Double genetic disruption of lactate dehydrogenases A and B is required to ablate the “Warburg effect” restricting tumor growth to oxidative metabolism

Maša Zdraljević 1, 2, Almut Brand 5, 1, Lorenza Di Ianni 1, 3, Katja Detmert 6, Jörg Reinders 6, Katrin Singer 7, Katrin Peter 8, Annette Schnell 9, Christina Bruss 3, Sonja-Maria Decking 3, Gudrun Koehl 3, 10, Blanca Felipe-Abril 11, Jérôme Durivault 12, Pascale Bayer 5, Marie Evangelista 10, Thomas O’Brien 4, 10, Peter J. Oefner 4, 10, Kathrin Renner 10, and Jacques Pouységur 4, 10, and Marina Kreutz 1, 3

From the 1 Université Côte d’Azur, IN Broadcast, INSERM, Centre A. Lacassagne, 06189 Nice, France, the 2 Departments of Internal Medicine III and 4 Surgery, University Hospital Regensburg, 93053 Regensburg, Germany, the 5 Institute of Functional Genomics and 6 Center for Interventional Immunology, University of Regensburg, 93053 Regensburg, Germany, the 7 Institut de Functional Genomics and 8 Center for Interventional Immunology, University of Regensburg, 93053 Regensburg, Germany, the 9 Université Côte d’Azur, University Hospital Pasteur, Clinical Chemistry Laboratory, 06001 Nice, France, the 10 Discovery and Translational Oncology, Genentech, South San Francisco, California 94080, and the 11 Medical Biology Department, Centre Scientifique de Monaco, Monaco MC98000

Edited by Gerald W. Hart

Increased glucose consumption distinguishes cancer cells from normal cells and is known as the “Warburg effect” because of increased glycolysis. Lactate dehydrogenase A (LDHA) is a key glycolytic enzyme, a hallmark of aggressive cancers, and believed to be the major enzyme responsible for pyruvate-to-lactate conversion. To elucidate its role in tumor growth, we disrupted both the LDHA and LDHB genes in two cancer cell lines (human colon adenocarcinoma and murine melanoma cells). Surprisingly, neither LDHA nor LDHB knockout strongly reduced lactate secretion. In contrast, double knockout (LDHA/B-DKO) fully suppressed LDH activity and lactate secretion. Furthermore, under normoxia, LDHA/B-DKO cells survived the genetic block by shifting their metabolism to oxidative phosphorylation (OXPHOS), entailing a 2-fold reduction in proliferation rates in vitro and in vivo compared with their WT counterparts. Under hypoxia (1% oxygen), however, LDHA/B suppression completely abolished in vitro growth, consistent with the reliance on OXPHOS. Interestingly, activation of the respiratory capacity operated by the LDHA/B-DKO genetic block as well as the resilient growth were not consequences of long-term adaptation. They could be reproduced pharmacologically by treating WT cells with an LDHA/B-specific inhibitor (GNE-140). These findings demonstrate that the Warburg effect is not only based on high LDHA expression, as both LDHA and LDHB need to be deleted to suppress fermentative glycolysis. Finally, we demonstrate that the Warburg effect is dispensable even in aggressive tumors and that the metabolic shift to OXPHOS caused by LDHA/B genetic disruptions is responsible for the tumors’ escape and growth.

Increased glucose consumption distinguishes cancer cells from normal cells and is exploited to detect and image tumors in vivo. This phenomenon is known as the “Warburg effect” (1–4) and results from the conjunction of uncontrolled growth signaling, deregulated c-Myc and hypoxia-induced factor 1 (HIF-1) activity leading to induction of glycolytic enzymes (5–7), and inhibition of pyruvate oxidation in mitochondria (8, 9).

Lactate dehydrogenase A (LDHA) 10 is the predominantly expressed LDH enzymatic form in cancer cells and the key player of the Warburg effect. Enhanced LDHA activity and lactate production correlate with poor prognosis and resistance to chemo- and radiotherapy (10, 11). A poor prognosis may be at least in part due to lactic acid, which acts as an immunosuppressant that inhibits the function of a variety of immune cells, such as T cells and natural killer (NK) cells (12, 13). In line with this, LDHA silencing increases melanoma immunosurveillance as a direct consequence of blunting lactic acid release (12). Furthermore, LDHA has proven to be a valid therapeutic target, as pharmacological inhibition or LDHA knockdown decreased tumorigenicity in breast, lung, liver, lymphoma, and pancreas cancers (14–18), accompanied by reactivation of mitochondrial...
drial function in vitro. To date, the majority of studies have focused on the role of LDHA in tumor progression. A few studies, however, demonstrated that not only LDHA but also LDHB are up-regulated in triple-negative breast cancer (19) and lung adenocarcinomas (20). LDHB has also been related to response to chemotherapy in oral squamous cell carcinoma (21).

Lactate dehydrogenase ((S)-lactate:NAD$^+$ oxidoreductase, EC 1.1.1.27) belongs to a family of NAD$^+$-dependent enzymes and catalyzes the reversible conversion of pyruvate to lactate, coupled with oxidation/reduction of the cofactor (NADH/NAD$^+$). Active LDH is a homo- or heterotetramer assembled by association of two different subunits, M and H, encoded by two separate genes, $LDHA$ (M) and $LDHB$ (H), respectively. These subunits were named based on their original detection in muscle (M) and heart (H) tissue. LDH tetramers form five isoenzymes that differ in their proportions of LDHA and LDHB subunits and in their tissue distribution (22). Whether the ratio of the two subunits determines the activity of the enzyme and the K_m for pyruvate and lactate has been debated for many years (23). Most publications state that LDHA mainly reduces pyruvate to lactate, whereas LDHB catalyzes the reverse reaction, lactate oxidation to pyruvate, coupled with NADH formation. However, this assumption was already challenged by Vesell (24), who showed that the enzymatic activity of purified LDH-5 (four LDH subunits) resembled that of LDH-1 (four LDHB subunits) at physiologic temperature. Furthermore, in zymography, which combines electrophoresis with activity staining to separate and detect the five LDH isoenzymes, both pyruvate and lactate have proven to be suitable substrates (25), further supporting the notion that both LDHA and LDHB are capable of catalyzing the conversion of pyruvate to lactate (22, 26).

Here we report that only the combined genetic disruption of $LDHA$ and $LDHB$ will fully suppress lactate secretion with a concomitant reduction in glucose consumption by the human colon adenocarcinoma cell line LS174T and the murine melanoma cell line B16-F10. The resulting metabolic shift to oxidative phosphorylation was sufficient to maintain viability and in vivo tumor growth.

