Targeted broad-based genetic testing by next-generation sequencing informs diagnosis and facilitates management in patients with kidney diseases

M. Adela Mansilla1, Ramakrishna R. Sompallae1, Carla J. Nishimura1, Anne E. Kwitek2, Mycah J. Kimble1, Margaret E. Freese3, Colleen A. Campbell1, Richard J. Smith1,3,4 and Christie P. Thomas3,4,5

1Iowa Institute of Human Genetics, University of Iowa, Iowa City, IA, USA, 2Physiology, Medical College of Wisconsin, Iowa City, IA, USA, 3Internal Medicine, University of Iowa, Iowa City, IA, USA, 4Pediatrics, University of Iowa, Iowa City, IA, USA and 5Veterans Affairs Medical Center, Iowa City, IA, USA

Correspondence and offprint requests to: Richard J. Smith; E-mail: Richard-smith@uiowa.edu, Christie P. Thomas; E-mail: Christie-thomas@uiowa.edu

ABSTRACT

Background. The clinical diagnosis of genetic renal diseases may be limited by the overlapping spectrum of manifestations between diseases or by the advancement of disease where clues to the original process are absent. The objective of this study was to determine whether genetic testing informs diagnosis and facilitates management of kidney disease patients.

Methods. We developed a comprehensive genetic testing panel (KidneySeq) to evaluate patients with various phenotypes including cystic diseases, congenital anomalies of the kidney and urinary tract (CAKUT), tubulointerstitial diseases, transport disorders and glomerular diseases. We evaluated this panel in 127 consecutive patients ranging in age from newborns to 81 years who had samples sent in for genetic testing.

Results. The performance of the sequencing pipeline for single-nucleotide variants was validated using CEPH (Centre de’Etude du Polymorphism) controls and for indels using Genome-in-a-Bottle. To test the reliability of the copy number variant (CNV) analysis, positive samples were re-sequenced and analyzed. For patient samples, a multidisciplinary review board interpreted genetic results in the context of clinical data. A genetic diagnosis was made in 54 (43%) patients and ranged from 54% for CAKUT, 53% for ciliopathies/tubulointerstitial diseases, 45% for transport disorders to 33% for glomerulopathies. Pathogenic and likely pathogenic variants included 46% missense, 11% nonsense, 6% splice site variants, 23% insertion–deletions and 14% CNVs. In 13 cases, the genetic result changed the clinical diagnosis.

Conclusion. Broad genetic testing should be considered in the evaluation of renal patients as it complements other tests and provides insight into the underlying disease and its management.
Keywords: copy number variants, genetic kidney disease, massively parallel sequencing, targeted gene panel

ADDITIONAL CONTENT
An author video to accompany this article is available at: https://academic.oup.com/ndt/pages/author_videos.

INTRODUCTION
The kidney is a complex organ that maintains physiological homeostasis through a myriad of complex processes that include the excretion of excess water, ingested drugs, toxins and metabolic waste products, the regulation of acid–base balance, the reclamation or elimination of various salts, and the synthesis of a variety of endocrine hormones to control blood pressure, erythropoiesis and bone mineralization. Disrupting this function leads to a broad spectrum of disease phenotypes. At one extreme are diseases that manifest as well-recognized Mendelian disorders such as Liddle syndrome, which is characterized by hypertension with hypokalemia from unregulated hyperactivity of the epithelial sodium channel in the connecting tubule and collecting duct [1]. At the other extreme are diseases in which a more global decline in renal function leads to chronic kidney disease (CKD) with a reduction in glomerular filtration rate, retention of urea, phosphorus and potassium, and the development of anemia and bone disease. The development of CKD may blur clues to the inciting insult even with extensive laboratory testing, renal imaging and renal histological examination [2].

Over the past decade, a number of discoveries relevant to renal diseases have improved our understanding of the ciliopathies [3], focal segmental glomerulosclerosis (FSGS) [4], steroid-resistant nephrotic syndrome [5, 6] and congenital anomalies of the kidney and urinary tract (CAKUT) [7, 8]. In recent years, the advancement of next-generation sequencing has facilitated the simultaneous interrogation of multiple genes for molecular diagnosis within many disease categories including those that cause a variety of renal diseases [9, 10]. In addition, exome sequencing (ES) has been used to diagnose monogenic renal diseases [11, 12]. The diagnostic success of disease-focused panels may be limited by difficulty in phenotyping renal diseases into specific categories. Similarly, ES may not be sensitive enough to detect variants in duplicated regions, such as the proximal portion of PKD1. We sought to test the clinical relevance of broad-based genetic testing that targets genes across a wide variety of renal disease phenotypes to inform diagnosis and facilitate management of the renal patient. Using a panel of 177 genes, we tested 127 consecutive renal patients whose samples we received and in this diverse cohort made a genetic diagnosis in 54 patients. Remarkably, in 13 patients, the genetic findings changed the clinical diagnosis.

MATERIALS AND METHODS

Study design

This was a retrospective study of the diagnostic accuracy of comprehensive genetic testing panel used a cohort of 127 consecutive patients where samples were sent to the University of Iowa Institute of Human Genetics for gene screening. There were no exclusion criteria. Patients were classified, based on clinical history provided, into the following broad disease subtypes: ciliopathies/CAKUT, tubular transport disorders and glomerulopathies. American College of Medical Genetics (ACMG) criteria were used to classify genetic variants as pathogenic, likely pathogenic, variant of unknown significance (VUS), likely benign and benign [13].

Gene selection, platform design and validation, and patient recruitment

Genes implicated in a large number of renal diseases were selected for inclusion in the kidney disease panel (KidneySeq v1) and grouped by renal phenotype (e.g. ciliopathy, glomerular diseases and CAKUT). Targeted capture of coding exons and splice sites was optimized using RNA baits selected with Agilent’s SureDesign online software, incorporating 4-fold probe density and 25-base pairs of flanking intronic sequence. Performance metrics were assessed by studying 31 genomic DNA samples from the CEPH consortium (Centre de’Etude du Polymorphism) using results to improve depth-of-coverage (Supplementary data, Table S1). Additional genes were also added to increase the genetically relevant search space. The updated panel (KidneySeq v2) was used in the diagnostic evaluation of sequentially accrued samples from patients with renal disease (Table 1 and Supplementary data, Table S2). There were no exclusionary criteria.

Library preparation, targeted genomic enrichment and massively parallel sequencing

After preparing libraries from patient-derived gDNA, library preparation, targeted genomic enrichment and massively parallel sequencing (MPS) were completed as we have described [14]. In brief, libraries were prepared using a modification of the solution-based Agilent SureSelect target enrichment system (Agilent Technologies, Santa Clara, CA, USA) with liquid-handling automation. Hybridization and capture with RNA baits were followed by a second amplification. Before pooling for sequencing, all samples were bar coded and multiplexed. Sequencing was done using Illumina HiSeq (pool of 48 samples) or MiSeq (pools of five samples) instrumentation (Illumina Inc., San Diego, CA, USA). Sanger sequencing was used to amplify and resolve exons 1–34 of PKD1 [15, 16].

Bioinformatics analysis

Data analysis was performed on dedicated computing resources maintained by the Iowa Institute of Human Genetics using a standardized workflow for sequence analysis and variant calling [14]. The freebayes variant caller was used to identify variants in PKD1. Variant annotation was performed with a custom-built reporting tool.

Variant filtering

Library quality was based on the total number of reads per sample and coverage at 30× or greater, excluding low-quality variants [depth <10 or quality by depth (QD) <5] and
Disorder	Gene(s)
Ciliopathies/tubulointerstitial diseases	
Alagille syndrome	NOTCH2
Autosomal recessive polycystic kidney disease	PKHD1
Autosomal dominant polycystic kidney disease	PKD1, PKD2
Autosomal dominant tubulointerstitial kidney disease	HNF1B, REN, UMOD
Bardet–Biedl syndrome (BBS)	ARL6, BBS1, BBS2, BBS4, BBS5, BBS7, BBS10, BBS12, CEPI290, MKS5, PTHB1, TRIM32, TCT8
COACH syndrome	CC2D2A, RPGRIPI1L, TMEM67
HANAC syndrome	COL4A1
Jeune syndrome	IFIT80, IFIT40, DYNC2H1, NEK1, TCT21B
Joubert syndrome	AHI1, ARL13B, ATXN10, CC2D2A, CEPI290, CEPI41, CPSPI1, INNPSE, KIF7, NPH1, OFDI1, RPGRIPI1L, TMEM216, TCTN1, TMEM138, TMEM237, TMEM67, TCT21B
Juvenile nephronophthisis (IN)	AH1, ATXN10, IQCB1, CEPI290, GLIS2, INVS, NEK8, NPH1, NPH3, NPH4, RPGRIPI1L, TMEM67, TCT21B, WDR19, XPNPPEP3
Juvenile nephronophthisis (IN)	
Meckel syndrome (MKS)/Meckel–Gruber syndrome	B9D1, B9D2, CC2DA, CEPI290, MKS1, NPH3, RPGRIPI1L, TCT2, TMEM216, TMEM67
Medullary cystic kidney disease 2	
Oro-facial-digital syndrome 1	
Renal cysts and diabetes syndrome	
Serpentine fibula with polycystic kidney disease (SFPKS)/Hajdu–Cheney syndrome (HJCYS)	
Sensenbrenner syndrome/(CED)	
Senior–Loken syndrome (IN with retinitis pigmentosa)	
Disorders of tubular ion transport	
Apparent mineralocorticoid excess, syndrome of	
APRT deficiency	
Autosomal dominant hypocalcemia, ± Bartter syndrome	
Bartter syndrome	
Cystinosis	
Cystinuria	
Dent disease	
Distal renal tubular acidosis	
Familial hypertension with hyperkalemia (Gordon syndrome),	
Pseudohypoaldosteronism II	
Gitelman syndrome	
Hypophosphatemic rickets	
Isolated proximal renal tubular acidosis—generalized proximal defect	
(Fanconi syndrome)	
Liddle syndrome (pseudo hyperaldosteronism)	
Nephrogenic diabetes insipidus (NDI)	
Nephrogenic syndrome of inappopriate antiureasis (NSIAD)	
Primary hyperoxaluraria	
Pseudohypoaldosteronism I (PHA I)	
Renal glucosuria	
Renal hypomagnesemia	
Renal tubular acidosis, proximal, with ocular abnormalities	
Glomerular diseases	
Alport syndrome	
Alstrom syndrome	
Congenital nephrotic syndrome (Finnish type)	
DDS, Frasier syndrome	
Diffuse mesangial sclerosis	
Epstein–Fechtner syndrome (renal disease with macrothrombocytopenia)	
Fabry disease	
FSGS–AD/XL	
FSGS–AR	
FSGS/steroid-resistant nephrotic syndrome (SRNS)–AR	
Galloway–Mowat syndrome	
Glomerulopathy with fibronectin deposits	
Hereditary systemic or renal amyloidiosis	

Continued
common variants with a minor allele frequency (MAF) >1% in any population (except for known risk alleles). Nonsynonymous single-nucleotide variants (SNVs), canonical splicing changes and insertion–deletions (indels) were retained.

Reference databases routinely queried included the Human Gene Mutation Database, ClinVar, the autosomal dominant polycystic kidney disease (ADPKD) mutation database, the ARUP (COL4A5) database and our in-house Renal Variant Database (RVD). GERP++, PhyloP, MutationTaster, PolyPhen2, SIFT and LRT were used to calculate variant-specific pathogenicity scores as described [14].

