Developmental stage-specific gene expression profiling for a medicinal fungus
Cordyceps militaris

Chenghui Xiong, Yongliang Xia, Peng Zheng, Shaohua Shi and Chengshu Wang*

Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai 200032, China

(Received 11 January 2010; final version received 3 February 2010)

The caterpillar fungus Cordyceps militaris is a well-known traditional Chinese medicine that has been shown to have immunostimulatory and anticancer activities. Molecular and genetic studies of Cordyceps spp. are still limited. In this study, we sequenced >5000 clones from four cDNA libraries representing different asexual and sexual developmental stages of C. militaris. The resulting 1341 unigenes were assembled into 454 contigs and 887 singletons. Transcriptional differences were considerable with only 2.1% of unigenes being detected in all libraries. Gene ontology mapping revealed divergent transcriptional patterns among the libraries. Thus, the fungus differentially upregulated more genes for cell metabolism, energy metabolism and stress responses during asexual compared to sexual development. In particular, the transcriptional profiles were found to be different between fruit-bodies produced on rice medium and silkworm pupae. However, both libraries were enriched in transcripts for cell wall structures, i.e. 38.72 and 26.35% of unigenes transcribed by rice medium and pupae induced fruit-bodies, respectively. This is consistent with the morphological changes associated with sexual development. Our data will provide a starting point for future molecular studies of this promising resource of medicinal products. Further study with high-throughput sequencing techniques is still required for whole-genome transcriptome analysis of this fungus.

Keywords: Cordyceps militaris; expressed sequence tag; developmental control; fruit-body; sexuality

Introduction

The fungal pathogens of caterpillars, Cordyceps militaris and C. sinensis, are well known traditional Chinese medicines (TCMs) with immunostimulatory and anti-cancer activities resulting from an array of active metabolites, e.g. the deoxyadenosine analogue cordycepin, cordycepic acid and polysaccharides (Ng and Wang, 2005; Xiao and Zhong, 2007; Paterson, 2008; Cheung et al., 2009; Zhou et al., 2009). The annual market for C. militaris- and C. sinensis-related products has been growing steadily, especially in Asian countries (Li et al., 2006). A combination of fungal stromata and mycosed insect is the “natural” medicinal product of Cordyceps spp. However, most commercial products are mycelial powders of C. militaris or C. sinensis produced by liquid fermentation or fruiting bodies of C. militaris produced on artificial media. Even though growth conditions in artificial media are completely different from those in insecta, these products are usually claimed to be substantially similar to those of naturally harvested Cordyceps in terms of their contents of cordycepin, cordycepic acid, polysaccharides, ergosterol and mannitol (Li et al., 2006). Nevertheless, most consumers remain unconvinced by these claims and prefer the natural products. Both the natural and artificially grown fungi are believed to have many undetermined compounds with pharmacological properties. To date molecular studies on Cordyceps have been largely limited to obtaining sequences for phylogenetic trees, and analysis of the genetic resources of this fungus is required to facilitate the exploration of its medicinal potential.

More than 400 species of Cordyceps have been isolated from different insect hosts (Sung et al., 2007). Apart from their medicinal implications, Cordyceps taxa also play important roles as natural regulators of insect populations. For example, in some years in Japan C. militaris infects more than 90% of the overwintering pupae of beech caterpillar, Syntipistis punctatella (Sato et al., 2002). The anamorphs of Cordyceps spp., include well known insect biocontrol fungi such as Beauveria spp., Metarhizium spp. and Paecilomyces spp., among others (Li et al., 2001; Huang et al., 2005; Rehner and Buckley, 2005; Wang and St. Leger, 2007; de Faria and Wraight, 2007). Differing from C. sinensis, which does not produce sexual structures outside an insect host (Stone, 2008), C. militaris exhibits asexual and sexual stages in artificial media (e.g. the rice medium) or on the pupae of lepidopteran insects. C. militaris can, therefore, be used as a model to explore the complexities of sexuality in this genus.
The technique of expressed sequence tag (EST) analysis is frequently employed to study fungal development and pathogenicity (e.g. Nugent et al., 2004; Wang et al., 2005; Cho et al., 2006a). In this study, we explored the transcriptomes of *C. militaris* during asexual and sexual development, by constructing four cDNA libraries representing the fungus growing in liquid culture, on solid rice medium before and after the formation of fruit bodies and on silkworm (*Bombyx mori*) pupae (to induce stromata). Gene ontology analysis of more than 5000 sequenced clones indicated that the gene expression patterns were very different between libraries, including that between the transcriptomes of fungal sexual structures produced in *insecta* and in artificial medium.

Methods

Strain and cultural conditions

C. militaris strain Pm36 from the Research Center of Entomopathogenic Fungi (Anhui Agricultural University, Hefei, China) was used in this study. To evaluate gene expression profiles, the fungus was grown in conditions required to induce different developmental stages and the resulting RNA was used for cDNA library constructions. For the first library, designated as the liquid mycelium (LM) library, conidia of Pm36 were inoculated in Sabouraud dextrose broth (SDB; Difco) and incubated for 3 days in a rotary shaker at 170 rpm and 25 °C. The mycelia were harvested, washed twice with sterile distilled water and used for RNA isolation.

For the second library, mycelial inoculum from SDB culture (5 ml) was used to inoculate rice medium (25 g rice plus 40 ml nutrient solution: 1% *Bombyx mori* pupae homogenate, 1% peptone, 1% yeast extract) in canned bottles (10 cm × 16 cm², height × bottom square centimeters). Fungal cultures turned yellowish orange when incubated at 22 °C for 14 days in the dark and then for 6 days with a 16:8-h dark/light cycle. This just precedes formation of stromata. The mycelial mats at this stage were collected for RNA isolation (to construct the rice mycelia, RM library). For the third library, additional rice cultures were continuously incubated at 22 °C for up to 20 days with a 16:8-h dark/light cycle to induce fruit-bodies (perithecia) (Kanauchi and Futatsu, 1999). The fresh fruit-bodies were collected for RNA isolation to construct the rice fruit-body (RF) library. The fourth library was constructed by injecting the silkworm pupae with fungal spores. Briefly, 10 μl of a conidial suspension of Pm36 (5 × 10⁶ spores/ml, 10 μl) was used to inject 5-day-old pupae of *B. mori*, which were then maintained in >95% relative humidity. The fruit bodies were induced under the same light conditions as used for rice medium cultures and the mature stromata used for RNA isolation to generate the fourth library for pupae fruit-body formation (PF library). Microscopic images for different developmental stages were taken using an Olympus B51 microscope equipped with a DP71 CCD camera.

Construction of cDNA libraries and sequencing

Total RNA was extracted using an RNeasy Plant mini kit (Qiagen, Valencia, CA, USA). The cDNA libraries were constructed using a SMART™ cDNA Library construction kit (Clontech, Palo Alto, CA, USA) without normalization, following the manufacturer’s instructions. Individual clones were randomly picked up and the cDNA inserts sequenced from the 5’-end. Vector sequences from each clone were manually removed after analysis with the program VecScreen (http://www.ncbi.nlm.nih.gov/VecScreen/VecScreen.html). All sequences were submitted to GenBank under the accession numbers: GR224073–GR228668. The contigs were assembled using the program CAP3 (Huang and Madan, 1999). The contigs and singletons obtained from four libraries were compared with non-redundant protein databases using BLASTx searches. A hit with an E-value less than 10⁻⁵ was considered to be significant (Anderson and Brass, 1998). Functional categorization was conducted according to our previous study (Wang et al., 2005) as well as by reference against the UniProt Knowledgebase (http://www.uniprot.org/uniprot/). Differences in transcript accumulation between libraries were assessed with the algorithm developed by Audic and Claverie (1997).

Analysis of the relative transcript level using semi-quantitative RT-PCR

To verify differentially expressed genes detected in EST analysis, semi-quantitative reverse transcription PCR (RT-PCR) was conducted for 13 selected genes (Table 2). The amount of 0.5 μg total RNA was used for cDNA synthesis for each sample using the ReverTra Ace-α™ kit (Toyobo, Osaka, Japan) according to the manufacturer’s instructions. PCR amplification was conducted in a 20-μl reaction system with the specific primers for each selected gene (Table 2) and the diluted (10×) cDNA templates. The PCR products (5 μl each) were analyzed on 1.5% agarose gels and the images documented with a UVP EC3 imaging system.

Results

Phenotypic pleomorphism of Cordyceps militaris

Cordyceps militaris demonstrates highly pleomorphic phenotypes when grown under different culture conditions. After growth in nutrient-rich liquid broth (SDB) for 3 days, cultures became cloudy as bar-shaped blastospores budded off from the tips of branched mycelia (Figure 1A). When grown on rice medium for up to 3 weeks, i.e. before the formation of stromata, fungal cultures produced fluffy mycelia and turned yellowish orange with the production
of round to ovoid conidia (Figure 1B and C). About 50 days post-inoculation of the fungus on rice medium or silkworm pupae, mature fruit bodies (ca. 3–5 cm) were formed with protruding spindle or pear-shaped perithecia (Figure 1D and 1E), containing asci that discharged long linear ascospores (400–600 μm) (Figure 1F).

Characterization of the EST libraries

To profile gene expression patterns that correlate with different developmental stages of *C. militaris*, four cDNA libraries were constructed and clones were sequenced from each library. In total, 5088 clones were randomly selected from four libraries and 4596 valid sequences were acquired after vector screening analyses. After assembly, 547 unigenes (of 1324 valid sequences) were obtained from the LM library, 447 unigenes (of 860 sequences) from the RM library, 258 unigenes (of 545 sequences) from the RF library and 513 unigenes (of 1867 sequences) from the PF library. The frequency of contig numbers was approximately the same (ca. 10%), while the unigene ratio in the PF library was almost 2-fold less than that of other libraries (Figure 2A). The frequency of total unigenes from the four libraries was 26% (1341 of 4596). The distribution of overlapping unigenes between libraries differed considerably with only 28 of 1341 genes (2.1%) being detected in all four libraries. The LM and PF libraries shared 49 common unigenes, while the LM, RM and RF libraries only shared eight common unigenes. Significantly, only 65 unigenes were shared between fruit-bodies from rice medium and silkworm pupae (Figure 2B).

Gene ontology

To obtain insight into the putative functions of ESTs, the genes were classified into nine functionally associated groups based on gene ontology assignments (Table 1 and Appendix Table 1). There were high frequencies of ESTs with hypothetical or unknown functions in all four libraries, i.e. 47.51% in LM, 48.26% in RM, 39.27% in RF and 52.54% in the PF library. However, less than 0.2 % of the transcripts in the four libraries encoded transposable elements.
elements. Beside these, the transcriptomes varied considerably between libraries, consistent with fungal phenotypic switches at different developmental stages (Figure 1).

During growth in SDB liquid medium or on rice medium preceding formation of fruit-bodies, *C. militaris* transcribed many more \((p < 0.01) \) genes involved in cell metabolism, particularly of lipids, compared to other growth conditions. For example, the transcription of a C-4 sterol methyl oxidase (GenBank accession no. GR225276) was upregulated (11/1324) by the fungus grown in liquid broth (LM library) (Table 1, Appendix Table 1). The fungus also expressed more genes involved in energy metabolism, protein metabolism and stress responses during growth in liquid medium and on rice medium. These included an ATP synthase (GR224260, 19 of 1324 ESTs) for energy synthesis, protein genes for ribosomal subunits (including GR224311 for ribosomal protein subunit L39, 19/1324; GR226008, 22/1324 for L30; GR228503 for L33, 25/1324; GR227381 for S25, 18/1324), DnaJ domain protein (GR225925, 11/1324) and thioredoxins (GR224602, 2/1324) involved in cell stress responses. Before fruit-body differentiation on rice medium, i.e. represented by the RM library, *C. militaris* demonstrated particularly high expression of proteins involved in RNA metabolism, e.g. an RNA-dependent RNA polymerase (GR225730, \(E = 2.0 \times 10^{-42}, 63 \text{ of } 860 \text{ ESTs} \)) and RNA binding proteins (GR226855, 5/860). However, during fruit-body formation either on rice medium or on caterpillar pupae the fungus was characterized by high level expression of homologs \((E < 10^{-15}) \) of cell wall proteins, e.g. GR224929 (284/1867) in the PF library and GR227979 (157/545) in the RF library. Finally, fewer genes putatively involved in cell cycle

Figure 2. Transcriptional profiling of expressed sequence tags. (A) Contig, singleton and unigene distribution in each library. (B) Overlap of unigenes among libraries, the numbers in parenthesis showing library specific unigenes. LM, liquid mycelium library; RM, rice mycelium library; RF, rice medium fruit-body library; PF, pupae fruit-body library.
Reverse transcription PCR analysis of differentially transcribed genes

To verify differential expression of genes identified by EST analysis, 13 genes were selected for semi-quantitative RT-PCR analysis. The results of RT-PCR patterns generally agreed with the transcript accumulation profiles of EST analysis (Table 2, Figure 3). For example, the transcription frequencies of an RNA binding protein (g1 in Figure 3, GR227007, $E = 1.0 \times 10^{-60}$) were detected with the percentiles of 0.15, 0.23, 0.73 and 2.3 in LM, RM, RF and PF libraries, respectively, showing similar PCR band densities using the corresponding cDNA samples as templates (Figure 3). A spermatogenesis associated protein (g3, GR225674, $E = 1.0 \times 10^{-33}$) only detected in RM library (0.12%) and a LysM domain protein (g8, GR226742, $E = 5.0 \times 10^{-27}$) only detected in RF library (0.18%) in EST analysis were similarly verified by RT-PCR. Multiple bands of g5 detected in RT-PCR analysis were consistent with the identifications of cell-wall protein isoforms GR226746, GR226864, GR227054 and GR 227979 (Figure 3; Appendix Table 1).
Due to the increasingly widespread use of caterpillar infecting fungi as alternative medicines, we investigated the transcriptional profiles of *C. militaris* to identify genes associated with different developmental stages and cultural conditions. From four non-normalized libraries, we sequenced more than 5000 clones and obtained 4496 valid sequences. Gene ontology analysis indicated that like many genomic studies, a large number of sequenced clones (>45%) could not be annotated due to either a lack of BLAST matches or because hits were limited to hypothetical fungal sequences (e.g. Nugent et al., 2004; Wang et al., 2005; Cho et al., 2006a,b). Different transcripts were abundant in each of the four *Cordyceps* libraries consistent with previous EST projects that show that fungi express very different transcriptomes when grown in different media (Freimorsier et al., 2003; Wang et al., 2005) or producing different developmental stages (Cho et al., 2006a,b; Bluhm et al., 2008). However, surprisingly few overlapping genes were expressed by the fungus producing sexual structures on artificial rice medium and insect host pupae (Figure 2B), although these structures looked very much alike. Thus, in terms of the transcriptome-determining metabolome (ter Kuile and Westerhoff, 2001), our data would strongly argue that the capsules or tablets made from the liquid-fermented mycelia or artificially cultured fruit-body would not have similar health effects as those made with insect host originated fruit-bodies. In support of this, a previous study has shown that the water-soluble constituents are different between natural and cultured *Cordyceps* (Li et al., 2004).

Similar to the insect pathogenic fungus *Beauveria bassiana* (Bidochka et al., 1987; Cho et al., 2006a), *C. militaris* quickly accumulated biomass in SDB liquid medium and produced large numbers of blastospores or submerged conidia upon nutrient deprivation. *Cordyceps* highly transcribed genes involved in cell metabolism, protein metabolism, energy metabolism and stress responses in SDB (Table 1). A high level of a C-4 sterol methyl oxidase (GR225276) would be required for ergosterol biosynthesis

Genes	Acc. No.	Description (E < 10^{-5})	Transcript frequency (%)	Primers (F, forward; R, reverse)
Gene1	GR227007	RBP (RNA binding protein)	0.15 0.23 0.73 2.30	F: ACTTCACCATGCAACAACCTTC R: GACCTGGCTTCGTCTGGCTT
Gene2	GR225263	16 kDa allergen	0.08 0.12 0.55 0.64	F: CACCGTACAGCCTGCGAGTA R: AGCCGCTTTGGCTGTAAGCA
Gene3	GR225674	Spermatogenesis associated CRA b	— 0.12 — —	F: TTTATCCGGTCCTTATGACC R: AACCTGGTGGCTTCTTCTT
Gene4	GR227833	Unknown	0.45 6.86 9.36 7.61	F: TTGATGATGATAGCCGCGCTGAC R: GCTGAAACCAACCCAGAAC
Gene5	GR227979	Plasmin-sensitive surface protein (cell-wall protein)	0.38 1.74 29.17 17.57	F: GTTCCTTGGCAGCCTGACC
Gene6	GR226824	Cyanovirin-N family protein	5.29 0.93 0.37 1.12	F: AGCATCGGAGCGTTATAC R: AACGTCTTCAACACCGACG
Gene7	GR225435	Nuclear transport factor 2	0.68 0.12 0.37 0.37	F: CTGACGCAGGCAATTTT
Gene8	GR226742	Lys M domain protein	— — 0.18 —	F: ACATCTCCACACCGCAAGT
Gene9	GR226855	Shwachman–Bodian–Diamond syndrome (SBDS) domain containing protein	0.15 0.35 1.10 0.32	F: ACCAGTGCCATACAGGG
Gene10	GR226225	Calmodulin	0.23 0.12 — 0.21	F: CCAGAAGCTTTCGAGGTC
Gene11	GR225094	Snodprot2	0.08 — — —	F: AAGACTCTTGCCAGCAAAGG
Gene12	GR224905	GPI-anchored cell wall organization protein Ecm33	0.15 0.23 0.18 0.11	F: CTGCCGTCGCAACCTTAC
Gene13	GR224296	L-PSP endoribonuclease family protein	0.15 0.58 0.18 0.64	F: GCGTTGAGCCGCGATTA R: GCTGTACACCTTCGCTTC
18S RNA	AB070375	18S RNA	NA NA NA NA	F: GCCAGGAAGCACTAAGGA

Note: (–) Means not detected in EST analysis of different libraries; NA, not available. 18S RNA gene was amplified as positive control in Figure 3.
The upregulation of ubiquitin (GR224654, 4/1324) and ubiquitin activating enzyme (GR224807, 2/1324) (Appendix Table 1) for proteolysis is consistent with rapid cell division during fungal growth in liquid culture (Sprague et al., 2004). Following rapid growth, the upregulation of heat shock proteins (GR225003, GR225211), DNAJ-like protein (GR226209) and thioredoxins (GR224602, GR224629) would suggest cell stress responses upon nutrient deprivation in stationary cultures.

After growing the medicinal fungus on rice medium for 20 days, the culture turned yellowish orange with the production of aerial conidia and then switched to sexual reproductive growth (Figure 1BC). We generated a cDNA library, i.e. the rice medium (RM) library, to investigate the C. militaris transcriptome at this stage. Unlike the EST analysis of a library generated with pure conidial spores of B. bassiana that showed upregulation of hydrophobins, proteases, glycosidase and lipases etc. (Cho et al., 2006a), the C. militaris RM library was characterized by greater upregulation of genes associated with RNA metabolism and the cell cycle and division (Table 1). These included RNA-dependent RNA polymerase (RdRP, GR225730, $E = 2 \times 10^{-42}$), RNA binding protein (GR226855, GR227007) and cell division control protein (GR225617), etc. Unlike typical RNA polymerases that catalyze the transcription of RNA from a DNA template, RdRP replicates RNA from an RNA template (reviewed in Kok and McMinn, 2009). The identification of RdRP in eukaryotes has been associated with RNA interference for antiviral immunity (reviewed in by Aliyari and Ding, 2009) or epigenetic control of differentiation and development (Verdel et al., 2009). The RNAi machinery has been characterized in fission yeast (White and Allshire, 2008), ascomycetes (Nolan et al., 2005; Wang et al., 2008) and basidomycetes (Feldbrügge et al., 2008). Thus, it is possible that epigenetic controls are employed by C. militaris to switch from asexual to sexual development.

The mating-type genes have been cloned from Cordyceps takaomontana (Yokoyama et al., 2003) and its sexuality may be heterothallic (Yokoyama et al., 2005). No homolog of a mating-type locus was identified during our EST survey of C. militaris. However, many transcription factors were found to be upregulated in the RM library, including the homologs of C6 transcription factors (GR225862, $E = 4 \times 10^{-88}$; GR226082, $E = 7 \times 10^{-17}$), C2H2 finger domain proteins (GR225860, $E = 2 \times 10^{-14}$; GR226013, $E = 4 \times 10^{-46}$), zinc finger proteins (GR225433, $E = 3 \times 10^{-37}$; GR226212, $E = 2 \times 10^{-25}$; GR224394, $E = 2 \times 10^{-33}$ and GR225819, $E = 4 \times 10^{-96}$) and MYB DNA-binding protein (GR226114, $E = 2 \times 10^{-89}$) (Appendix Table 1), suggesting that like other fungi, initiation of sexual differentiation in C. militaris involves a large-scale change in the pattern of gene expression (Coppin et al., 1997).
The most surprising aspect of our data was the transcriptional differences between fruit-body development on artificial rice medium (i.e. for RF library) and on insect host (silkworm) pupae (i.e. for PF library). However, in terms of the EST numbers from gene ontology assignments for each functional class, there were no statistical variations between RF and PF libraries (Table 1). Thus, during sexual development, the fungus transcribed more genes associated with the extracellular matrix and cell wall structure than did during asexual growth. This was largely due to the upregulation of bacterial-like plasmin-sensitive surface (Pls) protein isoforms, i.e. 15.2% of GR224929 ($E = 5 \times 10^{-30}$) in PF library and 28.8% of GR227979 ($E = 8 \times 10^{-28}$) in the RF library. The Pls protein present on the cell wall of *Staphylococcus aureus* strains is involved in cell adherence and biofilm formation (Hildén et al., 1996; Corrigan et al., 2007). The function of Pls-like proteins in fungi remains to be determined. Blast searches reveal that, besides bacteria, Pls ($E \leq 10^{-5}$) can only be detected in four other ascomycete fungal species, i.e. *Paracoccidioides brasiliensis*, *Ajellomyces dermatitidis*, *C. capsulatus* and *Chaetomium globosum*.

