Tolerance Analysis of 3d-MJM parts according to IT grade

K Kitsakis¹,²,₄a, J Kechagias¹, N Vaxevanidis³ and D Giagkopoulos²

¹Department of Mechanical Engineering, Technological Educational Institute of Thessaly, GR 41110, Larissa, Greece
²Department of Mechanical Engineering, University of Western Macedonia, GR 50100, Kozani, Greece
³Department of Mechanical Engineering Educators, School of Pedagogical and Technological Education, GR 14121, N. Heraklion Attikis, Greece

E-mail:kitsakis@teithessaly.gr,

Abstract. In this study we investigate the dimensional accuracy of 3D printed objects and define the International Tolerance (IT) Grade for the linear sizes of parallel opposite surfaces and the diameter of a cylinder. Eight (8) exact parts were printed by an Objet Eden250 3D printer using the Multi Jet Modelling (MJM) process. The printed objects were measured and their dimensions analysed to define the IT grade of the specific process. MJM is an Additive Manufacturing (AM) or 3D Printing manufacturing process that can be used in place of CNC to save weeks of lead time, allows us to create parts with a superior strength to weight ratio and can significantly improve the efficiency of the completed system. MJM process is used for a great variety of applications on concept models to model performance parts as functional prototypes, jigs and fixtures, manufacturing tooling and sometimes even production parts. The result of this investigation is that the MJM 3D printing process can produce objects with IT11 grade or better, which classify it to the Fits area of IT grades.

1. Introduction

According to the American Society for Testing Materials (ASTM), Additive Manufacturing is “A process of joining materials to make objects from 3D model data, usually layer upon layer, as opposed to subtractive manufacturing technologies” [1] [2]. It is a key technology for the future, with strong impact on the addition of business value for manufacturers, over the next decade. Its history begins in 1983 when Chuck Hull invented a process called Stereolithography, enabling a 3D object to be printed from CAD data and took almost 20 years before the first consumer devices began to appear. 3D printing is an Additive Manufacturing process invented and patented by the Massachusetts Institute of Technology in 1993 [3]. In 2009 the technology patent for the material extrusion process called Fuse Deposition Modeling (FDM) expired, so the technology became much cheaper and available to a much broader cross section of producers.

The 3D printing process begins with a representation of an object as a 3D model in computer aided design (CAD) based software. That model can be created directly in the software, or it can be input into the software, through the use of a laser scanning device, that will take a physical object and bring it into the system. Once that design is created, the Standard Tessellation Language (STL) file is generated by
the software. STL is the most popular file format for Additive Manufacturing. To tessellate something, as in Standard Tessellation language, means to break it down into a series of polygons—and to be more specific in triangles—to represent not just its external structure, but its internal structure, too. Once that file is created, the system slices it into many different layers and passes that information to the Additive Manufacturing device [4].

The Additive Manufacturing system itself creates the object, by definition layer by layer, until we have a finished object. Very often, post production is required. That might be the removal of dust or other material, it might require some machining or a process called sintering where we're closing voids, or some sort of infiltration process where we're filling voids within the object itself with other materials. The goal is to create a physical object from a 3D model.

Although traditional-subtractive manufacturing has its advantages and is preferred when producing very high volumes of similar objects, when we need a diversity of different materials to choose from and when we want to create large parts, 3D printing is preferred when there is high design complexity, the need for rapid production and the necessity for restriction of the material waste [5].

According to American Society for Testing and Materials group (ASTM) the Additive Manufacturing processes which are used today are [6]:

- **Vat Photo polymerization**
 - Stereolithography (SLA)
 - Digital Light Processing (DLP)
- **Material Jetting**
 - Multi-jet Modeling (MJM)
- **Material extrusion**
 - Fused Deposition Modeling (FDM)
 - Fused Filament Fabrication (FFF)
- **Powder Bed Fusion**
 - Electron beam melting (EBM)
 - Selective Laser Sintering (SLS)
 - Selective Heat Sintering (SHS)
 - Direct Metal Laser Sintering (DMLS)
- **Binder Jetting**
 - Powder Bed and Inkjet Head 3D printing (PBIH)
 - Plater-Based 3D printing (PP)
- **Sheet Lamination**
 - Ultrasonic Consolidation (UC)
 - Laminated Object Manufacturing (LOM)
- **Direct Energy Deposition**
 - Laser Metal Deposition (LMD)

In Multi-Jet Modeling (MJM) technology a print head selectively deposits material on the platform. These droplets are most often comprised of photopolymers with second materials, such as wax, used to support structures during the building process. At the next step, an ultraviolet light solidifies the photopolymer material to shape the cured parts. At the final pass, the planerizer levels the material to create a nice flat surface (Figure 1). When the parts have been printed, a post-building process is required to remove the support material. The advantages of this 3D printing technology are the high accuracy and surface finish, the capability to use multiple materials and colors on the same part and the hands-free removal of support material. The disadvantages are the limited range of materials and the relatively slow build process [6] [1].

