ABSTRACT

Building conversational speech recognition systems for new languages is constrained by the availability of utterances capturing user-device interactions. Data collection is expensive and limited by speed of manual transcription. In order to address this, we advocate the use of neural machine translation as a data augmentation technique for bootstrapping language models. Machine translation (MT) offers a systematic way of incorporating collections from mature, resource-rich conversational systems that may be available for a different language. However, ingesting raw translations from a general purpose MT system may not be effective owing to the presence of named entities, intra sentential code-switching and the domain mismatch between the conversational data being translated and the parallel text used for MT training. To circumvent this, we explore following domain adaptation techniques: (a) sentence embedding based data selection for MT training, (b) model finetuning, and (c) rescoring and filtering translated hypotheses. Using Hindi language as the experimental testbed, we supplement transcribed collections with translated US English utterances. We observe a relative word error rate reduction of 7.8-15.6%, depending on the bootstrapping phase. Fine grained analysis reveals that translation particularly aids the interaction scenarios underrepresented in the transcribed data.

Index Terms— speech recognition, neural machine translation, domain adaptation, code-switching

1. INTRODUCTION

Bootstrapping an automatic speech recognition (ASR) system for a new language involves significant data collection and transcription overhead. For factored ASR systems, where the acoustic model (AM) and language model (LM) are trained independently, the LM can be trained with additional text-only corpora to boost performance. This is especially helpful during the initial stages of model development. For a new language the typical supplemental LM sources include Wikipedia, news portals, blogs etc., which can be incorporated along with the limited transcribed data to circumvent the issue of cold start. However, for conversational agents like Alexa, Siri the utterances are usually short, goal directed and contain several named entities like song title, artist name etc., e.g. Play Moonlight Sonata by Beethoven. This informal interaction style, characteristic of conversational data, is absent in online text sources, thereby rendering them less effective for this task. As a result, LM building relies mostly on transcribed data and its performance is restricted by the speed of manual transcription and annotation.

There has been a growing interest in the area of data augmentation for ASR language modeling. Previous studies include training a recurrent neural network (RNN) based LM on transcriptions and using it to generate synthetic samples for augmentation [1]. SeqGAN, a generative adversarial model for sequences, has been employed for pretraining a code-switched LM [2]. However, a precondition for the successful generalization of these neural generative models is the availability of a substantial amount of in-domain utterance text for training, which itself is the bottleneck during the bootstrapping phase.

Utterances from mature conversational systems, for example in English provide a rich source of information. They are both in-domain, since they capture actual user interaction patterns of varying complexity, and large-scale, owing to prolonged usage. Translation offers an elegant and cost-effective solution for leveraging this existing data. Devising techniques for systematically incorporating translated data can be instrumental for achieving the rapid language expansion goal for ASR, by alleviating the prohibitively high requirements for data collection during bootstrapping.

The area of machine translation has witnessed sustained research efforts [3-5]. It is also amongst the first success stories of the end-to-end neural paradigm for sequence modeling. Conventional phrase based statistical machine translation (SMT) [6] has shown to be outperformed by attention based recurrent encoder-decoder models [5] and transformer networks comprising self-attention and feed forward network blocks [7].

Data augmentation via SMT has been explored in the past for keyword spotting [11] and ASR [8,9]. These studies primarily focus on incorporating raw translation output as a component in the LM. However, in our initial experiments we observed that directly ingesting translations generated from off-the-shelf MT models results in a suboptimal performance for conversational data. This could be attributed, in part, to the domain mismatch between the MT training data comprising parallel text from web sources and the informal style interaction data used for translation. This observation of MT output being sensitive to the mismatch in training and inference data distributions is consistent with previous studies on MT adaptation [10].

Statistical post-editing for improving the quality of SMT outputs has been investigated [11]. In a recent work on bootstrapping natural language understanding systems using translations [12], SMT is employed for generating initial translations, followed by the use of source-target alignments to retain and resample named entities. These post-editing approaches can minimize the undesired named entities conversions for SMT, yet the bigger issue of domain mismatch still remains open.