Copy number variant analysis

Copy number variant (CNV) analysis was performed using ExomeCopy and ExomeDepth [17]. CNV calls from both programs were manually curated and validated if breakpoints were identified.

Sanger sequencing

Sanger sequencing was performed for platform validation, for *PKD1* testing and to confirm pathogenic variants, designing primers using Primer 3 (http://bioinfo.ut.ee/primer3-0.4.0/primer3/) [14].

Variant interpretation

A multidisciplinary board was held semimonthly to discuss all genetic results on a patient-by-patient basis in the context of the available clinical data. Variants were classified following ACMG guidelines. Variants with a MAF >1% were classified as ‘benign’ with a few notable exceptions (*APOL1* G1 and G2 alleles). Variants reported as ‘pathogenic’ in the literature with

Diseases	Genes
Muckle–Wells syndrome	NLRP3
Nail patella syndrome	LMX1B
Nephrotic syndrome, steroid sensitive	PLCG2
Pierson syndrome (nephrotic syndrome with microcoria)	LAMB2
Thin basement membrane disease (benign familial hematuria)	COL4A3, COL4A4
CANKUT	EYA1, SIX1, SIX5
Branchio-oto-renal syndrome	TRAP1
CANKUT with VACTERL	NPHP1
Cogan oculomotor apraxia	AGTR1, AGTR2, CHD1L, DSYTYK, EYA1, GATA3, HNF1B, PAX2, RET, ROBO2, SALL1, SIX2, SIX5, TRAP1
Common CANKUT	GATA3
Fraser syndrome	BMP4, DSYTYK, FGF20, HNF1B, PAX2, RET, SALL1, SIX2, PAX2
Hypoparathyroidism, sensorineural deafness and renal dysplasia	RET, UPK3
Isolated renal hypo-dysplasia	ANOS1
Isolated renal hypoplasia and renal-coloboma syndrome (papillorenal syndrome)	WNT4
Isolated renal hypoplasia	CHD1L, HNF1B, ROBO2, SALL1
Kallmann syndrome	CHD1L, HNF1B, ROBO2, SALL1, SIX2
Mayer–Rokitansky–Küster–Hauser syndrome	HNF1B
Multicystic dysplastic kidney	ACE, AGT, AGTR1, REN
Posterior urethral valves	SALL1
Renal cysts and diabetes syndrome	DSYTYK, HNF1B, RET, SALL1
Renal tubular dysgenesis	DSYTYK, EYA1, HNF1B, RET, ROBO2, SALL1
Townes–Brock syndrome	CHD1L, PAX2, SIX5
Unilateral renal agenesis	DSYTYK, EYA1, GATA3, HNF1B, RET, ROBO2, SALL1, SOX17, TXNB, UPK3A
UPJ obstruction	
UVJ obstruction	
Vesicoureteral reflux	
Other	SALL4
Acrrenooculoor syndrome (Okihiro syndrome)	COQ2
Mitochondrial cytopathy	GLI3
Pallister–Hall syndrome	CREBBP
Rubinstein–Taybi syndrome	SMARCAL1
Schimke immuno-osseous dysplasia	WNT4
SERRAD syndrome (46XX sex reversal with dysgenesis of kidneys, adrenal and lungs)	GPC3
Simpson–Golabi–Behmel syndrome	DHCRI7
Smith–Lemli–Opitz syndrome	TSC2
Tuberous sclerosis	TSC2
Williams syndrome	7q11.23

308 M. Adela Mansilla et al.
supporting functional evidence were classified as ‘pathogenic’. The ‘likely pathogenic’ classification was assigned to missense variants with pathogenicity scores ≥4 (based on GERP++, PhyloP, MutationTaster, PolyPhen2, SIFT and LRT) if they were also ultra-rare and in a disease-related functional domain. Novel or rare variants that changed protein sequence but had an unknown impact on protein function were classified as VUSs. Based on the clinical phenotype and the genotypic findings, clinical correlation and segregation analysis were recommended.

Institutional Review Board

The study was approved by the Institutional Review Board (IRB No. 201805825) for human subject research and informed consent was waived. The study adheres to the Principles of Medical Research as stated in the Declaration of Helsinki.

RESULTS

Performance metrics

Performance and validation of KidneySeq v1 using 31 CEPH samples showed that >70% of sequence reads overlapped target regions with a mean coverage of ≥400×; >99% of bases were covered by at least 30 reads (30×). This threshold was achievable with at least 5 million reads per sample (Supplementary data, Figure S1). Targeted regions covered at less than 30× were Sanger sequenced; no additional variants were identified (Supplementary data, Table S3). These performance metrics were used to refine the panel by changing probe density.

Variant analysis

Call accuracy in the 31 CEPH controls was determined by Sanger sequencing 29 variants with MAF >1% and 32 variants with QD <10 in all samples (Supplementary data, Table S4); 256 variants that were either heterozygous or homozygous alternate were identified (Supplementary data, Figure S2). All validated variants with a QD <5 were false positives. Between QD >5 and QD <10, there were false-positive calls for both SNVs and indels. Of the 1643 sites, there were 252 true positives, 4 false positives, 1387 true negatives and no false negatives. Specificity (99.71), sensitivity (100), and positive (98.44) and negative (100) predicted values were very high (Supplementary data, Tables S4 and S5).

Validation of sequencing and analysis pipeline

A high-density SNP array was used to interrogate the CEPH sample, NA12287 (1421-14). A comparison of genotype calls from the SNP array and KidneySeq v1 identified only one discordant variant from the 3008 identified (Supplementary data, Figure S3a). Through Sanger confirmation, we verified that the KidneySeq v1 variant call was correct and the SNP array was incorrect. To validate indels, we used Genome-in-a-Bottle (GIAB), which predicts 314 indels in the KidneySeq v1 targeted regions. All predicted indels were identified by KidneySeq v1 in addition to two other indels at QD >5 not reported in the GIAB reference sequence but confirmed by Sanger sequencing (Supplementary data, Figure S3b). To test the reliability and sensitivity of the CNV analysis workflow, positive samples were re-sequenced and re-analyzed. All known CNVs were detected successfully on the repeat samples (Supplementary data, Table S6).

PKD1 gene proximal region

The duplicated region of PKD1 (exons 1–34) was Sanger sequenced to verify variant detection. The panel detected 36 variants in the homologous region of the PKD1 gene in seven patients selected for this validation. Overall, 94.4% (34 of 36) of these variants were verified by Sanger sequence. The variant detected only by MPS (the same variant was detected in two patients) was a false positive in exon 15. No false negatives were detected by Sanger sequencing.

Patients

 Genetic testing was completed on 127 patients (77 males). The most common indication was FSGS (17 patients), followed by medullary cystic kidney disease/nephronophthisis (14

Table 2. Indications for testing

CAKUT	2
Branchio-oto-renal syndrome	1
HNF1-β	
Multicystic dysplastic kidney	
Papillorenal syndrome	
Renal hypo/dysplasia	
Unspecified	5
Total	18
Ciliopathy/tubulointerstitial	
ADPKD	7
ARPKD	3
Medullary cystic kidney disease/nephronophthisis	14
Orofacial digital syndrome	1
Renal cysts	5
Total	32
Tubular ion transport	
Apparent mineralocorticoid excess	1
Bartter/Gitelman	9
Cystinuria	1
Dent	5
Fanconi	2
Hypercalmia	3
Hypokalemia	2
Hypomagnesemia	3
Hypophosphatemia	3
Kidney stones	2
Liddle syndrome	2
NDI	3
Pseudohyypoaldosteronism	2
Renal tubular acidosis	2
Total	40
Glomerulopathy	
Alport/Alport like	10
FSGS	17
Nephrotic proteinuria/nephrotic syndrome	9
Other glomerular	2
Total	40
Other	
Nephrogenic rests	1
Nonrenal	1
No information	5
Unclassified kidney disease	10
Total	17

Some patients had multiple laboratory abnormalities or clinical diagnosis that is listed individually, resulting in larger totals. ARPKD, autosomal recessive polycystic kidney disease.
Table 3. Clinical renal samples: all patients with indication for testing, family history, disease type and demographics; family history, when known, are shown as positive (Y) or negative (N)

Case	Indication for testing	Family history	Disease categorya,b	Sex	Age (years)	Ethnicity
1	Bilateral multicystic dysplastic kidneys	Y	1	F	6	Hispanic
2	Renal dysplasia	Unknown	1	M	1	Caucasian, non-Hispanic
3	Stage 5 (CKD), hearing loss	Unknown	4	M	37	Asian
4	FSGS at age 40 years	N	4	M	66	Caucasian, non-Hispanic
5	Proteinuria, FSGS	Y	4	M	54	African/African-American, non-Hispanic
6	Alport syndrome	Y	4	M	34	White
7	Dent disease (NDI, failure to thrive)	Unknown	3	M	1	Caucasian, Hispanic or Latino
8	Nephronophthisis	Y	2	F	10	African/African-American
9	FSGS	Unknown	4	M	54	African/African-American
10	Nephrotic syndrome	Unknown	4	M	3	Hispanic or Latino
11	Medullary cystic kidney disease	Unknown	2	M	27	Caucasian, non-Hispanic
12	Hypomagnesemia	Unknown	3	F	11	Not provided
13	FSGS	Unknown	4	M	58	Caucasian
14	Medullary cystic kidney disease/ nephronophthisis	Unknown	2	M	31	Caucasian
15	Hypercalcemia, hyocalciuria	N	3	F	81	Caucasian
16	Dilated cardiomyopathy and hypomagnesemia	N	3	M	3	Caucasian
17	Fanconi syndrome, hypophosphatemic rickets	Unknown	3	M	2	Caucasian, aboriginal
18	ESRD, primary FSGS	Unknown	4	M	55	Caucasian
19	Severe CAKUT	Unknown	1	M	<1	Caucasian, Hispanic or Latino
20	Alport syndrome	Unknown	4	M	5	Asian (India), non-Hispanic
21	Hypercalcemia, hypercalciuria, short stature	Unknown	3	M	2	Caucasian, non-Hispanic
22	Interstitial nephritis	Unknown	2	F	10	Caucasian
23	U/S prenatal echogenic kidneys, postnatal bilateral cysts, HNF1B disease	Unknown	1	M	<1	Not provided
24	Bartter syndrome or other	Unknown	3	M	1	African/African-American
25	ESRD, tubulointerstitial disease	Y	2	M	51	Caucasian, Hispanic or Latino
26	Bilateral hypoplastic dysplastic kidneys	Unknown	1	M	<1	Caucasian, Hispanic or Latino
27	Microhematuria, Alport or TBM disease	Unknown	4	M	2	Caucasian, Hispanic or Latino
28	FSGS or MCKD	Y	2, 4	M	60	African/African-American, non-Hispanic
29	Alport or TBM disease	Unknown	4	M	18	Caucasian, non-Hispanic
30	FSGS, SRNS, hypoalbuminemia	Unknown	4	M	17	Caucasian, non-Hispanic
31	FSGS or Dent disease. Nephrotic range proteinuria, global glomerulosclerosis	Unknown	3, 4	M	18	African/African-American
32	ADTKD, tubular proteinuria, no signs of Fanconi	Y	2	M	18	Unknown
33	Alport syndrome. Hearing loss, microscopic hematuria, CKD	Unknown	4	M	12	Caucasian
34	Renal agenesis/hypoplasia or nephronophthisis	Y	1, 2	F	16	Hispanic or Latino
35	Gitelman/Bartter syndrome	Unknown	3	F	17	Caucasian

