Effects of dalfampridine and its metabolites on cloned human potassium channels $K_v$ 1.1, $K_v$ 1.2, and $K_v$ 1.4 expressed in human embryonic kidney cells

Abstract

Background: Dalfampridine (4-aminopyridine; 4-AP) is a potassium channel blocker that has been available in the United States as a treatment to improve walking in patients with multiple sclerosis. 4-AP is well-characterized in vitro with regard to inhibition of neuronal potassium channels, but the potential contribution of its metabolites to clinical activity has not been determined. This study evaluated the concentration–response of 4-AP and its two primary metabolites, 3-hydroxy-4-aminopyridine and 3-hydroxy-4-aminopyridine sulfate, for inhibition of the potassium channels $K_v$ 1.1, $K_v$ 1.2, and $K_v$ 1.4, which are considered candidates for mediating effects of 4-AP on action potential conduction because of their presence in axonal membranes.

Methods: Stable transfection of cDNA for $K_v$ 1.1, $K_v$ 1.2, and $K_v$ 1.4 was performed into HEK293 cells, and colonies of cells containing each channel were selected and maintained under appropriate cell culture conditions. Electrophysiological measurements were performed using a patch-clamp technique in at least three cells for each concentration (50, 500, 5000, and 50,000 μM) of 4-AP and the two metabolites, with each cell acting as its own control. Concentration–response curves were constructed for 4-AP and each metabolite. Data were analyzed using nonlinear least-squares fit, and concentrations inhibiting the channels by 50% ($IC_{50}$) were estimated.

Results: 4-AP induced similar concentration-dependent inhibition profiles of all three potassium channels, resulting in a narrow range of $IC_{50}$ values across channels (242 μM to 399 μM). Across the three channels, the $IC_{50}$ values of 3-hydroxy-4-aminopyridine and 3-hydroxy-4-aminopyridine sulfate were 1–2 orders of magnitude higher (less potent) than those of 4-AP.

Conclusions: 3-Hydroxy-4-aminopyridine and 3-hydroxy-4-aminopyridine sulfate demonstrated low in vitro potency for $K_v$ 1.1, $K_v$ 1.2, and $K_v$ 1.4 inhibition, suggesting that these metabolites are unlikely to contribute to the positive pharmacodynamic effects of 4-AP. A limitation of this study is that while the metabolites were substantially less active at these representative potassium channels in vitro, the untested possibility exists that they may be active at one or more of the many other channel types that occur in vivo.
Introduction

Dalfampridine (4-aminopyridine; 4-AP) is a potassium channel blocker that has been studied extensively in the laboratory and in the clinic. An extended-release formulation of the drug, dalfampridine extended release, is available in the United States for the treatment of walking impairment in patients with multiple sclerosis (MS). This formulation is also approved for this use in several other countries where it is known as prolonged-, sustained-, or modified release fampridine.

4-AP has been well-characterized in vitro with regard to inhibition of a wide range of neuronal potassium channels, although the mechanism of action of 4-AP in MS has not been clearly established. While concentrations that result in 50% inhibition (IC50) of these channels have been determined to be mostly in the millimolar range, the average plasma concentration obtained with therapeutic dosing in clinical trials of the approved formulation ranged from 0.29 to 0.32 μM (27.6–30.2 ng/mL), which is 3–4 orders of magnitude lower than the typical concentrations used in in vitro laboratory studies to block potassium currents. However, the putative mechanism of action for its clinical effects is the relief of conduction block in demyelinated axons, although it may also act at presynaptic sites, potentially enhancing neurotransmission through delay of repolarization and increased influx of calcium.

Several studies have described the pharmacokinetic characteristics of 4-AP in healthy volunteers and in the target population of people with MS. In an excretion balance study in healthy volunteers using 14C-radiolabeled 4-AP, elimination was almost exclusively (96%) by the renal route. Although recovery in urine was mainly as unchanged parent compound, two primary metabolites were initially identified as 2-hydroxy-4-aminopyridine and 3-hydroxy-4-aminopyridine based on approximate retention times using high performance liquid chromatography. Further characterization using established reference standards showed that the human metabolites of 4-AP were 3-hydroxy-4-aminopyridine and 3-hydroxy-4-aminopyridine sulfate, the latter as a result of sulfate conjugation, and that they accounted for <10% of urinary excretion. However, the potential contribution of these metabolites to the clinical activity of dalfampridine has not been determined.

