5-6-2009

Coloring graphs with crossings

Bogdan Oporowski
Louisiana State University

David Zhao
The University of Texas at Austin

Follow this and additional works at: https://digitalcommons.lsu.edu/mathematics_pubs

Recommended Citation
Oporowski, B., & Zhao, D. (2009). Coloring graphs with crossings. *Discrete Mathematics, 309* (9), 2948-2951. https://doi.org/10.1016/j.disc.2008.07.040

This Article is brought to you for free and open access by the Department of Mathematics at LSU Digital Commons. It has been accepted for inclusion in Faculty Publications by an authorized administrator of LSU Digital Commons. For more information, please contact ir@lsu.edu.
Note

Coloring graphs with crossings

Bogdan Oporowskia, David Zhaob

a Department of Mathematics, Louisiana State University, Baton Rouge, LA 70803, United States
b Department of Computer Science, University of Texas, Austin, TX 78712, United States

\textbf{A R T I C L E I N F O}

Article history:
Received 19 January 2005
Received in revised form 8 July 2008
Accepted 9 July 2008
Available online 3 September 2008

Keywords:
Chromatic number
Clique number
Crossing number
Immersion

\textbf{A B S T R A C T}

We generalize the Five-Color Theorem by showing that it extends to graphs with two crossings. Furthermore, we show that if a graph has three crossings, but does not contain K_6 as a subgraph, then it is also 5-colorable. We also consider the question of whether the result can be extended to graphs with more crossings.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

In this paper, n will denote the number of vertices, and m the number of edges, of a graph G. A coloring of G is understood to be a proper coloring; that is, one in which adjacent vertices always receive distinct colors.

We will consider drawings of graphs in the plane \mathbb{R}^2 for which no three edges have a common crossing. A crossing of two edges e and f is trivial if e and f are adjacent or equal, and it is non-trivial otherwise. A drawing is good if it has no trivial crossings. The following is a well-known lemma.

\textbf{Lemma 1.1.} A drawing of a graph can be modified to eliminate all of its trivial crossings, with the number of non-trivial crossings remaining the same.

To avoid complicating the notation, we will use the same symbol for a graph and its drawing in the plane. We will refer to the regions of a drawing of a graph G as the maximal open sets U of $\mathbb{R}^2 - G$ such that for every two points $x, y \in U$, there exists a polygonal xy-curve in U.

\textbf{Definition 1.2.} The crossing number of a graph G, denoted by $\nu(G)$, is the minimum number of crossings in a drawing of G. An optimal drawing of G is a drawing of G with exactly $\nu(G)$ crossings.

\textbf{Definition 1.3.} Suppose G' and G are graphs. A function α with domain $V(G') \cup E(G')$ is an immersion of G' into G if the following hold:

(1) the restriction of α to $V(G')$ is an injection into $V(G)$;
(2) for an edge e of G' incident to u and v, the image $\alpha(e)$ is a path in G with ends $\alpha(u)$ and $\alpha(v)$; and
(3) for distinct edges e and f of G', their images $\alpha(e)$ and $\alpha(f)$ are edge-disjoint.
The crossing number of the complete graph K_n is easy to draw if n is even. It is worth noting that if, for every edge e of G', the path $\alpha(e)$ consists of a single edge, then G' is a subgraph of G. All immersions considered in the remainder of this paper will be essential.

Proposition 1.4. If $n \geq 3$, then $v(G) \geq m - 3n + 6$.

Proof. As a consequence of Euler’s formula, since $m \leq 3n - 6$ in a planar graph, every edge in excess of this bound introduces at least one additional crossing. □

Corollary 1.5. The crossing number of the complete graph K_6 is 3.

Proof. It is easy to draw K_6 with exactly three crossings, while Proposition 1.4 implies that $v(K_6) \geq 3$. □

2. **Immersions and crossings**

In this section we present several results that relate crossings of a drawing with immersions of a graph.

Lemma 2.1. Suppose G is a good drawing with exactly k crossings and there is an essential immersion of G' onto G. Then G' has a good drawing with exactly k crossings.

Proof. Let α be an essential immersion of G' onto G. Draw G' by placing each vertex v at $\alpha(v)$, drawing each edge e so that it follows $\alpha(e)$, and then perturbing the edges slightly so that no edge contains a vertex and no three edges cross at the same point. Each crossing of edges e and f in G' arises from the corresponding paths $\alpha(e)$ and $\alpha(f)$ either crossing or sharing a vertex. In the latter case, the crossing is trivial as the immersion α is essential. The conclusion now follows immediately from Lemma 1.1. □

Thus we have the following:

Corollary 2.2. If G' is essentially immersed into G, then $v(G') \leq v(G)$.

