Tailoring the Specificity of a Plant Cystatin toward Herbivorous Insect Digestive Cysteine Proteases by Single Mutations at Positively Selected Amino Acid Sites*1[OA]

Marie-Claire Goulet, Cindy Dallaire, Louis-Philippe Vaillancourt, Moustafa Khalf, Amine M. Badri, Andreja Preradov, Marc-Olivier Duceppe, Charles Goulet, Conrad Cloutier, and Dominique Michaud*

Département de Phytopathologie, Pavillon des Services (M.-C.G., C.D., L.-P.V., M.K., A.M.B., A.P., M.-O.D., C.G., D.M.), and Département de Biologie (C.C.), Centre de Recherche en Horticulture, Université Laval, Quebec, Canada G1K 7P4

Plant cystatins, similar to other defense proteins, include hypervariable, positively selected amino acid sites presumably impacting their biological activity. Using 29 single mutants of the eighth domain of tomato (Solanum lycopersicum) multicystatin, SlCYS8, we assessed here the potential of site-directed mutagenesis at positively selected amino acid sites to generate cystatin variants with improved inhibitory potency and specificity toward herbivorous insect digestive cysteine (Cys) proteases. Compared to SlCYS8, several mutants (22 out of 29) exhibited either improved or lowered potency against different model Cys proteases, strongly suggesting the potential of positively selected amino acids as target sites to modulate the inhibitory specificity of the cystatin toward Cys proteases of agronomic significance. Accordingly, mutations at positively selected sites strongly influenced the inhibitory potency of SlCYS8 against digestive Cys proteases of the insect herbivore Colorado potato beetle (Leptinotarsa decemlineata). In particular, several variants exhibited improved potency against both cystatin-sensitive and cystatin-insensitive digestive Cys proteases of this insect. Of these, some variants also showed weaker activity against leaf Cys proteases of the host plant (potato [Solanum tuberosum]) and against a major digestive Cys protease of the two-spotted stinkbug Perillus bioculatus, an insect predator of Colorado potato beetle showing potential for biological control. Overall, these observations suggest the usefulness of site-directed mutagenesis at positively selected amino acid sites for the engineering of recombinant cystatins with both improved inhibitory potency toward the digestive proteases of target herbivores and weaker potency against nontarget Cys proteases in the host plant or the environment.

The expression of recombinant cystatins in transgenic crops has been proposed by several authors to prevent herbivory or pathogenic infection (Arai and Abe, 2000; Atkinson et al., 2003; Haq et al., 2004). Cystatins, similar to other competitive protease inhibitors, form a tight complex with the active site of target proteases to cause inhibition and interfere with dietary protein digestive functions in herbivorous organisms (Arai et al., 2002). Cystatins expressed in transgenic plant lines were shown to alter the development of herbivorous arthropods and root parasitic nematodes relying on Cys proteases for extracellular protein digestion (e.g. Leplé et al., 1995; Atkinson et al., 2003; Ouchkourof et al., 2004). These proteins also show potential for microbial control, as suggested by their deleterious effects against a number of fungal and viral pathogens of agronomic significance (Gutierrez-Campos et al., 1999; Martinez et al., 2005; Yang and Yeh, 2005; Christova et al., 2006).

Despite promising developments, the successful use of cystatins in plant protection still remains confined to specific examples. Insect herbivores have developed over time effective strategies to elude the inhibitory effects of plant protease inhibitors (Broadway, 2000), including: (1) the use of complex digestive protease systems with proteases from different mechanistic classes acting in a complementary, coordinated manner (Terra and Ferreira, 1994; Brunelle et al., 1999, 2004); (2) the production of alternative, insensitive protease forms following ingestion of protease inhibitors (Jongsma et al., 1995; Bown et al., 1997; Cloutier et al., 1999, 2000; Mazumdar-Leighton and Broadway, 2001a, 2001b; Zhu-Salzman et al., 2003; Brunelle et al., 2004); and (3) the degradation of defensive protease inhibitors using nontarget, insensitive digestive proteases (Michaud et al., 1995a; Michaud, 1997; Girard et al., 1998a; Giri et al., 1998; Gruden et al., 2003; Zhu-Salzman et al., 2003). It is now generally recognized that variations in individual cystatins are advantageous for the host plant in the face of predicted resistance of the insect to a transgenic construction (e.g. Arai et al., 2002).

* Corresponding author; e-mail dominique.michaud@plg.ulaval.ca.

The author responsible for distribution of materials integral to the findings presented in this article in accordance with the policy described in the Instructions for Authors (www.plantphysiol.org) is: Dominique Michaud (dominique.michaud@plg.ulaval.ca).

[OA] Open Access articles can be viewed online without a subscription.

www.plantphysiol.org/cgi/doi/10.1104/pp.108.115741
that protease/inhibitor interactions in plant-insect systems are the result of a long, coevolutionary process triggering the continuous diversification of proteolytic and protease inhibitory functions in the competing organisms (Lopes et al., 2004; Valueva and Mosolov, 2004; Christeller, 2005; Kiggundu et al., 2006; Girard et al., 2007).

In this context, the development of recombinant protease inhibitors with strong inhibitory effects specific to the organism targeted represents a worthwhile but challenging task. Several approaches based on structure/function models have been used over the years to improve the inhibitory potency of protease inhibitors against specific proteases, including site-directed mutagenesis of specific amino acids or amino acid strings (e.g. Qasim et al., 1997; Mason et al., 1998; Ogawa et al., 2002; Pavlova and Björk, 2003) and molecular phage display procedures involving random mutagenesis in specific regions of the inhibitor sequence (e.g. Laboissiere et al., 2002; Ceci et al., 2003; Melo et al., 2003; Stoop and Craik, 2003). A structural model for the human stefin B:papain complex (Stubbs et al., 1990), in particular, has been instrumental in the identification of relevant target sites for the molecular improvement of cystatins against Cys proteases. Koïwa et al. (2001), for instance, used this model to confirm the importance of the first and second inhibitory loops of soyacystatin N in the inhibition of papain, and isolated improved variants of this plant cystatin from combinatorial phage display libraries after inducing random mutations within these two regions. In an early study, Urwin et al. (1995) engineered a variant of oryzacystatin I with improved nematicidal activity by deleting the residue Asp-86 from the original sequence, after deducing the possible interfering effect of this amino acid during the inhibitory process. More recently, Melo et al. (2003) produced a phage display library derived from a nematode cystatin randomly mutagenized in the first (centrally) inhibitory loop to select mutated cystatins with high inhibitory activity against digestive proteases of the major bean weevil Acanthoscelides obtectus.

