Arteries are formed by vein-derived endothelial tip cells

Cong Xu1, Sana S. Hasan1, Inga Schmidt1, Susana F. Rocha1, Mara E. Pitulescu1, Jeroen Bussmann1, Dana Meyen2, Erez Raz2, Ralf H. Adams1,3 & Arndt F. Siekmann1

Tissue vascularization entails the formation of a blood vessel plexus, which remodels into arteries and veins. Here we show, by using time-lapse imaging of zebrafish fin regeneration and genetic lineage tracing of endothelial cells in the mouse retina, that vein-derived endothelial tip cells contribute to emerging arteries. Our movies uncover that arterial-fated tip cells change migration direction and migrate backwards within the expanding vascular plexus. This behaviour critically depends on chemokine receptor \( \text{cxcr4a} \) function. We show that the relevant Cxcr4a ligand Cxcl12a selectively accumulates in newly forming bone tissue even when ubiquitously overexpressed, pointing towards a tissue-intrinsic mode of chemokine gradient formation. Furthermore, we find that \( \text{cxcr4a} \) mutant cells can contribute to developing arteries when in association with wild-type cells, suggesting collective migration of endothelial cells. Together, our findings reveal specific cell migratory behaviours in the developing blood vessel plexus and uncover a conserved mode of artery formation.
The formation of new blood vessels is a crucial process during embryogenesis and growth1-4, but also in regenerative processes, such as wound healing and tissue repair. It entails the tight coordination of different cellular processes, such as proliferation, migration and lumen formation. In the early embryo, vascular development is often stereotypical, resulting in the formation of identical looking vascular networks5. By contrast, at later stages many vascular beds form via a plexus intermediate, which remodels into a hierarchical network of arteries and veins. Examples are the emerging skin blood vessels7 or the postnatally forming blood vessels of the mouse retina8. In addition, the vasculature in regenerating tissues, for instance in the regenerating zebrafish fin9 or during wound healing10, forms via a plexus.

In the current concepts of blood vessel formation, an initial pro-angiogenic cue specifies endothelial tip cells, which become motile and navigate through the avascular tissue11. Tip cells are followed by stalk cells. These maintain the connection to the pre-existing vasculature, are less motile and subsequently establish a hierarchical network of arteries and veins to allow for efficient tissue perfusion1-2. Further studies have investigated the dynamics of endothelial cell migration during sprout outgrowth. Jakobsson et al.13 showed in an embryoid body sprouting assay that endothelial cells compete for the tip cell position. Another study using a mouse aortic ring assay suggested that this competition and the ensuing ‘cell-mixing’ are important for the proper outgrowth of angiogenic sprouts14.

Despite the insights these studies provided, they were performed in in vitro settings, which lack proper arterial-venous differentiation of the forming vascular plexus and tissue perfusion. So far, in vivo imaging of the forming vasculature has been mainly performed in transparent zebrafish embryos15-17. However, these studies have not included vascular beds that form via a plexus intermediate. Therefore, despite the significance of vascular plexus formation and subsequent remodelling for tissue perfusion, we still have a poor understanding of endothelial cell dynamics during these processes. In particular, we do not understand how endothelial cells coordinate the sprouting of new vessels with the establishment of larger arteries and veins.

In this study, we take advantage of the optical clarity of the adult zebrafish fin to perform in vivo time-lapse imaging of the complex cell migratory behaviours during blood vessel formation in regenerating tissues. Our results show that endothelial tip cells not only invade avascular tissues, but that they can subsequently change their direction of migration and ultimately migrate against the advancing vascular front. Furthermore, we show that this behaviour is necessary for the proper formation of arteries. In addition, we observe proliferating endothelial cells in tip and stalk cells of venous origin, while arterial endothelial cells proliferate less. Through genetic lineage tracing in the mouse retina, we provide evidence that this mode of artery formation is conserved in other vascular beds that form via a plexus intermediate. We implicate the chemokine receptor Cxcr4a in regulating these migratory behaviours and suggest that a tissue-intrinsic mode is responsible for the generation of a Cxcl12a chemokine gradient. We finally demonstrate through cell transplantation experiments that endothelial cells show a collective cell migration behaviour.

**Results**

**Blood vessels regenerate via an intermediate vascular plexus.** To visualize regenerating blood vessels, we analysed vascular dynamics during fin regeneration in adult transgenic zebrafish. In Tg(fli1a:EGFP)y7 zebrafish, all endothelial cells are labelled by EGFP expression18, while, in Tg(−0.8flt1:RFP)hu533 fish, arterial endothelial cells are labelled by high RFP expression19. Confocal imaging of fins of double transgenic animals revealed that, in the distal part, each fin ray contained a medially located artery, which was flanked by two veins (Fig. 1a-d). These vessels furthermore showed distinct topologies in respect to the bones of the fin rays. While the artery ran within the bone, the veins were located outside of the bony rays (Supplementary Fig. 1a-g). Thus, the vasculature of the zebrafish fin consists of a regular pattern of arteries and veins, which can be visualized using different transgenic zebrafish lines.

We next amputated the fins of double transgenic animals and observed blood vessel growth within the regenerating tissue (Fig. 1e). In agreement with previous observations4, we detected the formation of a dense vascular plexus at 3 days post amputation (Fig. 1f, 3 d.p.a.). This plexus, after bifurcating, subsequently remodelled into a single medial artery and two lateral veins (Fig. 1f, 5–14 d.p.a., see also Supplementary Fig. 2). We could distinguish different areas within the vasculature distally to the established artery and vein during this outgrowth phase. Most distally, we observed a sprouting front invading the avascular tissue, followed by a remodelling vascular plexus (Fig. 1f). Within this plexus, we could distinguish arterIALIZED endothelial cells by virtue of RFP expression (see also Supplementary Fig. 2c). Therefore, our double transgenic zebrafish allowed for the detailed observation of the forming vasculature via a plexus intermediate during tissue regeneration.

