NOD2/CARD15, ATG16L1 and IL23R gene polymorphisms and childhood-onset of Crohn’s disease

Maria Gazouli, Ioanna Pachoula, Ioanna Panayotou, Gerassimos Mantzaris, George Chrousos, Nicholas P Anagnou, Eleftheria Roma-Giannikou

Microbiota, inflammation, spatial distribution, CD, DOT1L, 2020

Abstract

AIM: To assess whether the polymorphisms of NOD2/CARD15, autophagy-related 16-like 1 (ATG16L1), and interleukin-23 receptor (IL23R) genes play a more critical role in the susceptibility of childhood-onset than in adult-onset Crohn’s disease (CD).

METHODS: Polymorphisms R702W, G908R, and 3020insC of NOD2/CARD15; rs2241880 A/G of ATG16L1, and rs11209026 (R381Q) of IL23R gene were assessed in 110 childhood-onset CD, 364 adult-onset CD, and 539 healthy individuals. Analysis of polymorphisms R702W, G908R, and 3020insC of NOD2/CARD15 genotyping was performed by allele specific polymerase chain reaction (PCR) or by PCR-restriction fragment length polymorphism analysis. The polymorphisms rs2241880 A/G of the ATG16L1, and rs11209026 (R381Q) of the IL23R gene in the children’s cohort were genotyped by PCR and melting curve analysis whereas adult group genotyping was performed using the Affymetrix Genome-Wide Human SNP Array 5.0 (500K).

RESULTS: The 3020insC allele in NOD2/CARD15 was significantly higher in childhood than in adult-onset CD (P = 0.0067). Association with at least 1 NOD2/CARD15 variant was specific for ileal disease (with or without colonic involvement). Even if the frequency of G allele of the rs2241880 ATG16L1 polymorphism was increased in both paediatric and adult CD patients compared to controls (P = 0.017 and P = 0.001, respectively), no difference was observed between the childhood and the adult cohort. The rare Q allele of IL23R rs11209026 polymorphism was underrepresented in both paediatric and adult CD cases (P = 0.0018 and P = 0.04, respectively) and no difference was observed between the childhood and the adult cohort. The presence of the rs2241880 ATG16L1 and rs11209026 IL23R polymorphisms did not influence disease phenotype.

CONCLUSION: Polymorphism 3020insC in NOD2/CARD15 occurs statistically significantly more often in patients with childhood-onset CD than in patients with adult-onset CD. The ATG16L1 and IL23R variants are associated with susceptibility to CD, but not early-onset disease.

Key words: Genetics; Childhood-onset; Inflammatory bowel disease; Crohn’s disease; Genetic susceptibility; NOD2/CARD15; ATG16L1; IL23R; Polymorphisms

Peer reviewer: Uday Ghoshal, Professor, Department of Gastroenterology, Sanjay Gandhi Postgraduate Institute of Medical Science, Lucknow, 226014, India
Gazouli M et al. Genetic polymorphisms and childhood-onset CD

INTRODUCTION

Inflammatory bowel disease (IBD), Crohn’s disease (CD) and ulcerative colitis (UC) are characterized by chronic relapsing inflammation of the digestive tract. As a multifactorial disorder, IBD is caused by a complex interaction of genetic, microbial, and immunological factors. Approximately 10%-20% of all IBD will present either in childhood or adolescence[1].

Although age of onset seems to be a random event, recent data have shown that a subgroup of patients with early-onset IBD may have specific phenotypes that differs from adult onset IBD, suggesting that the pathogenesis of pediatric IBD and adult IBD may differ[2,3]. A compelling speculation is that pediatric-onset IBD is more likely to be influenced by genetics compared to late onset, as there is less time for environmental modifiers to influence the onset of the disease. Adult-onset IBD is more likely to be confounded by abundant environmental exposure compared to childhood-onset IBD populations[4].

Genetic risk factors for IBD have been extensively studied during the last year. NOD2/CARD15 polymorphisms R702W, G908R, and 3020insC are independently associated with an increased risk of developing CD[5,6]. Existing data remain conflicting as to whether NOD2/CARD15 polymorphisms are associated with the age of onset of IBD, with some studies showing an effect towards a younger age of onset[7,8] and others showing no effect[9,10].

Recently, genome wide association studies (GWAS), in addition to offering further confirmation of the importance of the NOD2/CARD15 gene, provided evidence for several determinants, including genes encoding autophagy-related 16-like 1 (ATG16L1) and interleukin-23 receptor (IL23R)[11]. Moreover, Kugathasan et al[12] by employing GWAS in a cohort of individuals with pediatric-onset IBD, provide further insights into disease pathogenesis.

