Entropic analysis of the role of words in literary texts

Marcelo A. Montemurro
Facultad de Matemática, Astronomía y Física, Universidad Nacional de Córdoba
Ciudad Universitaria, 5000 Córdoba, Argentina

Damián H. Zanette
Consejo Nacional de Investigaciones Científicas y Técnicas
Centro Atómico Bariloche and Instituto Balseiro, 8400 Bariloche, Río Negro, Argentina

Beyond the local constraints imposed by grammar, words concatenated in long sequences carrying a complex message show statistical regularities that may reflect their linguistic role in the message. In this paper, we perform a systematic statistical analysis of the use of words in literary English corpora. We show that there is a quantitative relation between the role of content words in literary English and the Shannon information entropy defined over an appropriate probability distribution. Without assuming any previous knowledge about the syntactic structure of language, we are able to cluster certain groups of words according to their specific role in the text.

Language is probably the most complex function of our brain. Its evolutionary success has been attributed to the high degree of combinatorial power derived from its fundamental syntactic structure. Syntactic rules act locally at the sentence level and do not necessarily account for higher levels of organisation in large sequences of words conveying a coherent message. In this respect, the situation is similar to that found in other natural sequences with non-trivial information content, such as the genetic code, where more than one structural level may be discerned. In the case of human language, complex hierarchies have been revealed at levels ranging from word form to sentence structure. Moreover, it has been argued that long samples of continuous written or spoken language also possess a hierarchical macrostructure at levels beyond the sentence. In a coarse grained splitting of this complex organisation we could distinguish three basic structural levels in the analysis of long language records. The first one corresponds to the absolute quantitative occurrence of words, that is, which words are used and how many times each. The second level of organisation refers to the particular ways in which words can be linked into sentences according to the syntactic rules of language. Finally, at the highest level, grammatical sentences are combined in order to thread a meaningful messages as part of a communications process. This assemblage of sentences into more complex structures is not strictly framed by a set of precise prescriptions and is more related to the particular nature of the message conveyed by the sequence. In this paper we shall focus on the statistical manifestations of this high level of organisation in language. By means of an entropic measure of word distribution in literary corpora, we show that the statistical realisation of words within a complex communicative structure reflects systematic patterns which can be used to cluster words according to their specific linguistic role.

Zipf’s analysis represents the crudest statistical approach by which some quantitative information about the use of words in a corpus of written language can be obtained. Basically, it consists of counting the number of occurrences of each different word in the corpus, and then producing a list of these words sorted according to decreasing frequency. The rank-frequency distribution thus obtained presents robust quantitative regularities that have been tested over a vast variety of natural languages. However, the frequency-ordered list alone bears little information on the particular role of words in the lexicon, as can be realised by noting that after shuffling the corpus the rank-frequency distribution remains intact. Naturally, the first ranks in the list belong to the commonest words in the language style of the source text, e.g. function words and some pronouns in literary English. After them, words related to the particular contents of the text start to appear. An illustration is given in Table I, where we show some portions of the first ranks in Zipf’s classification of the words from William Shakespeare’s Hamlet.

It is therefore clear that in order to extract information about the specific role of words by statistical analysis, we must be able to gauge not only how often a word is used but also where it is used in the text. A statistical measure that fulfills the aforementioned requirement can be constructed from a suitable adaptation of the Shannon information entropy. Let us think of a given text corpus as made up of the concatenation of P individual parts. The kind of partitions we are going to consider here are those that arise naturally at different scales as a consequence of the global structure of literary corpora. Examples of these natural divisions are the individual books of an author’s whole production, and the collection of chapters in a single book. Calling N_i the total number of words in part i, and n_i the number of occurrences of a given word in that part, the ratio $f_i = n_i/N_i$ gives the frequency of appearance of the word in question in part i. For each word, it is possible to define a probability measure p_i over the partition as
\[p_i = \frac{f_i}{\sum_{j=1}^{P} f_j}, \]
\[S = -\frac{1}{\ln P} \sum_{i=1}^{P} p_i \ln p_i. \]

The quantity \(p_i \) stands for the probability of finding the word in part \(i \), given that it is present in the corpus. The Shannon information entropy associated with the discrete probability distribution \(p_i \) reads

Generally, the value of \(S \) is different for each word. As discussed below, the entropy of a given word provides a characterization of its distribution over the different partitions. Note that, independently of the specific values of \(p_i \), we have \(0 \leq S \leq 1 \).

