INVESTIGATING MATERNAL BRAIN STRUCTURE AND ITS RELATIONSHIP TO SUBSTANCE USE AND MOTIVATIONAL SYSTEMS

Helena J.V. Rutherford*a, Guido Gerigb, Sylvain Gouttardb, Marc N. Potenzaa,c, and Linda C. Mayesa

*Yale Child Study Center, Yale School of Medicine, New Haven, Connecticut; aScientific Computing and Imaging Institute, University of Utah, Salt Lake City, Utah; cDepartments of Psychiatry and Neurobiology and CASAColumbia, Yale School of Medicine, New Haven, Connecticut

Substance use during pregnancy and the postpartum period may have significant implications for both mother and the developing child. However, the neurobiological basis of the impact of substance use on parenting is less well understood. Here, we examined the impact of maternal substance use on cortical gray matter (GM) and white matter (WM) volumes and whether this was associated with individual differences in motivational systems of behavioral activation and inhibition. Mothers were included in the substance-using group if any addictive substance was used during pregnancy and/or in the immediate postpartum period (within 3 months of delivery). GM volume was reduced in substance-using mothers compared to non-substance-using mothers, particularly in frontal brain regions. In substance-using mothers, we also found that frontal GM was negatively correlated with levels of behavioral activation (i.e., the motivation to approach rewarding stimuli). This effect was absent in non-substance-using mothers. Taken together, these findings indicate a reduction in GM volume is associated with substance use and that frontal GM volumetric differences may be related to approach motivation in substance-using mothers.

INTRODUCTION

Maternal substance use represents a considerable public health concern, as many women who use substances during pregnancy continue into the postpartum period [1]. Although substance-using mothers demonstrate difficulties during interactions with their children [2-5], the underlying neurobiological basis of this is less well understood. Converging neuroimaging studies of parents report that brain regions critical to reward, emotion, and stress regulation are recruited when parents engage with infant stimuli [6-8]. In these same regions, a reduction in brain activity has been observed when substance-using mothers engage with infant stimuli [9]. This finding resonates with theoretical models that caretaking difficulties faced by substance-using mothers may reflect the dysregulation of reward and stress neurocircuitry [8,10]. This study investigated the impact of substance...
use on maternal brain structure and examined whether individual differences in motivation were associated with structural differences between substance-using and non-substance-using mothers.

Parents contribute critically to their child’s development [11]; therefore, adaptation of neural architecture to facilitate parenting may have an adaptive value from evolutionary and other perspectives. While functional MRI studies have begun to interrogate the maternal brain, to our knowledge, only one previous study has measured maternal brain structure, examining gray matter (GM) volume changes during the postpartum period [12]. This study found GM volume increased from 2 to 4 weeks postpartum to 3 to 4 months postpartum in multiple regions, including prefrontal and parietal cortex. Additionally, increases in GM volume in midbrain regions were related to mothers’ self-reported positive thoughts related to their babies. These findings support the potential for neurobiological reorganization at a structural level in motherhood.

Substance dependence has been associated with changes in frontal-striatal circuitries. Reductions in GM, but not white matter (WM), volume have been observed in orbitofrontal, temporal, anterior cingulate, and insular regions in cocaine dependence [13]. Cocaine dependence also has been associated with reductions in ventral striatal GM [14], and methamphetamine dependence is associated with GM reductions in the medial frontal gyrus and insula [15]. A meta-analysis reported decreased GM volume in substance-dependent participants in the prefrontal cortex [16], with GM volumes in the inferior and middle frontal gyri associated inversely with longer histories of substance use. These structural findings converge with other data illustrating that frontal cortical function is associated with multiple components of addiction [17,18].