Hampe et al[13] were the first group to implicate the autophagy pathway in CD. The association of the Ala197Thr (rs2241880 A/G) variant of the ATG16L1 gene with susceptibility to CD, has now been replicated in several independent cohorts[14,15]. Recent studies have explored genotype associations in adult-onset IBD, and to a more limited extent in pediatric disease. Prescott et al[16] suggested an association between the Ala197Thr variant allele and early-onset CD, as well as an effect of ATG16L1 genotype on age at diagnosis. Baldassano et al[17] replicated this association in a pediatric cohort. In contrast, Van Limbergen et al[18] reported that the ATG16L1 variant is not associated with early-onset IBD in a pediatric population in Scotland.

The IL23R gene is located on chromosome 1p31 and its corresponding ligand IL23 is a key component of the immunoregulatory pathway. The identification of an association between the R381Q variant of IL23R and CD is thus an important step toward the delineation of pathways related to inflammation to chronic inflammatory cascade characteristics of CD. Recent studies suggest that the R381Q variant in IL23R is associated with pediatric-onset CD[19,20].

In view of these discrepant data regarding the association of key regulatory genes with CD susceptibility, the purpose of our study was investigate whether the known DNA polymorphisms in the NOD2/CARD15, ATG16L1, and IL23R genes determine susceptibility for CD in Greek children, and to compare these data with the frequency of these gene polymorphisms in adult-onset CD.

MATERIALS AND METHODS

Patients and controls

We examined 110 Greek children with CD, diagnosed before the age of 17, who attended the First Department of Pediatrics of Athens University, “Aghia Sophia” Children’s Hospital between January 2007 and December 2008. The diagnosis of CD was based on standard clinical, endoscopic, radiologic and histopathologic criteria[21]. Cases of UC and indeterminate colitis were excluded. Also excluded were children who had concomitant immune-mediated diseases such as asthma, diabetes type 1, juvenile diabetes, or juvenile arthritis. Blood samples from 364 adult CD patients were collected at the Inflammatory Bowel Disease (IBD) Outpatient Clinic of the Evangelismos Hospital. Most of them had already been used for genotype studies on NOD2/CARD15[22]. The main clinical characteristics of IBD patients are detailed in Table 1. This cohort was compared to 539 healthy controls (94 children and 445 adults). Before commencement of the study, the Ethics Committee at the participating centers approved the recruitment protocols. All participants were informed of the study.

Genotyping

DNA was isolated from blood with the NucleoSpin blood kit (Macherey-Nagel, Germany). Patients were genotyped for the 3 common NOD2/CARD15 polymorphisms i.e. R702W, G908R, and 3020insC using previously described methods[23]. Polymorphisms rs2241880 A/G of the ATG16L1, and rs11209026 (R381Q) of the IL23R gene in the children’s cohort were genotyped by PCR and melting curve analysis, using a pair of fluorescence resonance energy transfer (FRET) probes in LightCycler® 2.0 Instrument (Roche Diagnostics, Manheim, Germany) as previously described[24,25]. The adult group genotyping was performed using the Affymetrix Genome-Wide Human SNP Array 5.0 (500K)[26].

Statistical analysis

The sample size and the power of the present sample size
Genotype and allele frequencies of NOD2/CARD15 polymorphisms in childhood-onset CD patients, adult-onset CD, and controls \(n \) (%)

