FACTORIZING GROUPS INTO DENSE SUBSETS

IGOR PROTASOV, SERHII SLOBODIANIUK

ABSTRACT. Let G be a group of cardinality $\kappa > \aleph_0$ endowed with a topology \mathcal{T} such that $|U| = \kappa$ for every non-empty $U \in \mathcal{T}$ and \mathcal{T} has a base of cardinality κ. We prove that G could be factorized $G = AB$ (i.e. each $g \in G$ has unique representation $g = ab$, $a \in A$, $b \in B$) into dense subsets A, B, $|A| = |B| = \kappa$. We do not know if this statement holds for $\kappa = \aleph_0$ even if G is a topological group.

1. Introduction

For a cardinal κ, a topological space X is called κ-resolvable if X can be partitioned into κ dense subsets [1]. In the case $\kappa = 2$, these spaces were defined by Hewitt [4] as resolvable spaces. If X is not κ-resolvable then X is called κ-irresolvable.

In topological groups, the intensive study of resolvability was initiated by the following remarkable theorem of Comfort and van Mill [2]: every countable non-discrete Abelian topological group G with finite subgroup $B(G)$ of elements of order 2 is 2-resolvable. In fact [11], every infinite Abelian group G with finite $B(G)$ can be partitioned into ω subsets dense in every non-discrete group topology on G. On the other hand, under Martin’s Axiom, the countable Boolean group G, $G = B(G)$ admits maximal (hence, 2-irresolvable) group topology [5]. Every non-discrete ω-irresolvable topological group G contains an open countable Boolean subgroup provided that G is Abelian [6] or countable [10], but the existence of non-discrete ω-irresolvable group topology on the countable Boolean group implies that there is a P-point in ω^* [9]. Thus, in some models of ZFC (see [8]), every non-discrete Abelian or countable topological group is ω-resolvable. For systematic exposition of resolvability in topological and left topological group see [3 Chapter 13].

Recently, a new kind resolvability of groups was introduced in [7]. A group G provided with a topology \mathcal{T} is called box κ-resolvable if there is a factorization $G = AB$ such that $|A| = \kappa$ and each subset ab is dense in \mathcal{T}. If G is left topological (i.e. each left shift $x \mapsto gx$, $g \in G$ is continuous) then this is equivalent to B is dense in \mathcal{T}. We recall that a product AB of subsets of a group G is factorization if $G = AB$ and the subsets $\{ab : a \in A\}$ are pairwise disjoint (equivalently, each $g \in G$ has the unique representation $g = ab$, $a \in A$, $b \in B$). For factorizations of groups into subsets see [9]. By [7 Theorem 1], if a topological group G contains an injective convergent sequence then G is box ω-resolvable. This note is to find some conditions under which an infinite group G of cardinality κ provided with the topology could be factorized into two dense subsets of cardinality κ. To this goal, we propose a new method of factorization based on filtrations of groups.

2. Theorem and Question

We recall that a weight $w(X)$ of a topological space X is the minimal cardinality of bases of the topology X.

Theorem. Let G be an infinite group of cardinality κ, $\kappa > \aleph_0$, endowed with a topology \mathcal{T} such that $w(G, \mathcal{T}) \leq \kappa$ and $|U| = \kappa$ for each non-empty $U \in \mathcal{T}$. Then there is a factorization $G = AB$ into dense subsets A, B, $|A| = |B| = \kappa$.

We do not know whether Theorem is true for $\kappa = \aleph_0$ even if G is a topological group.

2010 Mathematics Subject Classification. 20A05, 22A05.

Key words and phrases. factorization, filtration, resolvability, box resolvability.
Question. Let \(G \) be a non-discrete countable Hausdorff left topological group \(G \) of countable weight. Can \(G \) be factorized \(G = AB \) into two countable dense subsets?

In Comments, we give a positive answer in the following cases: each finitely generated subgroup of \(G \) is nowhere dense, the set \(\{ x^2 : x \in U \} \) is infinite for each non-empty open subset of \(G \), \(G \) is Abelian.

