Eigenstate properties of the disordered Bose-Hubbard chain

Jie Chen,1,* Chun Chen,1,† and Xiaoqun Wang1,2,3,4,‡

1Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education),
School of Physics and Astronomy, Shenyang National Laboratory for Materials Science,
Shanghai Jiao Tong University, Shanghai 200240, China
2School of Physics, Zhejiang University, Hangzhou 310058, Zhejiang, China
3Tsung-Dao Lee Institute, Shanghai Jiao Tong University, Shanghai 200240, China
4Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China

(Dated: January 18, 2024)

Many-body localization (MBL) of a disordered interacting boson system in one dimension is studied numerically at the filling fraction one-half. The von Neumann entanglement entropy S_N is commonly used to detect the MBL phase transition but remains challenging to be directly measured. Based on the $U(1)$ symmetry from the particle number conservation, S_N can be decomposed into the particle number entropy S_N and the configuration entropy S_C. In light of the tendency that the eigenstate’s S_C nears zero in the localized phase, we introduce a quantity describing the deviation of S_N from the ideal thermalization distribution; finite-size scaling analysis illustrates that it shares the same phase transition point with S_N but displays the better critical exponents. This observation hints that the phase transition to MBL might largely be determined by S_N and its fluctuations. Notably, the recent experiments [A. Lukin et al., Science 364, 256 (2019); J. Léonard et al., Nat. Phys. 19, 481 (2023)] demonstrated that this deviation can potentially be measured through the S_N measurement. Furthermore, our investigations reveal that the thermalized states primarily occupy the low-energy section of the spectrum, as indicated by measures of localization length, gap ratio, and energy density distribution. This low-energy spectrum of the Bose model closely resembles the entire spectrum of the Fermi (or spin XXZ) model, accommodating a transition from the thermalized to the localized states. While, owing to the bosonic statistics, the high-energy spectrum of the model allows the formation of distinct clusters of bosons in the random potential background. We analyze the resulting eigenstate properties and briefly summarize the associated dynamics. To distinguish between the phase regions at the low and high energies, a probing quantity based on the structure of S_N is also devised. Our work highlights the importance of symmetry combined with entanglement in the study of MBL. In this regard, for the disordered Heisenberg XXZ chain, the recent pure eigenvalue analyses in [J. Šuntajs et al., Phys. Rev. E 102, 062144 (2020)] would appear inadequate, while methods used in [A. Morningstar et al., Phys. Rev. B 105, 174205 (2022)] that spoil the $U(1)$ symmetry could be misleading.

I. INTRODUCTION

In the absence of many-body interactions, it is known that Anderson localization may occur in a disordered system depending upon dimensionality and disorder strength [1–3]. This localization phenomenon, essentially caused by interference of elastic scatterings, has been intensively investigated in various disordered circumstances for more than five decades [4–6]. In recent years, with the advances of numerical techniques, computational capacities, and experimental facilities, the interaction effect within many-body disordered systems has become of great interest in light of the novel competition between many-body interactions and quenched disorder. One would like to thoroughly explore the effects of disorder on the fundamental properties of many-body interacting systems associated with ergodicity breaking, eigenstate thermalization, and quantum criticality. Particularly, many-body localization (MBL) is expected to be intrinsically different from Anderson localization [7–10].

In the absence of disorder, a nonintegrable interacting system is usually considered to satisfy the so-called eigenstate thermalization hypothesis (ETH) [11, 12], which assumes that the ergodicity of many-body states exists, implying that eigenstate fluctuations in the expectation of a quantum mechanical observable is about the same order of magnitude as the statistical fluctuations in a microcanonical ensemble controlled by an appropriate energy density [7]. When sufficiently strong disorder is introduced into such many-body interacting systems, an ergodic many-body state may turn into an MBL state, in which local integrals of motion (LIOMs) emerge [13–15] such that the integrability is considerably restored, resulting in the Poisson distribution of the energy levels, rather than the Wigner-Dyson surmise for the typical ETH phases as is derived from the random matrix theory [7, 16].

Phenomenology of MBL can be relevant for many different but related settings, such as a Floquet disordered system [17–20], for which the driven system is considered to implement the so-called discrete time crystal [21, 22], the quantum frustrated Heisenberg spin chains [23], and the one-dimensional (1D) QED lattice version of the Schwinger model with a disordered gauge [24], as well as in several open quantum setups [25–30]. Physical properties of MBL have been widely studied numerically for 1D Heisenberg or similarly interacting hard-core boson systems with randomness [23, 31–36]. One finds that by exploiting entanglement entropy, a dynamical transition beyond the quantum phase transition occurs between the ETH and MBL states that is driven by disorder...
strength when varying the energy density [23, 31–34]. While an ETH state has an extended thermal nature, an MBL state is featured by its insulating nature, being close to a product of localized states. Correspondingly, entanglement entropy possesses a volume law in the ETH phase [23] but an area law in the MBL phase. Moreover, a slowly dephasing process is unveiled in MBL phase, engendering a logarithmic entropy increase upon the time evolution of a many-body state [37, 38].

Many experimental efforts are cast into the measurements of disorder effects for interacting many-body systems [21, 22, 36, 39–42]. Specifically, A. Lukin et al. [39] succeeded in realizing a 1D interacting Aubry-Andrè model for bosons. By probing particle number entropy and configuration entropy, they detected that the signature of quantum thermalization, the particle’s finite localization length, and an area-law scaling of the particle number entropy can help to distinguish the MBL phase from the ergodic ETH phase. Moreover, they also found a slowly growing behavior of the configuration entropy that ultimately results in a volume-law scaling, demonstrating that the MBL state is qualitatively different from a noninteracting Anderson insulating state. Curiously, the key difference between the Bose model and the Fermi (or spin) model is that Bose statistics can result in the clustering of multiple particles, potentially giving rise to the novel phenomena of Bose type MBL. This distinctive character is missing in [39, 43].

In this paper, we extensively explore the nature of MBL phase in 1D Bose-Hubbard model with disorder by exact diagonalization (ED) [44] and several complementary techniques [45, 46]. For the present system, numerical calculations are limited to small sizes since the occupancy number of bosons can be any integer, depending on the filling factor under consideration. However, since Hamiltonian (1) below commutes with total number of particles, the ED calculation can be performed in the subspace with a given number of particles. For a chain with L sites and N bosons, the dimension for the matrix diagonalization is $(L + N - 1)!/[N!(L - 1)!]$. By implementing the separation of von Neumann entanglement entropy, one can further compute the particle number entropy and configuration entropy to access the so-called symmetry-resolved entropy. In our numerical calculations, we exclusively focus on the filling factor $1/2$. Considering the rapid growth of the Hilbert-space dimension, it is practically feasible that 10000 samples were taken for the averages with $L = 8, 5000$ with $L = 10, 3000$ with $L = 12$, and for $L = 14, 200$ samples are used for weak disorder, 400 for medium disorder, and 600 for strong disorder. We impose open boundary conditions in the calculations to compute the two-body density-density correlation function and periodic boundary conditions for other quantities. To access larger system sizes, we also employ time-evolving block decimation (TEBD) [45, 46] method to evaluate the time evolution of the two-body correlation function. Errors resulting from sample averages are given explicitly for most cases and are invisible otherwise.

In the following, we first introduce the disordered Bose-Hubbard (dBH) model and briefly discuss current status regarding the ground-state studies on this model in Section II. In Section III, we focus on the phase transition from ETH to MBL; at the beginning of this section, a detailed outline of its content is provided. In Section IV, we analyze different MBL phases within dBH model through the properties of its eigenstates; this section also starts with a detailed content overview. A summary and pertinent discussions are finally given in Section V. For completeness, several corresponding supplementary results are included in Appendixes A–D.

