A FOURIER RESTRICTION THEOREM FOR HYPERSURFACES WHICH ARE GRAPHS OF CERTAIN REAL POLYNOMIALS

KEI MORII

Abstract. We will extend the Fourier restriction inequality for quadratic hypersurfaces obtained by Strichartz. We will consider the case where the hypersurface is a graph of a certain real polynomial which is a sum of one-dimensional monomials. It is essential to examine the decay of a one-dimensional oscillatory integral.

1. Introduction

Let S be a hypersurface in \mathbb{R}^n, $n \geq 2$. We consider the Fourier restriction inequality

$$\left(\int_S |\hat{\phi}(\xi)|^2 d\mu_n(\xi) \right)^{1/2} \leq C_p \|\phi\|_{L^p(\mathbb{R}^n)} \quad \text{for } \phi \in L^p(\mathbb{R}^n),$$

where the measure $d\mu_n$ on S is defined as follows:

$$d\mu_n(\xi) = \left| \frac{\partial \tilde{R}}{\partial \xi_n}(\xi) \right|^{-1} d\xi_1 \ldots d\xi_{n-1}$$

when S is written as $S = \{ \xi \in \mathbb{R}^n; \tilde{R}(\xi) = r \}$ with a constant $r \in \mathbb{R}$ and a real-valued function $\tilde{R} \in C^0(\mathbb{R}^n)$ which is partially differentiable with respect to ξ_n and $(\partial \tilde{R}/\partial \xi_n)(\xi) \neq 0$ for almost every $\xi \in \mathbb{R}^n$. For $\xi = (\xi_1, \ldots, \xi_n) \in \mathbb{R}^n$, we write $\xi' = (\xi_1, \ldots, \xi_{n-1})$. In particular, if S is the form of $S = \{ \xi \in \mathbb{R}^n; \xi_n = R(\xi') \}$, then (1.1) becomes

$$\left(\int_{\mathbb{R}^{n-1}} |\hat{\phi}(\xi', R(\xi'))|^2 d\xi' \right)^{1/2} \leq C_p \|\phi\|_{L^p(\mathbb{R}^n)} \quad \text{for } \phi \in L^p(\mathbb{R}^n).$$

For $p \in [1, \infty)$ and a subset of a Euclidean space Ω, set

$$\|f\|_{L^p(\Omega)} = \left(\int_{\Omega} |f(x)|^p dx \right)^{1/p}$$

and let $L^p(\Omega)$ denote the set of all Lebesgue measurable functions f on Ω such that $\|f\|_{L^p(\Omega)} < \infty$. Let i always denote the imaginary unit. We define the Fourier transform

\[\hat{f}(\xi) = \int_{\mathbb{R}^n} f(x) e^{-i\xi \cdot x} dx\]

2000 Mathematics Subject Classification. Primary 46F10; Secondary 35B40.

Key words and phrases. Fourier restriction theorem, one-dimensional oscillatory integral.

The author is supported by JSPS Research Fellowship for Young Scientists.
in $x \in \mathbb{R}^n$ and the inverse Fourier transform in $\xi \in \mathbb{R}^n$ by setting

$$\hat{f}(\xi) = (2\pi)^{-n/2} \int_{\mathbb{R}^n} f(x)e^{-ix\cdot\xi}dx,$$

$$\hat{f}(x) = (2\pi)^{-n/2} \int_{\mathbb{R}^n} f(\xi)e^{ix\cdot\xi}d\xi,$$

respectively. Those of a generalized function are also denoted by the same notation.

In [3], Strichartz determined the optimal range of the exponent p for which (1.1) holds for all quadratic hypersurfaces S. A nondegenerate quadratic hypersurface S which is not contained in an affine hyperplane is transformed into one of the following three types under an affine transformation.

(1) $S = \{\xi \in \mathbb{R}^n; \xi_n = \xi_1^2 + \cdots + \xi_s^2 - \xi_{s+1}^2 - \cdots - \xi_{n-1}^2\}$, where $1 \leq s \leq n - 1$.

(2) $S = \{\xi \in \mathbb{R}^n; \xi_1^2 + \cdots + \xi_s^2 - \xi_{s+1}^2 - \cdots - \xi_{n}^2 = 0\}$, where $1 \leq s \leq n - 1$.

