68Gallium- and **90**Yttrium-/*177**Lutetium: “theranostic twins” for diagnosis and treatment of NETs

Rudolf A. Werner · Christina Bluemel · Martin S. Allen-Auerbach · Takahiro Higuchi · Ken Herrmann

Abstract Abundant expression of somatostatin receptors (SSTR) is frequently identified in differentiated neuroendocrine tumors and may serve as potential target for diagnostic imaging and treatment. This article discusses the “theranostic approach” of SSTR-targeting compounds including an overview of its role for diagnosis, staging and restaging, discussing its way to being established in clinical routine, and giving an outlook about further potentially relevant developments.

Keywords Neuroendocrine tumor · Theranostic · SPECT/CT · PET/CT · PRRT · Radionuclide therapy

Introduction

Recent developments in cancer research have resulted in a wide spectrum of therapies. Due to the large heterogeneity of patients and tumors, there is an increasing demand for personalized medicine. Introduction of the theranostic approach is based on the idea of selecting patients through a diagnostic study indicating whether a patient will benefit from a therapy or not.

The theranostic principle has been applied in the field of nuclear medicine for more than 60 years and **131**I and **89**Sr are still established in daily clinical routine. **131**I was first discovered in 1938 by Seaborg and Livingood at the University of California Berkeley. Already in 1946, Seidlin et al. [1] reported the therapeutic use of **131**I for patients with metastasized adenocarcinoma of the thyroid. Since then the combination of radiolabeled iodine for diagnostic imaging and therapy represents an established and accepted “theranostic” approach. In 1942, Pecher demonstrated that **89**Sr accumulates in bone tumors in animals; and later, these findings were translated to humans and **89**Sr was widely used in cancer patients [2, 3]. More recently, a number of new theranostic approaches have been introduced including **123**I-/**131**I-labeled Metaiodobenzylguanidine (MIBG) for diagnosis and treatment of neuroblastoma [4–6]. An additional theranostic pair consisting of **123**I- and **131**I-metomidate for diagnosis and treatment of adrenocortical carcinomas (ACC) has been established at the University Hospital of Würzburg. The diagnostic scan with **123**I-metomidate allows for the prediction whether an ACC patient will benefit from **131**I-metomidate radionuclide therapy after determination of an individualized dose by dosimetry [7, 8]. First, clinical data revealed tumor control in half of the patients undergoing **131**I-metomidate therapy [7, 9].

In this article, we focus on the recently introduced and clinically translated “theranostic approach” of somatostatin receptor (SSTR) targeting compounds for treatment of patients with neuroendocrine tumors (NETs). We will present an overview of its role for diagnosis, staging and restaging, discussing its way to being established in clinical routine, and giving an outlook about new developments.
Theranostic twins in NET

The term “theranostics twins” includes diagnostic molecular imaging followed by a personalized treatment decision based on the predictive value of the diagnostic scan. Translated to NETs “theranostic twins” relate to the pairing of 111In-68Ga-labeled diagnostic imaging and 90Y-177Lu-labeled treatment compounds targeting the SSTR (Fig. 1).

The rationale of this theranostic approach bases on the fact that well-differentiated NETs usually overexpress SSTR on their tumor cell surface which may serve as diagnostic and therapeutic targets [10]. Five different membrane-bound receptors have been evaluated: SSTR1, SSTR2, SSTR3, SSTR4 and SSTR5. Out of these potential targets usually SSTR2 is addressed for diagnosis and therapy. Using radiolabeled somatostatin analogs for functional imaging the diagnosis of NETs can be confirmed and the tumor burden (metastases) assessed. These nuclear medicine imaging procedures provide essential information about SSTR density, which is relevant for treatment decisions, and selecting patients for treatment with peptide receptor radionuclide therapy (PRRT) [11]. In general, PRRT is recommended in inoperable, metastasized cases expressing SSTR on tumor cell surface [12].

