A cross-sectional prevalence study: To assess the prevalence and site distribution of oral mucosal lesions

Dr. Abhishek Kumar Katiyar, Dr. Aliza Rizvi, Dr. Milan Soni, Dr. Georgee Sharun Philip, Dr. Siddharth David and Dr. Saundarya Priyadarshini

DOI: https://doi.org/10.22271/oral.2021.v7.i1b.1120

Abstract

Introduction: Early diagnosis is the key in the prevention of transformation of oral mucosal lesions into life threatening disease “CANCER”, hence the need of the study determines the prevalence and site distribution of Oral Mucosal Lesions in patients attending outpatient department of Shivam Dental Clinic, Lakhimpur.

Methods: A cross-sectional prevalence study was carried out to assess the prevalence and site distribution of Oral Mucosal Lesions in patients attending outpatient department of Shivam Dental Clinic, Lakhimpur. The sample size was estimated to be 150. A single examiner previously trained for the diagnosis of Oral Mucosal lesions made all examinations. The data was collected using the WHO oral health assessment form 2013. The data analysis was done using the SPSS version 20.

Result: The results stated a strong association between age, chewing tobacco smoking and oral lesions.

Conclusion: The present study concludes a positive relation between intake of tobacco in any form with oral mucosal lesions hence an additional effort to educate the masses about the hazardous effects of tobacco should be a priority for both governmental and non-governmental agencies.

Keywords: Oral mucosal lesions, tobacco, oral cancer, early diagnosis

Introduction

The health of the oral mucosa is directly related to the general health of the human beings. The oral mucosa performs various different functions like protection, sensation and secretion [1]. The health of the oral cavity also plays an important role in the general health of the human beings [2]. The oral mucous membrane effectively serves as a protective barrier against trauma, pathogens, as well as cancer causing agents [3]. Oral mucosal lesions are usually known as any abnormal modification in the color, surface aspects, swelling, or loss of solidarity of the oral mucosal surface. Even though a bigger proportion of OMLs are usually benign and do not require any emergency or active treatment, there might be cases present demonstrating significant pathology, among these with particular importance are oral potentially malignant disorders which have a greater chance to progress into a malignancy [4]. Disruption of the oral health negatively affects a number of important physiologic processes such as speech, chewing and swallowing and it also deteriorates social contacts [5]. Oral mucosal lesions are now commonly seen in many populations around the world. The epidemiological studies of oral mucosal lesions are still fewer when compared with studies regarding dental caries or periodontal diseases [6]. In India, the consumption of tobacco is responsible for more than half of all the oral mucosal lesions in men and more than one-fourth of oral mucosal lesions in women. The World Health Organization predicts that deaths due to consumption of tobacco in India may exceed 1.5 million annually by 2020. The incidence of oral mucosal lesions of the oral cavity is maximizing because of the increase in intake of smokeless as well as smoking of tobacco [7]. The use of tobacco in India differs from that of the globe. The most widely used form of tobacco globally is in the form of a cigarette, however, in India, merely 20% of the tobacco consumed is in the form of a cigarette, whereas 40% is consumed as bidi, and the rest in the form of smokeless/chewable tobacco.
The use of tobacco in India is influenced by various different factors such as persons attitude, the exposed stress, extensive workload, easy availability, widespread advertising of tobacco brands with different products and a dearth of awareness spreading campaigns [1]. There might be many other reasons other than tobacco which may cause oral mucosal lesions such as bacterial, viral or fungal infections, traumatic injuries, systemic diseases and even excessive consumption of betel nut and alcohol [2].

Early diagnosis is the key in the prevention of transformation of oral mucosal lesions into life threatening disease ‘Cancer’, hence the need of the study determines the prevalence and site distribution of Oral Mucosal Lesions in patients attending outpatient department of Shivam Dental Clinic, Lakhimpur. A single examiner previously trained for the diagnosis of Oral Mucosal lesions made all examinations. The aim of this study was to attain a strategically standard approach based on the guidelines presented by the World Health Organization for the collection and report of data about the oral mucosal lesions.

