Association Between Low Back Pain, Workaholism, and Work Engagement in Japanese Hospital Workers

A Quantitative Cross-sectional Study

Kenji Nihei, PhD, Yoshimi Suzukamo, PhD, Ko Matsudaira, MD, PhD, Motoko Tanabe, PhD, and Shin-Ichi Izumi, MD, PhD

Objective: This study aimed to examine the association between two types of heavy work investment, workaholism and work engagement, and low back pain prevalence. Methods: We conducted a paper-based survey of Japanese hospital workers. The Dutch Workaholism Scale (DUWAS) and the Utrecht Work Engagement Scale (UWES) were used to classify the participants into four groups and perform multiple logistic regression analyses. Results: Among 699 participants, the group with low DUWAS and high UWES had the lowest low back pain prevalence. In the groups, with high DUWAS and UWES, 71.7%; those with high DUWAS and low UWES, 58.5%; and those with high DUWAS and low UWES, 62.4%, with multivariate-adjusted odds ratios of 1.77, 2.01, and 2.33, respectively. Conclusions: Low back pain prevalence among Japanese hospital workers was reduced by high levels of work engagement, even at high levels of workaholism.

Keywords: low back pain, workaholism, work engagement, hospital, worker

Low back pain (LBP) is the leading cause of disability in the Global Burden of Disease study, which indexes years lived with disability. Lower labor productivity, including sick leave due to LBP, leads to economic losses. In Japan, the health and hygiene industry, including hospitals and nursing facilities, has common occupations in which workers take sick leave per year ≥4 days because of LBP. Among nurses, the prevalence of LBP in the past year has been as high as 60% to 85%. Occupational LBP in nurses has been reported to be associated with ergonomic factors such as patient handling and psychosocial factors such as depression, sleep problems, and mental-interpersonal relationships. These LBP factors cannot be solved by nurses alone; the entire hospital staff must work together to improve the working environment.

Previous studies have investigated the association between work-related psychosocial factors and LBP. A meta-analysis of hospital nurses and nursing aides reported an association between LBP and "high psychosocial demands—low job control." A survey of tertiary industries such as health and hygiene showed an association between workaholism and LBP, with the high workaholism group having 1.8 times the risk of LBP compared with the low group. Workaholism is defined as "an irresistible or uncontrollable need to work incessantly" and has been shown to cause physical and mental exhaustion due to inability to repress it. Against the detrimental effects of this workaholism, work engagement has been reported to have a possible buffering role. Several studies have shown that workers with high work engagement are energetic and enthusiastic about their work and report fewer psychological distress and physical problems than workers who are not in such a state. Those in the high work engagement group have been shown to have a lower risk of developing a major depressive episode than those in the low work engagement group. In recent years, research has focused on positive psychological states with the aim of contributing to the prevention of physical and mental health problems and to work efficiency. It is important to understand and cope with the work-related psychological state to maintain the good health of workers. However, as far as we know, no previous research has investigated the association between work engagement and LBP prevalence.

The relationship between workaholism and work engagement shows that workaholism is associated with increased ill-health, and work engagement is associated with decreased ill-health. Crossing these two concepts classifies employees into four types: workaholic employees, engaged employees, engaged workaholics, and nonworkaholics/ nonengaged employees; high engagement buffers the negative effects of workaholism. The association between workaholism and LBP may differ depending on the degree of work engagement. Therefore, it is essential to clarify the impact of the work environment, including psychological conditions in the workplace, on LBP to promote health care for hospital workers. The present study aims to examine the association between two types of heavy work investment, workaholism and work engagement, with LBP prevalence in Japanese hospital workers.

