Abstract. We construct spectral triples on a class of particular inductive limits of matrix-valued function algebras. In the special case of the Jiang-Su algebra we employ a particular AF-embedding.

1. Introduction

According to the noncommutative differential geometry program [3, 4] both the topological and the metric information on a noncommutative space can be fully encoded as a spectral triple on the noncommutative algebra of coordinates on that space. Nowadays several noncommutative spectral triples have been constructed, with only a partial unifying scheme emerging behind some families of examples, e.g. quantum groups and their homogeneous spaces, like quantum spheres and quantum projective spaces. (see e.g., [5, 6, 9]) Also some preservation properties with respect to the product, inductive limits or extensions of algebras have been investigated.

Most of these constructions are still awaiting however a proper analysis of such properties as smoothness, dimension (summability) and other conditions selected by Connes. As a testing ground for these and related matters as large as possible class of examples should be investigated, including some important new algebras.

In [12] a general way to construct a spectral triple on arbitrary quasi diagonal C^*-algebras was exhibited. However, in that case one cannot expect summability. Instead, summability was obtained in [11] for certain inductive family of coverings, and p-summability with arbitrary p for any AF-algebra through the construction in [2].

In the present paper we elaborate a construction that extends the latter mentioned approach to a wider class of particular inductive limits of matrix-valued function algebras whose connecting morphisms have a certain peculiar form. In particular this construction applies to the Jiang-Su algebra \mathcal{Z} (cf. [8]), which was originally constructed in terms of an explicit particular inductive limit of dimension drop algebras. The aim therein was to obtain an example of an infinite-dimensional stably finite nuclear simple unital C^*-algebras with exactly one tracial state and with the same K-theory of the complex numbers. The importance of the Jiang-Su algebra \mathcal{Z} stems from the fact that under some other hypothesis \mathcal{Z}-stability entails classification in terms of the Elliott invariant as proved in [15].

The organization of the paper is the following: In the first section we recall the definition of the Jiang-Su algebra and construct a particular AF-embedding for it. In the second section we compute the image of elements belonging to a dense subalgebra of the Jiang-Su algebra under the representation obtained by composing the forementioned AF-embedding with the representation appearing in [2]. In the last section we use the above
results to check that some of the Dirac operators considered in [2] give rise to a spectral triple for the Jiang-Su algebra.

2. Spectral triple on the Jiang-Su algebra

Let B be an inductive limit of C^*-algebras $B = \lim(B_i, \phi_i)$, with $B_0 = \mathbb{C}$ and where every B_i is a unital sub-C^*-algebra of the algebra of continuous-valued functions on the interval with values in M_{n_i} for some natural numbers n_i containing a dense $*$-subalgebra of Lipschitz functions and for $l > i$ natural numbers. The connecting morphisms $\phi_{i,i+l}$ take the form

\[
\phi_{i,i+l}(f) = u_{i,i+l} \begin{pmatrix} f \circ \xi_{i, i+k}^{i+1} \otimes 1_{N_i}^{i+1} & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & f \circ \xi_{i, l}^{i+l} \otimes 1_{N_i}^{l+i} \end{pmatrix} \begin{pmatrix} u_{i,i+l}^* \\

\end{pmatrix}
\]

for some natural numbers k_i^{i+1}, n_i^{i+1}, ..., n_i^{l+i}, a unitary $u_{i,i+l} \in C([0,1], M_{n_i^{i+1}})$ and some paths $\xi_{i,1}^{i+1}, ..., \xi_{i,l}^{i+1}$ satisfying

\[
|\xi_{i,r}^{i+l}(x) - \xi_{i,r}^{i+l}(y)| \leq \frac{1}{2^l}, \quad \text{for } 1 \leq r \leq k_i^{i+1}, \ x, y \in [0,1].
\]