Materials and Method
A cross-sectional prevalence study was carried out to assess the prevalence and site distribution of Oral Mucosal Lesions in patients attending outpatient department of Shivam Dental Clinic, Lakhimpur. The patients attending outpatient department of Shivam Dental Clinic, Lakhimpur from 15th of September 2019 to 22nd of February 2020 were included in the study. Patients who were more than 10 years of age and patients who were less than 60 years of age were included in the study. The sample size was calculated using the formula: N= Z2 P (1-P)/D2 and was estimated to be 150 based on the empirical sample size obtained from previous literature. Verbal consent was taken from the patients visiting the outdoor patient department of Shivam Dental Clinic, Lakhimpur. Inclusion Criteria (1). Patients attending outdoor patient department of Shivam Dental Clinic, Lakhimpur. (2) Patients of both genders were included. (3) Patients with age more than 10 years and less than 60 years were included. Exclusion Criteria (1) Patients who were not willing to participate in the study. (2) Patients with systemic disorders. (3) Patients who were less than 10 years and more than 60 years of age. A single examiner previously trained for the diagnosis of Oral Mucosal lesions made all examinations. The examiner was calibrated priorly to ensure uniform interpretation of the data and reliability. Duplicate examinations were conducted for the 5% of the sample at the beginning, about half way through the survey, and again at the end of the survey to ensure the reliability of the examiner. The data was collected using the WHO oral health assessment form 2013. The oral health surveys provide a concrete basis for assessing the present oral health status of a given population and simultaneously helps to determine the basic needs for oral health care for oral mucosal diseases. The guidelines presented in the WHO oral health assessment form 2013 have been elaborated for practical and economical sample designs suitable for recording the prevalence of oral diseases required for strategic planning and establishment of oral health programmes World Health Organization’s Guide to epidemiology and Diagnosis of Oral Mucosal diseases was used as the diagnostic criteria. All patients were examined while seated on a dental chair using artificial light. Two mouth mirrors were used to retract the tongue and the cheeks. Cotton swabs were used during the examination for removing debris and examining whether white lesions could be wiped off or not. The statistical test Pearson’s Chi-Square was used to test the significance of the prevalence of the oral mucosal lesions in association with age, gender, and tobacco intake habits. The data analysis was done using the SPSS version 20.

Result
The present study aimed to attain a strategically standard approach based on the guidelines presented by the World Health Organization for the collection and report of data about the oral mucosal lesions. A total of 150 study participants were included in the study. Chi square test was applied for independent association of variables.

There was no association between age & location of lesion

P value 0.441

0.441>0.05 non-significant

There was no association between gender & smoking

P value 0.125

0.125>0.05 non significance

There was an association between age & smoking

P value 0.037

0.037<0.05 significant

There was an association between age & chewing tobacco

P value 0.000

0.00<0.05 significant

There was an association between lesion & gender

P value 0.014

0.014<0.05 significant

There was an association between age & lesion

P value 0.000

0.00<0.05 significant

There was an association between age n chewing tobacco

P value 0.000

0.00<0.05 significant

Table 1: Frequency Percent Valid percent

Valid	Frequency	Percent	Valid percent
20-30	61	40.7	40.7
31-40	47	31.3	31.3
41-50	32	21.3	21.3
51-60	10	6.7	6.7
Total	150	100.0	100.0

Table 2: Location * age groups cross tabulation count

Age groups	Total			
Location	BM	Tongue		
	31-40	41-50	51-60	Total
BM	11	14.5%	5.16%	30.96%
Tongue	13.22%	0	0	13.22%
Total	12.38%	14.45%	5.33%	31.100%
Table 3: Chi-square tests

	Value	df	Asymp. sig. (2-sided)
Pearson Chi-Square	1.636	2	.441
Likelihood Ratio	1.951	2	.377
Linear-by-Linear Association	1.205	1	.272
N of Valid Cases	31		

P value 0.441, 0.441>0.05 = non-significant, There is no association between age & location of lesion.

