Supporting Information

Assessment of the toxicity and biodegradation of amino acid-based ionic liquids

Shuanggen Wu, Fenfang Li, Liangbin Zeng, Chaoyun Wang, Yuanru Yang and Zhijian Tan

a. Institute of Bast Fiber Crops and Center of Southern Economic Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China;
b. College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China

*Corresponding author
E-mail address: tanzhijian@caas.cn; tanzhijiantgzy2010@aliyun.com

Pages S1-S8
Contents (contains 7 tables)

Antimicrobial Screening Result 2

MIC and MBC values (in mM) of AAILs 5

Toxicity of AAILs at various concentrations against rice seed germination 6

Characterization of the ionic liquids 9
Antimicrobial Screening Result

Table S1 Growth inhibition halo (cm) for the AAILs against the bacteria *B. subtilis*

ILS	ILS concentration (mol/L)	0.0625	0.125	0.25	0.50	1.00
[C₄mim][Pro]		0.00	0.70±0.00	0.80±0.00	0.93±0.06	1.17±0.06
[C₄mim][Val]		0.00	0.00	0.00	1.00±0.00	1.27±0.03
[C₄mim][Gly]		0.00	0.00	0.80±0.00	1.00±0.00	1.03±0.06
[C₄mim][Cys]		0.00	0.00	0.52±0.02	0.71±0.01	0.93±0.04
[C₄mim][His]		0.00	0.65±0.04	0.77±0.06	1.00±0.00	1.13±0.06
[C₄mim][Phe]		0.00	0.70±0.00	0.87±0.06	1.00±0.10	1.17±0.12
[C₄mim][Asp]		0.00	0.00	0.00	0.60±0.00	0.64±0.00
[Cho][Gly]		0.00	0.00	0.00	0.77±0.06	0.90±0.01
[Cho][Pro]		0.00	0.00	0.70±0.00	0.80±0.00	1.03±0.06
[Cho][His]		0.00	0.00	0.00	0.60±0.00	0.90±0.02
[Cho][Phe]		0.00	0.00	0.60±0.00	0.73±0.06	0.87±0.06
[Cho][Asp]		0.00	0.00	0.00	0.00	0.73±0.02
[Cho][Cys]		0.00	0.00	0.00	0.00	1.07±0.04
[C₄mim][Cys]		0.00	0.00	0.00	0.60±0.00	0.70±0.02
[C₆mim][Cys]		0.6±0.00	0.70±0.00	0.83±0.06	1.63±0.12	2.23±0.12
[Pyr][Cys]		0.00	0.00	0.00	0.6±0.00	0.90±0.10
[Pip][Cys]		0.00	0.00	0.00	0.00	0.60±0.02
[N₂₂₂₂][Cys]		0.00	0.00	0.00	0.00	0.70±0.02
[N₄₄₄₄][Cys]		0.00	0.70±0.00	0.93±0.06	0.97±0.06	1.33±0.06
Controls		0.00	0.00	0.00	0.00	0.00
Table S2 Growth inhibition halo (cm) for the AAILs against bacteria the \textit{R. solanacearum}