MATERIALS AND METHODS

Study Population

This study was designed as a cross-sectional study at a single institution in Japan. The survey was conducted between March and
May 2018. A paper-based self-administered questionnaire survey on LBP and psychosocial factors and physical function measurements of muscle strength, muscle mass, and body fat percentage were conducted. The subjects were all employees of a public foundation institution Hoshi General Hospital in Fukushima Prefecture, Japan, and were 1298 health care professionals 20 years or older. Of these, 1224 subjects were included in the survey, excluding 70 subjects who were pregnant or did not report, 1 with a spinal disease, and 3 who had undergone joint replacement surgery (Fig. 1). All subjects were given an explanatory letter in advance, inviting them to participate in the study and assuring them that their participation was voluntary. Of these, 710 subjects (response rate, 58%) who understood the purpose of the study and gave written consent were administered all surveys and measurements by the principal investigator. Hospital staff completed a non-anonymous, self-administered questionnaire, and all questionnaires were collected by the principal investigator and were not accessible to supervisors or other staff. A total of 699 subjects with no missing data (completion rate, 57%) were included in the final analysis. The protocol of this survey was approved by the Ethics Committee of Tohoku University Graduate School of Medicine (ID 2018-1-8).

Assessment

The self-administered questionnaire included LBP, workaholism, work engagement, and psychosocial factors (job stress, depression, and sleep problems) that have been associated with LBP in previous studies. In the basic information, we also included the following items that have been associated with LBP in previous studies: sex, age, smoking, exercise habits, analgesics, occupation, night shift, job position, and lifting. Physical function measures include muscle mass, body fat percentage, and muscle strength, which have been associated with LBP in previous studies.

Low back pain has been defined as “pain that has lasted for more than one day in the last four weeks” by Dionne et al. The site of the LBP was illustrated “between the lower costal margin and the gluteal folds” by Hagen et al. Referring to the grades by Von Korff et al, the LBP during work for the last 4 weeks was classified into four grades: 0 as no LBP, 1 as LBP that did not interfere with work, 2 as LBP that interfered with work but did not require sick leave, and 3 as LBP that interfered with work and required sick leave. This grade has been adopted in previous studies. Workaholism and work engagement were measured using the Dutch Workaholism Scale (DUWAS) and the Utrecht Work Engagement Scale (UWES), respectively. Dutch Workaholism Scale is a scale developed to investigate respondents’ feelings about their work, reflecting the two components of working excessively and compulsively. Dutch Workaholism Scale has been adopted in previous studies; its Japanese version has been confirmed to be valid. It consists of ten questions using a four-point Likert scale ranging from “not feel (one point)” to “always feel (four points).” Scores range from 10 to 40, with a high score indicating high workaholism. Utrecht Work Engagement Scale is a scale developed to evaluate work-related positive and fulfilling psychological states (vigor, dedication, and absorption). Utrecht Work Engagement Scale has been adopted in previous studies; its Japanese version has been confirmed to be valid.

FIGURE 1. Flow of the participants’ selection procedure.
consists of nine questions using a seven-point Likert scale ranging from “not at all (0 points)” to “always feel (6 points).” Scores range from 0 to 54, and a high score indicates high work engagement status. Referring to a previous study that crossed workaholism and work engagement and classified them into four types, in this study, we classified the respondents into four groups based on the median DUWAS and UWES scores: those with DUWAS low scores and UWES high scores as “low DUWAS and high UWES,” those with high scores in both DUWAS and UWES as “low DUWAS and low UWES,” those with high scores in both DUWAS and UWES as “high DUWAS and high UWES,” and those with DUWAS high scores and UWES low scores as “high DUWAS and low UWES” (Fig. 2).

For the assessment of psychosocial factors, work stress, depression, and sleep problems were measured. Job stress was assessed used in the Job Content Questionnaire (JCQ). This is a self-administered evaluation method that uses a four-point scale ranging from “not at all (1 point)” to “quite true (4 points)” for items that apply to all aspects of the job. The higher the score, the higher the degree of job control, job demands, and job support in the workplace. The Japanese version of JCQ has been confirmed to be valid.

Depression was assessed used the Kessler Screening Scale for Psychological Distress (K6). This is a self-administered evaluation method that uses a four-point scale ranging from “not at all (0 points)” to “always (four points)” to determine how often each item occurred in the past 30 days. A score of 10 or more out of a total of 24 points is considered to indicate a high likelihood of depression or anxiety disorder. The Japanese version of the K6 has been confirmed to be valid.

