B-type Landau-Ginzburg models on Stein manifolds

E. M. Babalic¹, D. Doryn², C. I. Lazaroiu³ and M. Tavakol⁴

¹ Horia Hulubei National Institute for Physics and Nuclear Engineering (IFIN-HH), Bucharest-Magurele, Romania
²,³,⁴ Center for Geometry and Physics, Institute for Basic Science, Pohang 37673, Korea
⁴ School of mathematics and statistics, University of Melbourne, VIC 3010, Australia

E-mail: mbabalic@theory.nipne.ro, dmitry.doryn@gmail.com, calin@ibs.re.kr, mehdi.tavakol@unimelb.edu.au

Abstract. We summarize the description of the open-closed TFT datum for B-type Landau-Ginzburg models with Stein manifold targets and discuss various constructions which lead to large classes of examples of such models.

1. Introduction

It is well-known [1, 2] that B-type classical two-dimensional topological Landau-Ginzburg (LG) models with D-branes can be defined for any non-compact smooth Calabi-Yau manifold target \(X \) and any holomorphic superpotential \(W : X \to \mathbb{C} \). The quantization of such models is expected to produce non-anomalous 2d open-closed quantum topological field theories (TFTs), which must in turn obey the axioms first introduced in [3]. The analysis of [3] shows that such quantum field theories are equivalent with a **TFT datum**, an algebraic structure subject to certain axioms. It follows that the quantum B-type LG model with D-branes associated to the pair \((X, W)\) is entirely encoded by its TFT datum, which therefore should admit a description in terms of objects naturally associated to such a pair. This description was extracted in [2] through path integral arguments. It was formulated rigorously and further analyzed in [4, 5, 6].

As shown in [5], the Landau-Ginzburg TFT datum simplifies dramatically when the target Calabi-Yau manifold is Stein, leading to a large class of B-type LG models which were not considered previously. These need not be algebraic in the sense that \(X \) need not be the analyticization of an affine complex algebraic variety and \(W \) need not be the analyticization of a regular function. As a consequence, the corresponding TFT datum is described by constructions carried out in the analytic category. In this contribution, we give a brief review of B-type LG models with Stein Calabi-Yau targets, focusing on certain constructions which lead to large classes of examples.

2. Landau-Ginzburg pairs and B-type LG models

The axiomatic treatment of [3] shows that any 2d open-closed TFT is determined by a TFT datum of parity \(\mu \in \mathbb{Z}_2 \), which consists of:
The on-shell bulk algebra \mathcal{H}, which is a finite-dimensional and \mathbb{Z}_2-graded associative and commutative \mathbb{C}-algebra

- The topological D-brane category \mathcal{T}, which is a \mathbb{Z}_2-graded and Hom-finite \mathbb{C}-linear category whose objects are the topological D-branes of the model.

- The bulk-boundary maps $e_a : \mathcal{H} \to \text{Hom}_\mathcal{T}(a, a)$, which are even \mathbb{C}-linear maps defined for any $\text{D-brane } a \in \text{Ob}\mathcal{T}$.

- The boundary-bulk maps $f_a : \text{Hom}_\mathcal{T}(a, a) \to \mathcal{H}$, which are \mathbb{C}-linear maps of \mathbb{Z}_2-degree μ, defined for any $a \in \text{Ob}\mathcal{T}$.

- The bulk trace $\text{Tr} : \mathcal{H} \to \mathbb{C}$, an even and \mathbb{C}-linear non-degenerate map having the graded trace property.

- The boundary traces $\text{tr}_a : \text{Hom}_\mathcal{T}(a, a) \to \mathbb{C}$, which are \mathbb{C}-linear and non-degenerate maps of \mathbb{Z}_2-degree μ defined for each $a \in \text{Ob}\mathcal{T}$, such that the map $\sum_a \text{tr}_a : \oplus_a \text{Hom}_\mathcal{T}(a, a) \to \mathbb{C}$ has the graded trace property with respect to the associative multiplication induced on $\oplus_a \text{Hom}_\mathcal{T}(a, a)$ by the composition of \mathcal{T}.

This data is subject to certain further conditions discussed in [3, 4].

Definition 2.1. A Landau-Ginzburg (LG) pair is a pair (X, W) such that:

1. X is a non-compact complex and Kählerian manifold of dimension $d > 0$, which is holomorphically Calabi-Yau in the sense that its holomorphic canonical line bundle K_X is holomorphically trivial.

2. $W \in O(X)$ is a non-constant holomorphic complex-valued function defined on X.

Given an LG pair (X, W), let $Z_W^{\text{def}} = \{ x \in X | (\partial W)(x) = 0 \}$ denote the critical set of W; this is an analytic subset of X, which can be highly singular in general.

Definition 2.2. The modified contraction operator of an LG pair (X, W) is the sheaf morphism $\iota_W = i \partial W : TX \to O_X$. We define1:

- The critical sheaf $\mathcal{J}_W^{\text{def}} = \text{im}(\iota_W : TX \to O_X)$.

- The Jacobi sheaf $\text{Jac}_W^{\text{def}} = O_X / \mathcal{J}_W$.

