Phase coexistence and finite-size scaling in random combinatorial problems

Michele Leone†, Federico Ricci-Tersenghi‡ and Riccardo Zecchina§

† SISSA, Via Beirut 9, Trieste, Italy
‡ The Abdus Salam International Center for Theoretical Physics, Condensed Matter Group
Strada Costiera 11, P.O. Box 586, I-34100 Trieste, Italy

(March 22, 2022)

We study an exactly solvable version of the famous random Boolean satisfiability problem, the so-called random XOR-SAT problem. Rare events are shown to affect the combinatorial “phase diagram” leading to a coexistence of solvable and unsolvable instances of the combinatorial problem in a certain region of the parameters characterizing the model. Such instances differ by a non-extensive quantity in the ground state energy of the associated diluted spin-glass model. We also show that the critical exponent ν, controlling the size of the critical window where the probability of having solutions vanishes, depends on the model parameters, shedding light on the link between random hyper-graph topology and universality classes. In the case of random satisfiability, a similar behavior was conjectured to be connected to the onset of computational intractability.

PACS Numbers : 89.80.+h, 75.10.Nr

I. INTRODUCTION

The satisfaction of constrained Boolean formulae, the so called Satisfiability (SAT) problem, is a key problem of complexity theory in computer science that can be recast as an energy minimization problem (ground state search) in diluted spin glass models. Many hard computational problems have been shown to be NP-complete through a complexity theory in computer science that can be recast as an energy minimization problem (ground state search) problem defined as follows. Consider \(N \) Boolean variables \(x_i, i = 1, \ldots, N \). Call clause \(C \) the logical OR of \(K \) randomly chosen variables, each of them being negated or left unchanged with equal probabilities. Then repeat this process by drawing independently \(M \) random clauses \(C_\sigma, \sigma = 1, \ldots, M \). The logical AND of all clauses \(F \) is said to be satisfiable if there exists a logical assignment of the \(\{x_i\} \) evaluating \(F \) to true, unsatisfiable otherwise.

Numerical experiments have concentrated upon the study of the probability \(P_N(\gamma, K) \) that a given \(F \) including \(M = \gamma N \) clauses be satisfiable. For large sizes, there appears a remarkable behavior : \(P_\infty(\gamma, K) \) seems to be unity for \(\gamma < \gamma_c(K) \) and vanishes for \(\gamma > \gamma_c(K) \). Such an abrupt threshold behavior, separating a so-called SAT phase from an UNSAT one, has indeed been rigorously confirmed for 2-SAT, which is in P, with \(\gamma_c(2) = 1 \). For \(K \geq 3 \), K-SAT is NP-complete and much less is known. The existence of a sharp transition has not been rigorously proven yet but relatively good estimates of the thresholds have been found: \(\gamma_c(3) \approx 4.2 \div 4.3 \). Moreover, some rigorous lower and upper bounds to \(\gamma_c(3) \) have been established.

The interest in random K-SAT arises from the fact that it has been observed numerically that hard random instances are created when the problems are critically constrained, i.e. close to the SAT/UNSAT phase boundary. The study of such hard instances represent a theoretical challenge towards a concrete understanding of complexity and the analysis of algorithms. Moreover, hard random instances are also test-bed for the optimization of heuristic (incomplete) search procedures which are widely used in practice.

The statistical mechanics study of random K-SAT have provided some geometrical understanding of the onset of complexity at the phase transition through the introduction of a functional order parameter which describes the geometrical structure of the space of solutions. The nature of the SAT/UNSAT transition for the different values of \(K \) appears to be a particularly relevant prediction. The SAT/UNSAT transition is accompanied by a smooth (respectively abrupt) change in the structure of the solutions of the 2-SAT (resp. 3-SAT) problem. More specifically, at the phase boundary a finite fraction of the variables become fully constrained while the entropy density remains finite. Such a fraction of frozen variables (i.e. those variables which take the same value in all solutions) may undergo a continuous (2-SAT) or discontinuous (3-SAT) growth at the critical point. This discrepancy is responsible for the difference of typical complexities of both models recently observed in numerical studies. The typical solving time of search algorithms displays an easy-hard pattern as a function of \(\gamma \) with a peak of complexity close to the threshold. The peak in search cost seems to scale polynomially with \(N \) for the 2-SAT problem and exponentially with \(N \) in the 3-SAT case. From an intuitive point of view, the search for solutions ought to be more time-consuming in presence of
a finite fraction of fully quenched variables since the exact determination of the latter requires an almost exhaustive enumeration of their configurations.

