COHOMOLOGY, FUSION AND A P-NILPOTENCY CRITERION

JON GONZÁLEZ-SÁNCHEZ

Abstract. Let G be a finite group, p a fix prime and P a Sylow p-subgroup of G. In this short note we prove that if p is odd, G is p-nilpotent if and only if P controls fusion of cyclic groups of order p. For the case $p = 2$, we show that G is p-nilpotent if and only if P controls fusion of cyclic groups of order 2 and 4.

1. Introduction

Throughout the text let p denote a fix prime. Let G be a finite group and P a Sylow p-subgroup of G. We denote by $H^\bullet(G,F_p)$ the mod p cohomology algebra. It is well known that the restriction map in cohomology

(1) $H^\bullet(G,F_p) \rightarrow H^\bullet(P,F_p)$

is injective (see [2, Proposition 4.2.2]). Suppose that G is p-nilpotent, i.e., P has a normal complement N in G. In this situation the composition

(2) $P \rightarrow G \rightarrow G/N,$

is an isomorphism. Therefore the composition

(3) $H^\bullet(G/N,F_p) \xrightarrow{\text{inf}_{G/N}} H^\bullet(G,F_p) \xrightarrow{\text{res}^G_P} H^\bullet(P,F_p)$

is also an isomorphism. This together with [1] implies that, if G is p-nilpotent, then the restriction map in cohomology $\text{res}^G_P : H^\bullet(G,F_p) \rightarrow H^\bullet(P,F_p)$ is an isomorphism. The following result of M. Atiyah shows that the converse is also true.

Theorem 1 (Atiyah). If $\text{res}^G_P : H^1(G,F_p) \rightarrow H^1(P,F_p)$ are isomorphisms for all i big enough, then G is p-nilpotent. In particular G is p-nilpotent if and only if $\text{res}^G_P : H^\bullet(G,F_p) \rightarrow H^\bullet(P,F_p)$ is an isomorphism.

Proof. A proof of this can be found in the introduction of [8].

Atiyah’s p-nilpotency criterion uses the cohomology in high dimension. Another cohomological criterion for p-nilpotency using cohomology in dimension 1 was provided by J. Tate ([10]).

Theorem 2 (Tate). If $\text{res}^G_P : H^1(G,F_p) \rightarrow H^1(P,F_p)$ is an isomorphism, then G is p-nilpotent.

Proof. See [10].

D. Quillen generalized Atiyah’s p-nilpotency criterion for odd primes ([8]).

Theorem 3 (Quillen). Let p be an odd prime. Then G is p-nilpotent if and only if $\text{res}^G_P : H^\bullet(G,F_p) \rightarrow H^\bullet(P,F_p)$ is an F-isomorphism.

Proof. See [8].
Atiyah’s p-nilpotency criterion can be reinterpreted in terms of p-fusion. We recall that a subgroup H of G controls p-fusion in G if

(a) H contains a Sylow p-subgroup of G and
(b) for any subgroup A of G and for any $g \in G$ such that $A, A^g \leq H$, there exists $x \in H$ such that for all $a \in A$, $a^g = a^x$.

By a result of G. Mislin [7], a subgroup H of G controls p-fusion in G if and only if $\text{res}_H^G : H^*(G, \mathbb{F}_p) \rightarrow H^*(H, \mathbb{F}_p)$ is an isomorphism. Using Mislin’s result Atiyah’s p-nilpotency criterion follows from Frobenius p-nilpotency criterion.

Mislin’s type of result can also be provided for the concept of F-isomorphism. In order to do this we introduce the following concept. Let C be a class of finite p-groups. We say that a subgroup H of G controls fusion of C-groups in G if

(a) Any C-subgroup of G is conjugated to a subgroup of H and
(b) for any C-subgroup A of G and for any $g \in G$ such that $A, A^g \leq H$, there exists $x \in H$ such that for all $a \in A$, $a^g = a^x$.

The condition (b) can be rewritten as

(b') if A is a C-subgroup of H and $g \in G$ satisfies that $A^g \leq H$, then $g \in C_G(A).H$.

