Involvement of p130\(^{\text{Cas}}\) and p105\(^{\text{HEF1}}\), a Novel Cas-like Docking Protein, in a Cytoskeleton-dependent Signaling Pathway Initiated by Ligation of Integrin or Antigen Receptor on Human B Cells*

(Received for publication, August 7, 1996, and in revised form, November 11, 1996)

Serge N. Manié‡§§, Andreas R.P. Beck¶¶, Anne Astier¶¶, Susan F. Law**, Tim Canty‡§§, Hisamaru Hiraif‡, Brian J. Druker¶¶, Hava Avraham‡, Nilou Haghayeghi‡, Martin Sattler‡, Ravi Salgia‡§, James D. Griffin¶¶, Erica A. Golemis**, and Arnold S. Freedman‡§§

From the Departments of Medicine and Pathology, Harvard Medical School, Boston, Massachusetts 02115, the Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, the Third Department of Internal Medicine, University of Tokyo, Hongo, Tokyo 113, Japan, and the Division of Hematology and Medical Oncology, Oregon Health Sciences University, Portland, Oregon 97201.

© 1997 by The American Society for Biochemistry and Molecular Biology, Inc. Printed in U.S.A.

The Crk-associated substrate p130\(^{\text{Cas}}\) (Cas) and the recently described human enhancer of filamentation 1 (HEF1) are two proteins with similar structure (64% amino acid homology), which are thought to act as “docking” molecules in intracellular signaling cascades. Both proteins contain an N-terminal Src homology (SH), three domain and a cluster of SH2 binding motifs. Here we show that ligation of either \(\beta\) integrin or B cell antigen receptor (BCR) on human tonsillar B cells and B cell lines promoted tyrosine phosphorylation of HEF1. In contrast, Cas tyrosine phosphorylation was observed in certain B cell lines but not in tonsillar B cells, indicating a more general role for HEF1 in B cell signaling. Interestingly, pretreatment of tonsillar B cells with cytochalasin B dramatically reduced both integrin- and BCR-induced HEF1 phosphorylation, suggesting that some component of the BCR-mediated signaling pathway is closely linked with a cytoskeletal reorganization. Both HEF1 and Cas were found to complex with the related adhesion focal tyrosine kinase (RAFTK), and when tyrosine phosphorylated, with the adapter molecule CrkL. In addition, the two molecules were detected in p53/56\(^{\text{LYS}}\)-immunoprecipitates, and Lyn kinase was found to specifically bind the C-terminal proline-rich sequence of Cas in an \textit{in vitro} binding assay. These associations implicate HEF1 and Cas as important components in a cytoskeleton-linked signaling pathway initiated by ligation of \(\beta\) integrin or BCR on human B cells.

The integrin family of adhesion molecules are involved in transducing biochemical signals into the cell, resulting in diverse biological events. Among these signals are tyrosine phosphorylations of specific proteins such as the focal adhesion kinase p125\(^{\text{FAK}}\) (Fak). Integrin cytoplasmic domains are associated with actin-containing cytoskeleton components, and one concept of integrin-mediated tyrosine phosphorylations is that oligomerization of integrins reorganizes the cytoskeleton into a framework that supports interactions between components of the intracellular signaling machinery. In support of this hypothesis is the observation that inhibitors of cytoskeletal assembly also inhibit integrin-mediated tyrosine phosphorylations.

B lymphocytes express several different integrins that are involved in cell localization within specific microenvironments (4, 5). Ligation of integrins on pre-B and mature B cells appears to be involved in regulating cell survival (6–9). The identification of proteins that are tyrosine phosphorylated following integrin ligation is important to understanding how integrin-mediated signaling regulates B cell function. We have previously reported the prominent tyrosine phosphorylation of proteins of 105 to 130 kDa following \(\beta\) integrin cross-linking on human B cells (10, 11). Two of these substrates have been identified as Fak (11) and p120\(^{\text{CBL}}\) (Cbl) (12), the cellular homologue of the oncogene v-CBL.

Following integrin ligation in fibroblasts, another tyrosine phosphorylated protein known as p130\(^{\text{Cas}}\) (Cas) has been identified (13–15). Integrin-mediated homotypic adhesion in a B cell line also induced tyrosine phosphorylation of Cas (16). Cas (Crk associated substrate) was originally described as a major tyrosine phosphorylated protein in \textit{v-crk}- or \textit{v-src}-transformed cells (17, 18). Cas is an SH3 domain containing molecule with 15 potential Crk-SH2-binding motifs and several potential binding motifs for SH3 domains, suggesting that it may act as a “docking molecule” in intracellular signal transduction. In fact, Cas forms stable complexes with the SH2 domains of \textit{v-crk} family members and \textit{v-src} (16–21) and with Fak through binding to the SH3 domain of Cas (22, 23). Recently, a Cas-related protein known as HEF1 (human enhancer of filamentation 1)\(^2\)