(3) $S = \{\xi \in \mathbb{R}^n; \xi_1^2 + \cdots + \xi_s^2 - \xi_{s+1}^2 - \cdots - \xi_{n}^2 = 1\}$, where $1 \leq s \leq n$.

The results obtained by Strichartz for the first type are the following.

Theorem 1.1 (Strichartz [3, Theorem 1]). Let $n \geq 2$, and let S be a hypersurface $S = \{\xi \in \mathbb{R}^n; \xi_n = \xi_1^2 + \cdots + \xi_s^2 - \xi_{s+1}^2 - \cdots - \xi_{n-1}^2\}$, where $1 \leq s \leq n - 1$. Then, (1.2) holds with C_p independent of f if and only if

$$p = \frac{2(n+1)}{n-3}.$$

Strichartz also gives an estimate of solutions to the inhomogeneous Schrödinger evolution equations as an application of the Fourier restriction theorem.

Theorem 1.2 (Strichartz [3 Corollary 1]). Let $n \geq 1$. Let

$$p = \frac{2(n+2)}{n+4},$$

and assume $\phi \in L^2(\mathbb{R}^n)$ and $f \in L^p(\mathbb{R}^{1+n})$. Let $u(t, x)$ be a solution to the initial value problem for inhomogeneous partial differential equations

$$D_t u + \Delta u = f(t, x) \text{ in } \mathbb{R}^{1+n},$$

$$u(0, x) = \phi(x) \text{ in } \mathbb{R}^n,$$

where

$$D_t = -i\frac{\partial}{\partial t}, \Delta = \sum_{j=1}^{n} \frac{\partial^2}{\partial x_j^2}.$$

Then,

$$\|u\|_{L^p/(p-1)(\mathbb{R}^{1+n})} \leq C(\|\phi\|_{L^2(\mathbb{R}^n)} + \|f\|_{L^p(\mathbb{R}^{1+n})})$$

holds with C independent of ϕ, f and u.

The purpose of this paper is to study generalization of Theorems 1.1 and 1.2. We will consider the case where S is the graph of a certain real polynomial. We will introduce a method due to Strichartz, and extend Theorem 1.1 to prove the following.
Theorem 1.3. Let $n \geq 2$, and let S be a hypersurface $S = \{\xi \in \mathbb{R}^n; \xi_n = R(\xi')\}$, where

\begin{equation}
R(\xi') = \sum_{j=1}^{n-1} a_j \xi_j^{k_j},
\end{equation}

$a_j \in \mathbb{R} \setminus \{0\}$ and $k_j \in \{2, 3, 4, \ldots\}$ for all $j = 1, \ldots, n - 1$. Then, (1.2) holds with C_p independent of f if and only if

\[p = 2 - \frac{2}{2 + \sum_{j=1}^{n-1} \frac{1}{k_j}}. \]

The following theorem is our corresponding application of Theorem 1.3:

Theorem 1.4. Let $n \geq 1$. Let

\[a(\xi) = \sum_{j=1}^{n} a_j \xi_j^{k_j}, \]

where $a_j \in \mathbb{R} \setminus \{0\}$ and $k_j \in \{2, 3, 4, \ldots\}$ for all $j = 1, \ldots, n$. Let

\[p = 2 - \frac{2}{2 + \sum_{j=1}^{n} \frac{1}{k_j}}, \]

and assume $\phi \in L^2(\mathbb{R}^n)$ and $f \in L^p(\mathbb{R}^{1+n})$. Let $u(t, x)$ be a solution to the initial value problem for inhomogeneous partial differential equations

\begin{align}
D_t u - a(D)u &= f(t, x) \text{ in } \mathbb{R}^{1+n}, \\
u(0, x) &= \phi(x) \text{ in } \mathbb{R}^n,
\end{align}

where

\[D_t = -i \frac{\partial}{\partial t}, \quad D = (D_1, \ldots, D_n), \quad D_j = -i \frac{\partial}{\partial x_j}. \]

Then,

\[\|u\|_{L^p((p-1)(\mathbb{R}^{1+n}))} \leq C (\|\phi\|_{L^2(\mathbb{R}^n)} + \|f\|_{L^p(\mathbb{R}^{1+n})}) \]

holds with C independent of ϕ, f and u.

