CERTAIN UNIFIED INTEGRATION FORMULAS ASSOCIATED WITH GENERALIZED k-BESSEL FUNCTION

G. RAHMAN, K. S. NISAR, S. MUBEEN, M. ARSHAD

Abstract. Our purpose in this present paper is to investigate generalized integration formulas containing the generalized k-Bessel function $W_{v,c}^k(z)$ to obtain the results in representation of Wright-type function. Also, we establish certain special cases of our main result.

1. INTRODUCTION

The generalized k-Bessel function defined in [11] as:

$$W_{v,c}^k(z) = \sum_{n=0}^{\infty} \frac{(-c)^n}{\Gamma_k(nk+v+k)n!} \left(\frac{z}{2} \right)^{2n+k},$$

(1.1)

where $k > 0$, $v > -1$, and $c \in \mathbb{R}$ and $\Gamma_k(z)$ is the k-gamma function defined in [5] as:

$$\Gamma_k(z) = \int_0^\infty t^{z-1}e^{-\frac{t}{k}} dt, z \in \mathbb{C}.$$

(1.2)

By inspection the following relation holds:

$$\Gamma_k(z + k) = z\Gamma_k(z)$$

(1.3)

and

$$\Gamma_k(z) = k^{\frac{k}{k}-1} \Gamma\left(\frac{z}{k} \right).$$

(1.4)

In the same paper, the researchers also defined Pochhammer k-symbols which is defined as:

$$(x)_n = x(x+k) \cdots (x+(n-1)k), n \neq 0, n \in \mathbb{N}, (x)_0 = 1.$$

The relation between Pochhammer k-symbols and k-gamma function is defined as:

$$(x)_n = \frac{\Gamma_k(x+nk)}{\Gamma_k(x)}.$$

If $k \to 1$ and $c = 1$, then the generalized k-Bessel function defined in [21] reduces to the well known classical Bessel function J_v defined in [7]. For further detail.
about \(k\)-Bessel function and its properties (see [8]-[10]).

The generalized hypergeometric function \(p \mathbf{F}_q(z)\) is defined in [6] as:

\[
p \mathbf{F}_q(z) = \sum_{n=0}^{\infty} \frac{(\alpha_1)_n (\alpha_2)_n \cdots (\alpha_p)_n}{(\beta_1)_n (\beta_2)_n \cdots (\beta_q)_n} \frac{z^n}{n!},
\]

where \(\alpha_i, \beta_j \in \mathbb{C}; i = 1, 2, \ldots, p, j = 1, 2, \ldots, q\) and \(b_j \neq 0, -1, -2, \ldots\) and \((z)_n\) is the Pochhammer symbols. The gamma function is defined as:

\[
\Gamma(\mu) = \int_0^\infty t^{\mu-1} e^{-t} dt, \mu \in \mathbb{C}, (1.6)
\]

\[
\Gamma(z + n) = z \Gamma(z), z \in \mathbb{C}, (1.7)
\]

and beta function is defined as:

\[
B(x, y) = \int_0^1 t^{x-1} (1-t)^{y-1} dt.
\]

The Wright type hypergeometric function is defined (see [16]-[18]) by the following series as:

\[
p \Psi_q(z) = \sum_{n=0}^{\infty} \frac{\Gamma(\alpha_1 + A_1 n) \cdots \Gamma(\alpha_p + A_p n)}{\Gamma(\beta_1 + B_1 n) \cdots \Gamma(\beta_q + B_q n) n!} \frac{z^n}{n!} (1.9)
\]

where \(\beta_r\) and \(\mu_s\) are real positive numbers such that

\[
1 + \sum_{s=1}^{q} \beta_s - \sum_{r=1}^{p} \alpha_r > 0.
\]

