Prothrombotic State, Cardiovascular, and Metabolic Syndrome Risk Factors in Prepubertal Children Born Large for Gestational Age

ELENI N. EVAGELIDOU, MD1
VASILEIOS I. GIAFROS, MD1
ANNA S. CHALLA, PHD2
VASILEIOS K. CHOLEVAS, PHD2
GEORGIOS A. VARTHOMMATOS, PHD3
KATERINI C. SIOMOU, MD4
NIKOLAOS I. KOLATIS, MD3
ELENI T. BAIKAKTARI, PHD2
STYLIANI K. ANDRONIKOU, MD1

OBJECTIVE — To evaluate metabolic syndrome and cardiovascular disease risk factors in prepubertal children born large for gestational age (LGA) to nondiabetic, nonobese mothers.

RESEARCH DESIGN AND METHODS — At 6–7 years of age, the comparison of various factors was made between 31 LGA and 34 appropriate-for-gestational-age (AGA) children: fibrinogen, antithrombin III, protein C and S, fasting insulin, glucose, homeostasis assessment model of insulin resistance (HOMA-IR) index, adiponectin, leptin, visfatin, IGF-1, IGF-binding protein (IGFBP)-1, IGFBP-3, lipids, and the genetic factors V Leiden G1691A mutation, prothrombin 20210A/G polymorphism, and mutation in the enzyme 5,10-methylene tetrahydrofolate-reductase (MTHFR-C677T).

RESULTS — LGA children had higher levels of leptin (P < 0.001), fasting insulin (P < 0.001), and HOMA-IR (P < 0.01), but lower IGFBP-3 (P = 0.0001), fibrinogen (P = 0.0001), and lipoprotein(a) (P < 0.001) than AGA children. Significantly more LGA children were homozygous for the MTHFR-C677T mutation (P = 0.0016).

CONCLUSIONS — Being born LGA to nondiabetic, nonobese mothers is associated with diverse effects on cardiometabolic risk factors at prepuberty.

RESEARCH DESIGN AND METHODS — The study group consisted of 64 singleton Caucasian children, born at term: 31 (10 female, 21 male) were LGA (birth weight >95th percentile for gestational age), and 33 (12 female, 21 male) appropriate for gestational age (AGA) (birth weight 10th–90th percentile). No mother to standard methods (5). Lipids and IF levels were determined with functional methods and chromatometric assays. Genomic DNA was isolated from the leukocytes of peripheral whole-blood samples collected in EDTA-anticoagulant according to standard methods (5). Lipids and IF levels were determined with techniques previously described (1).

Data were analyzed by ANOVA and multiple regression analysis using the StatView software package of SAS Institute (Cary, NC).

RESULTS — The anthropometric and laboratory findings are depicted in Table 1. The significant differences in leptin, IF, and HOMA-IR between LGA and AGA children persisted after controlling for age, sex, and BMI.

Homoyzogosity for the MTHFR-C677T mutation was detected in 12 LGA and 2 AGA children (P = 0.002) and heterozogosity in 19 LGA and 8 AGA children (P = 0.003). Three LGA and none of the AGA children were heterozogous.
Table 1—Characteristics, anthropometric indices, and indices of the prothrombotic state and insulin resistance, components of the IGFs-axis, lipid profile, and adipocytokines (means ± SD) at prepuberty of children born LGA (birth weight ≥95th percentile) or AGA (birth weight 10th–90th percentile)

