A new 3-D chaotic system with four quadratic nonlinear terms, its global chaos control via passive control method and circuit design

*C H Lien1, S Vaidyanathan2, A Sambas3, Sampath S4, Sukono5, M Mamat6

1Department of Marine Engineering, National Kaohsiung University of Science and Technology, Kaohsiung, TAIWAN
2Research and Development Centre, Vel Tech University, Chennai, Tamil Nadu, INDIA
3Department of Mechanical Engineering, Universitas Muhammadiyah Tasikmalaya, INDONESIA
4Department of Electronics and Communication Engineering, Vel Tech University, Chennai, Tamil Nadu, INDIA
5Department of Mathematics, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, INDONESIA
6Faculty of Informatics and Computing, Universiti Sultan Zainal Abidin, KualaTerengganu, MALAYSIA

Corresponding author’s e-mail address: chlien@mail.nkmu.edu.tw

Abstract. This paper reports the finding of a new three-dimensional chaotic system with four quadratic nonlinear terms. The paper starts with a detailed dynamic analysis of the properties of the system such as phase plots, Lyapunov exponents, Kaplan-Yorke dimension and equilibrium points. Our new chaotic system is obtained by modifying the dynamics of the Zhu chaotic system (2010), and it has complex chaotic properties. As an engineering application, passive control method is applied for the global chaos control of the new chaotic system. Finally, an electronic circuit implementation of the new chaotic system is designed and implemented in MultiSIM. A good qualitative agreement has been shown between the MATLAB simulations of the new chaotic system and the MultiSIM results.

1. Introduction

Chaotic dynamical systems have applications in several areas of science and engineering [1-4]. Chaotic systems are highly complex and sensitive to even small changes in the initial conditions of the systems. Chaotic systems find applications in areas such as oscillators [5-10], ecology [11-12], biology [13-15], fuzzy logic [16-17], artificial neural networks [18-20], weather systems [21-22], chemical reactors [23-25], robotics [26-27], communication systems [28-30], circuits [31-36], finance systems [37-38], jerk systems [39-42], hyperjerk systems [43-45], etc.

In this research work, we have derived a new chaotic system by modifying the dynamics of the Zhu chaotic system ([46], 2010). Specifically, our new chaotic system has four quadratic nonlinear terms and it exhibits more chaotic properties than the Zhu chaotic system. By deriving Lyapunov exponents of the new chaotic system, we have done a detailed qualitative study of the new chaotic system such as its phase plots, maximum Lyapunov exponent, Kaplan-Yorke dimension, equilibrium points, etc.

As an engineering application, we have used passive control [47-48] for the global chaos control of the new chaotic system. We have established our main result using passivity-based control via Lyapunov stability theory.
The organization structure of this paper is as follows. Section 2 announces the new chaotic system with four quadratic nonlinear terms and details its qualitative properties. Section 3 details the global chaos control of the new chaotic system via passive control. Section 4 describes an electronic circuit design of the new chaotic jerk system using MultiSIM. Section 5 draws the main conclusions.

2. A new chaotic system with four quadratic nonlinearities

In 2010, Zhu, Lio and Guo [46] proposed a 3-D chaotic system given by the dynamics

\[
\begin{align*}
 \dot{x}_1 &= -x_1 - ax_2 + x_2 x_3 \\
 \dot{x}_2 &= bx_2 - x_1 x_3 \\
 \dot{x}_3 &= -cx_3 + x_1 x_2
\end{align*}
\]

(1)

In Eq. (1), \(x_1, x_2, x_3\) are the states and \(a, b, c\) are positive parameters. In [46], it was shown that the Zhu system (1) is chaotic for the choice of parameters \((a, b, c) = (1.5, 2.5, 4.9)\).

Using Wolf’s algorithm [49], the Lyapunov exponents of the Zhu system (1) are calculated for \((a, b, c) = (1.5, 2.5, 4.9)\) and \(X(0) = (0.2, 0.2, 0.2)\) for \(T = 1E4\) seconds as

\[
\begin{align*}
 L_1 &= 0.6616, & L_2 &= 0, & L_3 &= -4.0662
\end{align*}
\]

(2)

The Zhu system (1) is chaotic as it possesses a positive Lyapunov exponent in (2).

The Kaplan-Yorke fractal dimension of the Zhu system (1) is calculated as

\[
D_{KY} = 2 + \frac{L_1 + L_2}{|L_3|} = 2.1627
\]

(3)

The value \(D_{KY} = 2.1627\) describes the chaotic nature of the Zhu system (1).