Results
Genetic disruption of $LDHA$ and $LDHB$ is required to suppress lactate secretion in cancer cell lines

To elucidate the role of LDHA in tumors, we knocked out the $LDHA$ gene in two glycolytic cancer cell lines, human colon adenocarcinoma (LS174T) and mouse melanoma (B16-F10) cells (Fig. 1, A and C), using the CRISPR-Cas9 technique (densitometric quantification of the corresponding Western blots is presented in Fig. 1, B and D). Complete allelic knockout (KO) was confirmed by LDHA proteomic analysis, RT-PCR analysis of $LDHA$ gene expression, and sequencing of reisolated subclones (data not shown). For the B16 KOs, two independent subclones were analyzed, but we chose to present the results of only one of the clones for simplicity. To our surprise, $LDHA$ KOs for both LS174T and B16 cells were still able to secrete large amounts of lactate under both normoxic and hypoxic conditions, amounting to about 70% of the lactate secreted by WT cells (Fig. 1, E and F). This rather unexpected finding raised the question whether LDHB could catalyze pyruvate reduction to lactate. Therefore, we generated single $LDHB$-KO and double $LDHA/B$-DKO cells for both LS174T and B16 cells (Fig. 1A and C). We initially obtained an $LDHA^{+/−}/LDHB^{+/−}$ heterozygote exhibiting an intermediary phenotype in LS174T cells (Fig. 1A), but for reasons of direct comparability with B16 cells, we did not include any further data for this cell line. Sole $LDHB$ deletion did not influence lactate secretion (Fig. 1, E and F). Only complete disruption of both LDH enzymatic subunits (Fig. 1, A and C) led to complete abolishment of lactate secretion in LS174T and B16 cells under both normoxia and hypoxia (Fig. 1, E and F).

In addition, we monitored the ability of LS174T and B16 WT and $LDHA/B$-DKO cells to reduce pyruvate and oxidize lactate by measuring the spectrophotometric decrease or increase in NADH absorbance, respectively, and expressed reaction rates as the slope of the initial part of the concentration versus time curve (Fig. 2, A–H). It is obvious that the $LDHA/B$-KOs have lost their ability to catalyze both the forward and the reverse reaction.

$LDHA/B$-DKO cells shift their metabolism to OXPHOS

To gain further insight into the metabolic status of LDH-KO cells, we measured extracellular acidification rates (ECARs) by means of the Seahorse XF24 extracellular flux analyzer. Upon addition of glucose, both LS174T and B16 single KOs of $LDHA$ and $LDHB$ yielded ECARs comparable with those of WT cells (Fig. 3, A and C). In contrast, $LDHA/B$-DKO showed a pronounced decrease in ECAR. Subsequent addition of oligomycin, an inhibitor of complex V of the respiratory chain, gave us an estimate of the maximum glycolytic capacity. The ECAR values following oligomycin addition increased in both WT and single KO clones of LS174T and B16 cells. In contrast, addition of oligomycin to $LDHA/B$-DKO cells reduced the ECAR values to those observed before glucose addition, indicating that oxidative metabolism of glucose substantially contributed to the ECAR of $LDHA/B$-DKO cells. In the same experiment, oxygen consumption rates (OCRs) were measured, showing that, in $LDHA/B$-DKO cells, basic respiration and glucose oxidation were more pronounced (Fig. 3, B and D). Also, maximal respiration following FCCP or DNP addition was significantly higher in $LDHA$-KO cells and, more importantly, in $LDHA/B$-DKO cells (Fig. 3, B and D).

In a complementary series of experiments using respirometry, we analyzed mitochondrial function in intact cells in the presence of cell culture medium (Fig. S1, A–F) as well as in permeabilized cells (Fig. 4, A–E). Analysis of respiration in culture medium revealed higher basal respiration (Fig. 4, A and D) in LDH-KO and $LDHA/B$-DKO cells as well as higher oxygen consumption related to ATP production in these cells compared with WT cells (Fig. S1, C and F). Electron transport system (ETS) capacity after uncoupling with FCCP or DNP was also elevated in B16 $LDHA$-KO and $LDHA/B$-DKO cells but was difficult to determine in LS174T cells. Moreover, we analyzed maximum OXPHOS and ETS capacity in permeabilized cells in the presence of saturating substrate concentrations for complex I and II (Fig. 4, A–D). Again, in both $LDHA$-KO and $LDHA/B$-DKO cells, maximum OXPHOS and ETS capacities were increased compared with WT cells (Fig. 4, A and D). These results, together with the lactate secretion data (Fig. 1, E and F),
suggested that the ECAR of LDHA/B-DKO cells following glucose addition was due to carbonic acid rather than lactic acid secretion as a result of increased OXPHOS activity. LDHA-KO cells also showed increased OXPHOS activity, whereas LDHB-KO cells behaved essentially like WT cells.

Next we investigated whether the increased mitochondrial function was due to increased mitochondrial content. Mitochondrial content was estimated by MitoTracker staining, by determining the mitochondrial-to-nuclear DNA ratio, and the expression of complex IV (COX) and cytochrome c protein. Compared with their respective WT cells, LS174T LDHA/B-DKO cells showed a tentative but insignificant increase in mitochondrial content (Fig. S2, A–C). In contrast, B16 LDHA/B-DKO showed a clear and significant increase in mitochondrial content compared with both WT and single LDH-KO cells (Fig. S2, D–F).

Glucose and glutamine tracing experiments in the WT and LDHA/B-DKO cell lines

We performed 13C tracer experiments in both WT and LDHA/B-DKO cells. The cells were fed with either uniformly d-[U-13C6]glucose or l-[U-13C5]glutamine for 24 h under normoxia. Mean isotope enrichment of 13C-labeled pyruvate, lac-
LDHA/B-DKO abolishes the Warburg effect but not tumor growth

Figure 2. LDHA and LDHB enzymatic activities in LS174T and B16 cells. A–H, enzymatic assays of LDHA (A, B, E, and F) and LDHB (C, D, G, and H) activities in WT and LDHA/B-DKO cells were performed by continuous spectrophotometric rate determination. The decrease in UV absorbance at 340 nm corresponds to NADH oxidation coupled to pyruvate reduction to lactate, whereas the increase in A340 nm, corresponds to NAD+ reduction coupled to lactate oxidation, as shown in the reactions. The numbers next to the absorbance versus time curves represent initial rates of reaction, corresponding to the tangent line slope at time = 1 min. The results depicted are normalized by protein content and are representative of four independent experiments.

tate, TCA cycle intermediates, and various amino acids was analyzed by GC/MS and HPLC-MS/MS (Fig. 5, A–H). As expected, the majority of pyruvate and lactate (~70–80%) in WT cells was labeled upon addition of [U-13C6]glucose. The LDHA/B-DKO cells, on the other hand, showed significant depression of isotopic enrichment of lactate (Fig. 5, A and B). Among the other metabolites, only glycine and proline were less enriched, albeit solely in the B16 LDHA/B-DKO cells, compared with the respective WT cells (Fig. 5, C and D).

In the presence of [U-13C5]-glutamine, both LS174T and B16 WT and LDHA/B-DKO cells showed the expected increase in 13C-labeled TCA cycle intermediates (Fig. 5, E and F). With regard to the other metabolites analyzed, there were distinct differences between the LS174T and B16 cells. LS174T LDHA/
LDHA/B-DKO abolishes the Warburg effect but not tumor growth

_B-DKO cells showed significantly greater enrichment of 13C-labeled pyruvate, alanine, glycine, and serine compared with their WT cells (Fig. 5, E and G), whereas, in B16 LDHA/B-DKO cells, only alanine showed significant enrichment, and 13C-labeled proline was less enriched in DKO than in WT cells (Fig. 5, F and H). Both in LS174T and B16 LDHA/B-DKO cells, there was an increase in m$_1$, m$_2$, and m$_3$ isotopologs of alanine, which indicates a higher flux through the citrate or malate shuttle to regenerate NAD$^+$ in the cytosol to compensate for loss of NAD$^+$ production by LDH (Fig. S3, A and B). Interestingly, LS174T and B16 cells differed greatly in the enrichment of 13C-labeled proline regardless of whether LDHA and LDHB had been knocked out (Fig. 5, G and H). In the LS174T cells, enrichment was about 60%, whereas it amounted to only about 10–20% in B16 cells.

