Improving the primal-dual algorithm for the transportation problem in the plane

Thomas Kaijser
Department of Mathematics and Information Coding Group,
Linköping University, S-581 83 Linköping, Sweden; thkai@mai.liu.se

Abstract

The transportation problem in the plane - how to move a set of objects from one set of points to another set of points in the cheapest way - is a very old problem going back several hundreds of years. In recent years the solution of the problem has found applications in the analysis of digital images when searching for similarities and discrepancies between images. The main drawback, however, is the long computation time for finding the solution.

In this paper we present some new results by which the time for solving the transportation problem in the plane can be reduced substantially. As cost-function we choose a distance-function between points in the plane. We consider both the case when the distance-function is equal to the ordinary Euclidean distance, as well as the case when the distance-function is equal to the square of the Euclidean distance. This latter distance-function has the advantage that it is integer-valued if the coordinates of the points in the plane are integers.

Mathematics Subject Classification (2000): Primary 90C08; Secondary 90C46, 90C06, 90C90.

Keywords: Euclidean transportation problem, primal-dual algorithm, search reduction, Kantorovich metric, earth mover’s distance.

1 Introduction.

The classical transportation problem can be formulated as follows. Let \(\{S_n, n = 1, 2, ..., N\} \) denote \(N \) sources, let \(\{R_m, m = 1, 2, ..., M\} \) denote \(M \) sinks, let \(a_n \) denote the amount of goods that is available at source \(S_n \), let \(b_m \) denote the amount of goods required at the sink \(R_m \), and let \(c(n, m) \) denote the cost to send one unit of goods from the source \(S_n \) to the sink \(R_m \). We call \(a_n \) the storage at source \(S_n \) and \(b_m \) the demand at sink \(R_m \). Assume that \(\sum_{n=1}^{N} a_n = \sum_{m=1}^{M} b_m \) and let \(\Lambda \) denote the set of \(N \times M \) matrices \(\{y(n, m), n = 1, 2, ..., N, m = 1, 2, ..., M\} \), such that \(\sum_{m=1}^{M} y(n, m) = a_n, \sum_{n=1}^{N} y(n, m) = b_m \) and \(y(n, m) \geq 0, n = 1, 2, ..., N, m = 1, 2, ..., M. \) We call a matrix in \(\Lambda \) a complete transportation plan.
Problem: Find a complete transportation plan \(X = \{ x(n, m) \} \in \Lambda \) such that

\[
\sum_n \sum_m x(n, m) c(n, m) = \min \{ \sum_n \sum_m y(n, m) c(n, m), \ y(n, m) \in \Lambda \}.
\]

This problem, the (balanced) transportation problem, is a basic example within the theory of optimization theory, and in standard text books one usually presents two solution methods to the problem, namely the simplex method and the primal-dual algorithm. The simplex method was developed by G. Dantzig in the late 1940s. An early presentation of the primal-dual algorithm for the special version of the transportation problem called the assignment problem, which occurs if \(N = M \) and \(a_n = 1 \), for \(n = 1, 2, \ldots, N \) and \(b_m = 1 \), for \(m = 1, 2, \ldots, M \), was given by H. Kuhn in [7]. In this paper Kuhn writes "One interesting aspect of the algorithm is the fact that it is latent in work of D. König and E. Egerváry that predates the birth of linear programming by more than 15 years (hence the name, the 'Hungarian algorithm')."

In this paper we shall consider the sources and the sinks as points in the plane and write \(\{ S_n = (i_n, j_n), n = 1, 2, \ldots, N \} \) for the sources and \(\{ R_m = (x_m, y_m), m = 1, 2, \ldots, M \} \) for the sinks. We shall also assume that the cost-function is a distance-function \(\delta((i, j), (x, y)) \) between points in the plane. We call this special version of the transportation problem for the transportation problem in the plane. (From now on we write \(\delta(i, j, x, y) \) instead of \(\delta((i, j), (x, y)) \) for a distance-function between points in the plane.)

The transportation problem has a long history, and goes as far back as to Monge, 1781 [8].

In a paper from 1942 L. Kantorovich proves that the solution of the transportation problem, can be obtained by solving a maximization problem instead of a minimization problem - the so called dual version of the transportation problem. (See [6].) He also showed that the solution to the transportation problem can be used as a distance-measure between probabilities.

There is much literature on the transportation problem. Here we only mention the paper [10] and the book [11] by Rachev in both of which there are many further references.

In the 1980s the solution to the transportation problem in the plane was introduced as a distance-measure for digital, grey-valued images with equal total grey-value. See [12] and [13]. We call this distance-measure the Kantorovich distance for images.

A drawback with the Kantorovich distance for images is, that in case we deal with ordinary grey-valued images, the size of the transportation problem becomes quite large which implies that the computation time becomes long.

Standard algorithms for finding the solution to the transportation problem - namely the simplex method and the primal dual algorithm, both have a computational complexity of order \(O(N^3) \) in case the data is integer valued, a fact which was pointed out already by Werman et al. in [12].

In 1995, Atkinson and Vaidya [2] presented an algorithm for the transportation problem in the plane, which, for integer valued problems, has a computational complexity of order \(O(N^2 \times \log(N) \times \log(C)) \), where \(C \) denotes the maximum of the storages and the demands, in case the distance-function is the \(L^1 \) metric, and of order \(O(N^{2.5} \times (\log(N))^3 \times \log(C)) \) in case the distance-function is the Euclidean metric. However, they did not apply their algorithm.
to digital images, nor did they actually present any experimental results, so it is
difficult to make comparisons with other methods.

In a recent paper [5] from 1998 (see also [4]), we described an algorithm for
computing the Kantorovich distance for images, in case the distance-function
between points in the plane is chosen to be the L^1-metric or the square of
the Euclidean metric; the algorithm was based on the primal-dual algorithm
for the balanced transportation problem, and practical experiments indicated
a computational complexity of order approximately $O(N^2)$ for square images
with N pixels.

The reason we managed to obtain an algorithm, which in comparison with
the standard primal-dual algorithm for the balanced transportation problem,
has a lower computational complexity, was because we found a method by which
we could reduce the search for the so called admissible arcs.

However, it was only in the case when the distance-function is the L^1-metric
we were able to prove that our algorithm computed the Kantorovich distance
exactly. In case the distance-function $\delta(x_1, y_1, x_2, y_2)$ is defined by

\[
\delta(x_1, y_1, x_2, y_2) = (x_1 - x_2)^2 + (y_1 - y_2)^2
\]

we were only able to show that our computation leads to the correct result
by checking an optimality criterion which exists for the primal-dual algorithm.
(As we shall motivate in Section 6 below, there are several reasons why it is of
interest to use a distance-function defined by (1).)

The purpose of this paper is threefold. One purpose of this paper is to prove
that the stopping criterion introduced in [5] does indeed lead to the correct
result in case the distance-function is defined by (1).

A second purpose is to prove some results by which one can improve the al-
gorithm for computing the Kantorovich distance for images in case the distance-
function again is defined by (1). These results imply that we can restrict the
search for admissible arcs even further.

One case we did not consider in the paper [5] was the case when the distance-
function is exactly the Euclidean distance. (We mentioned very briefly, [5]
Section 20, that in case one uses a linear combination, of the L^∞-metric
and the L^1-metric then the algorithm we described in [5] did work for the examples
we had considered.)

The third purpose of this paper is to prove a result by which it is possible to
improve the primal-dual algorithm for computing the Kantorovich distance also
in case the distance-function is the Euclidean distance. We believe, that by using
this result, it should be possible to obtain an algorithm for the transportation
problem in the plane with Euclidean distance-function, which, for integer valued
problems, has a computational complexity of approximately order $O(N^2)$ to be
compared to $O(N^{2.5})$ obtained approximately in [2].

The plan of the paper is as follows. In Section 2 we introduce some basic
notations, some terminology and a more precise formulation of the transportation
problem in the plane. In Section 3 we present the dual formulation of the transportation
problem and in Section 4 we give a very brief description of the primal-dual algorithm.
In Section 5 we recall some results proven in [5]. In Section 6 we prove the assertion which we presented in [5] in case the
distance-function is defined by (1), and in Section 7 we prove some other results
which can be used to decrease the search for admissible arcs when the distance-
function is defined by (1). In Section 8 we prepare for our results, when the
distance-function is the Euclidean distance, by introducing three notions namely
a hyperbolic set, a level set and an exclusion set, and we prove a simple but very
important relation between hyperbolic sets and level sets. In Section 9, we prove
a simple, elementary, lemma which relates hyperbolas and cones, and then in
Section 10, we apply this result when proving results, by which one can reduce
the search for admissible arcs in case the distance-function is the ordinary Eu-
clidean distance. In Section 11, for the sake of completeness, we prove that one
of the basic assumptions we make in most of our results is correct, namely that
if one uses the primal-dual algorithm with proper initialization then each pixel
will always belong to at least one admissible arc. In section 12 we present a
result by which one can speed up the computation of the quantities by which
one changes the dual variables when performing the primal-dual algorithm.

In order for the results of this paper to be useful it is necessary that the
sources and the sinks can be organized in such a way that one quickly can
determine all points which are so to speak northeast (northwest, southeast,
southwest) of an arbitrary point. In section 13 we briefly describe an algorithm
by which one can accomplish this. Section 14, finally, contains a short summary.

2 Basic notations and terminology.

Let $K = \{(i_n, j_n), \ n = 1, 2, ..., N\}$ be a set of N points in R^2. By an image P
with support K (defined on K) we simply mean a set $P = \{(i_n, j_n, p(i_n, j_n)), \ n = 1, 2, ..., N\}$. We usually use the notation
$P = \{(i, j) : (i, j) \in K\}$ for an image. We call an element (i, j) of the support
K of an image a pixel.

Next, let $P = \{p(i, j) : (i, j) \in K_1\}$ and $Q = \{q(x, y) : (x, y) \in K_2\}$ be
two given images, defined on the two sets $K_1 = \{(i_n, j_n), \ n = 1, 2, ..., N\}$ and
$K_2 = \{(x_m, y_m), \ m = 1, 2, ..., M\}$ respectively. K_1 and K_2 may be the same,
overlap or be disjoint. We also assume that
$$\sum_{K_1} p(i, j) = \sum_{K_2} q(x, y).$$

Let $\Gamma(P, Q)$ denote the set of all non-negative mappings $h(i, j, x, y)$ from $K_1 \times
K_2 \rightarrow R^+$ such that
$$\sum_{m=1}^{M} h(i(n), j(n), x(m), y(m)) \leq p(i(n), j(n)), \ n = 1, 2, ..., N \quad (2)$$
and
$$\sum_{n=1}^{N} h(i(n), j(n), x(m), y(m)) \leq q(x(m), y(m)), \ m = 1, 2, ..., M. \quad (3)$$

We call any function in $\Gamma(P, Q)$ a transportation plan from P to Q. A transportation
plan for which we have equality in both (2) and (3) will be called a complete transportation plan and we denote the set of all complete transportation plans by $\Lambda(P, Q)$.