ILS	0.0625	0.125	0.25	0.50	1.00	
[C4mim][Pro]	0.00	0.60±0.00	0.70±0.00	0.80±0.00	1.07±0.06	
[C4mim][Val]	0.00	0.60±0.00	0.70±0.00	0.80±0.00	0.93±0.06	
[C4mim][Gly]	0.00	0.60±0.00	0.70±0.00	0.82±0.02	1.10±0.00	
[C4mim][Cys]	0.00	0.00	0.00	0.70±0.00	1.80±0.02	
[C4mim][His]	0.00	0.60±0.00	0.70±0.00	0.87±0.06	1.10±0.00	
[C4mim][Phe]	0.00	0.60±0.00	0.70±0.00	0.80±0.00	0.97±0.06	
[C4mim][Asp]	0.00	0.00	0.00	0.00	0.60±0.00	
[Cho][Gly]	0.00	0.00	0.60±0.00	0.70±0.00	0.80±0.02	
[Cho][Pro]	0.00	0.00	0.60±0.00	0.81±0.00	0.80±0.02	
[Cho][His]	0.00	0.00	0.00	0.00	0.60±0.02	
[Cho][Phe]	0.00	0.00	0.00	0.62±0.00	0.70±0.04	
[Cho][Asp]	0.00	0.00	0.00	0.00	0.12±0.01	
[Cho][Cys]	0.00	0.00	0.00	1.30±0.00	0.50±0.03	
[C4mim][Cys]	0.00	0.00	0.00	0.60±0.00	1.47±0.06	
[C4mim][Cys]	0.00	0.69±0.01	0.77±0.06	1.63±0.06	2.00±0.02	
[Pyr][Cys]	0.00	0.00	0.00	0.00	0.60±0.03	
[Pip][Cys]	0.00	0.00	0.00	0.00	1.00±0.02	
[N2,2,2,2][Cys]	0.00	0.00	0.00	0.60±0.01	0.67±0.04	
[N4,4,4,4][Cys]	0.00	0.00	0.70±0.00	0.87±0.06	1.20±0.03	
Controls	0.00	0.00	0.00	0.00	0.00	
AAILs	AAILs concentration (mol/L)	0.0625	0.125	0.25	0.50	1.00
---------------	-----------------------------	--------	-------	-------	-------	-------
[C4mim][Pro]	0.00	0.00	0.00	0.80±0.00	1.10±0.00	1.40±0.00
[C4mim][Val]	0.00	0.73±0.06	1.00±0.00	1.23±0.06	1.60±0.00	
[C4mim][Gly]	0.00	0.00	0.90±0.00	1.17±0.06	1.53±0.06	
[C4mim][Cys]	0.00	0.00	0.00	0.86±0.04	1.20±0.03	
[C4mim][His]	0.00	0.00	0.83±0.06	1.23±0.06	1.47±0.06	
[C4mim][Phe]	0.00	0.71±0.01	1.03±0.06	1.21±0.01	1.60±0.10	
[C4mim][Asp]	0.00	0.00	0.00	0.70±0.00	0.97±0.06	
[Cho][Gly]	0.00	0.00	0.00	0.00	0.83±0.06	
[Cho][Pro]	0.00	0.00	0.00	0.00	0.70±0.02	
[Cho][His]	0.00	0.00	0.00	0.00	0.80±0.03	
[Cho][Phe]	0.00	0.00	0.00	0.00	0.70±0.02	
[Cho][Asp]	0.00	0.00	0.00	0.00	0.20±0.02	
[Cho][Cys]	0.00	0.00	0.00	0.00	0.40±0.03	
[C4mim][Cys]	0.00	0.00	0.00	0.00	0.93±0.06	
[C4mim][Cys]	0.60±0.00	0.90±0.00	1.20±0.00	1.47±0.06	1.70±0.02	
[Pyr][Cys]	0.00	0.00	0.00	0.00	0.70±0.01	
[Pip][Cys]	0.00	0.00	0.00	0.00	0.50±0.02	
[N2,2,2,2][Cys]	0.00	0.00	0.00	0.70±0.00	1.00±0.04	
[N4,4,4,4][Cys]	0.00	0.80±0.00	1.00±0.00	1.33±0.06	1.67±0.06	
Controls	0.00	0.00	0.00	0.00	0.00	
Table S4. MIC and MBC values (in mM) of AAILs

