A note on higher-charge configurations for the Faddeev-Hopf model

Radu Slobodeanu

Abstract. We identify higher-charge configurations that satisfy Euler-Lagrange equations for the (strong coupling limit of) Faddeev-Hopf model, by means of adequate changes of the domain metric and a reduction technique based on α-Hopf construction. In the last case it is proved that the solutions are local minima for the reduced σ_2-energy and we identify among them those who are global minima for the unreduced energy.

1. Introduction

1.1. Motivation from hadrons physics. Skyrme model, stated in the early 60ties \cite{18}, as well as Faddeev model proposed about ten years later \cite{10} are attempts to apply the soliton mechanism for particle-like excitations. Explicitly, for the first case the idea was to model baryons as smooth stable finite energy solutions (solitons) of a modified nonlinear σ-model with pion fields, while in the second case, it was suggested that gluon flux tubes in hadrons are modelled by solitons in a similar σ-model, the main difference being that the former ones were point-like (localized around a point) while the latter are knotted (localized around a loop).

To be more specific, let us present the original version of Faddeev’s model, also known as Faddeev-Hopf or Faddeev-Skyrme model. The fields in this model are maps \vec{n} from \mathbb{R}^3 to the two-sphere S^2, asymptotically constant at infinity. In the static limit the energy of the system is:

$$E_{\text{Faddeev}}(\vec{n}) = \frac{1}{2} \int_{\mathbb{R}^3} \left\{ ||d\vec{n}||^2 + K(d\vec{n} \times d\vec{n})^2 \right\} d^3x.$$

where K is a positive coupling constant. The second (fourth power) term give the possibility of field configurations that are stable under a spatial rescaling. Moreover the following topological lower bound holds: $E_{\text{Faddeev}}(\vec{n}) \geq c \cdot |Q(\vec{n})|^{3/4}$, where $c \neq 0$ is a numerical constant and $Q(\vec{n}) \in \pi_3(S^2) \cong \mathbb{Z}$ denotes the Hopf invariant ("charge") of \vec{n} seen as map on S^3. The position of a field configuration is defined as the preimage of the point $(0, 0, -1)$ (antipodal to the vacuum \vec{n}_∞), so it forms a closed loop.

2010 Mathematics Subject Classification. Primary 58E20, 53B50; Secondary 58E30, 81T20.

Key words and phrases. Harmonic map, calculus of variations, critical point, reduction.

The author is grateful to Professor Tudor Raţiu and the Department of Mathematics at Ecole Polytechnique Fédérale de Lausanne for hospitality during the preparation of the present paper.

This research was supported by PN II Idei Grant, CNCSIS, code 1193.
Let us mention that solutions $\mathbb{S}^4 \to \mathbb{S}^2$ for the strongly coupled model play also a role, in the quantized version of the theory. For more details on physical models that allow topological solitons, see [15].

1.2. Differential geometric background. The static Hamiltonian of both Skyrme and Faddeev-Hopf models is interpreted as $\sigma_{1,2}$-energy of mappings $\varphi: (M, g) \to (N, h)$ between Riemannian manifolds (see [19] following [14]):

$$E_{\sigma_1,2}(\varphi) = E_{\sigma_1}(\varphi) + K \cdot E_{\sigma_2}(\varphi) = \frac{1}{2} \int_M \left[|d\varphi|^2 + K \cdot |\nabla^2 d\varphi|^2 \right] \nu_g.$$

The first term is the standard Dirichlet (quadratic) energy of φ and the second (quartic) term is the σ_2-energy introduced in 1964 by Eells and Sampson [9]. Their critical points are the well-known harmonic maps and the less studied σ_2-critical maps, respectively. We shall refer to E_{σ_2} as strongly coupled energy. The critical points for the full energy, or $\sigma_{1,2}$-critical maps, are characterized by the equations:

$$(1.2) \quad \tau(\varphi) + K \tau_{\sigma_2}(\varphi) = 0,$$

where

- $\tau(\varphi) = \text{trace}(\nabla d\varphi)$ is the tension field of φ,
- $\tau_{\sigma_2}(\varphi) = 2[\psi(\varphi) \tau(\varphi) + d\varphi(\text{grade}(\varphi))] - \text{trace}(\nabla d\varphi) \circ \mathcal{C}_\varphi - d\varphi(\text{div}(\mathcal{C}_\varphi))$ is the σ_2-tension field of φ, cf. [4, 19, 24], with $\mathcal{C}_\varphi = d\varphi^* \circ d\varphi \in \text{End}(TM)$ denoting the Cauchy-Green tensor of φ.

