LEARNING A GENERIC ADAPTIVE WAVELET SHRINKAGE FUNCTION FOR DENOISING

Tobias Alt and Joachim Weickert

Mathematical Image Analysis Group, Faculty of Mathematics and Computer Science, Campus E1.7, Saarland University, 66041 Saarbrücken, Germany.
{alt,weickert}@mia.uni-saarland.de

ABSTRACT

The rise of machine learning in image processing has created a gap between trainable data-driven and classical model-driven approaches: While learning-based models often show superior performance, classical ones are often more transparent. To reduce this gap, we introduce a generic wavelet shrinkage function for denoising which is adaptive to both the wavelet scales as well as the noise standard deviation. It is inferred from trained results of a tightly parametrised function which is inherited from nonlinear diffusion. Our proposed shrinkage function is smooth and compact while only using two parameters. In contrast to many existing shrinkage functions, it is able to enhance image structures by amplifying wavelet coefficients. Experiments show that it outperforms classical shrinkage functions by a significant margin.

Index Terms— Wavelet Shrinkage, Adaptive Thresholding, Denoising, Interpretable Learning

1. INTRODUCTION

With the advent of machine learning, most of the state of the art solutions in image processing tasks have become data-driven: Many degrees of freedom allow a trainable model to adapt well to the input data. While yielding highly tailored solutions, results are often too complex for a rigorous analysis. In contrast to this, classical model-driven approaches provide a sound theoretical foundation but often cannot compete with their learning-based counterparts.

The goal of this work is to combine the advantages of model- and data-driven approaches on the basis of wavelet shrinkage for denoising: Given a signal that has been corrupted by noise, the goal is to reconstruct the original image as well as possible by modifying parts of the signal in the wavelet domain. We exploit the flexibility of a learning-based approach to train a smooth shrinkage function that adapts both to the wavelet scales and to the noise level. The proposed shrinkage function can even amplify wavelet coefficients and thus enhance important image structures, a property that most established shrinkage functions do not share. A low number of trainable parameters allows us to manually inspect the learned results and infer smooth connections between them. From these, we design a generic compact shrinkage function that incorporates the learned adaptivity, while only using two parameters. Experiments show that our shrinkage function outperforms classical ones by a significant margin. To the best of our knowledge, this is the first work to present a learning-based shrinkage function with this level of compactness.

Wavelet shrinkage has first been proposed by Donoho and Johnstone [1]. Therein, a noisy signal is transformed to a wavelet basis, resulting coefficients are modified by a shrinkage function, and then transformed back to obtain a denoised result. Classical shrinkage functions use a single threshold parameter for all scales of the wavelet transformation. However, individual scales might require distinct thresholds as they are differently affected by noise. To this end, adaptive shrinkage methods have been proposed. Early works of Zhang et al. [2, 3] already study a smooth adaptive shrinkage function with trainable thresholds. Other authors train arbitrarily shaped shrinkage functions [4], some also train the wavelets [5] or even general adaptive filters for shrinkage operations [6]. Non-trainable adaptive statistical models include [7, 8]. Most learning-based methods produce large amounts of trained parameters while relations between them are rarely investigated. In contrast to this, we directly employ a tightly parametrised model from which it is easy to infer smooth underlying parameter relations.

An important connection between 2D wavelet shrinkage and nonlinear diffusion filtering has been established by Mrázek and Weickert [9]. It allows us to directly translate a diffusivity into a trainable shrinkage function. We use a so-called Forward-and-Backward (FAB) diffusivity, resulting in a shrinkage function that can amplify coefficients. Only few works employ this property directly [10], but also results for learned shrinkage functions suggest its usefulness [4]. The corresponding concept of backward diffusion has also shown to be successful [11, 12, 13].

