Can eccentric binary millisecond pulsars form by accretion induced collapse of white dwarfs?

Wen-Cong Chen1,2,5, Xi-Wei Liu3,5, Ren-Xin Xu1, and Xiang-Dong Li4,5

1School of Physics and State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing 100871, China;
2Department of Physics, Shangqiu Normal University, Shangqiu 476000, China;
3College of Science, Huazhong Agricultural University, Wuhan 430070, China;
4Department of Astronomy, Nanjing University, Nanjing 210093, China; lizd@nju.edu.cn
5Key Laboratory of Modern Astronomy and Astrophysics (Nanjing University), Ministry of Education, Nanjing 210093, China

Accepted 2010 August 12. Received 2010 August 11; in original form 2010 June 6

ABSTRACT

Binary radio pulsars are generally believed to have been spun up to millisecond periods (i.e. recycling) via mass accretion from their donor stars, and they are the descendants of neutron star low-mass X-ray binaries. However, some studies indicate that the formation of pulsars from the accretion-induced collapse (AIC) of accreting white dwarfs (WDs) cannot be excluded. In this work, we use a population synthesis code to examine if the AIC channel can produce eccentric binary millisecond pulsars (BMSPs) in the Galaxy. Our simulated results indicate that, only when the natal MSPs receive a relatively strong kick ($\gtrsim 100 \text{ km s}^{-1}$), can the AIC channel produce $\sim 10^{-18}$ eccentric ($e > 0.1$) BMSPs in the Galaxy, most of which are accompanied by a Helium star. Such a kick seems to be highly unlikely in the conventional AIC process, hence the probability of forming eccentric BMSPs via the AIC channel can be ruled out. Even if a high kick is allowed, the AIC channel cannot produce eccentric BMSPs with an orbital period of $\gtrsim 20$ days. Therefore, we propose that the peculiar BMSP PSR J1903+0327 cannot be formed by the AIC channel. However, the AIC evolutionary channel may produce some fraction of isolated millisecond pulsars, and even sub-millisecond pulsars if they really exist.

Key words: binaries: close – pulsars: general – stars: white dwarfs – Galaxy: stellar content

1 INTRODUCTION

Millisecond pulsars (MSPs) are characterized by short pulse periods ($P \lesssim 20$ ms), low spin-down rates ($\dot{P} \sim 10^{-19} - 10^{-21} \text{ s}^{-1}$), old characteristic ages ($\tau = P/(2 \dot{P}) \sim 10^9 - 10^{10}$ yr), and weak surface magnetic fields ($B \sim 10^8 - 10^9 \text{ G}$) (Manchester 2004). About 80% of the MSPs are in binaries, but only $\lesssim 1\%$ of the total pulsars (Bhattacharya \\ & van den Heuvel 1991; Lorimer 2008). Standard models proposed that MSPs are formed in neutron star (NS) low-mass X-ray binaries (LMXBs), in which the NS has accreted the mass and angular momentum from its companion, and been spun up to a short spin period (Alpar et al. 1982; Tauris \\ & van den Heuvel 2005). Meanwhile, mass accretion onto the NS induces its initial magnetic field ($B_0 \sim 10^{12} - 10^{13}$ G) to decline to $B \sim 10^8 - 10^9$ G. When the mass transfer ceases, a binary millisecond pulsar (BMS) is formed.

However, the origin of the MSPs still presents some controversial puzzles. Firstly, can the known NS LMXBs evolve into the observed MSPs both in the Galactic disk (Kulkarni \\ & Narayan 1988)? Statistical analyses show that the birthrate of LMXBs is $\sim 1 - 2$ order of magnitudes lower than that of MSPs (Cote \\ & Pylese 1989; Lorimer 1997). Secondly, it is hard to understand how isolated MSPs in the Galactic disk were formed via the standard recycling scenario. Although evaporation of the donor stars by the high energy radiation of the MSPs might account for the origin of the isolated MSPs, the observed time scales for evaporating a companion star seem too long. Thirdly, in standard model the strong tidal effects operating in the bi-

\bibitem{Alpar et al. 1982} Alpar et al. (1982)
\bibitem{Tauris \\ & van den Heuvel 2005} Tauris \\ & van den Heuvel (2005)
\bibitem{Bhattacharya \\ & van den Heuvel 1991} Bhattacharya \\ & van den Heuvel (1991)
\bibitem{Lorimer 2008} Lorimer (2008)
\bibitem{Manchester 2004} Manchester (2004)
\bibitem{Kulkarni \\ & Narayan 1988} Kulkarni \\ & Narayan (1988)
\bibitem{Cote \\ & Pylese 1989} Cote \\ & Pylese (1989)
\bibitem{Lorimer 1997} Lorimer (1997)
nary during the mass transfer serves to circularize the orbit. However, the discovery of the eccentric \((e = 0.44)\) BMSP PSR J1903+0327 in the Galactic plane has challenged the standard scenario (Champion et al. 2008).