To test this conjecture, a mixed $2 + p$-model has been proposed, including a fraction p (resp. $1 - p$) of clauses of length two (resp. three) and thus interpolating between the 2-SAT ($p = 0$) and 3-SAT ($p = 1$) problems. The statistical mechanics analysis predicts that the SAT/UNSAT transition becomes abrupt when $p > p_0 \approx 0.4$ [8,11]. Precise numerical simulations support the conjecture that the polynomial/exponential crossover occurs at the same threshold of the model can be computed exactly as a function of the mixing parameter p in the whole range $p \in [0,1]$. Rare events are found to be dominant also in the low γ phase, where a coexistence of satisfiable and unsatisfiable instances is found. A detailed analysis for the $p = 1$ case can be found in ref. [13].

The existence of a global – polynomial time – algorithm for determining satisfiability allows us to perform a finite size scaling analysis around the exactly known critical points over huge samples and to show that indeed the exponent ν, which describes the shrinking of the critical window where the transition takes place, is observed to remain constant and close to the value expected for 2-SAT. The critical behavior is the same of the percolation transition in random graphs (see also ref. [13]). For $p > p_0$ the size of the window shrinks following some p-dependent exponents toward its statistical lower bound [14] but numerical data did not allow for any precise estimate.

In this paper, we study an exactly solvable version of the random $2+p$ SAT model which displays new features and allows us to settle the issue of universality of the critical exponents. The threshold of the model can be computed exactly as a function of the mixing parameter p in the whole range $p \in [0,1]$. Rare events are found to be dominant also in the low γ phase, where a coexistence of satisfiable and unsatisfiable instances is found. A detailed analysis for the $p = 1$ case can be found in ref. [13].

The existence of a global – polynomial time – algorithm for determining satisfiability allows us to perform a finite size scaling analysis around the exactly known critical points over huge samples and to show that indeed the exponent controlling the size of the critical window ceases to maintain its constant value $\nu = 3$ and becomes dependent on p as soon as the phase transition becomes discontinuous, i.e. for $p > p_0 = 0.25$. Above p_0 and below $p_1 \approx 0.5$, the exponent ν takes intermediate values between 3 and 2. Finally, above p_1 the critical window is determined by the statistical fluctuations of the quenched disorder [14] and so $\nu = 2$.

II. MODEL DEFINITION AND OUTLINE OF SOME RESULTS

The model we study can be viewed as the mixed $2 + p$ extension of the 3-hyper-SAT (hSAT) model discussed in [15], as much as the $2+p$-SAT [8] is an extension of the usual K-SAT model. In computer science literature the hSAT model is also named XOR-SAT and its critical behavior is considered an open issue [16]. Given a set of N Boolean variables $\{x_i = 0,1\}_{i=1,...,N}$ we can write an instance of our model as follows. Firstly we define the elementary constraints (a mixture of 4 and 2-clauses sets with 50% satisfying assignments):

$$C(ijk) + 1 = (x_i \lor x_j \lor x_k) \land (x_i \lor \bar{x}_j \lor \bar{x}_k) \land (\bar{x}_i \lor x_j \lor \bar{x}_k) \land (\bar{x}_i \lor \bar{x}_j \lor x_k)$$

$$C(ijk) - 1 = (\bar{x}_i \lor x_j \lor \bar{x}_k) \land (\bar{x}_i \lor \bar{x}_j \lor x_k) \land (x_i \lor x_j \lor x_k) \land (x_i \lor x_j \lor x_k)$$

for the 3-hSAT part, and

$$C(ij) + 1 = (x_i \lor \bar{x}_j) \land (\bar{x}_i \lor x_j)$$

$$C(ij) - 1 = (x_i \lor x_j) \land (\bar{x}_i \lor \bar{x}_j)$$

for the 2-hSAT part. \land and \lor are the logical AND and OR operations respectively and the over-bar is the logical negation. A more compact definition can be achieved by the use of the exclusive OR operator \oplus, e.g. $C(ijk|+1) = x_i \oplus x_j \oplus x_k$. Then, we randomly choose two independent sets E_3 and E_2 of pM triples $\{i,j,k\}$ and $(1-p)M$ couples $\{i,j\}$ among the N possible indices and respectively pM and $(1-p)M$ associated unbiased and independent random variables $T_{ijk} = \pm 1$ and $J_{ij} = \pm 1$, and we construct a Boolean expression in Conjunctive Normal Form (CNF) as

$$F = \bigwedge_{\{i,j,k\} \in E_3} C(ijk|T_{ijk}) \bigwedge_{\{i,j\} \in E_2} C(ij|J_{ij}) .$$

As in [15], we can build a satisfiable version of the model choosing clauses only of the $C(ij|+1)$ and $C(ijk|+1)$ type. For $p < p_0$ the problem is easily solved by local and global algorithms, whereas interesting behaviors are found for $p > p_0$, where the local algorithms fail.

