Analysis of delay factors on drilling projects on PT China Oilfields Services Limited

W Sardjono*, W G Perdana², R Ansori³, D N Utama⁴

¹Information Systems Management Department, BINUS Graduate Program - Master of Information Systems Management, BINA NUSANTARA University, Jakarta, Indonesia 11480
²Post Graduate Program, School of Environmental Science, University of Indonesia, Jakarta, Indonesia
³Graduate Program, Master of Business Administration, Faculty of Economic and Business, University of Gadjahmada, Yogyakarta, INDONESIA
⁴Computer Science Department, BINUS Graduate Program - Master of Computer Science, Bina Nusantara University, Jakarta, Indonesia 11480

Email: ¹wahyu.s@binus.ac.id

Abstract. In carrying out drilling projects at PT China Oilfields Services Limited (COSL) Indo, especially Project 1 to Project 4, there were a mismatch between the initial plan of the project and the actualisation in the field because there were inhibiting factors in implementing the project. The purpose of the research was to look the factors that caused for the additional time in well drilling project at PT. COSL Indo, to build a relationship model of these factors, and formulate a strategy for the company to be able to overcome the occurrence of additional time in the future project. Data analysis was conducted by using a factor analysis method and the location of the research was carried out in just one company with 102 valid respondents. The results of the research indicate that there are four factors that influence the time gap, namely Project Management Activities, Risk Analysis and Procurement, Manage Stairs, and Project Planning Development. By knowing the causes of the delay, companies can find the best solutions for future learning and the impact on environmental, social and economic problems can also be anticipated so that sustainable development occurs in the context of petroleum management.

Keywords: delay factor, drilling project, private company

1. Introduction

China Oilfield Services Limited Indo or in short COSL Indo is an oilfield service company. That is a company which gives services to the oil exploration and production industries. This company gives services in form of oil exploration and oil drilling that will be produced to its clients. On the oil and gas drilling project carried out by COSL Indo, there are experiencing some delays in project 1 to project 4 illustrated in the graphs below. Form the graph, there is an increase in time that occurs. If the project is completed according to plan, then the company will get more profit and does not interfere with other projects. Figure 1.
2. Literature review
2.1. Project management
Project is a temporary endeavor undertaken to create a unique product, service or result (PMBOK, 2017). Based on PMBOK 2017, in one project there are five process groups that are process group initiating, planning, executing, monitoring and controlling, and closing. This process has 49 activities that have to be taken. However, this process groups has relationship with ten knowledge management in carrying out the activities, where every knowledge management has their own set of activities. Ten knowledge management that will be use are project integration management, project scope management, project schedule management, project cost management, project quality management, project resource management, project communication management, project risk management, project procurement management, and project stakeholder management [1].

2.2 Factor analysis
Factor analysis is a technique for discovering patterns among the variables to determine if an underlying combination of the original variables (a factor) can summarize the original set (Cooper and Schlinder, 2014). This method transform the variable into a new set of fewer variables where these variable is linear and incorrelate with each other. There are some measuring instrument for measuring the adequacy of

Figure 1. Project 1 – Project 4, Plan vs Actual

![Project 1 - Project 4, Plan vs Actual](image-url)
3. Methodology
Research Design can be shown at Figure 2.

![Figure 2. Research Design](image)

3.1. Data collection techniques
The research uses primary and secondary data. Primary data is obtained from company data in the form of historical data by seeing the reports from well drilling project activities. While questionnaire contains about question with multiple choices, the question were construct from scientific journals in the year 2009 to 2019 that has teori similarity with the research indicator that are theories about project management. There are 27 indicators are taken from 49 processes from ten knowledge management. The selected sample for distribute the questionnaire are well drilling project stakeholders with total respondents 102 respondents. Secondary data take from books or scientifict journal that has some connection with the topic of research [2].