**Time-lapse imaging reveals vein cells contribute to arteries.** To detect endothelial cell movements, and arterial differentiation, we combined Tg(fli1a:nEGFP)y7, labelling endothelial cell nuclei20 with Tg(−0.8flt1:RFP)hu533 fish and performed time-lapse imaging for 24 h, starting at 9 d.p.a. (Supplementary Movie 1). Representative images taken every 6 h can be seen in Fig. 2. At this stage, the fin ray started to bifurcate and consisted of two arteries flanked by a shared vein in the middle and two lateral veins. We then colour coded endothelial cells located in arterial and venous positions and followed their migratory paths (Fig. 2b,c). This analysis revealed prominent differences in migratory behaviours between venous- and arterial-derived endothelial cells during tissue vascularization. Cells located in venous positions migrated more extensively towards the sprouting front than arterial-derived endothelial cells (compare blue/white dots and tracks with pink ones in Fig. 2b,c). Furthermore, some of these vein-derived endothelial tip cells subsequently changed their orientation, turned medially and finally migrated against the direction of the moving vascular front (arrows in Fig. 2c, time stamp in d, schematic drawings in e, f). Strikingly, we observed that the cells that had turned medially formed the remodelling artery in the centre of each fin ray (Fig. 2b, 23:45 h time point, inset). By contrast, we did not observe endothelial cells coming from the artery in venous blood vessels. We furthermore quantified proliferation of vein- and artery-derived endothelial cells (Supplementary Fig. 3a,b; Supplementary Movie 2). Whereas about 50% of venous endothelial cells divided within 24 h, less than 20% of artery-derived endothelial cells proliferated (Supplementary Fig. 3e). We detected both dividing tip- and stalk cells (Supplementary Fig. 4 and Supplementary Movie 3). Thus, our time-lapse analysis of blood vessel growth reveals a venous origin of arterial endothelial cells and shows that distinct migratory properties of endothelial tip cells contribute to proper blood vessel morphogenesis during tissue regeneration. It also shows that pronounced differences exist in endothelial cell proliferation between arteries and veins.

**Tip cells in the mouse retinal plexus contribute to arteries.** We next wanted to know whether blood vessel formation in other...
vascular beds that are established via a plexus intermediate occurs by a similar mechanism. We chose to investigate the mouse retinal vasculature due to the availability of genetic tools that allow for lineage tracing of different cell populations. To genetically label endothelial tip cells located at the vascular front, we generated double transgenic mice containing a $\text{R}2\text{6-tomato-EGFP}$ reporter\textsuperscript{21} in conjunction with a tamoxifen-inducible $i\text{Cre-ERT2}$ cassette under the control of the endothelial-specific molecule-1 (\textit{Esm-1}) promoter\textsuperscript{22} (Fig. 3a). Previous studies showed \textit{Esm-1} mRNA expression mainly in endothelial tip cells\textsuperscript{23,24}. Accordingly, we observed specific expression of EGFP in endothelial cells at the vascular front \(12\) h after tamoxifen injection (Fig. 3b–d, bracket). To track labelled cells over time, we analysed the location of EGFP expressing cells within the vasculature after 24 or \(48\) h of tamoxifen injection (Fig. 3e–g. \(48\) h time point shown). We observed a striking bias of EGFP-positive cells towards the developing arteries, while we did not find a significant contribution of EGFP-positive cells to developing veins (Fig. 3g, arteries are marked by arrows, veins by arrowheads). After \(48\) h, about \(15\)% of the arterial vessel area was occupied by EGFP-positive cells, while only about \(1.5\)% of the venous vessel area was occupied by EGFP-positive cells (Fig. 3h). This suggests that similar to the vasculature in the regenerating zebrafish fin, endothelial tip cells in the mouse retina can contribute to nascent arteries, while they only marginally contribute to forming veins. EdU incorporation experiments in recombined endothelial cells and their descendants indicated proliferation of these cells

---

**Figure 1** | Visualizing blood vessels in the regenerating zebrafish fin. (\(a\), \(a^\prime\)) \textit{Tg(fli1a:EGFP)y1} labels all fin blood vessels. (\(b\), \(b^\prime\)) \textit{Tg(–0.8flt1:RFP)hu5333} preferentially labels arterial endothelial cells. (\(c\), \(d\)) Schematic drawings of the zebrafish fin vasculature, indicating the ray bifurcation, arteries (A) and veins (V). (\(e\)) Schematic of zebrafish fin, indicating plane of amputation and imaged area. (\(f\)) Overlay of \textit{Tg(fli1a:EGFP)y1} and \textit{Tg(–0.8flt1:RFP)hu5333} at different stages of fin regeneration highlighting the medially located arterial cells in yellow. Inset (\(f\)) shows remodelling vascular plexus, which is located proximal to the sprouting front and distally to the established arteries and veins. Scale bar in \(a\) is \(80\) \(\mu\)m, in \(a^\prime\) is \(20\) \(\mu\)m and \(200\) \(\mu\)m in \(f\). Representative images from a total of three zebrafish imaged per stage.
A 24-h live imaging of 9-d.p.a. regenerating wild-type fin vessels

Tg(βIκBα:nEGFP)μ22, Tg(−0.8flt1:RFP)υμ333

Figure 2 | Time-lapse imaging of regenerating blood vessels reveals contribution of vein-derived tip cells to the forming artery. (a) Still images taken every 6 h from a 24-h time-lapse movie on 9 d.p.a. fin regenerate of wild-type fish. (b) Tracking of individual cells deriving form the lateral vein (white dots), the artery (pink dots) or the medial vein (blue dots). While arterial cells hardly contribute to the advancing front, vein-derived cells contribute to the newly forming artery (inset at 23:45 h time point). (c) Tracks of labelled cells in (b). White arrows indicate migration paths of lateral vein-derived endothelial cells, while blue arrows indicate migration paths of medial vein-derived endothelial cells. Note change in migration direction. (d) Time stamp of tracked endothelial cells. (e) Schematic drawing of vessel front in the regenerated fin of wild-type fish at 10 d.p.a. Arteries and veins are indicated. (f) Schematic drawing of wild-type fin vasculature regenerated within 24 h from 9 d.p.a. Scale bar, 100 μm; d.p.a. = days post amputation. Representative movie of a total of three movies is shown.

( Supplementary Fig. 5), accounting for an increase in labelled endothelial cells at later time points.

