HER3 signaling and targeted therapy in cancer

Rosalin Mishra, Hima Patel, Samar Alanazi, Long Yuan, Joan T. Garrett

James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, OH, USA

Abstract

ERBB family members including epidermal growth factor receptor (EGFR) also known as HER1, ERBB2/HER2/Neu, ERBB3/HER3 and ERBB4/HER4 are aberrantly activated in multiple cancers and hence serve as drug targets and biomarkers in modern precision therapy. The therapeutic potential of HER3 has long been underappreciated, due to impaired kinase activity and relatively low expression in tumors. However, HER3 has received attention in recent years as it is a crucial heterodimeric partner for other EGFR family members and has the potential to regulate EGFR/HER2-mediated resistance. Upregulation of HER3 is associated with several malignancies where it fosters tumor progression via interaction with different receptor tyrosine kinases (RTKs). Studies also implicate HER3 contributing significantly to treatment failure, mostly through the activation of PI3K/AKT, MAPK/ERK and JAK/STAT pathways. Moreover, activating mutations in HER3 have highlighted the role of HER3 as a direct therapeutic target. Therapeutic targeting of HER3 includes abrogating its dimerization partners’ kinase activity using small molecule inhibitors (lapatinib, erlotinib, gefitinib, afatinib, neratinib) or gating its dimerization partners’ kinase activity using small molecule inhibitors (lymecycline). HER3 possesses impaired kinase activity and preferably heterodimerizes with HER2. HER3 heterodimerizes with RTKs to activate oncogenic signaling via the PI3K/AKT pathway. HER3 and downstream PI3K/AKT signaling is a major cause of treatment failure.\(^3\) NRG-1 and NRG-2 are high affinity ligands for HER3. In the absence of ligands, HER3 sub-domain arm II is locked in a tethered auto-inhibitory configuration, refraining from forming homo- or heterodimers. However, HER3 heterodimerizes with HER2 in ligand-independent manner in HER2-amplified cells.\(^8\) HER3 structure and role in oncogenesis

HER3, first identified by Kraus et al. is located on the long arm of chromosome 12 (12q13).\(^9\) It is encoded by 23,651 base pairs and translates into 1342 amino acids. HER3 ECD is divided into four sub-domains (I-IV), which includes two cysteine-rich regions (II and IV) and two flanking domains (I and III) that determine specificity for ligand binding. Cys-721, His-740 and Asn-815 have non-conservative substitutions in HER3 which diminishes the catalytic activity of TK domain of HER3 indicating that HER3 utilizes alternative pathway for its activation.\(^10\)

HER3 structure and role in oncogenesis

HER3, first identified by Kraus et al. is located on the long arm of chromosome 12 (12q13).\(^9\) It is encoded by 23,651 base pairs and translates into 1342 amino acids. HER3 ECD is divided into four sub-domains (I-IV), which includes two cysteine-rich regions (II and IV) and two flanking domains (I and III) that determine specificity for ligand binding. Cys-721, His-740 and Asn-815 have non-conservative substitutions in HER3 which diminishes the catalytic activity of TK domain of HER3 indicating that HER3 utilizes alternative pathway for its activation.\(^10\)
Enhanced expression of HER3 is associated with malignancies of several cancers including ovarian, breast, prostate, gastric, bladder, lung, melanoma, colorectal and squamous cell carcinoma. HER3 is the preferred heterodimeric partner for EGFR in melanoma and pancreatic carcinoma. Co-expression of HER2 and HER3 is common in breast cancer and breast cancer derived cell lines. HER3 plays a critical role in HER2-mediated tumorigenesis. Tumors occurring in mice overexpressing the neu transgene exhibit increased expression and activation of HER3. Inhibition of HER2 using tyrosine kinase inhibitors (TKIs) suppresses HER3-mediated downstream activation of PI3K signaling in HER2-overexpressing cells. HER3 is crucial for HER2 for maintaining cell viability in HER2-expressing breast cancer cells. Attenuation of HER3 abrogates HER2-mediated transformation of mammary epithelium in transgenic mice model. HER2 cannot directly bind and activate p85, the regulatory subunit of PI3K. However, HER3 contains six p85-binding motifs, which gets activated by HER2 via heterodimerization, and triggers PI3K signaling. Also, inhibition of HER2 TK activity results in upregulation of HER3 transcription and phosphorylation. This compensatory activation of HER3 partially maintains PI3K/AKT signaling. These data suggest that HER2-dependent breast cancers rely on HER3 to drive oncogenic signaling. HER3 is emerging as a crucial biomarker in luminal breast cancers. HER3 mRNA is expressed significantly in estrogen receptor positive (ER+) or luminal tumors, consistent with the observation that HER3 is essential for cell survival in the luminal but not the basal normal mammary epithelium. HER3 neutralizing antibodies in combination with anti-estrogen treatment result in decreased tumor cell growth and delayed resistance. HER3 mutations are more frequently identified in the ECD with fewer mutations in the intracellular KD. The oncogenic potential of most HER3 mutants depends on HER2 for its transforming potential. HER3 mutations are common in gastric (12%) and colon cancer (11%). HER3 mutants are reported to transform breast epithelial and colonic cells in a ligand-independent manner. Figure 1 illustrates HER2/HER3-mediated signaling pathways.

The role of HER3 in resistance to hormonal therapy

Recently, HER3 activation has been linked to resistance to the ER antagonist, tamoxifen. Enhanced HER3 expression helps breast cancer cells to bypass responsiveness to normal endocrine therapies. Clinical studies also indicate that breast cancer patients with co-expression of HER2 and HER3 are more likely to relapse on tamoxifen. Liu et al. demonstrates that attenuation of HER3 using siRNA abrogates HER2-mediated tamoxifen resistance in breast cancer cells. Inhibition of HER3 significantly increases tamoxifen-induced growth inhibition of MCF7 cells and HER2 overexpressing MCF7 cells via enhanced apoptosis however, does not alter expression or activation of ERα. Increased sensitivity of MCF-7 cells to tamoxifen upon HER3 downregulation could be due to decreased p-AKT levels as AKT signaling is associated with tamoxifen resistance in breast cancer cells. Elevated expression of HER3 in Castration-Resistant Prostate Cancer (CRPC) leads to activation of PI3K/AKT signaling and androgen receptor (AR) stabilization. ER+ breast cancer cells when treated with the ER downregulator, fulvestrant induce protein expression and activity of HER3. Another study demonstrates that fulvestrant resistant MCF-7 cells depend on increased HER3 and NRG-2 expression to maintain their growth and survival. Therefore, HER3 might serve as a crucial biomarker in estrogen withdrawal therapy in luminal breast cancers and in regulating ER-mediated pathways.

Figure 1. Diagrammatic representation of HER2-HER3 heterodimerization, activation of downstream signaling pathways which regulate several cellular processes including cell proliferation, cell survival, apoptosis, tumor growth and metastasis.
The role of HER3 in resistance to targeted therapy

The two approaches that are frequently used in ERBB targeted therapy are: i) using monoclonal antibodies or antibody-drug conjugates (pertuzumab, trastuzumab [Herceptin] or T-DM1 to target HER2 and cetuximab, panitumab to target EGFR); or ii) tyrosine kinase inhibitors (erlotinib and gefitinib to target EGFR, lapatinib and neratinib to target HER2). In spite of EGFR and HER2 targeted therapies having shown tremendous success in treating a wide variety of cancers, most tumors are susceptible to resistance to these therapies within months of treatment.

Several studies indicate that activation of HER3 signaling is one major cause of treatment failure to EGFR or anti-estrogen-based therapies.45,46 Yonesaka et al. demonstrates that a subset of colorectal cancer patients acquire resistance to cetuximab-based therapy because of high levels of circulating NRG that induces activation of HER3.47 Dual targeting of EGFR and HER3 is capable of overcoming acquired resistance to cetuximab and erlotinib further highlighting the role of HER3 in EGFR-targeted therapy.48 MET amplification in lung cancer leads to gefitinib resistance via activation of HER3.49 Additionally, transcriptional upregulation of HER3 is reported to be involved in resistance to MEK/RAF inhibitors in melanoma and thyroid carcinomas.50,51 The BRAF inhibitor vemurafenib (PLX4032) upregulates HER3 expression through FOXD3 transcription factor leading to resistance in BRAF-mutant melanoma.50 Vemurafenib increases HER3 signaling via induction of HER3 transcription through decreased promoter occupancy by the transcriptional repressors CtBP1/2, and through autocrine secretion of NRG-1.51 Targeting HER2 with lapatinib overcomes the resistant phenotype indicating the HER3-induced resistance is dependent on HER2 expression in both melanoma and thyroid carcinoma.50,51

Genetic and functional studies on trastuzumab indicate that activation of PI3K/AKT and SRC signaling are major determinants of trastuzumab-induced resistance.52,53 Studies also indicate that HER3 and IGFR-1-dependent signaling mechanisms contribute to trastuzumab-mediated resistance in several cancers.53-55 Huang et al. demonstrates that the heterotrimeric complex between HER3/HER2/IGF-1R is a key player in trastuzumab-mediated resistance in breast cancer. The authors also show that specific knockdown of HER3 decreases phosphorylation of AKT, SRC and increases trastuzumab-induced growth suppressing effects in resistant breast cancer cells.56 Resistance to lapatinib in HER2-positive breast cancer cells is due in part via upregulation of HER3. HER3 mRNA and protein levels are upregulated upon inhibition of the HER2 kinase activity using lapatinib and downstream PI3 kinase using XL147, suggesting that HER3 mediates drug resistance in HER2-enriched breast cancer.26,57 Research indicates that HER3 signaling contributes to chemotherapy resistance in ovarian cancer. Doxorubicin upregulates NRG to trigger HER3/Pi3K pathways in these tumors.58 Also, activation of HER3 signaling plays a vital role in progression of mCRPC into docetaxel-based chemotherapy.42 Knuefermann et al. illustrates that increased resistance to several chemotherapeutic agents like doxorubicin, 5-flourouracil, paclitaxel, camptothecin and etoposide is associated with co-expression of HER2/HER3 and induced activation of PI3K/AKT signaling.59 Enhanced expression of HER3 confers paclitaxel resistance in HER2+ breast cancer cells via AKT-mediated upregulation of survivin.60

