A general perturbation theorem with applications to nonhomogeneous critical growth elliptic problems

Kanishka Perera
Department of Mathematical Sciences
Florida Institute of Technology
Melbourne, FL 32901, USA
kperera@fit.edu

Abstract

We prove a general perturbation theorem that can be used to obtain pairs of nontrivial solutions of a wide range of local and nonlocal nonhomogeneous elliptic problems. Applications to critical p-Laplacian problems, p-Laplacian problems with critical Hardy-Sobolev exponents, critical fractional p-Laplacian problems, and critical (p, q)-Laplacian problems are given. Our results are new even in the semilinear case $p = 2$.

*MSC2010: Primary 35J92, Secondary 35B33, 35R11

Key Words and Phrases: nonhomogeneous critical growth elliptic problems, pairs of nontrivial solutions, p-Laplacian problems, critical Hardy-Sobolev exponents, fractional p-Laplacian problems, (p, q)-Laplacian problems
1 Introduction

In the pioneering paper [24], Tarantello showed that the problem
\[
\begin{aligned}
-\Delta u &= |u|^{2^* - 2} u + h(x) \quad \text{in } \Omega \\
\quad u &= 0 \quad \text{on } \partial \Omega,
\end{aligned}
\] (1.1)
where \(\Omega \) is a bounded domain in \(\mathbb{R}^N, \ N \geq 3 \), and \(2^* = 2N/(N - 2) \) is the critical Sobolev exponent, has two nontrivial solutions if \(h \in H^{-1}\setminus\{0\} \) satisfies
\[
\int_{\Omega} hu \, dx < \frac{4}{N - 2} \left(\frac{N - 2}{N + 2} \right)^{(N+2)/4} |\nabla u|^{(N+2)/2} \quad \text{for all } u \in H^1_0(\Omega) \quad \text{with } |u|^{2^*} = 1,
\]
where \(|\cdot| \) denotes the norm in \(L^p(\Omega) \). In particular, problem (1.1) has two nontrivial solutions for all \(h \in L^{2N/(N+2)}(\Omega) \setminus \{0\} \) sufficiently small. In [5], Cao and Zhou extended this result to the problem
\[
\begin{aligned}
-\Delta u &= \lambda u + |u|^{2^* - 2} u + h(x) \quad \text{in } \Omega \\
\quad u &= 0 \quad \text{on } \partial \Omega,
\end{aligned}
\] (1.2)
for \(0 < \lambda < \lambda_1 \), where \(\lambda_1 > 0 \) is the first Dirichlet eigenvalue of \(-\Delta \) in \(\Omega \). There is now a large literature generalizing these results (see, e.g., [2, 6, 7, 11, 15, 16, 23] and their references). However, the question of whether problem (1.2) still has two nontrivial solutions for all \(h \in L^{2N/(N+2)}(\Omega) \setminus \{0\} \) with \(|h|_{2N/(N+2)} \) sufficiently small when \(\lambda \geq \lambda_1 \) has remained open over the years. In the present paper we show that this is indeed the case when \(N = 4 \) and \(\lambda > \lambda_1 \) is not an eigenvalue, and when \(N \geq 5 \) and \(\lambda \geq \lambda_1 \). More specifically, we have the following theorem.

Theorem 1.1. There exists \(\mu_0 > 0 \) such that problem (1.2) has two nontrivial solutions for all \(h \in L^{2N/(N+2)}(\Omega) \setminus \{0\} \) with \(|h|_{2N/(N+2)} < \mu_0 \) in each of the following cases:

(i) \(N = 4 \) and \(\lambda > 0 \) is not an eigenvalue,

(ii) \(N \geq 5 \) and \(\lambda > 0 \).

We will in fact prove the corresponding result for the \(p \)-Laplacian. Consider the problem
\[
\begin{aligned}
-\Delta_p u &= \lambda |u|^{p^* - 2} u + |u|^{p^* - 2} u + h(x) \quad \text{in } \Omega \\
\quad u &= 0 \quad \text{on } \partial \Omega,
\end{aligned}
\] (1.3)
where \(\Omega \) is a bounded domain in \(\mathbb{R}^N, \ N \geq 2 \), \(\Delta_p u = \text{div}(\nabla |u|^{p^* - 2} \nabla u) \) is the \(p \)-Laplacian of \(u, \ 1 < p < N, \ p^* = Np/(N - p) \) is the critical Sobolev exponent, \(\lambda > 0, \ h \in L^{p^*}(\Omega) \setminus \{0\} \), and \(p^* = p^*/(p^* - 1) \) is the Hölder conjugate of \(p^* \). We have the following theorem.

Theorem 1.2. There exists \(\mu_0 > 0 \) such that problem (1.3) has two nontrivial solutions for all \(h \in L^{p^*}(\Omega) \setminus \{0\} \) with \(|h|_{p^*} < \mu_0 \) in each of the following cases:
(i) \(N \geq p^2 \) and \(\lambda > 0 \) is not a Dirichlet eigenvalue of \(-\Delta_p\) in \(\Omega \),

(ii) \(N^2/(N+1) > p^2 \) and \(\lambda > 0 \).

Remark 1.3. When \(h = 0 \), one nontrivial solution of problem (1.3) was obtained by García Azorero and Peral Alonso [12], Egnell [9], Guedda and Véron [14], Arioli and Gazzola [1], and Degiovanni and Lancelotti [8].

We will first prove a general perturbation theorem that can be used to obtain pairs of nontrivial solutions of a wide range of local and nonlocal nonhomogeneous elliptic problems (see Theorem 2.1). We will then apply this result to prove Theorem 1.2 for a more general class of critical \(p \)-Laplacian problems (see Theorem 2.2). We also present applications of our general result to \(p \)-Laplacian problems with critical Hardy-Sobolev exponents (Theorem 2.4), critical fractional \(p \)-Laplacian problems (Theorem 2.7), and critical \((p, q)\)-Laplacian problems (Theorem 2.10).

Proof of Theorem 2.1 makes use of a certain linking structure associated with a sequence of eigenvalues introduced by the author in [18]. This sequence is defined using the genus does not provide this linking structure and therefore cannot be used to prove Theorem 2.1.

2 Statement of results

2.1 A general perturbation theorem

Let \((W, \| \cdot \|)\) be a uniformly convex Banach space with dual \((W^*, \| \cdot \|^*)\) and duality pairing \((\cdot, \cdot)\). Recall that \(f \in C(W, W^*) \) is a potential operator if there is a functional \(F \in C^1(W, \mathbb{R}) \), called a potential for \(f \), such that \(F' = f \). We consider the nonlinear operator equation

\[
A_p u = \lambda B_p u + f(u) + \mu g(u) + h
\]

in \(W^* \), where \(A_p, B_p, f, g \in C(W, W^*) \) are potential operators satisfying the following assumptions, \(\lambda > 0 \) and \(\mu \in \mathbb{R} \) are parameters, and \(h \in W^* \setminus \{0\} \):

(A1) \(A_p \) is \((p - 1)\)-homogeneous and odd for some \(p \in (1, \infty) \): \(A_p \, (tu) = |t|^{p-2} t A_p \, u \) for all \(u \in W \) and \(t \in \mathbb{R} \),

(A2) \((A_p \, u, v) \leq \|u\|^{p-1} \|v\| \) for all \(u, v \in W \), and equality holds if and only if \(\alpha u = \beta v \) for some \(\alpha, \beta \geq 0 \), not both zero (in particular, \((A_p \, u, u) = \|u\|^p \) for all \(u \in W \)),

(B1) \(B_p \) is \((p - 1)\)-homogeneous and odd: \(B_p \, (tu) = |t|^{p-2} t B_p \, u \) for all \(u \in W \) and \(t \in \mathbb{R} \),

(B2) \((B_p \, u, u) > 0 \) for all \(u \in W \setminus \{0\} \), and \((B_p \, u, v) \leq (B_p \, u, u)^{(p-1)/p} (B_p \, v, v)^{1/p} \) for all \(u, v \in W \),

(B3) \(B_p \) is a compact operator,

(F1) the potential \(F \) of \(f \) with \(F(0) = 0 \) satisfies \(F(u) = o(\|u\|^p) \) as \(u \to 0 \),
(F_2) $F(u) \geq 0$ for all $u \in W$,

(F_3) F is bounded on bounded subsets of W,

(G) the potential G of g with $G(0) = 0$ is bounded on bounded subsets of W.

Solutions of equation (2.1) coincide with critical points of the C^1-functional

$$E(u) = I_p(u) - \lambda J_p(u) - F(u) - \mu G(u) - (h, u), \quad u \in W,$$

where

$$I_p(u) = \frac{1}{p}(A_p u, u), \quad J_p(u) = \frac{1}{p}(B_p u, u)$$

are the potentials of A_p and B_p satisfying $I_p(0) = 0$ and $J_p(0) = 0$, respectively (see Perera [19, Proposition 3.1]). The nonlinear eigenvalue problem

$$A_p u = \lambda B_p u$$

will play a role in our result. Let $M = \{u \in W : I_p(u) = 1\}$. Then $M \subset W\setminus\{0\}$ is a bounded complete symmetric C^1-Finsler manifold radially homeomorphic to the unit sphere in W, and eigenvalues of problem (2.4) coincide with critical values of the C^1-functional

$$\Psi(u) = \frac{1}{J_p(u)}, \quad u \in M.$$

Denote by \mathcal{F} the class of symmetric subsets of M and by $i(M)$ the \mathbb{Z}_2-cohomological index of $M \in \mathcal{F}$ (see Fadell and Rabinowitz [10]), let $\mathcal{F}_k = \{M \in \mathcal{F} : i(M) \geq k\}$, and set

$$\lambda_k := \inf_{M \in \mathcal{F}_k} \sup_{u \in M} \Psi(u), \quad k \in \mathbb{N}.$$

Then $\lambda_1 > 0$ is the first eigenvalue and $\lambda_1 \leq \lambda_2 \leq \cdots$ is an unbounded sequence of eigenvalues. Moreover, denoting by $\Psi^a = \{u \in M : \Psi(u) \leq a\}$ (resp. $\Psi_a = \{u \in M : \Psi(u) \geq a\}$) the sublevel (resp. superlevel) sets of Ψ, if $\lambda_k < \lambda_{k+1}$, then

$$i(\Psi^{\lambda_k}) = i(M \setminus \Psi^{\lambda_{k+1}}) = k$$

and Ψ^{λ_k} has a compact symmetric subset of index k (see Perera et al. [20, Theorem 4.6] and Perera [19, Theorem 1.3]).

We assume that there is a threshold level $c^*_{\mu, h} > 0$ such that E satisfies the $(PS)_c$ condition at all levels $c < c^*_{\mu, h}$. Set

$$c^* = \liminf_{\mu, \|h\| \to 0} c^*_{\mu, h}$$

and

$$E_0(u) = I_p(u) - \lambda J_p(u) - F(u), \quad u \in W,$$

Let $\pi_M : W \setminus \{0\} \to M$, $u \mapsto u/I_p(u)^{1/p}$ be the radial projection onto M. We will prove the following theorem.
Theorem 2.1. Let $\lambda_k \leq \lambda < \lambda_{k+1}$. Assume that there exist $R > 0$ and, for all sufficiently small $\delta > 0$, a compact symmetric subset C_δ of $\Psi^{k+\delta}$ with $i(C_\delta) = k$ and $w_\delta \in \mathcal{M} \setminus C_\delta$ such that, setting $A_\delta = \{ \pi_{\mathcal{M}}((1 - \tau)v + \tau w_\delta) : v \in C_\delta, 0 \leq \tau \leq 1 \}$, we have
\[
\sup_{u \in A_\delta} E_0(Ru) \leq 0 \tag{2.8}
\]
and
\[
\sup_{u \in A_\delta, 0 \leq t \leq R} E_0(tu) < c^*. \tag{2.9}
\]
Then $\exists \mu_0 > 0$ such that equation (2.1) has two nontrivial solutions u_1 and u_2 satisfying
\[
E(u_1) < E(u_2), \quad 0 < E(u_2) < c^*_{\mu, h} \tag{2.10}
\]
for all $\mu \in \mathbb{R}$ and $h \in W^* \setminus \{0\}$ with $|\mu| + \|h\|^* < \mu_0$.

Proof of this theorem and those of its applications that follow are given in Section 3.

2.2 Critical p-Laplacian problems

Consider the critical p-Laplacian problem
\[
\begin{aligned}
-\Delta_p u &= \lambda |u|^{p-2} u + \mu |u|^{q-2} u + |u|^{p^*-2} u + h(x) \quad \text{in } \Omega \\
0 &= \text{on } \partial \Omega,
\end{aligned} \tag{2.11}
\]
where Ω is a bounded domain in \mathbb{R}^N, $1 < p < N$, $1 < q < p^*$, $p^* = Np/(N - p)$ is the critical Sobolev exponent, $\lambda > 0$, $\mu \in \mathbb{R}$, $h \in L^{p^*}(\Omega) \setminus \{0\}$, and $p^* = p^*/(p^* - 1)$ is the Hölder conjugate of p^*. Let
\[
E(u) = \int_\Omega \left(\frac{1}{p} |\nabla u|^p - \frac{\lambda}{p} |u|^p - \frac{\mu}{q} |u|^q - \frac{1}{p^*} |u|^{p^*} - h(x) u \right) dx, \quad u \in W_0^{1, p}(\Omega) \tag{2.12}
\]
be the associated variational functional and let
\[
S_{N, p} = \inf_{u \in W_0^{1, p}(\Omega) \setminus \{0\}} \frac{\int_\Omega |\nabla u|^p dx}{\left(\int_\Omega |u|^{p^*} dx \right)^{p/p^*}} \tag{2.13}
\]
be the best Sobolev constant. We have the following theorem.

Theorem 2.2. There exists $\mu_0 > 0$ such that problem (2.11) has two nontrivial solutions u_1 and u_2 satisfying
\[
E(u_1) < E(u_2), \quad 0 < E(u_2) < \frac{1}{N} S_{N, p}^{N/p} \tag{2.14}
\]
for all $\mu \in \mathbb{R}$ and $h \in L^{p^*}(\Omega) \setminus \{0\}$ with $|\mu| + \|h\| < \mu_0$ in each of the following cases:

(i) $N \geq p^2$ and $\lambda > 0$ is not a Dirichlet eigenvalue of $-\Delta_p$ in Ω,

(ii) $N (N - p^2) > p^2$ and $\lambda > 0$.

We note that Theorem 2.2 allows the full subcritical range $1 < q < p^*$ for q and makes no assumptions on the sign of μ.

