ON THE CLASSIFICATION OF CERTAIN PIECEWISE LINEAR AND
DIFFERENTIABLE MANIFOLDS IN DIMENSION EIGHT AND
AUTOMORPHISMS OF \(\#_{i=1}^{p} S^2 \times S^5 \)†

ALEXANDER SCHMITT

ABSTRACT. In this paper, we will be concerned with the explicit classification of
closed, oriented, simply-connected spin manifolds in dimension eight with vanishing
cohomology in the odd dimensions. The study of such manifolds was begun
by Stefan Müller. In order to understand the structure of these manifolds, we will
analyze their minimal handle presentations and describe explicitly to what extent
these handle presentations are determined by the cohomology ring and the character-
istic classes. It turns out that the cohomology ring and the characteristic classes
do not suffice to reconstruct a manifold of the above type completely. In fact, the
group \(\text{Aut}_0 \#_{i=1}^{p} (S^2 \times S^5) \) of automorphisms of \(\#_{i=1}^{p} (S^2 \times S^5) \)
which induce the identity on cohomology modulo those which extend to \(\#_{i=1}^{p} D^6 \)
acts on the set of oriented homeomorphy classes of manifolds with fixed coho-
mology ring and characteristic classes, and we will be also concerned with describing
this group and some facts about the above action.

1. INTRODUCTION

The classification of topological manifolds up to homeomorphy is an extremely in-
teresting and important problem. Let us restrict to the case of closed (i.e., compact
without boundary) and oriented simply connected manifolds. As a general classifi-
cation scheme, surgery theory \[1\] solves this problem for manifolds within a given
homotopy type, e.g., the one of a sphere. Another approach to the classification "up to
finite indeterminacy", using rational homotopy theory, is due to Sullivan \[34\]. Never-
thess, there are only a few explicit results which characterize the oriented homeomor-
phy type of a manifold in terms of easily computable invariants. They usually require a
lot of simplifying assumptions such as high connectedness \[36\]. In this paper, we will
consider even cohomology manifolds (or \(E \)-manifolds, for short) in dimension eight
by which we mean closed, oriented, simply connected, piecewise linear or smooth
manifolds all of whose odd dimensional homology groups with integer coefficients
vanish. The universal coefficient theorem implies that all homology groups of an \(E \)-
manifold are without torsion. Moreover, since \(H^3(K; \mathbb{Z}_2) = 0 \) for an \(E \)-manifold, two
\(E \)-manifolds of dimension at least 6 are homeomorphic (as topological manifolds) if
and only if they are piecewise linearly homeomorphic \[16\].

Though the class of \(E \)-manifolds is fairly restricted, it still contains many interesting
examples from various areas of mathematics, such as the piecewise linear manifolds
underlying the toric manifolds from Algebraic Geometry \[4\] or the polygon spaces
\[12\], to name a few. So far, \(E \)-manifolds have been classified up to dimension 6. Of

2000 Mathematics Subject Classification: 57Q25, 57R19
†The paper is to appear in L’Enseignement mathématique.
course, in dimension 2 there is only S^2, in dimension 4, there is the famous classification result of Freedman various interesting aspects of which are discussed in [15], and finally in dimension 6, the classification was achieved by Wall [37] and Jupp [14]. Various applications of the latter result to Algebraic Geometry are surveyed in [26]. Finally, we refer to [2], [3], and [29] for the determination of projective algebraic structures on certain 6- and 8-dimensional E-manifolds.

ACKNOWLEDGMENT

My thanks go to J.-C. Hausmann for his interest in this work and for pointing out to me the fact that an E-manifold of dimension eight is actually not determined by its classical invariants (which was asserted by me in the first version of this paper).

2. STATEMENT OF THE RESULT

We now discuss the main result of this note, namely the classification of E-manifolds of dimension 8 with vanishing second Stiefel-Whitney class in the form of an exact sequence of pointed sets. This result was motivated by the work [24]. In order to state it in a more elegant form, we will work with based manifolds. By a based piecewise linear (smooth) E-manifold, we mean a triple $(X; x; y)$, consisting of a piecewise linear (smooth) E-manifold X and bases $x = (x_1; \ldots; x_b) \in H^2(X; \mathbb{Z})$ and $y = (y_1; \ldots; y_d) \in H^4(X; \mathbb{Z})$. Recall that E-manifolds are by definition oriented, so that the above data specify a basis for $H^*(X; \mathbb{Z})$, such that the bases for $H^i(X; \mathbb{Z})$ and $H^8-i(X; \mathbb{Z})$ are dual to each other w.r.t. the cup product. An isomorphism between piecewise linear (smooth) based E-manifolds $(X; x; y)$ and $(X'; x'; y')$ is an orientation preserving piecewise linear (smooth) isomorphism $f: X \rightarrow X'$ with $f(x) = x$ and $f(y) = y$. Denote by $\mathcal{I}_{\text{PL}}(\mathbb{C}_\infty)$ the set of isomorphism classes of piecewise linear (smooth) based E-manifolds $(X; x; y)$ of dimension eight with vanishing second Stiefel-Whitney class, $b_2(X) = b$, and $b_4(X) = b^0$.

2.1. The classical invariants. In the terminology of [24], the classical invariants of an E-manifold consist of its cohomology ring, the Stiefel-Whitney classes, the Wu classes, the Pontrjagin classes, the Euler class, the Steenrod squares, the reduced Steenrod powers, and the Pontrjagin powers. For an eight dimensional E-manifold X with vanishing second Stiefel-Whitney class, the main result of [24] states that the classical invariants are fully determined by the following invariants:

1. The cup product map
 $$\delta_X: S^2H^2(X; \mathbb{Z}) \rightarrow H^4(X; \mathbb{Z})$$
 $$x \cdot x^0 \rightarrow x \cdot x^0;$$

2. The intersection form
 $$\gamma_X: S^2H^4(X; \mathbb{Z}) \rightarrow \mathbb{Z}$$
 $$y \cdot y^0 \rightarrow y \cdot y^0;$$
 $$[X] \in H_8(X; \mathbb{Z})$$ is the fundamental class determined by the orientation.

3. The first Pontrjagin class $p_1(X) \in H^4(X; \mathbb{Q}).$
Remark 2.1. The above invariants are not independent. By associativity of the cohomology ring, the following relation holds

\[(1) \quad \delta_X (\gamma_X) \not\equiv S^4 H^2 (\mathcal{X}; \mathbb{Z}) \mod 4;\]

i.e.,

\[\gamma_X \delta_X (x_1, x_2) \delta_X (x_3, x_4) = \gamma_X \delta_X (x_3, x_4) \delta_X (x_1, x_2);\]

for all \(x_1, x_2, x_3, x_4 \in H^2 (\mathcal{X}; \mathbb{Z}).\)

Furthermore, one has

Proposition ([24], Prop. A.7 or Cor. 3.14 below). For every element \(y \in H^4 (\mathcal{X}; \mathbb{Z})\)

\[\text{Observe that this implies } p_1 (\mathcal{X}) \not\equiv H^4 (\mathcal{X}; \mathbb{Z}).\]

If \(X\) is in addition differentiable, one has for every integral lift \(W \in H^2 (\mathcal{X}; \mathbb{Z})\) of \(w_2 (\mathcal{X})\)

\[(2) \quad p_1 (\mathcal{X}) y \not\equiv 2y^2 \mod 4;\]

\[(3) \quad 3p_1 (\mathcal{X})^2 - 14p_1 (\mathcal{X})W^2 + 7W^4 + 12 \ \text{Sign} \gamma_X \not\equiv 2688;\]

Müller has also shown that these relations imply all other relations among the classical invariants of \(X\) [24]. Conversely, a piecewise linear manifold \(X\) the invariants of which obey relation (3) admits a differentiable structure [18], [24].

We are led to the following algebraic concept: A system of invariants of type \(\Phi; \beta^0\) is a triple \((\delta; \gamma; \mu)\), consisting of

- a homomorphism \(\delta : \mathbb{Z} \to \beta^0 \mod 2;\)
- a unimodular symmetric bilinear form \(\gamma : \mathbb{Z} \to \beta^0 \mod 2;\)
- an element \(\mu \in \beta^0;\)

Denote by \(Z (\Phi; \beta^0)\) the set of systems of invariants of type \(\Phi; \beta^0\).

Now, let \(\mathcal{X} \bigwedge \mathcal{Y}\) be a based eight dimensional E-manifold. This defines a set of invariants \(Z (\mathcal{X} \bigwedge \mathcal{Y}) := (\delta_X i_\gamma_X i_\mu (\mathcal{X}))\) of type \(\Phi (\mathcal{X}) \beta_4 (\mathcal{X})\). Thus, we have natural maps

\[Z^{PL (\mathcal{X})} (\Phi; \beta^0) : Z^{PL (\mathcal{X})} (\Phi; \beta^0) \to Z (\Phi; \beta^0)\]

\[X \bigwedge \gamma_X \bigwedge \mu \not\equiv 0;\]

It will be the concern of our paper to understand the maps \(Z^{PL (\mathcal{X})}\) as well as possible. The first result can be easily derived from Wall's work [36] and deals with the case \(b = 0\). It will be proved in detail in Section 4.1.

Theorem 2.2. i) The map \(Z^{PL (\mathcal{X})} (\Phi; \beta^0)\) is injective. Its image consists precisely of those elements which satisfy the relations (2) and (3).

ii) Given two smooth based E-manifolds \(\mathcal{X} \bigwedge \mathcal{Y}\) and \(\mathcal{X} (\mathcal{X} \bigwedge \mathcal{Y})\) with \(b_2 (\mathcal{X}) = 0 = b_2 (\mathcal{X})\) and \(Z (\mathcal{X} \bigwedge \mathcal{Y}) = Z (\mathcal{X} \bigwedge \mathcal{Y})\) there exists an exotic 8-sphere \(\Sigma\) such that \(\mathcal{X} \# \Sigma (\mathcal{X})\) and \(\mathcal{X} (\mathcal{X} \bigwedge \mathcal{Y})\) are smoothly isomorphic. In particular, the fibres of \(Z^{\mathcal{X}}\) have cardinality at most two. The image of \(Z^{\mathcal{X}}\) consists exactly of those elements which satisfy the relations (4), (5), and (6).
2.2. Manifolds with trivial cup form δ_X. In addition to describing the explicit geometric meaning of the system of invariants of an E-manifold X with $w_2(X) = 0$, we will describe those manifolds X for which the cup form δ_X vanishes.

