Distributional framework for solving fractional differential equations

Teodor M. Atanackovica, Ljubica Oparnicb* and Stevan Pilipovic

aFaculty of Technical Sciences, University of Novi Sad, Novi Sad, Serbia; bInstitute of Mathematics, Serbian Academy of Science, Belgrade, Serbia; cDepartment of Mathematics and Informatics, University of Novi Sad, Novi Sad, Serbia

\textit{(Received 22 April 2008)}

We analyse the solvability of a special form of distributed order fractional differential equations

\[
\int_0^2 \phi_1(\gamma) D^\gamma y(t) \mathrm{d}\gamma = \int_0^2 \phi_2(\gamma) D^\gamma z(t) \mathrm{d}\gamma, \quad t > 0,
\]

within \mathcal{S}_+', the space of tempered distributions supported by $[0, \infty)$.

\textbf{Keywords:} distributed order fractional differential equations; tempered distribution; Laplace transform

\textbf{AMS Classification:} 26A33; 46F12

1. Motivation and introduction

We consider a distributed order fractional differential Equation (1) which arises in the theory of constitutive equations for viscoelastic bodies. ϕ_1, ϕ_2 are certain functions or distributions which characterize a material under consideration and, in general, are determined from experiments. D^γ, $\gamma \in \mathbb{R}$, is the left Riemann–Liouville operator of fractional differentiation or integration defined as follows.

Denote by $L_{\text{loc}}^1(\mathbb{R})$ the space of locally integrable functions y on \mathbb{R} such that $y(t) = 0$, $t < 0$. Then for $y \in L_{\text{loc}}^1(\mathbb{R})$ the left fractional integral of order $\gamma > 0$ is defined by

\[
I^\gamma y(t) := \frac{1}{\Gamma(\gamma)} \int_0^t (t - \tau)^{\gamma - 1} y(\tau) \mathrm{d}\tau, \quad t > 0.
\]

Here Γ is the Euler gamma function. If $\gamma = 0$ then $I^0 y := y$. It can be shown (cf. [12]) that for $y \in L_{\text{loc}}^1(\mathbb{R})$ $\lim_{\gamma \to 0} I^\gamma y(t) = y(t)$, $t \in \mathbb{R}$ almost everywhere.

*Corresponding author. E-mail: ljubicans@sbb.co.yu

ISSN 1065-2469 print/ISSN 1476-8291 online
© 2009 Taylor & Francis
DOI: 10.1080/10652460802568069
http://www.informaworld.com
Denote by $AC^k(\mathbb{R}_+)$ the space of functions y such that y has continuous derivatives on $\mathbb{R}_+ = \{x \in \mathbb{R}; x \geq 0\}$ up to the order $k - 1$ and kth derivative is locally integrable function. We extend such functions to \mathbb{R} so that $y(t) = 0, t < 0$.

Let $y \in AC^k(\mathbb{R}_+)$. Riemann–Liouville’s fractional derivative of order $\gamma \geq 0, \gamma \leq k$ for some $k \in \mathbb{N}$, is defined by

$$D^\gamma y(t) := \frac{d^k}{dt^k} I^{k-\gamma} y(t), \quad t > 0.$$

It follows that $D^\gamma y \in L^1_{\text{loc}}(\mathbb{R})$. We refer to Section 2 for the definition of $D^\gamma y, y \in S'_+,$ and $\gamma \in \mathbb{R}$.

Note that $D^\gamma I^\gamma y = y$ for $y \in L^1_{\text{loc}}(\mathbb{R})$ and $I^\gamma D^\gamma y = y, \gamma > 0$ in the sense of tempered distribution. We sometimes denote $D^{-\gamma} y = I^\gamma y, \gamma > 0$.