The operators $u_{i,i+l}$ are unitaries in $C([0,1], M_{n_i^{i+1}})$. The Jiang-Su algebra Z is an inductive limit of prime dimension drop algebras Z_i satisfying a certain universal property. We will use the original construction appearing in [3], where it was proven that given $p_i, q_i, n_i = p_i q_i$ defining the prime dimension drop algebra Z_i, there are numbers k_i^{i+1}, k_i^{i+2} and k_i^{i+3} such that $n_{i+1} = (k_i^{i+1} + k_i^{i+2} + k_i^{i+3})n_i$ is equal to $n_{i+1} = p_{i+1} q_{i+1}$ for some coprime numbers p_{i+1} and q_{i+1} and that there are a unitary $u_{i,i+1} \in C([0,1], M_{n_i^{i+1}})$ and natural numbers N_i^{i+1}, N_i^{i+2} and N_i^{i+3} such that

\[
Z_i \rightarrow Z_{i+1}
\]

\[
\phi_i : f \mapsto u_{i,i+1} \begin{pmatrix} f \circ \xi_{i, i}^{i+1} \otimes 1_{N_i}^{i+1} & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & f \circ \xi_{i, l}^{i+1} \otimes 1_{N_i}^{l+i} \end{pmatrix} \begin{pmatrix} u_{i,i+1}^* \\

\end{pmatrix}
\]

is a connecting morphism for $\xi_1 = x/2$, $\xi_2 = 1/2$ and $\xi_3 = (x + 1)/2$. As a consequence, given a natural number l, the connecting morphism $Z_i \rightarrow Z_{i+l}$ has the form

\[
\phi_{i,i+l}(f) = u_{i,i+l} \begin{pmatrix} f \circ \xi_{i, i+k}^{i+1} \otimes 1_{N_i}^{i+1} & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & f \circ \xi_{i, l}^{i+l} \otimes 1_{N_i}^{l+i} \end{pmatrix} \begin{pmatrix} u_{i,i+l}^* \\

\end{pmatrix}
\]
for some natural numbers \(k_i^{+l}, N_{i,1}^{+l}, \ldots, N_{i,k_i^{+l}}^{+l} \), a unitary \(u_{i,i+l} \in C([0,1], M_{n,i+l}) \) and some paths \(\xi_{i,1}^{+l}, \ldots, \xi_{i,k_i^{+l}}^{+l} \) that have the form

\[
\xi_{i,r}^{+l}(x) = \frac{x + r}{2^l} \quad \text{for} \quad 0 \leq r \leq 2^l - 1
\]

or

\[
\xi_{i,s}^{+l}(x) = \frac{s}{2^l} \quad \text{for} \quad 1 \leq s \leq 2^l - 1,
\]

It follows that the paths appearing in the connecting morphism \(\phi_{l,m} \) satisfy equation \(2 \) and \(Z \) belongs to the class of inductive limit \(C^* \)-algebras we want to consider.

Note that, given \(B \) as above, after reindexing the sequence \(B_i \), for example sending \(i \mapsto 2i \) we can always suppose that the paths appearing in the connecting morphisms satisfy

\[
|\xi_{i,r}^{+l}(x) - \xi_{i,r}^{+l}(y)| \leq \frac{1}{2^l}
\]

for any \(1 \leq r \leq k_i^{+l+1} \). This relation will be used for the proof of Lemma 2.1.

Fix a sequence of natural numbers \(n_i \) as above and consider the inductive limit \(A = \lim(A_i, \phi_i^o) \), where \(A_i = C([0,1], M_{n_i}) \) and the connecting morphisms \(\phi_i^o \) are constructed in the same way as above, but they are considered as unital \(* \)-homomorphisms between the \(A_i \)'s. For any \(i, l \in \mathbb{N} \) denote by \(\tilde{\phi}_{i,i+l}^o : A_i \to A_{i+l} \) the \(* \)-homomorphism

\[
\tilde{\phi}_{i,i+l}^o(f) = \begin{pmatrix} f \circ \xi_{i,1}^{+l} \otimes 1_{N_{i,1}^{+l}} & 0 \\ 0 & \ddots \\ 0 & f \circ \xi_{i,k_i^{+l}}^{+l} \otimes 1_{N_{i,k_i^{+l}}}^{+l} \end{pmatrix}.
\]

Let \(u_i \) be the unitary corresponding to the connecting morphism \(A_1 \to A_i \) (or \(B_1 \to B_i \)).

