The non-linear evolution of jet quenching

Edmond Iancu
IPhT Saclay & CNRS
arXiv: 1403.1996

Non-linear evolution of jet quenching
E. Iancu, July 15, 2014 1 / 27
The non–linear evolution of jet quenching

Edmond Iancu
IPhT Saclay & CNRS
arXiv: 1403.1996

closely related work:
Liou, Mueller, Wu (arXiv:1304.7677)
Blaizot, Mehtar-Tani (arXiv:1403.2323)
E.I., Triantafyllopoulos (arXiv:1405.3525)
Hard probes in heavy ion collisions

- Hard particle production in nucleus–nucleus collisions (RHIC, LHC) can be modified by the surrounding medium (‘quark–gluon plasma’).

The ensemble of these modifications: ‘jet quenching’
- energy loss, transverse momentum broadening, di–jet asymmetry ...
- cf. the review talks by Federico Antinori and Jean–Paul Blaizot

- Assuming the coupling to be weak, can one understand these phenomena from first principles (perturbative QCD)?
A ubiquitous transport coefficient

- In pQCD, all such phenomena find a common denominator:
 - incoherent multiple scattering off the medium constituents
 - random kicks leading to Brownian motion in k_\perp: $\langle k^2_\perp \rangle \sim \hat{q} \Delta t$
 - acceleration causing medium induced radiation (BDMPSZ, LPM)
 - multiple branchings leading to many soft quanta at large angles

- At leading order in α_s, only one transport coefficient:
 - the jet quenching parameter \hat{q}
A ubiquitous transport coefficient

- In pQCD, all such phenomena find a common denominator:
 - incoherent multiple scattering off the medium constituents

- random kicks leading to Brownian motion in k_\perp: $\langle k_\perp^2 \rangle \simeq \hat{q} \Delta t$
- acceleration causing medium induced radiation (BDMPSZ, LPM)
- multiple branchings leading to many soft quanta at large angles

- Will this universality survive the quantum (‘radiative’) corrections?
 - if so, how will these corrections affect the value of \hat{q}?
An energetic quark acquires a **transverse momentum** p_\perp via collisions in the medium, after propagating over a **distance** L.

Quark energy $E \gg$ typical $p_\perp \implies$ small deflection angle $\theta \ll 1$.
An energetic quark acquires a transverse momentum p_\perp via collisions in the medium, after propagating over a distance L.

Quark energy $E \gg$ typical $p_\perp \implies$ small deflection angle $\theta \ll 1$

The quark transverse position is unchanged: eikonal approximation

$$V(x) = P \exp \left\{ i g \int dx^+ A^-_a(x^+, x)t^a \right\}$$

The quark is a ‘right mover’: $x^+ \equiv (t + z)/\sqrt{2} \sim \sqrt{2}t$ is its LC time
Transverse momentum broadening (2)

- Direct amplitude (DA) \times Complex conjugate amplitude (CCA):

$$ y_p x_p = 0 \quad 8L_0 x = +0L $$

The p_\perp–spectrum of the quark after crossing the medium ($r = x - y$)

$$ \frac{dN}{d^2p} = \frac{1}{(2\pi)^2} \int e^{-ip\cdot r} \langle S_{xy} \rangle, \quad S_{xy} \equiv \frac{1}{N_c} \text{tr}(V_x V_y^\dagger) $$

Average over A^-_a (the distribution of the medium constituents)
Formally, $\langle S_{xy} \rangle$ is the average S–matrix for a $q\bar{q}$ color dipole

- ‘the quark at x’ : the physical quark in the DA
- ‘the antiquark at y’ : the physical quark in the CCA

Quark cross–section \leftrightarrow dipole amplitude

The dipole S–matrix also controls the rate for medium–induced gluon branching (energy loss, jet fragmentation)
The tree–level approximation

- At zeroth order, $\langle S_{xy} \rangle$ is fully specified by one parameter: \hat{q}_0
- Weakly coupled medium \Rightarrow quasi independent color charges
 - Gaussian distribution for the color fields A^-, local in time (x^+)
 - multiple scattering series exponentiates (Glauber, McLerran–Venugopalan)

$$\langle S_{xy} \rangle = e^{-T_2 g} \approx \exp \left\{ -\frac{1}{4} L \hat{q}_0 (1/r^2) r^2 \right\}$$

- $T_2 g$: scattering amplitude via two–gluon exchange (single scattering)

Diagram:

- x_\perp
- y_\perp
- $x^+ = 0$
- L
The tree–level approximation

- At zeroth order, $\langle S_{xy} \rangle$ is fully specified by one parameter: \hat{q}_0
- Weakly coupled medium \Rightarrow quasi independent color charges
 - Gaussian distribution for the color fields A^-, local in time (x^+)
 - multiple scattering series exponentiates (Glauber, McLerran–Venugopalan)

$$
\langle S_{xy} \rangle = e^{-T_2g} \simeq \exp \left\{ -\frac{1}{4} L\hat{q}_0(1/r^2) r^2 \right\}
$$

T_2g : scattering amplitude via two–gluon exchange (single scattering)
The tree–level jet quenching parameter

\[\hat{q}_0(Q^2) \equiv n \int Q^2 \frac{d^2 k}{(2\pi)^2} k^2 \frac{g^4 C_F}{(k^2 + m_D^2)^2} \simeq 4\pi \alpha_s^2 C_F n \ln \frac{Q^2}{m_D^2} \]

\[\hat{q}_0 : \text{density of the medium constituents; } m_D : \text{Debye mass} \]

- The cross–section for \(p_{\perp} \)–broadening:

\[\frac{dN}{d^2 p} = \frac{1}{(2\pi)^2} \int e^{-i p \cdot r} e^{-\frac{1}{4} L\hat{q}_0(1/r^2)} r^2 \simeq \frac{1}{\pi Q_s^2} e^{-p^2/Q_s^2} \]

- The saturation momentum: exponent of \(O(1) \) when \(r \sim 1/Q_s \)

\[Q_s^2 = L\hat{q}_0(Q_s^2) = 4\pi \alpha_s^2 C_F n L \ln \frac{Q_s^2}{m_D^2} \propto L \ln L \]

- The physical jet quenching parameter: \(\hat{q}_0(Q_s^2) \propto \ln L \)

- N.B. \(p_{\perp} \)–broadening probes the dipole \(S \)–matrix near unitarity
Radiative corrections to p_\perp–broadening

- The quark ‘evolves’ by emitting a gluon (‘real’ or ‘virtual’)

- The ‘evolution’ gluon is not measured: one integrates over ω and k

- All partons undergo multiple scattering: non–linear evolution
Dipole evolution

Alternatively depicted as the evolution of the dipole S–matrix:

Exchange graphs between q and \bar{q}, or self–energy graphs

This evolution needs not be restricted to a change in \hat{q}

\[\langle S(r) \rangle \]

quantum corrections can change the functional form of $\langle S(r) \rangle$
The phase space

- The radiative corrections are suppressed by powers if α_s ...
 ... but can be enhanced by the phase–space for gluon emissions

- A ‘naive’ argument: bremsstrahlung in the vacuum

\[dP = \frac{\alpha_s C_R}{\pi^2} \frac{d\omega}{\omega} \frac{d^2k}{k^2} \]

- The emission requires a formation time $\tau \simeq 2\omega/k^2_\perp$

- For our present purposes, better use τ instead of ω
The phase space

- The radiative corrections are suppressed by powers if α_s ...
 ... but can be enhanced by the phase–space for gluon emissions

- A ‘naive’ argument: bremsstrahlung in the vacuum

\[dP = \frac{\alpha_s C_R}{\pi} \frac{d\tau}{\tau} \frac{dk^2_\perp}{k^2_\perp} \]

- τ can take all the values between $\lambda \sim 1/T$ and L

- For a given τ, k^2_\perp should be larger than $\hat{q}\tau$ (multiple scattering) but smaller than $Q^2_s = \hat{q}L$ (dipole resolution $r \sim 1/Q_s$)
The phase space

- The radiative corrections are suppressed by powers if α_s ...
- ... but can be enhanced by the phase–space for gluon emissions

- A ‘naive’ argument: bremsstrahlung in the vacuum

$$dP = \frac{\alpha_s C_R}{\pi} \frac{d\tau}{\tau} \frac{dk^2_\perp}{k^2_\perp}$$

- τ can take all the values between $\lambda \sim 1/T$ and L

- For a given τ, k^2_\perp should be larger than $\hat{q}\tau$ (multiple scattering) but smaller than $Q^2_s = \hat{q}L$ (dipole resolution $r \sim 1/Q_s$)

$$\Delta P(L) = \frac{\alpha_s C_R}{\pi} \int_\lambda^L \frac{d\tau}{\tau} \int_{\hat{q}\tau}^{\hat{q}L} \frac{dk^2_\perp}{k^2_\perp} = \frac{\alpha_s C_R}{\pi} \frac{1}{2} \ln^2 \frac{L}{\lambda}$$

- $\Delta P(L)$ is large, double–logarithmic, correction

$$\Delta P(L) \sim \mathcal{O}(1) \text{ for } L = 5 \text{ fm}, T = 500 \text{ MeV}, \alpha_s = 0.3$$
The previous argument is ‘naive’ as it ignores multiple scattering.