Let ϕ be continuous function in $[c, d] \subset [0, k], k \in \mathbb{N}$. Distributed order fractional derivative of $y \in AC^k(\mathbb{R}_+)$ is given by

$$\int_c^d \phi(\gamma) D^\gamma y(t) \, d\gamma.$$

Equation (1) models various physical processes. For example, if it models a viscoelastic body then Equation (1) represents a constitutive equation of a material and connects strain $y(t)$ with corresponding stress $z(t)$ at time instant $t \geq 0$. For a standard linear viscoelastic body the constitutive equation is given as

$$y(t) + by^{(1)}(t) = z(t) + az^{(1)}(t),$$

where $(\cdot)^{(1)} = d/dt(\cdot)$ and a, b are experimentally determined constants with the restriction $0 < a < b$ following from the second law of thermodynamics. A slight generalization (see [2] and references therein) of this equation is achieved by replacing the first derivative by a derivative of real order $\alpha > 0$

$$y(t) + bD^\alpha y(t) = z(t) + aD^\alpha z(t),$$

where, again $0 < a < b$. If $0 < \alpha < 1$ then Equation (2) represents viscoelastic effects while for $1 < \alpha < 2$, Equation (2) describes viscoinertial effects of a material. Standard procedure in building rheological models is to use more than one derivative on each side of constitutive equation. When this is done Equation (2) becomes

$$\sum_{n=0}^N b_n D^{\beta_n} y(t) = \sum_{m=0}^M a_m D^{\alpha_m} z(t),$$

where $M, N \in \mathbb{N}, a_m, b_n \in \mathbb{R}$ and $\alpha_m, \beta_n \in \mathbb{R}, 0 \leq \alpha_m, \beta_n \leq 2$.

Equation (3) is interpreted in [1] as a Riemann sum. Moreover, in [1] the constitutive equation of a linear viscoelastic body is proposed in a ‘distributed’ order form as

$$\int_0^2 \phi_1(\gamma) D^\gamma y(t) \, d\gamma = \int_0^2 \phi_2(\gamma) D^\gamma z(t) \, d\gamma, \quad t > 0.$$

In model (4) all derivatives of the stress $D^\gamma z$ depend on all derivatives of the strain $D^\gamma y$ for $\gamma \in [c, d]$. Since the upper bound in integrals in Equation (4) is two, both, viscoelastic and viscoinertial effects are included. The presence of integral on the left-hand side indicates, as experiments show, that dissipation properties depend on the order of the derivative. The integral on the right-hand side is a consequence of the known principle of equipresence.

In this paper we are looking for an S'_+ solution z to Equation (4) for a given but arbitrary $y \in S'_+$. Such solution will be used in [6] for solving a differential equation of motion coupled with constitutive equation (4).
In Section 2 we extend the results obtained in [5] concerning integral in Equation (4). Afterwards we define distributed order fractional derivative in S'_+ and derive its main properties. In Section 3 we state without proof (which is given in [6]) a theorem on the existence and uniqueness of a solution to a linear fractional differential equation in the frame of S'_+. Also we derive properties of such solution. In Section 4 we connect the condition for the uniqueness with a dissipation inequality that guarantees physical admissibility of a Equation (4).

We note that the models with distributed order derivatives were analysed for example in [3,7,8,10,11].

2. Distributed order fractional derivative

We denote by $S(\mathbb{R})$ the space of rapidly decreasing functions in \mathbb{R} and by $S'(\mathbb{R})$ its dual, the space of tempered distributions; $S'_+(\mathbb{R})$ denotes its subspace consisting of distributions supported by $[0, \infty)$. In the sequel we drop \mathbb{R} in the notation. We consider in S'_+ the family

$$f_\alpha(x) = \begin{cases} H(x) \frac{x^{\alpha-1}}{\Gamma(\alpha)}, & x \in \mathbb{R}, \ \alpha > 0, \\ \frac{d^N}{dx^N} f_{\alpha + N}(x), & \alpha \leq 0, \ \alpha + N > 0, \ N \in \mathbb{N}, \end{cases} \quad (5)$$

where H is Heaviside’s function. It is known that $f_\alpha * f_\beta = f_{\alpha + \beta}, \ \alpha, \beta \in \mathbb{R}$. The convolution operator $f_\alpha *$ in S'_+ is the operator of fractional differentiation for $\alpha < 0$ and of fractional integration for $\alpha > 0$. It coincides with the operator of derivation for $-\alpha \in \mathbb{N}$ and integration for $\alpha \in \mathbb{N}$. Let $\alpha > 0$ and $y \in L^1_{\text{loc}}(\mathbb{R})$. Then $I^\alpha y = f_\alpha * y$. Let $y \in AC^k(\mathbb{R}_+)$ and $0 < \alpha \leq k$. Then $D^\alpha y = f_{-\alpha} * y$.