Sleep problems were measured using the Athens Insomnia Scale (AIS). This is a self-administered evaluation method that uses a five-point scale ranging from “never (zero points)” to “always (four points)” to determine how often each item occurred in the past 30 days. A score of 10 or more out of a total of 24 points on six items is considered to indicate a high likelihood of depression or anxiety disorder. The Japanese version of the AIS has been confirmed to be valid.

Physical function was assessed using measuring instruments. Skeletal muscle mass index (SMI) and body fat percentage were measured using bioimpedance (InBody 770; InBody Japan Inc, Tokyo, Japan). Muscle strength was measured using a grip dynamometer (T.K.K. 5401; Takei Scientific Instruments, Niigata, Japan) and a toe grip dynamometer (T.K.K. 3364b; Takei Scientific Instruments, Niigata, Japan). The investigators used these instruments to perform measurements on all participants.

Statistical Analysis

Comparisons of the proportions of participants and nonparticipants by sex, age, and occupation were made using χ² tests. Participant characteristics based on the presence of LBP were represented by descriptive statistics, and group differences in the presence of LBP were compared by χ² or unpaired t tests. Low back pain prevalence was calculated for the four groups classified by DUWAS and UWES scales, and it was tested using the χ² test. The associations with LBP as the objective variable and four groups by DUWAS and UWES as the explanatory variables were verified by multivariate logistic regression analysis with six levels: model 0 was an analysis without adjustment variables, model 1 was an analysis with sex and age as explanatory variables, model 2 introduced physical function factors (muscle mass, body fat percentage, grip, and toe grip) to model 1, model 3 introduced lifestyle factors (smoking, exercise habits, and analgesics) to model 2, model 4 added working environmental factors (occupation, night shift, job position, and lifting) to model 3, and model 5 added psychosocial factors (JCQ, K6, and AIS) to model 4. Stratified analysis was also performed by sex (male, female), age (20–39 years, 40–59 years), and occupation (medical, nonmedical). All analyses were performed using the IBM SPSS Statistics version 25 (IBM Japan, Tokyo, Japan). The statistical significance level was set at <1%, considering the multiplicity of the test.

RESULTS

The two groups of 710 participants and 514 nonparticipants did not differ significantly by sex, age, or occupation (Table 1). The occupational breakdown of the 710 participants was as follows: there were 22 physicians, 287 nurses, 66 nursing aides, 68 physical therapists, 23 occupational therapists, 142 other medical staff, and 102 nonmedical staff, with nurses accounting for the largest number. Among the 699 participants, excluding 11 missing major outcomes, 370 (52.9%) had...
We conducted a cross-sectional study to examine the association between LBP prevalence, workaholism, and work engagement in Japanese hospital workers. We found an association between LBP and workaholism even when restricted to Japanese hospital workers. In addition, even at high levels of workaholism, LBP prevalence was low at high levels of work engagement, and the relationship was significant when adjusted for sex, age, physical function, lifestyle, work environment, and psychosocial factors. To the best of our knowledge, this study is the first to reveal an association of LBP prevalence, considering both work engagement and workaholism. The results of this study will provide new insights into countermeasures against LBP due to occupational causes in hospital workers.

A survey of LBP and workaholism in Japanese tertiary industry workers carried out by Matsuda et al17 reported that the high DUWAS group had 1.8 times more LBP than the low DUWAS group, even if psychosocial factors were adjusted. The results of this study on Japanese hospital workers also showed that the high DUWAS group had a 2.0 to 2.3 times higher LBP prevalence than the low DUWAS group, even if psychosocial factors were adjusted. A new finding in this study is that, even with high workaholism, LBP prevalence depends on levels of work engagement. The OR of LBP risk was higher

The number in the model column is the odds ratio (95% confidence interval).

