NON-ARCHIMEDEAN PSEUDO-DIFFERENTIAL OPERATORS WITH BESSEL POTENTIALS

ISMAEL GUTIÉRREZ GARCÍA AND ANSELMO TORRESBLANCA-BADILLO

ABSTRACT. In this article, we study a class of non-archimedean pseudo-differential operators associated via Fourier transform to the Bessel potentials. These operators (which we will denote as J^α, $\alpha > n$) are of the form

$$(J^\alpha \varphi)(x) = \mathcal{F}_{\xi \to x}^{-1} \left([\max\{1, ||\xi||_p\}]^{-\alpha} \hat{\varphi}(\xi) \right), \varphi \in \mathcal{D}'(\mathbb{Q}_p^n), \ x \in \mathbb{Q}_p^n.$$

We show that the fundamental solution $Z(x,t)$ of the p-adic heat equation naturally associated to these operators satisfies $Z(x,t) \leq 0$, $x \in \mathbb{Q}_p^n$, $t > 0$. So this equation describes the cooling (or loss of heat) in a given region over time.

Unlike the archimedean classical theory, although the operator symbol $-J^\alpha$ is not a function negative definite, we show that the operator $-J^\alpha$ satisfies the positive maximum principle on $C_0(\mathbb{Q}_p^n)$. Moreover, we will show that the closure $\overline{-J^\alpha}$ of the operator $-J^\alpha$ is single-valued and generates a strongly continuous, positive, contraction semigroup $\{T(t)\}$ on $C_0(\mathbb{Q}_p^n)$.

On the other hand, we will show that the operator $-J^\alpha$ is $m-$dissipative and is the infinitesimal generator of a C_0-semigroup of contractions $T(t)$, $t \geq 0$, on $L^2(\mathbb{Q}_p^n)$. The latter will allow us to show that for $f \in L^1((0,T) : L^2(\mathbb{Q}_p^n))$, the function

$$u(t) = T(t)u_0 + \int_0^t T(t-s)f(s)ds,$$

is the mild solution of the initial value problem

$$\begin{cases} \frac{\partial u}{\partial t}(x,t) = -J^\alpha u(x,t) + f(t) & t > 0, \ x \in \mathbb{Q}_p^n \\ u(x,0) = u_0 \in L^2(\mathbb{Q}_p^n). \end{cases}$$

1. Introduction

In this article, we study a class of non-archimedean pseudo-differential operators associated via Fourier transform to the Bessel potentials. If $f \in \mathcal{D}'(\mathbb{Q}_p^n)$ (here \mathbb{Q}_p^n denotes the p-adic numbers and $\mathcal{D}'(\mathbb{Q}_p^n)$ is called the space of distributions in \mathbb{Q}_p^n), $\alpha \in \mathbb{C}$ we define the $n-$dimensional $p-$adic Bessel potential of order α of f by

$$(J^\alpha f)^\wedge = (\max\{1, ||x||_p\})^{-\alpha} \hat{f}.$$

Suppose $\alpha \in \mathbb{C}$ with $\text{Re}(\alpha) > 0$. Defining on \mathbb{Q}_p^n and with values in \mathbb{R}_+ := \{ $r \in \mathbb{R} : r \geq 0$ \} the function K_α as follows

$$K_\alpha(x) = \begin{cases} \frac{1-p^{-\alpha}}{1-p^{-\alpha}} \left(||x||_p^{-n} - p^{\alpha-n} \right) \Omega(||x||_p) & \text{if } \alpha \neq n \\ (1-p^{-\alpha}) \log_p(\frac{1}{||x||_p}) \Omega(||x||_p) & \text{if } \alpha = n \end{cases}$$

Key words and phrases. Pseudo-differential operators, $m-$dissipative operators, the positive maximum principle, heat hernel, non-archimedean analysis.
we have that $K_\alpha \in L^1(\mathbb{Q}_p^n)$ and $\tilde{K}_\alpha(\xi) = (\max\{1, ||\xi||_p\})^{-\alpha}$, see Remark 2.

For our purposes, in this article, we will consider $\alpha \in \mathbb{R}$ with $\alpha > n$. The condition $\alpha > n$ is completely necessary to obtain the inequality (3.3), which will be crucial in this article.

For $\varphi \in \mathcal{D}(\mathbb{Q}_p^n)$ and taking inverse Fourier transform on both sides of (1.1), we have that

$$(J^\alpha \varphi)(x) = \mathcal{F}^{-1}_{\xi \to x} \left[\tilde{K}_\alpha(\xi) \hat{\varphi}(\xi) \right] = \mathcal{F}^{-1}_{\xi \to x} \left[(\max\{1, ||\xi||_p\})^{-\alpha} \hat{\varphi}(\xi) \right], \quad x \in \mathbb{Q}_p^n,$$

is a pseudo-differential operator with symbol $\tilde{K}_\alpha(\xi) = (\max\{1, ||\xi||_p\})^{-\alpha}$.

In this paper we study the fundamental solution (denoted by $Z(x, t) := Z_t(x)$, $x \in \mathbb{Q}_p^n$, $t > 0$) of the p-adic pseudodifferential equations of the form

$$\begin{cases}
\frac{\partial u}{\partial t}(x, t) = J^\alpha u(x, t), & t \in [0, \infty), \quad x \in \mathbb{Q}_p^n \\
u(x, 0) = u_0(x) \in \mathcal{D}(\mathbb{Q}_p^n),
\end{cases}
$$

which is the p-adic counterparts of the archimedean heat equations.

Unlike the fundamental solution studied at [3], [5], [11], [12], [15], [16], [19], [23], [24], [25], [27], [28], et al., we obtain that $Z(x, t) \leq 0$, $\int_{\mathbb{Q}_p^n} Z(x, t) d^n x = e^{-t}$, $x \in \mathbb{Q}_p^n$, $t > 0$, among other properties, see Theorem 1. Since the heat kernel contains a large amount of redundant information, in our case, the p-adic heat equation describes the cooling (or loss of heat) in a given region over time.

The connections between pseudodifferential operators whose symbol is a negative definite function and that satisfies the positive maximum principle have been studied intensively in the archimedean setting, since, a sufficient and necessary condition for that a pseudodifferential operator satisfies the positive maximum principle is that its symbol be a negative definite function, see e.g. [6], [10], [13], [20], et al. In our case, the pseudodifferential operator $-J^\alpha$ satisfies the positive maximum principle on $C_0(\mathbb{Q}_p^n)$, however, its symbol $(\max\{1, ||\xi||_p\})^{-\alpha}$ is not a negative definite function, see Theorem 2 and Remark 1 respectively.

On the other hand, the study of the m-dissipative operators self-adjoint on the Hilbert spaces is of great importance, since these are exactly the generators of contraction semigroups and C_0-semigroups, see [4], [18]. Motivated by it, we are interested in knowing if the pseudo-differential operator $-J^\alpha$ is an m-dissipative operators and self-adjoint on $L^2(\mathbb{Q}_p^n)$.