For any $b > 0$, let $\mathcal{F} \subset_{b}^{\text{PL}} \mathcal{C}^{\sim}$ be the group of isotopy classes of piecewise linear (smooth) embeddings of b disjoint copies of $S^5 \times D^3$ into S^8. The following result will be established in Section 3.7.

Proposition 2.3.

$$\text{FL}_{b} := \mathcal{F} \subset_{b}^{\text{C}^{\sim}} = \mathcal{F} \subset_{b}^{\text{PL}}$$

Given an element $[\ell] \in \text{FL}_{b}$, we can perform surgery along the link ℓ and get a smooth based E-manifold $(X \not\sim \Sigma \not\sim \ell)$ with $w_2(X) = 0$ and $b_4(X) = 0$ which is well defined up to smooth isomorphism of based manifolds.

We will also use the following notation: Fix a pair $(\gamma; p) \in Z(b; \delta)$ which satisfies relation (2) and denote by $\tau^{\text{PL} \subset_{b}^{\sim}} (\gamma; p)$ the set of isomorphism classes of based piecewise linear (smooth) E-manifolds $(X \not\sim \Sigma \not\sim \ell)$ with $w_2(X) = 0$, $b_2(X) = b$, $\gamma = \gamma$, and $p_1(X) = p$. Pick a three-connected piecewise linear (smooth) based E-manifold $(X_0; \Sigma_0)$ with $\gamma_0 = \gamma$ and $p_1(X_0) = p$. In the smooth case, let $\delta^8 = \mathbb{Z}[\overline{7}]$ be the group of exotic 8-spheres, and set $\vartheta (X_0) := \vartheta^8$, if X_0 is not diffeomorphic to $X_0 \not\sim \Sigma$, Σ a generator for ϑ^8, and $\vartheta (X_0) := \mathbb{F} \otimes \vartheta^8$ otherwise. Now, we define maps

$$K^{\text{PL}} (\gamma; p) : \text{FL}_{b} \not\sim \ell \not\sim \theta (X_0) \not\sim \ell \not\sim (\ell; \Sigma) \not\sim \theta (X_0) \not\sim \ell \not\sim \theta (X_0) :$$

and

$$K^{\text{PL}} (\gamma; p) : \text{FL}_{b} \not\sim \ell \not\sim \theta (X_0) \not\sim \ell \not\sim (\ell; \Sigma) \not\sim \theta (X_0) \not\sim \ell \not\sim \theta (X_0) :$$

In $\tau^{\text{PL} \subset_{b}^{\sim}} (\gamma; p)$, we mark the class $\#_{i=1}^{\ell} (S^2 \not\sim \Sigma^i) \#_{K^0} \not\sim \Sigma \not\sim \Sigma_0$ where Σ comes from the natural basis of $H^2 \not\sim \Sigma \not\sim \Sigma \not\sim \Sigma_0$. Then, our main result is the following

Theorem 2.4.

i) For every $b > 0$ and every pair $(\gamma; p)$ which satisfies the relation (2),

$$\text{FL}_{b} \not\sim \ell \not\sim \theta (X_0) \not\sim \ell \not\sim \theta (X_0) :$$

is an exact sequence of pointed sets.

ii) For every $b > 0$ and every pair $(\gamma; p)$ which satisfies the relations (2) and (3),

$$\text{FL}_{b} \not\sim \ell \not\sim \theta (X_0) \not\sim \ell \not\sim \theta (X_0) :$$

is an exact sequence of pointed sets.

The proof will be given in Section 4.2 and 4.3.
Remark 2.5. i) In the PL setting, we will show that the inclusion of FL_b into $\mathfrak{T}^\text{PL}(\phi \gamma; \varphi)$ extends to an action of FL_b on $\mathfrak{T}^\text{PL}(\phi \gamma; \varphi)$.

ii) On all the sets occuring in Theorem 2.4, there are natural $(\text{GL}_b(\mathbb{Z}) \times \text{GL}_{b_0}(\mathbb{Z}))$-actions, and the maps are equivariant for these actions. Therefore, by forming the equivalence classes w.r.t. these actions, we get the classification of E-manifolds with vanishing second Stiefel-Whitney class up to orientation preserving piecewise linear (smooth) isomorphy.

iii) We will discuss in Section 3.7 the structure of the group FL_b. It turns out that it is finite if and only if $b = 1$. It follows easily that the set of $\text{GL}_b(\mathbb{Z})$-equivalence classes in FL_b is infinite for $b \geq 2$. Thus, the cohomology ring and the characteristic classes classify E-manifolds of dimension eight up to finite indeterminacy only if the second Betti number is at most one.

Starting point of our proof of the above results will be the theory of minimal handle decompositions of Smale which states that X can be obtained from D^8 by first attaching $b_2(X)$ 2-handles, then $b_4(X)$ 4-handles, then $b_2(X)$ 6-handles and finally one 8-handle. At each step, the attachment will be determined by the isotopy class of a certain framed link in a 7-manifold, and we will first explain how to read off the isotopy class of the attaching links for the 2- and 4-handles from the invariants.

3. Preliminaries

We collect in this paragraph the background material and some preliminary results which we will use in our proof. Most of the results are by now standard results from various parts of algebraic, differential, and piecewise linear topology.

3.1. The structure of manifolds: handle attachment and surgery. Let M be an m-dimensional manifold with boundary. Suppose we are given an embedding $f : S^i \to D^m$. We then define

$$M^0 := M \setminus f^{-1}(S^i \setminus D^m),$$

and say that M^0 is obtained from M by the attachment of a λ-handle along f. Moreover, $f(S^i \setminus f^{-1}(S^i))$ is called the attaching sphere, $D^i \setminus f^{-1}(S^i)$ the core disc, and $f^{-1}(S^i)$ the belt sphere. We will often simply write $M^0 = M \cup H^\lambda$.

Remark 3.1. i) If M is assumed to be differentiable and f to be a differentiable embedding, handle attachment can be described in such a way that the resulting manifold is again differentiable (see [17], VI, 36&38), i.e., no “smoothing of the corners” is required.

ii) If M is oriented, then M^0 will inherit an orientation which is compatible with the given orientation of M^0 and the natural orientation of $D^i \setminus f^{-1}(S^i)$, if and only if f reverses the orientations.

The next operation we consider was introduced by Milnor [21] and Wallace [38] and goes back to Thom. For this, let N be a manifold of dimension $m - 1$ and $f : S^{m-1} \to D^m$. For an embedding. Denote by \overline{f} the restriction of f to S^{m-1} and set

$$\chi(N; f) := N \setminus \text{int}(S^{m-1} \setminus f^{-1}(S^{m-1})).$$
We say that \(\chi (N; f) \) is constructed from \(N \) by surgery along \(f \). Informally speaking, we remove from \(N \) a \((\lambda - 1) \)-sphere with trivial normal bundle and replace it with an \(\lambda \)-sphere, again with trivial normal bundle.

Remark 3.2. i) If \(N \) is oriented, then \(f \) has to be orientation preserving for \(\chi (N; f) \) to inherit a natural orientation from those of \(N \) and \(D^\lambda \setminus D^m \). This is because \(S^\lambda \setminus S^m \lambda \) inherits the reversed orientation as boundary of \(N \cap f (S^\lambda \setminus D^m \lambda) \).

ii) The operations of handle attachment and surgery are closely related: Let \(M \) be an \(m \)-dimensional manifold with boundary \(N := \partial M \) and \(f : S^\lambda \setminus D^m \lambda \) ! \(N \) an embedding. Now, attach a \(\lambda \)-handle along \(f \) in order to obtain \(M^0 \). Then, \(\partial M^0 = \chi (N; f) \).

We will also perform a “surgery in pairs”. For this, \(N \) is assumed to be an \(m \)-dimensional manifold and \(K \) to be a submanifold of dimension \(k \), \(1 \). Assume that, for some \(\lambda \), \(k \), we are given an embedding \(f : S^\lambda \setminus D^m \lambda \) ! \(N \) which induces an embedding \(f := f S^\lambda \lambda \setminus D^\lambda \) ! \(K \). Then, \(\chi (K; f) \) is naturally contained in \(\chi (N; f) \).

The next result is a special case of the “minimal presentation theorem” of Smale [31] and is crucial for the explicit analysis of the structure of a manifold.

Theorem 3.3. Let \(X \) be a closed simply connected manifold of dimension \(m \) with torsion free homology. Then, there exists a sequence of submanifolds

\[
D^m = W_0 \subset W_1 \subset W_2 \subset \cdots \subset W_m \subset X;
\]

such that \(W_i \) is obtained from \(W_{i-1} \) by attaching \(b_i (X) \) \(i \)-handles, \(i = 1; \ldots ; m \).

Moreover, for any such sequence, there exists a dual sequence

\[
\overline{W}_0 \subset \overline{W}_1 \subset \overline{W}_2 \subset \cdots \subset \overline{W}_m \subset X;
\]

such that the attaching \(\lambda \)-spheres in \(\overline{W}_{i-1} \) coincide with the belt spheres in \(W_m \), \(i = 1; \ldots ; m \).

