ALGEBRAIC MONTGOMERY-YANG PROBLEM: THE NONCYCLIC CASE

DONGSEON HWANG AND JONGHAE KEUM

Abstract. Montgomery-Yang problem predicts that every pseudofree circle action on the 5-dimensional sphere has at most 3 non-free orbits. Using a certain one-to-one correspondence, Kollár formulated the algebraic version of the Montgomery-Yang problem: every projective surface S with quotient singularities such that $b_2(S) = 1$ has at most 3 singular points if its smooth locus S^0 is simply-connected.

In this paper, we prove the conjecture under the assumption that S has at least one noncyclic singularity. In the course of the proof, we classify projective surfaces S with quotient singularities such that (i) $b_2(S) = 1$, (ii) $H_1(S^0, \mathbb{Z}) = 0$, and (iii) S has 4 or more singular points, not all cyclic, and prove that all such surfaces have $\pi_1(S^0) \cong \mathbb{A}_5$, the icosahedral group.

1. Introduction

A pseudofree S^1-action on a sphere S^{2k-1} is a smooth S^1-action which is free except for finitely many non-free orbits (whose isotropy types $\mathbb{Z}_{m_1}, \ldots, \mathbb{Z}_{m_n}$ have pairwise relatively prime orders).

For $k = 2$ Seifert [Se] showed that such an action must be linear and hence has at most two non-free orbits. In the contrast to this, for $k = 4$ Montgomery and Yang [MY] showed that given any pairwise relatively prime collection of positive integers m_1, \ldots, m_n, there is a pseudofree S^1-action on homotopy 7-sphere whose non-free orbits have exactly those orders. Petrie [P] proved similar results in all higher odd dimensions. This led Fintushel and Stern to formulate the following problem:

Conjecture 1.1 (FS87). (Montgomery-Yang Problem)

Let

$$S^1 \times S^5 \to S^5$$

be a pseudofree S^1-action. Then it has at most 3 non-free orbits.

The problem has remained unsolved since its formulation.

Pseudofree S^1-actions on 5-manifolds L have been studied in terms of the 4-dimensional quotient orbifold L/S^1 (see e.g., [FS85], [FS87]). The following one-to-one correspondence was known to Montgomery, Yang, Fintushel and Stern, and recently observed by Kollár ([Kol05], [Kol08]):

Theorem 1.2. There is a one-to-one correspondence between:
(1) Pseudofree S^1-actions on 5 dimensional rational homology spheres L with $H_1(L,\mathbb{Z}) = 0$.
(2) Smooth, compact 4-manifolds M with boundary such that
 (a) $\partial M = \cup_i L_i$ is a disjoint union of lens spaces $L_i = S^3/\mathbb{Z}_{m_i}$,
 (b) the m_i are relatively prime to each other,
 (c) $H_1(M,\mathbb{Z}) = 0$ and $H_2(M,\mathbb{Z}) \cong \mathbb{Z}$.

Furthermore, L is diffeomorphic to S^5 iff $\pi_1(M) = 1$.

Using the one-to-one correspondence, Kollár formulated the algebraic version of the Montgomery-Yang problem as follows:

Conjecture 1.3. [Kol08] (Algebraic Montgomery-Yang Problem)
Let S be a rational homology projective plane with quotient singularities, i.e., a normal projective surface with quotient singularities such that $b_2(S) = 1$. Assume that $S^0 := S \setminus \text{Sing}(S)$ is simply-connected. Then S has at most 3 singular points.

In this paper, we verify the conjecture when S has at least one noncyclic singularity. More precisely, we prove the following:

Theorem 1.4. Let S be a rational homology projective plane with quotient singularities such that $\pi_1(S^0) = \{1\}$. Assume that S has at least one noncyclic singularity. Then $|\text{Sing}(S)| \leq 3$.

We note that the condition $\pi_1(S^0) = \{1\}$ cannot be replaced by the weaker condition $H_1(S^0,\mathbb{Z}) = 0$. There are infinitely many examples of rational homology projective planes with exactly 4 quotient singularities, 3 cyclic, 1 noncyclic, such that $H_1(S^0,\mathbb{Z}) = 0$ but $\pi(S^0) \neq \{1\}$ ([Br] or [Kol08], Example 31). These examples are the global quotients

$$S_{I_m} := \mathbb{CP}^2/I_m = (\mathbb{CP}^2/\mathbb{Z})/\mathfrak{A}_5,$$

where $I_m \subset GL(2,\mathbb{C})$ is the group of order 120m in Brieskorn’s list (see Table 1), an extension of the icosahedral group $\mathfrak{A}_5 \subset PGL(2,\mathbb{C})$ by the cyclic group $Z \cong \mathbb{Z}_{2m}$, and the action of I_m on \mathbb{CP}^2 is induced from the natural action on \mathbb{C}^2. We call S_{I_m} a Brieskorn quotient.

On the other hand, it follows from the orbifold Bogomolov-Miyaoka-Yau inequality that every rational homology projective plane S with quotient singularities such that $H_1(S^0,\mathbb{Z}) = 0$ has at most 4 singular points([Kol08], [HK], [Keu10]). Therefore, to prove Theorem 1.4 it is enough to classify rational homology projective planes S with 4 quotient singularities, not all cyclic, such that $H_1(S^0,\mathbb{Z}) = 0$. It turns out that such a surface is deformation equivalent to a Brieskorn quotient.

Theorem 1.5. Let S be a rational homology projective plane with 4 quotient singularities, not all cyclic, such that $H_1(S^0,\mathbb{Z}) = 0$. Then the following hold true.

(1) S has 3 cyclic singularities of type $\mathbb{C}^2/\mathbb{Z}_2$, $\mathbb{C}^2/\mathbb{Z}_3$, $\mathbb{C}^2/\mathbb{Z}_5$, and one noncyclic singularity of type \mathbb{C}^2/I_m, where $I_m \subset GL(2,\mathbb{C})$ is the 2m-ary icosahedral group of order 120m (in Brieskorn’s notation). Furthermore, the 3 cyclic singularities are of type $\frac{1}{2}(1,1)$, $\frac{1}{3}(1,\alpha)$, $\frac{1}{5}(1,\beta)$, if the 3 branches of the dual graph of the noncyclic singularity are of type $\frac{1}{2}(1,1)$, $\frac{1}{3}(1,3-\alpha)$, $\frac{1}{5}(1,5-\beta)$ (see Table 4).
(2) $-K_S$ is ample.
The minimal resolution of S can be obtained by starting with a minimal rational ruled surface and blowing up inside 3 of the fibres, i.e. the blowing up starts at three centers, one on each of the 3 fibres.

S^0 is deformation equivalent to $(\mathbb{CP}^2/I_m)^0$, where I_m is determined by the noncyclic singularity of S and its action on \mathbb{CP}^2 is induced by the natural action on \mathbb{C}^2. The deformation space has dimension 2.

$\pi_1(S^0) \cong A_5$, the alternating group of order 60.

We will prove Theorem 1.5. In the proof, we use the orbifold Bogomolov-Miyaoka-Yau inequality (Theorem 2.2 and 2.3) and a detailed computation for (-1)-curves on the minimal resolution S' of S. The latter idea was used in [Keu08].

Remark 1.6. Consider a Brieskorn quotient $S_{I_m} := \mathbb{CP}^2/I_m = (\mathbb{CP}^2/\mathbb{Z})/\mathbb{A}_5$. The cone \mathbb{CP}^2/\mathbb{Z} is the closure of the \mathbb{A}_5-universal cover of $S^0_{I_m}$. Note that the cone has no deformation. Thus the deformation of $S^0_{I_m}$ must correspond to a deformation of the I_m-action on \mathbb{CP}^2. This was pointed out to us by János Kollár. It is an interesting problem to describe explicitly such a deformation.

Throughout this paper, we work over the field \mathbb{C} of complex numbers.

2. Algebraic Surfaces with Quotient Singularities

2.1. A singularity p of a normal surface S is called a quotient singularity if locally the germ is analytically isomorphic to $(\mathbb{C}^2/G, O)$ for some nontrivial finite subgroup G of $GL_2(\mathbb{C})$ without quasi-reflections. Brieskorn classified such finite subgroups of $GL(2, \mathbb{C})$ [Bri]. Table 1 summarizes the result. Here we only explain the notation for dual graph.

$$< q, q_1 > := \text{the dual graph of the singularity of type } \frac{1}{q}(1, q_1)$$

$$< b; s_1, t_1; s_2, t_2; s_3, t_3 > := \text{the tree of the form}$$

$$< s_2, t_2 > \quad < s_1, t_1 > - b - < s_3, t_3 >$$

For more information about the table, we refer to the original paper of Brieskorn [Bri].

2.2. Let S be a normal projective surface with quotient singularities and $f : S' \rightarrow S$ be a minimal resolution of S. It is well-known that quotient singularities are log-terminal singularities. Thus one can write

$$K_{S'} \equiv \sum_{p \in \text{Sing}(S)} f^* K_S - \sum_{p \in \text{Sing}(S)} D_p$$

where, for each singular point p, $D_p = \sum (a_j E_j)$ is an effective \mathbb{Q}-divisor supported on $f^{-1}(p) = \bigcup E_j$ with $0 \leq a_j < 1$. It implies that

$$K_S^2 = K_{S'}^2 - \sum_p D_p^2 = K_{S'}^2 + \sum_p D_pK_{S'}.$$
Lemma 2.1. If $-K_S$ is ample, then $C^2 \geq -1$ for any irreducible curve $C \subset S'$ not contracted by $f : S' \to S$.

Proof. Note that $C(f^*K_S) < 0$ and $C(\sum D_p) \geq 0$. Thus $CK_{S'} < 0$, and hence $C^2 \geq -1$. □

Also we recall the orbifold Euler characteristic

$$e_{orb}(S) := e(S) - \sum_{p \in Sing(S)} \left(1 - \frac{1}{|G_p|}\right)$$

where G_p is the local fundamental group of p.

The following theorem, called the orbifold Bogomolov-Miyaoka-Yau inequality, is one of the main ingredients in the proof of our main theorem.

Theorem 2.2 ([S], [MI], [KNS], [Me]). Let S be a normal projective surface with quotient singularities such that K_S is nef. Then

$$K_S^2 \leq 3e_{orb}(S).$$

We also need the following weaker inequality, which also holds when K_S is nef.