The remainder of this paper is structured as follows: In Section 2 we review classical wavelet shrinkage. We propose our model in Section 3 which is experimentally evaluated in Section 4. Finally, Section 5 summarises our conclusions.
2. CLASSICAL WAVELET SHRINKAGE

2.1. Basic Concept

Classical discrete wavelet shrinkage represents a noisy signal \(f = v + n \) in the wavelet basis, wherein the additive noise \(n \) is better separated from the true signal \(v \). This is achieved by the following three-step framework:

1. **Analysis**: The input data \(f \) is transformed to wavelet and scaling coefficients. In this representation, the noise affects all wavelet coefficients while the signal is represented by only a few significant ones \([14]\).

2. **Shrinkage**: A shrinkage function \(S_\theta \) with a threshold parameter \(\theta \) is applied individually to the wavelet coefficients. The scaling coefficients remain unchanged.

3. **Synthesis**: The denoised version \(u \) of \(f \) is obtained by back-transforming the modified wavelet coefficients.

Many shrinkage functions have been proposed. We will consider the most prominent ones of soft \([15]\), hard \([14]\), and garrote \([16]\) shrinkage for comparison. While these functions are easy to use in a practical setting, they suffer from applying the same threshold parameter to all scales and their binary decision structure. Finer scales might require a different threshold than coarser scales as they are more affected by noise. Furthermore, there is no clear separation between noise and signal coefficients such that eliminating too many coefficients always destroys signal details and eliminating too few leaves noise in the reconstruction.

The classical wavelet transformation is not shift-invariant: Shifting the input signal \(f \) will produce a different set of wavelet coefficients. To overcome this problem, Coifman and Donoho suggested *cycle spinning* \([17]\): The input signal is shifted, wavelet shrinkage is applied, and the results are averaged for all possible shifts. This yields the shift-invariant but redundant *non-decimating* wavelet transformation.

2.2. Relation to Nonlinear Diffusion

For the two-dimensional wavelet transform, wavelet coefficients \(w_x, w_y, \) and \(w_{xy} \) for \(x-, y-, \) and diagonal direction are obtained. To design rotationally invariant shrinkage rules, special care is required. Mrázek and Weickert \([9]\) achieve this by a channel coupling that is inspired by nonlinear diffusion filtering. Their Haar wavelet shrinkage rule is given by

\[
S_\theta \begin{pmatrix} w_x \\ w_y \\ w_{xy} \end{pmatrix} = \left(1 - g \left(w_x^2 + w_y^2 + 2 w_{xy}^2 \right) \right) \begin{pmatrix} w_x \\ w_y \\ w_{xy} \end{pmatrix}.
\]

The argument \(w_x^2 + w_y^2 + 2 w_{xy}^2 \) is a consistent approximation to the rotationally invariant expression \(|\nabla u|^2 \), where \(|\cdot| \) is the \(L^2 \) norm and \(\nabla = (\partial_x, \partial_y)^T \) denotes the spatial gradient operator. The function \(g \) is a *diffusivity* function from a nonlinear diffusion filter \([18]\). In nonlinear diffusion, filtered versions \(u(x, t) \) of an image \(f(x) \) are obtained by solving the partial differential equation

\[
\partial_t u = \text{div}(g(|\nabla u|^2) \nabla u)
\]

with \(u(x, 0) = f(x) \) as initial condition and diffusion time \(t \). The diffusivity \(g \) steers the activity of the process. It is scalar-valued and becomes small at edges where \(|\nabla u|^2 \) is large. This results in rotationally invariant edge-preserving denoising.

Mrázek and Weickert \([9]\) have shown that one explicit time step of nonlinear diffusion with diffusivity \(g \) is equivalent to coupled Haar wavelet shrinkage \([1]\). Thus, we can directly translate existing diffusivities into shrinkage functions.