Theorem A bellow, which will be proved in Section 2, follows naturally from Quillen’s work on cohomology (see [8] and [9]). Note that the “if” was proved in [4] and it is a direct consequence of Quillen’s stratification ([9]). The converse follows from a careful reading of [8] Section 2.3.

Theorem A. Let G be a finite group and H a subgroup of G. Then $\text{res}_H^G : H^*(G, \mathbb{F}_p) \rightarrow H^*(H, \mathbb{F}_p)$ is an F-isomorphism if and only if H controls fusion of elementary abelian p-subgroups of G.

In Section 3 we will prove the following p-nilpotency criterion that can be seen as a generalization of Quillen p-nilpotency criterion (Theorem 3 above) to the prime $p = 2$.

Theorem B. Let G be a finite group and P a Sylow p-subgroup of G. Then the following two conditions are equivalent

1. G is p-nilpotent.
2. P controls fusion of cyclic subgroups of order p in case p is odd, and cyclic subgroups of order 2 and 4 in case $p = 2$.

Note that Theorem A and Theorem B imply Quillen’s p-nilpotency criterion. We will finish this short note by giving two applications of Theorem B. The first application will consist on reproving a result of H-W. Henn and S. Priddy that implies that “most” finite groups are p-nilpotent (see [4]). The second application is a generalization to the prime $p = 2$ of the following fact: if all elements of order p of a finite group G are in some upper center of G and p is an odd prime, then G is p-nilpotent (see [12] and [4]). For the prime $p = 2$ we will show that if all elements of order 2 and 4 are in some upper center of G, then G is 2-nilpotent.

We would like to end this introduction with an example of Quillen [8] where the necessity of considering cyclic groups of order 2 and 4 for the case $p = 2$ in Theorem B is illustrated.

Example 4. Consider $Q = \{1, -1, i, -i, j, -j, k, -k\}$ the quaternion group and α an automorphism of order 3 that permutes i, j and k. Let G be the semidirect product between Q and $\langle \alpha \rangle$ given by the action of α in Q. $A = \{1, -1\}$ is the only subgroup of exponent 2 in G. Clearly Q controls fusion of cyclic subgroup of order 2. However G is not 2-nilpotent.
2. Cohomology and fusion

The aim of this section is to sketch the proof of Theorem A. In subsections 2.1, 2.2 and 2.3 we will recall Quillen work in the mod p cohomology algebra of a finite group. This will be used in subsection 2.4 to prove Theorem A.

For a finite group G the mod p cohomology algebra

\[H^\bullet(G) = H^\bullet(G, \mathbb{F}_p) \]

is a finitely generated, connected, anti-commutative, \mathbb{N}_0-graded \mathbb{F}_p-algebra.

Let $\alpha_\bullet: A_\bullet \to B_\bullet$ be a homomorphism of finitely generated, connected, anti-commutative, \mathbb{N}_0-graded \mathbb{F}_p-algebras. Then α_\bullet is called an F-isomorphism if $\ker(\alpha_\bullet)$ is nilpotent, and for all $b \in B_n$ there exists $k \geq 0$ such that $b^{p^k} \in \text{im}(\alpha_\bullet)$.

2.1. Quillen’s stratification. Let G be a finite group. Let \mathcal{E}_G denote the category whose objects are the elementary abelian p-subgroups of G and whose morphisms are given by conjugation, i.e., for $E, E' \in \text{ob}(\mathcal{E}_G)$ one has

\[\text{mor}_G(E, E') = \{ i_g: E \to E' \mid g \in G, g E g^{-1} \leq E' \}, \]

where $i_g(e) = g e g^{-1}, e \in E$. Then

\[H^\bullet(\mathcal{E}_G) = \varprojlim_{E \in \text{ob}(\mathcal{E}_G)} H^\bullet(E) \]

is a finitely generated, connected, anti-commutative, \mathbb{N}_0-graded \mathbb{F}_p-algebra. Moreover, the restriction maps res_E^G yield a map

\[q_G = \prod_{E \in \text{ob}(\mathcal{E}_G)} \text{res}_E^G: H^\bullet(G) \to H^\bullet(\mathcal{E}_G). \]

The following result is known as Quillen stratification.

