A quantum relay chip based on telecommunication integrated optics technology

A Martin, O Alibart, M P De Micheli, D B Ostrowsky and S Tanzilli

Laboratoire de Physique de la Matière Condensée, CNRS UMR 7336, Université de Nice—Sophia Antipolis, Parc Valrose, 06108 Nice Cedex 2, France
E-mail: sebastien.tanzilli@unice.fr

New Journal of Physics 14 (2012) 025002 (13pp)
Received 2 September 2011
Published 1 February 2012
Online at http://www.njp.org/
doi:10.1088/1367-2630/14/2/025002

Abstract. We investigate an integrated optical circuit on lithium niobate designed to implement a teleportation-based quantum relay scheme for one-way quantum communication at a telecom wavelength. Such an advanced quantum circuit merges for the first time both optical–optical and electro-optical nonlinear functions necessary for implementing the desired on-chip single-qubit teleportation. On the one hand, spontaneous parametric down-conversion is used to produce entangled photon pairs. On the other, we take advantage of two photon routers, consisting of electro-optically controllable couplers, to separate the paired photons and to carry out a Bell state measurement, respectively. After having validated all the individual functions in the classical regime, we performed a Hong–Ou–Mandel experiment to mimic a one-way quantum communication link. Such a quantum effect, seen as a prerequisite towards achieving teleportation, has been obtained at one of the routers when the chip was coupled to an external single-photon source. The two-photon interference pattern shows a net visibility of 80%, which validates the proof of principle of a ‘quantum relay circuit’ for qubits carried by telecom photons. In the case of optimized losses, such a chip could increase the maximal achievable distance of one-way quantum key distribution links by a factor of 1.8. Our approach and results emphasize the potential of integrated optics on lithium niobate as a key technology for future reconfigurable quantum information manipulation.

1 Author to whom any correspondence should be addressed.

New Journal of Physics 14 (2012) 025002
1367-2630/12/025002+13$33.00 © IOP Publishing Ltd and Deutsche Physikalische Gesellschaft
1. Introduction

The field of quantum information relies on the attractive possibility of exploiting the quantum realm to accomplish tasks not accessible to traditional information processing and communication systems [1]. This prospect has, over the last two decades, attracted wide interest among scientists from a wide range of disciplines including physics, mathematics, information theory and engineering [2]. Quantum superpositions of states and entanglement are now seen as resources to treat quantum bits (qubits) of information [3]. From the fundamental side, entanglement permitted, for instance, testing of non-locality over long distances ([4–6]; [7] and references therein). From the more applied side, quantum key distribution offers a secure means of establishing secret keys between distant partners, useful for one-time-pad encryption, with a security level unattainable with classical methods [8, 9]. Despite encouraging results, no actual breakthrough, in terms of maximal distance separating the partners, has been achieved so far. Basically, inherent losses in fiber channels and dark-counts in the detectors prevent extending the distance to more than 200 km [10]. A viable possibility for extending the distance is based on quantum relay schemes, where the basic idea is to break the overall channel into several shorter sub-sections [11]. Here, another quantum communication protocol, known as quantum teleportation, lies at the heart of quantum relays [12].

While these are seminal experiments, it is only through a technology such as integrated optics that one can progress towards practical, standardized, low-cost, interconnectable and reconfigurable elements. Similarly to the extraordinary technological developments achieved in fiber optical telecommunications, integrated optics has proven to be a powerful enabling technology for realizing guided-wave optical quantum devices [13], such as high-efficiency entanglement sources [14, 15] as well as elementary quantum functions, such as quantum interfaces [16] and memories [17]. Today’s integration efforts are moving one step further towards merging, onto the same chip, several elementary functions so as to achieve complex operations. For instance, Shor’s quantum factoring [18] and two-photon quantum random walks [19] have been demonstrated using dedicated integrated quantum optical circuits. In the framework of long-distance quantum communication, we show in this paper how integrated optics on lithium niobate permits realizing a telecom-like quantum relay chip that could achieve the quantum relay function, in a compact, stable, efficient and user-friendly fashion. Such a novel quantum relay circuit merges, for the first time, both nonlinear electro-optical and optical–optical effects, in view of offering a reliable way of achieving long-distance quantum communication. Furthermore, as will be discussed in the following, integrated optics on lithium niobate offers the possibility of implementing electro-optically controllable functions, such as

New Journal of Physics 14 (2012) 025002 (http://www.njp.org/)
Figure 1. Schematics of the quantum relay chip with its two electro-optically controllable couplers C\textsubscript{1} and C\textsubscript{2}. D\textsubscript{a} and D\textsubscript{b} are two detectors responsible for the Bell state measurement (BSM). At the end of the quantum channel, Bob’s detector is triggered by the AND-gate (&) placed after these two detectors. The chip operation fits perfectly with the point-to-point telecommunication approach for which a classical heralding signal propagates through the channel along with the qubit.

