Fate of Majorana fermions and Chern numbers after a quantum quench

P.D. Sacramento

1 Centro de Física das Interações Fundamentais, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal

(Dated: April 22, 2014)

The stability of Majorana fermions at the edges of a two-dimensional topological superconductor is studied, after quenches to either non-topological phases or other topological phases. Both instantaneous and slow quenches are considered. In general, the Majorana modes decay and, in the case of instantaneous quenches, their revival times scale to infinity as the system size grows. Considering fast quantum quenches within the same topological phase, leads, in some cases, to robust edge modes. Quenches to a topological \mathbb{Z}_2 phase reveal some robustness of the Majorana fermions. Comparing strong spin-orbit coupling with weak spin-orbit coupling, it is found that the Majorana fermions are fairly robust, if the pairing is not aligned with the spin-orbit Rashba coupling. It is also shown that the Chern number remains invariant after the quench, until the propagation of the mode along the transverse direction reaches the middle point, beyond which the Chern number oscillates between increasing values. In some cases, the time average Chern number seems to converge to the appropriate value, but often the decay is very slow. The effect of varying the rate of change in slow quenches is also analysed. It is found that the defect production is non-universal and does not follow the Kibble-Zurek scaling with the quench rate, as obtained before for other systems with topological edge states.

PACS numbers: 05.30.Rt, 05.70.Ln, 03.65.Vf

I. INTRODUCTION

The time evolution of a quantum system coupled to a dissipative environment has attracted interest for a long time and, in particular, the problem of thermalization associated with the coupling to a heat bath. Sudden quenches, associated with abrupt changes of some external parameters, such as magnetic fields or temperature, and in general discontinuous phase transitions, have been studied in various contexts, both in classical and quantum systems, involving, in general, the formation and growth of a seed of a stable phase, inside a metastable or unstable phase, such as in a spinodal decomposition. An example of theoretical and practical interest is the growth of magnetic bubbles in magnetic systems away from equilibrium.

An abrupt change of the state of an isolated quantum system leads to a unitary time evolution and, therefore, the issue of thermalization raises interesting questions. The end state of this evolution has attracted interest due to the prediction of different outcomes depending on the type of system and have been confirmed by recent experiments. In general, it is expected some sort of thermalization in the sense that correlation functions stabilize, in a way similar to a statistical description, at some effective temperature. This convergence is explained in terms of the hypothesis of eigenstate thermalization that occurs at the level of each eigenstate. Interesting exceptions are soluble and integrable systems where thermalization breaks down as one approaches an integrable point. However, some sort of thermalization is predicted, such as the one observed in integrable systems, for which an equilibrium like distribution is expected in terms of a generalized Gibbs ensemble, of the (infinitely) many conserved quantities. A possible way to produce such a change is performing a quantum quench obtained changing abruptly the Hamiltonian parameters.

Slow transitions are qualitatively different. In the field of thermal transitions crossing a critical point involves a change between states with different symmetries. Close to the critical point fluctuations are able to sample domains of the most stable phase and lead to some dynamical scaling, in terms of the rate of change of a driving parameter across the transition, as proposed by Kibble and Zurek. A similar behavior is expected around a quantum critical point. In both cases the transition induces a density of excitations that scales with the transition rate with some critical exponent.

On the other hand, topological systems have attracted interest and, specifically, topological superconductors due to the prediction of Majorana fermions. Their interest is twofold: first as a physical realization of long sought-after Majorana fermions, and second as possible elements in quantum computation, due to their non-abelian statistics when combined with vortices or other local entities. Topological systems are intrinsically interesting due to their robust properties, and efforts towards the understanding of their properties have attracted interest, and in particular, a great effort has been put towards prediction and detection of Majorana fermions.

Their robustness is a key property. It is therefore interesting to study their robustness to various perturbations. In particular, it is interesting to study their response to time dependent perturbations and, in particular, a quantum quench. The presence of a nontrivial topological phase is frequently associated to other phases, as some parameter or parameters in the Hamiltonian...
change. These changes may lead to closing of energy gaps in the spectrum that may originate a transition to a trivial phase, or to some other phase characterized by a different topology. It has been shown before that topological systems are quite robust to a quantum quench, as exemplified by the toric code model. With appropriate boundary conditions topological systems show gapless edge states, such as the Majorana fermions in topological superconductors. It is therefore interesting to determine their stability to a quantum quench.

Examples that host Majorana fermions as edge states are provided by several superconducting systems, such as a one-dimensional fully polarized p-wave superconductor \((1d \text{ Kitaev model}) \), two-dimensional triplet \(p + ip \) superconductor \(26 \) and various other systems that mix superconducting order (eventually by proximity effects) with Zeeman fields and/or spin-orbit coupling. Here we will focus attention on a two-dimensional triplet superconductor with Zeeman field, \(M_z \), and Rashba spin orbit coupling, that has been shown to have a rich phase diagram with various topological and trivial phases.

A quantum quench between different points in the phase diagram leads to a time evolution between a system characterized by some sort of topological order to another phase that may be trivial or non-trivial. The effect of quantum quenches on nontrivial edge states was carried out before considering both slow rates and fast quenches. In the context of the Creutz ladder, it was shown that the presence of edge states modifies the process of defect production expected from the Kibble-Zurek mechanism, leading in this problem to a scaling with the change rate with a non-universal critical exponent. A similar result was obtained for the one-dimensional superconducting Kitaev model, where it was shown that, although bulk states follow the Kibble-Zurek scaling, the produced defects for an edge state quench are quite anomalous and independent of the quench rate.

