Conserved functional consequences of disease-associated mutations in the slide helix of Kir6.1 and Kir6.2 subunits of the ATP-sensitive potassium channel

Paige E. Cooper
Washington University School of Medicine in St. Louis

Conor McClenaghan
Washington University School of Medicine in St. Louis

Xingyu Chen
University of Vienna

Anna Stary-Weinzinger
University of Vienna

Colin G. Nichols
Washington University School of Medicine in St. Louis

Follow this and additional works at: https://digitalcommons.wustl.edu/open_access_pubs

Recommended Citation

Cooper, Paige E.; McClenaghan, Conor; Chen, Xingyu; Stary-Weinzinger, Anna; and Nichols, Colin G., "Conserved functional consequences of disease-associated mutations in the slide helix of Kir6.1 and Kir6.2 subunits of the ATP-sensitive potassium channel." *Journal of Biological Chemistry*. 292,42. 17387-17398. (2017).
https://digitalcommons.wustl.edu/open_access_pubs/6277
Conserved functional consequences of disease-associated mutations in the slide helix of Kir6.1 and Kir6.2 subunits of the ATP-sensitive potassium channel

Paige E. Cooper, Conor McLenaghan, Xingyu Chen, Anna Stary-Weinzinger, and Colin G. Nichols

From the Department of Cell Biology and Physiology and Center for the Investigation of Membrane Excitability Diseases, Washington University School of Medicine, St. Louis, Missouri 63110 and Department of Pharmacology and Toxicology, University of Vienna, Althanstrasse 14, A-1090 Vienna, Austria

Edited by F. Anne Stephenson

Cantu syndrome (CS) is a condition characterized by a range of anatomical defects, including cardiomegaly, hyperflexibility of the joints, hypertrichosis, and craniofacial dysmorphology. CS is associated with multiple missense mutations in the genes encoding the regulatory sulfonylurea receptor 2 (SUR2) subunits of the ATP-sensitive K⁺ (K_{ATP}) channel as well as two mutations (V65M and C176S) in the Kir6.1 (KCNJ8) subunit. Previous analyses of leucine and alanine substitutions at the Val-65-equivalent site (Val-64) in Kir6.2 indicated no major effects on channel function. In this study, we characterized the effects of both valine-to-methionine and valine-to-leucine substitutions at this position in both Kir6.1 and Kir6.2 using ion flux and patch clamp techniques. We report that methionine substitution, but not leucine substitution, results in increased open state stability and hence significantly reduced ATP sensitivity and a marked increase of channel activity in the intact cell irrespective of the identity of the coassembled SUR subunit. Sulfonylurea inhibitors, such as glibenclamide, are potential therapies for CS. However, as a consequence of the increased open state stability, both Kir6.1(V65M) and Kir6.2(V64M) mutations essentially abolish high-affinity sensitivity to the K_{ATP} blocker glibenclamide in both intact cells and excised patches. This raises the possibility that, at least for some CS mutations, sulfonylurea therapy may not prove to be successful and highlights the need for detailed pharmacogenomic analyses of CS mutations.

ATP-sensitive K⁺ (K_{ATP}) channels, found throughout the body, are generated as octameric complexes consisting of four pore-forming Kir6.1 or Kir6.2 subunits with four regulatory sulfonylurea receptor (SUR1 or SUR2) subunits. SUR1 and Kir6.2 are prominently expressed in the pancreas and neurons, and hence mutations underlie hyperinsulinism, diabetes, and neurological disorders (1). Cantu syndrome (CS) is characterized by a range of apparently disparate features, including cardiomegaly, hyperflexibility of the joints, hypertrichosis, and craniofacial dysmorphology as well as multiple cardiovascular features (2–5). Several reports of missense mutations in the genes encoding the SUR2 and Kir6.1 subunits (ABCC9 and KCNJ8, respectively), which are expressed prominently in cardiovascular tissues, provide strong evidence that CS arises from K_{ATP} gain of function (GOF) (6–10). Gain of function in SUR2- or Kir6.1-containing K_{ATP} channels would be expected to hyperpolarize the membrane potential and decrease excitability, particularly in smooth muscle cells (11).

Decreased vascular tone may explain many CS features, including persistent patent ductus arteriosus, dilated and tortuous vessels, lowered blood pressure, increased blood volume, and consequent cardiomegaly.

Although rare, CS is a debilitating syndrome, currently with no specific therapy. Sulfonylureas are potent blockers of K_{ATP} channels. These drugs have proven highly beneficial in treatment of neonatal diabetes resulting from GOF in SUR1- and Kir6.2-dependent channels (12, 13). However, as the molecular defect becomes more severe, the drug effect tends to decline and become ineffective in certain cases (14–17). Whether such effects occur in SUR2- and Kir6.1-dependent channels is not known.

