Severe COVID-19 after liver transplantation, surviving the pitfalls of learning on-the-go: Three case reports

Felipe Alconchel, Pedro A Cascales-Campos, Jose A Pons, María Martínez, Josefa Valiente-Campos, Urszula Gajownik, María L Ortiz, Laura Martínez-Alarcón, Pascual Parrilla, Ricardo Robles, Francisco Sánchez-Bueno, Santiago Moreno, Pablo Ramírez

Abstract

BACKGROUND
The novel coronavirus 2019 (COVID-19) pandemic has dramatically transformed the care of the liver transplant patient. In patients who are immunosuppressed and with multiple comorbidities, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection has been associated with increased severity and mortality. The main objective of this report is to communicate our experience in the therapeutic management of SARS-CoV-2 infection in 3 liver transplant patients. Secondly, we stress the management and investigation of the contagious spreading into a liver transplant ward.

CASE SUMMARY
Campos PA, Pons JA, Martinez M, Valiente-Campos J, Gajownik U, Ortiz ML, Parrilla P, Robles R, Sánchez-Bueno F, Moreno S and Ramírez approved of the final version to be published.

Informed consent statement: Informed written consent was obtained from the patient for publication of this report and any accompanying images.

Conflict-of-interest statement: The authors declare that they have no conflict of interest.

CARE Checklist (2016) statement: The authors have read the CARE Checklist (2016), and the manuscript was prepared and revised according to the CARE Checklist (2016).

Open-Access: This article is an open-access article that was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution NonCommercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works upon this work non-commercially, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/License/s/by-nc/4.0/

Manuscript source: Invited manuscript

Received: July 29, 2020
Peer-review started: July 29, 2020
First decision: September 12, 2020
Revised: September 12, 2020
Accepted: September 22, 2020
Article in press: September 22, 2020
Published online: October 27, 2020

P-Reviewer: Pandey CK
S-Editor: Zhang L
L-Editor: A
P-Editor: Li X

INTRODUCTION

After the first cases of coronavirus-2 pneumonia (SARS-CoV-2) were detected in early December 2019 in Wuhan (Hubei, China)[2,3], a pandemic has overtaken hundreds of countries[4]. The main active sources are currently located in Europe and the United States[5]. This medical emergency has tested global healthcare systems, which have established strategic changes and protocols to prioritize healthcare and avoid overloading. The frequency of liver transplantation operations has been seriously affected. Transplant programs depend on the availability of donors, the vast majority of whom are deceased, and medical personnel normally oversee these programs in intensive care units, but these facilities are currently overcrowded. The result of these conditions has been a dramatic decrease in activity in all transplant groups around the world. In Spain, the world leader in organ donation, surgeons had access to the livers of about 100 deceased donors per week during the 3-month period before the detection of the first case of novel coronavirus (COVID-19); this number has since dropped dramatically to a level of only 15 donors per week[6,7].

In an effort to contain the pandemic, drastic community measures of social confinement and distancing have been established, and these measures extend to the healthcare environment, enhancing telematic activities for the ambulatory management of patients. At the in-hospital level, most of the preventive measures are aimed at preventing the spread of infection by healthcare professionals during the care of COVID-19 patients. The impact of nosocomial infection by COVID-19 has warranted little attention and could be especially relevant to transplant recipients during their hospitalization.

The main objective of our work is to communicate our experience in the therapeutic management of severe SARS-CoV-2 infection in three liver transplant patients who required invasive mechanical ventilation, two of whom had an infection of nosocomial

CONCLUSION

We illustrate in detail the evolution of a nosocomial COVID-19 outbreak in a liver transplant ward. We believe that these findings will contribute to a better understanding of the natural history of the disease and will improve the treatment of the liver transplant patient with COVID-19.

Key Words: Liver transplantation; COVID-19; SARS-CoV-2; Cross infection; Nosocomial infection; Case report

©The Author(s) 2020. Published by Baishideng Publishing Group Inc. All rights reserved.

Core Tip: In patients who are immunosuppressed and with multiple comorbidities, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection has been associated with increased severity and mortality. We report our experience in the therapeutic management of SARS-CoV-2 infection in 3 liver transplant patients and stress the management and investigation of a contagious spreading into a liver transplant ward.