——

\(^*\) This work was supported in part by National Institutes of Health Grants CA55207 and CA66996 and American Cancer Society Grant DHP-145 (to A. S. F.); a fellowship from the Lymphoma Foundation of America (to S. N. M.); National Institutes of Health Grants CA60821 (to R. S.), CA56177 (to J. D. G.), and HL55445 (to R. A.), National Institutes of Health Training Grant CA09655 (to S. F. L.), and American Cancer Society Grant CB-74749 and National Institutes of Health Grant R29-CA63366 (to E. A. G.). The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked “advertisement” in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

\(^1\) The abbreviations used are: FAK, p125\(^{\text{FAK}}\); Cas, p130\(^{\text{Cas}}\); HEF1, human enhancer of filamentation 1; SH, src homology; BCR, B cell antigen receptor; RAFTK, related adhesion focal tyrosine kinase; Cbl, p120\(^{\text{CBL}}\); RAM, rabbit anti-mouse Ig; CB, cytochalasin B; anti-P-tyr, anti-phosphotyrosine; IVK, \textit{in vitro} kinase assay; PAGE, polyacrylamide gel electrophoresis.

\(^2\) During the time of revision of this manuscript, Minegishi, M., Tachibana, K., Sato, T., Iwata, S., Nojima, Y., and Morimoto, C. (1996) J. Exp. Med. 184, 1365, reported the cloning of Cas-L, which is identical to HEF1, and is tyrosine phosphorylated following \(\beta\) integrin ligation in T cells.
has been isolated and characterized (24). Analogous to Cas, HEF1 contains an SH3 domain and multiple Crk-SH2 binding motifs, associates with Fak and v-abl, and localizes to focal contacts. However, in contrast to Cas, HEF1 localizes to the cell nucleus, suggesting that Cas and HEF1 may have distinct functions in cell signaling.

In the present report, we show a significant increase in the tyrosine phosphorylation of Cas and HEF1 induced by β1 integrin ligation on normal or transformed human B cells, with HEF1 being the predominant substrate. Ligation of the B cell antigen receptor (BCR) also induced tyrosine phosphorylation of predominantly HEF1, and similar to integrins, BCR-mediated HEF1 phosphorylation was dependent upon an intact actin network. We further showed that Cas and HEF1 complexed in vivo with the related adhesion focal tyrosine kinase RAFTK, the adapter protein CrkL, and Lyn kinase, indicating that both molecules may play an important role in B cell signaling.

EXPERIMENTAL PROCEDURES

Cells, Cell Lines, and Antibodies—Culture of Nalm-6 and ARH-77 cells and preparation and culture of human tonsillar B cells has been described elsewhere (10). Antibodies used in this study were directed against: CD29/β1 integrin (K20 mAb provided by Pr. A. Bernard, U146 INSERM, Nice, France); CD18/β2 integrin (10F12 mAb provided by Dr. J. Ritz, Dana-Farber Cancer Institute, Boston, MA); phosphotyrosine (4G10 mAb); p120Cbl, p53/56Lyn, p59/62Hck (mAbs, Transduction Laboratories, Lexington, KY); HEF1 (affinity purified rabbit polyclonal) (24). Anti-Cas antibodies were raised against the last 15 amino acids (949–963) in the C-terminal region of Cas. Anti-HEF1 antibodies were raised against amino acids 426–439 of HEF1 (H) (24). Anti-C/H antibody was raised against amino acids 644–819 of Cas. Affinity purified rabbit anti-Mouse Ig (RAM) and F(ab)2 goat anti-human IgM, IgG, and IgG were obtained from Jackson Laboratories (West Grove, PA). GST fusion proteins of the C-terminal domains of Cas were prepared as described previously (25).

Activation of Cells—Tonsillar B cells and Nalm-6 cell line were resuspended in Iscove's serum-free modified Dulbecco's media for 3 h (Life Technologies, Inc.), and they were stimulated with anti-integrins antibodies plus RAM as described previously (11) or with F(ab)2 goat anti-igg for the indicated times at 37 °C. In some experiments, cells were pretreated with 1 μM cytochalasin B (Sigma, St. Louis, MO) for 1 h at 37 °C before stimulation. Cells were then lysed in 1% Nonidet P-40 buffer (150 mM NaCl, 50 mM Tris-HCl, pH 8.0, 5 mM EDTA, 1 mM iodoacetamide, 10 mM phenylmethylsulfonyl fluoride, 10 μM aprotinin, 10 μM sodium vanadate).

