EFFECT OF ANTI-BIOFILM POTENTIAL OF DIFFERENT MEDICINAL PLANTS: REVIEW

ABINAYA MANI, GAYATHRI MAHALINGAM*

Department of Biotechnology, School of Bioscience and Technology, VIT University, Vellore - 632 014, Tamil Nadu, India.
Email: gayathrigopinath@vit.ac.in

Received: 23 September 2016, Revised and Accepted: 29 October 2016

ABSTRACT

Medicinal plant products are the natural products which have been very useful for human to cure various ailments and as an alternative medicine for conventional therapy. However, bacteria in natural environments are mainly exist in biofilm formation and are more susceptible to cause severe infections than the planktonic counterparts. Biofilm is associated with impaired epithelization and granulation tissue formation and also promotes a low-grade inflammatory response that interferes with wound healing. Since the infection caused by biofilm is often very difficult to treat, there is a need to find a new active anti-biofilm agent. In recent past, interest in the therapeutic and nutritional properties of various medicinal plants and its natural phytochemical compounds which have established for their anti-biofilm activities has been increased gradually. In this review, we have described various aerial parts of medicinal plants which have anti-biofilm effect which was evaluated against biofilm producing different bacterial pathogens and antimicrobial agents which are responsible to cure wound healing.

Keywords: Medicinal plants, Phytochemical, Anti-biofilm activity.

© 2017 The Authors. Published by Innovare Academic Sciences Pvt Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/) DOI: http://dx.doi.org/10.22159/ajpcr.2017.v10i2.15334

INTRODUCTION

Bacterial biofilm is defined as microbes derived sessile communities of microorganism attached to the living or inert surface and is embedded in the extracellular polymeric substances (EPS) [1]. The role of the biofilm is to attach to the epithelia layer of multicellular organisms, abiotic surfaces, and interfaces between air and water. Some bacterial biofilms have been reported to have useful effects on food chains, sewage treatment of plants, to eliminate petroleum oil or hydrocarbon spillage from the oceans and human chronic bacterial infections. In 1970s, the research on biofilm has been extensive, with significant evidence showing that bacteria exist predominantly as a biofilm phenotype in medical, natural and industrial ecosystem [2]. Today biofilm is implicated in numerous bacterial infections including those associated with the urinary tract, ear, sinuses, cystic fibrosis, indwelling catheters, chronic wounds, and periodontal disease.

Biofilm is often characterized by surface attachment, structural heterogeneity, genetic diversity, complex community interaction, and an extracellular matrix of polymeric substances. Single celled organisms generally exhibit two different modes of behaviors [3]. Mostly bacterial embedded biofilms arrive in a stationary phase, during these phase physicochemical interactions take place and produced a slime layer, followed by these lower diffusion of active molecules, and then a lesser susceptibility of antimicrobial killing [4]. The bacterial biofilm shows a different metabolic state than planktonic bacteria, mainly during transcription and cell interaction. The mode of biofilm growth results in an increased bacterial resistance against antimicrobial agent and host defense mechanism is now well-documented, and this was highlighted the importance of effective biofilm management in chronic infections [3].

LIFE CYCLE OF BIOFILMS

The life cycle of biofilm contains four general stages: First the cells are adhere to a substrate such as polysaccharides or glycoprotein and form microcolonies [5]. As more as cell aggregates, the concentration of chemical signals reaches a point that triggers genetic changes in the cells that cause them to bind tightly to the surface and neighboring cells. These microcolonies produce a thick extracellular matrix composed of exopolysaccharides (EPS), protein, extracellular DNA and other polymer that forms a protective physical barrier around the bacteria, allowing them to grow into a mature biofilm of complex communities that are capable of chemical communication, a process called quorum sensing (QS). QS molecules have been shown to be essential for biofilm formation [6,7].

Once the biofilm reaches particular cell density, point of saturation, biofilm turns off the expression of gene producing EPS products and reactivates flagella motility genes to disperse new planktonic cells from disseminating biofilm in search of new environment [8]. The relationship between the host and its microbial communities is carefully balanced, but under certain conditions, it can break down and result in infectious diseases. Microbes of biofilm secrete specific toxins, generate a hypoimmune microenvironment, and the host immune system, from all of which may contribute to delayed wound healing [9].

According to a recent publication announcement from the National Institutes of Health, more than 60% of all microbial infections are caused by biofilms [10].

