Vaccination with the ospA- and ospB-Negative *Borrelia burgdorferi* Strain 50772 Provides Significant Protection against Canine Lyme Disease

Rhonda L. LaFleur,a Steven M. Callister,b Jennifer C. Dant,a Terri L. Wasmoen,b Dean A. Jobe,b Steven D. Lovrichb

Merck Animal Health, Inc., Elkhorn, Nebraska, USA; Gunderson Health System, La Crosse, Wisconsin, USA

Beagles received placebo or ospA- and ospB-negative *Borrelia burgdorferi* before a tick challenge. A total of 28 (41%) ticks and skin biopsy specimens from each control dog (n = 10) contained *B. burgdorferi*. In contrast, 12 (19%) ticks recovered from the vaccine recipients (n = 10) were infected (P = 0.0077), and 5 dogs yielded spirochetes from the skin biopsy specimens (P = 0.0325). In addition, 9 (90%) placebo recipients and 4 (40%) vaccine recipients developed joint abnormalities (P = 0.0573). Therefore, vaccination with the ospA- and ospB-negative spirochete provided significant protection against Lyme disease.

Lyme disease, due primarily in the United States to the transmission of *Borrelia burgdorferi* from infected *Ixodes* ticks, causes significant morbidity in canines. However, infected dogs rarely develop acute illness (1); instead, the illness manifests as chronic subclinical polyarthritis and/or periarteritis (2, 3) that may progress to frank arthritis (4, 5). In addition, Labrador retrievers, golden retrievers, and Shetland sheepdogs appear more susceptible to kidney nephropathy (6).

Canine vaccines that provide protection by inducing anti-Ospa borreliacidal antibodies to kill *B. burgdorferi* in the midgut as the infected tick ingests blood (7, 8) have been commercially available for several decades, and the approach has been partially effective (9, 10). However, vaccinated dogs may still become infected, because the expression of OspA is downregulated immediately after the infected tick begins taking a blood meal (11), and the ticks may also transmit ospA-negative Lyme spirochetes (12).

In addition, borreliacidal antibodies specific for Ospa are genus-specific (13, 14), which is less problematic in the United States, where *B. burgdorferi* predominates, but significantly impacts efficacy in Europe and Asia, where other genospecies, such as *Borrelia garinii*, may infect canines (15, 16).

Researchers therefore sought to overcome the shortcomings of the traditional vaccines by developing a bivalent bacterin comprising a traditional OspA-expressing *B. burgdorferi* strain and a unique ospA- and ospB-negative *B. burgdorferi* strain that expressed high levels of OspC. Subsequent studies (17, 18) confirmed that the approach provided a high level of protection against canine Lyme disease for at least 1 year. In addition, the investigators demonstrated that the bacterin induced significant amounts of anti-OspC borreliacidal antibodies (17) and postulated that the high level of protection was likely due at least in part to the inclusion of the OspC-producing spirochete. We therefore examined this possibility more critically by evaluating the protection afforded by vaccination with only the ospA- and ospB-negative *B. burgdorferi* strain.

Vaccination and tick challenge. Two groups (n = 10 in each group) of 8-week-old laboratory-reared beagle puppies were randomized without regard to sex, vaccinated by subcutaneous injection with a 1-ml dose of bacterin or placebo, and Boostered after 21 days by subcutaneous injection with an additional 1-ml dose. The bacterin was prepared by growing the ospA- and ospB-nega-

Received 30 March 2015 Returned for modification 20 April 2015 Accepted 8 May 2015 Accepted manuscript posted online 13 May 2015 Citation LaFleur RL, Callister SM, Dant JC, Wasmoen TL, Jobe DA, Lovrich SD. 2015. Vaccination with the ospA- and ospB-negative *Borrelia burgdorferi* strain 50772 provides significant protection against canine Lyme disease. Clin Vaccine Immunol 22:836–839. doi:10.1128/CVI.00193-15. Editor: D. W. Pascual Address correspondence to Steven M. Callister, smcallis@gundersenhealth.org. Copyright © 2015, American Society for Microbiology. All Rights Reserved. doi:10.1128/CVI.00193-15
dogs were housed in individual cages during the tick challenge but housed communally in groups of 4 to 6 thereafter.

