Phytochemical and Pharmacological Aspects of *Cucurbita moschata* and *Moringa oleifera*

Sandhya Suresh*, S S Sisodia

Bhupal Nobles’ College of Pharmacy, Udaipur-313001, Rajasthan, India

Abstract

Presently research on herbal drug has attracted a lot of attention globally. The herbal drugs are consisting of phytoconstituents that offer therapeutic effects against various diseases. Till date researchers reported significant potential of herbal drugs employed in various traditional, complementary and alternative systems. The pharmacological activity and phytochemical of several medicinal plants has been scientifically documented. *Cucurbita moschata* and *Moringa oleifera* are the medicinal plant and used as nutraceuticals, food supplements, folk medicines, pharmaceutical intermediates and chemical entities for synthetic drug. The present review is useful for up-to-date investigations on the medicinal activity of *Cucurbita moschata* and *Moringa oleifera*.

1 Introduction

The plant kingdom is a chief source of synthetic and herbal drugs. In the recent years there has been an increasing awareness about the importance of medicinal plants. Drugs from the plants are easily available, less expensive, safe, efficient and minimum side effects. Plants are the richest resource of drugs of traditional systems of medicine, modern medicines, nutraceuticals, food supplements, folk medicines, pharmaceutical intermediates and chemical entities for synthetic drug. Additionally the worldwide medicinal plants as a substitute for conventional drugs in the management of different diseases has been increasing due to the unavailability of modern health facilities, relative availability of medicinal herbs, poverty, and recent revelations that they possess active compounds that may be responsible for different biological and pharmacological actions.

The secondary metabolite namely alkaloids, cardiac glycosides, steroids, saponins, tannins, flavonoids etc are present in different parts of the plant and imparts various types of pharmacological activity. It is estimated that more than 250,000 to 500,000 species of higher plants on globe level were suggested as medicinal plants. The *people living in the developing countries* are depending on traditional and complementary medicines for their basic health care. Hence, the objective of this review is to summarize to date scientific studies on the phytochemical and pharmacological properties of *Cucurbita moschata* and *Moringa oleifera*.

2 Cucurbita moschata

Medicinal plants are the gifts of the nature to cure limitless number of diseases among human beings. It played a crucial role in maintaining human health and improving the quality of human life for thousands of years. The use of plants as medicine is increasing in the developed world because they have minor or no side effects. In India, medicinal plants are widely used by all sections of people either directly as folk medicines or in different indigenous systems of medicines or indirectly in the pharmaceutical preparations of modern medicines.

Cucurbita moschata is an important horticultural crop that belongs to family Cucurbitaceae, also known as cucurbits. The Cucurbitaceae family consists of 90 genera and approximately 700 species. The Cucurbitaceae are characterised by long flexible stems, a crawling or climbing growth habit and fruit that differ widely in colour and shape, having a thick and impermeable skin protecting a juicy fibrous pulp. Five species
are grown worldwide for their edible fruit, variously known as squash, pumpkin, or gourd depending on species, variety, and local parlance, and for their seeds\(^3\) (Fig. 1).

![Fig 1: fruit and seeds of Cucurbita moschata](image)

Cucurbita moschata commonly called 'Kadoo' in Hindi while squash in English. It grows as a large annual vine and has large, showy, yellow-orange flowers and round, lobed leaves, often with fine hairy prickles. *Cucurbita* or *Pumpkin* has received considerable attention in recent years because of the nutritional and health protective value of the seeds as well as the polysaccharides from the fruits. *Pumpkin* fruit is widely grown low-calorie vegetables that are rich in carotenoid content, vital antioxidants, carbohydrates, vitamin A, flavonoid, polyphenolic antioxidants such as lutein, xanthin. *Pumpkin* have a lot of health benefits such as antidiabetic, anticancer, antihypertension, antioxidant, antitumor, immunomodulation, anti-inflammation, antihyperlipidemic, and antimicrobial. Consumption of *pumpkin* helps to prevent skin diseases, eye disorders reducing cell damage in the body, cancer and improve immune function.