An essential matter in proving Theorem 1.3 is to examine the decay of the Fourier transform of $\exp(itR(x'))$, that is,

\begin{equation}
\int_{\mathbb{R}^{n-1}} \exp(ix' \cdot \xi' + itR(\xi'))d\xi'
\end{equation}

for large t. Since R is a sum of one-dimensional monomials, an estimate of (1.6) is effectively reduced to that of a one-dimensional oscillatory integral

\begin{equation}
\int_{-\infty}^{\infty} \exp(ix \xi + it\xi^k)d\xi,
\end{equation}
where \(k_j \in \{2, 3, 4, \ldots \} \). We will bound (1.7) by \(12|t|^{-1/k} \). If the region of integration is a bounded interval, then

\[
\left| \int_{\alpha}^{\beta} \exp(i x \xi + i t \xi^k) d\xi \right| \leq C_{\alpha, \beta}|t|^{-1/k}
\]

immediately follows from the Van der Corput lemma.

The organization of this paper is as follows. In Section 2, we estimate the one-dimensional oscillatory integral (1.7), and give a proof of Theorem 1.3. Section 3 describes a proof of Theorem 1.4.

2. A Fourier restriction theorem

In this section, we estimate the one-dimensional oscillatory integral (1.7), and give a proof of Theorem 1.3. We use a method due to Strichartz. Let \(\Gamma \) denote the Gamma function. For \(s \in \mathbb{R} \), let \(s^+ \) denote its positive part: \(s^+ = \max\{s, 0\} \).

Proposition 2.1 (Strichartz [3, Lemma 2]). Let \(n \geq 2 \). We assume that a hypersurface \(S \) is written as \(S = \{ \xi \in \mathbb{R}^n; \tilde{R}(\xi) = r \} \) with a constant \(r \in \mathbb{R} \) and a real-valued function \(\tilde{R} \in C^0(\mathbb{R}^n) \). Let

\[
G_z(\xi) = \frac{(\tilde{R}(\xi) - r)^z}{\Gamma(z + 1)}
\]

for \(z \in \mathbb{C} \). Moreover, we assume that for some \(\lambda > 1 \), \(\tilde{G}_{-\lambda + i\eta} \) is bounded:

\[
\|\tilde{G}_{-\lambda + i\eta}\|_{L^\infty(\mathbb{R}^n)} \leq C_\eta,
\]

and that there exists \(b < \pi \) such that

\[
\sup_{\eta \in \mathbb{R}} e^{-b|\eta|} \log C_\eta < \infty.
\]

Then, (1.1) holds for

\[
p = \frac{2\lambda}{\lambda + 1}.
\]

We use the following formula of integration later.

Lemma 2.2 ([1 p. 360]).

\[
\frac{(2\pi)^{1/2}}{\Gamma(z + 1)}(\xi^z)^+(x) = \lim_{\varepsilon \searrow 0} \int_{-\infty}^{\infty} e^{-\varepsilon \xi z} \frac{e^{i\varepsilon \xi}}{\Gamma(z + 1)} d\xi = ie^{i\varepsilon/2}(x + i0)^{-z-1}
\]

for all \(z \in \mathbb{C} \).

Next, for \(k_j \in \{2, 3, 4, \ldots \} \), we define a one-dimensional oscillatory integral

\[
A_k(x) = \lim_{\varepsilon \searrow 0} \int_{-\infty}^{\infty} \exp(-\varepsilon|x|^k + ixs + is^k) ds
\]

for \(x \in \mathbb{R} \). Changing the variables yields

\[
\lim_{\varepsilon \searrow 0} \int_{-\infty}^{\infty} \exp(-\varepsilon|x|^k + ixs + it \xi^k) d\xi = \begin{cases} t^{-1/k}A_k(t^{-1/k}x) & \text{if } t > 0, \\ (-t)^{-1/k}A_k((-t)^{-1/k}x) & \text{if } t < 0, \end{cases}
\]
and then,

\[
(2.1) \quad \left| \lim_{\varepsilon \to 0} \int_{-\infty}^{\infty} \exp(-\varepsilon|\xi|^k + ix\xi + it\xi^k)d\xi \right| = |t|^{-1/k} |A_k(|t|^{-1/k}x \text{ sgn } t)|
\]

for \(t \in \mathbb{R} \setminus \{0\} \). Here, \(\text{sgn} \) denotes the signature function: \(\text{sgn } s = s/|s| \) if \(s \in \mathbb{R} \setminus \{0\} \), \(\text{sgn } s = 0 \) if \(s = 0 \).

