Impact of nanophos in agriculture to improve functional bacterial community and crop productivity

Parul Chaudhary1*, Anuj Chaudhary2, Heena Parveen1, Alka Rani3, Govind Kumar4, Rajeew Kumar5 and Anita Sharma1

Abstract

Background: Since the World’s population is increasing, it’s critical to boost agricultural productivity to meet the rising demand for food and reduce poverty. Fertilizers are widely used in traditional agricultural methods to improve crop yield, but they have a number of negative environmental consequences such as nutrient losses, decrease fertility and polluted water and air. Researchers have been focusing on alternative crop fertilizers mechanisms to address these issues in recent years and nanobiofertilizers have frequently been suggested. “Nanophos” is a biofertilizer and contains phosphate-solubilising bacteria that solubilises insoluble phosphate and makes it available to the plants for improved growth and productivity as well as maintain soil health. This study evaluated the impact of nanophos on the growth and development of maize plants and its rhizospheric microbial community such as NPK solubilising microbes, soil enzyme activities and soil protein under field condition after 20, 40 and 60 days in randomized block design.

Results: Maize seeds treated with nanophos showed improvement in germination of seeds, plant height, number of leaves, photosynthetic pigments, total sugar and protein level over control. A higher activity of phenol, flavonoid, antioxidant activities and yield were noticed in nanophos treated plants over control. Positive shift in total bacterial count, nitrogen fixing bacteria, phosphate and potassium solubilizers were observed in the presence of nanophos as compared to control. Soil enzyme activities were significantly ($P < 0.05$) improved in treated soil and showed moderately correlation between treatments estimated using Spearman rank correlation test. Real time PCR and total soil protein content analysis showed enhanced microbial population in nanophos treated soil. Obtained results showed that nanophos improved the soil microbial population and thus improved the plant growth and productivity.

Conclusion: The study concluded a stimulating effect of nanophos on Zea mays health and productivity and indicates good response towards total bacterial, NPK solubilising bacteria, soil enzymes, soil protein which equally showed positive response towards soil nutrient status. It can be a potential way to boost soil nutrient use efficiency and can be a better alternative to fertilizers used in the agriculture.

Keywords: Maize, Nanophos, NPK solubilizers, Protein, Soil enzyme activities

© The Author(s) 2021. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.
Material and methods

Experimental design

Field trial was conducted in the month of June to September, (2017) at Norman E Borlogue Crop Research Centre, Govind Ballabh Pant University of Agriculture & Technology, Pantnagar. Experimental section lies about 30 Km Southward of Shivalik Himalayas (location 79.3° E and 29°N latitude). Summers are hot and warm in this area with maximum 35°C temperature in month of July and minimum 23°C during month of September. Relative
humidity was maximum in month of July and lowest in June. Soil of the experimental site was silty clay type having the (0.206 dS/m) Electrical conductivity, Organic carbon (0.78%), nitrogen, phosphorus, potassium (215.79, 27 and 136 Kg/ha) and having pH7.4 [19]. Total two treatments: control (without nanophos) and nanophos only were used with three replications each in randomized block design. Each plot has 4.2 m length and 3.5 m width with plant-to-plant distance was 20 cm and row to row was 60 cm.

Seed priming with nanophos
Nanophos used in this study were provided by Department of Agronomy, GBPUA&T, Pantnagar. It is unique liquid formulation in combination with nanophosphorus and phosphate solubilising bacteria. High yielding seed variety (Zea mays L. cv. DH296), was obtained from Crop Research Centre, GBPUA&T. Before sowing for germination, maize seeds were properly sterilized using 70% ethanol, followed by 3% hydrogen peroxide. Seeds were washed five times with distilled water and further treated with Nanophos. Viable count for liquid formulation was 1×10^8 cells/ml of liquid. Four hundred fifty microlitres nanophos was added in 5 ml distilled water and maize seeds were dipped. After proper treatment, seeds were shade dry for 10–15 min. Treated seeds were used further for field experiment [20]. Control did not receive any treatment.

Seed germination assay
The seed germination efficacy was tested on Zea mays seeds using the formula:

$$\text{Germination}\% = \frac{\text{Number of seedlings germinated}}{\text{Total number of seeds}} \times 100$$

Growth measurement
Average plant height, root length and number of leaves were measured after 20, 40 and 60 days of the experiment to check the effect of nanophos on growth profile of Zea mays.

