Kondo Crossover In The Self-Consistent One-Loop Approximation

Junwu Gan

Department of Physics, The University of British Columbia,
6224 Agricultural Road, Vancouver, B.C. Canada V6T 1Z1

The free energy and magnetization for the general $SU(N)$ one impurity Kondo model in the magnetic field, h, are calculated by extending the previous $1/N$ expansion technique: the saddle point is determined self-consistently to the $1/N$ order. The obtained universal field dependent magnetization $M(h/T_K)$ by this simple method is shown analytically to be asymptotically exact at both $h \ll T_K$ and $h \gg T_K$ limits. For general "f-electron" fillings, except half filling, the $M(h/T_K)$ curves cross continuously from weak to strong coupling limit, but overestimate the curvature in the crossover region for moderate N. The magnetic Wilson crossover numbers are calculated for amusement. Our results explicitly verify that the $1/N$ parameter is non-singular under the adiabatic continuation.

PACS numbers: 75.20.Hr

Typeset Using REVTEX
I. INTRODUCTION

The flowing of an effective interaction from weak coupling at high energy to strong coupling at low energy is an important and frequently encountered phenomenon in various physical systems. A well known condensed matter example is the Kondo effect [1]. Usually, it is only possible to construct perturbative solutions in the weak and strong coupling limits. That the Kondo problem admits an exact solution provides a useful testbed for new ideas and methods. Among various methods applied to the problem, the numerical renormalization group (NRG) [2], Bethe Ansatz [3], and probably Non-Crossing Approximation [4], nicely and accurately produce the crossover. Unfortunately, these methods either are very complicated or heavily rely on numerical calculations. A simple and elementary method describing the crossover is desirable and may give us new insight.

Recently, motivated by the NRG results on the two impurity Kondo problem [5,6] which claim that there is a line of Fermi liquid fixed points continuously modified by the RKKY interaction between the two impurity spins, we have developed an "Eliashberg equation" approach to build the magnetic correlation between the two impurity spins nonperturbatively into the ground state [7]. Naturally, we want to test our method for the one impurity Kondo problem. In this simple case, our approach amounts to the self-consistent one-loop approximation. For the general $SU(N)$ impurity spin model [8] with the orbital degeneracy N, we expand the free energy in $1/N$ and determine the saddle point self-consistently using the free energy including one-loop($1/N$) fluctuation contributions. We shall see that $1/N$ is a non-singular parameter under the adiabatic continuation [9], at least outside a narrow crossover region. The effect of high order terms is to smooth out the crossover. Technically, $1/N$ fluctuations always involve cut-off dependent contributions. In order to obtain the universal free energy and magnetization, all the cut-off dependent terms have to be absorbed into the Kondo temperature T_K. In the following, we first sketch the procedure then give the details in the next two sections so that whoever not interested in details can skip from the end of introduction directly to the results.
The Kondo problem describes an impurity spin antiferromagnetically coupled with strength J to a wide conduction band with density of states $\rho(\epsilon)$. The Hamiltonian for the general $SU(N)$ model in the magnetic field is

$$
H = \sum_{\vec{k},\sigma}(\epsilon_{\vec{k}} + \sigma h)c_{\vec{k}\sigma}^{\dagger}c_{\vec{k}\sigma} - \frac{J}{N} \sum_{\vec{k},\vec{k}',\sigma,\sigma'}(c_{\vec{k}\sigma}^{\dagger}f_{\sigma})(f_{\sigma'}^{\dagger}c_{\vec{k}'\sigma'}^{\dagger}) + h \sum_{\sigma = -S}^{S} \sigma f_{\sigma}^{\dagger}f_{\sigma}.
$$

(1)

The impurity spin is represented by $N = 2S + 1$ localized degenerate levels partially filled with "f-electrons". Their creation and annihilation operators are subject to the constraint

$$
\hat{n}_f = \sum_{\sigma} f_{\sigma}^{\dagger}f_{\sigma} = q_0 N.
$$

(2)

We have set the gyromagnetic ratio and Bohr magneton equal to one so that the magnetic field strength h has the energy scale. For Ce, the lower spin-orbit splitted multiplet usually has $N = 6$. The coefficient q_0 is treated as a constant of order one in the expansion and will be given any value at the end of calculation. We shall present results for $q_0 = 1/2$ and $q_0 = 1/N$.

There are two physical parameters in the Kondo problem, the bandwidth D and the dimensionless coupling constant $g = J\rho(0)$. In the scaling regime, $h \ll D$ and $T_K \ll D$, physical quantities depend on D and g only through the Kondo temperature $T_K = T_K(D, g)$. If the initial bare $g \ll 1$, we can find T_K in the $D/T_K \to \infty$ limit. This is equivalent to the ultraviolet renormalization. The renormalizability of the Kondo problem was stated long time ago and can be proved without difficulty. After absorbing the bare parameters into T_K, physical quantities such as the magnetization must be a one-variable function: $M = M(h/T_K)$, since M is dimensionless. Usually, there could be many different scaling functions $M(x)$ with $x = h/T_K$, depending on the band structures $\rho(\epsilon)(\text{cut-off schemes})$. However, $M(x)$ for the Kondo problem is universal, because changing band structure only adds in irrelevant perturbations which quickly die out under scaling if initial $g \ll 1$? The only possible exception is particle-hole symmetry breaking perturbation which is marginal and may lead to a modified $M(x)$. Thus, the obtained scaling solution for the magnetization in our calculation is directly comparable with any previous result up to a proportionality constant between different definitions of the Kondo temperature.
It has been known from the phenomenology of dilute alloys [?] that the nature of the strong coupling fixed point of the Kondo problem is a local resonant level. The two parameters of the resonant level, its position ϵ_f and width Δ, are precisely the saddle point parameters in the $1/N$ expansion [?]. Including $1/N$ fluctuations, the free energy in the magnetic field can be written as

$$F(h, \epsilon_f, \Delta, g, D) = NF_{MF}(h, \epsilon_f, \Delta, g, D) + F_{1/N}(h, \epsilon_f, \Delta, g, D),$$

where the mean field and $1/N$ contributions, F_{MF} and $F_{1/N}$, have no explicit dependence on N. The two parameters ϵ_f and Δ are determined by the stationary condition of the free energy. To find the Kondo temperature T_K, we separate out from the free energy all terms depending on the bare parameters g and D,

$$F(h, \epsilon_f, \Delta, g, D) = \tilde{F}(h, \epsilon_f, \Delta, g, D) + F_{reg}(h, \epsilon_f, \Delta, T_K).$$

The regularized free energy, F_{reg}, depends on g and D only through T_K. With a proper definition of T_K, \tilde{F} becomes a constant depending only on g and D, representing the correction to the ground state energy. The thermodynamics is contained in F_{reg} from which we obtain the field dependent magnetization.