For any \(f \in A_i \) (or \(B_i \)) there is a unique \(\tilde{f} \in A_i \) such that \(f = u_i \tilde{f} u_i^* \). In this way the connecting morphisms take the form

\[
\phi_{i,i+l}^o(f) = u_{i,i+l} \tilde{\phi}_{i,i+l}^o(f) u_{i,i+l}^* = u_{i,i+l} \tilde{\phi}_{i,i+l}^o(\tilde{f}) u_{i,i+l}^*.
\]

Let now \(M = \lim(M_{n_i}, \psi_i) \), where \(\psi_i(a) = a \otimes 1_{n_{i+1}/n_i} \).

Lemma 2.1. There is a \(* \)-isomorphism

\[
\alpha : A \to M.
\]

Let \(\gamma \in (1,2) \). A Lipschitz function \(f \in A_i \) with Lipschitz constant \(L_f < \gamma^l \) is sent to

\[
\alpha(f) = \lim_{m \to \infty} \psi_m^\infty(\tilde{\phi}_{i,m}^o(\tilde{f})(0)).
\]
Proof. Define *-homomorphisms

\[(13) \quad \alpha_i : A_i \to M_{n_{i+1}} \]

\[(14) \quad f \mapsto \tilde{\phi}_i(f)(0) \]

and

\[(15) \quad \beta_i : M_{n_i} \to A_i \]

\[(16) \quad a \mapsto u_{i+1} \bar{a} u_{i+1}^* , \]

where \(\bar{a} \in A_i \) is the constant matrix-valued function taking value \(a \in M_{n_i} \). Let now \(\gamma \in (1, 2) \) and take finite sets \(F_i \subset A_i \) consisting of Lipschitz matrix-valued functions with Lipschitz constant less than \(\gamma^i \) and such that their union \(\bigcup_i F_i \) is dense in \(A \). For any \(f \in F_i \) and \(a \in M_{n_i} \) we have

\[(17) \quad \alpha_i \circ \beta_i(a) = \psi_i(a), \]

\[(18) \quad \| \beta_{i+1} \circ \alpha_i(f) - \phi^i_{i,i+1}(f) \| < \frac{\gamma_i}{2}. \]

Hence the result follows by [11] Proposition 2.3.2. \(\square \)

3. The orthogonal decomposition

Let \(\mathcal{H} \) be the Hilbert space considered by Christensen and Antonescu in [2] corresponding to the GNS-representation induced by the unique trace \(\tau \) on \(M \). This trace is given on the finite-dimensional approximants relative to the inductive limit construction by the normalized trace on matrices. Following [2] we want to write \(\mathcal{H} \) as an infinite direct sum of the finite dimensional Hilbert spaces on which the \(M_{n_i} \)'s are represented.

Let \(\mathcal{H}_i = \overline{M_{n_i}} \) and let \(v \in \mathcal{H}_i \). We can consider \(v \) as a matrix of dimension \(n_i \) and for any \(j < i \), we can write \(v \) as a matrix-valued matrix of the form

\[(19) \quad v = \begin{pmatrix} v_{1,1}^{j,i} & \ldots & v_{1,l_j}^{j,i} \\
\vdots & \ddots & \vdots \\
v_{l_j,j}^{j,i} & \ldots & v_{l_j,l_j}^{j,i} \end{pmatrix}, \]

where \(l_j = n_i / n_j \) is the multiplicity of \(M_{n_j} \) in \(M_{n_i} \) and the \(v_{k,l}^{j,i} \) are matrices in \(M_{n_j} \); in particular we can apply the same procedure to these matrices by iteration. With this notation, the projection \(P_{i,j} \) from \(\mathcal{H}_i \) to \(\mathcal{H}_j \) reads
If \(i > 1 \), the projection \(R_j \) from \(\mathcal{H}_j \) to the orthogonal complement of \(\mathcal{H}_{j-1} \) in \(\mathcal{H}_j \) reads for \(w \in \mathcal{H}_j \):

\[
P_{i,j}(v) = \frac{1}{\ell_j} \sum_{k=1}^{\ell_j} v_{k,k}^{j,i} \in M_{n_j}.
\]