RESULTS

Inhibitory Potency against Model Cys Proteases

Twenty-nine variants of SlCYS8 were engineered by single mutations at three amino acid positions recently identified as positively selected (Fig. 1A; see Kiggundu et al. [2006] for codon numbering). The second amino acid of the cystatin, a Pro residue (Pro-2, or P2) adjacent to the conserved GG motif in the N-terminal trunk, was substituted by the 19 other amino acids to estimate the overall functional variability possible at this position. Mutations were also induced at the sixth and 31st amino acid sites, substituting the original Thr-6 (T6) or Glu-31 (E31) residues by five residues representative of the major amino acid families. The wild-type and 29 SlCYS8 mutants were expressed in and purified from Escherichia coli using the glutathione S-transferase (GST) gene fusion system as described recently for SlCYS8 (Girard et al., 2007) and then compared in their ability to inhibit Cys proteases. All variants were isolated under a soluble form and cleaved from the GST affinity tag by treatment with human factor X, giving proteins of the expected size, free of protein contaminants or degradation intermediates when resolved by SDS-PAGE (Fig. 1B).

Inhibitory Potency against Model Cys Proteases

Inhibitory assays were first carried out with four model Cys proteases of the papain family to assess the antiprotease functional variability among SlCYS8 variants. Point mutations at positions 2 and 6 in SlCYS8 were shown recently to significantly alter the inhibitory profile of the cystatin, with some mutations either favoring or interfering with the inhibitory process.
depending on the target protease tested (Kiggundu et al., 2006). In line with these observations, the variants mutated at position 2, 6, or 31 showed important differences in their inhibitory potency against the four Cys proteases papain, cathepsin B, cathepsin L, and cathepsin H, compared to the wild-type cystatin interacting with the same enzymes (Table I). As inferred from inhibition constants (or K_i values) for the different cystatin:protease complexes, some mutations (i.e., mutations P2H, P2K, and T6P) had a general negative impact on the cystatin (increased K_i values), whereas other mutations (i.e., mutations P2C, P2V, and E31F) had a general positive impact (lower K_i values).

Interestingly, most mutations (22 out of 29; e.g., P2F, P2Q, P2S, P2W, and T6E) had a differential impact on inhibitory activity depending on the protease tested. The P2F variant, for instance, showed improved activity against papain and cathepsin L but decreased activity against cathepsin B and cathepsin H. In a similar way, the T6I variant exhibited a slightly lowered activity against papain and cathepsin B but improved activity against cathepsin H and cathepsin L, which suggests the potential of single mutations at hypervariable (positively selected) amino acid sites to generate recombinant inhibitors optimized for the inhibition of specific target proteases in complex biological systems.

Inhibitory Potency against Colorado Potato Beetle Digestive Cys Proteases

To test this hypothesis, protease inhibitory assays were performed for the different SICYS8 variants with digestive (midgut) proteases of the insect herbivore Colorado potato beetle (Leptinotarsa decemlineata), which relies on both cystatin-sensitive and cystatin-insensitive Cys proteases for dietary protein digestion (Michaud et al., 1993, 1995b; Gruden et al., 2003). Fluorimetric protease assays were first conducted to identify synthetic peptide substrates allowing us to discriminate these two differentially sensitive Cys protease populations in insect extracts (Fig. 2). The substrate Z-Phe-Arg-methylcoumarin (Z-Phe-Arg-MCA), used routinely to monitor Cys protease activities in biological extracts (Barrett and Kirschke, 1981; Tchoupé et al., 1991), was cleaved mainly by proteases sensitive to both the low-molecular-weight diagnostic inhibitor of Cys proteases, trans-expoxyoxysuccinyl-L-leucylamido-4(guanidino)butane (E-64) and the wild-type form of SICYS8 (Fig. 2A), making it a useful tool to monitor SICYS8-sensitive Cys protease activities in the insect midgut. By contrast, the substrate Z-Arg-Arg-MCA, cleaved specifically by cathepsin B-like enzymes (Barrett and Kirschke, 1981), was hydrolyzed mainly by E-64-sensitive proteases poorly sensitive to SICYS8 (Fig. 2B), in line with an early study reporting the negligible inhibitory potency of plant (rice [Oryza sativa]) cystatins against Colorado potato beetle midgut Cys proteases with cathepsin B-like activity (Michaud et al., 1993).

Protease inhibitory assays were performed with these two substrates to compare the 30 SICYS8 variants in their inhibitory efficiency against the insect cystatin-sensitive (Z-Phe-Arg-MCA-hydrolyzing) and cystatin-insensitive (Z-Arg-Arg-MCA-hydrolyzing) proteases (Table II; Fig. 3). As observed with model papain-like proteases (Table I), mutations at positions 2, 6, and 31 strongly altered the inhibitory profile of SICYS8 against the insect cystatin-sensitive proteases (Table II). For instance, mutating the residue Pro-2 for a His, Asn, Gln, or Thr negatively altered the inhibitory potency of the cystatin for these proteases, giving IC_{50} values (i.e., inhibitor concentrations required to reduce protease activity by 50%) increased by 2- to more than 10-fold using Z-Phe-Arg-MCA as a substrate. In contrast, mutating the same residue for a Phe, Leu, Met, or Val
Improved inhibitory effect of the cystatin, giving IC_{50} values decreased by 2- to 3-fold. As for Pro-2, variations in inhibitory potency were observed for mutations exchanging residues Thr-6 or Glu-31 for alternative residues, with IC_{50} values for the insect proteases again showing 2- to 3-fold increases or decreases. Obvious effects on inhibitory activity were also observed for the insect cystatin-insensitive, Z-Arg-Arg-MCA-hydrolyzing Cys proteases (Fig. 3). Whereas a maximal inhibitory rate of approximately 10% was observed for the wild-type cystatin used at 1 μM, inhibitory rates reaching 30% to more than 50% were observed for some Pro-2 and Thr-6 variants (e.g. P2C, P2L, P2Y, and T6R) used at 1 or 5 μM, compared to an overall inhibition rate of approximately 80% to 85% for the low-molecular-weight diagnostic inhibitor E-64 used at the same concentrations.

