Free algebras in varieties of Hilbert algebras with supremum generated by finite chains.

Aldo V. Figallo \(^a\) Elda Pick \(^a\) Susana Saad \(^a\)
Martín Figallo \(^b\) *

\(^a\)Instituto de Ciencias Básicas, Universidad Nacional de San Juan.
\(^b\)Departamento de Matemática. Universidad Nacional del Sur.

Abstract

Hilbert algebras with supremum, i.e., Hilbert algebras where the associated order is a join–semilattice were first considered by A.V. Figallo, G. Ramón and S. Saad in [11], and independently by S. Celani and D. Montangie in [7].

On the other hand, L. Monteiro introduced the notion of \(n\)--valued Hilbert algebras (see [12]). In this work, we investigate the class of \(n\)--valued Hilbert algebras with supremum, denoted \(H_n^\lor\), i.e., \(n\)--valued Hilbert algebras where the associated order is a join–semilattice. The varieties \(H_n^\lor\) are generated by finite chains. The free \(H_n^\lor\)--algebra \(\text{Free}_{n+1}(r)\) with \(r\) generators is studied. In particular, we determine an upper bound to the cardinal of the finitely generated free algebra \(\text{Free}_{n+1}(r)\).

1 Introduction

The study of Hilbert algebras was initiated by Diego in his important work [9]. It is well–Known that Hilbert algebras constitute an algebraic counter-
part of the implicative fragment of Intuitionistic Propositional Logic (IPL). A topological duality for this algebras was developed in [3].

The class of Hilbert algebras where the associated order is a meet–semilattice was consider in [10] under the name of Hilbert algebras with infimum. On the other hand, Hilbert algebras with supremum, i.e., Hilbert algebras where the associated order is a join–semilattice were first considered by Figallo, Ramón and Saad in [11], and independently by Celani and Montangie in [7]. The latter denoted the class of these algebras by H^\vee.

In 1977, L. Monteiro introduced the notion of n–valued Hilbert algebras (see [12]). These algebras constitute an algebraic counterpart of the n–valued Intuitionistic Implicative Propositional Calculus.

In this work, we investigate the class of n–valued Hilbert algebras with supremum (denoted H^\vee_n), i.e., n–valued Hilbert algebras where the associated order is a join–semilattice. The objects of H^\vee_n are algebraic models for the fragment of intuitionistic propositional calculus in the connectives \rightarrow and \lor and which satisfies the well–known axiom of Ivo Thomas

$$\beta_{n-1} \rightarrow (\beta_{n-2} \rightarrow (\ldots (\beta_0 \rightarrow x_0) \ldots))$$

where $\beta_i = (x_i \rightarrow x_{i+1}) \rightarrow x_0$, $0 \leq i \leq n - 1$.

It was noted in [7] that H^\vee_n constitute a variety. Here we shall exhibit a very simple and natural equational base for H^\vee_n different from the one presented in [7]. The most important contribution of this paper is the study of free algebras in H^\vee_n finitely generated. In particular, we shall describe a formula to determine the cardinal of the free $(n + 1)$–valued Hilbert algebra with supremum, $\text{Free}_{n+1}(r)$, in terms of the finite number of the free generators r and the numbers $\alpha_{k,p+1}$’s of minimal irreducible deductive systems of certain subalgebras of $\text{Free}_{n+1}(r)$. Finally, we shall exhibit a formula to calculate an upper bound to $|\text{Free}_{n+1}(r)|$ in terms of r only.

2 Preliminaries

If \mathcal{K} is a variety we will denote by $\text{Con}_\mathcal{K}(A)$, $\text{Hom}_\mathcal{K}(A,B)$ and $\text{Epi}_\mathcal{K}(A,B)$ the set of \mathcal{K}–congruences of A, \mathcal{K}–homomorphisms from A into B and \mathcal{K}–epimorphisms from A onto B, respectively.
Besides, if $S \subseteq A$ is a \mathbb{K}–subalgebra of A we write $S \triangleleft_\mathbb{K} A$. We note by $[G]_{\mathbb{K}}$ the \mathbb{K}–subalgebra of A generated by the set G. When there is no doubt about what variety we are referring to, the subindex will be omitted.

Recall that a Hilbert algebra is a structure $\langle A, \rightarrow, 1 \rangle$ of type (2,0) that satisfies the following:

(H1) $x \rightarrow (y \rightarrow x) = 1$,

(H2) $(x \rightarrow (y \rightarrow z)) \rightarrow ((x \rightarrow y) \rightarrow (x \rightarrow z)) = 1$,

(H3) $x \rightarrow y = 1 = y \rightarrow x$, implies $x = y$.

The variety of all Hilbert algebras is denoted by H. It is well-known that in every $A \in H$ the following holds.

(H4) $(x \rightarrow x) \rightarrow x = x$,

(H5) $x \rightarrow x = y \rightarrow y$,

(H6) $x \rightarrow (y \rightarrow z) = (x \rightarrow y) \rightarrow (x \rightarrow z)$,

(H7) $(x \rightarrow y) \rightarrow ((y \rightarrow x) \rightarrow x) = (y \rightarrow x) \rightarrow ((x \rightarrow y) \rightarrow y)$,

(H8) $x \rightarrow (y \rightarrow z) = y \rightarrow (x \rightarrow z)$,

(H9) $x \rightarrow 1 = 1$,

The relation \leq defined by $x \leq y$ iff $x \rightarrow y = 1$ is a partial order on A and $x \leq 1$ for all $x \in A$. If $a, b \in A$ are such that there exists the supremum of $\{a, b\}$ in A, denoted by $a \lor b$, then for every $c \in A$ there exists the infimum of $\{(a \rightarrow c), (a \rightarrow b)\}$, denoted by $(a \rightarrow c) \land (a \rightarrow b)$ and it is verified that

(H10) $(a \lor b) \rightarrow c = (a \rightarrow c) \land (b \rightarrow c)$.

If $a, b \in A$ are such that there exists the supremum $a \lor b$ of $\{a, b\}$, then for every $c \in A$ it is verified that:

(H11) $(a \rightarrow c) \rightarrow ((b \rightarrow c) \rightarrow ((a \lor b) \rightarrow c)) = 1$.
It is said that \(A \in H \) is a \((n+1)\)-valued Hilbert algebra if \(n \) is the least natural number, \(n \geq 2 \), in such a way that

\[
T_{n+1} = T(x_0, \ldots, x_n) = \beta_{n-1} \rightarrow (\beta_{n-2} \rightarrow (\cdots \rightarrow (\beta_0 \rightarrow x_0) \cdots)) = 1,
\]

holds in \(A \), where \(\beta_i = (x_i \rightarrow x_{i+1}) \rightarrow x_0 \) for \(0 \leq i \leq n - 1 \).