We start by describing our optical device with which on-chip teleportation could be realized, and briefly discuss the extension of the maximum achievable distance in one-way quantum communication. Then, we present the classical characterizations of the two implemented nonlinear effects. Finally, we demonstrate the proof of principle of the quantum relay function, based on the so-called Hong–Ou–Mandel (HOM) two-photon interference effect, which lies at the heart of the teleportation protocol ([20–22]; [23] and references therein).

2. A quantum relay chip based on integrated optics

Figure 1 depicts the chosen integrated optical design for merging all the necessary functions on the same chip for enabling the process of teleportation, which lies at the heart of the quantum relay operation [11, 23]. Let us suppose that Alice sends an unknown qubit \(a \), for instance encoded on the time-bin observable [3], carried by a telecom wavelength photon, traveling along a fiber quantum channel connected to port 1 of the relay chip. At the same time, a photon, from a pump laser pulse emitting in the visible range of wavelength, synchronized with the arrival time of qubit \(a \), enters the nonlinear optical section of the chip (port 2). This section consists of a channel waveguide integrated on periodically poled lithium niobate (PPLN). Thanks to an appropriate choice of the poling period, this pump photon can be converted, by spontaneous parametric down-conversion (SPDC), into a pair of, say time-bin, entangled photons \(b \) and \(c \) whose wavelengths are identical to that of the photon carrying qubit \(a \) [14]. Then, the first 50/50 directional coupler (C\textsubscript{1}) is used to separate the created pairs in such a way that photons \(a \) (sent by Alice) and \(b \) enter the second 50/50 coupler (C\textsubscript{2}) from each port. Note that the aforementioned synchronization requirement between \(a \) and \(b \) ensures that these photons enter C\textsubscript{2} simultaneously within their coherence time. Here, C\textsubscript{2} plays the role of a Bell state measurement (BSM) apparatus, which makes the latter requirement a crucial feature for having this operation working properly. In this case, if the conditions on the polarization states, central wavelengths and coherence times are met, qubits \(a \) and \(b \) can be projected onto one of the four entangled Bell states identified when two detectors placed at the output of the chip (D\textsubscript{a} and D\textsubscript{b})
in figure 1) fire simultaneously and lead to a registered coincidence (\&) [21]. As a result of this measurement, the qubit initially carried by photon \textit{a} has been teleported to photon \textit{c} that exits the chip at port \textit{C}, without, theoretically, any loss in its quantum properties [12]. This is made possible since qubits \textit{c} and \textit{b} are initially entangled, meaning, from the quantum point of view, that the key resource of entanglement has been consumed during the process. In addition, note that the initial qubit has not been cloned since photons \textit{a} and \textit{b} have been annihilated. As a consequence, the resulting electrical trigger from the measurement is the signature not only of the presence of the initial carrier at the relay chip location, but also of the departure of a photon carrying the same qubit that remains unknown. This allows triggering Bob’s detectors at the end of the channel, thereby increasing the overall channel signal-to-noise ratio and consequently the communication distance.

This ‘folded version’ of the usual quantum relay is well adapted to the point-to-point telecommunication approach, i.e. a classical heralding signal propagating through the channel along with the teleported qubit. Moreover, it still improves the distance of any one-way quantum communication protocol and can obviously be more straightforwardly integrated within a telecom-like optical circuit. Figure 2 provides a comparison between normalized bit rates as a function of the distance for direct, as well as quantum relay-based, one-way quantum communication links. On the one hand, it shows that a chip, ideal in terms of both coupling and propagation losses, could improve the distance up to a factor of 1.8. On the other, a realistic chip, featuring loss figures as described in the following section, provides an increase of the distance by a factor of 1.4. In addition, these are compared with the usual lossless quantum relay scheme [11].

