Clemens-Schmid exact sequence in characteristic p

B. Chiarellotto, N. Tsuzuki

March 22, 2012

Abstract

For a semistable family of varieties over a curve in characteristic p, we prove the existence of a "Clemens-Schmid type" long exact sequence for the p-adic cohomology. The cohomology groups appearing in such a long exact sequence are defined locally.

1 Introduction

Let Δ denote an open disk around 0 in the complex plane. Let X be a smooth complex variety which is a Kähler manifold. Consider a semi-stable degeneration $\pi : X \to \Delta$, i.e., a holomorphic, proper and flat map of relative dimension n such that π is smooth outside $X_0 = \pi^{-1}(0)$, such that the fiber X_0 is a divisor with global normal crossings (in other words $X_0 = \sum X_{0i}$, i is a sum of irreducible components X_{0i} of X_0 meeting transversally and each X_{0i} is smooth). In this situation, for any m, one can associate a limit cohomology H^m_{lim} (see [MO84] or [ST76]). This H^m_{lim} is endowed with a nilpotent monodromy operator N and a weight filtration from a mixed Hodge structure. One has $H^m_\pi(X_t) \cong H^m_{\text{lim}}$ as vector spaces for $t \neq 0$ where $X_t = \pi^{-1}(t)$; moreover, a topological argument shows that $H^m(X) \cong H^m(X_0) := H^m$ and $H_m(X) \cong H_m(X_0) = H_m$ as well. By i we will indicate the inclusion $X_t \to X$. Then it is possible to define the Clemens-Schmid exact sequence (respecting MHS) [CL77] Chap. 1, 3.7 (see also [MO84]):

$$\cdots \to H_{2n+2-m} \xrightarrow{\alpha} H^m \xrightarrow{\iota} H^m_{\text{lim}} \xrightarrow{N} H^m_{\text{lim}} \xrightarrow{\beta} H_{2n-m} \xrightarrow{\alpha} H^{m+2} \to \cdots,$$

where the maps α are the natural maps arising from the Poincaré duality for X_0 considered as closed in the smooth variety X, and the maps β are again obtained via Poincaré duality for $H^m(X_t) \cong H^m_{\text{lim}}$ and then composed with the natural map $H_{2n-m}(X_t) \to H_{2n-m}(X)$ dual to i^*. In order to prove the exactness of this long sequence one needs more than a topological argument which connects a global definition of the cohomology of X with support in X_0 to a sequence involving the cohomology of the special and generic fibers. Indeed one also needs a "Weights" argument. In fact one has to use the fact that the sequence respects the weight filtrations of mixed Hodge structures of the vector spaces involved and moreover that the weight and monodromy filtrations on H^m_{lim} coincide.

We recall, also, that the structure of the limit cohomology has been considered in the framework of log-geometry (see [IL94]).

In this article we deal with the analogous situation in characteristic $p > 0$. Namely, we consider the following morphism

$$f : X \to C$$

over a finite field k of characteristic p, where X is a smooth variety of dimension $n+1$, C is a smooth curve and f is a proper and flat morphism. We suppose that for a k-rational point s of C, the fiber at s of X_s,
is a normal crossing divisor (NCD for simplicity) and \(f \) is smooth outside \(X_s \). We prove the existence of a Clemens-Schmid sequence in this situation. For simplicity, we will indicate by \(\mathcal{V} \) a complete and absolutely unramified DVR whose residue (resp. fraction) field is \(k \) (resp. \(K \) of characteristic 0):

\[
\cdots \rightarrow H^m_{\text{rig}}(X_s) \overset{\gamma}{\rightarrow} H^m_{\text{log-crys}}((X_s, M_s)/\mathcal{V}^\times) \otimes K \overset{N_m}{\rightarrow} H^m_{\text{log-crys}}((X_s, M_s)/\mathcal{V}^\times) \otimes K(-1) \overset{\delta}{\rightarrow} H^{m+2}_{\text{rig}}(X) \rightarrow \cdots
\]

where \((a)\) means the \(a \)-th Tate twist of Frobenius structure.

The role of the limit cohomology will be played by the log-crystalline cohomology of the log-scheme \(X_s \) endowed with the log-structure induced by the log-structure of \(X \) given by the NCD \(X_s \) itself. We denote this limit cohomology by \(H^m_{\text{log-crys}}((X_s, M_s)/\mathcal{V}^\times) \) (\(\mathcal{V}^\times \) is the log-structure on \(\mathcal{V} \) associated to 1 \(\mapsto 0 \)). We will then consider the cohomology of the special fiber \(X_s \) without any structure: and here we will apply rigid cohomology, \(H^m_{\text{rig}}(X_s) \). We now need to replace the "trascendental" topological argument used to construct such a sequence. The underlying idea is that the bridge between the local and the global will be given by two different definitions of the cohomology of \(X \) with support in \(X_s \), \(H^m_{\text{rig}}(X) \). Moreover we will link it to the cohomology of the open complement of \(X_s \) in \(X \) which will be understood in the framework of a generalized log-convergent cohomology theory introduced by Shiho. Hence we will have the long exact sequence

\[
\cdots \rightarrow H^m_{\text{rig}}(X) \overset{\alpha}{\rightarrow} H^m_{\text{rig}}(X_s) \rightarrow H^m_{\text{log-conv}}((X_s, M_s)/\mathcal{V}) \rightarrow \cdots
\]

Furthermore the (absolute) log-convergent cohomology groups, \(H^m_{\text{log-conv}}((X_s, M_s)/\mathcal{V}) \), will be associated with the limit Hodge structure of the special fiber. In fact we will obtain

\[
\cdots \rightarrow H^m_{\text{log-conv}}((X_s, M_s)/\mathcal{V}) \rightarrow H^m_{\text{log-crys}}((X_s, M_s)/\mathcal{V}^\times) \otimes K \overset{N_m}{\rightarrow} H^m_{\text{log-crys}}((X_s, M_s)/\mathcal{V}^\times) \otimes K(-1) \rightarrow \cdots
\]

so that we can merge the two sequences (1) to obtain the \(p \)-adic analogue of the Clemens-Schmid sequence \([ext{CL77}]\).

For the exactness of the merged sequence we note that the log-crystalline cohomology of \(X_s \) admits a weight structure (coming from the Frobenius action) and the existence of a monodromy operator. Following the work of Shiho, we will insert our cohomology into a family. Moreover to such a family a weight structure (coming from the Frobenius action) and the existence of a monodromy operator.

\[
H^{m+2}_{\text{rig}}(X) \cong H^{2n+2-m-2}_{\text{rig}}(X_s)^\vee(-\dim X) \cong H^{2g}_{2n-m}(X_s)(-\dim X)
\]

\([ext{LS07}], \text{[PE03]}, \text{[Be97]}\): hence (1) is the complete analogue of the classical Clemens-Schmid exact sequence.

We will see that the cohomology group \(H^m_{\text{rig}}(X) \) is isomorphic to the cohomology of the completion \(\hat{X} \) of \(X \) along \(X_s \) with support in \(X_s \) (Remark \[4.13\]). Hence the Clemens-Schmid type sequence exists geometrically on the completion \(\hat{C} \) of \(C \) along the special point \(s \). In this paper we will prove the exactness of the Clemens-Schmid type sequence when \(k \) is a finite field because we would like to avoid the difficulty of building up the relative theory. We believe, however, that it is possible to remove the finiteness hypothesis. We do not treat the problem of the exactness for a proper semistable family defined over \(\text{Spec } k[1/r] \).

It is tempting to try to see our procedure along the lines of Levine’s article on motivic tubular neighborhoods \([ext{LE07}]\). In that article topological methods were replaced by the notion of tubular neighborhoods. In our \(p \)-adic realization, this corresponds to the use of the tubes in characteristic 0 for our varieties in characteristic \(p \). With respect to his approach, in our "realization" we have the advantage of
a weight filtration which can be compared to the monodromy filtration and we can prove the exactness of our Clemens-Schmid sequence. We also mention that Nakkajima studied the kernel of the monodromy operator in crystalline settings in [NA06], Sect. 6.

Here is an outline of this paper. After establishing our notations and conventions, we will show in paragraph 3, how Shiho’s theory of relative log-cohomology (convergent, analytic and rigid) can be used in our setting. In particular we will understand the log-crystalline cohomology of the special fiber X_s as a fiber at s of the sheaves of relative log-cohomology on C which are endowed with an overconvergent connection, whose residue at s will be the monodromy operator. In the paragraph 4 we will construct the sequence. We will show how the global long exact sequence should be defined using “local” objects via tubes: this will replace the topological methods in the classical case. To do that we will need to compare and link several cohomology theories: these results will be obtained by choosing a good embedding system. In fact, in [SH02] 2.2.4, Shiho was able to define in a functorial way a log tubular neighborhood $|X|^\log_{fp}$ from a (not exact, in general) closed immersion $X \to \mathcal{P}$ of the k-schemes X to the formal \mathcal{V}-scheme \mathcal{P} (under some assumptions). Here we will need to generalize that approach and to construct a good embedding system for étale hypercoverings which admits some exactness properties. This is done in Propositions [4.3 and 4.11] In paragraph 5 we will prove the last ingredient for the exactness of the Clemens-Schmid sequence: the monodromy filtration coincides with the weight filtration for the log-crystalline cohomology of X_s. This will be proved using the theory of the third paragraph: namely the fact that we may view this cohomology as a special fiber at s of a module endowed with a log-connection and a Frobenius structure on the curve (with a log-structure given by the special point) and with monodromy given by the residue of this differential module at that special point (hence the monodromy is unipotent). In this sense we will use Crew’s results on the equivalence of two filtrations ([CR98] §10), which, in turn, was an adaptation of Deligne’s methods for the étale setting ([DE80] 1.8.4).

Acknowledgments We would like to thank A. Shiho and A. Lauder. Lauder’s article [LA11] was the starting point for this article. The first author was supported by Cariparo Eccellenza Grant “Differential methods in algebra, geometry and arithmetic” and was also supported by a JSPS grant. The second author was supported by a JSPS Grant-in-Aid for research (B) 22340001. We thank Frank Sullivan. We thank also the referee for carefully reading the manuscript and for pointing out some mistakes in the first version.

2 Notation and setting

In this paper we will indicate by k a perfect field of characteristic $p > 0$, if not otherwise indicated. For simplicity we denote by \mathcal{V} the ring of Witt vectors of k, K its fraction field. The Frobenius is denoted by σ. We put $\mathcal{V}_1 = \mathcal{V}/p\mathcal{V}$. Of course one could have taken for \mathcal{V} any complete discrete valuation ring with residue field k and Frac(\mathcal{V}) = K: but all the K-cohomology groups we are going to consider in this paper will be defined by tensoring with K the cohomology groups defined over the fraction field of the ring of Witt vectors of k. Hence the ramification does not trouble our constructions and results.

We recall that a divisor $Z \subset Y$ of a Noetherian scheme is said to be a strict normal crossing divisor (SNCD) if Z is a reduced scheme and, if $Z_i, i \in J$ are the irreducible components of Z, then, for any $I \subseteq J$ (which might be empty) the intersection $Z_I = \cap_{i \in I} Z_i$ is a regular scheme of codimension the number of elements of I (or it may be empty). Moreover Y is said to be a normal crossing divisor (NCD) if, étale locally on Y, it is a SNCD.

We consider the following morphism

$$f : X \to C$$

over a field k, where X is a smooth variety of dimension $n + 1$, C is a smooth curve and f is a proper and flat morphism. We suppose that, for a k-rational point s of C, the fiber at s of f, X_s, is a NCD in X and f is smooth on $X \setminus X_s$. We use (X, M) to denote the scheme X endowed with the log-structure given by the NCD, X_s, while (C, s) denotes the curve C endowed with the log-structure given by s (all for the étale
topology). The induced map \(f : (X, M) \to (C, s) \) is log-smooth and proper. Then \(s^\infty \) is a log-point given by the \(k \)-rational point \(s \) of \((C, s)\), i.e., the induced log-structure given by the closed immersion \(s \to C \) from \((C, s)\). We refer to such a situation by a cartesian diagram

\[
\begin{array}{ccc}
(X_s, M_s) & \longrightarrow & (X, M) \\
\downarrow & & \downarrow f \\
(C, s) & & \end{array}
\]

By \(\mathcal{V}^\infty \) we indicate \(\mathcal{V} \) endowed with the log-structure associated to \(\mathbb{N} \ni 1 \mapsto 0 \in \mathcal{V} \). Again \(\mathcal{V} \) will indicate \(\mathcal{V} \) endowed with the trivial log-structure.

If we say a property is satisfied by a simplicial (formal) scheme (resp. a morphism of simplicial (formal) schemes), then we mean it is satisfied at each level of the simplicial (formal) scheme (resp. the morphism of simplicial (formal) schemes).

By \([A^* \to B^*] \), we understand the simple complex associated to the double one (also in the simplicial setting) for complexes \(A^*, B^* \).

