In Vivo Imaging of Enteric Neurogenesis in the Deep Tissue of Mouse Small Intestine

Kei Goto1,2, Go Kato3, Isao Kawahara1,2, Yi Luo2, Koji Obata1, Hiromi Misawa1, Tatsuya Ishikawa3, Hiroki Kuniyasu2, Junich Nabekura3, Miyako Takaki1,2*

1 Department of Physiology II, Nara Medical University, School of Medicine, Kashihara, Nara, Japan, 2 Department of Molecular Pathology, Nara Medical University, School of Medicine, Kashihara, Nara, Japan, 3 Division of Homeostatic Development, Department of Developmental Physiology, National Institute for Physiological Sciences, Okazaki, Aichi, Japan

Abstract

One of the challenges of using imaging techniques as a tool to study cellular physiology has been the inability to resolve structures that are not located near the surface of the preparation. Nonlinear optical microscopy, in particular two-photon-excited fluorescence microscopy (2PM), has overcome this limitation, providing deeper optical penetration (several hundred μm) in ex vivo and in vivo preparations. We have used this approach in the gut to achieve the first in vivo imaging of enteric neurons and nerve fibers in the mucosa, submucosa, submucosal and myenteric plexuses, and circular and longitudinal muscles of the small intestine in H-line: Thy1 promoter GFP mice. Moreover, we obtained clear three-dimensional imaging of enteric neurons that were newly generated after gut transection and reanastomosis. Neurogenesis was promoted by oral activation of the 5-HT4 receptor agonist, mosapride citrate (MOS). The number of newly generated neurons observed in mice treated with MOS for one week was 421±89 per 864,900 μm² (n = 5), which was significantly greater than that observed in preparations treated with MOS plus an antagonist (113±76 per 864,900 μm²) or in 4 week vehicle controls (100±34 per 864,900 μm²) (n = 4 both). Most neurons were located within 100 μm of the surface. These results confirm that activation of enteric neural 5-HT4 receptor by MOS promotes formation of new enteric neurons. We conclude that in vivo 2PM imaging made it possible to perform high-resolution deep imaging of the living mouse whole gut and reveal formation of new enteric neurons promoted by 5-HT4-receptor activation.

Citation: Goto K, Kato G, Kawahara I, Luo Y, Obata K, et al. (2013) In Vivo Imaging of Enteric Neurogenesis in the Deep Tissue of Mouse Small Intestine. PLoS ONE 8(1): e54814. doi:10.1371/journal.pone.0054814

Editor: Yvette Tache, University of California Los Angeles, United States of America

Received: July 23, 2012; Accepted: December 17, 2012; Published: January 31, 2013

Copyright: © 2013 Goto et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This study was supported by the Cooperative Study Program of National Institute for Physiological Sciences. This work was supported by Grants-in-aid for Scientific Research (20659210, 23390330, 24650325 for M.T. and 23591969 for H.M.) from the Ministry of Education, Science, Sports and Culture of Japan. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: mtakaki@naramed-u.ac.jp

Introduction

Activation of enteric neural 5-HT4-receptors by mosapride citrate (MOS) promotes the reconstruction of an enteric neural circuit injured after surgery, leading to the recovery of the ‘defecation reflex’ [1,2] in the distal gut of guinea pigs [3]. This neural plasticity involves neural stem cells [3]. Recently, we also revealed that MOS enhances neural network formation in gut-like organs differentiated from mouse embryonic stem cells [4]. Other 5-HT4 receptor agonists also increase neuronal numbers and length of neurites in enteric neurons developing in vitro from immunoselected neural crest-derived precursors [5]. 5-HT4 receptor-mediated neuroprotection and neurogenesis has also been demonstrated in the enteric nervous system of adult mice [6]. We therefore explored the ability of MOS to promote the generation of new enteric neurons at resected sites of the mouse small intestine in vivo. The new neurons are typically located in regions of granulation tissue, which is new connective tissue formed by growth of fibroblasts and blood capillaries into injured tissue after transection and reanastomosis of the gut.

