Studies on Synthesis and Structural Properties of Nickel Ferrite before and after Gamma Irradiation

Santosh Kalunge¹, Anand Surase², D. R. Sapate³, S. R. Nimbhore⁴, V. K. Barote⁵ and A. A. PAndit(1a)

¹Department of Physics, Yeshvantrao Chavan College of Arts, Commerce and Science, Sillod, Aurangabad - 431 004 (MS), India
²Department of Physics 2, New Arts, Commerce and Science College, Ahmednagar-414 001 (MS), India
³Department of Physics, Sant Ramdas Arts, Commerce and Science College, Ghansawangi, Jalna - 431 209 (MS), India
⁴Department of Physics, Adv B.D.Hambarde Mahavidyalaya Ashti, Beed – 414203 (MS), India
⁵Department of Physics Sant Dnyaneshwar Mahavidyalaya Soegaon, Aurangabad-431 120 (MS), India

a)Corresponding author email : vccsillod@yahoo.com

Abstract. In the present work nanocrystalline NiFe₂O₄ samples were prepared by the sol-gel auto combustion technique. The synthesis was carried out by taking citric acid as fuel with metal nitrate to fuel ratio as 1:3. The obtained powder was annealed at 550°C for 4 h and then used for structural and magnetic investigations. Prepared nickel ferrite samples have been irradiated by gamma-ray (⁶⁰Co) to examine the changes that occurred in structural properties. Structural properties of nickel ferrite nanoparticles before and after gamma irradiation were carried out by X-ray diffraction (XRD) technique. From the XRD pattern, it was observed that all the Braggs planes reveal cubic spinel structure before and after gamma irradiation. A close examination of the XRD pattern revealed the crystallite size of 21 nm and 19 nm for nickel ferrite samples before and after gamma irradiation respectively. The obtained results help in providing interesting and useful study for various applications of nickel ferrites.

1. Introduction
Now-a-days magnetic materials are grabbing the attention of researchers and scientists because of their novel physicochemical properties [1]. Among magnetic materials, ferrites are the most attention-grabbing materials because of their magnetic and insulator properties [2, 3]. Among the various ferrites, nickel ferrites are vitally attributable to their astounding properties, such as high magnetic permeability, lower eddy current losses, and high resistivity making them a potential material for high-frequency applications [4-6].
The development of nanoscience and nanotechnology leads us to deal with and fabricating the material at nanoscale for a particular application. The unique characteristics of nanostructured materials are imported due to their changed electronic structure, close to that of an isolated atom or molecule [3]. Modifications and improvements of these materials are important to adjust the performance and efficiency of the different devices that use them. In recent times, in order to study the effect of irradiation on the properties of ferrite materials, fast heavy ions, laser beams, and gamma rays have been used [7]. Irradiation can be an effective tool to enhance crystal defects and adjust the properties of ferrite (soft and hard magnetic) in a controlled manner. A lot of scientific focus is thus given to the gamma-irradiation caused by the formation and alteration of defects leading to tunable structural and magnetic properties of ferrites. Radiation energy such as gamma rays interacts with materials (atomic electrons and atomic nuclei) [8, 9]. These interactions result in the scattering of particles, the excitation of electrons and vibrations (thermal), and the ionization of atoms, which usually cause interference in the material structure. This in turn modifies the material's electrical and magnetic properties [10, 11]. These improvements can be due to the breakage of ferrimagnetic ordering, surface-state pinning, and cation inversion, etc. Such modifications are quantitatively functions of the dose intensity of irradiation, dose duration, dose absorbed by the materials and quality of the target materials, etc [12, 13].

In the present study, we have carried out the synthesis of nickel ferrite by the sol-gel auto combustion method and irradiated with gamma-ray to understand the effect of gamma radiation on the structural properties of nickel ferrite.

2 Experimental

2.1 Materials

Synthesis of nickel ferrite was carried out by using chemicals such as ferric nitrate (Fe(NO\textsubscript{3})\textsubscript{3}⋅9H\textsubscript{2}O), nickel nitrate (Ni(NO\textsubscript{3})\textsubscript{2}⋅6H\textsubscript{2}O), citric acid (C\textsubscript{6}H\textsubscript{8}O\textsubscript{7}), ammonia (NH\textsubscript{3}), and distilled water. All the chemicals were used without further purification.

