About the Randić Connectivity, Modify Randić Connectivity and Sum-connectivity Indices of Titania Nanotubes \(\text{TiO}_2(m,n) \)

Wei Gao,¹ Mohammad Reza Farahani² and Muhammad Imran³,⁴*

¹ School of Information Science and Technology, Yunnan Normal University, Kunming 650500, China
² Department of Applied Mathematics, Iran University of Science and Technology (IUST), Narmak, Tehran 16844, Iran
³ Department of Mathematical Sciences, United Arab Emirates University, P. O. Box 1551, Al Ain, United Arab Emirates
⁴ School of Natural Sciences, National University of Sciences and Technology, Sector H-12, P.O. 44000, Islamabad, Pakistan

* Corresponding author: E-mail: imrandhab@gmail.com
Phone: +971 137136389, Fax: +971 3 7671291
Received: 28-09-2016

Abstract

The Randić Connectivity Index \(R(G) \) is one of the oldest connectivity index, introduced by Randić in 1975. Another connectivity indices is the Sum-Connectivity Index \(X(G) \) introduced in 2008 by Zhou and Trinajstić. Recently in 2011, a modification of the Randić Connectivity Index of a graph \(G \) was introduced by Dvorak et al. In this paper, we compute these connectivity topological indices for a family of molecular graphs known as titania nanotubes \(\text{TiO}_2(m,n) \).

Keywords: Molecular graph, Nanotubes, Titania nanotubes \(\text{TiO}_2(m,n) \), Topological indices, Randić index, Sum-connectivity index, Modify Randić index, Zagreb index, Multiple Zagreb index.

1. Introduction

A graph is a collection of points and lines connecting a subset of them. The points and lines in a graph are respectively called vertices and edges of the graph. An edge in \(E(G) \) with end vertices \(u \) and \(v \) is denoted by \(uv \). Two vertices \(u \) and \(v \) are said to be adjacent if there is an edge between them. In chemical graph theory, the vertices of molecular graph \(G \) correspond to the atoms and its edges correspond to the chemical bonds. We denoted the order and size and degree of a vertex/atom \(v \) of a molecular graph \(G \) by \(|V(G)|, |E(G)| \) and \(d_v \), respectively. The set of all vertices adjacent to a vertex \(v \) in \(V(G) \) is said to be the neighborhood of \(v \), denoted as \(N(v) \). The number of vertices in \(N(v) \) is said to be the degree of \(v \). The minimum and maximum vertex degrees in a graph \(G \) denoted by \(\delta(G) \) and \(\Delta(G) \), respectively and are defined as \(\min \{d_v \mid v \in V(G)\} \) and \(\max \{d_v \mid v \in V(G)\} \), respectively. Our notation is standard and mainly taken from standard books of chemical graph theory.¹⁻³

We have many connectivity topological indices, for an arbitrary graph with connected structure in chemical graph theory. The oldest of them is Randić Connectivity Index which has shown to reflect molecular branching, introduced by Milan Randić in 1975,² and defined as

\[
R(G) = \sum_{uv \in E(G)} \frac{1}{d_u d_v},
\]

(1)

where, \(d_u \) and \(d_v \) are the degrees of the vertices \(u \) and \(v \), respectively.

Another connectivity indices is the Sum-Connectivity Index that was introduced by Zhou and Trinajstić in 2008.⁵,⁶ The sum-connectivity index \(X(G) \) is defined as the sum over all edges of the graph of the terms \(d_u + d_v \) and is equal to

\[
X(G) = \sum_{uv \in E(G)} \frac{1}{d_u + d_v},
\]

(2)

Recently in 2011, Dvorak et al. introduced a modification of the Randić Connectivity Index of \(G \) and is defined as
that is more tractable from computational point of view. It is much easier to compute Modify Randić index \(R'(G) \) than Randić index \(R(G) \) \(\text{(see}^7 \text{for more details). Some basic properties of these indices can be found in the recent letters. For more study, see reference}^8–13 \).

In this paper, we investigate the topological Connectivity indices, and compute some formulas for the Randić, Sum-Connectivity and Modify Randić indices of a family of molecular graphs that called titania nanotubes \(TiO_2(m,n) \) for positive integers \(n, m \) (see Figure 1).