Equation (3.1) differs from the generalized hypergeometric function \(p \mathbf{F}_q(z)\) defined (2.2) only by a constant multiplier. The generalized hypergeometric function \(p \mathbf{F}_q(z)\) is a special case of \(p \Psi_q(z)\) for \(A_i = B_j = 1\), where \(i = 1, 2, \ldots, p\) and \(j = 1, 2, \ldots, q\):

\[
\frac{1}{\prod_{j=1}^{q} \Gamma(\beta_j)} p \mathbf{F}_q \left[\begin{array}{c} (\alpha_1), \cdots (\alpha_p) \\ (\beta_1), \cdots (\beta_q) \end{array} ; z \right] = \frac{1}{\prod_{i=1}^{p} \Gamma(\alpha_i)} p \Psi_q \left[\begin{array}{c} (\alpha_i, 1)_{1,p} \\ (\beta_j, 1)_{1,q} \end{array} ; z \right].
\]

In this paper, we define a class of integral formulas which containing the generalized \(k\)-Bessel function as defined in (1.1). Also, we investigate some special cases as the
corollaries. For this continuation of our study, we recall the following result of Lavoie and Trottier [12].

\[
\int_0^1 z^{\alpha-1}(1-z)^{2\beta-1}(1-\frac{z}{3})^{2\alpha-1}(1-\frac{z}{4})^{\beta-1}dz = \left(\frac{2}{3} \right)^{2\alpha} \frac{\Gamma(\alpha)\Gamma(\beta)}{\Gamma(\alpha+\beta)} \\
\Re(\alpha) > 0, \Re(\beta) > 0. \tag{1.11}
\]

For various other investigations containing special function, the reader may refer to the recent work of researchers (see [3], [4], [13], [14], [15]).

2. Main Result

In this section, we establish two generalized integral formulas containing \(k\)-Bessel function defined in (1.1), which represented in terms of Wright-type function defined in (1.9) by inserting with the suitable argument defined in (1.11).

Theorem 2.1. For \(\lambda, \rho, v, c \in \mathbb{C}\) with \(\Re(\frac{v}{k}) > -1, \Re(\lambda + \rho) > 0, \Re(\lambda + \frac{v}{k}) > 0\) and \(z > 0\), then the following result holds:

\[
\int_0^1 z^{\lambda+\rho-1}(1-z)^{2\lambda-1}(1-\frac{z}{3})^{2(\lambda+\rho)-1}(1-\frac{z}{4})^{\lambda-1}W_{v,c}^k \left(\frac{\nu(1-\frac{v}{k})}{2} \left(1-\frac{z}{4} \right)^{2} \right) dz
\]

\[= \left(\frac{\nu}{2} \right)^{\frac{v}{k}} \Gamma(\lambda + \rho) \left(\frac{\nu}{2} \right)^{2(\lambda+\rho)} \]

\[\times \left(k \right)^{\frac{v}{k}} \Psi_2 \left(\begin{array}{c} (\lambda + \frac{v}{k}, 2); \\
(\frac{v}{k} + 1, 1), (2\lambda + \frac{v}{k} + \rho, 2) \\
\end{array} \right) \left| -\frac{cy^2}{4k} \right|. \tag{2.1}
\]

Proof. Let \(S\) be the left hand side of (2.1) and applying (1.1) to the integrand of (2.1), we have

\[
S = \int_0^1 z^{\lambda+\rho-1}(1-z)^{2\lambda-1}(1-\frac{z}{3})^{2(\lambda+\rho)-1}(1-\frac{z}{4})^{\lambda-1} \]

\[\times \sum_{n=0}^\infty \frac{(-c)^n}{\Gamma(nk+v+k)n!} \left(\frac{\nu(1-\frac{v}{k})}{2} \left(1-\frac{z}{4} \right)^{2} \right)^{2n+\frac{v}{k}} dz
\]