The bounds of \(A_k \) are the following.

Proposition 2.3.

\[
\left| \lim_{\varepsilon \to 0} \int_{-\infty}^{\infty} \exp(-\varepsilon|\xi|^k + ix\xi + it\xi^k)d\xi \right| \leq 12 |t|^{-1/k}
\]

for any \(k_j \in \{2, 3, 4, \ldots \} \) and \(t \in \mathbb{R} \setminus \{0\} \).

In view of (2.1), Proposition 2.3 immediately follows from the following.

Lemma 2.4. \(|A_k(x)| \leq 12 \) for any \(k_j \in \{2, 3, 4, \ldots \} \).

Proof. \(|A_2(x)| = 2\sqrt{\pi} \) follows from the well-known formula

\[
\lim_{\varepsilon \to 0} \int_{-\infty}^{\infty} \exp(-\varepsilon \xi^2 + ix\xi + it\xi^2)d\xi = \frac{2\sqrt{\pi}}{\sqrt{it}} e^{-ix^2/4t}.
\]

Moreover,

\[
A_3(x) = \frac{2\pi}{\sqrt{3}} \text{Ai}(x/\sqrt{3}),
\]

where \(\text{Ai} \) denotes the Airy function. The boundedness of \(\text{Ai} \) yields that of \(A_3 \).

Now, we will observe the boundedness of the functions \(A_k \). The proof depends on whether \(k \) is even or odd. Let \(\varepsilon > 0 \). First, suppose that \(k \) is even. Set

\[
x^* = \left(\frac{|1-x|}{k} \right)^{1/(k-1)} \text{ sgn}(1-x), \quad x_* = \left(\frac{|-1-x|}{k} \right)^{1/(k-1)} \text{ sgn}(-1-x).
\]

Note that these numbers satisfy

\[
x + k(x^*)^{k-1} = 1, \quad x + k(x_*)^{k-1} = -1,
\]

and

\[
0 \leq x^* - x_* \leq \frac{2}{k^{1/(k-1)}} \leq 2.
\]
Integrating by parts on the intervals \((-\infty, x_*]\) and \([x*, \infty)\), we have
\[
\int_{-\infty}^\infty \exp(-s^k + iks + is^k) ds = \int_{-\infty}^{x_*} \exp(-s^k + iks + is^k) ds
- i\frac{\exp(-s(x_*)^k + ixx_* + i(x_*)^k)}{i\varepsilon k(x_*)^{k-1} - 1} + i\frac{\exp(-s(x_*^*)^k + ixx_*^* + i(x_*^*)^k)}{i\varepsilon k(x_*^*)^{k-1} + 1}
- ik(k - 1)(1 + i\varepsilon) \int_{-\infty}^{x_*} \frac{s^{k-2} \exp(-s^k + iks + is^k)}{(i\varepsilon k s^{k-1} + x + ks^{k-1})^2} ds
- ik(k - 1)(1 + i\varepsilon) \int_{x_*}^\infty \frac{s^{k-2} \exp(-s^k + iks + is^k)}{(i\varepsilon k s^{k-1} + x + ks^{k-1})^2} ds.
\]
Changing the variables \(x + ks^{k-1} = \tilde{s}\) in the second and the third integrals, and using (2.2), we have
\[
\left| \int_{-\infty}^\infty \exp(-s^k + iks + is^k) ds \right| \leq 2 + \int_{x_*}^{x_*^*} ds + k(k - 1)(1 + \varepsilon) \int_{-\infty}^{x_*^*} \frac{s^{k-2}}{(x + ks^{k-1})^2} ds
+ k(k - 1)(1 + \varepsilon) \int_{x_*}^\infty \frac{s^{k-2}}{(x + ks^{k-1})^2} ds
= 2 + x_* - x_* + (1 + \varepsilon) \int_{-\infty}^{-1} \frac{d\tilde{s}}{s^2} + (1 + \varepsilon) \int_{1}^{\infty} \frac{d\tilde{s}}{s^2}
\leq 2 + x_* - x_* + 2(1 + \varepsilon)
\leq 6 + 2\varepsilon.
\]
Therefore, we obtain \(|A_k(x)| \leq 6\). This completes the proof in the case where \(k\) is even.

