myrtaceae)	0.00	0.03	0.14	1					
	Machaerium sp (Fabaceae)									
89	*Psidium rufum* Mart. ex DC. (Myrtaceae)	0.00	0.03	0.07	1					
	Ixora gardneriana Benth. (Rubiaceae)									
90	*Aspidosperma subincanum* Mart. ex A.DC. (Apocynaceae)	0.00	0.03	0.07	1					
	Guettarda viburnoides Cham. & Schltdl. (Rubiaceae)									
91	*Ixora gardneriana* Benth. (Rubiaceae)	0.00	0.03	0.07	1					
	Guarea sp (Meliaceae)									
92	*Rubiaceae* sp (Rubiaceae)	0.00	0.03	0.07	1					
	Erythroxylum citrifolium A.St.-Hil. (Erythroxylaceae)									
93	*Apuleia leiocarpa* (Vogel) J.F.Macbr. (Fabaceae)	0.00	0.02	0.07	1					
	Diospyros sp (Ebenaceae)									
94	*Rudgea viburnoides* (Cham.) Benth. (Rubiaceae)	0.00	0.02	0.20	1					
	Dendropanax sp (Araliaceae)									
95	*Myrcia* sp2 (Myrtaceae)	0.00	0.02	0.07	1					
	Cassia sp (Fabaceae)									
96	*Aspidosperma* sp2 (Apocynaceae)	0.00	0.02	0.07	1					
	Astronium sp (Anacardiaceae)									
97	*Machaerium* sp (Fabaceae)	0.00	0.01	0.07	1					
	Aspidosperma subincanum Mart. ex A.DC. (Apocynaceae)									
98	*Guettarda viburnoides* Cham. & Schltdl. (Rubiaceae)	0.00	0.01	0.07	1					
	Aspidosperma sp2 (Apocynaceae)									
Rank	Species	BA	%BA	%N	Species	N	%N			
------	---------	-----	-----	-----	---------	-----	-----			
1	Callisthene major Mart. (Vochysiaceae)	3.78	33.30	18.93	Callisthene major Mart. (Vochysiaceae)	240	18.93			
2	Copaifera langsdorffii Desf. (Fabaceae)	1.35	11.94	3.86	Siparuna guianensis Aubl. (Siparunaceae)	132	10.41			
3	Terminalia glabrescens Mart. (Combretaceae)	0.77	6.82	2.68	Licania kunthiana Hook.f. (Chrysobalanaceae)	73	5.76			
4	Tapirira guianensis Aubl. (Anacardiaceae)	0.57	5.04	3.86	Myrcia rostrata DC. (Myrtaceae)	51	4.02			
5	Pera glabrata (Schott) Poepp. ex Baill. (Euphorbiaceae)	0.47	4.12	2.60	Albertia edulis (Rich.) A.Rich. ex DC. (Rubiaceae)	50	3.94			
6	Protium heptaphyllum (Aubl.) Marchand (Burseraceae)	0.32	2.85	3.08	Copaifera langsdorffii Desf. (Fabaceae)	49	3.86			
7	Siparuna guianensis Aubl. (Siparunaceae)	0.31	2.72	10.41	Lacistema hassleriunum Chodat (Lacistemataceae)	49	3.86			
8	Myrcia rostrata DC. (Myrtaceae)	0.28	2.50	4.02	Tapirira guianensis Aubl. (Anacardiaceae)	49	3.86			
9	Dilodendron bipinnatum Radlk. (Sapindaceae)	0.27	2.36	2.37	Protium heptaphyllum (Aubl.) Marchand (Burseraceae)	39	3.08			
10	Xylopia aromatica (Lam.) Mart. (Annonaceae)	0.26	2.29	1.81	Terminalia glabrescens Mart. (Combretaceae)	34	2.68			
11	Pseudobombax tomentosum (Mart. & Zucc.) A.Robyns (Malvaceae)	0.25	2.21	0.16	Pera glabrata (Schott) Poepp. ex Baill. (Euphorbiaceae)	33	2.60			