Unfortunately, it is impossible for traditional fluorescence microscopy including confocal microscopy to perform high-resolution deep imaging of the 300–400 μm thick granulation tissue that is formed during the tissue repairing process at the anastomotic site after transection of the gut. Even in in vitro whole mount preparations, in which the mucosal, submucosal and circular muscle layers were removed, imaging of newly formed neurons and axons is severely limited. Nonlinear optical microscopy, in particular two photon-excited fluorescence microscopy, offers a means to overcome this limitation by providing enhanced optical penetration. Two-photon microscopy (2PM) allows cellular imaging several hundred microns deep in various organs of living animals and ex vivo specimens [7].

In the present study, we employed 2PM to obtain 3-dimensional reconstructions of impaired enteric neural circuits within the thick granulation tissue in the ileum of Thy1-GFP mice [8], in which the GFP is expressed in the cytoplasm of enteric neurons. Although in vivo imaging of the muscularis propria and myenteric neurons with probe-based confocal laser endomicroscopy in porcine models has been recently reported [9], we obtained the first ever (deleted) clear three-dimensional imaging of newly generated enteric neurons within the thick granulation tissue at the anastomosis, indicating that 2PM allows enteric neural imaging several hundred microns deep in the gut of the living mouse. The most critical challenge was to suppress movement artifacts to allow
for microscopy in the living gut. In addition, we tested whether activation of enteric neural 5-HT4-receptors by MOS promotes reconstruction of an enteric neural circuit injured after the surgery as has been demonstrated in the lower gut [3].

Materials and Methods

Description and Preparation of Transgenic Mice Used for Imaging

All relevant experimental protocols were approved by the Ethics Review Committee for Animal Experimentation of the National Institutes for Physiological Sciences (permission number: 11A114). We used a transgenic mouse, based on the C57BL/6 strain, with sparse expression of cytoplasmic GFP in thalamic and cortical pyramidal neurons (Thy1 promoter GFP mouse, H-line) [8]. In preliminary studies, we confirmed expression of cytoplasmic GFP in enteric neurons. Transgenic mice, at 8–12 weeks after birth, were anesthetized with an intraperitoneal injection of Nembutal (50 mg kg -1) and the abdomen was opened by a lower midline laparotomy. This approach spared vascular perfusion and maintained extrinsic inputs from the mesenteric nerves. The ileum was transected 5–6 cm from ileo-cecal sphincter and an end-to-end one-layer anastomosis was performed. Body temperature was maintained at 36–37°C using a heating pad. After recovery from the surgical procedure, mouse daily drank 0.1% DMSO vehicle solution (n = 5), MOS (100 μM) in vehicle (n = 6), or a selective 5-HT4-blocker for oral application, SB-207266 (SB: 10–50 μM) [10] plus MOS (100 μM) in vehicle (n = 4) for 1 week (with the beginning two days fasting and the ending five days feeding ad libitum). In addition, vehicle controls were maintained for 4 weeks (n = 4) with the beginning two days fasting and the ending twenty-six days feeding.

In vivo Two-photon Microscopy

Seven days after the surgery, the mice were anesthetized with Nembutal (50 mg kg -1) for in vivo microscopy. Body temperature was maintained at 36–37°C using a disposable pocket body warmer. Additional Nembutal was administered as needed. The depth of anesthesia was assessed by monitoring respiration rate and vibrissae movements. The abdomen was opened by a lower midline laparotomy and the surgical site of the ileum was fixed into the chamber for 2PM without disturbance of blood supply (Figure 1). To suppress ileal motility for microscopy, the preparation was pinned in place and papaverine (1 mM; 0.1–
0.2 ml) was injected intraluminally. Images were obtained at the rate of 2.711 sec frame$^{-1}$. GFP-labeled structures were imaged by a 2PM customized for in vivo imaging (FV1000-MPE, Olympus, Tokyo) using a water-immersion objective lens (40X, NA0.8, Olympus) at zoom of 1.0. A Ti:sapphire laser (MaiTai Hp, Spectral Physics, Mountain View, CA, USA) was tuned to the excitation wavelength for GFP (950 nm). The z-stack images consisted of 100–300 optical sections and were taken 1 μm apart (within 400 μm of the serosal surface). The photomultiplier tube setting and excitation power (~50 mW) remained constant during imaging. Under these conditions, the neurons seem to be still healthy after imaging (personal communication from Dr. Go Kato).