A recent model of parenting suggests a central role for motivation in guiding caretaking behavior in parents [8]. Therefore, understanding variability in motivational tendencies may provide insight into individual differences in caretaking in substance-using and non-substance-using parents. Converging work suggests two motivational systems underscore emotion and behavior: an approach system that drives behavior toward stimuli and an avoidance system that drives behavior away from stimuli [19]. These systems may map onto a behavioral activation system (BAS) and a behavioral inhibition system (BIS) that guide goal-directed behaviors [20]. The BAS is implicated in reward responding, guiding behavior toward desirable outcomes or stimuli. The BIS is implicated in responding to punishment, guiding behavior away from undesirable outcomes or stimuli. Notably, a recent study of non-parents evidenced BIS and BAS were associated with the neural response to infant stimuli [21] — supporting the value of examining motivational tendencies as they relate to parenting.

Carver and White [22] developed an assessment to capture variability in behavioral inhibition and activation with behavioral activation consisting of three components: 1) persistence pursuing goals (BAS-Drive); 2) engagement in seeking rewards (BAS-Fun Seeking); and 3) anticipation or response to reward receipt (BAS-Reward). The BAS is relevant to substance use, given that individuals high in BAS may be more likely to seek out and have a positive response to rewards (including drugs and alcohol) [23]. Consistent with this notion, cocaine- and heroin-dependent participants report higher BAS scores (BAS-Drive and BAS-Fun Seeking) than do healthy control subjects [23]. Furthermore, substance use in college students positively correlated with BAS scores, specifically BAS-Fun Seeking, while only a weak correlation was found between substance use and BIS scores [24]. BAS-Drive scores also have been associated with an increased desire and intent to drink, as well as an expectation to feel relief from drinking, in participants receiving inpatient alcohol treatment [25]. Elevated scores on the BIS and all BAS subscales have been associated with hazardous drinking in a community sample [26]. These studies suggest there may be an important coupling between substance use and motivational behavioral tendencies, particularly those relating to behavioral activation.

We examined GM and WM volumes in substance-using and non-substance-using mothers and whether structural brain differences would relate to general motivational behavioral tendencies (BIS/BAS). Given the potential damage from substance-use exposure to the developing or newborn infant, we broadly defined substance use to include any addictive substance used during pregnancy and/or postpartum. The purpose of this study was to investigate structural volumes and motivational tendencies in response to the presence (and absence) of an addictive process rather than the neurochemical effect of any one specific substance [9,27]. We hypothesized that perinatal (i.e., during pregnancy and/or up to 3 months postpartum) substance use would be related to differences in maternal brain structure, specifically decreased GM volume. Further, given the associations previously reported between BAS and substance use, we also hypothesized that GM volumes would be associated with BAS motivation in the substance-using mothers.

MATERIALS AND METHODS

Participants

The Human Investigations Committee at Yale School of Medicine approved all procedures, and the National Institute on Drug Abuse (NIDA) approved a Certificate of Confidentiality for this study. Sixty-six mothers were recruited through drug treatment and rehabilitation facilities, maternity wards, and posted flyers. All participants provided informed consent, and data were collected approximately 3 months (range 1-3 months) postpartum. Each

1A fight-flight system is also recruited in the presence of threat stimuli in the immediate environment [20].
other was reimbursed $80 and given a gift for her baby. Substance-use status was determined by self-report and urine toxicology. Women were considered substance using (n = 31; mean age approximately = 25.77 years; SD = 4.89; 9 first-time mothers) if they used any substance of abuse during pregnancy and/or within the past 30 days at time of recruitment and/or positive toxicology screen at the time of visit. Substance-using mothers reported using only tobacco (n = 15), tobacco and other substances (n = 10, including marijuana, amphetamine, cocaine, heroin, alcohol, and/or other opiates), and marijuana only (n = 4). One mother self-reported using substances but did not disclose details, and one mother was in rehabilitation. Twenty-six mothers were single, two were married, two divorced, and one mother did not report marital status. Eight were Caucasian, 18 were African American, and five were Hispanic/Latino.

Non-substance-using mothers (n = 35; mean age approximately = 28.88 years; SD = 5.70; 27 first-time mothers) were free from tobacco or other substance use. Fourteen were single and 21 were married. Twenty-one were Caucasian, eight were African American, two were Asian American, two were Hispanic/Latino, and two mothers did not report race or ethnicity. Consistent with evidence that there are age-related effects on brain matter volume [28] and the age difference between groups reported here (t(62) = 2.21, p = .03), age was entered where appropriate as a covariate in analyses.