2.2 Preparation of nickel ferrite

The nickel ferrite nanopowder was prepared by using a cost-effective safe sol-gel auto combustion technique. To obtain better combustion citric acid was used as a chelating agent. The detailed procedure of sol-gel auto combustion is explained in our earlier reports [14, 15]. The prepared fluffy powder was sintered at temperature 550 °C for 4 h using a muffle furnace to get a better crystalline nature and purity.

2.3 Characterization

The synthesized nickel ferrite samples were characterized by X-ray diffraction (XRD) technology to identify the crystalline phase. The Bruker D-8 X-ray diffractometer has a (2θ) angle range of 20-80°.

Results and Discussions

2.4 X-ray Diffraction

The X-ray diffraction pattern of nickel ferrite synthesized by the sol-gel auto-combustion method recorded at room temperature in 2θ range from 20-80° showed in figure 1. The values of the lattice parameter of the prepared sample calculated by using the following relation [16, 17].

$$a = \frac{d_{hkl}}{\sqrt{h^2 + k^2 + l^2}}$$

Where d is the interplanar spacing of two planes, ‘a’ is the lattice constant, and (hkl) is the miller indices. It revealed that the lattice parameter decreases after irradiation and caused increase in X-ray density.

$$d_B = \frac{m}{V}$$

Where, m is the mass and V is the volume (πr2h) of pallets. The obtained XRD patterns revealed the formation of the cubic spinel structure with Fd-3m space group. There is no impurity peak observed in the XRD pattern. The crystallite size of nickel ferrite before and after irradiation was found to be 21 nm and 19 nm respectively, which is calculated by using Debye-Scherrer’s formula [18],
Where, \(D = \frac{k\lambda}{\beta \cos \theta} \)

Where, \(k \) is the constant having value 0.89, \(\lambda \) is the X-ray light source wavelength (1.540 Å), \(\beta \) is full width at half maximum (FWHM) and \(\theta \) is the glancing angle. The peak positions of the irradiated sample are shifted to the lower angle (2θ). The slight change of the reflective peaks in the irradiated samples is due to some induced disorder (compressive strain) in the crystal structure resulting from ion migration into interstitial positions. X-ray density (\(dx \)) of nickel ferrite was calculated by using the relation [19, 20],

\[
d_{x} = \frac{8M}{N_{A}a^{3}}
\]

Where \(dx \) is the X-ray density, \(M \) is the molecular weight of the composition, \(N_{A} \) is the Avogadro’s number and ‘\(a \)’ is the lattice constant. Calculated values of lattice constant, unit cell volume, average crystallite size, X-ray density, bulk density, the porosity of before and after irradiation of prepared nickel ferrite is tabulated in table 1.

Figure 1. X-ray diffraction pattern of NiFe\(_{2}\)O\(_{4}\) nanoparticles before and after radiation.

Table 1- Values of ‘Lattice constant (\(a \))’, ‘Unit cell volume (\(V \))’, ‘Average crystallite size (\(D \))’, ‘X-ray density (\(dx \))’, ‘Bulk density (\(d_{B} \))’, ‘Porosity (\(P \))’ of nickel ferrites nanoparticles before and after gamma radiation

NiFe\(_{2}\)O\(_{4}\)	\(a \) (Å)	FWHM (θ)	\(V \)	\(D \) (nm)	\(dx \)	\(d_{B} \)	Porosity %
Before radiation	8.336	0.3418	579.3	21.75	5.374	3.638	33.00
After radiation	8.329	0.3021	577.8	19.69	5.389	3.617	33.14
4. Conclusions
Nanostructured nickel ferrite sample was successfully prepared by the sol-gel auto-combustion method. The prepared ferrite sample was irradiated by 60Co gamma-ray source. The XRD patterns confirmed the formation of cubic spinel ferrite with the Fd3m space group. The lattice parameter and crystallite size decreases after gamma irradiation.

Acknowledgement
One of the authors Kalunge, is thankful to Punyashlok Ahilyadevi Holkar University, Solapur for XRD facility and Government Institute of Science, Aurangabad for gamma irradiation facility.