The exploration for alternative therapies is a required and using nowadays, for examples, animal or natural plant products, and/or combination with antibiotics or synthetic compounds seems to be one of the auspicious solutions [11]. Drugs which are derived from natural sources are major interest, and thus they are focused for activity against biofilm producing microorganism. Till now 80% of human bacterial infections are formed by biofilm-associated, mostly infections are frequently being caused by Staphylococcus epidermidis, Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa [12].

Plant-based compounds are widely accepted due to the perception that they are safe, easily available, less expensive, and also have no side effects. Plant-based drugs have greater potential for producing new
drugs and used in traditional medicine to treat the immune booster, chronic and several infectious diseases. The World Health Organization estimated that about 80% of the world populations depends on traditional herbal medicine for their primary healthcare [13]. There are approximately 500,000 plant species occurring worldwide and <1% has been screened for biological active compound [14].

Plant has the ability to synthesize a wide variety of phytochemical compounds as secondary metabolites. Many of the phytochemical have been used to effectively treatment of various ailments for humanity. The different chemical and components extracts of many plants have been proved to be possible sources for new drugs [5]. The plant-derived substances are under research for possible application in pharmaceutical industry includes crude extracts of leaves, stems, barks, root, essential oils, and novel compounds isolated from any of these sources. The effects of plant extracts to prevent biofilm formation and adherence have been shown in earlier studies [8].

Nowadays biofilm is considered major target for pharmacological development of drugs. For example, in future it may be possible to formulate wound care products, such as rinses or dressing, debridement pads, gel, anti-biofilm agent that penetrate through biofilm EPS, thus exposing the bacteria and increasing their susceptibility to antimicrobials. This review can contribute to the development of a new approach to prevent and to treat biofilm infections (Table 1).

CONCLUSION

Large group of traditional medicinal plants is used for different medicinal properties, which have a greater potential to cure various diseases. Furthermore, various extracts from different medicinal plant parts such as leaves, flowers, essential oils, root, and barks were also found to possess the anti-biofilm activity. Nowadays, it is known that resistance to antibiotic is often caused by biofilm formation of microbial pathogens. Therefore, the development of effective and safe medicine properties of plant extracts, which have antimicrobial activity have developed in both academic and industrial sectors. In this review, we have described that various aerial parts of traditional medicinal plants were able to inhibit the biofilm formation from various strains, were isolated from different infection sources such as wound, septicemia, urinary tract infections showing its potential value as an alternative to anti-infection agent. Thus, there remaining tremendous scope for a further research study of these traditional medicinal plants to establish their therapeutic efficacy and molecular mechanism of anti-biofilm effect of the bioactive compound.

Table 1: List of medicinal plants which have anti-biofilm activity

Name	Parts used	Types of plant extracts	Medicinal uses of plant	Pathogens used for biofilm	Activities	References
Azadirachta indica	Leaves	Methanol	Various ailments, act as contraceptive and sedative agent	*Escherichia coli*, *Pseudomonas aeruginosa*	Antibacterial, antihelminic and anti-biofilm activities	[15,16]
Vitex negundo	Leaves	Methanol, ethyl acetate, petroleum ether, and hexane	Wound, ulcer, asthma, opthalmic, verminosis, bronchial smooth muscles relaxant, nerve and aphrodisiac Bronchial, dysentery, hair growth promotes, and insect repellent	*Escherichia coli*	Antinociceptive, antimicrobial, anti-inflammatory, antipyretic, anticonvulsant, insecticidal and pesticidal activities	[15,17]
Tridax procumbens	Leaves	Methanol, ethyl acetate	Coughs, colds, vomiting, flatulence, heal peptic ulcers	*Escherichia coli*	Wound healing effect, radio protective, anti-carcinogenic properties, anti genotoxic, neuroprotective effect, and larvicidal property	[15]
Ocimum tenuiflorum	Leaves	Methanol	Gastrointestinal and insect repellent	*Streptococcus pyogenes*	Anti-biofilm, antibacterial, antioxidant activities	[18]
Piper lonum Piper nigrum	Grains	Methanol, petroleum ether, chloroform and ethyl acetate	Malaria, asthma, cough, diabetes and heart problems	*Escherichia coli*, *Salmonella typhi*, *Pseudomonas aeruginosa*	Anti-bacterial, antifungal, anti-biofilm, antioxidant and anticancer activities	[19]
Pittosporum tetraspernum	Leaves	Ethyl acetate	Chronic bronchitis, rheumatism, skin diseases and leprosy	*Escherichia coli*, *Salmonella typhi*, *Pseudomonas aeruginosa*	Anti-bacterial, antifungal, anti-biofilm, antioxidant and anticancer activities	[19]
Couroupita guianensis	Fruits	Chloroform	Tumors, pain and hypertension	*Pseudomonas aeruginosa*	Antimicrobial, antitypeobacterial, antifungal, antisepsic, antibiotic, anti-biofilm anti-inflammatory activities	[20]