Precipitations and in Vitro Kinase Assay—For immunoprecipitation studies, cell lysates were preincubated with protein A-Sepharose beads (Pharmacia Biotech, Inc.) and were then preincubated with specific antibody for 1 h at 4 °C followed by the addition of 25 μl of protein A-Sepharose beads for 1 h at 4 °C. For precipitations with GST fusion proteins, lysates were incubated for 2 h at 4 °C with 25 μg of fusion protein bound to glutathione beads (Pharmacia). Precipitated proteins were washed with lysis buffer and submitted to kinase assay or eluted by boiling in sample buffer (2% SDS, 10% glycerol, 0.1 μM Tris, pH 6.8, 0.02% bromophenol blue). For sequential immunoprecipitation, washed beads were boiled for 5 min in the presence of 2% SDS, and the supernatants were reprecipitated with antibodies in lysis buffer containing 0.1% final SDS concentration. In vitro kinase assays were performed by incubating washed GST- or Cas-immunoprecipitates in the absence or presence of 2 units of semi-purified Lyn kinase (Upstate Biotechnology, Inc., Lake Placid, NY) in kinase buffer (10 mM Hepes, pH 7.3, containing 50 mM NaCl, 5 mM MnCl2, 5 mM MgCl2) containing 0.1 μM ATP (Sigma) for 20 min at room temperature. To assay Lyn autophosphorylation activity, kinase buffer containing 10 μCi of [γ−32P]ATP (7000 Ci/mmol) was added to Lyn immunoprecipitates. The reaction was terminated by the addition of an equal volume of sample buffer and boiled at 95 °C for 3 min. Proteins were separated by 7.5% SDS-PAGE under reducing conditions and transferred to Immobilon- P™ membranes (Millipore Corp., Bedford, MA). The Lyn kinase autophosphorylation gel was fixed and incubated in 1 x KOH for 1 h at 55 °C to reduce the background derived from phosphorylated serines and threonines before autoradiography. For Western blots, membranes

were blocked using 5% nonfat dried milk in Tris-buffered saline-Tween 20 (20 mM Tris, pH 7.6, 130 mM NaCl, 0.1% Tween-20) and incubated for 1 h with specific antibodies in Tris-buffered saline-Tween 20. Immunoreactive bands were visualized by using secondary horseradish peroxidase-conjugated antibodies (Promega, Madison, WI) and chemiluminescence.

RESULTS

Expression of HEF1 and Cas in B Cell Lines and Normal B Cells—The expression of HEF1 and Cas was determined by using three different antibodies. Total cellular lysates from normal tonsillar B cells were subjected to immunoprecipitation with a monoclonal antibody raised against amino acids 644–819 of Cas (C/H), a polyclonal antibody raised against amino acids 426–439 of HEF1 (H), or a polyclonal antibody raised against the last 15 amino acids (949–963) in the C-terminal region of Cas. Membranes were then immunoblotted with either anti-Cas, anti-HEF1, or anti-C/H antibodies. Fig. 1A shows that anti-C/H recognized a complex of 105-, 120-, and a 100-kDa bands, as well as molecular weight markers (kDa) are shown. Blots were imaged by chemiluminescence.

Fig. 1. Expression of Cas and HEF1 in normal B cells and B cell lines. A, total cell lysates from 5 × 10⁹ unstimulated tonsillar B cells were immunoprecipitated with anti-C/H, anti-HEF1, or anti-Cas antibodies. Total cell lysate (TLC) or isolated proteins were separated by SDS-PAGE, transferred to Immobilon P™ membrane, and immunoblotted (Blot) with anti-C/H, anti-HEF1, or anti-Cas antibodies as indicated. B, total cell lysates from 10 × 10⁶ Nalm-6 or ARH-77 cells were immunoprecipitated with anti-C/H, anti-HEF1, or anti-Cas antibodies and immunoblotted using anti-C/H antibody. The position of Cas and HEF1 proteins (arrows) or of immunoglobulin (bracket), as well as molecular weight markers (kDa) are shown. Blots were imaged by chemiluminescence.

Expression of HEF1 and Cas in B Cell Lines and Normal B Cells—The expression of HEF1 and Cas was determined by using three different antibodies. Total cellular lysates from normal tonsillar B cells were subjected to immunoprecipitation with a monoclonal antibody raised against amino acids 644–819 of Cas (C/H), a polyclonal antibody raised against amino acids 426–439 of HEF1 (H), or a polyclonal antibody raised against the last 15 amino acids (949–963) in the C-terminal region of Cas. Membranes were then immunoblotted with either anti-Cas, anti-HEF1, or anti-C/H antibodies. Fig. 1A shows that anti-C/H recognized a complex of 105-, 120-, and a broad 150-kDa band. The 105-kDa and minor 120-kDa bands were immunoprecipitated and immunoblotted by both anti-C/H and anti-HEF1 antibodies but not by anti-Cas antibodies. These results indicated that the main broad 130-kDa band with additional 100–130-kDa minor species represents Cas, the 105- and 120-kDa bands represent
HEF1, and that the anti-C/H antibody crossreacted with both proteins. The anti-Cas antibody immunoprecipitated an additional 90–95-kDa band (Fig. 1A, right panel, Cas lane) that was not immunoblotted with anti-C/H antibody (Fig. 1A, left panel, Cas lane) and only faintly with anti-HEF1 antibody (Fig. 1A, central panel, Cas lane). The anti-HEF1 antibody immunoprecipitated on total cellular lysate a similar 90–95-kDa band which was however not immunoprecipitated by this antibody. The nature of the 90–95-kDa bands is presently unknown.

