Studies on In Vitro Response to Callus Induction and Regeneration of Five High Yielding Indica Rice Varieties

Md. Niuz Morshed Khan1,a*, Dr. Md. Monirul Islam2,b and Dr. Md. Shahidul Islam3

1Biotechnology, Bangladesh Agricultural University, Mymensingh, Bangladesh

2(Senior Scientific Officer) Biotechnology, Bangladesh Institute of Nuclear Agriculture (BINA), Mymensingh, Bangladesh.

3(Professor and Head) Biotechnology, Bangladesh Agricultural University, Mymensingh, Bangladesh.

arumman899@gmail.com*, bmislambina73@gmail.com

Keywords: 2,4-dichlorophenoxyacetic acid, callus induction, Embryogenic callus, Regeneration, growth regulators.

Abstract. Due to growing population, there is an increasing demand of rice production but the productivity of rice is lessened day by day. To overcome this problem various biotechnological tools can be used for developing various rice varieties. However, the lack of a simple and efficient protocol for callus induction, embryogenic callus formation and quick plant regeneration in this cereal crop. In this study embryogenic calli from mature seeds of five indica rice varieties viz. Binadhan-5, Binadhan-6, BRRI dhan-48, BRRI dhan-58 and IR-64 were observed that is done in four different types of media composition. The highest callus induction were observed in media containing Sucrose as a carbon source. Among those varieties Binadhan-6 and BRRI dhan-48 showed highest rate of callus induction respectively. This study will be useful for selecting suitable callus induction medium for callus induction in future that will be useful for not only national but also international plant breeders for producing new variety and so on.

Introduction

Rice (Oryza sativa L.) is a monocot plant that belongs to the genus Oryza, family Gramineae (Poaceae) and tribe Oryzeae. It also comprised two subspecies, Indica and Japonica [16]. It is being cultivated for more than 10,000 years [14]. It is cultivated in 10.1 million ha and produces 95% of the total food grain of Bangladesh. Out of the all crops that are using as feed in all over the world rice provide 23% of the calories consumed by the whole population [9]. In Asia, two main subspecies named indica and japonica are grown among the three species. Indica rice encompasses 80% of the world rice cultivation [15] and this types of rice is mainly grown in South and South-East Asian countries of the world [18]. Larger than half of the population of the world using rice as a staple food [7] that serves more than 90% of the Asian population and is occupy the second position among all cereal crops cultivated in the world, after wheat [12]. For coping with the high rate of increasing population of the world the total rice production has to be intensified 50% within 2025 [8]. This goal cannot be accomplished by increasing the cultivation area under rice cultivation because of limitation of proper lands. On the other hands the farm areas are being lessen by residential areas in the developing countries. Previous experiments showed that the production rate of rice is unpleasantly affected by abiotic stress and that is highly defenseless with the change of weather [5, 6, 19, 3]. Various Modern biotechnological tools requires the optimization of an efficient regeneration protocol for specific cultivar(s) is an essential for the composition of the nutrient media is a major factor that influencing the regeneration frequency of rice [2]. Various researchers used different types of media for callus induction and regeneration [20],[21]. This experiment considering the objectives of identifying a suitable medium for callus induction from mature dehusked seeds. We hope that this study will be useful for local as well as for international plant breeders for improving the callus induction and regeneration efficiency in Rice in future.
Materials and Methods

This study was conducted in the Laboratory of Biotechnology division, Bangladesh Institute of Nuclear Agriculture (BINA), Mymensingh.

Plant material

Five different healthy and dehusked seeds of indica rice (*Oryza sativa* L.) named Binadhan-5, Binadhan-6, BRRI dhan 48, BRRI dhan 58, and IR 64 were used as experimental material to study different parameters associated with callus induction of plant [4].

Surface sterilization of seeds

Seeds were surface sterilized by dipped in 70% ethyl alcohol for 1 minute with vigorous shaking after washing 5 to 6 times with distilled water. After that it were washed with double distilled water for 3 to 4 times and Surface disinfection was done by using of 50% NaOCl and 1 drop Tween-20 for 15 minutes at 300 rpm in a shaker. Then the seeds were subsequently washed 7 to 10 times with sterile distilled water to remove traces of sterilant that would be toxic to the seed materials if kept for longer duration. The surface sterilized seeds were then dried for 5-6 min on a sterilized filter paper.

