COMPARATIVE STUDY OF A CUBIC AUTOCATALYTIC REACTION VIA DIFFERENT ANALYSIS METHODS

Khaled Mohammed Saada,b and Eman Hussain Faissal AL-Sharifa

aDepartment of Mathematics
College of Arts and Sciences
Najran University, 61441, Najran, Saudi Arabia

bDepartment of Mathematics
Faculty of Applied Science
Taiz University, Taiz, Yemen

Abstract. In this paper we discuss an approximate solutions of the space-time fractional cubic autocatalytic chemical system (STFCACS) equations. The main objective is to find and compare approximate solutions of these equations found using Optimal \(q \)-Homotopy Analysis Method (O\(q \)-HAM), Homotopy Analysis Transform Method (HATM), Varitional Iteration Method (VIM) and Adomian Decomposition Method (ADM).

1. Introduction. If two chemicals, which we label \(A \) and \(B \), react through a mechanism known as cubic autocatalysis, we have the chemical reaction equation \[A + 2B \rightarrow 3B, \quad \text{rate} \ k uv^2. \] (1)

Here \(k \) is the reaction rate constant and \(u \) and \(v \) are the concentrations of the two chemicals which are measured in moles. The chemical \(B \) is known as the auto-catalyst, since it catalyses its own production. The greater the concentration of \(B \), the faster it is produced by the reaction (1). If these two chemicals then react in a long thin tube, so that their concentrations only vary in the \(x \)-direction along the tube, the main physical processes that act, in the absence of any underlying fluid flow, are chemical reaction and one dimensional diffusion. The equation governing the chemical reaction (1) is the reaction-diffusion system

\[\frac{\partial u}{\partial t} = D \frac{\partial^2 u}{\partial x^2} - kuv^2, \] (2)

\[\frac{\partial v}{\partial t} = D \frac{\partial^2 v}{\partial x^2} + kuv^2. \] (3)

Here \(t \) is time and \(D \) the constant diffusivity of the chemicals, with the diffusivity of both species assumed equal.

The reaction-diffusion system (2)–(3) can be non-dimensionalised, so that \(D = 1 \) and \(k = 1 \). Furthermore, this system can be replaced by its equivalent space-time
fractional system by replacing \(u_t, v_t \) by \(u^\alpha_t, v^\alpha_t \) and \(u_{xx}, v_{xx} \) by \(u^{2\beta}_{xx}, v^{2\beta}_{xx} \), respectively, where \(0 < \alpha, \beta \leq 1 \). We then obtain the space-time fractional derivative STFCACS

\[
\begin{align*}
\frac{u^\alpha_t}{(x,t)} - \frac{u^{2\beta}_{xx}}{(x,t)} + u(x,t)v^2(x,t) &= 0, \\
\frac{v^\alpha_t}{(x,t)} - \frac{v^{2\beta}_{xx}}{(x,t)} - u(x,t)v^2(x,t) &= 0.
\end{align*}
\]

(4) (5)

We take the initial conditions

\[
\begin{align*}
u(x,0) &= 1 - \sum_{n=1}^{\infty} a \sin(0.5(n\pi) \cos (0.5(2\pi)(\mu_n)), \\
v(x,0) &= \sum_{n=1}^{\infty} b \sin(0.5(n\pi) \cos (0.5(2\pi)(\mu_n)),
\end{align*}
\]

(6) (7)

where \(\mu_n = \frac{n\pi}{L}, 0 \leq L \leq L_0, L_0 > 0 \) and the boundary conditions

\[
u(0,t) = u(L,t) = 1, \quad v(0,t) = v(L,t) = 0.
\]

(8)

The present paper is organized as follows: The second section is devoted to the basic idea of the fractional calculus. The third, fourth, fifth and sixth are devoted to applying the Oq-HAM, HATM, VIM and ADM on STFCACS respectively. The seventh section is devoted to the comparison analysis. In the last section, conclusion is presented.

2. Fractional calculus. Here we give some basic definitions and properties of fractional calculus theory [11, 27, 41, 45].

Definition 2.1. If \(f(t) \in L_1(a,b) \), the set of all integrable functions, and \(\alpha > 0 \), then the Rimann-Liouville fractional integral of order \(\alpha \), denoted by \(J^\alpha_a+ \) is defined by

\[
J^\alpha_a+ f(t) = \frac{1}{\Gamma(\alpha)} \int_{a}^{t} (t-\tau)^{\alpha-1} f(\tau)d\tau
\]

(9)

Definition 2.2. For \(\alpha > 0 \), the Caputo fractional derivative of order \(\alpha \), denoted by \(C^D_{a+}^\alpha \), is defined by

\[
C^D_{a+}^\alpha f(t) = \frac{1}{\Gamma(n-\alpha)} \int_{a}^{t} (t-\tau)^{n-\alpha-1} D^n f(\tau)d\tau,
\]

(10)

where \(n \) is such that \(n-1 < \alpha < n \) and \(D = \frac{d}{dt} \).

If \(\alpha \) is an integer, then this derivative takes the ordinary derivative

\[
C^D_{a+}^\alpha = D^n, \quad \alpha = 1, 2, 3, ...
\]

(11)

Finally the Caputo fractional derivative on the whole space \(R \) is defined by

Definition 2.3. For \(\alpha > 0 \) the Caputo fractional derivative of order \(\alpha \) on the whole space, denoted by \(C^D_{a+}^\alpha \), is defined by

\[
C^D_{a+}^\alpha f(x) = \frac{1}{\Gamma(n-\alpha)} \int_{-\infty}^{x} (x-\xi)^{n-\alpha-1} D^n f(\xi)d\xi.
\]

(12)
2.1. Basic idea of Oq-HAM. The principles of the HAM and its applicability for various kinds of differential equations are given in [4, 19, 33, 34, 37, 60, 64, 66]. Also, new results obtained into [2, 25, 47, 48, 49, 50, 53, 54, 55, 59, 62, 63] using the homotopy analysis method. For convenience, we will present a review of the HAM [34]. To describe the basic idea of the standard Oq-HAM [15, 51], we consider the nonlinear differential equation

\[N[u(x, t)] = 0, \quad t \geq 0, \quad (13) \]

where \(N \) is nonlinear differential operator and \(u(x, t) \) is an unknown function. Liao [33] constructed the so-called zeroth-order deformation equation:

\[
(1 - nq)L[\phi(x, t; q) - u_0(t)] = qhH(x, t)N[\phi(x, t; q)],
\]