111In-labeled twins

111In-DTPA-octreotide, binding to SSTR2, was the first and most widely used radiopharmaceutical for detecting and staging NETs [13]. Planar images should be performed and, if available, single photon emission computed tomography (SPECT) after 4 and 24 h [14]. With an overall sensitivity of 80 % 111In-DTPA-octreotide scintigraphy (including SPECT) seems to be an effective method to detect tumor burden [15]. However, reduced detection rate has been reported in small and deep-seated lesions, even when using hybrid SPECT/CT scanners [16]. Historically verified, 111In can not only be used for diagnosis and staging of NETs, but also for treatment: treating 40 patients by using the Auger electron emitting radionuclide 111In, partial remission (PR) was reported in one patient, minor remission in six patients and stable disease (SD) in 14 patients [17]. In another study, only two of 27 patients (8 %) showed imaging-based morphological PR [18]. Due to the short particle range and the resulting limited tissue penetration, tumor regression only rarely occurred [19].

Thus, in the previous decade, the use of 111In was abandoned and replaced by the following new theranostic twins.

1. 68Ga-DOTATOC
2. 177Lu-DOTATOC

![Image](image-url)
Recently, PET tracers have replaced 111In-DTPA-octreotide for diagnostic imaging of NETs. Three 68Ga labeled somatostatin analogs are currently routinely used in clinical practice:

- 68Ga-DOTA-D-Phe-Tyr3-octreotide (DOTA-TOC)
- 68Ga-DOTA-1-Nal(3)-octreotide (DOTANOC)
- 68Ga-DOTA-D-Phe-Tyr3-octreotate (DOTATATE)

All these compounds bind with a high affinity to SSTR2 on the tumor cell surface [16]. Compared with 111In-DTPA-octreotide, 68Ga-DOTATATE PET/CT was found to be the superior functional imaging modality especially in small lesions with a low density of SSTRs because of its higher resolution [20]. Initial results were confirmed by Haug et al. in a larger patient cohort. Offering better imaging properties, 68Ga-SSTR PET/CT was able to depict NETs with an accuracy of 87% [21] (Fig. 2). In 2010, conventional imaging’s such as CT or endoscopic ultrasound were compared to PET/CT in 90 patients. SSTR PET/CT led to a modification of staging in 29% and management of therapy in 76% of patients [22]. Additionally, PET is more patient-friendly since it can be done as a single imaging session performed within 30–60 min after injection [16] as opposed to multiple day imaging required for 111In-DTPA-octreotide scintigraphy.

Currently, the most commonly used isotopes for treatment intended radiolabeling of somatostatin analogs are the ß-emitting isotopes 90Y with DOTATOC or ß- and γ-emitting 177Lu with DOTATATE. Otte et al. [23] reported treatment in a palliative setting of 29 patients with advanced SSTR-positive tumors by administering at least 3.7 GBq of 90Y-DOTATOC in 127 single treatment cycles. Only three patients suffered from progressive disease. Waldherr et al. [24] injected 7.4 GBq 90Y-DOTATOC (4 treatment cycles, time interval of 6 weeks) resulting in 5% complete responses (CR) and 18% PR. The most common reported side effect was renal impairment with a decline in creatinine clearance of 7.3% per year [25].

However, 177Lu-DOTATATE seems to be better tolerated than 90Y [25]. Thus, it is also routinely used as the “theranostic twin” to 68Ga. 310 NET patients treated with 27.8–29.6 GBq (4 treatment cycles, time interval of 6–10 weeks) showed a survival benefit of 40–72 months from diagnosis in comparison to historical controls [26]. Quality of life improved significantly after 177Lu-DOTATATE [27] and even in patients undergoing repeat salvage interventions. [Fig. 2] 56-year-old male suffering from unresectable pancreatic NET (primary tumor) with liver metastases and retroperitoneal lymph node metastases. Left pre-therapeutic 68Ga-DOTATOC PET/CT (anterior view, trans-axial view) showing liver metastases and retroperitoneal lymph node metastases. Right post-therapeutic 68Ga-DOTATOC PET/CT (anterior view, trans-axial view) after administering 22.3 GBq 177Lu-DOTATOC over the course of 3 treatment cycles showing reduced uptake in the metabolically regressive liver and retroperitoneal lymph node metastases (staging 10 weeks after last treatment cycle).
PRRT a median PFS of 13 months was reported [28]. At least two treatment cycles should be performed because PFS seems to be determined by the injected dose [29]. The most important delayed side effects significant renal impairment and myelosuppression occur in approximately 1 % of patients [30, 31]. Amino acid (AA) solutions are recommended directly prior and during PRRT to reduce renal absorbed dose and subsequent damage to the renal parenchyma. Treating physicians should be aware of potentially life-threatening acute hyperkalemia which can occur as an acute side effect, of administering AA [14, 32].