Citation: Alconchel F, Cascales-Campos PA, Pons JA, Martinez M, Valiente-Campos J, Gajownik U, Ortiz ML, Martinez-Alarcón L, Parrilla P, Robles R, Sánchez-Bueno F, Moreno S, Ramírez P. Severe COVID-19 after liver transplantation, surviving the pitfalls of learning on-the-go: Three case reports. World J Hepatol 2020; 12(10): 870-879
URL: https://www.wjgnet.com/1948-5182/full/v12/i10/870.htm
DOI: https://dx.doi.org/10.4254/wjh.v12.i10.870
CASE PRESENTATION

Since the detection of the first case of COVID-19 in our region on March 8, 2020, and until May 31st, 2020, a total of twelve liver transplant patients have been hospitalized in our liver transplant unit.

Chief complaints

Case 1: Sixty-one-year-old woman with a liver transplant in September 2019 for cryptogenic cirrhosis. In early March, she was admitted for diarrhea, and a few days later she developed acute respiratory failure, and heart failure. A first RT-PCR of SARS-CoV-2 from throat and pharyngeal swabs was negative but became positive three days later after a second RT-PCR was conducted due to high clinical suspicion (Figure 1). Treatment with hydroxychloroquine and lopinavir/ritonavir was then initiated, adjusting the tacrolimus levels, but the patient suffered progressive clinical and analytical worsening, with the need for invasive mechanical ventilation, associated with pulmonary superinfection by *Enterococcus faecalis* and *Enterococcus faecium* detected in bronchoalveolar lavage fluid. Finally, the patient developed shock with multisystem failure and died in the third week of hospitalization.

Case 2: Sixty-eight-year-old male, transplanted on March 4, 2020, by non-alcoholic steatohepatitis. During the immediate post-transplant period, he was diagnosed with a biliary stricture and was treated endoscopically. His wife, the primary caregiver, tested positive for SARS-CoV-2 via RT-PCR from pharyngeal swabs on March 18, 2020, after reporting slightly compatible symptoms. All staff in contact with her, including the patient himself (who was initially negative), were evaluated with RT-PCR. Of a total of 40 people tested, one hepatologist was positive for SARS-CoV-2; this physician was in contact with all patients admitted at that time. Four days later, the patient, without symptoms, was discharged. Two days after discharge, the patient was readmitted for fever and cough, and the RT-PCR of SARS-CoV-2 was positive (Figure 1). Early treatment with hydroxychloroquine and azithromycin was initiated, adjusting the doses of mycophenolic acid and tacrolimus. Seven days after the positive result, the patient was admitted to the intensive care unit due to deterioration of respiratory function requiring invasive mechanical ventilation and treatment with tocilizumab. The patient progressed satisfactorily to home discharge and asymptomatic, but still with a positive RT-PCR of SARS-CoV-2 two months later.

Case 3: Sixty-two-year-old woman who received a liver transplant in February 2019 secondary to primary biliary cholangitis and was discharged in the first week of March 2020 after an episode of constitutional syndrome. On April 6, 2020, she was readmitted with fever, dyspnea, and diarrhea, with a RT-PCR positive for SARS-CoV-2. Forty-eight hours later, the patient progressively deteriorated, requiring admission to intensive care unit with invasive mechanical ventilation, and was treated with tocilizumab in addition to hydroxychloroquine, azithromycin, and methylprednisolone. Mycophenolic acid was suspended, and doses of tacrolimus were reduced to the minimum necessary. After four days of invasive mechanical ventilation, extubation was performed. In spite of the measures adopted, the patient evolved severely. Two months after the onset of the outbreak, and still with a positive RT-PCR of SARS-CoV-2, she developed a tracheoesophageal fistula. An esophageal prosthesis and an extracorporeal venovenous membrane oxygenation (vv-ECMO) were placed. Forty-five days after the first positive RT-PCR of SARS-CoV-2 the virus was negative in the RT-PCR of the bronchoalveolar lavage. Unfortunately, the patient died eighty days after the onset of the outbreak in our liver transplant unit.

History of present illness

A cluster of three patients who temporarily coincided in the hospitalization ward developed a SARS-CoV-2 [reverse transcription polymerase chain reaction (RT-PCR) throat swab] infection. Given the use of anonymous clinical data and the observational approach of our paper, our work was exempt from approval from an ethics' board. **Table 1** shows the main clinical features of these three patients. It is important to note that the wife of case 2, one hepatologist on the transplant team, and three nurses in the ward were also infected with the SARS-CoV-2 virus.