(14)

where \(q \in [0, \frac{1}{n}] \) is an embedding parameter, \(h \neq 0 \) is an auxiliary parameter, \(H(x, t) \neq 0 \) is an auxiliary function, \(L \) is an auxiliary linear operator, \(\phi(x, t; q) \) is an unknown function, and \(u_0(t) \) is an initial guess for \(u(x, t) \) which satisfies the initial conditions. It should be emphasized that one has great freedom in choosing the initial guess \(u_0(x, t), L, h \) and \(H(x, t) \). Obviously, when \(q = 0 \) and \(q = \frac{1}{n} \), the following relations hold respectively:

\[
\phi(x, t; 0) = u_0(x, t), \quad \phi(x, t; \frac{1}{n}) = u(x, t).
\]

Expanding \(\phi(x, t; q) \) in Taylor series with respect to \(q \), one has

\[
\phi(x, t; q) = u_0(x, t) + \sum_{m=1}^{\infty} u_m(x, t) q^m, \quad (15)
\]

where

\[
u_m(x, t) = \frac{1}{m!} \frac{\partial^m \phi(x, t; q)}{\partial q^m} \Big|_{q=0}. \quad (16)\]

We assume that the auxiliary parameter \(h \), the auxiliary function \(H(x, t) \), the initial approximation \(u_0(x, t) \) and the auxiliary linear operator \(L \) are selected such that the series (15) converges at \(q = \frac{1}{n} \), and one has

\[
u(x, t) = u_0(x, t) + \sum_{m=1}^{\infty} u_m(x, t) \left(\frac{1}{n} \right)^m. \quad (17)\]

We can deduced the governing equation from the zero order deformation equation by define the vector

\[
\vec{u}_n = \{ u_0(x, t), u_1(x, t), u_2(x, t), \ldots, u_n(x, t) \}. \quad (18)
\]

Differentiating (14) \(m \)-times with respect to \(q \), then setting \(q = 0 \) and dividing them by \(m! \), we have, using (16), the so-called \(m \)-th-order deformation equation

\[
L[u_m(x, t) - \chi_m u_{m-1}(x, t)] = hH(x, t)R_m(\vec{u}_{m-1}(t)), \quad m = 1, 2, 3, \ldots, n, \quad (19)
\]

where

\[
R_m(\vec{u}_{m-1}) = \frac{1}{(m-1)!} \frac{\partial^{m-1} N[\phi(x, t; q)]}{\partial q^{m-1}} \Big|_{q=0}, \quad (20)
\]

and

\[
\chi_m = \begin{cases}
0, & m \leq 1 \\
\frac{1}{n}, & m > 1.
\end{cases} \quad (21)
\]
2.2. Basic idea of HATM. In this section, we introduce an approximate analytical method, namely the HATM, which is combination of the Laplace decomposition method (LDM) and the homotopy analysis method (HAM) [10, 20, 43, 56, 57]. This scheme is simple to apply to linear and nonlinear fractional differential equations and requires less computational effort compared with other existing methods.

2.2.1. Laplace transform. Let \(f(t) \) be defined for \(0 \leq t < \infty \). Then, when the improper integral exists, the Laplace transform \(F(s) \) of \(f(t) \), written symbolically as \(F(s) = \mathcal{L}\{f(t)\} \), is defined by

\[
F(s) = \int_0^\infty e^{-st} f(t) dt.
\]

Lemma 2.4. If \(m-1 < \alpha \leq m, m \in \mathbb{N} \), then the Laplace transform of the fractional derivative \(D^\alpha f(t) \) is

\[
\mathcal{L}(D^\alpha f(t)) = s^\alpha F(s) - \sum_{k=0}^{m-1} f^{(k)}(0^+) s^{\alpha-k-1}, \quad t > 0,
\]

where \(F(s) \) is the Laplace transform of \(f(t) \).

Apply the Laplace transform to the nonlinear differential operator \(N \), we can obtain HATM solutions by the similar procedure with Oq-HAM but with \(n = 1 \).

2.3. Basic idea of VIM. To illustrate the basic concept of the variational iteration method, we consider the following general nonlinear equation

\[
D^\alpha u(x,t) + Nu(x,t) = g(x,t), \quad \alpha > 0
\]

subject to the initial value

\[
u^{(k)}(0) = c_k, \quad k = 0, 1, 2, \ldots, n-1, \quad n-1 < \alpha < n
\]

Then successive approximations \(u_m(x,t), m = 0, 1, 2, \cdots \) follows immediately, and consequently the exact solution may be arrived since:

\[
u = \lim_{m \to \infty} u_m.
\]

2.4. Basic idea of ADM. We present the basic idea of the ADM [26] in this section by considering the following nonlinear partial differential equation

\[
D^\alpha u(x,t) + R(u(x,t)) + N(u(x,t)) = g(x,t), \quad \alpha > 0
\]

subject to the initial value

\[
u^{(k)}(0) = c_k, \quad k = 0, 1, 2, \cdots, n-1, \quad n-1 < \alpha < n
\]
where R is the remaining linear operator, which might include other fractional derivatives operator $D^{\nu}(\nu < \alpha)$, N represent a nonlinear operator and $g(x,t)$ is a given continuous function. Now, applying J^α to both the sides of (25), we get
\begin{equation}
 u(x,t) = \sum_{k=0}^{[\alpha]} c_k \frac{t^k}{k!} + J^\alpha g(x,t) - J^\alpha R(u(x,t)) - J^\alpha N(u(x,t)).
\end{equation}
(27)

We employ the Adomian decomposition method to solve equations (26)–(27). Let
\begin{equation}
 u = \sum_{m=0}^\infty u_m,
\end{equation}
(28)
and
\begin{equation}
 N(u) = \sum_{m=0}^\infty A_m,
\end{equation}
(29)
where A_m are Adomian polynomials which depend upon u. In view of Equations (28)–(29), (27) takes the form
\begin{equation}
 \sum_{m=0}^\infty u_m = \sum_{k=0}^{[\alpha]} c_k \frac{t^k}{k!} + J^\alpha g(x,t) - J^\alpha R(u(x,t)) - J^\alpha \sum_{m=0}^\infty A_m(u).
\end{equation}
(30)

We set
\begin{equation}
 u_0(x,t) = \sum_{k=0}^{[\alpha]} c_k \frac{t^k}{k!} + J^\alpha g(x,t);
\end{equation}
(31)
\begin{equation}
 u_m = -J^\alpha R(u(x,t)) - J^\alpha \sum_{m=0}^\infty A_m(u),\ m = 0, 1, \cdots
\end{equation}
(32)

In order to determine the Adomian polynomials, we introduce a parameter λ and (29) becomes
\begin{equation}
 N \left(\sum_{m=0}^\infty u_m \lambda^m \right) = \sum_{m=0}^\infty A_m \lambda^m.
\end{equation}
(33)