Expression of Cas and HEF1 was then investigated in the pre-B cell line Nalm-6 and the myeloma line ARH-77. Total cell lysates were immunoprecipitated with anti-C/H, anti-HEF1, and anti-Cas antibodies followed by immunoblotting with anti-C/H. As seen in Fig. 1B, left panel, Nalm-6 cells expressed only p105/120HEF1. Northern blot analysis of Nalm-6 for expression of human Cas mRNA confirmed the absence of Cas expression in this cell line (not shown). The anti-Cas antibody did not immunoprecipitate any of the HEF1 species, confirming that this antibody does not cross-react with HEF1. In contrast to Nalm-6, ARH-77 cells (Fig. 1B, right panel) expressed both p130Cas and the main p105 form of HEF1. Overexposure of the blot revealed the presence of the minor 120-kDa form of HEF1 as well (not shown). Again, the anti-HEF1 did not immunoprecipitate any of the Cas species, further illustrating the specificity of anti-HEF1 and anti-Cas antibodies. This suggests that these homologous proteins may be differentially expressed in B cells.

Tyrosine Phosphorylation of HEF1 and Cas Following β1 Integrin Ligation in Human B Cells—The pre-B cell line Nalm-6 was stimulated with the anti-β1 integrin mAb K20, followed by rabbit anti-mouse Ig for 30 min. Cellular lysates were then immunoprecipitated with anti-phosphotyrosine (P-tyr, 4G10) antibody followed by immunoblotting with anti-P-tyr, anti-C/H, anti-Cbl, and anti-Fak. As seen in Fig. 2, left panel, the anti-C/H antibody reacted with the major β1 integrin-mediated tyrosine phosphorylated substrate pp105 in Nalm-6 cells, whereas anti-Cbl, and to a lesser extent anti-Fak antibodies, reacted with the pp120–125 bands. Immunoprecipitation with anti-HEF1 antibodies indicated that tyrosine phosphorylation of mainly p105 HEF1 was stimulated by β1 integrin ligation but not by β2 integrin ligation (Fig. 2, right panel). Longer exposure revealed some faint but detectable level of tyrosine phosphorylation of the 120-kDa HEF1 species.

We next compared HEF1 and Cas tyrosine phosphorylation in normal tonsillar B cells and ARH-77 cells, which express both proteins. Cellular lysates from these β1 integrin-stimulated cells were immunoprecipitated with either anti-HEF1 or with anti-Cas, followed by immunoblotting with anti-P-tyr, anti-HEF1, or anti-Cas. As seen in Fig. 3, upper left panel, anti-HEF1 and anti-Cas immunoprecipitation demonstrated that β1 integrin ligation stimulated the tyrosine phosphorylation of both HEF1 and Cas in ARH-77 cells but only of HEF1 in tonsillar B cells (upper right panel). Similar to that of Nalm-6 cells, a fainter but detectable level of phosphorylation of the 120-kDa form of HEF1 could be detected in both ARH-77 and tonsillar B cells. In contrast to β1 integrin ligation, cross-linking of β2 integrins did not induce tyrosine phosphorylation of either HEF1 or Cas. These results indicate that following β1 integrin-mediated stimulation of B cells, tyrosine phosphorylation of Cas and HEF1 can be differentially regulated, with HEF1 being consistently phosphorylated in normal B cells and seven additional B cell lines examined (RPMI 8866, SB, Ramos, RL, DHL16, DHL6, and RPMI 8226, data not shown).

We investigated the kinetics of β1 integrin-mediated HEF1 and Cas phosphorylation (Fig. 3, left and right lower panels). An increase in tyrosine phosphorylation of HEF1 in ARH-77 and tonsillar B cells was detectable 2 min after β1 integrin cross-linking and reached maximal levels in 15 min. Similarly, β1 integrin-stimulated tyrosine phosphorylation of Cas was detected 2 min after stimulation in ARH-77 cells, but not in tonsillar B cells, reached maximum at 15 min, and declined thereafter.

HEF1 Is Tyrosine Phosphorylated After B-cell Antigen Receptor Engagement in Normal Tonsillar B Cells—We next examined whether HEF1 was also phosphorylated following BCR stimulation. Tonsillar B cells were stimulated with anti-IgM (b) or anti-IgG (c) F(ab')2 antibodies for 30 min, and cellular lysates were immunoprecipitated with anti-HEF1 or anti-Cas antibodies. As seen in Fig. 4A, HEF1 was tyrosine phosphorylated after ligation of either surface IgM or IgG, whereas tyro-
These results indicate that cytoskeleton organization is rephosphorylation argues against a toxic effect of cytochalasin B. HEF1 was markedly reduced. The absence of an effect on Cbl by cytochalasin B pre-treatment, while phosphorylation of BCR-mediated tyrosine phosphorylation of Cbl was unaffected with F(ab)_2 shown that cytochalasin B markedly decreased IP revealed by Western blot (Fig. 4A). Immunoprecipitated proteins were separated by SDS-PAGE and equivalent amounts of protein were loaded in each lane. B, 10 × 10^6 tonsillar B cells/condition were stimulated with anti-(Fab)_2 human IgM/G antibody and lysed as a function of time. HEF1/Cas or Cbl proteins were immunoprecipitated using either anti-C/H or anti-Cbl antibodies and immunoblotted with anti-P-tyr antibody. The same membranes were stripped and reblotted with anti-C/Hor anti-Cbl antibodies to show that equivalent amounts of protein were loaded in each lane. C, 10 × 10^6 tonsillar B cells were preincubated in media alone or with 1 μM cytochalasin B (+ CB) for 1 h, followed by stimulation with anti-β1 antibodies plus RAM or with F(ab)_2, goat anti-human IgMG. Immunoprecipitated proteins from cellular lysates using anti-C/H or anti-Cbl antibodies were analyzed by Western blot as indicated.

