Introduction

T-cell acute lymphoblastic leukemia (T-ALL) is a malignancy associated with a significant risk of relapse and poor prognosis [1]. T-ALL represents approximately 25% of adult and 15% of pediatric ALL patients [2]. Although the prognosis of T-ALL has gradually improved over the years due to modern treatment protocols, resistance and relapse still remain major challenges in...
treatment. Thus, our understanding of molecular pathogenesis and the classification of patients can improve treatment outcomes and thereby increase success rates [3,4]. Activating mutations in NOTCH1 or inactivating mutations in its negative regulator (FBXW7) occur in about 60% of T-ALL cases [5,6,7,8]. Activation of the NOTCH signaling pathway cooperates with loss of p16/INK4A and p14/ARF. In addition, translocations in oncogenes, such as LIM-only domain (LMO) genes, homeobox (HOX) genes, MYC, and MYB, frequently place these genes under the control of strong T cell-specific enhancers, thus causing aberrant overexpression [2,5].

Lymphoid enhancer-binding factor 1 (LEF1), a downstream transcriptional regulator of the Wnt/β-catenin pathway, regulates many cell cycle regulatory and cellular proliferation genes [9]. LEF1 can also modulate gene transcription independently [10]. Previous studies have shown that LEF1 plays a crucial role in normal hematopoiesis [9,11]. Defective pro-B cell survival and proliferation have been shown in LEF1 knockout mice. Overexpression of LEF1 in bone marrow progenitors results in B-lymphoblastic and acute myeloid lymphoma in recipient animals [11]. In leukemia and solid tumors, abnormal changes in LEF1 expression have been reported in several studies [12,13,14,15].

The findings on the prognostic significance of LEF1 expression show inconsistency among previously reported studies. For example, LEF1 expression has been found to be associated with poor prognosis in adult precursor B-cell acute lymphoblastic leukemia and chronic lymphocytic leukemia [14,16,17], while overexpression of LEF1 has been determined as a favorable prognostic factor in childhood ALL and acute myeloid leukemia [13,18,19,20].

Many gene targets of LEF1 and their associated pathways have been identified. However, its precise role in T-ALL has not been clarified yet. While some studies have shown an increased expression of LEF1 in both premalignant thymocytes and T-ALL [16], others have reported the deletion of the LEF1 gene accompanied with NOTCH1 and PTEN mutations, biallelic INK4A/ARF (CDKN2A) deletions, or activating PI3K or AKT gene mutations in T-ALL [16,21,22]. These contradictory findings necessitate further studies to understand the molecular mechanism of LEF1 in T-ALL.

In this study, we have investigated LEF1-regulated genes in Jurkat, a well-characterized human T acute lymphoblastic leukemia cell line that is widely used in a variety of studies to understand T-cell biology and T-cell signaling. The aim of our study was to identify potentially critical LEF1-regulated genes as well as related molecular signaling pathways using the Jurkat line as model cells.

Materials and Methods

Cell Culture

Jurkat cells were cultured at 37 °C with 5% CO₂ in RPMI-1640 medium (Lonza, Basel, Switzerland) containing 10% fetal bovine serum (Capricorn Scientific, Ebsdorfergund, Germany), 100 U/mL penicillin, 100 mg/mL streptomycin (GIBCO, Thermo Fisher Scientific, Waltham, MA, USA) and 2 mM L-glutamine.

LEF1 Small Interfering RNA (siRNA) Transfection

Jurkat cells were transfected with 100 nM LEF1 siRNA (SMARTpool ON-TARGET plus siRNA, Dharmacon, Lafayette, CO, USA), which targets both long (transcript variant 1, NCBI ID: NM_016269.5) and short isoforms (transcript variants 2, 3, 4; NCBI IDs: NM_001130713.2, NM_001130714.2, NM_001166119.1, respectively) of LEF1 or 100 nM non-targeting siRNA (SMARTpool ON-TARGET plus siRNA, Dharmacon) with HiPerfect transfection reagent (QIAGEN GmbH, Hilden, Germany) according to the manufacturer’s protocol and cultured for 24 and 48 h.