Table 4: Smoking * gender crosstabulation count

Gender	Male	Female	Total
Smoking			
Non smokers	32 21.33%	11 7.33%	43 28.66%
smokers	91 60.66%	16 10.66%	107 71.33%
Total	123 100%	27 100%	150 100%

Table 5: Chi-square tests

	Value	df	Asymp. sig. (2-sided)	Exact sig. (2-sided)	Exact sig. (1-sided)
Pearson Chi-Square	2.347	1	.125		
Continuity Correction	1.683	1	.195		
Likelihood Ratio	2.230	1	.135		
Fisher's Exact Test			.158	.099	
Linear-by-Linear Association	2.332	1	.127		
N of Valid Cases	150				

0.125 *p* value, 0.125>0.05 no significance, No association between gender & smoking.

Table 6: Crosstab count

Age groups	20-30	31-40	41-50	51-60	Total
Smoking					
Non smokers	22 14.66%	16 10.66%	3 2%	2 1.3%	43 28.66%
Smokers	39 6%	21 6%	19 3.3%	5 3.3%	107 71.33%
Total	61 40.66%	47 31.3%	32 21.3%	10 6.66%	150 100%

Table 7: Chi-square tests

	Value	df	Asymp. sig. (2-sided)
Pearson Chi-Square	8.489	3	.037
Likelihood Ratio	9.775	3	.021
Linear-by-Linear Association	5.657	1	.017
N of Valid Cases	150		

0.037<0.05 significant, Association between age & smoking.

Table 8: Crosstab count

Chewing tobacco	Total		
Non chewers			
20-30 29 19.33%	32 21.33%	61 40.66%	
31-40 5 3.33%	42 28%	47 31.33%	
41-50 8 5.33%	24 16%	32 21.33%	
51-60 5 3.33%	10 6.66%		
Total	47 31.3%	103 68.66%	150 100%

Table 9: Chi-square tests

	Value	df	Asymp. sig. (2-sided)
Pearson Chi-Square	19.019	3	.000
Likelihood Ratio	20.399	3	.000
Linear-by-Linear Association	2.332	1	.127
N of Valid Cases	150		

P value 0.000, 0.000<0.05, Association between age & chewing tobacco.

Table 10: Crosstab count

Chewing tobacco	Total		
Non chewers			
Male 36 24%	87 58%	123 82%	
Female 11 7.3%	16 10.6%	27 18%	
Total	47 31.3%	103 68.66%	150 100%

Table 11: Count

Gender	Total		
Lesion			
Present	92 61.33%	26 17.33%	118 78.66%
Absent	31 20.66%	10 6.66%	41 26.33%
Total	123 82%	27 18%	150 100%

Table 12: Chi-square tests

	Value	df	Asymp. sig. (2-sided)	Exact sig. (2-sided)	Exact sig. (1-sided)
Pearson Chi-Square	6.098	1	.014	.027	
Continuity Correction	4.884	1	.014	.027	
Likelihood Ratio	8.067	1	.005		
Fisher's Exact Test			.010	.008	
Linear-by-Linear Association	6.057	1	.014		
N of Valid Cases	150				

P value 0.014, 0.014<0.05 significant, Association between lesion & gender.

Table 13: Crosstab count

Age groups	21-30	31-40	41-50	51-60	Total
Lesion					
Present	61 40.66%	34 22.66%	18 12%	5 3.3%	118 78.66%
Absent	0 0.66%	14 9.3%	9 6%	32 21.33%	
Total	61 40.66%	47 31.3%	32 21.3%	10 6.6%	150 100%

Table 14: Chi-square tests

	Value	df	Asymp. Sig. (2-sided)
Pearson Chi-Square	32.142	3	.000
Likelihood Ratio	42.346	3	.000
Linear-by-Linear Association	30.021	1	.000
N of Valid Cases	150		

P value 0.000, 0.000<0.05 significant, Association between age & lesion.
Table 15: Age groups * Chewing tobacco crosstabulation count