	Childhood-onset CD \(n = 110 \)	Adult-onset CD \(n = 364 \)	Controls \(n = 539 \)
R702W			
Genotype			
CC	94 (85.45)	300 (82.40)	482 (89.40)
CT	14 (12.72)	62 (17.00)	55 (10.20)
TT	2 (1.81)	2 (0.55)	2 (0.37)
\(P \) value\(^1\)	NS	NS	NS
\(P \) value\(^2\)	NS	NS	NS
\(P \) value\(^3\)	0.026		
T allele	18 (18.18)	66 (19.10)	59 (10.47)
\(P \) value\(^1\), OR (95% CI)	NS	NS	
\(P \) value\(^2\), OR (95% CI)	NS	NS	
\(P \) value\(^3\), OR (95% CI)	0.0040	1.72 (1.19-2.48)	
G308R			
Genotype			
GG	91 (82.73)	295 (81.00)	466 (86.83)
GC	17 (15.45)	65 (18.00)	69 (12.80)
CC	2 (1.81)	4 (1.00)	2 (0.37)
\(P \) value\(^1\)	NS	NS	NS
\(P \) value\(^2\)	NS	NS	NS
\(P \) value\(^3\)	0.0420		
C allele	21 (19.54)	73 (10.00)	73 (6.77)
\(P \) value\(^1\), OR (95% CI)	NS	NS	
\(P \) value\(^2\), OR (95% CI)	NS	NS	
\(P \) value\(^3\), OR (95% CI)	0.0140	1.53 (1.09-2.15)	
3020insC			
Genotype			
-	78 (70.90)	301 (82.69)	503 (93.32)
insC/insC	28 (25.45)	57 (15.66)	35 (6.49)
\(P \) value\(^1\)	< 0.0001	6 (1.65)	1 (0.18)
\(P \) value\(^2\)	0.0200		
\(P \) value\(^3\)	< 0.0001		
insC allele	36 (16.36)	69 (19.47)	37 (3.43)
\(P \) value\(^1\), OR (95% CI)	< 0.0001		
\(P \) value\(^2\), OR (95% CI)	5.5 (3.39-8.94)		
\(P \) value\(^3\), OR (95% CI)	0.0007		
\(P \) value\(^4\), OR (95% CI)	1.87 (1.21-2.88)		
\(P \) value\(^5\)	< 0.0001	2.95 (2.04-4.44)	

\(^1\)Childhood-onset vs controls; \(^2\)Childhood-onset vs adult onset; \(^3\)Adult onset vs controls. NS: Not significant.

The frequency of 3020insC polymorphism was significantly higher in the paediatric cohort than in the adult-onset cohort \((P = 0.0067) \).

Concerning the genotype-phenotype correlation, involvement was more frequent in individuals with at least one NOD2/CARD15 polymorphism \((78.25\%) \) than in wild-type carriers \((59\%) \), in both cases of childhood and adult-onset CD \((OR = 2.46, 95\% CI: 1.33-4.57, P = 0.006) \). The examined variants did not influence CD behavior in the present study.

Concerning the rs2241880 A/G polymorphism of the ATG16L1 gene, the frequency of the G allele was increased in both pediatric and adult CD patients compared to controls \((P = 0.017 \) and \(P = 0.001 \), respectively \) as shown in Table 3. No association of the ATG16L1 polymorphism was found with the incidence of CD.
polymorphism with early-onset CD was seen in our childhood-onset CD case-control analysis and adult-onset CD analysis (Table 3). Furthermore, ATG16L1 polymorphism did not influence the disease location and behavior in the population studied.

The minor allele (Q) of the rs1209026 (R381Q) polymorphism of the IL23R gene was underrepresented in both childhood-onset and adult-onset CD, compared to controls \((P = 0.0018)\) and \(P = 0.04\), respectively as shown in Table 3. No genotype-phenotype correlations were found among the CD patients studied with IL23R rs11209026 (R381Q) polymorphism.

DISCUSSION

Our present survey represents the first Greek study to document the frequency of the NOD2/CARD15, ATG16L1, and IL23R gene polymorphisms in childhood-onset CD, and compare them to those in an adult-onset CD cohort.

Our results confirm the previously reported association of NOD2/CARD15 3020insC mutation with early-onset CD\(^{[9,36-38]}\). In our study, only the NOD2/CARD15 3020insC mutation was strongly associated with childhood-CD susceptibility, and its frequency was significantly higher in the childhood cohort than in the adult-onset cohort, whereas in previous studies of early-onset CD patients, significantly higher carrier rates were found either for all the 3 NOD2/CARD15 mutations\(^{[9,36-38]}\) or for G908R and/or 3020insC only\(^{[12,39]}\). Others did not find any differences in the frequency of the 3 major NOD2/CARD15 mutations between a childhood-onset and an adult-onset CD cohort\(^{[31]}\). Both ileitis and ileocolitis were more frequent in carriers of NOD2/CARD15 polymorphisms, indicating an association of NOD2/CARD15 polymorphisms with ileal involvement. This confirms previous findings in both pediatric and adult patients\(^{[8,10,12,30,32]}\). In contrast to other studies indicating an association between NOD2/CARD15 polymorphisms and stricturing behavior\(^{[8,10]}\), we did not find any significant association between NOD2/CARD15 polymorphisms and CD phenotype. These conflicting results can be explained by the regional and ethnic differences in genotypes, and the relatively small numbers of patients included in these studies.