Let $u_\lambda(x,t) = \sum_{m=0}^\infty u_m \lambda^m$. Then
\begin{equation}
 A_m = \frac{1}{m!} \left[\frac{d^m}{d\lambda^m} N_\lambda(u) \right]_{\lambda=0},
\end{equation}
(34)
where
\begin{equation}
 N_\lambda(y) = N(u_\lambda).
\end{equation}
(35)

In view of (34) and (35), we get
\begin{equation}
 A_m = \left[\frac{1}{m!} \frac{d^m}{d\lambda^m} N(\sum_{m=0}^\infty u_m \lambda^m) \right]_{\lambda=0}.
\end{equation}
(36)

Hence, (31)–(32) and (36) lead to the following recurrence relations
\begin{equation}
 u_0(x,t) = \sum_{k=0}^{[\alpha]} c_k + J^\alpha g(x,t),\ u_m(x,t)
 = -J^\alpha R(u(x,t)) - J^\alpha \left[\frac{1}{m!} \frac{d^m}{d\lambda^m} N(\sum_{m=0}^\infty u_m \lambda^m) \right]_{\lambda=0}.
\end{equation}
(37)
We can approximate the solution \(u \) by the truncated series
\[
\phi_k = \sum_{m=0}^{k-1} u_m, \quad \lim_{k \to \infty} \phi_k = u(x, t).
\]

3. The Oq-HAM for STFCACS. In this section, we apply the Oq-HAM to solve STFCACS (4)–(5). According to the theory and procedure outlined in \([33, 34, 35]\) we have great freedom to choose the initial approximations \(u_0(x, t) \) and \(v_0(x, t) \), the auxiliary linear operator \(L \), the auxiliary function \(H(x, t) \) and the auxiliary parameter \(h \). For simplicity we use the auxiliary function \(H(x, t) = 1 \). Through using this method we have \(u_0(x, t) = u(x, 0) \) and \(v_0(x, t) = v(x, 0) \) and the \(m \)-th order deformations are then
\[
u_m(x, t) = \chi_m v_{m-1} + h J^\alpha [R_{2m}(\vec{v}_{m-1})],
\]
where
\[
R_{1m}(\vec{u}_{m-1}) = D_t^{\alpha} u_{m-1} - D_x^{2\beta} u_{m-1} + \sum_{j=0}^{m-1} u_{m-1-j} \sum_{i=0}^j v_i v_{j-i}
\]
and
\[
R_{2m}(\vec{v}_{m-1}) = D_t^{\alpha} v_{m-1} - D_x^{2\beta} v_{m-1} - \sum_{j=0}^{m-1} u_{m-1-j} \sum_{i=0}^j v_i v_{j-i}.
\]

For the first terms of the Oq-HAM series solution we take
\[
u_1(x, t) = \frac{h t^\alpha}{\Gamma(\alpha + 1)} \left(\sum_{n=1}^{\infty} \sum_{m=1}^{\infty} a \sin(0.5(n\pi)) \mu_n^{2\beta} \cos(0.5(n\pi) - \mu_n x - \beta \pi) \right)
\]
\[
\times \cos(0.5(m\pi) - \mu_m x) - \sum_{n=1}^{\infty} \sum_{m=1}^{\infty} \sum_{r=1}^{\infty} b^2 \sin(0.5(n\pi)) \sin(0.5(m\pi)) \sin(0.5(r\pi)) \times \cos(0.5(n\pi) - \mu_n x) \cos(0.5(m\pi) - \mu_m x) \cos(0.5(r\pi) - \mu_r x) \right) (42)
\]
and
\[
u_1(x, t) = \frac{h t^\alpha}{\Gamma(\alpha + 1)} \left(-\sum_{n=1}^{\infty} \sum_{m=1}^{\infty} b \sin(0.5(n\pi)) \mu_n^{2\beta} \cos(0.5(n\pi) - \mu_n x - \beta \pi) \right)
\]
\[
- \sum_{n=1}^{\infty} \sum_{m=1}^{\infty} b^2 \sin(0.5(n\pi)) \sin(0.5(m\pi)) \cos(0.5(n\pi) - \mu_n x) \times \cos(0.5(m\pi) - \mu_m x) + \sum_{n=1}^{\infty} \sum_{m=1}^{\infty} \sum_{r=1}^{\infty} ab^2 \sin(0.5(n\pi)) \sin(0.5(m\pi)) \sin(0.5(r\pi)) \times \cos(0.5(n\pi) - \mu_n x) \cos(0.5(m\pi) - \mu_m x) \cos(0.5(r\pi) - \mu_r x) \right), (43)
\]
where \(\mu_n = \frac{n\pi}{L} \), \(\mu_m = \frac{m\pi}{L} \) and \(\mu_r = \frac{r\pi}{L} \). Hence, using equation (17), we obtain the approximate solution
Here and Repeating the procedure of [14, 18, 29, 30, 31, 32, 39, 42, 52, 61, 67] we obtain

\[u(x, t) = u_0(x, t) + \sum_{m=1}^{\infty} u_m(x, t) \left(\frac{1}{n} \right)^m. \]

(44)

Proceeding in this manner, the rest of the components can be obtained and the Oq-HAM is given by

\[v(x, t) = v_0(x, t) + \sum_{m=1}^{\infty} v_m(x, t) \left(\frac{1}{n} \right)^m. \]

(45)

The series (44)–(45) contains the auxiliary parameters \(h \) and \(n \). We evaluate the optimal values of the convergence-control parameters by the minimum of the averaged residual errors \([4, 5, 6, 7, 16, 36, 51, 66]\)

\[E_u(h) = \frac{1}{N M} \sum_{s=0}^{N} \sum_{j=0}^{M} \left[N \left(\sum_{k=0}^{m} u_k \left(\frac{100s}{N}, \frac{30j}{M} \right) \right) \right]^2, \]

(46)

\[E_v(h) = \frac{1}{N M} \sum_{s=0}^{N} \sum_{j=0}^{M} \left[M \left(\sum_{k=0}^{m} v_k \left(\frac{100s}{N}, \frac{30j}{M} \right) \right) \right]^2, \]

(47)

corresponding to a nonlinear algebraic equations

\[\frac{dE_u(h)}{dh} = 0, \]

(48)

\[\frac{dE_v(h)}{dh} = 0. \]

(49)