Expression of cxcr4a and its ligands cxcl12a and cxcl12b. We reasoned that pro-migratory genes specifically expressed by endothelial tip cells might control the observed distinct migratory behaviours of arterial-fated endothelial cells. We and others had previously shown that the chemokine receptor Cxcr4 was specifically expressed in endothelial tip cells, both in mouse23,24 and zebrafish (cxcr4a)15. We therefore analysed expression of cxcr4a during fin regeneration. To achieve cellular resolution, we generated transgenic animals expressing fluorescent proteins under the control of the cxcl12a, cxcl12a and cxcl12b promoters25, respectively (see Methods). To visualize the vasculature in addition to transgene expression, we crossed these fish into the Tg(−0.8flt1:RFP)υμ333 background. In Tg(cxcr4a:yFP)υμ104 zebrafish, we observed YFP expression mainly in the centre of regenerating fin rays, where it overlapped with individual endothelial cells in a salt and pepper distribution (Fig. 4a–a″, compare cells marked by arrows and arrowheads). Tg(cxcl12a:CFP)υμ146 fish showed expression of CFP in non-endothelial cells located in the centre of regenerating fin rays, in the area of the forming artery (Fig. 4b–b″). Finally, in Tg(cxcl12b:yFP)υμ105 fish, we observed YFP expression in filamentous structures, most probably nerve fibres (Fig. 4c–c″).26. These staining patterns were mirrored by in situ hybridization results (Supplementary Fig. 6). Thus, mRNAs for the chemokine receptor Cxcr4a and for the ligands Cxcl12a and Cxcl12b are expressed in the regenerating zebrafish fin.

Effects of cxcr4a and cxcl12a mutants in arterial patterning. To address the relevance of cxcr4a in endothelial cell migration, we analysed the regenerating vasculature in homozygous cxcr4aum20 mutant zebrafish27. Although the total endothelial cell numbers were not different between wild type and cxcr4aum20 mutant fish at any of the analysed time points, we detected a strong reduction in endothelial cell numbers, vascular coverage and vessel length in the centre of the fin rays in cxcr4aum20 mutants (Supplementary Fig. 7), suggesting that artery formation was severely impaired (Fig. 4d–f, 14 d.p.a. time point shown, Supplementary Tables 1 and 2). We also observed ectopically located Tg(−0.8flt1:RFP)υμ333-positive arterial cells in mutant fish, often running in parallel with veins (Fig. 4e, white arrowheads). We observed similar defects in arterial patterning in cxcl12a(30516) mutant zebrafish28. (Fig. 4g–i, 14 d.p.a. time point shown, Supplementary Fig. 8, Supplementary Tables 1 and 2). By contrast, cxcl12bmu100 mutant zebrafish15 did not show differences in arterial patterning when compared with wild-type siblings (Supplementary Fig. 9, Supplementary Tables 1 and 2). Despite these patterning defects, differentiation of arterial cells appeared unaffected, as we observed Tg(−0.8flt1:RFP)υμ333-positive endothelial cells in cxcr4aum20 mutants, albeit in ectopic locations. Thus, Cxcr4a-Cxcl12a signalling appears to be necessary for proper arterial morphogenesis, but not differentiation. Quantifying endothelial cell proliferation in cxcr4aum20 mutants (Supplementary Fig. 3c,d and Supplementary Movie 4), we detected a reduction in endothelial cell proliferation in both veins and arteries in these mutants by about 50% (Supplementary Fig. 3e). Therefore, while the endothelial cell migratory defects observed in cxcr4aum20
mutants specifically affected forming arteries, the proliferative defects were apparent both in arteries and veins.

cxcr4aum20 mutant endothelial cells show defective migration.

To understand how Cxcr4a signalling influences artery formation, we performed time-lapse imaging of cxcr4aum20 mutant fish for 24 h, starting at 9 d.p.a. These studies revealed that in the absence of Cxcr4a signalling, endothelial tip cells failed to turn medially, and instead continued to migrate as a vascular front (Fig. 5a–c, time stamp in d, schematic drawings in e,f, Supplementary Movie 5, and compare with Fig. 2a–f). Consequently, no artery formed in the centre of the regenerating fin ray. By contrast, we observed Tg(C0.8flt1:RFP)hu5333-positive endothelial cells adjacent to the laterally located veins. Thus, Cxcr4a signalling is indispensable during the coordination of the complex endothelial cell movements that are necessary for artery formation during tissue regeneration.

Cell transplantations reveal collective cell migration. Migrating cells can either follow guidance cues individually or migrate as groups of cells29. Cxcr4 signalling in zebrafish has been described to play a role in single-cell migration regulating germ cell migration to the gonad and in collective cell migration during the formation of the lateral line30. To address whether Cxcr4a signalling within endothelial cells was necessary for single cell or collective cell migration, we generated chimeric embryos consisting of cxcr4aum20 mutant and wild-type cells and let them grow to adulthood. To visualize donor-derived endothelial cells, we transplanted double Tg(fli1a:EGFP)y1; Tg(C0.8flt1:RFP)hu5333 cells into single Tg(C0.8flt1:RFP)hu5333 hosts. We subsequently analysed fish that had donor- and host-derived blood vessels in their fins after amputation (Fig. 6a).