We will denote by \(H_{n+1} \) the variety of \((n+1)\)-valued Hilbert algebras (see \[12\]).

Example 2.1 Let \(C_{n+1} = \{0, \frac{1}{n}, \ldots, \frac{n-1}{n}, 1\} \) and let \(\rightarrow \) defined as

\[
x \rightarrow y = \begin{cases}
1 & \text{if } x \leq y, \\
y & \text{if } x > y.
\end{cases}
\]

Then \((C_{n+1}, \rightarrow, 1) \) is a \((n+1)\)-valued Hilbert algebra.

Recall that if \(A \in H \), \(D \subseteq A \) is a deductive system (d.s.) of \(A \) iff \(1 \in D \) and \(D \) is closed by modus ponens, i.e., if \(x, x \rightarrow y \in D \) then \(y \in D \). A d.s. \(D \) is said to be irreducible (i.d.s.) iff \(D \) is a proper d.s. and \(D = D_1 \cap D_2 \) implies \(D = D_1 \) or \(D = D_2 \) for any d.s. \(D_1 \) and \(D_2 \). It is said that the proper d.s. \(D \) is fully irreducible (f.i.d.s) iff

\[
D = \bigcap_{i \in I} D_i \text{ implies } D = D_i \text{ for some } i \in I. \quad \text{(see [9])}
\]

Besides, \(D \) is said to be prime (p.d.s.) iff it is a proper d.s. and for any \(a, b \in A \) we have \(a \lor b \in D \) implies \(a \in D \) or \(b \in D \).

We denote by \(\mathcal{D}(A) \) and \(\mathcal{E}(A) \) the set of all d.s and f.i.d.s. of a given Hilbert algebra \(A \), respectively. On the other hand, \(D \) is minimal iff it is a minimal element of the ordered set \((\mathcal{D}(A), \subseteq) \), i.e., if \(D' \in \mathcal{D}(A) \) is such that \(D' \subseteq D \) then \(D' = D \). By \(\mathcal{M}(A) \) we denote the set of all minimal elements of the ordered set \((\mathcal{E}(A), \subseteq) \), i.e., \(\mathcal{M}(A) = \{ D \in \mathcal{E}(A) : \text{ if } D' \in \mathcal{E}(A) \text{ is such that } D' \subseteq D \text{ then } D' = D \} \).

The following results are well-known and will be used in the next sections.

Theorem 2.2 (\[9\]) Let \(A \in H \) and \(D \in \mathcal{D}(A) \). The following conditions are equivalents:

4
(i) \(D \in \mathcal{E}(A) \),
(ii) if \(a, b \in A \setminus D \) then there is \(c \in A \setminus D \) such that \(a \leq c \) and \(b \leq c \),

Theorem 2.3 ([9]) Let \(A \in H \) and \(D \in \mathcal{D}(A) \). The following conditions are equivalents:

(i) \(D \) is a f.i.d.s.,

(ii) there is \(a \in A \setminus D \) and \(D \) is a maximal d.s. among all d.s. of \(A \) that do not contain the element \(a \),

(iii) there is \(a \in A \setminus D \) such that \(x \to a \in D \) for all \(x \notin D \).

Besides,

Theorem 2.4 ([9]) Let \(A \in H \). For every \(D \in \mathcal{D}(A) \) and \(a \notin D \), there exists \(M \in \mathcal{D}(A) \) such that \(M \) is maximal among all d.s. that contain \(D \) but do not contain \(a \).

The family of all f.i.d.s (minimal i.d.s) of a given Hilbert algebra \(A \) is a splitting set, i.e.,

\[
\bigcap_{D \in \mathcal{E}(A)} D = \{1\} \quad \bigcap_{D \in \mathcal{M}(A)} D = \{1\}.
\]

Recall that if \(A, B \in H \) and \(h \in \text{Hom}_H(A, B) \) then \(\text{Con}_H(A) = \{ R(D) : D \in \mathcal{D}(A) \} \) where \(R(D) = \{ (x, y) \in A^2 : x \to y, y \to x \in D \} \). If \(R = R(D) \) we shall denote by \(A/D \) the quotient algebra determined by \(R \). Also, it is well-known that the kernel of \(h, \text{Ker}(h) \), is a d.s. of \(A \) where \(\text{Ker}(h) = \{ x \in A : h(x) = 1 \} \). Also, if \(z \in A \) the segment \([z] = \{ x \in A : z \leq x \} \) is a d.s. of \(A \).

Definition 2.5 ([12]) Let \(A \in H \). \(D \in \mathcal{D}(A) \) is said to be \((p + 1) \)-valued if \(A/D \cong C_{p+1} \) (see Example 2.1).

We shall denote by \(\mathcal{E}_{p+1}(A) \) and \(\mathcal{M}_{p+1}(A) \) the sets of all \((p + 1) \)-valued d.s. of \(A \) included in \(\mathcal{E}(A) \) and \(\mathcal{M}(A) \), respectively. Then,
Theorem 2.6 ([12]) The following conditions are equivalents:

(i) \(A \in H_{n+1} \),

(ii) \(E(A) = \bigcup_{p=1}^n E_{p+1}(A) \) and \(E_{n+1}(A) \neq \emptyset \).

It is worth mentioning that in \(H_n \) the notions of i.d.s and f.i.d.s coincide (see [12]). Let \(A \in H \) and \(X \subseteq A \), we denote by \(\mu(X) \) the set of all minimal elements of \(X \). Then,

Lemma 2.7 ([9]) If \([X]_H = A\) then \(\mu(X) = \mu(A) \).

As a consequence of this lemma we have the following corollary.

Corollary 2.8 Let \(A \in H \) and \(X \subseteq A \) such that \([X]_H = A\). Then, \(X = \mu(A) \) iff \(X \) is an antichain.

On the other hand, it can be proved that:

Lemma 2.9 The only \(H \)-automorphism of \(C_{n+1} \) is the identity.