Inhibitory Potency against Potato Cys Proteases

Inhibitory assays were then performed with the different SICY8 variants to compare their potency to inhibit the leaf Cys proteases of potato (*Solanum tuberosum*), using Z-Phe-Arg-MCA as a general substrate for plant Cys, E-64-sensitive proteases (Michaud, 1998; Table II). As observed for the herbivore proteases, mutating the residue Pro-2, Thr-6, or Glu-31 for alternative residues had a strong impact on cystatin:potato protease complexes, with most mutations either increasing or weakening the inhibitory interaction. The P2D and P2E variants, for instance, gave IC_{50} values increased by approximately 15-fold, in contrast with decreased IC_{50} values for the P2H, P2R, and T6S mutants indicating an increased inhibitory effect against the plant proteases. Interestingly, some variants that showed increased inhibitory activity against both cystatin-sensitive and cystatin-insensitive proteases of Colorado potato beetle (e.g. P2F, P2I, P2L, and T6R; Table II; Fig. 3) exhibited unaltered or even decreased potency against the potato proteases, unlike other mutants (e.g. P2V) showing increased activity against both the insect and plant proteases. As inferred above with papain and human cathepsins, these data illustrate the potential of mutations at positively selected amino acid sites for the generation of functional variability against Cys proteases, allowing notably for the engineering of cystatin variants with both improved activity toward the digestive Cys proteases of an insect herbivore and weakened activity against endogenous (nontarget) Cys proteases of its primary host plant.

Inhibitory Potency against Stinkbug Predator Cys Proteases

Complementary zymographic assays were carried out to measure the inhibitory potency of SICY8 variants against protease I, a major digestive Cys protease of the stinkbug predator *Perillus bioculatus* sensitive to plant cystatins (Ashouri et al., 1998; Overney et al., 1998; Fig. 4). Strong plant cystatin:Cys protease complexes (i.e. with K_{i} values in the nanomolar or subnanomolar range) remain stable in the presence of SDS, unlike weaker complexes (with K_{i} values in the micromolar range or higher) breaking down and restoring protease activity in gel zymograms (Michaud, 1998). Similar to rice cystatin I expressed in potato (Bouchard et al., 2003a, 2003b), SICY8 formed a strong, SDS-stable complex with the predator protease, giving a residual protease activity of about 25% following nonreducing SDS-PAGE, compared to the activity of the same protease with no cystatin added (0% inhibition, 100% residual activity; Fig. 4). In a similar way, the P2V and T6R variants formed SDS-stable complexes leading to residual activities of 5% to 10%, suggesting an even stronger inhibitory potency for these mutants, potentially causing increased inhibitory effects in the predator via its herbivorous prey fed the recombinant

Table 1. K_{i} values for SICY8 variants interacting with the model Cys proteases papain, cathepsin B, cathepsin L, and cathepsin H

Variant	Papain K_{i}	Cathepsin B K_{i}	Cathepsin L K_{i}	Cathepsin H K_{i}
Wild type	4.1	308	9.0	20.6
Position 2				
P2A	4.4	792	7.8	22.4
P2C	2.6	182	6.0	2.5
P2D	13.0	611	7.4	n.i.
P2E	9.5	595	7.6	n.i.
P2F	1.5	768	5.7	272
P2G	1.5	478	7.0	74.0
P2H	5.3	691	9.8	1,130
P2I	3.8	941	12.8	48.1
P2K	7.4	495	11.4	n.i.
P2L	2.5	1,010	10.0	180
P2M	2.2	493	8.2	160
P2N	4.0	905	6.7	213
P2Q	2.7	522	4.7	143
P2R	2.6	253	6.2	143
P2S	2.8	631	9.7	130
P2T	2.1	411	8.2	42.0
Position 6				
T6E	2.5	824	5.0	431
T6I	5.3	348	7.6	13.3
T6P	9.5	657	17.4	2,754
T6R	2.9	339	2.3	5.7
T6S	3.4	470	12.9	27.4
Position 31				
E31A	3.2	293	6.3	17.5
E31F	3.4	271	4.2	16.5
E31G	2.5	496	3.4	10.0
E31K	0.5	331	0.7	5.6
E31T	2.3	333	3.7	3.3

*Each value is the mean of six independent measurements. All ± values for these measures fell within a 10% range compared to the mean value reported. \(a\)Values in italics are from Kiggundu et al. (2006). \(b\)n.i., No measurable inhibition.
inhibitor (Bouchard et al., 2003a). In sharp contrast, the P2F, P2I, P2L, and P2Y variants formed SDS-labile complexes with the same protease, leading to complete restoration of protease activity after electrophoresis (Fig. 4) and suggesting an eventual negligible impact of these mutants in the predator.

DISCUSSION

Current strategies for the molecular improvement of plant protease inhibitors include rational mutagenesis based on protease:inhibitor structural models, and stochastic methods involving random mutagenesis in specific regions of the gene/protein sequence followed by selection of improved inhibitor variants by molecular phage display. As a complement, we document here the potential of adaptive evolutionary models as useful tools to rapidly identify candidate target sites for the generation of functional diversity by site-directed mutagenesis. We recently established a link between the occurrence of positively selected (hypervariable) amino acid sites in the primary sequence of plant cystatins and the inhibitory spectrum of these inhibitors against Cys proteases of the papain family (Kiggundu et al., 2006). Using a collection of cystatin variants derived from the tomato multicystatin unit SICYS8 and digestive Cys proteases from a well-characterized plant-herbivore-predator tritrophic model, we show here that a limited, finite number of single mutations at positively selected amino acid sites can generate enough functional diversity toward Cys proteases to allow for the rapid identification of new variants with improved activity and specificity against Cys proteases of a target herbivore. Out of 29 mutants tested, four variants, namely, the P2F, P2I, P2L, and P2Y mutants, exhibited improved inhibitory activity against both cystatin-sensitive and cystatin-insensitive digestive Cys proteases of Colorado potato beetle, while also exhibiting lowered (or unaltered) activity against Cys protease(s) of potato leaves and protease I, a major digestive Cys protease of the insect predator *P. bioculatus*.

Figure 2. Cystatin-sensitive and cystatin-insensitive digestive Cys proteases in Colorado potato beetle extracts. A, Z-Phe-Arg-MCA hydrolysis (at pH 5.5) by E-64-sensitive Cys proteases sensitive to SICYS8. B, Z-Arg-Arg-MCA hydrolysis (at pH 6.0) by E-64-sensitive Cys proteases insensitive to SICYS8.

