A Unified, Hardware-Fitted, Cross-GPU Performance Model

James D. Stevens
Andreas Klöckner
Department of Computer Science
University of Illinois at Urbana-Champaign

Abstract—We present a mechanism to symbolically gather performance-relevant operation counts from numerically-oriented subprograms (‘kernels’) expressed in the Loopy programming system, and apply these counts in a simple, linear model of kernel run time. We use a series of ‘performance-instructive’ kernels to fit the parameters of a unified model to the performance characteristics of GPU hardware from multiple hardware generations and vendors. We evaluate the predictive power of the model on a broad array of computational kernels relevant to scientific computing. In terms of the geometric mean, our simple, vendor- and GPU-type-independent model achieves relative accuracy comparable to that of previously published work using hardware specific models.

1. Introduction

Being able to approximately predict the running time of computational kernels is a key step towards the automation of performance tuning for complicated, modern, vector-based, massively parallel processor architectures. We present a simple, effective model to achieve such a prediction that is realized on top of, though technically not dependent on, a program transformation system, providing a self-contained foundational building block to aid the developer of automated tuning solutions in exploring the vast search space of possible and, from the point of view of the result, equivalent program variants. We note that we mainly view our model as a more economical alternative to evaluating the execution time of a computational kernel than, for example, using actual on-device timing runs. Our system primarily targets the execution paradigm embodied by modern GPU Hardware, as exposed in, for example, the CUDA or OpenCL compute abstractions. The system makes no assumptions about the internal organization of the hardware, and device-specific parameters are obtained from a black-box adaptation process that needs to run precisely once on each new piece of hardware on which the system is used.

GPUs, originally designed for rapid graphics rendering, have highly parallel single instruction, multiple data (SIMD) architectures that make them particularly useful for data-parallel problems. Over the last decade, general purpose GPU programming has risen in popularity. Some of the world’s fastest supercomputers [Meuer et al., 2015], make use of thousands of GPU nodes, including Oak Ridge National Laboratory’s Titan supercomputer. GPU programming has been facilitated by the release of general purpose GPU programming systems, including Nvidia CUDA in 2007 and the Open Computing Language (OpenCL) in 2009 [Munshi et al., 2011, Nvidia Corporation, 2015].

Much of the previous work in GPU performance modeling has focused on constructing analytical models of instruction-level execution based on detailed hardware knowledge and instruction analysis for a single architecture. Many of these models predict well for their specific target architecture. For example, Hong and Kim [2009] present an analytical performance model for Nvidia GPU architectures that estimates memory-level and thread-level parallelism. They further extend their model for power prediction [Hong and Kim, 2010]. This model achieves a geometric mean error of 13.3% when predicting performance of the MERGE [Linderman et al., 2008] benchmarks on four Tesla generation Nvidia GPUs. It makes extensive use of hardware performance characteristics, such as timing delays between memory transactions, DRAM access latency, and instruction execution cycles, and requires an analysis of PTX assembly instructions. Baghsorkhi et al. [2010] also use deep analytical knowledge of a (single) GPU, and, unlike Hong and Kim, model branch divergence, bank conflicts, and SIMD pipeline delays. From the perspective of optimization selection, Cavazos et al. [2006] present a probabilistic predictor of transformation selection using a non-analytical, black-box model based on an artificial neural network. Joseph et al. [2006] use techniques from machine learning to identify piecewise nonlinearities in cost metrics. Other approaches emphasize the performance of single subsystems, such as branch prediction [Emer et al., 2002].

Zhang and Owens [2011] take a slightly different approach, using the results of microbenchmarks to derive a throughput model for instruction pipeline, shared memory, and global memory costs. They focus on identifying performance bottlenecks and guiding the optimization process rather than predicting execution time.

Our work differs from previous performance prediction work in five ways:

• We completely automate the gathering of all
We describe a fitting procedure based on a library of measurement kernels to determine the parameters of our model. Figure 1 provides a functional overview of the performance model.

Measurement kernels

Hardware measurement

Model coefficients (α_i)

Property computation

Kernel properties (p_i)

\[T_{\text{estimated}} = \sum_{i=1}^{N_{\text{properties}}} \alpha_i p_i(n), \]

where α_i is a machine dependent weighting coefficient for the ith contributing cost component, and $p_i(n)$ is a kernel-dependent symbolic expression that, based on size- and loop-bound-related kernel parameters gathered in the vector n, accounts for the number of units of the cost α_i incurred by the given kernel. For kernels with static (i.e., not data-dependent) control flow, all cost instance expressions p_i are computed automatically without human intervention. For the kinds of data-dependent control flow allowed by the transformation system on which we base our modeling work, a human operator can supply statistics covering typical instances of data that may be encountered and on which performance is to be modeled. Our model is fully parametric in the sense that once the symbolic representation of p_i has been determined from the internal representation of our transformation tool, it can be cheaply reevaluated for changed values of the parameter vector n.