Of a total of about 5,200 transplanted embryos, 14 showed donor-derived cells in different adult fins (Supplementary Table 3). We observed two distinct patterns of donor cell contribution: either the vasculature of an entire given fin ray was donor-derived (Fig. 6b–d 00, arrows mark artery) or only a fraction of venous and/or arterial cells was donor-derived (Fig. 6e–j 00). In situations, where the entire fin ray vasculature was donor-derived, transplanted endothelial cells behaved according to the donor genotype. Wild-type cells transplanted to either wild-type hosts (Fig. 6b–d 00) or to cxcr4aum20 mutants (Fig. 6c–f 00) formed normal arteries, while cxcr4aum20 mutant endothelial cells transplanted into wild-type hosts did not form arteries in the proper location (Fig. 6d–d 00). These observations suggest that
**Figure 4** | The chemokine receptor cxcr4a and its ligand cxcl12a are required for proper arterial patterning during fin regeneration. Dashed lines indicate amputation planes in a–c′. (a) Tg(cxcr4a:YFP)μ04 fish reveal YFP expression in individual cells in the centre of the regenerating fin ray. (a′) Tg(–0.8flt1:RFP)h5333 labelled blood vessels. (a″) Overlay of red and yellow channels reveals expression of YFP in individual endothelial cells (arrows), while neighbouring endothelial cells do not express YFP (arrowheads). (b) CFP expression in the centre of the regenerating fin in Tg(cxcl12a:CFP)μ146 transgenic zebrafish. (b′) Tg(–0.8flt1:RFP)h5333 labelled blood vessels. (b″) Overlay of red and blue channels. (c) YFP expression in filamentous structures (arrowheads) extending into the regenerating fin in Tg(cxcl12b:YFP)μ105 transgenic zebrafish. (c′) Tg(–0.8flt1:RFP)h5333 labelled blood vessels. (c″) Overlay of red and yellow channels. (d) Fin vasculature in wild-type sibling 14 d.p.a. Arrows indicate Tg(–0.8flt1:RFP)h5333-positive endothelial cells in the centre of the fin ray. (e) cxcr4aum20 mutant; arrowheads indicate ectopic Tg(–0.8flt1:RFP)h5333-positive endothelial cells. (f) Quantification of artery formation defects in cxcr4aμm20 mutants. Endothelial cell numbers, vessel coverage and length are reduced in the centre. (g) Fin vasculature in wild-type sibling 14 d.p.a. Arrows indicate Tg(–0.8flt1:RFP)h5333-positive endothelial cells in the centre of the fin ray. (h) cxcl12aΔ30516 mutant; arrowheads indicate ectopic Tg(–0.8flt1:RFP)h5333-positive endothelial cells. Scale bar (a–e,h), 100μm. (i) Quantification of artery formation defects in cxcl12aΔ30516 mutants. Endothelial cell numbers, vessel coverage and length are reduced in the centre. NS, not significant, **P<0.01, ****P<0.0001; Mann–Whitney U-test. Twenty individual fin rays from five fish were analysed.

cxcr4a functions endothelial cell autonomously during artery formation in regenerating fins. In mosaic cases (Fig. 6e–j′′), we observed that donor (Fig. 6e,g,i–j′′,h–h′,j–j′′, white arrowheads) and host cells (Fig. 6e′,g′,i–j′′,h–h′,j–j′′, blue arrowheads) could contribute to arteries, irrespective of their genotypes. These findings suggest that endothelial cells of the forming artery engage in collective migration, which allows for wild-type cells to rescue the migratory phenotype of cxcr4aμm20 mutant cells. They further suggest that, while showing migration defects, cxcr4aμm20-deficient endothelial cells can properly differentiate into the arterial lineage.

Ubiquitous overexpression of Cxcl12a rescues cxcl12a mutants. Our analysis of cxcl12a expression during fin regeneration (Fig. 4b–b′) suggested that Cxcl12a might be distributed in a graded manner with higher concentrations in the centre of the fin. To determine whether graded Cxcl12a distribution was indeed necessary for proper artery formation, we ubiquitously overexpressed Cxcl12a-mCherry for 14 days during fin regeneration using Tg(Cry.kop.HSP:mutSDFla.mCherry. globin3′ UTR)μ4d fish. Overexpression of Cxcl12a-mCherry did not affect fin regeneration in wild-type siblings (Fig. 7, compare values for sibling in Fig. 7a with heat-shock sibling fish in Fig. 7b). Importantly, the arterial defects in cxcl12aΔ30516 mutant zebrafish were completely rescued by ubiquitous overexpression of Cxcl12a-mCherry (Fig. 7b, Supplementary Table 4). Surprisingly, we detected strong accumulation of the fusion protein in newly forming bone segments in the regenerates of both siblings and mutants (Fig. 7b, white arrowheads). We did not detect Cxcl12a-mCherry in the uninjured bone proximal to the amputation plane (Fig. 7b, proximal to the dotted line). The remainder of the regenerated fin, especially the most distal tissues, displayed faint Cxcl12a-mCherry signal, which accumulated in a dot-like pattern. Thus, although ubiquitously expressed under the control of a heat-shock promoter, Cxcl12a-mCherry accumulated in a tissue-restricted manner in regenerating fin tissue, with higher concentration detected within newly forming bones.

**Discussion**

In this study, we have analysed endothelial cell migration during blood vessel plexus formation and remodelling in an in vivo setting: the regenerating zebrafish fin. Our results show that endothelial cells within growing blood vessel sprouts initially invade the avascular area. The signalling process that is most likely responsible for this behaviour is the VEGF pathway. During fin regeneration, vegf-a mRNA is being expressed in the fin regenerate and inhibition of VEGF signalling abolishes fin vessel outgrowth. In addition, a VEGF gradient was postulated to drive retinal angiogenesis. Studies in the mouse retina and in cell culture have shown that the exposure to VEGF can lead to the induction of tip cell specific genes, such as the Notch ligandDll4 and the
chemokine receptor Cxcr4 (refs 11,23,24,33). Although activation of Notch signalling via Dll4 in neighbouring cells leads to the suppression of the tip cell phenotype34, Cxcr4a induction would change the tip cells’ responsiveness to guidance cues present in the environment. As we show that the chemokine ligand Cxcl12a is likely enriched in the central area of the fin ray, Cxcr4a expressing endothelial cells would respond to this chemokine and change their direction of migration towards the centre of the ray, allowing for proper arterial morphogenesis. Accordingly, our cxcr4aum20 mutant analysis revealed that in this setting, endothelial cells failed to turn medially, but continued to migrate in the direction of the avascular area. Therefore, Cxcr4a-mediated medial migration of tip cells would be necessary to balance the directionality imposed on the outgrowing vasculature by VEGF.

