Ovals and Hyperovals in Desarguesian Nets

by David A. Drake and Kevin Keating
Department of Mathematics
University of Florida
Gainesville, FL 32611
USA

dad@math.ufl.edu
keating@math.ufl.edu
Abstract

We determine the Desarguesian planes which hold r-nets with ovals and those which hold r-nets with hyperovals for every $r \leq 7$.
1 Introduction

A net is an incidence structure Σ whose blocks are partitioned into three or more parallel classes so that each class consists of two or more blocks which partition the points of Σ and so that any two blocks not in the same parallel class have a unique point of intersection. The blocks of a net Σ are referred to as lines. One says that Σ is an r-net (or a net of degree r) if the number of parallel classes is $r < \infty$, a net of order n if some line has cardinality $n < \infty$. If Σ has order n, each line and parallel class has cardinality n.

If Σ is a net obtained from a net Π by deleting zero or more complete parallel classes of Π, one says that Σ is embedded in Π or that Σ extends to Π or that Π holds Σ. We often take Π to be an affine plane; i.e., a net in which each pair of points is joined by a line. If Π^* is the projective plane obtained by adjoining a single line (denoted by ℓ_∞) to an affine plane Π, we use the same language for Π^* as for Π. We call Σ a Desarguesian net if it is held by a Desarguesian plane.

A set S of points in a net Σ is called an arc if each pair of points of S is joined by a line of Σ that intersects S only in those two points. A k-arc is an arc of cardinality k. We define an oval and a hyperoval in an r-net to be an r-arc and an $(r+1)$-arc, respectively. In this paper, we investigate the problem of determining the pairs (r, Π) for which Π is a Desarguesian plane that holds an r-net with oval or hyperoval. We solve both problems for $r \leq 7$.

Ovals in r-nets held by finite Desarguesian projective planes have been investigated by G. J. Simmons [14]. Simmons describes such an oval as an r-set “sharply focused on” ℓ_∞. He utilized these ovals to construct geometry-based secret sharing schemes. We thank the referee who brought this interesting paper to our attention.

Let Π be the Desarguesian affine plane coordinatized by a division ring D. We prove that Π holds a 5-net with oval if and only if D contains a root of $x^2 + x - 1$ (Theorem 3.8 below, a result obtained by Hirschfeld for finite D); we prove that Π holds a 7-net with oval if either D contains $GF(2^k)$ for some $k \geq 3$ or D contains a root of $x^3 - x^2 - 2x + 1$ (Theorem 3.12). We prove that Π holds a 6-net with oval if and only if either $\text{char } D \neq 2, 3$ or D properly contains $GF(4)$ (Theorem 4.3).

Let H be a hyperoval of an r-net Σ. Then every point of H is joined to the remaining points of H by a line of each parallel class of Σ, so there are no tangents to H. Thus, a parallel class of Σ partitions the points of H into
(r + 1)/2 subsets of size 2, so r must be odd. Let Π be a Desarguesian affine plane coordinatized by a division ring D. We prove that Π holds a 5-net with hyperoval if and only if D contains GF(4) (Theorem 3.10) and that Π holds a 7-net with hyperoval if and only if char D = 2 and |D| ≥ 8 (Theorem 5.1).

Let S and T both be sets of points or both be ordered sets of points of an affine plane Π. We say that S and T are affinely equivalent or Π-equivalent if there is a collineation φ of Π with (S)φ = T. For a Desarguesian affine plane Π, we prove that all ovals (hyperovals) of r-nets held by Π are Π-equivalent for each r ≤ 6 (Proposition 3.4 and Theorems 3.8, 3.10, 4.5). Hyperovals in 7-nets are not all affinely equivalent, however (see, Remark 5.5).

In Section 6, we present a number of non-existence results (Corollaries 6.2, 6.4, 6.6). In Corollaries 6.9 and 6.10, we determine the values of r for which there exist Desarguesian or general r-nets of order n with ovals or hyperovals for small n.

It is an open question whether there exist any Desarguesian nets of characteristic not equal to 2 with hyperovals, or any Desarguesian nets of degree not equal to 2^k ± 1 with hyperovals.

2 Constructions

Fact 2.1 (i) Removing any point of a hyperoval of a net Σ produces an oval of Σ.

(ii) If a net Π holds a net Σ with hyperoval, adjoining an additional parallel class of Π to Σ produces a net with oval.

If D is a division ring, we shall write Π(D) and Π*(D) for the Desarguesian affine and projective planes coordinatized by D. The point set of Π(D) is D × D; the lines of Π(D) are the sets of points (x, y) which satisfy an equation of one of the forms x = c, y = mx + b with b, c, m in D. The points of Π*(D) are the homogenous triples ⟨x, y, z⟩ := {(xt, yt, zt) : t ∈ D \ {0}} with (x, y, z) ≠ (0, 0, 0). One embeds Π(D) in Π*(D) by identifying the point ⟨x, y⟩ ∈ Π(D) with the point ⟨x, y, 1⟩ ∈ Π*(D) and adjoining an ideal line ℓ∞ consisting of the ideal points ⟨x, y, 0⟩. In particular, the point ⟨1, m, 0⟩ is added to the lines of Π(D) of slope m, and the point ⟨0, 1, 0⟩ is added to the lines of infinite slope. An oval or hyperoval of a net Σ held by Π(D) is called a subgroup or coset oval or hyperoval if it is a subgroup or a coset of a subgroup of the additive group D × D.
Multiplication in a division ring D need not be commutative, so we adopt the convention that b/c and $b \cdot c$ both denote bc^{-1}. We frequently utilize the following observation.

Fact 2.2 Let b be an element of a division ring D. Then the sub-division ring of D generated by b is commutative.

Fact 2.3 If $\Pi(D)$ holds an r-net Σ with coset hyperoval H, then $|D| > r$ or $(|D|, r) = (2, 3)$.

Proof Let $|D| = q < \infty$. If $r = q + 1$, then $|H| = q + 2$; so Lagrange’s Theorem implies that $(q + 2) | q^2$, hence that $q = 2$ and $r = 3$. If $r = q$, one obtains the contradiction $(q + 1) | q^2$. ■

Proposition 2.4 Let D be a division ring of characteristic 2, and let k be a positive integer such that $2^k \leq |D|$. Then $\Pi(D)$ holds a $(2^k - 1)$-net with a subgroup hyperoval H. One may choose H so that each pair of parallel secants of H intersect H in an affine subplane of order 2.

Proof If D is finite, D is a field; if D is infinite, D contains an infinite field \[\mathbb{F}\] (13.10). In both cases, D contains a field F with $|F| \geq 2^k$. Let S be a subgroup of order 2^k of the additive group of F, and set $G = \{(x, x^2) \mid x \in S\}$. Since F is a field of characteristic 2, G is a subgroup of $F \times F$, and $|G| = |S| = 2^k$. Each point (x, x^2) in G is joined to the remaining $2^k - 1$ points $(x + y, x^2 + y^2)$ of G by lines whose slopes are precisely the $2^k - 1$ elements of $S \setminus \{0\}$. Thus, no three points of G lie in a common line, and G is a hyperoval in the net which consists of the parallel classes of $\Pi(F)$ with slopes in $S \setminus \{0\}$. (Note that if $S = F$ and F is finite, the union of G and the appropriate two ideal points forms a “regular” hyperoval or “complete conic” of $\Pi^*(F)$, cf. \[\mathbb{F}\] p. 32 or \[\mathbb{F}\] p. 79.)