- The Jacobi algebra $\text{Jac}(X, W)^{\text{def}} = \Gamma(X, \text{Jac}_W)$.

- The critical ideal $J(X, W)^{\text{def}} = \mathcal{J}_W(X) = \iota_W(\Gamma(X, TX)) \subseteq O(X)$.

To any LG pair (X, W), one can associate a classical B-type open-closed topological LG model which was constructed in [1, 2]. When the critical set Z_W is compact, the path integral arguments of [2] lead to a proposal for the TFT datum of the corresponding quantum theory, which was refined and analyzed rigorously in [4, 5, 6]; see [7] for a brief review of those results. It was shown in [4, 6] that this proposal satisfies all TFT datum axioms except for the topological Cardy constraint, which is also conjectured to hold. As shown in [5] and summarized below, the Landau-Ginzburg TFT datum admits a simpler equivalent description when X is a Stein manifold.

Remark 2.3. The bulk algebra \mathcal{H} and topological D-brane category \mathcal{T} of the B-type LG model parameterized by (X, W) are not only \mathbb{C}-linear but also $O(X)$-linear (see [1]).

1 We denote by $O(X)$ the \mathbb{C}-algebra of holomorphic complex-valued functions defined on X and by O_X the sheaf of holomorphic complex-valued functions defined on open subsets of X, while $\Gamma(X, E)$ denotes the $O(X)$-module of globally-defined holomorphic sections of a holomorphic vector bundle E.

IOP Conf. Series: Journal of Physics: Conf. Series

Group32

IOP Conf. Series: Journal of Physics: Conf. Series

1194 (2019) 012010

doi:10.1088/1742-6596/1194/1/012010
3. B-type LG models with Calabi-Yau Stein manifold target

3.1. Stein manifolds

Definition 3.1. Let X be a complex manifold of dimension $d > 0$. We say that X is Stein if it admits a holomorphic embedding as a closed complex submanifold of \mathbb{C}^N for some $N > 1$.

Remarks
- There exist numerous equivalent definitions of Stein manifolds.
- Any Stein manifold is Kählerian.
- The analyticization of any non-singular complex affine variety is Stein, but most Stein manifolds are not of this type.

Since all Stein manifolds are Kählerian, one can consider B-type Landau-Ginzburg models with Stein Calabi-Yau target.

Examples
- \mathbb{C}^d is a Stein manifold.
- Every domain of holomorphy in \mathbb{C}^d is a Stein manifold.
- Every closed complex submanifold of a Stein manifold is a Stein manifold.
- Any non-singular analytic complete intersection in \mathbb{C}^N is a Stein manifold.
- Any (non-singular) connected open Riemann surface without border is a Stein manifold.

The following result is crucial in Stein geometry:

Theorem 3.2 (Cartan’s theorem B). For every coherent analytic sheaf \mathcal{F} on a Stein manifold X, the sheaf cohomology $H^i(X, \mathcal{F})$ vanishes for all $i > 0$.

For what follows, let (X, W) to be a Landau-Ginzburg pair such that X is a Stein Calabi-Yau manifold of complex dimension d.

3.2. The bulk algebra

Theorem 3.3. [2] Suppose that the critical locus Z_W is compact. Then:

1. Z_W is necessarily finite.
2. The bulk algebra is concentrated in even degree and can be identified with the Jacobi algebra:

$$\mathcal{H} \cong_{\mathcal{O}(X)} \text{Jac}(X, W).$$

Moreover, we have an isomorphism of $\mathcal{O}(X)$-algebras:

$$\text{Jac}(X, W) \cong_{\mathcal{O}(X)} \mathcal{O}(X)/\text{J}(X, W).$$

3. Suppose that X is holomorphically parallelizable (i.e. TX is holomorphically trivial). Then:

$$\text{J}(X, W) = \langle u_1(W), \ldots, u_d(W) \rangle,$$

where u_1, \ldots, u_d is any global holomorphic frame of TX and $\langle f_1, \ldots, f_n \rangle$ denotes the ideal of $\mathcal{O}(X)$ generated by the holomorphic functions $f_j \in \mathcal{O}(X)$.

3.3. The topological D-brane category

Definition 3.4. A holomorphic factorization of W is a pair (E,D), where E is a \mathbb{Z}_2-graded holomorphic vector bundle defined on X and $D \in \Gamma(X, \text{End}_1(E))$ is an odd holomorphic section of E such that $D^2 = \text{Wid}_E$.

