The relativistic pulsar-white dwarf binary PSR J1738+0333
I. Mass determination and evolutionary history

J. Antoniadis,1 ⋆ M. H. van Kerkwijk,2 D. Koester,3 P. C. C. Freire,1 N. Wex,1 T. M. Tauris,1,4 M. Kramer,1,5 and C. G. Bassa5
1Max-Planck-Institut für Radioastronomie, Auf dem Hügel 69, 53121 Bonn, Germany
2Department of Astronomy and Astrophysics, University of Toronto, 50 St. George Street, Toronto, ON M5S 3H4, Canada
3Institut für Theoretische Physik und Astrophysik, Universität Kiel, Kiel, 24098, Germany
4Argelander Institut für Astronomie, Auf dem Hügel 71, 53121 Bonn, Germany
5Jodrell Bank Centre for Astrophysics, The University of Manchester, Alan Turing Building, Manchester, M13 9PL, UK

Received: – Accepted:

ABSTRACT
PSR J1738+0333 is one of the four millisecond pulsars known to be orbited by a white
dwarf companion bright enough for optical spectroscopy. Of these, it has the shortest
orbital period, making it especially interesting for a range of astrophysical and gravity
related questions. We present a spectroscopic and photometric study of the white dwarf
companion and infer its radial velocity curve, effective temperature, surface gravity
and luminosity. We find that the white dwarf has properties consistent with those
of low-mass white dwarfs with thick hydrogen envelopes, and use the corresponding
mass-radius relation to infer its mass;
\[M_{\text{WD}} = 0.181^{+0.007}_{-0.005} \, M_\odot. \]
Combined with the
mass ratio \(q = 8.1 \pm 0.2 \) inferred from the radial velocities and the precise pulsar
timing ephemeris, the neutron star mass is constrained to \(M_{\text{PSR}} = 1.47^{+0.07}_{-0.06} \, M_\odot. \)
Contrary to expectations, the latter is only slightly above the Chandrasekhar limit.
We find that, even if the birth mass of the neutron star was only \(1.20 \, M_\odot \),
more than 60\% of the matter that left the surface of the white dwarf progenitor escaped the
system. The accurate determination of the component masses transforms this system
in a laboratory for fundamental physics by constraining the orbital decay predicted by
general relativity. Currently, the agreement is within 1σ of the observed decay. Further
radio timing observations will allow precise tests of white dwarf models, assuming the
validity of general relativity.

Key words: binaries: close – pulsars: general – stars: neutron – white dwarfs –
processes: gravitation – individual: PSR J1738+0333

1 INTRODUCTION
Millisecond pulsars (MSPs) are extreme in many ways. Their
interior consists of the densest form of observable matter
known and they can spin at least as fast as 716 times per
second (Hessels et al. 2006). Hence, they offer a rich laboratory
for a wide range of physical inquiry: Mass measurements provide direct comparison to quantum chromodynamics’ predictions for the state of ultra-dense matter (Lattimer & Prakash 2004; Demorest et al. 2010) and studies of their
orbits in binaries have provided the first confirmation for
gravitational wave emission and the most stringent strong-field tests of general relativity (Taylor & Weisberg 1982
Weisberg et al. 2010; Kramer et al. 2006).

Most of the fastest spinning Galactic-disk pulsars are
paired with low mass helium-core WDs (hereafter LMWDs,
for recent reviews see Lorimer 2008; Tauris 2011), and their
fast spins and weak magnetic fields are thought to be the
product of mass transfer from the progenitor of the WD,
a process also known as recycling. As the progenitor star
evolves, it fills its Roche lobe and loses its envelope, either
while on the main sequence (for sufficiently short initial pe-
riods), or when moving up the red-giant track (Webbink
et al. 1983). The mass transfer rate is a strongly increasing
function of the initial orbital period and donor mass
(Tauris & Savonije 1999), and is expected to be at a stable,
sub-Eddington rate (\(\lesssim 10^{-8} \, M_\odot \, \text{yr}^{-1} \)) for light companions
in relatively tight orbits. The final result of such long-term
(nuclear timescale) mass transfer is a highly circular (due

⋆ Member of the International Max Planck Research School (IMPRS) for Astronomy and Astrophysics at the Universities of Bonn and Cologne.
† e-mail: jantoniadis@mpifr-bonn.mpg.de
to fast tidal dissipation in the secondary) close binary consisting of a fast spinning MSP and a low mass, helium-core WD.

These systems are important for several reasons. First, it is these binaries that allow one to probe certain aspects of the radiative properties of gravity that are poorly constrained by the relativistic effects seen in double neutron stars, like the Hulse–Taylor or the double pulsar. For example, in a wide range of theories, the rate of gravitational wave emission is driven by a leading dipolar term that depends crucially on the difference in gravitational binding energies between the binary members. Hence, if accurate component masses can be determined, one can directly confront the predictions of different gravity theories in terms of dipolar radiation with observations.

Second, measuring their masses provides access to the accretion process and evolution of these systems as well as the formation of MSPs, the only neutron stars with secure precise masses significantly above the Chandrasekhar limit (Freire et al. 2011; Demorest et al. 2010). In addition, observational constraints on the upper mass limit of stable neutron stars, constrains the equation of state for super-dense matter.