RNA Isolation

Total RNA was isolated from Jurkat cells using the RNasy Mini Kit (QIAGEN) in accordance with the manufacturer’s instructions. RNA concentrations were measured using a spectrophotometer (NanoDrop ND-1000, Thermo Scientific, Waltham, MA, USA).

Real-Time Quantitative PCR (qRT-PCR)

LEF1 siRNA knockdown and microarray results were confirmed by qRT-PCR. Reverse transcription was performed using random hexamers, total RNA, and the Transcriptor First Strand cDNA Synthesis Kit (Roche Life Science, Mannheim, Germany) following the manufacturer’s manual. To quantify the gene expression, primers specific to the LEF1 gene, DHRS2 gene, and housekeeping TATA binding protein gene (TBP) were designed. qRT-PCR was performed using LightCycler 480 SYBR Green I Mix (Roche) and LightCycler 480 Instrument II (Roche) under the following PCR conditions: 95 °C for 5 min, 95 °C for 20 s, 64 °C for 20 s, and 72 °C for 15 s (45 cycles). Forward and reverse primers (5’-3’) were as follows: TBP-forward: ACT TGA TTA GCA TAC AGG CTG ACC. Quantification was performed using the relative standard curve method. Each experiment was
performed in triplicate. Gene expressions were normalized using the housekeeping gene TBP.

Microarray

Microarray experiments were performed using the Affymetrix GeneChip® 3’ IVT Express Kit (Affymetrix, Santa Clara, CA, USA). Sample preparation was conducted in accordance with the manufacturer's protocol. Fragmented end-labeled cDNA was hybridized onto the Affymetrix GeneChip® HG-U133 Plus 2.0 Array according to Affymetrix's standard procedure. After hybridization, the chip was washed and scanned in the GeneChip Fluidics Station 450 (Affymetrix) and scanned by GeneChip Array Scanner 3000 G7 (Affymetrix). Expression signals were extracted and normalized using the Expression Console (Affymetrix), applying the robust multichip average (RMA) normalization method. The microarray expression data generated in this study are available in the NCBI Gene Expression Omnibus database (GEO; http://www.ncbi.nlm.nih.gov/geo/) [23] under accession number GSE129917.

Microarray Data Analysis

Differential gene expression analyses were performed using the limma package in R. One-way ANOVA was applied to the RMA expression values in order to determine whether genes were differentially expressed between three groups. Multiple-testing correction was applied to the p-values of the F-statistics to adjust the false discovery rate [24]. Expression level differences with p-values (FDR-corrected) of <0.05 and fold changes of >2 were considered significant. Morpheus (https://software.broadinstitute.org/morpheus) was used for the heatmap visualization of gene expression level differences. The Database for Annotation, Visualization, and Integrated Discovery (DAVID) [25,26] web-based tool was used for the biological interpretation of differentially expressed genes. The identified genes were classified based on Gene Ontology Resource [27] annotations and associated pathways were determined using the Kyoto Encyclopedia of Genes and Genomes (KEGG) [28].