AAILs	B. subtilis	R. solanacearum	E. coli	S. stipitis	S. cerevisiae	P. chrysosporium	T. sanguinea	C. subvermispora	F. lignosus	Fungi									
	MIC	MBC																	
[C₅mim][Pro]	15.63	31.3	62.5	62.5	23.4	31.3	23.4	250	31.3	62.5	15.6	15.6	23.4	23.4	46.9	62.5	93.8	375	
[C₅mim][Val]	11.7	31.3	46.9	62.5	15.6	31.3	11.7	11.7	23.4	31.3	15.6	15.6	23.4	23.4	46.9	62.5	93.8	375	
[C₅mim][Gly]	62.5	62.5	125	125	23.4	31.3	7.8	7.8	15.6	15.6	15.6	15.6	23.4	23.4	46.9	62.5	125	93.8	250
[C₅mim][Cys]	125	125	125	125	23.4	31.3	62.5	500	62.5	62.5	15.6	15.6	93.8	93.8	62.5	93.8	93.8	250	
[C₅mim][His]	31.3	31.3	62.5	62.5	62.5	62.5	11.7	11.7	23.4	61.3	15.6	15.6	23.4	23.4	46.9	375	125	500	
[C₅mim][Phe]	23.4	46.9	250	250	125	125	11.7	11.7	23.4	31.3	93.8	125	23.4	23.4	62.5	62.5	93.8	250	
[C₅mim][Asp]	23.4	125	500	500	46.9	46.9	93.8	500	157.5	375	250	250	250	250	500	500	1000	1000	
[Cho][Gly]	62.5	250	93.8	93.8	125	125	125	375	93.8	93.8	23.4	23.4	46.9	93.8	1000	>1000	750	>1000	
[Cho][Pro]	46.9	62.5	187.5	250	125	125	93.8	187.5	125	187.5	46.9	62.5	46.9	62.5	750	>1000	1000	1000	
[Cho][His]	62.5	62.5	187.5	250	125	187.5	125	500	93.8	187.5	23.4	23.4	46.9	62.5	500	500	500	750	
[Cho][Phe]	62.5	125	187.5	500	187.5	250	187.5	375	125	250	31.3	31.3	46.9	62.5	750	1000	1000	>1000	
[Cho][Asp]	750	750	>1000	>1000	750	1000	500	750	500	750	93.8	93.8	250	500	>1000	>1000	>1000	>1000	
[Cho][Cys]	187.5	375	375	375	375	375	750	>1000	500	1000	62.5	62.5	187.5	250	750	1000	>1000	>1000	
[C₅mim][Cys]	62.5	125	250	250	31.3	31.3	93.8	500	93.8	125	15.6	15.6	62.5	62.5	375	500	500	750	
[C₅mim][Cy][S]	125	125	62.5	125	15.6	31.3	7.8	15.6	31.3	31.3	15.6	15.6	15.6	15.6	15.6	23.4	31.3	31.3	
[Pyr][Cys]	11.7	31.3	125	125	125	125	62.5	500	250	375	250	250	250	250	375	500	500	750	1000
[Pyr][Cys]	125	250	375	500	125	125	125	250	187.5	250	187.5	187.5	125	157.5	500	>1000	750	>1000	
[N₂3,1₇][Cys]	11.7	15.6	187.5	500	62.5	93.8	62.5	125	93.8	250	31.3	31.3	62.5	62.5	750	>1000	1000	>1000	
[N₂3,1₇][Cys]	15.6	62.5	46.9	46.9	15.6	31.3	7.8	7.8	15.6	15.6	15.6	15.6	15.6	15.6	15.6	46.9	46.9	62.5	375

Toxicity standards

- Green: MIC/MBC > 2 mM all strains, or up to solubility limit (preferred); Amber: MIC/MBC 0.25 – 2.0 mM (usable); Red: MIC/MBC < 0.25 mM (undesirable)
| AAILs | AAILs concentration (mg/kg) | | | | | |
|---|---|---|---|---|---|---|
| | 200 | 400 | 600 | 800 | 1000 |
| [C\text{mim}]|\text{[Pro]} | -11.08±0.02 | 22.01±1.80 | -29.43±1.26 | -60.13±1.25 | -100±2.89 |
| [C\text{mim}]|\text{[Val]} | 27.59±0.11 | 12.04±2.10 | -60.53±2.36 | -98.80±3.56 | -100±2.56 |
| [C\text{mim}]|\text{[Gly]} | 81.83±4.58 | 27.59±1.2 | -72.49±5.6 | -82.46±2.53 | -100±3.59 |
| [C\text{mim}]|\text{[Cys]} | -22.25±0.18 | 30.590±3.20 | -47.77±3.20 | -91.23±0.56 | -100±4.58 |
| [C\text{mim}]|\text{[His]} | 57.10±0.26 | -8.29±1.50 | -41.39±2.36 | -79.27±0.89 | -90.83±3.52 |
| [C\text{mim}]|\text{[Phe]} | -3.91±0.09 | -13.88±0.12 | -39.79±1.26 | -79.27±1.59 | -100±1.26 |
| [C\text{mim}]|\text{[Asp]} | 4.90±0.40 | -24.71±1.21 | -38.6±2.61 | -79.53±3.56 | -100±1.59 |
| [\text{Cho}|\text{Gly]} | -9.49±0.11 | -16.27±1.32 | -13.08±0.26 | -29.03±1.24 | 70.65±1.45 |
| [\text{Cho}|\text{Pro]} | 57.89±4.5 | 20.02±0.12 | 4.07±0.23 | 15.23±0.26 | 2.87±0.23 |
| [\text{Cho}|\text{His]} | -4.70±0.02 | -19.06±0.15 | -33.01±1.31 | 9.65±0.23 | -19.06±0.16 |
| [\text{Cho}|\text{Phe]} | 53.91±0.15 | -14.67±0.28 | -13.48±0.15 | 10.45±0.25 | 13.24±0.15 |
| [\text{Cho}|\text{Asp]} | 864.51±8.90 | 848.96±7.80 | 946.65±3.65 | 445.85±3.46 | 37.56±0.26 |
| [\text{Cho}|\text{Cys]} | 34.37±1.20 | 25.2±2.23 | 13.64±0.23 | 29.19±4.56 | 2.07±0.03 |
| [C\text{mim}]|\text{[Cys]} | 24.80±1.10 | 13.6±0.59 | 20.02±1.23 | -5.5±0.36 | -35.01±0.45 |
| [C\text{mim}]|\text{[Cys]} | -72.09±5.80 | -100±5.20 | -100±3.56 | -100±2.15 | -100±4.59 |
| [\text{Pyr}|\text{Cys]} | 11.24±0.60 | 9.25±0.38 | -26.24±1.23 | -46.57±1.26 | -40.99±1.21 |
| [\text{Pip}|\text{Cys]} | 20.81±1.5 | -1.52±0.03 | -11.88±0.26 | -27.43±0.56 | -9.09±0.02 |
| [\text{N}_{2}\text{,2,2,2}\text{-}\text{Cys]} | 6.46±1.0 | -6.7±0.06 | -9.89±0.25 | -51.75±0.78 | -73.29±0.06 |
| [\text{N}_{4}\text{,4,4,4}\text{-}\text{Cys]} | -2.31±0.02 | -15.87±1.2 | -51.75±1.26 | -100±0.59 | -100±0.26 |
| [C\text{mim}]|\text{[Br]} | -40.99±3.8 | -100±3.80 | -100±3.12 | -100±0.78 | -100±0.59 |
Table S6. The shoot inhibition (%) of rice seedling by adding ILs solution (Positive is representative for promoting growth conversely inhibition growth)