Behavioral Inhibition System and Behavioral Activation System (BIS/BAS) Scale

The BIS/BAS scale [22] is a valid and reliable 24-item self-report measure designed to capture individual variability in behavioral inhibition and activation [20]. Each item is rated on a 4-point likert scale, from “1 - strongly disagree” to “4 - strongly agree.” Seven items capture behavioral inhibition, including, “If I think something unpleasant is going to happen, I usually get pretty worked up.” Behavioral activation consists of three subscales: BAS-Drive (“When I want something, I usually go all-out to get it”), BAS-Fun Seeking (“I’m always willing to try something new if I think it will be fun”), and BAS-Reward (“When I get something I want, I feel excited and energized”). A BAS-total score indicates the sum of all BAS subscale scores.

Image Acquisition

Magnetization prepared rapid gradient echo (MPRAGE) images (176 slices, 256 x 256 mm field of view, 256 x 256 data acquisition matrix, 2.530 s repetition time, 2.77 ms echo time, 7° flip angle, bandwidth 179 Hz/pixel) were acquired with a Siemens Trio 3T scanner (Siemens AG, Erlangen, Germany).

Automatic Tissue Segmentation

Several methods have been developed for automatic segmentation of adult brain MRI data [29-31]. Pohl et al. [32] additionally augments tissue class segmentation by a detailed parcellation of neuroanatomical structures. We used a modified version of an atlas-moderated expectation-maximization method [31]. The tool, named Atlas Based Classification (ABC), was written in ITK (Insight Consortium, 2004) and made freely available to the scientific community via the NITRC platform [33,34]. The ABC tool takes single or multi-modal MR images as input and performs registration of a probabilistic atlas that serves as a spatial prior, bias correction, brain stripping, user-selected non-linear filtering, and multivariate classification combined into one integrated tool. Results include tissue probability maps p(category|x) for the categories of WM, GM, cerebrospinal fluid (CSF), and background (BG) and binary label maps of the maximum posterior classification, defined at each voxel location x. An additional category, the intracranial volume (ICV), is defined as the sum of WM, GM, and CSF. Subdivision into lobar regions was obtained by non-linear registration of a parcellation template to each subject’s brain image, resulting in WM, GM, and CSF volumes per lobe. The ABC segmentation methodology previously has been applied in large clinical studies (e.g., of schizophrenia [35]) and validated in a multi-site human traveling phantom study that demonstrated coefficients of variation for GM and WM in the 1 percent range [36].

Data Analysis

Dividing the individual structural values by the ICV for each participant was performed to normalize the data. Data from two mothers (one substance-using; one non-substance-using) were excluded after boxplots of the structural data confirmed they were outliers. Analysis first focused on com-
parisons between total GM and WM volumes as a function of substance use. If group differences were found, the second analytic step was to examine lobe parcellation to probe the potential regional sources for substance-use differences. Greenhouse-Geisser corrections were used where applicable. The third and final analytic step was to examine associations between structural volumes where substance-use differences emerged with BIS/BAS measures. Data from the BAS subscales were not normally distributed; therefore, non-parametric analyses were used for these measures. The alpha level was defined as \(p < .05 \), and all data presented in figures and text are means and standard deviations.

RESULTS

Total GM and WM Volumes

Despite statistically significant age differences between substance-use groups, this variable did not correlate with GM and WM volumes and was not included as a covariate in this analysis. Substance-using mothers presented with less total GM volume \((t(62) = 3.71, p < .001) \) than non-substance-using mothers (Figure 1). There was no difference \((t < 1) \) in total WM volume between substance-using \((M = .353; SD = .008) \) and non-substance-using \((M = .352; SD = .006) \) mothers.