Callus induction

Sterilized seeds were cultured directly in MS medium supplemented with different carbon source and media composition required as per treatment. In this experiment we used four types of media composition. MS medium containing 30g/L sucrose (T1) [23]; 30g/L Maltose (T2) [5]; 30 g/L Sucrose, 0.5 g/L Proline and 0.5 g/L Glutamine (T3) [24] and 30 g/L Maltose, 0.3 g/L Casein hydrolysate, 0.6 g/L L-proline and 0.25 mg/L BAP (T4). The culture media were autoclaved at 1.16 kgcm-2 pressure and 1210 C temperature for 30 minutes. Sterilized Seeds were cultured horizontally on to the media with different treatments under aseptic conditions and then incubated at 270 C in dark conditions. Every treatment contained three replications. The callus induction frequency was recorded after 2 weeks of culturing. The following Equation was used for determining the callus induction frequency as given below.

\[
\text{Percent of embryogenic callus} = \frac{\text{Number of callus induction}}{\text{Number of seeds incubated}} \times 100
\]

Percent of embryogenic callus were calculated on the basis of the number of induced callus and the total number of embryogenic callus.

Subculture

Two weeks after the inoculation of explants, the embryogenic callus attained convenient size. Then they were removed aseptically and the root and shoot are discarded from the callus on a sterilized glass plate inside the laminar airflow cabinet and were placed again on a freshly prepared sterilized medium containing appropriate hormonal supplements. Then the subcultured callus were incubated in growth chamber at controlled temperature (27±10 C) in dark.

Regeneration from embryogenic calli

After 2 weeks the subcultured calli were transferred onto regeneration media containing either two or three growth regulators comprised of MS salts, 30 g/l maltose, 2 mg/l kinetin, 0.2 mg/l naphthalene acetic acid (NAA), pH 5.8. The media was supplemented with 8 g/l agar during the first phase of regeneration and 10 g/l agar during the second phase of regeneration. These microcalli were incubated at 27±10 C in dark for 7 days for the first phase of regeneration. During the second phase of regeneration these microcalli were transferred to fresh regeneration medium with 10 g/l agar concentration and incubated in light at 27±10 C temperature [13].
Results

Plant regeneration is a system that is essential for establishing an efficient application of biotechnology that can be utilized for crop improvement in future. Therefore, in vitro regeneration from induced callus from mature embryos of five indica rice (Oryza sativa L.) varieties was investigated in this study.

The experiment was accompanied using five varieties of indica rice named Binadhan-5, Binadhan-6, BRRI dhan-48, BRRI dhan-58 and IR-64. Exploration on in vitro regeneration of these varieties was accomplished with callus induction, desiccation of callus, embryogenic callus, and finally plantlet regeneration. Results of different steps of the experiments are described under the following heads.

Callus induction

The first step of this experiment was callus induction from mature embryo. To meet this purpose, callus induction potentiality of mature embryo on different MS media composition was investigated.

Embryo of mature seeds of five varieties of rice used as explants were cultured on four types of MS media (MS + Sucrose, MS + Maltose, MS + Sucrose + Proline + Glutamine, and MS + Maltose + Casein hydrolase + L-proline + BAP) for callus induction. Callus induction performances of all the varieties in each treatment were evaluated and presented in Table-1.

