Abstract

Let p be a monic complex polynomial of degree n and let K a measurable subset of the complex plane. We show that the area of $p(K)$, counted with multiplicity, is at least $\pi n (\text{Area}(K)/\pi)^n$ and that

$$\frac{\text{Area}(p^{-1}(K))}{\pi} \leq \left(\frac{\text{Area}(K)}{\pi}\right)^{1/n}.$$

Both bounds are sharp. The special case of the latter result in which K a disc was proved by Pólya in 1928. We use Carleman's isoperimetric inequality relating the conductance and area for plane condensers. We include a summary of the necessary potential theory.

1 Introduction and Statement of Results

When p is a polynomial of degree n over \mathbb{C}, the set

$$E(p, r) = \{z \in \mathbb{C} : |p(z)| = r^n\}$$

is called a lemniscate, after Bernoulli's lemniscate $\{z \in \mathbb{C} : |z^2 - 1| = 1\}$. It is natural to ask how large the set enclosed by a lemniscate can be. We need to make some normalisation for this to be meaningful; the simplest is to ask for p to be monic. Perhaps surprisingly, the area of the lemniscate $E(p, 1)$ is then bounded independently of p. In fact the following sharp inequality was proved by Pólya in 1928. [5].

*Supported by an EPSRC research studentship
Theorem 1 (Pólya’s inequality).
Let p be a monic polynomial of degree n over \mathbb{C} and let D be a disc in \mathbb{C}. Then the Euclidean area of $p^{-1}(D)$ is at most $\pi \left(\frac{\text{Area}(D)}{\pi} \right)^{1/n}$, with equality only when $p: z \mapsto a(z - b)^n + c$ and the center of D is c, the unique critical value of p.

It is natural to ask whether we can get a larger preimage by fixing the area of D but allowing its shape to vary. The main theorem of this paper is that we cannot.

Theorem 2. Let p be a monic polynomial of degree n over \mathbb{C}. Let K be any measurable subset of the plane. Then

$$\text{Area}(p^{-1}(K)) \leq \pi \left(\frac{\text{Area}(K)}{\pi} \right)^{1/n},$$

with equality if and only if K is (up to sets of measure zero) a disc and p has a unique critical value at the center of that disc.

Theorem 2 is a simple consequence of the following stronger theorem:

Theorem 3. Let p be a monic polynomial of degree n over \mathbb{C}, and K be any measurable subset of the plane. Define the multiplicity $n(z, p, K)$ to be the number of p–preimages of z in K, counted according to their valency. Then the area of $p(K)$ counted with multiplicity satisfies

$$\int_{\mathbb{C}} n(z, p, K) \, dA(z) = \int_{K} |p'(z)|^2 \, dA \geq n \pi \left(\frac{\text{Area}(K)}{\pi} \right)^n,$$

with equality if and only if K is (up to sets of measure zero) a disc and p has a unique critical value at the center of that disc.

For a compact set $K \subset \mathbb{C}$, define

$$\rho(K) = \frac{\text{Area}(K)}{\pi \text{cap}(K)^2},$$

where $\text{cap}(K)$ is the logarithmic capacity of K. Then $\rho(K)$ is a measure of the roundness of K: we will see that $\rho(K) \in [0, 1]$, and $\rho(K) = 1$ if and only if K is a full–measure subset of a disc. We use ρ to formulate the following scale-invariant version of theorem 2.
Theorem 4. If p is any complex polynomial of degree n, not necessarily monic, and K is any compact subset of the plane, then

$$\rho(p^{-1}(K)) \leq \rho(K)^{1/n}.$$

This corollary is sharp for each value of ρ. To see this we can take K to be the union of the unit disc with a radial line segment, and $p : z \mapsto z^n$, so that we still get equality in theorem 2.