II. Model

The 1D dBH model can be written as

$$
\hat{H} = -J \sum_i (\hat{a}_i \dagger \hat{a}_{i+1} + \text{H.c.}) + \frac{U}{2} \sum_i \hat{n}_i (\hat{n}_i - 1) + \mu \sum_i \delta_i \hat{n}_i
$$

(1)

where $\hat{a}_i \dagger , \hat{a}_i$ are particle creation and annihilation operators, and $\hat{n}_i = \hat{a}_i \dagger \hat{a}_i$ is the particle occupation number operator at site i. Disorder is introduced through a random number δ_i, which is uniformly distributed within $[-1, 1]$ for all sites, thus chemical potential μ becomes a tuning parameter for the disorder strength. For convenience, we set $J = 1$ as the energy-scale unit hereafter.

For Hamiltonian (1), we use the ED technique to find all its eigenvalues E_i with an order of $E_1 \leq E_2 \leq \cdots \leq E_D$ and D is the dimension of the Hamiltonian matrix. The energy density ε used throughout this work is then defined by

$$
\varepsilon = \frac{E_i - E_{\text{g}}}{E_D - E_{\text{g}}}.
$$

(2)

At zero temperature, the BH model, in the absence of disorder, undergoes a quantum phase transition from a superfluid phase to the Mott-insulator state with an integer filling factor as the interaction strength U increases [47]. When disorder is introduced, the nature of the ground state is anticipated to alter [48–51]. For a given diagonal disorder sample $\{ \delta_i \}$ with $i \in [1, L]$, one finds that the system changes from the superfluid state first to the Bose-glass state and then to the Mott-insulator state under the rise of U [49, 50]. In the case of an off-diagonal disorder configuration assigned to J, a phase diagram has also been established in terms of the interaction strength U and the randomness strength in the hopping amplitude J [49–51].

In this work, we fix $U = 3J$ and always maintain the filling factor to be one-half per site, i.e., $N = \sum_i \hat{n}_i = \frac{L}{2}$, for which one has a superfluid ground state in the case of a clean chain [52].

III. Eigenstate Phase Transition

A plethora of physical quantities have been used to numerically detect the MBL phase transition, but most are experimentally inaccessible. Among these, the von Neumann entropy S_{vN} is a common choice, yet remains challenging to be
FIG. 1. (a) Particle number entropy S_N versus disorder intensity μ for different sizes L at an energy density $\varepsilon = 0.25$. (b) Results for configuration entropy S_C at the same energy density. Companion results for p_n and S_{vN}^n with respect to differing sizes are shown in the insets of (a) and (b) for $\mu = 2$.

FIG. 2. Half-chain particle number fluctuation F_N versus μ at an energy density $\varepsilon = 0.25$ for various lengths L.

Harvard experiments [39, 43] (especially in boson systems). Admittedly, here we have also asserted the assumption that the energy-resolved eigenstate measurements we consider can be qualitatively executed through the careful combinations of disorder realizations and initial state preparations for using the dynamics, as was successfully implemented in the recent programmable-superconducting-processor-based experiment on MBL [41]. Recent debates about whether the MBL transition is a true phase transition or a crossover [53, 54] prompt us to seriously inspect such experimental measurability, and these considerations can contribute to the settling of these ongoing controversies (see comments at the end of this subsection). Finally, in Subsection III C, to gain an overview of the eigenstate-transition scenario, we sketch the finite-system dynamical phase diagram obtained from the large-scale numerical simulations.

A. Entanglement Entropy and Particle Number Fluctuation

In Appendix A, we detail the decomposition of the total entanglement entropy S_{vN} into the particle number entropy S_N (readily measurable) and the configuration entropy S_C (not currently measurable). We first observe that the S_C of the eigenstate nears zero in the localized phase, implying that S_C may largely be phase transition irrelevant (or at least less relevant). Motivated by this, in Subsection III B, we introduce a new quantity that quantifies the deviation of S_N from the ideal thermal distribution. Subsequent finite-size analysis shows that it shares the same phase transition point with S_N but bears a greater critical exponent, indicating that it is S_N that primarily drives the phase transition. Most importantly, this deviation of S_N can be preliminarily measured in the laboratory, as has already been demonstrated by recent direct measurements. Conceiving the experimentally accessible probes to assess the MBL transition therefore comprises one of the main goals of the present work.

In Subsection III A, based on the $U(1)$ symmetry, we decompose S_{vN} into the particle number entropy S_N (readily measurable) and the configuration entropy S_C (not currently measurable). We first observe that the S_C of the eigenstate nears zero in the localized phase, implying that S_C may largely be phase transition irrelevant (or at least less relevant). Motivated by this, in Subsection III B, we introduce a new quantity that quantifies the deviation of S_N from the ideal thermal distribution. Subsequent finite-size analysis shows that it shares the same phase transition point with S_N but bears a greater critical exponent, indicating that it is S_N that primarily drives the phase transition. Most importantly, this deviation of S_N can be preliminarily measured in the laboratory, as has already been demonstrated by recent direct measurements. Conceiving the experimentally accessible probes to assess the MBL transition therefore comprises one of the main goals of the present work.

In Appendix A, we detail the decomposition of the total entanglement entropy S_{vN} into the particle number entropy S_N and the configuration entropy S_C when the total number of particles N in the system is conserved and discuss how to calculate the configuration entropy in an efficient way.

Now we mainly focus on the obtained numerical results for these two quantities, the particle number and configuration entropies. Figure 1(a) shows the size dependence of S_N. For each length L, S_N decreases monotonically with the increasing disorder strength μ. Likewise, for S_C, we can see from Fig. 1(b) that it lessens as disorder enhances, and approaches zero once the disorder strength μ becomes significant. This is because if disorder is strong enough, the system is expected to be localized in several particular configurations. The configuration entropy due to the superposition of these configurations thereby tends to near zero. Under the circumstance of larger
shows the results of (a), we give the distribution of p_n as a function of $n - N/2$ with respect to different chain lengths for a small disorder strength $\mu = 2$. It can be seen that since p_n needs to be normalized and there is no difference between tracing out the left or the right portion of the system at ETH, it is a symmetric distribution of the Gaussian lineshape. In the inset of Fig. 1(b), the results of S_{vN} are given, again symmetric. Overall, as the chain length increases, the dimension of the channel grows, so does the corresponding entropy.

S_N arises from the superposition of states with varying particle numbers in half-chain subsystems, generated by particle motion across the boundary of the bipartite (A and B). This fluctuation and its measurability can both be understood in terms of the particle number variances for part A, which is typically defined as follows,

$$F_N = \left\{ \langle \hat{N}_A^2 \rangle - \langle \hat{N}_A \rangle^2 \right\}_{av} \quad (3)$$

where \hat{N}_A is the total particle number operator for part A. F_N accounts for the correlation between the two-particle densities on the two sites located inside portions A and B, respectively, reflecting the particle-number-fluctuation induced entanglement between the bipartite.

Figure 2 shows the results of F_N at $\varepsilon = 0.25$. One can see that it indeed behaves analogously to S_N. This implies that it also has a volume law for small μ in the ETH phase and tends toward the area law at large μ for the MBL phase. Analyzing the last expression of (3) when subject to the sufficiently large μ, one may expect that the correlations would become exponentially small with increasing $|i - j|$. It turns out that in the summation of (3), those terms with small $|i - j|$ do dominate, i.e., only the contributions of those correlations at the interface between parts A and B remain finite for the MBL phase, thereby leading to an area law for F_N. This also reinforces the experimental observation on the area-law scaling of S_N in the MBL phase as was reported in the Harvard experiment [39].

B. Number Entropy Dominates the MBL Transition

As seen in the previous subsection, in the localized phase, the S_C of the eigenstate nears zero and consequently S_N dominates the total entropy. This implies that S_C may be much less relevant to the phase transition and the transition is chiefly governed by S_N. Next, we will show numerical evidence to substantiate this claim.