Consistent with previous studies RT-PCR or microarray analysis data generally agreed with gene transcriptional profiles derived from EST analysis (e.g. Freimoser et al., 2003; Wang et al., 2005). In this study our RT-PCR analysis of 13 selected genes showed that the genes with varied transcript numbers among libraries usually followed PCR profiling patterns (Table 2, Figure 3). As mentioned above, no mating-type transcripts nor other well-documented genes involved in fungal sexuality were found in our EST survey of *C. militaris* (Table 1, Appendix Table 1). Recently, high-throughput sequencing techniques utilizing 454 and Illumina/Solexa have been used in transcriptome analyses of different organisms (e.g. Morozova and Marra, 2008; Wall et al., 2009), and would be better suited for detection of rare transcripts than an EST study. In addition, more time points correlated with fruit body development should be surveyed in future studies to fine tune our knowledge of transcriptional changes, e.g. before the formation of perithecia and before the maturation of asci.

Cordycepin (3′-deoxyadenosine) is a well known product of *Cordyceps* spp. that blocks polyadenylation and thus interferes with processing of RNA. It inhibits the growth of cancer cells, bacteria or yeasts (reviewed by Ng et al., 2004; Corrigan et al., 2007). The function of Pls-like proteins in fungi remains to be determined. Blast searches reveal that, besides bacteria, Pls ($E \leq 10^{-5}$) can only be detected in four other ascomycete fungal species, i.e. *Paracoccidioides brasiliensis*, *Ajellomyces dermatitidis*, *C. capsulatus* and *Chaetomium globosum*.

Consistent with previous studies RT-PCR or microarray analysis data generally agreed with gene transcriptional profiles derived from EST analysis (e.g. Freimoser et al., 2003; Wang et al., 2005). In this study our RT-PCR analysis of 13 selected genes showed that the genes with varied transcript numbers among libraries usually followed PCR profiling patterns (Table 2, Figure 3). As mentioned above, no mating-type transcripts nor other well-documented genes involved in fungal sexuality were found in our EST survey of *C. militaris* (Table 1, Appendix Table 1). Recently, high-throughput sequencing techniques utilizing 454 and Illumina/Solexa have been used in transcriptome analyses of different organisms (e.g. Morozova and Marra, 2008; Wall et al., 2009), and would be better suited for detection of rare transcripts than an EST study. In addition, more time points correlated with fruit body development should be surveyed in future studies to fine tune our knowledge of transcriptional changes, e.g. before the formation of perithecia and before the maturation of asci.

Cordycepin can be produced by *C. militaris* grown either in liquid culture or on solid media (e.g. Xie et al., 2009; Ni et al., 2009). Our EST survey identified a few transcripts involved in nucleotide metabolism, including an adenosine (cytosine) deaminase ($E = 6 \times 10^{-58}$, GR226685) in the RF and PR libraries, an adenosine phosphoribosyltransferase ($E = 6 \times 10^{-58}$, GR224460) in the LM library, an inosine triphosphate pyrophosphatase ($E = 3 \times 10^{-27}$, GR224569) in the LM and PF libraries, an ATP phosphoribosyltransferase ($E = 6 \times 10^{-102}$, GR224183) in the LM and RM libraries and a 5′-nucleotidase ($E = 9 \times 10^{-50}$, GR228442) in the PF library (Appendix Table 1). Connected with cytosolic adenosine concentration, adenosine deaminase converts adenosine into inosine during RNA editing (Jaikaran et al., 2002). Inosine triphosphate pyrophosphatase controls the cellular level of ITP and dITP by pyrophosphorylation or stepwise phosphorylation of IMP, a precursor of both AMP and GMP (Lin et al., 2001). A substrate cycle between AMP and adenosine occurs in many eukaryotic cells through the action of a 5′-nucleotidase (Bontemps et al., 1983). Adenine phosphoribosyltransferase (APRTase) is the sole catalyst for adenine recycling in most eukaryotes and a deficiency of APRTase can result in the accumulation of 2,8-dihydroxyadenine (reviewed in by Moriwaki et al., 1999). Further studies will be required to determine how these proteins are involved in cordycepin production.

In conclusion, we identified a plethora of genes involved in the development of *C. militaris* under different cultural conditions, providing some useful starting points for further molecular biology studies of this increasingly widely used medicinal fungus. Particular interest will be paid, for example, in investigating the metabolic pathways involved with the production of pharmaceutical compounds, including cordycepin. Taken together with our ongoing genome project for this fungus (GenBank project ID 41129), *C. militaris* can now be explored as a genetically tractable model for studies on fungal sexuality.

Acknowledgements

This work was supported by the programs from Science and Technology Commission of Shanghai Municipality (08DZ1970200) and the Ministry of Science and Technology of China (2007BA132B03). The authors also appreciate Professor Raymond J. St. Leger for critical reading this paper.

References

Aliyari R, Ding SW. 2009. RNA-based viral immunity initiated by the Dicer family of host immune receptors. Immunol Rev. 227: 176–188.

Anderson I, Brass A. 1998. Searching DNA databases for similarities to DNA sequences: when is a match significant? Bioinformatics 14: 349–356.

Audic S, Claverie JM. 1997. The significance of digital gene expression profiles. Genome Res. 7: 986–995.
Bard M, Bruner DA, Pierson CA, Lees ND, Biermann B, Frye L, Koegel C, Barbuch R. 1996. Cloning and characterization of ERG25, the Sceharomycyes cerevisiae gene encoding C-4 sterol methyl oxidase. Proc Natl Acad Sci USA 93: 186–190.

Bidoehka MJ, Pfeifer TA, Khachatourians GG. 1987. Development of the entomopathogenic fungus Beauveria bassiana in liquid cultures. Mycopathologia 99: 77–83.

Bluhm BH, Dhillon B, Lindquist EA, Kema GH, Goodwin SB, Dunkle LD. 2008. Analyses of expressed sequence tags from the maize foliar pathogen Cercospora zea-maydis identify novel genes expressed during vegetative, infectious, and reproductive growth. BMC Genomics 9: 523.

Bontemps F, van den Berge H, Hers HG. 1983. Evidence for a substrate cycle between AMP and adenosine in isolated hepatocytes. Proc Natl Acad Sci USA 80: 2829–2833.

Cheung JK, Li J, Cheung AW, Zhu Y, Zheng KY, Bi CW, Duan R, Choi RC, Lau DT, Dong TT, Lau BW, Tsim KW. 2009. Cordyssinocan, a polysaccharide isolated from cultured Cordyceps, activates immune responses in cultured T-lymphocytes and macrophages: signaling cascade and induction of cytokines. J Ethnopharmacol. 124: 61–68.

Cho EM, Liu L, Farmerie W, Keyhani NO. 2006a. EST analysis of cDNA libraries from the entomopathogenic fungus Beauveria (Cordyceps) bassiana. I. Evidence for stage-specific gene expression in aerial conidia, in vitro blastospores and submerged conidia. Microbiology 152: 2843–2854.

Cho EM, Boucias D, Keyhani NO. 2006b. EST analysis of cDNA libraries from the entomopathogenic fungus Beauveria (Cordyceps) bassiana. II. Fungal cells sporulating on chitin and producing oosporein. Microbiology 152: 2855–2864.

Coppen E, Debuchy R, Arnaise S, Picard M. 1997. Mating types and sexual development in filamentous ascomycetes. Microbiol Mol Biol Rev. 61: 411–428.

Corrigan RM, Rigby D, Handley P, Foster TJ. 2007. The role of Staphylococcus aureus surface protein SasG in adherence and biofilm formation. Microbiology 153: 2435–2446.

Das SK, Masuda M, Hatashita M, Sakurai A, Sakakibara M. 2008. A new approach for improving cordycepin productivity in surface liquid culture of Cordyceps militaris using high-energy ion beam irradiation. Lett Appl Microbiol. 47: 534–538.

de Faria MR, Wraith SP. 2007. Mycoinsecticides and Mycoacaricicides: A comprehensive list with worldwide coverage and international classification of formulation types. Biol Control 43: 237–256.

Feldbrügge M, Zarnack K, Vollmeister E, Baumann S, Koepke J, König J, Münsterkötter M, Mannhaupt G. 2008. The post-transcriptional machinery of Ustilago maydis. Fungal Genet Biol. 45: S40–S46.

Freimoser FM, Screen S, Bagga S, Hu G, St. Leger RJ. 2003. Expressed sequence tag (EST) analysis of two subspecies of Metarhizium anisopliae reveals a plethora of secreted proteins with potential activity in insect hosts. Microbiology 149: 239–247.

Haldén P, Savolainen K, Tyyrälä J, Vuento M, Kuusela P. 1996. Purification and characterisation of a plasmid-sensitive surface protein of Staphylococcus aureus. Eur J Biochem. 236: 904–910.

Huang B, Li CR, Humber RA, Hodge KT, Fan MZ, Li ZZ. 2005. Molecular evidence for the taxonomic status of Metarhizium tatt and its teleomorph, Cordyceps tatt (Hypocreales, Clavicipitaceae). Mycologia 94: 137–147.

Huang X, Madan A. 1999. CAP3: a DNA sequence assembly program. Genome Res. 9: 868–877.

Jaikaran DC, Collins CH, MacMillan AM. 2002. Adenosine to inosine editing by ADAR2 requires formation of a ternary complex on the GluR-B R/G site. J Biol Chem. 277: 37624–37629.

Kanazuki A, Futatsu T. 1999. Light-induced fruit-body formation of an entomogenous fungus Paecilomyces tenuipes. Mycoscience 40: 349–351.

Kok CC, McMinn PC. 2009. Picornavirus RNA-dependent RNA polymerase. Int J Biochem Cell Biol. 41: 498–502.

Li SP, Song ZH, Dong TT, Ji ZN, Lo CK, Zhu SQ, Tsim KW. 2004. Distinction of water-soluble constituents between natural and cultured Cordyceps by capillary electrophoresis. Phytomedicine 11: 684–690.

Li SP, Yang FQ, Tsim KKW. 2006. Quality control of Cordyceps sinensis, a valued traditional Chinese medicine. J Pharm Biomed Anal. 41: 1571–1584.

Li ZZ, Li CR, Huang B, Fan MZ. 2001. Discovery and demonstration of the teleomorph of Beauveria bassiana (Bals.) Vuill., an important entomogenous fungus. Chinese Sci Bull. 46: 751–753.

Lin S, McLennan AG, Ying K, Wang Z, Gu S, Jin H, Wu C, Liu W, Yuan Y, Tang R, Xie Y, Mao Y. 2001. Cloning, expression, and characterization of a human inosine triphosphate pyrophosphatase encoded by the itp gene. J Biol Chem. 276: 18695–18701.

Masuda M, Urabe E, Sakurai A, Sakakibara M. 2006. Production of cordycepin by surface culture using the medicinal mushroom Cordyceps militaris. Enzyme Microb Technol. 39: 641–646.

Morozova O, Marra MA. 2008. Applications of next-generation sequencing technologies in functional genomics. Genomics 92: 255–264.

Moriwaki Y, Yamamoto T, Higashino K. 1999. Enzymes involved in purine metabolism—a review of histochemical localization and functional implications. Histol Histopathol. 14: 1321–1340.

Ng TB, Wang HX. 2005. Pharmacological actions of Cordyceps, a prized folk medicine. J Pharm Pharmacol. 57: 1509–1519.

Ni H, Zhou XH, Li HH, Huang WF. 2009. Column chromatographic extraction and preparation of cordycepin from Cordyceps militaris waster medium. J Chromatogr B 877: 2135–2141.

Nolan T, Braccini L, Azzalin G, de Toni A, Macino G, Cogoni C. 2005. The post-transcriptional gene silencing machinery functions independently of DNA methylation to repress a LINE1-like retrotransposon in Neurospora crassa. Nucleic Acids Res. 33: 1564–1573.

Nugent KG, Choffe K, Saville BJ. 2004. Gene expression during Ustilago maydis diploid filamentous growth: EST library creation and analyses. Fungal Genet Biol. 41: 349–360.

Paterson RR. 2008: Cordyceps: a traditional Chinese medicine and another fungal therapeutic biofactory? Phytochemistry 69: 1469–1495.

Rehner SA, Buckley E. 2005. A Beauveria phylogeny inferred from nuclear ITS and EF1-alpha sequences: evidence for cryptic diversification and links to Cordyceps teleomorphs. Mycologia 97: 84–98.

Sato H, Shimazu M. 2002. Stromata production for Cordyceps militaris (Clavicipitales: Clavicipitaceae) by injection of Beauveria bassiana teleomorphs. Mycologia 94: 376–383.

Sprague GF, Cullen PJ, Goehring AS.. 2004. Yeast signal transduction: regulation and interface with cell biology. Adv Exp Med Biol. 547: 91–105.

Stone R. 2008. Mycology: Last Stand for the body snatcher of the Himalayas? Science 322: 1182.

Sung GH, Hywel-Jones NL, Sung JM, Luangsa-Ard JJ, Shrestha B, Spatafora JW. 2007. Phylogenetic classification of...
Cordyceps and the clavicipitaceous fungi. Stud Mycol. 57: 5–59.

Kuile BH, Westerhoff HV. 2001. Transcriptome meets metabolome: hierarchical and metabolic regulation of the glycolytic pathway. FEBS Lett. 500: 169–171.

Verdel A, Vavasseur A, Le Gorrec M, Touat-Todeschini L. 2009. Common themes in siRNA-mediated epigenetic silencing pathways. Int J Dev Biol. 53: 245–257.

Wall PK, Leebens-Mack J, Chanderbali AS, Barakat A, Wolcott E, Liang H, Landherr L, Tomsho LP, Hu Y, Carlson JE, Ma H, Schuster SC, Soltis DE, Soltis PS, Altman N, de Pamphilis CW. 2009. Comparison of next generation sequencing technologies for transcriptome characterization. BMC Genomics 10: 347.

Wang CS, St. Leger RJ. 2007. A scorpion neurotoxin increases the potency of a fungal insecticide. Nat Biotechnol. 25: 1455–1456.

Wang CS, Hu G, St. Leger RJ. 2005. Differential gene expression by *Metarhizium anisopliae* growing in root exudate and host (*Manduca sexta*) cuticle or hemolymph reveals mechanisms of physiological adaptation. Fungal Genet Biol. 42: 704–718.

Wang CS, Duan ZB, St. Leger RJ. 2008. The MOS1 osmosensor of *Metarhizium anisopliae* is required for adaptation to insect host hemolymph. Eukaryot Cell 7: 302–309.

White SA, Allshire RC. 2008. RNAi-mediated chromatin silencing in fission yeast. Curr Top Microbiol Immunol. 320: 157–183.

Xiao JH, Zhong JJ. 2007. Secondary metabolites from *Cordyceps* species and their antitumor activity studies. Recent Pat Biotechnol. 1: 123–137.

Xie CY, Gu ZX, Fan GJ, Gu FR, Han YB, Chen ZG. 2009. Production of cordycepin and mycelia by submerged fermentation of *Cordyceps militaris* in mixture natural culture. Appl Biochem Biotechnol. 158: 483–492.

Yokoyama E, Yamagishi K, Hara A. 2003. Structures of the mating-type loci of *Cordyceps takaomontana*. Appl Environ Microbiol. 69: 5019–5022.

Yokoyama E, Yamagishi K, Hara A. 2005. Heterothallism in *Cordyceps takaomontana*. FEMS Microbiol Lett. 250: 145–150.

Zhou X, Gong Z, Su Y, Lin J, Tang K. 2009. **Cordyceps** fungi: natural products, pharmacological functions and developmental products. J Pharm Pharmacol. 61: 279–291.
Appendix Table 1. Unique ESTs from four libraries of *Cordyceps militaris*. LM, for liquid mycelium library; RM, for rice medium fruit body library; PF, insect pupae fruit body library. The data are presented in the order of functional category. No., indicates identified transcript numbers.

Acc. No.	Library	No.	Function	Best match accession	E value	Description	Organisms
GR224452	LM	1.a	1.a	XP_001258037	1.0E-43	xaa-pro dipeptidase app (E.coli)	Neosartorya fischeri
GR224518	LM/PF	2	1.a	BAB40769	6.0E-122	argininosuccinate lyase	Fusarium oxysporum
GR224846	LM	1	1.a	XP_001273386	2.0E-39	glutathione S-transferase, putative	Aspergillus clavatus
GR224980	LM/PF	3	1.a	XP_001933414	7.0E-120	aspartate aminotransferase	Pyrenophora tritic-repentis
GR225111	LM	1	1.a	XP_001276018	2.0E-43	GNAT family acetyltransferase, putative lantionine synthetase C-like protein, expressed	Aspergillus clavatus
GR225444	RM	1	1.a	ABB47829	5.0E-08		Oryza sativa Japonica
GR225933	RM	1	1.a	XP_960754	1.0E-82	N-acetyltransferase 5 tyrosinase central domain protein tyrosinase	Neurospora crassa
GR226607	RF	2	1.a	XP_001264010	7.0E-06		Neurospora fischeri
GR226647	RF	1	1.a	EDP56958	2.0E-16		Aspergillus fumigatus
GR227378	PF	1	1.a	XP_001248336	6.0E-45	cystathionine gamma-synthase	Coccidioides immitis
GR227613	PF	3	1.a	XP_962367	9.0E-76	cysteine dioxygenase	Neurospora crassa
GR227659	RM/PF	2	1.a	XP_001263041	9.0E-74	indoleamine	Neurosartorya fischeri
GR228019	RM/PF	3	1.a	ABU48597	1.0E-51	Xaa-Pro dipeptidase GLYC NECR Serine hydroxymethyltransferase, cytosolic	Trichophyton tonsurans
GR228241	PF	1	1.a	XP_386466	7.0E-59	cysteine dioxygenase subfamily	Gibberella zeae
GR228378	PF	1	1.a	XP_750969	7.0E-45	homogenisate 1,2-dioxynegase related to 3-phosphoserine aminotransferase	Aspergillus fumigatus
GR228619	PF	1	1.a	CAD70964	2.0E-53		Neurospora crassa
GR224254	LM	1	1.b	XP_001248603	6.0E-57	acetamidase	Coccidioides immitis
GR224277	LM	1	1.b	XP_962166	1.0E-94	glycogen phosphorylase	Neurospora crassa
GR224334	LM	1	1.b	XP_001262762	2.0E-94	phytase, putative citrate synthase, mitochondrial precursor	Neurosartorya fischeri
GR224372	LM	1	1.b	XP_001228276	2.0E-14		Chaetomium globosum
GR224513	LM/PF	4	1.b	ABH10639	2.0E-11	fructose bisphosphate aldolase	Coccidioides posadasii
GR224831	LM	1	1.b	NP_741808	3.0E-08	beta carbonic anhydrase family member (bca-1)	Caenorhabditis elegans
GR224869	LM	1	1.b	XP_001262948	4.0E-57	alpha/beta hydrolase, putative transaldolase	Neosartorya fischeri
GR224889	LM	1	1.b	XP_366548	3.0E-45	pyruvate decarboxylase	Magnaporthe grisea
GR225165	LM	3	1.b	XP_001219658	1.0E-107		Chaetomium globosum
GR225216	LM	1	1.b	YP_001173410	2.0E-33	hydrolyse, alpha/beta fold family	Pseudomonas stutzeri
GR225327	LM/RM	2	1.b	BAF98892	1.0E-52	formate oxidase 2	Debaryomyces vanrijae
GR225333	LM	1	1.b	XP_001548578	1.0E-12	fumarate hydratase	Botrytis fuckeliana
GR225379	LM	1	1.b	XP_366548	2.0E-83	transaldolase	Magnaporthe grisea
GR225408	RM	1	1.b	XP_961145	4.0E-60	protein kinase gsk3	Neurospora crassa
GR225496	RM	1	1.b	ZP_02121510	2.0E-10	ethyl tert-butyl ether degradation EthD	Methylobacterium nodulans
GR225510	RM	1	1.b	XP_001274982	2.0E-36	glucose-methanol-choline (gmc) oxidoreductase cyclopentanone	Aspergillus clavatus
GR225647	RM	1	1.b	XP_001938825	8.0E-69		Pyrenophora tritic-repentis
GR225777	RM	1	1.b	XP_962927	3.0E-129	malate dehydrogenase, mitochondrial precursor	Neurospora crassa
Acc. No.	Library	No.	Function	Best match accession	E value	Description	Organisms
-------------	---------	-----	----------	----------------------	---------	---	----------------------
GR225910	LM/RM	3	1.b	XP_962283	1.0E-166	isocitrate dehydrogenase subunit 2, mitochondrial precursor	Neurospora crassa
GR225992	RM	1	1.b	XP_001259634	1.0E-111	1,4-alpha-glucan branching enzyme	Neosartorya fischeri
GR226197	RM	1	1.b	AAG32629	1.0E-123	phosho-dolichol synthase mannose	Hypocrea jecorina
GR226313	RF	1	1.b	XP_001246410	2.0E-08	1,3-beta-glucan synthase	Coccidioides immitis
GR226373	RF	1	1.b	XP_751328	2.0E-27	endo-1,4-alpha-glucanase	Aspergillus fumigatus
GR226546	RF	1	1.b	XP_750969	8.0E-43	homogentisate	Aspergillus fumigatus
GR226556	RF	1	1.b	XP_001939469	3.0E-83	1,2-dioxygenase	Pyrenophora tritici-repentis
GR226678	RF	1	1.b	XP_001939425	7.0E-71	alpha-1,3-mannosyltransferase	Pyrenophora tritici-repentis
GR227412	RM/PF	2	1.b	XP_961145	7.0E-57	1,4-alpha-glucan branching enzyme	Neurospora crassa
GR228571	PF	1	1.c	XP_001382922	4.0E-07	alcohol dehydrogenase	Pichia stipitis
GR224134	LM	1	1.c	XP_001265779	2.0E-32	fatty acid desaturase, putative	Neosartorya fischeri
GR224176	LM	2	1.c	ACB12561	7.0E-84	Fus16, long-chain acyl-CoA synthetases (AMP-forming)	Fusarium oxysporum
GR224258	LM	1	1.c	CAA04820	2.0E-32	phenylacetyl-CoA ligase	Penicillium chrysogenum
GR224288	LM	2	1.c	AAXO7629	2.0E-59	cell lysis protein-like protein	Magnaporthe grisea
GR224400	LM	1	1.c	ABF84060	2.0E-34	C-4 sterol methyl oxidase	Chaetomium globosum
GR224594	LM	1	1.c	BAC67175	1.0E-34	phospholipase D	Emericella nidulans
GR224777	LM	1	1.c	XP_001273259	2.0E-50	cyclopanone-fatty-acyl-phospholipid synthase, putative	Aspergillus clavatus
GR224820	PF/LM	2	1.c	XP_001940316	2.0E-53	phospholipase A2	Pyrenophora tritici-repentis
GR225137	LM	1	1.c	EDU48549	2.0E-51	phosphoglycerate mutase family protein	Pyrenophora tritici-repentis
GR225206	LM	1	1.c	XP_958250	8.0E-60	lathosterol oxidase	Neurospora crassa
GR225208	LM/RM	2	1.c	XP_961824	3.0E-153	acyl-CoA desaturase 1	Neurospora crassa
GR225276	LM	11	1.c	ABF84060	3.0E-89	C-4 sterol methyl oxidase	Chaetomium globosum
GR225281	LM	1	1.c	XP_001276142	2.0E-32	alkaline phosphatase family protein	Aspergillus clavatus
GR225376	LM	1	1.c	AAP47107	4.0E-58	serine palmitoyl transferase subunit; SPT subunit; LCBB	Emericella nidulans
GR225450	RM	1	1.c	NP_214355	1.0E-18	enolase-phosphatase E-1	Aquifex aeolicus
GR225565	RM	1	1.c	XP_001932331	8.0E-10	sterol O-acyltransferase	Pyrenophora tritici-repentis
GR225632	RM	1	1.c	XP_001273303	2.0E-49	BEM46 family protein	Aspergillus clavatus
GR225706	RM	1	1.c	NP_587790	3.0E-35	steroid oxidoreductase superfamily protein	Schizosaccharomyces pombe
GR226153	RM	2	1.c	XP_753885	2.0E-73	superfamily protein	Aspergillus fumigatus
GR226173	RM	1	1.c	XP_752948	4.0E-129	fatty acid hydroxylase	Aspergillus fumigatus
GR226391	RF	1	1.c	XP_753491	3.0E-40	glycerophosphocholine phosphodiesterase Gde1	Aspergillus fumigatus
GR226517	RF	1	1.c	XP_001264979	3.0E-17	protein phophatase 2C family protein	Neosartorya fischeri
GR226727	RF	1	1.c	XP_753885	9.0E-67	steroid monooxygenase (CpmA)	Aspergillus fumigatus
GR227476	RM/PF	2	1.c	XP_001547762	3.0E-27	acyl-CoA desaturase	Botrytis fuckeliana
GR227506	PF	1	1.c	XP_001547868	6.0E-24	oleate-induced peroxisomal protein	Botrytis fuckeliana
GR228255	PF	1	1.c	XP_001263009	1.0E-25	lipase/esterase family protein, putative	Neosartorya fischeri
GR228535	LM/PF	3	1.c	XP_955999	4.0E-125	D-3-phosphoglycerate dehydrogenase 1	Neurospora crassa
GR228540	PF	1	1.c	EDU50261	3.0E-49	ethanolaminephosphotransferase	Pyrenophora tritici-repentis
GR228575	PF	1	1.c	XP_001267686	6.0E-52	DDHD domain protein	Aspergillus clavatus
GR228592	PF	1	1.c	EDU43602	4.0E-64	arylsulfatase precursor	Pyrenophora tritici-repentis