By interchanging the order of integration and summation, which is verified by the uniform convergence of the series under the given assumption of theorem 2.1, we have

\[
S = \sum_{n=0}^\infty \frac{(-c)^n}{\Gamma(nk+v+k)n!} \left(\frac{\nu}{2} \right)^{2n+\frac{v}{k}} \]

\[\times \int_0^1 z^{\lambda+\rho-1}(1-z)^{2(\lambda+\frac{v}{k}+2n)-1}(1-\frac{z}{3})^{2(\lambda+\rho)-1}(1-\frac{z}{4})^{\lambda+\frac{v}{k}+2n-1} dz.
\]
By considering the assumption given in theorem 2.1 since \(\Re(\frac{\lambda}{4}) > 0, \Re(\lambda + \frac{\rho}{4} + 2n) > \Re(\lambda + \frac{\rho}{4}) > 0, \Re(\lambda + \rho) > 0, k > 0 \) and applying (1.11), we obtain
\[
S = \sum_{n=0}^{\infty} \frac{(-c)^n}{\Gamma_k(nk + \nu + k)n!} \left(\frac{y}{2} \right)^{2n + \frac{\nu}{2}} \frac{2^{(\lambda + \rho)} \Gamma(\lambda + \rho) \Gamma(\lambda + \frac{\nu}{4} + 2n)}{\Gamma(2\lambda + \rho + \frac{\nu}{4} + 2n)}.
\]
Using (1.4), we get
\[
S = \frac{\left(\frac{\nu}{4} \right)^{\frac{\nu}{4} + 2} \Gamma(\lambda + \rho) \Gamma(\lambda + \frac{\nu}{4} + 2n)}{k^{\frac{\nu}{4}}} \sum_{n=0}^{\infty} \frac{(-c)^n}{\Gamma_k(nk + \nu + k)n!} \left(\frac{y}{2} \right)^{2n} \frac{\Gamma(\lambda + \frac{\nu}{4} + 2n)}{\Gamma(2\lambda + \rho + \frac{\nu}{4} + 2n)}
\]
which upon using (1.3), we get the required result.

Theorem 2.2. For \(\lambda, \rho, v, c \in \mathbb{C} \) with \(\Re(\frac{\lambda}{4}) > -1, \Re(\lambda + \rho) > 0, \Re(\lambda + \frac{\rho}{4}) > 0 \) and \(z > 0 \), then the following result holds:
\[
\int_{0}^{1} z^{\lambda - 1} (1 - z)^{\nu(\lambda + \rho)^{-1} - 1} \left(1 - \frac{z}{3} \right)^{2\lambda - 1} \left(1 - \frac{z}{4} \right)^{(\lambda + \rho)^{-1}} dz
\]
\[
= \frac{\left(\frac{\nu}{4} \right)^{\frac{\nu}{4} + 2} \Gamma(\lambda + \rho) \Gamma(\lambda + \frac{\nu}{4} + 2n)}{k^{\frac{\nu}{4}}} \sum_{n=0}^{\infty} \frac{(-c)^n}{\Gamma_k(nk + \nu + k)n!} \left(\frac{y}{2} \right)^{2n} \left(\frac{v z (1 - \frac{\nu}{4})}{2} \right)^{2n + \frac{\nu}{2}}.
\]