To date, two KCNJ8 mutations, encoding Kir6.1(V65M) and Kir6.1(C176S), have been reported in association with CS (5, 10). Analogous to residues Cys-166 and Val-64 in Kir6.2, Cys-176 and Val-65 of Kir6.1 are predicted to be positioned in close proximity at the bottom of transmembrane helix 2 (TM2) and the N-terminal slide helix, respectively (see Fig. 1) (18, 19), raising the possibility that mutation of either one increases channel activity by the same mechanism. Interestingly, previous analysis of leucine and alanine substitutions at the equivalent site (Val-64) in Kir6.2 subunit indicated that these substitutions were tolerated without effects on channel function and that such mutations were therefore not causally associated with neonatal diabetes (20). In this study, we sought to resolve the consequences of methionine versus alanine substitutions in Kir6.2 using ion flux and patch clamp techniques.
leucine substitutions at this position on channel function and sulfonylurea pharmacology.

Results

Kir6.1(V65M), but not Kir6.1(V65L), results in K_{ATP} gain of function

To study recombinant channels containing mutant subunits, COSm6 cells were transfected with WT or mutant Kir6.1 and either SUR1 or SUR2A. Channel activity was first assayed using a radioactive Rb$^+$ (86Rb$^+$) efflux assay. When expressed with SUR1, Kir6.1(V65M) exhibited markedly increased K_{ATP}-dependent efflux rates compared with WT in both basal conditions (Ringer’s solution) and in the presence of the SUR1-selective KATP activator diazoxide as shown in Fig. 2, A and B. In contrast, K_{ATP}-dependent efflux rates for Kir6.1(V65L) were not significantly different from WT in either condition (Fig. 2, A and B).

When K_{ATP} channels were activated by incubation with oligomycin and 2-d-deoxyglucose (metabolic inhibition (MI)), no significant effect on efflux rate was observed for either V65M or V65L (Fig. 2C). MI typically leads to maximal activation of all available channels; hence, these results suggest that neither mutation affects the maximal available conductance and therefore that channel density was unaffected. When expressed with SUR2A, the K_{ATP}-dependent basal flux rate was very low for both WT and mutant Kir6.1 subunits (Fig. 3A), likely due to lower expression level and decreased Mg-nucleotide activation of the SUR2A subunit (21). However, when channels were activated with the SUR2-selective activator pinacidil, a marked increase in K_{ATP}-dependent flux was seen for V65M-containing, but not V65L-containing, channels, when compared with WT (Fig. 3B). Maximum K_{ATP}-dependent efflux rates in MI were significantly higher for V65M than for WT when expressed with SUR2A (Fig. 3C). This suggests that V65M increases maximal conductance, although this analysis does not distinguish between increased channel density or more complete activation of available channels.

The conserved effects of valine-to-methionine or -leucine substitution at the equivalent residue in Kir6.2

Val-65 in Kir6.1 and the homologous residue in Kir6.2 (Val-64) lie within the amphipathic N-terminal slide helix, which is highly conserved in Kir channels. As shown in Fig. 4, when coexpressed with SUR1, Kir6.2(V64M) also significantly

Figure 1. CS-associated mutations in Kir6.1. To date, two mutations in Kir6.1 (KCNJ8) have been identified in CS patients, Kir6.1(C176S) and Kir6.1(V65M), at residues that are conserved in Kir6.2. A, a Kir6.1 homology model based upon the recent cryo-EM structures for Kir6.2/SUR1 (18, 19) shows that Cys-176 and Val-65 (equivalent to Cys-166 and Val-64 in Kir6.2) lie in close proximity. Inset, Val-65 (Val-64) faces TM2 on the slide helix, whereas Cys-176 (Cys-166) lies nearby in TM2. B, Kir6.x and SUR subunits coassemble as obligate hetero-octamers in a 1:1 stoichiometry. Here two SUR subunits are omitted for display. C, the Kir6.1(V65M) mutation lies in a highly conserved N-terminal sequence within the slide helix. D, average root mean square deviation (RMSD) from three independent 100-ns MD simulations of the modeled Kir6.1 subunits show that Kir6.1 WT, Kir6.1(V65L), and Kir6.1(V65M) subunits are stable.
increased basal and pinacidil-activated K_{ATP}-dependent efflux rates. Conversely, the V64L mutation had no significant effect, consistent with the previous report that this mutation does not alter channel function (20). When coexpressed with SUR2A, marked increases in basal and pinacidil-activated efflux rates were again observed for Kir6.2(V64M) but not for Kir6.1(V65L) (Fig. 5, A and B). The same maximum efflux rates in MI for WT, V64M, and V65L, irrespective of the SUR subunit (Figs. 4C and 5C), imply no effects of either mutation on channel density.