As an alternative evolutionary channel, BMSP may originate from the accretion-induced collapse (AIC) of an accreting white dwarf (WD) (Michel 1987, Ivanova & Taam 2004) suggested that AIC may occur by thermal timescale mass transfer in such binaries with orbital periods of a few days. Once the accreting ONe WD grows to the Chandrasekhar limit, the electron capture process may induce gravitational collapse rather than type Ia supernova. As a result of angular momentum conservation and magnetic flux conservation, an MSP with rapid spin and low magnetic field may be produced. To account for its observed characteristics, the bursting pulsar GRO J1744-28 was suggested to be originated from the AIC of a massive ONe WD (van Paradijs et al. 1997, Xu & Li 2000). Recently, the estimated birthrates of MSPs by population synthesis calculations show that the often-neglected AIC channel cannot be ignored (Hurley et al. 2010).

In the AIC channel the puzzles in the standard recycling model mentioned above might disappear. Firstly, the AIC of accreting WDs has been raised to interpret the birthrate discrepancy (Bailyn & Grindlay 1990), and the AIC process may be associated with the r-process nucleosynthesis of heavy (baryon number \(A > 130\)) nuclei (Qian & Wasserburg 2003). Secondly, a kick velocity caused by asymmetric collapse may be produced during AIC of WDs. An appropriate kick can disrupt the binary system, and results in the birth of isolated MSPs. Otherwise, the binary survives and an eccentric BMSP is formed.

Ferrario & Wickramasinghe (2007) argued that the AIC channel can form BMSPs of all of the observed types. Champion et al. (2008) proposed that the AIC of a massive and rapidly rotating WD could produce the observed orbital parameters of PSR J1903+0327. In this work, employing the binary population synthesis approach we attempt to investigate if the AIC evolutionary channel can produce a population of eccentric BMSPs, as well as isolated MSPs. In Section 2, we describe the population synthesis approach and the evolution model of MSPs. The simulated results by population synthesis are given in Section 3. Finally, we present a brief discussion and summary in Section 4.

2 INPUT PHYSICS

2.1 Population synthesis

Using an evolutionary population synthesis based on the rapid binary star evolution (BSE) code (e.g. Hurley et al. 2000, 2002), we attempt to study the statistical properties (such as the birth rate, total number, the distributions of orbital period and eccentricity) of MSPs formed via the AIC process of a massive ONe WD in the Galaxy. In calculation, we consider the evolution of single stars with binary-star interactions, which includes the mass transfer and accretion via stellar winds and Roche lobe overflow, common envelope (CE) evolution, supernovae and AIC kick, tidal friction, and orbital angular momentum loss containing gravitational wave radiation and magnetic braking.

All stars are assumed to born in binary systems, and start with zero eccentricities and a solar metallicity \((Z = 0.02)\). We adopt the following input parameters for the simulation. (1) A constant star formation rate \(S = 7.6085 \, \text{yr}^{-1}\), which corresponds to that one binary with \(M_1 \geq 0.8 \, M_\odot\) is born in the Galaxy per year; (2) The primary mass distribution \(\Phi(lnM_1) = M_1^\xi(lnM_1)\), in which the initial mass function \(\xi(M_1)\) is given by Kroupa et al. (1993); (3) The secondary mass distribution \(\Phi(lnM_2) = M_2/M_1 = q\), which corresponds to a uniform distribution of the mass ratio \(q = 0 - 1\); (4) A uniform distribution of \(lna\) for the binary separation \(a\), namely \(\Phi(lna) = k = \text{constant}\) (normalization results in \(k = 0.12328\)) (see Hurley et al. 2002). The input parameter space for the primary mass \(M_1\), the secondary mass \(M_2\), and the separation \(a\) are set to be \(0.8 - 80M_\odot\), \(0.1 - 80M_\odot\), and \(3 - 10000R_\odot\), respectively. For each initial parameters \(\chi(M_1, M_2, a)\), we set \(n_\chi\) grid points in logarithmically space, so and have

\[
\delta \ln \chi = \frac{\ln \chi_{\text{max}} - \ln \chi_{\text{min}}}{n_\chi - 1}.
\]