Protein Isolation and Western Blotting

Western blotting was performed to detect LEF1 and DHRS2 protein expression in the cells. All protein samples were prepared from a pool of siRNA-treated culture cells (three wells), which were homogenized and treated with a RIPA lysis buffer system (Santa Cruz Biotechnology, Santa Cruz, CA, USA) on ice. β-Actin was used as an internal control. The protein concentrations were quantified using the Pierce BCA Protein Assay Kit (Thermo Fisher Scientific). A total of 15 μg of proteins were separated in 4%-12% Bis-Tris gels (Nupage Novex, Life Technologies, Bleiswijk, the Netherlands) and then transferred onto a nitrocellulose membrane using i-Blot Gel transfer stacks (Novex, Life Technologies). After incubation with blocking buffer (5% BSA) for 1 h at room temperature, western blotting was performed using primary antibodies against p53 (dilution, 1:100, DO-1 sc126, Santa Cruz), LEF1 (dilution, 1:250, sc8592, Santa Cruz), DHRS2 (dilution, 1:200, abcam, ab83254), and β-actin (1:1000, I-19R sc1616K, Santa Cruz) by overnight incubation at 4 °C. After a washing step, the HRP-conjugated secondary goat anti-mouse antibody for p53 (1:3,000, ab97023, abcam), rabbit anti-goat ab for LEF1 (1:2,000 abcam, ab6741), goat anti-rabbit for β-actin, and DHRS2 (1:5,000, Abbkine A21020-1, Abbkine Scientific, Redlands, CA, USA) were added and incubated for 1 h at room temperature. Bands were visualized by the WesternBright Sirius system (Advansista, Menlo Park, CA, USA) and analyzed using an imaging system (Wealtec Keta, Wealtec Bioscience Co., Ltd., New Taipei City, Taiwan). For protein quantification, densitometric analyses were done using Image J software (http://rsbweb.nih.gov/ij/index.html).

Statistical Analysis

SPSS 17.0 (SPSS Inc., Chicago, IL, USA) was used for data analyses. For both LEF1 and DHRS2, mRNA expression level differences between study groups were assessed by Student’s t-test. Values of p<0.05 were considered statistically significant.

Results

In order to assess the efficiency of LEF1 suppression after the transfection of Jurkat cells with LEF1 siRNA, we determined the mRNA levels of LEF1 by real-time polymerase chain reaction (qRT-PCR). Twenty-four hours after transfection, we observed an approximately 74.7% reduction in LEF1 siRNA-transfected (siLEF1) cells compared to non-targeting siRNA-transfected (siNT) cells (Figure 1).
We measured and compared gene expression levels between siLEF1, siNT, and non-transfected (NTC) Jurkat cells by microarray analysis, which revealed differentially expressed genes (DEGs), potential targets of LEF1. The most significant 10 DEGs included histone genes and DHRS2 (Figure 2). The GO enrichment analysis of the significantly downregulated genes in siLEF1 cells showed the distribution of the most abundant categories (Table 1). After GO enrichment analysis, we searched for the associated pathways for the DEGs using the KEGG and found that metabolic pathways, pathways in cancer, viral carcinogenesis, transcriptional dysregulation in cancer, mitogen-activated protein kinase signaling, and the PI3K-Akt pathway were among the aberrantly expressed signaling pathways in LEF1-downregulated cells (Table 2).

We verified our microarray results by comparison of DHRS2 gene expressions among siLEF1, siNT, and NTC cells by qRT-PCR.

Table 1. Top 10 most enriched GO terms for downregulated genes in LEF1 knockdown cells.

Category	Term	Count	%	p-value	FDR
GOTERM_MF_DIRECT	Protein binding	117	52.9	4.9E-4	6.6E-1
GOTERM_CC_DIRECT	Nucleus	87	39.4	9.9E-7	1.2E-3
GOTERM_CC_DIRECT	Nucleoplasm	57	25.8	1.7E-7	2.2E-4
GOTERM_MF_DIRECT	DNA binding	42	19.0	2.9E-7	3.9E-4
GOTERM_MF_DIRECT	Protein heterodimerization activity	30	13.6	1.4E-14	1.9E-11
GOTERM_CC_DIRECT	Nucleosome	23	10.4	3.2E-24	4.0E-21
GOTERM_BP_DIRECT	Negative regulation of transcription from RNA polymerase II promoter	19	8.6	5.7E-4	9.2E-1
GOTERM_BP_DIRECT	Nucleosome assembly	17	7.7	1.1E-13	1.8E-10
GOTERM_CC_DIRECT	Nuclear nucleosome	13	5.9	1.3E-14	1.7E-11
GOTERM_CC_DIRECT	Nuclear chromatin	10	4.5	1.6E-4	2.0E-1

Table 2. Top 10 KEGG pathways according to the number of associated DEGs.