*Not adjusted.
†Adjusted for sex and age.
‡Adjusted for model 1 + physical function factors.
§Adjusted for model 2 + lifestyle factors.
∥Adjusted for model 3 + working environment factors.
¶Adjusted for model 4 + psychosocial factors.
in the group with high DUWAS and low UWES than in the group with high DUWAS and UWES. This suggests that both workaholism and levels of work engagement are related to LBP. Several previous studies have reported that higher work engagement is associated with less psychological distress, physical complaints, and ill-health and that high engagement buffers the negative effects of workaholism. 18,23,26,36 Furthermore, vitality, a component of work engagement, is positively associated with subjective health and is recognized as a physical health effect of positive sensations. 57,58 Vitality is an element that workaholics do not have, so the concept of work engagement is essential to physical health. High levels of work engagement were related to high levels of intrinsic motivation, and occupational LBP is related to psychosocial factors in the workplace, such as not feeling rewarded at work. 59,60 In other words, the finding that work-related psychological states are also associated with LBP is consistent with previous research findings. There was no significant difference in work engagement scores between groups with and without LBP. This suggests that considering workaholism and work engagement separately as risk factors for LBP is insufficient and that an interaction between the two types of heavy work investment needs to be considered.

The results of the stratified analysis revealed that the risk of LBP due to work engagement and workaholism was observed to be higher in female workers compared with male workers and higher in medical professionals compared with nonmedical professionals. The global prevalence rate was higher in females than in males, 31 and a Japanese study reported that the prevalence in a recent month was higher in females than in males. 44 This study also found that LBP prevalence in females (58%) was approximately 1.5 times higher than that in males (37%). This may be because the working environment differs between males and females, which may be related to LBP. It was suggested that women working in the medical field need to adjust their work environment so that they can experience a “positive and fulfilling psychological state.” Stratified analysis of occupational types indicated that the risk of LBP among the four groups differed among hospital workers. In this study, the prevalence of LBP among medical professionals compared with nonmedical professionals. The number in the model column is the odds ratio (95% confidence interval), and all the results are based on the analysis of model 5 (adjusted for sex, age, physical function factors, lifestyle factors, working environmental factors, and psychosocial factors). DUWAS, Dutch Workaholism Scale; UWES, Utrecht Work Engagement Scale; Ref, reference.

TABLE 3. Result of Stratified Analysis (n = 699)

	The Group With Low DUWAS and High UWES n = 159	The Group With Low DUWAS and High UWES n = 174	The Group With High DUWAS and Low UWES n = 193	The Group With High DUWAS and Low UWES n = 173	P
Sex					
Male	1.00 (Ref.)	1.41 (0.49–4.03)	1.58 (0.62–4.04)	2.89 (0.86–9.72)	0.156
Female	1.00 (Ref.)	2.04 (1.09–3.82)	2.32 (1.21–4.44)	2.41 (1.24–4.67)	<0.001
Age					
20–39 y	1.00 (Ref.)	1.24 (0.62–2.50)	1.52 (0.73–3.16)	2.10 (0.97–4.55)	<0.001
40–59 y	1.00 (Ref.)	2.33 (0.87–6.21)	2.36 (0.98–5.69)	2.01 (0.78–5.16)	<0.001
Occupation					
Medical	1.00 (Ref.)	2.16 (1.21–3.87)	2.24 (1.26–4.00)	2.64 (1.41–4.94)	<0.001
Nonmedical	1.00 (Ref.)	0.97 (0.21–4.51)	1.57 (0.34–7.22)	3.92 (0.61–25.38)	0.038

© 2022 The Author(s). Published by Wolters Kluwer Health, Inc. on behalf of the American College of Occupational and Environmental Medicine.
REFERENCES

1. GBD 2017 Disease and Injury Incidence and Prevalence Collaborators. Global, regional, and national incidence, prevalence, and years lived with disability for 154 diseases and injuries in 195 countries and territories, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet. 2018;392:1789–1858.

