INTRODUCTION

National exploration of ethnomedicine by looking at local knowledge and medicinal plants in Indonesia was carried out in 2012, observing 209 ethnic groups in 26 provinces (project known as Ristoja). The objective of Ristoja was to provide a database of ethnomedicine comprising local knowledge of herbal formulas and medicinal plants in Indonesia. Ristoja identified 15,733 used herbal formulas and 19,738 items of medicinal plant information in these herbal formulas are used across 1,740 species. Herbal formulas were found which aimed to treat diseases covered by Ministry of Health programmes, including HIV-AIDS, tuberculosis, malaria, maternal and child health and cancer (Wahyono, 2013).

Kaempferia galanga L., known in Indonesia as kencur, is a medicinal plant used empirically by 109 ethnic groups and ranked as the 16th most used medicinal plant in traditional herbal formulas. The plant’s rhizomes and leaves are used to treat common colds, coughs, wounds, headaches, ulcers, breast cancer, asthma and as an after-childbirth treatment (Wahyono, 2013).

Kaempferia galanga L. is a species in the family of Zingiberaceae, is perennial herbaceous plant and widely used as a medicinal plant, as a spice and in perfumery. K. galanga is possibly native to India, and distributed and widely cultivated throughout Southeast Asia, including southern China, Malaysia, Indonesia, and also introduced into northern Australia (Ibrahim, 1999). The plant is traditionally used for pharmacological treatments, since it has anti-inflammatory, analgesic (Umar, Zaini Bin Asmawi, Sadikun, Altaf, & Iqbal, 2011), antioxidant and antimicrobial properties (Rao V & Kaladhar, 2014).

Rhizomes of K. galanga have been reported to have volatile oils with 50 constituents (97.19% of the oil), including ethyl cinnamate, ethyl-p-methoxycinnamate, γ-cadinene, 1,8-cineole, δ-carene, borneol, ethyl-m-methoxycinnamate, camphene, linoleoyl chloride and α-pinene (Kumar, 2014).

Currently, K. galanga has been reported to be an endangered species, even though it is valuable as a medicinal and aromatic plant (Preetha, Hemanthakumar, & Krishnan, 2016). In its natural habitat the plant exhibits poor natural rhizomatous growth and reproduction, making it susceptible to habitat loss and overharvesting. The plant is also threatened by the introduction of exotic species and the expansion of agricultural land. Therefore, conservation efforts are necessary to protect this important medicinal plant.

ARTICLE INFO

Keywords:
Database
Genetic diversity
Inter-simple sequence repeats
Kaempferia galanga L.

Article History:
Received: March 2, 2018
Accepted: December 30, 2019

* Corresponding author:
E-mail: dyah.subositi@gmail.com
propagation (Shirin, Kumar, & Mishra, 2000); in addition, deforestation and over-exploitation have further reduced the plant population. Diversity assessment is required to enable genetic resources to be exploited for plant improvement (Pandotra, Gupta, Husain, Gandhiram, & Gupta, 2013). Genetic diversity can be analysed based on agronomic, biochemical, physiological, morphological and molecular markers (Moulin, Rodrigues, Gonçalves, Sudré, & Pereira, 2012). The weakness of morphological and biochemical characteristics in this evaluation is that they are influenced by environmental factors. Molecular markers are independent of environmental effects, fairly stable and show a high level of polymorphism (Prashanth, Yugander, & Bhavani, 2015). Selection of effective molecular markers is necessary for studying genetic diversity among plant accessions.

