Emergence of Zoonotic Diseases in India: A Systematic Review

Ramesh C Dhiman1 and Aakanksha Tiwari2

1ICMR-National Institute of Malaria Research, Dwarka Sector 8, New Delhi 110077, India
2Institute of Environment and Sustainable Development, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India

Corresponding author: Ramesh C Dhiman, ICMR-National Institute of Malaria Research, Dwarka Sector 8, New Delhi 110077, India, Tel: +911125307404; E-mail: r.c.dhiman@gmail.com

Received Date: Aug 13, 2018; Accepted Date: Aug 23, 2018; Published Date: Aug 31, 2018
Copyright: © 2018 Dhiman RC, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Abstract

Introduction: Zoonotic diseases are the diseases originating from animals wherein humans acquire infectious diseases from zoonotic reservoirs, either naturally or through zoonotic vectors. The newly emerged or existing zoonotic diseases like Kyasanur Forest Disease, Scrub typhus and Japanese Encephalitis are frequently expanding to non-endemic areas. Nipah Virus was first encountered in West Bengal (India) in 2001 and recently has been reported from Kerala in May 2018.

Method: Multiple databases like PubMed, Google Scholar, Research Gate, Embase and Web of Science were searched to collect scientific research articles on emerging and reemerging Zoonoses in India using various keywords like Emerging Zoonoses, Reemerging Zoonoses, High-priority Zoonoses, Neglected Zoonoses, natural Reservoirs (ZR) either naturally or through zoonotic vectors. The newly emerged or existing zoonotic diseases like Kyasanur Forest Disease, Scrub typhus and Japanese Encephalitisis are frequently expanding to non-endemic areas. Nipah Virus was first encountered in West Bengal (India) in 2001 and recently has been reported from Kerala in May 2018.

Result: On the basis of this review, the ‘knocking’ property of high-priority Zoonoses and neglected Zoonoses in India is compared through a line graph. Emphasis is given on the increasing annual burden of Zoonoses on public health in India.

Conclusion: The impacts of various factors such as Animal farming, Urbanization, Poverty, Climate change and Adaptation of pathogens on emergence of Zoonoses are discussed in this paper. Public health sectors of India need to be pro-active by emphasizing on effective periodic surveillance, pre-assessment or forecasting of zoonotic diseases and capacity building of stakeholders.

Keywords: Emerging Zoonoses; Reemerging Zoonoses; High-priority Zoonoses; Neglected Zoonoses; Annual disease burden; Public health

Abbreviations

A&N: Andaman and Nicobar; AP: Andhra Pradesh; AR: Arunachal Pradesh; AS: Assam; DL: Delhi; GJ: Gujarat; GO: Goa; HY: Haryana; J&K: Jammu and Kashmir; KA: Karnataka; KE: Kerala; MH: Maharashtra; ML: Meghalaya; MN: Manipur; NL: Nagaland; OR: Orissa; PC: Pondicherry; PJ: Punjab; RJ: Rajasthan; SK: Sikkim; TN: Tamil Nadu; UK: Uttarakhand; UP: Uttar Pradesh; WB: West Bengal

Introduction

Zoonotic Diseases (ZD) are defined as the diseases originating from animals wherein humans acquire infectious diseases from Zoonotic Reservoirs (ZR) either naturally or through zoonotic vectors. The emerging ZD can be newly evolved diseases mostly particularly in the developing nations, or may have been occurred in the past and are now expanding rapidly to new geographic, host or vector ranges [1] due to their changing ecology [2], such as Scrub typhus, Cutaneous Leishmaniasis and Japanese Encephalitis. ZD are major public health issue in several countries of the world and India is among the top geographical hotspots for such diseases [3]. Poor personal hygienic practices, improper farming practices, lack of awareness, poor diagnostic facilities, under reporting system, poverty and lack of medical facilities, all this causes high burden of morbidity and mortality, particularly in infants and children [4] living in rural parts of developing countries. In India, incidence and prevalence of ZD like Plague, Rabies and Anthrax have affected human health throughout times. In recent past, India has seen emergence and reemergence of high priority and neglected Zoonoses. As a case of point a highly infectious disease called Nipah Virus was first emerged in West Bengal (India) in 2001 and recently it has been reported from Kerala in May 2018.