By formulating our model as stated above, we account for costs ultimately attributable to bandwidth and rate constraints. To retain hardware independence, we consider modeling the performance effects of throughput-limiting resource constraints, machine granularities, and latencies as being out of scope for the current contribution. Stated another way, we measure the typical rates that the target machine sustains, and use that as a vehicle for modeling machine performance on other workloads likely to be bound by the same rate constraint. This specifically implies that a variety of numbers that are often cited in connection with performance on GPU hardware are not taken into account in our model. ‘Occupancy,’ a quantity that describes the fraction of hardware scheduler slots that the workload may occupy, and thus a measure of the potential for latency hiding on Nvidia hardware, is one example of a family of effects that our model does not account for. As a further consequence, our model lacks any modeling of amortisation

1.1. Impact on Supercomputing

Given the shifting of landscape large- and extreme-scale computing in which the scale of a machine is often determined by power and cooling constraints, it is inevitable that individual nodes will need to carry a heavier burden than in prior machine generations. This trend currently shows no signs of reversing. As a result, more and more complex parallel computing architecture is found within each individual node. Key to leveraging this within-node parallelism is the ability to predict its performance on a given computation workload, for needs such as load balancing, job scheduling, performance optimization, machine design and qualification, and benchmarking, as detailed in Section 6.1 For array-based workloads, as encountered in much of scientific computing, these needs are met directly by the modeling machinery supplied by this contribution.

1.2. Overview of the Contribution

First, in Section 2 we define a set of kernel properties that are linearly related to run time. Second, we present a simple procedure for the extraction of kernel statistics relevant to performance in Section 3. We further demonstrate how these measures can be used to obtain the kernel properties that form the basis of our model. Third, in Section 4 we describe a fitting procedure based on a library of measurement kernels to determine the parameters of our model for each piece of hardware on which it is to be used. Lastly, in Section 5 we evaluate our model’s predictive power on a number of GPUs from various hardware generations and vendors. Figure 1 provides a functional overview of the model.

2. Modeling Kernel Run Time

We model the execution time of a computational kernel as a linear combination of individual measures that are linearly related to run time. Second, we present a simple procedure for the extraction of kernel statistics relevant to performance in Section 3. We further demonstrate how these measures can be used to obtain the kernel properties that form the basis of our model. Third, in Section 4, we describe a fitting procedure based on a library of measurement kernels to determine the parameters of our model for each piece of hardware on which it is to be used. Lastly, in Section 5, we evaluate our model’s predictive power on a number of GPUs from various hardware generations and vendors. Figure 1 provides a functional overview of the model.

\[T_{\text{wall}}(n) = \sum_{i=1}^{N_{\text{properties}}} \alpha_i p_i(n), \]

where α_i is a machine dependent weighting coefficient for the ith contributing cost component, and $p_i(n)$ is a kernel-dependent symbolic expression that, based on size- and loop-bound-related kernel parameters gathered in the vector n, accounts for the number of units of the cost α_i incurred by the given kernel. For kernels with static (i.e., not data-dependent) control flow, all cost instance expressions p_i are computed automatically without human intervention. For the kinds of data-dependent control flow allowed by the transformation system on which we base our modeling work, a human operator can supply statistics covering typical instances of data that may be encountered and on which performance is to be modeled. Our model is fully parametric in the sense that once the symbolic representation of p_i has been determined from the internal representation of our transformation tool, it can be cheaply reevaluated for changed values of the parameter vector n.

By formulating our model as stated above, we account for costs ultimately attributable to bandwidth and rate constraints. To retain hardware independence, we consider modeling the performance effects of throughput-limiting resource constraints, machine granularities, and latencies as being out of scope for the current contribution. Stated another way, we measure the typical rates that the target machine sustains, and use that as a vehicle for modeling machine performance on other workloads likely to be bound by the same rate constraint. This specifically implies that a variety of numbers that are often cited in connection with performance on GPU hardware are not taken into account in our model. ‘Occupancy,’ a quantity that describes the fraction of hardware scheduler slots that the workload may occupy, and thus a measure of the potential for latency hiding on Nvidia hardware, is one example of a family of effects that our model does not account for. As a further consequence, our model lacks any modeling of amortisation...
or overlapping—any operation is charged at its full, albeit
typical, cost. In part, our overarching goal of achieving
hardware independence necessitates this seemingly draco-
nian restriction in modeling power. On the other hand,
omitting all these effects makes the model an experiment
in simplicity: what quality of results can one obtain in this
setting?

We choose to account for cost components from the
following broad categories: data motion, synchronization,
floating point arithmetic, and overhead cost.

2.1. Cost of Data Motion

For most types of computational kernels, data motion
onto and off the processor chip is the dominant cost. We
account for this in a number of different ways. At the most
basic level, we introduce kernel properties for each access to
global memory, categorized in a number of different ways.

- The first categorization is performed by the size of
 the memory access, grouping together 32-bit, 64-bit,
 and 128-bit accesses.
- The next categorization occurs by the direction of
 the memory access, i.e., load or store.
- The last categorization occurs by what we call the
 amortized stride fraction. To determine this fraction,
 we find the stride, i.e., the address increment from
 one abstract SIMD lane (OpenCL work item index)
 to the next, in multiples of the size of the overall
 access. We note that this stride can be zero, indicat-
ing a memory access whose target location does not
depend on the current SIMD lane (‘local’) index. (In
keeping with established terminology, we term this
‘uniform access.’) The stride forms the denominator
of the amortized stride fraction.