4. The HATM for STFCACS. In this section we apply the HATM to solve STFCACS (4)–(5). As in [14, 18, 29, 30, 31, 32, 39, 42, 52, 58, 61, 67], we take the Laplace transform of both sides of equations (4)–(5) to give

\[\mathcal{L}(u(x, t)) - \frac{1}{s} u(x, 0) + \frac{1}{s^\alpha} \mathcal{L}[-D_x^{2\beta} u(x, t) + u(x, t)v^2(x, t)] = 0 \]

(50)

\[\mathcal{L}(v(x, t)) - \frac{1}{s} v(x, 0) + \frac{1}{s^\alpha} \mathcal{L}[-D_x^{2\beta} v(x, t) - u(x, t)v^2(x, t)] = 0. \]

(51)

Repeating the procedure of [14, 18, 29, 30, 31, 32, 39, 42, 52, 58, 61, 67] we obtain

\[u_m(x, t) = \chi_m u_{m-1} + h \mathcal{L}^{-1}[R_{3m}(\tilde{u}_{m-1})] \]

(52)

and

\[v_m(x, t) = \chi_m v_{m-1} + h \mathcal{L}^{-1}[R_{4m}(\tilde{v}_{m-1})]. \]

(53)

Here

\[R_{3m}(\tilde{u}_{m-1}) = \mathcal{L}(u_{m-1}) - \frac{1}{s} (1 - \chi_m) u(x, 0) + \frac{1}{s^\alpha} \mathcal{L}[-D_x^{2\beta} u_{m-1} + \sum_{j=0}^{m-1} u_{m-1-j} \sum_{i=0}^{j} v_i v_{j-i}] \]

(54)

and

\[R_{4m}(\tilde{v}_{m-1}) = \mathcal{L}(v_{m-1}) - \frac{1}{s} (1 - \chi_m) v(x, 0) + \frac{1}{s^\alpha} \mathcal{L}[-D_x^{2\beta} v_{m-1} - \sum_{j=0}^{m-1} u_{m-1-j} \sum_{i=0}^{j} v_i v_{j-i}]. \]

(55)

Consequently, the first terms of the HATM series approximate solution are \(u_0(x, t) = u(x, 0), \) \(v_0(x, t) = v(x, 0) \) and

\[u_1(x, t) = \frac{h t^\alpha}{\Gamma(\alpha + 1)} \left(\sum_{n=1}^{\infty} a \sin(0.5(n\pi)) \mu_n^{2\beta} \cos(0.5(n\pi) - \mu_n x - \beta \pi) \right) \]
\[+ \sum_{n=1}^{\infty} \sum_{m=1}^{\infty} b^2 \sin(0.5(n\pi)) \sin(0.5(m\pi)) \cos(0.5(n\pi) - \mu_n x) \times \cos(0.5(m\pi) - \mu_m x) \\
- \sum_{n=1}^{\infty} \sum_{m=1}^{\infty} \sum_{r=1}^{\infty} ab^2 \sin(0.5(n\pi)) \sin(0.5(m\pi)) \sin(0.5(r\pi)) \times \cos(0.5(n\pi) - \mu_n x) \cos(0.5(m\pi) - \mu_m x) \cos(0.5(r\pi) - \mu_r x)) \] (56)

and

\[v_1(x, t) = \frac{ht^\alpha}{\Gamma(\alpha + 1)} \left(- \sum_{n=1}^{\infty} b \sin(0.5(n\pi)) \mu_n^{2\beta} \cos(0.5(n\pi) - \mu_n x - \beta\pi) \\
- \sum_{n=1}^{\infty} \sum_{m=1}^{\infty} b^2 \sin(0.5(n\pi)) \sin(0.5(m\pi)) \cos(0.5(n\pi) - \mu_n x) \times \cos(0.5(m\pi) - \mu_m x) \\
+ \sum_{n=1}^{\infty} \sum_{m=1}^{\infty} \sum_{r=1}^{\infty} ab^2 \sin(0.5(n\pi)) \sin(0.5(m\pi)) \sin(0.5(r\pi)) \times \cos(0.5(n\pi) - \mu_n x) \cos(0.5(m\pi) - \mu_m x) \cos(0.5(r\pi) - \mu_r x)) \right). \] (57)

We therefore have the approximate solution of the STFCACS (4)–(5) derived using the HATM as

\[u(x, t) = u_0(x, t) + \sum_{m=1}^{\infty} u_m(x, t) \] (58)

and

\[v(x, t) = v_0(x, t) + \sum_{m=1}^{\infty} v_m(x, t). \] (59)

5. The VIM for STFCACS. In this section, we apply the VIM to solve the space-time fractional STFCACS (4)–(5). Based on the variational iteration method [3, 21, 22, 23, 38, 44, 46], expression (24) for (4)–(5) can be expressed as

\[u_{n+1}(x, t) = u_n(x, t) + J_t^\alpha \lambda(\tau)[u^\alpha_{n,\tau} - u_{n,x}^{2\beta} + u_n v_n^2] \] (60)

and

\[v_{n+1}(x, t) = v_n(x, t) + J_t^\alpha \lambda(\tau)[v^\alpha_{n,\tau} - v_{n,x}^{2\beta} - u_n v_n^2]. \] (61)

We can find the value of \(\lambda(\tau) \) as in [3, 21, 22, 23, 38, 44, 46]. This value is \(\lambda(\tau) = -1 \). Substituting this value of the Lagrange multiplier into the solution (60)–(61), the variational iteration formula gives

\[u_{n+1}(x, t) = u_n(x, t) - J_t^\alpha [u^\alpha_{n,\tau} - u_{n,x}^{2\beta} + u_n v_n^2] \] (62)

and

\[v_{n+1}(x, t) = v_n(x, t) - J_t^\alpha [v^\alpha_{n,\tau} - v_{n,x}^{2\beta} - u_n v_n^2]. \] (63)