In our transplant unit, the outbreak of SARS-CoV-2 began on March 18. After a
Table 1 Details of the three cases reported

Case 1	Case 2	Case 3	
Age (yr)	61	68	62
Sex	Female	Male	Female
LT indication	Cryptogenic cirrhosis	NASH	Primary biliary cholangitis
Date of liver transplant	September 7, 2019	March 3, 2020	February 13, 2019
Immunosuppression (per day)	Tacrolimus 5 mg and prednisone 5 mg	Tacrolimus 7 mg, mycophenolic acid 2000 mg, prednisone 20 mg	Tacrolimus 3 mg, mycophenolic acid 2000 mg, prednisone 5 mg
Blood concentration of tacrolimus (before COVID-19)	7 ng/mL	7.5 ng/mL	5.2 ng/mL
Comorbidities	Hypothyroidism	Diabetes, hypertension, stroke	Hypertension
Laboratory test:			
PaO₂/FiO₂ ratio (while IMV)	237 (76-376)	367 (337-385)	256 (133-329)
White-cell count (× 10⁹/UL)	4.50 (2.38-9.87)	6.61 (1.8-17.4)	15.71 (7.02-36.14)
Lymphocyte count (× 10⁹/UL)	0.30 (0-0.65)	0.325 (0.2-1.02)	1 (0.54-2.01)
Platelet count (× 10⁹/UL)	9.5 (3-38)	113.5 (37-372)	290 (158-406)
Hemoglobin (g/DL)	8.7 (6.5-9.4)	9.2 (7-11.8)	10.4 (7.6-12.9)
IL-6 (pg/mL)	599 (400-799)	558 (192-1000)	54 (50-286)
C-reactive protein (mg/DL)	10.3 (8.2-18.3)	4 (0.4-13.3)	1.8 (0.7-4.6)
Ferritin (mg/mL)	2.2 (1.1-7.8)	0.25 (0.12-0.43)	0.28 (0.17-0.75)
Lactate dehydrogenase (U/L)	5338 (814-9862)	1262 (392-2095)	2047 (1360-2297)
Aspartate aminotransferase (U/L)	126 (29-466)	14 (9-36)	30 (16-44)
Alanine aminotransferase (U/L)	89 (29-197)	21 (8-31)	24 (5-98)
Total bilirubin (mg/DL)	1.2 (0.3-2.65)	0.56 (0.39-1.25)	1.82 (0.21-4)
Creatine kinase (U/L)	14 (10-18)	13 (7-75)	29 (29-36)
Creatinine (mg/DL)	0.69 (0.45-1.07)	1.22 (1.04-1.93)	0.89 (0.54-2.65)
D-dimer (mg/mL)	1071 (565-1825)	1347 (620 - 3431)	283 (153-648)
Sodium (meq/L)	137 (128-141)	139 (136 - 163)	141 (135-145)
Potassium (meq/L)	4.6 (2.9-5.8)	4 (3.3-4.9)	4 (3.2-5.2)
Chloride (meq/L)	102 (97-105)	103 (100-111)	107 (99-112)
RT-PCR of SARS-CoV-2	Negative on day 3; positive on day 6	Negative on day 8; positive on days 13, 36, 42, 47, 54, 65 and 79	Negative on days 14, 72 and 75; positive on days 26, 42 and 55
Radiologic findings	Bilateral pneumonia, pleural effusion	Bilateral pneumonia, peripheral ground-glass opacity, pleural effusion	Bilateral pneumonia, peripheral ground-glass opacity
Treatment	HCQ (200 mg daily), azithromycin (250 mg daily), LPV/r (one dose 400/100 mg), vancomycin (1 g daily)	HCQ (200 mg daily), azithromycin (250 mg daily), tocilizumab (one dose 8 mg/kg), methylprednisolone (180 mg three doses)	HCQ (200 mg daily), azithromycin (250 mg daily), tocilizumab (one dose 8 mg/kg), methylprednisolone (60 mg daily), vv-ECMO
Immunosuppressant dose reduction	Yes (low dose of tacrolimus)	Yes (mycophenolic acid suspended and low dose of tacrolimus)	Yes (mycophenolic acid suspended)
Rejection during or after COVID-19	No	No	Yes
Complications	Secondary *Enterococcus faecalis*	Asymptomatic intra-abdominal	Tracheoesophageal fistula

Data presented as median (IQR).
positive RT-PCR result in case 1, the wife of case 2 also tested positive after reporting a fever and neck pain. Without delay, we conducted an exhaustive investigation on all the members of the unit (25 nurses and assistants, two cleaning staff, one warden, and nine physicians), with one nursing assistant testing positive for SARS-CoV-2 (hospital admission for ten days for pneumonia, without the need for intensive care unit), two nurses testing positive (one with a mild symptoms and negative RT-PCR at one month, and the other asymptomatic and negative at 13 d), and a hepatologist testing positive (negative at 15 d, asymptomatic and no admission).

Physical examination

The remaining healthcare personnel who tested negative for SARS-CoV-2 were placed in preventive home confinement for 14 d, with negative RT-PCR determinations of SARS-CoV-2 thereafter. In addition, the hospital ward was closed for complete disinfection.