ISSR has several advantages as a tool for assessing plant genetic diversity in comparison to other molecular marker techniques such as Random Amplified Polymorphic DNA (RAPD). ISSR is a powerful tool for use as a fingerprinting technique because of its greater reliability and reproducibility of DNA fragments, and its ability to reveal more polymorphic bands. In addition, the primer is longer than RAPD primer and anneals at higher temperatures, also prior sequence information is not required (Prashanth, Yugander, & Bhavani, 2015; Zheng et al., 2015). Furthermore, ISSR has been used successfully for studying interspecific and intraspecific genetic diversity of the Zingiberaceae family, including Curcuma alismatifolia (Taheri, Abdullah, Abdullah, & Ahmad, 2012), Kaempferia galanga (Devi et al., 2015), Zingiber officinale (Ghosh, Shylaja, & Nazeem, 2015), Alpinia galanga (Rajasekharan, Kareem, Ravish, & Mini, 2016), Curcuma sp. (Saha, Sinha, Basak, & Sinha, 2016) and Elettaria cardamomum (Anjali, Ganga, Nadiya, Shefeek, & Sabu, 2016), Zingiber sp. (Bidyaleima, Kishor, & Sharma, 2019) and Elingera elatior (Ismail, Rafii, Mahmud, Hanafi, & Miah, 2019). Genetic diversity information for K. galanga is needed to provide a medicinal plant database, particularly for further conservation. The aim of this research was to study the genetic diversity of K. galanga, which is used as a medicinal plant by selected ethnic groups in Indonesia, based on ISSR markers.

MATERIALS AND METHODS

The sampling locations were distributed across Sumatera, Sulawesi, Maluku, Nusa Tenggara and West Papua (Fig. 1). Sample collection was carried out in September and October 2014. This study was a continuation of the Ristoja project, collecting plant material to assess genetic diversity of K. galanga. Areas inhabited by 24 ethnic groups were selected as locations for sampling K. galanga, but the plant was found in only 12 ethnic groups.

Plant Materials

Sample selection was based on the K. galanga that was used by traditional healers in herbal formulas (Table 1). Fresh young leaves were harvested directly from the plant, preserved using silica gel and wrapped in paper bags (as used for DNA samples).

Table 1. Sample of K. galanga from 12 locations in Indonesia

No	Local names	Ethnic group	Region/province
1.	Kencur	Klute	Aceh
2.	Kopuk	Mentawai	West Sumatera
3.	Cakua	Minangkabau	West Sumatera
4.	Kencur	Sakai	Riau
5.	Cekua	Rejang	Bengkulu
6.	Kencur	Muko-muko	Bengkulu
7.	Cekur	Musi	South Sumatera
8.	Tukuyo	Buol	Central Sulawesi
9.	Gumopot	Kaidipang	North Sulawesi
10.	Kencur	Alune	Maluku
11.	Omomongere	Togutil	North Maluku
12.	Kencur	Sentani	Papua

DNA Extraction

The leaf samples for each accession from the field collections were scaled into 0.1 g samples and stored in a deep freezer (at -80°C) until it was used. Total genomic DNA was extracted from these samples using DNA kit isolation (Sigma GenEluteTM Plant Genomic DNA Miniprep Kit, Catalog Number G2N70). The procedure for DNA genome isolation was following the kit manual. The quality and quantity of extracted genomic DNA were determined using a spectrophotometry method using a UV-Vis spectrophotometer (UV-Vis spectrophotometer from Shimadzu, Japan) with absorbance at 260/280 nm and were also checked on electrophoresis 0.8% agarose gels at 100 V for 30 minutes (Bio-Rad, USA).
Table 2. Total number of DNA fragments and polymorphism percentage of 12 *Kaempferia galanga* accessions using 10 ISSR primers

No	Primer sequences	Total fragments	Monomorphic fragments	Polymorphism percentage (%)	Fragment size (bp)
1.	(AG)8T	11	0	100	215-2,540
2.	(ACTG)5	10	0	100	310-2,265
3.	(CAG)5	9	2	77.8	315-2,050
4.	(CA)6GT	10	2	80	270-1,710
5.	(AG)9C	9	1	88.9	210-1,130
6.	(GA)8CTT	16	0	100	225-1,775
7.	(AC)9G	11	0	100	290-1,635
8.	(TG)8C	9	0	100	420-1,790
9.	(AG)8YA	11	1	90.90	220-1,500
10.	(TC)8RG	10	0	100	205-2,130
Total		104	6		
Average					94.23