Anti-HER3 targeted therapies in clinic

Anti-HER3 therapies are based on targeting HER3 in one of the following mechanisms: i) locking HER3 in the tethered confirmation; ii) trapping its ligand, NRG; iii) blocking ligand binding sites; iv) triggering the internalization of the HER3 receptor; v) abrogating dimerization with other EGFR family members; or vi) employing immune cells to kill cancer cells expressing endogenous HER3. The targeted therapies against HER3 include use of mono-/bi-specific antibodies,61-63 anti-HER3 vaccines,64 bi-specific ligand traps for HER3,65,66 HER3-locked nucleic acid based RNA inhibitors,67 small molecule inhibitors against HER3-pseudokinase activity.68 Tables 1 and 2 and Figure 2 summarize

Figure 2. HER3 binding partners and anti-HER3 targeted therapies in preclinical and clinical trials. Several mono and bispecific antibodies targeting HER3 at multiple sub-domains (described in the text). Miscellaneous HER3 targeting therapies including antisense oligonucleotides, HER3 specific peptides vaccines, ligand traps, molecules targeting HER3 pseudokinase activity, pan HER approach, HER3 ADCs and HER3 nanobiologic therapeutic approach.
HER3 targeted therapy (anti-HER3 antibody)	Target	Cancer types studies	Clinical/preclinical	Sponsor
Patritumab (U3-1287A888)	HER3	- Colorectal cancer (with cetuximab) [69]	Preclinical	
		- Advanced solid tumors [70]	Phase I	Daiichi Sankyo
		- Advanced NSCLC (with erlotinib) [71]	Phase I	Daiichi Sankyo
		- Erlotinib induced resistant NSCLC patients [72]	Preclinical	
		- EGFR wild-type patients with locally advanced or metastatic NSCLC patients (with erlotinib) [73]	- Phase III (terminated)	Daiichi Sankyo
		- HNSCC (in combination with cetuximab, cisplatin and carboplatin) [74]	Phase II	Daiichi Sankyo
		- MBC patients (with trastuzumab plus paclitaxel) [75]	Phase Ib/I (terminated)	Daiichi Sankyo
U3-1402 (Modified U3-1287)	HER3	- Metastatic or unresectable EGFR-mutant NSCLC [76]	Phase I	Daiichi Sankyo
Seribantumab (MM-121)	HER3	- Locally advanced/metastatic or recurrent ovarian cancer, fallopian tube cancer, primary peritoneal cancer, endometrial cancer, locally advanced/metastatic HER2 non-overexpressing breast cancer (in combination with paclitaxel) [77]	Phase I	Merrimack
		- Colorectal cancer, HNSCC, NSCLC, TNBC and other tumors with EGFR dependence (in combination with cetuximab and irinotecan) [78,81]	Phase I	Merrimack
		- Preoperative TNBC and HR+, HER2- breast cancer (in combination with paclitaxel) [79,82]	Phase II	Merrimack
		- Refractory advanced solid tumors [80,83]	Phase I	Merrimack
		- Advanced platinum resistant/refractory ovarian cancer (in combination with paclitaxel) [84]	Phase II	Merrimack
		- ERBB2-overexpressing breast cancer (along with paclitaxel) [85]	Preclinical	
		- Trastuzumab-resistant breast cancer [86]	Preclinical	
		- HNSCC (in combination with cetuximab) [87]	Preclinical	
		- NSCLC (in combination with docetaxel) [88]	Phase II	Merrimack
		- NRG+, locally advanced or metastatic NSCLC patients (in combination with docetaxel or pemetrexed) [89]	Phase II	Merrimack
		- Advanced NSCLC (in combination with erlotinib) [90]	Phase II/I	Merrimack
		- NRG+, HR+, HER2: MBC in postmenopausal women (in combination with fulvestrant) [91]	Phase II	Merrimack
		- Locally advanced or metastatic ER+ and/or PR+, HER2- breast cancer in post-menopausal women (in combination with exemestane) [92,93]	Phase II/I	Merrimack
		- Advanced NRG+ NSCLC, HNSCC and colorectal cancer patients (in combination with MM-151, MM-141 or trametinib) [94]	Phase I (terminated)	Merrimack
		- Advanced solid tumors (in combination with gemcitabine, pemetrexed, capecitabine and adapted doses of carboplatin) [95]	Phase I	Merrimack
		- Solid tumors (in combination with SAR245408) [96]	Phase I	Sanofi
Lumretuzumab (RG7116, RO-5479599)	HER3	- HER3+ breast cancer expressing HER2 and HER3 protein (in combination with paclitaxel and pertuzumab) [99,100]	Phase I	Roche
		- Metastatic or advanced HER3+ solid tumors [101]	Phase I	Roche
		- Advanced/metastatic NSCLC (in combination with carboplatin and paclitaxel) [102]	Phase Ib/I (terminated)	Roche
		- Solid tumors (in combination with cetuximab or erlotinib) [103]	Phase I	Roche
Elgemtumab (LJM716)	HER3	- HER2+ breast cancer [105]	Preclinical	
		- Platinum-pretreated recurrent/metastatic HNSCC patients (with cetuximab) [106]	Phase II/II (withdrawn)	
		- HER2+ MBC (in combination with BYL719 and trastuzumab) [107]	Phase I	Novartis
		- HER2 overexpressing MBC, gastric cancer (in combination with trastuzumab) [108]	Phase I	Novartis
		- ESCC (in combination with BYL719, paclitaxel, docetaxel, irinotecan) [109]	Phase Ib/I	Novartis
		- ESCC, HNSCC, HER2-overexpressing MBC or gastric cancer [110]	Phase I	Novartis
		- Advanced solid tumors [111]	Phase I	Novartis

Continued on the next page.
HER3-targeted therapies. Table 3 briefly describes the clinical trials, outcomes and adverse effects.

Monoclonal antibodies against HER3

Patritumab (U3-1287/A888) is a mAb directed against HER3 ECD. It induces HER3 internalization by preventing ligand binding, dimerization and suppresses tumor growth in HER3 expressing *in vivo* mice models. It has also been investigated in several clinical and preclinical cancer models including colorectal and lung carcinoma. Cancer cells treated with patritumab show reduced cellular migration, proliferation, and anchorage-independent growth. In addition, EGFR- and HER3-expressing xenografts treated with patritumab and anti-EGFR antibody, cetuximab exhibit significantly reduced tumor growth compared to single antibody. Patritumab inhibits erlotinib-induced resistance in

HER3 targeted therapy (anti-HER3 antibody)	Target	Cancer types studies	Clinical/preclinical	Sponsor
KTN3379	HER3	Advanced tumors [113]	Phase I	Celldex Therapeutics
		Advanced solid tumors (alone or in combination with erlotinib, vemurafenib, cetuximab and trastuzumab) [114]	Phase Ib	Celldex Therapeutics
		BRAF mutant melanoma and RAR thyroid cancer (in combination with vemurafenib) [115]	Phase I	Celldex Therapeutics
		Surgically resectable HNSCC [118]	Phase I	Celldex Therapeutics
AV-203	HER3	Metastatic or advanced solid tumors [118,119]	Phase I	Aveo
GSK2849330	HER3	Advanced HER3+ solid tumors [120,121]	Phase I	Glaxo Smith Kline
REGN1400	HER3	NSCLC, colorectal cancer, HNSCC (in combination with erlotinib or cetuximab) [122]	Phase I	Regeneron
		HNSCC, colorectal cancer [123]	Preclinical	Regeneron
MP-RM-1	HER3	Melanoma, gastric, prostate, breast cancer [124]	Preclinical	-
EV20 (humanized MP-RM-1)	HER3	Prostate cancer, HNSCC, pancreatic cancer, melanoma, breast cancer [125]	Preclinical	-
		Resistance to vemurafenib in BRAFV600E mutant colon cancer stem cell [127]	Preclinical	-
Duligotuzumab (RG7597, MEHD7945A)	HER3/EGFR	Solid epithelial tumors [129]	Preclinical	-
		Locally advanced or metastatic epithelial tumors [130]	Phase I	Genentech
		Locally advanced or metastatic cancers with mutated KRAS (in combination with cobimetinib) [131,133]	Phase I	Genentech
		KRAS wild-type metastatic colorectal cancer (in combination with FOLFIRI-5-fluorouracil, folinic acid and irinotecan) [132,134]	Phase II	Genentech
		Recurrent or metastatic HNSCC (during or following platinum therapy versus cetuximab) [135,136]	Phase II	Genentech
		Recurrent or metastatic HNSCC (in combination with cisplatin/5'-FU or carboplatin/paclitaxel) [137]	Phase I/II	Genentech
MM-111	HER2/HER3	HER2 expressing carcinomas of the distal esophagus, GE junction and stomach (with paclitaxel and trastuzumab) [138]	Phase II (study interrupted)	Merrimack
		Advanced, refractory HER2 amplified, NRG+ cancer [139]	Phase I	Merrimack
		Advanced HER2 amplified, NRG+ breast cancer (in combination with herceptin) [140]	Phase I	Merrimack
		Advanced HER2+ solid tumors (along with different combination treatment of capcitabine/cisplatin/trastuzumab/apatinib/paclitaxel or docetaxel) [141]	Phase I	Merrimack
Istrapatumab (MM-141)	HER3/GFR	Advanced solid tumor (alone or in combination with abraxane/gemcitabine, everolimus or monotherapy) [142,143]	Phase I	Merrimack
		Metastatic pancreatic cancer (in combination with nab-paclitaxel and gemcitabine) [144]	Phase II	Merrimack
MCLA-128	HER2/HER3	Malignant solid tumors [145]	Phase I/II	Merus NV
		Trastuzumab/chemotherapy in HER2+ and with endocrine therapy in ER+ and low HER2 breast cancer [146]	Phase I/II	Merus NV