The Pumpkin seed is excellent source of protein and also has pharmacological activities such as antidiabetic, antifungal, antibacterial, anti-inflammation activities and antioxidant effects. It has obtained considerable attention in recent years because of the nutritional and health protective values of the seeds. *Pumpkin* seed oil contains mono and polyunsaturated fatty acids as well as saturated ones like palmitic acid, stearic acid, oleic acid and linoleic acid\(^4,5\).

2.1 Botanical classification

Kingdom	Plantae
Division	Tracheophyta
Class	Magnoliopsida
Order	Cucurbitales
Family	Cucurbitaceae
Genus	Cucurbita
Species	Cucurbita moschata

2.2 Vernacular names

Common name -	Pumpkin, Squash
Hindi -	Kaddu, Kashiphal, Petha
Tamil -	Pucani
Kannada -	Kumbala kaayi
Malayalam -	Kumpalam
Marathi -	kashiphal, kaia bhopala
Assamese -	Kumra
Telugu -	Gummadi
Bengali -	Kumara
Urdu -	Kaddu

2.3 Geographical distribution

Cucurbita moschata is a species originating in either Central America or northern South America. It is also found in North America, Australia and different countries of Africa (Zambia, Nigeria), Asia (China, India and Iran) and Europe(Spain and Turkey).

2.4 Botanical description

Cucurbita moschata is an annual herb with climbing, creeping 5-angled stems up to 15 m long. The leaves are simple, alternate, broadly ovate to deltoid, basally cordate, apically acute, palmately lobed with 5-7 lobes, marginally toothed, Velvety-hairy, scabrous, palmately veined, 20-30 cm long, and 10-35 cm broad.

Stems are scabrous and setose, branching, often rooting at the nodes. Petioles are setose, grooved, 6-24 cm long, and estipulate. The plant bears tendrils borne at 90 degrees to the leaf insertion, which are coiled, and 1-6-branched.

The shallow root system is branched, growing from a well-developed taproot.
Flowers are solitary, unisexual, regular, 5-merous, large, 10–20 cm in diameter, lemon yellow to deep orange; sepals free, subulate to linear, 1–3 cm long; corolla campanulate, with widely spreading lobes. Single axillary flowers (male typically long-stalked with three stamens and female typically short-stalked with 3 two-lobed stigmas) are creamy white to orang-yellow and bloom in late spring. Stalks to thicken at the points were the fruits appear. Fruits generally have distinctive orange flesh. Plants produces a variety of fruits which vary considerably in size and shape. Fruit a large, globose to ovoid or cylindrical berry, weighing up to 10 kg, with a wide range of colours, often covered with green spots and grey stripes, with small, raised, wartlike spots; flesh yellow to orange, many-seeded; fruit stalk enlarged at apex. Seeds obovoid, flattened, 1-2 cm × 0.5-1 cm, usually white or tawny, sometimes dark-coloured, surface smooth to somewhat rough, margin prominent.5,7

2.5 Chemical constituents

The chemical composition of the pumpkin pulp varied between 75.8 and 91.33% moisture, 0.2 and 2.7% crude protein, 0.47 and 2.1% crude ash and 3.1 and 13% carbohydrate content. Pumpkin fruits contain polysaccharides, vitamins (including β-carotene, vitamin A, vitamin B2, α-tocopherol, vitamin C, vitamin E), proteins, essential amino acids (alanine, arginine, aspartic acid, glutamic acid, histidine, leucine, isoleucine, glycine, lysine, methionine, phenylalanine, serine, threonine, valine and tyrosine), valuable antioxidants, phenolics, flavonoids, carotenoids, carotenoids and minerals (especially potassium). Pumpkin is high in β-carotene, which gives it yellow or orange color. Beta-carotene in plants that have a pleasant yellow-orange color is a major source of vitamin A. It is also high in carbohydrates and minerals.3,9

Seeds of pumpkin are rich in oil and the variability in the oil. Pumpkin seeds have a high nutritional value, provides good quality oil, and excellent source of protein. Due to the presence of highly unsaturated fatty acids (palmitic acid, stearic acid, oleic acid and linoleic acid). Pumpkin seed oil is rich in many antioxidants and essential nutritional components like essential fatty acids (FAs), vitamins, squalene, carotenoids, tocopherols, phytoestrogens, phytosterols, polyphenols, hydrocarbon, triterpenoids and selenium. Pumpkins are rich source of calcium, iron, vitamin A, oil (25 -55%), rich in unsaturated oleic and linoleic acids, protein (25 -35%) with high amounts of arginine, aspartate and glutamic acid, but deficient in lysine and sulphur containing amino acids.10

2.6 Traditional uses

Pumpkin helps to prevent skin diseases, measles, jaundice, insomnia, colic, eye disorders reducing cell damage in the body, cancer and improve immune function.