A dependence on Cxcr4 signalling for artery formation was recently observed in the mouse skin vasculature. In this setting, nerves secrete Cxcl12, while a subset of endothelial cells in the surrounding vascular plexus expresses Cxcr4 (ref. 35). In the absence of Cxcr4 signalling vessel nerve alignment is disrupted. This suggests that in the developing mouse skin vasculature, endothelial cell migration might occur similarly to what we observe in the regenerating zebrafish fin. In addition, Strasser et al.24 observed that, in retinae treated with the Cxcr4 inhibitor AMD3100, long sprouts formed that failed to connect laterally to neighbouring sprouts, a phenotype that corresponds to our observations during the live imaging of cxcr4aum20 mutants. This, together with our genetic lineage tracing of tip cells in the retina, suggests that the morphogenetic movements we observed during vascular plexus formation in the regenerating fin might be a general principle.

Despite the important role of Cxcr4 signalling during arterial morphogenesis, differentiation of arterial cells appears to be unaffected in cxcr4aum20 mutant zebrafish. We readily observe Tg(–0.8flt1:RFP)hu5333 positive blood vessels in cxcr4aum20 mutant fins, albeit in random locations. Proper arterial differentiation of endothelial cells lacking Cxcr4a function is furthermore supported by our cell transplantation experiments, where cxcr4aum20 mutant cells could contribute to arteries when surrounded by wild-type cells. This is in line with observations on Cxcr4-expressing endothelial cells from the skin of mouse embryos. In this setting, Cxcl12 exposure did not lead to arterial differentiation, while VEGF-A exposure could induce the expression of the arterial marker gene ephrinB2 also in Cxcr4 mutant endothelial cells35. One important difference between the mouse skin and the regenerating fin vasculature is that, in the fin, arterial differentiation does not seem to depend on the proper location of the arterial-fated endothelial cells. In the mouse skin, only endothelial cells that are in close proximity to VEGF providing nerves can differentiate into arteries7,36. One reason for this difference might be that, during regeneration, tissue VEGF levels are high enough to allow for arterial differentiation throughout the entire fin.

Our data furthermore show that endothelial cell proliferation during vascular plexus formation differs between arterial and venous endothelial cells. We detect higher proliferation in veins, but not in arteries during vascular maturation37. Therefore, veins appear to constitute the main source of endothelial cells for newly forming blood vessels. In the mouse retina we find that descendants of previously labelled endothelial tip cells can proliferate during blood vessel formation and thereby account for an increase in the number of labelled endothelial cells. Our zebrafish data also show that both tip and
stalk cells can proliferate during vascular outgrowth. This is in agreement with previous studies in developing zebrafish inter-segmental vessels.\textsuperscript{38–40} We observe a reduction in endothelial cell proliferation both in arteries and veins in \textit{cxcr4a\textsuperscript{um20}} mutants. This is in contrast to the observed cell migration defects in \textit{cxcr4a\textsuperscript{um20}} mutants, which specifically affect newly forming arteries. At present it is not clear whether the observed cell proliferation defects are due to a direct effect of \textit{cxcr4a} signalling in both endothelial cell populations or due to perfusion defects, which might result from arterial malformations.

Chemokines play important roles in guiding the migration of various cell types, such as leukocytes\textsuperscript{41}, endothelial cells\textsuperscript{42}, endodermal cells\textsuperscript{43}, germ cells\textsuperscript{30} and neurons\textsuperscript{44}. They mainly function through the formation of a gradient, which provides positional information or through the activation of integrin signalling\textsuperscript{30}. The zebrafish genome contains two chemokines play important roles in guiding the migration of various cell types, such as leukocytes\textsuperscript{41}, endothelial cells\textsuperscript{42}, endodermal cells\textsuperscript{43}, germ cells\textsuperscript{30} and neurons\textsuperscript{44}. They mainly function through the formation of a gradient, which provides positional information or through the activation of integrin signalling\textsuperscript{30}. The zebrafish genome contains two cxcl12
the generation of chemokine gradients via ligand sequestration in investigation in recent years. One breakthrough study described and during regeneration. We find selective accumulation of ubiquitously overexpressed Cxcl12a-mCherry protein in newly forming bones during zebrafish fin regeneration, which can fully rescue artery formation in cxcl12a\(^{30516}\) mutants. This finding suggests that, while the precise mechanism is currently unknown, the regenerating fin tissue is either able to selectively degrade Cxcl12a protein outside of the bone or to stabilize it within the bone. Further studies will help to distinguish between these two options.

Our cell transplantation experiments showed that cxcr4a\(^{um20}\) mutant cells could contribute to the forming artery when surrounded by wild-type cells. This demonstrates that endothelial cells can also cooperate during plexus remodelling and that collective cell migration occurs during this process. Similar cell behaviours play a role during Cxcr4b controlled lateral line migration in zebrafish embryos. In this setting, cxcr4b\(^{26055}\) mutant cells can migrate normally in a wild-type primordium. This indicates that, also in the vascular phenotype, the organization of collective cell migration might be dependent on competition and cooperation between endothelial cells.

Vascular malformations and patterning defects, including stenosis and arteriovenous shunts, can lead to life-threatening conditions in humans, underscoring the importance of understanding the mechanisms that lead to proper blood vessel sprouting and artery formation. Previous studies have used in vitro blood vessel sprouting assays to study endothelial cell dynamics during blood vessel growth. Arima et al. used an aortic ring sprouting assay and elegant cell tracking methods to show that endothelial cells in elongating branches are highly dynamic. The authors observed cell mixing and overtaking at the tip position. Interestingly, they also noticed individual endothelial cells that migrated opposite to the direction of the elongating sprout. The authors attributed this behaviour to loss of VEGF gradient formation in their culture setting. Our results now argue that this change in migratory direction could rather reflect the initiation of artery formation, not readily assessable in the aortic ring assay. In an embryoid body sprouting assay, Jakobsson et al. also observed endothelial cell mixing and shuffling of tip cells. These behaviours suggested competition between endothelial cells for the tip cell position, which was dependent on the relative levels of VEGF receptors and the Notch ligand Dll4. However, also in this assay, normal artery differentiation does not take place, precluding the analysis of the complete sprouting and remodelling programme. We now show that during zebrafish fin regeneration and in the developing mouse retinal vasculature, endothelial tip cells are derived from veins and that these tip cells can contribute