In this work, we explore the synergies between neural machine translation and speech recognition for data augmentation. We work towards bootstrapping Hindi ASR system. Along with the limited availability of representative transcribed data, an additional challenge in this setting is that of code-switching. In typical Hindi utterances people often code mix with English within a sentence. The techniques explored in this work are however generic, and Hindi is chosen as a testbed for its complexity.
We evaluate different architectures for building English to Hindi (EN→HI) translation models and elaborate on the pitfalls associated with using off-the-shelf architectures. Some initial gains are observed by inferring alignments from attention weights, an approach that enables preserving and resampling the named entities. This technique is further extended to simulate code-switching in the translated data.

We then delve into the deeper issue of domain inconsistency. To this end, we develop a data selection strategy for MT model training based on in-domain similarity. This is an extension of [15] for the fully unsupervised setting. We also assess model finetuning by adding parallel in-domain synthetic pairs. For further adaptation, a statistical LM built using transcribed data is used for rescoring the decoded translation beams. Finally, different quality metrics are compared for retaining only the high quality translations in the final translation component.

A comparative evaluation of the translation-augmented LM is performed against baselines built from only transcribed data at various stages of bootstrapping. To the best of our knowledge, this work is the first investigation of the efficacy and challenges associated with neural machine translation for conversational speech recognition.

2. MACHINE TRANSLATION FOR DATA AUGMENTATION

2.1. Building translation model

Neural machine translation (NMT) is the dominant paradigm for current MT research. We assess the popular neural architectures for the task of building an EN→HI translation model. Sequence-to-sequence framework with attention, proposed in [13], comprises two recurrent neural networks: Encoder, which reads the source sentence tokens \((x_1,x_2,...,x_T)\) to generate continuous representations \((h_1,h_2,h_T)\), and Decoder, which outputs symbols \((y_1,y_2,...,y_R)\), conditioned on the previous outputs as well as a context vector \(c\), derived as the weighted sum of the encoder hidden states \(h\).

Transformer networks proposed in [12] eliminate recurrence in favor of parallelism and rely solely on attention. Here the encoder and decoder comprise stacked self-attention and fully connected layers. These networks represent the current state-of-the-art for NMT.

For training the translation models, we use a corpus of 8.4M parallel (EN, HI) sentence pairs prepared by crawling different web sources. We employ BLEU (Bilingual Evaluation Understudy) [14] score to assess the translation quality. Fig. 1 captures the performance of these models for different configurations. The best performing recurrent encoder-decoder with attention model achieves a BLEU score of 43.8 as compared to 46.4 achieved by the transformer architecture.

2.2. Choice of NMT architecture

Postprocessing translations generated by an MT model can be facilitated by the information of source-target alignments. In case of SMT this is straightforward owing to the fact that the alignment model is learnt explicitly. In case of NMT models, the separate components of the conventional SMT are folded into an all neural architecture. With this simplification however, assessing which source token is responsible for generating a target token becomes tricky.

Attention mechanism in the recurrent encoder-decoder architecture serves as an implicit alignment model, allowing the decoder to focus on relevant source segments. Eq. (1) captures decoder state \(s_i\) as a function of previous state \(s_{i−1}\), previous output \(y_{i−1}\) and the context vector \(c_i\). Here \(T_x\) represents the number of tokens in the source sequence, and \(f\) denotes some nonlinear function. Notice that the attention weight \(α_{i,j}\) determines the weight assigned by decoder at time step \(i\) to encoder hidden state \(h_j\).

\[
s_i = f(s_{i−1}, y_{i−1}, c_i) \text{ where, } c_i = \sum_{j=1}^{T_x} α_{i,j} h_j\]

Deriving alignments is known to more challenging for transformer networks with self-attention and multiple attention heads. There has been some recent work for alleviating this issue by explicitly adding an alignment head to the base architecture [15].

