Quality over quantity: Trophic cascades in a warming world

Ilić, M., Klintworth, S., & Jackson, M. C. (2021). Quality over quantity: Trophic cascades in a warming world. Functional Ecology, 35(4), 818-820. https://doi.org/10.1111/1365-2435.13775

Published in:
Functional Ecology

Document Version:
Publisher's PDF, also known as Version of record

Queen's University Belfast - Research Portal:
Link to publication record in Queen's University Belfast Research Portal

Publisher rights
Copyright 2021 the authors. This is an open access article published under a Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium, provided the author and source are cited.

General rights
Copyright for the publications made accessible via the Queen's University Belfast Research Portal is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The Research Portal is Queen's institutional repository that provides access to Queen's research output. Every effort has been made to ensure that content in the Research Portal does not infringe any person's rights, or applicable UK laws. If you discover content in the Research Portal that you believe breaches copyright or violates any law, please contact openaccess@qub.ac.uk.

Open Access
This research has been made openly available by Queen's academics and its Open Research team. We would love to hear how access to this research benefits you. – Share your feedback with us: http://go.qub.ac.uk/oa-feedback

Download date: 31. Oct. 2023
Climate change threatens all ecosystems and the organisms within them. Freshwater habitats, in particular, appear to be experiencing rapid environmental change (Almond et al., 2020; Knouft & Ficklin, 2017). Over the last decade, there has been a growing interest in the effects of warming on freshwater populations, which includes changes in abundance, body size, reproductive success and survival of a range of organisms (e.g. Hovel et al., 2017; Ledger et al., 2013; Vethuis et al., 2017; Yvon-Durocher et al., 2011). For instance, research in a natural warming experiment in Iceland has found that elevated temperatures increase the abundance of diatoms, with implications for secondary production (Junker et al., 2020; O'Gorman et al., 2017). All of this research has contributed to our knowledge that the effects of warming can be both direct and indirect. Even if there are no direct consequences of warming on a consumer population, they may suffer cascading consequences due to a change in resource availability. These ‘trophic cascades’ have been documented in the ecological literature for decades, from Stephen Carpenter’s seminal work on fish–zooplankton–algal cascades in lakes (Carpenter et al., 1985), to more recent work on how they are altered under global change (Jackson et al., 2017; Murphy et al., 2020). For instance, warming can enhance the cascading effects of fish on zooplankton (and, subsequently, phytoplankton) by elevating feeding rates (Kratina et al., 2012). Alternatively, warming can also result in phenological mismatch, where fish fry emerges earlier in spring before zooplankton prey peaks, causing a bottom-up trophic cascade where loss of prey reduces consumer survival (Jonsson & Setzer, 2015).

Importantly, research investigating the effects of warming on trophic cascades usually quantifies changes in abundance or biomass, rarely considering more subtle effects. For instance, warming can alter individual respiration rates (Cloyd et al., 2019), feeding selectivity (Gordon et al., 2018), behaviour (Kua et al., 2020) and food quality—all with consequences for other trophic levels. For instance, algae often produce less polyunsaturated fatty acids (PUFAs) in warmer conditions (Fuschino et al., 2011; Von Elert & Fink, 2018), which can have implications for consumers, such as the herbivorous grazer Daphnia. This filter-feeding crustacean is incapable of de novo synthesis of long-chained PUFAs, like most other arthropods (Harrison, 1990; but see Kabeya et al., 2018), and therefore such PUFAs must be derived directly from diet. PUFAs have two main functions: they help maintain membrane fluidity, especially at low temperatures (homeoviscous adaptation; Hazel, 1995) while the long-chain PUFAs eicosapentaenoic acid (EPA, 20:5ω3) and arachidonic acid (ARA, 20:4ω6) serve as precursors for eicosanoids, a family of hormone-like substances which play an important role in animal reproduction (Heckmann et al., 2008; Stanley-Samuelson, 1994). Therefore, at low PUFA availability, Daphnia can experience performance limitations in terms of decreased growth and reproduction (Müller-Navarra, 1995; Ravet et al., 2003; Wacker & Von Elert, 2001). In other words, resource quality can be just as, or more, important than resource quantity for Daphnia and other arthropods.