3. Realization and classical characterization

From the technological side (see figure 1), the chip features a waveguide quantum circuit consisting of a photon-pair creation zone and two tunable couplers merged onto a 5 cm long sample.

Generally speaking, the waveguiding structures are obtained by soft proton exchange (SPE) [24]. This technique enables strong light confinement (\(\delta n \simeq 2.2 \times 10^{-2}\)) over long lengths, associated with both low propagation losses (\(\sim 0.3 \text{ dB cm}^{-1}\)) and very high conversion efficiencies when nonlinear optical processes are implemented using PPLN sections [14]. However, this technique leads only to an extraordinary index increase, meaning that only TM polarization modes can be guided in such structures. As a consequence, SPE waveguide devices cannot handle polarization qubits, as opposed to titanium in-diffused structures [15, 25].

Considering the photon-pair generation section, the SPDC process is ruled by energy and momentum conservation laws. In this waveguide configuration, the latter is achieved using the so-called quasi-phase matching technique which compensates periodically for the dispersion between the three interacting photons (pump, \textit{b} and \textit{c}). This allows phase-matching any desired wavelengths when the poling period is properly engineered. In our case, thanks to a poling period of 16.6 \(\mu \text{m}\), the photon-pair source is designed to ensure the conversion of 766 nm pump photons into two degenerate photons at 1532 nm (telecom C-band). Photon-pair sources based on SPE:PPLN waveguides have been demonstrated to be highly efficient and excellent providers of photonic entanglement [14, 16, 27]. For our chip, we used a 1 cm long SPE:PPLN section, which leads to the SPDC response shown in figure 3 when pumped by a picosecond regime laser at 766 nm and heated at a temperature of 80° C. One can see that the SPDC signal is distributed.
Figure 2. Simulation of the normalized key rates as a function of the quantum communication distances for various one-way link configurations. Standard figures, used here, are fiber losses of $\sim 0.2 \text{ dB km}^{-1}$, detectors’ dark-count levels of $\sim 10^{-6} \text{ ns}^{-1}$ associated with 10% detection efficiencies (obtainable from commercially available InGaAs avalanche photodiode modules), and a quantum teleportation fidelity of 0.8 (as obtained in [21]). This simulation proposes a comparison between a direct quantum communication link without any relay (red), and a standard quantum relay protocol based on the teleportation scheme (violet), together with its ‘folded-version’ implemented using the actual relay chip (blue). In addition, the performance of a lossless relay chip is provided in order to show the potential improvement related to better technological fabrication of the chip (green). Absolute key rates can be obtained by multiplying the numbers on the y-axis by the pump laser repetition rate.

at the three output ports of the chip due to the presence of the two couplers. To characterize more completely the nonlinear interaction, the sum of these three contributions has been computed and added to the picture as the pink/square curve. We get here, as expected, degenerate paired photons around 1532 nm, and the obtained spectral full-width at half-maximum (FWHM) is of 80 nm.

The directional couplers C_1 and C_2, represented in figure 1, consist of two waveguides integrated close to each other over a given length [28–30]. If the spacing between the waveguides is sufficiently small, all the energy can be transferred from one to the other through evanescent coupling after a characteristic length. Afterwards, a controllable decrease of the coupling ratio is achieved by detuning the propagation constant between the two waveguides by means of the nonlinear electro-optical effect. Numerical simulations have been carried out using the beam propagation method in order to choose and optimize the bends, the spacing between the two waveguides and the associated coupling length. Here the radius of the bends has to be carefully chosen since too small radii would introduce important losses, while the
Figure 3. SPDC spectra from the nonlinear waveguide zone. Outputs A and B correspond to the top outputs where the BSM is to be performed, while the output C is the bottom output for the teleported qubit. Faithful characterization of the nonlinear interaction is provided by the sum of these three outputs. The difference between the three outputs is due to the unwanted broadband wavelength sensitivity of the couplers. This behavior is explained by irregularities in the fabrication process leading to asymmetric waveguides. Moreover, the usual Cerenkov effect is observed on the left side of the fluorescence peaks [26].
Figure 4. Characterization of the coupling ratios obtained with couplers C\textsubscript{1} and C\textsubscript{2} in both narrowband classical light (lines) and broadband single-photon light (crosses). The difference in coupling performance between C\textsubscript{1} and C\textsubscript{2} for voltages <40 V is simply due to irregularities in the fabrication process.

loading. Moreover, note that slight misalignments between the electrodes and the couplers at the fabrication stage can also lead to increased control voltages. These results show that both the obtained couplers fulfill the requirements, i.e. 50/50 ratios, necessary for implementing on-chip quantum relay function.