Firstly, we calculate the total von Neumann entropy S_{vN} for a given $\varepsilon = 0.25$ using the various sizes L, which is expected to capture the finer signal of the transition point according to the general scaling theory of the critical phenomena [55, 56]. As per the finite-size scaling theory, the phase transition point and the critical exponent thereof can be obtained when all data curves are collapsed into a single line describable by the following scaling form ansatz [23, 57],

$$Q(L, \mu) = g(L)f((\mu - \mu_c)L^{1/\nu}),$$

which gives rise to a collapsed scaling relation of $y_L = Q(L, \mu)/g(L)$ versus $x_L = (\mu - \mu_c)L^{1/\nu}$ and the critical value μ_c as well as the critical exponent ν for the transition.

![Figure 3](image-url)

(b) is the corresponding result of $|d(S_{vN})|$ for different chain lengths when disorder increases; its data collapse is given also in the inset, showing the same phase transition point at around $\mu_c \approx 7.8$. The energy density here is always fixed to be $\varepsilon = 0.25$.

$\mu_c = 7.8 \pm 0.2$, $\alpha = 0.8 \pm 0.05$, $\nu = 1.5 \pm 0.1$. (a) Variation of the total entropy S_{vN} with the disorder intensity for different sizes; the inset gives the result of its data collapse, yielding the estimate of the phase transition point at $\mu_c \approx 7.8$. (b) is the corresponding result of $|d(S_{vN})|$ for different chain lengths when disorder increases; its data collapse is given also in the inset, showing the same phase transition point at around $\mu_c \approx 7.8$. The energy density here is always fixed to be $\varepsilon = 0.25$.

$\mu_c = 7.8 \pm 0.2$, $\alpha = 0.8 \pm 0.05$, $\nu = 1.5 \pm 0.1$.
(5) The models they studied generally have the $U(1)$ symmetry, but the computed physical quantities do not incorporate this symmetry thoroughly. Even worse is the case that the computational scheme they used may explicitly break those important internal symmetries of the system, such as the open-system approach used in [54] which spoils the $U(1)$ symmetry of the Heisenberg chain. This lack of the symmetry embedding, particularly in a way parallel to the entropy decomposition already implemented here in Appendix A, may result in the dangerous inclusion of the phase-transition-relevant components or contributions, which probably distorts the revealing of the underlying critical phenomena.

(2) Most quantities designed might not be experimentally measurable.

(3) Various transport calculations require to involve the information of the whole energy spectrum. As will be illustrated shortly, the higher- and lower-energy behaviors of the generic bosonic systems can be notably distinct. This means that these regimes need to be considered and examined carefully and separately. For instance, when calculating the transport properties of a bosonic chain at infinite temperature, blindly mixing all eigenstates equally may pose a problem.

Following the recent theoretical framework proposed by [54], the observed MBL phase is likely akin to what they call the finite-size MBL regime, with the phase transition point corresponding to the landmark C_ν within the finite-size accuracy. In essence, while debates over the MBL phase and transition persist, we provide an experimentally practical quantity to aid the investigation of these critical issues.

C. Finite-System Dynamical Phase Diagram

Based on the scaling analyses discussed in the previous subsection, we analogously extracted the phase transition points for a spectrum of other energy densities, ultimately producing the eigenstate phase transition diagram for the dBH model, as shown by Figs. 4(b) and 5. It can be seen that S_{d} and $|d(S_{\text{d}})|$ yield nearly identical estimates for the phase boundaries.

Inspired by the experimental pertinence, we may use the measurable localization length to illustrate that the system’s thermalization states predominantly reside in the low-energy-density region. Firstly, the two-body density-density correlation function $G_2(d)$ is introduced to measure the correlation of the particles located at the two sites separated by a distance d in an eigenstate with the eigenenergy closest to a given energy density ϵ. Specifically, we borrow the definition from the Harvard experiment [39]

$$G_2(d) = \frac{\sum_{i+d\leq L} \langle \hat{n}_i \hat{n}_{i+d} \rangle - \langle \hat{n}_i \rangle \langle \hat{n}_{i+d} \rangle}{N_{i+d\leq L}}$$

where $N_{i+d\leq L}$ indicates the number of pairs in the summation over i and the given d, and $\langle \ldots \rangle_{av}$ denotes an average over the disorder samples with a given set of μ and ϵ. Since the total
particle number is conserved for the present dBH model, one generally has $G_2(d) \geq 0$. Further, one expects that $G_2(d)$ decreases exponentially with d when the disorder strength is large enough. The localization length can thereby be extracted from this exponentially decaying behavior of $G_2(d)$, alternatively providing a distinguishable signal between the ETH and MBL phases.

In Fig. 4(a), the two-body density-density correlation function at $\varepsilon = 0.3$ is shown for the four disorder strengths. In the region of small disorder strength, the correlation function decays very slowly with the distance d. It is nearly a constant, indicating that all the system’s parts are highly entangled and the many-body eigenstates are well thermalized. As the disorder strength increases, an exponential decay behavior becomes sharper and sharper so that it can be fitted by a formula of the form $G_2(d) = A e^{-d/\xi}$ and the localization length ξ can be extracted thereof. (Note, in comparison, the localization length cannot be gained via fitting to an exponential form when the disorder is weak and the energy density is small.) Accordingly, the emergence and the change of the localization length tunable by μ reveal an eigenstate phase transition from the ETH state to the MBL state.

As illustrated by Fig. 4(b), by exploiting the extracted localization lengths, for the 1D dBH model with $U/J = 3$ and the half-filling, we find an ETH phase in the bottom-left corner (yellow color) and the MBL phase (blue color) in the rest of the μ-ε parameter plane. As already stressed, the thermalized states predominantly distribute within the low-energy, weakly disordered region of the phase diagram. Moreover, as an aside, when comparing the phase transition boundary to the color map of the localization length, one notices that the localization lengths are generally much greater than several lattice spacings in the ETH phase. Nonetheless, we would like to remind the reader the procedure that for a thin area of the very weak disorder strengths in the ETH phase, the values of these large localization lengths cannot be determined by using the exponential fit of G_2 have all been truncated to the $L - 1$ lattice spacings, the maximal possible value of d, so that one can still represent the ETH phase in Fig. 4(b) in a coherent fashion.

To further confirm the construct of the phase diagram, it is instructive to study the complementary energy-resolved adja-
gap ratio defined by [61–63]

\[r_n = \frac{\min[\delta E_n, \delta E_{n+1}]}{\max[\delta E_n, \delta E_{n+1}]} \]

(7)

where \(\delta E_n = E_n - E_{n-1} \) is the difference between the two successive eigenenergies arranged in an ascending order. For each disorder sample, we calculate the 16 adjacent \(r_n \) to obtain the averaged value \(\bar{r} \) subject to a given energy density \(\varepsilon \), and \(r = \{ \bar{r} \}_n \) denotes the average over the disorder samples. The ratio \(r \) reflects how the disorder strength \(\mu \) determines the nature of the level statistics at a specific energy density \(\varepsilon \).

The ratio \(r \) retains the averaged value \(\bar{r} \) for comparison. From Fig. 5, it is apparent that there appears to be an intermediate region between the yellow-region boundary and the phase-transition boundary. In Appendix B, we explore this low-energy and medium-\(\mu \) region further from the perspective of the local compressibility distribution.

In the region where the energy density is less than 0.5, the overall phase transition resembles that in the full spin or fermion models [32–34]. It is anticipated that when the energy density is relatively low, it is not easy to form the high-energy situation where multiple particles occupy the same position. While, in the high-energy-density region, particles can and do form clusters due to interaction and bosonic statistics, yet possibly with very different behaviors between the limits of small and large disorder strengths.

As shown by Figs. 4(b) and 5, there is basically no significant change in the color of the localized part of the diagram. But we are now equipped to elucidate the properties and distinctions of these phase regions in some detail by scrutinizing the eigenstate properties and the quench dynamics in the high- and low-energy-portions of the phase diagram. These peculiarities of the dBH model, as will be described next in Section IV, exemplify the intricate interplay of interaction, quantum statistics, and disorder, and give the schematic delineation of the phase regions in Fig. 5 as per the broad classification of scatter and cluster MBLs.