Finally, the exact solution is obtained using

\[u(x, t) = \lim_{n \to \infty} u_n(x, t) \] (64)

and

\[v(x, t) = \lim_{n \to \infty} v_n(x, t). \] (65)
With the initial approximations $u_0(x,t) = u(x,0)$ and $v_0(x,t) = v(x,0)$ the iteration (62)–(63) leads to the solution. The first components of the solutions $u(x,t)$ and $v(x,t)$ using (62)–(63) are given by

$$u_1(x,t) = u_0(x,t) - \frac{t^\alpha}{\Gamma(\alpha + 1)} \left(\sum_{n=1}^{\infty} a \sin(0.5(n\pi)) \mu_n^{2\beta} \cos(0.5(n\pi) - \mu_n x)
ight)$$

$$+ \sum_{n=1}^{\infty} \sum_{m=1}^{\infty} b^2 \sin(0.5(n\pi)) \sin(0.5(m\pi)) \cos(0.5(n\pi) - \mu_n x)$$

$$\times \cos(0.5(n\pi) - \mu_n x - \beta\pi)$$

$$- \sum_{n=1}^{\infty} \sum_{m=1}^{\infty} \sum_{r=1}^{\infty} a b^2 \sin(0.5(n\pi)) \sin(0.5(m\pi)) \sin(0.5(r\pi))$$

$$\times \cos(0.5(n\pi) - \mu_n x) \cos(0.5(m\pi) - \mu_m x) \cos(0.5(r\pi) - \mu_r x)) \quad (66)$$

and

$$v_1(x,t) = v_0(x,t) - \frac{t^\alpha}{\Gamma(\alpha + 1)} \left(\sum_{n=1}^{\infty} b \sin(0.5(n\pi)) \mu_n^{2\beta} \cos(0.5(n\pi) - \mu_n x) \right)$$

$$- \sum_{n=1}^{\infty} \sum_{m=1}^{\infty} b^2 \sin(0.5(n\pi)) \sin(0.5(m\pi)) \cos(0.5(n\pi) - \mu_n x)$$

$$\times \cos(0.5(n\pi) - \mu_n x - \beta\pi)$$

$$+ \sum_{n=1}^{\infty} \sum_{m=1}^{\infty} \sum_{r=1}^{\infty} a b^2 \sin(0.5(n\pi)) \sin(0.5(m\pi)) \sin(0.5(r\pi))$$

$$\times \cos(0.5(n\pi) - \mu_n x) \cos(0.5(m\pi) - \mu_m x) \cos(0.5(r\pi) - \mu_r x)) \quad (67)$$

6. **The ADM for STFCACS.** In this section, we apply the ADM [1, 8, 9, 12, 13, 17, 40] to solve the STFCACS (4)–(5). Applying the operator J^α to both sides of Eq. (4)–(5) yields

$$u(x,t) = f(x) - J^\alpha \left[-u_x^{2\beta} + uv^2 \right] \quad (68)$$

and

$$v(x,t) = g(x) - J^\alpha \left[-v_x^{2\beta} - uv^2 \right]. \quad (69)$$

Now the ADM solutions and the nonlinear functions can be represented as the infinite series

$$u(x,t) = u_0(x,t) + \sum_{m=1}^{\infty} u_m(x,t) \quad (70)$$

and

$$v(x,t) = v_0(x,t) + \sum_{m=1}^{\infty} v_m(x,t). \quad (71)$$

In addition,

$$N(u(x,t)) = u(x,t)v^2(x,t) = \sum_{m=0}^{\infty} A_m \quad (72)$$

$$N(v(x,t)) = u(x,t)v^2(x,t) = \sum_{m=0}^{\infty} B_m. \quad (73)$$
where
\[A_m = \frac{1}{m!} \left[\frac{d^m}{d\lambda^m} N(\sum_{k=0}^{m} \lambda^k u_k(x,t)) \right]_{\lambda=0} \] (74) and
\[B_m = \frac{1}{m!} \left[\frac{d^m}{d\lambda^m} N(\sum_{k=0}^{m} \lambda^k v_k(x,t)) \right]_{\lambda=0} . \] (75)

\(A_m \) and \(B_m \) are called Adomian polynomials. Furthermore, the components \(u_m(x,t) \) and \(v_m(x,t) \) of the solutions \(u(x,t) \) and \(v(x,t) \) are determined from the initial approximations
\[u_0(x,t) = u(x,0) \] (76) and
\[v_0(x,t) = v(x,0) \] (77) and the recurrence relations
\[u_{m+1}(x,t) = -J^\alpha [-u_{2,m}^{2\beta} + A_m] \] (78) and
\[v_{m+1}(x,t) = -J^\alpha [-v_{2,m}^{2\beta} - B_m]. \] (79)

Now if we take the initial values \(u_0(x,0) = u(x,0) \) and \(v_0(x,0) = v(x,0) \), we obtain the first iterates
\[u_1(x,t) = -\frac{t^\alpha}{\Gamma(\alpha+1)} \left(\sum_{n=1}^{\infty} a \sin(0.5(n\pi)) \mu_n^{2\beta} \cos(0.5(n\pi)) - \mu_n x - \beta \pi \right) \]
\[+ \sum_{n=1}^{\infty} \sum_{m=1}^{\infty} b^2 \sin(0.5(n\pi)) \sin(0.5(m\pi)) \cos(0.5(n\pi)) - \mu_n x \]
\[\times \cos(0.5(m\pi) - \mu_m x) \]
\[- \sum_{n=1}^{\infty} \sum_{m=1}^{\infty} \sum_{r=1}^{\infty} ab^2 \sin(0.5(n\pi)) \sin(0.5(m\pi)) \sin(0.5(r\pi)) \]
\[\times \cos(0.5(n\pi) - \mu_n x) \cos(0.5(m\pi) - \mu_m x) \cos(0.5(r\pi) - \mu_r x) \] (80)

\[v_1(x,t) = -\frac{t^\alpha}{\Gamma(\alpha+1)} \left(-\sum_{n=1}^{\infty} b \sin(0.5(n\pi)) \cos(0.5(n\pi)) - \mu_n x - \beta \pi \right) \]
\[- \sum_{n=1}^{\infty} \sum_{m=1}^{\infty} b^2 \sin(0.5(n\pi)) \sin(0.5(m\pi)) \cos(0.5(n\pi)) - \mu_n x \]
\[\times \cos(0.5(m\pi) - \mu_m x) \]
\[+ \sum_{n=1}^{\infty} \sum_{m=1}^{\infty} \sum_{r=1}^{\infty} ab^2 \sin(0.5(n\pi)) \sin(0.5(m\pi)) \sin(0.5(r\pi)) \]
\[\times \cos(0.5(n\pi) - \mu_n x) \cos(0.5(m\pi) - \mu_m x) \cos(0.5(r\pi) - \mu_r x) \] (81)

Proceed in this way, the rest of the components can be obtained. The general form of the approximations of the STFCACS (4)–(5) derived using the ADM as (70)–(71).
7. Comparison analysis. In this section we compare the solutions obtained above using the four methods for fractional differential equations with the numerical solutions of the fractional space-time STFCACS obtained using the command NDSolve of Mathematica 9. After substituting the initial values for \(u(x,0) \) and \(v(x,0) \) into the space-time fractional STFCACS (4)–(5), we obtain the first approximation of the VIM, which are the same as the first two terms of the Oq-HAM, HATM and ADM for (4)–(5). So the errors of each method are the same and we need more iterations to find differences between the methods. A comparison between numerical solutions and solutions obtained using the Oq-HAM, HATM, VIM and ADM methods are shown in Figures 1–4 for \(\alpha = 1, \beta = 1, a = 0.001 \) and \(b = 0.001 \). The same comparisons are shown in Figures 7–10, but with \(\alpha = 0.9 \) and \(\beta = 0.99 \). It can be seen from Figures 1–4 and Figures 7–10 that the order of the maximum errors of these methods is approximately \(10^{-5} \).