Recent studies have reported ATG16L1 rs2144880 variant genotype association with adult-pediatric onset CD. So far, reports in the literature have been conflicting. Specifically, Prescott et al\(^{[10]}\) and Baldassano et al\(^{[12]}\) demonstrated an association of this variant with diagnosis at an earlier age. Van Limbergen et al\(^{[39]}\) and Latiano et al\(^{[40]}\) have suggested that the ATG16L1 rs2144880 variant is associated with susceptibility to adult CD in Scotland, but not to early-onset disease. In our study in the Greek population, we were able to demonstrate an effect of this ATG16L1 polymorphism on both paediatric and adult CD susceptibility. However, the allele and genotype frequencies in childhood-onset CD were comparable to that seen in adults and therefore, we can not support an association of ATG16L1 with early-onset CD in Greece. In agreement with previous studies, in the genotype-phenotype analysis, no association was detected in the cases tested\(^{[12,31]}\).

Regarding the rs11209026 (R381Q) polymorphism of the IL23R gene, our study confirms the recently described associations between variants in the IL23R gene in both pediatric and adult-onset CD\(^{[19-21,31]}\). Recently Yamazaki et al\(^{[40]}\) did not find any positive association of the IL23R gene polymorphism with CD in the Japanese population. Furthermore, in agreement with previous studies we did not observe any association of the rs11209026 (R381Q) polymorphism of the IL23R gene with the disease location and phenotype\(^{[13,15]}\). This finding can be attributed to the distinct ethnic difference of genetic backgrounds of CD that has been reported previously for other genes between Japanese and Caucasian populations. It should be noted that the different results in allele frequencies between the studies can be explained by large regional and ethnic differences in genotypes, by the broad spectrum of clinical phenotypes of patients with CD, and by the relatively small numbers of cases included in most studies.

In conclusion, this study demonstrates that the 3020insC mutation in NOD2/CARD15 is associated with CD in a Greek childhood-onset CD cohort. Moreover, the 3020insC mutation occurred significantly more often in childhood-onset patients with CD than in

Table 3 Genotype and allele frequencies of ATG16L1 polymorphism rs2241880 and IL23R polymorphism rs11209026 in childhood-onset CD patients, adult-onset CD, and controls \(n\)

Genotype	Childhood-onset CD \((n = 110)\)	Adult-onset CD \((n = 364)\)	Controls \((n = 539)\)
rs2241880			
Genotype			
AA	17 (15.45)	46 (12.64)	104 (19.30)
AG	45 (40.91)	177 (48.63)	274 (50.83)
GG	48 (43.64)	141 (39.74)	161 (28.90)
\(P\) value\(^{1}\)	0.0190	NS	0.0040
\(P\) value\(^{2}\)	NS	0.0170	1.44 (1.07-1.95)
\(P\) value\(^{3}\)	0.0040	NS	0.0001
\(P\) value\(^{4}\)	0.0120	NS	1.38 (1.14-1.67)
G allele	141 (64.09)	459 (63.05)	596 (55.29)
\(P\) value\(^{5}\), OR (95\% CI)	1.44 (1.07-1.95)	NS	0.0001
\(P\) value\(^{6}\), OR (95\% CI)	0.0170	NS	1.38 (1.14-1.67)
rs11209026			
Genotype			
RR	105 (95.45)	329 (90.38)	458 (84.97)
RQ	5 (4.54)	32 (8.79)	79 (14.66)
QQ	0	3 (0.82)	2 (0.37)
\(P\) value\(^{7}\)	0.0120	NS	0.0220
\(P\) value\(^{8}\)	0.0040	NS	0.0016
Q allele	5 (2.27)	38 (5.22)	83 (15.45)
\(P\) value\(^{9}\), OR (95\% CI)	0.0018	NS	0.28 (0.11-0.69)
\(P\) value\(^{10}\), OR (95\% CI)	0.0040	NS	0.66 (0.44-0.98)

\(^{1}\) Childhood-onset vs controls; \(^{2}\) Childhood-onset vs adult onset; \(^{3}\) Adult onset vs controls.

WJG | www.wjgnet.com 1756 April 14, 2010 | Volume 16 | Issue 14 |
adult-onset CD patients. Our results provide an independent confirmation of the association of the \textit{ATG16L1} rs2144880 and the \textit{IL23R} rs11209026 (R381Q) polymorphisms with susceptibility to CD without supporting their implication in early-onset disease. Therefore, further studies are needed to specifically identify gene variants that predispose children to early paediatric onset disease.