IV. MANY-BODY LOCALIZED EIGENSTATES

This section focuses on the properties of MBL eigenstates in the dBH chain. Our investigations reveal the following findings. (i) In Subsection IV A, we point out that the low-energy-density portion of the eigenspectrum of the dBH model closely resembles the entire eigenspectrum of the fermionic (or spin) models [32–34], featured by a transition from the thermalized to localized states. In view of the fact that the low-energy mobile identities are scatter particles, we name the resulting localized state the scatter MBL phase. In Subsection IV A, we analyze the eigenstate particle number distribution for scatter MBL and summarize the associated quench dynamics characteristics. (ii) Owing to the bosonic statistics, the high-energy-density portion of the eigenspectrum allows the formation of the distinct boson clusters in a random potential background. This situation is unique to the dBH-type model, and we name the resulting localized state the cluster MBL phase. After examining the eigenstate particle number distribution and the quench dynamics features, we show that the cluster MBL may differ in significant aspects from the scatter MBL. (iii) Regarding the localized eigenstate properties, the traditional measures might not be directly sensitive to the differences between the high- and low-energy-density sections of the eigenspectrum. In Subsection IV C, by exploring the structure of the symmetry-resolved entanglement entropy \(S_{\text{EN}} \), we introduce another measure to help discriminate between the eigenstate phases emerging at the respective low and high energies.

A. Scatter MBL in the Low-Energy-Density Spectrum

First, we define the following two states that will be used below. Note, the subscripts in (8) and (9) label the site indices.

(1) A line-shape initial product state, called the \(l \)-state, consists of one boson on each site of the left half chain. Pictorially, it is given by

\[|l\rangle = |1_1, 1_2, \ldots, 1_{\frac{L}{2}}, 0_{\frac{L}{2}+1}, \ldots, 0_L\rangle. \]

(8)

(2) A point-shape initial product state, called the \(p \)-state, is formed by putting all \(N \) bosons onto the leftmost site. It is given by

\[|p\rangle = |N_1, 0_2, \ldots, 0_L\rangle. \]

(9)

Their corresponding energy densities are shown in Appendix C. From there, it is clear that as disorder increases, the \(l \)-state always stays within the low-energy-density region, while the \(p \)-state, in comparison, always stays within the high-energy-density region.

Selecting a random sample, we first compute the energy of the \(l \)-state as per \(E = \langle l|H|l\rangle_{\mu=2} \). Next, we identify the 11 nearest eigenstates (5 above and 5 below the target eigenstate whose eigenenergy is closest to \(E \) given above). Subsequently, we calculate the particle number distributions for these eigenstates at each lattice site. In Fig. 6(a), the particle numbers at weak disorder (\(\mu = 2 \)) are predominantly distributed around 0.5. This is reasonable because the system is in a thermalized state whose particle numbers are distributed uniformly across the lattice sites. Consider that we are dealing with a half-filled system, then the particle number should indeed be at about 0.5. In [65], we observe that for the weak disorder at \(\mu = 2 \), starting from the \(l \)-state, \(S_N \) grows with time as a function of \(\ln t \), and its steady-state value grows with size as per \(\ln L \). On the other hand, the companion \(S_C \) grows with time linearly, and exhibits a volume-law scaling behavior at the long-time steady-state limit.
We repeat the same calculation for the l-state but under the condition of strong disorder, i.e., $\mu = 20$. As shown by Fig. 6(b), in this scenario, some lattice sites exhibit particle clustering, while others remain nearly empty, indicating the particle localization within the chain. It is worth noticing that the maximum particle occupancy per site in Fig. 6(b) remains low, and the situation where the majority of the particles occupy a single lattice site does not occur. We call this low-energy MBL phenomenon the scatter MBL. In [65], we show that for this strong-disorder condition at $\mu = 20$, if starting from the l-state, the growth of S_N slows down to $\ln \ln t$, and the scaling of its steady-state value obeys the area law. Correspondingly, the companion S_C in this situation grows with time as per a function of $\ln t$, and its steady-state value fulfills a volume law.

Incidentally, with the channel-resolved analysis, we show that this slow $\ln \ln t$ growth of S_N is mainly owing to the localization phenomenon and its final steady-state scaling remains to be an area law [66]. These observations are in contradiction with the prediction of the eventual thermalization for the similar situation in the disordered spin-chain model as was claimed in recent literature [67].

In the recent seminal experimental work on the dBH model [39], it was observed that within the MBL phase, S_N follows an area-law scaling behavior, while concurrently it was implicit that S_C follows a volume-law scaling behavior (S_C cannot be measured directly, so a closely related correlator was measured experimentally as an alternative). This suggests that the low-energy scatter MBL behavior has been experimentally detectable, but to our knowledge, the subsequent discussion regarding the high-energy cluster MBL behaviors has never been reported before.

B. Cluster MBL in the High-Energy-Density Spectrum

We do the same calculation by switching the initial state from the low-energy l-state to the high-energy p-state. For weak disorder ($\mu = 2$), as depicted in Fig. 6(c), we observe that the 11 nearest eigenstates at the target energy $E = \langle p | H | p \rangle_{\mu = 2}$ have a common feature in their particle number distributions. Concretely, almost all the particles are concentrated to occupy a single lattice site, while the particle numbers at other sites decay exponentially. This signifies a strong degree of localization within the system; we call it the hard-type cluster MBL. This is because, in the high-energy-density regime, Bose statistics allows for the formation of the multi-particle clusters. Without disorder, these clusters can superpose to form the cat like states, but disorder breaks the translational symmetry, thus obstructing their coherent superposition and consequently giving rise to the localized, isolated clusters, ultimately resulting in the robust cluster MBL.

In [65], we find that, for the situation of low disorder ($\mu = 2$), starting from the p-state, both S_N and S_C exhibit almost no growth over time, with the steady-state values following the area law. Loosely speaking, these behaviors resemble the Anderson localization in some aspects.

Similar calculations upon the p-state are performed under the strong-disorder condition ($\mu = 20$) as well. It can be seen from Fig. 6(d) that, at this circumstance, the system also exhibits the distinct clustering behavior. But it is no longer as extreme as in Fig. 6(c), where nearly all particles are localized onto a single point, nor is it close to Fig. 6(b), where particles are localized to only reach the relatively low local concentrations. Therefore, we refer to this situation as the soft-type cluster MBL.

In [65], we demonstrate that for this strong disorder at $\mu = 20$, starting from the p-state, S_N exhibits the diminished time-dependent growth, with the steady-state values following an area law. By contrast, the companion S_C keeps increasing slowly over time in a tentative $\ln \ln t$ format, but its steady-state values seem to still obey the area law.