Table 8.
Corrego Fundo Gallery Forest ranking by species according to basal area (BA) and number of individuals (N), data from the third census.
	Species	Density	Diameter	Height	Family	Value1	Value2		
12	*Licania kunthiana* Hook.f. (Chrysobalanaceae)	0.24	2.10	5.76	*Dilodendron bipinnatum* Radik. (Sapindaceae)	30	2.37		
13	*Alibertia edulis* (Rich.) A.Rich. ex DC. (Rubiaceae)	0.17	1.48	3.94	*Virola sebifera* Aubl. (Myristicaceae)	30	2.37		
14	*Virola sebifera* Aubl. (Myristicaceae)	0.13	1.18	2.37	*Diospyros brasiliensis* Mart. ex Miq. (Ebenaceae)	25	1.97		
15	*Astronium fraxinifolium* Schott (Anacardiaceae)	0.13	1.13	0.47	*Myrcia guianensis* (Aubl.) DC. (Myrtaceae)	24	1.89		
16	*Diospyros brasiliensis* Mart. ex Miq. (Ebenaceae)	0.12	1.02	1.97	*Xylopia aromatica* (Lam.) Mart. (Annonaceae)	23	1.81		
17	*Aspidosperma darianense* Woodson ex Dwyer (Apocynaceae)	0.10	0.90	1.10	*Myrcia* sp. (Myrtaceae)	17	1.34		
18	*Aspidosperma subincanum* Mart. ex A.DC. (Apocynaceae)	0.10	0.86	0.24	*Eugenia* sp. (Myrtaceae)	16	1.26		
19	*Tabebuia serratifolia* (Vahl) G. Nicholson (Bignoniaceae)	0.10	0.84	1.26	*Tabebuia serratifolia* (Vahl) G. Nicholson (Bignoniaceae)	16	1.26		
20	*Guazuma ulmifolia* Lam. (Malvaceae)	0.09	0.80	0.87	*Cupania vernalis* Cambess. (Sapindaceae)	15	1.18		
21	*Myrcia* sp. (Myrtaceae)	0.09	0.78	1.34	*Aspidosperma darianense* Woodson ex Dwyer (Apocynaceae)	14	1.10		
22	*Myrcia tomentosa* (Aubl.) DC. (Myrtaceae)	0.09	0.77	0.87	*Ixora gardneriana* Benth. (Rubiaceae)	14	1.10		
23	*Myrcia guianensis* (Aubl.) DC. (Myrtaceae)	0.08	0.71	1.89	*Swartzia* sp. (Fabaceae)	14	1.10		
24	*Cupania vernalis* Cambess. (Sapindaceae)	0.07	0.63	1.18	*Eugenia florida* DC. (Myrtaceae)	13	1.03		
25	*Lacistema hasslerianum* Chodat (Lacistemataceae)	0.07	0.61	3.86	*Dendropanax cuneatus* (DC.) Decne. & Planch. (Araliaceae)	11	0.87		
26	*Apeiba tibourbou* Aubl. (Malvaceae)	0.07	0.59	0.24	*Guazuma ulmifolia* Lam. (Malvaceae)	11	0.87		
27	*Ixora gardneriana* Benth. (Rubiaceae)	0.06	0.56	1.10	*Myrcia tomentosa* (Aubl.) DC. (Myrtaceae)	11	0.87		
28	*Eugenia florida* DC. (Myrtaceae)	0.06	0.51	1.03	*Hirtella hebeclada* Moric. ex DC. (Chrysobalanaceae)	10	0.79		
	Species	Fabaceae	Myrtaceae	Vitex polygama Cham.	Schefllera morototoni (Aubl.) Maguire, Steyerm. & Frodin (Araliaceae)	Ouratea castaneifolia (DC.) Engl. (Ochnaceae)			
---	--	----------	-----------	---------------------	--	---			
29	Andira fraxinifolia Benth. (Fabaceae)	0.05	0.45	0.63	Micropholis gardneriana (A.DC.) Pierre (Sapotaceae)	Andira fraxinifolia Benth. (Fabaceae)			
30	Vitex polygama Cham. (Lamiaceae)	0.05	0.43	0.63	Andira fraxinifolia Benth. (Fabaceae)				
31	Eugenia sp. (Myrtaceae)	0.05	0.41	1.26	Ilex cerasifolia Reissek (Aquifoliaceae)				
32	Campomanesia sp. (Myrtaceae)	0.04	0.39	0.24	Schefllera morototoni (Aubl.) Maguire, Steyerm. & Frodin (Araliaceae)				
33	Aspidosperma cylindrocarpon Müll.Arg. (Apocynaceae)	0.04	0.39	0.47	Vitex polygama Cham. (Lamiaceae)				
34	Dendropanax cuneatus (DC.) Decne. & Planch. (Araliaceae)	0.04	0.39	0.87	Ouratea castaneifolia (DC.) Engl. (Ochnaceae)				
35	Micropholis gardneriana (A.DC.) Pierre (Sapotaceae)	0.04	0.39	0.79	Aspidosperma cylindrocarpon Müll.Arg. (Apocynaceae)				
36	Schefllera morototoni (Aubl.) Maguire, Steyerm. & Frodin (Araliaceae)	0.04	0.38	0.63	Astronium fraxinifolium Schott (Anacardiaceae)				
37	Lithraea molleoides (Vell.) Engl. (Anacardiaceae)	0.04	0.36	0.39	Casearia sylvestris Sw. (Salicaceae)				
38	Eriotheca candolleana (K.Schum.) A.Robyns (Malvaceae)	0.04	0.35	0.39	Eriotheca candolleana (K.Schum.) A.Robyns (Malvaceae)				
39	Banisteriopsis anisandra (A.Juss.) B.Gates (Malpighiaceae)	0.04	0.35	0.24	Lithraea molleoides (Vell.) Engl. (Anacardiaceae)				
40	Hirtella hebeclada Moric. ex DC. (Chrysobalanaceae)	0.03	0.27	0.79	Aureliana velutina Sendtn. (Solanaceae)				
41	Myrtaceae 3	0.03	0.27	0.16	Calyptranthes sp. (Myrtaceae)				
42	Swartzia sp. (Fabaceae)	0.03	0.25	1.10	Guapira opposita (Vell.) Reitz (Nyctaginaceae)				
43	Aureliana velutina Sendtn. (Solanaceae)	0.03	0.24	0.32	Machaerium villosum Vogel (Fabaceae)				
44	Aspidosperma olivaceum Müll.Arg. (Apocynaceae)	0.03	0.23	0.24	Rapanea umbellata (Mart.) Mez (Primulaceae)				
