Controlling invasive alien species *Vachellia nilotica* with triclopyr herbicide in Baluran National Park

R S B Irianto1*, R Garsetiasih1, T Setyawati1, N D Wahono1, A Susilo1 and S Tjitrosoedirdjo3

1 Center for Standardization of Sustainable Forest Management Instruments, Jl. Gunung Batu No. 5, Bogor, Indonesia
2 Balai Taman Nasional Baluran, Jl. Raya Banyuwangi - Situbondo km 35 Wonorejo, Situbondo, Indonesia
3 Seameo Biotrop, Jalan Raya Tajur km 6, Bogor, Indonesia

E-mail: ragil.rianto@gmail.com

Abstract. *Vachellia nilotica* (Acacia nilotica), as an invasive alien species (IAS), was introduced to Baluran National Park from the Bogor Botanical Gardens in 1969. The purpose was for firebreak to prevent jumping fires from the savanna to the teak forests plantation. However, unexpectedly *V. nilotica* growth was uncontrollable and invaded the 6000 ha savanna. The rapid growth of this weed has killed the grass in the savanna leading to a decline in the Banteng population in Baluran National Park from 325 in 1998 to 22 in 2011. Since the 1980s, research on *V. nilotica* control has been carried out by various universities and research institutions in Indonesia but has not yet obtained an effective and efficient control method. The study aimed to investigate the efficacy of herbicide with the active ingredient of triclopyr by stump brushing to control *V. nilotica*. Ten triclopyr herbicide concentrations with a solution of diesel and water were tested. The results showed that 1% triclopyr concentration in diesel oil could control 100% of *V. nilotica* weeds, while water solutions could only control 50% of *V. nilotica* weeds.

1. Introduction

Vachellia nilotica (L) P. J. H. Hurter & Mabb (synonym *Acacia nilotica* (L.) Willd. Ex Del.) is commonly known as *babul* or *kikar*. It is an Arabic gum-producing plant and has been known worldwide as a multipurpose plant [1-3]. This plant is endemic to dry areas in Africa, West Asia, India, Myanmar, and Sri Lanka [4].

V. nilotica was first introduced from the Indian Calcutta Botanical Gardens to the Bogor Botanical Gardens in Indonesia in 1850 to produce gums. However, during its development in Bogor, this plant only yields very little gum [5]. In 1969 *V. nilotica* was introduced to Baluran National Park for fire breaks to protect fire jumps from the savanna to the Perum Perhutani (Government-owned teak forest) teak forest bordering the Baluran National Park. Besides, *V. nilotica* was also introduced to West Bali National Park and South Sulawesi, yet its growth and development are not invasive in these two areas [6-7].

The growth and development of *V. nilotica* in Baluran National Park became so invasive that this plant became an invasive foreign weed and invaded the savanna area of 6000 ha from the total savanna...
area of 12,000 ha. The rapid growth and development in Baluran National Park are caused by the biological characteristics of the plant for resistance to fire, drought, and rapid seed dispersal. The fallen ripe pods in the dry period were eaten by the mammals in Baluran National Park, such as wild buffaloes, bulls, and deer, enter the digestive tract of animals. Yet, the defecated seeds do not lose viability. In 100 grams of wild buffalo feces, there are 45 ± 26 V. nilotica seeds; in bull faces, there are 62 ± 42 seeds; and in deer feces, there are 11±9 seeds [8]. Other than through the help of mammals, rainwater run-off possibly disperses V. nilotica seeds over a considerable distance.

Invasion of V. nilotica in the savanna area resulted in very little grass remaining lead to a smaller feed carrying capacity for mammals and finally decreased Banteng (Bos javanicus) populations. The population of Banteng in 1998 was still 325, but thirteen years later, in 2011, only 22 [9].

In its expansion in the field, V. nilotica associates with beneficial soil microbes, Rhizobium sp. and Arbuscular Mycorrhizae Fungi (AMF), to accelerate plant growth [3, 10, 11]. Rhizobium is a bacteria that can fix nitrogen from the air and be used by the host plant to accelerate plant growth. AMF grows symbiotic mutualism with its host plant and helps absorb nutrients, especially P and other elements such as N, K, Ca, Mg, and increases plant growth [3, 12-15].

