Осложнение лазер-индуцированной термотерапии кисты Бейкера
С.А. Чернядьев¹, В.Б. Аретинский², А.В. Жиляков³, Н.Ю. Коробова¹, С.М. Кутепов¹
¹Государственное бюджетное образовательное учреждение высшего профессионального образования
«Уральский государственный университет» Министерства здравоохранения Российской Федерации, г. Екатеринбург, Россия
²Государственное автономное учреждение здравоохранения Свердловской области Областной специализированный центр медицинской реабилитации «Озеро Чусовское», г. Екатеринбург, п. Чусовское Озеро, Россия
³Общество с ограниченной ответственностью «Новые технологии для амбулаторной медицины» (ООО «НОТАМЕД»), г. Екатеринбург, Россия

Complication of laser-induced thermal therapy for Baker's cyst
S.A. Chernyadiev¹, V.B. Aretinskiy², A.V. Zhilyakov³, N.Yu. Korobova¹, S.M. Kutepov¹
¹Ural State Medical University, Ekaterinburg, Russian Federation
²State Autonomous Health Institution of the Sverdlovsk Region „Chusovsky Lake“ Regional Specialized Centre of Medical Rehabilitation, Ekaterinburg, Chusovsky Lake Settlement, Russian Federation
³New Technologies for Outpatient Medicine Ltd. ("NOTAMED“ LTD), Ekaterinburg, Chusovsky Lake Settlement, Russian Federation

ВВЕДЕНИЕ

Киста Бейкера является доброкачественным синовиальным новообразованием. Ее встречаемость среди пациентов, обратившихся к врачу по поводу болей в области коленных суставов, значительно колеблется – от 3,4 до 32 % [1, 2]. Анатомическая особенность расположения, неясность этиологии и патогенеза приводит к отсутствию единой точки зрения на тактику хирургического лечения подкожных кист [3].

В некоторых амбулаторных учреждениях применяют метод локальной лазерной гипертермии, в основе которой лежит денатурация коллагена под воздействием прямого излучения или вторично возникающего тепла [4]. На этом же принципе авторами был предложен метод лазерной облитерации кисты Бейкера [5].

Наряду с простотой и эффективностью применения этой методики был выявлен ряд недостатков и сложностей при выполнении вмешательства. Так, например, при локальной фотокоагуляции соединительных тканей условия воздействия лазерным излучением выбираются эмпирически и часто оказываются неоптимальными, а результаты, в итоге, плохо предсказуемы. Также, в связи с затрудненностью ультразвуковой визуализации тонкого световода среди мягких тканей, особенно при его приближении к коже, возрастает риск возникновения осложнений манипуляции в виде окого подкожно-жировой клетчатки [6].

МАТЕРИАЛЫ И МЕТОДЫ

В качестве примера приведут следующий случай. Пациентка Р., 51 год. Обратилась в Екатеринбургский Филиал ЗАО «Центр флебологии» (заведующий отделением к. м. н. О.А. Виноградов) с жалобами на появление периодических судорог икроножной мышцы и эпизод резкой боли по задней поверхности левого коленного сустава с последующим отеком левой голени примерно 2 месяца назад. При пальпации левой подколенной области определялось подкожное образование 4 × 2 см плотно-эластичной консистенции, неподвижное. Изменений кожи над ним не было. При пассивных движениях в левом коленном суставе определялась умеренная крепитация. Симптом Фуше – отрицательный. Для дифференциальной диагностики было выполнено сонографическое исследование на ультразвуковом аппарате экспертного класса SONOS-2000 (HewlettPackard, США) с использованием методов двухмерной томографии (В-метод) линейным датчиком с частотой излучения 5–7,5 МГц.
РЕЗУЛЬТАТЫ

Врач ультразвуковой диагностики обнаружил, что в левой подколенной области на глубине 1 см определяется жидкостное образование элипсовидной формы (рис. 1) с гипоэхогенной капсулой до 1–1,5 мм толщиной, неоднородной гипоэхогенной структурой за счет единичных пристеночных разрастаний до 2 мм, без признаков свободных или фиксированных хондравальных тел. Размер — 42 × 30 × 11 мм. Внутрипостовая жидкость экологически. При компрессии датчиком образование сжимается, содержимое не эвакуируется в полость сустава.