Various implementations for this technology can be found in the industries of industrial and consumer products and, more specific, industries of automotive, medical, aerospace and defense. Applications of this technology are Rapid Prototyping (RP), Rapid Tooling (RT) and Direct Digital Manufacturing (DDM)[7] [8]. The parts produced for these sectors need to be firm and fit the prospective functionality, but 3D printing for RP, RT and DDM is a relatively new technology and in the literature there are only
a few studies related to dimensional accuracy and categorization, [9] [10]. In this paper we studied the coherence and repeatability of linear and circular dimensions of parts produced by a 3D printer using the Multi-jet Modeling (MJM) process. We classified the above dimensions and categorized their quality according the International Tolerance Grade.

2. Scope
The most important applications for MJM 3D printing technology are any situation in which there is a need for a high fidelity mock up, with complex objects, moving parts, constant service finish, fine resolution, and accuracy. The most crucial aspect for ensuring the dimensional repeatability of the printed parts is the dimensional accuracy which represents the degree of agreement between designed prescription and the manufactured product dimensions. The current dimensioning and tolerance standards evaluate the dimensional accuracy of a component part through its size and shape [11].

The variation in size of the manufactured products is very crucial for the applications that this technology is applied for. We examined different linear dimensions in the X, Y and Z axis and circular dimensions at the top and the bottom of a vertical cylinder to categorize the produced samples according to the ISO 286 International Tolerance Grades table reference.

3. Experimental Work
For our experiment we designed an L like 3D shape combined with a cylinder near one of its corner, but not tangential to the edges, as shown in Figure 2. This shape gave us the opportunity to examine external linear dimensions (length, width and height of the L shape) and outer circular dimensions (diameter of the cylinder). The dimensions have been chosen so that they belong to different Basic Size ranges of the International Tolerance Grades Table.

Figure 1. Multi-Jet Modeling printer parts.

Figure 2. Designed part dimensions in mm.
Eight independent parts (Figure 3) were produced from the same STL file using an Objet Eden250 3D printer. We selected High-speed printing mode (30-micron) and glossy surface at the printing process to have more sleek surfaces and only at the bottom of the parts the FullCure705 support was printed to ground them. For all parts VeroBlack Opaque material was used.

Figure 3. The eight printed parts.

The Eden250 printer (Figure 4) is an ultra-thin-layer, high-resolution 3D printer for rapid prototyping and rapid manufacturing. Some technical specifications of the printer are: Net build size 250mm X 250mm X 200mm, Build resolution at X-axis: 600dpi, at Y-axis: 300dpi, and Z-axis: 1600dpi, Horizontal build layers down to 16 micron at High Quality and down to 30 micron at High speed printing mode, 0.1-0.2mm typical accuracy varying according to geometry, part orientation and print size, Materials supported: FullCure 720 Model Transparent, VeroWhite Opaque, VeroBlue Opaque, VeroBlack Opaque and Support type FullCure705 Support [12].

Figure 4. OBJET EDEN250 MJM 3D printer.
The printed parts were measured by three micrometers, with measuring ranges of 0-25mm, 25mm-50mm and 50mm-75mm each. We measured:

- The height (Z-Print Axis) at ten measurement points on the upper top surfaces (rectangle and circle surface) and at nine measurement points on the lower top surface (points HA1-HA10, HB1-HB9 - Figure 5)
- The length (Y-Print Axis) at six measurement points on the upper rectangle and at six measurement points on the lower rectangle (LA1-LA6, LB1-LB6 - Figure 6)
- The width (X-Print Axis) at ten measurement points (W1-W10 - Figure 7) and the diameter at four measurement points (D1-D4 - Figure 8).