Owing to the relative ease of alignment extraction, we make the modeling design decision of using the recurrent encoder-decoder networks with attention for our NMT experiments.

2.3. Incorporating raw translations: An initial study

As an initial experiment, we translated user interaction sentences from US English collections to Hindi and directly ingested the raw translations for LM training. However, this strategy resulted in a very high perplexity LM. Upon further analysis, we found three key explanatory factors. First, typical user interactions with voice controlled agents, e.g. song requests, contain several named entities. The general purpose EN→HI MT system generates translations for those entities as well, which is not desirable. The second factor is the absence of code-switching in translations, which are purely in Hindi, owing to the nature of the training data. Given the extent of intra-sentential code mixing in conversational Hindi, it seems imperative for the translations to capture it as well, in order to add value to the downstream language modeling task. Finally, the most challenging nuance is the out-of-domain nature of MT training data (news items, wiki articles, etc.), which results in a lack of informal interaction style in the generated translations, an inherent attribute of user-device interactions. This domain mismatch issue has been observed in other machine translation settings as well.

2.4. Post-editing translations

We use the attention weights derived while decoding to approximate alignments. Each target token generated by the decoder is considered to be aligned with the source token corresponding to the encoder position with maximum attention weight. Metadata in the source text annotations, e.g. song name, artist name etc., is used to identify named entities (NE). Using these alignments and annotations, the following post-editing steps are performed. 1) \textit{NE copy-over}: source tokens corresponding to named entities are simply retained as-is in the output, 2) \textit{NE resampling}: named entities are resampled with local Hindi catalogs, since the trending entities vary by geography and, 3) \textit{Code mixing}: code-switching is simulated in the translations, by probabilistically copying over source English tokens. The
We compare the following techniques for generating unsupervised sentence representations: (1) unweighted averaging of word vectors, (2) smooth inverse frequency \(\text{SIF} \), where the sentence embeddings are computed as a weighted average of word vectors followed by removal of the projection on the first singular vector, and (3) language agnostic sentence representations (LASER) \[19\], which is an open source pre-trained biLSTM encoder for generating multilingual sentence embeddings that generalize across languages and NLP tasks. The first approach is appealing owing to its simplicity. In the second technique, taking word frequency into account is the distinguishing factor. Potential cross-lingual generalization is the advantage offered by the third approach. We use FastText \[20\] for learning word vector representations.

Using each of these approaches, we generate sentence embedding vectors for in-domain \((F_{in})\) and out-of-domain \((F_{out})\) target side sentences. Along similar lines as \[13\], data selection is based on the relative distance \(\delta_x \) of a sentence vector \(v_x \) w.r.t. the in-domain and out-of-domain centroids \(C_{F_{in}} \) and \(C_{F_{out}} \) respectively, indicated by Eq. \(2\). A lower value of \(\delta_x \) implies higher resemblance with in-domain data.

\[
\delta_x = d(v_x, C_{F_{in}}) - d(v_x, C_{F_{out}}) \tag{2}
\]

where,

\[
C_{F_{in}} = \frac{\sum_{f \in F_{in}} v_f}{|F_{in}|}, \quad C_{F_{out}} = \frac{\sum_{f \in F_{out}} v_f}{|F_{out}|}
\]

and, \(d(x, y) = ||x - y||_2 \).

2.5.2. Model finetuning

Backtranslation \[16\] is a popular approach for adaptation where a target-to-source translation model is learnt on the parallel corpus and is used to translate the unpaired target-side monolingual data. The resulting synthetic (source, target) pairs are leveraged for the original source-to-target model training. In the absence of a large target monolingual corpus, we resort to an alternate approach for synthetic corpus generation. We generate pseudo pairs by translating a portion of US English utterances using an initially trained NMT model, and perform post-editing to retain named entities. With this additional parallel data, the model is further trained for a certain number of epochs. As we discuss in Section \[3.2\] this type of finetuning is susceptible to overfitting.