HNSCC, head and neck squamous cell carcinoma; NSCLC, non-small cell lung carcinoma; MBC, metastatic breast cancer; TNBC, triple negative breast cancer; ESCC, esophageal-squamous cell carcinoma; EGF, pituitary growth factor receptor; IGFR, insulin like growth factor receptor; ER, hormone receptor; ER, estrogen receptor; 5'-FU, 5'-fluorouracil; NRG, neuregulin; PR, progesterone receptor; RAIR, radioiodine-refractory; GE, gastroesophageal.
Seribantumab (MM-121) is a humanized mAb targeting the ECD of HER3 that prevents binding of NRG, blocks heterodimerization and induces HER3 internalization and degradation.61 Seribantumab is investigated in phase I and II clinical trials in combination with anti-cancer drugs or chemotherapy that covers a broad spectrum of cancer patients.77,83 The clinical and preclinical studies in ovarian, breast, HNSCC and NSCLC cancers identified NRG as patient response biomarker for seribantumab.84–88 A phase II study evaluating MM-121 in combination with docetaxel and pemetrexed in NSCLC patients with high NRG expression is still ongoing.89 Another phase I/II study of MM-121 in combination with erlotinib is completed in patients with NSCLC.90 There is an ongoing phase II trial where NRG+, HER negative (-) post-menopausal breast cancer patients are subjected to treatment with seribantumab and fulvestrant.91 A randomized phase II trial of exemestane in combination with seribantumab is completed in postmenopausal women with locally advanced or metastatic ER+ and/or progesterone receptor positive (PR+) HER2- breast cancer.92,93 Another non-randomized, open-label study of seribantumab plus MM-151, MM-141, or trametinib in patients with advanced NRG+ NSCLC, HNSCC, colorectal cancers initiated by Merrimack is terminated.94 A phase I study exploring the role of seribantumab indicates that it can be combined at its recommended single agent dose with standard doses of gemcitabine, pemetrexed, cabazitaxel and adapted doses of carboplatin for treatment of patients with advanced solid tumors.95 A study exploring the role of seribantumab in combination with PI3K inhibitor, SAR245408 is completed in patients with solid tumors.96

Lumretuzumab (RG7116, RO-5479599) is a humanized glycol-engineered mAb, which suppresses the activation of HER3 signaling by blocking HER3 ECD and preventing NRG binding. It engages immune cells to cause antibody-dependent cell-mediated cytotoxicity (ADCC).97,98 Currently, there are three clinical trials reported using RG7116. A phase I trial testing the combination of RG7116 with paclitaxel and pertuzumab targeting HER3+ breast cancer has been completed.99,100 A phase I trial with RG7116 illustrates an overall disease control rate of 21% in patients with advanced HER3-positive solid tumors.101 A phase II/Ib trial of RG7116 in combination with carboplatin and paclitaxel although initiated in patients with NSCLC is terminated.102 A phase Ib/Ii trial of RG7116 plus cetuximab/erlotinib identified NRG as potential biomarker in patients with solid tumors.103

Other HER3 Therapy	Target	Cancer types studies	Clinical/preclinical	Sponsor
Antisense Oligonucleotide (EZN-2920)	HER3	Lung adenocarcinoma, breast cancer (in combination with lapatinib and gefitinib) [67]	Preclinical	Enzon
HER3 peptide vaccine	HER3	Breast cancer, pancreatic cancer [64]	Preclinical	-
Ligand traps (RB200)	HER3	Inflammatory breast cancer, epidermoid carcinoma, colon cancer, NSCLC (alone or in combination with TK inhibitors, AG-825, gefitinib and erlotinib) [65]	Preclinical	-
Pan-HER approach	EGFR, HER2,	Lung and HNSCC (augments radiation response) [149]	Preclinical	Symphogen
(Pan-HER)	HER3	Advanced epithelial malignancies [150]	Phase I/IIa	Symphogen
HER3 ligands as anti-HER3 target	HER3	Metastatic or advanced tumors in NRG+ patients [153]	Phase I	Neo
		HNSCC [154]	Preclinical	-
	HER2-amplified breast cancer [155]	Preclinical	-	
Inhibitor against pseudo kinase activity HER3 (TX-121-I)	Pseudokinase activity of HER3	Ovarian cancer, lung adenocarcinoma [68]	Preclinical	-
Anti-HER3 ADCs (antibody-drug conjugates)	HER3	HNSCC, breast cancer, pancreatic cancer, prostate cancer, lung cancer, stomach cancer and melanoma [156]	Preclinical	-
		EV20-MMAR (cutaneous melanoma) [157]	Preclinical	-
		EV20-Sap (melanoma) [158]	Preclinical	-
HER3 nanobiologics	HER3	HerPNK 10 (Her-PBK) recombinant polypeptide in breast cancer [159]	Preclinical	-

HNSCC, head and neck squamous cell carcinoma; NSCLC, non-small cell lung carcinoma; NRG, neuregulin.
Table 3. Summary of clinical trials, outcomes and adverse effects associated with anti-HER3 therapies.

HER3-targeted therapies in clinical trials	Cancer types	Clinical/ preclinical study	Clinical outcomes	Adverse effects
Patritumab (U3-1287/A888)	Advanced solid tumors [70]	Phase I	A dose of 18 mg/kg of patritumab, administered every 3 weeks by IV route was well tolerated in Japanese patients with advanced solid tumors. Acceptable PK profile was obtained. Upon administration, serum soluble HER3 levels increased in all patients.	Increased ALT and AST levels, thrombocytopenia, diarrhea, stomatitis, cheilitis and rash maculopapular. No DLTs were observed.
Advanced NSCLC (with erlotinib) [71]	Phase I	Patritumab in combination with erlotinib was well tolerated in Japanese patients at a dose of 18 mg/kg administered every 3 weeks by IV route. A significant increase in the serum soluble HER3 levels was observed during treatment. 18 mg/kg of patritumab in combination with p.o. Daily dose of erlotinib (150 mg) was selected for further studies in Japanese patients.	Gastrointestinal and skin toxicities, grade 2 cancer pain (unrelated stomatitis, to the administration if the drug), diarrhea, bacterial pneumonia, abnormal hepatic function, bacterial infection, acneiform rash. No DLT was reported.	
EGF R wild-type patients with locally advanced or metastatic NSCLC patients (with erlotinib) [73]	Phase III (terminated)	The patients received IV infusion of patritumab (loading dose 18 mg/kg and maintenance dose of 9 mg/kg), every 3 weeks along with 6 cycles of cisplatin (100 mg/m², every 3 weeks) or carboplatin (every 3 weeks by IV); cetuximab (loading dose: 400 mg/m² IV and maintenance dose: 250 mg/m² IV) weekly.	-	
HNSCC (in combination with cetuximab, cisplatin and carboplatin) [74]	Phase II	Terminated due to an improved standard of care being available.	-	
MBC patients (with trastuzumab plus paclitaxel) [75]	Phase I	Actively recruiting.	-	
US-1402 (Modified US-1287)	Metastatic or unresectable EGF R-mutant NSCLC [76]	Phase I		
Seribantumab (MM-121)	Locally advanced/metastatic ovarian cancer, fallopian tube cancer, primary peritoneal cancer, endometrial cancer, locally advanced/metastatic HER2 non overexpressing breast cancer (in combination with paclitaxel) [77]	Phase I	Dose range for MM-121 in the study was loading dose: 20 to 40 mg/kg; maintenance dose: 12 to 20 mg/kg, administered weekly by IV infusion every 3 weeks by IV. 80 mg/m² of paclitaxel was administered weekly by IV route.	Blood and lymphatic disorders, GI disorders, fatigue, mucosal inflammation, pyrexia, UTI, back pain, epistaxis, dyspnea, alopecia, rash.
Colorectal cancer, HNSCC, NSCLC, TNBC and other tumors with EGFR dependence (in combination with cetuximab and irinotecan) [78,81]	Phase I	MM-121 in the combination with cetuximab and irinotecan had modest activity. Dose range for MM-121: 12 mg/kg to 40 mg/kg, every week via IV infusion route in combination with cetuximab: 400 mg/m² (loading dose) followed by 200 or 250 mg/m² (maintenance dose) weekly by IV and irinotecan: 180 mg/m², once every 2 weeks by IV route.	Fatigue, dermatitis acneiform, hypomagnesemia, diarrhea, decreased appetite, hypokalemia, mucosal inflammation, dehydration, hyperkalemia, nausea, fatigue.	
Preoperative TNBC and HR+, HER2+ breast cancer (in combination with paclitaxel) [79,82]	Phase II	The drug alone or in combination exhibited a favorable safety profile. Benefit from MM-121 treatment was only observed in the HR+ group and was not observed in the TNBC group. MM-121 at loading dose of 40 mg/kg in the first week by IV route followed by 20 mg/kg for maintenance dose was administered along with standard doses of paclitaxel IV, doxorubicin IV and cyclophosphamide IV, followed by surgery.	Diarrhea, rash, febrile neutropenia, fatigue, anemia, hypokalemia, pulmonary embolism, hyperglycemia.	

Continued on the next page.
HER3-targeted therapies in clinical trials	Cancer types	Clinical/preclinical study	Clinical outcomes	Adverse effects
Refractory advanced solid tumors [80,83]	Phase I	MM-121 was well tolerated with a favorable safety profile. The dose range of drug was 3.2 mg/kg to 40 mg/kg, weekly via IV infusion followed by weekly via IV infusion every 3 weeks by IV route in expansion cohort.	Disease progression, gastrointestinal, renal, urinary and cardiac disorders.	
Advanced platinum resistant/refractory ovarian cancer (in combination with paclitaxel) [84]	Phase II	The addition of seribantumab to paclitaxel failed to exhibit an improved progression free survival in unselected patients. Detectable levels of HRG and low HER2 served as biomarkers linking to the mechanism of action of seribantumab. Loading dose and maintenance dose of seribantumab was 40 mg/kg and 20 mg/kg once a week by IV route, respectively. 80 mg/m² of paclitaxel was administered once a week for 3 weeks by IV route followed by weekly administration.	Diarrhea, fatigue, nausea, abdominal pain, alopecia, vomiting, anemia, decreased appetite, hypokalemia, edema.	
NSCLC (in combination with docetaxel) [88]	Phase II	Actively recruiting	-	
NRG+, locally advanced or metastatic NSCLC patients (in combination with docetaxel or pemetrexed) [89]	Phase II	Completed, No result posted.	-	
Advanced NSCLC (in combination with erlotinib) [90]	Phase I/II	Phase I: escalating doses of MM121 and erlotinib were administered. Phase II: MM-121 (20 mg/kg, every other week by IV route in combination with 100 mg erlotinib, p.o.).	Anemia, tachycardia, GI related disorders, fatigue, mucosal inflammation, peripheral edema, paronychia, UTI, hypokalemia, musculoskeletal disorders, nervous system disorders, decreased appetite.	
NRG+, HR+, HER2-MBC in postmenopausal women (in combination with fulvestrant) [91]	Phase II	Actively recruiting.	-	
Locally advanced or metastatic ER+ and/or PR+, HER2- breast cancer in post-menopausal women (in combination with exemestane) [92,93]	Phase II	MM121 (loading dose: 40 mg/kg and maintenance dose: 20 mg/kg) was administered by IV infusion, once a week and exemestane (25 mg) once a day by p.o. route.	Anemia, GI related disorders, fatigue, asthma, arthralgia, back pain, headache, cough, pruritis.	
Advanced NRG+ NSCLC, HNSCC and colorectal cancer patients (in combination with MM-151, MM-141 or trametinib) [84]	Phase I (terminated)	Study terminated by sponsor.	-	
Advanced solid tumors (in combination with gemcitabine, pemetrexed, cabazitaxel and adapted doses of carboplatin) [95]	Phase I	Of 88% patients recruited, 32% showed an overall clinical benefit. MM-121 can be combined as a single dose or with standard doses of gemcitabine, pemetrexed and cabazitaxel and adapted doses of carboplatin.	Diarrhea, nausea, fatigue, anemia, vomiting, hypokalemia, decreased appetite, thrombocytopenia, peripheral edema, neutropenia, constipation.	
Solid tumors (in combination with SAR245408) [96]	Phase I	Completed, not published.	-	