Let $\delta(i, j, x, y)$ be a distance-function measuring the distance from a pixel
(i, j) in K_1 to a pixel (x, y) in K_2. The Kantorovich distance $d_{K, \delta}(P, Q)$ with
The underlying distance-function $\delta(i, j, x, y)$ is defined by

$$d_{K,\delta}(P, Q) = \min \left\{ \sum_{i,j,x,y} h(i, j, x, y) \times \delta(i, j, x, y) : h(\cdot, \cdot, \cdot, \cdot) \in \Lambda(P, Q) \right\}.$$

From the definition and some consideration we see that computing the Kantorovich distance for images is equivalent to solving a linear programming problem called the balanced transportation problem. Most standard textbooks in optimization theory presents an algorithm for solving the general balanced transportation problem with arbitrary cost-function. See e.g. [1], [3] or [9].

3 The dual formulation.

It is well-known that the solution to the minimization problem described above is also obtained by solving the following maximization problem - the dual problem:

$$\text{maximize} \sum_{(i,j) \in K_1} \alpha(i, j) \times p(i, j) + \sum_{(x,y) \in K_2} \beta(x, y) \times q(x, y)$$

when

$$\delta(i, j, x, y) - \alpha(i, j) - \beta(x, y) \geq 0, \quad (i, j) \in K_1, \ (x, y) \in K_2. \quad (4)$$

The variables $\alpha(i, j)$ and $\beta(x, y)$ are called the dual variables and in case they satisfy (4) we have a dual feasible solution. A pair $\{(i, j), (x, y)\}$ where $(i, j) \in K_1$ and $(x, y) \in K_2$ is called an arc. In case

$$\alpha(i, j) + \beta(x, y) = \delta(i, j, x, y) \quad (5)$$

we say that $\{(i, j), (x, y)\}$ is an admissible arc. Otherwise the arc is called unadmissible.

If a pixel $(i, j) \in K_1$ is such that there exists a pixel $(x, y) \in K_2$ such that (5) holds then we say that (i, j) has an admissible arc and vice versa. If $\{(i, j), (x, y)\}$ is an admissible arc we also say that (x, y) is an admissible pixel with respect to (i, j). And vice versa.

4 The primal-dual algorithm.

The primal-dual algorithm runs roughly as follows. Let $\{\alpha(i, j), \beta(x, y) : (i, j) \in K_1, \ (x, y) \in K_2\}$ be a feasible set of dual variables, and let us also assume that initially there exists at least one admissible arc for every pixel in K_1 and K_2. (If this is not the case originally, it is easy to see that one can increase some or all of the dual variables so that this hypothesis is fulfilled). We now look for a transportation plan $h(i, j, x, y)$ from P to Q which has the largest total mass among all the transportation plans for which $h(i, j, x, y) = 0$ in case $\{(i, j), (x, y)\}$ is unadmissible. In case the transportation plan we find is complete then we are ready; otherwise we update our set of dual variables. To find the "best" transportation plan on a given set of admissible arcs we use a labeling process, and we use the labeling also in order to find the quantity used when updating the set of dual variables. Once we have updated the variables,
we determine the new set of admissible arcs and then we again look for the "best" transportation plan on this new set of admissible arcs. Etcetera.

A good reference on the primal-dual algorithm for the transportation problem is Murty [9], chapter 12. Other useful references are [3] and [1].

5 Some preliminary results.

In [5] we were able to improve the primal-dual algorithm for computing the Kantorovich distance for images. The reason for the improvement was that we were able to reduce the search for new admissible arcs, by using the structure of the underlying distance-functions. In this section we shall present some results and proofs which in essence can be found in [5].

The following proposition holds for any choice of underlying distance-function.

Proposition 1 Let the underlying distance-function $\delta(i, j, x, y)$ be arbitrary. Let (i_1, j_1) and (i_2, j_2) belong to K_1, let (x_1, y_1) and (x_2, y_2) belong to K_2 and suppose that $\{(i_2, j_2), (x_2, y_2)\}$ is an admissible arc. Then

$$\alpha(i_1, j_1) - \alpha(i_2, j_2) \leq \delta(i_1, j_1, x_2, y_2) - \delta(i_2, j_2, x_2, y_2)$$

and similarly

$$\beta(x_1, y_1) - \beta(x_2, y_2) \leq \delta(i_2, j_2, x_1, y_1) - \delta(i_2, j_2, x_2, y_2).$$

Proof. Let us prove (7). We have

$$\beta(x_1, y_1) - \beta(x_2, y_2) =$$

$$\beta(x_1, y_1) - \delta(i_2, j_2, x_2, y_2) + \alpha(i_2, j_2) \leq$$

$$\delta(i_2, j_2, x_1, y_1) - \alpha(i_2, j_2) - \delta(i_2, j_2, x_2, y_2) + \alpha(i_2, j_2) =$$

$$\delta(i_2, j_2, x_1, y_1) - \delta(i_2, j_2, x_2, y_2).$$

The proof of (6) can be done in an analogous way. QED.

By applying the triangle inequality the following proposition follows immediately from Proposition 1. We therefore state it without proof.

Proposition 2 Let the underlying distance-function $\delta(i, j, x, y)$ be a metric. Then, if both $(i_1, j_1) \in K_1$ and $(i_2, j_2) \in K_1$ have admissible arcs then

$$|\alpha(i_1, j_1) - \alpha(i_2, j_2)| \leq \delta(i_1, j_1, i_2, j_2),$$

and similarly, if both $(x_1, y_1) \in K_2$ and $(x_2, y_2) \in K_2$, have admissible arcs then

$$|\beta(x_1, y_1) - \beta(x_2, y_2)| \leq \delta(x_1, y_1, x_2, y_2).$$

Before we state and prove the next lemma let us introduce some further terminology.
Let \((i, j)\) be a pixel in the support \(K_1\) of the image \(P\) and let \(\alpha(i, j)\) be a dual variable corresponding to the pixel \((i, j)\). Let \((x, y)\) be a pixel in the support of the image \(Q\). If the dual variable \(\beta(x, y)\) is such that
\[
\beta(x, y) < \delta(i, j, x, y) - \alpha(i, j)
\]
then we say that \((x, y)\) is low with respect to \((i, j)\). In case there is little risk for misunderstanding we only say that \((x, y)\) is low.

Let us also introduce the following notation and terminology regarding the positions of two pixels. Thus let \((x_1, y_1)\) and \((x_2, y_2)\) be two pixels. If \(x_1 \leq x_2\) and \(y_1 \leq y_2\) then we say that \((x_2, y_2)\) is northeast (NE) of \((x_1, y_1)\), and that \((x_1, y_1)\) is southwest (SW) of \((x_2, y_2)\), and if \(x_1 \geq x_2\) and \(y_1 \leq y_2\) then we say that \((x_2, y_2)\) is northwest (NW) of \((x_1, y_1)\), and that \((x_1, y_1)\) is southeast (SE) of \((x_2, y_2)\).

The usefulness of our next result is that it helps to limit the number of tests needed for finding all new admissible arcs in case we use the \(l_1\)-metric as underlying distance-function. The result can be found in [5], (Lemma 19.1) but we repeat it here as background information.

Theorem 1 Suppose that the distance-function we are using is defined by
\[
\delta(i, j, x, y) = |i - x| + |j - y|.
\]
Let \((i, j)\) be a pixel in \(K_1\), which has an admissible arc. Now suppose that \((x_1, y_1) \in K_2\), that \((x_1, y_1)\) has an admissible arc, that \((x_1, y_1)\) is NE of \((i, j)\) and that \((x_1, y_1)\) is low with respect to \((i, j)\). Then, if \((x, y)\) is NE of \((x_1, y_1)\), then \((x, y)\) is also low with respect to \((i, j)\). (See Figure 1 below.)

Figure 1
Proof. We prove the theorem by contradiction. Thus suppose that there exists a pixel \((x, y) \in K_2\) located \(NE\) of \((x_1, y_1)\) and such that at that pixel the dual variable \(\beta(x, y)\) is such that
\[
-\delta(i, j, x, y) + \alpha(i, j) + \beta(x, y) = 0. \tag{10}
\]
But since \((x_1, y_1)\) is low with respect to \((i, j)\), it follows that
\[
\alpha(i, j) < \delta(i, j, x_1, y_1) - \beta(x_1, y_1)
\]
which together with (10) implies that
\[
\delta(i, j, x, y) - \beta(x, y) < \delta(i, j, x_1, y_1) - \beta(x_1, y_1)
\]
and hence
\[
\beta(x, y) - \beta(x_1, y_1) > \delta(i, j, x, y) - \delta(i, j, x_1, y_1).
\]
But since \((x, y)\) is \(NE\) of \((x_1, y_1)\) which is \(NE\) of \((i, j)\) it follows that
\[
\delta(i, j, x, y) - \delta(i, j, x_1, y_1) = x - i + y - j - (x_1 - i + y_1 - j) = x - x_1 + y - y_1 = \delta(x, y, x_1, y_1).
\]
Hence
\[
\beta(x, y) - \beta(x_1, y_1) > \delta(x, y, x_1, y_1).
\]
But since both \((x, y)\) and \((x_1, y_1)\) have admissible arcs this inequality cannot be fulfilled because of Proposition 2. QED.

6 Finding admissible arcs when the distance-function is the square of the Euclidean distance.

In [5] we also considered the case when the underlying distance-function is defined as the square of the Euclidean distance. In our computer experiments we first tried to apply the assertion of Theorem 1 in order to reduce the search for new admissible arcs, but it turned out, that if we did so, then, for some examples, we did in fact exclude too many arcs. Therefore we created another claim with slightly stronger assumptions, a claim which we formulated as an Assertion, ([5] Assertion 20.1). It turned out that by using this assertion in order to reduce the search for admissible arcs, we did not exclude any admissible arcs from our search. However we were at that time not able to prove the claim, but now we have a proof and can therefore formulate our claim as a theorem.

We shall first introduce yet some further terminology.

Consider two pixels \((x_1, y_1)\) and \((x_2, y_2)\) in \(K_2\). Suppose both \((x_1, y_1)\) and \((x_2, y_2)\) are low with respect to the pixel \((i, j) \in K_1\). If also
\[
\delta(i, j, x_2, y_2) - \alpha(i, j) - \beta(x_2, y_2) \geq \delta(i, j, x_1, y_1) - \alpha(i, j) - \beta(x_1, y_1) \tag{11}
\]
then we say that \((x_2, y_2)\) is lower than \((x_1, y_1)\). If we have strict inequality in (11) we say that \((x_2, y_2)\) is strictly lower than \((x_1, y_1)\).
Theorem 2 Suppose that the underlying distance-function is defined by
\[\delta(i, j, x, y) = (i - x)^2 + (j - y)^2. \] (12)

Let \(\alpha(i, j), \beta(x, y) \) be a feasible set of dual variables such that each pixel \((i, j)\) in \(K_1 \), and each pixel \((x, y)\) in \(K_2 \) have an admissible arc. Let \((i_0, j_0)\) be a pixel in \(K_1 \) and let \((x_1, y_1), (x_2, y_1) \) and \((x_3, y_1)\) be three pixels in \(K_2 \) on the same line \(y = y_1 \), such that \(i_0 \leq x_1 < x_2 < x_3 \). Furthermore assume that both \((x_1, y_1)\) and \((x_2, y_1)\) are low with respect to \((i_0, j_0)\) and let \((x_2, y_1)\) be lower than \((x_1, y_1)\).