We also find the data utilization ratio on a per-cell basis, a quantized version of which forms the
numerator of the amortized stride fraction. This is
accounted for on a per-cell basis, where the size of
a ‘cell’ is given by the data type of the array for
which the access is being counted. The utilization
ratio is then determined by counting the total number
of cells being accessed (i.e., the number of accessed
cells, as opposed to the total number of accesses,
which can be much larger) and the total number of
cells in the footprint of the access with the ‘gaps’
caused by striding filled in.

For strides 0 and 1, the data utilization ratio is disre-
garded, and categorization occurs simply as ‘stride
0’ or ‘stride 1.’ For stride 2, a utilization ratio of
50% or less results in a categorization by amortized
stride fraction ‘1/2,’ otherwise we categorize as ‘2/2.’
Counting the ‘2/2’ access as distinct from the ‘stride
1’ (or ‘1/1’ access) allows the model to capture the
ability of any caches in the data path to ‘smooth’
out strided accesses that nonetheless make use of
all accessed data.

We analogously define categories ‘1/3,’ ‘2/3,’ ‘3/3,’
and ‘1/4,’ ‘2/4,’ ‘3/4,’ ‘4/4,’ along with ‘1/>4,’
‘2/>4,’ ‘3/>4,’ ‘4/>4,’ accounting for any accesses
with the stride greater than 4.

To give the model an opportunity to capture any effi-
ciency gains that are achievable if both loads and stores are
present in the data path, we include a property for each
memory access type containing the minimum between the
number of loads and stores to account for this nonlinearity
in the spirit of a roofline model [Williams et al., 2009].

Each GPU core (‘SM’ in Nvidia’s terminology, ‘CU’
in AMD’s) has its own on-chip local, or ‘shared,’ memory
which is slower than registers, but much faster than global
memory. To capture the cost of moving data from local
memory to registers, we define a property for local loads
as well. We do not currently account for stride differences
in local loads.

2.2. Cost of Floating Point Arithmetic

While the execution time for many computational ker-
nels is dominated by data movement, arithmetic operations
also contribute to the overall execution time. The hardware
can overlap arithmetic and data movement, and we intend
to account for this in future work, as discussed in Sec-
tion 6.2. Currently, our model accounts for the cost of these
operations using several properties related to floating point
arithmetic. Since execution time for arithmetic operations
can be affected by both the operation kind and the data
type of the operands, we separate kernel properties relating
to operations by both kind and operand data type. Our
operation kind categories include:

- Addition and subtraction
- Multiplication
- Division
- Exponentiation
- Other special functions

For each of these operation kinds, our model includes
one property of total operation counts for 32-bit and 64-
bit floating point operand data types. Integer arithmetic is
not accounted for in this version of the model because it is
not typically a dominant contributor to computational cost
for the kernels targeted by our model, and code involving
integer arithmetic is often heavily optimized by modern
compilers.

2.3. Cost of Synchronization

Barriers in GPU kernels stop execution of every thread
within a work group until all threads have reached the barrier.
Thus, thread synchronization can be a significant contributor
to execution time. To account for this within-group thread
synchronization costs we include a property containing the
total number of barriers encountered by all threads.

2.4. Overhead

Launching any kernel, regardless of complexity, incurs
a constant overhead cost. Additionally, our experiments run-
ning empty kernels revealed that launch overhead increases
with the number of work groups launched. We account for these costs in our model with two properties. The first is a constant property (i.e., 1), which accounts for the portion of the launch overhead that remains constant. The second is the total work group count, which accounts for the overhead that increases with the number of work groups.

3. Gathering Kernel Statistics

In this section, we describe a methodology to automatically gather data to help determine the kernel properties used by our modeling process. To do so, we leverage the Loopy \cite{Klockner2014, Klockner2015} programming system in a number of ways:

- we express our kernels in its intermediate representation,
- we use its transformation vocabulary to obtain numerous computationally different but mathematically equivalent variants for our measurements,
- its code generation capability supplies an executable (OpenCL) version of the code which we use to carry out our measurements,
- and finally, we make use of Loopy’s polyhedrally-based internal representation to support the automatic extraction of kernel properties.

We note that this piece of our work is notionally independent of our model in the sense that, while it is convenient to have the ability to automatically extract the properties being used as part of the model, it is not technically necessary and could be achieved either by hand or in a technologically different manner. It is relevant to the present discussion insofar as it confirms that the properties can be determined in an automated fashion.

3.1. Loopy

Loopy is a programming system for array computations that targets CPUs, GPUs, and other, potentially heterogeneous, compute architectures. It is based on the idea that the mathematical intent and the computational minutiae of a computation should be strictly separated. To attain that goal, Loopy realizes programs as objects in a host programming language (Python in this concrete case) that can be manipulated from their initial, “clean,” mathematical statement into highly device-specific, optimized versions via a broad array of transformations.

We briefly examine Loopy’s model of a program (or ‘kernel’). A very simple example shall serve as an introduction. This kernel reads in one vector, doubles it, and writes the result to another:

```python
kn1 = loopy.make_kernel(
    "[[i]: 0<=i<n]", # loop domain
    "out[i] = 2*a[i]" # instructions
)
```

The above snippet of code illustrates the main components of the internal representation:

- The loop domain: \{ \[i\]: 0\leq i< n \}. This defines the integer values of the loop variables for which instructions (see below) will be executed. It is written in the syntax of the isl library \cite{Verdoolaege2010}.