3 Relative Cohomology

Because in (4), \(C \) was a smooth curve over \(k \) then it admits a smooth lifting \(C_\mathcal{V} \) over \(\mathcal{V} \) (7.4 III, SGA1): we indicate by \(\mathcal{C}_\mathcal{V} \) its completion along the special fiber \(C \). Let us fix a lift \(\hat{s} \) of \(s \) in \(C_\mathcal{V} \) and a section \(t \) as a local coordinate of \(\hat{s} \) in \(C_\mathcal{V} \) over \(\mathcal{V} \). \(\hat{s} \) and \(t \) also denote a lift of \(s \) in \(\mathcal{C}_\mathcal{V} \) and a local coordinate of \(\hat{s} \) in \(\mathcal{C}_\mathcal{V} \) over \(\mathcal{V} \), respectively. Then \(1 \mapsto t \) defines a log-structure on \(\mathcal{C}_\mathcal{V} \) and we indicate it by \(\mathcal{N} \). After shrinking \(C \) it is also possible to endow \((\mathcal{C}_\mathcal{V}, \mathcal{N}) \) with a lift \(\sigma_\mathcal{V} \) of Frobenius which is compatible with the Frobenius \(\sigma \) on \(\mathcal{V} \). We then have a sequence of exact closed immersions of log-schemes

\[
\begin{array}{ccc}
s^\infty & \to & (C, s) \\
\downarrow & & \downarrow \end{array}
\]

The log-scheme \((C, s)\) in (5) is log-smooth over \(k \) endowed with the trivial log-structure, and the formal log-scheme \((\mathcal{C}_\mathcal{V}, \mathcal{N})\) in (5) is log-smooth over \(\mathcal{V} \) endowed with the trivial log-structure. We will denote the reduction of \((\mathcal{C}_\mathcal{V}, \mathcal{N})\) modulo \(p^i \) by \((\mathcal{C}_\mathcal{V}, \mathcal{N})\). We will indicate by \(\mathcal{C}_K \) (resp. \((\mathcal{C}_K, \mathcal{N}_K)\)) the rigid analytic space associated to the generic fiber of \(\mathcal{C}_\mathcal{V} \) (resp. with the log-structure \(\mathcal{N}_K \) induced by \(\mathcal{N} \), and denotes by \(\hat{s}_K \) a point of \(\mathcal{C}_K \) defined by \(t = 0 \).

As in paragraph 2 we may induce on \(X_t \) the log-structure of \((X, M)\) and we refer to it as \((X_s, M_s)\). Again \((X, M)\) is log-smooth over \(k \) endowed with the trivial log-structure while \((X_s, M_s)\) is log-smooth over \(s^\infty \). Then we have the following diagram:

\[
\begin{array}{ccc}
(X_s, M_s) & \longrightarrow & (X, M) \\
\downarrow f_s & & \downarrow f \\
(C, s) & & \end{array}
\]

In this setting Kato and, later, Shiho ([KA89], [SH08], [SH08A]) were able to define the relative log-crystalline cohomology sheaves of \((X, M)/(C, s)\) with respect to \((\mathcal{C}_\mathcal{V}, \mathcal{N})\), and we will indicate them by

\[R^m f(X, M)/(\mathcal{C}_\mathcal{V}, \mathcal{N}).\]

In this paper we will only work with the trivial log-isocrystal \(\text{crys}_{X, k} \). In order to define the relative log-crystalline cohomology one needs to fix a Hyodo-Kato embedding system \((\mathcal{P}, \mathcal{M})\) of an étale
Remark. Note that our crystalline complex is on the Zariski site after (1.5) in [SH08], and it is not on the étale site of X. In this section we do not need such a special embedding system.

Theorem 3.2. Under these hypotheses on (X, M), $\mathbb{R}L_{\phi}f_*^X, M_\dagger, M_* \mapsto \mathcal{P}_{\dagger, M_*}$ is a simplicial formal log-scheme separated of finite type over \mathcal{V} (with Frobenius endomorphism which extends that of \mathcal{V}) such that $(\mathcal{P}_{\dagger, M_*})$ is a simplicial formal log-scheme over $(\mathcal{V}, \mathcal{N})$ and $(\mathcal{P}_{\dagger, M_*})$ is log-smooth over $(\mathcal{V}, \mathcal{N})$.

(i) $\theta : X_\dagger \to X$ is an étale hypercovering, M_\dagger is the log-structure on X_\dagger induced by M, and $\theta_\dagger : (X_\dagger, M_\dagger) \to (X_\dagger, M_\dagger)$ is an induced étale hypercovering by base-change;

(ii) $(\mathcal{P}_{\dagger, M_*})$ is a simplicial formal log-scheme separated of finite type over \mathcal{V} (with Frobenius endomorphism which extends that of \mathcal{V}) such that $(\mathcal{P}_{\dagger, M_*})$ is a simplicial formal log-scheme over $(\mathcal{V}, \mathcal{N})$ and $(\mathcal{P}_{\dagger, M_*})$ is log-smooth over $(\mathcal{V}, \mathcal{N})$;

(iii) i_\dagger is a closed immersion of simplicial formal log-schemes (not necessary exact).

Then the crystalline complex $C_{(X_\dagger, M_\dagger)/\mathcal{V}, \mathcal{N}}$ on the Zariski site on X_\dagger can be defined by the logarithmic de Rham complex of the PD envelop of the closed immersion $i_\dagger : (X_\dagger, M_\dagger) \to (\mathcal{P}_{\dagger, M_*})$ over $(\mathcal{V}, \mathcal{N})$ and the relative log-crystalline cohomology is calculated by

$$\mathbb{R}f^X_{(X, M)/\mathcal{V}, \mathcal{N}} = K \otimes \lim_{\leftarrow i} \mathbb{R}(f_{\theta_*}) C_{(X_\dagger, M_\dagger)/\mathcal{V}, \mathcal{N}}.$$

Note that our crystalline complex is on the Zariski site after (1.5) in [SH08], and it is not on the étale site as in [KA89] 6.2, 6.4 and [HK94] 2.19.

Remark 3.1. In paragraph 4 we construct an embedding system such that i_\dagger is an exact closed immersion. In this section we do not need such a special embedding system.

We recall the notion of iso-coherent sheaves. The category of iso-coherent sheaves on the Zariski site of a p-adic formal scheme S is the category such that the objects are those of the category of coherent sheaves on the Zariski site of S and the group of homomorphisms is given by $\text{Hom}(\mathcal{F}, \mathcal{G}) = \text{Hom}_{\text{coh}}(\mathcal{F}, \mathcal{G}) \otimes \mathbb{Q}$, where $\text{Hom}_{\text{coh}}(\mathcal{F}, \mathcal{G})$ is the abelian group of homomorphisms as coherent sheaves.

Theorem 3.2. Under these hypotheses on (X, M), $\mathbb{R}f^X_{(X, M)/\mathcal{V}, \mathcal{N}}$ is a perfect complex of iso-coherent sheaves on \mathcal{V}; in particular, $\mathbb{R}m^m_{f^X_{(X, M)/\mathcal{V}, \mathcal{N}}}$ is zero for $m >> 0$. Moreover, for each m, the iso-coherent cohomology sheaf $\mathbb{R}m^m_{f^X_{(X, M)/\mathcal{V}, \mathcal{N}}}$ admits a Frobenius structure.

Proof. See [HK94], 2.24. Note that the map is of Cartier type.

Moreover Shiho ([SH08] 1.19) was also able, always in our setting (6), to define a base change theorem (see also [KA89] 6.10). In fact one can complete the diagram (6) as

$$\begin{array}{ccc}
(X_\dagger, M_\dagger) & \xrightarrow{f_\dagger} & (C, s) \\
\downarrow i_\dagger & & \downarrow i \\
(X, M) & \xrightarrow{f} & (\mathcal{V}, \mathcal{N})
\end{array}$$

where we indicate the morphism defined by $t \to 0$ by i and identify $\hat{s}^\dagger \otimes \mathcal{V}^\dagger$. Note that all the squares are cartesian. The i's and \hat{i} are exact closed immersions and f and f_\dagger are proper and log-smooth. Then, following [SH08] 1.19:
Theorem 3.3. As in (8) we have an isomorphism

\[\mathbb{L}^* \mathbb{R}f_!(X,M)/((\mathcal{E}, N), \text{cryst}^\eta) \cong \mathbb{R}f_!(X,M)/((\mathcal{E}, N), \text{cryst}^\eta) \]

in the derived category of perfect \(K \)-complexes.

Moreover the relative log-crystalline cohomology groups of \((X, M)\) over \(s^\times \) are nothing but the log-crystalline cohomology of \((X, M)\) over \(V^\times \) in the sense of [HK94]. Then we may understand the foregoing base-change theorem as an identification of \(K \)-vector spaces

\[R^m f_!(X,M)/((\mathcal{E}, N), \text{cryst}^\eta) \cong H^m_{\text{log-crys}}((X, M)/V^\times) \otimes K. \]

To prove this identification (9) (resp. the similar identifications in (11) below), we will need to use the local projectivity of \(Rf_!(X,M)/((\mathcal{E}, N), \text{cryst}^\eta) \). This will follow from the locally freeness of relative log-analytic cohomology sheaves (Theorem 3.3), via the isomorphism of Theorem 3.6 and the identification of Theorem 3.4. In order to make evident our approach we decided to write the isomorphism (9) at this point of the article.

* * *

We will need not only relative log-crystalline cohomology, but also the entire apparatus developed by Shiho in his work: namely two other relative cohomology theories: the log-convergent and the log-analytic cohomologies. In our setting, Shiho [SH08, SH08A] was able to introduce the relative \(m \)-th log-convergent cohomology sheaves of \((X, M)/(C, s)\) with respect to \((\mathcal{E}, N)\) which are indicated by

\[\mathbb{R}^m f_!(X,M)/(C, s), \text{conv}^\eta_{(\mathcal{E}, N), K}. \]

Here \(\text{conv}_{X, K} \) is the trivial convergent isocrystal. If we denote the log-tube of the closed immersion \(i_* : (X, M) \to (P, M) \), i.e., the usual tube \([\mathcal{X}^\times_{i^*}] \) of the exactification of \(i_* \), by \([\mathcal{X}^\log_{i^*}] \), and if \(\text{sp} : X^\log_{i^*} \to X \) is the specialization map [SH08] 2.19, then the log-convergent cohomology sheaves are calculated by the logarithmic de Rham complex

\[\Omega^*_{[X^\log_{i^*}]_{/K}} \to < M_*/N^* > \]

of the simplicial rigid analytic space \([X^\log_{i^*}] \) over \(\mathcal{E}_K \) = \([\mathcal{E}_V] = [\mathcal{E}_V^\log] \) (because the closed immersion \((C, s) \to (\mathcal{E}, V)\) is exact) [SH08] 2.34:

\[\mathbb{R}f_!(X,M)/(\mathcal{E}, N),

\text{conv}^\eta_{(\mathcal{E}, N), K} \cong \mathbb{R}(f\mathcal{H})\mathbb{R}\text{sp}^\bullet \Omega^*_{[X^\log_{i^*}]_{/K}} < M_*/N^* > . \]

Then there is a canonical comparison morphism

\[\text{sp}_* \Omega^*_{[X^\log_{i^*}]_{/K}} < M_*/N^* > \to K \otimes \lim_{i} C(X, M)_i \]

and it induces the comparison theorem in [SH08] 2.36:

Theorem 3.4. The canonical morphism (10) induces an isomorphism

\[\mathbb{R}^m f_!(X,M)/(\mathcal{E}, N), \text{conv}^\eta_{(\mathcal{E}, N), K} \cong \mathbb{R}^m f_!(X,M)/(\mathcal{E}, N), \text{cryst}^\eta_{(\mathcal{E}, N), K} \]

of iso-coherent sheaves on \(\mathcal{E}_V \) such that the Frobenius structures on both sides commute.