During the evolution, if a binary appears as BMSP, it makes a contribution to the birthrate as

\[
\delta r = S \Phi(lnM_1) \Phi(lnM_2) \Phi(lna) \delta \ln M_1 \delta \ln M_2 \delta \ln a.
\]

If this system lives for a time \(\Delta t\) as a member of BMSPs, it makes a contribution to the number

\[
\delta n = \delta r \times \Delta t.
\]

During the CE evolution, the parameter \(\alpha_{\text{CE}} = E_{\text{bind}}/(E_{\text{orb},t} - E_{\text{orb},i})\) describes the efficiency that the orbital energy is transferred to expel the envelope (Hurley et al. 2002), here \(E_{\text{bind}}\) is the total binding energy of the envelope, \(E_{\text{orb},t}\) and \(E_{\text{orb},i}\) are the final and the initial orbital energy of the cores, respectively. There exist some diversity in calculating the initial orbital energy, hence Hurley et al. (2010) suggest that in this formulation \(\alpha_{\text{CE}} = 3\) should be consistent with \(\alpha_{\text{CE}} = 1\) adopted by Pfahl et al. (2003). Both the estimated velocity of individual pulsars and the pulsar velocity distribution indicate that the nascent NSs should have received a kick velocity, which may root in the asymmetric collapse of massive progenitors of NSs (Burrows & Hayes 1996, Lai & Goldreich 2000). The kick plays an important role in determining the fate of binaries, whether surviving or disruptive. Noticeably, it is widely accepted that the NS formed by the AIC may receive a lower kick velocity (e.g. \(\sigma_{\text{AIC}} = 20 \, \text{km s}^{-1}\) in the standard model of Hurley et al. 2010). However, some works presented the opposite point of view (Harrison & Tademaru 1973, Lai et al. 2004) (see section 4). In our standard model, a relatively stronger kick dispersion for NSs by core collapse supernovae is taken to be \(\sigma_{\text{NS}} = 265\, \text{km s}^{-1}\) (Hobbs et al. 2005), while \(\sigma_{\text{AIC}} = 150\, \text{km s}^{-1}\) (a ultra-high kick dispersion) for NSs via the AIC. To study the influence of AIC kick on the formation of MSPs, other kick dispersion such as \(\sigma_{\text{AIC}} = 100, 50\, \text{km s}^{-1}\) are also included. Unless we particularly mention, the BSE input parameters in table 3 of Hurley et al. (2002) are used.
2.2 Evolution of MSPs

When the mass of the accreting WD reaches the Chandrasekhar limit, the process of electron capture may dominate, and induce the WD to collapse to be an NS or explode as a type Ia supernova (Canal et al. 1986; Isern et al. 1984), depending on the WD mass and the accretion rate. Nomoto & Kondo (1991) pointed out that, if the accretion rate $\dot{M_{\mathrm{WD}}} > 10^{-8} M_\odot \text{yr}^{-1}$, an ONe WD with an initial mass of 1.2 M_\odot is very likely to collapse to be an NS rather than experience type Ia supernova explosion. By 2.5-dimensional radiation-hydrodynamics simulations of the AIC of WDs, Dessart et al. (2006) proposed that the spin period of the natal NSs are 2.2 - 6.3 ms. Therefore, in our calculations, all NSs formed by AIC are assumed to be rapidly rotating objects with millisecond period, and low magnetic field. In the input parameters, the initial magnetic field strengths of the MSP are chosen from a lognormal distribution of mean 9 and standard deviation 0.4, and its initial spin periods P_1 are distributed uniformly between 1 and 10 ms. If the donor star fills its Roche lobe after the AIC, the NS should appear as an X-ray pulsar (Stairs 2004; Freire 2009), and radio emission is suppressed. However, even if for a detached binary with a He star or a massive companion, accretion may occur due to capture of the stellar winds, which may strongly influence the radio emission of MSPs. Based on the simplified version of the theoretical model given by Davies & Pringle (1981), we consider the MSP’s spin evolution as follows.

