Experimental studies of restoration of ball mill trunnion

YA Bondarenko¹, OV Bestuzheva² and TM Sanina¹

¹BSTU named after V.G. Shukhov, 46, Kostyukova Street, Belgorod, 308012, Russia
²Belgorod National Research University, 85, Pobedi Street, Belgorod, 308015, Russia

E-mail: kdsrn2002@mail.ru

Abstract. The article deals with the analysis of experimental data on reconstruction of cement mill axles by the auxiliary machine at the place of operation. Based on the experimental research in repair the regression models of large-size equipment are developed, coefficients of equations of regression are defined. Importance of coefficients is estimated, and the adequacy of regression models is checked.

1. Introduction

In production of cementing building materials such as cement, lime and gypsum, fine grinding of raw materials is widely used. Grinding ball mills are used for grinding homogeneous materials and materials containing various corrective additives. As a result of impact of freely falling grinding bodies, which are used as balls in a rotating drum with the material under the action of centrifugal forces, grinding of raw materials takes place.

Long-term operation of mills leads to the significant wear of mainly the mechanical part of support rotating parts – axles, while losing cylindrical shape of the working surface and taking the form of a truncated cone. To restore the cylindrical surface of an axle, an additional machine [1] was developed, which allows processing at the place of operation. The selected tool is a rotary cutter, which increases the productivity of the process and the tool life [2].

Main parameters of the proposed rotary cutter are: the front angle, the angle of installation of the cutter, the angle of rotation of the cutter around the horizontal axis and the radius of the cutter cup. Experiments with the variation of the main parameters of the rotary cutter bowl will allow studying the effect of the technological parameters of the rotary cutter on the accuracy and quality of the treated surface of the restored mill axle. Definition of rational constructive and technological parameters are preferred to maximize the efficiency of the processing axle. Experiments with the variation of technological parameters of a rotary cutter are carried out.

2. Method of experiment

Experiment planning allows obtaining optimal values of output parameters with a minimum number of experiments. In the course of the experiments it is necessary to investigate the effect of technological parameters of a rotary cutter on processing the working surface of the mill axles with varying parameters. The solution of this problem makes it possible to determine the rational design and preferred technological parameters to obtain the maximum processing efficiency.

As the output parameters for determining the accuracy and the quality of the treated cylindrical surface of the mill axle with the use of an additional machine in operating conditions there is a selected area of cut layer S_s, mm^2 and the roughness R_a, mm.
As the main plan for the experiment, the central composite orthogonal plan of the full-factorial experiment CCOP FFE 2^4 was chosen [3]. The advantage of this plan is the simplicity of solving the calculation of the equation of estimation of variable parameters and the redundancy of the number of measurements, reducing the effect of measurement errors on the evaluation of processing parameters [4,5].

Factors characterizing the impact response functions in the process are the axle of the mill and the corresponding number of the entry conditions: universality and expressing in quantitative form selected: x_1 – front angle γ, deg.; x_2 – angle cutting bowls ω, grad.; x_3 – angle of rotation of the cutter around the horizontal axis ϕ, deg.; x_4 – radius of the cutting cup cutter r, mm.

The number of experiments of the central composite orthogonal plan for b factors is determined [6]:

$$N = 2^b + 2b + a_0,$$

where 2^b – number of star points; a_0 – number of experiments in the center of the plan.

Preparation of the planning matrix full-format experiment CCOP involves the implementation of one experiment, corresponding to the terms of the initial values of all factors; thus $a_0 = 1$. Therefore, the expression (1) takes the form:

$$N = 2^4 + 2 \cdot 4 + 1.$$

Thus, the number of the experiments of the experimental model of the investigated process of the axle reconstruction at 4 variable factors is $N = 25$.

3. Experimental results

The study of the influence of variable processing parameters on response functions involves the construction of a detailed planning matrix that takes into account the factors and their interaction.

Influence of factors on response functions may depend on the level at which the other factor is located, or on a combination of levels of several factors. Since it is not known a priori that there is no such dependence between the factors, we will build a detailed planning matrix that takes into account not only the factors, but also their interaction. In this case, the signs in the columns for interactions are obtained by multiplying the signs of interacting factors (table 1). Sequence of experiments is carried out by random distribution and determined by randomization to eliminate the influence of systematic errors. There are results of experimental processing of the worn axle, which has the shape of a truncated cone.