Hence, if we denote by \(\mathcal{R}_i = \mathcal{H}_i \oplus \mathcal{H}_{i-1} \), the projection \(Q_j : \mathcal{H_j} \to \mathcal{R}_j \), when applied to an element \(v \in \mathcal{H}_i \) takes the form, for \(1 \leq s, t \leq \ell_j

\[
(Q_j(v))_{s,t}^{j-1} = \begin{cases}
\frac{1}{\ell_j} \sum_{k=1}^{\ell_j} (v_{k,k}^{j,i})_{s,s}^{j-1,j} - \frac{1}{\ell_j-1} \sum_{l=1}^{\ell_j-1} \sum_{k=1}^{\ell_j} (v_{k,k}^{j,i})_{t,t}^{j-1,j} & \text{for } s = t \\
\frac{1}{\ell_j} \sum_{k=1}^{\ell_j} (v_{k,k}^{j,i})_{s,t}^{j-1,j} & \text{for } s \neq t
\end{cases}.
\]

4. The commutators

Take \(i < n < m \) and \(v \in \mathcal{H}_m \), \(f \in A_i \). We want to compute the elements \(Q_n(\tilde{\phi}_{i,n}^o(\tilde{f})(0)v) \) and \(\tilde{\phi}_{i,n}^o(\tilde{f})(0)Q_n v \). To this end we want to write \(\tilde{\phi}_{i,n}^o(\tilde{f}) \) as the composition \(\tilde{\phi}_{n,m}^o \circ \tilde{\phi}_{n-1,n}^o \circ \tilde{\phi}_{n-1}^o(\tilde{f}) \).

Let \(k_j^n \) be the amount of different paths appearing in the connecting morphism \(\phi_{j,i} \). If \(1 \leq j \leq k_{n-1}^n \), we denote by \(\tilde{f} \circ [\xi_{i,j}^{n-1}] \circ \xi_{n-1,j}^n = \tilde{\phi}_{i,n-1}^o(\tilde{f}) \circ \xi_{n-1,j}^n \) the matrix-valued function

\[
(\tilde{f} \circ \xi_{i,1}^{n-1} \circ \xi_{n-1,j}^n \otimes 1_{N_{i,j}^{n-1}})
\]

\[
\vdots
\]

\[
0
\]

\[
\tilde{f} \circ \xi_{i,k_{n-1}^n}^{n-1} \circ \xi_{n-1,j}^n \otimes 1_{N_{i,k_{n-1}^n}^{n-1}}
\]

then we can write

\[
\tilde{\phi}_{i,n}^o(\tilde{f}) = \tilde{\phi}_{n,n-1}^o \circ \tilde{\phi}_{i,n-1}^o(\tilde{f}) =
\]
\[
\begin{pmatrix}
0 & \cdots & 0 \\
\vdots & \ddots & \vdots \\
0 & \cdots & 0 \\
\end{pmatrix}
\]

For \(1 \leq s \leq l_{n-1}^n\), we denote by \(\tilde{\xi}_{n-1,s}^n\) the path
\[
\tilde{\xi}_{n-1,s}^n = \begin{cases}
\xi_{n-1,1}^n & \text{for } 1 \leq s \leq N_{n-1,1}^n \\
\xi_{n-1,2}^n & \text{for } N_{n-1,1}^n < s \leq N_{n-1,1}^n + N_{n-1,2}^n \\
\vdots & \\
\xi_{n-1,k_{n-1}^n} & \text{for } \sum_{k=1}^{k_{n-1}^n} N_{n-1,k} < s \leq l_{n-1}^n
\end{cases}
\]