45	Ouratea castaneifolia (DC.) Engl. (Ochnaceae)	0.02	0.22	0.55	Salacia elliptica (Mart.) G.Don (Celastraceae)				
Species Name	Genus & Family	Populations	Abundance	Diameter	Angledness	Relative Abundance			
--	--------------------------	-------------	------------	----------	------------	--------------------			
Luehea grandiflora Mart.	Malvaceae	0.02	0.19	0.24	Apeiba tibourbou Aubl.	3			
Machaerium villosum Vogel	Fabaceae	0.02	0.17	0.32	Aspidosperma olivaceum Müll.Arg. (Apocynaceae)	3			
Casearia sylvestris Sw.	Salicaceae	0.02	0.16	0.39	Aspidosperma subincanum Mart. ex A.DC. (Apocynaceae)	3			
Tapirira obtusa (Benth.) J.D.Mitch.	Anacardiaceae	0.01	0.13	0.24	Banisteriopsis anisandra (A.Juss.) B.Gates (Malpighiaceae)	3			
Luehea grandiflora Mart.	Malvaceae	0.01	0.13	0.63	Campomanesia sp. (Myrtaceae)	3			
Sterculia striata A. St.-Hil. & Naudin	Malvaceae	0.01	0.12	0.08	Luehea grandiflora Mart. (Malvaceae)	3			
Machaerium nyctitans (Vell.) Benth.	Fabaceae	0.01	0.12	0.16	Myrtaceae 1	3			
Platypodium elegans Vogel	Fabaceae	0.01	0.11	0.24	Ocotea corymbosa (Meisn.) Mez (Lauraceae)	3			
Ocotea corymbosa (Meisn.) Mez	Lauraceae	0.01	0.10	0.24	Platypodium elegans Vogel (Fabaceae)	3			
Guapira opposita (Vell.) Reitz	Nyctaginaceae	0.01	0.10	0.32	Tapirira obtusa (Benth.) J.D.Mitch. (Anacardiaceae)	3			
Casearia gossypiosperma Briq.	Salicaceae	0.01	0.10	0.16	Ardisia glauciflora Urb. (Primulaceae)	2			
Rapanea umbellata (Mart.) Mez	Primulaceae	0.01	0.09	0.32	Byrsonima sericea DC. (Malpighiaceae)	2			
Myrtaceae 1		0.01	0.09	0.24	Calophyllum brasiliense Cambess. (Calophylliaceae)	2			
Cecropia pachystachya Trécul	Urticaceae	0.01	0.09	0.08	Casearia gossypiosperma Briq. (Salicaceae)	2			
Salacia elliptica (Mart.) G.Don	Celastraceae	0.01	0.08	0.32	Endlicheria paniculata (Spreng.) J.F.Macbr. (Lauraceae)	2			
Tabebuia impetiginosa (Mart. ex DC.) Standl.	Bignoniaceae	0.01	0.08	0.08	Guettarda viburnoides Cham. & Schltdl. (Rubiaceae)	2			
Matayba floribunda Radlk.	Sapindaceae	0.01	0.07	0.16	Machaerium nyctitans (Vell.) Benth. (Fabaceae)	2			
Dalbergia brasiliensis Vogel	Fabaceae	0.01	0.07	0.08	Matayba floribunda Radlk. (Sapindaceae)	2			
	Scientific Name	Family	Percentage 1	Percentage 2	Percentage 3	Family	Percentage 1	Percentage 2	Percentage 3
---	-----------------	--------	---------------	---------------	--------------	--------	---------------	---------------	--------------
64	Calyptranthes sp. (Myrtaceae)	0.01	0.06	0.32	Matayba guianensis Aubl. (Sapindaceae)	2	0.16		
65	Matayba guianensis Aubl. (Sapindaceae)	0.01	0.05	0.16	Myrtaceae 3	2	0.16		
66	Rubiaceae 1	0.00	0.04	0.08	Pouteria glomerata (Miq.) Radlk. (Sapotaceae)	2	0.16		
67	Byrsonima sericea DC. (Malpighiaceae)	0.00	0.04	0.16	Pseudobombax tomentosum (Mart. & Zucc.) A.Robyns (Malvaceae)	2	0.16		
68	Pouteria glomerata (Miq.) Radlk. (Sapotaceae)	0.00	0.04	0.16	Cecropia pachystachya Trécul (Urticaceae)	1	0.08		
69	Erythroxylum daphnites Mart. (Erythroxylaceae)	0.00	0.03	0.08	Dalbergia brasiliensis Vogel (Fabaceae)	1	0.08		
70	Myrtaceae 4	0.00	0.03	0.08	Dalbergia trutescens (Vell.)Britton (Fabaceae)	1	0.08		
71	Duguetia lanceolata A.St.-Hil. (Annonaceae)	0.00	0.03	0.08	Duguetia lanceolata A.St.-Hil. (Annonaceae)	1	0.08		
72	Guettarda viburnoides Cham. & Schitldl. (Rubiaceae)	0.00	0.03	0.16	Erythroxylum daphnites Mart. (Erythroxylaceae)	1	0.08		
73	Calophyllum brasiliense Cambess. (Calophyllaceae)	0.00	0.02	0.16	Eugenia dodonaeifolia Cambess. (Myrtaceae)	1	0.08		
74	Trichilia pallida Sw. (Meliaceae)	0.00	0.02	0.08	Ixora cf. bahiensis (Rubiaceae)	1	0.08		
75	Endlicheria paniculata (Spreng.) J.F.Macbr. (Lauraceae)	0.00	0.02	0.16	Licania sp. (Chrysobalanaceae)	1	0.08		
76	Myrtaceae 2	0.00	0.02	0.08	Machaerium brasiliense Vogel (Fabaceae)	1	0.08		
77	Rudgea viburnoides (Cham.) Benth. (Rubiaceae)	0.00	0.02	0.08	Myrcia splendens (Sw.) DC. (Myrtaceae)	1	0.08		
78	Ardisia glauciflora Urb. (Primulaceae)	0.00	0.02	0.16	Myrtaceae 2	1	0.08		
79	Myrcia splendens (Sw.) DC. (Myrtaceae)	0.00	0.02	0.08	Myrtaceae 4	1	0.08		
80	Ixora cf. bahiensis (Rubiaceae)	0.00	0.01	0.08	Piptadenia gonoacantha (Mart.)J.F.Macbr. (Fabaceae)	1	0.08		
81	Licania sp. (Chrysobalanaceae)	0.00	0.01	0.08	Rubiaceae 1	1	0.08		
Species composition, community and population dynamics of two gallery forests ...

