The complete chloroplast genome sequence of Laplacea alpestris and its phylogenetic position

Xiang-Qin Yu, Qiong Zhang, Yin-Zi Jiang, Hua Peng, Jian-Li Zhao, and Shi-Xiong Yang

Laplacea Kunth, with ca. 30 species, mainly distributed in South and Central America, Malaya, Indonesia (Kobuski 1949, 1950). The genus was built in 1822 based on the type species (L. speciosa Dyer) from Peru (Humboldt et al. 1822). The systematic position of Laplacea changed significantly among different taxonomic treatments based on morphological and floral ontogenic evidence, and even was included in Gordonia s.l. (Airy Shaw 1936; Sealy 1958; Keng 1962; Ye 1990; Tsou 1998). Molecular phylogenetic analysis based on rbcL and matK, and the chloroplast genome sequences suggested that only Gordonia brandegeei H. Keng nom. nov. (=Laplacea grandis) (Keng 1980) should be retained in Gordonia s.s., other species from Laplacea were members of Theaceae (Prince and Parks 2001; Yu et al. 2017). However, only scarce species were included in previous studies and only one chloroplast genome was reported for Laplacea (Laplacea fruticosa, Yu et al. 2017). In this study, we present the complete chloroplast genome sequence of Laplacea alpestris Dyer using Illumina sequencing technology.

Leaf sample of L. alpestris was obtained from the Herbarium of University of Florida (FLAS, voucher FLAS 180,103), the specimen was collected from Massif de la Selle of Haiti. Genomic DNA was isolated using a modified CTAB approach (Doyle and Doyle 1987). The 150 bp pair-end reads were sequenced based on the Illumina Hi-Seq 2500 platform. Totally, 14,086,309 reads in size of 4.71 G were obtained for the next analysis. The chloroplast genome was de novo assembled by GetOrganelle script (Jin et al. 2020), with SPAdes version 3.10.1 as assembler (Bankevich et al. 2012), and visualized the paths of the cp genome using Bandage (Stamatakis 2014) was used to build a maximum likelihood phylogenetic tree. Sequences were aligned using MAFFT version 7.407 (Katoh and Standley 2013) with the Auto algorithm. RAxML (Stamatakis 2014) was used to build a maximum likelihood (ML) tree, and bootstrap support (BS) were calculated using 1000 replicates. The maximum likelihood phylogenetic tree revealed that L. alpestris and L. fruticosa formed a monophyletic clade (BS = 100%), which was closely related to Apterosperma oblata (Figure 1).

To confirm the phylogenetic position of L. alpestris, we conducted the phylogenetic analysis by combining the chloroplast genome of L. alpestris and other 55 species (including 50 ingroups from Theaceae and 5 outgroups). Sequences were aligned using MAFFT version 7.407 (Katoh and Standley 2013) with the Auto algorithm. RAxML (Stamatakis 2014) was used to build a maximum likelihood (ML) tree, and bootstrap support (BS) were calculated using 1000 replicates. The maximum likelihood phylogenetic tree revealed that L. alpestris and L. fruticosa formed a monophyletic clade (BS = 100%), which was closely related to Apterosperma oblata (Figure 1). However, only species of Laplacea from Central and South America were studied till
now (i.e. *L. alpestris*, *Laplacea fruticosa*, and *Laplacea portoricensis*) (Prince and Parks 2001; Yu et al. 2017), whether species from Southeast Asia will fall into *Laplacea* or *Gordonia* s.s. need further researches. The complete chloroplast genome of *L. alpestris* would be useful for the genetic diversity studies of this species and provided new molecular data to illuminate the phylogenetic relationships within Theaceae.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Funding

This work was supported by National Science Foundation of China [Grant No. 31700182, 31770219], a grant from State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan of Yunnan University [Grant No. 2018KF007], an open research fund of Guangxi Key Laboratory of Special Non-wood Forest Cultivation and Utilization from Guangxi Forestry Research Institute [Grant No. 19-B-01-03] and CAS ’Light of West China’ Program. We thank Dr. Kent D. Perkins from University of Florida Herbarium (FLAS) for providing the leaf sample of *L. alpestris*.

ORCID

Jian-Li Zhao http://orcid.org/0000-0002-5137-7735

Data availability statement

The data that support the findings of this study are openly available in GenBank of NCBI at https://www.ncbi.nlm.nih.gov, reference number MT916289.
References

Airy-Shaw HK. 1936. Notes on the genus Schima and on the classification of the Theaceae-Camellioideae. Kew Bull. 1936(9):496–500.

Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, Lesin VM, Nikolenko SI, Son P, Prjibelski AD, et al. 2012. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol. 19(5):455–477.

Doyle JJ, Doyle JL. 1987. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull. 19(1):11–15.

Humboldt AV, Bonpland A, Kunth CS. 1822. Nova genera et species plantarum. Paris, France: Lutetiae Parisiorum.

Jin JJ, Yu WB, Yang JB, Song Y, dePamphilis CW, Yi TS, Li DZ. 2020. GetOrganelle: a fast and versatile toolkit for accurate de novo assembly of organelle genomes. Genome Biology. 21(1):241.

Katoh K, Standley DM. 2013. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol E. 30(4):772–780.

Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S, Buxton S, Cooper A, Markowitz S, Duran C, et al. 2012. Geneious basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics. 28(12):1647–1649.

Keng H. 1962. Comparative morphological studies in the Theaceae. Univ California Public Bot. 33(4):269–384.

Keng H. 1980. On the unification of Laplacea and Gordonia (Theaceae). Gardens’ Bull. 33(2):303–311.

Kobuski CE. 1949. Studies in the Theaceae XVIII. The West Indian species of Laplacea. J Arnold Arboretum. 30:166–186.

Kobuski CE. 1950. Studies in the Theaceae. XX. Notes on the South and Central American species of Laplacea. J Arnold Arboretum. 31(4):405–429.

Prince LM, Parks CR. 2001. Phylogenetic relationships of Theaceae inferred from chloroplast DNA sequence data. Am J Bot. 88(12):2309–2320.

Sealy JR. 1958. A revision of the genus camellia. London: Royal Horticultural Society.

Stamatakis A. 2014. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics. 30(9):1312–1313.

Tsou CH. 1998. Early floral development of Camellioideae (Theaceae). Am J Bot. 85(11):1531–1547.

Wick RR, Schultz MB, Zobel J, Holt KE. 2015. Bandage: interactive visualization of de novo genome assemblies. Bioinformatics. 31(20):3350–3352.

Ye CX. 1990. A discussion on relationship among the genera in Theoideae (Theaceae). Acta Sci Nat Univ Sunyatseni. 29(1):74–81.

Yu XQ, Gao LM, Soltis DE, Soltis PS, Yang JB, Fang L, Yang SX, Li DZ. 2017. Insights into the historical assembly of East Asian subtropical evergreen broadleaved forests revealed by the temporal history of the tea family. New Phytol. 215(3):1235–1248.