Emergence of new zoonotic pathogens have caused heavy toll of life in the areas where locals doesn't have natural or artificial (from vaccination) immune response for them [5]. High priority ZD like Brucellosis have been emerged from Haryana to Goa; Japanese Encephalitis from Tamil Nadu to Uttar Pradesh (Gorakhpur); Leptospirosis from Maharashtra to Punjab; Listeriosis from Maharashtra to Delhi, Jammu and Kashmir, and Tamil Nadu, whereas neglected ZD like Cutaneous Leishmaniasis had been emerged from Delhi to Rajasthan to Jammu and Kashmir; Kyasanur Forest Disease from Karnataka to Kerala, Tamil Nadu and Goa; Nipah Virus from West Bengal to Kerala; Scrub typhus from Himachal Pradesh to Tamil Nadu. Extension of these ZD to non-endemic areas has increased the complexity of their forecast. According to World Health Organization.
(WHO) [6], "there is a coexistence of humans in a complex, interdependent relationship with the companion, production, and wild animals we depend on for our food, livelihoods, and well-being, as well as with the environments we live and work in together". The increasing annual burden of Zoonoses on public health in India can be prevented only by effective periodic surveillance, pre-assessment or forecasting of zoonotic diseases and capacity building.

This paper provides a systematic review of the emergence of ZD in India, their 'knocking' trend for 68 years (1951-2018), negative impact on public health and the way forward.

Methodology

During June 2018, a systematic search was conducted to collect scientific research articles on Emerging and Reemerging Zoonoses in India through Pub Med, Google Scholar, Research Gate, Global Health, Embase and Web of Science using key-words like Emerging Zoonoses, Reemerging Zoonoses, High-priority Zoonoses, neglected Zoonoses, natural Zoonoses and occupational Zoonoses in India. Epidemiological profile and geographical risk map for emergence and reemergence of four high-priority Zoonoses and four neglected Zoonoses from 1951 to 2018 (68 years) was done in context of India. To further understand the 'knocking' trend of these diseases, graphs were generated. We also summarized the location of studies, to examine whether some areas were over- or under-represented in the literature.

Literature search

The review was carried out according to a proposal and analytical plan. A systematic search of all the published literatures was initiated by using key word like, high-priority Zoonoses, neglected Zoonoses, emerging Zoonoses and reemerging Zoonoses in context of India. Abstract of all the relevant records were studied carefully, to identify and collect the most suitable research works to be reviewed.

Study inclusion and exclusion criteria

Research reports were assessed for inclusion and exclusion criteria, to choose correct and most relevant studies. Only English-language articles were included. Case reports were excluded. Meta-analyses and reviews were included if they provided a novel analysis of the data from the studies. Reports with information regarding emergence, reemergence and prevalence of ZD in India were included, whereas reports related to animal to animal infection, pathological and serological studies were excluded. Figure 1 is a flowchart representing the study inclusion and exclusion for this review paper.

Data extraction and analysis

Data extracted from various research articles regarding the year, geographical hotspot, emergence and prevalence of selected high-priority Zoonoses and neglected Zoonoses in India was used to create their epidemiological profile. On the basis of these profiles, a geographical risk map was designed for the emerging Zoonoses and reemerging Zoonoses during the period of 68 years. Graphs were designed in Microsoft Word to analyze the trend for reemergence of selected high-priority Zoonoses and neglected Zoonoses in India.

Results and Discussion

The highest peak of ‘knocking’ of high-priority Zoonoses was for 5 years in case of Japanese Encephalitis and Leptospirosis during 1981-1990, again for Leptospirosis during 1991-2000, and that of neglected Zoonoses was for 8 years in case of ST during 2001-2010. For the same years it was also found that there was extremely high prevalence of high-priority Zoonoses and neglected Zoonoses in non-endemic areas of India. Figure 2 represents the geographical risk map for emergence and reemergence of high-priority Zoonoses and neglected Zoonoses in India, since 1951 (68 years*). Figures 3 and 4 are graphical representation of trend of ‘knocking’ of high-priority and neglected Zoonoses in India respectively.