Recall, if $y \in S'_+$ then its Laplace transform is defined by

$$\hat{y}(s) = \mathcal{L}y(s) = \langle y(t), \varphi(t)e^{-st} \rangle, \ \Re s > 0, \ \alpha \in \mathbb{R},$$

where $\varphi \in C^\infty, \varphi = 1$ on $(-\alpha, \infty)$ and $\varphi = 0$ in $(-\infty, -2\alpha), \alpha > 0$. Note that $\mathcal{L}y$ is an analytic function for $\Re s > 0$ and that the definition of $\mathcal{L}y$ does not depend on a chosen function φ with given proprieties. We will often use the identity

$$\mathcal{L}(f_\alpha * y)(s) = \frac{1}{s^\alpha} \hat{y}(s), \ \Re s > 0.$$

First we analyse integral $\int_{\text{supp} \varphi} \Phi(y) D^\alpha y(\cdot) dy$. To do this we examine the mapping $\alpha \mapsto D^\alpha y : \mathbb{R} \rightarrow S'_+$, for given $y \in S'_+$ (in [5] we have considered $y \in L^1_{\text{loc}}(\mathbb{R}) \cap S'_+$).

Proposition 2.1

(a) Let $\alpha \in \mathbb{R}$ be fixed. Then the mapping $y \mapsto D^\alpha y$ is linear and continuous from S'_+ to S'_+.

(b) Let $y \in S'_+$ be fixed. Then $\alpha \mapsto D^\alpha y$ is a smooth mapping from \mathbb{R} to S'_+.

(c) The mapping $(\alpha, y) \mapsto D^\alpha y$ is continuous from $\mathbb{R} \times S'_+$ to S'_+.

Proof (a) The continuity of $y \mapsto D^\alpha y = f_{-\alpha} * y$ is clear since for $g \in S'_+$, $f \mapsto f * g$ is a continuous mapping of S'_+ into S'_+.

(b) It is known that there exists a continuous function F, supp $F \subset [0, \infty)$ and $k \in \mathbb{N}$ such that $|F(x)| < C(1 + |x|)^k, x \in \mathbb{R}$ and $y = D^k F$. So the mapping $\alpha \mapsto D^\alpha y$ equals $\alpha \mapsto D^{\alpha + k} F$. By [5, Proposition 1] we know that for fixed k and $\alpha \in \mathbb{R}, \ \alpha + k \mapsto D^{\alpha + k} F$ is smooth so the same hold for $\alpha \mapsto D^{\alpha + k} F$.

(c) Since \mathcal{S} is Fréchet space as well as locally convex, the separate continuity proved in (a) and (b) imply joint continuity (c.f. [13, Corollary to Theorem 34.1]).

By $\mathcal{E}'(\mathbb{R})$ is denoted the space of compactly supported distributions i.e. the dual space of $\mathcal{E}(\mathbb{R}) = C_0^\infty(\mathbb{R})$.

Definition 2.2 Let $\phi \in \mathcal{E}'(\mathbb{R})$ and $y \in \mathcal{S}'_+$. Then $\int_{\text{supp}\phi} \phi(y) D^r y \, dy$ is defined as an element of \mathcal{S}'_+ by

$$\left(\int_{\text{supp}\phi} \phi(y) D^r y(t) \, dy, \varphi(t) \right) = \langle \phi(y), \langle D^r y(t), \varphi(t) \rangle \rangle, \quad \varphi \in \mathcal{S}(\mathbb{R}). \tag{6}$$

Such defined distribution is called distributed order fractional derivative.