In this current issue of Functional Ecology, Tseng et al., investigated if changes in resource quality due to warming had consequences for higher trophic levels through trophic interactions. The authors discovered that, although algae produced more total PUFAs under warming, due to declines in cell size there was no net difference with the ambient treatment. However, the cold-reared algae produced more neutral lipids (i.e. fat content) than warm-reared algae. Somewhat surprisingly, these changes in lipid content had little cascading consequences for higher trophic levels. While Daphnia at ambient temperatures and fed cold-reared algae had higher abundance than those fed warm-reared algae, this positive effect was lost when Daphnia were kept at higher temperatures, and there were no cascading effects on the next trophic level (Chaoborus).
One of the explanations Tseng et al. give for this finding is that *Daphnia* require less PUFA content at warmer temperatures because their role in the maintenance of membrane fluidity declines with warming (Hazel, 1995). Similar results have been observed in several other studies (Masclaux et al., 2009; Schlechtriem et al., 2006). For instance, Martin-Creuzburg et al. (2012) showed that the effect of food quality (i.e. PUFA availability) on population growth of *Daphnia magna* was strongest at low temperatures. Addition of single PUFAs (ARA, EPA) had a consistent positive effect on the number of viable offspring, which showed a hump-shaped temperature dependency. However, juvenile somatic growth was less affected by food quality, indicating an important role of life stage.

In response to warming, food quality is not only expected to change due to altered PUFA content per algal cell but also due to changes in community composition (Ahlgren et al., 1997), as the content of essential PUFAs is taxon-specific (Ahlgren et al., 1990; Lang et al., 2011). At high temperatures and nutrient availability, bloom-forming cyanobacteria are favoured (Lürling et al., 2017; Elert et al., 2003). Furthermore, intraspecific and interspecific variation in consumer physiological and life-history traits might further shape their overall response to warming (Geerts et al., 2015; Vanvelk et al., 2020). For example, naturally coexisting *Daphnia longispina* genotypes were shown to differ in their susceptibility to PUFA limitations (Ilč et al., 2021) while Werner et al. (2019) found pronounced differences in heat tolerance within a natural population of *Daphnia magna*. Therefore, future studies should investigate the effects of temperature on natural communities, and monitor population dynamics and compositional changes (and thus potential food quality alterations in the phytoplankton) over time periods long enough to allow for potential evolutionary changes.

Other factors not considered by Tseng et al., such as encounter rate, body size and development time of the prey, play an important role in prey–predator interactions (Pastorok, 1981). These factors are expected to be affected by warming, either directly via changes in metabolic rates, or indirectly via changes in food quality (Giebelhausen & Lampert, 2001; Lampert, 2006). Tseng et al., found that the population size of *Daphnia* decreased with temperature, indicating that food quantity and encounter rate for *Chaoborus* will also decline while neckteeth induction is expected to increase, potentially increasing handling time (Tollrian et al., 2015). Additionally, *Chaoborus* is a gape-limited predator (Tollrian, 1995), and therefore lower growth rates in *Daphnia* will result in longer time spent in the vulnerable size spectrum (Pastorok, 1981).

Tseng et al.'s work highlights the need to consider quality, as well as quantity, in trophic interactions in a warming world. Moving forward, network approaches should be used to understand how stressor effects on resource quality ripple through the food web. In our rapid changing world, it is also important to consider how warming will interact with other stressors (Jackson et al., 2016), which may mitigate or amplify one another's effects on food quality with implications for cascading interactions.

REFERENCES

Ahlgren, G., Goedkoop, W., Markensten, H., Sonesten, L., & Boberg, M. (1997). Seasonal variations in food quality for pelagic and benthic invertebrates in Lake Erken – The role of fatty acids. *Freshwater Biology, 38*, 555–570. https://doi.org/10.1046/j.1365-2427.1997.00219.x

Ahlgren, G., Lundstedt, L., Brett, M., & Forsberg, C. (1990). Lipid composition and food quality of some freshwater phytoplankton for cladoceran zooplankters. *Journal of Plankton Research, 12(4)*, 809–818. https://doi.org/10.1093/plankt/12.4.809

Almond, R. E. A., Grooten, M., & Peterson, T. (2020). *Living Planet Report 2020-Bending the curve of biodiversity loss*. World Wildlife Fund.