Chewing tobacco	Age groups	Non chewers	chewers	Total
	20-30	29 19.33%	32 21.3%	61 40.66%
	31-40	5 3.33%	42 28%	47 31.33%
	41-50	8 5.3%	24 16%	32 21.3%
	51-60	5 3.33%	3 3.33%	10 6.66%
	Total	47 31.33%	103 68.66%	150 100%

Table 16: Chi-square tests

Value	df	Asymp. Sig. (2-sided)	
Pearson Chi-Square	19.019*	3	0.000
Likelihood Ratio	20.399	3	0.000
Linear-by-Linear Association	2.332	1	0.127

P value 0.000, 0.000<0.05 significant, Association between age and smoking

Table 17: Chewing tobacco

Chewing tobacco	Frequency	Percent	Valid Percent	Cumulative Percent
Non chewers	47	31.3	31.3	31.3
chewers	103	68.7	68.7	68.7
Total	150	100.0	100.0	100.0

Table 18: Smoking

Smoking	Frequency	Percent	Valid Percent	Cumulative Percent
Non smokers	43	28.7	28.7	28.7
smokers	107	71.3	71.3	71.3
Total	150	100.0	100.0	100.0

Table 19: Lesion

Lesion	Frequency	Percent	Valid Percent	Cumulative Percent
Absent	118	78.7	78.7	78.7
Present	32	21.3	21.3	21.3
Total	150	100.0	100.0	100.0

Table 20: Carcinoma

Carcinoma	Frequency	Percent	Valid Percent	Cumulative Percent
Absent	149	99.3	99.3	99.3
Present	1	0.7	0.7	0.7
Total	150	100.0	100.0	100.0

Table 21: Leukoplakia

Leukoplakia	Frequency	Percent	Valid Percent	Cumulative percent
Absent	141	94.0	94.0	94.0
Present	9	6.0	6.0	6.0
Total	150	100.0	100.0	100.0

Table 22: Erythroplakia

Erythroplakia	Frequency	Percent	Valid Percent	Cumulative Percent
Valid	150	100.0	100.0	100.0

Table 23: OSMF

OSMF	Frequency	Percent	Valid Percent	Cumulative Percent
Absent	142	94.7	94.7	94.7
Present	8	5.3	5.3	100.0
Total	150	100.0	100.0	100.0

Table 24: Candidiasis

Candidiasis	Frequency	Percent	Valid Percent	Cumulative Percent
Absent	149	99.3	99.3	99.3
Present	1	0.7	0.7	100.0
Total	150	100.0	100.0	100.0

Table 25: Gender

Gender	Frequency	Percent	Valid Percent	Cumulative Percent
Male	123	82.0	82.0	82.0
Female	27	18.0	18.0	100.0
Total	150	100.0	100.0	100.0

Discussion

Early diagnosis is the key in the prevention of transformation of oral mucosal lesions into life threatening disease ‘CANCER’, hence the need of the study determines the prevalence and site distribution of Oral Mucosal Lesions in patients attending outpatient department of Shivam Dental Clinic, Lakhimpur.

78% of the study participants had an oral mucosal lesion which was contrasting according to a study by Andrej Aleksander Kansky et al, Shakir Mahmood Al-Gburi et al. and Sendhil Kumar et al. In the current study the age group most affected by oral mucosal lesions was 21-30 years (41%) where as in a study conducted by Kamla A et al. and Kaveri Hallikeri et al. it was more than 40 years.

The most common oral mucosal lesion in the present study was oral lichen planus (8.7%) while it was hairy tongue (17.4%), cheek biting and fordyces granules in studies conducted by Sami El Toun et al., Aleksander Kansky et al. and Daud Mirza et al.

The most common oral mucosal lesion in the present study was oral lichen planus (8.7%) while it was hairy tongue (17.4%), cheek biting and fordyces granules in studies conducted by Sami El Toun et al., Aleksander Kansky et al. and Daud Mirza et al.