Then, \((x_3, y_1)\) is also low with respect to \((i_0, j_0)\). (See Figure 2 below, for a graphical illustration.)

Figure 2.

Remark 1. This theorem is slightly sharper than what we formulate in Assertion 20.1 of [5] (see also [4], Condition 18.1), since we only require that \((x_2, y_1)\) shall be lower than \((x_1, y_1)\) and not necessarily strictly lower.

Remark 2. This theorem requires that our images have supports on a regular grid structure where it is meaningful to speak of pixels being located on the same line. The theorem is not particularly useful for the case when the elements of the supports of the two images under consideration are placed at random.

Remark 3. It ought to be clear that by using this theorem one can decrease the number of searches necessary to find all admissible arcs. On each line \(y = y_1 \) we do not have to check pixels "further away", once we have found two pixels \((x_1, y_1), (x_2, y_1)\) such that both are low and \((x_2, y_1)\) is lower than \((x_1, y_1)\).

Remark 4. In Section 7 we shall show how one can obtain an efficient "stopping criterion" also in the "\(y\)-direction".

Remark 5. There are several reasons for defining the underlying distance-function by (5). It is rotationally invariant, it takes integers into integers, it also gives rise to a metric (if one takes the square root afterwards, see e.g. [10]), and if the two images are pure translations of each other then in the general case there is a unique transportation plan which gives rise to the optimum value. Moreover, by comparison with the \(L^1\)-metric it seems to give rise to a distance which is less course.
Before we begin our proof of Theorem 2 we shall prove the following auxiliary result.

Proposition 3

(a) Let \((i_1,j_1)\) and \((i_2,j_2)\) be two pixels in \(K_1\), let \((x_1,y_1)\) and \((x_2,y_1)\) be two pixels in \(K_2\) on the same line and such that \(x_1 < x_2\). Let \(\delta(\cdot, \cdot, \cdot, \cdot)\) be defined by (12) and suppose that \{\((i_1,j_1),(x_1,y_1)\)\} and \{\((i_2,j_2),(x_2,y_1)\)\} are admissible arcs. Then \(i_1 \leq i_2\).

(b) If furthermore \{\((i_2,j_2),(x_1,y_1)\)\} is not an admissible arc then \(i_1 < i_2\).

(For a graphical illustration, see Figure 3 below.)

Figure 3

Proof of Proposition 3. We first prove part a). The following relations must hold:

\[\alpha(i_1,j_1) + \beta(x_1,y_1) = \delta(i_1,j_1,x_1,y_1)\]
\[\alpha(i_2,j_2) + \beta(x_2,y_1) = \delta(i_2,j_2,x_2,y_1)\]
\[\alpha(i_1,j_1) + \beta(x_2,y_1) \leq \delta(i_1,j_1,x_2,y_1)\]
\[\alpha(i_2,j_2) + \beta(x_1,y_1) \leq \delta(i_2,j_2,x_1,y_1)\]

(13)

By first adding the last two inequalities and then subtracting the first two equalities, and finally shifting terms we obtain the inequality

\[\delta(i_1,j_1,x_2,y_1) - \delta(i_1,j_1,x_1,y_1) \geq \delta(i_2,j_2,x_2,y_1) - \delta(i_2,j_2,x_1,y_1).\]

(14)

By using the definition of \(\delta(i,j,x,y)\) (see (12)), we find that the left hand side of (14) becomes equal to

\[(x_2 - i_1)^2 - (x_1 - i_1)^2 = x_2^2 - x_1^2 - 2(x_2 - x_1)i_1\]

and the right hand side becomes equal to

\[(x_2 - i_2)^2 - (x_1 - i_2)^2 = x_2^2 - x_1^2 - 2(x_2 - x_1)i_2.\]

Hence in order for (14) to be true it is necessary that \(i_2 \geq i_1\). Thereby part a) is proved.
If furthermore we know that \(\{(i_2, j_2), (x_1, y_1)\} \) is not an admissible arc, then we have strict inequality in (13), which implies that we also have strict inequality in (14), and therefore, by using the same kind of arguments as above, we find that in order for (14) to be true with strict inequality, it is necessary that \(i_2 > i_1 \).

Thereby part b) is also proved. Q.E.D.

Corollary 1. Suppose that the underlying distance-function is defined by (12). Let \(\{i, j\} \) be a feasible set of dual variables such that each pixel \((i, j) \) in \(K_1 \), and each pixel \((x, y) \) in \(K_2 \) have an admissible arc. Let \((i_0, j_0) \) belong to \(K_1 \), let \((x_1, y_1), (x_2, y_1), (x_3, y_1) \) be three pixels in \(K_2 \) on the same line \(y = y_1 \), such that \(i_0 \leq x_1 < x_2 < x_3 \). Furthermore assume that \((x_1, y_1) \) is admissible with respect to \((i_0, j_0) \) and that \((x_2, y_1) \) is low with respect to \((i_0, j_0) \). Then \((x_3, y_1) \) is also low with respect to \((i_0, j_0) \).

Proof of Corollary 1. Assume that \(\{(i_0, j_0), (x_3, y_1)\} \) is an admissible arc. Let \((i_2, j_2) \) be an admissible pixel with respect to \((x_2, y_1) \). Since \((x_2, y_1) \) is low with respect to \((i_0, j_0) \), it follows by applying part b) of Proposition 3 to the pixels \((i_0, j_0), (i_2, j_2), (x_2, y_1) \) and \((x_3, y_1) \), that \(i_2 < i_0 \). On the other hand, by applying part a) of Proposition 3 to the pixels \((i_0, j_0), (i_2, j_2), (x_2, y_1) \) and \((x_1, y_1) \), we conclude that \(i_0 \leq i_2 \) and thereby we have reached a contradiction. Q.E.D.

Remark 1. The corollary implies that in case the pixel \((x_0, y_1) \in K_2 \) is the first pixel in \(K_2 \) along the line \(y = y_1 \) for which \(x_0 \geq i_0 \) and \((x_0, y_1) \) is an admissible pixel with respect to \((i_0, j_0) \), then we can stop the search for admissible pixels on this line as soon as we find a pixel which is low. If instead it turns out that the first pixel \((x_0, y_1) \in K_2 \), with \(x_0 \geq i_0 \), along the line \(y = y_1 \), is not an admissible pixel with respect \((i_0, j_0) \), then we should use Theorem 2 until we find an admissible pixel, after which we can use the corollary. Clearly the use of the corollary only makes a minor improvement of the algorithm.

Remark 2. Just as is the case with Theorem 2 the corollary is only useful for images defined on a grid structure.

Proof of Theorem 2. We are now ready to prove Theorem 2. Assume that \((x_3, y_1) \) is admissible with respect to \((i_0, j_0) \). Let \((i_1, j_1) \) be an admissible arc with respect to \((x_1, y_1) \) and let \((i_2, j_2) \) be an admissible arc with respect to \((x_2, y_1) \). From a) of Proposition 3 it follows that \(i_1 \leq i_2 \), from b) of Proposition 3 we obtain \(i_2 < i_0 \), and from the hypothesis of the theorem we also know that \(i_0 \leq x_1 < x_2 < x_3 \). Thus

\[
i_1 \leq i_2 < i_0 \leq x_1 < x_2 < x_3. \tag{15}\]

From the hypothesis of the theorem we also have that:

\[
\alpha(i_0, j_0) + \beta(x_1, y_1) = \delta(i_0, j_0, x_1, y_1) - r_1 \tag{16}
\]

\[
\alpha(i_0, j_0) + \beta(x_2, y_1) = \delta(i_0, j_0, x_2, y_1) - r_2 \tag{17}
\]

where

\[
r_2 \geq r_1 > 0. \tag{18}\]

By subtracting (17) from (16) and using the definition of \(\delta(i, j, x, y) \) we obtain

\[
\beta(x_1, y_1) - \beta(x_2, y_1) = r_2 - r_1 + 2(x_2 - x_1)i_0 + x_1^2 - x_2^2, \tag{19}\]

11
and by subtracting the equality \(\alpha(i_2, j_2) + \beta(x_2, y_1) = \delta(i_2, j_2, x_2, y_1)\) from the inequality \(\alpha(i_2, j_2) + \beta(x_1, y_1) \leq \delta(i_2, j_2, x_1, y_1)\) we obtain

\[
\beta(x_1, y_1) - \beta(x_2, y_1) \leq 2(x_2 - x_1)i_2 + x_1^2 - x_2^2. \tag{20}
\]

Finally, by using (19) to replace the left hand side of (20), we obtain

\[
r_2 - r_1 + 2(x_2 - x_1)i_0 \leq 2(x_2 - x_1)i_2
\]

which implies that

\[
r_1 - r_2 \geq 2(x_2 - x_1)(i_0 - i_2) > 0
\]

where the last inequality follows from (15) and hence

\[
r_1 > r_2
\]

which violates (18), and thereby we have reached a contradiction. Q.E.D.

7 A stopping criterion along the vertical axis.

Lemma 2 and Corollary 1 imply, roughly speaking, that the search time for finding new admissible arcs is decreased from the order \(O(N^2)\) to the order \(O(N^{1.5})\), in case our images are square digital images, where \(N\) as before denotes the total number of pixels in the two images. (Lemma 2 and Corollary 1 give rise to stopping criteria along the horizontal lines.) We shall now show, how we can reduce the search time to roughly \(O(N)\), by giving a stopping criterion along the vertical lines also.

Theorem 3 Suppose that the underlying distance-function is defined by

\[
\delta(i, j, x, y) = (i-x)^2 + (j-y)^2.
\]

Let \(\{\alpha(i, j), \beta(x, y)\}\) be a feasible set of dual variables such that each pixel \((i, j)\) in \(K_1\), and each pixel \((x, y)\) in \(K_2\) have an admissible arc. Let \((i_0, j_0)\) belong to \(K_1\). Let \((x_1, y_1)\) be a pixel in \(K_2\), NE of \((i_0, j_0)\), which is not an admissible pixel with respect to \((i_0, j_0)\). Let instead \((i_1, j_1)\) be an admissible pixel with respect to \((x_1, y_1)\), and assume that also \((i_1,j_1)\) is NE of \((i_0,j_0)\). Then if \((x_2, y_2)\) is a pixel in \(K_2\), NE of \((x_1, y_1)\), then \((x_2, y_2)\) is lower than \((x_1, y_1)\).