Carpenter, S. R., Kitchell, J. F., & Hodgson, J. R. (1985). Cascading trophic interactions and lake productivity. *Bioscience, 35(10)*, 634–639. https://doi.org/10.2307/1309989

Cloved, C. S., Dell, A. I., Hayes, T., Kordas, R. L., & O’Gorman, E. J. (2019). Long-term exposure to higher temperature increases the thermal sensitivity of grazer metabolism and movement. *Journal of Animal Ecology, 88(6)*, 833–844. https://doi.org/10.1111/1365-2652.12976

Fuschina, J. R., Guschina, I. A., Dobson, G., Yan, N. D., Harwood, J. L., & Arts, M. T. (2011). Rising water temperatures alter lipid dynamics and reduce n-3 essential fatty acid concentrations in *Scenedesmus obliquus* (Chlorophyta). *Journal of Phycology, 47(4)*, 763–774.

Geerts, A. N., Vanoverbeke, J., Vanschoenwinkel, B., Van Doorslaer, W., Feuchtmayr, H., Atkinson, D., Moss, B., Davidson, T. A., Sayer, C. D., & De Meester, L. (2015). Rapid evolution of thermal tolerance in the water flea *Daphnia*. *Nature Climate Change, 5(7)*, 665–668.

Giebelhausen, B., & Lampert, W. (2001). Temperature reaction norms of *Daphnia magna*: The effect of food concentration. *Freshwater Biology, 46(3)*, 281–289.

Gordon, T. A., Neto-Cerejeira, J., Furey, P. C., & O’Gorman, E. J. (2018). Changes in feeding selectivity of freshwater invertebrates across a natural thermal gradient. *Current Zoology, 64(2)*, 231–242. https://doi.org/10.1093/cz/ozy011

Harrison, K. E. (1990). The role of nutrition in maturation, reproduction and embryonic development of decapod crustacean: A review. *Journal of Shellfish Research, 9*, 1–28.

Hazel, J. R. (1995). Thermal adaptation in biological membranes: Is homeoviscous adaptation the explanation? *Annual Review of Physiology, 57(1)*, 19–42. https://doi.org/10.1146/annurev.ph.57.030195.000315

Heckmann, L. H., Sibly, R. M., Connan, R., Hooper, H. L., Hutchinson, T. H., Maud, S. J., Hill, C. J., Bouetard, A., & Callaghan, A. (2008). Systems biology meets stress ecology: Linking molecular and organismal stress responses in *Daphnia magna*. *Genome Biology, 9(2)*, 1–14. https://doi.org/10.1186/gb-2008-9-2-r40

Hovel, R. A., Carlson, S. M., & Quinn, T. P. (2017). Climate change alters the reproductive phenology and investment of a lacustrine fish, the three-spine stickleback. *Global Change Biology, 23(6)*, 2308–2320. https://doi.org/10.1111/gcb.13531

Ilč, M., Cordellier, M., & Fink, P. (2021). Intrapopulation variability in a functional trait: Susceptibility of *Daphnia* to limitation by dietary fatty acids. *Freshwater Biology, 66(1)*, 130–141.

Jackson, M. C., Loewen, C. J., Vinebrooke, R. D., & Chimimba, C. T. (2016). Net effects of multiple stressors in freshwater ecosystems: A meta-analysis. *Global Change Biology, 22(1)*, 180–189. https://doi.org/10.1111/gcb.13028

Jackson, M. C., Wasserman, R. J., Grey, J., Ricciardi, A., Dick, J. T., & Alexander, M. E. (2017). Novel and disrupted trophic links following
invasion in freshwater ecosystems. *Advances in Ecological Research*, 57, 55–97.