Pumpkin seed oil can retard the progression of hypertension and mitigate hypercholesterolemia, arthritis, reduced bladder and urethral pressure. Pumpkin seed oil has been foundto alleviate diabetes by promoting hypoglycemic activity. Pumpkin seeds have also been associated with lower levels of gastric, breast, lung, colorectal cancer and prostate cancer11,12.

2.8 Pharmacological activities

The pumpkin has pharmacological activities such as anti-diabetic, antihypertension, antitumor, immunomodulation, antifungal, antibacterial and antiinflammation activities, and antioxidant effects (Table -1).

3 Moringa oleifera

Moringa oleifera belongs to the family Moringaceae, commonly known as the ‘drumstick’ or ‘horseradish’ tree. It is an affordable and readily available source of major essential nutrients and nutraceuticals, and it has the potential to eradicate malnutrition. Moringa oleifera is native to the sub-Himalayan tracts of India, Pakistan, Bangladesh and Afghanistan. All parts of the Moringa tree are edible and have long been consumed by humans.25

Drumstick is recognized as a vibrant and affordable source of phytochemicals, having potential applications in medicines, functional food preparations, water purification, and biodiesel production. The multiple biological activities including antiproliferation, hepatoprotective, anti-inflammatory, antinoceptive, antiatherosclerotic, oxidative DNA damage protective, antiperoxidative, cardioprotective. Moringa oleifera are attributed to the presence of functional bioactive compounds, such as phenolic acids, flavonoids, alkaloids, phytosterols, natural sugars, vitamins, minerals, and organic acids (Fig 2).

3.1 Botanical classification

Kingdom - Plantae
Division - Magnoliophyta
Class - Magnoliopsida
Order - Capparales
Family - Moringaceae
Genus - Moringa
Species - Moringa oleifera

3.2 Vernacular names

Common name - Drumstick, horseradish tree
Hindi - Senjana
Tamil - Murungai Maram
Kannada - Nuggekayee
Malayalam - Muringa

UK J Pharm & Biosci, 2018: 6(6); 47
3.3 Geographical distribution

The drumstick tree is a small fast growing ornamental tree which is native to India, Ethiopia, the Philippines and the Sudan, and is being grown in West, East and South Africa, tropical Asia, Latin America, the Caribbean, Florida and the Pacific Islands. The trees are said to have been originated from Agra and Oudh in North Western region of India to South of the Himalayan Mountains. They are cultivated in Asian, African, Middle Eastern and South American regions.

3.4 Botanical description

Moringa oleifera is a fast-growing, deciduous tree. It can reach a height of 10–12 m (32–40 ft) and the trunk can reach a diameter of 45 cm (1.5 ft).

The bark has a whitish-grey colour and is surrounded by thick cork. Young shoots have purplish or greenish-white, hairy bark. The tree has an open crown of drooping, fragile branches and the leaves build up feathery foliage of tripinnate leaves.

Table 1: Reported pharmacological activities of _Cucurbita moschata_

Extract	Pharmacological activity	References
Fruit	Phenolic phytochemicals have anti-diabetic effects in terms of b-glucosidase and a-amylose inhibition	Kwon et al.
Fruit	Purification and characterization of an antifungal PR-5 protein which reduced tumour weight in S-180-bearing mice.	Cheong et al.
Seeds	Purification and characterization of moschatin which efficiently inhibits the growth of targeted melanoma cells M21.	Xia et al.
Fruit	Isolated protein-bound polysaccharide have anti-diabetic effects in diabetic rats	Quanhong et al.
Fruit	Showed a broad spectrum antimicrobial activity against several bacteria	Rajakaruna et al.
Seeds	Beta-carotene has anti-inflammatory properties and regular consumption of pumpkin seeds can protect against joint inflammation	Wang et al.
Fruit peel	Antioxidant and burn wound healing activities	Bahramsooltani et al.
Fruit and seeds	Antidiabetic effect in STZ-induced diabetic mice	Marbun et al.
Fruit and seeds	Effectiveness of Pumpkin Flesh and Seeds Toward Diabetic Mice	Marbun et al.
Flower	Antimicrobial activity	Muruganantham et al.
Leaves	Antibacterial activity against _Staphylococcus aureus, Klebsiella pneumoniae, and Escherichia coli._	del Castillo et al.
Fruit extracts	Anti-inflammatory and antiulcer activity	Govindan et al.