Fig. 1. DNA fragments from amplification of *K. galanga* using ISSR primer (a). (GA)8CTT, (b) (CA)6GT, (c) (CAG)5, (d) (TC)8RG. (L) Ladder 100 bp (1) Klue (Aceh), (2) Mentawai (West Sumatera), (3) Minangkabau (West Sumatera), (4) Sakai (Riau), (5) Rejang (Bengkulu), (6) Muko-muko (Bengkulu), (7) Musi (South Sumatera), (8) Buol (Central Sulawesi) (9) Kaidipang (North Sulawesi), (10) Alune (Maluku), (11) Togutil (North Maluku), (12) Sentani (Papua)
ISSR Amplification

Ten out of 25 ISSR primers for the first screening process had a high percentage of polymorphism and these were used for polymerase chain reaction (PCR) amplification (Table 2). The PCR reaction solution contained 25 ng genomic DNA (2 μl template), 1 μl primer, 12.6 μl PCR Mix (Go Taq Green Promega). The distilled water was added into these mixture until the volume reached 25 μl. The ISSR PCR reaction was conducted following the modified protocol of Heikal, Badawy, & Hafez (2008) with time and temperature modification. DNA amplification was performed using a thermal cycler (C-1000 Bio-Rad, USA) with a cycle program consisting of 95°C for 3 minutes (pre-denaturation), followed by 39 cycles of denaturation at 95°C for 1 minute, annealing at 46–52°C for 50 seconds and 72°C for 2 minutes (elongation), and at 72°C for 8 minutes (extension) as final cycle and 4°C as the holding temperature.

The amplified products were depicted using 1.8% gel agarose stained using SYBR Safe Green (Invitrogen) for electrophoresis in 1 x TBE buffer at constant 60 Volt or 80–90 minutes. Visualisation of electrophoresis gel using UV light was carried out and documented using a gel documentation system (Imaging System XR + Bio-Rad, USA).

Data Analysis

DNA fragments of the PCR product were scored for presence (1) or absence (0) of each primer used and in all accessions. Similarity indexes of all accessions were calculated based on Dice similarity (Nei & Li, 1979). The dendrogram was constructed using Unweighted Pair Group Method Using Arithmetic Mean (UPGMA) cluster analysis. This data analysis was performed by NTSYS software ver. 2.0 (Rohlf, 1998).

RESULTS AND DISCUSSION

Ten ISSR primers generated 104 DNA fragments from 12 accessions of K. galanga. The average number of fragments for each primer was 10.4. DNA fragments with size ranged from 205–2,540 bp (Table 1). These results show that the ISSR primer generated total fragments and a polymorphism percentage greater than the previous study by Devi et al. (2015), in which the genetic diversity of K. galanga from India was assessed. In that study, 11 ISSR primers produced only 72 reproducible fragments ranging from 200–1,000 bp in size, with a polymorphism average of 81.94% across eight K. galanga cultivars.

The largest percentage of polymorphic fragments (100%) was produced using primers (AG)8T, (ACTG)5, (GA)8CTT, (AC)9G, (TG)8C and (TC)8RG, and the smallest percentage (77.8%) was obtained by (CAG)5. Pandotra, Gupta, Husain, Gandhiram, & Gupta (2013) reported ISSR primers using tri-nucleotides generated lower polymorphism than ISSR primers with di-nucleotides in Zingiber officinale cultivars from the northwest Himalayan region. Furthermore, tetranucleotide ISSR primer was found more polymorphic than trinucleotide primer. The similar results were found in rice varieties genetic variability study using ISSR markers, suggesting for microsatellite marker development in rice varieties better using certain tetranucleotide motifs than trinucleotide (Blair, Panaud, & McCouch, 1999). The observed high percentages of polymorphic fragments generated using the different ISSR primers indicates genetic diversity among K. galanga accessions. According to Herison, Sutjahjo, Sulastrini, Rustikawati, & Marwiyah (2018), the level of polymorphism of DNA could be linear to the level of molecular variation among accessions, depending on accession tested and molecular markers used. Differences in DNA fragment patterns are amplified using ISSR primers through deletion/insertion or loss of primary binding sites, resulting in polymorphic fragments (Theanphong, Jenjittikul, Mingvanish, & Rungsishirunrat, 2018).

