In March 2013, the cases of human infection with influenza A of H7N9 subtype were first reported. Preliminary data suggested that the H7N9 isolates are sensitive to neuraminidase inhibitors, such as oseltamir, which is the recommended choice of treatment. On April 2nd, a 56-year-old male patient was presented with fever and cough to our hospital. He had previous history of close contact with another H7N9 patient. After caring for his wife (a confirmed H7N9 infection case died on April 3rd), this patient showed flu like symptoms on April 2nd. On the same day, oseltamir (75 mg bid) treatment was started. Throat swab specimens were screened for H7N9 virus by real-time reverse transcriptase-polymerase chain reaction. The patient was hospitalized on April 4th. Initial specimens on April 4th and April 5th were negative for H7N9. But the specimen collected on April 10th was tested positive for H7N9. The result was confirmed by Shanghai Municipal Center of Disease Control and Prevention. By April 25th when we submitted this report, swab specimens of this patient were still positive for H7N9. This case calls for increased awareness of potential resistance of H7N9 to oseltamir.

Keywords: influenza A; H7N9; contact; oseltamir; neuraminidase inhibitors
bilateral lower lung inflammatory exudation associated with acute lung injury (Figure 1). On April 5th, the patient was treated with oseltamivir, moxifloxacin, piperacillin and tazobactam.

As the disease progressed further, the patient became critically ill. CT scan on April 6th (day 3) and April 15th (day 12) showed expanded lesions (Figures 2 and 3). The patient developed severe hypoxemia and was incubated for mechanical ventilation. On April 10th (day 7), throat swab specimens were tested positive for A/H7N9 influenza virus. This result was confirmed by Shanghai Municipal Center of Disease Control and Prevention. The patient continued to receive treatment and was tested daily from his throat swab specimens for H7N9 virus. At the time of writing (April 25th), the patient’s specimen remained H7N9 positive and the patient’s condition remained critical.

This patient’s wife had a confirmed H7N9 infection. She developed symptoms of fever and pneumonia beginning on March 27th and died on April 3rd. She was a housewife and visited a food market almost every day, where live poultry was sold. She had 31 close contacts who have been monitored for possible H7N9 infection. The patient and his sister-in-law did not have a history of frequent visits to the market. They did not report having close contact with live poultry before the onset of symptoms.

DISCUSSION

The disease caused by the novel avian influenza A (H7N9) is of significant public health concern because of the high mortality of the infection in humans. Oseltamivir is the first choice of treatment for human influenza A infection recommended by National Health and Family Planning Commission of China. But its effectiveness on human influenza A (H7N9) is unknown. Here we report a confirmed case of human H7N9 infection that did not respond to oseltamivir very well. Clinical outcomes were not favorable despite the use of oseltamivir. H7N9 virus was detected from throat swab specimens on day 8 post treatment, while no virus was detected during the first six day of disease onset and treatment.

Chan et al. reported that initiation of oseltamivir before onset of respiratory failure is effective in treating human H5N1 infection, whereas oseltamivir initiation during the time of advanced respiratory failure that requires ventilator support is ineffective. For the current case of human H7N9 infection, the patient did not experience any
advanced respiratory failure when he was put on the oseltamivir treatment. Nevertheless, he went on to develop severe hypoxemia 11 days after the oseltamivir treatment and required ventilation support. A review of human H7N9 cases found that nearly half of the oseltamivir treated patients developed respiratory failure during treatment.7 Thus the effectiveness of oseltamivir to treat human H7N9 is questionable. The median age of the human H7N9 cases (63 years old) reported so far is significantly higher than that of the individuals in the H5N1 study (18 years old).7 Further investigation is necessary to determine whether age or other factors may contribute to the effectiveness of oseltamivir in treating human H7N9 infection.