To accommodate data-dependent control flow, a tree of loop domains is permitted, allowing more deeply nested domains to depend on data fetched by instructions executed through loop domains closer to the root.

- The instructions to be executed: \texttt{out}[i] = 2*a[i]. These are scalar assignments between array elements, consisting of a left-hand side assignee and a right-hand side expression. Right-hand side expressions are allowed to contain the usual mathematical operators, and function calls.

Each instruction is executed once for each integer point in the projection of the loop domain onto its relevant set of loop variables.

To facilitate ordering, Loopy allows the specification of a directed acyclic graph of dependencies in which the instructions form the nodes, and the dependency annotations from the edges.

3.2. Extracting Kernel Statistics

The basic mathematical primitive underpinning our data gathering strategy is the ability to count the number of integer points in a subset of the \(d\)-dimensional integer tuples \(\mathbb{Z}^d\) specified by affine inequalities connected in disjunctive normal form (i.e., a disjunction of conjunctions of affine inequalities). The output of this operation is a piecewise quasi-polynomial in terms of size parameters that may occur as part of the specification of the set of integers. We make use of \texttt{barvinok} library in conjunction with the isl library \cite{Verdoolaege2010, Verdoolaege2007} to perform this operation, with a fallback to a less accurate, simpler counting technique that is used should \texttt{barvinok} not be available. \texttt{barvinok} in turn is based on Barvinok’s algorithm \cite{Barvinok1994}.

To obtain a count of, say, the number of memory references of a certain kind, we proceed as follows:

Some counting operations require ancillary processing. For instance, determining the number of floating point operations of a certain type requires knowing the result type, which is provided by a type inference pass. Practically speaking, many types of counts are extracted at once and maintained in a mapping, with sufficiently specific keys to supply detailed data for the computation of kernel properties, and with values of piecewise quasi-polynomials. All arithmetic in \(\mathbb{Z}\) is then carried through to the values of the mapping and performed on the piecewise quasi-polynomials therein.

To determine the amortized stride fraction, the overall size of the accessed footprint is needed. This is found as follows:
Algorithm 1: Determine per-kernel count of per-instruction property

for each instruction \(i\) in the kernel do
Compute the projection \(\pi_i(D_i)\) of the loop domain \(D_i\) onto the relevant set of loop indices.
Obtain a symbolic count \(|\pi_i(D_i)|\) of the number of integer points in the projection (representing the number of times that instruction will be executed).
Next, process the instruction to find the number of desired operations \(n_{\text{ops},i}\) (e.g. by traversing the left- and right-hand-side expressions).
end for
Find the overall count of the desired operations as
\[
n_{\text{ops}} = \sum_{\text{Instruction } i} |\pi_i(D_i)| \cdot n_{\text{ops},i}. \tag{1}
\]

Algorithm 2: Determine accessed index footprint \(F_v \subset \mathbb{Z}^d\) for variable \(v\)

Let \(v\) be a \(d\)-dimensional array
for each instruction \(i\) in the kernel do
Compute the projection \(\pi_i(D_i)\) of the loop domain \(D_i\) onto the relevant set of loop indices.
for each access \(j\) to \(v\) in instruction \(i\) do
Determine the multi-dimensional index mapping \(I_j : \mathbb{Z}^d \to \mathbb{N}^d\) that takes a tuple of loop variables to the accessed indices. For example, the access \(a[2i+1, j+1]\) would have an index mapping of \(I_j(i, j) = (2i - 1, j + 1)\).
end for
end for
Find the overall accessed footprint as
\[
F_v = \bigcup_{\text{Instruction } i, \text{ access } j} I_j(\pi_i(D_i)).
\]

To determine the accessed stride fraction, we obtain a count of the number of integer points of \(F_v\) as well as those of its filled-in counterpart with any axis-0 striding removed. By taking a ratio of the two, we find the stride fraction.

We count loads from local memory just as we do global memory transactions, although strides and array names are not tracked as part of the summation mapping.

Counting barrier synchronizations requires yet another approach, as these are not apparent in Loopy code without a schedule. The schedule is found automatically by a search procedure and determines the ordering of instructions and the nesting of loops as well as the location and nesting of required barrier synchronizations. Once a schedule is obtained, the counting process proceeds much as above, using the schedule information to obtain the relevant set of loop indices on which to project.

4. Fitting Model Weights

4.1. Constructing Kernel Measurement Set

We fit the model weights to a particular GPU according to data gathered from example kernel execution. For this purpose, we have built a set of measurement kernels to provide the model with ‘informative’ examples. Some of the measurement kernels represent common basic computations, including matrix multiplication, matrix transposition, and vector operations. Others are designed to directly exercise one or more operations that are being captured by our property extraction. To produce the results presented in this paper, we used 9 classes of measurement kernels. Six thread group size sets are referenced in the measurement kernel list below and again later in the test kernel list:

- 1-D Small: \(\{(192 \times 1), (224 \times 1), (256 \times 1)\}\)
- 1-D Med: \(\{(128 \times 1), (256 \times 1), (384 \times 1)\}\)
- 1-D Large: \(\{(256 \times 1), (384 \times 1), (512 \times 1)\}\)
- 2-D Small: \(\{(16 \times 12), (16 \times 14), (16 \times 16)\}\)
- 2-D Med: \(\{(16 \times 12), (16 \times 16), (32 \times 16)\}\)
- 2-D Large: \(\{(16 \times 16), (24 \times 16), (32 \times 16)\}\)

