Online Supplemental Material

Comparisons of the effects of different drying methods on soil nitrogen fractions: Insights into emissions of reactive nitrogen gases (HONO and NO)

Dianming WUa,b, Lingling DENGa,b, Yanzhuo LIUa, Di XPa, Huilan ZOUa, Ruhai WANGc, Zhimin SHAd, Yuepeng PANe, Lijun HOUf, Min LIUa,b

aKey Laboratory of Geographic Information Sciences, Ministry of Education, School of Geographic Sciences, East China Normal University, Shanghai, China; bInstitute of Eco-Chongming, Shanghai, China; cState Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China; dSchool of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China; eState Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China; fState Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, China

This file includes:
Supplementary Text S1, Table S1, and Figures S1–S3
Text S1 Description of soil sampling

Farmland soil samples were taken from an organic integrated rice-frog farming experimental site in Modern Agricultural Park of Qingpu (121°01’ E, 30°57’ N), which was applied with organic fertilizer (Fang et al. 2019). Forest soil samples were taken from Shanghai Bay Forest Park (121°41’ E, 30°51’ N), with dominant plant species of Masson pine (*Pinus massoniana* L.) and Citron (*Citrus medica* L. var. *sarcodactylis* Swingle). Grassland soil samples were taken from a densely populated park of Shanghai Oriental Green Boat Base (121°01’ E, 31°06’ N), and the grass is planted as bermudagrass (*Cynodon dactylon* L. Pers.), which is regularly watered and fertilized.

References

Fang, K., X. Yi, W. Dai, H. Gao, and L. Cao. 2019. "Effects of Integrated Rice-Frog Farming on Paddy Field Greenhouse Gas Emissions." *International journal of environmental research and public health* 16 (11): 1930. doi: 10.3390/ijerph16111930.
Table S1. Soil total organic carbon (TOC, %) and particle size fractions (%) from different land-use types. Clay: < 0.002 mm; silt: 0.002–0.05 mm; sand: > 0.05 mm. Data are shown as mean ± standard deviation (n = 3).

	TOC (%)	Clay (%)	Silt (%)	Sand (%)
Farmland	2.08 ± 0.01	0.3 ± 0.0	94.2 ± 0.5	5.5 ± 0.5
Forest	1.21 ± 0.02	0.4 ± 0.1	85.8 ± 0.8	13.8 ± 0.8
Grassland	2.21 ± 0.01	0.0 ± 0.0	93.3 ± 1.0	6.7 ± 1.0
Figure S1. Spearman’s rank correlation analysis showing a positive relationship between soil pH and microbial biomass nitrogen content.
Figure S2. Characteristic emission patterns of HONO (orange squares), NO (green circles) and NO$_2$ (blue triangles) from an oven-dried grassland soil as a function of soil water holding capacity (%).
Figure S3. Spearman’s rank correlation analysis showing a positive relationship between the maximum soil HONO flux and NO$_3^-$-N content. The HONO flux data from two air-dried grassland soil samples were excluded due to their anomalously high values.