Proof. Let \(h \in \text{Hom}_H(C_{n+1}, C_{n+1}) \) such that \(h \) is a bijection. If \(h \) is not the identity map, then there is \(x_0 \in C_{n+1} \) such that \(h(x_0) \neq x_0 \). Then, \(x_0 < h(x_0) \) or \(h(x_0) < x_0 \). In the first case we have that \(x_0 \leq h(x_0) \leq h^2(x_0) \leq \cdots \leq h^p(x_0) \leq \cdots \). If there is \(p \) such that \(h^p(x_0) = h^{p+1}(x_0) \) then \(x_0 = (h^{-1})^p(h^p(x_0)) = (h^{-1})^p(h^{p+1}(x_0)) = h(x_0) \), a contradiction. So, the only possibility is that \(x_0 < h(x_0) < h^2(x_0) < \cdots < h^p(x_0) < \cdots \). But this contradicts the finiteness of the algebra \(C_{n+1} \). \(\square \)

Finally, we have:

Corollary 2.10 Let \(A \in H \) and \(h_1, h_2 \in \text{Epi}_H(A, C_{n+1}) \). Then, \(h_1 = h_2 \) iff \(\text{Ker}(h_1) = \text{Ker}(h_2) \).
3 \((n + 1)\)-valued Hilbert algebras with supremum

A Hilbert algebra with supremum (or \(H^\vee\)-algebra), as it was defined in [7], is an algebra \(\langle A, \to, \vee, 1 \rangle\) of type \((2, 2, 0)\) such that

- \(\langle A, \to, 1 \rangle\) is a Hilbert algebra,
- \(\langle A, \vee, 1 \rangle\) is a join-semilattice, and
- for all \(a, b \in A\), \(a \to b = 1 \iff a \vee b = b\).

In the next theorem, we exhibit a simple and natural equational base for \(H^\vee\) different from the one showed in [7].

Theorem 3.1 Let \(\langle A, \to, \vee, 1 \rangle\) be an algebra of type \((2, 2, 0)\). The following conditions are equivalent.

(i) \(\langle A, \to, \vee, 1 \rangle\) is a \(H^\vee\)-algebra,

(ii) \(\langle A, \to, 1 \rangle\) is a Hilbert algebra and the following equations hold:

 (a) \(x \to (x \vee y) = 1\),
 (b) \(y \to (x \vee y) = 1\),
 (c) \((x \to z) \to ((y \to z) \to ((x \vee y) \to z)) = 1\).

Proof. It is routine. \(\square\)

Next, we introduce the notion of \((n + 1)\)-valued Hilbert algebra with supremum.

Definition 3.2 \(A = \langle A, \to, \vee, 1 \rangle \in H^\vee\) is a \((n + 1)\)-valued Hilbert algebra with supremum, or \(H^\vee_{n+1}\)-algebra, if \(\langle A, \to, \vee, 1 \rangle \in H^\vee\) and \(\langle A, \to, 1 \rangle \in H_{n+1}\).

Example 3.3 Let \(\langle C_{n+1}, \to, 1 \rangle\) as in the Example 2.1 and let \(\vee\) the operation defined by \(x \vee y = \text{Sup}\{x, y\}\). Then, \(J_{n+1} = \langle C_{n+1}, \to, \vee, 1 \rangle\) is a \(H^\vee_{n+1}\)-algebra. Besides, if \(n \leq m\) then \(J_n\) is isomorphic to some subalgebra of \(J_m\).
It is clear that H_n^\lor are varieties of Hilbert algebras with supremum generated by finite chains. If fact, H_n^\lor is generated by the algebra J_n.

All d.s. of a Hilbert algebra with supremum are prime.

Lemma 3.4 Let $A \in H^\lor$ and $D \in \mathcal{E}(A)$. Then D is prime.

Proof. Let $D \in \mathcal{E}(A)$ and $a, b \in A$ such that (1) $a \lor b \in D$. Suppose that $a \notin A$ and $b \notin A$, by Theorem 2.1, there exists (2) $c \in A \setminus D$ such that $a \leq c$ and $b \leq c$. Then, $1 = (a \rightarrow c) \rightarrow ((b \rightarrow c) \rightarrow ((a \lor b) \rightarrow c)) = 1 \rightarrow (1 \rightarrow ((a \lor b) \rightarrow c)) = (a \lor b) \rightarrow c$. That is, $a \lor b \leq c$ and, by (1), $c \in D$ which contradicts (2). \hfill \square

Lemma 3.5 Let $h \in \text{Hom}_{H^\lor}(A, B)$. Then,

(i) If $h \in \text{Epi}_{H^\lor}(A, B)$ then $h([z]) = [h(z)]$ for all $z \in A$.

(ii) $\text{Ker}(h) \in \mathcal{E}(A)$, for all $h \in \text{Epi}_{H^\lor}(A, J_{r+1})$.

(iii) If $A \in H_{n+1}^\lor$ and $B = J_{r+1}$ then $\text{Ker}(h) \in \mathcal{E}_{p+1}(A)$ for some p, $1 \leq p \leq n$.

Proof.

(i) Since h is isotonic we have $h([z]) \subseteq [h(z)]$. Besides, for all $y \in [h(z)]$ there exists $x \in A$ such that $y = h(x)$. Let $u = z \lor x \in [z]$ then $h(u) = h(z) \lor h(x) = h(z) \lor y = y$. Therefore, $y \in h([z])$.

(ii) Let $a \in A$ such that $h(a) = \frac{r-1}{r}$. Then, $a \notin \text{Ker}(h)$ and for all $x \notin \text{Ker}(h)$ we have that $h(x \rightarrow a) = h(x) \rightarrow h(a) = h(x) \rightarrow \frac{r-1}{r} = 1 \in \text{Ker}(h)$. Then, $x \rightarrow a \in \text{Ker}(h)$ and, by Theorem 2.3, $\text{Ker}(h)$ is fully irreducible.

(iii) By (ii) and Theorem 2.6 \hfill \square

Theorems 3.6 and 3.9 extend to H_{n+1}^\lor the corresponding results for H_{n+1} proved in [12].

Theorem 3.6 Let $A \in H_{n+1}^\lor$ and $M \in \mathcal{D}(A)$. The following conditions are equivalent.

(i) $M \in \mathcal{E}(A)$,
(ii) there exists $h \in \text{Hom}_{H_n^\vee}(A, J_{r+1})$ such that $\text{Ker}(h) = M$.