Theorem 5 (Quillen). Let G be a finite group. Then $q_G: H^\bullet(G) \to H^\bullet(\mathcal{E}_G)$ is an F-isomorphism.

Proof. See [1, Cor. 5.6.4] or [9].

2.2. Cohomology of elementary abelian p-groups. One can easily deduce the cohomology of an elementary abelian p-group from the cohomology of the cyclic group of exponent p and the Kunneth formula.

Lemma 6. Let A be an elementary abelian p-group. Then

\[H^\bullet(A, \mathbb{F}_p) \cong \begin{cases} \Lambda(A^*) \otimes S(\beta(A^*)) & \text{if } p \text{ is odd} \\ S(A^*) & \text{if } p = 2, \end{cases} \]

where Λ denotes the exterior algebra functor, S the symmetric algebra functor, $A^* = \text{Hom}(A, \mathbb{F}_p) = H^1(A, \mathbb{F}_p)$ and β the Bockstein homomorphism from $H^1(A, \mathbb{F}_p)$ to $H^2(A, \mathbb{F}_p)$.

Proof. See [2] Chap. 3 Section 5].

From the previous lemma one can easily deduces that

\[H^\bullet(A, \mathbb{F}_p)/\sqrt{0} \cong S(A^*). \]
2.3. The spectrum of $H(G)$. Let G be a finite group. Following Quillen (8) we define
\begin{equation}
H(G) = \begin{cases}
\oplus_{i \geq 0} H^{2i}(G, \mathbb{F}_p) & \text{if } p \text{ is odd} \\
\oplus_{i \geq 0} H^{i}(G, \mathbb{F}_p) & \text{if } p = 2.
\end{cases}
\end{equation}

$H(G)$ is a graded commutative ring. For an elementary abelian p-subgroup A of G, denote by g_A the ideal of $H(G)$ consisting of elements u such that $u|_A$ is nilpotent. From [8], $\text{res}^G_A : H(G) \rightarrow H(A)$ induces a monomorphism
\begin{equation}
H(G)/g_A \cong S(A^*).
\end{equation}

In particular, the ideal g_A is a prime ideal of $H(G)$. Furthermore,

Theorem 7 (Quillen). Let $A, A' \subseteq G$ be elementary abelian subgroups of G. Then $g_A \subseteq g_{A'}$ if and only if A' is conjugated to a subgroup of A. In particular $g_A = g_{A'}$ if and only if A and A' are conjugated in G.

Proof. See [8] Theorem 2.7].

Let us consider the extension of quotient fields associated to the monomorphism in (11).
\begin{equation}
k(g_A)^* \hookrightarrow k(A).
\end{equation}

We have that

Theorem 8 (Quillen). The extension $k(A)/k(g_A)$ is a normal extension and
\begin{equation}
\text{Aut}(k(A)/k(g_A)) \cong N_G(A)/G_G(A).
\end{equation}

Proof. See [8] Theorem 2.10].

2.4. F-isomorphisms and fusion. The following lemma is a standard result in commutative algebra.

Lemma 9. Let A and B be commutative \mathbb{F}_p-algebras and $f : A \rightarrow B$ an F-isomorphism. Then $f^* : \text{Spec}(B) \rightarrow \text{Spec}(A)$ is a homeomorphism.

Proof. Since the kernel of f is nilpotent, then for any radical ideal a of A one has that $f^{-1}(\sqrt{f(a)}) = a$. Since for any $x \in B$ there exits $y \in A$ and $n \geq 0$ such that $f(y) = x^{p^n}$, then for any radical ideal b of B one has that $\sqrt{f(f^{-1}(b))} = b$. Therefore
\begin{align}
a & \longrightarrow f(a) \\
b & \longrightarrow f^{-1}(b)
\end{align}
is a bijection between the radical ideals of A and the radical ideals of B. In particular f^* is an isomorphism of varieties.

We are now ready to prove Theorem A.

