Lethal, Hereditary Mutants of Phospholamban Elude Phosphorylation by Protein Kinase A*

Delaine K. Ceholski†, Catharine A. Trieber‡§, Charles F. B. Holmes‡, and Howard S. Young‡§

From the †Department of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada and the §National Institute for Nanotechnology, University of Alberta, Edmonton, Alberta T6G 2M9, Canada

Background: Heterozygous mutations in the cytoplasmic domain of phospholamban cause lethal dilated cardiomyopathy.
Results: The mutations alter phospholamban-protein kinase A interactions that are essential for substrate recognition and phosphorylation.
Conclusion: Hereditary mutations in phospholamban that prevent phosphorylation by protein kinase A will lead to chronic inhibition of SERCA.
Significance: Arginines in the cytoplasmic domain of phospholamban should be considered hot spots for hereditary mutations leading to dilated cardiomyopathy.

The sarcoplasmic reticulum calcium pump (SERCA) and its regulator, phospholamban, are essential components of cardiac contractility. Phospholamban modulates contractility by inhibiting SERCA, and this process is dynamically regulated by β-adrenergic stimulation and phosphorylation of phospholamban. Herein we reveal mechanistic insight into how four hereditary mutants of phospholamban, Arg9 to Cys, Arg9 to Leu, Arg9 to His, and Arg14 deletion, alter regulation of SERCA. Deletion of Arg14 disrupts the protein kinase A recognition motif, which abrogates phospholamban phosphorylation and results in constitutive SERCA inhibition. Mutation of Arg9 causes more complex changes in function, where hydrophobic substitutions such as cysteine and leucine eliminate both SERCA inhibition and phospholamban phosphorylation, whereas an aromatic substitution such as histidine selectively disrupts phosphorylation. We demonstrate that the role of Arg9 in phospholamban function is multifaceted: it is important for inhibition of SERCA, it increases the efficiency of phosphorylation, and it is critical for protein kinase A recognition in the context of the phospholamban pentamer. Given the synergistic consequences on contractility, it is not surprising that the mutants cause lethal, hereditary dilated cardiomyopathy.

In cardiac muscle, β-adrenergic stimulation increases contractility and accelerates relaxation. These effects are due to the activation of PKA, which targets a variety of downstream contractile and calcium-handling systems. One such target is phospholamban (PLN), a regulator of the sarcoplasmic reticulum calcium pump (SERCA) (1). Following an appropriate physiological cue, PKA phosphorylates PLN and increases calcium reuptake by SERCA into the sarcoplasmic reticulum (SR). Although the role of SERCA and PLN in muscle relaxation is clear, evidence from animal models suggests that most of the inotropic effects on contractility also originate from SR calcium handling (2). This is because dynamic control of myocardial contraction-relaxation involves fine tuning SERCA inhibition and SR calcium levels. SERCA function depends on the available pool of inhibitory PLN, which in turn depends on the cytosolic calcium concentration and the oligomeric and phosphorylation states of PLN (1, 3). It is known that defects at any point in this pathway can result in heart failure (4), although it took almost three decades after the initial discovery of PLN to establish this link.

Dilated cardiomyopathy (DCM) is a major cause of cardiovascular disease, with ~30% of cases being of familial or hereditary origin (5). Many disease-causing mutations are found in genes encoding contractile or calcium-handling proteins, such as PLN, where defects in force transmission, endoplasmic reticulum stress, apoptosis, and biomechanical stress underlie the development and progression of DCM. In humans, abnormal SERCA to PLN ratios (6–8) or mutations in PLN (9–12) are associated with disease, whereas superinhibitory and chronically inhibitory PLN mutations can cause heart failure in mouse models (13–15). Two such examples of mutations include R9C and Arg14 deletion (R14del) in the cytoplasmic domain of PLN (9, 11), which have been linked to DCM in extended family pedigrees. In addition, R9L and R9H are newly identified mutations, although their linkage to heart failure has not been fully established (12). These hereditary mutations are somewhat surprising because Arg9 and Arg14 were not previously considered essential residues of PLN, and overall the cytoplasmic domain of PLN makes a small contribution to SERCA inhibition (16). Nonetheless, cysteine substitution of Arg9 is thought to result in loss of inhibitory function and trapping of PKA, whereas deletion of Arg14 alters the PKA recognition motif of PLN. The resultant effects on SERCA function and SR calcium stores are causative in the development and progression of DCM.
To gain mechanistic insight into R9C, R9L, R9H, and R14del, we created missense and deletion mutants in the cytoplasmic domain of PLN and characterized their effects on phosphorylation by PKA in the absence and presence of SERCA. For the disease-associated mutants, R14del resulted in a slight loss of inhibitory function and a complete loss of phosphorylation, R9H resulted in normal inhibitory function and a complete loss of phosphorylation, and R9L and R9C resulted in a complete loss of both inhibitory function and phosphorylation. Any changes to the PKA recognition motif of PLN (Arg^{13} - Arg^{14} - Ala^{15} - Ser^{16}) (3, 17) eliminated phosphorylation, providing a simple explanation for the R14del mutant. That is, deletion of Arg^{14} would be expected to render PLN unresponsive to simple explanation for the R14del mutant. That is, deletion of SERCA. In contrast, mutagenesis of Arg^{9} revealed multiple mutations of Arg^{9} significantly decreased the inhibitory activity of effects on SERCA regulation (18). All nonconservative mutations of Arg^{9} significantly decreased the inhibitory activity of PLN, as well as its ability to be phosphorylated by PKA. Further insight was gained through the mutagenesis of PKA, which revealed that Glu^{203} and Asp^{241} were required for efficient phosphorylation of PLN. By virtue of an electrostatic interaction with Arg^{9} of PLN, these PKA residues increase the efficiency of phosphorylation and allow PKA to recognize PLN in the context of the pentamer. To summarize our findings, Arg^{9} of PLN plays a multifaceted role in cardiac contractility: it is important for SERCA inhibition, it increases the efficiency of PLN phosphorylation, and it allows PKA to recognize nonphosphorylated PLN monomers in the context of a partially phosphorylated pentamer.

EXPERIMENTAL PROCEDURES

Sample Preparation—SERCA1a was prepared from rabbit hind leg muscle (19, 20), and recombinant human PLN was made using established procedures (18, 21). SERCA and PLN were reconstituted for functional assays using established procedures (22, 23) to obtain final molar ratios of 1 SERCA to 4.5 PLN to 120 lipids. ATPase assays were performed as previously described (18, 24). For phosphorylation assays, a “fast” reconstitution was performed to increase the lipid to protein ratio of the co-reconstituted proteoliposomes (25). The final molar ratios were 1 SERCA to 4.5 PLN to 900 lipids. For all proteoliposomes used herein, the concentrations of SERCA and PLN were determined by quantitative SDS-PAGE (26).