Proof. Let \(\mathfrak{L} \) be the left hand side of (2.2) and applying (1.1) to the integrand of (2.1), we have
\[
\mathfrak{L} = \int_{0}^{1} z^{\lambda - 1} (1 - z)^{\nu(\lambda + \rho)^{-1} - 1} \left(1 - \frac{z}{3} \right)^{2\lambda - 1} \left(1 - \frac{z}{4} \right)^{(\lambda + \rho)^{-1}} dz
\]
\[
\times \sum_{n=0}^{\infty} \frac{(-c)^n}{\Gamma_k(nk + \nu + k)n!} \left(\frac{y z (1 - \frac{\nu}{4})}{2} \right)^{2n + \frac{\nu}{2}}.
\]
By interchanging the order of integration and summation, which is verified by the uniform convergence of the series under the given assumption of theorem 2.2, we have
\[
\mathfrak{L} = \sum_{n=0}^{\infty} \frac{(-c)^n}{\Gamma_k(nk + \nu + k)n!} \left(\frac{y}{2} \right)^{2n + \frac{\nu}{2}} \int_{0}^{1} z^{\lambda + \frac{\nu}{4} + 2n - 1} (1 - z)^{\nu(\lambda + \rho)^{-1} - 1} \left(1 - \frac{z}{3} \right)^{2\lambda - 1} \left(1 - \frac{z}{4} \right)^{(\lambda + \rho)^{-1}} dz.
\]
By considering the assumption given in theorem 2.2 since \(\Re(\frac{\lambda}{4}) > 0, \Re(\lambda + \frac{\rho}{4} + 2n) > \Re(\lambda + \frac{\rho}{4}) > 0, \Re(\lambda + \rho) > 0, k > 0 \) and applying (1.11), we obtain
\[
\mathfrak{L} = \sum_{n=0}^{\infty} \frac{(-c)^n}{\Gamma_k(nk + \nu + k)n!} \left(\frac{y}{2} \right)^{2n + \frac{\nu}{2}} \frac{2^{(\lambda + \rho) + 2n)} \Gamma(\lambda + \rho) \Gamma(\lambda + \frac{\nu}{4} + 2n)}{\Gamma(2\lambda + \rho + \frac{\nu}{4} + 2n)}.
\]
Using (1.4), we get
\[S = \frac{(y^2)^{\nu} \Gamma(\nu + \rho + \frac{\nu}{2} + 2\nu)}{k^2} \sum_{n=0}^{\infty} \frac{(-c)^n}{\Gamma(\nu + 1 + n)n!} \frac{y^{2n}}{4^n k^n} \frac{\Gamma(\nu + \frac{\nu}{2} + 2n)}{\Gamma(2\nu + \rho + \frac{\nu}{2} + 2n)} \]
which upon using (1.9), we get the required result. □

3. Special Cases

In this section, we present the generalized form of classical and modified Bessel functions which are the special cases of k-Bessel function defined (1.1). Also, we prove two corollaries which are the special cases of obtained theorems in Section 2.

Case 1. If we set $c = 1$ in (1.1), then we get another definition of k-Bessel function. We call it the classical k-Bessel function
\[J_v^k(z) = \sum_{n=0}^{\infty} \frac{(-1)^n (\frac{z}{\nu})^{\nu + 2n}}{\Gamma(v + nk + k)n!} \] (3.1)

Case 2. If we set $c = -1$ in (1.1), then we get another definition of k-Bessel function. We call it the modified k-Bessel function
\[I_v^k(z) = \sum_{n=0}^{\infty} \frac{(z)^{\nu + 2n}}{\Gamma(v + nk + k)n!} \] (3.2)

Corollary 3.1. Assume that the conditions of Theorem 2.1 are satisfied. Then the following integral formula holds:
\[
\int_0^1 z^{\lambda + \rho - 1} (1 - z)^{2\lambda - 1} (1 - \frac{z}{3})^{2(\lambda + \rho) - 1} (1 - \frac{z}{4})^{\lambda - 1} J_v^k \left(\frac{y}{4} \left(1 - \frac{z}{4} \right) \left(1 - z \right)^2 \right) \, dz
\]
\[= \frac{(y^2)^{\nu} \Gamma(\lambda + \rho + \frac{\nu}{2} + 2\nu)}{k^2} \sum_{n=0}^{\infty} \frac{(-c)^n}{\Gamma(\nu + 1 + n)n!} \frac{y^{2n}}{4^n k^n} \frac{\Gamma(\nu + \frac{\nu}{2} + 2n)}{\Gamma(2\lambda + \rho + \frac{\nu}{2} + 2n)} \times 1_\Psi_2 \left[\begin{array}{c} (\lambda + \frac{\nu}{2}, 2); \\ (\frac{\nu}{2} + 1, 1), (2\lambda + \frac{\nu}{2} + \rho, 2) \\ | - \frac{y^2}{4\pi} \end{array} \right]. \] (3.3)