(For a graphical illustration, see Figure 4 below.)
Proof. Let us assume that \((x_2, y_2)\) is NE of \((x_1, y_1)\) and that it is not lower than \((x_1, y_1)\). Then the following relations hold:

\[
\begin{align*}
\alpha(i_0, j_0) + \beta(x_1, y_1) + r_1 &= \delta(i_0, j_0, x_1, y_1) \\
\alpha(i_1, j_1) + \beta(x_2, y_2) &\leq \delta(i_1, j_1, x_2, y_2) \\
\alpha(i_0, j_0) + \beta(x_2, y_2) + r_2 &= \delta(i_0, j_0, x_2, y_2) \\
\alpha(i_1, j_1) + \beta(x_1, y_1) &= \delta(i_1, j_1, x_1, y_1)
\end{align*}
\]

and

\[0 \leq r_2 < r_1.\]

By first adding the first equality and the inequality, and then subtracting the next two equalities, we obtain

\[r_1 - r_2 \leq \delta(i_0, j_0, x_1, y_1) + \delta(i_1, j_1, x_2, y_2) - \delta(i_0, j_0, x_2, y_2) - \delta(i_1, j_1, x_1, y_1),\]

and shifting terms we find that

\[\delta(i_0, j_0, x_1, y_1) - \delta(i_0, j_0, x_2, y_2) \geq \delta(i_1, j_1, x_1, y_1) - \delta(i_1, j_1, x_2, y_2) + r_1 - r_2.\] (21)

By using the definition of the distance-function \(\delta(i, j, x, y)\) we find that the left hand side of (21) becomes equal to

\[(x_1 - i_0)^2 - (x_2 - i_0)^2 + (y_1 - j_0)^2 - (y_2 - j_0)^2 = \]

13
and that the right hand side of (21) becomes equal to
\[(x_1 - i_1)^2 - (x_2 - i_1)^2 + (y_1 - j_1)^2 - (y_2 - j_1)^2 + r_1 - r_2 = \]
\[x_1^2 - x_2^2 - 2(x_1 - x_2)i_0 + y_1^2 - y_2^2 - 2(y_1 - y_2)j_0.\]

By subtracting the right hand side of (21) from the left hand side, we thus
obtain the inequality
\[2(x_1 - x_2)i_1 + 2(y_1 - y_2)j_1 - 2(x_1 - x_2)i_0 - 2(y_1 - y_2)j_0 + r_2 - r_1 \geq 0,
\] and by shifting terms we obtain the inequality
\[2(x_1 - x_2)(i_1 - i_0) + 2(y_1 - y_2)(j_1 - j_0) \geq r_1 - r_2.\]

But since \(x_1 \leq x_2\), \(i_1 \geq i_0\), \(y_1 \leq y_2\) and \(j_1 \geq j_0\), and since \(r_1 > r_2\) by assumption, this last inequality can not be true and we have reached a contradiction.

Remark. This theorem gives rise to a very efficient stopping criterion since, very often, we can choose the pixel \((x_1, y_1)\) equal to \((i_1, j_1)\) equal to \((i_0, y_1)\) which implies that we can stop the search for new admissible pixels on or above the line \(y = y_1\).

8 Hyperbolic sets, level sets and exclusion sets.

Before we start to discuss how we can shorten the search time for new admissible arcs in case the underlying distance-function is the Euclidean distance, we shall introduce some further notions. As usual, let \(P = \{ p(i, j) : (i, j) \in K_1 \}\) and \(Q = \{ q(x, y) : (x, y) \in K_2 \}\) be two images, let \(\delta(i, j, x, y)\) be an arbitrary distance-function, and let \(\alpha(i, j) : (i, j) \in K_1\) and \(\beta(x, y) : (x, y) \in K_2\) be two sets of feasible dual variables associated to the images \(P\) and \(Q\) respectively.

For each \((i, j) \in K_1\) we define the exclusion set \(E[(i, j), K_2]\) simply as all pixels in \(K_2\) which are not admissible with respect to \((i, j)\) and similarly for each \((x, y) \in K_2\) we define the exclusion set \(E[(x, y), K_1]\) simply as all pixels in \(K_1\) which are not admissible with respect to \((x, y)\).

Next let us also introduce a notion which we call a level set as follows. Let \((i_0, j_0) \in K_1\) and let \(r\) be a number such that \(r \geq 0\). The set of all pixels \((x, y)\) in \(K_2\) such that
\[
\delta(i_0, j_0, x, y) - \alpha(i_0, j_0) - \beta(x, y) > r
\]
will be called a level set and denoted by \(L[(i_0, j_0), K_2, r]\). Note that
\[
L[(i, j), K_2, 0] = E[(i, j), K_2].
\]

We shall now proceed by introducing a notion which we shall call a hyperbolic set. Let \((x_1, y_1)\) and \((x_2, y_2)\) be two points in \(R^2\) and let \(r\) be a real number. We define the hyperbolic set \(H[(x_1, y_1), (x_2, y_2), r]\) by
\[
H[(x_1, y_1), (x_2, y_2), r] = \{ (x, y) \in R^2 : \delta(x, y, x_2, y_2) - \delta(x, y, x_1, y_1) < r \}.
\]
For a graphical illustration, see Figure 5 below.

Figure 5.

Remark. The reason we call the set an hyperbolic set is because if we replace the inequality sign in the definition by an equality sign, thereby changing the defining inequality to an equality, this equality would define an ordinary hyperbola in case the underlying distance-function is the ordinary Euclidean distance.

We shall next present a theorem which connects hyperbolic sets and level sets.

Theorem 4 Let \(P = \{ p(i, j) : (i, j) \in K_1 \} \) and \(Q = \{ q(x, y) : (x, y) \in K_2 \} \) be two images, let \(\delta(i, j, x, y) \) be an arbitrary distance-function, and let \(\{ \alpha(i, j) : (i, j) \in K_1 \} \) and \(\{ \beta(x, y) : (x, y) \in K_2 \} \) be two sets of feasible dual variables associated to the images \(P \) and \(Q \) respectively, such that each pixel \((i, j) \) in \(K_1 \), and each pixel \((x, y) \) in \(K_2 \) have an admissible arc.

Let \((i_0, j_0) \) be a pixel in \(K_1 \), let \((x_1, y_1) \) be a pixel in \(K_2 \) which is not an admissible pixel with respect to \((i_0, j_0) \), let the number \(r \) be defined by

\[
r = \delta(i_0, j_0, x_1, y_1) - \alpha(i_0, j_0) - \beta(x_1, y_1),
\]

let \((i_1, j_1) \) be an admissible pixel with respect to the pixel \((x_1, y_1) \), let \(\Delta \) be defined by

\[
\Delta = \delta(i_0, j_0, x_1, y_1) - \delta(i_1, j_1, x_1, y_1),
\]

and let \(s \) be a real number satisfying \(s \geq 0 \). Then,

(a):

\[
H[(i_0, j_0), (i_1, j_1), r - \Delta - s] \cap K_2 \subset L[(i_0, j_0), K_2, s],
\]
(b): \[H([i_0, j_0], (i_1, j_1), r - \Delta] \cap K_2 \subset E([i_0, j_0], K_2], \]

and (c):
if also \(\delta(\cdot, \cdot, \cdot) \) is a metric, then
\[H([i_0, j_0], (x, y_1), r - \delta(i_0, j_0, x_1, y_1) - s] \subset H([i_0, j_0], (i_1, j_1), r - \Delta - s]. \]

Proof. Let us first prove (c). We prove (c) by contradiction. Thus assume that \((x, y) \) does belong to \(H([i_0, j_0], (x_1, y_1), r - \delta(i_0, j_0, x_1, y_1) - s] \) but does not belong to \(H([i_0, j_0], (i_1, j_1), r - \Delta - s]. \) Then
\[
\delta(x, y, x_1, y_1) - \delta(x, y, i_0, j_0) < r - \delta(i_0, j_0, x_1, y_1) - s
\]
and also
\[
\delta(x, y, i_1, j_1) - \delta(x, y, i_0, j_0) \geq r - \delta(i_0, j_0, x_1, y_1) + \delta(i_1, j_1, x_1, y_1) - s.
\]
Hence
\[
r - s - \delta(i_0, j_0, x_1, y_1) + \delta(i_1, j_1, x_1, y_1) \leq \delta(x, y, i_1, j_1) - \delta(x, y, i_0, j_0) =
\]
\[
\delta(x, y, i_1, j_1) - \delta(x, y, x_1, y_1) + \delta(x, y, x_1, y_1) - \delta(x, y, i_0, j_0) <
\]
\[
r - \delta(i_0, j_0, x_1, y_1) - s + \delta(x, y, i_1, j_1) - \delta(x, y, x_1, y_1)
\]
from which follows after cancellations that
\[
\delta(i_1, j_1, x_1, y_1) < \delta(x, y, i_1, j_1) - \delta(x, y, x_1, y_1).
\]
Since we have assumed that \(\delta(\cdot, \cdot, \cdot) \) is a metric, this last inequality can not be true because of the triangle inequality.

In order to prove (a) let \((x, y) \) denote a pixel in \(K_2 \) and define
\[
r_2 = \delta(i_0, j_0, x, y) - \alpha(i_0, j_0) - \beta(x, y).
\]
Now suppose that the pixel \((x, y) \) does not belong to the level set \(L[i_0, j_0, K_2, s]. \) This implies that the number \(r_2 \) introduced above, must satisfy \(0 \leq r_2 \leq s. \) We therefore have the following relations:
\[
\alpha(i_0, j_0) + \beta(x, y) + r_2 = \delta(i_0, j_0, x, y),
\]
\[
\alpha(i_1, j_1) + \beta(x_1, y_1) = \delta(i_1, j_1, x_1, y_1),
\]
\[
\alpha(i_0, j_0) + \beta(x_1, y_1) + r = \delta(i_0, j_0, x_1, y_1),
\]
and
\[
\alpha(i_1, j_1) + \beta(x, y) \leq \delta(i_1, j_1, x, y).
\]
By first adding the first two equations, then subtracting the next equation, and finally also subtracting the last inequality, we obtain
\[
r_2 - r \geq \delta(i_0, j_0, x, y) + \delta(i_1, j_1, x_1, y_1) - \delta(i_0, j_0, x_1, y_1) - \delta(i_1, j_1, x, y).
\]
Thereafter shifting terms we obtain
\[
\delta(i_1, j_1, x, y) - \delta(i_0, j_0, x, y) \geq \delta(i_1, j_1, x_1, y_1) - \delta(i_0, j_0, x_1, y_1) + r - r_2,
\]
and using the fact that $s \geq r_2$ it follows that

$$\delta(i_1,j_1,x,y) - \delta(i_0,j_0,x,y) \geq \delta(i_1,j_1,x_1,y_1) - \delta(i_0,j_0,x_1,y_1) + r - s = r - \Delta - s$$

from which it follows that

$$(x,y) \notin H[(i_0,j_0),(i_1,j_1), r - \Delta - s]$$

which proves (a).

Finally (b) follows from (a) by taking $s = 0$. Q.E.D.

Remark. Part (b) of Theorem 4 can perhaps be considered as the main result of the paper. From this result we note that the larger the value $r = \delta(i_0,j_0,x_1,y_1) - \alpha(i_0,j_0) - \beta(x_1,y_1)$ is, and the smaller the difference $\Delta = \delta(i_0,j_0,x_1,y_1) - \delta(i_1,j_1,x_1,y_1)$ is, the larger part of the plane will be part of the exclusion set. The reason, that we have included part (c) of the theorem, is that there are occasions, when it can be simpler to check the size of the hyperbolic set $H[(i_0,j_0),(x_1,y_1), r - \delta(i_0,j_0,x_1,y_1) - s]$ than it is to check the size of the hyperbolic set $H[(i_0,j_0),(i_1,j_1), r - \Delta - s]$.

9 **An auxiliary lemma.**

In this section we shall prove an elementary lemma which relates cones and hyperbolas in the plane. We shall rely on this lemma when formulating and proving the results in the next section.

Let $\delta(\cdot,\cdot,\cdot,\cdot)$ denote the Euclidean metric.