COMMENTS

Background

As a multifactorial disorder, inflammatory bowel disease (IBD) is caused by a complex interaction of genetic, microbial, and immunological factors. Approximately 10%-20% of all IBD will present either in childhood or adolescence. Recent data have shown that a subgroup of patients with early-onset IBD may have specific phenotypes that differ from adult onset IBD, suggesting that the pathogenesis of paediatric IBD and adult IBD may differ. The study assesses whether the polymorphisms of \textit{NOD2}/\textit{CARD15}, autophagy-related 16-like 1 (ATG16L1), and interleukin-23 receptor (IL23R) genes play a more critical role in the susceptibility of childhood-onset than adult-onset Crohn’s disease (CD).

Research frontiers

Although several gene loci have been associated with susceptibility to CD in adults, the aetiology of childhood CD is still unknown. The current study is one of the first studies assessing the impact of candidate gene’s polymorphisms and disease susceptibility in childhood CD in a Greek cohort.

Innovations and breakthroughs

It is important to investigate the genetic variation in susceptibility to CD and identify markers that will facilitate identification of individuals at risk of developing this disease. The results suggest that the polymorphism 3020insC in \textit{NOD2}/\textit{CARD15} occurs statistically significantly more often in patients with childhood-onset CD than in patients with adult-onset CD. The ATG16L1 and IL23R variants are associated with susceptibility to CD, but not early-onset disease.

Applications

The results of this study will help us to further understand the genetic determinants of childhood CD.

Peer review

The present study demonstrates that the 3020insC mutation in \textit{NOD2}/\textit{CARD15} gene is associated with CD in a Greek childhood-onset CD cohort. Moreover, the 3020insC mutation occurred significantly more often in childhood onset patients with CD than in adult-onset CD patients.

REFERENCES

1 Kim SC, Ferry GD. Inflammatory bowel diseases in pediatric and adolescent patients: clinical, therapeutic, and psychosocial considerations. \textit{Gastroenterology} 2004; \textit{126}: 1550-1560

2 Mamula P, Telega GW, Markowitz JE, Brown KA, Russo PA, Piccoli DA, Baldassano RN. Inflammatory bowel disease in children 5 years of age and younger. \textit{Am J Gastroenterol} 2002; \textit{97}: 2005-2010

3 Heyman MB, Kirchner BS, Gold BD, Ferry G, Baldassano R, Cohen SA, Winter HS, Pain F, King C, Smith T, El-Serag HB. Children with early-onset inflammatory bowel disease (IBD): analysis of a pediatric IBD consortium registry. \textit{J Pediatr} 2005; \textit{146}: 35-40

4 Levine A, Kagathasan S, Annese V, Biank V, Leshinsky-Silver E, Davidovich O, Kimmel G, Shamir R, Palmieri O, Karban A, Broeckel U, Cicchini S. Pediatric onset Crohn's colitis is characterized by genotype-dependent age-related susceptibility. \textit{Inflamm Bowel Dis} 2007; \textit{13}: 1509-1515

5 Biank V, Broeckel U, Kagathasan S. Pediatric inflammatory bowel disease: clinical and molecular genetics. \textit{Inflamm Bowel Dis} 2007; \textit{13}: 1430-1438

6 Ogura Y, Bonen DK, Inohara N, Nicolae DL, Chen FF, Ramos R, Britton H, Moran T, Karaliukas R, Duerr RH, Ackkar JP, Brand SR, Bayless TM, Kirchner BS, Hanauer SB, Nunez G, Cho JH. A frameshift mutation in \textit{NOD2} associated with susceptibility to Crohn's disease. \textit{Nature} 2001; \textit{411}: 603-606

7 Bonen DK, Ogura Y, Nicolae DL, Inohara N, Saab L, Tanabe T, Chen FF, Foster SJ, Duerr RH, Brant SR, Cho JH, Nunez G. Crohn’s disease-associated NOD2 variants share a signaling defect in response to lipopolysaccharide and peptidoglycan. \textit{Gastroenterology} 2003; \textit{124}: 140-146

8 Gazouli M, Zacharatos P, Mantzaras GJ, Barbatis C, Ikonomopoulos L, Archimandritis AJ, Lukas JC, Papalambros E, Gorgoulis V. Association of \textit{NOD2}/\textit{CARD15} variants with Crohn's disease in a Greek population. \textit{Eur J Gastroenterol Hepatol} 2004; \textit{16}: 1177-1182

