Review

Herbal Arsenal against Skin Ailments: A Review Supported by In Silico Molecular Docking Studies

Abdel Nasser B. Singab 1,2,*, Nada M. Mostafa 1,*, Iten M. Fawzy 3, Deepika Bhatia 4, Pooja Tanaji Suryawanshi 4 and Atul Kabra 4

1 Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Cairo 11566, Egypt
2 Center of Drug Discovery and Development, Ain Shams University, Cairo 11566, Egypt
3 Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Future University in Egypt, Cairo 11835, Egypt
4 University Institute of Pharma Sciences, Chandigarh University, Gharuan, Mohali 140413, Punjab, India

* Correspondence: dean@pharma.asu.edu.eg

Abstract: Maintaining healthy skin is important for a healthy body. At present, skin diseases are numerous, representing a major health problem affecting all ages from neonates to the elderly worldwide. Many people may develop diseases that affect the skin, including cancer, herpes, and cellulitis. Long-term conventional treatment creates complicated disorders in vital organs of the body. It also imposes socioeconomic burdens on patients. Natural treatment is cheap and claimed to be safe. The use of plants is as old as mankind. Many medicinal plants and their parts are frequently used to treat these diseases, and they are also suitable raw materials for the production of new synthetic agents. A review of some plant families, viz., Fabaceae, Asteraceae, Lamiaceae, etc., used in the treatment of skin diseases is provided with their most common compounds and in silico studies that summarize the recent data that have been collected in this area.

Keywords: skin diseases; herbal medicine; ethnobotany; granzyme B; human leukocyte elastase; molecular docking

1. Introduction

Molecular docking is an in silico procedure that is able to predict the mechanism of binding of a suggested ligand to its macromolecular target during the formation of a stable complex. Therefore, docking has become of great importance for the illustration of molecular interactions of natural compounds with different receptors [1–3].

The skin, the largest organ of the human body, functions as a physical barrier and an exterior interface of the body with the outer environment. The skin prevents the body from the invasion of external pathogens, as well as mechanical, thermal, and physical injuries from any substance that can be hazardous to humans. Just like any other organ and system of the body, this system is also very complex. The skin, with its derivatives such as nails, sweat glands, oil glands, and hair, makes up the integumentary system [4]. It is an incredible organ that protects the whole body. It consists of three main layers, including the epidermis (outermost layer), which consists of three types of cells, i.e., squamous cells, basal cells, and melanocytes; the second layer of the skin, the dermis, which contains blood and lymph vessels, hair follicles, etc.; and the subcutaneous fat layer. The focus on skin health is because everyone wants clearer, healthier, younger, and fresher skin, as skin-related complications can cause problems related to mental health, as well as low self-esteem [5].

Herbal medicine can be traced back to ancient civilizations. It entails the use of plants for medicinal purposes to cure illnesses and improve overall health [6]. Although herbal plants are low in toxicity and readily available, they play an important role in not only pharmacological research and drug production but also as plant components, being used...
specifically as therapeutic agents for drug synthesis [7]. The most widely used plant parts in the preparation of traditional medicines are the leaves (62%), either alone or in combination with other plant parts [6,7].

Skin disease refers to problems with the surface layer of the skin. Skin disorders have a serious impact on well-being and are difficult to manage due to their persistence [8]. Several microorganisms trigger skin ailments, including boils, scratching ringworm, skin diseases, leprosy, injury, skin infections, eczema, skin allergy inflammation, scabies, and psoriasis [9].

Scabies, a parasitic infection, has always been the most prevalent skin disorder, but, in some areas, it is entirely absent [10]. Sarcoptes scabiei is the mite that causes scabies. Infection with the scabies worm causes a rash of vesicles, nodules, and papules. The majority of this is due to host hypersensitivity, but the direct impact of worm invasion also plays a significant role [11].

A rash is a red, inflamed patch of skin or a set of discrete spots. Irritation, inflammation and allergies, fundamental conditions, and structural issues may all contribute to these symptoms. Acne, eczema, psoriasis, hives, etc., are causes of rashes [4].

Atopic eczema, a chronic condition that affects people who are genetically organized to overreact towards environmental stimuli, has become an inflammatory disease. It is often seen in people with asthma, allergic rhinitis, and atopy symptoms. Eczema is a common skin problem in children. Severe skin dryness and inflammation, scaly patches, redness, and lichenified plaque with abrasions are the most common dermatitis symptoms [12].

Acne is a contagious disease and one of the most common in humans. Acne leads to seborrhea, papules, comedowns, blackheads, nodules, and scars [13]. Acne is most often found on the face, chest area, and back of people who have a large number of oil glands [14].

Psoriasis is an inflammatory skin problem that causes keratinocytes, excessive proliferation resulting in scaly patches, extreme inflammation, and erythema [15].

The uncontrolled development of cells present in the skin is known as skin cancer. It occurs due to unfixed DNA damage to skin cells, most commonly due to UV from sunlight, causing mutations and even genetic abnormalities. This causes skin cells to grow rapidly, resulting in the formation of malignant tumors [16].

A burn is considered tissue damage due to fire, chemicals, or radiation. Burn wounds are classified as superficial, partial thickness, or full thickness. Swelling, epithelization, wound contraction, and granulation are all part of the healing process after a burn wound [17].

The current review presents the effect of different medicinal plants and FDA-approved formulas on the management of various skin disorders. A molecular docking study was conducted for major components of these medicinal plants on the active sites of granzyme B and human leukocyte elastase (HLE) enzymes, aiming to identify the potential compounds or class of compounds that may be responsible for the ameliorative effects on different skin ailments.

2. Medicinal Plants and Skin Disorders

Medicinal plants reported for the management of skin disorders (Table 1) are classified below according to their uses.
Table 1. Botanical sources and medicinal plants used to treat different skin disorders.

No.	Botanical Source (Latin Name, Common Name, Family)	Uses	References
A	*Achyranthes aspera* Prickly chaff flower Family Amaranthaceae	Used to treat boils and scabies	[18]
2	*Aconitum chasmanthum* Gaping monkshood Family Ranunculaceae	Used to treat mumps and measles	[19]
3	*Butea monosperma* Flame of forest Family Fabaceae	Used to treat skin diseases such as inflammation	[20]
4	*Boerhavia diffusa* Tar vine, wine flower Family Nyctaginaceae	Used to treat abscesses	[21]
5	*Curcuma longa* Turmeric Family Zingiberaceae	Used to treat skin inflammation	[22]
6	*Crocus sativus* saffron Family Iridaceae	Used to treat psoriasis	[23]
7	*Commelina benghalensis* Tropical spiderwort Family Commelinaceae	Used to treat wound infection	[24]
8	*Cyperus difformis* Family Cyperaceae	Used to treat skin infections	[25]
9	*Cassia tora* Stinking cassia Family Caesalpiniaceae	Used to treat psoriasis	[26]
10	*Capsicum frutescens* Chilli Family Solanaceae	Used to treat psoriasis	[27]
11	*Dalbergia sissoo* North Indian rosewood Family Fabaceae	Used to treat abscesses	[28]
12	*Eucalyptus globulus* Eucalyptus Family Myrtaceae	Used to treat acne, fungal infections, and heal wounds	[29]
13	*Euphorbia wallichii* Wallich spurge Family Euphorbiaceae	Used to treat skin infections and warts	[30]
14	*Ficus carica* Fig Family Moraceae	Used to treat itching, pimples, and scabies	[31]
15	*Fagopyrum tataricum* Tartary buckwheat Family Polygonaceae	Used to treat erysipelas	[32]
16	*Gnaphalium affine* Cotton weed Family Asteraceae	Used to treat weeping pruritus of skin	[33]
17	*Juniperus excelsa* Eastern savin Family Cupressaceae	Used to treat skin infections	[34]
No.	Botanical Source (Latin Name, Common Name, Family)	Uses	References
-----	---	------	------------
18	*Lens culinaris*		
Lentil			
Family Fabaceae	Used to treat skin infections and acne	[35]	
19	*Marsilea quadrifolia*		
Water clover			
Family Marsileaceae	Used to treat abscesses	[36]	
20	*Mahonia aquifolium*		
Oregon grape			
Family Berberidaceae	Used to treat psoriasis	[37]	
21	*Pleurotus bromius*		
Brown’s paper cup flower			
Family Apiaceae	Used to treat skin infections	[38]	
22	*Pinus roxburghii*		
Chir pine			
Family Pinaceae	Used to treat pruritus, inflammation, and other skin diseases	[39]	
23	*Pinus wallichiana*		
Bhutan pine			
Family Pinaceae	Used to treat wound infection	[40]	
24	*Rubia cordifolia*		
Common madder			
Family Rubiaceae	Used to treat psoriasis	[41]	
25	*Solanum nigrum*		
Black nightshade			
Family Solanaceae	Used to treat pimples, pustules, ringworms, eczema, syphilitic ulcers, and leukoderma	[42,43]	
26	*Simmondsia chinensis*		
Jojoba			
Family Buxaceae	Used to treat acne and psoriasis	[44]	
27	*Taxus wallichiana*		
Himalayan yew			
Family Taxaceae	Used to treat psoriasis and ringworm	[45]	
28	*Tectona grandis*		
Teak			
Family Lamiaceae	Used to treat pruritus and heal wounds	[46,47]	
29	*Thespesia populnea*		
Indian tulip tree			
Family Malvaceae	Used to treat psoriasis	[48]	
30	*Wrightia tinctoria*		
Sweet indrajao
Family Apocynaceae | Used to treat psoriasis | [49] |

B
Medicinal Plants Used to Treat Eczema

No.	Botanical Source (Latin Name, Common Name, Family)	Uses	References
31	*Abrus precatorius*		
Rosary pea			
Family Fabaceae	Used to treat eczema	[50]	
32	*Avena sativa*		
Oat			
Family Poaceae	Used to treat eczema, wounds, inflammation, itching, burns, and irritation	[51]	
33	*Arnebia euchroma*		
Pink arnebia			
Family Boraginaceae	Used to treat burns, eczema, and dermatitis	[52,53]	
No.	Botanical Source (Latin Name, Common Name, Family)	Uses	References
-----	---	------	------------
34	*Actinidia deliciosa*		
Kiwi fruit			
Family Actinidiaceae	Used to treat inflammation and eczema	[54]	
35	*Aristolochia indica*		
Indian birthwort			
Family Aristolochiaceae	Used to treat eczema and wounds	[55]	
36	*Betula alba*		
Paper birch			
Family Betulaceae	Used to treat eczema, psoriasis, and acne	[56]	
37	*Cannabis sativus*		
Charas, ganja			
Family Cannabaceae	Used to treat sores, eczema, dermatitis, psoriasis, seborrheic, and lichen planus	[57]	
38	*Matricaria chamomilla*		
Chamomile			
Family Asteraceae	Used to treat eczema and skin inflammation	[58,59]	
39	*Sarco asoca*		
Ashoka			
Family Caesalpiniaceae	Used to treat skin diseases, inflammation, eczema, and scabies	[60]	
40	*Saponaria officinalis*		
Soapworts			
Family Caryophyllaceae	Used to treat eczema, acne, boils, and psoriasis	[61,62]	
41	*Vitex negundo*		
Nirgundi
Family Verbenaceae | Used to treat skin diseases such as eczema, acne, pimples, ringworms, etc. | [35] |