Because of deeper tissue penetration the high energy 90Y beta emitter is recommended for larger lesions, whereas the lower energy 177Lu should be administered for smaller lesions. A combination of 90Y-/177Lu-DOTATATE demonstrates better therapy response in comparison to single-injection of 90Y-DOTATATE by providing a significantly longer median OS [33].

The term “theranostics” emphasizes the inseparability of diagnosis and therapy. However, individual treatment planning determining prognosis should be part of this concept. 68Ga-DOTATATE PET/CT can also predict progression-free-survival (PFS) in patients undergoing PRRT: Evaluating the early prediction of clinical outcome 3 months after the initial treatment cycle, the tumor-to-spleen SUV ratio was able to independently predict the time-to-progression in patients undergoing SSTR PET/CT [34].

In summary, the diagnosis and therapy monitoring of NETs can be assessed by using functional imaging with different somatostatin analogs. 111In-labeled twins were used in the last decade showing a good overall sensitivity and treatment effects. However, in small and deep-seated lesions, 68Ga-labeled radiopharmaceuticals for PET are superior, even superior to stand alone contrast-enhanced multislice CT [35]. For its twin, 177Lu or 90Y DOTATATE/DOTATOC, good results for overall survival, improvement of quality of life but also less side effects were demonstrated [26, 27].

Theranostic approach in clinical routine

Nowadays, the most commonly used “theranostic twins” for treatment of NETs are 68Ga and 90Y-/177Lu-DOTATATE/DOTATOC showing higher response rates and improvement of life quality [14].

Labeling of the twins

Preparation of radiopharmaceuticals should be performed according to the current regulations on radiation protection and guidelines on Good Radiopharmacy Practice ensuring strict hygiene requirements [36]. 68Ga PET is usually used for pre-therapeutic proof of target expression, for staging and follow-up of patients. The half-life of the 68Ga isotope is favorable with 68 min. The use of a 68Ge/68Ga-generator ensures a continuous cyclotron-independent supply with 68Ga [37]. The only stable chemical form of Ga at physiological conditions is Ga3+ which still needs a bifunctional chelating agent (BCA) to bind to a target vector such as peptides or proteins [38]. Since the labeling process can be performed just prior to the PET/CT examination it is possible to inject an optimal amount of radioactivity.

177Lu is produced by a nuclear reactor in two different ways: via “direct pathway” (irradiation of 176Lu) or via “indirect pathway” (irradiation of 176Yb producing 177Yb decaying to 177Lu). A specific activity of 37–74 MBq 177Lu per microgram is generally recommended [14]. The method of synthesis is widely described in literature [39–41].

Therapeutic procedure

Like any other nuclear medicine therapy, PRRT has to be performed according to the local legal and ethical requirements and a recommendation of a multidisciplinary tumor board is desirable. The ward of the nuclear medicine department must provide trained staff including physicians, radiochemists and medical physicist experts. General radiation safety arrangements are mandatory. However, official regulations with special focus on radionuclides used for PRRT do not exist; in summary, these requirements differentiate from one country to another [14].

Toward intercontinental patient care

In Japan and other non-European countries, PRRT using effective SSTR-targeting compounds like 177Lu-DOTATOC are currently not available. To implement the entire “theranostic” concept, the use of the “theranostic twins” but also individual tailored treatment planning prior to PRRT is indispensable. To overcome this shortcoming, the Würzburg department of nuclear medicine among others provides special medical services for patients which do not have access to PRRT in their home countries including patient preparation at their home institution (e.g. renal scintigraphy, 111In-DTPA-octreotide scintigraphy). Additionally, management of transfer to Germany is provided. If required also in-house renal scintigraphy, measurement of blood values (with special focus on renal/hematological parameters) but also the more sensitive 68Ga-DOTATOC PET/CT scan proving receptor expression on tumor cell surface can be provided. To avoid environmental radiation exposure after PRRT as well as to guarantee a better post-therapy monitoring, the patients are constrained to stay...
hospitalized for a total of 3–5 days. After being discharged, patients are encouraged to avoid contact to small children and pregnant persons for the next 5–7 days; special paperwork to allow for a return flight will be provided.