Remark 2.3. Theorem 1.2 is the special case $\mu = 0$ of Theorem 2.2.
2.3 p-Laplacian problems with critical Hardy-Sobolev exponents

Consider the problem

\[
\begin{cases}
-\Delta_p u = \lambda |u|^{p-2} u + \frac{|u|^{p^*(\sigma) - 2}}{|x|^\sigma} u + h(x) & \text{in } \Omega \\
u = 0 & \text{on } \partial\Omega,
\end{cases}
\]

where Ω is a bounded domain in \mathbb{R}^N containing the origin, $1 < p < N$, $0 < \sigma < p$, $p^*(\sigma) = (N - \sigma)p/(N - p)$ is the critical Hardy-Sobolev exponent, $\lambda > 0$, $h \in L^{p^*(\sigma)'(\Omega)\setminus\{0\}}$, and $p^*(\sigma)' = p^*(\sigma)/(p^*(\sigma) - 1)$ is the Hölder conjugate of $p^*(\sigma)$. Let

\[
E(u) = \int_\Omega \left(\frac{1}{p} |\nabla u|^p - \frac{\lambda}{p} |u|^p - \frac{1}{p^*(\sigma)} \frac{|u|^{p^*(\sigma)}}{|x|^\sigma} - h(x) u \right) dx, \quad u \in W^{1,p}_0(\Omega)
\]

be the associated variational functional and let

\[
S_{N,p,\sigma} = \inf_{u \in W^{1,p}_0(\Omega)\setminus\{0\}} \frac{\int_\Omega |\nabla u|^p dx}{\left(\int_\Omega \frac{|u|^{p^*(\sigma)}}{|x|^\sigma} dx \right)^{p/p^*(\sigma)}}
\]

be the best constant in the Hardy-Sobolev inequality. We have the following theorem.

Theorem 2.4. There exists $\mu_0 > 0$ such that problem (2.14) has two nontrivial solutions u_1 and u_2 satisfying

\[
E(u_1) < E(u_2), \quad 0 < E(u_2) < \frac{p - \sigma}{(N - \sigma) p} S_{N,p,\sigma}^{(N-\sigma)/(p-\sigma)}
\]

for all $h \in L^{p^*(\sigma)'}(\Omega)\setminus\{0\}$ with $|h|_{p^*(\sigma)'} < \mu_0$ in each of the following cases:

(i) $N \geq p^2$ and $\lambda > 0$ is not a Dirichlet eigenvalue of $-\Delta_p$ in Ω,

(ii) $(N - \sigma)(N - p^2) > (p - \sigma) p$ and $\lambda > 0$.

Remark 2.5. When $h = 0$, one nontrivial solution was obtained by Ghoussoub and Yuan [13] and Perera and Zou [22].

Remark 2.6. Theorem 1.2 is the special case $\sigma = 0$ of Theorem 2.4.

2.4 Critical fractional p-Laplacian problems

Consider the critical fractional p-Laplacian problem

\[
\begin{cases}
(-\Delta)^s_p u = \lambda |u|^{p-2} u + |u|^{p^*-2} u + h(x) & \text{in } \Omega \\
u = 0 & \text{in } \mathbb{R}^N \setminus \Omega,
\end{cases}
\]

(2.17)
where Ω is a bounded domain in \mathbb{R}^N with Lipschitz boundary, $(-\Delta)^s_p$ is the fractional p-Laplacian operator defined on smooth functions by

$$
(-\Delta)^s_p u(x) = 2 \lim_{\varepsilon \to 0} \int_{\mathbb{R}^N \setminus B_\varepsilon(x)} \frac{|u(x) - u(y)|^{p-2}(u(x) - u(y))}{|x - y|^{N+sp}} \, dy, \quad x \in \mathbb{R}^N,
$$

$s \in (0, 1)$, $1 < p < N/s$, $p^*_s = Np/(N - sp)$ is the fractional critical Sobolev exponent, $\lambda > 0$, $h \in L^{p^*_s'}(\Omega) \setminus \{0\}$, and $p''_s = p^*_s/(p^*_s - 1)$ is the Hölder conjugate of p^*_s. Let

$$
[u]_{s,p} = \left(\int_{\mathbb{R}^{2N}} \frac{|u(x) - u(y)|^p}{|x - y|^{N+sp}} \, dxdy \right)^{1/p}
$$

be the Gagliardo seminorm of a measurable function $u : \mathbb{R}^N \to \mathbb{R}$ and let

$$W^{s,p}(\mathbb{R}^N) = \left\{ u \in L^p(\mathbb{R}^N) : [u]_{s,p} < \infty \right\}
$$

be the fractional Sobolev space endowed with the norm

$$
\|u\|_{s,p} = \left(|u|^p_p + [u]_{s,p}^p \right)^{1/p}.
$$

We work in the closed linear subspace

$$W^{s,p}_0(\Omega) = \left\{ u \in W^{s,p}(\mathbb{R}^N) : u = 0 \text{ a.e. in } \mathbb{R}^N \setminus \Omega \right\},
$$

equivalently renormed by setting $\|\cdot\| = [\cdot]_{s,p}$. Let

$$
E(u) = \frac{1}{p} \int_{\mathbb{R}^{2N}} \frac{|u(x) - u(y)|^p}{|x - y|^{N+sp}} \, dxdy - \int_{\Omega} \left(\frac{\lambda}{p} |u|^p + \frac{1}{p^*_s} |u|^{p^*_s} + h(x) u \right) \, dx,
$$

$u \in W^{s,p}_0(\Omega)$ \hspace{1cm} (2.18)

be the associated variational functional and let

$$
S_{N,p,s} = \inf_{u \in W^{s,p}(\mathbb{R}^N) \setminus \{0\}} \frac{\int_{\mathbb{R}^{2N}} \frac{|u(x) - u(y)|^p}{|x - y|^{N+sp}} \, dxdy}{\left(\int_{\mathbb{R}^N} |u|^{p^*_s} \, dx \right)^{p/p^*_s}}
$$

(2.19)

be the best fractional Sobolev constant, where

$$W^{s,p}(\mathbb{R}^N) = \left\{ u \in L^{p^*_s}(\mathbb{R}^N) : [u]_{s,p} < \infty \right\}
$$

endowed with the norm $\|\cdot\|$. We have the following theorem.

Theorem 2.7. There exists $\mu_0 > 0$ such that problem \hspace{1cm} (2.17) \hspace{1cm} has two nontrivial solutions u_1 and u_2 satisfying

$$
E(u_1) < E(u_2), \quad 0 < E(u_2) < \frac{S}{N} S_{N,p,s}^{N/sp}
$$

for all $h \in L^{p^*_s}(\Omega) \setminus \{0\}$ with $|h|_{p^*_s} < \mu_0$ in each of the following cases:
(i) \(N \geq sp^2 \) and \(\lambda > 0 \) is not a Dirichlet eigenvalue of \((-\Delta)^s\) in \(\Omega \),

(ii) \(N \) \((N - sp^2) > s^2p^2 \) and \(\lambda > 0 \).

Remark 2.8. When \(h = 0 \), one nontrivial solution was obtained in Mosconi et al. [17] except when \(N = sp^2 \) and \(\lambda > \lambda_1 \) is not an eigenvalue in (i), where \(\lambda_1 > 0 \) is the first eigenvalue.

Theorem 2.7 is new even in the semilinear case \(p = 2 \) when \(\lambda \geq \lambda_1 \), which we state as the following corollary.

Corollary 2.9. There exists \(\mu_0 > 0 \) such that the problem

\[
\begin{cases}
(-\Delta)^s u = \lambda u + |u|^{2^* - 2} u + h(x) \quad &\text{in } \Omega \\
u = 0 \quad &\text{in } \mathbb{R}^N \setminus \Omega
\end{cases}
\]

has two nontrivial solutions for all \(h \in L^{2N/(N+2s)}(\Omega) \setminus \{0\} \) with \(|h|_{2N/(N+2s)} < \mu_0 \) for each of the following cases:

(i) \(N \geq 4s \) and \(\lambda > 0 \) is not a Dirichlet eigenvalue of \((-\Delta)^s\) in \(\Omega \),

(ii) \(N \) \((N - 4s) > 4s^2 \) and \(\lambda > 0 \).

2.5 Critical \((p, q)\)-Laplacian problems

Consider the critical \((p, q)\)-Laplacian problem

\[
\begin{cases}
-\Delta_p u - \mu \Delta_q u = \lambda |u|^{p^* - 2} u + |u|^{q^* - 2} u + h(x) \quad &\text{in } \Omega \\
u = 0 \quad &\text{on } \partial \Omega,
\end{cases}
\]

where \(\Omega \) is a bounded domain in \(\mathbb{R}^N \), \(1 < q < p < N \), \(p^* = Np/(N - p) \), \(\lambda, \mu > 0 \), \(h \in L^{p^*}(\Omega) \setminus \{0\} \), and \(q^* = p^*/(p^* - 1) \). Let

\[
E(u) = \int_\Omega \left(\frac{1}{p} |\nabla u|^p + \frac{\mu}{q} |\nabla u|^q - \frac{\lambda}{p} |u|^p - \frac{1}{p^*} |u|^{p^*} - h(x) u \right) \, dx, \quad u \in W^{1,p}(\Omega)
\]

be the associated variational functional and let \(S_{N,p} \) be as in (2.13). We have the following theorem.

Theorem 2.10. There exists \(\mu_0 > 0 \) such that problem (2.20) has two nontrivial solutions \(u_1 \) and \(u_2 \) satisfying

\[
E(u_1) < E(u_2), \quad 0 < E(u_2) < \frac{1}{N} S_{N,p}^{N/p}
\]

for all \(\mu > 0 \) and \(h \in L^{p^*}(\Omega) \setminus \{0\} \) with \(\mu + |h|_{p^*} < \mu_0 \) in each of the following cases:

(i) \(N \geq p^2 \) and \(\lambda > 0 \) is not a Dirichlet eigenvalue of \(-\Delta_p\) in \(\Omega \),

(ii) \(N \) \((N - p^2) > p^2 \) and \(\lambda > 0 \).

Remark 2.11. Theorem 1.2 is the special case \(\mu = 0 \) of Theorem 2.10.
3 Proofs

3.1 Proof of Theorem 2.1

Proof of Theorem 2.1 will be based on a special case of an abstract critical point theorem proved in Perera [19]. Let \(W \) be a Banach space and let \(M \) be a bounded symmetric subset of \(W \setminus \{0\} \) radially homeomorphic to the unit sphere \(S = \{u \in W : \|u\| = 1\} \), i.e., the restriction to \(M \) of the radial projection \(\pi : W \setminus \{0\} \to S, u \mapsto u/\|u\| \) is a homeomorphism. Then the radial projection from \(W \setminus \{0\} \) onto \(M \) is given by \(\pi_M = (\pi|_M)^{-1} \circ \pi \). For a symmetric set \(A \subset W \setminus \{0\} \), we denote by \(i(A) \) its \(\mathbb{Z}_2 \)-cohomological index (see Fadell and Rabinowitz [10]). The following theorem is the special case \(r = 0 \) of [19, Theorem 1.1].

Theorem 3.1. Let \(E \) be a \(C^1 \)-functional on \(W \) and let \(A_0 \) and \(B_0 \) be disjoint closed symmetric subsets of \(M \) such that

\[
i(A_0) = i(M \setminus B_0) = k < \infty. \tag{3.1}
\]

Assume that there exist \(w_0 \in M \setminus A_0 \), \(0 < \rho < R \), and \(a < b \) such that, setting

\[
A_1 = \{\pi_M((1 - \tau)v + \tau w_0) : v \in A_0, 0 \leq \tau \leq 1\}, \quad A = \{tv : v \in A_0, 0 \leq t \leq R\} \cup \{Ru : u \in A_1\}, \quad B = \{\rho w : w \in B_0\}, \tag{3.2}
\]

\[
A^* = \{tu : u \in A_1, 0 \leq t \leq R\}, \quad B^* = \{tw : w \in B_0, 0 \leq t \leq \rho\}, \tag{3.3}
\]

we have

\[
a < \inf_{B^*} E, \quad \sup_{A} E < \inf_{B} E, \quad \sup_{A^*} E < b.
\]

If \(E \) satisfies the \((PS)_c\) condition for all \(c \in (a, b) \), then \(E \) has two critical points \(u_1 \) and \(u_2 \) with

\[
\inf_{B^*} E \leq E(u_1) \leq \sup_{A} E, \quad \inf_{B} E \leq E(u_2) \leq \sup_{A^*} E.
\]

We are now ready to prove Theorem 2.1.

Proof of Theorem 2.1. We apply Theorem 3.1 to the functional \(E \) defined in (2.2), taking \(A_0 = C_\delta, B_0 = \Psi_{\lambda_{k+1}}, w_0 = w_\delta \), and \(b = c_{\mu, k}^* \), where \(\delta \in (0, \lambda_{k+1} - \lambda) \) is to be chosen. Since \(A_0 \subset \Psi^{\lambda + \delta} \) and \(\lambda + \delta < \lambda_{k+1} \), \(A_0 \) and \(B_0 \) are disjoint. We have \(i(A_0) = k \) by assumption and \(i(M \setminus B_0) = k \) by (2.5), so (3.1) holds.

For \(u \in M \) and \(t > 0 \),

\[
E_0(tu) = t^p \left(1 - \frac{\lambda}{\Psi(u)} \right) - F(tu). \tag{3.4}
\]

For \(w \in B_0 \), this together with \((F_1)\) gives

\[
E_0(tw) \geq t^p \left(1 - \frac{\lambda}{\lambda_{k+1}} + o(1) \right) \quad \text{as } t \to 0.
\]
Since $\lambda < \lambda_{k+1}$, it follows from this that $\exists \rho \in (0, R)$ such that
\[
\inf_B E_0 > 0,
\tag{3.5}
\]
where B is as in (3.2). For $v \in A_0$ and $0 \leq t \leq R$, (3.4) together with (F_2) gives
\[
E_0(tv) \leq \frac{\delta R^p}{\lambda + \delta},
\tag{3.6}
\]
since $A_0 \subset \Psi^{\lambda+\delta}$. Fix δ so small that the right-hand side is less than $\inf_B E_0$. Then it follows from (3.6) and (2.8) that
\[
\sup_A E_0 \leq \frac{\delta R^p}{\lambda + \delta} < \inf_B E_0,
\tag{3.7}
\]
where A is as in (3.2).

We have
\[
|E(u) - E_0(u)| \leq |\mu||G(u)| + \|h\|^* \|u\| \quad \forall u \in W.
\tag{3.8}
\]
Let A^* and B^* be as in (3.3). Since A, B, and A^* are bounded and G is bounded on bounded sets, it follows from (3.8), (3.5), (3.7), (2.6), and (2.9) that $\exists \mu_0 > 0$ such that
\[
\inf_B E > 0, \quad \sup_A E < \inf_B E, \quad \sup A^* E < c^*_{\mu, h},
\tag{3.9}
\]
for all $\mu \in \mathbb{R}$ and $h \in W^* \setminus \{0\}$ with $|\mu| + \|h\|^* < \mu_0$. Since B^* is bounded and F is also bounded on bounded sets,
\[
\inf_{B^*} E > -\infty.
\]

So we can apply Theorem 3.1 with $a < \inf E(B^*)$ to get two critical points u_1 and u_2 with
\[
\inf_{B^*} E \leq E(u_1) \leq \sup_A E, \quad \inf_{B^*} E \leq E(u_2) \leq \sup_{A^*} E.
\tag{3.10}
\]
The inequalities in (2.10) follow from (3.9) and (3.10).