Whereas Kv 1.1 and Kv 1.2 are voltage-gated potassium channels of the delayed rectifier type, Kv 1.4 is a fast inactivating channel of the A-type. These channels were considered suitable for evaluating the concentration–response of 4-AP on action potential conduction because of their presence in axonal membranes; Kv 1.1, Kv 1.2 and Kv 1.4 are relevant components of axonal membrane heterotetrameric channels, and Kv 1.4 is also a homotetrameric synaptic membrane channel. However, the IC50 for these channels in vitro is much higher than the effective plasma concentration achieved with dalfampridine treatment. Therefore, the purpose of this study was to evaluate the concentration–response of 4-AP and its two primary metabolites for inhibition of three of the most common Kv channels, Kv 1.1, Kv 1.2, and Kv 1.4.

Methods

This study was conducted in accordance with good laboratory practice standards. All chemicals were obtained from

| Channel | IUPHAR IC50 for 4-AP, μM | Current type | Physiological function | Distribution |
|---------|--------------------------|--------------|------------------------|--------------|
| Kv 1.1  | 290                      | Voltage-gated, delayed rectifier channel in neurons and skeletal muscle | Maintaining membrane potential and modulating electrical excitability in neurons and muscle | Brain, heart, retina, skeletal muscle, islets |
| Kv 1.2  | 590                      | Voltage-gated, delayed rectifier channel | Maintaining membrane potential and modulating electrical excitability in neurons and muscle | Brain (pons, medulla, cerebellum, inferior colliculus > hippocampus, thalamus, cerebral cortex, superior colliculus > midbrain, corpus striatum, olfactory bulb; neurons associated with mechanoreception and proprioception), spinal cord, Schwann cells, atrium, ventricle, islet, retina, smooth muscle |
| Kv 1.4  | 13,000                   | Voltage-gated, A-type, fast-inactivating | Neuronal afterhypolarization | Brain (olfactory bulb, corpus striatum > hippocampus, superior and inferior colliculus > cerebral cortex, midbrain basal ganglia > pons/medulla), lung-carcinoid, skeletal muscle, heart, pancreatic islet |

IUPHAR, International Union of Pharmacology; IC50, concentration resulting in 50% inhibition; 4-AP, 4-aminopyridine.
Sigma-Aldrich (St. Louis, MI, USA) unless noted otherwise.

Cell cultures

Stable transfection of cDNA for each of the potassium channels was performed into HEK293 cells (American Type Culture Collection, Manassas, VA, USA), a human embryonic kidney cell line, as previously described. After colony selection, the separate colonies of transfected HEK293 cells were cultured at 37°C in Dulbecco’s Modified Eagle Medium/Nutrient Mixture F-12 (D-MEM/F-12) supplemented with 10% fetal bovine serum, 100 U/mL penicillin G sodium, 100 µg/mL streptomycin sulfate and 500 µg/mL G418.

Cells used for electrophysiology were plated in plastic culture dishes. Before testing, the cells were washed twice with Hank’s balanced salt solution, treated with trypsin and re-suspended in culture medium at ~1–1.5 x 10^6 cells in 20 mL. Cells in suspension were allowed to recover for 1–3 hours with incubation at 37°C in a humidified 95% air/5% CO₂ atmosphere. Immediately before electrophysiological measurement, the cells were washed in 4-[2-hydroxyethyl]-1-piperazineethanesulfonic acid (HEPES)-buffered physiological saline (HB-PS).