Proof. For differentiable manifolds, an attractive presentation of the relevant material is contained in Chapter VII and VIII of [17]. In the piecewise linear category, handle decompositions are discussed in [27] (cf. also [13]). However, the statement concerning the number of handles is not explicitly given there. Nevertheless, one verifies that the necessary tools (such as Whitney lemma and handle sliding) are also proved in [27]. \(\square \)

Remark 3.4. i) Retracting all \(\lambda \)-handles to their core discs, starting with \(\lambda = 0 \), yields a CW-complex which is homotopy equivalent to \(X \) (cf. [27], p. 83).

ii) Observe that, by i), a handle decomposition as in Theorem 3.3 yields a preferred basis for \(H (X; \mathbb{Z}) \). By renumbering, orientation reversal in the attaching spheres, and handle sliding, one can obtain any basis of \(H (X; \mathbb{Z}) \) as the preferred basis of a handle decomposition ([17], (1.7), p. 148).

iii) If \(X \) comes with an orientation, we may assume that \(D^m \) is orientation preservingly embedded and that all attaching maps are orientation reversing.

3.2. Consequences for E-manifolds of dimension eight with \(w_2 = 0 \). Let \(X \) be a piecewise linear (smooth) E-manifold of dimension eight with \(w_2 (X) = 0 \). The first observation concerns the structure of \(W_2 \).
Lemma 3.5. One has $W_2 = \#_{i=1}^b (S^2 \quad D^6)$.

Proof. The manifold W_2 is an $(8;1)$-handle body and as such homeomorphic to the boundary connected sum of b D^6-bundles over S^2 ([7], x1, p. 115). As $\pi_1 (SO(4)) = \mathbb{Z}_2$ and we have requested $w_2 (X) = 0$, the claim follows.

The next consequence is

The manifold W_4 is determined by a framed link of $b_4 (X)$ three dimensional spheres in $\#_{i=1}^b (S^2 \quad S^5)$.

We will address the classification of such links below.

The third consequence is

Lemma 3.6. i) $\partial W_4 = \#_{i=1}^b (S^2 \quad S^5)$.

ii) The manifold X is of the form $W_4 \; [f \; \#_{i=1}^b (S^2 \quad D^6)] \; \partial W_4$

is a piecewise linear (smooth) isomorphism, such that f maps the canonical basis of $H_2 (\#_{i=1}^b (S^2 \quad S^5); \mathbb{Z})$ to the preferred basis of $H_2 (\partial W_4; \mathbb{Z})$.

Proof. i) This follows because $\partial W_4 = \partial W_2$. ii) follows because $X = W_4 \; [\; \#_{i=1}^b (S^2 \quad S^5)]\; \partial W_4$, by Lemma 3.5.

3.3. Homotopy vs. isotopy. By Theorem 3.3, the manifold is determined by the ambient isotopy classes of the attaching maps. However, the topological invariants of the manifold give us at best their homotopy classes. It is, therefore, important to have theorems granting that this is enough. In the setting of differentiable manifolds, we have

Theorem 3.7 (Haefliger [6], [7]). Let S be a closed differentiable manifold of dimension n and M an m-dimensional differentiable manifold without boundary. Let $f: S \rightarrow M$ be a continuous map and $k \geq 0$, such that

$$\pi_i (f): \pi_i (S) \rightarrow \pi_i (M)$$

is an isomorphism for $0 \leq i \leq k$ and surjective for $i = k + 1$. Then, the following is satisfied:

1. If $m \geq 2n$ and k and $n > 2k + 2$, then f is homotopic to a differentiable embedding.
2. If $m > 2n \quad k$ and $n \quad 2k + 2$, then two differentiable embeddings of S into M which are homotopic are also ambient isotopic.

In the setting of piecewise linear manifolds, similar results hold true. We refer to Haefliger’s survey article [8]. For our purposes, the result stated below will be sufficient.

Theorem 3.8. Suppose S is a closed n-dimensional manifold, M an m-dimensional manifold without boundary, and $f: S \rightarrow M$ a continuous map. Assume one has

$$\begin{align*}
&\begin{array}{l}
m \geq 3. \\
S \text{ is } \mathcal{Q}(n \quad m + 1)-connected. \\
M \text{ is } \mathcal{Q}(n \quad m + 2)-connected.
\end{array}
\end{align*}$$

Then:

1. f is homotopic to an embedding.
2. Two embeddings which are homotopic to f are ambient isotopic.

\textbf{Proof.} The theorem of Irwin (\cite{27}, Thm. 7.12 and Ex. 7.14, \cite{13}, Thm. 8.1) yields 1. and that f_1 and f_2 as in 2. are concordant. But, since $m, n \neq 3$, concordance implies ambient isotopy (\cite{13}, Chap. IX).

\textbf{Corollary 3.9.} Let $S := S^3$ and M a simply connected differentiable or piecewise linear manifold of dimension 7 without boundary. Then, $\pi_3(M)$ classifies differentiable and piecewise linear embeddings, respectively, of S^3 into M up to ambient isotopy.

\textbf{Corollary 3.10} (Zeeman's unknotting theorem \cite{39}). For every $m \geq n$ with $m, n \neq 3$, any piecewise linear embedding of S^0 into S^m is isotopic to the standard embedding.

3.4. Some 4-dimensional CW-complexes. By Remark 3.4, a handle decomposition of X gives us a CW-complex which is homotopy equivalent to X. The following discussion will enable us to understand the 4-skeleton of that complex.

Let $W := \bigwedge^2 S^2$ be the b-fold wedge product of 2-spheres. Suppose X is the CW-complex obtained by attaching a 4-cell to W via the map $g : \pi_3(W)$. The Hilton-Milnor theorem (\cite{30}, Thm. 7.9.4) asserts

$$\pi_3(W) \cong \bigoplus_{i=1}^{\aleph_0} \pi_3(S^2) \oplus \bigoplus_{i<j} \pi_3(S^3).$$

Choosing the standard generators for $\pi_3(S^2)$ and $\pi_3(S^3)$, we can describe g by a tuple $(g_{ij} = 1; \ldots; b; l_{ij}; 1 \leq i < j \leq b)$ of integers. These integers determine the cohomology ring of $X = W \cup_D^4$ as follows:

\textbf{Proposition 3.11.} Let $y_2 \in H^4(X; \mathbb{Z})$ be the generator of $H^4(X; \mathbb{Z})$ given by the attached 4-cell and $x_1; \ldots; x_n$ the canonical basis of $H^2(X; \mathbb{Z}) = H^2(W; \mathbb{Z})$. Then

$$x_1 \wedge x_j = l_{ij} y; \quad 1 \leq j \leq b;$$
$$x_1 \wedge x_i = l_i y; \quad i = 1; \ldots; b;$$

This is proved like \cite{22}, (1.5), p. 103. We recall the proof in the following example.

\textbf{Example 3.12.} We treat the case $b = 2$. Consider the embedding

$$1 : S^2 \sqcup S^2 \sqcup S^2 \sqcup \mathbb{C}P^\infty \sqcup \mathbb{C}P^\infty ;$$

The standard basis for $H^4(\mathbb{C}P^\infty \sqcup \mathbb{C}P^\infty ; \mathbb{Z}) = \mathbb{Z}^3$ is given by the elements y_1, y_2, y_3 obtained from attaching D^4 via $(1, 0; 0), (0, 0; 1)$, and $(0; 1, 0)$, respectively. Let $h : D^4 \to D^4 \to D^4$ be the canonical map followed by

$$\vartheta \wedge x \neq ! \quad \vartheta \wedge r(x) \quad \vartheta \wedge x \neq ! \quad \vartheta \wedge r(x).$$

Here, $r(x)$ stands for a representative of $[k \in \mathbb{Z}]_2 \pi_3(\mathbb{S}^3)$ and $D^4 = \vartheta \wedge x \neq 2 \mathbb{S}^4 \vartheta \wedge 2 \mathbb{S}^4$. Now, h and t glue to a map $f : X \to \mathbb{C}P^\infty \sqcup \mathbb{C}P^\infty$, and

$$f : H^4(\mathbb{C}P^\infty \sqcup \mathbb{C}P^\infty ; \mathbb{Z}) \to H^4(X; \mathbb{Z})$$

$$a_1 y_1 + a_2 y_2 + a_3 y_3 \quad ! \quad a_1 l_1 + a_2 l_1 + a_3 l_2,$$

so that the assertion follows from the naturality of the cup-product.
3.5. **Pontrjagin classes and** \(\pi_3(\SO(4)) \). Vector bundles of rank 4 over \(S^4 \) are classified by elements in \(\pi_3(\SO(4)) \). In our setting, such vector bundles will appear as normal bundles. We recall, therefore, the description of that group and relate it to Pontrjagin classes and self intersection numbers.

First, look at the natural map \(\pi_3(\SO(4)) \rightarrow \pi_3(\SO(3)) = \pi_3(\S^3) \). This map has a splitting ([32], x22.6) which induces an isomorphism

\[
\pi_3(\SO(4)) \rightarrow \pi_3(\SO(3)) \rightarrow \pi_3(\S^3)
\]

Let \(\alpha_3 \) be the generator for \(\pi_3(\SO(3)) = \mathbb{Z} \) from [32], x22.3, and \(\beta_3 := [\delta_3]^2 \pi_3(\S^3) \), so that we obtain the isomorphism \(\mathbb{Z} \rightarrow \pi_3(\SO(4)) \): \(k_1 \alpha_3 + k_2 \beta_3 \).

Finally, the kernel of the map \(\pi_3(\SO(4)) \rightarrow \pi_3(\SO) \) to the stable homotopy group is generated by \(\alpha_3 + 2\beta_3 ([32], x23.6) \), whence [23], (20.9), implies

Proposition 3.13. Let \(E \) be the vector bundle over \(S^4 \) defined by the element \(k_1 \alpha_3 + k_2 \beta_3 \). Then

\[
p_1(E) = 2(k_1 + 4k_2).
\]

Corollary 3.14. Let \(f: S^4 \rightarrow M \) be a differentiable embedding of \(S^4 \) into the differentiable 8-manifold \(M \). Let \(E := f^*T_M = T_{S^4} \) be the normal bundle. Then, the self intersection number \(s \) of \(f(S^4) \) in \(M \) satisfies

\[
2s \equiv p_1(E) \mod 4.
\]

Proof. If \(E \) is given by the element \(k_1 \alpha_3 + k_2 \beta_3 \), then \(s = k_2(17), (5.4), p. 72 \). Since \(p_1(E) = 2(k_1 + 4k_2) \), the claim follows. \(\square \)

3.6. **Links of 3-spheres in** \(\#_{i=1}^b \S^2 \). If \(X \) is a closed \(E \)-manifold of dimension \(8 \) with \(w_2(X) = 0 \), then \(W := \#_{i=1}^b \S^2 \rightarrow D^6 \), \(b = b_2(X) \), by Lemma 3.5. Thus, \(W \) is determined by a framed link of 3-spheres in \(\partial W = \#_{i=1}^b \S^2 \rightarrow S^5 \). Therefore, we will now classify such links.