To gain insight on the kind of measure represented by \(S \), two limiting cases are worth mentioning. If a given word is uniformly distributed over the \(P \) parts, \(p_i = 1/P \) for all \(i \) and equation (2) yields \(S = 1 \). Conversely, if a word appears in part \(j \) only, we have \(p_j = 1 \) and \(p_i = 0 \) for \(i \neq j \), so that \(S = 0 \). These examples represent extreme real cases in the distribution of words. In a first approximation one expects that certain words are evenly used throughout the text regardless of the specific contents of the different parts. Possible candidates are given by function words, such as articles and prepositions, whose use is only weakly affected by the specific character of the different parts in a homogeneous corpus. Other words, associated with more particular aspects of each part may fluctuate considerably in their use, thus having lower values of the entropy. We show in the following that in just a few statistical quantities such as frequency and entropy there is relevant information about the role of certain word classes.

Figure 1 shows \(1-S \), with \(S \) calculated as in equation (2), versus the number of occurrences \(n \), for each different word in a corpus made up of 36 plays by William Shakespeare. The total number of words in the set of plays adds up to 885,535 with a vocabulary of 23,150 different words. In this case, the natural division that we are considering is given by the individual plays. The structure of the graph calls for two different levels of analysis. First, its most evident feature, that is the tendency of the entropy to increase with \(n \), represents a general trend of the data which should be explained as a consequence of basic statistical facts. In qualitative terms, it implies that on average the more frequent a word is the more uniformly it is used. Second, a somewhat deeper question may be required in order to reveal whether the individual deviations from this general trend are related to the particular usage nuances of words, as imposed by their specific role in the text. Whereas most methods of word clustering according to predefined classes heavily rely on a certain amount of pre-processing, such as tagging words as members of particular grammatical categories, we shall address this point without any \textit{a priori} linguistic knowledge, save the mere identification of words as the minimal structural units of language.

In order to clarify to which extent the features observed in figure 1 reflect basic statistical properties of the distribution of words over the different parts of the corpus, we performed a simple numerical experiment which consists in generating a \textit{random version} of the 36 Shakespeare’s plays. This was done in the following steps. First, we considered a list of all the words used in the plays, each appearing exactly the number of times it was used in the real corpus. Second, we shuffled the list thus completely destroying the natural order of words. Third, we took the words one by one from the list and \textit{wrote} a random version of each play containing the same number of words as its real counterpart. In figure 2, we compare the randomised version with the data of figure 1. It is evident that, on one hand, the tendency of the entropy to grow with \(n \) is preserved. On the other, the large fluctuations in the value of \(S \), as well as the presence of relatively infrequent words with very low entropy, are totally erased in the randomised version. On average, words have higher entropies in the random realisation than in the actual corpus. Indeed, this is what one would expect for certain word classes such as proper nouns and, in general, for content words that allude to objects, situations or actions related to specific parts of the corpus. All the inhomogeneities that characterise the use of such words disappear in the random version, and consequently render higher values of the entropy.

Besides its value as a comparative benchmark, the random version of the corpus has the appeal of being analytically tractable, at least in a slightly modified form, as follows. Let us suppose that we have a corpus of \(N \) words consisting of \(P \) parts, with \(N_i \) words in part \(i (i = 1, \ldots, P) \). The probability that a word appears \(n_1 \) times in part 1, \(n_2 \) times in part 2, and so on, is

\[p(n_1, n_2, \ldots, n_P) = n! \prod_{j=1}^{P} \frac{1}{n_j!} \left(\frac{N_j}{N} \right)^{n_j}, \]

with \(n = \sum_j n_j \). In the special case where all the parts have exactly the same number of words, i.e. \(N_i = N/P \) for all \(i \), the average value of the entropy resulting from the probability given by equation (3) can be written in terms of \(n \) only, as

\[\langle S(n) \rangle = -\frac{1}{\ln P} \sum_{m=0}^{n} m \ln \left(\frac{m}{n} \right) \left(\frac{n}{m} \right) \frac{1}{P^m} \left(1 - \frac{1}{P} \right)^{n-m}. \]