(iii) A/M is isomorphic to some subalgebra of J_{n+1}.

Note that if $A \in H^\vee$ and $c \in A$ then $[c] \triangleleft_{H^\vee} A$. Then,

Lemma 3.7 Let $A \in H_{n+1}^\vee$ and $c \in A$. For every $D \in \mathcal{E}([c])$ there is a unique $M \in \mathcal{E}(A)$ such that $D = M \cap [c]$.

Proof. Let $D \in \mathcal{E}([c])$. By Theorem 2.3 there is $a \in [c]$ such that D is a maximal d.s. among all d.s. of A that do not contain the element a. Then, by Theorem 2.3 there exists $M \in D(A)$ such that (1) M is maximal among all d.s. of A that verifies: $a \notin M$ and $D \subseteq M$. Let $P = M \cap [c]$. Then, $D \subseteq P$.

On the other hand, $P \in D([c])$ and $a \notin P$, so, by hypothesis on D, $P \subseteq D$. Therefore, $D = P = M \cap [c]$. Besides, suppose that $M = \bigcap \{M_i \mid M_i \in D(A)\}$, then there is $i \in I$ such that $a \notin M_i$. Then, $D \subseteq M \subseteq M_i$ and, by (1), $M = M_i$. So, $M \in \mathcal{E}(A)$.

Now, suppose that there are $M_1, M_2 \in \mathcal{E}(A)$ such that $M_1 \cap [c] = M_2 \cap [c] = D$. Since $D \neq [c]$, there is (2) $z \in [c] \setminus D$. Then, $z \notin M_1 \cup M_2$. If $z \in M_1 \setminus M_2$, by (2), we have $x \vee z \in M_1 \cap [c] \subseteq M_2$. By Lemma 3.3 $x \in M_2$ or $z \in M_2$ and both cases lead to a contradiction. Therefore, $M_1 \subseteq M_2$. Analogously, it can be proved that $M_2 \subseteq M_1$.

In what follows, we shall denote by M_D the only d.s. of A associated to $D \in \mathcal{E}([c])$.

Lemma 3.8 Let $A \in H_{n+1}^\vee$, $c \in A$, $D \in \mathcal{E}_{p+1}([c])$ and $M_D \in \mathcal{E}_{q+1}(A)$. Then, $p \leq q$. Besides, if $M_D \in \mathcal{M}(A)$ then $D \in \mathcal{M}([c])$.

Proof. By Theorem 3.6 there exists $h \in \text{Hom}_{H_{n+1}^\vee}(A, J_{n+1})$ such that $\text{Ker}(h) = M$. Let $h' = h|_{[c]}$, then $\text{Ker}(h') = \text{Ker}(h) \cap [c] = M_D \cap [c] = D$ and $p + 1 = |[c]/D| = |h'([c])| = |h([c])| \leq |h(A)| = |A/M| = q + 1$.

Suppose that $M_D \in \mathcal{M}(A)$ and that there is $D' \in \mathcal{E}([c])$ such that $D' \subseteq D$. Then, $M_D \cap [c] = D' \subseteq D = M_D \cap [c]$. If there is $x \in M_D \setminus M_D$ then
$x \lor z \in M_{D'} \cap [c] = D'$ para cada $z \in [c] \setminus D$, and $x \lor z \in D \subseteq M_{D}$. By Lemma 3.3, $x \in M_{D}$ or $z \in M_{D}$ and both cases lead to a contradiction. Then, $M_{D'} \subseteq M_{D}$ and since M is minimal $M_{D'} = M_{D}$ and therefore $D' = D$. □

Finally,

Theorem 3.9 Let $A \in H_{n+1}^\forall$ be a non-trivial algebra. Then, A is isomorphic to a subalgebra of $P = \prod_{M \in \mathcal{L}(A)} A/M$.

4 Finitely generated free H_{n+1}^\forall—algebras

Let r be an arbitrary cardinal number, $r > 0$. We say that $\text{Free}(r)$ is the free H_{n+1}^\forall—algebra with r free generators if:

(L1) There exists $G \subseteq \text{Free}(r)$ such that $|G| = r$ and $[G]_{H_{n+1}^\forall} = \text{Free}(r)$,

(L2) Any function $f : G \to A$, $A \in H_{n+1}^\forall$, can be extended to a unique homomorphisms $h : \text{Free}(r) \to A$.

Since the class of H_{n+1}^\forall—algebras is equationally definable, we know that $\text{Free}(r)$ is unique up to isomorphisms. If we want to stress that $\text{Free}(r) \in H_{n+1}^\forall$, we shall write $\text{Free}_{n+1}(r)$.

Lemma 4.1 Let G be a set of free generators of $\text{Free}(r)$. Then, $G = \mu(\text{Free}(r))$.

Proof. If $G = 1$, then $G = \mu(G)$ and, by Lemma 2.7, $G = \mu(\mathcal{L}(1))$. Suppose now that $|G| > 1$ and let $g, g' \in G$. If $g < g'$, let $f : G \to J_{n+1}$ the function defined by $f(g) = 1$ and $f(t) = 0$ if $t \neq g$. By (L2), there exists $h \in \text{Hom}_{H_{n+1}^\forall}(\text{Free}(r), J_{n+1})$ that extends f. Since h is isotonic, $1 = h(g) \leq h(g') = 0$. Then $g \not< g'$. Analogously, we have that $g' \not< g$. Then, g and g' are incomparable elements and, therefore, $G = \mu(G) = \mu(\text{Free}(r))$. □

As an immediate consequence we have:
Corollary 4.2 \(\text{Free}(r) = \bigcup_{g \in G} [g] \).

Taking all this into account we can prove that the variety \(H_{n+1}^\vee \) is locally finite.

Lemma 4.3 \(\text{Free}(r) \) is finite, for any natural number \(r \).