Suppose that the secants $(a, a^2)(b, b^2)$ and $(c, c^2)(d, d^2)$ have a common slope $a + b = c + d$. Then $a + b + c + d = 0$, and the six secants determined by the indicated four points lie in the three parallel classes with slopes $a + b$, $a + c$, $a + d$. ■

Corollary 2.5 Suppose that D is a division ring of characteristic 2 with $|D| \geq 2^k$. Then $\Pi(D)$ holds a 2^k-net with subgroup oval and a $(2^k - 1)$-net with oval.
Proof Apply Proposition 2.4 and Fact 2.1. ■

Proposition 2.6 Suppose that the division ring D contains a field F isomorphic to $GF(q)$. Then

(i) $\Pi(D)$ holds an r-net with oval for $r = q - 1$, q, $q + 1$;
(ii) if q is even, $\Pi(D)$ holds a $(q + 1)$-net with hyperoval;
(iii) if q is even and $F \neq D$, $\Pi(D)$ holds a $(q + 2)$-net with oval.

Proof It is well known (see [1, pp. 567–569] or [11]) that the Desarguesian projective plane $\Pi^*(F)$ of order q contains an oval O and that $\Pi^*(F)$ contains a hyperoval H if q is even. The plane $\Pi(D)$ contains $\Pi(F)$ which is obtained from $\Pi^*(F)$ by removing a line ℓ_∞. If r denotes $|\ell_\infty \setminus O|$, the r parallel classes of $\Pi(D)$ determined by the points of $\ell_\infty \setminus O$ form an r-net with oval $O \setminus \ell_\infty$. Taking ℓ_∞ to be a secant, tangent or exterior line to O in $\Pi^*(F)$, one obtains r equal to $q - 1$, q, $q + 1$, respectively. If q is even and ℓ_∞ is disjoint from H, the lines of $\Pi(D)$ with slopes in $F \cup \{\infty\}$ are a $(q + 1)$-net with hyperoval H. The truth of (iii) follows from (ii) and Fact 2.1 (ii). ■

Proposition 2.7 Let F be a field contained in a division ring D; let $r \geq 3$; and let ζ be a primitive r-th root of unity in the algebraic closure of F. Assume that $\zeta + \zeta^{-1} \in F$. Then $\Pi(D)$ holds an r-net with oval.

Proof For $k \geq 2$ we have

$$\zeta^k + \zeta^{-k} = (\zeta + \zeta^{-1})^k + \sum_{i=1}^{k-1} c_i(\zeta^i + \zeta^{-i})$$

with $c_i \in F$, so $\zeta^k + \zeta^{-k} \in F$ for all k. Let

$$P_k = \left(\zeta^k + \zeta^{-k}, \sum_{i=-k+1}^{k-1} \zeta^i\right) \in \Pi(D),$$

and let $O = \{P_k | 0 < k \leq r\}$. For $0 < k, \ell \leq r$, $k \neq \ell$, the line P_kP_ℓ has slope $((\zeta^{k+\ell} + \zeta)/((\zeta^{k+\ell} - 1)(\zeta - 1))$. In particular, P_kP_{r-k} has slope ∞ if $k \neq r, r/2$. On the other hand, if P_kP_r has finite slope m then

$$\zeta^{k+\ell} = \frac{(\zeta - 1)m + \zeta}{(\zeta - 1)m - 1}.$$
Thus, each P_k is joined to the other points of O by lines with $r - 1$ distinct slopes; so O is a set of cardinality r, and no three points of O are collinear. Since the lines joining points of O have only r distinct slopes, O is an oval in an r-net held by $\Pi(D)$. ■

Proposition 2.8 Let $r \geq 3$, let p be an odd prime not dividing r, and let ζ be a primitive r-th root of unity in the algebraic closure of $GF(p)$. Then the smallest extension of $GF(p)$ containing $\zeta + \zeta^{-1}$ is $GF(p^b)$, where b is the order of p in $(\mathbb{Z}/r\mathbb{Z})^\times$.

Proof The field $GF(p)(\zeta)$ is an extension of $GF(p)(\zeta + \zeta^{-1})$ whose degree d is 1 or 2. Let a be the order of p in $(\mathbb{Z}/r\mathbb{Z})^\times$; then $a = [GF(p)(\zeta) : GF(p)]$, and hence $[GF(p)(\zeta + \zeta^{-1}) : GF(p)] = a/d$. We have $d = 2$ if and only if a is even and $\zeta + \zeta^{-1}$ is fixed by the map $x \rightarrow x^{p^{a/2}}$. Thus, $d = 2$ precisely when $\zeta^{p^{a/2}} + \zeta^{-p^{a/2}} = \zeta + \zeta^{-1}$ or, equivalently, when $(\zeta^{p^{a/2}} - \zeta^{-1})(1 - \zeta^{1-p^{a/2}}) = 0$; i.e., when $p^{a/2} \equiv -1 \pmod r$. Thus a/d is the order of p in $(\mathbb{Z}/r\mathbb{Z})^\times$.

The truth of the following proposition is asserted by Simmons in [14, p. 204]. Simmons illustrates his construction method for values of q up to 19.

Proposition 2.9 Suppose that the division ring D contains a field isomorphic to $GF(q)$ with q odd and $q \equiv \pm 1 \pmod r$, $r \geq 3$. Then $\Pi(D)$ holds an r-net with oval.

Proof Apply Propositions 2.7 and 2.8. ■

3 Ovals and Hyperovals in Desarguesian Nets of Small Degree

Every collineation of a Desarguesian plane $\Pi(D)$ can be expressed as the composition of a linear collineation of the form

$$(x, y) \rightarrow (ax + by, cx + dy) + (e, f)$$

for some $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in GL_2(D)$ and some $e, f \in D$ with a collineation of the form $(x, y) \rightarrow (x^\alpha, y^\alpha)$ for some $\alpha \in Aut(D)$.

A set Q of four points of a net Σ is called a quad if Q is a quadrangle (no three points of Q are collinear) and if two (or more) parallel classes of Σ...
each contain two secants to Q. An ordered set \((A, B, C, E)\) of points of \(\Sigma\) is said to be an **ordered quad** if \(AB\) and \(CE\) are parallel lines of \(\Sigma\) and \(AE\) and \(BC\) are parallel lines of \(\Sigma\).

Proposition 3.1 (well known) (i) Let \(m_0, m_1, m_\infty\) be distinct elements of \(D \cup \{\infty\}\) and let \(A, B\) be points of \(\Pi(D)\) such that \(AB\) has slope \(m_1\). Then there is a linear collineation mapping \(A\) to \((0, 0)\), \(B\) to \((1, 1)\), and taking lines of slopes \(m_0, m_1, m_\infty\), respectively, into lines of slopes \(0, 1, \infty\).

(ii) Every ordered quad of \(\Pi(D)\) is affinely equivalent to \:\{(0, 0), (1, 0), (1, 1), (0, 1)\}. Hence, a quad of \(\Pi(D)\) is an affine subplane of \(\Pi(D)\) if and only if \(\text{char } D = 2\).

Proof It is well known that \(\text{PGL}_3(D)\), acting by left matrix multiplication on the points of \(\Pi^*\(D)\), represented as column vectors, is transitive on the ordered quadrangles of \(\Pi^*\(D)\). In the arguments below, \(\langle 1, \infty, 0 \rangle\) should be interpreted as \(\langle 0, 1, 0 \rangle\).