Phosphorylation Assays—PLN was first phosphorylated in detergent solution by the catalytic subunit of PKA (PKA-c) (Sigma-Aldrich) in the absence of SERCA as previously described (22) with a molar stoichiometry of 1 PKA-c to 1000 PLN. PLN was phosphorylated with ATP spiked with [γ-32P]ATP (~0.1 µCi/µl). All other components of the reaction were identical to published protocols (22). The reactions were stopped by the addition of TCA, incubated on ice for 10 min, washed several times with 10% TCA and water, and counted in 1 ml of liquid scintillant (Perkin-Elmer) for 1 min in a scintillation counter. All of the values were corrected by subtracting background counts per minute from samples containing no PKA.

PLN was also phosphorylated by PKA-c in co-reconstituted proteoliposomes in the presence of SERCA (50 µl) as previously described (22) with a molar stoichiometry of 1 PKA-c to 50 PLN. The ATP was spiked with [γ-32P]ATP (~0.1 µCi/µl), and the samples were treated as described above. All of the values were corrected for PLN concentration in proteoliposomes as determined by gel quantitation (ImageQuant software; GE Healthcare).

Recombinant PKA Purification—The wild-type bovine PKA catalytic subunit cloned into the pET3a vector (EMD Chemicals, San Diego, CA) was purchased from Biomatik (Cambridge, Canada). Codons were optimized for expression in Escherichia coli and a six-histidine tag was added on the N terminus of the PKA gene. The plasmid was transformed into E. coli (DE3) pLysS cells (Stratagene, Santa Clara, CA). Cultures were grown at 37 °C in noninducible minimal media (MDAG-135) (27) until A_{600} = 0.6 and then induced with IPTG (0.5 mM) for 6 h at 22 °C. Recombinant PKA was purified on a nickel-nitrioltriacetic acid column (Qiagen) under native conditions according to the protocol provided in the Qiaexpressionist (Qiagen). After elution, recombinant PKA was concentrated (~1 mg/ml) and dialyzed into 50 mM Tris-HCl, pH 7.5, 50 mM NaCl, 0.2% β-mercaptoethanol, 50% glycerol, and 1 mM EDTA. This protocol was repeated for the E203A and D241A mutants of PKA. The purity and concentration of each mutant was assessed by SDS-PAGE, and all activity values were corrected for it.

Kemptide and PLN Peptide Phosphorylation—The kinetic properties for the PKA proteins were acquired from a [γ-32P]ATP phosphorylation filter binding assay that has been previously described (28). Kemptide was purchased from Promega, and PLN cytoplasmic peptides were synthesized by Biomatik Corporation. Kemptide and wild-type PLN peptide concentrations were varied from 1 to 400 µM for wild-type PKA and 1 to 700 µM for E203A and D241A PKA; R9C PLN peptide was only varied from 1 to 300 µM for wild-type and mutant PKAs because of solubility problems. K_{m} and V_{max} were obtained by fitting the data to the Michaelis-Menten equation (v = V_{max}[S]/(S + K_{m})), and all of the data were plotted as substrate concentration (µM) versus activity (µM/min).

PLN Phosphorylation with Recombinant PKA—Detergent-solubilized wild-type and R9S PLN (0.15 mM) were phosphorylated for 0, 5, 15, 30, 45, and 60 min as described above under phosphorylation assays (molar ratio of 1 PKA to 1000 PLN).

RESULTS

Functional Properties of PLN Mutants Implicated in Hereditary Cardiac Pathology—Although the root cause of DCM can be a single site mutation in PLN, heart failure is an incredibly complex process that impairs many aspects of calcium homeostasis and the cellular proteome, including decreased levels of SERCA (29, 30). Mechanistically, it is important to separate initiating events from the complex array of secondary pathological consequences that define heart failure. Hereditary missense mutations, such as those found in PLN, provide valuable insights into disease-associated changes in calcium homeostasis. In the case of PLN mutants (R9C, R9H, R9L, and R14del), SERCA dysregulation accounts for the earliest stages of disease, which ultimately leads to reduced pumping force, cardiovascular remodeling, and heart failure.
Lethal, Hereditary Mutants of Phospholamban

For this reason, the goal of the present study was to mechanismistically define the relationship between PLN mutation and the regulation of SERCA that underlies the development of DCM. To do this, we used reconstituted proteoliposomes containing SERCA and PLN under conditions that mimic native SR membrane (22, 25). Functional characterization of the proteoliposomes relied on measurements of the calcium-dependent ATPase activity of SERCA in the presence of wild-type or mutant PLN. R9C and R9L resulted in complete loss of function, R9H was indistinguishable from wild type, and R14del resulted in partial loss of function (Fig. 1, A and B, and Table 1). To mimic heterozygous conditions, mixtures of wild-type and mutant PLN (1:1 ratio) were reconstituted with SERCA. Because of increased hydrophobicity of the cytoplasmic domain of PLN, R9C, R9L, and R14del appeared to have a dominant negative effect on SERCA function (Table 1 and Ref. 18). Because R9H was a conservative mutation indistinguishable from wild-type PLN, it would not be considered a dominant negative regulator of SERCA.

Phosphorylation of PLN Mutants Implicated in Hereditary Cardiac Pathology—The cytoplasmic domain of PLN is the target of regulation via the β-adrenergic pathway, and disruption of this process would be expected to influence the development and progression of DCM. Although no known mutations affect the site of phosphorylation by PKA (Ser16), Arg14 is part of the PKA recognition motif, and Arg2 is a more peripheral, upstream residue that may also be involved in recognition by PKA (31). Contrary to the location of these residues, R14del was initially reported to be phosphorylated, whereas R9C was reported to abrogate phosphorylation (9, 11). Therefore, our goal was to understand the relationship between disease-associated mutations and phosphorylation of PLN. Under conditions that resulted in efficient phosphorylation of wild-type PLN (data not shown), we observed no detectable PKA-mediated phosphorylation of R9C, R9L, or R14del and minimal phosphorylation of R9H (Fig. 1C). This was confirmed with SERCA ATPase activity measurements, which revealed minimal changes in SERCA inhibition following PKA treatment of the PLN mutants (Table 1). This led us to consider whether the mutation of these particular residues (Arg9 and Arg14) or the nature of the mutations (Cys, Leu, or His substitution or deletion) was the key determinant for the defect in phosphorylation.