Chemicals and reagents

The 4-AP was produced by Regis Technologies (Morton Grove, IL, USA), and the two metabolites, 3-hydroxy-4-aminopyridine and 3-hydroxy-4-aminopyridine sulfate, were synthesized by Dalton Pharma Services (Toronto, ON, Canada). Stock concentrations (50 mM) of 4-AP, aminopyridine and 3-hydroxy-4-aminopyridine sulfate were prepared in HB-PS solution 137 mM NaCl, 4.0 mM KCl, 1.8 mM CaCl₂, 1.0 mM MgCl₂, 10 mM HEPES, 10 mM glucose; pH adjusted to 7.4 with HCl) and sonicated (Microson Ultrasonic Cell Disruptor, Misonix Inc., Farmingdale, NY, USA) at ambient temperature for 5–10 minutes to facilitate dissolution. Test solutions were prepared fresh daily by diluting stock into HB-PS solution 137 mM NaCl, 4.0 mM KCl, 1.8 mM CaCl₂, 1.0 mM MgCl₂, 10 mM HEPES, 10 mM glucose (pH adjusted to 7.4 with NaOH). Four concentrations of each compound were evaluated: 50, 500, 5000, and 50,000 µM.

Test samples were applied at 5-minute intervals via disposable polyethylene micropipette tips to naïve cells. Each solution exchange was performed in quadruplicate, and consisted of aspiration and replacement of 45 µL of the total 50-µL volume. The duration of exposure to each sample concentration was 5 minutes.

Electrophysiological measurements

Electrophysiological measurements were performed in at least three cells for each concentration using the PatchXpress system (Model 7000A, Molecular Devices LLC, Sunnyvale, CA, USA), at ambient temperature, with each cell acting as its own control. The methods for applying this commercially available patch-clamp system in the assessment of ion channels have been previously described. In preparation for the recording, an intracellular solution consisting of 130 mM K-Asp, 5 mM MgCl₂, 5 mM EGTA (ethylene glycol tetraacetic acid), 4 mM ATP (adenosine-5′-triphosphate), and 10 mM HEPES (pH to 7.2 with KOH) was loaded into the intracellular compartments of the SealChip™ planar electrode (Aviva Biosciences, San Diego, CA, USA). Membrane currents were recorded using dual-channel patch clamp amplifiers, and before digitization, signals were low-pass filtered at one-fifth of the sampling frequency.

Data analysis

Data acquisition and analysis were performed using pCLAMP software (Axon Instruments, Union City, CA, USA). Steady state was defined by the limiting constant rate of change with time (linear time dependence). The steady state before and after each application was used to calculate the percentage of current inhibited at each concentration. Results obtained from different cells were averaged and plotted as the mean ± standard deviation.

Concentration–response curves were constructed for each test compound, and data were fitted to the following equation:

\[ \% \text{Inhibition} = \left(1 - \frac{1}{1 + \left([\text{concentration}] / \text{IC}_{50}\right)^n}\right) \times 100 \]

where % Inhibition represents the proportion of ion channel current inhibited at each concentration, IC₅₀ is the concentration resulting in 50% inhibition, and n is the Hill coefficient. Nonlinear least-squares fits were performed with the Solver add-in for Excel 2000 (Microsoft Corporation, Redmond, WA, USA), and the IC₅₀ was calculated. The kinetics of K₅, 1.4 channel inactivation were analyzed with the Clampfit 9.2 program (Molecular Devices LLC).

Results

Concentration–response curves for inhibition of the three evaluated potassium channels are presented in Figures 1–3 for 4-AP and its metabolites 3-hydroxy-4-aminopyridine and 3-hydroxy-4-aminopyridine sulfate, respectively, and the calculated IC₅₀ concentrations are summarized in Table 2.
As shown in Figure 1, 4-AP induced similar concentration-dependent inhibition profiles of all three potassium channels. The percent inhibition at each concentration was generally comparable among the channels, and ranged from 20.2% to 26.9% at 50 μM, 54.5–63.0% at 500 μM, 74.4–83.1% at 5000 μM, and 86.5–94.4% at 50,000 μM. This similarity resulted in a narrow range of estimated IC50 values across channels: 242 μM for Kv 1.1 and 399 μM for both Kv 1.2 and Kv 1.4 (Table 2).

In contrast, 3-hydroxy-4-aminopyridine demonstrated a greater potency for inhibition of Kv 1.1 than the other two channels (Figure 2). However, the IC50 values of 3-hydroxy-4-aminopyridine for Kv 1.1 (7886 μM), Kv 1.2 (23,652 μM) and Kv 1.4 (23,191 μM) were greater than one order of magnitude higher than those of 4-AP.