To prove (i), let \(\phi^*\) be an element of \(\text{PGL}_3(D)\) which maps the quadrangle
\[
(A, B, \langle 1, m_0, 0 \rangle, \langle 1, m_\infty, 0 \rangle)
\]
to the quadrangle
\[
(\langle 0, 0, 1 \rangle, \langle 1, 1, 1 \rangle, \langle 1, 0, 0 \rangle, \langle 0, 1, 0 \rangle).
\]
The collineation \(\phi^*\) fixes the line \(\ell_\infty\) and thus may be represented as left multiplication by a non-singular \((3 \times 3)\)-matrix whose third row is \((0, 0, 1)\). Thus \(\phi^*\) induces a linear collineation \(\phi\) of \(\Pi(D)\). Clearly, \(\phi\) maps \(A\) to \((0, 0)\) and \(B\) to \((1, 1)\). Since \(\phi^*\) maps \(\langle 1, m_1, 0 \rangle\) to \(\langle 1, 1, 0 \rangle\), \(\phi\) has the desired action on parallel classes of \(\Pi(D)\).

To prove (ii), let \(\mu^*\) be an element of \(\text{PGL}_3(D)\) which maps a quadrangle \((A, B, C, E)\) to the quadrangle
\[
(\langle 0, 0, 1 \rangle, \langle 1, 0, 1 \rangle, \langle 1, 1, 1 \rangle, \langle 0, 1, 1 \rangle).
\]
The collineation \(\mu^*\) maps \(AB \cap CE\) to \(\langle 1, 0, 0 \rangle\) and \(AE \cap BC\) to \(\langle 0, 1, 0 \rangle\) and, hence, fixes the line \(\ell_\infty\). Thus \(\mu^*\) induces a linear collineation \(\mu\) of \(\Pi(D)\) with the specified action on the points \(A, B, C, E\).
Corollary 3.2 If \(\Pi(D) \) holds an \(r \)-net \(\Sigma \) with coset hyperoval \(H \), then \(\Pi(D) \) holds an \(r \)-net \(\Sigma' \) with subgroup hyperoval \(H' \). Furthermore, for each \(0 \leq i \leq 3 \) such that \(i \leq |D| - r + 1 \), we may choose \(\Sigma' \) to exclude any \(i \) of the parallel classes of lines of slope 0, 1, \(\infty \) and to include the other \(3 - i \) classes.

Proof Let \(A \) be any point of \(H \). Choose \(m_0, m_1, m_\infty \in D \cup \{ \infty \} \) so that lines of slope \(m_h \) are in \(\Sigma \) if and only if one desires lines of slope \(h \) to be in \(\Sigma' \). Apply Proposition 3.1 (i). ■

Fact 3.3 Let \(O \) be an oval in an \(r \)-net \(\Sigma \). If \(r \) is even, at least \(r/2 \) parallel classes of \(\Sigma \) contain (exactly) \(r/2 \) secants to \(O \). If \(r \) is odd, each parallel class of \(\Sigma \) contains \((r - 1)/2 \) secants to \(O \).

Proof There are \(r(r - 1)/2 \) secants to \(O \) and at most \(r/2 \) secants in each of the \(r \) parallel classes of \(\Sigma \). ■

Proposition 3.4 Let \(D \) be a division ring. Then \(\Pi(D) \) holds a 3-net with oval; \(\Pi(D) \) holds a 4-net with oval if and only if \(|D| \neq 2 \); and \(\Pi(D) \) holds a 3-net with hyperoval if and only if \(D \) has characteristic 2. All ovals of \(r \)-nets held by \(\Pi(D) \) are affinely equivalent for \(r = 3 \) and for \(r = 4 \), and all hyperovals of 3-nets held by \(\Pi(D) \) are affinely equivalent.

Proof Any set of three non-collinear points in \(\Pi := \Pi(D) \) is an oval in a 3-net held by \(\Pi \). Assume that \(\Pi \) holds a 3-net with a hyperoval \(H \). Disjoint secants to \(H \) are parallel lines of \(\Pi \); so \(H \) is an affine subplane of \(\Pi \). By Proposition 3.1 (ii), one may assume that \(H = \{(0,0),(0,1),(1,0),(1,1)\} \). Since \(H \) is an affine plane, \(\{0,1\} \subset D \) is a field; so \(D \) has characteristic 2, and \(H \) is a subgroup of \(D \times D \). Conversely, let \(S = \{(0,0),(0,1),(1,0),(1,1)\} \). If \(\text{char } D \neq 2 \), \(S \) is an oval in the 4-net whose lines have slopes 0, 1, \(-1, \infty \). If \(\text{char } D = 2 \), \(S \) is a hyperoval in the 3-net \(\Sigma \) whose lines have slopes 0, 1, \(\infty \). In this case, one obtains a 4-net with oval by Fact 2.3 (ii) unless \(|D| = 2 \).

Clearly, every hyperoval of a 3-net is a quad; by Fact 3.3, every oval of a 4-net is a quad; it is easily seen that every oval of a 3-net is contained in a quad. Hence the last three claims follow from Proposition 3.1 (ii). ■

Proposition 3.5 ([Hirschfeld [11, Lemma 7.1.2]]) Let \(D \) be a finite field. If \(\Pi(D) \) holds a 5-net with oval, then \(D \) contains a root of \(x^2 - x - 1 \).
An oval O of a 5-net of $\Pi(D)$ is said to be in *standard position* if $O = \{(1,1), (1,0), (0,0), (0,b), (c,b)\} =: O_{b,c}$ for some b, c in $D \setminus \{0,1\}$. The following proposition removes the finiteness assumption of Proposition 3.5.

Proposition 3.6 Let D be a division ring. Then every oval O of every 5-net Σ of $\Pi(D)$ is affinely equivalent to an oval in standard position. If $O_{b,c}$ is an oval in standard position, $c = b + 1$; and b is a root of $x^2 + x - 1$. (We denote $O_{b,c}$ by O_b.)

Proof By Fact 3.3, each of the five parallel classes of Σ contains two secants to O. If O were the union of a quad S and a point P, one of the five parallel classes would contain none of the six secants to S, so would contain at most one secant to O. This contradiction of Fact 3.3 proves that O contains no quad. From Proposition 3.1(i), one sees that O is affinely equivalent to some $O_{b,c}$.

The point (c,b) is on no secant of slope ∞, so must be on a secant of each of the other four slopes. The secant of slope 1 containing (c,b) must be $(1,0)(c,b)$, so $c = b + 1$. Then $(0,b)(1,1) \parallel (0,0)(b + 1,b)$. Thus, $1 - b = b/(b + 1)$; so $0 = b^2 + b - 1$. ■

Theorem 3.7 (Gordon - Motzkin [12, (16.4)]) Let a_1, \ldots, a_n be elements of a division ring D. Then each root of the polynomial $f(x) = (x-a_1) \cdots (x-a_n)$ is conjugate to some a_i.

The second assertion of the following theorem generalizes and sharpens an assertion of Simmons [14, p.197] that the ovals of 5-nets of $\Pi(GF(11))$ are projectively equivalent.

Theorem 3.8 The Desarguesian plane $\Pi(D)$ holds a 5-net with oval if and only if D contains a root b of $x^2 + x - 1$. All ovals of 5-nets held by $\Pi(D)$ are affinely equivalent.

Proof If $\Pi(D)$ holds a 5-net with oval, Proposition 3.6 asserts that D contains a root b of $x^2 + x - 1$. Conversely, assume that D contains an element b with $b^2 = 1 - b$. Then $b \neq 0, \pm 1$; so $b + 1 \neq 0, 1$. The set O_b has two secants of each of the slopes 0, 1, ∞, $1 - b$ and $-b$; so O_b is an oval of a 5-net held by $\Pi(D)$.