The recruitment rate in the Corrego Fazendinha Gallery Forest exceeded the mortality rate during 2007 and 2011; but mortality was higher than recruitment in the period from 2011 to 2015 (Table 9). In the Corrego Fundo Gallery Forest, mortality exceeded recruitment during both observed periods. Further, gains of basal area were higher than losses in the Corrego Fazendinha Gallery Forest, indicating an increase in carbon stock, while losses in the Corrego Fundo Gallery Forest outpaced its gains (Table 9).

Table 9.
Corrego Fazendinha and Corrego Fundo Gallery Forests tree Demographic Plot. BA is Basal Area.

Period	Mortality Rate [%/yr]	Recruitment Rate [%/yr]	BA Losses [m²/ha/yr]	BA Gains [m²/ha/yr]
Corrego Fazendinha				
2007 - 2011	0.93	2.62	0.51	1.96
2011 - 2015	5.19	1.66	1.6	2.39
Corrego Fundo				
2006 - 2010	2.43	1.5	2.56	1.52
2010 - 2014	2.82	0.85	2.28	1.08

Although both gallery forests are situated in the same region, they show low similarity between them, indicating high beta-diversity of this ecosystem, which might be due to high environmental heterogeneity (Chave 2009), different disturbance regimes (Connell 1978, ...
Mendonça Machado and de Oliveira-Filho 2010), differences in successional stages (Magurran 2011) or neutral factors such as ecological drift and stochasticity (Hubbell 2001). Large numbers of individuals and basal area belonging to common species indicates that the high beta-diversity is due to large number of species represented by few individuals only, which is typical for tropical forests (Condit 2000). High beta-diversity increases the importance for the protection of biotic resources and highlights the demand for further research to understand underlying determinants.