By Proposition 2.1, part (b), $\gamma \mapsto D^r y : \mathbb{R} \to \mathcal{S}'_+$ is smooth as well as $\gamma \mapsto \langle D^r y(t), \varphi(t) \rangle : \mathbb{R} \to \mathbb{R}$. Since \mathcal{S} is a Fréchet space it follows that in its dual space the strong and weak boundedness are the same, thus a linear functional defined by Equation (6) is continuous from \mathcal{S} to \mathbb{C} and therefore is a tempered distribution supported by $[0, \infty)$.

The following two examples are often used in applications.

Example 2.3

(a) Let $\gamma_i \in \mathbb{R}, i \in \{0, 1, \ldots, k\}$ and $\phi(\cdot) = \sum_{i=0}^k a_i \delta^{(i)}(\cdot - \gamma_i)$. Then Equation (6) gives

$$\int_{\text{supp}\phi} \phi(y) D^r y(\cdot) \, dy = \sum_{i=0}^k a_i D^r y(\cdot) \quad \text{in } \mathcal{S}'_+.$$

(b) Let ϕ be a continuous function in $[c, d] \subset \mathbb{R}$ for some $c < d$, then

$$\int_c^d \phi(y) D^r y(\cdot) \, dy = \lim_{N \to \infty} \sum_{i=1}^N \phi(\gamma_i) D^r y(\cdot) \Delta \gamma_i \quad \text{in } \mathcal{S}'_+,$$

where γ_i are points of interval $[c, d]$ in usual definition of the Riemann sum for the integral.

Proposition 2.4 Let $\phi \in \mathcal{E}'(\mathbb{R})$ and $y \in \mathcal{S}'_+$. Then:

(a) $y \mapsto \int_{\text{supp}\phi} \phi(y) D^r y \, dy$ is a linear and continuous mapping from \mathcal{S}'_+ to \mathcal{S}'_+.

(b) $\mathcal{L} \left(\int_{\text{supp}\phi} \phi(y) D^r y \, dy \right)(s) = \hat{y}(s) \langle \phi(y), s^r \rangle, \quad \text{Re } s > 0.$

(c) If ϕ is continuous function on $[c, d]$ and $\phi(\gamma) = 0$ for $\gamma \not\in [c, d]$ then

$\mathcal{L} \left(\int_c^d \phi(y) D^r y \, dy \right)(s) = \hat{y}(s) \int_c^d \phi(y) s^r \, dy, \quad \text{Re } s > 0.$

Proof (a) Clearly, this mapping is linear. Let $y_n \to 0$ in \mathcal{S}'_+. Then $\phi(y), D^r y_n, \varphi \to 0$, as $n \to \infty$, since by Proposition 2.1 part (a), $D^r y_n, \varphi \to 0$, as $n \to \infty$.

By $E'(\mathbb{R})$ is denoted the space of compactly supported distributions i.e. the dual space of $E(\mathbb{R}) = C_0^\infty(\mathbb{R})$.
(b) By the definition,
\[
\mathcal{L}\left(\int_{\text{supp } \phi} \phi(\gamma) D^y y \, d\gamma\right)(s) = \left\langle \int_{\text{supp } \phi} \phi(\gamma) D^y y(t) \, d\gamma, \varphi(t)e^{-st} \right\rangle = \left\langle \phi(\gamma), \left\langle D^y y(t), \varphi(t)e^{-st} \right\rangle \right\rangle = \left\langle \phi(\gamma), s^y \hat{y}(s) \right\rangle, \quad \text{Re } s > 0.
\]

(c) In the case that \(\phi \) is continuous we have
\[
\left\langle \phi(\gamma), s^y \hat{y}(s) \right\rangle = \int_{\text{supp } \phi} \phi(\gamma)s^y \hat{y}(s) \, d\gamma
\]
and therefore the assertion follows. \(\blacksquare \)

