Familial occurrence of Dyke-Davidoff-Masson syndrome in two African siblings with unexplained parotid enlargement

Musoni-Rwililiza E., Moshi C., Sebera F., Silverstein A., Harris R.D., Kanyandekwe S., Levy-Carrick N.C.

ABSTRACT

Introduction: Dyke-Davidoff-Masson syndrome (DDMS) is a rare but well-described syndrome characterized by cerebral hemiatrophy, hemiparesis, seizures, and mental retardation. Though the etiology remains unknown, DDMS may be the result of a congenital vascular insult in intrauterine life or acquired as a result of trauma, infection, vascular abnormalities or intracranial hemorrhage in the perinatal period. In some case reports, DDMS has been associated with other diseases such as epidermoid tumors, arachnoid cysts, diabetes mellitus, adrenal insufficiency, hypopituitarism or hypothyroidism.

Case Series: We report the first case of siblings presenting with DDMS associated with parotid hypertrophy. Our case series describes a brother and sister, respectively 18- and 21-year-old, who were recently diagnosed with DDMS after the brother presented with bilateral parotid enlargement to a referral center in Kigali, Rwanda. Both patients endorse epilepsy, hemiparesis, and learning difficulties from a young age.

Conclusion: The two cases’ clinical and radiological findings are compatible with DDMS. Their comparable findings are suggestive of an underlying genetic component in disease development. Ultimately, the etiology of the parotid enlargement remains unknown.
Familial occurrence of Dyke-Davidoff-Masson syndrome in two African siblings with unexplained parotid enlargement

Musoni-Rwililiza E., Moshi C., Sebera F., Silverstein A., Harris R.D., Kanyandekwe S., Levy-Carrick N.C.

ABSTRACT

Introduction: Dyke-Davidoff-Masson syndrome (DDMS) is a rare but well-described syndrome characterized by cerebral hemiatrophy, hemiparesis, seizures, and mental retardation. Though the etiology remains unknown, DDMS may be the result of a congenital vascular insult in intrauterine life or acquired as a result of trauma, infection, vascular abnormalities or intracranial hemorrhage in the perinatal period. In some case reports, DDMS has been associated with other diseases such as epidermoid tumors, arachnoid cysts, diabetes mellitus, adrenal insufficiency, hypopituitarism or hypothyroidism.

Series: We report the first case of siblings presenting with DDMS associated with parotid hypertrophy. Our case series describes a brother and sister, respectively 18- and 21-year-old, who were recently diagnosed with DDMS after the brother presented with bilateral parotid enlargement to a referral center in Kigali, Rwanda. Both patients endorse epilepsy, hemiparesis, and learning difficulties from a young age. Conclusion: The two cases’ clinical and radiological findings are compatible with DDMS. Their comparable findings are suggestive of an underlying genetic component in disease development. Ultimately, the etiology of the parotid enlargement remains unknown.

Keywords: Clinical neurology, Hemiplegia, Epilepsy, Mental retardation

INTRODUCTION

Dyke-Davidoff-Masson syndrome (DDMS) is a rare but well-defined syndrome characterized by hemiparesis,
seizures, facial asymmetry and mental retardation. It is also distinguished by radiologic findings including thickening of the skull, enlargement of the frontal sinus, elevation of the petrous ridge, ipsilateral faline displacement and capillary malformations. The DDMS is thought to result from either a congenital vascular insult in intrauterine life or acquired as a result of trauma, infection, vascular abnormalities or intracranial hemorrhage in the perinatal period [1, 2].

We describe two siblings in Rwanda with DDMS presenting at ages 18 and 21, both manifesting also unexplained bilateral parotid enlargement. We submit our cases as the first familial instance of the syndrome reported from the African continent, as well as the first familial cases of DDMS manifesting parotid hypertrophy of unknown etiology.

CASE REPORT

Case 1

An 18-year-old male with a history of seizures and hemiplegia presented to University Teaching Hospital of Kigali (CHUK) with progressive facial pain, disrupted sleep, impaired speech, and difficulties eating associated with marked bilateral parotid enlargement. He was reportedly the product of a non-consanguineous, uncomplicated gestation and delivery. There was no family history of any neurologic disease or immunologic disease. He developed seizures at about seven months of age, at which time he experienced several unilateral tonic-clonic seizures per day, contralateral to his hemiplegic side. He was managed at various times with phenobarbital, phenytoin, and valproate. Seizures eventually decreased in frequency and intensity, though they remained near-daily events until puberty. Around age 15, seizure frequency diminished to monthly and ultimately to no overt seizures, but he still experienced monthly episodes of transient generalized weakness. At the time of presentation, the patient had been seizure-free for approximately four months.