Eventually, loss measurements at 1532 nm over the entire chip length have been carried out and shown to be of the order of 9 dB between any couple of input to output fiber ports. These losses are in good agreement with the simulations we performed, taking into account input and output couplings (2 \times 3 dB, for fiber-to-chip and conversely) and propagation losses over the entire chip (2.5 dB). Note that integrating segmented taper waveguides at all input/output ports could help maximize the mode overlap between the fibers and the waveguides and therefore reduce the coupling losses by more than 1 dB [32].

4. Proof of principle of the quantum relay function using the Hong–Ou–Mandel effect

Photon coalescence (or two-photon interference) based on the HOM effect lies at the heart of quantum operations and is seen as the major first step towards achieving teleportation [20, 33]. Here, to demonstrate a proof of principle of a quantum relay function-based on-chip BSM, we perform a HOM interference, or the so-called HOM-dip, at the chip coupler C\textsubscript{2} between two independent photons, namely one external single photon and one photon out of the pair created on the chip.

To simulate the single photon coming from Alice’s side, we use an external PPLN waveguide-based source in the heralded single-photon configuration, also producing degenerate paired photons at 1532 nm when pumped at 766 nm [23]. We select, within the created SPDC
Figure 5. Coalescence experiment based on one external PPLN waveguide-based source and the quantum relay chip pumped by a single picoseconds laser. A silicon avalanche photo-diode (APD) (Si-APD, not represented) is employed to trigger the four InGaAs-APDs as a laser clock random divider. D_a, D_b and D_c are used to record threefold coincidences, while the non-labeled detector is used to monitor the stability of the experiment. I: isolator; R: retro-reflector; C: circulator; &: AND-gate. The InGaAs-APDs feature 10% quantum efficiency and a dark-count probability of about 10^{-5} ns$^{-1}$.

As depicted in figure 5, we use a picosecond pump laser (Coherent MIRA 900-D) emitting 2.5 ps duration, time-bandwidth limited ($\Delta \lambda_p = 250$ pm) pulses, at the wavelength of $\lambda_p = 766$ nm and at a repetition rate of 76 MHz. This laser is used to pump both the external PPLN waveguide source and the quantum relay chip to facilitate the synchronization procedure described in section 2. The laser delivers mean power values of 1.5 and 7 mW to the single-photon source and the on-chip PPLN section, respectively. The photon pairs (b and c) out of the on-chip PPLN section are randomly separated at the first coupler C_1. At the output of the chip, another set of filters, identical to the previous one, is used to post-select, on the one hand, couples of photons b and a at 1530 nm through output ports A and B and, on the other, the complementary photons c at 1534 nm through port C of the chip.

To observe the two-photon interference, or HOM-dip, at coupler C_2, threefold coincidences are recorded using three InGaAs-APD modules (idQuantique-201) placed at the output of the

New Journal of Physics 14 (2012) 025002 (http://www.njp.org/)
chip. Since the three detectors were not able to handle trigger rates above 1 MHz, they are
triggered by an Si–APD placed in the path of an attenuated fraction of the pump beam (not
represented in figure 5) to obtain an average triple gate opening at 600 kHz, randomly selected
from the 76 MHz laser repetition rate.

When considering two-photon interference requirements, indistinguishability in terms of
energy is ensured by the filtering stages, while that associated with polarization states is ensured
by the properties of the waveguide structures themselves, since they support TM modes only.
The expected HOM-dip visibility is nevertheless limited by the time uncertainty of the two
photons entering coupler C₂, which reads
\[
V_{\text{uncert}} = \frac{1}{\sqrt{\left(\frac{\tau_{\text{uncert}}}{\tau_c}\right)^2 + 1}},
\]
in which, considering our pulsed configuration, \(\tau_{\text{uncert}}\) and \(\tau_c\) represent the pulse duration of the
pump laser and the interfering photons’ coherence times, respectively. Note that \(\tau_{\text{uncert}}\) takes
into account any broadening of the pump. Here, in the picosecond regime, the contribution of
the dispersion over the chip length to the actual pulse duration is negligible. For this reason,
the 1530 nm filters, at the joint outputs A and B, exhibit a bandwidth of 200 pm, to reach
photon coherence times of 17.3 ps, corresponding to a maximal achievable visibility close to
100%. Note that the 1534 nm filters feature a 800 pm bandwidth, i.e. four times larger than the
aforementioned 200 pm bandwidth, to maximize the threefold coincidence rate.