Leaves are alternate, compound tripinnate, petiole slender, leaflets opposite, entire, elliptic, all parts stalked, pale beneath, glands linear, hairy. lowers are fragrant and bisexual, surrounded by five unequal, thinly veined, yellowish-white petals.

The flowers are about 1.0-1.5 cm (1/2”) long and 2.0 cm (3/4”) broad. They grow on slender, hairy stalks in spreading or drooping later flower clusters which have a length of 10–25 cm. The flowers are fragrant and bisexual, surrounded by five unequal, thinly veined, yellowish-white petals. The flowers are about 1.0-1.5 cm (1/2”) long and 2.0 cm (3/4”) broad. Ovary hairy, style slender, tubular, stigma truncate, perforated. Ovules many, 2-seriate on each placenta. Fruit a one-celled, loculicidally 3-valved capsule, pendulous, greenish, 22.5-50.0 cm in length, triangular, 9-ribbed. Seeds many in the depressions of the valves, trigonous, winged; albumen absent, embryo straight.

3.5 Chemical constituents

Moringa oleifera is found to contain non-nutritive chemicals which they use as self-defense mechanism also known as Phytochemicals. These phytochemicals include catechol tannins, gallic tannins, steroids, interpenoids, flavonoids, saponins, antarquinaones, alkaloids and reducing sugars.
Moringa oleifera is rich in compounds containing the simple sugar, rhamnose called glucosinolates and isothiocyanates. The stem contains: 4-hydroxymellein, vanillin, β-sitosterone, octacosanic acid and β-sitosterol and bark, 4-(α-L-rhamnopyranosyloxy)– benzyl glucosinolate. The purified, whole-gum exudates from the drumstick plant contains: Larabinose, D-galactose, D-glucuronic acid, L-rhamnose, D-mannose and D-xylose. The leaves contain quercetin-3-O-glucoside and quercetin-3-O-(6″-malonylglucose), and lower amounts of kaempferol-3-Oglucoside and kaempferol-3-O-(6″-malonyl-glucoside). They also contained 3-caffeoylquinic and 5-caffeoylquinic acid. The whole pods are reported to contain nitriles, an isothiocyanate and thicarbamates and O-[2′-hydroxy-3′- (2″-heptenyloxy)]; propylundecanoate and O-ethyl-[(α-L-rhamnosyloxy)- benzyl] carbamate, methyl-phydroxybenzoate and β-sitosterol. The mucilage from the pods designated as drumstick polysaccharide, the investigation of which revealed the presence of galactose, dextrose, xylene and sodium, potassium, magnesium, calcium salts of glucuronic acid. Contrary to the definition of mucilages, the presence of dextrose was an exception.

3.6 Nutritional analysis Moringa oleifera leaves

Moringa oleifera leaves is a good source of many nutrients in fact they contain larger amounts of several nutrients than the common foods often associated with these nutrients. These include vitamin C, which fights a host of illness including colds and flu; vitamins A, which acts as a shield against eye disease, skin disease, heart ailments, diarrhea, and many other diseases; Calcium which builds strong bones and teeth and helps prevent osteoporosis (Table 2)28-30.