Figure 7 | Global overexpression of Cxcl12a-mCherry rescues the vascular phenotype of cxcl12a\(^{30516}\) mutant fish. White dashed boxes indicate central areas quantified. Fin vasculature was analysed at 14 d.p.a. Dashed lines indicate amputation planes. (a) Heat-shocked control wild type and cxcl12a\(^{30516}\) mutant fish not carrying the Tg(Cry.kop.HSP:mutSDF1a.mCherry.globin3’ UTR)\(^{mu4}\) transgene. White arrowheads indicate ectopic Tg(–0.8flt1:RFP)\(^{mu533}\)-positive endothelial cells in cxcl12a\(^{30516}\) mutants. Endothelial cell numbers, vessel coverage and vessel length are reduced in cxcl12a\(^{30516}\) mutant fish. (b) Tg(Cry.kop.HSP:mutSDF1a.mCherry.globin3’ UTR)\(^{mu4}\) transgene. None of the assayed parameters differs between heat-shocked wild type and cxcl12a\(^{30516}\) mutants. Note accumulation of ubiquitously overexpressed Cxcl12a-mCherry protein in bony rays (white arrowheads) but not in the joints (blue arrowheads) between bone segments. ****P < 0.0001; Mann–Whitney U-test, NS, not significant; n = 8 adult zebrafish per stage. Scale bar, 100 \(\mu m\).
to forming arteries. Thus, our results provide a new understanding of the coordinate migratory behaviours of endothelial cells that allow for the proper sprouting and subsequent remodelling of arteries and veins in a vascularplexus.

**Methods**

**Zebralish Strains and Fin amputations.** Previously described zebralish lines were Tg(fl1:EGFP)1, Tg(ros1a:nEGFP)β (ref. 20), Tg(–0.8β-frt;RFP)1 (ref. 19), Tg(cxcl12a:CFP)y16 (ref. 25), Tg(cxcl12a:CFP)y20 (ref. 27), Tg(cxcl12a:mCherry)y100 (ref. 15), Tg(cxcl12a:GFP)y165 (ref. 28). Zebralish of 5–18 months of age were used. Fin amputations were performed as previously described38. All animal experiments were performed in compliance with the relevant laws and institutional guidelines and were approved by local animal ethics committees of the Landesamt für Natur, Umwelt und Verbraucherschutz Nordrhein-Westfalen.

**Generation of transgenic lines.** We used Bacterial artificial chromosone (BAC) recombination as described previously to generate transgenic lines39. To generate Tg(cxcl12a:YFP)y164 and Tg(cxcl12a:CFP)y165 animals, the start codon of the cxcl12a and cxcl12a gene in the BAC clone CH73-268G8 and CH73-335M13 was replaced with a Citrine or Cerulean cassette using Red/ET recombination (Genomed). The Citrine cassette was amplified by PCR from pCS2, cxcl12a_HA1_gfp_FW (5'-aaatcggttACCATGGTGAGCAAGGGCGAGGAG-3') and cxcl12a_HA1_rev (5'-gtagcttggGGAACGGACTGG-3'). The Cerulean cassette was amplified by PCR from pCS2, cxcr4a _HA1_GFP_FW (5'-0.01) in unpaired gene in the BAC clone CH73-268G8 and CH73-335M13 was replaced with a Citrine or Cerulean cassette using Red/ET recombination (Genomed). The Citrine cassette was amplified by PCR from pCS2, cxcl12a_HA1_gfp_FW (5'-aaatcggttACCATGGTGAGCAAGGGCGAGGAG-3') and cxcl12a_HA1_rev (5'-gtagcttggGGAACGGACTGG-3'). The Cerulean cassette was amplified by PCR from pCS2, cxcl12a_HA1_gfp_FW (5'-aaatcggttACCATGGTGAGCAAGGGCGAGGAG-3') and cxcl12a_HA1_rev (5'-gtagcttggGGAACGGACTGG-3'). The Cerulean cassette was amplified by PCR from pCS2, cxcl12a_HA1_gfp_FW (5'-aaatcggttACCATGGTGAGCAAGGGCGAGGAG-3') and cxcl12a_HA1_rev (5'-gtagcttggGGAACGGACTGG-3').

**Confocal microscopy and imaging processing.** Whole-mount retina immunostaining and EdU detection in zebrafish fins by live 2D time-lapse imaging was carried out as described with the following modifications32. In vivo movies each for wild-type and Tg(fli1a:EGFP)y1 animal were generated as previously described25. B A C DNA was digested with Aatttttaatttttacggctggtggggtagactttcgaga-, aaagtttacctGATGTACGAAAGGGCGAGGAG-3', and cxcl12a_HA1_rev (5'-gttagcttggGGAACGGACTGG-3'). The Cerulean cassette was amplified by PCR from pCS2, cxcl12a_HA1_gfp_FW (5'-aaatcggttACCATGGTGAGCAAGGGCGAGGAG-3') and cxcl12a_HA1_rev (5'-gtagcttggGGAACGGACTGG-3').

**In vivo imaging of adult fish.** The in vivo imaging of adult fish was carried out as described with the following modifications32. Tg(fl1:EGFP)1 (–0.8frt:RFP)y333 fish were anaesthetized in 0.02% tricaine until they stopped swimming, transferred to a home-made chamber for live imaging, and immobilized by covering the trunk and caudal fin with 1% agarose. Afterwards, fish were orally administered with 126 mg l–1 tricaine in fish water at the speed of 5.5 ml min–1. We inserted a Silicone tubing (ID mm, OD mm) into the fish mouth for tricaine delivery. The speed of tricaine delivery was controlled by a peristaltic pump (ISM-795C, C2). The removal of extra tricaine solution in the imaging chamber was achieved by connecting it to a fluid aspiration system for cell culture. Image acquisition was done for a maximum of 24 h every 15 min using a Leica SPS confocal microscope equipped with a ×20 dipping lens. Confocal stacks and movies were assembled using Imaris software (Bitplane). The Linear Stack Alignment with SIFT plugin of ImageJ (NIH) was used for aligning image stacks. The Mtrackj plugin (implemented in ImageJ) was used to label movies.

**Quantification of endothelial cell proliferation in zebrafish fins by in vivo live imaging.** Dividing endothelial cells were counted over 24 h in three independent experiments each for wild-type and cxcl12a movements. Differences in proliferative behaviour between wild types and mutants were analysed on lateral vein (lateral vein morphology and arteriole cell population) and arterial cell populations. The unpaired t-test as implemented in Prism 6.0b (Graphpad) was used to analyse the data.

