Microbiological Quality and Detection of Antibiotic Residue in Raw and Pasteurized Milk Consumed in the Reconcavo Area of the State of Bahia, Brazil

Lilian Porto de Oliveira¹, Ludmilla Santana Soares e Barros²*, Valdir Carneiro Silva³ and Marina Gonçalves Cirqueira³

¹Candidate for the Master’s Degree in Animal Science at the Center of Agrarian, Environmental and Biological Sciences (CCAAB) Federal University of Bahia Recôncavo (UFRB)
²Professor at the Center of Agrarian, Environmental and Biological Sciences (CCAAB) Federal University of Bahia Recôncavo (UFRB)
³Student of the Center of Agrarian, Environmental and Biological Sciences (CCAAB) Federal University of Bahia Recôncavo (UFRB), Rui Barbosa Street, 710, Postal Code 44380-000, Cruz das Almas, Bahia, Brazil, 55 75 36219751

Abstract

The aim of this work was to check the presence of total and thermo tolerant coliforms, mesophilous microorganisms, Escherichia coli, as also residue of antimicrobial agents in raw and pasteurized milk. For this purpose, an analysis was conducted on 50 samples of raw milk and 20 of pasteurized milk from 10 municipalities of the Recôncavo da Bahia, Brazil, through the establishment of the number of total coliforms, thermo tolerant and Escherichia coli using the multiple tube technique, and also the establishment of mesophile microorganisms by deep spreading. For the detection of antimicrobial residue, the Delvotest® kit was used. The counts of total coliforms found in raw milk varied between 2.42x10⁸ and 9.02x10⁶ NMP/mL. The mean values varied between 9.43x10⁶ and 9.02x10⁶ NMP/mL to thermo tolerant coliforms. With regard to Escherichia coli means varied between 1.52x10⁶ and 2.20x10⁹ NMP/mL, and for mesophilous microorganisms the means ranged from 7.65x10⁶ and 4.75x10⁹ CFU/mL. In pasteurized milk the counts of total coliforms found 4.16x10³ and 3.66x10⁹ NMP/mL. The mean varied between 4.16x10³ and 3.10x10¹⁰ NMP/mL to thermo tolerant coliforms. With regard to Escherichia coli means varied between <3 and 2.54x10⁶ NMP/mL, and for mesophilous microorganisms the means ranged from 4.59x10⁵ and 3.60x10⁹ CFU/mL. None of the samples presented any evidence of residue of antibiotics.

Keywords: Coliforms; Mesophiles; Antimicrobial; Raw milk; Microbiology

Introduction

Without any other specification, milk can be defined as the product resulting from the complete and continuous milking of healthy cows, well fed and given sufficient rest, under good conditions of hygiene [1].

Due to its high water content, a pH close to neutral and also a diversity of nutrients, milk has become a perfect medium for the growth of several types of microorganisms which could lead to the deterioration of the milk [2-4]. These microorganisms could come from the animal itself, from humans or from the utensils used in the milking room [4,5].

The presence and the multiplication of microorganisms cause changes in the quality of the milk, thereby limiting its durability and bringing harm to the economy and also to public health, which means that the milk needs to be subjected to heat treatment, to eliminate the contaminants before the milk gets to the consumer market.

In the light of the sanitary risks, which are part of the act of ingestion of the milk obtained which is processed under unsatisfactory conditions of hygiene during production, it becomes necessary to apply efficient heat treatment to destroy the microorganisms, which does not produce significant changes, such as the nutritional quality of the product, such as the degradation of fats, protein or carbohydrates as is the case with pasteurization [6].

Both raw milk and pasteurized milk are prone to contamination with residue of anti-microbial agents, through inadequate procedures of handling, especially in treatment of mastitis, and also through the intentional addition of antibiotics to improve the usable life of the product. The consumption of a product with this kind of residue may have a reflection on reactions such as urticaria, dermatitis, asthma and rhinitis, not to mention the fact that some pharmaceutical products, including nitrofuranes and chloramphenicol have a carcinogenic effect in laboratory animals, thus representing a potential risk. The fact is that even pasteurization does not eliminate the residue of antibiotics present in Serra [7], Nero et al. [8], and Villa et al. [9].