Obvious solutions for (1.2) are those maps that are both harmonic and σ_2-critical. This is the case for the standard Hopf map $S^3 \to S^2$, and the only exact solution between (round) spheres known until now. But this situation seems very rare and a heuristic reason for this, given in [19], is that while the prototype for harmonic maps (from a Riemann surface to \mathbb{C}) is provided by a holomorphic/conformal map, the prototype of σ_2-critical maps is an area-preserving map. In this 2-dimensional context, a map encompasses both conditions if and only if it is homothetic. For a further analysis of transversally (to the Reeb foliation) area-preserving maps between 3-dimensional contact manifolds and various stability results, see [19].

1.3. Sketch of the paper. The main idea of the paper is looking for mappings $\mathbb{S}^3 \to \mathbb{S}^2$ of higher Hopf invariant, which are either harmonic or σ_2-critical and ask if they produce full higher-charge solutions by paying the price of a (bi)conformal change of the domain metric. In section 2 we point out that a harmonic horizontally conformal submersion becomes σ_2 or $\sigma_{1,2}$-critical if we replace the domain metric with a (bi)conformally related one. Some known examples are revisited. In section 3 we find (non-conformal) σ_2-critical maps of arbitrary Hopf invariant on $(\mathbb{S}^3, \text{can})$ using a general reduction technique known as α-Hopf construction [3, 5, 6, 8] and we study their stability. We mention that the integrability of the strongly coupled Faddeev-Hopf model on $\mathbb{S}^3 \times \mathbb{R}$ (endowed with a Lorentzian metric of warped product type) has already been proved in [7].

2. Horizontally conformal configurations and related metrics

Let us recall the following

Definition 2.1. ([5]) A smooth map $\varphi: (M^m, g) \to (N^n, h)$ between Riemannian manifolds is a horizontally conformal map if, at any point $x \in M$, $d\varphi_x$ maps the horizontal space $\mathcal{H}_x = (\ker d\varphi_x)^\perp$ conformally onto $T_{\varphi(x)}N$, i.e. $d\varphi_x$ is surjective
and there exists a number \(\lambda(x) \neq 0 \) such that \((\varphi^*h)_x \bigg|_{\mathcal{H}_x} = \lambda^2(x)g_x \bigg|_{\mathcal{H}_x} \), or equivalently \((\zeta \varphi)_x \big|_{\mathcal{H}_x} = \lambda^2(x)Id_{TM} \big|_{\mathcal{H}_x} \). The function \(\lambda \) is the \textit{dilation} of \(\varphi \); if \(\lambda \equiv 1 \), then \(\varphi \) is a \textit{Riemannian submersion}. If a horizontally conformal map is moreover harmonic, then it is a \textit{harmonic morphism}. The mean curvatures of the distributions \(\mathcal{H} \) and \(\mathcal{V} = \ker d\varphi \) are denoted \(\mu^H \) and \(\mu^V \).

In this section we look for horizontally conformal \(\sigma_{1,2} \)-critical mappings between two Riemannian manifolds. We mention that horizontally conformal condition for complex valued maps has been analyzed in physics literature under the name \textit{eikonal equation} (see [1] and references therein).

Remark 2.2 (\(\sigma_2 \)-tension field for horizontally conformal maps, [19]). If \(\varphi \) is horizontally conformal of dilation \(\lambda \), then

\[
\tau(\varphi) = -d\varphi \left((n - 2)\text{grad} \ln \lambda + (m - n)\mu^V \right),
\]

\[
\tau_{\sigma_2}(\varphi) = (n - 1)\lambda^2 \left[\tau(\varphi) + 2d\varphi(\text{grad} \ln \lambda) \right] = \frac{n - 1}{n} \tau_4(\varphi),
\]

where \(\tau_4(\varphi) \) is the Euler-Lagrange operator for the 4-energy, \((1/4) \int_M |d\varphi|^4 \nu_g \). In particular, a submersive harmonic morphism is \(\sigma_{1,2} \)-critical if and only if it is horizontally homothetic (with minimal fibres).