Estimation of total chlorophyll and carotenoid content
Photosynthetic pigment in treated leaf samples were estimated through Dimethylsulfoxide (DMSO) method given by Hiscox and Israelatum [21]. After harvesting, maize leaves were collected, washed with distilled water and finely chopped for experiment. For chlorophyll extraction 500 mg leaves were mixed with 10 ml of DMSO. Then, tubes were properly incubated at 60°C for 2 h in a water bath. Supernatant with extract were pooled and absorbance were taken at 645 and 663 nm. Same treated extract was used for measuring carotenoid content by taking absorbance at 470 mn [22].

Total sugar content
Method given by Dubois et al. [23] was used to estimate total sugar in maize leaves using glucose as a standard curve. Dried leaves were crushed and added to 3 ml of ethyl alcohol (80%) and placed in boiling water bath. Homogenate was centrifuged at 1000 rpm for 15 min. Supernatant (1 ml) was transferred in a test tube and Anthrone reagent (4 ml) was added and placed in boiling water for 10 min. Absorbance of each sample was taken at 620 nm and total sugar was extrapolated against glucose standard curve.

Estimation of total protein
Crushed leaves (500 mg) were homogenized with 5 ml Tris Cl (0.2 M) and centrifuged at 10,000 g for 15 min at 4°C. Extracted supernatant (20 μl) was taken and 300 μl of double distilled water was added to bring up the volume. Bradford dye was added to the tubes and properly mixed by vortex. After incubation for few minutes absorbance was recorded at OD 595 nm against a blank (100 μl of extraction buffer with 1 ml of reagent dye) in a spectrophotometer [24].

Determination of total phenolic content in maize leaves
Total phenolics in treated leaf samples were determined by Folin- Ciocalteu reagent by following method of Ainsworth and Gillespie [25]. Leaf extract (0.5 ml) was mixed with 2 ml of FC reagent. Mixture was incubated for 30 min at 37°C till blue colour develops. The reading of the resultant blue colour was measured at 765 nm. Gallic acid was taken for making standard.

Catalase activity
Leaf samples from different treatments were homogenized with 5 ml phosphate buffer (100 mM; pH 7.5). Extract was centrifuged at 4°C for 10 min at 12,000 rpm. Supernatant was further used for enzyme assay. Assay mixture used for the experiment contained phosphate buffer and 0.1 ml of 10 mM H$_2$O$_2$ and 100 μl of enzyme extract. CAT activity was observed through decline in absorbance at 230 nm for 3 min corresponding to the decomposition of H$_2$O$_2$ [26].

Peroxidase (POD) activity
Enzyme activity was performed using the method given by Mali et al. [27]. For peroxidase activity, 0.1 ml of enzyme extract was added to the assay mixture. The assay mixture contained 0.5 ml H$_2$O$_2$ and pyrogallol (0.4 ml) prepared in phosphate buffer. Peroxidase activity was measured by observing vary in absorbance at
420 nm and calculated using the extinction coefficient of 26.6 M\(^{-1}\) cm\(^{-1}\).

Superoxidase activity (SOD)

Enzyme activity was assessed by using methionine (200 mM), 75 mM riboflavin, phosphate buffer (100 mM, pH 7.5) and enzyme extract (100 µl). The activity of the SOD enzyme was by inhibition of NBT and estimated spectrophotometrically at 560 nm [28].

Collection of soil samples

Maize plants were collected and gently shaken to remove maize rhizospheric soil (1-15 cm depth) for further experiment after 20, 40 and 60 days of sowing. Soil samples (10 g) from each replicate was taken and kept in sterilized polythene bags. Final sample were prepared by mixing individual samples after homogenization. Soil samples were sieved and used for evaluating chemical and physical properties and indicator enzymes of the soil and stored at \(-20^\circ\)C for further analysis.

Enumeration of total bacteria, nitrogen fixers, phosphorus and potassium solubilizers in treated soil

Bacterial count was checked using different types of media such as nutrient agar for total bacterial count, Ashby agar for nitrogen fixing bacteria, Aleksandrow agar for potassium solubilizers and Pikovskaya agar for P solubilising bacteria. Plates were incubated for 2–4 days at 30°C. Colony Forming Unit (CFU) was measured using pour plating method.

Soil health indicator enzymes

Fluorescein diacetate hydrolytic (FDA) activity

One gram of soil, 50 ml sodium phosphate buffer (pH -7.6), 0.5 ml FDA solution were as added in a flask and kept for 1 h at 24°C in incubator shaker. To stop the reaction, 2 ml of acetone was added. For 5 min, the soil suspension was centrifuged at 8000 rpm. Filter paper No.2 was used to filter the supernatant. FDA hydrolysis was assessed at 490 nm and represented as ug fluorescein g\(^{-1}\) dry soil h\(^{-1}\) [29].