AAILs	AAILs concentration (mg/kg)	200	400	600	800	1000
[C4mim][Pro]		-11.3±0.23	15.61±0.02	-4.88±0.03	-9.55±0.26	-26.16±1.26
[C4mim][Val]		-3.66±0.03	3.62±0.03	-8.17±0.12	-20.42±0.24	-17.97±1.23
[C4mim][Gly]		11.65±0.02	12.03±0.29	-1.13±0.23	-17.97±0.01	-30.52±1.26
[C4mim][Cys]		0.02±0.10	16.74±0.36	-4.12±0.05	-18.89±0.03	-22.71±1.78
[C4mim][His]		17.85±0.03	-1.00±0.01	-8.17±0.09	-14.68±0.12	-25.08±1.26
[C4mim][Phe]		11.11±0.02	-7.17±0.02	-2.43±0.03	-7.02±0.03	-17.58±1.23
[C4mim][Asp]		-2.29±0.01	-12.68±0.09	-2.99±0.09	-23.12±0.03	-30.98±0.04
[Cho][Gly]		0.70±0.02	-2.46±0.01	-11.62±0.04	-12.46±0.01	1.93±0.02
[Cho][Pro]		7.06±0.01	-1.18±0.02	-6.11±0.07	-10.54±0.56	-7.41±0.23
[Cho][His]		1.47±0.02	10.78±0.05	5.07±0.02	-0.06±0.03	-1.21±0.03
[Cho][Phe]		18.00±1.24	10.68±0.04	10.96±0.14	15.40±0.07	1.16±0.07
[Cho][Asp]		24.20±0.06	24.08±0.06	32.15±1.26	24.20±0.26	20.14±0.05
[Cho][Cys]		12.79±0.08	19.58±0.24	13.79±0.78	20.22±0.32	13.10±0.02
[C4mim][Cys]		3.84±0.06	5.13±0.07	-2.20±0.06	-2.82±0.32	-4.96±0.23
[C6mim][Cys]		-15.98±0.07	-40.71±0.29	-92.42±1.45	-94.95±2.89	-97.47±0.15
[Pyr][Cys]		4.22±0.03	-10.04±0.03	-19.65±0.89	-12.61±1.23	-25.77±0.02
[Pip][Cys]		7.59±0.05	-3.34±0.01	9.43±0.08	1.24±0.28	-3.58±0.12
[N2,2,2,2][Cys]		0.86±0.01	2.21±0.03	-5.65±0.09	-10.01±0.56	-11.69±0.03
[N4,4,4,4][Cys]		4.91±0.03	-3.61±0.01	-7.25±0.45	-20.49±0.78	-24.63±0.02
[C4mim][Br]		-7.79±0.02	-17.97±0.02	-34.42±0.78	-41.15±1.26	-54.09±0.01
Table S7. The fresh weight inhibition (%) of rice seedling by adding ILs solution (Positive is representative for promoting growth conversely inhibition growth)