3.2. Research instrument
Indicators used in the research for delays in the well drilling project are in Table 1.
3.3. Data analysis method
Data analysis data is conducted after getting the results of the questionnaire. The results are tested using validity test and reliability test. Realibility test uses internal consistency by looking at the coefficient Cronbach’s Alpha. Meanwhile, validity test uses KMO and Bartlett’s test. After the results pass from the two test, next the result uses anti-image matrices test and then examine the indicators using factor analysis so that it obtains the model for reference of the research.

4. Results and discussion
Steps that can be taken by companies in managing project work, namely involving project managers in planning and managing project activities. According to PMBOK, 2017 project managers have an important role as leaders of the project team to be able to achieve the objectives of the project. The project manager also has the responsibility for the work of the project and the final results of the project. Therefore, the company must be able to involve the project manager from the initiation process to closing so that the project manager can manage the drilling project work in order to achieve project objectives and take action if something goes wrong in the work.
In Figure 3. Making Work Breakdown Structure (WBS) is also important in managing work. This is because WBS defines work to be completed to complete the project and WBS also helps determine the cost of the project and its scheduling (El-Reedy, 2016). The project team can brainstorm in building project activities which later can be useful for controlling and implementing projects right at the time of execution. In making the breakdown of WBS into a detailed component, the company must be able to plan, manage and control the work properly so that there is no excessive decomposition. Excessive decomposition can lead to unproductive management efforts, inefficient use of resources, reduced efficiency of work performance, and data aggregate difficulties at different levels at WBS (PMBOK, 2017).

4.1. Research limitations
There are several limitations in the research, those are
1. Distribution of questionnaires is only in one organization where the number of samples is 102 respondents and carried out in a limited period of time, that is in April 2019.
2. In conducting the research, the literature used as a theoretical basis from one source and 27 indicators are used and was conducted only four well in one organization.

From the results of data processing, it can be obtained some optimal solutions with the formation of four new variables in accordance with the description in Table 4.

Respondent Demographics
Filling out the questionnaire is done through direct writing and google form. Questionnaire given to all workers that are involved for the drilling project with 102 respondents. In majority, there are 61 respondents with male gender, 40 respondents with staff position in the organization, 50 respondents with 31-40 years old, 46 respondents with less than 5 years work in the organization, 90 respondents with S1 last education, and 43 respondents with less than 2 years of experience in well drilling project.

4.2. Reliability Test

Reliability	Statistic
Cronbach’s Alpha	N of Items
0.93	27
Realibility test was obtained by 0.93. The test results state that the questionnaire has met the condition. Because Cronbach’s Alpha coefficient greater than dari 0.70 [31].

4.3. Validity test

Table 3. KMO and Barlet’s Test Results

	KMO and Barlett’s Test	
Kaise-Meye Sampling	Olkin Mrasure of Adeuacy	0.837
Bartett’s Test of Sphericity	Sig.	0.000

In Table 3. The result for KMO is 0.837 and for Barlett’s is 0.000. This test result state that all indicators test has met the condition and can conduct further analysis. Because for KMO coefficient > 0.5 and for Barlett’s coefficient < 0.001.

4.4. Anti image matrices

From 27 indicators uses, all of them have MSA ≥ 0.50 [31]. So that all of the indicators uses for this research have met the condition and can conduct for factor analysis.

4.5. Factor analysis

The result of factor analysis can be seen in Table 4.

Table 4. The New Factors of Project Control

Management Project Activities	Create WBS
	Control Schedule
	Plan Scope Management
	Plan Resource Management
	Monitor Risk
	Monitor and Control Project Work
	Plan Schedule Management
	Control Scope
Risk Analysis and Procurement Arrangement	Plan Risk Management
Control Procurement	
Plan Risk response	
Plan Procurement Management	
Manage Stakeholder Cost	Plan Stakeholder Enggagement
Identify Stakeholder	
Plan cost Management	
Control Cost	
Project Planning Development	Develop Project Management Plan
Develop project Charter	
Develop Schedule	
Perform Integrated Change	
Control Resource	
Plan Communication Management	
5. Conclusion
Based on the results of the analysis of respondent data processing related to the operational activities of oil and gas well drilling projects, it can be concluded that:

1. The indicator used were 27 indicators from ten knowledge area of project management. From 27 indicators, factor analysis is used to obtain four factors that is low management project activities, risk analysis and procurement arrangements, failure to manage stakeholders cost, and less specific project planning development.
2. Organization must optimize and watch every factor to decrease the delays in well drilling project for project in the future. If organization doesn’t optimize this factor, it can be increasing the delays in well drilling project. In every factors there are some strategy that the organization can use for optimize the four factor.

By knowing these four new factors, the organization is expected to be able to develop strategies for further drilling activities that are in harmony with the environment, social capital, and economic capital. Therefore, the sustainability of the projects is achieved, including:

1. Management project activities factors, strategies that can be used by the organization, and project activities adjustment with the scope of the project along with the available resources to minimize the risk of failure in the project. The organization must be fully committed to their planned work breakdown structure (WBS). The WBS must also be able to be managed and controlled so that the work will not break out from the planned schedule. The project manager involvement to control and achieve the objective of the project is needed.
2. Risk analysis and procurement arrangements. The organization must be able to consider the environmental conditions of the well drilling project location and conduct a risk analysis and make procurement arrangements in accordance with the environmental conditions of the project site. So, organization must look at enterprise environmental factors (EEFs) that effects the projects. The organization can also recognize the geographic conditions of the drilling location and understand the surrounding environment so that it can analyse the risks and manage the procurement required in accordance with the geographical well drilling location.
3. The factor of manage stakeholder cost, the organization must be able to group each stakeholder so that they can determine the approach strategy with the criteria of each stakeholder and reduce unnecessary expenses. To control and manage costs, companies can use earned value management (EVM).
4. Project planning development factor, The organization can involve stakeholders from the project to get additional information along with the expectations of the final outcome of the project and plan good communication if there is a change when the project still running.
5. The project delays can decrease productivity and increasing the capital cost of the process and also the delays of project, potential can be affecting to the environment since more time is needed and more carbon dioxide emission will be produced.

There are several suggestions for the future research, those are:
1. The research can be done in a larger population and sample. It can be done by increasing the number of organization and wells studied.
2. Conduct research for other factors by using the same methods or by using other methods.

References
[1] Adafin J, Rotimi, James OB and Wilkinson S. 2015. Why do the design stage elemental cost plan and final tender sum differ in New Zealand? Journal of Financial Management of Property and Construction. 20 116-131.
[2] Benn S, Abratt R and O’Leary B. 2016. Defining and identifying stakeholders: Views from management and stakeholders. South African Journal of Business Management 48 1-11.
[3] Bhonde BK and Shaikh AF. 2015. Review of Project Quality Plan. International Journal for Research in
Emerging Science and Technology 2 26-34.

[4] Burghate N. 2018. Work Breakdown Structure: Simplifying Project Management. International Journal of Commerce and Management Studies 3 2

[5] Boesso G and Kumar K. 2016. Examining the association between stakeholder culture and stakeholder salience and engagement activities: An empirical study. Management Decision, 54 4 815-831.

[6] Cooper, Donald R and Schindle PS. 2014. BUSINESS RESEARCH METHODS Twelfth Edition. (New York. McGraw-Hill).

[7] Enani J. 2015. Project Charter. International Journal of Scientific & Engineering Research. 6 3 853-857.

[8] Ghozali I. 2016. Aplikasi Analisis Multivariate dengan Program IBM SPSS 23. Badan Penerbit Universitas Diponegoro, Semarang. 8.

[9] Guo-li Y. 2010. Project Time and Budget Monitor and Control. Management Science and Engineering. 4 1 56-61

[10] Haji-Kazemi S and Andersen. 2013. Application of performance measurement as an early warning system: A case study in the oil and gas industry. International Journal of Managing Projects in Business 6 4 714-738.