Hao et al. (2006) reported that genetic diversity could be shown by the degree of polymorphism of fragments, with loss of genetic diversity of a species indicating low adaptation to climate change. However it is not clearly stated that the level of polymorphism indicates a low adaptation, other factors need to be considered (Chaudhary et al., 2012). Amplification using several ISSR primers showed presence or absence of specific fragments in some accessions (Fig. 1. b–d). The specific DNA fragment for accessions may be applied for accession discrimination or authentication in certain accessions of K. galanga. Jianming et al. (2006) reported that Populus accessions possible to identified using unique or specific DNA fragments produced from each primer.

The similarity index (SI) of K. galanga accessions was used to develop dendrograms, and shows a clear separation of all accessions. The
dendrogram divided the 12 *K. galanga* accessions into four major clusters of SI 61.12%. Index similarity among accessions ranged from 49.6–93.3%, indicating high genetic diversity. Devi et al. (2015) reported that the genetic similarity of eight *K. galanga* cultivars from India ranged from 35.9–94.9%.

Cluster I consisted of *K. galanga* from different geographical locations – Sumatera, Sulawesi, and Maluku Island – and showed them to be closely related (Fig. 2). It can be inferred that the parental lines or ancestor in *K. galanga* accessions from different origins may share a similar genetic background (Devi et al., 2015). Accessions from Musi and Rejang did not group in cluster I, which consists of *K. galanga* accessions from a location in the same island (Sumatera: Muko-muko, Mentawai, Sakai, Kluet and Minangkabau). According to Pharmawati & Candra (2015), a *Pogostemon cablin* sample from a closer location was not grouped in the same cluster. Singh, Panda, & Nayak (2012) reported that *Curcuma longa* accessions collected from ten different agroclimates in India based on RAPD and ISSR molecular markers showed no relationship between dendrogram grouping patterns with accession collection locations. Similar results were found in 57 accessions of *Etlingera elatior* from seven states in Malaysia, there was no correlation between molecular grouping based on ISSR and their geographical origin (Ismail, Rafii, Mahmud, Hanafi, & Miah, 2019).

At Cluster II – IV, each cluster had one accession of *K. galanga*. Cluster II and III consisted of *K. galanga* from Sumatera (Rejang and Musi), with *K. galanga* from Papua in cluster IV. A single cluster that consists of one *K. galanga* accession could indicate the existence of wide genetic variability. A single cluster separated from the main cluster was also found in the *Curcuma longa* accession in India based on RAPD molecular marker, indicating that there was a high gene diversity and a strong genetic structure between accessions of *C. longa* (Ashraf, Ahmad, Adnan Ali Shah, & Mujeeb, 2017).

The Kaidipang and Buol accessions were the most similar, with SI of 93.33%. These accessions are from the Northern Sulawesi region. High SI among accessions is slightly correlated to their close geographic locations (Shafie, Zain Hasan, Zain, & Shah, 2011). Plants exhibiting clonal propagation usually have low genetic variation. Low genetic diversity results in a decreased ability to adapt to the environment, as well as decreasing product quality and yield. Zheng et al. (2015) reported that people often select robust rhizomes of *Curcuma wenyujin* to generate new generations with identical genetic makeup, and these are probably more likely to accumulate deleterious mutations that reduce genotype diversity.

![Dendrogram of 12 K. galanga accessions based on ISSR molecular markers](image)

Fig. 2. Dendrogram of 12 *K. galanga* accessions based on ISSR molecular markers
ACKNOWLEDGEMENT

The authors grateful to thank to Medicinal Plant and Traditional Medicine Research and Development Center, NIHRD-MOH for the funding this research on 2014.