**References**

1. Bader, H. M. & Adams, R. H. Dynamics of endothelial cell behavior in sprouting angiogenesis. *Curr. Opin. Cell. Biol.* 22, 617–625 (2010).
2. Herbert, S. P. & Stainier, D. Y. Molecular control of endothelial cell behaviour during blood vessel morphogenesis. *Nat. Rev. Mol. Cell. Biol.* 12, 551–564 (2011).

**Heat-shock experiments.** Heat shocks were carried out every 12 h on 14 consecutive days. For this purpose, fish were placed in system water, which was heated gradually for about 10–15 min from 28°C to 37°C in a standard waterbath. Subsequently, fish were exposed to 37°C for 1 h, before gradual return to 28°C.

**In situ hybridization.** Whole-mount in situ hybridization was carried out as described37. Previously described probes were cxcl12a, cxcl12b and cxcl12a. Probes were generated from plasmid DNA. The plasmid containing cxcl12a was digested with NolI. The plasmids containing cxcl12a or cxcl12b were digested with NolI. Sp6 was used to generate DIG-labelled antisense RNA for all three probes. DNA template for in vitro synthesis of cxcl12a sense probe was amplified from pCR1 cxcl12a by PCR. The forward primer 5'-GCTTGGATATTGTTGCAACTATGGTGAGCAAGGGCGAGGAG-3' containing SP6 promoter and reverse 5' AGGCTGTAAGCTGGCTGACGTTCAACC-3' were used for PCR amplification. Promoter 3 (0.5 µg ml–1) was used to perform DIG labeling at 37°C for 2 h in 20 min at room temperature before proceeding to the in situ hybridization with aforementioned probes. Images were acquired using a Leica M205 C microscope and a Zeiss Axio imager microscope.

**Blastomere transplantation.** Cell transplantation was performed as described40. About 40 cells were transplanted from donor embryos to the margin of host embryos at stage 22. The endothelial cell contribution of transplanted cells was assessed by visualization of EGFP and RFP expression. Adult fish containing EGFP and RFP expressing endothelial cells in the fin vasculature were selected for analysis.

**Genetic lineage tracing of endothelial tip cells.** Esmt(BAC)-Cere2 transgenesis2 were bred into a R28-tomato-EGFP reporter background. Cre activity in newborn mice was induced by a single intraperitoneal injection of 50 µg 4-hydroxy tamoxifen solution (Sigma, H7904). 0.01% in ethanol/palmit oil) at 12, 24 or 48 h before analysis at postnatal stage P6.

**Retina immunostaining for genetic lineage labelling.** For retina staining, eyes were dissected and fixed in 4% PFA for 2 h at room temperature. Retinas were dissected, permeabilized and blocked in 1% BSA (Sigma, A1378-25G) and 0.3% Triton X-100 2 h at room temperature with agitation. Biotinylated isoelectin B4 (Vector Labs, ISMB4) 1:250, Grifonia simplicifolia lectin I; 1:25) in blocking buffer was added and incubated overnight at 4°C with agitation. Next day, Retinas were washed three times in PBS and incubated with Alexa Fluor-coupled streptavidin 647 (Invitrogen, 1:100) in blocking buffer together with GFP-Alexa Fluor-coupled 488 antibody (A21311, Invitrogen, 1:300) for 2 h at RT. Retinas were flat-mounted using Fluoromount-G (SouthernBiotech, 0100-01) and images were taken with a Leica SP5 confocal microscope. Velocity software (PerkinElmer) was used for image processing and quantitative analysis.

**EdU labelling.** Esmt-Cere2T2, T7, R26mTNig T7 double heterozygous mice were injected intragastric with 50 µl of 4-hydroxytamoxifen solution (0.25 mg ml–1; H7904 Sigma), at P2. Fifty microlitres of freshly prepared EdU nucleotides (2 mg ml–1 in PBS) was administered intraperitoneally at P6 and pups were dissected after 2 h.

**Whole-mount retina immunostaining and EdU detection.** Retina immuno- staining was performed according to Pitulescu et al. with some modifications. Whole eyes were fixed for 10 min at RT followed by 1 h on ice, with freshly prepared 4%PFA/PBS. Retinas were dissected and blocked/permeabilized (1% BSA, Sigma, A1378-25G) and 0.3% Triton X-100 2 h at room temperature with agitation. Biotinylated isoelectin B4 (Vector Labs, ISMB4) 1:250, Grifonia simplicifolia lectin I; 1:25) in blocking buffer was added and incubated overnight at 4°C with agitation. Next day, Retinas were washed three times in PBS and incubated with Alexa Fluor-coupled streptavidin 647 (Invitrogen, 1:100) in blocking buffer together with GFP-Alexa Fluor-coupled 488 antibody (A21311, Invitrogen, 1:300) for 2 h at RT. Retinas were flat-mounted using Fluoromount-G (SouthernBiotech, 0100-01) and images were taken with a Leica SP5 confocal microscope. Velocity software (PerkinElmer) was used for image processing and quantitative analysis.

The study was performed with the approval of the French national ethics committee (CPP Ile-de-France IV) and in accordance with the French national law (CNIL: 831).
3. Potente, M., Gerhardt, H. & Carmeliet, P. Basic and therapeutic aspects of angiogenesis. Cell 146, 873–887 (2011).

4. Wacker, H. Endothelial development taking shape. Curr. Opin. Cell Biol. 23, 676–685 (2011).

5. DiPietro, L. A. Angiogenesis and scar formation in healing wounds. Curr. Opin. Rheumatol. 25, 87–93 (2011).

6. Isogai, S., Horiguchi, M. & Weinstein, B. M. The vascular anatomy of the developing zebrafish: an atlas of embryonic and early larval development. Dev. Biol. 230, 279–288 (2001).

7. Mukoyama, Y. S., Shin, D., Britsch, S., Taniguchi, M. & Anderson, D. J. Sensory nerves determine the pattern of arterial differentiation and blood vessel branching in the skin. Cell 109, 693–705 (2002).