Remark 3.5. To any log-convergent isocrystal, \(E \), it is possible to associate a log-crystalline isocrystal \(\Phi(E) \) [SH08] 2.35. Here we should have written \(\Phi(O_{\text{conv}, X, K}) \) for the structural log-convergent isocrystal \(O_{\text{cryst}, X, K} \). But \(\Phi(O_{\text{conv}, X, K}) \) is the structural log-crystalline isocrystal. Hence we prefer to omit \(\Phi \).
As a corollary of Theorem 3.4, we have that the relative log-convergent cohomology sheaves of $(X, M)/(\mathcal{E}_V, \mathcal{N})$ are endowed with a Frobenius structure. But we have, as before, a base change theorem for relative log-convergent cohomology (as K-vector spaces) $H^m_{\text{log-conv}}((X, M)/V)$ is isomorphic to $\mathbb{R}^m f(X, M)/(\mathcal{E}_V, \mathcal{N})_{\text{conv}}(X, K)^s$. We summarize all of these with a diagram where all the maps are isomorphisms (for all m) of K-vector spaces:

\[
\begin{array}{c}
H^m_{\text{log-conv}}((X, M)/V) \\
\downarrow\downarrow \\
\mathbb{R}^m f((X, M)/(\mathcal{E}_V, \mathcal{N})_{\text{conv}}(X, K)^s) \\
\downarrow \downarrow \\
\mathbb{R}^m f((X, M)/(\mathcal{E}_V, \mathcal{N})_{\text{conv}}(X, K)^s).
\end{array}
\]

\[
\text{** Theorem 3.6 }\text{ In the previous notation, the relative log-analytic cohomology } \mathbb{R}^m f((X, M)/(\mathcal{E}_V, \mathcal{N})_{\text{conv}}(X, K)^s) \text{ are coherent } \mathcal{E}_K \text{-sheaves. Moreover we have an isomorphism for any } m:\n\text{sp}_K \mathbb{R}^m f((X, M)/(\mathcal{E}_V, \mathcal{N})_{\text{conv}}(X, K)^s) \cong \mathbb{R}^m f((X, M)/(\mathcal{E}_V, \mathcal{N})_{\text{conv}}(X, K)^s),
\]

compatible with Frobenius maps (sp : $\mathcal{E}_K \to \mathcal{E}_V$ is the specialization morphism).

We should stress the fact that those objects do not have the structures of isocrystals, i.e., they may be not isocrystals on the log-convergent site $(\mathcal{E}_V, \mathcal{N})$ endowed with the trivial log-structure. But this is almost the case. In fact Shiho proved [SH08] 4.8, 4.10:

** Theorem 3.7. In the previous notation, for any integer m, there exists a unique coherent convergent isocrystal \mathcal{F} on $(\mathcal{E}_V, \mathcal{N})$ such that for any pre-widening $(\mathcal{Z}, N_{\mathcal{Z}}, Z, M_{\mathcal{Z}}, i, z)$ such that $z : Z \to C$ is a strict morphism and $(\mathcal{Z}, N_{\mathcal{Z}})$ is formally log-smooth over V endowed with the trivial log-structure, the restriction of \mathcal{F} to $I_{\text{conv}}(Z/V)^{\text{log}} = \text{Str}'(Z \to \mathcal{Z}/V)^{\text{log}}$ is given in a functorial way by

\[
\mathbb{R}^m f((X, M)/(\mathcal{E}_V, \mathcal{N})_{\text{conv}}(X, K)^s)
\]

endowed with a stratification. An analogous statement holds for the log-analytic setting where this time we will speak of a structure of log-module with connection.

In particular, our lifting $(\mathcal{E}_V, \mathcal{N})$ fits in the hypotheses of the previous theorem and we conclude that $\mathbb{R}^m f((X, M)/(\mathcal{E}_V, \mathcal{N})_{\text{conv}}(X, K)^s)$ is a coherent sheaf endowed with a log-connection on $(\mathcal{E}_K, \mathcal{N}_K)$. This connection is that of Gauss-Manin for $(X, M) \to (C, s) \to k$

(k endowed with the trivial log-structure) as explained in Shiho’s Theorems 4.8 and 4.10 of [SH08]. Moreover the isomorphism of Theorem 3.6 gives to $\mathbb{R}^m f((X, M)/(\mathcal{E}_V, \mathcal{N})_{\text{conv}}(X, K)^s)$ also a Frobenius structure as an isocoherent sheaf on \mathcal{E}_K. In fact $\mathbb{R}^m f((X, M)/(\mathcal{E}_V, \mathcal{N})_{\text{conv}}(X, K)^s)$ can be endowed with a Frobenius map, which becomes an isomorphism after applying the specialization morphism sp : $\mathcal{E}_K \to \mathcal{E}_V$ by the comparison theorems 3.6 3.4 and the log-crystalline result 3.2. However, if $\text{sp}_K = 0$ for a coherent sheaf \mathcal{F} on \mathcal{E}_K, then one can argue that $\mathcal{F} = 0$, and so we may conclude that the Frobenius map is an isomorphism for $\mathbb{R}^m f((X, M)/(\mathcal{E}_V, \mathcal{N})_{\text{conv}}(X, K)^s)$. We may then state:
Theorem 3.8. In the previous notation, the relative log-analytic cohomology \(\mathbb{R}^m f(X,M)/(\mathcal{O}_{V},\cdot)_\bullet \) is a locally free sheaf on \(\mathcal{C}_K \) endowed with a Frobenius structure and a logarithmic connection on \((\mathcal{C}_K, \mathcal{N}_K) \).

Proof. Outside \(\hat{s}_K \) in \(\mathcal{C}_K \), the log-connection is a usual connection, hence the sheaf is locally free, because we are in characteristic 0. The problem is at \(\hat{s}_K \). Here it is enough to check that there is no nontrivial torsion. The existence of the Frobenius structure forces an isomorphism between the original module and its transform by Frobenius. If we had no nontrivial torsion we would have an isomorphism between modules with different lengths. This is a contradiction.

As a summary of the results collected in this paragraph, so far, we have the following isomorphism for the residue at \(\hat{s}_K \) of \(\mathbb{R}^m f(X,M)/(\mathcal{O}_{V},\cdot)_\bullet \) (i.e. as in \([5], t \mapsto 0\) in \(\mathcal{C}_K \)):

\[
\mathbb{R}^m f(X,M)/(\mathcal{O}_{V},\cdot)_\bullet |_{\mathcal{C}} \cong H^m_{\text{log-crys}}((X_s,M_s)/\mathcal{N}) \otimes K.
\]

This isomorphism is compatible with Frobenius structures on both sides.

Since \(\mathbb{R}^m f(X,M)/(\mathcal{O}_{V},\cdot)_\bullet \) is locally free on \(\mathcal{C}_K \), it is free on \(\mathcal{C} \), \(t \mapsto 0 \) (the unit open disc) \([4, 9]\) and there exists a \(K \)-vector space \(V_m \) endowed with a nilpotent endomorphism \(N_m \) and a Frobenius structure \(F_m \) satisfying \(N_m F_m = p F_m N_m \) such that

\[
\mathbb{R}^m f(X,M)/(\mathcal{O}_{V},\cdot)_\bullet |_{\mathcal{C}} \cong (V_m \otimes \mathcal{O}_{\mathcal{C}}) \otimes K
\]

and \(V_m \) is isomorphic to \(H^m_{\text{log-crys}}((X_s,M_s)/\mathcal{N}) \otimes K \) by \((12)\). Here \(\nabla \) (resp. \(\varphi_m \)) is a connection (resp. a Frobenius structure) on \(\mathbb{R}^m f(X,M)/(\mathcal{O}_{V},\cdot)_\bullet \). Indeed, all solutions of the associated differential equations are convergent on the unit disc \(\mathcal{C} \) by the Frobenius structure. \((V_m,N_m,F_m)\) is called the residue of \(\mathbb{R}^m f(X,M)/(\mathcal{O}_{V},\cdot)_\bullet \) at \(\hat{s}_K \).

Now on the right part of \((12)\) we have a monodromy operator from \([3, 6]\) while on the left hand side we have the residue endomorphism \(N_m \). We would like now to prove the following

Theorem 3.9. In the isomorphism \((12)\) the two aforementioned monodromy operators are the same.

Proof. We use the construction of the monodromy operator of \(H^m_{\text{log-crys}}((X_s,M_s)/\mathcal{N}) \otimes K \) as in \([3, 6]\). Shrinking \(C \), we may assume that \(\mathcal{C} \rightarrow \text{Spf } \mathcal{V}[t] \) is étale where \(t \) is a local coordinate of \(\mathcal{C} \) over \(\mathcal{V} \) and \(\mathcal{V}[t] \) is a p-adic completion of the polynomial ring \(\mathcal{V}[t] \).

Let \(C_{(X,M)/\mathcal{V}_t} \) the crystalline complex of \((X,M)\) over \(\mathcal{V}_t \) endowed with the trivial log-structure on the Zariski site on \(X_t \). We then have an exact sequence for each \(n \) as in \([3, 6]\):

\[
0 \rightarrow C_{(X,M)/(\mathcal{O}_{V},\cdot)}[n] \rightarrow C_{(X,M)/\mathcal{V}_t} \rightarrow C_{(X,M)/(\mathcal{O}_{V},\cdot)}[n] \rightarrow 0,
\]

where the first map is given by the external multiplication by \(\omega \mapsto dt/t \wedge \omega \). Note that \((C^*,d^*)[-1] = (C^{n-1},-d^{n-1})\) by definition. The exact sequence

\[
0 \rightarrow C_{(X,M)/(\mathcal{O}_{V},\cdot)} \otimes_{\mathcal{O}_{\mathcal{V}_t}} \mathcal{V}_t \rightarrow C_{(X,M)/\mathcal{V}_t} \otimes_{\mathcal{O}_{\mathcal{V}_t}} \mathcal{V}_t \rightarrow C_{(X,M)/(\mathcal{O}_{V},\cdot)} \otimes_{\mathcal{O}_{\mathcal{V}_t}} \mathcal{V}_t \rightarrow 0
\]

induced by tensoring \((14)\) with \(\mathcal{O}_{\mathcal{V}_t} \rightarrow \mathcal{V}_t (t \mapsto 0) \) is nothing but the second exact sequence in \([3, 6]\) since \(\mathcal{C} \rightarrow \text{Spf } \mathcal{V}[t] \) is étale. Hence the connecting homomorphisms on the cohomology groups with respect to the short exact sequence \((15)\) induce the monodromy operators on \(H^m_{\text{log-crys}}((X_s,M_s)/\mathcal{N}) \otimes K \) by the isomorphism

\[
H^m_{\text{log-crys}}((X_s,M_s)/\mathcal{N}) \otimes K \cong (\lim \mathbb{R}^m f(X,M)/(\mathcal{O}_{V},\cdot)[n]) \otimes K
\]

where \(C_{(X,M)/(\mathcal{O}_{V},\cdot),x^s} \) is the fiber of \(C_{(X,M)/(\mathcal{O}_{V},\cdot)} \) at \(x^s \) and it is isomorphic to the crystalline complex of \((X_s,M_s)/\mathcal{N}^s \) with respect to the embedding system \((X_s,M_s) \rightarrow (P_s,\mathcal{M}_s) \otimes_{\mathcal{V}_t} \mathcal{V}_t (t \mapsto 0) \) induced from the diagram \((7)\).
A similar procedure holds for the log-convergent cohomology: there is an exact sequence
\[
0 \to \Omega^\bullet_{|X_s} \otimes_{\mathcal{O}_K} \log \mathcal{M}_s / \mathcal{N}_s \to [-1] \to \Omega^\bullet_{|X_s} \otimes_{\mathcal{O}_K} \mathcal{M}_s \to \Omega^\bullet_{|X_s} \otimes_{\mathcal{O}_K} \log \mathcal{M}_s / \mathcal{N}_s \to 0
\]
where $\Omega^\bullet_{|X_s} \otimes_{\mathcal{O}_K} \log \mathcal{M}_s$ is the logarithmic de Rham complex of $(X_s, \mathcal{M}_s) / K$ with respect to the embedding system (1) and the first map is given by the external multiplication by the relative log-analytic cohomology $\log \mathcal{M}_s$.

Taking the residue of $\Gamma^\bullet((X_s, \mathcal{M}_s) / \mathcal{N}_s, \log \mathcal{M}_s)$ with respect to the fact that it is defined over \mathbb{C}, we may think of having a compactification \widetilde{X} of X over $\overline{\mathbb{C}}$. By Nagata compactification of X over $\overline{\mathbb{C}}$ we may think of having a compactification \overline{X} of X over \overline{C}.