The microbiological analysis of the milk provides useful information that reflects the conditions under which this was obtained, processed and stored [10]. Through these, there is the supply of bacterium counts that serve as indicators of the general health of the herd, the sanitation measures in place at the farm, the handling of the milk, and also the storage temperatures [11].

The microbiological quality of raw milk has already been studied by several different authors and even so the consumption of this product is still a common occurrence, especially in the Recôncavo region of the...
State of Bahia [4]. The dairy activities in this region are represented mainly by small to medium rural dairy producers who have milk as one of their sources of income for survival. Many of them lack the technical assistance which could allow the implementation of techniques to improve the quality and quantity of their production of milk.

The purpose of this work was to analyze the presence of mesophile microorganisms, total and thermo tolerant coliforms, and also to detect residue of antimicrobials in raw milk and also Type C pasteurized milk in the Recôncavo region of the State of Bahia, Brazil.

Materials and Methods

Collection of samples

A total of 70 samples were analyzed, including raw and pasteurized milk from 10 municipalities in the Recôncavo region of the State of Bahia (Cabaceiras do Paraguacu, Cachoeira, Conceição do Almeida, Cruz das Almas, Dom Macedo Costa, Maragogipe, São Sebastião do Passé, Saubara, Santo Amaro, Santo Antônio de Jesus) between May 2010 and February 2011.

Microbiological analyses

The microbiological analyses were based on the methodology as recommended by the Brazilian Ministry for Agriculture, Fisheries and Supplies [12] to establish the most probable number (MPN) of total and thermo tolerant coliforms, *Escherichia coli* and also the count of mesophile microorganisms (CFU - Colony Forming Unit).

For the establishment of the MPN of total and thermo tolerant coliforms, three dilutions of each sample were submitted to presumptive and confirmative testing, using the multiple tube technique. In the presumptive test, the diluted samples were inoculated in tubes containing a Lauryl Sulphate Tryptose Broth (LSB), being incubated at a temperature of 36 ± 2°C, for 48 hours. From the tubes that turned out to be positive in LSB, then there was a confirmative test for thermo tolerant coliforms, with the transfer of an extract to tubes with a Brilliant Green-Lactose-Bile Broth at 2% and incubated at 36 ± 2°C for 48 h. To confirm the presence of thermo tolerant coliforms, with the transfer of an extract to tubes that turned out to be positive in LSB, then there was a confirmative test incubated at a temperature of 36 ± 2°C, for 48 hours. From the tubes presumptive and confirmative testing, using the multiple tube technique. In the presumptive test, the diluted samples were inoculated in tubes containing a Lauryl Sulphate Tryptose Broth (LSB), being incubated at a temperature of 36 ± 2°C, for 48 hours. From the tubes that turned out to be positive in LSB, then there was a confirmative test for thermo tolerant coliforms, with the transfer of an extract to tubes with a Brilliant Green-Lactose-Bile Broth at 2% and incubated at 36 ± 2°C for 48 h. To confirm the presence of thermo tolerant coliforms, with the transfer of an extract to tubes that turned out to be positive in LSB, then there was a confirmative test incubated at a temperature of 36 ± 2°C, for 48 hours. From the tubes presumptive and confirmative testing, using the multiple tube technique. In the presumptive test, the diluted samples were inoculated in tubes containing a Lauryl Sulphate Tryptose Broth (LSB), being incubated at a temperature of 36 ± 2°C, for 48 hours. From the tubes that turned out to be positive in LSB, then there was a confirmative test for thermo tolerant coliforms, with the transfer of an extract to tubes with a Brilliant Green-Lactose-Bile Broth at 2% and incubated at 36 ± 2°C for 48 h. To confirm the presence of thermo tolerant coliforms, with the transfer of an extract to tubes that turned out to be positive in LSB, then there was a confirmative test incubated at a temperature of 36 ± 2°C, for 48 hours. From the tubes presumptive and confirmative testing, using the multiple tube technique. In the presumptive test, the diluted samples were inoculated in tubes containing a Lauryl Sulphate Tryptose Broth (LSB), being incubated at a temperature of 36 ± 2°C, for 48 hours. From the tubes that turned out to be positive in LSB, then there was a confirmative test for thermo tolerant coliforms, with the transfer of an extract to tubes with a Brilliant Green-Lactose-Bile Broth at 2% and incubated at 36 ± 2°C for 48 h. To confirm the presence of thermo tolerant coliforms, with the transfer of an extract to tubes that turned out to be positive in LSB, then there was a confirmative test incubated at a temperature of 36 ± 2°C, for 48 hours. From the tubes presumptive and confirmative testing, using the multiple tube technique. In the presumptive test, the diluted samples were inoculated in tubes containing a Lauryl Sulphate Tryptose Broth (LSB), being incubated at a temperature of 36 ± 2°C, for 48 hours. From the tubes that turned out to be positive in LSB, then there was a confirmative test for thermo tolerant coliforms, with the transfer of an extract to tubes with a Brilliant Green-Lactose-Bile Broth at 2% and incubated at 36 ± 2°C for 48 h. To confirm the presence of thermo tolerant coliforms, with the transfer of an extract to tubes that turned out to be positive in LSB, then there was a confirmative test incubated at a temperature of 36 ± 2°C, for 48 hours.

