Engineering of ultraID, a compact and hyperactive enzyme for proximity-dependent biotinylation in living cells

Lea Kubitz1,8, Sebastian Bitsch2,8, Xiyan Zhao1,8, Kerstin Schmitt3, Lukas Deweid2,5, Amélie Roehrig1,6, Elisa Cappio Barazzone1,7, Oliver Valerius3, Harald Kolmar2 & Julien Béthune4

Proximity-dependent biotinylation (PDB) combined with mass spectrometry analysis has established itself as a key technology to study protein-protein interactions in living cells. A widespread approach, BioID, uses an abortive variant of the E. coli BirA biotin protein ligase, a quite bulky enzyme with slow labeling kinetics. To improve PDB versatility and speed, various enzymes have been developed by different approaches. Here we present a small-size engineered enzyme: ultraID. We show its practical use to probe the interactome of Argonaute-2 after a 10 min labeling pulse and expression at physiological levels. Moreover, using ultraID, we provide a membrane-associated interactome of coatomer, the coat protein complex of COPI vesicles. To date, ultraID is the smallest and most efficient biotin ligase available for PDB and offers the possibility of investigating interactomes at a high temporal resolution.
Proximity-dependent biotinylation (PDB) is a powerful technique to identify protein–protein interactions in living cells. In the original approach BioID, the R118G abortive variant of the *Escherichia coli* protein biotin ligase (PBL) BirA, is fused to a protein of interest. In cells, BioID uses ATP and biotin as substrates to produce biotinyl-AMP (bioAMP). By contrast to the wild-type (WT) enzyme, BioID does not retain bioAMP in its active site but releases it, leading to the non-enzymatic biotinylation of lysine residues on surrounding proteins within an estimated radius of about 10 nm (ref. 3). Such labeled proteins can then be affinity purified on a streptavidin matrix and identified by mass spectrometry.

BioID is not only a valuable and widely used tool but also suffers from drawbacks. First, it is rather bulky (approx. 36 kDa), which sometimes hampers the proper localization of the corresponding fusion proteins. Second, its kinetic of labeling is slow, necessitating hours of incubation with exogenous biotin. Finally, as *E. coli*’s BirA is a class II biotin ligase, it has an N-terminal DNA-binding domain that shows structural homology to linker histone H5 and that theoretically might lead to artefactual non-specific binding to the host DNA and/or chromatin-interacting proteins, though this has not been investigated so far.

To circumvent these issues, new enzymes were developed (reviewed in ref. 7). BioID2 is derived from *Aquifex aeolicus* and is the smallest enzyme for PDB described to date (26.4 kDa). As a class I PBL, it also lacks a DNA-binding domain. BASU is a variant of the *B. subtilis* BirA that lacks its DNA-binding domain and was claimed to show 1000-fold faster biotinylation kinetics than BioID, though this has been disputed. A directed evolution approach led to TurboID and miniTurbo, two super active variants of BioID. TurboID has the size of BioID and is the most active enzyme described to date supporting labeling kinetics down to 10 min. This strong activity, however, comes at the cost of a high background labeling before the addition of extra biotin to the medium. miniTurbo is smaller than TurboID and does not show high background activity. However, miniTurbo has about half the activity of TurboID and was reported as unstable. Furthermore, both TurboID and miniTurbo can lead to toxicity when constitutively expressed in mammalian cell culture or model organisms. Finally, AirID is an enzyme faster than BioID and less toxic than TurboID but still requires hours of labeling time. Altogether, each of these enzymes comes with advantageous properties and some drawbacks. Clearly, an enzyme that combines the most advantages would be a valuable tool for PDB.

Here we present two novel enzymes: microID, a truncation variant of BioID2, and its directed evolution-deduced variant ultraID. With a molecular weight below 20 kDa, microID and ultraID are by far the smallest PDB enzymes available to date. Moreover, ultraID exhibits enzyme kinetics similar to TurboID but with less background activity. UltraID supports efficient labeling in mammalian cell culture, *E. coli* and *S. cerevisiae*. In a direct comparison in which the protein Argonaute-2 (Ago2) was either fused to ultraID or BioID and expressed at physiological levels, we show that a 10 min labeling time with ultraID can substitute for overnight labeling with BioID. Finally, using ultraID, we probed the membrane-associated interactome of the COPI coat protein complex coatomer in living cells. Altogether, ultraID is the smallest enzyme for PDB and supports efficient short labeling.

Results

microID, a small size biotin ligase derived from BioID2. We previously developed a split-BioID assay in which BioID is split into two inactive fragments that reassemble an active enzyme when fused to two interacting proteins. We explored whether a similar assay could be set up with BioID2. Based on the structures of both proteins we split BioID2 between amino acids K171/S172 (Fig. 1a), corresponding to the split-BioID site (E256/G257). The resulting fragments NBioID2 (BioID2 [2–171]) and CBioID2 (BioID2 [172–233]) were then, respectively, fused to the proteins FKBP (12-kDa FK506-binding protein) and FRB (FKBP-rapamycin-binding domain) that interact in the presence of rapamycin. To test split-BioID2, the fusion proteins were expressed in HeLa cells, and PDB was analyzed in the presence or absence of rapamycin (Fig. 1b). Biotinylation was observed irrespective of rapamycin treatment (Fig. 1c, lanes 1 and 2). In addition, CBioID2-FRB was hardly detectable and only in the presence of rapamycin (Fig. 1c, lanes 1 and 2), suggesting that it is unstable. This suggested that NBioID2, which contains the enzyme catalytical site, retains biotinylation activity. This is indeed the case as when NBioID2-FKBP was expressed in the absence of CBioID2-FRB, similar biotinylation activity was observed to when both NBioID2 and CBioID2 fusions were expressed (Fig. 1c, compare lane 3 to 1&2). NBioID2, with a size of 19.7 kDa, is the smallest enzyme for PDB to date and is termed from now on microID (or µID).

Directed evolution of microID. We next tried to improve the activity of microID through protein engineering. A single substitution, R118G, renders BirA of *E. coli* abortive. Situated in a conserved biotin/bio-AMP binding site, the corresponding mutation (R40G) had been introduced into BirA of *A. aeolicus* to obtain BioID2. Substituting R118 with a serine instead of a glycine results in twofold increased activity in BioID2. We thus tested if the corresponding mutation, R40S, also leads to enhanced activity in microID. However, a side-by-side comparison revealed that R40S rather leads to weaker biotinylation when compared to R40G (Supplementary Fig. 2).

The hyperactive enzyme TurboID was obtained from a yeast display-directed evolution approach using BioID R118S as a starting point. We reasoned that we could engineer a higher activity enzyme using a similar strategy applied to microID. To this end, we generated, through error-prone PCR, a surface display library of approximately 8 × 10^7 random microID mutants with an estimated average mutagenesis rate of 2.2 amino acid exchanges per variant. The random variants were expressed...
as 6xHis-tagged fusion proteins to Aga2p, a yeast protein that is exposed to the cell surface through its disulfide bonds linkage to Aga1p (Fig. 3a).