| Type | G | $|G|$ | $G/[G,G]$ | Dual Graph Γ_G |
|------|-----|------|------------|-------------------------|
| A_{q,q_1} | C_{q,q_1} | q | \mathbb{Z}_q | $< q,q_1 >$ |
| | | | | $0 < q_1 < q, (q,q_1) = 1$ |
| D_{q,q_1} | $(\mathbb{Z}_{2m}, \mathbb{Z}_{2m}; D_q, D_q)$ | $4mq$ | $\mathbb{Z}_{2m} \times \mathbb{Z}_2$ | $< b; 2, 1; 2, 1; q, q_1 >$ |
| | | | | $m = (b - 1)q - q_1$ odd |
| | | | | $m = (b - 1)q - q_1$ even |
| T_m | $(\mathbb{Z}_{2m}, \mathbb{Z}_{2m}; T, T)$ | $24m$ | \mathbb{Z}_{3m} | $< b; 2, 1; 3, 2, 3, 2 >, m = 6(b - 2) + 1$ |
| | | | | $< b; 2, 1; 3, 1, 3, 1 >, m = 6(b - 2) + 2$ |
| O_m | $(\mathbb{Z}_{2m}, \mathbb{Z}_{2m}; O, O)$ | $48m$ | \mathbb{Z}_{2m} | $< b; 2, 1; 3, 2, 4, 3 >, m = 12(b - 2) + 1$ |
| | | | | $< b; 2, 1; 3, 1, 4, 3 >, m = 12(b - 2) + 2$ |
| | | | | $< b; 2, 1; 3, 2, 4, 1 >, m = 12(b - 2) + 4$ |
| | | | | $< b; 2, 1; 3, 1, 4, 1 >, m = 12(b - 2) + 6$ |
| | | | | $< b; 2, 1; 3, 2, 5, 3 >, m = 30(b - 2) + 1$ |
| | | | | $< b; 2, 1; 3, 2, 5, 3 >, m = 30(b - 2) + 3$ |
| | | | | $< b; 2, 1; 3, 2, 5, 3 >, m = 30(b - 2) + 5$ |
| | | | | $< b; 2, 1; 3, 2, 5, 3 >, m = 30(b - 2) + 7$ |
| | | | | $< b; 2, 1; 3, 2, 5, 3 >, m = 30(b - 2) + 9$ |
| | | | | $< b; 2, 1; 3, 2, 5, 3 >, m = 30(b - 2) + 11$ |
| | | | | $< b; 2, 1; 3, 2, 5, 3 >, m = 30(b - 2) + 13$ |
| | | | | $< b; 2, 1; 3, 2, 5, 3 >, m = 30(b - 2) + 15$ |
| | | | | $< b; 2, 1; 3, 2, 5, 3 >, m = 30(b - 2) + 17$ |
| | | | | $< b; 2, 1; 3, 2, 5, 3 >, m = 30(b - 2) + 19$ |
| | | | | $< b; 2, 1; 3, 2, 5, 3 >, m = 30(b - 2) + 21$ |
| | | | | $< b; 2, 1; 3, 2, 5, 3 >, m = 30(b - 2) + 23$ |
| | | | | $< b; 2, 1; 3, 2, 5, 3 >, m = 30(b - 2) + 25$ |
| | | | | $< b; 2, 1; 3, 2, 5, 3 >, m = 30(b - 2) + 27$ |
| | | | | $< b; 2, 1; 3, 2, 5, 3 >, m = 30(b - 2) + 29$ |
Theorem 2.3 ([KM]). Let S be a normal projective surface with quotient singularities such that $-K_S$ is nef. Then
\[0 \leq e_{arb}(S). \]

2.3. Let S be a normal projective surface with quotient singularities and $f : S' \rightarrow S$ be a minimal resolution of S. It is well-known that the torsion-free part of the second cohomology group,
\[H^2(S', \mathbb{Z})_{\text{free}} := H^2(S', \mathbb{Z})/\text{torsion} \]
has a lattice structure which is unimodular. For a quotient singular point $p \in S$, let
\[R_p \subset H^2(S', \mathbb{Z})_{\text{free}} \]
be the sublattice of $H^2(S', \mathbb{Z})_{\text{free}}$ spanned by the numerical classes of the components of $f^{-1}(p)$. It is a negative definite lattice, and its discriminant group
\[\text{disc}(R_p) := \text{Hom}(R_p, \mathbb{Z})/R_p \]
is isomorphic to the abelianization $G_p/[G_p, G_p]$ of the local fundamental group G_p. In particular, the absolute value $|\det(R_p)|$ of the determinant of the intersection matrix of R_p is equal to the order $|G_p/[G_p, G_p]|$. Let
\[R = \bigoplus_{p \in \text{Sing}(S)} R_p \subset H^2(S', \mathbb{Z})_{\text{free}} \]
be the sublattice of $H^2(S', \mathbb{Z})_{\text{free}}$ spanned by the numerical classes of the exceptional curves of $f : S' \rightarrow S$. We also consider the sublattice
\[R + \langle K_{S'} \rangle \subset H^2(S', \mathbb{Z})_{\text{free}} \]
spanned by R and the canonical class $K_{S'}$. Note that
\[\text{rank}(R) \leq \text{rank}(R + \langle K_{S'} \rangle) \leq \text{rank}(R) + 1. \]

Lemma 2.4 ([HK], Lemma 3.3). Let S be a normal projective surface with quotient singularities and $f : S' \rightarrow S$ be a minimal resolution of S. Then the following hold true.

1. $\text{rank}(R + \langle K_{S'} \rangle) = \text{rank}(R)$ if and only if K_S is numerically trivial.
2. $\det(R + \langle K_{S'} \rangle) = \det(R) \cdot K_S^2$ if K_S is not numerically trivial.
3. If in addition $b_2(S') = 1$ and K_S is not numerically trivial, then $R + \langle K_{S'} \rangle$ is a sublattice of finite index in the unimodular lattice $H^2(S', \mathbb{Z})_{\text{free}}$, in particular $|\det(R + \langle K_{S'} \rangle)|$ is a nonzero square number.

We denote the number $|\det(R + \langle K_{S'} \rangle)|$ by D, i.e., we define
\[D := |\det(R + \langle K_{S'} \rangle)|. \]

The following will be also used in our proof.

Lemma 2.5. Let S be a rational homology projective plane with quotient singularities such that $H_1(S^0, \mathbb{Z}) = 0$. Let $f : S' \rightarrow S$ be a minimal resolution. Then

1. $H^2(S', \mathbb{Z})$ is torsion free, i.e. $H^2(S', \mathbb{Z}) = H^2(S', \mathbb{Z})_{\text{free}},$
2. R is a primitive sublattice of the unimodular lattice $H^2(S', \mathbb{Z}),$
3. $\text{disc}(R)$ is a cyclic group, in particular, the orders $|G_p/[G_p, G_p]| = |\det(R_p)|$ are pairwise relatively prime,
4. K_S is not numerically trivial, i.e. K_S is either ample or anti-ample,
5. $D = |\det(R)|K_S^2$ and D is a nonzero square number.
(6) the Picard group $\text{Pic}(S')$ is generated over \mathbb{Z} by the exceptional curves and a \mathbb{Q}-divisor M of the form

$$M = \frac{1}{\sqrt{D}} f^* K_S + z,$$

where z is a generator of $\text{disc}(R)$, hence of the form $z = \sum_{p \in \text{Sing}(S)} b_p e_p$ for some integers b_p, where e_p is a generator of $\text{disc}(R_p)$.

Proof. (1), (2) and (3) are easy to see. cf. [Keu07], Proposition 2.3 and Lemma 3.4.

(4) Assume that K_S is numerically trivial. Then S' is an Enriques surface if all singularities are rational double points, and is a rational surface otherwise. If S' is an Enriques surface, then $H_1(S^0, \mathbb{Z}) \neq 0$ since $H_1(S', \mathbb{Z}) = \mathbb{Z}/2$ (cf. Proposition 2.3 in [Keu07]). Thus S is a rational surface, and

$$K_{S'} \equiv \frac{\text{num}}{\text{num}} - \sum_{p \in \text{Sing}(S)} D_p$$

with $D_p \not\equiv 0$ for some p. Note that D_p defines an element of $R^+_p := \text{Hom}(R_p, \mathbb{Z})$ and the discriminant group $\text{disc}(R_p) := R^+_p / R_p$ has order $|\text{det}(R_p)|$. Thus $|\text{det}(R_p)|D_p \in R_p$ but $D_p \not\equiv 0$ if $D_p \not\equiv 0$. Now we see that

$$\left(\prod_p |\text{det}(R_p)| \right) K_{S'} \in R \subset H^2(S', \mathbb{Z})$$

but $K_{S'} \not\equiv R$. Hence the primitive closure \bar{R} of R in $H^2(S', \mathbb{Z})$ is not equal to R. Now by Lemma 2.5 in [Keu07], $H_1(S^0, \mathbb{Z}) \neq 0$.

(5) follows from (4) and Lemma 2.4.

(6) Note first that $\text{Pic}(S') = H^2(S', \mathbb{Z})$ and the sublattice $R \subset H^2(S', \mathbb{Z})$ generated by the exceptional curves is a primitive sublattice of corank 1. Let $R^\perp \subset H^2(S', \mathbb{Z})$ be the orthogonal complement of R. Note that R^\perp is positive definite and of rank 1. Since $H^2(S', \mathbb{Z})$ is unimodular,

$$\text{det}(R^\perp) = |\text{det}(R)| = \prod_{p \in \text{Sing}(S)} |\text{det}(R_p)|.$$

Note that $f^* K_S \in R^\perp$. Thus R^\perp is generated by

$$v = \frac{|\text{det}(R)|}{\sqrt{D}} f^* K_S,$$

and $\text{disc}(R^\perp)$ is generated by $\frac{1}{\sqrt{D}} f^* K_S$. Also note that

$$\text{disc}(R^\perp \oplus R) \cong (\mathbb{Z}/|\text{det}(R)|) \oplus (\mathbb{Z}/|\text{det}(R)|).$$

Thus $\text{Pic}(S')/(R^\perp \oplus R)$ is an isotropic subgroup of $\text{disc}(R^\perp \oplus R)$ of order $|\text{det}(R)|$, hence is generated by an element $M \in \text{disc}(R^\perp \oplus R)$ of order $|\text{det}(R)|$. Moreover M is the sum of a generator of $\text{disc}(R^\perp)$ and a generator of $\text{disc}(R)$, since $\text{Pic}(S')$ is unimodular. By replacing M by kM for a suitable choice of an integer k, we get M of the desired form

$$M = \frac{1}{\sqrt{D}} f^* K_S + \sum_{p \in \text{Sing}(S)} a_p e_p.$$
for some integers \(a_p \), \(0 \leq a_p < |\det(R_p)| \). This implies that \(\text{Pic}(S') \) is generated over \(\mathbb{Z} \) by \(R, v \) and \(M \). Finally, note

\[|\det(R)|M = v \pmod{R}, \]

a generator of \(R^\perp \). Thus \(\text{Pic}(S') \) is generated over \(\mathbb{Z} \) by \(R \) and \(M \). \qed

3. Proof of Theorem 1.5

Let \(S \) be a rational homology projective plane with 4 or more quotient singularities with \(H_1(S^0, \mathbb{Z}) = 0 \). By Lemma 2.3, the orders of the abelianized local fundamental groups are pairwise relatively prime. Thus by Theorem 2.3, one can see that \(S \) has 4 singular points and the 4-tuple of orders of the local fundamental groups must be one of the following:

1. \((2,3,5,q) \), \(q \geq 7 \),
2. \((2,3,7,q) \), \(11 \leq q \leq 41 \),
3. \((2,11,13) \).

Table 1 shows that all noncyclic singularities of type different from \(I_m \) have abelianized local fundamental groups of order divisible by 2 or 3.

Assume that one of the singularities is noncyclic. By Lemma 2.5(3), it must be of type \(I_m \) and the other 3 singularities are cyclic of order 2, 3 and 5, respectively. Here we recall that \(I_m \subset \text{GL}(2, \mathbb{C}) \) is the \(2m \)-ary icosahedral group of order 120m.

Table 1 shows that there are 8 infinite cases of type \(I_m \).

There are two types of order 3, \(< 3, 2 > \) and \(< 3, 1 > \); three types of order 5, \(< 5, 4 > \), \(< 5, 3 > \), \(< 5, 2 > \) and \(< 5, 1 > \). Thus there are exactly 48 infinite cases for possible combinations of types of singularities. That is, there are exactly 48 infinite cases for \(R \), the sublattice of \(\text{Pic}(S') = H^2(S', \mathbb{Z}) \) generated by all exceptional curves, where \(f : S' \to S \) is a minimal resolution. In each of the 48 cases we compute \(D = |\det(R)|K_S^2 \) and check if \(D \) is a square number (see Lemma 2.5(5)), using elementary number theoretic arguments. There remain 8 infinite cases and 2 sporadic cases, as given in Table 2 and Table 3. In both tables, the entries of the column \(b \) are the possible values of \(b \) that make \(D \) a square number.

We will explain how to compute \(D \). First note that

\[|\det(R)| = 2 \cdot 3 \cdot 5 \cdot m = 30m. \]

To compute \(K_S^2 \), we use the equality from (2.2)

\[K_S^2 = K_S^2 + \sum_p D_p K_{S'}^1. \]

Note that \(S' \) has \(H^1(S', \mathcal{O}_{S'}) = H^2(S', \mathcal{O}_{S'}) = 0 \). Thus by Noether formula,

\[K_{S'}^2 = 12 - \varepsilon(S') = 10 - b_2(S') = 9 - \mu \]

where \(\mu \) is the number of the exceptional curves of \(f \).