Tyrosine phosphorylation of p130Cas was largely undetectable. Again, the 105-kDa form of HEF1 was the main tyrosine phosphorylated species of HEF1.

Cbl also becomes tyrosine phosphorylated following ligation of β1 integrin or BCR (12, 26), therefore we investigated the kinetics of BCR-mediated HEF1 phosphorylation and compared it to Cbl. Tyrosine phosphorylation of HEF1 was detectable 5–10 min after the addition of anti-IgM/G F(ab)_2 antibodies and reached maximal levels in 45–60 min (Fig. 4B, upper panel). In contrast, BCR-mediated tyrosine phosphorylation of Cbl was already maximal 2 min after stimulation and then decreased slowly but remained above the basal level after 60 min (Fig. 4B, lower panel). These results suggest that the mechanism of phosphorylation of HEF1 and Cbl are different in BCR-mediated signaling.

Both Integrin and BCR-mediated Tyrosine Phosphorylation of HEF1 Require an Intact Actin Network—To further investigate the mechanism of HEF1 phosphorylation, tonsillar B cells were preincubated with cytochalasin B (CB) to inhibit actin reorganization and then stimulated with antibodies directed against β1 integrin or BCR for 20 min. We have previously shown that cytochalasin B markedly decreased β1 integrin-mediated tyrosine phosphorylation of the 105–130-kDa substrates (11). As seen in Fig. 4C, the β1 integrin-mediated increase in tyrosine phosphorylation of both HEF1 and Cbl was prevented by cytochalasin B pretreatment (+ CB). However, BCR-mediated tyrosine phosphorylation of Cbl was unaffected by cytochalasin B pre-treatment, while phosphorylation of HEF1 was markedly reduced. The absence of an effect on Cbl phosphorylation argues against a toxic effect of cytochalasin B. These results indicate that cytoskeleton organization is required for both integrin or BCR-induced tyrosine phosphorylation of HEF1 in normal mature B cells.

Association of the Adapter Protein CrkL with HEF1 and Cas—Association of the adapter protein CrkL with HEF1 and Cas. A, Nalm-6 or ARH-77 cells were unstimulated (none) or stimulated with anti-β1 or anti-β2 integrin antibodies plus RAM for 30 min as indicated, and normal tonsillar B cells were unstimulated (none) or stimulated with F(ab)_2, goat anti-human IgMG for 30 min. Cellular lysates were immunoprecipitated with anti-CrkL antibodies and immunoblotted with anti-C/H or anti-Cas antibodies. An irrelevant antibody (Ig*) was used to immunoprecipitate cellular lysate from BCR-stimulated tonsillar B cells to demonstrate the specificity of CrkL antibody. B, cell lysates from normal tonsillar B cells were immunoprecipitated with an irrelevant antibody (control) or with anti-HEF1 or anti-Cas antibodies (1 IP). After elution, the samples were reimmunoprecipitated with anti-RAFTK antibodies (2 IP) and immunoblotted with anti-RAFTK antibodies. A total cellular lysate (TCL) was run on the same gel. The position of RAFTK is indicated by an arrow.
kinase activity was associated only with GST-SB (Fig. 6A). These precipitates from tonsillar B cells were subjected to immunoblotting with antibodies indicated on the left.

Overall, the results show that the SH3 domain of Lyn is involved in the binding of Cas and HEF1, and that Lyn activation is increased following integrin ligation in human B cells.

In Vivo Complex between Cas, HEF1, and p53/p56Lyn—To demonstrate an in vivo association of these kinases with Cas, membranes containing immunoprecipitated Lyn, Lyn, and Hck were reprobed with anti-C/H antibody. As shown in Fig. 7A, both HEF1 and Cas were detected in Lyn immunoprecipitates. This result was unexpected since HEF1 does not contain the SH3 domain of Lyn.