(Contd...)
Table 1: (Continued)

Name	Parts used	Types of plant extracts	Medicinal uses of plant	Pathogens used for biofilm	Activities	References
Chamaemelum nobilis	Flowers	Aqueous	Malaria, peptic ulcers, wound healing	*Pseudomonas aeruginosa*	Anti-inflammatory, antimicrobial, anti-epidemic, anti-swarming activities	[21]
			Supporting brain metabolism		Antimicrobial, anti-biofilm activities	
Vinca minor	Leaves	Aquatic, acetone and ethyl acetate	Cosmetically and therapeutically	*Proteus mirabilis, Pseudomonas aeruginosa*	Anti-biofilm, antibacterial, antifungal activities and antidepressive properties	[22,23]
Lavandula angustifolia	Essential oils	Major constituents linalool, alpha terpineol		*Escherichia coli, Staphylococcus aureus*		[23]
Melissa officinalis	Essential oils	Liquid	Gastrointestinal disorders, stress, sleep disorder, spasmolytic, Alzheimer diseases	*Escherichia coli, Staphylococcus aureus*		[23,24]
Ficus sansibarica	Fruits, leaves, stem barks	Cold extract methanol, hexane, dichloromethane, ethyl acetate and methanol	Wound healing, tuberculosis, diabetes, malaria and HIV	*Escherichia coli, Staphylococcus aureus*	Antioxidant, antibacterial, antifungal, antidepressive, antidiabetics, anticancer, anti-inflammatory and antihyperglycemia	[25]
Pongamia pinnata	Leaves	Methanol	Antihelminthic, gonorrhea, leprosy, inflammation, piles and wound	*Streptococcus mutans*	Antiplasmodial, anti-inflammatory, anti-diarrheal, antioxidant, anti-hyperammonemi, antileucer, antihyperglycaemic and anti-oxidative activities	[26]
Zingiber officinale	Root	Ethanol and water	Arthritis, rheumatism, muscular aches, pains, sore throats, dementia, hypertension, and infection diseases	*Pseudomonas aeruginosa*	Anti-biofilm activity, antioxidant, antiemetic, anti-inflammatory, and anti-inflammatory activities	[27,28]
Coriandrum sativum	Seed	Ethanol and water	Drug for indigestions, worms, pain in joints and rheumatism	*Staphylococcus aureus*	Anti-biofilm activity	[28]
Leucas aspera	Whole plant	Methanol, ethyl acetate, petroleum ether, and hexane	Scabies, psoriasis, snake bite, laxative, and diaphoretic	*Streptococcus pyogenes, Pseudomonas aeruginosa, Staphylococcus aureus*	Antibacterial, anti-inflammatory, anti-diarrheal, antioxidant, antibacterial, hepatoprotective, anti-diabetic activities and central nervous system activity	[29]
Artocarpus lakoocha	Bark	Aqueous extracts	Wound, skin lesion, and cosmetic	*Candida albicans, Candida tropicalis, Candida dubliniensis*	Antiviral, anti-biofilm, anticaldidal, anti-inflammatory, anti-HIV properties, anti-skin aging and atherosclerosis	[30,31]
Murraya koenigii	Leaves, essential oil	Ethanol, aqueous	Tonic, chronic wound, stomachic inflammation, itching, vomiting, cure piles	*Pseudomonas aeruginosa*	Anti-biofilm, antilucer, antidiarrhoea, antidiabetes activities, cholesterol reducing property, phagocytic activity, and more useful medicinal properties	[32,33]
Name	Parts used	Types of plant extracts	Medicinal uses of plant	Pathogens used for biofilm	Activities	References
---------------------	--------------------------	-------------------------	-------------------------	-------------------------------------	---	------------
Hakea sericea	Aerial parts	Methanol	No medicinal uses	*Staphylococcus aureus*	Antioxidant, antibacterial, anti-biofilm and cytotoxicity activities	[34]
Chromolaena odorata	Leave	Chloroform, ethanol	Cough, malaria	*Pseudomonas aeruginosa*	Anti-biofilm, antioxidant, anti-biofilm, anti-inflammatory, wound healing	[35]
Terminalia fagifolia	Stem bark	Ethanol	Gastrointestinal	*Staphylococcus aureus, Staphylococcus epidermidis*	Antimicrobial, anti-biofilm, anti-inflammatory, anti-ulcerogenic, and	[36]
			disturbances, such as		hypokinetic activities. In vitro and in vivo cytotoxicity studies	
			ulcer, gastritis, and			
			diarrhea			
Pityrocarpamo moniliformis	Leaves	Aqueous	Healing process	*Staphylococcus epidermidis,	Anti-biofilm, antibacterial activities, antinociceptive, anti-inflammatory	[37,38]
				Pseudomonas aeruginosa	agent	
Myracrodruon urundeuva	Leaves, branches, and steam bark	Aqueous	Tumors, rheumatism,	*Staphylococcus epidermidis*	Anti-biofilm, anti-inflammatory, anti-allergic, and wound healing properties	[39]
			inflammations, acne,			
			pain, skin problems,			
			allergy, cracks, etc.,			
Agrimonia eupatoria	Flowers	Ethanol, diethyl ether, water, and acetone	Urinary tract disorders	*Pseudomonas aeruginosa, Proteus mirabilis*	Anti-inflammatory, neuroprotective, anti-diabetic, anticancer, antiobesity	[40]
Ibicella lutea	Aerial part	Chloroform	Skin infection	*Proteus mirabilis*	properties, antibiofilm, antibacterial, antioxidant activities	[41]
Myroxylon peruiferum	Leaves, bark-trunk	Hydroalcoholic extracts	Heal new wound, asthma,	*Staphylococcus epidermidis*	Biofilm formation, hemagglutination, hemolysis, antibacterial activity	[42]
			cold, diarrhea, skin			
			parasities, rheumatism			
			and urinary infection			
Gymnema sylvestre	Leaves	Methanol	Ailments	*Streptococcus pyogenes*	Anti-biofilm, antibacterial activities	[29]
			constipation, liver			
			disease, control blood			
			sugar, lipid – lowering agent, ailments			
			constipation, liver			
			disease, control blood			
			sugar, lipid – lowering agent and weight loss			
Aerva lanata	Leaves	Methanol, petroleum ether	Headache, uterine	*Staphylococcus aureus, Escherichia coli, Bacillus subtilis, Proteus vulgaris*	Anti-diarrhoeal, anti-hyperglycemic, antioxidant, anti-helmentic, anti-inflammator, diuretic, anti-urothliatic, analgesic, anti-biofilm activities.	[43,44]