So the harmonicity and \(\sigma_2 \)-criticality of a horizontally conformal map are related as follows.

Lemma 2.3. Let \(\varphi : (M^m, g) \rightarrow (N^n, h) \) with \(m \neq 2 \) be a horizontally conformal map of dilation \(\lambda \). Then \(\varphi \) is \(\sigma_{1,2} \)-critical if and only if it is harmonic with respect to the conformally related metric \(\tilde{g} \) on \(M \), given by

\[
(2.1) \quad \tilde{g} = \left[1 + K(n - 1)\lambda^2 \right] a^{m-2} \cdot g.
\]

In particular, \(\varphi \) is \(\sigma_2 \)-critical if and only if it is harmonic with respect to the conformally related metric \(\tilde{g} = \lambda a^{m-2} \cdot g \).

Proof. Under an arbitrary conformal change of metric \(\tilde{g} = a^2 \cdot g \), the tension field of a map becomes:

\[
\tilde{\tau}(\varphi) = \frac{1}{a^2} \left\{ \tau(\varphi) + d\varphi(\text{grad} \ln a^{m-2}) \right\}
\]

But, according to the above remark we also have:

\[
\tau_{\sigma_{1,2}}(\varphi) = \left[1 + K(n - 1)\lambda^2 \right] \left\{ \tau(\varphi) + d\varphi(\text{grad} \ln \left[1 + K(n - 1)\lambda^2 \right]) \right\}
\]

\(\square \)

Now let us recall another important type of related metrics.

Definition 2.4. ([5]) Let \((M^m, g) \) be a Riemannian manifold endowed with a distribution \(\mathcal{V} \) of codimension \(n \). Denote \(\mathcal{H} = \mathcal{V}^\perp \). Two metrics are \textit{biconformally related with respect to} \(\mathcal{V} \) if it exists a smooth function \(\rho : M \rightarrow (0, \infty) \) such that:

\[
(2.2) \quad g_\rho = \rho^{-2}g^\mathcal{H} + \rho^{\frac{m-n}{m-2}}g^\mathcal{V}.
\]

The harmonicity of almost submersive maps is invariant under biconformal changes of metric \((2.2) \) with respect to \(\mathcal{V} = \ker d\varphi \), cf. [13] [17]. In particular, for any submersive harmonic morphism \(\varphi : (M^m, g) \rightarrow (N^n, h) \) with dilation \(\lambda \) and
$m > n$, if we take on M the biconformally related metric g^λ, then it becomes a Riemannian submersion with minimal fibres (and in particular, σ_2-critical).

Therefore we got two ways to obtain $\sigma_{1,2}$-critical maps from harmonic morphisms, that we now resume in the following

Proposition 2.1. Let $\varphi : (M^m, g) \to (N^n, h)$ be a submersive harmonic morphism with $m > n$ and dilation λ. Then:

(i) φ is $\sigma_{1,2}$-critical with respect to the biconformally related metric g^λ on M;

(ii) φ is $\sigma_{1,2}$-critical with respect to the conformally related metric $\tilde{g} = b^2 \cdot g$ on M if and only if

\[
\nabla^H \left[b^{m-4}(b^2 + K(n-1)\lambda^2) \right] = 0.
\]

In particular, if $m \neq 4$, then φ is σ_2-critical with respect to the conformally related metric $\tilde{g} = \lambda^{\frac{m-4}{2}} \cdot g$.

Remark 2.5.

(a) If $n = 2$, then biconformally related metric needed above has a simpler form: $g^\lambda = \lambda^2 g^H + g^V$.