We may also use essential immersions to extend the Five-Color Theorem.

Lemma 2.3. Let G be a graph and let v be a vertex in G of degree at most 5 such that there is no v-immersion of K_6 into G. If $G - v$ is 5-colorable, then so is G.

Proof. Suppose that G is not 5-colorable, and let c be a 5-coloring of $G - v$. Then c must assign all five colors to the neighbors of v and hence $\deg(v) = 5$; since otherwise we can extend c to G. Let the neighbors of v be v_1, v_2, v_3, v_4 and v_5; and use the notation $c(v_i) = i$ for each $i \in \{1, 2, 3, 4, 5\}$.

For each pair of distinct i and j in $\{1, 2, 3, 4, 5\}$, let $G_{i,j}$ denote the subgraph of $G - v$ whose vertices are colored by c with i or j. If, for one such pair of i and j, the graph $G_{i,j}$ has v_i and v_j in distinct components, then the colors i and j can be switched in one of the components so that two neighbors of v are colored the same. In this case, the coloring c can be extended to v so that G is 5-colorable; a contradiction.

Hence, for each pair of distinct i and j, the graph $G - v$ has a path joining v_i and v_j whose vertices are alternately colored i and j by c, and thus G contains a v-immersion of K_6; again, a contradiction. □
Corollary 2.4 (Generalized Five-Color Theorem). Every graph with crossing number at most two is 5-colorable.

Proof. Suppose not and consider a counterexample \(G \) on the minimum number of vertices. Proposition 1.4 implies that \(m \leq 3n - 4 \), and so \(G \) has a vertex \(v \) whose degree is at most 5. From Corollaries 1.5 and 2.2 we conclude that there is no \(v \)-immersion of \(K_6 \) into \(G \). The minimality of \(G \) implies that \(G - v \) is 5-colorable, and the conclusion follows from Lemma 2.3. □

Lemma 2.3 establishes that a graph \(G \) with \(v(G) \leq 3 \) is 5-colorable if there is no \(v \)-immersion of \(K_6 \) into \(G \). The next lemma addresses the case of graphs with \(v(G) \leq 3 \) for which there is a \(v \)-immersion of \(K_6 \) into \(G \) for some vertex \(v \) in \(G \). The following corollary of a result of Kleitman \([1]\) will be used in its proof.

Proposition 2.5. Every good drawing of \(K_5 \) has an odd number of crossings.

Lemma 2.6. If \(G \) is a drawing with exactly three crossings and \(\alpha \) is a \(v \)-immersion of \(K_6 \) into \(G \) for some vertex \(v \) in \(G \), then \(v \) is incident with exactly two crossed edges.

Proof. Without loss of generality, we may assume by Lemma 1.1 that all crossings of \(G \) are non-trivial. Let \(H \) be the subgraph of \(G \) that is the image of \(K_6 \) under \(\alpha \), and let \(u \) be the vertex in \(K_6 \) such that \(\alpha(u) = v \). From Corollary 1.5 and Lemmas 2.1 and 2.3, we conclude that \(H \) is a good drawing with three non-trivial crossings, and so all crossings of \(G \) occur in \(H \).

If \(v \) were incident with one or three crossed edges in \(H \), then \(H - v \) would be a good drawing with zero or two crossings with \(K_6 \) essentially immersed onto it. This, together with Lemma 2.1, would imply that there is a good drawing of \(K_5 \) with zero or two crossings, which would contradict Proposition 2.5.

Moreover, if \(v \) were incident with no crossed edges in \(H \), then \(H - v \) would be a drawing with a region \(R \) that is incident with all vertices in the set \(S = \{\alpha(w) : w \in V(K_6 - u)\} \). The boundary of \(R \) then induces a cyclic order on the set \(S \), and hence also on \(V(K_6 - u) \). If \(e \) and \(f \) are distinct non-adjacent edges of \(K_6 - u \) and each joins a pair of non-consecutive vertices, then \(\alpha(e) \) and \(\alpha(f) \) must cross. It follows that \(H \) would have at least five crossings; a contradiction. □

3. Colorings and crossings

Lemmas 2.3 and 2.6, respectively, characterize a graph \(G \) when it does and does not contain a \(v \)-immersion of \(K_6 \). With these, we now proceed to the main theorem. We will use \(\omega(G) \) to denote the clique number of \(G \), that is, the largest \(n \) for which \(K_n \) is a subgraph of \(G \).