Proof. By Theorems 3.6 and 3.9 it is enough to prove that \(\mathcal{E}(\text{Free}(r)) \) is a finite set. For every \(h \in \text{Hom}_{H_{n+1}^\vee}(\text{Free}(r), J_{n+1}) \) we know that \(\text{Ker}(h) \in \mathcal{E}(\text{Free}(r)) \) and that the correspondence that maps \(h \) into \(\text{Ker}(h) \) is surjective. Since \(\text{Hom}(\text{Free}(r), J_{n+1}) = \bigcup_{S \in J_{n+1}} \text{Epi}(\text{Free}(r), S) \), \(\{ f = h|_G : h \in \text{Epi}(\text{Free}(r), S) \} \subseteq S^G \) and \(|S^G| < \infty \) we have that \(|\text{Epi}(\text{Free}(r), S)| < \infty \). Since \(J_{n+1} \) has a finite number of subalgebras, \(\text{Free}(r) \) is finite. \(\square \)

Let \(G_k \) be a subset of \(G \) with \(k \) elements. Then,

Lemma 4.4 Let \(g_k^* = \bigvee_{g \in G_k} g \). Then, \([g_k^*] = \bigcap_{g \in G_k} [g] \).

Proof. It is clear that, if \(g \in G_k \) then \(g \leq g_k^* \) and \([g_k^*] \subseteq \bigcap_{g \in G_k} [g] \).

Let \(x \in \bigcap_{g \in G_k} [g] \), then \(g \leq x \) for all \(g \in G_k \). Then, \(g_k^* \leq x \) and therefore \(x \in [g_k^*] \). \(\square \)

Lemma 4.5 Let \(h \in \text{Epi}(\text{Free}(r), J_{q+1}) \). Then, \(C_{q+1} \setminus \{ 1 \} \subseteq h(G) \).

Proof. Let \(z \in C_{q+1} \setminus \{ 1 \} \) and let \(x \in h^{-1}(z) \subseteq \text{Free}(r) \). Then, we can express \(x \) in terms of the generators using the operations \(\rightarrow \) and \(\vee \). We will call \textit{length} of \(x \in \text{Free}(r) \) the least natural number \(m \) such that there exists an expression for \(x \) in terms of the generators which is constructed with \(m \) applications of the operations \(\rightarrow \) or \(\vee \) in it.
If \(m = 1 \), then (1) \(x = g_1 \lor g_2 \) or (2) \(x = g_1 \rightarrow g_2 \). In case (1), \(h(x) = h(g_1 \lor g_2) = h(g_1) \lor h(g_2) = z \). Since, (3) \(h(g_1) \leq h(g_2) \) or \(h(g_2) \leq h(g_1) \), we have that \(h(g_2) = z \) or \(h(g_1) = z \), therefore, \(z \in h(G) \). In case (2), if \(h(g_1) \leq h(g_2) \) then \(h(g_1) \rightarrow h(g_2) = 1 \neq z \) and so this case is discarded. Then, \(h(g_2) \leq h(g_1) \) and if \(h(g_1) \rightarrow h(g_2) = h(g_2) = z \) and so \(z \in h(G) \).

Suppose that the theorem is true for every formula which its expression in terms of the generators has length \(m - 1 \). Let \(x \in \text{Free}(r) \) be a formula of length \(m \). Then, (4) \(x = x_1 \lor x_2 \) or (5) \(x = x_1 \rightarrow x_2 \) with \(x_1, x_2 \in \text{Free}(r) \).

Clearly, the length of \(x \) and \(x_2 \) is \(m - 1 \) and, therefore, there exist \(g_1, g_2 \in G \) such that \(h(g_1) = h(x_1) \) and \(h(g_2) = h(x_2) \). In case (4), \(h(x) = h(x_1) \lor h(x_2) = h(g_1) \lor h(g_2) = z \) and using the same reasoning above, \(h(g_1) = z \) or \(h(g_2) = z \). Analogously, in case (5), it must be the case \(h(x_2) \leq h(x_1) \) and therefore \(h(x_2) = h(x_1) \rightarrow h(x_2) = z \) and by induction hypothesis there exists \(g \in G \) such that \(h(g) = h(x_2) = z \).

\[\text{Lemma 4.6} \quad \text{Let } g_k^* \text{ be as in Lemma 4.4. Then } [g_k^*] \text{ is a } H_{m+1}^\lor \text{subalgebra of } \text{Free}_{n+1}(r) \text{ where } m \leq n. \]

Proof. For every \(x, y \in [g_k^*] \), \(g_k^* \leq y \leq x \rightarrow y \) by (H1), and then \(x \rightarrow y \in [g_k^*] \). Besides, \(g_k^* \leq y \leq x \lor y \) and so \(x \lor y \in [g_k^*] \). Then, \([g_k^*] \triangleleft \text{Free}_{n+1}(r)\).

Let \(m = \min\{q : \text{ the equation } T_{q+1} \approx 1 \text{ holds in } [g_k^*]\} \). Then, \(m \leq n \) and \([g_k^*] \in H_{m+1}^\lor \). Let’s denote by \([r]\) the set of the first \(r \) natural numbers, i.e., \(r = \{1, \ldots, r\} \). As an immediate consequence of Corollary 4.2 and the inclusion-exclusion principle we have:

\[\text{Lemma 4.7} \quad |\text{Free}(r)| = \sum_{k=1}^{r} (-1)^{k+1} |\bigcap_{i \in I, J \subseteq [r], |J|=k} [g_i]|. \]

By Lemma 4.7 and Lemma 4.4 we conclude:

\[\text{Lemma 4.8} \quad |\text{Free}(r)| = \sum_{k=1}^{r} (-1)^{k+1} \binom{r}{k} |[g_k^*]|. \]

Let \(\mathcal{E}_{k,p+1} = \mathcal{E}_{p+1}([g_k^*]) \) and \(\mathcal{M}_{k,p+1} = \mathcal{M}_{p+1}([g_k^*]) \).
Remark 4.9 Let \(D \in \mathcal{E}_{p+1}([g]) \) and \(h : [g] \longrightarrow J_{p+1} \) be the composition of the canonical map with the isomorphism that there is between \([g]/D \) and \(J_{p+1} \). Since \(D \) is a \((p+1)\)-valued d.s., the family \(\mathcal{S}(D) \) of all d.s of \([g]\) that contain \(D \) is a chain whose elements are principal prime d.s. \(\mathcal{S}(D) = \{ [a_j] : j \in \{ 0, \ldots, p \} \} \). So \(D = [a_0] \subseteq [a_1] \subseteq \cdots \subseteq [a_j] \subseteq \cdots \subseteq [a_p] = [g] \) and \(h(a_j) = \frac{p+1}{j} \) for all \(j \in \{ 0, \ldots, p \} \) (see [12]).