(b) Using the α-Hopf construction [8], for each pair of positive integers k, ℓ, one can construct a smooth harmonic morphism $\varphi_{k,\ell} : (S^3, e^{2\gamma} \cdot \text{can}) \to (S^2, \text{can})$ with Hopf invariant kl, cf. [5] Example 13.5.3 (some details will be also given in the next section). So, by applying Proposition 2.1 we can obtain a $\sigma_{1,2}$-critical (or a σ_2-critical) configuration in every nontrivial class of $\pi_3(S^2) = \mathbb{Z}$ with respect to a metric (bi)conformally related to the canonical one.

(c) By composing a semiconformal map from S^4 to S^3 (used in [3]) with the above mentioned map $\varphi_{k,\ell}$, Burel [6] has obtained a family of non-constant harmonic morphisms $\Phi_{k,\ell} : (S^4, g_{k,\ell}) \to (S^2, \text{can})$ which represents the (non)trivial class of $\pi_4(S^2) = \mathbb{Z}_2$ whenever $k\ell$ is even (respectively odd). In this case too, $g_{k,\ell}$ is in the conformal class of the canonical metric (on S^4).

Again applying Proposition 2.1 we can obtain a $\sigma_{1,2}$-critical configuration in the nontrivial class of $\pi_4(S^2) = \mathbb{Z}_2$ with respect to a metric (bi)conformally related to the canonical one. Indeed we have only to choose a suitable function ϑ constant along the horizontal curves and to take $\tilde{g}_{k,\ell} = (\vartheta - K\lambda^2) \cdot g_{k,\ell}$.

On the other hand, to obtain a σ_2-critical point $(S^4, e^{2\nu} \cdot \text{can}) \to (S^2, \text{can})$ (i.e. an instanton for the strong coupling limit of the Faddeev-Hopf model on Minkowski space) is no more possible with the same procedure, due to conformal invariance in 4 dimensions. A σ_2-critical map defined on the same pattern as in [6] may still exist, but it might be not horizontally conformal.

3. Non-conformal higher-charge configurations for the strongly coupled model

In [23] Ward has proposed the investigation of the following maps

\[
(3.1) \quad \Psi_{k,\ell} : S^3_R \to \mathbb{CP}^1, \quad (z_0, z_1) \mapsto \left[\frac{z_0^k}{|z_0|^{k-1}}, \frac{z_1^\ell}{|z_1|^{\ell-1}} \right], \quad k, \ell \in \mathbb{N}^*
\]
as higher-charge configurations for the Faddeev-Hopf model. He estimated their energy and then compared it to a conjectured topological lower bound.

It is easy to see that $\Psi_{k,\ell}$ are particular cases (via the composition with a version of stereographic projection) of the α-Hopf construction (applied to $F : S^1 \times S^1 \to S^1$, $F(z, w) = zw^*\ell$) that provides us $\varphi^\alpha_{k,\ell} : S^3_R \to S^2$ defined by:

$$\varphi^\alpha_{k,\ell}(R \cos s \cdot e^{iz_1}, R \sin s \cdot e^{iz_2}) = \left(\cos \alpha(s), \sin \alpha(s) \cdot e^{i(kz_1 + \ell z_2)}\right),$$

where $k, \ell \in \mathbb{Z}^*$ and $\alpha : [0, \pi/2] \to [0, \pi]$ satisfies the boundary conditions $\alpha(0) = 0$, $\alpha(\pi/2) = \pi$. When $(k, \ell) = (\mp 1, 1)$ and $\alpha(s) = 2s$, this construction provides us the (conjugate) Hopf fibration.

The maps $\varphi^\alpha_{k,\ell}$ are equivariant with respect to some isoparametric functions (projections in the argument s) and their Hopf invariant is $Q(\varphi^\alpha_{k,\ell}) = k\ell$ (for more details see \[8\]). They have been considered in many places as the toroidal ansatz, see e.g. \[11\] \[17\] \[18\] \[22\] \[16\].

Let us work out explicitly the condition of being σ_2-critical for $\varphi^\alpha_{k,\ell}$.