C. Fine Structure of S_N

Curiously, is there a single quantity that can both reveal the thermalized-state distribution and differentiate between the behaviors within the low- and high-energy-density sections of the phase diagram? Through exploiting the channel reflection symmetry of the set $\{S_{nN}^{\alpha}\}$, we introduce a new physical quantity that effectively addresses this question. Complementarily, this might provide a different means to probe the phase transition zone from the pure quantum entanglement $\{S_{nN}^{\alpha}\}$ via its intrinsic structure.
As claimed in Appendix A, for the symmetry-resolved entropy \(\{S^{n}_{vN}\} \), the relation \(S^{n}_{vN} = S^{0}_{vN} \) always holds. In the absence of disorder, the preserved spatial reflection symmetry guarantees the general satisfaction of \(S^{n}_{vN} = S^{n}_{vN} = S^{n}_{vN} \). which generates a channel reflection symmetry of \(\{S^{n}_{vN}\} \), as already illustrated in the inset of Fig. 1(b) above. It turns out that we can determine the degree of deviation from this symmetry by the summed difference of the corresponding pairs of channels, which is equivalent to determining the degree of deviation from the ideal thermalization. Thus, we try to define the pertinent physical quantity as follows,

\[
|d(S^{n}_{vN})| = \left\{ \sum_{n=1}^{M} |S^{n}_{vN} - S^{n-1}_{vN}| \right\}_{av}
\]

(10)

where

\[
M = \begin{cases}
(N - 2)/2 & \text{for } N = \text{even} \\
(N - 1)/2 & \text{for } N = \text{odd}
\end{cases}
\]

(11)

Since \(S^{n=0}_{vN} = S^{n=N}_{vN} = 0 \), the summation starts from \(n = 1 \). In the ETH region, the left and right parts are approximately symmetric, giving rise to a small value of \(|d(S^{n}_{vN})| \). In the scatter MBL region, although the relative difference is nonzero, the value of \(|d(S^{n}_{vN})| \) remains small because of the absolute smallness of the values of \(\{S^{n}_{vN}\} \) themselves. Taken together, these trends produce a peak in the middle, corresponding to the critical regime of the underlying phase transition.

Further, from Fig. 7, we can see that the ETH region corresponds to the valley in the 3D figure of \(|d(S^{n}_{vN})| \). The closer to the bottom of the valley, the lower the degree of the channel-reflection-symmetry breaking is and the more thorough the thermalization of the system assumes. There are two peaks at the valley’s boundaries, corresponding to the location of the energy-resolved phase transition. When the two peaks merge and disappear, \(|d(S^{n}_{vN})| \) becomes flattened, signalling that the system begins to enter the scatter MBL region. Between the high- and low-energy-density sections, a distinctive dip effectively separates the cluster MBL at high energies and the scatter MBL at low energies. In this regard, \(|d(S^{n}_{vN})| \) may possess the capacity to distinguish between these MBL phases and aptly identify the thermalized region at the low energies.

The above content indicates that the internal structure of the entanglement entropy effectively distinguishes between different phase regions, upon resort to the concept of symmetry decomposition. Once again, one can appreciate the importance of “symmetry combined with entanglement” in the study and elucidation of the MBL phases and transitions.

V. SUMMARY AND DISCUSSIONS

This paper provides a comprehensive study on the eigenstate properties of the dBH model in one dimension.

Firstly, we explore the transition from the thermalized state to the MBL state at low energies. The von Neumann entropy, \(S_{vN} \), is often used to detect the MBL transition, even though it cannot be directly measured. Utilizing \(U(1) \) symmetry, the von Neumann entropy is decomposed into the particle number entropy, \(S_{N} \), and the configurational entropy, \(S_{C} \). Notably, \(S_{C} \) approaches zero within the localized phase. We take advantage of this trend and define \(|d(S^{n}_{vN})| \) to quantify the deviation of \(S_{N} \) from the ideal thermal distribution. Finite-size scaling analysis shows that \(|d(S^{n}_{vN})| \) shares the same critical point with \(S_{N} \) but exhibits a larger critical exponent, suggesting that the transition is primarily set by \(S_{N} \) and its fluctuations. It is worth noting that \(|d(S^{n}_{vN})| \) might be measured via protocols already used by recent experiments, particularly in the case of bosonic systems. Recent debates about whether MBL transitions are true phase transitions or crossovers prompt us to seek such an experimentally measurable quantity that can contribute to addressing these concerns.

Secondly, the paper contrasts the distinctive behaviors occurring in the high- and low-energy-density regimes of the phase diagram for the dBH model. We find that: (i) The thermalizing states predominantly occupy the low-energy spectrum, as evidenced by energy density distribution, localization lengths, and gap ratios. (ii) The low-energy spectrum closely resembles the fermionic (or spin) models, where the transition from the thermalizing state to the scatter MBL phase is visible. We analyze the characteristics of these low-energy localized eigenstates, and their dynamics are also summarized. (iii) Bose statistics leads to the formation of distinct clusters in the high-energy spectrum, resulting in the unique cluster MBL phase that significantly differs from the scattering MBL phase in low energies, as reflected through the eigenstate and dynamics properties. (iv) Traditional measures such as localization length and gap ratios cannot directly reveal the differences in the localization phenomena between the high- and low-energy sections. We define a new quantity, \(|d(S^{n}_{vN})| \), from the internal structure of \(S_{vN} \), which effectively captures the distinctions between phase regions in high and low energies.

The two quantities we defined based on the decomposition
of entropy by symmetry, \(|d(S_{N})|\) and \(|d(S_{N}^\alpha)|\), prove to be useful in analyzing critical points and distinguishing between different phase regions. This shows that symmetry plays a key role in MBL phases and phase transitions. Currently, a grand portion of the MBL research has not given due attention to this aspect, and the physical quantities employed to analyze MBL phases and transitions have not properly embedded the symmetry information, particularly in those contentious issues.

As can be noticed, there needs a further study on whether the MBL regions are separated by phase transitions or crossovers. Moreover, the bimodal compressibility distribution structure seen in Appendix B seems to predict the existence of a critical regime arising from the Griffiths effect [42, 56, 68–70]. Different implementations of the randomized samples, e.g., quasiperiodic fields, may give rise to qualitatively different results [58, 71, 72]. Although the numerical resource to precisely settle the localization problem for the dBH model is far beyond the current computational capacity, one might still imagine to resort to the available finite-size numerics to search for the emergent new physics when the filling factor and the Hubbard interaction are tuned within the wider parameter ranges.

ACKNOWLEDGMENTS

We thank Zi Cai, Changfeng Chen, Shijie Hu, Haiqing Lin, Mingpu Qin, Jie Ren, and Wei Su for fruitful discussions. This work is supported by the Ministry of Science and Technology of China (Grant No. 2016YFA0300500) and the NSF of China (11974244). X.Q.W. also acknowledges additional support from the Shanghai talent program. C.C. acknowledges the support from the SJTU start-up fund and the sponsorship from Yangyang Development fund.

Appendix A: Decompose and Compute the Entanglement Entropy

Consider that the system consists of two parts, A and B. For convenience, we choose the system size \(L\) to contain an even number of sites, and the sites for both parts A and B are equal, i.e., \(L_{A} = L_{B} = L/2\) in the present work. For a given many-body wavefunction \(|\psi(i_{A},i_{B})\rangle\), one may construct a reduced density matrix \(\rho\) for part A by tracing out those bases of part B, which can be written formally as \(\rho(i_{A},j_{A}) = \sum D_{B} |\psi(i_{A},i_{B})\rangle \langle \psi(j_{A},i_{B})|\) where \(D_{B}\) is the dimension of the Hilbert space for part B, and \(i_{A}\) and \(i_{B}\) are the indices to denote the bases of parts A and B, respectively. The von Neumann entanglement entropy is thus defined for this system as \(S_{N} = -\text{Tr} \rho \log_{2} \rho\), which is widely adapted to explore the entanglement of both the ETH and the MBL phases, caused by many-body interactions and disorder. One finds that \(S_{N}\) can be written as a sum of a particle number entropy \(S_{N}\) and a configuration entropy \(S_{C}\), which account for the entanglements of the particle number fluctuations and the correlations of particles between the two parts A and B, respectively. Although \(S_{N}\) is not yet directly accessible in experiments, the recent Harvard experiment has successfully measured the particle number entropy \(S_{N}\) and the configuration correlators that are somehow equivalent to the configuration entropy \(S_{C}\), and found the area law of \(S_{N}\) and the volume law of the configuration correlators in time evolving a state within the MBL phase [39].