The molecular mechanism of K_{ATP} GOF conferred by valine-to-methionine mutations

Taken together, the above data demonstrate that substitution of valine by methionine at residue 65 in Kir6.1 or residue 64 in Kir6.2 results in gain of function of expressed K_{ATP} channels.
To investigate the molecular mechanism, we examined nucleotide sensitivity of channels in excised, inside-out patch clamp experiments. As shown in Fig. 6, channels comprising WT Kir6.2 and SUR2A were inhibited by Mg2+-free ATP with an IC50 of 30 μM, which was not significantly altered by the V64L mutation. In contrast, the V64M mutation resulted in a 6-fold reduction in ATP sensitivity (Fig. 6). Decreased ATP sensitivity could arise from a change in the affinity of the channel for ATP or, because ATP binds to and stabilizes closed states of the channel, a change in intrinsic open state stability. Recent cryo-EM structures (18, 19) confirm that the slide helix of Kir6.2 is structurally distinct from the ATP-binding site, and thus a direct effect on ATP binding is not expected. In contrast, multiple studies have demonstrated that mutations in the slide helix act to stabilize open conformations of Kir channels (22–24). PIP2 in the cytoplasmic leaflet is essential for Kir channel activity (25). At ambient levels in the cytoplasmic leaflet, WT Kir6.2/SUR1 channel open probability is 0.5 but approaches 1.
as PIP2 is increased in the membrane (26). Mutations that intrinsically stabilize or destabilize the channel open state increase or decrease, respectively, the basal open probability, which can be assessed by maximizing the open probability by adding exogenous PIP2 (26). To estimate the effect of the V64M mutation on channel open state stability, the activating response to exogenous PIP2 was therefore assessed for WT Kir6.2- and Kir6.2(V64M)-containing channels (see “Experimental procedures” and Ref. 14). The analysis indicates that the V64M mutation significantly increases the intrinsic apparent P_o under ambient conditions following patch excision (from ~0.6 in WT to ~1.0 in Kir6.2(V64M); Fig. 7, A–C).

The open state-stabilizing valine-to-methionine substitutions decrease sulfonylurea sensitivity in both Kir6.2 and Kir6.1

Second generation sulfonylurea drugs, such as glibenclamide, inhibit SUR2-containing K_{ATP} channels with moderate affinity (27, 28) and therefore may serve as a potential pharma-

Figure 4. Kir6.2(V64M), but not Kir6.2(V64L), increases SUR1-dependent K_{ATP} channel activity in intact cells. Cumulative 86Rb$^+$ efflux as a function of time was measured in GFP-transfected control COSm6 cells and in cells transiently expressing WT or mutant Kir6.2 with SUR1. Experiments were performed in basal conditions in Ringer’s solution (A) or in the presence of the K$^+$ channel opener diazoxide (B) or the metabolic inhibitors (MI) oligomycin and 2-deoxy-D-glucose (C). Data points and error bars represent mean and S.E. of three to five experiments. Summary representations of the mean cumulative flux at 25 min are shown on the right (* denotes statistical significance as determined by Mann-Whitney U test; $p < 0.05$).
cotherapy for CS. However, it has previously been demonstrated that open state-stabilizing mutations in Kir6.x subunits can impair sulfonylurea inhibition (14–16). The effect of 10 μM glibenclamide on K\(_{\text{ATP}}\)-dependent rubidium effluxes was assessed in cells expressing either WT or V64M mutant Kir6.2 with SUR2A. As shown in Fig. 8, MI-activated WT channel fluxes were inhibited 75% by glibenclamide, but there was no significant inhibition of Kir6.2(V64M) channels.

All known CS patients are heterozygous, and we modeled heterozygosity by cotransfecting WT and V64M mutant Kir6.2 with SUR2A subunits. Glibenclamide inhibition was again markedly reduced by the V64M mutation with only ~20% inhibition of MI-activated Rb\(^+\) fluxes (Fig. 8, A and B). We also examined the sensitivity of Kir6.2 + SUR2A and Kir6.2(V64M) + SUR2A channels to glibenclamide inhibition in inside-out patch clamp recordings (Fig. 8, C and D). In agreement with the above results, sensitivity was again markedly reduced by the V64M mutation (Fig. 8, C and D) with almost no inhibition even at 10 μM glibenclamide.

As the open state-stabilizing effects appear to be similar for the Kir6.2(V64M) and Kir6.1(V65M) mutations, the effects of
Conserved gain-of-function Kir6.1 and Kir6.2 mutations

Figure 6. Gain of function in Kir6.2(V64M) results from decreased ATP sensitivity. Representative excised patch clamp recordings from COSm6 cells coexpressing WT or mutant Kir6.2 subunits with SUR2A are shown. A, membrane potential was held at −50 mV, and currents were recorded continuously in inside-out excised patches exposed to KINT in the absence or presence of 0.01, 0.1, or 5 mM Mg2+-free ATP. B, summary dose-response data (data points and error bars represent mean and S.E.; 10 patches each) was fit using a four-parameter Hill equation to estimate the ATP concentration for half-maximal inhibition. IC50 values were 32.2 ± 6.6 μM (Hill coefficient, 2.2 ± 0.2) for WT, 198 ± 31.1 μM (Hill coefficient, 2.9 ± 0.3) for Kir6.2(V64M), and 31.0 ± 2.2 μM (Hill coefficient, 2.2 ± 0.1) for Kir6.2(V64L) (* denotes statistical significance as determined by unpaired Student’s t test; p < 0.05). In this and in representative current recordings in subsequent figures, the dashed lines represent zero channel current.