Consider the open subset of the sphere S^3_R parametrized by

$$\{p = (\cos s \cdot e^{iz_1}, \sin s \cdot e^{iz_2}) \mid (x_1, x_2, s) \in (0, 2\pi)^2 \times (0, \pi/2)\}.$$

The (standard) Riemannian metric of S^3_R is $g_p = R^2 \left(\cos^2 s \, dx_1^2 + \sin^2 s \, dx_2^2 + ds^2\right)$.

We can immediately construct the orthonormal base for $T_p S^3_R$:

$$f_1 = \frac{1}{R \cos s} \frac{\partial}{\partial x_1}; \quad f_2 = \frac{1}{R \sin s} \frac{\partial}{\partial x_2}; \quad f_3 = \frac{1}{R} \frac{\partial}{\partial s}.$$

Analogously, if we consider $\{x = (\cos t, \sin t \cdot e^{iu}) \mid (t, u) \in (0, \pi) \times (0, 2\pi)\}$, an open subset of S^2, then the standard round metric reads $h = dt^2 + \sin^2 t \, du^2$.

The differential of the map $\varphi = \varphi^\alpha_{k,\ell}$ operates as follows:

$$\frac{d\varphi(f_1)}{dt} = \frac{k}{R \cos s} \frac{\partial}{\partial u}; \quad \frac{d\varphi(f_2)}{dt} = \frac{\ell}{R \sin s} \frac{\partial}{\partial u}; \quad \frac{d\varphi(f_3)}{dt} = \frac{\alpha'(s)}{R} \frac{\partial}{\partial t}.$$

As we can easily check, the vertical space $V = \mathrm{Ker} \, d\varphi$ is spanned by the unitary vector

$$E_3 = \frac{k\ell}{\sqrt{k^2 \sin^2 s + \ell^2 \cos^2 s}} \begin{pmatrix} \cos s \\ k f_1 - \ell f_2 \end{pmatrix}$$

and the horizontal distribution $H = (\mathrm{Ker} \, d\varphi)^\perp$, by the unitary vectors

$$E_1 = f_3, \quad E_2 = \frac{k\ell}{\sqrt{k^2 \sin^2 s + \ell^2 \cos^2 s}} \begin{pmatrix} \sin s \\ \ell f_1 + k f_2 \end{pmatrix}.$$

A key observation in what follows is that

- E_1 is an eigenvector for $\varphi^* h$, corresponding to the eigenvalue
 $$\lambda_1^2 = \left[\frac{\alpha'(s)}{R}\right]^2;$$

- E_2 is an eigenvector for $\varphi^* h$, corresponding to the eigenvalue
 $$\lambda_2^2 = \frac{\sin^2 \alpha(s)}{R^2} \cdot \frac{k^2 \sin^2 s + \ell^2 \cos^2 s}{\sin^2 s \cos^2 s}.$$
Remark 3.1. \textit{(a) (Horizontally conformal maps.)} Clearly $\varphi : (S^3,\text{can}) \to (S^2,\text{can})$ is horizontally conformal provided that $\lambda_1^2 = \lambda_2^2$. This is a (first order) ODE in α:

\begin{equation}
\alpha' = \pm \sin \alpha \sqrt{\frac{k^2}{\cos^2 s} + \frac{\ell^2}{\sin^2 s}}.
\end{equation}

It has a solution for all k and ℓ, explicitly given in \cite[Example 13.5.3]{5}. Then taking α_0 a solution and performing an appropriate conformal change of metric, we obtain a harmonic morphism $\varphi_{k,\ell}^{\alpha_0} : (S^3, e^{2\gamma\text{can}}) \to (S^2, \text{can})$.

\textit{(b) (Harmonic maps.)} For a submersion $\varphi : (M^n, g) \to (N^2, h)$, the equations of harmonicity can be translated in terms of eigenvalues of $\varphi^* h$ as follows, cf. \cite[2, 13]{Harmonic Maps}.

\begin{equation}
\begin{align*}
\frac{1}{2} E_1 (\lambda_1^2 - \lambda_2^2) &= \left(\lambda_1^2 - \lambda_2^2 \right) g(\nabla E_2, E_1) - \lambda_1^2 g(\mu^V, E_1) \\
\frac{1}{2} E_2 (\lambda_1^2 - \lambda_2^2) &= \left(\lambda_1^2 - \lambda_2^2 \right) g(\nabla E_1, E_2) - \lambda_2^2 g(\mu^V, E_2)
\end{align*}
\end{equation}

For our map given by \cite[(3.2)]{Harmonic Maps}, the second equation is satisfied trivially and the first one leads to a second order ODE in α, cf. also \cite{Horizontally Conformal}.