We use the following measurement kernel classes:

- **Matrix Multiplication.** Performs a tiled multiplication of two matrices of size \(n \times m\) and \(m \times l\) (row-major data layout). Prefetches \(\text{gsize} \times \text{gsize}\) tiles into local memory. Shape cases:
 - \(n = m = l\)
 - \(n = m\) and \(l = n/2\)
 - \(n = l\) and \(m = n/2\)
 - \(m = l\) and \(n = m/2\)

Four size cases: \(n = 2^{p+t}\) where \(t = 0, 1, 2, 3\). For each GPU we choose \(p \in \{7, 8, 9\}\) depending on launch overhead and memory limitations. Group sizes:

- R9 Fury: 2-D Small
- Tesla C2070, K40c: 2-D Med
- Titan X: 2-D Large

- **Naive Matrix Multiplication.** Performs a non-tiled multiplication of two square \(n \times n\) matrices (row-major data layout) with each thread computing one element of the result as the inner product of the corresponding row and column. Four size cases: \(n = 2^{p+t}\) where \(t = 0, 1, 2, 3\). For each GPU we choose \(p \in \{6, 8, 9\}\) depending on launch overhead and memory limitations. Group sizes:

- R9 Fury: 2-D Small
- Tesla C2070, K40c: 2-D Med
- Titan X: 2-D Large

- **Vector Scale and Add.** Multiplies two \(n \times 1\) vectors each by a scalar and adds the result. Each thread computes one value in the result. Three stride configurations:
1) Operates on every element, resulting in stride-1 access pattern.
2) Operates on every other element, resulting in stride-2 access pattern.
3) Operates on every third element, resulting in stride-3 access pattern.

Four size cases: $n = 2^{p+2t}$ where $t = 0, 1, 2, 3$. For each GPU we choose $p \in \{15, 16, 17\}$ depending on launch overhead and memory limitations. Group sizes:

- R9 Fury: 1-D Small
- Tesla C2070, K40c: 1-D Med
- Titan X: 1-D Large

- Transpose. Performs a transpose operation on a square $n \times n$ matrix (row-major data layout), storing the result in a second matrix. Each thread moves one matrix element. Three prefetch/stride configurations:
 1) Prefetches ($\text{gsize} \times \text{gsize}$) tiles into local memory to allow stride-1 access pattern for reads and writes.
 2) Does not prefetch; stride-1 access pattern for writes but not reads.
 3) Does not prefetch; stride-1 access pattern for reads but not writes.

Four size cases: $n = 2^{p+t}$ where $t = 0, 1, 2, 3$. For each GPU we choose $p \in \{10, 11\}$ depending on launch overhead and memory limitations. Group sizes:

- R9 Fury: 2-D Small
- Titan X, Tesla C2070, K40c: 2-D Med

- Stride-1 Global Access. Copies $n \times 1$ arrays or sums of arrays. Three configurations:
 1) Copy one array (1 load, 1 store)
 2) Add 4 arrays, store the result in a 5th array (4 loads, 1 store)
 3) Store the index of each element into one array (0 loads, 1 store)

Nine size cases: $n = 2^{p+t}$ where $t = 0, 1, \ldots, 8$. For each GPU we choose $p \in \{17, 18, 19, 20\}$ depending on launch overhead and memory limitations. Group sizes:

- R9 Fury: 1-D Small
- Tesla C2070, K40c: 1-D Med
- Titan X: 1-D Large

- Stride-2 Filled Global Access. Produces summations of pairwise sums of consecutive elements in a $2 \times n$ array (column-major data layout), prefetching elements in a stride-2 access pattern (i.e., first fetches elements $i, i+2, i+4, \ldots, i+2(\text{gsize} - 1)$, then fetches elements $i+1, i+3, i+5, \ldots, i+1+2(\text{gsize} - 1)$ then adds pairs). Each of n threads performs a summation over 256 of these pairwise sums and stores the result in one index of a $1 \times n$ output array. Four size cases: $n = 2^{p+3t}$ where $t = 0, 1, 2, 3$. For each GPU we choose $p \in \{15, 16, 17\}$ depending on launch overhead and memory limitations. Group sizes:

- R9 Fury: 1-D Small
- Tesla C2070, K40c: 1-D Med
- Titan X: 1-D Large

- Stride-3 Filled Global Access. Same as stride-2 filled access measurement kernels above, but produces triwise sums on a $3 \times n$ array, producing a stride-3 access pattern.

4.2. Measurement Kernel Execution

To facilitate organization and execution of our measurement kernels, we have constructed infrastructure to house collections of kernels and associated optimization configurations. This mechanism transforms kernels according to their configuration lists, launches each configuration, and saves the data gathered for future use. Kernels are compiled to and executed using OpenCL.

We intend to make our set of benchmark kernels (both those used for measurement as well as gathering of results)
available for other researchers to use, and also to facilitate easy reproduction of our results. For the moment however, this remains future work.