To address this, we first tested the PKA-mediated phosphorylation of alanine mutants of residues Lys3 to Thr17 in the absence of SERCA (Fig. 2). Under conditions where wild-type PLN rapidly reached complete phosphorylation, most of the alanine substitutions between residues 3 and 17 resembled the native protein. However, three mutants (R9A, R13A, and R14A) exhibited clear defects in phosphorylation with S16A

![Figure 1: Fitted curves of normalized ATPase activity as a function of calcium concentration for SERCA reconstitutions were adapted from Ceholski et al. (18) and are shown for comparison with R9H PLN data ± S.E. (▴, n = 9). A and B, SERCA was reconstituted in the absence (black curve) and presence of wild-type PLN (gray curve) or R9C (red curve) or R14del (green curve) (A) or R9L (red curve) or R9H (green curve) PLN (B). All kinetic values are given in Table 1. C, PKA-mediated phosphorylation of wild-type and disease-associated mutants of PLN. Phosphorylation is shown as a percentage of wild-type PLN ± S.E. (100% = complete phosphorylation) (n ≥ 4).](image1)

![Figure 2: Top panel, primary sequence of PLN residues 1–17, with positions targeted for mutagenesis indicated (bold letters). Bottom panel, PKA-mediated phosphorylation of alanine mutants of these residues is shown as a percentage of wild-type PLN ± S.E. (100% = complete phosphorylation, dashed line) (n = 4). Asterisks indicate comparisons against wild type (p < 0.01).](image2)

TABLE 1

PLN Mutations	V_{max} (μmol min$^{-1}$ mg$^{-1}$)	K_{cat} (μM)	Phosphorylationa (%)
SERCA wt	4.1 ± 0.1	0.46 ± 0.02	4.4 (4)
wt-PLN R9C	6.3 ± 0.1	0.45 ± 0.02	100 ± 5
R9C	3.5 ± 0.1	0.39 ± 0.02	4.5 (4)
ph-R9C	4.0 ± 0.1	0.41 ± 0.02	2.1 ± 0.25
R9L	4.3 ± 0.1	0.40 ± 0.02	4.5 (4)
ph-R9L	4.2 ± 0.2	0.41 ± 0.03	1.2 ± 0.04
R9H	5.6 ± 0.1	0.90 ± 0.06	4.8 (4)
ph-R9H	5.8 ± 0.2	0.84 ± 0.04	14 ± 3.0
R14del	7.0 ± 0.2	0.74 ± 0.04	6.4 ± 0.20
ph-R14del	5.9 ± 0.2	0.72 ± 0.06	4.6 ± 0.20
R9C + wt	5.1 ± 0.2	0.50 ± 0.04	4.5 (4)
ph-(R9C + wt)	4.5 ± 0.1	0.47 ± 0.02	45 ± 2.9
R9H + wt	6.1 ± 0.6	0.86 ± 0.02	4.5 (4)
ph-(R9H + wt)	4.8 ± 0.3	0.58 ± 0.07	44 ± 0.83
R9L + wt	5.3 ± 0.3	0.53 ± 0.07	4.5 (4)
ph-(R9L + wt)	4.4 ± 0.2	0.46 ± 0.03	57 ± 3.6
R14del + wt	5.3 ± 0.1	0.74 ± 0.02	4.5 (4)
ph-(R14del + wt)	5.6 ± 0.2	0.59 ± 0.04	48 ± 7.1
PLN-SSS	7.4 ± 0.2	0.86 ± 0.04	98 ± 8.5
R9C-SSS	4.2 ± 0.2	0.47 ± 0.04	37 ± 3.9

a Percentage of phosphorylation compared with wild-type PLN of detergent-solubilized mutant PLN or wild-type/mutant mixtures of PLN.

b The kinetic data were taken from Ceholski et al. (18) and are shown for comparison.

c ph indicates that the PLN was treated with PKA prior to reconstitution.
serving as a negative control. The results for Arg\(^{13}\) and Arg\(^{14}\) were anticipated given their placement in the PKA recognition motif and prior characterization by mutagenesis (32). The result for Arg\(^{9}\) of PLN was unexpected, given that it was not previously reported to be a determinant for PKA-mediated phosphorylation (17).

PLN in the absence of SERCA allowed unhindered interaction with PKA for optimal phosphorylation, yet this did not take into account the SERCA-PLN interaction that normally occurs in cardiac SR. To examine this, proteoliposomes containing SERCA in the presence of wild-type or mutant PLN were phosphorylated by PKA. To distinguish between SERCA-specific phosphorylation and prior characterization by mutagenesis (32). The result for Arg\(^{9}\) of PLN was unexpected, given that it was not previously reported to be a determinant for PKA-mediated phosphorylation (17).

PLN in the absence of SERCA allowed unhindered interaction with PKA for optimal phosphorylation, yet this did not take into account the SERCA-PLN interaction that normally occurs in cardiac SR. To examine this, proteoliposomes containing SERCA in the presence of wild-type or mutant PLN were phosphorylated by PKA. To distinguish between SERCA-specific phosphorylation and prior characterization by mutagenesis (32). The result for Arg\(^{9}\) of PLN was unexpected, given that it was not previously reported to be a determinant for PKA-mediated phosphorylation (17).

PLN in the absence of SERCA allowed unhindered interaction with PKA for optimal phosphorylation, yet this did not take into account the SERCA-PLN interaction that normally occurs in cardiac SR. To examine this, proteoliposomes containing SERCA in the presence of wild-type or mutant PLN were phosphorylated by PKA. To distinguish between SERCA-specific phosphorylation and prior characterization by mutagenesis (32). The result for Arg\(^{9}\) of PLN was unexpected, given that it was not previously reported to be a determinant for PKA-mediated phosphorylation (17).

PLN in the absence of SERCA allowed unhindered interaction with PKA for optimal phosphorylation, yet this did not take into account the SERCA-PLN interaction that normally occurs in cardiac SR. To examine this, proteoliposomes containing SERCA in the presence of wild-type or mutant PLN were phosphorylated by PKA. To distinguish between SERCA-specific phosphorylation and prior characterization by mutagenesis (32). The result for Arg\(^{9}\) of PLN was unexpected, given that it was not previously reported to be a determinant for PKA-mediated phosphorylation (17).