Continued on the next page.
Table 3. Continued from previous page.

HER3-targeted therapies in clinical trials	Cancer types	Clinical/preclinical study	Clinical outcomes	Adverse effects
Lumretuzumab (RG7716, RO-549539)	HER3+ breast cancer expressing HER2 and HER3 protein (in combination with paclitaxel and pertuzumab) [99, 100]	Phase I	Participants received escalating doses of lumretuzumab (500 or 1000 mg) every 3 weeks via IV infusion in combination with pertuzumab (loading dose: 840 mg, every 3 weeks via IV infusion and maintenance dose: 420 mg, every 3 weeks via IV infusion) and paclitaxel 80 mg/m², weekly via IV infusion.	Diarrhea, hypokalemia, hypophosphatemia, infusion related reactions.
Metastatic or advanced HER3+ solid tumors [101]		Phase I		
Advanced/metastatic NSCLC (in combination with carboplatin and paclitaxel) [102]	Solid tumors (in combination with cetuximab or erlotinib) [103]	Phase I/II (terminated)	The toxicity profile of lumretuzumab (dose range from 400 mg to 2000 mg) with erlotinib or cetuximab was manageable with modest clinical activity observed across tumor type. The study failed to identify a robust biomarker signal that could serve as response prediction biomarker for lumretuzumab. The study concluded that adding HER3 to EGFR targeting therapies is not sufficient to derive clinically meaningful benefit. The combination of trastuzumab with cetuximab or erlotinib demonstrated a modest clinical outcome.	GI related disorders, skin toxicities.
Egemtuzumab (LMT16) (withdrawn)	Plantinum-pretreated recurrent/metastatic HNSCC patients (with cetuximab) [106]	Phase II	The study has been withdrawn.	
	HER2+ MBC (in combination with BYL719 and trastuzumab) [107]	Phase I	Actively recruiting.	
	HER2 overexpressing MBC, gastric cancer (in combination with trastuzumab) [108]	Phase I	Escalated doses of LMT16 were administered once weekly via IV route. Trastuzumab (2 mg/kg) was administered once weekly by IV route.	
	ESCC (in combination with BYL719, paclitaxel, docetaxel, irinotecan) [109]	Phase II	Dose range of LMT16 was from 10 mg/kg to 40 mg/kg, once weekly by IV infusion. BYL719 (200 mg-400 mg) was administered once daily p.o. Paclitaxel, docetaxel and irinotecan were administered along with the combination in phase 2 of the study.	
	ESCC, HNSCC, HER2 overexpressing MBC or gastric cancer [110]	Phase I	LMT16 was found to be tolerated up to 40 mg/kg when administered once weekly via IV infusion. This was also the recommended phase 2 dose. It demonstrated preliminary evidence of antitumor activity.	Diarrhea, chills, infusion-related reactions, reduced appetite, GI disorders, hypokalemia.
	Advanced solid tumors [111]	Phase I	LMT16 was well tolerated in Japanese patients with a manageable safety profile. The recommended dose was established at 40 mg/kg, once a week by IV route to Japanese patients.	Diarrhea, stomatitis, paronychia, fatigue, pyrexia, pneumonia, decreased lymphocyte count, nausea, vomiting.

Continued on the next page.
Table 3. Continued from previous page.

HER3-targeted therapies in clinical trials	Cancer types	Clinical/ preclinical study	Clinical outcomes	Adverse effects
KTN337	Advanced tumors [113]	Phase I	Completed, not published.	-
	Advanced solid tumors (alone or in combination with erlotinib, vemurafenib, cetuximab and trastuzumab) [114]	Phase Ib	A dose of 20 mg/kg, every 3 weeks via IV route in combination with other agents was safe. The PK data supported a 3 week dosing schedule. NRG maybe used a predictive biomarker to test the response of tumors to KTN337.	Diarrhea, rash, anemia, fatigue.
AV-203	Metastatic or advanced solid tumors [118,119]	Phase I	AV-203 was well tolerated in a dose range of 2 mg/kg to 20 mg/kg administered via IV infusion once every 2 weeks. The recommended phase 2 dose was established as 20 mg/kg IV every 2 weeks.	Diarrhea, decreased appetite, hypokalemia, dried skin, hypomagnesemia, headache, dehydration, dizziness, dyspnea, anemia, pruritus.
GSK249330	Advanced HER3+ solid tumors [120,121]	Phase I	Completed, not published.	-
REGN1400	NSCLC, colorectal cancer, HNSCC (in combination with erlotinib or cetuximab)	Phase I	REGN1400 alone or in combination with erlotinib or cetuximab was well tolerated at the dose range 2 mg/kg to 20 mg/kg via IV route, once every 2 weeks. The recommended phase 2 dose of 20 mg/kg by IV route, once every 2 weeks. The combination therapy failed to potentiate any anti-EGFR related adverse effects.	Rash, diarrhea, nausea, hypomagnesemia, increased AST, dry skin, fatigue, stomatitis, pneumonia, pyrexia, sepsis
Duligotuzumab (RG7597, MEHD7945A)	Locally advanced or metastatic epithelial tumors [130]	Phase I	MEHD7945A was well tolerated as a single agent with a PD and antitumor activity in HNSCC patients in dose escalating studies with dose range from 1mg/kg to 30 mg/kg administered by IV every 2 weeks. The recommended phase 2 study flat dose was established at 1100 mg twice daily in HNSCC and colorectal cancer patients.	Diarrhea, nausea, chills, headache, fever.
	Locally advanced or metastatic cancers with mutated KRAS (in combination with cobimetinib) [131,133]	Phase Ib	The study did not proceed to expansion stage and was closed for enrollment due to dose limited tolerability and efficacy of the combination.	Hypokalemia, mucosal inflammation, asthenia, dermatitis acniform.
	KRAS wild-type metastatic colorectal cancer (in combination with FOLFX5-fluorouracil, folinic acid and irinotecan vs cetuximab) [132,134]	Phase II	Duligotuzumab did appear to improve outcomes in the patients. It failed to provide progression free survival (PFS) or overall survival (OS) benefit vs cetuximab.	Diarrhea, skin rashes.
	Recurrent or metastatic HNSCC (during or following platinum therapy vs cetuximab) [135,136]	Phase II	Duligotuzumab was 1100 mg, once every 2 weeks by IV route. Cetuximab (loading dose: 400 mg/m² and maintenance dose: 250 mg/m²) was administered once weekly by IV route. Dual inhibition of HER2 and EGFR by duligotuzumab demonstrated a comparable activity (in randomized and biomarker positive patients) and not superior activity as compared to single agent cetuximab in HNSCC, HPV-negative HNSCC patients but not HPV-positive HNSCC patients may possibly respond to cetuximab or duligotuzumab.	Infections, GI related disorders.
	Recurrent or metastatic HNSCC (in combination with cisplatin5'-FU or carboplatin/paclitaxel) [137]	Phase Ib/II	The trial studied the feasibility of combination of duligotuzumab at 1550 mg (recommended phase 2 dose), by IV route, every 3 weeks with combination of cisplatin5'-FU or carboplatin/paclitaxel. The combinations demonstrated an antitumor effect. But the study was limited by an increased frequency and severity of adverse events.	Neutropenia, hypokalemia, dehydration, anemia, diarrhea, febrile neutropenia, leukopenia, thrombocytopenia, hypomagnesemia.

Continued on the next page.
Table 3. Continued from previous page.