Continued
Case	Indication for testing	Family history	Disease category	Sex	Age (years)	Ethnicity
36	Bilateral multicystic dysplastic kidneys, perinatal death	Unknown	1	M	0b	Unknown
37	Bartter syndrome, NDI or Dent disease. Polyuria, polydipsia, hypercalciuria, medullary nephrocalcinosis	Unknown	3	M	16	Caucasian, non-Hispanic
38	Pseudohypoaldosteronism. Hyperkalemia, polyuria	Unknown	3	M	0b	Hispanic or Latino
39	Multicystic bilateral kidneys	Unknown	1	M	0b	Caucasian, non-Hispanic
40	Apparent mineral corticoid excess	Unknown	3	M	2	Not provided
41	Bartter syndrome. Polyuria, metabolic alkalosis	Unknown	3	F	3	Taiwanese, non-Hispanic
42	Liddle syndrome. Early onset hypertension and hypokalemia	Y	3	F	19	Caucasian, Hispanic or Latino
43	PKD (bilateral renal cysts and hypertension)	Unknown	2	M	15	Hispanic or Latino
44	NDI, medullary nephrocalcinosis, vescoureteral reflux, hypophosphatemia	Unknown	3	F	3	Caucasian, non-Hispanic
45	Cystinuria	Y	3	F	19	Caucasian
46	FSGS or minimal change disease. Persistent proteinuria	Unknown	4	M	5	Caucasian, non-Hispanic
47	Hypokalemia, hypomagnesemia, high urinary Na and K, prior diagnosis of NDI	Unknown	3	F	59	Caucasian, non-Hispanic
48	Hypotonia, dysmorphic features, developmental delay, obesity	Unknown	5	F	2	Caucasian, non-Hispanic
49	Horseshoe kidney asymptomatic; daughter, son perinatal/fetal demise with CAKUT	Y	1	F	33	Caucasian, Native American, non-Hispanic
50	Proximal tubulopathy or Dent or hypophosphatemic rickets, nephrocalcinosis, small stature	Unknown	3	F	13	Asian, non-Hispanic
51	FSGS, ESRD, post-kidney transplant	Unknown	4	M	15	Hispanic or Latino
52	PKD1, PKD2, HNF1B	Unknown	2	M	6	Hispanic or Latino
53	Renal cysts, family history of hereditary nephritis	N	2	F	49	Asian, non-Hispanic
54	Polycystic kidney disease, undescended testes, HTN	N	2	M	<1	Caucasian, non-Hispanic
55	ESRD, FSGS	Y	4	M	64	African/African-American
56	HTN, AKI, LVH, congenital nephrotic syndrome or ARPKD	Unknown	2, 4	F	<1	Not provided
57	Moderate CKD	Unknown	5	M	1	Not provided
58	Not provided	Unknown	5	F	16	Not provided
59	Bartter/Gitelman syndrome, hypokalemia, hypomagnesemia and metabolic alkalosis	Unknown	3	M	12	Not provided
60	Nephronphthisis or MCKD	Y	2	M	58	Caucasian, non-Hispanic
61	Polycystic kidney disease	Unknown	2	F	51	African/African-American
62	FSGS or MCKD	Y	2, 4	M	56	African/African-American
63	FSGS/multicystic dysplastic kidney	Y	1, 4	M	15	Caucasian, non-Hispanic
64	Hyperplastic nephrogenic rests, features seen with underlying syndromes such as Beckwith–Wiedemann	Unknown	5	F	<1	Not provided
65	Hypophosphatemic rickets; distal renal tubular acidosis; isolated proximal renal tubular acidosis, generalized proximal defect	N	3	F	0b	Hispanic or Latino
66	FSGS	Unknown	4	F	10	African/African-American, non-Hispanic

Continued
Case	Indication for testing	Family history	Disease category^{a,b}	Sex	Age (years)	Ethnicity
67	Horseshoe kidney, dysmorphic features, VSD	Y	1	F	<1	Egyptian
68	Kidney stones, paresthesias, hypercalcuria, hypoparathyroidism, ESRD	Y	3	M	58	Caucasian
69	Large cystic kidneys	N	2	M	27	Caucasian, non-Hispanic
70	Renal cystic dysplasia, ectopic atrial tachycardia, CUA, seizures, LVH; dialysis from birth	Unknown	2	F	<1	Caucasian
71	Steroid-resistant nephrotic syndrome	N	4	F	8	Asian, multiracial
72	MCD, unresponsive to steroids	N	2	F	3	African/African-American
73	Glomerulocystic kidneys and hepatoblastoma	N	2	F	3	Hispanic or Latino
74	Alport syndrome					Caucasian
75	Steroid-resistant nephrotic syndrome	Y	4	M	4	Dominican Republic
76	Gitelman syndrome	N	3	F	23	Not provided
77	Not provided	Y	5	M	57	Not provided
78	Nephronophthisis	Y	2	F	38	Caucasian
79	Premature newborn with severely enlarged cystic kidneys noted mid-trimester, severe oligohydramnios, pulmonary hypoplasia	N	2	F	0^b	Caucasian, Hispanic or Latino
80	Alport syndrome	Unknown	4	F	11	Caucasian
81	Hyponatremia, hypokalemia, nephrotic-range proteinuria, glucosuria	N	3	M	1	Caucasian, non-Hispanic
82	Global glomerulosclerosis	Y	4	F	65	African/African-American, non-Hispanic
83	Juvenile nephronphthisis and MCKD	Unknown	2	F	29	Not provided
84	Not provided	Unknown	5	M	14	Not provided
85	X-linked hypophosphatemic rickets	Unknown	3	F	1	Caucasian, non-Hispanic
86	Orofaciodigital syndrome I	Unknown	2	F	21	Caucasian, non-Hispanic
87	Bilateral cystic kidneys	Unknown	2	M	0^b	Native American, Hispanic or Latino
88	Renal tubular acidosis	Unknown	1	F	9	Caucasian, Hispanic
89	Childhood nephrotic syndrome, possibly collapsing FSGS	Unknown	4	F	9	African/African-American, non-Hispanic
90	Alport syndrome	N	4	F	6	African/African-American
91	CKD, looking for APOL1 risk variants	N	4	F	18	Caucasian, non-Hispanic
92	Bilateral cystic kidney disease	Unknown	2	F	14	Caucasian, non-Hispanic
93	Congenital bilateral echogenic kidneys with small cysts	N	2	F	5	Not provided
94	Failure to thrive, presented with HTN and chronic renal failure	N	5	F	6	Caucasian
95	FSGS and hypertension	Unknown	4	M	54	Not provided
96	Alport syndrome, branchio-oto-renal syndrome (BOR), ESRD, nephronophthisis	Unknown	2, 4	M	16	Caucasian
97	Bartter syndrome	Unknown	3	F	2	Multiracial, Hispanic or Latino
98	Autosomal recessive polycystic kidney disease	Unknown	2	M	0^b	Caucasian
99	Polycystic kidney disease	Y	2	M	7	Caucasian
100	Nephrotic syndrome	N	4	M	2	Caucasian
101	Chronic kidney stones and alkaline urine	Unknown	2	M	18	Not provided
102	Autosomal recessive polycystic kidney disease	Unknown	2	M	0^b	Brazilian/Mexican, Hispanic or Latino
103	Nephrotic-range proteinuria	N	4	M	<1	Caucasian

Continued
patients), Alport or Alport-like syndrome (10 patients), Bartter/Gitelman syndrome (7 patients) and ADPKD (7 patients) (Table 2). Age ranged from newborn to 81 years (0–6 years, 56 patients; 7–14 years, 22 patients; 15–30 years, 26 patients; >30 years, 23 patients) (Table 3).

Variant identification and diagnostic rates in renal patients

A genetic diagnosis was made in 54 patients (43%) (Table 4; 46% solve rate between 0–14 years; 46% from 15–30 years and 22% in those >30 years). By disease group, the solve rate was 54% for CAKUT (7 of 13 patients), 53% for ciliopathies/tubulointerstitial diseases (17 of 32 patients), 45% for disorders of tubular transport (13 of 29 patients) and 33% for glomerulopathies (15 of 43 patients) (Figure 1 and Table 4). A number of identified variants were classified as VUSs as they did not meet ACMG criteria for pathogenicity or likely pathogenicity (Tables 5–7).

DISCUSSION

We identified a genetic basis for disease in 54 of 127 (44%) patients, demonstrating that broad-based genetic testing can augment current clinical algorithms used to evaluate the renal patient. The solve rate for cases decreased with age from 46% for patients between 0 and 14 years to 22% for patients >30 years old. Among solved cases, 9 were X-linked, 22 were autosomal dominant and 22 were autosomal recessive (6 homozygous and 16 compound heterozygous variants). Family history was positive in six autosomal dominant disorders (13 unknown), four autosomal recessive disorders (14 unknown) and in one X-linked disorder (7 unknown). Pathogenic and likely pathogenic variants included missense (32 of 75),

Case	Indication for testing	Family history	Disease categorya,b	Sex	Age (years)	Ethnicity
104	Papillorenal syndrome (renal-coloboma syndrome)	N	1	M	2	Caucasian, Hispanic or Latino
105	Not provided	N	5	M	14	Caucasian
106	ADPKD	N	2	M	12	Caucasian
107	Congenital nephrotic syndrome	Unknown	4	F	0*	Hispanic or Latino
108	Not provided	Unknown	5	F	6	Not provided
109	Isolated multicystic dysplastic kidney disease and polycystic kidney disease	Unknown	2	M	7	Not provided
110	NDI	N	3	M	1	Caucasian, non-Hispanic
111	BOR or isolated CAKUT	Unknown	1	F	2	Not provided
112	Dent disease, Bartter or Gitelman syndromes	Unknown	3	M	23	Caucasian, non-Hispanic
113	ESRD of unknown etiology	Y	5	M	20	Hispanic or Latino
114	IgA nephropathy or FSGS	N	4	M	11	African/African-American
115	FSGS or diffuse mesangial sclerosis	Unknown	4	M	4	Caucasian
116	Alport syndrome	Y	4	M	13	Caucasian, non-Hispanic
117	Liddle syndrome	Unknown	3	F	4	Not provided
118	Nephrotic syndrome	Unknown	4	M	8	African/African-American
119	CDK Stage 2, FSGS	Unknown	4	F	16	African/African-American, non-Hispanic
120	ESRD due to FSGS	Unknown	4	F	20	Not provided
121	Juvenile nephronphthisis	Unknown	2	M	<1	Not provided
122	Zellweger syndrome, Galloway–Mowat syndrome, podocytopathy	Unknown	4	M	1	Caucasian, non-Hispanic
123	Steroid-resistant nephrotic syndrome	Unknown	4	M	<1	Caucasian, non-Hispanic
124	Bartter/Gitelman syndromes, pseudohypoaldosteronism Type 1	Unknown	3	M	<1	African/African-American
125	Nephronophthisis	Unknown	2	M	15	Caucasian
126	Nephronophthisis	N	2	F	12	Native Hawaiian or other Pacific Islander, non-Hispanic
127	Bartter syndrome, Gitelman syndrome or NDI	Y	3	M	2	Caucasian, non-Hispanic

*Variant identification and diagnostic rates in renal patients.