2. Alonso-García M, Serría-Santamaria A. The economic and social burden of low back pain in Spain: a national assessment of the economic and social impact of low back pain in Spain. Spine (Phila Pa 1976) 1976;20:45:E1026–E1032.

3. Yoshimoto T, Oka H, Fujii T, Nagata T, Matsuoka K. The economic burden of lost productivity due to presenteeism caused by health conditions among workers in Japan. J Occup Environ Med. 2020;62:883–888.

4. Dawson AP, Schletter PJ, Hodges PW, Stewart S, Turner C. Fear of movement, passive coping, manual handling, and severe or radiating pain increase the likelihood of sick leave due to low back pain. Pain. 2011;152:1517–1524.

5. Ministry of Health, Labor and Welfare. Survey on occupational disease outbreak status 2020. Available at: https://www.mhlw.go.jp/stf/newpage_19933.html. Accessed February 20, 2022.

6. Latina R, Petruzzi A, Vignally P, et al. The prevalence of musculoskeletal disorders and low back pain among Italian nurses: an observational study. Acta Biomed. 2020;91:e2020003.

7. Fuji T, Oka H, Takano K, et al. Association between high fear-avoidance beliefs about physical activity and chronic disabling low back pain in nurses. J Pain Res. 2020;13:2979–2986.

8. Yoshimoto T, Oka H, Ishitake S, Koizumi M, Matsuoka K, Matsuda K. Factors associated with disabling low back pain among nursing personnel at a medical centre in Japan: a comparative cross-sectional survey. BMJ Open. 2019;9:e032997.

9. Yokota J, Fukutani N, Nomoto K, et al. Association of low back pain with presenteeism in hospital nursing staff. J Occup Health. 2019;61:219–226.

10. Bernal D, Campos-Serna J, Tobias A, Vargas-Prada S, Benavides FG, Serra C. The distinctiveness of workaholism and work engagement among Japanese employees. Cross Cult Res. 2009;43:320–329.

11. Schaufeli WB, Bakker AB, Taris TW. Work engagement: an emerging concept in occupational health psychology. J Organ Behav. 2006;27:710–742.

12. Y oshimoto T, Oka H, Ishikawa S, Kokaze A, Muranaga S, Matsudaira K. Factors associated with disabling low back pain among hospital staff. J Adv Nurs. 2009;65:516–524.

13. Shimazu A, Schaufeli WB, Komiya K, Inoue A, et al. Work engagement as a predictor of onset of major depressive episode (MDE) among workers, independent of psychological distress: a 3-year prospective cohort study. PLoS One. 2016;11:e0148157.

14. Shimazu A, Schaufeli WB, Komiya K, Inoue A, et al. Work engagement as a predictor of onset of major depressive episode (MDE) among workers, independent of psychological distress: a 3-year prospective cohort study. PLoS One. 2016;11:e0148157.

15. Schaufeli WB, Bakker AB, Salanova M, González-Romá V, Bakker B. The measurement of engagement and burnout: a two sample confirmative analytic approach. J Happiness Stud. 2002;3:71–92.

16. Schaufeli WB, Bakker AB. Job demands, job resources, and their relationship with burnout and engagement: a multi-sample study. J Organ Behav. 2004;25:293–315.

17. Bakker AB, Schaufeli WB, Leiter MP, Taris TW. Work engagement: an emerging concept in occupational psychology. Work & Stress. 2008;22:187–200.

18. Shimazu A, Schaufeli WB. Is workaholism good or bad for employee well-being? The distinctiveness of workaholism and work engagement among Japanese employees. Int J Clin Nurs. 2009;47:495–502.

19. Sakuraya A, Shimazu A, Eguchi H, et al. Job crafting, work engagement, and psychological distress among Japanese employees: a cross-sectional study. Biopsychosoc Med. 2017;11:6.

20. Imamura K, Kawakami N, Inoue A, et al. Work engagement as a predictor of onset of major depressive episode (MDE) among workers, independent of psychological distress: a 3-year prospective cohort study. PLoS One. 2016;11:e0148157.