Further diagnostic work-up

Figure 2 shows the epidemiological timeline of the three positive liver transplant recipients as well as the four contacts in the ward (one doctor, one assistant, and two nurses) who tested positive for SARS-CoV-2.

FINAL DIAGNOSIS

The final diagnosis of the presented cases is severe COVID-19 after liver transplantation.

TREATMENT

Case 1 was treated with Hydroxychloroquine (HCQ, 200 mg daily), azithromycin (250 mg daily), lopinavir/ritonavir (one dose 400/100 mg) and vancomycin (1 g daily). The patient in case 2, underwent a treatment that included HCQ (200 mg daily), azithromycin (250 mg daily), tocilizumab (one dose 8 mg/kg) and methylprednisolone (180 mg three doses). In the case of patient 3, however, the outcome was more severe and required the use of a vv-ECMO in addition to HCQ (200 mg daily), azithromycin (250 mg daily), tocilizumab (one dose 8 mg/kg) and methylprednisolone (60 mg daily) (Table 1 and Figure 1).

OUTCOME AND FOLLOW-UP

All three patients required intensive care unit admission and invasive mechanical ventilation (Figure 1). Two of them (cases 1 and 3) progressed severely until death. The other one (case 2), who received tocilizumab, had a good recovery. In the outbreak, the wife of one of the patients and four healthcare professionals involved in their care were also infected (Figure 2).

DISCUSSION

The most appropriate management for transplant recipients who develop COVID-19 and the impact of the infection on this population are not well known. In a previous publication on a population of 111 liver transplant patients with more than ten years of evolution and residents in lombardy (the epicentre of the pandemic in Italy), three
Figure 1 Clinical evolution of each case in a chronological perspective. A: (Case 1) Although the first reverse transcription polymerase chain reaction of severe acute respiratory syndrome coronavirus 2 was negative for the first few days, dyspnea became worse requiring intensive care unit admission. A single dose of lopinavir/ritonavir was administered on day 7; B: (Case 2) A dose of tocilizumab was administered on day 33. The patient improved progressively until he was discharged home; and C: (Case 3) A dose of tocilizumab was administered on day 28. The patient suffered a progressive worsening. A tracheoesophageal fistula was detected and an oesophageal prosthesis was placed. In addition, a venovenous extracorporeal membrane oxygenation was implemented to improve the patient’s oxygenation. BAL: Bronchoalveolar lavage; ICU: Intensive care unit; IMV: Invasive mechanical ventilation; LPV/r: Lopinavir/ritonavir; NIV: Non-invasive ventilation; RT-PCR: Reverse transcription polymerase chain reaction; vv-ECMO: Venovenous extracorporeal membrane oxygenation.
The vast majority of measures to prevent infection in the population are focused on non-hospital settings (such as confinement and telemedicine). In hospitals, these measures are preferably designed to prevent the transmission of COVID-19 from patients to healthcare personnel, where the use of personal protective equipment is mandatory. Furthermore, in the case of patients with liver disease, additional measures must be taken. Xiao et al.[8] suggest, for example, that the communication between patients and medical staff should be done online and each patient taken care of by one attending doctor and one nurse exclusively.

Preventive measures should begin as soon as the recipient is admitted, including the
existence of a specific safety circuit until the result of the RT-PCR is known. For example, two of our patients who were candidates for transplant in the last week have tested positive on the day of the transplant but had no symptoms, and the donor grafts were therefore transplanted to other recipients. In addition to community transmission (case 1), nosocomial transmission of the virus must also be considered (cases 2 and 3). Once a case of nosocomial transmission is discovered, special measures should be applied not only to ward staff but also to all ward patients and facilities. In our experience after case 2, the entire ward was evacuated, and a procedure of disinfection and a quarantine of the premises and of all healthcare staff who had worked on the ward were undertaken.

Another problem in relation to the in-hospital management of SARS-CoV-2–infected transplant patients resides in the discordance between the positivity of RT-PCR and the symptoms suggestive of COVID-19, indicating a high-risk window of infection\cite{27}. As other published works have examined\cite{28,29}, in the outbreak that took place in our unit, there was a period in which healthcare professionals and companions who were asymptomatic carriers of SARS-CoV-2 concurred in space and time with other patients and healthcare professionals who did not have the virus. These circumstances favored the propagation of the virus until the first positive case was detected and the necessary measures were taken.