LDHA/B-DKO halts cell proliferation in hypoxia and sensitizes tumor cells to phenformin

We compared the rates of proliferation, viability, clonogenicity, and sensitivity to OXPHOS inhibition in both WT and LDHA/B-DKO cells under normoxic and hypoxic (1% O$_2$) conditions. Under normoxia, LS174T KO of either LDHA or LDHB did not differ in proliferation and viability from the WT, whereas LDHA/B-DKO cell proliferation was reduced about 2-fold with no loss of viability (Fig. 6A). Under hypoxia, however, the proliferation rate of LDHA/B-DKO cells was about 20-fold lower than under normoxia (Fig. 6B). The results for B16 cell lines were comparable (Fig. 6, C and D); only the LDHA/B-DKO cells had about a 2-fold reduced rate of proliferation under normoxia, whereas, under hypoxia, no growth of LDHA/B-DKO cells was observed (Fig. 6D). Interestingly, the reduced or restricted growth of LDHA/B-DKO cells under hypoxia was not due to loss of cell viability, as revealed by the percentage of viable cells (Fig. 6, A–D, bars, right scale).

The ability to form colonies was analyzed in all LS174T and B16 cell lines, both under normoxia and hypoxia. As shown in Fig. 7A, LS174T LDHA/B-DKO cells formed significantly smaller and fewer colonies compared with the other cell types tested, both under normoxia and hypoxia, in accordance with the proliferation data presented in Fig. 6. In addition, KO of

Figure 3. Fermentative glycolysis is significantly disrupted, whereas oxidative metabolism of glucose is activated, in LDHA/B-DKO cells. A and C, ECARs of LS174T (A) and B16 (C) WT and LDH-KOs cells under Nx, as analyzed by the Seahorse XF24 bioanalyzer. The mean ± S.E. is representative of three independent experiments performed in quadruplicate. B and D, OCRs of LS174T (B) and B16 (D) WT and LDH-KO cells measured by the Seahorse XF24 bioanalyzer. The mean ± S.E. is representative of four independent experiments performed in quadruplicate. rot, rotenone; antA, antimycin A.
LDHA/B-DKO abolishes the Warburg effect but not tumor growth

LDHA and, particularly, DKO of LDHA/B made LS174T cells extremely sensitive to 100 μM phenformin, a mitochondrial complex I inhibitor (Fig. 7A). In line with the ECAR and OCR data presented in Fig. 3, metabolic reprogramming of both LS174T and B16 LDHA-KO and LDHA/B-DKO cells toward OXPHOS explains their higher sensitivity to the mitochondrial respiratory chain inhibitors. Treatment with GNE-140 phenocopies LDHA/B double genetic disruption in both the LS174T and B16 cell lines Recently, Boudreau et al. (27) demonstrated the ability of GNE-140, a specific LDHA and LDHB inhibitor, to cause growth arrest in highly glycolytic pancreatic cancer cell lines such as MiaPaca2. Hence, we were curious to see whether this inhibitor could reactivate OXPHOS without delay and maintain the viability and growth of the WT LS174T and B16 LDHA-KO and LDHA/B-DKO cell lines reported here (Fig. 8, A–D). This long-term experiment (9 to 12 days) proved the lack of off-target effects of this compound at the concentration used. Furthermore, we analyzed the metabolic consequences of the short-term GNE-140 treatment of the WT cells by Seahorse bioanalyzer. As shown in Fig. 8, E–H, 1-h treatment with 10 μM GNE-140 was sufficient to phenocopy the effect of the LDHA/B-DKO cells in terms of suppression of glycolysis and reactivation of OXPHOS. Hence, the growth phenotype of DLHA/B-DKO cells does not result from long-term growth selection during the two steps of genetic disruption. This finding, based on genetics and specific pharmacological disruption of LDHA and LDHB, firmly attests that, under normoxia, the Warburg effect is dispensable for in vitro tumor growth.

Suppression of the Warburg effect does not suppress in vivo tumor growth

To assess the consequences of LDHA and LDHB disruption on in vivo tumor growth, we performed xenograft experiments on immune-deficient mice with the LS174T and B16 cell lines. As shown in Fig. 9A, LS174T LDHA/B-DKO cells showed, after a lag of ~3 days compared with WT cells, continuous tumor growth, with the average tumor volume being about half of that of the WT tumors on day 12. Similarly, B16 LDHA/B-DKO tumors grew steadily, with no obvious lag, being about 30% smaller than the corresponding WT tumors on day 12 (Fig. 9B). Single B16 LDHA-KO tumors displayed an intermediate growth rate between those of WT and DKO tumors, whereas growth of LDHB-KO tumors was identical to that of WT tumors (Fig. 9B).

Discussion

Benefits of the Warburg effect

Cancer metabolism has become a major focus in efforts to understand and fight cancer. The reprogramming of metabolic pathways in response to multiple oncogenic, nutritional and
Figure 5. Mean isotopic enrichment of metabolites in WT and LDHA/B-DKO cells. A–H, LS174T and B16 WT and LDHA/B-DKO cells were grown for 24 h with $^{[13C_6]}$glucose (LS174T, A and C; B16, B and D) and $^{[13C_5]}$glutamine (LS174T, E and G; B16, F and H). Intermediates of glycolysis and the TCA cycle (A, B, E, and F) were analyzed by GC/MS and amino acids by HPLC-MS/MS (C, D, G, and H). Three independent experiments were performed. *, $p < 0.03$; **, $p < 0.001$; ***, $p < 0.0001$. "LDHA/B-DKO abolishes the Warburg effect but not tumor growth."