(i) Radio pulsar phase: After the MSP birth via AIC, it appears as a radio pulsar due to the rapid rotation, which causes its radiation to be strong enough to expel the winds coming from the He star beyond the radius of the light cylinder r_c, or the Bondi accretion radius r_{ac} (Dai et al. 2006). As a result of magnetic dipole radiation, the spin angular momentum loss rate of the MSP is

$$J_m = -\frac{2\mu^2 \Omega^3}{3c^3},$$

where Ω, and $\mu = 10^{30} \mu_{50} \text{G cm}^{-3}$ are the angular velocity, and the magnetic dipole moment of the MSP, respectively.

Considering the interaction between the magnetic field of the MSP and the wind material from the donor star, Davies & Pringle (1981) proposed that, if the spin period P of the NS is greater than either

$$P_{\text{ac}} = 1.2 M_{15}^{-1/4} P_{30}^{1/2} v_8^{-1/2} \text{s},$$

or

$$P_{\text{bh}} = 0.8 M_{15}^{-1/6} P_{30}^{1/3} v_8^{-5/6} \left(\frac{M}{M_\odot}\right)^{1/3} \text{s},$$

the radio phase stops. Here $M = 10^{15} M_{\odot}\text{g s}^{-1}$ is the rate of mass flow onto the NS, $v = 10^8 v_{\odot}\text{cm s}^{-1}$ is the wind velocity relative to the NS, and M is the mass of the MSP.

Based on the criterion for the radio phase mentioned above, a NS formed via AIC is assumed to be a MSP until its spin period $P > 10\text{ms}$, or it crosses the so-called “death line”, i.e. $B_{12}/P^2 < 0.17 G\text{m}\text{s}^{-2}$ (Bhattacharya et al., 1992), where $B = 10^{12} B_{12}\text{G}$ is the surface magnetic field of the NS.

(ii) Propeller phase: With the spin-down of the NS, the light cylinder moves outwards, and the magnetosphere radius $r_m = 1.6 \times 10^8 B_{12}^{4/7} M_{15}^{-2/7} \text{cm}$

Table 1. Model parameters for binary population synthesis.

Model	α_{CE}	σ_{CC}	σ_{AIC}
A	3	265	150
B	1	265	150
C	3	265	100
D	1	265	100
E	3	265	50
F	1	265	50

is less than r_c, and is greater than the corotation radius $r_c = 1.5 \times 10^8 (M/M_\odot)^{1/3} P^{2/3} \text{cm}$. Subjecting to the centrifugal barrier, the winds material is assumed to be ejected at r_m, and exerting a propeller spin-down torque on the NS (Illarinov & Sunyaev 1973). The spin angular momentum loss rate via the propeller effect is given by

$$J_p = 2M r_m^2 \Omega_k(r_m)[1 - \Omega/\Omega_k(r_m)],$$

where $\Omega_k(r_m)$ is the Keplerian angular velocity at r_m.

(iii) Accretion phase: we neglect the influence of the winds accretion on the spin of the MSP owing to small spin angular momentum of wind material.

3 RESULTS

Based on the theoretical model described in section 2, we calculated the evolution of n_x binaries to an age of 12 Gyr using the BSE code, as well as additions for MSP evolution which will affect the lifetime, δt, used to calculate BMSP numbers (see Eq. 3). To explore the effect of input parameters, we have calculated the evolutionary results for six models (see Table 1), which is determined by the CE parameter α_{CE}, the kick dispersion σ_{CC} of core collapse, and the kick dispersion σ_{AIC} via AIC channel. We collect the evolutionary stages of MSPs as follows: (1) Binary MSPs with a main sequence, red giant, or subgiant companion (BMSP-MG); (2) Binary MSPs with a He star companion (BMSP-He); (3) Isolated MSPs. In Table 2, we summarize the predicted numbers and birthrates of various types of MSPs via AIC channel in the Galaxy.