3. Proof

We begin with some general constructions of factorizations of a group \(G \) via filtrations of \(G \).

Let \(G \) be a group with the identity \(e \) and let \(\kappa \) be a cardinal. A family \(\{ G_\alpha : \alpha < \kappa \} \) of subgroups of \(G \) is called a filtration if

1. \(G_0 = \{ e \}, G = \bigcup_{\alpha < \kappa} G_\alpha; \)
2. \(G_\alpha \subset G_\beta \) for all \(\alpha < \beta; \)
3. \(G_\beta = \bigcup_{\alpha < \beta} G_\alpha \) for every limit ordinal \(\beta. \)

Every ordinal \(\alpha < \kappa \) has the unique representation \(\alpha = \gamma(\alpha) + n(\alpha) \), where \(\gamma(\alpha) \) is either limit ordinal or 0 and \(n(\alpha) \in \omega, \omega = \{ 0, 1, \ldots \} \). We partition \(\kappa \) into two subsets

\[E(\kappa) = \{ \alpha < \kappa : n(\alpha) \text{ is even} \} \]
\[O(\kappa) = \{ \alpha < \kappa : n(\alpha) \text{ is odd} \}. \]

For each \(\alpha \in E(\kappa) \), we choose some system \(L_\alpha \) of representatives of left cosets of \(G_{\alpha + 1} \setminus G_\alpha \) by \(G_\alpha \) so \(G_{\alpha + 1} \setminus G_\alpha = L_\alpha G_\alpha \). For each \(\alpha \in O(\kappa) \), we choose some system \(R_\alpha \) of representatives of right cosets of \(G_{\alpha + 1} \setminus G_\alpha \) by \(G_\alpha \) so \(G_{\alpha + 1} \setminus G_\alpha = G_\alpha R_\alpha \).

We take an arbitrary element \(g \in G \setminus \{ e \} \) and choose the smallest subgroup \(G_\gamma \) such that \(g \in G_\gamma \). By (3), \(\gamma = \alpha(g) + 1 \) so \(g \in G_{\alpha(g)+1} \setminus G_{\alpha(g)} \). If \(\alpha(g) \in E(\kappa) \) then we choose \(x_0(g) \in L_{\alpha(g)} \) and \(y_0(g) \in G_{\alpha(g)} \) such that \(g = x_0(g)y_0(g) \). If \(\alpha(g) \in O(\kappa) \) then we choose \(y_0(g) \in R_{\alpha(g)} \) and \(y_0(g) \in G_{\alpha(g)} \) such that \(g = y_0(g)g_0 \). If \(g_0 = e \), we make a stop. Otherwise we repeat the argument for \(g_0 \) and so on. Since the set of ordinals \(< \kappa \) is well ordered, after finite number of steps we get the representation

\[g = x_0(g)x_1(g) \ldots x_{\lambda(g)}(g)y_{\rho(g)} \ldots y_1(g)y_0(g), \]

\[x_i \in L_{\alpha_i(g)}, \alpha_0(g) > \alpha_1(g) > \cdots > \alpha_{\lambda(g)}(g); \]
\[y_i \in R_{\beta_i(g)}, \beta_0(g) > \beta_1(g) > \cdots > \beta_{\rho(g)}(g). \]

If either \(\{ \alpha_0(g), \ldots, \alpha_{\lambda(g)}(g) \} = \emptyset \) or \(\{ \beta_0(g), \ldots, \beta_{\rho(g)}(g) \} = \emptyset \) then we write \(g = y_{\rho(g)} \ldots y_1(g)y_0(g) \) or \(g = x_0(g)x_1(g) \ldots x_{\lambda(g)}(g) \). Thus, \(G = AB \) where \(A \) is the set of all elements of the form \(x_0(g)x_1(g) \ldots x_{\lambda(g)}(g) \) and \(B \) is the set of all elements of the form \(y_{\rho(g)} \ldots y_1(g)y_0(g) \). To show that the product \(AB \) is a factorization of \(G \), we assume that, besides (4), \(g \) has a representation

\[g = z_0z_1 \ldots z_{\lambda_\rho}t_\rho \ldots t_1t_0. \]