The above combinatorial definition can be recast in a simpler form as a minimization problem of a cost-energy function on a topological structure which is a mixture of a random graph (2-spin links) and hyper-graph (3-spin hyper-links). We end up with a diluted spin model where the Hamiltonian reads

$$H = g \sum_{i=1}^{N} \left(x_i \sum_{j=1}^{N} J_{ij} x_j - J_{0} \sum_{j=1}^{N} x_j \right) - \beta \sum_{i=1}^{N} \left(x_i \sum_{j=1}^{N} J_{ij} x_j - J_{0} \sum_{j=1}^{N} x_j \right),$$

where g is the on-site interaction strength, β is the inverse temperature, J_{ij} is the strength of the interaction between spins i and j, and J_{0} is the interaction between the spins and the external field. The ground state energy of this system is given by

$$E_{\text{gs}} = \frac{1}{N} \sum_{i=1}^{N} \left(x_i \sum_{j=1}^{N} J_{ij} x_j - J_{0} \sum_{j=1}^{N} x_j \right) - \beta \sum_{i=1}^{N} \left(x_i \sum_{j=1}^{N} J_{ij} x_j - J_{0} \sum_{j=1}^{N} x_j \right).$$

As p approaches p_0, the energy landscape becomes more rugged and the system exhibits a phase transition from a disordered to an ordered phase. The critical behavior of this system can be studied using various techniques such as finite-size scaling, critical exponents, and numerical simulations.

The critical exponents of the hSAT model are given by $\nu = 2$, $\gamma = 3$, and $\delta = 1/2$, which are the same as those of the 2-SAT model. This is expected since the hSAT model is an extension of the 2-SAT model and the critical behavior of the two should be the same. The exponent ν describes the scaling of the size of the critical window, the exponent γ describes the scaling of the critical point, and the exponent δ describes the scaling of the finite-size effects.

Finally, the phase transition in the hSAT model becomes abrupt for $p > p_0$, as predicted by the statistical mechanics analysis. The threshold p_0 is determined by the statistical fluctuations of the quenched disorder and is given by $p_0 = 0.25$. For $p < p_0$, the problem is easily solved by local and global algorithms, whereas interesting behaviors are found for $p > p_0$, where the local algorithms fail.
where the S_i are binary spin variables and the the random couplings can be either ± 1 at random. The satisfiable version is nothing but the ferromagnetic model: $T_{ijk} = 1$ and $J_{ij} = 1$ for any link.

As the average connectivity γ of the underlying mixed graph grows beyond a critical value $\gamma_c(p)$, the frustrated model undergoes a phase transition from a mixed phase in which satisfiable instances and unsatisfiable ones coexist to a phase in which all instances are unsatisfiable. At the same critical point the unfrustrated, i.e. ferromagnetic, version undergoes a para-ferro transition, because the same topological constraints that drive the glass (mixed SAT/UNSAT to UNSAT) transition in the frustrated model are shown to be the ones responsible for the appearance of a nonzero value of the magnetization in the unfrustrated one [13]. We shall take advantage of such coincidence of critical lines by making the analytical calculation for the simpler ferromagnetic model.

Moreover, the nature of the phase transition changes from second to random first order, when p crosses the critical value $p_0 = 1/4$. For $p > p_0$ the critical point $\gamma_c(p)$ is preceded by a dynamical glass transition at $\gamma_d(p)$ where ergodicity breaks down and local algorithms get stuck (local algorithms are procedures which update the system configuration only by changing a finite number of variable at the same time, e.g. all single or multi spin flip dynamics, together with usual computer scientists heuristic algorithms). The dynamical glass transition exist for both versions of the model [13] and corresponds to the formation of a locally stable ferromagnetic solution in the unfrustrated model [18] (the local stability is intimately related to the ergodicity breaking).