Dehydrogenase activity in soil

An important soil health indicator enzyme dehydrogenase was estimated as per the method given by Casida et al. [30] using 2,3,5-Triphenyl tetrazolium chloride (TTC) substrate. Briefly, TTC substrate with pH7.4 was added to soil sample and incubated in rotatory shaker. Reaction was allowed and terminated at different time intervals using 25 ml acetone. Suspension was centrifuged at 4000 rpm for 15 min at 4°C and filtered using Whatman filter paper no.1. Production of dehydrogenase in soil samples were quantified by measuring insoluble product red product Triphenylformazan (TPF) formed during the reaction. Red coloured TPF can be quantified at the range of visible light (485 nm).

Alkaline phosphatase activity

Soil phosphatase activity in the experimental soil was performed using p- nitrophenyl phosphate as per method given by Tabatabai and Bremer [31]. Briefly, soil sample was added to 250 µl toluene followed by addition of universal buffer (100 mM, pH11). To this solution, 1 ml Triphenylformazan (TPF) was added and complete solution was incubated at 37°C for further reaction. After incubation for 1 h reaction was terminated using Tris buffer (pH12, 0.1 M) and 1 ml CaCl\(_2\). Reaction mixture was filtered. Alkaline phosphatase was quantified by taking absorbance of product p- Nitrophenol (PNP) at 400 nm.

β-glucosidase activity

In a test tube, 0.25 ml toluene, 1 ml p-nitrophenyl-D-glucoside (pNPBG), 4 ml adjusted universal buffer with pH 6.0 were applied to 1 g dry soil. Tubes were incubated at 37°C for 1 h. In a test tube, Tris buffer (pH- 12) and CaCl\(_2\) (1 ml, 0.5 M) were added. Spectrophotometer set at 410 nm was used to determine the intensity of the colour developed in the soil suspension. g pNP g\(^{-1}\) dry soil h\(^{-1}\) was used to test enzyme activity [32].

Amylase activity

One gram of soil sample was taken in a tube, phosphate buffer (2.5 ml; pH6) and starch (1%, 1 ml) was added. Tubes were kept at 30°C for 6h in incubator shaker and centrifuged at 12000 rpm for 10 min. Supernatant (1 ml) were taken in another tube and DNS (1 ml) was added and placed in water bath at 90°C for 5 min. Intensity of coloured product was measured by taking the readings at 540 nm [33].

Arylesterase

One gram soil was taken in a test tube MUB (2 ml) and 200 mM pNPA (0.5 ml) were added. Tubes were placed in water bath with constant shaking for 1 h and centrifuged at 6500 rpm for 5 min at 4°C. Supernatant (1 ml) was taken in another tube and n-hexane (2 ml) were added. 0.5 ml of aqueous layer was taken; 0.5 ml NaOH and ddw (4 ml) were added. Absorbance was taken at 400 nm [34].

Quantitative PCR (qPCR) analysis of 16S rDNA

Soil DNA was extracted from different rhizospheric soil samples. One gram soil was used for DNA extraction using Soil DNA Purification Kit (HiMedia). Soil DNA was quantified and purity was checked in a NanoDrop spectrophotometer at 260 and 280 nm. qPCR was performed in iCycler iQ™ Multicolor instrument. Universal primers
(EUB 341F- 5′ CCTACGGGAGGCAGCAG 3′ and EUB 534R- 5′ ATTACCAGGCTGCTGG 3′) was used to carry out real-time PCR to quantify 16S rDNA in the extracted soil DNA [35]. Total volume of qPCR reaction was 25 μl containing, 0.5 μl of individual primer, SYBR green (12.5 μl) supermix and 1 μl of soil DNA (10 ng). Melt curve analysis of 16S rDNA amplicons was also performed at the end of the q-PCR to ensure the amplification of 16S rDNA during real-time quantification.

Soil protein extraction

One gram soil from different samples were incubated in nutrient broth (100 ml) for 24 h at 27°C and then centrifuged for 10 min at 10,000 rpm. Pellet was washed in Tris/HCl with pH: 6.8 and 200 μl Tris buffer (pH 6.8) and then centrifuged for 5 min. Supernatant was discarded and pellet was dissolved in 200 μl extraction buffer and boiled for 20–30 min in water bath. Samples were centrifuged at 5000 rpm and supernatant was used for further studies.

SDS PAGE *(sodium dodecyl sulphate-polyacrylamide gel electrophoresis)*

SDS PAGE performed by using 12% resolving gel and stacking gel (4%). Protein samples for different treatments were ready in extraction buffer. Page Ruler pre-stained protein ladder was used as a molecular marker. The protein gel after sample loading were run using Tris glycine buffer for 6 h at 100 V. Gel was fixed for 30 min with methanol and glacial acetic acid. Gel was stained with CBBR-250, glacial acetic acid (10%) and methanol (10%) with mild shaking overnight. Gel was detained for sometimes with methanol and glacial acetic acid [36].