8. Stahl, A. et al. The mouse retina as an angiogenesis model. Invest. Ophthalmol. Vis. Sci. 51, 2813–2826 (2010).

9. Huang, C. C., Lawson, N. D. & Weinstein, B. M. Regen is required for branching morphogenesis during blood vessel regeneration in zebrafish caudal fins. Dev. Biol. 264, 263–274 (2003).

10. Machado, M. J. et al. Dynamics of angiogenesis during wound healing: a coupled in vivo and in silico study. Microcirculation 18, 183–197 (2011).

11. Sekizawa, C., Affo, M. & Gloum, H. G. The tip cell concept 10 years after: New players tune in for a common theme. Exp. Cell Res. 319, 1255–1263 (2013).

12. Geudens, I. & Gerhardt, H. Coordinating cell behaviour during blood vessel formation. Development 138, 4569–4583 (2011).

13. Jakobsson, L. et al. Endothelial cells dynamically compete for the tip cell position during angiogenic sprouting. Nat. Cell Biol. 12, 943–953 (2010).

14. Arima, S. & Siekmann, A. F. Angiogenic morphogenesis driven by dynamic and heterogeneous collective endothelial cell movement. Development 138, 4763–4776 (2011).

15. Bussmann, J., Wolfe, S. A. & Siekmann, A. F. Arterial-venous network formation during brain vascularization involves hemodynamic regulation of chemokine signalling. Development 138, 1717–1726 (2011).

16. Elfferdtová, R. et al. Vascular morphogenesis in the zebrafish embryo. Dev. Biol. 341, 56–65 (2010).

17. Fujita, M. et al. Assembly and patterning of the vascular network of the vertebrate hindbrain. Development 138, 1705–1715 (2011).

18. Lawson, N. D. & Weinstein, B. M. In vivo imaging of embryonic vascular development using transgenic zebrafish. Dev. Biol. 248, 307–318 (2002).

19. Bussmann, J. et al. Arteries provide essential guidance cues for lymphatic endothelial cells in the zebrafish trunk. Development 137, 2653–2657 (2010).

20. Roman, B. L. et al. Disruption of acvrl1 increases endothelial cell number in zebrafish cranial vessels. Development 129, 3009–3019 (2002).

21. Muzzumdar, M. D., Tasic, B., Miyamichi, K., Li, L. & Luo, L. A global double-fluorescent Cre reporter mouse. Genesis 45, 593–605 (2007).

22. Rocha, S. F. et al. Esm1 modulates endothelial tip cell behavior and vascular permeability by enhancing VEGF bioavailability. Circ. Res. 115, 581–590 (2014).

23. del Toro, R. et al. Identification and functional analysis of endothelial tip cell enriched genes. Blood 116, 4025–4033 (2010).

24. Strasser, G. A., Kaminker, J. S. & Tessier-Lavigne, M. Microarray analysis of retinal endothelial tip cells identifies Cxcr4a as a mediator of tip cell morphology and branching. Blood 115, 5102–5110 (2010).

25. Bussmann, J. & Schulte-Merker, S. Rapid BAC selection for tol2-mediated transgenesis in zebrafish. Development 138, 4327–4332 (2011).

26. Montes, G. S., Becerra, J., Toledo, O. M., Gordillo, M. A. & Junqueira, L. C. Fine structure and histochemistry of the tail fin ray in telencephal. Histochemistry 75, 363–376 (1982).

27. Siekmann, A. F., Standley, C., Fogarty, K. E., Wolfe, S. A. & Lawson, N. D. Chemokine signaling guides regional patterning of the first embryonic artery. Gene Dev. 23, 2272–2277 (2009).

28. Valentin, G., Haas, P. & Gilmour, D. The chemokine SDF1a coordinates tissue formation during brain vascularization. Dev. Dyn. 239, 282–286 (2010).

29. Knopf, E. F. et al. Bone regenerates via dedifferentiation of osteoblasts in the zebrafish fin. Dev. Cell 20, 713–724 (2011).

30. Miyasaka, N., Knaut, H. & Yoshiihara, Y. Cxcl12/Cxcr4 chemokine signaling is required for placode assembly and sensory axon pathfinding in the zebrafish olfactory system. Development 134, 2459–2468 (2007).

31. Pitulescu, M. E., Schmidt, I., Benedito, R. & Adams, R. H. Inducible gene targeting in the neonatal vasculature and analysis of retinal angiogenesis in mice. Nat. Protoc. 5, 1518–1534 (2010).

Acknowledgements

This work was funded by the Max Planck Society (A.F.S.), the Deutsche Forschungsgemeinschaft (DFG SI 1374/3-1; A.F.S.), the Sonderforschungsbereich (SFB) 629 an ERC advanced grant (268086 - CellMig; E.R.K.) and an ERC starting grant (260794- ZebrachipAngio; A.F.S.). This work was supported by the Deutsche Forschungsgemeinschaft (DFG) Cells-in-Motion Cluster of Excellence (EXC 1003-CIM), University of Münster, Germany. Jeroen Bussmann was supported by a European Molecular Biology Organization (EMBO) long-term fellowship.

Author contributions

C.X., R.H.A. and A.F.S. planned the experiments. C.X., I.S. and M.P. carried out the experiments. C.X., M.P., R.H.A. and A.F.S. analysed the data. S.F.R. generated the transgenic mouse line. J.B. generated the Tg(cxcr4bLacZ)creERT2 transgenic mouse line. J.B. generated the Tg(cxcr4bLacZ)creERT2/creERT2 transgenic zebrafish line. D.M. and E.R. contributed the Tg(Cry-2b: HSP-mtsDFla.mCherry.globin:U TRP)m14 fish line. C.X. and A.F.S. wrote the paper. All authors commented on the manuscript.

Additional information

Supplementary Information accompanies this paper at http://www.nature.com/naturecommunications

Competing financial interests: The authors declare no competing financial interests.

Reprints and permission information is available online at http://npg.nature.com/reprintsandpermissions

How to cite this article: Xu, C. et al. Arteries are formed by vein-derived endothelial tip cells. Nat. Commun. 5:5758 doi: 10.1038/ncomms6758 (2014).

This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/