The behavior of edge states under an abrupt quantum quench has also been considered very recently in the context of a two-dimensional topological insulator, where it was found that, in the sudden transition from the topological insulator to the trivial insulator phase, there is a collapse and revival of the edge states. Similar results were obtained for the one-dimensional Kitaev model, also studying the signature of the Majoranas in the entanglement spectrum.

In this work we will focus attention on the time evolution of a Majorana fermion, characteristic of a non-trivial phase on a two-dimensional triplet superconductor with Zeeman field, \(M_z \), and Rashba spin orbit coupling, as a quench is performed. In particular, in the case of a fast quench the survival probability of such a state is studied, and it is found that its robustness is in general lost, except for some particular cases. Also, the time evolution of the Chern number is studied across the transition. Slow quenches are also considered and a non-universal behavior is found in agreement with other topological edge states. In sections II and III a brief review of a quantum quench and the triplet superconductor is presented. In section IV we present results for a finite system using a real space description, and compare results for the one-dimensional Kitaev model and the two-dimensional superconductor, and stress the influence of the spin-orbit coupling on the robustness of the edge states, after an abrupt quench. In section V we study the stability of the edge states in momentum space, and in section VI the evolution of the Chern numbers. In section VII slow quenches are considered from the regime of quasi-adiabatic transitions to fast quenches. We conclude with section VIII.

II. QUANTUM QUENCHES

Let us label a quantum state of the system at some initial state as \(|\psi_m(\xi)\rangle \), where \(\xi \) represents a set of parameters upon which the Hamiltonian depends. Here it may be the set \(\xi = (M_z, \epsilon_F) \), where \(\epsilon_F \) is the chemical potential. As the parameters change, the system goes through different topological phases. We will consider that at the initial time, \(t = 0 \), an abrupt change of the parameters is performed to some set \(\xi' \). After this sudden quench the system will evolve in time under the influence of a different Hamiltonian. Since the Hamiltonian is quadratic, its eigenstates are easily obtained solving for the single particle modes, given by the solution of the BdG equations. Since the Hamiltonian changes, the initial states, (calculated at \(t = 0^- \)), are no longer eigenstates, will mix and evolve in time as:

\[
|\psi_m(\xi, t)\rangle = e^{-iH(\xi')t}|\psi_m(\xi)\rangle
\]

(1)

Denoting the eigenstates of the Hamiltonian, \(H(\xi') \), as \(|\psi_n(\xi')\rangle \) and the eigenvalues as \(E_n(\xi') \), we may write that the time evolved state is given by:

\[
|\psi_m(\xi, t)\rangle = \sum_n e^{-iE_n(\xi')t}|\psi_n(\xi')\rangle\langle\psi_n(\xi')|\psi_m(\xi)\rangle
\]

(2)

Moreover, we may calculate the overlap of this time evolved state with the initial state leading to:

\[
A_m(t) = \langle\psi_m(\xi)|\psi_m(\xi, t)\rangle
\]

(3)

This can be expressed as:

\[
A_m(t) = \sum_n |\langle\psi_m(\xi)|\psi_n(\xi')\rangle|^2 e^{-iE_n(\xi')t}
\]

(4)

and involves the overlap between the initial state and all the eigenstates of the final Hamiltonian. Following we may define a survival probability for the initial state as:

\[
P_m(t) = |A_m(t)|^2
\]

(5)

In this work we will be interested in the fate of single particle states after a quantum quench across the phase diagram. We consider a subspace of one excitation such
that the total Hamiltonian is given by the ground state energy plus one excited state. We will consider lowest energy excitations which, in the nontrivial topological phases, are Majorana fermions. We will take the initial state $|\psi_n(\xi)\rangle$ as one of these lowest energy states (eigenstate of the single particle Hamiltonian for the set of parameters ξ). Since we remain in the one excitation subspace after the quench, the Hamiltonian that gives the unitary time evolution is the single particle Hamiltonian for the set of parameters ξ. We consider two different descriptions of the superconductor. First we will consider a finite system, with periodic boundary conditions along one space direction, say x, and open boundary conditions along the other space direction, say y. This leads to the appearance of edge states along the x-direction edges. Next, we will use a momentum space representation of the states along x labelling the states by the coordinate y and the momentum k_x. Since the Hamiltonian is diagonal in momentum space, it is enough to consider the overlap between the various eigenstates within each momentum value, k_x. In the real space description the single particle states involved are defined over the entire system.

III. TWO-DIMENSIONAL TRIPLET SUPERCONDUCTOR

We consider a two-dimensional triplet superconductor with p-wave symmetry. This model was studied in Refs.

2027 We write the Hamiltonian for the bulk system as

\[\hat{H} = \frac{1}{2} \sum_k \left(\psi_k \psi_{-k} \right) \left(\hat{H}_0(k) \hat{\Delta}(k) \hat{\Delta}^\dagger(-k) \right) \left(\psi_k \psi_{-k} \right) \]

(6)

where \(\psi_k = (\psi_{k\uparrow}, \psi_{k\downarrow}) \) and

\[\hat{H}_0 = \epsilon_k \sigma_0 - M_z \sigma_z + \hat{H}_R. \]

(7)

Here, $\epsilon_k = -2i(\cos k_x + \cos k_y) - \varepsilon_F$ is the kinetic part, ε_F is the chemical potential, k is a wave vector in the xy plane, and we have taken the lattice constant to be unity. Furthermore, M_z is the Zeeman splitting term responsible for the magnetization, in energy units. The Rashba spin-orbit term is written as

\[\hat{H}_R = s \cdot \sigma = \alpha (\sin k_y \sigma_x - \sin k_x \sigma_y), \]