A cell surface biotinylation assay was performed by incubating the ligase-expressing cells with 50 µM biotin and 2.5 mM ATP for 17 h as a starting point. After cell staining using fluorescently labeled streptavidin (ligase activity) and anti-pentaHis antibodies (surface presentation), three consecutive FACS rounds with decreasing labeling times were conducted, sorting those cells that exhibited a strong fluorescence signal for biotin ligase activity and clear surface presentation (Fig. 3a, b). As a result, 0.77, 2.24, and 0.53% of the cells were enriched in rounds 1, 2, and 3, respectively. MicroID, which served as a control, showed negligible activity when the reaction time was shorter than 1 h (Supplementary Fig. 3). By contrast, after three rounds of enrichment, sorted cells showed significant activity after a 10 min labeling time (Fig. 3b). Eight individual clones of the final selection round were selected and analyzed by flow cytometry. The six clones that showed the strongest activity (Supplementary Fig. 4) were sequenced, revealing three individual mutants (Fig. 3c). Due to a single nucleotide deletion leading to a stop-codon loss, one microID variant was extended by 22 amino acids at its C-terminus (NSSRSDNSVDVTSTLFPLYF). Interestingly, the other two identified triple mutants shared an L41P mutation. This site is located next to the R40G mutation within the biotin-binding site. All other substitutions are distributed at the surface of the enzyme, away from the catalytic site (Fig. 3d).

To investigate whether the observed enhanced cell biotinylation was the result of increased labeling of proximal proteins rather than enhanced self-biotinylation of the microID variants, enzymes were removed from the cell surface after the biotin ligase reaction by reducing the disulfide bonds between Aga1p and Aga2p with DTT. Surface exposition signals were considerably reduced after DTT treatment (Supplementary Fig. 5) while cell surface biotinylation persisted for both triple mutants but not for the C-terminally extended variant (Supplementary Fig. 5). Most likely, the C-terminal extension, which contains a lysine residue serves as an acceptor labeling substrate, eventually resulting in enhanced overall biotinylation. Therefore, this variant was excluded from further analysis. The triple mutants were named ultraID-4 (with the mutations S24C, L41P, K169R) and -5 (L41P, K115M, K156E).

The biotinylation activity of ultraID-4 and -5 was then assessed in HeLa cells after 10 min labeling time and compared to microID, the template for directed evolution, and TurboID, the most active enzyme described so far (Fig. 4a). Both variants yielded biotinylation signals stronger than that of microID and seemingly similar to that of TurboID. However, as enzyme expression differed between the ultraID clones and TurboID,
The mutation L41P is responsible for the enhanced activity of the ultraID variants. The directed evolution strategy that led to TurboID resulted in 14 mutations on the original BioID sequence. None of them are close to the catalytic pocket and they do not cluster to a special part of the enzyme. Hence there is no obvious explanation on how these mutations lead to a higher activity apart from that they somehow indirectly affect the catalytical site.\(^7\)\(^9\)

The outcome of our directed evolution effort is quite different: ultraID-4 and -5 are triple mutants of microID that share an L41P mutation. Since L41 is adjacent to the R40G mutation within the biotin-binding site of microID, we reasoned that the enhanced activity of the ultraID variants can probably be mapped down to the single additional L41P mutation in microID-R40G/L41P. To address this, ultraID-4 and ultraID-5 as well as microID, microID R40G/L41P, and a microID L41P-only variant were produced as recombinant proteins in \(E.\ coli\) (Supplementary Fig. 6A). Enzymatic activity was then determined in an ELISA-based proximity-dependent biotinylation assay (see methods). In accordance to the single clone cell surface display analysis, ultraID-4 and -5 showed increased activity of 167 and 183%, respectively, compared to microID (Fig. 3e). Interestingly, the microID L41P-only mutant, with wild-type R40 position, showed a higher biotinylation activity than microID (Fig. 3e). Hence L41P, like R40G, is sufficient to render the BioID2 [2–170] fragment abortive. The effects of both mutations are additive as the microID variant with combined R40G/L41P mutations showed the highest activity of all tested variants (207%). Similar observations were made in HeLa cells in which both microID (R40G) and microID L41P-only (with intact R40 position) showed biotinylation activity after a 10 min incubation with biotin, and combining both mutations resulted in even stronger biotinylation signals (Fig. 4b).

To further characterize the enzymes, we determined their melting temperatures (Tm) with a thermal shift assay (see methods). Compared to microID (Tm = 64 °C), ultraID-5 showed decreased thermal stability (Tm = 52 °C) whereas ultraID-4 showed two independent melting points (55 °C and 64.5 °C), which could be a consequence of the S24C mutation that might promote the formation of an intermolecular disulfide bond. The microID L41P-only variant had a slightly decreased stability with a melting point of 60.5 °C whereas the double mutations R40G/L41P in microID-R40G/L41P did not impact its thermal stability (Tm = 63 °C) compared to microID (Supplementary Fig. 6b).

Altogether, the combination of R40G and L41P is the minimal set of mutations required for enhanced enzymatic activity, and the corresponding variant has a thermostability profile comparable to microID. The variant microID-R40G/L41P was thus selected for further characterization and is from here on referred to as ultraID.

ultraID outperforms current enzymes for PDB. Having defined ultraID with its minimal set of mutations, we compared its activity to that of other PDB enzymes. BioID, BioID2, BASU, TurboID, microID, and ultraID were expressed in HeLa cells, and the extent of protein biotinylation after overnight, 1 h, and 10 min labeling time was determined by western blot and compared to respective samples without biotin supplementation (Fig. 5a). Each experiment was replicated for quantitative estimation of the biotinylation activity. Three additional experiments for TurboID and ultraID with 10 min biotinylation were included in the quantitative analysis. The signals for streptavidin were integrated over each lane, excluding the band corresponding to the self-biotinylation of the ligases, and were normalized to the expression levels of each ligase (Myc signal).

All the ligases showed a clear activity over background biotinylation after overnight and 1 h labeling time with ultraID and TurboID having the strongest relative activity. With a 10 min labeling time, hardly any biotinylation over background levels was observed for BioID and BioID2 whereas BASU and microID still showed a clear activity. All the enzymes were, however, outperformed by TurboID and ultraID yielding 5–9 times higher biotinylation than microID and BASU under these conditions.
The average relative signal for TurboID in the biotin-treated sample after a 10 min pulse labeling was on average ca. 25% higher than that for ultraID, though this was not consistent in all experiments (Fig. 5b). In accordance with the previous reports9,10, the high activity of TurboID came, however, at the cost of a high background signal from the sample without biotin addition that was consistently observed in all experiments and on average almost 3 times higher than for ultraID (Fig. 5a, b).

Together, our data show that ultraID yields a labeling efficiency similar to TurboID at labeling times down to 10 min, with the potential advantage of a lower background biotinylation activity, making it a more efficient enzyme for PDB.

PDB with microID and ultraID in yeast and bacteria. An important feature of novel enzymes for PDB is their suitability for various model organisms. As the directed evolution of microID was based on yeast display, it was expected that the enzymes are also active in *Saccharomyces cerevisiae*. As we previously applied BioID in yeast to probe the microenvironment of the ribosomal...
protein Asc1/RACK15, experiments in S. cerevisiae were conducted in which BioID, TurboID, microID, and ultraID were fused to Asc1. Comparisons of the four enzymes showed that while they all work in yeast, TurboID, microID, and ultraID showed stronger activity than BioID (Fig. 6a). We note, however, that in S. cerevisiae expression of the microID, ultraID, and especially TurboID fusion proteins all lead to background activity from the low biotin concentrations (8.2 nM) in the YNB medium without additional biotin (- condition on Fig. 6a).