In all the 20 samples of pasteurized milk, there was also the detection of contamination with total coliforms, thermo tolerant coliforms and mesophiles. The results obtained through microbiological analyses of the pasteurized milk can be seen in Table 2.

Table 1: Arithmetical means of microbiological analyses in raw milk consumed in the Recôncavo Region, State of Bahia, Brazil, between May 2010 and February 2011.

Municipality	Total Coliforms NMP/mL	Thermotolerant Coliforms NMP/mL	*Escherichia coli* NMP/mL	Mesophiles UFC/mL
Cabaceiras do Paraguacu	3.02x10⁹	9.43x10⁸	4.03x10⁹	7.85x10⁸
Cachoeira	2.44x10¹⁰	2.42x10⁸	1.23x10⁹	2.31x10⁹
Conceição do Almeida	7.52x10⁹	7.52x10⁹	2.20x10¹⁶	3.14x10¹⁰
Cruz das Almas	7.22x10⁹	2.75x10⁹	1.60x10⁹	4.26x10⁹
Dom Macedo Costa	6.82x10⁹	5.04x10⁹	4x10⁹	6.07x10⁹
Maragogipe	4.78x10⁹	4.55x10⁹	4.40x10⁹	2.55x10⁹
São Sebastião do Passé	6.99x10⁹	4.86x10⁹	7.07x10⁹	1.39x10⁹
Saubara	9.02x10⁹	9.02x10⁹	2.90x10⁹	4.11x10⁹
Santo Amaro	2.42x10⁹	2.42x10⁹	2.20x10⁹	3.33x10⁹
Santo Antônio de Jesus	8.81x10⁹	8.24x10⁹	1.52x10⁹	4.75x10⁹
Moura et al. [19], analyzing samples of pasteurized milk in the city of Quixeramobim, State of Ceará, Brazil, obtained total coliform counts ranging from <3 to > 2.4x10³ NMP/mL, while the counts of thermo tolerant coliforms ranged from <3 to 1.1x10³ NMP/mL, while there was absence of *Escherichia coli*, this being a result different from that found in the pasteurized milk consumed in the Recôncavo region of the State of Bahia.

Comparing raw and pasteurized milk in all the municipalities analyzed (Table 3), there were no statistically significant differences between the average counts of total coliforms, *Escherichia coli* and mesophiles (p > 0.05). In the case of thermo tolerant coliform counts, there were statistically significant differences (p < 0.05), with the raw milk showing greater contamination with this microorganism when compared with pasteurized milk (Table 4).

In Normative Instruction (IN) No. 51 of the Brazilian Ministry for Agriculture, Fisheries and Supplies – MAPA [1], at no moment is there permission for the sale of raw milk directly to the consumer, which means that the sale of this type of milk is prohibited, mainly because it can transmit several different zoo noses and also be responsible for the fearful cases of food poisoning. The same Resolution currently means that the sale of this type of milk is prohibited, mainly because this bacterium suggests fecal contamination, its presence, especially in raw milk, shows precarious conditions of hygiene and sanitation in the process of obtaining such milk, as this micro-organism is the only member of the coliform group that comes exclusively from faeces, meaning that this product should be declared as unfit for consumption [22].