Discussion

The recent identification of multiple missense mutations in SUR2 (ABCC9) and Kir6.1 (KCNJ8), which all result in KATP GOF, demonstrates that CS arises primarily from KATP channel GOF (2, 10). Brownstein et al. (5) initially reported the Kir6.1(V65M) mutation in a case report with the prediction that the mutation was causal. However, a previous report suggested that sulfonylurea sensitivity may be differentially affected by mutations in the slide helix of Kir6.2 versus Kir6.1 (15). Thus, we also sought to confirm the effect of the Kir6.1(V65M) mutation itself on glibenclamide inhibition. Due to very low Rb+ fluxes and low density in patch-clamp recordings for Kir6.1-only-containing channels, we coexpressed Kir6.1 WT or Kir6.1(V65M) with WT Kir6.2 to yield heterotetramers as described previously (10). As expected, heteromeric Kir6.2/Kir6.1(V65M) channels exhibited ~5-fold lower ATP sensitivity in excised patch clamp recordings than Kir6.2/Kir6.1 WT channels (Fig. 9A). In Rb+ flux experiments, the effect of 10 μM glibenclamide on KATP-dependent efflux was also reduced from ~50% for WT Kir6.1-containing channels to ~30% for V65M-containing channels (Fig. 9, C and D), and glibenclamide sensitivity was markedly reduced in Kir6.2/Kir6.1(V65M) channels in inside-out patch clamp recordings (Fig. 9, E and F).

Mutations on inhibitor sensitivity are also likely to be conserved. However, a previous report suggested that sulfonylurea sensitivity may be differentially affected by mutations in the slide helix of Kir6.2 versus Kir6.1 (15). Thus, we also sought to confirm the effect of the Kir6.1(V65M) mutation itself on glibenclamide inhibition. Due to very low Rb+ fluxes and low density in patch-clamp recordings for Kir6.1-only-containing channels, we coexpressed Kir6.1 WT or Kir6.1(V65M) with WT Kir6.2 to yield heterotetramers as described previously (10). As expected, heteromeric Kir6.2/Kir6.1(V65M) channels exhibited ~5-fold lower ATP sensitivity in excised patch clamp recordings than Kir6.2/Kir6.1 WT channels (Fig. 9A). In Rb+ flux experiments, the effect of 10 μM glibenclamide on KATP-dependent efflux was also reduced from ~50% for WT Kir6.1-containing channels to ~30% for V65M-containing channels (Fig. 9, C and D), and glibenclamide sensitivity was markedly reduced in Kir6.2/Kir6.1(V65M) channels in inside-out patch clamp recordings (Fig. 9, E and F).

A

Kir6.2 WT

Voltage (pA)	Time (ms)
1	0.1
5	0.1
5	0.1
5	5

B

Kir6.2[V64M]

Voltage (pA)	Time (ms)
1	0.1
5	0.1
5	0.1
5	5

Discussion

The recent identification of multiple missense mutations in SUR2 (ABCC9) and Kir6.1 (KCNJ8), which all result in KATP GOF, demonstrates that CS arises primarily from KATP channel GOF (2, 10). Brownstein et al. (5) initially reported the Kir6.1(V65M) mutation in a case report with the prediction that the mutation was causal. However, a previous report showed that other substitutions at the equivalent (Val-64) residue in Kir6.2 are tolerated without significant effects on KATP function (20). This raises the possibility that the Kir6.1(V65M) mutation may actually be benign. To address this, we systematically characterized the effects of valine-to-methionine and valine-to-leucine substitutions in both Kir6.1 and Kir6.2 and show that methionine substitution, but not leucine substitution, results in marked gain of function for either channel, whether coexpressed with SUR1 or SUR2A regulatory subunits. We show that substitution by methionine, but not by leucine, results in reduced ATP sensitivity for both Kir6.2(V64M) and Kir6.1(V65M) channels, and for Kir6.2(V64M), we show that this results from an increase in the open state stability such that the intrinsic open probability is higher. As a consequence, KATP channels that include this mutation will exhibit increased activity under physiological regulation by intracellular nucleotides. Similar increases in open state stability have previously been reported for other slide helix mutations (e.g. Q52R (14)), reflecting an important role of this domain in controlling channel gating. Intriguingly, in light of recently reported structures of the Kir6.2-SUR1 KATP complex (18, 19), the single other known CS Kir6.1 mutation, Kir6.1(C176S), is located very close to Val-65 in a cluster of hydrophobic residues (Fig. 1). Previous analyses have demonstrated that the equivalent Kir6.2(C166S) also increases intrinsic open state stability (29, 30). This raises the possibility that both V65M and C176S mutations act to destabilize the closed channel by disrupting this closed-state hydrophobic cluster. In contrast, Männikö et al. (20) reported that the Kir6.2(V64L) mutation ameliorated the deleterious effects of the nearby pathogenic F60Y mutation when expressed on the same subunit. Thus, it is also possible that V64M may result in pathogenic reduction of ATP sensitivity by disrupting the interaction that is normally present between these two slide helix residues.