8
By Proposition 3.6, each oval O is affinely equivalent to an oval O_d. Let O_b be a fixed oval in standard position, and let ϕ be the collineation given by right multiplication by the matrix

$$
\begin{pmatrix}
-b & -1 - b \\
1 + b & 1 + b
\end{pmatrix}
$$

Then ϕ maps O_b to O_c where $c = -b - 1$; so O_b and O_c are affinely equivalent. By Theorem 3.7, there is an inner automorphism α of D with $d^\alpha = b$ or $d^\alpha = c$. Then the collineation $(x, y) \mapsto (x^\alpha, y^\alpha)$ maps O_d to O_b or O_c. ■

Corollary 3.9 (i) If $\text{char } D \neq 2$, $\Pi(D)$ holds a 5-net with oval if and only if D contains an element a such that $a^2 = 5$.

(ii) If $\text{char } D = p > 0$, then $\Pi(D)$ holds a 5-net with oval if and only if $p = 5$ or $p \equiv \pm 1 \pmod{5}$ or D contains a field isomorphic to $GF(p^2)$.

Proof Part (i) follows from the quadratic formula. To prove (ii), first note that $x^2 + x - 1 = 0$ has solutions in $GF(4)$ but no solution in $GF(2)$. Furthermore, by quadratic reciprocity (see, for instance, [13, p. 7, Theorem 6]), if $p > 2$ then $x^2 = 5$ has a solution in $GF(p)$ if and only if $p = 5$ or $p \equiv \pm 1 \pmod{5}$. Part (ii) now follows using Fact 2.2. ■

Theorem 3.10 The plane $\Pi(D)$ holds a 5-net with hyperoval if and only if D is a division ring which contains a field isomorphic to $GF(4)$. Let $b \in D$ be a root of $x^2 + x - 1$. All hyperovals of all 5-nets held by $\Pi(D)$ are affinely equivalent to the point set $H_b := \{(1, 1), (1, 0), (0, 0), (0, b), (b+1, b), (b+1, 1)\}$.

Proof The sufficiency of the condition that D contain $GF(4)$ is a special case of Proposition 2.6 (ii). Conversely, suppose that $\Pi(D)$ holds a 5-net Σ with hyperoval H. By Fact 2.1 (i) and Proposition 3.6, $H = \{(1, 1), (1, 0), (0, 0), (0, b), (b+1, b), (c, d)\}$ for some b, c, d in D with $b^2 + b - 1 = 0$. The secants $(c, d)(1, 1)$ and $(c, d)(b+1, b)$ must have respective slopes 0 and ∞, so $(c, d) = (b+1, 1).$ The only secant through $(b+1, 1)$ which can have the slope $-b$ of secant $(1, 0)(0, b)$ is $(b+1, 1)(0, 0)$, so $-b = 1/(b+1).$ Then $-b$ is also the slope $(b-1)/(b+1)(1,1).$ Thus, $b^2 + b + 1 = 0 = b^2 + b - 1$. It follows that $\text{char } D = 2$ and that $\{0, 1, b, b+1\} \subseteq D$ is a field.

Suppose that H_b and H_c are hyperovals in 5-nets held by $\Pi(D)$. By Theorem 3.8, there is a collineation ϕ of $\Pi(D)$ with $(O_b)\phi = O_c$; so $(H_b)\phi = H_c$. ■
Proposition 3.11 If D contains a root of $x^3 - x^2 - 2x + 1$ then the Desarguesian plane $\Pi(D)$ holds a 7-net with oval.

Proof Suppose that $b^3 - b^2 - 2b + 1 = 0$ with $b \in D$. Then $b \neq 0, \pm 1$, so the set

$$O = \{(0,0), (1,0), (0,-1), (1,b-1), (1-b,-1), (b^2-b,b-1), (1-b,b-b^2)\}$$

consists of seven distinct elements. Let \mathcal{H} denote the multiset consisting of the 21 secants PQ with $P,Q \in O$. The secant $(1,0)(b^2-b,b-1)$ has slope $(b-1)/(b^2-b-1) = b$, and the secant $(1-b,-1)(b^2-b,b-1)$ has slope $b/(b^2-1) = b^2$. It is now easy to see that \mathcal{H} contains three secants of each of the following slopes: 1, 0, b, $b-1$. One observes that the map $(x,y) \rightarrow (-y,-x)$ fixes O and maps lines of slope m to lines of slope $1/m$ for each m. Thus, \mathcal{H} also contains three secants of each of the slopes ∞, $1/b$, $1/(b-1)$. One checks that the seven listed slopes are distinct. Thus, \mathcal{H} has three lines of each of the slopes 1, 0, b, $b-1$, ∞, $1/b$, and $1/(b-1)$, so no secant meets O in more than two points. Thus, O is an oval in a 7-net held by $\Pi(D)$. ■

Theorem 3.12 The plane $\Pi(D)$ holds a 7-net with oval if and only if either D contains a field isomorphic to $GF(2^k)$ with $k \geq 3$ or $p(x) := x^3 - x^2 - 2x + 1$ has a root in D.

Proof If D contains $GF(2^k)$ with $k \geq 3$ one obtains a 7-net with oval in $\Pi(D)$ by Corollary 2.3. If $p(x)$ has a root in D, one obtains a 7-net with oval in $\Pi(D)$ by Proposition 3.11. The converse is proved in [8]. ■

Lemma 3.13 The polynomial $x^3 - x^2 - 2x + 1$ has a root in $GF(p)$ if and only if $p = 7$ or $p \equiv \pm 1 \pmod{7}$.

Proof If $p = 7$ then $x = -2$ is a root of $x^3 - x^2 - 2x + 1$. If $p \neq 7$ let ζ be a primitive 7th root of 1 (in an algebraic closure of $GF(p)$). Then $-\zeta - \zeta^{-1}, -\zeta^2 - \zeta^{-2}, -\zeta^3 - \zeta^{-3}$ are the roots of $x^3 - x^2 - 2x + 1$. We have $-\zeta^{pi} - \zeta^{-pi} = -\zeta^i - \zeta^{-i}$ if and only if $\zeta^{-pi}(\zeta^{(p-1)i} - 1)(\zeta^{(p+1)i} - 1) = 0$. Thus if $p \equiv \pm 1 \pmod{7}$ then all the roots of $x^3 - x^2 - 2x + 1$ lie in $GF(p)$, while if $p \neq \pm 1 \pmod{7}$, none of them do. ■
Corollary 3.14 If char $D = p \neq 0$, then $\Pi(D)$ holds a 7-net with oval if and only if one of the following conditions holds:

(i) D contains a field isomorphic to $GF(2^k)$ for some $k \geq 3$;
(ii) $p = 7$ or $p \equiv \pm 1 \pmod{7}$;
(iii) D contains a field isomorphic to $GF(p^3)$.

Proof Apply Theorem 3.12 and Lemma 3.13.

4 Desarguesian 6-Nets with Ovals

For the following four lemmas, we take S to be a 6-set, a (parallel) class on S to be a collection of 2-subsets of S which partitions S, Ω_r to be a set of r mutually disjoint parallel classes Π_1, \ldots, Π_r on S. We say that (S, Ω_r) and (S', Ω'_r) are isomorphic if there is a bijection $\phi : S \to S'$ and a permutation σ of $\{1, \ldots, r\}$ with $(\Pi_i)\phi = \Pi'_i(\phi)$ for $1 \leq i \leq r$ where $\Omega'_r = \{\Pi'_1, \ldots, \Pi'_r\}$.

Lemma 4.1 (P. Cameron [2, Theorem 4.7 (ii)]) Each of (S, Ω_2) and (S, Ω_5) is unique up to isomorphism. The automorphism group of (S, Ω_5) is 5-transitive on Ω_5.