(Continued)
Appendix Table 1.
(Continued)

Acc. No.	Library	No.	Function	Best match accession	E value	Description	Organisms
GR224183	LM/RM	2	d	XP_001561243	6.0E-102	ATP phosphoribosyltransferase rRNA intron-encoded homing endonuclease	Botryotinia fuckeliana
GR224306	LM	1	d	AAK13589	1.0E-06	GIY-YIG endonuclease adenine phosphoribosyltransferase ribonucleotide reductase small subunit RnRA inosine triphosphate pyrophosphatase (tipase)	Oryza sativa (rice)
GR224309	LM/RM	7	d	YP_002213592	5.0E-12	GIY-YIG endonuclease adenine phosphoribosyltransferase ribonucleotide reductase small subunit RnRA inosine triphosphate pyrophosphatase (tipase)	Cordyceps brongniartii
GR224460	LM	1	d	XP_963727	6.0E-58	ribonuclease (tipase)	Neurospora crassa
GR224515	LM	1	d	XP_753417	1.0E-79	DNA endonuclease I-Ceu (23S rRNA intron 1 protein)	Aspergillus fumigatus
GR224569	PF/LM	3	d	XP_001273892	3.0E-27	inosine triphosphate pyrophosphatase (tipase)	Aspergillus clavatus
GR224757	LM	1	d	XP_754074	9.0E-65	predicted nucleotide kinase	Aspergillus fumigatus chloroplast
GR224973	LM/PF	3	d	P37621	3.0E-11	DNA endonuclease I-Ceu (23S rRNA intron 1 protein)	Chlamydomonas eugametos
GR225995	RM	2	d	XP_001263831	3.0E-68	phosphoribosyl-aminomimidazole-succinocarboxamide synthase	Neosartorya fischeri
GR226201	RM	1	d	YP_810411	3.0E-11	nucleotide/transferase	Oenococcus oeni
GR226685	RF/PF	3	d	XP_570103	8.00E-60	UTP-glucose-1-phosphate uridylyltransferase	Cryptococcus neoformans
GR226872	PF	1	d	XP_964453	3.0E-133	uracil	Verticillium albo-atum
GR228018	RM/PF	2	d	XP_955968	8.0E-105	uracil	Neurospora crassa
GR228442	PF	1	d	XP_749865	9.0E-50	s'-nucleotidase	Aspergillus fumigatus
GR224294	LM/RM	2	e	CAD71132	6.0E-41	related to DCG1 protein	Neurospora crassa
GR225213	LM	1	e	XP_001262166	5.0E-43	isoflavone reductase family protein	Neosartorya fischeri
GR225487	RM	1	e	AAL77224	4.0E-27	thioredoxin II	Podospora anserina
GR225544	RM	1	e	XP_001939670	4.0E-19	glutation S-transferase	Pyrenophora tritici-repentis
GR226897	PF	1	e	P13998	4.0E-58	Inorganic pyrophosphatase (Pyrophosphate phospho-hydrolase)	Kluyveromyces lactis
GR225246	LM	7	f	ACB56643	5.0E-73	coproporphyrinogen III oxidase	Trichoderma aureoviride
GR226569	RM/RF	4	f	XP_751220	2.0E-51	choline sulfatase	Aspergillus fumigatus
GR227819	PF	2	f	EDL80237	5.0E-07	pantothenate kinase 2	Rattus norvegicus
GR227840	PF	1	f	XP_001543015	4.0E-59	riboflavin synthase alpha chain	Ajellomyces capsulatus
GR228219	PF	1	f	XP_962504	3.0E-67	ferrochelatase, mitochondrial precursor	Neurospora crassa
GR224080	LM	2	d	NP_775409	1.0E-32	cytochrome oxidase subunit III	Lecanicillium muscarium
GR224113	LM	1	d	EDP53376	2.0E-17	FAD binding domain protein	Aspergillus fumigatus
GR224206	LM/RM	2	d	XP_001225654	2.0E-106	adenylate kinase	Chaetomium globosum
GR224260	LM	19	d	XP_386224	1.0E-36	ATP9 NEUCR ATP synthase protein 9, mitochondrial precursor (Lipid-binding protein)	Gibberella zeae
GR224281	LM	1	d	Q5K8S8	1.0E-14	vacuolar ATP synthase subunit e (V-ATPase) subunit e) (Vacuolar proton pump subunit e)	Cryptococcus neoformans
GR224301	LM/RF	2	d	XP_362271	3.0E-28	vacuolar ATPase	Magnaporthe grisea
GR224302	LM	1	d	XP_001276002	4.0E-05	AAA family ATPase, putative NADH-ubiquinone oxidoreductase chain 5 subunit 6	Aspergillus clavatus
GR224359	LM	1	d	YP_001876510	3.0E-77	NADH dehydrogenase subunit 6	Beauveria bassiana
GR224390	LM	1	d	XP_965776	1.0E-70	ATP synthase D chain, mitochondrial precursor	Neurospora crassa
GR224444	LM	1	d	XP_965645	1.0E-92	ATP synthase alpha chain, mitochondrial precursor	Neurospora crassa
Acc. No.	Library	No.	Function	Best match accession	E value	Description	Organisms
---------	---------	-----	----------	----------------------	---------	-------------	-----------
GR224490	LM	1	2	XP_001228192	3.0E-55	cytochrome c oxidase polypeptide V, mitochondrial precursor	Chaetomium globosum
GR224508	LM	1	2	XP_956673	4.0E-16	NADH-ubiquinone oxidoreductase 6.6kD subunit	Neurospora crassa
GR224553	LM	1	2	XP_001216003	2.0E-86	monothiol glutaredoxin-5, mitochondrial precursor	Aspergillus terreus
GR224674	LM	1	2	Q12664	4.0E-72	cytochrome P450 51	Penicillium italicum
GR224722	LM/PF/RF	12	2	XP_389763	2.0E-58	VATF_NEUCR Vacuolar ATP synthase subunit F (V-ATPase F subunit)	Gibberella zeae
GR224723	LM	1	2	YP_001876509	6.0E-94	cytochrome oxidase subunit III	Beauveria bassiana
GR224731	LM	1	2	EDP53461	5.0E-35	cytochrome P450 monoxygenase, putative subunit e of mitochondrial F1F0-ATPase, which is a large, evolutionarily conserved enzyme complex required for ATP synthesis; essential for the dimeric and oligomeric state of ATP synthase; Tim11p	Aspergillus fumigatus
GR224744	LM/RM/RF	3	2	NP_010609	2.0E-06	NADPH:adrenodoxin oxidoreductase, mitochondrial precursor	Saccharomyces cerevisiae
GR224745	LM	1	2	YP_001876504	2.0E-56	NADPH:adrenodoxin oxidoreductase, mitochondrial precursor	Beauveria bassiana
GR224796	LM	1	2	EDU48156	2.0E-53	NADPH:adrenodoxin oxidoreductase, mitochondrial precursor	Pyrenophora tritici-repentis
GR224867	LM	1	2	YP_001876509	1.0E-102	cytochrome oxidase subunit III	Beauveria bassiana
GR224916	LM	1	2	XP_001276795	7.0E-05	FAD binding domain protein NADH dehydrogenase subunit 5	Aspergillus clavatus
GR224927	LM	1	2	YP_001876502	2.0E-42	FAD binding domain protein NADH dehydrogenase subunit 5	Beauveria bassiana
GR224991	LM	1	2	XP_001269706	4.0E-30	NADH-cytochrome b5 reductase, putative	Aspergillus clavatus
GR225163	LM	1	2	NP_780573	2.0E-07	LYR motif containing 2	Mus musculus
GR225179	LM	1	2	XP_001219268	7.0E-31	NADH-ubiquinone oxidoreductase 23 kDa subunit	Chaetomium globosum
GR225210	LM/PF	2	2	XP_001262839	2.0E-15	cytochrome c oxidase assembly protein	Neosartorya fischeri
GR225226	LM	2	2	XP_001267960	1.0E-10	UQCRX/QCR9 like ubiquinol-cytochrome C reductase family protein	Aspergillus clavatus
GR225242	LM	2	2	XP_963863	3.0E-31	NADH-ubiquinone oxidoreductase 12.3kD subunit	Neurospora crassa
GR225254	LM/PF	2	2	XP_956673	2.0E-15	NADH:ubiquinone oxidoreductase 6.6kD subunit	Neurospora crassa
GR225394	LM/PF	2	2	XP_965807	1.0E-61	vacuolar ATP synthase 16 kDa proteolipid subunit 2	Neurospora crassa
GR225492	RM/RF	2	2	XP_001546681	2.0E-20	cytochrome c oxidase chain VIIc	Botryotinia fuckeliana
GR225504	RM	1	2	XP_960814	2.0E-26	ubiquinol-cytochrome c oxidoreductase complex III subunit VIII, 11kD protein of the UcrQ family	Neurospora crassa
GR225705	RM	1	2	XP_961585	4.0E-24	glutaredoxin cytochrome oxidase subunit III	Neurospora crassa
GR226010	RM/LM	5	2	YP_002213610	3.0E-89	glutaredoxin cytochrome oxidase subunit III	mitochondrion Cordyceps brongniartii
GR226026	RM	2	2	EDP49959	9.0E-15	F1F0-ATP synthase regulatory factor Stf2, putative	Aspergillus fumigatus

(Continued)
Acc. No.	Library	No. Function	Best match accession	E value	Description	Organisms
GR226042	RM/RF	3 2	XP_960712	5.0E-24	NADH:ubiquinone oxidoreductase 11.5kD subunit	Neurospora crassa
GR226169	RM	1 2	XP_753017	6.0E-48	heme/steroid binding domain protein	Aspergillus fumigatus
GR226178	RM	1 2	XP_001554426	1.0E-164	plasma membrane ATPase	Botrytis fuckeliana
GR226184	RM	1 2	XP_747154	2.0E-61	cytochrome P450	Aspergillus fumigatus
GR226235	RM	1 2	NP_775409	7.0E-31	cytochrome oxidase OrdA-like	Lecanicillium muscarium
GR226284	RF	1 2	XP_965645	4.0E-100	ATP synthase alpha chain, mitochondrial precursor	Neurospora crassa
GR226620	RF	1 2	XP_001942298	1.0E-40	cytochrome P450 3A17	Pyrenophora tritici-repentis
GR226684	LM/RF	7 2	AAW69350	5.0E-108	NADH-ubiquinone oxidoreductase 40 kDa subunit-like protein	Magnaporthe grisea
GR226733	RF	1 2	XP_001525446	2.0E-91	H+ ATPase C subunit	Botrytis fuckeliana
GR227099	PF	27 2	CAB65297	6.0E-08	P-type ATPase	Neurospora crassa
GR227147	RM/PF/LM	6 2	XP_390178	5.0E-67	VATL_NEUCR Vacuolar ATP synthase 16 kDa proteolipid subunit	Gibberella zeae
GR227229	LM/PF/RM	7 2	XP_002151699	7.0E-09	mitochondrial F1F0 ATP synthase subunit Atp18, putative	Penicillium marneffei
GR227372	LM/PF	6 2	ACI68759	5.0E-29	NADH dehydrogenase 1 beta subcomplex subunit 9	Salmo salar
GR227643	PF	1 2	EDP53517	9.0E-15	DUF341 domain oxidoreductase, putative	Aspergillus fumigatus
GR227968	PF	1 2	XP_961915	6.0E-84	cytochrome P450 61	Neurospora crassa
GR228053	RM/PF	3 2	XP_001424457	2.0E-24	oxidoreductase, short chain dehydrogenase/reductase family	Coxiella burnetii
GR228223	LM/RM/PF	8 2	XP_001936487	8.0E-40	cytochrome c oxidase polypeptide vib	Pyrenophora tritici-repentis
GR228492	PF	1 2	XP_001481718	1.0E-13	cytochrome c oxidase assembly protein Cox19	Aspergillus fumigatus
GR224149	LM/RM	2 3.a	XP_001932197	4.0E-28	60S ribosomal protein L30	Pyrenophora tritici-repentis
GR224282	LM/PF	15 3.a	XP_370455	2.0E-21	ribosomal protein L38e	Magnaporthe grisea
GR224311	LM/PF/RM	31 3.a	XP_359800	2.0E-19	ribosomal protein L39	Magnaporthe grisea
GR224450	LM/PF	2 3.a	XP_390544	1.0E-22	60S acidic ribosomal protein P1 (Allergen Alt a 12)	Gibberella zeae
GR224461	LM	1 3.a	XP_370161	5.0E-96	40S ribosomal protein S5	Magnaporthe grisea
GR224465	LM	1 3.a	XP_749362	1.0E-54	40S ribosomal protein S14	Aspergillus fumigatus
GR224470	LM	1 3.a	XP_386763	7.0E-97	RS7_NEUCR 40S ribosomal protein S7	Gibberella zeae
GR224478	LM/RM/PF	4 3.a	XP_002153254	5.0E-34	60S ribosomal protein L28	Penicillium marneffei
GR224524	LM	1 3.a	XP_001271667	5.0E-91	ribosomal protein L11	Aspergillus clavatus
GR224599	LM	2 3.a	XP_388032	7.0E-76	RL2A_ERYGR 60s ribosomal protein L27a (L29)	Gibberella zeae
GR224774	LM	2 3.a	XP_390357	4.0E-55	60S RIBOSOMAL PROTEIN L4	Gibberella zeae
GR224813	LM	1 3.a	XP_001560156	8.0E-78	40S ribosomal protein S11	Botrytis fuckeliana
GR224876	LM/RF	4 3	XP_965758	8.0E-40	40S ribosomal protein S27	Neurospora crassa
GR224984	LM	1 3.a	XP_001229121	2.0E-80	60S ribosomal protein L12	Chaetomium globosum
GR225012	LM/RM	2 3	ABU50146	1.0E-86	ribosomal protein S3	Cordyceps bassiana
GR225065	LM	1 3.a	XP_001595641	1.0E-69	60S ribosomal protein L19	Sclerotinia sclerotiorum
GR225070	PF/LM	11 3.a	XP_965640	7.0E-78	60S ribosomal protein L11	Neurospora crassa
GR225116	LM	1 3.a	XP_001227903	9.0E-33	40S ribosomal protein S26	Chaetomium globosum
GR225126	LM/PF	5 3	XP_387224	1.0E-73	RIBOSOMAL PROTEIN S13	Gibberella zeae