High Priority Zoonoses in India - Diseases in this category are considered significant as they can cause high disease burden and mortality among Indian population. Table 1 represents four HPZ in India as reported in literature [3], which ranked them through composite index (CI).
Zoonotic Diseases	Major factors for emergence/reemergence	1951-1960	1961-1970	1971-1980	1981-1990	1991-2000	2001-2010	2011-2018
Brucellosis (BR) | Dairy products [8] Animal trading [9] Common laboratory-acquired infection [10] | Studies/Cases not found | 1968 HY [11] | 1971 (Vellore) TN [12] | 1986 GJ [13], 1988 KA [14] | Studies/Cases not found | 2007 (Bikaner) RJ [15] | 2014 GO [16]
Japanese Encephalitis (JE) | Bird migration, certain irrigation projects, animal smuggling, and global warming increases its prevalence [17] | 1951-1960 | 1961-1970 | 1971-1980 | 1981-1990 | 1991-2000 | 2001-2010 | 2011-2018
Leptospirosis (LE) | Areas with poor hygiene, rodents and stagnant dirty water as well as drier parts of country [27] | 1960 (Mumbai) MH [28] | 1966 (Kaira) PJ [29], 1967 (Mumbai) MH [30] | Studies/Cases not found | 1983 [31], 1984, 1985 [32], 1988 [33], 1990 (Madras) TN [34] | 1991 [34], 1998 [35] (Chennai) TN [36], 1993 [37] (North Andaman) A&N [38], 1995 PC [39] | 2004 [40] DE UP [41] and (Chennai) TN [42], 2005 (Chandigarh) [43], 2006 [44], 2008 (Ludhiana) PJ [45] | Studies/Cases not found | 2011 TN [55]
Leptospirosis (LE) | Domestically acquired food borne illness which results in death [45] | Studies/Cases not found | 1966 (Mumbai) MH [46] | 1973 and 1975 DL [47,48] | 1981 (Mumbai) MH [49] | 1997 [50] and 1998 DL [51] | 2003 (Chandigarh) PJ [52], 2010 HP (Kashmir) J&K [53], 2011 TN [54] | 2011 TN [55]

Table 1: Epidemiological profile of high-priority Zoonoses in India since, 1951.

Neglected Zoonoses in India-Such diseases are relatively rare in occurrence and thus were not considered significant for making policies or specific strategies to control them. Table 2 represents the Epidemiological profile of four common neglected Zoonoses occurring in India.
Table 2: Epidemiological profile of neglected Zoonoses in India since, 1951.

Year	Location
2001	Siliguri/WB
2007	Nadia/WB
2018	KE/WB
2003	SK, HP, Darjeeling/WB, 2004
2005	HP, NL, 2006 HP, MN, 2008 UK, 2009 ML, 2010 PC, AS/HP, NL, UK, 2012 AR, TN, UK, WB, 2013 DE, (Vellore) TN, AP, OD
2006	HP, MN, 2008 UK, 2009 ML, 2010 PC, AS/HP, NL, UK, 2012 AR, TN, AP, OD
2008	HP, UK, 2009 ML, 2010 PC, AS/HP, NL, UK, 2012 AR, TN, AP, OD
2009	ML/HP, UK, 2010 PC, AS/HP, NL, UK, 2012 AR, TN, AP, OD
2010	PC, AS/HP, NL, UK, 2012 AR, TN, AP, OD
2011	HP, KA, NL, UK, 2012 AR, HP, TN, RJ, UK, WB, 2013 DE, (Vellore) TN, AP, OD
2012	HP, TN, RJ, UK, WB, 2013 DE, (Vellore) TN, AP, OD
2013	HP, TN, RJ, UK, WB, 2013 DE, (Vellore) TN, AP, OD
2014	HP, TN, RJ, UK, WB, 2013 DE, (Vellore) TN, AP, OD