The article is organized as follows: In Section 2 we will collect some basic results on the p-adic analysis and fix the notation that we will use through the article. In Section 3 we study a class of non-archimedean pseudo-differential operators associated via Fourier transform to the Bessel potentials, those operators we denote by J^α, $\alpha \in \mathbb{C}$. For our purposes, we will consider the case when $\alpha > n$. In addition, we will study certain properties corresponding to the fundamental solution $Z(x, t)$, $x \in \mathbb{Q}_p^n$, $t > 0$ of the p-adic heat equation naturally associated to these operators.

In Section 4 we will show that the operator $-J^\alpha$ satisfies the positive maximum principle on $C_0(\mathbb{Q}_p^n)$. Moreover, as for all $\lambda > 0$ we have that $\text{Ran}(\lambda + J^\alpha)$ is dense in $C_0(\mathbb{Q}_p^n)$, we have that the closure $-\overline{J^\alpha}$ of the operator $-J^\alpha$ on $C_0(\mathbb{Q}_p^n)$ is single-valued and generates a strongly continuous, positive, contraction semigroup $\{T(t)\}$ on $C_0(\mathbb{Q}_p^n)$, see Theorem 3. In the section 5 we will show that the operator $-J^\alpha : L^2(\mathbb{Q}_p^n) \to L^2(\mathbb{Q}_p^n)$ is m-dissipative and self-adjoint, see Theorem 4 and Lemma 5 respectively. We can get that the linear operator $-J^\alpha$ is the infinitesimal
rational numbers \mathbb{Q} is the mild solution of the initial value problem on $[0 \, \frac{p}{b}]$. The field of \mathbb{F} with generator of a C_0-semigroup of contraction $T(t), t \geq 0$, on $L^2(\mathbb{Q}_p^n)$. Moreover, when considering the problem the inhomogeneous initial problem
\begin{equation*}
\begin{cases}
\frac{\partial u}{\partial t}(x, t) = -J^a u(x, t) + f(t) & t > 0, \, x \in \mathbb{Q}_p^n \\
u(x, 0) = u_0 \in L^2(\mathbb{Q}_p^n),
\end{cases}
\end{equation*}
with $f : [0, T] \to L^2(\mathbb{Q}_p^n), \, T > 0$, we have that the function \(u(t) = T(t)u_0 + \int_0^t T(t-s)f(s)ds, \quad 0 \leq t \leq T, \) is the mild solution of the initial value problem on $[0, T]$, see Remark \(\Box \).

2. Fourier Analysis on \mathbb{Q}_p^n: Essential Ideas

2.1. The field of p-adic numbers. Along this article p will denote a prime number. The field of p-adic numbers \mathbb{Q}_p is defined as the completion of the field of rational numbers \mathbb{Q} with respect to the p-adic norm $| \cdot |_p$, which is defined as
\[|x|_p = \begin{cases} 0, & \text{if } x = 0 \\ p^{-\gamma}, & \text{if } x = p^\gamma a_b \end{cases}, \]
where a and b are integers coprime with p. The integer $\gamma := \text{ord}(x)$, with $\text{ord}(0) := +\infty$, is called the p-adic order of x.

Any p-adic number $x \neq 0$ has a unique expansion of the form
\[x = p^{\text{ord}(x)} \sum_{j=0}^{\infty} x_j p^j, \]
where $x_j \in \{0, 1, 2, \ldots, p-1\}$ and $x_0 \neq 0$. By using this expansion, we define the fractional part of $x \in \mathbb{Q}_p$, denoted $\{x\}_p$, as the rational number
\[\{x\}_p = \begin{cases} 0, & \text{if } x = 0 \text{ or } \text{ord}(x) \geq 0 \\ p^{\text{ord}(x)} \sum_{j=0}^{\text{ord}(x)-1} x_j p^j, & \text{if } \text{ord}(x) < 0. \end{cases} \]
We extend the p-adic norm to \mathbb{Q}_p^n by taking
\[||x||_p := \max_{1 \leq i \leq n} |x_i|_p, \text{ for } x = (x_1, \ldots, x_n) \in \mathbb{Q}_p^n. \]

For $r \in \mathbb{Z}$, denote by $B_r^a(a) = \{x \in \mathbb{Q}_p^n : ||x - a||_p \leq p^r\}$ the ball of radius p^r with center at $a = (a_1, \ldots, a_n) \in \mathbb{Q}_p^n$, and take $B_0^a(0) =: B_0^a$. Note that $B_r^a(a) = B_r(a_1) \times \cdots \times B_r(a_n)$, where $B_r(a_i) := \{x \in \mathbb{Q}_p^n : |x_i - a_i|_p \leq p^r\}$ is the one-dimensional ball of radius p^r with center at $a_i \in \mathbb{Q}_p$. The ball B_0^a equals the product of n copies of $B_0 = \mathbb{Z}_p$, the ring of p-adic integers of \mathbb{Q}_p. We also denote by $S_r^a(a) = \{x \in \mathbb{Q}_p^n : ||x - a||_p = p^r\}$ the sphere of radius p^r with center at $a = (a_1, \ldots, a_n) \in \mathbb{Q}_p^n$, and take $S_0^a(0) =: S_0^a$. The balls and spheres are both open and closed subsets in \mathbb{Q}_p^n.

As a topological space $(\mathbb{Q}_p^n, || \cdot ||_p)$ is totally disconnected, i.e. the only connected subsets of \mathbb{Q}_p^n are the empty set and the points. A subset of \mathbb{Q}_p^n is compact if and only if it is closed and bounded in \mathbb{Q}_p^n, see e.g. [25] Section 1.3], or [11] Section 1.8]. The balls and spheres are compact subsets. Thus $(\mathbb{Q}_p^n, || \cdot ||_p)$ is a locally compact topological space.
We will use $\Omega(p^{-r}|x-a|_p)$ to denote the characteristic function of the ball $B^n_p(a)$. We will use the notation 1_A for the characteristic function of a set A. Along the article $d^n x$ will denote a Haar measure on Q^n_p normalized so that $\int_{Q^n_p} d^n x = 1$.

2.2. Some function spaces. A complex-valued function φ defined on Q^n_p is called \textit{locally constant} if for any $x \in Q^n_p$ there exist an integer $l(x) \in \mathbb{Z}$ such that

$$\varphi(x + x') = \varphi(x) \text{ for } x' \in B^n_{l(x)}.$$

A function $\varphi : Q^n_p \to \mathbb{C}$ is called a \textit{Bruhat-Schwartz function} (or a \textit{test function}) if it is locally constant with compact support. The \mathbb{C}-vector space of Bruhat-Schwartz functions is denoted by $D(Q^n_p) =: D$. Let $D'(Q^n_p) =: D'$ denote the set of all continuous functional (distributions) on D. The natural pairing $D'(Q^n_p) \times D(Q^n_p) \to \mathbb{C}$ is denoted as (T, φ) for $T \in D'(Q^n_p)$ and $\varphi \in D(Q^n_p)$, see e.g. \cite{1} Section 4.4.