Lemma 1 Let a and b be real numbers such that $a > 0$ and $b < 2a$, and consider the following set:

$$HYP = \{(x,y) \in R^2 : \delta(x,y,-a,0) - \delta(x,y,a,0) > b\}.$$

Define H_0 and H'_0 by

$$H_0 = \{(x,y) \in R^2 : x \geq 0\},$$

$$H'_0 = \{(x,y) \in R^2 : x > 0\},$$

and for $c > 0$ define $CONE[x_0,y_0,c]$ by

$$CONE[x_0,y_0,c] = \{(x,y) \in R^2 : x > x_0, |(y-y_0)/(x-x_0)| \leq c\} \cup (x_0,y_0).$$

Then

(a): if $b < 0$ then $H_0 \subset HYP$,

(b): if $b = 0$ then $H'_0 = HYP$,

(c): if $0 < b < 2a$ and $c \leq \sqrt{4a^2 - b^2}/b^2$ then $CONE[x,y,c] \subset HYP$ if $(x,y) \in HYP$.

Proof. Suppose that $(x,y) \in H_0$. Then $\delta(x,y,-a,0) - \delta(x,y,a,0) \geq 0$, and hence if $b < 0$, $(x,y) \in HYP$. This proves (a).

Suppose that $(x,y) \in H'_0$. Then $\delta(x,y,-a,0) - \delta(x,y,a,0) > 0$ and conversely if $\delta(x,y,-a,0) - \delta(x,y,a,0) > 0$ then $x > 0$. Hence if $b = 0$, $H'_0 = HYP$. This proves (b).
The proof of (c) is more complicated. Let $b > 0$. Consider the equation

\[\delta(x, y, -a, 0) - \delta(x, y, a, 0) = b. \]

Taking the square of each side we obtain the equality

\[(x - a)^2 + y^2 + (x + a)^2 + y^2 - 2\sqrt{((x - a)^2 + y^2)((x + a)^2 + y^2)} = b^2. \]

Moving the term b^2 to the left hand side and moving the square root to the right hand side and making some simplifications we obtain the equation:

\[2x^2 + 2y^2 + 2a^2 - b^2 = 2\sqrt{((x - a)^2 + y^2)((x + a)^2 + y^2)}. \]

Then again taking the square of both sides we obtain

\[4x^4 + 4y^4 + (2a^2 - b^2)^2 + 8x^2y^2 + 8x^2a^2 - 4x^2b^2 + 8y^2a^2 - 4y^2b^2 = 4((x - a)^2 + y^2)((x + a)^2 + y^2), \]

and the right hand side of this equality can be simplified to

\[4x^4 + 4a^4 - 8x^2a^2 + 4y^4 + 8x^2y^2 + 8y^2a^2. \]

Eliminating common terms we obtain the equation

\[4a^4 + b^4 - 4a^2b^2 + 8x^2a^2 - 4x^2b^2 - 4y^2b^2 = 4a^4 - 8x^2a^2, \]

and then, making further elimination and moving the terms containing x-factors and y-factors to the left hand side and the other terms to the right hand side, we obtain the equation:

\[16x^2a^2 - 4x^2b^2 - 4y^2b^2 = -b^4 + 4a^2b^2. \]

Finally, changing signs and dividing all terms by $4b^2$, this equation can be written in a more familiar form as

\[y^2 = (x^2 - b^2/4)((4a^2/b^2) - 1). \]

This last equation determines a double sided hyperbola, and from the equation we also conclude that the lines

\[y = \sqrt{(4a^2 - b^2)/b^2}x \]

and

\[y = -\sqrt{(4a^2 - b^2)/b^2}x \]

are the asymptotic lines of the hyperbola. Since $c \leq \sqrt{(4a^2 - b^2)/b^2}$, it is clear from well-known properties of the hyperbola, that the cone $\text{CONE}[x, y, c]$ is a subset of HYP as soon as $(x, y) \in \text{HYP}$. QED.
10 Stopping criteria for the Euclidean distance.

We shall now consider the problem of how to find new admissible arcs when the underlying distance-function \(\delta(i, j, x, y) \) is the Euclidean distance, i.e.

\[
\delta(i, j, x, y) = \sqrt{(i-x)^2 + (j-y)^2}.
\]

(22)

We shall first introduce some further terminology and notations. We define

\[
NE[i, j] = \{(x, y) \in \mathbb{R}^2 : x \geq i, y \geq j\}
\]

and

\[
LE[i, j] = \{(x, y) \in \mathbb{R}^2 : y = j, x \geq i\}.
\]

(We have used the letters \(NE \) and \(LE \) as abbreviations of northeast and "line east").

Now let \((i_0, j_0)\) be a pixel in \(K_1\). What we are interested in, is to find all pixels in \(K_2\), which are admissible with respect to \((i_0, j_0)\). The purpose of this section is to present and prove some results by which one can reduce the search time for finding the admissible arcs with respect to \((i_0, j_0)\), which also are \(NE\) of \((i_0, j_0)\). By symmetry it is then easy to reformulate the results so that they can be applied, when looking for pixels located \(NW\), \(SE\) or \(SW\) of \((i_0, j_0)\) which are admissible with respect to \((i_0, j_0)\).

In case we have digital images defined on a grid structure, the general algorithmic procedure is essentially as follows. First check all pixels on the line \(LE[i_0, j_0]\), then on the line \(LE[i_0, j_0+1]\), then on the line \(LE[i_0, j_0+2]\), etcetera.

In order to reduce the search time there are (at least) two ways one can accomplish this. Firstly, for each line \(LE[i_0, j_0+k], k = 0, 1, 2, ...,\) one can find a stopping criterion which implies that one need not to check pixels further away from \((i_0, j_0)\) on that line. Secondly, one can find a stopping criterion which implies that one does not have to check any of the lines \(LE[i_0, j_0+k]\) above a certain value of \(k\).

In this section we shall present two theorems. The first gives stopping criteria along the lines \(LE[i_0, j_0+k], k > 0\). The second gives stopping criteria along the line \(\{(x, y) \in \mathbb{R}^2 : x = i_0, y \geq j_0\}\). We formulate the theorems in such a way that they also can be used when looking for a quantity of the form

\[
\min\{\delta(i, j, x, y) - \alpha(i, j) - \beta(x, y) : (i, j) \in A, (x, y) \in B\}
\]

where \(A \subset K_1\) and \(B \subset K_2\).

However before we state and prove our theorems we shall state and prove a simple stopping criterion for pixels on the line \(LE[i_0, j_0]\).

Proposition 4 Suppose that the underlying distance-function is defined by (22). Let \(\{\alpha(i, j), \beta(x, y)\}\) be a feasible set of dual variables such that each pixel \((i, j)\) in \(K_1\), and each pixel \((x, y)\) in \(K_2\), have an admissible arc. Let \((i_0, j_0)\) belong to \(K_1\) and \((x_1, y_1)\) belong to \(K_2\). Suppose further that \((x_1, y_1)\) is such that \(x_1 \geq i_0\) and \(y_1 = j_0\), and that \((x_1, y_1)\) is not an admissible pixel with respect to \((i_0, j_0)\). Then \(LE[x_1, y_1] \cap K_2 \subset E([i_0, j_0), K_2]\). (Recall that \(E([i, j]), K_2 \) denotes the exclusion set with respect to \((i, j)\)).
Proof. Our proof follows the same line as our previous proofs. Assume that \((x, y) \in LE[x_1, y_1] \cap K_2\) and assume also that \((x, y)\) is admissible with respect to \((i_0, j_0)\). We then have the following two relations:

\[
\delta(i_0, j_0, x, y) = \alpha(i_0, j_0) + \beta(x, y)
\]

and

\[
\delta(i_0, j_0, x_1, y_1) > \alpha(i_0, j_0) + \beta(x_1, y_1).
\]

By subtracting the inequality from the equality we obtain

\[
\delta(i_0, j_0, x, y) - \delta(i_0, j_0, x_1, y_1) < \beta(x, y) - \beta(x_1, y_1).
\]

Since \(y = y_1 = j_0\) and \(x \geq x_1\) it follows that

\[
\delta(i_0, j_0, x, y) - \delta(i_0, j_0, x_1, y_1) = x - x_1
\]

and consequently it follows that

\[
x - x_1 < \beta(x, y) - \beta(x_1, y_1).
\] \(23\)

But since \(\delta(\cdot, \cdot, \cdot)\) is a metric and since we have assumed that all pixels have admissible arcs, it follows from Proposition 2 that \(\beta(x, y) - \beta(x_1, y_1) \leq \delta(x, y, x_1, y)\) and since \(\delta(\cdot, \cdot, \cdot)\) is the Euclidean metric it follows that

\[
\delta(x, y, x_1, y_1) = x - x_1.
\]

Hence \(\beta(x, y) - \beta(x_1, y_1) \leq x - x_1\) which combined with \(23\) implies that \(x - x_1 < x - x_1\), by which we have reached a contradiction. QED.

This simple proposition gives rise to a stopping criterion when searching for admissible arcs on the line \(y = j_0\). Our next aim is to present a result which will be useful as a stopping criterion when searching for admissible pixels in the sets \(LE[i_0, j_0 + k], k = 1, 2, \ldots\).

Theorem 5 Suppose that the underlying distance-function is defined by

\[
\delta(i, j, x, y) = \sqrt{(i - x)^2 + (j - y)^2}.
\] \(24\)

Let \(\{\alpha(i, j), \beta(x, y)\}\) be a feasible set of dual variables such that each pixel \((i, j)\) in \(K_1\), and each pixel \((x, y)\) in \(K_2\), belong to an admissible arc. Let \((i_0, j_0)\) belong to \(K_1\). Let \((x_1, y_1)\) be a pixel in \(K_2\), NE of \((i_0, j_0)\), and different from \((i_0, j_0)\), which is not an admissible pixel with respect to \((i_0, j_0)\). Let instead \((i_1, j_1)\) be an admissible pixel with respect to \((x_1, y_1)\), and assume also that \((i_1, j_1)\) is NE of \((i_0, j_0)\) and that

\[
i_1 > i_0.
\]

Let \(r\) be defined by

\[
r = \delta(i_0, j_0, x_1, y_1) - \alpha(i_0, j_0) - \beta(x_1, y_1),
\] \(25\)

let \(a\) be defined by

\[
a = \delta(i_0, j_0, i_1, j_1)/2,
\] \(26\)

let \(s\) be a real number such that

\[
0 \leq s < r,
\]

20
let b be defined by

$$b = \delta(i_0, j_0, x_1, y_1) - \delta(i_1, j_1, x_1, y_1) - r + s,$$
(27)

and let us also assume that $b > 0$. (The case when $b \leq 0$ will be considered in the next theorem.)

Then, if

$$\sqrt{4a^2 - b^2}/b^2 \geq (j_1 - j_0)/(i_1 - i_0),$$

then

$$LE[x_1, y_1] \cap K_2 \subset L[(i_0, j_0), K_2, s].$$

Proof. Let us consider the hyperbolic set $H[(i_0, j_0), (i_1, j_1), r - \Delta - s]$ where r is defined by (25) and where Δ is defined by $\Delta = \delta(i_0, j_0, x_1, y_1) - \delta(i_1, j_1, x_1, y_1)$. Let the set H be defined by

$$H = \{(x, y) \in \mathbb{R}^2 : \delta(x, y, i_0, j_0) - \delta(x, y, i_1, j_1) > b\}$$
(28)

where $\delta(\cdot, \cdot, \cdot, \cdot)$ is defined by (24) and the number b satisfies (27). From the definition of $H[(i_0, j_0), (i_1, j_1), r - \Delta - s]$ it is clear that we have

$$H = H[(i_0, j_0), (i_1, j_1), r - \Delta - s].$$

Let us also observe that since $0 \leq s < r$ it follows that

$$\delta(x_1, y_1, i_0, j_0) - \delta(x_1, y_1, i_1, j_1) > \delta(x_1, y_1, i_0, j_0) - \delta(x_1, y_1, i_1, j_1) - r + s = b,$$

and therefore (x_1, y_1) belongs to H.