For the Hamiltonian (1), since \(\{H,\hat{N}\} = 0\) where \(\hat{N} = \sum_{i} n_{i}\), then \(\{\rho, N_{A}\} = 0\) where \(N_{A}\) is the matrix representation of \(N_{A} = \sum_{i} n_{i}\). This implies that the reduced density matrix is block diagonal, which can be written as a direct summation of the form \(\rho = \oplus_{n=0}^{N} \rho^{(n)}\). Each \(\rho^{(n)}\) has a dimension of \(D_{A}^{n}\), representing the number of those bases having \(n\) particles in the part A. It turns out that one can naturally explore the relative entropy for each given \(n\), i.e., the particle number entropy, if one introduces the probability \(p_{n}\) to sum up the amount of those states with \(n\) particles, as given by \(p_{n} = \text{Tr} \rho^{(n)}\). Subsequently, one may define a proper reduced density matrix \(\rho_{n} = \rho^{(n)}/p_{n}\), for which obeys the compulsory normalization condition \(\text{Tr} \rho_{n} = 1\). The reduced density is thus rewritten as \(\rho = \oplus_{n=0}^{N} \rho_{n}\).

In terms of \(p_{n}\) and \(\rho_{n}\), the von Neumann entropy can be expressed as

\[
S_{N} = -\sum_{n=0}^{N} [p_{n} \rho_{n}] \log_{2} [p_{n} \rho_{n}] \tag{A1}
\]

and can be further decoupled into a sum of the two parts \(S_{N}\) and \(S_{C}\) [39], which are given as follows,

\[
S_{N} = -\sum_{n=0}^{N} p_{n} \log_{2} p_{n}, \tag{A2}
\]

\[
S_{C} = -\sum_{n=0}^{N} p_{n} S_{C}^{n}, \tag{A3}
\]

where \(S_{C}^{n}\) is called the symmetry-resolved entropy, and \(S_{N}^{n} = -\sum_{i=1}^{D_{A}} p_{n}(i,i) \log_{2} p_{n}(i,i)\), where \(p_{n}(i,i)\) is the normalized eigenvalue of \(\rho^{(n)}\).

\(S_{C}^{n}\) is a partial configuration entropy that measures the entanglement between the two parts A and B, resulting from the dynamics of particles’ virtual superpositions and hoppings without changing \(n\). Thus, each partial configuration entropy \(S_{C}^{n}\) for that \(n\) carries a weight \(p_{n}\), the sum of which forms the total configuration entropy \(S_{C}\). \(S_{C}\), on the other hand, stands for the entanglement of the two parts A and B associated to the particle number fluctuations encoded in the given \(|\psi(A,B)\rangle\) under the constraint that the filling factor of the system is fixed.

Next, let us discuss an optimization issue. We found that it is practically significant to construct the bases optimally for both parts A and B, which enables us to treat each \(\rho^{(n)}\) directly so as to access larger-size systems in the most economic usage of the memory and the CPU resource. For this purpose, the Hilbert space for part A is naturally assigned into the sequential subspaces, with an ascending order of the particle number from 0 to \(N\), i.e., the \((n+1)\)-subspace contains \(n\) particles with a dimension of \(D_{A}^{n}\). The Hilbert space for part B is also constructed similarly for consistency.
Based on the above construction of the bases, one can consider $|\psi(i_A, i_B)\rangle$ as a rank-2 tensor with indices i_A and i_B which denote the allocation site of each basis in the Hilbert spaces of the parts A and B, respectively, with dimensions $D_A = \sum_{n=0}^{N} D^n_A$ and $D_B = \sum_{n=0}^{N} D^n_B$. Consequently, this tensor can contain rectangular sub-tensors $|\varphi(i_A, i_B)\rangle$ with the dimensions D^n_A and D^{N-n}_B, respectively. We note that $|\varphi(i_A, i_B)\rangle$ is null whenever $n_A + n_B \neq N$, since the bases are allocated in the optimal manner described above. Therefore, once the relative position of $|\varphi(i_A, i_B)\rangle$ is settled, one can easily construct $\rho^{(n)}$ so that ρ_n and p_n follow successively.

Since $S_{n_A=n}^{A}=S_{n_B=N-n}^{B}$, in the actual calculation, the smaller side of n_A and n_B can be chosen such that the dimension of the obtained matrix $\rho^{(n_A)}$ or $\rho^{(n_B)}$ is smaller and easier to be diagonalized numerically. In particular, for the two channels with $n = 0$ and $n = N$, there is always one side with a dimension 1, so $S_{n_A=0}^{n_A=N} = S_{n_B=0}^{n_B=N} = 0$ always holds. Moreover, since the relative position and the dimension of each subspace of the parts A and B are independent of disorder, one only needs to compute $|\varphi(i_A, i_B)\rangle$ for each sample with a given disorder strength. It is clear that the above treatment greatly enhances the computational performance by saving both the CPU hours and the memories, especially for large chain lengths.

Appendix B: Distributions of Local Compressibility and Density of States

For the clean BH model, the compressibility is relevant for describing the transition between the superfluid and the Mott insulating phases. In the presence of disorder, this quantity can be appropriately replaced by the local compressibility K_i at a given energy density ε as defined by [48]

$$K_i = \langle \hat{n}_i^2 \rangle - \langle \hat{n}_i \rangle^2, \quad (B1)$$

which essentially displays how the fluctuation of the particle number at each site is impacted by the disorder for a given ε. In Eq. (B1), $\langle \cdots \rangle$ stands for the average over all available disorder samples for ε and μ. For a given μ, the eigenvalue closest to ε may depend on the different samples. To enhance the statistical efficiency for the distribution of K_i, denoted as $P_c(K_i)$, instead of the closest eigenstate, we calculate K_i for the 8 eigenstates adjacent in eigenenergy to ε for each sample. An additional average is then made over these 8 eigenstates with a proper normalization for $P_c(K_i)$. Consequently, in view of the fact that K_i measures the variance of \hat{n}_i caused by the randomness μ at a given ε, one anticipates that $P_c(K_i)$ might serve as a statistics device capable of capturing the fundamentally different characteristics in the distribution of the set $\{K_i\}$ between the ETH and the MBL phases.

Figure 8 shows $P_c(K_i)$ for $\mu = 0.4, 4, 5, 10$ at $\varepsilon = 0.3$. The distribution changes from a Gaussian distribution for $\mu = 0.4$ and 4 to a power-law distribution in the large μ limit. The Gaussian distribution corresponds to the well-defined superfluid states. In general, when μ increases, the height of the curve decreases and its width gets broadened. However, as shown by $\mu = 5$, while the peak is greatly broadened, a warp emerges at the small K_i. The warp grows rapidly with further increasing μ. Eventually, it behaves as a power law shown for $\mu = 10$, where there is still a small satellite peak at $K_i \approx 0.25$, which would disappear when μ is sufficiently larger. Remarkably, one may find that a relatively sudden change of $P_c(K_i)$ happens between $\mu = 4$ and 5, and the disorder greatly suppresses K_i in MBL.

From the above, it’s clear that in the ETH phase, the dis-
tribution is Gaussian, while in the MBL phase, it exhibits a power-law decay with a satellite peak. Notably, at $\mu = 5$, the right side conforms to a Gaussian distribution, one characteristic of ETH, while the left side shows an upturn near zero and a satellite peak around 0.25, indicative of the onset of MBL. This implies that the system experiences a breakdown in thermalization at this point, with a partial MBL component, but has not yet undergone a phase transition. The phase transition appears to occur around $\mu = 7.8$, as shown in Fig. 5. This implies the presence of an intermediate region in the system, being prior to the MBL phase transition. In both Figs. 5 and 4(b), an intermediate region is observed between the yellow thermalization region’s boundary and the phase transition boundary.

Research indicates that the distribution of thermalized states is positively correlated with the density of states (also called energy density distribution) \cite{73}, with a higher density of states corresponding to a greater presence of the thermalization states. For typical spin systems, the density of states is usually approximated by a Gaussian function \cite{74}.