In the area of forest land that has been overgrown by V. nilotica, only a few vegetation grows on the forest floor and around the V. nilotica plant due to its allelopathic factor. Studies showed that allelopathy inhibits germination and growth of many species such as corn, peanut, wheat, and green beans [10, 16, 17] and also Trigonella foenumgraecum L [18].

The V. nilotica plant is one of Australia’s worst invasive alien species (IAS) due to its invasive character, potential distribution, and damaging economic and environmental effects. It invades an area of 6.6 million ha in the arid and semi-arid zone of Queensland [19].

Controlling V. nilotica in Baluran National Park has been carried out since the 1980s, including physical such as logging, demolition, burning; mechanical such as bulldozer; and chemicals such as herbicides [20]. However, none of these controls are effective and efficient in controlling V. nilotica in Baluran National Park.

Several natural enemies that can act as biological control agents in dealing with V. nilotica include: Bruchidius sahlbergi Schilsky, a seed-eating insect, and Chiasmia assimilis, a leaf-eating insect, Cuphodes profluens; Anomalococcus indicus Ayyar and Cophinforma cause dieback [21-23].

The purpose of this study was to determine the efficacy of herbicide with active ingredient triclopyr to control invasive foreign plants V. nilotica in Baluran National Park.

2. Materials and Methods

2.1. Place and time of research
The study was conducted from May 2011 to October 2012 in Kramat, about 2 km east of the Bekol section office and 12 km from the Baluran National Park office in Batangan, Banyuputih Sub-District, Situbondo.

2.2. Materials and tools
The materials used in this study were herbicides with the active ingredient triclopyr (commercial name Garlon 670 EC, equivalent to 480 g l triclopyr) [24], diesel oil, water, nine years old V. nilotica tree with a diameter range of 9-12 cm. Meanwhile, the equipment used was a 2 L bucket, a 2” paintbrush, a tape measure, and a chain saw.

2.3. Stump brushing procedure
Nine-year-old V. nilotica trees with a diameter range of 9-12 cm were cut at a trunk of 10 cm above the ground to ease movement of the chain saw when cutting tree trunks. The stems and twigs of the felled are cut into short pieces with a length of 1.5 m. Those pieces were then collected at the edge of the research plot area.

The top surface and bark of V. nilotica stumps were smeared with triclopyr in a diesel oil solution (stump brushing) with a concentration of 0 g triclopyr L⁻¹ diesel oil as much as 60 ml. This treatment was repeated 20 times. After that, the same thing was repeated with a concentration of 0.96 g triclopyr
L-1 diesel oil, 4.8 g triclopyr L-1 diesel oil, 32.4 g triclopyr L-1 diesel oil, 60 g triclopyr L-1 diesel oil, 120 g triclopyr L-1 diesel oil, and 240 g triclopyr L-1 diesel oil (Table 1). In addition, Tricyclopir dissolved in water was also treated with a concentration of 0 g triclopyr L-1 water, 0.96 g triclopyr L-1 water, and 4.8 g triclopyr L-1 water. The concentration of the active ingredient triclopyr and the formulation used in this study are presented in Table 1.

2.4. The parameters observed

The parameters observed were the percentage of tree mortality and the percentage of shoots on V. nilotica trees for six months.

2.5. Research design and data analysis

The research design was a completely randomized design with ten (10) treatments and 20 replication per treatment (Table 1). Data were analyzed with statistical software of JMP Start Statistics 14, and data that showed significant differences were further tested by the Duncan test.

2.6. Planting grass

At the end of the 6th month (after the observation of the efficacy ended), shoots of the survival V. nilotica plants were cut, and the stumps were smeared with a 1% concentration of triclopyr in a diesel oil solution. The grass that grows in the study area is sprayed with Roundup herbicide with a concentration of 5 ml/L of water. Grasses in the study area were killed to facilitate one grass species, Dichantium caricosum growing without competition with other grasses. At the beginning of the rainy season, the area was planted with D. caricosum grass with the spacing of 1 x 1 m with vegetative materials measuring 20 x 20 cm and a soil thickness of 10 cm.

3. Results and Discussion

The treatment of herbicide triclopyr on the stump brushing with concentrations of 1, 6.75, 12.5, 25, and 50% significantly killed 100% of the V. nilotica.