J. Biol. Chem. (2018) 293(41) 15947–15961
oxidative stresses is an elaborate way by which cancer cells respond to high bioenergetic and anabolic demands during tumorigenesis (28–30). The Warburg effect, the preference for fermentative glycolysis, also favored by yeast, is a classic example of metabolic reprogramming allowing cells to meet the metabolic demands of high proliferation. Indeed, cancer “glucose addiction” provides several growth and survival advantages, like rapid ATP availability, high carbon source levels for anabolism, diversion of glycolysis to increase redox status (NADPH) via the glycine–serine pathway (31–33), and massive production of lactic acid (34). By lowering the pH in the tumor environment, lactic acid induces metabolic “dormancy” but also tumor survival in a nutrient and oxygen-deprived environment by its pro-angiogenic and antioxidant action (34–38). Last but not least, lactic acid is involved in tumor immune response (39, 40). Our own data show that the reduction of tumor lactic acid by silencing LDHA reactivated the immune response by T and NK cells (12). Furthermore, a more recent publication suggested that inhibition of glycolysis by an LDHA inhibitor allowed effective immunotherapy by lowering lactate levels (41). These findings are in line with the work by Fantin et al. (14), who had already shown earlier that LDHA silencing reduced LDHA activity, stimulated respiration in vitro, and reduced the tumorigenicity of murine breast cancer cells in a syngeneic immunocompetent in vivo model. Le et al. (15) also reported that LDHA silencing as well as pharmacologic inhibition of LDHA by FX11 resulted in increased OXPHOS in vitro and reduced growth of human lymphoma and pancreatic cancer xenografts. In our experiments, we also detected an increase in OXPHOS after deletion of LDHA in B16 but not in LS174T cells. However, double knockout of both isoenzymes clearly shifted tumor metabolism to OXPHOS, indicating that tumor cells are metabolically flexible. In contrast to the results of Le et al. (15), we did not find a reduction of tumor growth in our xenograft model by targeting LDHA; in our hands, only elimination of both LDHA and LDHB was effective in reducing tumor growth. A possible explanation for this discrepancy is that FX11, like many LDHA inhibitors that have been devel-

Figure 6. Cell growth and cell viability of WT and LDH-KO cells under normoxia and 1% hypoxia. A–D, cell proliferation and viability of LS174T (A and B) and B16 (C and D) WT and LDH-KO cells under Nx (A and C) or Hx (B and D) for up to 6 days. The mean ± S.E. is representative of four independent experiments performed in triplicate. **, p < 0.003; ***, p < 0.0003.
oped in academia and by major pharmaceutical groups, inhibits both LDH enzymatic subunits with some additional off-target effects, precluding entry into the clinic (11, 42).

Complementary metabolic function of LDHA and LDHB in tumor cells

In contrast to earlier data that had not detected a difference in substrate specificity between LDHA and LDHB regarding lactate versus pyruvate (24), the majority of today’s literature postulates that only hypoxia-inducible LDHA favors the conversion of pyruvate to lactate and is mainly responsible for the glycolytic phenotype and lactate secretion in tumors. Our data challenge this point of view; knockout of LDHA had only a moderate effect on lactate secretion, even under hypoxia (Fig. 2, E and F) and failed to suppress tumor growth. This clearly demonstrates that LDHB is capable of substituting LDHA under metabolic pressure. In line with the preserved production of lactate and glucose consumption in either LDHA- or LDHB-disrupted cells, metabolomic analysis showed that there is no difference in metabolic flux. Moreover, comparing glucose and glutamine flux between WT and LDHA/B-DKO cells revealed only moderate changes; more glutamine-derived pyruvate was detected in LDHA/B-DKO cells. These increased pyruvate levels probably contribute to alanine synthesis, given the increased glutamine-derived alanine labeling in LDHA/B-DKO cells.

Apart from their role in the regulation of the redox status, epigenetics, and genome maintenance, glycine and serine are also precursors for a variety of biosynthetic reactions in tumor cells (31). In LS174T cells, glutamine-derived glycine and serine were present only in LDHA/B-DKO cells, suggesting that one-carbon metabolism might contribute to amino acid and nucleotide synthesis in these cells.

When genetics meets pharmacology: Clinical perspectives

The question whether the Warburg effect and high glycolytic rate are essential tumor phenotypes or are dispensable for cancer growth is under debate. The genetic study reported here, with two glycolytic and fast growing cell lines, demonstrates unequivocally that complete suppression of fermentative glycolysis does not fully suppress in vitro growth and allows tumor xenografts to develop, although more slowly, at a 2-fold reduced rate. However, the Warburg effect, in contrast to OXPHOS, provides a clear growth advantage to cancer cells: the fastest growth rate and proliferation in a hypoxic microenvironment.

Why do LDHA and LDHB need to be suppressed to collapse the Warburg effect? How is resilient tumor growth still possible under these conditions? The efficiency of glucose fermentation in rapid ATP formation and growth relies on the reduction of pyruvate to lactate by LDHA. This is the key step allowing NAD⁺ regeneration to keep ATP-derived glycolysis running. This step is so essential that LDHA-KO cells, through intracellular pyruvate pool elevation, manage to reverse the mode of action of LDHB (22, 26), keeping Warburg effect intact and the tumor growth rate unchanged. Following combined deletion of LDHA and LDHB, NAD⁺ regeneration relies on mitochondrial complex I and oxygen consumption for ATP formation and growth. Under these conditions, growth is only possible in an oxygenated environment by reactivation of OXPHOS, as shown by metabolic rewiring (Fig. 3) and phenformin sensitivity (Fig. 7, A and B). In contrast, a low oxygen level (1%) sufficed to stop in vitro growth of LDHA/B-DKO tumor cells with no loss of viability.

The present conclusions regarding LDHA/B-DKO are strongly reinforced by our independent approach disrupting the upstream glycolytic enzyme glucose-6-phosphate isomerase (GPI) in the same cancer cell lines (43) or earlier studies of transformed fibroblasts (44, 45). Both GPI-KO cell lines, LS174T and B16, had severely reduced glucose consumption and completely suppressed lactic acid secretion, which made them rely on oxidative phosphorylation for their energy production (43). As was the case with LDHA/B-DKO, growth under hypoxia was severely restricted; in vivo, GPI-KO xeno-
grafts developed at a 2-fold reduced rate compared with GPI-WT. This increased dependence on OXPHOS resulted in higher sensitivity to mitochondrial respiration inhibitors in both LDHA/B-DKO and GPI-KO cell lines. Phenformin treatment completely eradicated LDHA/B-DKO colonies, suggesting that dual inhibition of glycolysis and mitochondrial metabolism holds more promise and should be investigated as a potential treatment, as we already suggested (46).

Interestingly, reassessment of the Warburg effect in cancer obtained by genetic disruption of two distinct steps of the glycolytic pathway is in full agreement with the findings reported regarding GNE-140 (27), the first specific pharmacologic dual inhibitor of LDHA and LDHB, to the best of our knowledge (Fig. 8, A–H). The pharmacologic/genetic convergence is a key argument demonstrating that growth resilience in the genetically disrupted Warburg effect cannot be explained by second-
LDHA/B-DKO abolishes the Warburg effect but not tumor growth

Figure 9. Xenograft tumor growth assays with LS174T and B16 LDHA/B-DKO cells

Figure 9. Xenograft tumor growth assays with LS174T and B16 LDHA/B-DKO cells showed a delay but not abolishment of tumor growth. A and B, tumor volumes of WT and LDHA/B-DKO LS174T (A) and WT and LDHA/B-KO B16 xenografts (B). Each graph shows the tumor size over time, with WT cells represented in red and LDHA/B-DKO cells in black. For both cell lines, the tumor growth rate was compared, with WT cells showing a faster growth rate compared to LDHA/B-DKO cells. The statistical significance was determined using an unpaired Student’s t-test: **, p < 0.01; ****, p < 0.0001.

