Insufficiency of Available Data on the Behaviour of the Meanlives of Unstable Hadrons with Energy

Yu. Arestov1,2, R.M. Santilli2 and V. Solovianov1

1 Institute for High Energy Physics, 142284, Protvino, Russia
2 Institute for Basic Research, P. O. Box 1577, Palm Harbor, FL 34682

We review the available evidence according to which physical media alter the Minkowskian spacetime with consequential alteration of the speed of light; we point out the apparent emergence of superluminal speeds within the hyperdense hadrons; and we point out the lack of conclusive character of the available related measure, those on the behaviour of the meanlives of unstable kaons with energy.

Keywords: lifetime measurements, neutral kaon decays, speed of light in media, isominkowskian

PACS: 03.30.+p; 13.25.+m;12.40.-y

Data on local speeds of light. Strictly speaking, the speed of electromagnetic (elm) waves is not a "universal constant", but rather a quantity $c = c_o/n$ depending on local physical conditions representable via the index of refraction n, where c_o is the speed in vacuum. When experimentally established, deviations from c_o are then rather forceful evidence of deviations from the conventional Minkowskian spacetime of the vacuum [1a].

Speeds $c = c_o/n < c_o$ are known in our Newtonian environment. Lesser known is the fact that one of the first studies on the implications of speeds $c < c_o$ were first studied by Lorentz [1b] (see the related mention in Pauli’s book [1c]).

Speeds $c = c_o/n > c_o$ have been apparently measured by A. Enders and G. Nimtz [1d] in the tunneling of photons between certain guides (see review [1c] for additional references and details). Apparent speeds $c = c_o/n > c_o$ have also been identified in certain astrophysical events [1f-1h] (see also the recent data [1i]).

Note that the hopes of regaining the exact Minkowskian spacetime by reducing light to photons scattering among molecules, even though valid as a first approximation, is no longer viable because: 1) the reduction to second quantization is questionable for elm waves in our atmosphere, say, with one meter wavelength; 2) the reduction does not permit quantitative studies of superluminal speeds; and 3) the reduction eliminates the representation of the inhomogeneity and anisotropy of physical media, which have apparent, experimentally measurable effects (see below).

Recall that hadrons are not ideal spheres with isolated points in them, but rather some of the densest media measured in laboratory until now. If spacetime anomalies are established for media of relatively low density, the hypothesis that the Minkowskian spacetime can be \textit{exact} within hadrons in its conventional realization has little scientific credibility (see below for the exact character of an axiom-preserving covering spacetime). Also, deviations are expected from the complete mutual penetration of the wavepackets of the constituents, thus resulting in the historical open legacy of the existence of nonlinear, nonlocal and nonpotential effects in the interior of hadronic.
One of the first quantitative studies of the above legacy was done by D. L. Blokhintsev [2a] in 1964, followed by L. B. Redei [2b], D. Y. Kim [2c] and others. Note that the exact validity of the Minkowskian geometry for the center-of-mass behavior of a hadron in a particle accelerator is beyond scientific doubts. The authors of Refs. [2a-2c] then argued that a possibility for internal anomalies due to nonlocal and other effects to manifest themselves in the outside is via deviations from the conventional Minkowskian behavior of the meanlives of unstable hadrons with the speed v (or energy E).

Note that the Minkowski metric can be written $\eta = \text{Diag}(1, 1, 1, -c_o^2)$. Therefore, any deviation $\hat{\eta}$ from η necessarily implies a deviation from c_o, as one can see by altering any component of the metric and then using Lorentz transforms.

Along these lines, R. M. Santilli [2d] submitted in 1982 the hypothesis that contact-nonpotential interactions (thus including the strong interactions as per the above legacy) can accelerate ordinary (positive) masses at speed bigger than the speed of light in vacuum much along the subsequent astrophysical measures [1f-1h]. The above hypothesis implies that photons travel inside the hyperdense hadrons at speeds bigger than that in vacuum. V. de Sabbata and M. Gasperini [2e] conducted the first phenomenological verification within the context of the conventional gauge theories supporting the hypothesis of Ref. [2d], and actually reaching limit speeds up to 75c_o for superheavy hadrons.