Jonsson, T., & Setzer, M. (2015). A freshwater predator hit twice by the effects of warming across trophic levels. *Nature Communications*, 6(1), 1–9. https://doi.org/10.1038/ncomms9692

Junker, J. R., Cross, W. F., Benstead, J. P., Hurray, A. D., Hood, J. M., Nelson, D., Gislason, G. M., & Ølafsson, J. S. (2020). Resource supply governs the apparent temperature dependence of animal production in stream ecosystems. *Ecology Letters*, 23(12), 1809–1819.

Kabeya, N., Fonseca, M. M., Ferrier, D. E., Navarro, J. C., Bay, L. K., Francis, D. S., Tocher, D. R., Castro, L. F. C., & Monroig, Ó. (2018). Genes for de novo biosynthesis of omega-3 polyunsaturated fatty acids are widespread in animals. *Science Advances*, 4(5), eaar6849. https://doi.org/10.1126/sciadv.aar6849

Knouft, J. H., & Ficklin, D. L. (2017). The potential impacts of climate change on biodiversity in flowing freshwater systems. *Annual Review of Ecology, Evolution, and Systematics*, 48, 111–133. https://doi.org/10.1146/annurev-ecolsys-110316-022800

Kratina, P., Greig, H. S., Thompson, P. L., Carvalho-Pereira, T. S., & Shurin, J. B. (2012). Warming modifies trophic cascades and eutrophication in experimental freshwater communities. *Ecology*, 93(6), 1421–1430. https://doi.org/10.1890/11-1595.1

Kua, Z. X., Hamilton, I. M., McLaughlin, A. L., Brodnik, R. M., Keitzer, S. C., Gilliland, J., Hoskins, E. A., & Ludsin, S. A. (2020). Water warming increases aggression in a tropical fish. *Scientific Reports*, 10(1), 1–13. https://doi.org/10.1038/s41598-020-76780-1

Lampert, W. (2006). *Daphnia*: Model herbivore, predator and prey. *Polish Journal of Ecology*, 54(4), 607–620.

Lang, I., Hodac, L., Friedl, T., & Feussner, I. (2011). Fatty acid profiles and their distribution patterns in microalgae: A comprehensive analysis of more than 2000 strains from the SAG culture collection. *BMC Plant Biology*, 11(1), 1–16. https://doi.org/10.1186/1471-2229-11-124

Ledger, M. E., Brown, L. E., Edwards, F. K., Milner, A. M., & Woodward, G. (2013). Drought alters the structure and functioning of complex food webs. *Nature Climate Change*, 3(3), 223–227. https://doi.org/10.1038/nclimate1684

Lürling, M., Van Oosterhout, F., & Faassen, E. J. (2017). Eutrophication and warming boost cyanobacterial biomass and microcystins. *Toxins*, 9(2), 64. https://doi.org/10.3390/toxins9020064

Martin-Creuzburg, D., Wacker, A., & Von Elert, E. (2005). Life history consequences of sterol availability in the aquatic keystone species *Daphnia*. *Oecologia*, 144(3), 362–372. https://doi.org/10.1007/s00442-005-0090-8

Martin-Creuzburg, D., Wacker, A., Ziese, C., & Kainz, M. J. (2012). Dietary lipid quality affects temperature-mediated reaction norms of a freshwater key herbivore. *Oecologia*, 168(4), 901–912. https://doi.org/10.1007/s00442-011-2155-1

Masicaux, H., Bec, A., Kainz, M. J., Desvillettes, C., Jouve, L., & Bourdier, G. (2009). Combined effects of food quality and temperature on somatic growth and reproduction of two freshwater cladocerans. *Limnology and Oceanography*, 54(4), 1323–1332. https://doi.org/10.4319/lo.2009.54.4.1323

Müller-Navarra, D. (1995). Evidence that a highly unsaturated fatty acid limits *Daphnia* growth in nature. *Archiv fur Hydrobiologie*, 132, 297.