III. STATISTICAL MECHANICS ANALYSIS

Following the approach of ref. [15], we compute the free energy of the model with the replica method, exploiting the identity $\ln Z = 1 + n \ln Z + O(n^2)$. The n^{th} moment of the partition function is obtained by replicating n times the sum over the spin configurations and then averaging over the quenched disorder

$$\ln Z^n = \sum_{S^1, S^2, \ldots, S^n} \exp \left(-\beta \sum_{a=1}^n H_j[S^a] \right) \quad ,$$

(5)

Since each of the M clauses is independent, the probability distributions of the ferromagnetic couplings can be written as

$$P(\{T_{ijk}\}) = \prod_{i<j<k} \left[\left(1 - \frac{6\gamma p}{N^2} \right) \delta(T_{ijk}) + \frac{6\gamma p}{N^2} \delta(T_{ijk} - 1) \right]$$

$$P(\{J_{ij}\}) = \prod_{i<j} \left[\left(1 - \frac{2\gamma(1-p)}{N} \right) \delta(J_{ij}) + \frac{2\gamma(1-p)}{N} \delta(J_{ij} - 1) \right] \quad ,$$

(6)

giving the following expression for the $\ln Z^n$:

$$\ln Z^n = \sum_{S^1, S^2, \ldots, S^n} \exp \left\{ -\beta\gamma N n - \gamma N + \frac{p\gamma}{N^2} \sum_{ijk} e^\beta \sum_s S_i^s S_j^s S_k^s + \frac{(1-p)\gamma}{N} \sum_{ij} e^\beta \sum_s S_i^s S_j^s + O(1) \right\} \quad ,$$

(7)

Introducing the occupation fractions $c(\vec{\sigma})$ (fraction of sites with replica vector $\vec{\sigma}$), one gets

$$-\beta F[c] = -\gamma (1 + \beta n) - \sum_{\vec{\sigma}} c(\vec{\sigma}) \log c(\vec{\sigma}) + (1-p)\gamma \sum_{\vec{\sigma}} c(\vec{\sigma}) c(\vec{\rho}) e^\beta \sum_a \sigma^a \rho^a + \gamma \sum_{\vec{\sigma}, \vec{\tau}} c(\vec{\sigma}) c(\vec{\tau}) e^\beta \sum_a \sigma^a \rho^a \tau^a \quad .$$

(8)

In the thermodynamic limit we can calculate the free energy via the saddle point equation obtaining

$$c(\vec{\sigma}) = \exp \left\{ -\Lambda + 2(1-p)\gamma \sum_{\vec{\rho}} c(\vec{\rho}) \exp(\beta \sum_a \sigma^a \rho^a) + 3p\beta \sum_{\vec{\sigma}, \vec{\tau}} c(\vec{\sigma}) c(\vec{\tau}) \exp(\beta \sum_a \sigma^a \rho^a \tau^a) \right\} \quad .$$

(9)
The Lagrange multiplier $\Lambda = -\gamma(2 + p)$ ensures the normalization constraint $\sum_\sigma c(\sigma) = 1$ in the limit $n \to 0$. Finding the minimal (zero in the unfrustrated case) value of the cost function amounts to studying the $\beta \to \infty$ (zero temperature) properties of the model. In the Replica Symmetric (RS) Ansatz, the behavior of the spin magnetization can be described in terms of effective fields $m = \tanh \beta h$ whose probability distribution is defined through

$$c(\sigma) = \int_{-\infty}^{\infty} dh P(h) \frac{e^{\beta h} \sum_n \sigma^n}{(2 \cosh(\beta h))^n}.$$

(10)

In the unfrustrated or ferromagnetic case, the $P(h)$ turns out to have the following simple form

$$P(h) = \sum_{l \geq 0} r_l \delta(h - l),$$

where the effective fields only assume integer values. In the satisfiable model the saddle point equations all collapse in one single self-consistency equation for r_0:

$$r_0 = e^{-3p\gamma(1-r_0)^2 - 2(1-p)\gamma(1-r_0)} = \sum_{c_1=0}^\infty \sum_{c_2=0}^\infty e^{-3p\gamma} e^{-2(1-p)\gamma} \frac{(3p\gamma)^{c_1}}{c_1!} \frac{(2(1-p)\gamma)^{c_2}}{c_2!} (1 - (1 - r_0)^2)^{c_1} (r_0)^{c_2}.$$

(12)

The equations for the frequency weights r_l with $l > 0$ follow from the one for r_0 and read

$$r_l = \frac{[3p\gamma(1-r_0)^2 + 2(1-p)\gamma(1-r_0)]^l}{l!}.$$

(13)

The previous self consistency equations for r_0 (or for the magnetization $m = 1 - r_0$) can easily be derived by the same probabilistic argument used in [13], due to the fact that the clause independence allows to treat the graph and the hyper-graph part separately. Note that in the simple limit $p = 0$ we retrieve the equation for the percolation threshold in a random graph of connectivity γ [19],

$$1 - r_0 = e^{-2\gamma} \sum_{k=0}^{\infty} \frac{(2\gamma)^k}{k!} (1 - r_0^k).$$

(14)