2.5.3. Rescoring with in-domain LM

In order to further boost the fluency of translations, the hypotheses obtained after beam search decoding are rescoring using an n-gram LM built from the in-domain transcribed data. The score of a translation hypothesis is computed as a weighted sum of the MT decoding score and the LM score. The choice of n-gram LM for rescoring is motivated by its robustness under low-resource conditions as compared to RNNLM.

2.5.4. Filtering translations

As a final step, we attempt to remove the spurious translations by performing filtering based on a quality measure. The main challenge here is to define the “goodness” of a translated output. A potential candidate is the approach of using the score assigned by the MT model. That is, the product of conditional probabilities of the output tokens generated by the MT decoder can be used as a proxy to define well-formed translations. We also consider the approach of using the statistical LM built using transcribed data to assess the quality of translation data. Using each of these scores, we retain the top-x percentile of the translation output.

An overview of the adaptation and postprocessing pipeline is provided in Fig. \[3\] with section numbers indicated against each component.
3. RESULTS AND DISCUSSION

3.1. Experimental setup

We conduct experimental evaluation using up to 180 hours of Hindi-English code-switched speech for training. This dataset comprises 200K Hindi utterances collected using Cleo, an interactive skill that enables users to teach local languages to voice assistants via prompts. These prompts cover use cases like song requests or knowledge related questions. These natural utterances represent the transcribed in-domain component in our experiments. We follow the factored ASR architecture, and the AM is a hybrid DNN-HMM model, trained on log filter bank energy (LFBE) features extracted at 10 ms intervals for a 25 ms analysis window. LM is built by learning a 4-gram model with Katz smoothing on the training data.

The baseline LM is built using the in-domain transcriptions only. Translation component is procured by translating 9.8M US English utterance transcripts using the trained NMT models followed by adaptation and post-editing. For the evaluation candidates, the LM is built by a linear interpolation of the transcribed and translated components. The interpolation weights are tuned to minimize the perplexity of a held-out in-domain dataset. We assign a floor interpolation weight of 0.25 to the translation component to ensure that it receives sufficient representation. For all the MT experiments except interpolation weight based filtering approach results in a relative WERR of 7.86%.

One caveat of the LM guided filtering approach is that the patterns resulting from filtering conservative beyond this point degrades performance. A WERR of 6.82% is observed by retaining only top-75% translations. Making filtering more aggressive results in a higher perplexity translation component, resulting in negative WERR. We observe consistent improvements by introducing attention weight based post-editing. NE copy-over alone reduces the perplexity significantly. This, coupled with NE resampling and code mixing, results in a 5.83% WERR.

In Table 1 we assess the impact of each adaptation approach followed by post-editing. For MT training data selection, we retain only top-25% (out of 8.4M) sentences w.r.t. their relative similarity with in-domain data. This reduction in training data impacts the BLEU score adversely. Amongst the sentence representation techniques, LASER and SIF embeddings outperform the unweighted averaging approach in terms of BLEU score. Interestingly, while the unweighted averaging achieves lowest perplexity on held-out in-domain dataset, the gains don’t carry over while measuring overall ASR performance. SIF embedding based selection achieves the highest WERR of 7.23%, followed closely by LASER encoder representation.

Rescoring the decoded beams using transcription based LM yields a WERR of 6.28% for a beam size of 5. In these experiments, a relative weight of 0.3 is assigned to LM for overall score computation. Increasing the beam size from 5 to 20 leads to a drop in WERR, suggesting that during decoding, the head portion of the translation output contains hypotheses helpful for improving naturalness, and increasing beam width can result in higher confusability.

For the model finetuning approach, the number of additional training epochs is an important parameter. We observe a WERR of 6.84% when this parameter is set to 3, as compared to 5.23% for 10 epochs. Increasing the number of passes on the synthetic data generated using an initially trained model perpetuates the effect of model reinforcing its own errors. This potential overfitting makes early stopping imperative.