Corollary 3.2. Assume that the conditions of Theorem 2.1 are satisfied. Then the following integral formula holds:
\[
\int_0^1 z^{\lambda + \rho - 1} (1 - z)^{2\lambda - 1} (1 - \frac{z}{3})^{2(\lambda + \rho) - 1} (1 - \frac{z}{4})^{\lambda - 1} J_v^k \left(\frac{y}{4} \left(1 - \frac{z}{4} \right) \left(1 - z \right)^2 \right) \, dz
\]
\[= \frac{(y^2)^{\nu} \Gamma(\lambda + \rho + \frac{\nu}{2} + 2\nu)}{k^2} \sum_{n=0}^{\infty} \frac{(-c)^n}{\Gamma(\nu + 1 + n)n!} \frac{y^{2n}}{4^n k^n} \frac{\Gamma(\nu + \frac{\nu}{2} + 2n)}{\Gamma(2\lambda + \rho + \frac{\nu}{2} + 2n)} \times 1_\Psi_2 \left[\begin{array}{c} (\lambda + \frac{\nu}{2}, 2); \\ (\frac{\nu}{2} + 1, 1), (2\lambda + \frac{\nu}{2} + \rho, 2) \\ | - \frac{y^2}{4\pi} \end{array} \right]. \] (3.4)
Corollary 3.3. Assume that the conditions of Theorem 2.2 are satisfied. Then the following integral formula holds:

\[
\int_0^1 z^{\lambda-1}(1-z)^{2(\lambda+\rho)-1}\left(1 - \frac{z}{3}\right)^{2\lambda-1}\left(1 - \frac{z}{4}\right)^{(\lambda+\rho)-1}J_v^k\left(\frac{yz\left(1 - \frac{z}{3}\right)^2}{2}\right)\,dz
\]

\[
= \frac{\left(\frac{y}{2}\right)^2 \Gamma(\lambda + \rho)(\frac{z}{3})^{2(\lambda+\rho)}}{k\pi} \times _1\Psi_2\begin{bmatrix}
\lambda + \frac{v}{k}, 2; \\
(v + 1, 1), (2\lambda + \frac{v}{k} + \rho, 2)
\end{bmatrix} | - \frac{4y^2}{\pi k} \end{align}

(3.5)

Corollary 3.4. Assume that the conditions of Theorem 2.2 are satisfied. Then the following integral formula holds:

\[
\int_0^1 z^{\lambda-1}(1-z)^{2(\lambda+\rho)-1}\left(1 - \frac{z}{3}\right)^{2\lambda-1}\left(1 - \frac{z}{4}\right)^{(\lambda+\rho)-1}I_v^k\left(\frac{yz\left(1 - \frac{z}{3}\right)^2}{2}\right)\,dz
\]

\[
= \frac{\left(\frac{y}{2}\right)^2 \Gamma(\lambda + \rho)(\frac{z}{3})^{2(\lambda+\rho)}}{k\pi} \times _1\Psi_2\begin{bmatrix}
\lambda + \frac{v}{k}, 2; \\
(v + 1, 1), (2\lambda + \frac{v}{k} + \rho, 2)
\end{bmatrix} | - \frac{4y^2}{\pi k} \end{align}

(3.6)

Remark. If we set \(k = 1\) in (3.1) to (3.6), then we get the well known result for case 1 (see [1]) and some new result for the familiar function defined in [11, 2, 19].

