Protective Role of Taurine against Arsenic-Induced Mitochondria-Dependent Hepatic Apoptosis via the Inhibition of PKCδ-JNK Pathway

Joydeep Das, Jyotirmoy Ghosh, Prasenjit Manna, Parames C. Sil*

Division of Molecular Medicine, Bose Institute, Kolkata, India

Abstract

Background: Oxidative stress-mediated hepatotoxic effect of arsenic (As) is mainly due to the depletion of glutathione (GSH) in liver. Taurine, on the other hand, enhances intracellular production of GSH. Little is known about the mechanism of the beneficial role of taurine in As-induced hepatic pathophysiology. Therefore, in the present study we investigated its beneficial role in As-induced hepatic cell death via mitochondria-mediated pathway.

Methodology/Principal Findings: Rats were exposed to NaAsO₂ (2 mg/kg body weight for 6 months) and the hepatic tissue was used for oxidative stress measurements. In addition, the pathophysiologic effect of NaAsO₂ (10 μM) on hepatocytes was evaluated by determining cell viability, mitochondrial membrane potential and ROS generation. As caused mitochondrial injury by increased oxidative stress and reciprocal regulation of Bcl-2, Bcl-xl/Bad, Bax, Bim in association with increased level of Apaf-1, activation of caspase 9/3, cleavage of PARP protein and ultimately led to apoptotic cell death. In addition, As markedly increased JNK and p38 phosphorylation with minimal disturbance of ERK. Pre-exposure of hepatocytes to a JNK inhibitor SP600125 prevented As-induced caspase-3 activation, ROS production and loss in cell viability. Pre-exposure of hepatocytes to a p38 inhibitor SB2035, on the other hand, had practically no effect on these events. Besides, As activated PKCδ and pre-treatment of hepatocytes with its inhibitor, rottlerin, suppressed the activation of JNK indicating that PKCδ is involved in As-induced JNK activation and mitochondrial dependent apoptosis. Oral administration of taurine (50 mg/kg body weight for 2 weeks) both pre and post to NaAsO₂ exposure or incubation of the hepatocytes with taurine (25 mM) were found to be effective in counteracting As-induced oxidative stress and apoptosis.

Conclusions/Significance: Results indicate that taurine treatment improved As-induced hepatic damages by inhibiting PKCδ-JNK signalling pathways. Therefore taurine supplementation could provide a new approach for the reduction of hepatic complication due to arsenic poisoning.

Introduction

Arsenic (As) is a widespread environmental toxin. It enters the organisms by dermal contact, inhalation, or ingestion of contaminated drinking water and affects nearly entire organ systems of the body [1]. Investigations at the cellular and molecular levels reveal that As enhances production of reactive oxygen species (like, superoxide and hydrogen peroxide), causes lipid peroxidation, enhances oxidation of proteins, enzymes as well as DNA [2,3], disrupts mitosis and promotes apoptosis [4]. Among several mechanisms, oxidative stress due to accelerated production of free radicals has also been implicated for As-induced injury in liver, kidney, brain, testes and other tissues [5,6].

Antioxidants have been found beneficial to mitigate chemical-induced oxidative damage [7,8,9,10]. Antioxidant property of the conditional amino acid, taurine (2-aminoethanesulfonic acid), is also well-established and therefore, could be considered as a potent candidate in this regard. Taurine is an end product of L-cysteine metabolism and is the most abundant free amino acid in many tissues. It protects many of the body’s organs against toxicity and oxidative stress caused by various toxic substances [11,12,13,14,15,16,17]. Taurine causes enhancement in intracellular glutathione (GSH) levels by directing cysteine into the GSH synthesis pathways as cysteine is a precursor of both taurine and GSH [18,19]. Taurine also stabilizes GSH-metabolizing enzymes [20], stimulates glucose-6-phosphate dehydrogenase that generates NADPH needed for the restoration of GSH from GSSG [21]. Since the hepatotoxic effect of As is mainly due to the depletion of GSH in the liver, hence, it may be hypothesized that taurine could also play a protective role against As-induced hepatotoxicity.

The drinking water containing arsenic more than 10 μg/L is harmful to the body. In human, signs of chronic toxicity appear after long term exposure to a low dose of arsenic and thus we selected comparatively higher dose of arsenic in the present study using a rat model for achieving similar effects seen in humans. Therefore, the chronic arsenic toxicity in rats was achieved by oral
administration of NaAsO₂ at a dose of 2 mg/kg body weight, approximately 25 ppm in distilled water for 6 months [22]. The present study has been undertaken to evaluate the beneficial role of taurine in As-induced hepatic pathophysiology using both in vivo and in vitro models by measuring in vivo antioxidant power, levels of cellular metabolites (GSH, GSSG), activities of antiox-

Figure 1. Dose and time dependant effect of NaAsO₂ and taurine. Panel A: Dose dependant effect of NaAsO₂ on ALP level. Cont: ALP level in normal rats; As-0.5, As-1, As-1.5, As-2, As-2.5, As-3: ALP level in NaAsO₂ intoxicated rats at a dose of 0.5 mg, 1 mg, 1.5 mg, 2 mg, 2.5 mg and 3 mg/kg body weight respectively for 6 months. Panel B: Dose and time dependent effect of taurine on ALP level against arsenic induced toxicity. Cont: ALP level in normal rats, As: ALP level in NaAsO₂ treated rats, TAU-10+As, TAU-20+As, TAU-30+As, TAU-40+As, TAU-50+As, TAU-60+As: ALP level in taurine (TAU) treated rats for 2 weeks at a dose of 10, 20, 30, 40, 50 and 60 mg/kg body weight prior to NaAsO₂ administration; TAU-0.5W+As, TAU-1W+As, TAU-1.5W+As, TAU-2W+As, TAU-2.5W+As, TAU-3W+As: ALP level in taurine (TAU) treated rats for 0.5, 1, 1.5, 2, 2.5 and 3 weeks respectively at a dose of 50 mg/kg body weight prior to As administration. Panel C: Time dependent effect of taurine on ALP level against NaAsO₂ induced toxicity in serum. Cont: ALP level in normal rats, As-0.5W, As-1W, As-2W, As-2.5W, As-3W: ALP level in NaAsO₂ intoxicated rats after 0.5, 1, 2, 2.5 and 3 weeks respectively from the last dose of NaAsO₂, As+TAU-0.5W, As+TAU-1W, As+TAU-1.5W, As+TAU-2W, As+TAU-2.5W, As+TAU-3W: ALP level in taurine (TAU) treated rats for 0.5, 1, 2, 2.5 and 3 weeks respectively at a dose of 50 mg/kg body weight after NaAsO₂ administration. Each column represents mean ± SD, n=6. “a” indicates the significant difference between the normal control and As intoxicated groups and “b” indicates the significant difference between taurine post-treated and recovery groups. (P<0.05, P<0.05).

doi:10.1371/journal.pone.0012602.g001
idant enzymes, lipid peroxidation end products etc. Molecular mechanism underlying the protective action of taurine against NaAsO2 induced hepatic dysfunction was assessed by evaluating the role of different PKC isozymes and MAP kinase family proteins. In addition, anti-apoptotic action of taurine was necessary for taurine to protect rat liver against NaAsO2 induced

Results

Dose dependent effect of NaAsO2 by ALP assay

In order to determine the dose-dependent As induced hepatic damage, we carried out a dose-dependent study using ALP assay as an index of that damage. As evidenced from figure 1A, in As intoxicated animals, maximum ALP level in plasma was reached at a dose of 2 mg/kg body weight after 6 months. Effect of As was not much beyond this concentration. This dose was, therefore, chosen as the optimum dose and time for pretreatment with taurine throughout the study.