4 Building up the sequence

In order to calculate the rigid cohomology of X (for example) one does not really need to take a covering of the variety respecting the fact that it is defined over C. But for future use we will need the existence of coverings which are compatible with the map to the curve C and, possibly, with a smooth compactification. So, we are always in the diagram (6). Let \overline{C} denote a compactification of C. By Nagata compactification of X over \overline{C} we may think of having a compactification \overline{X} of X over \overline{C}. We may then suppose that we have a simplicial Zariski hypercovering diagram of the type

\[
\begin{array}{cccccc}
X_s & \rightarrow & X & \rightarrow & \overline{X} & \rightarrow \mathcal{P} \\
\downarrow & & \downarrow & & \downarrow & \\
X & \rightarrow & \overline{X} & \rightarrow & \mathcal{P} \\
\downarrow & & \downarrow & & \downarrow & \\
\mathcal{S} & \rightarrow & \overline{C} & \rightarrow & \mathcal{P} & \rightarrow \mathcal{S}
\end{array}
\]
The simplicial map \(\overline{X}_* \to \overline{X} \) is a Zariski affine hypercovering, \(\mathcal{P}_* \) is a simplicial formal scheme separated of finite type over \(\mathcal{V} \) which is smooth around \(X_* \) and admits a lift \(\sigma_* \) of Frobenius compatible with the Frobenius \(\sigma \) on \(\mathcal{V} \) and all squares are cartesian. Such a setting allows us to calculate \(H^m_{X_*, \rig}(X) \). In fact we have:

\[
H^m_{X_*, \rig}(X) = \mathbb{R}^m \Gamma (j \mathcal{X}_*[\mathcal{P}_*, \{ j^! j_! \mathcal{O}_{\mathcal{X}_* [\mathcal{P}_*]} \to j^! j_! \mathcal{O}_{\mathcal{X}_* [\mathcal{P}_*]} \}),
\]

where \(j_{U_*/[\mathcal{P}_*]} \mathcal{F}_* \) is a simplicial sheaves of overconvergent sections along \(\mathcal{X}_* \cup U_*/\mathcal{P}_* \) associated to a sheaf \(\mathcal{F}_* \) of abelian groups on \(\mathcal{X}_*[\mathcal{P}_*] \) for a simplicial open subscheme \(U_*/\mathcal{P}_* \) of \(\mathcal{X}_* \). Here \(j \) is seen as the map: \(j_{U_*/[\mathcal{P}_*]} : U_*/[\mathcal{P}_*] \to \mathcal{X}_*[\mathcal{P}_*] \). In particular we will have a long exact sequence

\[
\cdots \to H^m_{X_*, \rig}(X) \to H^m_{\rig}(X) \to H^m_{\rig}(X \setminus X_*) \to \cdots
\]
of finite dimensional \(K \)-vector spaces with Frobenius structures.

In order to construct the exact sequence we seek, we will need to deal with complexes which are defined over \(\mathcal{X}_*[\mathcal{P}_*] \). We may then consider an admissible covering of \(\mathcal{X}_*[\mathcal{P}_*] \) given by

\[
\{ |\mathcal{X}_*[\mathcal{P}_*]| X_*, |\mathcal{P}_*| X_*. \}
\]

The two complexes which form the simple complex in (17) are equal on \(|\mathcal{X}_*[\mathcal{P}_*]| X_*, \) and in the intersection \(\{ |\mathcal{X}_*[\mathcal{P}_*]| X_*, |\mathcal{P}_*| X_*. \cap |\mathcal{X}_*[\mathcal{P}_*]| \) (note that \(X_* \cap (\mathcal{X} \setminus X) = \emptyset \)). We then conclude that

\[
j_! \mathcal{O}_{\mathcal{X}_*[\mathcal{P}_*]} \to j_! \mathcal{O}_{\mathcal{X}_*[\mathcal{P}_*]} \}
\]

\[
\alpha : |\mathcal{X}_*[\mathcal{P}_*]| \to \mathcal{X}_*[\mathcal{P}_*]
\]

and of course we may re-write the second part of (18) as

\[
\alpha : |\mathcal{X}_*[\mathcal{P}_*]| \to \mathcal{X}_*[\mathcal{P}_*]
\]

Hence we would like to compare \(H^m_{X_*, \rig}(X) \) with

\[
H^m_{X_*, \rig}(X, X) := \mathbb{R}^m \Gamma (X_*, \mathcal{O}_{X_*, \rig} \to j_! \mathcal{O}_{\mathcal{X}_*[\mathcal{P}_*]} \}
\]

We will refer to such a cohomology \(H^m_{X_*, \rig}(X, X) \) as rigid cohomology of the pair \((X, X) \) with support in \(X_* \) along the terminology of [CT03] and [IS04]. Note that the usual rigid cohomology \(H^m_{X_*, \rig}(X) \) of \(X \) with support in \(X_* \) is the rigid cohomology \(H^m_{X_*, \rig}(X, \overline{X}) \) of the pair \((X, \overline{X}) \) with support in \(X_* \). Then we claim:

Proposition 4.1. There exists an isomorphism

\[
H^m_{X_*, \rig}(X) \cong H^m_{X_*, \rig}(X, X)
\]

which is compatible with Frobenius structures.

Proof. We need to prove the acyclicity of \(\alpha \) on the sheaves which appear in (19). This follows from the fact that the open immersions \(|X_*/[\mathcal{P}_*]| \to |\mathcal{X}_*[\mathcal{P}_*]| \) and \(|X_* \setminus X_*/[\mathcal{P}_*]| \to |\mathcal{X}_*[\mathcal{P}_*]| \) are affinoid morphisms. This comes, by base change, from the fact that an open immersion of curves is affine and \(X_* \) is a divisor. \(\square \)

We would like now to understand the two simplicial complexes which appear in the definition of the rigid cohomology \((X, X) \) with support on \(X_* \). \(H^m_{X_*, \rig}(X, X) \cong H^m_{X_*, \rig}(X, X) \) (as in (20)), in order to involve it in another long exact sequence. As in [CT03], the first complex gives the rigid cohomology \(H^m_{\rig}(X, X) \) of the pair \((X, X) \), and the second complex gives the rigid cohomology \(H^m_{\rig}(X \setminus X_*, X) \) of the pair \((X \setminus X_*, X) \).

Remark 4.2. These cohomologies (without support) have been named "naive" by Berthelot, "convergent" by [LS07] 7.4.4.
What we now discuss is an interpretation of such a complex in terms of log-convergent cohomology. In order to achieve this goal we have to choose a different good embedding than the original \mathcal{P}_\bullet, we have used up to now: it will enjoy some exactness properties.

Proposition 4.3. It is possible to construct a simplicial étale hypercovering X_\bullet of X which admits a closed immersion in a simplicial smooth formal scheme Q^ex_X separated of finite type over \mathcal{V}. Moreover if we endow X with the log-structure coming from the NCD X_\bullet, M, and X_\bullet with the induced log-structure M_\bullet, then we can give to Q^ex_\bullet a fine and saturated log-structure \mathcal{M}_\bullet in such a way that we have a diagram

\[
\begin{align*}
(X_\bullet, M_\bullet) & \xrightarrow{\iota_\bullet} (Q^\text{ex}_\bullet, \mathcal{M}_\bullet) \\
(X, M) & \xrightarrow{\gamma} \mathcal{V}
\end{align*}
\]

where ι_\bullet^ex is an exact closed immersion of log-schemes and $(Q^\text{ex}_\bullet, \mathcal{M}_\bullet)$ is formal log-smooth over \mathcal{V} endowed with the trivial log structure and it admits a lift σ_\bullet of Frobenius which is compatible with the Frobenius σ of \mathcal{V}.

For our strategy of proof we will construct an étale hypercovering X_\bullet such that, for each m, there is a disjoint decomposition $X_m = \bigsqcup_{a \in I_m} X_{m,a}$ (each component is not necessarily connected) which is compatible with the simplicial structure and that the induced log-structure $M_{m,a}$ on $X_{m,a}$ from M has a chart. Then one can explicitly write down the exactness procedure, which is explained in [KA89] 4.10 and [SH202] 2.2.1. In order to construct an étale hypercovering of X, we use the coskeleton functor and, to construct an embedding system, we use a Γ-construction, which were studied in [CT03] 11.2 and [TS04] 7.2, 7.3. The proof will end at Lemma 4.9.

First we recall truncated simplicial (formal) schemes and the coskeleton functors. Let Δ be the standard simplicial category, put $[l] = \{0, 1, \ldots, l\}$ to be an object for a nonnegative integer l, and denote the full subcategory of Δ whose set of objects consists of all $[l]$ with $l \leq q$ by $\Delta[q]$ for a nonnegative integer q. A q-truncated simplicial (formal) scheme over a (formal) scheme S is a contravariant functor from $\Delta[q]$ to the category of (formal) schemes over S. For example, a 1-truncated simplicial (formal) scheme $Y_{\bullet \leq 1}$ over S is represented by

\[
Y_{\bullet \leq 1} = \left[\begin{array}{c} \pi_0 \\ \downarrow \delta \\ \downarrow \pi_1 \\
Y_1 \end{array} \right],
\]

where $\pi_l : Y_1 \to Y_0$ (resp. $\delta : Y_0 \to Y_1$) is a morphism over S corresponding to the map $[0] \to [1] (0 \leftrightarrow l)$ (resp. the unique map $[1] \to [0]$). Then $\pi_0 \circ \delta = \pi_1 \circ \delta = \text{id}_{Y_0}$ hold.

The q-coskeleton functor

\[\text{sk}_q^\Delta : \text{(simplicial (formal) schemes over S)} \to \text{(q-truncated (formal) simplicial schemes over S)}\]

has a right adjoint cosk_q^Δ which is called the q-coskeleton functor. For a nonnegative integer m, let $\Delta[q]/[m]$ be a category such that an object is a morphism $\xi : [l] \to [m]$ of Δ with $l \leq q$ and a morphism $\theta : \xi \to \eta$ is a morphism of $\Delta[q]$ with $\xi = \eta \circ \theta$. Then q-truncated simplicial (formal) scheme $Y_{\bullet \leq q}$ over S induces a contravariant functor from $\Delta[q]/[m]$ to the category of (formal) S-schemes, $\xi \mapsto Y_{\xi l}$. Then the m-th stage of $\text{cosk}_q^\Delta(Y_{\bullet \leq q})$ is given by

\[
\text{cosk}_q^\Delta(Y_{\bullet \leq q})_m = \lim_{\xi \in \text{Ob}(\Delta[q]/[m])} Y_{\xi l}
\]

where the inverse limit is taken over the diagram of S-schemes over $\Delta[q]/[m]$, and the morphism $\pi_\xi : \text{cosk}_q^\Delta(Y_{\bullet \leq q})_m \to \text{cosk}_q^\Delta(Y_{\bullet \leq q})_l$ corresponding to a morphism $\zeta : [l] \to [m]$ is given by the transformation

\[
\Delta[q]/[l] \to \Delta[q]/[m] \quad \xi \mapsto \zeta \circ \xi
\]
of categories. More explicitly, let us put
\[
T_m = \prod_{\xi \in \text{Ob}(\Delta[1]/[m])} Y_{\xi}, \\
S_m = \prod_{h : \xi \to \eta \in \text{Mor}(\Delta[1]/[m])} Y_{\eta}
\]
where the products are taken over \(S \), and define morphisms \(h_i : T_m \to S_m \) over \(S \) for \(i = 1, 2 \)
\[
h_1((x_\xi)) = (y_\xi : x_\xi \to \eta) \quad y_\xi : x_\xi \to \eta = (x_\xi), \\
h_2((x_\xi)) = (y_\xi : x_\xi \to \eta) \quad y_\xi : x_\xi \to \eta = \pi_\theta(x_\eta)
\]
where \(\pi_\theta : Y_{l_\eta} \to Y_{l_\xi} \) is the corresponding morphism of (formal) schemes to \(\theta : \xi \to \eta \). Then \(\cosk_q^S(Y_{\leq q})_m \) is isomorphic to the fiber product of the diagram
\[
\begin{array}{ccc}
\cosk_q^S(Y_{\leq q})_m & \xrightarrow{h_1'} & T_m \\
\downarrow{h_2} & & \downarrow{h_1} \\
T_m & \xrightarrow{h_1} & S_m
\end{array}
\]
When \(m \leq q \), \(\cosk_q^S(Y_{\leq q})_m \) is isomorphic to \(Y_m \) by the composite of \(h_1' \) and the projection \(T_m \to Y_{id_m} \)
since \(\xi = id_m \circ \xi \) for any object \(\xi \) of \(\Delta[1]/[m] \). If \(Y_{\leq q} \) is separated over \(S \), then \(\cosk_q^S(Y_{\leq q})_m \) is a closed (formal) subscheme of \(T_m \) by \(h_1' \) since \(h_1 \) is a closed immersion. Moreover, if \(Y_{\leq q} \) is a \(q \)-truncated étale hypercovering of \(S \), then \(Y_{\leq q} \) is closed and open in \(T_m \).

Let us consider \(\cosk_1^S(Y_{\leq 1}) \) for a 1-truncated simplicial (formal) scheme as in (21). The set of objects of \(\Delta[1]/[m] \) consists of
\[
\xi_i : [0] \to [m] \quad \xi_i(0) = i \quad (0 \leq i \leq m), \\
\eta_{ij} : [1] \to [m] \quad \eta_{ij}(0) = i, \eta_{ij}(1) = j \quad (0 \leq i < j \leq m), \\
\zeta_i : [1] \to [m] \quad \zeta_i(0) = \zeta_i(1) = i \quad (0 \leq i \leq m).
\]
Then \(\cosk_1^S(Y_{\leq 1})_m \) is characterized in \(T_m \) via the closed immersion \(h_1' \) in (23) by the following lemma:

Lemma 4.4. \(x \in T_m \) belongs to \(\cosk_1^S(Y_{\leq 1})_m \) if and only if \(x \) simultaneously satisfies the conditions:
\[
\begin{align*}
p_{i,j}(x) &= \pi_0 \circ \eta_{ij}(x) \quad \text{for } 0 \leq i < j \leq m, \\
p_{i,j}(x) &= \pi_1 \circ \eta_{ij}(x) \quad \text{for } 0 \leq i < j \leq m, \\
p_{i,j}(x) &= \delta \circ \zeta_i(x) \quad \text{for } 0 \leq i \leq m,
\end{align*}
\]
where \(p_{i,j} : T_m \to Y_{l_i}, \) resp. \(p_{i,j} : T_m \to Y_{l_{i,j}} \), resp. \(p_{i,j} : T_m \to Y_{l_i} \) denotes the projection.