Proof of Theorem A. Suppose first that H controls fusion of elementary abelian p-subgroups of G. Then the embedding functor
\begin{equation}
j_{H,G} : \mathcal{E}_H \rightarrow \mathcal{E}_G
\end{equation}
is an equivalence of categories. Therefore
\begin{equation}
H^*(j_{H,G}) : H^*(\mathcal{E}_G) \longrightarrow H^*(\mathcal{E}_H)
\end{equation}
is an isomorphism. Consider the commutative diagram

\[
\begin{array}{ccc}
H^\ast(G) & \xrightarrow{\text{res}_G^H} & H^\ast(C_G) \\
\downarrow & & \downarrow \\
H^\ast(H) & \xrightarrow{\text{res}_H^G \cdot h} & H^\ast(C_H).
\end{array}
\]

By Theorem 5 and equation (17) it follows that \(\text{res}_G^H\) is an \(F\)-isomorphism.

Subclaim 1: If \(A\) and \(A'\) are conjugated in \(G\), then they are conjugated in \(H\).

Subproof. By Lemma 6, \(f^* : \text{Spec}(H(H)) \rightarrow \text{Spec}(H(G))\) provides a bijection between the prime ideals of \(H(H)\) and the prime ideals of \(H(G)\). Furthermore, if \(A\) is an elementary abelian \(p\)-subgroup of \(H\), then \(g_A = f^*(h_A)\). By Theorem 7 if \(A\) and \(A'\) are conjugated in \(G\), then \(g_A = g_{A'}\). In particular, \(f^*(h_A) = g_A = g_{A'} = f^*(h_A)\). Therefore \(h_A = h_{A'}\). Hence, by Theorem 7 \(A\) and \(A'\) are conjugated in \(H\).

Subclaim 2: \(N_G(A) = C_G(A)N_H(A)\).

Subproof. Since \(k(h_A)\) is a purely inseparable extension of \(k(g_A)\), then

\[
\text{Aut}(k(A)/k(h_A)) \cong \text{Aut}(k(A)/k(g_A)).
\]

Therefore, by Theorem 5 \(N_H(A)/C_H(A) \cong N_G(A)/C_G(A)\). □

Subclaim 3: \(H\) controls fusion of elementary abelian \(p\)-subgroups of \(G\).

Subproof: Let \(A\) be an elementary abelian \(p\)-subgroup of \(H\) and \(g \in G\) such that \(A^g \leq H\). Then, by Subclaim 1 there exists \(h \in H\) such that \(A^g = A^h\). In particular, by Subclaim 2, \(gh^{-1} \in N_G(A) = C_G(A)\cdot N_H(A)\). Therefore \(g \in C_G(A)\cdot H\) □

3. A \(p\)-Nilpotency Criterion

In this section we will prove our main result Theorem B. To ease the notation we denote by \(C_p\) the class of cyclic groups of order \(p\) in case \(p\) is odd and cyclic groups of order \(2\) and \(4\) in case \(p = 2\). Put \(p = p\) if \(p\) is odd and \(p = 4\) in case \(p = 2\).

Theorem 10. Let \(G\) be a finite group and \(P\) a Sylow \(p\)-subgroup of \(G\). Then the following two conditions are equivalent

1. \(G\) is \(p\)-nilpotent.
2. \(P\) controls fusion of \(C_p\)-groups.

Proof. It is clear that if \(G\) is \(p\)-nilpotent, then \(P\) controls fusion of \(C_p\)-groups.

Let us show the converse. Using Frobenius \(p\)-nilpotency criterion it is enough to prove that for any subgroup \(B\) of \(P\) and for any \(p'\)-element \(g \in N_G(B)\), then \(g\) centralizes \(B\). The subgroup \(B\) is contained in \(Z_l(P)\) for some \(l \geq 1\) where \(Z_l(P)\) denotes the \(l\)-upper center of \(P\). We will show by induction on \(l\) that \(g \in C_G(B)\).

Suppose first that \(B \leq Z(P)\) and consider \(a \in B\) such that \(a^p = 1\). Since \(P\) controls fusion of \(C_p\)-groups, there exists \(x \in P\) such that \(a^x = a^e\) and since \(a \in Z(P)\), then \(x = a\). Hence we have that \(g\) centralizes all elements of order \(p\) (2 and 4 in case \(p = 2\)) in \(B\). Thus, by [6] Chap. V Lemma 5.12, \(g\) centralizes \(B\).