Figure 9 illustrates the disorder effects on the energy density distribution $P_{\epsilon}(\epsilon)$ for a wide range of the disorder strengths. It is remarkable that for the Hamiltonian (1), its eigenstates are mainly concentrated on the range of energy densities $\epsilon < 0.5$ for the weak disorder, where only a tiny tail shows up for $\epsilon > 0.5$. However, the distribution becomes broadened with the increasing disorder strength μ. Its peak position starts to slowly shift toward $\epsilon = 0.5$ when μ is sufficiently large, where a reasonably large tail is also developed for $\epsilon > 0.5$. Indeed, under weak disorder, the thermalization states concentrate in the low-energy region, resulting in the trend of energy density distribution mainly centered around $\epsilon < 0.5$. Unlike the spin model, we find that these $P_{\epsilon}(\epsilon)$ curves can be fitted by the summation of two Gaussian functions.

Appendix C: Averaged Energy Density of Initial State

Figure 10 shows how the averaged energy densities of low-energy l-state and high-energy p-state change as a function of the disorder strength for different chain lengths. For the p-state, the energy density decreases as the disorder increases. Because the system realizes cluster MBL at small disorder, the clustering tendency enhances the Hubbard interaction, lead-
ing to the high energy densities. As the disorder increases, the degree of the clustering of particles reduces, and the effect of the interaction U term weakens; thus, the overall energy density decreases. Note that as the system size increases, the overall energy density also slightly grows. By contrast, it can be seen that the energy density of the l-state changes slowly with the increasing disorder strength and decreases with the increasing system size. Comparing to the energy density distribution shown in Fig. 9, one can see that these initial states correspond to somewhat different densities of energy eigenstates. Compared with the phase diagram Fig. 5, the energy-density trajectories of these two states evolve under the change of the disorder strength, passing across several different phase regions, which explains why they have very different time-evolutionary behaviors. Using these two kinds of initial states, we present our numerical results on the respective time evolutions of the two-body density-density correlation function and the two types of entropies.

Appendix D: Localization Length from Steady State

The time evolutions of G_2 are calculated at $t = 100\tau$ with $\tau = 0.1$ [39, 69] for several system sizes L. Specifically, we perform the computations at $L = 12$ using ED [44], and at $L = 14, 16, 18$ using the global Krylov method [45], and at $L = 20, 22, 32$ using TEBD [46], for which the 2nd-order Trotter decomposition is implemented to suppress the systematical errors. For the TEBD calculation, 600 samples are taken for the disorder averages. To study the single-particle localization length of cluster MBL, we take the high-energy p-state, i.e., all $L/2$ bosons loaded at the first site and zero occupancy for the rest of the system, which is a high-energy-density state; as the disorder strength increases, its energy density maintains in the cluster MBL region, as can be seen from Figs. 10 and 5. Since the first site has the highest occupancy, the occupancy number cannot be truncated in the TEBD simulations. The local physical dimension on each site is thus $L/2 + 1$. We note that evaluating the time evolution of G_2 in such a fledged Bose system without truncating the single site occupancy costs huge computational resource for moderate to large values of L.

Figure 11(a) shows the disorder effects on the time-evolved two-body density-density correlation function at $t = 100\tau$ on a $L = 22$ chain for several values of the disorder strength. The two insets therein display the results of $G_2(d)$ at $\mu = 6.0$ for $L = 12$ and 18, respectively. Upon the weak disorder, i.e., in the ETH region, G_2 has relatively small values for the moderate values of d and becomes large when $d \sim 1$ or L. Here, the open boundary conditions are imposed. As the disorder strength gets further increased, $G_2(d)$ starts to display an exponential decrease with respect to d. This trend can still be visible even down to the order of 10^{-15}, which potentially allows for the extracting of the localization length for the various cases we are interested in. In principle, using the TEBD technique, we can calculate $G_2(d)$ for relatively large sizes up to $L = 32$ within our current computational capacities. This has been illustrated for the case of $\mu = 6.0$ in Fig. 11(a). Note that the results up to $L = 22$ have been sufficient to elucidate the time evolution of $G_2(d)$ at $t = 100\tau$. We plot the localization lengths at $L = 12, 14, 16, 18, 20, 22$ for $\mu \in [0.1, 10.0]$ in Fig. 11(b). From the color contrast of different sizes, one can see that the extracted localization lengths might be insensitive to the change in L for these values of μ we consider.

For cluster MBL at small disorder, multiple particles of the Bose system can be localized at the same point. The steady-state S_N and S_C are thus obedient to the area law, and neither grows with time, indicating that it is a more robustly localized phenomenon [65]. However, as seen from Fig. 11, the cluster MBL has a greater single-particle localization length, which seems contradictory. One possible scenario for this might be the effect of energy mismatch. Concretely, on the one hand, when part of the cluster could move, the overall probability for such processes remains low due to the creation of the significant energy mismatch. Meanwhile, on the other hand, these disentangled single particles might conversely gain the potential to hop far away in view of the fact that the disorder and the hopping generated energy offsets are barely small changes relative to the existing energy gap. Collectively, these effects give rise to a larger localization length for the single-particle process under the small disorder strengths. To some extent, the above reasoning is consistent with our explanations on the channel reflection asymmetry of $\{S_N^{(\epsilon)}\}$ for the initial p-state as already detailed in [65].

[1] Philip W Anderson, “Absence of diffusion in certain random lattices,” Phys. Rev. 109, 1492 (1958).
[2] Elihu Abrahams, P. W. Anderson, D. C. Licciardello, et al., “Scaling theory of localization: Absence of quantum diffusion in two dimensions,” Phys. Rev. Lett. 42, 673 (1979).
[3] D. Vollhardt and P. Wölfle, “Diagrammatic, self-consistent treatment of the anderson localization problem in $d \leq 2$ dimensions,” Phys. Rev. B 22, 4666 (1980).
[4] Sajeev John, “Electromagnetic absorption in a disordered medium near a photon mobility edge,” Phys. Rev. Lett. 53, 2169 (1984).
[5] K. Arya, Z. B. Su, and Joseph L. Birman, “Localization of the surface plasmon polariton caused by random roughness and its role in surface-enhanced optical phenomena,” Phys. Rev. Lett. 54, 1559 (1985).
[6] Qian-Jin Chu and Zhao-Qing Zhang, “Localization of phonons in mixed crystals,” Phys. Rev. B 38, 4906 (1988).
[7] Rahul Nandkishore and David A. Huse, “Many-body localization and thermalization in quantum statistical mechanics,” Annu. Rev. Condens. Matter Phys. 6, 15–38 (2015).
[8] Denis M. Basko, Igor L. Aleiner, and Boris L. Altshuler, “Metal–insulator transition in a weakly interacting many-electron system with localized single-particle states,” Ann. Phys. 321, 1126 (2006).
[19] Dominic V. Else, Bela Bauer, and Chetan Nayak, "Floquet time crystals," Phys. Rev. B 91, 085425 (2015).

[20] Soonwon Choi, Joonhee Choi, Renate Landig, et al., "Fate of many-body localization under periodic driving," Phys. Rev. Lett. 114, 140401 (2015).

[21] Dominic V. Else, Bela Bauer, and Chetan Nayak, "Floquet time crystals," Phys. Rev. Lett. 117, 090402 (2016).

[22] N. Y. Yao, A. C. Potter, I.-D. Potirniche, et al., "Discrete time crystals: Rigidity, criticality, and realizations," Phys. Rev. Lett. 118, 030401 (2017).

[23] J. Zhang, P. W. Hess, A. Kyprianidis, et al., "Observation of a discrete time crystal," Nature 543, 217–220 (2017).

[24] Soonwon Choi, Joonhee Choi, Renate Landig, et al., "Observation of discrete time-crystalline order in a disordered dipolar many-body system." Nature 543, 221–225 (2017).

[25] Jonas A. Kjäll, Jens H. Bardarson, and Frank Pollmann, "Many-body localization in a disordered quantum ising chain," Phys. Rev. Lett. 113, 107204 (2014).