According to \cite[Theorem (3.13)]{Horizontally Conformal} and \cite[(3.6)]{Horizontally Conformal} has a solution if and only if $\ell = \pm k$; moreover, it is explicitly given by $\alpha(s) = 2 \arctan \left(C \tan^k s \right)$, $C > 0$. The corresponding harmonic map $\varphi_{k,\ell}^0$ is the standard Hopf map followed by a weakly conformal map of degree k.

We will apply a strategy analogous to the harmonic case described above. Firstly, we need a general result, whose proof is to be find in \cite{Harmonic Maps}.

Lemma 3.2. Let $\varphi : (M^n, g) \to (N^2, h)$ be a submersion. Then φ is σ_2-critical if and only if the following equation is satisfied:

\begin{equation}
\text{grad}^H (\ln \lambda_1 \lambda_2) - (m-2) \mu^V = 0.
\end{equation}

Moreover, φ remains σ_2-critical when we replace g with $\overline{g} = \sigma^{-2} g^H + \rho^{-2} g^V$ if and only if $\text{grad}^H (\sigma^2 \rho^2 - m) = 0$, where σ and ρ are functions on M.

We can directly check that, if φ is horizontally conformal, i.e. $\lambda_1^2 = \lambda_2^2$, then \text{(3.7)} is equivalent to the 4-harmonicity equation and that \text{(3.7)} is equivalent to:

\begin{equation}
\begin{align*}
\frac{1}{2} \lambda_1^2 E_1 (\lambda_1^2) + \frac{1}{2} \lambda_2^2 E_1 (\lambda_2^2) - (m-2) \lambda_1^2 \lambda_2^2 g(\mu^V, E_1) &= 0 \\
\frac{1}{2} \lambda_2^2 E_2 (\lambda_1^2) + \frac{1}{2} \lambda_1^2 E_2 (\lambda_2^2) - (m-2) \lambda_1^2 \lambda_2^2 g(\mu^V, E_2) &= 0
\end{align*}
\end{equation}

For our map given by \cite[(3.2)]{Horizontally Conformal}, the second equation in \text{(3.8)} is trivially satisfied and the first one leads to the following second order ODE in α:

\begin{equation}
\alpha' \sin \alpha \left\{ \alpha'' \sin \alpha + (\alpha')^2 \cos \alpha \cdot \left(\frac{k^2}{\cos^2 s} + \frac{\ell^2}{\sin^2 s} \right) + \alpha' \sin \alpha \cdot \left(\frac{k^2}{\sin s \cos^3 s} - \frac{\ell^2}{\cos s \sin^3 s} \right) \right\} = 0.
\end{equation}

Contrary to the harmonic case, this equation always has a (unique) solution, for all ℓ, k which satisfies boundary conditions $\alpha(0) = 0$, $\alpha(\pi/2) = \pi$:
\(\alpha(s) = \begin{cases}
\arccos \left(1 - 2 \frac{\ln \frac{k^2 \sin^2 s + \cos^2 s}{t^2}}{\ln \frac{k^2}{t^2}} \right), & \text{if } |k| > |\ell| \\
2s, & \text{if } |k| = |\ell|
\end{cases} \)

Therefore, with \(\alpha \) given above, we have obtained a \(\sigma_2 \)-critical map \(\varphi_{k,\ell}^\alpha \) in every nontrivial homotopy class of \(\pi_3(\mathbb{S}^2) \). Moreover, they are local minima among equivariant maps of the same type.