Moreover, the visibility of the dip also depends strongly on the statistics of the two single
photons both entering one input of the coupler C₂. The visibility of the HOM-dip is therefore
given by
\[
V = \frac{P_{\text{c max}}^c - P_{\text{c min}}^c}{P_{\text{c max}}^c},
\]
where \(P_{\text{c max}}^c\) and \(P_{\text{c min}}^c\) represent the probability of coincidence outside and inside the dip,
respectively. For a low mean number of photons, these two probabilities are approximated by
\[
P_{\text{c min}}^c = P_{0,a} P_{2,b} + P_{2,a} P_{0,b}
\]
and
\[
P_{\text{c max}}^c = P_{1,a} P_{1,b} + P_{0,a} P_{2,b} + P_{2,a} P_{0,b},
\]
where \(P_{n,j}\) represent the probability of having \(n\) photons in the coupler input arm \(j = a, b\). We
can see that the maximum attainable visibility is limited by \(P_{\text{c min}}^c\), or in other words, by multiple
pair events arising from one source \((P_{2,j})\). The latter figure depends on the photon number
distribution of the considered photon-pair generators.

In our experimental configuration, the paired photons are emitted by SPDC. They are then
filtered down to the time-bandwidth limit with respect to the pump pulse duration. The photon
number distributions have been characterized for each source, and both feature, as expected,
thermal photon-pair distributions [35]. We define \(N_a\) and \(N_b\) as the average numbers of photon-
pairs created per pump pulse out of Alice’s and the chip generators, respectively. If we simply
take into account twofold coincidences between detectors \(D_a\) and \(D_b\), a theoretical visibility
of 33% can be reached when \(N_a = N_b\), as described in [36]. To improve the visibility figure,
threefold coincidences have to be measured between the three detectors placed at the output
of the chip. Consequently, the on-chip generator distribution follows that of a single-photon
Maximal visibility as a function of the average number of photons N_b generated in the chip and the average photon number N_a dispatched by Alice’s source. Regarding the experimental setup, the mean pump powers of 1.5 and 7 mW in front of Alice’s source and of the on-chip PPLN section lead to $N_a = 0.05$ and $N_b = 0.02$, respectively. The latter values allow reaching a theoretical visibility of 75% (where the white dashed lines cross each other) while maintaining a reasonable coincidence rate.

Source exhibiting a thermal statistics in the heralded regime [34, 37]. This permits reducing the probability $P_{0,b}$ associated with no photon-pair events (see equations (3) and (4)). Figure 6 presents the maximal achievable visibility obtained when solving equation (2) as a function of N_a and N_b in the threefold coincidence regime. In this case, mean pump powers of 1.5 and 7 mW in front of Alice’s and the chip generators, corresponding to $N_a = 0.05$ and $N_b = 0.02$, respectively, allow improving the theoretical visibility to 75%. Finally, note that reaching 100% visibility is possible when $P_{0,a} = P_{0,b} = 0$, corresponding to the case when both photon sources are operated with thermal distributions and in the heralded regime [36].

Figure 7 represents the evolution of the effective threefold coincidence rate, measured as a function of the path length difference between the two interfering photons. The path length is adjusted using a retro-reflector (R) placed in front of the chip, as depicted in figure 5. When the two photons are made indistinguishable in terms of arrival times at the coupler C2, a reduction of 27% ± 10% in the raw threefold coincidence rate is observed. After subtraction of the accidental events due to both dark-count/dark-count and photon/dark-count contributions, we reach a net visibility of 79% ± 25%, which perfectly matches the above theoretical description and what we expect from figure 6. Furthermore, an FWHM of 6 mm is obtained, corresponding to a coherence time of about 20 ps, which is in good agreement with the photons’ coherence time of 17 ps associated with the 200 pm bandwidth filters.