PLN in the absence of SERCA allowed unhindered interaction with PKA for optimal phosphorylation, yet this did not take into account the SERCA-PLN interaction that normally occurs in cardiac SR. To examine this, proteoliposomes containing SERCA in the presence of wild-type or mutant PLN were phosphorylated by PKA. To distinguish between SERCA-specific phosphorylation and prior characterization by mutagenesis (32). The result for Arg\(^{9}\) of PLN was unexpected, given that it was not previously reported to be a determinant for PKA-mediated phosphorylation (17).

PLN in the absence of SERCA allowed unhindered interaction with PKA for optimal phosphorylation, yet this did not take into account the SERCA-PLN interaction that normally occurs in cardiac SR. To examine this, proteoliposomes containing SERCA in the presence of wild-type or mutant PLN were phosphorylated by PKA. To distinguish between SERCA-specific phosphorylation and prior characterization by mutagenesis (32). The result for Arg\(^{9}\) of PLN was unexpected, given that it was not previously reported to be a determinant for PKA-mediated phosphorylation (17).

PLN in the absence of SERCA allowed unhindered interaction with PKA for optimal phosphorylation, yet this did not take into account the SERCA-PLN interaction that normally occurs in cardiac SR. To examine this, proteoliposomes containing SERCA in the presence of wild-type or mutant PLN were phosphorylated by PKA. To distinguish between SERCA-specific phosphorylation and prior characterization by mutagenesis (32). The result for Arg\(^{9}\) of PLN was unexpected, given that it was not previously reported to be a determinant for PKA-mediated phosphorylation (17).

PLN in the absence of SERCA allowed unhindered interaction with PKA for optimal phosphorylation, yet this did not take into account the SERCA-PLN interaction that normally occurs in cardiac SR. To examine this, proteoliposomes containing SERCA in the presence of wild-type or mutant PLN were phosphorylated by PKA. To distinguish between SERCA-specific phosphorylation and prior characterization by mutagenesis (32). The result for Arg\(^{9}\) of PLN was unexpected, given that it was not previously reported to be a determinant for PKA-mediated phosphorylation (17).

PLN in the absence of SERCA allowed unhindered interaction with PKA for optimal phosphorylation, yet this did not take into account the SERCA-PLN interaction that normally occurs in cardiac SR. To examine this, proteoliposomes containing SERCA in the presence of wild-type or mutant PLN were phosphorylated by PKA. To distinguish between SERCA-specific phosphorylation and prior characterization by mutagenesis (32). The result for Arg\(^{9}\) of PLN was unexpected, given that it was not previously reported to be a determinant for PKA-mediated phosphorylation (17).

PLN in the absence of SERCA allowed unhindered interaction with PKA for optimal phosphorylation, yet this did not take into account the SERCA-PLN interaction that normally occurs in cardiac SR. To examine this, proteoliposomes containing SERCA in the presence of wild-type or mutant PLN were phosphorylated by PKA. To distinguish between SERCA-specific phosphorylation and prior characterization by mutagenesis (32). The result for Arg\(^{9}\) of PLN was unexpected, given that it was not previously reported to be a determinant for PKA-mediated phosphorylation (17).

PLN in the absence of SERCA allowed unhindered interaction with PKA for optimal phosphorylation, yet this did not take into account the SERCA-PLN interaction that normally occurs in cardiac SR. To examine this, proteoliposomes containing SERCA in the presence of wild-type or mutant PLN were phosphorylated by PKA. To distinguish between SERCA-specific phosphorylation and prior characterization by mutagenesis (32). The result for Arg\(^{9}\) of PLN was unexpected, given that it was not previously reported to be a determinant for PKA-mediated phosphorylation (17).
Lethal, Hereditary Mutants of Phospholamban

R9V, R9I, and R9M (hydrophobic substitutions). All mutations of Arg9 except for R9K and R9Q reduced phosphorylation by PKA (Fig. 4), whereas R9C, R9H, and all hydrophobic substitutions (R9L, R9V, R9I, and R9M) completely or nearly abolished phosphorylation. Surprisingly, the hydrophobic substitutions were the most effective mimics of the phosphorylation defects associated with R9C and R9L, mirroring the trend observed for the functional defects associated with these mutants (18). Additionally, R9H was found to cause a severe defect in phosphorylation, consistent with the potential linkage of this mutation to heart failure (12). Although histidine is a conservative substitution for arginine, the aromatic side chain likely makes it a poor substrate for PKA phosphorylation. We next investigated the positioning of the cysteine substitution at Arg9. We generated isosteric mutations of nearby residues Thr8 and Ser10 to cysteine (T8C and S10C). Neither mutant exactly mimicked R9C, yet T8C clearly resulted in a strong defect in phosphorylation. We concluded that Arg9 is important for the recognition of PLN by PKA and that a hydrophobic mutation in this region of PLN is particularly detrimental for phosphorylation by PKA.

Arg9 of PLN and Complementary Residues of PKA—Previous studies have suggested that PKA prefers peptide substrates with a basic residue upstream of the recognition motif at the P-6, P-7, or P-8 position (31, 34), although the role of such distal residues in natural substrates like PLN has been less apparent. In model substrates, the upstream arginine is not required for phosphorylation, yet it plays a role in peptide positioning in the active site of PKA and increases the efficiency of phosphorylation. Herein, mutagenesis revealed that Arg9 at P-7 of PLN appeared to fit this notion, where removal of the arginine side chain (R9A) decreased the efficiency of PLN phosphorylation, and substitution of particular side chains (hydrophobic substitutions) completely abolished phosphorylation (Fig. 4). The structure of the catalytic subunit of PKA bound to a cytoplasmic peptide of PLN has been determined (35), and it identifies two acidic residues in PKA (Glu203 and Asp241) that interact with Arg9 of PLN (Fig. 5). To assess the importance of these residues, we produced recombinant bovine catalytic subunit of wild-type PKA, as well as Glu203 to Ala (E203A) and Asp241 to Ala (D241A) mutants of PKA. The activity of these PKA variants was confirmed using kemptide (sequence LRRA-SLG) (36), an ideal substrate for PKA based on the phosphorylation site of liver pyruvate kinase (Table 2).