In this paper, we propose a new chaotic system by modifying the dynamics of the Zhu system (1) and obtaining the following system:

\[
\begin{align*}
 \dot{x}_1 &= -a(x_1 + x_2) + x_2 x_3 \\
 \dot{x}_2 &= bx_2 - x_1 x_3 - dx_1^2 \\
 \dot{x}_3 &= -cx_3 + x_1 x_2
\end{align*}
\]

(4)

In Eq. (4), \(x_1, x_2, x_3\) are the states and \(a, b, c\) are positive parameters.

We show that the system (4) is chaotic for the parameter values

\[
 a = 1.2, \quad b = 3, \quad c = 5, \quad d = 0.1
\]

(5)

Using Wolf’s algorithm [49], the Lyapunov exponents of the new chaotic system (4) are obtained for the parameter values as in (7) and \(X(0) = (0.1, 0.1, 0.1)\) for \(T = 1E4\) seconds as

\[
\begin{align*}
 L_1 &= 0.7248, & L_2 &= 0, & L_3 &= -3.9289
\end{align*}
\]

(6)

Clearly, the new system (4) is chaotic since it has a positive Lyapunov exponent \(L_1\).

By adding all the Lyapunov exponents in (6), we get their sum as
Thus, the new chaotic system (4) is dissipative and it has a strange chaotic attractor.

The Kaplan-Yorke fractal dimension of the new chaotic system (4) is calculated as

$$D_{KY} = 2 + \frac{L_4 + L_2}{|L_3|} = 2.1845$$

(8)

The maximal Lyapunov exponent (MLE) of the new chaotic system (4) is found as $L_1 = 0.7248$, which is greater than the maximal Lyapunov exponent (MLE) of the Zhu chaotic system (1) found as $L_1 = 0.6616$. Similarly, the Kaplan-Yorke dimension of the new chaotic system (4) is seen as $D_{KY} = 2.1845$, which is greater than the Kaplan-Yorke dimension of the Zhu chaotic system (1) given by $D_{KY} = 2.1627$.

The equilibrium points of the new chaotic system (4) are calculated by solving the equations

$$-a(x_1 + x_2) + x_2x_3 = 0$$

(9a)

$$bx_2 - x_1x_3 - dx_1^2 = 0$$

(9b)

$$-cx_3 + x_1x_2 = 0$$

(9c)

Solving the system (9) for the chaotic case $(a, b, c, d) = (1.2, 3, 5, 0.1)$, we get five equilibrium points of the new chaotic system (4), listed as follows:

$$E_0 = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix},
E_1 = \begin{bmatrix} 3.6173 \\ 3.4154 \\ 2.4709 \end{bmatrix},
E_2 = \begin{bmatrix} 4.5229 \\ -1.8744 \\ -1.6956 \end{bmatrix},
E_3 = \begin{bmatrix} -3.4097 \\ 1.7229 \\ -1.1749 \end{bmatrix},
E_4 = \begin{bmatrix} -4.2087 \\ -3.2639 \\ 2.7474 \end{bmatrix}$$

(10)

It is easy to verify that E_0 is a saddle point and other equilibrium points are saddle-foci.

Thus, all equilibrium points of the new chaotic system are unstable.

Figures 1-3 show the 2-D phase portraits of the new chaotic system (4), while Figure 4 shows the 3-D phase portrait. Figure 5 shows the Lyapunov exponents of the new chaotic system (4).
Figure 1. Two-dimensional phase plot of the new chaotic system (4) in the \((x_1,x_2)\) plane for
\((a,b,c,d) = (1.2,3,5,0.1)\) and \(X(0) = (0.2,0.2,0.2)\)

Figure 2. Two-dimensional phase plot of the new chaotic system (4) in the \((x_2,x_3)\) plane for
\((a,b,c,d) = (1.2,3,5,0.1)\) and \(X(0) = (0.2,0.2,0.2)\)

Figure 3. Two-dimensional phase plot of the new chaotic system (4) in the \((x_1,x_3)\) plane for
\((a,b,c,d) = (1.2,3,5,0.1)\) and \(X(0) = (0.2,0.2,0.2)\)
Figure 4. Strange attractor of the new chaotic system (4) in \mathbb{R}^3 for $(a, b, c, d) = (1.2, 3, 5, 0.1)$ and $X(0) = (0.2, 0.2, 0.2)$

Figure 5. Lyapunov exponents of the new chaotic system (4) for $(a, b, c, d) = (1.2, 3, 5, 0.1)$ and $X(0) = (0.2, 0.2, 0.2)$

3. Global chaos control of the new chaotic system via passive control method

In this section, we exhibit an engineering application of the new chaotic system (4), namely global chaos control of the new chaotic system (4) via passive control method. The main result in this section is established via Lyapunov stability theory [50].