In the experiments focusing on translation output filtering, MT score did not turn out to be an effective metric for quality evaluation, indicated both by perplexity and WERR. We obtain interesting insights by ranking translations using in-domain LM scores. A WERR of 6.82% is observed by retaining only top-75% translations. Making filtering conservative beyond this point degrades performance. One caveat of the LM guided filtering approach is that the patterns which are underrepresented in the initial collections receive low LM scores. This could explain the drop in WERR when moving to top-65% translations; since the transcribed volume used for LM training is itself small, some of the discarded patterns could have been complementary for the overall ASR performance.

Combining the SIF selection, finetuning, rescoring and LM based filtering approach results in a relative WERR of 7.86%.

3.3. Impact on different interaction scenarios

Cleo prompts cover multiple interaction use cases. In order to derive fine-grained insights into the effect of translations, we study WERR on test utterances manually categorized into scenarios. Nearly 70% of the test utterances fall into one of the nine interaction scenarios mentioned in Table 2. In order to isolate the gains obtained from post-editing and adaptation, we study both the post-editing and combined WERR. We also analyse the proportion of named entities for
Table 1. Relative WERRs (%) with different post-editing techniques. Perplexity (PPL) is evaluated on a held-out in-domain dataset. Relative WERR captures the WER reduction w.r.t baseline trained on transcribed data only.

Adaptation	Approach	PPL	Relative WERR %
Post-processing	None	11941.08	-1.81
	Raw translations		
	NE copy-over	2889.45	2.36
	NE resampling	1241.52	4.62
	Code mixing + NE resampling	936.64	5.83

Table 2. Relative WERRs (%) with different NMT adaptation strategies. Note that these results include the effect of NE resampling and code mixing techniques.

Adaptation	Approach	PPL	Relative WERR %
Data selection	Unweighted avg. (BLEU: 29.1)	662.33	6.94
(BLEU original model: 43.8)	SIF (BLEU: 37.8)	686.97	7.23
	LASER (BLEU: 37.4)	704.12	7.14
Rescoring	beam-size=5	792.92	6.28
	beam-size=20	852.16	5.88
Model finetuning	n-epochs=3	726.62	6.84
	n-epochs=10	983.64	5.23
Filtering translations	MT score - top 85%	1109.44	4.82
	MT score - top 75%	1327.56	3.37
	MT score - top 65%	1426.18	2.16
	SLM score - top 85%	793.73	6.33
	SLM score - top 75%	892.92	6.82
	SLM score - top 65%	878.16	5.94
Combined	(i) SIF selection + Rescoring + SLM score - top 75%	584.24	7.62
	(i) + Model finetuning	564.06	7.86

3.4. Impact of floor weight for interpolation

The final augmented LM is an interpolated n-gram model, with the probability of an n-gram computed as a weighted sum of probabilities assigned by transcribed and translation components. Since the tuning data for determining interpolation weights comprises transcribed utterances only, the translation component may receive a low weight owing to domain mismatch.

The purpose of this investigation is to observe the effect of changing the floor weight parameter for the translation component, which provides a lever to override its relative importance in the interpolated LM. As seen from Table 2, the overall PPL increases as we increase the floor weight. However, WERR demonstrates fluctuation with varying floor weights: a low weight renders the translation component ineffective whereas a high value undermines the transcription component. Floor weight sweep can provide empirical guidance for adjusting this parameter.

3.5. Impact of in-domain data volume

We now attempt to address the following question: what are the relative gains provided by the translation data during different phases of bootstrapping? In particular, we measure the WERR between the baseline and translation-augmented LMs, by varying the in-domain transcribed utterances from 10K to 200K. We observe that the combined WERR after post-editing and adaptation increases from 7.86% to 15.65% as the amount of in-domain data reduces. Note that in this experiment, we use the same AM trained on 180 hours data, in order to precisely study the effect of data augmentation for LM. The WERR we report is hence an underestimate, and will probably be much higher, if the AM was trained using similar levels of transcribed data. These findings, summarized in Table 5, suggest that the neural MT supplements can especially aid initial stages of model development.