3.2 Proof of Theorem 2.2

We prove Theorem 2.2 by applying Theorem 2.1 with $W = W^{1,p}_0(\Omega)$ and the operators $A_p, B_p, f, g \in C(W^{1,p}_0(\Omega), W^{-1,p'}(\Omega))$ and $h \in W^{-1,p'}(\Omega)$ given by
\[
(A_p u, v) = \int_\Omega |\nabla u|^{p-2} \nabla u \cdot \nabla v \, dx, \quad (B_p u, v) = \int_\Omega |u|^{p-2} uv \, dx,
\]
\[
(f(u), v) = \int_\Omega |u|^{p-2} uv \, dx, \quad (g(u), v) = \int_\Omega |u|^{q-2} uv \, dx, \quad u, v \in W^{1,p}_0(\Omega)
\]
and
\[
(h, v) = \int_\Omega h(x) \, v \, dx, \quad v \in W^{1,p}_0(\Omega).
\]

We begin by determining a threshold level below which the functional E in (2.12) satisfies the (PS) condition.
Lemma 3.2. There exists \(\kappa > 0 \) such that \(E \) satisfies the \((PS)_c\) condition for all \(c < \frac{1}{N} S_{N,p}^{N/p} - \kappa \left(|\mu|^{p'/q'} + |h|^{|p'\star}| \right) \). (3.11)

Proof. Let \(c \in \mathbb{R} \) and let \((u_j)\) be a sequence in \(W^{1,p}_0(\Omega) \) such that

\[
E(u_j) = \int_{\Omega} \left(\frac{1}{p} |\nabla u_j|^p - \frac{\lambda}{p} |u_j|^p - \frac{\mu}{q} |u_j|^q - \frac{1}{p^\star} |u_j|^{p^\star} - h(x) u_j \right) \, dx = c + o(1) \quad (3.12)
\]

and

\[
(E'(u_j), v) = \int_{\Omega} \left(|\nabla u_j|^{p-2} \nabla u_j \cdot \nabla v - \lambda |u_j|^{p-2} u_j v - \mu |u_j|^{q-2} u_j v - |u_j|^{p^\star-2} u_j v - h(x) v \right) \, dx = o(\|v\|) \quad \forall v \in W^{1,p}_0(\Omega). \quad (3.13)
\]

Taking \(v = u_j \) in (3.13) gives

\[
\int_{\Omega} \left(|\nabla u_j|^p - \lambda |u_j|^p - \mu |u_j|^q - |u_j|^{p^\star} - h(x) u_j \right) \, dx = o(\|u_j\|). \quad (3.14)
\]

Let \(r \in (p, p^\star) \). Dividing (3.14) by \(r \) and subtracting from (3.12) gives

\[
\int_{\Omega} \left[\left(\frac{1}{p} - \frac{1}{r} \right) |\nabla u_j|^p - \lambda \left(\frac{1}{p} - \frac{1}{r} \right) |u_j|^p - \mu \left(\frac{1}{q} - \frac{1}{r} \right) |u_j|^q + \left(\frac{1}{r} - \frac{1}{p^\star} \right) |u_j|^{p^\star} \right. \\
- \left. \left(1 - \frac{1}{r} \right) h(x) u_j \right] \, dx = c + o(1) + o(\|u_j\|),
\]

and it follows from this that \((u_j)\) is bounded. So a renamed subsequence converges to some \(u \) weakly in \(W^{1,p}_0(\Omega) \), strongly in \(L^t(\Omega) \) for all \(t \in [1, p^\star) \), and a.e. in \(\Omega \). Setting \(\tilde{u}_j = u_j - u \), we will show that \(\tilde{u}_j \to 0 \) in \(W^{1,p}_0(\Omega) \).

Equation (3.14) gives

\[
\|u_j\|^p = |u_j|^{p^\star}_p + \int_{\Omega} \left(\lambda |u|^p + \mu |u|^q + h(x) u \right) \, dx + o(1). \quad (3.15)
\]

Taking \(v = u \) in (3.13) and passing to the limit gives

\[
\|u\|^p = |u|^{p^\star}_p + \int_{\Omega} \left(\lambda |u|^p + \mu |u|^q + h(x) u \right) \, dx. \quad (3.16)
\]

Since

\[
\|\tilde{u}_j\|^p = \|u_j\|^p - \|u\|^p + o(1) \quad (3.17)
\]

and

\[
|\tilde{u}_j|^{p^\star}_p = |u_j|^{p^\star}_p - |u|^{p^\star}_p + o(1)
\]
by the Brézis-Lieb lemma \[4\], Theorem 1, \((3.15)\) and \((3.16)\) imply

\[
\|\tilde{u}_j\|^p = |\tilde{u}_j|_{p^*}^{p^*} + o(1) \leq \frac{\|\tilde{u}_j\|^{p^*}}{S_{N,p}^{p^*/p}} + o(1),
\]

so

\[
\|\tilde{u}_j\|^p \left(S_{N,p}^{N/(N-p)} - \|\tilde{u}_j\|^{p^2/(N-p)} \right) \leq o(1).
\] \((3.18)\)

On the other hand, \((3.12)\) gives

\[
c = \frac{1}{p} \|u_j\|^p - \frac{1}{p^*} |u_j|_{p^*}^{p^*} - \int_{\Omega} \left(\frac{\lambda}{p} |u|^p + \frac{\mu}{q} |u|^q + h(x) u \right) \, dx + o(1),
\]

and a straightforward calculation combining this with \((3.13)\)–\((3.17)\) gives

\[
c = \frac{1}{N} \|\tilde{u}_j\|^p + \int_{\Omega} \left[\frac{1}{N} |u|^{p^*} - \mu \left(\frac{1}{q} - \frac{1}{p} \right) |u|^q - \left(1 - \frac{1}{p} \right) h(x) u \right] \, dx + o(1).
\]

The integral on the right-hand side is greater than or equal to

\[
\frac{1}{N} |u|^{p^*} - |\mu| \left(\frac{1}{q} - \frac{1}{p} \right) |\Omega|^{1-\frac{q}{p^*}} |u|^{p^*} - \left(1 - \frac{1}{p} \right) |h|_{p^*} |u|_{p^*} \geq -\kappa \left(|\mu|^{(p^*/q)'} + |h|_{p^{'*}}^{p^{'*}} \right)
\]

for some $\kappa > 0$ by the Hölder and Young's inequalities, so

\[
\|\tilde{u}_j\|^p \leq N \left[c + \kappa \left(|\mu|^{(p^*/q)'} + |h|_{p^{'*}}^{p^{'*}} \right) \right] + o(1).
\]

Combining this with \((3.18)\) shows that $\tilde{u}_j \to 0$ when \((3.11)\) holds.

We will apply Theorem \[2.1\] with

\[
c_{\mu,h}^* = \frac{1}{N} S_{N,p}^{N/p} - \kappa \left(|\mu|^{(p^*/q)'} + |h|_{p^{'*}}^{p^{'*}} \right),
\]

where $\kappa > 0$ is as in Lemma \[3.2\]. Note that

\[
\lim_{\mu,|h|_{p^{'*}} \to 0} c_{\mu,h}^* = \frac{1}{N} S_{N,p}^{N/p}.
\]

We have

\[
\mathcal{M} = \{ u \in W_0^{1,p}(\Omega) : \|u\|^p = p \},
\]

\[
\Psi(u) = \frac{p}{|u|_p^p}, \quad u \in \mathcal{M},
\]

\[
\pi_{\mathcal{M}}(u) = \frac{p^{1/p}}{\|u\|} \quad (u \in W_0^{1,p}(\Omega) \setminus \{0\}).
\]
and

\[E_0(u) = \int_{\Omega} \left(\frac{1}{p} |\nabla u|^p - \frac{\lambda}{p} |u|^p - \frac{1}{p^*} |u|^{p^*} \right) \, dx, \quad u \in W_0^{1,p}(\Omega). \]

Let \(\lambda_k \leq \lambda < \lambda_{k+1} \). We need to show that there exist \(R > 0 \) and, for all sufficiently small \(\delta > 0 \), a compact symmetric subset \(C_\delta \) of \(\Psi^{\lambda+\delta} \) with \(i(C_\delta) = k \) and \(w_\delta \in M \setminus C_\delta \) such that, setting \(A_\delta = \{ \pi_M((1-\tau) v + \tau w_\delta) : v \in C_\delta, \ 0 \leq \tau \leq 1 \} \), we have

\[
\sup_{u \in A_\delta} E_0(Ru) \leq 0, \quad \sup_{u \in A_\delta, 0 \leq t \leq R} E_0(tu) < \frac{1}{N} S_{N,p}^{N/p}.
\]

(3.19)

Since \(\lambda_k < \lambda_{k+1} \), \(\Psi^{\lambda_k} \) has a compact symmetric subset \(C_0 \) of index \(k \) that is bounded in \(L^\infty(\Omega) \cap C^1_{loc}(\Omega) \) (see Degiovanni and Lancelotti [8, Theorem 2.3]). We may assume without loss of generality that \(0 \in \Omega \). Let \(\rho_0 = \text{dist} (0, \partial \Omega) \), let \(\eta : [0, \infty) \to [0, 1] \) be a smooth function such that \(\eta(t) = 0 \) for \(t \leq 3/4 \) and \(\eta(t) = 1 \) for \(t \geq 1 \), let

\[u_\rho(x) = \eta \left(\frac{|x|}{\rho} \right) u(x), \quad u \in C_0, \ 0 < \rho \leq \rho_0/2, \]

and let

\[C = \{ \pi_M(u_\rho) : u \in C_0 \}. \]

Lemma 3.3. The set \(C \) is a compact symmetric subset of \(\Psi^{\lambda_k + c_1 \rho^{N-p}} \) for some constant \(c_1 > 0 \). If \(\lambda_k + c_1 \rho^{N-p} < \lambda_{k+1} \), then \(i(C) = k \).

Proof. Let \(u \in C_0 \). Since functions in \(C_0 \) are bounded in \(C^1(B_{\rho_0/2}(0)) \) and belong to \(\Psi^{\lambda_k} \),

\[\int_{\Omega} |\nabla u_\rho|^p \, dx \leq \int_{\Omega \setminus B_\rho(0)} |\nabla u|^p \, dx + \int_{B_\rho(0)} \left(|\nabla u| + \frac{|\eta'| |u|}{\rho} \right)^p \, dx \leq p + c_2 \rho^{N-p} \]

and

\[\int_{\Omega} |u_\rho|^p \, dx \geq \int_{\Omega \setminus B_\rho(0)} |u|^p \, dx = \int_{\Omega} |u|^p \, dx - \int_{B_\rho(0)} |u|^p \, dx \geq \frac{p}{\lambda_k} - c_3 \rho^N \]

for some constants \(c_2, c_3 > 0 \). So

\[\Psi(\pi_M(u_\rho)) = \frac{\int_{\Omega} |\nabla u_\rho|^p \, dx}{\int_{\Omega} |u_\rho|^p \, dx} \leq \lambda_k + c_1 \rho^{N-p} \]

for some constant \(c_1 > 0 \). Then \(C \subset \Psi^{\lambda_k + c_1 \rho^{N-p}} \). Since \(C_0 \) is a compact symmetric set and \(u \mapsto \pi_M(u_\rho) \) is an odd continuous map of \(C_0 \) onto \(C \), \(C \) is also a compact symmetric set and

\[i(C) \geq i(C_0) = k \]

by the monotonicity of the index. If \(\lambda_k + c_1 \rho^{N-p} < \lambda_{k+1} \), then \(C \subset M \setminus \Psi^{\lambda_{k+1}} \) and hence

\[i(C) \leq i(M \setminus \Psi^{\lambda_{k+1}}) = k \]

by [25], so \(i(C) = k \). \(\square \)
Lemma 3.4. For any \(w \in \mathcal{M} \setminus C \) with support in \(\overline{B_{\rho/2}(0)} \), \(\exists R > 0 \) such that, setting \(A = \{ \pi_\mathcal{M}((1 - \tau) v + \tau w) : v \in C, 0 \leq \tau \leq 1 \} \), we have

\[
\sup_{u \in A} E_0(Ru) \leq 0.
\]

Proof. Let \(u = \pi_\mathcal{M}((1 - \tau) v + \tau w) \in A \). For \(R > 0 \),

\[
E_0(Ru) \leq \int_\Omega \left(\frac{R^p}{p} |\nabla u|^p - \frac{R^p}{p^*} |u|^{p^*} \right) dx = R^p - \frac{R^p}{p^*} |u|^{p^*},
\]

so it suffices to show that \(|u|^{p^*} \) is bounded away from zero on \(A \). By the Hölder inequality, it is enough to show that \(|u|_p \) is bounded away from zero. Since \(v, w \in \mathcal{M} \) have disjoint supports,

\[
|u|_p^p = \frac{p}{p} \frac{1}{(1 - \tau) v + \tau w} \left(\frac{p}{p} \frac{1}{(1 - \tau) v + \tau w} \right) = \frac{p}{p} \frac{1}{(1 - \tau) v + \tau w} \left(\frac{p}{p} \frac{1}{(1 - \tau) v + \tau w} \right) = \frac{p}{p} \frac{1}{(1 - \tau) v + \tau w} \left(\frac{p}{p} \frac{1}{(1 - \tau) v + \tau w} \right) \geq \min \left\{ |v|_p^p, |w|_p^p \right\},
\]

so it suffices to show that \(|v|_p \) is bounded away from zero on \(C \). Since \(C \subset \Psi^{\lambda + c_1 \rho N - p} \) by Lemma 3.3, we have

\[
|v|_p^p = \frac{p}{\Psi(v)} \geq \frac{p}{\lambda_k + c_1 \rho N - p}. \quad \square
\]

Let \(\delta \in (0, \lambda_{k+1} - \lambda) \), let \(\rho \in (0, \rho_0/2] \) be so small that \(\lambda_k + c_1 \rho N - p < \lambda + \delta \), and let \(C_\delta = C \). Then \(C_\delta \) is a compact symmetric subset of \(\Psi^{\lambda + \delta} \) with \(i(C_\delta) = k \) by Lemma 3.3. We will show that if \(\delta > 0 \) is sufficiently small, then \(\exists w_\delta \in \mathcal{M} \setminus C_\delta \) with support in \(\overline{B_{\rho/2}(0)} \) such that, setting \(A_\delta = \{ \pi_\mathcal{M}((1 - \tau) v + \tau w_\delta) : v \in C_\delta, 0 \leq \tau \leq 1 \} \), we have

\[
\sup_{u \in A_\delta, t \geq 0} E_0(tu) < \frac{1}{N} S^{N/p}_{N,p}. \tag{3.20}
\]

Then Lemma 3.3 will give an \(R > 0 \) such that (3.19) holds and complete the proof. We note that (3.20) is equivalent to

\[
\sup_{u \in C_\delta, t \geq 0} E_0(tu + \tau w_\delta) < \frac{1}{N} S^{N/p}_{N,p}. \tag{3.21}
\]

To choose \(w_\delta \), recall that the infimum in (2.13) is attained by the Aubin-Talenti functions

\[
u_\varepsilon(x) = \frac{c_{N,p} \varepsilon(N-p)/p^2}{(\varepsilon + |x|p/(p-1))^{(N-p)/p}}, \quad \varepsilon > 0
\]

when \(\Omega = \mathbb{R}^N \), where the constant \(c_{N,p} > 0 \) is chosen so that

\[
\int_{\mathbb{R}^N} |\nabla u_\varepsilon|^p dx = \int_{\mathbb{R}^N} u_\varepsilon^{p^*} dx = S^{N/p}_{N,p}.
\]
Let \(\zeta : [0, \infty) \to [0,1] \) be a smooth function such that \(\zeta(t) = 1 \) for \(t \leq 1/4 \) and \(\zeta(t) = 0 \) for \(t \geq 1/2 \), and let

\[
u_{\varepsilon, \rho}(x) = \zeta \left(\frac{|x|}{\rho} \right) u_{\varepsilon}(x), \quad w_{\varepsilon, \rho}(x) = \frac{u_{\varepsilon, \rho}(x)}{\left(\int_{\mathbb{R}^N} w_{\varepsilon, \rho}^{\ast} \, dx \right)^{1/p}}, \quad 0 < \rho \leq \rho_0/2.
\]

Then

\[
\int_{\mathbb{R}^N} w_{\varepsilon, \rho}^{\ast} \, dx = 1 \tag{3.22}
\]

and we have

\[
\int_{\mathbb{R}^N} |\nabla w_{\varepsilon, \rho}|^p \, dx \leq S_{N,p} c_4 \varepsilon^{(N-p)/p} \rho^{-(N-p)/(p-1)}, \tag{3.23}
\]

\[
\int_{\mathbb{R}^N} w_{\varepsilon, \rho}^{\ast} \, dx \geq \begin{cases} c_5 \varepsilon^{p-1} & \text{if } N > p^2 \\ c_5 \varepsilon^{p-1} \log \left(\varepsilon \rho^{p/(p-1)} \right) & \text{if } N = p^2 \end{cases} \tag{3.24}
\]

for some constants \(c_4, c_5 > 0 \) (see, e.g., Perera and Zou [22]). Let

\[w_\delta = \pi_{M}(w_{\varepsilon, \rho}).\]

Since functions in \(C_\delta \) have their supports in \(\Omega \setminus B_{3\rho/4}(0) \), while the support of \(w_\delta \) is in \(\overline{B_{\rho/2}(0)} \), \(w_\delta \in M \setminus C_\delta \). We will show that (3.21) holds if \(\varepsilon, \rho > 0 \) are sufficiently small.