Lemma 4.10 Let \(D \in \mathcal{M}_{p+1}([g]), D' \in \mathcal{M}_{q+1}([g]) \), \(\mathcal{S}(D) = \{ [a_j] : j \in \{ 0, \ldots, p \} \}, \mathcal{S}(D') = \{ [b_i] : i \in \{ 0, \ldots, q \} \} \) with \(a_0 \neq b_0 \). Also, let \(h_{D'} \) be the canonical epimorphism associated to \(D' \) (see Remark 4.9). Then,

(i) \(a_j \in [g] \setminus [b_0] \) for all \(j \in \{ 0, \ldots, p \} \),

(ii) \(h_{D'}(a_j) = \begin{cases} \frac{p+1}{j} & \text{if } D' = D, \\ 0 & \text{if } D' \neq D. \end{cases} \)

Proof. (i) If \(a_j \in [b_0], b_0 \leq a_j \leq a_0 \) and \(a_0 \in [b_0] \). Then, \([a_0] \subseteq [b_0]\) and since \(a_0 \neq b_0, [b_0] \) is not a minimal f.i.d.s. of \([g]\). So, \(a_j \in [g] \setminus [b_0]\).

(ii) It is immediate from (i).

Theorem 4.11 \([g_k] \simeq \prod_{p=1}^{n} J_{p+1}^{k_p + 1} \) where \(k_{p+1} = |\mathcal{M}_{k,p+1}| \).

Proof. For the sake of simplicity we shall identify \([g_k]/D\) with \(J_{p+1} \) for all \(D \in \mathcal{M}_{p+1}([g_k]) = \mathcal{M}_{p+1} \). Let \(\mathcal{M} = \bigcup_{p=1}^{n} \mathcal{M}_{p+1} \) and \(h_D \in Epi_{H_{p+1}}([g_k], J_{q+1}) \) the canonical epimorphism associated to \(D \).

Let \(h' : [g_k] \longrightarrow \prod_{p=1}^{n} J_{p+1}^{k_p + 1} \) be the function defined as \(h'(x) = (h_D(x))_{D \in \mathcal{M}} \).

It is clear that \(h_D \) is a \(H_{p+1} \)-homomorphism. Besides, \(\text{Ker}(h') = \{ x \in [g_k] : h'(x) = 1 \} = \bigcap_{D \in \mathcal{M}} \{ x \in [g_k] : h_D(x) = 1 \} = \bigcap_{D \in \mathcal{M}} D = \{ 1 \} \), since \(\mathcal{M} \) is a splitting set. Then \(h' \) is injective.

Let \(y = (y_D)_{D \in \mathcal{M}} \in \prod_{p=1}^{n} J_{p+1}^{k_p + 1} \). For every \(D \in \mathcal{M}, y_D = \frac{p+1}{j}, \) for some \(j \in \{ 0, \ldots, p \} \). By Remark 4.9 there exists \(a_D \in [g_k] \) such that \([a_D]\) is a
minimal element in the chain $S(D)$ and by Lemma 4.10, $h_F(a_D) = 0$ for all $F \in \mathcal{M}, F \neq D$, and $h_D(a_D) = \frac{p-j}{p}$.

Let $z = \bigvee_{F \in \mathcal{M}} a_F$. Then, $h'(z) = (h_D(z))_{D \in \mathcal{M}} = (h_D(\bigvee_{F \in \mathcal{M}} a_F))_{D \in \mathcal{M}} = (\bigvee_{F \in \mathcal{M}} h_D(a_F))_{D \in \mathcal{M}} = (h_D(a_D))_{D \in \mathcal{M}} = (y)_{D \in \mathcal{M}} = y$. So h' is surjective.

\[\blacksquare\]

Corollary 4.12 Let G a set of free generators. Then,

$$\text{Free}_{n+1}(r) = \bigcup_{g \in G} [g] \text{ where } [g] \simeq \prod_{p=1}^{n} J_{p+1}^{n_1,p+1}.$$

Corollary 4.13 $|\text{Free}_{n+1}(r)| = \sum_{k=1}^{r} (-1)^{k+1} \binom{r}{k} \prod_{p=1}^{n} (p+1)^{a_k,p+1}$

\[\text{5 Computing an upper bound to } \alpha_{k,p+1}\]

In this section, compute an upper bound to $\alpha_{k,p+1}$. Since $\mathcal{M}_{k,p+1} \subseteq \mathcal{E}_{k,p+1}$, $|\mathcal{M}_{k,p+1}| \leq |\mathcal{E}_{k,p+1}|$ and so we shall compute the number $\eta_{k,p+1} = |\mathcal{E}_{k,p+1}|.$ That is to say, we shall determine how many $(p+1)$-valued i.d.s. the subalgebra $[g^*_k]$ has.

Let $p \leq q \leq n$ and let $\mathcal{F}_{k,p}(q)$ be the set of all functions $f : G \rightarrow C_{q+1}$ that satisfies the following conditions:

(F1) $C_{q+1} \setminus \{1\} \subseteq f(G)$,

(F2) $f(g) \leq \frac{q-p}{q}$ for all $g \in G_k$,

(F3) there exists $g_p \in G_k$ such that $f(g_p) = \frac{q-p}{q}$.

Theorem 5.1 $|\mathcal{E}_{k,p+1}| = \sum_{q=p}^{n} |\mathcal{F}_{k,p}(q)|$.

14
Proof. Let \(f \in \bigcup_{q=p}^{n} \mathcal{F}_{k,p}(q) \). Then, there exists \(q \in \{p, \ldots, n\} \) such that \(f \) verifies (F1)-(F3). We extend \(f \) to a unique \(h \in Epi_{H_{n+1}}^r(\text{Free}(r), J_{q+1}) \). From (F2) and F(3) we have that \(h_f(g_k) = \bigvee_{g \in G_k} f(g) = \bigvee_{g \in G_k} f(g) = \frac{q-p}{q} \). By Lemma 3.5 (i), \(h_f([g_k]) = \{h_f(g_k)\} = \{\frac{q-p}{q}\} \). Let \(D^k_f = \text{Ker}(h_f) \cap [g_k^*]. \) By Theorem 3.6, \(\text{Ker}(h_f) \in \mathcal{E}(\text{Free}(r)) \). Then, \(|\{g_k^*\}/D_f^k| = |h_f([g_k^*])| = p + 1 \) and so \(D^k_f \in \mathcal{E}_{k,p+1} \).