Pathway id	Pathway name	No. of genes
hsa01100	Metabolic pathways	51
hsa05034	Alcoholism	42
hsa05322	Systemic lupus erythematosus	39
hsa05200	Pathways in cancer	36
hsa05168	Herpes simplex virus 1 infection	31
hsa05203	Viral carcinogenesis	31
hsa05202	Transcriptional misregulation in cancer	26
hsa04010	MAPK signaling pathway	26
hsa04151	PI3K-Akt signaling pathway	25
hsa04217	Necroptosis	20
Twenty-four hours after transfection, compared to siNT cells, an 84% decrease was observed in mRNA levels of DHRS2 in siLEF1 cells (Figure 3).

Protein level verification of microarray and qRT-PCR results was conducted by western blotting. Protein levels of LEF1 and DHRS2 were determined to investigate the LEF1 and DHRS2 genes’ downregulation in siLEF1 cells compared to siNT and NTC cells. LEF1 protein levels were almost undetectable 24 h after transfection (Figure 4) and were reduced by 1.8-fold 48 h after transfection in siLEF1 cells compared to siNT cells (Figure 4). The protein level of DHRS2 was 2.1-fold reduced in siLEF1 cells compared to siNT cells 24 h after transfection and the suppression persisted 48 h after transfection (Figure 4).

Discussion

Although there have been many studies on T-ALL, the underlying molecular mechanisms of this disease have yet to be revealed. In this study, we examined the potential role of the transcription factor LEF1 in T-ALL by determining its target genes and regulation mechanisms. We have compared the gene expression levels of siLEF1, siNT, and NTC Jurkat cells by microarray analysis in order to identify DEGs, which are potential targets of LEF1 (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE129917). One of the most enriched pathways for downregulated genes was “Pathways in cancer-hsa05200,” which is consistent with the association of LEF1 expression with a variety of cancers. The most significant 10 DEGs included DHRS2 (HEP27) and histone genes (Figure 2). As LEF1 is known to regulate cell cycle regulators and cellular proliferation genes, the accompanying downregulation of histone genes in LEF1 knockdown cells reflects the relationship between LEF1 and cellular proliferation. We further focused on DHRS2, which is a member of the short-chain dehydrogenase/reductase enzyme family that has activity toward steroids, retinoids, prostaglandins, and xenobiotics [29,30]. Thus, to verify our microarray results, we analyzed the expression levels of LEF1 and DHRS2 in siLEF1, siNT, and NTC cells using qRT-PCR. Additionally, protein levels of these two genes were evaluated by western blotting. Both RNA and protein level analyses confirmed our microarray results. We also searched the GEO database and found that the DHRS2 gene is upregulated in colon cancer cells treated with the adenoviral LEF1 expression vector (GEO accession number: GSE3229), which is consistent with our results.
DHRS2 is suggested to be a tumor suppressor gene in different tumor types, including nasopharyngeal carcinoma [31,32], gastrointestinal stromal tumors [33,34], metastatic lung adenocarcinomas [35], esophageal squamous cell carcinoma [30], and renal cancer [36]. Previous reports showed that the DHRS2 enzyme interacts with MDM2, a protein responsible for the negative regulation of the p53 tumor suppressor gene [37,38,39]. Similarly, it is also known that one of the alternatively spliced transcripts of CDKN2 (ARF) antagonizes MDM2-dependent p53 degradation [40]. Furthermore, LEF1 inactivation has been associated with biallelic INK4a/ARF deletions in T-ALL [21]. Additionally, it has been reported that overexpression of β-catenin, a coactivator of LEF1, results in p53 accumulation through upregulation of ARF [41,42] and the N-terminal of LEF1 (ΔNLef1), which acts as a tumor promoter by preventing accumulation of p53 in human and mouse sebaceous tumors, and ARF downregulation is likely to be responsible for this mechanism [43]. Thus, it may be possible that the activation of p53 accumulation by β-catenin and LEF1 depends on not only ARF but also DHRS2 upregulation. However, further functional studies are needed to investigate these relationships and understand the molecular mechanism.