Immunohistochemical Imaging by Confocal Microscope

Following in vivo imaging, the animals were euthanized by administration of excessive dose of Nembutal, and whole mount preparations of the anastomosed regions of ileum were fixed in 4% paraformaldehyde (4°C, overnight) or 99.5% acetone (4°C, 1 hr) to detect neurofilament (NF). Thereafter, the mucosa and submucosa and granulation tissue were carefully removed, and following a 30 min wash in PBS (0.01–0.1 mol L$^{-1}$, pH 7.4) the preparations were incubated for 3–12 hrs at 4°C in 10% normal donkey serum in PBS containing 0.3% (v/v) Triton-X 100 (PBS-TX) to enhance penetration of antibodies. The preparations were then incubated for two days at 4°C with a rabbit polyclonal antiserum cocktail to label NF (clone 2F11, reacting with 70, 160, and 200 kDa proteins, 0.5 μg mL$^{-1}$, DAKO), anti-distal less homeobox 2 (DLX2) (cat. ab18188, 0.5 μg mL$^{-1}$, Abcam Co, Tokyo, Japan) as an enteric neural stem cell marker, anti-green fluorescent protein (GFP)(0.5 μg mL$^{-1}$, Rockland Immunochemicals Inc., Gilbertsville, PA) and glial fibrillary acidic protein (GFAP)(0.5 μg mL$^{-1}$, DAKO Corp, Carpintaria, CA) as an enteric glia cell marker.

Detection of Regenerated Enteric Neurons

To identify neuronal cell proliferation, 3-bromo-2-deoxyuridine, BrdU (1 mg mL$^{-1}$ solution; Sigma or NACALAI TESQUE, INC, Kyoto, Japan) was added to the drinking water containing MOS (100 μM) for 1–2 weeks for 6 animals. After rinsing in PBS, the specimens were pretreated with sodium chloride sodium citrate solution for 2 hrs at 65°C, followed by partial denaturation of double-stranded DNA with 2 mol L$^{-1}$ HCl for 30 min at 37°C. To reveal BrdU, the sections were incubated with a rat monoclonal antibody raised against BrdU (Abcam Inc.) overnight at 4°C. The specimens were rinsed in 0.1 mol L$^{-1}$ TE (pH 7.8) followed by routine immunohistochemistry.

Statistics

Multiple comparisons were performed by one-way analysis of variance (ANOVA) with post-hoc Bonferroni’s test. A value of p<0.05 was considered statistically significant. All data are expressed as the mean ± S.D.

Results

In the current study, we obtained the first in vivo images of enteric neurons and nerve fibers in the mucosa, submucosa,
submucosal and myenteric plexuses, and circular and longitudinal muscles of the terminal ileum (Figure 2). We initially confirmed that enteric neurons could be imaged in vivo in the terminal ileum of an intact Thy1-GFP mouse (Figure 2). The normal mouse gut was rather thin, with a maximal thickness at myenteric ganglion level of 50 μm. Although images stacked with a Z-axis depth up to 50 μm showed low signal/background fluorescence intensity ratio, each image at depth of 28–42 μm from serosa showed a single myenteric ganglion and longitudinal & circular muscle layers (Figure 2 A–C). Thicker images at depth of 60, 125 and 145 μm also showed nerve fibers in circular muscle layers, blood vessels and nerve fibers around crypts (Figure 2 D–F), respectively. Living cells in a given ganglion were clearly observed in merged images at depth of 28 μm–50 μm (Figure 2 G).

A stereomicroscopic image demonstrating the thick granulation tissue at the anastomotic region in mouse treated with MOS solution for 1 week after surgical anastomosis is shown in Figure 3 A. However, under a stereomicroscopy no nerve cells or fibers were visible. A longitudinal section including the same granulation tissue indicates an obvious thickness of the tissue (Figure 3 B).