Experimental procedures

Cell culture and hypoxic exposure conditions

Human colon adenocarcinoma LS174T cells (kindly provided by Dr. Van de Wetering) and mouse B16F10 cells were grown, unless otherwise specified, in Dulbecco’s modified Eagle’s medium (DMEM) (Gibco by Life Technologies) and RPMI medium (supplemented with fetal bovine serum (10%), penicillin (10 units/ml), and streptomycin (10 μg/ml). Under normoxic conditions, cells were incubated in a humidified atmosphere with 5% CO₂/21% O₂ at 37 °C. Under hypoxic conditions, the cells were incubated in a humidified atmosphere with 5% air replaced by N₂, and CO₂ was maintained at 5%. Human colon adenocarcinoma LS174T cells (kindly provided by Dr. Van de Wetering) and mouse B16F10 cells were grown, unless otherwise specified, in Dulbecco’s modified Eagle’s medium (DMEM) (Gibco by Life Technologies) and RPMI medium (supplemented with fetal bovine serum (10%), penicillin (10 units/ml), and streptomycin (10 μg/ml). Under normoxic conditions, cells were incubated in a humidified atmosphere with 5% CO₂/21% O₂ at 37 °C. Under hypoxic conditions, the cells were incubated in a humidified atmosphere with 5% air replaced by N₂, and CO₂ was maintained at 5%.

CRISPR/Cas9-mediated knockout of the mouse and human LDHA and LDHB genes

To obtain LDHA and LDHB single knockouts, human LS174T cells and mouse B16F10 cells were transfected with CRISPR/Cas9 using a pSpCas9(BB)-2A-GFP (PX458) plasmid that had been donated by Feng Zhang (Addgene plasmid 48138) (51). Single guide RNAs (sgRNAs) targeting the exonic regions of the murine and human LDHA and LDHB gene were designed using the http://crispr.mit.edu website15 (52) and cloned into the BbsI sites of the pSpCas9(BB)-2A-GFP (px458) plasmid. Transfections were performed with Lipofectamine (Polyplus Transfection, Illkirch, France), and GFP-positive cells were detected by cell sorting (FACS). Each clone was analyzed for LDHA and LDHB protein expression by immunoblot. Finally, two independent LDHA and LDHB knockout clones for each cell line were selected and subcloned to obtain a pure cell population. Because the findings obtained were identical for the two clones of a cell line throughout the study, we show only the results obtained for one clone each. LDHA/B-DKO cell lines were obtained by transfecting LS174T and B16 LDHA-KO subclones with LDHB CRISPR.

Immunoblotting

Cells were lysed with SDS buffer, and the protein concentration was determined by BCA assay (Interchim, Montluçon, France). Proteins (40 μg) were separated by SDS-PAGE (10%) and transferred onto a polyvinylidene difluoride membrane (Immobilon, Merck Millipore Ltd., Tullagreen, Carrigtwohill, County Cork, Ireland). Membranes were blocked in 5% nonfat milk in TN buffer (50 mm Tris-HCl (pH 7.4) and 150 mm NaCl) and blotted with antibodies against LDHA (Abcam, ab208093), LDHB (Abcam, ab85319), and HIF-1α (rabbit anti-human/mouse polyclonal antibody, produced in our laboratory). Antibodies against tubulin (Invitrogen, 32-2500) and HSP60 (D6F1, rabbit monoclonal, 12165, Cell Signaling Technology) were used as loading controls. Immunoreactive bands were detected by the ECL system (Millipore Corp., Billerica, MA) after incubation of the membranes with secondary anti-mouse or anti-rabbit antibodies (Promega) and visualized using the GeneSys software (Syngene, Cambridge, UK). Densitometry was performed using Fiji software.

Quantitative proteome analysis by LC-SWATH-MS

Cell pellets were solubilized in 1.2% SDS and 20 mm sodium phosphate (pH 7.5), and protein amounts were measured using the FluoroProfile kit (Sigma-Aldrich). Samples were diluted to 1 μg of protein/μl using gel-aided sample preparation (GASP) buffer (4% SDS, 100 mm DTT, 6 mm urea, and 1.5 mm thiourea), and 50 μg of total protein was subjected to proteolytic digestion using the GASP protocol (53). 5 μg of the resulting peptide mixtures was spiked with 100 fmol of the retention time standard PePliCal (Polyquant GmbH, Bad Abbach, Germany) and analyzed using an Eksigent NanoLC 400 system directly coupled to a TripleTOF 5600+™ Q-TOF mass spectrometer. For analysis of the B16 cell line samples, the peptides were sepa-

15 Please note that the JBC is not responsible for the long-term archiving and maintenance of this site or any other third-party–hosted site.
LDHA/B-DKO abolishes the Warburg effect but not tumor growth

Enzymatic activities of LDHA and LDHB in WT and double LDH-KO cells were measured by continuous spectrophotometric rate determination (Glomax, Promega BioSystems Inc., Sunnyvale, CA). LDHA activity was determined by monitoring the decrease in absorbance at 340 nm, corresponding to NADH oxidation, coupled with pyruvate reduction to lactate. Assays were performed at pH 7.4 and 25 °C and started by adding 6 μl of cell extract to the reaction mixture containing 200 μM Tris-HCl (pH 7.4), 1 mM sodium pyruvate, and 0.5 mM NADH. LDHB activity was monitored in the same way, but to push the reaction in the direction of lactate oxidation to pyruvate, 0.5 mM glycine buffer (pH 9.5), was used. Coupled β-NADH+ reduction was monitored as an increase in absorbance at 340 nm, and 216.7 μM hydrazine was added to the reaction mixture to prevent product inhibition and reversibility of the reaction by non-enzymatic binding to pyruvate (18). In both reactions, all components were added in excess so that only LDHA or LDHB enzyme activity would be rate-limiting. Hence, the activity of the enzyme is proportional to the initial rate of the reaction, and the activities were obtained as the tangent to the initial part of the absorbance *versus* time curve. Five independent experiments were performed per sample and enzyme, and values normalized to microgram of protein are presented.

Metabolic flux analysis

OCRs and ECARs of cells were analyzed by the Seahorse XF24 extracellular flux analyzer (Seahorse Bioscience). Cells were seeded on Seahorse plates and grown for 24 h to form a confluent layer. One hour prior to measurement, cell culture media were replaced with the assay medium without glucose, pyruvate, serum, and buffer (D5030, Sigma), and the plates were incubated in a non-CO2 incubator at 37 °C. Basal levels of OCR and ECAR were recorded for 24 min, followed by a mitochondrial stress test (1 μM oligomycin, 3 μM FCCP or 100 μM DNP, and 1 μM rotenone/1 μM antimycin A). Normalization to protein content was performed after each experiment, and data were presented as milli-pH units (mpH) per minute per microgram of protein for ECAR and as picomoles of O₂ per minute per microgram of protein for OCR.