Second, suppose that \(k\) is odd. Set
\[
x_* = \left(\frac{1 - x}{k}\right)^{1/(k-1)} \quad \text{for } x \leq 1, \quad x_* = \left(\frac{-1 - x}{k}\right)^{1/(k-1)} \quad \text{for } x \leq -1
\]
this time. Note that these numbers satisfy
\[
x + k(\pm x^*)^{k-1} = 1, \quad x + k(\pm x_*)^{k-1} = -1,
\]
and
\[
x_* \leq \left(\frac{2}{k}\right)^{1/(k-1)} \leq 1, \quad 0 \leq x_* - x_* \leq \left(\frac{2}{k}\right)^{1/(k-1)} \leq 1.
\]
When \(x \leq -1\), integrating by parts on the intervals \((-\infty, -x_*] \), \([-x_*, x_*]\) and \([x^*, \infty)\) yields \(|A_k(x)| \leq 12\). When \(-1 \leq x \leq 0\), integrating by parts on the intervals \((-\infty, -x_*]\) and \([x^*, \infty)\) yields \(|A_k(x)| \leq 6\). When \(0 \leq x \leq 1\), integrating by parts on the intervals \((-\infty, -1]\) and \([1, \infty)\) yields \(|A_k(x)| \leq 10/3\). When \(x \geq 1\), integrating by parts on the whole interval yields \(|A_k(x)| \leq 2\). This completes the proof in the case where \(k\) is odd.

Incidentally, we state an estimate of another oscillatory integral.
Corollary 2.5.
\[\left| \lim_{\varepsilon \to 0} \int_{-\infty}^{\infty} \exp(-\varepsilon|\xi|^K + ix\xi + it|\xi|^K) d\xi \right| \leq 10|t|^{-1/K} \]
for any \(K > 1 \) and \(t \in \mathbb{R} \setminus \{0\} \).

We can verify Corollary 2.5 by similar calculus to the proof of Lemma 2.4 in the case where \(k \) is even.

Now, we prove the Fourier restriction theorem.

Proof of Theorem 1.3. We argue as in [3, Proof of Theorem 1, Case I]. Set
\[R_0(\xi) = \sum_{j=1}^{n-1} |\xi_j|^{k_j}, \quad \frac{1}{q} = \sum_{j=1}^{n-1} \frac{1}{k_j} \]
for short. Using Lemma 2.2 we have
\[\hat{G}_z(x) = (2\pi)^{-n/2} \lim_{\varepsilon \to 0} \int_{\mathbb{R}^n} e^{-\varepsilon(\xi_0'-|\xi_0-R(\xi)'|)} G_z(\xi) e^{ix\cdot\xi} d\xi \]
\[= (2\pi)^{-n/2} \lim_{\varepsilon \to 0} \int_{\mathbb{R}^n} \frac{e^{-\varepsilon(\xi_0'-|\xi_0-R(\xi)'|)}(\xi_n - R(\xi)')_{+} e^{ix\cdot\xi}}{\Gamma(z+1)} d\xi \]
\[= (2\pi)^{-n/2} \lim_{\varepsilon \to 0} \int_{\mathbb{R}^{n-1}} \exp(-\varepsilon R_0(\xi') + ix' \cdot \xi') \int_{-\infty}^{\infty} \frac{e^{-\varepsilon(\xi_n-R(\xi)')} e^{ixn\xi_n}}{\Gamma(z+1)} d\xi_n d\xi' \]
\[= i(2\pi)^{-n/2} e^{iz\pi/2} \lim_{\varepsilon \to 0} \int_{\mathbb{R}^{n-1}} \exp(-\varepsilon R_0(\xi') + ix_n R(\xi') + ix' \cdot \xi') d\xi' \]
\[= i(2\pi)^{-n/2} e^{iz\pi/2} \prod_{j=1}^{n-1} \lim_{\varepsilon \to 0} \int_{-\infty}^{\infty} \exp(-\varepsilon|\xi_j|^{k_j} + ix_j \xi_j + ia_j x_n^{k_j}) d\xi_j. \]