Proposition 3.1. The equation (3.9) is the Euler-Lagrange equation for the reduced \(\sigma_2 \)-energy functional:

\[
(3.11) \quad \varepsilon_{\sigma_2}(\alpha) = \frac{2\pi^2}{R} \int_0^{\frac{\pi}{\ell}} (k^2 \tan s + \ell^2 \cot s) (\alpha')^2 \sin^2 \alpha \, ds.
\]

The solutions (3.10) are stable critical points for the energy functional \(\varepsilon_{\sigma_2} \).

Proof. Note that \(\mathcal{E}_{\sigma_2}(\varphi_{k,\ell}^\alpha) = \varepsilon_{\sigma_2}(\alpha) \). Consider a fixed endpoints variation \(\{\alpha_t\} \) of \(\alpha \). To prove the result, we only have to follow a direct computation using integration by parts. For the second variation we get:

\[
\frac{d^2}{dt^2} \bigg|_{t=0} \varepsilon_{\sigma_2}(\alpha_t) = \frac{4\pi^2}{R} \int_0^{\frac{\pi}{\ell}} \left(\frac{d\alpha_t}{dt} \bigg|_{t=0} \right)^2 (\alpha')^2 (k^2 \tan s + \ell^2 \cot s) \, ds \geq 0.
\]

\(\Box \)

Remark 3.3.

(a) The \(\sigma_2 \)-critical maps \(\varphi_{k,\ell}^\alpha \) with \(\alpha \) given by (3.10) are also harmonic (so critical points for the full energy) only if \(|k| = |\ell| = 1 \), that corresponds to the (conjugate) Hopf fibration.

Recall that in [21, 22] it has been proved that Hopf map is a stable critical point for \(\mathcal{E}_{\sigma_1,2} \) (if \(K \geq 1 \)) and an absolute minimizer for \(\mathcal{E}_{\sigma_2} \) (the equivalent quartic energy term used in [21, 22] is \(\int_M \|\varphi^* \Omega\|^2 \nu_g \)). For further discussions about critical configurations for the Faddeev-Hopf model on \(\mathbb{S}^3 \) inside the same ansatz, see also [1].

(b) The \(\sigma_2 \)-energy of critical maps obtained from (3.10) is:

\[
(3.12) \quad \mathcal{E}_{\sigma_2}(\varphi_{k,\ell}^\alpha) = \frac{16\pi^2}{R} \cdot \frac{k^2 - \ell^2}{\ln (k^2/\ell^2)} \quad (|k| > |\ell|), \quad \mathcal{E}_{\sigma_2}(\varphi_{k,k}^\alpha) = \frac{16\pi^2 k^2}{R} \quad (|k| = |\ell|)
\]

where \(Q = k\ell \) is the Hopf charge of the solution (compare with [27 (29)]).

In particular, the \(\sigma_2 \)-energy of the Hopf map is \(\frac{16\pi^2}{R} \).

(c) The \(\sigma_2 \)-critical maps given by (3.10) becomes \(\sigma_{1,2} \)-critical with respect to an appropriately perturbed domain metric \(\mathcal{F} = \sigma^{-2} g^H + \sigma^{-4} g^V \). Indeed, being \(\sigma_2 \)-critical is invariant under these changes of metric, cf. Lemma 3.2 while the tension field becomes \(\mathcal{T}(\varphi_{k,\ell}^\alpha) = \sigma^2 \left[\tau(\varphi_{k,\ell}^\alpha) + d\varphi_{k,\ell}^\alpha (\text{grad} \ln \sigma^{-2}) \right] \).

But, at least locally, it is possible to find \(\sigma \) such that \(\mathcal{T}(\varphi_{k,\ell}^\alpha) = 0 \), i.e. \(\varphi_{k,\ell}^\alpha \) is also harmonic.

Recall the topological lower bound found in [22]: \(\mathcal{E}_{\sigma_2}(\varphi) \geq \frac{16\pi^2}{R} Q(\varphi) \). In the family of solutions \(\varphi_{k,\ell}^\alpha \) this bound is attained if and only if \(k = \ell \). Therefore:

Proposition 3.2. The solution \(\varphi_{k,k}^\alpha \) is an absolute \(\sigma_2 \)-minima in its homotopy class.
Notice that, denoting by Ω the area-form on S^2 and by η the standard contact form on S^3 (see [19] for details), we have $(\varphi_{\ell,k}^\alpha)^*\Omega = k \, d\eta$, i.e. $\varphi_{\ell,k}^\alpha$ is transversally area-preserving up to rescale, as expected for heuristic reasons presented in the introduction.