4. CONCLUSION

In this work, we explored the key challenges associated with using NMT for LM data augmentation in a conversational, code-switched setting. Using a combination of post-editing and domain adaptation techniques, we demonstrated a relative WERR of 7.8% for 180 hours of transcribed data. We examined the performance trajectory along different bootstrapping phases, and observed relative WERR of up to 15.6% with reduced transcription volumes. A further drilldown of WERR by interaction scenarios provided interesting insights into the gains derived from translation as a function of proportion of named entities and relative representation in the transcribed data. This experimental evidence establishes the efficacy of using trans-
Table 3. Relative WERR % by interaction scenarios captured along with the extent of coverage in transcribed collections. Named entity proportion in the utterances is given by NE %. Adaptation contribution % captures the relative contribution of adaptation towards WERR. For e.g., with a 5.75% post-editing WERR, adaptation yields an additional 1.51% WERR towards a combined WERR of 7.26%, i.e. 20.80%.

Coverage (In transcribed collections)	Interaction scenario	Post-editing WERR %	Combined WERR %	Adaptation contribution %	NE%
Low	Books	5.75	7.26	20.80	34.74
	Communication	3.82	5.98	36.12	11.19
	Weather	3.23	6.85	52.84	7.63
	Shopping	7.86	10.84	27.49	52.94
Moderate	Knowledge	6.36	9.54	33.34	31.60
	Video	6.44	8.52	24.41	39.36
	Home Automation	5.68	7.94	22.63	5.81
High	Notifications	4.65	7.06	34.14	5.66
	Music	5.74	7.48	23.26	47.62

Table 4. PPL and relative WERRs (%) with varying floor interpolation weights for the translation component in the 180 hour setup.

Floor weight	Interpolated PPL	WERR %
0.1	50.28	5.78
0.15	51.24	7.04
0.25	52.36	7.86
0.3	53.37	7.49
0.4	56.34	6.58

Table 5. Relative WERRs (%) with varying levels of in-domain transcribed data.

Transcribed Volume	WERR %
10K	15.65
20K	13.18
50K	9.42
100K	8.98
200K	7.86

5. REFERENCES

[1] Arseniy Gorin, Rasa Lileikyt, Guangpu Huang, Lori Lamel, Jean-Luc Gauvain, and Antoine Laurent, “Language model data augmentation for keyword spotting in low-resourced training conditions,” in *Interspeech 2016*, 2016, pp. 775–779.

[2] Saurabh Garg, Tanmay Parekh, and Preethi Jyothi, “Code-switched language models using dual RNNs and same-source pretraining,” in *Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing*, Brussels, Belgium, Oct.-Nov. 2018, pp. 3078–3083, Association for Computational Linguistics.

[3] Kyunghyun Cho, Bart van Merriënboer, Dzmitry Bahdanau, and Yoshua Bengio, “On the properties of neural machine translation: Encoder–decoder approaches,” in *Proceedings of SSST-8, Eighth Workshop on Syntax, Semantics and Structure in Statistical Translation*, Doha, Qatar, Oct. 2014, pp. 103–111, Association for Computational Linguistics.

[4] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio, “Neural machine translation by jointly learning to align and translate,” *CoRR*, vol. abs/1409.0473, 2015.