For highly frequent words, \(n \gg 1 \), equation (4) assumes a particularly simple form, namely

\[\langle S(n) \rangle \approx 1 - \frac{P-1}{2n \ln P}. \]

\[P_i = \frac{f_i}{\sum_{j=1}^{P} f_j}, \]
\[S = -\frac{1}{\ln P} \sum_{i=1}^{P} p_i \ln p_i. \]
The curve in figure 2 stands for the function $1 - \langle S(n) \rangle$, with $\langle S(n) \rangle$ given by equation (3) with $P = 36$. First, we note that despite the fact that $\langle S(n) \rangle$ was calculated assuming that all the parts have the same number of words, its agreement with the random realisation for all the frequency range is very good. Moreover, it can be seen that after a short transient in the region of low frequency range is very good. In the second part of our analysis and deserves further investigation. In Fig. 5 we have generally high entropies, and those represent a limit beyond which statistical fluctuations start to dominate. The six categories we set out in groups were the following: (a) proper nouns, (b) pronouns, (c) nouns referring to humans, such as soldier and brother; (d) nouns referring to nobility status—such as King and Duke, which have a relevant place in Shakespeare’s plays—(e) common nouns (not referring to humans or to nobility status) and adjectives, and finally (f) verbs and adverbs. In case of ambiguity about the inclusion of a word into a certain class we simply left it out and did not classify it, hence the total number of classified words was finally around 1,400.

The results of this classification can be seen in Figure 6 and in fact reveal a marked clustering of words over definite regions of the two dimensional space spanned by $(1 - S)n$ and n. The sharpest distribution, shown in Figure 6a, corresponds to proper nouns. These words occupy a dense and elongated region which is limited from above by the straight line representing the identity function $S(n) = n$. Naturally, proper nouns are expected to define a class of words strongly related to particular parts of the corpus. In consequence, their entropies tend to be very low on average, if not strictly zero as in the case of many proper nouns appearing in just one of the Shakespeare’s plays. Thereby, in a graph of $(1 - S)n$ versus n, words having values of the entropy close to zero have $(1 - S)n \approx n$ and fall close to the identity function.

The distribution of other word classes is less obvious. Verbs and adverbs (Fig. 6f) are closest to the random distribution, covering a wide range of ranks. On average, common nouns and adjectives (Fig. 6e) are farther from the random distribution and, at the same time, are less frequent. Nouns referring to humans (Fig. 6c) cover approximately the same frequencies as common nouns, but their distribution is typically more heterogeneous. The entropy of some words in this class is, in fact, quite close to zero. The three most frequent nouns in the Shakespeare corpus are Lord, King, and Sir. All of them belong to the class of nouns referring to nobility status (Fig. 6d), which spans a large interval of frequencies and has systematically low entropies. The specificity of nobility titles with respect to the different parts of the corpus can be explained with essentially the same arguments as for proper nouns. Considerably more surprising is the case of pronouns (Fig. 6b) which, as expected, are highly frequent, but whose entropies reveal a markedly nonuniform distribution over the corpus. The vanishing of this heterogeneity in the distribution of pronouns is not at all clear, and deserves further investigation. In Fig. 3 we have drawn together the zones occupied by all the classes to make more clear their relative differences in frequency and homogeneity.

We have performed the same statistical analysis over other literary corpora, obtaining totally consistent results. The same organisation of words was observed in
the works of Charles Dickens and Robert Louis Stevenson. In particular, nouns and adjectives tend to be more heterogeneously distributed than verbs and adverbs. Nouns referring to humans have systematically lower entropies. Pronouns, in turn, exhibit an unexpectedly heterogeneous distribution for their high frequencies.