The paper is organized as following. In the next section, we briefly recapture the large-N approach in the magnetic field to define our notations. The renormalization procedure is described in the third section. In the fourth section, we present the field dependent magnetization from $h \ll T_K$ to $h \gg T_K$ for several values of N. The magnetic Wilson crossover numbers are calculated approximately. The proof that the magnetization calculated from F_{reg} has the correct $h \gg T_K$ asymptotics and the integral expressions of some functions appearing in the regularization are included in the appendices for completeness. To alleviate cross reference, we list the frequently occurring symbols together with their defining equation numbers in Table I.
II. LARGE-\(N\) FORMALISM

Following previous treatments \([? , ?]\), we introduce a Lagrange multiplier \(\lambda\) to enforce the constraint \((2)\). By using the fact that the constraint commutes with the Hamiltonian, we write the partition function in the magnetic field \(h\) as

\[
Z = \text{Tr} \delta(n_f - q_0 N) \exp[-\beta H] = \int \frac{\beta d\lambda}{2\pi} \text{Tr} \exp\{-\beta[H + i\lambda(n_f - q_0 N)]\}
\]

\[
= \int \frac{\beta d\lambda}{2\pi} \int \mathcal{D}[c, \bar{c}, f, \bar{f}] \exp \left[-\int_0^\beta d\tau (\mathcal{L}_0 + H - iq_0 N\lambda) \right] \tag{5}
\]

\[
\mathcal{L}_0 = \sum_{k, \sigma} c_{k\sigma}^\dagger \partial_\tau c_{k\sigma} + \sum_{\sigma} f_{\sigma}^\dagger (\partial_\tau + i\lambda) f_{\sigma}. \tag{6}
\]

After performing Hubbard-Stratonovich transformation to factorize the Kondo interaction, we rewrite the partition function as

\[
Z = \int \frac{\beta d\lambda}{2\pi} \int \mathcal{D}[c, \bar{c}, f, \bar{f}, Q, \bar{Q}] \exp \left[-\int_0^\beta d\tau \left(\mathcal{L}_0 + \mathcal{L}' + N|Q|^2 - iq_0 N\lambda\right) \right] \tag{7}
\]

\[
\mathcal{L}' = \sum_{k, \sigma} (\epsilon_k + \sigma h) c_{k\sigma}^\dagger c_{k\sigma} - \sum_{k, \sigma} (QC_{k\sigma}^\dagger f_{\sigma} + \bar{Q} f_{\sigma}^\dagger c_{k\sigma}) + h \sum_{\sigma} f_{\sigma}^\dagger f_{\sigma}. \tag{8}
\]

The above Lagrangian possesses a U(1) gauge invariance

\[
f_{\sigma} \to f'_{\sigma} = f_{\sigma} e^{i\phi}, \quad Q \to Q' = Q e^{-i\phi}, \quad \lambda \to \lambda' = \lambda + \frac{d\phi}{d\tau}. \tag{9}
\]

The redundant gauge degrees of freedom can be eliminated by choosing to work in the radial gauge. Separating the complex field \(Q\) into an amplitude and a phase \(Q = r e^{-i\phi}\), the phase \(\phi\) can be absorbed into new variables \(f'_{\sigma}\) and \(\lambda'\): \(f'_{\sigma} = f_{\sigma} e^{-i\phi}, \lambda' = \lambda + d\phi/d\tau\). In terms of new variables \(r, \lambda', f'_{\sigma}\) and \(\bar{f}'_{\sigma}\), the partition function can be cast in the form, after dropping the primes,

\[
Z = \int \mathcal{D}[c, \bar{c}, f, \bar{f}, \lambda, r] \prod_\tau r(\tau) \exp \left[-\int_0^\beta d\tau \left(\mathcal{L}''(\tau) + \frac{N r^2}{J} - iq_0 N\lambda\right) \right] \tag{10}
\]

\[
\mathcal{L}'' = \sum_{k, \sigma} c_{k\sigma}^\dagger (\partial_\tau + \epsilon_k + \sigma h) c_{k\sigma} + \sum_{\sigma} f_{\sigma}^\dagger (\partial_\tau + i\lambda + h\sigma) f_{\sigma} + \sum_{k, \sigma} r (c_{k\sigma}^\dagger f_{\sigma} + f_{\sigma}^\dagger c_{k\sigma}). \tag{11}
\]

It is possible to completely gauge away the \(U(1)\) phase \(\phi\) because it does not contain dynamics. Since the last Lagrangian is bilinear in the Grassman variables \(c_{k\sigma}^\dagger\) and \(f_{\sigma}\), we can integrate them out to obtain an effective action,
\[Z = Z_0 \int D[\lambda, r] \exp[-S_{\text{eff}}(\lambda, r) + \delta(0) \int_0^\beta d\tau \ln r(\tau)] \]

(12)

\[S_{\text{eff}} = -\sum_\sigma \text{Tr} \ln [\partial_\tau + i\lambda + h\sigma + r G_0(\tau)] + N \int_0^\beta d\tau \left(\frac{\nu^2}{J} - iq_0\lambda \right), \]

(13)

where \(\delta(0) = (1/\beta) \sum_\nu 1 \) with \(\nu = 2\pi n/\beta \), and

\[G_0(\tau) = -\sum_k \frac{1}{\partial_\tau + \epsilon_k}. \]

(14)

\(Z_0 \) is the partition function of the non-interacting Fermi sea.