Dose and time dependent study of taurine by ALP assay

ALP assay was used to determine the optimum dose and time necessary for taurine to protect rat liver against NaAsO2 induced oxidative damages. Experimental results suggest that NaAsO2 intoxication (at a dose of 2 mg/kg body weight for, orally for 6 months) increased the ALP level and that could be prevented by the pretreatment with taurine up to a dose of 50 mg/kg body weight daily for 2 weeks (figure 1B).

Similarly post-treatment with taurine at a dose of 50 mg/kg body weight daily for 2 weeks after NaAsO2 administration also decreased the elevated level of ALP (figure 1C). These dose and time were, therefore, chosen as the optimum dose and time for taurine treatment throughout the study.

Effect of taurine on As-induced hepatotoxicity

To elucidate whether NaAsO2 administration induced liver damage, we measured food intake, body weight, liver weight and the serum specific marker enzymes activities. During the 6 months of exposure of arsenic, no mortality occurred. There was no significant difference in food and water intake between normal and NaAsO2 exposed animals. Body weight and liver weight were reduced in NaAsO2 exposed animals compared to control animals although the liver weight to body weight ratios between these two groups remained practically unaltered (table 1). Both Pre and post-treatment with taurine significantly inhibited this alteration of the liver and body weight.

We observed increased deposition of arsenic in the liver of arsenic exposed animals, thus indicating the incapability of the liver to eliminate the increased arsenic that the animals were exposed to (table 1). Taurine effectively increased urinary arsenic excretion and thus lowered the accumulation of arsenic in the liver tissues (table 1). The status of the serum specific marker enzymes related to liver dysfunctions has been represented in table 2. NaAsO2 administration caused a significant increase in the activities of ALT and ALP (table 1). However, taurine treatment both pre and post to NaAsO2 administration reduced these levels almost close to normal against NaAsO2 induced hepato-toxicity.

Table 1. Effect of taurine on NaAsO2- induced hepatotoxicity in experimental rats.

Parameters	Normal Control	Toxin Control	TAU+As	As+TAU	TAU
Body weight(g)	265.25±6.27	237.72±5.16^a	259.78±5.98^b	252.59±5.77^b	267.54±6.27
Liver weight(g)	5.71±0.16	5.12±0.13	5.48±0.14	5.40±0.14	5.72±0.17
Ratio of the liver	2.16±0.13	2.15±0.13	2.11±0.14	2.14±0.14	2.14±0.14
Weight to the body weight (%)					
Hepatic Arsenic (µg/g tissue)	0.16±0.01	1.54±0.06^a	0.52±0.03^b	0.69±0.03^b	0.13±0.01
Urinary Arsenic (µg/g creatinine)	7.86±0.31	61.13±2.57^a	118.47±4.92^b	103.37±4.09^b	10.51±0.48
ALT (IU/L)	20.54±0.06	38.52±1.53^a	24.24±1.12^b	26.75±1.27^b	20.15±0.08
ALP (KA Units)	27.58±1.23	55.26±3.21^a	32.39±2.03^b	36.38±2.05^b	25.49±0.83

^a Values differs significantly from normal control (P<0.05).

^b Values differs significantly from toxin control (P<0.05).

Values are expressed as mean ± SD, for 6 animals in each group.

doi:10.1371/journal.pone.0012602.t001

Table 2. Effect of taurine on NaAsO2-induced mitochondrial oxidative stress.

Parameters	Normal Control	Toxin Control	TAU+As	As+TAU	TAU
GSH (nmol/mg protein)	8.32±0.37	4.82±0.27^a	7.86±0.33^b	6.41±0.28^b	9.18±0.41
GSSG (nmol/mg protein)	0.19±0.01	0.54±0.03^a	0.23±0.01^b	0.28±0.01^b	0.17±0.008
Redox ratio (GSH/GSSG)	43.79±2.12	8.92±0.52^a	34.17±1.63^b	22.89±1.11^b	54.0±2.31
MDA (nmol/mg protein)	3.79±0.15	7.53±0.34^a	4.62±0.21^b	5.14±0.22^b	3.15±0.14

^a Values differs significantly from normal control (P<0.05).

^b Values differs significantly from toxin control (P<0.05).

Values are expressed as mean ± SD, for 6 animals in each group.

doi:10.1371/journal.pone.0012602.t002
As-induced hepatic oxidative stress: protection by taurine

GSH plays a critical role in scavenging ROS generated after the toxic insult. A massive amount of GSH is consumed to accomplish this task, thus shifting the redox status of the cell. Similar results were exhibited in our study in which NaAsO2 drastically reduced GSH/GSSG ratio by 4.9-fold (table 2) in liver mitochondria and 5.3-folds (table 3) in liver tissue confirming ROS generation and oxidative stress. In addition we also found that peroxidation of both mitochondrial (table 2) and total cellular lipid (table 3) increased significantly in the liver following NaAsO2 administration. Treatment with taurine, however, maintained these levels almost close to normal. Our results also indicated that administration of taurine increases activities of antioxidant enzymes (catalase, GST, GPs, GR, SOD and G6PD) compared to NaAsO2 treated animals (table 4). Increase in the activities of these enzymes prevents the mitochondrial generated reactive radicals from causing oxidative stress, cellular damage and compensate for lack of GSH functioning.

Effects of taurine against NaAsO2-induced H$_2$O$_2$ level

Arsenic-induced oxidative stress has been shown to cause DNA damage through the production of superoxide and hydrogen peroxide. Therefore, we measured the H$_2$O$_2$ level in hepatic tissues of the experimental animals. We observed that hepatic H$_2$O$_2$ level was significantly increased in NaAsO2 exposed animals (table 4). However, treatment with taurine both pre and post to NaAsO2 administration reduced this H$_2$O$_2$ production.

Taurine ameliorated As induced cytotoxicity

Our results showed that NaAsO2 caused loss in cell (hepatocytes) viability. To investigate whether this loss could be prevented by taurine, we performed MTT assay. As evidenced from figure 2A, reduction in cell viability increased with increasing NaAsO2 concentration. Incubation of the hepatocytes with NaAsO2 at a concentration of 10 mM for 8 hr showed optimum reduction in cell viability. After that, the loss in cell viability remains practically constant even with increasing NaAsO2 concentration. Therefore, this particular concentration of NaAsO2 has been used throughout the study. Figure 2B showed that the increased taurine concentration (from 5 to 30 mM), caused a dose dependent increase in viability of NaAsO2 treated cells. While NaAsO2 exposed hepatocytes had a viability of only 62%, taurine treatment increased the viability up to 93% when treated with 25 mM (optimum concentration) taurine. Therefore, this concentration (25 mM) of taurine has been used in all the subsequent studies.

Earlier experiments suggest that NaAsO2 induces reactive oxygen species (ROS) generation in the liver tissue of experimental animals [23]. So, we wanted to find out whether this toxin could exert the same effect in the liver cells, hepatocytes and if it could, whether taurine plays any protective role in this pathophysiology. We, therefore, determined the ROS level in all sets of experimental hepatocytes (normal, As-treated and taurine+As treated). Fluorescence spectrometric analysis showed that NaAsO2 enhanced ROS generation in hepatocytes (Fig. 2C), (arrows indicate fluorescent dye, DCF uptake by hepatocytes) and that could be prevented by treatment with taurine.

Table 4. Effect of taurine and NaAsO2 on the activities of the antioxidant enzymes.

Name of the antioxidant enzymes	Normal Control	Toxin Control	TAU+As	As+TAU	TAU
SOD (Unit/mg protein)	116.42 ± 5.13	63.57 ± 3.02a	106.97 ± 4.82b	91.76 ± 4.21b	121.18 ± 5.14
CAT (μmol/min/mg protein)	189.22 ± 8.63	89.78 ± 3.52a	167.96 ± 7.52b	159.76 ± 6.83b	192.48 ± 8.71
GST (μmol/mg protein)	3.59 ± 0.15	1.16 ± 0.05a	2.34 ± 0.12b	2.12 ± 0.10b	3.67 ± 0.16
GR (nmol/mg protein)	144.91 ± 6.82	66.36 ± 3.23a	119.94 ± 5.21b	109.48 ± 4.93b	146.42 ± 6.83
GPx (nmol/mg protein)	157.05 ± 7.32	69.91 ± 3.21a	144.51 ± 6.82b	137.41 ± 6.57b	159.43 ± 7.31
G6PD (nmol/mg protein)	241.69 ± 10.29	132.51 ± 6.39a	223.62 ± 9.68b	217.05 ± 9.18b	246.18 ± 10.30

a values differs significantly from normal control (P<0.05).

b values differs significantly from toxin control (P<0.05).