We shall now compare the results using these approximate methods with numerical solutions as a function of \(x \). Figures 5–6 show these comparisons. Due to the periodic initial conditions for our problem, the errors depend on \(x \). In Figures 5–6(b), (c), (d) and (e), showing the ADM solution for \(0 < t < 25, 0 < t < 70, 0 < t < 65 \) and \(0 < t < 40 \) respectively. It can be seen that the ADM solution converges more rapidly than the Oq-HAM, HATM and VIM solutions. However, the errors displayed in Figures 5–6(a) and (f) are uniform. Furthermore, these figures show that the Oq-HAM converges more rapidly than the HATM, VIM and ADM. Also, we noted from Figures 5–6(a), (e) and (f) that the errors of the VIM and ADM are identical and of the same order. The solutions obtained using the Oq-HAM, HATM, VIM and ADM for the fractional space-time STFCACS (4)–(5) with \(\alpha = 0.4, 0.7, 0.99 \) and \(\beta = 0.7, 0.9, 0.99 \) and \(t = 10, a = 0.4, b = 0.2, n = 5, h_{Oq-HAM} = -3.00 \) and \(h_{HATM} = -0.64 \) are plotted in Figures 11–13. These figures show the convergence of the solutions using these methods. The solutions show the same behaviour for these different values of \(\alpha \) and \(\beta \). Figures 14–17 show the solutions obtained using the Oq-HAM, HATM, VIM and ADM for different values of \(\alpha \) and \(\beta \). It can be seen from this figure, that the solutions based on the four methods approach the numerical solution as \(\alpha \to 1 \) and \(\beta \to 1 \).

8. Conclusion. In this paper the Oq-HAM, HATM, VIM and ADM methods have been applied to efficiently obtain approximate solutions of the space-time fractional STFCACS. It was show that the Oq-HAM, HATM, VIM and ADM can be successfully applied to the STFCACS.

The main advantage of the four methods over mesh points methods is that they do not require discretization of the variables, i.e. time and space, and thus they are not affected by computation round off errors and one is not faced with the necessity of large computer memory and time. The four methods provide the solutions in terms of convergent series with easily computable components. The main disadvantage of these methods is they only give a good approximation of the true solution in a restricted region. The first two terms of the Oq-HAM, HATM and ADM solutions and the first approximation of the VIM are identical. Hence, we computed the first three terms of the Oq-HAM, HATM and ADM and the second approximation for the VIM. The efficiency and accuracy of these methods are clear from the comparisons with numerical solutions displayed in the figures. Comparisons of solutions obtained using the Oq-HAM, HATM, VIM and ADM methods with numerical results obtained using Mathematica show the efficiency of the methods. Finally, we
found that the Oq-HAM has more rapid convergence than the HATM, VIM and ADM.