Borreliacidal antibody responses after vaccination. Blood samples were collected immediately prior to the tick challenge (7 days after booster) and tested for anti-OspA or anti-OspC borreliacidal antibodies, as described previously (17, 21). Briefly, 5 × 10^5 low-passage-number *B. burgdorferi* strains S-1-10 (OspA) or 50772 (OspC) were combined with serum and guinea pig complement, and the suspension was incubated at 35°C for 16 to 24 h. Following incubation, 100 μl of each assay suspension was combined with phosphate-buffered saline (PBS) and acridine orange, and the spirochetes were monitored for killing by using a FACScan flow cytometer (Becton Dickinson Immunocytometry Systems, San Jose, CA). The borreliacidal antibodies were detected indirectly by monitoring the increased fluorescence intensity that occurs when the acridine orange intercalates into blebbled, nonmotile spirochetes. A ≥13% shift in the mean fluorescence intensity compared to a normal serum control was considered positive (21). The presence of blebbled, nonmotile *B. burgdorferi* was confirmed by dark-field microscopy. A positive control was also included, and serum samples from individual animals were assayed concurrently.

Serum samples from the placebo-vaccinated controls did not contain detectable levels of borreliacidal antibodies (titer <1:80). In addition, the immune serum samples from the vaccine recipients did not contain anti-OspA borreliacidal antibodies that could be detected by using *B. burgdorferi* S-1-10. However, each serum sample contained high levels of borreliacidal activity (titer range, 1:640 to 1:20,480) that could be detected by using *B. burgdorferi* 50772. Moreover, passing 1-ml volumes of immune serum samples from four vaccine recipients over a column that contained recombinant OspC bound to Tetralink tetrameric avidin resin (Promega, Madison, WI) reduced the borreliacidal activity in each serum to <1:80. Additionally, significant levels (titer range, 1:320 to 1:1,280) of borreliacidal activity also remained detectable even after repeated adsorption with OspC. Therefore, the findings corroborated previous reports (17, 18) that vaccination with the spirochetes reliably induced significant amounts of anti-OspC borreliacidal antibodies and also showed that the bacterin induced borreliacidal antibodies specific for other unknown antigens expressed by *B. burgdorferi* 50772.

Ability of vaccination to eliminate spirochetes from feeding ticks. After the tick challenge, the midguts of the ticks recovered from the dogs were examined for spirochetes. Each midgut was fixed on a glass slide, overlaid with *B. burgdorferi*-specific rabbit polyclonal antibodies diluted 1:500 in PBS (pH 7.2), and incubated for 30 min at 37°C. After the slide was washed, fluorescein isothiocyanate-labeled IgG antibodies (Sigma-Aldrich, St. Louis, MO) diluted 1:200 in PBS were added, and the slide was reincubated for 30 min at 37°C. The slide was then washed and masked and examined by dark-field microscopy. The midguts from 28 (41%) of 68 ticks from the bacterin recipients contained *B. burgdorferi*; and at least 1 positive tick was recovered from each (100%) dog (Table 1). In contrast, spirochetes were detected in only 12 (19%) of 63 engorged ticks from the placebo recipients contained *B. burgdorferi*; and at least 1 positive tick was recovered from each (100%) dog (Table 1). In contrast, spirochetes were detected in only 12 (19%) of 63 engorged ticks from the bacterin recipients (*P* = 0.0077, Fischer’s exact test), but positive ticks were still recovered from 6 (60%) vaccinated dogs (*P* = 0.0867).

Ability of vaccination to prevent colonization of skin. At approximately 1, 2, and 4 months postchallenge, skin biopsy specimens were collected from each dog from areas adjacent to the tick bite sites. The skin was anesthetized with 0.5 ml of lidocaine (2%), and a biopsy specimen was removed with a disposable 4-mm dermal punch (Miltex, Inc., York, PA). Each skin biopsy specimen was then removed from the punch with sterile forceps and placed in a tube that contained BSK medium supplemented with gelatin (20%), rifampin (40 μg/ml), and kanamycin (8 μg/ml). The cultures were then incubated at 35°C and examined weekly by dark-field microscopy for 4 weeks. The ability of the BSK medium to support growth from an inoculum of one organism (19) was confirmed prior to culture. *B. burgdorferi* was recovered from at least one skin biopsy specimen from each (100%) placebo recipient. In contrast, skin biopsy specimens from 5 (50%) bacterin recipients yielded spirochetes (*P* = 0.0325).