Dose estimation as part of “theranostic” concept to minimize toxicity

The term “theranostic twins” does not only refer to the use of peptides labeled with diagnostic or therapeutic radionuclides, but also emphasizes the personalized patient preparation prior to and after PRRT. The kidneys are the dose-limiting organ in PRRT and therefore kidney function has to be assessed prior to therapy by laboratory tests, 24 h urine collection and/or renal scintigraphy [14]. Van Binnebeek et al. reported in a case presentation as well as in a prospective phase II trial on the role of individualized dosimetry-based activity reduction of 90Y-DOTATOC to prevent severe and rapid kidney function deterioration by maximizing the delivered tumor dose and minimizing the biological effective dose (BED) to potential risk organs (kidney, bone marrow). The authors used 111In-pentetreotide for dose estimation and reported a maximal tolerable kidney dose of 37 Gy BED as the threshold to avoid severe loss of kidney function in 90Y-DOTATOC [42, 43].

Helisch et al. [44] demonstrated that both 86Y-DOTATOC (chemically identical to 90Y) and 111In-pentetreotide are feasible to pre-therapeutically calculate the cumulative organ and tumor doses identifying patients with high radiation burden to the kidneys. Concerning post-therapeutic dosimetric approaches, the following data has to be collected up to 3 days after PRRT: urine, blood, whole-body-scans, planar images but also SPECT alone/fused-SPECT/CT [14]. Software tools like OLINDA/EXM using this equation provide internal dose information and especially dose calculations [45]. However, a general recommendation for performing pre-/post-therapeutic dosimetry is not given. Due to its γ-emission, post-therapeutic scintigraphy of 177Lu-DOTATATE allows staging/imaging and dosimetry by using the same radio-labeled tracer. Thus, during the first treatment cycle of 177Lu-DOTATATE, a post-therapeutic dosimetry might be useful [14, 46].

Outlook

In general, PRRT is recommended for inoperable, metastasized NETs expressing SSTR2 on the tumor cell surface [12].

Radiosensitizing, SST receptor expression increase and neoadjuvant treatment strategies

The synergism of radiolabeled compounds with chemotherapy may lead to higher efficacies. Claringbold et al. [47] reported that the addition of the radiosensitizing chemotherapeutic drug capecitabine resulted in tumor control in 94 % of patients without severe toxicity. The same research group administered 177Lu-octreotate in combination with capecitabine and temzolomide in advanced low-grade NETs demonstrating 2-year survival rate of 90 % [48].

Furthermore, receptor expression on tumour cells could be increased by addressing different molecular targets prior to PRRT. This might guarantee a higher saturation of SST receptors expressed on the tumor cell surface which could lead to higher BED. A Swedish research group reported a higher uptake of 177Lu-DOTA-Tyr3-octreotate in external-beam irradiated small cell lung cancer cells which might be caused by an up-regulation of SSTR2 [49]. These findings may constitute a promising treatment option in the future.

On a final note, the use of PRRT in a neoadjuvant setting to downstage/downsize inoperable patients could be beneficial but has not been studied sufficiently to date.

Locoregional procedures in case of discontinuing PRRT

Radioembolization with 90Y microspheres has been described as a safe and effective treatment option in unresectable cancers of the liver [50]. Due to their hyper-vascularity liver-dominant NET metastases are well-suited for locoregional therapeutic procedures such as radioembolization (selective internal radiation therapy, SIRT) but also transarterial chemoembolization (TACE) combining the cytotoxic effect of intra-arterial chemotherapy with an embolizing ischemic approach [51]. Injection of 90Ytrium-microspheres into liver metastases as salvage therapy after PRRT resulted in a median OS of 29 months [52]. TACE and transarterial embolization (TAE) demonstrated the same PFS of 36 months in patients suffering from advanced NET. However, less side effects are described for TAE [53].

“High dose” approach in PRRT

Ongoing studies are trying to determine the role of dosimetry for minimizing kidney and bone marrow damage by potentially offering the possibility of increasing the administered activities. Currently, up to a maximum of 7.4 GBq per treatment cycle is regarded as safe [54]. Using the absorbed dose to “risk organs” as the limiting factor, treatment with 177Lu-DOTATATE could be individualized...
to avoid under-/overtreatment, minimize side effects and to be able to administer the maximum activity per treatment cycle. Forrer et al. [55] reported high inter-patient variability of bone marrow absorbed doses. Thus, individual dosimetry and a personalized “high dose” approach appear feasible. Results of standard PRRT (by using 7.4 GBq 177Lu-DOTATOC) according to practical guidance [14] could be compared to a tailored “high dose” treatment by injecting the maximum tolerable dose per cycle. Pre-therapeutic dosimetry assesses the individual kinetic behavior in every patient which might be helpful in maximizing the cumulative dose but also optimizing the BED.