High-resolution respirometry

Mitochondrial respirometric activity was analyzed in a two-channel titration injection respirometer (Oxygraph-2k, Oroboros Instruments, Innsbruck, Austria) at 37 °C. Two different protocols were applied. Cells were harvested, resuspended in culture medium or mitochondrial medium (MiR05), and transferred to the Oxygraph chambers at a final cell density of ~1 × 10⁶ cells/ml. In the first substrate–uncoupler–inhibitor titration protocol, basal respiration (no additions), LEAK respiration (oligomycin-inhibited, 2 μg/ml) and maximum capacity of the ETS, and stepwise titration of carbonyl cyanide-p-trifluoromethoxyphenyl-hydrazone (FCCP, 2 μM) were determined in
intact cells in culture medium. Residual oxygen consumption (ROX) was determined after the addition of rotenone (0.5 μM) and myxothiazol (2.5 μM), and all respiratory parameters were corrected for ROX. Oxygen consumption available for ATP production (free basal respiration, O₂-ATP) was calculated by subtracting LEAK from basal respiration. In the second protocol, cells were resuspended in MiR05. After a stabilization phase, malate (2 mM) was added, the plasma membrane was permeabilized with digitonin (8.1 μM), and the maximum capacity of the oxidative phosphorylation system (OXPHOS) was measured after addition of glutamate (10 mM), pyruvate (5 mM), ADP (20 mM), and succinate (10 mM). Subsequently, ETS capacity was determined after FCCP titration as described above. OXPHOS and ETS were corrected for ROX.

^{13}C tracer experiments

Analyses of amino acids and organic acids from stable isotope tracer experiments were performed using HPLC-MS/MS and GC-MS after derivatization, respectively, as described recently (55). All expected isotopologs were analyzed. Correction for natural stable isotope abundance and tracer impurity in the tracing experiments was performed using an in-house tool (IsoCorrectoR) to correct MS/MS data and IsoCor for full MS data (56). Mean isotope enrichment is calculated based on the relative isotopolog fractions:

$$ ME(\%) = \frac{\sum_{i=0}^{n} M_i \times i}{n} \quad (Eq. 1) $$

M_i is the relative fraction of the isotopolog containing i tracer atoms, and n is the number of tracer element atoms in the molecule (C-atoms for 13C tracing) (56).

Proliferation and cell viability assay

Cells (5 × 10^4 for LS174T and 2 × 10^4 for B16) were seeded in 6-well plates in triplicate per cell line and condition. 24 h after seeding, the cells were detached by trypsinization and counted by an automatic cell counter (ADAM-MCTM, Digital Bio, NanoEnTek Inc., Seoul, Korea) on days 0, 3, 4, and 6 for LS174T and days 0, 3, 4, and 4 for B16 cells. The cell proliferation index was calculated by dividing the cell counts obtained on days 3, 4, and 6 by the count obtained 24 h after seeding (day 0).

For determination of cell viability, cells were washed 24 h after adhesion with PBS, trypsinized, centrifuged (5 min, 259 g), added to the supernatant taken previously, and resuspended in propidium iodide solution to discriminate between live and dead cells. Three independent experiments were performed in duplicate.

Clonogenic viability assay

Cells (1 × 10^3) were seeded on 60-mm plates and incubated for 24 h, and then the medium was replaced with DMEM supplemented with 10% fetal bovine serum with or without the addition of 100 μM phenformin. After 8–10 days under normoxia and 12–15 days under hypoxia (1% O₂), colonies were stained with 5% Giemsa solution (Sigma-Aldrich, Hannover, Germany) for 30 min for colony visualization.

Tumor xenografts

For B16 cell lines, animal experiments were performed according to the regulations of the government of the Upper Palatinate, Regensburg, Germany. For LS174T cell lines, animal experiments were performed according to the regulations approved by the animal experimentation protocol of the local animal care committee (Veterinary Service and Social Action of Monaco, Dr. H. Raps).

1 × 10^5 tumor cells were injected subcutaneously in 50 μl of RPMI 1640 in the dorsal region of 9 week-old immune-deficient NOD scid γ (NSG) mice. Animals were monitored on a daily basis for tumor size and their general condition. Tumor dimensions were estimated by measurements of the short (a) and long (b) axis of the mass daily using a caliper, and tumor volume was calculated applying the following formula: $V = \frac{a \times b \times h}{6}$.

Mitochondrial DNA analysis

Cells (1 × 10^6) were seeded in 10-cm dishes, and after 24 h of incubation, DNA extraction was performed using the AllPrep DNA/RNA kit (Qiagen GmbH, Hilden, Germany). 30 and 0.3 ng of total DNA were employed for LS174T and B16 cells, respectively, to determine the ratio of mtDNA to nuclear DNA by quantitative PCR of subunit 1 of hNADH-dehydrogenase or NADH-ubiquinone oxidoreductase (hND1) and hLPL (lipoprotein lipase) for LS174T and mCytB (cytchrome b) and mACT (actin) for B16 cells, respectively, using the ddCt method. Oligonucleotides for hND1 (F_CCCTAAACCCGC-CACATCT, R_GAGCGATGTTGAGCTAGGT), hLPL (F_CGAGTCGTCTTTCTCTGATGAT, R_TTCGAGCATGGTTTGAGAGCTAAGGT), hND1 (F_CTGCCTGACGGCCAGG, R_CTATGGCCTCAGCACATCT), mCytB (F_CCACCTCATCCTACATTTATTCGCC, R_TTTTATCCTGATCATGATTTCAA), and mACT (F_CTGCCTGACGCCAGG, R_CTATGGAATTCGACGTTTGTGC) were kindly provided by Dr. D. Pisani (IBV, Nice, France). Quantitative PCR was performed with Takyon™ Rox SYBR MasterMix dTTP Blue (Eurogentec, Seraing, Belgium) on a StepOnePlus real-time PCR machine (Applied Biosystems, Life Technologies).

Statistical analysis

Results were expressed as mean ± S.E., and statistical analysis was performed using analysis of variance followed by nonparametric tests using GraphPad Prism 5 software. The differences between the groups were considered significant when $p < 0.05$.

Author contributions—M. Ž., A. B., K. D., K. R., J. P., and M. K. conceptualization; M. Ž. and A. B. data curation; M. Ž., A. B., K. D., J. P., and M. K. supervision; M. Ž., J. P., and M. K. funding acquisition; M. Ž., A. B., I. D. I., K. D., J. R., K. S., S.-M. D., B. F.-A., J. D., M. E., P. J. O., and J. P. investigation; M. Ž., A. B., I. D. I., K. D., J. R., K. S., K. P., A. S., C. B., G. K., B. F.-A., J. D., P. B., M. E., P. J. O., and K. R. methodology; M. Ž., A. B., and J. P. writing—original draft; M. Ž. and J. P. project administration; M. Ž., A. B., P. J. O., K. R., J. P., and M. K. writing—review and editing; A. B., K. D., K. S., and K. P. formal analysis; I. D. I. and B. F.-A. validation; K. D. J., K. R., K. S., and P. J. O. software; M. E., T. O., and P. J. O. resources; I. D. I. work done in Nice as a training scholarship; K. P. contributed to the manuscript; A. S., C. B., and G. K. animal experimentation; J. D. CRISPR-Cas9 gRNA design; P. B. enzymatic assays; P. J. O. metabolomics.
Acknowledgments—We thank Ludovic Cervera for cell sorting assistance on the CytoMed platform at the flow cytometry facility at the Institute for Research on Cancer and Aging, Nice (IRCAN). The materials of CytoMed were supported by Conseil Général 06, Fonds européen de développement régional (FEDER), the Ministère de l’Enseignement Supérieur, the Région Provence Alpes-Côte d’Azur, and INSERM. We also thank Claude Fabre and Claire Tworek, technicians in the clinical chemistry laboratory at the University Hospital of Nice. We thank Milica Vučetić and Valérie Vial for help with mouse experiments at Centre Scientifique de Monaco (CSM), Monaco.