Statistical analysis

Results were statistically analysed through Two Way Analysis of Variance (ANOVA) at $p<0.05$ using SPSS software. The values of above parameters were expressed as mean ± SD (standard deviation). Distance measure in different treatments using Heatmap with Spearman rank correlation test.

Results

Seed germination assay

Maize seeds treated with nanophos positively influenced the seed germination rate. Treated seeds showed higher (95%) seed germination rate significantly high as compared to control (80%) respectively.

Plant growth parameters

Four plants per plot (total 12 plants) were taken for the evaluation of agronomical and biochemical analysis. The data presented in Fig. 1 showed response of nanophos on plant height and number of leaves. 16.89 and 9.94% increase plant height were observed in nanophos treated soil in comparison to control after 20 and 40 days of sowing. Root length showed 53.76, 54.71 and 48.75% increase in nanophos treated plants and showing the p value less than $P<0.05$ means statically different but moderately correlated to the control estimated using Spearman correlation test for plant height and root length (SM1). Overall enhancement in leaf area, leaf number and fresh/dry weight of shoot/root was observed nanophos treatment over control but not statically different having the p value greater than $P>0.05$ (SM2).

Effect on biochemical parameters

Data analysis clearly showed that there was significant increase in all photosynthetic pigments (total chlorophyll and carotenoid) of nanophos plants over control (Fig.1). Total chlorophyll content of maize leaves was found in 4.23, 4.32 and 4.55 mg g$^{-1}$ leaves in nanophos treated plants after 20, 40 and 60 days of sowing, least was observed in control which showed 2.62, 2.66 and 2.68 mg g$^{-1}$. Carotenoid content also followed the same pattern and showed 34.54, 48.09 and 51.90% increase in treated plants after 20, 40 and 60 DAS over control. The p value for chlorophyll and carotenoid content in nanophos treated plants was $P<0.05$ statically different from the control after the 60 days and moderately correlated to each other shown in supplementary figure (SM3).

Total sugar protein and phenolic content

Biochemical attributes were enhanced by nanophos treatment. Maximum sugar level was observed in maize plants treated with nanophos showed 45.76, 37.50 and 42.56% increase after 20, 40 and 60 DAS over control. Protein content in plant leaves was positively influenced by nanophos showing 30, 37.50 and 42.42% rise in protein content over control but not statically different having the p value greater than $P>0.05$ (SM4–5).

Antioxidant enzymes

Increase in CAT activity was observed in nanophos treated plants showed 7.91, 11.23 and 18.32% increase over control. Same pattern was followed by POD and SOD activity in treated plants and showed 16.92, 28.16, 30.26% and 5.02, 10.74 and 19.28% increase in POD and SOD activity after 20, 40 and 60 DAS as compared to control (Fig.2). The p value for CAT activity in nanophos treated plants was $P<0.05$ statically different from the control after 20 days no more effect was observed in POD and SOD activity shown in figure (SM5–6).
Maize yield
Increase in cob weight/length about 15 and 44.83% was observed in nanophos treatment over control. Grain yield/plot showed 17.17% increase in nanophos statistically different over control estimated using correlation test. Increase in 100 grain weight of seeds in nanophos was observed and showed 8.34% increase as compared to control (Fig. 3).

Bacterial count of treated soil on different media
Total bacterial count in the soil treated with nanophos showed 2.28×10^6, 2.30×10^6 and 2.31×10^6 CFU while control showed 2.16×10^6, 2.20×10^6 and 2.12×10^6 count. Colony Forming Unit of Azotobacter in nanophos treated soil was 6.76×10^5, 6.76×10^5 and 7.20×10^5 better than the control. Number of P and K solubilizers were found maximum in treated soil showed 1.00×10^6, 1.01×10^6, 1.02×10^6 and 6.10×10^5, 6.23×10^5 and 6.23×10^5 after 20, 40 and 60 DAS as compared to control (Table 1).