References

[1] Adam, C., Sánchez-Guillén, J. and Wereszczyński, A., *Hopf solitons and Hopf Q-balls on S^3*, Eur. Phys. J. C 47 (2006), 513–524.
[2] Baird, P., *A Böchner technique for harmonic mappings from a 3-manifold to a surface*, Ann. Global Anal. Geom. 10(1) (1992), 63–72.
[3] Baird, P. and Ratto, A., *Conservation laws, equivariant harmonic maps and harmonic morphisms*, Proc. London Math. Soc. (3) 64 (1992), 197–224.
[4] Bechtluft-Sachs, S., *Tension field and index form of energy-type functionals*, Glasg. Math. J. 45 (2003), 117–122.
[5] Baird P. and Wood J. C., *Harmonic Morphisms Between Riemannian Manifolds*, Clarendon Press - Oxford, 2003.
[6] Burel, J.-M., *Applications et morphismes harmoniques à valeurs dans une surface*, C. R. Acad. Sci. Paris Sér. I Math. 332 (2001), 441–446.
[7] De Carli, E. and Ferreira, L. A., *A model for Hopfions on the space-time $S^3 \times \mathbb{R}$*, J. Math. Phys. 46 (2005), 012703.
[8] Eells, J. and Ratto, A., *Harmonic Maps and Minimal Immersions with Symmetries*, Ann. Math. Studies. 130, Princeton University Press 1993.
[9] Eells, J. and Sampson, J.H., *Harmonic mappings of Riemannian manifolds*, Amer. J. Math. 86 (1964), 109–160.
[10] Faddeev, L.D. and Niemi, A.J., *Stable knot-like structures in classical field theory*, Nature 387 (1997), 58–61.
[11] Gladkowska, J. and Hellmund, M., *Static solitons with nonzero Hopf number*, Phys. Rev. D56 (1997), 5194–5199.
[12] Hietarinta, J. and Salo, P., *Ground state in the Faddeev-Skyrme model*, Phys. Rev. D62 (2000), 081701.
[13] Loubeau, E. and Slobodeanu, R., *Eigenvalues of harmonic almost submersions*, Geom. Dedicata, 145 (2010), 103 – 126.
[14] Manton, N.S., *Geometry of Skyrmions*, Commun. Math. Phys. 111 (1987), 469–478.
[15] Manton, N.S. and Sutcliffe, P., Topological Solitons, Cambridge University Press, 2004.
[16] Meissner, U.G., *Toroidal solitons with unit Hopf charge*, Phys. Lett. B154(1985), 190–192.
[17] Pantilie, R., *On submersive harmonic morphisms, in Harmonic morphisms, harmonic maps, and related topics*, 23–29, Chapman & Hall/CRC, Boca Raton, FL, 2000.
[18] Skyrme, T.H.R., *A unified field theory of mesons and baryons*, Nucl. Phys. 31(1962), 556–569.
[19] Slobodeanu, R., *On the geometrized Skyrme and Faddeev models*, J. Geom. Phys. 60 (2010), 643 – 660.
[20] Smith, R. T., *Harmonic Mappings of Spheres*, Amer. J. Math., 97 (1975), 364–385.
[21] Speight, J.M. and Svensson, M., *On the Strong Coupling Limit of the Faddeev-Hopf Model*, Commun. Math. Phys. 272 (2007), 751–773.
[22] Speight, J.M. and Svensson, M., *Some global minimizers of a symplectic Dirichlet energy*, arXiv:0804.4385 [math.DG].
[23] Ward, R.S., *Hopf solitons on S^3 and \mathbb{R}^3*, Nonlinearity 12 (1999), 241–246.
[24] Wood, C.M., *Some energy-related functionals, and their vertical variational theory*, Ph.D. Thesis, University of Warwick, 1983.