(8)

where α is measured in the energy units and $s = \alpha(\sin k_y, -\sin k_x, 0)$. The matrices $\sigma_x, \sigma_y, \sigma_z$ are the Pauli matrices acting on the spin sector, and σ_0 is the 2×2 identity. The pairing matrix reads

\[\hat{\Delta} = i (d \cdot \sigma) \sigma_y = \begin{pmatrix} -d_x + id_y & dz \\ dz & d_z + id_y \end{pmatrix}. \]

(9)

The pairing matrix for a p-wave superconductor generally satisfies $\Delta \Delta^\dagger = |d|^2 \sigma_0 + q \cdot \sigma$, where $q = id \times d^\star$. If the vector q vanishes the pairing is called unitary. Otherwise it is called non-unitary and breaks time-reversal symmetry (TRS), originating a spontaneous magnetization in the system due to the symmetry of the pairing, as in $3He$. We will consider unitary pairing. If the spin-orbit is strong the pairing is aligned along the spin-orbit vector s. This case is denoted by strong coupling case. Relaxing this restriction allows that the two vectors are not aligned. This case is denoted by weak spin-orbit coupling. In the strong-coupling case d is a scale parameter. As an example of the weak coupling pairing we will take $d_x = d \sin k_x, d_y = d \sin k_y, d_z = 0$ (other cases were considered in 27,28).

The energy eigenvalues and eigenfunction may be obtained solving the Bogoliubov-de Gennes equations

\[\begin{pmatrix} \hat{H}_0(k) & \hat{\Delta}(k) \\ \hat{\Delta}^\dagger(-k) & -\hat{H}_0^\dagger(-k) \end{pmatrix} \begin{pmatrix} u_n \\ v_n \end{pmatrix} = \epsilon_{k,n} \begin{pmatrix} u_n \\ v_n \end{pmatrix}. \]

(10)

The 4-component spinor can be written as

\[\begin{pmatrix} u_n \\ v_n \end{pmatrix} = \begin{pmatrix} u_n(k, \uparrow) \\ u_n(k, \downarrow) \\ v_n(-k, \uparrow) \\ v_n(-k, \downarrow) \end{pmatrix}. \]

(11)

One way to characterize various topological phases is through the Chern number, obtainable as an integral over the Brillouin zone of the Berry curvature. Summing
over the occupied bands the Chern number has been calculated\,[20,22]\]. The results in the parameter space are shown in Fig. 1 using the typical parameters $t = 1$, $\alpha = 0.6$, $d = 0.6$.

The superconductor we consider here is time-reversal invariant if the Zeeman term is absent. The system then belongs to the symmetry class DIII where the topological invariant is a Z_2 index. If the Zeeman term is finite, TRS is broken and the system belongs to the symmetry class D. The topological invariant that characterizes this phase is the first Chern number C, and the system is said to be a \mathbb{Z} topological superconductor.

IV. REAL SPACE DESCRIPTION

We consider first a finite system of dimensions $N_x \times N_y$ along a longitudinal, x, direction and a transversal direction along y, we apply periodic boundary conditions along the x direction and open boundary conditions along the transverse direction. We write

$$\psi_{k_x, k_y, \sigma} = \frac{1}{\sqrt{N_y}} \sum_{j_y} e^{-ik_y j_y} \frac{1}{\sqrt{N_x}} \sum_{j_x} e^{-ik_x j_x} \psi_{j_x, j_y, \sigma},$$

and rewrite the Hamiltonian matrix in terms of the operators (12) as

$$H = \sum_{j_x} \sum_{j_y} \left(\begin{array}{cccc} \psi_{j_x, j_y, \uparrow}^\dagger & \psi_{j_x, j_y, \downarrow}^\dagger \end{array} \right) \left(\begin{array}{c} \psi_{j_x, j_y, \uparrow} \\ \psi_{j_x, j_y, \downarrow} \end{array} \right)$$

The operator \hat{H}_{j_x, j_y} reads

$$\hat{H}_{j_x, j_y} = \begin{pmatrix} A & B \\ C & D \end{pmatrix}$$

where

$$A = \begin{pmatrix} -M_x - \epsilon_F - \tilde{t}\eta^+ - \tilde{t}\eta^- & \frac{\tilde{t}}{2} \eta^+ + \frac{\tilde{t}}{2} \eta^- \\ -\frac{\tilde{t}}{2} \eta^+ + \frac{\tilde{t}}{2} \eta^- & M_x - \epsilon_F - \tilde{t}\eta^+ - \tilde{t}\eta^- \end{pmatrix}$$

$$B = \begin{pmatrix} -\frac{d}{2} \eta_x^+ - \frac{d}{2} \eta_x^- & 0 \\ 0 & -\frac{d}{2} \eta_x^+ + \frac{d}{2} \eta_x^- \end{pmatrix}$$

$$C = \begin{pmatrix} \frac{d}{2} \eta_x^+ \eta_y^+ - \frac{d}{2} \eta_x^- \eta_y^- & 0 \\ 0 & \frac{d}{2} \eta_x^+ \eta_y^- - \frac{d}{2} \eta_x^- \eta_y^+ \end{pmatrix}$$

$$D = \begin{pmatrix} M_x + \epsilon_F + \tilde{t}\eta_x^+ + \tilde{t}\eta_x^- & \frac{\tilde{t}}{2} \eta_x^+ + \frac{\tilde{t}}{2} \eta_x^- \\ \frac{\tilde{t}}{2} \eta_x^+ + \frac{\tilde{t}}{2} \eta_x^- & M_x + \epsilon_F + \tilde{t}\eta_x^+ + \tilde{t}\eta_x^- \end{pmatrix}$$