Ability of vaccination to prevent joint abnormalities. The dogs were also observed daily for 8 months after the tick challenge for Lyme disease-related joint stiffness or lameness (1). To exacerbate the progression of disease, dexamethasone (Amtech, St. Joseph, MO) was injected intramuscularly at a dosage of 0.4 mg/lb of body weight for 5 consecutive days beginning at week 19 after the challenge (17, 18). At necropsy, samples of joint tissues were cultured by removing approximately 1-cm³ sections of the capsules from the left stifle, tarsus, elbow, and carpus. Half of the tissue sample was combined with 9 ml of BSK medium in a sterile bag and homogenized by passage through a laboratory blender (Stomacher 80; Seward Medical, London, United Kingdom). One milliliter of the suspension was then transferred to 9 ml of fresh BSK, and the culture was incubated at 35°C and examined weekly for 4 weeks by dark-field microscopy. The remaining sample was placed into 10% formalin, processed using routine methods for histopathology studies, stained with hematoxylin-eosin, and examined for cellular infiltrates and tissue damage caused by infec-

Group and dog no.	Spirochetes in ticks	B. burgdorferi from skin*	Lameness	Synovitis	B. burgdorferi from joints
Placebo	1	+	–	+	+
	2	+	+	+	+
	3	+	–	+	+
	4	+	–	–	–
	5	+	–	+	–
	6	+	–	–	+
	7	+	–	–	–
	8	+	+	+	+
	9	+	–	+	–
	10	+	+	+	+
Vaccine	1	–	–	–	–
	2	–	–	–	–
	3	–	–	–	–
	4	–	–	–	–
	5	–	–	–	–
	6	–	–	–	–
	7	–	–	–	–
	8	–	–	–	–
	9	–	–	–	–
	10	–	–	–	–

* Spirochetes recovered at 1-, 2-, and/or 6-month biopsy time points.
tion with *B. burgdorferi* (2, 17, 18). After immunosuppression of the dogs, 9 (70%) placebo recipients developed one or more joint abnormalities, which included recovery of *B. burgdorferi* from the joints of 7 (70%) dogs, synovitis in the joint tissues from 8 (80%) dogs, and lameness in 3 (30%) dogs (Table 1). In contrast, joint abnormalities were detected in 4 vaccine recipients (*P* = 0.0573), which included spirochetes from the joints of 4 dogs (*P* = 0.3698), 2 joint-positive dogs with synovitis (*P* = 0.023), and one joint-positive dog that also developed lameness (*P* = 0.582).

Conclusions. Most canine Lyme disease vaccines provide less-than-ideal protection, because they induce only anti-OspA borreliacidal antibodies that kill *B. burgdorferi* in the midgut as the infected tick takes a blood meal (7, 8). However, we showed previously (17, 18) that a bivalent bacterin comprised of an OspA-expressing *B. burgdorferi* strain and the ospA- and ospB-negative strain 50772 used in this study provided complete protection from canine Lyme disease for up to 1 year. A shortcoming of the previous studies, however, was a lack of confirmation that the ospA- and ospB-negative isolate contributed significantly to the high level of protection. Therefore, we examined the ability of vaccination with only the ospA- and ospB-negative *B. burgdorferi* strain 50772 to provide protection from infection and clinical disease.

The results demonstrated that vaccination with only *B. burgdorferi* 50772 also provided protection against canine Lyme disease. Specifically, significantly (*P* = 0.0077) fewer numbers of ticks that fed on the vaccinees were infected with spirochetes, which then apparently resulted in significantly decreased transmission of spirochetes to the skin (*P* = 0.0325). In addition, Lyme disease-associated joint abnormalities were decreased to a level that was just short of significance (*P* = 0.0573). Therefore, vaccination with *B. burgdorferi* 50772 did not provide complete protection against infection, but the findings confirmed that the immune response contributed significantly to the complete protection observed in previous studies after vaccination with a combination of a traditional OspA-expressing *B. burgdorferi* and the 50772 strain (17, 18).

In addition, our findings support a previous report (17) that vaccination with *B. burgdorferi* 50772 reliably induces high levels of anti-OspC borreliacidal antibodies. Therefore, the anti-OspC borreliacidal antibody response was a likely contributor to the enhanced protection, especially since Lyme disease spirochetes express OspC in the tick midgut and salivary glands and during the early stages of infection in the mammalian host (22, 23). An important caveat, however, is that ospC is incredibly diverse, even among *B. burgdorferi* isolates from the same geographic region (24), so comprehensive protection would be dependent on inducing borreliacidal antibodies specific for a conserved region of OspC. While we did not evaluate this possibility in this study, a previous investigation (17) showed that vaccination with the *B. burgdorferi* 50772 isolate induced significant amounts of borreliacidal antibodies specific for a highly conserved region of OspC (25). In addition, our findings mimicked those of a previous report (17) that vaccination with *B. burgdorferi* 50772 also induced significant levels of borreliacidal antibodies specific for other unknown antigens. Therefore, additional studies to confirm the specific mechanism(s) of protection are ongoing.