21. Shimazu A, Schaufeli WB, Komiya K, Inoue A, et al. Work engagement as a predictor of onset of major depressive episode (MDE) among workers, independent of psychological distress: a 3-year prospective cohort study. PLoS One. 2016;11:e0148157.

22. Bakker AB, Schaufeli WB, Leiter MP, Taris TW. Work engagement: an emerging concept in occupational psychology. Work & Stress. 2008;22:187–200.

23. Shimazu A, Schaufeli WB, Komiya K, Inoue A, et al. Work engagement as a predictor of onset of major depressive episode (MDE) among workers, independent of psychological distress: a 3-year prospective cohort study. PLoS One. 2016;11:e0148157.

24. Sakuraya A, Shimazu A, Eguchi H, et al. Job crafting, work engagement, and psychological distress among Japanese employees: a cross-sectional study. Biopsychosoc Med. 2017;11:6.

25. Inamura K, Kawakami N, Inoue A, et al. Work engagement as a predictor of onset of major depressive episode (MDE) among workers, independent of psychological distress: a 3-year prospective cohort study. PLoS One. 2016;11:e0148157.
53. Furukawa TA, Kawakami N, Saitoh M, et al. The performance of the Japanese version of the K6 and K10 in the World Mental Health Survey Japan. Int J Methods Psychiatr Res. 2008;17:152–158.

54. Soldatos CR, Dikeos DG, Paparrigopoulos TJ. Athens Insomnia Scale: validation of an instrument based on ICD-10 criteria. J Psychosom Res. 2000;48:555–560.

55. Okajima I, Nakajima S, Kobayashi M, Inoue Y. Development and validation of the Japanese version of the Athens Insomnia Scale. Psychiatry Clin Neurosci. 2013;67:420–425.

56. Yokoyama K, Nakata A, Kannari Y, et al. Burnout and poor perceived health in flexible working time in Japanese employees: the role of self-endangering behavior in relation to workaholism, work engagement, and job stressors. Ind Health. 2022.

57. Shirom A, Toker S, Berliner S, Shapira I, Melamed S. The effects of physical fitness and feeling vigorous on self-rated health. Health Psychol. 2008;27:567–575.

58. Pressman SD, Cohen S. Does positive affect influence health? Psychol Bull. 2005;131:925–971.

59. Taris TW, van Beek I, Schaufeli WB. The motivational make-up of workaholism and work engagement: a longitudinal study on need satisfaction, motivation, and heavy work investment. Front Psychol. 2020;11:1419.

60. Malinowska D, Tokarz A, Wardzichowska A. Job autonomy in relation to work engagement and workaholism: mediation of autonomous and controlled work motivation. Int J Occup Med Envir Health. 2018;31:445–458.

61. Matsuaida K, Kawaguchi M, Isomura T, et al. Assessment of psychosocial risk factors for the development of non-specific chronic disabling low back pain in Japanese workers-findings from the Japan Epidemiological Research of Occupation-related Back Pain (JOB) study. Ind Health. 2015;53:368–377.

62. Al-Hadidi F, Bsisu I, Haddad B, et al. The prevalence of low back pain among female hospital staff at childbearing age. PeerJ. 2020;8:e9199.

63. Serranheira F, Sousa-Uva M, Heranz F, Kovacs F, Sousa-Uva A. Low back pain (LBP), work and absenteeism. Work. 2020;65:463–469.

64. Niissinen TS, Maksniemi EI, Rothmann S, Lonka KM. Balancing work life: job crafting, work engagement, and workaholism in the finnish public sector. Front Psychol. 2022;13:817008.

65. Kato Y, Chiba R, Shimazu A. Work engagement and the validity of job demands-resources model among nurses in Japan: a literature review. Workplace Health Saf. 2021;69:323–342.

66. Hakonen J, Peeters M. How do work engagement, workaholism, and the work-to-family interface affect each other? A 7-year follow-up study. J Occup Environ Med. 2015;57:601–609.