Although study sites were sampled three times during similar periods, forest dynamics show large differences between study sites. Mortality and recruitment rates between 1.5 and 3 % are within the expectations for undisturbed alluvial or gallery forests (Higuchi et al. 2008, Fontes and Teles Walter 2011). Causes for the elevated mortality rate during the second observation period in Corrego Fazendinha Gallery Forest remain unknown, as external disturbances were not registered during the field campaigns, but may be related to extreme water deficits between 2012 and 2015 in Brazil (Getirana 2016). These findings indicate the importance to give once continuity and to amplify these kind of studies, to come to a better understanding of the drivers of forest dynamics that influence the maintenance of biodiversity as well as that ecosystem services such as carbon sequestration in biomass.

Taxa included:

Rank	Scientific Name
species	Acrocomia aculeata
subspecies	Alchornea glandulosa subsp. iricurana
species	Alibertia edulis
species	Andira fraxinifolia
species	Apeiba tibourbou
species	Apuleia leiocarpa
species	Ardisia glauciflora
species	Aspidosperma cylindrocarpon
species	Aspidosperma darienense
species	Aspidosperma olivaceum
genus	Aspidosperma sp1
genus	Aspidosperma sp2
species	Aspidosperma subincanum
species	Astronium fraxinfolium
genus	Astronium sp.
species	genus
-------------------------------	------------------------------
Aureliana velutina	*Calyptanthes sp.*
Banisteriopsis anisandra	*Campomanesia sp.*
Bowdichia virgilioides	*Casearia sp.*
Brosimum gaudichaudii	*Cassia sp.*
Byrsonima sericea	*Cecropia hololeuca*
Callisthene major	*Cecropia pachystachya*
Calophyllum brasiliense	*Cedrela fissa*
Calyptranthes sp.	*Copalera langsdorffii*
Campomanesia velutina	*Cupania vernalis*
Campomanesia xanthocarpa	*Dalbergia brasiliensis*
Campomanesia velutina	*Dalbergia frutescens*
Casearia gossypiosperma	*Dendropanax cuneatus*
Casearia sylvestris	*Dendropanax sp.*
Casearia sylvestris	*Dialium sp.*
Cassia ferruginea	*Dilodendron bipinnatum*
Cecropia hololeuca	*Diospyros brasiliensis*
Cecropia pachystachya	*Diospyros hispida*
Cedrela fissa	*Diospyros sp.*
Campomanesia velutina	*Duguetia lanceolata*
species	Endlicheria paniculata
-----------------------	---
species	Eriotheca candolleana
species	Erythroxylum citrifolium
species	Erythroxylum daphnites
species	Erythroxylum pelleterianum
species	Eugenia dodonaeifolia
species	Eugenia dysenterica
species	Eugenia florida
genus	Eugenia sp.
species	Guapira opposita
genus	Guarea sp.
species	Guatteria sellowiana
species	Guazuma ulmifolia
species	Guettarda viburnoides
species	Handroanthus ochraceus
species	Heteropterys byrsonimifolia
species	Hirtella hebeclada
species	Ilex cerasifolia
genus	Ilex sp.
species	Ixora gardneriana
species	Lacistema hasslerianum
genus	Lacistema sp.
species	Licania kunthiana
genus	Licania sp.
species	Lithraea molleoides
species	Luehea grandiflora
species	Machaerium brasiliense
species	Machaerium isadelphum
species	Machaerium nyctitans
species	Machaerium opacum
genus	Machaerium sp.
species	Machaerium villosum
--------------------------------------	--
species	Maclura tinctoria
genus	Marlieria sp.
species	Matayba floribunda
species	Matayba guianensis
genus	Maytenus sp.
species	Micropholis gardneriana
species	Myracrodruon urundeuva
species	Myrcia guianensis
species	Myrcia lingua
species	Myrcia multiflora
species	Myrcia rostrata
species	Myrcia rufipes
genus	Myrcia sp.
genus	Myrcia sp1
genus	Myrcia sp2
genus	Myrcia sp3
species	Myrcia splendens
species	Myrcia tomentosa
species	Myrsine coriacea
species	Myrsine umbellata
family	Myrtaceae sp.
species	Nectandra oppositifolia
species	Ocotea corymbosa
species	Ouratea castaneifolia
genus	Ouratea sp.
species	Peltophorrum dubium
species	Pera glabrata
species	Picramnia parvifolia
species	Piper arboreum
species	Piptadenia gonoacantha
species	Genus/Naming Details
---------------------------------	---------------------------------------
Plathymenia reticulata	
Platypodium elegans	
Pouteria glomerata	
Protium heptaphyllum	
Pseudobombax tomentosum	
Psidium guajava	
Psidium rufum	
Psidium sp.	
Pterogynne sp.	
Qualea grandiflora	
Qualea multiflora	
Qualea multiflora subsp. pubescens	
Qualea sp.	
Randia armata	
Rollinia laurifolia	
Rollinia sp.	
Rubiaceae sp.	
Rudgea viburnoides	
Salacia elliptica	
Schefflera morotonti	
Sclerolobium paniculatum	
Senna macranthera	
Senna sp1	
Senna sp2	
Simarouba amara	
Siparuna guianensis	
Sterculia striata	
Swartzia myrtifolia	
Swartzia sp.	
Tabebuia impetiginosa	
Tabebuia serratifolia	
species	Tapirira guianensis
-----------------	-----------------------
species	Tapirira obtusa
species	Terminalia argentea
species	Terminalia glabrescens
species	Trichilia pallida
genus	Trichilia sp.
genus	Vernonia sp.
species	Virola sebifera
species	Vitex polygama
species	Vitex sellowiana
species	Xylopia aromatica
species	Xylopia sericea
species	Xylosma prockia
species	Zanthoxylum rhoifolium
species	Zanthoxylum riedelianum