Definition 3.5. The holomorphic dg category of holomorphic factorizations of (X,W) is the \mathbb{Z}_2-graded $O(X)$-linear dg category $\text{F}(X,W)$ defined as follows:

- The objects of $\text{F}(X,W)$ are the holomorphic factorizations of W.
- The hom-sets are the $O(X)$-modules $\text{Hom}_{\text{F}(X,W)}(a_1,a_2) \overset{\text{def}}{=} \Gamma(X,\text{Hom}(E_1,E_2))$, endowed with the \mathbb{Z}_2-grading:
 $$\text{Hom}^\kappa_{\text{F}(X,W)}(a_1,a_2) = \Gamma(X,\text{Hom}^\kappa(E_1,E_2)), \ \forall \kappa \in \mathbb{Z}_2$$
- and with the defect differentials ∂_{a_1,a_2} determined uniquely by the condition:
 $$\partial_{a_1,a_2}(f) = D_2 \circ f - (-1)^\kappa f \circ D_1, \ \forall f \in \Gamma(X,\text{Hom}^\kappa(E_1,E_2)), \ \forall \kappa \in \mathbb{Z}_2.$$

Here $a_1 := (E_1,D_1)$ and $a_2 := (E_2,D_2)$ are any two holomorphic factorizations of W.
- The composition of morphisms is the obvious one.

Let $HF(X,W) \overset{\text{def}}{=} H(\text{F}(X,W))$ be the total cohomology category of the dg category $F(X,W)$.

Definition 3.6. A projective analytic factorization of W is a pair (P,D), where P is a finitely generated projective supermodule and $D \in \text{End}_1^{O(X)}(P)$ is an odd endomorphism of P such that $D^2 = \text{Wid}_P$.

Definition 3.7. The dg category $\text{PF}(X,W)$ of projective analytic factorizations of W is the \mathbb{Z}_2-graded $O(X)$-linear dg category defined as follows:

- The objects of $\text{PF}(X,W)$ are the projective analytic factorizations of W.
- The hom-sets $\text{Hom}_{\text{PF}(X,W)}((P_1,D_1),(P_2,D_2)) \overset{\text{def}}{=} \text{Hom}_{O(X)}(P_1,P_2)$ are endowed with \mathbb{Z}_2-grading and with the odd differential $\partial := \partial_{(P_1,D_1),(P_2,D_2)}$
 $$\partial(f) = D_2 \circ f - (-1)^{\deg f} f \circ D_1 f, \ \forall f \in \text{Hom}_{O(X)}(P_1,P_2).$$

- The composition of morphisms is the obvious one.

Let $\text{HPF}(X,W) \overset{\text{def}}{=} H(\text{PF}(X,W))$ be the total cohomology category of the dg category $PF(X,W)$.

For any unital commutative ring R and any element $r \in R$, let $\text{MF}(R,r)$ denote category of finite rank matrix factorizations of W over R and $\text{HMF}(R,r)$ denote its total cohomology category (which is \mathbb{Z}_2-graded and R-linear).

Theorem 3.8. [5] Let (X,W) be an LG pair such that X is a Stein manifold. Then:

(i) There exists a natural equivalence of $O(X)$-linear and \mathbb{Z}_2-graded dg categories:
 $$\text{F}(X,W) \simeq_{O(X)} \text{PF}(X,W).$$

(ii) If the critical locus Z_W is finite, then the topological D-brane category T is given by:
 $$T \equiv \text{HF}(X,W) \simeq_{O(X)} \text{HPF}(X,W).$$

(iii) Multiplication with elements of the critical ideal $J(X,W)$ acts trivially on $HF(X,W)$, so T can be viewed as a \mathbb{Z}_2-graded $\text{Jac}(X,W)$-linear category.

(iv) The even subcategory T^0 has a natural triangulated structure.

(v) There exists an $O(X)$-linear dg functor $\Xi : F(X,W) \to \oplus_{p \in Z_W} \text{MF}(O_{X,p},\tilde{W}_p)$ which induces a full and faithful $\text{Jac}(X,W)$-linear functor $\Xi_* : HF(X,W) \to \oplus_{p \in Z_W} \text{HMF}(O_{X,p},\tilde{W}_p)$.

4
Let Definition 3.9. holomorphically trivial iff it is topologically trivial, in which case we simply say that it is trivial.

By the Oka-Grauert principle, a holomorphic vector bundle V.

3.4. The remaining objects

When X is a Stein manifold with complex dimension d, the remaining objects of the TFT datum are as follows (see [5]):

- The bulk trace is given by:
 \[
 \text{Tr}(f) = \sum_{p \in \mathbb{Z}_W} A_p \text{Res}_p \left[\frac{\hat{f}_p \hat{\Omega}_p}{\det\hat{\Omega}_p(\partial W)} \right].
 \]

- The boundary trace of the D-brane (holomorphic factorization) $a = (E, D)$ is given by the sum of generalized Kapustin-Li traces:
 \[
 \text{tr}_a(s) = (-1)^{\frac{d(d-1)}{2}} \sum_{p \in \mathbb{Z}_W} A_p \text{Res}_p \left[\frac{\text{str}(\det\hat{\Omega}_p(\partial D_p) \hat{s}_p) \hat{\Omega}_p}{\det\hat{\Omega}_p(\partial W_p)} \right].
 \]

Here Ω is a holomorphic volume form on X, A_p are normalization constants and Res_p denotes the Grothendieck residue on $\mathcal{O}_{X,p}$.