Phosphorylation of PLN by Recombinant PKA—Although model peptides are a facile system for studying phosphorylation, full-length, membrane-associated PLN is the natural substrate for PKA. However, the disease-associated Arg9 mutants of PLN could not be phosphorylated over the time frame of our experiments. For this reason, the R9S mutant was chosen as a surrogate. R9S is isosteric to R9C, yet it resulted in sufficient phosphorylation for the study of PKA mutants (Fig. 4). Under the experimental conditions, recombinant wild-type PKA phosphorylated wild-type PLN with a half-time of ~7.5 min and an initial rate of 12.2 μmol min⁻¹ (Fig. 6A). Phosphorylation of R9S PLN with recombinant wild-type PKA resulted in a lower initial rate, and the time-dependent phosphorylation saturated but never reached complete phosphorylation. A similar trend occurred for the E203A mutant of PKA with both wild-type and R9S PLN (Fig. 6B). In fact, the progress curves for these three enzyme-substrate pairs (wild-type PKA with R9S PLN, E203A PKA with wild-type PLN, and E203A PKA with R9S PLN) were very similar to one another and did not reach complete phosphorylation. This suggested a common underlying effect on phosphorylation. Lastly, we tested the D241A mutant of PKA, which had a more severe effect on the phosphorylation of PLN (Fig. 6C). The data are consistent with interactions
between Glu203 and the side chain of Arg9 and Asp241 and the backbone amide of Arg9 (Fig. 5), both of which are required for positioning of the substrate for efficient phosphorylation.

The progress curves for the three enzyme-substrate pairs described above never reached complete phosphorylation, consistent with either enzyme inactivation or substrate depletion. Enzyme inactivation, perhaps by denaturation or product inhibition, seemed unlikely because the enzyme was limiting in the reactions. Nevertheless, a simple test for enzyme inactivation was to incubate the three PKA variants (wild type, E203A, and D241A) with wild-type PLN until saturation was reached, followed by the addition of fresh enzyme to test whether phosphorylation could proceed. We found that the addition of enzyme did not result in complete phosphorylation of wild-type PLN until saturation was reached, followed by the addition of fresh enzyme to test whether phosphorylation could proceed. We found that the addition of enzyme did not result in complete phosphorylation of wild-type PLN by the PKA mutants (Fig. 7A), indicating that enzyme inactivation was not the cause of this behavior. This same result was observed with R9S PLN, where the addition of fresh PKA (wild type or mutant) was unable to complete R9S phosphorylation (Fig. 7A). We then wondered how the substrate might change as a function of time in the progress curves. Because the substrate, wild-type or R9S PLN, was identical for all three PKA variants, it seemed improbable that true substrate depletion was occurring. Instead, it seemed more likely that the accessibility of the substrate to PKA changed as product accumulated in the phosphorylation reactions. The simplest way to envision how this might occur was to invoke phosphorylation in the context of the PLN pentamer (37). To take this into account, we replotted the progress curves for wild-type PKA and R9S PLN and E203A PKA and wild-type PLN as a function of the number of phosphorylated monomeric equivalents (Fig. 8A). For mutation of either PLN (Arg9) or PKA (Glu203), the progress curves stalled after the phosphorylation of two to three monomers per PLN pentamer. This led to the hypothesis that these residues of PLN and PKA function, at least in part, to recognize a non-phosphorylated monomer in the context of a partially phosphorylated pentamer.

If this hypothesis was correct, reducing the oligomeric state of PLN should increase the level of phosphorylation. For this, we returned to the disease-associated R9C mutant, which could not be phosphorylated by PKA in our assays and thus provided a rigorous test for our hypothesis. A full-length monomeric form of R9C (R9C-SSS) and an R9C cytoplasmic peptide (R9C1–20, amino acids 1–20 of PLN) were both tested for their ability to be phosphorylated by PKA. The monomeric form of PLN was generated by replacing the three transmembrane cysteine residues (Cys36, Cys41, and Cys46) with serine. The PLN-SSS and R9C-SSS mutants were entirely monomeric by SDS-PAGE (Fig. 8B), and they possessed inhibitory properties comparable with wild-type and R9C PLN, respectively (Table 1). As might be expected, R9C-SSS increased phosphorylation 22-fold compared with R9C (to ~37% phosphorylation level of wild type), whereas R9C1–20 increased phosphorylation 45-fold compared with R9C (to ~84% phosphorylation level of wild type) (Fig. 8C and Table 2). The increase in phosphorylation of the monomeric forms of R9C indicated that the quaternary structure of the pentamer is a limiting factor in the phosphorylation of individual subunits. Thus, the specific rec-
By comparison, the R9C mutant results in multiple changes to PLN function. A heterozygous mouse model suggested that R9C is a loss of function form of PLN that also traps PKA and prevents the phosphorylation of other cellular targets including wild-type PLN (11). The effects of R9H and R9L on SERCA inhibition have been characterized (18), but their consequences on phosphorylation have yet to be examined. Given the link of R9C and R14del to PLN phosphorylation, we systematically examined the residues surrounding the phosphorylation site of PLN for their disease relevance. We wished to examine the aberrant interactions involving only PLN-SERCA and PLN-PKA, both of which would be considered initiating events in the development of DCM. At the cellular level, these initiating events could be distinct from observations made at later stages of disease development, where many affected processes can ultimately contribute to the observed suppression of SERCA function.

Mechanism of Disease-causing Mutations of PLN—First considering R14del, it was initially reported to be a partial inhibitor of SERCA under homozygous conditions and a superinhibitor under heterozygous conditions in HEK-293 cells (9). It was also observed that R14del may be phosphorylated, despite the change to the PKA recognition motif. A later study in mouse models revealed that under homozygous conditions, R14del was misdirected to the plasma membrane where it altered the activity of the sodium pump (40). In this latter study, R14del did not inhibit SERCA and was only weakly phosphorylated. However, only heterozygous R14del patients have been identified, and it has been shown that R14del is retained in the SR under heterozygous conditions (9). This suggests that the presence of both mutant and wild-type PLN underlies the development of DCM, perhaps via the reported superinhibition of SERCA. To investigate this, we isolated SERCA and R14del from all other cellular effectors and found it to be a partial inhibitor of SERCA (slight loss of function mutant) in both the absence and presence of wild-type PLN (18). We also observed that R14del could not be phosphorylated by PKA. Putting this in terms of initial stages of calcium dysregulation, R14del would result in partial inhibition of SERCA and lack of β-adrenergic control by phosphorylation. This initial chronic inhibition of SERCA could ultimately contribute to the observed suppression of SERCA function.