Values are expressed as mean ± SD, for 6 animals in each group.

doi:10.1371/journal.pone.0012602.t004
Figure 2. Impact of As and taurine on cell viability, ROS production, $\Delta\psi_m$ and intracellular ATP levels. Panel A: Dose dependent effect of As on cell viability; Panel B: Dose dependent effect of taurine on As treated hepatocytes; Cont: cell viability in normal hepatocytes; As-2.5, As-5, As-7.5, As-10, As-12.5 and As-15: cell viability in As treated hepatocytes for 8 h at a dose of 2.5, 5, 7.5, 10, 12.5 and 15 μM; TAU-10, TAU-20, TAU-25, TAU-30, and TAU-40: cell viability level in hepatocytes treated with taurine (1 h prior to As addition) and As for 8 h at a dose of 10, 20, 25, 30 and 40 mM. Panel C: The intracellular ROS production was detected by DCF-DA method in As treated hepatocytes in absence (As) and presence of taurine.
Mitochondrial membrane potential ($\Delta \Psi_{m}$) was assessed in the liver mitochondria of NaAsO$_2$ exposed hepatocytes. $\Delta \Psi_{m}$ was decreased in mitochondria isolated from the hepatocytes exposed with As (Fig. 2D). Administration of taurine prevented this NaAsO$_2$-induced loss in $\Delta \Psi_{m}$ thereby indicating the membrane stabilizing effect of taurine.

In addition, cellular ATP level was also measured and found that this level was significantly lower in As-exposed hepatocytes than in untreated ones (Fig. 2E). However, pretreatment of hepatocytes with taurine could prevent this As-induced lowering of ATP content.

Loss of the mitochondrial membrane potential promotes cytochrome c release into cytosol and activates caspases via apoptosisome formation. Therefore, we assessed the leakage of cytochrome c into cytosol and the status of caspases (initiator caspase 9 and effector caspase 3) and Apaf-1 in NaAsO$_2$ intoxicated hepatocytes. Immunoblot analyses showed an decreased mitochondrial membrane cytochrome c level, increased cytosolic cytochrome c and Apaf-1 level associated with up-regulation of caspase 9, caspase 3 and cleaved caspase 3 in NaAsO$_2$ exposed hepatocytes indicating involvement of the mitochondrial apoptotic pathway in this pathophysiology (figure 3A, 3B, 3C, 3D, 3E). Taurine exerted its beneficial effect by inhibiting cytochrome c release and Apaf-1. It was also found to be effective in inhibiting caspase 3 and caspase 9 levels in the cytosol.

We then examined PARP cleavage to elucidate the molecular mechanism underlying the protective effects of taurine against NaAsO$_2$-induced cell death as PARP cleavage represents a biochemical hallmark of apoptosis. Western blot analysis revealed that NaAsO$_2$ exposure caused the degradation of 116 kDa PARP to the characteristic 84 kDa PARP fragment (figure 3F). However, taurine treatment could inhibit this NaAsO$_2$-induced cleavage of PARP.

As-induced apoptosis of hepatocytes: modulation by taurine

We, further, investigated the mode of cell death in hepatocytes isolated from NaAsO$_2$-exposed rats using flow cytometric analysis, DNA gel electrophoresis and DAPI staining. To characterize the nature of NaAsO$_2$-induced cell death pathway, we, first quantified apoptotic cells among the injured ones using flow cytometry analysis. As illustrated in Figure 4A, about 55.23% of the hepatocytes isolated from NaAsO$_2$-exposed rats underwent apoptosis, among which 38.74% hepatocytes underwent early apoptosis (annexin V$^+$/PI$^-$), 16.49% hepatocytes underwent late apoptosis (annexin V$^+$/PI$^+$) and 11.20% hepatocytes underwent necrosis (annexin V$^-$/PI$^-$). However both pre and post-treatment with taurine (hepatocytes viability are respectively 81.89% and 74.48%) effectively reduced the numbers of both apoptotic and necrotic cells indicating that taurine protected hepatocytes in NaAsO$_2$-induced hepatic pathophysiology.

Next, to show the apoptotic changes in the hepatocytes, we examined the DNA fragmentation pattern. NaAsO$_2$ caused a DNA ladder fragmentation (a hallmark of apoptosis) associated with a smear (figure 4B). Taurine treatment effectively reduced the DNA laddering and smearing of the NaAsO$_2$ exposed animals.

Finally we focused on the morphological changes of hepatocytes undergoing apoptosis (induced by NaAsO$_2$) using DAPI staining. As shown in Figure 4C, hepatocytes from control animals exhibit normal morphology, whereas cells from NaAsO$_2$ exposed animals were observed to have condensed and fragmented DNA in the nucleus. Taurine treatment, however, restored the normal morphology of these cells as evidenced from the figure 4C.

Taurine mitigated the pro-apoptotic effects of As on Bcl-2 family and BH3-only proteins

Oxidative stress-induced apoptosis is directly related to mitochondrial dysfunction. Therefore, we investigated whether As-induced mitochondrial dysfunction is mediated by the Bcl-2 family proteins. We observed that NaAsO$_2$ induced up-regulation of pro apoptotic (active non-phospho form of Bad, Bax) and down-regulation of anti apoptotic (active non-phospho form of Bcl-2, Bcl-xl). Bcl-2 family proteins both in vivo and in vitro (Fig. 5A, 5B, 5C, 5D). However, taurine treatment inhibited As-induced up-regulation of Bcl-2, Bad and down-regulation of Bcl-xl. To further investigate whether arsenic exposure affects the expression of Bcl-2 and Bax at the mRNA levels, transcription levels of Bcl-2 and Bax were checked in the liver tissue of the experimental rats. Semi-quantitative analysis showed significant down regulation of Bcl-2 gene and upregulation of Bax gene expressions following arsenic exposure. However, these altered gene expressions were reversed due to taurine treatment. Of the eight known BH3-only proteins, only Bim and Bid bind and activate Bax. Since in the present study, we set our aim to investigate mitochondrion dependent apoptotic pathways and “Bid” is not involved in this pathway, we investigated the effect of “arsenic and taurine” on “Bim” in hepatocytes apoptosis. Bim exists at the protein level as three isoforms, including Bim extra long (BimEL), Bim long (BimL), and Bim short (BimS). In the liver and hepatocytes, BimEL was readily identified by immunoblot analysis. Arsenic significantly increased cellular BimEL protein expression, whereas treatment with taurine could reduce this alteration (Fig. 5E).