Thus we obtain for \(1 \leq s, t \leq l_{n-1}^n\),
\[
(Q_n \tilde{\phi}^\circ_{1,m} (\tilde{f})(0) v)_{s,t}^{n-1,n} = (Q_n (\tilde{\phi}^\circ_{n,m} \circ \tilde{\phi}^\circ_{n-1,n} \circ \tilde{\phi}^\circ_{1,n-1})(\tilde{f})(0) v)_{s,t}^{n-1,n} = \\
\frac{1}{l_{n-1}^m} \sum_{j=1}^{l_{n-1}^m} (\tilde{f} \circ [\xi_{i}^{n-1}] \circ \tilde{\xi}_{n-1,s}^n)(0) (v_{j,j}^{n,m})_{s,s}^{n-1,n} - \frac{1}{l_{n-1}^m} \sum_{k=1}^{l_{n-1}^m} (v_{j,j}^{n,m})_{k,k}^{n-1,n}
\]

and
\[
(Q_n \tilde{\phi}^\circ_{1,m} (\tilde{f})(0) v)_{s,t}^{n-1,n} = (Q_n (\tilde{\phi}^\circ_{n,m} \circ \tilde{\phi}^\circ_{n-1,n} \circ \tilde{\phi}^\circ_{1,n-1})(\tilde{f})(0) v)_{s,t}^{n-1,n} = \\
\frac{1}{l_{n-1}^m} \sum_{j=1}^{l_{n-1}^m} (\tilde{f} \circ [\xi_{i}^{n-1}] \circ \tilde{\xi}_{n-1,s}^n)(0) (v_{j,j}^{n,m})_{s,t}^{n-1,n} \quad \text{for } s \neq t
\]

In the same way, for \(1 \leq j \leq l_{n}^m\), we can define paths
\[
\tilde{\xi}_{n,j} = \begin{cases}
\xi_{m,n,1}^m & \text{for } 1 \leq j \leq N_{n,1}^m \\
\xi_{m,n,2}^m & \text{for } N_{n,1}^m < j \leq N_{n,1}^m + N_{n,2}^m \\
\vdots & \\
\xi_{m,n,k_{n}^m}^m & \text{for } \sum_{k=1}^{k_{n}^m} N_{n,k} < j \leq l_{n}^m
\end{cases}
\]

and compute for \(1 \leq s, t \leq l_{n-1}^n\),
\[
(Q_n \tilde{\phi}^\circ_{1,m} (\tilde{f})(0) v)_{s,t}^{n-1,n} = (Q_n (\tilde{\phi}^\circ_{n,m} \circ \tilde{\phi}^\circ_{n-1,n} \circ \tilde{\phi}^\circ_{1,n-1})(\tilde{f})(0) v)_{s,t}^{n-1,n} = \\
\frac{1}{l_{n-1}^m} \sum_{j=1}^{l_{n-1}^m} (\tilde{f} \circ [\xi_{i}^{n-1}] \circ \tilde{\xi}_{n-1,s}^n)(0) (v_{j,j}^{n,m})_{s,t}^{n-1,n} \quad \text{for } s \neq t
\]

and
This is a consequence of the fact that
\begin{equation}
1 \sum_{j=1}^{l_n} (\tilde{f} \circ [\xi_{i}^{n-1}] \circ \tilde{\xi}_{n-1,s} \circ \tilde{m}_{n,j})(0)(v_{j,j}^{n,m})_{s,s} \nonumber
\end{equation}
\begin{equation}
- \frac{1}{l_n-1} \sum_{k=1}^{l_n-1} (\tilde{f} \circ [\xi_{i}^{n-1}] \circ \tilde{\xi}_{n-1,k} \circ \tilde{m}_{n,j})(0)(v_{j,j}^{n,m})_{s,s} \nonumber
\end{equation}
for \(s = t \).