Both the large error bars and the low raw visibility are essentially due to a non-optimal detection scheme leading to a very low threefold coincidence rate. These figures could be highly improved by the use of a new generation of InGaAs detectors capable of being triggered at higher rates up to 100 MHz. Compared to our current detection scheme that allows exploiting less than 1% of the laser pulses, such modules would make it possible to attain a two order of
Figure 7. Threefold coincidence rate as a function of the path length difference between the two interfering photons. The Gaussian fit of the interference pattern shows a raw (net) visibility of $27\% \pm 10\%$ ($79\% \pm 25\%$).

magnitude improvement of the threefold coincidence rate. This would enable the realization of the same experiment with a substantial reduction of both the error bars and the integration times. Eventually, this would allow taking into account the heralding signal from Alice, enabling one to achieve the theoretical net visibility of 100%.

5. Conclusion and perspectives

We have demonstrated that all the elements for implementing an integrated quantum relay circuit have been designed and merged onto a single chip. Each optical function has been tested separately, namely the photon-pair source and the photon routers. The on-chip source emits paired photons by SPDC within the telecom C-band, while the couplers show a 50/50 ratio when controlled using electro-optical means. Using such a chip, we also demonstrated a proof-of-principle experiment, based on the so-called HOM two-photon interference effect, which is seen as the major preliminary step towards achieving teleportation. We obtained in this quantum regime a HOM-dip at the second router of the chip featuring 79% net visibility using two independent single photons, one external and one out of the on-chip created pairs. This result, together with the width of the dip, is in good agreement with the theoretical description associated with our experimental configuration. With our non-ideal chip, presenting rather high overall losses, the achievable quantum communication distance could possibly be augmented by a factor of 1.4, whereas an optimized device could lead to a factor of 1.8.

We believe that utilizing, for the first time, both nonlinear optical–optical and electro-optical effects provides a significant demonstration of the applicability of integrated optical technology to lithium niobate for quantum information treatment and applications. Current work now consists in improving the overall chip design to obtain much lower fiber-to-fiber
losses regarding any input/output couple, which would permit realizing a true teleportation experiment. Future directions would lead to designing a wavelength demultiplexing module at the C\textsubscript{1} location that would allow exploiting every created pair in the nonlinear section. On the other hand, suitable adaptation of the deposited electrodes on the routers would enable the design of novel circuits featuring reconfigurability capabilities, offering new perspectives in the field. The on-chip and on-demand generation of various photon-number states dedicated to quantum logic gates operation could be envisioned [13].

Acknowledgments

The authors thank G Bertocchi and S Tascu for their help in chip manufacturing, P Baldi and F Doutre for discussions, M Al Khalfioui for the micro-soldering of the electrodes and G Sauder for his support in software development. The authors also acknowledge the CNRS, the University of Nice—Sophia Antipolis, the Agence Nationale de la Recherche for the ‘e-QUANET’ project (grant agreement ANR-09-BLAN-0333-01), the European ICT-2009.8.0 FET Open program for the ‘QUANTIP’ project (grant agreement 244026), the Conseil Regional PACA for the Volet Exploratoire project ‘QUANET’ and the Foundation iXCore pour la Recherche for financial support.