Since we have assumed that $b > 0$ and that $i_1 > i_0$, the boundary δH of H will be a hyperbola, and the vertex of δH will be along the line between the two points (i_0, j_0) and (i_1, j_1), and closer to (i_1, j_1) than to (i_0, j_0). The axis will be in the NE-direction from the vertex, since (i_1, j_1) is assumed to be NE of (i_0, j_0).

In order to guarantee that the set $LE[x_1, y_1]$ belongs to H it is sufficient that the cone C_0 defined by

$$C_0 = \{(x, y) \in \mathbb{R}^2 : x > x_1, |(y - y_1)/(x - x_1)| \leq (j_1 - j_0)/(i_1 - i_0)\}$$

is contained in H. This happens if the angle between the axis of the hyperbola δH and the asymptotes of δH is such that the tangent of the angle is larger than or equal to $(j_1 - j_0)/(i_1 - i_0)$. We call this angle θ.

Now by using the estimates obtained in Lemma 1 we conclude that if the numbers a and b as defined by (26) and (27) satisfy

$$\sqrt{4a^2 - b^2}/b^2 \geq (j_1 - j_0)/(i_1 - i_0),$$

then the angle θ between the axis and the asymptotics is so large that any cone

$$\{(x, y) \in \mathbb{R}^2 : x > x', |(y - y')/(x - x')| \leq (j_1 - j_0)/(i_1 - i_0)\}$$

is a subset of H if (x', y') belongs to H. Since we have already proved above, that (x_1, y_1) always belongs to H, it follows that the cone C_0 is a subset of
Then, if $y > y^\sqrt{(b)}$: if

Next, suppose instead of (31) that $j > j_0$. Our next theorem gives rise to stopping criteria along the line $x = i_0$. The basic assumptions of the next theorem are similar to those of Theorem 5.

Theorem 6 Again, suppose that the underlying distance-function is defined by

$$\delta(i, j, x, y) = \sqrt{(i - x)^2 + (j - y)^2},$$

and let as usual \(\{\alpha(i, j), \beta(x, y)\}\) be a feasible set of dual variables such that each pixel \((i, j)\) in \(K_1\), and each pixel \((x, y)\) in \(K_2\), belong to an admissible arc. Let \((i_0, j_0)\) belong to \(K_1\). Let \((x_1, y_1)\) be a pixel in \(K_2\), \(NE\) of \((i_0, j_0)\), and different from \((i_0, j_0)\), which is not an admissible pixel related to \((i_0, j_0)\). Let instead \((i_1, j_1)\) be an admissible pixel related to \((x_1, y_1)\) and assume that also \((i_1, j_1)\) is \(NE\) of \((i_0, j_0)\) \((i_1\) not necessarily larger than \(i_0\)). Again, let \(r\) be defined by \(r = \delta(i_0, j_0, x_1, y_1) - \alpha(i_0, j_0) - \beta(x_1, y_1)\), let \(a\) be defined by \(a = \delta(i_0, j_0, i_1, j_1)/2\), let \(s\) be a real number such that \(0 \leq s < r\), and let \(b\) be defined by \(b = \delta(i_0, j_0, x_1, y_1) - \delta(i_1, j_1, x_1, y_1) - r + s\).

(a): Suppose \(b \leq 0\) and that \(j_1 > j_0\). Define

$$y_2 = (j_0 + j_1)/2 + (i_1 - i_0)^2/(j_1 - j_0).$$

Then, if \(y > y_2\),

$$NE[i_0, y] \cap K_2 \subset L[(i_0, j_0), K_2, s].$$

Next suppose that \(b > 0\), that \(j_1 > j_0\) and also that \(i_1 > i_0\). Suppose also

$$j_1 - j_0 \leq i_1 - i_0.$$

Then

(b): if

$$\sqrt{(4a^2 - b^2)/b^2} \geq (i_1 - i_0)/(j_1 - j_0)$$

then

$$NE[x_1, y_1] \cap K_2 \subset L[(i_0, j_0), K_2, s].$$

Next, suppose instead of (31) that \(j_1 - j_0 > i_1 - i_0\).

Then

(c): if

$$\sqrt{(4a^2 - b^2)/b^2} \geq (j_1 - j_0)/(i_1 - i_0)$$

then

$$NE[x_1, y_1] \cap K_2 \subset L[(i_0, j_0), K_2, s].$$
and
\[NE[i_0, y] \cap K_2 \subset L[i_0, j_0, K_2, s] \]
if \(y \geq y_3 \), where the point \(y_3 \) is defined by
\[y_3 = j_1 + 2(i_1 - i_0)^2(j_1 - j_0)/(j_1 - j_0)^2 - (i_1 - i_0)^2. \] (32)

Proof. Let us again consider the hyperbolic set \(H[(i_0, j_0), (i_1, j_1), r - \Delta - s] \) where \(r \) is defined by (25), and where \(\Delta \) is defined by \(\Delta = \delta(i_0, j_0, x_1, y_1) - \delta(i_1, j_1, x_1, y_1) \). For each \(b \) define the set \(H(b) \) by
\[H(b) = \{(x, y) \in \mathbb{R}^2 : \delta(x, y, i_0, j_0) - \delta(x, y, i_1, j_1) > b\} \]
where \(\delta(\cdot, \cdot, \cdot, \cdot) \) is defined by (24) and the number \(b \) satisfies (27). From the definition of \(H[(i_0, j_0), (i_1, j_1), r - \Delta - s] \) it is clear that we have
\[H(b) = H[(i_0, j_0), (i_1, j_1), r - \Delta - s]. \]

From the definition of \(H(b) \) it is also clear that
\[b_1 < b_2 \Rightarrow H(b_2) \subset H(b_1). \]
As we showed in the proof of the previous theorem we also know that \((x_1, y_1)\) belongs to \(H(b) \).

To prove (a) let us first consider the case when \(b = 0 \). The boundary of \(H(b) \) will in this case be a straight line, \(L \) say, defined by the equation
\[y - (j_0 + j_1)/2 = -((i_1 - i_0)/(j_1 - j_0))(x - (i_0 + i_1)/2). \]
If we consider this equation as a function of \(x \) it is clear, since \(i_1 \geq i_0 \) and \(j_1 > j_0 \), that the function is non-increasing, and therefore, since \((x_1, y_1) \in H(b) \), it is clear that
\[NE[x_1, y_1] \subset H(b) \] (33)
and also that
\[NE[i_0, y] \subset H(b) \] (34)
if \(y > y_2 \) where \(y_2 \) is such that \((i_0, y_2)\) are the coordinates of the point where the line \(L \) cuts the line whose equation is \(x = i_0 \). To determine the value of \(y_2 \) we just have to insert the value \(x = i_0 \) into the equation defining \(L \). We then find that
\[y = (j_0 + j_1)/2 + ((i_1 - i_0)^2/(j_1 - j_0)), \]
and hence \(y_2 \) satisfies (29). That the assertions of (a) hold, now follows from (33) and (34), and hence (a) is proved in case \(b = 0 \). But that the assertions of (a) are true also in case \(b < 0 \) follows immediately from the fact that \(b_1 < b_2 \Rightarrow H(b_2) \subset H(b_1) \). Hence part (a) of the theorem is proved.

From now on we denote \(H(b) \) by \(H \). Next assume that \(b > 0 \) and that \(i_1 > i_0 \). Then the boundary of \(H \), which we denote by \(\delta H \), will again be a hyperbola, the vertex of \(\delta H \) will be along the line between two points \((i_0, j_0)\) and \((i_1, j_1)\) and closer to \((i_1, j_1)\) than to \((i_0, j_0)\), and the axis will be in the \(NE \)-direction from the vertex, since \((i_1, j_1)\) is assumed to be \(NE \) of \((i_0, j_0)\). (Recall that \(H \) is defined by (28)).
We now want to find conditions on the numbers a and b as defined by (26) and (27) such that the hyperbola δH has an eccentricity which is so large that the set $NE[x_1,y_1]$ is contained in H. Since we have assumed that $j_1 - j_0 \leq i_1 - i_0$, the crucial angle is the angle between the y-axis and the line between the points (i_0,j_0) and (i_1,j_1) (that is the line along the axis of the hyperbola). Since we have assumed that $j_1 > j_0$, this angle is less than $\pi/2$ and the tangent of the angle is clearly equal to $(i_1 - i_0)/(j_1 - j_0)$. By Lemma 1 we conclude that the hyperbola δH will have a sufficiently large eccentricity if the numbers a and b will satisfy the equality

$$\sqrt{4a^2 - b^2}/b^2 \geq (i_1 - i_0)/(j_1 - j_0).$$

instead of (29). From Theorem 4 it thus follows that

$$NE[x_1,y_1] \cap K_2 \subset L[(i_0,j_0),K_2,s]$$

and thus (b) is proved.

It remains to prove (c). Thus assume that $b > 0$, that $i_1 > i_0$, and that $j_1 - j_0 > i_1 - i_0$. Again we consider the set H defined by (28), and again we want the eccentricity of the hyperbola δH to be so large that the set $NE[x_1,y_1]$ is a subset of H. This time the crucial angle is the angle between the x-axis and the line through the two points (i_0,j_0) and (i_1,j_1) (that is the line along the axis of the hyperbola). Since we have assumed that $i_1 > i_0$, this angle is less than $\pi/2$, and the tangent of the angle is clearly equal to $(j_1 - j_0)/(i_1 - i_0)$. Again, by applying Lemma 1, we conclude that the hyperbola δH will have a sufficiently large eccentricity if the numbers a and b will satisfy the inequality (29). Hence by Theorem 4 it follows that if (29) holds then

$$NE[x_1,y_1] \cap K_2 \subset L[(i_0,j_0),K_2,s]$$

and thus the first part of (c) is proved.

Moreover, if a and b satisfy the inequality (29), then the line, which starts at the point (i_1,j_1) and which makes an angle with the axis of the hyperbola δH which is the same as the angle between the axis of the hyperbola and the x-axis, will be contained in H. This line will cut the line $x = i_0$ at some point y_3. From geometric considerations it is then clear that $NE[i_0,y_\cdot] \subset H$ if $y \geq y_3$ and hence by Theorem 4 we also have

$$NE[i_0,y] \cap K_2 \subset L[i_0,j_0,K_2,s]$$

if $y \geq y_3$.