(Continued)
Acc. No.	Library	No.	Function	Best match accession	E value	Description	Organisms
GR225151	LM	1	3.a	XP_001549932	2.0E-21	mitochondrial ribosomal protein L44	Botryotinia fuckeliana
GR225154	LM/PF/RM	6	3.a	XP_001550019	6.0E-26	60S ribosomal protein L29	Botryotinia fuckeliana
GR225227	LM	1	3.a	XP_001224493	1.0E-46	40S ribosomal protein S24	Chaetomium globosum
GR225231	LM/PF	2	3.a	ACI69241	2.0E-49	mitochondrial ribosomal protein of the small subunit; Mrps17p	Salmo salar
GR225239	LM	1	3.a	XP_001553621	6.0E-78	60S ribosomal protein L11	Botryotinia fuckeliana
GR225244	LM	1	3.a	EDU40024	3.0E-31	mitochondrial ribosomal protein S19	Pyrenophora tritici-repentis
GR225304	LM/RM	4	3.a	XP_001551610	6.0E-31	60S ribosomal protein L14	Botryotinia fuckeliana
GR225384	LM/PF/RM	6	3.a	XP_001229209	2.0E-31	60S ribosomal protein L29	Chaetomium globosum
GR225385	LM	1	3.a	XP_961514	2.0E-21	40S ribosomal protein S29	Neurospora crassa
GR225736	LM/RM	3	3.a	XP_749081	5.0E-36	ribonucleoprotein (LSM5)	Stachybotrys elegans
GR225778	RM/RF	3	3.a	XP_002146425	5.0E-53	60S ribosomal protein L18	Penicillium marneffei
GR225870	RM/RF	2	3.a	XP_001221626	6.0E-105	60S ribosomal protein L7	Chaetomium globosum
GR225904	RM	1	3.a	XP_001937290	1.0E-45	mitochondrial 40S ribosomal protein MR2	Pyrenophora tritici-repentis
GR225934	RM/LM/PF	21	3.a	XP_001561242	1.0E-12	40S ribosomal protein S28	Botryotinia fuckeliana
GR225985	RM	1	3.a	XP_001546444	5.0E-56	60S ribosomal protein L21	Botryotinia fuckeliana
GR226008	RM/PF/LM	30	3.a	XP_001551813	2.0E-44	60S ribosomal protein L30	Botryotinia fuckeliana
GR226028	RM/RF	5	3.a	XP_001248452	2.0E-64	40S ribosomal protein S15	Coccidioides immitis
GR226608	LM/RM	4	3.a	ACG48268	1.0E-88	60S ribosomal protein L9	Zea mays
GR226609	RM/RF	2	3.a	XP_001265242	2.0E-17	50S ribosomal protein YmL27	Neosartorya fischeri
GR226695	LM/RF/RM	4	3.a	XP_0012292578	2.0E-58	60S ribosomal protein L32	Chaetomium globosum
GR226126	RM	1	3.a	XP_963540	2.0E-68	mitochondrial precursor	Neurospora crassa
GR226181	LM/RM/PF	8	3.a	XP_957322	1.0E-63	40S ribosomal protein S22	Neurospora crassa
GR226187	LM/RM/PF	16	3.a	XP_001218480	5.0E-41	60S ribosomal protein L30-2	Aspergillus terreus
GR226255	RM/RF/PF	4	3.a	XP_001555389	3.0E-119	40S ribosomal protein S3	Botryotinia fuckeliana
GR226778	RF	2	3.a	NP_596108	1.0E-05	mitochondrial ribosomal protein subunit L39	Schizosaccharomyces pombe
GR226884	PF	1	3.a	XP_963118	7.0E-45	60S ribosomal protein L34	Neurospora crassa
GR227083	LM/RF/RM/PF	20	3.a	XP_964906	5.0E-25	40S ribosomal protein S30	Neurospora crassa
GR227301	PF/LM/RM	5	3.a	XP_001227903	3.0E-36	40S ribosomal protein S26	Chaetomium globosum
GR227381	LM/RF/PF	37	3.a	XP_963231	2.0E-24	40S ribosomal protein S25	Neurospora crassa
GR227676	RM/PF	2	3.a	XP_965247	4.0E-59	60S ribosomal protein L31	Neurospora crassa
GR227700	PF	1	3.a	XP_001597937	8.0E-54	60S ribosomal protein L25	Sclerotinia sclerotorum
GR227806	PF	1	3.a	NP_011731	9.0E-10	mitochondrial ribosomal protein of the small subunit; Mrps17p	Saccharomyces cerevisiae
GR228060	PF	1	3.a	XP_382047	2.0E-84	RL17_NEUCR 60S ribosomal protein L17	Gibberella zeae
GR228124	LM/RM/PF	15	3.a	XP_001560156	1.0E-77	40S ribosomal protein S11	Botryotinia fuckeliana
GR228503	LM/PF/RM	50	3.a	XP_958318	5.0E-50	60S ribosomal protein L33	Neurospora crassa
GR224251	LM	1	3.b	XP_961513	2.0E-105	elongation factor Tu, mitochondrial precursor	Neurospora crassa
GR224283	LM/RM	8	3.b	XP_001212985	9.0E-69	eukaryotic translation initiation factor 5A	Aspergillus terreus
GR224296	LM/RF/PF	20	3.b	XP_746529	2.0E-27	L-PSP endoribonuclease family protein	Aspergillus fimigatus
GR224405	LM/RM/PF	3	3.b	XP_001209019	4.0E-178	eukaryotic initiation factor 4A	Aspergillus terreus
GR224551	RF/LM	2	3.b	XP_361098	3.0E-28	elongation factor 1-alpha translation initiation factor SU1	Magnaporthe grisea
GR224979	LM/RM/PF	7	3.b	XP_754980	3.0E-42	eukaryotic translation initiation factor 5	Aspergillus fimigatus
GR225030	LM	1	3.b	XP_957252	5.0E-37	eukaryotic translation initiation factor	Neurospora crassa
GR225375	LM/RM/PF	6	3.b	XP_001262870	2.0E-33	L-PSP endoribonuclease family protein (Hmf1), putative	Neosartorya fischeri
Acc. No.	Library	No.	Function	Best match accession	E value	Description	Organisms
-----------	---------	-----	----------	----------------------	---------	--	----------------------------------
GR225509	RM	1	3.b	XP_001937483	3.0E-106	eukaryotic translation initiation factor 3 110 kDa subunit	Pyrenophora tritici-repentis
GR225662	RM	1	3.b	XP_957296	8.0E-126	eukaryotic peptide chain release factor subunit 1	Neurospora crassa
GR225693	RM	1	3.b	CAE76428	2.0E-11	probable ribosomal elongation factor EF-2	Neurospora crassa
GR225708	RM	1	3.b	XP_001930631	1.0E-92	elongation factor 1-alpha	Pyrenophora tritici-repentis
GR225829	RM	1	3.b	XP_001941716	3.0E-80	tRNA ligase	Pyrenophora tritici-repentis
GR226132	RM	1	3.b	XP_001260399	7.0E-29	eukaryotic translation initiation factor 3 subunit EifC3, putative	Neosartorya fischeri
GR226493	RF	1	3.b	ABG37118	3.0E-57	elongation factor 2	Glomerella graminicola
GR226574	RF	1	3.b	XP_961215	2.0E-45	elongation factor 1-gamma	Neurospora crassa
GR227357	LM/PF	3	3.b	XP_959625	2.0E-82	elongation factor 1-beta	Neurospora crassa
GR227437	RF/PF	4	3.b	XP_002148934	2.0E-26	eukaryotic translation initiation factor 3 subunit EifC3, putative	Penicillium marneffei
GR227992	PF	1	3.b	T51896	2.0E-101	probable translation release factor erf3 [imported]	Neurospora crassa
GR228275	PF	1	3.b	XP_001273105	5.0E-27	nonribosomal peptide synthase, putative	Aspergillus clavatus
GR224550	LM/PF	4	3.c	XP_001263333	2.0E-09	proteasome subunit alpha type	Neosartorya fischeri
GR224553	LM	1	3.c	XP_001276207	2.0E-65	ubiquitin C-terminal hydrolase (HAUSP), putative	Aspergillus clavatus
GR224374	LM	1	3.c	XP_001268325	3.0E-24	ubiquitin C-terminal hydrolase	Aspergillus clavatus
GR224415	LM/RM/RF	4	3.c	XP_957331	2.0E-100	proteasome component PRE6 related to ubiquitin-conjugating enzyme	Neurospora crassa
GR224416	LM	1	3.c	CAE76523	2.0E-61	ubiquitin-conjugating enzyme prob	Neurospora crassa
GR224468	LM	1	3.c	CAD21393	1.0E-53	ubiquitin-conjugating enzyme CDC34	Neurospora crassa
GR224654	LM	4	3.c	XP_001270622	5.0E-82	ubiquitin conjugating enzyme (UbCD), putative	Aspergillus clavatus
GR224695	LM	1	3.c	XP_001547757	7.0E-31	20S proteasome alpha subunit E	Botryotinia fuckeliana
GR224807	LM	2	3.c	XP_750948	3.0E-44	ubiquitin-like activating enzyme (UlaA)	Aspergillus fumigatus
GR224849	RM/LM	3	3.c	AAT85970	4.0E-73	SCF complex subunit Skp1	Fusarium oxysporum
GR224852	LM	1	3.c	AAC16012	3.0E-11	polyubiquitin	Elaeagnus umbellata
GR224893	LM	1	3.c	XP_959792	5.0E-64	rhomboid protein 2	Neurospora crassa
GR224953	LM	1	3.c	XP_001258419	3.0E-41	proteasome regulatory particle subunit (Rpn), putative	Neurospora crassa
GR225054	LM	1	3.c	XP_001597677	2.0E-66	ubiquitin fusion protein	Sclerotinia sclerotiorum
GR225073	LM	1	3.c	XP_365068	5.0E-54	ubiquitin conjugating enzyme ubiquin homol	Magnaporthe grisea
GR225144	LM	1	3.c	NP_001007844	2.0E-19	ubiquitin related modifier 1	Gallus gallus (chicken)
GR225243	LM	1	3.c	XP_001259989	4.0E-43	dipeptidyl peptidase III	Neurospora fischeri
GR225306	LM/PF	7	3.c	XP_958786	2.0E-110	proteasome component Y13	Neurospora crassa
GR225323	LM	1	3.c	EDU49040	2.0E-51	cullin binding protein CanA	Pyrenophora tritici-repentis
GR225414	RM	1	3.c	XP_001939353	2.0E-96	seprase	Pyrenophora tritici-repentis
GR225517	RM/RF/PF	8	3.c	XP_001597677	4.0E-67	ubiquitin fusion protein	Neurospora crassa
GR225783	RM	1	3.c	XP_001259989	5.0E-60	dipeptidyl peptidase III	Neurospora fischeri
GR225906	RM	1	3.c	XP_751155	1.0E-84	proteasome regulatory particle subunit (Rpn)	Aspergillus fumigatus
GR225957	RM/RF	2	3.c	XP_752450	1.0E-33	ubiquitin-like modifier SUMO	Aspergillus fumigatus
GR226004	RM	1	3.c	XP_755213	4.0E-42	zinc carboxypeptidase	Aspergillus fumigatus
GR226007	RM	1	3.c	AB30123	1.0E-19	subtilisin-like protease	Epichloe festucae
GR226027	RM	1	3.c	XP_001259989	2.0E-49	dipeptidyl peptidase III	Neurospora fischeri
GR226570	RF	1	3.c	XP_750213	2.0E-43	ubiquitin-protein ligase (Hul4)	Aspergillus fumigatus
Appendix Table 1. (Continued).

Acc. No.	Library	No.	Function	Best match accession	E value	Description	Organisms
GR226636	RF	1	3.c	CAE76125	5.0E-74	related to non-canonical ubiquitin conjugating enzyme 1	Neurospora crassa
GR226837	PF	1	3.c	XP_964107	5.0E-63	ubiquitin-conjugating enzyme E2 13	Neurospora crassa
GR226965	PF	1	3.c	AAB84057	1.0E-97	proteasome regulatory subunit 12	Hypocrea jecorina
GR227026	PF	1	3.c	CAE84597	1.0E-09	aspartic proteinase precursor ubiquitin-like activating enzyme (UlaA)	Botryotinia fuckeliana
GR227130	RM/PF	3	3.c	XP_750948	6.0E-64		Aspergillus fumigatus
GR227175	PF	1	3.c	CAD21393	9.0E-59	probable ubiquitin-conjugating enzyme CDC34	Neurospora crassa
GR227206	PF	1	3.c	CAA51679	4.0E-113	ubiquitin	Solanum lycopersicum
GR227278	PF	10	3.c	AAY41882	3.0E-10	ubiquitin	Gracilaria lemaneiformis
GR227695	PF	1	3.c	XP_001403458	1.0E-74	proteasome regulatory particle subunit Rpt5	Magnaporthe grisea
GR227803	PF	1	3.c	XP_001486573	9.0E-110	ubiquitin	Pichia guilliermondii
GR227825	PF	2	3.c	ABG57251	7.0E-119	vacuolar protease A	Trichoderma atroviride
GR228034	PF	1	3.c	XP_001258419	1.0E-49	proteasome regulatory particle subunit (Rpn1), putative	Neosartorya fischeri
GR228171	PF	1	3.c	NP_588156.1	2.0E-53	ubiquitin-conjugating enzyme protease inhibitor (predicted)	Coccidioides immitis
GR228195	LM/RM/RF/PF	7	3.c	XP_001247866	2.0E-07	ring-box 1	Schizosaccharomyces pombe
GR228330	PF/LM	4	3.c	XP_001931304	1.0E-48	proteasome regulatory particle subunit (Rpn1)	Pyrenophora tritici-repentis
GR228374	PF	2	3.c	XP_751155	9.0E-68		Aspergillus fumigatus
GR228448	LM/RM/RF/PF	67	3.c	XP_001210780	4.0E-162	ubiquitin	Aspergillus terreus
GR224130	LM/PF	2	3.d	XP_752303	5.0E-20	S-adenosylmethionine-dependent methyltransferase	Aspergillus fumigatus
GR224135	LM	1	3.d	XP_001391905	2.0E-85	cyclophilin-like peptidyl prolyl cis-trans isomerase cypA	Aspergillus niger
GR224186	LM	1	3.d	AAT77151	7.0E-20	mitochondrial cytochrome c oxidase assembly factor	Paracoccidioides brasiliensis
GR224199	LM/PF	2	3.d	NP_001134344	4.0E-06	p8 MTCP-1, enhances the phosphorylation and activation of AKT1 and AKT	Salmo salar
GR224236	LM/RM	2	3.d	XP_959599	3.0E-74	L-A virus GAG protein	Neurospora crassa
GR224298	LM/RM	2	3.d	AAC49417	1.0E-179	N-acetyltransferase kinase	Colletotrichum trifolii
GR224386	LM	1	3.d	XP_751767	3.0E-44	geranylgeranyl transferase type II alpha subunit	Aspergillus fumigatus
GR224497	LM	1	3.d	NP_013749	5.0E-11	catalytic subunit of the mitochondrial inner membrane peptidase complex, required for maturation of mitochondrial proteins of the intermembrane space; complex contains Imp1p and Imp2p	Saccharomyces cerevisiae
GR224543	LM	1	3.d	AAK77607	5.0E-131	protein O-mannosyl transferase dolichyl-phosphate mannosyltransferase polypeptide 2	Aspergillus awamori
GR224676	LM	1	3.d	XP_001556929	4.0E-29	dolichyl-phosphate mannosyltransferase polypeptide 2	Botryotinia fuckeliana
GR224760	LM	1	3.d	XP_001556929	3.0E-28	dolichyl-phosphate mannosyltransferase polypeptide 2	Botryotinia fuckeliana
GR224864	LM	1	3.d	XP_749371	3.0E-118	UDP-glucose:glycoprotein glucosyltransferase dolichyl-phosphate mannosyltransferase polypeptide 3	Aspergillus fumigatus
GR225078	LM	1	3.d	XP_001561084	5.0E-11	dolichyl-phosphate mannosyltransferase polypeptide 3	Botryotinia fuckeliana
Acc. No.	Library	No.	Function	Best match accession	E value	Description	Organisms
---------	---------	-----	----------	----------------------	---------	-------------	-----------
GR225110	LM	1	3.d	XP_001268279	2.0E-57	phosphotransferase enzyme family protein	Aspergillus clavatus
GR225267	LM	1	3.d	EDU45804	7.0E-53	dihydrolipoamide succinyltransferase	Pyrenophora triiti-repentis
GR225500	LM/RM	3	3.d	S71849	2.0E-78	peptidylprolyl isomerase (EC 5.2.1.8) A precursor, mitochondrial -cyclosporin fungus	Elaphocordyceps subsessilis
GR225609	RM	1	3.d	XP_001931420	1.0E-80	GPI ethanolamine phosphate transferase 2	Pyrenophora triiti-repentis
GR225636	RM	1	3.d	XP_752295	5.0E-125	protein phosphatase 2C	Aspergillus fumigatus
GR225806	RM	1	3.d	XP_001275202	6.0E-74	oligosaccharyl transferase subunit (gamma), putative	Aspergillus clavatus
GR225810	RM/PF	3	3.d	XP_750133	4.0E-41	prefoldin subunit 2	Aspergillus fumigatus
GR225866	RM	1	3.d	XP_749298	9.0E-48	MSF1 domain protein	Aspergillus fumigatus
GR225872	RM	2	3.d	XP_001728304	5.0E-81	peptidyl-prolyl cis-trans isomerase B precursor	Neurospora crassa
GR225895	RM	1	3.d	XP_751595	2.0E-22	prefoldin subunit 1	Aspergillus fumigatus
GR225961	RM	1	3.d	XP_001938168	1.0E-48	di-trans,poly-cis-decaprenylcistransferase ribosome biogenesis protein BRX1	Pyrenophora triiti-repentis
GR226032	RM/PF	4	3.d	XP_956973	5.0E-60	defective in culin neddylation protein 1	Neurospora crassa
GR226272	RF	1	3.d	XP_001936409	1.0E-24	mamnosylphosphate transferase (Mmm4)	Aspergillus fumigatus
GR226320	RF	1	3.d	XP_752633	9.0E-17	T-complex protein 1, beta subunit	Sclerotinia sclerotiorum
GR226612	RF	1	3.d	XP_001595013	4.0E-79	T-complex protein 1 subunit alpha	Neurospora crassa
GR226632	RF	1	3.d	XP_955906	6.0E-123	T-complex protein 1 subunit	Neurospora crassa
GR226924	PF	1	3.d	XP_959535	6.0E-85	dihydrolipoyl dehydrogenase, mitochondrial precursor	Neurospora crassa
GR226933	PF	3	3.d	XP_001267508	1.0E-35	2OG-Fe(II) oxygenase family oxidoreductase	Neurosartorya fischeri
GR227254	PF	1	3.d	XP_958274	2.0E-138	negative regulator of the PHO system	Neurospora crassa
GR227344	RM/RF/PF	3	3.d	EDP53478	4.0E-38	porphyromonas-type peptidyl-arginine deiminase superfamily	Aspergillus fumigatus
GR227356	PF	1	3.d	XP_001556929	5.0E-29	dolichyl-phosphate mannosyltransferase polypeptide 2	Botryotinia fuckeliana
GR227742	PF/LM	6	3.d	XP_001211750	5.0E-118	uroporphyrinogen decarboxylase	Aspergillus terreus
GR227892	PF	1	3.d	XP_748678	1.0E-16	transferase family protein	Aspergillus fumigatus
GR224462	LM	1	4.a	XP_001538108	8.0E-06	lysyl-RNA synthetase	Ajellomyces capsulatus
GR224557	LM	1	4.a	EDP56308	5.0E-58	prolyl-RNA synthetase	Aspergillus fumigatus
GR224755	LM/PF/RF	3	4.a	XP_956014	8.0E-48	isoleucyl-RNA synthetase	Neurospora crassa
GR224943	LM	1	4.a	XP_755187	4.0E-13	DNA directed RNA polymerase II 15 kDa subunit	Aspergillus fumigatus
GR225043	LM	1	4.a	XP_964988	3.0E-84	threonyl-RNA synthetase, mitochondrial precursor	Neurospora crassa
GR225058	LM	1	4.a	XP_956014	1.0E-121	isoleucyl-RNA synthetase, mitochondrial precursor	Neurospora crassa
GR225136	LM/PF	2	4.a	XP_001270015	1.0E-91	tryptophanyl-RNA synthetase	Aspergillus clavatus
GR225703	RM	1	4.a	XP_001259727	3.0E-12	cysteinyl-RNA synthetase	Neosartorya fischeri
GR225730	RM	63	4.a	XP_223920	2.0E-42	RNA-dependent RNA polymerase	Fusarium graminearum
GR226545	RF	1	4.a	XP_746724	2.0E-16	RNA polymerase I subunit Rpa43	Aspergillus fumigatus
GR226787	RF	1	4.a	CAD70445	8.0E-137	DNA-dependent RNA polymerase II RPB140 (RPB2)	Neurospora crassa

(Continued)
Acc. No.	Library	No.	Function	Best match accession	E value	Description	Organisms
GR227862	PF	3	4.a	XP_965008	2.0E-29	DNA-directed RNA polymerases I/II/III subunit 10	Neurospora crassa
GR228439	RM/PF	2	4.a	XP_965434	5.0E-61	DNA-directed RNA polymerase II 19 kDa polypeptide	Neurospora crassa
GR228645	PF	1	4.a	CAC28816	8.0E-37	related to DNA-directed RNA polymerase 13.3K chain	Neurospora crassa
GR224094	LM	1	4.b	Q7SDM8	4.0E-101	tRNA (His) guanylyltransferase (tRNA-histidine guanylyltransferase	Neurospora crassa
GR224163	RM/LM	5	4.b	XP_001215514	6.0E-28	small nuclear ribonucleoprotein E	Aspergillus terreus
GR224280	LM	1	4.b	XP_750523	3.0E-40	adoMet-dependent tRNA methyltransferase (MTase) complex subunitTrm112	Aspergillus fumigatus
GR224534	LM/RM/PF	4	4.b	XP_753424	4.0E-32	rRNA processing protein Ebp2	Pyrenophora tritici-repentis
GR225217	LM	1	4.b	EDU39847	5.0E-23	small nuclear ribonucleoprotein F	Pyrenophora tritici-repentis
GR225297	LM/PF/RM	9	4.b	NP_595747	2.0E-22	U6 snRNP-associated protein Lsm3	Schizosaccharomyces pombe
GR225731	RM	1	4.b	XP_001275883	5.0E-76	3′ exoribonuclease family protein	Aspergillus fumigatus
GR225773	RM	1	4.b	XP_001939332	6.0E-59	coiled-coil domain-containing protein 25	Pyrenophora tritici-repentis
GR225791	RM	1	4.b	XP_001222580	3.0E-69	ATP-dependent RNA helicase	Chaetomium globosum
GR225918	RM	1	4.b	XP_001932517	9.0E-08	WD repeat domain phosphoinositide-interacting protein 4	Pyrenophora tritici-repentis
GR225962	RM	1	4.b	XP_001222580	2.0E-22	ATP-dependent RNA helicase	Chaetomium globosum
GR226088	RM/RP/F	1	4.b	XP_752533	2.0E-24	small nuclear ribonucleoprotein Lsm8	Aspergillus fumigatus
GR226363	RM/RF	4	4.b	XP_001542609	3.0E-27	small nuclear ribonucleoprotein SmG	Ajellomyces capsulatus
GR226660	RF	1	4.b	ACB30143	8.0E-31	poly(A) RNA binding protein	Epichloë festucae
GR226813	PF	1	4.b	NP_499080	2.0E-15	SR Protein Kinase family member (spk-1)	Caenorhabditis elegans
GR226842	PF	1	4.b	NP_499080	5.0E-18	SR protein kinase family member (spk-1)	Caenorhabditis elegans
GR227687	PF	1	4.b	XP_368889	3.0E-37	small nuclear ribonucleoprotein LSM2	Magnaporthe grisea
GR227749	RM/PF	2	4.b	XP_755068	2.0E-10	R3H and G-patch domain protein	Aspergillus fumigatus
GR227931	PF	1	4.b	CAD21082	7.0E-18	RNA splicing factor Pad-1	Neurospora crassa
GR228046	PF	1	4.b	XP_570211	4.0E-34	WD-repeat protein protein required for cell viability Rrp17	Cryptococcus neoformans
GR228098	PF	2	4.b	XP_749086	6.0E-21	small nuclear ribonucleoprotein LSM2	Aspergillus fumigatus
GR224136	LM/RM/RF	4	4.c	XP_749463	2.0E-24	bZIP transcription factor	Aspergillus fumigatus
GR224213	PF/LM	4	4.c	XP_002147387	6.0E-17	C2H2 finger domain protein, putative	Penicillium marneffei
GR224394	LM/RM/PF	4	4.c	XP_568585	2.0E-33	zinc finger protein transcriptional activator hac1.	Cryptococcus neoformans
GR224471	LM	1	4.c	Q8TTF3	1.0E-17	retinoblastoma-binding protein	Hypocreanectria jeocorina
GR224483	LM	1	4.c	XP_001275208	4.0E-32	transcription regulator NOT2 family protein	Aspergillus clavatus
GR224484	LM	1	4.c	XP_001260584	8.0E-13	cutinase G-box binding protein	Neosartorya fischeri
GR224750	LM/PF/RF/ RM	7	4.c	AAB04132	1.0E-32	CBF/NF-Y family transcription factor, putative bromodomain associated	Nectria haematococca
GR224759	LM	3	4.c	XP_001274352	3.0E-26	CBF/NF-Y family transcription factor, putative bromodomain associated	Aspergillus clavatus
GR224803	LM	1	4.c	XP_001263017	4.0E-30	C6 finger domain protein, putative	Neosartorya fischeri
GR225117	LM	1	4.c	EDP54660	1.0E-12	C6 finger domain protein, putative	Aspergillus fumigatus