Figure 3. Inhibitory potency of SICYS8 and SICYS8 variants against Colorado potato beetle Z-Arg-Arg-MCA-hydrolyzing, cystatin-insensitive Cys proteases. Total protease activity was assayed in the presence of 1 μM or 5 μM of either E-64 or SICYS8 variant, as described in “Materials and Methods.” The dashed line refers to the mean inhibitory potency of wild-type SICYS8. Each bar is the mean of three independent measurements ± st.
the dose-dependent impact of a protease inhibitor from mustard (*Sinapis alba*) expressed in tobacco (*Nicotiana tabacum*) or Arabidopsis (*Arabidopsis thaliana*) on growth and foliar consumption of the herbivorous insect *Spodoptera littoralis*. This study was notably reporting strong deleterious effects for transgenic lines expressing the recombinant inhibitor at high levels (e.g. approximately 1.5% of leaf total soluble proteins), but null or even positive effects associated with overcompensatory responses in the target insect for sister lines expressing the same inhibitor at levels 3 times lower (i.e. approximately 0.5%). In this perspective, SICYS8 variants such as P2F and P2L, which exhibit IC50 values decreased by 2-3 fold for the Colorado potato beetle cystatin-sensitive proteases (Table II), could provide improved antidigestive effects at given expression rates in planta and thus help avoid effective compensatory processes in this target herbivore (Cloutier et al., 1999, 2000; Gruden et al., 2003, 2004; Brunelle et al., 2004). An inhibitory spectrum extended to the so-called cystatin-insensitive proteases for these same two variants also could make them more effective in vivo, as suggested by a recent study reporting increased deleterious effects for a hybrid corn cystatin II bearing an extra protease inhibitory function (Brunelle et al., 2005). SICYS8 variants such as P2F and P2L, which combine an improved inhibitory potency against cystatin-sensitive proteases of Colorado potato beetle with a broader inhibitory spectrum against the overall digestive protease complement of this same insect, would thus likely represent promising candidates for the design of insect-resistant transgenic potato lines.

From a physiological viewpoint, these improved variants could not only help overcome compensatory processes to cystatins in the target insect but also help avoid possible metabolic interference effects of these proteins in planta. Several transgenic plant lines expressing exogenous cystatins were successfully produced over the last 15 years (e.g. Masoud et al., 1993; Benchekroun et al., 1995; Leplé et al., 1995; Gutierrez-Campos et al., 1999; Van der Vyver et al., 2003; Rojo et al., 2004; Outchkourov et al., 2004), but recent studies reported pleiotropic effects of these proteins affecting major biological processes such as flowering, programmed cell death, tolerance to biotic stresses, and defense protein induction (Gutierrez-Campos et al., 2001; Belenghi et al., 2003; Van der Vyver et al., 2003; Rojo et al., 2004; Vaillancourt, 2005). Little is still known about the exact regulatory functions of Cys proteases in plant cells, but their obvious importance at the genome level (Beers et al., 2004) and their broad distribution in plant tissues and cells (Grudkowska and Zagdanska, 2004; Schaller, 2004) suggest a significant role for these enzymes in various cellular and developmental processes. In this perspective, cystatin variants with increased specificity toward herbivorous insect proteases might prove useful not only in a direct manner by strongly inhibiting the digestive proteases of herbivore pests, but also indirectly by allowing to elude eventual interfering effects in planta that could affect fitness of the host plant.

Table II. IC50 values for SICYS8 variants interacting with SICYS8-sensitive Colorado potato beetle digestive Cys proteases or with potato Cys, Z-Phe-Arg-hydrolyzing proteases

Variant	IC50a,b (nM)	Colorado Potato Beetle CYS8-Sensitive Proteases	Potato Cys Proteases
Wild type	20.0	8.5	
Position 2			
P2A	n.i.	13.5	
P2C	43.5	10.9	
P2D	n.i.	115	
P2E	n.i.	116	
P2F	8.5	10.0	
P2G	n.i.	17.1	
P2H	76.5	4.9	
P2I	12.0	12.2	
P2K	n.i.	3.0	
P2L	9.0	12.8	
P2M	7.0	5.6	
P2N	192	12.6	
P2Q	141	9.4	
P2R	n.i.	3.7	
P2S	n.i.	9.5	
P2T	52.5	7.5	
P2V	10.5	5.3	
P2W	19.0	5.7	
P2Y	11.0	7.2	
Position 6			
T6E	35.5	13.2	
T6I	26.0	36.1	
T6P	n.i.	69.3	
T6R	12.0	11.5	
T6S	22.0	4.7	
Position 31			
E31A	14.0	14.8	
E31F	11.0	17.9	
E31G	11.0	9.5	
E31K	6.5	6.8	
E31T	11.0	16.4	

Each value is the mean of three independent measurements. All IC50 values for these measures fell within a 10% range compared to the mean value reported. b n.i., No measurable inhibition.

Several studies considered the use of recombinant cystatins expressed in transgenic plants for herbivorous insect control (e.g. Benchekroun et al., 1995; Leplé et al. 1995; Girard et al., 1998a, 1998b; Cloutier et al., 1999, 2000; Lecardonnel et al., 1999; Ouchkourov et al., 2004; Ribeiro et al., 2006; Alvarez-Alfageme et al., 2007), but nonconclusive results were obtained in several cases, correlated with the onset of effective adaptive processes allowing target pests to overcome the deleterious effects of digestive protease inhibition. In practice, the inhibitory potency of protease inhibitors is critical for an effective inhibition of target pest digestive proteases in vivo (Urwin et al., 1995), as it directly determines the amount of recombinant protein needed in the modified host plant to provide sufficient anti-digestive or pesticidal effects (Jongsma and Bolter, 1997). In an early study, De Leo et al. (1998) illustrated...
or compromise efficient accumulation of the recombinant cystatin and thus limit the repulsive, antidigestive potential of the modified plant.

Optimizing the inhibitory specificity of recombinant cystatins toward target pests also could prove attractive from an ecological viewpoint, considering the complex multitrophic interactions known to take place at the ecosystem level (Groot and Dicke, 2002). The ability of recombinant plant cystatins to inhibit the digestive Cys proteases of insect predatory arthropods via their herbivorous prey fed the modified plant has been documented recently (Bouchard et al., 2003a, 2003b; Ferry et al., 2003; Alvarez-Alfageme et al., 2007), thus stressing the importance of not only monitoring protease: inhibitor interactions expected to take place between the plant and its herbivorous enemy but also to assess the interactions likely to occur in the proximate environment. SICYS8 variants such as P2F and P2L, which exhibit improved activity against Colorado potato beetle digestive proteases but weaker activity against protease I of P. bioculatus (see Fig. 4), could represent in this regard useful tools for the production of insect-resistant transgenic potato lines compatible with complementary protection approaches involving arthropod biocentral agents. Comparative studies are now being conducted to assess the possible unintended effects of wild-type SICYS8 and its functional variants in planta and ex planta. Work is also under way to estimate the actual antidigestive effects of these same variants against the Colorado potato beetle, keeping in mind the well-documented ability of this insect to overcome the inhibitory effects of plant protease inhibitors by various compensatory and hydrolytic processes. Studies documented the deleterious effects of broad-spectrum low-molecular-weight, nonprotein protease inhibitors (Bolter and Latoszek-Green, 1997) or the significant antidigestive effects of a hybrid, dual cystatin with an extended inhibitory spectrum (Brunelle et al., 2005) against Colorado potato beetle larvae, but effective compensatory processes following cystatin ingestion cannot be ruled out at this stage.