The potential utility of sulfonylurea drugs in the treatment of CS remains to be tested clinically, but “second-generation” sulfonylureas, such as glibenclamide (glyburide), which demonstrate moderate potency for inhibiting SUR2-containing KATP channels, may offer promise for a specific therapy. However,
Conserved gain-of-function Kir6.1 and Kir6.2 mutations

Figure 7. Kir6.2(V64M) increases channel open state stability. Representative K\textsubscript{ATP} currents recorded from patches expressing WT (A) or V64M mutant Kir6.2 (B) with SUR2A following excision at the arrow and in the presence of 10 mM ATP, 1 mM ATP, or 5 μg/ml PIP\textsubscript{2} as indicated are shown. C, relative P\textsubscript{o}, determined as a ratio of steady-state current in the patch upon excision in the absence of nucleotides to the maximum current measured following PIP\textsubscript{2}. Individual patch data are represented by symbols (n = 8–14); bars and error bars are the means and S.E. Relative P\textsubscript{o} = 0.59 ± 0.07 (WT) and 1.05 ± 0.07 (Kir6.2(V64M)) (* denotes statistical significance as determined by unpaired Student’s t tests; p < 0.05).

Sulfonylurea sensitivity can be markedly decreased by K\textsubscript{ATP} mutations that increase the intrinsic open probability of channels (14–16). Consistent with this, we show here that both the Kir6.1(V65M) and Kir6.2(V64M) mutations essentially abolish high-affinity glibenclamide sensitivity in both intact cells and excised patches. This finding raises the possibility that, at least for some CS mutations, sulfonylurea therapy may not be successful and highlights the need for detailed pharmacogenomic analyses of the effects of individual CS mutations on K\textsubscript{ATP} inhibitor sensitivity.
Experimental procedures

Modeling of Kir6.1 tetrameric channels

Kir6.1 was modeled by homology to the recently published Kir6.2 structures Protein Data Bank code 5TWV (19) and Protein Data Bank code 5WUA (18). Molecular dynamics (MD) simulations were carried out using Gromacs software version 5.1.1 and the Amber 99 force field as described previously (31). Mutations were introduced using Swiss-PdbViewer (32). Three 100-ns MD simulations were performed for WT Kir6.1 and V65L and V65M mutants. All structures were embedded in a lipid bilayer consisting of 588 1-palmitoyl-2-oleoylphosphatidylcholine lipids using the g_membed tool (33) and solvated using the extended simple point charge water model (34). K⁺ and Cl⁻ ions were randomly placed within the solvent to neutralize the system and to obtain an ion concentration of 150 mM. The root mean square deviation of simulated protein structures all converged to ~3.5 Å for each structure at around 20 ns, indicating that the simulated systems were stable and at equilibrium (Fig. 1D).

Mutagenesis and heterologous expression of K\textsubscript{ATP} channels

Mutations were introduced in rat Kir6.1-pcDNA3.1 and mouse Kir6.2-pcDNA3.1 using the QuikChange II site-directed mutagenesis kit (Agilent Technologies) and confirmed by direct sequencing of the coding region. For channel expression, COSm6 cells were cultured in Dulbecco’s modified Eagle’s medium (DMEM) supplemented with 10% fetal bovine serum,
10^5 units/liter penicillin, and 100 mg/liter streptomycin. At 60–70% confluence, cells were transfected with the relevant plasmids using FuGENE 6 transfection reagent (Promega). For experiments with homomeric channels, cells were cotransfected with pcDNA3.1-mKir6.2 or pcDNA3-Kir6.1 (0.6 μg) and pECE-hamsterSUR1 cDNA or pCMV6-ratSUR2A (SUR2) (1 μg). For experiments using heteromeric channels, cells were cotransfected with WT and mutant Kir6.x with WT SURx at ratios of 0.3:0.3:1.0 (w/w/w). Cells transfected with GFP-pcDNA3.1 served as controls. A small amount of GFP DNA was coexpressed for identification of transfected cells in electrophysiology experiments.