We also tested the enzymes in E. coli. Also in this organism, a clear biotin-dependent labeling activity was observed upon expression of TurboID, microID, and ultraID (Fig. 6b).

In conclusion, both microID and ultraID are well suited for PDB in bacteria, yeast, and mammalian cell culture.

UltraID supports PDB-MS with a 10 min labeling time. To investigate the performance of ultraID in authentic conditions, in which the enzyme is fused to a target protein expressed at physiological level, we then established doxycycline-inducible HeLa cell lines that express ultraID fused to the N-terminus of Argonaute-2 (Ago2) from a single gene locus as we described previously12,16. To filter background biotinylation from the pro- teomic data, we constructed an additional control cell line that expressed ultraID fused to the unrelated protein Rab11. Rab11 was chosen as a negative control as, similar to Ago2, it is in equilibrium between the cytosol and endomembranes17.

As a comparison, stable cell lines for TurboID-Ago2 and TurboID-Rab11 were also constructed, and cell lines for BioID-Ago2 and BioID-Rab11 were already available in our laboratory12. Expression levels were tuned so that the Ago2 fusion proteins were expressed close to endogenous levels (Supplementary Fig. 7) and Ago2 and Rab11 fusions yielded similar biotinylation levels across cell lines. The fusion proteins showed a localization pattern typical for Ago2 and Rab11 in indirect immunofluorescence experiments (Supplementary Figs. 8 and 9). PDB was then performed upon addition of exogenous biotin for 10 min (ultraID and TurboID fusions) or overnight (BioID fusions) to four biological replicate samples. The resulting biotinylated proteins were processed for MS analysis after their capture with trypsin-resistant streptavidin beads18 and on-beads trypsin digestion (Fig. 7a). Peptide identification was performed with the MaxQuant software19 and the relative enrichment of each protein across samples was quantified by label-free quantification (LFQ)20 using the proDA (probabilistic drop-out analysis) package to infer for each protein its mean LFQ intensity and associated variance, taking into account the missing values21.

To obtain the proximo of Ago2, we tested the differential abundance of proteins between the Ago2 and Rab11 datasets by comparing the inferred LFQ mean intensities for the two conditions. When examining the data, we noticed that the LFQ-based enrichment analysis occasionally missed some valid candidates that were detected in all Ago2 replicate samples but in none of the Rab11 control samples. We thus also added to the list of true-positive hits those proteins that did not pass the thresholds of the LFQ analysis but fulfilled the following criteria: detection in all four replicates of Ago2 samples with at least two unique peptides in three replicates and no peptide detected in any Rab11 sample. The complete list of hits for the BioID, ultraID, and TurboID datasets is provided in Supplementary Data 1 and 2.

The ultraID-derived Ago2 interactome obtained after 10 min labeling was somewhat smaller (50 vs. 68 hits) than that obtained from BioID after overnight labeling (Fig. 7b) but ultraID performed equally well to BioID in identifying known Ago2-associated proteins such as TNRC6 proteins22, Dicer23, CNOT124,25, GIGYF proteins12 or XRN126 (Fig. 7b) and the volcano plots resulting from both datasets were similar (Supplementary Fig. 10). We obtained a smaller number of hits (17) from the TurboID dataset but they also represented relevant proteins (Fig. 7b). This small number was not expected but may be due to the use of another batch of streptavidin beads for this series of pulldowns. The subset of preys specific to the BioID, ultraID or TurboID datasets also contains relevant proteins, such as CNOT11, DCP1A/B, PABPC1/4 for BioID; FXR1/2, PUM1 for ultraID, and CNOT8 for TurboID (Supplementary Data 1 and 2). Hence a labeling bias towards a certain type of protein and/or localization is not obvious from our data.
To compare the background labeling activity of ultraID and TurboID prior to biotin addition, we also performed streptavidin pulldowns with the same batch of beads from cells that were not incubated with extra biotin. In the corresponding MS datasets, the number of hits with consistent detection in all three TurboID/ultraID-Ago2 replicates was small (respectively 14 and 13 hits with at least two assigned LFQ values across replicates) and the proDA analysis did not converge. To assess the labeling background, we thus analyzed the abundance of the fusion proteins and two core interacting partners in each sample using the iBAQ (intensity Based Absolute Quantification) algorithm. The abundance of Ago2 and its two interacting partners TNRC6A and TNRC6B was lower (at least 15 fold) in the pulldown from the ultraID-Ago2 cell line than from the TurboID-Ago2 cell line. Consistently the abundance of Rab11 was 15-fold lower in the pulldown from the ultraID-Rab11 cell line than from the TurboID-Rab11 cell line and the two core interacting partners of Rab11, RAB11FIP1 and RAB11FIP5, were not detected at all in the ultraID-Rab11 cell line (Fig. 7c and Supplementary Data 2).

Together, our data show that ultraID allows obtaining relevant proteomic datasets in PDB experiments with a labeling time of 10 min at physiological expression levels and may provide a favorable balance of signal vs. background when compared to TurboID.

Defining the membrane-associated interactome of coatomer with ultraID. To further validate the practicality of ultraID we analyzed a membrane-associated interactome of coatomer, the COPI coat protein complex. During the formation of COPI transport vesicles, the small GTPase Arf1 (or one of its paralogs) recruits coatomer to the Golgi membrane when bound to GTP. There, coatomer polymerizes and together with Arf1 promotes membrane deformation, cargo protein capture, and membrane scission. As a cargo-loaded transport vesicle sheds from its donor membrane, GTP-hydrolysis by Arf1, stimulated by its ArfGAPs, leads to the release of coatomer to the cytosol (Supplementary Fig. 11). Because the active form of coatomer is the population that transiently associates with endomembranes, it is not
Fig. 6 PDB in yeast and bacteria with microID and ultraID. a Blots of lysates of *S. cerevisiae* strains expressing the indicated Asc1 fusion proteins and incubated or not (−) with 10 μM biotin for the indicated times. The fusion proteins were expressed from plasmids in a Δasc1 strain, and the ASC1 wild-type strain carrying the empty vector served as a control. Biotinylation was analyzed using HRP-labeled streptavidin and expression levels of the fusion proteins with antibodies against Asc1 as indicated. b Blots of lysates of *E. coli* cells transformed with expression plasmids for ultraID, microID, TurboID, or the control plasmid. The cells had been incubated (+) or not (−) with biotin for 16 h. The arrowhead indicated the expected size for bacterial GAPDH, and the asterisk (*) indicates a non-specific cross-reactivity that was used as a loading control.

Amenable to proteomic studies using affinity purification approaches. Defining a relevant interactome of coatomer has thus been challenging. Currently available datasets came from cellular fractionation assays or reconstitution experiments in which COPI vesicles were purified, out of their native context under non-physiological conditions. To probe the interactome of coatomer in living cells, we used ultraID as a C-terminal fusion to the γ-COP subunit of coatomer. Of the seven coatomer subunits, we picked γ-COP because it can be tagged at its C-terminus without affecting its functionality and because this subunit exists as two paralogs, γ1-COP and γ2-COP, with overlapping but not fully identical functions.