MATERIALS AND METHODS

Proteases

Papain (from papaya latex; E.C.3.4.22.2), cathepsin B (from human liver; E.C.3.4.22.1), cathepsin H (from human liver; E.C.3.4.22.16), and cathepsin L (from human liver; E.C.3.4.22.15) were from Sigma-Aldrich. Digestive proteases of the Colorado potato beetle (Leptinotarsa decemlineata) were isolated as described earlier from fourth-instar larvae reared in greenhouses on *Norland* potato (*Solanum tuberosum*) plants (Brunelle et al., 2004). Digestive proteases of the stinkbug predator *Perillus bioculatus* were isolated as described earlier from larvae provided with potato-fed Colorado potato beetle larvae (Overney et al., 1998). In brief, the insect midgut soluble proteins were extracted in 100 mM citrate-phosphate, pH 6.0, containing 10% (v/v) ethylene glycol. After 10 min on ice, the mixtures were centrifuged at 13,000g for 10 min at 4°C and the supernatants used as a source of insect digestive proteases for subsequent analyses. Protein content in the extracts was adjusted to 5 mg mL−1 by the addition of extraction buffer, after assaying the proteins according to Bradford (1976) using bovine serum albumin (Sigma-Aldrich) as a protein standard. Potato leaf proteases (from various stages) were extracted in 50 mM Tris-HCl, pH 7.0, containing 2% (w/v) polyvinylpyrrolidone (Sigma-Aldrich). After 15 min on ice, the mixtures were centrifuged at 10,000g for 10 min at 4°C and the supernatants used for subsequent analyses. Protein concentration in the extracts was assayed as described for the insect extracts.

SICYS8 Variants

Variants of SICYS8 were generated by exchanging the residue P2 for the 19 other amino acids; the residue T6 for Glu (E), Ile (I), Pro (P), Arg (R), or Ser (S); or the residue E31 for Ala (A), Phe (F), Gly (G), Lys (K), or Thr (T). A cDNA encoding SICYS8 (GenBank accession no. AF198390; Girard et al., 2007) was first amplified from a tomato (*Solanum lycopersicum*) leaf RNA population using the following primers, including *Bam*HI and *Eco*RI cloning sites (underlined): 5′-AGATATACCTGATCCGCGGCTGATCTGGAATGATCTGGAATGATCTGGAATGGCAATACCAGATCTGGAATGATCTGGAATGCTGATCTGGAATGCTGATCTGGAATGGCAATGACTCCAATAGXXGGGCGGCGATACCATTGGCGTACCT-3′ for the 5′-end; and 5′-AGATATACCTGATCCGCGGCTGATCTGGAATGATCTGGAATGATCTGGAATGGCAATACCAGATCTGGAATGATCTGGAATGCTGATCTGGAATGGCAATGACTC3′ for the 5′-end. After digestion with *Eco*RI and *Bam*HI, the PCR amplicon was inserted into pGEX-3X (Amersham Biosciences) in frame with the GST-encoding gene. This vector was introduced into *Escherichia coli* strain BL21 (Strategene) by electroporation and used to produce the original, wild-type cystatin SICYS8 (see below). SICYS8 variants were amplified by PCR using the pGEX-3X/SICYS8 plasmid as a template by substituting the P2-, T6-, or E31-encoding codon by alternative codons for the amino acids identified above (see Fig. 1A for codon substitutions). The following 5′-end primers were used to introduce the mutations: 5′-AGATATACCTGATCCGCGGCTGATCTGGAATGCTGGAATGGCAATACCAGATCTGGAATGATCTGGAATGCTGATCTGGAATGGCAATGACTC3′ for the P2 mutants; 5′-AGATATACCTGATCCGCGGCTGATCTGGAATGCTGGAATGGCAATACCAGATCTGGAATGATCTGGAATGCTGATCTGGAATGGCAATGACTC3′ for the T6 mutants; and 5′-CAATGATATACCTGATCCGCGGCTGATCTGGAATGCTGGAATGGCAATACCAGATCTGGAATGATCTGGAATGCTGATCTGGAATGGCAATGACTC3′ for the E31 mutants, where XXX corresponds to the alternative codon. All constructs were subject to automatic sequencing (Service de Séquençage de l’Université Laval) to proof check the mutated sequences and were reintroduced into *E. coli* strain BL21 for heterologous expression. Expression and purification of the SICYS8 variants were carried out using the GST gene fusion system (Amersham Biosciences) as described recently (Girard et al., 2007). The GST affinity tag was removed from the cystatin variants by cleavage with human factor Xa (Bolter and Latoszek-Green, 1997) as described recently (Girard et al., 2007). The GST-encoding gene. This vector was introduced into *E. coli* strain BL21 (Stratagene) by electroporation and used to produce the original, wild-type cystatin SICYS8 (see below). SICYS8 variants were amplified by PCR using the pGEX-3X/SICYS8 plasmid as a template by substituting the P2-, T6-, or E31-encoding codon by alternative codons for the amino acids identified above (see Fig. 1A for codon substitutions). The following 5′-end primers were used to introduce the mutations: 5′-AGATATACCTGATCCGCGGCTGATCTGGAATGCTGGAATGGCAATACCAGATCTGGAATGATCTGGAATGCTGATCTGGAATGGCAATGACTC3′ for the P2 mutants; 5′-AGATATACCTGATCCGCGGCTGATCTGGAATGCTGGAATGGCAATACCAGATCTGGAATGATCTGGAATGCTGATCTGGAATGGCAATGACTC3′ for the T6 mutants; and 5′-CAATGATATACCTGATCCGCGGCTGATCTGGAATGCTGGAATGGCAATACCAGATCTGGAATGATCTGGAATGCTGATCTGGAATGGCAATGACTC3′ for the E31 mutants, where XXX corresponds to the alternative codon. All constructs were subject to automatic sequencing (Service de Séquençage de l’Université Laval) to proof check the mutated sequences and were reintroduced into *E. coli* strain BL21 for heterologous expression. Expression and purification of the SICYS8 variants were carried out using the GST gene fusion system (Amersham Biosciences) as described recently (Girard et al., 2007). The GST affinity tag was removed from the cystatin variants by cleavage with human factor Xa (Novagen), following the supplier’s instructions.