Macroscopic 86Rb⁺ efflux assays

Transfected cells were incubated overnight at 37 °C in DMEM containing 1 μCi/ml 86RbCl (PerkinElmer Life Sciences). Bathing medium was then replaced by room temperature Ringers solution (118 mM NaCl, 10 mM HEPES, 25 mM NaHCO₃, 4.7 mM KCl, 1.2 mM KH₂PO₄, 2.5 mM CaCl₂, 1.2 mM MgSO₄, adjusted to pH 7.4 with NaOH) immediately before
two 1-min washes in assay medium. 86Rb efflux was then assessed in 1) the absence (basal) or 2) presence of 2.5 mg/ml oligomycin and 1 mmol/liter 2-deoxy-D-glucose (metabolic inhibition; applied during two 1-min washes prior to assay) or 3) the presence of SUR1- or SUR2-specific K$^+$ channel opener, diazoxide or pinacidil, respectively, at 100 μM (applied during two 1-min washes prior to assay). At selected time points, the solution was collected and replaced with fresh solution. Upon completion of the assay, cells were lysed with 2% SDS, and radioactivity in these samples was measured by liquid scintillation. A nonspecific efflux pathway was assumed to be present in all experiments. In metabolic inhibition in particular, both the nonspecific efflux rate and K_{ATP}-specific efflux rates decreased with time. Data are shown as mean cumulative Rb$^+$ efflux (\pm S.E.) relative to total initial Rb$^+$ content. Data were tested for statistical significance using the Student’s t test where normal distribution of data could be confirmed or by the non-parametric Mann-Whitney U test where normal distribution could not be confirmed; a p value $<$0.05 was considered significant for both tests.

Excised patch clamp

After 24–48 h, transfected fluorescent cells were selected for analysis by excised patch clamp experiments using a perfusion chamber that allows for the rapid switching of solutions (35). The bath and pipette solutions (KINT) contained 140 mM KCl, 10 mM HEPES, 1 mM EGTA, pH 7.4 with KOH. K_{ATP} currents were recorded from inside-out patches at -50 mV. Current levels in solutions of varying nucleotide or glibenclamide concentrations were normalized to the basal current in the absence of inhibitors, and dose-response data were fit with a four-parameter Hill equation.

Normalized current

$$I_{\text{min}} + (I_{\text{max}} - I_{\text{min}})/(1 + (X)/IC_{50})^n$$

(Eq. 1)

where the current in KINT = I_{max}, I_{min} is the minimum current observed in high ATP, X refers to the concentration of ATP or glibenclamide, IC$_{50}$ is the concentration of half-maximal inhibition, and H denotes the Hill coefficient.

For experiments assessing PIP$_2$ activation, an ammonium salt of 1-α-phosphatidylinositol 4,5-bisphosphate from porcine brain (Avanti Polar Lipids) was dissolved in KINT to prepare a solution was collected and replaced with fresh solution. Upon switching from insulin to oral sulfonylureas in patients with diabetes due to Kir6.2 mutations. $N. Engl. J. Med.$ 355, 467–477

Koster, J. C., Remedi, M. S., Dao, C., and Nichols, C. G. (2005) ATP and cardiovascular disease: suddenly a syndrome. *Circ. Res.* 107, 1059–1072

Levin, M. D., Singh, G. K., Zhang, X. H., Uchida, K., Kozel, B. A., Stein, P. K., Kovacs, A., Westenbroek, R. E., Catterall, W. A., Grange, D. K., and Nichols, C. G. (2016) K_{ATP} channel gain-of-function leads to increased myocardial L-type Ca$^{2+}$ current and contractility in Cantu syndrome. *Proc. Natl. Acad. Sci. U.S.A.* 113, 6773–6778

Leon Guerrero, C. R., Pathak, S., Grange, D. K., Singh, G. K., Nichols, C. G., Lee, J. M., and Vo, K. D. (2016) Neurologic and neuroimaging manifestations of Cantu syndrome: a case series. *Neurology* 87, 270–276

Brownstein, C. A., Towne, M. C., Luquette, L. J., Harris, D. J., Marinakis, N. S., Meinecke, P., Kutsche, K., Campeau, P. M., Yu, T. W., Marguiles, D. M., Agrawal, P. B., and Beggs, A. H. (2013) Mutation of KCNJ8 in a patient with Cantu syndrome with unique vascular abnormalities—support for the role of K(ATP) channels in this condition. *Eur. J. Med. Genet.* 56, 678–682