The matrix of numerical values of functions has the following property:

$$\sum_{n=1}^{N} x_{in} \cdot x_{jn} = 0,$$

where i, j – column numbers, n – number of rows of the matrix (number of experiences).

No.	x_1	x_2	x_3	x_4	Order of experiments	Varied parameters	Response function values				
					γ_i, deg.	ω_i, deg.	ϕ_i, deg.	r_i, mm	S_{a}, mm2	Ra, mm	
1	-	-	-	-	1	23	4	15	13	0.47	3.02×10$^{-3}$
2	+	-	-	-	11	63	4	15	13	3.64	3.03×10$^{-3}$
3	-	+	-	-	24	23	26	15	13	0.58	3.11×10$^{-3}$
4	+	+	-	-	9	63	26	15	13	3.95	3.12×10$^{-3}$
5	-	-	+	-	5	23	4	61	13	2.37	4.64×10$^{-3}$
6	+	-	+	-	15	63	4	61	13	3.64	4.67×10$^{-3}$
7	-	+	+	-	18	23	26	61	13	5.34	4.72×10$^{-3}$
8	+	+	+	-	23	63	26	61	13	5.98	4.78×10$^{-3}$
9	-	-	-	+	7	23	4	15	27	1.08	0.95×10$^{-3}$
10	+	-	-	+	6	63	4	15	27	2.43	0.98×10$^{-3}$
11	-	+	-	+	20	23	26	15	27	1.22	1.02×10$^{-3}$
12	+	+	-	+	8	63	26	15	27	2.98	1.05×10$^{-3}$
13	-	-	+	+	14	23	4	61	27	1.52	2.50×10$^{-3}$
14	+	-	+	+	3	63	4	61	27	4.30	2.53×10$^{-3}$
15	-	+	+	+	10	23	26	61	27	1.71	2.58×10$^{-3}$
According to the adopted plan CCOP FFE 2^4 five levels of variation of factors are established: -1 – minimum; 0 – average; +1 – maximum; -1.414, +1.414 – “star”. Levels of variation of factors are given in table 2.

Table 2. Factors and levels of variation of independent variables of CCOP FFE 2^4

Factors studied	Coded value	Variation levels
	-1.414	-1
	0	+1
	+1.414	0
front angle γ, deg.	x_1	15
installation angle ω, deg.	x_2	0
rotation angle ϕ, deg.	x_3	5
radius of cutter cutting cup r, mm	x_4	10
	23	43
	43	63
	63	70

The analytical function regression equation, which is a mathematical model of the experimental data processing, is described by the following expression [4, 5]:

$$y = b_0 + \sum_{i=1}^{n} b_i x_i + \sum_{i=1}^{n} \sum_{j=i}^{n} b_{ij} x_i x_j + \sum_{i=1}^{n} b_{ii} x_i^2,$$

where y – response function expressed in terms of coded factor values; x_i, x_j – variable factors; b_0 – free term of regression equation; b_i – coefficients of the linear dependence; b_{ij} – factors of pair interaction of factors; b_{ii} – coefficients of the quadratic dependence.

To calculate the coefficients, we use the least squares method according to the following formulas [6].

The free term of the regression equation is calculated by the formula:

$$b_0 = \frac{1}{N} \sum_{i=1}^{N} y_i.$$

The coefficients of the linear dependence are calculated on the basis of:

$$b_i = \frac{\sum_{i=1}^{N} x_i y_i}{\sum_{i=1}^{N} x_i^2}.$$

The coefficients of the pair interaction of factors are calculated by the formula:

$$b_{ij} = \frac{\sum_{i=1}^{N} x_i x_j y_i}{\sum_{i=1}^{N} (x_i^2 x_j)^2}.$$

The coefficients of the quadratic dependence:

$$b_{ii} = \frac{\sum_{i=1}^{N} x_i^2 y_i}{\sum_{i=1}^{N} (x_i^2)^2}.$$

The regression equation characterizing the dependence of the S_s cut-off area on the factors of variation γ, ω, ϕ, r in the coded form is obtained:

$$S_s = 0.12 + 0.11 x_1 + 0.06 x_2^2 + 0.025 x_1 x_2 + 0.03 x_1 x_3 - 0.04 x_1 x_4 + 0.08 x_2 + 0.05 x_2^2 - 0.03 x_2 x_3 + 0.045 x_2 x_4 + 0.055 x_3 + 0.025 x_3^2 + 0.011 x_3 x_4 - 0.05 x_4 + 0.05 x_4^2.$$
The regression equation characterizing the dependence of the surface roughness R_a on the factors of variation γ, ω, φ, r in the coded form is identified:

$$
R_a = 2.2 + 0.81x_1 + 0.21x_1^2 + 0.38x_1x_2 + 0.19x_1x_3 -
-0.31x_1x_4 + 0.75x_2 - 0.28x_2^2 + 0.11x_2x_3 - 0.33x_2x_4 +
+0.63x_3 + 0.32x_3^2 + 0.17x_3x_4 - 1.2x_4 + 0.43x_4^2.
$$