The integration over the two real variables \(\lambda \) and \(r \) can be expanded around a saddle point

\[i\lambda = \epsilon_f + i\tilde{\lambda}, \quad r = r_0 + \tilde{r}. \]

(15)

Retaining only quadratic terms in \(\tilde{\lambda} \) and \(\tilde{r} \) in the expansion, the partition function becomes, after dropping the tilde sign,

\[\frac{Z}{Z_0} = e^{-S_{\text{eff}}(\epsilon_f, r_0)} \int \prod_\nu d\lambda(\nu_n) d\rho(\nu_n) \exp \left[-S_{\text{eff}}^{(2)} + \sum_\nu \ln \rho(\nu_n) \right] \]

(16)

\[S_{\text{eff}}^{(2)} = \frac{N}{2} \sum_\nu \left(\lambda(-\nu_n), r(-\nu_n) \right) \begin{pmatrix} \rho(0)r_0^2 \Gamma_\lambda(\nu_n) & i\rho(0)r_0 \Gamma_{\lambda\nu}(\nu_n) \\ i\rho(0)r_0 \Gamma_{\lambda\nu}(\nu_n) & \rho(0) \Gamma_r(\nu_n) \end{pmatrix} \begin{pmatrix} \lambda(\nu_n) \\ r(\nu_n) \end{pmatrix}. \]

(17)

The zero temperature expressions of the matrix elements \(\Gamma \)'s appearing in \(S_{\text{eff}}^{(2)} \) have been given by Read [?]. Their extension to include magnetic field is straightforward. Here we have pulled out explicitly some prefactors for later convenience.

\[\Gamma_\lambda(\nu_n) = \frac{1}{N} \sum_\sigma \frac{1}{|\nu_n|(|\nu_n| + 2\Delta)} \ln \left[\frac{\epsilon_{f\sigma}^2 + (|\nu_n| + \Delta)^2}{\epsilon_{f\sigma}^2 + \Delta^2} \right] \]

(18)

\[\Gamma_{\lambda\nu}(\nu_n) = -\frac{2}{N|\nu_n|} \sum_\sigma \left[\tan^{-1} \left(\frac{\epsilon_{f\sigma}}{|\nu_n| + \Delta} \right) - \tan^{-1} \left(\frac{\epsilon_{f\sigma}}{\Delta} \right) \right] \]

(19)

\[\Gamma_r(\nu_n) = \frac{1}{N} \sum_\sigma \left\{ \ln \left[\frac{\epsilon_{f\sigma}^2 + (|\nu_n| + \Delta)^2}{(T_{K0}^{(0)})^2} \right] + \frac{2\Delta}{|\nu_n|} \ln \left[\frac{\epsilon_{f\sigma}^2 + (|\nu_n| + \Delta)^2}{\epsilon_{f\sigma}^2 + \Delta^2} \right] \right\}, \]

(20)

where we have defined the mean field Kondo temperature,

\[T_{K0}^{(0)} = D \exp \left(-\frac{1}{g} \right), \quad g = J\rho(0), \]

(21)
and the convenient notations,

\[\epsilon_{f\sigma} = \epsilon_f + \sigma \hbar, \quad \Delta = \pi \rho(0) r_0^2. \]

(22)

The contributions to the free energy (3) are given by

\[F_{\text{MF}} = \frac{1}{N} \sum_{\sigma} \left\{ \epsilon_{f\sigma} \frac{\tan^{-1} \left(\frac{\epsilon_{f\sigma}}{\Delta} \right)}{\pi} + \frac{\Delta^2}{2\pi} \ln \left[\frac{\epsilon_{f\sigma}^2 + \Delta^2}{(T_K^{(0)})^2} \right] \right\} - \frac{\Delta}{\pi} + \left(\frac{1}{2} - q_0 \right) \epsilon_f \]

(23)

\[F_{1/N} = \frac{1}{2\beta} \sum_{\nu_n} \ln [\Gamma_\lambda(\nu_n) \Gamma_r(\nu_n) + \Gamma^2_\lambda(\nu_n)] + \text{const}. \]

(24)

In the free energy \(F_{1/N} \), we note that the prefactors in the front of \(\Gamma \)'s in (17) exactly cancel the contribution \(\sum_{\nu_n} \ln r_0 \) of (16), originating from the Jacobian of transforming to the radial gauge.

III. RENORMALIZATION

To calculate zero temperature quantities, we can simply replace the discrete Matsubara frequency sum by an integration

\[F_{1/N} = \frac{1}{2\pi} \int_{0}^{\infty} d\nu \ln(\Gamma_\lambda \Gamma_r + \Gamma^2_\lambda), \quad \frac{1}{\beta} \sum_{\nu_n} \rightarrow \int_{-\infty}^{\infty} \frac{d\nu}{2\pi}, \quad |\nu_n| \rightarrow \nu. \]

(25)

The upper integration limit is actually cut off by the conduction electron bandwidth \(D \). One can see this from the approximation we made in deriving the mean field free energy and \(1/N \) fluctuation matrix element \(\Gamma \)'s,

\[\sum_{\vec{k}} \frac{1}{i\omega_n - \epsilon_{\vec{k}}} = \rho(0) \int_{-D}^{D} \frac{d\epsilon}{i\omega_n - \epsilon} = -i2\rho(0) \tan^{-1} \left(\frac{D}{\omega_n} \right) \simeq -i\pi \rho(0) \text{sgn}\omega_n \theta(D - |\omega_n|). \]

Obviously, \(F_{1/N} \) of (24) contains contributions linear in \(D \) which become divergent in the \(D \rightarrow \infty \) limit. A little investigation shows that the sub-leading divergent terms of \(F_{1/N} \) have the form of \(\ln \ln D \).

To separate out the cutoff dependent terms of \(F_{1/N} \) which diverge as \(D \rightarrow \infty \), we consider the \(\nu \rightarrow \infty \) asymptotic behavior of the integrand,

\[\Gamma(\nu) = \Gamma_\lambda \Gamma_r + \Gamma^2_\lambda = \frac{1}{\nu^2} \left[\Gamma_1(\ln \nu) + \frac{2}{\nu} \Gamma_2(\ln \nu) + \mathcal{O}(\nu^{-2}) \right]. \]

(26)
The two functions Γ_1 and Γ_2 only depend on $\ln \nu$ and have the following simple forms

$$\Gamma_1(\ln \nu) = 4 \left[\ln^2 \frac{\nu}{T_K} - \pi \eta_2 \ln \frac{\nu}{T_K} + \pi^2 \left(\frac{1}{2} - q_0 - \eta_1 \right)^2 \right],$$

$$\Gamma_2(\ln \nu) = 4 \left[\Delta(1 - \pi \eta_2) \ln \frac{\nu}{T_K} - \pi \eta_2 \Delta \left(\frac{1}{2} - \pi \eta_2 \right) - \pi \epsilon f \left(\frac{1}{2} - q_0 - \eta_1 \right) \right],$$

where we have introduced following two short hand notations,

$$\eta_1 = \frac{\partial F_{MF}(\epsilon_f, \Delta)}{\partial \epsilon_f} = \frac{1}{2} - q_0 - \frac{1}{\pi N} \sum_{\sigma} \tan^{-1} \left(\frac{\epsilon_{f\sigma}}{\Delta} \right),$$

$$\eta_2 = \frac{\partial F_{MF}(\epsilon_f, \Delta)}{\partial \Delta} = \frac{1}{N \pi} \sum_{\sigma} \ln \left(\frac{\sqrt{\epsilon_{f\sigma}^2 + \Delta^2}}{T_K^{(0)}} \right).$$