For each singular point \(p \), the coefficients of the \(\mathbb{Q} \)-divisor \(D_p \) can be obtained by solving the equations given by the adjunction formula

\[D_p E = -K_{S'} + 2 + E^2 \]

for each exceptional curve \(E \subset f^{-1}(p) \). Once we know the coefficients, we can easily compute the intersection number \(D_p K_{S'} \).

We first rule out the two sporadic cases.
Lemma 3.1. The case $< 2, 1 > + < 3, 2 > + < 5, 4 > + < b; 2, 1; 3, 2; 5, 4 >$ does not occur.

Proof. In this case, $m = 30(b - 2) + 7 = 187$, so

$$|\det(R)| = 30 \cdot 187.$$

The number of exceptional curves $\mu = 13$, so $K_{S'}^2 = -4$, where $f : S' \to S$ is a minimal resolution. Let p_1, p_2, p_3, p_4 be the four singular points. Let E_1, \ldots, E_6 be
Table 3.

| Type of R | $D = |\text{det}(R)|K_S^2$ | b |
|-------------|-----------------|-----|
| $< 2, 1 > + < 3, 1 > + < 5, 4 > + < b; 2, 1; 3, 2; 5, 4 >$ | $20(45b^2 - 390b + 593)$ | none |
| $< 2, 1 > + < 3, 1 > + < 5, 4 > + < b; 2, 1; 3, 2; 5, 3 >$ | $20(45b^2 - 264b + 326)$ | none |
| $< 2, 1 > + < 3, 1 > + < 5, 4 > + < b; 2, 1; 3, 1; 5, 4 >$ | $100(9b^2 - 606 + 74)$ | none |
| $< 2, 1 > + < 3, 1 > + < 5, 4 > + < b; 2, 1; 3, 2; 5, 2 >$ | $20(45b^2 - 246b + 275)$ | none |
| $< 2, 1 > + < 3, 1 > + < 5, 4 > + < b; 2, 1; 3, 1; 5, 3 >$ | $20(45b^2 - 174b + 157)$ | none |
| $< 2, 1 > + < 3, 1 > + < 5, 4 > + < b; 2, 1; 3, 2; 5, 1 >$ | $100(3b - 4)^2$ | $b \geq 2$ |
| $< 2, 1 > + < 3, 1 > + < 5, 4 > + < b; 2, 1; 3, 1; 5, 2 >$ | $20(45b^2 - 156b + 124)$ | none |
| $< 2, 1 > + < 3, 1 > + < 5, 4 > + < b; 2, 1; 3, 1; 5, 1 >$ | $20(45b^2 - 306 - 17)$ | none |
| $< 2, 1 > + < 3, 1 > + < 5, 3 > + < b; 2, 1; 3, 2; 5, 4 >$ | $4(225b^2 - 1410b + 1903)$ | none |
| $< 2, 1 > + < 3, 1 > + < 5, 3 > + < b; 2, 1; 3, 2; 5, 3 >$ | $4(15b^2 - 26)^2$ | $b \geq 2$ |
| $< 2, 1 > + < 3, 1 > + < 5, 3 > + < b; 2, 1; 3, 1; 5, 4 >$ | $4(225b^2 - 960b + 968)$ | none |
| $< 2, 1 > + < 3, 1 > + < 5, 3 > + < b; 2, 1; 3, 2; 5, 2 >$ | $4(15b^2 - 23)^2$ | $b \geq 2$ |
| $< 2, 1 > + < 3, 1 > + < 5, 3 > + < b; 2, 1; 3, 1; 5, 3 >$ | $4(225b^2 - 330b + 11)$ | none |
| $< 2, 1 > + < 3, 1 > + < 5, 3 > + < b; 2, 1; 3, 2; 5, 1 >$ | $4(225b^2 - 606 - 338)$ | none |
| $< 2, 1 > + < 3, 1 > + < 5, 3 > + < b; 2, 1; 3, 1; 5, 2 >$ | $4(225b^2 - 240b - 46)$ | none |
| $< 2, 1 > + < 3, 1 > + < 5, 3 > + < b; 2, 1; 3, 1; 5, 1 >$ | $4(225b^2 + 390b - 643)$ | none |
| $< 2, 1 > + < 3, 1 > + < 5, 1 > + < b; 2, 1; 3, 2; 5, 4 >$ | $4(15b - 29)^2$ | $b \geq 2$ |
| $< 2, 1 > + < 3, 1 > + < 5, 1 > + < b; 2, 1; 3, 2; 5, 3 >$ | $4(225b^2 - 240b - 278)$ | none |
| $< 2, 1 > + < 3, 1 > + < 5, 1 > + < b; 2, 1; 3, 1; 5, 4 >$ | $4(225b^2 - 420b + 86)$ | none |
| $< 2, 1 > + < 3, 1 > + < 5, 1 > + < b; 2, 1; 3, 2; 5, 2 >$ | $4(225b^2 - 150b - 317)$ | none |
| $< 2, 1 > + < 3, 1 > + < 5, 1 > + < b; 2, 1; 3, 1; 5, 3 >$ | $4(225b^2 + 210b - 763)$ | none |
| $< 2, 1 > + < 3, 1 > + < 5, 1 > + < b; 2, 1; 3, 2; 5, 1 >$ | $4(225b^2 + 480b - 1076)$ | $b = 2$ |
| $< 2, 1 > + < 3, 1 > + < 5, 1 > + < b; 2, 1; 3, 1; 5, 2 >$ | $4(225b^2 + 300b - 712)$ | none |
| $< 2, 1 > + < 3, 1 > + < 5, 1 > + < b; 2, 1; 3, 1; 5, 1 >$ | $4(225b^2 + 930b - 1201)$ | none |

The components of $f^{-1}(p_4)$ such that

\[
\begin{align*}
E_2 & - E_3 - E_6 - E_5 - E_4 \\
\frac{1}{E_1} & - E_2
\end{align*}
\]

Solving the equations given by the adjunction formula, we get

\[
K_{S'} = f^*K_S - \frac{93E_1 + 186E_6 + 62E_2 + 124E_3 + 112E_4 + 149E_5}{187}.
\]
It is easy to compute that
\[K_S^2 = K_{S'}^2 + \frac{186 E_6 K_{S'} + 112 E_4 K_{S'}}{187} = -4 + \frac{186 \cdot 6 + 112}{187} = \frac{480}{187}. \]
Thus
\[D = |\text{det}(R)|K_S^2 = 120^2. \]
Note that \(K_S > 3e_{\text{orb}}(S) \), so \(-K_S\) is ample by the orbifold Bogomolov-Miyaoka-Yau inequality. Thus \(S' \) is a rational surface, not minimal. Also note that the divisor \(M \) from Lemma 2.5(6) takes the form
\[M = \frac{1}{120} f^* K_S + \sum_{p \in \text{Sing}(S)} a_p e_p. \]
Let \(C \) be a \((-1)\)-curve on \(S' \). By Lemma 2.5(6), \(C \) can be written as
\[C = kM + r \]
for some integer \(k \) and some \(r \in R \), hence as
\[C = \frac{k}{120} f^* K_S + C(1) + C(2) + C(3) + C(4) \]
where \(C(i) \) is a \(\mathbb{Q} \)-divisor supported on \(f^{-1}(p_i) \). Note that
\[C^2 = (\frac{k}{120} f^* K_S)^2 + C(1)^2 + C(2)^2 + C(3)^2 + C(4)^2. \]
Since \((f^* K_S)C(i) = 0\) for all \(i \), we have
\[(f^* K_S)C = (f^* K_S)(\frac{k}{120} f^* K_S) = \frac{k}{120} K_S^2 = \frac{4k}{187}. \]
Since \(-K_S\) is ample and \(C \notin R \), we see that \((f^* K_S)C < 0\), hence \(k < 0 \).
Note that \(K_{S'}C = -1 \). From the equality
\[K_{S'}C = (f^* K_S)C - \frac{(93 E_1 + 186 E_6 + 62 E_2 + 124 E_3 + 112 E_4 + 149 E_5)C}{187}, \]
we get
\[(93 E_1 + 186 E_6 + 62 E_2 + 124 E_3 + 112 E_4 + 149 E_5)C = 187 + 4k. \]
This is possible only if
\[E_6 C = E_5 C = E_4 C = E_3 C = 0, \quad E_2 C = E_1 C = 1, \quad k = -8. \]
Since \(E_j C(4) = E_j C \) for \(j = 1, \ldots, 6 \), we obtain the coefficients of \(C(4) \) by solving the equations given by the above intersection numbers.
\[C(4) = -\frac{106 E_1 + 133 E_2 + 79 E_3 + 5 E_4 + 15 E_5 + 25 E_6}{187} = E_1^* + E_2^*, \]
where \(E_j^* \in \text{Hom}(R_{p_i}, \mathbb{Z}) \) is the dual vector of \(E_j \). Thus
\[C(4)^2 = (E_1^* + E_2^*)C(4) = -\frac{106 + 133}{187}. \]
Now we have
\[\sum_{j \leq 3} C(j)^2 = C^2 - C(4)^2 - (-8f^* K_S)^2 = -1 + \frac{239}{187} - \frac{32}{15 \cdot 187} \geq 0 \]
which contradicts the negative definiteness of exceptional curves. \(\square \)
Lemma 3.2. The case \(< 2, 1 > + < 3, 1 > + < 5, 1 > + < 2, 2; 1, 3, 2; 5, 1 > \) does not occur.

Proof. The proof is similar to the previous case. In this case, \(m = 19 \) and \(\mu = 8 \), so \(|\det(R)| = 30 \cdot 19 \) and \(K_S^2 = 1 \). Let \(B_2, B_3 \) be the components of \(f^{-1}(p_2) \), \(f^{-1}(p_3) \), \(E_1, \ldots, E_5 \) be the components of \(f^{-1}(p_4) \) such that

\[
\begin{align*}
-\frac{2}{E_2} & - \frac{2}{E_3} - \frac{2}{E_5} - \frac{5}{E_4} \\
\frac{1}{E_1} & \quad \text{for some integer } K
\end{align*}
\]

Then

\[
K_{S'} = f^*K_S - \frac{B_2}{3} - \frac{3B_3}{5} - \frac{9E_1 + 6E_2 + 12E_3 + 15E_4 + 18E_5}{19}.
\]

\[
K_S^2 = \frac{28 \cdot 56}{15 \cdot 19}, \quad D = |\det(R)|K_S^2 = 56^2.
\]

Here again by the orbifold Bogomolov-Miyaoka-Yau inequality, \(-K_S \) is ample and \(S' \) is a rational surface, not minimal. Let \(C \) be a \((-1)\)-curve on \(S' \). Then

\[
C = \frac{k}{56}f^*K_S + C(1) + C(2) + C(3) + C(4)
\]

for some integer \(k \) and some \(\mathbb{Q} \)-divisor \(C(i) \) supported on \(f^{-1}(p_i) \).

Since \((f^*K_S)C = \frac{28k}{285} < 0\), we see that \(k < 0 \) and we get

\[
95B_2C + 171B_3C + 15(9E_1 + 6E_2 + 12E_3 + 15E_4 + 18E_5)C = 285 + 28k.
\]

This is impossible because \(k < 0 \) and \(E_jC \geq 0, B_iC \geq 0 \) for every \(i, j \).

\[
\square
\]

Lemma 3.3. For any of the 8 infinite cases, \(-K_S\) is ample.

Proof. For the 8 infinite cases, we compute \(K_S^2 \) as follows.