Using confocal imaging of the fixed whole mount preparation, no nerve cells or fibers were visible in the granulation tissue at the anastomosis, although intact myenteric plexus was visible in the intact area in a mouse treated with MOS solution for 1 week after surgery (Figure 4). The living ileum before fixation is shown in Figure 5.

In mice treated with MOS solution for 1 week after anastomosis, new ganglia-like structures and nerve fibers were

Figure 5. Images of anastomotic region of the terminal ileum in a MOS-treated mouse. The dotted lines indicates the anastomosis site. Around the knot of thread we obtained each image from 9 visual fields. A. Images stacked with Z axis to a total depth of 200–300 μm. A–a, image 42 μm deep to the serosa surface in area (a) in A. A–a', image 174 μm deep to the serosa surface in the same area (a) in A. A–b, 44 μm deep to the serosa surface in area (b) in A. A–b', image 101 μm deep to the serosa surface in the same area (b) in A. Arrows indicate nerve cells in A–a', b and b', and arrowheads indicate nerve fibers in A–a, a', b and b'; and circles indicate ganglion-like clusters of neurons in A–a, b and b', respectively. B. Number of neurons in each field (size: 310 μm x 310 μm) around the knot. C. Newborn nerve cells formed ganglion structures indicated by circles. These were enlarged from the images shown in A–b–i and –ii. doi:10.1371/journal.pone.0054814.g005

Figure 6. Images of anastomosis of the ileum in an SB-207266 (SB) plus MOS treated mouse. SB plus MOS treatment was performed for one week. A. Images stacked in the Z axis with a total depth of 200–300 μm. A–a, image 38 μm deep to the serosa surface in area (a) in A. A–b image 71 μm deep to the serosa surface in area (b) in A. Circles indicate aggregates of small non-neuronal cells (A–a and b), respectively.

doi:10.1371/journal.pone.0054814.g006

Figure 7. Images of around the suture knot at anastomosis of the ileum in DMSO treated mouse. Vehicle treatments were performed for 4 weeks. The dotted line indicates the anastomosis. A. Images stacked with Z axis up to a total depth of 151–201 μm. A–a, image 26 μm deep to the serosa surface close to the thread around the knot. A small number of neurons are visible.

doi:10.1371/journal.pone.0054814.g007
observed by in vivo imaging of the thick granulation tissue at the anastomotic region of the living ileum (Figure 5A). In sites both oral (Figure 5A–a & -a’) and anal (Figure 5A–b & -b’) to the anastomotic site, new ganglia-like structures packed with many of
newborn neurons and interganglionic nerve fibers were apparent in each image regardless of the depth from the serosa indicating that in the granulation tissue a new enteric neural network was being formed. The density of neurons observed within the anastomosis was 511 cells per 864,900 μm². The distribution of neurons was even in each nine field (from a–1 to c–3) (Figure 5B). Figure 5C clearly illustrates new neurons in two typical ganglion-like structures.

In mice treated with the 5-HT₄ antagonist, SB 207266 (SB) plus MOS solution for 1 week after anastomosis, no neurons or nerve fibers were observed in the anastomotic region (Figure 6), although aggregates of small cells (not neurons) were observed near the surface (Figure 6A–a & –b). Thus, enteric neurogenesis was largely suppressed by simultaneous administration of the 5-HT₄ receptor blocker, SB along with MOS. Similar results were obtained with all 4 mice treated with MOS and SB.

Using confocal imaging of fixed, whole mount preparations, no nerve cells or fibers were visible in the granulation tissue at the anastomosis, although intact myenteric plexus was visible in the intact area in a mouse treated with SB and MOS solution for 1 week after surgery (data not shown).

Vehicle treated mice underwent in vivo imaging of the anastomotic region at 1 week (n = 5) and 4 weeks (n = 4) after ileum transection and re-anastomosis (Figure 7). One week after surgery, neither nerve bundles nor ganglia were visualized at the anastomosis. In contrast, 4 weeks after surgery, a small number of neurons were detected in one preparation (Figure 7A–a). In the other three mice treated with vehicle for 4 weeks after surgery, no neurons were detected at any depth within the granulation tissue.