- The bulk-boundary and boundary-bulk maps of $a = (E, D)$ are given by:
 \[
 e_a(f) \equiv i^d(-1)^{\frac{d(d-1)}{2}} \sum_{p \in \mathbb{Z}_W} \hat{f}_p \text{id}_{E_p}, \quad \forall f \in \mathcal{H} \equiv \text{Jac}(X, W)
 \]
 \[
 f_a(s) \equiv i^d \sum_{p \in \mathbb{Z}_W} \text{str}(\det\hat{\Omega}_p(\partial D_p) \hat{s}_p), \quad \forall s \in \text{End}_\tau(a) \equiv \Gamma(X, \text{End}(E)).
 \]

3.5. Topologically non-trivial elementary holomorphic factorizations

By the Oka-Grauert principle, a holomorphic vector bundle V on a Stein manifold X is holomorphically trivial iff it is topologically trivial, in which case we simply say that it is trivial.

Definition 3.9. Let (X, W) be an LG pair where X is a Stein manifold. A holomorphic factorization (E, D) of W is called elementary if $\text{rk} E^0 = \text{rk} E^1 = 1$ and topologically trivial if E is trivial as a \mathbb{Z}_2-graded holomorphic vector bundle, i.e. if both E^0 and E^1 are trivial.

Construction. Let X be a Calabi-Yau Stein manifold with $H^2(X, \mathbb{Z}) \neq 0$. Given a non-trivial holomorphic line bundle L on X and non-trivial holomorphic sections $v \in \Gamma(X, L)$ and $u \in \Gamma(X, L^{-1})$, the \mathbb{Z}_2-graded holomorphic vector bundle $E \overset{\text{def}}{=} \mathcal{O}_X \oplus L$ admits the odd global holomorphic section $D \overset{\text{def}}{=} \left[\begin{array}{cc} 0 & v \\ u & 0 \end{array} \right]$. The tensor product $u \otimes v \in H^0(L \otimes L^{-1})$ identifies with a non-trivial holomorphic function W defined on X through any isomorphism $L \otimes L^{-1} \simeq \mathcal{O}_X$ and (E, D) is a non-trivial elementary holomorphic factorization of W.

Remark 3.10. Let $\text{Pic}^\text{an}(X)$ denote the analytic Picard group of holomorphic line bundles on any Stein manifold X. Then the assignment $L \rightarrow c_1(L)$ induces an isomorphism $\text{Pic}^\text{an}(X) \simeq H^2(X, \mathbb{Z})$. When X is the analytic space associated to an algebraic variety, the natural map $\text{Pic}^\text{alg}(X) \rightarrow H^2(X, \mathbb{Z})$ from the algebraic Picard group need not be isomorphism.

2 Given a holomorphic vector bundle V on X, $\hat{\beta}_p$ denotes the germ at $p \in X$ of a holomorphic section $\beta \in \Gamma(X, V)$.

3 Here str denotes the supertrace on the finite-dimensional \mathbb{Z}_2-graded vector space $\text{End}_c(\text{End}_\tau(a))$.

4. Examples

4.1. Domains of holomorphy in \mathbb{C}^d

Let $X = U \subseteq \mathbb{C}^d$ be a domain of holomorphy. Then U is Stein and holomorphically parallelizable (hence Calabi-Yau) with global holomorphic frame $u_i = \partial_i$, where $\partial_i := \frac{\partial}{\partial z_i}$ and $\{z^1, \ldots, z^d\}$ are global holomorphic coordinates on U. Let $W \in \mathcal{O}(U)$ have finite critical set. We have [5]:

$$HPV(U, W) = HPV^0(U, W) \cong \mathcal{O}(U)/\langle \partial_1 W, \ldots, \partial_d W \rangle .$$

Example 4.1. [5] Suppose that U is contractible. Then $HDF(U, W)$ is equivalent with the \mathbb{Z}_2-graded cohomological category $HMF(\mathcal{O}(U), W)$ of analytic matrix factorizations of W.

4.2. Open Riemann surfaces

Let Σ be any open Riemann surface, i.e. a smooth, connected and non-compact complex Riemann surface without boundary. Such a surface need not be affine algebraic; in particular, it can have infinite genus and an infinite number of Freudenthal ends. Any open Riemann surface is Stein and any holomorphic vector bundle defined on it is trivial. In particular, Σ is holomorphically parallelizable and hence Calabi-Yau. Any finitely-generated projective $\mathcal{O}(\Sigma)$-module is free, thus $HPF(\Sigma, W)$ coincides with the \mathbb{Z}_2-graded category $HMF(\mathcal{O}(\Sigma), W)$ of finite rank matrix factorizations of W over the ring of holomorphic functions defined on Σ.

Proposition 4.2. [5] Let $W \in \mathcal{O}(\Sigma)$ be a non-constant holomorphic function. Then the bulk algebra of the corresponding B-type LG model is given by:

$$H \simeq \text{Jac}(\Sigma, W) = \mathcal{O}(\Sigma)/\langle v(W) \rangle ,$$

where v is any non-trivial globally-defined holomorphic vector field on Σ. Moreover, there exists an equivalence of $\mathcal{O}(\Sigma)$-linear \mathbb{Z}_2-graded categories:

$$HF(\Sigma, W) \simeq HPF(\Sigma, W) = HMF(\mathcal{O}(\Sigma), W) .$$

More detail on B-type LG models with open Riemann surface targets can be found in [9].