For \(z \in \mathbb{C}, \Re z \) and \(\Im z \) denote its real part and imaginary part, respectively. Therefore, using Proposition 2.3, we have
\[|\hat{G}_z(x)| = (2\pi)^{-n/2} e^{-\Im z \pi /2} |x_n|^{-\Re z - 1} \prod_{j=1}^{n-1} \lim_{\varepsilon \to 0} \int_{-\infty}^{\infty} \exp(-\varepsilon|\xi_j|^{k_j} + ix_j \xi_j + ia_j x_n^{k_j}) d\xi_j \]
\[\leq 12^{n-1} (2\pi)^{-n/2} e^{-\Im z \pi /2} |x_n|^{-\Re z - 1 - 1/q} \prod_{j=1}^{n-1} |a_j|^{1/k_j} \]
for \(x_1, \ldots, x_n \neq 0 \). Namely, we obtain
\[|\hat{G}_{-(1+1/q)+i\eta}(x)| \leq Ce^{-\eta \pi /2} \]
for \(x_1, \ldots, x_n \neq 0 \) and all \(\eta \in \mathbb{R} \) with \(C \) depending only on \(n \) and \(a_1, \ldots, a_{n-1} \). Now, we can apply Proposition 2.1 with \(\lambda = 1 + 1/q \). Then we obtain the desired sufficient condition on the exponent \(p \) for \([1,2]\).
In the rest of the proof, we also argue in essentially the same way as \cite[Proof of Theorem 1]{3}. We use a homogeneity argument with respect to the nonisotropic dilations

\[d_s \phi(x) = \phi(s^{1/k_1}x_1, \ldots, s^{1/k_{n-1}}x_{n-1}, sx_n) \]

for \(s > 0 \). On one hand,

\[
(d_s \phi)(\xi) = (2\pi)^{-n/2} \int_{\mathbb{R}^n} \phi(s^{1/k_1}x_1, \ldots, s^{1/k_{n-1}}x_{n-1}, sx_n) e^{-ix \cdot \xi} dx
\]

\[
= (2\pi)^{-n/2} s^{-(1+1/q)} \int_{\mathbb{R}^n} \phi(x) \times \exp(-is^{-1/k_1}x_1\xi_1 - \cdots - is^{-1/k_{n-1}}x_{n-1}\xi_{n-1} - is^{-1}x_n\xi_n) dx
\]

\[
= s^{-(1+1/q)} d_{s^{-1}} \hat{\phi}(\xi).
\]

On the other hand,

\[
\int_{\mathbb{R}^{n-1}} |d_{s^{-1}} \hat{\phi}(\xi', R(\xi'))|^2 d\xi' = s^{1/q} \int_{\mathbb{R}^{n-1}} |\hat{\phi}(\xi', R(\xi'))|^2 d\xi'.
\]

Now using

\[
\|d_s \phi\|_{L^p(\mathbb{R}^n)} = s^{-(1+1/q)/p} \|\phi\|_{L^p(\mathbb{R}^n)},
\]

and applying (1.2) for the function \(d_s \phi \), we have

\[
\left(\int_{\mathbb{R}^{n-1}} |\hat{\phi}(\xi', R(\xi'))|^2 d\xi' \right)^{1/2} = s^{-1/2q} \left(\int_{\mathbb{R}^{n-1}} |d_{s^{-1}} \hat{\phi}(\xi', R(\xi'))|^2 d\xi' \right)^{1/2}
\]

\[
= s^{1+1/2q} \left(\int_{\mathbb{R}^{n-1}} |(d_s \phi)^\wedge(\xi', R(\xi'))|^2 d\xi' \right)^{1/2}
\]

\[
\leq C_p s^{1+1/2q} \|d_s \phi\|_{L^p(\mathbb{R}^n)}
\]

\[
= C_p s^{1+1/2q - (1+1/q)/p} \|\phi\|_{L^p(\mathbb{R}^n)}.
\]

Therefore, to obtain (1.2) for any \(s > 0 \), we must have \(1 + 1/2q - (1 + 1/q)/p = 0 \). Then the desired necessary condition on the exponent \(p \) for (1.2) follows. This completes the proof. \(\square \)

In view of Corollary 2.5 we can prove Theorem 1.3 with replacing some \(\xi_j^{k_j} \) in (1.3) by \(|\xi_j|^{K_j} \) where \(K_j > 1 \).

For the case where \(R \) is homogeneous (\(k_1 = \cdots = k_{n-1} \)), see \cite[Chapter 8, \S 5.17]{2}.