Characteristics and parameters	LGA group	AGA group	P value
n	31	33	—
Age (years)	6.5 ± 0.5	6.4 ± 0.6	ns
Body weight (kg)	32 ± 8	24 ± 6	<0.01
Body height (cm)	126 ± 8	119 ± 9	0.08
Waist circumference z score	0.80 ± 0.98	0.06 ± 1.3	0.05
BMI z score	0.80 ± 0.80	−0.20 ± 0.8	<0.001
Systolic BP z score	0.49 ± 0.41	0.41 ± 0.43	ns
Diastolic BP z score	0.71 ± 0.35	0.51 ± 0.5	ns
Prothrombin time (s)	13.29 ± 0.53	13.2 ± 0.52	ns
APTT (s)	37.04 ± 22	38.64 ± 24	ns
Fibrinogen (µmol/l)	7.67 ± 0.9	10.05 ± 2.3	≤0.0001
Antithrombin III (%)	104 ± 50	107 ± 69	ns
Protein C (%)	99 ± 11	97 ± 18	ns
Protein S (%)	69 ± 24	70 ± 19	ns
Fasting glucose (mmol/l)	5.1 ± 0.5	4.9 ± 0.6	ns
Fasting insulin (pmol/l)	48.6 ± 20.1	27 ± 24.3	<0.01
FGIR	0.11 ± 0.05	0.25 ± 0.11	≤0.0001
HOMA-IR	1.5 ± 0.6	0.8 ± 0.7	<0.01
IFG-1 (µg/l)	189 ± 115	140 ± 84	0.06
IGFBP-1 (µg/l)	84 ± 33	88 ± 31	ns
IGFBP-3 (mg/l)	2.6 ± 1.1	3.9 ± 0.8	≤0.0001
t cholesterol (mmol/l)	4.53 ± 0.6	4.45 ± 0.6	ns
HDL (mmol/l)	1.41 ± 0.2	1.45 ± 0.2	ns
Triglycerides (mmol/l)	0.65 ± 0.1	0.71 ± 0.2	ns
Lipoprotein(a) (µmol/l)	0.09 ± 0.1	0.3 ± 0.2	<0.001
Adiponectin (mg/l)	16.3 ± 6	14.7 ± 5	ns
Leptin (µg/l)	52 ± 23	31 ± 19	≤0.01
Visfatin (µg/l)	13.3 ± 6	13 ± 5	ns

APTT, activated partial thromboplastin time; FGIR, fasting glucose-to-insulin ratio; ns, not significant (P > 0.05).

eérozygous for the PT G20210A mutation (P = 0.06). One LGA but no AGA child was heterozygous for the Factor V Leiden (FVL) G1691A mutation. No child was homozygous for the prothrombin (PT) G20210A mutation or FVL polymorphism.

Correlation studies

On pooled data for LGA and AGA children, multiple regression analysis revealed negative correlation between birth weight z score and fibrinogen level (t = −3.8, P < 0.01), Lp(a) level (t = −3.4, P < 0.01), and IGFBP-3 level (t = −2.5, P = 0.01), and positive correlation between birth weight z score and IGF level (t = 2.8, P = 0.01) and HOMA-IR (t = 2.9, P < 0.001), independent of BMI or waist circumference z score.

Incidence of components of the MetS and other CVD risk factors

Of the LGA group, 9.7% fulfilled the criteria for MetS (≥3 components: waist circumference ≥90th percentile for age and sex for Greek children; BP ≥95th percentile for age, sex, and height; G_F >100 mg/dl; triglycerides >95th percentile; and HDL <5th percentile) (6,7), while no AGA child presented three components. In the AGA group, 54.5% of the children were completely free of components of MetS or risk factors for CVD (BP ≥90th percentile, I_F >15 µU/ml, fasting glucose-to-insulin ratio <7, HOMA-IR >2.83, or BMI >85th percentile) (6,8), while only 22.6% of the LGA children were free of components or risk factors (P = 0.008).

CONCLUSIONS— Children born LGA at term to nondiabetic, nonobese mothers are at significant risk of developing MetS. Diverse effects on CVD risk factors were observed in this group.

LGA children had significantly higher indexes of insulin resistance (I_F and HOMA-IR), independent of BMI or waist circumference z scores. The higher incidence of obesity, such as BMI and waist circumference found in this group may be attributed to earlier adiposity rebound (4,9).

Diverse effects on CVD risk factors were observed in this group. They also had a higher trend toward higher IGF-1 levels. This may indicate a possible protective mechanism against development of insulin resistance (13).

In summary, diverse effects on CVD risk factors were observed in term LGA children at prepuberty. They had higher insulin resistance indexes and anthropometric obesity markers, but lower fibrinogen and Lp(a) levels than matched AGA children. They also had a higher prevalence of the MTHFR-C677T mutation. LGA offspring of nondiabetic, nonobese mothers warrant careful monitoring for evidence of MetS precursors throughout childhood and beyond.
Acknowledgments—The authors report no involvements that might raise the question of bias in the work reported or in the conclusions, implications, or opinions stated. The authors declare that the results presented in this article have not been published previously in whole or part, except in abstract format.

