A Novel Simple Miniaturization Technique for Microstrip Couplers

Denis A. Letavin, Yuriy E. Mitelman, Victor A. Chechetkin
Ural Federal University, Ekaterinburg, Russia: v.a.chechetkin@urfu.ru

Abstract. This paper analyzes the new compact design of couplers based on the use of microstrip lowpass filters. The proposed design achieves significant reduction in coupler size while obtaining the same characteristics as of the conventional coupler. Prototype of the coupler with the central frequency of 1 GHz was produced on the substrate with dielectric permittivity of 4.4. The experimental results showed good agreement with numerical simulations. The size of the rat-race coupler was reduced by 83.7%.

1. Introduction
There are various papers covering different RF devices miniaturization methods. This trend in modern RF design is primarily due to the increasing complexity of microwave circuits and increasing number of handheld devices, which require all-in-one small integral circuit solutions. Except reducing the size of devices, it is important to maintain their characteristics. In this paper novel miniaturization technique of rat-race coupler is presented. Due to their useful properties the rat-race couplers are widely used in various areas of RF design. Let us consider the rectangular design with spacing between ports 1-2, 2-3, 1-4 a quarter wavelength and between 3-4 – three quarter wavelengths. The overall length of all the lines is equal to 1.5 wavelengths. This arrangement can provide both in phase excitation and antiphase excitation of output ports depending on the selection of the input port. Various methods of miniaturization could be applied to the couplers: slow-wave structures with meandered lines and open-circuited stubs [1], artificial transmission lines composed of microstrip quasi-lumped elements and their discontinuities [2], lines with asymmetrical T-structures [3], periodically loaded transmission lines [4], space-filling curves [5] and stepped-impedance ring resonators [6], shunt-stub artificial transmission lines [7], novel dual transmission lines [8]. In [9] surrogate modeling using auxiliary circuit models and space mapping is investigated. Comparison between different miniaturization methods is shown in Table 1.

Miniaturization method	Comparative size	Central frequency, GHz
Conventional microstrip line	100%	-
[8]	21.87%	2.5

Table 1. Comparison of different miniaturization methods
However, these methods of reducing the size do not allow maintaining the characteristics of the device at the level of the conventional one. Moreover, they are far from intuitive use, mostly complicated in the design procedure and fabrication. The proposed method makes it possible to obtain significant size reduction while maintaining the characteristics. This method is based on replacing each line with a sequence of high- and low-impedance lines, acting as a lowpass filter with the same phase response as the replaced line. Proposed technique was implemented for miniaturization of the quadrature-3dB couplers and the results are presented in [10].

![Figure 1. Structure of the rat-race coupler.](image)

Table 1. Proposed method compared to previous studies

Reference	Impedance Reduction	ISB
[6]	21.5 %	2.5
Proposed method	16.3%	1
[5]	12.6 %	2.4
[9]	5.7 %	1
[1]	4.87%	0.9
[7]	3.9 %	0.9
[4]	32 %	1.8
[2]	9 %	0.9
[3]	5 %	0.9

2. **Conclusion Design procedure**

First, confirm that you have the correct template for your paper size. This template has been tailored for output on the A4 paper size. In this paper microstrip rat-race coupler design is investigated. Its structure is shown in Fig. 1. The central frequency of the designed coupler is 1 GHz and the substrate used is 1 mm height with dielectric permittivity of 4.4 and $\tan\delta = 0.02$.

The aim of this research was to reduce the size of the coupler while maintaining its characteristics. For further comparison, conventional design of coupler was produced. The rat-race coupler with the central frequency of 1 GHz, has an area of 3951 mm2 and the operating frequency band based on the isolation level of –20 dB, is 328 MHz (from 831 to 1152 MHz). Dimensions of the layout are determined by the physical size of the quarter wavelength sections. It can be concluded that the rat-race coupler does not use the free space in the inner area of the layout. The free space inside the device occupies more than 92% of the whole area. The first step in miniaturization is to synthesize microstrip
lowpass filter with the wave impedance of 70 Ohms and a phase response of 90° at the operating frequency of the device.

The layout and equivalent circuit for the LPF are presented in Fig. 2. It should also be noted that to achieve the desired phase response and compact size it is required to correctly select the order of the filter to find compromise between its size and insertion loss in the working band. Usually the cutoff frequency of the LPF is much higher than the central frequency of the working band, and the higher the order of the designed filter the higher its cutoff frequency.

![Figure 2. The layout and equivalent circuit for the 3rd order LPF.](image)

After the filters are designed, they are combined into one circuit. Further size reduction is achieved by changing the shape of high impedance lines (while keeping their electrical and physical lengths the same), and moving low impedance segments to the inner area. Due to this further reduction of physical size of the device can be achieved. As a result, the layout of the miniaturized rat-race coupler is obtained, and shown in comparison to conventional design in Fig. 3.