The arithmetic means of total and thermo tolerant coliforms, mesophiles and *Escherichia coli* at high levels as found in pasteurized milk suggest that the process has been inadequately performed, with faults in either the time or the temperature of pasteurization, or possibly some contamination after the process, with faults in packaging, this because the mesophile bacteria and coliforms are easily destroyed by the pasteurization temperature [23].

Data from other countries also suggest contamination of the milk. In the region around Bogotá, in Colombia, the mesophile counts vary between 10⁵ and 88x10⁷ CFU/mL and coliforms between 10⁵ and 61x10⁵ NMP/mL, values which are also high [24]. In Pakistan, the counts of *Escherichia coli* varied from 7.1x10⁹ to 12.6x10⁹ CFU/mL and the mesophile count ranged from 2.1x10⁶ to 6.1x10⁹ CFU/mL [25]. In India, respectively 88.3% and 70% of 60 samples were contaminated by total and thermo tolerant coliforms [26]. These are countries with educational and social aspects similar to those of Brazil and particularly the region we have studied.

Concerning the residue of antimicrobial agents, out of the 20

Municipality	Total Coliforms NMP/mL	Thermotolerant Coliforms NMP/mL	*Escherichia coli* NMP/mL	Mesophiles UFC/mL
Cruz das Almas	3.66x10¹¹	3.10x10⁸	2.54x10⁸	3.60x10⁹
São Sebastião do Passé	4.45x10⁹	4.45x10⁹	2.24x10⁸	2.46x10⁹
Saubara	4.16x10⁷	4.16x10⁷	<3	4.59x10⁷
Santo Amaro	8.82x10⁸	5.32x10⁸	2.27x10⁸	2.42x10⁹
Santo Antônio de Jesus	2.48x10⁹	2.34x10⁷	7.2x10⁷	7.32x10⁹

Table 2: Arithmetic means of microbiological analyses in pasteurized milk consumed in the Recôncavo Region, State of Bahia, Brazil, between May 2010 and February 2011.

Milk	Total Coliforms NMP/mL	Thermo tolerant Coliforms NMP/mL	*Escherichia coli* NMP/mL	Mesophiles UFC/mL
Raw	N	Mean 5.41x10¹⁰ a	Raw	3.48x10¹⁰ a
Pasteurized	20	5.53x10¹⁰ a	Pasteurized	7.16x10⁹ b

Table 3: Arithmetic means of total coliforms and thermo tolerant coliforms comparing raw and pasteurized milk in all the municipalities of the Recôncavo region, State of Bahia, Brazil.

Milk	*Escherichia coli* NMP/mL	Mesophiles UFC/mL
Raw	N	Mean
Pasteurized	20	1.50x10⁺ a

Table 4: Mean counts of *Escherichia coli* and mesophiles comparing raw and pasteurized milk, in all municipalities of the Recôncavo Region, State of Bahia, Brazil.
samples of pasteurized milk and 50 of raw milk that have been analyzed, none showed any residue of antimicrobial agents. These results are indeed satisfactory but surveillance through testing, especially in the case of pasteurized milk, must be constant, so that the population is protected from the exposure to the effects of this residue, which could range from allergies to the selection of resistant strains.

The results of this work were similar to those found by Mendes et al. [27] in Mossoró, State of Rio Grande do Norte, which also did not detect residue of antibiotics in 32 samples of raw milk, using the same Devolvest® kit. Souza [28] did not detect the presence of antibiotic residue either, in milk samples obtained in Sacramento, State of Minas Gerais, Brazil, this being the same result as that found by Mendes et al. [29] studying samples of raw milk in the region around Muriaé, Minas Gerais.

In Uberlândia, Almeida et al. [30] analyzed 158 samples of milk for the presence of antibiotics and found an occurrence rate of 1.89% of samples with residues of beta lactamics.