(10)

For a detailed study of the regression models and determination of the regression equation coefficients in natural quantities, the coded values of the variable parameters x_1, x_2, x_3, x_4 should be presented as dimensional values $\gamma, \omega, \varphi, r$. Transformation, according to [7], is carried out by the formula:

$$
x_j = x_j - x_{j0}
\frac{\Delta x_j}{x_{j0}}
$$

(11)

where x_j – coded value of the j-th input factor; X_j – natural value of the input factor; X_{j0} – natural value of the average level of the input factor; ΔX_j – variation interval of the j-th input factor.

According to (11), the coded values of the coefficients x_1, x_2, x_3, x_4 for the natural values are obtained:

$$
\begin{align*}
 x_1 &= \frac{\gamma-43}{20} \\
 x_2 &= \frac{\omega-15}{11} \\
 x_3 &= \frac{\varphi-38}{13} \\
 x_4 &= \frac{r-20}{7}
\end{align*}
$$

(12)

The significance of the regression equation parameters is estimated by the method of statistical testing of hypotheses – the Student's criterion. Insignificant coefficients are equal to zero; the remaining coefficients can not be recalculated due to the orthogonality of the plan [8].

By converting the expression (9) according to (12), we obtain a regression equation for the cut area S_s, describing the processing of the axle, having the shape of a truncated cone, in natural values:

$$
S_{cpr} = 0.088 + 0.05\gamma - 0.011\omega - 0.049\varphi - 0.032r +
+0.00015\gamma^2 + 0.00041\omega^2 + 0.00015\varphi^2 + 0.00102r^2 -
-0.000113\gamma\omega + 0.000115\varphi\omega - 0.000286\gamma r - 0.00021\omega r +
+0.00058\omega - 0.000112\varphi r.
$$

(13)

The significance of the parameters for the regression equation of the cut area is determined using the coefficient of elasticity, showing the degree of quantitative change of one factor relative to another:

$$
E_i = \frac{a_i x_{i0}}{a_0}
$$

(14)

where x_{i0} – natural value of the average level of the input factor; a_0, a_i – coefficients of the regression equation.

The significance of the parameters is determined by the formula:

$$
\xi = E_i 100%.
$$

(15)

Values for the area of the slice S_s:

- $a_0 = 0.088$; $a_1 = 0.05$; $a_2 = 0.011$; $a_3 = 0.049$; $a_4 = 0.032$
- $E_1 = 24.4$; $E_2 = 1.88$; $E_3 = 21.16$; $E_4 = 7.27$
- $\xi_1 = 44.6$%; $\xi_2 = 3.4$%; $\xi_3 = 38.7$%; $\xi_4 = 13.3$%

The results are presented in the form of a diagram in Figure 1.
The analysis of the chart shows that the most significant impact of the indicator on the area of the cut is the front angle γ (44.6 %) and the angle of rotation ϕ (38.7 %). The radius of the cutting cup r has little effect (13.3 %), however, it partially affects the size of the cut area. The influence of the setting angle of the cutter ω is minimal (3.4 %).

The above can be explained by the fact that increasing the front angle and the angle of rotation reduces the deformation of the cut layer, cutting force and power consumed. Increasing the quality of the surface, and the chip exit conditions are improved. However, the excessive increase weakens the cutting blade, increases its wear due to chipping and deterioration of the heat sink.