Non–linear evolution is well understood for a shock–wave target:

- proton–nucleus collisions at RHIC or the LHC

\[\tau = x^+ - y^+ \gg \text{target width } L \implies \text{eikonal approx.} \]

- the ‘evolution’ gluon interacts at a fixed transverse coordinate \(z \)

Non–linear equations for correlators of Wilson lines, like \(\langle S_{xy} \rangle \): Balitsky, JIMWLK, BK (large \(N_c \))

- the functional form of \(\langle S(r) \rangle \) for \(r \sim 1/Q_s \) changes indeed.
Beyond the eikonal approximation

- The eikonal approximation **fails** for gluon emissions inside the medium
 - the fluctuation can scatter at any time \(t \) during its lifetime: \(y^+ < t < x^+ \)

- One needs to consider the **transverse diffusion** of the gluon fluctuations
 - \(D = 2 + 1 \) quantum mechanical problem in a random background field
 - formal solution in the form of a path integral

- Generalization of the JIMWLK (or BK) equations to an extended target (‘medium’) *E.I., arXiv: 1403.1996*
The BK equation for jet quenching

\[
\frac{\partial S_{L,0}(x, y)}{\partial \omega} = \times \left[S_{L,t_2}(x, y) S_{t_2,t_1}(x, r(t)) S_{t_2,t_1}(r(t), y) S_{t_1,0}(x, y) - S_{L,0}(x, y) \right]
\]
\[
\frac{\partial S_{L,0}(x, y)}{\partial \omega} = \partial_{r_1}^i \partial_{r_2}^i \int_{r_1, r_2} [\mathcal{D}r(t)] e^{i \frac{\omega}{2} \int_{t_1}^{t_2} dt \dot{r}^2(t)} \\
\times \left[S_{L,t_2}(x, y) S_{t_2,t_1}(x, r(t)) S_{t_2,t_1}(r(t), y) S_{t_1,0}(x, y) - S_{L,0}(x, y) \right]
\]
The BK equation for jet quenching

\[\frac{\partial S_{L,0}(x, y)}{\partial \omega} = -\frac{\alpha_s N_c}{2\omega^3} \int_0^L dt_2 \int_0^{t_2} dt_1 \partial_{\mathbf{r}_1} \partial_{\mathbf{r}_2} \int \mathcal{D}\mathbf{r}(t) \, e^{i \frac{\omega^2}{2} \int_{t_1}^{t_2} dt \cdot \dot{\mathbf{r}}^2(t)} \times \left[S_{L,t_2}(x, y) S_{t_2,t_1}(x, \mathbf{r}(t)) S_{t_2,t_1}(\mathbf{r}(t), y) S_{t_1,0}(x, y) - S_{L,0}(x, y) \right] \]

- A functional equation: path integral for \(\mathbf{r}(t) \)
 - likely, too complicated to be solved in the general case
- A starting point for controlled approximations
Only one scattering during the lifetime of the fluctuation

- enhanced by the infrared & collinear ‘divergences’ of bremsstrahlung

\[S_{t_2,t_1}(z, y) \approx e^{-\frac{1}{4}(t_2-t_1) \hat{q} B_\perp^2} \]

\[B_\perp^2 = |z - y|^2 \sim 1/p_\perp^2 \]

\[t_2 - t_1 \sim \tau = \omega/p_\perp^2 \]

- External dipole ‘near saturation’: \(r \sim 1/Q_s \Rightarrow p_\perp^2 \lesssim Q_s^2 = \hat{q}L \)

- Weak scattering \(\iff \) small exponent \(\Rightarrow p_\perp^2 \gg \hat{q}\tau \)

- Large longitudinal (energy) phase–space: \(\lambda \ll \tau \ll L \)

\(\Rightarrow \) large transverse phase–space as well: \(\hat{q}\tau \ll p_\perp^2 \ll \hat{q}L \)
The phase–space for linear evolution

- $Q_s^2(\tau) \equiv \hat{q}\tau$: the saturation line for gluons with lifetime τ

- The longitudinal phase–space:
 \[
 \lambda \ll \tau \ll L
 \]

- ... and the transverse one:
 \[
 \hat{q}\tau \ll p^2_\perp \ll \hat{q}L
 \]

- ... increase equally fast!