Since the ground state energy of the ferromagnetic model is zero, the free energy coincides with the ground state entropy, which can be written as a function of p, r_0 and γ:

$$S(\gamma) = \log(2)[r_0(1 - \log(r_0)) - \gamma(1 - p)(1 - (1 - r_0)^2) - \gamma p(1 - (1 - r_0)^3)]$$

(15)

To find the value of the paramagnetic entropy we put ourself in the phase where all sets of 4- and 2-clauses act independently, each therefore dividing the number of allowed variables choice by two: the number of ground states will be $N_{gs} = 2^{N-p\gamma N-(1-p)\gamma N} = 2^{N(1-\gamma)}$. The resulting value of $S_{para} = (1 - \gamma) \log(2)$ coincides with the one found setting $r_0 = 1$ in Eq.(15). This may not be the case in more complicated models, where the ground state entropy is a complicated function of γ also for $\gamma < \gamma_c$, reflecting the fact that the magnetization probability distribution in the paramagnetic phase could be different from a single delta peak in $m = 0$.

4
FIG. 1. Critical lines (static and dynamic) in the (γ, p) plane. The black dot at (0.667,0.25) separates continuous transitions from discontinuous ones (where $\gamma_d < \gamma_c$). Inset: Critical magnetizations at $\gamma_d(p)$ and $\gamma_c(p)$ versus p.

Solving the saddle point equation for r_0, we find that a paramagnetic solution with $r_0 = 1$ always exists, while at a value of $\gamma = \gamma_d(p)$ there appears a ferromagnetic solution in the satisfiable model. For $p = 0$, the critical value coincides as expected with the percolation threshold $\gamma_d(0) = 1/2$. As long as the model remains like 2-SAT, up to $p < p_0 = 0.25$, the threshold is the point where the ferromagnetic solution appears and also where its entropy exceeds the paramagnetic one. The critical magnetization is zero and the transition is continuous. For larger values of the control parameter p the transition becomes discontinuous. There appears a dynamical transition at $\gamma = \gamma_d(p)$ where locally stable solutions appear. At $\gamma = \gamma_c(p) > \gamma_d(p)$, the non trivial $r_0 \neq 1$ solution acquires an entropy larger than the paramagnetic one and becomes globally stable. The shape of $\gamma = \gamma_d(p)$ and $\gamma = \gamma_c(p)$ as functions of p are shown in Fig. 1. The inset picture shows the magnetization of the model at the points where the dynamical and the static transitions take place.

IV. NUMERICAL SIMULATIONS

The model can be efficiently solved by a polynomial algorithm based on a representation modulo two (i.e. in Galois field GF[2]). If a formula can be satisfied, then a solution to the following set of M equations in N variables exists

\[
\begin{align*}
S_i S_j S_k &= T_{ijk} \quad \forall \{i, j, k\} \in E_3 \\
S_i S_j &= J_{ij} \quad \forall \{i, j\} \in E_2
\end{align*}
\]

Through the mapping $S_i = (-1)^{\sigma_i}$, $J_{ij} = (-1)^{\eta_{ij}}$ and $T_{ijk} = (-1)^{\zeta_{ijk}}$, with $\sigma_i, \eta_{ij}, \zeta_{ijk} \in \{0, 1\}$, Eq.(16) can be rewritten as a set of binary linear equations

\[
\begin{align*}
(\sigma_i + \sigma_j + \sigma_k) \mod 2 &= \zeta_{ijk} \quad \forall \{i, j, k\} \in E_3 \\
(\sigma_i + \sigma_j) \mod 2 &= \eta_{ij} \quad \forall \{i, j\} \in E_2
\end{align*}
\]

For any given set of couplings $\{\eta_{ij}, \zeta_{ijk}\}$, the solutions to these equations can be easily found in polynomial time by e.g. Gaussian substitution. The solution to the M linear equations in N variables can be summarized as follows: a number N_{dep} of variables is completely determined by the values of the coupling $\{\eta_{ij}, \zeta_{ijk}\}$ and by the values of the $N_{\text{free}} = N - N_{\text{dep}}$ independent variables. The number of solutions is $2^{N_{\text{free}}}$ and the entropy $S(\gamma) = \log(2)N_{\text{free}}/N = \log(2)(1 - N_{\text{dep}}(\gamma)/N)$. As long as $N_{\text{dep}} = M$ we have the paramagnetic entropy $S_{\text{para}} = \log(2)(1 - \gamma)$. However N_{dep} may be less than M when the interactions are such that one can generate linear combinations of equations where no
\(\sigma \)'s appear, like \(0 = f(\{\eta_{ij}, \zeta_{ijk}\}) \). This kind of equations correspond to the presence of loops (resp. hyper-loops \([15]\)) in the underlying graph (resp. hyper-graph). A hyper-loops (generalization of a loop on a hyper-graph) is defined as a set \(S \) of (hyper-)links such that every spin (i.e. node) is “touched” by an even number of (hyper-)links belonging to \(S \) (see Fig. 2).