We take S to be the set of six cells (i,j) of a 3×3 matrix for which $i+j \neq 4$. Since (S, Ω_2) is unique, we may take the rows and columns of this matrix to be the lines of Π_1 and Π_2, respectively, for each (S, Ω_r) with $r \geq 2$.

The following lemma is easy to verify.

Lemma 4.2 In (S, Ω_3), the lines of Π_3 are represented by the entries of one of the following matrices.

\[
\begin{pmatrix}
1 & 2 & * \\
3 & * & 1 \\
* & 3 & 2
\end{pmatrix}_{A_1},
\begin{pmatrix}
1 & 3 & * \\
2 & * & 3 \\
* & 1 & 2
\end{pmatrix}_{A_2},
\begin{pmatrix}
1 & 2 & * \\
2 & * & 3 \\
* & 3 & 1
\end{pmatrix}_{A_3},
\begin{pmatrix}
1 & 2 & * \\
3 & * & 2 \\
* & 3 & 1
\end{pmatrix}_{A_4}.
\]

A structure $(S, \{\Pi_1, \ldots, \Pi_r\})$ is said to be maximal if there is no class Π_{r+1} which is disjoint from $\Pi_1 \cup \ldots \cup \Pi_r$.

Lemma 4.3 (i) In (S, Ω_5), the lines of Π_3, Π_4, Π_5 may be represented by the entries of A_1, A_2, A_3.

(ii) In (S, Ω_3), the class Π_3 may be represented by the entries of A_3 or A_4; if by A_4, then (S, Ω_3) is maximal.

(iii) The automorphism group of (S, Ω_3) is 3-transitive on Ω_3.
The classes of lines induced by A_1, A_2, A_3 are mutually disjoint, so conclusion (i) follows from Lemma 4.1. The first assertion of conclusion (ii) and the A_3-case of conclusion (iii) follow from conclusion (i) and Lemma 4.1.

Suppose that Π_3 is represented by A_4. By Lemma 4.2, the only contenders for a class Π_4 disjoint from $\Pi_1 \cup \Pi_2 \cup \Pi_3$ is one represented by A_i for some $i \leq 3$. None of these is disjoint from Π_3, so the second assertion of conclusion (ii) is valid. The map $\phi : S \to S, (i, j) \to (j, i)$ induces the permutation (Π_1, Π_2) on Ω_3. If μ is the permutation of S given by $((1, 2), (2, 1), (3, 3))$, then μ induces the permutation (Π_1, Π_2, Π_3) on Ω_3. Thus, conclusion (iii) is also valid in the A_4-case.

Lemma 4.4 Let (S, Ω_3) be contained in the plane $\Pi(D)$. Then there are $a, b \in D \setminus \{0, 1\}$ and a linear collineation of $\Pi(D)$ mapping the elements of S to

$$
\begin{pmatrix}
(0, 0) & (a, 0) & * \\
(0, b) & * & (1, b) \\
* & (a, 1) & (1, 1)
\end{pmatrix}.
$$

Proof By Proposition 4.1(ii), we may assume that the points represented by cells $(1, 1), (1, 3), (3, 1)$ and $(3, 3)$ are the points with coordinates $(0, 0), (1, 0), (0, 1)$ and $(1, 1)$, respectively. ■

Theorem 4.5 The Desarguesian affine plane $\Pi(D)$ holds a 6-net Σ with oval O if and only if either $\text{char} \, D \neq 2, 3$ or D properly contains a field isomorphic to $GF(4)$. If $\text{char} \, D \neq 2$, Σ induces only three complete parallel classes on O; if $\text{char} \, D = 2$, O is a hyperoval of a 5-net held by Σ. In both cases, all ovals of all 6-nets held by $\Pi(D)$ are affinely equivalent.

Proof The point set $O = \{(0, 0), (1, 0), (0, 1), (2, 1), (1, 2), (2, 2)\}$ has three secants of each of the slopes 0, 1, ∞ and two secants of each of the slopes $1/2, 2, -1$. If $\text{char} \, D \neq 2, 3$, these six values are distinct, so $\Pi(D)$ holds a 6-net with oval O. On the other hand, by Theorem 3.10 and Fact 2.1(ii), if D properly contains a field isomorphic to $GF(4)$, then $\Pi(D)$ contains a 6-net with oval.

Assume, conversely, that the Desarguesian affine plane $\Pi(D)$ holds a 6-net Σ with oval O. By Fact 3.3, Σ contains (at least) three parallel classes which contain three secants to O. By Lemma 4.3(ii), the secants of these three classes may be represented by matrix A_3 or matrix A_4. Furthermore,
we may assume that the coordinates of the points of \(O \) are given by the matrix of Lemma 4.4.

We first treat the case of \(A_4 \). By Lemma 4.3 (iii), \(\Sigma \) induces exactly three complete parallel classes on \(O \) and, hence, three partial classes consisting of two secants each. Note that the lines of one of the complete parallel classes represented by \(A_4 \) have slope \(1 = b/(1-a) = (1-b)/a \), so \(a+b = 1 \). Therefore the slopes of the lines joining the points \((a,0),(0,b),(1,1)\) are \(a, 1/b, -b/a \), and the slopes of the lines joining the points \((0,0),(1,b),(a,1)\) are the reciprocals of these numbers. Since these six lines lie in three parallel classes, and \(a, 1/b, -b/a \) are distinct, we must have \(\{a, 1/b, -b/a\} = \{-1, 2, 1/2\} \), and hence \(\text{char} \ D \neq 3 \).

Let \(O_1, O_2, O_3 \) be the respective ovals produced by taking \(a = 1/a, a = b, \) and \(a = -a/b \). Then \(O_1 \) is mapped to \(O_2 \) and \(O_3 \) under the collineations induced by the respective matrices

\[
\begin{pmatrix}
0 & 1 \\
1 & 0
\end{pmatrix}
\quad \text{and} \quad
\begin{pmatrix}
0 & -1/2 \\
1 & 3/2
\end{pmatrix},
\]

so the three ovals are affinely equivalent.

Now suppose that the secants of three parallel classes of \(\Sigma \) are represented by \(A_3 \). Then \((a,0)(0,b)\) and \((1,b)(a,1)\) have slope \(1 \), so \(b = -a \) and \(1-b = a-1 \). Thus, \(\text{char} \ D = 2 \) and \(b = a \). Let \(M \) denote the multiset \(\{(1+b)/b, 1/(1+b), b\} \), and let \(M' \) denote the multiset of reciprocals \(\{b/(1+b), 1+b, 1/b\} \). There are three secants each of slopes 0, 1, \(\infty \); and the slopes of the remaining six secants are the multiset \(S := M \cup M' \). If \(S \) consists of two distinct numbers, each of multiplicity 3, then \(\Sigma \) contains a 5-net with hyperoval. Thus, Theorem 3.10 implies that \(D \) contains \(GF(4) \) and that all ovals of all 6-nets held by \(\Pi(D) \) are affinely equivalent.

On the other hand, suppose that \(S \) contains more than two numbers. If any element of \(M \) matches any element of \(M' \), one obtains a contradiction. Thus, each of \(M \) and \(M' \) must contain at least two distinct numbers; and we obtain the contradiction that \(O \) has secants of at least seven distinct slopes. ■
5 Desarguesian 7-Nets with Hyperovals

Theorem 5.1 The plane $\Pi(D)$ holds a 7-net with hyperoval H if and only if D is a division ring of characteristic 2 with $|D| \geq 8$. If $\Pi(D)$ holds a 7-net with hyperoval, it holds a 7-net with subgroup hyperoval which is the disjoint union of two affine subplanes.

