there was an increase in morbidity and length of stay, but there was no significant increase in mortality due to multidrug-resistant (MDR) or extremely drug-resistant gram-negative bacterial infection [3].

India is the largest consumer of antibiotics, but human use accounts for the minority of the total antimicrobial products consumed, with the majority of antibiotics being used as growth enhancers in the feed animal sector [4]. Although there are strict guidelines on nonutilization of important human antibiotics, for example, colistin in the feed animal sector, there is widespread belief and evidence that these are regularly ignored, resulting in increasing transmission of AMR from farms to hospitals. This has put increasing pressure on regulatory authorities to ban the use of antibiotics in the animal section in the hope of saving them for clinical use [5]. This overutilization has been shown to be responsible for increasing AMR.

In India, infections caused by MDR organisms are very frequent, often resulting in mortality due to a paucity of treatment options [6]. To address these issues, the Indian Council of Medical Research initiated a nationwide Antimicrobial Resistance Surveillance and Research Initiative (AMRSRI) in 2016. The aim of AMRSRI is to provide reliable and authentic estimates of AMR burden encompassing local resistance patterns as well as molecular epidemiology of isolates throughout the country as this data will be invaluable in guiding national policy. AMRSRI has subsequently released annual reports that detail the various resistance encountered in clinical isolates nationally [7].

Collectively, Gandra et al’s report on mortality due to AMR is a welcome step to gauge the effect of AMR on mortality rates in India. This issue is projected to cost the global economy $100 trillion and result in 10 million deaths by 2050 [8]. In order to more accurately represent the effect of AMR on mortality, data from AMRSRI and other initiatives should be collated, along with data from private healthcare providers. Additionally, there should be stringent implementation of antibiotic stewardship and infection control programs in the healthcare sector and nonutilization of important human antibiotics in the farm and animal husbandry sector as growth promoters. Research aimed at understanding the genetic and molecular basis of AMR in MDR organisms as well as novel drug discovery and development should be declared a national priority as AMR does not respect international boundaries.

Notes

Acknowledgments. This paper bears 9803 as the communication number by Council for Scientific and Industrial Research-Central Drug Research Institute.

Potential conflicts of interest. Both authors: No reported conflicts. Both authors have submitted the ICMJE Form for Disclosure of Potential Conflicts of Interest. Conflicts that the editors consider relevant to the content of the manuscript have been disclosed.

Sidharth Chopra and **Meher Rizvi**

1Division of Microbiology, Council for Scientific and Industrial Research-Central Drug Research Institute, Lucknow, Uttar Pradesh, India; and 2Department of Microbiology and Immunology, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Sultanate of Oman.

References

1. https://www.who.int/antimicrobial-resistance/en/. Accessed 29 January 2019.
2. Gandra S, Arora A, Laxminarayan R, Klein EY. The mortality burden of multidrug-resistant pathogens in India: a retrospective observational study. Clin Infect Dis 2019;69:563–70.
3. Naim H, Rizvi M, Azam M, Gupta R, Taneja N, Shukla J. alarming emergence of blNDM-1 in multidrug resistant gram-negative bacilli in a tertiary care hospital in Allahabad, Uttar Pradesh, India. J Lab Physicians 2017;9:170–6.
4. Klein EY, Boceckl TPV, Martinez EM, et al. Global increase and geographic convergence in antibiotic consumption between 2000 and 2015. Proc Natl Acad Sci USA 2018;201717295.
5. http://www.cidrap.umn.edu/news-perspective/2018/12/reports-india-set-ban-use-colistin-livestock. Accessed 29 January 2019.
6. Laxminarayan R, Chaudhary RR. Antibiotic resistance in India: drivers and opportunities for action. PLoS Med 2016;13:e1001974.
7. http://14.139.60.53/iamsrn/index.php/. Accessed 29 January 2019.
8. https://www.scientificamerican.com/article/antibiotic-resistance-will-kill-300-million-people-by-2050/. Accessed 29 January 2019.
to differences in infection location and disease severity. Overall mortality in the study of 116 patients by Naim et al. was only 4.3% (in contrast to 13.1% in our study), and none of their patients had bacteremia or lower respiratory tract infections (nearly 90% were from wounds or urine). In our study, the odds of mortality were significantly higher among patients with lower respiratory tract and bloodstream infections when compared with urinary tract and wound infections. Understanding these differences was only possible because of high data availability. Yet, national data are needed to understand the frequency of these infections and to develop national-scale plans to combat the problem of resistance.

While the scale of the problem is national and even global in nature, the outcomes are local. Thus, we further endorse the call by Chopra et al that there needs to be stringent implementation of antimicrobial stewardship and infection control activities to improve patient outcomes; however, greater investments are necessary on a country-wide level [7]. Large investments in training are needed as there are few in India. These investments would likely bring significant returns as interventions by infectious diseases physicians in the United States are associated with improved outcomes and lower costs [8]. Furthermore, because resistance can spread rapidly around the world, greater investments are needed in AMR hot spots, such as India, to help contain and reduce the spread of resistance. In addition, increased investments in novel drug discovery is of significant importance as currently available therapeutic options are not effective against the common resistance mechanisms encountered in extremely drug-resistant bacteria in India.