Consistent timing of measurement kernel execution is crucial to the accuracy of our model, and we found that consistency decreased significantly as small execution times approached the kernel launch overhead. This overhead varied between GPUs, with the AMD GPU having the highest launch overhead. For this reason, on each GPU we first run the empty kernel to determine launch overhead, and then set the minimum size configuration for each measurement and testing kernel to meet or exceed this run time.

We then time 30 runs of each kernel. The arrays are allocated on first-touch, which produces a greater execution time for the first run. Additionally, our experiments revealed that the second of the 30 runs varies more than the rest. Thus, we disregard the first 4 runs and take the minimum of the remaining execution times. Taking the average also produced consistent results, and we found that the minimum differed from the average by less than 5% when execution times significantly exceeded the launch overhead.

After timing each kernel, we gather the kernel statistics as described in Section 5 and form the properties described in Section 4.1.

4.3. Calculating the Weights

After running the measurement kernel set and forming the properties for each kernel, we produce a property matrix with one row per kernel and one column per property. Since we would like to minimize relative error instead of absolute error, we next divide each property by the observed run time for the corresponding measurement kernel. We find the weights (α_j) as the ones that minimize

$$\sum_{j=1}^{N_{\text{props}}} \left(1 - \frac{\sum_{i=1}^{N_{\text{tests}}} \alpha_j p_i \text{test}_j(n_i)}{T_{\text{wall, test, j, measured}}} \right)^2.$$

5. Results

We demonstrate the predictive accuracy of our model on four GPUs:

- Nvidia GTX Titan X (Maxwell generation)
- Nvidia Tesla K40 (Kepler generation)
- Nvidia Tesla C2070 (Fermi generation)
- AMD Radeon R9 Fury

For each GPU, we run four test kernels:

- **Finite Differences.** Applies a 5-point stencil with a quadratic source term on a square $n \times n$ matrix (row-major data layout), prefetching gsize x gsize tiles into local memory, plus halo elements. Four size cases: $n = 2^{p+t}$ where $t = 0, 1, 2, 3$. For each GPU we choose $p \in [9, 10]$ depending on launch overhead and memory limitations. Group and problem sizes:
 - R9 Fury: 2-D Small, $p = 10$
 - Tesla C2070: 2-D Med, $p = 10$
 - Tesla K40c: 2-D Med, $p = 11$
 - Titan X: 2-D Large, $p = 11$

- **‘Skinny’ Matrix Multiplication.** Performs a tiled multiplication of two matrices of size $n \times m$ and $m \times l$, with $n = l = m/8$ (row-major data layout). Prefetches gsize x gsize tiles into local memory. Four size cases: $n = 2^{p+t}$ where $t = 0, 1, 2, 3$. For each GPU we choose $p \in [9, 10]$ depending on launch overhead and memory limitations. Group and problem sizes:
 - R9 Fury: 2-D Small, $p = 9$
 - Tesla C2070, K40c: 2-D Med, $p = 9$
 - Titan X: 2-D Large, $p = 10$

- **Convolution.** Applies three 7×7 image filters to three $n \times n$ RGB images, i.e., it computes

$$R_{i,j,x,y} = \sum_{-w \leq \xi, \eta \leq w, c=0,1,2} m_{i,j,x-\xi,w+y-\eta,c} \cdot f_{j,w,\xi,w+c},$$

where f_j indicates the jth filter image ($j = 0, 1, 2$), and $w = 3$ denotes the positive/negative index range (along both axes) of all filters. Four size cases: $n = 2^{p+t}$ where $t = 0, 1, 2, 3$. For each GPU we choose $p \in [6, 7, 8]$ depending on launch overhead and memory limitations. Group and problem sizes:
 - R9 Fury: 2-D Small, $p = 7$
 - Tesla C2070: 2-D Med, $p = 6$
 - Tesla K40c: 2-D Med, $p = 7$
 - Titan X: 2-D Large, $p = 8$

- **N-Body.** Given a $3 \times n$ array of n positions (column-major data layout), computes the sum of the inverses of the distances between each position and every other position, prefetching position data in $3 \times$ gsize blocks. Each thread computes said sum for one position. Four size cases: $n = 2^{p+t}$ where $t = 0, 1, 2, 3$. For each GPU we choose $p \in [10, 11]$ depending on launch overhead and memory limitations. Group and problem sizes:
 - R9 Fury: 1-D Small, $p = 10$
 - Tesla C2070, K40c: 1-D Med, $p = 11$
 - Titan X: 1-D Large, $p = 11$

As discussed in Section 2, we do not account for occupancy in our model. Thus, aside from the overhead in launching extra thread work groups, which we account for and can be significant, our model produces the same prediction for kernel configurations that differ only in work group size unless the work group size affects the kernel properties in some way (e.g., the number of memory transactions may be affected by work group size if work groups require data from halo elements). To obtain a representative sample of performance across thread group sizes, we run each of our
measurement kernels with three different thread group sizes ranging from 128 to 512 threads, as described above. These configurations vary depending on the kernel and hardware limitations; the Radeon R9 Fury limits group sizes to 256. Most of the measurement kernels yield full occupancy on all 3 Nvidia GPUs, and we report results for test kernels with 256-thread groups that yield full occupancy. Run-time generally varied by less than 30% due to thread group size changes. Among thread work group sizes, model predictions reported for the 256-thread work groups were neither the most accurate nor the least accurate.