2. Main results and Discussion

In this section, we compute the Randić, Sum-connectivity and Modify Randić Indices for the titania nanotubes \(TiO_2(m,n) \) \(\forall m, n \in \mathbb{N} \). Titania nanotubes were systematically synthesized during the last 10–15 years using different methods and carefully studied as prospective technological materials. Since the growth mechanism for \(TiO_2 \) Nanotubes is still not well defined, their comprehensive theoretical studies attract enhanced attention. The \(TiO_2 \) sheets with a thickness of a few atomic layers were found to be remarkably stable.\(^{14–17} \) Molecular graphs titania \(TiO_2(m,n) \) is a family of nanotubes, such that the structure of this family of nanotubes consist of the cycles with length four \(C_4 \) and eight \(C_8 \). Several topological indices of titania nanotubes \((TiO_2) \) have been studied in the literature.\(^{18–20} \)

Let us denote the number of Octagons or cycles \(C_8 \) in the first row and column of the 2-Dimensional lattice of \(TiO_2 \) nanotubes (Figure 1) by \(m \) and \(n \), respectively.

Theorem 1. Let \(TiO_2(m,n) \) be the titania nanotubes for positive integers \(m, n \). Then the following indices are calculated by formulas:

\[
R'(G) = \sum_{uv \in E(G)} \frac{1}{\max\{d_u, d_v\}}.
\]

\(\text{Figure 1. A 2-Dimensional Lattice of the titania nanotubes } TiO_2(m,n) (\forall m, n \in \mathbb{N}) _{17} \)

- The Randić Connectivity index

\[
R(TiO_2(m,n)) = \left[\frac{2(\sqrt{15}+\sqrt{10})}{5} m + \left(\frac{45\sqrt{2}+3\sqrt{10}+5\sqrt{3}+2\sqrt{5}}{15} \right) n \right] \quad (4)
\]

- The Sum-Connectivity index

\[
X(TiO_2(m,n)) = \left[\frac{3\sqrt{2}}{2} + \frac{4\sqrt{7}}{7} \right] m + \left(\sqrt{6} + \frac{4\sqrt{7}}{7} - \frac{\sqrt{2}}{2} \right) n \quad (5)
\]

- The Modify Randić index

\[
R'(TiO_2(m,n)) = 2n(m + 1). \quad (6)
\]

Before we prove the main results, let us introduce some definitions.

Definition 1. Consider the graph \(G = (V, E) \), then we divide the vertex set \(V(G) \) and edge set \(E(G) \) of \(G \) into several partitions based on the degrees of vertices/atoms in \(G \) as follows.\(^9 \)

\[
\forall k: \delta \leq k \leq \Delta, V_k = \{ v \in V(G) | d_v = k \}
\]

\[
\forall i: 2\delta \leq i \leq 2\Delta, E_i = \{ uv \in E(G) | d_u + d_v = i \}
\]

\[
\forall j: \delta^2 \leq j \leq \Delta^2, E_j^* = \{ uv \in E(G) | d_u \times d_v = j \}. \quad (7)
\]

\[
\forall f: \delta \leq f \leq \Delta, E_f^+ = \{ uv \in E(G) | \text{Max}\{d_u, d_v\} = f \}
\]

\[
\forall g: \delta \leq g \leq \Delta, E_g^= = \{ uv \in E(G) | \text{Min}\{d_u, d_v\} = g \},
\]

Where \(d_v (1 \leq d_v \leq n – 1) \) be the degrees of \(v \in V(G) \) and \(\delta \) and \(\Delta \) are the minimum and maximum, respectively.

In particular, let \(G = (V, E) \) be a connected molecular graph or nanotubes, then we can divide the vertex set and edge set of \(G \) into several partitions:

\[
V_i = \{ v \in V(G) | d_v = i \}, \forall i = 1, 2, ..., 5 \quad (8)
\]

Since the degree of an atom (or vertex) of the molecular graph is equal to 1, 2, ..., 5 and the hydrogen atoms (with degree 1) in \(G \) are often omitted.