The average number of neurons observed amongst nine fields within the anastomosis in mice treated with MOS solution was significantly (P<0.05) larger than that in SB plus MOS treated mice (n = 4) or DMSO-treated mice (n = 4) after anastomosis (Figure 8A). New neurons were observed without oral or anal and mesenteric or anti-mesenteric localizations in any of the three groups (Figure 8A).

The average density of neurons observed in all fields within the anastomosis in mice treated with MOS solution was 421±99 per 864,900 μm² (n = 5), significantly (P<0.05) higher than SB plus MOS treated mice (113±76 per 864,900 μm²; n = 4) or mice treated with vehicle (100±34 per 864,900 μm²; n = 4) (Figure 8B). Moreover, the average number of neurons distributed at the anastomosis in MOS treated mice was about 5 cells per 10,000 μm², compared to 35 cells per 10,000 μm² (ganglia areas) in the intact small intestine of mice [11].

The distribution of neurons in depth was analyzed at depths of every 20 μm. In all three groups almost all neurons were located within 100 μm of the surface (Figure 9A–C). The total number of neurons in MOS-treated mice was about four-fold of that in SB plus MOS and DMSO treated mice (Figure 9D).

Correctly identified fluorescent neurons by 2PM are proved to be neurons with an independent technique at the anastomotic site. NF-positive, DLX2-negative, BrdU-positive and GFP-positive cell is identified as a new neuron (Figure 10A–D). NF-negative, DLX2-positive, BrdU-positive and GFP-positive cells seem to be neural progenitors. At this anastomotic site, GFAP-positive enteric glial cells are not found (Figure 10E).

Figure 9. The distribution of total neurons in MOS (n = 5), SB+MOS (n = 4) and vehicle-treated (n = 4) mice. A, B, C. Number of total neurons at depths of every 20 μm. D. Cumulative numbers from all depths. doi:10.1371/journal.pone.0054814.g009
Discussion

This is the first study involving in vivo imaging of enteric neurons with 2PM, although in vivo imaging of enteric neurons with confocal laser endomicroscopy has been recently performed [9]. We detected the formation of newly generated neurons in the thick granulation tissue at the site of anastomosis. Imaging with 2PM allowed enteric neural imaging several hundred microns deep within the gut of living mouse. In contrast to the brain tissue [7], the structure of the gut tissue is complex, consisting of multiple layers and tissue types, including mucosa, submucosa, circular and longitudinal muscles, blood vessels and crypt glands. Therefore, to enhance visualization of enteric neurons we used Thy1-GFP mice [8] after confirmation of expression of cytoplasmic GFP in enteric neurons in preliminary studies. In the present study, newly formed enteric neurons also expressed cytoplasmic GFP. In future studies, we are planning functional studies of enteric neurons using in vivo imaging of enteric neurons distributed throughout the entire gastrointestinal tract as a means of evaluating enteric neural function and dysfunction in the normal gut and in, for example, diabetic [17] and Parkinsonism mouse models [18].

The recent publications suggest that mouse enteric glia can be neuronal precursors and thus form neurons in vitro and in vivo under specific circumstances [19–21]. Therefore, we have investigated glia and/or their relation to the newly formed “neurons”. However, we did not find any enteric glial cells at the anastomotic site. It seems unlikely that enteric glial cells contribute to neurogenesis at least at the anastomotic site.

Acknowledgments

We thank Prof. Gary Mawe in the Department of Anatomy and Neurobiology in the University of Vermont for his critical reading of this manuscript.

Author Contributions

Conceived and designed the experiments: KG HK JN MT. Performed the experiments: KG GK YL HM TI. Analyzed the data: KG GK HK JN MT. Contributed reagents/materials/analysis tools: KG IK YL KO. Wrote the paper: KG MT.