Soil enzyme activities
FDA acts as a substrate for the three enzymes protease, lipase and esterase, thus can be used as an indicator to check the activity of these enzymes. Nanophos had highest FDA hydrolysis activity (29, 29.91 and 30.58 μg fluorescein g$^{-1}$ h$^{-1}$) which was more than control. Activity of dehydrogenase was 5.69, 6.22 and 6.41 μg TPF g$^{-1}$ h$^{-1}$ was observed in nanophos treated soil better than the control (3.61, 3.72 and 3.90 μg TPF g$^{-1}$ h$^{-1}$). Phosphatase activity in nanophos treated soil was 308.16, 316.16 and 422.83 μg h$^{-1}$ higher as compared to control. β-glucosidase activity was 118.16, 147.66 and 153.83 μg h$^{-1}$ in nanophos treated soil. Amylase enzyme activity was 71.50, 75.66 and 78 μg h$^{-1}$ in nanophos treated soil which was twofold increases over control (Fig. 4). The p value for above enzymes 0.03, 0.02, 0.04 after 60 days of the experiment in nanophos treated plants was $P < 0.05$ statically different from the control (SM7–9).
qPCR analysis of 16S rDNA
Change in copy number of 16S rDNA per gram soil sample was evaluated using qPCR and the values are expressed as copy number of the bacterial community under various treatments (Table 1). Gradual increase in 16S rDNA copy number up to 60 days of the experiment was observed in nanophos treated soil. Abundance of 16S rDNA was 4.78×10^5, 4.35×10^5, 4.35×10^5 and 6.91×10^5, 3.78×10^6 and 1.98×10^7 in control and nanophos treated soil respectively. The p value for in nanophos treated plants was $P < 0.05$ statically different from the control.

Soil protein
It was observed that treated soil has 16 and 8 prominent bands of nearly 10, 13, 15, 16, 35, 40, 55, 70 and 100kDa (lane 1,2) after 20 and 60 DAS, while in control soil only 5 bands were present (lane 3,4). Intense bands were observed in nanophos soil as compared to control (SM10).

Discussion
Biofertilizers have been shown to beneficial effects on crop plant physiological action as well as soil health. Under field conditions, nanophos had a positive impact on plant and soil health parameters of *Zea mays*. Nanophos improved the ability of plants to absorb vital nutrients, as well as seed germination, grain maturity and crop yield. Influence of nanophos on agronomical, biochemical and yield of maize unravelling the growth promoting properties and can be useful in agricultural field. Phosphate solubilising bacteria increase the seed germination, plant/root length, leaf area and number of leaves. This may be due to the dissolving the insoluble phosphate compounds, production of phytohormones and enhancing the availability to plants by releasing organic acids and enzymes [37–39]. Biofertilizers along with nanocompounds are reported to enhance the seed germination and plant health productivity by nutrient cycling, production of plant hormones and solubilisation of different minerals [40, 41]. Combination of *Bacillus megatarium*, *Paenibacillus polymyxa* and *Rhizobium* promoted the shoot/root length and
biomass of common bean plants due to increase the P availability which helps in growth and expansion of roots [42]. *Bacillus mucilaginous* and *B. megaterium* increase the phosphorus availability and chilli pepper yield in calcareous soil [43]. *Bacillus* spp. with phosphate fertilizer increased the yield of sugarcane under
pot trial [44]. Application of nano fertilizers improved the rice yield reported by Valojai et al. [45]. Pallegrini et al. [46] reported that consortium of *Gluconacetobacter diazotrophicus* and *Burkholderia ambifaria* improved the soil nutrient status, total chlorophyll, growth and yield of onion plants. Enhanced level of antioxidant enzymes in nanophos treated plants such as CAT, POD and SOD. These enzymes can act as plant growth regulators and induce plant resistance towards phytopathogens. Nanophosphorus combination with PSB increased the total chlorophyll, SOD, CAT activity and yield of *Phaseolus vulgaris* significantly as compared to control in calcareous soil [47]. *Bacillus amyloliquefaciens* and *Paraburkholderia fungorum* increased the strawberry fruit growth, yield and antioxidant contents [48].

Soil NPK solubilising bacterial population also improved in nanophos treated soil. This is due to the positive impact of nanophos on bacterial community which involved in mineralization of P and other minerals in soil [49]. Rhizobial inoculants improved the heterotrophic and P solubilizers count, higher dehydrogenase and urease activity under rye grass cultivation [50]. Biofertilizers application such as *Bacillus megaterium* increases the phosphorus content up to 39.7% [51, 52]. *Bacillus* sp. and *Pseudomonas taiwanensis* having the PGPR activities enhanced soil dehydrogenase, FDA, alkaline phosphatase activity, NPK solubilising population in soil and yield of maize plant under field condition [53, 54].