Inequality (3.21) is equivalent to

\[
\sup_{v \in C_\delta, t, \tau \geq 0} E_0(tv + \tau w_{\varepsilon, \rho}) < \frac{1}{N} S_{N,p}^{N/p}. \tag{3.25}
\]

For \(v \in C_\delta \) and \(t, \tau \geq 0 \),

\[
E_0(tv + \tau w_{\varepsilon, \rho}) = E_0(tv) + E_0(\tau w_{\varepsilon, \rho})
\]

since \(v \) and \(w_{\varepsilon, \rho} \) have disjoint supports. So

\[
\sup_{v \in C_\delta, t, \tau \geq 0} E_0(tv + \tau w_{\varepsilon, \rho}) = \sup_{v \in C_\delta, t \geq 0} E_0(tv) + \sup_{\tau \geq 0} E_0(\tau w_{\varepsilon, \rho}). \tag{3.26}
\]

Lemma 3.5. We have

\[
\sup_{v \in C_\delta, t \geq 0} E_0(tv) \leq \begin{cases} 0 & \text{if } \lambda_k + c_1 \rho^{N-p} \leq \lambda < \lambda_{k+1} \\ c_6 \rho^{N(N-p)/p} & \text{if } \lambda = \lambda_k, \end{cases}
\]

where \(c_1 \) is as in Lemma 3.3 and \(c_6 > 0 \) is a constant.
Proof. For \(v \in C_\delta \) and \(t \geq 0 \),
\[
E_0(tv) = \frac{t^p}{p} \int_{\Omega} (|\nabla v|^p - \lambda |v|^p) \, dx - \frac{t^{p^*}}{p^*} \int_{\Omega} |v|^{p^*} \, dx,
\]
and
\[
\frac{1}{p} \int_{\Omega} (|\nabla v|^p - \lambda |v|^p) \, dx = 1 - \frac{\lambda}{\Psi(v)} \leq 1 - \frac{\lambda}{\lambda_k + c_1 \rho^{N-p}}\tag{3.27}
\]
since \(C_\delta \subset \Psi^{\lambda_k + c_1 \rho^{N-p}} \) by Lemma 3.3. So \(E_0(tv) \leq 0 \) if \(\lambda_k + c_1 \rho^{N-p} \leq \lambda < \lambda_{k+1} \). If \(\lambda = \lambda_k \), then
\[
\frac{1}{p} \int_{\Omega} (|\nabla v|^p - \lambda |v|^p) \, dx \leq \frac{c_1 \rho^{N-p}}{\lambda_k + c_1 \rho^{N-p}} \leq c_7 \rho^{N-p},\tag{3.28}
\]
where \(c_7 = c_1/\lambda_k > 0 \), and
\[
\frac{1}{p^*} \int_{\Omega} |v|^{p^*} \, dx \geq c_8
\]
for some constant \(c_8 > 0 \) as in the proof of Lemma 3.4, so
\[
E_0(tv) \leq c_7 \rho^{N-p} t^p - c_8 t^{p^*}
\]
and maximizing the right-hand side over all \(t \geq 0 \) gives the desired conclusion. \(\square \)

Lemma 3.6. We have
\[
\sup_{\tau \geq 0} E_0(\tau w_{\varepsilon,\rho}) \leq \begin{cases}
\frac{1}{N} \left[S_{N,p} + c_4 \varepsilon^{(N-p)/p} \rho^{-(N-p)/(p-1)} - \lambda c_5 \varepsilon^{p-1} \right]^{N/p} & \text{if } N > p^2 \\
\frac{1}{N} \left[S_{N,p} + c_4 \varepsilon^{p-1} \rho^{-p} - \lambda c_5 \varepsilon^{p-1} \left| \log \left(\varepsilon \rho^{-p}/(p-1) \right) \right| \right]^{N/p} & \text{if } N = p^2.
\end{cases}
\]

Proof. We have
\[
E_0(\tau w_{\varepsilon,\rho}) = \frac{\tau^p}{p} \int_{\Omega} (|\nabla w|_{\varepsilon,\rho}|^p - \lambda w_{\varepsilon,\rho}^p) \, dx - \frac{\tau^{p^*}}{p^*}
\]
by (3.22), and maximizing the right-hand side over all \(\tau \geq 0 \) gives
\[
\sup_{\tau \geq 0} E_0(\tau w_{\varepsilon,\rho}) = \frac{1}{N} \left[\int_{\Omega} (|\nabla w_{\varepsilon,\rho}|^p - \lambda w_{\varepsilon,\rho}^p) \, dx \right]^{N/p},
\]
so the desired conclusion follows from (3.23) and (3.24). \(\square \)

We can now complete the proof of Theorem 2.2. First suppose \(N \geq p^2 \) and \(\lambda > \lambda_1 \) is not an eigenvalue. Then \(\lambda_k < \lambda < \lambda_{k+1} \) for some \(k \in \mathbb{N} \). Let \(\rho \in (0, \rho_0/2] \) be so small that \(\lambda_k + c_1 \rho^{N-p} \leq \lambda \). Then (3.25) follows from (3.26), Lemma 3.5 and Lemma 3.6 for sufficiently small \(\varepsilon > 0 \).
Now suppose $N(N-p^2) > p^2$ and $\lambda \geq \lambda_1$. Then $\lambda_k \leq \lambda < \lambda_{k+1}$ for some $k \in \mathbb{N}$. We have already considered the case where $N > p^2$ and $\lambda_k < \lambda < \lambda_{k+1}$, so suppose $\lambda = \lambda_k$. Then

$$\sup_{v \in C_k, t, \tau \geq 0} E_0(tv + \tau w_{\varepsilon, \rho}) \leq \frac{1}{N} \left[S_{N, p} + c_4 \varepsilon^{(N-p)/p} \rho^{-(N-p)/(p-1)} - \lambda c_5 \varepsilon^{p-1} \right]^{N/p} + c_6 \rho^{N(N-p)/p}$$

by (3.26), Lemma 3.5, and Lemma 3.6. Set $\rho = \varepsilon^\alpha$, where $\alpha > 0$ is to be chosen. Then the right-hand side is less than or equal to

$$\frac{1}{N} S_{N, p}^{N/p} \left[1 + c_9 \varepsilon^{(N-p)[1/p - \alpha/(p-1)]} - c_{10} \varepsilon^{p-1} \right]^{N/p} + c_6 \varepsilon^\alpha N(N-p)/p$$

for some constants $c_9, c_{10} > 0$, so (3.25) will follow for sufficiently small $\varepsilon > 0$ if α can be found so that

$$(N-p)[1/p - \alpha/(p-1)] > p - 1$$

and

$$\alpha N(N-p)/p > p - 1.$$

This is possible if and only if

$$(p-1)p/N(N-p) < (p-1)[1/p - (p-1)/(N-p)],$$

i.e.,

$$N(N-p^2) > p^2. \quad \Box$$

3.3 Proof of Theorem 2.4

We prove Theorem 2.4 by applying Theorem 2.1 with $W = W_{0}^{1,p}(\Omega)$, the operators $A_p, B_p, f \in C(W_{0}^{1,p}(\Omega), W^{-1,p}(\Omega))$ and $h \in W^{-1,p}(\Omega)$ given by

$$(A_p u, v) = \int_{\Omega} |\nabla u|^{p-2} \nabla u \cdot \nabla v \, dx, \quad (B_p u, v) = \int_{\Omega} |u|^{p-2} uv \, dx,$$

$$(f(u), v) = \int_{\Omega} \frac{|u|^{p\sigma}\gamma-2}{|x|^{\sigma}} \, uv \, dx, \quad u, v \in W_{0}^{1,p}(\Omega)$$

and

$$(h, v) = \int_{\Omega} h(x) v \, dx, \quad v \in W_{0}^{1,p}(\Omega),$$

and $g = 0$. The proof is similar to that of Theorem 2.2 so we will be sketchy.

Lemma 3.7. There exists $\kappa > 0$ such that the functional E in (2.15) satisfies the $(\text{PS})_c$ condition for all

$$c < \frac{p - \sigma}{(N - \sigma)p} S_{N, p, \sigma}^{(N-\sigma)/(p-\sigma)} - \kappa |h|_{p^\sigma}^\gamma.$$ \hspace{1cm} (3.29)
Proof. Let \(c \in \mathbb{R} \) and let \((u_j) \) be a sequence in \(W_0^{1,p}(\Omega) \) such that
\[
E(u_j) = \int_{\Omega} \left(\frac{1}{p} |\nabla u_j|^p - \frac{\lambda}{p} |u_j|^p - \frac{1}{p^*(\sigma)} \frac{|u_j|^{p^*(\sigma)}}{|x|^\sigma} - h(x) u_j \right) \, dx = c + o(1) \tag{3.30}
\]
and
\[
(E'(u_j), v) = \int_{\Omega} \left(|\nabla u_j|^{p-2} \nabla u_j \cdot \nabla v - \lambda |u_j|^{p-2} u_j v - \frac{|u_j|^{p^*(\sigma)-2}}{|x|^\sigma} u_j v - h(x) v \right) \, dx
= o(\|v\|) \quad \forall v \in W_0^{1,p}(\Omega). \tag{3.31}
\]
Taking \(v = u_j \) in (3.31) gives
\[
\int_{\Omega} \left(|\nabla u_j|^p - \lambda |u_j|^p - \frac{|u_j|^{p^*(\sigma)}}{|x|^\sigma} - h(x) u_j \right) \, dx = o(\|u_j\|). \tag{3.32}
\]
Let \(r \in (p, p^*(\sigma)) \). Dividing (3.32) by \(r \) and subtracting from (3.30) gives
\[
\int_{\Omega} \left[\left(1 - \frac{1}{p} \right) |\nabla u_j|^p - \lambda \left(1 - \frac{1}{p} \right) |u_j|^p + \left(1 - \frac{1}{p^*(\sigma)} \right) \frac{|u_j|^{p^*(\sigma)}}{|x|^\sigma} - \left(1 - \frac{1}{r} \right) h(x) u_j \right] \, dx
= c + o(1) + o(\|u_j\|),
\]
and it follows from this that \((u_j) \) is bounded. So a renamed subsequence converges to some \(u \) weakly in \(W_0^{1,p}(\Omega) \), strongly in \(L^p(\Omega) \) for all \(t \in [1, p^*) \), and a.e. in \(\Omega \). Setting \(\tilde{u}_j = u_j - u \), we will show that \(\tilde{u}_j \to 0 \) in \(W_0^{1,p}(\Omega) \).

Equation (3.32) gives
\[
\|u_j\|^p = \int_{\Omega} \frac{|u_j|^{p^*(\sigma)}}{|x|^\sigma} \, dx + \int_{\Omega} (\lambda |u|^p + h(x) u) \, dx + o(1). \tag{3.33}
\]
Taking \(v = u \) in (3.31) and passing to the limit gives
\[
\|u\|^p = \int_{\Omega} \frac{|u|^{p^*(\sigma)}}{|x|^\sigma} \, dx + \int_{\Omega} (\lambda |u|^p + h(x) u) \, dx. \tag{3.34}
\]
Since
\[
\|\tilde{u}_j\|^p = \|u_j\|^p - \|u\|^p + o(1) \tag{3.35}
\]
by the Brézis-Lieb lemma [4, Theorem 1] and
\[
\int_{\Omega} |\nabla \tilde{u}_j|^{p^*(\sigma)} \, dx = \int_{\Omega} |u_j|^{p^*(\sigma)} \, dx - \int_{\Omega} |u|^{p^*(\sigma)} \, dx + o(1)
\]
by Ghoussoub and Yuan [13, Lemma 4.3], (3.33) and (3.34) imply
\[
\|\tilde{u}_j\|^p = \int_{\Omega} \frac{|\tilde{u}_j|^{p^*(\sigma)}}{|x|^\sigma} \, dx + o(1) \leq \frac{\|\tilde{u}_j\|^{p^*(\sigma)}}{S_{N,p,\sigma}^{p^*(\sigma)/p}} + o(1),
\]

18
so
\[
\| \tilde{u}_j \|^p \left(S_{N, p, \sigma}^{(N-\sigma)/(N-p)} - \| \tilde{u}_j \|^{(p-\sigma)p/(N-p)} \right) \leq o(1).
\]

(3.36)

On the other hand, (3.30) gives
\[
c = 1 \frac{\| u_j \|^p - 1}{p^*(\sigma)} \int_{\Omega} \frac{|u_j| p^*(\sigma)}{|x|^\sigma} \, dx - \int_{\Omega} \left(\frac{\lambda}{p} |u|^p + h(x) u \right) \, dx + o(1),
\]
and a straightforward calculation combining this with (3.33)–(3.35) gives
\[
c = \frac{p - \sigma}{(N - \sigma)p} \| \tilde{u}_j \|^p + \int_{\Omega} \left[\frac{p - \sigma}{(N - \sigma)p} \frac{|u| p^*(\sigma)}{|x|^\sigma} \right. - \left. \left(1 - \frac{1}{p} \right) h(x) u \right] \, dx + o(1).
\]

The integral on the right-hand side is greater than or equal to
\[
\frac{p - \sigma}{(N - \sigma)p} \int_{\Omega} \frac{|u| p^*(\sigma)}{|x|^\sigma} \, dx - \left(1 - \frac{1}{p} \right) \left(\int_{\Omega} \frac{|u| p^*(\sigma)}{|x|^\sigma} \, dx \right)^{1/p^*(\sigma)} \geq -\kappa |h|_{p^*(\sigma)'}^{p^*(\sigma)'}
\]
for some \(\kappa > 0 \) by the Hölder and Young’s inequalities, so
\[
\| \tilde{u}_j \|^p \leq \frac{(N - \sigma)p}{p - \sigma} \left(c + \kappa |h|_{p^*(\sigma)'}^{p^*(\sigma)'} \right) + o(1).
\]

Combining this with (3.36) shows that \(\tilde{u}_j \to 0 \) when (3.29) holds.