In Vivo Imaging of Enteric Neurogenesis

Figure 10. Correctly identified fluorescent neurons by 2PM are proved to be neurons at the anastomosis in MOS-treated mice. A. Green Fluorescent Protein (GFP)-positive cells. B. 5-bromo-2’-deoxyuridine (BrdU)-positive cells. C. A neural marker, neurofilament (NF)-positive cell. D. A neural stem cell marker, distal less homeobox 2 (DLX2)-positive cells. E. gliarial fibrillary acidic protein (GFAP)-negative cells. Red arrows indicate NF+/DLX2+/BrdU+/GFP+/GFAP- cell: this cell is a new neuron. Green arrows indicate NF+/DLX2+/BrdU+/GFP+/GFAP- cells: these cells seem to be neural progenitors. Similar results are obtained in other preparations.

doi:10.1371/journal.pone.0054814.g010

One week after surgical anastomosis, MOS facilitated formation of newly generated enteric neurons in the granulation tissue at the anastomosis. However, even 4 weeks after surgery, only a small number of newborn neurons were identified in the granulation tissue of vehicle-treated control animals. The effects of MOS on neurogenesis were completely antagonized by treatment with a 5-HT4 antagonist, indicating that MOS facilitated formation of newborn enteric neurons via 5-HT4 receptor activation. Although the number of newly formed enteric neurons was significantly higher in the MOS-treated mice as compared to antagonist treated and vehicle controls, the distribution pattern of newly formed enteric neurons was similar, i.e., neurons were distributed close to the edge of the granulation tissue. This suggested the possibility that neural stem cells were mobilized from the outside of the granulation tissue.

Enteric nervous system (ENS) development is relevant to Hirschsprung’s disease (HSCR; congenital aganglionosis of the terminal bowel) and related diseases, which are still imperfectly treated. It is well known that mutations in genes encoding the Ret receptor tyrosine kinase and endothelin receptor type B are involved in HSCR pathogenesis [13,14]. We found MOS increased mRNA of c-Ret receptor tyrosine kinase in a rat model and that a 5-HT4 receptor antagonist completely blocked this effect [15]. Therefore, it seems likely that the target molecule of MOS is the Ret receptor tyrosine kinase.

Enteric neurogenesis must be strictly controlled, because hyperplasia of enteric neurons due to hyperresponsivity for glial cell-derived neurotrophic factor (GDNF)-Ret signaling reversely results in HSCR [16]. Nevertheless, treatment with 5-HT4 receptor agonists such as MOS could be a promising tool to treat HSCR and related disorders.

In conclusion, in vivo imaging by 2PM allowed for high-resolution deep imaging of the intestines in vivo. Thick granulation tissue at the site of anastomosis, including newly formed ganglion-like structures and nerve fibers, could be studied in the intact murine small intestine, whereas this would have been impossible with traditional fluorescence or confocal microscopy. The results presented here confirmed that oral administration of MOS promotes the generation of enteric neurons by activation of enteric neural 5-HT4 receptors in the murine small intestine. The present technology would be promising for in vivo imaging of enteric neurons distributed throughout the entire gastrointestinal tract as a means of evaluating enteric neural function and dysfunction in the normal gut and, for example, diabetic [17] and Parkinsonism mouse models [18].

Wrote the paper: KG MT. Contributed reagents/materials/analysis tools: KG IK YL KO. Designed the experiments: KG HK JN MT. Performed the experiments: KG GK YL HM TI. Analyzed the data: KG GK HK JN MT. Contributed reagents/materials/analysis tools: KG IK YL KO. Wrote the paper: KG MT.
References

1. Katsui R, Kojima Y, Kuniyasu H, Shimizu J, Koyama F, et al. (2008) A new possibility for repairing the anal dysfunction by promoting regeneration of the reflex pathways in the enteric nervous system. Am J Physiol Gastrointest Liver Physiol 294: G1084–G1093.

2. Yamanouchi M, Shimatani H, Kadokawa M, Yasuda S, Nakagawa T, et al. (2002) Integrative control of rectoanl reflex in guinea pigs through lumbar colonic nerves. Am J Physiol Gastrointest Liver Physiol 283: G140–G156.

3. Matsuyoshi H, Kuniyasu H, Okamura M, Misawa H, Katsui R, et al. (2010) A 5-HT4-receptor activation-induced neural plasticity enhances in vivo reconstruction of enteric nerve circuit insult. Neurogastroenterol Motil 22: e306–e226.