REFERENCES

Anjali, N., Ganga, K. M., Nadiya, F., Shefeek, S., & Sabu, K. K. (2016). Intraspecific variations in cardamom (Elettaria cardamomum Maton): assessment of genomic diversity by flow cytometry, cytological studies and ISSR analysis. SpringerPlus, 5(1), 1560. https://doi.org/10.1186/s40064-016-3226-x

Ashraf, K., Ahmad, A., Adnan Ali Shah, S., & Mujeeb, M. (2017). Genetic diversity in accessions of Indian turmeric (Curcuma longa L.) using RAPD markers. International Journal of Pharmacy and Pharmaceutical Sciences, 9(10), 288–291. https://doi.org/10.22159/ijpps.2017v9i10.18715

Bidyaleima, L., Kishor, R., & Sharma, G. J. (2019). Chromosome numbers, RAPD and ISSR profiles of six Zingiber species found in Manipur, India. Biodiversitas, 20(5), 1389–1397. https://doi.org/10.13057/biodiv/d200531

Blair, M. W., Panaud, O., & McCouch, S. R. (1999). Inter-simple sequence repeat (ISSR) amplification for analysis of microsatellite motif frequency and fingerprinting in rice (Oryza sativa L.). Theoretical and Applied Genetics, 98(5), 780–792. https://doi.org/10.1007/s001220051135

Chaudhary, A. A., Dhar, U., Ahmad, A., Bhatt, I. D., Jugran, A., & Kaur, G. (2012). Analysis of genetic diversity in Hedychium spicatum Buch. Ham. ex. D. Don in West Himalaya, India. Journal of Medicinal Plants Research, 6(23), 3984–3991. Retrieved from https://academicjournals.org/journal/JMPR/article-full-text-pdf/340916C23327

Das, A., Gaur, M., Barik, D. P., & Subudhi, E. (2017). Genetic diversity analysis of 60 ginger germplasm core accessions using ISSR and SSR markers. Plant Biosystems, 151(5), 822–832. doi.org/10.1080/11263504.2016.1211197

Devi, K. D., Singh, S. B., Singh, N. S., Chingakham, B. S., Punyaran, K., & Devi, H. S. (2015). Evaluation of genetic relationships and chemical assay of Kaempferia galanga L. cultivars found in Manipur, North-East India. International Journal of Recent Scientific Research, 6(6), 4366–4373. Retrieved from https://www.recentscientific.com/sites/default/files/178.pdf

CONCLUSION

ISSR molecular markers were used for grouping and assessing genetic diversity of Kaempferia galanga accessions collected from 12 locations. The genetic Similarity Index of K. galanga ranged from 49.6–93.3%, indicating a high level of genetic diversity among accessions. In general, high genetic diversity in K. galanga was due to the various environmental conditions found in its wide distribution area in Indonesia. Analysis of more accessions from different locations and using another molecular marker would provide complete information of genetic diversity of K. galanga accessions in Indonesia.
Ghosh, P., Shylaja, M., & Nazeem, P. A. (2015). RAPD marker based DNA fingerprinting in released varieties and selected superior somaclones of ginger (Zingiber officinale Rosc.). The Bioscan, 10(1), 55–61. Retrieved from http://www.thebioscan.in/Journals_PDF/10110

Hao, B., Li, W., Linchun, M., Li, Y., Rui, Z., Mingxia, T., & Weikai, B. (2006). A study of conservation genetics in Cypres suis chengiana, an endangered endemic of China, using ISSR markers. Biochemical Genetics, 44(1-2), 29-43. https://doi.org/10.1007/s10528-006-9011-8

Heikal, A. H., Badawy, O. M., & Hafez, A. M. (2008). Genetic relationships among some Stevia (Stevia rebaudiana Bertoni) accessions based on ISSR analysis. Research Journal of Cell and Molecular Biology, 2(1), 1–5. Retrieved from http://arnmsmb.com/old/rjcmd/rcmb/2008/1-5.pdf