(Contd...)
Name	Parts used	Types of plant extracts	Medicinal uses of plant	Pathogens used for biofilm	Activities	References
Anadenanthera colubrina	Stem bark, branches, leaves, fruits	Aqueous	Wounds, inflammation, throat, lung and kidney problems, chest inflammation, allergy, tuberculosis	S. epidermidis, Pseudomonas aeruginosa	Anti-inflammatory, antimicrobial, antiproliferative potential	[39]
Ouratea blanchetiana	Branches, leaves	Aqueous	Gastric distress, astringent, rheumatism, dysentery, diarrhea, sprains, arthritic disorder, inflammation related diseases	Pseudomonas aeruginosa	Anti-tumour, antiviral, antimicrobial activities and other pharmacological activities	[45,46]
Plectranthus amboinicus	Leaf	Methanol extracts	Cold, asthma, constipation, headache, fever and skin diseases	Pseudomonas aeruginosa, Vibrio harveyi	Anti-biofilm, anti-QS, antimicrobial, anti-inflammatory, antitumor, wound healing, anti-epileptic, larvicida, antioxidant and analgetic activities.	[47]
Helichrysum italicum	Leaf	Methanol	Allergies, colds, skin, liver, gallbladder disorder, inflammation, sleeplessness	Pseudomonas aeruginosa	Anti-inflammatory, anti-infection properties, photoprotective anti-arthematos activities	[48,49]
Vaccinium vitis-idaea	Leaf	Aqueous	Blood clots, cold, kidney cyst, obesity, skin diseases, wounds, mycosis, and anorexia	Escherichia coli	Diuretic, diastolic, diaphoretic, anti-inflammatory effect, antibacterial, antioxidant, anticancer, antiangiogenic activities	[50]
Hernia glabra	Leaf	Aqueous	Arthritis, respiratory problem, urinary tract infection, rheumatism, and swelling	Escherichia coli	Diuretic, anticonvulsant, astringent, antirheumatic activities	[50]
Euphorbia hirta	Aerial	Methanol	Gastrointestinal, bronchial, parasitosis, amoebic dysentery, and respiratory ailments	Pseudomonas aeruginosa	Antibacterial, anti-biofilm, antioxidant, antihypertensive, anxiolytic, antimalarial, anti-inflammatory, anticancer activities.	[51]
Arctium lappa	Leaf	Ethanol	Diuretic, diaphoretic, blood purifying agent	Staphylococcus aureus	Antibacterial, antioxidant, anti-biofilm, anti-inflammatory activities	[52,53]
Aquilaria crassna	Leaf	Aqueous	Diarrhoea, dysentery, skin diseases, and cardiovascular function enhancer	Staphylococcus epidermidis	Antibacterial, antioxidant, anti-biofilm, antiplasmodic, antiinflammatory diarrhea activities	[54]
Cymbopogon flexuosus	Essential oil	-	Cosmetics, insecticides, digestive disorder, fever, and antiseptic	Staphylococcus aureus	Antioxidant, anti-inflammatory activities	[55]
Allium sativum	Leaf	Ethanol, methanol	Wound infection, common cold, malaria, lung tuberculosis, hypertension, sexual transmitted, mental disorder, liver diseases, asthma, and diabetes	Escherichia coli, Salmonella typhi, Staphylococcus aureus and Bacillus cereus	Antibacterial, anti-biofilm, antifungal, anti-inflammatory, larvicial activities	[56]
Table 1: (Continued)