AAILs	200	400	600	800	1000
[C₄mim][Pro]	0.00	0.00	-6.90±0.06	-10.34±0.23	-17.24±0.06
[C₄mim][Val]	0.00	-6.90±0.02	-10.34±0.05	-17.24±0.56	-20.69±0.26
[C₄mim][Gly]	13.79±0.03	-6.90±0.01	-20.69±0.09	-27.59±0.12	-29.31±0.37
[C₄mim][Cys]	-10.34±0.03	1.69±0.01	-12.41±0.03	-24.14±0.26	-17.24±0.29
[C₄mim][His]	3.45±0.20	-6.90±0.03	-8.62±0.01	-20.69±0.25	-17.24±0.15
[C₄mim][Phe]	-6.90±0.23	-10.34±0.08	-10.34±0.06	-24.14±0.24	-20.69±0.03
[C₄mim][Asp]	0.00	0.00	3.45±0.06	3.45±0.01	7.59±0.06
[Cho][Gly]	-1.72±0.12	-2.41±0.03	-3.45±0.04	-3.45±0.03	-17.24±0.05
[Cho][Pro]	0.00	0.00	3.45±0.09	3.45±0.01	7.59±0.06
[Cho][His]	0.00	-3.45±0.06	-4.83±0.05	-6.21±0.56	-6.90±0.15
[Cho][Phe]	6.90±0.02	3.45±0.09	3.45±0.04	1.72±0.03	-6.90±0.02
[Cho][Asp]	0.00	-3.45±0.01	-3.45±0.06	-3.45±0.25	-13.79±0.03
[Cho][Cys]	3.45±0.01	0.00	-1.38±0.04	-2.76±0.26	-3.45±0.01
[C₄mim][Cys]	48.28±0.03	37.93±0.26	34.48±0.01	24.14±0.23	-3.45±0.03
[C₄mim][Cys]	-6.90±0.04	-20.69±0.56	-6.90±0.23	-6.90±0.24	-8.45±0.25
[Pyr][Cys]	0.00±0.02	-13.79±0.12	-13.79±0.56	-20.69±0.56	-21.38±0.16
[Pip][Cys]	-10.34±0.04	-27.59±0.13	-31.03±0.23	-34.48±0.78	-34.48±0.12
[N₂,2,2,2][Cys]	3.45±0.02	-10.34±0.03	-10.34±0.14	-17.24±0.03	-20.69±0.02
[N₄,4,4,4][Cys]	-10.34±0.03	-10.34±0.07	-10.34±0.56	-11.38±0.01	-13.79±0.01
[C₄mim][Br]	-10.34±0.04	-24.14±0.08	-31.03±0.78	-31.03±0.02	-31.03±0.02
Characterization of the ionic liquids

All ILs were characterized by FT-IR spectroscopy and 1H NMR, then spectroscopic data of synthesized ILs were analyzed by
MestReNova LITE. The 1H NMR data obtained from Bruker BioSpin GmbH (400 MHz) using D$_2$O as solvents. All the results of FT-IR and 1H NMR proved that all synthesized ILs were target products.
[Cho][Asp]. 1H NMR (400 MHz, D$_2$O) δ: 2.52 – 2.73 (m, 2H, CH$_2$), 3.10 (s, 9H, CH$_3$, CH$_3$, CH$_3$), 3.41 – 3.43 (m, 2H, CH$_2$), 3.76 – 3.79 (q, J = 12 Hz, 1H, CH-N). 3.94 – 3.97 (m, 2H, CH$_3$). IR: Error! = 3425, 2978, 1596, 1479, 1392, 1349, 1149, 1066, 908, 856 cm$^{-1}$.

![NMR spectrum](image1)

![IR spectrum](image2)

![Absorbance spectrum](image3)
S11

[Cho][Phe]. 1H NMR (400 MHz, D$_2$O) δ: 2.73 – 2.78 (m, 2H, CH$_2$), 2.88 – 3.06 (m, 2H, CH$_2$), 3.06 (s, 9H, CH$_3$, CH$_3$, CH$_3$), 3.38 – 3.41 (m, 2H, CH$_2$), 3.93 (q, $J = 5.6$, 7.2 Hz, 1H, CH-N), 7.19 – 7.29 (m, 5H, C$_6$H$_5$). IR: 3463, 3050, 3028, 2940, 1565, 1483, 1405, 1342, 1083, 958 cm$^{-1}$.