To evaluate the uncertainties in the birthrates and numbers for various types of BMSPs, in table 2 we also present the simulated results for same model under different random number seeds and grid points n_x. We find that, the predicted numbers have considerable uncertainties, especially the numbers of BMSP-He in models D and F for different random number seeds, as well as the numbers of BMSP-MG in models A, C, and E for different grid points. However, the birthrates besides BMSP-MG show only small variations (with uncertainties $\lesssim 20\%$). The uncertainties in the numbers seem to originate from various random number sequences under different seeds or grid points. The reasons are as follows. Firstly, the random number sequence can influence the kick received by the natal MSP, which can affect the evolutionary fate of binaries. Secondly, the spin evolution of MSPs is related to the distribution of the initial period and magnetic field. Both parameters strongly depend on the random number sequence, which can result in the different evolutionary histories of MSPs (see Eq. 3).
In model A, we take a strong kick of \(\sigma_{\text{AIC}} = 150 \text{ km s}^{-1} \) for the AIC channel, and \(\alpha_{\text{CE}} = 3 \). Our results show that there exist \(\sim 360 \) BMSPs, which formed via AIC channel. In our standard model, BMSPs with a He star companion have a number that is \(\sim 10 \) to 100 times higher than that with a main sequence, red giant, or subgiant companion, and the birthrate also shows the same tendency. In addition, the AIC channel can result in the formation of \(\sim 5 \times 10^5 \) isolated MSPs, which is compatible with the estimation by observations (Lorimer 1995). As a result of large kick, \(\sim 100 \) to 200 BMSPs with an eccentric orbit (\(\epsilon > 0.1 \)) is produced.

The results of model B show that, for the same kick, a lower \(\alpha_{\text{CE}} \) results in fewer BMSPs. Other models also have the same tendency. This difference originates from the influence of \(\alpha_{\text{CE}} \) on the evolution of close binaries. A high \(\alpha_{\text{CE}} \) can prevent coalescence during the CE stage, significantly increasing the formation rate of BMSPs (Liu & Li 2006). In model E and F, we take a low kick for AIC channel, and find that more BMSPs are produced, whereas almost no eccentric BMSPs are formed. In addition, most models predict that the number of BMSPs with a RG, or SG companion (no centric BMSPs are formed). In our standard model, BMSPs with a He star companion usually has a narrow orbit, and high kick can prevent the coalescence during the CE stage, significantly increasing the formation rate of BMSPs (Liu & Li 2006). In Figure 1, we plot the distribution of BMSP-He binaries in the \(e - P_{\text{orb}} \) diagram for models A, B, and C under seed 1 and \(n_x = 100 \). It is seen that in model B most BMSP-He binaries are in tight orbits \((P_{\text{orb}} < 1 \text{d}) \) with eccentricities \(e > 0.4 \). For models A and C, the binary population seems to be distributed into two regions. Similar to model B, the first group have a short orbital period of \(\leq 1 \text{d} \) and a large eccentricities of \(\epsilon > 0.4 \). While contrary to the first group, the second group consists of BMSPs with a long orbital period of \(\geq 20 \text{d} \) and an eccentricities close to 0.

The distribution of the primordial binary systems forming BMSPs in the \(M_1 - M_2 \) (left) and \(M_1 - a \) (right) diagrams are shown in Figure 2 for models A, and E. One can see that the parameter space of the primordial binaries forming BMSP-He is wider than that of BMSP-MG, and the latter has the rigorous initial parameters. In addition, the initial parameter space of BMSP-He in model A is larger than that in model E, while the tendency is reversed for BMSP-MG. This difference results from the various effects of the kicks on BMSP-He and BMSP-MG. The former usually has a narrow orbit, and high kick can prevent the merger of two components. However, for BMSP-MG with a wide orbit high kick can lead to more binaries to be broken up during the AIC. The difference in the initial parameter space naturally account for the difference of birthrates. BMSPs with a long orbital period \((\gtrsim 20 \text{d}) \) have evolved from primordial binaries with \(M_1 \sim 8 - 11 \ M_\odot, M_2 \sim 2 - 4 \ M_\odot, \) and \(a \sim 100 - 1000 \ R_\odot. \)

4 DISCUSSION AND SUMMARY

The main goal of this work is to explore if the AIC channel can form a population of eccentric BMSPs. For a massive ONe WD that accretes material from its donor star, when its mass reaches Chandrasekhar limit, the process of electron capture may induce gravitational collapse of the WD rather than a type Ia supernova explosion. As a result of AIC, an MSP with a weak surface magnetic field, and low spin-down rate may be formed. Same as the formation of those NSs originated from the collapse of massive star, the nascent NSs via AIC may also receive a kick due to the asymmetric ejection of material or neutrinos from the newborn NSs. Our simulated results can be summarized as follows.