It remains to show that the number y_3 is determined by the expression (32). The equation for the line we are considering can be written

$$y - j_1 = k(x - i_1),$$

where the number k still has to be determined. If we denote by θ the angle between the line through the two points (i_0,j_0) and (i_1,j_1) (that is the line along the axis of the hyperbola δH) and the line $y = i_0$, then

$$k = \tan(2\theta) = 2\tan(\theta)/(1 - \tan^2(\theta)).$$
Now since $\tan(\theta) = (j_1 - j_0)/(i_1 - i_0)$, by inserting $x = i_0$ into the equation for the line, we find that

$$y = j_1 + 2(j_1 - j_0)(i_0 - i_1)/(1 - ((j_1 - j_0)/(i_1 - i_0))^2),$$

which after simplification is equal to the expression in (32).

Thereby also the second part of (c) is proved and thereby the proof is completed. Q.E.D.

Remark. By using the theorems of this section, it seems likely, that the search time for finding all pixels which are admissible with respect to a given pixel in most situations will have a computational complexity of order $O(1)$, and therefore the computational complexity for finding all admissible arcs will be of order $O(N)$ roughly, where though the constant in $O(N)$ may be fairly large.

11 Each pixel belongs to an admissible arc.

One of the basic assumptions we have made in most of the results proven above is that the set of dual feasible variables $\{\alpha(i, j), \beta(x, y)\}$ is such that each pixel $(i, j) \in K_1$ and each pixel $(x, y) \in K_2$ belong to an admissible arc. That is, to each $(i, j) \in K_1$ there exists a pixel $(x, y) \in K_2$ such that

$$\alpha(i, j) + \beta(x, y) = \delta(i, j, x, y), \tag{35}$$

and to each $(x, y) \in K_2$ there exists a pixel $(i, j) \in K_1$ such that (35) holds. We shall now show that this is a valid assumption independently of the choice of the underlying distance-function.

Let us first state the following proposition.

Proposition 5 Define the set of dual variables $\{\alpha(i, j), \beta(x, y)\}$ as follows:

$$\alpha(i, j) = \min\{\delta(i, j, x, y) : (x, y) \in K_2\} \tag{36}$$

$$\beta(x, y) = \min\{\delta(i, j, x, y) - \alpha(i, j) : (i, j) \in K_1\}. \tag{37}$$

Then the set of dual variables is feasible, and, moreover, to each pixel $(i, j) \in K_1$ and to each pixel $(x, y) \in K_2$ there exists an admissible arc.

Proof. The proposition is intuitively obvious. A formal proof can read as follows. From equation (37) it is clear that to each $(x, y) \in K_2$ there exists a pixel $(i, j) \in K_1$ such that (35) holds. Moreover, from (37) it also follows that the set of dual variables is a feasible set. Now suppose that there exists a pixel $(i, j) \in K_1$ such that

$$\alpha(i, j) + \beta(x, y) < \delta(i, j, x, y)$$

for all $(x, y) \in K_2$. Since $\alpha(i, j) = \delta(i, j, x, y)$ for some $(x, y) \in K_2$, it follows that for this choice of pixel, $\beta(x, y)$ must be negative. But this is not possible because of (37) and the fact that $\delta(i, j, x, y) \geq \alpha(i, j)$ because of (36). Q.E.D.

We shall now prove:

Lemma 2 Let the set $\{\alpha(i, j), \beta(x, y)\}$ be a set of feasible dual variables obtained by the primal-dual algorithm when initially the set of dual variables are defined as in Proposition 5. Then each pixel $(i, j) \in K_1$ and each pixel $(x, y) \in K_2$ will have an admissible arc.
Remark. In case one is familiar with the primal-dual algorithm, the truth of the lemma is intuitively clear. We include a formal proof for the sake of completeness.

Proof. To give a formal proof of the lemma we need to describe the primal-dual algorithm partly again. As pointed out in Section 4, one step in the primal-dual algorithm is called the labeling procedure, and below we shall describe it in more detail. Let us first introduce two further notions. Thus let
\[h(i, j, x, y) \]
be a transition plan from the image \(P = \{ p(i, j) : (i, j) \in K_1 \} \) to the image \(Q = \{ q(x, y) : (x, y) \in K_2 \} \). (See Section 2 for the definition of a transportation plan.) We call a pixel \((i, j) \in K_1\) deficient if the transportation plan \(h(i, j, x, y) \) is such that
\[
\sum_{(x, y) \in K_2} h(i, j, x, y) < p(i, j).
\]
If instead \((i, j) \in K_1\) is such that the left hand side of (38) is equal to the right hand side of (38) then we say that \((i, j)\) is full.

We denote the subset of \(K_1 \) consisting of all deficient pixels by \(D_1 \) and the subset consisting of all full pixels by \(F_1 \).

The labeling procedure is as follows. One starts the labeling procedure by labeling all deficient elements in \(K_1 \) (that is the set \(D_1 \)). Then, whenever a pixel \((i, j) \in K_1\) is labeled, then all pixels \((x, y) \in K_2\) which are admissible with respect to \((i, j)\) and are not yet labeled, are labeled, and whenever a pixel \((x, y) \in K_2\) is labeled, then all pixels \((i, j) \in K_1\), which are admissible with respect to \((x, y)\), which are not yet labeled and for which \(h(i, j, x, y) > 0 \), are labeled.

At the end of a labeling procedure, depending on the labeling, one can either go to the so called flow change routine or to the so called dual solution change routine. If one goes to the flow change routine the transportation plan is redefined after which one can redo the labeling. Sooner or later one has reached a state when it is not possible to find a better transportation plan for the given set of admissible arcs induced by the present set of dual variables. One therefore has to redefine the dual variables.

When the labeling procedure ends, a number of pixels in both \(K_1 \) and \(K_2 \) are labeled. Let \(L_1 \) denote the set of labeled pixels in \(K_1 \), let \(U_1 \) denote the set of unlabeled pixels in \(K_1 \), let \(L_2 \) denote the set of labeled pixels in \(K_2 \), and let \(U_2 \) denote the set of unlabeled pixels in \(K_2 \).

When the dual variables are changed, one uses the following quantity:
\[
\Theta = \max\{\delta(x, y, i, j) - \alpha(i, j) - \beta(x, y) : (i, j) \in L_1, (x, y) \in U_2\}
\]
which one can prove will be > 0 (unless the transportation plan is complete).

The way the new set of dual variables are defined the following conclusion follows immediately.
Proposition 6 After we have updated the dual variables the only way by which an arc \(\{(i, j), (x, y)\} \) can be unadmissible when it previously was admissible is if \((i, j) \in U_1 \) and \((x, y) \in L_2 \).

Now let us thus prove that the new set of dual variables gives rise to a set of admissible arcs such that to each pixel in \(K_1 \) and to each pixel in \(K_2 \) there exists an admissible arc.

Our induction assumption is that the old set of dual variables has this property. Note that initially this is true because of Proposition 5. Now let us first prove that to each pixel \((i, j) \in K_1 \) there exists a pixel in \(K_2 \) which is an admissible arc. From the induction hypothesis and Proposition 6 above, the only case we have to consider is the case when \((i, j) \) is unlabeled. But if \((i, j) \) is unlabeled it must be full. Next let \(G(i, j) \) be the set of pixels \((x, y) \in K_2 \) for which \(\{(i, j), (x, y)\} \) is an admissible arc under the old set of dual variables.

If there exists an element \((x, y) \in G(i, j) \) which is not labeled then we have found an arc which will also be admissible under the new set of dual variables. Otherwise all pixels in \(G(i, j) \) must be labeled. Since the pixel \((i, j) \) is full it follows that there must exist a pixel \((x, y) \in G(i, j) \) for which \(h(i, j, x, y) > 0 \). But then because of the way the labeling procedure works the pixel \((i, j) \) would have been labeled. Hence if there exists a pixel \((i, j) \in K_1 \) which is not labeled there must exist a pixel \((x, y) \in G(i, j) \) which is not labeled and consequently this arc will be admissible also after the dual variables are updated.

We have now proved that to every pixel \((i, j) \in K_1 \) there exists a pixel \((x, y) \in K_2 \) such that the arc \(\{(i, j), (x, y)\} \) is admissible under the new set of dual variables. It remains to prove that each pixel \((x, y) \in K_2 \) has an admissible arc under the new set of dual variables. But this is somewhat easier. By Proposition 6, a necessary condition for an arc \(\{(i, j), (x, y)\} \) to be unadmissible when it previously was admissible is that \((x, y) \) is labeled. But from the labeling procedure, it then must exist an admissible pixel \((i, j) \) with respect to \((x, y) \) which also is labeled, and then because of Proposition 6 the arc \(\{(i, j), (x, y)\} \) will be admissible also under the new set of dual variables. Thereby the induction step is verified and the proof is completed. Q.E.D

12 Reducing the computation time for determining the quantity by which the dual variables are changed.

An important step in the primal-dual algorithm for the transportation problem is to determine the quantity \(\Theta \) as defined by (39). In general the computational complexity for this part of the algorithm is \(O(N^2) \), where though \(O(N^2) \), so to speak, has a small constant.

In case one has integer storages and demands and integer-valued cost-function then one can always take \(\Theta \) equal to 1 and this brings the computation time down to zero. This strategy works also quite well in case we are working with digital images.

In case we are dealing with the transportation problem in the plane and have the Euclidean distance as cost-function and the positions of the sources and sinks are essentially random, then it is necessary to compute the quantity
Theorem 7 Let two integers such that \(a = \delta(i_0, j_0, i_1, j_1)/2 \), and let \(b = \delta(i_0, j_0, x_1, y_1) - \delta(i_1, j_1, x_1, y_1) - r + \Theta(n, m) \).

Let \(\{\alpha(i, j), \beta(x, y)\} \) be a feasible set of dual variables such that each pixel \((i, j)\) in \(K_1 \), and each pixel \((x, y)\) in \(K_2 \) belong to an admissible arc. Let \(L \subset K_1 \) and \(U \subset K_2 \) be such that

\[
\Theta = \min\{\delta(i, j, x, y) - \alpha(i, j) - \beta(x, y) : (i, j) \in L, (x, y) \in U \} > 0. \tag{41}
\]

Our aim is now to determine \(\Theta \) and we do this in principal by computing

\[
\Theta_{(i,j)} = \min\{\delta(i, j, x, y) - \alpha(i, j) - \beta(x, y) : (x, y) \in U \}
\]

for each \((i, j) \in L \).