If we assume that \(y, z \in S'_+ \) in Equation (4), put \(\phi = \phi_2 \) and \(g = \int_{\text{supp } \phi_1} \phi_1(\gamma) D^y z \) then the solvability of Equation (4) with respect to \(z \) reduces to the solvability of
\[
\int_{\text{supp } \phi} \phi(\gamma) D^y z = g, \quad g \in S'_+.
\] (7)

3. Linear fractional differential equation in \(S'_+ \)

Assuming that \(g \in S'_+ \) and that \(\phi \) is of the form as in Example 2.3, Equation (7) becomes
\[
\sum_{i=0}^{k} a_i D^{\gamma_i} z = g \quad \text{in } S'_+.
\] (8)

We suppose that \(\gamma_i \in [0, 2) \) such that \(\gamma_0 > \gamma_i > \gamma_{i+1} > \gamma_k, i \in \{1, \ldots, k-1\} \).

Theorem 3.1 Equation (8) has a unique solution \(z \in S'_+ \) if and only if
\[
(A_0) \quad \sum_{i=0}^{k} a_i s^{\gamma_i} \neq 0, \quad s \in \mathbb{C}_+ = \{s \in \mathbb{C}; \text{Re } s > 0\}.
\]

The proof is given in [6]. The solution to Equation (8) that is obtain in Theorem 3.1 is given by \(z = l \ast g \), where
\[
l(t) = \mathcal{L}^{-1}\left(\frac{1}{\sum_{i=0}^{k} a_i s^{\gamma_i}}\right)(t), \quad t > 0,
\] (9)
is a fundamental solution to Equation (8) i.e. solution to \(\sum_{i=0}^{k} a_i D^{\gamma_i} y = \delta \).

The following lemma gives main properties of \(l \) defined by Equation (9).

Lemma 3.2 Assume \((A_0) \). Let \(\gamma_i \in [0, 2) \) and \(\gamma_0 > \gamma_i > \gamma_{i+1} > \gamma_k, \) for all \(i \in \{1, \ldots, k-1\} \). Let \(l \) be defined by Equation (9) and \(l(t) = 0, \) \(t < 0. \) Then:

(i) \(l \) is a locally integrable function in \(\mathbb{R} \).
(ii) Moreover, \(l \) is absolutely continuous in \(\mathbb{R} \), if \(\gamma_0 - \gamma_k > 1 \).
Proof (i) Let \(\gamma_k = 0 \) and \(a_k \neq 0 \). Consider the integral
\[
\int_{\Gamma} \frac{e^{st}}{\sum_{i=0}^{k} a_i s^{\gamma_i}}, \quad t > 0,
\]
where \(\Gamma = \bigcup_{i=1}^{5} \Gamma_i \) and for arbitrarily chosen \(R > 0, 0 < \varepsilon < R \) and \(x_0 > 0 \), \(\Gamma_i \) are given by
\[
\Gamma_0 : \{ z; \Re z = x_0; 0 < \arg z < \phi_0 = \arcsin \frac{x_0}{R} \};
\]
\[
\Gamma_1 : z = Re^{i\phi}, -\phi_0 < \phi_0 \leq \phi < \pi; \quad \Gamma_2 : z = Re^{i\phi}, -\pi < \phi \leq -\phi_0 < 0;
\]
\[
\Gamma_3 : z = xe^{i\phi}, -\pi < \phi < \pi; \quad \Gamma_4 : z = xe^{i\phi}; \quad \Gamma_5 : z = xe^{-i\phi}, \quad x \in (\varepsilon, R).
\]
By the Cauchy residue theorem, letting \(\varepsilon \to 0 \) and \(R \to \infty \), one obtains
\[
l(t) = \sum_{s=m, m=1}^{n} \Re s \left\{ \frac{e^{st}}{\sum_{i=0}^{k} a_i s^{\gamma_i}} \right\} + l_0(t), \quad t > 0,
\]
where \(l_0(t) \) is defined by Equation (11).