Thus, we consider the controlled chaotic system given by

$$
\begin{align*}
\dot{x}_1 &= -a(x_1 + x_2) + x_2 x_3 \\
\dot{x}_2 &= b x_2 - x_1 x_3 - d x_1^2 + u \\
\dot{x}_3 &= -c x_3 + x_1 x_2
\end{align*}
$$

(11)

In (11), x_1, x_2, x_3 are states and u is a passive control to be determined.

We suppose that x_2 is the output of the new chaotic system (11), i.e. $y = x_2$.

We suppose also that $z_1 = x_1$ and $z_2 = x_3$.

Then the control system (11) can be expressed in normal form as follows:

$$
\begin{align*}
\dot{z}_1 &= -a z_1 + (z_2 - a) y \\
\dot{z}_2 &= -c z_2 + z_1 y \\
\dot{y} &= b y - z_1 z_2 - d z_1^2 + u
\end{align*}
$$

(12)

We express the system (12) in the standard form of passive control theory [48] as
\begin{equation}
\begin{aligned}
\dot{z} &= f_0(z) + p(z, y)y \\
\dot{y} &= \beta(z, y) + \alpha(z, y)u
\end{aligned}
\end{equation}

where

\begin{equation*}
f_0(z) = \begin{bmatrix} -az_1 \\ -cz_2 \end{bmatrix}, \quad p(z, y) = \begin{bmatrix} z_2 - a \\ z_1 \end{bmatrix}, \quad \alpha(z, y) = 1, \quad \beta(z, y) = by - z_1z_2 - dz_1^2
\end{equation*}

(14)

Now, we consider the quadratic positive definite function defined by

\begin{equation*}
W(z) = \frac{1}{2}(z_1^2 + z_2^2)
\end{equation*}

(15)

We claim that \(W(z)\) is a Lyapunov function for the dynamics

\begin{equation}
\dot{z} = f_0(z)
\end{equation}

(16)

Taking the time-derivative of \(W\) along the dynamics (16), we get

\begin{equation}
\dot{W}(z) = \frac{\partial W}{\partial z} f_0(z) = -az_1^2 - cz_2^2
\end{equation}

(17)

this is a negative definite function on \(R^2\).

As in [48], we choose the storage function as

\begin{equation*}
V(z, y) = W(z) + \frac{1}{2}y^2
\end{equation*}

(18)

We note that \(V\) is a quadratic and positive definite function on \(R^3\).

Taking the time-derivative of \(V\) along the trajectories of the system (13), we get

\begin{equation}
\dot{V}(z) = \frac{\partial W}{\partial z} f_0(z) + \frac{\partial W}{\partial z} p(z, y)y + \left[\beta(z, y) + \alpha(z, y)u \right]y
\end{equation}

(19)

A simple calculation gives

\begin{equation}
\dot{V} = -az_1^2 - cz_2^2 + y\left[z_1(z_2 - a) - dz_1^2 + by + u \right]
\end{equation}

(20)

We take the feedback control \(u\) as

\begin{equation}
u = -z_1(z_2 - a) + dz_1^2 - (b + k)y
\end{equation}

(21)

where \(k > 0\) is a gain constant.

Substituting (21) into (20), we get

\begin{equation}
\dot{V} = -az_1^2 - cz_2^2 - ky^2
\end{equation}

(22)

this is a quadratic and negative definite function on \(R^3\).
Substituting $y = x_2$, $\dot{z}_1 = x_1$ and $\dot{z}_2 = x_3$, we can also express the passive control (21) as

$$u = -x_1(x_3 - a) + dx_1^2 - (b + k)x_2$$

(23)

By Lyapnov stability theory [50], we have established the following main result.

Theorem 1. The new chaotic system (11) is globally and exponentially stabilized for all initial conditions $x(0) \in R^3$ by the passive control u defined by Eq. (23), where $k > 0$ is a gain constant.

For numerical simulations, we take the gain constant as $k = 20$. We take the parameter values as in the chaotic case, v_i.(a, b, c, d) = (1.2, 3, 5, 0.1).