Nutrient	Fresh leaves	Oven dried
Moisture (%)	75.9	6
Energy (Kcal)	92	271.54
Protein (g)	6.7	23.78
Carbohydrates (g)	12.5	28.32
Fat (g)	1.7	7.014
Fibre (g)	0.9	11.8
Vitamin C (mg)	220	56
Beta – carotene (µg)	6780	37800
Iron (mg)	0.85	19
Calcium (mg)	440	3467
Phosphorus (mg)	70	215
Beta carotene (µg)	6780	37800

3.7 Traditional uses

Moringa oleifera leaf powder used as effective soap for hand wash. It is used as an antiseptic. Oil from moringa seeds are used in foods and in hair care products and as a machine lubricant. Moringa is used in India and Africa in feeding programs to fight malnutrition. It is used as an aphrodisiac, boosts immune system. It is used to treat rheumatism, asthma, cancer, constipation, treatment of epilepsy, anemia, anxiety, blackheads, blood impurities, bronchitis, catarrh, chest
congestion, cholera, conjunctivitis, cough, diarrhoea, eye and ear infections, fever, abnormal blood pressure, pain in joints, scurvy, semen deficiency, headaches, tuberculosis, intestinal ulcers, bacterial, fungal, viral and parasitic infections. Moringa works as circulatory and cardiac stimulants, contains antilithogenic, antilulcer, anti-inflammatory, diuretic, antispasmodic, antioxidant, cholesterol lowering, antihypertensive, antiepileptic, antipyretic, hepatoprotective, anti-diabetic, anti-fungal and antibacterial activities (Table 3).

3.8 Pharmacological activities

Plant parts	Pharmacological activity	References
Leaves	Leaves exhibited analgesic potency similar to that of indomethacin	33 Manaheji et al.
Leaves	Antimigraine properties	34 Kanchar PU
Leaves	Neuropathic pain induced by chronic constriction injury	35 Jurairat et al.
Leaves	Anti-inflammatory activity in a carrageenan-induced paw edema model	36 Gurvinder et al.
Roots	Anti-inflammatory activity	37 Ezeamuzie et al.
Leaves	Antipyretic activity in a Brewer’s yeast-induced pyrexia model	38 Bhattacharya et al.
Leaves	Protection against Alzheimer’s disease in a colchicine-induced Alzheimer’s model using behavioral testing	39 Ranira et al.
Leaves	Anxiolytic activity in staircase test and elevated plus maze test	40 Lakshmi et al.
Leaves & flower	Anti-tumour activity; induces the apoptosis of human hepatocellular carcinoma cells	41 Jung et al.
Leaves	Antiproliferative effect of *Moringa oleifera*	42 Tiloke et al.
Leaves & fruits	Antistress, antioxidant, and scavenging potential	43 Luqman et al.
Leaves	Antibacterial and antioxidant activity	44 Kumar et al.
Leaves	Hepatoprotective effects against carbon tetrachloride and acetaminophen-induced liver toxicity	45 Patel et al.
Leaves	Reduced ulcer index in ibuprofen-induced gastric ulcer model and in pyloric ligation test,	46 Dhimmar et al.
Leaves & seeds	Antihypertensive effect on spontaneous hypertensive rats; reduced chronotropic and inotropic effects in isolated frog hearts.	47 Randriamboavonij et al.
Leaves	Antiobesity activity against high fat diet-induced obesity in rats	48 Nahar et al.
Seeds	Protection against asthma; this effect was a direct bronchodilator effect combined with anti-inflammatory and antimicrobial actions	49 Anita et al.
Leaves & seeds	Antihyperglycemic and hypoglycemic activity in alloxan-induced diabetic rats.	50 Odedele et al.
Leaves	Anti-allergenic effect; reduced scratching frequency in an Ovalbumin sensitization model.	51 Hagiwara et al.
Seeds	Anthelmintic activity against Haemonchus contortus eggs and third stage larvae	52 Cabardo et al.
Seeds	Wound healing in diabetic animals showed improved tissue regeneration, decreased wound size, down regulated inflammatory mediators, and upregulated vascular endothelial growth factor in wound tissues	53 Choudhury et al.

4 Conclusion

The review illustrated that *Cucurbita moschata* and *Moringa oleifera* are an important medicinal plant with varied pharmacological spectrum. Almost all parts of *Cucurbita moschata* and *Moringa oleifera* such as leaf, fruit, seed, bark and root are used for treatment of various diseases. The
phytoconstituents present in various part of both plants are accountable for the pharmacological activities. A systemic research and development work should be undertaken for the development of products for their better economic and therapeutic utilization.