In particular, let \(TiO_2(m,n) \) be the titania nanotubes \((\forall m, n \in \mathbb{N}) \) with \(6mn + 1 \) vertices and \(10mn + 8n \) edges, then from its structure, the vertex and edge partitions of
the vertex set $V(TiO_2(m,n))$ and edge set $E(TiO_2(m,n))$ and their order and size are as follow: \(^{17}\)

\[
\begin{align*}
V_2 &= \{ v \in V(TiO_2(m,n)) | d_v = 2 \}, \\
|V_2| &= 2mn + 4n \\
\end{align*}
\]

\[
\begin{align*}
V_3 &= \{ v \in V(TiO_2(m,n)) | d_v = 3 \}, \\
|V_3| &= 2mn \\
\end{align*}
\]

\[
\begin{align*}
V_4 &= \{ v \in V(TiO_2(m,n)) | d_v = 4 \}, \\
|V_4| &= 2n \\
\end{align*}
\]

\[
\begin{align*}
V_5 &= \{ v \in V(TiO_2(m,n)) | d_v = 5 \}, \\
|V_5| &= 2mn \\
\end{align*}
\]

and

\[
E_6 = \{ uv \in E(TiO_2(m,n)) | d_u + d_v = 6 \}, \\
|E_6| = 6n \\
\]

\[
E_8^* = \{ uv \in E(TiO_2(m,n)) | d_u \times d_v = 8 \}, \\
|E_8^*| = 6n \\
\]

By above mentioned formulas, one can see that

\[
|V(TiO_2(m,n))| = (2mn + 4n) + 2n + 2mn = 6n(m + 1). \\
\]

\[
|E(TiO_2(m,n))| = \frac{1}{2} [2 \times (2mn + 4n) + 3 \times 2mn + 4 \times 2n + 5 \times 2mn] = 10mn + 8n. \\
\]

Now, we have the following computations of the Randić, Sum-connectivity and Modify Randić Indices for the titania nanotubes $TiO_2(m,n) \forall m,n \in \mathbb{N}$.

\[
R(TiO_2(m,n)) = \sum_{uv \in E(TiO_2[m,n])} \frac{1}{d_u d_v} \\
\]

\[
= \sum_{uv \in E_6^*} \frac{1}{\sqrt{d_u d_v}} + \sum_{uv \in E_{10}^*} \frac{1}{\sqrt{d_u d_v}} + \sum_{uv \in E_{12}^*} \frac{1}{\sqrt{d_u d_v}} + \sum_{uv \in E_{15}^*} \frac{1}{\sqrt{d_u d_v}} \\
\]

\[
= (6n) \times \left(\frac{\frac{1}{\sqrt{3 \times 4}}}{\sqrt{5}} + 2n(2m + 1) \times \left(\frac{\frac{1}{\sqrt{2 \times 5}}}{\sqrt{3}}\right) + (2n) \times \left(\frac{\frac{1}{\sqrt{3 \times 4}}}{\sqrt{5}}\right) + (6mn - 2n) \times \left(\frac{\frac{1}{\sqrt{3 \times 5}}}{\sqrt{5}}\right)\right) \\
\]

\[
= 3n\sqrt{2} + \frac{n(2m + 1)\sqrt{10}}{5} + \frac{\sqrt{3}}{3} n + \frac{\sqrt{15}}{15} (6mn - 2n) \\
\]

\[
= \frac{2}{5} (\sqrt{15} + \sqrt{10})mn + \left(3\sqrt{2} + \frac{\sqrt{10}}{5} + \frac{\sqrt{3}}{3} + \frac{2\sqrt{15}}{15}\right)n. \\
\]

Thus the Randić connectivity index of $TiO_2(m,n)$ nanotubes is equal to

\[
R(TiO_2(m,n)) = \left(\frac{2(\sqrt{15} + \sqrt{10})}{5} m + \left(\frac{45\sqrt{2} + 3\sqrt{10} + 5\sqrt{3} + 2\sqrt{15}}{15}\right)n\right) \\
\]