3. An application to partial differential equations

Finally, we prove Theorem 1.4

Proof of Theorem 1.4. We argue as in \cite[Proof of Corollary 1]{3}. We may assume \(\phi \in \mathcal{S}(\mathbb{R}^n) \) and \(f \in \mathcal{S}(\mathbb{R}^{1+n}) \), where \(\mathcal{S} \) denotes the Schwartz class. Set

\[
R_0(\xi) = \sum_{j=1}^n |\xi_j|^{k_j}, \quad \frac{1}{q} = \sum_{j=1}^n \frac{1}{k_j}
\]
By duality, (1.2) is equivalent to
\[u(t, x) = (2\pi)^{-n/2} \int_{\mathbb{R}^n} e^{ix\cdot \xi} e^{ita(\xi)} \hat{\phi}(\xi) d\xi \]
\[+ (2\pi)^{-n/2} \lim_{\varepsilon \to 0} \int_0^t \int_{\mathbb{R}^n} e^{-\varepsilon R_0(\xi)} e^{ix\cdot \xi} e^{i(t-s)a(\xi)} (f(s, \cdot))^{(\xi)} d\xi ds. \]

By duality, (1.2) is equivalent to
\[\| (Fd\mu_n) \|_{L^p/(p-1)(\mathbb{R}^n)} \leq C_{p/(p-1)} \left(\int_{\mathbb{R}^n} |F(x', \tilde{R}(\xi'))|^2 d\xi' \right)^{1/2} \text{ for } F \in L^2(d\mu_n). \]

Now, let \(S = \{(t, \xi) \in \mathbb{R}^{1+n}; t + a(\xi) = 0\} \). Replacing \(n \) by \(n + 1 \) and \(x_{n+1} \) by \(t \), we have
\[\| \mathcal{F}_{t,x}[Fd\mu_t] \|_{L^p/(p-1)(\mathbb{R}^{1+n})} \leq C_{p/(p-1)} \left(\int_{\mathbb{R}^n} |F(-a(x), x)|^2 dx \right)^{1/2} \text{ for } F \in L^2(d\mu_t), \]
where \(\mathcal{F}_{t,x}[f] \) denotes the Fourier transform of \(f \) in \((t, x) \in \mathbb{R}^{1+n} \), that is,
\[\mathcal{F}_{t,x}[f](\tau, \xi) = (2\pi)^{-(1+n)/2} \int_{\mathbb{R}^n} \int_{-\infty}^{\infty} f(t, x) e^{-it\tau - ix\cdot \xi} dt dx. \]

Applying this, we have
\[\left\| \int_{\mathbb{R}^n} e^{ix\cdot \xi} e^{ita(\xi)} \hat{\phi}(\xi) d\xi \right\|_{L^p/(p-1)(\mathbb{R}^{1+n})} = \left\| \int_{\mathbb{R}^n} e^{ix\cdot \xi} e^{-it\tau} \hat{\phi}(\xi) d\mu_t(\tau, \xi) \right\|_{L^p/(p-1)(\mathbb{R}^{1+n})} \]
\[= (2\pi)^{(1+n)/2} \| \mathcal{F}_{t,x}[\hat{\phi}(\xi) d\mu_t](t, -x) \|_{L^p/(p-1)(\mathbb{R}^{1+n})} \]
\[\leq C \left(\int_{\mathbb{R}^n} |\hat{\phi}(x)|^2 dx \right)^{1/2} \]
\[= C \| \phi \|_{L^2(\mathbb{R}^n)}. \]

Next, set
\[T_s f(x) = \lim_{\varepsilon \to 0} \int_{\mathbb{R}^n} e^{-\varepsilon R_0(\xi)} e^{ix\cdot \xi} e^{i(t-s)a(\xi)} \hat{f}(s, \xi) d\xi \]
for \(s \in \mathbb{R} \). Here, we write \(\hat{f}(s, \xi) = (f(s, \cdot))^{(\xi)} \). It follows from the Plancherel theorem that
\[\| T_s f \|_{L^2(\mathbb{R}^n)} = \| f(s, \cdot) \|_{L^2(\mathbb{R}^n)}. \]