To ensure a physiological relevance of the datasets, γ1-COP-ultraID and γ2-COP-ultraID were expressed as inducible rescue constructs respectively in γ1-COP and γ2-COP knock-out P19 mouse pluripotent cells, with their expression levels tuned to affect its functionality and because this subunit exists as two paralogs, γ1-COP and γ2-COP, with overlapping but not fully identical functions.

To gain a better insight into the potential interactome of membrane-associated coatomer we considered the proteins enriched in the mock condition compared to the BFA-treated samples in which coatomer is released from Golgi membranes (Fig. 8c). Proteins that are enriched in the mock samples are indeed likely to represent membrane-associated proteins proximal to coatomer. With this analysis, we identified 21 and 17 proximal proteins to membrane-associated γ1- and γ2-COP respectively. Of these, 59% of γ1-COP proximal proteins and 42% of γ2-COP’s have a known Golgi localization. Among them, we found as expected the other COP subunits of the coatomer complex, the paralogs of the small GTPase Arf1 and their three ArfGAPs.

To assess the specificity of the proteomic datasets obtained after a longer labeling time with ultraID, cells were incubated with biotin for 4 h. The proteomic data were analyzed as described above. We first considered the γ1-COP and γ2-COP proxomes under mock-treated conditions in which coatomer is present in both its membrane-associated and cytosolic forms (Supplementary Fig. 13 and Supplementary Data 3) and identified 56 and 53 proximal proteins to γ1- and γ2-COP respectively. Of these, 59% of γ1-COP proximal proteins and 42% of γ2-COP’s have a known Golgi localization. Among them, we found as expected the other COP subunits of the coatomer complex, the paralogs of the small GTPase Arf1 and their three ArfGAPs.

Diffuse cytosolic staining under BFA-treatment (Supplementary Fig. 12).

PDB was then performed on the three cell lines under mock- or BFA-treatment conditions (for the γ1-COP-ultraID and γ2-COP-ultraID cell lines) with three biological replicates for each condition (total of 15 samples, see Fig. 8b). To assess the specificity of the proteomic datasets obtained after a longer labeling time with ultraID, cells were incubated with biotin for 4 h. The proteomic data were analyzed as described above. We first considered the γ1-COP and γ2-COP proxomes under mock-treated conditions in which coatomer is present in both its membrane-associated and cytosolic forms (Supplementary Fig. 13 and Supplementary Data 3) and identified 56 and 53 proximal proteins to γ1- and γ2-COP respectively. Of these, 59% of γ1-COP proximal proteins and 42% of γ2-COP’s have a known Golgi localization. Among them, we found as expected the other COP subunits of the coatomer complex, the paralogs of the small GTPase Arf1 and their three ArfGAPs.

To gain a better insight into the potential interactome of membrane-associated coatomer we considered the proteins enriched in the mock condition compared to the BFA-treated samples in which coatomer is released from Golgi membranes (Fig. 8c). Proteins that are enriched in the mock samples are indeed likely to represent membrane-associated proteins proximal to coatomer. With this analysis, we identified 21 and 17 proximal proteins to membrane-associated γ1- and γ2-COP respectively (Fig. 8d and Supplementary Data 3). Remarkably, all but one are known Golgi proteins demonstrating the specificity of the assay. The only non-Golgi protein is emerin, a membrane-anchored protein of the inner nuclear membrane (INM). Another INM membrane protein, Sun2, uses an arginine-based COPI-binding signal that mediates retrieval from the Golgi and participates in nuclear localization. Such an arginine motif is also found on other INM proteins including emerin. As a partial Golgi localization has been described for emerin, there
may be a substantial amount of that protein at the Golgi in P19 cells that, like Sun2, relies on COPI vesicles to reach the INM.

ultraID identifies expected membrane-associated interactors of coatomer. Unsurprisingly, Arf proteins and their ArfGAPs, which are respectively responsible for coatomer recruitment to and release from membranes, were identified as membrane-associated interactors of γ₁- and γ₂-COP. Golgins are membrane-anchored coiled-coil proteins that tether specific transport vesicles to distinct regions of the Golgi apparatus. In cooperation with additional proteins, golgins then stimulate the fusion of the tethered vesicles with their target membrane by allowing the formation of a tight SNARE complex. Accordingly, the SNAREs syntaxin-5 and GOS-28, both involved in COPI-dependent intra-Golgi trafficking, and SLY-homolog, a protein that is required for Golgi SNARE pairing, were identified in the membrane-associated datasets. The same goes for the COPI-interacting golgin tethers giantin, TME, and golgin-84 (ref. 47). We also identified trans-Golgi network (TGN) localized golgins (GCC88, GCC185, and golgin-245) as membrane-associated interactors of coatomer. This was not expected as these are normally involved in tethering vesicles coming from endosomes. Combined with the recent identification of a COPI-mediated transport route from endosomes to TGN in yeast, this calls for further investigating a role of the COPI pathway in endosomal trafficking in mammals that was suggested by several reports more than 20 years ago.

ERGIC-53 is a cargo receptor that constitutively cycles, through COPII and COPI vesicles, between the ER and the ER-Golgi intermediate compartment (ERGIC), and can be found at low concentrations at the cis-cisterna of the Golgi but not beyond. Transport vesicles that act at the cis-side of the Golgi are tethered by golgin-84. Interestingly, we identified both ERGIC-53 and golgin-84 as specific membrane-associated proximal proteins to γ₁-COP. This is in agreement with the observation that γ₁-COP-containing coatomer is preferentially localized to the cis-side of the Golgi, whereas γ₂-COP-containing coatomer localizes preferentially at the trans-side.

In summary, ultraID labeling allowed us to define a membrane-associated interactome of coatomer that faithfully reflects its expected proximal landscape.

Discussion

Here we describe ultraID, a novel engineered enzyme for efficient PDB in living cells. UltraID allows robust biotinylation within short labeling times to levels similar to TurboID. To date, ultraID...
Fig. 8 Probing a membrane-associated interactome with ultraID.

a Blots of lysates of P19 cells stably expressing ultraID-Ago2, of P19 cells knock-out for endogenous γ1-COP and rescued by γ1-COP-ultraID, and of P19 cells knock-out for γ2-COP and rescued by γ2-COP-ultraID lines. The fusion proteins were detected with antibodies against γ1- and γ2-COP and biotinylation with IRDye680-labeled streptavidin.

b Experimental set-up for the determination of the membrane-associated interactome of γ1-COP and γ2-COP.

c Volcano plots of the proteins identified by LC-MS/MS with the mock vs. BFA samples. Significant hits (p value <0.01 and log2 fold change >2 in this analysis, and p value <0.01 and log2 fold change >2 in the γ-COP vs. Ago2 comparison under mock conditions), are indicated with gene names in red.

d Proteins identified as membrane interactors of γ1-COP and γ2-COP (see text).
is by far the smallest enzyme for PDB, 44% smaller than TurboID/BioID and 25% smaller than BioID2 (19.7 vs. 35 and 26.4 kDa, respectively). This may also be advantageous as it is generally considered that the larger the size of a tag, the greater the chance of interfering with the function, trafficking, and interactions of the fusion protein. For example, BioID, which has the same size as TurboID, prevents the correct localization of the protein Sun2 to the INM4, a process that is sensitive to the size of the fusion partner. By contrast, BioID2, which is larger than ultraID, leads to a correct INM localization when fused to Sun2. UltraID also produces less labeling background than TurboID when no exogenous biotin is added. This may prove important in some applications as the background activity of TurboID can lead to a considerable loss of specificity.