Type of \(R \)	\(K_S^2 \)
\(< 2, 1 > + < 3, 2 > + < 5, 4 > + < b; 2, 1; 3, 1; 5, 1 >\)	\(\frac{30(b-1)^2}{309-31} \geq \frac{30}{29} \)
\(< 2, 1 > + < 3, 2 > + < 5, 2 > + < b; 2, 1; 3, 1; 5, 3 >\)	\(\frac{6(5b-7)^2}{5(309-43)} \geq \frac{16}{5} \)
\(< 2, 1 > + < 3, 2 > + < 5, 3 > + < b; 2, 1; 3, 1; 5, 2 >\)	\(\frac{6(5b-8)^2}{5(309-49)} \geq \frac{57}{55} \)
\(< 2, 1 > + < 3, 2 > + < 5, 1 > + < b; 2, 1; 3, 1; 5, 4 >\)	\(\frac{10(3b-4)^2}{5(309-41)} \geq \frac{57}{57} \)
\(< 2, 1 > + < 3, 1 > + < 5, 4 > + < b; 2, 1; 3, 2, 5, 1 >\)	\(\frac{2(15b-29)^2}{15(309-53)} \geq \frac{132}{106} \)
\(< 2, 1 > + < 3, 1 > + < 5, 2 > + < b; 2, 1; 3, 2, 5, 3 >\)	\(\frac{2(15b-23)^2}{15(309-47)} \geq \frac{98}{195} \)
\(< 2, 1 > + < 3, 1 > + < 5, 3 > + < b; 2, 1; 3, 2, 5, 2 >\)	\(\frac{2(15b-29)^2}{15(309-59)} \geq \frac{2}{15} \)

In each case, \(e_{orb}(S) = -1 + \frac{1}{3} + \frac{1}{5} + \frac{1}{120m} \leq \frac{5}{120} \). From the table we see that \(K_S^2 > 3e_{orb}(S) \), so \(-K_S\) is ample by the orbifold Bogomolov-Miyaoka-Yau inequality.

\[
\square
\]
This completes the proof of (1) and (2) of Theorem \ref{thm:main}. To prove the remaining part, we need to analyze \((-1)\)-curves on the minimal resolution \(S'\). Note that by Lemma\ref{lem:1.1} \(S'\) contains no \((-n)\)-curve with \(n \geq 2\) other than the exceptional curves of \(f : S' \to S\).

The following proposition will be proved case by case in the next section.

Proposition 3.4. If \(S\) has 4 singularities \(p_1, p_2, p_3, p_4\) of type \(< 2, 1 >, < 3, \alpha >, < 5, \beta >, < b; 2, 1; 3, 3 - \alpha; 5, 5 - \beta >, b \geq 2\), respectively, as in Table 4, then there are three mutually disjoint \((-1)\)-curves \(C_1, C_2, C_3\) on \(S'\) such that

1. each \(C_i\) intersects exactly 2 components of \(f^{-1}(p_1) \cup f^{-1}(p_2) \cup f^{-1}(p_3) \cup f^{-1}(p_4)\) with multiplicity 1 each,
2. \(C_1\) intersects the component of the branch \(< 2, 1 >\) of \(f^{-1}(p_4)\) and the component of \(f^{-1}(p_1)\), \(C_2\) intersects the terminal component of the branch \(< 3, 3 - \alpha >\) of \(f^{-1}(p_4)\) and one end component of \(f^{-1}(p_2)\), and \(C_3\) intersects the terminal component of the branch \(< 5, 5 - \beta >\) of \(f^{-1}(p_4)\) and one end component of \(f^{-1}(p_3)\) which is a \((-1)\)-curve if \(\beta = 2\) or 4, a \((-3)\)-curve if \(\beta = 3\), and a \((-5)\)-curve if \(\beta = 1\).

Proposition 3.5.

1. The surface \(S'\) can be blown down to the Hirzebruch surface \(F_b\). Conversely, \(S'\) can be obtained by starting with \(F_b\) and blowing up inside 3 of the fibres, i.e. the blowing up starts at three centers, one on each of the 3 fibres.

2. If two rational homology projective planes \(S_1\) and \(S_2\) have the same type of singularities \(< 2, 1 > + < 3, \alpha > + < 5, \beta > + < b; 2, 1; 3, 3 - \alpha; 5, 5 - \beta >, b \geq 2\), then \(S_1^0\) and \(S_2^0\) are deformation equivalent.

Proof. (1) By Proposition \ref{prop:3.4} there are three mutually disjoint \((-1)\)-curves \(C_1, C_2, C_3\) on \(S'\) satisfying (1) and (2) of Proposition \ref{prop:3.3}. By starting with them, we can blow down \(S'\) to \(F_b\). Furthermore, the blow up process from \(F_b\) to \(S'\) is carried out inside 3 of the fibres of \(F_b\).

(2) The blow up process from \(F_b\) to \(S'\) depends on the choice of three fibres, each with a point marked. The three marked points are the centers of the blowing up. The choice of three fibres is unique up to automorphisms of \(F_b\), while the choice of three points, one on each of the fixed three fibres, is not unique up to automorphisms of \(F_b\), but depends on a 2-dimensional moduli. \(\square\)

This completes the proof of (3) of Theorem \ref{thm:main}.

The following examples mentioned in Introduction were discussed in \cite{Kol08}, Example 31.

Example 3.6. Consider the \(2m\)-ary icosahedral group

\[I_m \subset GL(2, \mathbb{C}) \]

of order 120m in Brieskorn’s list (Table 1). Let \(Z \subset I_m\) be its center, then \(Z \cong \mathbb{Z}_{2m}\) and \(I_m/Z \cong \mathfrak{A}_5 \subset PGL(2, \mathbb{C})\), the icosahedral group. Extend the natural \(I_m\)-action on \(\mathbb{C}^2\) to \(\mathbb{C}P^2\). The center acts trivially on the line at infinity and \(\mathbb{C}P^2/Z\) is a cone over the rational normal curve of degree 2m = |\(Z\)|. Then

\[S_{I_m} := \mathbb{C}P^2/I_m = (\mathbb{C}P^2/Z)/\mathfrak{A}_5 \]

has 4 quotient singularities, one of type \(\mathbb{C}^2/I_m\) at the origin, three of order 2, 3, 5 at infinity. The fundamental group of \(S_{I_m}^0\) is \(\mathfrak{A}_5\). By Theorem \ref{thm:main} (1), the types
of the 3 cyclic singularities are determined by the types of the 3 branches of the non-cyclic singularity. By Proposition 3.4 and 3.5, its minimal resolution S'_{I_m} can be blown down to the Hirzebruch surface F_b. Conversely, S'_{I_m} can be obtained by starting with F_b and blowing up inside 3 of the fibres. Here the 3 centers of the blowing up lie on a section of F_b.

In Proposition 3.5, the 3 centers of the blowing up lie on a section of F_b if and only if the surface S' is isomorphic to S'_{I_m} for some I_m. This completes the proof of (4) and (5) of Theorem 1.5.

4. Proof of Proposition 8.21

As before, let p_1, p_2, p_3, p_4 be the singular points of S of order 2, 3, 5, 120, respectively, and let $f: S' \to S$ be a minimal resolution. Let R_{p_i} be the sublattice of $H^2(S', \mathbb{Z})$ generated by all exceptional curves contained in $f^{-1}(p_i)$.

Let C be an irreducible curve on S'. By Lemma 2.5(6), C can be written as $C = kM + r$ for some integer k and some $r \in R$, hence as

\[(4.1) \quad C = \frac{k}{\sqrt{D}}f^*K_S + C(1) + C(2) + C(3) + C(4)\]

where $C(i)$ is a \mathbb{Q}-divisor supported on $f^{-1}(p_i)$ that is of the form

\[C(i) = a_ie_i + r_i\]

for some integer a_i and some $r_i \in R_{p_i}$, where e_i is a generator of the discriminant group $\text{disc}(R_{p_i})$.

Lemma 4.1. Let C be an irreducible curve on S' of the form (4.1).

1. $C(i)^2 = 0$ if and only if $C(i) = 0$ if and only if C does not meet $f^{-1}(p_i)$.
2. $C(1)^2 = -\frac{1}{2}x$ for some integer $x \geq 0$.
 - $C(2)^2 = -\frac{1}{2}y$ if and only if C meets with multiplicity 1 the component of $f^{-1}(p_2)$.
3. Assume that p_2 is of type $< 3, 2 >$. Then
 - $C(2)^2 = -\frac{4}{3}y$ if and only if C meets with multiplicity 1 exactly one of the two components of $f^{-1}(p_2)$.
4. Assume that p_3 is of type $< 5, 4 >$. Then
 - $C(3)^2 \leq -\frac{4}{3}$ if $C(3) \neq 0$.
 - $C(3)^2 = -\frac{4}{9}$ if and only if C meets with multiplicity 1 exactly one of the two end components of $f^{-1}(p_3)$.

Proof. (1) The first equivalence follows from the negative definiteness of exceptional curves. Note that $EC = EC(i)$ for any curve $E \subset f^{-1}(p_i)$.

The curve C does not meet $f^{-1}(p_i) \iff EC = 0$ for any curve $E \subset f^{-1}(p_i) \iff EC(i) = 0$ for any curve $E \subset f^{-1}(p_i) \iff C(i) = 0$.

(2) is trivial.

(3) Let E_1, E_2 be the exceptional curves generating R_{p_2}. Take

\[e := \frac{E_1 + 2E_2}{3} = E_2^*\]

as a generator of $\text{disc}(R_{p_2})$. Then $C(2)$ is of the form $C(2) = ae + b_1E_1 + b_2E_2$ for some integers a, b_1, b_2, hence of the form $C(2) = se + tE_2$ for some integers s, t. We
have
\[C(2)^2 = -\frac{2}{3}(s^2 - 3st + 3t^2). \]
It is easy to see that \(y := s^2 - 3st + 3t^2 = (s - 3t/2)^2 + 3t^2/4 \geq 0 \) for all \(s, t \).

\(C \) meets exactly one of the two components of \(f^{-1}(p_2) \) with multiplicity 1 \(\iff \)
\((E_1C(2), E_2C(2)) = (1, 0) \) or \((0, 1) \iff C(2) = E_1^* = 2e + E_2 \) or \(C(2) = E_2^* = e \iff \(s, t \) = (2, 1) \) or \((1, 0) \Rightarrow C(2)^2 = -2/3. \) Conversely, if \(C(2)^2 = -2/3, \) then there are six solutions \((s, t) = (\pm 1, 0), (\pm 2, 1), (\pm 1, 1) \) for \(y = (s - 3t/2)^2 + 3t^2/4 = 1. \) Since \(E_iC(2) = E_iC \geq 0 \) for \(i = 1, 2, \) there remain only two solutions \((s, t) = (1, 0), (2, 1). \)

(4) Let \(E_1, E_2, E_3, E_4 \) be the exceptional curves generating \(R_{p_3}. \) Take
\[e := -\frac{1}{5}E_1 + 2E_2 + 3E_3 + 4E_4 = E_4^* \]
as a generator of \(\text{disc}(R_{p_3}). \) Then \(C(3) \) is of the form \(C(3) = ae + b_1E_1 + b_2E_2 + b_3E_3 + b_4E_4 \) for some integers \(a, b_1, b_2, b_3, b_4, \) hence of the form \(C(3) = se + uE_2 + vE_3 + wE_4 \) for some integers \(s, u, v, w. \) We have
\[
C(3)^2 = -\frac{1}{4} s^2 - 2u^2 - 2v^2 - 2w^2 + 2sw + 2uv + 2vw = -\frac{1}{4} (s - \frac{u}{2})^2 + \frac{5}{2} (u - \frac{v}{2})^2 + \frac{15}{8} (v - \frac{w}{3})^2 + \frac{5}{48} w^2.
\]

To prove the first assertion, assume that
\[(s - \frac{5w}{4})^2 + \frac{5}{2} (u - \frac{v}{2})^2 + \frac{15}{8} (v - \frac{w}{3})^2 + \frac{5}{48} w^2 < 1. \]
We need to show that \((s, u, v, w) = (0, 0, 0, 0) \) to the inequality. If \(w = 0, \) then there is only one solution \((s, u, v, w) = (0, 0, 0, 0) \) to the inequality. If \(w = \pm 1, \pm 2, \pm 3 \), no solution to the inequality. This proves the first assertion.