Now, we have
\[T_s f(x) \]
\[= (2\pi)^{-n/2} \lim_{\varepsilon \to 0} \int_{\mathbb{R}^n} e^{-\varepsilon R_0(\xi)} e^{ix\cdot \xi} e^{i(t-s)a(\xi)} \int_{\mathbb{R}^n} f(s, y) e^{-iy\xi} dy d\xi \]
\[= (2\pi)^{-n/2} \int_{\mathbb{R}^n} f(s, y) \left(\prod_{j=1}^n \lim_{\varepsilon \to 0} \int_{-\infty}^{\infty} \exp(-\varepsilon |\xi|^{k_j} + i(x_j - y_j)\xi_j + i\alpha_j(t-s)\xi_j^{k_j}) d\xi_j \right) dy. \]
Using Proposition 2.3, we have
\[
|T_s f(x)| \leq (2\pi)^{-n/2} \int_{\mathbb{R}^n} |f(s, y)| \prod_{j=1}^{n} \int_{-\infty}^{\infty} \exp(i(x_j - y_j)\xi_j + ia_j(t - s)\xi_j^{k_j})d\xi_j \ dy
\]
\[
\leq 12^n (2\pi)^{-n/2} |t - s|^{-1/q} \|f(s, \cdot)\|_{L^1(\mathbb{R}^n)} \prod_{j=1}^{n} |a_j|^{-1/k_j}
\]
for \(s \neq t\). Namely,
\[
(3.2) \quad \|T_s f\|_{L^\infty(\mathbb{R}^n)} \leq C |t - s|^{-1/q} \|f(s, \cdot)\|_{L^1(\mathbb{R}^n)}.
\]
Interpolating (3.1) into (3.2), we have
\[
\|T_s f\|_{L^p/(p-1)(\mathbb{R}^n)} \leq C |t - s|^{-2(p-1)/p} \|f(s, \cdot)\|_{L^p(\mathbb{R}^n)}
\]
\[
= C |t - s|^{-2(p-1)/p} \|f(s, \cdot)\|_{L^p(\mathbb{R}^n)}.
\]
Now, using the Hardy-Littlewood-Sobolev inequality (see [2] page 354 for instance), we have
\[
\left\| \int_0^t \int_{\mathbb{R}^n} e^{i\xi \cdot \xi} e^{i(t-s)\alpha(\xi)} \hat{f}(s, \xi) d\xi ds \right\|_{L^p/(p-1)(\mathbb{R}^{1+n})}
\]
\[
= \left\| \int_0^t T_s f(x) ds \right\|_{L^p/(p-1)(\mathbb{R}^{1+n})}
\]
\[
\leq \left\| \int_0^t \|T_s f\|_{L^p/(p-1)(\mathbb{R}^n)} ds \right\|_{L^p/(p-1)(\mathbb{R}^n)}
\]
\[
\leq C \left\| \int_{-\infty}^{\infty} \|T_s f\|_{L^p/(p-1)(\mathbb{R}^n)} ds \right\|_{L^p/(p-1)(\mathbb{R}^n)}
\]
\[
\leq C \left\| f(t, \cdot) \right\|_{L^p(\mathbb{R}^n)} \|f\|_{L^p(\mathbb{R}^{1+n})}
\]
Thus, we obtain
\[
\|u\|_{L^p/(p-1)(\mathbb{R}^{1+n})} \leq C \left(\|\phi\|_{L^2(\mathbb{R}^n)} + \|f\|_{L^p(\mathbb{R}^{1+n})} \right).
\]
This completes the proof.

Acknowledgment

The author expresses gratitude to Hiroyuki Chihara for helpful advices.

References

1. I. M. Gel’fand and G. E. Shilov, Generalized functions. Vol. 1, Academic Press [Harcourt Brace Jovanovich Publishers], New York, 1964 [1977], Properties and operations, Translated from the Russian by Eugene Saletan.
2. E. M. Stein, *Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals*, Princeton Mathematical Series, vol. 43, Princeton University Press, Princeton, NJ, 1993, With the assistance of Timothy S. Murphy; Monographs in Harmonic Analysis, III.

3. R. S. Strichartz, *Restrictions of Fourier transforms to quadratic surfaces and decay of solutions of wave equations*, Duke Math. J. 44 (1977), no. 3, 705–714.

Mathematical Institute, Tohoku University, Sendai, 980-8578, Japan.

E-mail address: sa3m28@math.tohoku.ac.jp