Oseltamivir-resistant influenza A virus from humans and wild birds have been reported.13 The sequence of the H7N9 virus isolated from our case is not available. But sequencing analysis of human isolates from other cases indicates that H7N9 should be sensitive to oseltamivir.8 Preliminary epidemiological study of 82 confirmed human H7N9 cases provides no strong evidence for human-to-human H7N9 transmission.7 The same study, however, acknowledges that limited human-to-human H7N9 transmission is possible after “prolonged, unprotected and close” contact with another suspected H7N9 individual.7 The incubation period of human H7N9 infection is estimated to be six days.7 In our case, the patient developed symptoms six days after his wife had fever. Both the patient and his wife had confirmed H7N9 infection. Study of human volunteer challenged with influenza A virus indicates that flu symptom and virus shedding initiate and peak together within 1 day.14 Thus, the onset of patient’s symptom was consistent with the possibility that patient have acquired the H7N9 infection from his wife. The patient’s history of having unprotected, prolonged and close contacts with a confirmed H7N9 case further increased the likelihood that he acquired the H7N9 infection from another human. Two family clusters were reported.7 However, H7N9 infection could not be confirmed in the index case of one cluster and in the initial case of another cluster.7 In the current report, the patient and his wife both had confirmed H7N9 infection. The transmissibility of H7N9 among humans, however, is likely to be very weak, since only one of 31 close contacts beside the patient developed any flu-like symptoms.7 That person was H7N9-negative and the symptom quickly resolved. We could not determine whether the patient and his wife were exposed to a common or a different source of H7N9, despite the fact that the patient reported no exposure to live poultry. Further investigation of this family cluster may help definitively determine the source of H7N9 infection of our present case.

In summary, we reported the first case of family cluster in which the initial case and the subsequent case both have confirmed H7N9 infection. We also described the ineffectiveness of oseltamivir to control disease progress in this case of human H7N9 infection, despite the fact that the treatment was initiated on the same day as the disease onset.

1 Webster RG. Influenza virus: transmission between species and relevance to emergence of the next human pandemic. Arch Viral Suppl 1997; 13: 105–113.
2 Webster RG, Bean WJ, Gorman OT, Chambers TM, Kawaoka Y. Evolution and ecology of influenza A viruses. Microbiol Rev 1992; 56: 152–179.
3 Li KS, Guan Y, Wang J et al. Genesis of a highly pathogenic and potentially pandemic H5N1 influenza virus in eastern Asia. Nature 2004; 430: 209–213.
4 Yu Chen, Weifeng Liang, Shigui Yang et al. Human infections with the emerging avian influenza A (H7N9) virus from wet market poultry: clinical analysis and characterisation of viral genome. Lancet 2013 April 25; doi:10.1016/S0140-6736(13)60903–60904.
5 Gao R, Cao B, Hu Y et al. Human Infection with a Novel Avian-Origin Influenza A (H7N9) Virus. N Engl J Med 2013 Apr 11; doi: 10.1056/NEJMoa1304459.
6 Yang F, Wang J, Jiang L et al. A fatal case caused by novel H7N9 avian influenza A virus in China. Emerg Microbes Infect 2013; 2: e19.
7 Qun Li, Lei Zhou, Minghao Zhou et al. Preliminary Report: Epidemiology of the Avian Influenza A (H7N9) Outbreak in China. *N Engl J Med* 2013 Apr 24; doi: 10.1056/NEJMoa1304617.

8 Kageyama T, Fujisaki S, Takashita E et al. Genetic analysis of novel avian A(H7N9) influenza viruses isolated from patients in China, February to April 2013. *Euro Surveillance: European communicable disease bulletin* 2013; 18. pii: 20453.

9 National Health and Family Planning Commission. Diagnosis and treatment guideline for human infection with influenza A (H7N9) virus, 2nd ed. Beijing: NPFPC, 2013. Available at http://www.moh.gov.cn/mohgjhzs/s7952/201304/98ceede1daf74a45b110f1b04c23e8e.shtml.

10 Adisasmito W, Chan PK, Lee N et al. Effectiveness of antiviral treatment in human influenza A(H5N1) infections: analysis of a Global Patient Registry. *J Infect Dis* 2010; 202: 1154–1160.

11 Wen YM, Klenk HD. H7N9 avian influenza virus - search and re-search. *Emerg Microbes Infect* 2013; 2: e18.

12 Chan PK, Lee N, Zaman M et al. Determinants of antiviral effectiveness in influenza virus A subtype H5N1. *J Infect Dis* 2012; 206: 1359–1366.

13 Govorkova EA, Baranovich T, Seiler P et al. Antiviral resistance among highly pathogenic influenza A (H5N1) viruses isolated worldwide in 2002–2012 shows need for continued monitoring. *Antiviral Res* 2013; 98: 297–304.

14 Carrat F, Vergu E, Ferguson NM et al. Time lines of infection and disease in human influenza: a review of volunteer challenge studies. *Am J Epidemiol* 2008; 167: 775–785.

This work is licensed under a Creative Commons Attribution-NonCommercial-Share Alike 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/3.0