\(C \) meets exactly one of the two end components of \(f^{-1}(p_3) \) with multiplicity 1 \(\iff \)
\((E_1C, E_2C, E_3C, E_4C) = (1, 0, 0, 0) \) or \((0, 0, 0, 1) \iff C(3) = E_1^* = 4e + E_2 + 2E_3 + 3E_4 \) or \(C(3) = E_4^* = e \iff (s, u, v, w) = (4, 1, 2, 3) \) or \((1, 0, 0, 0) \Rightarrow C(3)^2 = -4/5. \) Conversely, if \(C(3)^2 = -\frac{4}{5}, \) then
\[(s - \frac{5w}{4})^2 + \frac{5}{2} (u - \frac{v}{2})^2 + \frac{15}{8} (v - \frac{w}{3})^2 + \frac{5}{48} w^2 = 1. \]

There are ten solutions \((s, u, v, w) = (\pm 1, 0, 0, 0), (\pm 4, 1, 2, 3), (\pm 1, 1, 1, 1), (\pm 1, 0, 1, 1), (\pm 1, 0, 0, 0). \)
Since \(E_iC(3) = E_iC \geq 0 \) for \(i = 1, 2, 3, 4, \) there remain only two solutions \((s, u, v, w) = (4, 1, 2, 3), (1, 0, 0, 0). \)

Case 1: \(< 2, 1 > + < 3, 2 > + < 5, 4 > + < b; 2, 1; 3, 1; 5, 1 >, b \geq 2. \) In this case, the number of exceptional curves \(\mu = 11, \) so \(K_{S'}^2 = -2. \) Let \(E_1, \ldots, E_4 \) be the components of \(f^{-1}(p_4) \) such that
\[-3 E_2 - E_4 - E_3 \]
\[\begin{vmatrix}
\frac{1}{2} \\
E_1
\end{vmatrix}
\]

We compute
\[
(4.2) \quad K_{S'} = f^*K_S - \frac{(15b - 16)E_1 + (20b - 21)E_2 + (24b - 25)E_3 + (30b - 32)E_4}{30b - 31}.
\]
Claim 4.1.1. Let C be a (-1)-curve of the form (4.1). Suppose that C meets $f^{-1}(p_4)$. Then it satisfies one of the following three cases:

Case	CE_4	CE_3	CE_2	CE_1	k
(a)	0	0	0	1	-15
(b)	0	0	1	0	-10
(c)	0	1	0	0	-6

Proof. We use the same argument as in the proof of Lemma 3.1. First note that

\[
(f^* K_S) C = \frac{1}{f^*} (f^* K_S)^2 = \frac{1}{30(b-1)}.
\]

Since $-K_S$ is ample and $C \not\subset R$, $(f^* K_S) C < 0$, so $k < 0$. Intersecting C with (4.2) we get

\[
C \{ (15b-16) E_1 + (20b-21) E_2 + (24b-25) E_3 + (30b-32) E_4 \} = (b-1) k + 30b - 31.
\]

This is possible only if C satisfies one of the three cases (a), (b), (c), or the case (d) $CE_4 = 1, CE_3 = 0, CE_2 = 0, CE_1 = 0, b = 2, k = -1$.

In the last case, we compute $C(4) = E_4^* = -\frac{1}{29} (15E_1 + 10E_2 + 6E_3 + 30E_4)$, so $C(4)^2 = C_1 C(4) = -\frac{30}{29}$ and hence we get

\[
\sum_{j \leq 3} C(j)^2 = C^2 - C(4)^2 - (\frac{-1}{30} f^* K_S)^2 = -1 + \frac{30}{29} - \frac{1}{30 \cdot 29} > 0,
\]

contradicts the negative definiteness of exceptional curves. □

Claim 4.1.2. Let C be a (-1)-curve of the form (4.1). Suppose that C meets $f^{-1}(p_4)$. Then C meets only one component of $f^{-1}(p_1) \cup f^{-1}(p_2) \cup f^{-1}(p_3)$, the intersection multiplicity is 1, and the component is

1. the component of $f^{-1}(p_1)$, if C satisfies (a),
2. one of the two components of $f^{-1}(p_2)$, if C satisfies (b),
3. one of the two end components of $f^{-1}(p_3)$, if C satisfies (c).

Proof. Assume that C satisfies (a). Then, $C(4) = E_4^* = E_1 C(4) = -\frac{15b-8}{30b-31}$, $C(1)^2 + C(2)^2 + C(3)^2 = C^2 - C(4)^2 - (\frac{15}{30(b-1)} f^* K_S)^2 = -\frac{1}{2}$.

By Lemma 4.1, $C(2) = C(3) = 0, C(4)^2 = -\frac{1}{2}$, and C does not meet $f^{-1}(p_2) \cup f^{-1}(p_3)$, but meets the component of $f^{-1}(p_1)$ with multiplicity 1.

Assume that C satisfies (b). Then, $C(4) = E_3^*, C(4)^2 = E_2 C(4) = -\frac{15b - 7}{30b - 31}$, $C(1)^2 + C(2)^2 + C(3)^2 = C^2 - C(4)^2 - (\frac{15}{30(b-1)} f^* K_S)^2 = -\frac{2}{5}$.

By Lemma 4.1, $C(1) = C(3) = 0, C(2)^2 = -\frac{2}{5}$, and C does not meet $f^{-1}(p_1) \cup f^{-1}(p_3)$, but meets one of the two components of $f^{-1}(p_2)$ with multiplicity 1.

Assume that C satisfies (c). Then, $C(4) = E_3^*, C(4)^2 = E_2 C(4) = -\frac{6b - 5}{30b - 31}$, $C(1)^2 + C(2)^2 + C(3)^2 = C^2 - C(4)^2 - (\frac{6b - 5}{30(b-1)} f^* K_S)^2 = -\frac{2}{5}$.

By Lemma 4.1, $C(1) = C(2) = 0, C(3)^2 = -\frac{2}{5}$, and C does not meet $f^{-1}(p_1) \cup f^{-1}(p_2)$, but meets one of the end components of $f^{-1}(p_3)$ with multiplicity 1. □

\[
K_S^2 = \frac{30(b-1)^2}{30b-31}, \quad |\text{det}(R)| = 30 \cdot (30b-31), \quad D = |\text{det}(R)| K_S^2 = 30^2(b-1)^2.
\]
Claim 4.1.3. There are three, mutually disjoint, \((-1)\)-curves \(C_1, C_2, C_3\) satisfying (a), (b), (c) from Claim 4.1.1, respectively.

Proof. By Lemma 3.3 \(S'\) is a rational surface. Since \(K_{S'}^2 < 8\), \(S'\) contains a \((-1)\)-curve and can be blown down to a minimal rational surface \(F_n\) or \(\mathbb{CP}^2\).

Assume that there is no \((-1)\)-curve \(C \subset S'\) meeting \(f^{-1}(p_4)\). Then, since \(S'\) cannot contain a \((-l)\)-curve with \(l > 2\) other than the exceptional curves of \(f\) (Lemma 2.1), the configuration of \(f^{-1}(p_4)\) remains the same under the blow down process to \(F_n\) or \(\mathbb{CP}^2\). This is impossible, as the configuration would define a negative definite sublattice of rank 4 inside the Picard lattice of \(F_n\) or \(\mathbb{CP}^2\).

Assume that there is only one \((-1)\)-curve meeting \(f^{-1}(p_4)\). Then, the 3 components of \(f^{-1}(p_4)\) untouched by the \((-1)\)-curve remain the same under the blow down process and define a negative definite sublattice of rank 3 inside the Picard lattice of \(F_n\) or \(\mathbb{CP}^2\). This is impossible.

If there are only two \((-1)\)-curve meeting \(f^{-1}(p_4)\). Then the 2 components of \(f^{-1}(p_4)\) untouched by the two \((-1)\)-curves would remain the same under the blow down process and define a negative definite sublattice of rank 2 inside the Picard lattice of \(F_n\) or \(\mathbb{CP}^2\). Again, this is impossible.

For the mutual disjointness, we note that
\[
\begin{align*}
C_1 &= \frac{1}{30(b-1)} f^*K_S + C_1(1) + E_1, \\
C_2 &= \frac{10}{30(b-1)} f^*K_S + C_2(2) + E_2, \\
C_3 &= \frac{6}{30(b-1)} f^*K_S + C_3(3) + E_3.
\end{align*}
\]
A direct calculation shows that \(C_iC_j = 0\) for \(i \neq j\). \(\square\)

4.2. Case 2: \(< 2, 1 > + < 3, 2 > + < 5, 2 > + < b; 2, 1; 3, 1; 5, 3 >, b \geq 2\). In this case, \(\mu = 10\), so \(K_{S'}^2 = -1\). Let \(B_1, B_2\) be the components of \(f^{-1}(p_3)\), and \(E_1, \ldots, E_5\) be the components of \(f^{-1}(p_4)\) such that
\[
\begin{pmatrix}
-2 & -3 \\
B_1 - B_2 & E_2 - E_5 - E_4 - E_3 \\
1 & E_1 \end{pmatrix}
\]
Then
\[
K_{S'} = f^*K_S - \frac{1}{5}(B_1 + 2B_2) - \frac{1}{30(b-43)} \{(15b - 22)E_1 + (20b - 29)E_2 + (18b - 26)E_3 + (24b - 35)E_4 + (30b - 44)E_5\},
\]

\[
K_S^2 = \frac{6(5b - 7)^2}{5(30b - 43)}, \quad |\det(R)| = 30 \cdot (30b - 43), \quad D = 6^2(5b - 7)^2.
\]

We also compute the dual vectors,
\[
\begin{align*}
B_1^* &= -\frac{3B_1 + B_2}{5}, & B_2^* &= -\frac{B_1 + 2B_2}{5}, \\
E_1^* &= -\frac{1}{30b - 43} \{(15b - 14)E_1 + 5E_2 + 3E_3 + 9E_4 + 15E_5\}, \\
E_2^* &= -\frac{1}{30b - 43} \{5E_1 + (10b - 11)E_2 + 2E_3 + 6E_4 + 10E_5\}, \\
E_3^* &= -\frac{3E_1 + 2E_2 + (12b - 16)E_3 + (6b - 5)E_4 + 6E_5}{30b - 43}.
\end{align*}
\]
Claim 4.2.1. Let C be a (-1)-curve of the form (4.1). Suppose that C meets $f^{-1}(p_4)$. Then it satisfies one of the following three cases:

Case	CE_5	CE_4	CE_3	CE_2	CE_1	CB_2	CB_1	k
(a)	0	0	0	0	1	0	0	15
(b)	0	0	0	1	0	0	0	10
(c)	0	0	1	0	0	0	1	6

Proof. First note that $(f^* K_S)C = \frac{k}{\sqrt{B}}(f^* K_S)^2 = (\frac{5b-7}{3(30b-43)})$. Since $-K_S$ is ample and $C \notin R$, we see that $k < 0$. Intersecting C with C_3 we get

\[(30b - 43)C(B_1 + 2B_2) + 5C((15b - 22)E_1 + (20b - 29)E_2 + (18b - 26)E_3 + (24b - 35)E_4 + (30b - 44)E_5) = (5b - 7)K + 5(30b - 43) < 5(30b - 43).

This is possible only if C satisfies one of the three cases or the following case

(d) $CE_5 = 0, CE_4 = 1, CE_3 = CE_2 = CE_1 = 0, CB_1 = 1, CB_2 = 0, b = 2, k = -1$.

In case (d), $C(3) = B_1$ and $C(4) = E_2 = \frac{1}{17}(9E_1 + 6E_2 + 7E_3 + 21E_4 + 18E_5)$, thus $C(1)^2 + C(2)^2 = C^2 - C(3)^2 - C(4)^2 - (\frac{15}{6(30b-43)})f^* K_S)^2 = -1 + \frac{3}{3} + \frac{2}{3} - \frac{1}{30b-43} > 0$, contradicts the negative definiteness of exceptional curves.