They both are independent of frequency ν. The $1/N$ fluctuation free energy is regularized as following,

$$F_{1/N} = \int_{0}^{\infty} \frac{d\nu}{2\pi} \left\{ \ln \Gamma(\nu) - \left[\ln \Gamma_1(\ln \nu) + \frac{2 \Gamma_2(\ln \nu)}{\nu \Gamma_1(\ln \nu)} \right] \theta(\nu - \nu_0) \right\}$$

$$+ \int_{\nu_0}^{D} \frac{d\nu}{2\pi} \ln \Gamma_1(\ln \nu) + \int_{\ln(\nu_0/T_K)}^{\ln(D/T_K)} dx \frac{\Gamma_2(x)}{\pi \Gamma_1(x)} + \text{const.}$$

Since the first integral is convergent, we have extended the upper integration limit to infinity. Note that ν_0 is not a parameter of the theory. $F_{1/N}$ is independent of ν_0. We shall choose it for computational convenience. Actually, it provides a useful consistency check for the numerical calculation. The cut-off dependence is then separated out from the last two integrals of (31),

$$\frac{1}{2\pi} \int_{\nu_0}^{D} d\nu \ln \Gamma_1(\ln \nu) = D \Lambda_1(D, \eta_1, \eta_2) - \nu_0 \Lambda_1(\nu_0, \eta_1, \eta_2)$$

$$\frac{1}{\pi} \int_{\ln(\nu_0/T_K)}^{\ln(D/T_K)} dx \frac{\Gamma_2(x)}{\Gamma_1(x)} = \Lambda_2(D, \eta_1, \eta_2, \epsilon_f, \Delta) - \Lambda_2(\nu_0, \eta_1, \eta_2, \epsilon_f, \Delta).$$

The so-defined two functions Λ_1 and Λ_2 are given in the appendix.

To treat the cut-off dependent terms $D \Lambda_1(D, \eta_1, \eta_2)$ and $\Lambda_2(D, \eta_1, \eta_2, \epsilon_f, \Delta)$, we first obtain explicitly

$$\Lambda_2(D, \eta_1, \eta_2, \epsilon_f, \Delta) = \frac{\Delta}{\pi} \ln \frac{D}{T_K} - \eta_2 \Delta \ln \frac{D}{T_K},$$

8
where we have neglected terms which vanish as $D \to \infty$. Using the fact that η_1 and η_2 are the derivatives of the mean field free energy, we can show that Λ_1 and the second term of (34) can be renormalized away from the saddle point equations if we let the saddle point parameters ϵ_f and Δ acquire following $1/N$ corrections,

$$\bar{\epsilon}_f = \epsilon_f + \frac{D}{N} \frac{\partial}{\partial \eta_1} \Lambda_1(\eta_1^*, \eta_2^*)$$ \hspace{1cm} (35)

$$\bar{\Delta} = \Delta - \frac{\Delta}{N} \ln \frac{D}{T_K} + \frac{D}{N} \frac{\partial}{\partial \eta_2} \Lambda_1(\eta_1^*, \eta_2^*)$$ \hspace{1cm} (36)

where η_1^* and η_2^* are the values at the point of the saddle point solution, $\epsilon_f = \epsilon_f^*$ and $\Delta = \Delta^*$. When we rewrite the mean field free energy in terms of the renormalized saddle point parameters $\bar{\epsilon}_f$ and $\bar{\Delta}$, we have to include the difference $F_{MF}(\epsilon_f, \Delta) - F_{MF}(\bar{\epsilon}_f, \bar{\Delta})$ into the cut-off dependent part of the free energy \bar{F} introduced in (2). Collecting this term, (34), $\Lambda_1(D, \eta_1, \eta_2)$, and a term coming from replacing $T_K^{(0)}$ by T_K in F_{MF}, the total cut-off dependent part of the free energy is

$$\bar{F} = -N \frac{\Delta}{\pi} \ln \frac{T_K^{(0)}}{T_K} + \frac{\Delta}{\pi} \ln \frac{D}{T_K} + D \left[\Lambda_1(\eta_1, \eta_2) - \frac{\partial \Lambda_1(\eta_1^*, \eta_2^*)}{\partial \eta_1} \eta_1 - \frac{\partial \Lambda_1(\eta_1^*, \eta_2^*)}{\partial \eta_2} \eta_2 \right],$$ \hspace{1cm} (37)

Note that the last term is a constant, to the order $O(\eta_1) \sim O(\eta_2)$. The first two terms cancel out if we define

$$T_K = T_K^{(0)} \left(\ln \frac{D}{T_K} \right)^{-1/N} = D \left(\ln \frac{D}{T_K} \right)^{-1/N} \exp \left(-\frac{1}{g} \right).$$ \hspace{1cm} (38)

In the spirit of order by order renormalization, we replace ϵ_f, Δ and $T_K^{(0)}$ appearing in $F_{1/N}$ by $\bar{\epsilon}_f$, $\bar{\Delta}$ and T_K respectively. This gives us the regularized free energy as a function of h, $\bar{\epsilon}_f$, $\bar{\Delta}$ and T_K only. Note that our expression for the Kondo temperature is consistent with the well known expression $T_K = Dg^{1/N} \exp(-1/g)$ up to $O(1/N)$.

Actually, one can simply expand $\Lambda_1(\eta_1, \eta_2)$ in $1/N$ by using the fact $\eta_1 \sim \eta_2 \sim O(1/N)$, a consequence of the saddle point equations. We immediately see that the only $O(1)$ contribution of $\Lambda_1(\eta_1, \eta_2)$ to the free energy is a constant. This constant is the correction to the ground state energy and has no effect on the physical quantities. Higher order terms in the expansion of $\Lambda_1(\eta_1, \eta_2)$ can be neglected in the order by order renormalization. The second
term of (34) is also dropped since it is of order $O(1/N)$. After we renormalize away the first term of (34) by defining the $1/N$ corrected Kondo temperature T_K via (38) and replace the mean field Kondo temperature $T_K^{(0)}$ in Γ_r by T_K, the resulting regularized free energy is then only a function of ϵ_f, Δ, h and T_K. All these are due to the fact that the free energy is stationary with respect to ϵ_f and Δ. A $O(1/N)$ shift of these parameters does not induce any change in the free energy to the order $O(1/N) + O(1)$.