4.3. Analytic complete intersections

Let $X \subset \mathbb{C}^N$ be an analytic complete intersection of complex dimension d, defined by the regular sequence of holomorphic functions $f_1, \ldots, f_{N-d} \in \mathcal{O}(\mathbb{C}^N)$. Let u_1, \ldots, u_d be a global holomorphic frame of TX. Then X is Stein and holomorphically parallelizable (hence also Calabi-Yau). We have $\mathcal{O}(X) \simeq \mathcal{O}(\mathbb{C}^N)/\langle f_1, \ldots, f_{N-d} \rangle$. Any $W \in \mathcal{O}(X)$ is the restriction to X of a holomorphic function $W \in \mathcal{O}(\mathbb{C}^N)$. Let $Z_W \subset \mathbb{C}^N$ be the critical locus of W. Then $Z_W \cap X \subseteq Z_W$, but the inclusion may be strict. This construction provides a large class of B-type LG models with Stein Calabi-Yau targets. The simplest case arises when X is an analytic hypersurface in \mathbb{C}^N.

Proposition 4.3. [2] Let X be a non-singular analytic hypersurface in \mathbb{C}^N defined by the equation $f = 0$. Then the holomorphic tangent vector fields $(v_{ij})_{1 \leq i < j \leq N}$ defined on X through:

$$v_{ik}^j = (\partial_j f) \delta_{ik} - (\partial_i f) \delta_{jk} \quad (k = 1, \ldots, N)$$

generate each fiber of TX. If $W \in \mathcal{O}(\mathbb{C}^N)$ is a holomorphic function, then the critical locus Z_W of the restriction $W \overset{\text{def.}}{=} W|_X$ is defined by the system:

$$f = 0 , \quad \partial_i W \partial_j f - \partial_j W \partial_i f = 0 \quad (1 \leq i < j \leq N) .$$
If W has isolated critical points on X, then we have:

$$\text{Jac}(X,W) = O(\mathbb{C}^N)/I,$$

where $I \subset O(\mathbb{C}^N)$ is the ideal generated by f and by the holomorphic functions $\partial_i W \partial_j f - \partial_j W \partial_i f$ with $1 \leq i < j \leq N$.

Example 4.4. Let X be the non-singular analytic hypersurface defined in \mathbb{C}^3 by the equation $f(x_1, x_2, x_3) = x_1e^{x_2} + x_2e^{x_3} + x_3e^{x_1} = 0$ and $W \in O(\mathbb{C}^3)$ be the holomorphic function given by $W(x_1, x_2, x_3) = x_1^{n+1} + x_2x_3$, where $n \geq 1$. Let $W = W|_X \in O(X)$. The critical locus of W coincides with the origin of \mathbb{C}^3, which lies on X. Thus Z_W contains the point $(0, 0, 0) \in X$. In this example, we have:

$$\partial_1 f = e^{x_2} + x_3e^{x_1}, \quad \partial_2 f = e^{x_3} + x_1e^{x_2}, \quad \partial_3 f = e^{x_1} + x_2e^{x_3}.$$

The vector fields of Proposition 2. are given by:

$$v_{23} = (0, \partial_3 f, -\partial_2 f) = (0, e^{x_1} + x_2e^{x_3}, -e^{x_3} - x_1e^{x_2})$$
$$v_{13} = (\partial_3 f, 0, -\partial_1 f) = (e^{x_1} + x_2e^{x_3}, 0, -e^{x_2} - x_3e^{x_1})$$
$$v_{12} = (\partial_2 f, -\partial_1 f, 0) = (e^{x_3} + x_1e^{x_2}, -e^{x_2} - x_3e^{x_1}, 0)$$

and the defining equations (4.3) of Z_W take the form:

$$x_1e^{x_2} + x_2e^{x_3} + x_3e^{x_1} = 0$$
$$\begin{align*}
(n + 1)x_1^n(e^{x_1} + x_2e^{x_3}) - x_2(e^{x_2} + x_3e^{x_1}) &= 0 \\
x_3(e^{x_1} + x_2e^{x_3}) - x_2(e^{x_3} + x_1e^{x_2}) &= 0 \\
(n + 1)x_1^n(e^{x_3} + x_1e^{x_2}) - x_3(e^{x_2} + x_3e^{x_1}) &= 0.
\end{align*}$$

The bulk space H is the Jacobi algebra $\text{Jac}(X,W) = O(\mathbb{C}^3)/I$, where $I \subset O(\mathbb{C}^3)$ is the ideal generated by f and the four holomorphic functions appearing in the left hand side of the previous system. Numerical study shows that, for generic $n \geq 1$, the above transcendental system admits solutions different from $x_1 = x_2 = x_3 = 0$, so W has critical points on X which differ from the origin. For any $k \in \{0, \ldots, n+1\}$, an example of holomorphic (here even algebraic) factorization (E, D_k) of W on \mathbb{C}^3 is obtained by taking $E^0 = E^1 = O^{\mathbb{C}^2}_{\mathbb{C}^3}$ with:

$$D_k = \begin{bmatrix} 0 & b_k \\
 a_k & 0 \end{bmatrix}, \quad \text{where } a_k = \begin{bmatrix} x_2^k & x_1^{n+1-k} \\
x_1^k & -x_3 \end{bmatrix} \quad \text{and } b_k = \begin{bmatrix} x_3^k & x_1^{n+1-k} \\
x_1^k & -x_2 \end{bmatrix}$$

This induces a holomorphic factorization $(E|_X, D_k|_X)$ of W.