p53 mutations are known to be frequent in T-ALL [44,45]. In Jurkat cells, a heterozygous, stop-gained mutation in exon 6 of the p53 gene (R196* or rs397516435) considered to be important in leukemogenesis or in the tumorigenic progression of leukemic T cells has been reported [46]. Thus, as Jurkat cells are p53-mutant, we could not detect p53 in western blotting analysis. Our findings imply that DHRS2-mediated p53 accumulation does not occur in p53-mutant Jurkat cells and overexpression of LEF1 may show oncogenic effects via overexpression of its downstream target, MYC, which is known to play a major role in T-ALL [6,47]. It has been reported that LEF1 is overexpressed in 30% of adult T-ALL patients [16]. On the other hand, LEF1 microdeletion was detected in 11% of adult T-ALL cases [21]. These contradictory observations might result from the altered LEF1 effects due to cooperative tumorigenic genetic events. It is known that both oncogenes and tumor suppressor genes are targeted by LEF1, which suggests that cooperative genetic events in its downstream genes may determine the final outcome of LEF1 action. Our results suggest that DHRS2 is one of the tumor suppressor targets of LEF1 in the Jurkat human T-cell leukemia cell line. Based on these results, one may speculate that the inactivation of LEF1 may be causing the prevention of the tumor suppressor effect of DHRS2 in T cells and contributing to leukemogenesis.

Conclusion
In this study, we demonstrate that LEF1 positively regulates DHRS2 gene expression in the Jurkat human T-cell leukemia cell line and thus provide new insight into the LEF1-p53 link in T-cell leukemogenesis. Our findings suggest a tumor-suppressive role for LEF1 by the regulation of the downstream DHRS2-p53 signaling pathway, which explains the molecular mechanism behind the observation of LEF1-induced p53 accumulation. This study supports the growing evidence that LEF1 plays a regulatory role in T-cell proliferation and differentiation and its dysregulation contributes to the development of T-ALL. The main limitations of our study are that it was performed by using only one cell line, was not validated in T-ALL patients, and requires further functional investigations to confirm the implications of its results, including the potential role of DHRS2 in T-ALL and its interactions with LEF1.

Ethics
Ethics Committee Approval: This article does not contain any studies with human participants or animals performed by any of the authors.

Informed Consent: This study does not involve human subjects and, thus, informed consent is not required.

Authorship Contributions
Study Design: S.S.E, N.A.; Ç.G.; Processing: Z.E., M.S., B.S.; Analysis or Interpretation: S.S.E, C.G.E., B.S., N.A.; Writing: S.S.E, Ç.G.E.

Conflict of Interest: The authors declare no conflicts of interest.

Financial Disclosure: This work was supported by the Scientific Research Projects Coordination Unit of İstanbul University (Grant No. 3092).