The above hypothesis is also supported by the phenomenological calculations conducted by H. B. Nielsen and I. Picek [2f] via the spontaneous symmetry breaking in the Higgs sector of conventional gauge theories, which have resulted in the anomalous Minkowskian metrics (here written in the notation above)

$$\pi: \quad \hat{\eta} = \text{Diag}[(1 + 1.2 \cdot 10^{-3}), (1 + 1.2 \cdot 10^{-3}), (1 - 1.2 \cdot 10^{-3}), -c_o^2(1 - 3.79 \cdot 10^{-3})],$$

$$K: \quad \hat{\eta} = \text{Diag}[(1 - 2.0 \cdot 10^{-4}), (1 - 2.0 \cdot 10^{-4}), (1 - 2.0 \cdot 10^{-4}), -c_o^2(1 + 6.00 \cdot 10^{-4})].$$

As one can see, calculations [2f] confirm speeds of photons $c = c_o/n > c_o$ for the interior of kaons, as conjectured in Ref. [2d]. Recall that: spacetime anomalies are expected to increase with the density; all hadrons have approximately the same size; and hadrons have densities increasing with mass. Therefore, results similar to (2) are expected for all hadrons heavier than kaons, as supported by phenomenological studies [2e].

The first direct experimental measures on the behavior of the meanlife of K^0_S with energy, $\tau(E)$, were done by S. H. Aronson et al. [3a] at Fermilab and they suggested deviations from the Minkowskian spacetime in the energy range of 30 to 100 GeV. Subsequent direct measures also for K^0_S were done by S. H. Aronson et al. [3b] also at Fermilab, suggesting instead no deviations of $\tau(E)$ from the Minkowskian form in the different energy range of 100 to 400 GeV.

More recently, a test of the decay law at short decay times was made by the OPAL group at LEP [3c]. In the latter experiment the ratio of number of events $Z^0 \to \tau^+\tau^-$ with deviations of τ from the conventional law to number of ”normal” events was $(1.1 \pm 1.4 \pm 3.5)%$.

Isominkowskian geometrization of physical media. A geometrization of all deviations from the Minkowskian spacetime was submitted by Santilli [4a] in 1983 under the name of *isominkowskian geometry* (see [4b] for the latest account) and resulted to be: ”axiom-preserving” (in the sense that the isominkowskian geometry is isomorphic to the conventional one, a property denoted with the prefix ”iso”); ”invariant” (in the sense of admitting a symmetry isomorphic to the Poincaré symmetry [4a-4d]); and ”universal” (in the sense of admitting all infinitely possible, well behaved, signature-preserving and symmetric modifications of the Minkowski metric [4e]).

Moreover, the isominkowskian geometry has permitted the exact reconstruction of the special relativity under arbitrary local speeds of light [4f]. Refs. [4] have therefore established that, contrary to a popular belief (see, e.g., the ”Lorentz asymmetry” of Ref. [2f]), the Minkowskian axioms, the Lorentz and Poincaré symmetry and the special relativity remain exact under all the above spacetime anomalies, of course, when properly formulated.

The isominkowskian geometry is essentially characterized by the lifting of the Minkowskian metric $\eta \to \hat{\eta} = T \times \eta$, where $T(x, v, E, \mu, \tau, \omega, ...) = \text{Diag}(x, v, E, \mu, \tau, \omega, ...)$ is a positive-definite 4×4 matrix with an arbitrary local dependence on coordinates x, speeds v, energies E, enstities μ, temperatures τ, frequencies ω, and any other needed variable. Jointly, the basic unit of the Minkowski space, $I = \text{Diag}$. $(1, 1, 1, 1)$, is lifted by an amount which is the inverse of the deformation of the metric, $I \to \hat{I} = 1/T$. The dual lifting
η \rightarrow \hat{\eta} = \hat{T} \times \eta \text{ and } I \rightarrow \hat{I} = 1/\hat{T} \text{ then implies the preservation of all original spacetime axioms [4] (see Ref. [41-4k] for mathematical studies and [4l] for physical profiles).}

The isominkowskian geometry provides a geometrization of physical media at both the classical and operator levels [4l]. Since \(\hat{T} \) is positive-definite, \(\hat{\eta} \) can always be diagonalized in the form \(\hat{\eta} = \text{Diag. } (1/n_1^2, 1/n_2^2, 1/n_3^2, -c_0^2/n_4^2) \), thus providing a geometrization of: the local inhomogeneity (e.g., via a dependence of the n’s from the density); the local anisotropy (e.g., via a differentiation between the space and time n’s); as well as arbitrary local speeds of elm waves (via the expression \(c(x, \mu, \omega, \ldots) = c_o/n_4(x, \mu, \omega, \ldots) \) first proposed in [4a]).