References

[1] Nielsen M A and Chuang I L 2010 Quantum Computation and Quantum Information (New York: Cambridge University Press)
[2] Zoller P et al 2005 Quantum information processing and communication Eur. Phys. J. D 36 203–28
[3] Tittel W and Weihs G 2001 Photonic entanglement for fundamental tests and quantum communication Quantum Inf. Comput. 1 3–56
[4] Gisin N, Ribordy G, Tittel W and Zbinden H 2002 Quantum cryptography Rev. Mod. Phys. 74 145–95
[10] Takesue H, Nam S W, Zhang Q, Hadfield R H, Honjo T, Tamaki K and Yamamoto Y 2007 Quantum key distribution over a 40-dB channel loss using superconducting single-photon detectors Nature Photonics 1 343–8
[11] Collins D, Gisin N and de Riedmatten H 2005 Quantum relays for long distance quantum cryptography J. Mod. Opt. 52 735–53
[12] Bennett C H, Brassard G, Crépeau C, Jozsa R, Peres A and Wooters W K 1993 Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels Phys. Rev. Lett. 70 1895–9
[15] Martin A, Issautier A, Herrmann H, Sohler W, Ostrowsky D B, Alibart O and Tanzilli S 2010 A polarization entangled photon-pair source based on a type-II PPLN waveguide emitting at a telecom wavelength New J. Phys. 12 103005
[16] Tanzilli S, Halder M, Tittel W, Alibart O, Baldi P, Gisin N and Zbinden H 2005 A photonic quantum information interface Nature 437 116–20
[17] Saglamyurek E, Sinclair N, Jin J, Slater J A, Oblak D, Bussièrè F, George M, Rickens R, Sohler W and Tittel W 2011 Broadband waveguide quantum memory for entangled photons Nature 469 512–5
[18] Politi A, Matthews J C F and O’Brien J L 2009 Shor’s quantum factoring algorithm on a photonic chip Science 325 1221
[19] Owens J O et al 2011 Two-photon quantum walks in an elliptical direct-write waveguide array New J. Phys. 13 075003
[20] Hong C K, Ou Z Y and Mandel L 1987 Measurement of subpicosecond time intervals between two photons by interference Phys. Rev. Lett. 59 2044–6
[21] de Riedmatten H, Marcikic I, Tittel W, Zbinden H and Gisin N 2004 Teleportation in the quantum relay configuration Phys. Rev. Lett. 92 047904
[22] Halder M, Tanzilli S, de Riedmatten H, Beveratos A, Zbinden H and Gisin N 2005 Photon-bunching measurement after two 25-km-long optical fibers Phys. Rev. A 71 042335
[23] Aboussouan P, Alibart O, Ostrowsky D B, Baldi P and Tanzilli S 2010 High-visibility two-photon interference at a telecom wavelength using picosecond-regime separated sources Phys. Rev. A 81 021801
[24] Chanvillard L, Aschieri P, Baldi P, Ostrowsky D B, De Micheli M, Huang L and Bamford D J 2000 Soft proton exchange on PPLN: a simple waveguide fabrication process for highly efficient nonlinear interactions Appl. Phys. Lett. 76 1089–91
[25] Zhong T, Hu X, Wong F N C, Berggren K K, Roberts T D and Battle P 2010 High-quality fiber-optic polarization entanglement distribution at 1.3 nm telecom wavelength Opt. Lett. 35 1392–4
[26] Ito H, Fujiwara T and Takyu C 1993 Cerenkov-type second harmonic generation from a LiNbO₃ waveguide with a periodic domain grating Opt. Commun. 99 237–40
[27] Halder M, Beveratos A, Thew R T, Jorel C, Zbinden H and Gisin N 2008 High coherence photon pair source for quantum communication New J. Phys. 10 023027
[28] Papuchon M, Combemale Y, Mathieu X, Ostrowsky D B, Reiber L, Roy A M, Sejourne B and Werner M 1975 Electrically switched optical directional coupler: Cobra Appl. Phys. Lett. 27 289–91
[29] Kogelnik H and Schmidt R V 1976 Switched directional couplers with alternating δβ IEEE J. Quantum Electron. 12 396–401
[30] Wooten E L et al 2000 A review of lithium niobate modulators for fiber-optic communications systems IEEE J. Sel. Top. Quantum Electron. 6 69–82
[31] Alibart O, Ostrowsky D B, Baldi P and Tanzilli S 2005 High-performance guided-wave asynchronous heralded single-photon source Opt. Lett. 30 1539–41
[32] Castaldini D, Bassi P, Tascu S, Aschieri P, De Micheli M P and Baldi P 2007 Soft-proton-exchange tapers for low insertion-loss LiNbO₃ devices J. Lightwave Technol. 25 1588–93
[33] Landry O, van Houwelingen J A W, Beveratos A, Zbinden H and Gisin N 2007 Quantum teleportation over the Swisscom telecommunication network J. Opt. Soc. Am. B: Opt. Phys. 24 398–403
[34] Rarity J G and Tapster P R 1997 Quantum interference: experiments and applications Phil. Trans. R. Soc. A 355 2267–77 (arXiv:quant-ph/9702032)
[35] Tapster P R and Rarity J G 1998 Photon statistics of pulsed parametric light J. Mod. Opt. 45 595
[36] de Riedmatten H, Marcikic I, Tittel W, Zbinden H and Gisin N 2003 Quantum interference with photon pairs created in spatially separated sources Phys. Rev. A 67 022301
[37] Pittman T B and Franson J D 2003 Violation of Bell’s inequality with photons from independent sources Phys. Rev. Lett. 90 240401

New Journal of Physics 14 (2012) 025002 (http://www.njp.org/)