GM Parcellation

Table 1 presents the means and standard deviations for GM volume parcellation for each maternal group. To further examine GM differences, parcellated GM volume was examined using a 5 (Lobe: prefrontal, frontal, parietal, temporal, occipital) by 2 (Hemisphere: left, right) repeated-measures ANOVA with a between-group factor of substance-use status. Age was included as a covariate in the analysis after preliminary data analysis revealed age correlated with GM volume in some lobes. Age was not a significant covariate in the overall model \((F(1,61) = 2.22, p = .14) \), but substance-use status was a significant between-group factor \((F(1,61) = 8.58, p < .01) \). There was a main effect of lobe \((F(3,171) = 169.42, p < .001) \), evidencing variability in GM volume and the smallest GM volume in occipital and prefrontal regions (Table 1). There was a marginal interaction between lobe and substance-use status \((F(3,171) = 2.67, p = .05) \). With no main effect of hemisphere \((F < 1) \) or any interaction between lobe, substance-use status, and hemisphere \((F < 1) \), the data were averaged across hemispheres for analysis. Independent samples t-tests showed non-substance-using mothers had more frontal cortical GM volume than substance-using mothers \((t(62) = 4.60, p < .001) \). Across the other lobe regions, GM volume was comparable between the groups. Therefore, the overall reduction in total GM volume in substance-using mothers reported here seems driven by differences in GM volume in the frontal lobe.

This omnibus analysis also showed a lobe GM volume and age interaction \((F(3,171) = 7.60, p < .001) \). Age did not correlate with frontal \((r(64) = -.16, p = .22) \) or occipital \((r(64) = .23, p = .06) \) GM volumes. There were significant inverse correlations between age and parietal GM volume \((r(64) = -.32, p = .01) \) and prefrontal GM volume \((r(64) = -.28, p = .02) \). There was also a positive correlation between age and temporal lobe GM \((r(64) = .25, p = .04) \). A lobe by hemisphere interaction was also found \((F(4,244) = 3.58, p < .01) \), whereby the GM volume was larger across all lobes in the right versus left hemisphere, with the exception of the parietal lobe in which this volumetric asymmetry was reversed. There were no other statistically significant interactions between any of the remaining variables of lobe, hemisphere, substance-use group and age \((F's < 3.16, p's > .08) \).

BIS/BAS and Frontal GM Volume

Table 2 presents BIS/BAS scores (means and standard deviations) as a function of substance use. Although

Table 1. Means and standard deviations for GM volume parcellation for each maternal group.

Lobe Parcellation	Prefrontal	Frontal	Parietal	Temporal	Occipital
Non-SU mothers	0.34 (.001)	0.49 (.001)	0.55 (.002)	0.53 (.002)	0.27 (.002)
SU mothers	0.34 (.001)	0.47 (.002)	0.55 (.003)	0.52 (.002)	0.27 (.001)
\(p \) value	.33	< .001*	.77	.19	.22

Note. Standard deviations presented in parentheses. * Indicates statistically significant differences between groups.

Table 2. BIS/BAS scores (means and standard deviations) as a function of substance use.

BIS/BAS Subscale	BAS-Drive	BAS-Fun Seeking	BAS-Reward	BAS-Total	BIS
Non-SU mothers	11.17 (2.59)	11.00 (1.95)	17.50 (1.88)	39.67 (5.12)	20.15 (3.62)
SU mothers	11.77 (2.61)	11.88 (2.08)	17.23 (2.16)	40.87 (5.88)	19.34 (2.80)
\(p \) value	.45	.06	.84	.39	.33