By transforming the expression (10) according to (12), we obtain the regression equation for the surface roughness R_a, describing the treatment of the axle, having the form of a truncated cone, in natural quantities:

$$R_a = 9.34 - 0.014\gamma - 0.019\omega - 0.176\phi - 0.434r +$$
$$+0.000525\gamma^2 + 0.00231\omega^2 + 0.00189\phi^2 + 0.00878r^2 +$$
$$+0.001727\gamma\omega + 0.000731\gamma\phi - 0.002214\gamma r +$$
$$+0.000769\omega\phi - 0.004285\omega r + 0.001868\phi r.$$ \[16\]

Let us determine the significance of the factors for roughness:

- $a_0 = 9.34$; $a_1 = 0.014$; $a_2 = 0.019$; $a_3 = 0.176$; $a_4 = 0.434$;
- $E_1 = 0.06$; $E_2 = 0.03$; $E_3 = 0.72$; $E_4 = 0.93$;
- $\xi_1 = 3.4 \%$; $\xi_2 = 1.7 \%$; $\xi_3 = 41.4 \%$; $\xi_4 = 53.5 \%$.

Results are presented in a diagram in Figure 2. In this case, the rotation angle ϕ (41.4 %) and the radius of the cutting cup r (53.5%) have a significant effect. In comparison with the considered influence of variable factors on the cut area, the influence of the front angle γ decreased tenfold to 3.4% and the influence of the cutter angle ω (1.7%) decreased 2 times.

The obtained values of the effect are explained by the fact that the increase in the radius of rounding of the tip of the cutter reduces the height of irregularities – Ra roughness, with an increase in the angle of rotation of the axis decreasing the chip descent, which also has a positive effect on the quality of the treated surface.
After calculating the coefficients to check the suitability of the model, the adequacy of the regression equation is checked. It is necessary to calculate the variance of the adequacy of the (S_{ad}) variance of the repeatability of experience (S_y) (Table 3) [9].

Table 3. Calculation of the dispersion function

No	Variable factors	Response function and variance function values			
	γ ω φ r	S_n, mm2	$(S_n - S_s)^2$	Ra, mm	$(Ra - \bar{Ra})^2$
1	23 4 15 13	0.47	4.61906064	3.02×103	0.099856×103
2	63 4 15 13	3.64	1.04203264	3.03×103	0.106276×103
3	23 26 15 13	0.58	4.15833664	3.11×103	0.164836×103
4	63 26 15 13	3.95	1.77102864	3.12×103	0.173056×103
5	23 4 61 13	2.37	0.06210064	4.64×103	3.748096×103
6	63 4 61 13	3.64	1.04203264	4.67×103	3.865156×103
7	23 26 61 13	5.34	7.40275264	4.72×103	4.064256×103
8	63 26 61 13	5.98	1.29497664	4.78×103	4.309776×103
9	23 4 15 27	1.08	2.36913664	0.95×103	3.076516×103
10	63 4 15 27	2.43	0.03579664	0.98×103	2.972176×103
11	23 26 15 27	1.22	1.95776064	1.02×103	2.835856×103
12	63 26 15 27	2.98	1.3017664	1.05×103	2.735716×103
13	23 4 61 27	1.52	1.20824064	2.50×103	0.041616×103
14	63 4 61 27	4.30	2.82508864	2.53×103	0.030276×103
15	23 26 61 27	1.71	0.82664464	2.58×103	0.015376×103
16	63 26 61 27	6.06	11.83910464	2.63×103	0.005476×103
17	70 15 38 20	3.96	1.79774464	2.35×103	0.125316×103
18	15 15 38 20	0.84	3.16555264	1.86×103	0.712336×103
19	43 30 38 20	3.33	0.50523664	2.14×103	0.318096×103
20	43 0 38 20	1.07	2.40002064	2.03×103	0.454276×103
21	43 15 70 20	2.48	0.01937664	3.72×103	1.032256×103
22	43 15 5 20	0.92	2.88728064	1.91×103	0.630436×103
23	43 15 38 30	2.91	0.08456464	1.32×103	1.915456×103
24	43 15 38 10	1.49	1.27509264	4.71×103	4.024036×103
25	43 15 38 20	1.21	1.98584464	2.23×103	0.224676×103

\[
\bar{S}_s = 2.6192 \sum_{i=1}^{25} (S_s - \bar{S}_s)^2 = \bar{Ra} = 2.704 \times 10^{-3} \sum_{i=1}^{25} (Ra - \bar{Ra})^2 = 66.704984 = 37.6812 \times 10^{-3}
\]
Calculating the variance of reproducibility of the experiment, we use the formula [10]:
\[
S^2(y) = \frac{1}{n-1} \sum_{i=1}^{n} (y_i - \bar{y})^2.
\]
(17)

Hence, the variance of function reproducibility:
\[S^2(S_\text{ad}) = 2.779374; \quad S^2(R_\text{a}) = 1.57005 \times 10^3. \]

To find the residual variance or adequacy variance, we use the formula [11]:
\[
S^2_\text{ad} = \frac{\sum_{i=1}^{n} \Delta y_i^2}{f},
\]
(18)

where \(\Delta y_i^2\) – residual sum of squares (table 3); \(f\) – number of degrees of freedom, which is the difference between the number of experiments and the number of coefficients.