On examination, the patient was well appearing, carefully groomed, with significant bilateral, symmetric parotid enlargement. Neurological examination was notable for right spastic hemiparesis (3/5) with ipsilateral atrophy. He showed a diminished naso-labial fold on the right. There was unilateral loss of sensation throughout the hemiparetic side, as well as positive Babinski and Hoffman signs. Despite his weakness and contraction of his right extremity, the patient could ambulate steadily and independently. He had limited use of his right hand. He was minimally verbal, but engageable, with evidence of significant intellectual limitations, including an inability to read and write, despite report of extensive tutorial efforts.

The parotid enlargement was present since early childhood but never assessed. A few years prior to presentation, the parotid hypertrophy worsened, causing pain and discomfort. The ultrasound showed homogeneous hypertrophy of the parotid gland without visible focal lesion or hyper-vascularization. The cytopathology of the parotid gland revealed clusters of salivary gland cells and scattered small lymphocytes. Workup ruled out active infections including tuberculosis, syphilis, HIV; the inflammatory marker CRP was within normal limits. Clinical evaluation was negative for signs and symptoms of Sjögren’s syndrome. White blood cell count was within normal limits. However, it was indicative of lymphocytosis at 61.1%. Amylase levels were elevated at 246/I (normal range 28—100 u/I). Additional testing for autoimmunologic markers is not available in this low resource setting.

The patient’s parotid hypertrophy did not respond to a course of antibiotics or a course of steroids. A phenytoin taper was initiated to assess for possible association with the parotid hypertrophy, but no regression was evident after three months of discontinuation.

As shown in Figure 1, the patient’s head CT scan revealed a diffuse atrophic left hemisphere with enlarged sulci and dilatation of the ipsilateral ventricle. The superior sagittal sinus and inter-hemispheric fissure were displaced across the midline into the left side. Computed tomography scan shown on bone windows/levels depicted variable degrees of left calvarial diploic space thickening and respective paranasal sinuses as well as mastoid air cell enlargement with hyperaeration. In addition, both parotid glands were enlarged, to a greater extent on the right side. Contrast-enhanced CT images showed homogeneous enhancement of the parotid glands.

At age three, the patient’s EEG revealed bilateral symmetric but dysrhythmic slow waves; when repeated at age 14 an EEG demonstrated asymmetric activity with slow waves in the left hemisphere. However, a recent study was reported as normal with symmetric alpha activity and regular rhythm.

The DDMS was initially diagnosed on the basis of the radiologic findings, and confirmed on clinical examination given the presence of the characteristic signs of seizures, hemiparesis, intellectual delays and mild facial asymmetry.

Case 2

This is a case of 21-year-old female who was sister of patient described in Case 1. She was also the product of the same non-consanguineous relation, born after an uncomplicated gestation and delivery. She similarly presented with delayed motor and speech milestones as well as unilateral tonic-clonic seizures starting around seven months of age. She displayed comparable limitations in intellectual functioning to that of her brother. Further, the course of her seizures paralleled her brother’s, initially with several seizures daily, then gradually diminishing under treatment. For over three years prior to presentation, she experienced transient seizures, facial asymmetry and mental retardation. The ultrasound showed homogeneous hypertrophy of the parotid gland without visible focal lesion or hyper-vascularization. The cytopathology of the parotid gland revealed clusters of salivary gland cells and scattered small lymphocytes. Workup ruled out active infections including tuberculosis, syphilis, HIV; the inflammatory marker CRP was within normal limits. Clinical evaluation was negative for signs and symptoms of Sjögren’s syndrome. White blood cell count was within normal limits. However, it was indicative of lymphocytosis at 61.1%. Amylase levels were elevated at 246/I (normal range 28—100 u/I). Additional testing for autoimmunologic markers is not available in this low resource setting.