After completing the renormalization, the universal free energy is, from (4) and (31)-(33),

$$F_{\text{reg}} = \sum_{\sigma} \frac{\epsilon_f \sigma}{\pi} \tan^{-1} \left(\frac{\epsilon_f \sigma}{\Delta} \right) - \frac{N \Delta}{\pi} \left[1 - \frac{1}{N} \sum_{\sigma} \ln \left(\frac{\sqrt{\epsilon_f^2 + \Delta^2}}{T_K} \right) \right] + N \left(\frac{1}{2} - q_0 \right) \epsilon_f + F_{1/N}^{\text{reg}}$$

$$F_{1/N}^{\text{reg}} = -\nu_0 \Lambda_1(\nu_0, \eta_1, \eta_2) - \Lambda_2(\nu_0, \eta_1, \eta_2, \epsilon_f, \Delta) + \int_0^\infty \frac{d\nu}{2\pi} \left\{ \ln \Gamma(\nu) - \left[\ln \Gamma(\ln \nu) + \frac{2 \Gamma_2(\ln \nu)}{\nu \Gamma_1(\ln \nu)} \right] \theta(\nu - \nu_0) \right\}. \tag{40}$$

The parameters η_1 and η_2 only depend on ϵ_f, Δ. Inside η_2 and Γ_r, $T_K^{(0)}$ is replaced by T_K.

The saddle point parameters, ϵ_f and Δ, are determined by solving the following two saddle point equations,

$$\frac{1}{N} \frac{\partial}{\partial \epsilon_f} F_{\text{reg}}(h, \epsilon_f, \Delta, T_K) = \frac{1}{2} - q_0 - \frac{1}{\pi N} \sum_{\sigma} \tan^{-1} \left(\frac{\epsilon_f \sigma}{\Delta} \right) + \frac{1}{N} \frac{\partial}{\partial \epsilon_f} F_{1/N}^{\text{reg}} = 0 \tag{41}$$

$$\frac{1}{N} \frac{\partial}{\partial \Delta} F_{\text{reg}}(h, \epsilon_f, \Delta, T_K) = \frac{1}{\pi} \sum_{\sigma} \ln \left(\frac{\sqrt{\epsilon_f^2 + \Delta^2}}{T_K} \right) + \frac{\partial}{\partial \Delta} F_{1/N}^{\text{reg}} = 0. \tag{42}$$

Substituting the solution $\epsilon_f = \epsilon_f^*(h/T_K)$ and $\Delta = \Delta^*(h/T_K)$ back into F_{reg}, we obtain the scaling form of the free energy depending only on h/T_K, up to an additive constant. The magnetization is

$$M(h/T_K) = -\frac{\partial}{\partial h} F_{\text{reg}}(h, \epsilon_f^*, \Delta^*, T_K) = \frac{1}{\pi} \sum_{\sigma} \sigma \tan^{-1} \left(\frac{\epsilon_f \sigma}{\Delta} \right) - \frac{\partial}{\partial h} F_{1/N}^{\text{reg}}. \tag{43}$$

The one-dimensional integration in the regularized $1/N$ free energy and its derivatives, as well as solving the two coupled equations (41) and (42), are carried out numerically.

We emphasize that the obtained magnetization is not a $1/N$ perturbative result if we solve the equations (41) and (42) self-consistently, i.e. not by expanding ϵ_f^* and Δ^* in $1/N$.

10
The fact that we only carried out perturbative ultraviolet renormalization only implies that the Kondo temperature defined by (38) is perturbatively accurate to the $1/N$ order. In other words, our result for F_{reg} or $M(h/T_K)$ is perturbative at high energy but not necessarily perturbative at low energy, depending on how we solve the saddle point equations. As we can see, the same renormalization procedure can be carried out for every physical quantity and their calculation is a straightforward exercise.

IV. RESULTS

The solution of the saddle point equations, $\epsilon_f^*(h/T_K)$ and $\Delta^*(h/T_K)$, for $q_0 = 1/6$, $N = 6$ is shown in Fig. 1 as an example. Generally for $q_0 \neq 1/2$, there are more than one solution in the weak coupling regime for a given value of h/T_K. Certainly, the criterion is to choose one with the lowest energy. However, since we know the asymptotics at both weak and strong coupling limits, we can follow the solutions continuously by varying the magnetic field slightly each time. For $q_0 = 1/6$ and $N = 6$ as an example, there are solutions other than that shown in Fig. 1 for $h/T_K > 0.52$ and give magnetizations much closer to Hewson and Rasul’s exact results [?] in near crossover region compared with the results shown in Fig. 3. But, if we follow these solutions to high magnetic field, they do not have the correct asymptotics.

The field dependent magnetizations $M(h/T_K)$ for $q_0 = 1/2$ and various values of N are shown in Fig. 2. Note that each curve has a window in the crossover region where no solution is found by the present method. This happens only for $q_0 = 1/2$. The reason is following. We try to describe the strong coupling fixed point by a resonant level. The particle-hole symmetry presented in the $q_0 = 1/2$ case ties the position of the resonant level at the Fermi surface, $\epsilon_f^* = 0$, in the strong coupling regime. Certainly, the nature of the weak coupling is no longer a resonant level, thus $\epsilon_f^* \neq 0$. A discontinuity must occur at some value of ϵ_f^* with increasing magnetic field h, preventing continuous crossover from one side to the other. Nevertheless, the window quickly narrows with increasing N. For $N = 8$, the solid line of
Fig. 2, the window narrows to $0.45 < h/T_K < 0.55$. The indication is that probably we need infinite order of terms in $1/N$ to close the window and to obtain completely smooth crossover. The more terms we put in, the better the quality is in the crossover region. Similar features can also be seen for general values of q_0. In Fig. 3, we show the magnetizations for $q_0 = 1/N$, the "realistic" situation. Also shown are Hewson and Rasul’s Bethe Ansatz results [?,?] for $N = 6, 8$. Although the lines can cross continuously from one side to the other, they obviously overestimate the curvature in the crossover region. With increasing N, the curvature is reduced.