C Medicinal Plants Used for Wound healing

No.	Botanical Source (Latin Name, Common Name, Family)	Uses	References
42	*Achillea millefolium*		
Common Yarrow			
Family Asteraceae	Used to treat burn wounds	[63]	
43	*Albizia lebbeck*		
Siris			
Family Fabaceae	Used for wound healing, leucoderma, itching, and inflammation	[64]	
44	*Allium sativum*		
Garlic			
Family Alliaceae	Used to treat psoriasis, scars, and heal wounds	[65]	
45	*Aloe barbadensis*		
Aloe vera			
Family Aloeaceae	Used to treat skin injuries	[66]	
46	*Alternanthera brasiliana*		
Brazilian joyweed			
Family Amaranthaceae	Used to heal inflammation wounds	[64]	
47	*Abelmoschus esculentus*		
Okra			
Family Malvaceae	Used to cure pimples and wounds	[67]	
48	*Adiantum venustum D*		
Himalayan maidenhair			
Family Pteridaceae	Used to heal wounds	[68]	
49	*Argemone Mexicana*		
Mexican poppy			
Family Papaveraceae	Used to treat wounds	[69]	
No.	Botanical Source (Latin Name, Common Name, Family)	Uses	References
-----	--	------	------------
50	*Alkanna tinctoria* Alkanet Family Boraginaceae	Used to treat itching, skin wounds, and rashes	[70]
51	*Brassica oleracea* Red cabbage Family Brassicaceae	Used to treat dermatitis and wounds	[71]
52	*Berberis lycium* Indian lycium Family Berberidaceae	Used to heal wounds	[72]
53	*Bergenia ciliata* Winter begonia Family Saxifragaceae	Used to heal wounds	[73,74]
54	*Bergenia ligulata* Asmabhedaka Family Saxifragaceae	Used to heal wounds and treat boils	[75]
55	*Bauhinia purpurea* Orchid tree Family Fabaceae	Used to heal wounds and treat inflammation	[76]
56	*Carissa spinarum* Bush plum Family Apocynaceae	Used to heal wounds and treat boils	[77]
57	*Cannabis sativa* Marijuana, hemp Family Cannabaceae	Used to treat dandruff and heal wounds	[78]
58	*Capparis decidua* Bare caper Family Capparaceae	Used to heal wounds	[79]
59	*Cynodon dactylon* Bermuda grass Family Poaceae	Used to heal wounds and skin problems	[80,81]
60	*Cocos nucifera* Coconut Family Arecaceae	Used to treat skin wounds	[82]
61	*Euphorbia helioscopia* Sun spurge Family Euphorbiaceae	Used to heal wounds	[83,84]
62	*Ferula foetida* Asafoetida, Hing Family Apiaceae	Used to heal wounds	[85]
63	*Ficus benghalensis* Banyan tree Family Moraceae	Used to treat skin injuries	[86]
64	*Gerbera gossypina* Hairy gerbera daisy Family Asteraceae	Used to heal wounds	[87]
65	*Galium aparine* Goosegrass Family Rubiaceae	Used to treat wounds as an antiseptic	[88]
66	*Hackelia americana* Nodding stickseed Family Boraginaceae	Used to treat wounds, tumors, and inflammation	[89]
Table 1. Cont.

No.	Botanical Source (Latin Name, Common Name, Family)	Uses	References
67	Hypericum perforatum Perforate john’s wort Family Hypericaceae	Used to treat wounds, abrasions, inflammatory skin disease, and burns	[90]
68	Isodon rugosus Wrinkled leaf isodon Family Lamiaceae	Used to heal wounds	[91]
69	Launaea nudicaulis Bhatal Family Asteraceae	Used to heal wounds	[92]
70	Momordica charantia Bitter gourd Family Cucurbitaceae	Used to heal wounds	[93]
71	Micromeria biflora Lemon savory Family Lamiaceae	Used to heal wounds and treat skin infections	[94]
72	Nigella sativa Black cumin Family Ranunculaceae	Used to heal wounds	[95,96]
73	Plantago major Great plantain Family Plantaginaceae	Used to treat wounds	[97]
74	Plantago lanceolata Ribwort plantain Family Plantaginaceae	Used to heal wounds	[98]
75	Rumex dissectus Arrowleaf dock Family Polygonaceae	Used to stop wound bleeding	[99]
76	Salvia moorcroftiana Kashmir salvia Family Lamiaceae	Used to treat skin itching and wound healing	[100]
77	Trigonella foenum-graecum Fenugreek Family Fabaceae	Used to heal wounds	[101,102]
78	Tephrosia purpurea Wild indigo Family Fabaceae	Used to heal wounds	[103]
79	Urtica dioica Stinging nettle Family Urticaceae	Used to heal wounds	[104,105]
80	Verbascum Thapsus Common mullein Family Scrophulariaceae	Used to treat pimples, heal wounds, and treat other skin problems	[106]
D	**Medicinal Plants Used to Treat Skin Burns**		
81	Astilbe thunbergii Astilbe Family Saxifragaceae	Used to treat burns	[107]
82	Anaphalis margaritacea Pearly everlasting Family Asteraceae	Used to treat sunburn	[108]
Table 1. Cont.

No.	Botanical Source (Latin Name, Common Name, Family)	Uses	References
83	Aquilegia pubiflora Himalayan columbine Family Ranunculaceae	Used to heal wounds and treat skin burns	[109]
84	Amygdalus communis Almonds Family Rosaceae	Used to treat burn wounds	[53]
85	Bergenia stracheyi Himalayan Bergenia Family Saxifragaceae	Used to treat sunstroke and heal wounds	[110]
86	Calendula officinalis Marigold Family Asteraceae	Used to treat burns and bruises	[111]
87	Cucumis melo Muskmelon Family Cucurbitaceae	Used to treat skin burns	[112]
88	Corydalis govaniana Govan’s corydalis Family Papaveraceae	Used to treat skin burns	[113]
89	Carica cadamarcensis Mountain papaya Family Caricaceae	Used to treat burn wounds	[114]
90	Chitoria ternatea Butterfly pea Family Fabaceae	Used to treat boils, acne, and skin outbreaks	[115]
91	Datura stramonium Jimsonweed, thornapple Family Solanaceae	Used to treat boils	[116]
92	Dodonaea viscosa Hop bush Family Sapindaceae	Used to treat skin burns and heal wounds, acne, pimplles, rashes, itching, and pustules	[117–119]
93	Echinacea angustifolia Purple coneflower Family Asteraceae	Used to treat psoriasis, burns, acne, ulcers, and skin wounds	[120]
94	Ginkgo biloba Maidenhair tree Family Ginkgoaceae	Used to treat skin burns	[121]
95	Hippophae rhamnoides Sea buckthorn Family Elaeagnaceae	Used to treat rashes and skin burns	[122,123]
96	Impatiens edgeworthii Edgeworth Balsam Family Balsaminaceae	Used to treat skin burns	[124]
97	Mangifera indica Mango Family Anacardiaceae	Protect skin from sun damage	[125]
98	Malus pumila Apple Family Rosaceae	Used to treat boils	[126]
99	Malva sylvestris High mallow Family Malvaceae	Used to treat burn wounds	[53]
Table 1. Cont.

No.	Botanical Source (Latin Name, Common Name, Family)	Uses	References
100	*Matricaria chamomilla* Chamomile Family Asteraceae	Used to treat burn wounds	[127]
101	*Onosma hispida* Bristly onosma Family Boraginaceae	Used to treat skin burns	[128]
102	*Portulaca oleracea* Purslane, little hogweed Family Portulacaceae	Used to treat burns, skin eruptions, rashes, skin inflammation, eczema, abscesses, and pruritus	[129–131]
103	*Pisum sativum* Garden pea Family Fabaceae	Used to treat skin burns	[132]
104	*Picrorhiza kurroa* Kutki Family Plantaginaceae	Used to treat burning sensation	[133]
105	*Rumex dentatus* Toothed dock Family Polygonaceae	Used to treat boils	[134]
106	*Rubus abchasiensis* Akhray Family Rosaceae	Used to treat boils and wounds	[135]
107	*Solanum virginianum* Thorny nightshade Family Solanaceae	Used to treat swelling of skin	[136]
108	*Scrophularia deserti* Desert figwort Family Scrophulariaceae	Used to treat burn wounds	[53]
109	*Sesamum indicum* Sesame Family Pedaliaceae	Used to treat burn wounds	[137]
110	*Silybum marianum* Blessed thistle Family Asteraceae	Used to treat burn wounds and improve skin health	[138]
111	*Tamarix aphylla* Athel Family Tamaricaceae	Used to treat skin burns and wounds	[139]
112	*Tridax procumbens* Coatbuttons, tridax daisy Family Asteraceae	Used to treat burn wounds	[140]
113	*Zanthoxylum armatum* Winged prickly ash Family Rutaceae	Used to treat skin burns	[141]
E	**Medicinal Plants Used to Treat Miscellaneous Disorders**		
114	*Allium cepa* Garden onion Family Alliaceae	Used to treat skin lesions	[142]
115	*Azadirachta indica* Neem Family Meliaceae	Used to treat acne and protect skin from UV rays	[143]
No.	Botanical Source (Latin Name, Common Name, Family)	Uses	References
-----	--	------	------------
116	*Anethum graveolens*		
Dill			
Family Apiaceae	Used to treat pimples	[144]	
117	*Androsace rotundifolia lehm.*		
Rock jasmine			
Family Primulaceae	Used to treat skin problems	[145]	
118	*Arnica montana*		
Mountain arnica			
Family Asteraceae	Used as anti-inflammatory to treat boils and acne eruptions	[146,147]	
119	*Bauhinia variegata*		
Kachnar, orchid tree			
Family Fabaceae	Used to treat skin disease and skin ulcers	[148]	
120	*Beta vulgaris*		
Beetroot			
Family Brassicaceae	Used to treat tumors	[149]	
121	*Brassica juncea*		
Mustard			
Family Brassicaceae	Used against skin eruptions and ulcers	[150,151]	
122	*Berberis aquifolium*		
Oregon grape			
Family Berberidaceae	Used to treat acne scars	[152]	
123	*Camellia sinensis*		
Green Tea			
Family Theaceae	Used to treat skin tumors and cancer	[153]	
124	*Coriandrum sativum*		
Dhaniya			
Family Apiaceae	Used to treat pimples	[154,155]	
125	*Calotropis procera*		
Giant milkweed			
Family Apocynaceae	Used to treat inflammation	[156]	
126	*Cerastium fontanum*		
Mouse ear chickweed			
Family Caryophyllaceae	Used to treat skin diseases; also acts as anti-inflammatory	[157]	
127	*Citrus medica*		
Citron			
Family Rutaceae	Used to treat skin irritation	[158,159]	
128	*Citrus sinensis*		
orange			
Family Rutaceae	Used to treat pimples	[160]	
129	*Catharanthus roseus*		
Periwinkle			
Family Apocynaceae	Used to cure pimples	[161]	
130	*Carthamus tinctorius*		
safflower			
Family Asteraceae	Used to treat eruptive skin problems	[162]	
131	*Clerodendrum viscosum*		
Hill glory bower			
Family Verbenaceae	Used as antiseptic skin wash	[163]	
132	*Equisetum arvense*		
Field horsetail			
Family Equisetaceae	Used to treat skin allergy	[164]	
No.	Botanical Source (Latin Name, Common Name, Family)	Uses	References
------	---	---	------------
133	*Lavendula officinalis* Lavender Family Labiatae	Used to prevent and heal acne	[165]
134	*Lawsonia inermis* Henna Family Lythraceae	Used to treat inflammation and tumors	[166]
135	*Lycopersicon esculentum* Tomato Family Solanaceae	Used to treat acne and sunburn	[167]
136	*Ledum groenlandicum oedar* Labrador tea Family Ericaceae	Used to treat itching, acne, and redness	[61]
137	*Mirabilis jalapa* Four o’clock Family Nyctaginaceae	Used to treat allergic skin disorders	[168]
138	*Melia azedarach* Persian lilac Family Meliaceae	Used to treat pimples and inflammation	[169]
139	*Myrsine Africana* Cape myrtle Family Myrsinaceae	Used to treat skin disorders	[170]
140	*Melaleuca alternifolia* Tea tree Family Myrtaceae	Used to treat acne	[171]
141	*Olea europaea* Olive tree Family Oleaceae	Used as skin cleanser	[172]
142	*Octium sanctum* Tulsi Family Lamiaceae	Used to treat acne and inflammation	[173,174]
143	*Plumbago zeylanica* Doctor bush Family Plumbaginaceae	Used to treat skin diseases such as sores, acne, and dermatitis	[31]
144	*Prunus persica* Peach Family Rosaceae	Used to treat skin disorders	[175]
145	*Piper nigrum* Black pepper Family Piperaceae	Used to treat acne	[176]
146	*Pterocarpus santalinus* Red sandalwood Family Fabaceae	Used to treat skin inflammation and acne	[177]
147	*Rosmarinus officinalis* Rosemary Family Lamiaceae	Used to block skin tumor cells	[178]
148	*Ricinus communis* Castor oil plant Family Euphorbiaceae	Used in children for skin diseases	[179]
149	*Rheum officinale* Rhubarb Family Polygonaceae	Used to treat acne	[180]
Table 1. Cont.