- The conditions for a double logarithmic approximation (DLA)
The phase–space for linear evolution

- \(Q_s^2(\tau) \equiv \hat{q}\tau \): the saturation line for gluons with lifetime \(\tau \)

- The longitudinal phase–space:
 \[\lambda \ll \tau \ll L \]

- ... and the transverse one:
 \[\hat{q}\tau \ll p_{\perp}^2 \ll \hat{q}L \]

- ... increase equally fast!

- The conditions for a double logarithmic approximation (DLA)

- Very different from the respective evolution for a shock wave:
 stronger dependence of \(Q_s^2 \) upon \(\tau \) (or \(1/x \))

▶ see the talks by D. Triantafyllopoulos and K. Kutak
To DLA, the dipole S–matrix $S_L(r)$ preserves the same functional form as at tree–level, but with a renormalized \hat{q}:

$$S_L(r) \simeq \exp \left\{ -\frac{1}{4} L \hat{q}(L) r^2 \right\}$$

Universality: $\hat{q}_0(L) \to \hat{q}(L)$ in all the quantities related to S

- p_\perp–broadening, radiative energy loss, jet fragmentation ...

BK equation reduces to a relatively simple, linear, equation for $\hat{q}(L)$

$$\hat{q}(L) = \hat{q}_0 + \bar{\alpha} \int_{L} \frac{d\tau}{\tau} \int_{\hat{q}_\tau}^{L} \frac{dp_{\perp}^2}{p_{\perp}^2} \hat{q}(\tau, p_{\perp}^2)$$

- Liou, Mueller, Wu (arXiv: 1304.7677) [p_\perp–broadening]
- Blaizot, Mehtar–Tani (arXiv: 1403.2323) [radiative energy loss]
- E.I. (arXiv: 1403.1996) [evolution of the dipole S–matrix]
To DLA, the dipole S–matrix $S_L(r)$ preserves the same functional form as at tree–level, but with a renormalized \hat{q}:

$$S_L(r) \simeq \exp \left\{ -\frac{1}{4} L\hat{q}(L) r^2 \right\}$$

Universality: $\hat{q}_0(L) \rightarrow \hat{q}(L)$ in all the quantities related to S

$\triangleright p_\perp$–broadening, radiative energy loss, jet fragmentation ...

BK equation reduces to a relatively simple, linear, equation for $\hat{q}(L)$

$$\hat{q}(L) = \hat{q}_0 + \bar{\alpha} \int_\lambda^L \frac{d\tau}{\tau} \int_{\hat{q}\tau}^{\hat{q}L} \frac{dp_\perp^2}{p_\perp^2} \hat{q}(\tau, p_\perp^2)$$

Not the standard DLA limit of the DGLAP or BFKL eqs. : different boundary conditions (multiple scattering) \implies different solutions

Predicts a strong dependence of \hat{q} upon the medium properties: L, T
See the talk by Dionysis Triantafyllopoulos for

- details of the solution
- running coupling effects
- physical implications
Multiple scattering is tantamount to **gluon saturation in the target**

\[L \sim \frac{1}{x} + \Delta L \]

\[Q_s^2(x) \] is proportional to the width of the region where a gluon (with longitudinal fraction \(x \)) can overlap with its sources

- for a shockwave, this region is the SW width \(L \) (fixed and small)
- for a gluon in the medium, this is the gluon longitudinal wavelength:

\[\tau \equiv \Delta x^+ = \frac{1}{p^-} \propto \frac{1}{x} \]

The \(x \)-dependence of \(Q_s^2(x) \) is further amplified by the evolution
Fixed coupling

- Use logarithmic variables, as standard for BFKL, or BK:
 \[Y \equiv \ln \frac{\tau}{\lambda} \text{ (‘rapidity’)} \quad \text{and} \quad \rho \equiv \ln \frac{p_{T}^{2}}{q^{2}} \text{ (‘momentum’)} \]

 \[
 \hat{q}(Y, \rho) = \hat{q}^{(0)} + \bar{\alpha} \int_{0}^{Y} dY_{1} \int_{Y_{1}}^{\rho} d\rho_{1} \hat{q}(Y_{1}, \rho_{1}) \quad \text{with} \quad \rho \geq Y
 \]