Inhibitor	Residual activity (%)
None	0
SICYS8	25
P2F	50
P2L	75
P2V	100
was measured in 50 mM MES buffer, pH 6.0, using the substrate Z-Arg-Arg-MCA (Sigma-Aldrich). Cathepsin H aminopeptidase activity was measured in 50 mM Tris-HCl, pH 6.8, using L-Arg-MCA (Sigma-Aldrich) as a substrate. Cathepsin L activity was measured in 50 mM MES buffer, pH 5.5, using Z-Phe-Arg-MCA as a substrate. Hydrolysis was allowed to proceed at 25°C (papain, cathepsin L) or 37°C (cathepsins B and H) in reducing conditions (10 mM L-Cys) with the substrate in large excess after adding (or not) the mutant cystatins dissolved in a minimal volume. Activity levels were monitored using a Fluostar Galaxy fluorimeter (BMG), with excitation and emission filters of 360 nm and 450 nm, respectively. IC50 values were calculated after empirically estimating Kapp and Km values, using the following equation: IC50 = Kapp/(1 + Km/Km). Km values for papain, cathepsin B, cathepsin H, and cathepsin L with their test substrate were estimated at 13.6 μM, 2.0 μM, 6.5 μM, and 1.0 μM, respectively.

IC50 Values (Herbivore and Plant Cystatin-Sensitive Proteases)

Inhibitory potency of the SCSYS8 variants against Colorado potato beetle digestive Cys proteases and potato leaf Cys proteases was assessed by the estimation of IC50 values, defined here as the concentration of cystatin needed to reduce proteolytic activity by 50% under our assay conditions. Protease inhibitory activities were assayed by the monitoring of substrate hydrolysis progress curves, using the synthetic fluorogenic substrate Z-Phe-Arg-MCA. Substrate hydrolysis by insect digestive proteases (12.5 ng protein μL-1) was allowed to proceed at 25°C in 50 mM MES, pH 5.5, containing 10 mM L-Cys. Hydrolysis by plant leaf proteases (17.7 ng protein μL-1) was allowed to proceed at 25°C in 50 mM Tris-HCL, pH 6.8, containing 10 mM L-Cys. Activity levels were monitored using a Fluostar Galaxy fluorimeter (BMG), with excitation and emission filters of 360 nm and 450 nm, respectively.

Maximal Inhibitory Rates (Herbivore Cystatin-Inensitive Cys Proteases)

Inhibitory effects of SCSYS8 variants against Colorado potato beetle cystatin-inensitive Cys proteases were monitored by the estimation of maximal inhibitory rates (% for protease activities cleaving the synthetic fluorogenic substrate Z-Arg-Arg-MCA. Protease and protease inhibitory activities were measured by the monitoring of substrate hydrolysis progress curves, using 25 ng of insect midgut protein per microliter of assay mixture. The recombinant cystatins were used at 1 or 5 μM concentration, similar to the concentrations typically observed for recombinant protease inhibitors expressed in transgenic plant lines. Hydrolysis was allowed to proceed at 25°C in 50 mM MES, pH 6.0, containing 10 mM L-Cys. Activity levels were monitored using a Fluostar Galaxy fluorimeter (BMG), with excitation and emission filters of 360 nm and 450 nm, respectively. Maximal inhibitory controls were carried out using E-64 (Sigma-Aldrich) as a broad-spectrum inhibitor for Colorado potato beetle midgut Cys proteases (Michaud et al., 1993).

Nonreducing Gelatin/SDS-PAGE (Predator Cys Proteases)

Inhibitory potency of the SCSYS8 variants against the major digestive Cys proteases of P. bioculatus (protease I; see Bouchard et al., 2003a) was monitored by mildly denaturing (nonreducing) gelatin/SDS-PAGE (Michaud et al., 1996). The test proteases were incubated with recombinant cystatins (5 μmol cystatin μg-1 of insect protein) or with an equivalent volume of 50 mM Tris-HCL, pH 8.0 (noninhibited control) for 10 min at 37°C before electrophoresis. In-gel quantitation of gelatinase activity was done by densitometry of the clear (proteolytic) bands, using a Microtek Scanner II scanner (Microtek Lab) and the image analysis software NIH Image v.1.51 (National Institutes of Health).

Received January 1, 2008; accepted January 8, 2008; published January 11, 2008.

LITERATURE CITED

Alvarez-Alfageme F, Martinez M, Pascual-Ruiz S, Castanera P, Diaz I, Ortego F (2007) Effects of potato plants expressing a barley cystatin on the predatory bug Podisus maculiventris via herbivorous prey feeding on the plant. Transgenic Res 16:1–13

Arai S, Abe K (2000) Cystatin-based control of insects, with special reference to oryzacystatin. In D Michaud, ed, Recombinant Protease Inhibitors in Plants. Landes Bioscience, Georgetown, TX, pp 27–42

Arai S, Matsumoto I, Emori Y, Abe K (2002) Plant seed cystatins and their target enzymes of endogenous and exogenous origin. J Agric Food Chem 50:6612–6617

Asnouri A, Overney S, Michaud D, Cloutier C (1998) Fitness and feeding are affected in the two-spotted stinkbug, Perillus bioculatus, by the cystatine proteinase inhibitor, oryzacystatin I. Arch Insect Biochem Physiol 38:74–83

Atkinson HJ, Urwin PE, McPherson MJ (2003) Engineering plants for nematode resistance. Annu Rev Phytopathol 41:615–639

Barrett AJ, Kirschke H (1981) Cathepsin B, cathepsin H, and cathepsin L. Methods Enzymol 80:539–561

Bees EF, Jones AM, Dickerman AW (2004) The S8 serine, C1A cysteine and A1 aspartic protease families in Arabidopsis. Phytochemistry 65:43–58

Belenghi B, Acconcia E, Trovato M, Perazzoli M, Bocedi A, Pollicelli F, Aspenci P, Delledonne M (2003) AtCYSI, a cystatin from Arabidopsis thaliana, suppresses hypersensitive cell death. Eur J Biochem 270:2593–2604

Benchekroun A, Michaud D, Nguyen-Quoc B, Overney S, Desjardins Y, Yelle S (1995) Synthesis of active oryzacystatin I in transgenic potato plants. Plant Cell Rep 14:585–588

Bolter CJ, Latsos-Green M (1997) Effect of chronic ingestion of the cysteine proteinase inhibitor, E-64, on Colorado potato beetle gut proteinases. Enomol Exp Appl 83:295–303

Bouchard E, Cloutier C, Michaud D (2003a) Oryzacystatin I expressed in transgenic potato induces digestive compensation in an insect natural predator via its herbivorous prey feeding on the plant. Mol Ecol 12:2439–2446

Bouchard E, Michaud D, Cloutier C (2003b) Molecular interactions between an insect predator and its herbivore prey on transgenic potato expressing a cysteine proteinase inhibitor from rice. Mol Ecol 12:2429–2437