Activation of MAP kinase by NaAsO$_2$, protection via Taurine

To investigate whether MAPKs play any role in As-induced hepatic pathophysiology and apoptotic cell death, we first analyzed the activation status of ERK1/2, JNK, and p38 MAPK by immunoblot analysis with antibodies specific to the phosphorylated form of these kinases. NaAsO$_2$ intoxication resulted in a dramatic increase in the phosphorylated form of p38 and JNK MAPKs in both rat liver and hepatocytes (Fig. 6). On the other hand, the level of the phosphorylated ERK1/2 was not altered significantly. However, taurine treatment both pre and post to NaAsO$_2$ administration significantly reduced all these As induced alterations.
A. Mitochondrial Cytochrome c

	Cont	TAU	As	TAU+	As
Width	15 kD				

Complex IV/4

	Cont	TAU	As	TAU+	As
Width	15 kD				

B. Cytosolic Cytochrome c

	Cont	TAU	As	TAU+	As
Width	15 kD				

C. Caspase 9

	Cont	TAU	As	TAU+	As
Width	35 kD				

D. Apaf 1

	Cont	TAU	As	TAU+	As
Width	130 kD				

E. Caspase 3

	Cont	TAU	As	TAU+	As
Width	17 kD				

F. PARP

	Cont	TAU	As	TAU+	As
Width	116 kD				

	Cont	TAU	As	TAU+	As
Width	84 kD				

β actin

	Cont	TAU	As	TAU+	As
Width	42 kD				
Figure 3. Immunoblot analysis on Mitochondrion-dependent pathway in absence (As) and presence of taurine (TAU+As). Panel A: Mitochondrial cytochrome c, complex IV subunit was used as loading control. Panel B: Cytosolic cytochrome c, Panel C: Caspase 9, Panel D: Apaf 1, Panel E: Caspase 3, Panel F: PARP. β-actin was used as an internal control. Data represent the average ± SD of 6 separate experiments in each group. "a" indicates the significant difference between the normal control and As treated groups, "b" indicates the significant difference between the As treated and taurine treated groups (TAU+As). (P<0.05, Pb<0.05).

Figure 4. Mode of cell death in absence (As) and presence of taurine (TAU+As and As+TAU). Fig. A: percent distribution of apoptotic and necrotic cells. Cell distribution was analysed using Annexin V binding (taken as x axis) and PI uptake (taken as y axis). The FITC and PI fluorescence were measured using flow cytometer with FL-1 and FL-2 filters respectively. Results expressed as dot plot representing as one of the six independent experiments. Fig. B: DNA fragmentation pattern on agarose/EtBr gel. DNA isolated from experimental liver tissues was loaded onto 1% (w/v) agarose gels. Lane 1: Marker (1 kb DNA ladder); Lane 2: DNA isolated from normal liver; Lane 3: DNA isolated from As intoxicated liver; Lane 4: DNA isolated from taurine pretreated liver samples, Lane 5: DNA isolated from taurine post-treated liver samples. Arrows indicate ladder formation in DNA isolated from NaAsO₂ intoxicated animals. Fig. C: DAPI staining. Cell nuclei of untreated or As and taurine treated hepatocytes were visualized following DNA staining with the fluorescent dye DAPI and were observed using a microscope (original magnification ×20). The measurements were made in six times. Arrows indicate fragmented and condensed DNA in hepatocytes.
Effects of p38 and JNK MAPK inhibition on As-induced apoptosis

Based on the earlier result, we investigated whether p38 and JNK MAPKs are involved in the prevention of As-induced apoptosis in hepatocytes. The cells were pre-treated with SB203580, SP600125 separately for 15 min for two different sets of experiments and then effect of As on cell viability and caspase-3 activation were determined. Results showed that JNK inhibition significantly increased cell viability and reduced caspase-3 activation in NaAsO2 exposed hepatocytes, whereas p38 inhibition had no effect on these events (Fig. 7), indicating that p38-MAPK is not involved in the prevention of As-induced apoptosis. In presence of the JNK inhibitor, NaAsO2 did not cause any significant change in ROS generation (Fig. 2C). When cells were treated with taurine in presence of JNK inhibitor, further reduction in ROS production (Fig. 2C) and caspase-3 inactivation were observed accompanied by an increase in cell viability (Fig. 7), suggesting the involvement of JNK MAPK signaling pathway in taurine mediated cyto protection.

Activation of PKC by NaAsO2, inhibition by taurine

The PKC family consists of a number of different serine/threonine kinases, of which specific isoforms have been shown to be either pro-apoptotic or anti-apoptotic, depending on the nature of the stimuli and cell types used for the study [24,25,26,27]. We, therefore, determined the role of major PKC isoforms in As induced hepatic pathophysiology and observed that NaAsO2 intoxication significantly increased the expression of PKCδ both in vivo and in vitro, whereas the expression of other two major isoforms of PKC, (PKCα and PKCβ) remained unchanged (Fig. 8). Taurine treatment, however, significantly reduced this As induced up-regulation of PKCδ.

Effects of PKCδ inhibition on As-induced apoptosis

To check whether there is any cross talk between PKC and MAPKs, we pre-treated the hepatocytes with rottlerin for 30 min and then studied the effects of As and taurine on JNK activation. Rottlerin has been used as a PKCδ inhibitor based on in vitro studies that have shown that the IC50 for PKCδ was 3–6 μM, PKCα,βγ of 30–42 μM and PKCζ,ϵ,η,ζ of 80–100 μM [28]. Among the protein kinases tested, only CaM-kinaseIII is suppressed by rottlerin as effectively as PKCδ [28]. Recently it has also been observed that rottlerin inhibits the Nuclear Factor κB (NF-κB) [29]. However, in our present study, except PKCδ no other PKC isoforms has been activated. Besides, NFκB and CaM-kinaseIII were also not involved in our study. Therefore, we used rottlerin as a selective inhibitor for PKCδ. We observed that rottlerin reduced As-induced phosphorylation of PKCδ and significantly increased cell viability compared to As-induced hepatocytes (Fig. 9). Results also showed that PKCδ inhibitor blocked the As-induced JNK activation with a similar trend to the results of taurine treatment. Thus, these results suggest that taurine...
inhibits NaAsO$_2$-induced JNK activation and apoptosis by suppressing the activation of PKCδ.

Histological assessment
Arsenic-induced liver injury and its protection by taurine in our model are finally confirmed by the evidence of histological changes. Histological assessments of different liver segments of the normal and experimental animals have been presented in figure 10. As induced prominent hepatocytes degeneration indicated by arrows. Taurine treatment (both pre and post) showed a considerable improvement in liver morphology.

Discussion

Literatures support the fact that arsenic has a direct toxic effect on cellular respiration in liver mitochondria with an evidence of oxidative stress and hepatic collagenses in humans [30,31,32]. This toxic effect on cellular respiration occurs because arsenic binds to lipico acid in the mitochondria and inhibits pyruvate dehydrogenase. The resulting uncoupling of mitochondrial oxidative phosphorylation increases hydrogen peroxide production, decreases cellular respiration and ultimately leads to hepatotoxicity and porphyrinuria. The present study also showed that exposure to sodium arsenite significantly increased ROS production, enhanced oxidative stress and induced apoptosis in hepatocytes. However, the liver conditions have been improved upon taurine treatment.

The hepatotoxic effect of As is mainly due to the depletion of GSH in the liver. In this present study, we observed several indications of oxidative stress (such as depletion of GSH, increased levels of GSSG and lipid peroxidation) in both hepatic tissues and mitochondria. Mitochondrial GSH plays an important role in maintaining mitochondria healthy and its depletion may cause oxidative injury in hepatocytes. We also found a significant increase in intracellular ROS production along with a fall in GSH generating (G6PD and GR) and ROS scavenging (antioxidant) enzymes (GST, GPx, SOD, CAT) activities in hepatic tissues. However, taurine supplementation effectively reduced these alterations in As induced hepatic pathophysiology. GSH has been considered to be an important intracellular reductant for arsenic methylation and transport [33,34], which in turn helps the removal of arsenic from the body. Depletion of hepatic GSH facilitates accumulation of arsenic in the liver and thus causes oxidative stress. However taurine treatment significantly increased hepatic GSH level and lowered the accumulation of arsenic in hepatic tissues via increased urinary arsenic excretion. Therefore, taurine-induced increased GSH level during exposure to toxic electrophiles generated by arsenic as well as its rapid elimination/ excretion from the body play an important role in decreasing oxidative stress.