Unfortunately, precise MSP and companion masses can be determined from timing in exceptional cases only: either when the orbit is (unexpectedly) eccentric, allowing for a measurement of the rate of advance of periastron (Freire et al. 2011), or if the system has an orbit seen edge on (Kaspi et al. 1994; Jacoby et al. 2005; Demorest et al. 2010) which allows for a measurement of pulse time-of-arrival (TOA) delays due to the curvature of space-time around the companion (Shapiro delay, Shapiro 1964).

Fortunately, another method exists that relies on combined optical and radio timing observations (van Kerkwijk et al. 1996; Callanan et al. 1998). If the WD companion is bright enough for detailed spectroscopy, a comparison of its spectrum with model atmospheres yields its effective temperature and surface gravity. These can then be compared with a mass–radius relation for LMWDs to yield its mass. Combining the radial velocity for the white dwarf with the pulsar timing measurements yields the mass ratio and therefore the mass of the pulsar.

In a companion paper (Van Kerkwijk et al. 2011, in prep.; vK+12 hereafter), we test this method on PSR J1909−3744, for which the masses are precisely known from timing. We find it reliable and are confident to apply it also to other similar systems. Here, we report on an application to PSR J1738+0333, a pulsar-LMWD binary in a 8.5 hours orbit. This system is particularly interesting because of its short period, which places it in a poorly studied regime for accretion physics of neutron stars, where nuclear-driven evolution competes with magnetic braking and gravitational radiation (c.f. Phinney & Kulkarni 1991). Furthermore, the short orbital period implies relatively rapid orbital decay, making the system interesting for radiative tests of gravity, for which, as described above, knowledge of the component masses is necessary.

The paper is organized as follows: In §2 we report results from radio timing, necessary for calculations throughout the rest of the paper. These are presented in detail separately (Freire et al. 2012; Jacoby 2005) from now on Paper II). In §3 we describe the spectroscopic and photometric observations and in §4 we present our results. We discuss our findings and comment on the evolution of the system and its importance for gravity tests in §5. Finally, in §6 we summarize our results.

2 PSR J1738+0333: RADIO OBSERVATIONS

PSR J1738+0333 was discovered in a 20-cm high Galactic latitude survey in 2001 (Jacoby 2005), carried out with the multi-beam receiver of the Parkes Telescope. The pulsar has a spin period of 5.85 ms and orbits a low-mass helium-core WD companion in a 8.5 h orbit. Since 2003 it has been regularly timed with the 305 m Arecibo Telescope, leading to ~17000 times of arrival with typically 3 µs uncertainties. The corresponding timing solution provides measurements of the system’s parallax and proper motion, and a significant detection of the intrinsic orbital period derivative (see Paper II for details). In Table I we list the measured spin, Keplerian and astrometric parameters of the system.

The spin period derivative is that of a typical low-surface magnetic field pulsar ($B_0 = 3.7 \times 10^8$ G), and the characteristic age ($\equiv P/2P$) after subtracting the kinematic effects (Paper II) is 4.1 Gyr. The parallax measurement corresponds to a distance of $d = 1.47 \pm 0.10$ kpc. The system’s proper motion combined with the parallax implies transverse velocities of $v_\alpha = d\mu_\alpha = 49$ km s$^{-1}$ and $v_\delta = d\mu_\delta = 36$ km s$^{-1}$ in α and δ respectively. In §2 we combine these values with the systemic radial velocity, γ, to derive the 3D spatial velocity and calculate the Galactic orbit of the binary. The estimate for the orbital eccentricity is one of the lowest observed in any binary system: When Shapiro delay is accounted for in the solution (Paper II), the apparent eccentricity diminishes to $e = (3.5 \pm 1.1) \times 10^{-7}$. We discuss the implication of this for evolutionary scenarios in §6.

3 OPTICAL OBSERVATIONS

3.1 Spectroscopy

Our main data set consists of eighteen long-slit phase resolved spectra of PSR J1738+0333, obtained with the Gemini South telescope at Cerro Pachón on ten different nights between April and June 2006 (see Table I). For our observations we used the Gemini Multi-Object Spectrograph (GMOS-S). The GMOS detector consists of three 2048 × 4608 EEV CCDs, each of which was read-out at 2 × 2 binning by a different amplifier, giving a scale of 0.14 per binned pixel in the spatial direction, and, with the 1200 lines per mm B1200 grism, 0.4 Å per binned pixel in the dispersion direction. We chose a relatively wide, 1"5 slits, to minimize atmospheric dispersion losses (see below). This meant that the resolution was set by the seeing, at ~3 Å, or ~200 km s$^{-1}$ at 4300 Å. In order to cover the higher Balmer lines, we centred the grating at 4300 Å, for a wavelength coverage from 3500 to 5100 Å.

All exposures had integration times of 3720 s and were followed by an internal flat-field exposure and a Copper-Argon (CuAr) exposure for wavelength calibration. The slit was oriented to include a bright comparison star located 25′′ at position angle 127°57′ (north through east) of the
Table 1. Log of observations and radial velocity measurements.