(Continued)
Appendix Table 1. (Continued)

Acc. No.	Library	No.	Function	Best match accession	E value	Description	Organisms
GR225133	LM/PF	4	4.c	XP_001543976	9.0E-38	transcription initiation factor	Ajellomyces capsulatus
GR225159	LM/PF	2	4.c	XP_001268279	9.0E-31	IIA gamma chain phosphotransferase enzyme family protein	Aspergillus clavatus
GR225360	LM	2	4.c	XP_001262376	4.0E-75	AN1 zinc finger protein	Neosartorya fischeri
GR225433	RM/RF	2	4.c	QP98W3	3.0E-37	Zinc finger transcription factor ace1 (ACEI)	Hypocrea jecorina
GR225559	RM	1	4.c	XP_750680	9.0E-21	telomere silencing protein	Aspergillus fumigatus
GR225675	RM	1	4.c	XP_001268655	8.0E-10	C6 transcription factor, putative	Aspergillus clavatus
GR225819	RM	1	4.c	BAE98264	4.0E-96	Zn(H)2Cys6 transcription factor	Fusarium oxysporum
GR225860	RM	1	4.c	XP_752776	2.0E-14	C2H2 finger domain protein	Aspergillus fumigatus
GR225862	RM	2	4.c	XP_747329	4.0E-88	C6 transcription factor	Aspergillus fumigatus
GR226013	RM	1	4.c	XP_755959	4.0E-46	C2H2 finger domain protein	Aspergillus fumigatus
GR226082	RM	1	4.c	XP_752934	7.0E-17	C6 finger domain protein	Aspergillus fumigatus
GR226114	RM	1	4.c	XP_749434	2.0E-08	MYB DNA-binding domain protein	Aspergillus fumigatus
GR226145	RM	1	4.c	CAB10530	8.0E-22	EREBP-4 like protein	Arabidopsis thaliana
GR226212	RM	1	4.c	XP_001933607	2.0E-25	AN1-type zinc finger protein	Pyrenophora tritici-repentis
GR226221	RM/LM	3	4.c	ACG48240	1.0E-42	transcription factor BTF3	Zea mays
GR226371	RF	1	4.c	CAE76512	5.0E-38	related to metallocregulatory protein	Neurospora crassa
GR226374	RF	1	4.c	XP_754595	2.0E-06	Cer4-Not transcription complex subunit (NOT1)	Aspergillus fumigatus
GR226408	RF	1	4.c	XP_001260614	9.0E-20	BAR domain protein	Neosartorya fischeri
GR226427	RF	1	4.c	XP_752988	2.0E-35	C6 transcription factor	Aspergillus fumigatus
GR226534	RF/RM/PF	6	4.c	A2QC41	2.0E-09	Mediator of RNA polymerase II transcription subunit 21	Aspergillus niger
GR226855	LM/RM/RF/PF	17	4.c	XP_751209	1.0E-19	RNA binding protein	Aspergillus fumigatus
GR227007	LM/RM/RF/PF	51	4.c	ABL74239	1.0E-60	RBP(RNA binding protein)	Beauveria bassiana
GR227202	PF	2	4.c	BAD93190	1.0E-21	transcription factor ATFA	Aspergillus oryzae
GR227306	RM/PF	3	4.c	XP_001258430	2.0E-17	SNF2 family N-terminal domain protein	Neosartorya fischeri
GR227562	RM/PF	2	4.c	XP_752200	5.0E-35	progesterone binding protein	Aspergillus fumigatus
GR227567	RM/PF	2	4.c	XP_001939724	9.0E-06	negative regulator of differentiation 1	Pyrenophora tritici-repentis
GR227828	PF	2	4.c	XP_665702	7.0E-05	G10 protein	Cryptosporidium hominis
GR227845	PF	2	4.c	XP_001272121	2.0E-09	GATA transcription factor LreB	Aspergillus clavatus
GR227973	PF	1	4.c	EDP52723	5.0E-25	Cer4-Not transcription complex subunit (NOT1), putative	Aspergillus fumigatus
GR228139	PF	1	4.c	XP_001213918	8.0E-11	pH-response transcription factor pacC/RIM101	Aspergillus terreus
GR228498	PF	1	4.c	ABL74239	4.0E-56	RBP (RNA binding protein)	Beauveria bassiana
GR228607	PF	1	4.c	XP_001275933	1.0E-12	C2H2 finger domain protein, putative	Aspergillus clavatus
GR224828	LM	1	5.a	NP_014333	1.0E-30	Cell wall protein related to glucanases, possibly involved in cell wall septation; member of the SUN family; Sun4p	Saccharomyces cerevisiae
GR224905	LM/RM/RF/PF	19	5.a	XP_001934729	5.0E-29	GPI-anchored cell wall organization protein Ecm33	Pyrenophora tritici-repentis
GR225342	LM	1	5.a	AAL78814	5.0E-90	class V chitinase	Hypocrea virens
GR226256	RM	1	5.a	XP_001215000	7.0E-61	sphingolipid long chain base-responsive protein PIL1	Aspergillus terreus
GR226742	RF	1	5.a	XP_001266137	5.0E-27	LysM domain protein	Neosartorya fischeri
GR228648	RM/PF	2	5.a	XP_749757	2.0E-92	oligosaccharyl transferase subunit (gamma)	Aspergillus fumigatus

(Continued)
Acc. No.	Library	No.	Function	Best match accession	E value	Description	Organisms
GR224419	LM	6		XP_653447	5.0E-08	viral A-type inclusion protein repeat, putative	Entamoeba histolytica
GR224475	LM/RF/RM	9		XP_961133	4.0E-157	actin	Neurospora crassa
GR224662	LM	1		XP_001262492	2.0E-106	nuclear envelope protein Brr6, putative	Neosartorya fischer
GR224742	LM/RM	13		CAC85551	2.0E-156	beta tubulin	Cordyceps bassiana
GR224838	LM/RF/RF	4		X_P_749087	1.0E-37	tropomyosin	Aspergillus fumigatus
GR224857	LM	1		CAC85618	2.0E-115	beta-tubulin	Blumeria graminis
GR225171	LM	1		XP_391032	3.0E-72	ARP3_NEUCR actin-like protein 3	Gibberella zeae
GR225220	LM/RM/PF	13		XP_001931556	2.0E-44	coflin	Pyrenophora tritici-repentis
GR225289	LM	3		XP_001247626	4.0E-67	probable F-actin capping protein alpha subunit	Coccidioides immitis
GR225469	RM/RF	7		XP_001323413	2.0E-07	ankyrin repeat protein	Trichomonas vaginalis
GR225587	RM	1		XP_653447	2.0E-07	viral A-type inclusion protein repeat, putative	Entamoeba histolytica
GR225612	PF/RM/LM	8		P_655659	2.0E-71	ARP (actin-related protein) 2/3 complex 20 kDa subunit	Neurospora crassa
GR225743	RM	1		NP_001128241	1.0E-05	actin, gamma 1	Pan troglodytes
GR225921	PF/RM	5		P_753773	2.0E-28	integral membrane protein	Aspergillus fumigatus
GR225945	RM	1		XP_001075107	2.0E-07	PREDICTED: similar to filaggrin 2	Rattus norvegicus
GR225968	RM	1		XP_001247194	1.0E-120	finbrin	Coccidioides immitis
GR226192	RM/RF	2		XP_652359	3.0E-67	myosin regulatory light chain cdc4	Neurospora crassa
GR226362	RF	1		XP_001940723	2.0E-07	integral membrane protein	Pyrenophora tritici-repentis
GR226418	RF	2		CAC85551	1.0E-153	beta tubulin	Cordyceps bassiana
GR226499	LM/RF/RM	15		ACB47222	2.0E-59	microtubule-associated protein	Gibberella zeae
GR227167	PF	5		CAL35988	2.0E-22	myosin class II heavy chain (ISS)	Ostreococcus tauri
GR227916	PF	4		XP_001323413	4.0E-06	ankyrin repeat protein	Trichomonas vaginalis
GR224502	LM	1		XP_754824	6.0E-103	cell surface spherulin 4-like protein	Aspergillus fumigatus
GR224929	LM/PF	28		P80544	5.0E-30	plasmin-sensitive surface protein (cell-wall protein)	Staphylococcus aureus
GR224936	LM	1		P80544	7.0E-16	plasmin-sensitive surface protein (cell-wall protein)	Staphylococcus aureus
GR224939	LM	1		P80544	1.0E-20	plasmin-sensitive surface protein (cell-wall protein)	Staphylococcus aureus
GR224948	LM	1		P80544	5.0E-15	plasmin-sensitive surface protein (cell-wall protein)	Staphylococcus aureus
GR224951	LM	4		P80544	2.0E-26	surface protein SdrI	Staphylococcus aureus
GR224955	LM	1		P80544	1.0E-14	plasmin-sensitive surface protein (cell-wall protein)	Staphylococcus aureus
GR225083	LM	2		XP_001268510	4.0E-54	extracellular proline-serine rich protein	Aspergillus clavatus
GR225184	LM/PF	8		CAL38822	7.0E-14	surface protein 1	Glomerella lindeemuthiana
GR226047	RM	1		XP_001012930	1.0E-27	von Willebrand factor type A domain containing protein	Tetrahymena theRMophila
GR226110	RM/PF/RF	4		XP_754260	2.0E-08	extracellular serine-rich protein	Aspergillus fumigatus
GR226267	RF	2		P80544	3.0E-19	plasmin-sensitive surface protein (cell-wall protein)	Staphylococcus aureus
GR226397	RF	1		P80544	2.0E-15	plasmin-sensitive surface protein (cell-wall protein)	Staphylococcus aureus
GR226680	RF	1		XP_001308251	9.0E-05	flocculin, putative	Trichomonas vaginalis
GR226718	LM/RF	5		ABS59365	1.0E-14	hydrophobin	Trichoderma atrovireide
GR226746	RF	1		P80544	1.0E-14	plasmin-sensitive surface protein (cell-wall protein)	Staphylococcus aureus
GR226864	PF	1		P80544	3.0E-23	plasmin-sensitive surface protein (cell-wall protein)	Staphylococcus aureus
GR226870	PF	4		P80544	2.0E-11	plasmin-sensitive surface protein (cell-wall protein)	Staphylococcus aureus
Acc. No.	Library	No.	Function	Best match accession	E value	Description	Organisms
-----------	---------	-----	----------	----------------------	---------	--	-----------------------
GR226883	PF	1	5.c	P80544	2.0E-17	plasmin-sensitive surface protein (cell-wall protein)	Staphylococcus aureus
GR227035	PF	1	5.c	P80544	6.0E-16	plasmin-sensitive surface protein (cell-wall protein)	Staphylococcus aureus
GR227054	PF/RF	4	5.c	P80544	4.0E-24	plasmin-sensitive surface protein (cell-wall protein)	Staphylococcus aureus
GR227057	PF	1	5.c	P80544	6.0E-17	plasmin-sensitive surface protein (cell-wall protein)	Staphylococcus aureus
GR227112	PF	1	5.c	P80544	3.0E-21	plasmin-sensitive surface protein (cell-wall protein)	Staphylococcus aureus
GR227134	PF	1	5.c	P80544	1.0E-20	plasmin-sensitive surface protein (cell-wall protein)	Staphylococcus aureus
GR227227	PF	1	5.c	P80544	2.0E-18	plasmin-sensitive surface protein (cell-wall protein)	Staphylococcus aureus
GR227443	PF	2	5.c	XP_001264121	1.0E-27	GPI anchored protein, putative	Neosartorya fischeri
GR227535	PF	1	5.c	P80544	3.0E-21	plasmin-sensitive surface protein (cell-wall protein)	Staphylococcus aureus
GR227708	PF	2	5.c	P80544	3.0E-05	plasmin-sensitive surface protein (cell-wall protein)	Staphylococcus aureus
GR227820	PF	3	5.c	P80544	1.0E-13	plasmin-sensitive surface protein (cell-wall protein)	Staphylococcus aureus
GR227824	PF	2	5.c	P80544	4.0E-14	plasmin-sensitive surface protein (cell-wall protein)	Staphylococcus aureus
GR227852	PF	1	5.c	P80544	3.0E-18	plasmin-sensitive surface protein (cell-wall protein)	Staphylococcus aureus
GR227966	PF	1	5.c	P80544	8.0E-23	plasmin-sensitive surface protein (cell-wall protein)	Staphylococcus aureus
GR227979	RM/RF/PF	17	5.c	P80544	8.0E-28	plasmin-sensitive surface protein (cell-wall protein)	Staphylococcus aureus
GR227994	PF	4	5.c	P80544	3.0E-26	plasmin-sensitive surface protein (cell-wall protein)	Staphylococcus aureus
GR228010	PF	1	5.c	P80544	6.0E-24	plasmin-sensitive surface protein (cell-wall protein)	Staphylococcus aureus
GR228490	PF	1	5.c	AAY66752	2.0E-05	ixodegrin-2A RGD containing protein	Ixodes scapularis
GR228602	PF	7	5.c	P80544	4.0E-22	plasmin-sensitive surface protein (cell-wall protein)	Staphylococcus aureus
GR224109	LM	1	5.d	XP_755859	3.0E-63	small oligopeptide transporter, OPT family	Aspergillus fumigatus
GR224116	LM/RM	2	5.d	XP_002171360	3.0E-66	pantothenate transporter	Schizosaccharomyces japonicus
GR224127	LM	1	5.d	XP_001598344	5.0E-56	GDP-mannose transporter	Sclerotinia sclerotiorum
GR224185	LM	1	5.d	XP_001260799	1.0E-73	MFS transporter, putative	Neosartorya fischeri
GR224250	LM	1	5.d	XP_001210923	7.0E-127	mitochondrial phosphate carrier protein	Aspergillus terreus
GR224686	LM	1	5.d	XP_369559	1.0E-69	plasma membrane zinc ion transporter, putative	Magnaporthe grisea
GR224783	LM	1	5.d	XP_381275	7.0E-55	RAN_BRUMA GTP-binding nuclear protein RAN/TC4	Gibberella zeae
GR224815	LM	1	5.d	XP_001265432	4.0E-95	Ras GTPase Rab11, putative	Neosartorya fischeri
GR224918	LM	1	5.d	ABG78607	2.0E-26	RING-5	Gibberella zeae
GR224972	LM	2	5.d	XP_001728212	4.0E-18	mitochondrial import inner membrane translocale subunit tim8	Neurospora crassa
GR225105	LM/PF	3	5.d	XP_002174319	1.0E-118	protein transport protein SEC23	Neurospora crassa
GR225223	LM/RM	2	5.d	XP_364530	1.0E-81	glycolipid transfer protein HET-C	Magnaporthe grisea
GR225330	LM	1	5.d	XP_957678	3.0E-100	protein transport protein SEC13	Neurospora crassa
Acc. No.	Library	No.	Function	Best match accession	E value	Description	Organisms
---------	---------	-----	----------	----------------------	---------	-------------	-----------
GR225388	LM	1	5.d	XP_001274130	4.0E-33	phosphatidylinositol transporter, putative	Aspergillus clavatus
GR225445	RM	4	5.d	XP_001269052	6.0E-91	MFS transporter, putative	Aspergillus clavatus
GR225522	RM	1	5.d	XP_749930	1.0E-43	MFS transporter	Aspergillus fumigatus
GR225527	RM	1	5.d	ABD17825	1.0E-13	oligopeptide transporter 4	Candida albicans
GR225680	RM	1	5.d	NP_491412	7.0E-13	acyl-coenzyme A binding protein family member (acbp-1)	Caenorhabditis elegans
GR225758	RM	3	5.d	XP_001218345	8.0E-11	high-affinity nickel transport protein	Aspergillus terreus
GR225881	LM/RM	3	5.d	XP_963201	2.0E-110	ADP, ATP carrier protein	Neurospora crassa
GR225955	RM	1	5.d	XP_746960	1.0E-15	MFS transporter	Aspergillus fumigatus
GR225977	PF/RM/RF	8	5.d	ABD17825	1.0E-13	oligopeptide transporter 4	Candida albicans
GR226264	RF	1	5.d	XP_001885161	5.0E-17	MFS polypeptide transporter	Laccaria bicolor
GR226341	RF	1	5.d	AA590992	2.0E-16	MFS aflatoxin efflux pump	Aspergillus flavus
GR226377	RF	1	5.d	AAF64435	5.0E-31	DHA14-like major facilitator	Botryotinia fuckeliana
GR226412	RF	1	5.d	XP_001260988	9.0E-40	small oligopeptide transporter, OPT family	Neosartorya fischeri
GR226482	RF	1	5.d	XP_001931051	2.0E-105	mitochondrial 2-oxodicarboxylate carrier 2	Pyrenophora triticica-repentis
GR226526	RF	1	5.d	XP_963201	1.0E-21	amino acid permease 2	Pyrenophora triticica-repentis
GR226665	RF/LM	3	5.d	XP_001540563	5.0E-91	BET3 family protein	Aspergillus fumigatus
GR226821	RF	1	5.d	XP_001931051	2.0E-110	SEC61 gamma subunit-like protein	Magnaporthe grisea
GR226987	PF	1	5.d	AAW69344	2.0E-20	major facilitator superfamily transporter	Magnaporthe grisea
GR227146	PF	1	5.d	ACC64449	5.0E-49	major facilitator superfamily transporter	Neosartorya fischeri
GR227168	PF	1	5.d	XP_001258151	5.0E-42	maltose permease	Neosartorya fischeri
GR227174	PF	1	5.d	XP_754815	3.0E-74	GABA permease GabA	Aspergillus fumigatus
GR227251	PF	1	5.d	XP_001264732	9.0E-48	ABC multidrug transporter, putative	Neosartorya fischeri
GR227300	PF	1	5.d	XP_001270534	1.0E-08	MFS transporter, putative	Aspergillus fumigatus
GR227454	RM/RF/PF	5	5.d	XP_001264763	1.0E-72	vesicle-mediated transport protein Vd24, putative	Neosartorya fischeri
GR227516	PF	1	5.d	XP_001258397	5.0E-41	mitochondrial carrier protein, putative	Neosartorya fischeri
GR227836	RM/PF	5	5.d	NP_595426	1.0E-51	NST UDP-N-acetylglucosamine transporter	Schizosaccharomyces
GR228170	PF	1	5.d	XP_001273915	1.0E-89	CorA family metal ion transporter, putative	Magnaporthe grisea
GR228329	PF	1	5.d	AAO49453	3.0E-79	major facilitator superfamily transporter	Neosartorya fischeri
GR228514	PF	2	5.d	AAX98686	3.0E-18	L-arabinose transporter	Ambrosiozyma monospora
GR224454	LM	1	5.e	XP_001549190	1.0E-48	mitochondrial import receptor subunit TOM40	Botryotinia fuckeliana
GR224540	LM	1	5.e	XP_957481	1.0E-94	coatomer beta subunit	Neurospora crassa
GR224608	LM	1	5.e	XP_001544767	6.0E-104	coatomer beta subunit	Neosartorya fischeri
GR224704	LM/RF	2	5.e	XP_961277	3.0E-168	AP-1 complex subunit gamma-1	Neurospora crassa
GR224743	LM/RF	4	5.e	XP_001931051	3.0E-43	SNARE complex subunit (Syn8)	Pyrenophora triticica-repentis
GR224986	LM	1	5.e	XP_001540563	1.0E-136	coatomer alpha subunit	Neosartorya fischeri
GR225152	LM/RF	2	5.e	XP_001260516	3.0E-12	AP-2 adaptor complex subunit beta, putative	Neosartorya fischeri
GR225156	LM/RF	5	5.e	XP_361669	1.0E-93	RAS small monomeric GTPase Rab6	Magnaporthe grisea
GR225162	LM/RF	3	5.e	XP_637974	8.0E-11	Ran GTPase binding protein	Dictyostelium discoideum
Appendix Table 1. (Continued)