In section 2 we give a quick introduction to the potential theory that we will need. In section 3 we discuss some isoperimetric inequalities and their relationship with Pólya’s inequality (theorem 1), which we prove since it is an important ingredient in the proof of theorem 2. Theorems 2, 3 and 4 are proved in section 4.

A survey of area estimates for lemniscates has recently been given by Lubinsky [4], with a view towards applications in the convergence theory of Padé approximation. In [2], Eremenko and Hayman made progress on the related problem of bounding the length of $E(p, r)$. Fryntov and Rossi [3] have obtained the sharp analogue of Pólya’s inequality (theorem 1) bounding the hyperbolic area of the preimage of a hyperbolic disc under a finite Blaschke product. This raises the question of finding the sharp Blaschke product analogues of theorems 2 and 3.

The author thanks Assaf Naor and Ben Green for posing the question that led to this paper, and his PhD supervisor Keith Carne for useful conversations.

2 Capacity of plane subsets and condensers

Definition 1. A plane condenser is a pair (E, B) of subsets of \mathbb{C}, where $E \neq \mathbb{C}$ is open and B is a non-empty closed subset of E.

The terminology arises from the fact that a pair of conducting cylinders with cross-section ∂E and B respectively could be used as a condenser (or capacitor). The capacity of the condenser (E, B) is physically the capacitance per unit length of an infinitely long pair of such cylinders. The same quantity describes the conductance between ∂E and B of an isotropic resistor consisting of a plate in the shape of $E \setminus B$. We compute this conductance by considering the electrical potential f that would be induced in
If we were to connect ∂E to an electrical potential 0 and B to potential +1. Given f, we can compute the current $-\nabla f$ that would flow in response to the potential f, and the power consumed is proportional to

$$L(f) = \int_{E \setminus B} |\nabla f|^2 dA,$$

We expect a physical potential f to minimise $L(f)$ over all possible potential functions satisfying the given boundary conditions. Calculus of variations tells us that if there is an extremal f, it must be harmonic on $E \setminus B$. We call such an f a Green’s function for the condenser. A Green’s function only exists if the boundary $\partial E \cup \partial B$ is regular for the Dirichlet problem, but we avoid this difficulty by defining

$$\text{cap}(E,B) = \frac{1}{4\pi} \inf L(f),$$

where the infimum is taken over all continuously differentiable $f : \mathbb{C} \to \mathbb{R}$ such that $f = 0$ on $\mathbb{C} \setminus E$ and $f = 1$ on B. We call such functions admissible for the condenser (E,B). Note that cap(E,B) may be zero, as it is when B is a finite set. From the definition it is immediate that capacity is monotonic, i.e.

$$E \subseteq F \text{ and } B \supseteq C \implies \text{cap}(E,B) \geq \text{cap}(F,C).$$

Lemma 1. Suppose that on some open set $U \subset \mathbb{C}$ we have an analytic function ψ such that each point of E has exactly n preimages in U, counted according to valency. Then

$$\text{cap}(\psi^{-1}(E),\psi^{-1}(B)) = n \text{cap}(E,B).$$

Proof. Suppose that $f : \mathbb{C} \to \mathbb{R}$ is any admissible function for (E,B). The hypothesis implies that the restriction of ψ to $\psi^{-1}(E)$ is a proper map, so we can extend $f \circ \psi$ to get an admissible function for $(\psi^{-1}(E),\psi^{-1}(B))$ by giving it the value 0 outside U. Since ψ is almost everywhere conformal,

$$L(f \circ \psi) = \int_{\psi^{-1}(E \setminus B)} |\nabla (f \circ \psi)(z)|^2 d\text{Area}(z)$$

$$= \int_{\psi^{-1}(E \setminus B)} |(\nabla f)(\psi(z))||\psi'(z)|^2 d\text{Area}(z)$$

$$= n \int_{E \setminus B} |\nabla f(w)|^2 d\text{Area}(w) = n L(f).$$

\square
In particular the capacity is a **conformal invariant** of condensers: if \(\varphi : E \to \mathbb{C} \) is a univalent function then
\[
\text{cap}(E, B) = \text{cap}(\varphi(E), \varphi(B)).
\]
For example, if \((E \setminus B) \) is a ring domain then its modulus is \(1/(4\pi \text{cap}(E, B)) \).