3. TRAINABLE ADAPTIVE WAVELET SHRINKAGE

In our model, we equip the two-dimensional coupled Haar wavelet shrinkage approach from \([9]\) with a trainable adaptive shrinkage function. We sample a noisy image \(f \) on a discrete grid with \(2^L \times 2^L \) sampling positions and grid distance \(h_x = h_y =: h \). The discrete image is represented by a vector \(f \). It is transformed with the non-decimating two-dimensional Haar wavelet transformation \(W \) into lowpass scaling coefficients at scale \(L \) denoted by \(w^L \), and directional wavelet coefficients \((w_x^\ell, w_y^\ell, w_{xy}^\ell)_{\ell \leq L} \) for different scales. To ensure that coefficients have the same range on all scales, we rescale the basis functions accordingly. A shrinkage function \(S_\theta \) with parameters \(\theta = (\theta^1, \ldots, \theta^L) \) for each scale is applied to the wavelet coefficients. Coefficients on scale \(\ell \) are modified component-wise by \(S_\theta \) according to the coupled shrinkage rule \([1]\). We obtain the reconstruction \(u \) by applying the backward transformation \(W \) to the modified set of wavelet coefficients and the unaltered scaling coefficients:

\[
u = W^T S_\theta(W f).
\]

3.1. Choice of Shrinkage Function

We found the Forward-and-Backward (FAB) diffusivity of Smolka \([19]\) to be a good candidate for modelling our shrinkage function. It uses two *contrast parameters* \(\lambda_1 \) and \(\lambda_2 \) that control the amount of forward and backward diffusion. The diffusivity is given by

\[
g(s^2) = 2 \exp \left(-\frac{s^2}{\lambda_1^2} \right) - \exp \left(-\frac{s^2}{\lambda_2^2} \right), \quad \lambda_2 \geq \lambda_1.
\]

It is translated into the shrinkage function according to the coupled shrinkage rule \([1]\). For the extreme case of \(\lambda_1 = \lambda_2 \), the diffusivity simplifies to the exponential Perona-Malik diffusivity \([18]\), corresponding to pure shrinkage. For larger differences between \(\lambda_2 \) and \(\lambda_1 \), the backward diffusion becomes more pronounced and the shrinkage function damps small coefficients and amplifies larger ones.
we choose the mean square error between the reconstruction
\[\ell \]
\[\text{scale} \]
\[\text{trainable parameters for the proposed shrinkage function on} \]
f\[\text{identity. Therefore, we do not display coarser scales} \]
\[\ell > k \]
\[\text{significant shrinkage as the learned function approaches the} \]
compensates the loss of image details caused by shrinking co-
we observe coefficient amplification. We presume that this
let scale, all coefficients are shrunken. On the second scale,
\[\text{for} \]
\[\sigma \]
\[\text{Gaussian noise of mean 0 and standard deviation}\]
\[\text{L} \]
To train the shrinkage functions, we add Gaussian noise to a
3.2. Learning Framework
To train the shrinkage functions, we add Gaussian noise to a
database of ground truth images \(\{v_k\}_{k=1}^K \). This yields noisy
images \(f_k \) from which we compute denoised results \(u_k \). The trainable
parameters for the proposed shrinkage function on
scale \(\ell \) are given by \(\theta^e = (\lambda_1^e, \lambda_2^e) \). As an objective function,
we choose the mean square error between the reconstruction
\[u_k \]
and the corresponding ground truth image \(v_k \), averaged
over all image pairs and normalised by the number of pixels:
\[E(\theta) = \frac{1}{K} \sum_{k=1}^K \frac{\|u_k - v_k\|_2^2}{2^{2L}}. \] (5)
The parameters are trained with the gradient-based L-BFGS
algorithm \[20 \]. To that end, we compute the gradients of the
objective function w.r.t. all trainable parameters.

4. EXPERIMENTS
In our experimental setup, we use 400 images from the
BSDS500 database \[21 \] as a training set and the 68 im-
ages introduced in \[22 \] as a test set. Their grey values are
in \([0, 255] \) and the grid size is set to \(h = 1 \). From each
image we select random regions of size \(256 \times 256 \), i.e. the
number of scales is \(L = 8 \). All images are corrupted by
Gaussian noise of mean 0 and standard deviation \(\sigma \). We do
not clamp the resulting pixel grey values to the original grey
value range to preserve the Gaussian statistics of the noise.
We have found the learned parameters to be robust w.r.t. any
reasonable initialisation, so no pretraining is performed.