Every $f \in L^1_{loc}$ defines a distribution $f \in D'(Q^n_p)$ by the formula

$$(f, \varphi) = \int_{Q^n_p} f(x) \varphi(x) d^n x.$$

Such distributions are called \textit{regular distributions}.

Given $\rho \in [0, \infty)$, we denote by $L^\rho(Q^n_p, d^n x) = L^\rho(Q^n_p) := L^\rho$, the \mathbb{C}-vector space of all the complex valued functions g satisfying $\int_{Q^n_p} |g(x)|^\rho d^n x < \infty$. $L^\infty := L^\infty(Q^n_p) = L^\infty(Q^n_p, d^n x)$ denotes the \mathbb{C}-vector space of all the complex valued functions g such that the essential supremum of $|g|$ is bounded.

Let denote by $C(Q^n_p, \mathbb{C}) =: C_C$ the \mathbb{C}-vector space of all the continuous functions which are continuous, by $C(Q^n_p, \mathbb{R}) =: C_R$ the \mathbb{R}-vector space of continuous functions. Set

$$C_0(Q^n_p, \mathbb{C}) := \left\{ f : Q^n_p \to \mathbb{C}; \ f \text{ is continuous and } \lim_{x \to \infty} f(x) = 0 \right\},$$

where $\lim_{x \to \infty} f(x) = 0$ means that for every $\epsilon > 0$ there exists a compact subset $B(\epsilon)$ such that $|f(x)| < \epsilon$ for $x \in Q^n_p \setminus B(\epsilon)$. We recall that $(C_0(Q^n_p), || \cdot ||_{L^\infty})$ is a Banach space.

2.3. Fourier transform. Set $\chi_p(y) = \exp(2\pi i \{y\}_p)$ for $y \in Q_p$. The map $\chi_p(\cdot)$ is an additive character on Q_p, i.e. a continuous map from $(Q_p, +)$ into S (the unit circle considered as multiplicative group) satisfying $\chi_p(x_0 + x_1) = \chi_p(x_0) \chi_p(x_1)$, $x_0, x_1 \in Q_p$. The additive characters of Q_p form an Abelian group which is isomorphic to $(Q_p, +)$, the isomorphism is given by $\xi \mapsto \chi_p(\xi)$, see e.g. \cite{1} Section 2.3.

Given $x = (x_1, \ldots, x_n)$, $\xi = (\xi_1, \ldots, \xi_n) \in Q^n_p$, we set $x \cdot \xi := \sum_{j=1}^n x_j \xi_j$. If $f \in L^1$ its Fourier transform is defined by

$$(\mathcal{F}f)(\xi) = \int_{Q^n_p} \chi_p(\xi \cdot x) f(x) d^n x, \text{ for } \xi \in Q^n_p.$$

We will also use the notation $\mathcal{F}_x \rightarrow \xi f$ and \hat{f} for the Fourier transform of f. The Fourier transform is a linear isomorphism from $D(Q^n_p)$ onto itself satisfying

$$(2.1) \quad (\mathcal{F}(\mathcal{F}f))(\xi) = f(-\xi),$$
for every $f \in \mathcal{D}(\mathbb{Q}_p^n)$, see e.g. [1]. Section 4.8. If $f \in L^2$, its Fourier transform is defined as

$$(\mathcal{F}f)(\xi) = \lim_{k \to \infty} \int_{||x|| \leq p^k} \chi_p(\xi \cdot x)f(x)d^n x, \quad \text{for} \ \xi \in \mathbb{Q}_p^n,$$

where the limit is taken in L^2. We recall that the Fourier transform is unitary on L^2, i.e. $||f||_{L^2} = ||\mathcal{F}f||_{L^2}$ for $f \in L^2$ and that (2.1) is also valid in L^2, see e.g. [22, Chapter III, Section 2].

3. Pseudodifferential Operators and Heat Kernel Associated with Bessel Potentials

In this section, we study a class of non-archimedean pseudo-differential operators associated via Fourier transform to the Bessel potentials. We will also study some aspects associated with the fundamental solution of the heat equation associated with these operators.

Definition 1. [22, Definition-p. 137] If $f \in \mathcal{D}'(\mathbb{Q}_p^n)$, $\alpha \in \mathbb{C}$ we define the $n-$dimensional $p-$adic Bessel potential of order α of f by

$$(J^\alpha f)^\wedge = (\max\{1, ||x||_p\})^{-\alpha} \hat{f}. \quad (3.1)$$

We will define the distribution with compact support G^α as

$$\tilde{G}^\alpha(x) = (\max\{1, ||x||_p\})^{-\alpha}. \quad (3.2)$$

Remark 1. [22, Proposition 5.1-p. 137] For $\alpha, \beta \in \mathbb{C}$, $f \in \mathcal{D}'(\mathbb{Q}_p^n)$, we have that $J^\alpha f = G^\alpha * f \in \mathcal{D}'(\mathbb{Q}_p^n)$ and $J^\alpha(J^\beta f) = J^{\alpha+\beta} f$. The map $\varphi \to J^\alpha \varphi$ is a homeomorphism from $\mathcal{D}(\mathbb{Q}_p^n)$ onto $\mathcal{D}(\mathbb{Q}_p^n)$. Furthermore J^α is continuous in α in the sense that whenever $\{\alpha_k\} \to \alpha$ in \mathbb{C} then $J^{\alpha_k} \varphi \to J^\alpha \varphi$, when $\varphi \in \mathcal{D}(\mathbb{Q}_p^n)$.

The n-dimensional $p-$adic gamma function Γ^α_p is defined as

$$\Gamma^\alpha_p(\alpha) = \frac{1 - p^{-n}}{1 - p^{-\alpha}} \quad \text{for} \ \alpha \in \mathbb{C} \setminus \{0\}. \quad (3.3)$$

Suppose $\alpha \in \mathbb{C}$ with $\text{Re}(\alpha) > 0$. Define on \mathbb{Q}_p^n and with values in \mathbb{R}_+ the function K_α as follows:

$$K_\alpha(x) = \begin{cases}
\frac{1}{\Gamma^\alpha_p(\alpha)} (||x||_p^{\alpha-n} - p^{-\alpha} n) \Omega(||x||_p) & \text{if} \ \alpha \neq n \\
(1 - p^{-n}) \log_p(\frac{p}{||x||_p}) \Omega(||x||_p) & \text{if} \ \alpha = n
\end{cases} \quad (3.3)$$

Remark 2. (i) Note that $K_\alpha(x)$, $x \in \mathbb{Q}_p^n$, is a non-negative radial function. We have that $G^\alpha = K_\alpha$, $K_\alpha \in L^1(\mathbb{Q}_p^n)$ and $K_\alpha(\xi) = (\max\{1, ||\xi||_p\})^{-\alpha}$, see [22] Lemma 5.2-p. 138. Moreover, can verify that $\int_{\mathbb{Q}_p^n} K_\alpha(x)d^n x = 1$, if $\text{Re}(\alpha) > 0$, see [22] Remarks-p. 138 and (5.5)-p. 139.