We will apply Theorem 2.1 with
\[
c^*_{\mu, h} = \frac{p - \sigma}{(N - \sigma)p} S_{N, p, \sigma}^{(N-\sigma)/(p-\sigma)} - \kappa |h|_{p^*(\sigma)'}^{p^*(\sigma)'}
\]
where \(\kappa > 0 \) is as in Lemma 3.7, noting that
\[
\lim_{|h|_{p^*(\sigma)'} \to 0} c^*_{\mu, h} = \frac{p - \sigma}{(N - \sigma)p} S_{N, p, \sigma}^{(N-\sigma)/(p-\sigma)}.
\]

We have
\[
\mathcal{M} = \{ u \in W_0^{1,p}(\Omega) : \| u \|^p = p \},
\]
\[
\Psi(u) = \frac{p}{\| u \|^p}, \quad u \in \mathcal{M},
\]
\[
\pi_{\mathcal{M}}(u) = \frac{p^{1/p} u}{\| u \|}, \quad u \in W_0^{1,p}(\Omega) \setminus \{0\}
\]
Let \(\rho \leq \lambda < \lambda_{k+1} \). We need to show that there exist \(R > 0 \) and, for all sufficiently small \(\delta > 0 \), a compact symmetric subset \(C_\delta \) of \(\Psi^{1+\delta} \) with \(i(C_\delta) = k \) and \(w_\delta \in \mathcal{M} \setminus C_\delta \) such that, setting \(A_\delta = \{ \pi_M((1 - \tau) v + \tau w_\delta) : v \in C_\delta, 0 \leq \tau \leq 1 \} \), we have

\[
\sup_{u \in A_\delta} E_0(Ru) \leq 0, \quad \sup_{u \in A_\delta, 0 \leq \tau \leq R} E_0(tu) < \frac{p - \sigma}{(N - \sigma) p} S_{N, p, \sigma}^{(N - \sigma)/(p - \sigma)}. \tag{3.37}
\]

Let \(\rho_0 = \text{dist } (0, \partial \Omega) \), let \(0 < \rho \leq \rho_0/2 \), and let \(C \) be as in the proof of Theorem 2.2.

Lemma 3.8. For any \(w \in \mathcal{M} \setminus C \) with support in \(\overline{B_{\rho/2}(0)} \), \(\exists R > 0 \) such that, setting \(A = \{ \pi_M((1 - \tau) v + \tau w) : v \in C, 0 \leq \tau \leq 1 \} \), we have

\[
\sup_{u \in A} E_0(Ru) \leq 0.
\]

Proof. Let \(u = \pi_M((1 - \tau) v + \tau w) \in A \). For \(R > 0 \),

\[
E_0(Ru) \leq \int_\Omega \left(\frac{R^p}{p} |\nabla u|^p - \frac{R^{p^*}(\sigma)}{p^*(\sigma)} \left| \frac{|u|^{p^*(\sigma)}}{|x|^\sigma} \right| \right) dx = R^p - \frac{R^{p^*(\sigma)}}{p^*(\sigma)} \int_\Omega \left| \frac{|u|^{p^*(\sigma)}}{|x|^\sigma} \right| dx,
\]

so it suffices to show that the last integral is bounded away from zero on \(A \). By the Hölder inequality,

\[
\int_\Omega |u|^p dx \leq \left(\int_\Omega |x|^{p/(p^*(\sigma) - p)} dx \right)^{1 - p/p^*(\sigma)} \left(\int_\Omega \left| \frac{|u|^{p^*(\sigma)}}{|x|^\sigma} \right| dx \right)^{p/p^*(\sigma)},
\]

and \(|u|_p \) is bounded away from zero as in the proof of Lemma 3.4, so the desired conclusion follows.

Let \(\delta \in (0, \lambda_{k+1} - \lambda) \), let \(\rho \in (0, \rho_0/2) \) be so small that \(\lambda_k + c_1 \rho^{N-p} < \lambda + \delta \), and let \(C_\delta = C \). Then \(C_\delta \) is a compact symmetric subset of \(\Psi^{1+\delta} \) with \(i(C_\delta) = k \) by Lemma 3.3. We will show that if \(\delta > 0 \) is sufficiently small, then \(\exists w_\delta \in \mathcal{M} \setminus C_\delta \) with support in \(\overline{B_{\rho/2}(0)} \) such that, setting \(A_\delta = \{ \pi_M((1 - \tau) v + \tau w_\delta) : v \in C_\delta, 0 \leq \tau \leq 1 \} \), we have

\[
\sup_{u \in A_\delta, t \geq 0} E_0(tu) < \frac{p - \sigma}{(N - \sigma) p} S_{N, p, \sigma}^{(N - \sigma)/(p - \sigma)}. \tag{3.38}
\]

Then Lemma 3.8 will give an \(R > 0 \) such that (3.37) holds and complete the proof. We note that (3.38) is equivalent to

\[
\sup_{u \in C_\delta, t \geq 0} E_0(tu + \tau w_\delta) < \frac{p - \sigma}{(N - \sigma) p} S_{N, p, \sigma}^{(N - \sigma)/(p - \sigma)}. \tag{3.39}
\]

To choose \(w_\delta \), recall that the infimum in (2.16) is attained by the family of functions

\[
u_\varepsilon(x) = \frac{c_{N, p, \sigma} \varepsilon^{(N-p)/(p-\sigma)}}{\left(\varepsilon + |x|^{(p-\sigma)/(p-1)} \right)^{(N-p)/(p-\sigma)}}, \quad \varepsilon > 0
\]
when $\Omega = \mathbb{R}^N$, where the constant $c_{N,p,\sigma} > 0$ is chosen so that

$$\int_{\mathbb{R}^N} |\nabla u_\varepsilon|^p \, dx = \int_{\mathbb{R}^N} \frac{u_\varepsilon^{p^*(\sigma)}}{|x|^{\sigma}} \, dx = S_{N,p,\sigma}^{(N-\sigma)/(p-\sigma)}$$

(see [13, Theorem 3.1.(2)]). Let $\zeta : [0, \infty) \to [0, 1]$ be a smooth function such that $\zeta(t) = 1$ for $t \leq 1/4$ and $\zeta(t) = 0$ for $t \geq 1/2$, and let

$$u_{\varepsilon, \rho}(x) = \zeta \left(\frac{|x|}{\rho} \right) u_\varepsilon(x), \quad w_{\varepsilon, \rho}(x) = \frac{u_{\varepsilon, \rho}(x)}{\left(\int_{\mathbb{R}^N} \frac{u_{\varepsilon, \rho}^{p^*(\sigma)}}{|x|^{\sigma}} \, dx \right)^{1/p^*(\sigma)}}, \quad 0 < \rho \leq \rho_0/2.$$

Then

$$\int_{\mathbb{R}^N} \frac{w_{\varepsilon, \rho}^{p^*(\sigma)}}{|x|^{\sigma}} \, dx = 1 \quad (3.40)$$

and we have

$$\int_{\mathbb{R}^N} |\nabla w_{\varepsilon, \rho}|^p \, dx \leq S_{N,p,\sigma} + c_{11} \varepsilon^{(N-p)/(p-\sigma)} \rho^{-(N-p)/(p-1)}, \quad (3.41)$$

$$\int_{\mathbb{R}^N} w_{\varepsilon, \rho}^p \, dx \geq \begin{cases} c_{12} \varepsilon^{(p-1)p/(p-\sigma)} & \text{if } N > p^2 \\ c_{12} \varepsilon^{(p-1)p/(p-\sigma)} \left| \log \left(\varepsilon \rho^{-(p-\sigma)/(p-1)} \right) \right| & \text{if } N = p^2 \end{cases} \quad (3.42)$$

for some constants $c_{11}, c_{12} > 0$ (see Perera and Zou [22]). Let

$$w_\delta = \pi_M(w_{\varepsilon, \rho}).$$

Since functions in C_δ have their supports in $\Omega \setminus B_{3\rho/4}(0)$, while the support of w_δ is in $B_{\rho/2}(0)$, $w_\delta \in M \setminus C_\delta$. We will show that (3.39) holds if $\varepsilon, \rho > 0$ are sufficiently small.

Inequality (3.39) is equivalent to

$$\sup_{v \in C_\delta, t, \tau \geq 0} E_0(tv + \tau w_{\varepsilon, \rho}) \leq \frac{p - \sigma}{(N - \sigma) p} S_{N,p,\sigma}^{(N-\sigma)/(p-\sigma)}. \quad (3.43)$$

For $v \in C_\delta$ and $t, \tau \geq 0$,

$$E_0(tv + \tau w_{\varepsilon, \rho}) = E_0(tv) + E_0(\tau w_{\varepsilon, \rho})$$

since v and $w_{\varepsilon, \rho}$ have disjoint supports. So

$$\sup_{v \in C_\delta, t, \tau \geq 0} E_0(tv + \tau w_{\varepsilon, \rho}) = \sup_{v \in C_\delta, t \geq 0} E_0(tv) + \sup_{\tau \geq 0} E_0(\tau w_{\varepsilon, \rho}). \quad (3.44)$$

Lemma 3.9. We have

$$\sup_{v \in C_\delta, t \geq 0} E_0(tv) \leq \begin{cases} 0 & \text{if } \lambda_k + c_1 \rho^{N-p} \leq \lambda < \lambda_{k+1} \\ c_{13} \rho^{(N-\sigma)(N-p)/(p-\sigma)} & \text{if } \lambda = \lambda_k, \end{cases}$$

where c_1 is as in Lemma 3.3 and $c_{13} > 0$ is a constant.
Proof. For \(v \in C_\delta \) and \(t \geq 0 \),
\[
E_0(tv) = \frac{t^p}{p} \int_\Omega (|\nabla v|^p - \lambda |v|^p) \, dx - \frac{t^{p^*}(\sigma)}{p^*(\sigma)} \int_\Omega \frac{|v|^{p^*(\sigma)}}{|x|^\sigma} \, dx
\]
and (3.27) holds. So \(E_0(tv) \leq 0 \) if \(\lambda_k + c_1 \rho^{N-p} \leq \lambda < \lambda_{k+1} \). If \(\lambda = \lambda_k \), then (3.28) holds and
\[
\frac{1}{p^*(\sigma)} \int_\Omega \frac{|v|^{p^*(\sigma)}}{|x|^\sigma} \, dx \geq c_{14}
\]
for some constant \(c_{14} > 0 \) as in the proof of Lemma 3.8 so
\[
E_0(tv) \leq c_7 \rho^{N-p} t^p - c_{14} t^{p^*(\sigma)}
\]
and maximizing the right-hand side over all \(t \geq 0 \) gives the desired conclusion.

\[\square \]

Lemma 3.10. We have
\[
\sup_{\tau \geq 0} E_0(\tau w_{\epsilon, \rho}) \leq \begin{cases}
\frac{p - \sigma}{(N - \sigma) p} \left[S_{N, p, \sigma} + c_{11} \epsilon^{(N-p)/(p-\sigma)} \rho^{-(N-p)/(p-1)} \right]
- \lambda c_{12} \epsilon^{(p-1)/p} \left[(N-\sigma)/(p-\sigma) \right]
& \text{if } N > p^2 \\
\frac{p - \sigma}{(N - \sigma) p} \left[S_{N, p, \sigma} + c_{11} \epsilon^{(p-1)/p} \rho^{p} \right]
- \lambda c_{12} \epsilon^{(p-1)/p} \left[\log \left(\epsilon \rho^{-(p-\sigma)/(p-1)} \right) \right]^{(N-\sigma)/(p-\sigma)}
& \text{if } N = p^2.
\end{cases}
\]

Proof. We have
\[
E_0(\tau w_{\epsilon, \rho}) = \frac{\tau^p}{p} \int_\Omega (|\nabla w_{\epsilon, \rho}|^p - \lambda w_{\epsilon, \rho}^p) \, dx - \frac{\tau^{p^*(\sigma)}}{p^*(\sigma)}
\]
by (3.40), and maximizing the right-hand side over all \(\tau \geq 0 \) gives
\[
\sup_{\tau \geq 0} E_0(\tau w_{\epsilon, \rho}) \leq \begin{cases}
\frac{p - \sigma}{(N - \sigma) p} \int_\Omega (|\nabla w_{\epsilon, \rho}|^p - \lambda w_{\epsilon, \rho}^p) \, dx \left[(N-\sigma)/(p-\sigma) \right]
& \text{if } N > p^2 \\
\frac{p - \sigma}{(N - \sigma) p} \left[S_{N, p, \sigma} + c_{11} \epsilon^{(p-1)/p} \rho^{p} \right]
& \text{if } N = p^2.
\end{cases}
\]

so the desired conclusion follows from (3.41) and (3.42).

\[\square \]

We can now complete the proof of Theorem 2.14. First suppose \(N \geq p^2 \) and \(\lambda > \lambda_1 \) is not an eigenvalue. Then \(\lambda_k < \lambda < \lambda_{k+1} \) for some \(k \in \mathbb{N} \). Let \(\rho \in (0, \rho_0/2] \) be so small that \(\lambda_k + c_1 \rho^{N-p} \leq \lambda \). Then (3.43) follows from (3.44), Lemma 3.9, and Lemma 3.10 for sufficiently small \(\epsilon > 0 \).