So, let \(W := \#_{i=1}^b \S^2 \rightarrow S^5 \) be a b-fold connected sum. We can choose \(b \) disjoint 2-spheres \(S^2 \), \(i = 1; \ldots; b \), embedded in \(W \) and representing the natural basis of \(H_2(W; \mathbb{Z}) \).

One checks that the homotopy type of \(W \) is given up to dimension 4 by the b-fold wedge product \(S^2 \rightarrow \S^5 \). Suppose we are given a link of \(b \) three dimensional spheres, i.e., we are given \(b \) differentiable embeddings \(g_i: S^3 \rightarrow W, i = 1; \ldots; b \), with \(g_i(\S^3) \setminus g_j(\S^3) = ? \) for \(i \neq j \).

By the transversality theorem ([4]), (2.4), one sees that we may assume \(S^3 \rightarrow g_i(\S^3) = ? \) for all \(i \) and \(j \).

By Corollary 3.3, the ambient isotopy class of the embedding \(g_k \) is determined by the element \(\varphi_k := [g_k]^2 \pi_3(W_k) \), \(W_k := W \cap \S^5 \rightarrow g_j(\S^3), k = 1; \ldots; b \). We clearly have (compare [8])

\[
\pi_3(W_k) = \pi_3(S^2) \rightarrow \pi_3(S^3) \rightarrow \pi_3(\S^3)
\]

so that the Hilton-Milnor theorem yields

\[
\pi_3(W_k) = \prod_{i=1}^b \pi_3(S^2) \rightarrow \prod_{i<j}^b \pi_3(S^3) \rightarrow \prod_{j<k}^b \pi_3(S^3).
\]
Hence, we write φ_k as a tuple of integers:

$$\varphi_k = l_k^{i}; i = 1; \cdots; b; l_{ij}^{k}; i < j; b; \lambda_{ij}; j \notin k \ :$$

Observe that, for $j \notin k$, φ_k is mapped under the natural homomorphism

$$\pi_3(W_k) \to H_3(W_k; \mathbb{Z}) \to H_3(W \cap g_j(S^3); \mathbb{Z}) = \mathbb{Z}$$

to the image of the fundamental class of S^3 under g_j. Thus, λ_{ij} is just the "usual" linking number of the spheres $g_k(S^3)$ and $g_j(S^3)$ in W (compare [8]).

3.7. Links of 5-spheres in S^8

Let $F \subset C_i^{b \mathbb{C}^{\varnothing}}$ be as before, and let $C_i^{b \mathbb{C}^{\varnothing} \mathbb{L}^{\varnothing}}$ be the group of isotopy classes of piecewise linear (smooth) embeddings of b disjoint copies of S^5 into S^8. For $b = 1$, these groups are studied in [10], [19], and [20]. A brief summary with references of results in the case $b > 1$ is contained in Section 2.6 of [11]. We will review some of this material below.

Proposition 3.15. We have $F \subset C_i^{b \mathbb{C}^{\varnothing}} = F \subset C_i^{\mathbb{L}^{\varnothing}} = \mathbb{Z}_2$.

Proof. Since $\pi_k(SO(3)) = \mathbb{Z}_2$, the standard embedding of S^5 into S^8 with its two possible framings provides an injection of \mathbb{Z}_2 into $F \subset C_i^{b \mathbb{C}^{\varnothing} \mathbb{L}^{\varnothing}}$. By Zeeman’s unknotting theorem 3.10, the map $\mathbb{Z}_2 \to F \subset C_i^{b \mathbb{L}^{\varnothing}}$ is an isomorphism. As remarked in Section 2.6 of [11], $F \subset C_i^{b \mathbb{L}^{\varnothing}}$ is isomorphic to $F \subset \varnothing$, the group of h-cobordism classes of framed submanifolds of S^8 which are homotopy 5-spheres. Moreover, by [10] and [19], there is an exact sequence

$$0 \to \varnothing \to F \subset C_i^{b \mathbb{C}^{\varnothing}} \to F \subset \varnothing \to \varnothing \ :$$

As the groups \varnothing and \varnothing of exotic 5- and 6-spheres are trivial [17], our claim is settled. \[\square \]

Let $L_b \subset C_i^{b \mathbb{C}^{\varnothing}}$ be the subgroup of those embeddings for which the restriction to each component is isotopic to the standard embedding. As observed in Section 2.6 of [11], Zeeman’s unknotting theorem 3.10 implies that $L_b = C_i^{b \mathbb{L}^{\varnothing}}$. The following settles Proposition 2.3:

Corollary 3.16.

$$F \subset C_i^{b \mathbb{C}^{\varnothing}} = F \subset C_i^{b \mathbb{L}^{\varnothing}} = L_{i=1}^{m} \mathbb{Z}_2 :$$

For the group L_b, Theorem 1.3 of [11] provides a fairly explicit description as an extension of abelian groups. For this, consider the b-fold wedge product $\bigwedge_{i=1}^{m} S^2$ of 2-spheres together with its inclusion $i: \bigwedge_{i=1}^{m} S^2 \to \bigwedge_{i=1}^{m} S^2$ into the b-fold product of 2-spheres. Finally, let $p_i: \bigwedge_{i=1}^{m} S^2 \to S^2$ be the projection onto the i-th factor, $i = 1; \cdots; b$. Set, for $m = 1; 2; \cdots$

$$\Lambda_{b}^{m} := \ker \pi_m(p_j): \pi_m\left(\bigwedge_{i=1}^{b} S^2\right) \to \pi_m(S^2) \ ; \ j = 1; \cdots; b ;$$

$$\Lambda_{b}^{m} := \bigwedge_{i=1}^{b} \Lambda_{b}^{m}$$
and
\[\Pi_b^m := \text{Ker } \pi_m (\mathfrak{g}) : \pi_m (S^2) \to \pi_m (B^2) ; \]
and define
\[w_b^m : \Lambda^m_b \to \Pi_b^{m+1} \]
on Λ^m_{bij} by $w_b^m (\alpha) := \{ \alpha ; t_i \}$ Here, $[\alpha ; t_i]$ stands for the Whitehead product inside the homotopy groups of $\Lambda^m_{b_i} S^2$ and $t_i : S^2 \to \Lambda^m_{b_i} S^2$ for the inclusion of the i-th factor, $i = 1 ; \cdots ; b$. Theorem 1.3 of [1] yields in our situation

Theorem 3.17. There is an exact sequence of abelian groups
\[0 \to \text{Coker } \omega_b^6 \to L_b \to \text{Ker } \omega_b^5 \to 0 ; \]

We remark that the formulas of Steer [13] might be used for the explicit computation of Whitehead products and thus for the determination of Coker ω_b^6 and Ker ω_b^5. The free part of L_b, e.g., can be obtained quite easily. We confine ourselves to prove the following important fact.

Corollary 3.18. The group L_b has positive rank for $b > 2$.

Proof. Let $L_b := \bigoplus_{i = 1}^b L_{b_i}$ be the free graded Lie algebra with $L_{b_i} := \bigoplus_{i = 1}^b Z$. For $l = 2, 3, \cdots ;$ let e_1, \cdots , e_l be a basis for L_{b_i} consisting of iterated commutators of the e_i.

By assigning t_i to e_i, every iterated commutator $c \subseteq L_{b_i}$ in the e_i defines an element $\alpha \in \pi_l (S^2)$.

To settle our claim, it is certainly sufficient to show that Coker ω_b^6 has positive rank. Now, by the Hilton-Milnor theorem
\[\Pi_l := \bigoplus_{i = 1}^b \pi_l (S^2) \to \pi_l (S^2) \to \alpha \to \pi_l ^{l+1} ; \]

Note that $\pi_l (S^2)$ is finite for $l \leq 4, 7$ (see [12] and [15] for the explicit description of those groups). The Hopf fibration $S^7 \to S^4 ; [12]$, on the other hand, yields a decomposition $\pi_7 (S^4) = \pi_7 (S^4) \oplus \pi_7 (S^7) = \mathbb{Z}_{12} \oplus \mathbb{Z}$. Therefore, it will suffice to show that the free part of Λ^6_b is mapped to
\[\bigoplus_{i = 1}^b \pi_6 (S^2) \to \pi_6 (S^2) \to \alpha \to \pi_6 ^{l+1} ; \]

The group $\pi_6 (S^2)$ is finite for $l < 6$, and we obviously have $[\alpha \pi_6 ^{l+1} t_j] = \alpha (\pi_6 ^{l+1} e_j)$. If we expand the commutator $[\pi_6 ^{l+1} t_j]$ in the basis e_1, \cdots , e_l, we find an expansion for $[\alpha \pi_6 ^{l+1} t_j]$ in terms of the $\alpha \pi_6 ^{l+1}$.

Corollary 3.19. The set of $GL_{b} (\mathbb{Z})$-equivalence classes of elements in L_b is infinite for $b > 2$.

Proof. We have seen that the $GL_{b} (\mathbb{Z})$-set $L_{b, 3}$ is contained in the $GL_{b} (\mathbb{Z})$-set L_b. The $GL_{b} (\mathbb{Z})$-action on $L_{b, 3}$ originates from a homomorphism $GL_{b} (\mathbb{Z}) \to GL (L_{b, 3}) := \text{Aut}_{\mathbb{Z}} (L_{b, 3})$. In particular, any matrix $g \in GL_{b} (\mathbb{Z})$ preserves the absolute value of the
determinant of any \(d_3 \) elements in \(L_{b,b} \). This implies, for instance, that \(a \neq b \) and \(b \neq c \) cannot lie in the same \(\text{GL}_p(\mathbb{Z}) \)-orbit, if \(a < b \).