Table 2. Concentrations of 4-aminopyridine and its two major metabolites that result in 50% inhibition of peak current of the recombinant potassium channels Kv 1.1, Kv 1.2, and Kv 1.4.

| Test compound                  | IC50, μM |
|-------------------------------|---------|
|                              | Kv 1.1 | Kv 1.2 | Kv 1.4 |
| 4-Aminopyridine               | 242     | 399    | 399    |
| 3-Hydroxy-4-aminopyridine     | 7,886   | 23,652 | 23,191 |
| 3-Hydroxy-4-aminopyridine sulfate | 30,341  | 21,388 | >50,000 |

IC50, concentration resulting in 50% inhibition.
(Table 2), indicating less potency. Similarly, the IC$_{50}$ values of 3-hydroxy-4-aminopyridine sulfate were approximately two orders of magnitude greater than those of 4-AP for K$_v$ 1.1 and K$_v$ 1.4 (Table 2). While the highest concentration of 3-hydroxy-4-aminopyridine sulfate (50,000 μM) resulted in 58.5% and 66.0% inhibition of K$_v$ 1.1 and K$_v$ 1.2, respectively (Figure 3), K$_v$ 1.4 was only inhibited by 27%. Overall inhibition of K$_v$ 1.4 by this metabolite was sufficiently low that a concentration–response curve was not derived.

Neither of the 4-AP metabolites demonstrated substantial effects on the kinetics of K$_v$ 1.4 inactivation (Table 3). In contrast, inactivation was accelerated with 4-AP in a concentration-dependent manner, with enhancement of inactivation by 62.1% at 5000 μM; the percent change in inactivation was not determined at the highest 4-AP concentration of 50,000 μM.

**Discussion**

This is the first study to evaluate the pharmacodynamic properties of the two major 4-AP metabolites against these potassium channels. Although the inhibitory potential of 4-AP for various potassium channels has previously been assessed, this study re-evaluated 4-AP for specific activity using stably transfected K$_v$ 1.1, K$_v$ 1.2, and K$_v$ 1.4 channels.

The relevancy of the channels tested in this study was based on their presence in axonal membranes, with all three channels considered potential candidates for mediating the effects of 4-AP on action potential conduction since they are components of the juxtaparanodal heterotetrameric K$_v$ channels. In particular, K$_v$ 1.1 and K$_v$ 1.2 have a distribution in the internodal membrane that is consistent with changes in 4-AP sensitivity following demyelination.$^{3,19}$ However, in this as well as in previous studies, the sensitivity of these channels to 4-AP appears to be too low to correspond to the clinically relevant, submicromolar concentrations achieved with therapeutic dosing in patients with MS.$^3$ and the maximization of clinical benefit at plasma concentrations less than 0.5 μM,$^20$ suggesting the participation of other potassium channels in these effects.

The IC$_{50}$ values of 4-AP reported here for K$_v$ 1.1 (242 μM) and K$_v$ 1.2 (399 μM) were consistent with other studies reviewed by Judge et al.$^3$ Therefore, given the higher concentrations needed to block these channels in vitro compared with the upper range of plasma concentrations of approximately 0.92 μM (87.3 ng/mL) reported with dalfampridine at the recommended daily dose of 10 mg twice daily in the clinical trials$^5,6$, these channels do not appear to be likely candidates for the observed clinical effects.

The IC$_{50}$ of 4-AP for K$_v$ 1.4, 399 μM (37,506 ng/mL), was similar to that for K$_v$ 1.1 and K$_v$ 1.2. This is lower than has previously been reported (IC$_{50}$ range of 647–13,000 μM)$^3$. The reason for these differences is not clear but may be due to the source of the channels or the

**Table 3.** Effect of 4-aminopyridine and its two major metabolites on K$_v$ 1.4 kinetics of inactivation. Positive values indicate acceleration of inactivation.