Proof By Proposition 2.4, $\Pi(D)$ holds a 7-net with a subgroup hyperoval which is the disjoint union of two affine subplanes if D is a division ring of characteristic 2 with $|D| \geq 8$.

Conversely, assume that $\Pi := \Pi(D)$ for some division ring D; and suppose that Π holds a 7-net Σ with hyperoval H. We treat first the case that some subset of four points of H is a quad. By Proposition 3.1 (ii), we may assume that the eight points of H receive the coordinates displayed in the matrix

$$
M = \begin{pmatrix}
(0,0) & (1,0) & * & * \\
(0,1) & (1,1) & * & * \\
* & * & (a,c) & (b,c) \\
* & * & (a,d) & (b,d)
\end{pmatrix}
$$

for some elements $a, b, c, d \in D \setminus \{0,1\}$ with $a \neq b, c$ and $d \neq b, c$. Assume, by way of contradiction, that $\text{char } D \neq 2$. Then the slope of $(0,1)(1,0)$ is $-1 \neq 1$. By permuting the last two rows and the last two columns of the matrix M as well as the symbols a, b, c, d, we may assume that the three remaining secants of slope 1 are $(0,1)(a,d), (1,0)(b,c)$ and $(a,c)(b,d)$. Then $d - 1 = a, c = b - 1$ and $a - b = c - d$. Adding the three equations gives $2d = 2b$, and hence $d = b$. This is a contradiction, so $\text{char } D = 2$ if the hyperoval contains a quad.

The remaining case is that H contains no quads. Here, we may coordinatize Π by D as in the proof of Lemma 4.4 so that the eight points of H receive the coordinates displayed in the matrix

$$
\begin{pmatrix}
(0,0) & (a,0) & * & * \\
(0,c) & (b,c) & * \\
* & (a,d) & (1,d) \\
* & * & (b,1) & (1,1)
\end{pmatrix}
$$

for some elements $a, b, c, d \in D \setminus \{0,1\}$ with $a \neq b$ and $c \neq d$. Let Π_1, Π_2, Π_3 be the parallel classes which contain, respectively, the horizontal lines, the
vertical lines, and the lines of slope 1. Since Π_3 does not generate a quad in H with either Π_1 or Π_2, Π_3 cannot contain either of the secants $(a,0)(b,1)$, $(0,c)(1,d)$. Thus, the secants from Π_3 may be represented by one of the following four matrices.

\[
\begin{pmatrix}
1 & 2 & * & * \\
2 & * & 4 & * \\
* & 3 & * & 4 \\
* & * & 3 & 1
\end{pmatrix}, \quad \begin{pmatrix}
1 & 2 & * & * \\
2 & * & 3 & * \\
* & 3 & * & 4 \\
* & * & 4 & 1
\end{pmatrix}, \quad \begin{pmatrix}
1 & 2 & * & * \\
3 & * & 2 & * \\
* & 3 & * & 4 \\
* & * & 4 & 1
\end{pmatrix}, \quad \begin{pmatrix}
1 & 2 & * & * \\
3 & * & 4 & * \\
* & 4 & * & 2 \\
* & * & 3 & 1
\end{pmatrix}.
\]

If the lines of Π_3 are given by the leftmost matrix, one sees that

\[1 = \frac{-c}{a} = \frac{b-a}{1-d} = \frac{d-c}{1-b}.
\]

It follows that $2a = 0$ and, hence, that $2 = 0$. Similar computations yield the same conclusion for the other three matrices, so we have $\text{char } D = 2$. Since there are 7 slopes we have $|D|+1 \geq 7$, and hence $|D| \geq 8$. ■

Proposition 5.2 Let H be a hyperoval of a 7-net held by $\Pi(D)$. If H has no quads, then there is a field F contained in D and a linear collineation ϕ of $\Pi(D)$ such that $(H)\phi \subseteq F \times F$.

Proof We may choose ϕ so that $(H)\phi$ is represented as in the proof of Theorem 5.1. Suppose, for example, that the lines of Π_3 are given by the leftmost matrix displayed in the proof of Theorem 5.1. Then $c = a$ and $d = 1 + a + b$. The secant $(0,0)(b,1)$ has slope $1/b \neq 0, 1, \infty$. There must be a secant of the same slope through the point $(1,1)$, so

\[
\frac{1}{b} \in \left\{ \frac{1}{1+a}, \frac{1+a}{1+b}, \frac{a+b}{a+1} \right\}.
\]

If, for example, $1/b = (1+a)/(1+b)$, then $b = 1/a$; so b is an element of the field F generated over $GF(2)$ by a. Similarly b, hence also c and d, are in F if $1/b$ is one of the other three slopes. The argument is similar for the other three matrices. ■

We observe in Example 5.3 below that the conclusion of Proposition 5.2 does not hold for arbitrary hyperovals of Desarguesian 7-nets and, in Example 5.4, that there are hyperovals which satisfy the hypothesis of Proposition 5.2.
Example 5.3 Let D be a division ring of characteristic 2 which is not commutative. Then $\Pi(D)$ holds a 7-net with hyperoval H such that $(H)\phi$ is not contained in $F \times F$ for any collineation ϕ of $\Pi(D)$ and any field F contained in D.

Proof Let a, b be any two non-commuting elements of D. Then a, b, 1 are linearly independent over the prime field contained in D. Consider the point sets $G = \{(0, 0), (0, 1), (1, 0), (1, 1)\}$ and $H = G \cup (G + (a, b))$. Each point of H is joined to the remaining seven points of H by secants of the seven different slopes $0, 1, \infty, b/a, (b + 1)/a, b/(a + 1)$ and $(b + 1)/(a + 1)$. Thus, no three points of H are collinear, and H is a hyperoval of a 7-net held by $\Pi(D)$.

Suppose that there is a collineation ϕ of $\Pi(D)$ and a field F contained in D such that $(H)\phi \subseteq F \times F$. By Theorem 3.1 (ii) there is a linear collineation ψ of $\Pi(F) = F \times F$ such that $\phi \circ \psi$ fixes the points $(0, 0), (0, 1), (1, 0), (1, 1)$. Then $\phi \circ \psi$ is induced by an automorphism α of D, so we have $H = G \cup (G + (a^{\alpha}, b^{\alpha}))$. Since a^{α} doesn’t commute with b^{α}, this is a contradiction. ■

Example 5.4 Let $F = GF(8)$. Then $\Pi(F)$ holds a 7-net with a hyperoval H which has no quads.