V. nilotica was compared to the control after six months of the treatment (Table 1). Meanwhile, triclopyr treatment with water solution was less effective in controlling V. nilotica with the percentage of plant mortality below 50% (Table 1).

The 1% triclopyr concentration dissolved in diesel fuel significantly killed plant samples (100%) compared to water solutions (50%) (Table 1). It was most likely due to diesel oil, one carrier (solvent) that allows the herbicide to penetrate the plant barks. The surface area of the smeared plant bark (meristem surface area) in the stump brushing method was wider than the surface area of the smeared stump. It was almost similar to the stem brushing technique, where the efficacy was greatly influenced by the applied surface area and the plant diameter [25].

Chemical control of woody plants in the forestry sector besides the stump brushing mentioned above, there are two other techniques often used: stem injection (herbicide injected into the tree trunk) and stem brushing, spraying herbicide to the basal tree [26-27]. Chemical control with herbicides is one way of controlling, especially for large areas and low labor resources [27].

The herbicide with the active ingredient triclopyr is absorbed by the bark and surface of the cut stem and translocated throughout the plant tissue. Then triclopyr is accumulated in the meristem growth area [28, 29]. Furthermore, triclopyr can also be absorbed by plant leaves and roots. Because this herbicide is systemic, the active ingredient is translocated throughout the plant tissue and will kill the plant by disrupting the auxin hormone [29].

One thing to consider in controlling V. nilotica by applying tree stumps is that the herbicide solution should be evenly distributed on the surface of the cambium/bark of the cut stump surface and the surface of the stump bark. It is shown clearly in the area where the shoot grows, namely on the upper stump bark and the bark of the plant from the soil surface to the cutting surface (10 cm) in the control treatment as well as in other treatments where the bud is still growing.
Table 1. Percentage of V. nilotica tree deaths and shoots after six months of tree stump brushing application.

No.	Active Ingredient of Triclopyr (g L\(^{-1}\) solvent)	Formulation Concentration (%)	Solvent	Tree Death	Tree Shoot
1	240	Diesel oil 50	100 a	0 a	
2	120	Diesel oil 25	100 a	0 a	
3	60	Diesel oil 12.5	100 a	0 a	
4	32.4	Diesel oil 6.75	100 a	0 a	
5	4.8	Diesel oil 1	100 a	0 a	
6	0.96	Diesel oil 0.2	50 b	50 b	
7	0	Diesel oil 0	0 c	100 c	
8	4.8	Water 1	50 b	50 b c	
9	0.96	Water 0.2	0 c	100 c	
10	0	Water 0	0 c	100 c	

Remarks:
1. Numeric followed by the same letters in the same column are not significantly different at p < 0.05 according to Duncan test
2. Data were analyzed after arcsin transformation

Applying a mixture of diesel oil and water for the herbicide triclopyr, one thing to consider is the interval between cutting and brushing. Diesel oil solvent can be used immediately after cutting the stems or after several days of cutting, while the water mixer can only be used shortly after cutting the stems [20].

Stump brushing combines physical and chemical control, which generally grasps a 95-100 % success rate. The cut and brush method's efficiency is independent of seasonality and humidity and requires only a small amount of herbicide per tree. The main problem is that it requires human resources and diesel oil in large quantities. The solution to this problem is to modify the stump brushing tool into a more efficient control tool by combining cutting and brushing into a single piece of equipment. Therefore, after cutting, the tools immediately spray herbicide. Solar oil is another significant input cost so, using used diesel should overcome this problem [25].

Triclopyr is a systemic and selective herbicide used to control woody and herbicidal broadleaf plants along roads, forests, savanna, and parks [19, 29]. The selectivity property makes triclopyr often applied to savanna areas because this herbicide does not kill the grasses, the main crop in the area [19, 29].

Triclopyr is thought to have only a low level of poisoning to birds and mammals [29]. Triclopyr would not be present in sufficient quantities in animal feed which could have acute or chronic effects [30]. The content of esters and amines in the herbicide triclopyr is degraded by sunlight, metabolites, and microbial hydrolysis. The acid and amine formulations of triclopyr will be tightly bound in the soil so that the two compounds are not mobile.