4.1. Evaluation of the Learned Shrinkage Functions
In a first experiment, we train the adaptive shrinkage function
for \(\sigma = 25 \). The learned shrinkage functions for different
scales are presented in Figure[1] On the first and finest wave-
let scale, all coefficients are shrunken. On the second scale,
we observe coefficient amplification. We presume that this
compensates the loss of image details caused by shrinking co-
efficients on the first scale. All further scales do not perform
significant shrinkage as the learned function approaches the
identity. Therefore, we do not display coarser scales \(\ell > 4 \).
When we increase the noise level to \(\sigma = 50 \), we observe
that more scales are involved in the shrinkage process. The
trained shrinkage functions are displayed in Figure[2] Both
configurations are in line with our conjecture that the diffusiv-
ity should change smoothly over the scales and the noise lev-
els. Shrinkage and amplification decrease for coarser scales,
\[i.e. \lambda_1^e \text{ and } \lambda_2^e \text{ tend to } 0. \] With increasing noise, shrinkage and
amplification become stronger and affect more scales.

4.2. Ablation Study
To investigate the effectiveness of different aspects of our
model, we perform the following ablation study. We start with
classical hard wavelet shrinkage and equip it with the non-
decimating wavelet transformation and the coupled shrinkage
rule to enable a fair comparison. For \(\sigma = 20 \), we obtain an
average PSNR on the test set of 27.88dB. In a second step, we
use the proposed shrinkage function restricted to \(\lambda_2 = \lambda_1 \), so
no amplification can take place. Still, the shrinkage function
does not adapt to the individual scales. This yields a compar-
able PSNR of 27.83dB, showing that smoothness of the shrink-
age function alone does not matter for reconstruction quality.
When we remove the restriction on the shrinkage function,
the PSNR increases to 28.06dB which indicates that the ampli-
fication of wavelet coefficients is helpful for a good recon-
struction. Finally, introducing adaptivity to the scales boosts
the PSNR to 28.55dB, demonstrating that the scale dynamic
is the crucial ingredient for a good denoising result.

4.3. Finding a Generalised Shrinkage Function
So far, the contrast parameters are trained for each pair of
scale \(\ell \) and noise level \(\sigma \) from which we will now infer a
generic relation. Figure[3] shows the evolution of both contrast
parameters over the scales and the noise levels. A function of
type \(\frac{\alpha}{\ell} \) with an appropriate scalar \(\alpha \) can provide a good de-
scription of the scale dependence of \(\lambda_1^e \). For \(\lambda_2^e \), the values
on fine scales do not follow this relation, but in these cases all
relevant coefficients are already covered by shrinkage through
a large \(\lambda_1 \), making the choice of \(\lambda_2 \) irrelevant.

Regarding the relationship between the shrinkage func-
tions and the noise standard deviation it was already noted in
\[4 \] that a simple rescaling of shrinkage functions is suffi-
cient for adapting to a new noise level. For our parametrisa-
tion, rescaling the complete shrinkage function is equivalent to
rescaling both \(\lambda_1 \) and \(\lambda_2 \). In Figure[3] we can see that in-
deed such a rescaling is learned.
These two insights suggest that a suitable generalisation of the shrinkage function parameters which is smooth over the scales ℓ and the noise standard deviation σ is given by $\lambda_1(\ell, \sigma) = \frac{\alpha \sigma}{s^2}$ and $\lambda_2(\ell, \sigma) = \frac{\beta \sigma}{s^2}$ where α and β are scalars that have yet to be determined. To empirically show that this parametrisation indeed captures the underlying relations in a reasonable way, we compare two models: One model trains the proposed shrinkage function for each pair (ℓ, σ) individually, while the other one only optimises the factors α and β of the generalised parameters. To ensure a fair comparison, both models are trained on a new training and test set combining images with noise levels between $\sigma = 10$ and $\sigma = 60$ in steps of 2.5. Indeed, the generic model performs only 0.3dB worse than the model with individual parameters in terms of PSNR, while training only 2 instead of 336 parameters. With this result we conclude that the generic shrinkage function captures the adaptivity to scales and noise levels well. The scalars are learned as $\alpha = 5.4$ and $\beta = 8.9$, yielding a combined generic coupled shrinkage function \ref{eq:generic_shrinkage} with diffusivity

$$g(s^2, \ell, \sigma) = 2 \exp\left(\frac{-s^2}{(5.4 \sigma)^2}\right) - \exp\left(\frac{-s^2}{(8.9 \sigma)^2}\right). \quad (6)$$