Let \(\psi : \bigcup_{q=p}^{n} \mathcal{F}_{k,p}(q) \longrightarrow \mathcal{E}_{k,p+1} \) be the map defined by \(\psi(f) = D_f^k \). By Theorem 3.6 \(\psi \) is well-defined.

For every \(D \in \mathcal{E}_{k,p+1} \), by Lemma 3.7 there is a unique \(M \in \mathcal{E}_{q+1}(\text{Free}(r)) \) such that \(D = M \cap [g_k^*] \). Let \(h \in Epi_{H_{n+1}}^r(\text{Free}(r), J_{q+1}) \) such that \(\text{Ker}(h) = M \) (see Theorem 3.6) and let \(f \) be the restriction of \(h \) to \(G \). To see that \(f \in \mathcal{F}_{k,p}(q) \) it is enough to prove that \(h(g_k^*) = \frac{q-p}{q} \). If \(h(g_k^*) = \frac{i}{q} \) then \(p + 1 = |\{g_k^*\}/D| = |\frac{i}{q}| = q - i + 1 \). So, \(i = q - p \). On the other hand, \(h(g_k^*) = h(\bigvee_{g \in G_k} g) = \bigvee_{g \in G_k} h(g) = \bigvee_{g \in G_k} f(g) = \frac{q-p}{q} \). Then, it is clear that condition (F2) and (F3) are fulfilled. On the other hand, (F1) holds by Lemma 4.5. Then, \(\psi \) is surjective.

Suppose now that there are \(f_1, f_2 \in \bigcup_{q=p}^{n} \mathcal{F}_{k,p}(q) \) with extensions to \(\text{Free}(r) \) \(h_1 \) and \(h_2 \), respectively, such that \(D = \text{Ker}(h_1) \cap [g_k^*] = \psi(f_1) = \psi(f_2) = \text{Ker}(h_2) \cap [g_k^*] \). By the uniqueness of the d.s. \(M \) associated to \(D \) (Lemma 3.7) we have that \(\text{Ker}(h_1) = \text{Ker}(h_2) \). By Corollary 2.10, \(h_1 = h_2 \) and so \(f_1 = f_2 \). Then, \(\psi \) is injective. Taking into account that if \(q_1 \neq q_2 \) then \(\mathcal{F}_{k,p}(q_1) \cap \mathcal{F}_{k,p}(q_2) = \emptyset \) we conclude that \(|\mathcal{E}_{k,p+1}| = |\sum_{q=p}^{n} \mathcal{F}_{k,p}(q)| = \sum_{q=p}^{n} |\mathcal{F}_{k,p}(q)| \).

\(\square \)

Next we shall introduce some notation.

\[
\epsilon_{d,a} = \begin{cases}
\sum_{j=0}^{a-1} (-1)^j \binom{a}{j} (a-j)^d & \text{if } 1 \leq a \leq d, \\
0 & \text{if } d < a \text{ or } a \leq 0.
\end{cases}
\] (2)
\[u(q, t, b) = e_{r-k,q+1-t+b} + e_{r-k,q-t+b} \]
\[u(q, t) = \sum_{b=0}^{t} \binom{t}{b} u(q, t, b) \]
\[\beta(k, p) = \sum_{q=p}^{n} \sum_{t=1}^{q-p+1} \binom{q-p}{t-1} e_{k,t} \cdot u(q, t) \]

Lemma 5.2 If \([g_k^p] \in H_{n+1}^r, m \leq n\), for all \(1 \leq k \leq r, 1 \leq p \leq n\), then the number \(\eta_{k,p+1}\) of all \((p+1)\)-valued i.d.s. of \([g_k^p]\) verifies:

\[
\eta_{k,p+1} = \begin{cases}
\beta(k, p) & \text{if } p \leq m, \ k < r, \\
0 & \text{if } p > m, k < r, \\
\sum_{q=1}^{r} e_{r,q} & \text{if } k = r,
\end{cases}
\]

Proof. By Theorem 5.1 we know \(\eta_{k,p+1} = |E_{k,p+1}| = \sum_{q=p}^{n} |F_{k,p}(q)|\) for all \(1 \leq k \leq r\) and \(1 \leq p \leq n\). On the other hand, it is well-known that if \(W(A, A')\) is the set of all functions from \(A\) into \(A'\) is given by

\[
|W(A, A')| = \sum_{j=0}^{a-1} (-1)^j \binom{a}{j}(a-j)^d
\]

where \(a = |A|\) and \(d = |A'|\).

For \(f \in F_{k,p}(q)\) let \(f_k = f|_{G_k}\) and \(f_{r-k} = f|_{G_r/G_k}\). By (F2) and (F3), \(f_k(G_k)\) verifies that \(\frac{q-p}{q} \in f_k(G_k) \subseteq [0, \frac{q-p}{q}]\). Let \(\mathcal{H} = \{T : T \subseteq [0, \frac{q-p}{q}] \text{ such that } \frac{q-p}{q} \in T\}\). Then

\[f_k \in W(G_k, T) \text{ for some } T \in \mathcal{H} \]
We want to determine the family of all surjective functions which f_{r-k} belongs to. Let us consider $G_{r-k} = G \setminus G_k$, $T = f_k(G_k)$ and $B = f_{r-k}(G_{r-k}) \cap T$. Then, $f_{r-k}(G_{r-k}) = \begin{cases} V_B = (C_{q+1} \setminus T) \cup B & \text{if } 1 \in f(G_{r-k}), \\ V_B' = (C_{q+1} \setminus (\{1\} \cup T)) \cup B & \text{if } 1 \not\in f(G_{r-k}). \end{cases}$

So, $f_{r-k} \in W(G_{r-k}, V_B) \cup W(G_{r-k}, V_B')$ (8)

for some $B \subseteq T$ and $T \in H$. Let now,

$$\mathcal{U} = \bigcup_{T \in \mathcal{T}} \bigcup_{B \subseteq T} (W(G_k, T) \times (W(G_{r-k}, V_B) \cup W(G_{r-k}, V_B')))$$

and

$$\eta : \mathcal{F}_{k,p}(q) \longrightarrow \mathcal{U} \text{ defined by } \eta(f) = (f_k, f_{r-k}).$$

It is clear that η is injective. On the other hand, let $(h_1, h_2) \in \mathcal{U}$ and consider

$$h(g) = \begin{cases} h_1(g) & \text{if } g \in G_k, \\ h_2(g) & \text{if } g \in G_{r-k}. \end{cases}$$