Thus we can write the commutators
\begin{equation}
(Q_n(\tilde{\phi}_{i,n}(\tilde{f})(0)v) - \tilde{\phi}_{i,n}(\tilde{f})(0)Q_nv)_{n-1} = \nonumber
\end{equation}
\begin{equation}
\frac{1}{l_n} \sum_{j=1}^{l_n} (\tilde{f} \circ [\xi_{i}^{n-1}] \circ \tilde{\xi}_{n-1,s} \circ \tilde{m}_{n,j} - \tilde{f} \circ [\xi_{i}^{n-1}] \circ \tilde{\xi}_{n-1,s} \circ \tilde{m}_{n,j})(0)(v_{j,j}^{n,m})_{s,t} \nonumber
\end{equation}
and
\begin{equation}
\frac{1}{l_n} \sum_{j=1}^{l_n} ([\tilde{f} \circ [\xi_{i}^{n-1}] \circ \tilde{\xi}_{n-1,s} \circ \tilde{m}_{n,j} - \tilde{f} \circ [\xi_{i}^{n-1}] \circ \tilde{\xi}_{n-1,s} \circ \tilde{m}_{n,j})(0)(v_{j,j}^{n,m})_{s,t} + \nonumber
\end{equation}
\begin{equation}
\frac{1}{l_n-1} \sum_{k=1}^{l_n-1} (\tilde{f} \circ [\xi_{i}^{n-1}] \circ \tilde{\xi}_{n-1,k} \circ \tilde{m}_{n,j} - \tilde{f} \circ [\xi_{i}^{n-1}] \circ \tilde{\xi}_{n-1,k} \circ \tilde{m}_{n,j})(0)(v_{j,j}^{n,m})_{s,t} \nonumber
\end{equation}
for \(s = t \).

Lemma 4.1. Let \(i < l < m \leq k \) be natural numbers and let \(\xi_{i}^{l}, \xi_{i}^{m}, \xi_{i}^{k} \) be paths on the interval \([0, 1]\) such that
\begin{equation}
|\xi_{i}^{l}(x) - \xi_{i}^{l}(y)| \leq \frac{1}{2^{l-i}}, \quad \text{for any } x, y \in [0, 1]. \nonumber
\end{equation}

Then, given any \(n > 0 \) and any Lipschitz function in \(C([0, 1], M_{n}) \) with Lipschitz constant \(L_{f} \), we have
\begin{equation}
\|(f \circ \xi_{i}^{l} \circ \xi_{i}^{m})(0) - (f \circ \xi_{i}^{l} \circ \xi_{i}^{k})(0)\| \leq \frac{2^{l}L_{f}}{2^{l}}. \nonumber
\end{equation}

Proof. This is a consequence of the fact that \(|\xi_{i}^{l}(x) - \xi_{i}^{l}(y)| \leq \frac{1}{2^{l-i}} \) for every \(x, y \in [0, 1] \). □

5. The spectral triple

Note that if \(D = \sum_{n} \alpha_{n}Q_{n} \) for a certain sequence of real numbers \(\{\alpha_{n}\} \), then the domain of \(D \), \(\text{dom}(D) = \{v \in H : \{\|\alpha_{n}Q_{n}v\| \in l^2(\mathbb{N})\} \) is left invariant under the action of any \(f \in A \); thus in particular, for every \(f \in B \) and it makes sense to consider the (in general unbounded) operator \([D, f]\).
Moreover, it follows from the Hann-Banach extension Theorem, that if \(T \) is an unbounded operator on \(\mathcal{H} \) whose domain contains the algebraic direct sum \(\oplus_{alg} \mathcal{R}_i \) and \(\| TP_n \| \) is uniformly bounded on \(n \), then \(T \) extends (uniquely) to a bounded operator on the whole Hilbert space \(\mathcal{H} \).

Hence, to obtain boundedness of \([D,f]\), we want to compute estimates for \(\| [D,f]P_n \| \) for every \(n \).

For every \(i \in \mathbb{N} \) we will denote by \(LB_i \) the linear subspace of \(B_i \) consisting of Lipschitz functions with Lipschitz constant smaller than \(\gamma^i \) for some \(\gamma \in (1,2) \). Observe that \(\phi_\alpha|_{LB_i} \) is a linear map sending \(LB_i \) into \(LB_{i+1} \) and that the algebraic direct limit \(\bigcup_i LB_i \) is a dense *-subalgebra of \(B \).