A. 1d Kitaev model

Consider first a one-dimensional spinless p-wave superconductor. Kitaev’s model can be written as

$$H = -\tilde{t} \sum_i \left(c_i^\dagger c_{i+1} + c_{i+1}^\dagger c_i \right) - \epsilon_F \sum_i \left(c_i^\dagger c_i - \frac{1}{2} \right) + \Delta \sum_i \left(c_i c_{i+1} + c_{i+1}^\dagger c_i^\dagger \right)$$

The BdG equations for the wave functions may be written as

$$H \begin{pmatrix} u_n(i) \\ v_n(i) \end{pmatrix} = \epsilon_n \begin{pmatrix} u_n(i) \\ v_n(i) \end{pmatrix}$$

where

$$H = \begin{pmatrix} -\tilde{t}(s_1 + s_{-1}) - \epsilon_F - \Delta(s_1 - s_{-1}) & \tilde{t}(s_1 + s_{-1} + \epsilon_F) \\ \tilde{t}(s_1 + s_{-1} + \epsilon_F) & -\tilde{t}(s_1 + s_{-1}) - \epsilon_F - \Delta(s_1 - s_{-1}) \end{pmatrix}$$
where \(s_{\pm 1} f(i) = f(i \pm 1) \) for any function of the lattice point \(i \). The solution of these equations involves the diagonalization of a \(2N \times 2N \) matrix, where \(N \) is the number of sites of the superconductor and where open boundary conditions are used.

The stability of the Majorana fermions in this model has been considered recently\(^{32}\). We present here some results as a preview of the results for the two-dimensional superconductor. In Fig. 2 we present results for the survival probability of the Majorana mode for several quenches. The phase diagram may be found, for instance in the same reference. There are two topological phases, \(I \) and \(II \) and two trivial phases denoted \(III \). In the first panel we consider the case of a quench within the same topological phase, in this instance inside phase \(I \). It is clearly shown that the survival probability is finite. Since the parameters change, the survival probability is not unity, there is a decrease as a function of time due to the overlap with all the eigenstates of the chain with the new set of parameters, but after some oscillations the survival rate stabilizes at some finite value. As time grows, oscillations appear again centered around some finite value. Therefore the Majorana mode is robust to the quench. In the second panel we consider a quench from the topological phase \(I \) to the trivial, non-topological phase \(III \). The behavior is quite different. After the quench the survival probability decays fast to nearly zero. After some time it increases sharply and repeats the decay and revival process. Similar results are found for a quench between the two topological phases \(I \) and \(II \). As discussed in ref.\(^{32}\) the revival time scales with the system size. At this instant the wave function is peaked around the center of the system and is the result of a propagating mode across the system with a given velocity and, therefore, scales with the system size. In the infinite system limit the revival time will diverge and the Majorana mode decays and is destroyed. A qualitatively different case is illustrated in the last panel of Fig. 2 where a quench from the topological phase \(I \) to the quantum critical point at the origin is considered. In this case the survival probability oscillates indefinitely and periodically the Majorana mode is revived, even in the infinite size limit. As will be shown next, the two-dimensional superconductor has some features that are similar, but a richer behavior is found.

B. Strong spin-orbit coupling

We consider first the case of the two-dimensional superconductor when the spin-orbit coupling is strong which favors that the superconducting pairing is aligned along \(s \). The phase diagram depicted in Fig. 1 applies to this case.

The solutions of the wave functions, written in the form

\[
\begin{pmatrix}
|u_n| \\
|v_n|
\end{pmatrix} = \begin{pmatrix}
|u_n(j_x, j_y, \uparrow)| \\
|v_n(j_x, j_y, \uparrow)|
\end{pmatrix},
\]

(22)

of a 4-component spinor in real space can be detailed as

\[
\begin{pmatrix}
|u_n| \\
|v_n|
\end{pmatrix} = \begin{pmatrix}
|u_n(j_x, j_y, \uparrow)| \\
|v_n(j_x, j_y, \uparrow)|
\end{pmatrix}.
\]

The time evolution of each spinor is given by eq. (1). Fo-
FIG. 5: (Color online) Survival probability of the Majorana state of the two-dimensional triplet superconductor for different transitions across the phase diagram: i) transition \((M_z = 2, \epsilon_F = -5) \rightarrow (M_z = 0, \epsilon_F = -5)\), \(C = 1 \rightarrow C = 0\) (trivial), ii) transition \((M_z = 3.5, \epsilon_F = 0) \rightarrow (M_z = 4.5, \epsilon_F = 0)\), \(C = -2 \rightarrow C = 0\) (trivial) and iii) transition \((M_z = 2, \epsilon_F = -1) \rightarrow (M_z = 4, \epsilon_F = -1), C = -2 \rightarrow C = -1\).

C. Weak spin-orbit coupling

Consider now the case of weak spin-orbit coupling for which the pairing is not aligned with the spin-orbit vector. We consider the case discussed above. The phase diagram for this pairing vector is the same as for the strong coupling case but the Chern numbers change signs. In Fig. 7 we present the time evolution of the wave function for a case where there is a quench from a phase with \(C = 2\) to a trivial phase with \(C = 0\). The results show that the Majorana is fairly robust. The time evolution follows the same trends: after the initial state with a sharp edge state, the shape of the state is such that ripples appear along the transverse direction that approach the middle point, scatter each other and propagate back to the border, such as in the revival process of the strong coupling case. However, throughout this process the peaks at the border remain. Moreover, at the revival time the wave function has a shape very close to the initial state. The Majorana state is therefore quite robust. This is also illustrated in Fig. 8 where we show the survival probability of the two lowest levels (the lowest level being the Majorana fermion). The survival probability of the Majorana fermion is clearly finite, even though there is a change in topology.