Now suppose \((N-\sigma)(N-p^2) > (p-\sigma)p \) and \(\lambda \geq \lambda_1 \). Then \(\lambda_k \leq \lambda < \lambda_{k+1} \) for some \(k \in \mathbb{N} \). We have already considered the case where \(N > p^2 \) and \(\lambda_k < \lambda < \lambda_{k+1} \), so suppose \(\lambda = \lambda_k \). Then
\[
\sup_{v \in C_\delta, t, \tau \geq 0} E_0(tv + \tau w_{\epsilon, \rho}) \leq \frac{p - \sigma}{(N - \sigma) p} \left[S_{N, p, \sigma} + c_{11} \epsilon^{(N-p)/(p-\sigma)} \rho^{-(N-p)/(p-1)} \right]
- \lambda c_{12} \epsilon^{(p-1)/p} \left[(N-\sigma)/(p-\sigma) \right]
+ c_{13} \rho^{(N-\sigma)(N-p)/(p-\sigma)}
\]

22
by (3.44), Lemma 3.9, and Lemma 3.10. Set \(\rho = \varepsilon^\alpha \), where \(\alpha > 0 \) is to be chosen. Then the right-hand side is less than or equal to

\[
\frac{p - \sigma}{(N - \sigma)p} S_{N, p, \sigma}^{(N-\sigma)/(p-\sigma)} \left[1 + C_{15} \varepsilon^{(N-p)[1/(p-\sigma) - \alpha/(p-1)]} - C_{16} \varepsilon^{(p-1)p/(p-\sigma)} \right]^{(N-\sigma)/(p-\sigma)} + C_{13} \varepsilon^{\alpha(N-p)/(p-\sigma)}
\]

for some constants \(C_{15}, C_{16} > 0 \), so (3.43) will follow for sufficiently small \(\varepsilon > 0 \) if \(\alpha \) can be found so that

\[
(N - p)[1/(p - \sigma) - \alpha/(p - 1)] > (p - 1)p/(p - \sigma)
\]

and

\[
\alpha (N - \sigma)(N - p)/(p - \sigma) > (p - 1)p/(p - \sigma).
\]

This is possible if and only if

\[
(p - 1)p/(N - \sigma)(N - p) < (p - 1)[1 - (p - 1)p/(N - p)]/(p - \sigma),
\]

i.e.,

\[
(N - \sigma)(N - p^2) > (p - \sigma)p.
\]

3.4 Proof of Theorem 2.7

We prove Theorem 2.7 by applying Theorem 2.1 with \(W = W_0^{s, p}(\Omega) \), the operators \(A_p, B_p, f \in C(W_0^{s, p}(\Omega), W_0^{s, p}(\Omega)^*) \) and \(h \in W_0^{s, p}(\Omega)^* \) given by

\[
(A_p u, v) = \int_{\mathbb{R}^{2N}} \frac{|u(x) - u(y)|^{p-2}(u(x) - u(y))(v(x) - v(y))}{|x - y|^{N+sp}} dxdy,
\]

\[
(B_p u, v) = \int_{\Omega} |u|^{p-2}uv dx, \quad (f(u), v) = \int_{\Omega} |u|^{p^*-2}uv dx, \quad u, v \in W_0^{s, p}(\Omega)
\]

and

\[
(h, v) = \int_{\Omega} h(x)v dx, \quad v \in W_0^{s, p}(\Omega),
\]

and \(g = 0 \).

Lemma 3.11. There exists \(\kappa > 0 \) such that the functional \(E \) in (2.18) satisfies the \((PS)_c\) condition for all

\[
c < \frac{s}{N} S_{N, p, s}^{N/sp} - \kappa |h|_{p^*_s}^{p^*_s}.
\]

(3.45)
Proof. Let $c \in \mathbb{R}$ and let (u_j) be a sequence in $W_0^{s,p}(\Omega)$ such that

$$E(u_j) = \frac{1}{p} \int_{\mathbb{R}^N} \frac{|u_j(x) - u_j(y)|^p}{|x - y|^{N+sp}} \, dx \, dy - \int_{\Omega} \left(\frac{\lambda}{p} |u_j|^p + \frac{1}{p^*_s} |u_j|^{p^*_s} + h(x) u_j \right) \, dx$$

$$= c + o(1) \quad (3.46)$$

and

$$(E'(u_j), v) = \int_{\mathbb{R}^N} \frac{|u_j(x) - u_j(y)|^p}{|x - y|^{N+sp}} \, dx \, dy - \int_{\Omega} \left(\lambda |u_j|^p + |u_j|^{p^*_s} + h(x) u_j \right) \, dx = o(\|v\|) \quad \forall v \in W_0^{s,p}(\Omega). \quad (3.47)$$

Taking $v = u_j$ in (3.47) gives

$$\int_{\mathbb{R}^N} \frac{|u_j(x) - u_j(y)|^p}{|x - y|^{N+sp}} \, dx \, dy - \int_{\Omega} \left(\lambda |u_j|^p + |u_j|^{p^*_s} + h(x) u_j \right) \, dx = o(\|u_j\|). \quad (3.48)$$

Let $r \in (p, p^*_s)$. Dividing (3.48) by r and subtracting from (3.46) gives

$$\left(\frac{1}{p} - \frac{1}{r} \right) \int_{\mathbb{R}^N} \frac{|u_j(x) - u_j(y)|^p}{|x - y|^{N+sp}} \, dx \, dy - \int_{\Omega} \left[\lambda \left(\frac{1}{p} - \frac{1}{r} \right) |u_j|^p - \left(\frac{1}{r} - \frac{1}{p^*_s} \right) |u_j|^{p^*_s} \right. \left. + \left(1 - \frac{1}{r} \right) h(x) u_j \right] \, dx = c + o(1) + o(\|u_j\|),$$

and it follows from this that (u_j) is bounded. So a renamed subsequence converges to some u weakly in $W_0^{s,p}(\Omega)$, strongly in $L^1(\Omega)$ for all $t \in [1, p^*_s)$, and a.e. in Ω. Setting $\tilde{u}_j = u_j - u$, we will show that $\tilde{u}_j \to 0$ in $W_0^{s,p}(\Omega)$.

Equation (3.48) gives

$$\|u_j\| = |u_j|^{p^*_s} + \int_{\Omega} (\lambda |u|^p + h(x) u) \, dx + o(1). \quad (3.49)$$

Taking $v = u$ in (3.47) and passing to the limit gives

$$\|u\|^p = |u|^{p^*_s} + \int_{\Omega} (\lambda |u|^p + h(x) u) \, dx. \quad (3.50)$$

Since

$$\|\tilde{u}_j\| = \|u_j\| - \|u\|^p + o(1) \quad (3.51)$$

by Perera et al. [21] Lemma 3.2] and

$$|\tilde{u}_j|^{p^*_s}_{p^*_s} = |u_j|^{p^*_s} - |u|^{p^*_s} + o(1)$$
by the Brézis-Lieb lemma [4, Theorem 1], (3.49) and (3.50) imply
\[\| \tilde{u}_j \|^p = |\tilde{u}_j|_{P_s^*}^p + o(1) \leq \frac{\| \tilde{u}_j \|_{P_s^*/p}^p}{S_{N,p,s}^{N/(N-sp)}} + o(1), \]
so
\[\| \tilde{u}_j \|^p \left(S_{N,p,s}^{N/(N-sp)} - \| \tilde{u}_j \|_{sp^2/(N-sp)} \right) \leq o(1). \] (3.52)

On the other hand, (3.46) gives
\[c = \frac{1}{p} \| u_j \|^p - \frac{1}{p^*_s} |u_j|_{p^*_s}^p - \int_{\Omega} \left(\frac{\lambda}{p} |u|^p + h(x) u \right) dx + o(1), \]
and a straightforward calculation combining this with (3.49) – (3.51) gives
\[c = \frac{s}{N} \| \tilde{u}_j \|^p + \int_{\Omega} \left[\frac{s}{N} |u|_{p^*_s}^p - \left(1 - \frac{1}{p} \right) h(x) u \right] dx + o(1). \]

The integral on the right-hand side is greater than or equal to
\[\frac{s}{N} |u|_{p^*_s}^p - \left(1 - \frac{1}{p} \right) |h|_{p^*_s}^p \geq -\kappa |h|_{p^*_s}^p, \]
for some \(\kappa > 0 \) by the Hölder and Young’s inequalities, so
\[\| \tilde{u}_j \|^p \leq \frac{N}{s} \left(c + \kappa |h|_{p^*_s}^p \right) + o(1). \]
Combining this with (3.52) shows that \(\tilde{u}_j \to 0 \) when (3.45) holds. \(\square \)

We will apply Theorem 2.1 with
\[c_{\mu,h}^* = \frac{s}{N} S_{N,p,s}^{N/(sp)} - \kappa |h|_{p^*_s}^p, \]
where \(\kappa > 0 \) is as in Lemma 3.11, noting that
\[\lim_{|h|_{p^*_s}^p \to 0} c_{\mu,h}^* = \frac{s}{N} S_{N,p,s}^{N/(sp)}. \]
We have
\[\mathcal{M} = \{ u \in W_{0}^{s,p}(\Omega) : \| u \|^p = p \}, \]
\[\Psi(u) = \frac{p}{|u|_p^p}, \quad u \in \mathcal{M}, \]
\[\pi_{\mathcal{M}}(u) = \frac{p^{1/p}}{\| u \|}, \quad u \in W_{0}^{s,p}(\Omega) \setminus \{0\}, \]

25
and
\[E_0(u) = \frac{1}{p} \int_{\mathbb{R}^{2N}} \frac{|u(x) - u(y)|^p}{|x - y|^{N+sp}} \, dx \, dy - \int_{\Omega} \left(\frac{\lambda}{p} |u|^p + \frac{1}{p_s^*} |u|^{p_s^*} \right) \, dx, \quad u \in W_0^{s,p}(\Omega). \]

Let \(\lambda_k \leq \lambda < \lambda_{k+1} \). We need to show that there exist \(R > 0 \) and, for all sufficiently small \(\delta > 0 \), a compact symmetric subset \(C_\delta \) of \(\Psi^{\lambda+\delta} \) with \(i(C_\delta) = k \) and \(w_\delta \in M \setminus C_\delta \) such that, setting \(A_\delta = \{ \pi_M((1 - \tau) v + \tau w_\delta) : v \in C_\delta, \ 0 \leq \tau \leq 1 \} \), we have

\[\sup_{u \in A_\delta} E_0(Ru) \leq 0, \quad \sup_{u \in A_\delta, 0 \leq t \leq R} E_0(tu) < \frac{s}{N} S_{N,p,s}^{N/sp}. \quad (3.53) \]

Since \(\lambda_k < \lambda_{k+1} \), \(\Psi^{\lambda_k} \) has a compact symmetric subset \(C_0 \) of index \(k \) that is bounded in \(L^\infty(\Omega) \) (see Mosconi et al. [17, Proposition 3.1]). We may assume without loss of generality that \(0 \in \Omega \). Let \(\rho_0 = \text{dist}(0, \partial \Omega) \), let \(\eta : [0, \infty) \to [0, 1] \) be a smooth function such that \(\eta(t) = 0 \) for \(t \leq 3/4 \) and \(\eta(t) = 1 \) for \(t \geq 1 \), let

\[u_\rho(x) = \eta \left(\frac{|x|}{\rho} \right) u(x), \quad u \in C_0, \ 0 < \rho \leq \rho_0/2, \]

and let

\[C = \{ \pi_M(u_\rho) : u \in C_0 \}. \]

The following lemma was proved in Mosconi et al. [17].

Lemma 3.12 (Mosconi et al. [17, Proposition 3.2]). The set \(C \) is a compact symmetric subset of \(\Psi^{\lambda_k + c_{17} \rho^{N-sp}} \) for some constant \(c_{17} > 0 \) and is bounded in \(L^\infty(\Omega) \). If \(\lambda_k + c_{17} \rho^{N-sp} < \lambda_{k+1} \), then \(i(C) = k \).

Lemma 3.13. For any \(w \in M \setminus C \) with support in \(B_{\rho/2}(0) \), \(\exists R > 0 \) such that, setting \(A = \{ \pi_M((1 - \tau) v + \tau w) : v \in C, \ 0 \leq \tau \leq 1 \} \), we have

\[\sup_{u \in A} E_0(Ru) \leq 0. \]

Proof. Let \(u = \pi_M((1 - \tau) v + \tau w) \in A \). For \(R > 0 \),

\[E_0(Ru) \leq \frac{R^p}{p} \int_{\mathbb{R}^{2N}} \frac{|u(x) - u(y)|^p}{|x - y|^{N+sp}} \, dx \, dy - \frac{R^{p_s^*}}{p_s^*} \int_{\Omega} |u|^{p_s^*} \, dx = R^p - \frac{R^{p_s^*}}{p_s^*} |u|_{p_s^*}^{p_s^*}, \]

so it suffices to show that \(|u|_{p_s^*} \) is bounded away from zero on \(A \). By the Hölder inequality, it is enough to show that \(|u|_p \) is bounded away from zero. As in the proof of Lemma 3.4, it suffices to show that \(|v|_p \) is bounded away from zero on \(C \). Since \(C \subset \Psi^{\lambda_k + c_{17} \rho^{N-sp}} \) by Lemma 3.12, we have

\[|v|_p = \frac{p}{\Psi(v)} \geq \frac{p}{\lambda_k + c_{17} \rho^{N-sp}}. \]
Let $\delta \in (0, \lambda_{k+1} - \lambda)$, let $\rho \in (0, \rho_0/2]$ be so small that $\lambda_k + c_{17} \rho^{N-sp} < \lambda + \delta$, and let $C_\delta = C$. Then C_δ is a compact symmetric subset of $\Psi^{\lambda+\delta}$ with $i(C_\delta) = k$ that is bounded in $L^\infty(\Omega)$ by Lemma 3.12. We will show that if $\delta > 0$ is sufficiently small, then $\exists w_\delta \in \mathcal{M} \setminus C_\delta$ with support in $B_{\rho/2}(0)$ such that, setting $A_\delta = \{ \pi_\mathcal{M}((1 - \tau)v + \tau w_\delta) : v \in C_\delta, 0 \leq \tau \leq 1 \}$, we have

$$ \sup_{u \in A_\delta, t \geq 0} E_0(tu) < \frac{S}{N} S^{N/sp}_{N,p,s}. \quad (3.54) $$

Then Lemma 3.13 will give an $R > 0$ such that (3.53) holds and complete the proof. We note that (3.54) is equivalent to

$$ \sup_{v \in C_\delta, t, \tau \geq 0} E_0(tv + \tau w_\delta) < \frac{S}{N} S^{N/sp}_{N,p,s}. \quad (3.55) $$

In the absence of an explicit formula for a minimizer for $S_{N,p,s}$ in (2.19), we will use certain asymptotic estimates for minimizers obtained in Brasco et al. [3] to choose w_δ. It was shown in [3] that there exists a nonnegative, radially symmetric, and decreasing minimizer $U(x) = U(r), r = |x|$ satisfying

$$ \int_{\mathbb{R}^N} \frac{|U(x) - U(y)|^p}{|x - y|^{N+sp}} \, dx \, dy = \int_{\mathbb{R}^N} U(x)^p \, dx = S^{N/sp}_{N,p,s} \quad (3.56) $$

and

$$ c_{18} r^{-(N-sp)/(p-1)} \leq U(r) \leq c_{19} r^{-(N-sp)/(p-1)} \quad \forall r \geq 1 $$

for some constants $c_{18}, c_{19} > 0$. Then the functions

$$ u_\varepsilon(x) = \varepsilon^{-(N-sp)/p} U \left(\frac{|x|}{\varepsilon} \right), \quad \varepsilon > 0 $$

are also minimizers for $S_{N,p,s}$ satisfying

$$ \int_{\mathbb{R}^N} \frac{|u_\varepsilon(x) - u_\varepsilon(y)|^p}{|x - y|^{N+sp}} \, dx \, dy = \int_{\mathbb{R}^N} u_\varepsilon(x)^p \, dx = S^{N/sp}_{N,p,s} \quad (3.57) $$

and

$$ \frac{U(\theta r)}{U(r)} \leq \frac{c_{19}}{c_{18}} \theta^{-(N-sp)/(p-1)} \leq \frac{1}{2} \quad \forall r \geq 1 $$

if $\theta > 1$ is a sufficiently large constant. Let

$$ u_{\varepsilon, \rho}(x) = \begin{cases}
 u_\varepsilon(x) & \text{if } |x| \leq \rho \\
 u_\varepsilon(\rho) \frac{(u_\varepsilon(x) - u_\varepsilon(\theta \rho))}{u_\varepsilon(\rho) - u_\varepsilon(\theta \rho)} & \text{if } \rho < |x| < \theta \rho \\
 0 & \text{if } |x| \geq \theta \rho
\end{cases} $$

27
and
\[w_{\varepsilon, \rho}(x) = \frac{u_{\varepsilon, \rho}(x)}{\left(\int_{\mathbb{R}^N} u_{\varepsilon, \rho}(x)^{p_s^*} \, dx\right)^{1/p_s^*}} \]
for \(0 < \rho \leq \rho_0/2\). Then
\[\int_{\mathbb{R}^N} w_{\varepsilon, \rho}(x)^{p_s^*} \, dx = 1 \tag{3.57} \]
and for \(\varepsilon \leq \rho/2\) we have the estimates
\[\int_{\mathbb{R}^{2N}} \frac{|w_{\varepsilon, \rho}(x) - w_{\varepsilon, \rho}(y)|^p}{|x - y|^{N+sp}} \, dx \, dy \leq S_{N, p, s} + c_{20} \left(\varepsilon/\rho\right)^{(N-sp)/(p-1)}, \tag{3.58} \]
\[\int_{\mathbb{R}^N} w_{\varepsilon, \rho}^p(x) \, dx \geq \begin{cases} c_{21} \varepsilon^{sp} & \text{if } N > sp^2 \\ c_{21} \varepsilon^{sp} \log(\varepsilon/\rho) & \text{if } N = sp^2 \end{cases} \tag{3.59} \]
for some constants \(c_{20}, c_{21} > 0\) (see Mosconi et al. [17, Lemma 2.7]). Let
\[w_\delta = \pi_M(w_{\varepsilon, \rho}/2\theta). \]
Since functions in \(C_\delta\) have their supports in \(\Omega \setminus B_{3\rho/4}(0)\), while the support of \(w_\delta\) is in \(B_{\rho/2}(0)\), \(w_\delta \in M \setminus C_\delta\). We will show that (3.55) holds if \(\varepsilon, \rho > 0\) are sufficiently small.