4. Proof of Theorem 2.2 and Theorem 2.4

From now on, \(X \) stands for an eight dimensional E-manifold with \(w_2(X) = 0 \).

4.1. Proof of Theorem 2.2. The classification result for 3-connected E-manifolds of dimension eight is a special case of a result of Wall’s [36] and can be easily obtained with the methods described in [17], VII, xl2. Let us recall the details, because we will need them later on.

We fix a basis \(b \) for \(H_4(X;\mathbb{Z}) \) and let \(y \) be the dual basis of \(H^4(X;\mathbb{Z}) \). Then, there is a handle presentation \(X = D^8 \setminus [H^4_i - \frac{1}{y} b H D^8] \) with \(b \) as the preferred basis. The manifold \(T := D^8 \setminus [H^4_i - \frac{1}{y} b H D^8] \) determined by the ambient isotopy class of a framed link of 3-spheres in \(S^7 \), having \(b^0 \) components. Let us look at such a link, forgetting the framing, i.e., suppose we are given embeddings \(g_i : S^3 \rightarrow S^7 \) with \(S_i \} \cap \{ S_j \} = \emptyset \) for \(i \neq j \). The image of the fundamental class \([S_i] \) in \(H_3(S^7 \setminus S_i;j\mathbb{Z}) \) is of the form \(\lambda_{ij} \neq 0 \). The integer \(\lambda_{ij} \) is called the linking number of \(S_i \) and \(S_j \).

For \(i = 1;\ldots; b^0 \), the manifold \(S^7 \setminus \bigcup_{j \neq i} S_i \) is up to dimension 5 homotopy equivalent to \(\bigcup_{j \neq i} F_j \), and

\[
\pi_3 S^7 \setminus \bigcup_{j \neq i} S_i = \pi_3 F_j = \bigcup_{j \neq i} H_3 S^7 \setminus S_j ;\mathbb{Z} \ :
\]

Under this identification, we have \([g_i] = \sum_{j \neq i} \lambda_{ij} \neq 0 \). The \([g_i] \) determine the ambient isotopy class of the given link [3.9], and we deduce

Proposition 4.1. The linking numbers \(\lambda_{ij} \), \(1 < j \neq b^0 \) determine the given link up to ambient isotopy.

The sphere \(S_i \) bounds a 4-dimensional disc \(D_i \) in \(D^8 \), \(i = 1;\ldots; b^0 \), which we equip with the induced orientation. We may, furthermore, assume that the \(D_i \) intersect transversely in the interior of \(D^8 \). Then, the \(\lambda_{ij} \) coincide with the intersection numbers \(D_i \cdot D_j \), \(1 < j \neq b^0 \). For an intuitive proof (in dimension 4), see [28], p. 67. Now, every disc \(D_i \) is completed by the core disc \(D_i^c \) of the \(i \)-th 4-handle to an embedded 4-sphere \(\Sigma_i \) in \(T \), \(i = 1;\ldots; b^0 \), and, since all the core discs are pairwise disjoint, the \(\lambda_{ij} \) coincide with the intersection numbers \(\Sigma_i \cdot \Sigma_j \), \(1 < j \neq b^0 \). Finally, \(X \) is obtained by gluing an 8-disc to \(T \) along \(\partial T \), and the spheres \(\Sigma_i \) represent the elements of the chosen basis \(b \) of \(H_4(X;j\mathbb{Z}) \). Identifying the intersection ring with the cohomology ring of \(X \) via Poincaré-duality, we see
Corollary 4.2. The linking numbers λ_{ij} coincide with the cup products $\langle y_i \langle y_j \rangle \rangle X$.

As we have remarked before, the normal bundles of the S_i are trivial, whence there exist embeddings $f_{i}^{j}: S^3 \rightarrow D^4 \setminus S^1$ with $f_{i}^{j}(\gamma_{i}^{3}) = g_{i}$, $i = 1; \ldots b^0$. From the uniqueness of tubular (in differential topology) or regular (in piecewise linear topology) neighbourhoods, every other embedding $f_{i}: S^3 \rightarrow D^4 \setminus S^1$ with $f_{i}(\gamma_{i}^{3}) = g_{i}$ is ambient isotopic to one of the form $f_{i}^{b_{i}^{1}}(\gamma_{i}^{3})$. The linking numbers λ_{ij} coincide with the cup products $\langle y_i \langle y_j \rangle \rangle X$. Proposition 3.11, so that the naturality of the invariants,Injectivity in Part i) in the theorem. Moreover, the assertion about the fibres in Part ii) is clear.

Conversely, given a system of invariants in $Z \otimes b^0$, satisfying relation (3), there exists a based 3-connected manifold (X, γ_{i}) realizing Z. Indeed, by the above identification of the invariants, Z determines a framed link in S^7 and thus the manifold $T := D^8 \setminus \bigcup_{i=1}^{b_{i}^{1}} \partial \Sigma_{i}$. The boundary of T is a 7-dimensional homotopy sphere $(\mathbb{S}^7, \partial \Sigma_{i})$ and, therefore, piecewise linearly homeomorphic to S^7. Hence, $X = T \setminus \bigcup_{i=1}^{b_{i}^{1}} \partial \Sigma_{i}$ is a piecewise linear manifold with the desired system of invariants, setting Part i). If, in addition, relation (3) holds, the work [18] grants that X will carry a smooth structure (compare Theorem A.4 of [24]), finishing the proof of Part ii).

Lemma 4.3. Suppose T is obtained by attaching 4-handles along $f_{i}^{b_{i}^{1}}$ with $\emptyset_{i} = k_{i}^{1} \alpha_{i} + k_{i}^{2} \beta_{i}$, $i = 1; \ldots b^0$, then

\[
\Sigma_{i} = k_{i}^{1} \quad \text{and} \quad p_1(T_{X}) = 2k_{i}^{2} + 4k_{i}^{1}
\]

This shows that also the framed link used for constructing T and X is determined by the system of invariants associated to (X, γ_{i}), proving the injectivity in Part i) in the theorem. Moreover, the assertion about the fibres in Part ii) is clear.

Conversely, given a system of invariants in $Z \otimes b^0$, satisfying relation (3), there exists a based 3-connected manifold (X, γ_{i}) realizing Z. Indeed, by the above identification of the invariants, Z determines a framed link in S^7 and thus the manifold $T := D^8 \setminus \bigcup_{i=1}^{b_{i}^{1}} \partial \Sigma_{i}$. The boundary of T is a 7-dimensional homotopy sphere $(\mathbb{S}^7, \partial \Sigma_{i})$ and, therefore, piecewise linearly homeomorphic to S^7. Hence, $X = T \setminus \bigcup_{i=1}^{b_{i}^{1}} \partial \Sigma_{i}$ is a piecewise linear manifold with the desired system of invariants, setting Part i). If, in addition, relation (3) holds, the work [18] grants that X will carry a smooth structure (compare Theorem A.4 of [24]), finishing the proof of Part ii).

4.2. The determination of W_{4} in the general case. We have a handle decomposition $W_{0} \rightarrow W_{2} \rightarrow W_{4} \rightarrow W_{6}$ of X providing preferred bases \emptyset_{i}^{j} of $H_{2}(X; \mathbb{Z})$ and \emptyset_{i}^{j} of $H_{4}(X; \mathbb{Z})$, respectively. Let γ_{i} and γ_{j} be the dual bases of $H_{2}(X; \mathbb{Z})$ and $H_{4}(X; \mathbb{Z})$, respectively. Finally, let γ_{i} be the basis of $H_{4}(X; \mathbb{Z})$ which is via γ_{i} dual to γ_{i}.

We find $\partial W_{2} = \#_{i=1}^{b_{0}} (\Sigma_{i}^{3} \setminus \Sigma_{i}^{2})$, and, in the notation of Section 3.6, we write $[\gamma_{i}^{k}] \pi_{3}(\partial W_{2}) \approx \#_{k \in \mathbb{Z}} \Sigma_{i}^{2}$ in the form $\emptyset_{i}^{1} \emptyset_{i}^{2} = \#_{i \in \mathbb{Z}} \emptyset_{i}^{1}$, $\gamma_{i}^{j} : j \leq k$, $k = 1; \ldots b^0$. To see the significance of the l_{i}^{j} and l_{i}^{j}, note that, by Remark 3.4, $W_{2} \setminus \bigcup_{i=1}^{b_{i}^{1}} \partial \Sigma_{i}$ is homotopy equivalent to $\bigcup_{i=1}^{b_{i}^{1}} \Sigma_{i}^{2} \setminus \Sigma_{i}^{1}$. The cohomology ring of that complex has been computed in Proposition 3.11, so that the naturality of the cup product implies the following formulae for the cup products in X:

\[
x_{i} \langle x_{j} \rangle = \sum_{k=1}^{b_{0}} \emptyset_{i}^{k} \emptyset_{i}^{j} ; i \geq j;
\]

\[
x_{i} \langle x_{i} \rangle = \sum_{k=1}^{b_{0}} \emptyset_{i}^{k} \emptyset_{i}^{j} ; i = 1; \ldots b^0.
\]

Therefore, the l^k_i and l^k_{ij} are determined by δ_X and γ_X (used for computing γ_X), in fact $l^k_i = \gamma_X \partial (v_i, x_i)$, and $l^k_{ij} = \gamma_X \partial (v_i, x_j, y_k)$.