For the general case, consider \(B \leq Z_l(P)\) and suppose the assumption to be true for any subgroup contained in \(Z_{l-1}(P)\).

Subclaim 1: For \(a \in B\) such that \(a^p = 1\), we have that \([a, g, g] = 1\).
Subproof. We have that \(g \) normalizes the subgroups \(K = \langle a \in B \mid a^p = 1 \rangle \) and \([K, g]\). We also have that

\[(20) \quad [K, g] = \langle [a, g]^b \mid a, b \in K \text{ and } a^p = 1 \rangle. \]

Take \(a \in B \) such that \(a^p = 1 \). Since \(P \) controls fusion of \(C_p \)-groups, there exists \(x \in P \) such that \(a^g = a^x \). In particular \([a, g] = [a, x] \in Z_{i-1}(P) \). Therefore, by (20), \([K, g] = Z_{i-1}(P)\). Since \(g \) normalizes \([K, g]\) and by induction hypothesis we have that \([K, g, g] = 1\).

\(\square \)

Subclaim 2: \(g \in C_G(B) \).

Subproof. Take \(a \in B \) such that \(a^p = 1 \) and put \(p^e \) the exponent of \(B \). Consider the subgroup \(H = \langle a, [a, g] \rangle \). By the Subclaim 1, \(\gamma_2(H) = 1 \). Then, by [5, Chap. III, Theorem 9.4], we have that \([a, g^{p^e}] = [a, g]^{p^e} = 1 \). Since \(g \) is a \(p^e \)-element of \(G \), \(g \) centralizes all elements of order \(p \) (2 and 4 in case \(p = 2 \)) in \(B \). Thus, by [6, Chap. V Lemma 5.12], \(g \) centralizes \(B \).

This ends the proof. \(\square \)

As a consequence to this we have the following corollary.

Corollary 11. Let \(G \) a finite group and \(P \) a Sylow \(p \)-subgroup of \(G \) such that

1. \(N_G(P) \) controls fusion of \(C_p \)-groups and
2. \(N_G(P) = C_G(P).P \).

Then \(G \) is \(p \)-nilpotent.

Proof. Let \(A \) be a \(C_p \)-group and \(g \in G \) such that \(A^g \leq P \). Since \(N_G(P) \) controls fusion \(C_p \)-groups, one has that \(g \in C_G(A).N_G(P) = C_G(A).P \). Then \(P \) controls fusion of \(C_p \)-groups and, by Theorem [10] \(G \) is \(p \)-nilpotent. \(\square \)

4. Some Applications

We now present the first application of Theorem [10]. In [5] H-W. Henn and S. Priddy proved that if a group \(G \) has a Sylow \(p \)-subgroup \(P \) such that

i) if \(p \) is odd, the elements of order \(p \) of \(P \) are in the center of \(P \) and, if \(p = 2 \), the elements of order 2 and 4 are in the center of \(P \),

ii) \(\text{Aut}(P) \) is a \(p \)-group,

then \(G \) is \(p \)-nilpotent. This implies that "most" finite groups are \(p \)-nilpotent (see [5]). The proof of Henn and Priddy is essentially topological. In [11] J. Thevenaz gave a group theoretical proof of this result using Alperin’s Fusion Theorem. In fact Thevenaz proved that if \(G \) satisfies condition i), then \(N_G(P) \) controls \(p \)-fusion in \(G \). This, together with condition ii) above implies that \(P \) controls \(p \)-fusion in \(G \) and therefore \(G \) is \(p \)-nilpotent. We now give a weaker version of Thevenaz result which also implies that a group satisfying i) and ii) is \(p \)-nilpotent.

Proposition 12. Let \(G \) be a finite group and \(P \) a Sylow \(p \)-subgroup of \(G \). Suppose that the elements of order dividing \(p \) in \(P \) (or 4 in case \(p = 2 \)) are in the center of \(P \). Then \(N_G(P) \) controls fusion of \(C_p \)-groups.