| Test compound                          | Percent change in K$_v$ 1.4 inactivation, mean ± standard deviation (n) |
|----------------------------------------|-------------------------------------------------------------------------|
|                                        | 50 μM | 500 μM | 5000 μM | 50,000 μM |
| 4-Aminopyridine                        | 6.8 ± 5.8 (3) | 37.8 ± 2.8 (3) | 62.1 ± 18.9 (3) | Not determined |
| 3-Hydroxy-4-aminopyridine              | -0.4 ± 7.4 (3) | 1.7 ± 5.1 (3) | 6.3 ± 10.0 (3) | 20.3 ± 5.7 (3) |
| 3-Hydroxy-4-aminopyridine sulfate      | 3.2 ± 19.7 (3) | -3.7 ± 7.6 (4) | 1.9 ± 14.6 (3) | 9.5 ± 15.0 (4) |
expression systems that were used in the previous studies. In particular, the study by Stühmer et al., which reported an IC$_{50}$ of 13,000 μM, used cloned and sequenced cDNAs that were isolated from a rat cortex cDNA library, with channel function evaluated by expressing the cloned channels in *Xenopus laevis* oocytes. They then determined the concentration dependence of inhibition on outward current using whole cell recordings at 20 mV. In contrast, the study reported here relied on stable transfection of cDNA into HEK293 cells, and membrane currents were recorded using dual channel patch clamp amplifiers.

There are several potential reasons for the difference between therapeutic plasma concentrations and IC$_{50}$ values for *in vitro* potassium-channel inhibition. The first is that it is possible that 4-AP is a potent inhibitor of one or more potassium channels that have not yet been identified. Given that 4-AP is clinically effective at systemic concentrations that are well below the IC$_{50}$ values of the potassium channels tested so far$^2$, it seems likely that this could be the case. Furthermore, how 4-AP concentrates in the microenvironment of a given K$_v$ channel pore is not known, and thus plasma levels may not reflect what a transmembrane channel may experience. An alternative possibility is that *in vitro* assessment of inhibition of a cloned channel might not accurately represent what occurs in the native environment *in vivo*. In particular, given that potassium channel multimers are found in *vivo* that have not been tested using *in vitro* cloned channels$^2$, this is also feasible.

It should also be considered that, given the ubiquity of potassium channels throughout the tissues of the body, and particularly the nervous system, if 4-AP were not highly selective for the particular channels in the target tissue (presumably the demyelinated axonal membrane), it would be unlikely to have any clinical utility, given all the additional potential effects it might have on other parts of the neuromuscular system and cell types. There are data indicating that the sensitivity of potassium channels increases by at least 10-fold in chronically damaged central nerver fibers in the context of experimental spinal cord injury$^2$, and it is possible that channel expression in demyelinated plaques is highly specific and uniquely sensitive to the low concentrations of 4-AP achieved with the therapeutic dose.

For the three representative potassium channels tested, the IC$_{50}$ values of the two primary metabolites of 4-AP (3-hydroxy-4-aminopyridine and 3-hydroxy-4-aminopyridine sulfate) were in every case more than 30-fold higher (less potent) than the parent compound. Thus, these metabolites are unlikely to contribute to the positive pharmacodynamic effects of 4-AP that may be observed during treatment in patients with MS.

### Conclusion

Compared with the parent drug, the two primary metabolites of 4-AP demonstrate low potency for blockade of the representative potassium channels K$_v$ 1.1, K$_v$ 1.2, and K$_v$ 1.4 *in vitro*. Thus, these metabolites are unlikely to contribute to the positive pharmacodynamic effects of 4-AP that may be observed during treatment in patients with MS.

### Transparency

**Declaration of funding**

This study was funded by Acorda Therapeutics, Inc, Ardsley, NY, USA.

**Declaration of financial/other relationship**

A.C., A.B., and T.P. are employees and stockholders of Acorda Therapeutics, Inc, Ardsley, NY, USA.

**Acknowledgments**

The authors wish to thank E.J. Bienen, PhD, of The Curry Rockefeller Group, LLC, Tarrytown, New York, for medical editorial assistance with this report. Editorial support was funded by Acorda Therapeutics, Inc.

This study was conducted at ChanTest Corporation (Cleveland, Ohio).