Proof Let $b \in F$ be a root of $x^3 + x + 1$, and let

$$H = \{(0, 0), (1, 1), (0, 1/b), (1/b, 0), (1, b), (b, 1), (b, 1/b), (1/b, b)\}.$$

The secants through $(0, 0)$ have the seven distinct slopes $1, \infty, 0, b, 1/b = b^2 + 1, 1/b^2 = b^2 + b + 1$ and b^2; as do the secants through each of the other points of H. Thus, H is a hyperoval of the 7-net with the seven listed slopes. Since char $F = 2$, one can verify that H contains no quads by verifying that H contains no affine subplanes of order 2. If S is an affine subplane of $\Pi(F)$ contained in H, so is $H \setminus S$ (with the same three parallel classes). Thus, it suffices to verify that there is no affine subplane S of $\Pi(F)$ with $(0, 0) \in S \subseteq H$. Any affine subplane of $\Pi(F)$ containing $(0, 0)$ is a subgroup of $F \times F$ of order 4, and it is easily verified that H contains no such subgroup. Therefore H contains no quads. ■

Remark 5.5 Let Σ be a $(q - 1)$-net with hyperoval H which is held by the affine plane $\Pi(GF(q))$ obtained from a projective plane Π^* by deleting a line ℓ_{∞}. Clearly the union of H with the obvious two points of ℓ_{∞} is a hyperoval.
H^* of Π^*. Removal of any secant ℓ^∞ from Π^* produces an affine plane Π' isomorphic to Π which holds a $(q - 1)$-net Σ' with hyperoval $H' := H^* \setminus (H^* \cap \ell^\infty)$. When $q = 8$, all hyperovals of Π^* are projectively equivalent; i.e., are images of each other under collineations of Π^* (see [11, Theorems 5.2.4, 9.2.3]). The constructions of Examples 5.3 and 5.4 demonstrate, however, that they are not all affinely equivalent; i.e., the collineation group of $\Pi^* = \Pi^*(GF(8))$ is not transitive on pairs (H^*, ℓ^∞) where H^* is a hyperoval of Π^* and ℓ^∞ is a secant of H^*. ■

6 Non-Existence Results

Let O^n denote the set of all integers r for which there exists an r-net of order n with an oval. If n is a prime power, let O^d_n denote the set of all integers r for which there exists a Desarguesian r-net of order n with an oval. If “oval” is replaced by “hyperoval” in the preceding two definitions, we obtain sets which we label H^n and H^d_n.

Theorem 6.1 (B. Segre, see [11, 10.3.3, Cor. 2 to 10.3.3, Cor. 2 to 10.4.4]). Let A be a k-arc in the Desarguesian projective plane Π^* over $GF(q)$. Suppose that q is even and $k > q - \sqrt{q} + 1$ or that q is odd and $k > q - \sqrt{q}/4 + 7/4$. Then the only points X for which $A \cup \{X\}$ is a $(k + 1)$-arc of Π^* are

(i) $(q$ even) the $q + 2 - k$ points of $H \setminus A$ where H is the unique hyperoval containing A;

(ii) $(q$ odd) the $q + 1 - k$ points of $O \setminus A$ where O is the unique oval containing A.

Corollary 6.2 Define $f(q)$ to be $q - \sqrt{q}$ for even q and $q - \sqrt{q}/4 + 3/4$ for odd q.

(i) If $q - 2 \geq r > f(q)$, then $r \notin O^d_q$.

(ii) Let $r > f(q) - 2$. Then $r \notin H^d_q$ if $r \leq q - 3$, and $r \notin H^q_d$ if $r \leq q - 2$ and q is even.

Proof Assume, by way of contradiction, that $\Pi := \Pi(GF(q))$ holds an r-net Σ with oval O for some $r > f(q)$. Adjoin a line ℓ^∞ to Π to form the Desarguesian projective plane Π^*. Then O is an r-arc in Π^*. Let S denote the set of $q + 1 - r$ points of ℓ^∞ not incident with the lines of Σ. Extend O to an $(r + 1)$-arc A of Π^* by adjoining a point P of S. By Theorem 6.1, A is
contained in an oval or hyperoval B of Π^*, and $S \subseteq B$ since $A \cup \{X\}$ is an $(r+2)$-arc for each point X of $S \setminus \{P\}$. As the points of S are collinear, one obtains the contradiction $q + 1 - r \leq 2$.

Assume next, by way of contradiction, that Π holds an r-net Σ with hyperoval H where $r > f(q) - 2$ and either $r \leq q - 3$ or $r \leq q - 2$ with q even. Extend H to an $(r+3)$-arc A' of Π^* by adjoining two points P, Q of S. By Theorem 6.3, A' is contained in an oval or hyperoval B' of Π^*. The upper bound on r guarantees that there is a point R in $B' \setminus A'$. The $r+1$ lines of Π^* which join R to points of H all intersect ℓ_∞ in the $q-1-r$ points of $S \setminus \{P, Q\}$. Thus, $r + 1 \leq q - 1 - r$; so $(q - 2)/2 \geq r > f(q) - 2$. Then $q \leq 4$, and one obtains the contradiction $r \leq 2$. ■

Corollary 6.2 implies that $q - 2/\in O_q^d$ for even $q \geq 8$ and for odd $q \geq 125$ and that $q - 2/\in H_q^d$ for all even q. We improve these results in Corollaries 6.4 and 6.6 below.

Theorem 6.3 [11, 8.6.10]. Let $q > 3$ be odd. Then each q-arc of $\Pi^* = \Pi^*(GF(q))$ is contained in a unique oval of Π^*.

Corollary 6.4 For odd $q \geq 7$, $q - 2/\in O_q^d$.

Proof Assume, by way of contradiction, that $\Pi := \Pi(GF(q))$ contains a $(q-2)$-net Σ with oval O for some odd $q \geq 7$. Adjoin a line ℓ_∞ to Π to form $\Pi^* := \Pi^*(GF(q))$. Let $S := \{P_1, P_2, P_3\}$ be the set of three points of ℓ_∞ not incident with lines of Σ. $T = \ell_\infty \setminus S$, $S_i = S \setminus \{P_i\}$. Then $O \cup S_i$ is a q-arc of Π^* which, by Theorem 6.3, is contained in an oval $O_i := O \cup S_i \cup \{Q_i\}$ of Π^*. For given i, at least $q - 3$ of the $q - 2$ lines XQ_i with $X \in O$ contain points of T; i.e., are tangents to O in Σ. Since there are only $q - 2$ tangents to O in Σ, Q_1 and Q_2 lie in the intersection of a common pair of tangents, and thus $Q_1 = Q_2$. Then O_1 and O_2 are distinct ovals of Π^* whose intersection is a q-arc of Π^*. This contradiction of Theorem 6.3 completes the proof of the corollary. ■

Proposition 6.5 If an $(n - 2)$-net Σ is held by an affine plane Π of order n, then Σ has no hyperovals.

Proof Assume, by way of contradiction, that Π contains an $(n - 2)$-net Σ with hyperoval H. Then n is odd. Adjoin a line ℓ_∞ to Π to form a projective
plane \(\Pi^* \). Let \(S := \{ P_1, P_2, P_3 \} \) be the set of three points of \(\ell_\infty \) not incident with lines of \(\Sigma \). Then \(H \cup \{ P_1, P_2 \} =: O \) is an oval of \(\Pi^* \). By a result of Qvist ([4, p. 148]), no point of \(\Pi^* \) lies on more than two tangents to \(O \). Since \(P_3 \) lies on \(n - 1 \) tangents to \(O \), \(n \leq 3 \); but since \(\Sigma \) is an \((n - 2) \)-net, \(n \geq 5 \), a contradiction which yields the asserted conclusion. ■

Corollary 6.6 (i) For every prime power \(q \), the integer \(q - 2 \) is not in \(H^q_d \).
(ii) For every \(n \geq 25 \), the integer \(n - 2 \) is not in \(H^n \).

Proof By definition, a Desarguesian net of order \(q \) is held by an affine plane of order \(q \); by a well-known theorem of Bruck (see, e.g., [1, p. 714]), every \((n - 2) \)-net of order \(n \) with \(n \geq 24 \) is held by an affine plane of order \(n \). ■

Proposition 6.7 (i) \(\{3\} \cup H^n \subseteq O^n \subseteq \{3, 4, ..., n + 1\} \) for all \(n \);
(ii) \(4 \in O^n \) if \(n \geq 3 \) is the order of a projective plane;
(iii) \(3, 4, q \in O^n_d \) if \(q \) is a prime power and \(n \) is a power of \(q \);
(iv) \(r \in O^n_d \) if \(q \) is a prime power and \(r \) divides \(q + 1 \) or \(q - 1 \).