![FIG. 2. Typical loop and hyper-loop. Lines are 2-spin links, while triangles are 3-spin links. Note that every vertex has an even degree.](image)

Here we are interested in the fraction of satisfiable instances \(P_{SAT}(\gamma, p) \), averaged over the random couplings distribution. One can show that, for any random (hyper-)graph, \(P_{SAT} \) is given by \(2^{-N_{hl}} \), where \(N_{hl} \) is the number of independent (hyper-)loops \([15]\). In Fig. 3 we show the fraction of satisfiable instances as a function of \(\gamma \) for \(p = 0 \) and \(p = 0.5 \). The vertical lines report the analytical predictions for the critical points, \(\gamma_c(p = 0) = 0.5 \) and \(\gamma(p = 0.5) = 0.810343 \).

![FIG. 3. SAT probabilities \(P_{SAT}(\gamma, p) \) for \(p = 0 \) and \(p = 0.5 \). Data has been averaged over \(10^4 \) different random hyper-graphs. Vertical straight lines are analytical predictions for critical points: \(\gamma_c(p = 0) = 0.5 \) and \(\gamma(p = 0.5) = 0.810343 \). Bold curves for \(\gamma < \gamma_c \) are analytical predictions for the SAT probability in the large \(N \) limit.](image)

In the limit of large \(N \) and for \(p = 0.5 \) the fraction of SAT instances sharply vanishes at the critical point in a discontinuous way, that is \(\lim_{\gamma \to \gamma_c} P_{SAT}(\gamma) > 0 \) while \(\lim_{\gamma \to \gamma_c} P_{SAT}(\gamma) = 0 \). This is the usual behavior already measured in 3-SAT \([8,9]\) and 3-hyper-SAT \([15]\), with the SAT probabilities measured on finite systems crossing at \(\gamma_c \) and becoming sharper and sharper as \(N \) increases. On the contrary for \(p = 0 \) and large \(N \) the probability of being SAT becomes zero at \(\gamma_c \) in a continuous way. The main consequence is that finite size corrections make \(P_{SAT}(\gamma) \) larger than its thermodynamical limit both before and after the critical point and thus the data crossing is completely missing.

Note also that for \(p < 1 \) the fraction of SAT instances for \(\gamma < \gamma_c(p) \) is finite and less than 1 even in the thermodynamical limit, implying a mixed phase of SAT and UNSAT instances. This is due to the presence in the random
hyper-graph of loops made only by 2-spin links (indeed the mixed phase is absent for \(p = 1 \) when only 3-spin interactions are allowed [3]). The expression for the SAT probability in the thermodynamical limit (bold curves in Fig. 3, the lower most for \(p = 0 \) and the uppermost for \(p = 0.5 \)) can be calculated analytically and the final result is

\[
P_{\text{SAT}}(\gamma, p) = e^{\frac{1}{2}\gamma(1-p)[1+\gamma(1-p)] [1 - 2\gamma(1 - p)]^{1/4}} \text{ for } \gamma \leq \gamma_c\ (p) .
\]

(18)

In order to obtain to above expression we note that the SAT probability is related to the number of (hyper-)loops by

\[
P_{\text{SAT}}(\gamma, p) = \sum_{m=0}^{\infty} P(m; \gamma, p) 2^{-m} ,
\]

(19)

where \(P(m; \gamma, p) \) is the probability of having \(m \) (hyper-)loops in a random (hyper-)graph with parameters \(\gamma \) and \(p \), and the factor \(2^{-m} \) comes from the probability that for all the \(m \) (hyper-)loops the product of the interactions is 1 (thus giving no contradiction in the formula). In order to estimate \(P(m; \gamma, p) \) we may restrict ourselves to consider only simple loops (made of 2-spin links), because hyper-loops which involve at least one 3-spin link are irrelevant in the thermodynamical limit. This can be easily understood with the help of the following counting argument.

The probability that a given 2-spin link is present in a random (\(\gamma, p \)) hyper-graph is \(p_2 = 2\gamma(1 - p)/N \) and for a 3-spin hyper-link is \(p_3 = 6\gamma p/N^2 \). Thus the probability of finding in a random (\(\gamma, p \)) hyper-graph a hyper-loop made of \(n_2 \) links and \(n_3 \) hyper-links (\(n_3 \) must be even) is just the number of different ways one can choose the (hyper-)links times \(p_2^{n_2} p_3^{n_3} \). Because the number of nodes belonging to a hyper-loop of this kind is at most \(n_n = n_2 + 3n_3/2 \) and the number of different hyper-loops of this kind is order \(N^{n_n} \), we have that the probability of having a hyper-loop with \(n_2 \) links and \(n_3 \) hyper-links is order \(N^{-n_n}/2 \).

