A note on non-repetitive colourings of planar graphs

Narad Rampersad
School of Computer Science
University of Waterloo
Waterloo, ON, N2L 3G1
CANADA
nrampersad@math.uwaterloo.ca

March 29, 2022

Abstract

Alon et al. introduced the concept of non-repetitive colourings of graphs. Here we address some questions regarding non-repetitive colourings of planar graphs. Specifically, we show that the faces of any outerplanar map can be non-repetitively coloured using at most five colours. We also give some lower bounds for the number of colours required to non-repetitively colour the vertices of both outerplanar and planar graphs.

1 Introduction

A sequence a is called non-repetitive if a contains no identical adjacent blocks. A vertex (resp. edge) colouring of a graph G is called non-repetitive if for any open path P in G, the sequence of vertex (resp. edge) colours along P is non-repetitive. If G is a planar map, then a colouring of the faces of G is called non-repetitive if for any sequence of distinct faces such that each consecutive pair of faces shares an edge, the sequence of corresponding colours is non-repetitive.

Grytczuk [2] asked the following question: is there a natural number k such that the faces of any planar map can be non-repetitively coloured using at most k colours? We answer this question in the affirmative for all outerplanar maps.

Alon et al. [1] asked a similar question: is there a natural number k such that the vertices of any planar graph can be non-repetitively coloured using at most k colours? Here we give lower bounds for k for both outerplanar and planar graphs.
2 Main results

Theorem 1. If G is an outerplanar map, then the faces of G can be non-repetitively coloured using at most five colours.

Proof. We assume that we have an outerplanar embedding of G. It suffices to show that the vertices of the dual graph G^\ast can be coloured non-repetitively using at most five colours. Consider the weak dual G^w formed by deleting the vertex of G^\ast corresponding to the outer face of G. It is well known [3] that if G is outerplanar, then G^w is a forest of trees. Alon et al. [1] mention that the vertices of any tree can be non-repetitively coloured using at most four colours. Hence, the weak dual G^w can be non-repetitively coloured with at most four colours. Finally, add back the vertex initially deleted from G^\ast and colour it using a fifth colour. The resulting 5-colouring of the dual graph G^\ast induces a non-repetitive colouring of the faces of the outerplanar map G. \qed

Theorem 2. There exists an outerplanar graph G such that the vertices of G cannot be non-repetitively coloured using fewer than five colours.

Proof. We will construct such a graph G. We begin with the graph P_4, i.e. the graph consisting of a simple path on four vertices. Since there are no non-repetitive binary sequences of length four, we require at least three colours to non-repetitively colour P_4. Next we add a vertex v, connecting it with an edge to each of the vertices of P_4, thus forming the so-called fan graph F_4. Let us call the vertex v the rivet of the fan. Since v is connected to vertices of three different colours, it is evident that v must be coloured a fourth colour. The graph G then consists of five disjoint copies of F_4, with an additional vertex r connected to the rivet of each fan (see Figure 1). Clearly G is an outerplanar graph. If we assume that we only have four colours with which to work, then by the pigeonhole principle, two rivets, say v and v', must be coloured the same colour, say x. The vertex r cannot be coloured x, so r must be coloured with one of the three remaining colours, say y. However, the subgraph P_4 connected to the rivet v contains vertices coloured with three distinct colours different from x. Hence, we can always find a vertex w such that the path $wvrw'$ has colouring $yxyx$. This is clearly a repetition, and so we see that we need at least five colours to non-repetitively colour G. \qed

Theorem 3. There exists a planar graph G such that the vertices of G cannot be non-repetitively coloured using fewer than seven colours.

Proof. The construction of G is readily apparent from Figure 2. Let us label the two vertices of G with degree eight r and s. Let us call each of the connected components of the subgraph formed by deleting r and s from G a diamond. By reasoning similar to that used in the proof of Theorem 2 we may conclude that each diamond requires at least five colours for a non-repetitive colouring. Assume that we have a non-repetitive 6-colouring of G. Now consider the seven vertices of G with degree seven. By the pigeonhole principle, two of these vertices
must have the same colour. Let us call these two vertices \(v \) and \(v' \), and let us assume that they are each coloured \(x \). Let us call each of the two diamonds containing \(v \) and \(v' \) \(D \) and \(D' \) respectively. Suppose that \(D \) and \(D' \) are each coloured using exactly five colours, but the five colours used are not the same for each diamond. In this case, between \(D \) and \(D' \) all six colours are used, and so for all choices \(y, y \neq x \), for the colour of \(r \) we can always find a vertex \(w \) in one of \(D \) or \(D' \) such that the path \(wvr' \) has colouring \(yxyx \). Hence, it must be the case that \(D \) and \(D' \) are each coloured using exactly the same colours. If \(D \) and \(D' \) are each coloured using all six colours, then again we can always find a vertex \(w \) in one of \(D \) or \(D' \) such that the path \(wvr' \) has colouring \(yxyx \). It is therefore the case that \(D \) and \(D' \) are each coloured using exactly the same five colours. Thus we may colour \(r \) using the colour that does not appear in \(D \) or \(D' \); any other choice \(y, y \neq x \), will allow us to find a vertex \(w \) in one of \(D \) or \(D' \) such that the path \(wvr' \) has colouring \(yxyx \). However, by this same argument we find that \(s \) must be coloured the same colour as \(r \). Since \(r \) and \(s \) are adjacent, this is a contradiction, and so we have that \(G \) cannot be non-repetitively coloured using fewer than seven colours.

\[\square \]

References

[1] N. Alon, J. Grytczuk, M. Haluszczak, O. Riordan, “Nonrepetitive colorings of graphs”, *Random Structures Algorithms* 21 (2002), 336–346.

[2] J. Grytczuk, “Thue-like sequences and rainbow arithmetic progressions”, *Electron. J. Combin.* 9 (2002), #R44.

[3] H.J. Fleischner, D.P. Geller, F. Harary, “Outerplanar graphs and weak duals”, *J. Indian Math. Soc.* 38 (1974), 215–219.
Figure 2: Graph G from Theorem 3.