![Figure 5. Measured Height points.](image)

![Figure 6. Measured Length points.](image)

![Figure 7. Measured Width points.](image)

![Figure 8. Measured Diameter points.](image)

4. Results and Analysis
In Chart 1 and Chart 2 the values of height or Z-Print Axis is presented and although the mean is very close to the designed dimension, the variation of errors (±3σ) sometimes extends the printer’s nominal accuracy of 0.2mm given by the constructor. The measurement points 7-10 of HA, which correspond to the top face of the cylinder have even better median values, but larger variation values too. We used the High Speed print mode and probably at High Quality print mode this phenomenon could be eliminated, so further investigation has to be done with another experiment.
By examining the Y-Print Axis with dimensions LA and LB, values of which are represented in Chart 3 and Chart 4, we note that length is oversized and the variation of errors is very small, excluding measurement points 4, 5 and 6 of LB, which are at the lower layer.
This observation occurs also in Chart 5, for measurement points W6 – W9 of width dimension, which represents the X-Print Axis. The oversizing of the base layer dimensions is thought to be caused by the support material layer which is printed prior to the main printing process of the part. The Support material is less compact and causes partial diffusion into the lower levels of the printed parts.

![Chart 5. Variations of Width W.](image)

The medians and the variations in diameter of a cylinder at four different measurement points, two on the top and two on the bottom are represented in Chart 6. From the results we ascertain that the bottom of the cylinder is undersized, while the top face is oversized and with bigger variation. This finding confirms that geometry is a very basic aspect considering the variation of accuracy and more investigation about the geometry error is required.

![Chart 6. Variations of Diameter D.](image)

The International Tolerance Grade (ITG) specifies tolerances with associated manufacturing processes for a given dimension. It indicates how precise an industrial process is and according to ISO 286-1:2010 for sizes up to 3150mm there are twenty values, IT01, IT0, IT1..IT18. The lower the IT grade number is, the higher is the precision of a machining process. For measuring tools IT01-IT7 is required. IT7- IT11 are grades for Fits and IT12-IT18 for Large Manufacturing Tolerances [13][14].
The process Tolerance \(T \) can be calculated by the following function:

\[
T = 10^{\frac{\text{ITG}-1}{5}} \left(0.45\sqrt[3]{D} + 0.001D\right)
\]

where ITG is the IT Grade category value (for IT5-IT18), and \(D \) is the Geometrical mean dimension in mm:

\[
D = \sqrt{D_{\text{min}} D_{\text{max}}}
\]

where \(D_{\text{min}} \) and \(D_{\text{max}} \) are the limits of the dimension range.

There are twenty-one ranges for sizes up to 3150 mm and the values of standard tolerance grades according to IT grades and Nominal size are shown in Table 4 [15]. To specify the IT grade for the size of two parallel opposite surfaces we examined the shaft through all LA values for one dimension (Y-Axis) and W values 1, 2, 3, 10 for the second dimension (X-Axis). The size of cylinder type was examined with all the values of D. Table 1 - Table 3 show the minimum and maximum values for the examined measurement points and the difference of these in \(\mu m \).

Table 1. Tolerance of the Y-Axis.

LA	Min mm	Max mm	(Max-Min) X 1000 \(\mu m/mm \)
1	12.04	12.06	20 \(\mu m \)
2	12.02	12.04	20 \(\mu m \)
3	12.04	12.055	15 \(\mu m \)
4	12.04	12.05	10 \(\mu m \)
5	12.02	12.04	20 \(\mu m \)
6	12.04	12.06	20 \(\mu m \)

Table 2. Tolerance of the Y-Axis.

W	Min mm	Max mm	(Max-Min) X 1000 \(\mu m/mm \)
1	32.07	32.085	15 \(\mu m \)
2	32.06	32.08	20 \(\mu m \)
3	32.07	32.09	20 \(\mu m \)
10	32.07	32.11	40 \(\mu m \)

Table 3. Tolerance of the cylinder.

D	Min mm	Max mm	(Max-Min) X 1000 \(\mu m/mm \)
1	15.93	16.00	70 \(\mu m \)
2	15.91	16.00	90 \(\mu m \)
3	16.01	16.05	40 \(\mu m \)
4	16.03	16.05	20 \(\mu m \)

For every size, we located its value at the first column of Table 4 and with the maximum value of the above tables, we assigned the corresponding IT grade. Analytically:

- For LA size, Y-Print Axis, with the nominal value of 12 mm and maximum difference of 20 \(\mu m \) we assign the IT8 grade.
- For W size, X-Print Axis, with the nominal value of 32 mm and maximum difference of 40 \(\mu m \) we assign the IT9 grade.
- For D size, cylinder type, with the nominal value of 16 mm and maximum difference of 90 \(\mu m \) we assign the IT11 grade.
All three sizes are categorized to IT11 grade at maximum which means that they belong to the Fits area of IT grades.