No.	Botanical Source (Latin Name, Common Name, Family)	Uses	References
150	*Salix babylonica*		
Weeping willow			
Family Salicaceae	Used as skin cleanser	[181]	
151	*Serenoa repens*		
Saw palmetto			
Family Arecaceae	Used to treat acne and inflammation	[182]	
152	*Thymus vulgaris*		
Thyme			
Family a	Used to treat cellulitis	[153]	
153	*Taraxacum officinale*		
Common dandelion			
Family Asteraceae	Used to treat pimples	[183]	
154	*Tussilago farfara*		
coltsfoot			
Family Asteraceae	Used to treat sores and inflammation of skin	[184]	
155	*Valeriana jatamansi*		
Jatamansi
Family Caprifoliaceae | Used to treat pimples | [185] |

3. Some Reported Mechanism of Action

The use of herbal medicine is becoming popular worldwide. Herbal medicines are preferred over synthetic medicines, as they produce fewer side effects [186–189]. Additionally, phytochemicals can treat skin ailments by different mechanisms and by displaying various biological activities such as antioxidant, anti-inflammatory, and antiallergic [190–192]. Each plant has its own bioactivity, which depends upon the chemical nature and potency of the constituents present in it [193,194]. Some components reduce skin inflammation by inhibiting NF-κB, for example, *Zingiber officinale*. The squeezed extract of this in rats and mice elevates TNF-α in peritoneal cells, and its long-term use can increase the level of serum corticosterone and thus reduce proinflammatory markers [195]. Drugs such as *Rosmarinus officinalis* also help in the improvement of abnormal skin conditions. It constitutes rosmarinic acid, which can disturb the system activation inhibition of the C3b attachment. It also acts on the inhibition and reduction of proinflammatory mediators such as TNF-α and IL-1 [196]. *Oenothera biennis* constitutes β-sitosterol, which modulates NO, TNF-α, IL-1β, and TXB2, leading to the suppression of COX-2 gene expression, hence causing anti-inflammatory action [197].

4. FDA-Approved Formulas

The Food and Drug Administration (FDA), as well as in vitro and in vivo study results, has approved bacterial cellulose (BC) and plant cellulose (PC) products to be incorporated into the biomedical field and their applications due to their biocompatibility with human cells and potential activity in wound healing and in the therapeutics field [198].

Moreover, honey, a natural product, is rich in several phenolic compounds, sugars, and enzymes that possess antioxidant, anticarcinogenic, anti-inflammatory, and antimicrobial activity. The main role of honey in the development of the wound healing process appeared to be via the acceleration of dermal repair and epithelialization, angiogenesis promotion, immune response promotion, and the reduction in healing-related infections with pathogenic microorganisms. The FDA approved many formulas containing honey as the main ingredient, among which is L-Mesitran® (manufactured by Triticum Company—UK) Ointment, which consists of 48% medical-grade honey, lanolin, cod liver oil, sunflower oil, calendula, aloe vera, zinc oxide, and vitamins C and E. Additionally, Revamil Gel® (manufactured by Maximed Pharrma—Lebanon) was FDA approved, containing 100%...
medical-grade honey, together with Therahoney® Gel (manufactured by Medline Industries Inc.—USA), containing 100% Manuka honey [199].

5. Phytoconstituents of Medicinal Plants

Many phytochemical constituents have shown potential bioactivities, to which the biological activities of medicinal plant extracts can be attributed. Table 2 summarizes some of them in the context of treating skin disorders.

Table 2. Selected reported phytoconstituents of herbal plants used to treat skin diseases.

Serial No.	Botanical Name	Some Phytoconstituents and/or Classes of Compounds	Selected Structures	Ref.
1.	Abrus precatorius	Stigmasterol, β-sitosterol, and abrusogenin	Abrusogenin	[200]
2.	Achillea millefolium	Chlorogenic acid, apigenin-7-glucoside, and luteolin-7-glucoside	Chlorogenic acid	[201]
3.	Achyranthes aspera	Rutin, chlorogenic acid, and genistein	Genistein	[202]
4.	Allium cepa	Quercetin, S-methyl-L-cysteine, cycloalliin, N-acetylcysteine, S-propyl-L-cysteine sulfoxide, and dimethyl trisulfide	Cycloalliin, N-acetyl cysteine, S-methyl-L-cysteine	[203]
5.	Azadirachta indica	Nimbin, nimbanene, ascorbic acid, n-hexacosanol, nimbolide, 17-hydroxy azadiradione, 6-desacetyl nimbinene, and nimbandiol	Nimbin	[204]

In order to fully utilize the bioactivities of medicinal plant extracts, detailed knowledge of their phytochemical constituents is required.
Serial No.	Botanical Name	Some Phytoconstituents and/or Classes of Compounds	Selected Structures	Ref.
6.	Albizia lebbeck	Lupeol, lupenone, luteolin, rutin, sapiol, friedelin, stigmasterol, β-sitosterol, stigmasterol-3-glucoside, β-sitosterol-3-glucoside, alkaloids as 3,3-dimethyl-4-(1-aminoethyl)-azetidin-2-one, 2-amino-4-hydroxypteridine-6-carboxylic acid, and 2,4-bis(hydroxylamino)-5-nitropyrimidine	Lupeol	[205]
7.	Allium sativum	Alliin, allicin, S-allyl cysteine, diallyl sulfide, diallyl trisulfide, diallyl disulfide, and ajoene	Alliin	[206]
8.	Aloe barbadensis	Aloesin, cinnamic acid, isoaloresin D, caffeic acid, chlorogenic acid, aloin A and B, emodin, isovitexin, and orientin	Aloin	[207]
9.	Alternanthea brasiliana	Amaranthine, iso amaranthine, betanin, isobetanin, hydroxybenzoic acid, hydroxycinnamic acid, kaempferol glucoside, rhamnoside, and dirhamnosyl-glucoside	Amaranthine	[208]
10.	Anethum graveolens	Limonene, carvone, α-phellandrene, β-phellandrene, and p-cymene	Limonene	[209]
11.	Avena sativa	Proteins, lipids, polysaccharides, β-glycan, dietary fibers, avenanthramides, gramine alkaloid, flavonolignans, flavonoids, saponins, and sterols	Avenanthramide A	[210]

Table 2. Cont.
Serial No.	Botanical Name	Some Phytoconstituents and/or Classes of Compounds	Selected Structures	Ref.
12	*Arnebia euchroma*	Shikonin, methylasiodiplodin, euchroquinols A-C, and 9,17-epoxy arnebinol	Shikonin	[211]
13	*Astilbe thunbergii*	Eucryphin, astilbin, and berginin	Eucryphin	[107]
14	*Actinidia deliciosa*	Rutin, quercitrin, quercetin, chrysin, and syringic acid	Quercetin	[212]
15	*Anaphalis margaritacea*	Volatile oil contains E-caryophyllene, and its oxide, δ-cadinene, γ-cadinene, cubenol, ledol, and α-pinene	E-caryophyllene	[213]
16	*Abelmoschus esculentus*	Quercetin-3-glucoside, diglucoside, catechins, and hydroxyl cinnamic acid derivatives	Quercetin-3-glucoside	[214]
17	*Adiantum venustum* Don	Norlupane, noroleanane, lupane triterpenoids, adiantone, and 21-hydroxyadiantone (Norhopane) triterpenes	Adiantone	[215]
Serial No.	Botanical Name	Some Phytoconstituents and/or Classes of Compounds	Selected Structures	Ref.
-----------	-------------------------	---	---------------------	------
18.	*Saponaria officinalis*	Saponins	Cyclamin	[62]
19.	*Aquilegia pubiflora*	Orientin, coumaric acid, sinapic acid, chlorogenic acid, ferulic acid, vitexin, isoorientin, and isovitexin	Orientin	[216]
20.	*Argemone mexicana*	Berberine, oxyberberine, arginine, higenamine, pancorine, sanguinarine, β-amyrin, trans-phytol, luteolin, quercetin, quercitrin, and rutin	Berberine	[69]
21.	*Arnicamontana*	Sesquiterpene lactones, phenolic acids, flavonoids, helenalin, acetyl helenalin, metacryl helenalin, chlorogenic acid, 3,5-dicaffeoylquinic acid, 4,5-dicaffeoylquinic acid, quercetin-3-glucoside, quercetin-3-glucuronide, kaempferol-3-glucoside, and kaempferol-3-glucuronide	Solaniol	[217]
22.	*Alkannatinctoria*	Alkaloid, bufadienolides, carbohydrate, flavonoids, saponins, and tannins	Bufadienolide	[218]

Table 2. Cont.
6. Computational Studies

6.1. Methodology of Molecular Docking Studies

Based on the aforementioned, human granzyme B in complex with 2-acetamido-2-deoxy-beta-D-glucopyranose [219] was downloaded from PDB (Code: 1IAU), while the crystal structure of highly glycosylated human leukocyte elastase in complex with a thiazolidinedione inhibitor (5-[[4-[[2-[[2-[(2-{S})-4-methyl-1-oxidanylidene-1-[(2-propylphenyl)amino]pentan-2-yl]carbamoyl]phenyl]methyl]-2-oxidanylidene-1,3-thiazol-1-ium-4-olate) [220] was also downloaded from PDB (Code: 6F5M). Both enzymes were cleaned for missing amino acids or gaps in their sequences. Hydrogens were added, water molecules were removed if present, and simulation for forcefield CHARMM and partial charge MMFF was applied. A heavy atom was built, and fixation of atom constraints was applied before enzyme minimization. The receptor was identified, and the binding site was highlighted from the complexed ligand, which was later cut off for the comparative docking study. The structures of the selected active constituents were downloaded from PubChem with the .svd extension and opened in the program. A simulation for all selected 23 active constituents was applied with the CHARMM forcefield and partial charge MMFF, and ligand preparation was carried out. The 23 resulting compounds, together with the reference ligand, were allowed to dock against both enzymes using the C-docker protocol.

6.2. Results and Discussion of Computational Studies

Molecular docking is of great importance for illustrating the molecular interactions of natural compounds with different receptors [221]. Although each docking program operates slightly differently, they share common features that involve ligand and receptor, sampling, and scoring. Thus, a molecular docking study was performed using the selected software Discovery Studio 4.1 [222–224]. Twenty-three interesting phytoconstituents of the previously detailed plants were selected for in silico docking trials to explore their activity and possible mechanism of binding against two essential enzymes human granzyme B and human leukocyte elastase, where the inhibition of either or both of those enzymes could aid in the treatment of various skin diseases.