Even though the edge states are fairly localized near the borders, in a finite system the two edges are coupled.
It is therefore convenient to consider a momentum space description along the longitudinal direction and resolve the modes in k_x space, which allows to solve larger systems.

V. STABILITY OF EDGE STATES

We consider a strip geometry of transversal width N_y and apply periodic boundary conditions along the longitudinal direction, x. We write

$$ \psi_{k_x,k_y,\sigma} = \frac{1}{\sqrt{N_y}} \sum_{j_y} e^{-ik_yj_y} \psi_{k_x,j_y,\sigma}, $$

and rewrite the Hamiltonian matrix in terms of the operators \(\psi_{k_x,j_y} \) as

$$ H = \sum_{k_x} \sum_{j_y} \begin{pmatrix} \psi_{k_x,j_y,\uparrow}^\dagger & \psi_{k_x,j_y,\downarrow}^\dagger & \psi_{-k_x,j_y,\uparrow} & \psi_{-k_x,j_y,\downarrow} \end{pmatrix} \begin{pmatrix} \psi_{k_x,j_y,\uparrow} \nu_{k_x,j_y,\downarrow} \psi_{-k_x,j_y,\uparrow} \psi_{-k_x,j_y,\downarrow} \end{pmatrix} \begin{pmatrix} \nu_{k_x,j_y,\uparrow} \nu_{k_x,j_y,\downarrow} \nu_{-k_x,j_y,\uparrow} \nu_{-k_x,j_y,\downarrow} \end{pmatrix} $$

The operator \hat{H}_{k_x,j_y} reads

$$ \hat{H}_{k_x,j_y} = \begin{pmatrix} A & B \\ C & D \end{pmatrix} $$

where A is given by

$$ B = \begin{pmatrix} -i \alpha \sin k_x + \frac{\gamma}{2} t \eta_+ & 0 \\ 0 & -i \alpha \sin k_x - \frac{\gamma}{2} t \eta_+ \end{pmatrix} $$

$$ C = \begin{pmatrix} i \alpha \sin k_x - \frac{\gamma}{2} t \eta_- & 0 \\ 0 & i \alpha \sin k_x + \frac{\gamma}{2} t \eta_- \end{pmatrix} $$

and D is given by

$$ \begin{pmatrix} 2 \tilde{t} \alpha \cos k_x + M_z + \gamma \eta_+ + i \gamma \sin k_x + \frac{\gamma}{2} \eta_- & -i \alpha \sin k_x + \frac{\gamma}{2} \eta_+ \\ i \alpha \sin k_x - \frac{\gamma}{2} \eta_- & 2 \tilde{t} \alpha \cos k_x - M_z + \gamma \eta_+ + i \gamma \sin k_x + \frac{\gamma}{2} \eta_- \end{pmatrix} $$

where $\psi_{j_y}^{\dagger} = \psi_{j_y+1}^{\dagger} \pm \psi_{j_y-1}^{\dagger} \psi_{j_y}$. The diagonalization of this Hamiltonian involves the solution of a $4N_y \times 4N_y$ eigenvalue problem. The energy states include states in the bulk and states along the edges.

For negative values of the chemical potential, in the topological phases, there is typically a Majorana mode at $k_x = 0$. Other modes appear at other momenta values, depending on the region in the phase diagram. Since the Hamiltonian factorizes in momentum space, the overlaps between the single particle states of the initial Hamiltonian and those of the final Hamiltonian, are restricted to the same momentum value. Therefore, only states with the same momentum are coupled. We may therefore follow the time evolution of a given state with given momentum, separately from other states at different momenta.

In Fig. 7 we consider the same quenches as in Fig. 6 focusing on the survival probability of a Majorana at $k_x = 0$. The decay depends on the parameters chosen but is independent of the transverse direction system size, for short times. The results for system sizes from $N_y = 20$ to $N_y = 200$ are superimposed. The decay of the Majorana mode is therefore independent of system size, as expected of a localized state. Note however that $N_y = 20$ is a rather small size.

On the other hand, as mentioned above, the instant of the merging of the peaks of the wave function is size dependent. In Fig. 8 we present the scaling of the collision time with system size (t/N_y) for various system sizes, from $N_y = 20$ to $N_y = 120$. The approximate scaling is apparent, confirming the picture observed in the Kitaev, 1d, problem. In the following the results will be presented for a system size $N_y = 100$.

We reanalyze some results obtained above, considering larger system sizes. Moreover, the results are resolved in momentum space which provides more information on the details of the overlaps between the eigenstates of the two Hamiltonians.