If \(g \in G_{\alpha+1} \setminus G_\alpha \) and \(\alpha \in O(\kappa) \) then \(z_0z_1 \ldots z_{\lambda_\rho}t_\rho \ldots t_1t_0 \in G_\alpha \) so \(t_0 = y_0(g) \). If \(\alpha \in E(\kappa) \) then \(z_1 \ldots z_{\lambda_\rho}t_\rho \ldots t_1t_0 \in G_\alpha \) so \(z_0 = x_0(g) \). We replace \(g \) to \(gt_0^{-1} \) or to \(t_0^{-1}g \) respectively and repeat the same arguments.

Now we are ready to prove Theorem. Let \(\{ U_\alpha : \alpha < \kappa \} \) be a \(\kappa \)-sequence of non-empty open sets such that each non-empty \(U \in \mathcal{T} \) contains some \(U_\alpha \). Since \(|U_\alpha| = \kappa \) for every \(\alpha < \kappa \), we can construct inductively a filtration \(\{ G_\alpha : \alpha < \kappa \}, |G_\alpha| = \max\{ |U_\alpha|, |\alpha| \} \) such that, for each \(\alpha \in E(\kappa) \) (resp. \(\alpha \in O(\kappa) \)) there is a system \(L_\alpha \) (resp. \(R_\alpha \)) of representatives of left (resp. right) cosets of \(G_{\alpha+1} \setminus G_\alpha \) by \(G_\alpha \) such that \(L_\alpha \cap U_\gamma \neq \emptyset \) (resp. \(R_\alpha \cap U_\gamma \neq \emptyset \) for each \(\gamma \leq \alpha \). Then the subsets \(A, B \) of above factorization of \(G \) are dense in \(\mathcal{T} \) because \(L_\alpha \subset A, R_\beta \subset B \) for each \(\alpha \in E(\kappa), \beta \in O(\kappa) \).
4. Comments

1. Analyzing the proof, we see that Theorem holds under weaker condition: G has a family F of subsets such that $|F| = \kappa$ for each $F \in F$ and, for every non-empty $U \in T$, there is $F \in F$ such that $F \subseteq U$.

If $\kappa = \aleph_0$ but each finitely generating subgroup of G is nowhere dense, we can choose a family $\{G_n : n \in \omega\}$ such that corresponding A, B are dense. Thus, we get a positive answer to Question if each finitely generated subgroup H of G is nowhere dense (equivalently the closure of H is not open).

2. Let G be a group and A, B be subsets of G. We say that the product AB is a partial factorization if the subsets $\{ab : a \in A\}$ are pairwise disjoint (equivalently, $\{Ab : b \in B\}$ are pairwise disjoint).

We assume that AB is a partial factorization of G into finite subsets and X is an infinite subset of G. Then the following statements are easily verified

(5) there is $x \in X$ such that $x \notin B$ and $A(B \cup \{x\})$ is a partial factorization;

(6) if the set $\{x^2 : x \in X\}$ is infinite then there is $x \in X$ such that $(A \cup \{x, x^{-1}\})B$ is a partial factorization.

3. Let G be a non-discrete Hausdorff topological group, AB be a partial factorization of G into finite subsets, $A = A^{-1}$, $e \in A \cap B$ and $g \notin B$. Then

(7) there is a neighbourhood V of e such that, for $U = V \setminus \{e\}$ and for any $x \in U$, the product $(A \cup \{x, x^{-1}\})(B \cup \{x^{-1}g\})$ is a partial factorization (so $g \in (A \cup \{x, x^{-1}\})(B \cup \{x^{-1}g\})$).

It suffices to choose V so that $V = V^{-1}$ and $AUg \cap AB = \emptyset$, $UB \cap (AB \cup AUg) = \emptyset$, $U^2g \cap AB = \emptyset$, $U \cap A = \emptyset$. We use $A = A^{-1}$ only in $UB \cap AUg = \emptyset$.