Conclusion

In summary, PRRT is an effective and safe treatment option for patients suffering from advanced NET. The “theranostic twins” 177Lu- and 68Ga-DOTATATE are routinely used in clinical practice with well-established response rates. Ongoing prospective multicenter trials such as NETTER-1 will hopefully confirm these results in larger patient populations awarding PRRT a higher clinical acceptance [56]. The importance of dose estimation as part of the “theranostic” concept and also pre-therapeutic up-regulation of SSTR expression should be kept in mind as potential innovations of PRRT [42, 43, 49].

References

1. Seidlin SM, Marinelli LD, Osry E. Radioactive iodine therapy: effect on functioning metastases of adenocarcinoma of the thyroid. J Am Med Assoc. 1946;132:838–47.
2. Pahaut JE. Use of radiostrontium (Sr89) in the treatment of cancer. Govaerts J J Radiol Electrol Arch Electr Medicale. 1956;37:164–9.
3. Pecher C. Biological investigations with radioactive calcium and strontium: preliminary report on the use of radioactive strontium in the treatment of bone cancer. Univ Calif Publ Pharmacol. 1942;11:117–49.
4. Treuner J, Feine U, Niethammer D, Muller-Schaumburg W, Meinke J, Eibach E, et al. Scintigraphic imaging of neuroblastoma with [131I]iodobenzylguanidine. Lancet. 1984;1:333–4.
5. Decarolis B, Schneider C, Hero B, Simon T, Volland R, Roels F, et al. Iodine-123 metaiodobenzylguanidine scintigraphy scoring allows prediction of outcome in patients with stage 4 neuroblastoma: results of the Cologne intergroup comparison study. J Clin Oncol. 2013;31:944–51.
6. Akten C, Castellani MR, Bombardieri E. Diagnostic and therapeutic use of MIBG in pheochromocytoma and paraganglioma. Q J Nucl Med Imaging. 2013;57:109–11.
7. Kreissl MC, Schirbel A, Fassnacht M, Haenscheid H, Verburg FA, Bock S, et al. 123Iodometidomide imaging in adenocortical carcinoma. J Clin Endocrinol Metab. 2013;98:2755–64.
8. Hahner S, Kreissl MC, Fassnacht M, Haenscheid H, Bock S, Verburg FA, et al. Functional characterization of adrenal lesions using $^{[123]}$IIMTO-SPECT/CT. J Clin Endocrinol Metab. 2013;98:1508–18.
9. Hahner S, Kreissl MC, Fassnacht M, Haenscheid H, Knoedler P, Lang K, et al. $^{[131]}$Iodometidomide for targeted radionuclide therapy of advanced adrenocortical carcinoma. J Clin Endocrinol Metab. 2012;97:914–22.
10. Modlin IM, Oberg K, Chung DC, Jensen RT, de Herder WW, Thakker RV, et al. Gastroenteropancreatic neuroendocrine tumours. Lancet Oncol. 2008;9:61–72.
11. Virgolini I, Ambrosini V, Bomanji JB, Baum RP, Fanti S, Gabriel M, et al. Procedure guidelines for PET/CT tumour imaging with 68Ga-DOTA-conjugated peptides: 68Ga-DOTA-TOC, 68Ga-DOTA-NOC, 68Ga-DOTA-TATE. Eur J Nucl Med Mol Imaging. 2010;37:2004–10.
12. Auernhammer CJ, Goke B. Therapeutic strategies for advanced neuroendocrine carcinomas of jejunum/ileum and pancreatic origin. Gut. 2011;60:1009–21.
13. de Herder WW, Holland LJ, van der Lely AJ, Lamberts SW. Somatostatin receptors in gastroenteropancreatic neuroendocrine tumours. Endo Relat Cancer. 2003;10:451–8.
14. Bodei L, Mueller-Brand J, Baum RP, Pavel ME, Horsch D, O’Dorisio MS, et al. The joint IAEA, EANM, and SNMMI practical guidance on peptide receptor radionuclide therapy (PRRNT) in neuroendocrine tumours. Eur J Nucl Med Mol Imaging. 2013;40:800–16.