References
1. McMahon CM, Luger S. Relapsed T cell ALL: current approaches and new directions. Curr Hematol Malig Rep 2019;14:83-93.
2. Bongiovanni D, Saccomani V, Piovano E. Aberrant signaling pathways in T-cell acute lymphoblastic leukemia. Int J Mol Sci 2017;18:1904.
3. Goldberg JM, Silverman LB, Levy DE, Dalton VK, Gelber RD, Lehmann L, Cohen HJ, Sallan SE, Anselin BL. Childhood T-cell acute lymphoblastic leukemia: the Dana-Farber Cancer Institute acute lymphoblastic leukemia consortium experience. J Clin Oncol 2003;21:3616-3622.
4. Oudot C, Auclerc MF, Levy V, Porcher R, Piguet C, Perel Y, Gandemer V, Debré M, Vermeylen C, Pautard B, Berger C, Schmitt C, Leblanc T, Cayuela JM, Socie G, Michel G, Leverger G, Baruchel A. Prognostic factors for leukemia induction failure in children with acute lymphoblastic leukemia and outcome after salvage therapy: the FRALLE 93 study. J Clin Oncol 2008;26:1496-1503.
5. Van Vlierberghe P, Ferrando A. The molecular basis of T cell acute lymphoblastic leukemia. J Clin Invest 2012;122:3398-3406.
6. Weng AP. c-Myc is an important direct target of Notch1 in T-cell acute lymphoblastic leukemia/lymphoma. Genes Dev 2006;20:2096-2109.
7. Fogelstrand L, Staffas A, Waslavlak C, Sjögren H, Söderhäll S, Frost BM, Forestier E, Degerman S, Behrendtz M, Heldrup J, Karrman K, Johansson B, Heyman M, Abrahamsson J, Palmqvist L. Prognostic implications of mutations in NOTCH1 and FBXW7 in childhood T-cell treated according to the NOPHO ALL-1992 and ALL-2000 protocols. Pediatr Blood Cancer 2014;61:424-430.
8. Roti G, Stegmaier K. Targeting NOTCH1 in hematopoietic malignancy. Crit Rev Oncog 2011;16:103-115.
9. Reya T, Clevers H. Wnt signalling in stem cells and cancer. Nature 2005;434:843-850.
10. Grumolato L, Liu G, Haremak T, Mungamuri SK, Mong P, Akirg, Lopez-Bergami P, Arita A, Anouar Y, Molidzik M, Ronai ZA, Brondy J, Weinstein DC, Aaronson SA. β-Catenin-independent activation of TCF1/LEF1 in human hematopoietic tumor cells through interaction with ATF2 transcription factors. PLoS Genet 2013;9:e1003603.
11. Petropoulos K, Arseni N, Schessl C, Stadler CR, Rawat VP, Deshpande AJ, Heimleier B, Hiddemann W, Quintanilla-Martinez L, Bohlander SK, Feuring-Buske M, Buske C. A novel role for Lef-1, a central transcription mediator of Wnt signaling, in leukemogenesis. J Exp Med 2008;205:515-522.
12. Gutierrez A Jr, Tschumper RC, Wu X, Shanafelt TD, Eckel-Passow J, Huddleston PM 3rd, Slager SL, Kay NE, Jelinek DF. LEF-1 is a prosurvival factor in chronic lymphocytic leukemia and is expressed in the preleukemic state of monoclonal B-cell lymphocytosis. Blood 2010;116:2975-2983.
13. Metzeler KH, Heimleier B, Edmaier KE, Rawat VP, Dufour A, Döhner K, Feuring-Buske M, Baez J, Spiekermann K, Bühlmer T, Sauerland MC, Döhner H, Hiddemann W, Bohlander SK, Schlenk RF, Bullinger L, Buske C. High expression of lymphoid enhancer-binding factor-1 (LEF1) is a novel favorable prognostic factor in cytogenetically normal acute myeloid leukemia. Blood 2012;120:2118-2126.
14. Küehni A, Gökbuget N, Kaiser M, Schleef C, Stroux A, Burmeister T, Mochmann LH, Hoelzer D, Hofmann WK, Thiel E, Baldus CD. Overexpression of LEF1 predicts unfavorable outcome in adult patients with B-precursor acute lymphoblastic leukemia. Blood 2011;118:6362-6367.
15. Jamieson CH, Ailles LE, Dylla SJ, Muizitjens M, Jones C, Zehnder JL, Gotlib J, Li K, Manz MG, Keating A, Sawyers CL, Weisman IL. Granulocyte-macrophage progenitors as candidate leukemic stem cells in blast-crisis CML. N Engl J Med 2004;351:657-667.
16. Guo X, Zhang R, Liu J, Li M, Song C, Dovat S, Li J, Ge Z. Characterization of LEF1 high expression and novel mutations in adult acute lymphoblastic leukemia. PLoS One 2015;10:e0125429.
17. Wu W, Zhu H, Fu Y, Shen W, Miao K, Hong M, Xu W, Fan L, Young KH, Liu P, Li J. High LEF1 expression predicts adverse prognosis in chronic lymphocytic leukemia and may be targeted by ethacrynic acid. Oncotarget 2016;7:21631.
18. Jia M, Zhao HZ, Shen HP, Cheng YP, Luo ZB, Li SS, Zhang JY, Tang YM. Overexpression of lymphoid enhancer binding factor 1 (LEF1) is a novel favorable prognostic factor in childhood acute lymphoblastic leukemia. Int J Lab Hematol 2015;37:631-640.