### References

1. Ampyra® (dalfampridine) extended release tablets [package insert]. Ardsley, NY: Acorda Therapeutics, Inc.; 2011
2. Coetzee WA, Amarillo Y, Chiu J, et al. Molecular diversity of K$^+$ channels. Ann N Y Acad Sci 1999;868:233-85
3. Judge SI, Bever Jr CT. Potassium channel blockers in multiple sclerosis: neuronal K$_v$ channels and effects of symptomatic treatment. Pharmacol Ther 2006;111:224-59
4. Rudy B. Voltage-gated K$^+$ channels. In: Kew J, Davies C, eds. Ion Channels, From Structure to Function. Oxford: Oxford University Press, 2010:21-57
5. Goodman AD, Brown TR, Edwards KR, et al. A phase 3 trial of extended release oral dalfampridine in multiple sclerosis. Ann Neurol 2010;68:494-502
6. Goodman AD, Brown TR, Krupp L, et al. Sustained release of oral fampridine in multiple sclerosis: a randomised, double-blind, controlled trial. Lancet 2009;373:732-8
7. Dunn J, Blight A. Dalfampridine: a brief review of its mechanism of action and efficacy as a treatment to improve walking in patients with multiple sclerosis. Curr Med Res Opin 2011;27:1415-23
8. Lundt H, Thesleff S. The mode of action of 4-aminopyridine and guanidine on transmitter release from motor nerve terminals. Eur J Pharmacol 1977;42:411-12
9. Smith KJ, Felts PA, John GR. Effects of 4-aminopyridine on demyelinated axons, synapses and muscle tension. Brain 2000;123:171-84
10. Blight AR, Henney HR. Pharmacokinetics of 14C-radioactivity after oral intake of a single dose of 14C-labeled fampridine (4-aminopyridine) in healthy volunteers. Clin Ther 2009;31:328-35
11. Vollmer T, Blight AR, Henney HR. Steady-state pharmacokinetics and tolerability of orally administered fampridine sustained release 10-mg tablets in patients with multiple sclerosis: a 2-week, open-label, follow-up study. Clin Ther 2009;31:2215-23
12. Vollmer T, Henney HR. Pharmacokinetics and tolerability of single escalating doses of fampridine sustained-release tablets in patients with multiple sclerosis: a phase I-II, open-label trial. Clin Ther 2009;31:2206-14
13. Smith W, Swan S, Marbury T, Henney HR. Single-dose pharmacokinetics of sustained-release fampridine (fampridine-SR) in healthy volunteers and adults with renal impairment. J Clin Pharmacol 2010;50:151-9
14. Henney 3rd HR, Blight A, Faust B. Effect of food on the single-dose pharmacokinetics of dalfampridine extended release tablets in healthy volunteers. Am J Health Syst Pharm 2011;68:2148-54
15. Acorda Therapeutics: Data on file. PBR-974598. “Expert opinion on the metabolite profile of 14C-4-aminopyridine in human plasma and urine.” 1998
16. Gutman GA, Chandy KG, Grissmer S, et al. International Union of Pharmacology. LIII. Nomenclature and molecular relationships of voltage-gated potassium channels. Pharmacol Rev 2005;57:473-508
17. Wible BA, Kuryshchev YA, Smith SS, et al. An ion channel library for drug discovery and safety screening on automated platforms. Assay Drug Dev Technol 2008;6:765-80
18. Kuryshchev YA, Bruening-Wright A, Brown AM, et al. Increased cardiac risk in concomitant methadone and diazepam treatment: pharmacodynamic interactions in cardiac ion channels. J Cardiovasc Pharmacol 2010;56:420-30
19. Sherratt RM, Bostock H, Sears TA. Effects of 4-aminopyridine on normal and demyelinated mammalian nerve fibres. Nature 1980;283:570-2
20. Goodman AD, Brown TR, Cohen JA, et al. Dose-comparison trial of sustained-release fampridine in multiple sclerosis. Neurology 2008;71:1134-41
21. Stühmer W, Ruppersberg JP, Schröter KH, et al. Molecular basis of functional diversity of voltage-gated potassium channels in mammalian brain. EMBO J 1989;8:3235-44
22. Shi R, Blight AR. Differential effects of low and high concentrations of 4-aminopyridine on axonal conduction in normal and injured spinal cord. Neuroscience 1997;77:553-62