The 2D interaction energy of the 23 active constituents compared to the reference ligand 2-acetamido-2-deoxy-beta-D-glucopyranose, together with their C-docker interaction energy, is displayed in Table 3. The ligand displayed –27.55 Kcal/mol, saponin showed –28.10 Kcal/mol, and the rest of the constituents showed –21.42 to –1.05 Kcal/mol. Both S-methyl-L-cysteine and N-acetyl cysteine were unsuccessful in the inhibition of granzyme B. The reference ligand performed its inhibitory action via four H-bonds with essential amino acids in the granzyme B sequence (Ala 93, Asn 98, Tyr 175, and Asp 176) and via van der Waals forces with six other amino acids (Asn 95, Ser 100, Asn 101, Ser 177, Thr 178, and Ile 179). Saponin was the only constituent better than the inhibitor, displaying better interaction energy and binding mode comparable to the ligand, as shown in Figure 1. Cyclamin saponin bounded by two H-bonds with Ser 100 and three H-bonds with Asp 101, Asp 176, and Thr178, while it displayed van der Waals force attractions with Asn 93, Asn 95, Asn 98, and Ile 179.

The results of the docking study against human leukocyte elastase are presented in Table 4. It is shown that the reference complexed thiazolidinedione inhibitor displayed C-docker interaction energy equivalent to –33.57 Kcal/mol, while both constituents saponin and amaranthine displayed –48.50 and –47.62 Kcal/mol, respectively. The rest of the compounds displayed in the range of –28.97 –10.60 Kcal/mol. The thiazolidinedione ligand inhibited the elastase via four essential H-bonds (Val 59, Asn 61, Asn 62A, and Val 62) and Pi–Pi bonding with Leu 35, Val 62B, and Ala 64. The van der Waals interaction was with Arg 36, Ala 60, and Ile 88. Comparably, saponin was able to inhibit elastase in the same mode, as shown in Figure 2, with better interaction energy. Cyclamin (saponin) bounded to the strategic binding site via two H-bonds with Ala 60 and two H-bonds with Asn 61 and Arg 63, Pi—Pi- bonds with Leu 35, and van der Waals interaction with Arg 36, Gly 39, His 40, Val 59, Val 62, Asn 62 Chain A, Val 62 Chain B, Ile 88, and Glu 90. On the other hand,
amaranthine bounded to the binding site via three H-bonds with Ala 60, Asn 61, and Val 62, attractive charge with Arg 36, and van der Waals forces with Leu 35, Val 59, Asn 62 Chain A, and Val 62 Chain B.

Table 3. Results of molecular modeling study of 24 active constituents against human granzyme B (1IAU) compared to reference complexed ligand.

Serial No.	Compound	(C-Docker Interaction Energy)	2D Interaction Diagram *	Type of Binding
1	Ligand (reference)	−27.55	![Diagram](image1.png)	**H-bond**: Ala 93, Asn 98, Asp 176, Tyr 175
Van der Waals: Asn 95, Ser 100, Asn 101, Ser 177, Thr 178, Ile 179				
2	Cyclamin (saponin)	−28.10	![Diagram](image2.png)	**H-bond**: Ser 100 (×2), Asn 101, Asp 176, Thr 178
Van der Waals: Asn 93, Asn 95, Asn 98, Ile 179				
3	Amaranthine	−21.42	![Diagram](image3.png)	**H-bond**: Asn 95, Asn 98, His 173 (×2)
Pi-Pi: Tyr 174				
Van der Waals: Lys 97				
4	Alliin	−18.53	![Diagram](image4.png)	**H-bond**: Ser 100 (×2)
Pi-Pi: Asp 176				
Van der Waals: Asn 95, Asn 98, Asn 101, Ile 179				
Unfavorable: Asp 176				
Serial No.	Compound	(C-Docker Interaction Energy)	2D Interaction Diagram *	Type of Binding
-----------	----------------------	------------------------------	--------------------------	----------------------------
5	Quercetin-3-glucoside	−17.59	![Diagram](image_url)	**H-bond:** Asn 95, Asp 176, Thr 178
Van der Waals: Asn 98, Ile 179				
6	Aloin	−17.35	![Diagram](image_url)	**H-bond:** Ser 100, Asp 176 (×2)
Van der Waals: Asn 95, Asn 98, Asn 101, Thr 178, Ile 179				
7	Berberine	−15.12	![Diagram](image_url)	**Pi-Pi:** Asp 176
Van der Waals: Asn 95, Asn 98, Ser 100, Ile 179				
8	Chlorogenic acid	−14.09	![Diagram](image_url)	**H-bond:** Asp 176, Thr 178 (×2)
Van der Waals: Ile 179				
9	Avenanthramide A	−14.03	![Diagram](image_url)	**H-bond:** Asn 95, Asn 98, Asp 176
Van der Waals: Ser 100, Ile 179				
Serial No.	Compound	(C-Docker Interaction Energy)	2D Interaction Diagram *	Type of Binding
-----------	----------	-------------------------------	--------------------------	-----------------
10	Adiantone	-12.76	![Diagram](image1.png)	H-bond: Asn 101
PI-Alkyl: Ile 179				
Van der Waals: Ala 93, Asn 95, Asn 98, Ser 100, Asp 176				
11	Orientin	-11.89	![Diagram](image2.png)	H-bond: Asn 98, Ser 100, Asp 176
Van der Waals: Asn 95, Ile 179				
12	Eucryphin	-11.34	![Diagram](image3.png)	H-bond: Ala 93, Ser 100
Van der Waals: Tyr 94, Asn 95, Asn 98, Ser 100, Asn 101				
13	Lupeol	-11.15	![Diagram](image4.png)	Van der Waals: Ala 93, Asn 95, Asn 98, Ser 100, Asn 101, Asp 176, Ile 179
14	Quercetin	-11.02	![Diagram](image5.png)	H-bond: Asn 98, Ser 100, Asp 176
Van der Waals: Ile 179 |

Table 3. Cont.
Table 3. Cont.

Serial No.	Compound	(C-Docker Interaction Energy)	2D Interaction Diagram *	Type of Binding
15	Abrusogenin	−10.47		**H-bond**: Asn 95, Asn 98
16	Shikonin	−10.25		**H-bond**: Asn 95, Asn 101, **Van der Waals**: Ala 93, Asn 98, Ser 100
17	Bufadienolide	−10.05		**Pi-Alkyl**: Ile 179, **Van der Waals**: Ala 93, Asn 98, Ser 100, Asp 176, Thr 178
18	Nimbin	−8.77		**H-bond**: Ser 100 (×2), Asp 176 (×2), **Van der Waals**: Asn 95, Asn 98, Thr 178, Ile 179
Serial No.	Compound	(C-Docker Interaction Energy)	2D Interaction Diagram *	Type of Binding
-----------	---------------------	-------------------------------	--------------------------	--
19	Genistein	−7.64	![Image](image1.png)	**H-bond**: Asn 98, Ser 100 **Van der Waals**: Asn 95, Asp 176, Ile 179
20	Solaniol	−7.28	![Image](image2.png)	**H-bond**: Asn 98 **Van der Waals**: Asn 95, Ser 100, Asn 101, Asp 176, Ile 179
21	E-caryophyllene	−3.25	![Image](image3.png)	**Van der Waals**: Asn 98, Ser 100, Asn 101, Asp 176, Ile 179
22	Limonene	−2.48	![Image](image4.png)	**Van der Waals**: Asn 98, Ser 100, Asn 101, Asp 176, Ile 179
23	S-methyl-L-cysteine	−1.79	![Image](image5.png)	No interaction
24	N-acetyl cysteine	−1.05	![Image](image6.png)	No interaction

* Color reference: green dotted line indicates H-bond; faint green dotted line indicates van der Waals interaction; orange dotted line indicates Pi-Pi bond; red dotted line indicates unfavorable interaction; purple dotted line indicates Pi-alkyl bond.
Figure 1. Three-dimensional (3D) interaction diagram of cyclamin (saponin) against human granzyme B (1IAU).

Table 4. Results of molecular modeling study of 23 active constituents against human leukocyte elastase (6F5M) compared to reference complexed ligand.

Serial No.	Compound	Interaction Energy	2D Interaction Diagram *	Type of Binding
1	Ligand (reference)	−33.57	![2D Interaction Diagram](image1.png)	H-bond: Val 59, Asn 61, Asn 62A, Val 62
				Pi-Pi bond: Leu 35, Val 62B, Ala 64
				Van der Waals: Arg 36, Ala 60, Ile 88
2	Cyclamin (Saponin)	−48.50	![2D Interaction Diagram](image2.png)	H-bond: Ala 60(×2), Asn 61, Arg 63
				Pi-Pi bond: Leu 35
				Van der Waals: Arg 36, Gly 39, His 40, Val 59, Val 62, Asn 62A, Val 62B, Ile 88, Glu 90
Table 4. Cont.

Serial No.	Compound	(C-Docker Interaction Energy)	2D Interaction Diagram *	Type of Binding	
3	Amaranthine	−47.62	![Amaranthine Diagram](image1)	H-bond: Ala 60, Asn 61, Val 62 Attractive charge: Arg 36(×2) Van der Waals: Leu 35, Val 59, Asn 62A, Val 62B	
4	Chlorogenic acid	−28.97	![Chlorogenic Acid Diagram](image2)	H-bond: Asn 61, Asn 62A, Glu 90 Pi-sigma: Ala 60 Van der Waals: Val 59, Val 62, Val 62B, Ile 88, Tyr 94	
5	Quercetin-3-glucoside	−27.94	![Quercetin-3-glucoside Diagram](image3)	H-bond: Asn 61, Asn 62A Pi-lone pair: Asn 61 Pi-Pi: Val 62 Van der Waals: Leu 35, Val 62B	
6	Orientin	−26.43	![Orientin Diagram](image4)	H-bond: Val 59, Asn 61(×2), Asn 62A, Val 62 Pi-Pi: Val 62 Pi-alkyl: Val 62B Van der Waals: Leu 35, Ala 60	
Serial No.	Compound	(C-Docker Interaction Energy)	2D Interaction Diagram *	Type of Binding	
------------	----------------	-------------------------------	--------------------------	-----------------	
7	Abrusogenin	−26.39	H-bond: Asn 62A, Val 62B	Van der Waals: Leu 35, Arg 36, Ala 60, Asn 61	
8	Alloin	−24.93	H-bond: Asn 61, Val 62, Asn 62A(×2)	Pi-alkyl: Val 62	Van der Waals: Leu 35, Val 59, Ala 60, Val 62B
9	Avenanthramide A	−24.18	H-bond: Val 62B	Van der Waals: Val 59, Ala 60, Asn 61, Val 62, Asn 62A, Arg 63, Ile 88	
10	Nimbin	−22.68	H-bond: Val 62, Asn 62A(×2), Val 62B	Pi-Alkyl: Val 62B	Van der Waals: Val 59, Ala 60, Asn 61, Arg 63
Serial No.	Compound	(C-Docker Interaction Energy)	2D Interaction Diagram *	Type of Binding	
-----------	--------------	-------------------------------	--------------------------	----------------	
11	Eucryphin	−22.47	![Diagram](image1)	H-bond: Ala 60, Asn 62A, Pi-lone pair: Asn 61, Pi-alkyl: Val 62, Van der Waals: Leu 35, Val 62B	
12	Quercetin	−20.25	![Diagram](image2)	H-bond: Ala 60, Asn 61, Asn 62A, Pi-amide: Val 62, Van der Waals: Val 62B, Ile 88	
13	Shikonin	−19.80	![Diagram](image3)	H-bond: Val 59, Asn 61, Val 62B, Pi-sigma: Asn 62A, Pi-amide: Val 62, Van der Waals: Ala 60, Ile 88	
14	Bufadienolide	−18.71	![Diagram](image4)	H-bond: Arg 36, Pi-alkyl: Leu 35(×2), Val 62, Van der Waals: Asn 61, Asn 62A	
Table 4. Cont.