Let 0 \leq a \leq b. Then
\[
\int_{a}^{b} l_0(t) \, dt = \int_{0}^{\infty} \left(e^{-sa} - e^{-sb} \right) \frac{1}{s} r(s) \, ds.
\]
Since \(\gamma_k = 0 \), this integral is finite in a neighbourhood of \(s = 0 \). In a neighbourhood of \(s = \infty \) we have \(r(s)/s \sim 1/s^{\gamma_0+1} \). Thus \(\gamma_0 + 1 > 1 \) implies that the integral in Equation (12) is finite. Therefore, \(l_0 \) is locally integrable. By Equation (10) and the fact that \(\Re s_m < 0 \) (by \((A_0) \)), we obtain that \(l \) is locally integrable.

Let \(\gamma_k > 0 \). Then
\[
l = \mathcal{L}^{-1} \left(\frac{1}{s^{\gamma_k}} \right) \ast \mathcal{L}^{-1} \left(\frac{1}{\sum_{i=0}^{k} a_i s^{\gamma_i-\gamma_k}} \right) = f_{\gamma_k} \ast l_1,
\]
where
\[
l_1 = \mathcal{L}^{-1} \left(\frac{1}{\sum_{i=0}^{k} a_i s^{\beta_i}} \right), \quad \beta_i = \gamma_i - \gamma_k, \quad i \in \{0, 1, \ldots, k\}, \quad \Re s > 0,
\]
and \(f_{\gamma_k} \) is defined by Equation (5). Note that \(\beta_k = 0 \). By the first part of the proof, \(l_1 \) is a locally integrable function. Since \(f_{\gamma_k} \) is locally integrable, \(l \) is locally integrable as the convolution of two locally integrable functions.

(ii) Let \(\gamma_k = 0 \). Then Equation (11) is finite in a neighbourhood of \(s = 0 \). In a neighbourhood of \(s = \infty \) we have that \(r(s) \sim 1/s^{\gamma_0} \). Since \(\gamma_0 > 1 \), the integrand in Equation (11) is integrable for all
$t > 0$ and Equation (11) is finite. Let $t_0 > 0$. Since $|e^{-st}r(s)| \leq e^{-st_0}|r(s)| := g(s)$ for all $t > t_0$ and $g \in L^1((0, \infty))$, by the classical theory we obtain that Equation (11) defines a continuous function for $t > t_0$. It follows that l_0 and l (by Equation (10)) are continuous for $t > 0$. Further on, since $|\partial_t(e^{-st}r(s))| \leq e^{-st_0}|sr(s)| := g_1(s)$, for all $t > t_0$ and $g_1 \in L^1(0, \infty)$, we obtain that l_0 is differentiable and

$$l'_0(t) = \int_0^\infty (-s)e^{-st}r(s), \quad t > 0.$$

Since $-sr(s) \sim 1/s^{\gamma_0-1}$ in a neighbourhood of $s = \infty$, as in (i) we show that l'_0 is a locally integrable function. Therefore, the derivative l'_0 exists and it is a locally integrable function. It means that l is absolutely continuous.

For $\gamma_k > 0$ we proceed as in (i) and obtain $l = f_{\gamma_k} * l_1$ with l_1 absolutely continuous. Therefore, l is also absolutely continuous. \blacksquare

Remark 3.3 If $\gamma_i \in [0, \infty)$ and if $\gamma_0 > p, p \in \mathbb{N}$, then l is continuous in \mathbb{R} as well as its derivatives up to order $p - 1$ while the pth derivative is a locally integrable function, i.e. $l \in AC^p$.

4. Comments from mechanics and further applications

Equation (8) represents a constitutive equation of a viscoelastic body. We will show that in the case when there exist $s_0 \in \mathbb{C}_+$ such that $\sum_{i=0}^k a_i s_0^\gamma_i = 0$ it follows that the dissipation inequality (14), (see [9]) is violated. The dissipation inequality requires that for any $T > 0$, any y and z the solution to $\sum_{i=0}^k a_i D^\gamma_i z(t) = y(t), \quad t > 0$, the dissipation work, A_d is nonnegative, i.e.