Table 3. Continued

Unbiased testing advances the diagnosis of renal diseases
Table 4. Patients with a positive genetic diagnosis, showing indication(s) for testing, disease type, genetic variant(s), zygosity, ACMG classification, mean allele frequency and genetic diagnosis

Case	Indication for testing	Family history	Disease type	Sex	Age (years)	Race/ethnicity	Gene	Variant	Zygosity	ACMG classification	MAF gnomAD	Genetic diagnosis (AD/AR/XLR)	Disease category change	First reported	
1	Bilateral multicystic dysplastic kidneys	Y	1	F	<1	H	PKD1	NM_000296: c.11575delG, p.Ala3859Pro*, 5'UTR NM_000297: c.2T>A, het p.Met1Lys	het	Pathogenic (PVS1, PM1, PM2)	Not reported	ADPKD	2	This manuscript	
2	Renal dysplasia	Unknown	1	M	2	1	HNF1B	NM_000458: c.516C>G, p.Tyr172*	het	Likely pathogenic (PVS1, PM2, PP3)	Not reported	HNF1B-related nephropathy (AD)	Alport syndrome (XLD)	[18]	
3	Stage V (CKD), hearing loss	Unknown	4	M	37	4	COL4A5	NM_000495: c.529G>C, p.Gly177Arg	hemi	Pathogenic known (PS1, PM1, PM2, PP3)	Not reported	NFE	Nephronophthisis 1 (AR)	This manuscript	
7	Dent disease (NDI, failure to thrive, anion gap metabolic acidosis)	Unknown	3	M	2	1	AQP2	NM_000486: c.502G>A, p.Val168Met	het	Likely pathogenic (PVS1, PM1, PM2, PP4)	Not reported	NFE	This manuscript		
8	Nephronophthisis	Y	2	F	10	2	RPGRP1	NM_001127897: c.1329_1330insA, p.Arg444Thrfs*10	het	Pathogenic known (PVS1, PM2, PP3)	Not reported	COACH syndrome (AR)	This manuscript		
11	Autosomal dominant polycystic kidney disease	Unknown	2	M	27	1	NPHP1	NM_000091: c.1408+2T>C, p.Leu2866Pro	het	Pathogenic known (PVS1, PM2, PP3)	Not reported	NFE	Nephronophthisis 1 (AR)	[20]	
20	Alport syndrome	Unknown	4	M	5	4	COL4A5	NM_000495: c.1843G>A, p.Gly615Arg, Deletion of NPHP1 gene region on chr2	hemi	Pathogenic known (PVS1, PS1, PM2, PM3)	Not reported	Alport syndrome (XLD)	This manuscript		
23	U/S prenatal echo-genic kidneys, postnatal bilateral cysts, HNF1B disease	Unknown	1	M	<1	1	PKD1	NM_000296: c.8597T>C, p.Leu2866Pro	het	Pathogenic known (PS1, PM2, PP3, PP5)	Not reported	ADPKD	2	This manuscript	
24	Bartter syndrome or other	Unknown	3	M	1	Unknown	KCNJ1	NM_000220: c.123G>C, p.Arg41Ser	hom	Likely pathogenic (PM1, PM2, PM3, PP2, PP3)	Not reported	Bartter syndrome (AR)	This manuscript		
26	Bilateral hypoplastic dysplastic kidneys	Unknown	1	M	<1	1H	EYA1	NM_000503: c.922C>T, p.Arg308*	het	Pathogenic known (PVS1, PS3, PM2, PP3)	Not reported	Branchio-oto-renal syndrome (AD)	This manuscript		
29	Alport or thin basement membrane disease	Unknown	4	M	18	1	COL4A3	NM_000091: c.1408+2T>C	het	Pathogenic known (PVS1, PM2, PP3)	Not reported	NFE	Alport syndrome (AD)/thin basement membrane disease (AD)	This manuscript	
33	Unknown	4	M	12	1	COL4A4	NM_000296: c.11575delG, p.Ala3859Pro*, 5'UTR NM_000297: c.2T>A, het p.Met1Lys	het	Pathogenic (PVS1, PM1, PM2)	0.00089% NFE	NFE				
Gene	Mutation Details	Genomic Location	Pathogenicity	Comment											
------	-----------------	------------------	---------------	---------											
Alport syndrome	NM_000092: c.4522G>A, p.Gly1508Ser; NM_000092: c.227892566_227974060 del	chr2: 227892566-227974060	Likely pathogenic (PS1, PM2, PP3)	Alport syndrome (AR)											
Bartter syndrome, NDI or Dent disease; polyuria, polydipsia, hypercalcuria, medullary nephrocalcinosis	Unknown 3 M 16 1 SLC12A1	NM_000338: c.1652C>T, p.Thr551Ile; NM_000338: c.2807G>A, p.Trp936*	Likely pathogenic (PM1, PM2, PM3, PP3)	Not reported [26]											
Pseudohypoaldosteronism; hyperkalemia, polyuria	Unknown 3 M <1 H SCNN1B	NM_000336: c.682delG, p.Ala228Hisfs*8; chr16: 23313555-23315510 del	Likely pathogenic (PM1, PM2, PM3)	Pseudohypoaldosteronism I (AR)											
Liddle syndrome; early onset hypertension and hypokalemia	Y 3 F 19 1H HSD11B2	NM_000196: c.623G>A, p.Arg208His; NM_000196: c.667G>A, p.Asp223Asn	Likely pathogenic (PS1, PM2, PP3)	Syndrome of apparent mineralocorticoid excess (AR)											
Cystinuria	Y 3 F 19 1 SLC7A9	NM_001126335: c.775G>A, p.Gly259Arg; NM_001126335: c.854C>A, p.Ala285Glu	Likely pathogenic (PS1, PM2, PP3)	Cystinuria (AR)											
PKD1, PKD2, HNF1B	Unknown 2 M 6 H PKD1	NM_000296: c.9395C>T, p.Ser3132Leu; NM_000296: c.10102G>A, p.Asp3368Asn	Likely pathogenic (PM1, PM2, PM3, PP3)	ADPKD											
Renal cysts	Y 2 F 49 4 PKD1	NM_000296: c.10102G>A, p.Asp3368Asn; NM_001008389: c.854C>A, p.Ala285Glu	Likely pathogenic (PS1, PM2, PP3)	ADPKD											
Bartter/Gitelman syndrome; hypokalemia, hypomagnesemia and metabolic alkalosis	Unknown 3 M 12 Unknown SLC12A3	NM_000092: c.1836G>T, p.Trp612Cys; NM_000338: c.4522G>A, p.Gly1508Ser; NM_000092: c.227892566_227974060 del; NM_001008389: c.854C>A, p.Ala285Glu	Likely pathogenic (PM1, PM2, PM3, PP3)	Not reported Gitleman syndrome (AR)											
Case	Indication for testing	Family history	Disease categorya	Sex	Age (years)	Race/ethnicity	Gene	Variant	Zygosity	ACMG classification [17]	MAF gnomADb	Genetic diagnosis (AD/AR/XLR)	Disease category changea	First reported	
------	------------------------	----------------	-------------------	-----	-------------	----------------	------	---------	----------	--------------------------------	----------------	---------------------------------	-------------------	---------------	
60	Nephronophthisis or medullary cystic kidney disease	Y	2	M	58	1	UMOD	c.278_289del	het	Likely pathogenic known (PS1, PM, PM4)	Not reported	Tubulo-interstitial kidney disease (AD)	[36]		
61	Polycystic kidney disease	Unknown	2	F	51	2	PKD1	NM_000296:	c.6356delTA	het	Pathogenic (PV1, PM2, PP3)	Not reported	ADPKD	This manuscript	
63	FSGS, multivesicular dysplastic kidney	Y	4/1	M	15	1	PAX2	NM_000278:	c.419G>T, p.Arg140Leu	het	Likely pathogenic (PM1, PM2, PP1, PP3)	Not reported	FSGS (AD)/CAKUT	This manuscript	
65	Hypophosphatemic rickets; distal renal tubular acidosis; isolated proximal renal tubular acidosis, generalized proximal defect	N	3	F	<1	H	ATP6V0A4	NM_020632:	c.154_157 del GTGAp.Val 52 Metfs*25	het	Likely pathogenic (PV1, PM2, PP3)	Not reported	Distal renal tubular acidosis (AR)	This manuscript	
68	Kidney stones, par-thesia, hypercalcuria, hyperparathyroidism, ESRD	Y	3	M	58	1	CASR	NM_000296:	c.8311G>A, p.Glu2711Lys	het	Likely pathogenic (PS1, PM1, PM2, PM3)	Not reported	Hypocalcemia (AD)	This manuscript	
69	Large cystic kidneys	N	2	M	27	1	PKD1	NM_000296:	c.811G>T, p.Val836Leu	het	Likely pathogenic (PS1, PM2, PP3)	Not reported	ADPKD	[37]	
70	Renal cystic dysplasia, ectopic atrial tachycardia, CUA, seizures, LVH; dialysis from birth	Unknown	2	F	<1	1	WTI	c.1249C>T, p.Arg417Cys	het	Likely pathogenic (PS1, PM2, PP3)	Not reported	DDS (AD)	3		
79	Premature newborn with severely enlarged cystic kidneys noted mid-trimester, severe oligohydramnios, pulmonary hypoplasia	N	2	F	<1	1H	PKHD1	NM_13694.3:	c.9689delTA, p.Asp3230Valfs*34	het	Pathogenic known (PV1, PM2, PP3, PP4)	0.039% LAT	ARPKD	[39]	
80	Alport syndrome	Unknown	4	F	11	1	COL4A5	c.1117C>T, p.Arg373*	hom	Whole gene deletion	Pathogenic known (PS1, PM1, PM2, PP3)	Not reported	Alport syndrome (XLD)	[18]	
84	Not provided	Unknown	5	M	14	Unknown NP1H				Pathogenic known (PS1, PM1, PM2, PP3)	Not reported	Nephronophthisis 1 (AR)	2		
86	Orofaciodigital syndrome l	Unknown	2	F	21	1	OFD1	NM_000611:	c.875_876delAT, p.Met293Glyfs*15	het	Pathogenic known (PV1, PM2, PP3)	Not reported	Orofaciodigital syndrome 1 (AD)	[42]	
87	Bilateral cystic kidneys	Unknown	2	M	<1	3H	PKHD1	c.6356delTA	het	Pathogenic known (PV1, PM2, PP3)	Not reported	ARPKD	This manuscript		
#	Condition	Gender (M/F/S)	Age	Race	Gene	NM	Location	Mutation	Phenotype and Notes						
---	---	----------------	-----	------	------	-----	----------	----------	---------------------						
90	Alport syndrome	N 4 F 6 1	NPFS2	Likely pathogenic known (PS1, PM1, PP3)	0.08% NFE	Pathogenic known (PS1, PM1, PP3)	HNF1B-related nephropathy								
93	Congenital bilateral echogenic kidneys with small cysts	N 2 F 5	Unknown	Pathogenic known (PS1, PM1, PM2, PP3)	0.029% EA	Pathogenic known (PS1, PM1, PM2, PP3, PP5)	Steroid-resistant nephrotic syndrome (AR)								
94	Failure to thrive, presented with hypertension and CKD	N 5 F 6 1	TTC21B	Pathogenic (PVS1, PM1, PP3)	0.0009% NFE	Pathogenic known (PS3 PM2, PP3, PP5)	Juvenile nephropathesis (AR), Jeune syndrome (AR), or Joubert syndrome (AR)								
96	Alport syndrome, branchio-oto-renal syndrome (BOR), ESRD, nephropathies	Unknown 4 M 16 1	COL4A5	Pathogenic known (PS1, PM1, PM2, PP3)	6.98% FE	Pathogenic known (PS3 PM1, PP2, PP3, PP5)	Not reported								
97	Bartter syndrome	Unknown 3 F 2 H	KCNJ1	Pathogenic (PVS1, PM2, PP3, PP5)	0.0018% NFE	Not reported	Bartter syndrome (AR)								
98	Autosomal recessive polycystic kidney disease	Unknown 2 M <1 1	PKHD1	Pathogenic (PS1, PM1, PM2, PP3, PP4)	0.0058% EA	Pathogenic known (PS3 PM2, PP3, PP4)	ARPKD								
99	Polycystic kidney disease	Y 2 M 7 1	PKD1	Pathogenic (PS1, PM1, PM2, PP3)	Not reported	Not reported	ADPKD								
103	Nephrotic range proteinuria	N 4 M <1 1	CLCN5	Pathogenic known (PS1, PS3, PM2, PP2, PP3, PP5)	Not reported	Not reported	Dent disease								
104	Papillorenal syndrome (renal-coloboma syndrome)	N 1 M 2 1H	PAX2	Pathogenic known (PS1, PM2, PP3, PP4, PP5)	Not reported	Not reported	Not reported								
106		N 2 M 12 1	PKD1	Pathogenic known (PS1, PM1, PM2, PP3, PP4, PP5)	0.027% NFE	ADPKD	This manuscript								