Then, for \(\gamma < \gamma_c \) the number of hyper-loops is still finite (their number becomes infinite only at \(\gamma_c \) where a transition to a completely UNSAT phase takes place) and the SAT probability, in the large \(N \) limit, is completely determined by the number of simple loops (\(n_3 = 0 \)).

The typical number of these loops does not vanish for \(\gamma < \frac{1}{4(1-p)} \), and therefore such “rare” events lead to a coexistence of SAT and UNSAT instances with equal energy density.

The average number of loops of length \(k \) can be easily calculated and it is given by \(x^k/(2k) \), where \(x = 2\gamma(1 - p) \). The average number of loops of any size

\[
A(x) = \sum_{k=3}^{\infty} \frac{x^k}{2k} = -\frac{1}{2} \ln(1 - x) - \frac{x}{2} - \frac{x^2}{4} ,
\]

(20)

indeed diverges for \(x \to 1 \), that is for \(\gamma \to \frac{1}{2(1-p)} \). The probability of having \(m \) loops in a random (\(\gamma, p \)) hyper-graph is then

\[
P(m; \gamma, p) = e^{-A(x)} \frac{A(x)^m}{m!} ,
\]

(21)

and the fraction of SAT instances turns out to be the one in Eq. (18).

We have numerically calculated the SAT probabilities for many \(p \) and \(N \) values, finding a transition from a mixed to a completely UNSAT phase at the \(\gamma_c(p) \) analytically calculated in the previous section. We also find, in agreement with analytical results, that the transition is continuous as long as \(p \leq 1/4 \) and then it becomes discontinuous in the SAT probability.

Let us now concentrate on the scaling with \(N \) of the critical region. We have considered several alternative definitions for the critical region. The one we present here seems to be the simplest and also the most robust, in the sense it can be safely used when the transition is both continuous \((p \leq 0.25)\) and discontinuous \((p > 0.25)\). We assume that the size of the critical region is inversely proportional to the derivative of the SAT probability at the critical point

\[
w(N, p)^{-1} = \left. \frac{\partial P_{\text{SAT}}(\gamma, p)}{\partial \gamma} \right|_{\gamma = \gamma_c} .
\]

(22)

For any value of \(p \) the width \(w(N) \) goes to zero for large \(N \) and the scaling exponent \(\nu(p) \) is defined through

\[
w(N, p) \propto N^{-1/\nu(p)} .
\]

(23)
In Fig. 4 we show, in a log-log scale, $w(N,p)$ as a function of N for many p values, together with the fits to the data. The uppermost and lowermost lines have slopes $-1/3$ and $-1/2$ respectively. Data for $p \leq 0.5$ can be perfectly fitted by simple power laws (straight lines in Fig. 4) and the resulting $\nu(p)$ exponents have been reported in Fig. 5. We note that as long as $p \leq 0.25$ the ν exponent turns out to be highly compatible with 3, which is known to be the right value for $p = 0$. Thus we conclude that for $p < 1/4$ the exponents are those of the $p = 0$ fixed point.

For $0.25 < p \leq 0.5$ we find that the ν exponent takes non-trivial values between 2 and 3. Then one of the following two conclusions may hold. Either the transition for $p > p_0$ is driven by the $p = 1$ fixed point and the ν exponent is not
universal, or more probably any different p value defines a new universality class. This result is very surprising and interesting for the possibility that different universality classes are simply the consequence of the random hyper-graph topology.

More complicated is the fitting procedure for $p > 0.5$. In a recent paper [14] Wilson has shown that in SAT problems there are intrinsic statistical fluctuations due to the way one construct the formula. This white noise induces fluctuations of order $N^{-1/2}$ in the SAT probability. If critical fluctuations decay faster than statistical ones (i.e. $\nu < 2$), in the limit of large N the latter will dominate and the resulting exponent saturates to $\nu = 2$. Data for $p = 0.75$ and $p = 1$ shown in Fig. have a clear upwards bending, which we interpret as a crossover from critical (with $\nu < 2$) to statistical ($\nu = 2$) fluctuations. Then we have fitted these two data sets with a sum of two power laws, $w(N) = AN^{-1/\nu} + BN^{1/2}$. The goodness of the fits (shown with lines in Fig.) confirm the dominance of statistical fluctuations for large N. Moreover we have been able to extract also a very rough estimate of the critical exponent ν from the subleading term. In Fig. we show with filled squares these values, which turn out to be more or less in agreement with a simple extrapolation from $p \leq 0.5$ results.