The isotopic behavior of the meaniife with speed (or energy) for isotropic space with \(n_1 = n_2 = n_3 = n_s(x, \mu, \omega, \ldots) \) (yet with general spacetime anisotropy \(n_s \neq n_4 \)) is given by [4a-4c]

\[
\hat{\tau} = \tau_0 \hat{\gamma}, \quad \hat{\gamma} = (1 - \hat{\beta}^2)^{-1/2}, \quad \hat{\beta} = (v/n_s)/(c_0/n_4),
\]

and includes all existing or otherwise possible laws [2] via different power series expansions in terms of different parameters with different truncations [4e]. This eliminates the ambiguity of individually testing the several different laws of Refs. [2].

Note that, when a hadron is studied from the outside, one evidently can only use the average of the n-quantities to constants, called "characteristic constants" of the medium considered. Note also that a possible anisotropy of the medium implies a deviation from the conventional Doppler shift studied by Mignani [5a] and others which will be studied elsewhere as a possible complement to measures [2,3]. Note finally that the latter anomalies are eliminated by the reduction of of light to photons moving in vacuum and scattering among molecules.

Isotopic law (3) was applied by F. Cardone, R. Mignani and R. M. Santilli [5b] to the experimental data of Refs. [3a,3b] resulting in the single fit of both experiments,

\[
1/n_1^2 = 1/n_2^2 = 1/n_3^2 = 0.9099080 \pm 0.004, \quad 1/n_4^2 = 1.003 \pm 0.002.
\]

Therefore, even under the assumption of the correct character of measures [3b], they do not establish the validity of the Minkowskian geometry inside hadrons because of the above isominkowskian fit. Note also that fit (4) confirms the superluminal character of the propagation of light within the hyperdense hadronic media, a property that appears to be confirmed by other studies (see the outline in [4b]). We should finally mention that nonlinear and nonlocal effects at short distances have been recently studied in Refs. [5d,5e,4l].

An alternative data elaboration. In this note we focus the attention on the range-energy selection rule which can be applied to re-elaborate the initial data on \(K_S \) decays from the experiment [3b]. By taking into account the results as they were done, we performed Monte Carlo simulations of the main features of experiment [3b] and made our own fits for \(K_S^0 \). Our conclusions and recommendations are the following:

1) We agree that the parameters in the full formula \(dN/dt \) for the proper time evolution are strongly correlated. This may cause a generally non-relevant regular dependence of the parameters on entities which are not present in the formula, such as number of runs, energy, etc., apart from the systematic uncertainties. Therefore, the above dependence may shadow the weak energy dependence we are interested in, as can be seen from the large values of the correlation elements.

2) The authors of Ref. [3b] solved the problem of non-correlated fit by selecting the \(K_S^0 \) momenta greater than 100 GeV/c. By means of that energy cut, they obtained the data sample in which the CP violating terms contribute up to 1.6%. However, it seems unrealistic to look for the deviations from the Minkowskian decay law of the order of some percent. More realistic is to test the decay law on the level of \(10^{-3} \), as suggested by studies [2]. In fact, the assumption of 1.6% contribution from PC violation in the data elaboration of Ref. [3b] implies looking for the energy dependence of \(\tau_s \) at the level \(k \cdot 10^{-2} \), thus rendering meaningless to look for more realistic deviations of the order of \(10^{-3} \) and smaller.