Unbiased testing advances the diagnosis of renal diseases.
Case	Indication for testing	Family history	Disease categorya	Sex	Age (years)	Race/ethnicity	Gene	Variant	Zygosity	ACMG classification [17]	MAFgnomAd	Genetic diagnosis (AD/AR/XLR)	Disease category changea	First reported
113	ESRD of unknown etiology	Y 5 M 20 H	NPHP1	Whole gene deletion	hom	Likely pathogenic known (PS1, PM2, PP3, PP5)	Pathogenic known (PS1, PM2, PP3)	MAF	0.0066% AFR	Nephronophthisis 1 (AR)	Not reported	Alport syndrome (AD)	[41]	
114	IgA nephropathy or FSGS	N 4 M 11 2	COL4A4	NM_000092: c.1856G>A, p.Gly619Asp	het	Likely pathogenic known (PS1, PM2, PP3)	Pathogenic known (PS1, PM2, PP3)	MAF	Not reported	DDS (AD)	[51]			
115	FSGS or diffuse mesangial sclerosis	Unknown 4 M 4 1	WT1	NM_000095: c.1226G>A, p.Gly409Asp	het	Likely pathogenic known (PM1, PM2, PP2, PP3, PP5)	Not reported	MAF	0.0068% AFR	Lowe syndrome (XLR)	[54]			
116	Alport syndrome	Y 4 M 13 1	COL4A5	NM_000092: c.1024A>G, p.Ser342Gly	hom	Risk allele	Risk allele	MAF	23% AFR	Dent disease (XLR) and APOL1 G1/G1	[53]			
118	Nephrotic syndrome	Unknown 4 M 8 2	APOL1	NM_001136540: c.1024A>G, p.Ser342Gly	hom	Risk allele	Risk allele	MAF	22.9% AFR	[53]				
120	ESRD due to FSGS	Unknown 4 F 20	Unknown	NM_000078: c.1152T>G, p.Ile384Met	het	Pathogenic known (PS1, PM2, PP3, PP5)	Pathogenic known (PS1, PM2, PM1, PP3, PP5)	MAF	0.0068% AFR	FSGS (AD); APOL1 G2/G2	[55]			
122	Zellweger syndrome, Galloway–Mowat syndrome, podocytopathy	Unknown 4 M 1 1	OCRL	NM_000278: c.1484C>T, p.Pro495Leu	het	Pathogenic known (PS1, PM2, PM1, PM2, PP2, PP3, PP5)	Pathogenic known (PS3, PM1, PM2, PP2, PP3, PP5)	MAF	Not reported	Lowe syndrome (XLR)	[56]			
124	Bartter/Gitelman syndromes, pseudohypoaldosteronism type 1	Unknown 3 M <1 2	NR3C2	NM_000009: c.1002_1003insGT, p.Ser335Valfs*4	het	Pathogenic (PS1, PM2, PM3, PP3)	Pathogenic (PS1, PM2, PM3, PP3)	MAF	Not reported	Pseudohypoaldosteronism I (AD)	[56]			
125	Nephronophthisis	Unknown 2 M 15 1	NPHP1	Whole gene deletion	hom	Pathogenic known (PS1, PM2, PM3)	Pathogenic known (PS1, PM2, PM3)	MAF	Nephronophthisis 1 (AR)	[41]				
126	Nephronophthisis	N 2 F 12 5	NPHP1	Whole gene deletion	hom	Pathogenic known (PS1, PM2, PM3)	Pathogenic known (PS1, PM2, PM3)	MAF	Nephronophthisis 1 (AR)	[41]				

Patients in whom the genetic diagnosis changed the clinical diagnosis are shown in bold font.

*Disease category: 1 = CAKUT; 2 = ciliopathies or tubulointerstitial disease; 3 = disorders of tubular ion transport; 4 = glomerulopathies; 5 = undiagnosed or other. Ethnicity: 1 = Caucasian; 2 = African/African-American; 3 = American Indian or Alaska Native; 4 = Asian; 5 = Native Hawaiian or other Pacific Islander; H = Hispanic or Latino. Zygosity: het, heterozygous; hom, homozygous; hemi, hemizygous.

*gnomAD: highest MAF reported.

AFR, African; EA, East Asian; FE, European Finnish; NFE, European (non-Finnish); LAT, Latino; SA, South Asian; AD, autosomal dominant; AR, autosomal recessive; XLR, X-linked recessive; LVH, left ventricular hypertrophy; ARPKD, autosomal recessive polycystic kidney disease; M, male; F, female.
nonsense (9 of 75), canonical splice site variants (4 of 75), small indels (17 of 75) and large CNVs (10 of 75), demonstrating the power to detect all types of genetic variants (Figure 1).

In 41 of 54 patients with a genetic diagnosis, data confirmed the clinical impression (i.e. ADPKD as ADPKD, Bartter as Bartter, etc.) but also provided prognostic information, guided clinical management and/or enabled counseling (Figure 1 and Table 4). For example, the identification of a truncating variant in \(PKD1\) (NM_000296: c.12230_12231delAG) in a 7-year-old child with polycystic kidney disease (Case 99) mandates regular evaluation for increasing kidney volume, since truncating \(PKD1\) variants predict a median onset of end-stage renal disease (ESRD) at 55 years of age, substantially earlier than non-truncating \(PKD1\) variants or any \(PKD2\) variant [72]. In another example, the diagnosis of CKD at age 10 years (Case 8) in two fraternal twins born prematurely led to a clinical suspicion of juvenile nephronophthisis. We identified two null variants in \(RPGRIP1L\), consistent with the diagnosis of branchio-oto-renal syndrome 1 (BOR1). BOR1 exhibits variable penetrance and is characterized by hearing loss, branchial defects, preauricular pits and CAKUT [74]. On further evaluation, the child was found to have hearing loss and preauricular pits.

We also identified bilineal autosomal dominant diseases and digenic autosomal recessive disease. As an example of the former, in a 6-year-old female (Case 1) with bilateral multicystic dysplastic kidneys, pathogenic variants were identified in both \(PKD1\) (a single nucleotide deletion) and \(PKD2\) (a nucleotide substitution that converts the start codon to lysine). Each of these variants alone is sufficient to cause ADPKD, and the co-inheritance in this patient is consistent with her severe and atypical phenotype. Bilineal disease is rare in humans, although it has been noted in experimental mice [75–77].

In one case (Case 70), a medically actionable variant in \(WT1\) was incidentally identified in a 6-month-old infant with renal cystic dysplasia, ESRD, ectopic atrial tachycardia, left ventricular hypertrophy and seizures. The variant, p.Arg417Cys, is ultra-rare, predicted pathogenic and previously reported in two patients—one with Denys–Drash syndrome (DDS) and Wilms’ tumor and one child with DDS who died shortly after birth [38, 78]. In light of these reports, the variant was reported to the clinician as likely pathogenic for DDS with the attendant risks of Wilms’ tumor.

![figure1](image.png)