Soil enzymes are too susceptible and can be used as an indicator to analyse soil health. Different soil enzymes were significantly improved in treated soil indicating no negative impact of nanophos on soil health. Kumari et al. [55] found that nanophos (2 mL L⁻¹) improved the soil enzyme activities like urease, dehydrogenase and alkaline phosphatase under groundnut cultivation over control. Application of *B. aryabhattai* and *Pseudomonas auricularis* improved NPK content of the rhizospheric soil and photosynthetic efficiency in *Camellia oleifera* plants [56]. PGPR involved in enhancement of soil beneficial community and enhanced the soil enzyme activities [57, 58]. Application of *Bacillus* spp. improved maize growth and soil fertility by improving
the nutrient status of the soil [59–61]. PSB increased the urease and dehydrogenase activity [62]. *Pseudomonas, Paraburkholderia* and *Ochrobactrum* (PSB) significantly improved the nutrient status and soil enzyme activities of the soil under Chinese fir seedlings [63]. Pyrosequencing approaches revealed that application of PSB on *Ulmus Chenmoui* favoured the bacterial population to certain extent and improved soil fertility [64, 65]. Ren et al. [66] reported that *Bacillus megatherian* along with biochar increase the NPK concentration and soil urease activity. Soil NPK content and phosphatase activity were enhanced when treated with PSB under wheat cultivation [67]. *Bacillus* spp. improved the *Proteobacteria*, *Chloroflexi* and *Bacteriodetes* population and improved the soil physicochemical properties under acid mine drainage [68].

Proteomics is a valuable method for inspecting the variation in protein profiles of microbes. A minor alteration in the environment can change the amount and expression of proteins in microbes. Soil protein assessed the organically bound nitrogen that can be mineralized using microbes and can be accessible towards plants. Proteomic divergence of soil is also a sign of multifaceted microbial dynamics. The majority of the extracellular enzymes secreted by microbes such as proteases, alkaline phosphatases, lipases and cellulases comes under the range of 20–200 kDa [69]. Alkaline phosphatase and glucosidase are essential for nutrient cycling and have a molecular weight of 80–90 kDa [70]. The banding pattern on the gel was better in treated sample, indicating a positive association between soil enzymes and soil microbes.

Conclusion and recommendations

According to the findings of this study, nanophos has positive impact on maize agronomical, biochemical parameters, antioxidant enzymes, yield of maize and soil microbial population in maize crop. Nanophos treatment indicates good response towards total bacterial, NPK solubilising bacteria, soil enzymes and soil protein. It can be a potential way to enhance nutrient use efficiency in soil and can be a good alternative to agrochemicals used in the agricultural fields. However, more research is required in diverse environment to know the precise mechanisms of nanophos.

Abbreviations

PSB: Phosphate solubilizing bacteria; CAT: Catalase; POD: Peroxidase; SOD: Superoxide dismutase; FDA: Fluorescein diacetate; SDS: Sodium dodecyl sulphate.

Supplementary Information

The online version contains supplementary material available at https://doi.org/10.1186/s12870-021-03298-7.

Additional file 1 SM1 Correlation analysis in control and nanophos treated sample after 20, 40 and 60 days. The darker the square is, the greater the p-value is. The values are calculated through Spearman analysis. SM2 Correlation analysis in control and nanophos treated sample after 20, 40 and 60 days. The darker the square is, the greater the p-value is. The values are calculated through Spearman analysis. SM3 Correlation analysis in control and nanophos treated sample after 20, 40 and 60 days. The darker the square is, the greater the p-value is. The values are calculated through Spearman analysis. SM4 Correlation analysis in control and nanophos treated sample after 20, 40 and 60 days. The darker the square is, the greater the p-value is. The values are calculated through Spearman analysis. SM5 Correlation analysis in control and nanophos treated sample after 20, 40 and 60 days. The darker the square is, the greater the p-value is. The values are calculated through Spearman analysis. SM6 Correlation analysis in control and nanophos treated sample after 20, 40 and 60 days. The darker the square is, the greater the p-value is. The values are calculated through Spearman analysis. SM7 Correlation analysis in control and nanophos treated sample after 20, 40 and 60 days. The darker the square is, the greater the p-value is. The values are calculated through Spearman analysis. SM8 Correlation analysis in control and nanophos treated sample after 20, 40 and 60 days. The darker the square is, the greater the p-value is. The values are calculated through Spearman analysis. SM9 Correlation analysis in control and nanophos treated sample after 20, 40 and 60 days. The darker the square is, the greater the p-value is. The values are calculated through Spearman analysis. SM10 SDS-PAGE photograph of soil protein in nanophos treated and control. Lane 1 and 2: nanophos treated soil after 20 and 60 days, Lane 3 and 4: control soil protein after 20 and 60 days of sowing. Lane 5: Prestained protein Ladder (10–180 kDa).

Acknowledgments

Authors acknowledge the facilities provided by the Microbiology and Agronomy Department of GBPU&T, Pantnagar.

Authors’ contributions

PC: experimental design and wrote the manuscript, AC: data analysis; HP, AS, RK: experimental design and provided lab and field facilities to conduct this research. All the authors have read and approved the manuscript.