REFERENCES

[1] K. Abbasoui and Y. Cherruault, Convergence of adomian’s method applied to differential equations, Comput. Math. Appl., 28 (1994), 103–109.
[2] S. Abbasbandy, E. Shivaniana and K. Vajravelu, Mathematical properties of h-curve in the frame work of the homotopy analysis method, Communications in Nonlinear Science and Numerical Simulation, 16 (2011), 4268–4275.
[3] S. Abbasbandy, Numerical method for non-linear wave and diffusion equations by the variational iteration method, International Journal for Numerical Methods in Engineering, 73 (2008), 1836–1843.
[4] S. Abbasbandy, Homotopy analysis method for heat radiation equations, Int Commun Heat Mass Transf, 34 (2007), 380–387.
[5] S. Abbasbandy, Soliton solutions for the 5th-order kdv equation with the homotopy analysis method, Nonlinear Dyn, 51 (2008), 83–87.
[6] S. Abbasbandy, The application of the homotopy analysis method to nonlinear equations arising in heat transfer, Phys Lett A, 360 (2006), 109–113.
[7] S. M. Abo-Dahab, M. S. Mohamed and T. A. Nofal, A One Step Optimal Homotopy Analysis Method for propagation of harmonic waves in nonlinear generalized magneto-thermoelasticity with two relaxation times under influence of rotation, Abstract and Applied Analysis, 2013 (2013), Art. ID 614874, 14 pp.
[8] G. Adomian, Solving the mathematical models of neurosciences and medicine, Mathematics and Computers in Simulation, 40 (1995), 107–114.
[9] G. Adomian, The kadomtsev-petviashvili equation, Applied Mathematics and Computation, 76 (1996), 95–97.
[10] A. S. Arife, S. K. Vanani and F. Soleymani, The laplace homotopy analysis method for solving a general fractional diffusion equation arising in nano- hydrodynamics, J Comput Theor Nanosci, 10 (2013), 33–36.
[11] M. Caputo, Linear models of dissipation whose q is almost frequency independent, Geophysical Journal, 13 (1967), 529–539.
[12] Y. Cherruault, Convergence of adomian’s method, Kybernetes, 18 (1989), 31–38.
[13] Y. Cherruault and G. Adomians, Decomposition methods: A new proof of convergence, Math. Comput. Modelling, 18 (1993), 103–106.
[14] V. F. M. Delgado, J.F. Gómez-Aguilar, H. Y. Martez and D. Baleanu, Laplace homotopy analysis method for solving linear partial differential equations using a fractional derivative with and without kernel singular, Adv. Differ. Equ., 2016 (2016), Paper No. 164, 17 pp.
[15] M. A. El-Tawil and S. N. Huseen, On convergence of the q-homotopy analysis method, Int. J. of Contemp. Math. Scies., 8 (2013), 481–497.
[16] M. A. Gondal, A. S. Arife, M. Khan and I. Hussain, An efficient numerical method for solving linear and nonlinear partial differential equations by combining homotopy analysis and transform method, World Applied Sciences Journal, 14 (2011), 1786–1791.
[17] C. Gong, W. Bao, G. Tang, Y. Jiang and J. Liu, A domain decomposition method for time fractional reaction-diffusion equation, The Scientific World Journal, 2014 (2014), Article ID 681707, 5 pages.
[18] V. G. Gupta and P. Kumar, Approximate solutions of fractional linear and nonlinear differential equations using laplace homotopy analysis method, Int. J. of Nonlinear Sci., 19 (2015), 113–120.
[19] T. Hayat, M. Khan and S. Asghar, Homotopy analysis of mhd flows of an oldroyd 8-constant fluid, Appl. Math. Comput., 155 (2004), 417–425.
[20] T. Hayat, S. B. Khan, M. Sajid and S. Asghar, Rotating flow of a third grade fluid in a porous space with hall current, Nonlinear Dyn, 49 (2007), 83–91.
[21] J. H. He, Variational iteration method- a kind of non-linear analytical technique: Some examples, International Journal of Non-Linear Mechanics, 34 (1999), 699–708.
[22] J. H. He, Variational iteration method for autonomous ordinary differential systems, Appl. Math. Comput., 114 (2000), 115–123.
[23] J. H. He, Variational principle for some nonlinear partial differential equations with variable coefficients, Chaos, Solitons & Fractals, 19 (2004), 847–851.
[24] J. H. He, Some asymptotic methods for strongly nonlinear equations, *Int. J. Modern Phys. B*, **20** (2006), 1141–1199.
[25] O. S. Iyiola, On the solutions of non-linear time-fractional gas dynamic equations: An analytical approach, *International Journal of Pure and Applied Mathematics*, **98** (2015), 491–502.
[26] H. Jafari and V. Daftardar-Gejji, Solving a system of nonlinear fractional differential equations using adomian decomposition, *Journal of Computational and Applied Mathematics*, **196** (2006), 644–651.
[27] A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, *Theory and Applications of Fractional Differential Equations*, North-Holland Mathematical Studies, Vol. 204, Elsevier, Amsterdam, 2006.
[28] A. C. King, J. Billingham and S. R. Otto. *Differential Equations: Linear, Nonlinear, Ordinary, Partial*, Cambridge University Press, 2003.
[29] S. Kumar, J. Singh, D. Kumar and S. Kapoor, New homotopy analysis transform algorithm to solve volterra integral equation, *Ain Shams Engineering Journal*, **5** (2014), 243–246.
[30] S. Kumar and D. Kumar, Fractional modelling for bbm-burger equation by using new homotopy analysis transform method, *Journal of the Association of Arab Universities for Basic and Applied Sciences*, **16** (2014), 16–20.
[31] D. Kumar, J. Singh, S. Kumar and Sushila, Numerical computation of klein-gordon equations arising in quantum field theory by using homotopy analysis transform method, *Alexandria Engineering Journal*, **53** (2014), 469–474.
[32] D. Kumar, J. Singh and Sushila, Application of homotopy analysis transform method to fractional biological population model, *Romanian Reports in Physics*, **65** (2013), 63–75.
[33] S. J. Liao, The proposed homotopy analysis technique for the solution of nonlinear problems, PhD thesis, Shanghai Jiao Tong University, 1992.
[34] S. J. Liao, Beyond perturbation: introduction to the homotopy analysis method, *Boca Raton: Chapman and Hall/CRC Press*, 2003.
[35] S. J. Liao, A kind of approximate solution technique which does not depend upon small parameters- II: an application in fluid mechanics, *Int J Non-Linear Mech*, **32** (1997), 815–822.
[36] S.-J. Liao, An optimal homotopy-analysis approach for strongly nonlinear differential equations, *Commun Nonlinear Sci Numer Simulat*, **15** (2010), 2003–2016.
[37] S. J. Liao, On the homotopy analysis method for nonlinear problems, *Appl Math Comput*, **147** (2004), 499–513.
[38] H. M. Liu, Generalized variational principles for ion acoustic plasma waves by He’s semi-inverse method, *Chaos, Solitons Fractals*, **23** (2005), 573–576.
[39] M. Madani, M. Fathizadeh, Y. Khan and A. Yildirim, On the coupling of the homotopy perturbation method and laplace transformation, *Math. and Comput. Model.*, **53** (2011), 1937–1945.
[40] T. Mavoungou and Y. Cherruault, Convergence of adomian’s method and applications to non-linear partial differential equation, *Kybernetes*, **21** (1992), 13–25.
[41] K. S. Miller and B. Ross, *An Introduction to the Fractional Calculus and Fractional Differential Equations*, Wiley and Sons, New York, 1993.
[42] M. S. Mohamed, K. A. Gepreel, M. R. Alharthi and R. A. Alotabi, Homotopy analysis transform method for integro-differential equations, *General Mathematics Notes*, **32** (2016), 32–48.
[43] M. S. Mohamed, F. Al-Malki and M. Al-humyani, Homotopy analysis transform method for time-space fractional gas dynamics equation, *Gen. Math. Notes*, **24** (2014), 1–16.
[44] Z. Odibat, A new modification of the homotopy perturbation method for linear and nonlinear operators, *Appl. Math. Comput.*, **189** (2007), 746–753.
[45] I. Podlubny, *Fractional Differential Equations*, Academic Press, San Diego, 1999.
[46] A. Répaci, Nonlinear dynamical systems: On the accuracy of adomian’s decomposition method, *Appl. Mth. Lett.*, **3** (1990), 35–39.
[47] K. M. Saad, Comparing the Caputo, Caputo-Fabrizio and Atangana-Baleanu derivative with fractional order: Fractional Cubic Isothermal Auto-catalytic Chemical System, *Eur. Phys. J. Plus*, **133** (2018), p.49.
[48] K. M. Saad, D. Baleanu and A. Atangana, New fractional derivatives applied to the Korteweg-de Vries and Korteweg-de Vries-Burger’s equations, *A. Comp. Appl. Math.*, (2018), 1–14.
New Fractional derivatives with non-singular kernel
applied to the Burgers equation, Chaos: An Interdisciplinary Journal of Nonlinear Science, 28 (2018), 063109, 6 pp.

Analysis of reaction-diffusion system via a new fractional derivative with non-singular kernel, Physica A: Statistical Mechanics and its Applications, 476 (2017), 1–14.

Optimal q-homotopy analysis method for time-space fractional gas dynamics equation, The European Physical Journal Plus, 132 (2017), 23.

An application of homotopy analysis transform method for Riccati differential equation of fractional order, Journal of Fractional Calculus and Applications, 7 (2016), 61–72.

Analyzing magneto-hydrodynamic squeezing flow between two parallel disks with suction or injection by a new hybrid method based on the tau method and the homotopy analysis method, The European Physical Journal Plus, 128 (2013), 133.

Predictor homotopy analysis method (PHAM) for nano boundary layer flows with nonlinear Navier boundary condition: Existence of four solutions, Filomat, 28 (2014), 1687–1697.