Harakalova, M., van Hasselt, J. J., Terhal, P. A., van Lieshout, S., Duran, K., Renkens, L., Amor, D. J., Wilson, L. C., Kirk, E. P., Turner, C. L., Shears, D., Garcia-Minaur, S., Lees, M. M., Ross, A., Venselaar, H., et al. (2012) Dominant missense mutations in ABCC9 cause Cantu syndrome. *Nat. Genet.* 44, 793–796

van Bon, B. W., Gilissen, C., Grange, D. K., Hennekam, R. C., Kayserili, H., Engels, H., Reutter, H., Ostergaard, J. R., Morava, E., Tsiakas, K., Isidor, B., Le Merrer, M., Eser, M., Wieskamp, N., de Vries, P., et al. (2012) Cantu syndrome is caused by mutations in ABCC9. *Am. J. Hum. Genet.* 90, 1094–1101

Affi, H. H., Abdel-Hamid, M. S., Eid, M. M., Mostafa, I. S., and Abdel-Salam, G. M. (2016) De novo mutation in ABCC9 causes hypertrichosis acromegoidal facial features disorder. *Pediatr. Dermatol.* 33, e109–e113

Cooper, P. E., Sala-Rabanal, M., Lee, S. J., and Nichols, C. G. (2015) Differential mechanisms of Cantu syndrome–associated gain of function mutations in the ABCC9 (SUR2) subunit of the K_{ATP} channel. *J. Gen. Physiol.* 146, 527–540

Cooper, P. E., Reutter, H., Woelfle, J., Engels, H., Grange, D. K., van Haften, G., van Bon, B. W., Hoischen, A., and Nichols, C. G. (2014) Cantu syndrome resulting from activating mutation in the KCNJ8 gene. *Hum. Mutat.* 35, 809–813

Li, A., Knutsen, R. H., Zhang, H., Osei-Owusu, P., Moreno-Dominguez, A., Harter, T. M., Uchida, K., Remedi, M. S., Dietrich, H. H., Bernal-Mizrachi, C., Blumer, K. J., Mechem, R. P., Koster, J. C., and Nichols, C. G. (2013) Hypotension due to Kir6.1 gain-of-function in vascular smooth muscle. *J. Am. Heart Assoc.* 2, e000365

Wambach, J. A., Marshall, B. A., Koster, J. C., White, N. H., and Nichols, C. G. (2016) KATP channels and cardiovascular disease: implications for pharmacogenomic therapy. *Diabetes* 55, 2645–2654

Pearson, E. R., Flechtner, I., Njølstad, P. R., Malecki, M. T., Flanagan, S. E., Larkin, B., Ashcroft, F. M., Klimes, I., Codner, E., Iotova, V., Slingerland, A. S., Shield, J., Robert, J. J., Holst, J. J., Clark, P. M., Larkin, B., Ashcroft, F. M., Klimes, I., Codner, E., Iotova, V., Slingerland, A. S., Shield, J., Robert, J. J., Holst, J. J., Clark, P. M., et al. (2006) Switching from insulin to oral sulfonylureas in patients with diabetes due to Kir6.2 mutations. *N. Engl. J. Med.* 355, 467–477

Koster, J. C., Remedi, M. S., Dao, C., and Nichols, C. G. (2005) ATP and sulfonylurea sensitivity of mutant ATP-sensitive K$^+$ channels in neonatal diabetes: implications for pharmacogenomic therapy. *Diabetes* 54, 2645–2654

Winkler, M., Lutz, R., Russ, U., Quast, U., and Bryan, J. (2009) Analysis of two KCNJ11 neonatal diabetes mutations, V59G and V59A, and the analogous KCNJ8 160G substitution: differences between the channel subtypes formed with SUR1. *J. Biol. Chem.* 284, 6752–6762

Proks, P., de Wet, H., and Ashcroft, F. M. (2013) Molecular mechanism of sulphonylurea block of K_{ATP} channels carrying mutations that impair ATP inhibition and cause neonatal diabetes. *Diabetes* 62, 3909–3919

Author contributions—P. C. and C. G. N. conceived the project. P. C., C. M., and C. G. N. designed the experiments. P. C., C. M., and X. C. performed the experiments and analyzed the data. P. C., C. M., A. S.-W., and C. G. N. wrote the paper.

Acknowledgment—The computational simulations were carried out using the Vienna Scientific Cluster.
Conserved gain-of-function Kir6.1 and Kir6.2 mutations

17. McTaggart, J. S., Clark, R. H., and Ashcroft, F. M. (2010) The role of the K\textsubscript{ATP} channel in glucose homeostasis in health and disease: more than meets the islet. J. Physiol. 588, 3201–3209

18. Li, N., Wu, J. X., Ding, D., Cheng, J., Gao, N., and Chen, L. (2017) Structure of a pancreatic ATP-sensitive potassium channel. Cell 168, 101.e10–110.e10

19. Martin, G. M., Yoshioka, C., Rex, E. A., Fay, J. F., Xie, Q., Whorton, M. R., Chen, J. Z., and Shyng, S. L. (2017) Cryo-EM structure of the ATP-sensitive potassium channel illuminates mechanisms of assembly and gating. eLife 6, e24149