DISCUSSION

Thus far, four mutations linked to heart disease have been identified in the cytoplasmic domain of PLN (9, 11, 12, 38). The first to be identified was an R9C mutant, followed by R14del and newly identified R9H and R9L. Deletion of Arg14 was found in two families with autosomal dominant DCM resulting in death at middle age (9, 39), as well as another small family with late onset mild DCM (38). A heterozygous mouse model generated for this mutant suggested it was a superinhibitor of SERCA that was only partially reversible by PKA-mediated phosphorylation (9). By comparison, the R9C mutant results in multiple changes mimicking R9C, and we anticipated that mutations like R9L might not be phosphorylated by PKA. This in terms of initial stages of calcium dysregulation, R14del would result in partial inhibition of SERCA and lack of β-adrenergic control by phosphorylation. This initial chronic inhibition of SERCA could eventually contribute to the observed suppression of SERCA function.

FIGURE 8. A, time-dependent phosphorylation progress curves of wild-type PKA and R95 PLN and E203A PKA and wild-type PLN were replotted as a function of phosphorylated monomeric equivalent units. Phosphorylation stalled when two or three monomers in a pentamer were phosphorylated. B, SDS-PAGE of wild-type, R9C, PLN-SSS, and R9C-SSS PLN (5 µg/lane). Pentameric (PLN₅) and monomeric (PLN₁) PLN are indicated with arrows. C, PKA-mediated phosphorylation of wild-type PLN versus R9C PLN, monomeric PLN-SSS versus R9C-SSS, and cytoplasmic peptide PLN₁₋₂₀ versus R9C₁₋₂₀ (n = 3; % phosphorylation ± S.E.). Asterisks indicate comparisons against each respective wild-type construct (p < 0.01). N.S., not significant.
phorylation of PLN is critical for normal cardiac function (44–46). The available data suggest that the free and PKA-bound conformations of PLN are distinct (35) and that interconversion is more efficient with Arg9 present. One can then speculate that hydrophobic substitution of Arg9 is detrimental because it alters interactions necessary for the free or PKA-bound conformations of PLN (35, 47, 48). From the standpoint of establishing prediction models for human heart failure, any of the hydrophobic substitutions identified herein (such as T8C, R9I, R9M, R9V, and R131I) would be expected to mimic the disease development seen for R9C and R9L. One interesting mutant to note was R9H, recently identified in a Brazilian cohort of heart failure patients (12). The R9H mutation was found in a single patient with idiopathic DCM and was considered a low penetrant allele because several family members had the PLN mutation in the absence of disease. However, R9H resembles the disease-associated R14del mutation in that it is a functional inhibitor of SERCA (18), which cannot be phosphorylated by PKA (Fig. 4). As a result, R9H would be unresponsive to β-adrenergic stimulation, leading to constitutive inhibition of SERCA. Although this by itself may not be causative in disease, we anticipate that individuals harboring the R9H mutation would be predisposed to heart failure.

Arg9 Is Important for Proper Positioning of PLN in PKA Active Site—Arginine residues in the cytoplasmic domain of PLN appear to be hot spots for disease-associated mutations. At first glance this suggests a common underlying disease mechanism, although two of the mutants are partly functional (R9H and R14del), and two are nonfunctional (R9C and R9L). Although the hereditary PLN mutations do not have a common effect on the functional state of PLN (i.e. SERCA inhibition), all of the mutants appear to implicate PKA in disease (9, 11). As part of the PKA recognition motif, deletion of Arg14 was expected to have a major impact on PLN phosphorylation (Fig. 4 and Refs. 9 and 32). In addition, it has been known for some time that PKA prefers model substrates with an arginine residue N-terminal to the recognition motif (31). The structure of PKA with an inhibitor (protein kinase inhibitor, PKI) shows that an upstream arginine interacts with Glu203, which is part of the peptide positioning loop of PKA (31, 49). As a natural substrate, Arg9 of PLN fits this notion of an upstream arginine, and the recent crystal structure of the PLN cytoplasmic domain bound to PKA clearly revealed interactions of Arg9 with the peptide positioning loop of PKA (Fig. 5 and Ref. 35). As a natural PKA substrate, Arg9 of PLN appears to be positioned by Glu203 and Asp241 of PKA, yet the functional implications of these interactions remain poorly elucidated. Herein we have shown that Arg9 and Arg14 of PLN and Glu203 and Asp241 of PKA are essential for phosphorylation, providing a possible shared mechanism for the disease-associated mutations. The presence of Arg9 offers the advantage of increased substrate affinity and efficacy of phosphorylation (Table 2). If Arg9, Glu203, or Asp241 is mutated, PKA can no longer discriminate between PLN and a model substrate such as kemptide. As for the role of each residue in the proper positioning of PLN in the active site of PKA, Arg9 contributes to both binding affinity and catalytic efficiency, Glu203 makes a larger contribution to binding affinity, and Asp241 influences catalytic efficiency.

Role of Arg9 of PLN in Efficient Phosphorylation of PLN Pentamer—Mutation of Arg9 of PLN or Glu203 or Asp241 of PKA resulted in a plateau in phosphorylation at ~60% of total PLN (Fig. 6). The prospect of enzyme inactivation was eliminated when the addition of extra PKA failed to fully phosphorylate PLN (Fig. 7), and it was equally unlikely that substrate depletion was responsible. Instead, our results indicated that partial phosphorylation correlated with the oligomeric state of PLN. Disrupting the ability of PLN to form a pentamer, either by mutation (R9C-SSS PLN) or the use of a cytoplasmic peptide (R9C-167), markedly increased phosphorylation at Ser16 (Fig. 8C). Because PLN phosphorylation occurs randomly, with each monomer within a pentamer having an equal chance at becoming phosphorylated (37), phosphorylation appeared to stall after two or three monomers within the pentamer were phosphorylated. Thus, we concluded that Arg9 of PLN, along with Glu203 and Asp241 of PKA, are required for the phosphorylation of a monomer within the context of a partially phosphorylated pentamer. This observation may provide an explanation for the PKA trapping reported for the R9C mutation in lethal DCM (11).

It has been reported that the conformational dynamics of PLN are an important determinant for PKA-mediated phosphorylation (50) and that PKA recognizes substrates by conformational selection (35). Herein we find that Arg9 plays a dual role: it increases the efficiency of phosphorylation of a PLN monomer, and it allows for recognition of a monomer within the context of the PLN pentamer. Although PLN is a dynamic molecule, it also possesses a well defined structure that is distinct from that in the PKA-bound state (35, 48). Thus, in the selection of an appropriate substrate conformation by PKA, the presence of Arg9 in PLN must offer an advantage for the recognition of a suitably structured substrate. The absence of Arg9 in disease-causing mutants of PLN (such as R9C, R9H, and R9L) could alter the conformational selection by PKA, thereby creating a kinetic trap for PKA and affecting the phosphorylation of other cellular targets. Additionally, it is becoming clear that hydrophobic substitution of Arg9 creates multiple defects in PLN function, including loss of phosphorylation and an abnormal interaction with PKA, as well as loss of inhibitory function and a dominant negative interaction with SERCA (18). In the case of R9C, this could be further exacerbated by disulfide bond formation between PLN monomers (42). Because the associated defects in calcium homeostasis appear to be causative in heart failure, arginine residues in the cytoplasmic domain of PLN should be considered functional hot spots for hereditary mutations.