Inequality (3.55) is equivalent to
\[\sup_{v \in C_\delta, t, \tau \geq 0} E_0(tv + \tau w_{\varepsilon, \rho}/2\theta) < \frac{S}{N} S_{N, p, s}^{N/sp}. \tag{3.60} \]

Lemma 3.14. For \(v \in C_\delta\) and \(t, \tau \geq 0\),
\[E_0(tv + \tau w_{\varepsilon, \rho}/2\theta) \leq \left[E_0(tv) + c_{22} \rho^{N-sp} t^p \right] + \left[E_0(\tau w_{\varepsilon, \rho}/2\theta) + c_{23} \left(\varepsilon/\rho\right)^{(N-sp)/(p-1)} \tau^p \right] \]
for some constants \(c_{22}, c_{23} > 0\).

Proof. Since \(v\) and \(w_{\varepsilon, \rho}/2\theta\) have disjoint supports,
\[E_0(tv + \tau w_{\varepsilon, \rho}/2\theta) = \frac{1}{p} \int_{\mathbb{R}^{2N}} \frac{|(tv(x) + \tau w_{\varepsilon, \rho}/2\theta(x)) - (tv(y) + \tau w_{\varepsilon, \rho}/2\theta(y))|^p}{|x - y|^{N+sp}} \, dxdy \]
\[- \int_{\Omega} \left(\frac{\lambda^p}{p} |v|^p + \frac{\lambda^{p_s^*}}{p_s^*} |v|^{p_s^*} \right) dx - \int_{\Omega} \left(\frac{\lambda^p}{p} w_{\varepsilon, \rho}/2\theta + \frac{\tau^p}{p} w_{\varepsilon, \rho}/2\theta \right)^p \, dx. \tag{3.61} \]
Denote by \(I_1\) the first integral on the right-hand side. Since \(\text{supp } v \subset B_{3\rho/4}^c\) and \(\text{supp } w_{\varepsilon, \rho}/2 \subset B_{\rho/2}^c\),
\[I_1 \leq t^p \int_{B_{\rho/2}^c \times B_{\rho/2}^c} \frac{|v(x) - v(y)|^p}{|x - y|^{N+sp}} \, dxdy + \tau^p \int_{B_{3\rho/4}^c \times B_{3\rho/4}^c} \frac{|w_{\varepsilon, \rho}/2\theta(x) - w_{\varepsilon, \rho}/2\theta(y)|^p}{|x - y|^{N+sp}} \, dxdy \]
\[+ 2 \int_{B_{3\rho/4}^c \times B_{\rho/2}^c} \frac{|tv(x) - \tau w_{\varepsilon, \rho}/2\theta(y)|^p}{|x - y|^{N+sp}} \, dxdy =: t^p I_2 + \tau^p I_3 + 2I_4. \tag{3.62} \]
First suppose \(p \geq 2 \). To estimate \(I_4 \), we use the elementary inequality

\[
|a + b|^p \leq |a|^p + |b|^p + C_p \left(|a|^{p-1}|b| + |a||b|^{p-1} \right) \quad \forall a, b \in \mathbb{R}
\]

for some constant \(C_p > 0 \). Since \(v(y) = 0 \) for \(y \in B_{p/2} \) and \(w_{\varepsilon,p/2\theta}(x) = 0 \) for \(x \in B_{3p/4} \), we get

\[
I_4 \leq t^p \int_{B_{3p/4} \times B_{p/2}} \frac{|v(x) - v(y)|^p}{|x - y|^{N + sp}} \, dx \, dy + \tau^p \int_{B_{3p/4} \times B_{p/2}} \frac{|w_{\varepsilon,p/2\theta}(x) - w_{\varepsilon,p/2\theta}(y)|^p}{|x - y|^{N + sp}} \, dx \, dy
\]

\[
+ C_p \left(t^{p-1} \tau \int_{B_{3p/4} \times B_{p/2}} \frac{|v(x)|^{p-1} w_{\varepsilon,p/2\theta}(y)}{|x - y|^{N + sp}} \, dx \, dy + \tau t^{p-1} \int_{B_{3p/4} \times B_{p/2}} \frac{|v(x)| w_{\varepsilon,p/2\theta}(y)^{p-1}}{|x - y|^{N + sp}} \, dx \, dy \right)
\]

\[
=: t^p I_5 + \tau^p I_6 + C_p \left(t^{p-1} \tau J_1 + \tau t^{p-1} J_{p-1} \right), \quad (3.63)
\]

where

\[
J_q = \int_{B_{3p/4} \times B_{p/2}} \frac{|v(x)|^{p-q} w_{\varepsilon,p/2\theta}(y)^q}{|x - y|^{N + sp}} \, dx \, dy, \quad q = 1, p - 1.
\]

Since \(C_q \) is bounded in \(L^\infty(\Omega) \) and

\[
|x - y| \geq |x| - |y| > |x| - \frac{p}{2} \geq |x| - \frac{2}{3}|x| = \frac{|x|}{3} \quad \forall (x, y) \in B_{3p/4} \times B_{p/2},
\]

we have

\[
J_q \leq c_{24} \int_{B_{3p/4} \times B_{p/2}} \frac{w_{\varepsilon,p/2\theta}(y)^q}{|x|^{N + sp}} \, dx \, dy = c_{25} \rho^{-sp} \int_{B_{p/2}} w_{\varepsilon,p/2\theta}(y)^q \, dy \quad (3.64)
\]

for some constants \(c_{24}, c_{25} > 0 \). By Mosconi et al. [17] Lemma 2.7, \(|u_{\varepsilon,p/2\theta}|_{p^*_\infty} \) is bounded away from zero and hence

\[
\int_{B_{p/2}} w_{\varepsilon,p/2\theta}(y)^q \, dy \leq c_{26} \int_{B_{p/2}} u_{\varepsilon,p/2\theta}(y)^q \, dy \quad (3.65)
\]

for some constant \(c_{26} > 0 \). Noting that \(u_{\varepsilon,p/2\theta} \leq u_\varepsilon \), we have

\[
\int_{B_{p/2}} u_{\varepsilon,p/2\theta}(y)^q \, dy \leq \int_{B_{p/2}} u_\varepsilon(y)^q \, dy = \varepsilon^{-(N - sp)/p} \int_{B_{p/2}} U \left(\frac{|y|}{\varepsilon} \right)^q \, dy
\]

\[
= \varepsilon^{N - (N - sp)/q/p} \int_{B_{p/2\varepsilon}} U(|y|)^q \, dy. \quad (3.66)
\]

When \(q < N(p - 1)/(N - sp) \), (3.66) gives

\[
\int_{B_{p/2\varepsilon}} U(|y|)^q \, dy \leq c_{27} \left(\frac{p}{\varepsilon} \right)^{N - (N - sp)/q(p - 1)} \quad (3.67)
\]
for some constant $c_{27} > 0$, in particular, \(3.67\) holds for $q = 1$ when $p > 2N/(N + s)$ and for $q = p - 1$. Combining \(3.64\)--\(3.67\) gives

$$J_q \leq c_{28} \rho^{(N-sp)(p-q-1)/(p-1)} \varepsilon^{(N-sp)q/p(p-1)}$$

for some constant $c_{28} > 0$, so

$$t^{p-q-1} J_q \leq c_{28} \left(\rho^{N-sp} t^p \right)^{1-q/p} \left((\varepsilon/\rho)^{(N-sp)/(p-1)} \tau^p \right)^{q/p} \leq c_{29} \rho^{N-sp} t^p$$

for some constants $c_{29}, c_{30} > 0$ by Young’s inequality. Combining this with \(3.61\)--\(3.63\), and noting that

$$1 \leq \frac{|v(x) - v(y)|^p}{|x - y|^{N+sp}}$$

we get the desired conclusion in this case.

If $1 < p < 2$, we use the elementary inequality

$$|a + b|^p \leq |a|^p + |b|^p + p|a||b|^{p-1} \quad \forall a, b \in \mathbb{R}$$

to get

$$I_4 \leq t^p I_5 + \tau^p I_6 + p t \tau^{p-1} J_{p-1}$$

and proceed as above. \(\square\)

By Lemma \(3.14\)

$$\sup_{v \in C_\delta, t, \tau \geq 0} E_0(tv + \tau w_{\varepsilon, \rho/29}) \leq \sup_{v \in C_\delta, t, \tau \geq 0} \left[E_0(tv) + c_{22} \rho^{N-sp} t^p \right] + \sup_{\tau \geq 0} \left[E_0(\tau w_{\varepsilon, \rho/29}) + c_{23} (\varepsilon/\rho)^{(N-sp)/(p-1)} \tau^p \right] =: K_1 + K_2. \quad \text{(3.68)}$$

Lemma 3.15. We have

$$K_1 \leq \begin{cases} 0 & \text{if } (\lambda_k + c_{17} \rho^{N-sp})(1 + c_{22} \rho^{N-sp}) \leq \lambda < \lambda_{k+1} \\ c_{31} \rho^{N(N-sp)/sp} & \text{if } \lambda = \lambda_k, \end{cases}$$

where c_{17} is as in Lemma \(3.12\) and $c_{31} > 0$ is a constant.

Proof. For $v \in C_\delta$ and $t \geq 0$,

$$E_0(tv) + c_{22} \rho^{N-sp} t^p = t^p \left(\frac{1}{p} \int_{\mathbb{R}^2} \frac{|v(x) - v(y)|^p}{|x - y|^{N+sp}} \, dxdy - \frac{\lambda}{p} \int_{\Omega} |v|^p \, dx + c_{22} \rho^{N-sp} \right)$$

$$- \frac{t^{p^*_s}}{p^*_s} \int_{\Omega} |v|^{p^*_s} \, dx =: K_3 t^p - K_4 t^{p^*_s},$$

30
and
\[K_3 = 1 - \frac{\lambda}{\Psi(v)} + c_{22} \rho^{N-sp} \leq 1 - \frac{\lambda}{\lambda_k + c_{17} \rho^{N-sp}} + c_{22} \rho^{N-sp} \]

since \(C_6 \subset \Psi^{\lambda_k + c_{17} \rho^{N-sp}} \) by Lemma 3.12. So \(E_0(tv) + c_{22} \rho^{N-sp} t^p \leq 0 \) if \((\lambda_k + c_{17} \rho^{N-sp})(1 + c_{22} \rho^{N-sp}) \leq \lambda < \lambda_{k+1}\). If \(\lambda = \lambda_k \), then

\[K_3 \leq \frac{c_{17} \rho^{N-sp}}{\lambda_k + c_{17} \rho^{N-sp}} + c_{22} \rho^{N-sp} \leq c_{32} \rho^{N-sp}, \]

where \(c_{32} = c_{17}/\lambda_k + c_{22} > 0 \), and \(K_4 \geq c_{33} \) for some constant \(c_{33} > 0 \) as in the proof of Lemma 3.13, so

\[E_0(tv) + c_{22} \rho^{N-sp} t^p \leq c_{32} \rho^{N-sp} t^p - c_{33} t^p \]

and maximizing the right-hand side over all \(t \geq 0 \) gives the desired conclusion.

\[\square \]

Lemma 3.16. We have

\[K_2 \leq \begin{cases}
\frac{s}{N} \left[S_{N,p,s} + c_{34} (\varepsilon/\rho)^{(N-sp)/(p-1)} - \lambda c_{35} \varepsilon^{sp} \right]^{N/sp} & \text{if } N > sp^2 \\
\frac{s}{N} \left[S_{N,p,s} + c_{34} (\varepsilon/\rho)^{sp} - \lambda c_{35} \varepsilon^{sp} \log (\varepsilon/\rho) \right]^{N/sp} & \text{if } N = sp^2
\end{cases} \]

for some constants \(c_{34}, c_{35} > 0 \).

Proof. We have

\[E_0(\tau w_{\varepsilon,\rho/2\theta}) + c_{23} (\varepsilon/\rho)^{(N-sp)/(p-1)} \tau^p = \frac{\tau^p}{p} \left(\int_{\mathbb{R}^{2N}} \frac{|w_{\varepsilon,\rho/2\theta}(x) - w_{\varepsilon,\rho/2\theta}(y)|^p}{|x - y|^{N+sp}} dxdy \right) - \lambda \int_{\Omega} w_{\varepsilon,\rho/2\theta} dx + p c_{23} (\varepsilon/\rho)^{(N-sp)/(p-1)} - \frac{\tau^p s}{p^s} \]

by (3.57), and maximizing the right-hand side over all \(\tau \geq 0 \) gives

\[K_2 = \frac{s}{N} \left(\int_{\mathbb{R}^{2N}} \frac{|w_{\varepsilon,\rho/2\theta}(x) - w_{\varepsilon,\rho/2\theta}(y)|^p}{|x - y|^{N+sp}} dxdy - \lambda \int_{\Omega} w_{\varepsilon,\rho/2\theta} dx + p c_{23} (\varepsilon/\rho)^{(N-sp)/(p-1)} \right)^{N/sp} \]

so the desired conclusion follows from (3.58) and (3.59).

\[\square \]

We can now complete the proof of Theorem 2.7. First suppose \(N \geq sp^2 \) and \(\lambda > \lambda_1 \) is not an eigenvalue. Then \(\lambda_k < \lambda < \lambda_{k+1} \) for some \(k \in \mathbb{N} \). Let \(\rho \in (0, \rho_0/2] \) be so small that \((\lambda_k + c_{17} \rho^{N-sp})(1 + c_{22} \rho^{N-sp}) \leq \lambda \). Then (3.60) follows from (3.68), Lemma 3.15, and Lemma 3.16 for sufficiently small \(\varepsilon > 0 \).