Based on the observations of the author and Baluran National Park rangers, the advantage of controlling stump brushing compared to stem brushing is that the grass could rapidly grow because there is no shade. In addition, mammals can also run freely without the risk of crashing into trees when there are outside disturbances.

At the end of the observation, six months after the brushing treatment, the surviving V. nilotica trees were cut, and their stumps were smeared with a 1% concentration of triclopyr with solar solvent to kill all remaining trees. After that, the roundup was sprayed in the sites to kill all the grasses, so the planted Lamuran Putih grass (D. caricosum) grows and develops without the competition of other grasses. Then, at the beginning of the rainy season, lamuran putih grass should be planted with a block sod size of 20 x 20 cm and a thickness of 10 cm with a spacing of 1 x 1 m. Finally, the 8th month after the planting, the study site was covered with Lamuran Putih grass (Figure 1).
Figure 1. Growth of 6-month-old *D. caricosum* grass in Kramat Baluran National Park.

4. Conclusion
Stump brushing application of triclopyr herbicide at concentrations 1, 6.75, 12.5, 25, and 50% with diesel solvent can kill *V. nilotica* by 100%, while triclopyr herbicide with water solvent is less effective in controlling *V. nilotica*.

References
[1] Amadou I, Souë M and Salé A 2020 An Overview on the importance of *Acacia nilotica* (L.) Willd. Ex Del.: A Review *AJRAF* **5** 12-18
[2] Irani R and Khaled K L 2020 Quantitative analysis of nutrients in the gum exudates of *Acacia nilotica* *IJCRR* **12** 11-16
[3] Samba-Mbaye R T, Anoir C M, Diouf D I, Kane, Kane A I, Diop I Assigbete K, Tendeng P and Sylla S N 2020 Diversity of arbuscular mycorrhizal fungi (AMF) and soils potential infectivity of *Vachellia nilotica* (L) P J H Hurter & Mabb. rhizosphere in Senegalese salt-affected soils *African J. Biotech.* **19** 487-99
[4] Zahra S, Hofstetter R W, Waring K M and Gehring C 2020 The invasion of *Acacia nilotica* in Baluran National Park, Indonesia, and potential future control strategies *Biodiversitas* **21** 104-16
[5] Schuurmans H 1993 Acacia nilotica (L.) Willd Ex Del: Ecology and Management: a Study to an introduced, colonizing plant species in Baluran National Park, Java, Indonesia Agricultural University Wageningen The Nederlands
[6] Setiabudi, Tjitrosoedirdjo S, Mawardi I and Bachri S 2013 Invasion of *Acacia nilotica* into savannas inside Baluran National Park, East Java, Indonesia The role of weed science in supporting food security by 2020 Proceedings of the 24th Asian-Pacific Weed Science Society Conference Bandung Indonesia October 22-25, 2013
[7] Tjitrosoedirdjo S 2018 Personal Communication Senior Researcher in Weed Science, Seameo Biotrop West Java Indonesia
[8] Sabarno M Y 2002 Savana Taman Nasional Baluran *Biodiversitas* **3** 207-12
[9] Taman Nasional Baluran 2019 Optimalisasi penanganan gangguan dan tekanan pada pengelolaan Banteng di Taman Nasional Baluran 20p
[10] Dhabhai K and Batra A 2012 Physiological and phylogenetic analysis of rhizobia isolated from *Acacia nilotica* L *African J. Biotech.* **11** 1386-90
[11] Shetta N D, Al-Shaharani T S and Abdel-Aal M 2011 Identification and characterization of rhizobium associated with woody legume trees grown under Saudi Arabia condition *Am-Euras J. Agric. & Environ. Sci.* **10** 410-18
[12] Irianto R S B 2015 Efektifitas fungi mikoriza arbuskular terhadap pertumbuhan Khiang (Benth) di persemaian dan lapangan *JPHT* **12** 115-22
[13] Püschel D, Janoušková M, Voříšková A, Gryndlerová H, Vosátka M and Jansa J 2017 Arbuscular mycorrhiza stimulates biological nitrogen fixation in two Medicago spp. through improved phosphorus acquisition *Frontiers in Plant Science* 8 1-12