Usage rights

Use license: Creative Commons Public Domain Waiver (CC-Zero)

IP rights notes: This dataset can be freely used, provided this Data Paper is cited.

Data resources

Data package title: Species composition, community and population dynamics of two gallery forests from the Brazilian Cerrado domain

Resource link: http://187.32.44.123/ipt/resource.do?r=fazendinha

Alternative identifiers: http://www.gbif.org/publisher/9e1ad169-1f58-48fb-ad7a-3b2b4544d875

Number of data sets: 2

Data set name: Community Dynamics of Corrego Fazendinha Gallery Forest

Download URL: http://187.32.44.123/ipt/resource.do?r=fazendinha, http://www.gbif.org/dataset/5ddd59c2-c291-4a74-8a25-933bf873d4a4
Data format: Darwin Core Archive DwC-A

Description: Occurrences, basal area and height of 1862 trees and treelets identified during three census distributed within all 50 subplots from the 0.5 ha Corrego Fazendinha Gallery Forest Dynamics Plot, Quartel Geral, Minas Gerais, Brazil. Dataset (Suppl. material 1) consists of occurrence.txt (DwC-Attributes id, modified, language, rights, rightsHolder, bibliographicCitation, references, datasetName, basisOfRecord, occurrenceID, occurrenceRemarks, eventDate, decimalLatitude, decimalLongitude, acceptedNameUsageID, parentNameUsageID, nameAccordingToID, scientificName, acceptedNameUsage, parentNameUsage, nameAccordingTo, higherClassification, kingdom, class, order, family, genus, subgenus, specificEpithet, infraSpecificEpithet, taxonRank, scientificNameAuthorship, nomenclaturalCode, taxonomicStatus), meta.xml, measurementOrFact.txt (containing the DwC-Attributes id, measurementType, measurementUnit, measurementDeterminedDate, measurementMethod, measurementValue, measurementRemarks, locationID), eml.xml, ressourcerelationship.txt (containing the DwC-Attributes id, locationID, resourceRelationshipIDresourceID, relatedResourceID, Role). Please see http://rs.tdwg.org/dwc/ for details.

Column label	Column description
id	Occurrence identifier

Data set name: Community Dynamics of Corrego Fundo Gallery Forest

Download URL: http://www.gbif.org/dataset/a68403f2-b43f-4747-bd54-1e3eeb03dd46, http://187.32.44.123/ipt/resource.do?r=fundo

Data format: Darwin Core Archive DwC-A

Description: Occurrences, basal area and height of 1551 trees and treelets identified during three census distributed within all 49 subplots from the 0.49 ha Corrego Fazendinha Gallery Forest Dynamics Plot, Quartel Geral, Minas Gerais, Brazil. Dataset (Suppl. material 2) consists of the occurrence.txt (DwC-Attributes id, modified, language, rights, rightsHolder, bibliographicCitation, references, datasetName, basisOfRecord, occurrenceID, occurrenceRemarks, eventDate, decimalLatitude, decimalLongitude, acceptedNameUsageID, parentNameUsageID, nameAccordingToID, scientificName, acceptedNameUsage, parentNameUsage, nameAccordingTo, higherClassification, kingdom, class, order, family, genus, subgenus, specificEpithet, infraSpecificEpithet, taxonRank, scientificNameAuthorship, nomenclaturalCode, taxonomicStatus), meta.xml, measurementOrFact.txt (containing the DwC-Attributes id, measurementType, measurementUnit, measurementDeterminedDate, measurementMethod, measurementValue, measurementRemarks, locationID), eml.xml, ressourcerelationship.txt (containing the DwC-Attributes id, locationID, resourceRelationshipIDresourceID, relatedResourceID, Role). Please see http://rs.tdwg.org/dwc/ for details.
Acknowledgements

MG is grateful for a SIF/ArcelorMittal Bioflorestas scholarship; JAAMN thanks CNPq for a productivity fellowship. ArcelorMittal Bioflorestas, FAPEMIG and CNPq financed this study.