**Table 1:** effects of different ms media on callus induction

| Treatment                      | Varieties       | No. of seed plating | Percent of callus induction | Percent of embryogenic callus |
|--------------------------------|-----------------|---------------------|----------------------------|-----------------------------|
| MS + Sucrose +2,4-D            | Binadhan-5      | 100                 | 92                         | 48                          |
|                                | Binadhan-6      | 100                 | 93                         | 62                          |
|                                | BRRI dhan-48    | 100                 | 89                         | 39                          |
|                                | BRRI dhan-58    | 100                 | 38                         | 21                          |
|                                | IR-64           | 100                 | 59                         | 23                          |
| MS + Maltose +2,4-D            | Binadhan-5      | 100                 | 94                         | 21                          |
|                                | Binadhan-6      | 100                 | 93                         | 55                          |
|                                | BRRI dhan-48    | 100                 | 83                         | 54                          |
|                                | BRRI dhan-58    | 100                 | 89                         | 37                          |
|                                | IR-64           | 100                 | 79                         | 63                          |
| MS + Sucrose + Proline + Glutamine +2,4-D | Binadhan-5    | 100                 | 42                         | 15                          |
|                                | Binadhan-6      | 100                 | 90                         | 52                          |
|                                | BRRI dhan-48    | 100                 | 84                         | 57                          |
|                                | BRRI dhan-58    | 100                 | 79                         | 22                          |
|                                | IR-64           | 100                 | 91                         | 40                          |
| MS + Maltose + Casein hydrolase + L-proline + BAP + 2,4-D | Binadhan-5    | 100                 | 52                         | 17                          |
|                                | Binadhan-6      | 100                 | 49                         | 31                          |
|                                | BRRI dhan-48    | 100                 | 57                         | 37                          |
|                                | BRRI dhan-58    | 100                 | 39                         | 21                          |
|                                | IR-64           | 100                 | 49                         | 29                          |
Callus initiation started from six days from incubation and took about fourteen to sixteen days for the completion followed by Binadhan-5, Binadhan-6, BRRI dhan-48, BRRI dhan-58 and IR-64 respectively (Figure-1). The percentage of callus induction was highest in Binadhan-6 (69.17%), followed by BRRI dhan-48 (66.17%), Binadhan-5 (52.50%), IR-64 (52.50) and lowest in BRRI dhan-58 (43.17%). Highest (72.87%) percentage of callus induction was observed in T1 (MS + Sucrose + 2 mg/L 2,4-D), T2 (MS + Maltose+ 2 mg/L 2,4-D) is near the T1 (72.73%) and lowest (24.20%) percentage of callus induction was observed in T4 (MS + Maltose + Casein hydrolase + L- proline + BAP + 2 mg/L 2,4- D) (Table 2).
Effects of different treatments on callus induction

Mean square values of four different combinations of treatments were found statistically significant for the callus such as percent of callus induction and percent of embryogenic callus. Among those treatments MS + Sucrose + 2 mg/L 2,4-D was found to be the best of all variety (Table 2).

T1 (MS + Sucrose + 2 mg/L 2,4-D) showed the highest percentage (72.87%) of callus induction closely followed by T2 (MS + Maltose + 2 mg/L 2,4-D) 72.73%, T3 (MS + Sucrose + Proline + Glutamine +2,4-D) 57% and lowest (24.20%) percentage of callus induction was observed in T4 (MS + Maltose + Casein hydrolase + L- proline + BAP + 2 mg/L 2,4- D). But T2 (MS + Maltose+ 2 mg/L 2,4-D) showed the highest percentage (38.60%) of embryogenic callus production, closely followed T1 (MS + Sucrose + 2 mg/L 2,4-D) 35.73%, T3 (MS + Sucrose + Proline + Glutamine +2,4-D) 28.33%, and lowest 7% of embryogenic callus was produced in T4 (MS + Maltose + Casein hydrolase + L- proline + BAP + 2 mg/L 2,4- D).

Table 2: Effects of different treatments on callus induction

| Treatments combination                                      | Percent of callus induction |
|-------------------------------------------------------------|-----------------------------|
| MS + Sucrose +2,4-D (T1)                                     | 72.86667 a                   |
| MS + Maltose +2,4-D (T2)                                     | 72.73333 a                   |
| MS + Sucrose + Proline + Glutamine +2,4-D (T3)              | 57.00000 b                   |
| MS + Maltose + Casein hydrolase + L- proline + BAP + 2,4- D (T4) | 24.20000 c                   |
| CV(%)                                                       | 32.34381                     |
| LSD(0.05)                                                   | 13.534                       |

In the column figures followed by same same letter (s) in a do not statistically significant

Table 3: Varietal differences in callus induction

| Variety       | Percent of callus induction |
|---------------|-----------------------------|
| Binadhan-5    | 52.50000 bc                 |
| Binadhan-6    | 69.16667 a                  |
| BRRI dhan-48  | 66.16667 ab                 |
| BRRI dhan-58  | 43.16667 c                  |
| IR-64         | 52.0000 bc                  |
| CV (%)        | 32.34381                     |
| LSD (0.05)    | 15.13147                     |

In the column figures followed by same same letter (s) in a do not statistically significant

Effects of different varieties on callus characters

The genotypic mean square values of rice were found statistically significant for all the characters of callus induction such as percent of callus induction and percent of embryogenic callus under those treatment (Table 3).