References
1. Gul, S., et al., A Comprehensive review of magnetic nanomaterials modern day theranostics. Frontiers in Materials, 2019. 6: p. 179.
2. Qian, K., et al., The influence of Nd substitution in Ni–Zn ferrites for the improved microwave absorption properties. Ceramics International, 2020. 46(1): p. 227-235.
3. Besteiro, L.V., et al., The fast and the furious: Ultrafast hot electrons in plasmonic metastructures. Size and structure matter. Nano Today, 2019. 27: p. 120-145.
4. Shukla, V., Review of electromagnetic interference shielding materials fabricated by iron ingredients. Nanoscale Advances, 2019. 1(5): p. 1640-1671.
5. Harun-Or-Rashid, M., Investigation of structural, morphological and electromagnetic properties of scandium doped nickel-copper-zinc ferrites. 2019.
6. Barth, C.B., High-density multilevel power converters for use in renewable and transportation applications. 2019, University of Illinois at Urbana-Champaign.
7. Singh, P. and R. Kumar, Radiation Physics and Chemistry of Polymeric Materials, in Radiation Effects in Polymeric Materials. 2019, Springer. p. 35-68.
8. Wang, X.-X., et al., Eco-mimetic nanoarchitecture for green EMI shielding. Chemical Engineering Journal, 2019. 369: p. 1068-1077.
9. Mande, V.K., et al., Effect of γ-radiation on structural, morphological, magnetic and dielectric properties of Zn–Cr substituted nickel ferrite nanoparticles. Journal of Materials Science: Materials in Electronics, 2019. 30(1): p. 56-68.
10. Qiu, L., et al., Enhancing the interfacial interaction of carbon nanotubes fibers by Au nanoparticles with improved performance of the electrical and thermal conductivity. Carbon, 2019. 141: p. 497-505.
11. Mino, L., et al., Materials characterization by synchrotron x-ray microprobes and nanoprobes. Reviews of Modern Physics, 2018. 90(2): p. 025007.
12. Kumari, M., Study the Effect of Gamma Irradiation on Structural and Electrical Properties of CdSe Nanowires. 2018.
13. Angadi, V.J., et al., Reduced A–B super exchange interaction in Sm 3+-Gd 3+-doped Mn–Zn ferrites due to high energy gamma irradiation. Indian Journal of Physics, 2019. 93(2): p. 169-174.
14. Kale, G., et al., l-Ascorbic acid assisted synthesis and characterization of CoFe 2 O 4 nanoparticles at different annealing temperatures. Journal of Materials Science: Materials in Electronics, 2016. 27(2): p. 2151-2158.
15. Humbe, A.V., et al., Nanocrystalline Ni 0.70– x Cu x Zn 0.30 Fe 2 O 4 with 0≤ x≤ 0.25 prepared by nitrate-citrate route: structure, morphology and electrical investigations. Journal of Materials Science: Materials in Electronics, 2018. 29(4): p. 3467-3481.
16. Routray, K.L., D. Sanyal, and D. Behera, Gamma irradiation induced structural, electrical, magnetic and ferroelectric transformation in bismuth doped nanosized cobalt ferrite for various applications. Materials Research Bulletin, 2019. 110: p. 126-134.
17. Raut, A., et al., *Structural, electrical, dielectric and magnetic properties of Al 3+ substituted Ni-Zn ferrite*. Journal of Superconductivity and Novel Magnetism, 2016. 29(5): p. 1331-1337.

18. Jadhav, S.A., et al., *Magneto-structural and photocatalytic behavior of mixed Ni–Zn nanospinel ferrites: visible light-enabled active photodegradation of rhodamine B*. Journal of Materials Science: Materials in Electronics: p. 1-14.

19. Bharati, V., et al., *Influence of trivalent Al–Cr co-substitution on the structural, morphological and Mössbauer properties of nickel ferrite nanoparticles*. Journal of Alloys and Compounds, 2020. 821: p. 153501.

20. Kounsalye, J.S., et al. *Structural, morphological and dielectric modifications in nanocrystalline Li 0.5 Fe 2.5 O 4 ferrites induced by high energy γ-irradiation*. in Proceedings of the fourteenth biennial DAE-BRNS symposium on nuclear and radiochemistry: book of abstracts. 2019.