Using ultraID, we analyzed the remodeling of the interactome of COPI coat proteins after incubation with BFA. This allowed us to define a membrane-associated interactome. As transport vesicles are transient carriers that rely on dynamic protein/membrane interactions for their biogenesis and functions, defining their proteome is a challenging task. Previously, a laminar core proteome of COPI vesicles was defined based on the LC-MS analysis of isolated COPI vesicles generated in vitro from permeabilized cells and recombiant coat proteins. A striking difference between this dataset and ours is the presence of glycosylation enzymes and cargo receptor proteins in the former, and the presence of many golgin and the membrane recruitment machinery in the latter. This illustrates the advantages and drawbacks of each approach. The in vitro isolation removes vesicles from their native cellular environment. As a consequence, it is less likely to capture the interactions that occur at the Golgi membrane. The PDB approach allowed us to probe the direct neighborhood of γ1- and γ2-COP in living cells, but it also limited our ability to analyze the content of COPI vesicles. Indeed, soluble cargo proteins inside the vesicles are inaccessible to BioID released in the cytosol. Similarly, transmembrane COPI coat cargo proteins such as Golgi-resident glycosylation enzymes typically expose short tails to the cytosol whereas the largest parts of the proteins are inserted in the lumen where they exert their functions. This limits the amount of potentially available acceptor lysine residues and thus the likelihood for biotinylation to occur. All in all, this stresses that complementary approaches are needed to comprehensively define the proteome and interactome of transport vesicles.

Potential specific functions of the γ1- and γ2-COP paralogs have remained elusive. In vitro data suggest functional redundancy but cellular assays point to some differences. Notably, we showed that γ1-COP plays a unique role in promoting neurite outgrowth during the neuronal differentiation of P19 cells. The molecular mechanisms underlying this observation are currently unknown. Having established ultraID-tagged P19 cell lines, it will now be possible to analyze the interactome of γ1- and γ2-COP during neuronal differentiation and possibly to identify differences that may help understand their specific functions in this context.

To summarize, we have developed ultraID a compact and hyperactive enzyme for PDB that favorably compares to previously available BPLs. Ultimately, ultraID is the product of two engineering steps: the removal of the C-terminal domain of the class I BPL BioID2, and the addition of one point mutation (L41P) to the canonical R40G substitution within the biotin-binding domain. As removal of the C-terminal domain of BioID yields a fragment with hardly any detectable activity, it was not expected that microID would be even more efficient than BioID2. A possible explanation may be the origin of BioID2. Coming from an extremophile organism, its overall structure is likely more rigid than that of BioID, possibly making its core catalytical domain less prone to destabilization when the C-terminal domain is removed. The position of the L41P substitution suggests that it strengthens the destabilization of the biotin-binding site induced by the R40G substitution, thereby stimulating the release of BioAMP. This is supported by the observation that L41P alone is sufficient to render the truncated BioID2 [2–171] abortive and that the effects of R40G and L41P are additive. The engineering of ultraID may thus provide a simple framework to improve the activity of PDB enzymes based on class I BPLs. It also suggests that specifically targeting the biotin-binding site of BPLs for random mutagenesis may be a promising approach to generate hyperactive enzymes.

Methods

Plasmids and antibody. The plasmids, yeast strains, primers, and antibodies used in this study are provided in Supplementary Tables 1–4. Plasmids for bacterial and mammalian expression of microID and ultraID are available at Addgene (Plasmid IDs 172878–172881).

Mammalian cell culture. All cell culture experiments were conducted with the human neural stem cell line HeLa. HeLa cells obtained from Dr. Kai Schönig (Zentralinstitut für Molekulare Medizin, Deutsches Krebsforschungszentrum, Mannheim, Germany) or P19 cells obtained from Sigma-Aldrich. HeLa cells were maintained as described in refs. 32 and P19 cells as described in ref. 32. The cells were regularly tested for mycoplasma contamination.

Construction of stable cell lines. Flp-recombinase-mediated construction of stable HeLa 11ht cell lines was performed as described in ref. 37. P19 stable cell lines were constructed using the Piggy-BAC transposon system as described in ref. 32.

Immunofluorescence microscopy. 1·000 HeLa cells or 20·000 P19 cells per well were seeded in 8-well μ-slides (Ibidi). On the following day, the expression of the ligase fusion proteins was induced with doxycycline. For BioID HeLa cell lines, 50 μM biotin was added at the same time as doxycycline, and cells were incubated at 37 °C for 24 h. For ultraID HeLa cell lines, the biotinylation time was 10 min one day before induction. For P19 cell lines, the biotinylation sample was treated with 100 μM BFA and then for an additional 4 h with BFA and biotin. The mock samples were only incubated with biotin for 4 h. After biotinylation, cells were carefully rinsed with ice-cold PBS, subsequently fixed and permeabilized with 150 μL ice-cold methanol, and incubated at −20 °C for 10 min. All further steps were performed at RT. Methanol was removed and the cells were washed three times with PBS. The samples were blocked with PBS + 5% bovine serum albumin (BSA, Carl Roth) (blocking solution) for 15 min. Incubation with the relevant primary antibodies was performed for 30 min at RT or overnight at 4 °C. The cells were washed three times with a blocking solution and incubated with the secondary antibodies and streptavidin-AlexaFluor647 for 30 min in darkness. Then, the cells were rinsed with ice-cold PBS, subsequently fixed and permeabilized with 150 μL ice-cold methanol, and incubated at −20 °C for 10 min. All further steps were performed at RT. Methanol was removed and the cells were washed three times with PBS. The samples were blocked with PBS + 5% bovine serum albumin (BSA, Carl Roth) (blocking solution) for 15 min. Incubation with the relevant primary antibodies was performed for 30 min at RT or overnight at 4 °C. The cells were washed three times with a blocking solution and incubated with the secondary antibodies and streptavidin-AlexaFluor647 for 30 min in darkness. Then, the cells were washed three times with PBS. After a 10 min staining with DAPI (0.1 μg/mL in PBS) and brief washing with water, the cells were mounted with Mowiol mounting medium. After incubation at RT overnight, the slides were stored at 4 °C until imaging. Microscopy images were acquired with a Nikon Eclipse Ti2 spinning disk confocal microscope (Nikon Imaging Center, Heidelberg) using the acquisition software Velocity 6.3 (Perkin Elmer).

Screening for biotinylation

In HeLa cells. Screening for biotinylation was performed as described in refs. 58,59.