Main Theorem 3.1. If \(v(G) \leq 3 \) and \(\omega(G) \leq 5 \), then \(G \) is 5-colorable.

Proof. Let \(\mathcal{G} \) denote the class of all graphs with crossing number at most three that are not 5-colorable, and let \(G \) be a member of \(\mathcal{G} \) with the minimum number of vertices. Suppose that \(\omega(G) \leq 5 \) and that \(G \) is drawn optimally in the plane.

If \(G \) contains a vertex \(v \) of degree less than 5, then \(G \) is not a minimal member of \(\mathcal{G} \), since a 5-coloring of \(G - v \) extends to a 5-coloring of \(G \). Hence, the minimum degree of \(G \) is 5. By Proposition 1.4, the graph \(G \) has at most \(3n - 3 \) edges, and thus has at least six vertices of degree 5.

Let \(v \) be a vertex of degree 5. Lemma 2.3 implies that there is a \(v \)-immersion of \(K_6 \) into \(G \), and Corollary 2.2 implies that the image of \(\alpha \) in \(G \) contains three crossed edges. Then Lemma 2.6 implies that two crossed edges of \(G \) are incident with \(v \). Since \(G \) is not \(K_6 \), it contains a vertex \(w \) of degree 5 not adjacent to \(v \). However, Lemma 2.3 implies that there is also a \(w \)-immersion of \(K_6 \) into \(G \), and so \(w \) is also incident with two crossed edges. Since \(v \) and \(w \) are not adjacent, these two crossed edges are different from the crossed edges incident with \(v \), which implies that \(G \) contains four crossings; a contradiction. □

We also show that when Theorem 3.1 is applied to a 4-connected graph \(G \) other than \(K_6 \), then the assumption \(\omega(G) \leq 5 \) may be discarded. More precisely, we have:

Corollary 3.2. If \(G \) is 4-connected, \(v(G) \leq 3 \) and \(G \neq K_6 \), then \(G \) is 5-colorable.

Proof. Let \(G \) be an optimal drawing of a 4-connected graph with at most three crossings and not isomorphic to \(K_6 \). We show that \(\omega(G) \leq 5 \), from which the conclusion follows immediately from Theorem 3.1.

Suppose, to the contrary, that \(G \) has a complete subgraph \(K \) on six vertices. Let \(v \) be a vertex of \(G \) that is not in \(K \), and let \(K' \) be the plane drawing obtained from \(K \) by replacing each crossing with a new vertex. By Corollary 1.5, all three crossings of \(G \) are in \(K \), and so \(|V(K')| = 9 \) and \(|E(K')| = 21 \). Thus, since every plane graph in which \(m = 3n - 6 \) is a triangulation, \(K' \) must be a triangulation, and so every region of \(K \) contains at most three vertices in its boundary. But this is impossible, as \(G \), being 4-connected, has four paths from \(v \) to vertices of \(K \), with each pair of paths having only \(v \) in common. □

Lastly, note that \(C_3 \lor C_5 \), the graph in which every vertex of \(C_3 \) is adjacent to every vertex of \(C_5 \), contains no \(K_6 \) subgraph and is not 5-colorable.

Proposition 3.3. The crossing number of \(C_3 \lor C_5 \) is 6.
Fig. 2. $C_3 \lor C_5$ drawn with an optimal number of crossings.

Proof. Let G be an optimal drawing of $K \lor L$, where K and L are cycles on, respectively, three and five vertices. Suppose that G has fewer than six crossings. Note that $G \setminus (E(K) \cup E(L))$ is isomorphic to $K_{3,5}$, which has crossing number 4 [2]. This implies that the edges of $K \cup L$ are involved in at most one crossing, and thus L has at most three regions, one of which contains K. Thus at least one region of L avoids K and has two non-adjacent vertices of L in its boundary. These two vertices of L can be joined by a new edge that crosses no edges of G thereby creating a graph with 8 vertices, 24 edges, and 5 crossings; a contradiction to Proposition 1.4. Hence, G has six crossings. Fig. 2 shows a drawing which achieves this bound, proving that $\nu(C_3 \lor C_5) = 6$. □

We do not currently know whether the main theorem extends to graphs with four or five crossings, and hence conclude with the following question:

Question 3.4. Does a graph G have a 5-coloring if $\nu(G) \leq 5$ and $\omega(G) \leq 5$?

References

[1] D.J. Kleitman, A note on the parity of the number of crossings of a graph, Journal of Combinatorial Theory Series B 21 (1976) 88–89.
[2] D.J. Kleitman, The crossing number of $K_{5,n}$, Journal of Combinatorial Theory 9 (1970) 315–323.