Установлен диагноз: левосторонний гонартроз 1–2 ст., киста Бейкера. Учитывая результаты обследования, было принято решение выбрать хирургический способ лечения, а именно, лазер-индуктированную термотерапию. Согласие на вмешательство от пациентки было получено. После стандартного предоперационного обследования были исключены противопоказания и назначена дата вмешательства.

В условиях манипуляционной 06.11.17 года после асептической обработки операционного поля, под местной анестезией (лидокаин 2% – 2,0) произведена пункция кисты, полностью эвакуировано ее содержимое. Затем через просвет пункционной иглы в полость образования был введен кварцевый световод толщиной 600 мкм. После была выполнена тумесцентная анестезия (лидокаин 0,25% – 30,0) под контролем ультразвукового сканера. Анестетик вводился в перифокальные ткани над и под образованием. Мощность излучения была выбрана 10 Вт, режим – непрерывный. Процесс термотерапии также контролировался при помощи сонографического оборудования. Всего сеанс длился 150 секунд с реализацией 1508 Дж. Особенность данной процедуры заключалась в том, что при обратной тракции оптического волокна возникли технические сложности с визуализацией рабочего торца световода. И в течение периода, длившегося примерно 20–30 секунд, шло облучение подкожно-жировой клетчатки, инфилтрированной местным анестетиком. По окончании процедуры визуально отмечалось термическое поражение кожи (рис. 2). Незамедлительно зона ожога была обработана гелем Интратсайт (INTRASITE™ GEL) и закрыта асептической повязкой.

Пациентке даны рекомендации: местные криоаппликации по 20 минут три раза в день, прием диклофенака 50 мг 2 раза в день, сохранение повязки до 09.11.17 года.

При внешнем осмотре 09.11.17 года определялся умеренный отек и инфильтрация мягких тканей вокруг свищевого отверстия, сформировавшегося на месте пункции. Отделяемое серозно-гнойное, скудное. При ультразвуковом исследовании зафиксировано гипоэхогенное образование с нечетким неровным контуром неоднородной структуры без капсулы. Размер 52 × 20 × 15 мм. Мягкие ткани вокруг образования - повышенный экогенности (рис. 3).

Рис. 1. Киста Бейкера до лазер-индуктированной термотерапии: а – ультразвуковое поперечное сканирование; б – ультразвуковое продольное сканирование

Рис. 2. Левая подколенная область пациентки Р., 51 год, 06.11.17 – сразу после вмешательства. Виден гель, наложенный на ожоговую поверхность

Рис. 3. Локальное обследование 09.11.17: а – левая подколенная область. На месте пункции имеется точечный свищ; б – УЗИ левой подколенной области. Визуализируется инфильтрат мягких тканей в зоне термовоздействия
После местной обработки фукорцином рана закрыта асептической повязкой. Пациентке рекомендовано продолжить прием НПВС, а контрольный осмотр назначен через 7 дней после вмешательства.

Через 1 неделю после проведенной манипуляции пациентка активно жалоб не предъявляла. Место сдавлено свищ с умеренным серозно-гнойной отделяемой. Отек, инфильтрат и гиперемия уменьшились, но сконцентрировались вокруг свища, при пальпации определялась флюктуация. При выполнении компрессии голени в области инфильтрата внезапно из свища обильно выделились некротически измененные мягкие ткани (рис. 4, а). Их микроскопическое исследование обнаружило скопление палочкоядерных нейтрофилов с незначительным тканевым компонентом (рис. 4, б).