Acc. No.	Library	No.	Function	Best match accession	E value	Description	Organisms
GR225235	LM	1		O94111	6.0E-37	dynein light chain, cytoplasmic (8 kDa cytoplasmic dynein light chain)	Emericella nidulans
GR225302	LM	1		BAF36375	2.0E-29	v-SNARE	Aspergillus oryzae
GR225314	LM	1		XP_959517	7.0E-71	exportin-1	Neurospora crassa
GR225338	LM	1		EDU42664	2.0E-43	chloride channel protein 3	Pyrenophora tritici-repentis
GR225425	RM	1		XP_001208943	2.0E-142	coatomer alpha subunit	Aspergillus terreus
GR225435	RM/RM/RM/RF/PF	19		XP_001538550	7.0E-44	nuclear transport factor 2	Botryotinia fuckeliana
GR225445	RM	1		XP_753522	4.0E-25	COP1-coated vesicle protein	Aspergillus fumigatus
GR225518	RM	1		AAC184188	2.0E-125	coatomer alpha subunit	Aspergillus nidulans
GR225533	RM	1		XP_001933231	5.0E-56	clathrin light chain	Pyrenophora tritici-repentis
GR225542	RM	1		XP_001246273	2.0E-85	trafficking protein particle complex subunit 2, putative rab GDP-dissociation inhibitor	Neurospora crassa
GR225640	RM/PF	5		XP_957338	3.0E-83	Golgi membrane protein (Rer1)	Neurospora crassa
GR225808	RM	1		XP_001592488	4.0E-81	endosomal P24B protein	Sclerotinia sclerotiorum
GR225949	RM	1		XP_369779	2.0E-14	ER membrane protein channel protein (Wsc4)	Aspergillus fumigatus
GR226104	RM	1		Q5YCW8	1.0E-54	chitin synthase export chaperone	Fusarium oxysporum
GR226113	RM	1		XP_001494104	3.0E-75	coatomer zeta subunit	Botryotinia fuckeliana
GR226165	PF/RM/LM	4		XP_748017	4.0E-78	endosomal cargo receptor (Erp3)	Aspergillus fumigatus
GR226171	RM	1		XP_754900	4.0E-06	plasma membrane channel protein (Aqy1)	Aspergillus fumigatus
GR226251	RM	1		XP_756483	1.0E-52	ER membrane protein (Wsc4)	Aspergillus fumigatus
GR226342	RF	1		XP_386822	2.0E-89	SAR1_TRIRE GTP-binding protein SAR1	Gibberella zeae
GR226713	RF/PF	3		XP_001260746	1.0E-98	vesicular-fusion protein sec17	Neosartorya fischeri
GR226937	RM/PF	2		XP_001440147	8.0E-71	AP-2 complex subunit sigma	Pyrenophora tritici-repentis
GR227029	PF	1		XP_001545795	3.0E-07	sorting nexin-like protein	Botryotinia fuckeliana
GR227141	PF	2		XP_961017	3.0E-61	protein yop-1 (YIP1 partner precursor)	Neurospora crassa
GR227221	PF	1		XP_001541792	1.0E-15	mitochondrial intermembrane space translocase subunit	Ajellomyces capsulatus
GR227407	RM/PF	2		CAD36979	1.0E-84	related to the member of the syntaxin family of t-SNAREs TLG2	Neurospora crassa
GR227481	PF	1		XP_001273433	4.0E-94	mRNA transport regulator (Mtr10), putative	Aspergillus clavatus
GR227767	PF	2		XP_956972	5.0E-92	GTP-binding protein ypt3	Neurospora crassa
GR227949	RF/PF	3		XP_750622	2.0E-53	endosomal cargo receptor (Erv1)	Aspergillus fumigatus
GR228326	RM/PF	2		CAC28785	3.0E-112	probable gamma-adaptin precursor	Neurospora crassa
GR228590	PF	1		XP_752998	2.0E-74	vacuolar protein sorting-associated protein Vps28	Aspergillus fumigatus
GR224089	LM	1		AAP92916	3.0E-25	putative serine/threonine phosphatase 2C ptc2	Hypocrea fectoria

(Continued)
Appendix Table 1. (Continued).

Acc. No.	Library	No.	Function	Best match accession	E value	Description	Organisms
GR224256	LM	7	5.f	XP_001266933	5.0E-89	Aha1 domain family, activator of Hsp90 ATPase (Gtr2)	Neosartorya fischeri
GR224368	LM	1	5.f	XP_753016	3.0E-61	small monomeric GTPase	Aspergillus fumigatus
GR224376	LM	1	5.f	XP_001262922	9.0E-20	protein kinase, putative	Neosartorya fischeri
GR224526	LM	1	5.f	XP_001271996	4.0E-76	Aha1 domain family	Aspergillus clavatus
GR224664	LM	1	5.f	XP_001262922	3.0E-24	protein kinase, putative	Neosartorya fischeri
GR224710	RM/LM	2	5.f	AAT40588	2.0E-28	cellulose signalling associated protein	Hypocrea jecorina
GR224712	LM/PM	11	5.f	XP_001932744	8.0E-111	Aha1 domain family	Pyrenophora tritici-repentis
GR224736	LM	1	5.f	XP_001266933	4.0E-73	Aha1 domain family	Neosartorya fischeri
GR224856	LM/RM	6	5.f	XP_002145004	4.0E-41	GMF family protein, Glia maturation factor	Penicillium marneffei
GR225013	LM	2	5.f	XP_001276085	6.0E-72	Rho small monomeric GTPase RhoA	Aspergillus clavatus
GR225229	LM/RM	2	5.f	XP_001932161	2.0E-41	AhpC/TSA family protein related to dock180 protein	Pyrenophora tritici-repentis
GR225255	LM	2	5.f	CAE75725	4.0E-84	16 kDa allergen	Neurospora crassa
GR225263	LM/RM/PF	17	5.f	ABP04053	7.0E-41	phosphoinositide phosphatase (Sac1), putative	Penicillium chrysogenum
GR225308	LM	1	5.f	XP_001271698	3.0E-58	related to dock180 protein	Aspergillus clavatus
GR225318	LM	2	5.f	YP_612174	3.0E-13	metabolic phospholipid phosphodiesterase	Silicibacter sp
GR225663	RM	1	5.f	XP_753908	9.0E-48	COP9 signalosome subunit 6 (CsnF)	Aspergillus fumigatus
GR225664	RM	3	5.f	AAT40588	6.0E-29	cellulose signalling associated protein	Hypocrea jecorina
GR225715	RM	1	5.f	XP_001589707	1.0E-66	casein kinase I	Sclerotinia sclerotiorum
GR225744	RM	1	5.f	XP_750248	9.0E-71	SAM domain protein	Aspergillus fumigatus
GR225765	RM/PF	4	5.f	AAR90465	1.0E-05	serine/threonine kinase	Leptosphaeria maculans
GR225767	RM	1	5.f	XP_001549877	1.0E-16	septum-promoting GTP-binding protein	Botrytis cinerea
GR225772	RM	2	5.f	Q875L0	1.0E-142	mitogen-activated protein kinase HOG1 (MAP kinase HOG1)	Cryphonectria parasitica
GR225781	RM	3	5.f	BAF63216	1.0E-108	Rho1, small GTPase-binding protein	Cordyceps militaris
GR225795	RM	1	5.f	XP_568762	3.0E-34	serine/threonine kinase receptor associated protein	Cryptococcus neofoRman
GR225800	RM	1	5.f	XP_001932536	4.0E-23	phosphotransferase enzyme family protein	Pyrenophora tritici-repentis
GR225845	RM	1	5.f	CAD70304	1.0E-64	related to 3-phosphoinositide dependent protein kinase-1 (PDK1)	Neurospora crassa
GR226006	RM	1	5.f	XP_001271026	2.0E-84	GTPase activating protein	Aspergillus clavatus
GR226039	RM	1	5.f	ABQ00173	8.0E-33	G-protein coupled receptor	Trichoderma atroviride
GR226075	RM	1	5.f	XP_001935440	3.0E-44	rho-type GTPase-activating protein 2	Pyrenophora tritici-repentis
GR226225	LM/PF	8	5.f	XP_001267009	8.0E-77	calcineurin subunit B (protein phosphatase 2B regulatory subunit) (calcineurin regulatory subunit)	Neosartorya fischeri
GR226230	LM/RM/PF	5	5.f	P87072	1.0E-89	calcineurin subunit B (protein phosphatase 2B regulatory subunit) (calcineurin regulatory subunit)	Neurospora crassa
GR226234	RM	1	5.f	BAA24436	3.0E-07	tenascin-X	Mus musculus
GR226297	RF	1	5.f	XP_001935066	2.0E-33	Rho guanylate nucleotide exchange factor	Pyrenophora tritici-repentis
GR226314	RF	1	5.f	Q86ZN7	3.0E-39	cAMP-dependent protein kinase regulatory subunit (PKA regulatory subunit)	Trichoderma atroviride
GR226326	RF	1	5.f	XP_001265166	2.0E-36	SAM (sterile alpha motif) domain protein	Neosartorya fischeri
GR226596	RF	1	5.f	XP_001221847	1.0E-24	guanine nucleotide-binding protein gamma subunit	Chaetomium globosum

(Continued)
Acc. No.	Library	No.	Function	Best match accession	E value	Description	Organisms
GR226687	RF	1	5.f	AAK31624	2.0E-07	GTPase CDC42	Colletotrichum trifolii
GR226693	RF	1	5.f	ABD49713	7.0E-09	RAB/GTPase	Metarhizium anisopliae
GR226762	RF	1	5.f	XP_951695	8.0E-07	protein kinase	Trypanosoma brucei
GR226800	RF	1	5.f	XP_001940921	4.0E-83	ser/Thr protein phosphatase family protein	Pyrenophora tritici-repentis
GR226829	PF	2	5.f	XP_001305515	9.0E-09	CAMK family protein kinase subunit 2	Trichomonas vaginalis
GR226948	PF	1	5.f	XP_965733	1.0E-05	COP9 signalosome complex	Neurospora crassa
GR227119	PF	1	5.f	CAD21202	5.0E-18	related to transforming protein rho	Neurospora crassa
GR227339	PF	1	5.f	EDP50431	2.0E-62	GTPase activating protein (Gyp5), putative	Aspergillus fumigatus
GR227527	PF	1	5.f	AAG03077	4.0E-32	calcium-related spray protein	Neurospora crassa
GR227575	PF	2	5.f	XP_001265765	6.0E-18	signal recognition particle 14KD protein, putative	Neurosartorya fischeri
GR227652	PF	1	5.f	AAA40934	3.0E-70	casein kinase I delta	Rattus norvegicus
GR227679	PF	2	5.f	BAF36499	6.0E-103	Rho-related protein RacA	Epichloe festucae
GR227789	PF	1	5.f	AAR19207	3.0E-99	MAP kinase kinase 1	Podospora anserina
GR227846	PF	1	5.f	XP_001211499	3.0E-42	COP9 signalosome complex subunit 5	Aspergillus terreus
GR227907	PF	1	5.f	XP_001270095	2.0E-60	camp independent regulatory protein	Aspergillus clavatus
GR228114	LM/PF/RF	8	5.f	XP_381190	8.0E-99	ARF_AJECA ADP-RIBOSYLATION FACTOR	Gibberella zeae
GR228119	RM/PF	2	5.f	AAD15987	1.0E-141	regulatory B subunit	Neurospora crassa
GR228196	PF	1	5.f	EDP51958	2.0E-95	Rho guanyl nucleotide exchange factor (Rom2), putative	Aspergillus fumigatus
GR228391	PF	1	5.f	CAD21199	5.0E-22	related to aimless RasGEF (aleA)	Neurospora crassa
GR228524	RM/PF	2	5.f	Q5BD89	8.0E-50	COP9 signalosome complex subunit 1 (CSN complex subunit 1)	Emericella nidulans
GR228547	PF	1	5.f	ABG66306	1.0E-39	regulatory subunit of protein kinase A	Colletotrichum gloeosporioides
GR225352	LM	3	6.a	AAW66450	4.0E-180	Septin 5	Coccidioides posadasii
GR225617	RM	1	6.a	XP_955871	6.0E-134	cell division control protein 10	Neurospora crassa
GR225787	LM/PF/RF/RM	9	6.a	XP_001226350	4.0E-171	guanine nucleotide-binding protein beta subunit-like protein	Chaetomium globosum
GR225997	RM	1	6.a	XP_001265820	2.0E-88	meiotic regulator-interacting protein, putative	Neosartorya fischeri
GR226111	RM	1	6.a	XP_755503	2.0E-05	Mob1 family protein	Aspergillus fumigatus
GR227117	PF	1	6.a	XP_001735693	3.0E-11	cell division control protein 15, CDC15, putative	Entamoeba dispar
GR224911	LM	1	6.b	AAQ02689	2.0E-44	meiosis-specific topoisomerase Spo11	Sordaria macrospora
GR225072	LM/RM	2	6.b	XP_959442	5.0E-46	histone H2A	Neurospora crassa
GR225545	RM/LM	3	6.b	XP_001243946	1.0E-37	histone H4	Coccidioides immitis
GR225711	LM/RM	4	6.b	CAD70303	9.0E-68	related to SWI/SNF complex 60 KDa subunit	Neurospora crassa
GR226448	RF	1	6.b	XP_750809	1.0E-32	SIR2 family histone deacetylase	Aspergillus fumigatus
GR228159	LM/RM/PF	9	6.b	BAD90802	3.0E-68	histone 3	Coniopteris acuta
GR226158	LM/RM	5	6.c	XP_751565	3.0E-10	DNA repair protein Rad1	Aspergillus fumigatus
GR224591	LM/RM/RF	9	6.d	AAW66612	3.0E-55	HEX1_EMENI Woronin body major protein	Ophiostoma flocosum
GR224812	LM	1	6.d	XP_752563	4.0E-58	mitochondrial dynamin GTPase (Msp1)	Aspergillus fumigatus
Acc. No.	Library No.	Function No.	Best match accession	E value	Description	Organisms	
---------------	-------------	--------------	----------------------	---------	---	--------------------------------	
GR225271	LM/RF/PF	3	6.d	XP_956015	2.0E-108 conidiophore development protein hymA	Neurospora crassa	
GR225589	RM	1	6.e	NP_001002887	7.0E-06 paternally expressed 3	Bos taurus (cattle)	
GR225674	RM	1	6.e	EAW94604	1.0E-33 spermatogenesis associated 20, isofoRM CRA_b	Homo sapiens	
GR227387	PF	2	6.d	XP_001264672	2.0E-71 Mago nashi domain protein	Neosartorya fischeri	
GR224923	LM	1	6.f	XP_960686	2.0E-19 clock-controlled protein 6	Neurospora crassa	
GR225357	PF/LM	4	6.f	XP_960686	2.0E-19 clock-controlled protein 6	Neurospora crassa	
GR227238	RM/PF	2	6.f	XP_960686	3.0E-08 clock-controlled protein 6	Neurospora crassa	
GR228131	PF	2	6.g	XP_753708	2.0E-63 Bax Inhibitor family protein	Aspergillus fumigatus	
GR224197	LM	1	7.a	ABK56833	6.0E-05 elicitor protein	Magnaporthe grisea	
GR224354	RF/LM	2	7.a	XP_001210911	2.0E-48 heat shock protein HSP98	Aspergillus terreus	
GR224453	LM	1	7.a	ABD49719	3.0E-11 heat shock protein 30	Metarhizium antispheae	
GR224629	LM	1	7.e	AAL77224	3.0E-27 thioredoxin II	Podospora anserina	
GR224634	LM	1	7.e	CAC28808	2.0E-117 related to tetracycline efflux protein	Neurospora crassa	
GR224699	PF/LM/RM	8	7.a	ACB30155	1.0E-48 aminoglycoside phosphotransferase	Epichloe festucae	
GR224751	LM/RM/PF	3	7.a	XP_001597950	1.0E-19 glucose repressible protein Grg1	Sclerotinia sclerotiorum	
GR22503	LM	3	7.a	XP_001225918	2.0E-11 heat shock 70 kDa protein	Chaetomium globosum	
GR225138	LM/PF	4	7.a	CAK54362	2.0E-39 rapamycin binding protein FKB12	Gibberella fujikuroi	
GR225211	LM	1	7.a	XP_961753	1.0E-89 heat shock 70 kDa protein, mitochondrial precursor	Neurospora crassa	
GR225282	LM/RF	2	7.a	XP_001266956	4.0E-20 stress responsive A/B barrel domain protein	Neosartorya fischeri	
GR225585	RM	2	7.a	XP_956748	1.0E-74 nuclear protein SNF4	Neurospora crassa	
GR225925	PF/LM/RM	13	7.a	XP_001931291	3.0E-41 DnaJ domain protein Psi	Pyrenophora tritici-repensis	
GR225956	RM	1	7.a	XP_001273319	2.0E-28 stress responsive A/B barrel domain protein	Aspergillus clavatus	
GR226070	RM/RF	3	7.a	XP_001591945	4.0E-180 heat shock protein 90	Sclerotinia sclerotiorum	
GR226127	RM	1	7.a	XP_001271053	3.0E-09 stress response protein (Ish1), putative	Aspergillus clavatus	
GR226209	RM	1	7.a	XP_001692162	3.0E-12 DnaJ-like protein	Chlamydomonas reinharditii	
GR226328	LM/RM/RF/PF	7	7.a	XP_754386	3.0E-21 stress response RCI peptide	Aspergillus fumigatus	
GR226388	RF	1	7.a	XP_001481437	2.0E-15 Hsp70 family chaperone	Aspergillus fumigatus	
GR226401	RF	1	7.a	AAM73769	8.0E-50 stress response element	Trichoderma atroviride	
GR226504	RF	1	7.a	XP_753264	4.0E-30 Hsp90 binding co-chaperone (Sba1)	Aspergillus fumigatus	
GR226819	PF	2	7.a	XP_203356	2.0E-07 orf261 (related to DNA repair)	Mortierella verticillata	
GR227936	RM/PF	2	7.a	XP_959180	9.0E-125 Amphilphys-like, reduced viability upon starvation protein rvs167p	Neurospora crassa	
GR227939	PF	1	7.a	XP_001266719	3.0E-42 unfolded protein response	Neosartorya fischeri	
GR228520	PF/RM	2	7.a	XP_001481437	2.0E-34 Hsp70 family chaperone	Aspergillus fumigatus	
GR228692	PF	1	7.a	XP_753236	1.0E-21 glucose repressible protein Grg1	Aspergillus fumigatus	
GR224680	LM	1	7.b	EDP50118	1.0E-61 epoxide hydrolase, putative	Aspergillus fumigatus	
GR225234	LM	2	7.b	XP_001593991	5.0E-47 peroxiredoxin	Sclerotinia sclerotiorum	
GR227203	PF	1	7.b	ZP_00378594	6.0E-110 catalase/peroxidase HPI	Burkholderia abonensis Bu	
GR223094	LM/PF	3	7.c	ABE97921	4.0E-05 snodprot2	Hypocrea virens	
GR228625	PF	1	7.c	XP_001269050	3.0E-12 transposase	Aspergillus clavatus	
GR226603	RF	1	8	CAB56797	5.0E-39 equisetin synthetase, putative	Magnaporthe grisea	
GR242079	LM	1	9	Unknown	Unknown		
GR242083	LM	1	9	Unknown	Unknown		
GR242106	LM	2	9	Unknown	Unknown		
GR242110	LM	1	9	Unknown	Unknown		
GR242112	LM	1	9	Unknown	Unknown		
GR224117	LM/RM	2	9	XP_381543	1.0E-38 hypothetical protein FG01367.1	Gibberella zeae	