Bown DP, Wilkinson HS, Gatehouse JA (1997) Differentially regulated inhibitor-sensitive and insensitive protease genes from the phytophagous insect pest, Helicoverpa armigera, are members of complex multi-gene families. Insect Biochem Mol Biol 27:625–638

Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

Broadway RM (2000) The adaptation of insects to protease inhibitors. In D Michaud, ed, Recombinant Protease Inhibitors in Plants. Landes Bioscience, Georgetown, TX, pp 80–88

Brunelle F, Cloutier C, Michaud D (2004) Colorado potato beetles compensate for tomato cathepsin D inhibitor expressed in transgenic potato. Arch Insect Biochem Physiol 58:103–113

Brunelle F, Girard C, Cloutier C, Michaud D (2005) A hybrid, broad-spectrum inhibitor of Colorado potato beetle aspartate and cysteine digestive proteinases. Arch Insect Biochem Physiol 60:20–31

Brunelle F, Nguyen-Quoc B, Cloutier C, Michaud D (1999) Protein hydrolysis by Colorado potato beetle, Leptinotarsa decemlineata, digestive proteinases: the catalytic role of cathepsin D. Arch Insect Biochem Physiol 42:88–98

Ceci LR, Volpicella M, Rahbét Y, Gallerani R, Reekwilder J, Iongsma MA (2003) Selection by phase display of a variant mustard trypsin inhibitor toxic against aphids. Plant J 33:557–566

Christaller JT (2005) Evolutionary mechanisms acting on proteinase inhibitor variability. FEBS 272:5710–5722

Christova PK, Chrstov NK, Imai R (2008) A cold inducible multidomain cystatin from winter wheat inhibits growth of the snow mold fungus, Microdochium nivale. Plant 223:1207–1218

Cloutier C, Fournier M, Jean C, Yelle S, Michaud D (1999) Growth compensation and faster development of Colorado potato beetle (Coleoptera: Chrysomelidae) feeding on potato foliage expressing oryzacystatin I. Arch Insect Biochem Physiol 40:69–79

Cloutier C, Jean C, Fournier M, Yelle S, Michaud D (2000) Adult Colorado potato beetle, Leptinotarsa decemlineata, compensates for nutritional stress on oryzacystatin I-transgenic potato plants by hypertrophic behavior and over-production of insensitive proteinases. Arch Insect Biochem Physiol 44:69–81

De Leo F, Bonadé-Bottino MA, Ceci LR, Gallerani R, Jouanin L (1998) Plant Physiol. Vol. 146, 2008 1017

Copyright © 2008 American Society of Plant Biologists. All rights reserved.
Opposite effects on Spodoptera littoralis larval of high expression level of a transgenic cysteine proteinase inhibitor in transgenic plants. Plant Physiol 118: 997–1004
Ferry N, Raemaekers RJ, Majerus ME, Jouanin L, Port G, Gatehouse JA, Gatehouse AM (2003) Impact of oilseed rape expressing the insecticidal cysteine protease inhibitor oryzacystatin on the beneficial predator Harmonia axyridis (multicoloured Asian ladybeetle). Mol Ecol 12: 493–504
Girard C, Le Métayer M, Bonade-Bottino M, Pham-Delegue MH, Jouanin L (1998a) High level of resistance to proteinase inhibitors may be conferred by protoelicly cleavage in beetle larvae. Insect Biochem Mol Biol 28: 229–237
Girard C, Le Métayer M, Zaccomer B, Bartlet E, Williams I, Bonade-Bottino M, Vladutiu C, Michaud D (2007) A multicomponent, elicitor-inducible cystatin complex in tomato, Solanum lycopersicum. New Phytol 173: 841–851
Giri AP, Harsulkar AM, Deshpande V, Gupta VS, Gutierrez-Campos R, Torres-Acosta JA, Saucedo-Arias LJ, Gomez-Lim (2002) Insect-resistant transgenic plants in a multiplex in tomato. Plant Physiol 129: 1169–1176
Charoensook O, Worachartchikul J, Svasti J, Buayongacsuk O, Chaipiphat P, Hertweck C, Sripakdeewanich S, Stadler F, Boller T, Hertweck J, Druzhinina IS, Eubel H (2006) A Drosophila melanogaster protease inhibitor with cystatin activity. Insect Biochem Mol Biol 36: 1450–1455
Giri AP, Harsulkar AM, Deshpande V, Gupta VS, Gutierrez-Campos R, Torres-Acosta JA, Saucedo-Arias LJ, Gomez-Lim (2005) Inhibition of plant-pathogenic fungi by the barley cystatin Hv-CPI (gene Iy) is not associated with its cysteine-proteinase inhibitory properties. Mol Plant Microbe Interact 16: 876–883
Mason RW, Sol-Church K, Abrahamson M (1998) Amino acid substitutions in the N-terminal segment of cystatin C create selective protein inhibitors of lysosomal cysteine proteinases. Biochem J 330: 833–838
Masoud SA, Johnson LB, White FE, Reecr GR (1993) Expression of a cysteine proteinase inhibitor (oryzacystatin-I) in transgenic tobacco plants. Plant Mol Biol 21: 655–663
Mazumdar-Leighton S, Broadway RM (2002) Transcriptional induction of multiple midgut trypsins in larval Agrotis ipsilon and Helicoverpa zea feeding on the soybean trypsin inhibitor. Insect Biochem Mol Biol 32: 655–667
Mazumdar-Leighton S, Broadway RM (2001b) Identification of six chymotrypsin CDNAs from larval midguts of Helicoverpa zea and Agrotis ipsilon feeding on the soybean (Kunitz) trypsin inhibitor. Insect Biochem Mol Biol 31: 633–644
Melino FR, Mello MO, Franco OL, Rigden DJ, Mello LV, Genu AM, Silva-Filho MC, Gledissie S, Grossi-de-Sa MF (2003) Use of phage display to select novel cystatins specific for Antacanthocelis obtectus cysteine proteinases. Biochim Biophys Acta 1651: 146–152
Michaud D (1997) Avoiding protease-mediated resistance in herbivorous pests. Trends Biotechnol 15: 4–6
Michaud D (1998) Review. Gel electrophoresis of proteolytic enzymes. Anal Chim Acta 372: 173–187
Michaud D, Bernier-Vadnais N, Overney S, Yelle S (1995b) Constitutive expression of digestive cysteine proteinase forms during development of the Colorado potato beetle, Leptinotarsa decemlineata Say (Coleoptera: Chrysomelidae). Insect Biochem Mol Biol 25: 1041–1048
Michaud D, Cantin L, Raworth DA, Vrain TC (1996) Assessing the stability of cystatin/cysteine proteinase complexes using mildly-denaturing gelatin polyacrylamide gel electrophoresis. Electrophoresis 17: 74–79
Michaud D, Cantin L, Vrain TC (1995a) Carboxy-terminal truncation of oryzacystatin II by oryzacystatin-insensitive insect digestive proteinases. Arch Biochem Biophys 322: 469–474
Michaud D, Nguyen-Quoc B, Yelle S (1993) Selective inhibition of Colorado potato beetle carboxypeptidase H by oryzacystatins I and II. FEBS Lett 331: 173–176
Ogawa S, Nakamura S, Scaman CH, Jing H, Kitts DD, Dou J, Nakai S (2002) Enhancement of proteinase inhibitory activity of recombinant human cystatin C using random-centroid optimization. Biochim Biophys Acta 1599: 115–124
Outchkourova NS, de Kogel WJ, Wijers GL, Abrahamson M, Jongsmma MA (2004) Engineered multidomain cysteine proteinase inhibitors yield resistance against western flower thrips (Frankliniella occidentalis) in greenhouse trials. Plant Biotechnol J 2: 449–458
Overney S, Yelle S, Cloutier C (1999) Occurrence of digestive cysteine proteases in Periplaneta bioculatus, a natural predator of the Colorado potato beetle. Comp Biochem Physiol B 120: 191–196
Pavlova A, Björk I (2003) Drafting of features of cystatins C or B into the N-terminal region or second binding loop of cystatin A (stefin A) substantially enhances inhibition of cysteine proteinases. Biochemistry 42: 11326–11333
Qasim MA, Ganz PJ, Saunders CW, Bateman KS, James MN, Laskowski MJ (1997) Interscaffolding additivity. Association of P1 variants of eglin c and of turkey ovomucoid third domain with serine proteinases. Biochemistry 36: 1598–1607
Ribeiro APO, Pereira EJG, Galvan TL, Picano MC, Picoli EAT, da Silva D, Fari MG, Otoni WC (2006) Effect of eggplant transformed with