[11] Hui WS, Othman R, Omar N Rahman, Rashidah A and Haron NH. 2011. Procurement issues in Malaysia. International Journal of Public Sector Management. 24 6 567-593.

[12] Ika LA, Diallo Aand Thullier D. 2009. Project management in the international development industry: The project coordinator’s perspective. International Journal of Managing Projects in Business 3 1 61-93.

[13] Issa SB and Tu Y. 2017. Integrated multi-resource planning and scheduling in engineering project. Journal of Project Management 2 11-26.

[14] Junior R and de Carvalho M. 2013. Understanding the Impact of Project Risk Management on Project Performance: an Empirical Study. Journal of Technology Management & Innovation, 5 68-78.

[15] Jun-yen L. 2012. Schedule Uncertainty Control: A Literature Review. Physics Procedia 33 1842-1848.

[16] Kassem M, Khiory, Muhammad A and Hamzah N. 2019. Risk factors in oil and gas construction projects in developing countries: a case study. International Journal of Energy Sector Management.

[17] Mirza MN, Pourzolfaghar B and Shahnazari, M. 2013. Significance of Scope in Project Success. Procedia Technology 9 722-729

[18] Munyawera S, Mulyungi P and Ismail N. 2018. Role of Procurement Planning Practices on Performance of State Corporations in Rwanda: A Case of Rwanda Energy Group. International Journal of Management and Commerce Innovations 6 1 709-718.

[19] Nahod M. 2012. Scope Control Through Managing Changes in Construction Projects. Organization, Technology and Management in Construction: An International Journal 4 1 438-447.

[20] Olsson N. 2016. Reduction lists as tool for cost control in public building projects. Journal of Facilities Management 14 1 84-100.

[21] Pacagnella J, Antonio C, Porto, Geciane S, Pacifico O, Salgado J and Alexandre P. 2015. Project Stakeholder Management: A Case Study of a Brazilian Science Park. Journal of Technology Management & Innovation 10 1 39-49.

[22] Project Management Institute. 2017. A Guide to the Project Management Body of Knowledge (PMBOK). Guide Project Management Institute, Pennsylvania 6

[23] Rodriguez, Pedro A. 2017. Conceptual model of communication theories within project process. INNOVA Research Journal 2 3 42-51.

[24] Reddy BSK, Nagaraju SK dan Salman MD .2015. A Study on Optimisation of Resources for Multiple Projects by Using PRIMAVERA. Journal of Engineering science and Technology 10 2 235-248.

[25] Schroder M, Schmitt S and Schmitt R. 2015. Design and implementation of quality control loops: Strategies to reach stable business process. The TQM Journal 27 3 294-302.

[26] Stubbs W and Higgins C. 2014. Integrated Reporting and internal mechanisms of change. Accounting, Auditing & Accountability Journal 27 7 1068-1089.

[27] Tworek P. 2012. Plan Risk Response as A Stage of Risk Management In Investment Projects In Polish and U.S. Construction – Methods, Research. Scientific Annals of the Alexandra Ioan Cuza University of Iasi Economic Sciences 59 1 201-212.

[28] Vikas and Bansal R. 2019. Efficiency evaluation of Indian oil and gas sector: data envelopment analysis. International Journal of Emerging Markets 14 2 362-378.

[29] Yaghootkar K. and Gil N. 2012. The effects of schedule-driven project management in multi-project environments. International Journal of Project Management 30 127-140.

[30] Ziek P and Anderson D. 2015. Communication, dialogue and project management. International Journal of
[31] F. S. T. Pinto, F. S. Fogliatto, and E. M. Qannari. 2014. A method for panelists’ consistency assessment in sensory evaluations based on the Cronbach’s alpha coefficient. *Food Quality and Preference*. 32 41-47.