![Image of NMR spectrum]

![Image of IR spectrum]
[Cho][His]. 1H NMR (400 MHz, D$_2$O) δ: 2.69 – 2.87 (m, 2H, CH$_2$), 3.07 (s, 9H, CH$_3$, CH$_3$, CH$_3$), 3.36 – 3.40 (apparent q, $J = 16$ Hz, 3H, CH$_2$, CH-N), 3.92 – 3.95 (m, 2H, CH$_2$), 6.80 (s, 1H, =CH), 7.55 (s, 1H, =CH). IR: Error! = 3399, 2950, 1571, 1479, 1407, 1346, 1085, 956, 677 cm$^{-1}$.

![NMR Spectrum of [Cho][His]](image1)

![IR Spectrum of [Cho][His]](image2)
[Cho][Gly]. \(^1\)H NMR (400 MHz, D₂O) \(\delta\): 3.13 – 3.14 (d, \(J = 4.0\) Hz, 11H, CH₃, CH₂, CH₃, CH₂), 3.44 – 3.46 (m, 2H, CH₂), 3.98 (s, 2H, CH₂-N). IR: Error! = 3444, 2978, 1577, 1483, 1400, 1081, 1046, 952, 650 cm\(^{-1}\).
1H NMR (400 MHz, D$_2$O) δ: 2.15 – 2.16 (m, 2H, CH$_2$), 3.12 (s, 9H, CH$_3$, CH$_3$, CH$_3$), 3.42 – 3.46 (m, 2H, CH$_2$), 3.54 – 3.60 (q, $J = 24$ Hz, 1H, CH-N), 3.95 – 3.98 (m, 2H, CH$_2$). IR: Error! = 3407, 2950, 1585, 1471, 1400, 1394, 1288, 1002, 670 cm$^{-1}$.
[Cho][Pro]. 1H NMR (400 MHz, D$_2$O) δ: 1.69 – 1.74 (m, 4H, CH$_2$, CH$_3$), 3.02 – 3.05 (t, $J = 12$ Hz, 1H, CH-N), 3.11 (s, 9H, CH$_3$, CH$_3$), 3.42 – 3.46 (t, $J = 16$ Hz, 2H, CH$_2$-N), 3.53 – 3.55 (t, $J = 8.0$ Hz, 2H, CH$_3$), 3.95 – 3.99 (t, $J = 16$ Hz, 2H, CH$_2$). IR: Error! = 3444, 2971, 2869, 1581, 1477, 1419, 1386, 1081, 1078, 958 cm$^{-1}$.

![NMR Spectrogram](image1)

![IR Spectrum](image2)
[C$_4$ mim][Val]. 1H NMR (400 MHz, D$_2$O) δ: 0.75 – 0.77 (t, $J = 8.0$ Hz, 3H, CH$_3$), 0.81 – 0.84 (dd, $J = 12$ Hz, 6H, CH$_3$, CH$_3$), 1.17 – 1.23 (m, 2H, CH$_2$), 1.71 – 1.77 (m, 3H, CH, CH$_3$), 2.96 – 2.97 (m, $J = 4.0$ Hz, 1H, CH-N), 3.79 (s, 3H, CH$_3$), 4.08 – 4.10 (t, $J = 8.0$ Hz, 2H, CH$_2$), 4.10 – 4.11 (t, $J = 4.0$ Hz, 2H, CH$_2$), 7.33 – 7.38 (s, 3H, =CH, =CH, =CH). IR: Error! = 3430, 2958, 2875, 1571, 1457, 1392, 1322, 1164, 958, 620 cm$^{-1}$.

![NMR spectrum](image1.png)