Now suppose \(N(N-sp^2) > sp^2 \) and \(\lambda \geq \lambda_1 \). Then \(\lambda_k \leq \lambda < \lambda_{k+1} \) for some \(k \in \mathbb{N} \). We have already considered the case where \(N > sp^2 \) and \(\lambda_k < \lambda < \lambda_{k+1} \), so suppose \(\lambda = \lambda_k \). Then

\[\sup_{v \in C_6, t, \tau \geq 0} E_0(tv + \tau w_{\varepsilon,\rho/2\theta}) \leq \frac{s}{N} \left[S_{N,p,s} + c_{34} (\varepsilon/\rho)^{(N-sp)/(p-1)} - \lambda c_{35} \varepsilon^{sp} \right]^{N/sp} + c_{31} \rho^{N(N-sp)/sp} \]
by \([3.68]\), Lemma \([3.15]\) and Lemma \([3.16]\). Set \(\rho = \varepsilon^\alpha\), where \(\alpha > 0\) is to be chosen. Then the right-hand side is less than or equal to

\[
\frac{S}{N} S_{N,p,s}^{N/sp} \left[1 + c_{36} \varepsilon^{(1-\alpha)(N-sp)/(p-1)} - c_{37} \varepsilon^{sp} \right]^{N/sp} + c_{31} \varepsilon^{\alpha N(N-sp)/sp}
\]

for some constants \(c_{36}, c_{37} > 0\), so \([3.60]\) will follow for sufficiently small \(\varepsilon > 0\) if \(\alpha\) can be found so that

\[(1-\alpha)(N-sp)/(p-1) > sp\]

and

\[\alpha N(N-sp)/sp > sp.\]

This is possible if and only if

\[s^2 p^2 / N(N-sp) < (N-sp^2)/(N-sp),\]

i.e.,

\[N(N-sp^2) > s^2 p^2.\]

\[\square\]

3.5 Proof of Theorem 2.10

We prove Theorem 2.10 by applying Theorem 2.1 with \(W = W_0^{1,p}(\Omega)\) and the operators \(A_p, B_p, f, g \in C(W_0^{1,p}(\Omega), W^{-1,p'}(\Omega))\) and \(h \in W^{-1,p'}(\Omega)\) given by

\[
(A_p u, v) = \int_\Omega |\nabla u|^{p-2} \nabla u \cdot \nabla v \, dx, \quad (B_p u, v) = \int_\Omega |u|^{p-2} uv \, dx,
\]

\[
(f(u), v) = \int_\Omega |u|^{p^*-2} uv \, dx, \quad (g(u), v) = -\int_\Omega |\nabla u|^{q-2} \nabla u \cdot \nabla v \, dx, \quad u, v \in W_0^{1,p}(\Omega)
\]

and

\[
(h, v) = \int_\Omega h(x) v \, dx, \quad v \in W_0^{1,p}(\Omega).
\]

Lemma 3.17. There exists \(\kappa > 0\) such that the functional \(E\) in \([2.21]\) satisfies the \((PS)_c\) condition for all

\[
c < \frac{1}{N} S_{N,p,s}^{N/p} - \kappa |h|^{p^*}. \tag{3.69}
\]

Proof. Let \(c \in \mathbb{R}\) and let \((u_j)\) be a sequence in \(W_0^{1,p}(\Omega)\) such that

\[
E(u_j) = \int_\Omega \left(\frac{1}{p} |\nabla u_j|^p + \frac{\mu}{q} |\nabla u_j|^q - \frac{\lambda}{p} |u_j|^p - \frac{1}{p^*} |u_j|^{p^*} - h(x) u_j \right) \, dx = c + o(1) \tag{3.70}
\]
and

\[
(E'(u_j), v) = \int_\Omega (|\nabla u_j|^{p-2} \nabla u_j \cdot \nabla v + \mu |\nabla u_j|^{q-2} \nabla u_j \cdot \nabla v - \lambda |u_j|^{p-2} u_j v
- |u_j|^{p'-2} u_j v - h(x) v) \, dx = o(\|v\|) \quad \forall v \in W^{1,p}_0(\Omega). \tag{3.71}
\]

Taking \(v = u_j \) in (3.71) gives

\[
\int_\Omega (|\nabla u_j|^p + \mu |\nabla u_j|^q - \lambda |u_j|^p - |u_j|^p - h(x) u_j) \, dx = o(\|u_j\|). \tag{3.72}
\]

Let \(r \in (p, p^*) \). Dividing (3.72) by \(r \) and subtracting from (3.70) gives

\[
\int_\Omega \left[\left(\frac{1}{p} - \frac{1}{r} \right) |\nabla u_j|^p + \mu \left(\frac{1}{q} - \frac{1}{r} \right) |\nabla u_j|^q - \lambda \left(\frac{1}{p} - \frac{1}{r} \right) |u_j|^p + \left(\frac{1}{r} - \frac{1}{p^*} \right) |u_j|^{p^*}
- \left(1 - \frac{1}{r} \right) h(x) u_j \right] \, dx = c + o(1) + o(\|u_j\|),
\]

and it follows from this that \((u_j)\) is bounded. So a renamed subsequence converges to some \(u \) weakly in \(W^{1,p}_0(\Omega) \), strongly in \(L^t(\Omega) \) for all \(t \in [1, p^*) \), and a.e. in \(\Omega \). Setting \(\tilde{u}_j = u_j - u \), we will show that \(\tilde{u}_j \to 0 \) in \(W^{1,p}_0(\Omega) \).

Equation (3.72) gives

\[
\|u_j\|^p + \mu |\nabla u_j|^q = |u_j|^{p^*} + \int_\Omega (\lambda |u|^p + h(x) u) \, dx + o(1). \tag{3.73}
\]

Taking \(v = u \) in (3.71) and passing to the limit gives

\[
\|u\|^p + \mu |\nabla u|^q = |u|^{p^*} + \int_\Omega (\lambda |u|^p + h(x) u) \, dx. \tag{3.74}
\]

Since

\[
\|\tilde{u}_j\|^p = \|u_j\|^p - \|u\|^p + o(1) \tag{3.75}
\]

and

\[
|\tilde{u}_j|^{p^*} = |u_j|^{p^*} - |u|^{p^*} + o(1)
\]

by the Brézis-Lieb lemma [4, Theorem 1], and

\[
\liminf |\nabla u_j|^q \geq |\nabla u|^q, \tag{3.76}
\]

(3.73) and (3.74) imply

\[
\|\tilde{u}_j\|^p \leq \|\tilde{u}_j\|^{p^*} + o(1) \leq \frac{||\tilde{u}_j||^{p^*}}{S_{p^*/p}^{p^*/p}} + o(1),
\]

33
so
\[\| \tilde{u}_j \|^p \left(S^{N/(N-p)}_{N,p} - \| \tilde{u}_j \|^{p^*/(N-p)} \right) \leq o(1). \] (3.77)

On the other hand, (3.70) gives
\[c = \frac{1}{p} \| u_j \|^p + \frac{\mu}{q} |\nabla u_j|_q^q - \frac{1}{p^*} |u_j|^{p^*} - \int_{\Omega} \left(\frac{\lambda}{p} |u|^p + h(x) u \right) dx + o(1), \]
and a straightforward calculation combining this with (3.73)–(3.75) gives
\[c = \frac{1}{N} \| \tilde{u}_j \|^p + \mu \left[\left(\frac{1}{q} - \frac{1}{p^*} \right) |\nabla u_j|_q^q - \frac{1}{N} |\nabla u|_q^q \right] + \int_{\Omega} \left[\frac{1}{N} |u|^{p^*} - \left(1 - \frac{1}{p} \right) h(x) u \right] dx + o(1). \]

The second term on the right-hand side is greater than or equal to \(o(1) \) by (3.76) and the integral is greater than or equal to
\[\frac{1}{N} |u|^{p^*} - \left(1 - \frac{1}{p} \right) |h|_{p^*} |u|_{p^*} \geq -\kappa |h|^{p^*} \]
for some \(\kappa > 0 \) by the Hölder and Young’s inequalities, so
\[\| \tilde{u}_j \|^p \leq N \left(c + \kappa |h|^{p^*} \right) + o(1). \]

Combining this with (3.77) shows that \(\tilde{u}_j \to 0 \) when (3.69) holds.

We apply Theorem 2.1 with
\[c^*_{\mu, h} = \frac{1}{N} S^{N/p}_{N,p} - \kappa |h|^{p^*}, \]
where \(\kappa > 0 \) is as in Lemma 3.17 noting that
\[\lim_{\mu, |h|^{p^*} \to 0} c^*_{\mu, h} = \frac{1}{N} S^{N/p}_{N,p}. \]

The set \(\mathcal{M} \) and the functions \(\Psi, \pi_M \), and \(E_0 \) are the same as in the proof of Theorem 2.2. Let \(\lambda_k \leq \lambda < \lambda_{k+1} \). Exactly as in that proof, there exist \(R > 0 \) and, for all sufficiently small \(\delta > 0 \), a compact symmetric subset \(C_\delta \) of \(\Psi^{\lambda+\delta} \) with \(i(C_\delta) = k \) and \(w_\delta \in \mathcal{M} \setminus C_\delta \) such that, setting \(A_\delta = \{ \pi_M((1-\tau) v + \tau w_\delta) : v \in C_\delta, 0 \leq \tau \leq 1 \} \), we have
\[\sup_{u \in A_\delta} E_0(Ru) \leq 0, \quad \sup_{u \in A_\delta, 0 \leq t \leq R} E_0(tu) < \frac{1}{N} S^{N/p}_{N,p}. \]

References

[1] Gianni Arioli and Filippo Gazzola. Some results on \(p \)-Laplace equations with a critical growth term. Differential Integral Equations, 11(2):311–326, 1998.
[2] Mousomi Bhakta, Souptik Chakraborty, and Patrizia Pucci. Nonhomogeneous systems involving critical or subcritical nonlinearities. *Differential Integral Equations*, 33(7-8):323–336, 2020.

[3] Lorenzo Brasco, Sunra Mosconi, and Marco Squassina. Optimal decay of extremals for the fractional Sobolev inequality. *Calc. Var. Partial Differential Equations*, 55(2):Art. 23, 32, 2016.

[4] Haïm Brézis and Elliott Lieb. A relation between pointwise convergence of functions and convergence of functionals. *Proc. Amer. Math. Soc.*, 88(3):486–490, 1983.

[5] Dao-Min Cao and Huan-Song Zhou. On the existence of multiple solutions of nonhomogeneous elliptic equations involving critical Sobolev exponents. *Z. Angew. Math. Phys.*, 47(1):89–96, 1996.

[6] Mónica Clapp, Otared Kavian, and Bernhard Ruf. Multiple solutions of nonhomogeneous elliptic equations with critical nonlinearity on symmetric domains. *Commun. Contemp. Math.*, 5(2):147–169, 2003.

[7] Mónica Clapp and Marco Squassina. Nonhomogeneous polyharmonic elliptic problems at critical growth with symmetric data. *Commun. Pure Appl. Anal.*, 2(2):171–186, 2003.

[8] Marco Degiovanni and Sergio Lancelotti. Linking solutions for p-Laplace equations with nonlinearity at critical growth. *J. Funct. Anal.*, 256(11):3643–3659, 2009.

[9] Henrik Egnell. Existence and nonexistence results for m-Laplace equations involving critical Sobolev exponents. *Arch. Rational Mech. Anal.*, 104(1):57–77, 1988.

[10] Edward R. Fadell and Paul H. Rabinowitz. Generalized cohomological index theories for Lie group actions with an application to bifurcation questions for Hamiltonian systems. *Invent. Math.*, 45(2):139–174, 1978.

[11] Luiz F. O. Faria, Olímpio H. Miyagaki, and Fábio R. Pereira. A nonhomogeneous quasilinear elliptic problem involving critical growth and Hardy potentials. *Differential Integral Equations*, 27(11-12):1171–1186, 2014.

[12] J. P. García Azorero and I. Peral Alonso. Existence and nonuniqueness for the p-Laplacian: nonlinear eigenvalues. *Comm. Partial Differential Equations*, 12(12):1389–1430, 1987.

[13] N. Ghoussoub and C. Yuan. Multiple solutions for quasi-linear PDEs involving the critical Sobolev and Hardy exponents. *Trans. Amer. Math. Soc.*, 352(12):5703–5743, 2000.

[14] Mohammed Guedda and Laurent Véron. Quasilinear elliptic equations involving critical Sobolev exponents. *Nonlinear Anal.*, 13(8):879–902, 1989.

[15] N. Hirano, Anna Maria Micheletti, and Angela Pistoia. Multiple existence of solutions for a nonhomogeneous elliptic problem with critical exponent on \mathbb{R}^N. *Nonlinear Anal.*, 65(3):501–513, 2006.
[16] João Marcos do Ó, Everaldo Medeiros, and Uberlandio Severo. On a quasilinear non-homogeneous elliptic equation with critical growth in \mathbb{R}^N. J. Differential Equations, 246(4):1363–1386, 2009.

[17] Sunra Mosconi, Kanishka Perera, Marco Squassina, and Yang Yang. The Brezis-Nirenberg problem for the fractional p-Laplacian. Calc. Var. Partial Differential Equations, 55(4):Art. 105, 25, 2016.

[18] Kanishka Perera. Nontrivial critical groups in p-Laplacian problems via the Yang index. Topol. Methods Nonlinear Anal., 21(2):301–309, 2003.

[19] Kanishka Perera. An abstract critical point theorem with applications to elliptic problems with combined nonlinearities. Calc. Var. Partial Differential Equations, 60(5):Paper No. 181, 23, 2021.

[20] Kanishka Perera, Ravi P. Agarwal, and Donal O’Regan. Morse theoretic aspects of p-Laplacian type operators, volume 161 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI, 2010.

[21] Kanishka Perera, Marco Squassina, and Yang Yang. Bifurcation and multiplicity results for critical fractional p-Laplacian problems. Math. Nachr., 289(2-3):332–342, 2016.

[22] Kanishka Perera and Wenming Zou. p-Laplacian problems involving critical Hardy-Sobolev exponents. NoDEA Nonlinear Differential Equations Appl., 25(3):Art. 25, 16, 2018.

[23] Zifei Shen, Fashun Gao, and Minbo Yang. Multiple solutions for nonhomogeneous Choquard equation involving Hardy-Littlewood-Sobolev critical exponent. Z. Angew. Math. Phys., 68(3):Paper No. 61, 25, 2017.

[24] G. Tarantello. On nonhomogeneous elliptic equations involving critical Sobolev exponent. Ann. Inst. H. Poincaré C Anal. Non Linéaire, 9(3):281–304, 1992.