- Not the standard DLA (as familiar from studies of DGLAP, or BFKL)!
 \[\text{saturation boundary: } \rho_{1} \geq Y_{1} \text{ (multiple scattering)} \]

- Straightforward to solve via iterations (Liou, Mueller, Wu, 2013)

 \[
 \hat{q}_{s}(Y) = \hat{q}^{(0)} \frac{I_{1}(2\sqrt{\alpha} Y)}{\sqrt{\alpha} Y} = \hat{q}^{(0)} \frac{e^{2\sqrt{\alpha} Y}}{\sqrt{4\pi}(\sqrt{\alpha} Y)^{3/2}} \left[1 + \mathcal{O}(1/\sqrt{\alpha} Y) \right]
 \]

- Rapid increase at large \(Y \), with ‘anomalous dimension’ \(2\sqrt{\alpha} \sim 1 \)

- The standard artifact of using a fixed coupling (recall e.g. BK)
One–loop QCD running coupling:

$$\bar{\alpha} \rightarrow \bar{\alpha}(\rho_1) \equiv \frac{b}{\rho_1 + \rho_0}$$

$$\hat{q}(Y, \rho) = \hat{q}^{(0)} + b \int_0^Y dY_1 \int_{Y_1}^\rho \frac{d\rho_1}{\rho_1 + \rho_0} \hat{q}(Y_1, \rho_1)$$

The standard DLA with RC (no saturation boundary) would give

$$\hat{q}(Y, \rho) = \hat{q}^{(0)} I_1(2\sqrt{bY \ln \rho}) \propto e^{2\sqrt{bY \ln \rho}}$$

The actual solution is very different (and much more complicated!)

$$\ln \hat{q}_s(Y) = 4\sqrt{bY} - 3|\xi_1|(4bY)^{1/6} + \frac{1}{4} \ln Y + \kappa + O(Y^{-1/6})$$

$\triangleright \xi_1 = -2.338 \ldots$ is the rightmost zero of the Airy function

Surprisingly similar to the asymptotic expansion of $\ln Q^2_s(Y)$ for a SW

(Mueller, Triantafyllopoulos, 2003; Munier, Peschanski, 2003)
The enhancement factor $\hat{q}_s(Y)/\hat{q}^{(0)}$ as a function of Y:

Results are numerically similar up to $Y \approx 3$, but for larger Y, the rise is much faster with FC.
The enhancement factor $\hat{q}_s(Y)/\hat{q}^{(0)}$ as a function of Y:

Interestingly, the phenomenologically relevant values are $Y = 2 \div 3 \Rightarrow$ enhancement $= 2 \div 3$ with both FC and RC
Jet quenching

- Nuclear modification factor, di–hadron azimuthal correlations ...

- Energy loss & transverse momentum broadening by the leading particle
Additional energy imbalance as compared to p+p: 20 to 30 GeV

Compare to the typical scale in the medium: $T \sim 1$ GeV (average p_\perp)

Detailed studies show that the ‘missing energy’ is carried by many soft ($p_\perp < 2$ GeV) hadrons propagating at large angles
Radiative energy loss (1)

- Consider the radiation by a very energetic, eikonal, quark, for simplicity

\[
\begin{align*}
0 & \quad y^+ & \quad x^+ & \quad L \\
& \quad \infty & \quad L & \quad x^+ & \quad y^+ & \quad 0
\end{align*}
\]

- Once again, the cross-section can be related to (adjoint) dipoles:

\[
\begin{align*}
0 & \quad y^+ & \quad x^+ & \quad L \\
x_0 = 0
\end{align*}
\]
The only difference w.r.t. p_{\perp}–broadening:

the radiated gluon within the 1st dipole (K) is not eikonal anymore
However, the radiated gluon is relatively hard, $k^+ \sim \omega_c$, so the hierarchy is preserved between radiation and fluctuations: $\omega \ll k^+$

During the relatively short lifetime $t_2 - t_1 = \tau$ of the fluctuation (ω), the radiated gluon (k^+) can be treated as eikonal.

Then the same arguments apply as in the case of p_\perp–broadening:

\[\hat{q}^{(0)} \rightarrow \hat{q}_{\tau_f}(k_\perp^2) \quad \text{... in agreement with J.-P. Blaizot and Y. Mehtar-Tani} \]