15. Krenning EP, Kooij PP, Bakker WH, Brennan WA, Postema PT, Kwekkeboom DJ, et al. Radiotherapy with a radiolabeled somatostatin analogue, $^{[111]}$In-DTPA-D-Phe1-octreotide. A case history. Ann N Y Acad Sci. 1994;733:496–506.
16. Sundin A. Radiological and nuclear medicine imaging of gastroenteropancreatic neuroendocrine tumours. Best Pract Res Clin Gastroenterol. 2012;26:803–18.
17. Valkema R, De Jong M, Bakker WH, Brennan WA, Kooij PP, Lugtenburg PJ, et al. Phase I study of peptide receptor radionuclide therapy with [In-DTPA]octreotide: the Rotterdam experience. Semin Nucl Med. 2002;32:110–22.
18. Anthony LB, Woltering EA, Espenau GD, Cronin MD, Maloney TJ, McCarthy KE. Indium-111-pentetreotide prolongs survival in gastroenteropancreatic malignancies. Semin Nucl Med. 2002;32:123–32.
19. Kwekkeboom DJ, Krenning EP, Lebtahi R, Kommipoth K, Koskula B, de Herder WW, et al. ENETS consensus guidelines for the standards of care in neuroendocrine tumours: peptide receptor radionuclide therapy with radiolabeled somatostatin analogs. Neuroendocrinology. 2009;90:220–6.
20. Kowalski J, Henze M, Schuhmacher J, Macke HR, Hofmann M, Haberkorn U. Evaluation of positron emission tomography imaging using $^{[68]}$Ga-DOTA-D-Phe1(1)-Tyr(3)-Octreotide in comparison to $^{[11]}$In-DTPAOCT. First results in patients with neuroendocrine tumours. Mol Imaging Biol. 2003;5:42–8.
21. Haug AR, Cindea-Drimus R, Auernhammer CJ, Reincke M, Wangler B, Uebles C, et al. The role of 68Ga-DOTATATE PET/CT in suspected neuroendocrine tumours. J Nucl Med. 2012;53:1686–92.
22. Ambrosini V, Campana D, Bodei L, Nanni C, Castellucci P, Allegrì V, et al. 68Ga-DOTANOC PET/CT clinical impact in patients with neuroendocrine tumours. J Nucl Med. 2010;51:669–73.
23. Oste A, Hermann R, Heppeler A, Behe M, Jermann E, Powell P, et al. Yttrium-90 DOTALOC: first clinical results. Eur J Nucl Med. 1999;26:1439–47.
24. Waldherr C, Pless M, Maecke HR, Schumacher T, Crazzolara A, Nitsche EU, et al. Tumor response and clinical benefit in neuroendocrine tumors after 7.4 GBq (90)Y-DOTATOC. J Nucl Med. 2002;43:610–6.
25. Valkema R, Pauwels SA, Kvols LK, Kwekkeboom DJ, Jamar F, de Jong M, et al. Long-term follow-up of renal function after}
peptide receptor radiation therapy with (90)Y-DOTA(0), Tyr(3)-octreotide and (177)Lu-DOTA(0), Tyr(3)-octreotate. J Nucl Med. 2005;46(Suppl 1):835–91S.

26. Kwekkeboom DJ, de Herder WW, Kam BL, van Eijck CH, van Essen M, Kooij PP, et al. Treatment with the radiolabeled somatostatin analog \[^{177}\text{Lu}-\text{DOTA} 0, \text{Tyr}3\text{octreotide: toxicity, efficacy, and survival}. J Clin Oncol. 2008;26:2124–30.

27. Van Essen M, Krenning EP, De Jong M, Valkema R, Kwekkeboom DJ. Peptide receptor radionuclide therapy with radiolabelled somatostatin analogues in patients with somatostatin receptor positive tumours. Acta Oncol. 2007;46:723–34.

28. Sabet A, Haslerud T, Pape UF, Ahmadzadehfar H, Gruenwald F, Gahlke S, et al. Outcome and toxicity of salvage therapy with \(^{177}\text{Lu}\)-octreotate in patients with metastatic gastroenteropancreatic neuroendocrine tumours. Eur J Nucl Med Mol Imaging. 2014;41:205–10.