In summary, in this work we have concentrated on the statistical analysis of language at a high level of its structural hierarchy, beyond the local rules defined by sentence grammar. We started off by introducing an adequate measure of the entropy of words in a text corpus made up of a number of individual parts. With respect to Zipf’s analysis, which focuses on the frequency distribution of words, the study of entropy provides a second degree of freedom that resolves the statistical behaviour of words in connection with their linguistic role. By means of our random-corpus model we were able to extract the non-trivial part of the distribution of words. This procedure reveals statistical regularities in the distribution, that can be used to cluster words according to their role in the corpus without assuming any a priori linguistic knowledge. Ultimately, such regularities should stand as a manifestation of long-range linguistic structures inherent to the communication process. We believe that a thorough explanation of the origin of these global structures in language may eventually contribute to the understanding of the psycholinguistic basis for the modelling of reality by the brain.

Critical reading of the text by Susanna Manrubia is gratefully acknowledged.

[1] M. A. Nowak, J. B. Plotkin, and V. A. A. Jansen, Nature 404, 495 (2000).
[2] A. Aknajian, R. A. Demers, A. K. Farmer, and R. M. Harnish, Linguistics. An Introduction to Language and Communication (MIT Press, Cambridge, 1992).
[3] M. Daune, Molecular Biophysics. Structures in Motion (Oxford University Press, Oxford, 1999).
[4] J. M. Smith and E. Szathmáry, The origins of life (Oxford University Press, Oxford, 2000).
[5] T. A. Van Dijk, Semantic Macro-structures and Knowledge Frames in Discourse Comprehension, in: Just & Carpenter eds., Text and Context (Longmans, London, 1977).
[6] S. Pinker, Words and Rules (Harper Collins, New York, 2000).
[7] S. Pinker, The Language Instinct (Harper Collins, New York, 2000).
[8] G. K. Zipf, Human Behavior and the Principle of Least Effort (Addison-Wesley, Reading, 1949).
[9] C. E. Shannon, The Bell System Technical Journal 27, 379 (1948).
[10] F. Pereira, N Tishby and L. Lee, Distributional Clustering of English Words, in 30th Annual Meeting of the Association for Computational Linguistics, pages 183-190, Columbus, Ohio, 1993. Ohio State University, Association for Computational Linguistics.

word	rank	number of occurrences
the	1	1087
and	2	968
to	3	760
of	4	669
I	5	633
a	6	567
you	7	558
· · ·		· · ·
Lord	25	225
he	26	224
be	27	223
what	28	219
King	29	201
him	30	197
· · ·		· · ·
Queen	42	120
our	43	120
if	44	117
or	45	115
shall	46	114
Hamlet	47	112
· · ·		· · ·

TABLE I. Rank classification of words from Shakespeare’s Hamlet.
FIG. 1. Plot of $1 - S$ versus the number of occurrences n for each word of a corpus made up of 36 plays by William Shakespeare. The total number of words is 885,535 and the number of different words is 23,150.
FIG. 2. Comparison between the data shown in Figure [1] (black dots) and a randomised version of the Shakespeare corpus (grey dots). The curve stands for the analytical approximation for the random corpus, equation (4).
FIG. 3. Plot of $(1 - S)n$ vs. n for all the different words in the Shakespeare corpus. The horizontal line shows the expected value of $(1 - S)n$ for frequent, uniformly distributed words, as given by equation (6).
FIG. 4. Plot of \((1 - S)n \) vs. \(n \) for six relevant word classes: (a) proper nouns, (b) pronouns, (c) nouns referring to humans, (d) nouns referring to nobility status, (e) common nouns (not referring to humans or to nobility status) and adjectives, and (f) verbs and adverbs. In each plot, the horizontal dotted line stands for the asymptotic value of \((1 - S)n \) for the random-corpus model, equation 5. Words close to this line are homogeneously distributed over the corpus. The oblique dotted line corresponds to \(S = 0 \). Proximity to this line indicates extreme inhomogeneity in the distribution.
FIG. 5. Schematic combined representation of the zones occupied by the word classes of figure 4: proper nouns (a); pronouns (b); common nouns and adjectives, including those referring to humans but not to nobility status (c); nouns referring to nobility status (d); verbs and adverbs (e).