Activation of p53/p56Lyn following β1 integrin Cross-linking on Human Tonsillar B Cells—In addition to BCR ligation, a recent report has shown that Lyn kinase tyrosine phosphorylation is increased following integrin ligation in human B cell lines (30). Therefore, we investigated whether Lyn activation was also increased following β1 integrin ligation in normal human B cells.
Tyrosine Phosphorylation of Cas and HEF1 in B Cells

Tonsillar B cells. Tonsillar B cells were stimulated with anti-β1 integrin antibody or with irrelevant antibody (C) and lysed as a function of time. As shown in Fig. 7C, upper panel, an in vivo increased tyrosine phosphorylation of Lyn was detectable 5 min after β1 stimulation of the cells and reached maximal levels in 45 min. Tyrosine phosphorylation of Lyn in vitro correlated with an increased autophosphorylation activity detected in an in vitro kinase assay (Fig. 7C, lower panel). Lyn activation was not induced by the irrelevant antibody.

DISCUSSION

Regulation of B cell survival within specific microenvironments involves integrin engagement (6–9). We previously reported that integrin-mediated signaling pathways in B cells regulates a cascade of tyrosine phosphorylation events (10, 11). In the present study, we have determined that p130Cas and the Cas-like molecule p105HEF1 are expressed in B cells and that β1 integrin ligation or BCR engagement on human B cells promoted tyrosine phosphorylation principally of HEF1. Furthermore, HEF1 and Cas phosphorylation following both stimuli appeared to be closely linked with cytoskeletal organization, and we identified several signaling molecules, including p53/56Lyn kinase, RAFTK, and CrkL, associated with both Cas and HEF1.

HEF1 was cloned from a HeLa cDNA library, which when expressed in Saccharomyces cerevisiae, strongly enhanced pseudohyphal growth, suggesting a role for HEF1 in regulating cell signaling and morphology (24). Although HEF1 RNA was present in all tissues examined, the highest levels were in placenta, lung, and kidney. HEF1 is 64% similar to Cas at the amino acid level. Both proteins have multiple potential SH2 binding sites and a striking similarity in the SH3 domain and the C terminus. This raises the question as to why B cells express two very similar proteins. In tonsillar B cells as well as in B cell lines, both HEF1 and Cas were present with the exception of the pre-B cell line Nalm-6, which did not express Cas. β1 integrin-mediated tyrosine phosphorylation was mainly detected in HEF1 but not in Cas, except in the more terminally differentiated B cell line ARH-77. Generally, the p105 rather than the p120 form of HEF1 was the predominant species seen and tyrosine phosphorylated. Similarly, HEF1 rather than Cas was phosphorylated following BCR ligation in tonsillar B cells, however Cas could be phosphorylated under BCR ligation in the surface IgG positive cell lines, ARH-77 and SB. Therefore, Cas appears to be phosphorylated only in more terminally differentiated cells, which suggests that Cas and HEF1 may have distinct functions depending on the differentiated state of the cell. Cellular localization studies provide further evidence for distinct functions of HEF1 and Cas and with Cas present at focal contacts, whereas HEF1 localizes to the cell periphery and the nucleus (24).

Similar to Cbl (12, 26), HEF1 is a common substrate in B cells for both integrin and antigen receptors. However, tyrosine phosphorylation of HEF1 and Cbl in fact differ in BCR-mediated signaling pathways. The kinetics of HEF1 phosphorylation was slower than that of Cbl. HEF1 phosphorylation was reduced by prior treatment of cells with cytochalasin B, whereas Cbl phosphorylation was not affected. These findings also suggest that BCR-mediated HEF1 phosphorylation correlated with actin filament reorganization. Interestingly, BCR ligation initiates microfilament assembly (31) and induces a redistribution of signaling molecules such as ras (32) and neurofibromin (33), which is inhibited by cytochalasin. Analogous to integrin-mediated tyrosine phosphorylation (2), some aspects of BCR-mediated signal transduction may require that a functional cytoskeleton serve as a framework that regulates the efficiency of interactions between signaling molecules and allows tyrosine phosphorylation of compartmentalized cellular proteins.

The structure of Cas and HEF1 includes several SH2-binding motifs that are similar to the consensus binding motif for the Crk SH2 domain (34). We showed here that both Cas and HEF1 bind to CrkL. Furthermore, all tyrosine phosphorylated Cas and HEF1 associate with CrkL, and this interaction is mediated by the SH2 domain of CrkL. Since the CrkL SH3 domain has been reported to bind to two guanine nucleotide exchange factors, C3G and mSOS, Cas and HEF1 might provide potential important links of β1 integrin and BCR signaling to the ras and or Rap1 pathways (35, 36). Therefore, by participating in a multimolecular complex formation, Cas and HEF1 may propagate downstream signals.

The focal adhesion kinase Fak can associate with both Cas and HEF1 (22, 24). These interactions are mediated by the highly homologous SH3 domains of Cas and HEF1, associating with the polyproline SH3 binding motif in Fak. We observed an in vivo association between the related adhesion focal tyrosine kinase RAFTK with Cas and HEF1. The interaction of Cas and HEF1 with RAFTK is also likely to be mediated through the SH3 domains of Cas and HEF1, binding to the C-terminal polyproline motif of RAFTK that is identical to that present in Fak. Since RAFTK is expressed in certain B cell lines independently of Fak and is phosphorylated under integrin and BCR stimulation (29), the associations of Cas and HEF1 with RAFTK may be important in these signaling pathways.