Claim 4.2.2. Let C be a (-1)-curve of the form (4.1). Suppose that C meets $f^{-1}(p_4)$. Then C meets only one component of $f^{-1}(p_1) \cup f^{-1}(p_2) \cup f^{-1}(p_3)$, the intersection multiplicity is 1, and the component is

(1) the component of $f^{-1}(p_1)$, if C satisfies (a),

(2) one of the two components of $f^{-1}(p_2)$, if C satisfies (b),

(3) the component B_1 of $f^{-1}(p_3)$, if C satisfies (c).

Proof. Assume that C satisfies (a). Then, $C(3) = 0$ and $C(4) = E_1^*$, so

$C(1)^2 + C(2)^2 = C^2 - C(3)^2 - C(4)^2 - (\frac{15}{6(30b-43)})f^* K_S)^2 = -1$.

By Lemma 4.1 $C(2) = 0$ and $C(1)^2 = -\frac{1}{2}$.

Assume that C satisfies (b). Then, $C(3) = 0$ and $C(4) = E_2^*$, so

$C(1)^2 + C(2)^2 = C^2 - C(3)^2 - C(4)^2 - (\frac{15}{6(30b-43)})f^* K_S)^2 = -\frac{2}{3}$.

By Lemma 4.1 $C(1) = 0$ and $C(2)^2 = -\frac{2}{3}$.

Assume that C satisfies (c). Then, $C(3) = B_1^* = \frac{3B_1}{30b-43}$ and $C(4) = E_3^*$, so

$C(1)^2 + C(2)^2 = C^2 - C(3)^2 - C(4)^2 - (\frac{15}{6(30b-43)})f^* K_S)^2 = 0$.

By the negative definiteness, $C(1) = C(2) = 0$.

By the same proof as in the previous case, we see that there are three, mutually disjoint, (-1)-curves C_1, C_2, C_3 satisfying (a), (b), (c) from Claim 4.2.1, respectively.

4.3. Case: $< 2, 1 > + < 3, 2 > + < 5, 3 > + < b; 2, 1; 3, 1; 5, 2 >, b \geq 2$. In this case, $\mu = 10$, so $K_5^2 = -1$. Let B_1, B_2 be the components of $f^{-1}(p_3)$, and E_1, \ldots, E_5 be the components of $f^{-1}(p_4)$ such that

\[
\begin{array}{ccccccc}
 \frac{1}{3} & -2 & -3 & -\frac{b}{3} & -\frac{3}{3} & -\frac{2}{3} \\
 B_1 & B_2 & E_2 & -E_5 & -E_4 & -E_3 \\
\end{array}
\]

Then

\[
K_5' = f^* K_2 - \frac{1}{5}(B_1 + 2B_2) - \frac{1}{30b-43}\{(15b-19)E_1 + (20b-25)E_2 + (12b-15)E_3 + (24b-30)E_4 + (30b-38)E_5\},
\]
The same proof as in the previous cases shows that there are three, mutually dis-

tinct curves C_1, C_2, C_3 satisfying (a), (b), (c) from Claim 4.3.1, respectively.

The same proof as in the previous cases shows that there are three, mutually dis-

tinct curves C_1, C_2, C_3 satisfying (a), (b), (c) from Claim 4.3.1, respectively.
4.4. **Case 4:** $< 2, 1 > + < 3, 2 > + < 5, 1 > + < b; 2, 1; 3, 1; 5, 4 >, b \geq 2$. In this case, $\mu = 11$, so $K_S^* = -2$. Let B be the component of $f^{-1}(p_3)$, and E_1, \ldots, E_7 be the components of $f^{-1}(p_4)$ such that

$$\begin{align*}
E_2 - E_7 - E_6 - E_5 - E_4 - E_3
\end{align*}$$

Then

$$\begin{align*}
E_2 - E_7 - E_6 - E_5 - E_4 - E_3
\end{align*}$$

$$(4.5)$$

$K_S^* = \frac{6(5b - 8)^2}{5(30b - 49)}.$$

We also compute the dual vectors,

$$\begin{align*}
E_1^* &= -\frac{1}{30b - 49}\{15b - 17\}E_1 + 5E_2 + 3E_3 + 6E_4 + 9E_5 + 12E_6 + 15E_7, \\
E_2^* &= -\frac{1}{30b - 49}\{15b - 17\}E_1 + 5E_2 + 3E_3 + 6E_4 + 9E_5 + 12E_6 + 15E_7, \\
E_3^* &= -\frac{1}{30b - 49}\{15b - 17\}E_1 + 5E_2 + 3E_3 + 6E_4 + 9E_5 + 12E_6 + 15E_7.
\end{align*}$$

Claim 4.4.1. Let C be a (-1)-curve of the form (4.1). Suppose that C meets $f^{-1}(p_4)$. Then it satisfies one of the following three cases:

Case	CE7	CE6	CE5	CE4	CE3	CE2	CE1	CB	k
(a)	0	0	0	0	0	1	0	0	-15
(b)	0	0	0	0	0	1	0	0	-10
(c)	0	0	0	0	1	0	0	1	-6

Proof. Since $(f^*K_S)C = \frac{(5b - 8)^k}{5(30b - 49)} < 0$, $k < 0$. Intersecting C with (4.5) we get

$$\begin{align*}
3(30b - 49)CB + 5C\{15b - 25\}E_1 + (20b - 33)E_2 + (24b - 40)E_3 + (18b - 30)E_5 + (24b - 40)E_6 + (30b - 50)E_7.
\end{align*}$$

This is possible only if C satisfies one of the three cases, or one of the two cases:

Case	CE7	CE6	CE5	CE4	CE3	CE2	CE1	CB	k	b
(d)	0	0	0	0	2	0	0	1	-1	2
(e)	0	0	0	1	0	0	0	1	-1	2

In Case (d), $C(3) = B^* = -\frac{1}{2}B$ and $C(4) = 2E_3^*$, thus

$$\begin{align*}
C(1)^2 + C(2)^2 &= C^2 - C(3)^2 - C(4)^2 = -\frac{1}{12}(f^*K_S)^2 = -1 + \frac{1}{2} + \frac{40}{11} - \frac{1}{30b - 49} > 0.
\end{align*}$$

In Case (e), $C(3) = -\frac{1}{2}B$ and $C(4) = E_4^* = -\frac{1}{12}(6E_1 + 4E_2 + 9E_3 + 18E_4 + 16E_5 + 14E_6 + 12E_7)$, thus

$$\begin{align*}
C(1)^2 + C(2)^2 &= C^2 - C(3)^2 - C(4)^2 = -\frac{1}{12}(f^*K_S)^2 = -1 + \frac{1}{2} + \frac{18}{11} - \frac{1}{30b - 49} > 0.
\end{align*}$$

Both contradict the negative definiteness of exceptional curves.

Claim 4.4.2. Let C be a (-1)-curve of the form (4.1). Suppose that C meets $f^{-1}(p_4)$. Then C meets only one component of $f^{-1}(p_1) \cup f^{-1}(p_2) \cup f^{-1}(p_3)$, the intersection multiplicity with the component is 1, and the component is

1. the component of $f^{-1}(p_1)$, if C satisfies (a),
2. one of the two components of $f^{-1}(p_2)$, if C satisfies (b),
3. the component B of $f^{-1}(p_3)$, if C satisfies (c).
Proof. Assume that C satisfies (a). Then, $C(3) = 0$ and $C(4) = E_1^*$, so $C(4)^2 = -\frac{15b-17}{30b-49}$ and $C(1)^2 + C(2)^2 = C^2 - C(4)^2 - (\frac{15}{6(35-8)} f^* K_S)^2 = -\frac{1}{2}$. By Lemma 4.1, $C(2) = 0$ and $C(1)^2 = -\frac{1}{2}$.

Assume that C satisfies (b). Then, $C(3) = 0$ and $C(4) = E_2^*$, so $C(1)^2 + C(2)^2 = -1 + \frac{10b-13}{30b-49} - (\frac{-10}{6(35-8)} f^* K_S)^2 = -\frac{2}{3}$. By Lemma 11, $C(1) = 0$ and $C(2)^2 = -\frac{2}{3}$.

Assume that C satisfies (c). Then, $C(3) = -\frac{1}{5} B$ and $C(4) = E_3^*$, so $C(1)^2 + C(2)^2 = -1 + \frac{1}{5} + \frac{24b-38}{30b-49} - (\frac{-6}{6(35-8)} f^* K_S)^2 = 0$. By the negative definiteness, $C(1) = C(2) = 0$. □

The same proof as in the previous cases shows that there are three, mutually disjoint, (-1)-curves C_1, C_2, C_3 satisfying (a), (b), (c) from Claim 4.4.1, respectively.

4.5. Case 5: $< 2, 1 > + < 3, 1 > + < 5, 4 > + < b, 2, 1 ; 3, 2, 5, 1 >$, $b \geq 2$. In this case, $\mu = 11$, so $K^2_{S'} = -2$. Let B be the component of $f^-(p_2)$, and E_1, \ldots, E_5 be the components of $f^-(p_4)$ such that

\[
\begin{array}{c}
-\frac{2}{E_2 - E_3 - E_5 - E_4} \\
\frac{1}{E_1}
\end{array}
\]

Then

\[
K_{S'} = f^* K_S - \frac{1}{5} B - \frac{1}{30b-41} \{(15b-21) E_1 + (10b-14) E_2 + (20b-28) E_3 + (24b-33) E_4 + (30b-42) E_5\},
\]

\[
K^2_S = \frac{10(3b-4)^2}{3(30b-41)}, \quad |\det(R)| = 30 \cdot (30b-41), \quad D = 10^2(3b-4)^2.
\]

We also compute the dual vectors,

\[
\begin{aligned}
E_1^* &= -\frac{1}{30b-41} \{(15b - 13) E_1 + 5 E_2 + 10 E_3 + 3 E_4 + 15 E_5\}, \\
E_2^* &= \frac{1}{30b-41} \{5 E_1 + (20b - 24) E_2 + (10b - 7) E_3 + 2 E_4 + 10 E_5\}, \\
E_3^* &= -\frac{1}{30b-41} \{5 E_1 + 2 E_2 + 4 E_3 + (6b - 7) E_4 + 6 E_5\}.
\end{aligned}
\]

Claim 4.5.1. Let C be a (-1)-curve of the form (4.1). Suppose that C meets $f^-(p_4)$. Then it satisfies one of the following three cases:

Case	CE_5	CE_4	CE_3	CE_2	CE_1	CB	k
(a)	0	0	0	0	1	0	-15
(b)	0	0	0	1	0	1	-10
(c)	0	1	0	0	0	0	-6

Proof. Since $(f^* K_S) C = \frac{(3b-4) k}{3(30b-41)} < 0$, $k < 0$. Intersecting C with (4.6), we get

\[
(30b - 41) CB + 3 C \{ (15b - 21) E_1 + (10b - 14) E_2 + (20b - 28) E_3 + (24b - 33) E_4 + (30b - 42) E_5 \} = (3b - 4) k + 3(30b - 41) < 3(30b - 41).
\]

This is possible only if C satisfies one of the three cases, or one of the following three cases:

Case	CE_6	CE_5	CE_4	CE_3	CE_2	CE_1	CB	k	b
(d)	0	0	0	1	0	0	1	-1	2
(e)	0	0	0	0	2	0	1	-1	2
(f)	0	0	0	0	1	1	0	-6	2
In Case (d), $C(2) = -\frac{1}{17}B$ and $C(4) = E_3^* = -\frac{1}{17}((10E_3 + 13E_2 + 26E_3 + 4E_4 + 20E_5)$, thus $C(1)^2 + C(3)^2 = C^2 - C(2)^2 - C(4)^2 - \left(\frac{21}{10}f^* K_S\right)^2 = -1 + \frac{1}{3} + \frac{17}{5} = \frac{1}{30} > 0$.