3) We propose to suppress the CP violating terms significantly using selection rule for the ratio \(R/E \), where \(R \) and \(E \) are \(K_S^0 \) range and energy. In the experiment, \(R/E \) ranges from 2.3 to 36.1 cm/GeV. The \(R/E \) interval should be selected to make the contribution of the CP violating terms less than a desirable value, say \(k \cdot 10^{-3} \). An effective \((R, E)\) plot can then be calculated via Monte Carlo methods applied to the real decay volume.
The price we pay for more accurate data handling due to the range-energy selection rule will be lower statistics. In fact, under the above new assumptions, 60-70% events will be rejected, i.e., only 63K - 84K events of the total 220K will be useful. Apart from the loss of a major part of the data, 1/3 of the decay volume in the experiment turns out to be also useless. The large inefficiency of the experiment occurred because it had not been optimized for the problem. Basicly, the experimental design and data selection rules followed that of conventional K_S, K_L studies.

We illustrate the above arguments with two fits shown in Fig. 1. 220 000 K_S decays at six energy values (from 125 to 375 GeV) were generated in the decay volume with the ranges from 9.3 m to 25.3 m. The energy dependence of the lifetime was assumed in the form $\tau(E) = \tau_0(1 + \epsilon E)$ with $\epsilon = 4 \cdot 10^{-5}$. After applying the range-energy selection rule, a sample of 64K events was chosen for which the contribution of the CP violating terms was less then 0.008. Namely we deal with the following distribution for the proper lifetime:

$$\frac{dN}{dx} = N\{\exp(-x) + \text{CPV}\},$$ \hspace{1cm} (5)$$

where N is a normalization constant, $x = t/\tau(E)$ and CP violating terms are equal to

$$\text{CPV} = |\eta_{+-}|^2 \exp(-xy) + 2D |\eta_{+-}| \cos(\Delta m t - \phi_{+-})\exp(-x(1 + y)/2)$$

where y stands for $\tau_S/E/\tau_L$.

The values of other parameters are taken as the world average values. These are $|\eta_{+-}| = 2.284 \cdot 10^{-3}$, the magnitude of the CP-nonconservation parameter in $K_L^0 \rightarrow \pi^{+}\pi^{-}$ decay, $\phi_{+-} = 43.7^\circ$, and $\Delta m = 0.5333 \cdot 10^{19}$ h sec^{-1} is the mass difference of $K_L^0 - K_S^0$. The dilution factor D is defined as the ratio $(N - \bar{N})/(N + \bar{N})$ where N (\bar{N}) is the number of K^0 (\bar{K}^0) produced by the proton beam on the target. We accepted the value $D=0.75$.

In Fig. 1 the sequence of the mean proper lifetimes is plotted versus E, K_L^0 laboratory energies. The dependence was obtained by simulations of K_L^0 decays in the experimental volume under the conditions described above. The figure presents also results of three fitting procedures:

a) one-parameter fit by a constant function $\tau(E) = c$ with $c=0.90\pm0.01$ and $\chi^2/\text{ndf} = 0.7/5$ (dashed line 1);

b) one-parameter fit by the energy-dependent formula of the type $\tau(E) = 0.8927(1 + p_1E)$ with the obtained value of the parameter $p_1 = (4 \pm 5) \cdot 10^{-5}$ and $\chi^2/\text{ndf} = 0.38/5$ (solid line 2);

c) two-parameter fit to the formula of Ref. [3b], $\tau(E) = p_2(1 + p_1E)$. In this case, the value of the crucial parameter p_1 is equal to $(4 \pm 23) \cdot 10^{-5}$ with $\chi^2/\text{ndf} = 0.38/4$ (dotted line 3 which coincides practically with solid line 2).

There is a difference in interpretation of parameters in the two fitting formulae with the energy dependence. The parameter p_2 in the fit from the cited paper was interpreted as the zero-energy mean value of the proper lifetime. We think that it is difficult to extrapolate the fitting formulae from the energy interval 100-400 GeV to zero. Instead, we try to find the energy dependence in the limited energy interval by fit starting from a definite point. This difference in interpretation is important because, in general, various approaches in fitting procedures may lead to crucially different numerical results.

![Fig. 1. Comparison of the various fitting functions (curves 1,2 and 3) applied to the simulated lifetime $\tau(E)$ dependence in ref. 3b under the energy-range selection rule (see the text).](image-url)
Thus, in the selected amount of the events, both fits dig up well the mean value of the hidden parameter ϵ determining the energy dependence in the simulated K^0_S decays, however the error bars differ strongly. Though both results for fitting values of p_1 are still insignificant statistically even in the selected sample of events, the 100% error bar in our fit being rather promising. It opens the door for new manipulations with the selection procedure aiming to improve the result. So we encourage the re-elaboration of the original data of ref. [3b] under the modified selection rules to obtain possible hopeful estimations of $\tau(E)$ instead of previous hopeless ones.