(ii) Since the function $f(x) = 1$, $x \in \mathbb{Q}_p^n$, is constant we have in particular that f is locally constant. Moreover, the function $|| \cdot ||_p$ is also locally constant, see [23, Example 1-p. 79]. Therefore the function $(\max\{1, ||\xi||_p\})^{-\alpha}$ is locally constant.

For our purposes from now on we consider fix $\alpha > n$. Therefore,

$$\frac{1 - p^{-\alpha}}{1 - p^{-n}} < 0. \quad (3.4)$$
Following the notation given in [22] and taking into account Remark 1 and Remark 2 for \(\varphi \in D(Q^n_p) \) we define the pseudo-differential operator \(J^\alpha \) by

\[
(3.5) \quad (J^\alpha \varphi)(x) := \mathcal{F}_{\xi \rightarrow x}^{-1} \left[\hat{K}_\alpha(\xi)\hat{\varphi}(\xi) \right] = \mathcal{F}_{\xi \rightarrow x}^{-1} \left[(\max\{1, ||\xi||_p\})^{-\alpha}\hat{\varphi}(\xi) \right], \ x \in \mathbb{Q}_p^n,
\]

with symbol \(\hat{K}_\alpha(\xi) = (\max\{1, ||\xi||_p\})^{-\alpha} \).

Note that if \(\varphi \in D(Q^n_p) \) then \(\hat{\varphi} \in D(Q^n_p) \), see [25] Lemma 4.8.1. Moreover, \(supp(\hat{K}_\alpha \hat{\varphi}) = supp(\hat{\varphi}) \), so that by Remark 2(ii) we have that \(\hat{K}_\alpha \hat{\varphi} \in D(Q^n_p) \). Therefore the operator \(J^\alpha : D(Q^n_p) \rightarrow D(Q^n_p) \) is well defined, and by Remark 1 and Remark 2 we have that

\[
(J^\alpha \varphi)(x) = (K_\alpha * \varphi)(x), \ \text{for} \ \varphi \in D(Q^n_p).
\]

Lemma 1. For \(t > 0 \) we have that

\[
(3.6) \quad \int_{Q^n_p} e^{-t\hat{K}_\alpha(\xi)} \leq e^{-t} - 1,
\]

i.e. \(e^{-t\hat{K}_\alpha(\xi)} = e^{-t(\max\{1, ||\xi||_p\})^{-\alpha}} \in L^1(Q^n_p) \).

Proof. Since \(e^{-t p^{-j\alpha}} \leq 1 \) for \(j \geq 1 \), we have that

\[
\int_{Q^n_p} e^{-t\hat{K}_\alpha(\xi)} d^n \xi = \int_{Q^n_p} e^{-t(\max\{1, ||\xi||_p\})^{-\alpha}} d^n \xi
= e^{-t} + (1 - p^{-n}) \sum_{j=1}^{\infty} e^{-t p^{-j\alpha}} p^{nj}
\leq e^{-t} + \sum_{j=1}^{\infty} (p^{nj} - p^{n(j-1)}) = e^{-t} - 1.
\]

The proof of the following Lemma is similar to the one given in [23] Proposition 1.

Lemma 2. Consider the Cauchy problem

\[
(3.7) \quad \begin{cases}
\frac{\partial u}{\partial \tau}(x, t) = J^\alpha u(x, t), & t > 0, x \in \mathbb{Q}_p^n \\
u(x, 0) = u_0(x) \in D(Q^n_p).
\end{cases}
\]

Then

\[
u(x, t) = \int_{Q^n_p} \chi_p \left(-\xi \cdot x \right) e^{-t(\max\{1, ||\xi||_p\})^{-\alpha}} \hat{u}_0(\xi) d^n \xi
\]
is a classical solution of [3.7]. In addition, \(u(\cdot, t) \) is a continuous function for any \(t \geq 0 \).

We define the heat Kernel attached to operator \(J^\alpha \) as

\[
Z(x, t) := \mathcal{F}_{\xi \rightarrow x}^{-1} \left(e^{-t(\max\{1, ||\xi||_p\})^{-\alpha}} \right).
\]

When considering \(Z(x, t) \) as a function of \(x \) for \(t \) fixed, we will write \(Z_t(x) \). On the other hand, by Lemma 1 and [22] Chapter III-Theorem 1.1-(b) we have that \(Z_t(x), t > 0 \), is uniformly continuous.
Theorem 1. For any $t > 0$, the heat kernel has the following properties:

(i) $Z(x, t) = \left\{ \begin{array}{ll}
\sum_{i=0}^{\gamma} p^{i\alpha} (e^{-tp^{-\alpha}} - e^{-tp^{-(i+1)\alpha}}) < 0 & \text{if } ||x||_p = p^{-\gamma}, \, \gamma \geq 0, \\
0, & \text{if } ||x||_p = p^\gamma, \, \gamma > 1,
\end{array} \right.
\]

i.e., $Z(x, t) \leq 0$ and $\text{supp}(Z(x, t)) = \mathbb{Z}_p^n$, for any $t > 0$ and $x \in \mathbb{Q}_p^n$.

(ii) $\int_{\mathbb{Q}_p^n} Z(x, t) d^n x = e^{-t}$ with $x \in \mathbb{Q}_p^n$.

(iii) $Z_t(x) * Z_{t_0}(x) = Z_{t+t_0}(x)$, for any $t_0 > 0$.

(iv) $\lim_{t \to 0^+} Z(x, t) = \delta(x)$.

Proof. (i) For $x \in \mathbb{Q}_p^n$ and $t > 0$, we have by (3.5) that

$$Z(x, t) = e^{-t} \int_{\mathbb{Q}_p^n \setminus \mathbb{Z}_p^n} \chi_p(-x \cdot \xi) d^n \xi + \int_{\mathbb{Q}_p^n \setminus \mathbb{Z}_p^n} \chi_p(-x \cdot \xi) e^{-t||\xi||_p^{-\alpha}} d^n \xi.$$

Consider the following cases:

If $||x||_p = p^\gamma$, with $\gamma \geq 1$, then by (3.8) and the n-dimensional version of [24] Example 6-p. 42], we have that

$$Z(x, t) = e^{-t} \int_{\mathbb{Q}_p^n \setminus \mathbb{Z}_p^n} \chi_p(-x \cdot \xi) e^{-t||\xi||_p^{-\alpha}} d^n \xi.$$

By using the formula

$$\int_{||w||_p=1} \chi_p \left(-p^{-j} x \cdot w \right) d^n w = \left\{ \begin{array}{ll}
1 - p^{-n}, & \text{if } j \leq -\gamma, \\
-p^{-n}, & \text{if } j = -\gamma + 1, \\
0, & \text{if } j \geq -\gamma + 2,
\end{array} \right.$$

we get that $Z(x, t) = 0$.