In summary, canines can acquire Lyme disease despite vaccination with a bacterin comprising only OspA-expressing *B. burgdorferi* (9, 10). However, while additional studies to better characterize the specific mechanism(s) responsible for protection remain necessary, these findings confirm that vaccination with the ospA- and ospB-negative *B. burgdorferi* 50772 provides protection against Lyme disease. Therefore, a combination vaccine that contains a traditional OspA-expressing *B. burgdorferi* and *B. burgdorferi* 50772 provides more comprehensive protection.

REFERENCES

1. Levy SA, Magnarelli LA. 1992. Relationship between development of antibodies to *Borrelia burgdorferi* in dogs and the subsequent development of limb/joint borreliosis. J Am Vet Med Assoc 200:344–347.
2. Summers BA, Straubinger AF, Jacobson RH, Chang YF, Appel MF, Straubinger RK. 2005. Histopathological studies of experimental Lyme disease in the dog. J Comp Pathol 131:1–13. http://dx.doi.org/10.1016/j.jcpa.2004.11.006.
3. Susta L, Uhl EW, Grosenbaugh DA, Krimer PM. 2012. Synovial lesions in experimental canine Lyme borreliosis. Vet Pathol 49:453–461. http://dx.doi.org/10.1177/0300985811424754.
4. Appel MJG, Allen S, Jacobson RH, Launderdale TL, Chang YF, Shin SJ, Thomford JW, Todhunter RJ, Summers BA. 1993. Experimental Lyme disease in dogs produces arthritis and persistent infection. J Infect Dis 167:651–664. http://dx.doi.org/10.1093/infdis/167.3.651.
5. Straubinger RK. 2000. PCR-based quantification of *Borrelia burgdorferi* organisms in canine tissues over a 500-day postinfection period. J Clin Microbiol 38:2191–2199.
6. Dambach DM, Smith CA, Lewis RM, Van Wickle TJ. 1997. Morphologic, immunohistochemical, and ultrastructural characterization of a distinctive renal lesion in dogs putatively associated with *Borrelia burgdorferi* infection: 49 cases (1987 to 1992). Vet Pathol 34:85–96. http://dx.doi.org/10.1177/030098589703400201.
7. de Silva AM, Telford SR, III, Brunet SR, Barthold SW, Fikrig E. 1996. *Borrelia burgdorferi* ospA is an arthropod-specific transmission-blocking Lyme disease vaccine. J Exp Med 183:271–275. http://dx.doi.org/10.1084/jem.183.1.271.
8. Fikrig E, Telford SR, III, Barthold SW, Kantor FS, Spielman A, Flavell RA. 1992. Elimination of *Borrelia burgdorferi* from vector ticks feeding on OspA-immunized mice. Proc Natl Acad Sci U S A 89:5418–5421. http://dx.doi.org/10.1073/pnas.89.12.5418.
9. Levy SA, Clark KK, Glickman LT. 2005. Infection rates in dogs vaccinated and not vaccinated with an *OspA Borrelia burgdorferi* vaccine in a Lyme disease-endemic area of Connecticut. Intern J Appl Res Vet Med 3:1–5.
10. Chu HJ, Chavez LG, Blumer BM, Sebring RW, Wasmoen TL, Acree WM. 1992. Immunogenicity and efficacy study of a commercial *Borrelia burgdorferi* bacterin. J Am Vet Med Assoc 204:403–411.
11. Schwan TG, Piesman J, Golde WT, Dolan MC, Rosa PA. 1995. Induction of an outer surface protein on *Borrelia burgdorferi* during tick feeding. Proc Natl Acad Sci U S A 92:2909–2913. http://dx.doi.org/10.1073/pnas.92.7.2909.
12. Fikrig E, Tao H, Barthold SW, Flavell RA. 1995. Selection of variant *Borrelia burgdorferi* ospA isolates from mice immunized with outer surface protein A or B. Infect Immun 63:1658–1662.
13. Wilske B, Busch U, Fingerle V, Jauris-Heipke S, Preac Mursic V, Rossler D, Will G. 1996. Immunological and molecular variability of OspA and OspC. Implication for *Borrelia burgdorferi* vaccine development. Infection 24:208–212.