We finally note that no firm spacetime anomalies can be established via the above re-elaboration for PC violating contributions smaller than 1.6% because said anomalies are visually within the errorbars (Fig. 1) due to insufficient statistics and other reasons. Corresponding deviations cannot be considered for PC violating contribution larger than 1.6% because the latter are experimentally known to be excluded for the energy range of measures [3b]. Despite that, the analysis of this note establishes the insufficiencies of both measures [3a,3b] and the need for novel more accurate measures.

References

[1] H. Minkowski, Nachr. Ges. Wiss. Goettingen 43 (1908) [1a]. H. A. Lorentz, Versuch einer Theorie der Elektrischen und Magnetischen Erscheinungen in bewegten Körpren, Leyda [1895 [1b]. W. Pauli, Theory of Relativity, Pergamon Press, New York (1958) [1c]. A. Enders and G. Nimtz, J. Phys. France 2, 1693 (1992) [1d]. G. Nimtz and W. Heitmann, Progr. Quantum Electr. 21, 81 (1997) [1e]. F. Mirabel and F. Rodriguez, Nature 371, 464 (1994) [1f]. J. Tangay et al., Nature 374, 141 (1995) [1g]. D. Baylin et al., IAU Comm. 6173 (1995) [1h]. P. Saari and K. Reivelt, Phys. Rev. Letters 79 (1997).

[2] D.I. Blochintsev, Phys Rev Lett 12, 272 (1964) [2a]. L.B. Redei, Phys.Rev. 145, 999 (1966) [2b]. D.Y. Kim, Hadronic J., 1, 1343 (1978) [2c]. R. M. Santilli, Lett. Nuovo Cimento 33, 145 (1982) [2d]. V. de Sabbata and M. Gasperini, Lett. Nuovo Cimento 34, 337 (1982) [2e]. H.B. Nielsen and I. Picek, Nucl.Phys. B211, 269 (1983) [2f].

[3] S.H. Aronson et al., Phys.Rev. D28, 495 (1983) [3a]. N. Grossman et al., Phys.Rev.Lett. 59, 18 (1987) [3b]. G. Alexander et al., Phys. Lett. B 368, 244 (1996) [3c].

[4] R.M. Santilli, Lett. Nuovo Cimento,37, 545 (1983) [4a]. R. M. Santilli, Intern. J. Modern Phys., in press [4b]. R. M. Santilli, J. Moscow Phys. Soc. 3, 255 (1993) [4c]. J. V. Kadeisvili, Math. Methods in Applied Sciences, 19, 1349 (1996) [4d]. A. K. Aringazin, Hadronic J. 12, 71 (1989); A. K. Aringazin et al., in Frontiers of Fundamental Physics, M. Barone and F. Selleri, Editors, Plenum, New York (1995), p. 153 [4e]. R. M. Santilli, in Proceedings of the International Conference on Modern Modified Theories of Gravitation and Cosmology, E. I. Guendelman, Ed., Hadronic J. 21 (1998), in press [4f]. R. M. Santilli, Geometries 10, 273 (1993) [4g]. J. V. Kadeisvili, Algebras, Groups and Geometries 9, 283 and 319 (1992) [4h]. Gr. T. Tsagas and D. S. Sourlas, Algebras, Groups and Geometries 12, 1 and 67 (1995) [4i]. P. Vacaru, Algebras, Groups and Geometries 14, 211 (1997) [4j]. R. M. Santilli, Rendiconti Circolo Matematico Palermo, Suppl. 42, 7 (1996) [4k]. R. M. Santilli, Found. Phys. 27, 625 (1997) [4l].

[5] R. Mignani, Physics Essays 5, 531 (1992) [5a]. F. Cardone, R. Mignani and R. M. Santilli, J. Phys G, 18, L61 and L141 (1992) [5b]. D. Schuch, Phys. Rev A 55, 955 (1997) [5c]. C. A. C. Dreismann et al., Phys. Review Letters 79, 2390 (1997) [5d].