On the other hand, if $||x||_p = p^{-\gamma}$, $\gamma \geq 0$, then by (3.8) and the n-dimensional version of [24] Example 6-p. 42] we have that

$$Z(x, t) = e^{-t} + \sum_{j=1}^{\infty} e^{-tp^{-j\alpha}} \int_{||w||_p=1} \chi_p(-x \cdot \xi) d^n \xi$$

(3.9)$$= e^{-t} + \sum_{j=1}^{\infty} e^{-tp^{-j\alpha}} p^{nj} \int_{||w||_p=1} \chi_p(-p^{-j} x \cdot w) d^n w \quad (\text{taking } w = p^j \xi).$$

Now, we have that

$$\int_{||w||_p=1} \chi_p \left(-p^{-j} x \cdot w \right) d^n w = \left\{ \begin{array}{ll}
1 - p^{-n}, & \text{if } j \leq \gamma, \\
-p^{-n}, & \text{if } j = \gamma + 1, \\
0, & \text{if } j \geq \gamma + 2.
\end{array} \right.$$

We proceed by induction on γ. Note that if $\gamma = 0$, then by (3.9) and (3.10) we have that

$$Z(x, t) = e^{-t} - e^{-tp^{-\alpha}}.$$
If $\gamma = 1$, then by (3.9) and (3.10) we have that
\[
Z(x, t) = e^{-t} + (p^n - 1)e^{-tp^{-\alpha}} - p^n e^{-tp^{-2\alpha}}
\]
\[
= (e^{-t} - e^{-tp^{-\alpha}}) + p^n (e^{-tp^{-\alpha}} - e^{-tp^{-2\alpha}}).
\]
Suppose that
\[
Z(x, t) = \sum_{i=0}^{n} p^n (e^{-tp^{-\alpha}} - e^{-tp^{-(i+1)\alpha}})
\]
is satisfied for $\gamma = n$.

Let’s see if the hypothesis is met for $\gamma = n + 1$. By (3.9) and (3.10) we have that
\[
Z(x, t) = e^{-t} + (1 - p^{-n})e^{-tp^{-\alpha}}p^n + (1 - p^{-n})e^{-tp^{-2\alpha}}p^{2n} + \ldots
\]
\[
+ (1 - p^{-n})e^{-tp^{-\gamma(n+1)\alpha}}p^{n\alpha} + (1 - p^{-n})e^{-tp^{-(\gamma+1)\alpha}}p^{(\gamma+1)n}
\]
\[
- p^{-n}e^{-tp^{-(\gamma+2)\alpha}}p^{(\gamma+2)n}
\]
\[
= e^{-t} + (p^n - 1)e^{-tp^{-\alpha}} + (p^{2n} - p^n)e^{-tp^{-2\alpha}} + \ldots + (p^{n\alpha} - p^{(n-1)\alpha})e^{-tp^{-\gamma}}
\]
\[
+ (p^{(\gamma+1)n} - p^{n\gamma})e^{-tp^{-(\gamma+1)\alpha}} - p^{(\gamma+1)n}e^{-tp^{-(\gamma+2)\alpha}}.
\]
So by the hypothesis of induction we have that
\[
Z(x, t) = (e^{-t} - e^{-tp^{-\alpha}}) + p^n (e^{-tp^{-\alpha}} - e^{-tp^{-2\alpha}}) + p^{2n} (e^{-tp^{-2\alpha}} - e^{-tp^{-3\alpha}}) + \ldots
\]
\[
+ p^{n\alpha} (e^{-tp^{-\gamma}} - e^{-tp^{-(\gamma+1)\alpha}}) + p^{(\gamma+1)n} (e^{-tp^{-(\gamma+1)\alpha}} - e^{-tp^{-(\gamma+2)\alpha}}).
\]
Therefore, taking into account that the function $f(x) = e^{-tp^{-\alpha}}$ is an increasing function in the real variable x, we have that
\[
Z(x, t) \leq 0, \text{ for any } t > 0 \text{ and } x \in Q_p^n,
\]
\[(ii)\] Let $t > 0$. By the definition of $Z(x, t)$, (i) and (3.6), we have that $|Z(x, t)| \leq e^{-t} - 1$. Therefore,
\[
(3.11) \quad Z(x, t) \in L^1(Q_p^n).
\]

Since $\hat{Z}(x, t) = e^{-t((\max(1, ||x||_p))^{-\alpha}}$ we have that $\hat{Z}(0, t) = e^{-t}$. On the other hand, $\hat{Z}(\xi, t) = \int_{Q_p^n} \chi_p(\xi \cdot x) Z(x, t) d^n x$ and $\hat{Z}(0, t) = \int_{Q_p^n} Z(x, t) d^n x$. Therefore, $\int_{Q_p^n} Z(x, t) d^n x = e^{-t}$.

\[(iii)\] It is an immediate consequence of the definition of $Z(x, t)$ and (3.11).

\[(iv)\] For $\varphi \in D(Q_p^n)$ we have that
\[
\lim_{t \to 0^+} \langle Z_t(x), \varphi \rangle = \lim_{t \to 0^+} \bigg\langle e^{-t((\max(1, ||x||_p))^{-\alpha}}, \mathcal{F}^{-1}_{\xi \to x}(\varphi) \bigg\rangle = \langle 1, \mathcal{F}^{-1}_{\xi \to x}(\varphi) \rangle = \langle \delta, \varphi \rangle.
\]

\[\square\]

\textbf{Remark 3.} (i) By the previous theorem, we have that the family $(Z_t)_{t>0}$ it’s not a convolution semigroup on Q_p^n, see e.g. [2].

(ii) By (ii) in the previous theorem we have that the family of operators
\[
(\Theta(t)f)(x) := \int_{Q_p^n} Z(x - y, t)f(y) d^n y
\]
not preserve the function $f(x) \equiv 1$. Thus $\Theta(t)$ it’s not a Markov semigroup and moreover the fundamental solution $Z(x,t)$ it’s not a transition density of a Markov process. For more details, the reader can consult the theory of Markov processes, see e.g. [7], [10].

(iii) By Theorem 2(ii) and Fubini’s theorem, we have that the classical solution of (3.7) can be written as
$$u(x,t) = Z_t(x) * u_0(x), \quad t \geq 0, \quad x \in \mathbb{Q}_p^n.$$

4. The Positive Maximum Principle and Strongly Continuous, Positive, Contraction Semigroup On $C_0(\mathbb{Q}_p^n)$

In this section, we will show that the operator $-J^\alpha$ satisfies the positive maximum principle on $C_0(\mathbb{Q}_p^n)$ and that also the closure $\overline{-J^\alpha}$ of the operator $-J^\alpha$ on $C_0(\mathbb{Q}_p^n)$ is single-valued and generates a strongly continuous, positive, contraction semigroup $\{T(t)\}$ on $C_0(\mathbb{Q}_p^n)$. For more details, the reader can consult [2], [21].