1. For a high kick velocity (150 km s\(^{-1}\)) during the AIC, there exist \(\sim 100 - 200 \) \((\alpha_{\text{CE}} = 3) \) or \(\sim 10 - 30 \) \((\alpha_{\text{CE}} = 1) \) eccentric BMSPs in the Galaxy, accompanied by a He star. However, almost all BMSPs are in circular orbits when the natal kick velocity \(\lesssim 100 \text{ km s}^{-1} \).

2. The ONe WD + He star channel play an important role in forming BMSPs. Except for model D, our predicted number and birthrate of BMSP-He are 1-2 orders of magnitude higher than those of BMSP-MG. In fact, this evolutionary channel has been noticed by Tutukov & Yungelson (1996). Recently, Wang et al. (2009a,b) investigated the evolutionary channel of CO WD + He star to type Ia supernovae, and found that this channel can interpret type Ia supernovae with short delay times.

3. It is difficult for the AIC channel to produce BMSPs with a MS, RG, or SG companion, the number of which is less than 10, and their eccentricities are near 0. If the companion of PSR J1903+0327 is really a MS star, the probability that it originated from the current binary can be ruled out. Both the recycled model and the AIC channel cannot produce this peculiar BMSP with a high eccentricity and a MS donor star, unless the natal NS had possessed a debris disk (Liu & Li 2007). We expect further detailed multi-waveband observations for PSR J1903+0327 to constrain the properties of its optical counterpart, and hence its formation channel.

4. All the models can produce \(\sim 10^5 \) isolated MSPs in the Galaxy, without invoking the evaporation of donor stars by the high energy radiation of the MSPs (Khuziakh et al. 1988; Ruderman et al. 1989a,b). In addition, AIC of WDs may form sub-millisecond pulsars in a quark star regime (Du et al. 2004), which can hardly be formed in the scenario of normal NSs. In particular, the AIC channel seems to be related to the discrepancy between the birthrates of MSPs and LMXBs, the solution of which may need additional mechanisms forming MSPs (Bailyn & Grindlay 1994; Lorimer 1995). Certainly, it is interesting to investigate further in this alternative model.

5. We note that the predicted numbers of various types of BMSPs have considerable uncertainties for different random number sequences. However, the birthrates and the numbers for BMSP-He in a given model show little or no variation. Since BMSP-He make a significant contribution to the total numbers of BMSPs, our results are reliable in this respect.

Perhaps the biggest uncertainty in this work is the kick distribution during the AIC. It strongly depend on the kick velocity if the AIC channel can form the eccentric BMSPs. It
Can eccentric binary MSPs form by AIC of WDs?

is usually assumed that the natal NS formed by AIC may receive a small kick (Podsiadlowski et al. 2004; Scheck et al. 2004; Dessart et al. 2008; Kitaura et al. 2009). Therefore, the possibility forming the eccentric BMSPs via the AIC channel can be ruled out. In addition, even if the natal NS receives a strong kick\(^4\) AIC channel can also not produce

\(^4\) The natal NS via the AIC would lose \(\sim 0.2M_\odot\) mass in the form of neutrinos (van Paradijs et al. 1993). If the ejection of neutrinos is highly asymmetric, a large kick may be produced. Alternatively, during AIC a large amount of mass ejection may occur as a result

Table 2. Predicted numbers and birthrates of various types of MSPs via the AIC channel for differential models in the Galaxy.