Leplé JC, Bonadé-Bottino M, Augustin S, Pilate G, Dumanos Lé Tán V, Delplanque A, Cornu D, Jouanin L (1995) Toxicity to Chrysomela tremulae (Coleoptera:Chrysomelidae) of transgenic poplars expressing a cysteine proteinase inhibitor. Mol Breeding 1: 319–328
Lopes AR, Juliano MA, Juliano L, Terra WR (2004) Coevolution of insect trypsins and inhibitors. Arch Insect Biochem Physiol 55: 140–152
Malone LA, Burgess EP (2000) Interference of protease inhibitors on non-target organisms. In D Michaud, ed, Recombinant Protease Inhibitors in Plants. Landes Bioscience, Georgetown, TX, pp 89–116
Martínez M, Abraham Z, Gambardella M, Echaide M, Carbonero P, Díaz I (2005) The strawberry gene Cyf1 encodes a phytocystatin with antifungal properties. J Exp Bot 56: 1821–1829
Martínez M, Lopez-Solanailla E, Rodríguez-Palenzuela P, Carbonero P, Díaz I (2003) Inhibition of plant-pathogenic fungi by the barley cystatin Hv-CPI (gene Iy) is not associated with its cysteine-proteinase inhibitory properties. Mol Plant Microbe Interact 16: 876–883
1018
Copyright © 2008 American Society of Plant Biologists. All rights reserved.

Downloaded from on May 1, 2019 - Published by www.plantphysiol.org
oryzacystatin gene on *Myzus persicae* and *Macrosiphum euphorbiae*. J Appl Entomol 130: 84–90

Rojo E, Martin R, Carter C, Zouhar J, Pan S, Plotnikova J, Jin H, Paneque M, Sanchez-Serrano JJ, Baker B, et al. (2004) VPE-gamma exhibits a caspase-like activity that contributes to defense against pathogens. Curr Biol 14: 1897–1906

Salvesen G, Nagase H (1989) Inhibition of proteolytic enzymes. In JS Bond, R Beynon, eds, Proteolytic Enzymes: A Practical Approach. IRL Press, New York, pp 83–104

Schaller A (2004) A cut above the rest: the regulatory function of plant proteases. Planta 220: 183–197

Stoop AA, Craik CS (2003) Engineering of a macromolecular scaffold to develop specific protease inhibitors. Nat Biotechnol 21: 1063–1068

Stubbs MT, Laber B, Bode W, Huber R, Jerala R, Lenarcic B, Turk V (1990) The refined 2.4 A X-ray crystal structure of recombinant human stefin B in complex with the cysteine proteinase papain: a novel type of protease inhibitor interaction. EMBO J 9: 1939–1947

Tchoupé JR, Moreau T, Gauthier F, Bieth JG (1991) Photometric and fluorometric assay for cathepsin B, L and H and papain using substrates with an aminotrifluoromethylcoumarin leaving group. Biochim Biophys Acta 1076: 149–151

Terra WR, Ferreira C (1994) Insect digestive enzymes: properties, compartmentalization and function. Comp Biochem Physiol B 109: 1–62

Urwin PE, Atkinson HJ, Waller DA, McPherson MJ (1995) Engineered oryzacystatin-I expressed in transgenic hairy roots confers resistance to *Globodera pallida*. Plant J 8: 121–131

Vailancourt LP (2005) Effets pleiotropiques d’une forme recombinante de la cystatine II du maïs exprimée dans le cytosol des cellules de pomme de terre. MSc thesis. Université Laval, Quebec

Valueva TA, Mosolov VV (2004) Role of inhibitors of proteolytic enzymes in plant defense against phytopathogenic microorganisms. Biochemistry (Mosc) 69: 1305–1309

Van der Vyver C, Schneidereit J, Driscoll S, Turner J, Kunert K, Foyer CH (2003) Oryzacystatin I expression in transformed tobacco produces a conditional growth phenotype and enhances chilling tolerance. Plant Biotechnol J 1: 101–112

Visal-Shah S, Brunelle F, Michaud D (2000) Multiple protease/inhibitor interactions in plant-pest systems. In D Michaud, ed, Recombinant Protease Inhibitors in Plants. Landes Bioscience, Georgetown, TX, pp 107–113

Yang AH, Yeh KW (2005) Molecular cloning, recombinant gene expression, and antifungal activity of cystatin from taro (*Colocasia esculenta* cv. Kaosiung no. 1). Planta 221: 493–501

Zhu-Salzman K, Koilha W, Salzman RA, Shade RE, Ahn JE (2003) Cowpea bruchid *Callosobruchus maculatus* uses a three-component strategy to overcome a plant defensive cysteine protease inhibitor. Insect Mol Biol 12: 135–145