Serial No.	Compound	(C-Docker Interaction Energy)	2D Interaction Diagram *	Type of Binding
15	Genistein	−18.31	![Genistein Diagram](image)	H-bond: Asn 62A
Pi-lone pair: Asn 61				
Pi-amide: Val 62				
Pi-alkyl: Val 62B				
Van der Waals: Val 59, Ala 60				
16	Lupeol	−18.19	![Lupeol Diagram](image)	H-bond: Ala 60
Van der Waals: Leu 35, Asn 61, Val 62, Asn 62A, Val 62B				
17	Adiantone	−17.99	![Adiantone Diagram](image)	H-bond: Arg 36
Pi-alkyl: Ala 64				
Van der Waals: Leu 35, Asn 61, Val 62, Asn 62A				
18	Solaniol	−17.44	![Solaniol Diagram](image)	H-bond: Asn 61, Asn 62A, Val 62
Van der Waals: Ala 60, Val 62B				
Serial No.	Compound	(C-Docker Interaction Energy)	2D Interaction Diagram *	Type of Binding
-----------	---------------------------	-------------------------------	--------------------------	---
19	N-acetyl cysteine	-17.25	![Diagram](image1)	H-bond: Asn 61, Asn 62A ($\times 3$)\nVan der Waals: Val 59, Ala 60, Val 62, Val 62B
20	Berberine	-16.59	![Diagram](image2)	H-bond: Val 59, Asn 61, Val 62B\nVan der Waals: Ala 60, Val 62, Asn 62A
21	Alliin	-15.63	![Diagram](image3)	H-bond: Asn 61, Val 62, Asn 62A\nVan der Waals: Val 59, Ala 60, Val 62B
22	S-methyl-L-cysteine	-14.29	![Diagram](image4)	H-bond: Asn 61, Asn 62A, Val 62
Table 4. Cont.

Serial No.	Compound	Interaction Energy	2D Interaction Diagram *	Type of Binding
23	E-caryophyllene	−11.78	Van der Waals: Val 59, Ala 60, Asn 61, Val 62, Asn 62A, Val 62B	Van der Waals: Val 59, Ala 60, Asn 61, Val 62, Asn 62A, Val 62B
24	Limonene	−10.60	Pi-alkyl: Leu 35	Van der Waals: Asn 61, Val 62, Asn 62A, Ala 64

* Color reference: green dotted line indicates H-bond; faint green dotted line indicates van der Waals interaction; lemon green dotted line indicates Pi-lone interaction; orange dotted line indicates attractive charge; dark purple dotted line indicates Pi-sigma bond; medium purple dotted line indicates Pi-amide bond; light purple dotted line indicates Pi-alkyl bond; pink dotted line indicates Pi-Pi bond.

Figure 2. Three-dimensional (3D) interaction diagram of cyclamin (saponin) against human leukocyte elastase (6F5M).

Granzyme B is a serine protease found in the granules of natural killer (NK) cells and cytotoxic T cells. It is involved in inducing inflammation by cytokine release stimulation and also involved in remodeling of the extracellular matrix. Elevated levels of granzyme B are also implicated in various autoimmune diseases, several skin diseases, and type 1 diabetes [225].

On the other hand, human leukocyte elastase (HLE) is a serine proteinase involved in inflammation and tissue degradation. HLE inhibitors are believed to treat a number of diseases, such as emphysema and cystic fibrosis [220].
Natural products can have enzyme inhibitory potential for the management of different disorders [226]. According to the in silico study results, cyclamin, a saponin, is suggested to be a successful constituent for treating most underlying skin diseases owing to its chemical structure that possesses aliphatic rings, richness in oxygen atoms, and the ability to bind effectively with key amino acids of the binding sites of both granzyme B and HLE.

7. Conclusions

Herbs have great potential to treat various kinds of skin problems. Compared to various allopathic drugs, they have a comparatively low cost and can be of great benefit to many patients, especially poor people. Herbs are rich sources of active ingredients and can be a safer and cost-effective method for the management of skin ailments, ranging from rashes to skin cancer. FDA-approved formulas containing natural sources such as honey and biological cellulose are available and aid greatly in the treatment of skin diseases. Different mechanisms are displayed by such phytochemicals, such as inhibition of multiple inflammatory mediators, ranging from NF-κ, TNF-α, IL-1, TXB2, to COX-2. Their mechanism of action was elucidated via molecular modeling studies that were performed on the active sites of two essential proteins: granzyme B, which is a serine protease found in the granules of natural killer cells (NK cells) and cytotoxic T cells; and human leukocyte elastase (HLE), which is a serine proteinase involved in inflammation and tissue degradation. Molecular docking studies have confirmed that phytoconstituents of natural origin have potential beneficial effects on various skin disorders, especially those containing saponin. Owing to the aliphatic chains and structure rich in oxygen atoms, cyclamin saponin was able to display a comparable and stable complex with both enzymes. C-docker interaction energy expressed by saponin was -28.10 Kcal/mol for granzyme B and -48.50 Kcal/mol for HLE. Saponin bounded to granzyme B similarly to complexed reference via two H-bonds with Ser 100 and three H-bonds with Asn 101, Asp 176, and Thr178. It displayed van der Waals force attraction with Asn 93, Asn 95, Asn 98, and Ile 179, while it bounded to the strategic binding site of HLE via two H-bonds with Ala 60 and two H-bonds with Asn 61 and Arg 63, Pi—Pi- bonds with Leu 35, and van der Waals interaction with Arg 36, Gly 39, His 40, Val 59, Val 62, Asn 62 Chain A, Val 62 Chain B, Ile 88, and Glu 90.

Author Contributions: Conceptualization, A.N.B.S. and A.K.; methodology, I.M.F. and N.M.M.; data analysis, N.M.M., I.M.F. and A.N.B.S.; writing—original draft preparation, D.B., P.T.S., N.M.M. and I.M.F.; writing—review and editing, A.N.B.S., A.K. and N.M.M. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: All data are provided in this review article.

Conflicts of Interest: The authors have no conflicts of interest to declare.

List of Abbreviations

Abbreviation	Description
DNA	Deoxyribonucleic acid
UV	Ultraviolet radiation
NF-κB	Nuclear factor-kappa enhancer binding protein
TNF-α	Tumor necrosis factor alpha
C3b	Complement component 3
NO	Nitric oxides
IL-1β	Interleukin 1 beta
TXB2	Thromboxane B2
COX-2	Cyclooxygenase-2
FDA	Food and Drug Administration
BC	Bacterial cellulose
32. Zheng, C.; Hu, C.; Ma, X.; Peng, C.; Zhang, H.; Qin, L. Cytotoxic phenylpropanoid glycosides from Fagopyrum tataricum (L.) Gaertn. Food Chem. 2012, 132, 433–438. [CrossRef] [PubMed]

33. Zheng, X.; Wang, W.; Piao, H.; Xu, W.; Shi, H.; Zhao, C. The genus Gnaphalium L.(Compositae): Phytochemical and pharmacological characteristics. Molecules 2013, 18, 8298–8318. [CrossRef]

34. Craig, A.M.; Karchesy, J.J.; Blythe, L.L.; del Pilar Gonzalez-Hernández, M.; Swan, L.R. Toxicity studies on western juniper oil (Juniperus occidentalis) and Port-Orford-cedar oil (Chamaecyparislawsoniana) extracts utilizing local lymph node and acute dermal irritation assays. Tox. Lett. 2004, 154, 217–224. [CrossRef] [PubMed]

35. Ravichandran, G.; Bhuradwaj, V.S.; Kolhapure, S.A. Evaluation of efficacy & safety of Acne-N-Pimple cream in acne vulgaris. Antiseptic 2004, 101, 249.

36. Balakrishnan, S.; Subramanian, M. A Review on Marsilea quadrifolia L.—A Medicinally Important Plant. J.Compr. Phar. 2016, 3, 38–44. [CrossRef]

37. Bernstein, S.; Donsky, H.; Gulliver, W.; Hamilton, D.; Nobel, S.; Norman, R. Treatment of mild to moderate psoriasis with Relieva, a Mahonia aquifolium extract—a double-blind, placebo-controlled study. Am. J. Ther. 2006, 13, 121–126. [CrossRef]

38. Valiejo-Roman, C.M.; Terentieva, I.E.; Pimenov, M.G.; Kljuykov, E.V.; Samigullin, T.H.; Tilney, P.M. Broad Polyphyly in Pleurospermum s. l. (Umbelliferae-Apioideae) as Inferred from rDNA ITS & Chloroplast Sequences. Am. Soc. Plant. Taxon. 2012, 37, 573–581.

39. Parihar, P.; Parihar, S.K.; Jain, N.K.; Katiyar, A.K. Ef ect of Solanum nigrum & Ricinus communis extracts on histamine & carrageenan-induced inflammation in the chicken skin. Cell Mol. Biol. 2010, 9, 56.

40. Ashour, M.L.; Ayoub, N.A.; Singab, A.N.B.; Al Azizi, M.M. Antibacterial activity of extracts of Pinus roxburghii Sarg. Bangladesh J. Bot. 2011, 43, 76–82.

41. Maimoona, A.; Naeem, I.; Saddique, Z.; Jameel, K. A review on biological, nutraceutical & clinical aspects of French maritime pine bark extract. J. Ethnopharmacol. 2011, 133, 261–277.

42. Zhao, Y.; Liu, F.; Lou, H.X. Studies on the chemical constituents of Solanum nigrum L. J. Chin. Med. Mater. 2010, 33, 555–556.

43. Dey, A.; De, J.N. Aristolochia indica L.: A review. Asian J. Plant. Sci. 2011, 10, 108–116. [CrossRef]

44. Shrivasatav, S.; Sindhu, R.; Kumar, S.; Kumar, P. Anti-psoriatic & phytochemical evaluation of Thespesia populnea bark extracts. Int. J. Pharm. Phar. Sci. 2009, 1, 176–185.

45. Rout, S.D.; Panda, T.; Mishra, N. Ethno-medicinal plants used to cure different diseases by tribals of Mayurbhanj district of North Orissa. Stud. Ethno-Med. 2011, 4, 73–78.

46. Craig, A.M.; Karchesy, J.J.; Blythe, L.L.; del Pilar González-Hernández, M.; Swan, L.R. Toxicity studies on western juniper oil (Juniperus occidentalis) and Port-Orford-cedar oil (Chamaecyparis lawsoniana) extracts utilizing local lymph node and acute dermal irritation assays. Tox. Lett. 2004, 154, 217–224. [CrossRef] [PubMed]

47. Guo, S.B.; Giri, S.P. Study of wound healing activity of Tectona grandis Linn. leaf extract on rats. Anc. Sci. Life 2013, 32, 241–244. [PubMed]

48.Different datasets are used for different species in the context of this work. For instance, the study on Taxus wallichiana Zucc. bark extracts is compared with other studies on the same species.

49. Valiejo-Roman, C.M.; Terentieva, I.E.; Pimenov, M.G.; Kljuykov, E.V.; Samigullin, T.H.; Tilney, P.M. Broad Polyphyly in Pleurospermum s. l. (Umbelliferae-Apioideae) as Inferred from rDNA ITS & Chloroplast Sequences. Am. Soc. Plant. Taxon. 2012, 37, 573–581.