As the initial conditions, we take $(x_1(0), x_2(0), x_3(0)) = (5.4, 12.8, 3.9)$.

Figure 6 shows the time-history of the trajectories of the controlled system (11), when the passive control u given by Eq. (23) is activated.

![Figure 6. Time-history of the controlled chaotic system (11) for the initial state $X(0) = (5.4,12.8,3.9)$, parameter values $(a,b,c,d) = (1.2,3,5,0.1)$ and $k = 20$](image)

4. Circuit realization of the new chaotic system

In this section, we will design an electronic circuit for new three-dimensional chaotic system with four quadratic nonlinear terms. The circuit in Figure 7 is designed using an approach based operational amplifiers where the state variables x_1, x_2 and x_3 of new chaotic system (4) are associated with the voltages across the capacitors C_1, C_2 and C_3, respectively. Four multipliers (AD633JN), resistors, capacitors and five amplifiers (TL082CD) are used to design the system dynamics in the circuit.

In accordance with the circuit schematic, the new chaotic system (4) can be rewritten as follows:
\[
\begin{align*}
\dot{x}_1 &= -\frac{1}{C_1 R_1} x_1 - \frac{1}{C_1 R_5} x_2 + \frac{1}{10C_1 R_3} x_2 x_3 \\
\dot{x}_2 &= \frac{1}{C_2 R_4} x_2 - \frac{1}{10C_2 R_5} x_1 x_3 - \frac{1}{10C_2 R_6} x_1^2 \\
\dot{x}_3 &= -\frac{1}{C_3 R_7} x_3 + \frac{1}{10C_3 R_8} x_1 x_2
\end{align*}
\] (24)

MultiSIM results are shown in Figure 8 by choosing convenient values for resistors and capacitors: \(R_1 = R_2 = 333.33\ \text{k}\Omega, R_3 = R_5 = R_6 = 40\ \text{k}\Omega, R_4 = 133.3\ \text{k}\Omega, R_7 = 400\ \text{k}\Omega, R_8 = 80\ \text{k}\Omega, R_9 = R_{10} = R_{11} = R_{12} = 100\ \text{k}\Omega, C_1 = C_2 = C_3 = C_4 = 3.2\ \text{nF}\). Figure 8 presents MultiSIM results of the circuit, which show its chaotic behavior.

5. Conclusions

A new three-dimensional chaotic system with four quadratic nonlinear terms has been proposed in this paper. Numerical simulations have been used to illustrate that this system has a chaotic behavior. The dynamical properties of this new chaotic system were analyzed. As an engineering application, we have derived new results for the global chaos control of the new chaotic system by passivity based control. The designed circuit has been implemented and examined using the MultiSIM software to verify the simulation results.
Figure 7. The electronic circuit schematic of the new chaotic system (4)
Figure 8. Phase portraits of the MultiSIM simulation in the
(a) $x_1 - x_2$ plane, (b) $x_2 - x_3$ plane and (c) $x_1 - x_3$ plane