29. Damthala M, Kallur KG, Prashant GR, Rajkumar K, Raghavendra Rao M. (177)Lu-DOTATATE therapy in patients with neuroendocrine tumours: 5 years experience from a tertiary cancer care centre in India. Eur J Nucl Med Mol Imaging. 2014;41:1319–26.

30. Sabet A, Ezziddin K, Pape UF, Reichman K, Haslerud T, Ahmadzadehfar H, et al. Accurate assessment of long-term nephrotoxicity after peptide receptor radionuclide therapy with \(^{177}\text{Lu}\)-octreotate. Eur J Nucl Med Mol Imaging. 2014;41:505–10.

31. Sabet A, Ezziddin K, Pape UF, Ahmadzadehfar H, Mayer K, Poppet T, et al. Long-term hematotoxicity after peptide receptor radionuclide therapy with \(^{177}\text{Lu}\)-octreotate. J Nucl Med. 2013;54:1857–61.

32. Giovacchini G, Nicolás G, Freidank H, Mindt TL, Forrer F. Effect of amino acid infusion on potassium serum levels in neuroendocrine tumour patients treated with targeted radiopharmaceuticals. Eur J Nucl Med Mol Imaging. 2011;38:1675–82.

33. Kunikowska J, Krolicki L, Hubalewska-Dydejczyk A, Mikolajczak R, Sowa-Staszczak A, Pawlak D. Clinical results of radionuclide therapy of neuroendocrine tumours with \(^{90}\text{Y}\)-DOTATATE and tandem \(^{90}\text{Y}/^{177}\text{Lu}\)-DOTATATE: which is a better therapy option? Eur J Nucl Med Mol Imaging. 2011;38:1788–97.

34. Haug AR, Auernhammer CJ, Wangler B, Schmidt GP, Uebles C, Goke B, et al. \(^{46}\text{Ga}\)-DOTA-PET/CT for the early prediction of response to somatostatin receptor-mediated radionuclide therapy in patients with well-differentiated neuroendocrine tumours. J Nucl Med. 2010;51:1349–56.

35. Gabriel M, Deconturofo C, Kendler D, Dobrozemsky G, Heute D, Uppriny C, et al. \(^{46}\text{Ga}\)-DOTA-Tyr3-octreotide PET in neuroendocrine tumours: comparison with somatostatin receptor scintigraphy and CT. J Nucl Med. 2007;48:508–18.

36. Elsinga P, Todde S, Pennelaas I, Meyer G, Faridmehr J, Faivre-Chauvet A, et al. Guidance on current good radiopharmacy practice (cGRPP) for the small-scale preparation of radiopharmaceuticals. Eur J Nucl Med Mol Imaging. 2010;37:1049–62.

37. Brennan WA, Bruggerman AM. The \(^{46}\text{Ga}/^{46}\text{Ga}\) generator has high potential, but when can we use \(^{68}\text{Ga}\)-labelled tracers in clinical routine? Eur J Nucl Med Mol Imaging. 2007;34:978–81.

38. Parker D. Tumor Targeting. Chem Br. 1990;26:942–5.

39. Krenning EP, Bakker WH, Kooij PP, Konijnemberg MW, Srinivasan A, Erion JL, et al. \(^{177}\text{Lu}\)-DOTA(Tyr3)octreotate: comparison with \(^{111}\text{In}\)-DTPA(octreotide) in patients. Eur J Nucl Med. 2001;28:1319–25.

40. Brennan WA, De Jong M, Visser TJ, Erion JL, Krenning EP. Optimising conditions for radiolabelling of DOTA-peptides with \(^{90}\text{Y}\), \(^{111}\text{In}\) and \(^{177}\text{Lu}\) at high specific activities. Eur J Nucl Med Mol Imaging. 2003;30:917–20.

41. Das T, Chakraborty S, Banerjee S, Venkatesh M. On the preperation of a therapeutic dose of \(^{177}\text{Lu}\)-labeled DOTA-TATE using indigenously produced \(^{177}\text{Lu}\) in medium flux reactor. Appl Radiat Isot. 2007;65:301–8.