For amusement, we calculate the magnetic Wilson crossover numbers for the Coqblin-Schrieffer model [?], $q_0 = 1/N$, although the calculation can be done for other values of q_0. The ambiguity in relating T_K from different cutoff schemes can be eliminated by imposing the condition of a vanishing $\ln^{-2}(h/T_K)$ term in the $h/T_K \gg 1$ expansion of $M(h/T_K)$. The weak coupling scaling form for the magnetization in terms of T_K is well known [?],

$$M/M_0 = 1 - \frac{1}{2 \ln \frac{h}{T_K}} - \frac{\ln \ln \frac{h}{T_K}}{2 N \ln^2 \frac{h}{T_K}} + \frac{\ln 2}{N \ln^2 \frac{h}{T_K}} + \cdots, \quad h/T_K \gg 1. \quad (44)$$

The last term of (44) can be removed by changing to a new energy scale

$$T_h = 2^{-2/N} T_K \simeq T_K / \left(1 + \frac{2 \ln 2}{N}\right). \quad (45)$$

Although we only explicitly prove the first log term of (44) in the appendix, we expect that our result (43) will precisely produce all three log terms of (44), since all $1/N$ order contributions to the free energy are included in the present approach. Another direct way to see this is following. Given the second term of (44), the last two terms of (44) are determined by the second term of the weak coupling beta function [?],

$$\beta(g) = \frac{d g}{d \ln D} = -g^2 + \frac{g^3}{N}. \quad (46)$$

Our expression for the Kondo temperature (38) gives exactly the same beta function. The correct asymptotic form (44) allows unambiguous determination of the energy scale T_h in the present approach. In terms of the unique energy scale T_h, the coefficient α' in the strong coupling asymptotic form of the magnetization

12
\[\frac{M}{M_0} = \alpha \frac{h}{T_K} = \alpha' \frac{h}{T_h}, \quad \frac{h}{T_h} \ll 1, \]

(47)
is just the magnetic Wilson crossover number. From (47) and (45), we see \(\alpha' = \alpha/(1 + 2 \ln 2/N) \). The slope \(\alpha \) will be determined directly from \(M(h/T_K) \) curve. We list the results for the general \(SU(N) \) cases in Table I.

In summary, we calculated the universal field dependent magnetization for the general \(SU(N) \) one impurity Kondo model for various values of \(N \) and "f-electron" fillings. At both small and high field limits, our results become asymptotically exact, as shown analytically in the appendix. For other than half filling of the "f-electrons", the magnetization curves cross continuously from one side to the other. In the crossover region, the bigger is the \(N \), the smoother and the more accurate is the magnetization. In contrast to a continuous phase transition, the crossover involves no divergence. The other facet of the story is that one then does need high order terms to smooth out the crossover for a given \(N \).

It is my pleasure to thank Ian Affleck, Natan Andrei, Piers Coleman, Eric Sorenson, Eugene Wong for many helpful discussions. Illuminating discussion with Affleck helped me to understand many crucial points. I am also grateful to Alex Hewson. He kindly provided me the Bethe Ansatz results. This work was supported by NSERC of Canada.

APPENDIX A: INTEGRALS \(\Lambda_1 \) AND \(\Lambda_2 \)

For simplicity, we set \(T_K = 1 \) in this section. From the definition, \(\Lambda_2 \) is an integral of the type,

\[\Lambda_2(D, \eta_1, \eta_2, \epsilon_f, \Delta) - \Lambda_2(\nu_0, \eta_1, \eta_2, \epsilon_f, \Delta) = \int_{\nu_0}^{D} \frac{d\nu}{\pi \nu} \frac{w \ln \nu + v}{\ln^2 \nu + a \ln \nu + b}, \]

(A1)

where \(a, b, w \) and \(v \) are all independent of frequency and are given by

\[a(\epsilon_f, \Delta) = -\pi \eta_2 \]

(A2)

\[b(\epsilon_f, \Delta) = \pi^2 \left(\frac{1}{2} - q_0 - \eta_1 \right)^2 \]

(A3)

\[w(\epsilon_f, \Delta) = \Delta(1 - \pi \eta_2) \]

(A4)
\[v(\epsilon_f, \Delta) = -\pi \Delta \eta_2 \left(\frac{1}{2} - \pi \eta_2 \right) - \pi \epsilon_f \left(\frac{1}{2} - q_0 - \eta_1 \right). \]

(A5)

By carrying out integration, we find
\[
\Lambda_2(\nu_0, \eta_1, \eta_2, \epsilon_f, \Delta) = w \ln \left(\ln^2 \nu_0 + a \ln \nu_0 + b \right) - 2v - aw \times \left\{ \begin{array}{ll}
\frac{1}{\sqrt{a^2 - 4b}} \ln \left(\frac{2 \ln \nu_0 + \sqrt{a^2 - 4b}}{2 \ln \nu_0 - \sqrt{a^2 - 4b}} \right), & a^2 - 4b > 0 \\
\frac{2}{\sqrt{4b - a^2}} \tan^{-1} \left(\frac{\sqrt{4b - a^2}}{2 \ln \nu_0 + a} \right), & a^2 - 4b < 0
\end{array} \right.
\]

(A6)

From the definition of \(\Lambda_1 \), it is an integral of the type
\[
D \Lambda_1(D, \eta_1, \eta_2) = \nu_0 \Lambda_1(\nu_0, \eta_1, \eta_2) = \int_{\nu_0}^D \frac{d\nu}{2\pi} \ln \left(\ln^2 \nu + a \ln \nu + b \right),
\]

(A7)

where we choose \(\nu_0 \) big enough so that the argument of the log function is always positive.

We can see that \(\Lambda_1(\nu_0, \eta_1, \eta_2) \) is analytic in \(a \) and \(b \) for small values of \(a \) and \(b \). In some cases, \(\Lambda_1 \) can be expressed in terms of the standard integral of exponential functions such as \(Ei(x) \).