Proof Clearly, \(3 \in O^n \) for all \(n \), and \(3 \in O^n_d \) for prime powers \(n \). It is well-known that \(3 \leq r \leq n + 1 \) for every \(r \)-net of order \(n \) (see, for instance, [II, Exercise I.7.5]); so (i) follows from Fact [2,1]. If \(\Pi \) is an affine plane of order \(n \), let \(\ell_1, \ell_2 \) be distinct lines in a parallel class of \(\Pi \), let \(\ell_3, \ell_4 \) be distinct lines in another parallel class of \(\Pi \), and let \(O = (\ell_1 \cup \ell_2) \cap (\ell_3 \cup \ell_4) \). Then \(O \) is an oval in a 4-net held by \(\Pi \); so (ii) is valid, and \(4 \in O^n_d \) for prime powers \(n \). The truth of (iv) and the remaining assertions of (iii) follows immediately from Propositions [2.9] and [2.6](i). ■

Proposition 6.8 (Drake, Myrvold [3])
(i) Every 6-net of order 8 is Desarguesian.
(ii) \(5 \in O^8 \cap H^9; 6 \in O^9 \).

Corollary 6.9 (i) \(O^n_d = O^n = \{ r \mid 3 \leq r \leq n + 1 \} \) for \(2 \leq n \leq 5 \);
(ii) \(O^6 = \{3\}; O^7 = \{3, 4, 6, 7, 8\} \);
(iii) \(O^8 = \{3, 4, 7, 8, 9\} \), and \(O^8 = O^8_d \cup \{5\} \);
(iv) \(O^9 = \{3, 4, 5, 8, 9, 10\} \), and \(O^9 = O^9_d \cup \{6\} \cup T \) where \(T \subseteq \{7\} \);
Proof Proposition 6.7 (with \(n = q \) in part (iii)) determines the sets \(O^n \) and \(O^d_n \) with \(n \leq 5 \) and gives \(3 \in O^6, \{3, 4, 6, 7, 8\} \subseteq O^7_d, \{3, 4, 7, 8, 9\} \subseteq O^8_d, \{3, 4, 8, 9, 10\} \subseteq O^9_d \). Tarry [1, X.13.1] proved that all \(r \)-nets of order 6 satisfy \(r = 3 \); so \(O^6 = \{3\} \). By Corollary 3.9 (ii), the integer 5 is in \(O^7_d \) but not in \(O^7_d \cup O^8_d \). By Corollary 6.2 (i), we have \(6 \notin O^8_d \). Drake used the Norton-Sade list of Latin squares of order 7 to observe [6, Table 1] that every \(r \)-net of order 7 with \(r \geq 5 \) can be extended to an affine plane of order 7. R. C. Bose and K. R. Nair as well as M. Hall [3, p. 169] have proved that the only plane of order 7 is the Desarguesian one. Thus, all 5-nets of order 7 are Desarguesian, so \(5 \notin O^7_d \). By Corollary 6.2 (ii), we have \(6 \notin O^9_d \); but \(5 \in O^8_d \), and \(6 \in O^9_d \). By Theorem 4.5 and Corollary 6.4, neither 6 nor 7 is in \(O^9_d \). ■

Corollary 6.10 (i) \(H^2_d = \{3\} \); \(H^4_d = \{3, 5\} \); \(H^8_d = \{3, 7, 9\} \); \(H^{13}_d \subseteq \{9\} \); \(H^{16}_d = \{3, 5, 7, 15, 17\} \cup S \) where \(S \subseteq \{9\} \); \(ii \) \(H^n_d \) is the empty set if \(2, 4, 8, 13 \neq n < 16 \); \(iii \) \(H^n = H^n_d \cup \{3\} \) for \(8 \geq n \neq 3 \); \(H^3 \) is empty. \(iv \) \(\{3, 5\} \subseteq H^9 \subseteq \{3, 5, 7\} \).

Proof The sets \(H^n \) with \(n \leq 8 \) are given in [7, Proposition 4.5], so it suffices to prove (i), (ii) and (iv). If \(n \) is not a prime power, there is no Desarguesian plane of order \(n \); so \(H^n_d \) is the empty set. By Proposition 6.7 (i), each \(H^n_d \) consists of odd integers \(r \) with \(3 \leq r \leq n + 1 \). By Proposition 6.4, \(3 \in H^n_d \) if and only if \(n \) is a power of 2. For \(n \leq 16 \), Theorem 3.10 implies that \(5 \in H^n_d \) if and only if \(n = 4 \) or 16; and Theorem 5.1 implies that \(7 \in H^n_d \) if and only if \(n = 8 \) or 16. By Proposition 2.6 (ii) and Proposition 2.7, \(9 \in H^n_d \); and \(15, 17 \in H^{16}_d \). For every \(n \), [4, Fact 2.3] yields \(n \notin H^n; \) in particular, \(9 \notin H^9_d \), \(11 \notin H^{11}_d \), and \(13 \notin H^{13}_d \). By Corollary 6.6, \(9 \notin H^4_d \), and \(11 \notin H^4_d \); by Corollary 6.2 (ii), \(11, 13 \notin H^{16}_d \). By [7, Corollary 3.1], \(3 \in H^9 \); and \(5 \in H^9 \) by Proposition 6.8. ■

References

[1] Th. Beth, D. Jungnickel and H. Lenz, Design Theory, second edition, in Encyclopedia of Math. and its Applications, vol. 69, Cambridge Univ. Press, Cambridge, (1999).

[2] P. J. Cameron, Parallelisms of Complete Designs, in London Math. Soc. Lecture Note Series, vol. 23, Cambridge Univ. Press, Cambridge, (1976).
[3] W. Cherowitzo, Hyperovals in Desarguesian planes: an update, *Discrete Math.*, Vol. 155 (1996) pp. 31–38.

[4] P. Dembowski, *Finite Geometries*, Ergebnisse der Math. u. ihrer Grenzgebiete, vol. 44, Springer-Verlag, New York, (1968).

[5] J. Dénès and A. D. Keedwell, *Latin Squares and their Applications*, The English Universities Press, London, England, (1974).

[6] D. A. Drake, Maximal sets of Latin squares and partial transversals, *J. Statistical Planning and Inference*, Vol. 1 (1977) pp. 143–149.

[7] D. A. Drake, Hyperovals in nets of small degree, *J. Combinatorial Designs*, to appear.

[8] D. A. Drake, A characterization of the Desarguesian affine planes which hold 7-nets with ovals, preprint, Univ. Florida, (2002) pp. 1–6.

[9] D. A. Drake and W. Myrvold, The non-existence of maximal sets of four mutually orthogonal Latin squares of order 8, preprint (2002).

[10] R. Evans, H. Hollmann, Ch. Krattenthaler and Q. Xiang, Gauss sums, Jacobi sums, and p-ranks of cyclic difference sets, *J. Combinatorial Theory, Series A*, Vol. 87 (1999) pp. 74–119.

[11] J. W. P. Hirschfeld, *Projective Geometries over Finite Fields*, Oxford University Press, Oxford, (1979).

[12] T. Y. Lam, *A First Course in Noncommutative Rings*, second edition, Graduate Texts in Mathematics, Springer-Verlag, New York, (2001).

[13] J.-P. Serre, *A Course in Arithmetic*, Springer-Verlag, New York, (1973).

[14] G. J. Simmons, Sharply focused sets of lines on a conic in $PG(2,q)$, *Congressus Numerantium*, Vol. 73 (1990) pp. 181–204.

21