In S. cerevisiae. Cells were transformed with the plasmids pME4788 (ASC1-birA*), pME5479 (ASC1-TurboID), pME5086 (ASC1-pRD) and pME5087 (ASC1-ultraID) plasmids and cultivated in yeast nitrogen base medium (YNB: 1.5 g/L YNB without amino acids, 5 g/L ammonium sulfate, 2% glucose) with 20 μg/mL L-tryptophan at 30 °C. Yeast strains used in this work are listed in Supplementary Table 2. After incubation with biotin (50 μM), cells were lysed by alkaline treatment and subsequent boiling in SDS-PAGE loading buffer. An equal number of cells of each sample (volume of culture harvested in mL = 5 divided by OD600 of the culture) was used to generate cell lysates. The cells were harvested by centrifugation, washed with water, and resuspended in 400 μL 0.1 M NaOH. After incubation for 5 min at room temperature, samples were centrifuged, supernatants removed, and 100 μL of 1:4 diluted loading dye (0.25 M Tris-HCl pH 6.8, 30% glycerol, 1% β-mercaptoethanol, 7% SDS, 0.3% bromophenol blue) added. Samples were incubated for 3 min at 95 °C, centrifuged at 16,200 g for 5 min, and 5 μL of the supernatants were subjected to SDS-PAGE followed by protein transfer onto nitrocellulose membrane. Proteins on the membrane were stained with Ponceau Red (0.2% Ponceau, 3% trichloroacetic acid), and blocked with either 5% milk powder or 1% BSA dissolved in phosphate-buffered saline (PBS). The membranes were then incubated with polyclonal rabbit anti-Asc1 (in 5% milk powder, 0.1% Tween 20, PBS) followed by incubation with a peroxidase-coupled secondary antibody or with...
Preparative proximity-dependent biotinylation. PBDA in HeLa cell lines was performed with four biological replicates for each sample (ultradist-Ago2, ultradist-Rab11, Turboid-Ago2, Turboid-Rab11). Cells were seeded in 15 cm dishes (2 per cell line) at 2.0 × 10⁶ cells per dish. The following day fusion protein expression was induced with 25 ng/mL doxycycline-containing medium for 10 min. The cell pellets were resuspended in 50 μL 5X sodium dodecyl sulfate (SDS) loading buffer (5% β-mercaptoethanol, 0.02% (w/v) bromophenol blue, 10% SDS, 30% glycerol, 250 mM Tris-HCl pH 6.8), incubated at 95 °C for 5 min and subsequently diluted to 1× with 200 μL water. 10 μL of these dilutions were used for western blot analysis.

Western blot analysis. For each sample, 10 μg of protein extract in 1× SDS loading buffer was loaded onto a discontinuous SDS polyacrylamide gel. After electrophoresis, proteins were transferred to a nitrocellulose membrane (Cyvia) by wet blotting at 4 °C for 1 h. Subsequent steps and fluorescence-based western blot quantification were performed as described in ref. 12 with the LI-COR Image Studio Software. Full scans of the blots used as a figure are provided in supplementary Figs. 14–16.

Streptavidin affinity pulldowns and sample preparation for MS analysis. Cell pellets thawed on ice and resuspended in 1 mL ice-cold RIPA buffer (50 mM Tris-HCl pH 8.0, 150 mM NaCl, 0.1% SDS, 0.5% sodium deoxycholate, 1% Triton X-100, 1× Protease Inhibitor Cocktail, 1 mM DTT). All subsequent steps were performed at 4 °C. 1 μL benzonase (Sigma) was added and the cell suspensions were transferred to RNase-free microcentrifuge tubes. Lysates were sonicated with a Bioruptor (Diagenode) at high intensity with 4 cycles of 30 s ON and 30 s OFF. The sonicated lysates were then incubated at 37 °C for 10 min. The lysates were then diluted with 25 mL glycine-containing medium for 24 h. For the Biocoll cell lines, biotin was also added at that point at a concentration of 50 μM. For the ultradist and Turboid cell lines, following the 24 h incubation, the medium was replaced with 50 μM biotin and 25 ng/mL doxycycline-containing medium, and the cells were incubated at 37 °C for 10 min. The medium was replaced by 100 μL of brefeldin A-containing medium, the cells incubated at 30 °C for 1 h. The medium was then exchanged for 5 μg/mL brefeldin A and 50 μM biotin-containing medium, and the cells were incubated for another 4 h. The mock-treated cells were incubated with 50 μM biotin-containing medium for 4 h. PBDA was then stopped and sample storage was performed as for the HeLa cells.

Statistics and reproducibility. The MS samples originated from 3 to 4 replicate pulldowns (n = 3 or n = 4). The proteins that were quantified in MaxQuant with ≥1 unique peptide and detected in at least one of the compared samples were selected for subsequent analysis. Data analyses were performed and results were visualized using R (Version 4.1.2). The LFQ values were imported from MaxQuant using the import_MxQuant() function (DEP package, DOI: 10.18129/B9.bioc.4585). For the LFQ-based quantification, a probabilistic dropout model was implemented using the MxQuant package with default parameters except for a maximum of 200 iterations. The test_diff() function (MxQuant package) was then used to compare two samples on at least two contrasts. Hits with a fold change ≥2 and p value <0.01 were deemed as significant. A typical and annotated R-script is provided in supplementary note 1.
Yeast-surface biotinylation assay and staining. In all, 1 x 10^7–1 x 10^8 yeasts were washed twice and resuspended in 1 mL PBS. Biotin and ATP were added to a final concentration of 50 nM and 2.5 mM, respectively. Cells were incubated at 30 °C and 900 rpm to prevent settling. Incubation time was decreased for each screening round. To prepare yeast cells for FACS screening, biotinylated cells were washed twice with PBS, resuspended in 100 μL PBS containing 0.1 μg anti-penta-

ELISA-based biotinylation assay. To quantify enzymatic activity, a 96-well Nunc MaxiSorp plate (ThermoFisher scientific) was coated with 200 μL of a 40 mg/mL human serum albumin fraction V (CarlRoth, Germany) for 1 h. Wells were washed three times with PBST (6.4 mM Na_2PO_4, 2 mM KH_2PO_4, 10 mM KCl, 140 mM NaCl, 0.1% (w/v) Tween20, pH 7.4). For biotinylation reactions, 50 μM Biotin, 2.5 mM ATP, and 0.06 mg/ml biotin ligase (final concentration, each) in 50 mM TRIS-HCl pH 7.5, 150 mM NaCl, and 5 mM MgCl_2 were added and incubated for 10 min at 37 °C. The reaction was stopped by adding 0.25 mM EDTA. Subsequently, wells were washed three times with PBST. Alkaline phosphatase-conjugated streptavidin (Sigma-Aldrich) was diluted 1:5000 and added in a volume of 50 μL for 1 h at RT. Staining reaction was carried out after three washing steps and equilibration of the wells with AP-buffer. 1 mg/mL para-nitrophenyl phos- phate was added and absorbance at 405 nm was measured with a TECAN Infinite® 200 PRO plate reader after 20 min of staining. Five individual assays were performed in triplicates to quadruplicates. After subtraction of the negative control (no BiA added), the mean microID absorbance was set to 100%.

Data availability. The MS proteomics data have been deposited to the ProteomeXchange Consortium (http://proteomecentral.proteomexchange.org) via the PRIDE partner repository [45] with the data set identifiers PXD026719 (BioID-Rab11/Ago2 and ultraID-Rab11/Ago2 with 10 min labeling), PXD032979 (BioID/ultraID/TurboID-Ago2/Rab11 with no biotin addition + TurboID-Rab11/Ago2 with 10 min labeling) and PXD026715 (v1/v2/ultraID dataset). Raw data for the melting temperature and ELISA-based biotinylation assay are provided in Supplementary Data 4 and 5, respectively. Additional data that support the findings of this study are available from the corresponding author on request.