5 Conflict of interests
None

6 Author’s contributions
SS and SSS collected the data and drafted the manuscript. Both authors have read and approved the final manuscript.

7 References

1. Shrestha P, Adhikari S, Lamichhane B, Shrestha BG. Phytochemical screening of the medicinal plants of Nepal. IOSR-JESTFT. 2015; 1(6): 11-17.
2. Olorunnisola OS, Fadahunsi OS, Adegbola P. A Review on Ethno-Medicinal and Pharmacological Activities of Sphenocentrum jollyanum Pierre. Medicines. 2017; 4: 50.
3. Burrows GE, Tyrl RJ. Toxic Plants of North America. Oxford: Wiley-Blackwell. 2013; 389–391.
4. Elella FA, Mourad R. Anticancer and anti-oxidant potentials of ethanolic extracts of Phoenix dactylifera, Musa acuminata, and Cucurbita maxima. Res J Pharm Biol Chem Sci 2015;6:710-20.
5. Sharma A, Sharma AK, Chand T, Khardiya M, Yadav KC. Antidiabetic and anti-hyperlipidemic activity of Cucurbita maxima (Pumpkin) seeds on streptozotocin induced diabetic rats. J Pharmacogn Phytochem 2013;1:108-16.
6. Towensend CC, Guest E, Omer SA. Flora of Iraq. Ministry of Agriculture and Agrarian Reform, Repobic of Iraq. 1980; 4: 206- 208.
7. Mabberley DJ. The Plant Book: A Portable Dictionary of the Vascular Plants. Cambridge: Cambridge University Press. 2008; 235.
8. Chigwe CB, Saka VW. Collection and Characterization of Malawi Pumpkin Germplasm. Zim. J. Agric. Res. 1994; 32(2):139-149.
9. Craig WJ. Phytochemicals: guardians of our health. J Am Diet Assoc. 1994; 97(7):1-11.
10. Fahim AT, Abd-el Fattah AA, Agha, AM. Effect of pumpkin-seed oil on the level of free radical scavengers induced during adjuvant-arthritis in rats. Pharmacol Res. 1995; 31:73-79.
11. Binns CW, Jian L, Lee AH. The relationship between dietary carotenoids and prostate cancer risk in southeast Chinese men. Asia Pac. J. Clin. Nutr. 2004; 13:117.
12. Jian L, Lee A, Binns C, Du CJ. Do dietary lycopene and other carotenoids protect against prostate cancer. Int. J. Cancer. 2005; 113(6):1010-1014.
13. Kwon YI, Apostolidis E, Kim YC. Health benefits of traditional corn, beans, and pumpkin: in vitro studies for hyperglycemia and hypertension management. J Med Food. 2007; 10: 266-275.
14. Cheong NE, Choi YO, Kim WY. Purification and characterization of an antifungal PR-5 protein from pumpkin leaves. Mol Cell 1997; 7: 214-219.
15. Xia HC, Li F, Li Z. Purification and characterization of moschatin, a novel type I riboso me activating protein from the mature seeds of pumpkin (Cucurbita moschata) and preparation of its immunotoxin against human melanoma cells. Cell Res. 2003; 13:369-374.
16. Quanhong LI, Calli F, Yukui R. Effects of protein-bound polysaccharide isolated from pumpkin on insulin in diabetic rats. Plant Food Hum Nutr. 2005; 60:13-16.
17. Rajakaruna N, Harris C, Towers G. Antimicrobial Activity of Plants Collected from Serpentine Outcrops in Sri Lanka. Pharmaceutical Biology. 2008; 40(3): 235-244.
18. Wang H, Ng T. Isolation of cucurmoschin, a novel antifungal peptide abundant in arginine, glutamate and glycineresidues from black pumpkin seeds. Peptides. 2003; 24:969-972.
19. Bahramsoltani R, Farzaei MH, Abolhassani AH, Rahimi R, Samadi N, Heidari M, Esfandiyari MA, Baerm M, Hassanzadeh GhR, Abdollahi M, Soltani S, Pourvaziri A, Amin GhR. Evaluation of phytochemicals, antioxidant and burn wound healing activities of Cucurbita moschata Duchesne fruit peel.Iran J Basic Med Sci 2017; 20:798-805.
20. Marbun N, Sitorus P, Sinaga SM. Antidiabetic effects of pumpkin (Cucurbita moschata duch) flesh and seeds extracts in streptozotocin induced mice. Asian J Pharm Clin Res. 2018; 11(2): 2018.
21. Marbun N. Comparison of Blood Glucose Levels Decrease Effectiveness of Pumpkin Flesh and Seeds Toward Diabetic Mice, Thesis, Faculty of Pharmacy, University of Sumatera Utara. 2017; 1-106.
22. Muruganatthan N, Solomon S, Senthampisveli MM. Antimicrobial activity of Cucurbita maxima flowers (Pumpkin). J Pharmacogn Phytochem 2016;5:15-8.