HER3-targeted therapies in clinical trials	Cancer types	Clinical/preclinical study	Clinical outcomes	Adverse effects
MM-111	HER2 expressing carcinomas of the distal esophagus, GE junction and stomach (with paclitaxel and trastuzumab) [138]	Phase II (Terminated)	The study was terminated due to lack of efficacy.	Fatigue, acute viral myocarditis, pleural effusion.
	Advanced, refractory HER2 amplified, NRG+ cancer [139]	Phase I	MM-111 was administered to dose escalation cohorts weekly via IV route.	Anemia, GI related disorders, UTI, decreased appetite, insomnia, anxiety, skin toxicities, pericardial effusion, pleural effusion, deep vein thrombosis.
	Advanced HER2 amplified, NRG+ breast cancer (in combination with Herceptin) [140]	Phase I	MM-111 was combined with Herceptin for dose escalation cohorts and administered weekly or bi weekly via IV route.	
	Advanced HER2+ solid tumors (along with different combination treatment of capecitabine/cisplatin/trastuzumab/paclitaxel or docetaxel) [141]	Phase I	MM-111 was dosed weekly at 10 mg/kg and where possible, the dose was escalated to 20 mg/kg. In the arm where the patients were treated with MM-111, docetaxel and trastuzumab, the agent was dosed from 30 mg/kg and escalated to 40 mg/kg via IV infusion, once every 3 weeks. The recommended phase 2 dose was established as 20 mg/kg, once a week, via IV infusion and 40 mg/kg every 3 weeks via IV infusion.	Anemia, acute renal failure, chest pain, decreased appetite, diarrhea, febrile neutropenia, hypereutremia, hypokalemia, hypotenremia, mucosal inflammation, nausea, thrombocytopenia, vomiting.
Istiratumab (MM-141)	Advanced solid tumor (alone or in combination with nab-paclitaxel and gemcitabine) [142,143]	Phase I	No dose limiting toxicities were observed in dose range of 6 mg/kg to 20 mg/kg, administered weekly or 40 mg/kg, administered biweekly. An expansion cohort tested the dosing of MM-141 (20 mg/kg) in patients with hepatocellular carcinoma.	Vomiting, nausea, fatigue, abdominal pain, dyspnea, diarrhea, anemia, increased AST, rash.
	Metastatic pancreatic cancer (in combination with nab-paclitaxel and gemcitabine) [144]	Phase II	Study is active but not recruiting. A fixed dose of istiratumab-2.8 grams, twice every week via IV route was selected for the study.	
MCLA-128	Malignant solid tumors [145]	Phase I/II	MCLA-128 was well tolerated and exhibited a favorable safety profile in patients at doses up to 900 mg, every 3 weeks via IV infusion. Based on the PK profile and the anti-tumor activity, the recommended phase 2 dose of MCLA-128 was set at 750 mg, every 3 weeks via IV infusion. Actively recruiting.	Diarrhea, nausea, vomiting, fatigue, maculopapular rash, oral mucositis, G2 neutropenia
	Trastuzumab/chemotherapy in HER2+ and with endocrine therapy in ER+ and low HER2 breast cancer [146]	Phase II		
Pan-HER approach	Advanced epithelial malignancies [150]	Phase Ia Ia	Actively recruiting.	
HER3 Ligands as anti-HER3 target (AV-203)	Metastatic or advanced tumors in NRG+ patients [153]	Phase I	AV-203 was well tolerated in the dose range from 2 mg/kg to 20 mg/kg, once every 2 weeks via IV route. The recommended phase 2 dose was calculated to be 20 mg/kg, every 2 weeks by IV route.	Diarrhea, decreased appetite, hypokalemia, hypomagnesemia, headache, dehydration, dizziness, dyspnea, dry skin, pruritus.

Legend: HNSCC, head and neck squamous cell carcinoma; NSCLC, non-small cell lung carcinoma; MBC, metastatic breast cancer; TNBC, triple negative breast cancer; ESCC, esophageal-squamous cell carcinoma; HR, hormone receptor; ER, estrogen receptor; 5'-FU, 5-fluorouracil; NRG, neuregulin; PR, progesterone receptor; RARR, radioiodine-refractory; GE, gastroesophageal; AST, aspartate amionotransferase; ALT, alanine aminotransferase; DLT, dose limiting toxicity; PK, pharmacokinetic; PD, pharmacodynamic; IV, intravenous; p.o., per oral; GI, gastrointestinal; UTI, urinary tract infection.
that LJM716 is well tolerated with a recommended daily intravenous dose of 40 mg/kg.111

KTN3379, an anti-HER3 mAb inhibits HER3 activity in ligand-dependent and independent manner.112 A phase I study evaluating the efficacy of KTN3379 either alone or in combination with various drugs (cetuximab, erlotinib, vemurafenib, trastuzumab) has been completed in advanced solid tumors.113,114 A pilot phase I study initiated by Celldex Therapeutics testing whether vemurafenib with the addition of KTN3379 can restore iodine incorporation in BRAF mutant melanoma and radioiodine-refractory (RAIR) thyroid cancer patients is also completed.115 A study of KTN3379 in surgically resectable HNSCC patients is completed which evaluated the effect of KTN3379 on HER3 activation and other biomarkers in tumor tissues.116

AF-203 is an anti-HER3 IgG1 which binds to the HER3 receptor and prevents NRG binding. AF-203 shows preclinical activity against patient-derived tumor explant models and suppresses HER3 activation and downstream signaling.117 Phase I clinical trial in advanced solid tumors is now completed.118,119

GSK2849330 is a HER3 targeting antibody which has completed a phase I clinical trial in HER3+ patients with solid tumors.120,121 REGN1400, another HER3 mAb investigated alone or in combination with erlotinib or cetuximab in several metastatic cancers.122 REGN1400 significantly suppresses HER3 downstream signaling and in combination with EGFR mAb, inhibits the growth of xenograft tumors derived from HNSCC and colorectal cancer.123

MP-RM-1 is a murine mAb against HER3 which induces HER3 internalization and degradation and attenuates ligand-dependent and independent HER3 signaling in several cancers including breast, melanoma, prostate and gastric cancer.124 EV20, a humanized version of MP-RM-1 (Mediapharma S.r.l) inhibits HER2-HER3 heterodimerization, downregulates HER3 and also internalizes it into the tumor.125,126 It is also shown to reverse the resistance to vemurafenib in BRAF-V600E mutant colon cancer stem cell.127

Duligotuzumab (RG7597, MEHD7945A) is a phage derived humanized bi-specific antibody targeting both HER3 and EGFR. It prevents ligand binding and favors HER3 internalization and ADCC.128 It has shown significant efficacy in several in vivo models.48,129 This antibody is explored in phase I & II clinical trials in various metastatic cancers.130-134 A phase II randomized trial compares the safety and efficacy of MEHD7945A versus cetuximab in metastatic HNSCC patients who have progressed during or following platinum-based chemotherapy.135,136 A phase Ib study of MEHD7945A plus cisplatin/5-fluorouracil or carboplatin/paclitaxel demonstrates an encouraging clinical activity in patients with recurrent/metastatic HNSCC.137 A phase Ib, open-label, dose-escalation study exploring the safety, tolerability, and pharmacokinetics of MEHD7945A with cabozantinib in patients with locally advanced or metastatic solid tumors with mutant KRAS is completed.131,132

MM-111 is a bi-specific antibody that forms a trimeric complex with HER2 and HER3. MM-111 is shown to be more efficient in xenograft tumors derived from HER2+ cancer cell lines where it exhibits significant anti-tumor activity in combination with trastuzumab or lapatinib.63 However, the phase II clinical trial involving combination of MM-111 and trastuzumab is terminated in gastric cancer.138 A phase I clinical trial involving MM-111 in combination with trastuzumab has been completed in HER2 amplified and NRG+ breast cancer.139 The other clinical trial sponsored by Merrimack is in advanced HER2 amplified and NRG+ solid tumors.140 A multi-arm dose escalating study of MM-111 plus HER2 targeting regimens including capecitabine, cisplatin, trastuzumab, lapatinib, paclitaxel, docetaxel evaluating the safety, pharmacokinetics (PK), and anti-tumor activity of MM-111 in patients with advanced HER2+ solid tumors has been completed.141

Another bi-specific antibody, MM-141 (istiratumab) has been developed against HER3 and IGFR by Merrimack.52 MM-141 inhibits binding of NRG to HER3 and IGF-1/2 to IGFR and abrogates PI3K/AKT signaling and also increases efficacy of gemicitabine in preclinical models.52 MM-141 has been investigated in a phase I clinical trial either alone or in combination with gemicitabine, everolimus or paclitaxel in advanced solid tumors.142,143 A phase II study exploring the efficacy of MM-141 in combination with nab-paclitaxel and gemicitabine is still going on in metastatic pancreatic cancer.144

MCLA-128 is a bispecific antibody targeting HER2 and HER3 in phase I/I trial in patients with solid tumors.142 A phase II study is initiated to evaluate the safety and efficacy of MCLA-123 in combination with trastuzumab/chemotherapy in HER2+ and with endocrine therapy in ER+ metastatic breast cancer.146

Other anti-HER3 targeted therapies

Antisense oligonucleotide

RNAi therapy is an emerging anti-HER3 strategy to treat cancers, which are not sensitive to anti-HER3 antibodies. EZN-3920 is a nucleic acid based HER3 anti-sense oligonucleotide, which inhibits HER3 expression and HER3-mediated downstream signaling and in vivo tumor growth.67 It also demonstrates significant anti-proliferative effects in trastuzumab- and gefitinib-resistant cell lines. EZN-3920 in combination with lapatinib or gefitinib increases the anti-tumor activity compared to single agent.67 However, lack of efficient delivery systems of RNA antagonists curtails efficient application in the clinic.147

HER3-peptide vaccine

Peptide vaccines targeting HER3 could induce HER3 neutralizing antibodies in cancer. HER3 epitopes encompassing residues 99-122, 140-162, 237-269 and 461-479 of HER3 are explored as active immune therapy against breast and pancreatic cancer. These mimics show enhanced anti-tumor effects in breast and pancreatic cancer cells.64

Ligand traps

A HER ligand binding molecule which could sequester different ligands for multiple receptors is a recent approach to treat cancers where there is activation of alternate compensatory loops due to other EGFR family members. RB200 is a bi-specific ligand trap which binds to multiple ligands including HER3 ligand NRG, EGFR ligands including TGFα, heparin binding EGF. RB200 suppresses EGF- and NRG1-β1-induced phosphorylation of HER family RTKs and cancer cell proliferation as a single agent and in synergy with tyrosine kinase inhibitors, lysophosphatidic acid-induced cell proliferation, and tumor growth in xenograft mice models.65 However, this strategy has not been applied in the clinic.

Pan-HER approach

Pan-HER approach includes six antibodies for synergistic targeting of EGFR, HER2 and HER3, with the goal of preventing compensatory activation of EGF receptors where only one receptor is inhibited. This mixture is tested against 100 different cancer cell lines where it significantly attenuates cancer cell proliferation and
outperforms the activity of reference antibodies (cetuximab, trastuzumab and MM-121). Sym013 developed by Symphogen is a mixture of six humanized mAbs targeting EGFR, HER2 and HER3, which demonstrates better anti-tumor activity in in vivo models. Currently, an open-label, multicenter, phase Ia/Ila trial investigating the safety, tolerability and anti-tumor activity of multiple doses of Sym013 is initiated in patients with advanced epithelial malignancies.