Apoptosis, a phenomenon of programmed cell death, is a self-destruction mechanism involved in a variety of biological events. Mitochondria have been described as the garden of cell death and play a crucial role in regulating cell death pathways [35,36]. ROS are predominantly produced in mitochondria and play an important role in apoptosis. The central executers of the apoptotic pathways are Bcl-2 family proteins and caspases (cysteinyl aspartic acid-specific proteases). Bcl-2 family members regulate apoptosis by modulating the release of cytochrome c from mitochondria to cytosol. In the cytosol, Apaf1, pro-caspase-9 and released cytochrome c from the mitochondria interact to form the apoptosome that drives the activation of caspase-3. To confirm As-induced mitochondria-dependent apoptosis, we determined the mitochondrial membrane potential, intracellular ATP level as well as expressions of Bcl-2 family and BH-3 only proteins, cytochrome c, caspase 3, caspase 9, Apaf1 and PARP in arsenic-induced hepatic pathophysiology and observed that As significantly up-regulated pro-apoptotic (Bad, Bim) and down-regulated anti-apoptotic (Bcl-2, Bcl-xL) proteins, reduced mitochondrial membrane potential and intracellular ATP level, increased cytochrome c release and protein level of Apaf-1 in the cytosol. Reduction of the mitochondrial membrane potential and activation of caspases (caspase 3 and caspase 9) subsequently modulated PARP cleavage from its full-length form (116 kDa) to the cleaved form (84 kDa). In liver, arsenic also markedly enhances cellular Bax and reduces Bcl-2 mRNA levels and therefore probably regulates Bax and Bcl-2 expression by both transcriptional and post-transcriptional levels. Taurine treatment, however, effectively inhibited all these As-induced pro-apoptotic events.

MAPKs comprise a family of serine/threonine phosphorylating proteins that mediate a variety of signal transduction pathways [37,38]. Among the MAPKs, the c-Jun NH2-terminal kinases (JNKs) and p38 result in stress responses, growth arrest, and/or apoptosis. Therefore, in order to investigate the underlying mechanisms of apoptosis in As intoxicated liver (and hepatocytes) and the beneficial role of taurine in this hepatic pathophysiology, we investigated the changes in the levels of ERK1/2, p38 and JNK by immunoblot analyses. We observed a marked increase in protein content of phosphorylated p38 MAPK and JNK in As-intoxicated liver and hepatocytes. A marginal increment of pERKs was also noted in both the liver and hepatocytes. We also observed that hepatic apoptosis induced with JNK inhibitor SP600125, suppressed the As-induced caspase 3 activation, cell viability reduction and ROS production. However, a p38-MAPK specific inhibitor, SB203580, had no effect on cell viability and caspase 3 activation on hepatocytes exposed to As. The present study also showed that taurine treatment prevented As-induced activation of Bim-EL in liver and hepatocytes. Therefore, we can conclude that JNK may induce hepatic apoptosis via a Bim-mediated, Bax-dependent mitochondrial pathway of cell death. These observations are in consistent with the data of other models where JNK-dependent Bim induction as well as phosphorylation with downstream activation of Bax-mediated apoptosis have been reported [39,40].

Protein kinase C (PKC) is a family of enzymes that are involved in controlling the function of other proteins through the phosphorylation of hydroxyl groups of serine and threonine amino acid residues on those proteins. PKC family consists of at least 12 members and can be classified into three groups based on their biochemical properties and sequence homologies, e.g. conventional PKC isoforms (PKC-α, -βI, -βII, -γ), novel PKC isoforms (nPKC-δ, ε, μ, η, θ) and atypical PKC isoforms (aPKC-λ, -μ, -ζ). The different PKC isoforms might have specific roles in signal transduction. In our study, western blot analyses revealed that NaAsO$_2$ intoxication significantly increased the expression of PKCδ both in liver tissues and hepatocytes with out changing the expression of other two major isoforms, PKCα and

Figure 6. Immunoblot analysis on MAPKinase family proteins in response to As and taurine (TAU+As and As+TAU). Panel A: Phospho and total JNK, Panel B: Phospho and total p38, Panel C: Phospho and total ERK1/2. β-actin was used as an internal control. Data represent the average ± SD of 6 separate experiments in each group. “a” indicates the significant difference between the normal control and As treated groups, “b” indicates the significant difference between the As treated and taurine treated groups. (P<0.05, P<0.05).
PKC\textsubscript{\varepsilon}. However, treatment with taurine markedly suppressed this As-induced phosphorylation of PKC\textsubscript{\varepsilon}. Furthermore, the decreased JNK activity by the specific inhibitor of PKC\textsubscript{\varepsilon}, rottlerin, strongly suggests the involvement of PKC\textsubscript{\varepsilon} in As-induced JNK activation. Further studies will clarify the exact activation mechanisms of PKC\textsubscript{\varepsilon} in response to ROS. However, one possible explanation is the production of intracellular H\textsubscript{2}O\textsubscript{2} due to NaAsO\textsubscript{2} intoxication, which subsequently activates PKC\textsubscript{\varepsilon} \cite{41,42}. As treatment reduced the hepatic H\textsubscript{2}O\textsubscript{2} production, As-induced PKC\textsubscript{\varepsilon} activation was also suppressed.

As-induced liver injury in this model is also supported by the histological changes and the increased arsenic content in the liver tissue of the intoxicated animals. However, taurine could effectively prevent the As-induced alterations of hepatic morphology and increased the excretion of As from the liver tissues.

In summary, our study demonstrates a pivotal role of mitochondria in hepatocytes apoptosis. Reactive oxygen species generated during NaAsO\textsubscript{2} exposure, induce PKC\textsubscript{\varepsilon} activation, which subsequently activates JNK and helps the progression of apoptosis. Taurine treatment, on the other hand, attenuates As-induced oxidative stress in the liver and thus prevents hepatic apoptosis. This anti-apoptotic effect of taurine is mediated by blocking the activation of PKC\textsubscript{\varepsilon} and JNK, generation and accumulation of ROS and elimination/excretion of As from the body. Taken together, our findings outline a mechanistic understanding of how taurine protects liver from As-induced toxicity (Fig. 11). In conclusion, present experimental findings point out the importance of the chronology for the treatment outcome and provided the protection that taurine could afford against arsenic-induced hepatic dysfunction by its antioxidant potential as well as other pathways involved in apoptotic cell death.

Materials and Methods

Chemicals

- Taurine (2-aminoethane sulfonic acid), anti Caspase-3, anti Cleaved Caspase-3, anti PARP, anti Apaf-1 antibodies were purchased from Sigma-Aldrich Chemical Company (St. Louis, USA). Anti Rad and anti Bcl-2 were purchased from Santa Cruz Biotechnology (Santa Cruz, CA). Sodium arsenite (NaAsO\textsubscript{2}) was bought from Sisco Research Laboratory (Mumbai, India).

Animals

- Swiss albino adult male rats weighing approximately 200–250 g and albino mice of Swiss strain, weighing between 20–25 g were purchased from M/S Gosh Enterprises, Kolkata, India. Animals were acclimatized under laboratory condition for two weeks prior to the experiments. All the experiments with animals were carried out according to the approval and guidelines of the Bose Institute animal ethical committee (the permit number is: 95/99/CPCSEA).

Determination of dose for As induced hepatic dysfunctions in vivo

To establish the dose of As necessary for hepatic damage, rats were randomly allocated into seven groups each consisting of six rats and they were treated as follows. First group served as normal control (received only water as vehicle). Remaining six groups were treated with six different doses of NaAsO\textsubscript{2} orally (0.5 mg, 1 mg, 1.5 mg, 2 mg, 2.5 mg and 3 mg/kg body weight in distilled water for 6 months).

Twenty-four hours after the final dose of NaAsO\textsubscript{2} intoxication, all rats were sacrificed and ALP levels were measured using serum of all experimental rats.