$$A_d = \int_0^T z(t)y'(t) \, dt \geq 0. \quad (14)$$

Let $T > 0$ and $y(t) = H(t) - H(t - \tau), \quad 0 < \tau < T, \quad t > 0$. Then

$$z(t) = L^{-1}\left(\frac{1}{s} - \frac{1}{s \sum_{i=0}^k a_i s_0^\gamma_i} - \frac{e^{-ts}}{s \sum_{i=0}^k a_i s_0^\gamma_i}\right) = \int_0^t g(u) \, du, \quad t > 0,$$

(15)

where $g(u) = l(u) - l(u - \tau)$ and l is the fundamental solution to Equation (8) given by Equation (9). Assume that $w(s_0) = \sum_{i=0}^k a_i s_0^\gamma_i = 0$ for $s_0 = u + iv, \quad u > 0$. Then by Equation (10)

$$l(t) = \frac{e^{st}}{w^{(1)}(s)}\bigg|_{s=s_0} + \sum_{j=1}^k \frac{e^{st}}{w^{(1)}(s_j)}\bigg|_{s=s_j} + l_0(t), \quad t > 0.$$

Further, note that

$$\frac{e^{st}}{w^{(1)}(s)}\bigg|_{s=s_0} = \frac{e^{ut}[\cos(\nu t) + i \sin(\nu t)]}{w^{(1)}(s_0)}, \quad t > 0,$$

(16)

represents oscillations with increasing amplitudes. Inserting Equation (15) in Equation (14) we obtain

$$A_d = \lim_{t \to 0} \int_0^t g(u) \, du - \int_0^\tau g(u) \, du \geq 0, \quad \tau, t > 0.$$

(17)

It is obvious that due to the presence of the term (16) in $g(t)$ the inequality (17) could be violated by a suitable choice of τ.

Acknowledgements

This work is supported by the Ministry of Science of Serbia, project 144016 and Austrian Science Fund (FWF) START program Y237 on ‘Nonlinear distributional geometry’.

References

[1] T.M. Atanackovic, A generalized model for the uniaxial isothermal deformation of a viscoelastic body, Acta Mech. 159 (2002), pp. 77–86.
[2] T.M. Atanackovic, A modified Zener model of a viscoelastic body, Contin. Mech. Thermodyn. 14 (2002), pp. 137–148.
[3] T.M. Atanackovic, On a distributed derivative model of viscoelastic body, C.R. Acad. Sci. Mec. 331 (2003), pp. 687–692.
[4] T.M. Atanackovic, LJ. Oparnica, and S. Pilipović, On a model of viscoelastic rod in unilateral contact with a rigid wall, IMA J. Appl. Math. 1 (2005), pp. 1–13.
[5] T.M. Atanackovic, LJ. Oparnica, and S. Pilipović, On a nonlinear distributed order fractional differential equation J. Math. Anal. Appl. 328 (2007), pp. 590–608.
[6] T.M. Atanackovic, LJ. Oparnica, and S. Pilipović, Semilinear ordinary differential equation coupled with distributed order fractional differential equation, preprint (2008) artXiv:0811-2871v1.
[7] T.M. Atanackovic and S. Pilipović, On a class of equations arising in linear viscoelasticity theory, Z. Angew. Math. Mech. 85 (2005), pp. 748–754.
[8] M. Caputo, Distributed order differential equation modeling dielectric induction and diffusion, Fract. Calc. Appl. Anal. 4 (2001), pp. 421–442.
[9] R. Christensen, Theory of Viscoelasticity, Academic Press, New York, 1982.
[10] F. Mainardi, G. Pagnini, and R. Gorenflo, Some aspects of fractional diffusion equation of single and distributed order, Appl. Math. Comput. 187 (2006), pp. 295–305.
[11] A. Nakhushev, Fractional Calculus and its Applications, Fizmatlit, Moscow, 2003.
[12] S.G. Samko, A. Kilbas, and O.I. Marichev, Fractional Integrals and Derivatives, Theory and Applications, Gordon and Breach Science Publishers, Amsterdam, 1993.
[13] F. Treves, Topological Vector Spaces, Distributions and Kernels, Academic Press, New York, 1967.