Proof. The conditions in the assertion are the relations \(\pi_{ij} = \pi_0 \circ \eta_{ij}, \pi_{ij} = \pi_1 \circ \eta_{ij}, \pi_{ij} = \delta \circ \zeta_i \) which comes from morphisms of \(\Delta[1]/[m] \), respectively. All other relations deduce from these relations. \(\square \)

>From now we begin a proof of Proposition 4.3. Let us take a 1-truncated simplicial scheme \(X_{\leq 1} \) over \(X \),
\[
X_{\leq 1} = \left[\begin{array}{ccc}
\pi_0 & \pi_1 \\
X_0 & X_1
\end{array} \right],
\]
which satisfies the following hypotheses.
(i) \(X_0 = \coprod_{\alpha \in I_0} X_{0,\alpha} \) with \(|I_0| < \infty \) is an étale covering of \(X \) by \(\pi \) such that \(X_{0,\alpha} \) is an affine integral scheme of finite type over \(k \) for any \(\alpha \in I_0 \).
(ii) \(X_1 = \coprod_{\beta \in I_1} X_{1,\beta} \) with \(|I_1| < \infty \) is an étale covering of \(X_0 \times_X X_0 \) by \(\pi_0 \times X_0 \times X_0 \times X_0 \) such that, for any \(\beta \in I_1 \), \(X_{1,\beta} \) is an affine scheme of finite type over \(k \) and \(\pi_1(X_{1,\beta}) \subset X_{0,\alpha}(l = 0, 1) \) for some \(\alpha \in I_0 \), and \(\delta^{-1}(X_{1,\beta}) \) coincides with one of \(X_{0,\alpha} \) for some \(\alpha \in I_0 \) or is empty. Note that \(\alpha_1(l = 0, 1) \) and \(\alpha \) are unique, and we allow the \(X_{1,\beta} \)'s to be not connected.
(iii) The inverse image \(X_{0,a} \) of \(X_1 \) in \(X_{0,a} \) is an SNCD over \(k \), which is defined by the inverse image of \(x_{0,a} \cdot x_{0,b} = 0 \) of an étale morphism \(X_{0,a} \to \mathbb{A}^{r+1} \) = Spec \(k[x_{0,a_1}, \ldots, x_{0,a_n}] \) for some \(0 \leq r_0,a \leq n + 1 \) such that the divisor \(D_{0,a,j} \) defined by the inverse image of \(x_{0,a,j} = 0 \) in \(X_{0,a} \) is irreducible for \(1 \leq j \leq r_0,a \) and \(\cap_j D_{0,a,j} \neq \emptyset \).

(iv) For any \(a, a' \in I_0, 1 \leq j \leq r_0,a, 1 \leq j' \leq r_0,a' \) and \(\beta \in I_1 \), we have \(H^{-1}(D_{0,a,j}) \cap X_{1,\beta} \) and \(H^{-1}(D_{0,a',j'}) \cap X_{1,\beta} \) as schemes. For \(\beta \in I_1 \), the set \(\{D_{1,\beta,j} | 1 \leq j \leq r_1,\beta \} \) denotes the collection of divisors of \(X_{1,\beta} \) such that each of them is a form \(H^{-1}(D_{0,a,j}) \cap X_{1,\beta} (\neq \emptyset) \) for some \(a \in I_0 \) and \(1 \leq j \leq r_0,a \). Note that \(D_{1,\beta,j} \) is reduced and the inverse image \(X_{1,\beta,j} \) of \(X_j \) in \(X_{1,\beta} \) is the union of \(\{D_{1,\beta,j} | 1 \leq j \leq r_1,\beta \} \).

Such a 1-truncated simplicial scheme \(X_{\leq 1} \) is a 1-truncated étale hypercovering of \(X \) and it always exists. Indeed, one can put \(X_{\leq 1} \), by definition of NCD's, as follows:

(a) \(X_0 \) is an étale covering of \(X \) satisfying the hypotheses (i), (iii).

(b) \(X_1 \) is a disjoint sum of \(X_0 \) and a Zariski open covering \(\bigsqcup_i U_i \to X_0 \times_X X_0 \) of finite type such that \(U_i \) is an affine scheme of finite type over \(k \) which satisfies the inclusion hypothesis in (ii).

(c) The inverse image \(U_{s,j} \) of \(X_s \) in \(U_{j} \) is an SNCD such that the intersection of all irreducible components of \(U_{s,j} \) is nonempty.

(d) For \(l = 0, 1 \), \(\pi_l : X_1 \to X_0 \) is given by the identity \(id \), and the composition of \(U_{j} \to X_0 \times_X X_0 \) and the natural \(l \)-th projection \(X_0 \times X_0 \to X_0 \).

(e) \(\delta : X_0 \to X_1 \) is the identity onto the component \(X_0 \) of \(X_1 \).

Let us define a simplicial scheme \(X_{\bullet} \) over \(X \) by

\[
X_{\bullet} = \cosk^1 (X_{\leq 1})
\]

and a log-structure \(M_{\bullet} \) on \(X_{\bullet} \) by the inverse image of the log-structure \(M \) on \(X \). Then \(X_{\bullet} \) is an étale hypercovering of \(X \).

We will introduce a disjoint expressions on \(X_{\bullet} \) for each nonnegative integer \(m \). The disjoint expressions of \(X_0 = \bigsqcup_{a \in I_0} X_{0,a} \) and \(X_1 = \bigsqcup_{\alpha \in I_1} X_{1,\alpha} \) induce a disjoint expression on the fiber product \(T_m = \bigsqcup_{\xi \in \Ob(A(1)/[m])} X_{\xi} \) as

\[
T_m = \bigsqcup_{A = ((\alpha_1), (\beta_{\alpha_i}), (\gamma_\alpha))} T_{m,A}, \quad T_{m,A} = \bigsqcup_{0 \leq i \leq m} X_{0,\alpha_i} \times \bigsqcup_{0 \leq j \leq m} X_{1,\beta_{\alpha_i}},
\]

where \(A = ((\alpha_1), (\beta_{\alpha_i}), (\gamma_\alpha)) \) runs over \(I_0^{m+1} \times I_1^{m+1} \times I_1^{m+1} \), and all fiber products are taken over \(X \). Remember that \(X_m \) is a closed subscheme of \(T_m \) via the closed and open immersion \(h'_1 \) of the diagram \(23 \). By Lemma 4.4 we have:

Lemma 4.5. Suppose furthermore that \(X \) is connected. Then \(X_m \cap T_{m,A} \) is nonempty if and only if the following conditions on \(A = ((\alpha_1), (\beta_{\alpha_i}), (\gamma_\alpha)) \) hold simultaneously:

\[
\begin{align*}
\pi_0(X_{1,\beta_{\alpha_i}}) &\subset X_{0,\alpha_i} \quad \text{for} \quad 0 \leq i < j \leq m \\
\pi_1(X_{1,\beta_{\alpha_i}}) &\subset X_{0,\alpha_j} \quad \text{for} \quad 0 \leq i < j \leq m \\
\delta^{-1}(X_{1,\gamma_\alpha}) &\subset X_{0,\alpha_i} \quad \text{for} \quad 0 \leq i \leq m.
\end{align*}
\]

In particular we have the disjoint union

\[
X_m = \bigsqcup_A (X_m \cap T_{m,A}),
\]

where \(A = ((\alpha_1), (\beta_{\alpha_i}), (\gamma_\alpha)) \) runs over the set of indices satisfying the conditions above.
Proof. (1) Let \(\xi : [l] \to [m] \) be a morphism of \(\Delta \). For \(\beta \in I_m \), there is a unique element \(\alpha(\xi, \beta) \in I_l \) such that \(\pi_\xi(X_{m, \beta}) \subseteq X_{l, \alpha(\xi, \beta)} \).

(2) Let \(\xi : [l] \to [m], \eta : [l_1] \to [m] \) be objects of \(\Delta[1]/[m] \). For \(1 \leq j \leq r_{l, \alpha(\xi, \beta)} \) and \(1 \leq j' \leq r_{l_1, \alpha(\eta, \beta)} \), if \(\pi_\xi^{-1}(D_{l, \alpha(\xi, \beta)}(\eta, \beta)) \cap X_{m, \beta} \) and \(\pi_\eta^{-1}(D_{l_1, \alpha(\eta, \beta)}(\xi, \beta)) \cap X_{m, \beta} \) have a common irreducible component, then \(\pi_\xi^{-1}(D_{l, \alpha(\xi, \beta)}(\eta, \beta)) \cap X_{m, \beta} = \pi_\eta^{-1}(D_{l_1, \alpha(\eta, \beta)}(\xi, \beta)) \cap X_{m, \beta} \) as schemes.

Lemma 4.6. Let \(\xi : [I] \to [I'] \) be a morphism of \(\Delta \). For \(\beta \in I_m \), there is a unique element \(\alpha(\xi, \beta) \in I_l \) such that \(\pi_\xi(X_{m, \beta}) \subseteq X_{l, \alpha(\xi, \beta)} \).

Proof. (1) The assertion follows from our hypotheses: in particular (ii).

(2) It is sufficient to prove the assertion in the case where \(l_\ell = l_\eta = 0 \) since all divisors in the level of \(X_1 \) comes from those of \(X_0 \) by the hypothesis (iv). Suppose that \(l_\ell = l_\eta = 0 \) and \(\xi(0) < \eta(0) \). There exists a morphism \(\rho : [1] \to [m] \) such that \(\pi_0 \circ \rho = \pi_\xi \) and \(\pi_1 \circ \rho = \pi_\eta \). Then the assertion follows from the hypothesis (iv).

We denote the collection \(\{D_{m, \beta, j} | 1 \leq j \leq r_{m, \beta}\} \) of reduced divisors of \(X_{m, \beta} \) such that each of them is a form \(\pi_\xi^{-1}(D_{l_\ell, \alpha(\xi, \beta)}(\eta, \beta)) \cap X_{m, \beta} (\neq \emptyset) \) for some \(\xi, \beta \in \Delta[I]/[m] \) and \(1 \leq j \leq r_{l_\ell, \alpha} \). Then the inverse image \(X_{l, \alpha, j} \) of \(X_{m, \beta} \) is a union of \(\{D_{m, \beta, j} | 1 \leq j \leq r_{m, \beta}\} \).

Let us now construct an embedding system \(\iota : X_\bullet \to Q_\bullet \). For \(l = 0, 1 \), we fix an affine smooth formal scheme \(\mathcal{R}_l = \bigsqcup_{\alpha \in I_l} \mathcal{R}_{\alpha, l} \) separated of finite type over \(V \) with an SNCD \(\mathcal{E}_l = \bigsqcup_{\alpha \in I_l} \mathcal{E}_{\alpha, l} \) relatively over \(V \), which fits into the commutative diagram over \(V \) for each \(\alpha \in I_l \):

\[
\begin{array}{ccc}
X_{l, \alpha} & \xrightarrow{\iota_{\alpha}} & \mathcal{R}_{\alpha, l} \\
\downarrow & & \downarrow \\
\mathcal{P}_{\alpha, \gamma} = \text{Spec} k[y_{l, \alpha, 1}, \ldots, y_{l, \alpha, s_{l, \alpha}}] & \xrightarrow{\mathcal{P}_{\alpha, \gamma}^\gamma} & \mathcal{P}_{\gamma, \gamma} = \text{Spec} k[y_{l, \alpha, 1}, \ldots, y_{l, \alpha, r_{l, \alpha}}] \\
\end{array}
\]

(\(\mathcal{R} \) denotes a \(p \)-adic completion of \(R \)) satisfying the following hypotheses.

(I) \(\iota_{\alpha, l} : X_{l, \alpha} \to \mathcal{R}_{\alpha, l} \) is a closed immersion.

(II) The left vertical arrow is the map in the hypothesis (iii) for \(l = 0 \) and case \(l = 1 \) this comes from hypotheses (ii), (iii) and (iv).

(III) The first right vertical arrow is smooth and the inverse image of \(y_{l, \alpha, 1} \cdots y_{l, \alpha, s_{l, \alpha}} = 0 \) is the SNCD \(\mathcal{E}_{l, \alpha} = \bigcup_{j=1}^{s_{l, \alpha}} \mathcal{E}_{l, \alpha, j} \), and the second right vertical arrow is the natural projection for \(r_{l, \alpha} \leq s_{l, \alpha} \).

(IV) The bottom arrow is defined by \(y_{l, \alpha, j} \mapsto x_{l, \alpha, j} \) for \(1 \leq j \leq r_{l, \alpha} \).