Funding

Not applicable.

Availability of data and materials

All the relevant data are within the paper.

Declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Author details

1Department of Microbiology, College of Basic Sciences and Humanities, G.B. Pant University of Agriculture and Technology, Pantnagar, Uttarakhand, India. 2School of Agriculture and Environmental Sciences, Shobhit University, Gangoh, Uttar Pradesh, India. 3Department of Microbiology, GuruKula Kangri Vishwavidyalaya, Haridwar, Uttarakhand, India. 4Crop Production Division, Central Institute for Subtropical Horticulture, Lucknow, Uttar Pradesh, India.
attributes. Environ Sustain. 2020;3:23–34. https://doi.org/10.1007/s42398-020-00094-1.

40. Khatri P, Chaudhary P, Gangola S, Sharma A. Influence of nanobeizite on plant growth promoting bacterial isolates recovered from nanocom- pound infested agriculture field. Environ Ecol. 2019b;37(2):521–7.

41. Kour D, Rana KL, Yadav AN, Yadav N, Kumar M, Kumar V, et al. Microbial biofertilizers: biosources and eco-friendly technologies for agri-cultural and environmental sustainability. Biocatal Agric Biotechnol. 2020;23:101487. https://doi.org/10.1016/j.bcab.2019.101487.

42. Kori H, Mungai NW, Thuita M, Hamba Y, Masso C. Co-inoculation effect of rhizobia and plant growth promoting rhizobacteria on common bean growth in a low phosphorus soil. Front Plant Sci. 2017;8:141. https://doi.org/10.3389/fpls.2017.00141.

43. Zhao Y, Zhang M, Yang W, Di HJ, Ma L, Liu W, et al. Effects of microbial inoculants on phosphorus and potassium availability, bacterial community composition, and chill pepper growth in a calcareous soil: a greenhouse study. J Soil Sediment. 2019;19:3597–607. https://doi.org/10.1007/s11368-019-02319-1.

44. Chungho Has, Tungaco C, Islam AKMM. Efficiency of phosphorus–solubi-lizing bacteria to address phosphorus fixation in Takhili soil series: a case of sugarcane cultivation. Thailand Plant Soil. 2021;460:54–7. https://doi.org/10.1007/s11104-020-04812-w.

45. Valogi STS, Nikheaj Y, Amol HF, Tari TB. Response of rice yield and qual-ity to nano-fertilizers in comparison with conventional fertilizers. 2021. https://doi.org/10.1016/j.19094617.2021.1884701.

46. Pallegrin M, Spera DM, Ercole C, Gallo MD. Allium cepa L. inoculation with a consortium of plant growth-promoting bacteria: effects on plants, soil, and the autochthonous microbial community. Microorganisms. 2021;9:6339. https://doi.org/10.3390/microorganisms9090639.

47. Rady MM, El-Shewy AA, Sel El-Yazal NA, El-Gawad IFM. Integrative application of soil P-solubilizing bacteria and foliar nano P improves Phaseolus vulgaris plant performance and antioxidative defense system components under calcareous soil conditions. J Soil Sci Plant Nutr. 2020;20:820–39. https://doi.org/10.1007/s41729-019-00168-y.

48. Rahman M, Sabir AA, Mukta JA. Plant probiotic bacteria Bacillus and Para bunkholderia improve growth, yield and content of antioxidants in strawberry fruit. Sci Rep. 2018b:2304.

49. Prodhah MA, Finnegam PM, Lambers H. How does evolution in phosphorus-impoverished landscapes impact plant nitrogen and sulfur assimilation? Trends Plant Sci. 2019;24:69–82. https://doi.org/10.1016/j.tplants.2018.10.004.

50. Benidire L, Madline A, Pereira SIA, Castro PML, Boularbah A. Synergistic effect of organic-mineral amendments and plant growth-promoting rhizobacteria (PGPR) on the establishment of vegetation cover and amelioration of mine tailings. Chemosphere. 2021;262:127803. https://doi.org/10.1016/j.chemosphere.2020.127803.

51. Finnegan PM, Bhat P, Polman JD, Mitra P, Ma L, Jurisic M, et al. Effects of micronutrient application in field trials on bioavailability and uptake of Bacillus species. Molecules. 2018;23:2897. https://doi.org/10.3390/molecules23112897.

52. Chaudhary P, Sharma A, Chaudhary A, Khatri P, Gangola S, Maithani D. Illumina based high throughput analysis of microbial diversity of rhizos-phere soil of maize infested with nanocompounds and Bacillus sp. Appl Soil Ecol. 2021;159:103836. https://doi.org/10.1016/j.apsoil.2020.103836.