Acknowledgments—We thank Leah Stables, Tamara Skene-Arnold, Phuwadet Pasarj, Craig Markin, Leo Spyrouopoulos, Ghazaleh Azharaﬁ, and Michael Martyna for valuable assistance.

REFERENCES

1. Tada, M., Kirchberger, M. A., and Katz, A. M. (1976) Regulation of calcium transport in cardiac sarcoplasmic reticulum by cyclic AMP-dependent protein kinase. Recent Adv. Stud. Cardiac Struct. Metab. 9, 225–239

2. Morgan, J. P. (1991) Abnormal intracellular modulation of calcium as a major cause of cardiac contractile dysfunction. N. Engl. J. Med. 325,
Lethal, Hereditary Mutants of Phospholamban

625–632

3. Simmerman, H. K., Collins, J. H., Theibert, J. L., Wegener, A. D., and Jones, L. R. (1986) Sequence analysis of phospholamban. Identification of phosphorylation sites and two major structural domains. J. Biol. Chem. 261, 13333–13341

4. Schmidt, A. G., Edes, I., and Kranias, E. G. (2001) Modulation of SERCA. Implications for the failing human heart. Basic Res. Cardiol. 97, 172–178

10. Haghighi, K., Kolokathis, F., Pater, L., Lynch, R. A., Fan, G. C., Tsiapras, D., Parekh, R. R., Dorn, G. W., 2nd, MacLennan, D. H., Kremastinos, D. T., and Kranias, E. G. (2006) A mutation in the human phospholamban gene, deleting arginine 14, results in lethal, hereditary cardiomyopathy. Circ. Res. 103, 1388–1393

12. Medeiros, A., Biagi, D. G., Sobreira, T. J., de Oliveira, P. S., Negrão, C. E., Lissandron, V., Santamaria, K., McSorley, T., and Adams, J. A. (2003) Structural basis for peptide binding in protein kinase A. Role of glutamic acid 203 and tyrosine 204 in the peptide–positioning loop. J. Biol. Chem. 278, 10613–10618

13. Luo, W., Wolska, B. M., Grupp, I. L., Harrer, J. M., Haghighi, K., Ferguson, A. O., Fan, G. C., Tsiapras, D., Hahn, H. S., Adamopoulos, S., Liggett, S. B., and Dorn, G. W., 2nd, MacLennan, D. H., Kremin, K., Kranias, E. G., and Seidman, C. E. (2009) Modulation of SERCA. Implications for the failing human heart. Am. Heart J. 158, 1088–1095

14. Zvyagintsev, E., Backx, P. H., Ijink, F., Simmerman, H. K., Collins, J. H., Theibert, J. L., Wegener, A. D., and Jones, L. R. (1986) Sequence analysis of phospholamban. Identification of phosphorylation sites and two major structural domains. J. Biol. Chem. 261, 13333–13341

15. Schmidt, A. G., Edes, I., and Kranias, E. G. (2001) Phospholamban. A phosphorylation site and two major structural domains. J. Biol. Chem. 276, 24145–24152

16. Zhai, J., Schmidt, A. G., Hoit, B. D., Kimura, Y., MacLennan, D. H., and Kranias, E. G. (2000) Superinhibition of sarcoplasmic reticulum function by phospholamban induces cardiac contractile failure. J. Biol. Chem. 276, 10613–10618

17. Fujii, J., Maruyama, K., Tada, M., and MacLennan, D. H. (1989) Expression and site-specific mutagenesis of phospholamban. Studies of residues involved in phosphorylation and pentamer formation. J. Biol. Chem. 264, 12950–12955

18. Ceholski, D. K., Triebel, C. A., and Young, H. S. (2012) Hydrophobic imbalance in the cytoplasmic domain of phospholamban is a determinant for lethal dilated cardiomyopathy. J. Biol. Chem. 287, 16521–16529

19. Eletr, S., and Inesi, G. (1972) Phospholipid orientation in sarcoplasmic membranes. Spin-label ESR and proton MNR studies. Biochim. Biophys. Acta 282, 174–179

20. Stokes, D. L., and Green, N. M. (1990) Three-dimensional crystals of CaATPase from sarcoplasmic reticulum. Symmetry and molecular packing. Biochim. Biophys. Acta 1038, 1–14

21. Douglas, J. L., Triebel, C. A., Afara, M., and Young, H. S. (2005) Rapid, high-yield expression and purification of Ca2+-ATPase regulatory proteins for high-resolution structural studies. Protein Expr. Purif. 40, 118–125

22. Triebel, C. A., Douglas, J. L., Afara, M., and Young, H. S. (2005) The effects of mutation on the regulatory properties of phospholamban in co-reconstituted membranes. Biochemistry 44, 3289–3297

23. Young, H. S., Reddy, L. G., Jones, L. R., and Stokes, D. L. (1998) Co-reconstitution and co-crystallization of phospholamban and Ca2+-ATPase. Ann. N.Y. Acad. Sci. 853, 103–115

24. Warren, G. B., Toon, P. A., Birdsell, N. J., Lee, A. G., and Metcalfe, J. C. (1974) Reconstitution of a calcium pump using defined membrane components. Proc. Natl. Acad. Sci. U.S.A. 71, 622–626

25. Young, H. S., Rigaud, J. L., Lacapère, J. J., Reddy, L. G., and Stokes, D. L. (1997) How to make tubular crystals by reconstitution of detergent-solubilized Ca2+-ATPase. Biophys. J. 72, 2545–2558

26. Young, H. S., Jones, L. R., and Stokes, D. L. (2001) Locating phospholamban in co-crystals with Ca2+-ATPase by cryoelectron microscopy. Biochim. Biophys. Acta 1508, 884–894

27. Studier, F. W. (2005) Protein production by auto-induction in high density shaking cultures. Protein Expr. Purif. 41, 207–234

