SUPPLEMENTARY APPENDIX

This appendix has been provided by the authors to give readers additional information about their work.

Supplement to:

Homology modelling and in silico substrate-binding analysis of a *Rhizobium* sp. RC1 haloalkanoic acid permease

Muhammed Adamu Musa, Roswanira Abdul Wahab and Fahrul Huyop

Biotechnol. Biotechnol. Equip. 2018, 32

Figure S1 Pairwise sequence alignment of *Rhizobium* sp. RC1 haloacid transport (DehrP, Uniprot accession number: Q1M2W6 [1], with the new sequence (DehrP*).

Note: The deleted 13 amino acids (dark grey) and the additional 154 amino acids (light grey) is from the C-terminus of a 98% identical *Agrobacterium* sp. NHG3 haloacid transporter (DehP, Uniprot accession number: Q8KLT0, [2] after the DehrP sequence was aligned with the DehP sequence. The asterisks (*) indicate conserved residues as generated by the Clustal Omega [3] sequence alignment server.

DehrP	MTTITLVAR11LASS4RMCTREERKVFASSLGIVTFYEFDLWESLALLAIQGATFFKDFPPATQ	60
DehrP	MTTITLVAR11LASS4RMCTREERKVFASSLGIVTFYEFDLWESLALLAIQGATFFKDFPPATQ	60
DehrP	AITAILLPAAGS15VRTGALFGRGDMGRKNTLVTMSLTFVLLPGSDDTIGL	120
DehrP*	AITAILLPAAGS15VRTGALFGRGDMGRKNTLVTMSLTFVLLPGSDDTIGL	120
DehrP	AAPTILL11LLQLQ1A1GSQTKQQAAYEAFAHPFERGKDYTSMIQTTATAGLFLSLTVIL	180
DehrP*	AAPTILL11LLQLQ1A1GSQTKQQAAYEAFAHPFERGKDYTSMIQTTATAGLFLSLTVIL	180
DehrP	GTRSLLG15E SF1GNWVR15FLLLLVSLLG15SW11IMQLN15SPF1QRMK15PASKPA15REA	240
DehrP*	GTRSLLG15E SF1GNWVR15FLLLLVSLLG15SW11IMQLN15SPF1QRMK15PASKPA15REA	240
DehrP	FAHNPVR15ALVLGQGARQVAVWYTQ15FV15FLQL315LVVGGF15TITL11IC8811LG5S	300
DehrP*	FAHNPVR15ALVLGQGARQVAVWYTQ15FV15FLQL315LVVGGF15TITL11IC8811LG5S	300
DehrP	FFVFGKL15LDR15GRKP15MIA15GGLAVT15FPI15FEA15TENA15HT11LAMA11LAVK15SRV15GRL15P	360
DehrP*	FFVFGKL15LDR15GRKP15MIA15GGLAVT15FPI15FEA15TENA15HT11LAMA11LAVK15SRV15GRL15P	360
DehrP	SWG11GYS15ISEM15DHL15VLIP15EFL11ILL15R15CM15IV15RQ15LVQ15G15QL15CSS15MRP	412
DehrP*	SWG11GYS15ISEM15DHL15VLIP15EFL11ILL15R15CM15IV15RQ15LVQ15G15QL15CSS15MRP	412
DehrP	HPD11QAC15KE15QF11TAA11LAAA15YPKR15Q11D15RM15TH11FLDS15 GRP15Q11PL15GL15 IL15L15AY15T	412
DehrP*	HPD11QAC15KE15QF11TAA11LAAA15YPKR15Q11D15RM15TH11FLDS15 GRP15Q11PL15GL15 IL15L15AY15T	412
DehrP	NVYGPMR15ALVLEFLPARI11RYS15SLLPY11TH11CNGW15FGL15L15PAA15FA15H15VA15TD11YF15GL15W15PI	527
DehrP*	NVYGPMR15ALVLEFLPARI11RYS15SLLPY11TH11CNGW15FGL15L15PAA15FA15H15VA15TD11YF15GL15W15PI	553
Figure S2. Local model quality of DehrP.
Note: The z-score (dark spot) is -2.86 according to the ProSA-web [4], and it falls in the range of the z-score for PDB proteins whose structures are determined by X-ray crystallography (light blue region) and nuclear magnetic resonance (NMR; dark blue region), indicating good quality model [4].

Supplementary Figure S3. Stereochemical analysis of DehrP using Ramachandran plot (re-typed for clarity of the readers).
Note: The plot obtained by the RAMPAGE [5] server shows that 93.6% of the amino acid residues are in the favoured region (blue region), 3.9% of the residues are in the allowed region (brown region) and 2.4% of the residues are outlier residues, indicating good quality model.
Overall quality factor**: 90.511

![Quality graphic](image)

Figure S4 The overall quality graphic of DehrP using the ERRAT [6] program after refinement by the 3Drefine [7] server.

Note: The overall quality factor (OQF) of the model is ~91%, which is considered to be a good model. The incorrect regions are shown in black, and the correct regions are shown in grey. On the error axis, two lines are drawn to indicate the confidence with which it is possible to reject regions that exceed that error value. **Expressed as the percentage of the protein for which the calculated error value falls below the 95% rejection limit. For low resolutions (2.5 to 3 Å) the average OQF is around 91% [6].

Table S1 The affinities of DehrP and GlcPse complexes generated by AutoDock Vina 1.1.2 [8].

Ligand	Affinity (kcal/mol)	Distance from best mode (RMSD)		
	GlcPse	DehrP	GlcPse	DehrP
DGlc	−4.6	−4.2	37.064/38.093	12.051/13.486
MBA	−2.9	−2.9	53.11/53.426	17.618/17.822
MCA	−3.2	−2.9	10.986/11.084	12.488/12.804
DBA	−	−3.6	−	17.534/18.321
DCA	−	−3.5	−	18.615/19.141
TCA	−	−3.9	−	19.169/19.810
2,2-DCP	−	−4.0	−	19.556/20.219

References

[1] Jing N, Wahab RA, Hamdan S, et al. Cloning and DNA sequence analysis of the haloalkanoic permease uptake gene from *Rhizobium* sp. RCI. Biotechnol. 2010;9(3):319–325.

[2] Higgins TP, Hope SJ, Effendi AJ, et al. Biochemical and molecular characterisation of the 2,3-dichloro-1-propanol dehalogenase and stereospecific haloalkanoic dehalogenases from a versatile *Agrobacterium* sp. Biodegradation. 2005;16(5):485–492.

[3] Sievers F, Wilm A, Dineen D, et al. Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol Syst Biol. 2011 [cited 2017 Oct 16];7(1):539. [6 p.] DOI: 10.1038/msb.2011.75

[4] Wiederstein M, Sippl MJ. ProSA-web: interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids Res. 2007;35(web server issue):W407–W410.

[5] Lovell SC, Davis IW, Arendall WB, et al. Structure validation by Calpha geometry: phi, psi and Cbeta deviation. Proteins. 2003;50(3):437–450.

[6] Colovos C, Yeates TO. Verification of protein structures: patterns of nonbonded atomic interactions. Prot Sci. 1993;2(9):1511–1519.

[7] Bhattacharya D, Nowotny J, Cao R, et al. 3Drefine: an interactive web server for efficient protein structure refinement. Nucleic Acids Res. 2016;44(W1):W406–409.

[8] Trott O, Olson AJ. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization and multithreading. J Comput Chem. 2010;31(2):455–461.