50. Rout, S.D.; Panda, T.; Mishra, N. Ethno-medicinal plants used to cure different diseases by tribals of Mayurbhanj district of North Orissa. Stud. Ethno-Med. 2011, 4, 73–78. [CrossRef] [PubMed]

51. Craig, A.M.; Karchesy, J.J.; Blythe, L.L.; Del Pilar Gmáz-Hernández, M.; Swan, L.R. Toxicity studies on western juniper oil (Juniperus occidentalis) and Port-Orford-cedar oil (Chamaecyparislawsoniana) extracts utilizing local lymph node and acute dermal irritation assays. Tox. Lett. 2004, 154, 217–224. [CrossRef] [PubMed]

52. Craig, A.M.; Karchesy, J.J.; Blythe, L.L.; Del Pilar González-Hernández, M.; Swan, L.R. Toxicity studies on western juniper oil (Juniperus occidentalis) and Port-Orford-cedar oil (Chamaecyparislawsoniana) extracts utilizing local lymph node and acute dermal irritation assays. Tox. Lett. 2004, 154, 217–224. [CrossRef] [PubMed]

53. Pirbalouti, A.G.; Azizi, S.; Koohpayeh, A. Healing potential of Iranian traditional medicinal plants on burn wounds in alloxan-induced diabetic rats. Iran. J. Pharm. Res. 2012, 11, 279–286. [CrossRef]
63. Tajik, H.; Jalali, F.S.; Javadi, S.; Shahbazi, Y.; Amini, M. Clinical and microbiological evaluations of efficacy of combination of natural honey and yarrow on repair process of experimental burn wound. J. Anim. Vet. Adv. 2009, 8, 907–911.

64. Barua, C.C.; Talukdar, A.; Begum, S.A.; Buragohain, B.; Roy, J.D.; Pathak, D.C.; Sarma, D.K.; Gupta, A.K.; Bora, R.S. Effect of Alteranthera brasiliana (L) Kunzite on healing of dermal burn wound. Indian J. Exp. Biol. 2012, 56–60.

65. Şener, G.; Şatırıoğlu, H.; Sehirli, A.O.; Kaçmaz, A. Protective effect of aqueous garlic extract against oxidative organ damage in a rat model of thermal injury. Life Sci. 2003, 73, 81–91. [CrossRef]

66. Lv, R.L.; Wu, B.Y.; Chen, X.D.; Jiang, Q. The effects of aloe extract on nitric oxide and endothelin levels in deep-partial thickness burn wound tissue in rat. Zhonghua shao shang za zhi= Zhonghua shaoshang zazhi. Chin. J. Burns 2006, 22, 362–365.

67. Jain, N.; Jain, R.; Jain, V.; Jain, S. A review on: Abelmoschus esculentus. Pharmacia 2012, 1, 84–89.

68. Mubashir, S.; Shah, W.A. Phytochemical and pharmacological review profile of Adiantum venustum. Int. J. Pharmtech Res. 2011, 3, 827–830.

69. Brahmachari, G.; Gorai, D.; Roy, R. Argemone mexicana: Chemical and pharmacological aspects. Rev. Bras. Farmacogn. 2013, 23, 559–567. [CrossRef]

70. Ogurlan, Z.; Hatipoglu, F.; Ceylan, C. The effect of Alkanna tinctoria Tausch on burn wound healing in rabbits. Berl. Munch. Tierarztl. Wochenschr. BERL. 2002, 109, 481–485.

71. Isbir, T.; Yalniz, I.; Aydin, M.; Oztürk, O.; Koyuncu, H.; Zeybek, U.; Ağçaşan, B.; Yilmaz, H. The effects of Brassica oleraceae var capitata on epidermal glutathione and lipid peroxides in DMBA-initiated-TPA-promoted mice. Anticancer Res. 2000, 20, 219–224.

72. Arham, S.; Muhammad, S.; Yasir, R.; Liaqat, A.; Rao, S.A.; Ghulam, M.; Sobia, A.W. Berberis lycium Royle: A review of its traditional uses, phytochemistry and pharmacology. Afr. J. Pharm. Pharmacol. 2012, 6, 2346–2353.

73. Islam, M.; Azhar, I.; Usmanghani, K.; Gill, M.A.; Ahmad, A. Bioactivity evaluation of Bergenia ciliata. Pak. J. Pharm. Sci. 2002, 15, 15–33. [PubMed]

74. Dharmender, R.; Madhavi, T.; Reena, A.; Sheetal, A. Simultaneous Quantification of Bergenin, (+)-Catechin, Gallicin and Gallic acid; and quantification of β-Sitosterol using HPTLC from Bergenia ciliata (Haw.) Sternb. Forma ligulata Yeo (Pasanbheda). Pharm. Anal. Acta. 1 J. 2010, 104, 2153–2433. [CrossRef]

75. Bashir, S.; Gilani, A.H. Antiulcirotic effect of Bergenia ligulata rhizome: An explanation of the underlying mechanisms. J. Ethnopharmacol. 2009, 122, 106–116. [CrossRef] [PubMed]

76. Ananthan, K.V.; Asad, M.; Kumar, N.P.; Asdaq, S.M.; Rao, G.S. Evaluation of wound healing potential of Bauhinia purpurea leaf extracts in rats. Indian J. Pharm. Sci. 2010, 72, 122. [PubMed]

77. Rose, B.N.; Prasad, N.K. Preliminary phytochemical and pharmacognostical evaluation of Carissa spinarum leaves. Asian J. Pharm. Tech. 2013, 3, 30–33.

78. Nissen, L.; Zatta, A.; Stefanini, I.; Grandi, S.; Sgorbati, B.; Biavati, B.; Monti, A. Characterization and antimicrobial activity of essential oils of industrial hemp varieties (Cannabis sativa L.). Fitoterapia. 2010, 81, 413–419. [CrossRef]

79. Pokharkar Raghunath, D.; Funde Prasad, E.; Pingale Shirish, S. Aqueous extract of Capparis decidua in acute toxicity effects of charantia Momordica charantia. Nat. Sci. 2008, 71, 873–876. [CrossRef] [PubMed]

80. Parekh, J.; Chanda, S. In-vitro antimicrobial activities of extracts of Launaea procumbens roxb.(Labiatae). Vitis vinifera L. (Vitaceae) & Cyperus rotundus L. (Cyperaceae). Afr. J. Biomed. Res. 2006, 9, 89–93.

81. Jagessar, R.; Mohamed, A.; Gomes, G. An evaluation of the antibacterial & antifungal activity of leaf extracts of Momordica charantia against Candida albicans, Staphylococcus aureus & Escherichia coli. Nat. Sci. 2008, 6, 1–14.
94. Kumar, A.; Gupta, R.; Mishra, R.K.; Shukla, A.C.; Dikshit, A. Pharmaco-phylogenetic investigation of Microceriabiflora Benth & Citrus reticulata Blanco. Natl. Acad. Sci. Lett. 2012, 35, 253–257.

95. Merfort, I.; Wray, V.; Barakat, H.; Hussein, S.; Nawwar, M.; Willuhn, G. Flavonoltriglycosides from seeds of Nigella sativa. Phytochemistry 1997, 46, 359–363. [CrossRef]

96. Ramadan, M.F. Nutritional value, functional properties & nutraceutical applications of black cumin (Nigella sativa L.): An overview. Int. J. Food Sci. Technol. 2007, 42, 1208–1218.

97. Ravn, H.; Brimer, L. Structure & antibacterial activity of plantamajoside, a caffeic acid sugar ester from Plantago major sub major. Phytochemistry 1988, 27, 3433–3437.

98. Garg, R.; Patel, R.K.; Jhanwar, S.; Priya, P.; Bhattacharjee, A.; Yadav, G.; Bhatia, S.; Chattopadhyay, D.; Tyagi, A.K.; Jain, M. Gene discovery & tissue-specific transcriptome analysis in chickpea with massively parallel pyrosequencing & web resource development. Plant. Physiol. 2011, 156, 1661–1678.

99. Liu, J.; Xiong, Z.; Li, T.; Huang, H. Bioaccumulation & ecophysiological responses to copper stress in two populations of Rumex dentatus L. from cu contaminated & non-contaminated sites. Environ. Exp. Bot. 2004, 52, 43–51.

100. Ahmad, V.; Ali, Z.; Zahid, M.; Alam, N.; Saba, N.; Khan, T.; Qisar, M.; Nisar, M. Phytochemical study of Salvia moorcroftiana. Fitoterapia 2000, 71, 84–85. [CrossRef]

101. Ahmadiani, A.; Javan, M.; Semnianian, S.; Barat, E.; Kamalinejad, M. Antiinflammatory & antipryetic effects of Trigonella foenum-graecum leaves extract in the rat. J. Ethnopharmacol. 2001, 75, 283–286.

102. Yadav, U.C.; Baquer, N.Z. Pharmacological effects of Trigonella foenum-graecum L. in health & disease. Pharm. Biol. 2014, 52, 243–254.

103. Lodhi, S.; Pawar, R.S.; Jain, A.P.; Jain, A.; Singhai, A.K. Effect of Tephrosia purpurea (L.) pers. on partial thickness & full thickness burn wound in rats. J. Complement. Integr. Med. 2010, 1. [CrossRef]

104. Singh, R.; Dar, S.; Sharma, P. Antibacterial activity & toxicological evaluation of semi purified hexane extract of Urtica dioica leaves. Res. J. Med. Plants. 2012, 6, 123–135.

105. Süntar, I.; Tatlı, I.I.; Akkol, E.K.; Keleş, H.; Kahraman, Ç.; Akdemir, Z. An ethnopharmacological study on Verbascum species: From conventional wound healing use to scientific verification. J. Ethnopharmacol. 2010, 132, 408–413. [CrossRef] [PubMed]

106. Hadizadeh, I.; Peivastegan, B.; Kolahi, M. Antifungal activity of nettle (Urtica dioica L.), colocynthis (Citrullus colocynthis L. Schrad), oleander (Nerium oleander L.) & konar (Ziziphus spina-christi L.) extracts on plants pathogenic fungi. Pakستان. J. Biol. Sci. 2009, 12, 58.

107. Süntar, I.; Tatlı, I.I.; Akkol, E.K.; Keleş, H.; Kahraman, Ç.; Akdemir, Z. An ethnopharmacological study on Verbascum species: From conventional wound healing use to scientific verification. J. Ethnopharmacol. 2010, 132, 408–413. [CrossRef] [PubMed]

108. Kimura, Y.; Sumiyoshi, M.; Sakana, M.; Asahina, T.; Usuda, T.; Shin, J.; Kato, I.; Kato, S. The Aquilegia pubiflora (Himalayan columbine) mediated synthesis of nanoceria for diverse biomedical applications. Microsomes & Metabolites 2011, 353–363. [CrossRef]

109. Jan, H.; Khan, M.A.; Usman, H.; Shah, M.; Ansir, R.; Faisal, S.; Ullah, N.; Rahman, L. The Aquilegia pubiflora (Himalayan columbine) mediated synthesis of nanoceria for diverse biomedical applications. RSC Adv. 2020, 10, 19219–19231. [CrossRef]

110. Kumar, V.; Tyagi, D. Antifungal activity evaluation of different extracts of Bergenia stracheyi. Int. J. Curr. Microbiol. App. Sci. 2013, 2, 69–78.

111. Fonseca, Y.M.; Catini, C.D.; Vicentini, F.T.; Nomizo, A.; Gerlach, R.F.; Fonseca, M.J. Protective effect of Calendula officinalis extract against UVB-induced oxidative stress in skin. Evaluation of reduced glutathione levels and matrix metalloproteinase secretion. J. Ethnopharmacol. 2010, 127, 596–601. [CrossRef]

112. Akinci, I.E.; Akinci, S. Effect of chromium toxicity on germination and early seedling growth in melon (Cucumis melo L.). Afr. J. Biotechnol. 2010, 9, 4589–4594.