Highest (69.17%) percentage of callus induction was observed in Binadhan-6 closely followed by BRRI dhan-48 (66.17%), Binadhan-5 and IR-64 showed the same percentage (52.50%)
and lowest (43.17%) in BRRI dhan-58. Which were statistically significant. Percentage of embryogenic callus was higher (37.75%) in Binadhan-6 closely followed by BRRI dhan-48 (36.17%), IR-64 (27.83%), Binadhan-5 (18.83%) and lowest (16.50%) in BRRI dhan-58 which were statistically significant. We can say that rate of callus induction depends on genotype. It has been showed that callus induction frequency is related with genotypic variability [4],[10]. In this experiment the percentage of callus induction varied variety to variety.

**Regeneration from embryogenic calli**

Two different media containing either two or three growth regulators are used. One (R1) comprised of MS salts, 30 g/l maltose, 2 mg/l kinetin, 0.2 mg/l naphthalene acetic acid (NAA), pH 5.8. The media was supplemented with 8 g/l agar during the first phase of regeneration and 10 g/l agar during the second phase of regeneration. While other media (R2) consisted of MS salts, 30 g/l maltose, 2.7 mg/l BAP, 1.2 mg/l kinetin, 0.5 mg/l NAA, pH 5.8 the regeneration occur within 25 days of inoculation (Figure 3) [13].

![Regeneration from calli](image)

**Figure 3**: Regeneration from transformed calli

**Discussion**

In previous study it were showed that the callus induction frequency were between 60% and 90% [22], in the present study the callus induction rate reached up to 72% that support the previous study. However, high callus induction and regeneration may differ in different media composition and varieties [4],[5]. In this study, whitish and globular calli were found in media containing maltose and sucrose treated media formed brownish calli. In parallel to the above observations, Visarada et al. and Abiri et al. [1],[17] reported that nodular, compact and whitish calli were highly
embryogenic while watery, yellowish, rhizogenic and necrotic calli were stated to be non-embryogenic. Non-embryogenic calli are not competent for regeneration [12]. Based on color and structural morphology, the calli of the present study were mostly embryogenic in maltose treated media where they reached up to 38%. Previous studies illustrated that maltose gave high embryo formation in indica rice [11]. It has been reported that Callus induction is highly genotype specific [4]. In this experiment there is a huge difference of callus induction among the five rice varieties.

Conclusions

In this experiment a thorough investigation was carried out for knowing the callus induction ability of five indica Rice varieties named Binadhan-5, Binadhan-6, BRRI dhan-48, BRRI dhan-58, IR-64. Mature embryos of five indica rice varieties were cultured on four different media composition for inducing callus and embryogenic callus. A wide range of variation was observed in the ability of callus induction and embryogenic callus formation. The maintenance of callus was essential for getting efficient regeneration for this purpose, embryogenic callus were desiccated and cultured on callus induction media. MS + Sucrose (T1) media performed better compared to other types of media for inducing callus. The percent of callus induction was highest (69.17%) in Binadhan-6 and lowest (43.17%) in BRRI dhan-58. Callus induction was highest (72.87%) in T1 (MS + Sucrose +2,4-D) and lowest (24.20%) in media T4 (MS + Maltose + Casein hydrolase + L-proline + BAP + 2,4- D). highest (38.60%) percentage of embryogenic callus was formed in T2 (MS + Maltose +2,4-D) and lowest (7%) embryogenic callus was formed in T4 (MS + Maltose + Casein hydrolase + L- proline + BAP + 2,4- D). Binadhan-6 produced highest (37.75%) rate of embryogenic callus and BRRI dhan-58 showed lowest (16.50%) embryogenic callus production.

Acknowledgments

This experiment was performed at the laboratory of the Biotechnology department, Bangladesh Institute of Nuclear Agriculture (BINA), Mymensingh, during the period from May 2018 to November 2018. Thanks to BINA Bangladesh for experimental support.