Existing diseases coupled with newer emergence have increased the task of researchers, scientists, pathologists and field veterinarians to make India pro-active regarding sudden outbreaks. Continuous or sudden emergence and re-emergence of major public health ZD like Japanese Encephalitis, Leptospirosis, and Kyasanur Forest Disease were found to be highly life threatening due to their lesser known epidemiological features. According to the geographical risk map it was found that the high priority ZD were endemic in UP, DL, MH, GO, TN and PC, whereas they were epidemic to J&K, HP, HR, PJ, RJ, GJ, KA, A&N, AP and WB. Also, the NZ were found endemic to RJ, DL, KA and KE, whereas they were epidemic to J&K, HP, UK, UP, GO.

Figure 2: Geographical risk map for emergence and reemergence of HPZ and NZ in India, since 1951 (68 years*).

Figure 3: Graphical representation of trend of ‘knocking’ of HPZ in India.

Figure 4: Graphical representation of trend of ‘knocking’ of NZ in India.

Citation: Dhiman RC, Tiwari A (2018) Emergence of Zoonotic Diseases in India: A Systematic Review. Med Rep Case Stud 3: 163. doi: 10.4172/2572-5130.1000163
Increased emergence/reemergence of zoonotic agents

India is under the burden of emergence of new pathogens and over-stretched health infrastructure [88]. To increase the immunity of the people against the unknown dangers of future due to re-emergence or ‘knocking’ of zoonotic diseases in the country, there is a need to increase the efficiency of health sectors during outbreaks. There are various factors which are responsible for prevalence of ZD in the different parts of the country as mentioned below.

Occupational risk

Agricultural practices and livestock farming: Being the second most populous country in the world, there is a high demand for food and water in India. The expansion of agriculture or livestock farming is disturbing the natural ecosystem of wild-animal and thus increases the burden of ZD [89] in the population.

Import or export of live animals: A close contact with phylogenetically distant animals may result in evolution of animal pathogens as human pathogens [90]. The perseverance is higher among the livestock which are farmed together [91]. People engaged in such occupation are major sufferers of ZD such as Kyasanur Forest Disease, Brucellosis and Leptospirosis to name a few.

Infection during veterinary treatment/animal based research: The treatment of animals which contains zoonotic virus or bacteria without proper utilization of preventive measures can infect the Vets directly and can cause serious illness or death. Thus, pre-exposure immunization is recommended to people involved in certain high-risk occupations such as laboratory workers dealing with live virus or veterinarians [92].

Working in slaughter houses, tanneries or wool factories: India is endemic for many ZD, especially the southern states due to unprotected livestock population [93]. Risk of zoonotic infections such as anthrax, is higher for the workers in the slaughter houses and during the cleaning or processing of contaminated animal materials at carpet weaving mills, wool mills, dairies and tanneries [94].

Natural migration of animals

Change in ecological conditions due to the destruction of forests alters the epidemiology of disease [2] by the migration of wild-animals towards the human settlements. The human societies in the vicinity of forest or tribes are at higher risk of getting the new pathogens through the ingestion of contaminated food and water by the urine or feces of infected animal.

Deforestation and urban expansion

The socio-economic development of the country by the expansion of road networks, agricultural fields and, intensification of wildlife trade has caused emergence of new pathogens. Nipah Virus is the current example [95], where the fruit bats came out of their natural habitat and started feeding on agricultural produce, causing food borne Zoonoses in Kerala.

Travel and tourism

The containment of disease is difficult nowadays due to availability of better facilities to travel worldwide. ZD like Japanese Encephalitis, Nipah Virus, etc., can infect the non-immunized travelers on their visit to endemic countries. According to the Yellow Book of CDC [81], "India has no risk of yellow fever but Indian government needs a proof of immunization for people arrived from a country with risk of yellow fever".

Climate change and disaster

The increasing temperature in northern India or excessive rainfall in north-eastern part of India due to climate change leads to higher growth of vectors such as mosquitoes [96,97], ticks [98] and Sandflies. Increase in crop and food production after rainfall increases the population of rodents and birds (small ZR near residential areas) and thus increases the chances of water and food borne Zoonoses [96].