Variance of adequacy of regression models:
\[S^2_\text{ad}(S_{\text{cp}}) = 6.6704984; \quad S^2_\text{ad}(R_\text{a}) = 3.76812 \]

To test the hypothesis of the adequacy of the model, we use the Fisher's criterion, which is determined by the formula:
\[
F = \frac{S^2_\text{ad}}{S^2(y)}.
\]
(19)

From here we find the calculated value of the Fisher criterion for the regression model: \(F (S_\text{ad}, R_\text{a}) = 2.4\); comparing it with a table value at a 5% significance level \(F_{\text{table}} = 2.78\) [7], we receive:
\[
F_{\text{calc}} < F_{\text{table}}.
\]
(20)

Since the calculated value of the Fisher test does not exceed the table, with a confidence probability of 5%, the model can be considered adequate.

4. Conclusion

1. Based on the experimental study, the correlation regression equations are obtained, which show dependence of the cut layer area and the surface roughness of mill axles on the studied factors: the front angle, the rotation angle, the installation angle and the radius of the cutting bowl.

2. Estimation of the significance of regression model parameters was according to the Student's criterion, the results of which determined significant influence of the front angle and the angle of rotation of the rotary cutter on the size of the cut area, and the radius of a cutting bowl with the angle of rotation of a cutter on roughness.

3. The adequacy of the regression model was checked by the Fisher's criterion with a 5% confidence probability.

References
[1] Bestuzheva O V, Bondarenko J A, Fedorenko M A and Lipchanskaya J A RU Patent No.166615 (2016)
[2] Yastcheritsyn P I, Drivotin I G and Lebedev V Y 1987 Rotary cutting of materials (Meganewton: Science and technology) p 228
[3] Hartman K 1977 Planning experiments in the study of technological processes (Moscow: Mir) p 552
[4] Ericko S M 1987 Mathematical theory of optimal experiment (Moscow: Nauka) p 320
[5] Zedgenidze I G 1976 Planning of experiment for research of multicomponent systems (Moscow: Science) p 330
[6] Krasovsky G I 1982 Experiment planning (Minsk: BSU publishing house) p 302
[7] Mukhachev V A 2007 Planning and processing of experimental results (Tomsk: Tomsk State University of Control Systems and Radioelectronics) p 118
[8] Pleskunin V I 1979 Theoretical basis of organization and analysis of sample data in the experiment (Leningrad: publishing House Leningrad) p 232
[9] Sidnyaev N A 2012 Theory of experiment planning and statistical data analysis (Moscow: Yurayt) p 400
[10] Rogov V A and Poznyak G G 2005 Methods and practice of technical experiments (Moscow: Academy) p 288
[11] Daniel K 1979 *The application of statistics to industrial experiments* (Moscow: World) p 300
[12] Afanasyeva N Y 2016 *Computational and experimental methods of scientific experiment* (Moscow: KnoRus) p 336
[13] Research Methods and organization of experiments (Moscow: Humanitarian center) 2013 p 412
[14] Bestuzheva O V, Fedorenko M A and Bondarenko J A 2016 Experimental study of the recovery of a surface of revolution of large parts of industrial equipment *Bulletin of Belgorod state technological University. V. G. Shukhov* 11 122–127
[15] Bestuzheva O V, Fedorenko M A and Bondarenko J A 2016 Determination of the rational parameters of a rotating processing surfaces of rotation when restoring large parts *Bulletin of Belgorod State Technological University after V. G. Shukhov* 12 121–125
[16] Bestuzheva O V, Fedorenko M A, Bondarenko J A and Sanina T M 2016 Research of dependence of the area of the slice from the technological parameters and modes for the rotary machining of large parts *Technology of mechanical engineering* 5 14–19
[17] Bestuzheva O V, Fedorenko M A and Bondarenko J A 2016 Distortion of the cut surface of the workpiece in the form of a truncated cone with rotary processing *Technology of mechanical engineering* 4 9–11