После опорожнения выполнен туалет свищевого хода и полости подкожно-клетчатки 3% раствором перекиси водорода, нанесена мазь Левомеколь и наложена асептическая повязка. Рекомендовано в условиях: перевязки с мазью Левомеколь через день, продолжить курс НПВС до 10 дней. Антибактериальная терапия не рекомендовалась. Осмотр в клинике запланирован через месяц после операции.

Через 38 дней после вмешательства у пациента активных жалоб нет, местно – отек, гиперемия и инфильтрация отсутствуют. Полость в подкожной клетчатке облитерировалась, свищ эпителизировался с признаками гиперпигментации кожи вокруг него. Ультразвуковое исследование продемонстрировало, что гиперэхогенность пострадавших тканей уменьшилась, зона инфильтрата уже имела неоднородную гиперэхогенность, ее размеры сократились до 38 × 10 × 8 мм (рис. 5).

Осмотр через 3 месяца. Субъективно пациентка отмечает полное отсутствие исходных жалоб, объем движений в коленном суставе сохранен, признаков сосудистых или неврологических расстройств левой нижней конечно не нет. Место обнаруживается только очаг гиперпигментации кожи (рис. 6). При ультразвуковом исследовании визуализировался небольшой очаг гипоэхогенной структуры вытянутой формы, без жидкостного содержимого, размером 30 × 4 × 2 мм.

Рис. 4. Отделяемое из свища на 7-е сутки после манипуляции: а – некротические массы, выделившиеся из свища; б – микропрепарат некротических масс. Окраска гематоксилином и эозином. Увеличение ×100

Рис. 5. Ультразвуковое исследование подколенной области от 14.12.17: инфильтрат в мягких тканях. Отчетливо прослеживается восстановление нормальной эхоструктуры

Рис. 6. Данные местного осмотра подколенной области через 3 месяца 02.02.18: а – свищ полностью облитерирован. Имеется очаг гиперпигментации на месте пункции; б – УЗИ мягких тканей в зоне термовоздействия. Киста Бейкера не визуализируется, инфильтрат регрессировал

ДИСКУССИЯ

На наш взгляд, тумесцентная анестезия является неоптимальным способом обезболивания при выполнении лазер-индукционной термопротеропии кисты Бейкера по нескольким причинам. Во-первых, при ее выполнении окружающие ткани подкожно-жирового слоя пропитываются водным раствором местного анестетика, что повышает гидратацию и способность получать излучение длиной 1,47 мкм, приводящее к их значительному перегреву. Во-вторых, этот вид анестезии не обеспечивает полного обезболивания, поскольку основные болевые рецепторы стенки кисты Бейкера расположены в ее среднем слое, рядом с капиллярной сетью, и диффузия лидокаина к ним затруднена из-за плотного наружного слоя стенки кисты [7]. В-третьих, тумесцентная анестезия плотно и неравномерно прижимает ткани полостного образования к работающему световому, что, с одной стороны, может приводить к полному поглощению светового потока тканями, ха-
ректировающегося резким повышением локальной температуры, вплоть до карбонизации, а с другой – прямой фотокоагулирующий эффект возникает только в зоне, равной ширине рабочего торца световода и длине его траектории при обратной тракции из полости кисты Бейкера. Это явно недостаточно для тотальной коагуляции коллагена, составляющего стенку подкожной кисты. При выполнении вмешательства необходимо избегать случайного выхода рабочего торца световода за пределы наружного фиброзного слоя кисты Бейкера. Данное событие может быть визуализировано на мониторе ультразвукового аппарата. В случае выявления подобной ситуации работа хирургической лазерной установки должна быть немедленно прекращена. Сразу же после наложения асептической повязки на область окончения рекомендуется выполнить криоаппликацию на 20 минут.

Источник финансирования. Результаты являются частью НИОКР, профинансированной из средств гранта по программе «Старт», выданного Федеральным государственным бюджетным учреждением «Фонд содействия развитию малых форм предприятий в научно-технической сфере» (Фонд содействия инновациям).