[14] Ramadhani I, Suliasih, Widawati S, Sudiana I M and Kobayashi M 2019 The effect of the combination of arbuscular mycorrhiza and rhizobacteria and doses of NPK fertilizer on the growth of Sorghum bicolor (L) Moench *IOP Conference Series: Earth and Environmental Science* 308(1)

[15] Ramadhani I and Widawati S 2020 Synergistic interaction of arbuscular mycorrhizal fungi and phosphate-solubilizing bacteria with NPK fertilizer to improve Sorghum bicolor (L) Moench growth under saline condition *Microbiol. Indones.*** 14 73-82

[16] Lokesh B, Charan S and Dhanai C S 2014 Effect of fresh leaves extract of Acacia nilotica L. on the seed germination and seedling vigour of four common agricultural crops *Indian J. Agrofor.*** 16 81-85

[17] Ullah A, Khan E A, Baloch M S, Nadim M A, Sadiq M and Noor K 2013 Allelopathic effects of herbaceous and woody plant species on seed germination and seedling growth of wheat *Pak. J. Weed Sci. Res*** 19 357-75

[18] Choudhari S W, Chopde T, Mane V P and Shambharkar V B 2019 Allelopathic effects of *Acacia nilotica* (L) Leaf leachate with emphasis on *Trigonella foenum graceum* L. (fenugreek) *Journal of Pharmacognosy and Phytochemistry** 8 500-06

[19] Anonymous 2020 Prickly acacia (*Acacia nilotica*), Weed management guide CRC Weed Management Australia 8

[20] Taman Nasional Baluran 2020 Laporan Progres Penanganan Invasi dan Pemulihan Ekosistem akibat Invasi Acacia nilotica di TN Baluran sampai dengan Tahun 2020 Taman Nasional Baluran 30p

[21] Haque A 2015 Investigation of the fungi associated with dieback of prickly acacia (*Vachellia nilotica* subsp. indica) in Northern Australia A thesis submitted for the degree of Doctor of Philosophy at The University of Queensland in 2015 School of Agriculture and Food Science

[22] Taylor D B, Dhileepan K, Dianne J and Taylor C B 2019 Implications of the changing phylogenetic relationships of acacia on the biological control of *Vachellia nilotica* ssp. indica in Australia *Ann. Appl. Biol.*** 174 238-47

[23] Taylor D B J and Dhileepan K 2018 The host specificity of *Anomalococcus indicus* Ayyar (Hemiptera: Lecanodiispidae), a potential biological control agent for prickly acacia (*Vachellia nilotica* ssp. indica) in Australia *Biocontrol Science and Technology*** 28 1014-33

[24] Direktorat Pupuk dan Pestisida 2016 Pestisida pertanian dan kehutanan tahun 2016 Direktorat Pupuk dan Pestisida, Direktorat Jenderal Prasarana dan Sarana Pertanian Kementarian Pertanian Republik Indonesia 1085p

[25] Wilson B J 1996 Technical aspects of weed management in Australian rangelands Proceedings of the 11th Australian Weeds Conference 1996 Melbourne pp 205-213

[26] Kleiman L R, Kleiman B P and Kleiman S 2018 Successful Control of *Lonicera maackii* (Amur Honeysuckle) with Basal Bark Herbicide *Ecol. Restor.*** 36 267-69

[27] Yeiser J L, Link M and Grogan J 2012 Screening cut-stump control of Chinese tallow tree, sweetgum and yaupon with aminocyclopyrachlor Proceedings of the 16th Biennial Southern Silvicultural Research Conference 389-93

[28] Rolando C A 2017 A review on formulations used for aerial basal bark applications (ABBA) for control of isolated, wilding conifers New Zealand Forest Research Institute Limited 43p

[29] Strid A, Hanson W, Hallman A and Jenkins J 2018 Triclopyr General Fact Sheet National Pesticide Information Center Oregon State University Extension Service 1-5

[30] Newton M, Roberts F, Allen A, Kelpzs B, White D and Boyd P 1990 Deposition and dissipation of three herbicides in foliage, litter, and soil of brush fields of southwest Oregon *J. Agric. Food Chem.*** 38 574-83
Acknowledgment
Thanks to the Forest Research and Development Center technicians: Aryanto, Achmad Yani, Charlan, and Baluran National Park staff: Lamijan, who helped us during research in Baluran National Park.