[5] Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V. Le, Mohammad Norouzi, Wolfgang Macherey, Maxim Krikun, Yuan Cao, Qin Gao, Klaus Macherey, Jeff Klingner, Apurva Shah, Melvin Johnson, Xiaobing Liu, ukasz Kaiser, Stephan Gouws, Yoshikiyo Kato, Taku Kudo, Hitode Kazawa, Keith Stevens, George Kurian, Nishant Patil, Wei Wang, Cliff Young, Jason Smith, Jason Riesa, Alex Rudnick, Oriol Vinyals, Greg Corrado, Macduff Hughes, and Jeffrey Dean, “Google’s neural machine translation system: Bridging the gap between human and machine translation,” *CoRR*, vol. abs/1609.08144, 2016.

[6] Philipp Koehn, Franz Josef Och, and Daniel Marcu, “Statistical phrase-based translation,” in *Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1*, Stroudsburg, PA, USA, 2003, NAACL ’03, pp. 48–54, Association for Computational Linguistics.

[7] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin, “Attention is all you need,” *CoRR*, vol. abs/1706.03762, 2017.

[8] ArnarThor Jensson, Koji Iwano, and Sadaoki Furui, “Language model adaptation using machine-translated text for resource-deficient languages,” *EURASIP Journal on Audio, Speech, and Music Processing*, vol. 2008, no. 1, pp. 573832, Jan 2009.

[9] Thang Vu, Daw-Cheng Lyu, Jochen Weiner, Dominic Telaar, Tim Schlippe, Fabian Blächer, Eng Chng, Tanja Schultz, and Haizhou Li, “A first speech recognition system for mandarin-english code-switch conversational speech,” in *ICASSP*, 03 2012.

[10] Chenhui Chu and Rui Wang, “A survey of domain adaptation for neural machine translation,” *CoRR*, vol. abs/1806.00258, 2018.
[11] Horia Cucu, Andi Buzo, Laurent Besacier, and Corneliu Burileanu, “Smt-based asr domain adaptation methods for under-resourced languages: Application to romanian,” Speech Commun., vol. 56, pp. 195–212, Jan. 2014.

[12] Judith Gaspers, Penny Karanasou, and Rajen Chatterjee, “Selecting machine-translated data for quick bootstrapping of a natural language understanding system,” CoRR, vol. abs/1805.09119, 2018.

[13] Rui Wang, Andrew Finch, Masao Utiyama, and Eiichiro Sumita, “Sentence embedding for neural machine translation domain adaptation,” in Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), Vancouver, Canada, July 2017, pp. 560–566, Association for Computational Linguistics.

[14] Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu, “Bleu: A method for automatic evaluation of machine translation,” in Proceedings of the 40th Annual Meeting on Association for Computational Linguistics, Stroudsburg, PA, USA, 2002, ACL ’02, pp. 311–318, Association for Computational Linguistics.

[15] Tamer Alkhouli, Gabriel Bretschnier, and Hermann Ney, “On the alignment problem in multi-head attention-based neural machine translation,” in WMT, 2018.

[16] Rico Sennrich, Barry Haddow, and Alexandra Birch, “Improving neural machine translation models with monolingual data,” in Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), Berlin, Germany, Aug. 2016, pp. 86–96, Association for Computational Linguistics.

[17] aglar Gülehr, Orhan Firat, Kelvin Xu, Kyunghyun Cho, Loïc Barrault, Huei-Chi Lin, Fethi Bougares, Holger Schwenk, and Yoshua Bengio, “On using monolingual corpora in neural machine translation,” CoRR, vol. abs/1503.03535, 2015.

[18] Jonas Mueller and Aditya Thyagarajan, “Siamese recurrent architectures for learning sentence similarity,” in Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence. 2016, AAAI’16, pp. 2786–2792, AAAI Press.

[19] Mikel Artetxe and Holger Schwenk, “Massively multilingual sentence embeddings for zero-shot cross-lingual transfer and beyond,” CoRR, vol. abs/1812.10464, 2018.

[20] Piotr Bojanowski, Edouard Grave, Armand Joulin, and Tomas Mikolov, “Enriching word vectors with subword information,” Transactions of the Association for Computational Linguistics, vol. 5, pp. 135–146, 2017.