References
1. Warburg, O. (1956) On respiratory impairment in cancer cells. Science 124, 269–270 Medline
2. Kroemer, G., and Pouyssegur, J. (2008) Tumor cell metabolism: cancer’s Achilles’ heel. Cancer Cell 13, 472–482 CrossRef Medline
3. Vander Heiden, M. G., Cantley, L. C., and Thompson, C. B. (2009) Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 324, 1029–1033 CrossRef Medline
4. Hay, N. (2016) Reprogramming glucose metabolism in cancer: can it be exploited for cancer therapy? Nat. Rev. Cancer 16, 635–649 CrossRef Medline
5. Brahami-Horn, M. C., Bellot, G., and Pouyssegur, J. (2011) Hypoxia and energetic tumor metabolism. Curr. Opin. Genet. Dev. 21, 67–72 CrossRef Medline
6. Hsieh, A. L., Walton, Z. E., Altman, B. J., Stine, Z. E., and Dang, C. V. (2015) MYC and metabolism on the path to cancer. Semin. Cell Dev. Biol. 43, 11–21 Medline
7. Hubbi, M. E., and Semenza, G. L. (2015) Regulation of cell proliferation by hypoxia-inducible factors. Am. J. Physiol. Cell Physiol. 309, C775–C782 CrossRef Medline
8. Chae, Y. C., Vaira, V., Caino, M. C., Tang, H. Y., Seo, J. H., Kosenkov, A. V., Ottobrini, L., Martelli, C., Lucignani, G., Bertolini, I., Locatelli, M., Bryant, K. G., Ghosh, I. C., Lisanti, S., Ku, B., et al. (2016) Mitochondrial Akt regulation of hypoxic tumor reprogramming. Cancer Cell 30, 257–272 CrossRef Medline
9. Kim, J. W., Tchernyshov, I., Semenza, G. L., and Dang, C. V. (2006) HIF-1-mediated expression of pyruvate dehydrogenase kinase: a metabolic switch required for cellular adaptation to hypoxia. Cell Metab. 3, 177–185 CrossRef Medline
10. Hirschhaeuser, F., Sattler, U. G., and Mueller-Klieser, W. (2011) Lactate: a metabolic key player in cancer. Cancer Res. 71, 6921–6925 CrossRef Medline
11. Augoff, K., Hryniwicz-Jankowska, A., and Tabola, R. (2015) Lactate dehydrogenase 5: an old friend and a new hope in the war on cancer. Cancer Lett. 358, 1–7 CrossRef Medline
12. Brand, A., Singer, K., Koehl, G. E., Kolitzus, M., Schoenhammer, G., Thiel, A., Matos, C., Bruss, C., Klobuch, S., Peter, K., Kastenberger, M., Bogdan, C., Schleicher, U., Mackensen, A., Ullrich, E., et al. (2016) LDHA-associated lactic acid production blunts tumor immunosurveillance by T and NK Cells. Cell Metab. 24, 657–671 CrossRef Medline
13. Fischer, K., Hoffmann, P., Voelkl, S., Meidenbauer, N., Ammer, J., Edinger, M., Gottfried, E., Schwarz, S., Rothe, G., Hoves, S., Renner, K., Timischl, B., Mackensen, A., Kunz-Schughart, L., Arendsees, R., Krause, S. W., and Kreutz, M. (2007) Inhibitory effect of tumor cell-derived lactic acid on human T cells. Blood 109, 3812–3819 CrossRef Medline
14. Fantin, V. R., St-Pierre, J., and Leder, P. (2006) Attenuation of LDH-A expression uncovers a link between glycolysis, mitochondrial physiology, and tumor maintenance. Cancer Cell 9, 425–434 CrossRef Medline
15. Le, A., Cooper, C. R., Gouw, A. M., Dinavahi, R., Maitra, A., Deck, L. M., Royer, R. E., Vander Jagt, D. L., Semenza, G. L., and Dang, C. V. (2010) Inhibition of lactate dehydrogenase A induces oxidative stress and inhibits tumor progression. Proc. Natl. Acad. Sci. U.S.A. 107, 2037–2042 CrossRef Medline
16. Sheng, S. L., Liu, J. J., Dai, Y. H., Sun, X. G., Xiong, X. P., and Huang, G. (2012) Knockdown of lactate dehydrogenase A suppresses tumor growth and metastasis of human hepatocellular carcinoma. FEBS J. 279, 3898–3910 CrossRef Medline
17. Wang, Z. Y., Loo, T. Y., Shen, J. G., Wang, N., Wang, D. M., Yang, D. P., Mo, S. L., Guan, X. Y., and Chen, J. P. (2012) LDH-A silencing suppresses breast cancer tumorigenicity through induction of oxidative stress mediated mitochondrial pathway apoptosis. Breast Cancer Res. Treat. 131, 791–800 CrossRef Medline
18. Xie, H., Hanai, J., Ren, J. G., Kats, L., Burgess, K., Bhargava, P., Signoretti, S., Billiard, J., Duffy, K. J., Grant, A., Wang, X., Lorkiewicz, P. K., Schatzman, S., Boussamra, M., 2nd, Lane, A. N., et al. (2014) Targeting lactate dehydrogenase—a inhibits tumorigenesis and tumor progression in mouse models of lung cancer and impacts tumor-initiating cells. Cell Metab. 19, 795–809 CrossRef Medline
19. Mcleland, M. L., Adler, A. S., Shang, Y., Hunsaker, T., Truong, T., Peterson, D., Torres, E., Li, L., Haley, B., Stephan, J. P., Belvin, M., Hatzivassiliou, G., Blackwood, E. M., Corson, L., Evangelista, M., et al. (2012) An integrated genomic screen identifies LDHB as an essential gene for triple-negative breast cancer. Cancer Res. 72, 5812–5823 CrossRef Medline
20. S. K., Mazure, N. M., Counillon, L., and Pouyssegur, J. (2013) Hypoxia and acidity. Introduction. FEBS Lett. 580, 0125976 CrossRef Medline
21. Markert, C. L., and Moller, F. (1959) Multiple forms of enzymes: tissue, ontogenetic, and species specific patterns. Proc. Natl. Acad. Sci. U.S.A. 45, 753–763 CrossRef Medline
22. R. E. (1985) Measurement of total lactate dehydrogenase activity. Ann. Clin. Lab. Sci. 15, 13–31 Medline
23. Goldberg, E. (1971) Immunological specificity of lactate dehydrogenase-X. Proc. Natl. Acad. Sci. U.S.A. 68, 349–352 CrossRef Medline
24. Boudreau, A., Purkey, H. E., Hitz, A., Robarge, K., Peterson, D., Labadie, S., Kwong, M., Hong, R., Gao, M., Del Nagro, C., Pusapati, R., Ma, S., Salphati, L., Pang, I., Zhou, A., Kwong, M., Hong, R., Gao, M., Del Nagro, C., Pusapati, R., Ma, S., Salphati, L., Pang, I., Zhou, A., et al. (2016) Metabolic plasticity underpins innate and acquired resistance to LDHIA inhibition. Nat. Chem. Biol. 12, 779–786 CrossRef Medline
25. Costa, A. S. H., and Frezza, C. (2017) Metabolic reprogramming and oncogenesis: one hallmark, many organelles. Int. Rev. Cell Mol. Biol. 332, 213–231 CrossRef Medline
26. Vander Heiden, M. G., and DeBerardinis, R. J. (2017) Understanding the intersections between metabolism and cancer biology. Cell 168, 657–669 CrossRef Medline
27. Vucetic, M., Cormerais, Y., Parks, S. K., and Pouyssegur, J. (2018) The Warburg effect: how does it benefit cancer cells? Trends Biochem. Sci. 41, 211–218 CrossRef Medline
28. Semenza, G. L. (2017) Hypoxia-inducible factors: coupling glucose metabolism and redox regulation with induction of the breast cancer stem cell phenotype. EMBO J. 36, 252–259 CrossRef Medline
29. Gillies, R. J. (2001) The tumour microenvironment: causes and consequences of hypoxia and acidity. Introduction. Novartis Foundation Symposium 240, 1–6 Medline
30. Parks, S. K., Mazure, N. M., Counillon, L., and Pouyssegur, J. (2013) Hypoxia promotes tumor cell survival in acidic conditions by preserving ATP levels. J. Cell. Physiol. 228, 1854–1862 CrossRef Medline
36. Polet, F., and Feron, O. (2013) Endothelial cell metabolism and tumour angiogenesis: glucose and glutamine as essential fuels and lactate as the driving force. J. Int. Med. 273, 156–165 CrossRef Medline