To determine the λ_{ij} and the framings, we proceed as follows: Look at the embedding $\#_{i=1}^p (S^2 \times S^5) \subset X$. There exist b embedded 2-spheres $S^1_j; \ldots; S^1_b$ which represent the basis b and which do not meet the given link. Finally, $\#_{i=1}^p (S^2 \times S^5)$ obviously possesses a regular neighborhood in X which is homeomorphic to $\#_{i=1}^p (S^2 \times S^5) \sim D^3$. Thus, we can perform "surgery in pairs" as described in Section 3.1. The result is a 3-connected manifold X containing S^7. It is by construction the manifold obtained from the framed link in S^7 derived from the given one in $\#_{i=1}^p (S^2 \times S^5)$ (cf. Section 3.1). We will be finished, once we are able to compare the invariants of X to those of \hat{X}. To do so, we look at the trace of the surgery, i.e., at $Y = (X \cup I) \cup H^5_1 \cup \hat{X}$ (cf. Section 3.1). The Mayer-Vietoris sequence provides the isomorphisms

\[H_4 (X; \mathbb{Z}) = H_4 (X; \mathbb{Z}) \cong H_4 (X; \mathbb{Z}) \]

Set $H := H_4 (X; \mathbb{Z}) \cong H_4 (X; \mathbb{Z})$. By Lefschetz duality ([5], (28.18)), there is for each $q \geq 1$ a diagram (omitting \mathbb{Z}-coefficients)

\[
\begin{array}{cccccc}
H^q H \oplus \delta X & H^q \partial \gamma X & H^q H \oplus \delta X & H^q \partial \gamma X & H^q \delta X \\
\gamma \oplus \partial \gamma X & \gamma \oplus \partial \gamma X & \gamma \oplus \partial \gamma X & \gamma \oplus \partial \gamma X \\
\end{array}
\]

(4) where the left square commutes up to the sign $(1)^q$ and the other two commute. We first use it in the case $q = 5$. Look at the commutative diagram

\[
H \oplus \delta X \oplus H \oplus \delta X \oplus H \oplus \delta X
\]

in which all arrows are injective, because $H_5 (\delta Y ; X ; \mathbb{Z}) = 0 = H_5 (\delta Y ; X ; \mathbb{Z})$ (cf. [17], p. 198). Using the identification $H_4 (\delta Y ; \mathbb{Z}) = H_4 (\delta Y ; \mathbb{Z})$;

\[
\text{Im } H_5 (\delta Y ; \mathbb{Z}) \oplus H_5 (\delta Y ; \mathbb{Z}) \oplus H_5 (\delta Y ; \mathbb{Z}) = H_5 (\delta Y ; \mathbb{Z})
\]

Similar considerations apply to the case $q = 9$. Taking into account that X sits in Y with the reversed orientation, (4) shows that the forms γ_X and γ_X, both defined with respect to the preferred bases, coincide. In the same manner, the pullbacks of $p_1 \delta Y$ to $H^4 (X; \mathbb{Z})$ and $H^4 (X; \mathbb{Z})$, respectively, agree. Since X and Y are the boundary components of Y, these pullbacks are $p_1 (X)$ and $p_1 (X)$, respectively, and we are done.

4.3. Manifolds with given invariants. One might speculate, especially in view of the classification of E-manifolds in dimension 4 and 6, that the invariants δ_X, γ_X, and $p_1 (X)$ might suffice to classify E-manifolds with $w_2 (X) = 0$ in dimension 8. However, Lemma 3.3 shows that these invariants determine only W_4 and we still have the choice of an isomorphism in gluing $\#_{i=1}^p (S^2 \times S^5)$ to W_4, and different gluings may
lead to different results. The following example which was communicated to me by J.-C. Hausmann illustrates this phenomenon.

Example 4.4. One has \(\pi_5(\text{SO}(3)) = \mathbb{Z}_2 \). Therefore, there are two different \(S^2 \)-bundles over \(S^6 \), call them \(X := S^6 \times S^2 \) and \(X^0 := S^6 \oplus S^2 \). Obviously, \(X \) and \(X^0 \) are spin-manifolds with trivial invariants, but one computes \(\pi_5(X) = \mathbb{Z}_2 \) and \(\pi_5(X^0) = 0 \).

Fix \(b, b^0 \), and a system \(Z \) of invariants in the image of the map \(Z^{\text{PL-}} \rightarrow \psi(b^0) \). As we have seen, \(Z \) determines a certain manifold \(W \) the boundary of which is diffeomorphic to \(\#_{i=1} b^0 (S^2 \times S^5) \) together with a basis \(b \) for \(H_2(\partial W; \mathbb{Z}) \). Let \(b_0 \) be the natural basis for \(H_2(\#_{i=1} b^0 (S^2 \times S^5); \mathbb{Z}) \), and denote by \(\text{Iso}_{0}^{\text{PL-}} \) the set of piecewise linear (smooth) isomorphisms \(f: \#_{i=1} b^0 (S^2 \times S^5) \rightarrow W \) with \(f(b_0) = b \). Our results show that every based piecewise linear (smooth) manifold \(\#_{i=1} b^0 (S^2 \times S^5) \) with system of invariants \(Z \) is piecewise linearly (smoothly) isomorphic to a manifold of the form

\[
X(f) := \partial W_4(f) \quad \text{for some } f \in \text{Iso}_{0}^{\text{PL-}} \text{.}
\]

with its given bases for \(H^2(X(f); \mathbb{Z}) \) and \(H^4(X(f); \mathbb{Z}) \). Conversely, every manifold of the form \(X(f) \) is a piecewise linear (smooth) based E-manifold with invariants \(Z \).

Now, suppose we are given \(f, f^0 \in \text{Iso}_{0}^{\text{PL-}} \), such that \(X(f) \) and \(X(f^0) \) are isomorphic as piecewise linear (smooth) based manifolds. We claim that we can find an isomorphism \(\varphi: X(f) \rightarrow X(f^0) \) with \(\varphi(W_4) = W_4 \). For this, look at the handle decomposition \(W_0 \rightarrow W_2 \rightarrow W_4 \). Since \(W_0 \) is just an embedded 8-disc in \(X(f) \) and \(X(f^0) \), respectively, we can choose \(\varphi \) with \(\varphi(W_0) = W_0 \). Let \(\partial W_0 \) be the framed link for attaching the 2-handles. Then, \(\varphi(\mathcal{L}) \) and \(L \) are isotopic. Therefore, we can find a level preserving diffeomorphism \(\psi: [1 : 1; 1] \partial W_0 \rightarrow [1 : 1] \partial W_0 \) with \(\psi(\partial W_0) = \text{id}_{\partial W_0} \) and \(\psi(\mathcal{L}) = \psi(\mathcal{L}) \). If we choose a tubular neighborhood \(= [1 : 1] \partial W_0 \) of \(\partial W_0 \) in \(X(f^0) \), we can use \(\psi \) to define an automorphism \(\psi: X(f) \rightarrow X(f^0) \) with \(\psi(\varphi(\mathcal{L})) = L \). Thus, \(\psi \varphi \) maps \(W_0 \) onto \(W_2 \). A similar argument shows that we can achieve \(\varphi(W_4) = W_4 \).

Let \(\text{Aut}_{0}^{\text{PL-}}(\#_{i=1} b^0 (S^2 \times D^6)) \) be the group of piecewise linear (smooth) automorphisms \(g \) of \(\#_{i=1} b^0 (S^2 \times D^6) \) with \(H^2(g; \mathbb{Z}) = \text{id} \) and similarly define \(\text{Aut}_{0}^{\text{PL-}}(\#_{i=1} b^0 (S^2 \times S^5)) \). Then, we have just established

Proposition 4.5. The set of isomorphy classes of based piecewise linear (smooth) E-manifolds with invariants \(Z \) is in bijection to the set of equivalence classes in \(\text{Iso}_{0}^{\text{PL-}} \) w.r.t. the equivalence relation coming from the group action

\[
\text{Aut}_{0}^{\text{PL-}}(W_4) \rightarrow \text{Aut}_{0}^{\text{PL-}}(\#_{i=1} b^0 (S^2 \times D^6)) \rightarrow \text{Iso}_{0}^{\text{PL-}}(\#_{i=1} b^0 (S^2 \times D^6)) \rightarrow \text{Iso}_{0}^{\text{PL-}}(\#_{i=1} b^0 (S^2 \times S^5)) \ :
\]

We shall see in Lemma \([5.1]\) that \(\text{Aut}_{0}^{\text{PL-}}(\#_{i=1} b^0 (S^2 \times D^6)) \) contains the commutator subgroup of \(\text{Aut}_{0}^{\text{PL-}}(\#_{i=1} b^0 (S^2 \times S^5)) \).

Corollary 4.6. The set of isomorphy classes of based piecewise linear (smooth) E-manifolds with \(b_2 = b \) and \(b_3 = 0 \) is in bijection to the abelian group

\[
\text{Aut}_{0}^{\text{PL-}}(\#_{i=1} b^0 (S^2 \times S^5)) :\]
I have been informed by experts that the structure of the groups $\text{Aut}_0^{\text{PL}}(\mathbb{R}^n)$ and $\text{Aut}_0^{\text{PL}}(\mathbb{C}^n)$ has not yet been determined and that this would be a rather difficult task. Therefore, we choose the viewpoint of framed links in order to finish our considerations. In Theorem 5.2, we will then use this viewpoint to compute the group $\text{Aut}_0^{\text{PL}}(\mathbb{R}^3) = \text{Aut}_0^{\text{PL}}(\mathbb{C}^3)$.

As above, let (X, Σ) be a based piecewise linear (smooth) E-manifold with zero second Stiefel-Whitney class and system of invariants $Z_{\Sigma \subset \mathbb{R}^3}$ and perform surgery along this link in order to get a 3-connected piecewise linear (smooth) automorphism $\phi : (X, \Sigma) \rightarrow (X, \Sigma)$. For the isotopy class of ϕ yields, after surgery, an isomorphism $\phi : (X, \Sigma) \rightarrow (X, \Sigma)$ with $\phi : (X, \Sigma) \rightarrow (X, \Sigma)$ with $\phi : (X, \Sigma) \rightarrow (X, \Sigma)$. In particular, the manifold (X, Σ) is determined up to piecewise linear (smooth) isomorphy. We call it the type of (X, Σ).