A final, equally important aspect is the real impact of the COVID-19 pandemic on organ donation, transplant policies, and waiting list mortality, which altogether constitute the so-called “indirect mortality” from SARS-CoV-2. Most countries have implemented emergency policies to prevent contagion, ranging from issuing systematic screening tests for SARS-CoV-2 in all donors and recipients, limiting donation to far from the hospital where the graft will be implanted, restricting liver transplant activity only in acute liver failure or critical patients\cite{29,30}, and implementing telemedicine in outpatient follow-up. In these circumstances, increases in both mortality among those on the waiting list and in the number of drop-outs due to clinical worsening or tumour progression (indirect deaths from COVID-19) are to be expected. In fact, in Spain, organ donation and transplantation have decreased dramatically. Before the declaration of the state of alarm on March 13, 2020, there were 7.2 donors and 16 transplants per day on average, but since that date, the rates have fallen to an average of 1.2 donors and 2.1 transplants per day\cite{31}.

CONCLUSION

Therefore, there are several lessons learned from our experience. Firstly, early administration of anti-IL-6 monoclonal antibodies could be beneficial in slowing down the cytokine storm in critically ill patients with COVID-19. Secondly, the disease
prodrome in two patients were the gastrointestinal and not the respiratory symptoms. Finally, COVID-19 is highly contagious, so drastic preventive measures and exhaustive epidemiological investigations must be conducted in the case of clinical suspected disease in the ward, even if the RT-PCR of SARS-CoV-2 has been tested negative.

Many uncertainties persist in relation to the diagnosis, treatment, and management of COVID-19 in liver transplant patients. It is certain that we will learn more about the disease and able to treat it more effectively in the coming months. In the meantime, we are walking blind, and we must rely on our scarce previous experience, on our intuition, and on the oldest methodology in medicine: Trial and error.

REFERENCES

1 Guan WJ, Ni ZY, Hu Y, Liang WH, Ou CQ, He JX, Li L, Liu B, Zeng G, Yuen KY, Chen R, Cao BY, Wang J, Wan Y, Xu N, Xiang J, Li SY, Wang HJ, Liang LZ, Peng YX, Wei L, Liu Y, Hu YH, Peng P, Wang JM, Liu JY, Chen Z, Li G, Zheng ZJ, Qiu SQ, Luo J, Ye CJ, Zhu SY, Zhong NS; China Medical Treatment Expert Group for Covid-19. Clinical Characteristics of Coronavirus Disease 2019 in China. N Engl J Med 2020; 382: 1708-1720 [PMID: 32199013 DOI: 10.1056/NEJMoa2002032]

2 Zhu N, Zhang D, Wang W, Li X, Yang B, Song J, Zhao X, Huang B, Shi W, Li R, Niu F, Zhan F, Ma X, Wang D, Xu W, Wu G, Gao GF, Tan W; China Novel Coronavirus Investigating and Research Team. A Novel Coronavirus from Patients with Pneumonia in China, 2019. N Engl J Med 2020; 382: 727-733 [PMID: 31978945 DOI: 10.1056/NEJMoa2001107]

3 Li Q, Guan X, Wu P, Wang X, Zhou L, Tong Y, Ren R, Leung KSM, Lai EHY, Wong JY, Xing X, Xiang N, Wu Y, Li C, Chen Q, Li D, Liu T, Zhao J, Liu M, Tu W, Chen C, Jin L, Yang R, Wang Q, Zhou S, Wang R, Liu H, Luo Y, Liu Y, Shao G, Li H, Tao Z, Yang Y, Deng Z, Liu B, Ma Z, Zhang Y, Shi G, Lam TTY, Wu JT, Gao GF, Cowling BJ, Yang B, Leung GM, Fung Z. Early Transmission Dynamics in Wuhan, China, of Novel Coronavirus-Infected Pneumonia. N Engl J Med 2020; 382: 1199-1207 [PMID: 31995887 DOI: 10.1056/NEJMoa2001316]

4 COVID-19 Map. Johns Hopkins Coronavirus Resource Center [Internet]. [Cited 2020 Apr 20]. Available from: https://coronavirus.jhu.edu/map.html

5 Organización Nacional de Trasplantes (ONT). COVID-19: Impacto en la actividad de donación y trasplantes [Internet]. [Cited 2020 Apr 20]. Available from: http://www.ont.es/infesp/Paginas/Impacto_tx.aspx#_blank