Proof. Let \(A \) be a \(C_p \)-group and \(g \in G \) such that \(A^g \leq N_G(P) \). In particular \(A^g \leq P \). Equivalently \(A \leq P^{g^{-1}} \). Hence, since the elements of \(P \) of order \(p \) (or 4 in case \(p = 2 \)) are in the center of \(P \), we have that \(P, P^{g^{-1}} \leq C_G(A) \). But, since \(P \) and \(P^{g^{-1}} \) are Sylow \(p \)-subgroups of \(C_G(A) \), there exists \(c \in C_G(A) \) such that \(P = P^{g^{-1}}.c \). Thus \(g^{-1}c \in N_G(P) \) and \(g \in N_G(P).C_G(A) \). \(\square \)

Corollary 13. Let \(G \) a finite group and \(P \) a Sylow \(p \)-subgroup of \(G \) such that
1. all elements of order dividing p in P (or 4 in case $p = 2$) are in the center of P and
2. $N_G(P) = P.C_G(P)$.

Then G is p-nilpotent.

Proof. It follows from Proposition 12 and Corollary 11. □

The second application of Theorem 10 is a generalization to $p = 2$ of the fact that if the elements of order p of a finite group G are in some upper center of G, then G is p-nilpotent (see [12] and [4]).

Corollary 14. Let G a finite group such that $K = \langle x \in G \mid x^p = 1 \rangle \leq Z_n(G)$ for some $n \geq 1$ (here p means p in case p is odd and 4 in case $p = 2$). Then G is p-nilpotent.

Proof. The subgroup K is nilpotent of class at most n, and therefore a finite p-group. Let p^e be the exponent of K. Then, by Hall-Petrescu collection formula (see [3, Theorem 2.1]), for any $y \in K$ and $x \in G$

\[(y, x^{p^e+n}) \in \prod_{0 \leq i \leq e+n} [K, G, \ldots, G]^{p^i+n-1} = 1.\]

Therefore one has that $G^{p^e+n} \leq C_G(K)$. Moreover, for any Sylow p-subgroup P of G one has $G = P.G^{p^e+n} = P.C_G(K)$. In particular P controls fusion of C_p-groups. Hence, by Theorem 10 G is p-nilpotent. □

References

[1] D. J. Benson, Representations and cohomology. II, Cambridge Studies in Advanced Mathematics, vol. 31, Cambridge University Press, Cambridge, 1991, Cohomology of groups and modules.
[2] L. Evens, The cohomology of groups, Oxford Mathematical Monographs, The Clarendon Press Oxford University Press, New York, 1991, Oxford Science Publications.
[3] G. Fernández-Alcober, J. González-Sánchez, and A. Jaikin-Zapirain, Omega subgroups of pro-p groups, Israel J. Math. 166 (2008), 393–412.
[4] J. González-Sánchez and T. Weigel, p-central groups of heigh k, preprint, 2008.
[5] H-W. Henn and S. Priddy, p-nilpotence, classifying space indecomposability, and other properties of almost all finite groups, Comment. Math. Helv. 69 (1994), no. 3, 335–350.
[6] B. Huppert, Endliche Gruppen. I, Die Grundlehren der Mathematischen Wissenschaften, Band 134, Springer-Verlag, Berlin, 1967.
[7] G. Mislin, On group homomorphisms inducing mod-p cohomology isomorphisms, Comment. Math. Helv. 65 (1990), no. 3, 454–461.
[8] D. Quillen, A cohomological criterion for p-nilpotence, J. Pure Appl. Algebra 1 (1971), no. 4, 361–372.
[9] _, The spectrum of an equivariant cohomology ring. I, II, Ann. of Math. (2) 94 (1971), 549–572; ibid. (2) 94 (1971), 573–602.
[10] J. Tate, Nilpotent quotient groups, Topology 3 (1964), no. suppl. 1, 109–111.
[11] J. Thevenaz, Most finite groups are p-nilpotent., Expo. Math. 11 (1993), no. 4, 359–363.
[12] Th. S. Weigel, p-central groups and Poincaré duality, Trans. Amer. Math. Soc. 352 (2000), no. 9, 4143–4154.

Jon González-Sánchez, Universidad de Cantabria, Departamento de Matemáticas, Estadística y Computación, Facultad de Ciencias, Avda. de los Castros, s/n, E-39071 Santander, Spain

E-mail address: jon.gonzalez@unican.es