Let \(K \) be a compact set in the plane. A Green’s function for \(K \) is a continuous function \(f : \mathbb{C} \to \mathbb{R} \), zero on \(K \) and harmonic on \(\mathbb{C} \setminus K \), with \(f(z) = \log |z| - \log t + o(1) \) as \(z \to \infty \). If \(K \) has a Green’s function then the logarithmic capacity of \(K \) is defined to be \(\text{cap}(K) = t \). For general \(K \) we define \(\text{cap}(K) = \inf \text{cap}(J) \) over all compact sets \(J \supset K \) with regular boundary for the Dirichlet problem on \(\mathbb{C} \setminus J \). By pulling back Green’s functions, it is easy to verify that if \(p \) is a monic polynomial of degree \(n \) then
\[
\text{cap}(p^{-1}(B)) = \text{cap}(B)^{1/n}.
\]

3 Isoperimetric Inequalities

A relationship between capacity and 2-dimensional Lebesgue measure is given by the following ‘isoperimetric’ inequality:

Theorem 5. (Carleman, 1918)

\[
\frac{1}{\text{cap}(E, B)} \leq \log \left(\frac{\text{Area}(E)}{\text{Area}(B)} \right),
\]

with equality iff \(E \) and \(B \) are concentric discs.

The proof of Carleman’s inequality uses the fact that the Dirichlet integral \(L(f) \) does not increase when \(f \) is replaced by its Schwarz symmetrization, the function \(S(f) \) whose superlevel sets are concentric discs with the same area as the corresponding level sets of \(f \). For details, see the classic book of Pólya and Szegő, [6], or [1] for a more modern account.

Taking \(E = B(0, R) \) and then letting \(R \to \infty \) in Carleman’s isoperimetric inequality yields the following well-known isoperimetric theorem for logarithmic capacity. For a simple proof, including the equality case, see theorem 5.3.5 in [7].

Theorem 6. For any compact set \(K \subset \mathbb{C} \),
\[
\text{Area}(K) \leq \pi \text{cap}(K)^2,
\]
with equality if and only if K is a disc.

We have now collected everything we need to prove Pólya’s inequality, theorem 1. The capacity of the disc D is precisely the radius of D, so

$$\text{cap}(D) = \left(\frac{\text{Area}(D)}{\pi} \right)^{1/2},$$

$$\text{cap}(p^{-1}(D)) = \left(\frac{\text{Area}(D)}{\pi} \right)^{1/2n},$$

and, applying theorem 6

$$\text{Area}(p^{-1}(D)) \leq \pi \left(\frac{\text{Area}(D)}{\pi} \right)^{1/n},$$

as required. In view of the strong link between logarithmic capacity and polynomials, theorems 1 and 6 are virtually equivalent. In [4], Pólya’s inequality is proved using Gronwall’s area formula, and used to deduce the isoperimetric inequality for logarithmic capacity.

4 Proof of theorems 2 and 3

Lemma 2. For any complex polynomial g of degree d,

$$\int_{C} |g(w)| 1_{|g(w)| \leq x} \, dA \geq \frac{2x}{d + 2} \text{Area}\{w \in \mathbb{C} : |g(w)| \leq x\}.$$

Proof. By lemma 1 we have

$$\text{cap}(g^{-1}(B(0, x)), g^{-1}(B(0, s))) = \frac{d}{2 (\log x - \log s)}.$$