Determination of dose and time dependent activity of taurine by ALP assay

For this study, rats were randomly distributed into eight groups each consisting of six animals. First two groups were served as normal control (received only water as vehicle) and toxin control (received 2 mg/kg body weight for 6 months, orally) respectively. Remaining six groups of animals were treated with six different doses of taurine (10mg, 20mg, 30mg, 40mg, 50mg and 60mg/kg body weight for 2 weeks, orally in distilled water) followed by NaAsO\textsubscript{2} intoxication (received 2 mg/kg body weight for 6 months, orally).

To determine the time dependent effects of taurine for pre-treatment in NaAsO\textsubscript{2}-dependent hepatic disorder, rats were divided into eight groups each consisting of six animals. First two groups were served as normal control (received only water as vehicle) and toxin control (received 2 mg/kg body weight for 6 months, orally) respectively. Other seven groups of animals were treated with taurine orally at a dose of 50 mg/kg body weight, once daily for 0.5, 1, 1.5, 2, 2.5 and 3 weeks prior to NaAsO\textsubscript{2} intoxication (received NaAsO\textsubscript{2} at a dose 2 mg/kg body weight for 6 months, orally).

Similarly, to determine the time dependent effects of taurine for post-treatment studies in NaAsO\textsubscript{2}-dependent hepatic disorder, rats were divided into eight groups each consisting of six animals. First three groups were served as normal control (received only water as vehicle), toxin control (received 2 mg/kg body weight for 6 months, orally) and recovery (received 2 mg/kg body weight for 6 months, orally and received normal diet for next 2 weeks) respectively. Other five groups of animals were treated with taurine orally at a dose of 50 mg/kg body weight, once daily for 0.5, 1, 2, 2.5 and 3 weeks after NaAsO\textsubscript{2} administration (received 2 mg/kg body weight for 6 months, orally).

At selected times after NaAsO\textsubscript{2} and taurine treatment, all rats were sacrificed. ALP levels were measured using serum of all experimental rats.

In vivo experimental set-up

The animals were divided into five groups, consisted of six rats in each and they were treated for 14 weeks as follows:

Group 1: “Normal control”: animals received only water as vehicle.

Group 2: “Toxin control (As)”: animals received 2 mg/kg body weight once daily for 6 months, orally.

Group 3: “Taurine pre-treated group (TAU+As)”: animals were treated with taurine (orally, 50 mg/kg body weight in distilled water, once daily) for 2 weeks followed by NaAsO\textsubscript{2} intoxication for 6 months.
Liver
A. Phospho PKCα

B. Phospho PKCδ

C. Phospho PKCζ

Total PKCα

Total PKCδ

Total PKCζ

β actin

Hepatocytes

Phospho PKCα

Phospho PKCδ

Phospho PKCζ

β actin

Graphs showing the ratio of Phospho PKCα/Total PKCα and Phospho PKCδ/Total PKCδ in different conditions.
Figure 8. Immunoblot analysis of PKC family proteins in response to As and taurine (TAU+As and As+TAU). Panel A: Phospho and total PKCe, Panel B: Phospho and total PKCa, Panel C: Phospho and total PKCβ. Data represent the average ± SD of 6 separate experiments in each group. β-actin was used as an internal control. "a" indicates the significant difference between the normal control and As treated groups, "b" indicates the significant difference between the As treated and taurine treated groups. (P<0.05, P<0.05).

doi:10.1371/journal.pone.0012602.g008

Group 4: “Taurine post-treated group (As+TAU)”: received NaAsO₂ for 6 months followed by taurine administration at a dose of 50 mg/kg body weight in distilled water once daily for 2 weeks.

Group 5: “Taurine alone treated group (TAU)”: animals were treated with taurine (orally, 50 mg/kg body weight in distilled water, once daily) for 2 weeks followed by no treatment for next 6 months.

The animals were sacrificed under light ether anesthesia and livers were collected.

Determination of liver weight to body weight ratio

After sacrifice, the livers from experimental animals were quickly excised and weighed. Then the ratio of liver weight to body weight was measured for each.

Hepatic and urinary arsenic estimation

The arsenic contents in liver tissues and urinary arsenic level of all experimental animals were analyzed following the method of Das et al [43] using hydride generation in Atomic Absorption Spectrophotometer (Perkin Elmer Model No. 9100).

Assessment of serum specific markers related to hepatic dysfunction

For assessment of serum specific markers (ALT and ALP levels) related to hepatic dysfunction, blood samples were collected by puncturing rat hearts of all experimental animals, kept overnight for clotting and then centrifuged at 3,000 g for 10 minutes. ALT and ALP levels in the serum were measured by using standard kits according to the method of Rietman and Frankel [44] and Kind and King [45] respectively.

Preparation of liver homogenate

Liver samples were homogenized using glass homogenizer in 100 mM potassium phosphate buffer containing 1 mM EDTA, pH 7.4 supplemented with protease and phosphatase inhibitors and centrifuged at 12,000 g for 30 minutes at 4°C. The supernatant was collected and used for the experiments.

Determination of protein content

The protein content of the experimental samples was measured by the method of Bradford [46] using crystalline BSA as standard.

Assay of cellular metabolites

Reduced glutathione (GSH) level was measured following the method of Ellman [47] by using DTNB (Ellman’s reagent) as the key reagent. Oxidized glutathione GSSG contents in the hepatic tissues of the experimental and normal animals were determined following the method of Hissin and Hilf [48].

Measurement of lipid peroxidation

The lipid peroxidation in terms of malondialdehyde (MDA) formation was measured according to the method of Esterbauer and Cheeseman [49].

Estimation of hepatic H₂O₂ level

The hydrogen peroxide level in liver tissue was determined using a slightly modified ferrous thiocyanate method of Chen et al [50].

Assay of antioxidant enzymes

The activities of antioxidant enzymes, SOD, CAT, GST, GR, GPx and G6PD have been measured in liver homogenates of all experimental animals.

SOD activity has been measured by following the method originally developed by Nishikimi et al [51] and then modified by Kakkar et al [52].

CAT activity was determined by following the decomposition of H₂O₂ at 240 nm for 10 minutes and it was monitored spectrophotometrically according to the method of Bonaventura et al [53].

GST activity was assayed based on the conjugation reaction with glutathione in the first step of mercapturic acid synthesis Habig et al [54].

GR activity was determined according to the method of Smith et al [55]. The increase in absorbance at 412 nm was monitored spectrophotometrically for 3 minutes at 24°C.

GPx activity was measured by following the method of Flohe and Gunzler [56] using H₂O₂ and NADPH as substrates.

G6PD activity was determined as described by Lee [57].

Detection of cell death pathway by flowcytometry, DNA fragmentation assay and DAPI staining

Hepatocytes were isolated from arsenic and taurine treated rat liver by perfusion technique with collagenase type I at 37°C [58]. Cells were washed with PBS, centrifuged at 800 g for 6 min, resuspended in ice-cold 70% ethanol/PBS, centrifuged at 800 g for a further 6 min, and resuspended in PBS. Cells were then incubated with propidium iodide (PI) and FITC-labelled Annexin V for 30 min at 37°C. Excess PI and Annexin V were then washed off; cells were fixed and then stained cells were analyzed by flow cytometry using FACS Calibur (Becton Dickinson, Mountain View, CA) equipped with 488 nm argon laser light source; 515 nm band pass filter for FITC-fluorescence and 623 nm band pass filter for PI-fluorescence using CellQuest software.

The DNA fragmentation has also been assayed by electrophoresing genomic DNA samples, isolated from normal as well as experimental rat liver as above, on agarose/EtBr gel by the procedure described by Sellins and Cohen [59].

To detect morphological evidence of apoptosis, cell nuclei were visualized following DNA staining with the fluorescent dye DAPI [60]. Hepatocytes isolated from NaAsO₂ and taurine treated rats as above were incubated for 10 min with DAPI (1 μg/ml) and examined using fluorescent microscopy (Microphot FX; Nikon, Tokyo).