Herison, C., Sutjahjo, S. H., Sulastri, I., Rustikawati, & Marwiyah, S. (2018). Genetic diversity analysis in 27 tomato accessions using morphological and molecular markers. AGRIVITA Journal of Agricultural Science, 40(1), 36–44. https://doi.org/10.17503/agrivita.v40i1.726

Ibrahim, H. (1999). Kaempferia galanga L. In L. S. de Padua, N. Bunyapraphatsara, & R. H. M. J. Lemmons (Eds.), Plant resources of South-East Asia No. 12: Medicinal and poisonous plants 1 (p. 334). Leiden, The Netherlands: Backhuys Publishers. Retrieved from https://prota4u.org/archives/2016/vol4issue3/PartD/4-3-8-414.pdf

Ismail, N. A., Rafii, M. Y., Mahmud, T. M. M., Hanafi, M. M., & Miah, G. (2019). Genetic diversity of torch ginger (Etinglera elatior) germplasm revealed by ISSR and SSR markers. BioMed Research International, 2019(5904804), 1–14. https://doi.org/10.1155/2019/5904804

Jianning, G., Shouqong, Z., Liwang, Q., Yong, Z., Chunguo, W., & Wenqin, S. (2006). ISSR and AFLP identification and genetic relationships of Chinese elite accessions from the genus Populus. Annals of Forest Science, 63(5), 499-506. https://doi.org/10.1051/forest:2006031

Kumar, A. (2014). Chemical composition of essential oil isolated from the rhizomes of Kaempferia galanga L. International Journal of Pharma and Bio Sciences, 5(1), 225–231. Retrieved from https://ijpbs.net/abstract.php?article=Mkj5MA=

Moulin, M. M., Rodrigues, R., Gonçalves, L. S. A., Sudré, C. P., & Pereira, M. G. (2012). A comparison of RAPD and ISSR markers reveals genetic diversity among sweet potato landraces (Ipomoea batatas (L.) Lam.). Acta Scientiarum. Agronomy, 34(2), 139–147. https://doi.org/10.4025/actasciagron.v34i2.12616

Nei, M., & Li, W. H. (1979). Mathematical model for studying genetic variation in terms of restriction endonucleases. Proceedings of the National Academy of Sciences of the United States of America, 76(10), 5269–5273. https://doi.org/10.1073/pnas.76.10.5269

Pandotra, P., Gupta, A. P., Husain, M. K., Gandhiram, & Gupta, S. (2013). Evaluation of genetic diversity and chemical profile of ginger cultivars in north-western Himalayas. Biochemical Systematics and Ecology, 48, 281–287. https://doi.org/10.1016/j.bse.2013.01.004

Pharmawati, M., & Candra, I. P. (2015). Genetic diversity of patchouli cultivated in Bali as detected using ISSR and RAPD markers. Biodiversitas, 16(2), 132–138. https://doi.org/10.13057/biodiv/d160205

Prashanth, N., Yugander, A., & Bhavani, N. L. (2015). DNA isolation and PCR amplification of turmeric varieties from Telangana State. International Journal of Current Microbiology and Applied Sciences, 4(5), 485–490. Retrieved from https://www.ijomics.com/vol-4-5/N. Prashanth, et al.pdf

Preetha, T. S., Hemanthakumar, A. S., & Krishnan, P. N. (2016). A comprehensive review of Kaempferia galanga L. (Zingiberaceae): A high sought medicinal plant in Tropical Asia. Journal of Medicinal Plants Studies, 4(3), 270–276. Retrieved from http://www.plantsjournal.com/archives/2016/vol4issue3/PartD/4-3-8-414.pdf

Rajasekharan, P., Kareem, V. A., Ravish, B., & Mini, S. (2016). Analysis of genetic diversity in Alpinia galanga using ISSR markers. Indian Journal of Plant Genetic Resources, 29(2), 194–198. https://doi.org/10.5958/0976-1926.2016.00028.0