37. Groussard, C., Morel, I., Chevanne, M., Monnier, M., Cillard, J., and Delamarche, A. (2000) Free radical scavenging and antioxidant effects of lactate ion: an in vitro study. J. Appl. Physiol. 89, 169–175 CrossRef Medline

38. Parks, S. K., Cormerais, Y., and Pouyssegur, J. (2017) Hypoxia and cellular metabolism in tumour pathophysiology. J. Physiol.

39. de Padua, M. C., Delodi, G., Vucetic, M., Durivault, J., Vial, V., Bayer, P., Nolet, G. R., Mazure, N. M., Zdarevich, M., and Pouyssegur, J. (2017) Increased tumor glycolysis characterizes immune resistance to adoptive T cell therapy. Cell Metab. 27, 977–987. e4 CrossRef Medline

40. Damgaci, S., Ibrahim-Hashim, A., Enriquez-Navas, P. M., Pilon-Thomas, S., Guvenis, A., and Gillies, R. J. (2018) Hypoxia and acidosis: immune suppressors and therapeutic targets. Immunology

41. Cascone, T., McKenzie, J. A., Mbofung, R. M., Punt, S., Wang, Z., Xu, C., Williams, L. J., Wang, Z., Bristow, C. A., Carugo, A., Peoples, M. D., Li, L., Karpinets, T., Huang, L., Malu, S., et al. (2018) Increased tumor glycolysis characterizes immune resistance to adoptive T cell therapy. Cell Metab. 27, 977–987. e4 CrossRef Medline

42. Marchiq, I., Franchi, A., and Silvestre, P. (2016) Disrupting proton dynamics and energy metabolism for cancer therapy. Nat. Rev. Cancer 13, 611–623 CrossRef Medline

44. Pouyssegur, J., Franchi, A., Salomon, J. C., and Silvestre, P. (1980) Isolation of a Chinese hamster fibroblast mutant defective in hexose transport and aerobic glycolysis: its use to dissect the malignant phenotype. Proc. Natl. Acad. Sci. U.S.A. 77, 2698–2701 CrossRef Medline

45. Pouyssegur, J., Franchi, A., and Silvestre, P. (1980) Relationship between increased aerobic glycolysis and DNA synthesis initiation studied using glycolytic mutant fibroblasts. Nature 287, 445–447 CrossRef Medline

46. Parks, S. K., Chiche, J., and Pouyssegur, J. (2013) Disrupting proton dynamics and energy metabolism for cancer therapy. Nat. Rev. Cancer 13, 611–623 CrossRef Medline

47. Marchiq, I., Le Floch, R., Roux, D., Simon, M. P., and Pouyssegur, J. (2015) Genetic disruption of lactate/H+ symporters (MCTs) and their subunit CD147/BASIGIN sensitizes glycolytic tumor cells to phenformin. Cancer Res. 75, 171–180 CrossRef Medline

48. Parks, S. K., Cormerais, Y., and Pouyssegur, J. (2017) Hypoxia and cellular metabolism in tumour pathophysiology. J. Physiol.

49. Balgi, A. D., Diering, G. H., Donohue, E., Lam, K. K., Fonseca, B. D., Zimmerman, C., Numata, M., and Roberge, M. (2011) Regulation of mTORC1 signaling by pH. PLoS ONE 6, e21549 CrossRef Medline

50. Pouyssegur, J., Chambard, J. C., Franchi, A., Paris, S., and Van Obberghen-Schilling, E. (1982) Growth factor activation of an amiloride-sensitive Na+/H+ exchange system in quiescent fibroblasts: coupling to ribosomal protein S6 phosphorylation. Proc. Natl. Acad. Sci. U.S.A. 79, 3935–3939 CrossRef Medline

51. Ran, F. A., Hsu, P. D., Wright, J., Agarwala, V., Scott, D. A., and Zhang, F. (2013) Genome engineering using the CRISPR-Cas9 system. Nat Protoc. 8, 2281–2308 CrossRef Medline

52. Hsu, P. D., Scott, D. A., Weinstein, J. A., Ran, F. A., Konermann, S., Agarwala, V., Li, Y., Fine, E. J., Wu, X., Shalem, O., Cradick, T. J., Marraffini, L. A., Bao, G., and Zhang, F. (2013) DNA targeting specificity of RNA-guided Cas9 nucleases. Nat. Biotechnol. 31, 827–832 CrossRef Medline

53. Zhang, Y., Bilbao, A., Bruderer, T., Luban, J., Strambio-De-Castillia, C., Lisacek, F., Hopfgartner, G., and Varesio, E. (2015) The use of variable Q1 isolation windows improves selectivity in LC-SWATH-MS acquisition. J. Proteome Res. 14, 4359–4371 CrossRef Medline

54. Benjamini, Y., and Hochberg, Y. (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. Series B Methodol. 57, 289–300

55. Feist, M., Schwarzfischer, P., Heinrich, P., Sun, X., Kemper, J., von Bonin, F., Perez-Rubio, P., Taruttis, F., Rehberg, T., Dettmer, K., Gronwald, W., Reinders, J., Engelmann, J. C., Dudek, J., Klapper, W., et al. (2018) Cooperative STAT/NF-kB signaling regulates lymphoma metabolic reprogramming and aberrant GOT2 expression. Nat. Commun. 9, 1514 CrossRef Medline

56. Millard, P., Letisse, F., Sokol, S., and Portais, J. C. (2012) IsoCor: correcting MS data in isotope labeling experiments. Bioinformatics 28, 1294–1296 CrossRef Medline

LDHA/B-DKO abolishes the Warburg effect but not tumor growth