Name	Parts used	Types of plant extracts	Medicinal uses of plant	Pathogens used for biofilm	Activities	References
Salvia triloba	Leaves, volatile oil	Ethanol	Headaches, toothaches, common cold, digestive problems, oral infection and wound healing	Staphylococcus aureus, Escherichia coli and Candida albicans	Anti-biofilm, antiadhesive, anti-MRSA antibacterial activities	[57]
Andrographis paniculata	Leaves	Ethanol, methanol, chloroform, aqueous, and hexane Ethanol	Fever, dysentery, snakebite, sore throat	Pseudomonas aeruginosa	Antimicrobial, antimalaria, anti-HIV activities	[58]
Hibiscus sabdariffa L	Leaves	Ethanol	Diuretic, mild laxative, cardiac, nerve diseases	Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, Staphylococcus epidermidis, Klebsiella pneumonia, Proteus mirabilis	Antibacterial, anti-biofilm, antioxidant, antihypertensive, anticancerous activities and cytotoxicity properties	[59,60]
Mentha arvensis	Essential oil from leaf	-	Indigestion, peptic ulcer, skin diseases	Aggregatibacter actinomycetemcomitans	Antibacterial, anti-biofilm activities	[61]
Mentha piperita	Essential oil from leaf	-	Toothpaste digestive tablets, mouthwashes	Aggregatibacter actinomycetemcomitans, Candida albicans, Candida dubliniensis	Antibacterial, anti-fungal, anti-viral, anti-fungal, antioxidant, radioprotective analgesic activities	[61,62]
Lagenaria sicerarita	Fruit	Organic and aqueous	Immunosuppressant, cardio-tonic, cardio protective, diuretic, nutritive agent, purgative, antidote for certain poisons, emetic, bronchilator, antcypteric, alopecia, and aphrodisiac	Pseudomonas aeruginosa, Escherichia coli, Staphylococcus aureus, Streptococcus pneumoniae, Streptococcus pyogenes	Antibacterial, antioxidant, anti-biofilm activities	[63]
Buchanania lanzan	Root	Methanol	Digestive, curing blood diseases, cardiotonic, astringent, glandular swelling, cyclophosphamide induce genotoxicity, oxidative stress, Immunostimulant and astringent properties	Escherichia coli, Pseudomonas aeruginosa	Anti-inflammatory, antibacterial, antioxidant activities	[64]
Calendula officinalis	Flowers	Water	Measles, smallpox, jaundice, costiveness, ointment for wound, ulcer, frostbite, skin damage, scars, and blood purification	Salmonella, Shigella dysenteriae, Shigella flexneri, Shigella sonnei and Escherichia coli	Antibacterial, anti-biofilm, antiedematous, antiseptic action, antioxidant, antispasmodic activities	[65,66]
Rosa canina	Leaf	Methanol	Cosmetic, food industry, infections, inflammatory diseases, chronic pain, flu and alcoholic beverages	Pseudomonas aeruginosa, Salmonella typhimurium	Antimicrobial, anti-biofilm activities	[67]