Note. Standard deviations presented in parentheses.
there was a non-significant trend to suggest that substance-
using mothers had higher BAS-Fun Seeking scores than
non-substance-using mothers, no other statistically sig-
nificant differences were found between the other BAS
subscales or the BIS scale as a function of substance-use
group. However, we examined the relationship between
BIS/BAS within each group, given the statistically sig-
nificant frontal GM volume differences. In substance-using
mothers, we found an inverse correlation between frontal
GM volume and BAS-Fun Seeking ($r(30) = -.44, p = .02$)
and BAS-Reward ($r(30) = -.39, p = .03$). There was a com-
parable, but not statically significant relationship, between
frontal GM volume and BAS-Drive ($r(30) = -.34, p = .06$).
Figure 2 illustrates the relationship between frontal GM
volume and the total BAS score ($r(30) = -.38, p = .04$). No
relationship between frontal GM volume and BIS was ob-
served ($r(30) = .07, p = .73$). We found no relationship be-
tween frontal GM volume and BAS, or any BAS subscale,
in non-substance-using mothers ($r's, < -.16, p's > .36$).

DISCUSSION

Recent work has suggested that substance use may affect
maternal neural responses to infant stimuli [9]. Critically, in-
dividual differences in maternal brain structure and motiva-
tion may underlie functional correlates of substance use and
infant cue perception. Past research has evidenced an im-
portant role for GM volume in maternal brain development [12].
Our finding of reduced GM volumes in substance-using
mothers, particularly in the frontal lobes, converges with other
research that has reported abnormalities in frontal re-

gions associated with substance use [13,15,16]. While we
found substance use-related differences in overall frontal
GM, understanding whether there are regional variants in the
frontal cortex will be valuable for future research. For in-
stance, decreased GM in the orbitofrontal cortex (OFC) has
been reported in substance-dependent participants [13]. The
OFC contributes to reward-related processes [37,38] and is
recruited in fMRI studies where parents engage with infant
stimuli [39-41]. Therefore, an important extension of this
work will be to relate these structural findings to maternal
cognitions and behavior. While maternal behavior is likely
underpinned by multiple complex neurophysiological sys-
tems [42], frontal cortical functioning may be of particular
interest owing to the complexity of human parenting [43].
Our finding of structural differences in frontal GM volume
will be important in guiding research questions specifically
targeting the role of functions mediated by the frontal cortex
in parenting. Indeed, executive functions may be associated
with observable parenting behavior during parent-child in-

teractions [44].

We investigated whether individual differences in
BIS/BAS would be associated with structural brain mea-
sures. Higher levels of behavioral activation may be associated
with seeking and using substances [23]. Unlike previous re-
ports, we did not find that BAS scores differentiated sub-
stance-using from non-substance-using participants. One

explanation for this null BAS finding may be that in past
samples where this distinction was found, participants were
typically substance-dependent [23,25] rather than substance-
using, as in the sample recruited here. However, there was a
trend-level difference between groups on the BAS-Fun Seek-
ing subscale, a measure that has previously been implicated
in substance-use behaviors [24-26]. Nevertheless, owing to
significant differences between groups in frontal GM vol-
ume, we assessed the relationship between structural volumes
in this region and BIS/BAS. Frontal GM volumes were neg-
atively correlated with BAS scores, specifically the BAS-Fun
Seeking and BAS-Reward scales, with the correlation be-
tween GM volume and BAS-Drive not reaching statistical
significance ($p = .06$). Thus, in our substance-using group,
reductions in GM volume were associated with higher levels
of behavioral activation (an effect absent in non-substance-
using mothers). One interpretation is that the decreased in-

tegrity of frontal cortical regions may be associated with
increased approach motivation to rewarding stimuli and
events. This resonates with prior findings that impulsivity
levels were negatively associated with GM volume in the left
superior frontal gyrus [15]. We did not find associations be-
tween GM volume and behavioral inhibition. The role of the
BIS in differentiating individuals as a function of substance
use has not been consistently reported [24,26], and the cur-
rent findings further suggest the value of examining behavioral
activation in substance-use research.