Hepatocyte isolation and in vitro experimental protocol

Hepatocytes were isolated from rat liver following the method of [58] with some modifications. Hepatocytes were then treated with taurine (25mM), NaAsO₂ (10 μM) and taurine coupled (1h before) with NaAsO₂ and incubated at 37°C for 8 hours for further molecular and biochemical analyses.

Cell viability assessment

About 2×10⁵ hepatocytes were incubated with As either alone or after taurine administration following the method of Madesh and Balasubramanian [61]. The tetrazolium salt MTT can be
A. Phospho PKCε

- Total PKCε
- β actin

B. Phospho JNK

- Total JNK
- β actin

C. % cell viability
used to measure the metabolic activity of viable cells. Tetrazolium salts are reduced to formazan by mitochondrial succinate dehydrogenase, an enzyme which is only active in cells with an intact metabolism and respiratory chain. The formazan is quantified photometrically and correlates with the number of viable cells.

Measurement of intracellular ROS production

Briefly, hepatocytes were incubated with DCF-DA (10 mM) for 1 h at 37°C in the dark. After treatment, the cells were immediately washed and resuspended in PBS. Intracellular ROS production was detected using the fluorescent intensity of the oxidant sensitive probe 2,7-dichlorodihydrofluorescein diacetate (H₂DCFDA) in a fluorescence microscope.

Determination of mitochondrial membrane potential (Δψₘ)

After experimental treatment and following the method of Hodarnau et al. [62], fresh mitochondria were isolated from the liver tissue. Mitochondrial membrane potential (Δψₘ) was estimated [63] on the basis of cell retention of the fluorescent cationic probe rhodamine 123. The results are expressed as percentage of the fluorescence values for control (untreated).

Intracellular ATP determination

Hepatocytes that were left untreated or treated with As alone or pretreated with taurine were used for analysis of intracellular ATP as described by Kalbheim and Koch [64].

Immunoblotting

For immunoblotting, samples containing 50 μg proteins were subjected to 10% SDS-PAGE and transferred to a nitrocellulose membrane. Membranes were blocked at room temperature for 2 h in blocking buffer containing 5% non-fat dry milk to prevent non-specific binding and then incubated with anti Bim-EL (1:1000 dilution), anti BAD (1:1000 dilution), anti Bcl-2 (1:1000 dilution), anti cytochrome c (1:1000 dilution), anti cleaved caspase9 (1:1000 dilution), anti-cleaved caspase3 (1:250 dilution), Apaf-1 (1:1000 dilution), anti-PARP (1:1000 dilution), anti p-38 (1:1000 dilution), anti ERK1/2 (1:1000 dilution), anti p-JNK (1:1000 dilution), PKCδ (1:1000 dilution), PKCα (1:1000 dilution) and PKCζ (1:1000 dilution), primary antibodies at 4°C overnight. The membranes were washed in TBST (50 mmol/L Tris-HCl, pH 7.6, 150 mmol/L NaCl, 0.1% Tween 20) for 30 min and incubated with appropriate HRP conjugated secondary antibody (1:2000 dilution) for 2 h at room temperature and developed by the HRP substrate 3,3′-diaminobenzidine tetrahydrochloride (DAB) system (Bangalore, India).

Figure 9. Immunoblot analysis of PKCδ, JNK and cell viability in hepatocytes in response to rottlerin. Hepatocytes were pre-treated with 10 μM rottlerin for 30 min, then treated with As (10 μM), taurine (25 mM, added 1 h prior to As treatment) for 8 h. Panel A: effect of rottlerin on phospho and total PKCδ, Panel B: effect of rottlerin on phospho and total JNK, Panel C: effect of rottlerin on cell viability. β-actin was used as an internal control. Data represent the average ± SD of 6 separate experiments in each group. “a” indicates the significant difference between the normal control and As treated groups, “b” indicates the significant difference between the As treated and taurine treated groups. (P<0.05, P<0.05). doi:10.1371/journal.pone.0012602.g009

Figure 10. Haematoxylin and eosin stained liver section of normal, arsenic and taurine-treated rats (x10). Arrows indicate hepatocytes degeneration around the central vain in NaAsO₂ intoxicated animals. doi:10.1371/journal.pone.0012602.g010
RNA extraction and RT-PCR

RNA was extracted from liver that were left untreated or treated with As alone or treated with taurine using the Trizol method. One microgram of RNA was converted to cDNA using superscript reverse transcriptase. Thermal cycling was performed as follows: 95°C for 10 s (initial denaturation) followed by the set of cycles: 95°C for 15 s (denaturation), 55°C for 30 s (primer annealing), 72°C for 30 s (primer extension). After 25 cycles the time of DNA extension was 7 min at 72°C. The PCR amplification products were then cooled at 4°C. The PCR amplified products were then subjected to electrophoresis on 1.5% agarose gels. The product size and annealing temperature of the primers used were given in Table 5.

Histological studies

Livers from the normal and experimental rats were fixed in 10% buffered formalin and were processed for paraffin sectioning. Sections of about 3 μm thickness were stained with haematoxylin and eosin to evaluate under light microscope.

Statistical Analysis

All the values are expressed as mean ± S.D. (n = 6). Significant differences between the groups were determined with SPSS 10.0 software (SPSS Inc., Chicago, IL, USA) for Windows using one-way analysis of variance (ANOVA) and the group means were compared by Duncan’s Multiple Range Test (DMRT). A difference was considered significant at the p<0.05 level.

Acknowledgments

Authors are grateful to Mr. Prasanta Pal for excellent technical assistance for the study.

Author Contributions

Conceived and designed the experiments: JD JG PS. Performed the experiments: JD JG PS. Analyzed the data: JD PM. Contributed reagents/materials/analysis tools: JD JG PM. Wrote the paper: JD PS.

Table 5. Primers used for Bax, Bcl-2 and β-actin genes.

Gene	Oligonucleotides used for real-time polymerase chain reaction (PCR) primer sequence 5’ to 3’	Annealing temperature (°C)	Product Size(bp)
Bax	Fp: 5’-GGTGCCCTCTCTACTT-3’ Rp: 5’-AGCCACCCCTTGGTCT-3’	55	143bp
Bcl-2	Fp: 5’-ACTTTGCAAGATGTCGATG-3’ Rp: 5’-CGGTCGAGTACTCAGAT-3’	55	217 bp
β-actin	Fp: 5’-CGGTGAACATCTGAAAGAC-3’ Rp: 5’-TGGAGCCAGGGCAGTA-3’	55	110bp