In contrast to HEF1, Cas contains a C-terminal proline-rich region that is an Src-SH3 binding motif (25). We have shown in an in vitro binding assay using a GST-fusion protein containing the C-terminal proline-rich region of Cas that p53/56Lyn, p56Vim, and p59/62Hck, but not p55Hck or p56c-ab, could bind to this motif. In addition, we demonstrated the presence of Cas in Lyn immunoprecipitates, whereas Cas was only weakly detected in Fyn immunoprecipitates and not in Hck immunoprecipitates. The anti-Fyn and anti-Lyn antibodies were raised against similar regions of the two molecules, allowing the comparison between them. The anti-Hck antibody was raised against a different region of the kinase, and we can not exclude the possibility that this antibody may have interfered with Cas binding. The interaction of Cas with Lyn in vivo likely occurred through the SH3 domain of Lyn because (i) a GST-fusion protein mutated in the C-terminal proline-rich region of Cas was unable to precipitate Lyn, and (ii) Cas phosphorylation following integrin or BCR ligation only minimally increased the presence of Cas in Lyn immunoprecipitates (not shown). HEF1 was also present in Lyn immunoprecipitates. However, HEF1 does not possess the src-SH3 binding motif that is present in Cas. Similar to Cas, HEF1 phosphorylation did not significantly increase its association with Lyn (not shown). Whether HEF1 can associate with Lyn through a non-canonical SH3 binding motif is under investigation. Alternatively, the C-terminal region of Cas may be capable of mediating heterodimerization with HEF1 (24), and therefore, the Lyn immunoprecipitation may involve a ternary Lyn-Cas-HEF1 complex. Lyn kinase activity is stimulated following both BCR ligation (30) and as shown here following β1 integrin ligation, suggesting that Lyn may be a kinase for Cas/HEF1. In support of this is that Lyn kinase could phosphorylate Cas/HEF1 in vitro when mixed prior to the kinase assay. Whether Cas/HEF1-associated Lyn is activated and responsible for Cas/HEF1 phosphorylation

3 S. N. Manie, A. Astier, and A. S. Freedman, unpublished data.

4 A. Astier, S. N. Manie, S. F. Law, T. Canty, N. Haghayeghi, B. J. Druker, R. Salgia, E. A. Golemis, and A. S. Freedman, submitted for publication.
during the process of integrin or BCR ligation remains to be determined. Cas/HEF1-associated Lyn may also be involved in the phosphorylation of other molecules recruited by Cas/HEF1.

The cytoskeletal dependence for HEF1 phosphorylation following integrin or BCR engagement on normal tonsillar B cells raises the possibility that HEF1 could integrate signals from both receptors. In T cells, signals from integrin and T cell antigen receptor have synergistic effects on proliferation (37–39). Similarly, there is evidence for a functional cross-talk between integrins and BCR from studies of ligation of both receptors, where there appears to be modulation of normal B cell proliferation. Future studies will be directed toward understanding the function of HEF1 in integrin and BCR signaling pathways and gaining insight into the association of adhesion with antigen-induced activation of B cells.