Table 1 displays predicted and actual execution times in milliseconds for each test kernel on each GPU. We measure model error as the ratio of absolute value of the difference between predicted and actual execution times and the actual execution time. Since these are normalized values, we summarize them using the geometric mean for reasons laid out by Fleming and Wallace [1986].

The geometric means of relative absolute error across all test kernels on the Nvidia GTX Titan X, Tesla C2070, and Nvidia Tesla K40c were 16%, 14%, and 6%, respectively. Performance on the Radeon was found to be irregular and, as such, less amenable to being captured by our model. Even so, it predicts two of the kernels reasonably well; the geometric mean errors for the ‘skinny’ matrix multiplication and convolution kernels on the were 28% and 23%, respectively.

Across GPUs, our model predicts the finite difference, skinny matrix multiplication, and convolution kernels with mean errors of less than 13%. It had more difficulty predicting the N-Body kernel on all GPUs, yielding a mean error of 43%.

The measurement kernels described in Section 4 do not contain instances of every model property subclass described in Section 2; they contain instances of every property relevant to the test kernels. Example weights for these properties produced for the Radeon R9 Fury are displayed in Table 2. It is worth noting that the weights determined by our fitting procedure carry units of seconds per operation and are amenable to direct interpretation. Beyond that, they allow direct conclusions about sustained typical rates for different types of hardware and are directly comparable across devices.

6. Conclusions

6.1. Potential Applications

Being able to reason and make predictions about the wall time cost of a given computation is a foundational capability for a large number of activities in high-performance computing:

- In performance optimization, it can aid an optimization tool in exploring a search space of program transformations.
- In algorithm design, it can provide guidance on which aspects of the workload under consideration are the biggest contributors to computational cost.
- In load balancing, accurate predictions of workload run times enable better scheduling decisions, thereby facilitating the reduction of idle time and making better use of available computational resources. This need is particularly salient when a workload is to be moved across heterogeneous compute resources.
- In machine bringup and qualification, our measurement procedure can expose bottlenecks as well as unexpected interactions and help enable comparisons between different processor architectures.

Independence of particular architecture as well as rapid model evaluation make our methodology particularly suitable for these application scenarios.

6.2. Future Work

Our work permits a number of immediate extensions. Perhaps the most obvious one of these would be to investigate how much information on potentially overlapped operations can be obtained through a fitted model. A prominent example of this would be overlapping arithmetic with data motion. Another possible extension would handle resource limitations on, say, the number of registers, the amount of local memory, and their respective effects on performance.

Other aspects of GPU execution cost may be simpler to account for. For example, bank conflicts in local memory may be handled by binning the stride of local memory access.

Another interesting extension would be to study our model’s ability to select the optimal set of kernel configurations (i.e., the set that produces the fastest kernel) from a collection of potential optimizations. This ability, combined with the rapid evaluation speed of our model, would enable runtime performance tuning of GPU kernels.

Another immediate extension of this work would be to examine its applicability on CPU-type architectures. For
these types of machines, data motion cost would necessarily need to include a model of cache and data reuse. It would also be interesting to investigate to what extent a version of this model can apply to current and future wide-vector manycore accelerators of the Xeon Phi and related families.

6.3. Summary

This paper makes the following contributions:

- It identifies a set of hardware-independent kernel properties that suffice to account for kernel run times with considerable accuracy.
- It describes a procedure for the automatic extraction of symbolic counts from the internal representation of our transformation engine, based on the polyhedral model. The representation of these counts as piecewise quasi-polynomials offers both efficient evaluation and considerable generality.
- It describes a set of measurements as well as a fitting procedure to, once again in a black box and unassisted fashion, determine hardware-specific weights for each of the properties determined above.

We have demonstrated an alternative to previous GPU performance models that can be easily fitted to new hardware and allows rapid, runtime performance prediction. This speed and versatility turns out to require minor if any sacrifices in prediction accuracy compared to models in the literature. To our knowledge, this is the first GPU performance model that collects all performance-relevant information automatically and utilizes no explicit knowledge of hardware characteristics.

Acknowledgments

The authors’ work was supported in part by US Navy ONR grant numbers N00014-14-1-0117, and by the National Science Foundation under grant numbers DMS-1418961 and CCF-1524433. AK also gratefully acknowledges a hardware gift from Nvidia Corporation.

Opinions expressed herein are those of the authors and in no way reflect the official position of any of the funding agencies.

TABLE 1. Predicted vs. Actual Execution Times (ms) for Test Kernels, and Geometric Mean of Relative Error.