20. Männikko, R., Jefferies, C., Flanagan, S. E., Hattersley, A., Ellard, S., and Ashcroft, F. M. (2010) Interaction between mutations in the slide helix of Kir6.2 associated with neonatal diabetes and neurological symptoms. Hum. Mol. Genet. 19, 963–972

21. Masia, R., Enkvetchakul, D., and Nichols, C. G. (2005) Differential nucleotide regulation of K\textsubscript{ATP} channels by SUR1 and SUR2A. J. Mol. Cell. Cardiol. 39, 491–501

22. Proks, P., Antcliff, J. F., Lippiat, J., Gloyn, A. L., Hattersley, A. T., and Ashcroft, F. M. (2004) Molecular basis of Kir6.2 mutations associated with neonatal diabetes or neonatal diabetes plus neurological features. Proc. Natl. Acad. Sci. U.S.A. 101, 17539–17544

23. Lin, Y. W., MacMullen, C., Ganguly, A., Stanley, C. A., and Shyng, S. L. (2006) A novel KCNJ11 mutation associated with congenital hyperinsulinism reduces the intrinsic open probability of β-cell ATP-sensitive potassium channels. J. Biol. Chem. 281, 3006–3012

24. Enkvetchakul, D., Jeliazkova, I., Bhattacharyya, J., and Nichols, C. G. (2007) Control of inward rectifier K channel activity by lipid tethering of cytoplasmic domains. J. Gen. Physiol. 130, 329–334

25. Roháčs, T., Chen, J., Prestwich, G. D., and Logothetis, D. E. (1999) Distinct specificities of inwardly rectifying K+ channels for phosphoinositides. J. Biol. Chem. 274, 36065–36072

26. Enkvetchakul, D., and Nichols, C. G. (2003) Gating mechanism of K\textsubscript{ATP} channels: function fits form. J. Gen. Physiol. 122, 471–480

27. Reimann, F., Dabrowski, M., Jones, P., Gribble, F. M., and Ashcroft, F. M. (2003) Analysis of the differential modulation of sulphonylurea block of β-cell and cardiac ATP-sensitive K+ (K\textsubscript{ATP}) channels by Mg-nucleotides. J. Physiol. 547, 159–168

28. Gribble, F. M., and Ashcroft, F. M. (1999) Differential sensitivity of β-cell and extrapancreatic K\textsubscript{ATP} channels to gliclazide. Diabetologia 42, 845–848

29. Loussouarn, G., Phillips, L. R., Masia, R., Rose, T., and Nichols, C. G. (2001) Flexibility of the Kir6.2 inward rectifier K+ channel pore. Proc. Natl. Acad. Sci. U.S.A. 98, 4227–4232

30. Enkvetchakul, D., Loussouarn, G., Makhina, E., and Nichols, C. G. (2001) ATP interaction with the open state of the K\textsubscript{ATP} channel. Biophys. J. 80, 719–728

31. Lee, S. J., Ren, F., Zangerl-Plessl, E. M., Heyman, S., Stary-Weinzinger, A., Yuan, P., and Nichols, C. G. (2016) Structural basis of control of inward rectifier Kir2 channel gating by bulk anionic phospholipids. J. Gen. Physiol. 148, 227–237

32. Guex, N., and Peitsch, M. C. (1997) SWISS-MODEL and the Swiss-PdbViewer: an environment for comparative protein modeling. Electrophoresis 18, 2714–2723

33. Wolf, M. G., Hoefling, M., Aponte-Santamaría, C., Grubmüller, H., and Groenhof, G. (2010) g_membed: efficient insertion of a membrane protein into an equilibrated lipid bilayer with minimal perturbation. J. Comput. Chem. 31, 2169–2174

34. Berendsen, H. J., Grigera, J. R., and Straatsma, T. P. (1987) The missing term in effective pair potentials. J. Phys. Chem. 91, 6269–6271

35. Lederer, W. J., and Nichols, C. G. (1989) Nucleotide modulation of the activity of rat heart ATP-sensitive K+ channels in isolated membrane patches. J. Physiol. 419, 193–211
Conserved functional consequences of disease-associated mutations in the slide helix of Kir6.1 and Kir6.2 subunits of the ATP-sensitive potassium channel
Paige E. Cooper, Conor McClenaghan, Xingyu Chen, Anna Stary-Weinzinger and Colin G. Nichols

J. Biol. Chem. 2017, 292:17387-17398.
doi: 10.1074/jbc.M117.804971 originally published online August 23, 2017

Access the most updated version of this article at doi: 10.1074/jbc.M117.804971

Alerts:
- When this article is cited
- When a correction for this article is posted

Click here to choose from all of JBC's e-mail alerts

This article cites 35 references, 14 of which can be accessed free at http://www.jbc.org/content/292/42/17387.full.html#ref-list-1