Example 4.8. The group \mathbb{Z}_2^b acts freely on the set of isotopy classes of framed links of b spheres of dimension 5 in X by altering the framings of the components. Note that this notion matters only in the smooth case, by Theorem 2.3. To summarize, we note

Proposition 4.7. The set of isomorphy classes of based piecewise linear (smooth) E-manifolds of type (X, Σ) is in bijection to the set of equivalence classes of framed links of 5-spheres in X where two such links l and l' are considered equivalent, if there is a piecewise linear (smooth) automorphism $\phi : (X, \Sigma) \rightarrow (X, \Sigma)$ with $\phi : (X, \Sigma) \rightarrow (X, \Sigma)$ such that $\phi : (X, \Sigma) \rightarrow (X, \Sigma)$.

Example 4.8. The group \mathbb{Z}_2^b acts freely on the set of isotopy classes of framed links of b spheres of dimension 5 in X by altering the framings of the components. Note that the two possible framings of the trivial bundle on a 5-sphere are distinguished by the fact that one extends over D^6 and the other does not. This property is preserved under piecewise linear homeomorphisms, so that we conclude that \mathbb{Z}_2^b acts also freely on the set of equivalence classes of framed links of b spheres of dimension 5 in X.

Note that this completes the classification of Spin-E-manifolds of dimension eight with second Betti number one.

Let us look at manifolds of type S^8. We claim that two framed links l and l' of 5-spheres are equivalent in the above sense, if and only if they are isotopic. Clearly, after replacing l and l' by isotopic links, we may assume that both of them are contained in the Southern hemisphere and that ϕ is the identity on the Northern hemisphere. Now, choose a representative ϕ^\dagger for the isotopy class of ϕ^{-1} which is the identity on the Southern hemisphere. Then, $\phi^\dagger \phi$ is isotopic to the identity and carries l into l'.

For differentiable manifolds, the operation $X \# \Sigma, \Sigma$ an exotic 8-sphere, establishes a bijection between the set of isomorphy classes of based smooth E-manifolds of type S^8 and the set of isomorphy classes of based smooth E-manifolds of type Σ. We conclude

Corollary 4.9. i) The set of isomorphy classes of based piecewise linear E-manifolds with $b_2 = b$ and $b_4 = 0$ is in bijection to the group $\text{FL}_b = L_b \oplus \mathbb{Z}_2$.

ii) The set of isomorphy classes of based smooth E-manifolds with $b_2 = b$ and $b_4 = 0$ is in bijection to the group $\delta^8 \text{ FL}_b$.

Finally, we have to deal with those manifolds for which the cup form δ is trivial. Our investigations in Section 3.6 and 4.2 show that the framed link of 3-spheres in ∂W_2 can
be chosen to be contained in a small disc. In other words, a manifold X with $\delta_X = 0$ is piecewise linearly (smoothly) isomorphic $X^\dagger\#X$ where X is the type of X and $b_4 (X^\dagger) = 0$. As our surgery arguments above reveal, an isomorphism between $X^\dagger\#X$ and $X^\dagger\#X^0$ can be chosen of the form $\varphi^\dagger\#\varphi^0$ where $\varphi^\dagger : X^\dagger \to X^\dagger$ and $\varphi^0 : X^0 \to X^0$ are isomorphisms. Therefore, the set of isomorphy classes of based piecewise linear E-manifolds of type X with $b_5 = b$ is in bijection to the set of isomorphy classes of based piecewise linear E-manifolds with $b_2 = b$ and $b_4 = 0$. The same goes for differentiable manifolds of type X, if X is not diffeomorphic to $X \# \Sigma$, Σ an exotic 8-sphere. Otherwise, we have to divide by the action of ∂^8. This observation together with Corollary 4.9 settles Theorem 2.4.

5. The structure of the group $\text{Aut}_{\text{PL}}^b (S^2 \# S^5) = \text{Aut}_{\text{PL}}^b (S^2 \# D^6)$

The aim of this section is to prove that, first, $\text{Aut}_{\text{PL}}^b (S^2 \# S^5) = \text{Aut}_{\text{PL}}^b (S^2 \# D^6)$ is an abelian group, and, second, that it is, in fact, isomorphic to the group Fl_{bh} defined before. This result should be of some independent interest, especially because the group Fl_{bh} is by Haefliger’s work quite well understood. For $b = 1$, we refer to [23] for more specific information.

We begin with the elementary

Lemma 5.1. Let $k \in \text{Aut}_{\text{PL}}^b (S^2 \# S^5)$ be a commutator. Then, k extends to an automorphism of $\#_{bh} (S^2 \# D^6)$.

Proof. For the proof, we depict $\#_{bh} (S^2 \# S^5)$ as follows: Let $V_i, i = 1; \ldots; b$, be b copies of $S^2 \# D^6$, and we join V_i and V_{i+1} by a tube $T_i = [1;1] \times D^7, i = 1; \ldots; b$. 1. The result is a manifold W whose boundary is isomorphic to $\#_{bh} (S^2 \# S^5)$. We make the following normalizations: Write ∂V_i as $(S^2 \# D^4) \setminus (S^2 \# D^4)$, let n_i and s_i be the centers of D^4_i and D^4_i, respectively, and set $S^3_i := S^2 \# n_i$ and $S^4_i := S^2 \# s_i, i = 1; \ldots; b$. Choose furthermore points $e_i \in w_i$ in $(S^2 \# D^4_i) \setminus (S^2 \# D^4_i), i = 1; \ldots; b$, and suppose that $\#_{bh} (S^2 \# D^4_i)$ is attached to a disc around w_i in ∂V_i and $\#_{bh} (S^2 \# D^4_i)$ to a disc around e_i in $\partial V_{i+1}, i = 1; \ldots; b$. Set $T := \bigcup_{i=1}^b T_i$.

Now, let $k = f g \in \text{Aut}_{\text{PL}}^b (S^2 \# S^5)$ be the identity for every element $h \in \text{Aut}_{\text{PL}}^b (S^2 \# S^5)$ and $s_i, i = 1; \ldots; b$, both represent the same basis for $H_2 (\partial W; \mathbb{Z})$, h is isotopic to a map h^0 which satisfies either assumption (A) or (B) below.

(A): h^0 is trivial on a tubular neighborhood of S^2_i which contains $S^3_i \cap \text{Int} (T), i = 0; \ldots; b$.

(B): h^0 is trivial on a tubular neighborhood of S^3_i which contains $S^4_i \cap \text{Int} (T), i = 0; \ldots; b$.

Next, replace f by an isotopic map f^0, satisfying (A), and g by an isotopic map g^0, satisfying (B). Then, k^0 is isotopic to $f^0 g^0 f^{-1} g^{-1}$. The map k^0 is the identity outside $\text{Int} (\partial T_i)$. It is, furthermore, the identity on a collar of $\#_{bh} (S^2 \# S^5)$ in $R_i := [1;1] \times S^6 \setminus \partial T_i, i = 1; \ldots; b$. Let k^0_i be the restriction of k^0 to $R_i, i = 1; \ldots; b$. We know that each k^0_i is the identity on a collar of $\#_{bh} (S^2 \# S^5)$ in R_i. Thus, we extend every k^0_i to a PL automorphism κ_i of $D^7 \# \Sigma (D^7) \# \Sigma = S^7$ through $\text{id}_{D^7} \# \Sigma (D^7) \# \Sigma = S^7$. Now, by [27], Lemma 1.10, p. 8, κ_i extends to an automorphism κ_i.
of $D^8 = D^7 \cup [1;1]$, $i = 1; \ldots; b$. Thus, the maps id_i and α_i, $i = 1; \ldots; b$, glue to an automorphism of $\#_{i=1}^b (S^2 \cdot D^6)$ the restriction of which to the boundary is just k^2. □

This Lemma shows that the group $\text{Aut}_{PL}^+ \#_{i=1}^b (S^2 \cdot D^6)$ is normal in the group $\text{Aut}_{PL} \#_{i=1}^b (S^2 \cdot S^5)$, and that $\text{Aut}_{PL} \#_{i=1}^b (S^2 \cdot S^5) = \text{Aut}_{PL} \#_{i=1}^b (S^2 \cdot D^6)$ is abelian. Moreover, in Section 4.3, we have already defined a set theoretic bijection $\beta : \text{Aut}_{PL} \#_{i=1}^b (S^2 \cdot S^5) = \text{Aut}_{PL} \#_{i=1}^b (S^2 \cdot D^6) \not\rightarrow \text{FL}_b$.

Theorem 5.2. The map β is a group isomorphism.

Proof. Since β is bijective, we have to verify that β is a homomorphism. In order to do so, we will construct a group G together with surjective homomorphisms

$$\chi_1 : G \rightarrow \text{Aut}_{PL} \#_{i=1}^b (S^2 \cdot S^5) = \text{Aut}_{PL} \#_{i=1}^b (S^2 \cdot D^6)$$

and

$$\chi_2 : G \rightarrow \text{FL}_b$$

such that $\chi_2 = \beta \circ \chi_1$. This will clearly settle the claim.

Before we define G, we recall some constructions and conventions from [1]. Let $S^8 = \{0; \ldots; a_0\} \cup \mathbb{R}^8 \cup \mathbb{H}$ be the unit sphere, write $S^8 = D^8 \cup D^8$, and let $\sigma : S^8 \not\rightarrow S^8$ be the reflection at $S^7 = D^8 \setminus D^8$, interchanging the Northern and the Southern hemisphere. First, let $S_0 = (S^1; \ldots; S^5)$ be a "standard link" in S^8 defined as follows: Fix real numbers $1 < a_i < 1$, set $S^5 = \{0; \ldots; a_0\} \cup \mathbb{R}^5 \cup \mathbb{H}$, and let $S_0 = S^1 \cup S^5$ be the resulting framed link in S^8 with $l_0^b = l_0^b \setminus D^8$. Recall from Section 1 of [1] that

1. Every framed link l of b five dimensional spheres in S^8 is isotopic to a link l^2, such that either (A) $l^2 \setminus D^8 = l_0^b$ or (B) $l^2 \setminus D^8 = l_0^b$.