113. Mukhopadhyay, S.; Banerjee, S.K.; Atal, C.K.; Lin, L.J.; Cordell, G.A. Alkaloids of Corydalis govaniana. Phytochemistry 2005, 62, 253–257. [CrossRef] [PubMed]

114. Gomes, F.S.; Spinola, C.D.; Ribeiro, H.A.; Lopes, M.T.; Cassali, G.D.; Salas, C.E. Wound-healing activity of a proteolytic fraction from Caricacandamarcensis on experimentally induced burn. Burns 2010, 36, 277–283. [CrossRef] [PubMed]

115. Zagórska-Dziok, M.; Ziemlewska, A.; Bujak, T.; Nizioł-Łukaszewska, Z.; Hordyjewicz-Baran, Z. Cosmetic and dermatological properties of selected ayurvedic plant extracts. Molecules 2021, 26, 614. [CrossRef]

116. Bijauliya, R.K.; Kanooja, P.; Mishra, P.; Pathak, G.K. Isolation and Structure Elucidation of Quercetin like Structure from Dalbergia sissoo (Fabaceae). J. drug deliv. Ther. 2020, 10, 6–11. [CrossRef]

117. Pirzada, A.J.; Shaikh, W.; Usmanghani, K.; Mohiuddin, E. Antifungal activity of Dodonaeaviscosa Jacq extract on pathogenic fungi isolated from super ficial skin infection. Pak. J. Pharm. Sci. 2010, 23, 337–340. [PubMed]

118. Getie, M.; Gebre-Mariam, T.; Rietz, R.; Höhne, C.; Huschka, C.; Schmidtke, M.; Abebe, A.; Neubert, R.H. Evaluation of the antimicrobial and anti-inflammatory activities of the medicinal plants Dodonaeaviscosa, Rumex nervous and Rumex abyssinicus. Fitoterapia 2003, 74, 139–143. [CrossRef]

119. Ishihaq, M.; Mumtaz, A.S.; Hussain, T.; Ghani, A. Medicinal plant diversity in the flora of Leepa Valley, Muzaffarabad (AJK), Pakistan. Afr. J. Biotechnol. 2012, 11, 3087–3098.

120. Blumenthal, M. Therapeutic Guide to Herbal Medicines; American Botanical Council: Austin, TX, USA, 1998.

121. Sakarcan, A.; Sehirli, Ö.; Veligou-Övünç, A.; Ercan, F.; Erkanlı, G.; Gedik, N.; Şener, G. Cinkgo biloba extract improves oxidative organ damage in a rat model of thermal trauma. J. Burn Care Res. 2005, 26, 515–524. [CrossRef]

122. Upadhyay, N.K.; Kumar, R.; Siddiqui, M.S.; Gupta, A. Mechanism of wound-healing activity of Hippophaerhamnoides L. leaf extract in experimental burns. Evid. Based Complement. Ther. 2011, 659705.
123. Upadhyay, N.; Kumar, R.; Mandotra, S.K.; Meena, R.N.; Siddiqui, M.S.; Sawhney, R.C.; Gupta, A. Safety and healing efficacy of Sea buckthorn (Hippophaerhamnoides L.) seed oil on burn wounds in rats. *Food Chem. Toxicol.* 2009, 47, 1146–1153. [CrossRef]

124. Mushtag, M.; Anwer, N.; Waqar, M.A.; Latif, S.; Shahid, S.A.; Azam, A. Antioxidant, Antimicrobial Potential and Phytochemical Attributes of Impatiens edgeworthii. *Asian J. Chem.* 2013, 25, 9800–9804. [CrossRef]

125. Ojewole, J.A. Antiinflammatory, analgesic & hypoglycemic effects of Mangifera indica Linn.(Anacardiaceae) stem bark aqueous extract. *Methods Find. Exp. Clin. Pharmacol.* 2005, 27, 547–554. [PubMed]

126. Sultan, A.; Nakanishi, A.; Roy, B.; Mizuno, W.; Tatsumi, R.; Ito, T.; Tabata, S.; Rashid, H.; Katayama, S.; Ikeuchi, Y. Quality improvement of frozen & chilled beef biceps femoris with the application of salt-bicarbonate solution. *Asian Australas. J. Anim. Sci.* 2008, 21, 903.

127. Jarrahi, M. An experimental study of the effects of Matricaria chamomilla extract on cutaneous burn wound healing in albino rats. *Nat. Prod. Res.* 2008, 22, 422–427. [CrossRef]

128. Patel, Y.S.; Patel, R.; Mahato, A.K.R.; Joshi, P. Status & diversity of ethnomedicinal plants of Dhinadhar Hill, Kachchh District, Gujarat. *Int. Jof. Plant. Animal Environ. Sci.* 2013, 3, 265–273.

129. Leung, A.Y. *Foster's Encyclopedia of Common Natural Ingredients used in Foods, Drugs & Cosmetics*, 2nd ed.; Wiley Interscience Publication; John Wiley: Hoboken, NJ, USA, 1996.

130. Quisumbing, E. *Medicinal Plants of the Philippines*; Katha Publishing Company; JMC Press: Quezon City, Philippines, 1978.

131. Lim, Y.Y.; Kim, H.M.; Shin, H.I.; Kim, M.N.; Kim, B.J. Anti inflammatory & anti pruritic effects of Portulaca oleracea L. extract using in vitro & in vivo inflammation model: LPS treated raw264.7 cells, keratinocytes, NC/Nga mice & hairless SKH 1 mice. *Korean J. Asthma Allergy Clin. Immunol.* 2011, 31, 199–206.

132. Chaturvedula, V.S.P.; Prakash, I. Isolation of Stigmasterol & Sitosterol from the dichloromethane extract of Rubus suavissimus. *Int. Curr. Pharm. J.* 2012, 1, 239–242.

133. Rane, M.H.; Sahu, N.K.; Agjoankar, S.S.; Teli, N.C.; Verma, D.R. A Holistic Approach on Review of Solanum virginianum. L. *RRJPPS* 2014, 3, 1–4.

134. Chaturvedula, V.S.P.; Prakash, I. Isolation of Stigmasterol & Sitosterol from the dichloromethane extract of Rubus suavissimus. *Int. Curr. Pharm. J.* 2012, 1, 239–242.

135. Iqbal, H. Comparative efficacy of Aloe vera & Tamarixaphyllum against Cutaneous leishmaniasis. *Int. J. Basic Med. Sci. Pharm. (IJBMSP)* 2012, 2, 42–45.

136. Babu, S.G.; Bairy, K.L. Effect of Tridax procumbens on burn wound healing. *Indian Drugs* 2003, 40, 488–491.

137. Ibrar, M.; Afify, L.H.; Al-Naffouri, T.Y. Efficient coordinated recovery of sparse channels in massive MIMO. *IEEE Trans. Signal. Process.* 2015, 63, 104–118. [CrossRef]

138. Masood, M.; Afify, L.H.; Al-Naffouri, T.Y. Efficient coordinated recovery of sparse channels in massive MIMO. *IEEE Trans. Signal. Process.* 2015, 63, 104–118. [CrossRef]

139. Ydyrys, A.; Mukhitdinov, N.; Abibulla, A.; Tynybekov, B.; Akhmetova, A.; Karime, A. The States of Coenpopulations of endemic, relict & rare species of plant Linumum michelsonii & their protection. *World Appl. Sci. J.* 2013, 26, 934–940.

140. Khalil, H. Comparative efficacy of Aloe vera & Tamarixaphyllum against Cutaneous leishmaniasis. *Int. J. Basic Med. Sci. Pharm. (IJBMSP)* 2012, 2, 42–45.

141. Babu, S.G.; Bairy, K.L. Effect of Tridax procumbens on burn wound healing. *Indian Drugs* 2003, 40, 488–491.

142. Ibrar, M.; Afify, L.H.; Al-Naffouri, T.Y. Efficient coordinated recovery of sparse channels in massive MIMO. *IEEE Trans. Signal. Process.* 2015, 63, 104–118. [CrossRef]

143. Rane, M.H.; Sahu, N.K.; Agjoankar, S.S.; Teli, N.C.; Verma, D.R. A Holistic Approach on Review of Solanum virginianum. L. *RRJPPS* 2014, 3, 1–4.

144. Chaturvedula, V.S.P.; Prakash, I. Isolation of Stigmasterol & Sitosterol from the dichloromethane extract of Rubus suavissimus. *Int. Curr. Pharm. J.* 2012, 1, 239–242.

145. Masood, M.; Afify, L.H.; Al-Naffouri, T.Y. Efficient coordinated recovery of sparse channels in massive MIMO. *IEEE Trans. Signal. Process.* 2015, 63, 104–118. [CrossRef]

146. Ydyrys, A.; Mukhitdinov, N.; Abibulla, A.; Tynybekov, B.; Akhmetova, A.; Karime, A. The States of Coenpopulations of endemic, relict & rare species of plant Linumum michelsonii & their protection. *World Appl. Sci. J.* 2013, 26, 934–940.

147. Khalil, H. Comparative efficacy of Aloe vera & Tamarixaphyllum against Cutaneous leishmaniasis. *Int. J. Basic Med. Sci. Pharm. (IJBMSP)* 2012, 2, 42–45.

148. Babu, S.G.; Bairy, K.L. Effect of Tridax procumbens on burn wound healing. *Indian Drugs* 2003, 40, 488–491.

149. Ibrar, M.; Afify, L.H.; Al-Naffouri, T.Y. Efficient coordinated recovery of sparse channels in massive MIMO. *IEEE Trans. Signal. Process.* 2015, 63, 104–118. [CrossRef]

150. Rane, M.H.; Sahu, N.K.; Agjoankar, S.S.; Teli, N.C.; Verma, D.R. A Holistic Approach on Review of Solanum virginianum. L. *RRJPPS* 2014, 3, 1–4.

151. Babu, S.G.; Bairy, K.L. Effect of Tridax procumbens on burn wound healing. *Indian Drugs* 2003, 40, 488–491.

152. Ibrar, M.; Afify, L.H.; Al-Naffouri, T.Y. Efficient coordinated recovery of sparse channels in massive MIMO. *IEEE Trans. Signal. Process.* 2015, 63, 104–118. [CrossRef]

153. Ydyrys, A.; Mukhitdinov, N.; Abibulla, A.; Tynybekov, B.; Akhmetova, A.; Karime, A. The States of Coenpopulations of endemic, relict & rare species of plant Linumum michelsonii & their protection. *World Appl. Sci. J.* 2013, 26, 934–940.

154. Khalil, H. Comparative efficacy of Aloe vera & Tamarixaphyllum against Cutaneous leishmaniasis. *Int. J. Basic Med. Sci. Pharm. (IJBMSP)* 2012, 2, 42–45.

155. Babu, S.G.; Bairy, K.L. Effect of Tridax procumbens on burn wound healing. *Indian Drugs* 2003, 40, 488–491.

156. Ibrar, M.; Afify, L.H.; Al-Naffouri, T.Y. Efficient coordinated recovery of sparse channels in massive MIMO. *IEEE Trans. Signal. Process.* 2015, 63, 104–118. [CrossRef]

157. Ydyrys, A.; Mukhitdinov, N.; Abibulla, A.; Tynybekov, B.; Akhmetova, A.; Karime, A. The States of Coenpopulations of endemic, relict & rare species of plant Linumum michelsonii & their protection. *World Appl. Sci. J.* 2013, 26, 934–940.

158. Khalil, H. Comparative efficacy of Aloe vera & Tamarixaphyllum against Cutaneous leishmaniasis. *Int. J. Basic Med. Sci. Pharm. (IJBMSP)* 2012, 2, 42–45.

159. Babu, S.G.; Bairy, K.L. Effect of Tridax procumbens on burn wound healing. *Indian Drugs* 2003, 40, 488–491.

160. Ibrar, M.; Afify, L.H.; Al-Naffouri, T.Y. Efficient coordinated recovery of sparse channels in massive MIMO. *IEEE Trans. Signal. Process.* 2015, 63, 104–118. [CrossRef]
182. Hilmon, J.B. Autecology of Saw Palmetto (Serenoa repens [Bartr.] Small). Ph.D. Thesis, Duke Univ., Durham, UK, 1968.