HER3 ligands as predictive biomarkers and anti-HER3 target

Several preclinical and clinical studies indicate that NRG is a predictive biomarker for HER3-targeted therapies. NRG expression correlates with in vivo tumor regression and has been validated in the clinic. In a phase I clinical trial, NRG-positive patients with metastatic or advanced tumors show a partial response to HER3-specific mAb, AV-203. Inhibition of HER3 using AV-203 correlates with NRG expression in preclinical studies. Elevated NRG expression corroborates with HER3 activation in head and neck squamous cell carcinomas. However, NRG as a potential biomarker becomes questionable in tumors with HER3 mutations or downstream molecular alterations. Xenograft tumor models with a PTEN mutation show resistance to AV-203 even with elevated NRG expression. In HER2-amplified breast cancer model, HER3 exhibits constitutive activation independent of NRG.

Inhibitor targeting pseudo kinase activity of HER3

A selective small molecule TX1-85-1 interacts with cys721 in the ATP-binding pocket of HER3. TX-121-1, a derivative of TXI-85-1 causes partial degradation of HER3, interferes with dimerization with c-Met and HER2, perturbs HER3-mediated signaling. More studies are essential to validate the role of these inhibitors in HER3-targeted therapeutics.

HER3 as target for antibody-drug conjugates

Antibody-drug conjugates (ADCs) are emerging as an attractive strategy to improve the antibody based therapy for treatment of different cancers. HER3-ADCs shows promising anti-tumor efficacy in a wide range of human cancer. Capone et al. coupled the humanized anti-HER3 mAb, EV20 to the cytotoxic drug monomethyl auristatin F (MMAF) to generate a novel antibody-drug conjugate (EV20-MMAF). This antibody demonstrates target-dependent cell killing activity in a panel of human melanoma cell lines with HER3 expression independent of BRAF status. A single administration of EV20-MMAF causes long lasting tumor growth inhibition and is superior to vemurafenib in abrogating kidney, liver and lung melanoma metastases. EV20-Sap is another HER3-ADC obtained by coupling EV20 to the plant toxin Saporin (Sap). This complex causes target-dependent cytotoxic activity that correlates with internalization and expression of HER3 on cancer cells. EV20-Sap treatment results in significant reduction of pulmonary metastasis in murine melanoma model.

HER3 nanobiologic therapeutic approach

Sim et al. demonstrates HER3-targeted nanobiologics as a novel approach effective against resistant tumors expressing HER3. The author synthesized a recombinant polypeptide, HerPBK10 (HPK) having a minimal receptor binding domain from NRG-1. This biocarrier combines several functions within a single fusion protein for mediating target cell penetration and non-cova lent self-assembly with therapeutic cargo, forming HER3 homing nanobiologics. These nanobiologics show significant affinity and are effective against tumors showing resistance to inhibitors against HER3 receptor. It is shown that the efficacy of HPK-nanobiologics is dependent on HER3 levels of resistant cells as well as naïve cells.

Conclusions

Drug resistance is a major reason of treatment failure that limits the efficacy of several targeted therapies including mono-bi-specific antibodies and small molecule inhibitors against EGFR family members. Targeting other EGFR family members using TKIs leads to feedback upregulation of HER3 encouraging the direct targeting of HER3 as a better option in the clinic. Many HER3 mAbs have been designed and demonstrated significant preclinical efficacy, however, a HER3 targeted treatment has not yet received approval based on clinical trials. Studies indicate that HER3 plays a vital role in drug resistance and overall HER signaling. Encouraging clinical studies suggest that concomitant suppression of HER3 along with other RTKs including EGFR family members may be helpful in attaining greater clinical benefits.

References

1. Hynes NE, MacDonald G. ErbB receptors and signaling pathways in cancer. Curr Opin Cell Biol 2009;21:177-84.
2. Olayioye MA, Neve RM, Lane HA, Hynes NE. The ErbB signaling network: receptor heterodimerization in development and cancer. EMBO J 2000;19:3159-67.
3. Cho HS, Mason K, Ramyar KK, et al. Structure of the extracellular region of HER2 alone and in complex with the Herceptin Fab. Nature 2003;421:756-60.
4. Riese DJ 2nd, Stern DF. Specificity within the EGF family/ErbB receptor family signaling network. Bioassays 1998;20:41-8.
5. Yarden Y, Sliwkowski MX. Untangling the ErbB signalling network. Nat Rev Mol Cell Biol 2001;2:127-37.
6. Baselga J, Swain SM. Novel anticancer targets: revisiting ERBB2 and discovering ERBB3. Nat Rev Cancer 2009;9:463-75.
7. Amin DN, Campbell MR, Moasser MM. The role of HER3, the unpretentious member of the HER family, in cancer biology and cancer therapeutics. Semin Cell Dev Biol 2010;21:944-50.
8. Junttila TT, Akita RW, Parsons K, et al. Ligand-independent HER2/HER3/Pi3K complex is disrupted by trastuzumab and is effectively inhibited by the PI3K inhibitor GDC-0941. Cancer Cell 2009;15:429-40.
9. Kraus MH, Issing W, Miki T, et al. Isolation and characterization of ERBB3, a third member of the ERBB/epidermal growth factor receptor family: evidence for overexpression in a subset of human mammary tumors. Proc Natl Acad Sci USA 1989;86:9193-7.
10. Plowman GD, Whitney GS, Neubauer MG, et al. Molecular cloning and expression of an additional epidermal growth factor receptor-related gene. Proc Natl Acad Sci USA 1990;87:4905-9.
11. Tanner B, Hasenclever D, Stern K, et al. ErbB-3 predicts survival in ovarian cancer. J Clin Oncol 2006;24:4317-23.
12. Lipton A, Goodman L, Leitzel K, et al. HER3, p95HER2, and HER2 protein expression levels define multiple subtypes of HER2-positive metastatic breast cancer. Breast Cancer Res...
13. Koumakpayi IH, Diallo JS, Le Page C, et al. Expression and nuclear localization of ErbB3 in prostate cancer. Clin Cancer Res 2006;12:2730-7.

14. Hayashi M, Inokuchi M, Takagi Y, et al. High expression of HER3 is associated with a decreased survival in gastric cancer. Clin Cancer Res 2008;14:7843-9.

15. Nielsen TO, Borre M, Nexo E, Sorensen BS. Co-expression of HER3 and MUC1 is associated with a favourable prognosis in patients with bladder cancer. BJU Int 2015;115:163-5.

16. Siegfried JM, Lin Y, Diergaarda B, et al. Expression of PAM50 genes in lung cancer: evidence that interactions between hormone receptors and HER2/HER3 contribute to poor outcome. Neoplasia 2015;17:817-25.

17. Reschke M, Mihic-Probst D, van der Horst EH, et al. HER3 is a determinant for poor prognosis in melanoma. Clin Cancer Res 2008;14:5188-97.

18. Beji A, Horst D, Engel J, et al. Toward the prognostic significance and therapeutic potential of HER3 receptor tyrosine kinase in human colon cancer. Clin Cancer Res 2012;18:956-68.

19. Qian G, Jiang N, Wang D, et al. Heregulin and HER3 are prognostic biomarkers in oropharyngeal squamous cell carcinoma. Cancer 2015;121:3600-11.

20. Liles JS, Arnoletti JP, Tzeng CW, et al. ErbB3 expression promotes tumorigenesis in pancreatic adenocarcinoma. Cancer Biol Ther 2010;10:555-63.

21. Travis A, Pinder SE, Robertson JF, et al. C-erbB-3 in human breast carcinoma: expression and relation to prognosis and established prognostic indicators. Br J Cancer 1996;74:229-33.

22. Siegel PM, Ryan ED, Cardiff RD, Muller WJ. Elevated expression of activated forms of Neu/ErbB-2 and ErbB-3 are involved in the induction of mammary tumors in transgenic mice: implications for human breast cancer. EMBO J 1999;18:2149-64.

23. Servidei T, Riccardi A, Mozzetti S, et al. Chemoresistant tumor cell lines display altered epidermal growth factor receptor and HER3 signaling and enhanced sensitivity to gefitinib. Int J Cancer 2008;123:2939-49.

24. Lee-Hoeflich ST, Crocker L, Yao E, et al. A central role for HER3 in HER2-amplified breast cancer: implications for targeted therapy. Cancer Res 2008;68:5878-87.

25. Vaught DB, Stanford JC, Young C, et al. HER3 is required for HER2-induced preeoplastic changes to the breast epithelium and tumor formation. Cancer Res 2012;72:2672-82.

26. Garrett JT, Olivares MG, Rinehart C, et al. Transcriptional and posttranslational up-regulation of HER3 (ErbB3) compensates for inhibition of the HER2 tyrosine kinase. Proc Natl Acad Sci USA 2011;108:5021-6.

27. Chandarlapaty S, Sawal A, Scaltriti M, et al. AKT inhibition relieves feedback suppression of receptor tyrosine kinase expression and activity. Cancer Cell 2011;19:58-71.

28. Fujiwara S, Ibusuki M, Yamamoto S, et al. Association of ErbB1-4 expression in invasive breast cancer with clinicopathological characteristics and prognosis. Breast Cancer 2014;21:472-81.

29. Morrison MM, Hutchinson K, Williams MM, et al. ErbB3 downregulation enhances luminal breast tumor response to antiestrogens. J Clin Invest 2013;123:4329-43.

30. Balko JM, Miller TW, Morrison MM, et al. The receptor tyrosine kinase ErbB3 maintains the balance between luminal and basal breast epithelium. Proc Natl Acad Sci USA 2012;109:221-6.

31. Curley MD, Sabnis GJ, Wille L, et al. Seribantumab, an anti-ErbB3 Antibody, delays the onset of resistance and restores sensitivity to letrozole in an estrogen receptor-positive breast cancer model. Mol Cancer Ther 2015;14:2642-52.

32. Collins D, Jacob W, Cejalvo JM, et al. Direct estrogen receptor (ER)/HER family crosstalk mediating sensitivity to lumtruzumab and pertuzumab in ER+ breast cancer. PLoS One 2017;12:e0177331.

33. Mishra R, Hanker AB, Garrett JT. Genomic alterations of ERBB receptors in cancer: clinical implications. Oncotarget 2017;8:114371-92.

34. Jaiswal BS, Kijavim NM, Stawiski EW, et al. Oncogenic ERBB3 mutations in human cancers. Cancer Cell 2013;23:603-17.

35. Michel R, Yuan L, Solomon T, Garrett JT. Oncoplastic potential of ERBB3 mutations in human mammary epithelial cells. Cancer Res 2015;75:21-22.