9 de Ridder L, Weersma RK, Dijkstra G, van der Steeger G, Benninga MA, Nolte IM, Taminiau JA, Hommes DW, Stokkers PC. Genetic susceptibility has a more important role in pediatric-onset Crohn's disease than in adult-onset Crohn's disease. \textit{Inflamm Bowel Dis} 2007; \textit{13}: 1083-1092

10 Ferraris A, Torres B, Knafelz D, Barabino A, Lionetti P, de Angelis GL, Iacono G, Papadatos B, D’Amato G, Di Giommo V, Dallapiccola B, Castro M. Relationship between \textit{CARD15}, \textit{SLC22A4}/5, and DLG5 polymorphisms and early-onset inflammatory bowel diseases: an Italian multicentric study. \textit{Inflamm Bowel Dis} 2006; \textit{12}: 355-361

11 Leshinsky-Silver E, Karban A, Buzhakor E, Fridlander M, Yakir B, Eliakin R, Reif S, Shaul R, Boaz M, Lev D, Levine A. Is age of onset of Crohn's disease governed by mutations in \textit{NOD2}/\textit{caspase recruitment domains 15 and Toll-like receptor 4}? Evaluation of a pediatric cohort. \textit{Pediatr Res} 2005; \textit{58}: 499-504

12 Russell RK, Drummond HE, Nimmo EE, Anderson N, Smith L, Wilson DC, Gillett PM, McGrogan P, Hassan K, Weaver LT, Bisset M, Mahdi G, Satsangi J. Genotype-phenotype analysis in childhood-onset Crohn's disease: \textit{NOD2}/\textit{CARD15} variants consistently predict phenotypic characteristics of severe disease. \textit{Inflamm Bowel Dis} 2005; \textit{11}: 955-964

13 Van Limbergen J, Russell RK, Nimmo ER, Satsangi J. The genetics of inflammatory bowel disease. \textit{Am J Gastroenterol} 2007; \textit{102}: 2820-2831

14 Kagathasan S, Baldassano RN, Bradfie JD, Sleiman PM, Mieliwski M, Guthery SL, Cicchini S, Kim CE, Frackelton EC, Annaiah K, Glessner JT, Santa E, Willson T, Eckert AW, Bonkowski E, Shaner JL, Smith RM, Ottomo FG, Peterson N, Abrams DJ, Chiavacci RM, Grundmeier R, Mamula P, Tomer G, Piccoli DA, Dos MS, Annese V, Benson LA, Grant SF, Hakonarson H. Loci on 2q13 and 21q22 are associated with pediatric-onset inflammatory bowel disease. \textit{Nat Genet} 2008; \textit{40}: 1211-1215

15 Hampe J, Franke A, Rosnerstel P, Till A, Teuber M, Huse K, Albrecht M, Mayr G, De La Vega FM, Briggs J, Gunther S, Prescott NJ, Onnii CM, Hailer S, Sipos B, Fölsch UR, Lenegauer T, Platzer M, Mathew CG, Krawczak M, Schreiber S. A genome-wide association scan of nonsynonymous SNPs identifies a susceptibility variant for Crohn disease in \textit{ATG16L1}. \textit{Nat Genet} 2007; \textit{39}: 207-211

16 Rious JD, Xavier RJ, Taylor KD, Silverberg MS, Goyette P, Huettt A, Green T, Kuballa P, Barnsia MM, Datta LW, Shugart YY, Griffiths AM, Targan SR, Ippoliti AF, Bernard EJ, Mei L, Nicolae DL, Regueiro M, Schumm LP, Steinhart AH, Rotter JJ, Duerr RH, Cho JH, Daly MJ, Brant SR. Genome-wide association study identifies new susceptibility loci for Crohn disease and implicates autophagy in disease pathogenesis. \textit{Nat Genet} 2007; \textit{39}: 596-604

17 Parkes M, Barrett JC, Prescott NJ, Tremelling M, Anderson CA, Fisher SA, Roberts RG, Nimmo ER, Cummings FR, Soars D, Drummond H, Lees CW, Khawaja SA, Bagnall R, Burke DA, Todhunter CE, Ahmad T, Bryan C, Lewis CM, Deloukas P, Strachan D, Bethel G, Lewis CM, Deloukas P, Forbes A, Sanderson J, Jewell AP, Satsangi J, Mansfield JC, Cardon L, Mathew CG. Sequence variants in the autophagy gene IRGM and multiple other replicating loci contribute to Crohn's disease susceptibility. \textit{Nat Genet} 2007; \textit{39}: 830-832
Association between genetic variants in the IL-23R gene and inflammatory bowel disease in the Greek population.