19. Albano F, Zagaria A, Anelli L, Orsini P, Minervini CF, Impera L, Casieri P, Coccaro N, Tota G, Brunetti C, Minervini A, Pastore D, Carluccio P, Mestice A, Cellamare A, Specchia G. Lymphoid enhancer binding factor-1 (LEF1) expression as a prognostic factor in adult acute promyelocytic leukemia. Oncotarget 2014;5:649.
20. Fu Y, Zhu H, Wu W, Xu J, Chen T, Xu B, Qian S, Li J, Liu P. Clinical significance of lymphoid enhancer-binding factor 1 expression in acute myeloid leukemia. Leuk Lymphoma 2014;55:371-377.
21. Gutierrez A, Sanda T, Ma W, Zhang J, Grebluinaite R, Dahlberg S, Neuberg D, Protopopov A, Winter SS, Larson RS, Borowicz MJ, Silverman LB, Chen L, Hunger SP, Jamieson C, Salian SE, Look AT. Inactivation of LEF1 in T-cell acute lymphoblastic leukemia. Blood 2010;115:2845-2851.
22. Noronha EP, Marques LVC, Andrade FG, Thuler LCS, Terra-Granado E, Pombod- de-Oliveira MS; Brazilian Collaborative Study Group of Acute Leukemia. The profile of immunophenotype and genotype aberrations in subsets of pediatric T-cell acute lymphoblastic leukemia. Front Oncol 2019;9:1-10.
23. Clough E, Barrett T. The gene expression omnibus database. Methods Mol Biol 2016;1418:33-110.
24. Benjamin Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B 199;55:289-300.
25. Huang DW, Sherman BT, Lempicki RA. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 2009;4:44-57.
26. Huang DW, Sherman BT, Lempicki RA. Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res 2009;37:1-13.
27. Mi H, Muruganujan A, Ebert D, Huang X, Thomas PD. PANTHER version 14: More genomes, a new PANTHER GO-slim and improvements in enrichment analysis tools. Nucleic Acids Res 2019;47:419-426.
28. Kanehisa M, Goto S. KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res 2000;28:27-30.
29. Shafqat N, Shafqat J, Eissner G, Marschall HU, Thyngvason K, Eriksson U, Gabrielli F, Lardy H, Jönnvall H, Oppermann U. Hep27, a member of the short-chain dehydrogenase/reductase family, is an NADPH-dependent dicarboxyl reductase expressed in vascular endothelial tissue. Cell Mol Life Sci 2006;63:1205-1213.
30. Zhou Y, Wang L, Ban X, Zeng T, Zhu Y, Li M, Guan XY, Li Y. DHR25 inhibits cell growth and motility in esophageal squamous cell carcinoma. Oncogene 2018;37:1086-1094.
31. Mutirangura A, Pornthanakasem W, Siruangpon V, Supiyaphun P, Voravud N. Loss of heterozygosity on chromosome 14 in nasopharyngeal carcinoma. Int J Cancer 1998;78:153-156.
32. Cheng Y, Ko JMY, Lung HL, Lo PHY, Stanbridge EJ, Lung ML. Monochromosome transfer provides functional evidence for growth-suppressive genes on chromosome 14 in nasopharyngeal carcinoma. Genes Chromosom Cancer 2003;37:359-368.
33. El-Rifai W, Sarlomo-Rikala M, Andersson LC, Miettinen M, Knuttila S. High-resolution deletion mapping of chromosome 14 in stromal tumors of the gastrointestinal tract suggests two distinct tumor suppressor loci. Genes Chromosom Cancer 2000;27:387-391.
34. Debiec-Rychter M, Lasota J, Sarlomo-Rikala M, Kordek R, Miettinen M. Chromosomal aberrations in malignant gastrointestinal stromal tumors. Cancer Genet Cytofgenet 2001;128:24-30.
35. Goeeze A, Schlüs K, Wolf G, Thäidler Z, Petersen S, Petersen I. Chromosomal imbalances of primary and metastatic lung adenocarcinomas. J Pathol 2002;196:8-16.
36. Fang L, Cheng Q, Liu W, Zhang J, Ge Y, Zhang Q, Li L, Liu J, Zheng J. Selective effects of a fiber chimeric conditionally replicative adenovirus armed with hep27 gene on renal cancer cell. Cancer Biol Ther 2016;17:664-673.
37. Deisenroth C, Thorner AR, Enomoto T, Perou CM, Zhang Y. Mitochondrial HEP27 is a c-Myb target gene that inhibits Mdm2 and stabilizes p53. Mol Cell Biol 2010;30:3981-3993.
38. Oda T, Sekimoto K, Kurashima K, Fujimoto M, Nakai K, Yamashita T. Acute HSF1 depletion induces cellular senescence through the MDM2-p53-p21 pathway in human diploid fibroblasts. J Cell Sci 2018;131:jcs210724.
39. Han Y, Song C, Wang J, Tang H, Peng Z, Lu S. HOXA13 contributes to gastric pathway in human diploid fibroblasts. J Cell Sci 2018;131:jcs210724.
40. Sherr CJ, Weber JD. The ARF/p53 pathway in human diploid fibroblasts. Proc Natl Acad Sci U S A 1998;95:3562-3567.
41. Turk J Hematol 2020;37:226-233.
mutations in epidermis: tumor promotion and specification of tumor type. Cancer Res 2007;67:2916-2921.