FIGURE 1: Outcome of KidneySeq panel testing in 127 renal patients. The positive diagnosis rate in each disease category is shown together with the percentage where diagnosis changed. A pie chart shows the number and types of pathogenic variants and the overall solve rate.
Case	Indication for testing	Family history	Disease category	Sex	Age (years)	Ethnicity	Gene	Variant	Zygocity	ACMG classification/rules [17]	MAF Gnomad	First reported by	Possibly causal	
5	Proteinuria, FSGS	Y	4	M	54	2	FN1	NM_0003206: c.5779C>T, p.Arg1927Cys	het	PM1, PM2, PP3	0.007% NFE	Glomerulopathy with fibronectin deposits (AD)	N	
16	Dilated cardiomyopathy and associated hypomagnesemia	N	3	M	3	Caucasian	ROBO2	NM_002942: c.2834T>C, p.Ile945Thr	het	PS3, PM2, PP5	0.0027% NFE	[57]	N	
17	Fanconi syndrome, hypophosphatemic rickets	Unknown	3	M	2	Caucasian, Aboriginal	SLCA1	NM_000342: c.2396C>T, p.Ser799Leu	het	PM2, PP3	0.0045% NFE	This manuscript	N	
18	ESRD, primary FSGS	Unknown	4	M	55	Caucasian	ACTN4	NM_000342: c.2680G>A, p.Gly894Ser	het	PP3	0.18% NFE	This manuscript	Y	
19	Severe CAKUT	Unknown	1	M	<1	Caucasian, Hispanic	DSTYK	NM_013753: c.2216G>A, p.Arg739Gln	het	PM2, PP3	0.25% LAT	This manuscript	Y	
22	Interstitial nephritis	Unknown	2	F	10	2	NPHP4	NM_015102: c.2542G>A, p.Arg848Trp	het	PM2, PP3, BP6	2.56% EF	[58]	Y	
25	ESRD, tubulointerstitial disease	Y	2	M	51	African/African-American	CC2D2A	NM_01080522: c.3157A>G, p.Ile1053Val	het	PM2, PP3	0.047% AFR	This manuscript	Y	
30	FSGS, SRNS, hypoalbuminemia	Unknown	4	M	17	Caucasian non-Hispanic	NPHP3	NM_01080522: c.3503G>A, p.Arg1168His	het	PM1, PM2, PP3	0.035% AFR	This manuscript	Y	
34	Renal agenesis/hypoplasia or nephronophthisis	Y	1, 2	F	16	Hispanic	SIX2	NM_016932: c.126C>G, p.His42Gln	het	PM2, PP3	Not reported	This manuscript	Y	
35	Gitelman/Bartter syndrome; metabolic alkalosis, hypomagnesemia, hypokalemic nephropathy	Unknown	3	F	17	Caucasian	KLHL3	NM_001257194: c.1357G>A, p.Val453Leu	het	PM2, PP2	0.002% NFE	This manuscript	N	
42	Liddle syndrome. Early onset hypertension and hypokalemia	Y	3	F	19	Caucasian, Hispanic	KLHL3	NM_001257194: c.988C>T, p.Arg330Trp	het	PM2, PP2, PP3	0.002% NFE	[59]	N	
44	NDI, medullary nephrocalcinosis, vesicoureteral reflux, hypophosphatemia	Unknown	3	F	3	Caucasian, non-Hispanic	ANOSI	NM_000216: c.1759G>T, p.Val587Leu	het	PM1, PM2, PP3	Not reported	[60]	N	
46	FSGS or minimal change disease. Persistent proteinuria	Unknown	4	M	5	Caucasian, non-Hispanic	ANOSI	NM_000216: c.2015A>G, p.His672Arg	het	PP5	0.044% NFE	[61]	N	
50	Proximal tubulopathy or Dent or hypophosphatemic rickets. Nephrocalcinosis, small stature	Unknown	3	F	13	Hispanic	FAH	NM_000337: c.181G>T, p.Val61Phe	het	PP3	1.907% EA	This manuscript	Y	
51	FSGS. Post deceased kidney transplant	Unknown	4	M	15	Hispanic	LMX1B	NM_001174146: c.875G>T, p.Arg292Leu	het	PP2, PP3	0.21% LAT	This manuscript	Y	
#	Condition	Gender	Age	Ethnicity	Gene	variant	consequence	Mutation Type	Other Comments	Johns Hopkins Hospital	Johns Hopkins University	Johns Hopkins Medicine		
----	--	--------	-----	----------------	-----------	---------	--------------	---------------	------------------	-------------------------	------------------------	----------------------		
53	Renal cysts. Family history of hereditary nephritis	2	F	49	LAMB2	NM_002292: c.5234C>A, p.Ala1745Asp	het	PM2, PP3	Not reported	This manuscript	Y			
54	Polycystic kidney disease, undescended testes, HTN	2	M	<1	UMOD	NM_001008389: c.854C>A, p.Ala285Glu	het	PM2, PP2, PP3	Not reported	This manuscript	N			
55	Y 2 F 49 Asian				NPHS1	NM_004646: c.563A>T, p.Asn188Le	het	LR* (PM1, PP5, BP4, BP6)			N			
56	TRAP1				NM_001272049: c.598A>G, p.Ile200Val	het	PP3	2.05% EF	ClinVar					
57	Moderate CKD	Unknown			ACE	NM_000789: c.907C>T, p.Arg265*	het	Pathogenic known	(PVS1, PM2, PM4, PP3)			Y		
58	Not provided	Unknown			ACE	NM_000789: c.3136G>A, p.Glu1046Ser	het	PM2	Not reported	This manuscript	N			
59	GLI3				NM_000168: c.1616G>A, p.Arg539Lys	het	PM2	Not reported	This manuscript	U				
60	Nephronophthisis or medullary cystic kidney disease	2	M	58	TRAP1	NM_001272049: c.598A>G, p.Ile200Val	het	PM2, BS1	2.05% EF	ClinVar	N			
61	FSGS/multicystic dysplastic kidney	1, 4	M	15	PKD1	NM_000296: c.971G>T, p.Arg324Leu	het	PM1, PP5	0.59% EF	Uniprot	N			
62	Hyperplastic nephrogenic rests, features seen with underlying syndromes such as Beckwith-Wiedemann	Unknown			CHD1L	NM_001256336: c.2179A>G, p.Glu581Gln	het	0.47% NFE	This manuscript		N			
63	Horseshoe kidney, dysmorphic features, VSD	1	F	<1	IQCB1	NM_001023570: c.1441G>A, p.Glu481Lys	het	PM1, PP3, BP1	0.19% NFE	ClinVar	N			
64	Steroid-resistant nephrotic syndrome	4	M	8	ANOS1	NM_000216: c.1759G>T, p.Arg539Lys	het	PM1, PM2, PP5	Not reported	[60]	N			
65	Glomerulocystic kidneys and hepatoblastoma	2	M	3	ANLN	NM_0018685: c.1741G>C, p.Glu581Gln	het	0.023% EA	This manuscript	Y				
66	PKD2				CUBN	NM_001081: c.6095G>A, p.Cys2032Tyr	het	PM2, PP3, BP1	0.019% NFE	This manuscript	N			
67	TMEM67				CUBN	NM_001142301: c.272G>A, p.Arg91Gln	het	PM2, PP, BP3, PP5	0.012% LAT	ClinVar	N			
68	ANLN				TMEM67	NM_001142301: c.272G>A, p.Arg91Gln	het	PM2, PP, BP3, PP5	0.012% LAT	ClinVar	N			

Continued
Case	Indication for testing	Family history	Disease category	Sex	Age (years)	Ethnicity	Gene	Variant	Zygocityb	ACMG classification/rules [17]	MAF Gnomadb	First reported by	Possibly causalib										
76	Steroid-resistant nephrotic syndrome Gtelman syndrome	N	3	F	23	Dominican Republic	Not provided	EYA1	NM_198428: c.1648A>G, p.Ile550Val	het	PP3	0.064% EA	ClinVar	N									
77	Not provided	Y	5	M	57	Not provided	Not provided	TRIM32	NM_01099679: c.1688G>A, p.Arg663His	het	PM2, PP3	0.013% NFE	ClinVar	N									
78	Nephronophthisis	Y	2	F	38	Caucasian	Not provided	GLIS2	NM_032575: c.278A>G, p.Asn93Ser	het	BP1, BP4	0.09% EF	This manuscript	N									
82	Global glomerulosclerosis	Y	4	F	65	African/African-American	Not provided	COL4A4	NM_000339: c.1967C>T, p.Pro656Leu	het	PP2, PP3	0.021% NFE	This manuscript	N									
83	Juvenile nephronophthisis and medullary cystic kidney disease	Y	2	F	29	Not provided	Not provided	SLC12A3	NM_002936: c.544G>A, p.Ala182Thr	het	PP3, PP5	0.208% NFE	ClinVar	N									
85	X-linked hypophosphatemic rickets	Unknown	3	F	1	Caucasian, non-Hispanic	Not provided	HOX11	NM_138413: c.700 + 5G>T	het	PP3, PP5	0.208% NFE	ClinVar	N									
88	Renal tubular acidosis	Unknown	3	F	9	Caucasian, Hispanic	Not provided	IFT140	NM_014714: c.1541T>A, p.Leu514His	het	PP3, BP6	1.58% EF	ClinVar	N									
89	Childhood nephrotic syndrome, possibly collapsing FSGS	Unknown	4	F	9	African/African-American	Not provided	PKD1	NM_000296: c.5866G>A, p.Val1956Met	–	–	0.002% NFE	This manuscript	N									
90	Alport syndrome	N	4	F	6	Caucasian	Not provided	SLC7A9	NM_001126335: c.544G>A, p.Ala182Thr	het	PP2, PP3, PP5	0.43% NFE	ClinVar	N									
92	Bilateral cystic kidneys	Unknown	2	F	14	1	Caucasian, non-Hispanic	Not provided	TMEM67	NM_00142301: c.803T>C, p.Leu268Ser	het	PM2, PP2, PP3, PP5	0.004% NFE	[64]	N								
93	Congenital bilateral echogenic kidneys with small cysts	2	F	5	Not provided	Not provided	SLC3A1	NM_000396: c.8971T>G, p.Tyr2991Asp	het	PM1, PM2, PP3	Not reported	This manuscript	Y										
102	Autosomal recessive polycystic kidney disease	Unknown	2	M	0	Brazilian/Mexican Hispanic	Not provided	HNF4A	NM_000457: c.1133C>T, p.Ser378Phe	het	PM2, PP2, PP3, PP5	0.018% NFE	[65]	N									
107	Congenital nephrotic syndrome	Unknown	4	F	0	Brazilian/Mexican Hispanic or Latino	Not provided	COL4A1	NM_001845: c.1366G>A, p.Glu456Lys	het	PM1, PP2, PP3	0.0058% EA	This manuscript	N									
108	Not provided	Unknown	5	F	6	Not provided	Not provided	IFT140	NM_014714: c.886G>A, p.Gly296Arg	het	PM2, PP3	0.023% SA	This manuscript	N									
109	Isolated multicystic dysplastic kidney disease and polycystic kidney disease	Unknown	1, 2	M	7	Not provided	Not provided	ANOS1	NM_000296: c.2974A>G, p.Ile929Val	het	–	0.413% SA	This manuscript	N									
110	NDI	N	3	M	1	Caucasian, non-Hispanic	Not provided	AGTR2	NM_000686: c.395delT, p.Glu132del	het	PP3, BP6	0.102% NFE	ClinVar	N									
111	Branchio-oto-renal syndrome or isolated CAKUT	Unknown	1	F	2	Not provided	Not provided	CREBBP	NM_001079846: c.2458C>T, p.Pro820Ser	het	PP3, BP6	0.915% AFR	ClinVar	N									
Case ID	Disease Category	Zygosity	Age	Gender	Ethnicity	Allele 1	Allele 2	Modality	Genes	Reference	Zygosity	Ethnicity	Modality	Genes	Reference	Zygosity	Ethnicity	Modality	Genes	Reference			
---------	------------------	----------	-----	--------	-----------	----------	----------	----------	--------	----------	----------	-----------	----------	--------	----------	-----------	----------	--------	----------	--------	----------	-----------	----------
112	Dent disease, Bartter or Gitelman syndromes	Unknown	3	M	Caucasian, non-Hispanic	NM_001178074: c.2633G>A, p.Arg878His	0.052% AFR	This manuscript	N														
114	IgA nephropathy or FSGS	N	4	M	African/African-American	NM_001166133: c.4648C>T, p.Leu1550Phe	0.22% EF	ClinVar	N														
121	Juvenile nephronophthisis	Unknown	2	M	Not provided	NM_001079821: c.128G>A, p.Arg43Lys	0.002% NFE	This manuscript	N														
123	Steroid-resistant nephrotic syndrome	Unknown	4	M	Caucasian, non-Hispanic	NM_001126335: c.544G>A, p.Ala182Thr	0.43% NFE	ClinVar	N														
125	Nephronophthisis	Unknown	2	M	Caucasian	NM_001166133: c.4648C>T, p.Leu1550Phe	0.22% EF	ClinVar	N														
127	Bartter syndrome, Gitelman syndrome or NDI	Y	3	M	Caucasian, non-Hispanic	NM_001166133: c.4648C>T, p.Leu1550Phe	0.22% EF	ClinVar	N														