(V) The inverse image \(\iota_{l, \alpha}^{-1} \mathcal{E}_{l, \alpha, j} \) for \(1 \leq j \leq s_{l, \alpha} \) is a sum of \(D_{l, \alpha, j}'s \) with multiplicities.

(VI) There exists a Frobenius \(\sigma_{R_{l, \alpha}} \) on \(\mathcal{R}_{l, \alpha} \) which is an extension of the Frobenius \(\sigma \) on \(V \) such that \(\sigma_{R_{l, \alpha}}(y_{l, \alpha, j}) = y_{l, \alpha, j}^p \) for any \(1 \leq j \leq s_{l, \alpha} \).

Indeed, such formal schemes \(\mathcal{R}_l (l = 0, 1) \) exist by our hypotheses on \(X_0 \) and \(X_1 \).

Remark 4.7. Strictly speaking the hypotheses above are more general than those we would need (and we will construct) for the aim of the present article: in fact we will be able to have \(s_{l, \alpha} = r_{l, \alpha} \) and hypothesis (V) will be automatically satisfied. But we think that such hypotheses will be the correct ones if we seek a functoriality behavior to the results of our constructions.
We define a log-structure of \mathcal{R}_l which is induced by the SNCD E_l. This log-structure has a local chart $L_{l,a} = \mathbb{N}_{0}\alpha$ defined by $y_{l,a,i} \mapsto y_{l,a,i}$, where $y_{l,a,i}$ is the i of the j-th component of $L_{l,a}$. Then $(\mathcal{R}_l, L_{l,a}^\alpha) = \bigcup_{\alpha \in I_l} (\mathcal{R}_l, L_{l,a}^\alpha)$ is log-smooth over \mathcal{V} endowed with the trivial log-structure and the underlying morphism of formal schemes induces a closed immersion $(X_l, M_l) \to (\mathcal{R}_l, L_{l,a}^\alpha)$ of log-schemes. Here $L_{l,a}^\alpha$ means the log-structure associated to the pre-log-structure $L_{l,a}$. Moreover, $(\mathcal{R}_l, L_{l,a}^\alpha)$ admits a lift of Frobenius $\sigma_{\mathcal{R}_l} = \bigcup_{\alpha \in I_l} \sigma_{\mathcal{R}_{l,a}}$.

We define a simplicial formal log-scheme Q_{\bullet} by

$$(Q_{\bullet}, \mathcal{L}_{\bullet}) = \Gamma_0^\mathcal{V} ((\mathcal{R}_0, L_{0,\alpha}^\alpha))^{\leq 0} \times_{\text{Spf}^\mathcal{V} \Gamma_0^\mathcal{V} ((\mathcal{R}_1, L_{1,\alpha}^\alpha))^{\leq 1}} \left(\prod_{\alpha \in O_b([1]/[\ast])} (\mathcal{R}_l, L_{l,a}^\alpha) \right),$$

as formal log-schemes over \mathcal{V} (see the definition and properties of the Γ-construction in [CT03], 11.2 and [TS04] 7.3). Then we have a closed immersion

$$i_{\bullet} : (X_{\bullet}, M_{\bullet}) \to (Q_{\bullet}, \mathcal{L}_{\bullet})$$

of formal log-schemes over \mathcal{V} by [CT03], 11.2.4 and 11.2.7. Since the index set of products are same in (22) and (24), the fiber product decomposition will induce a decomposition

$$i_m = \prod_{\alpha \in I_m} i_{m,\alpha} : \prod_{\alpha \in I_m} (X_{m,\alpha}, M_{m,\alpha}) \to \prod_{\alpha \in I_m} (Q_{m,\alpha}, \mathcal{L}_{m,\alpha})$$

of closed immersions for each m and they form a map of simplicial formal log-schemes. (Note that the components of $(Q_{m,\alpha}, \mathcal{L}_{m,\alpha})$ which have no images from $(X_{m,\alpha}, M_{m,\alpha})$ can be omitted.) By the product construction in (24), $(Q_{\bullet}, \mathcal{L}_{\bullet})$ is log-smooth over \mathcal{V} and the underlying simplicial formal scheme Q_{\bullet} is smooth. More precisely, each log-structure $\mathcal{L}_{m,\alpha}$ of $Q_{m,\alpha}$ has a chart $L_{m,\alpha}$ which is a product of some of $L_{l,b} (l = 0, 1$ and $b \in I_l)$ and is isomorphic to $\mathbb{N}_{0}\alpha$ with $r_{m,\alpha} \leq s_{m,\alpha}$ such that, by reordering the generators of $L_{m,\alpha}$, $1_{m,\alpha}$ goes to a generator of $D_{m,\alpha}$ in $X_{m,\alpha}$ for $1 \leq j \leq r_{m,\alpha}$ and $1_{m,\alpha}$ defines a sum of $D_{m,\alpha}^{\prime}$ with multiplicities for $r_{m,\alpha} < j \leq s_{m,\alpha}$ in $X_{m,\alpha}$ by Lemma 4.6. In addition $[L_m = \prod_{\alpha \in I_m} L_{m,\alpha} | m \geq 0]$ forms a co-simplicial monoid L_{\bullet} by our construction of $(Q_{\bullet}, \mathcal{L}_{\bullet})$. The Frobenius endomorphisms $\sigma_{\mathcal{R}_l}$ and $\sigma_{\mathcal{R}_l}$ induce a Frobenius σ_{\bullet} on $(Q_{\bullet}, \mathcal{L}_{\bullet})$ such that it acts by the multiplication by p on L_{\bullet}.

Let us define a monoid $L_{m,\alpha}^{\text{ex}}$ in the associated group $L_{m,\alpha}^{\text{gr}}$ by

$$L_{m,\alpha}^{\text{ex}} = L_{m,\alpha} \left[\pm \left(1_{m,\alpha} + \sum_{j=1}^{r_{m,\alpha}} y_j 1_{m,\alpha,j} \right) \right] \text{ if } r_{m,\alpha} < j \leq s_{m,\alpha}, \text{ the divisor defined by the image of } y_j \text{ in } X_{m,\alpha}, \text{ is } \sum_{j=1}^{r_{m,\alpha}} y_j D_{m,\alpha,j}.$$

Lemma 4.8.

1. The composite map $L_{m,\alpha} \to \Gamma(Q_{m,\alpha}, Q_{m,\alpha}) \to \Gamma(X_{m,\alpha}, X_{m,\alpha})$ of monoids uniquely factors as

$$L_{m,\alpha} \to L_{m,\alpha}^{\text{ex}} \to \Gamma(X_{m,\alpha}, X_{m,\alpha}).$$

2. The log-structure on $X_{m,\alpha}$ associated to pre-log-structure $L_{m,\alpha}^{\text{ex}} \to \Gamma(X_{m,\alpha}, X_{m,\alpha})$ is isomorphic to $M_{m,\alpha}$.

3. The collection $[L_m^{\text{ex}} = \prod_{\alpha \in I_m} L_{m,\alpha}^{\text{ex}} | m \geq 0]$ forms a co-simplicial monoid L_{\bullet}^{ex} which is induced by the co-simplicial structure of M_{\bullet}.

Proof.

1. If a divisor defined by the image of y_j in $X_{m,\alpha}$ is $\sum_{j=1}^{r_{m,\alpha}} y_j D_{m,\alpha,j}$, then there is a unit u of $\Gamma(X_{m,\alpha}, X_{m,\alpha})$ such that the images of y_j and $u \prod_{j=1}^{r_{m,\alpha}} y_j$ coincide with each other in $\Gamma(X_{m,\alpha}, X_{m,\alpha})$. Hence $\pm \left(1_{m,\alpha} + \sum_{j=1}^{r_{m,\alpha}} y_j 1_{m,\alpha,j} \right)$ goes to $u^\pm 1$. Therefore there exists a desired factorization.

2. Since $X_{m,\alpha} = \bigcup_{j=1}^{r_{m,\alpha}} D_{m,\alpha,j}$ is a SNCD of $X_{m,\alpha}$, the natural morphism $L_{m,\alpha} \to M_{m,\alpha}$ is surjective. The injectivity follows from Lemma 4.6.

3. The assertion follows from our construction. \qed

Let us define a simplicial log-scheme $(Q_{\bullet}^{\text{ex}}, \mathcal{L}_{\bullet}^{\text{ex}})$ by

$$Q_{\bullet}^{\text{ex}} = Q_{\bullet} \times_{\text{Spf} \mathcal{V}[L_{\bullet}^{\text{ex}}]} \text{Spf} \mathcal{V}[L_{\bullet}^{\text{ex}}]$$

and the log-structure $\mathcal{L}_{\bullet}^{\text{ex}}$ associated to the natural pre-log-structure $L_{\bullet}^{\text{ex}} \to \Gamma(Q_{\bullet}^{\text{ex}}, Q_{\bullet}^{\text{ex}}).$
Lemma 4.9. The closed immersion $i_*: (X_*, M_*) \to (Q_*, \mathcal{L}_*)$ factors as
\[
(X_*, M_*) \xrightarrow{i_*} (Q_*, \mathcal{M}_*) \xrightarrow{h_*} (Q_*, \mathcal{L}_*)
\]
simplicial fine and saturated formal log-schemes over V endowed with the trivial log-structure such that i_*^x is an exact closed immersion and h_* is log-étale. Moreover, the underlying formal scheme Q_0^x is smooth over V for any m.

Proof. i_*^x is an exact closed immersion by Lemma 4.8 (2). Since $(L_0^x)^y = L_0^y$, h_* is log-étale. By the construction we have
\[
\Gamma(Q_0^x, \mathcal{M}_m) = \Gamma(Q_0, \mathcal{M}_m, \mathcal{L}_m) \left[(y_j/ \prod_{j=1}^{r_m, \alpha} y_{m, \alpha}^{j} \right]_{r_m, \alpha < j < s_{m, \alpha}}
\]
where y_j's are as in the proof of Lemma 4.8. Hence Q_0^x is smooth over V.

Finally, the Frobenius endomorphism σ_{Q_0} on (Q_0, \mathcal{L}_*) can extend to the Frobenius σ_* on (Q_0^x, \mathcal{M}_*) such that σ_* acts by multiplication by p on L_0^x.

This completes our proof of Proposition 4.3.

Remark 4.10. (1) We could have performed a similar construction for an étale hypercovering coming from a truncated one of any level (not only of level 1). For a general étale hypercovering, one may not have an embedding system of simplicial formal schemes. One may only have a truncated system. We observe that an alternative methods for the proofs of the present article could have used truncated systems via the limit arguments in [TS04] 7.5.

(2) We say that the NCD X_δ of X has self-intersections if there are some $\alpha \in I_0$ and $j \neq j'$ such that the images of the generic points of $D_{0, \alpha, j}$ and $D_{0, \alpha, j'}$ by the étale covering $\pi : X_0 \to X$ (as in the hypotheses (i), (iii)) are the same. If the NCD X_δ of X does not have self-intersections, then one can take an étale covering X_0 of X satisfying the hypotheses (i), (iii), and put $X_1 = X_0 \times_X X_0$, which is given by $X_{0, \alpha} \times_X X_{0, \alpha'} (\alpha, \alpha' \in I_0)$, with natural projections π_0, π_1 and the diagonal morphism δ. Then this 1-truncated simplicial scheme of X also satisfies the hypotheses (ii), (iv). In this case our (X_*, M_*) is a Čech hypercovering of (X_0, M_0) over (X, M). Hence, if one takes a smooth lift (Q_0, L_0^y) of (X_0, M_0), then from the Čech diagram (Q_*, \mathcal{L}_*) of (Q_0, L_0^y) over V, one can obtain a similar exactification (Q_0^x, \mathcal{M}_*).

We fix a good embedding system $i_*^x : (X_*, M_*) \to (Q_*, \mathcal{M}_*)$ as in Proposition 4.3. Then using étale descent for rigid cohomology [CT03] 9.1.1 and forgetting the log-structure, we may write $(X_*, *)$ is the induced étale hypercovering of X_δ)
\[
(H_0^m(X, \mathcal{L}_m) \cong \mathbb{B}^m \Gamma([X_\delta, \mathcal{L}_m, \mathcal{L}_m, \mathcal{L}_m] \to \mathcal{J}_0^x_X, \mathcal{M}_m, \mathcal{L}_m])
\]
We are now ready to interpret the two complexes which appear in the simple complexes of the right hand side of (25). The first one is just calculating the rigid cohomology $H^m_{rig}(X, X)$ of the pair (X, X). The second complex is nothing but the rigid cohomology $H^m_{rig}(X, X^m)$ of the pair $(X \setminus X_\delta, X)$. Then we may apply Shiho’s result [SH02] 2.4.4: it says that, for the smooth log-scheme (X_m, M_m) which has a Zariski type log structure, its log-convergent cohomology over \mathcal{V} endowed with the trivial log-structure coincides with the rigid cohomology of the pair $(X_m \setminus X_n, X_m)$. Note again that M_m is the log-structure of X_m induced from the SNCD X_δ and the trivial log locus of (X_m, M_m) is $X_m \setminus X_n$. Hence we have
\[
H^m_{rig}(X, X) \cong H^m_{log-conv}(X, M)/\mathcal{V}).
\]
To avoid confusion we stress the fact that $H^m_{log-conv}(X, M)/\mathcal{V})$ represent the log-convergent cohomology groups of (X, M) relative to \mathcal{V} endowed with the trivial log-structure.