doi:10.1371/journal.pone.0012602.t005

References

1. Ratnamke RN (2003) Acute and chronic arsenic toxicity. Postgrad Med J 79: 391–396.
2. Yamauchi H, Aminaka Y, Yoshioka K, Sun G, Pi J, et al. (2004) Evaluation of DNA damage in patients with arsenic poisoning: urinary β-hydroxyldeoxyguanine. Toxicol Appl Pharmacol 198: 291–296.
3. Kittich ST (2004) Recent advances in arsenic carcinogenesis: Modes of action, animal model systems, and methylated arsenic metabolites. Toxicol Appl Pharmacol 172: 249–261.
4. States JC, Reiners JJ, Pounds JG, Kaplan DJ, Beauerle BD, et al. (2002) Arsenite disrupts mitosis and induces apoptosis in SV40-transformed human skin fibroblasts. Toxicol Appl Pharmacol 188: 85–91.
5. Das J, Ghosh J, Manna P, Sinha M, Sil PC (2009) Arsenic-induced oxidative cerebral disorders: Protection by taurine. Drug Chem Toxicol 32: 93–102.
6. Das J, Ghosh J, Manna P, Sinha M, Sil PC (2009) Taurine protects rat testes against NaAsO 2-induced oxidative stress and apoptosis via mitochondrial dependent and independent pathways. Toxicol Lett 187: 201–210.
7. Chang SI, Jin B, Youn P, Park C, Park JD, et al. (2007) Arsenic-induced toxicity and the protective role of ascorbic acid in mouse tests. Toxicol Appl Pharmacol 218: 196–203.
8. Ghosh J, Das J, Manna P, Sil PC (2008) Cytoprotective effect of arjunicolic acid in response to sodium fluoride mediated oxidative stress and cell death via necrotic pathway. Toxicol In Vivo 22: 1918–1926.
9. Ghosh J, Das J, Manna P, Sil PC (2010) Arjunicolic acid, a triterpenoid saponin, prevents acetaminophen (APAP)-induced liver and hepatocyte injury via the inhibition of APAP bioactivation and JNK-mediated mitochondrial protection. Free Radic Biol Med 48: 535–533.
10. Ghosh J, Das J, Manna P, Sil PC (2010) Protective effect of the fruits of Terminalia arjuna against cadmium-induced oxidant stress and hepatic cell injury via MAPK activation and mitochondria dependent pathway. Food Chemistry 123: 1062–1075.
11. Ghosh J, Das J, Manna P, Sil PC (2009) Taurine prevents arsenic-induced cardiac oxidative stress and apoptotic damage: role of NF-kappa B, p38 and JNK MAPK pathway. Toxicol Appl Pharmacol 240: 73–87.
12. Dogru-Abbasoglu S, Kanbagli O, Balkan J, Cevikbas U, Aykac-Toker G, et al. (2001) The protective effect of taurine against thioacetamide hepatotoxicity of rats. Hum Exp Toxicol 20: 23–27.
13. Manna P, Sinha M, Sil PC (2009) Taurine plays a beneficial role against cadmium induced oxidative renal dysfunction. Amino Acids 36: 417–428.
14. Das J, Ghosh J, Manna P, Sil PC (2010) Acetaminophen induced acute liver failure via oxidative stress and JNK activation: protective role of taurine by the suppression of cytochrome P450 2E1. Free Radic Res 44: 340–55.
15. Das J, Ghosh J, Manna P, Sil PC (2010) Taurine protects acetamiphen-induced oxidative damage in mice kidney through APAP urinary excretion and CYPE1 inactivation. Toxicology 269: 24–34.
16. Das J, Ghosh J, Manna P, Sil PC (2008) Taurine provides antioxidant defense against NaF-induced cytotoxicity in murine hepatocytes. Pathophysiology 15: 181–90.
17. Roy A, Manna P, Sil PC (2009) Prophylactic role of taurine on arsenic mediated oxidative renal dysfunction via MAPK/NF-kappaB and mitochondria dependent pathways. Free Radic Res 43: 995–1007.
18. Schaffer S, Azuma J, Takahashi K, Mozaffari M (2003) Why is taurine cytoprotective. Adv Exp Med Biol 526: 307–321.

Figure 11. Schematic diagram of the NaAsO 2 induced hepato-toxicity and its prevention by taurine.
doi:10.1371/journal.pone.0012602.g011
Hagur HH (2004) The protective effect of taurine against cyclosporine A-induced oxidative stress and hepatotoxicity in rats. Toxicol Lett 151: 335–343.

Hayes J, Tipton KF, Bianchi L, Corti LD (2004) Complexities in the neurotoxic actions of 6-hydroxydopamine in relation to the cytotoxic properties of taurine. Brain Res Bull 55: 239–245.

Tabassum H, Relham K, Banerjee BD, Raisuddin S, Parvez S (2006) Attenuation of tamoxifen-induced hepatoprotective by taurine in mice. Clin Chim Acta 370: 129–136.

Flora SJS, Chouban S, Kannan GM, Mittal M (2008) Harimohan Swarnkar. Combined administration of taurine and monoisoamyl DMSA protects arsenic induced oxidative injury in rats. Oxidative Med Cellular Longevity 1: 39–45.

Flora JS, Mehta A, Gupta R (2009) Prevention of arsenic-induced hepatic apoptosis by concomitant administration of garlic extracts in mice. Chem Biol Int 127: 227–233.

Ryland M, Anderson S, Mattassa A, Barzen K, Quissell D (1999) Protein kinase C-delta is essential for etoposide-induced apoptosis in saline gland acinar cells. J Biol Chem 274: 11915–11923.

Reyland M, Anderson S, Mattassa A, Barzen K, Quissell D (1999) Protein kinase C-delta is essential for etoposide-induced apoptosis in saline gland acinar cells. J Biol Chem 274: 11915–11923.

Powell C, Brittis N, Stec D, Hug H, Heston W, et al. (1996) Persistent membrane translocation of protein kinase C alpha during 12-O-tetradecanoyl-phorbol-13-acetate-induced apoptosis of LNCaP human prostate cancer cells. Cell Growth Differ 7: 419–428.

Gschwendt M, Muller HJ, Kielbassa A, et al. (1994) Rotenin, a novel protein kinase inhibitor. Biochim Biophys Acta 1200: 93–98.

Maioli E, Greci L, Soucek K, Hyzdalova M, Pecorelli A, et al. (2009) Rottlerin protective and antiapoptotic effects of the retinoblastoma protein-dependent growth signal conflict and caspase activity are required for protein kinase C-signalized apoptosis of prostate epithelial cells. J Biol Chem 272: 22751–22757.

Takayama N, Chiba M, Higashimoto N, et al. (1988) Persistent membrane translocation of protein kinase C alpha during 12-O-tetradecanoyl-phorbol-13-acetate-induced apoptosis of LNCaP human prostate cancer cells. Cell Growth Differ 7: 419–428.

Gschwendt M, Muller HJ, Kielbassa A, et al. (1994) Rotenin, a novel protein kinase inhibitor. Biochim Biophys Acta 1200: 93–98.

Maioli E, Greci L, Soucek K, Hyzdalova M, Pecorelli A, et al. (2009) Rottlerin inhibits ROS Formation and Prevents NF-kB Activation in MCF-7 and HT-29 Cells. J Biol Chem 27: 22751–22757.

Zhao X, Gschwendt JE, Powell CT, Foster RG, Day KC, et al. (1997) Retinoblastoma protein-dependent growth signal conflict and caspase activity are required for protein kinase C-signalized apoptosis of prostate epithelial cells. J Biol Chem 272: 22751–22757.

Nishioka K, Rao NA, Yagi K (1972) The occurrence of superoxide anion in the reaction of reduced phenazine methosulfate and molecular oxygen. Biochim Biophys Acta 1200: 93–98.

Majumder PK, Sil PC (2006) A 43kD protein from the herb Cajanus indicus L. protects thioacetamide induced cytotoxicity in hepatocytes. Toxicol Appl Pharmacol 193: 309–334.

Nishikimi M, Rao NA, Yagi K (1972) The occurrence of superoxide anion in the reaction of reduced phenazine methosulfate and molecular oxygen. Biochim Biophys Acta 1200: 93–98.

Green DR, Reed JC (1998) Mitochondria and apoptosis. Science 281: 1309–1312.

Green DR, Kroemer G (2004) The pathophysiology of mitochondrial cell death. Science 305: 626–629.

Chapman JR, Frankel SA (1957) Colorimetric method for the determination of protein. Analytical Biochemistry 28: 746–760.

Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72: 248–254.

Hill RA, Green DR (1998) Mitochondria and apoptosis. Science 281: 1309–1312.

Reitman S, Frankel SA (1957) Colorimetric method for the determination of protein. Analytical Biochemistry 28: 746–760.

105: 114–121.

Esterbauer H, Cheeseman KH (1990) Determination of aldehydic lipid peroxidation products: Malonaldehyde and 4-hydroxynonenal. Methods Enzymol 186: 407–421.

Chen C, Krasow KW, Idle JR, Gonzalez FJ (2008) Identification of novel toxicity-associated metabolites by metabolomics and mass isotopomer analysis of acetaminophen metabolism in wild-type and Cyp2e1-null mice. J Biol Chem 283: 4543–4559.