References
[1] Azar A T and Vaidyanathan S 2016 Advances in Chaos Theory and Intelligent Control (Berlin: Springer)
[2] Vaidyanathan S and Volos C 2016 Advances and Applications in Chaotic Systems (Berin: Springer)
[3] Vaidyanathan S and Volos C 2016 Advances and Applications in Nonlinear Control Systems (Berlin: Springer)
[4] Pham V T, Vaidyanathan S, Volos C, Kapitaniak T 2018 Nonlinear Dynamical Systems: Self-Excited and Hidden Attractors (Berlin: Springer)
[5] Pham V T, Volos C K and Vaidyanathan S 2015 Studies in Computational Intelligence 581 59-72
[6] Vaidyanathan S, Volos C K and Pham V T 2015 Studies in Computational Intelligence 576 571-590
[7] Vaidyanathan S and Rasappan S 2011 Communications in Computer and Information Science 131 585-593
[8] Vaidyanathan S 2012 Lecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering 85 124-133 2012
[9] Vaidyanathan S 2015 Int. J. Modelling, Identification and Control 23 380-92
[10] Vaidyanathan S 2015 Kyungpook Mathematical Journal 55 563-586
[11] Matouk A E and Elsadany A A 2016 Nonlinear Dynamics 85 1597-612
[12] Chattopadhyay J, Pal N, Samanta S, Venturino E and Khan Q J A 2015 BioSystems 138 18-24
[13] Saha S and Mukherjee V 2018 Soft Computing 22 3797-816
[14] Nikolaev E V, Rahi S J and Sontag E D 2018 Biophysical Journal 114 1232-40
[15] Scharf Y 2017 Chaos Solitons Fractals 95 42-47
[16] Vaidyanathan S and Azar A T 2016 Int. J. Intelligent Engineering Informatics 4 135-50
[17] Shirkavand M and Pourgholi M 2017 Chaos Solitons Fractals 113 135-47
[18] Njitacke Z T and Kengne J 2018 AEU-International Journal of Electronics and Communications 93 245-52
[19] Tooranjipour P and Vatankhah R 2018 Applied Soft Computing Journal 70 622-32
[20] Xu C 2018 Mathematics and Computers in Simulation 149 69-90
[21] Rasappan S and Vaidyanathan S 2012 Far East J. Mathematical Sciences 67 265-287
[22] Vaidyanathan S, Volos C K, Rajagopal K, Kyprianidis I M and Stouboulos I N 2015 J. Engineering Science and Technology Review 8 74-82
[23] Vaidyanathan S 2015 Int. J. ChemTech Research 8 209-221
[24] Vaidyanathan S 2015 Int. J. ChemTech Research 8 146-158
[25] Vaidyanathan S 2015 Int. J. ChemTech Research 8 159-171
[26] Vaidyanathan S, Sambas A, Mamat M and Sanjaya W S M 2017 Archives of Control Sciences 27 541-54
[27] Mansour S M B, Sundarapandian V and Naceur S M 2016 International J. Control Theory and Applications 9 37-54
[28] Akgul A, Moroz I, Pehlivan I and Vaidyanathan S 2016 Optik 127 5491-99
[29] Zhang Y 2018 Information Sciences 450 361-77
[30] Gunasekaran G and Venkatesan M 2018 Pertanika J. Science and Technology 26 599-614
[31] Pham V T, Jafari S, Volos C, Giakoumis A, Vaidyanathan S and Kapitaniak T 2016 IEEE Trans. Circuits and Systems II: Express Briefs 63 878-82
[32] Volos C, Maaita J O, Vaidyanathan S, Pham V T, Stouboulos I and Kyprianidis I 2017 IEEE Trans. Circuits and Systems II: Express Briefs 64 339-43
[33] Vaidyanathan S, Pham V T, Volos C and Sambas A 2018 Studies in Systems, Decision and Control 133 345-64
[34] Sambas A, Vaidyanathan S, Mamat M and Mada Sanjaya W S 2018 Studies in Systems, Decision and Control 133 365-73
[35] Vaidyanathan S, Sambas A, Mamat M and Sanjaya W S M 2017 Int. J. Modelling, Identification and Control 28 153-66
[36] Sambas A, Vaidyanathan S, Mamat M, Sanjaya W S M and Prastio R P 2016 Int. J. Control Theory and Applications 9 141-49
[37] Idowu B A, Vaidyanathan S, Sambas A, Olusola O I and Onma O S 2018 Studies in Systems, Decision and Control 133 271-95
[38] Tacha O I, Volos C K, Kyprianidis I M, Stouboulos I N, Vaidyanathan S and Pham V T 2016 Applied Math. Computation 276 200-17
[39] Vaidyanathan S 2017 Archives of Control Sciences 27 409-39
[40] Vaidyanathan S, Sambas A, Mamat M and Sanjaya W S M 2017 Int. J. Modelling, Identification and Control 28 153-66
[41] Vaidyanathan S 2016 Int. J. Control Theory and Applications 9 199-219
[42] Vaidyanathan S 2016 Studies in Computational Intelligence 635 59-79
[43] Wang X, Vaidyanathan S, Volos C, Pham V T and Kapitaniak T 2017 Nonlinear Dynamics 89 1673-87
[44] Leutcho G D, Kengne J and Kengne L K 2018 Chaos Solitons Fractals 107 67-87
[45] Daltzis P, Vaidyanathan S, Pham V T, Volos C, Nistazakis E and Tombras G 2018 Circuits Systems and Signal Processing 37 613-35
[46] Zhu C, Liu Y and Guo Y 2010 Intelligent Information Management 2 104-9
[47] Kose E 2017 Electrical Engineering 99 763-73
[48] Byrnes C I, Isidori I and Willems J C 1991 IEEE Transactions on Automatic Control 36 1228-40
[49] Wolf A, Swift J B, Swinney H L and Vastano J A 1985 Physica D 16 285-317
[50] Khalil H K 2001 Nonlinear Systems (New York: Pearson)