Table 4. Values of standard tolerance for nominal sizes up to 120 mm.

Nominal size (mm)	Nominal size	IT01	IT0	IT1	IT2	IT3	IT4	IT5	IT6	IT7	IT8	IT9	IT10	IT11	IT12	IT13	IT14	IT15	IT16	IT17	IT18
Above 3 up to and including 120	3	0.3	0.5	0.8	1.2	2	3	4	6	10	14	25	40	60	0.1	0.14	0.25	0.4	0.6	1	1.4
6	0.4	0.6	1	1.5	2.5	4	5	8	12	18	30	48	75	0.12	0.18	0.3	0.48	0.75	1.2	1.8	
10	0.4	0.6	1	1.5	2.5	4	6	9	15	22	36	58	90	0.15	0.22	0.36	0.58	0.9	1.5	2.2	
18	0.5	0.8	1.2	2	3	5	8	11	18	27	43	70	110	0.18	0.27	0.43	0.7	1.1	1.8	2.7	
30	0.6	1	1.5	2.5	4	6	9	13	21	33	52	84	130	0.21	0.33	0.52	0.84	1.3	2.1	3.3	
50	0.8	1.2	2	3	5	8	13	19	30	46	74	120	190	0.3	0.46	0.74	1.2	1.9	3	4.6	
80	1.2	1.6	2.5	4	6	10	15	22	35	54	87	140	220	0.35	0.54	0.87	1.4	2.2	3.5	5.4	

5. Conclusions

From the experimental values and the analysis that followed we made some conclusions, which are summarized below:

- Dimensions in the X and Y axis are always oversized.
- The accuracy of the base of the produced parts is poorer in both X and Y axis.
- The accuracy in Z-axis is smaller than the other two axis and it depends on both the geometrical shape, rectangle or cylinder, and the height of layer.
- The cylinder diameter is undersized at the top, oversized at the base and with less accuracy at the top level.
- The X, Y and cylinder size belong to the Fits area of IT grades.

This is a preliminary study on the IT grade specification for the MJM 3D-print process. Further study examining the tolerance of holes and channels in 3D printed objects by this technology is required.

References

[1] Cottelee M and Joyce J 2014 3D opportunity: Additive manufacturing paths to performance, innovation, and growth Deloitte University Press
[2] Kechagias J 2007 Investigation of LOM process quality using design of experiments approach Rapid Prototyping Journal 13 316-323
[3] Chandler D 2011 MIT research continues to push the boundaries of the burgeoning technology of 3-D printing MIT News
[4] Jacobs P and Reid D 1992 Rapid prototyping & manufacturing (Dearborn, MI: Society of Manufacturing Engineers in cooperation with the Computer and Automated Systems Association of SME)
[5] Yan X and Gu P 1996 A review of rapid prototyping technologies and systems Computer-Aided Design 28 307-318
[6] Cottelee M, Holdowsky J and Mahto M 2014 The 3D opportunity primer: The basics of additive manufacturing Deloitte University Press
[7] Kruth J, Leu M and Nakagawa T 1998 Progress in Additive Manufacturing and Rapid Prototyping CIRP Annals - Manufacturing Technology 47 525-540
[8] Kechagias J, Iakovakis V, Katsanos M and Maropoulos S 2008 EDM electrode manufacture using rapid tooling: a review J Mater Sci 43 2522-2535

[9] Dimitrov D, van Wijck W, Schreve K and de Beer N 2006 Investigating the achievable accuracy of three dimensional printing Rapid Prototyping Journal 12 42-52

[10] Dimitrov D, Schreve K and de Beer N 2006 Advances in three dimensional printing – state of the art and future perspectives Rapid Prototyping Journal 12 136-147

[11] Kechagias J, Stavropoulos P, Koutsomichalis A and Vaxevanidis N 2014 Dimensional Accuracy Optimization of Prototypes produced by PolyJet Direct 3D Printing Technology Advances in Engineering Mechanics and Materials (International Conference on Industrial Engineering - INDE '14) pp 61-65

[12] Anon 2010 Documentation | Stratasys Stratasys.com

[13] Conway H 1966 Engineering tolerances (London: Pitman)

[14] Farmer L 1999 Dimensioning and tolerancing for function and economic manufacture (Gladesville, N.S.W.: Blueprint Publications)

[15] Kverneland K 1996 Metric standards for worldwide manufacturing (New York: ASME Press)