6 Ahn C, Amer H, Anglicheau D, Ascher NL, Baan CC, Battsetseg M, Betjes MGH, Berney T, Betjes MGH, Bichu S, Birn H, Brennan D, Bromberg J, Caillier S, Cannon RM, Cantarovich M, Chan A, Chen ZS, Chapman JR, Cole EH, Cross N, Durand F, Egawa H, Emond JC, Farrero M, Friend PJ, Geissler EK, Hj, Haberal MA, Henderson ML, Hesseink DA, Humar A, Jassem W, Jeong JC, Kaplan B, Kee T, Kim SJ, Kuwata T, Legendre CM, Lin K, Munkhbat R, Od-Erdene L, Perrin P, Rela M, Tanabe Y, Tezecido Silva H, Tinckam KT, Tullius SG, Wu XX, Wu WR, Xiang, Yi P, Shi D, Chen Y, Ren Y, Qiu YQ, Li LJ, Sheng J, Yang Y, Deng Z, Liu B, Ma Z, Zhang Y, Shi G, Lam TTY, Wu JT, Gao GF, Cowling BJ, Yang B, Leung GM, Fung Z. Early Transmission Dynamics in Wuhan, China, of Novel Coronavirus-Infected Pneumonia. N Engl J Med 2020; 382: 727-733 [PMID: 31978945 DOI: 10.1056/NEJMoa2001107]

7 Zhou Z, Zhong Z, Hu Y, Zou Y, Xiong X, Liu Y, Shi J, Li J, Sun Y, Yang H, Wang Y, Ma J, Wang H, Xia X, Gu X, Zhang J, Wang D, Chen J, Tan Y, Li L, Zhang Y, Li F, Chen H, Hu X, Yu S, Gu J, Guo Q, Wang Q, Shi J, Li X, Wang H, Wang X, Xu Z, Cao W, Li W, Qin H, Jin R, Han M, Hua Q, Wang T, Shi X, Lei Z, Yu C, Song J, Zhang B, Chen Y, Wu H, Song Y, Wang Y, Wang T, Guo M, Wang S, Zhang Y, Zhang Q, Zhang W, Shi W, Zhang L, Gao Y, Sha J, Sun Y, Wang G, Ding J, Li Y, Li H, Fan G, Zhao J, Jiang H, Zhang H, Li X, Wang J, Li X, Guo Z, Zhang S, Li H, Ma J, Zhang Y, Zhang Q, Zhang W, Wang S, Wang R, Zhang Y, Zhao J, Wang Y, Zhang J, Wang D, Wang Y, Shi W, Li H, Wang Z, Zhang Y, Shi G, Lan TTY, Wu JT, Gao GF, Cowling BJ, Yang B, Leung GM, Fung Z. Early Transmission Dynamics in Wuhan, China, of Novel Coronavirus-Infected Pneumonia. N Engl J Med 2020; 382: 727-733 [PMID: 31978945 DOI: 10.1056/NEJMoa2001107]

8 Healthcare providers at a liver transplant ward in China described the clinical characteristics and immunosuppressant management of COVID-19 in long-term liver transplant patients. The Chinese Coronavirus Investigating and Research Team. COVID-19 in long-term liver transplant patients: preliminary experience from an Italian transplant centre in Lombardy. Lancet Gastroenterol Hepatol 2020; 5: 532-533 [PMID: 32278363 DOI: 10.1016/S2468-1253(20)30116-3]

9 Bayarsky BJ, Po-Yu Chiang T, Ferdega WB, Durand CM, Avery RK, Gietis SN, Jackson KR, Kormode AB, Van Pilsum Rasmussen SE, Massie AB, Segev DL, Garonzik-Wang JM. Early impact of COVID-19 on transplant center practices and policies in the United States. Am J Transplant 2020; 20: 1809-1818 [PMID: 32282982 DOI: 10.1111/ajt.15915]

10 Pons JA, Ramirez P, Revilla-Nuñez B, Pascual D, Baroja-Mazo A, Robles R, Sanchez-Bueno F, Martinez L, Parrilla P. Immunosuppression withdrawal improves long-term metabolic parameters, cardiovascular risk factors and renal function in liver transplant patients. Clin Transplant 2009; 23: 329-336 [DOI: 10.1111/j.1399-0012.2008.00944.x]

11 Zhong Z, Zhang Q, Xia H, Wang A, Liang W, Zhou W, Zhou L, Liu X, Rao L, Li Z, Peng Z, Mo P, Xiong Y, Ye S, Wang Y, Ye Q. Clinical characteristics and immunosuppressant management of coronavirus disease 2019 in solid organ transplant recipients. Am J Transplant 2020; 20: 1916-1921 [PMID: 32282986 DOI: 10.1111/ajt.15928]

12 Fix OK, Hamed B, Fontana RJ, Kwok RM, McGuire BM, Mulligan DC, Pratt DS, Russo MW, Schilsky ML, Verna EC, Loomis R, Cohen DE, Bezzara JA, Reddy KR, Chung RT. Clinical Best Practice Advice for Hepatologist and Liver Transplant Providers During the COVID-19 Pandemic: AASLD Expert Panel Consensus Statement. Hepatology. 2020; 72: 287-304 [PMID: 32298473 DOI: 10.1002/hep.31281]