UK J Pharm & Biosci, 2018: 6(6); 51
23. del Castillo PA, Molinares MP, Campo UM, Bettin MA. Antibacterial activity of total extract from leaves of *Cucurbita moschata* Duchesne (ahuyama). Rev Cubana Plant Med. 2017; 22(1).

24. Govindani H, Dey A, Deb L, Rout SP, Parial SD, Jain A. Protective Role Of Methanolic And Aqueous Extracts Of *Cucurbita moschata* Linn. Fruits In Inflammation And Drug Induced Gastric Ulcer In Wister Rats. Int. J. PharmTech Res. 2012; 4(4): 1758-1765.

25. Kunyanga CN, Imungi JK, Vellingiri V. Nutritional evaluation of indigenous foods with potential food-based solution to alleviate hunger and malnutrition in Kenya. J Appl Biosci. 2013;67:5277–5288.

26. Prabhu RA, Rajan AP, Santhalia S. Comparative analysis of preservation techniques on *Moringa oleifera*. Int. J of Agricultural and Food Science. 2011; 1(2):12-22.

27. Palada MC, LC Chang. Suggested cultivation practices for Moringa. AVRDC Publication 2003; 03 - 545.

28. Faizi S, Siddiqui BS, Saleem R, Siddiqui S, Aftab K. Isolation and structure elucidation of new nitrile and mustard oil glycosides from *Moringa oleifera* and their effect on blood pressure. J Nat Prod. 1994; 57(9): 1256-1261.

29. Faizi S, Siddiqui BS, Saleem R, Siddiqui S, Aftab K and Gilani AH. Fully acetylated carbamate and hypotensive thiocarbamate glycosides from *Moringa oleifera*. Phytochemistry. 1995; 38(4): 957-963.

30. Faizi S, Siddiqui BS, Saleem R, Aftab K, Shaheen F and Gilani A. Hypotensive Constituents from the pods of *Moringa oleifera*. Planta Med. 1998; 64: 225-228.

31. The Wealth of India (A Dictionary of Indian Raw Materials and Industrial Products). 1962. Raw Materials, Vol. VI: L-M; Council of Scientific and Industrial Research: New Delhi, 425–429.

32. Anwar F, Latif S, Ashraf M, Gilani AH. *Moringa oleifera*: A Food Plant with Multiple Medicinal Uses. Phytotherapy Research. 2007; 21:17-25.

33. Manahahei H, Jafari S, Jalal Z, Shamsali R, Reza T. Analgesic effects of methanolic extracts of the leaf or root of *Moringa oleifera* on complete Freund’s adjuvant-induced arthritis in rats. J Chin Integ Med 2011;10:217-22.

34. Kanchan PU, Vinod DR, Vijay BM. Antimigraine activity study of *Moringa oleifera* leaf juice. Int J Green Pharm. 2012;10:204-7.

35. Jurairat K, Jintanaporn W, Supaporn M, Wipawee T, Cholathip T, Panakaporn W. *Moringa oleifera* leaves extract attenuates neuropathic pain induced by chronic constriction injury. Am J Appl Sci. 2012;10:1182-7.

36. Gurvinder PS, Rakesh G, Sudeep B, Sandeep KS. Anti-inflammatory evaluation of leaf extract of *Moringa oleifera*. J Pharmaceut Sci Innovation. 2012;10:22-4.