E.N.E. wrote the manuscript and researched the data. V.I.G. reviewed/edited the manuscript, contributed to the discussion, and researched the data. A.S.C. contributed to the discussion and researched the data. V.K.C., G.A.V., E.C.S., N.I.K., and E.T.B. researched the data. S.K.A. reviewed/edited the manuscript.

No potential conflicts of interest relevant to this article were reported.

The authors thank Aphrodite Papaghianni, Pediatric Research Laboratory, University of Ioannina, for technical assistance.

References
1. Evagelidou EN, Kiortsis DN, Batraktari ET, Giapros VI, Cholevas VK, Tzallas CS, Andronikou SK. Lipid profile, glucose homeostasis, blood pressure, and obesity-anthropometric markers in macrosomic offspring of nondiabetic mothers. Diabetes Care 2006;29:1197–1201
2. Boney CM, Verma A, Tucker R, Vohr BR. Metabolic syndrome in childhood: association with birth weight, maternal obesity, and gestational diabetes mellitus. Pediatrics 2005;115:290–296
3. Bueno AC, Espiñeira AR, Fernandes-Rosa FL, de Souza RM, de Castro M, Moreira AC, Bettini H, Barbieri MA, Antonini SR. Adiponectin: serum levels, promoter polymorphism, and associations with birth size and cardiometabolic outcome in young adults born large for gestational age. Eur J Endocrinol 2010;162:53–60
4. Hediger ML, Overpeck MD, McGlynn A, Kuczynska RJ, Maurer KR, Davis WW. Growth and fatness at three to six years of age of children born small- or large-for-gestational age. Pediatrics 1999;104:33–39
5. Frosst P, Blom HJ, Milos R, Goyette P, Sheppard CA, Matthews RG, Boers GJ, den Heijer M, Kluijtmans LA, van den Heuvel LP. A candidate genetic risk factor for vascular disease: a common mutation in methylenetetrahydrofolate reductase. Nat Genet 1995;10:111–113
6. Weiss R, Dziura J, Burgert TS, Tamborlane WV, Taksali SE, Yeckel CW, Allen K, Lopes M, Savoye M, Morrison J, Sherwin RS, Caprio S. Obesity and the metabolic syndrome in children and adolescents. N Engl J Med 2004;350:2362–2374
7. Zimmet P, Alberti KG, Kaufman F, Tajima N, Silink M, Arslanian A, Wong G, Bennett P, Shaw J, Caprio S. IDF Consensus Group. The metabolic syndrome in children and adolescents: an IDF consensus report. Pediatr Diabetes 2007;8:299–306
8. Tresaco B, Bueno G, Pineda I, Moreno LA, Garagorry JM, Bueno M. Homeostatic model assessment (HOMA) index cut-off values to identify the metabolic syndrome in children. J Physiol Biochem 2005;61:381–388
9. Wang X, Liang L, Junfen FU, Lizhong DU. Metabolic syndrome in obese children born large for gestational age. Indian J Pediatr 2007;74:561–565
10. Tuya C, Mutch WJ, Broom I, McNeill G. The effect of birth weight on clottable and intact fibrinogen levels: a twin study. J Thromb Haemost 2005;3:1143–1148
11. Ijzerman RG, Stehouwer CD, de Geus EJ, Kluijtmans LA, van den Heuvel LP. The association between birth weight and plasma fibrinogen levels is abolished after the elimination of genetic influences. J Thromb Haemost 2003;1:239–1242
12. Williams MS, Bray PF. Genetics of arterial prothrombotic risk states. Exp Biol Med 2001;226:409–419
13. Jensen RB, Chellakooty M, Vielwerth S, Vaag A, Larsen T, Greisen G, Skakkebaek NE, Scheike T, Juul A. Intrauterine growth retardation and consequences for endocrine and cardiovascular diseases in adult life: does insulin-like growth factor-I play a role? Horm Res 2003;60(Suppl. 3):136–148