In Case (e), $C(2) = -\frac{4}{3}B$ and $C(4) = 2E_2^*$, thus $C(1)^2 + C(3)^2 = -1 + \frac{1}{3} + \frac{44}{19} = \frac{1}{30} > 0$.

In Case (f), $C(2) = 0$ and $C(4) = E_1^* + E_2^*$, thus $C(1)^2 + C(3)^2 = -1 + \frac{36}{30} = \frac{2}{3} > 0$. All contradict the negative definiteness of exceptional curves.

Claim 4.5.2. Let C be a (-1)-curve of the form (4.1). Suppose that C meets $f^{-1}(p_4)$. Then C meets only one component of $f^{-1}(p_1) \cup f^{-1}(p_2) \cup f^{-1}(p_3)$, the intersection multiplicity with the component is 1, and the component is

1. the component of $f^{-1}(p_1)$, if C satisfies (a),
2. the component of B of $f^{-1}(p_2)$, if C satisfies (b),
3. one of the two end components of $f^{-1}(p_3)$, if C satisfies (c).

Proof. Assume that C satisfies (a). Then, $C(2) = 0$ and $C(4) = E_1^*$, so $C(4)^2 = -\frac{150}{30b-41}$, hence $C(1)^2 + C(3)^2 = C^2 - C(2)^2 - \left(\frac{-15}{10(3b-4)}f^* K_S\right)^2 = -\frac{1}{2}$. By Lemma 4.1, $C(3) = 0$ and $C(1)^2 = -\frac{1}{2}$.

Assume that C satisfies (b). Then, $C(2) = -\frac{1}{17}B$ and $C(4) = E_2^*$, so $C(1)^2 + C(3)^2 = -1 + \frac{1}{3} + \frac{200}{30b-41} - \left(\frac{-10}{10(3b-4)}f^* K_S\right)^2 = 0$. By the negative definiteness, $C(1) = C(3) = 0$.

Assume that C satisfies (c). Then, $C(2) = 0$ and $C(4) = E_3^*$, so $C(1)^2 + C(3)^2 = -1 + \frac{36}{30b-53} - \left(\frac{-6}{10(3b-4)}f^* K_S\right)^2 = -\frac{1}{2}$. By Lemma 4.1, $C(1) = 0$ and $C(3)^2 = -\frac{4}{17}$.

The same proof as in the previous cases shows that there are three, mutually disjoint, (-1)-curves C_1, C_2, C_3 satisfying (a), (b), (c) from Claim 4.5.1, respectively. In this case, $C_1 = \frac{-15}{10(3b-4)}f^* K_S + C_1(1) + E_1^*$, $C_2 = \frac{-10}{10(3b-4)}f^* K_S + C_2(2) + E_2^*$, $C_3 = \frac{-6}{10(3b-4)}f^* K_S + C_3(3) + E_3^*$.

4.6. Case 6: $< 2, 1 > + < 3, 1 > + < 5, 2 > + < b, 2; 1, 3; 2, 5, 3 >, b \geq 2$. In this case, $\mu = 10$, so $K_S^2 = -1$. Let B be the component of $f^{-1}(p_2)$, B_2, B_3 be the components of $f^{-1}(p_3)$, and E_1, \ldots, E_6 be the components of $f^{-1}(p_4)$ such that

$$\begin{align*}
B_2 - B_3 & \quad -2 \\
E_2 - E_3 & \quad -2 \\
E_2 - E_3 & \quad -2 \\
E_2 - E_3 & \quad -2 \\
E_5 - E_6 & \quad -2 \\
\text{I} & \quad -2 \\
E_1 & \quad -2
\end{align*}$$

Then

$$K_{S'} = f^* K_S - \frac{1}{17}B - \frac{1}{30b-41}(B_2 + 2B_3) - \frac{1}{30b-53}\left\{((15b - 27)E_1 + (10b - 18)E_2 + (20b - 36)E_3 + (18b - 32)E_4 + (24b - 43)E_5 + (30b - 54)E_6\right\},$$

$$K_S^2 = \frac{2(15b - 26)^2}{15(30b - 53)} \quad |\det(R)| = 30 \cdot (30b - 53), \quad D = 2^2(15b - 26)^2.$$

We also compute the dual vectors,

$$\begin{align*}
B_2^* & = -\frac{3B_2 + B_3}{5} \\
B_3^* & = \frac{B_2 + 2B_3}{5}, \\
E_1^* & = -55(15b - 19)E_1 + 5E_2 + 10E_3 + 3E_4 + 9E_5 + 15E_6, \\
E_2^* & = -\frac{10}{30b-53}\left\{(15E_1 + 20b - 32)E_2 + (10b - 11)E_3 + 2E_4 + 6E_5 + 10E_6\right\}, \\
E_4^* & = -\frac{30b-53}{30b-53}\{3E_1 + 2E_2 + 4E_3 + (12b - 20)E_4 + (6b - 7)E_5 + 6E_6\}.
\end{align*}$$
Claim 4.6.1. Let C be a (-1)-curve of the form (4.1). Suppose that C meets $f^{-1}(p_1)$. Then it satisfies one of the following three cases:

Case	CE_6	CE_5	CE_4	CE_3	CE_2	CE_1	CB_3	CB_2	CB	k
(a)	0	0	0	0	0	0	0	0	0	−15
(b)	0	0	0	1	0	0	0	0	1	−10
(c)	0	0	1	0	0	0	0	1	0	−6

Proof. Since $(f^*K_S)C = \frac{(15b−26)k}{15(30b−53)} < 0$, $k < 0$. Intersecting C with (4.7) we get $(30b−53)C(5B + 3B_2 + 6B_3) + 15C\{(15b−27)E_1 + (10b−18)E_2 + (20b−36)E_3 + (18b−32)E_4 + (24b−43)E_5 + (30b−54)E_6\} = (15b−26)k + 15(30b−53).

This is possible only if C satisfies one of the three cases, or one of the following five cases:

Case	CE_6	CE_5	CE_4	CE_3	CE_2	CE_1	CB_3	CB_2	CB	k
(d)	0	0	0	0	0	1	0	0	3	−3
(e)	0	0	0	0	1	0	1	0	1	−3
(f)	0	0	0	0	0	1	0	1	1	−1
(g)	0	0	0	0	0	0	0	1	0	−6
(h)	0	0	0	1	0	0	0	1	0	−6

In Case (d), $C(2) = 0, C(3) = 3B_5^*$ and $C(4) = E_2^*$, thus $C(1)^2 = C^2 - C(3)^2 - C(4)^2 - \left(\frac{-3}{5}f^*K_S\right)^2 = -1 + \frac{27}{5} + \frac{8}{7} - \frac{9}{30} > 0$.

In Case (e), $C(2) = 0, C(3) = B_3^* + B_4^* = -\frac{4B_2 + 3B_3}{5}$ and $C(4) = E_2^*$, thus $C(1)^2 = C^2 - C(3)^2 - C(4)^2 - \left(\frac{-6}{5}f^*K_S\right)^2 = -1 + \frac{5}{3} + \frac{8}{7} - \frac{9}{30} > 0$.

In Case (f), $C(2) = -\frac{1}{5}B, C(3) = B_3^*$ and $C(4) = E_1^*$, thus $C(1)^2 = C^2 - C(2)^2 - C(3)^2 - C(4)^2 - \left(\frac{-1}{8}f^*K_S\right)^2 = -1 + \frac{1}{3} + \frac{3}{5} + \frac{11}{7} - \frac{1}{30} > 0$.

In Case (g), $C(2) = 0, C(3) = B_2^*$ and $C(4) = E_3^* = -\frac{1}{5}(10E_1 + 9E_2 + 18E_3 + 4E_4 + 12E_5 + 20E_6)$, thus $C(1)^2 = C^2 - C(3)^2 - C(4)^2 - \left(\frac{-10}{5}f^*K_S\right)^2 = -1 + \frac{3}{5} + \frac{11}{7} - \frac{36}{30} > 0$.

All contradict the negative definiteness of exceptional curves. □

Claim 4.6.2. Let C be a (-1)-curve of the form (4.1). Suppose that C meets $f^{-1}(p_1)$. Then C meets only one component of $f^{-1}(p_1) \cup f^{-1}(p_2) \cup f^{-1}(p_3)$, the intersection multiplicity with the component is 1, and the component is

1. the component of $f^{-1}(p_1)$, if C satisfies (a),
2. the component B of $f^{-1}(p_2)$, if C satisfies (b),
3. the component B_2 of $f^{-1}(p_3)$, if C satisfies (c).

Proof. Assume that C satisfies (a). Then, $C(2) = C(3) = 0$ and $C(4) = E_1^*$, so $C(1)^2 = -\frac{15b−10}{500−63}$, hence $C(1)^2 = C^2 - C(4)^2 - \left(\frac{-15}{500−63}f^*K_S\right)^2 = -\frac{1}{2}$.

Assume that C satisfies (b). Then, $C(2) = -\frac{1}{5}B, C(3) = 0$ and $C(4) = E_2^*$, so $C(1)^2 = -1 + \frac{1}{5} + \frac{30b−32}{500−63} - \left(\frac{-10}{500−63}f^*K_S\right)^2 = 0$. Hence $C(1) = 0$.

Assume that C satisfies (c). In this case, $C(2) = 0, C(3) = B_2^*$ and $C(4) = E_3^*$, so $C(1)^2 = -1 + \frac{1}{5} + \frac{12b−20}{300−63} - \left(\frac{-6}{2(15b−26)}f^*K_S\right)^2 = 0$. Hence $C(1) = 0$. □

The same proof as in the previous cases shows that there are three, mutually disjoint, (-1)-curves C_1, C_2, C_3 satisfying (a), (b), (c) from Claim 4.6.1, respectively.
4.7. Case 7: $< 2, 1 > + < 3, 1 > + < 5, 3 > + < b; 2, 1; 3, 2; 5, 2 >$, $b \geq 2$. In this case, $\mu = 10$, so $K_S^2 = -1$. Let B be the component of $f^{-1}(p_2)$, B_2, B_3 be the components of $f^{-1}(p_3)$, and E_1, \ldots, E_6 be the components of $f^{-1}(p_4)$ such that

$$B_2 - B_3 \quad E_2 - E_3 - E_6 - E_5 - E_4$$

Then

$$K_{S'} = f^*K_S - \frac{1}{3}B - \frac{1}{3}(B_2 + 2B_3) - \frac{1}{306 - 47}\{(15b - 24)E_1 + (10b - 16)E_2 + (20b - 32)E_3 + (12b - 19)E_4 + (24b - 38)E_5 + (30b - 48)E_6\},$$

$$K_S^2 = \frac{2(15b - 23)^2}{15(30b - 47)}, \quad |\det(R)| = 30 \cdot (30b - 47), \quad D = 2^2(15b - 23)^2.$$ We also compute the dual vectors,

$$B_3^* = \frac{-3B_2 + B_3}{3}, \quad B_3^* = \frac{-B_2 + 2B_3}{3},$$

$$E_1^* = -\frac{1}{306 - 47}\{(15b - 16)E_1 + 5E_2 + 10E_3 + 3E_4 + 6E_5 + 15E_6\},$$

$$E_2^* = -\frac{1}{306 - 47}\{5E_1 + (20b - 28)E_2 + (10b - 9)E_3 + 2E_4 + 4E_5 + 10E_6\},$$

$$E_3^* = -\frac{1}{306 - 47}\{3E_1 + 2E_2 + 4E_3 + (18b - 27)E_4 + (6b - 7)E_5 + 6E_6\}.$$

Claim 4.7.1. Let C be a (-1)-curve of the form (4.1). Suppose that C meets $f^{-1}(p_4)$. Then it satisfies one of the following three cases:

Case	CE_0	CE_5	CE_4	CE_3	CE_2	CE_1	CB_3	CB_2	CB	k
(a)	0	0	0	0	0	1	0	0	0	-15
(b)	0	0	0	0	0	0	0	0	1	-10
(c)	0	0	0	0	0	0	0	0	0	-6

Proof. Since $(f^*K_S)C = \frac{(15b - 23)^k}{15(30b - 47)} < 0$, $k < 0$. Intersecting C with (4.8), we get $(30b - 47)C(5B + 3B_2 + 6B_3) + 15C((15b - 24)E_1 + (10b - 16)E_2 + (20b - 32)E_3 + (12b - 19)E_4 + (24b - 38)E_5 + (30b - 48)E_6) = (15b - 23)k + 15(30b - 47)$.