Author contributions

JAAMN and RPA designed the study, MG, EDS, LCBM and ASM collected the data, ASM generated the maps, EDS computed the forest dynamics and MG formatted the data and wrote the paper with important contributions from all other authors.

References

- APG III (2009) An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG III. Botanical Journal of the Linnean Society 161 (2): 105-121. DOI: 10.1111/j.1095-8339.2009.00996.x
- Batlle-Bayer L, Batjes N, Bindraban P (2010) Changes in organic carbon stocks upon land use conversion in the Brazilian Cerrado: A review. Agriculture, Ecosystems & Environment 137: 47-58. DOI: 10.1016/j.agee.2010.02.003
- Boyle B, Hopkins N, Lu Z, Raygoza Garay J, Mozzerin D, Rees T, Matasci N, Narro ML, Piel WH, Mckay SJ, Lowry S, Freeland C, Peet RK, Erunst BJ (2013) The taxonomic name resolution service: an online tool for automated standardization of plant names. BMC Bioinformatics 14 (1): 16. DOI: 10.1186/1471-2105-14-16
- Chave J (2009) Competition, Neutrality, and Community Organization. The princeton Guide of Ecology. URL: http://dx.doi.org/10.1515/9781400833023.264 DOI: 10.1515/9781400833023.264
- Colwell RK, Coddington JA (1994) Estimating Terrestrial Biodiversity through Extrapolation. Philosophical Transactions of the Royal Society B: Biological Sciences 345 (1311): 101-118. DOI: 10.1098/rstb.1994.0091
- Condit R (2000) Spatial Patterns in the Distribution of Tropical Tree Species. Science 288 (5470): 1414-1418. DOI: 10.1126/science.288.5470.1414
- Connell JH (1978) Diversity in Tropical Rain Forests and Coral Reefs. Science 199 (4335): 1302-1310. DOI: 10.1126/science.199.4335.1302
- Couvet D, Devictor V, Jiguet F, Julliard R (2011) Scientific contributions of extensive biodiversity monitoring. Comptes Rendus Biologies 334: 370-377. DOI: 10.1016/j.crvi.2011.02.007
- FAO (2010) Global Forest Ressource Assessment. http://www.fao.org/docrep/013/i1757e/i1757e.pdf. Accession date: 2016 3 14.
• Fidelis A, Lyra MFdS, Pivello VR (2012) Above- and below-ground biomass and carbon dynamics in Brazilian Cerrado wet grasslands. Journal of Vegetation Science 24 (2): 356-364. DOI: 10.1111/j.1654-1103.2012.01465.x

• Fontes CG, Teles Walter BM (2011) Dinâmica do componente arbóreo de uma mata de galeria inundável (Brasília, Distrito Federal) em um período de oito anos. Brazilian Journal of Botany 34 (2): 145-158. DOI: 10.1590/s0100-84042011000200002

• Getirana A (2016) Extreme Water Deficit in Brazil Detected from Space. Journal of Hydrometeorology 17 (2): 591-599. DOI: 10.1175/jhm-d-15-0096.1

• Higuchi P, Oliveira-Filho A, Bebber D, Brown N, Silva AC, Machado EM (2008) Spatio-temporal patterns of tree community dynamics in a tropical forest fragment in Southeast Brazil. Plant Ecology 199 (1): 125-135. DOI: 10.1007/s11258-008-9418-x

• Hubbell SP (2001) The unified neutral theory of biodiversity and biogeography. Princeton University Press, Oxford, 392 pp.