4.4. Complements of affine hyperplane arrangements

Let \mathcal{A} be a d-dimensional central complex affine hyperplane arrangement, i.e. a finite set of distinct linear hyperplanes $H = \ker \alpha_H \subset \mathbb{C}^d$, where $\alpha_H : \mathbb{C}^d \to \mathbb{C}$ are non-trivial linear functionals. The complex manifold $X = \mathbb{C}^d \setminus \bigcup_{H \in \mathcal{A}} H$ is Stein and parallelizable (hence Calabi-Yau) and coincides with the analyticization of the affine hypersurface in \mathbb{C}^{d+1} defined by:

$$x_{d+1} \prod_{H \in \mathcal{A}} \alpha_H(x_1, \ldots, x_d) = 1.$$
The cohomology ring $H(X, \mathbb{Z})$ is isomorphic as a graded \mathbb{Z}-algebra with the *Orlik-Solomon algebra* of \mathcal{A}, whose homogeneous components A^k are free \mathbb{Z}-modules of finite rank. In particular, the cohomology groups $H^k(X, \mathbb{Z})$ are free Abelian groups of finite rank. The *intersection poset* L of \mathcal{A} is the set of all those subspaces $F \subset \mathbb{C}^d$ (called flats) which arise as finite intersections of hyperplanes from \mathcal{A}, ordered by reverse inclusion. Since \mathcal{A} is central, its intersection poset L is a bounded geometric lattice with greatest element given by $\cap_{H \in \mathcal{A}} H$. Let $P_X(t) \overset{\text{def}}{=} \sum_{j=0}^d \text{rk} H^j(X, \mathbb{Z}) t^j$ be the Poincaré polynomial of X.

Proposition 4.5. [8, Theorem 2.2 & Corollary 3.6] Let μ_L be the Möbius function of the locally-finite poset L. Then $\mu_L(\mathbb{C}^d, F) \neq 0$ for all flats $F \subset L$ and the sign of $\mu_L(\mathbb{C}^d, F)$ equals $(-1)^{\text{codim} F}$. Moreover, we have:

$$P_X(t) = \sum_{F \in L} |\mu_L(\mathbb{C}^d, F)| t^{\text{codim} F} = \sum_{F \in L} \mu_L(\mathbb{C}^d, F) (-t)^{\text{codim} F}.$$

One has $\text{rk} H^j(X, \mathbb{Z}) > 0$ for all $j = 0, \ldots, \text{rk} \mathcal{A}$ and $\text{rk} H^j(X, \mathbb{Z}) = 0$ for $j > \text{rk} \mathcal{A}$ (see [8, Chap. 2.5, Exercise 2.5]), where $\text{rk} \mathcal{A} \overset{\text{def}}{=} \text{codim}_C [\cap_{H \in \mathcal{A}} H]$ is the rank of \mathcal{A}. This implies [5] that the complement of any d-dimensional central complex affine hyperplane arrangement \mathcal{A} with $d \geq 2$ and $\text{rk} \mathcal{A} \geq 2$ admits topologically non-trivial elementary holomorphic factorizations.

Example 4.6. Let $\mathcal{A} \subset \mathbb{C}^3$ be the 6-hyperplane arrangement defined by the linear functionals $x, y, z, x-y, x-z$ and $y-z$. Then $P_X(t) = 1 + 6t + 11t^2 + 6t^3$ and hence $H^2(X, \mathbb{Z}) \simeq \mathbb{Z}^{11}$.

Example 4.7. For any $d \geq 2$, let $\mathcal{A} \subset \mathbb{C}^d$ be the Boolean arrangement, defined by the equation $x_1 \cdots x_d = 0$. Then $X \overset{\text{def}}{=} \mathbb{C}^d \setminus (\cup_{H \in \mathcal{A}} H) = (\mathbb{C}^*)^d$ is a complex algebraic torus which can be identified with the analytic space associated to the complex affine variety:

$$X_{\text{alg}} \overset{\text{def}}{=} \text{Spec}(\mathbb{C}[x_1, \ldots, x_d, x_1^{-1}, \ldots, x_d^{-1}]) = \text{Spec} \left(\mathbb{C}[x_1, \ldots, x_{d+1}]/(x_1 \cdots x_{d+1} - 1) \right).$$

In this case, the Orlik-Solomon algebra coincides with the Grassmann \mathbb{Z}-algebra on d generators and the Poincaré polynomial of X is $P_X(t) = (t + 1)^d$ (see [8, Example 2.12 & Example 3.3]), hence $H^2(X, \mathbb{Z}) \simeq \mathbb{Z}^{d(d-1)/2}$. One can show [5] that $\text{Pic}_{\text{alg}}(X) = 0$ while $\text{Pic}_{\text{an}}(X) \simeq \mathbb{Z}^{d(d-1)/2}$. Thus X supports topologically non-trivial elementary holomorphic factorizations, even though all algebraic elementary factorizations on X are topologically trivial.