In the city of Patos, State of Paraíba, Medeiros et al. [31] analyzed 30 samples of raw milk and found a positivity rate of 43% for the presence of antibiotics, while Tetzner et al. [32] found 33.3% of positivity in samples from the Triangle Region of the State of Minas Gerais, Brazil.

For organic milk from the countryside of São Paulo state, in 2.7% of samples there was confirmed presence of antimicrobial residue, which shows the incorrect use of antibiotics in systems for the production of organic products [33].

Conclusions

Based on the microbiological analyses carried out in this work assignment, we can say that the raw and pasteurized milk as consumed in the cities studied shows very poor conditions of sanitation and hygiene, and this is proved by the high presence of micro-organisms of the total coliform group, as also of thermo tolerant coliforms and Escherichia coli showing that the milk is not appropriate for human consumption.

We have not found any samples with residue of antibiotics during the period of research, which is a satisfactory result, but there is a need for constant surveillance through regular checks, to make sure that the population of the Recôncavo area of the State of Bahia is not exposed to the harmful effects on health caused by the consumption of milk contaminated with residue of anti-microbial agents.

Acknowledgements

We would like to thank the Foundation for Research Support in the State of Bahia (Secretaria de Ciência Tecnologia e Inovação do Estado da Bahia - SECTI, Fundação de Amparo à Pesquisa no Estado da Bahia – FAPESB, Conselho Nacional de Desenvolvimento e Tecnológico - CNPq) for their financial support as well as the law firm of Leite, Guimarães, Agnelli, Andrade, and Cappelletti (LGA) for their legal support.