Model	item	BMSP-He	BMSP-MG	isolated MSP	BMSP \((e > 0.1)\)	BMSP \((e < 0.01)\)					
	seed,a\(_x\)	number	birthrate	number							
A	seed1,100	363	\(2.3 \times 10^{-4}\)	4	\(4.3 \times 10^{-6}\)	50	\(1.1 \times 10^{-6}\)	50	\(2.1 \times 10^{-4}\)	107	260
	seed2,100	368	\(2.4 \times 10^{-4}\)	3	\(4.2 \times 10^{-6}\)	50	\(4.0 \times 10^{-5}\)	107	215	256	
	seed1,120	305	\(2.4 \times 10^{-4}\)	50	\(4.5 \times 10^{-5}\)	50	\(2.0 \times 10^{-4}\)	184	170		
B	seed1,100	21	\(5.5 \times 10^{-5}\)	1	\(2.0 \times 10^{-6}\)	50	\(2.1 \times 10^{-5}\)	21	1		
	seed2,100	12	\(5.1 \times 10^{-5}\)	3	\(2.0 \times 10^{-6}\)	50	\(2.6 \times 10^{-5}\)	11	3		
	seed1,120	28	\(5.1 \times 10^{-5}\)	1	\(0.9 \times 10^{-6}\)	50	\(2.2 \times 10^{-5}\)	28	1		
C	seed1,100	301	\(2.1 \times 10^{-4}\)	3	\(4.6 \times 10^{-6}\)	50	\(4.0 \times 10^{-5}\)	50	\(1.8 \times 10^{-4}\)	14	290
	seed2,100	503	\(2.1 \times 10^{-4}\)	2	\(4.2 \times 10^{-6}\)	50	\(3.6 \times 10^{-5}\)	11	493		
	seed1,120	274	\(2.2 \times 10^{-4}\)	62	\(1.5 \times 10^{-6}\)	50	\(3.9 \times 10^{-5}\)	58	277		
D	seed1,100	4	\(4.6 \times 10^{-5}\)	2	\(2.0 \times 10^{-6}\)	50	\(2.0 \times 10^{-5}\)	4	2		
	seed2,100	61	\(4.7 \times 10^{-5}\)	2	\(4.1 \times 10^{-6}\)	50	\(2.4 \times 10^{-5}\)	8	54		
	seed1,120	7	\(4.2 \times 10^{-5}\)	1	\(2.0 \times 10^{-6}\)	50	\(2.2 \times 10^{-5}\)	6	2		
E	seed1,100	553	\(1.6 \times 10^{-4}\)	4	\(5.3 \times 10^{-6}\)	50	\(3.6 \times 10^{-5}\)	<1	<1	556	
	seed2,100	610	\(1.6 \times 10^{-4}\)	4	\(6.6 \times 10^{-6}\)	50	\(3.4 \times 10^{-5}\)	<1	<1	612	
	seed1,120	210	\(1.7 \times 10^{-4}\)	45	\(1.7 \times 10^{-6}\)	50	\(3.4 \times 10^{-5}\)	<1	<1	224	
F	seed1,100	40	\(3.0 \times 10^{-5}\)	1	\(1.9 \times 10^{-6}\)	50	\(2.2 \times 10^{-5}\)	<1	<1	40	
	seed2,100	320	\(3.0 \times 10^{-5}\)	4	\(4.2 \times 10^{-6}\)	50	\(2.4 \times 10^{-5}\)	<1	<1	322	
	seed1,120	52	\(3.1 \times 10^{-5}\)	4	\(2.4 \times 10^{-6}\)	50	\(2.2 \times 10^{-5}\)	<1	<1	55	

Figure 1. Orbital period and eccentricity probability distribution of BMSPs formed via the AIC channel for models A, B, and C, from left to right, respectively.
Figure 2. Distribution of primordial binary systems forming BMSPs in the $M_1 - M_2$ and $M_1 - a$ diagrams for models A (top panels), and E (bottom panels). The open squares, crosses, and solid circles correspond to the progenitors of BMSP-MG, BMSP-He, and BMSPs with a long orbital period, respectively.
Can eccentric binary MSPs form by AIC of WDs?

the eccentric BMSPs, with an orbital period of $\gtrsim 10$ days, and their companions are He stars. Based on the results by binary population synthesis, we demonstrate that the observed orbital parameters of PSR J1903+0327 cannot be produced by the AIC channel.

ACKNOWLEDGMENTS

We are grateful to the referee, Jarrod Hurley, for his constructive suggestion improving this manuscript. This work was partly supported by the National Science Foundation of China (under grant number 10873008, 10873011, 10973002, and 10935001), the National Basic Research Program of China (973 Program 2009CB824800), Program for Science & Technology Innovation Talents in Universities of Henan Province, China Postdoctoral Foundation funded project, and Scientific Research Foundation, Huazhong Agricultural University, China.