Theorem 5.1. Let \(D = \sum_n \alpha_n Q_n \), with \(\{ \alpha_n \} \) a diverging sequence of real numbers satisfying \(\alpha_0 = 0 \), \(|\alpha_n| \leq \beta^{2(n-1)} \) with \(\beta < 2 \) and \(n > 0 \). Then \((\bigcup_i LB_i, \mathcal{H}, D) \) is a spectral triple for \(\mathcal{H} \).

It is \(p \)-summable whenever the sequences of numbers \(\{\alpha_i\} \), \(\{n_i\} \) satisfy

\[
\sum_{i \geq 1} (1 + \alpha_i^2)^{-p/2} (n_i^2 - n_{i-1}^2) < \infty
\]

for some \(p > 0 \).

Proof. After reindexing \(i \to 2i \), the *-isomorphism \(\alpha : A \to M \) has the concrete description given in Lemma 2.1. Thus we can compose it with the GNS representation of \(M \) induced by the unique trace \(\tau \).

Let \(l, m \in \mathbb{N} \) and \(v \in \mathcal{H}_l \). Denote by \(\beta^0_{l,m} : \mathcal{H}_l \to \mathcal{H}_m \) and \(\beta^0_{l,\infty} : \mathcal{H}_l \to \mathcal{H} \) the connecting isometries. Note that for \(i < n \in \mathbb{N} \) and \(f \in LB_i \) the action of \(f \) on \(v \) reads

\[
\lim_{m \to \infty} \beta^0_{m,\infty} \tilde{\phi}_{i,m}^o (\tilde{f})(0) \beta^0_{l,m} v,
\]

where we use the convention that \(\tilde{\phi}_{l,m} = \text{id} \) for \(m \leq l \) and \(\beta^0_{l,m} = \text{id} \) for \(m \leq l \). Thus we can write

\[
\|Q_n f v - f Q_n v\| = \|\beta^0_{m,\infty} Q_n \lim_{m \to \infty} \tilde{\phi}_{i,m}^o (\tilde{f})(0) \beta^0_{l,m} v - \lim_{m \to \infty} \beta^0_{m,\infty} \tilde{\phi}_{i,m}^o (\tilde{f})(0) \beta^0_{n,m} Q_n v\|.
\]

Since the sequence \(\beta^0_{m,\infty} \tilde{\phi}_{i,m}^o (\tilde{f})(0) \beta^0_{l,m} v \) converges, there is an \(M \) such that

\[
\|\beta^0_{i,k} \tilde{\phi}_{i,k}^o (\tilde{f})(\tilde{f})(0) \beta^0_{l,m} v - \lim_{m \to \infty} \beta^0_{m,\infty} \tilde{\phi}_{i,m}^o (\tilde{f})(0) \beta^0_{l,m} v\| \leq \frac{1}{2^{2(n-1)}}
\]

for any \(k \geq M \). Moreover, by Lemma 4.1 and the discussion preceding it

\[
\|\beta^0_{n,m} \tilde{\phi}_{i,n}^o (\tilde{f})(0) - \tilde{\phi}_{i,m}^o (f)(0) \beta^0_{n,m} Q_n v\| \\
= \|\beta^0_{n,m} (\tilde{\phi}_{i,n}^o (\tilde{f})(0) - \tilde{\phi}_{i,m}^o (f)(0)) \beta^0_{n,m} Q_n v\| \leq \frac{2^{2L} f}{2^{2(n-1)}}
\]
for $m > n$ and
\begin{equation}
Q_n \tilde{\phi}_i^o(\tilde{f})(0) \beta_{l,M}^0 v - \tilde{\phi}_{i,n}(\tilde{f})(0) Q_n \beta_{l,M}^0 v \parallel \leq \frac{2^i L f}{2^{2(n-1)}}.
\end{equation}

We can suppose $M > n$ and obtain
\begin{equation}
Q_n \lim_{m \to \infty} \beta_{n,m}^0 \tilde{\phi}_{i,m}^o(\tilde{f})(0) \beta_{l,m}^0 v - \lim_{m \to \infty} \beta_{m,n}^0 \tilde{\phi}_{i,m}^o(\tilde{f})(0) \beta_{l,m}^0 v \parallel \leq \frac{2^i L f}{2^{2(n-1)}}.
\end{equation}