![IR spectrum](image2.png)
[C₄mim][Gly]. ¹H NMR (400 MHz, D₂O) δ: 0.84 – 0.88 (t, J = 16 Hz, 3H, CH₃), 1.23 – 1.26 (m, 2H, CH₂), 1.75 – 1.82 (m, 2H, CH₂), 3.14 (s, 2H, CH₂), 3.83 (s, 3H, CH₃), 4.11 – 4.15 (m, 2H, CH₂), 7.36 (s, 1H, =CH), 7.41 (s, 1H, =CH). IR: Error! = 3413, 2958, 2869, 1573, 1471, 1402, 1340, 1164, 956, 610 cm⁻¹.
$[^{\text{C}}_{4}\text{mim}][\text{Pro}]$. 1H NMR (400 MHz, D$_2$O) δ: 0.83 – 0.86 (t, $J = 12$ Hz, 3H, CH$_3$), 1.20 – 1.25 (m, 2H, CH$_2$), 1.69 – 1.72 (m, 4H, CH$_2$, CH$_3$), 1.74 – 1.81 (m, 2H, CH$_2$), 3.03 – 3.06 (t, $J = 12$ Hz, 1H, CH-N), 3.52 – 3.58 (m, 2H, CH$_2$), 3.82 (s, 3H, CH$_3$), 4.10 – 4.14 (t, $J = 16$ Hz, 2H, CH$_2$), 7.37 (s, 1H, =CH), 7.42 (s, 1H, =CH). IR: Error! = 3425, 3112, 2956, 1629, 1571, 1425, 1342, 1301, 1164, 958, 650 cm$^{-1}$.

![NMR spectrum](image1.png)

![IR spectrum](image2.png)
[C₄mim][Cys]. 'H NMR (400 MHz, D₂O) δ: 0.77 – 0.81 (t, J = 16 Hz, 3H, CH₃), 1.16 – 1.22 (q, J = 24 Hz, 2H, CH₂), 1.70 – 1.76 (m, 2H, CH₂), 2.56 – 2.86 (d, 2H, CH₂), 3.31 – 3.34 (t, J = 12 Hz, 1H, CH-N), 3.77 (s, 3H, CH(N)), 4.05 – 4.09 (t, J = 12 Hz, 2H, CH₂), 7.31 (s, 1H, =CH), 7.36 (s, 1H, =CH). IR: Error! = 3432, 3156, 2964, 1596, 1463, 1390, 1284, 1170, 1164, 662 cm⁻¹.
[C₄mim][Phe]. ¹H NMR (400 MHz, D₂O) δ: 0.84 – 0.88 (t, J = 16 Hz, 3H, CH₃), 1.22 – 1.27 (m, 2H, CH₂), 1.72 – 1.80 (m, 2H, CH₂), 2.75 – 2.80 (m, 2H, CH₂), 3.43 – 3.46 (t, J = 12 Hz, 1H, CH-N), 3.79 (s, 3H, CH₃), 4.07 – 4.11 (q, J = 16 Hz, 2H, CH₂), 7.20 – 7.30 (m, 5H, C₆H₅), 7.33 (s, 1H, =CH), 7.37 (s, 1H, =CH). IR: Error! = 3444, 3151, 2964, 2140, 1571, 1498, 1342, 1166, 755, 707, 624 cm⁻¹.
[C₄mim][Asp]. "H NMR (400 MHz, D₂O) δ: 0.84 – 0.88 (t, J = 16 Hz, 3H, CH₃), 1.22 – 1.29 (m, 2H, CH₂), 1.75 – 1.83 (m, 2H, CH₂), 2.58 – 2.64 (t, J = 24 Hz, 2H, CH₃), 3.83 (s, 3H, CH₃), 4.12 – 4.16 (t, J = 16 Hz, 2H, CH₂), 7.38 (s, 1H, =CH), 7.42 (s, 1H, =CH), 8.85 (s, 1H, =CH). IR: Error! = 3147, 2966, 1612, 1579, 1392, 1303, 1157, 1110, 968 cm⁻¹.
[C₄mim][His]. ¹H NMR (400 MHz, D₂O) δ: 0.83 – 0.86 (t, J = 12 Hz, 3H, CH₃), 1.21 – 1.26 (m, 2H, CH₂), 1.73 – 1.78 (m, 2H, CH₂), 2.75 – 2.88 (t, J = 8.0, 8.0 Hz, 2H, CH₂), 3.41 – 3.44 (t, J = 12 Hz, 1H, CH-N), 3.83 (s, 3H, CH₃), 4.09 – 4.12 (t, J = 12 Hz, 2H, CH₂), 6.84 (s, 1H, =CH), 7.34 (s, 1H, =CH), 7.39 (s, 1H, =CH), 7.59 (s, 1H, =CH). IR: Error! = 3425, 3156, 2964, 1565, 1463, 1340, 1166, 831, 748 cm⁻¹.
$[\text{C}_2\text{mim}][\text{Cys}]$. ^1H NMR (400 MHz, D$_2$O) δ: 1.34 – 1.38 (t, $J = 12$ Hz, 3H, CH$_3$), 2.59 – 2.65 (t, $J = 24$ Hz, 2H, CH$_2$), 3.36 – 3.39 (d, 1H, CH-N), 3.75 (s, 3H, CH$_3$), 4.06 – 4.12 (q, $J = 24$ Hz, 2H, CH$_2$), 7.28 (s, 1H, =CH), 7.36 (s, 1H, =CH). IR: Error! = 3455, 2991, 1598, 1457, 1388, 1168, 962 cm$^{-1}$.