(Contd...)
Table 1: (Continued)

Name	Parts used	Types of plant extracts	Medicinal uses of plant	Pathogens used for biofilm	Activities	References
Rhodomyrtus tomentosa	Leaf	Ethanol	Diarrhea, wound healing, urinary test infections	Streptococcus pyogenes	Antioxidant, antibacterial, antibiofilm, cancer-chemopreventive activities	[68]
Humulus lupulus L.	Hop cones	Ethanol	Nervous tension, headache, indigestion, sedative, and hypnotic	Staphylococcus aureus	Antidiherent, anti-biofilm, anti-bacterial, anti-inflammatory, estrogenic activities	[69,70]
Aegle marmelos	Leaves	Ethyl acetate	Sore throats, cold, intestinal ailments, fertility, chest congestion, fish poison, child birth, and intermittent fever	Salmonella typhi, Escherichia coli, Pseudomonas aeruginosa	Antidiabetic, antitumor, antiallergic, anti-inflammatory, antiviral, antihyperlipidaemic, antibacterial, antioxidant, anti-biofilm, antimelanogenic, cytotoxic activities	[71]
Kaempferia rotunda	Rhizome	Ethanol	Heal wounds, cure stomach ailments, post-delivery care, blood clots, jaundice, swelling	Pseudomonas aeruginosa, Staphylococcus aureus	Antitumor, antiallergic, anti-inflammatory, antiaging activities	[72]

MRSA: Methicillin-resistant *Staphylococcus aureus*

REFERENCES

1. Donlan RM, Costerton JW. Biofilms: Survival mechanisms of clinically relevant microorganisms. Clin Microbiol Rev 2001;15(2):167-93.

2. Costerton JW, Geesey GG, Cheng KJ. How bacteria stick. Sci Am 1978;238(1):86-95.

3. Jesaitis AJ, Franklin MJ, Berglund D, Sasaki M, Lord CJ, Bleazard JB, et al. Compromised host defense on *Pseudomonas aeruginosa* biofilms: Characterization of neutrophil and biofilm interactions. J Immunol 2003;171(8):4329-39.

4. Gualtieri M, Bastide L, Villain-Guillot P, Michaux-Charachon S, Latouche J, Leonetti JP. In vitro activity of a new antibacterial rhodamine derivative against *Staphylococcus epidermidis* biofilms. J Antimicrob Chemother 2006;58(4):778-83.

5. Hauser AR. The type III secretion system of *Pseudomonas aeruginosa* infection by injection. Nat Rev Microbiol 2011;7(9):654-665.

6. Chen H, Fujita M, Feng Q, Clardy J, Fink GR. Tyrosol is a quorum-sensing molecule in *Candida albicans*. Proc Natl Acad Sci U S A 2004;101(14):5048-52.

7. Hornby JM, Nickerson KW. Enhanced production of farnesol by *Candida albicans* treated with four azoles. Antimicrob Agents Chemother 2004;48(6):2305-7.

8. Slonczewski JL, Foster JW. Bacterial culture, growth and development. Microbiology: An Evolving Science. Ch. 4. USA: W. W. Norton & Company; 2013. p.115-48.

9. Zhao G, Usai ML, Underwood RA, Singh PK, James GA, Stewart PS, et al. Time course study of delayed wound healing in a biofilm-challenged diabetic mouse model. Wound Repair Regen 2012;20(3):342-52.

10. Nwodo UU, Green E, Okoh AI. Bacterial exopolysaccharides: Functionality and prospects. Int J Mol Sci 2012;13(11):4002-15.

11. Düring A, Kooskoomvvekaki I, Véborg RM, Klemm P. Chemoinformatic-assisted development of new anti-biofilm compounds. Appl Microbiol Biotechnol 2010;87(1):309-17.