One of the important next steps in this work will be to
understand the role of BAS motivation to components of
caretaking. One previous non-mother fMRI study [21]
found relationships between BIS/BAS measures and neural
responses to infant emotional stimuli. For instance, BAS-
Drive was positively associated with activity in the right su-
perior occipital gyrus while women viewed sad relative to
negative infant faces. A replication of this fMRI study in a
maternal sample will afford the opportunity to build on the
current structural findings. However, the present study adds
an important component to neurobiological accounts of ad-

![Figure 2. The relationship between frontal gray matter volume and BAS-Total Score for the substance-using mothers, $r(30) = -.38, p = .04$.](image-url)
dictation and parenting. It has been proposed that the dys-regulation through addiction of reward and stress neurocircuity may be associated with potential difficulties many
substance-using women face in caring for their children [8,10]. Specifically, caring for infants may be relatively less rewarding and more stressful for addicted adults. Our find-
ings suggest frontal GM reductions are associated with increased behavioral activation; therefore, approach motivation more generally may not be compromised in these
women, although the specificity of this to the care-taking role (as opposed to other activities that may interfere with parenting), as well as other social and non-social re-
wards, should be established.

These findings should be considered in light of limitations. There was heterogeneity in maternal substance use without measures assessing frequency and duration of use. Although differences may exist in the effects of varying substances at a neurochemical level, the nature of addiction encompasses habitual responding underpinned by dysregulation in stress and reward systems [45,46] consistent with a syndrome model of addiction [27]. It is also unclear when differences in GM volume emerge between substance-using and non-substance-using mothers, and whether this difference will continue across the postpartum period. A recent study reports substance-dependent individuals and their non-substance-using siblings show commonalities in brain structure and behavioral inhibition relative to unrelated control subjects, suggesting potential familial vulnerability to substance use [47]. Here, our sample consisted only of mothers, and considering existing studies examining sub-
stance use and GM volume [13,15,16], it is likely these results may generalize to non-parent samples, although this should be empirically tested. Further, understanding what underscores differences in GM volume is critical, given that this may not be related to changes in the number of neurons in GM. Finally, the maternal samples were not well matched with respect to demographics characteristics. These potential confounds represent a challenge to fully understanding the generalizability of the findings. However, with larger samples, these variables may be more tightly controlled.

In summary, we found that GM volume, particularly in frontal regions, was reduced in substance-using mothers relative to non-substance-using mothers. In substance-using mothers, we also found frontal GM negatively correlated with behavioral activation. These findings add to an emerging neuroscience of human parenting and addictive behaviors, highlighting the importance of individual differences in motivational tendencies.

Acknowledgments: We thank Marion Mayes for coordinat-
ing visits and working with participants and Kara Holcomb and Laura Logan for overseeing MRI visits with partici-
pants.

REFERENCES

1. Results from the 2007 National Survey on Drug Use and Health: National Findings. Rockville, MD: Substance Abuse and Mental Health Services Administration; 2008.

2. Johnson AL, Morrow CE, Accornero VH, Xue L, Anthony JC, Bandstra ES. Maternal Cocaine Use: Estimated Effects on Mother-Child Play Interactions in the Preschool Period. J Dev Behav Pediatr. 2002;23(4):191-202.

3. Molitor A, Mayes LC. Problematic dyadic interaction among toddlers and their polydrug-cocaine-using mothers. Infant Mental Health Journal. 2010;31(2):121-40.

4. Gottwald SR, Thurman SK. The Effects of Prenatal Cocaine Exposure on Mother-Infant Interaction and Infant Arousal in the Newborn Period. Topics in Early Childhood Special Edu-
cation. 1994;14(2):217-31.

5. Mayes LC, Truman S. Substance abuse and parenting. In: Bornstein M, editor. Handbook of Parenting. Hillsdale, NJ: Lawrence Erlbaum; 2001. p. 329-59.

6. Swain JE. The human parental brain: In vivo neuroimaging. Prog Neuropsychopharmacol Biol Psychiatry. 2011;35(5):1242-54.

7. Rutherford HJV, Mayes LC. Primary maternal preoccupation: Using neuroimaging techniques to explore the parental brain. Psyche. 2011;65:973-88.

8. Rutherford HJV, Potenza MN, Mayes LC. The neurobiology of addiction and attachment. In: Suchman N, Papulo M, Mayes LC, editors. Parents and Substance Addiction: De-
velopmental Approaches to Intervention. New York: Oxford University Press; 2013.