De la Vega FM, Lazaruk KD, Rhodes MD, Wenz MH. Assessment of two flexible and compatible SNP genotyping platforms: TaqMan SNP Genotyping Assays and the SNPlex Genotyping System. Mutat Res 2005; 579: 111-135

Tomer G, Ceballos C, Concepcion E, Benkov KJ. NOD2/CARD15 variants are associated with lower weight at diagnosis in children with Crohn's disease. Am J Gastroenterol 2003; 98: 2479-2484

Kugathasan S, Collins N, Maresso K, Hoffmann RG, Stephens M, Werlin SL, Rudolph C, Broeckel U. CARD15 gene mutations and risk for early surgery in pediatric-onset Crohn's disease. Clin Gastroenterol Hepatol 2004; 2: 1003-1009

Latiano A, Palmieri O, Valvano MR, D'Incà R, Cucchiara G, Grazzini M, Strachan D, Mc Ardle WL, Vermeire S, Rutgeerts P, Rosenstiel P, Krawczak M, Vato MH, Mathew CG, Schreiber S. Sequence variants in IL10, ARPC2 and multiple other loci contribute to ulcerative colitis susceptibility. Nat Genet 2004; 30: 1319-1323

Prescott NJ, Fisher SA, Franke A, Hampe J, Ott DJ, Soars D, Bagnall R, Mirza MM, Sanderson J, Forbes A, Mansfield JC, Lewis CM, Schreiber S, Mathew CG. A non-synonymous SNP in ATG16L1 predisposes to ileal Crohn's disease and is independent of CARD15 and IBD5. Gastroenterology 2007; 132: 1665-1671

Baldassano RN, Bradford JP, Monos DS, Kim CE, Lessner JT, Casalunovo T, Frackelton EC, Otieno FG, Kanterakis S, Shaner JL, Smith RM, Eckert AW, Robinson LJ, Onyiah CC, Abrams DJ, Chiavacci RM, Skranan R, Devoto M, Grant SF, Hakonarson H. Association of the T300A non-synonymous variant of the ATG16L1 gene with susceptibility to paediatric Crohn's disease. Gut 2007; 56: 1171-1173

Van Limbergen J, Russell RK, Nimmo ER, Drummond HE, Smith L, Anderson NH, Davies G, Gillett PM, McGroigan P, Weaver LT, Bisset WM, Mahdi G, Armott ID, Wilson DC, Satsangi J. Autophagy gene ATG16L1 influences susceptibility and disease location but not childhood-onset in Crohn's disease in Northern Europe. Inflamm Bowel Dis 2008; 14: 338-346

Amre DK, Mack D, Israel D, Morgan K, Lambrette P, Law L, Grimald G, Deslandres C, Kruppoves A, Bucionis V, Costea D, Tonyo FG, Kanterakis S, Frackelton EC, Otieno FG, Mathew CG, Schreiber S. Sequence variants in IL10, ARPC2 and multiple other loci contribute to ulcerative colitis susceptibility. Nat Genet 2004; 30: 1319-1323

Dubinsky MC, Wang D, Picornell Y, Wrobel I, Katzir L, Quiros A, Targan SR, Taylor KD, Rotter JI. IL-23 receptor (IL-23R) gene protects against pediatric Crohn's disease. Inflamm Bowel Dis 2007; 13: 511-515

Bousvaros A, Antonioli DA, Colletti RB, Dubinsky MC, Glickman JN, Gold BD, Griffiths AM, Jeon GP, Higuchi LM, Hyams JS, Kirschnner BS, Kugathasan S, Baldassano RN, Russo PA. Differentiating ulcerative colitis from Crohn disease in children and young adults: report of a working group of the North American Society for Pediatric Gastroenterology, Hepatology, and Nutrition and the Crohn's and Colitis Foundation of America. J Pediatr Gastroenterol Nutr 2007; 44: 653-674

Gazouli M, Mantzaris G, Kotsinas A, Zacharatos P, Papalambros E, Archimandritis A, Ikonomoupolous J, Gorgoulis VG. Association between polymorphisms in the Toll-like receptor 4, CD14, and CARD15/NOD2 and inflammatory bowel disease in the Greek population. World J Gastroenterol 2005; 11: 681-685