Definition 2. An operator $(A, Dom(A))$ on $C_0(\mathbb{Q}_p^n)$ is said to satisfy the positive maximum principle if whenever $f \in Dom(A) \subseteq C_0(\mathbb{Q}_p^n, \mathbb{R})$, $x_0 \in \mathbb{Q}_p^n$, and $\sup_{x \in \mathbb{Q}_p^n} f(x) = f(x_0) \geq 0$ we have $Af(x_0) \leq 0$.

Let $x_0 \in \mathbb{Q}_p^n$ such that $\sup_{x \in \mathbb{Q}_p^n} \varphi(x) = \varphi(x_0) \geq 0$ with $\varphi \in D(\mathbb{Q}_p^n)$. By Remark 1, Remark 2 and (3.3) we have that

$$\begin{align*}
(J^\alpha \varphi)(x_0) &= (K_\alpha \ast \varphi)(x_0) \\
 &= \frac{1 - p^{-\alpha}}{1 - p^{\alpha-n}} \int_{\mathbb{Q}_p^n} (||x_0||_p^{\alpha-n} - p^{\alpha-n}) \Omega(||x_0||_p, \varphi(x_0) - y) d^n y \\
(4.1) &\quad = \frac{1 - p^{-\alpha}}{1 - p^{\alpha-n}} \int_{\mathbb{Q}_p^n} (||x_0 - y||_p^{\alpha-n} - p^{\alpha-n}) \Omega(||x_0 - y||_p, \varphi(y)) d^n y.
\end{align*}$$

Consider the following cases:

Case 1. $\varphi(x_0) > 0$. In this case $x_0 \in supp(\varphi)$ and for all $x \in supp(\varphi)$ we have that $\varphi(x) > 0$.

If $supp(\varphi) \cap \mathbb{Z}_p^n = \phi$, then $||x_0||_p > p$. So that by (4.1) we have that

$$\begin{align*}
(J^\alpha \varphi)(x_0) &= 0.
\end{align*}$$

If $supp(\varphi) \subseteq \mathbb{Z}_p^n$, then $||x_0||_p = p^{-\beta}$, with $\beta \geq 0$. For the case where $||y||_p > 1$ we have that $||x_0 - y||_p = ||y||_p$ and consequently $x_0 - y \notin \mathbb{Z}_p^n$ and $\varphi(x_0 - y) = 0$. On the other hand, if $||y||_p \leq 1$ then $||x_0 - y||_p \leq 1$, and in this case $\varphi(x_0 - y) > 0$. So that by (4.1) and (3.3) we have that

$$\begin{align*}
(J^\alpha \varphi)(x_0) &= 1 - p^{-\alpha} \int_{\mathbb{Z}_p^n} (p^{-\beta(n-\alpha)} - p^{\alpha-n}) \varphi(x_0 - y) d^n y \geq 0.
\end{align*}$$

If $\mathbb{Z}_p^n \subseteq supp(\varphi)$, then there are two possibilities for x_0. For the case when $||x_0||_p \leq 1$ we have that $||x_0||_p^{\alpha-n} - p^{\alpha-n} \leq 0$ and $\varphi(x_0 - y) > 0$ for all $y \in supp(\varphi)$. So that by (4.1) and (3.3), we have that $(J^\alpha \varphi)(x_0) \geq 0$. For the case when $x_0 \in supp(\varphi) \setminus \mathbb{Z}_p^n$, by (4.1) we have that $(J^\alpha \varphi)(x_0) = 0$.

Case 2. \(\varphi(x_0) = 0 \). In this case \(x_0 \notin \text{supp}(\varphi) \) and for all \(x \in \text{supp}(\varphi) \) we have that \(\varphi(x) < 0 \).

If \(\text{supp}(\varphi) \subseteq Z^n_p \), then \(||x_0||_p > 1 \), or if \(\text{supp}(\varphi) \subseteq Q^n_p \setminus Z^n_p \) and \(x_0 \notin Z^n_p \), then by (4.4) we have that \((J^\alpha \varphi)(x_0) = 0 \).

If \(Z^n_p \subseteq \text{supp}(\varphi) \) and \(x_0 \notin Z^n_p \) then by (4.4) we have that \((J^\alpha \varphi)(x_0) = 0 \), and if \(Z^n_p \subseteq \text{supp}(\varphi) \) and \(x_0 \in Z^n_p \) then by (4.2) we have that \((J^\alpha \varphi)(x_0) = 0 \).

If \(\text{supp}(\varphi) \subseteq Q^n_p \setminus Z^n_p \) and \(x_0 \in Z^n_p \). Then, when \(y \in Q^n_p \setminus Z^n_p \), we have that \(||x_0 - y||_p^{\alpha - n} = ||y||_p^{\alpha - n} \) and \(\Omega(||x_0 - y||_p) = 0 \). Moreover, if \(y \in Z^n_p \) then \(\varphi(y) = 0 \). Therefore, by (4.2) we have that \((J^\alpha \varphi)(x_0) = 0 \).

From all the above we have shown the following theorem.

Theorem 2. The operator

\[
-J^\alpha \varphi(x) = -F_{\xi \to x}^{-1} \left(\left(\max \{1, ||\xi||_p \} \right)^{-\alpha} \varphi(\xi) \right), \quad x \in Q^n_p, \quad \varphi \in D(Q^n_p),
\]

satisfies the positive maximum principle on \(C_0(Q^n_p) \).

Lemma 3. For all \(\lambda > 0 \) we have that \(\text{Ran}(\lambda + J^\alpha) \) is dense in \(C_0(Q^n_p) \).

Proof. Let \(\lambda > 0 \) and \(\varphi \in D(Q^n_p) \). Considering the equation

\[
(\lambda + J^\alpha)u = \varphi,
\]

we have that \(u(\xi) = F_{\xi \to x}^{-1} \left(\frac{\varphi(\xi)}{\lambda + \varphi(\xi)} \right) \) is a solution of the equation \(18 \). Since \(\varphi(\xi) \in D(Q^n_p) \), then by Remark 2 (ii) we have that \(\frac{\varphi(\xi)}{\lambda + \varphi(\xi)} \in D(Q^n_p) \). Therefore, \(u \in D(Q^n_p) \).

Theorem 3. The closure \(\overline{-J^\alpha} \) of the operator \(-J^\alpha \) on \(C_0(Q^n_p) \) is single-valued and generates a strongly continuous, positive, contraction semigroup \(\{T(t)\} \) on \(C_0(Q^n_p) \).

Proof. It follows from Theorem 2, Lemma 3 and 21, Chapter 4, Theorem 2.2], taking into account that \(D(Q^n_p) \) is dense in \(C_0(Q^n_p) \), see e.g. 22, Proposition 1.3).