References

[1] R. Abiri et al., Enhancing somatic embryogenesis of Malaysian rice cultivar MR219 using adjuvant materials in a high-efficiency protocol. International Journal of Environmental Science and Technology. 14 (2017) 1091-1108.
[2] A. M. Amer et al., Effect of some of the natural organic sources on rice tissue culture. Egyptian Pharmaceutical Journal. 16 (2017) 152.
[3] M. Azmi et al., Control of weedy rice in direct-seeded rice using the Clearfield production system in Malaysia. Pak J Weed Sci Res., 18 (2012) 49-53.
[4] R. Bhuiyan et al., Comparison of Callus Initiation and Regeneration Frequency for Two Submerge Tolerant Rice (Oryza sativa). 9 (2014) 74–78.
[5] S. Binte Mostafiz, A. Wagiran, A. Efficient Callus Induction and Regeneration in Selected Indica Rice. Agronomy. 8 (2018) 77.
[6] M. I. Bzour, F. M. Zuki, M. S. Mispan, Introduction of imidazolinone herbicide and Clearfield® rice between weedy rice—Control efficiency and environmental concerns. Environmental Reviews. 26 (2018) 181-198.
[7] T. Hadiarto, L. S. P. Tran, Progress studies of drought-responsive genes in rice. Plant cell reports. 30 (2011) 297-310.
[8] G. S. Khush, P. S. Virk, Rice breeding: achievements and future strategies. Crop improvement., 27 (2000) 115-144.
[9] G. S. Khush, P. S. Virk, 2001. Rice Breeding: Achievement and future strategies. Crop Improvement. 27 (2001) 115-144.

[10] B. Pawar et al., Proline and glutamine improve in vitro callus induction and subsequent shooting in rice. Rice Science., 22 (2015) 283-289.

[11] Z. A. Rahman et al., Regeneration of Malaysian indica rice (Oryza sativa) variety MR232 via optimised somatic embryogenesis system. Journal of Phytology, 2 (2010).

[12] S. Rueb et al., Efficient plant regeneration through somatic embryogenesis from callus induced on mature rice embryos (Oryza sativa L.). Plant Cell, Tissue and Organ Culture, 36 (1994) 259-264.

[13] K. K. Sahoo, A. K. Tripathi, A. Pareek, S. K. Sopory, S. L. Singla-Pareek, An improved protocol for efficient transformation and regeneration of diverse indica rice cultivars. Plant methods, 7 (2011), 49.

[14] T. Sasaki, Rice genome analysis to understand the rice plant as an assembly of genetic codes. Photosynthesis research. 70 (2001) 119-127.

[15] W. Tie et al., Reasons for lower transformation efficiency in indica rice using Agrobacterium tumefaciens-mediated transformation: lessons from transformation assays and genome-wide expression profiling. Plant molecular biology. 78 (2012) 1-18.

[16] D. A. Vaughan, H. Morishima, K. Kadowaki, Diversity in the Oryza genus. Current opinion in plant biology. 6 (2003) 139-146.

[17] K. B. R. S. Visarada, M. Sailaja, N. P. Sharma, Effect of callus induction media on morphology of embryogenic calli in rice genotypes. Biologia Plantarum. 45 (2002) 495-502.

[18] U. YaqoobP et al., Tissue culture of rice: Problems, progress and prospects. IJISET. 3 (2016) 581-613.

[19] W. M. Zulkarnain et al., Growth and yield response to water availability at different growth stages of rice. Journal of Food, Agriculture & Environment. 11 (2013) 540-544.

[20] R. Shukla, A. Dube, E. Koshy, Production of high quality embryogenic callus of rice. Int Quarterly J Life Sci. 9 (2014) 1077-1080.

[21] M. Tariq et al., Callus induction and in vitro plant regeneration of rice (Oryza sativa L.) under various conditions., Pak. J. Biol. Sci., 11 (2008) 255-259.

[22] M. Asaduzzaman, et al., GUS Gene Transformation in Rice (Oryza sativa L.) Variety BRRI Dhan-30 Mediated by Agrobacterium tumefaciens. Biotechnology. 7 (2008) 530-536.

[23] Y. F. Liu et al., Factors influencing callus induction and plantlet regeneration from mature embryos in indica rice. Plant Physiol. Comm. 40 (2004) 319-322.

[24] E. Shahsavari, Impact of tryptophan and glutamine on the tissue culture of upland rice. Plant Soil Environ. 57 (2011) 7-10.