The patient’s parotid hypertrophy did not respond to a course of antibiotics or a course of steroids. A phenytoin taper was initiated to assess for possible association with the parotid hypertrophy, but no regression was evident after three months of discontinuation.

As shown in Figure 1, the patient’s head CT scan revealed a diffuse atrophic left hemisphere with enlarged sulci and dilatation of the ipsilateral ventricle. The superior sagittal sinus and inter-hemispheric fissure were displaced across the midline into the left side. Computed tomography scan shown on bone windows/levels depicted variable degrees of left calvarial diploic space thickening and respective paranasal sinuses as well as mastoid air cell enlargement with hyperaeration. In addition, both parotid glands were enlarged, to a greater extent on the right side. Contrast-enhanced CT images showed homogeneous enhancement of the parotid glands.

At age three, the patient’s EEG revealed bilateral symmetric but dysrhythmic slow waves; when repeated at age 14 an EEG demonstrated asymmetric activity with slow waves in the left hemisphere. However, a recent study was reported as normal with symmetric alpha activity and regular rhythm.

The DDMS was initially diagnosed on the basis of the radiologic findings, and confirmed on clinical examination given the presence of the characteristic signs of seizures, hemiparesis, intellectual delays and mild facial asymmetry.
feelings of fear and generalized weakness, but no overt seizures. Her head CT scans were comparable to her brother (Figure 1). In addition, parotid enlargement was observed, though visually less than her brother. Her recent EEG was notable for an irregular rhythm with slow waves and theta activity; no prior EEG studies were available.

On examination, the patient was well appearing, with less severe but visually present bilateral, symmetric parotid enlargement. Neurologic examination was notable for right spastic hemiparesis (4/5) with ipsilateral muscle atrophy, both notably more prominent than in her brother. Facial asymmetry was also limited to a diminished nasolabial fold on the right. Her right hand was in flexion with limited use. Despite the weakness and contractures, she also could ambulate steadily and independently. She was more difficult to engage than her brother, and her affect was notably flat.

She was diagnosed DDMS in view of her consistent radiologic and clinical findings.

DISCUSSION

Both of our subjects displayed the characteristic clinical findings and radiological signs consistent with a diagnosis of DDMS. Rasmussen encephalitis and Sturge—Weber syndrome were both ruled out because the pattern of seizures was inconsistent with encephalitis and they lacked the typical skin lesion, respectively.

Cases of DDMS have been reported across several continents, including one report of radiologic findings of a DDMS case in Rwanda in 2012 [3]. There is only one other case in literature reporting siblings with DDMS, though they exhibited marked dissimilarities in presentation—one with developmental delays, hemiparesis, and recurrent seizures, the other with seizures but no neurological deficits. Additionally, the radiological findings were not definitive for one of the siblings in this case [4].

In contrast, the siblings described in our report have relatively comparable findings. Notably, the elder sister has a more severe hemiparesis than her brother, consistent with the greater cerebral hemiatrophy and shifting of midline structures evident on CT findings.

Etiology of the parotid hypertrophy remains elusive. Possible causes include infection, non-infectious inflammation, tumor, environmental factors and medication side effect. While multiple pathogens, viral and otherwise, can cause parotitis, we feel that only an immunosuppressed host, which our patients are not, would allow persistent infection for more than a decade. An autoimmune process cannot be absolutely discounted, but neither could we find clinical or laboratory evidence to support it. The normal cytopathology noted in Case 1 would seem to exclude the diagnosis of a tumor. With regards to environmental factors, in depth questioning revealed no other members of the patients’ family or community with chronic parotid enlargement.

Benign, reversible parotid hypertrophy as a side effect of phenytoin has been described by Brandenburg et al. [5]. The parotid hypertrophy in our Case 1 did not resolve after discontinuation of phenytoin, nor with a robust course of high-dose steroids. Thus, we have no explanation for the chronic parotid hypertrophy in our cases at this time. While it may not be directly associated with DDMS and instead a uniquely incidental finding, the nearly identical phenotypic manifestation suggests the possibility of an underlying genetic component should be considered. Interestingly, recent case reports describe association of DDMS with central hypothyroidism and secondary adrenal insufficiency [6], hypopituitarism and diabetes mellitus [7], epidermoid tumor and arachnoid cysts [8]. Thus, in light of these newly described associations, DDMS may be associated with other currently unknown co-morbidities. This suggests a need to be attentive to a broader range of clinical manifestations in diagnosing and treating future DDMS cases.