Thus we obtain
\begin{equation}
\parallel [\alpha_n Q_n, f] P_m \parallel \leq \frac{|\alpha_n|(1 + 2^{2i+1} L f)}{2^{2(n-1)}} \leq (1 + 2^{2i+1} L f)(\beta/2)^{2(n-1)}.
\end{equation}

Hence
\begin{equation}
\parallel [D, f] \parallel \leq \parallel \sum_{n=1}^i \alpha_n Q_n, f \parallel + \parallel \sum_{n > i} \alpha_n Q_n, f \parallel \leq 2 \parallel f \parallel \sum_{n=1}^i |\alpha_n| + (1 + 2^{2i+1} L f) \sum_{n > i} (\beta/2)^{2(n-1)} < \infty
\end{equation}

and $[D, f]$ extends to a bounded operator.
Moreover D has compact resolvent since it has discrete spectrum and its eigenvalues have finite multiplicity. Suppose we have sequences $\{\alpha_i\}, \{n_i\}$ and a real number $p > 0$ as in the statement. Then
\begin{equation}
\text{Tr}((1 + D^2)^{-p/2}) = 1 + \sum_{i \geq 1} (1 + \alpha_i^2)^{-p/2}(n_i^2 - n_{i-1}^2) < \infty.
\end{equation}

As the final comment we observe that by looking at the growth of the dimensions of the matrix algebras appearing in the original construction of the Jiang-Su algebra (cfr. [8]), it is clear that (51) can not be satisfied and the spectral triples exhibited above are not p-summable. Also, with the help of Stirling formula it can be seen that $\text{Tr} \exp(-D^2)$ diverges and thus the θ-summability does not hold either.

Acknowledgments

This work is part of the project Quantum Dynamics sponsored by EU-grant RISE 691246.
J.B. thanks Prof. Wilhelm Winter for the hospitality at the University of Munster. L.D. is grateful for the support at IMPAN provided by Simons-Foundation grant 346300 and a Polish Government MNiSW 2015–2019 matching fund.
REFERENCES

[1] V. Aiello, D. Guido, T. Isola, Spectral triples for noncommutative solenoidal spaces from self-coverings. J. Math. Anal. Appl., 448, 1378–1412 (2017).

[2] C. Antonescu, E. Christensen, Spectral triples for AF C^*-algebras and metrics on the Cantor set, Journal of Operator Theory, 56, 17–46 (2006).

[3] A. Connes, C^*-algèbres et géométrie différentielle. C.R. Acad. Sc. Paris, t. 290, Série A, 599-604, (1980).

[4] A. Connes, Noncommutative geometry. Academic Press (1994).

[5] L. Dąbrowski, F. D’Andrea, G. Landi, E. Wagner, Dirac operators on all Podles quantum spheres, J. Noncomm. Geom., 1, 213–39, (2007).

[6] F. D’Andrea, L. Dąbrowski, Dirac Operators on Quantum Projective Spaces \mathbb{CP}^ℓ_q, Commun. Math. Phys., 295, 731–790, (2010).

[8] X. Jiang, H. Su, On a simple unital projectionless C^*-algebra, Amer. J. Math., 121, 359–413, (1999).

[9] S. Neshveyev, L. Tuset, The Dirac operator on compact quantum groups. J. Reine Angew. Math., 641, 1–20 (2010).

[10] M. Rordam, E. Stormer, Classification of Nuclear C^*-Algebras. Entropy in Operator Algebras, Encyclopaedia of Mathematical Sciences 126, (2002)

[12] A. Skalski, J. Zacharias, A note on spectral triples and quasidiagonality, Expositiones Mathematicae 27, 137–141, (2009).

[15] W. Winter, On the classification of simple \mathbb{Z}-stable C^*-algebras with real rank zero and finite decomposition rank, Journal of the London Mathematical Society, 74, 167–183, (2006).

SISSA (Scuola Internazionale Superiore di Studi Avanzati), Via Bonomea 265, 34136 Trieste, Italy

E-mail address: jbassi@sissa.it, dabrow@sissa.it