4. Let G be countable non-discrete Hausdorff topological group such that $\{x^2 : x \in U\}$ is infinite for every non-empty open subset U of G. We enumerate $G = \{g_n : n \in \omega\}$, $g_0 = e$ and choose a countable base $\{U_n : n \in \omega\}$ for non-empty open sets. We put $A_0 = \{e\}$, $B_0 = \{e\}$ and use (5), (6), (7) to choose inductively two sequences $(A_n)_{n \in \omega}$ and $(B_n)_{n \in \omega}$ of finite subsets of G such that for every $n \in \omega$, $A_n \subseteq A_{n+1}$, $B_n \subseteq B_{n+1}$, $A_n = A_n^{-1}$, A_nB_n is a partial factorization, $A_n \cap B_n \neq \emptyset$, $B_n \cap U_n \neq \emptyset$. We put $A = \bigcup_{n \in \omega} A_n$, $B = \bigcup_{n \in \omega} B_n$ and note that AB is a factorization of G into dense subsets.

5. Let G be a countable Abelian non-discrete Hausdorff topological group of countable weight. We suppose that G contains a non-discrete finitely generated subgroup H. Given any non-empty open subset U of G, we choose a neighborhood X of e in H and $g \in S$ such that $Xg \subseteq U$. Since H is finitely generated, the set $\{x^2 : x \in X\}$ is infinite so we can apply comment 4. If each finitely generated subgroup of G is discrete then, to answer the Question we use comment 1.

6. Let G be a countable group endowed with a topology T of countable weight such that U is infinite for every $U \in T$. Applying the inductive construction from comment 5 to A_nB_n and $B_n^{-1}A_n^{-1}$, we get a partial factorization of G into two dense subsets.

7. Let G be a group satisfying the assumption of Theorem and let γ be an infinite cardinal, $\gamma < \kappa$. We take a subgroup A of cardinality γ and choose inductively a dense set B of representatives of right cosets of G by A. Then we get a factorization $G = AB$. In particular, if G is left topological then G is box γ-resolvable.

References

[1] J. Ceder, On maximally resolvable spaces, Fund. Math. 55 (1964) 87-93.
[2] W. Comfort, J. van Mill, Group with only resolvable group topologies, Proc. Amer. Math. Soc. 120(1993) 687-696.
[3] M. Filali, I. Protasov, Ultrafilters and Topologies on Groups, Math. Stud. Monogr. Ser., vol 13, VNTL, Lviv, 2010.
[4] E. Hewitt, A problem of set-theoretic topology, Duke Math. J. 10 (1943) 309-333.
[5] V. Malykhin, Extremally disconnected and similar groups, Soviet Math. Dokl. 16 (1975) 21-25; translation from Dokl. Akad. Nauk SSSR 220 (1975) 27-30.
[6] I. Protasov, Irresolvable topologies on groups, Ukr. Math. J. 50 (1998) 1879-1887; translation from Ukr. Math. Zh. 50 (1998) 1646-1655.
[7] I. Protasov, Box resolvability, preprint (http://arxiv.org/abs/1511.01046).
[8] S. Shelah, Proper Forcing, Lecture Notes Math, vol. 940, Springer-Verlag, 1982.
[9] S. Szabo, A. Sanders, Factoring Groups into Subsets, CRC Press, 2009.
[10] E. Zelenyuk, On partitions of groups into dense subsets, Topology Appl. 126 (2000) 327-339.
[11] E. Zelenyuk, Partitions and sums with inverse in Abelian groups, J. Comb. Theory, Ser. A 115 (2008), 331-339

DEPARTMENT OF CYBERNETICS, KYIV UNIVERSITY, VOLODYMYRSKA 64, 01033, KYIV, UKRAINE
E-mail address: i.v.protasov@gmail.com;

DEPARTMENT OF MECHANICS AND MATHEMATICS, KYIV UNIVERSITY, VOLODYMYRSKA 64, 01033, KYIV, UKRAINE
E-mail address: slobodianiuk@yandex.ru