13 Zhou Z, Zhao N, Shu Y, Han S, Chen B, Shu X. Effect of Gastrointestinal Symptoms in Patients With COVID-19. Gastroenterology. 2020; 158: 2294-2297 [PMID: 32199806 DOI: 10.1053/j.gastro.2020.03.020]

14 Jin X, Lian JS, Hu HY, Cao J, Zheng L, Zhang YM, Han J, Zhao J, Shi W, Yu GD, Xu SR, Wang XY, Gu QQ, Zhang SY, Ye CY, Jin CL, Lu YF, Yu X, Xu XP, Huang JR, Xu KL, Ni Q, Yu CB, Zhu B, Li YT, Liu J, Zhao H, Zhang X, Yu L, Guo YZ, Su JW, Tao JJ, Lang GJ, Wu XX, Wu WR, Qv TT, Xiang DR, Yi P, Shi D, Chen Y, Ren Y, Qiu YQ, Li LJ, Sheng J, Yang Y. Epidemiological, clinical and virological characteristics of 74 cases of coronavirus-infected disease 2019 (COVID-19) with gastrointestinal symptoms. Gut 2020; 69: 1002-1009 [PMID: 32213556 DOI: 10.1136/gutjnl-2020-320926]

15 Wenz Y, Li J, Shen L, Zou Y, Hui L, Zhu L, Faden HS, Tang Z, Shi M, Jiao N, Li Y, Cheng S, Huang Y, Wu D, Xu Z, Pan L, Zhu J, Yang G, Zhu R, Lan P. Enteric involvement in hospitalised patients with COVID-19 outside Wuhan. Lancet Gastroenterol Hepatol 2020; 5: 534-535 [PMID: 32304663 DOI: 10.1016/S2468-1253(20)30254-5]

16 Alconchel F et al. Nosocomial COVID-19 outbreak in a liver transplant ward.
Perreira MR, Mohan S, Cohen DJ, Husain SA, Dube GK, Ratner LE, Arcasoy S, Aversa MM, Benvenuto LJ, Dadhaniya DM, Kapur S, Dove LM, Brown BS Jr, Rosenblat RE, Samuelson B, Uriel N, Farr MA, Satlîn M, Small CB, Walsh TJ, Kodyianplakkal RP, Miko BA, Aaron JG, Tsapepas DS, Emond JC, Verna EC. COVID-19 in solid organ transplant recipients: Initial report from the US epicenter. Am J Transplant 2020; 20: 1800-1808 [PMID: 32330343 DOI: 10.1111/ajt.15941]

Guillen E, Pinoeira GJ, Revuelta I, Rodriguez D, Bodro M, Moreno A, Campistol JM, Dieckmann F, Ventura-Aguirau P. Case report of COVID-19 in a kidney transplant recipient: Does immunosuppression alter the clinical presentation? Am J Transplant 2020; 20: 1875-1878 [PMID: 32198834 DOI: 10.1111/ajt.15874]

Akalin E, Azzi Y, Bartash R, Seethamraju H, Parides M, Hemmige V, Ross M, Forest S, Goldstein YD, Ajajmy M, Liriano-Ward L, Fynadath C, Louarte-Campos P, Nadigiam PB, Graham J, Le M, Rocca J, Kirchhbabala M. Covid-19 and Kidney Transplantation. N Engl J Med 2020; 382: 2475-2477 [PMID: 32329975 DOI: 10.1056/NEJMoa2111177]

Qin J, Wang H, Qin X, Zhang P, Zhu L, Cai J, Yuan Y, Li H. Perioperative Presentation of COVID-19 Disease in a Liver Transplant Recipient. Hepatology 2020 [PMID: 32220017 DOI: 10.1002/hep.31257]

Li H, Liu L, Zhang D, Xu J, Dai H, Tang N, Su X, Cao B. Hypothesis SARS-CoV-2 and viral sepsis: observations and hypotheses. Lancet 2020 [DOI: 10.1016/S0140-6736(20)30920-X]

Yeh RF, Gaver VE, Patterson KB, Rezk NL, Baxter-Meheux F, Blake MJ, Eron JJ Jr, Klein CE, Rublein JC, Khashuba AD. Lopinavir/ritonavir induces the hepatic activity of cytochrome P450 enzymes CYP2C9, CYP2C19, and CYP1A2 but inhibits the hepatic and intestinal activity of CYP3A as measured by a phenotyping drug cocktail in healthy volunteers. J Acquir Immune Defic Syndr 2006; 42: 52-60 [PMID: 16639344 DOI: 10.1097/01.qai.0000219774.20174.64]