9. Landi N, Montoya J, Kober H, Rutherford HJV, Mencel E, Worhunsy P, et al. Maternal neural responses to infant cries and faces: Relationships with substance use. Front Psychiatry. 2011;2:32.

10. Rutherford HJV, Williams SK, Moy S, Mayes LC, Johns JM. Disruption of maternal parenting circuitry by addictive process: re-wiring of reward and stress systems. Front Psychiatry. 2011;2:37.

11. Bowlby J. Attachment and Loss: Volume I Attachment. Syd-
ney: Pimlico; 1969.

12. Kim P, Leckman JF, Mayes LC, Feldman R, Wang X, Swain JE. The plasticity of human maternal brain: Longitudinal changes in brain anatomy during the early postpartum period. Behav Neurosci. 2010;124(5):695-700.

13. Franklin TR, Acton PD, Maldjian JA, Gray JD, Croft JR, Dackis CA, et al. Decreased gray matter concentration in the insular, orbitofrontal, cingulate, and temporal cortices of co-
caine patients. Biol Psychiatry. 2002;51(2):134-42.

14. Barrós-Loscertales A, Garavan H, Bustamante JC, Ventura-
Campos N, Llopis JJ, Belloch V, et al. Reduced striatal vol-
ume in cocaine-dependent patients. Neuroimage. 2011;56(3):1021-6.

15. Schwartz DL, Mitchell AD, Lahna DL, Luber HS, Huckans MS, Mitchell SH, et al. Global and local morphometric differ-
ces in recently abstinent methamphetamine-dependent individuals. Neuroimage. 2010;50(4):1392-401.

16. Ersche KD, Williams GB, Robbins TW, Bullmore ET. Meta-
alysis of structural brain abnormalities associated with stimulant drug dependence and neuroimaging of addiction vulnerability and resilience. Curr Opin Neuropsi. 2013;23(4):615-24.

17. Goldstein RZ, Volkow ND. Drug addiction and its underly-
ing neurobiological basis: neuroimaging evidence for the in-
volvement of the frontal cortex. Am J Psychiatry. 2002;159(10):1642-52.

18. George O, Koob GF. Individual differences in prefrontal cortex function and the transition from drug use to drug de-
pendence. Neurosci Biobehav Rev. 2010;35(2):232-47.

19. Rutherford HJV, Lindell AK. Thriving and surviving: Approach and avoidance motivation and lateralization. Emo-
tion Review. 2011;3(3):333-43.

20. Gray J. The neuropsychology of anxiety: An enquiry into the functions of the septo-hippocampal system. Oxford: Oxford University Press; 1982.

21. Montoya J, Landi N, Kober H, Worhunsy P, Rutherford HJV, Mencel E, et al. Regional brain responses in nulliporous
women to emotional infant stimuli. PLoS One. 2012;7(5):e36270.

22. Carver CS, White TL. Behavioral inhibition, behavioral activation, and affective responses to impending reward and punishment: The BIS/BAS Scales. J Pers Soc Psychol. 1994;67(2):319.

23. Franken I, Muris P, Georgieva I. Gray’s model of personality and addiction. Addict Behav. 2006;31(3):399-403.

24. Franken I, Muris P. BIS/BAS personality characteristics and college students’ personality. Individual Differences. 2006;40(7):1497-503.

25. Franken I. Behavioral approach system (BAS) sensitivity predicts alcohol craving. Personality and Individual Differences. 2002;32(2):349-55.

26. Hamilton KR, Sinha R, Potenza MN. Hazardous drinking and dimensions of impulsivity, behavioral approach, and inhibition in adult men and women. Alcohol Clin Exp Res. 2012;36(6):958-66.

27. Shaffer HJ, LaPlante DA, Labrie RA, Kidman RC, Donato AN, Stanton MV. Toward a syndrome model of addiction: Multiple expressions, common etiology. Harv Rev Psychiatry. 2004;12(6):367-74.