Example 4.8. Let $X \simeq (\mathbb{C}^*)^2$ be the complement of the 2-dimensional Boolean hyperplane arrangement, which embeds in \mathbb{C}^3 as the affine hypersurface with equation $x_1 x_2 x_3 = 1$. We have $\text{Pic}_{\text{alg}}(X) = 0$ but $\text{Pic}_{\text{an}}(X) \simeq H^2(X, \mathbb{Z}) \simeq \mathbb{Z}$. To describe $\text{Pic}_{\text{an}}(X)$ explicitly, write $X = \mathbb{C}^2/\mathbb{Z}^2$, where \mathbb{Z}^2 acts on \mathbb{C}^2 by:

$$(n_1, n_2) \cdot (z_1, z_2) \overset{\text{def}}{=} (z_1 + n_1, z_2 + n_2), \quad \forall (z_1, z_2) \in \mathbb{C}^2, \forall (n_1, n_2) \in \mathbb{Z}^2.$$
Consider the lattice $\Lambda := \mathbb{Z} \oplus i\mathbb{Z} \subset \mathbb{C}$ and the elliptic curve $X_0 \overset{\text{def}}{=} \mathbb{C}/\Lambda$ of modulus $\tau = i$. The maps $\varphi^\pm : \mathbb{C}^2 \to \mathbb{C}$ given by $\varphi^\pm(z_1, z_2) = z_1 \pm iz_2$ induce surjections $\varphi^\pm : X \to X_0$ which are homotopy retractions of X onto X_0. Pullback by φ^\pm induces isomorphisms:

$$\varphi^\pm : \text{NS}(X_0) \to H^2(X, \mathbb{Z}) ,$$

which differ only by sign, where $\text{NS}(X_0) \overset{\text{def}}{=} \text{Pic}_{\text{an}}(X_0)/\text{Pic}_{\text{an}}^0(X_0) = \text{Pic}_{\text{alg}}(X_0)/\text{Pic}_{\text{alg}}^0(X_0) \simeq H^2(X_0, \mathbb{Z})$ is the Neron-Severi group of X. Let $p_0 \in X_0$ be the mod Λ image of the point $z_0 = \frac{1+i}{2} \in \mathbb{C}$ and consider the holomorphic line bundle $L = \mathcal{O}(X_0(p_0))$ on X_0. Then the class of L modulo $\text{Pic}_{\text{an}}^0(X_0)$ generates $\text{NS}(X_0)$ and it was shown in [5] that the pullbacks $L_\pm := (\varphi^\pm)^*(L)$ are holomorphic line bundles defined on X, each of which generates $\text{Pic}_{\text{an}}(X)$ and which satisfy $L_- = L_+^{-1}$. Up to multiplication by a non-zero complex number, there exists a unique holomorphic section of $\mathcal{O}(X_0(p_0))$ which vanishes at p_0. A convenient choice $s_0 \in \Gamma(\mathcal{O}(X_0(p_0)))$ is described by the Riemann-Jacobi theta function (traditionally denoted by ϑ_{00} or ϑ_3) at modulus $\tau = i$:

$$\vartheta(z) = \vartheta_{00}(z)\big|_{\tau = i} = \sum_{n \in \mathbb{Z}} e^{-\pi n^2 + 2\pi niz} ,$$

which satisfies:

$$\vartheta(z + 1) = \vartheta(z) , \quad \vartheta(z \pm i) = e^{\pi \mp 2\pi iz}\vartheta(z)$$

and vanishes on the lattice $\frac{1+i}{2} + \Lambda$. The φ^\pm-pullbacks of s_0 give global holomorphic sections $s_{\pm} \in H^0(L_{\pm})$, which are described by the \mathbb{Z}^2-quasiperiodic holomorphic functions $f_{\pm} \in O(\mathbb{C}^2)$ defined through:

$$f_{\pm}(z_1, z_2) \overset{\text{def}}{=} \vartheta(z_1 \pm iz_2) = \sum_{n \in \mathbb{Z}} e^{-\pi n^2 + 2\pi in(z_1 \pm iz_2)} .$$

The tensor product $s_+ \otimes s_- \in H^0(L_+ \otimes L_-) \simeq O(X)$ corresponds to the holomorphic function $f \overset{\text{def}}{=} f_+ f_- \in O(\mathbb{C}^2)$, which satisfies:

$$f(z_1 + 1, z_2) = f(z_1, z_2) , \quad f(z_1, z_2 + 1) = e^{2\pi i z_2} f(z_1, z_2) .$$