Received: 2 June 2021; Accepted: 20 June 2022;
Published online: 04 July 2022

References
1. Gingras, A. C., Abe, K. T. & Raught, B. Getting to know the neighborhood: using proximity-dependent biotinylation to characterize protein complexes and map organelles. Curr. Opin. Chem. Biol. 48, 44–54 (2019).
2. Roux, K. J., Kim, D. I., Raida, M. & Burke, B. A promiscuous biotin ligase fusion protein identifies proximal and interacting proteins in mammalian cells. J. Cell Biol. 196, 801–810 (2012).
3. Kim, D. I. et al. Probing nuclear pore complex architecture with proximity-dependent biotinylation. Proc. Natl Acad. Sci. USA 111, E2453–E2461 (2014).
4. Kim, D. I. et al. An improved smaller biotin ligase for BioID proximity labeling. Mol. Biol. Cell 27, 1188–1196 (2016).
5. Xu, Y. & Beckett, D. Evidence for interdomain interaction in the Escherichia coli repressor of biotin biosynthesis from studies of an N-terminal domain deletion mutant. Biochemistry 35, 1783–1792 (1996).
6. Groff, C. M., Uijson, S. N., Wang, R. & Werner, M. H. Structural homology between the Rap30 DNA-binding domain and linker histone H5: implications for preinitiation complex assembly. Proc. Natl Acad. Sci. USA 95, 9117–9122 (1998).
7. Samavarchi-Tehrani, P., Samson, R. & Gingras, A. C. Proximity dependent biotinylation: key enzymes and adaptation to proteomics approaches. Mol. Cell. Proteomics 19, 757–773 (2020).
8. Ramanathan, M. et al. RNA-protein interaction detection in living cells. Nat. Methods 15, 207–212 (2018).
9. May, D. G., Scott, K. L., Campos, A. R. & Roux, K. J. Comparative application of BioID and TurboID for protein-proximity biotinylation. Cells 9, 1070 (2020).
10. Kido, K. et al. AirID, a novel proximity biotinylation enzyme, for analysis of protein-protein interactions. eLife 9, e54893 (2020).
11. Schopp, I. M. et al. Split-BioID a conditional proteomics approach to monitor the composition of spatiotemporally defined protein complexes. Nat. Commun. 8, 15690 (2017).
12. Banaszynski, L. A., Liu, C. W. & Wandless, T. J. Characterization of the FKBP.rapamycin.FRb ternary complex. J. Am. Chem. Soc. 127, 4715–4721 (2005).
13. Bogen, J. P., Greschik, J., Krah, S., Zielonka, S. & Kolmar, H. Rapid generation of chicken immune libraries for yeast surface display. Methods Mol. Biol. 2070, 289–302 (2020).
14. Opitz, N. et al. Capturing the Ascl1 receptor for activated C kinase 1 (RACK1) microenvironment at the head region of the 40S ribosome with quantitative BioID in yeast. Mol. Cell. Proteomics 16, 2199–2218 (2017).
15. Bethune, J., Artus-Revell, C. G. & Filipowicz, W. Kinetic analysis reveals successive steps leading to mRNA-mediated silencing in mammalian cells. EMBO Rep. 13, 716–723 (2012).
16. Welz, T., Wellbourne-Wood, J. & Kerkhoff, E. Orchestration of cell surface proteins by Rab11. Trends Cell Biol. 24, 407–415 (2014).
17. Raffée, M. R. et al. Protease-resistant streptavidin for interaction proteomics. Mol. Syst. Biol. 16, e9370 (2020).
18. Cox, J. & Mann, M. MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat. Biotechnol. 26, 1367–1372 (2008).
19. Cox, J. et al. Accurate proteome-wide label-free quantification by delayed normalization and maximal peptide ratio extraction, termed MaxLFQ. Mol. Cell. Proteomics 13, 2513–2526 (2014).
20. Ahlmann-Eltze, C. & Anders, S. proDA: probabilistic dropout analysis for identifying differentially abundant proteins in label-free mass spectrometry. Preprint at bioRxiv https://doi.org/10.1101/661496 (2020).
21. Eulalio, A., Huntzinger, E. & Izaurrealde, E. GW182 interaction with Argonaute is essential for miRNA-mediated translational repression and mRNA decay. Nat. Struct. Mol. Biol. 15, 346–356 (2008).
22. Maniatis, E. & Mourelatos, Z. A human, ATP-independent, RISC assembly machine fueled by pre-miRNA. Genes Dev. 19, 2979–2990 (2005).
23. Braun, J. E., Huntzinger, E., Fauser, M. & Izaurrealde, E. GW182 proteins directly recruit cytoplasmic deadenylase complexes to miRNA targets. Mol. Cell 44, 120–133 (2011).
24. Chekulaeva, M. et al. miRNA repression involves GW182-mediated recruitment of CCR4-NOT through conserved W-containing motifs. Nat. Struct. Mol. Biol. 18, 1218–1226 (2011).
25. Orban, T. I. & Izaurrealde, E. Decay of mRNAs targeted by RISC requires 5′-MNP1, the Ski complex, and the Argonaute. RNA 11, 459–469 (2005).
26. Schwarzhauser, B. et al. Global quantification of mammalian gene expression control. Nature 473, 337–342 (2011).
27. Braun, J. E., Huntzinger, E. & Izaurrealde, E. The role of GW182 proteins in mRNA-mediated gene silencing. Adv. Exp. Med. Biol. 768, 147–163 (2013).
28. Bethune, J. & Wieland, F. T. Assembly of COPI and COPII vesicular coat proteins on membranes. Annu. Rev. Biophys. 47, 63–83 (2018).
29. Gilchrist, A. et al. Quantitative proteomics analysis of the secretory pathway. Cell 127, 1265–1286 (2006).
30. Adolf, F. et al. Proteomic profiling of mammalian COPI and COPII vesicular coat proteins. Cell Rep. 26, 250–e256.e5 (2019).
31. Goyal, M. et al. A paralogue-specific role of COPII vesicles in the neuronal differentiation of mouse pluripotent cells. Life Sci. Alliance 3, e20200714 (2020).

COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-022-03604-5 | www.nature.com/commsbio
33. Moelleken, J. et al. Differential localization of coatomer complex isoforms within the Golgi apparatus. *Proc. Natl Acad. Sci. USA* **104**, 4425–4430 (2007).
34. Cakmak, D. E. et al. GEP65, a membrane-associated protein that belongs to a family of proteins involved in stem cell differentiation. *Mol. Biol. Cell** **10**, 3357–3372 (1999).
35. Donaldson, J. G., Finazzi, D. & Klausner, R. D. Brefeldin A inhibits Golgi membrane-catalysed exchange of guanine nucleotide onto ARF protein. *Nat. Cell Biol.* **19**, 155–159 (1999).
36. Helms, J. B. & Rothman, J. E. Inhibition by brefeldin A of a Golgi membrane enzyme that catalyses exchange of guanine nucleotide bound to ARF. *Nature* **360**, 352–354 (1992).
37. Sciaky, N. et al. Golgi tubule traffic and the effects of brefeldin A visualized in living cells. *J. Cell Biol.* **139**, 1137–1155 (1997).
38. Liu, J., Valencia-Sanchez, M. A., Hannon, G. J. & Parker, R. MicroRNA-dependent localization of targeted mRNAs to mammalian P-bodies. *Nat. Cell Biol.* **7**, 719–723 (2005).
39. Turgay, Y. et al. A classical NLS and the SUN domain contribute to the targeting of SUN2 to the inner nuclear membrane. *EMBO J.* **29**, 2262–2275 (2010).
40. Buchwalter, A., Schulte, R., Tsai, H., Capitanio, J. & Hetzer, M. Selective clearance of the inner nuclear membrane protein emerin by vesicular transport during ER stress. *elife* **8**, e49796 (2019).
41. Lowe, M. The physiological functions of the golgin vesicle tethering proteins. *Front. Cell Dev. Biol.* **7**, 94 (2019).
42. Witkos, T. M. & Lowe, M. Recognition and tethering of transport vesicles at the Golgi apparatus. *Curr. Opin. Cell Biol.* **47**, 16–23 (2017).
43. Linders, P. T., Horst, C. V., Beest, M. T. & van den Bogaart, G. Stx5-mediated ER-Golgi transport in mammals and yeast. *Cells* **7**, 780 (2019).
44. Laufman, O., Kedan, A., Hong, W. & Lev, S. Direct interaction between the conserved oligomeric Golgi (COG) complex and the golgin TATA element modulatory factor (TMF). *J. Biol. Chem.* **288**, 4229–4240 (2013).
45. Bearinger, M. et al. Proteasomal degradation of Golgin-84 with the COG complex mediates the intra-Golgi retrograde traffic. *Traffic* **11**, 1552–1566 (2010).
46. Wong, M. & Munro, S. Membrane trafficking. The specificity of vesicle traffic to the Golgi is encoded in the golgin coiled-coil proteins. *Science* **346**, 1256898 (2014).
47. Xu, P. et al. COPI mediates recycling of an exocytic SNARE by recognition of a ubiquitin sorting signal. *elife* **6**, e28342 (2017).
48. Aniento, F., Gu, F., Parton, R. G. & Grivennik, J. An endosomal beta COP is involved in the pH-dependent formation of transport vesicles destined for late endosomes. *J. Cell Biol.* **133**, 29–41 (1996).
49. Whitney, J. A., Gomez, M., Sheff, D., Kress, T. E. & Mellman, I. Cytoplasmic coat proteins involved in endosome function. *Cell* **63**, 703–713 (1991).
50. Hauri, H. P., Kappeler, F., Andersson, H. & Appenzeller-Chern, E. ERCID-53 and traffic in the secretory pathway. *J. Cell Sci.* **113**, 587–596 (2000).
51. Vandemorteule, G., Eckerman, S. & Gevaert, K. Pick a tag and explore the functions of your pet protein. *Trends Biotechnol.* **37**, 1078–1090 (2019).
52. Ungriech, R., Klaw, M., Horvath, P. & Kutay, U. Diffusion and retention are major determinants of protein targeting to the inner nuclear membrane. *J. Cell Biol.* **209**, 687–703 (2015).
53. Stanley, P. Golgi glycosylation. *Cold Spring Harb. Perspect. Biol.* **3**, a005199 (2011).
54. Sahlmuller, M. C. et al. Recombinant heptameric coatomer complexes: novel tools to study isoform-specific functions. *Traffic* **12**, 682–692 (2011).
55. Weidenfel, I. et al. Inducible expression of coding and inhibitory RNAs from retargetable genomic loci. *Nucleic Acids Res.* **37**, e50 (2009).
56. Schopp, I. M. & Béthune, J. Split-BioID - proteomic analysis of context-specific protein complexes in their native cellular environment. *J. Vis. Exp.* **57479** (2018).
57. Ramirez, C. A., Egertamai, S. & Béthune, J. Context-specific and proximity-dependent labeling for the proteomic analysis of spatiotemporally defined protein complexes with Split-BioID. *Methods Mol. Biol.* **2247**, 303–318 (2021).
58. Kushnirov, V. V. Rapid and reliable protein extraction from yeast. *Yeast* **16**, 857–860 (2000).
59. Blighé, K., Rana, S. & Lewis, M. EnhancedVolcano: publication-ready volcano plots with enhanced colouring and labelling. https://bioconductor.org/packages/devel/bioc/vignettes/EnhancedVolcano/inst/doc/EnhancedVolcano.html (2018).
60. Chen, H. & Boutros, P. C. VennDiagram: a package for the generation of highly-customizable Venn and Euler diagrams in R. *BMC Bioinformatics* **12**, 1 (2011).
61. Boder, E. T. & Wittrup, K. D. Yeast surface display for screening combinatorial polypeptide libraries. *Nat. Biotechnol.* **15**, 553–557 (1997).
62. Benatul, L., Perez, J. M., Belk, J. & Hsieh, C. M. An improved yeast transformation method for the generation of very large human antibody libraries. *Protein Eng. Des. Sel.* **23**, 155–159 (2010).
63. Vizcaino, J. A. et al. The PRoteomics IDENTifications (PRIDE) database and associated tools: status in 2013. *Nucleic Acids Res.* **41**, D1063–D1069 (2013).

Acknowledgements

We thank Valeria Mery, Jérôme Oswald, and Jannik Mattern for helping establish PDB in bacteria, Hans Dieter Schmitt (MPI for Multidisciplinary Sciences, Göttingen, Germany) for providing codon usage-optimized BioID2 for *S. cerevisiae* as a template for generating ASCI-microID and ASCI-ultraID plasmids. LC-MS analysis was done in the Service Unit LCMS Protein Analytes of the Göttinger Center for Molecular Biosciences (GZMB) at the Georg-August-University Göttingen (Grant DFG-GZ. INST 186/1230-1 FUGG to Stefanie Püggeler). We are indebted to Mandy Jeske and Doris Höglinger (Heidelberg University) who provided laboratory space and support to L.K. during the revision time of this manuscript. Part of the work was financed by the excellence initiative of the German research council (DFG-EXG181 to J.B.).

Author contributions

L.K. performed all experiments with HeLa cells and bacteria. S.B. and L.D. performed the directed evolution of microID. X.Z. performed all experiments with P19 cells. A.R. performed all the preliminary experiments leading to the discovery and initial characterization of microID. E.C.B. performed preliminary experiments for the characterization of microID and ultraID. K.S. and O.V. contributed to the yeast experiments and the LC-MS analysis. H.K. supervised the directed evolution approach. J.B. designed and supervised the study, and analyzed the data. L.K. and J.B. wrote the first draft of the manuscript. All authors edited the paper.

Funding

Open Access funding enabled and organized by Projekt DEAL.

Competing interests

The authors declare no competing interests.

Additional information

Supplementary information The online version contains supplementary material available at https://doi.org/10.1038/s42003-022-03604-5.

Correspondence and requests for materials should be addressed to Julien Béthune.

Peer review information *Communications Biology* thanks Geoffrey Hesketh and the other, anonymous, reviewer for their contribution to the peer review of this work. Primary handling editors: Caitlin Karniski and Christina Karlsson Rosenthal. Peer reviewer reports are available.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

© The Author(s) 2022