CONCLUSION

In summary, we report the case of siblings with Dyke-Davidoff-Masson syndrome (DDMS) with associated
parotid hypertrophy of unclear etiology. Elimination of phenytoin as a possible contributing factor did not bring about resolution of the abnormality, nor did a robust course of high-dose steroids. The presence of lymphocytes in the cytology raises the possibility of an immune-mediated process and deserves further attention.

Acknowledgements
We are thankful to Munyandamutsa Naasson, Bukuru John, and Kalisa Louise for their cooperation.

Author Contributions
Emmanuel Musoni-Rwililiza – Substantial contributions to conception and design, Acquisition of data, Analysis and interpretation of data, Drafting the article, Revising it critically for important intellectual content, Final approval of the version to be published
Crispin Moshi – Substantial contributions to conception and design, Acquisition of data, Analysis and interpretation of data, Drafting the article, Revising it critically for important intellectual content, Final approval of the version to be published
Fidele Sebera – Substantial contributions to conception and design, Acquisition of data, Analysis and interpretation of data, Drafting the article, Revising it critically for important intellectual content, Final approval of the version to be published
Allison Silverstein – Substantial contributions to conception and design, Acquisition of data, Analysis and interpretation of data, Drafting the article, Revising it critically for important intellectual content, Final approval of the version to be published
Robert D. Harris – Substantial contributions to conception and design, Acquisition of data, Analysis and interpretation of data, Drafting the article, Revising it critically for important intellectual content, Final approval of the version to be published
Simone Kanyandekwe – Substantial contributions to conception and design, Acquisition of data, Analysis and interpretation of data, Drafting the article, Revising it critically for important intellectual content, Final approval of the version to be published
Nomi C. Levy-Carrick – Substantial contributions to conception and design, Acquisition of data, Analysis and interpretation of data, Drafting the article, Revising it critically for important intellectual content, Final approval of the version to be published

Guarantor
The corresponding author is the guarantor of submission.

Conflict of Interest
Authors declare no conflict of interest.

Copyright
© 2016 Emmanuel Musoni-Rwililiza et al. This article is distributed under the terms of Creative Commons Attribution License which permits unrestricted use, distribution and reproduction in any medium provided the original author(s) and original publisher are properly credited. Please see the copyright policy on the journal website for more information.

REFERENCES
1. Anandpara KM, Aswani Y, Hira P. Classical imaging findings of Dyke-Davidoff-Masson syndrome. BMJ Case Rep 2014 Sep 12;2014. pii: ber2014206682.
2. Lee JH, Lee ZI, Kim HK, Kwon SH. A case of Dyke-Davidoff-Masson syndrome in Korea. Korean J Pediatr 2006;49(3):208–11.
3. Ndahiriwe JB, Cook E. Dyke-Davidoff-Masson Syndrome: a rare imaging case. Rwanda Medical Journal 2012;69(3):54–6.
4. Park KI, Chung JM, Kim JY. Dyke-davidoff-masson syndrome: cases of two brothers and literature review. J Epilepsy Res 2014 Jun 30:4(1):24–7.
5. Brandenburg AH, Smits MG, Voorbrood BS, Hemmes AM, Ros JJ. Submandibular salivary gland hypertrophy induced by phenytoin. Epilepsia 1993 Jan-Feb;34(1):151–2.
6. Kim JW, Kim ES, Kim W, et al. A case of Dyke-Davidoff-Masson syndrome associated with central hypothyroidism and secondary adrenal insufficiency. Hormones (Athens) 2013 Jul-Sep;12(3):461–5.
7. Park SY, Lee MY, Kim JH, et al. A case of Dyke-Davidoff-Masson Syndrome associated with hypopituitarism and diabetes mellitus. Korean J Med 2010;79:316–20.
8. Menekse G, Ozsoy KM, Ates T, Okten AI, Güzel A. Dyke-davidoff-masson syndrome associated with epidermoid tumour and arachnoid cyst: a case report. Balkan Med J 2013 Dec;30(4):432–5.
ABOUT THE AUTHORS

Article citation: Musoni-Rwililiza E., Moshi C., Sebera F., Silverstein A., Harris R.D., Kanyandekwe S., Levy-Carrick N.C. Familial occurrence of Dyke-Davidoff-Masson syndrome in two African siblings with unexplained parotid enlargement. Int J Case Rep Images 2016;7(6):354–358.