Notes

Financial support. This work was supported by the Bill & Melinda Gates Foundation to the Global Antimicrobial Resistance Repository (grant OPP1112355) and the Global Antibiotic Resistance Partnership (grant OPP1135911) to the Center for Disease Dynamics, Economics & Policy as well as the Centers for Disease Control (grant 16IPA1609427) at Princeton University.

Potential conflicts of interest. All authors: No reported conflicts. All authors have submitted the ICMJE Form for Disclosure of Potential Conflicts of Interest. Conflicts that the editors consider relevant to the content of the manuscript have been disclosed.

Sumanth Gandra,1 Anit A. Arora,2 Ramanan Laxminarayan,3,4 and Eli Y. Klein5,6
1Center for Disease Dynamics, Economics & Policy, Washington, DC; 2Fortis Healthcare Ltd., Gurgaon, Haryana, India; 3Princeton Environmental Institute, Princeton University, New Jersey; 4Department of Global Health, University of Washington, Seattle; and 5Department of Emergency Medicine, Johns Hopkins School of Medicine, and 6Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland

References

1. Gandra S, Tseng KK, Arora A, et al. The mortality burden of multidrug-resistant pathogens in India: a retrospective observational study. Clin Infect Dis 2019;69:563–70.
2. Tacconelli E, Carrara E, Savoldi A, et al; WHO Pathogens Priority List Working Group. Discovery, research, and development of new antibiotics: the WHO priority list of antibiotic-resistant bacteria and tuberculosis. Lancet Infect Dis 2018;18:318–27.
3. Chopra S, Rizvi M. Antimicrobial resistance in low and middle income countries. Clin Infect Dis 2019;69:1264–5.
4. Walia, K, V C Ohr, H Singh. Indian Council of Medical Research. Annual report Antimicrobial Resistance Surveillance Network January 2017–December 2017. Indian Council of Medical Research. 2018. Available at https://www.icmic.nic.in/sites/default/files/reports/annual_report_amr_jan2017-18.pdf. Accessed 18 December 2018.
5. National Action Plan on Antimicrobial Resistance India. Government of India. 2017. Available at http://www.searo.who.int/india/topics/antimicrobial_resistance/amr_amr.pdf. Accessed December 18, 2018.
6. Naim H, Rizvi M, Azam M, et al. Areal meningitis: Molecular characterization, and outcome of blaNDM-1 in patients infected with multidrug-resistant Gram-negative bacilli in a tertiary care hospital. J Lab Physicians 2017;9:170–6.
7. Lee BY, Bartsch SM, Wong KG, et al. The potential trajectory of carbapenem-resistant Enterobacteriaceae, an emerging threat to health-care facilities, and the impact of the Centers for Disease Control and Prevention Toolkit. Am J Epidemiol 2016;183:471–9.
8. Schmitt S, McQuillen DP, Nahab R, et al. Infectious diseases specialty intervention is associated with decreased mortality and lower healthcare costs. Clin Infect Dis 2014;58:22–8.

Correspondence: E. Y. Klein, Department of Emergency Medicine, Johns Hopkins School of Medicine, Baltimore, MD (eklein@jhu.edu).

Clinical Infectious Diseases® 2019;69(7):1265-6
© The Author(s) 2019. Published by Oxford University Press for the Infectious Diseases Society of America. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by-4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. DOI: 10.1093/cid/ciz128

Cerebral herniation after lumbar puncture

To the Editor—In their recent article, Costerus and colleagues [1] conclude that cerebral herniation after lumbar puncture (LP) is a rare event, giving a frequency range of 0.1–3%. However, in the context of adverse drug reactions to medicinal products European Commission guidance considers this level of risk to be uncommon (0.1% to 1%) or even common (1% to 10%); rare would typically be defined as 0.01% to 0.1% [2]. Furthermore, the severity of the adverse reaction, in this case death, needs to be considered. Most doctors and patients would be concerned by a risk of death of up to 3 in 100 procedures and would likely choose not to proceed.

Although LP is an important investigation in patients with suspected bacterial meningitis, given the risk of undertaking an LP in this patient group it is valuable to consider the role of other less invasive diagnostic tests that may complement data from LP or confirm a microbiological diagnosis in patients where LP is contraindicated.

UK and European guidelines on bacterial meningitis stress the importance of blood cultures, which can be positive in up to 74% of patients if samples are taken prior to commencing antibiotics [3, 4]. Too often, this simple procedure is not performed, and this represents a missed opportunity to confirm the bacterial etiology: Shallcross and colleagues found that of 4357 patients attending the emergency department who received parenteral antibiotics, less than a third had blood cultures taken [5].

Of newer molecular tests, polymerase chain reaction of peripheral blood for Neisseria meningitidis has been shown to have high sensitivity and specificity for detection of meningococcal infection [6] and remains positive for up to 5 days after initiation of parenteral antibiotics [7]. Urinary pneumococcal antigen has been assessed for the diagnosis of pneumococcal meningitis. Although