In the present problem, the parameters \(a \) and \(b \) never get very big. A series expansion is sufficient for the practical purpose. The expression we used in the present calculation is,
\[
\pi \Lambda_1(\nu_0, \eta_1, \eta_2) = \left[\frac{P_1(\ln^{-1}\nu_0)}{\ln \nu_0} - \frac{Ei(\ln \nu_0)}{\nu_0} \right] \left(e^{\sqrt{a^2/4 - b}} + e^{-\sqrt{a^2/4 - b}} \right) e^{-a/2} + \sum_{n=1}^m (-1)^{n+1} \frac{P_n(\ln^{-1}\nu_0)}{n \ln^n \nu_0} (\alpha_1^n + \alpha_2^n) + 2 \left[\ln \ln \nu_0 - \frac{P_1(\ln^{-1}\nu_0)}{\ln \nu_0} \right],
\]

(A8)

where \(P_n \) are polynomials of \(\ln^{-1} \nu_0 \),
\[
P_n(x) = 1 + nx + n(n + 1)x^2 + \cdots + n(n + 1) \cdots (m - 1)x^{m-n},
\]

(A9)

and \(\alpha_1, \alpha_2 \) are related to \(a, b \) through
\[
\alpha_1 + \alpha_2 = a, \quad \alpha_1 \alpha_2 = b.
\]

(A10)

\(Ei(x) \) is the standard integral of exponential function, defined by
\[
Ei(x) = \int_{-\infty}^x \frac{e^t}{t} dt.
\]

(A11)

Note that \(\alpha_1^n + \alpha_2^n \) are expressed as polynomials of \(a \) and \(b \). In the expansion (A8), \(m \) is the order of expansion. The neglected terms are of the order \([\text{Max}(|\alpha_1|, |\alpha_2|)/\ln \nu_0]^{m+1}/m \).

Typical values used in our calculation are \(m \sim 10 - 15 \) and \(\ln \nu_0 \sim 5 - 8 \).
APPENDIX B: HIGH FIELD ASYMPTOTICS OF THE MAGNETIZATION

The small field asymptotic behavior of \((47)\) is the well known result of the present approach \([?]\). Here, we prove the high field asymptotics for \(q_0 = 1/2\) and \(q_0 = 1/N\). The proof for other values of \(q_0\) goes parallel. We shall set \(T_K = 1\) and omit the star sign in the notation of saddle point solution \(\epsilon_f^*(h)\) and \(\Delta^*(h)\).

Let’s first consider \(q_0 = 1/2\) and even \(N\). In the high magnetic field, the ”\(f\)-electron” level is split into \(N\) levels. Each of them is distant from the others. For \(q_0 = 1/2\), the ”\(f\)-electrons” occupy the lowest \(N/2\) levels: \(\sigma = -S, -S + 1, \ldots, -1/2\). The \(\sigma = -1/2\) level will lie close to the Fermi level. Spin exchange will result in a small resonant width. Thus, we write the solution in the form,

\[
\epsilon_f = \frac{h}{2} - \delta \epsilon_f, \quad \frac{\delta \epsilon_f}{h}, \quad \frac{\Delta}{h} \to 0, \quad \text{as } h \to \infty. \tag{B1}
\]

We recall that \(S\) is the spin and \(N = 2S + 1\). Since we are looking for \(\ln^{-1} h\) asymptotic terms, we neglect all terms which die as \(h^{-1}\) or faster. Thus,

\[
\epsilon_{f\sigma} = \epsilon_f + \sigma h = \begin{cases} (\sigma + \frac{1}{2}) h, & \sigma \neq -\frac{1}{2} \\ -\delta \epsilon_f, & \sigma = -\frac{1}{2} \end{cases} \tag{B2}
\]

With this approximation, the magnetization is simplified to

\[
M = M_0 - \frac{1}{2\pi} \tan^{-1} \left(\frac{\Delta}{\delta \epsilon_f} \right) - \int_0^D d\nu \frac{1}{2\pi \Gamma(\nu)} \left[\Gamma_{\lambda}(\nu) \frac{\partial \Gamma_{\lambda^{\nu}}}{\partial \epsilon_f} + \Gamma_{\nu}(\nu) \frac{\partial \Gamma_{\nu}}{\partial \epsilon_f} + 2\Gamma_{\lambda^{\nu}}(\nu) \frac{\partial \Gamma_{\lambda^{\nu}}}{\partial \epsilon_f} \right], \tag{B3}
\]

where \(M_0 = \sum_{\sigma > 0} \sigma\), is the saturation value of the magnetization. To shorten the notation, we use the unregularized \(1/N\) fluctuation energy \((25)\) to carry out the proof. Since the values for \(\delta \epsilon_f\) and \(\Delta\) are given by the saddle point equations \((41)\) and \((42)\), we have to make use of them. With the simplification \((B2)\), The equation \((41)\) is similarly reduced to

\[
-\frac{1}{\pi} \tan^{-1} \left(\frac{\Delta}{\delta \epsilon_f} \right) + \int_0^D d\nu \frac{1}{2\pi \Gamma(\nu)} \left[\Gamma_{\lambda}(\nu) \frac{\partial \Gamma_{\lambda^{\nu}}}{\partial \epsilon_f} + \Gamma_{\nu}(\nu) \frac{\partial \Gamma_{\nu}}{\partial \epsilon_f} + 2\Gamma_{\lambda^{\nu}}(\nu) \frac{\partial \Gamma_{\lambda^{\nu}}}{\partial \epsilon_f} \right] = 0 \tag{B4}
\]

The matrix element \(\Gamma\)’s involve the spin component summation \(\sum_{\sigma}\),

\[
\Gamma_{\lambda}(\nu) = \frac{1}{N} \sum_{\sigma} \Gamma^{(s)}_{\lambda}(\nu), \quad \Gamma_{\nu}(\nu) = \frac{1}{N} \sum_{\sigma} \Gamma^{(s)}_{\nu}(\nu), \quad \Gamma_{\nu}(\nu) = \frac{1}{N} \sum_{\sigma} \Gamma^{(s)}_{\nu}(\nu)
\]
Each spin component $\Gamma^{(\sigma)}$ of the Γ's can be read off from (18)-(20). The difference between the derivatives of the $1/N$ free energy appearing in (B3) and (B4) is that $\partial / \partial h$ in (B3) will bring down an additional factor σ with respect to $\partial / \partial \epsilon_{f}$. Dividing (B4) by two and subtracting it from (B3), we find

$$M = M_{0} - \frac{1}{N} \sum_{\sigma} \left(\frac{1}{2} \right) \int_{0}^{D} \frac{d\nu}{2\pi \Gamma(\nu)} \left[\Gamma_{\lambda}(\nu) \frac{\partial \Gamma^{(\sigma)}}{\partial \epsilon_{f}} + \Gamma_{r}(\nu) \frac{\partial \Gamma^{(\sigma)}}{\partial \epsilon_{f}} + 2\Gamma_{t}(\nu) \frac{\partial \Gamma^{(\sigma)}}{\partial \epsilon_{f}} \right]. \quad (B5)$$