Благодарности. Авторы выражают особую благодарность ведущему научному сотруднику Института иммунологии и физиологии УрО РАН к. м. н. Медведевой С.Ю. за помощь в выполнении гистологической части исследования и подробное описание свойств и характеристик полученных гистопрепаратов.

Конфликты интересов. Авторы заявляют, что данная работа, ее предмет и содержание не затрагивают конкурирующих интересов.

ЛИТЕРАТУРА

1. Herman A.M., Marzo J.M. Popliteal cysts: a current review // Orthopedics. 2014. Vol. 37, No 8. P. e678-e684. DOI: 10.3928/01477447-20140728-52.
2. Магнитно-резонансная томография в диагностике повреждений и заболеваний коленного сустава [Magnetic resonance tomography in the diagnostics of the knee injuries and diseases]. Кремлевская медицина. Клинический вестник. 2014. № 2. С. 58-62.
3. Surgical treatment of popliteal cyst: a systematic review and meta-analysis // X.N. Zhou, B. Li, J.S. Wang, L.H. Bai // J. Orthop. Surg. Res. 2016.
4. Surgical treatment of popliteal cyst: a systematic review and meta-analysis // X.N. Zhou, B. Li, J.S. Wang, L.H. Bai // J. Orthop. Surg. Res. 2016.
5. Sokolov A.L., Liadov K.V., Lutsenko M.M. Laser obliteration of veins for practitioners. M.: Medpraktika-M, 2011. 136 p. (in Russian)
6. Sokolov A.L., Liadov K.V., Lutsenko M.M. Laser obliteration of veins for practitioners. M.: Medpraktika-M, 2011. 136 p. (in Russian)
7. Журнал анатомии и гистопатологии. 2018. Т. 7, № 2. 44-49.

REFERENCES

1. Herman A.M., Marzo J.M. Popliteal cysts: a current review. Orthopedics, 2014, vol. 37, no 8, pp. e678-e684. DOI: 10.3928/01477447-20140728-52.
2. Морозов С.П., Терновой С.К., Городниченко А.И., Арцыбашева М.В., Филистееева П.А. Магнитно-резонансная томография в диагностике повреждений и заболеваний коленного сустава [Magnetic resonance tomography in the diagnostics of the knee injuries and diseases]. Кремлевская медицина. Клинический вестник. 2014. № 2. С. 58-62.
3. Zhou X.N., Li B., Wang J.S., Bai L.H. Surgical treatment of popliteal cyst: a systematic review and meta-analysis // J. Orthop. Surg. Res. 2016.
4. Zhou X.N., Li B., Wang J.S., Bai L.H. Surgical treatment of popliteal cyst: a systematic review and meta-analysis // J. Orthop. Surg. Res. 2016.
5. Shakhno E.A. Fizicheskie osnovy primeneniia laserov v medicinske: ucheb. posobie [Physical foundations of using lasers in medicine: study guide]. Spb., NIU ITMO, 2012, 266 p. (in Russian)
6. Shakhno E.A. Fizicheskie osnovy primeneniia laserov v medicinske: ucheb. posobie [Physical foundations of using lasers in medicine: study guide]. Spb., NIU ITMO, 2012, 266 p. (in Russian)
7. Shakhno E.A. Fizicheskie osnovy primeneniia laserov v medicinske: ucheb. posobie [Physical foundations of using lasers in medicine: study guide]. Spb., NIU ITMO, 2012, 266 p. (in Russian)
8. Shakhno E.A. Fizicheskie osnovy primeneniia laserov v medicinske: ucheb. posobie [Physical foundations of using lasers in medicine: study guide]. Spb., NIU ITMO, 2012, 266 p. (in Russian)
9. Shakhno E.A. Fizicheskie osnovy primeneniia laserov v medicinske: ucheb. posobie [Physical foundations of using lasers in medicine: study guide]. Spb., NIU ITMO, 2012, 266 p. (in Russian)