Murphy, G. E., Romanuk, T. N., & Worm, B. (2020). Cascading effects of climate change on plankton community structure. *Ecology and Evolution*, 10(4), 2170–2181. https://doi.org/10.1002/ece3.6055

O’Gorman, E. J., Zhao, L., Pichler, D. E., Adams, G., Friberg, N., Rall, B. C., Seeney, A., Zhang, H., Reuman, D. C., & Woodward, G. (2017). Unexpected changes in community size structure in a natural warming experiment. *Nature Climate Change*, 7(9), 659–663. https://doi.org/10.1038/nclimate3368

Paerl, H. W., & Huisman, J. (2008). Climate – Blooms like it hot. *Science*, 320, 57–58. https://doi.org/10.1126/science.1155398

Pastorok, R. A. (1981). Prey vulnerability and size selection by Chaoborus larvae. *Ecology*, 62(5), 1311–1324. https://doi.org/10.2307/1937295

Ravet, J. L., Brett, M. T., & Müller-Navarra, D. C. (2003). A test of the role of polyunsaturated fatty acids in phytoplankton food quality for *Daphnia* using liposome supplementation. *Limnology and Oceanography*, 48(5), 1938–1947.

Schlechtriem, C., Arts, M. T., & Zellmer, I. D. (2006). Effect of temperature on the fatty acid composition and temporal trajectories of fatty acids in fasting *Daphnia pulex* (Crustacea: Cladocera). *Lipids*, 41(4), 397–400. https://doi.org/10.1007/s11745-006-5111-9

Stanley-Samuelson, D. W. (1994). The biological significance of prosta-glandins and related eicosanoids in invertebrates. *American Zoologist*, 34(6), 589–598. https://doi.org/10.1093/icb/34.6.589

Tollrian, R. (1995). Predator-induced morphological defenses: Costs, life history shifts, and maternal effects in *Daphnia pulex*. *Ecology*, 76(6), 1691–1705. https://doi.org/10.2307/1940703

Tollrian, R., Duggen, S., Weiss, L. C., Laforsch, C., & Kopp, M. (2015). Density-dependent adjustment of inducible defenses. *Scientific Reports*, 5(1), 1–9. https://doi.org/10.1038/srep12736

Vanvelk, H., Govaert, L., Van den Berg, E. M., Brans, K. I., & De Meester, L. (2020). Interspecific differences, plastic, and evolutionary responses to a heat wave in three co-occurring *Daphnia* species. *Limnology and Oceanography*.

Velthuis, M., de Senerpont Domis, L. N., Frenken, T., Stephan, S., Kazanjian, G., Aben, R., Hilt, S., Kosten, S., van Donk, E., & Van de Waal, D. B. (2017). Warming advances top-down control and reduces producer biomass in a freshwater plankton community. *Ecosphere*, 8(1), e01651. https://doi.org/10.1002/ecso.21651

Von Elert, E., & Fink, P. (2018). Global warming: Testing for direct and indirect effects of temperature at the interface of primary producers and herbivores is required. *Frontiers in Ecology and Evolution*, 6, 87.

Von Elert, E., Martin-Creuzburg, D., & Le Coz, J. R. (2003). Absence of sterols constrains carbon transfer between cyanobacteria and a freshwater herbivore (*Daphnia galeata*). *Proceedings of the Royal Society of London. Series B: Biological Sciences*, 270(1520), 1209–1214.

Wacker, A., & Von Elert, E. (2001). Polyunsaturated fatty acids: Evidence for non-substitutable biochemical resources in *Daphnia galeata*. *Ecology*, 82(9), 25.

Werner, C., Ilić, M., & von Elert, E. (2019). Differences in heat tolerance within a *Daphnia* magna population: The significance of body PUFA content. *Hydrobiologia*, 846(1), 17–26. https://doi.org/10.1007/s10750-018-3769-7

Yvon-Durocher, G., Montoya, J. M., Trimmer, M., & Woodward, G. (2011). Warming alters the size spectrum and shifts the distribution of biomass in freshwater ecosystems. *Global Change Biology*, 17(4), 1681–1694. https://doi.org/10.1111/j.1365-2486.2010.02321.x