References

1. Brazil (2002) Ministry of Agriculture, Livestock and Supply. Milk, Instruction 95.
2. Álvares C (2006) Effect of seasonal variations in the quality of raw milk refrigerated for two properties of Minas Gerais. Dissertation (Master of Technology and Inspection of Animal Products), Federal University of Minas Gerais, Belo Horizonte 65.
3. Lorenzelli DK (2006) Influence of time and temperature on the development of Psychoactive microorganisms in raw milk from two states of the south. Dissertation (Master of Food Technology) Federal university of paraana, Curitiba 71.
4. Barros LSS, Sóglia SLO, Ferreira MJ, Rodrigues MJ, Branco MPC (2011) Aerobic and anaerobic bacteria and Candida species in crude milk. J Microbiology and Antimicrobials 3: 206-212.
5. Acuri EF, Brito MFVP, Brito JRF, Pinto SM, Angelo FF, et al. (2006) Microbiological quality of refrigerated milk on farms. Arq Bras Med Vet Zootec 58: 440-446.
6. Leite CC, Guimarães AG, Andrade CS (2001) Study of efficiency of pasteurization of milk marketed in Salvador, Bahia. XXVIII Congress of Veterinary Medicine, Proceedings, Salvador, Bahia, Brazil.
7. Serra MJ (2004) Microbial quality and physico-chemical raw milk produced in the region Pardinho, SP. Dissertation (Master of Health Surveillance), Faculty of Veterinary Medicine, Universidade Estadual Paulista (UNESP), Botucatu 54.
8. Nero LA, Mattos MR, Beloti V, Barros MAF, Franco BDGM (2007) Residues of antibiotics in raw milk from four dairy regions in Brazil. Ciência Tecnol Aliment Campinas 27: 391-393.
9. Villa FB, Pinto JPAN (2008) Quality physical-chemical, microbiological and antimicrobial residues in raw milk marketed informally in Brotas, SP. Hg aliment 22: 98-103.
10. Pietrowski GAM, OT AP, Siqueira CR, Silveira FJJ, Bayer KH, et al. (2008) Evaluation of microbiological quality of pasteurized type C milk sold in the city of ponta Grossa-PR. VI Semana de Tecnologia em Alimentos 2: 7.
11. Hayes MC, Ralyea RD, Murphy SC, Carey NR, Scarlett JM, et al. (2001) Identification and Characterization of Elevated Microbial Counts in Bulk Tank Raw Milk. Journal of Dairy Science 84: 292-298.
12. Brasil (2003) Ministry of Agriculture, Livestock and Supply. Official Analytical Methods for Microbiological Analysis of Control of Animal Products and Water 62.
13. Brasil (1999) Ministry of Agriculture, Livestock and Supply. National plan for control of residues in products of animal origin 42.
14. Boletim Técnico Devolvest (2009).
15. Banzatto DV, Kronka S, do N (1992) Agronomists. Jaboticabal: FCAV/UNESP 247.
16. Quintana RC, Carneiro LC (2006) Evaluation of fresh milk sold clandestinely in Morrinhos, GO. Rev Inst Adolfo Lutz 65: 194-198.
17. Moraes CR, Fuefetría AM, Zaffari CB, Corte M, Rocha JPA, et al. (2005) Microbiological quality of raw milk produced in five municipalities of Rio Grande do Sul, Brasil. Acta Scientiae Veterinariae 33: 259-264.
18. Badini KB, Filho AN, Amaral LA, Germano PM (1996) Helath risk represented by the consumption of raw milk marked illegally. Rev Saúde Pública 30: 549-552.
19. Moura RL, Guimarães FR, Consalves HEO, Cardoso BB (2010) Microbiological quality of two brands of pasteurized type C, marketed in the city of Quixeramobim-EC. Revista Higiene Alimentar 24: 50-53.
20. Maciel JF, Carvalho EA, Santos LS, Araujo JB, Nunes VS (2008) Microbiological quality of raw milk marketed in Itapetinga-BA. Rev Bras Saúde Prod Anim 9: 443-448.
21. Brasil (2001) National Health Surveillance Agency Resolution RDC No 12 of January 2, 2001. Technical Regulation on Microbiological Standards for Foods.
22. Tronco VM (2004) Manual inspection of milk quality. (2nd edn). Santa Maria: Ed UFSM.
23. Silva MCD, Silva JVL, Ramos ACS, Melo RO, Oliveira JO (2008) Characterization of microbiological and physico-chemistry of pasteurized milk for the program in the state of Alagoas. Ciência Tecnol Aliment Campina 28: 226-230.
24. Calderón A, Garcia F, Martinez G (2006) Indicadores quality of raw milk em different regions of Colombia. Journal MVZ Cordoba 11: 725-737.
25. Farhan M, Salk S (2007) Evaluation of Bacteriological contamination in raw (unprocessed) milk sold in different regions of Lahore (Pakistan). Journal of Agriculture e Social Sciences 3: 101-106.
26. Lingathurai S, Vellathurai P (2001) Bacteriological quality and safety of raw cow milk in Madurai, South India. Wemed Central Microbiology.

27. Mendes CG, Sakamoto SM, Silva JBA, Leite AI (2008) Search beta-lactam residues in raw milk sold illegally in the town of Mossley, RN, using Delvotest SP. Arq Inst Biol 75: 95-98.

28. Souza V (2006) Physico-chemical microbiological, cellular and detection of antibiotic residues in milk samples from communal water tank. Thesis (MA), Universidade Estadual Paulista, Botucatu 69.

29. Mendes LT, Bastos KPL, Gomes DM, Povoa H, Arrêdes EM (2006) Revista Cientifica by FAMINAS 2: 9-9.

30. Almeida LP, Viera RL, Ross DA, Cameiro AL, Rocha ML (2003) Residues of antibiotics in milk from farms of this city. Journal of Uberlândia Biosci 19: 83-87.

31. Medeiros NGA, Carvalho MGX, Santos MGO, Suely CPL (2004) Detection of antibiotics in fresh milk consumed in the city of Patos, Paraíba. Hig Aliment 18: 85-88.

32. Tetzer TAD, Benedetti E, Guimarães EC, Peres RFG (2005) Prevalence of antibiotics residues in raw milk samples in the region of Minas Gerais-MG. Hig Aliment 19: 69-72.

33. Ribeiro MG, Geraldo JS, Langoni H, Lara GH, Siqueira AK, et al. (2009) Pathogenic microorganism, cellularity and antimicrobial residues in bovine milk produced in the organic system. Pesq Vet Bras 29: 52-58.