Rao V. N., & Kaladhar, D. (2014). Antioxidant and antimicrobial activities of rhizome extracts of Kaempferia galanga. World Journal of Pharmacy and Pharmaceutical Sciences, 3(5), 1180–1189. Retrieved from https://www.researchgate.net/publication/262817682_ANTIOXIDANT_AND_ANTIMICROBIAL_ACTIVITIES_OF_RHIZOME_EXTRACTS_OF_Kaempferia_galanga

Rohlf, F. J. (1998). NTSYS-p.c. numerical taxonomy and multivariate analysis system (Version 2.0). Setauken, NY: Exeter Software Publishers Ltd.
Saha, K., Sinha, R. K., Basak, S., & Sinha, S. (2016). ISSR fingerprinting to ascertain the genetic relationship of Curcuma sp. of Tripura. *American Journal of Plant Sciences, 7*(2), 259–266. https://doi.org/10.4236/ajps.2016.72025

Shafie, S. B., Zain Hasan, S. M., Zain, A. M., & Shah, R. M. (2011). RAPD and ISSR markers for comparative analysis of genetic diversity in wormwood capillary (*Artemisia capillaris*) from Negeri Sembilan, Malaysia. *Journal of Medicinal Plant Research, 5*(18), 4426–4437. Retrieved from http://www.academicjournals.org/app/webroot/article/article1380724457_Shafie et al.pdf

Shirin, F., Kumar, S., & Mishra, Y. (2000). In vitro plantlet production system for *Kaempferia galanga*, a rare Indian medicinal herb. *Plant Cell, Tissue and Organ Culture, 63*(3), 193–197. https://doi.org/10.1023/A:1010635920518

Singh, S., Panda, M. K., & Nayak, S. (2012). Evaluation of genetic diversity in turmeric (*Curcuma longa* L.) using RAPD and ISSR markers. *Industrial Crops and Products, 37*(1), 284–291. https://doi.org/10.1016/j.indcrop.2011.12.022

Taheri, S., Abdullah, T. L., Abdullah, N. A., & Ahmad, Z. (2012). Genetic relationships among five varieties of *Curcuma alismatifolia* (Zingiberaceae) based on ISSR markers. *Genetics and Molecular Research, 11*(3), 3069–3076. https://doi.org/10.4238/2012.August.31.4

Theanphong, O., Jenjittikul, T., Mingvanish, W., & Rungshirunrat, K. (2018). Phylogenetic relationships of *Kaempferia* plants based on inter-simple sequence repeat fingerprints. *Songklanakarin Journal of Science and Technology, 40*(3), 617–622. https://doi.org/10.14456/sjst-psu.2018.81

Umar, M. I., Zaini Bin Asmawi, M., Sadikun, A., Altaf, R., & Iqbal, A. M. (2011). Phytochemistry and medicinal properties of *Kaempferia galanga* L. (Zingiberaceae) extracts. *African Journal of Pharmacy and Pharmacology, 5*(14), 1638–1647. https://doi.org/10.5897/AJPP11.388

Wahyono, S. (2013). *Laporan Nasional: Eksplorasi pengetahuan lokal etnomedisin dan tumbuhan obat di Indonesia berbasis komunitas*. Riset Tumbuhan Obat dan Jamu (RISTOJA) 2012. Jakarta, ID: Badan Penelitian dan Pengembangan Kesehatan Kementerian Kesehatan RI. Retrieved from http://labdata.litbang.depkes.go.id/images/download/laporan/RiKHUS2012/LaporanNasional_Ristoja2012.pdf

Zheng, W. H., Zhuo, Y., Liang, L., Ding, W. Y., Liang, L. Y., & Wang, X. F. (2015). Conservation and population genetic diversity of *Curcuma wenyujin* (Zingiberaceae), a multifunctional medicinal herb. *Genetics and Molecular Research, 14*(3), 10422–10432. https://doi.org/10.4238/2015.September.8.3

Copyright © 2020 Universitas Brawijaya