Poverty and political conflicts

Shortage of resources in rural and malnourished states like Uttar Pradesh, Rajasthan, Maharashtra, Tamil Nadu, Himachal Pradesh, Uttarakhand and West Bengal, often generates civil conflicts, war and political instability. It weakens the healthcare infrastructures and upsurges the infectious diseases and thus they are considered as hotspots for ‘knocking’ of Zoonoses. Increase in vulnerability of people living in poverty affected areas due to limited access to quality health, safe and nutritious food and adequate housing is very well discussed by Seimenis A [99].

Pathogen adaptation

The increasing mortality and morbidity due to zoonosis and anthroponosis represents that the host-species barrier have already been crossed by the pathogens. Thus, expansions of Zoonoses to various non-endemic areas have made surveillance, mapping and forecasting of ZD a major challenge. Phylogenetically related hosts (anthroponosis) have more frequent adaptation and transmissions of pathogens in them [100,101].

Conclusion

On the basis of this review regarding emerging ZD in India since 1951, it is concluded that new ZD like Cutaneous Leishmaniasis, Japanese Encephalitis, Leptospirosis and Scrub typhus are spreading to a much wider areas at an alarming rate, which have caused greater annual disease burden on large population of India. Re-emergence of neglected Zoonoses is found to be rarer than high-priority Zoonoses during these 68 years, but the sudden outbreak of these diseases of less preference after a long gap (e.g., Kyasanur Forest Disease) can be fatal due to unavailability of strategies and policies to fight against them. Knowledge and practice of preventive measures is essential for locals, patients and the health workers during the outbreaks to reduce the prevalence of these diseases. Immunization before travelling to other countries can prevent spread of ZD to non-endemic area. To avoid the worst situations like pandemic, the Health ministry and public health stakeholders in India should strengthen the public health surveillance systems and providence of quick medical facilities to control the rate of mortality and morbidity during outbreaks.

Acknowledgement

AT would like to acknowledge the contribution of whole research team in the Environmental Epidemiology division and in particular to Dr. R.C. Dhiman at the National Institute for Malaria Research (NIMR) as they were a great help in suggesting additional studies for inclusion in the review and were always supportive regarding all my
quarries during my literature review work. I extend my thanks to SRFP organized by three highly prestigious science academies of India (IASC, INSA and NASI), for this great opportunity and funding.

Author Contribution

RCD, planned, created the framework and reviewed the paper: RCD; AT, analyzed the available data and wrote the paper.