(Continued)
Acc. No.	Library	No.	Function	Best match accession	E value	Description	Organisms
GR224138	LM	1	9	unknown			
GR224153	LM	1	9	unknown			
GR224160	LM	1	9	unknown			
GR224166	LM	1	9	unknown			
GR224169	LM	1	9	XP_001226082	4.0E-07	predicted protein	*Chaetomium globosum*
GR224181	LM/PF/RM	5	9	NP_594303	2.0E-18	DUF1761 family protein	*Schizosaccharomyces pombe*
GR224191	LM	1	9	unknown			
GR224194	LM/RF	2	9	XP_382684	2.0E-23	hypothetical protein	*Gibberella zeae*
GR224195	LM	1	9	unknown			
GR224203	LM	1	9	unknown			
GR224209	LM	1	9	unknown			
GR224214	LM	2	9	AAN75605	4.0E-12	NCP1 pseudogene	*Cryptococcus neoformans*
GR224215	LM	1	9	XP_385274	1.0E-50	hypothetical protein	*Gibberella zeae*
GR224216	LM	1	9	EDP49724	5.0E-28	DUF636 domain protein	*Aspergillus fumigatus*
GR224219	LM	1	9	XP_389602	4.0E-42	hypothetical protein	*FG09426.1*
GR224225	LM/RM	4	9	XP_001224184	6.0E-48	predicted protein	*Chaetomium globosum*
GR224231	LM/RF/RM/PF	19	9	XP_001799364	2.0E-11	hypothetical protein	*Phaeosphaeria nodorum*
GR224234	LM/RM	2	9	XP_001542902	4.0E-08	predicted protein	*Ajellomyces capsulatus*
GR224242	LM	1	9	unknown			
GR224244	LM	1	9	unknown			
GR224257	LM/PF	3	9	XP_386559	1.0E-18	hypothetical protein	*FG06383.1*
GR224279	LM	1	9	unknown			
GR224289	LM	1	9	unknown			
GR224297	LM	1	9	unknown			
GR224308	LM	1	9	unknown			
GR224310	LM/RM/PF	9	9	XP_388535	2.0E-62	hypothetical protein	*FG08359.1*
GR224312	LM	24	9	XP_001622255	6.6E-02	predicted protein	*Nematostella vectensis*
GR224314	LM/PF/RF	46	9	unknown			
GR224317	LM	1	9	unknown			
GR224322	LM/PF	2	9	unknown			
GR224324	LM	1	9	unknown			
GR224326	LM	1	9	unknown			
GR224328	LM	1	9	XP_001826193	7.0E-42	hypothetical protein	*Aspergillus oryzae*
GR224332	LM	1	9	XP_001798865	4.0E-18	hypothetical protein	*Phaeosphaeria nodorum*
GR224340	LM	1	9	unknown			
GR224346	LM	1	9	unknown			
GR224357	LM	1	9	XP_001396793	3.0E-18	hypothetical protein	*An15g02550*
GR224370	LM	1	9	unknown			
GR224389	LM	1	9	unknown			
GR224391	LM	2	9	unknown			
GR224393	LM	1	9	XP_384046	2.0E-05	hypothetical protein	*FG03870.1*
GR224396	LM	1	9	unknown			
GR224406	LM	1	9	XP_001215612	1.0E-41	predicted protein	*Aspergillus terreus*
GR224412	LM	1	9	unknown			
GR224414	LM/RM	4	9	unknown			
GR224418	LM	1	9	XP_390030	5.0E-10	hypothetical protein	*FG09854.1*
GR224426	LM	4	9	unknown			
GR224428	LM	1	9	unknown			
GR224436	LM	1	9	unknown			
GR224438	LM	1	9	unknown			
GR224440	LM	1	9	unknown			
GR224442	LM	1	9	unknown			

(Continued)
Acc. No.	Library	No.	Function	Best match accession	E value	Description	Organisms
GR224459	LM	1	9	unknown			
GR224463	LM	1	9	unknown			
GR224469	LM	1	9	unknown			
GR224477	LM	1	9	unknown			
GR224479	LM	2	9	unknown			
GR224480	LM	1	9	unknown			
GR224487	LM	1	9	unknown			
GR224492	LM/PF	2	9	EDK86620	2.0E-05	hypothetical protein	*Burkholderia mallei*
GR224498	LM/RM	3	9	XP_001910257	8.0E-13	unnamed protein product	*Podospora anserina*
GR224503	LM/PF	2	9	unknown			
GR224514	LM	1	9	unknown			
GR224517	LM/RM/PF	4	9	unknown			
GR224520	LM	3	9	XP_001394407	8.0E-33	hypothetical protein	*Aspergillus niger*
GR224535	LM	2	9	unknown			
GR224556	LM	1	9	unknown			
GR224561	LM	1	9	unknown			
GR224579	LM	1	9	unknown			
GR224581	LM	1	9	unknown			
GR224587	LM	1	9	XP_001222855	4.0E-13	hypothetical protein	*Chaetomium globosum*
GR224603	LM	1	9	XP_383837	6.0E-09	hypothetical protein	*Gibberella zeae*
GR224614	LM	1	9	unknown			
GR224620	LM	1	9	unknown			
GR224622	LM	1	9	unknown			
GR224625	LM	1	9	unknown			
GR224637	LM	2	9	unknown			
GR224642	LM/RM/PF	3	9	unknown			
GR224659	LM	1	9	unknown			
GR224663	LM	1	9	unknown			
GR224666	LM	1	9	unknown			
GR224667	LM/PF/RM	3	9	unknown			
GR224672	LM	1	9	XP_001220842	8.0E-15	hypothetical protein	*Chaetomium globosum*
GR224678	LM	1	9	XP_389536	8.0E-05	hypothetical protein	*Gibberella zeae*
GR224684	LM	1	9	XP_001241796	5.0E-30	predicted protein	*Coccidioides immitis*
GR224687	LM/PF	2	9	unknown			
GR224693	LM	1	9	unknown			
GR224700	LM	1	9	unknown			
GR224701	LM	1	9	XP_387636	2.0E-30	hypothetical protein	*Gibberella zeae*
GR224705	LM	1	9	XP_390143	2.0E-26	hypothetical protein	*Gibberella zeae*
GR224707	LM	1	9	unknown			
GR224709	LM	1	9	unknown			
GR224715	LM	1	9	unknown			
GR224725	LM	1	9	unknown			
GR224730	LM	1	9	XP_001212602	7.0E-32	conserved hypothetical protein	*Aspergillus terreus*
GR224734	LM	1	9	unknown			
GR224738	LM/RF/PF	4	9	unknown			
GR224740	LM	1	9	unknown			
GR224741	LM	1	9	unknown			
GR224746	LM	1	9	XP_361363	2.0E-05	hypothetical protein	*Magnaporthe grisea*
GR224747	LM	1	9	XP_001909305	7.0E-15	unnamed protein product	*Podospora anserina*
GR224752	LM	2	9	XP_001481728	2.0E-14	DUF543 domain protein	*Aspergillus fumigatus*
GR224756	LM	1	9	unknown			
GR224762	LM	1	9	unknown			
GR224764	LM	1	9	XP_390997	3.0E-25	hypothetical protein	*Gibberella zeae*
Acc. No.	Library	No.	Function	Best match accession	E value	Description	Organisms
---------	---------	-----	----------	----------------------	---------	-------------	-----------
GR224765	LM	1	9	XP_001393559	5.0E-35	hypothetical protein	Aspergillus niger
GR224768	LM	1	9			unknown	
GR224771	LM	1	9			unknown	
GR224776	LM	1	9	XP_001223919	6.0E-06	hypothetical protein	Chaetomium globosum
GR224778	LM	1	9			unknown	
GR224781	LM	1	9			unknown	
GR224782	LM	1	9			unknown	
GR224786	LM	1	9			unknown	
GR224787	LM	1	9	XP_390997	3.0E-25	hypothetical protein	Gibberella zeae
GR224789	PF/RM/LM	4	9			unknown	
GR224794	LM	1	9			unknown	
GR224795	LM	2	9			unknown	
GR224797	LM	3	9	XP_748618	5.0E-05	hypothetical protein	Aspergillus fumigatus
GR224802	LM	1	9			unknown	
GR224804	LM	1	9			unknown	
GR224818	LM/RM	2	9			unknown	
GR224822	LM	1	9			unknown	
GR224832	LM/RM	10	9	XP_387617	2.0E-43	hypothetical protein	Gibberella zeae
GR224834	LM	2	9			unknown	
GR224835	LM	1	9	XP_001876904	1.0E-17	small secreted protein	Laccaria bicolor
GR224844	LM	1	9			unknown	
GR224850	LM	1	9			unknown	
GR224853	LM	1	9	XP_387617	1.0E-19	hypothetical protein	Gibberella zeae
GR224854	LM	1	9	XP_388916	5.0E-94	hypothetical protein	Gibberella zeae
GR224859	LM	1	9			unknown	
GR224860	LM	1	9			unknown	
GR224861	LM	1	9			unknown	
GR224872	LM/RF	2	9			unknown	
GR224885	LM	1	9			unknown	
GR224896	LM	1	9			unknown	
GR224898	LM	2	9	XP_388740	8.0E-51	hypothetical protein	Gibberella zeae
GR224902	LM	1	9	XP_001727101	1.0E-43	hypothetical protein	Aspergillus oryzae
GR224912	LM/PF	3	9	XP_385060	8.0E-31	hypothetical protein	Gibberella zeae
GR224922	LM	1	9	XP_388050	7.0E-46	hypothetical protein	Gibberella zeae
GR224926	LM	1	9			unknown	Phaeosphaeria nodorum
GR224930	LM	2	9	XP_001804800	1.0E-09	hypothetical protein	SNOG_14618
GR224934	LM	1	9			unknown	
GR224935	LM/RM/RF/PF	6	9			unknown	
GR224938	LM	3	9	EDP51076	1.1E-01	conserved hypothetical protein	Aspergillus fumigatus
GR224940	LM/RM/PF	17	9			unknown	
GR224941	LM	1	9			unknown	
GR224952	LM/RF/RM	5	9			unknown	
GR224954	LM/PF	2	9			unknown	
GR224957	LM	1	9			unknown	
GR224959	LM/PF	5	9			unknown	
GR224961	LM/RM/PF	5	9	XP_390910	6.0E-62	hypothetical protein	Gibberella zeae
GR224962	LM	1	9			unknown	
GR224969	LM	1	9			unknown	
GR224971	LM	1	9			unknown	
GR224987	LM	1	9			unknown	
GR224999	LM	1	9			unknown	

(Continued)
Appendix Table 1. (Continued).

Acc. No.	Library	No.	Function	Best match accession	E value	Description	Organisms
GR225006	LM	2	9			unknown	
GR225027	LM	1	9			unknown	
GR225033	LM	1	9			unknown	
GR225034	LM	1	9			unknown	
GR225048	LM	1	9			unknown	
GR225049	LM	2	9			unknown	
GR225055	LM	6	9			unknown	
GR225059	LM/RF/PF	3	9	XP_001275834	1.0E-56	DUF866 domain protein	Aspergillus clavatus
GR225060	LM	1	9	XP_001825429	1.0E-50	hypothetical protein	Aspergillus oryzae
GR225082	LM	1	9	XP_368971	7.0E-24	predicted protein	Magnaporthe grisea
GR225084	LM	1	9			unknown	
GR225086	LM	2	9	XP_001911950	1.0E-07	unnamed protein product	Podospora anserina
GR225087	LM/RF/PF	4	9	XP_387218	2.0E-31	hypothetical protein	Gibberella zeae
GR225088	LM	1	9			XP_958054	Neurospora crassa
GR225092	LM	1	9	XP_384167	1.0E-05	hypothetical protein	FG03991.1
GR225108	LM/RM	39	9			unknown	
GR225113	LM	1	9			unknown	
GR225140	LM/RM	2	9	XP_389939	4.0E-11	hypothetical protein	FG09763.1
GR225143	LM/RM/PF	6	9	XP_387641	6.0E-13	hypothetical protein	FG07465.1
GR225145	LM/RM	2	9			unknown	
GR225166	LM	1	9			unknown	Chaetomium globosum
GR225170	LM	1	9			unknown	
GR225175	LM	1	9	XP_001910144	9.0E-13	unnamed protein product	Podospora anserina
GR225178	LM	1	9	XP_001910361	2.0E-05	unnamed protein product	Podospora anserina
GR225183	LM/PF	3	9			unknown	
GR225191	LM	37	9	CAG28683	3.0E-11	hypothetical protein	Gibberella fujikuroi
GR225201	LM	1	9			unknown	
GR225204	LM	1	9			unknown	
GR225218	LM	1	9			unknown	
GR225225	LM	2	9			unknown	
GR225233	LM/PF	2	9			unknown	
GR225237	LM/RM/PF	3	9			unknown	
GR225257	LM	1	9	XP_382121	3.0E-17	hypothetical protein	FG01945.1
GR225262	LM	1	9	XP_001267027	1.0E-36	conserved hypothetical protein	Neosartorya fischeri
GR225268	LM/RF/PF/RM	13	9	XP_001911900	8.0E-08	unnamed protein product	Podospora anserina
GR225275	LM	1	9	XP_388140	1.0E-16	hypothetical protein	FG07964.1
GR225284	LM	1	9			unknown	Neurospora crassa
GR225294	LM	3	9			unknown	
GR225296	LM	1	9	XP_958921	2.0E-07	hypothetical protein	FG01945.1
GR225317	LM	1	9	XP_001399016	2.0E-14	hypothetical protein	Aspergillus niger
GR225322	LM/RM	4	9			unknown	
GR225332	LM	1	9	XP_389764	8.0E-43	hypothetical protein	FG09588.1
GR225335	LM/RF/RM	3	9	XP_389727	2.0E-14	hypothetical protein	FG09551.1
GR225347	LM	2	9	XP_387617	2.0E-36	hypothetical protein	FG07441.1
GR225359	LM	1	9			unknown	Laccaria bicolor
GR225366	LM	1	9	XP_001876904	4.0E-14	small secreted protein	

(Continued)
Appendix Table 1. (Continued)

Acc. No.	Library	No.	Function	Best match accession	E value	Description	Organisms
GR225383	LM	1	9			unknown	
GR225389	LM	4	9			unknown	
GR225390	LM/PF	6	9			unknown	
GR225392	LM	1	9			unknown	
GR225395	LM	1	9			unknown	
GR225410	RM	1	9			unknown	
GR225415	RM	1	9			unknown	
GR225418	RM	1	9	XP_001228372	2.0E-20	predicted protein	Chaetomium globosum
GR225419	RM	1	9			unknown	Sclerotinia sclerotiorum
GR225421	RM	1	9	XP_001586820	2.0E-10	predicted protein	
GR225424	RM	1	9			unknown	
GR225439	RM	1	9	NP_596366	4.0E-12	DUF1741 family protein	Schizosaccharomyces pombe
GR225448	RM	1	9			unknown	
GR225457	RM	1	9			unknown	
GR225460	RM	3	9	XP_363212	2.0E-31	hypothetical protein	Magnaporthe grisea
GR225462	LM/RM/RF	5	9			unknown	
GR225463	RM	1	9	XP_001390130	1.0E-10	hypothetical protein	Aspergillus niger
GR225464	RM	1	9			unknown	
GR225468	RM	1	9			unknown	
GR225476	RM	1	9	XP_001209487	8.0E-42	predicted protein	Aspergillus terreus
GR225486	RM	1	9			unknown	
GR225495	RM	1	9	XP_386205	5.0E-07	hypothetical protein	Gibberella zeae
GR225508	RM	1	9			unknown	
GR225511	RM	1	9			unknown	
GR225529	RM	1	9			unknown	
GR225533	RM	1	9			unknown	
GR225534	RM	3	9	XP_001903723	2.0E-09	unnamed protein product	Podospora anserina
GR225537	RM	1	9	XP_388280	4.0E-29	hypothetical protein	Gibberella zeae
GR225539	RM	1	9			unknown	
GR225547	RM	1	9			unknown	
GR225551	RM	1	9			unknown	
GR225554	RM/RF/PF	4	9			unknown	
GR225556	RM	1	9	XP_381732	2.0E-15	hypothetical protein	Gibberella zeae
GR225564	RM	1	9			unknown	
GR225567	RM	1	9	XP_001228381	9.0E-55	hypothetical protein	Chaetomium globosum
GR225568	RM	1	9			unknown	
GR225570	RM	1	9			unknown	
GR225580	RM	1	9	XP_001938804	3.0E-16	conserved hypothetical protein	Pyrenophora tritici-repentis
GR225586	RM/RF	2	9	XP_384459	2.0E-11	hypothetical protein	Gibberella zeae
GR225595	RM/RF	2	9	XP_389588	5.0E-27	hypothetical protein	Gibberella zeae
GR225606	RM	1	9			unknown	
GR225611	RM	1	9	XP_001522653	7.0E-65	hypothetical protein	Magnaporthe grisea
GR225618	RM	1	9			unknown	
GR225619	LM/RF/RM/PF	17	9	XP_001910376	7.0E-05	unnamed protein product	Podospora anserina
GR225627	RM	1	9			unknown	
GR225628	RM	1	9			unknown	
GR225634	RM	1	9			unknown	
GR225649	RM	1	9			unknown	
GR225653	RM	6	9			unknown	
GR225657	RM	1	9			unknown	
GR225673	RM	1	9			unknown	
GR225694	RM	1	9			unknown	
Appendix Table 1. (Continued)

Acc. No.	Library	No.	Function	Best match accession	E value	Description	Organisms
GR225697	RM	1	9	XP_387843	2.0E-25	hypothetical protein	*Gibberella zeae*
GR225718	RM	1	9	XP_390946	6.0E-26	hypothetical protein	*Gibberella zeae*
GR225722	RM	1	9	XP_385533	7.0E-49	hypothetical protein	*Gibberella zeae*
GR225728	RM	1	9	unknown			
GR225729	RM	1	9	XP_001226447	3.0E-07	predicted protein	*Chaetomium globosum*
GR225732	RM	1	9	unknown			
GR225753	RM	2	9	XP_001226805	3.0E-11	hypothetical protein	*Chaetomium globosum*
GR225755	RM	1	9	unknown			
GR225757	RM	1	9	unknown			
GR225764	RM	1	9	XP_386345	9.0E-14	hypothetical protein	*Gibberella zeae*
GR225779	RM	1	9	unknown			
GR225792	LM/RM	4	9	unknown			
GR225798	RM	1	9	unknown			
GR225799	RM	1	9	unknown			
GR225801	RM	1	9	unknown			
GR225808	RM	1	9	XP_001910059	5.0E-23	unnamed protein product	*Podospora anserina*
GR225811	RM	1	9	XP_001545985	9.0E-16	hypothetical protein	*Botryotinia fuckeliana*
GR225812	RM	1	9	XP_383092	2.0E-13	hypothetical protein	*Gibberella zeae*
GR225815	RM	1	9	unknown			
GR225822	RM	1	9	XP_001225652	2.0E-14	hypothetical protein	*Chaetomium globosum*
GR225824	RM	1	9	unknown			
GR225825	PF/RM/LM	5	9	XP_001537941	5.0E-07	predicted protein	*Ajellomyces capsulatus*
GR225832	RM	1	9	unknown			
GR225833	RM	1	9	unknown			
GR225835	RM	1	9	XP_385442	7.0E-09	hypothetical protein	*Gibberella zeae*
GR225843	RM	1	9	unknown			
GR225854	RM	1	9	unknown			
GR225856	RM	1	9	unknown			
GR225874	RM	1	9	XP_001827600	5.0E-34	hypothetical protein	*Aspergillus oryzae*
GR225877	RM	1	9	unknown			
GR225880	RM	1	9	XP_361528	9.0E-08	predicted protein	*Magnaporthe grisea*
GR225882	RM	1	9	XP_001940571	1.0E-57	conserved hypothetical protein	*Pyrenophora tritici-repentis*
GR225889	RM	1	9	XP_387215	1.0E-43	hypothetical protein	*Gibberella zeae*
GR225900	RM	1	9	unknown			
GR225905	RM	2	9	unknown			
GR225911	RM	1	9	XP_387324	8.0E-35	hypothetical protein	*Gibberella zeae*
GR225920	RM	1	9	unknown			
GR225928	RM	1	9	unknown			
GR225932	RM	1	9	unknown			
GR225935	RM	1	9	XP_384282	3.0E-31	hypothetical protein	*Gibberella zeae*
GR225936	RM	1	9	unknown			
GR225937	RM	1	9	unknown			
GR225944	RM	1	9	unknown			
GR225948	RM	1	9	unknown			
GR225954	RM	1	9	unknown			
GR225959	RM	1	9	XP_389165	2.0E-05	hypothetical protein	*Gibberella zeae*
GR225964	RM	2	9	unknown			
GR225965	RM	1	9	unknown			
GR225967	RM	1	9	unknown			
Appendix Table 1. (Continued)