References

[1] P. Agarwal, S. Jain, S. Agarwal, M. Nagpa, On a new class of integrals involving Bessel functions of the first kind, Communications in Numerical Analysis 2014 (2014) 1-7.
[2] Á. Baricz, Geometric properties of generalized Bessel functions, Publ. Math. Debrecen 73(1-2) (2008), 155-178.
[3] J. Choi and P. Agarwal, Certain unified integrals associated with Bessel functions, Boundary Value Problems 2013 (2013), 95.
[4] J. Choi, P. Agarwal, S. Mathur and S.D. Purohit, Certain new integral formulas involving the generalized Bessel functions, Bull. Korean Math. Soc. 51 (2014), 995-1003.
[5] R. Dáaz and E. Pariguan, On hypergeometric functions and Pochhammer k-symbol, Divulg. Mat. 15 (2007), no. 2, 179-192.
[6] A. Erdélyi, W. Magnus, F. Oberhettinger, and F.G. Tricomi, Higher Transcendental Functions, Vol.1, McGraw-Hill, New York, Toronto, London, 1953.
[7] A. Erdélyi, W. Magnus, F, Higher Transcendental Functions, Vol.2, McGraw-Hill, New York, Toronto, London, 1953.
[8] K. S. Gehlot, Differential Equation of K-Bessels Function and its Properties, Nonl. Analysis and Differential Equations, Vol. 2, 2014, no. 2, 61-67
[9] K. S. Gehlot, Recurrence Relations of K-Bessels function Thai J. Math., to appear: http://thaijmath.in.cmu.ac.th/index.php/thaijmath/article/view/1042/717.
[10] K. S. Gehlot and S. D. Purohit, Integral representations of the k-Bessel’s function, Honam Math. J. 38 (2016), no. 1, 17-23.
[11] S.R. Mondal, Representation Formulae and Monotonicity of the Generalized k-Bessel Functions, arXiv:1611.07499 [math.CA], (2016).
[12] J. L. Lavoie and G. Trottier, On the sum of certain Appell's series, Ganita 20(1) (1969), 31-32.
[13] N. Menaria, S. D. Purohit and R. K. Parmar, On a new class of integrals involving generalized Mittag-Leffler function, Surveys in Mathematics and its Applications 11 (2016), 1-9.
[14] K. S. Nisar and S. R. Mondal, Certain unified integral formulas involving the generalized modified k-Bessel function of first kind, arXiv: 1601.06487 [math.CA].
[15] K. S. Nisar, P. Agarwal and S. Jain, Some unified integrals associated with Bessel-Struve kernel function, arXiv:1602.01496v1 [math.CA].
[16] E.M. Wright, The asymptotic expansion of the generalized hypergeometric functions, J. London. Math. Soc. 10 (1935), pp. 286-293.
[17] E.M. Wright, The asymptotic expansion of integral functions defined by Taylor Series, Philos. Trans. Roy. Soc. London A 238 (1940), pp. 423-451.
[18] E.M. Wright, The asymptotic expansion of the generalized hypergeometric function II, Proc. London. Math. Soc. 46(2) (1935), pp. 389-408.
[19] G. N. Watson, A treatise on the theory of Bessel functions, Cambridge Mathematical Library, Cambridge University Press, Cambridge, 1995. Reprinted, 1996.

DEPARTMENT OF MATHEMATICS UNIVERSITY OF SARGODHA, SARGODHA, PAKISTAN

GAUHAR RAHMAN
DEPARTMENT OF MATHEMATICS, INTERNATIONAL ISLAMIC UNIVERSITY, ISLAMABAD, PAKISTAN
E-mail address: gauhar55uom@gmail.com

KOTTAKKARAN SOOPPY NISAR
DEPARTMENT OF MATHEMATICS, COLLEGE OF ARTS AND SCIENCE, PRINCE SATTAM BIN ABDULAZIZ UNIVERSITY, WADI AL DAWASER, RIYADH REGION 11991, SAUDI ARABIA
E-mail address: knisar1@gmail.com, n.sooppy@psau.edu.sa

SHAHID MUBEEN
DEPARTMENT OF MATHEMATICS, UNIVERSITY OF SARGODHA, SARGODHA, PAKISTAN
E-mail address: smjhanda@gmail.com

MUHAMMAD ARSHAD
DEPARTMENT OF MATHEMATICS, INTERNATIONAL ISLAMIC UNIVERSITY, ISLAMABAD, PAKISTAN
E-mail address: marshad_zia@yahoo.com