REFERENCES

1. Schwartz, M., Shaller, M., and Ginsberg, M. (1995) Annu. Rev. Cell Dev. Biol. 11, 549–589
2. Shattil, S., Ginsberg, M., and Brugge, J. (1994) Curr. Opin. Cell Biol. 6, 695–704
3. Huang, M., Lipfert, L., Cunningham, M., Brugge, J., Ginsberg, M., and Shattil, S. (1993) J. Cell Biol. 122, 473–483
4. Freedman, A. S., Munro, M. J., Rice, G. E., Bevilacqua, M. P., Morimoto, C., McIvor, B. W., Rhyhnart, K., Pober, J. S., and Nadler, L. M. (1990) Science 249, 1038–1033
5. Koopman, G., Parmentier, H. K., Schuurman, H.-K., Newman, W., Meijer, C. J. L. M., and Pals, S. (1991) J. Exp. Med. 173, 1297–1304
6. Ryan, D. H., Nucie, B. L., Abboud, C. N., and Liesveld, J. L. (1990) J. Immunol. 145, 477–484
7. Ryan, D., Nucie, B., Abboud, C., and Winslow, J. (1991) J. Clin. Invest. 88, 995–1004
8. Ryan, D. H., Nucie, B. L., and Abboud, C. N. (1992) J. Immunol. 149, 3759–3764
9. Koopman, G., Keechena, B., Lindhout, E., Newman, W., Shimura, Y., Van Seventer, G., De Groot, C., and Pals, S. (1994) J. Immunol. 152, 3760–3767
10. Freedman, A., Rhyhnart, K., Nojima, Y., Svanh, J., Elioe, L., Benjamin, C., Morimoto, C., and Vivier, E. (1990) J. Immunol. 145, 1645–1652
11. Manie, S., Astier, A., Wang, D., Phifer, J., Chen, J., Lazarovits, A., Morimoto, C., and Freedman, A. (1996) Blood 87, 1855–1861
12. Manie, S., Sattler, M., Astier, A., Phifer, J. S., Canty, T., Morimoto, C., Drucker, B., Salgia, R., Griffin, J. D., and Freedman, A. S. (1996) Exp. Hematol., in press
13. Nojima, Y., Morino, N., Mimura, T., Hamasaki, K., Furuya, H., Sakai, Sato, T., Tachnana, K., Morimoto, C., Yazaki, Y., and Hirai, H. (1995) J. Biol. Chem. 270, 15398–15402
14. Vuori, K., and Ruoslahti, E. (1995) J. Biol. Chem. 270, 22259–22262
15. Petch, L. A., Jacobholt, S. M., Bouton, A., Parsons, J. T., and Burridge, K. (1995) J. Cell Sci. 108, 1371–1379
16. Petruzzelli, L., Takami, M., and Herrera, R. (1996) J. Biol. Chem. 271, 7796–7801
17. Kanner, S., Reynolds, A., Wang, H.-C., Vines, R., and Parsons, J. (1991) EMBO J. 10, 1689–1698
18. Sakai, R., Inamata, A., Hirano, N., Ogawa, S., Tanaka, T., Tan, H., Yamazaki, Y., and Hirai, H. (1994) EMBO J. 13, 3748–3756
19. Hamasaki, K., Mimura, T., Morino, N., Furuya, H., Nakamoto, T., Aizawa, S., Morimoto, C., Yazaki, Y., Hirai, H., and Nojima, Y. (1996) Biochem. Biophys. Res. Commun. 222, 333–343
20. Vuori, K., Hirai, H., Aizawa, S., and Ruoslahti, E. (1996) Mol. Cell. Biol. 16, 2606–2613
21. Burnham, M., Harte, M., Richardson, A., Parsons, J., and Bouton, A. (1996) Oncogene 12, 2475–2472
22. Polte, T., and Hanks, S. (1995) Proc. Natl. Acad. Sci. U. S. A. 92, 10678–10682
23. Harte, M. T., Hildebrand, J. D., Burnham, M. R., Bouton, A. H., and Parsons, J. T. (1996) J. Biol. Chem. 271, 13649–13655
24. Law, S., Estojak, J., Wang, B., Mylowsk, K., Krub, G., and Golemis, E. (1996) Mol. Cell. Biol. 16, 3327–3337
25. Nakamoto, T., Sakai, R., Ozawa, K., Yazaki, Y., and Hirai, H. (1996) J. Biol. Chem. 271, 8859–8865
26. Cory, G., Lovering, R., Hinselwood, S., MacCarthy-Morrogh, L., Levinsky, R., and Kinnon, C. (1995) J. Exp. Med. 182, 611–615
27. Salgia, R., Pinck, E., Sattler, M., Li, J., Uemura, N., Wong, W., Burky, S., Hirai, H., Chen, L., and Griffith, J. (1995) J. Biol. Chem. 271, 25198–25203
28. Avraham, S., London, R., Fa, Y., Ota, S., Higewidrada, D., Li, J., Jiang, S. A., Passtor, L. M., White, R. A., Groopman, J. E., and Avraham, H. (1995) J. Biol. Chem. 270, 27542–27551
29. Astier, A., Avraham, H., Manie, S., Groopman, J., Drucker, B., Canty, T., Avraham, S., and Freedman, A. (1997) J. Biol. Chem. 272, 228–232
30. Yamanashi, Y., Kakish, T., Mizuguchi, J., Yamamoto, T., and Toyoshima, K. (1991) Science 251, 192–194
31. Melamed, I., Downey, G., Akteries, K., and Roifman, C. (1991) J. Immunol. 147, 1139–1146
32. Graziazi, L., Nahe, K., and Barsagi, D. (1990) Nature 347, 396–400
33. Boyer, M., Gutman, D., Collins, F., and Bar-Sagi, D. (1994) Oncogene 9, 349–357
34. Sengyung, Z., Shoeo, S., Chudhuri, M., Gish, G., Pawson, T., Haseer, W., King, F., Roberts, T., Neel, B., Birge, R., Fajardo, J., Chou, M., Hansafos, H., Schaffhausen, B., and Cantley, L. (1995) Cell 72, 767–778
35. Matsuda, M., Hashimoto, K., Muroya, K., Hasegawa, H., Kurata, T., Tanaka, S., Nakamura, S., and Hattori, S. (1994) Mol. Cell. Biol. 14, 5485–5500
36. ten Hoeve, J. (1994) Cancer Res. 54, 2563–2567
37. Schimizu, Y., Seventer, G., Horan, K., and Shaw, S. (1990) J. Immunol. 145, 60–67
38. Matsuyama, T., Yamada, A., Kay, J., Yamada, K. M., Akiyama, S. K., Slusscman, S., and Morimoto, C. (1989) J. Exp. Med. 170, 1133–1148
39. O’Rourke, A., and Meb, M. (1992) Nature 358, 253–255