12. Römling U, Balsalobre C. Biofilm infections, their resilience to therapy and innovative treatment strategies. J Intern Med 2012;272(6):541-61.

13. Kim HS. Do not put too much value on conventional medicines. Asian J Pharm Clin Res 2014;11(3):124-31.

14. Palombo EA. Phytochemicals from traditional medicinal plants used in the treatment of diarrhoea: Modes of action and effects on intestinal function. Phytother Res 2006;20:717-24.

15. Namsivayam KR, Roy EA. Anti-biofilm effect of medicinal plant extracts against clinical isolate of biofilm of *Escherichia coli*. Int J Pharm Pharm Sci 2013;5(2):486-9.

16. Kusum H, Anju B, Ravi KG, Raghika S. Leaf extract of *Azadirachta indica* (neem): A potential antibiofilm agent for *Pseudomonas aeruginosa*. Pathog Dis 2013;69:62-5.

17. Mundada S, Shivhare R. Pharmacology of *Tridax procumbens* a weed: Review. Int J PharmTech Res 2010;2(2):1391-4.

18. Darsini DT, Srinivasan P, Gunu G, Manimekalai K, Dineshbabu J. *In vitro* antibiofilm activity of *Piper longum* and *Piper nigrum* against clinical isolates of *Strepotococcus pyogenes* isolated from *Pharyngitis* patients. Int J Pharm 2015;6(2):122-32.

19. Abdullah Al-Dhabi N, Valan Arasu M, Rejiniemon TS. *In vitro* antibacterial, antifungal, antibiofilm, antioxidant, and anticanicar properties of isosteviol isolated from endangered medicinal plant *Pittosporum tetraspermum*. Evid Based Complement Alternat Med 2015;2015:164261.

20. Al-Dhabi NA, Balachandran C, Raj MK, Duraipandiyan V, Muthukumar C, Ignacimuthu S, et al. Antibacterial, anticytotoxic and antibiofilm activities of *Cordyceps sinensis* and anticytotoxic activities of *Cordyceps sinensis*. J Ethnopharmacol 2005;100(1-2):37-9.

21. Mundada S, Shrivastava M, Singh AK. Antibacterial potential of *Aegle marmelos* (L.) rhizome against *Pseudomonas aeruginosa* biofilms. J Biomed Sci 2010;8(3):124-31.

22. Grujic SM, Radijevic ID, Vasic SM, Comic LJ, Topuzovic M. *Piper nigrum* in *Staphylococcus aureus* biofilms: Antimicrobial and antibiofilm activities of secondary metabolites from *Vincar minor* L. Appl Biochem Microbiol 2015;51(5):572-8.

23. Badzynska A, Wieczkowska-Szakiel M, Sadowska B, Kalemba D, Różalska B. Antibiofilm activity of selected plant essential oils and their major components. Pol J Microbiol 2011;60(1):35-41.

24. Jalal Z, El Atki Y, Lyoussi B, Abdelhaoui A. *Vetiveria zizanioides* L. growth wild in Morocco: Preventive approach against nosocomial infections. Asian Pac J Trop Biomed 2015;5(6):458-61.

25. Awolola GV, Koorbanally NA, Chenia H, Shode FO, Baijnath H. *In vitro* antibacterial and anticytotoxic activities of *Vetiveria zizanioides* L. growth wild in Morocco: Preventive approach against nosocomial infections. Asian Pac J Trop Biomed 2015;5(6):458-61.

26. Sangam S, Rao DV, Sharma RA. A review on *Pongamia pinnata* (L.) pierre: A great versatile leguminous plant. Nat Sci 2010;8(11):1309.

27. Ali BH, Blunden G, Tanira MO, Nemmar A. Some phytochemical, pharmacological and toxicological properties of *Ginger* (Zingiber officinale Roscoe): A review of recent research. Food Chem Toxicol
A focus on Linn) essential oils on L. as sources of biologically active in L. derived products: New pharmacological, antibacterial and extracts against L. World J Microbiol Biotechnol from pharyngitis Arctium lappa.

44. Anita A, Retna AM. Review on the medicinal plants

46. Trentin Dda S, Giordani RB, Zimmer KR, da Silva AG, da Silva MV, Carbonari KA, Ferreira EA, Rebello JM, Felipe KB, Rossi MH, et al. Antimicrobial effects of J incarnatum leaf extract. Ann Clin Microbiol Antimicrob 2014;15:24-15.