Note that the $\sigma = -\frac{1}{2}$ component vanishes in the above σ summation so we can replace $\epsilon_{f\sigma}$ by $(\sigma + \frac{1}{2})h$. Carrying out the derivatives, we find

$$M = M_{0} - \frac{1}{\pi N} \sum_{\sigma \neq \frac{1}{2}} \int_{0}^{D} \frac{d\nu}{\Gamma(\nu)} \left(\frac{h(\sigma + \frac{1}{2})^{2}}{2h^{2} + (\nu + \Delta)^{2}} \right) \left\{ \frac{2}{N} \sum_{\mu = -S}^{S} \ln \left[\frac{\epsilon_{f\mu}^{2} + (\nu + \Delta)^{2}}{\epsilon_{f\mu}^{2} + \Delta^{2}} \right] \right\} \quad (B6)$$

By noting, from the equation (42),

$$\frac{1}{N} \sum_{\mu = -S}^{S} \ln \left(\epsilon_{f\mu}^{2} + \Delta^{2} \right) \sim O(1/N),$$

we can expand the expression inside curly bracket of (B6) in $1/N$. We shall also expand $\Gamma(\nu)$,

$$\Gamma(\nu) = \left[\frac{1}{N} \sum_{\mu = -S}^{S} \ln \left(\epsilon_{f\mu}^{2} + (\nu + \Delta)^{2} \right) \right]^{2} + \left\{ \frac{2}{N} \sum_{\mu = -S}^{S} \left[\tan^{-1} \left(\frac{\epsilon_{f\mu}}{\nu + \Delta} \right) - \tan^{-1} \left(\frac{\epsilon_{f\mu}}{\nu + \Delta} \right) \right] \right\}^{2} + O(1/N). \quad (B7)$$

By changing the dummy variable, $\nu = h x$, we can make following expansion,

$$\frac{1}{N} \sum_{\mu = -S}^{S} \ln \left(\epsilon_{f\mu}^{2} + (\nu + \Delta)^{2} \right) = 2 \ln h + \frac{1}{N} \sum_{\mu = -S}^{S} \ln \left[(S + \mu)^{2} + x^{2} \right]$$

$$= 2 \ln h \left[1 + O(\ln x / \ln h) \right],$$

where we dropped terms of order Δ / h as usual. That it is possible to make $\ln x / \ln h$ expansion in the last expression is due to the convergence of the integration in (B6). We also expand $\Gamma(\nu)$, given by (B7), in $\ln^{-1} h$ and keep the leading term. The upper integration
limit in \((B6) \) can be extended to infinity. The final result for the magnetization is, after some manipulations,

\[
\frac{M}{M_0} = 1 - \frac{1}{NM_0} \sum_{\sigma \neq -\frac{1}{2}} \int_0^\infty \frac{dx}{\pi} \int_0^\infty \frac{\left(\sigma + \frac{1}{2}\right)^2}{\left(\sigma + \frac{1}{2}\right)^2 + x^2} \frac{1}{\ln h} \left[1 + \mathcal{O}(\ln x/\ln h)\right]
\]

\[
= 1 - \frac{1}{\ln h} 2NM_0 \sum_{\sigma \neq -\frac{1}{2}} |\sigma + \frac{1}{2}|
\]

\[
= 1 - \frac{1}{N \ln h} + \mathcal{O}(\ln^{-2} h). \tag{B8}
\]

For \(q_0 = 1/N \), strictly speaking, \(1/N \) is no longer the loop expansion parameter. Nevertheless, if we repeat the above steps, we find

\[
\frac{M}{S} = 1 - \frac{1}{2 \ln h} + \mathcal{O}(\ln^{-2} h). \tag{B9}
\]

Note that the leading log correction is independent of \(N \) for \(q_0 = 1/N \). It is easy to see this from the perturbation in \(g \). This term comes from the linear term, \(g/2 \), in the \(g \ll 1 \) perturbation. The diagram for this term involves one conduction electron loop and one "f-electron" loop which together contribute a factor \(N^2 \). The interaction vertex brings in a factor \(1/N \). After normalization, \(i.e. \) dividing by \(S \sim N \), it is independent of \(N \).
TABLES

TABLE I. Definition of symbols and notations

Symbol	Definition (Eq. No.)	Symbol	Definition (Eq. No.)
D	Bandwidth	Γ	(26)
$\rho(\epsilon)$	Density of states	Γ_1	(27)
h	Γ_2	q_0	(28)
η_1		ϵ_f, r_0	(29)
η_2		Γ_λ	(30)
Λ_1		$\Gamma_\lambda r$	(31), (A8)
Λ_2		Γ_r	(32), (33), (34), (A6)
ν_0		$g, T_{K(0)}$	(35)
T_K	\tilde{F}	F_{MF}	(36)
F_{reg}		$F_{1/N}$	(37)
$F_{reg}^{1/N}$			(38)

**TABLE II. The calculated magnetic Wilson crossover numbers for the Coqblin-Schrieffer model, $q_0 = 1/N$, defined as α' of (47). With T_K defined by (38), we read off the initial gradient, α in (33), the magnetization curve. Then the crossover number is $\alpha' = \alpha/(1 + 2 \ln 2/N)$.

N	Crossover number	Bethe Ansatz
2	0.25	0.342 ($=1/\sqrt{6\pi}$)
4	0.65	-
6	1.01	-
8	1.36	-
10	1.70	-
FIGURES

FIG. 1. The solution of the saddle point equations in the magnetic field for $q_0 = 1/6$ and $N = 6$. T_K is defined by (38). ϵ_f is the position of the resonant level and Δ is the width.

FIG. 2. The universal magnetic field dependent magnetization for $q_0 = 1/2$ and for $N = 2$(short dashed line), $N = 4$(long dashed line), $N = 6$(dash-dotted line), $N = 8$(solid line). All curves are parameter free. Note the improving quality for larger N.

FIG. 3. The universal magnetic field dependent magnetization for the Coqblin-Schrieffer model, i.e. $q_0 = 1/N$, and for $N = 6$(dashed line), $N = 8$(dash-dotted line), $N = 10$(solid line). All curves are parameter free. The points are Hewson and Rasul’s Bethe Ansatz results: $N = 6$(filled triangles), $N = 8$(filled circles). The proportionality factor between T_K defined by (38) and the T_1 appearing in Bethe Ansatz solution is determined for each N by matching the small field gradient of the magnetization.