Cao B, Wang Y, Wen D, Liu W, Wang J, Fan G, Ruan L, Song B, Cai Y, Wei M, Li X, Xia J, Chen N, Xiang J, Yu T, Bai T, Xie X, Zhang L, Li C, Yuan Y, Chen H, Li H, Huang H, Tu S, Gong F, Liu Y, Wei Y, Dong C, Zhou F, Gu X, Xu J, Liu Z, Zhang Y, Li H, Shang L, Wang K, Li K, Zhou X, Dong X, Qu Z, Lu S, Xu H, Ruan S, Luo S, Wu J, Peng L, Cheng F, Pan L, Zou J, Jia C, Wang J, Liu X, Wang S, Wu X, Ge Q, He J, Zhan H, Qiu F, Guo L, Huang C, Jaki T, Hayden FG, Horby PW, Zhang D, Wang C. A Trial of Lopinavir-Ritonavir in Adults Hospitalized with Severe Covid-19. N Engl J Med 2020; 382: 1787-1799 [PMID: 32187464 DOI: 10.1056/NEJMoa2012828]

Mehta P, McAuley DF, Brown M, Sanchez E, Tattersall RS, Manson JJ; HLH Across Speciality Collaboration, UK. COVID-19: consider cytokine storm syndromes and immunosuppression. Lancet 2020; 395: 1033-1034 [PMID: 32192578 DOI: 10.1016/S0140-6736(20)30628-0]

Teachey DT, Rheingold SR, Maude SL, Zugmaier G, Barrett DM, Seif AE, Nichols KE, Suppa EK, Kalos M, Berg RA, Fitzgerald JC, Aplenc R, Gore L, Grupp SA. Cytokine release syndrome after blinatumomab treatment related to abnormal macrophage activation and ameliorated by cytokine-directed therapy. Blood 2013; 121: 5154-5157 [PMID: 23678006 DOI: 10.1182/blood-2013-02-485623]

Liu H, He X, Wang Y, Zhou S, Zhang D, Zhu J, He Q, Zhu Z, Li G, Sun L, Wang J, Cheng G, Liu Z, Lai G. Management of COVID-19 in patients after liver transplantation: Beijing working party for liver transplantation. Hepatol Int 2020; 14: 432-436 [PMID: 32277387 DOI: 10.1007/s12072-020-10443-z]

Huang JF, Zheng KJ, George J, Gao HN, Wei RN, Yan HD, Zheng MH. Fatal outcome in a liver transplant recipient with COVID-19. Am J Transplant 2020; 20: 1907-1910 [PMID: 32277591 DOI: 10.1111/ajt.15909]

Xiao Y, Pan H, She Q, Wang F, Chen M. Prevention of SARS-CoV-2 infection in patients with decapensimized cirrhosis. Lancet Gastroenterol Hepatol 2020; 5: 528-529 [PMID: 32197093 DOI: 10.1016/S2468-1253(20)30080-7]

Gandhi M, Yokoe DS, Hlavir DV. Asymptomatic Transmission, the Achilles’ Heel of Current Strategies to Control Covid-19. N Engl J Med 2020; 382: 2159-2160 [PMID: 32329972 DOI: 10.1056/NEJMc2009758]

Young BE, Ong SW, Kalimuddin S, Low JG, Tan SY, Loh J, Ng OT, Marimuthu K, Ang LW, Mak TM, Lau SK, Anderson DE, Chan KS, Tan TY, Ng TY, Cui L, Said Z, Kurupatham L, Chen MI, Chen M, Vaso S, Wang LF, Tan BH, Lin RTP, Lee VJM, Leo YS, Lye DC. Singapore 2019 Novel Coronavirus Outbreak Research Team. Epidemiologic Features and Clinical Course of Patients Infected With SARS-CoV-2 in Singapore. JAMA 2020; 323: 1488-1494 [PMID: 32152362 DOI: 10.1001/jama.2020.3204]

Tzedakis S, Jeddou H, Houseil-Debry P, Sulpice L, Boudjemaa K. COVID-19: Thoughts and comments from a tertiary liver transplant center in France. Am J Transplant 2020; 20: 1952-1953 [PMID: 32289272 DOI: 10.1111/ajt.15918]

Vargas M, Iacovazzo C, Servillo G. Additional Suggestions for Organ Donation during COVID-19 Outbreak. Transplantation 2020; 104: 1984-1985 [PMID: 32413015 DOI: 10.1097/TP.0000000000003314]