• Jantz S, Barker B, Brooks T, Chini L, Huang Q, Moore R, Noel J, Hurtt G (2015) Future habitat loss and extinctions driven by land-use change in biodiversity hotspots under four scenarios of climate-change mitigation. Conservation Biology 29 (4): 1122-1131. DOI: 10.1111/cobi.12549

• Lapola D, Martinelli L, Peres C, Ometto JHB, Ferreira M, Nobre C, Aguiar A, Bustamante MC, Cardoso M, Costa M, Joly C, Leite C, Moutinho P, Sampaio G, Strassburg BN, Vieira IG (2013) Pervasive transition of the Brazilian land-use system. Nature Climate Change 4 (1): 27-35. DOI: 10.1038/nclimate2056

• Londe V, Silva JCy (2014) Characterization of Poaceae (grass) species as indicators of the level of degradation in a stretch of riparian forest in Matutina, Brazil. Acta Botanica Brasileira 28 (1): 102-108. DOI: 10.1590/s0102-33062014000100010

• Lorenzi H (Ed.) (1992) Árvores brasileiras: manual de identificação e cultivo de plantas arbóreas nativas do Brasil. [Brazilian Trees: Identification and cultivation guide for native tree from Brazil]. 1. Plantaram, Nova Odessa, 352 pp.

• Magurran AE (2011) Measuring biological diversity in time (and space).Pp. 85-94. In: Magurran AE, McGill BJ (Eds) Biological Diversity—frontiers in measurement and assessment. New York, 85-94 pp.

• Mendonça Machado EL, de Oliveira-Filho AT (2010) Spatial patterns of tree community dynamics are detectable in a small (4 ha) and disturbed fragment of the Brazilian Atlantic forest. Acta Botanica Brasileira 24 (1): 250-261. DOI: 10.1590/s0102-33062010000100027

• Moreira-Burger D, Delitti WC (1999) Fitomassa epigéa da mata ciliar do rio Mogi-Guaçu, Itapira - SP. Revista Brasileira de Botânica 22 (3): 429-435. DOI: 10.1590/s0100-84041999000300011

• Myers N, Mittermeier R, Mittermeier C, da Fonseca GB, Kent J (2000) Biodiversity hotspots for conservation priorities. Nature 403 (6772): 853-858. DOI: 10.1038/35002501
• Paiva AO, Rezende AV, Pereira RS (2011) Estoque de carbono em cerrado sensu stricto do Distrito Federal. Revista Árvore 35 (3): 527-538. DOI: 10.1590/s0100-67622011000300015
• Peel MC, Finlayson BL, McMahon TA (2007) Updated world map of the Köppen-Geiger climate classification. Hydrology and Earth System Sciences Discussions 4 (2): 439-473. DOI: 10.5194/hessd-4-439-2007
• Pocock MO, Newson S, Henderson I, Peyton J, Sutherland W, Noble D, Ball S, Beckmann B, Biggs J, Brereton T, Bullock D, Buckland S, Edwards M, Eaton M, Harvey M, Hill M, Horlock M, Hubble D, Julian A, Mackey E, Mann D, Marshall M, Medlock J, O’Mahony E, Pacheco M, Porter K, Prentice S, Procter D, Roy H, Southway S, Shortall C, Stewart AA, Wembridge D, Wright M, Roy D (2015) Developing and enhancing biodiversity monitoring programmes: a collaborative assessment of priorities. Journal of Applied Ecology 52 (3): 686-695. DOI: 10.1111/1365-2664.12423
• Rossi RD, Martins CR, Viana PL, Rodrigues EL, Côrtes Figueira JE (2014) Impact of invasion by molasses grass (Melinis minutiflora P. Beauv.) on native species and on fires in areas of campo-cerrado in Brazil. Acta Botanica Brasilica 28 (4): 631-637. DOI: 10.1590/0102-33062014abb3390
• Sheil D (1995) Evaluating Turnover in Tropical Forests. Science 268 (5212): 894-894. DOI: 10.1126/science.268.5212.894
• Silveira L, Sollmann R, Jâcomo AA, Diniz Filho JF, Tôrres N (2014) The potential for large-scale wildlife corridors between protected areas in Brazil using the jaguar as a model species. Landscape Ecology 29 (7): 1213-1223. DOI: 10.1007/s10980-014-0057-4
• Veloso HP, Rangel Filho ALR, Lima JC (1991) Classificação da Vegetação Brasileira, adaptada a um sistema universal. [Classification of the Brazilian Vegetation, adapted to an universal system]. Ministério de Economia, Fazenda e Planejamento, 124 pp.

Supplementary materials

Suppl. material 1: Community Dynamics of Corrego Fazendinha Gallery Forest

Authors: Markus Gastauer, Roosevelt de Paula Almado, Angela S. Miazaki, Écio D. Souza, Luiz C.B. Moreira & João A. A. Meira-Neto
Data type: Darwin Core Archive
Filename: dwca-fazendinha.zip - Download file (151.03 kb)

Suppl. material 2: Community Dynamics of Corrego Fundo Gallery Forest

Authors: Markus Gastauer, Roosevelt de Paula Almado, Angela S. Miazaki, Écio D. Souza, Luiz C.B. Moreira & João A. A. Meira-Neto
Data type: Darwin Core Archive
Filename: dwca-fundo.zip - Download file (129.87 kb)