Notes:
- Disease category is associated with the indication for testing. 1 = CAKUT; 2 = Ciliopathies or tubulointerstitial disease; 3 = Disorders of tubular ion transport; 4 = Glomerulopathies; 5 = Unclassified or Other.
- Zygosity: het = heterozygous; hom = homozygous; hemi = hemizygous.
- gnomAD: highest minor allele frequency reported. AFR = African; EA = East Asian; FE = European Finnish; NFE = European (non-Finnish); LAT = Latino; SA = South Asian.
- Yes (Y), no (N) or unknown (U).
- Newborn.
- Jewish No gnomAD data.
- M, male; F, female. HTN, hypertension; VSD, ventricular septal defect; CUA, calcific uremic arteriolopathy.
- Newborn.
| Case | Indication for testing | Family history | Disease category | Sex | Age (year) | Ethnicity | Gene | Variant | Zygosity | ACMG classification/ rules | MAF gnomAD | Associated disease | First reported by |
|------|-----------------------|----------------|------------------|-----|------------|-----------|------|---------|----------|--------------------------|-------------|-------------------|------------------|
| 9 | FSGS | Unknown | African/African-American | M | 54 | | APOL1 | NM_001136540: c.1024A>G, p.Ser342Gly | hom | Risk allele | 23% AFR | FSGS, hypertensive nephrosclerosis and HIV associated nephropathy | [53] |
| 15 | Hypercalcemia, hypocalciuria. Suspicion of CaSR inactivating mutation | N 3 F 81 | Caucasian | F | 54 | | CaSR | NM_001136540: c.1152T>G, p.Ile384Met | het | Risk allele | 22.9% AFR | Hypercalcemia | [67] |
| 46 | FSGS or minimal change disease. Persistent proteinuria | Unknown | African/African-American | M | 55 | | APOL1 | NM_001136540: c.1160_1165delATAATT, p.Asn388_Tyr389del | het | Risk allele | 15% AFR | Steroid sensitive nephrotic syndrome | This manuscript |
| 101 | Chronic kidney stones and alkaline urine | Unknown | African/African-American | M | 18 | | APOL1 | NM_001136540: c.1024A>G, p.Ser342Gly | hom | Risk allele | 23% AFR | Kidney stones | This manuscript |
| 118 | Nephrotic syndrome | Unknown | African/African-American | M | 80 | | APOL1 | NM_001136540: c.1124A>G, p.Lys379Met | hom | Risk allele | 23% AFR | FSGS, hypertensive nephrosclerosis and HIV associated nephropathy | [53] |
| 119 | CDK Stage 2, FSGS | Unknown | African/African-American | F | 16 | | APOL1 | NM_001136540: c.1124A>G, p.Lys379Met | hom | Risk allele | 23% AFR | FSGS, hypertensive nephrosclerosis and HIV associated nephropathy | [53] |
| 120 | ESRD due to FSGS | Unknown | African/African-American | F | 20 | | APOL1 | NM_001136540: c.1124A>G, p.Lys379Met | hom | Risk allele | 14.14% AFR | FSGS, hypertensive nephrosclerosis and HIV associated nephropathy | [53] |

*Disease category is associated with the indication for testing. 1 = CAKUT; 2 = Ciliopathies or tubulointerstitial disease; 3 = Disorders of tubular ion transport; 4 = Glomerulopathies; 5 = Unclassified or Other.

Zygosity: het, heterozygous; hom, homozygous; hemi, hemizygous.

*gnomAD: highest minor allele frequency reported. AFR, African; EA, East Asian; NFE, European (non-Finnish).

Jewish* No gnomAD data.

N, no; M, male; F, female.
Table 7. Pathogenic carriers

Case	Indication for testing	Family history	Disease categorya	Sex	Age (years)	Ethnicity	Gene	Variant	Zygosityb	ACMG classification/rules [17]	MAF gnomADc	Reported in	Associated disease
75	Steroid-resistant nephrotic syndrome	Y	4	M	4	Dominican Republic	BBS1	Deletion chr11: 66278119-66301084	het	This manuscript BBS carrier			
83	Juvenile nephromophthisis and medullary cystic kidney disease	Y	2	F	29	Not provided	SLC12A3	NM_000339: c.1967C>T, p.Pro656Leu	het	PP2, PP3 0.021% NFE	[68]	Gitelman carrier	
85	X-linked hypophosphatemic rickets	Unknown	3	F	1	Caucasian, non-Hispanic	HOGA1	NM_138413: c.700+5G>T	het	PP2, PP5 0.21% NFE	[69]	Primary hyperoxaluria III carrier	Jeune syndrome carrier
88	Renal tubular acidosis	Unknown	1	F	9	Caucasian, Hispanic	IFT140	NM_014714: c.1541T>A, p.Leu514His	het	PP3, BP6 1.58% FE	[70]		Jeune syndrome carrier
108	Not provided	Unknown	5	F	6	Not provided	SLC12A1	NM_000338: c.1872delC	het	Pathogenic (PVS1, PM2, PP3) 0.032% SA	This manuscript Bartter syndrome 1 carrier	N	
111	Branchio-oto-renal syndrome or isolated CAKUT	Unknown	1	F	2	Not provided	FGF23	NM_020638: c.59del5, p.Ser20Thrfs*20	het	Not reported	This manuscript		
112	Dent disease, Bartter or Gitelman syndromes	Unknown	3	M	23	Caucasian, non-Hispanic	ATP7B	NM_000053: c.2972C>T, pThr911Met	het	Likely pathogenic (PS3, PM1, PP2, PP3, PP5) 0.24% NFE	[71]	Wilson disease carrier	

*aDisease category is associated with the indication for testing. 1 = CAKUT; 2 = Ciliopathies or tubulointerstitial disease; 3 = Disorders of tubular ion transport; 4 = Glomerulopathies; 5 = Unclassified or Other.

*bZygosity: het, heterozygous; hom, homozygous; hemi, hemizygous.

cgnomAD: highest minor allele frequency reported. FE, European Finnish; NFE, European (non-Finnish); SA, South Asian.

Y, yes; M, male; F, female.
In some cases, identified variants had insufficient evidence to be labeled as likely pathogenic or pathogenic and were reported as VUSs (Tables 5–7). In two cases, the genetic variants did not meet strict ACMG criteria for likely pathogenicity and were labeled as VUSs, but in the clinical context, the multidisciplinary group considered these as probably causal (Table 5–7, Cases 57 and 92). In two other cases, variants classified as likely pathogenic by ACMG criteria were reported as VUSs because the genetic disease appeared irrelevant to the clinical phenotype. One of these was a case with nephrogenic diabetes insipidus (NDI) and nephrocalcinosis with hypophosphatemia (Table 5–7, Case 44), where an identified variant in \(KAL1 \) was classified as likely pathogenic for Kallmann syndrome by ACMG criteria. In the other, a case with hypomagnesemia and dilated cardiomyopathy (Table 5–7, Case 16), a likely pathogenic variant in \(ROBO2 \) for CAKUT was identified but reported as a VUS. In other instances, we identified alleles that increase risk for specific renal diseases (Table 5–7). Five patients with FSGS, nephrotic syndrome or CKD were homozygous or compound heterozygous for variants in \(APOL1 \) that substantially increase the risk for FSGS in Americans of Sub-Saharan African descent [79, 80]. Other risk variants were identified in \(CaSR, PLCG2 \) and \(ATP6V1B1 \), which increase the risk of hypercalcemia, steroid-sensitive nephrotic syndrome and kidney stones, respectively [81–83].

CNVs are significant contributors to genetic renal disease and their detection was an important component of our analysis [84]. We identified pathogenic CNVs in 18% of positive diagnoses, including four cases of autosomal recessive \(JN1 \) (NPHP1), two cases of autosomal dominant Cakut (HNF1B), one case of autosomal recessive Alport syndrome (COL4A4) and autosomal recessive pseudohypoaldosteronism (SCNN1B) and a possible tri-allelic form of Gitelman syndrome (CLCNKB; Figure 2).

Alternative methods to provide comprehensive unbiased screening for genetic renal disorders include genome sequencing (GS) and/or ES, both of which have been used to diagnose monogenic renal disorders in a research setting and have been used in the clinical setting when locus heterogeneity is extreme, the phenotype is very indistinct, or the renal features are only a minor part of a multisystem disease [85, 86]. Neither GS nor ES is optimized for the renal exome, which includes challenging regions like the first 32 exons of \(PKD1 \), which are duplicated as \(227900000 \) to \(227950000 \) on \(COL4A4 \), which are duplicated as \(227900000 \) to \(227950000 \) on \(COL4A4 \). ATP6V1B1, which increase the risk of hypercalcemia, steroid-sensitive nephrotic syndrome and kidney stones, respectively [81–83].

In summary, these data add to the body of literature suggesting that genetic renal diseases are underdiagnosed and underappreciated in both children and adults [10, 88–90]. In this cohort of patients, presumably selected by clinicians based on suspicion of monogenic kidney disease, the genetic diagnostic rate is very high and is likely to be lower if more indiscriminate patient testing becomes the norm. Nevertheless, panels facilitate identification of a broad range of Mendelian diseases, including cystic kidney disease, the Cakuts, tubulointerstitial disease and glomerular disease, as well as non-Mendelian genetic disease, bilinear and digenic disease, atypical forms of disease and unsuspected disease. As such, comprehensive genetic testing has an important place in the evaluation and care of the renal patient [91].

SUPPLEMENTARY DATA

Supplementary data are available at nkd online.

AUTHORS’ CONTRIBUTIONS

M.A.M., C.P.T. and R.J.S. conceived the study and wrote the manuscript; M.A.M. conducted genetic testing; R.R.S.
performed bioinformatic analysis; M.E.F., C.A.C., R.J.S. and C.P.T. interpreted genetic test results with contributions from C.J.N., A.E.K. and M.J.K. All authors approved the final version of the manuscript.

CONFLICT OF INTEREST STATEMENT
None declared.