28. Hasegawa, T., Isomura, M., and Cohen, P. (2006) Assay of protein kinases using radiolabeled ATP. A protocol. Nat. Protoc. 1, 968–971

29. Meyer, M., Schilling, W., Pieske, B., Holubarsch, C., Heilmann, C., Posis, J., Kuwajima, G., Mikoshiba, K., Jost, H., and Hasenfuss, G. (1995) Alterations of sarcoplasmic reticulum proteins in failing human dilated cardiomyopathy. Circulation 92, 778–784

30. Moore, M. J., Adams, J. A., and Taylor, S. S. (2003) Structural basis for peptide binding in protein kinase A. Role of glutamic acid 203 and tyrosine 204 in the peptide–positioning loop. J. Biol. Chem. 278, 10613–10618

31. Moore, M. J., Adams, J. A., and Taylor, S. S. (2003) Structural basis for peptide binding in protein kinase A. Role of glutamic acid 203 and tyrosine 204 in the peptide–positioning loop. J. Biol. Chem. 278, 10613–10618

32. Toyofuku, T., Kurzydlowski, K., Tada, M., and MacLennan, D. H. (1994) Amino acids Glu2 to Ile14 in the cytoplasmic domain of phospholamban are essential for functional association with the Ca2+-ATPase of sarcoplasmic reticulum. J. Biol. Chem. 269, 3088–3094

33. Lygren, B., Carlson, C. R., Santamaria, K., Lissandron, V., McSorley, T., Litzenberg, J., Lorenz, D., Wiesner, B., Rosenthal, W., Zaccoco, M., Taskén, K., and Klussmann, E. (2007) AKAP complex regulates Ca2+ -re-uptake into heart sarcoplasmic reticulum. EMBO Rep. 8, 1061–1067

34. Neuberger, G., Schneider, G., and Eisenhaber, F. (2007) pkaPS. Prediction of protein kinase A phosphorylation sites with the simplified kinase-substrate binding model. Biol. Direct 2, 1

35. Masterson, L. R., Chong, C. Y., Tornelli, M., Kornev, A., Taylor, S. S., and Veglia, G. (2010) Dynamics connect substrate recognition to catalysis in protein kinase A. Nat. Chem. Biol. 6, 821–828

36. Kemp, B. E., Graves, D. J., Benjamini, E., and Krebs, E. G. (1977) Role of multiple basic residues in determining the substrate specificity of cdc25C–dependent protein kinase J. Biol. Chem. 252, 4888–4894

37. Li, C. F., Wang, J. H., and Colyer, J. (1990) Immunological detection of phospholamban phosphorylation states facilitates the description of the mechanism of phosphorylation and dephosphorylation. Biochemistry 29, 4535–4540

38. DeWitt, M. M., MacLeod, H. M., Soliven, B., and McNally, E. M. (2006) Phospholamban R14 deletion results in late-onset, mild, hereditary dilated cardiomyopathy. Am. Coll. Cardiol. 48, 1396–1398

39. Post, M. G., Perrot, A., Geier, C., Boldt, L. H., Schmidt, G., Lehmkuhl, H. B., Hetzer, R., Dietz, R., Gutherle, M., Haverkamp, W., and Ozcokel, C. (2009) Genetic deletion of arginine 14 in phospholamban causes dilated cardiomyopathy with attenuated electrocardiographic R amplitudes. Heart Rhythm 6, 480–486

40. Haghighi, K., Pritchard, T., Bossuyt, J., Wagg, J. R., Yuan, Q., Fan, G. C., Osinska, H., Anjak, A., Rubinstein, J., Robbins, J., Bres, D. M., and
Kranias, E. G. (2012) The human phospholamban Arg14-deletion mutant localizes to plasma membrane and interacts with the Na/K-ATPase. J. Mol. Cell. Cardiol. 52, 773–782
41. Kho, C., Lee, A., Jeong, D., Oh, J. G., Chaanine, A. H., Kizana, E., Park, W. I., and Hajjar, R. J. (2011) SUMO1-dependent modulation of SERCA2a in heart failure. Nature 477, 601–605
42. Ha, K. N., Masterson, L. R., Hou, Z., Verardi, R., Walsh, N., Veglia, G., and Robia, S. L. (2011) Lethal Arg9Cys phospholamban mutation hinders Ca2+-ATPase regulation and phosphorylation by protein kinase A. Proc. Natl. Acad. Sci. U.S.A. 108, 2735–2740
43. Shabb, J. B. (2001) Physiological substrates of cAMP-dependent protein kinase. Chem. Rev. 101, 2381–2411
44. Minamisawa, S., Hoshijima, M., Chu, G., Ward, C. A., Frank, K., Gu, Y., Martone, M. E., Wang, Y., Ross, J., Jr., Kranias, E. G., Giles, W. R., and Chien, K. R. (1999) Chronic phospholamban-sarcoplasmic reticulum calcium ATPase interaction is the critical calcium cycling defect in dilated cardiomyopathy. Cell 99, 313–322
45. Kass, D. A., Hare, J. M., and Georgakopoulos, D. (1998) Murine cardiac function. A cautionary tail. Circ. Res. 82, 519–522
46. del Monte, F., Harding, S. E., Schmidt, U., Matsui, T., Kang, Z. B., Dec, G. W., Gwathmey, J. K., Rosenzweig, A., and Hajjar, R. J. (1999) Restoration of contractile function in isolated cardiomyocytes from failing human hearts by gene transfer of SERCA2a. Circulation 100, 2308–2311
47. Paterlini, M. G., and Thomas, D. D. (2005) The α-helical propensity of the cytoplasmic domain of phospholamban. A molecular dynamics simulation of the effect of phosphorylation and mutation. Biophys. J. 88, 3243–3251
48. Zamoon, J., Mascioni, A., Thomas, D. D., and Veglia, G. (2003) NMR solution structure and topological orientation of monomeric phospholamban in dodecylphosphocholine micelles. Biophys. J. 85, 2589–2598
49. Knighton, D. R., Zheng, J. H., Ten Eyck, L. F., Xuong, N. H., Taylor, S. S., and Sowadski, J. M. (1991) Structure of a peptide inhibitor bound to the catalytic subunit of cyclic adenosine monophosphate-dependent protein kinase. Science 253, 414–420
50. Masterson, L. R., Shi, L., Metcalfe, E., Gao, J., Taylor, S. S., and Veglia, G. (2011) Dynamically committed, uncommitted, and quenched states encoded in protein kinase A revealed by NMR spectroscopy. Proc. Natl. Acad. Sci. U.S.A. 108, 6969–6974