Let the size of \(L \) be equal to \(N_1 \), let the size of \(U \) be \(M_1 \) let \(\{i(k), j(k)\} : k = 1, 2, ..., N_1 \} \) be a sequential list of the set \(L \), let \(\{(x(k), y(k)) : k = 1, 2, ..., M_1 \} \) be a sequential list of \(U \). For \(n = 1, 2, ..., N_1 \), and \(m = 1, 2, ..., M_1 \), let

\[
\Theta(n) = \min\{\Theta_{(i(k), j(k))} : 1 \leq k \leq n \},
\]

let

\[
\Theta_{(i,j)}(m) = \min\{\delta(i, j, x(k), y(k)) - \alpha(i, j) - \beta(x(k), y(k)) : 1 \leq k \leq m \},
\]

let

\[
\Theta(0, m) = \Theta_{(i(1), j(1))}(m),
\]

set

\[
\Theta(0) = \Theta(0, 1),
\]

and define

\[
\Theta(n, m) = \min\{\Theta(n), \Theta_{(i(n+1), j(n+1))}(m) \}. \tag{42}
\]

Theorem 7 Let \(L = \{(i(k), j(k)) : k = 1, 2, ..., N_1 \} \subset K_1 \) and \(U = \{(x(k), y(k)) : k = 1, 2, ..., M_1 \} \subset K_2 \) be such that \((41) \) holds. Let \(n \) and \(m \) be two integers such that \(0 \leq n \leq N_1 - 1 \) and \(1 \leq M_1 - 1 \) and \(n + m \geq 1 \). Set \((i_0, j_0) = (i(n+1), j(n+1))\), set \((x_1, y_1) = (x(m+1), y(m+1))\), let \((i_1, j_1)\) be an admissible pixel with respect to \((x_1, y_1)\) and assume that \((i_1, j_1)\) is NE of \((i_0, j_0)\). Let \(r \) be defined by

\[
r = \delta(i_0, j_0, x_1, y_1) - \alpha(i_0, j_0) - \beta(x_1, y_1),
\]

let \(a \) be defined by

\[
a = \delta(i_0, j_0, i_1, j_1)/2,
\]

and let \(b \) be defined by

\[
b = \delta(i_0, j_0, x_1, y_1) - \delta(i_1, j_1, x_1, y_1) - r + \Theta(n, m).
\]
where $\Theta(n, m)$ is defined by (42).

Then:

(a): Suppose $b \leq 0$ and that $y_1 \geq (j_0 + j_1)/2$. Then $NE[x_1, y_1] \cap K_2 \subset L[(i_0, j_0), K_2, \Theta(n, m)]$.

(b): Next suppose that $b > 0$ and suppose also that $j_1 > j_0$. Suppose also

$$j_1 - j_0 \leq i_1 - i_0$$

and

$$\sqrt{(4a^2 - b^2)/b^2} \geq (i_1 - i_0)/(j_1 - j_0).$$

Then

$$NE[x_1, y_1] \cap K_2 \subset L[(i_0, j_0), K_2, \Theta(n, m)].$$

Suppose instead of (43) that $j_1 - j_0 > i_1 - i_0 > 0$.

Then, if

$$\sqrt{(4a^2 - b^2)/b^2} \geq (j_1 - j_0)/(i_1 - i_0)$$

then

$$NE[x_1, y_1] \cap K_2 \subset L[(i_0, j_0), K_2, \Theta(n, m)].$$

Remark. Since the proof is very similar to the proof of Theorem 6, we omit it.

13 Organizing points along the northeast direction

In order to use Theorems 6 and 7 efficiently, it is necessary to have an initialization process such that one can find elements NE of a given element rapidly. Thus, it is necessary that one can organize the elements in the sets K_1 and K_2 and also the set $K_1 \cup K_2$ in the northeast direction, as well as the northwest, the southeast and the southwest directions. In case we are dealing with digital images on a rectangular grid then the pixels are organized already from the start in such a way that this is no problem. However, in the general case it is necessary to organize the elements of the two given images in the $NE - SW$ direction, and the $NW - SE$ direction. In this section we shall describe one algorithm by which this can be done. We shall only consider the northeast direction since the other directions can be handled analogously.

Thus let $K = \{(x(n), y(n)), n = 1, 2, ..., N\}$ be a set of points in the plane. What we want to do is to organize the points in K so that we can apply Theorems 6 and 7 efficiently. What we will create is a structure which is often called a directed acyclic graph.

We start by introducing an extra point $(x(0), y(0))$ such that $x(0) < x(n)$, $n = 1, 2, ..., N$ and $y(0) < y(n)$, $n = 1, 2, ..., N$.

Next let us define $z(n) = x(n) + y(n)$, $n = 1, 2, ..., N$ and let us first order the elements of K in such a way that

$$z(n) \leq z(n + 1), n = 1, 2, ..., N - 1$$

and

$$z(n) = z(n + 1) \Rightarrow x(n) < x(n + 1).$$
This way to order the elements of K implies of course that $(x(n), y(n))$ can not be NE of $(x(m), y(m))$ if $n < m$.

To each element $(x(n), y(n))$, $0 \leq n \leq N$ we shall associate a number of related elements which will be called parents and children. These notions are defined as follows: Let $(x(n), y(n))$ and $(x(m), y(m))$ be two points in K with $n < m$, and suppose that $(x(n), y(n))$ is SW of $(x(m), y(m))$. The point $(x(n), y(n))$ will be a parent of $(x(m), y(m))$ if either 1) it is the only element in K which is SW of $(x(m), y(m))$, or 2) if there are other points in K which are SW of $(x(m), y(m))$ then $(x(n), y(n))$ is not SW of any such point. If $(x(n), y(n))$ is a parent of $(x(m), y(m))$, then we say that $(x(m), y(m))$ is a child of $(x(n), y(n))$.

In case we define parents and children as above, then, if we have found the parents of all points in a set $K \in R^2$, then we say that we have organized the set in the $NE - SW$ direction.

It is easy to construct examples of sets of size N for which the number of parents will be $N^2/4$. On the other hand it is clear that one does not need more than $N(N + 1)/2$ checks to find all parents. Therefore it is clear that the computational complexity to organize a set in the $NE - SW$ direction is of order $O(N^2)$. However in most situations we believe that one can organize a set in the $NE - SW$ direction substantially faster by applying the algorithm we shall now describe.

Let us assume that the points $(x(i), y(i))$, $i = 0, 1, 2, ..., n$ have been organized in the $NE - SW$ direction. We shall now show how to find the parents of the next point $(x(n + 1), y(n + 1))$.

Let m_1 be defined as the largest index for which

$$x(m_1) = \max \{x(i) : x(i) \leq x(n + 1), y(i) \leq y(n + 1), 0 \leq i \leq n\}$$

and let m_2 be defined as the largest index for which

$$y(m_2) = \max \{y(j) : x(j) \leq x(n + 1), y(j) \leq y(n + 1), 0 \leq i \leq n\}.$$

We now have two possibilities. Either $m_1 = m_2$ or $m_1 \neq m_2$. In the first case we are ready and $(x(m_1), y(m_1))$ is the only parent of $(x(n + 1), y(n + 1))$.

If instead $m_1 \neq m_2$ then we have obtained two parents to $(x(n + 1), y(n + 1))$ namely $(x(m_1), y(m_1))$ and $(x(m_2), y(m_2))$, and it is possible that there are further parents. In order to find these, we shall look for points $(x(k), y(k)) \in K$ satisfying

$$x(m_2) \leq x(k) < x(m_1)$$

and

$$y(m_1) \leq y(k) < y(m_2).$$

We now define m_3 as the largest index for which

$$x(m_3) = \max \{x(i) : x(m_2) \leq x(i) < x(m_1), y(m_1) \leq y(i) < y(m_2), 1 \leq i \leq n\},$$

if any such index exists, and we define m_4 as the largest index for which

$$y(m_4) = \max \{y(j) : x(m_2) \leq x(j) < x(m_1), y(m_1) < y(j) < y(m_2), 1 \leq j \leq n\}.$$
If m_3 is not defined, then there is no further parent. In case $m_3 = m_4$ then there is exactly one more parent namely $(x(m_3), y(m_3))$.

Otherwise we have found two new parents namely $(x(m_3), y(m_3))$ and $(x(m_4), y(m_4))$.

In this case there may be further parents namely if there are elements $(x(k), y(k)) \in K$ which satisfy

$$x(m_4) \leq x(k) < x(m_3)$$

and

$$y(m_3) \leq y(k) < y(m_4).$$

To investigate whether there exist any points in this rectangle we proceed in the same way as above.

We have now briefly described an algorithm by which one can organize the elements of K_1, K_2 and $K_1 \cup K_2$ in such a way that it is easy to find the nearest elements in the $NE - SW$ directions.

Remark. As pointed out above it is easy to construct an example of a set with N pixels which has $N^2/4$ parents and children. Whether this also requires that we need a storage for the structure of order N^2 is not 100% sure, since in the more extreme situations it is likely that many ”parent sets” are very similar, and therefore it is conceivable that these sets could be coded efficiently. In the general random case we believe that the storage needed to store the information about parents and children will be much less than N^2 when N is large.

14. SUMMARY.

In this paper we have proved some results, which give rise to stopping criteria, when searching for new admissible arcs, when using the primal-dual algorithm for solving the transportation problem in the plane, in case the underlying distance-function $\delta(i, j, x, y)$ is defined either by $\delta(i, j, x, y) = (x - i)^2 + (y - j)^2$ or by $\delta(i, j, x, y) = \sqrt{(x - i)^2 + (y - j)^2}$. We believe, that by using Theorems 5 and 6 of Section 10, and Theorem 7 of section 12, it will be possible to reduce the computational complexity of the Euclidean transportation problem and the Euclidean assignment problem to approximately $O(N^2)$ from approximately $O(N^{2.5})$, which is the best limit so far, as far as the author knows. (See e.g. [2] and [14]).

ACKNOWLEDGEMENT. It is a pleasure to thank Erik Ouchterlony for stimulating discussions and valuable comments.

References

[1] R.K. Ahuja, T.L. Magnanti and J.B. Orlin, NETWORK FLOWS, Theory, Algorithms and Applications, (Englewood Cliffs, Prentice Hall, NJ, 1993).

[2] D.S. Atkinson and P.M. Vaidya, “Using geometry to solve the transportation problem in the plane,” *Algorithmica*, 13 (1995) 442-461
[3] D.P. Bertsekas, *Linear Network Optimization*, (MIT Press, Cambridge, Mass., 1991).

[4] T. Kaijser, "On the computation of the Kantorovich distance for images", FOA-R-96-00297-3.5-SE, Defence Research Establishment, Linköping, Sweden (1996).

[5] T. Kaijser, *Computing the Kantorovich distance for images*, JMIV, 9, (1998) 173-191.

[6] L. Kantorovich, “On the translocation of masses,” (in Russian), Dokl. Akad. Nauk., 37 (1942) 227-229. Translated in *Management Science*, 5 (1959) 1-4.

[7] H. W. Kuhn, “The Hungarian method for the assignment problem,” *Naval Research Logistics Quarterly*, 2 (1955) 83-97.

[8] G. Monge, “Mémoire sur la théorie des déblais et des ramblais.” *Histoire de l’Académie des Sciences de Paris*, avec les Mémoires de mathématiques et de physique pour le même année, (1781) 666-704.

[9] K. Murty, *Linear and Combinatorial Programming*, (Wiley, New York, NY, 1976).

[10] S.T. Rachev, “The Monge-Kantorovich mass transference problem and its stochastic applications,” *Theory of Prob. Appl.*, 29 (1985) 647-676.

[11] S.T. Rachev, *Probability metrics*, (Wiley, New York, NY, 1990).

[12] M. Werman, S. Peleg and A. Rosenfeld, “A distance metric for multidimensional histograms,” *Computer Vision Graphics Image Processing* 32 (1985) 328-336.

[13] M. Werman, “A distance measure for comparison of pictures and shapes,” Ph.D - thesis, The Hebrew University of Jerusalem, Jerusalem, Israel, (1986).

[14] M. Vaidya, *Geometry helps in Matching*, SIAM J Comp 18, (1989) 1201-25.

[15] T. Kaijser, *An improvement of the primal-dual algorithm when applied to Monge-kantorovich mass transfer problem*, www.fields.utoronto.ca/programs/scientific/01-02/variations/slides/kaijser/