Theorem 5 gives

$$\frac{\text{Area}\{w \in \mathbb{C} : s \leq |g(w)| \leq x\}}{\text{Area}\{w \in \mathbb{C} : |g(w)| \leq x\}} \geq 1 - \left(\frac{s}{x} \right)^{2/d},$$

so

$$\int_{C} |g(w)| 1_{|g(w)| \leq x} \, dA = \int_{0}^{x} \text{Area}\{w \in \mathbb{C} : s \leq |g(w)| \leq x\} \, ds$$

$$\geq \text{Area}\{w \in \mathbb{C} : |g(w)| \leq x\} \int_{0}^{x} 1 - \left(\frac{s}{x} \right)^{2/d} \, ds$$

$$= \frac{2x}{d + 2} \text{Area}\{w \in \mathbb{C} : |g(w)| \leq x\}.$$
Now fix a monic polynomial p and $A > 0$. Among all measurable sets K with $\text{Area}(K) = A$, the Dirichlet integral

$$\int_K |p'(w)|^2 d\text{Area}(w)$$

is minimised when K is the sublevel set

$$K_t = \{ w \in \mathbb{C} : |p'(w)|^2 \leq t \}.$$

Here t is determined uniquely by the condition $\text{Area}(K_t) = A$. The polynomial $z \mapsto (p'(z)/n)^2$ is monic, with degree $2n - 2$, so theorem 1 gives

$$A = \text{Area}(K_t) \leq \pi \left(\frac{\pi (t/n^2)^2}{\pi} \right)^{1/(2n-2)}.$$

Rearranging this we have

$$t \geq n^2 \left(\frac{A}{\pi} \right)^{n-1}.$$

Now we apply lemma 2 to the polynomial $g = (p')^2$ to obtain

$$\int_{K_t} |p'(w)|^2 d\text{Area}(w) = \int_{\mathbb{C}} |p'(w)|^2 1_{|p'(w)|^2 \leq t} d\text{Area}(z) \geq \frac{2t}{2n} \text{Area}(K_t) = \frac{tA}{n} \geq n \pi \left(\frac{A}{\pi} \right)^n.$$

For equality, we must have equality in our application of Pólya’s inequality, so p must be $p : z \mapsto (z - b)^n + c$, and K can differ from disc K_t at most by a set of 2-dimensional Lebesgue measure zero. This completes the proof of theorem 3.

To obtain theorem 2, observe that a monic polynomial p maps $p^{-1}(K)$ onto K with multiplicity n everywhere, so

$$\text{Area}(K) = \frac{1}{n} \int_{p^{-1}(K)} |p'(w)|^2 d\text{Area}(w).$$

Finally, theorem 4 is obtained by dividing both sides of the inequality of theorem 2 by $\text{cap}(K)^2 = \text{cap}(p^{-1}(K))^2$.

7
References

[1] Bandle, Catherine. *Isoperimetric Inequalities and Applications*, Pitman, 1980.

[2] Alexandre Eremenko and Walter Hayman, *On the length of lemniscates*, Michigan J. Math 46 (1999), 409–415.

[3] Alexander Fryntov and John Rossi, *Hyperbolic symmetrization and an inequality of Dyn'kin*, Entire functions in modern analysis (Tel–Aviv, 1997), Israel Math. Conf. Proc., 15, 103–115.

[4] Doron Lubinsky, *Small values of polynomials: Cartan, Pólya and others*, Journal of Inequalities and Applications, 1, (1997), no. 3, 199–222.

[5] G. Pólya, *Beitrag zur Verallgemeinerung des Verzerrungssatzes auf mehrfach zusammenhängende Gebiete*, S-B. Akad. Wiss, Berlin (1928), 228–232 & 280–282. Also in volume 1 of Pólya’s Collected Papers, MIT press, (1974).

[6] G. Pólya and G. Szegő, *Isoperimetric Inequalities in Mathematical Physics*, Annals of Mathematics Studies 27, Princeton University Press, (1951).

[7] Thomas Ransford, *Potential Theory in the Complex Plane*, London Mathematical Society Student Texts 28, Cambridge University Press (1995).