Predictor homotopy analysis method: Two points second order boundary value problems, Nonlinear Analysis: Real World Applications, 15 (2014), 89–99.

Homotopy perturbation algorithm using laplace transform for gas dynamics equation, Journal of the Applied Mathematics, Statistics and Informatics, 8 (2012), 55–61.

Application of homotopy perturbation transform method for solving linear and nonlinear klein-gordon equations, Journal of Information and Computing Science, 7 (2012), 131–139.

Homotopy analysis transform algorithm to solve time-fractional foam drainage equation, Nonlinear Engineering, 5 (2016), 161–166.

Convection-radiation heat transfer in solar heat exchangers filled with a porous medium: Exact and shooting homotopy analysis solution, Applied Thermal Engineering, 103 (2016), 537–542.

Solving the klein-gordon equation by means of the homotopy analysis method, Appl. Math. and Comput., 169 (2005), 355–365.

The combined Laplace-homotopy analysis method for partial differential equations, J. Math. Computer Sci., 16 (2016), 88–102.

Unique and multiple pham series solutions of a class of nonlinear reactive transport model, Numerical Algorithms, 61 (2012), 515–524.

A new analytical technique to solve volterra’s integral equations, Mathematical methods in the applied sciences, 34 (2011), 1243–1253.

Solving the one-loop soliton solution of the vakhnenko equation by means of the homotopy analysis method, Chaos, Solitons and Fractals, 23 (2005), 1733–1740.

Electrospun nanoporous spheres with chinese drug, Int. J. Nonlinear Sci. Numer. Simul., 8 (2007), 199–202.

An analytic solution of projectile motion with the quadratic resistance law using the homotopy analysis method, J Phys A, 40 (2007), 8403–8416.

Solving fractional oscillators using laplace homotopy analysis method, Annals of the University of Craiova, Mathematics and Computer Science Series, 38 (2011), 1–11.

Received June 2017; revised September 2017.

E-mail address: khaledma_sd@hotmail.com
E-mail address: e_tatweer@hotmail.com
Figure 1. The absolute error between the 3-terms of Oq-HAM solutions and numerical method using Mathematica for (4)–(5) with $\alpha = 1, \beta = 1, a = 0.001, b = 0.001, h = -3.055, n = 5$.

Figure 2. The absolute error between the 3-terms of HATM solutions and numerical method using Mathematica for (4)–(5) with $\alpha = 1, \beta = 1, a = 0.001, b = 0.001, h = -0.64$.

Figure 3. The absolute error between the second approximation by VIM and the numerical method using Mathematica for (4)–(5) with $\alpha = 1, \beta = 1, a = 0.001, b = 0.001$.

Figure 4. The absolute error between the 3-terms of ADM and the numerical method using Mathematica for (4)–(5) with $\alpha = 1, \beta = 1, a = 0.001, b = 0.001$.
Figure 5. The comparison of Oq-HAM, HATM, VIM and ADM for (4)–(5) with numerical method in Mathematica for \(x = 0.1, 5, 20, 40, 100 \) respectively and \(\alpha = 1, \beta = 1, a = 0.001, b = 0.001, n = 5, h_{Oq-HAM} = -3.055, h_{HATM} = 0.64 \). Dash - dotted line (Oq-HAM), dotted line (HATM), dash line (VIM), and solid line (ADM).
Figure 6. The comparison of Oq-HAM, HATM, VIM and ADM for (4)–(5) with numerical method in Mathematica for $x = 0.1, 5, 20, 40, 100$ respectively and $\alpha = 1, \beta = 1, a = 0.001, b = 0.001, n = 5, h_{Oq-HAM} = -3.055, h_{HATM} = 0.64$. Dash-dotted line (Oq-HAM), dotted line (HATM), dash line (VIM), and solid line (ADM).

Figure 7. The absolute error between the 3-terms of Oq-HAM solutions and numerical method using Mathematica for (4)–(5) with $\alpha = 0.9, \beta = 0.99, a = 0.001, b = 0.001, h = -1.9, n = 5$.
Figure 8. The absolute error between the 3-terms of HATM solutions and numerical method using Mathematica for (4)–(5) with \(\alpha = 0.9, \beta = 0.99, a = 0.001, b = 0.001, h = -0.64 \).

Figure 9. The absolute error between the second approximation by VIM and the numerical method using Mathematica for (4)–(5) with \(\alpha = 0.9, \beta = 0.99, a = 0.001, b = 0.001 \).

Figure 10. The absolute error between the 3-terms of ADM and the numerical method using Mathematica for (4)–(5) with \(\alpha = 0.9, \beta = 0.99, a = 0.001, b = 0.001 \).

Figure 11. The plot of Oq-HAM, HATM, VIM and ADM for (4)–(5) with \(\alpha = 0.4, \beta = 0.7, a = 0.4, b = 0.2, n = 5, h_{Oq-HAM} = -3.00, h_{HATM} = -0.64 \). Dash - dotted line (Oq-HAM), dotted line (HATM), dash line (VIM), and solid line (ADM).
Figure 12. The plot of Oq-HAM, HATM, VIM and ADM for (4)–(5) with $\alpha = 0.7, \beta = 0.9, a = 0.4, b = 0.2, n = 5, h_{Oq-HAM} = -3.00, h_{HATM} = -0.64$. Dash - dotted line (Oq-HAM), dotted line (HATM), dash line (VIM), and solid line (ADM).

Figure 13. The plot of Oq-HAM, HATM, VIM and ADM for (4)–(5) with $\alpha = 0.99, \beta = 0.99, a = 0.4, b = 0.2, n = 5, h_{Oq-HAM} = -3.00, h_{HATM} = -0.64$. Dash - dotted line (Oq-HAM), dotted line (HATM), dash line (VIM), and solid line (ADM).

Figure 14. The surface of Oq-HAM for (4)–(5) with $\alpha = 0.5, 0.8, 1.00, \beta = 0.75, 0.90, 1.00$ and $a = 0.4, b = 0.2, n = 5, h_{Oq-HAM} = -3.00$.
Figure 15. The surface of HATM for (4)–(5) with $\alpha = 0.5, 0.8, 1.00, \beta = 0.75, 0.90, 1.00$ and $a = 0.4, b = 0.2, h_{HATM} = -0.64$.

Figure 16. The surface of VIM for (4)–(5) with $\alpha = 0.5, 0.8, 1.00, \beta = 0.75, 0.90, 1.00$ and $a = 0.4, b = 0.2$.

Figure 17. The surface of ADM for (4)–(5) with $\alpha = 0.5, 0.8, 1.00, \beta = 0.75, 0.90, 1.00$ and $a = 0.4, b = 0.2$.