Remark 4. A function \(f : Q^n_p \to \mathbb{C} \) is called negative definite, if

\[
\sum_{i,j=1}^m \left(f(x_i) + \overline{f(x_j)} - f(x_i - x_j) \right) \lambda_i \lambda_j \geq 0
\]

for all \(m \in \mathbb{N}, x_1, \ldots, x_m \in Q^n_p, \lambda_1, \ldots, \lambda_m \in \mathbb{C} \).

Note that for all \(\xi \in Q^n_p \) we have that \(\hat{K}_\alpha(\xi) = (\max \{1, ||\xi||_p \})^{-\alpha} \leq \hat{K}_\alpha(0) \), so that by 2 Chapter II we have that the function \(\hat{K}_\alpha(\xi) \) no is a function negative definite. Therefore, the operator \(-J^\alpha \) is a pseudo-differential operator that satisfies the positive maximum principle and whose symbol is not a negative definite function.

5. The Pseudo-differential Operator \(-J^\alpha \) on \(L^2(Q^n_p) \)

In this section, consider the operator \(-J^\alpha \) in \(L^2(Q^n_p) \). By 22, Remarks-p. 138, we have that if \(f \in L^2(Q^n_p) \) then \(-J^\alpha f \) is \(L^2(Q^n_p) \) and \(|| -J^\alpha f ||_{L^2(Q^n_p)} \leq ||f||_{L^2(Q^n_p)} \). In this case \(D(-J^\alpha) = L^2(Q^n_p) \). The main objective of this section is to demonstrate that this operator is \(m \)-dissipative, which will be crucial to prove that \(-J^\alpha \) is the infinitesimal generator of a \(C_0 \)-semigroup of contraction \(T(t), t \geq 0 \), on \(L^2(Q^n_p) \). For more details, the reader can consult 4, 17, 18, 21.
Remark 5. The graph $G(-J^\alpha)$ of $-J^\alpha$ is defined by

$$G(-J^\alpha) = \{(u, f) \in L^2(Q^n_p) \times L^2(Q^n_p); \ u \in D(-J^\alpha) \and f = -J^\alpha u\}.$$

Therefore by [1] Remark 2.1.6 we have that $G(-J^\alpha)$ is closed in $L^2(Q^n_p)$.

Definition 3. [17] Definition 1.2] An operator A with domain $D(A)$ in $L^2(Q^n_p)$ is called dissipative if

$$\text{re} \langle Af, f \rangle \leq 0, \ \text{for all} \ f \in D(A),$$

where $L^2(Q^n_p)$ is the Hilbert space with the scalar product

$$\langle f, g \rangle = \int_{Q^n_p} f(x)\overline{g}(x)d^n x, \ f, g \in L^2(Q^n_p).$$

Lemma 4. The operator $-J^\alpha$ is dissipative in $L^2(Q^n_p)$.

Proof. Let fixed $\varphi \in D(Q^n_p)$. Since $D(Q^n_p)$ is dense in $L^2(Q^n_p)$, see [22, Chapter III], and the Parseval-Steklov equality, see [1] Section 5.3, we have that

$$\langle -J^\alpha \varphi, \varphi \rangle = \langle -\mathcal{F}_{\xi \rightarrow x}^{-1} \left[\max \{1, ||\xi||_p\} \right]^{-\alpha} \hat{\varphi}(\xi), \varphi \rangle = \langle -(\max \{1, ||\xi||_p\})^{-\alpha} \hat{\varphi}, \hat{\varphi} \rangle = -\int_{Q^n_p} (\max \{1, ||\xi||_p\})^{-\alpha} |\hat{\varphi}(\xi)|^2 d^n \xi \leq 0.$$

\qed

Remark 6. By [21] Chapter 4-Lemma 2.1, we have that the linear operator $-J^\alpha$ on $C_0(Q^n_p)$ is dissipative, in the sense that for all $f \in C_0(Q^n_p)$ and $\lambda > 0$ we have that $||\lambda f - Af||_{L^\infty(Q^n_p)} \geq \lambda ||f||_{L^\infty(Q^n_p)}$. This definition is valid for any Banach space with its corresponding norm, for more details see [1, 17].

Definition 4. [1] Definition 2.2.2] An operator A in $L^2(Q^n_p)$ is $m-$dissipative if

(i) A is dissipative;

(ii) for all $\lambda > 0$ and all $f \in L^2(Q^n_p)$, there exists $u \in D(A)$ such that $u - \lambda Au = f$.

Lemma 5. The operator $-J^\alpha$ is self-adjoint, i.e.

$$\langle -J^\alpha f, g \rangle = \langle f, -J^\alpha g \rangle, \ \text{for all} \ f, g \in L^2(Q^n_p).$$

Proof. For $f, g \in L^2(Q^n_p)$ and the Parseval-Steklov equality, we have that

$$\langle -J^\alpha f, g \rangle = \langle -\mathcal{F}_{\xi \rightarrow x}^{-1} \left[\max \{1, ||\xi||_p\} \right]^{-\alpha} \hat{f}(\xi), g \rangle = -\int_{Q^n_p} (\max \{1, ||\xi||_p\})^{-\alpha} \hat{f}(\xi)\overline{g}(\xi)d^n \xi$$

$$= -\int_{Q^n_p} \left[\max \{1, ||\xi||_p\} \right]^{-\alpha} \hat{f}(\xi) \left[\int_{Q^n_p} \chi_p(x \cdot \xi)\overline{g}(x)d^n x \right] d^n \xi$$

$$= -\int_{Q^n_p} \hat{f}(\xi) \left[\max \{1, ||\xi||_p\} \right]^{-\alpha} \overline{g}(\xi)d^n \xi$$

$$= \langle f, -\mathcal{F}_{\xi \rightarrow x}^{-1} \left[\max \{1, ||\xi||_p\} \right]^{-\alpha} \hat{g}(\xi) \rangle = \langle f, -J^\alpha g \rangle.$$

\qed
Theorem 4. The operator \(-J^\alpha : L^2(\mathbb{Q}_p^n) \to L^2(\mathbb{Q}_p^n)\) is \(m\)-dissipative.

Proof. The result follow from Remark 5, Lemma 3, and Lemma 5 by well-known results in the theory of dissipative operators, see e.g. [1] Theorem 2.4.5. □

Remark 7. The (infinitesimal) generator of a semigroups \((T(t))_{t \geq 0}\) is the linear operator \(L\) defined by

\[
D(L) = \left\{ f \in L^2(\mathbb{Q}_p^n); \frac{T(t)x - x}{t} \text{ has a limit in } L^2(\mathbb{Q}_p^n) \text{ as } t \to 0^+ \right\} ,
\]

and

\[
Lf = \lim_{t \to 0^+} \frac{T(t)f - f}{t},
\]

for all \(f \in D(L)\).