[26] Marlon Brenes, Marcello Dalmonte, Markus Heyl, et al., "Many-body localization dynamics from gauge invariance," Phys. Rev. Lett. 120, 030601 (2018).

[27] Emanuelle Levi, Markus Heyl, Igor Lesanovsky, et al., "Robustness of many-body localization in the presence of dissipation," Phys. Rev. Lett. 116, 237203 (2016).

[28] Mark H. Fischer, Mykola Maksymenko, and Ehud Altman, "Dynamics of a many-body-localized system coupled to a bath," Phys. Rev. Lett. 116, 160401 (2016).

[29] Henrik P. Lüschen, Pranjal Bordia, Sean S. Hodgman, et al., "Signatures of many-body localization in a controlled open quantum system," Phys. Rev. X 7, 011034 (2017).

[30] Jie Ren, Qiaoyi Li, Wei Li, Zi Cai, and Xiaoqun Wang, "Noise-driven universal dynamics towards an infinite temperature state," Phys. Rev. Lett. 124, 130602 (2020).

[31] Claudio Chamon, Alioscia Hamma, and Eduardo R. mucio, "Emergent irreversibility and entanglement spectrum statistics," Phys. Rev. Lett. 112, 240501 (2014).

[32] Christopher R Laumann, A Pal, and A Scardicchio, "Many-body mobility edge in a mean-field quantum spin glass," Phys. Rev. Lett. 113, 200405 (2014).

[33] David J. Luitz, Nicolas Laflorencie, and Fabien Alet, "Many-body localization edge in the random-field heisenberg chain," Phys. Rev. B 91, 081103(R) (2015).

[34] Ian Mondragon-Shem, Arijiet Pal, Taylor L. Hughes, et al., "Many-body mobility edge due to symmetry-constrained dynamics and strong interactions," Phys. Rev. B 92, 064203 (2015).

[35] Rubem Mondaini and Zi Cai, "Many-body self-localization in a translation-invariant hamiltonian," Phys. Rev. B 96, 035153 (2017).

[37] V. Gurarie, L. Pollet, N. V. Prokof’ev, et al., "Out-of-equilibrium quantum critical behaviour at the many-body localization transition in two dimensions," Annals of Physics 411, 167998 (2019).

[38] Guifre Vidal, "Efficient simulation of one-dimensional quantum many-body systems," Phys. Rev. Lett. 93, 040502 (2004).

[39] Malcolm P.Kennett, "Out-of-equilibrium dynamics of the bose-hubbard model," ISRN Condensed Matter Physics 2013, 93616, 39 (2013).

[40] Pinaki Sengupta and Stephan Haas, "Quantum glass phases in the disordered bose-hubbard model," Phys. Rev. Lett. 99, 050403 (2007).

[41] V. Gurarie, L. Pollet, N. V. Prokof’ev, et al., "Phase diagram of the disordered bose-hubbard model," Phys. Rev. B 80, 214519 (2009).

[42] L. Pollet, N. V. Prokof’ev, B. V. Svistunov, et al., "Absence of a direct superfluid to mott insulator transition in disordered bose systems," Phys. Rev. Lett. 103, 140402 (2009).

[43] M. Gerster, M. Rizzi, F. Tschirsich, et al., "Superfluid density and quasi-long-range order in the one-dimensional disordered bose–hubbard model," New J. Phys. 18, 015015 (2016).
[52] Shijie Hu, Yuchuan Wen, Yue Yu, B. Normand, and Xiaoqun Wang, “Quantized squeezing and even-odd asymmetry of trapped bosons,” Phys. Rev. A 80, 063624 (2009).

[53] Jan Šuntajs, Janez Bonča, Tomáš Prosen, and Lev Vidmar, “Quantum chaos challenges many-body localization,” Phys. Rev. E 102, 062144 (2020).

[54] Alan Morningstar, Luis Colmenarez, Vedika Khemani, David J Luitz, and David A Huse, “Avalanches and many-body resonances in many-body localized systems,” Phys. Rev. B 105, 174205 (2022).

[55] B. Widom, “Equation of state in the neighborhood of the critical point,” J. Chem. Phys. 43, 3892 (2017).

[56] Thomas Vojta, “Phases and phase transitions in disordered quantum systems,” AIP Conf. Proc. 1550, 188–247 (2013).

[57] Tuure Orell, Alexios A. Michailidis, Maksym Serbyn, and Matti Silveri, “Probing the many-body localization phase transition with superconducting circuits,” Phys. Rev. B 100, 134504 (2019).

[58] Shi-Xin Zhang and Hong Yao, “Universal properties of many-body localization transitions in quasiperiodic systems,” Phys. Rev. Lett. 121, 206601 (2018).

[59] Vedika Khemani, D. N. Sheng, and David A. Huse, “Two universality classes for the many-body localization transition,” Phys. Rev. Lett. 119, 075702 (2017).

[60] Jan Šuntajs, Janez Bonča, Tomáš Prosen, and Lev Vidmar, “Ergodicity breaking transition in finite disordered spin chains,” Phys. Rev. B 102, 064207 (2020).

[61] Piotr Sierant, Dominique Delande, and Jakub Zakrzewski, “Many-body localization for randomly interacting bosons,” Acta Physica Polonica A 132, 1707–1712 (2017).

[62] Piotr Sierant, Dominique Delande, and Jakub Zakrzewski, “Many-body localization due to random interactions,” Phys. Rev. A 95, 021601(R) (2017).

[63] Tuure Orell, Alexios A Michailidis, Maksym Serbyn, and Matti Silveri, “Probing the many-body localization phase transition with superconducting circuits,” Phys. Rev. B 100, 134504 (2019).

[64] Y. Y. Atas, E. Bogomolny, O. Giraud, and G. Roux, “Distribution of the ratio of consecutive level spacings in random matrix ensembles,” Phys. Rev. Lett. 110, 084101 (2013).

[65] Jie Chen, Chun Chen, and Xiaoqun Wang, “Energy- and Symmetry-Resolved Entanglement Dynamics in Disordered Bose-Hubbard Systems,” Phys. Rev. B 102, 100202(R) (2020).

[66] David J. Luitz and Yevgeny Bar Lev, “Absence of slow particle transport in the many-body localized phase,” Phys. Rev. B 102, 100202(R) (2020).

[67] Maximilian Kiefer-Emmanouilidis, Razmik Unanyan, Michael Fleischhauer, and Jesko Sirker, “Evidence for unbounded growth of the number entropy in many-body localized phases,” Phys. Rev. Lett. 124, 243601 (2020).

[68] David J. Luitz, Nicolas Laflorencie, and Fabien Alet, “Extended slow dynamical regime close to the many-body localization transition,” Phys. Rev. B 93, 060201(R) (2016).

[69] Thomas Kohlert, Sebastian Scherg, Xiao Li, et al., “Observation of many-body localization in a one-dimensional system with a single-particle mobility edge,” Phys. Rev. Lett. 122, 170403 (2019).

[70] Karthik Agarwal, Ehud Altman, Eugene Demler, et al., “Rare-region effects and dynamics near the many-body localization transition,” Ann. Phys. (Berlin) 529, 7–1600326 (2017).

[71] Vedika Khemani, D. N. Sheng, and David A. Huse, “Two universality classes for the many-body localization transition,” Phys. Rev. Lett. 119, 075702 (2017).

[72] Vedika Khemani, S. P. Lim, D. N. Sheng, and David A. Huse, “Critical properties of the many-body localization transition,” Phys. Rev. X 7, 021013 (2017).

[73] Sebastian Schierenberg, Falk Bruckmann, and Tilø Wettig, “Wigner surmise for mixed symmetry classes in random matrix theory,” Phys. Rev. E 85, 061130 (2012).

[74] Scott D. Geraedts, Rahul Nandkishore, and Nicolas Regnault, “Many-body localization and thermalization: Insights from the entanglement spectrum,” Phys. Rev. B 93, 174202 (2016).