2. If l_1 satisfies (A) and l_2 satisfies (B), then $l_1 + l_2$ is represented by the link l with $l \setminus D^8 = l_2 \setminus D^8$ and $l \setminus D^8 = l_2 \setminus D^8$.

Note that, if we perform surgery along l_0^b, we get a manifold $W = \partial + [W$ which is isomorphic to $\#_{i=1}^b (S^2 \cdot S^5)$, and $W := D^8 \setminus \text{Int}(l_0^b)$ is canonically isomorphic to $\#_{i=1}^b (S^2 \cdot D^6)$. For the rest of the proof, we will use the description of $\#_{i=1}^b (S^2 \cdot S^5)$ as $\partial W = : W$. Set

$$G := \text{PL-maps } f : S^7 \setminus \text{Int}(l_0^b) \not\rightarrow S^7 \setminus \text{Int}(l_0^b) \not\rightarrow \partial W = \partial W$$

For every $f : G$, we define $\varphi(f) : \#_{i=1}^b (S^2 \cdot S^5) \not\rightarrow \#_{i=1}^b (S^2 \cdot S^5)$, by extending f through the identity on $\#_{i=1}^b (S^2 \cdot D^6)$. Similarly, define $\psi(f) : S^7 \not\rightarrow S^7$. Obviously,

$$\chi_1 : G \rightarrow \text{Aut}_{PL} \#_{i=1}^b (S^2 \cdot S^5) = \text{Aut}_{PL} \#_{i=1}^b (S^2 \cdot D^6)$$

is a surjective homomorphism.

Next, we associate to $f : G$ an element $\chi_2(f) \in \text{FL}_b$ as follows: First, we define $\Sigma(f) := D^8 \setminus \partial W$ and the link $l^2(f) := l_0^b \setminus \partial W$. Then, we choose a piecewise linear homeomorphism $F : \Sigma(f) \not\rightarrow S^8$ and set $l_F(f) := F(l^2(f))$. We have checked
before that the isotopy class of \(l_F (f) \) does not depend on the chosen homeomorphism, so that \(\chi_2 (f) := [l_F (f)] \) \(\mathsf{FL}_b \) is well defined. To see that \(\chi_2 : G \to \mathsf{FL}_b \) is a homomorphism, let \(f ; f \) be in \(G \). Choose extensions \(\overline{\psi} : D^8 \to D^8 \) and \(\overline{\psi} : D^8 \to D^8 \) of \(\psi (f) \) and \(\psi (f^0) \), respectively. We then define \(F : \Sigma (f) \to S^8 \) as \(\overline{\psi} \) on \(D^8 \) and as the identity on \(D^8 \), \(F^0 : \Sigma (f) \to S^8 \) as \(\overline{\psi} \) on \(D^8 \) and \(\overline{\psi} \) on \(D^8 \), and \(F^0 : \Sigma (f^0) \to S^8 \) as \(\overline{\psi} \) on \(D^8 \) and \(\overline{\psi} \) on \(D^8 \). Then, the link \(l_F (f) \) satisfies (B), the link \(l_F (f^0) \) satisfies (A), and (2) above shows that \([l_F (f^0)] = [l_F (f)] + [l_F (f)] \).

Finally, for given \(f \in G \), we can perform surgery on \(\Sigma (f) \) along \(l^0 (f) \). The result is \(W_+ [\varphi (f)] W \). Reading this backwards means nothing else but \(\beta \chi_1 (f) = \chi_2 (f) \) and we are done.

\[\square \]

REFERENCES

[1] W. Browder, *Surgery on simply-connected manifolds*, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 65, Springer-Verlag, New York-Heidelberg, 1972, ix+132 pp.

[2] F. Campana, Th. Peternell, *Rigidity theorems for primitive Fano 3-folds*, Comm. Anal. Geom. 2 (1994), 173-201.

[3] P. Freitag, *Rigidity properties of imprimitive Fano 3-folds*, Math. Ann. 309 (1997), 179-98.

[4] W. Fulton, *Introduction to toric varieties*, Annals of Mathematics Studies, 131, The William H. Roever Lectures in Geometry, Princeton University Press, Princeton, NJ, 1993, xii+157 pp.

[5] M. Greenberg, *Lectures on algebraic topology*, W. A. Benjamin, Inc., New York-Amsterdam, 1967, x+235 pp.

[6] A. Haefliger, *Differentiable imbeddings*, Bull. Amer. Math. Soc. 67 (1961), 109-12.

[7] A. Haefliger, *Plongements differentiables de variétés dans variétés*, Comment. Math. Helv. 36 (1961), 47-82.

[8] A. Haefliger, *Differentiable links*, Topology 1 (1962), 241-4.

[9] A. Haefliger, *Knotted spheres and related geometric problems*, Proceedings of the International Congress of Mathematicians in Moscow, 1966, 437-45.

[10] A. Haefliger, *Differential imbeddings of \(S^q \) in \(S^{q+q} \) for \(q > 2 \)*, Ann. of Math. 83 (1966), 402-36.

[11] A. Haefliger, *Enlacements de sphères en codimension supérieure à 2*, Comment. Math. Helv. 41 (1966/1967), 51-72.

[12] J.-C. Hausmann, A. Knutson, *Polygon spaces and Grassmannians*, Enseign. Math. 43 (1997), 173-198.

[13] J.F.P. Hudson, *Piecewise linear topology*, University of Chicago Lecture Notes, prepared with the assistance of J. L. Shaneson and J. Lees, W. A. Benjamin, Inc., New York-Amsterdam, 1969, ix+282 pp.

[14] P. Jupp, *Classification of certain 6-manifolds*, Proc. Camb. Phil. Soc. 73 (1973), 293-300.

[15] R. Kirby, *The topology of 4-manifolds*, Lecture Notes in Mathematics, 1374, Springer-Verlag, Berlin, 1989, vi+108 pp.

[16] R. Kirby, L. Siebenmann, *Foundational essays on topological manifolds, smoothings, and triangulations*, with notes by John Milnor and Michael Atiyah, Annals of Mathematics Studies, No. 88, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1977, vii+355 pp.

[17] A. Kosinski, *Differential manifolds*, Pure and Applied Mathematics, 138, Academic Press, Inc., Boston, MA, 1993, xvi+248 pp.

[18] N.C. Kuiper, *Algebraic equations for nonsmoothable 8-manifolds*, Inst. Hautes Études Sci. Publ. Math. 33 (1967), 139-55.

[19] J. Levine, *A classification of differentiable knots*, Ann. of Math. 82 (1965), 15-50.

[20] J. Levine, *Self-equivalences of \(S^n \to S^2 \)*, Trans. Amer. Math. Soc. 143 (1969), 523-43.

[21] J. Milnor, *A procedure for killing homotopy groups of differentiable manifolds*, Proc. Symp. Pure Math. 3 (1963), 39-55.

[22] J. Milnor, D. Husemoller, *Symmetric bilinear forms*, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 73, Springer-Verlag, New York-Heidelberg, 1973, viii+147 pp.
[23] J. Milnor, J.D. Stasheff, *Characteristic classes*, Annals of Mathematics Studies, No. 76, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1974, vii+331 pp.
[24] S. Müller, *Zur Topologie einfacher 8-Mannigfaltigkeiten*, Zürich, 1998.
[25] S. Novikov, *Topological invariance of rational Pontrjagin classes*, Soviet Math. Doklady 6 (1965), 921-3.
[26] Ch. Okonek, A. Van de Ven, *Cubic forms and complex 3-folds*, Enseign. Math. 41 (1995), 297-333.
[27] C.P. Rourke, B.J. Sanderson, *Introduction to piecewise-linear topology*, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 69, Springer-Verlag, New York-Heidelberg, 1972, viii+123 pp.
[28] A. Schmitt, *Topological rigidity of holomorphic \mathbb{P}_3-bundles over curves*, in preparation.
[29] N. Saveliev, *Lectures on the topology of 3-manifolds: An introduction to the Casson invariant*, de Gruyter Textbook, Walter de Gruyter & Co., Berlin, 1999, x+199 pp.
[30] P. Selick, *Introduction to homotopy theory*, Fields Institute Monographs, 9, American Mathematical Society, Providence, RI, 1997, xxiii+188 pp.
[31] S. Smale, *On the structure of manifolds*, Amer. J. Math. 84 (1962), 387-99.
[32] N. Steenrod, *The Topology of Fibre Bundles*, Princeton Mathematical Series, vol. 14, Princeton University Press, Princeton, N. J., 1951, viii+224 pp.
[33] B. Steer, *Generalized Whitehead products*, Quart. J. Math. Oxford Ser. (2) 14 (1963), 29-40.
[34] D. Sullivan, *Inside and outside manifolds*, Proceedings of the International Congress of Mathematicians (Vancouver, B.C., 1974), Vol. 1, pp. 201-7, Canad. Math. Congress, Montréal, Que., 1975.
[35] H. Toda, *Composition methods in homotopy groups of spheres*, Annals of Mathematics Studies, No. 49, Princeton University Press, Princeton, N.J., 1962, vi+193 pp.
[36] C.T.C. Wall, *Classification of $(n-1)$-connected $2n$-manifolds*, Ann. Math. 75 (1962), 163-89.
[37] C.T.C. Wall, *Classification problems in differential topology V. On certain 6-manifolds*, Invent. Math. 1 (1966), 355-74.
[38] A.H. Wallace, *Spherical modifications and cobounding manifolds*, Canad. J. Math. 12 (1960), 503-28.
[39] E.C. Zeeman, *Unknotting combinatorial balls*, Ann. of Math. 78 (1963), 501-26.

Universität GH Essen, FB6 Mathematik & Informatik, D-45141 Essen, Germany

E-mail address: alexander.schmitt@uni-essen.de