This is possible only if C satisfies one of the three cases, or the case (d) $CE_0 = CE_5 = 0, CE_4 = 1, CE_3 = 0, CE_2 = 1, CE_1 = 0, CB_3 = 0, CB_2 = 1, CB = 0$, $b = 2$, $k = -3$.

In the last case, $C(2) = 0, C(3) = B_3^*$ and $C(4) = E_2^* + E_4^*$, thus

$$C(1)^2 = C^2 = C(3)^2 = C(4)^2 = (\frac{2}{15}f^*K_S)^2 = -1 + \frac{3}{9} + \frac{25}{2} - \frac{9}{15} > 0,$$

which contradicts the negative definiteness of exceptional curves. \qed

Claim 4.7.2. Let C be a (-1)-curve of the form (4.1). Suppose that C meets $f^{-1}(p_4)$. Then C meets only one component of $f^{-1}(p_1) \cup f^{-1}(p_2) \cup f^{-1}(p_3)$, the intersection multiplicity with the component is 1, and the component is

(1) the component of $f^{-1}(p_1)$, if C satisfies (a),
(2) the component B of $f^{-1}(p_2)$, if C satisfies (b),
(3) the component B_3 of $f^{-1}(p_3)$, if C satisfies (c).

Proof. Assume that C satisfies (a). Then, $C(2) = C(3) = 0$ and $C(4) = E_1^*$, so

$$C(4)^2 = -\frac{15b - 23}{306 - 47},$$

hence $C(1)^2 = C^2 - C(4)^2 = -\frac{15}{2(15b - 23)}f^*K_S)^2 = -\frac{1}{2}$.

Assume that C satisfies (b). Then, $C(2) = -\frac{1}{2}B, C(3) = 0$ and $C(4) = E_2^*$, so

$$C(1)^2 = -1 + \frac{1}{9} + \frac{20b - 28}{306 - 47} - \frac{10}{2(15b - 23)}f^*K_S)^2 = 0.$$ Hence $C(1) = 0$. \qed
Assume that C satisfies (c). In this case, $C(2) = 0$, $C(3) = B_1^+$ and $C(4) = E_1^+$, so $C(1)^2 = -1 + \frac{2}{3} + \frac{18b-27}{30b-59} - (\frac{-6}{2(15b-25)} f^*K_S)^2 = 0$. Hence $C(1) = 0$. □

The same proof as in the previous cases shows that there are three, mutually disjoint, (-1)-curves C_1, C_2, C_3 satisfying (a), (b), (c) from Claim 4.7.1, respectively.

4.8. Case 8: $< 2, 1 > > + < 3, 1 > + < 5, 1 > + < b, 2 >; 1; 3; 2; 5, 4 >, b > 2$. In this case, $\mu = 11$, so $K_S^2 = -2$. Let B, B_2 be the components of $f^{-1}(p_2), f^{-1}(p_3)$, and E_1, \ldots, E_8 be the components of $f^{-1}(p_4)$ such that

$$\frac{-2}{E_2} - \frac{-2}{E_3} - \frac{-b}{E_4} - \frac{-2}{E_5} - \frac{-2}{E_6} - \frac{-2}{E_7} - \frac{-2}{E_8} = 1$$

Then

$$K_{S'} = f^*K_S - \frac{1}{3}B - \frac{3}{5}B_2 - \frac{b-2}{30b-59} (15E_1 + 10E_2 + 20E_3 + 6E_4 + 12E_5 + 18E_6 + 24E_7 + 30E_8),$$

$$K_S^2 = \frac{2(15b-29)^2}{15(30b-59)} \cdot |\text{det}(R)| = 30 \cdot (30b-59), \quad D = 2^2(15b-29)^2.$$

We also compute the dual vectors,

$$E_1^* = -\frac{1}{30b-59} \{ (15b-22)E_1 + 5E_2 + 10E_3 + 3E_4 + 6E_5 + 9E_6 + 12E_7 + 15E_8 \},$$

$$E_2^* = -\frac{1}{30b-59} \{ (5E_1 + (20b-36)E_2 + (10b-13)E_3 + 2E_4 + 4E_5 + 6E_6 + 8E_7 + 10E_8) \},$$

$$E_4^* = -\frac{1}{30b-59} \{ (3E_1 + 2E_2 + 4E_3 + (24b-46)E_4 + (18b-33)E_5 + (12b-20)E_6 + (6b-7)E_7 + 6E_8) \}.$$

Claim 4.8.1. Let C be a (-1)-curve of the form (1.1). Suppose that C meets $f^{-1}(p_4)$. Then it satisfies one of the following three cases:

Case	CE_8	CE_7	CE_6	CE_5	CE_4	CE_3	CE_2	CE_1	CB_2	CB	k
(a)	0	0	0	0	0	0	1	0	0	-15	
(b)	0	0	0	0	0	0	1	0	0	-10	
(c)	0	0	0	0	1	0	0	0	1	-6	

Proof. Since $(f^*K_S)C = \frac{(15b-29)k}{15(30b-59)} < 0, k < 0$. Intersecting C with (4.9) we get

$$(30b-59)(C(B + 9B_2) + 15b - 2)C(15E_1 + 10E_2 + 20E_3 + 6E_4 + 12E_5 + 18E_6 + 24E_7 + 30E_8) = (15b-29)k + 15(30b-59) < 15(30b-59).$$

This is possible only if C satisfies one of the three cases, or the case

(d) $CB_2 = CB = 1, b = 2, k = -1, \ (CE_i \text{ are not determined}).$

In case (d), $C(2) = -\frac{1}{4}B$ and $C(3) = -\frac{1}{3}B_2$, thus

$$C(1)^2 + C(4)^2 = C^2 - C(2)^2 - C(3)^2 - \left(\frac{-6}{2(15b-25)} f^*K_S\right)^2 = -\frac{1}{9}.$$

Also note that in this case the sublattice $R_{p_4} \subset H^2(S', \mathbb{Z})$ generated by the components of $f^{-1}(p_4)$ is a negative definite unimodular lattice of rank 8. In particular, $R_{p_4} = R_{p_4}$, so $C(4) \in R_{p_4}$ and $C(4)^2$ is a non-positive even integer. By Lemma 4.4, $C(4)^2 = 0$. Thus C does not meet $f^{-1}(p_4)$, contradicts the assumption. □

Claim 4.8.2. Let C be a (-1)-curve of the form (1.1). Suppose that C meets $f^{-1}(p_4)$. Then C meets only one component of $f^{-1}(p_1) \cup f^{-1}(p_2) \cup f^{-1}(p_4)$, the intersection multiplicity with the component is 1, and the component is

(1) the component of $f^{-1}(p_1)$, if C satisfies (a),
(2) the component B of $f^{-1}(p_2)$, if C satisfies (b),
(3) the component B_2 of $f^{-1}(p_3)$, if C satisfies (c).

Proof. Assume that C satisfies (a). Then, $C(2) = C(3) = 0$ and $C(4) = E_1^*$, so
$C(4)^2 = -\frac{15}{36} - \frac{22}{59}$, hence $C(1)^2 = C^2 - C(4)^2 - \left(\frac{-15}{2(15b-29)}f^*K_S\right)^2 = -\frac{1}{2}$.

Assume that C satisfies (b). Then, $C(2) = -\frac{1}{2}B$, $C(3) = 0$ and $C(4) = E_2^*$, so
$C(1)^2 = -1 + \frac{1}{2} + \frac{36}{36} - \left(\frac{-15}{2(15b-29)}f^*K_S\right)^2 = 0$. Hence $C(1) = 0$.

Assume that C satisfies (c). Then, $C(2) = 0$, $C(3) = -\frac{1}{2}B_2$ and $C(4) = E_4^*$, so
$C(1)^2 = -1 + \frac{1}{2} + \frac{36}{36} - \left(\frac{-15}{2(15b-29)}f^*K_S\right)^2 = 0$. Hence $C(1) = 0$. \qed

The same proof as in the previous cases shows that there are three, mutually dis-
joint, (-1)-curves C_1, C_2, C_3 satisfying (a), (b), (c) from Claim 4.8.1, respectively.

Acknowledgements. We thank János Kollár for many useful comments. We
are grateful to the referee for helpful suggestions which have led to improvements
in the presentation of the manuscript.

References

[Br] E. Brieskorn, *Rationale Singularitäten komplexer Flächen*, Invent. math. 4 (1968), 336-358.

[FS85] R. Fintushel and R. Stern, *Pseudofree orbifolds*, Ann. of Math. (2) 122 (1985), no. 2, 335–364.

[FS87] R. Fintushel and R. Stern, *O(2) actions on the 5-sphere*, Invent. Math. 87 (1987), no. 3, 457–476.

[HK] D. Hwang and J. Keum, *The maximum number of singular points on rational homology projective planes*, arXiv:0801.3021, to appear in J. Algebraic Geometry.

[Keu07] J. Keum, *A rationality criterion for projective surfaces - partial solution to Kollár’s conjecture*, Algebraic geometry, 75-87, Contemp. Math., 422, Amer. Math. Soc., Providence, RI, 2007.

[Keu08] J. Keum, *Quotients of Fake Projective Planes*, Geom. & Top. 12 (2008), 2497–2515.

[Keu10] J. Keum, *The moduli space of Q-homology projective planes with 5 quotient singular points*, Acta Math. Vietnamica, 35 (2010), 79-89.

[KM] S. Keel and J. McKernan, *Rational curves on quasi-projective surfaces*, Mem. Amer. Math. Soc. 140 (1999), no. 669

[KNS] R. Kobayashi, S. Nakamura, and F. Sakai *A numerical characterization of ball quotients for normal surfaces with branch loci*, Proc. Japan Acad. Ser. A, Math. Sci. 85, no. 7, 238-241

[Kol05] J. Kollár, *Einstein metrics on \mathbb{S}^7*, Geom. Top. 9 (2005), 203–236.

[Kol07] J. Kollár, *Differentiable pseudo-free circle actions on homotopy seven spheres*, Proc. of the Second Conference on Compact Transformation Groups (Univ. Massachusetts, Amherst, Mass., 1971), Part I, Springer, 1972, pp. 41-101. Lecture Notes in Math., Vol. 298.

[Kol08] J. Kollár, *Differentiable pseudo-free circle actions on homotopy seven spheres*, Proc. of the Second Conference on Compact Transformation Groups (Univ. Massachusetts, Amherst, Mass., 1971), Part I, Springer, 1972, pp. 41-101. Lecture Notes in Math., Vol. 298.

[Pet] T. Petrie, *Equi-variant quasi-equivalence, transversality, and normal cobordism*, Proc. Int. Cong. Math., Vancouver, 1974, pp. 537-541

[Sak] F. Sakai, *Semistable curves on algebraic surfaces and logarithmic pluricanonical maps*, Math. Ann. 254 (1980), no. 2, 89-120

[Sei] H. Seifert, *Topologie dreidimensionaler gefaserter Räume*, Acta Math. 60 (1932), 147-238
Department of Mathematical Sciences, KAIST, Daejeon, Korea
Current address: School of Mathematics, Korea Institute For Advanced Study, Seoul 130-722, Korea
E-mail address: dshwang@kias.re.kr

School of Mathematics, Korea Institute For Advanced Study, Seoul 130-722, Korea
E-mail address: jhkeum@kias.re.kr