Gazouli M, Mantzaris G, Kotsinas A, Zacharatos P, Papalambros E, Archimandritis A, Ikonomoupolous J, Gorgoulis VG. Association between polymorphisms in the Toll-like receptor 4, CD14, and CARD15/NOD2 and inflammatory bowel disease in the Greek population. World J Gastroenterol 2005; 11: 681-685

Glas J, Konrad A, Schmechel S, Dambacher J, Seidler J, Schroff F, Wetzeke M, Roese D, Török HP, Tornuchi L, Pfenning S, Haller D, Griga T, Klein W, Epplen JT, Polwaczyn C, Lohse P, Göke B, Ochskenkühn T, Mussack T, Polwaczyn M, Müller-Myh Sok B, Brand S. The ATG16L1 gene variants rs2241879 and rs2241880 (T300A) are strongly associated with susceptibility to Crohn's disease in the German population. Am J Gastroenterol 2008; 103: 682-691

Glas J, Seidler J, Wetzeke M, Konrad A, Török HP, Schmechel S, Tonench L, Grassl C, Dambacher J, Pfenning S, Maier K, Griga T, Klein W, Epplen JT, Schiemann U, Polwaczyn C, Lohse P, Göke B, Ochskenkühn T, Müller-Myh Sok B, Polwaczyn M, Mussack T, Brand S. rs1004819 is the main disease-associated IL23R variant in German Crohn's disease patients: combined analysis of IL23R, CARD15, and OCTN1/2 variants. PLoS One 2007; 2: e819

Franke A, Balschun T, Karlsen TH, Sventoraiatyte J, Nikolaus S, Mayr G, Domingues FS, Albrecht M, Nothnagel M, Ellinghaus D, Sina C, Onnig CM, Weersma RK, Stokkers PC, Wijmenga C, Gazouli M, Strachan D, Mc Ardle WL, Vermeire S, Rutgeerts P, Rosenstiel P, Krawczak M, Vato MH, Mathew CG, Schreiber S. Sequence variants in IL10, ARPC2 and multiple other loci contribute to ulcerative colitis susceptibility. Nat Genet 2004; 30: 1319-1323

De la Vega FM, Lazaruk KD, Rhodes MD, Wenz MH. Assessment of two flexible and compatible SNP genotyping platforms: TaqMan SNP Genotyping Assays and the SNPlex Genotyping System. Mutat Res 2005; 579: 111-135

Tomer G, Ceballos C, Concepcion E, Benkov KJ. NOD2/CARD15 variants are associated with lower weight at diagnosis in children with Crohn's disease. Am J Gastroenterol 2003; 98: 2479-2484

Kugathasan S, Collins N, Maresso K, Hoffmann RG, Stephens M, Werlin SL, Rudolph C, Broeckel U. CARD15 gene mutations and risk for early surgery in pediatric-onset Crohn's disease. Clin Gastroenterol Hepatol 2004; 2: 1003-1009

Latiano A, Palmieri O, Valvano MR, D’Incà R, Cucchiara G, Grazzini M, Strachan D, Mc Ardle WL, Vermeire S, Annese V. Replication of interleukin 23 receptor and autophagy-related 16-like 1 association in adult- and pediatric-onset inflammatory bowel disease in Italy. World J Gastroenterol 2008; 14: 4643-4651

Weiss B, Shamir R, Bujanover Y, Waterman M, Hartman C, Fradkin A, Berkowitiz D, Weintraub I, Eliaikim R, Karban A. NOD2/CARD15 mutation analysis and genotype-phenotype correlation in Jewish pediatric patients compared with adults with Crohn's disease. J Pediatr 2004; 145: 208-212

Dusatkova P, Bradsky O, Lenicke M, Bronsky J, Nevoral J, Kotalova R, Bajerova K, Vitek L, Lukas M, Cinek O. Association of IL23R p.381Gln and ATG16L1 p.197 Ala with Crohn disease in the Czech population. J Pediatr Gastroenterol Nutr 2009; 49: 405-410

Yamazaki K, Onouchi Y, Takaoz M, Kubo M, Nakamura Y, Hata A. Association analysis of genetic variants in IL23R, ATG16L1 and 5p13.1 loci with Crohn's disease in Japanese patients. J Hum Genet 2007; 52: 575-583

Baptist ML, Amarante L, Picheth G, Sdepanian VL, Petersson N, Babasukumar U, Lima HC, Kugathasan S, CARD15 and IL23R influences Crohn's disease susceptibility but not disease phenotype in a Brazilian population. Inflamm Bowel Dis 2008; 14: 674-679

S- Editor Tian L. E- Editor Lin YP