28. Fjell AM, Walhovd KB. Structural brain changes in aging: courses, causes and cognitive consequences. Rev Neurosci. 2010;21(3):187-221.

29. Coccosco CA, Zijdenbos AP, Evans AC. A fully automatic and robust brain MRI tissue classification method. Med Image Anal. 2003;7(4):513-27.

30. Wells WM, Kikinis R, Grimson WEL, Jolesz F. Adaptive segmentation of MRI data. IEEE Trans Med Imaging. 1996;15(4):429-42.

31. Van Leemput K, Maes F, Vandermeulen D, SUetens P. Automated model-based tissue classification of MR images of the brain. IEEE Trans Med Imaging 1999;18(10):997-1009.

32. Pohl K, Bouix S, Nakamura M, Rohlfing T, McCarley R, Kikinis R, et al. A hierarchical algorithm for mr brain image parcellation. IEEE Trans Med Imaging. 2007;26(9):1201-12.

33. Luo XZ, Kennedy DN, Cohen Z. Neuroimaging informatics tools and resources clearinghouse (NITRC) re-source announcement. Neuroinformatics. 2009;7(1):55-6.

34. Neuroimaging Informatics Tools and Resources Clearinghouse. NITRC [Internet]. Available from: http://www.nitrc.org.

35. El-Sayed M, Steen RG, Poe MD, Bethea TC, Gerig G, Lieberman J, et al. Brain volumes in psychotic youth with schizophrenia and mood disorders. J Psychiatry Neurosci. 2010;35(4):229-36.

36. Gouttard S, Styner M, Prastawa M, Piven J, Gerig G. Assessment of reliability of multi-site neuroimaging via traveling phantom study. Medical Image Computing and Computer-Assisted Intervention–MICCAI 2008. Springer; 2008. p. 263-70.

37. O’Doherty JP. Reward representations and reward-related learning in the human brain: insights from neuroimaging. Curr Opin Neurobiol. 2004;14(6):769-76.

38. Gallagher M, McMahan RW, Schoenbaum G. Orbitofrontal cortex and representation of incentive value in associative learning. J Neurosci. 1999;19(15):6610-4.

39. Nitschke JB, Nelson EE, Rusch BD, Fox AS, Oakes TR, Davidson RJ. Orbitofrontal cortex tracks positive mood in mothers viewing pictures of their newborn infants. Neuroimage. 2004;21(2):583-92.

40. Norriuchi M, Kikuchi Y, Senoo A. The functional neuroanatomy of maternal love: Mother’s response to infant’s attachment behaviors. Biol Psychiatry. 2008;63(4):415-23.

41. Lorberbaum JP, Newman JD, Horwitz AR, Dubno JR, Lydiard RB, Hamber MB, et al. A potential role for thalamocortical circuitry in human maternal behavior. Biol Psychiatry. 2002;51(6):431-45.

42. Gonzalez A, Atkinson L, Fleming AS. Attachment and the comparative psychobiology of mothering. In: De Haan M, Gunnar MR, editors. Handbook of Developmental Social Neuroscience. New York: The Guilford Press; 2009. p. 225-45.

43. Barrett J, Fleming AS. Annual Research Review: All mothers are not created equal: neural and psychobiological perspectives on mothering and the importance of individual differences. J Child Psychol Psychiatry. 2011;52(4):368-97.

44. Deater-Deckard K, Sewell MD, Petrill SA, Thompson LA. Maternal working memory and reactive negativity in parenting. Psychol Sci. 2010;21(1):75-9.

45. Koob GF, Le Moal M. Drug abuse: hedonic homeostatic dysregulation. Science. 1997;278(5335):52-8.

46. Koob GF, Volkow ND. Neurocircuitry of addiction. Neurropsychopharmacology. 2009;35(1):217-38.

47. Ersche KD, Jones PS, Williams GB, Turton AJ, Robbins TW, Bullmore ET. Abnormal brain structure implicated in stimulant drug addiction. Science. 2012;335(6068):601-4.