26. De Queiroz AC, de Lira DP, Dias Tde L, de Souza ET, da Matta CB, de Aquino AB, et al. The antinociceptive and anti-inflammatory activities of Piptadenia stipulacea. Benth. (Fabaceae). J Ethnopharmacol 2010;132:777-83.

38. Bebazhvar PM, Shuddhalwar PP. A quest of anti-biofilm activity of Ouratea parviflora extract. Res J Phytochem 2014;8(3):64-73.

28. Puro K, Sundjutik, Sam S, Chatik, S, Shakuntula, I, Sen A. Medicinal uses of Rosella plant (Hibiscus sabdariffa L): Mini review. Indian J Hill Farming 2014;27(1):81-90.

64. Mutalib LY, Nuraddin SM, Aka TH. Phytochemical screening, antibacterial and antifilm activities of seven Salvia species. Pharmacogn Mag 2010;6(24):264-70.

56. Mohsenipour Z, Hassanshahian M. The effects of Allium sativum extracts on biofilm formation and activities of six pathogenic bacteria. Jundishapur J Microbiol 2015;8:e18971.

58. Murugan K, Selvanayaki K, Al-Sohaibani S. Antibiofilm activity of Andrographis paniculata against cystic fibrosis clinical isolate Pseudomonas aeruginosa, World J Microbiol Biotechnol 2011;27:1661-8.

39. Trentin DS, Zimmer KR, Silva MV, Raquel BG, Alexandre JM. Antibacterial and antibiofilm activities against Pseudomonas aeruginosa. Rev Caatinga 2014;27(3):264-71.

9. Al-Bakri AG, Othman G, Afifi FU. Determination of the antibiofilm, anti-adhesive, and anti-QSA activities of seven Salvia species. Pharmacogn Mag 2010;6(24):264-70.

62. Saharkhiz MJ, Motamedi M, Zomorodian K, Pakshir K, Miri R, Karicheri R, Antony B. Antibacterial and antibiofilm activities of Pudica bipinnatifida against Pseu
domonas aeruginosa. J Med Plants Res 2013;7:2067-72.

13. Muruzovic MZ, Mladenovic KG, Stefanovic OD, Comic LR, et al. Antiadherent and antibiofilm activity from methanolic extract of Arctium lappa L. Bengal. J Pharm Bio Sci 2015;6(4):1060-8.

27. Murugan K, Murraya koenigii leaf extract. Ann Clin Microbiol Antimicrob 2014;15:11-20.

6. Kivela S, Kivela L, Luukkainen R, Lehtomaki J, et al. Free-radical scavenging by Allium sativum extract and fractions. Ann Clin Microbiol Antimicrob 2011;10:131-5.

10. Mutalib LY, Nuraddin SM, Aka TH. Phytochemical screening, antibacterial and antibiofilm activities of Cymbopogon citratus against Pseudomonas aeruginosa. J Med Plants Res 2013;7:2067-72.

20. Dineshbabu J, Srinivasan P, Darsini TP, Srinivasan P, Everlyne IM, et al. Antiadherent and antibiofilm activity of medicinal plants from Brazilian Caatinga: Antibiofilm and antibacterial activities against Pseudomonas aeruginosa. J Ethnopharmacol 2011;38(1):65-7.

3. Ganesh PS, Vital RR. Antimicrobial effects of Helichrysum italicum Mart. extract and fractions. Ann Clin Microbiol Antimicrob 2014;27(3):264-71.
and medicinal uses. Am Bot Council 2010;87:44-57.
71. Rejiniemon TS, Arasu MV, Duraipandiyan V, Ponmurugan K, Al-Dhabi NA, Arokiyaraj S. In-vitro antimicrobial, antibiofilm, cytotoxic, antifeedant and larvicidal properties of novel quinone isolated from Aegle marmelos (Linn.) Correa. Ann Clin Microbiol Antimicrob 2014;13:48.
72. Pratiwi SU, Lagendijk EL, Hertiani T, De Weert S, Van Den Hondel CA. Antimicrobial effects of Indonesian medicinal plants extracts on planktonic and biofilm growth of Pseudomonas aeruginosa and Staphylococcus aureus. Int J Pharm Pharm Sci 2015;7(4):183-91.