V. CONCLUSIONS AND PERSPECTIVES

The exact analysis of a solvable model for the generation of random combinatorial problems has allowed us to show that combinatorial phase diagrams can be affected by rare events leading to a mixed SAT/UNSAT phase. The energy difference between such SAT and UNSAT instances is non extensive and therefore non detectable by the usual $\beta \to \infty$ statistical mechanics studies. However, a simple probabilistic argument is sufficient to recover the correct proportion of instances.

Moreover, through the exact location of phase boundaries together with the use of a polynomial global algorithm for determining the existence of solutions we have been able to give a precise characterization of the critical exponents ν depending on the mixing parameter p. The p-dependent behavior conjectured in ref. for the random $2 + p$ SAT case finds here a quantitative confirmation. The mixing parameter dependency also shows that the value of the scaling exponents is not completely determined by the nature of the phase transition and that the universality class the transition belongs to is very probably determined by the topology of the random hyper-graph. The model we study has also a physical interpretation as a diluted spin glass system. It would be interesting to know whether the parameter-dependent behavior of critical exponent plays any role in some physically accessible systems.

A last remark on the generalization of the present model. With the same analytical techniques presented here, one can easily solve a Hamiltonian containing a fraction f_k of k-spin interacting terms for any suitable choice of the parameters f_k [20]. The case presented in this paper ($f_2 = 1 - p$ and $f_3 = p$) is the simplest one. There are choices which show a phase diagram still more complex with, for example, a continuos phase transition preceded by a dynamical one.

[1] M. Garey, and D.S. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness, (Freeman, San Francisco, 1979); C. Papadimitriou, Computational Complexity (Addison-Wesley, Reading, MA, 1994).
[2] S.A. Cook, in Proceedings of the Third Annual ACM Symposium on Theory of Computing (ACM, New York, 1971), p. 151.
[3] Artif. Intel. 81, issues 1–2 (1996).
[4] D. Mitchell, B. Selman, and H. Levesque, in Proceedings of the Tenth National Conference on Artificial Intelligence (AAAI-92) (AAAI Press, Menlo Park, CA, 1992), p. 459.
[5] S. Kirkpatrick and B. Selman, Science 264, 1297 (1994).
[6] A. Goerdt, in Proceedings of the 17th International Symposium on Mathematical Foundations of Computer Science, in Lecture Notes in Computer Science, vol. 629 (Springer, 1992), p. 264; J. Comput. Syst. Sci. 53, 469 (1996). V. Chvátal and B. Reed, in Proceedings of the 33rd IEEE Symposium on Foundations of Computer Science (IEEE, New York, 1992), p. 620.
[7] special issue on NP-hardness and Phase Transitions, O. Dubois, R. Monasson, B. Selman and R. Zecchina, Theoretical Computer Science in press.
[8] R. Monasson, R. Zecchina, S. Kirkpatrick, B. Selman and L. Troyansky, Nature (London) 400, 133 (1999).
[9] R. Monasson, R. Zecchina, S. Kirkpatrick, B. Selman and L. Troyansky, Random Structures and Algorithms 3, 414 (1999).
[10] R. Monasson and R. Zecchina, J. Phys. A 31, 9209 (1998).
[11] G. Biroli, R. Monasson, M. Weigt, Eur. Phys. J. B 14, 551 (2000).
[12] R. Monasson and R. Zecchina, Phys. Rev. Lett. 76, 3881 (1996); Phys. Rev. E 56, 1357 (1997).
[13] B. Bollobás, C. Borgs, J.T. Chayes, J.H. Kim and D.B. Wilson, preprint arXiv:math.CO/9909031.
[14] D.B. Wilson, preprint arXiv:math/0006136.
[15] F. Ricci-Tersenghi, M. Weigt and R. Zecchina, Phys. Rev. E 63, 026702 (2001).
[16] N. Creignou and H. Daude, Discr. Appl. Math. 96–97, 41 (1999).
[17] S. Franz, M. Mézard, F. Ricci-Tersenghi, M. Weigt and R. Zecchina, preprint cond-mat/0103026.
[18] S. Franz, M. Leone, F. Ricci-Tersenghi and R. Zecchina, in preparation.
[19] B. Bollobás, Random Graphs (Academic Press, London, 1985).
[20] M. Leone, F. Ricci-Tersenghi and R. Zecchina, in preparation.