14. Lovrich SD, Callister SM, DuChateau BK, Lim CLC, Winfrey J, Day SP, Schell RF. 1995. Abilities of OspA proteins from different seroprotective groups of *Borrelia burgdorferi* to protect hamsters from infection. Infect Immun 63:2113–2119.
15. Hovius KE, Stark LA, Bleumink-Plyum NM, van de Pol I, Verbeek-de Kruif N, Rijpekem SA, Schouls LM, Houwers DJ. 1999. Presence and distribution of *Borrelia burgdorferi sensu lato* species in internal organs and skin of naturally infected symptomatic and asymptomatic dogs, as detected by polymerase chain reaction. Vet Q 21:54–58. http://dx.doi.org/10.1006/vetq.1999.094992.
16. Inokuma H, Maetani S, Fujitsuaka J, Takano A, Sato K, Fukui T, Masuzawa T, Kawabata H. 2013. Astasia and pyrexia related to *Borrelia garinii* in two dogs in Hokkaido, Japan. J Vet Med Sci 75:975–978. http://dx.doi.org/10.1292/jvms.13-0027.
17. LaFleur RL, Dart JC, Wasmoen TL, Callister SM, Joe DA, Lovrich SD, Warner TF, Abdelmagid O, Schell RF. 2009. Bacterin that induces anti-OspA and anti-OspC borreliacidal antibodies provides a high level of pro-
tection against canine Lyme disease. Clin Vaccine Immunol 16:253–259. http://dx.doi.org/10.1128/CVI.00373-08.
18. LaFleur RL, Callister SM, Dant JC, Jobe DA, Lovrich SD, Warner TF, Wasmoen TL, Schell RF. 2010. One-year duration of immunity induced by vaccination with a canine Lyme disease bacterin. Clin Vaccine Immunol 17:870–874. http://dx.doi.org/10.1128/CVI.00524-09.
19. Callister SM, Case KL, Agger WA, Schell RF, Johnson RC, Ellingson JLE. 1990. Effects of bovine serum albumin on the ability of Barbour-Stoenner-Kelly medium to detect Borrelia burgdorferi. J Clin Microbiol 28:363–365.
20. Jackson CA, Lovrich SD, Agger WA, Callister SM. 2002. Reassessment of a midwestern Lyme disease focus for Borrelia burgdorferi and the human granulocytic ehrlichiosis agent. J Clin Microbiol 40:2070–2073. http://dx.doi.org/10.1128/JCM.40.6.2070-2073.2002.
21. Callister SM, Jobe DA, Agger WA, Schell RF, Kowalski TJ, Lovrich SD, Marks JA. 2002. Ability of the borreliacidal antibody test to confirm Lyme disease in clinical practice. Clin Diagn Lab Immunol 9:908–912. http://dx.doi.org/10.1128/CDLI.9.4.908-912.2002.
22. Piesman J, Zeidner NS, Schneider BS. 2003. Dynamic changes in Borrelia burgdorferi populations in Ixodes scapularis (Acari: Ixodidae) during transmission: studies at the mRNA level. Vector Borne Zoonotic Dis 3:125–132. http://dx.doi.org/10.1089/153036603768395825.
23. Tilly K, Krum JG, Bestor A, Jewett MW, Grimm D, Bueschel D, Byram R, Dorward D, VanRaden MJ, Stewart P, Rosa P. 2006. Borrelia burgdorferi OspC protein required exclusively in a crucial early stage of mammalian infection. Infect Immun 74:3354–3356. http://dx.doi.org/10.1128/IAI.01950-05.
24. Alghaferi MY, Anderson JM, Park J, Auwaerter PG, Aucott JN, Norris DE, Dumler JS. 2005. Borrelia burgdorferi ospC heterogeneity among human and murine isolates from a defined region of northern Maryland and southern Pennsylvania; lack of correlation with invasive and noninvasive genotypes. J Clin Microbiol 43:1879–1884. http://dx.doi.org/10.1128/JCM.43.4.1879-1884.2005.
25. Lovrich SD, Jobe DA, Schell RF, Callister SM. 2005. Borreliacidal OspC antibodies specific for a highly conserved epitope are immunodominant in human Lyme disease and do not occur in mice or hamsters. Clin Diagn Lab Immunol 12:746–751. http://dx.doi.org/10.1128/CDLI.12.6.746-751.2005.