53. Chaudhary P, Khatri P, Chaudhary A, Maithani D, Kumar G, Sharma A. Cultivable and metagenomic approach to study the combined impact of nanogypsum and Pseudomonas taiwanensis on maize plant health and its rhizospheric microbiome. PLoS One. 2021;16(4):e0250574. https://doi.org/10.1371/journal.pone.0250574.

54. Kumari MS, Rao PC, Padmaja G, Ramulu V, Santha JD. Effect of different sources of phosphorus on soil enzymes activity in groundnut (Arachis hypogaea L.). Int J Curr Microbiol App Sci. 2018;7:340–9. https://doi.org/10.20546/ijcmas.2018.707.041.

55. Wu F, Li J, Chen Y, Zhang L, Zhang Y, Wang S, et al. Effects of phosphate solubilizing bacteria on the growth, photosynthesis, and nutrient uptake of Camellia oleifera Abel. Forests. 2019;10:348. https://doi.org/10.3390/f10040348.

56. Kumari S, Sharma A, Chaudhary P, Khatri P. Management of plant vigor and soil health using two agriscable nanocompounds and plant growth promotory rhizobacteria in fenugreek. 3Biotech. 2020;10:461. https://doi. 0rg/10.1007/s13205-020-02448-2.

57. Kukrets B, Sharma A, Chaudhary P, Agri U, Mathani D. Influence of nano-silicon dioxide along with bioinoculants on Zea mays and its rhizospheric soil. 3Biotech. 2020;10:345. https://doi.org/10.1007/s13205-020-02329-8.

58. Khatri P, Chaudhary P, Gangola S, Chaudhary A, Khatri P. Nano Chitosan supports growth of Zea mays and also maintains soil health following growth. 3Biotech. 2017;7:781. https://doi.org/10.1007/s13205-017-0668-y.

59. Khatri P, Bhatt P, Nisha KR, Sharma A. Effect of nanobeizite and plant growth promoting rhizobacteria on maize. 3Biotech. 2018;8:141. https://doi. 0rg/10.1007/s13205-018-1142-1.

60. Shahzad SM, Afrif MS, Riaz M, Ahsraf M, Yaseen T, Zaeher A, et al. Interaction of compost additives with phosphate solubilizing rhizobacteria improved maize production and soil biochemical properties under dryland agriculture. Soil Tillage Res. 2017;174:70–80. https://doi. org/10.1016/j.still.2016.06.004.

61. Chen J, Zhao G, Wei Y, Dong Y, Hou L, Jiao R. Isolation and screening of multifunctional phosphate solubilizing bacteria and its growth-promot-ing effect on Chinese fir seedlings. Sci Rep. 2021;11:9081. https://doi.org/10.1038/s41598-021-88635-4.

62. Song J, Min L, Wu J, He Q, Chen F, Wang Y. Response of the microbial community to phosphate-solubilizing bacterial inoculants on Ulmus chenmou Cheng in Eastern China. PLoS One. 2021;16:e0247309. https://doi.org/10.1371/journal.pone.0247309.

63. Khatri P, Sharma A, Chaudhary P, Singh AK, Gangola S, Kumar R. High-throughput sequencing approach to access the impact of nanobeizite treatment on species richness and evenness of soil metagenome. Biocatalysis Agri Biotech. 2019;20:101249. https://doi.org/10.1016/j.bcab.2019.101249.

64. Ren CJ, Chen J, Deng J, Zhao FZ, Han XH, Yang GH, et al. Response of microbial diversity to C, N, P stoichiometry in fine root and microbial biomass following afforestation. Biol Fertil Soils. 2019;53:457–68.

65. Suleman M, Yasmin S, Rusul M, Yahya M, Atta BM, Mirza MS. Phosphate solubilizing bacteria with glucose dehydrogenase gene for phosphorus uptake and beneficial effects on wheat. PLoS One. 2018;13:1:e0244048. https://doi.org/10.1371/journal.pone.0244048.

66. Daraz U, Li Y, Sun Q, Zhang M, Ahmad I. Inoculation of Bacillus spp. modu-late the soil bacterial communities and available nutrients in the rhizos-phere of vetiver plant irrigated with acid mine drainage. Chemosphere. 2021;263:128345. https://doi.org/10.1016/j.chemosphere.2021.128345.

67. Glenn AR. Production of extracellular proteins by bacteria. Annu Rev Microbiol. 1976;30:41–62. https://doi.org/10.1146/annurev.mi.30.100176.000253.

68. Taylor JS, Coleman JE. Nitrogen ligands at the active site of alkaline phosphatase. Proc Natl Acad Sci U S A. 1972;69:859–62. https://doi.org/10.1073/pnas.69.4.859.

Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.