36. Newby JC, Johnston SR, Smith IE, Dowsett M. Expression of epidermal growth factor receptor and c-erbB2 during the development of tamoxifen resistance in human breast cancer. Clin Cancer Res 1997;3:1643-51.

37. Shou J, Massarweh S, Osborne CK, et al. Mechanisms of tamoxifen resistance: increased estrogen receptor-HER2/neu cross-talk in ER/HER2-positive breast cancer. J Natl Cancer Inst 2004;96:926-35.

38. Tovey S, Dunne B, Witton CJ, et al. Can molecular markers predict when to implement treatment with aromatase inhibitors in invasive breast cancer? Clin Cancer Res 2005;11:4835-42.

39. Liu J, Ordonez-Ercan D, Fan Z, et al. Downregulation of erbB3 abrogates erbB2-mediated tamoxifen resistance in breast cancer cells. Int J Cancer 2007;120:1874-82.

40. Clark AS, West K, Streicher S, Dennis PA. Constitutive and inducible Akt activity promotes resistance to chemotherapy, trastuzumab, or tamoxifen in breast cancer cells. Mol Cancer Ther 2002;1:707-17.

41. Jordan NJ, Gee JM, Barrow D, et al. Increased constitutive activity of PKB/Akt in tamoxifen resistant breast cancer MCF-7 cells. Breast Cancer Res Treat 2004;87:167-80.

42. Jathal MK, Chen L, Mudryj M, Ghosh PM. Targeting ErbB3: the new RTK(id) on the prostate cancer block. Immunol Endocr Metab Agents Med Chem 2011;11:131-49.

43. Hutcheson IR, Goddard L, Barrow D, et al. Fulvestrant-induced expression of ErbB3 and ErbB4 receptors sensitizes oestrogen receptor-positive breast cancer cells to heregulin beta1. Breast Cancer Res 2011;13:R29.

44. Frogn T, Benjaminsen RV, Sonne-Hansen K, et al. Activation of ErbB3, EGFR and Erk is essential for growth of human breast cancer cell lines with acquired resistance to fulvestrant. Breast Cancer Res Treat 2009;114:263-75.

45. Vlach G and Coffey RJ. Resistance to EGFR-targeted therapy: a family affair. Cancer Cell 2011;20:423-5.

46. Kruser TJ, Wheeler DL. Resistance to EGFR-targeted therapy: a family affair. Cancer Cell 2011;20:423-5.

47. Yonesaka K, Jezmulllah K, Okamoto I, et al. Activation of ERBB2 signaling causes resistance to the EGFR-directed therapeutic antibody cetuximab. Sci Transl Med 2011;3:99ra86.

48. Huang S, Li C, Armstrong EA, et al. Dual targeting of EGFR and HER3 with MEHD7945A overcomes acquired resistance to EGFR inhibitors and radiation. Cancer Res 2013;73:824-33.