44. Yeargin J, Cheng J, Yu AL, Gjerset R, Bogart M, Haas M. P53 mutation in acute T cell lymphoblastic leukemia is of somatic origin and is stable during establishment of T cell acute lymphoblastic leukemia cell lines. J Clin Invest 1993;91:2111-2117.

45. Tawara M, Hogerzeil SJ, Yamada Y, Takasaki Y, Soda H, Hasegawa H, Murata K, Ikeda S, Imaizumi Y, Sugahara K, Tsuruda K, Tsukasaki K, Tomonaga M, Hirakata Y, Kamihira S. Impact of p53 aberration on the progression of adult T-cell leukemia/lymphoma. Cancer Lett 2006;234:249-255.

46. Stengel A, Schnittger S, Weissmann S, Kuznia S, Kern W, Kohlmann A, Haferlach T, Haferlach C. TP53 mutations occur in 15.7% of ALL and are associated with MYC-rearrangement, low hypodiploidy, and a poor prognosis. Blood 2014;124:251-258.

47. Palomero T, Lim WK, Odom DT, Sulis ML, Real PJ, Margolin A, Barnes KC, O’Neil J, Neuberg D, Weng AP, Aster JC, Sigaux F, Soulier J, Look AT, Young RA, Califano A, Ferrando AA. NOTCH1 directly regulates c-MYC and activates a feed-forward-loop transcriptional network promoting leukemic cell growth. Proc Natl Acad Sci U S A 2006;103:18261-18266.