\subsection*{4.4. Comparison to Classical Shrinkage}

Lastly, we compare our generic shrinkage function to soft, hard, and garrote shrinkage over a range of noise levels. We optimise the threshold parameter of the classical functions individually for each noise level, while the generic function is used as is from \ref{eq:generic_shrinkage}. The results are displayed in Figure \ref{fig:psnr}. Although the classical approaches are optimised for each noise level, they are inferior to the generic shrinkage function. Over the range of noise levels used for training, improvements of up to 0.65dB with an average of 0.34dB are obtained compared to the best classical approaches.

For $\sigma = 50$, Figure \ref{fig:reconstructions} shows reconstructions along with the noisy input and the ground truth image. Soft shrinkage blurs the image too strongly since all wavelet coefficients are decreased by the same margin. Hard shrinkage suffers from remaining noise as it does not shrink large noisy wavelet coefficients. While less pronounced, this is also the case for garrote shrinkage. Both garrote and hard shrinkage also blur important image structures. Our generic shrinkage function outperforms all classical approaches. By strongly shrinking coefficients on fine scales, noise is efficiently removed. To compensate for lost image details, amplification of wavelet coefficients on coarser scales enhances important structures.

\section*{5. Conclusions}

Our approach of learning a compact shrinkage function for wavelet denoising combines the advantages of model-driven and data-driven approaches: In contrast to other parameter learning strategies, we can cope with as little as two parameters without substantially sacrificing performance. This results in an interpretable shrinkage function and a transparent, but adaptive model.

In our ongoing work we extend these findings to other adaptive nonlinear approaches such as diffusion evolutions.
6. REFERENCES

[1] D. L. Donoho and I. M. Johnstone, “Ideal spatial adaptation by wavelet shrinkage,” *Biometrica*, vol. 81, no. 3, pp. 425–455, 1994.

[2] X.-P. Zhang and M. D. Desai, “Nonlinear adaptive noise suppression based on wavelet transform,” in *Proc. IEEE International Conference on Acoustics, Speech and Signal Processing*, Seattle, WA, May 1998, vol. 3, pp. 1589–1592.

[3] X.-P. Zhang, “Thresholding neural network for adaptive noise reduction,” *IEEE Transactions on Neural Networks*, vol. 12, no. 3, pp. 567–584, May 2001.

[4] Y. Hel-Or and D. Shaked, “A discriminative approach for wavelet denoising,” *IEEE Transactions on Image Processing*, vol. 17, no. 4, pp. 1338–1351, Nov. 2003.

[5] J. Portilla, V. Strela, M. J. Wainwright, and E. P. Simoncelli, “Image denoising using scale mixtures of Gaussians in the wavelet domain,” *IEEE Transactions on Image Processing*, vol. 12, no. 11, pp. 1338–1351, Nov. 2003.

[6] P. Mrázek and J. Weickert, “From two-dimensional nonlinear diffusion to coupled Haar wavelet shrinkage,” *Journal of Visual Communication and Image Representation*, vol. 18, no. 2, pp. 162–175, Apr. 2007.

[7] J.-L. Starck, F. Murtagh, E. Candès, and D. L. Donoho, “Gray and color image contrast enhancement by the curvelet transform,” *IEEE Transactions on Image Processing*, vol. 12, no. 6, pp. 706–717, June 2003.

[8] G. Gilboa, N. A. Sochen, and Y. Y. Zeevi, “Forward-backward diffusion processes for adaptive image enhancement and denoising,” *IEEE Transactions on Image Processing*, vol. 11, no. 7, pp. 689–703, Nov. 2002.