The isomorphism $L_+ \otimes L_- \simeq \mathcal{O}_X$ is realized on \mathbb{Z}^2-factors of automorphy by the holomorphic function $S : \mathbb{C}^2 \to \mathbb{C}^*$ given by:

$$S(z_1, z_2) \overset{\text{def}}{=} e^{-2\pi z_2^2} ,$$

which satisfies $S(z_1, z_2) = e^{2\pi i z_2}$. The section $s_+ \otimes s_- \in H^0(L_+ \otimes L_-)$ corresponds through this isomorphism to a holomorphic function $W \in H^0(\mathcal{O}_X) = O(X)$ whose lift to \mathbb{C}^2 is the \mathbb{Z}^2-periodic function:

$$\tilde{W}(z_1, z_2) \overset{\text{def}}{=} S(z_1, z_2) f(z_1, z_2) = e^{-2\pi z_2^2} \vartheta(z_1 + iz_2) \vartheta(z_1 - iz_2) .$$

Applying the construction of Subsection 3.5 gives a topologically non-trivial elementary holomorphic factorization (E, D) of W, where $E = \mathcal{O}_X \oplus L_+$ and $D = \begin{bmatrix} 0 & s_- \\ s_+ & 0 \end{bmatrix}$. Notice that $\text{Pic}_{\text{an}}(X_0) = \text{Pic}_{\text{alg}}(X_0)$ by the GAGA correspondence since X_0 is a projective variety.
4.5. Complements of anticanonical divisors in Fano manifolds

The following result produces a large class of Calabi-Yau Stein manifolds which are analytifications of non-singular complex affine varieties:

Proposition 4.9. [5] Let Y be a non-singular complex projective Fano variety and D be a smooth anticanonical divisor on Y. Then the analytification of the complement $X := Y \setminus D$ is a non-compact Stein Calabi-Yau manifold.

Example 4.10. Let \mathbb{P}^d be the d-dimensional projective space with $d \geq 2$. In this case, we have $K_{\mathbb{P}^d} = O_{\mathbb{P}^d}(-d-1)$. Any irreducible smooth hypersurface Z of degree $d+1$ in \mathbb{P}^d defines an anticanonical divisor, whose complement $X = \mathbb{P}^d \setminus Z$ is a Stein Calabi-Yau manifold.

In this example, we have $H_1(X,\mathbb{Z}) = \mathbb{Z}^{d+1}$ and the torsion part of $H^2(X,\mathbb{Z})$ is isomorphic with $\text{Ext}^1(H_1(X,\mathbb{Z}),\mathbb{Z}) = \text{Ext}^1(\mathbb{Z},\mathbb{Z}) \simeq \mathbb{Z}$. Thus X admits non-trivial holomorphic line bundles and hence also topologically non-trivial elementary holomorphic factorizations.

4.6. The total space of a holomorphic vector bundle

Let Y be a Stein manifold and $\pi : E \to Y$ be a holomorphic vector bundle such that $c_1(E) = c_1(K_Y)$. Then the total space X of E is Stein and Calabi-Yau. A particular case of this construction is obtained by taking $E = K_Y$ of Y.

Example 4.11. [5] Consider the hypersurface $Z = \{[x,y,z] \in \mathbb{P}^2 \mid x^2 + y^2 + z^2 = 0\}$ in \mathbb{P}^2. Then $Y' := \mathbb{P}^2 \setminus Z$ is Stein with $H^2(Y',\mathbb{Z}) \simeq \mathbb{Z}_2$ and $c_1(K_Y) = -\gamma$, where γ is the generator of $H^2(Y,\mathbb{Z})$. Let X be the total space of K_Y. The pullback L of K_Y to X has non-trivial first Chern class, hence the \mathbb{Z}_2-graded holomorphic vector bundle $E = O_X \oplus L$ supports holomorphic factorizations of some non-zero function $W \in O(X)$.

Acknowledgments

This work was supported by the research grants IBS-R003-S1 and IBS-R003-D1. The work of E.M.B. was also supported by the joint Romanian-LIT, JINR, Dubna Research Project, theme no. 05-6-1119-2014/2019 and by the Romanian government grant PN 18090101/2019.

References

[1] Lazaroiu C I 2005 *J. High Energy Phys.* JHEP 505(2005)037
[2] Herbst M and Lazaroiu C I 2005 *J. High Energy Phys.* JHEP 0505(2005)044
[3] Lazaroiu C I 2001 *Nucl. Phys. B* 603 497–530
[4] Babalic E M, Doryn D, Lazaroiu C I and Tavakol M 2018 *Commun. Math. Phys.* 361 1169–1234 (arXiv:1610.09103v3 [math.DG])
[5] Babalic E M, Doryn D, Lazaroiu C I and Tavakol M 2018 *Commun. Math. Phys.* 362 129–165 (arXiv:1610.09813v3 [math.DG])
[6] Doryn D and Lazaroiu C I 2018 *Preprint* arXiv:1802.06261 [math.AG]
[7] Babalic E M, Doryn D, Lazaroiu C I and Tavakol M 2017 *Preprint* arXiv:1709.00684 [math.DG]
[8] Dimca A 2017 *Universitext*, Springer
[9] Lazaroiu C I and Tavakol M 2018 *Preprint*, conference proceedings for “Group 32” Prague