183. Schütz, K.; Carle, R.; Schieber, A. Taraxacum—a review on its phytochemical & pharmacological profile. J. Ethnopharmacol. 2006, 107, 313–323.

184. Chen, S.; Dong, L.; Quan, H. A review of the ethnobotanical value, phytochemistry, pharmacology, toxicity & quality control of Tussilago farfara L. (coldsfoot). J. Ethnopharmacol. 2021, 267, 113478.

185. Liu, X.C.; Zhou, L.; Liu, Z.L. Identification of insecticidal constituents from the essential oil of Valerianajatamansi Jones against Liposcelis bostrychophila. Badonnel J. Chem. 2013, 83, 83912.

186. Abdallah, S.H.; Mostafa, N.M.; Mohamed, M.A.E.H.; Nada, A.S.; Singab, A.N.B. UPLC-ESI-MS/MS profiling and hepatoprotective activities of Stevia leaves extract, butanol fraction and stevioside against radiation-induced toxicity in rats. Nat. Prod. Res. 2021, 1–7. [CrossRef]

187. Mostafa, N.M.; Edmond, M.P.; El-Shazly, M.; Eldahshan, O.A.; Singab, A.N. Phytoconstituents and renoprotective effect of Polyaltheia longifolia leaves extract on radiation-induced nephritis in rats via TGF-β/Smad pathway. Nat. Prod. Res. 2021, 1–6. [CrossRef]

188. El-Nashar, H.A.; Mostafa, N.M.; El-Shazly, M.; Eldahshan, O.A. The Role of Plant-Derived Compounds in Managing Diabetes Mellitus: A review of literature 2014 to 2019. Curr. Med. Chem. 2020, 28, 4694–4730. [CrossRef] [PubMed]

189. Elhawary, E.A.; Mostafa, N.M.; Labib, R.M.; Singab, A.N. Metabolomic Profiles of Essential Oils from Selected Rosa Varieties and Their Antimicrobial Activities. Plants 2021, 10, 1721. [CrossRef]

190. El-Nashar, H.A.; Mostafa, N.M.; El-Shazly, M.; Eldahshan, O.A. The Role of Plant-Derived Compounds in Managing Diabetes Mellitus: A review of literature 2014 to 2019. Curr. Med. Chem. 2020, 28, 4694–4730. [CrossRef] [PubMed]

191. Montserrat-de la Paz, S.; Fernández-Arce, A.; Angel-Martin, M.; García-Giménez, M.D. The sterols isolated from Even Primrose oil modulate the release of proinflammatory mediators. Phytomedicine 2012, 19, 1072–1076. [CrossRef]

192. Al-Madhagy, S.A.; Mostafa, N.M.; Youssef, F.S.; Awad, G.E.; Eldahshan, O.A.; Singab, A.N. Metabolic Profiling of a Polyphenolic-Rich Fraction of Coccinia grandis Leaves Using LC-ESI-MS/MS and In Vivo Validation of Its Antimicrobial and Wound Healing Activities. Food Funct. 2019, 10, 6267–6275. [CrossRef] [PubMed]

193. Ndhlala, A.R.; Ghebrehiwot, H.M.; Ncube, B.; Aremu, A.O.; Gruz, J.; Šubrtová, M.; Doležal, K.; du Plooy, C.P.; Abdelgadir, H.A.; Van Staden, J. Antimicrobial, anthelmintic activities and characterisation of functional phenolic acids of Achyranthes aspera Linn.: A medicinal plant used for the treatment of wounds and ringworm in east Africa. Front. Pharmacol. 2015, 6, 274. [CrossRef] [PubMed]

194. Carvalioglu, B.; Hoca, M. Potential effects of onion (Allium cepa L.) and its phytomolecules on non-communicable chronic diseases: A review. J. Hortic. Sci. Biotechnol. 2022, 97, 24–33. [CrossRef]

195. Ragasa, C.Y.; Lorena, G.S.; Mandia, E.H.; Raga, D.D.; Shen, C.C. Chemical constituents of Abrus precatorius. Amer. J. Essent. Oils. Nat. Prod. 2013, 1, 7–10.

196. Vitalini, S.; Beretta, G.; Iriti, M.; Orsenigo, S.; Basile, L.; Dall’Acqua, S.; Iorizzi, M.; Fico, G. Phenolic compounds from Achillea millefolium L. and their bioactivity. Acta Biochim. Pol. 2011, 58(2), 203–209. [CrossRef]

197. Ndhla, A.R.; Ghebrehiwot, H.M.; Neube, B.; Aremu, A.O.; Gruz, J.; Šubrtová, M.; Doležal, K.; du Plooy, C.P.; Abdelgadir, H.A.; Van Staden, J. Antimicrobial, anthelmintic activities and characterisation of functional phenolic acids of Achyranthes aspera Linn.: A medicinal plant used for the treatment of wounds and ringworm in east Africa. Front. Pharmacol. 2015, 6, 274. [CrossRef] [PubMed]

198. Carvalioglu, B.; Hoca, M. Potential effects of onion (Allium cepa L.) and its phytomolecules on non-communicable chronic diseases: A review. J. Hortic. Sci. Biotechnol. 2022, 97, 24–33. [CrossRef]

199. Schütz, K.; Carle, R.; Schieber, A. Taraxacum—a review on its phytochemical & pharmacological profile. J. Ethnopharmacol. 2006, 107, 313–323.

200. Abd El-Ghany, A.E.; Dora, G.; Abdallah, R.H.; Hassan, W.; El-Salam, E.A. Phytochemical and biological study of Albizia lebbeck stem bark. J. Chem. Pharma. Res. 2015, 7, 29–43.

201. Scepankova, H.; Combarros-Fuertes, P.; Fresno, J.M.; Tornadijo, M.E.; Dias, M.S.; Pinto, C.A.; Saraiva, J.A.; Estevinho, L.M. Role of honey in advanced wound care. Molecules 2021, 26, 4784. [CrossRef] [PubMed]

202. Ragasa, C.Y.; Lorena, G.S.; Mandia, E.H.; Raga, D.D.; Shen, C.C. Chemical constituents of Abrus precatorius. Amer. J. Essent. Oils. Nat. Prod. 2013, 1, 7–10.
207. Quispe, C.; Villalobos, M.; Bórcquez, J.; Simirgiotis, M. Chemical composition and antioxidant activity of aloe vera from the Pica Oasis (Tarapacá, Chile) by UHPLC-Q/Orbitrap/MS/MS. *J. Chem. 2018*, 2018, 6123850. [CrossRef]
208. Deladino, L.; Alvarez, I.; De Anco, S.; Sánchez-Moreno, C.; Molina-García, A.D.; Teixeira, A.S. Betalains and phenolic compounds of leaves and stems of *Alternanthera brasiliensis* and *Alternanthera tenella*. *Food Res. Int.* 2017, 97, 240–249. [CrossRef] [PubMed]
209. Singh, B.; Singh, J.P.; Kaur, A.; Singh, N. Phenolic composition, antioxidant potential and health benefits of citrus peel. *Food Res. Int.* 2020, 132, 109114. [CrossRef] [PubMed]
210. Singh, R.; De, S.; Belkheir, A. *Avena sativa* (Oat), a potential nutraceutical and therapeutic agent: An overview. *Crit. Rev. Food Sci. Nutr.* 2013, 53, 126–144. [CrossRef]
211. Wang, R.; Yin, R.; Zhou, W.; Xu, D.; Li, S. Shikonin and its derivatives: A patent review. *Expert Opin. Ther. Pat.* 2012, 22, 977–997. [CrossRef]
212. Santos, M.C.; Farias, L.S.; Merlugo, L.; de Oliveira, T.V.; Barbosa, F.S.; Fuentefria, A.M.; Henriques, A.T.; Garcia, C.V.; Mendez, A.S. UPLC-MS for identification of quercetin derivatives in *Cuphea glutinosa* Cham. & Schltldl(Lythraceae) and evaluation of antifungal potential. *Curr. Pharm. Anal.* 2018, 14, 586–594.
213. Clauser, M.; Aiello, N.; Scartezzini, F.; Innocenti, G.; Dall’Acqua, S. Differences in the chemical composition of *Arnica montana* flowers from wild populations of north Italy. *Nat. Prod. Commun.* 2014, 9, 1934578X1400900102. [CrossRef]
214. Durazzo, A.; Lucarini, M.; Souto, E.B.; Cicala, C.; Caiazzo, E.; Izzo, A.A.; Santini, A. Polyphenols: A concise overview on the chemistry, occurrence, and human health. *Phytother. Res.* 2019, 33, 2221–2243. [CrossRef]
215. Pan, C.; Chen, Y.G.; Ma, X.Y.; Jiang, J.H.; He, F.; Zhang, Y. Phytochemical constituents and pharmacological activities of plants from the genus Adiantum: A review. *Trop. J. Pharm. Res.* 2011, 10, 681–692. [CrossRef]
216. Jan, M.; Scarfò, I.; Larson, R.C.; Walker, A.; Schmidtts, A.; Guirguis, A.A.; Gasser, J.A.; Slabicki, M.; Bouffard, A.A.; Castano, A.P.; et al. Reversible ON-and OFF-switch chimeric antigen receptors controlled by lenalidomide. *Sci. Transl. Med.* 2021, 13, eabb6295. [CrossRef]
217. Hochscherf, J.; Pietsch, M.; Tieu, W.; Kuan, K.; Abell, A.D.; Gütschow, M.; Niefind, K. Crystal structure of highly glycosylated human leukocyte elastase in complex with an S2′ site binding inhibitor. *Acta Crystallogr. Sect. F: Struct. Biol. Commun.* 2018, 74, 480–489. [CrossRef]
218. Clauser, M.; Aiello, N.; Scarfò, I.; Innocenti, G.; Dall’Acqua, S. Differences in the chemical composition of *Arnica montana* flowers from wild populations of north Italy. *Nat. Prod. Commun.* 2014, 9, 1934578X1400900102. [CrossRef]
219. Wermuth, C.G. The practice of medicinal chemistry. Academic Press: Cambridge, MA, USA, 2011. In *The practice of medicinal chemistry* Academic Press: Cambridge, MA, USA, 2011.
220. Afonina, I.S.; Cullen, S.P.; Martin, S.J. Cytotoxic and non-cytotoxic roles of the CTL/NK protease granzyme B. *Immunol. Rev.* 2010, 235, 105–116. [CrossRef] [PubMed]
221. Moussa, A.Y.; Mostafa, N.M.; Singab, A.N.B. Pulchranin A: First Report of Isolation From an Endophytic Fungus and Its Inhibitory Activity on Cyclin Dependent Kinases. *Nat. Prod. Res.* 2020, 34, 2715–2722. [CrossRef] [PubMed]
222. Mostafa, N.M. Antibacterial Activity of Ginger (*Zingiber officinale*) Leaves Essential Oil Nanoemulsion against the Cariogenic *Streptococcus mutans*. *J. Appl. Pharm. Sci.* 2018, 2, 34–41.
223. Mostafa, N.M. β-Amyrin Rich *Bombax ceiba* Leaf Extract with Potential Neuroprotective Activity against Scopolamine-Induced Memory Impairment in Rats. *Rec. Nat. Prod.* 2018, 14, 77–94. [CrossRef] [PubMed]
224. Mostafa, N.M.; Mostafa, A.M.; Ashour, M.L.; Elshazly, M.; et al. Resveratrol biotechnological applications: Enlightening its antimicrobial and antioxidant properties. *J. Herb. Med.* 2022, 32, 100550. [CrossRef]
225. Khan, M.; Damalas, C.A. Farmers’ knowledge about common pests and pesticide safety in conventional cotton production.