Emmanuel Musoni-Rwililiza is a Resident in the psychiatry department of the University of Rwanda, where he earned his medical degree. He currently serves as general secretary of the Rwanda Neuro-Psychiatry Society. Before specializing in Psychiatry, Emmanuel was Clinical Director in Masaka Hospital in 2011, having served in 2010 as a Medical Officer in Darfur-North SUDAN for the UNAMID Peacekeeping mission. He is the founder of the Medical Mental Health Association (MMHA), serving as its first president from 2006-2009. During this time, Emmanuel designed and coordinated the Mental Health Empowerment Project funded by the Danish youth council (DUF) and CISU.

Moshi C. is working at University Teaching Hospital of Kigali (CHUK), Department of Radiology, Kigali, Rwanda.

Sebera F. is working at Neuropsychiatric Hospital of Ndera, Department of Psychiatry, Kigali, Rwanda.

Silverstein A. is working at Boston Children’s Hospital, Department of Plastic Surgery, Boston, MA, USA, Harvard Medical School, Program in Global Surgery and Social Change, Boston, MA, USA, University of Miami Miller School of Medicine, Miami, FL, USA.

Harris R.D. is working University Teaching Hospital of Kigali (CHUK), Department of Radiology, Kigali, Rwanda, Darmouth College Geisel School of Medicine, Hanover, NH, USA.

Kanyandekwe S. is working at University of Rwanda College of Medicine and Health Sciences, Department of Psychiatry, Kigali, Rwanda, University Teaching Hospital of Kigali (CHUK), Department of Psychiatry, Kigali, Rwanda.

Levy-Carrick N.C. is working at Brigham and Women’s Hospital Department of Psychiatry, Harvard Medical School, Boston, MA, USA.
Edorium Journals: An introduction

Edorium Journals Team

About Edorium Journals
Edorium Journals is a publisher of high-quality, open-access, international scholarly journals covering subjects in basic sciences and clinical specialties and subspecialties.

Invitation for article submission
We sincerely invite you to submit your valuable research for publication to Edorium Journals.

But why should you publish with Edorium Journals?
In less than 10 words - we give you what no one does.

Vision of being the best
We have the vision of making our journals the best and the most authoritative journals in their respective specialties. We are working towards this goal every day of every week of every month of every year.

Exceptional services
We care for you, your work and your time. Our efficient, personalized and courteous services are a testimony to this.

Editorial Review
All manuscripts submitted to Edorium Journals undergo pre-processing review, first editorial review, peer review, second editorial review and finally third editorial review.

Peer Review
All manuscripts submitted to Edorium Journals undergo anonymous, double-blind, external peer review.

Early View version
Early View version of your manuscript will be published in the journal within 72 hours of final acceptance.

Manuscript status
From submission to publication of your article you will get regular updates (minimum six times) about status of your manuscripts directly in your email.

Our Commitment

Six weeks
You will get first decision on your manuscript within six weeks (42 days) of submission. If we fail to honor this by even one day, we will publish your manuscript free of charge.*

Four weeks
After we receive page proofs, your manuscript will be published in the journal within four weeks (31 days). If we fail to honor this by even one day, we will publish your manuscript free of charge and refund you the full article publication charges you paid for your manuscript.*

Favored Author program
One email is all it takes to become our favored author. You will not only get fee waivers but also get information and insights about scholarly publishing.

Institutional Membership program
Join our Institutional Memberships program and help scholars from your institute make their research accessible to all and save thousands of dollars in fees make their research accessible to all.

Our presence
We have some of the best designed publication formats. Our websites are very user friendly and enable you to do your work very easily with no hassle.

Something more...
We request you to have a look at our website to know more about us and our services.

* Terms and condition apply. Please see Edorium Journals website for more information.

We welcome you to interact with us, share with us, join us and of course publish with us.

CONNECT WITH US

Edorium Journals: On Web
Browse Journals

This page is not a part of the published article. This page is an introduction to Edorium Journals and the publication services.