References

1. Taylor LH, Latham SM, Woolhouse ME (2001) Risk factors for human disease emergence. Philos Trans R Soc Lond B Biol Sci 356: 983-989.
2. Dhiman RC (2014) Emerging vector-borne Zoonoses : eco-epidemiology and Public Health implications in India. Front Public Health 2: 168.
3. Arun K, Dandapat P, Jacob S, Francis J (2014) Ranking of zoonotic
4. Koshi G, Eapen M, Singh G (1971) Brucellosis - an
5. Dhillon GP, Raina VK (2008) Epidemiology of Japanese encephalitis in
6. Bhadravaj M, Suri JC, Naranin B, Arora RR, Lal P (1981) Serological study of Japanese encephalitis outbreak in Deoria District of Uttar Pradesh. J Commun Dis 13: 96-101.
7. Kanojia PC, Shetty PS, Geervarghese G (2003) A long-term study on vector abundance & seasonal prevalence in relation to the occurrence of Japanese encephalitis in Gorakhpur district, Uttar Pradesh. Indian J Med Res 117: 104-110.
8. Parida M, Dash PK, Tripathi NK, Ambuj, Sannarangaiah S, et al. (2006) Japanese encephalitis outbreak India, 2005. Emerg Infect Dis 12: 1427-1430.
9. Adhya D, Dutta K, Basu A (2013) Japanese encephalitis in India: risk of an epidemic in the National Capital Region. International Health 5: 166-168.
10. Mittal M, Bondre V, Murhekar M, Deval H, Winsley R, et al. (2018) Acute Encephalitis Syndrome in Gorakhpur, Uttar Pradesh, 2016: Clinical and Laboratory Findings. Pediatr Infect Dis J.
11. Sethi S, Sharma N, Kakkar N, Taneja J, Chatterjee SS, et al. (2010) Increasing Trends of Leptospirosis in Northern India: A Clinico- Epidemiological Study. PLoS Negl Trop Dis 4: e579.
12. Dalal PM (1960) Leptospirosis in Bombay city (report of 5 cases). Indian J Med Sci 14: 295-301.
13. Joseph KM, Kalra SL (1966) Leptospirosis in India. Ind J Med Res 54: 611-614.
14. Bhatnagar RK, Sant MV, Jhala HL (1967) Prevalence of Leptospirosis in Bombay, studies in man and Animals. Indian J Path Bact 10: 324-331.
15. Ratnam S, Sundaraj T, Thyagarajan SP, Rao RS, Madanagopalan N, et al. (1983) Serological evidence of leptospirosis in jaundice and pyrexia of unknown origin. Indian J Med Res 77: 427-430.
16. Muthuselvapathi MA, Shivakumar S (1987) Acute renal failure due to leptospirosis. JAPI 35: 631-633.
17. Venkataraman KS, Ramakrishna J, Baghavan N (1991) Human Leptospirosis recent study in Madras, India. Trans Roy Soc Trop Med and Hyg 85: 304.
18. Muthuselvapathi MA, Shivakumar S, Suguna R, Jayakumar M, Vijayakumar R, et al. (1995) Leptospirosis in Madras - A clinical and serological study. J Assoc Physicians India 43: 456-458.
19. Saravanan R, Rajendran P, Thyagarajan SP (1998) Isolation of leptospira Javanica from urine sample of an acute renal failure case in Chennai: India. Ind J of Med Microbiol 16: 61-63.
20. Ratnam S, Everard COR, Alex JC, Suresh B, Thangaraju P, et al. (1993) Prevalence of Leptospiiral agglutinins among conservancy workers in Madras City, India. J Trop End and Hyg 1314-1321.
21. Sehgal SC, Murhekar MV, Sugunan AP (1995) Outbreak of Leptospirosis with pulmonary involvement in North Andaman. Indian J Med Res 102: 9-12.
22. Chiu KM, Rathinam R, Namperumalsamy P, Dean D (1998) Identification of leptospira species in the pathogenesis of uveitis and determination of clinical ocular characteristics in South India. J of Infect Dis 173: 1334-1321.
23. Prabakhar PK, Harish BN, Rao RS (1995) Seroprevalence of leptospirosis among febrile and jaundice patients. Indian J of Med Micro 13: 189-191.
24. Gupta N, Rao RS, Bhalla P, Agarwal SK (2004) Seroreivalence of leptospirosis in Delhi using indirect haemagglutination assay. Indian J Med Microbiol 22: 134-135.
25. Manocha H, Ghoshal U, Singh SK, Kishore J, Ayyagari A (2004) Frequency of lepotospirosis in patients of acute febrile illness in Uttar Pradesh. J Assoc Physicians India 52: 623-625.
26. Sehgal SC (2006) Epidemiological patterns of leptospirosis. Indian J Med Microbiol 24: 310-311.
96. Martin V, Chevalier V, Ceccato P, Anyamba A, De Simone L, et al. (2008) The impact of climate change on the epidemiology and control of Rift Valley Fever. Rev Sci Tech 27: 413-426.

97. Reiter P (2008) Climate change and mosquito-borne disease: knowing the horse before hitching the cart. Rev Sci Tech 27: 383-398.

98. Brownstein JS, Holford TR, Fish D (2005) Effect of climate change on Lyme disease risk in North America. Ecohealth 2: 38-46.

99. Galvani AP (2004) Emerging Infections: What Have We Learned from SARS? Emerg Infect Dis 10: 1351-1352.

100. Davies TJ, Pedersen AB (2008) Phylogeny and geography predict pathogen community similarity in wild primates and humans. Proc Biol Sci 275: 1695-1701.

101. Holmes EC (2008) Evolutionary history and phylogeography of human viruses. Annu Rev Microbiol 62: 307-328.