REFERENCES
1. Ellison DP, Thomas CP. Hereditary disorders of connecting tubule and collecting duct sodium and potassium transport. In: DB Mount, MR Pollak (eds). Molecular and Genetic Basis of Renal Disease. Philadelphia, PA: Elsevier Saunders, 2007; 251–268
2. Snoek R, van Setten J, Keating BJ. NPHP1 (nephrocystin-1) gene deletions cause adult-onset ESRD. J Am Soc Nephrol 2016; 29: 1772–1779
3. Reiter JF, Leroux MR. Genes and molecular pathways underpinning ciliopathies. Nat Rev Mol Cell Biol 2017; 18: 533–547
4. Gbadebo RA, Hall G, Adeyemo A et al. Mutations in the gene that encodes the F-actin binding protein anillin cause FSFGS. J Am Soc Nephrol 2014; 25: 1991–2002
5. Joshi S, Andersen R, Jespersen B et al. Genetics of steroid-resistant nephrotic syndrome: a review of mutation spectrum and suggested approach for genetic testing. Acta Paediatr 2013; 102: 844–856
6. Gupta IR, Baldwin C, Auguste D et al. ARHGID1A: a novel gene implicated in nephrotic syndrome. J Med Genet 2013; 50: 330–338
7. Capone VP, Morello W, Tarori F et al. Genetics of congenital anomalies of the kidney and urinary tract: the current state of play. Int J Mol Sci 2017; 18: E796
8. Hwang DY, Kohl S, Fan X et al. Mutations of the SLIT2-ROBO2 pathway genes SLIT2 and SRGAP1 confer risk for congenital anomalies of the kidney and urinary tract. Hum Genet 2015; 134: 905–916
9. Bullich G, Domingo-Gallego A, Vargas I et al. A kidney–disease gene panel allows a comprehensive genetic diagnosis of cystic and glomerular inherited kidney diseases. Kidney Int 2018; 94: 363–371
10. Lata S, Marasa M, Li Y et al. Whole-exome sequencing in adults with chronic kidney disease: a pilot study. Ann Intern Med 2018; 168: 100–109
11. Mann N, Braun DA, Aman K et al. Whole-exome sequencing enables a precision medicine approach for kidney transplant recipients. J Am Soc Nephrol 2019; 30: 201–215
12. Groopman EE, Marasa M, Cameron-Christie S et al. Diagnostic utility of exome sequencing for kidney disease. N Engl J Med 2019; 380: 142–151
13. Richards S, Aziz N, Bale S et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med 2015; 17: 405–424
14. Thomas CP, Mansilla MA, Sompallae R et al. Screening of living kidney donors for genetic diseases using a comprehensive genetic testing strategy. Am J Transplant 2017; 17: 401–410
15. Rossetti S, Hopp K, Sikkink RA et al. Identification of gene mutations in autosomal dominant polycystic kidney disease through targeted resequencing. J Am Soc Nephrol 2012; 23: 915–933
16. Tan Y-C, Michaela A, Blumenfeld J et al. A novel long-range PCR sequencing method for genetic analysis of the entire PKD1 gene. J Mol Diagn 2012; 14: 305–313
17. Samarakoon PS, Sorte HS, Kristiansen BE et al. Identification of copy number variants from exome sequence data. BMC Genomics 2014; 15: 661
18. Renieri A, Bruttini M, Galli L et al. X-linked Alport syndrome: an SSCP-based mutation survey over all 51 exons of the COL4A5 gene. J Am J Hum Genet 1996; 58: 1192–1204
19. Vargas-Pousou R, Forestier L, Daubudzenberg MD et al. Mutations in the vasopressin V2 receptor and aquaporin-2 genes in 12 families with congenital nephrogenic diabetes insipidus. J Am Soc Nephrol 1997; 8: 1855–1862
20. Caridi G, Dagnino M, Guisano R et al. Clinical and molecular heterogeneity of juvenile nephronophthisis in Italy: insights from molecular screening. Am J Kidney Dis 2000; 35: 44–51
21. Otto EA, Helou J, Allen SJ et al. Mutation analysis in nephropathies using a combined approach of homology/gene mapping, CEL1 endonuclease cleavage, and direct sequencing. Hum Mutat 2008; 29: 418–426
22. Wang F, Zhao D, Ding J et al. Skin biopsy is a practical approach for the clinical diagnosis and molecular genetic analysis of X-linked Alport’s syndrome. J Mol Diagn 2012; 14: 586–593
23. Rossetti S, Consugar MB, Chapman AB et al. Comprehensive molecular diagnostics in autosomal dominant polycystic kidney disease. J Am Soc Nephrol 2007; 21: 2143–2160
24. Abdelhak S, Kalatzis V, Heilig R et al. A human homologue of the Drosophila eyes absent gene underlies branchio-oto-renal (BOR) syndrome and identifies a novel gene family. Nat Genet 1997; 15: 157–164
25. Storey H, Savige J, Sivakumar V et al. COL4A3/COL4A4 mutations and features in individuals with autosomal recessive Alport syndrome. J Am Soc Nephrol 2013; 24: 1945–1954
26. Nozu K, Iijima K, Kanda K et al. The pharmacological characteristics of molecular-based inherited salt-losing tubulopathies. J Clin Endocrinol Metab 2010; 95: E511–E518
27. Srinath A, Katsumata N, Tanae A et al. A new compound heterozygous mutation in the 11 beta-hydroxysteroid dehydrogenase type 2 gene in a case of apparent mineralocorticoid excess. J Clin Endocrinol Metab 1997; 82: 4054–4058
28. Carvajal CA, Gonzalez AA, Romero DG et al. Two homozygous mutations in the 11 beta-hydroxysteroid dehydrogenase type 2 gene in a case of apparent mineralocorticoid excess. J Clin Endocrinol Metab 2003; 88: 2501–2507
29. Felibabulao L, Font M, Purroy J et al. Non-type I cystinuria caused by mutations in SLC7A9, encoding a subunit (bo,-AT) of rBAT. Nat Genet 1999; 23: 52–57
30. Cornet-Le Gall E, Audrezet MP, Chen JM et al. A kidney-disease gene panel: genetic and diagnostic implications. Am J Hum Genet 2001; 68: 46–63
31. Lee JW, Lee J, Heo NJ et al. Mutations in SLC12A3 and CLCNKB and their correlation with clinical phenotype in patients with Gitelman and Gitelman-like syndrome. J Korean Med Sci 2016; 31: 47–54
32. Nozu K, Fu XJ, Nakanishi K et al. Molecular analysis of patients with type III Bartter syndrome: picking up large heterozygous deletions with semi-quantitative PCR. Pediatr Res 2007; 62: 364–369
33. Smith GD, Robinson C, Stewart AP et al. Characterization of a recurrent in-frame UMOD indel mutation causing late-onset autosomal dominant end-stage renal failure. Clin J Am Soc Nephrol 2011; 6: 2766–2774
34. Rossetti S, Strmecki L, Gamble V et al. Mutation analysis of the entire PKD1 gene: genetic and diagnostic implications. Am J Hum Genet 2005; 18: 63–67
35. Royer-Pokora B, Beier M, Henzler M et al. Twenty-four new cases of WT1 germline mutations and review of the literature: genotype/phenotype correlations for Wilms tumor development. Am J Med Genet A 2004; 127A: 249–257
36. Bean LJ, Tinker SW, da Silva C et al. Free the data: one laboratory’s approach to knowledge-based genomic variant classification and preparation for EMR integration of genomic data. Hum Mutat 2013; 34: 1183–1188
37. Denamur E, Delezide AI, Alberti C et al. Genotype-phenotype correlations in fetuses and neonates with autosomal recessive polycystic kidney disease. Kidney Int 2010; 77: 350–358
38. Saunier S, Calado J, Benessy F et al. Characterization of the NPHP1 locus: mutational mechanism involved in deletions in familial juvenile nephropathies. Am J Hum Genet 2000; 66: 778–789
39. Prattichizzo C, Maccia M, Novelli V et al. Mutational spectrum of the oral-facial-digital type 1 syndrome: a study on a large collection of patients. Hum Mutat 2008; 29: 1237–1246

Unbiased testing advances the diagnosis of renal diseases 327
43. Ward CJ, Hogan MC, Rossetti S et al. The gene mutated in autosomal recessive polycystic kidney disease encodes a large, receptor-like protein. Nat Genet 2002; 30: 259–269.

44. Kory K, Menrend DK, Woerden S et al. Mutation-dependent recessive inheritance of NPHP2-associated steroid-resistant nephrotic syndrome. Nat Genet 2014; 46: 299–304.

45. Davis EE, Zhang Q, Liu Q et al. TTT21B binds both causal and modifying alleles across the ciliopathy spectrum. Nat Genet 2011; 43: 189–196.

46. Wang F, Wang Y, Ding J et al. Detection of mutations in the COLA4A gene by analyzing cDNA of skin fibroblasts. Kidney Int 2005; 67: 1268–1274.

47. Ji W, Foo JN, O’Roak BJ et al. Rare independent mutations in renal salt handling genes contribute to blood pressure variation. Nat Genet 2008; 40: 592–599.

48. Gunay-Aygun M, Tuchman M, Font-Montgomery E et al. PKHD1 sequence variations in 78 children and adults with autosomal recessive polycystic kidney disease and congenital hepatic fibrosis. Mol Genet Metab 2010; 99: 160–173.

49. Smith AJ, Reed AA, Loh NY et al. Characterization of Dent’s disease mutations of CLC-5 reveals a correlation between functional and cell biological consequences and protein structure. Am J Physiol Renal Physiol 2009; 296: F390–F397.

50. Negrissolo S, Benetti E, Centi S et al. PAX2 gene mutations in pediatric and young adult transplant recipients: kidney and urinary tract malformations without ocular anomalies. Clin Genet 2011; 80: 581–585.

51. Wu Y, Hu P, Xu H et al. A novel heterozygous COLA44 missense mutation in a Chinese family with focal segmental glomerulosclerosis. J Cell Mol Med 2016; 20: 2328–2332.

52. Pelletier J, Bruening W, Kashtan CE et al. Germline mutations in the Wilms’ tumor suppressor gene are associated with abnormal urogenital development in Denys-Drash syndrome. Cell 1991; 67: 437–447.

53. Kopp JB, Nelson GW, Sampath K et al. APOLI genetic variants in focal segmental glomerulosclerosis and HIV-associated nephropathy. J Am Soc Nephrol 2011; 22: 2129–2137.

54. Takemura T, Hino S, Ikeda M et al. Identification of two novel mutations in the CLCN5 gene in Japanese patients with familial idiopathic low molecular weight proteinuria (Japanese Dent’s disease). Am J Kidney Dis 2001; 37: 138–143.

55. Ford B, Rupps R, Lirenman D et al. Renal-coloboma syndrome: prenatal detection and clinical spectrum in a large family. Am J Med Genet 2001; 99: 137–141.

56. Hichri H, Rendu J, Monnier N et al. From Lowe syndrome to Dent disease: correlations between mutations of the OCLN1 gene and clinical and biochemical phenotypes. Hum Mutat 2011; 32: 379–388.

57. Lu W, van Eerde AM, Fan X et al. Disruption of ROBO2 is associated with urinary tract anomalies and confers risk of vesicoureteral reflux. Am J Hum Genet 2007; 80: 616–632.

58. Otto E, Hoebele J, Ruf R et al. A gene mutated in nephropathiosis and retinoid pigmentation encodes a novel protein, nephrolinrin, conserved in evolution. Am J Hum Genet 2002; 71: 1161–1167.

59. Louis-Dit-Picard H, Barc J, Trujillano D et al. Detection of mutations in the COL4A5 gene predicting alleles across the ciliopathy spectrum. J Mol Genet Metab 2011; 102: F1063–F1071.

60. Miraouei H, Dwyer AA, Sykiotis GP et al. Mutations in FGF17, IL17RD, DUSP6, SPRY4, and FLRT3 are identified in individuals with congenital hypogonadotropic hypogonadism. Am J Hum Genet 2013; 92: 725–743.

61. Marcos S, Sarfati J, Leroy C et al. The prevalence of CHD7 missense versus truncating mutations is higher in patients with Kallmann syndrome than in typical CHARGE patients. J Clin Endocrinol Metab 2014; 99: E2138–E2143.

62. Koziell A, Grech V, Hussain S et al. Genotype/phenotype correlations of NPHP1 and NPHP2 mutations in nephrotic syndrome advocate a functional inter-relationship in glomerular filtration. Hum Mol Genet 2002; 11: 379–388.

63. Gribouval O, Moriniere V, Pawtowski A et al. Spectrum of mutations in the renin-angiotensin system genes in autosomal recessive renal tubular dysgenesis. Hum Mutat 2012; 33: 316–326.

64. Doherty D, Parisi MA, Finn LS et al. Mutations in 3 genes (MKS3, CC2D2A and RPGRIP1L) cause COACH syndrome (Joubert syndrome with congenital hepatic fibrosis). J Med Genet 2010; 47: 8–21.
87. Kirby A, Gnirke A, Jaffe DB et al. Mutations causing medullary cystic kidney disease type 1 lie in a large VNTR in MUC1 missed by massively parallel sequencing. *Nat Genet* 2013; 45: 299–303
88. Daga A, Majmundar AJ, Braun DA et al. Whole exome sequencing frequently detects a monogenic cause in early onset nephrolithiasis and nephrocalcinosis. *Kidney Int* 2018; 93: 204–213
89. Cornec-Le Gall E, Harris PC. The underestimated burden of monogenic diseases in adult-onset ESRD. *J Am Soc Nephrol* 2018; 29: 1583–1584
90. Mallett AJ, McCarthy HJ, Ho G et al. Massively parallel sequencing and targeted exomes in familial kidney disease can diagnose underlying genetic disorders. *Kidney Int* 2017; 92: 1493–1506
91. Posey JE, Harel T, Liu P et al. Resolution of disease phenotypes resulting from multilocus genomic variation. *N Engl J Med* 2017; 376: 21–31

Received: 18.3.2019; Editorial decision: 23.7.2019