Considering a quench from a $C = 1$ phase to a trivial phase leads to the same fast decay of the Majorana mode and a mode revival that scales to infinity as the system size grows. However, as shown in Fig. 10, taking a quench to a Z_2 phase (even though the Chern number vanishes, there are edge states at the same momentum value $k_x = 0$), we can see that, even though the decay of the mode is sharp, and the survival probability is very
small it is finite. A similar result is obtained performing a quench from $C = -2$ to a Z_2 phase, where a very small probability arises. In Fig. 10 we also show results for the lowest energy states for two other momenta values $k_x = \pi/2, \pi$. For these parameters these states have finite energy and are not Majorana zero modes. The mode at $k_x = \pi/2$ shows similar decay/revival behavior but the mode at $k_x = \pi$ shows oscillatory behavior. Interesting behavior is also found for the mode at momentum $k_x = \pi$ when a transition between an initial state with a Majorana fermion at $k_x = 0$ and a final state with a Majorana fermion at momentum $k_x = \pi$ occurs. This happens, for instance, in the quenches $(M_z = 3, \epsilon_F = -4) \rightarrow (M_z = 3, \epsilon_F = -2)$, for which $C = 1 \rightarrow C = -1$, or $(M_z = 2, \epsilon_F = -3) \rightarrow (M_z = 2, \epsilon_F = -1)$, for which $C = 1 \rightarrow C = -2$. In these cases, while the $k_x = 0$ mode decays, the finite energy state at momentum $k_x = \pi$ has a survival probability that is unity. The coupling to the Majorana state of the final state Hamiltonian is therefore unity.

A study of the projections between the two sets of eigenstates, $|\langle \psi_n(\xi) | \psi_m(\xi') \rangle|^2$, shows that, in general, the overlaps are rather small, except for a few selected states. As expected, in quenches with strong decay all overlaps are quite small, particularly with the low energy modes, for each momentum value. The opposite cases of finite survival probabilities are associated with larger overlaps, typically with a few states. Considering the $k_x = 0$ state, this robustness is usually associated with a large overlap to a final Hamiltonian eigenstate of small energy. However, in some cases there is a large overlap to states at finite energies, but whose wave functions are somewhat similar to the edge states (most likely they are antibound states between the two edges of the system and lie near gaps that appear in the spectrum at finite energies).

To stress the relevance of the presence of edge states in the same momentum subspace we consider quenches from a topological phase to the border of other phases (quantum critical points). Specifically, we consider as initial state $(M_z = 1, \epsilon_F = -4)$ located in a phase with $C = 1$. Two quenches are considered, one to the frontier to a trivial phase, $(C = 0$ and no edge states) with $(M_z = 1, \epsilon_F = -5)$ and another to the frontier to a nontrivial phase, $(C = 0$, but with edge state at $k_x = 0$). The results are presented in Fig. 11. The survival probability decays in the case of the trivial phase but remains finite in the other case.

As suggested by the results for the smaller system sizes (obtained above in the real-space description), in the case of weak spin-orbit coupling the Majorana modes are considerably more robust. This is illustrated in Fig. 12 where results for various quenches are presented.
FIG. 10: (Color online) Survival probability of the Majorana state of the two-dimensional triplet superconductor for a quench \((M_z = 2, \varepsilon_F = -3) \rightarrow (M_z = 0, \varepsilon_F = -3) \), \(C = 1 \) to \(C = 0 \) (\(Z_2 \) phase).

FIG. 11: (Color online) Survival probability of the Majorana state of the two-dimensional triplet superconductor for a quench \(C = 1 \) to quantum critical points with \(C = 0 \) (trivial and with edge states). \((M_z = 1, \varepsilon_F = -4) \rightarrow (M_z = 1, \varepsilon_F = -5) \), and \((M_z = 1, \varepsilon_F = -4) \rightarrow (M_z = 1, \varepsilon_F = -3) \).

The topology of each phase may be characterized by the Chern number. As the system evolves in time, the wave functions change. Solving for the evolution of the wave functions we may calculate the Chern number as a function of time and determine how the topology changes as well.

VI. EVOLUTION OF CHERN NUMBERS

The topology of each phase may be characterized by the Chern number. As the system evolves in time, the wave functions change. Solving for the evolution of the wave functions we may calculate the Chern number as a function of time and determine how the topology changes as well.

It is convenient to calculate the Chern number by computing the flux of the Berry curvature over plaquetes in the Brillouin zone. Discretizing the Brillouin zone as \(k_\mu = 2\pi j/N \), with \(j = 1, ..., N \), and \(\mu = x, y \), a new variable, \(T_\mu(k) \), for the link \(\delta k_\mu \) (with \(|\delta k_\mu| = 2\pi/N \)) oriented along the \(\mu \) direction from the point \(k \) may be
defined as
\[T_\mu(k) = \frac{\langle \psi_n(k) | \psi_n(k + \delta k_\mu) \rangle}{|\langle \psi_n(k) | \psi_n(k + \delta k_\mu) \rangle|}, \]
(30)
and the lattice field strength may be defined as
\[F_{xy}(k) = \ln (T_x(k)T_y(k + \delta k_x)T_z(k + \delta k_y)^{-1}T_y(k)^{-1}) . \]
(31)

\[F_{xy}(k) \] is restricted to the interval \(-\pi < -iF_{xy}(k) \leq \pi\)
and the gauge invariant expression for the Chern number is
\[C_n = \frac{1}{2\pi i} \sum_k F_{xy}(k) . \]
(32)

The calculations of the Chern number of each band \(n \) are performed in this way in this work.