4. Takaki M, Misawa H, Matsuyoshi H, Kawahara I, Goto K, et al. (2011) In vitro enhanced differentiation of neural networks in ES gut-like organ from mouse ES cells by a 5-HT4-receptor activation. Biochem Biophys Res Commun 406: 529–533.

5. Liu M, Gershon MD (2006) Neuroprotective/trophic effects of 5-HT4 receptor stimulation on enteric neurons of mice. Neurogastroenterol Motil 18: 780–781.

6. Liu M-T, Kuan Y-H, Wang J, Hen R, Gershon MD (2009) 5-HT4 Receptor-mediated neuroprotection and neurogenesis in the enteric nervous system of adult mice. J Neurosci 29: 603–609.

7. Wake H, Moorhouse AJ, Jinno S, Kobaka S, Nabejura J (2009) Resting microglia directly monitor the functional state of synapses in vivo and determine the fate of ischemic terminals. J Neurosci 29: 3974–3980.

8. Feng G, Mellor RH, Bernstein M, Keller-Peck C, Nguyen QT, et al. (2000) Imaging neuronal subsets neurotechnique in transgenic mice expressing multiple spectral variants of GFP. Neuron 28: 41–51.

9. Ohyama TR, Sumiyama K, Takahashi-Fujigasaki J, Dobaishi A, Saito S, et al. (2012) In vivo histologic imaging of the muscularis propria and myenteric neurons with probe-based confocal laser endomicroscopy in porcine models (with videos). Gastrointestinal Endoscopy 75: 405–410.

10. Bharucha AE, Camilleri M, Haydock S, Ferber I, Burton D, et al. (2009) Effects of a serotonin 5-HT4 receptor antagonist SB-207266 on gastrointestinal motor and sensory function in humans. Gut 47: 667–674.

11. Thacker M, Rivera LR, Cho H, J. Furness JB (2011) The relationship between glial distortion and neuronal changes following intestinal ischemia and reperfusion. Neurogastroenterol Motil 23: e660–e669.

12. Nakai J, Oikawa M, Inoto K (2003) A high signal-to-noise Ca2+ probe composed of a single green fluorescent protein. Nature Biotechnol 19: 137–141.

13. Gershon MD (2010) Developmental determinants of the independence and complexity of the enteric nervous system. Trends in Neuroscience 33: 446–456.

14. Holzra RMW, Oising J, Boys CHCM (1997) Mutations in Hirschprung disease: When does a mutation contribute to the phenotype. Eur J Hum Genet 3: 180–183.

15. Kawahara I, Kuniyasu H, Matsuyoshi H, Goto K, Obata K, et al. (2012) The comparison of effects of a selective 5-HT reuptake inhibitor versus a 5-HT4 receptor agonist on in vivo neurogenesis at the rectal anastomosis in rats. Am J Physiol Gastrointest Liver Physiol 302: G588–G597.

16. Zhou R, Niwa S, Homena N, Takei Y, Hieskawa N (2009) KIF26A is an unconventional kinesin and regulates GDNF-Ret signaling in enteric neuronal development. Cell 139: 802–813.

17. Surendran S, Konadapa SB (2005) Altered expression of neuronal nitric oxide synthase in the duodenum longitudinal muscle-myenteric plexus of obesity induced diabetes mouse: Implications on enteric neurodegeneration. Biochem Biophys Res Commun 338: 919–922.

18. Kurosaki M, Muramatsu Y, Kato H, Araki T (2004) Biochemical, behavioral and immunohistochemical alterations in MTPP-treated mouse model of Parkinson’s disease. Pharmacol Biochem Behavior 78: 143–153.

19. Joseph NM, He S, Quintana E, Kim Y-G, Núñez G, et al. (2011) Enteric glia are multipotent in culture but primarily form glia in the adult rodent gut. J Clin Invest 121: 3388–3411.

20. Laranjeira C, Sandgren K, Kessaris N, Richardson W, Potocnik A, et al. (2011) Glial cells in the mouse enteric nervous system can undergo neurogenesis in response to injury. J Clin Invest 121: 3412–3424.

21. Gershon MD (2011) Behind an enteric neuron there may lie a glial cell. J Clin Invest 121: 3386–3389.