42. Van Bienebeck S, Baetke K, Vanbilloen B, Terewinghe C, Koole M, Mottaghy FM, et al. Individualized dosimetry-based activity reduction of (90)Y-DOTATOC prevents severe and rapid kidney function deterioration from peptide receptor radionuclide therapy. Eur J Nucl Med Mol Imaging. 2014;41:1141–57.

43. Van Bienebeck S, Baetke K, Terewinghe C, Vanbilloen B, Haustermans K, Mortelmans L, et al. Significant impact of transient deterioration of renal function on dosimetry in PRRT. Ann Nucl Med. 2013;27:74–7.

44. Helisch A, Forster GJ, Reher H, Buchholz HG, Arnold R, Goke B, et al. Pre-therapeutic dosimetry and biodistribution of \(^{90}\text{Y}\)-DOTA-Phe1-Tyr3-octreotide versus \(^{111}\text{In}\)-pentetreotide in patients with advanced neuroendocrine tumours. Eur J Nucl Med Mol Imaging. 2004;31:1386–92.

45. Stabin MG, Sparks RB, Crowe E. OLINDA/EXM: the second-generation personal computer software for internal dose assessment in nuclear medicine. J Nucl Med. 2005;46:1023–7.

46. Goke BFH, Reinke M, Auernhammer CJ. Manual Endocrine Tumore–Empfehlungen zur Diagnostik, Therapie und Nachsorge. 3rd ed. München: W. Zuckschwerdt Verlag; 1998. p.198.

47. Claringbold PG, Brayshaw PA, Price RA, Turner JH. Phase II study of radiophosphate \(^{177}\text{Lu}\)-octreotide and capetitabine therapy of progressive disseminated neuroendocrine tumours. Eur J Nucl Med Mol Imaging. 2011;38:302–11.

48. Claringbold PG, Price RA, Turner JH. Phase I–II study of radiophosphate \(^{177}\text{Lu}\)-octreotide in combination with capetitabine and temozolomide in advanced low-grade neuroendocrine tumours. Cancer Biother Radiopharm. 2012;27:561–9.

49. Oddstig J, Bernhardt P, Nilsson O, Ahlman H, Forssell-Aronsson E. Radiation-induced up-regulation of somatostatin receptor expression in small cell lung cancer in vitro. Nucl Med Biol. 2006;33:841–6.

50. Kennedy A, Coldwell D, Sangro B, Wasan H, Salem R. Integrating radioembolization ((90)Y microspheres) into current treatment options for liver tumors: introduction to the international working group report. Am J Clin Oncol. 2012;35:81–90.

51. Gupta S, Johnson MM, Murthy R, Ahrar K, Wallace MJ, Madoff DC, et al. Hepatic arterial embolization and chemoembolization for the treatment of patients with metastatic neuroendocrine tumours: variables affecting response rates and survival. Cancer. 2005;104:1590–602.

52. Ezziiddin S, Meyer C, Kahancova S, Haslerud T, Willinek W, Krenning EP, et al. Somatostatin receptor scintigraphy with \(^{90}\text{Y}\)-DOTATATE and tandem \(^{90}\text{Y}/^{177}\text{Lu}\)-DOTATATE: which is a better therapy option? Eur J Nucl Med Mol Imaging. 2007;34:978–97.

53. Fiore F, Del Prete M, Franco R, Marotta V, Rumando V, Marcillo F, et al. Transarterial embolization (TAE) is equally effective and slightly safer than transarterial chemoembolization (TACE) to manage liver metastases in neuroendocrine tumours. Endocrine. 2014.

54. Krenning EP, Kwekkeboom DJ, Bakker WH, Brennan WA, Kooij PP, Oei HY, et al. Somatostatin receptor scintigraphy with \(^{111}\text{In}\)-DTPA-octreotide: the Rotterdam experience with more than 1000 patients. Eur J Nucl Med. 1993;20:716–31.

55. Fuerer F, Krenning EP, Kooij PP, Bernard BF, Konijnemberg M, Bakker WH, et al. Bone marrow dosimetry in peptide receptor radionuclide therapy. J Nucl Med. 2012;53:1663–9.

56. Prasad V, Brenner W, Molliden IM. How smart is peptide receptor radionuclide therapy of neuroendocrine tumors especially in the salvage setting? The clinician’s perspective. Eur J Nucl Med Mol Imaging. 2014;41:202–4.