Gao et al.: About the Randić Connectivity, Modify Randić ...
Also,

\[X(TiO_2(m, n)) = \sum_{u,v \in E(TiO_2(m, n))} \frac{1}{\sqrt{d_u + d_v}} \]

\[= \sum_{u \in E_9} \frac{1}{\sqrt{d_u + d_v}} + \sum_{u \in E_{12}} \frac{1}{\sqrt{d_u + d_v}} + \sum_{u \in E_{15}} \frac{1}{\sqrt{d_u + d_v}} \]

\[= \frac{6n}{\sqrt{2} + 4} + \frac{4mn + 2n}{\sqrt{2} + 5} + \frac{2n}{\sqrt{3} + 4} + \frac{6mn - 2n}{\sqrt{3} + 5} \]

\[= \sqrt{6n} + \frac{4n(m + 1)\sqrt{7}}{7} + \frac{\sqrt{2}}{2} n(3m - 1). \]

Hence the Sum-Connectivity index of \(TiO_2(m, n) \) nanotubes is

\[X(TiO_2(m, n)) = \left(\frac{3\sqrt{2}}{2} + \frac{4\sqrt{7}}{7} \right)^m + \left(\sqrt{6} + \frac{4\sqrt{7} - \sqrt{2}}{2} \right)^n. \]

Now, by using Definition 1, we see that there are two modify edges partitions \(E_9^+ \) and \(E_5^+ \) for the titania nanotubes \(TiO_2(m, n) \) as:

\[E_9^+ = \{ uv \in E(TiO_2(m, n)) | \text{Max}(2,4) \} = E_8^+ \cup E_{12}^+ \]

\[|E_9^+| = |E_8^+| + |E_{12}^+| = 6n + 2n = 8n \]

\[E_{15}^+ = \{ uv \in E(TiO_2(m, n)) | \text{Max}(2,5) \} = E_{10}^+ \cup E_{15}^+ \]

\[|E_{15}^+| = 4mn + 2n + 2n(3m - 1) = 10mn. \]

Therefore the Modify Randić index of \(TiO_2(m, n) \) is equal to:

\[R'(TiO_2(m, n)) = \sum_{u \in E(TiO_2(m, n))} \frac{1}{\max[d_u, d_v]} \]

\[= \sum_{u \in E_9^+} \frac{1}{\max[d_u, d_v]} + \sum_{u \in E_5^+} \frac{1}{\max[d_u, d_v]} \]

\[= \frac{8n}{4} + \frac{10mn}{5} = 2mn + 2n = 2n(m + 1). \]

Here, we complete the proof of main theorem of this article and all main results are computed.

Corollary 2.1. Consider the titania nanotubes \(TiO_2(m, n) \) \(\forall m, n \in \mathbb{N} \) (Figure 1), with \(6n(m+1) \) vertices and \(10mn+8n \) edges. For enough large integer number \(m \) and \(n \), the Randić, Sum-connectivity and Modify Randić Indices of \(TiO_2(m, n) \) are equal to:

1. The Randić Connectivity index

\[R(TiO_2(m, n)) \approx (2.814m + 5.9688)n. \]

2. The Sum-Connectivity index

\[X(TiO_2(m, n)) \approx (3.6332m + 3.2542)n. \]

3. The Modify Randić index

\[R'(TiO_2(m, n)) = (2m + 2)n. \]

Corollary 2.2. Consider \(TiO_2(m, n) \) nanotubes, Corollary 1 implies that for enough large integer number \(m, n \in \mathbb{N} \),

\[X(TiO_2(m, n)) > R(TiO_2(m, n)) > R'(TiO_2(m, n)). \]

3. Discussion

Now we study the change of the values of Randić, Sum-connectivity and Modify Randić Indices of \(TiO_2(m, n) \) nanotubes when the parameters \(m \) and \(n \) are slightly changed. The graphs of these nanotubes corresponding to some small values of \(m \) and \(n \) are shown in Figure 2. Similarly, the values of the studied topological indices corresponding to small change in the values of \(m \) and \(n \) is summarized in Table 1.

Figure 2. The graph of titania nanotubes \(TiO_2(m, n) \) for \(m = 2, 4 \) and \(n = 2, 4 \).

4. Conclusion

In this paper, we considered an infinite class of the titania nanotubes \(TiO_2(m, n) \), that were systematically

Gao et al.: *About the Randić Connectivity, Modify Randić ...*
Gao et al.: About the Randić Connectivity, Modify Randić ...