REFERENCES

Alpar M. A., Cheng A. F., Ruderman M. A., Shaham J., 1982, Nat, 300, 728
Bailyn C. D., Grindlay J. E., 1990, ApJ, 353, 159
Belczynski K., Lorimer D. R., Ridley J. P., Curran S. J., 2010, MNRAS, in press [arXiv:0907.3486]
Bhattacharya D., van den Heuvel E. P. J., 1991, Phys. Rep., 203, 1
Bhattacharya D., Wijers R. A. M. J., Hartman J. W., Verbunt F., 1992, A&A, 254, 198
Burrows A., Hayes J., 1996, Phys. Rev. Lett., 76, 352
Canal R., Isern J., Labay J., 1980, ApJ, 241, L33
Champion D. J., et al., 2008, Sci, 320, 1309
Cumming A., Zwiebel E., Bildsten, L., 2001, ApJ, 557, 958
Cote J., Pylyser E. H. P., 1989, A&A, 218, 131
Dai H. L., Liu X. W., Li X. D., 2006, ApJ, 653, 1410
Davies R. E., Pringle J. E., 1981, MNRAS, 196, 209
Dessart L., Burrows A., Livine E., Ott C. D., 2006, ApJ, 644, 1043
Du Y. J., Xu R. X., Qiao G. J., Han J. L., 2009, MNRAS, 399, 1587
Ferrario L., Wickramasinghe D. 2007, MNRAS, 375, 1009
Freire Paulo C. C., 2009, Neutron Stars and Gamma Ray Bursts: Recent Developments and Future Directions [arXiv:0907.3219]
Harrison E. R., Tademaru E., 1975, ApJ, 201, 447
Hobbs G., Lorimer D. R., Lyne A. G., Kramer M., 2005, MNRAS, 360, 974
Hurley J. R., Pols O. R., Tout C. A., 2000, MNRAS, 315, 543
Hurley J. R., Tout C. A., Pols, O. R. 2002, MNRAS, 329, 897
Hurley J. R., Tout C. A., Wickramasinghe D. T., Ferrario L., Kiel P. D., 2010, MNRAS, 402, 1437
Illarionov A. F., Sunyaev R. A., 1975, A&A, 39, 185
Isern J., Labay J., Hernanz M., Canal R. 1983, ApJ, 273, 320
Ivanova N., Taam R. E., 2004, ApJ, 601, 1058
Kitaura F. S., Janka H.-Th., Hillebrandt W., 2006, A&A, 450, 345
Kluźniak W., Ruderman M., Shaham J., Tavani M., 1988, Nat, 334, 225
Kroupa P., Tout C. A., Gilmore G., 1993, MNRAS, 262, 545
Kulkarni S., Narayan R., 1988, ApJ, 335, 755
Lai D., Goldreich P., 2000, ApJ, 535, 402
Lai D., Chernoff D. F., Cordes J. M., 2001, ApJ, 549, 1111
Liu X. -W., Li X. -D., 2006, A&A, 449, 135
Liu X. -W., Li X. -D., 2009, ApJ, 692, 723
Lorimer D. R., 1995, MNRAS, 274, 300
Lorimer D. R., 2008, Living Reviews in Relativity, 11, 8
Manchester R. N., 2004, Sci, 304, 542
Michel F. C., 1987, Nat, 329, 310
Nomoto K., Kondo Y., 1991, ApJ, 367, L19
Pfalz E., Rappaport S., Podsiałowski P., 2003, ApJ, 597, 1036
Podsiadlowski P., Langer N., Poelarends A. J. T., Rappaport S., Heger A., Pfahl E., 2004, ApJ, 612, 1044
Qian Y.-Z., Wasserburg G. J., 2003, ApJ, 588, 1099
Ruderman M., Shaham J., Tavani M., 1989, ApJ, 336, 507
Ruderman M., Shaham J., Tavani M., Eichler D., 1989, ApJ, 343, 292
Scheck L., Plewa T., Janka H.-Th., Kifonidis K., Muller E., 2004, Phys. Rev. Lett., 92, 1103
Stairs I. H., 2004, Sci, 304, 547
Taam R. E., van den Heuvel E. P. J., 1986, ApJ, 305, 235
Tauris T. M., van den Heuvel E. P. J., 2006, in Compact stellar X-ray sources. ed. by W. Lewin & M. van der Klis (Cambridge: Cambridge Univ. Press), 623
Tutukov A. V., Yungelson L. R., 1996, MNRAS, 280, 1035
Van Paradijs J., van den Heuvel E. P. J., Kouveliotou C., et al., 1997, A&A, 317, L9
Wang B., Meng X., Chen X., Han Z., 2009a, MNRAS, 395, 847
Wang B., Chen X., Meng X., Han Z., 2009b, ApJ, 701, 1540
Xu, X.-J., Li, X.-D. 2009, A&A, 495, 243

This paper has been typeset from a TeX/LaTeX file prepared by the author.