Kernel	Nvidia GTX Titan X	Nvidia Tesla C2070	Nvidia Tesla K40	AMD Radeon R9 Fury	Cross-GPU Geometric Mean
Finite Difference	0.30	0.10	0.01	0.63	0.11
a.	0.32	0.41	0.44	0.40	0.70
b.	1.03	1.39	1.35	1.21	2.37
c.	4.27	5.32	4.98	4.46	9.17
d.	15.33	21.05	19.55	17.43	37.34
Skinny MM	0.08	0.10	0.13	0.28	0.13
a.	0.18	0.14	0.28	0.18	0.27
b.	0.56	0.55	0.58	0.51	0.41
c.	3.52	3.81	3.35	3.16	1.65
d.	27.23	29.73	23.26	24.23	9.62
N-Body	0.32	0.27	0.54	0.76	0.43
a.	0.48	0.16	1.06	0.48	0.99
b.	0.90	0.38	2.67	1.51	1.99
c.	1.83	1.29	7.41	5.66	4.26
d.	4.49	4.90	24.58	22.26	9.62
Convolution	0.10	0.13	0.03	0.23	0.10
a.	0.49	0.47	0.34	0.25	0.43
b.	1.54	1.64	0.62	0.60	1.08
c.	5.73	6.32	1.73	2.01	3.49
d.	19.32	25.04	6.19	7.65	13.30
Cross-Kernel Geometric Mean	0.16	0.14	0.06	0.42	
References

S. S. Baghsorkhi, M. Delahaye, S. J. Patel, W. D. Gropp, and W.-m. W. Hwu. An Adaptive Performance Modeling Tool for GPU Architectures. In Proceedings of the 15th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming, PPoPP ’10, pages 105–114, New York, NY, USA, 2010. ACM. ISBN 978-1-60558-877-3. doi: 10.1145/1693453.1693470.

A. I. Barvinok. A polynomial time algorithm for counting integral points in polyhedra when the dimension is fixed. Mathematics of Operations Research, 19(4):769–779, 1994.

J. Cavazos, C. Dubach, F. Agakov, E. Bonilla, M. F. O’Boyle, G. Fursin, and O. Temam. Automatic performance model construction for the fast software exploration of new hardware designs. In Proceedings of the 2006 international conference on Compilers, architecture and synthesis for embedded systems, pages 24–34. ACM, 2006.

J. Emer, P. Ahuja, E. Borch, A. Klausier, C.-K. Luk, S. Manne, S. S. Mukherjee, H. Patil, S. Wallace, N. Binkert, and others. Asim: A performance model framework. Computer, 35(2):68–76, 2002.

P. J. Fleming and J. J. Wallace. How Not to Lie with Statistics: The Correct Way to Summarize Benchmark Results. Commun. ACM, 29(3):218–221, Mar. 1986. ISSN 0001-0782. doi: 10.1145/5666.5673.

S. Hong and H. Kim. An Analytical Model for a GPU Architecture with Memory-level and Thread-level Parallelism Awareness. In Proceedings of the 36th Annual International Symposium on Computer Architecture, ISCA ’09, pages 152–163, New York, NY, USA, 2009. ACM. ISBN 978-1-60558-526-0. doi: 10.1145/1555754.1555775.

S. Hong and H. Kim. An integrated GPU power and performance model. In ACM SIGARCH Computer Architecture News, volume 38, pages 280–289. ACM, 2010.

P. J. Joseph, K. Vaswani, and M. J. Thazhuthaveetil. A predictive performance model for superscalar processors. In Proceedings of the 39th Annual IEEE/ACM International Symposium on Microarchitecture, pages 161–170. IEEE Computer Society, 2006.

A. Klöckner. Loo.Py: Transformation-based Code Generation for GPUs and CPUs. In Proceedings of ACM SIGPLAN International Workshop on Libraries, Languages, and Compilers for Array Programming, ARRAY’14, pages 82:82–82:87, New York, NY, USA, 2014. ACM. ISBN 978-1-4503-2937-8. doi: 10.1145/2627373.2627387.

A. Klöckner. Loo.Py: From Fortran to Performance via Transformation and Substitution Rules. In Proceedings of the 2Nd ACM SIGPLAN International Workshop on Libraries, Languages, and Compilers for Array Programming, ARRAY 2015, pages 1–6, New York, NY, USA, 2015. ACM. ISBN 978-1-4503-3584-3. doi: 10.1145/2774959.2774969.

M. D. Linderman, J. D. Collins, H. Wang, and T. H. Meng. Merge: A Programming Model for Heterogeneous Multi-core Systems. In Proceedings of the 13th International Conference on Architectural Support for Programming Languages and Operating Systems, ASPLOS XIII, pages 287–296, New York, NY, USA, 2008. ACM. ISBN 978-1-59593-958-6. doi: 10.1145/1346281.1346318.

H. Meuer, E. Strohmaier, J. Dongarra, and H. Simon. Top500 supercomputing sites, November 2015.

A. Munshi, B. Gaster, T. G. Mattson, and D. Ginsburg. OpenCL programming guide. Pearson Education, 2011.

Nvidia Corporation. CUDA C Programming Guide (Version 7.5). 2015.

S. Verdoolaege. isl: An integer set library for the polyhedral model. In Mathematical Software–ICMS 2010, pages 299–302. Springer, 2010.

S. Verdoolaege, R. Seghir, K. Beyls, V. Loechner, and M. Bruynooghe. Counting integer points in parametric polytopes using Barvinok’s rational functions. Algorithmica, 48(1):37–66, 2007.

S. Williams, A. Waterman, and D. Patterson. Roofline: an insightful visual performance model for multicore architectures. Communications of the ACM, 52(4):65–76, 2009.

Y. Zhang and J. D. Owens. A quantitative performance analysis model for GPU architectures. In 2011 IEEE 17th International Symposium on High Performance Computer Architecture (HPCA), pages 382–393, Feb. 2011. doi: 10.1109/HPCA.2011.5749745.