To connect our construction to the log theory we will use $[\log]$ to refer to log-tubes for exact or non exact closed immersions, which has already appeared in paragraph 3: for example the log-tubes of X_δ for a generic embedding (not exact) Q_δ will be indicated by $[X_\delta, Q_\delta]$. Of course for our Q_0^x we have $[X_\delta, Q_0^x] = [X_\delta, Q_0^x]$. 16
where the second is the "classical" tube, since the closed immersion $\tilde{\Omega}^\times: (X_*, M_*) \to (\Omega^*_Q, M_*)$ is an exactification of $(X_*, M_*) \to (\Omega^*_Q, M_*)$. Hence the log-convergent cohomology $H^m_{\log-\text{conv}}((X, M)/\mathcal{V}) = H^m_{\log-\text{conv}}((X_*, M_*)/\mathcal{V})$ can be calculated by

$$\mathbb{R}^m\Gamma(|X_*, M_*|^\log, \Omega^*_Q|_{X_*, M_*} < \mathcal{M}_*^>) = \mathbb{R}^m\Gamma(|X_*, M_*|^\log, \Omega^*_Q|_{X_*, M_*} < \mathcal{M}_*^>)$$

where $\Omega^*_Q|_{X_*, M_*} < \mathcal{M}_*^>$ indicates the log differential of the generic fiber of $(\Omega^*_Q, \mathcal{M}_*)$. We may then write (25) as

$$H^m_{\log, \text{rig}}(X) \cong \mathbb{R}^m\Gamma(|X_*, M_*|^\log, [\Omega^*_Q|_{X_*, M_*} \to \Omega^*_Q|_{X_*, M_*} < \mathcal{M}_*^>])$$

Now we would like to continue our interpretation. As a matter of fact we are going to use another **exact embedding system** to calculate the cohomology of the complex $[\Omega^*_Q|_{X_*, M_*} \to \Omega^*_Q|_{X_*, M_*} < \mathcal{M}_*^>]$. In fact we are going to use a new good embedding system $\tilde{\Omega}^\times$ (exact, smooth as before) which admits a map to \mathcal{V} and this map is log-smooth over $(\mathcal{V}, \mathcal{N})$.

Proposition 4.11. In the previous notation, it is possible to find a good embedding system $X_* \to \tilde{\Omega}^\times$ which fits in the diagram

$$\begin{array}{ccc}
(X_*, M_*) & \xrightarrow{\tilde{\Omega}^\times} & (\tilde{\Omega}^\times, \tilde{\mathcal{M}}_*) \\
\downarrow & & \downarrow \\
(C, s) & \rightarrow & (\mathcal{V}, \mathcal{N})
\end{array}$$

where the horizontal maps are exact closed immersions and $(\tilde{\Omega}^\times, \tilde{\mathcal{M}}_*)$ is log-smooth over $(\mathcal{V}, \mathcal{N})$ and the underlying formal scheme $\tilde{\Omega}^\times$ is smooth and separated of finite type over \mathcal{V}. Moreover $(\tilde{\Omega}^\times, \tilde{\mathcal{M}}_*)$ admits a lift $\tilde{\sigma}_*$ of Frobenius which is compatible with the Frobenius $\sigma_{\mathcal{V}}$ on $(\mathcal{V}, \mathcal{N})$.

Proof. Let us keep the notations as in the proof of Proposition 4.13 and let t be a section of a coordinate of \tilde{s} in \mathcal{V}. Then the log-structure \mathcal{N} on \mathcal{V} is obtained by the pre log-structure $\tilde{\Gamma} \to \Gamma(\mathcal{V}, \mathcal{O}_{\mathcal{V}})$ given by $1 \mapsto t$. We fix a Frobenius $\sigma_{\mathcal{V}}$ on \mathcal{V}, which is compatible with the Frobenius σ on \mathcal{V}, such that $\sigma_{\mathcal{V}}(t) = t^p$.

If we consider the tensor product $(\tilde{\Omega}^\times, \tilde{\mathcal{M}}_*) \times (\mathcal{V}, \mathcal{N})$ over \mathcal{V} endowed with trivial log-structure, then the natural morphism $(X_*, M_*) \to (\tilde{\Omega}^\times, \tilde{\mathcal{M}}_*) \times (\mathcal{V}, \mathcal{N})$ is a closed immersion, but is not exact. We will need to modify it in order to get an exact one. Note that the log-structure $(\tilde{\Omega}^\times, \tilde{\mathcal{M}}_*) \times (\mathcal{V}, \mathcal{N})$ is the associated log-structure to the monoid $L^\times_\mathcal{V} \times \mathcal{N}$.

We define a co-simplicial monoid $L^\times_\mathcal{V}$ by

$$\begin{array}{c}
L^\times_\mathcal{V} = \prod_{\alpha \in L^\times_\mathcal{V}} L^\times_{m,\alpha,1} \\
L^\times_{m,\alpha,1} = L^\times_{m,\alpha,1} \times \mathbb{N}[\pm((1, m, a, 1 + \cdots + 1, m, a, r, a)) - 1)] \text{ in } (L^\times_{m,\alpha} \times \mathbb{N})^{gr},
\end{array}$$

where 1 is the generator of the last component \mathbb{N}. Indeed, the collection $\{L^\times_{m,\alpha} \mid m \geq 0\}$ forms a co-simplicial monoid since $x_{m, a, 1 \times a, 2 \times \cdots \times m, a, r, a} = ut$ for a unit u on $X_{m, a}$ and by the fact that the closed immersion $\tilde{\Omega}^\times: (X_*, M_*) \to (\tilde{\Omega}^\times, \tilde{\mathcal{M}}_*)$ is exact. Moreover, the associated log-structure on X_* linked to the natural homomorphism $L^\times_\mathcal{V} \to \Gamma(X_*, O_{X_*})$ of monoids is the given log-structure M_*. We define a simplicial formal log-scheme $(\tilde{\Omega}^\times, \tilde{\mathcal{M}}_*)$ over \mathcal{V} by

$$\begin{array}{c}
\tilde{\Omega}^\times = (\tilde{\Omega}^\times \times \mathcal{V}) \times \text{Spf } \mathbb{Z}[\mathcal{V} \times \mathcal{V}] \times \text{Spf } \mathbb{Z}[\mathcal{n}^\times \mathcal{V}],
\end{array}$$

and $\tilde{\mathcal{M}}_*$ is the log-structure associated to the natural homomorphism $\tilde{L}^\times_\mathcal{V} \to \Gamma(\tilde{\Omega}^\times, O_{\tilde{\Omega}^\times})$. By the similar proof of Lemma 4.9 we have
Lemma 4.12. (1) There is a natural commutative diagram

$$\begin{array}{ccl}
(X_\bullet, M_\bullet) & \to & (\tilde{Q}^{ex}_\bullet, \tilde{\mathcal{M}}_\bullet) \\
\downarrow & & \downarrow \\
(C, s) & \to & (\mathcal{E}_V, \mathcal{N})
\end{array}$$

of formal log-schemes over V such that $(X_\bullet, M_\bullet) \to (\tilde{Q}^{ex}_\bullet, \tilde{\mathcal{M}}_\bullet)$ is an exact closed immersion and $(\tilde{Q}^{ex}_\bullet, \tilde{\mathcal{M}}_\bullet) \to (Q^{ex}_\bullet, \mathcal{L}_\bullet) \times (\mathcal{E}_V, \mathcal{N})$ is log-étale. In particular, each level of $(\tilde{Q}^{ex}_\bullet, \tilde{\mathcal{M}}_\bullet)$ is log-smooth over $(\mathcal{E}_V, \mathcal{N})$.

(2) The underlying simplicial formal scheme \tilde{Q}^{ex}_\bullet is smooth over V.

(3) The morphism $\sigma_\bullet \times \sigma_{\mathcal{E}_V}$ on $(Q^{ex}_\bullet, \mathcal{M}_\bullet) \times (\mathcal{E}_V, \mathcal{N})$ can be extended to a morphism $\tilde{\sigma}_\bullet : (\tilde{Q}^{ex}_\bullet, \tilde{\mathcal{M}}_\bullet) \to (\tilde{Q}^{ex}_\bullet, \tilde{\mathcal{M}}_\bullet)$ such that $\tilde{\sigma}_\bullet$ is compatible with the Frobenius σ on V and acts by multiplying p on $\tilde{\mathcal{E}}^{ex}_\bullet$.

Now the proof of Proposition 4.11 is complete. \qed

Hence we may use the exact embedding of the previous proposition to calculate our simple complex of (25), note that the log-tubes coincide with the usual one: $|X_\bullet|^\log_{\tilde{Q}^{ex}_\bullet} = |X_\bullet|^\tilde{Q}^{ex}_\bullet$. This is true because the immersion is exact and we have

$$H^m_{X_\bullet \rig, \rig} (X) \cong \mathbb{R}^m \Gamma[|X_\bullet|^\tilde{Q}^{ex}_\bullet, \Omega_{|X_\bullet|^\tilde{Q}^{ex}_\bullet} \to \Omega_{|X_\bullet|^\tilde{Q}^{ex}_\bullet} < \tilde{\mathcal{M}}_\bullet >].$$

But we can also introduce an admissible covering of $|X_\bullet|^\tilde{Q}^{ex}_\bullet$: this is given by the inverse image of the admissible covering of \mathcal{E}_X given by the tube of $\{ s \}$ (open unit disk hence quasi-Stein) and V where V is a strict affinoid neighborhood of $C \setminus \{ s \}$ in \mathcal{E}_V. The inverse image of such a covering gives an admissible covering of $|X_\bullet|^\tilde{Q}^{ex}_\bullet$: $|X_\bullet|^\tilde{Q}^{ex}_\bullet$ and V_\bullet which are respectively the inverse image of the tube of $\{ s \}$ and of V in $|X_\bullet|^\tilde{Q}^{ex}_\bullet$. In particular the open immersion $|X_\bullet|^\tilde{Q}^{ex}_\bullet \to |X_\bullet|^\tilde{Q}^{ex}_\bullet$ is a quasi-Stein map. The restrictions to \mathcal{V}_\bullet of the two complexes which appear in (26) are the same: using this fact and the quasi-Stein property and because all the sheaves are coherent, we can again re-write (26). In fact, $H^i_{X_\bullet \rig, \rig} (X)$ can be calculated as the derived functors of the global section functor on $|X_\bullet|^\tilde{Q}^{ex}_\bullet$ of

$$\Omega_{|X_\bullet|^\tilde{Q}^{ex}_\bullet} \to \Omega_{|X_\bullet|^\tilde{Q}^{ex}_\bullet} < \tilde{\mathcal{M}}_\bullet >].$$

By our hypotheses X_\bullet is proper and \tilde{Q}^{ex}_\bullet is smooth, the first complex calculates the rigid cohomology of X_\bullet, while the second calculates the log-convergent cohomology of X_\bullet endowed with the induced log-structure from X, i.e. the log-convergent cohomology of (X_\bullet, M_\bullet) with respect to the trivial log-structure on the base field, $H^m_{\log-\conv, (X_\bullet, M_\bullet)/V}$.

Remark 4.13. It is tempting to give a name to the hypercohomology of the global sections functor of the previous simple complex (27), and to denote it by $H^m_{X_\bullet \rig, \rig} (\tilde{X}/K)$, where \tilde{X} is the completion of X along X_\bullet.

As a corollary of these two interpretations, we obtain the following long exact sequence of finite dimensional K-vector spaces:

$$\cdots \to H^m_{X_\bullet \rig, \rig} (X) \to H^m_{\rig} (X_\bullet) \to H^m_{\log-\conv, (X_\bullet, M_\bullet)/V} \to \cdots.$$

This long exact sequence is compatible with Frobenius. By classical results we know that the rigid terms of such a long exact sequence have Frobenius structures (they have a structure of mixed F-isocrystals [CH98]), hence we may endow $H^m_{\log-\conv, (X_\bullet, M_\bullet)/V}$ with a Frobenius structure (even if (X_\bullet, M_\bullet) is not log-smooth over k endowed with the trivial log-structure). Again we want to stress the fact that $H^m_{\log-\conv, (X_\bullet, M_\bullet)/V}$ represents the m-th log-convergent cohomology group of (X_\bullet, M_\bullet) relative to the trivial log-structure on the base field k. We recall that we indicate by $H^m_{\log-\conv, (X_\bullet, M_\bullet)/V}$

18
the log-convergent cohomology groups of \((X_s, M_s)\) over \(\mathcal{V}^\infty\) (endowed with the log-structure of \(\mathcal{V}\) associated to \(\mathbb{N} \ni 1 \mapsto 0 \in \mathcal{V}\)). Such cohomology groups coincide with the log-crystalline ones: \(H^m_{\log\text{-crys}}((X_s, M_s)/\mathcal{V}^\infty) \otimes K\) (see notation before (11)).