49. Engelman JA, Jezmulllah K, Mitsudomi T, et al. Met amplification leads to gefitinib resistance in lung cancer by activating
ERBB3 signaling. Science 2007;316:1039-43.
50. Abel EV, Basile KJ, Kugel CH, 3rd, et al. Melanoma adapts to RAF/MEK inhibitors through FOXD3-mediated upregulation of ERBB3. J Clin Invest 2013;123:2155-68.
51. Montero-Conde C, Ruiz-Llorente S, Dominguez JM, et al. Relief of feedback inhibition of HER3 transcription by RAF and MEK inhibitors attenuates their antitumor effects in BRAF-mutant thyroid carcinomas. Cancer Dis 2013;3:520-33.
52. Zhang S, Huang WC, Li P, et al. Combating trastuzumab resistance by targeting SRC, a common node downstream of multiple resistance pathways. Nat Med 2011;17:461-9.
53. Agus DB, Akita RW, Fox WD, et al. Targeting ligand-activated ErbB2 signaling inhibits breast and prostate tumor growth. Cancer Cell 2002;2:127-37.
54. Lu Y, Zi X, Zhao Y, et al. Insulin-like growth factor-I receptor signaling and resistance to trastuzumab (Herceptin). J Natl Cancer Inst 2001;93:1852-7.
55. Nahta R, Yuan LX, Zhang B, et al. Insulin-like growth factor-I receptor/human epidermal growth factor receptor 2 heterodimerization contributes to trastuzumab resistance of breast cancer cells. Cancer Res 2005;65:11118-28.
56. Huang X, Gao L, Wang S, et al. Heterotrimerization of the growth factor receptors erbB2, erbB3, and insulin-like growth factor-I receptor in breast cancer cells resistant to herceptin. Cancer Res 2010;70:1204-14.
57. Chakrabarty A, Sanchez V, Kuba MG, et al. Feedback upregulation of HER3 (ErbB3) expression and activity attenuates antitumor effect of PI3K inhibitors. Proc Natl Acad Sci U S A 2012;109:2718-23.
58. Bezler M, Hengstler JG, Ullrich A. Inhibition of doxorubicin-induced HER3-PI3K-AKT signalling enhances apoptosis of ovarian cancer cells. Mol Oncol 2012;6:516-29.
59. Knuefermann C, Lu Y, Liu B, et al. HER2/PI-3K/Akt activation leads to a multidrug resistance in human breast adenocarcinoma cells. Oncogene 2003;22:3205-12.
60. Wang S, Huang X, Lee CK, Liu B. Elevated expression of erbB3 confers paclitaxel resistance in erbB2-overexpressing breast cancer cells via upregulation of Survivin. Oncogene 2010;29:4225-36.
61. Schoebel B, Faber AC, Li D, et al. An ErbB3 antibody, MM-121, is active in cancers with ligand-dependent activation. Cancer Res 2010;70:2485-94.
62. Fitzgerald JB, Johnson BW, Baum J, et al. MM-141, an IGF-IR- and ErbB3-directed bispecific antibody, overcomes network adaptations that limit activity of IGF-IR inhibitors. Mol Cancer Ther 2014;13:410-25.
63. McDonagh CF, Huhalov A, Harms BD, et al. Antitumor activity of a novel bispecific antibody that targets the ErbB2/ErbB3 oncogenic unit and inhibits hereguard-induced activation of ErbB3. Mol Cancer Ther 2012;11:582-93.
64. Miller MJ, Foy KC, Overholser JP, et al. HER-3 peptide vaccines/mimics: Combined therapy with IGF-1R, HER-2, and HER-1 peptides induces synergistic antitumor effects against breast and pancreatic cancer cells. Oncoimmunology 2014;3:e956012.
65. Sarup J, Jin P, Turin L, et al. Human epidermal growth factor receptor (HER-1:HER-3) Fc-mediated heterodimer has broad antiproliferative activity in vitro and in human tumor xenografts. Mol Cancer Ther 2008;7:3223-36.
66. Huang Z, Brdlik C, Jin P, Shepard HM. A pan-HER approach for cancer therapy: background, current status and future development. Exp Opin Biol Ther 2009;9:97-110.
67. Wu Y, Zhang Y, Wang M, et al. Downregulation of HER3 by a novel antisense oligonucleotide, EZN-3920, improves the antitumor activity of EGFR and HER2 tyrosine kinase inhibitors in animal models. Mol Cancer Ther 2013;12:427-37.
68. Xie T, Lim SM, Westover KD, et al. Pharmacological targeting of the pseudokinase Her3. Nat Chem Biol 2014;10:1006-12.
69. Kawakami H, Okamoto I, Yonesaka K, et al. The anti-HER3 antibody patritumab abrogates cetuximab resistance mediated by heregulin in colorectal cancer cells. Oncotarget 2014;5:11847-56.
70. Wakui H, Yamamoto N, Nakamichi S, et al. Phase 1 and dose-finding study of patritumab (U3-1287), a human monoclonal antibody targeting HER3, in Japanese patients with advanced solid tumors. Cancer Chemother Pharmacol 2014;73:511-6.
71. Nishio M, Horiike A, Murakami H, et al. Phase I study of the HER3-targeted antibody patritumab (U3-1287) combined with erlotinib in Japanese patients with non-small cell lung cancer. Lung Cancer 2015;88:275-81.
72. Yonesaka K, Hirono K, Kawakami H, et al. Anti-HER3 monoclonal antibody patritumab sensitizes refractory non-small cell lung cancer to the epidermal growth factor receptor inhibitor erlotinib. Oncogene 2016;35:878-86.
73. Daiichi Sankyo. Study of patritumab in combination with erlotinib in subjects with locally advanced or metastatic non-small-cell lung cancer (NSCLC). ClinicalTrials.gov 2018; NCT02134015.
74. Harrington KJ, Forster MD, Dillon M, et al. Patritumab (P) or placebo (PBO) plus cetuximab (C) and platinum-based therapy in squamous cell carcinoma of the head and neck (SCCHN): a phase 2 study. J Clin Oncol 2016;34:TPS6104-TPS04.
75. Daiichi Sankyo. Phase 1b/2 study of U3-1287 in combination with trastuzumab plus paclitaxel in newly diagnosed metastatic breast cancer (MBC). ClinicalTrials.gov 2017; NCT01512199.
76. Daiichi Sankyo. U3-1402 in metastatic or unresectable EGFR-mutant non-small cell lung cancer. ClinicalTrials.gov 2018; NCT03260491.
77. Merrimack. A study of MM-121 in combination with paclitaxel in patients with advanced gynecologic and breast cancers. ClinicalTrials.gov 2016; NCT01209195.
78. Merrimack. A safety study of MM-121 with cetuximab and irinotecan in patients with advanced cancers. ClinicalTrials.gov 2016; NCT01451632.
79. Frankie AH, Kristi JM, Ian EK, et al. A randomized, phase 2 trial of preoperative MM-121 with paclitaxel in triple negative (TN) and hormone receptor (HR) positive, HER2-negative breast cancer. Cancer Res 2014;74:12142.
80. Merrimack. Phase I safety study of the drug MM-121 in patients with advanced solid tumors resisting ordinary treatment. ClinicalTrials.gov 2016; NCT00734305.
81. Cleary JM, McRee AJ, O’Neil BH, et al. A phase 2 study of patritumab (U3-1287) combined with cetuximab and irinotecan in patients with advanced solid tumors. J Clin Oncol 2014;32:3076-76.
82. Merrimack. A trial of preoperative MM-121 with paclitaxel in HER2-negative breast cancer. ClinicalTrials.gov 2016; NCT01421472.
83. Denlinger CS, Keedy VL, Cleary JM, et al. Phase I dose escalation study of MM-121, a fully human monoclonal antibody to ErbB3, in patients with advanced solid tumors. Cancer Res 2011;71:LB-410.
84. Liu JF, Ray-Coquard I, Selle F, et al. Randomized phase II trial
of seribantumab in combination with paclitaxel in patients with advanced platinum-resistant or -refractory ovarian cancer. J Clin Oncol 2016;34:4345-53.
85. Wang S, Huang J, Lyu H, et al. Therapeutic targeting of erbB3 with MM-121/SAR256212 enhances antitumor activity of paclitaxel against erbB2-overexpressing breast cancer. Breast Cancer Res 2013;15:R101.
86. Huang J, Wang S, Lyu H, et al. The anti-erbB3 antibody MM-121/SAR256212 in combination with trastuzumab exerts potent antitumor activity against trastuzumab-resistant breast cancer cells. Mol Cancer 2013;12:134.
87. Jiang N, Wang D, Hu Z, et al. Combination of anti-HER3 antibody MM-121/SAR256212 and cetuximab inhibits tumor growth in preclinical models of head and neck squamous cell carcinoma. Mol Cancer Ther 2014;13:1826-36.
88. Merrimack. A study of MM-121 in combination with chemotherapy versus chemotherapy alone in herulin positive NSCLC. ClinicalTrials.gov 2018: NCT02387216.
89. Sequist LV, Anderson IC, Dermars N, et al. A phase 2 study of seribantumab (MM-121) in combination with docetaxel or pemetrexed versus docetaxel or pemetrexed alone in patients with herulin positive (HRG+), locally advanced or metastatic non-small cell lung cancer (NSCLC). J Clin Oncol 2016;34:abst TPS9110.
90. Merrimack. A study of MM-121 combination therapy in patients with advanced non-small cell lung cancer. ClinicalTrials.gov 2016: NCT00994123.
91. Merrimack. Phase 2 trial of seribantumab plus fulvestrant in postmenopausal women with metastatic breast cancer (SHERBOC). ClinicalTrials.gov 2017: NCT03241810.
92. Moyo VM, Higgins MJ, Aravelo-Aracejo R, et al. A randomized, double-blind phase II trial of exemestane with or without MM-121 in postmenopausal women with locally advanced or metastatic estrogen receptor-positive (ER+) and/or progesterone receptor-positive (PR+), HER2-negative breast cancer. J Clin Oncol 2015;29:abst TPS1112.
93. Merrimack. Trial of exemestane +/- MM-121 in postmenopausal women with locally advanced or metastatic estrogen receptor positive and/or progesterone receptor positive HER2 negative breast cancer. ClinicalTrials.gov 2016: NCT01151046.
94. Merrimack. Phase I combination study of MM-151 with MM-121, MM-141, or trametinib. ClinicalTrials.gov 2016: NCT02538627.
95. Arnedos M, Denlinger CS, Harb WA, et al. A phase I study of MM-121 in combination with multiple anticancer therapies in patients with advanced solid tumors. J Clin Oncol 2013;31:abst 2609.
96. Sanofi. A study of investigational SAR256212 in combination with SAR245408 in patients with solid tumor cancers.ClinicalTrials.gov 2014: NCT01436565.
97. Meneses-Lorente G, Friess T, Kolm I, et al. Preclinical pharmacokinetics, pharmacodynamics, and efficacy of RG7116: a novel humanized, glycoengineered anti-HER3 antibody. Cancer Chemother Pharmacol 2015;79:837-50.
98. Mirschberger C, Schiller CB, Schraml M, et al. RG7116, a therapeutic antibody that binds the inactive HER3 receptor and is optimized for immune effector activation. Cancer Res 2013;73:5183-94.
99. Roche. A study to evaluate RO5479599 in combination with pertjata (pertuzumab) and paclitaxel in patients with metastatic breast cancer expressing HER3 & HER2 protein. ClinicalTrials.gov 2017: NCT01918254.
100. Schneeweiss A, Park-Simon TW, Albanell J, et al. Phase Ib study evaluating safety and clinical activity of the anti-HER3 antibody lumretuzumab combined with the anti-HER2 antibody pertuzumab and paclitaxel in HER3-positive, HER2-low metastatic breast cancer. Invest New Drugs 2018.
101. Meulendijks D, Jacob W, Martinez-Garcia M, et al. First-in-human phase I study of lumretuzumab, a glycoengineered humanized anti-HER3 monoclonal antibody, in patients with metastatic or advanced HER3-positive solid tumors. Clin Cancer Res 2016;22:877-85.
102. Roche. A study evaluating RO5479599 in combination with carboplatin and paclitaxel in patients with advanced or metastatic non-small cell lung cancer (NSCLC) of squamous histology. ClinicalTrials.gov 2017: NCT0204345.
103. Meulendijks D, Jacob W, Voest EE, et al. Phase Ib study of lumretuzumab plus cetuximab or erlotinib in solid tumor patients and evaluation of HER3 and heregulin as potential biomarkers of clinical activity. Cancer Res 2017;23:5406-15.
104. Garner AP, Bialucha CU, Sprague ER, et al. An antibody that locks HER3 in the inactive conformation inhibits tumor growth driven by HER2 or neuregulin. Cancer Res 2013;73:6024-35.
105. Garrett JT, Sutton CR, Kurupi R, et al. Combination of antibody that inhibits ligand-independent HER3 dimerization and a pi10alpha inhibitor potently blocks PI3K signaling and growth of HER2+ breast cancers. Cancer Res 2013;73:6013-23.
106. Novartis. Study of efficacy and safety of LJM716 and cetuximab in head and neck squamous cell carcinoma patients. ClinicalTrials.gov 2016: NCT02143622.
107. Novartis. Open-label study evaluating the safety and tolerability of LJM716, BYL719 and trastuzumab in patients with metastatic HER2+ breast cancer. ClinicalTrials.gov 2017: NCT02167854.
108. Novartis. Phase I study LJM716 combined with trastuzumab in patients with HER2 overexpressing metastatic breast or gastric cancer. ClinicalTrials.gov 2017: NCT01602406.
109. Novartis. Study of safety & efficacy of the combination of LJM716 & BYL719 in patients with previously treated esophageal squamous cell carcinoma (ESCC). ClinicalTrials.gov 2017: NCT01822613.
110. Reynolds KL, Juric D, Baselga J, et al. A phase 1 study of LJM716 in patients with esophageal squamous cell carcinoma, head and neck cancer, or HER2-overexpressing metastatic breast or gastric cancer. J Clin Oncol 2014;32:abst 2517.
111. Esaki T, Oda H, Kajitani T, et al. Phase I study of the safety and tolerability of LJM716 in Japanese patients with advanced solid tumors. Mol Can Ther 2015;14:C120.
112. Xiao Z, Carrasco RA, Schifferli K, et al. A potent HER3 monoclonal antibody that blocks both ligand-dependent and -independent activities: differential impacts of PTEN status on tumor response. Mol Cancer Ther 2016;15:689-701.
113. Kollman. A phase I study to evaluate the safety and pharmacokinetics of KTN3379 in adult subjects with advanced tumors. ClinicalTrials.gov 2017: NCT02014909.
114. Bauer TM, Infante JR, Eder JP, et al. A phase 1, open-label study to evaluate the safety and pharmacokinetics of the anti-ErbB3 antibody KTN3379, alone or in combination with targeted therapies in patients with advanced tumors. J Clin Oncol 2015;33:abst 2598.
115. Celledex Therapeutics. Enhancing radioiodine incorporation into BRAF mutant thyroid cancers with the combination of vemurafenib and KTN3379. ClinicalTrials.gov 2017: NCT02456701.
116. Celledex Therapeutics. A window of opportunity study of
and neck cancer models. Clin Cancer Res 2016;22:633-43.

150. Symphogen. Sym013 (Pan-HER) in patients with advanced epithelial malignancies. ClinicalTrials.gov 2017: NCT02906670.

151. Mendell J, Freeman DJ, Feng W, et al. Clinical translation and validation of a predictive biomarker for patritumab, an anti-human epidermal growth factor receptor 3 (HER3) monoclonal antibody, in patients with advanced non-small cell lung cancer. EbioMedicine 2015;2:264-71.

152. Karachaliou N, Rosell R. Evaluation of biomarkers for HER3-targeted therapies in cancer. EbioMedicine 2015;2:192-3.

153. Sarantoloulos J, Gordon MS, Harvey RD, et al. First-in-human phase 1 dose-escalation study of AV-203, a monoclonal antibody against ERBB3, in patients with metastatic or advanced solid tumors. J Clin Oncol 2014;32:abstr 11113.

154. Shames DS, Carbon J, Walter K, et al. High heregulin expression is associated with activated HER3 and may define an actionable biomarker in patients with squamous cell carcinomas of the head and neck. PLoS One 2013;8:e56765.

155. Holbro T, Beerli RR, Maurer F, et al. The ErbB2/ErbB3 heterodimer functions as an oncogenic unit: ErbB2 requires ErbB3 to drive breast tumor cell proliferation. Proc Natl Acad Sci U S A 2003;100:8933-8.

156. Sala G, Lezzi M, Lamolinara A, et al. An antibody drug conjugate targeting HER-3 demonstrates promising antitumor efficacy in a wide range of human cancer. Cancer Res 2017;77:AM2017-41.

157. Capone E, Lamolinara A, D’Agostino D, et al. EV20-mediated delivery of cytotoxic auristatin MMAF exhibits potent therapeutic efficacy in cutaneous melanoma. J Control Release 2018;277:48-56.

158. Capone E, Giansanti F, Ponziani S, et al. EV20-Sap, a novel anti-HER-3 antibody-drug conjugate, displays promising antitumor activity in melanoma. Oncotarget 2017;8:95412-24.

159. Sims JD, Taguiam JM, Alonso-Valenteen F, et al. Resistance to receptor-blocking therapies primes tumors as targets for HER3-homing nanobiologics. J Control Release 2018;271: 127-38.