37. Ezeeamuzie IC, Ambakederemo AW, Shode FO, Ekwebelem SC. Anti-inflammatory effects of *Moringa oleifera* root extract. Int J Pharmacogn. 1996;10:207-12.

38. Bhattacharya A, Behera R, Agrawal D, Sahu PK, Kumar S, Mishra SS. Antipyretic effect of ethanolic extract of *Moringa oleifera* leaves on albino rats. Tanta Med J. 2014;10:74-8.

39. Ranira G, Rimi H, Kaushik R, Debajani G. Effect of *Moringa oleifera* in experimental model of Alzheimer’s disease: role of antioxidants. Ann Neurosci 2005;10:33-6.

40. Lakshmi BV, Sudhakar M, Ramya RL. Anti-anxiety activity of *Moringa oleifera* assessed using different experimental anxiety models in mice. J Pharm Res 2014;10:343-8.

41. Jung IL, Lee JH, Kang SC. A potential oral anticancer drug candidate, *Moringa oleifera* leaf extract, induces the apoptosis of human hepatocellular carcinoma cells. Oncol Lett. 2015;10:1597-604.

42. Tiloke C, Phulukdaree A, Chuturgoon AA. The antiproliferative effect of *Moringa oleifera* crude aqueous leaf extract on cancerous human alveolar epithelial cells. BMC Complement Altern Med 2013;10:226.

43. Luqman S, Suchita S, Ritesh K, Anil KM, Debabrata C. Experimental assessment of *Moringa oleifera* leaf and fruit for its antistress, antioxidant, and scavenging potential using *in vivo* and *in vitro*. Evid Based Complement Alternat Med. 2012;10:1-17.

44. Kumar V, Pandey N, Mohan N, Singh RP. Antibacterial and antioxidant activity of different extract of *Moringa oleifera* leaves—an *in vitro* study. Int J Pharm Sci Rev Res. 2012;10:89-94.

45. Patel RK, Patel MM, Kanzariya NR, Vaghela KR, Patel RK, Patel NJ. *In vitro* hepatoprotective activity
of *Moringa oleifera* Lam. leaves on isolated rat hepatocytes. Int J Pharm Sci 2010;10:457-63.

46. Dhimmar N, Patel NM, Gajera V, Lambole V. Pharmacological activities of *Moringa oleifera*: an overview. Res J Pharm Tech 2015;10:476-80.

47. Randriamboavonjy JI, Loirand G, Vaillant N, Lauzier B, Derbré S, Michalet S. Cardiac protective effects of *Moringa oleifera* seeds in spontaneous hypertensive rats. Am J Hypertens. 2016;10:873-81.

48. Nahar S, Faisal FM, Iqbal J, Rahman MM, Yusuf MA. Antiobesity activity of *Moringa oleifera* leaves against high fat diet-induced obesity in rats. Int J Basic Clin Pharmacol. 2016;10:1263-8.

49. Anita M, Babita A. Investigation into the mechanism of action of *Moringa oleifera* for its anti-asthmatic activity. Orient Pharm Exp Med. 2008;10:24-31.

50. Odedele LO, Ajao FO, Yusuf J, Adu FD. Effect of aqueous *Moringa* seed extract on oxidative stress in alloxan-induced gestational diabetic rats. Med Res Arch 2017;10:1-14.

51. Hagiwara A, Hidaka M, Takeda S, Yoshida H, Kai H, Sugita C. Anti-allergic action of aqueous extract of *Moringa oleifera*. leaves in mice. Eur J Med Plants. 2016;10:1-10.

52. Cabardo DE Jr, Portugaliza HP. Anthelmintic activity of *Moringa oleifera* seed aqueous and ethanolic extracts against *Haemonchus contortus* eggs and third stage larvae. Int J Vet Sci Med. 2017;10:30-4.

53. Choudhury S, Sharan L, Sinha MP. Anti-diarrhoeal potentiality of leaf extracts of *Moringa oleifera*. Br J Appl Sci Technol. 2013;10:1086-96.

54. Muhammad AA, Arulselvan P, Cheah PS, Abas F, Fakurazi S. Evaluation of wound healing properties of bioactive aqueous fraction from *Moringa oleifera* Lam. on experimentally induced diabetic animal model. Drug Des Devel Ther. 2016;10:1715-30.