![Figure 3. Layouts of the conventional and miniaturized rat-race couplers (miniaturized by 83.7%).](image)

This design consists of lowpass filters configured to obtain specified input and output impedance and providing desired phase response at the central frequency, it has dimensions of 32.7x19.7x1 mm that is 83.7% less than the conventional design. Further reduction of the size of the coupler is complicated by the appearance of parasitic capacitance in close proximity of adjacent conductive elements of lowpass filters. Fig. 4 shows the dependencies of the S-parameters versus frequency of the coupler. The operating band in terms of the isolation level of –20 dB is 271.4 MHz. Return loss of input
port is –17 dB at the central frequency. The maximum level of return loss at the central frequency was not achieved because the electrical lengths of microstrip lines between the ports are not exactly equal to 90° and 270°. The imbalance of power split ratios is 0.125 dB. The phase difference between the in-phase output ports is about 2° at the central frequency (Fig. 5).

![Figure 4](image1.png) ![Figure 5](image2.png)

Figure 4. The simulation results of the miniaturized rat-race coupler. **Figure 5.** Graph of S-Parameters versus Frequency. The phase difference between the in-phase output ports.

Prototype

This design is feasible and workable as it provides equal power splitting between output ports in a wide frequency range. To obtain experimental results the prototype of the proposed design was produced (Fig. 6) and measured using a vector network analyzer R&S ZVA24 operating in the frequency range from 100 MHz to 24 GHz and for accurate results calibration kit ZV-Z52 was used.

![Figure 6](image3.png) ![Figure 7](image4.png)

Figure 6. Miniaturized coupler **Figure 7.** The measured characteristics of the miniaturized rat-race coupler.
3. Conclusion

In this paper the method of miniaturization of rat-race coupler has been described and investigated. Miniaturization of the coupler is based on replacing the microstrip lines with their equivalents in the form of LPFs with the same phase responses at the central frequency. To verify efficiency of the proposed technique, microstrip prototype with the central frequency of 1 GHz was simulated and manufactured. At sufficiently significant miniaturization of the rat-race coupler by 83.7% the characteristics of the device with minor changes were kept. The operating frequency band by the level of isolation of –20 dB was reduced by only about 15%. It shows the efficiency of the method for broadband devices – the ability to reduce the size in a wide band while maintaining the same characteristics. This method of miniaturization has shown its efficiency and has the advantages such as high speed of design, simplicity and efficiency of miniaturization.

4. Acknowledgements

Author are grateful for the simulation software NI-AWR Design Environment provided by the National Instruments Company. The research was executed by the grant of the Ministry of education and science of the Russian Federation (project № 8.2538.2017/4.6). The research was performed on equipment of the Urals Federal University common use center.

References

[1] Wei-Shin Chang and Chi-Yang Chang, “A high slow-wave factor microstrip structure with simple design formulas and its application to microwave circuit design,” IEEE Trans. Microw. Theory Tech., vol. 60, no. 11, pp. 3376-3383, Nov. 2012.
[2] Chao-Wei Wang, Tzyh-Ghuang Ma and Chang-Fa Yang, “A new planar artificial transmission line and its applications to a miniaturized butler matrix,” IEEE Trans. Microw. Theory Tech., vol. 55, no. 12, pp. 2792-2801, Dec. 2007.
[3] Chao-Hsiung Tseng and Chih-Lin Chang, “A rigorous design methodology for compact planar branch-line and rat-race couplers with asymmetrical T-structure,” IEEE Trans. Microw. Theory Tech., vol. 60, no. 7, pp. 2085-2092, July 2012.
[4] Kimberley W. Eccleston and Sebastian H. M., “Compact planar microstripline branch-line and rat-race couplers,” IEEE Trans. Microw. Theory Tech., vol. 51, no. 10, pp. 2119-2125, Oct. 2003.
[5] Hani Ghali and Tarek A. Moselhy “Miniaturized fractal rat-race, branch-line, and coupled-line hybrids,” IEEE Trans. Microw. Theory Tech., vol. 52, no. 11, pp. 2513-2520, Nov. 2004.
[6] Jen-Tsai Kuo, Juo-Shiuan Wu and Yi-ChyunChiou, “Miniaturized rat race coupler with suppression of spurious passband,” IEEE Microw. Wireless Compon. Lett., vol. 17, no. 1, pp. 46-48, Jan. 2007.
[7] Chao-Hsiung Tseng and Hsiang-Ju Chen, “Compact rat-race coupler using shunt-stub-based artificial transmission lines,” IEEE Microw. Wireless Compon. Lett., vol. 18, no. 11, pp. 734-736, Nov. 2008.
[8] Po-Hsiang Tu and Chao-Hsiung Tseng, “Design of a compact rat-race coupler using dual transmission lines,” Proceedings of Asia-Pacific Microwave conference, pp. 1224-1227, 2010.

[9] S. Koziel, A. Bekasiewicz and P. Kurgan, “Rapid multi-objective simulation-driven design of compact microwave circuits,” IEEE Microw. Wireless Compon. Lett., vol. 25, no. 5, pp. 277-279, May 2015.

[10] Letavin, D.A., Mitelman, Y.E., Chechetkin, V.A., “Investigation of the frequency influence on the miniaturization efficiency of microstrip devices using LPFs”, 2016 10th European Conference on Antennas and Propagation, EuCAP 2016, DOI: 10.1109/EuCAP.2016.7481614.