Acc. No.	Library	No.	Function	Best match accession	E value	Description	Organisms	
GR225969	RM	1	9					
GR225989	RM	1	9	XP_390839	1.0E-16	hypothetical protein FG10663.1	Gibberella zeae	
GR225994	RM	1	9					
GR225998	RM	1	9					
GR226016	RM	1	9					
GR226031	RM	1	9					
GR226033	RM	1	9	XP_001226459	1.0E-12	predicted protein Chaetomium globosum	Gibberella zeae	
GR226038	RM	1	9	XP_389703	7.0E-44	hypothetical protein FG09527.1	Gibberella zeae	
GR226041	RM/PF	6	9	XP_001797642	3.0E-07	hypothetical protein SNOG_07301	Phaeosphaeria nodorum	
GR226046	RM	1	9					
GR226049	RM	1	9					
GR226065	RM	1	9					
GR226068	RM/PF	10	9	XP_001802764	2.0E-77	hypothetical protein SNOG_12543	Phaeosphaeria nodorum	
GR226072	RM	1	9	XP_388700	3.0E-107	hypothetical protein FG08524.1	Gibberella zeae	
GR226077	RM	1	9					
GR226078	RM	1	9	EDP48741	4.0E-51	DUF567 domain protein	Aspergillus fumigatus	
GR226080	RM	1	9	XP_001904347	1.0E-10	unnamed protein product Podospora anserina	Gibberella zeae	
GR226090	RM	2	9	XP_388016	2.0E-27	hypothetical protein FG07840.1	Gibberella zeae	
GR226093	RM	1	9	YP_001185952	5.0E-06	membrane protein-like protein	Pseudomonas mendocina	
GR226098	RM	3	9					
GR226099	RM	1	9					
GR226109	LM/RM	3	9					
GR226118	RM	1	9	XP_001208562	8.0E-38	predicted protein Aspergillus terreus	Gibberella zeae	
GR226119	RM	1	9					
GR226133	RM	1	9					
GR226141	RM	1	9					
GR226148	RM	1	9					
GR226157	RM	1	9					
GR226164	RM	2	9					
GR226176	LM/RM	3	9					
GR226191	RM	1	9					
GR226193	RM	1	9					
GR226196	RM	1	9					
GR226206	RM	1	9					
GR226207	RM	1	9	XP_388958	8.0E-02	hypothetical protein FG08782.1	Gibberella zeae	
GR226211	RM	4	9					
GR226222	RM	1	9					
GR226226	RM	1	9	XP_390902	5.0E-56	hypothetical protein FG10726.1	Gibberella zeae	
GR226231	RM	1	9	XP_001544384	1.0E-17	predicted protein Ajellomyces capsulatus	Gibberella zeae	
GR226238	RM	1	9	XP_388858	3.0E-22	hypothetical protein FG08682.1	Gibberella zeae	
GR226239	RM	1	9	XP_386702	3.0E-33	hypothetical protein FG06526.1	Gibberella zeae	
GR226242	RM	1	9					
GR226249	RM	2	9					
GR226252	RM/PF	3	9					
GR226257	RF	3	9					
GR226261	RF	1	9	XP_381202	8.0E-12	hypothetical protein FG01026.1	Gibberella zeae	
GR226274	RF	1	9					
GR226286	RF	2	9					
GR226288	RF	1	9	XP_001550658	7.0E-09	hypothetical protein BC1G_11066	Botryotinia fuckeliana	
GR226296	RF	1	9					
Acc. No.	Library	No.	Function	Best match accession	E value	Description	Organisms	
-----------	---------	-----	----------	----------------------	-----------	---------------------------	----------------------------------	
GR226302	RF	3	9	XP_384459	3.0E-19	hypothetical protein	Gibberella zeae	
GR226303	PF/RF/RM	9	9	XP_001937997	3.0E-21	hypothetical protein	Pyrenophora tritici-repentis	
GR226309	RF	1	9	XP_001227232	7.0E-29	hypothetical protein	Chaetomium globosum	
GR226312	RF	1	9	unknown				
GR226316	RF	1	9	unknown				
GR226317	RF	1	9	unknown				
GR226331	RF	1	9	unknown				
GR226333	RF	1	9	unknown				
GR226334	RF	1	9	XP_390228	2.0E-09	hypothetical protein	Gibberella zeae	
GR226337	RF	1	9	unknown				
GR226343	RF	1	9	unknown				
GR226345	RF	2	9	unknown				
GR226346	RF	1	9	unknown				
GR226347	RF	1	9	unknown				
GR226349	RF	1	9	unknown				
GR226352	RF	1	9	unknown				
GR226356	RF	1	9	unknown				
GR226357	RF	1	9	XP_001399016	2.0E-16	hypothetical protein	Aspergillus niger	
GR226359	RF	1	9	unknown				
GR226367	RF	1	9	XP_381530	3.0E-10	hypothetical protein	Gibberella zeae	
GR226369	RF	1	9	unknown				
GR226379	RF	1	9	XP_001217006	2.0E-64	predicted protein	Aspergillus terreus	
GR226380	LM/RF	3	9	XP_956130	9.0E-09	hypothetical protein	Neurospora crassa	
GR226390	RF	1	9	unknown				
GR226393	RF	1	9	unknown				
GR226394	RF	1	9	unknown				
GR226396	RF	1	9	unknown				
GR226410	RF	1	9	XP_001390902	5.0E-05	hypothetical protein	Aspergillus niger	
GR226411	RF	1	9	unknown				
GR226413	RF	1	9	unknown				
GR226423	RF	1	9	unknown				
GR226424	RF	1	9	XP_381202	8.0E-44	hypothetical protein	Gibberella zeae	
GR226426	RF	1	9	unknown				
GR226428	RF	2	9	unknown				
GR226430	RF	1	9	unknown				
GR226434	RF	1	9	unknown				
GR226443	RF	1	9	XP_001394584	3.0E-12	hypothetical protein	Aspergillus niger	
GR226446	RF	1	9	unknown				
GR226450	RF	1	9	unknown				
GR226471	RF	1	9	unknown				
GR226476	RF	1	9	unknown				
GR226485	RF	1	9	unknown				
GR226487	RF	1	9	XP_001399044	6.0E-23	hypothetical protein	Aspergillus niger	
GR226489	RF	1	9	unknown				
GR226490	RF	1	9	XP_386314	9.0E-11	hypothetical protein	Gibberella zeae	
GR226506	RF	1	9	unknown				
GR226508	LM/RM/RF/PF	9	9	unknown				Aspergillus fumigatus
GR226521	RF	1	9	EDP55205	5.0E-05	PT repeat family protein		
GR226522	RF	1	9	unknown				
GR226528	RF	1	9	unknown				
GR226537	RF	1	9	unknown				
Acc. No.	Library	No.	Function	Best match accession	E value	Description	Organisms	
-----------	---------	-----	----------	----------------------	---------	------------------------------	-------------------------	
GR226539	RF	1	9	unknown				
GR226542	RF	1	9	unknown				
GR226543	LM/RF	3	9	XP_381480	1.0E-12	hypothetical protein	Gibberella zeae	
GR226550	RF	1	9	unknown				
GR226551	RF/LM	3	9	unknown				
GR226552	RF	1	9	XP_717805	2.0E-13	potential mitochondrial protein	Candida albicans	
GR226572	RF	1	9	unknown				
GR226573	RF	1	9	XP_381349	3.0E-08	hypothetical protein	Gibberella zeae	
GR226575	RF	1	9	XP_001220992	1.0E-72	hypothetical protein	Chaetomium globosum	
GR226576	RF	1	9	unknown				
GR226590	RF	1	9	XP_001543540	4.0E-18	predicted protein	Ajellomyces capsulatus	
GR226604	RF	1	9	unknown				
GR226605	RF	1	9	XP_390037	1.0E-43	hypothetical protein	Gibberella zeae	
GR226611	RF	3	9	unknown				
GR226618	RF/PF	17	9	unknown				
GR226621	RF/PF	5	9	unknown				
GR226637	RF	1	9	unknown				
GR226646	RF	1	9	unknown				
GR226649	RF	1	9	unknown				
GR226651	RF	1	9	unknown				
GR226655	RF	1	9	unknown				
GR226662	RF	1	9	unknown				
GR226666	RF	1	9	unknown				
GR226668	RF	1	9	unknown				
GR226672	RF	1	9	XP_001262176	2.0E-48	hypothetical protein	Neosartorya fischeri	
GR226695	RF	1	9	unknown				
GR226696	RF	1	9	unknown				
GR226700	RF	1	9	unknown				
GR226708	RF	1	9	XP_384459	3.0E-19	hypothetical protein	Gibberella zeae	
GR226714	RF	1	9	unknown				
GR226715	RM/RF	3	9	XP_001585621	4.0E-14	predicted protein	Sclerotinia sclerotiorum	
GR226717	RF	1	9	unknown				
GR226720	RF	1	9	XP_001243471	8.0E-05	hypothetical protein	Coccidioides inimitis	
GR226724	RF	2	9	unknown				
GR226730	RF	2	9	XP_751886	1.0E-17	DUF563 domain protein	Aspergillus fumigatus	
GR226741	RF	1	9	XP_001542717	1.0E-15	predicted protein	Ajellomyces capsulatus	
GR226743	RF	2	9	unknown				
GR226751	RF	1	9	XP_001227847	2.0E-32	hypothetical protein	Chaetomium globosum	
GR226753	RF	1	9	EDP55176	4.0E-17	DUF1237 domain protein	Aspergillus fumigatus	
GR226755	RF	1	9	unknown				
GR226770	RF	1	9	NP_594157	8.0E-10	DUF1748 family protein	Schizosaccharomyces pombe	
GR226771	RF	1	9	unknown				
GR226774	RF	2	9	XP_001591439	7.0E-15	hypothetical protein	Sclerotinia sclerotiorum	
GR226780	RF	1	9	XP_364309	1.0E-36	predicted protein	Magnaporthe grisea	
GR226781	RF	1	9	unknown				
GR226784	RF	1	9	unknown				
GR226786	RF	1	9	unknown				
GR226796	RF	1	9	unknown				
GR226802	PF	1	9	unknown				
GR226807	PF	3	9	XP_389721	6.0E-08	hypothetical protein	Gibberella zeae	
GR226809	PF	4	9	unknown				

(Continued)
Acc. No.	Library	No.	Function	Best match accession	E value	Description	Organisms
GR226824	LM/RM/PF/RF	101	9	XP_001931533	5.0E-24	cyanovirin-N family protein	*Pyrenophora tritici-repentis*
GR226844	PF	5	9	XP_001590447	6.0E-18	predicted protein	*Sclerotinia sclerotiorum*
GR226860	PF	1	9	unknown			
GR226866	PF	1	9	unknown			
GR226874	PF	1	9	unknown			
GR226881	PF	1	9	XP_001538888	8.0E-18	predicted protein	*Ajellomyces capsulatus*
GR226886	PF	2	9	unknown			
GR226894	PF	1	9	unknown			
GR226917	PF	1	9	unknown			
GR226934	PF	2	9	unknown			
GR226951	PF	1	9	unknown			
GR226963	PF	1	9	unknown			
GR226966	LM/PF/RM	5	9	XP_389843	8.0E-19	hypothetical protein	*Gibberella zeae*
GR226968	PF	1	9	XP_001246219	2.0E-07	hypothetical protein	*Coccidioides immitis*
GR226970	PF	1	9	unknown			
GR226993	PF	1	9	unknown			
GR227004	PF	1	9	unknown			
GR227021	PF	1	9	unknown			
GR227022	PF	1	9	unknown			
GR227031	LM/PF/RM	14	9	XP_390055	4.0E-05	hypothetical protein	*Gibberella zeae*
GR227036	PF	1	9	XP_001825336	1.0E-34	hypothetical protein	*Aspergillus oryzae*
GR227039	PF	1	9	XP_001238918	7.0E-41	hypothetical protein	*Coccidioides immitis*
GR227042	PF	1	9	unknown			
GR227052	PF	1	9	XP_387928	1.0E-12	hypothetical protein	*Gibberella zeae*
GR227053	PF	2	9	unknown			
GR227055	PF	1	9	unknown			
GR227066	PF	2	9	XP_001398639	2.0E-28	hypothetical protein	*Aspergillus niger*
GR227073	PF	1	9	unknown			
GR227085	PF	1	9	unknown			
GR227091	PF	1	9	unknown			
GR227094	PF	1	9	unknown			
GR227095	RF/PF	2	9	XP_962543	6.0E-54	hypothetical protein	*Neurospora crassa*
GR227096	PF	4	9	unknown			
GR227103	PF	1	9	unknown			
GR227110	PF	1	9	unknown			
GR227115	PF	1	9	XP_385409	1.0E-18	hypothetical protein	*Gibberella zeae*
GR227128	PF	1	9	XP_958940	2.0E-05	hypothetical protein	*Neurospora crassa*
GR227142	PF/RF	6	9	XP_001824760	3.0E-52	hypothetical protein	*Aspergillus oryzae*
GR227172	PF	1	9	unknown			
GR227179	RM/PF	2	9	XP_001537960	9.0E-14	predicted protein	*Ajellomyces capsulatus*
GR227183	PF	1	9	unknown			
GR227197	PF	1	9	unknown			
GR227228	PF	1	9	unknown			
GR227231	PF	4	9	unknown			
GR227242	PF	1	9	unknown			
GR227247	PF	1	9	XP_380436	4.0E-10	hypothetical protein	*Gibberella zeae*
GR227265	RF/PF	3	9	XP_384636	1.0E-29	hypothetical protein	*Gibberella zeae*
GR227269	PF	1	9	unknown			
GR227279	PF	1	9	unknown			
GR227291	PF	1	9	XP_001540440	1.0E-13	predicted protein	*Ajellomyces capsulatus*

(Continued)
Acc. No.	Library	No.	Function	Best match accession	E value	Description	Organisms
GR227293	PF	1	9	unknown			
GR227304	PF	1	9	XP_001585581	2.0E-08	predicted protein	Sclerotinia sclerotiorum
GR227310	PF	1	9	XP_001540442	3.0E-49	predicted protein	Ajellomyces capsulatus
GR227319	PF	1	9	unknown			
GR227334	RF/PF	2	9	unknown			
GR227341	PF	1	9	unknown			
GR227360	PF	1	9	XP_388280	3.0E-24	hypothetical protein	Gibberella zeae
GR227362	PF/LM	5	9	XP_382064		hypothetical protein	Gibberella zeae
GR227366	PF	1	9	unknown			
GR227370	PF	1	9	unknown			
GR227371	PF	2	9	unknown			
GR227384	PF	1	9	unknown			
GR227392	PF	1	9	unknown			
GR227401	PF	1	9	unknown			
GR227408	PF	1	9	unknown			
GR227420	PF	1	9	XP_001796941	5.0E-25	hypothetical protein	Phaeosphaeria nodorum
GR227427	PF	6	9	XP_001802763	3.0E-17	hypothetical protein	Phaeosphaeria nodorum
GR227428	PF	1	9	unknown			
GR227429	PF	1	9	unknown			
GR227432	RM/RF/PF	4	9	unknown			
GR227435	PF	1	9	unknown			
GR227440	RM/PF	2	9	unknown			
GR227445	PF	1	9	unknown			
GR227451	PF	2	9	unknown			
GR227463	PF/RM	5	9	unknown			
GR227468	LM/RM/PF	4	9	NP_690845	2.0E-13	Mitochondrial protein of	Saccharomyces cerevisiae
						unknown function, Tar1p	
GR227483	LM/PF	15	9	XP_364704	6.0E-12	conserved hypothetical protein	Magnaporthe grisea
GR227491	PF	2	9	unknown			
GR227508	PF	1	9	unknown			
GR227520	LM/RM/PF	124	9	unknown			
GR227536	PF	1	9	unknown			
GR227543	PF	1	9	unknown			
GR227570	PF	1	9	unknown			
GR227593	PF	1	9	unknown			
GR227614	PF	8	9	unknown			
GR227621	PF	1	9	unknown			
GR227627	PF	2	9	unknown			
GR227633	PF	1	9	unknown			
GR227638	PF	2	9	XP_001215883	2.0E-51	predicted protein	Aspergillus terreus
GR227654	PF	2	9	unknown			
GR227669	PF	1	9	unknown			
GR227671	PF	1	9	unknown			
GR227674	PF	1	9	unknown			
GR227694	PF	1	9	XP_640303	2.0E-18	N2227-like domain-containing protein	Dictyostelium discoideum
GR227696	RM/PF	4	9	unknown			
GR227706	PF	1	9	unknown			
GR227712	PF	1	9	XP_384681	3.0E-05	hypothetical protein	Gibberella zeae
GR227724	PF	1	9	unknown			
GR227729	PF	1	9	unknown			
GR227759	PF	1	9	unknown			
GR227765	PF	2	9	XP_001540440	9.0E-28	predicted protein	Ajellomyces capsulatus
GR227777	PF	1	9	unknown			
GR227787	PF	1	9	unknown			
GR227793	PF	1	9	unknown			
GR227807	PF	1	9	unknown			
Appendix Table 1. (Continued)

Acc. No.	Library	No.	Function	Best match accession	E value	Description	Organisms
GR227821	PF	1	9	XP_962814	8.0E-40	hypothetical protein	Neurospora crassa
GR227826	PF	1	9	XP_385092	4.0E-05	hypothetical protein	Gibberella zeae
GR227833	LM/RM/RF/PF	258	9	XP_001540440	3.0E-07	predicted protein	Ajellomyces capsulatus
GR227850	PF	1	9	XP_386443	5.0E-12	hypothetical protein	Gibberella zeae
GR227921	PF	1	9	XP_001405811	2.0E-33	predicted protein	Magnaporthe grisea
GR227924	PF	1	9	XP_390666	2.0E-26	hypothetical protein	Gibberella zeae
GR227953	PF	130	9	XP_001228381	2.0E-46	hypothetical protein	Chaetomium globosum
GR227974	PF	2	9	XP_385566	1.0E-06	hypothetical protein	Gibberella zeae
GR227998	LM/RM/PF	35	9	XP_384575	3.0E-06	hypothetical protein	Gibberella zeae
GR228021	PF	1	9	XP_388280	1.0E-29	hypothetical protein	Gibberella zeae
GR228048	PF	1	9	XP_391772	7.0E-83	hypothetical protein	Gibberella zeae
GR228055	PF	1	9	XP_001911209	4.0E-53	unnamed protein product	Podospora anserina
GR228072	PF	1	9	XP_390382	1.0E-10	hypothetical protein	Gibberella zeae
GR228105	PF	2	9	XP_001405719	1.0E-07	predicted protein	Magnaporthe grisea
GR228106	PF	1	9	XP_385531	1.0E-44	hypothetical protein	Gibberella zeae
GR228153	PF	1	9	XP_001274870	3.0E-53	conserved hypothetical protein	Aspergillus clavatus
Acc. No.	Library	No. Function	accession	E value	Description	Organisms	
-----------	---------	--------------	-----------	---------	-------------	----------------------------	
GR228207	PF	1 9			access		
GR228210	PF	1 9			unknown		
GR228212	PF	1 9			unknown		
GR228214	RF/PF	2 9	XP_001912405	2.0E-40	unnamed protein product	*Podospora anserina*	
GR228239	PF	1 9	XP_660186	2.0E-05	hypothetical protein AN2582.2	*Aspergillus nidulans*	
GR228247	PF	1 9			unknown		
GR228283	RF/PF	2 9			unknown		
GR228288	PF	1 9			unknown		
GR228290	PF	2 9			unknown		
GR228296	PF	1 9			unknown		
GR228297	PF	4 9			unknown		
GR228299	PF	1 9			unknown		
GR228306	PF	2 9	XP_001262176	5.0E-29	conserved hypothetical protein	*Neosartorya fischeri*	
GR228333	PF	2 9	XP_662849	8.0E-24	hypothetical protein AN5245.2	*Aspergillus nidulans*	
GR228336	PF	1 9	XP_388966	1.0E-14	hypothetical protein FG08520.1	*Gibberella zeae*	
GR228339	PF	1 9			unknown		
GR228340	RF/PF	7 9	XP_001560184	8.0E-28	hypothetical protein BC1G_01016	*Botrytina fuckeliana*	
GR228343	PF	1 9			unknown		
GR228346	PF	1 9	XP_570260	2.0E-46	hypothetical protein	*Cryptococcus neoforman*	
GR228352	PF	1 9			unknown		
GR228360	PF	1 9			unknown		
GR228365	PF	1 9			unknown		
GR228367	PF	2 9			unknown		
GR228368	PF	1 9			unknown		
GR228373	PF	1 9	EDP49866	6.0E-11	mitochondria protein Fmp29, putative	*Aspergillus fumigatus*	
GR228379	PF	1 9	XP_001796249	6.0E-21	hypothetical protein SNOG_05853	*Phaeosphaeria nodorum*	
GR228405	PF	2 9			unknown		
GR228411	PF	1 9			unknown		
GR228422	RM/PF	3 9			unknown		
GR228425	PF	1 9			unknown		
GR228437	PF	1 9	XP_646824	1.0E-05	hypothetical protein DDB_0233766	*Dictyostelium discoideum*	
GR228446	PF	2 9	Q8J0N0	3.0E-15	UPF0357 protein YCL012C precursor	*Saccharomyces paradoxus*	
GR228449	PF	1 9			unknown		
GR228478	PF	1 9			unknown		
GR228483	RM/PF	2 9			unknown		
GR228484	PF	1 9	XP_001547986	4.0E-32	hypothetical protein BC1G_13677	*Botrytina fuckeliana*	
GR228491	PF	5 9	XP_387617	3.0E-48	hypothetical protein FG0744.1	*Gibberella zeae*	
GR228495	PF	1 9	XP_366184	8.0E-17	predicted protein	*Magnaporthe grisea*	
GR228499	PF	1 9			unknown		
GR228505	PF	1 9			unknown		
GR228511	PF	1 9			unknown		
GR228517	RM/PF	18 9			unknown		
GR228519	PF	1 9			unknown		
GR228523	PF	1 9			unknown		
GR228531	PF	1 9			unknown		
GR228534	PF	1 9			unknown		
GR228536	PF	4 9			unknown		
GR228541	PF	1 9	XP_001540439	1.0E-42	predicted protein	*Ajellomyces capsulatus*	
GR228570	PF	1 9	XP_658463	2.0E-05	hypothetical protein AN0859.2	*Aspergillus nidulans*	
GR228594	PF	1 9	XP_001227781	2.0E-12	hypothetical protein CHGG_09854	*Chaetomium globosum*	

(Continued)
Appendix Table 1. (Continued).

Acc. No.	Library	No.	Function	Best match accession	E value	Description	Organisms
GR228608	PF	1	9	XP_751025	5.0E-05	DUF1446 domain protein	*Aspergillus fumigatus*
GR228612	PF	1	9	unknown		unknown	
GR228615	PF	1	9	unknown		unknown	
GR228623	PF	5	9	XP_001804800	3.0E-16	hypothetical protein SNOG_14618	*Phaeosphaeria nodorum*
GR228628	PF	1	9	XP_001586480	2.0E-32	hypothetical protein SS1G_12466	*Sclerotinia sclerotiorum*
GR228644	PF	2	9	XP_001598271	9.0E-06	hypothetical protein SS1G_00357	*Sclerotinia sclerotiorum*
GR228654	PF	2	9	unknown		unknown	
GR228666	PF	1	9	unknown		unknown	