VII. SLOW QUENCHES

Let us consider now a slow transformation of the Hamiltonian parameters and consider a change that leads the system across a phase transition. For simplicity we may consider a transformation where only one parameter changes as time increases as
\[\xi(t) = \xi(t_0) + r(t - t_0) \]
(33)
Here t_0 is the initial time and $r = (\xi(t_f) - \xi(t_0))/(t_f - t_0)$ is the rate of change and t_f is the final time. The time evolution of any state is given as before by

$$|\psi_m(\xi(t))⟩ = U(t, t_0)|\psi_m(\xi)⟩$$ \hspace{1cm} (34)

where $U(t, t_0)$ is the time evolution operator. Unlike in the case of the instantaneous quench considered above, as time goes by the Hamiltonian changes and the eigenstates change continuously with time. We may split the time evolution operator as a path integral

$$U(t_f, t_0) = U(t_f, t_{N-1})U(t_{N-1}, t_{N-2})\cdots U(t_2, t_1)U(t_1, t_0)$$ \hspace{1cm} (35)

dividing the time evolution in N discrete steps. The time evolution of any state may then be obtained at a set of discrete times, inserting complete sets of eigenstates of the Hamiltonian at each discrete time. If the number of steps is large enough, we may with good approximation write

$$U(t_{i+1}, t_i) = e^{-iH(\xi(\tilde{t}))\Delta t}$$ \hspace{1cm} (36)

where $\Delta t = (t_f - t_0)/N$ and \tilde{t} is an appropriate time in the interval $\{t_i, t_{i+1}\}$. For convenience we may take $t = t_{i+1}$. In a way similar to the case of the instantaneous quench, we calculate the overlap of the time evolved state with the initial state. In particular, we will focus attention on the evolution of the single-particle Majorana bound states as the topology changes across a phase transition.

The overlap amplitude at a given time $t = t_i$ can be obtained as

$$A(t_i) = \sum_n \langle \psi_0(\xi(t_0))|\psi_n(\xi(t_i))⟩ e^{-iE_n(\xi(t_i))\Delta t} A_{n_i}^i$$ \hspace{1cm} (37)

where

$$A_{n_i}^i = \sum_{n_{i-1}} \langle \psi_{n_{i-1}}(\xi(t_{i-1}))|\psi_{n_i}(\xi(t_{i-1}))⟩ e^{-iE_{n_{i-1}}(\xi(t_{i-1}))\Delta t} A_{n_{i-1}}^{n_i-1}$$ \hspace{1cm} (38)

with

$$A_{n_1}^{n_i} = \langle \psi_{n_i}(\xi(t_i))|\psi_0(\xi(t_0))⟩$$ \hspace{1cm} (39)

We will consider the probability defined as

$$P(t) = |A(t)|^2$$ \hspace{1cm} (40)

A. Survival probability

We consider three quantum phase transitions. We take three cuts represented in Fig. 16 at constant chemical potential and vary the magnetization. The first cut, I, is obtained keeping $\epsilon_F = -3$ and varying the magnetization from $M_z = 2 \rightarrow M_z = 0$, corresponding to a transition $C = 1 \rightarrow C = 0$ (trivial phase). In the second cut, II, $\epsilon_F = -1$ and the magnetization has the same variation, corresponding to $C = 1 \rightarrow C = 0$ (Z_2 phase). Finally, in the third cut, III, $\epsilon_F = -1$ the magnetization varies $M_z = 3.5 \rightarrow M_z = 2.5$, across a transition between two topological phases as $C = -1 \rightarrow C = -2$. In all cases the transition occurs at half the time interval.

For a given change of the magnetization across the topological transition, the rate is determined by the time interval. The (discrete) path integral approach used implies a discretization of the time interval. We have confirmed that the errors introduced by the discretization are very small. Keeping the rate fixed at a value of the order of $r = 0.02$ and changing the number of time steps from 100 to 1000 (corresponding from $\Delta t = 1$ to $\Delta t = 0.1$) the difference in the results is negligible.

In Fig. 16 the time evolution of $P(t)$ is shown for the three cuts I, II, III. These results were obtained taking a number of time steps $N = 200$ and $t_f = 200$ which implies $\Delta t = 1$ and a rate of $r = 2/200$ for cuts I, II and a rate of $r = 1/200$ for cut III. The behavior of the Majorana mode follows similar trends to the abrupt quenches considered in previous sections. In the case of the transition to the topologically trivial phase (I) the overlap tends to zero after the quantum critical point (half the time interval). Unlike the case of the abrupt quench, there is no revival of the Majorana state (the system considered here has a size $N_y = 100$ and we take $N_z = 201$). Since the evolution closely follows the slow evolution of the Hamiltonian parameters, the state is not recovered after the transition. In the case of the quench to the Z_2 phase, the overlap does not vanish at the final time t_f. In the case of quench III between two topological phases, we see that, until the transition occurs, the overlap is close to unity; after the transition it decreases,
but remains finite. We note however, that as the slow rate decreases, the overlap decreases as well and in the infinite time limit it seems to converge to zero.

In Figs. 17 we consider the effect of the rate of change on the overlap for cuts I and II. We vary the rates between \(r = 2/10 \) and \(r = 2/1000 \), from relatively fast decays to quite slow parameter changes. In the case of the first cut, the Majorana decays as expected, but if the decay is relatively fast \((r = 2/10) \), there is some revival of the overlap after the quantum critical point. These oscillations decrease in amplitude as the rate becomes smaller, the mean value becomes finite, particularly for smaller rates, and the overlap is clearly finite. Note that time is scaled by \(t_f \) in order to compare the various decay rates.

In Fig. 18 we consider a system with no edge states, by taking periodic boundary conditions both along the \(x \) direction and the \(y \) direction. The results presented are the overlap to the lowest energy state (with finite energy) also at \(k_f = 0 \). As time evolves and for the various decay rates, the overlap decreases due to the increased distinguishability of the states, but the overlap remains finite. Note that there are also quantum critical points since the energy gap vanishes and opens again. However, these are not edge states due to the different boundary conditions, even though the phases have different Chern numbers. The lowest energy state is therefore more robust and has a finite overlap with its time evolved single particle state.