The linear operator \(-J^\alpha\) is the generator of a contraction semigroups \((T(t))_{t \geq 0}\) in \(L^2(\mathbb{Q}_p^n)\), i.e. the family of semigroups \((T(t))_{t \geq 0}\) satisfies:

(i) \(|T(t)||_{L^2(\mathbb{Q}_p^n)} \leq 1\) for all \(t \geq 0\);
(ii) \(T(0) = I\);
(iii) \(T(t + s) = T(t)T(s)\) for all \(s, t \geq 0\),
(iv) for all \(f \in L^2(\mathbb{Q}_p^n)\), the function \(t \mapsto T(t)f\) belongs to \(C([0, \infty), L^2(\mathbb{Q}_p^n))\).

For more details, the reader can consult [3] Section 3.4.

Remark 8. By [1] Theorem 4.3, [1] Theorem 4.5-(a), [1] Definition 2.1 and Theorem 4, we have that the linear operator \(-J^\alpha\) is the infinitesimal generator of a \(C_0\)-semigroup of contractions \(T(t), t \geq 0\), on \(L^2(\mathbb{Q}_p^n)\).

Let's consider the problem the inhomogeneous initial value problem

\[
\begin{cases}
\frac{\partial u}{\partial t}(x, t) = -J^\alpha u(x, t) + f(t) & t > 0, x \in \mathbb{Q}_p^n \\
u(x, 0) = u_0 \in L^2(\mathbb{Q}_p^n),
\end{cases}
\]

(5.1)

where \(f : [0, T] \to L^2(\mathbb{Q}_p^n), T > 0\).

Then, for \(f \in L^1([0, T) : L^2(\mathbb{Q}_p^n))\) we have that the function

\[
u(t) = T(t)u_0 + \int_0^t T(t - s)f(s)ds, \quad 0 \leq t \leq T,
\]

is the mild solution of the initial value problem (5.1) on \([0, T]\).

References

[1] Albeverio S., Khrennikov A. Yu., Shelkovich V. M., Theory of \(p\)-adic distributions: linear and nonlinear models. London Mathematical Society Lecture Note Series, 370. Cambridge University Press, Cambridge, 2010.
[2] Berg Christian, Forst Gunnar, Potential theory on locally compact abelian groups. Springer-Verlag, New York-Heidelberg, 1975.
[3] Casas-Sánchez O. F., Zúñiga-Galindo W. A., \(p\)-adic elliptic quadratic forms, parabolic-type pseudodifferential equations with variable coefficients and Markov processes, \(p\)-Adic Numbers Ultrametric Anal. Appl. 6 (2014), no. 1, 1–20.
[4] Cazenave Thierry, Haraux Alain, An introduction to semilinear evolution equations. Oxford University Press, 1998.
[5] Chacón-Cortes L. F., Zúñiga-Galindo W. A., Nonlocal operators, parabolic-type equations, and ultrametric random walks. J. Math. Phys. 54, 113503 (2013) & Erratum 55 (2014), no. 10, 109901, 1 pp.
[6] Courrège Ph., Sur la forme intégro-différentielle des opérateurs de C_0^∞ dans C satisfaisant au principe du maximum. Séminaire Brelot-Choquet-Deny. Théorie du potentiel, tome 10, no 1 (1965-1966), exp. no 2, p. 1-38.
[7] Dynkin E. B., Markov processes. Vol. I. Springer-Verlag, 1965.
[8] Gutiérrez García I., Torresblanca-Badillo A., p–adic models of ultrametric diffusion, linear and logarithmic landscapes, first passage time problem and survival probability. arXiv:1812.04965
[9] Gutiérrez García I., Torresblanca-Badillo A., Symbols of non-archimedean elliptic pseudo-differential operators, Feller semigroups, Markov transition function and negative definite functions. arXiv:1812.00041
[10] Hoh W., Pseudo differential operators generating Markov processes, Habilitationsschrift, Universität Bielefeld (1998).
[11] Jacob N., Feller semigroups, Dirichlet forms and pseudo differential operators. Forum Math. 4, 433-446 (1992).
[12] Jacob N., Pseudo differential operators and Markov processes. Vol. I. Fourier analysis and semigroups. Imperial College Press, London, 2001.
[13] Jacob N., Schilling R.L., Lévy-Type Processes and Pseudodifferential Operators, Lévy Processes: Theory and Applications. Birkhäuser, Boston, 139-168 (2001).
[14] Khrennikov A. Y., Kochubei A. N., p–Adic Analogue of the Porous Medium Equation. J Fourier Anal Appl (2018), 24 :1401–1424.
[15] Kochubei A. N., Parabolic equations over the field of p–adic numbers. Izv. Akad. Nauk SSSR Ser. Mat. 55:6 (1991), 1312-1330. In Russian; translated in Math. USSR Izvestiya 39 (1992), 1263-1280. MR 93e:35050.
[16] Kochubei A. N., Pseudo-differential equations and stochastic over non-Archimedean fields, Pure and Applied Mathematics, Marcel Dekker, New York, 2001.
[17] Lunner G. and Phillips R. S., Dissipative operators in a Banach space, Pacific J. Math. 11 (1961), 679–698.
[18] Pazy A., Semigroups of Linear Operator and Applications to Partial Differential Equations, Vol 44, Springer-Verlag, New York, 1983.
[19] Rodríguez-Vega J. J., Zúñiga-Galindo W. A., Taibleson operators, p–adic parabolic equations and ultrametric diffusion, Pacific J. Math. 237 (2), 327–347 (2008).
[20] Schilling R. L., Dirichlet operators and the positive maximum principle, Integr. Equ. Oper. Theory 41 (2001), 74-92.
[21] S. N. Ethier and T. G. Kurtz., Markov Processes - Characterization and convergence, Wiley Series in Probability and Mathematical Statistics (John Wiley & Sons, New York, 1986).
[22] Taibleson M. H., Fourier analysis on local fields. Princeton University Press, 1975.
[23] Torresblanca-Badillo A., Zúñiga-Galindo W. A., Non-Archimedean Pseudodifferential Operators and Feller Semigroups. p-Adic Numbers, Ultrametric Analysis and Applications, Vol. 10, No. 1, pp. 57-73, 2018.
[24] Torresblanca-Badillo A., Zúñiga-Galindo W. A., Ultrametric Diffusion, exponential landscapes, and the first passage time problem, Acta Appl Math (2018), 157-93.
[25] Vladimirov V. S., Volovich I. V., Zelenov E. I., p–adic analysis and mathematical physics. World Scientific, 1994.
[26] Zúñiga-Galindo W. A., Parabolic equations and Markov processes over p–adic fields, Potential Anal. 28 : 2 (2008), 185–200.
[27] Zúñiga-Galindo W. A., Pseudodifferential Equations Over Non-Archimedean Spaces, Lectures Notes in Mathematics 2174, Springer, 2016.
[28] Zúñiga-Galindo W. A., The non-Archimedean stochastic heat equation driven by Gaussian noise, J. Fourier Anal. Appl. 21 (2015), no. 3, 600–627.

E-mail address: isgutier@uninorte.edu.co
E-mail address: atorresblanca@uninorte.edu.co

Universidad del Norte, Departamento de Matemáticas y Estadística, Km. 5 Vía Puerto Colombia. Barranquilla, Colombia.