If $h_2 \in W(G_{r-k}, V_B)$ then

$$h(G) = h_1(G_k) \cup h_2(G_{r-k}) = T \cup V_B = C_{q+1}$$

If $h_2 \in W(G_{r-k}, V_B')$ then

$$h(G) = h_1(G_k) \cup h_2(G_{r-k}) = T \cup V_B' = C_{q+1} \setminus \{1\}$$

Besides, if $g \in G_k$, $h(g) \in T \subseteq [0, \frac{q-p}{q}]$ and

$$h(g) \leq \frac{q-p}{q} \text{ for every } g \in G_k.$$

(11)

Since $h_1(g_p) = \frac{q-p}{q}$ for some $g_p \in G_k$ it is verified that

$$h(g_p) = \frac{q-p}{q} \text{ for some } g_p \in G_k.$$

(12)
From equations (9), (10), (11) and (12), we have that \(f = h|_G \in \mathcal{F}_{k,p}(q) \) and \(\eta \) is surjective.

Then,

\[
|\mathcal{F}_{k,p}(q)| = |U| = \left| \bigcup_{T \in T} \bigcup_{B \subseteq T} (W(G_k, T) \times (W(G_{r-k}, V_B) \cup W(G_{r-k}, V'_B))) \right| \tag{13}
\]

Observe that if \(\{ A_U \}_{U \in \mathcal{U}} \) is a family of pairwise disjoint sets such that \(\mathcal{U} = \{ U : U \subseteq [0, \frac{m}{q}] \}, |A_U| = |A_U'| \) iff \(|U| = |U'| \). If \(u = |U| \) then

\[
| \bigcup_{U \in \mathcal{U}} A_U | = \sum_{u=0}^{m+1} \left(\binom{m+1}{u} \right) |A_U|
\tag{14}
\]

Then, if \(p \leq m \) and \(k \leq r \)

\[
\eta_{k,p+1} = \sum_{q=p}^{n} |\mathcal{F}_{k,p}(q)|
\]

\[
= \sum_{q=p}^{n} \sum_{l=1}^{q-p+1} \binom{m+1}{u} \cdot W(G_k, T) \cdot |(W(G_{r-k}, V_B) \cup W(G_{r-k}, V'_B))|
\]

\[
= \sum_{q=p}^{n} \sum_{l=1}^{q-p+1} \binom{m+1}{u} \cdot \epsilon_{k,t} \cdot \left(\sum_{b=0}^{t} \binom{t}{b} (e_{r-k,q+1-t+b} + e_{r-k,q-t+b}) \right)
\]

\[
= \sum_{q=p}^{n} \sum_{l=1}^{q-p+1} \binom{m+1}{u} \cdot \epsilon_{k,t} \cdot \left(\sum_{b=0}^{t} \binom{t}{b} u(q, t) \right)
\]

\[
= \beta(k, p)
\]

If \(k = r \) then \(G_{r-k} = \emptyset \) and \(\mathcal{F}_{k,p}(q) = \{ f : G \rightarrow C_{q+1} : f(G) = [0, \frac{q-p}{q}] = [0, \frac{q}{q}] \} \). So, \(p = 1 \) and \(\mathcal{F}_{k,p}(q) = W(G, [\frac{q-1}{q}]) \). Then, \(\eta_{r,2} = \sum_{q=1}^{r} e_{r,q} \). \(\square \)

From Lemma 4.8 and Theorem 4.11 we have

\[
|\text{Free}(r)| \leq \sum_{k=1}^{r} (-1)^{k+1} \binom{r}{k} \prod_{p=1}^{n} (p + 1)^{\eta_{k,p+1}}
\]

where \(\eta_{k,p+1} \) is as in Lemma 5.2

Example 5.3
(i) For $n = 1$ and $r = 1$. We have that $\alpha_{1,2} = 1$ and

$$\text{Free}_2(1) \simeq [g] \simeq J_2.$$

(ii) For $n = 1$ and $r = 2$, $p = q = 1$ and $G = \{g_1, g_2\}$.

$$\text{Free}_{1+1}(2) \simeq [g_1] \cup [g_2] \text{ where } [g_1] \simeq [g_2] = J^{a_{1,2}}_2 = J_2^2$$

$\alpha_{1,2} = 2$ then $[g_i] \simeq J_2^2$. For $k = 2$, $\alpha_{2,2} = 1$. On the other hand, $[g_1] \cap [g_2] = [g_1 \lor g_2] \simeq J^{a_{2,2}}_2 = J_2$. Then,

$$|\text{Free}_2(2)| = 6$$

References

[1] J. C. Abbot, *Semi–boolean algebras*, Mat. Vesnik, 4–9 (1967), 177–178.

[2] J. C. Abbot, *Implicational algebras*, Bull. Math. Soc. Sc. Math. R.S. Roumaine, 11, 3–23 (1967).

[3] R. Balbes and P. Dwinger, *Distributive lattices*, University of Missouri Press, Columbia, 1974.

[4] J. Berman, *Upper bounds on the sizes of finitely generated algebras*. Demonstratio Math., 44(3), 447–471 (2011).

[5] G. Birkhoff, *Lattice theory*, Amer. Math. Soc., Col Pub., 25 3rd ed., Providence, 1967.

[6] V. Boicescu, A. Filipoiu, G. Georgescu and S. Rudeanu, *Lukasiewicz–Moisil Algebras*, North – Holland, Amsterdam, 1991.

[7] S. Celani and D. Montangie. *Hilbert algebras with supremum*. Algebra Universalis, 67, 237–255 (2012).

[8] Celani, S.A., Cabrer, L.M., Montangie D.: *Representation and duality for Hilbert algebras*. Cent. Eur. J. Math. 7, 463–478 (2009).
[9] A. Diego, *Sur les algèbres de Hilbert*, Collection de Logique Mathématique, Serie A,21, Gauthier-Villars, Paris 1966.

[10] A.V. Figallo, G. Ramón and S. Saad.: A note on Hilbert algebras with infimum. Mat. Contemp. 24, 23–37 (2003).

[11] A.V. Figallo, G. Ramón and S. Saad. *Álgebras de Hilbert* $n+1$–valuadas con supremo. Preprint UNSJ (1998).

[12] L. Monteiro. *Algèbres de Hilbert* n–valentes. Portugaliae Math. 36, 159–174 (1977).