B. Defect production

When crossing a quantum critical point the Kibble-Zurek mechanism predicts scaling behavior, associated with the critical slowing down and the appearance of domains of increasing size of the more stable phase, that scale in a universal way with the rate of parameter change across the phase transition. In particular, it is expected that the defect production induced by the coupling to excited states should also scale. In this work we are considering the admixture of excited states to a Majorana mode as the slow quench is completed. The defect production is defined as

\[
D = \sum_{\epsilon_n(\xi(t_f)) > 0} |\langle \psi_n(\xi(t_f))|\psi_0(t_f) \rangle|^2 \tag{41}
\]
as the sum of the square of the overlaps of the time evolved Majorana state on the positive energy eigenstates of the Hamiltonian at the final time, \(t_f \). We consider, as examples, a Majorana mode at momentum \(k_x = 0 \) and calculate the defect production for the quenches \(I, III \), chosen before.

In Fig. 19 the defect productions are plotted as a function of the rate of change across the quantum critical points. Also, the contribution from the lowest excited state is singled out. In the left panel we consider quench \(I \) from a topological phase to a trivial phase. For quench \(I \) \((C = 1 \rightarrow C = 0)\) we find that the defect production saturates to \(1/2 \). This result is reminiscent of the result obtained for the one-dimensional spinless Kitaev model.\(^{29}\) This result is consistent with the loss of robustness of the Majorana fermion as the transition occurs. At both low and high rates the overlap to the lowest energy state is small and only at intermediate rates is significant. Note however, that this lowest energy excited state has finite energy. For quench \(III \) \((C = -1 \rightarrow C = -2)\) the defect production has a rather different behavior (similar results are obtained, for instance, for a transition between \(C = -1 \) and \(C = 1 \)). At small rates the defect production is high and it decreases monotonically as the rate increases. This result is consistent with the decay of the overlap to the initial Majorana state as the rate decreases. As discussed above, if the decay rate is small the overlap to the initial Majorana state is also small and we expect a larger defect production. The results for the contribution of the lowest excited state show that its weight is quite large. For small rates it basically saturates the defect production and deceases as the rate increases. Note that in this quench, the lowest energy excitation is also a Majorana fermion. The results for both quenches show the nonuniversal behavior of the Majorana fermion, as obtained for the Kitaev model.

VIII. CONCLUSIONS

In this work the robustness of the Majorana fermions and of the Chern number of topological phases in a triplet superconductor have been determined.

In general, in the case of a strong spin-orbit coupling system, a quantum quench leads to a decay of the Majorana modes and to a revival time that scales with the system size. In some cases these modes are, however, somewhat robust. This is particularly observed when a quench connects states in two phases that share edge states at the same momentum value. When the spin orbit-coupling is not strong, and the pairing vector is not aligned with the spin orbit vector, such as in the weak coupling case considered here, the Majorana modes are more robust, and a finite survival probability is found due to the large overlaps between the single-particle eigenstates of the two Hamiltonians, the initial one and the final one. We also found that a signature of the topological phase, the Chern number, remains unchanged after the quench until the propagating time-evolved Majorana state reaches a peak at the center of the system, beyond which the Chern number fluctuates increasingly. It was also found that, in some cases, the time averaged Chern number seems to converge to the value expected of the final state, but in most cases this convergence is very slow, if it converges at all.

The results for slow quenches lead to similar conclusions and show that the Kibble-Zurek scaling does not hold for the decay of the Majorana modes, as found in other topological edge states.

Acknowledgements

The author thanks discussions with Pedro Ribeiro and Antonio Garcia-Garcia and partial support by the Portuguese FCT under grant PEST-OE/FIS/UI0091/2011 and grant PTDC/FIS/111348/2009.

1 A.J. Leggett, S. Chakravarty, A.T. Dorsey, et al., Rev. Mod. Phys. 59, 1 (1987).
2 J.D. Gunton and M. Droz, Introduction to the Theory of Metastable and Unstable Phases, (Springer-Verlag, Berlin, 1983).
3 A.J. Bray, Adv. in Phys. 43, 357 (1994); D. Boyanovsky, Phys. Rev. E 48, 767 (1993); D. Boyanovsky, D.-Sh. Lee and A. Singh, Phys. Rev. D 48, 800 (1993); V.M. Turkowski, P.D. Sacramento and V.R. Vieira, Phys. Rev. B 73, 214437 (2006).
4 A.H. Bobeck and E. Della Torre, Magnetic Bubbles, Selected Topics in Solid State Physics, ed. E.P. Wohlfarth (North-Holland, Amsterdam, 1975); A.H. Eschenfelder, Magnetic Bubble Technology, Springer-Series in Solid-State Sciences, ed. M. Cardona, P. Fulde and H.-J. Queisser (Springer-Verlag, Berlin, 1981).
5 A. Polkovnikov, K. Sengupta, A. Silva and M. Vengalatoare, Rev. Mod. Phys. 83, 863 (2011).
6 T. Kinoshita, T. Wenger and D.S. Weiss, Nature 440, 900 (2006); S. Hofferberth, I. Lesanovsky, B. Fischer, T. Schumm and J. Schmiedmayer Nature 449, 324 (2007).
7 E. Altman and A. Auerbach, Phys. Rev. Lett. 89, 250404 (2002); K. Sengupta, S. Powell and S. Sachdev, Phys. Rev. A 69, 053616 (2004); J. Berges, S. Borsányi and C. Westerich, Phys. Rev. Lett. 93, 142002 (2004); M. Rigol, A. Muramatsu and M. Olshanii, Phys. Rev. A 74, 053616.