![NMR spectrum of $[\text{C}_2\text{mim}][\text{Cys}]$.](image1)

![IR spectrum of $[\text{C}_2\text{mim}][\text{Cys}]$.](image2)
[C₆mim][Cys]. ¹H NMR (400 MHz, D₂O) δ: 0.75 – 0.77 (t, J = 8.0 Hz, 3H, CH₃), 0.80 – 0.84 (m, 6H, CH₂, CH₃, CH₂), 1.71 – 1.77 (m, 2H, CH₂), 2.95 – 2.96 (t, J = 4.0 Hz, 1H, CH-N), 3.80 (s, 3H, CH₃), 4.08 – 4.12 (m, 2H, CH₂), 7.34 – 7.20 (d, 2H, =CH, =CH). IR: Error! = 3455, 2991, 1598, 1457, 1388, 1168, 962 cm⁻¹.
[N_{2,2,2}][\text{Cys}].^{1} \text{H NMR (400 MHz, D}_2\text{O)} \delta: 0.80 – 0.89 (d, \text{ } J = 36 \text{ Hz}, 2\text{H, CH}_3), 1.18 – 1.22 (t, \text{ } J = 16 \text{ Hz}, 12\text{H, CH}_3, \text{ CH}_2, \text{ CH}_2, \text{ CH}_2, \text{ CH}_3, \text{ CH}_3), 3.02 – 3.03 (t, \text{ } J = 4.0 \text{ Hz}, 1\text{H, CH-N}), 3.16 – 3.22 (t, \text{ } J = 24 \text{ Hz}, 8\text{H, CH}_2, \text{ CH}_2, \text{ CH}_2, \text{ CH}_2, \text{ CH}_3, \text{ CH}_3), \text{ IR: } \text{Error!} = 3457, 2989, 1585, 1457, 1396, 1174, 1002, 786 \text{ cm}^{-1}.
[N_{4,4,4,4}][Cys]. 1H NMR (400 MHz, D$_2$O) δ: 0.82 – 0.86 (t, $J = 16$ Hz, 12H, CH$_3$, CH$_3$, CH$_3$, CH$_3$), 1.21 – 1.28 (m, 8H, CH$_2$, CH$_2$, CH$_2$), 1.50 – 1.58 (m, 8H, CH$_2$, CH$_2$, CH$_2$, CH$_2$), 2.71 – 2.90 (d, 2H, CH$_3$), 3.07 – 3.11 (t, $J = 16$ Hz, 8H, CH$_2$, CH$_2$, CH$_2$, CH$_2$), 3.47 – 3.54 (d, 1H, CH-N). IR: $\text{Error!} = 3430, 2960, 1575, 1463, 1334, 1172, 991$ cm$^{-1}$.
[^Pyr][Cys]. 1H NMR (400 MHz, D$_2$O) δ: 1.24 – 1.28 (t, $J = 16$ Hz, 3H, CH$_3$), 2.09 (m, 4H, CH$_2$, CH$_3$), 2.44 – 2.55 (m, 2H, CH$_2$), 2.90 (s, 3H, CH$_3$), 3.21 – 3.25 (t, $J = 16$ Hz, 1H, CH-N), 3.27 – 3.32 (q, $J = 20$ Hz, 2H, CH$_2$), 3.36 – 3.37 (m, 4H, CH$_2$, CH$_2$). IR: 3411, 2983, 1598, 1469, 1388, 1295, 1029, 995 cm$^{-1}$.

[Spectrum of [Pyro][Cys]](image)
[Pip][Cys]. 1H NMR (400 MHz, D$_2$O) δ: 1.23 – 1.25 (t, $J = 8.0$ Hz, 3H, CH$_3$), 1.54 – 1.59 (m, 2H, CH$_2$), 1.79 (m, 4H, CH$_2$, CH$_3$), 2.16 (d, 1H, CH-N), 2.91 (s, 3H, CH$_3$), 3.22 – 3.14 (m, 4H, CH$_2$, CH$_3$), 3.30 – 3.33 (m, 4H, CH$_2$, CH$_3$). IR: 3455, 2956, 1594, 1469, 1392, 1170, 944 cm$^{-1}$.