In the current study the least affected age group was 10 years. In a study conducted by M Krishna Priya et al. and Ali et al. the least affected age group was 10-20 years in a study conducted by Daud Mirza et al.

In the current study the female participants were 18% which was more than in a study conducted by M Krishna Priya et al. and less than studies conducted by K. M. Shivakumar et al. and Ali-Riza-Ilker Cebeci et al.

The total number of study participants in the present study were 150 where as in studies conducted by José Nicolau Gheno et al. and Prashant N. Keche et al. were 801, 3500 and 255 respectively.
Conclusion
Oral mucosal lesions have a potential tendency to transform in oral mucosal malignancies which ultimately result in death. The present study concludes a positive relation between intake of tobacco in any form with oral mucosal lesions hence an additional effort to educate the masses about the hazardous effects of tobacco should be a priority for both governmental and non-governmental agencies.

Conflicts of Interest: None

References
1. Yadav N, Jain M, Sharma A, Yadav R, Pahuja M, Jain V. Distribution and prevalence of oral mucosal lesions in residents of old age homes in Delhi, India. NJE 2018;8(2):727-734.
2. Shakir Mahmood Al-Gburi, Shaimaa Hamid Mudhir, The prevalence of the oral mucosal lesions among adult patients in Abu Ghraib city Iraq. J Res Med Dent Sci 2018;6(5):145-148.
3. Kamble KA, Guddad SS, Nayak AG, Suragimath A, Sanade AR. Prevalence of Oral Mucosal Lesions in Western Maharashtra A Prospective Study. J Indian Acad Oral Med Radiol 2017;29(4):282-287.
4. Toum S, Cassia A, Bouchi N, Kassab I. Prevalence and Distribution of Oral Mucosal Lesions by Sex and Age Categories: A Retrospective Study of Patients Attending Lebanese School of Dentistry. International Journal of Dentistry 2018;27(8):1-6.
5. Aleksander Kansky A, Didanovic V, Dovsak T, Loncar B, Pelivan I, Terlevic D. Epidemiology of oral mucosal lesions in Slovenia. Radiol Oncol 2018;52(3):263-266.
6. Kumar S, Narayanan VS, Ananda S R, Kavitha A P, Krupashankar R. Prevalence and risk indicators of oral mucosal lesions in adult population visiting primary health centers and community health centers in Kodagu district. J Family Med Prim Care 2019;8(7):2337-42.
7. Hallikeri K, Naikmasur V, Guttal K, Shodan M, Chennappa NK. Prevalence of oral mucosal lesions among smokeless tobacco usage: A cross-sectional study. Indian J Cancer 2018;55(6):404-9.
8. Alshayeb M, Mathew A, Varma S, Elkaseh A, Kuduruthullah S, Ashekh A, Wahab A. Habbal, Prevalence and distribution of oral mucosal lesions associated with tobacco use in patients visiting a dental school in Ajman. Oncology and Radiotherapy 2019;46(1):029-033.
9. Ünür M, Bektas-Kayhan K, Seda Altop M, Boy-Metin Z, Keskin Y. The prevalence of oral mucosal lesions in children A single center study. J Istanbul Univ Fac Dent 2015;49(3):29-38.
10. Cury Ramos P, Arruda L, Santos D, Nunes J, Ribeiro E, Figueiredo L, Xavier D, Calô F, Figueiredo, Leal A, Ramalho, Pedreira L. Prevalence and risk indicators of oral mucosal lesions in adult population visiting primary health centers and community health centers in Kodagu district. Journal of Medicine 2014;93(27):140-153.
11. Mirza D, Karim Z, Marath M, Ahmed A, Zaidi N. Frequency and distribution of oral mucosal lesions: a cross-sectional study. PODJ 2017;37(1):45-48.
12. Krishna Priya M, Srinivas P, Devaki T. Evaluation of the prevalence of oral mucosal lesions in a population of eastern coast of South India. J Int Soc Prevent Communit Dent 2018;8:396-401.