Remark 4.14.
(1) We should remark that we could have proved the existence of \(\mathcal{U}\) by just using the exact embedding system \((X_s, M_s) \to (\mathcal{Q}^\infty_s, \mathcal{M}_s)\). In this case, \(V_s\) of the covering above, would have been constructed as the complement of tube of \(X_s\) of radius \(\eta < 1\).

(2) More generally if we try to deal with a general Hyodo-Kato embedding system \((X_s, M_s) \to (\mathcal{P}_s, \mathcal{M}_s)\) as in (7), then we would have replaced the complex in (20) by

\[
\left[\Omega^*_X \mid_{\mathcal{P}_s} \to h_{K,s} \Omega^*_X \mid_{\mathcal{P}_s} \right]
\]

where \(h_{K,s} : [X_s \mid_{\mathcal{P}_s} \to [X_s \mid_{\mathcal{P}_s}\) is the canonical morphism. As a corollary of our local global comparison, we have an isomorphism

\[H^m_{\log\text{-rig}}(X) \cong T\left([X_s \mid_{\mathcal{P}_s} \bullet, \Omega^*_X \mid_{\mathcal{P}_s} \to h_{K,s} \Omega^*_X \mid_{\mathcal{P}_s} \right]\]

where \(h_{K,s} : [X_s \mid_{\mathcal{P}_s} \to [X_s \mid_{\mathcal{P}_s}\) is the restriction of \(h_{K,s}\). However, one can not directly apply our argument of global and local comparison to this complex, for the reason that \(h_{K,s}(V_s)\) is not isomorphic to \(V_s\) in general. As a matter of fact, the local existence of exact embeddings is enough in order to prove the exact sequence \(\mathcal{U}\). The authors, however, thought that it were worth to prove the existence of global exact embedding systems of Propositions 4.34.11 for further studies.

* * *

By putting together (2) and (3) we have the sequence (as in the introduction)

\[
\cdots \to H^m_{\text{rig}}(X_s) \overset{\gamma}{\to} H^m_{\log\text{-crys}}((X_s, M_s)/\mathcal{V}^\infty) \otimes K \overset{\beta}{\to} H^m_{\log\text{-crys}}((X_s, M_s)/\mathcal{V}^\infty) \otimes K(-1) \overset{\delta}{\to} H^{m+2}_{X_s, \text{rig}}(X)
\]

where the maps \(\gamma\) and \(\delta\) are defined from (2) and (3) by the composites

\[H^m_{\text{rig}}(X_s) \to H^m_{\log\text{-conn}}((X_s, M_s)/\mathcal{V}) \to H^m_{\log\text{-crys}}((X_s, M_s)/\mathcal{V}^\infty) \otimes K\]

and

\[H^m_{\log\text{-crys}}((X_s, M_s)/\mathcal{V}^\infty) \otimes K(-1) \to H^{m+1}_{\log\text{-conn}}((X_s, M_s)/\mathcal{V}) \to H^{m+2}_{X_s, \text{rig}}(X)\]

5 **Exactness of the sequence**

In this last part we would like to prove the exactness of the previous long sequence (as in the introduction)

\[
\cdots \to H^m_{\text{rig}}(X_s) \overset{\gamma}{\to} H^m_{\log\text{-crys}}((X_s, M_s)/\mathcal{V}^\infty) \otimes K \overset{\beta}{\to} H^m_{\log\text{-crys}}((X_s, M_s)/\mathcal{V}^\infty) \otimes K(-1) \overset{\delta}{\to} H^{m+2}_{X_s, \text{rig}}(X)
\]

and we will make the further hypothesis that the field \(k\) is finite with \(q = p^a\) elements. We will show how such a result (after our translation of the topological tools in our framework) is a formal corollary of the fact that in characteristic \(p\) the monodromy filtration coincides with the weight filtration. We recall that in the third paragraph we had the following interpretation (12):

\[
\left(\mathbb{R}^m \cdot h(\mathcal{X}, \mathcal{M})/(\mathcal{V}^\infty), \varphi\right)_{\text{an}}(\Delta, \alpha) \mid_{\mathcal{V}^\infty} \delta \equiv H^m_{\log\text{-crys}}((X_s, M_s)/\mathcal{V}^\infty) \otimes K,
\]

19
The Frobenius induces a structure of mixed F-isocrystal on $H_{\log-\text{crys}}^m((X, M_1)/\mathcal{V}^{\infty}) \otimes K$. Moreover we have a direct sum decomposition with respect to the weights $H_{\log-\text{conv}}^m((X, M_1)/\mathcal{V}) = H_{\log-\text{conv}}^m((X, M_1)/\mathcal{V})^{\leq m} \oplus H_{\log-\text{conv}}^m((X, M_1)/\mathcal{V})^{> m}$.

Proof. The cohomological groups $H_{\log-\text{conv}}^m((X, M_1)/\mathcal{V})$ sit in two long exact sequences (2) and (3) both compatible with Frobenius: hence they are mixed as F-isocrystals. In (2), by the theory of "classical" rigid cohomology we know that $H_{\log-\text{crys}}^m(X)$ has weights $\leq m$ (CH98 2.2) while $H_{\log-\text{crys}}^{m+1}(X)$ has weights strictly bigger than m (CH98 2.3): then one can insert $H_{\log-\text{conv}}^m((X, M_1)/\mathcal{V})$ in a short exact sequence where the first non trivial term has weights $\leq m$ (in fact it is a quotient of $H_{\log-\text{crys}}^m(X)$), while the last non trivial term has weights $> m$ (because it is a sub F-isocrystal of $H_{\log-\text{crys}}^{m+1}(X)$). But, using (3), we can insert $H_{\log-\text{conv}}^m((X, M_1)/\mathcal{V})$ in another short exact sequence: this time the first non trivial term is the quotient $H_{\log-\text{crys}}^{m-1}(X, M_1)/\mathcal{V}^{\infty}) \otimes K$ which has weights $> m$ by Corollary 5.2 and the last term is $\ker N_m$ on $H_{\log-\text{crys}}^m((X, M_1)/\mathcal{V})$ which has weights $\leq m$ (again by Corollary 5.2).

We are now ready for the last step in the proof of exactness of the Clemens-Schmid sequence. As we said, the part of the long exact sequence (2)

$$\cdots \to H_{\log-\text{crys}}^m(X) \to H_{\log-\text{conv}}^m((X, M_1)/\mathcal{V}) \to H_{\log-\text{crys}}^{m+1}(X) \to \cdots$$

is compatible with the Frobenius structure, hence it gives a surjection

$$H_{\log-\text{crys}}^m(X) \to H_{\log-\text{conv}}^m((X, M_1)/\mathcal{V})^{\leq m} \to H_{\log-\text{conv}}^m((X, M_1)/\mathcal{V})^{> m}.$$
We then have \(\text{Im}(H^m_{\text{rig}}(X_s) \to H^m_{\log-\text{conv}}((X_s, M_s)/V)) = H^m_{\log-\text{conv}}((X_s, M_s)/V)^{m} \) and of course it is contained in \(\ker N_m \) according to the long exact sequence \((1)\). Since \(\ker N_m \) has weights at most \(m \) and the \(\text{Coker} N_{m-1} \) has weights \(\geq m + 1 \), then the kernel is exactly isomorphic to \(H^m_{\text{log-conv}}((X_s, M_s)/V)^{m} \) under the map in \((3)\). Hence it is \(\text{Im}(H^m_{\text{rig}}(X_s) \to H^m_{\log-\text{conv}}((X_s, M_s)/V)^{m} \otimes K) \) in \(\gamma \) of \((1)\). In the second part of the sequence, we know that \(\text{Coker} N_{m}\) has weights \(\geq m + 2 \) (because of the Frobenius twist). And it is isomorphic to \(H^{m+1}_{\log-\text{conv}}((X_s, M_s)/V)^{m+2} \) because \(\ker N_{m+1} \) has weights \(\leq m + 1 \). Consider the long exact sequence \((2)\)

\[
H^{m+1}_{\log-\text{conv}}((X_s, M_s)/V) \to H^{m+2}_{X, \text{rig}}(X) \to H^{m+2}_{\text{rig}}(X)
\]

The kernel of the last map is the isomorphic to \(H^{m+1}_{\log-\text{conv}}((X_s, M_s)/V)^{m+2} \) because \(H^{m+1}_{\text{rig}}(X) \) has weights \(\leq m + 1 \) and \(H^{m+2}_{X, \text{rig}}(X) \) has weights \(\geq m + 2 \).

This concludes the proof of the exactness of the Clemens-Schmid sequence.

References

[Be97] P. Berthelot, Dualité de Poincaré et formule de Künneth en cohomologie rigide. C. R. Math. Acad. Sci. Paris Sér. I Math. 325(1997), 493-498.

[CH98] B. Chiarellotto, Weights in rigid cohomology: applications to unipotent \(F \)-isocrystals. Ann. Sci. Éc. Norm. Supér. 31(1998), 683-715.

[CT03] B. Chiarellotto, N. Tsuzuki, Cohomological Descent of Rigid Cohomology for étale coverings. Rend. Semin. Mat. Univ. Padova 109(2003), 63-215.

[CL77] C.H. Clemens, Degeneration of Kähler manifolds. Duke Math. J. 44(1977), no. 2, 215-290.

[CR98] R. Crew, Finiteness theorems for the cohomology of an overconvergent isocrystal on a curve. Ann. Sci. Éc. Norm. Supér. 31(1998), 717-763.

[DE80] P. Deligne, La conjecture de Weil II. Publ. Math. Inst. Hautes Études Sci. 52(1980), 137-252.

[HK94] O. Hyodo, K. Kato, Semi stable reduction and crystalline cohomology with logarithmic poles. Période p-adiques, (Bures-sur-Yvette 1988) Astérisque, 223(1994), 221-268.

[KA89] K. Kato, Logarithmic structures of Fontaine-Illusie. Algebraic analysis, geometry and number theory, the Johns Hopkins Univ. Press (1989), 191-224.

[KO68] N.M. Katz, T. Oda, On the differentiation of De Rham cohomology classes with respect to parameters. J. Math. Kyoto Univ., 8(1968), 199-213.

[IL94] L. Illusie, Autour du théorème de monodromie locale. Période p-adiques, (Bures-sur-Yvette 1988) Astérisque 223(1994), 9-57.

[LA11] A. G.B. Lauder, Degenerations and limit Frobenius structures in rigid cohomology. LMS J. Comput. Math. 14 (2011), 1-33.

[LS07] B. Le Stum, Rigid cohomology. Cambridge Tracts in Math., 172 (2007), Cambridge Univ. Press.

[LE07] M. Levine, Motivic tubular neighborhood. Doc. Math. 12(2007), 71-146.

[MO84] D.R. Morrison, The Clemens-Schmid exact sequence and applications. Topics in transcendental algebraic geometry 101-119, Ann. of Math. Stud. 106, Princeton Univ. Press, Princeton NJ 1984.

[NA06] Y. Nakkajima, Signs in weight spectral sequences, monodromy-weight conjectures, log Hodge symmetry and degenerations of surfaces. Rend. Sem. Mat. Univ. Padova 116(2006), 71-185.

21
[PE03] D. Petrequin, Classes de Chern et classes de cycles en cohomologie rigide. *Bull. Soc. Math. France* 131(2003), 59-121.

[SH00] A. Shiho, Crystalline fundamental groups I-Isocrystals on log crystalline site and log convergent site. *J. Math. Sci.Univ.Tokyo* 7(2000), 509-656.

[SH02] A. Shiho, Crystalline fundamental groups II-Log convergent cohomology and rigid cohomology. *J. Math. Sci.Univ.Tokyo* 9(2002), 1-163.

[SH08] A. Shiho, Relative log-convergent cohomology and relative rigid cohomology I. arXiv:0707.1742v2 (2008).

[SH08A] A. Shiho, Relative log-convergent cohomology and relative rigid cohomology II. arXiv:0707.1743v2 (2008).

[ST76] J. Steenbrink, Limits of Hodge structures. *Invent. Math.* 31(1976), 229-257.

[TS04] N. Tsuzuki, Cohomological descent in rigid cohomology. *Geometric Aspects of Dwork Theory II*, Adolphson, Baldassarri, Berthelot, Katz, Loeser Eds., W. de Gruyter (2004), 931-982.

Bruno Chiarellotto, Dip. Matematica, Univ. Padova, Via Trieste 63, 35121 Padova (Italy), email: chiarbru@math.unipd.it

Nobuo Tsuzuki, Mathematical Inst. Tohoku Univ., 6-3, Aoba, Aramaki, Aoba-Ku, Sendai 980-8578, email: tsuzuki@math.tohoku.ac.jp