Date	MJD$_{\text{mid, bar}}$	ϕ	v_R	v_{WD}	Δv	$\Delta B'$
	(1)	(2)	(km s$^{-1}$)	(km s$^{-1}$)	(km s$^{-1}$)	(km s$^{-1}$)
Gemini, GMOS-S						
2006 Apr 27	53852.310219	0.0250	+56.3 ± 0.8	−209 ± 27	−265 ± 27	2.91 ± 0.06
2006 Apr 28	53852.366314	0.1831	+49.1 ± 0.8	−143 ± 26	−192 ± 26	2.88 ± 0.06
2006 May 07	53862.333037	0.2749	+40.1 ± 0.5	−35 ± 13	−75 ± 13	2.83 ± 0.03
2006 May 26	53881.198674	0.4409	+84.9 ± 0.6	+162 ± 21	+77 ± 21	2.87 ± 0.04
2006 May 27	53881.252933	0.6018	+67.0 ± 0.9	+33 ± 32	−34 ± 32	2.97 ± 0.09
2006 May 28	53883.352291	0.7005	+43.1 ± 0.5	−6 ± 15	−49 ± 15	2.85 ± 0.04
2006 Jun 19	53905.174549	0.6264	+41.5 ± 0.5	−226 ± 12	+80 ± 12	2.85 ± 0.04
2006 Jun 23	53909.170100	0.2881	+39.9 ± 0.7	−5 ± 14	−45 ± 14	2.88 ± 0.03
2006 Jun 26	53912.156147	0.7045	+60.4 ± 0.5	−7 ± 14	−67 ± 14	2.85 ± 0.04
2006 Jun 27	53912.290838	0.8558	+60.7 ± 0.6	−136 ± 15	−197 ± 15	2.88 ± 0.04
2008 Aug 04	54682.377697	0.6224	+43.6 ± 0.5	+106 ± 13	+62 ± 13	2.82 ± 0.04

Notes: (1) refers to the barycentric mid-exposure time. (2) is the orbital phase using the ephemeris in Table 2. (3) is the comparison’s velocity in respect to the solar system barycenter and (4) the raw barycentric velocities of PSR J1738+0333. (5) is the differential velocity used to determine the orbit in [1]. Finally, (6) are the differential spectrophotometric magnitudes in B' (equal to B, but limited to the wavelength range covered by our spectra; see [3]). Here, the errors are the quadratic sum of the photometric uncertainties of the WD and the comparison. For LRIS, two velocities are listed for the comparison star, for the blue and red arm, respectively. For the white dwarf, the velocity is for the blue arm (see text).

WD (see Fig. [1]). We use this star as a local velocity and flux standard (since GMOS-S does not have an atmospheric dispersion corrector, slit losses vary with offset from the parallactic angle).

The conditions during the observations were mostly good to photometric, but some exposures were taken through thin cirrus. The seeing ranged from 0".6 to 1".2. For flux calibration, we acquired additional frames of the comparison star and the spectro-photometric standard EG 274 through a 5" slit on the night of 2006 April 27 (which was photometric and had 0".8 seeing). Furthermore, for absolute velocity calibration, we observed the radial velocity standard WD 1743–132 on 2006 June 19.

The data were reduced using standard and custom routines inside the Munich Image and Data Analysis System (MIDAS). First, the bias level of each exposure was removed using average values from the overscan region. Subsequently, we corrected the raw counts on the red and middle chips for the small, few percent variations in gain (see vK+12 for details on the method), that affected several sets of exposures (but fortunately not those of the night the flux calibrator was taken). Finally, the frames were corrected for small-scale sensitivity variations using normalised lamp exposures, where the normalisation was done both along each wavelength position as well as along each spatial position. These normalisation steps were required since the lamp spectra showed rather sharp bumps in the dispersion direction whose position and shape was different from bumps seen in target spectra, and also varied between sets of spectra (possibly because the holographic grating was not illuminated exactly identically between the different exposures), while in the spatial direction they showed striations due to irregularities in the slit.

For sky subtraction, we selected a 100" region centred on the WD, but excluding 5" spots around it and the comparison star. Each column in the spatial direction was fitted with a second degree polynomial and the interpolated sky contributions at the positions of the WD and the comparison were removed.

Optimally weighted spectra and their uncertainties were extracted using a method similar to that of Horne (1986). The extraction was done separately in each chip and the spectra were merged after flux calibration.

The dispersion solution was established using the CuAr lamp images and their uncertainties were optimally weighted using the CuAr lines. We used the relation with the CuAr images and their uncertainty using the CuAr lines. We used the relation with the CuAr images and their uncertainty using the CuAr lines for both sets of spectra.

The wide-slit spectra of EG 274 and the comparison star were extracted with the same procedure and used to calibrate the narrow-slit exposures. Initially, all wide and narrow slit data were corrected for atmospheric extinction using the average extinction table for La Silla (which should be a good approximation to that of Cerro Pachón). Then, we calculated the wavelength-dependent flux losses due to...
the finite size of the slit by comparing the wide-slit spectrum of the comparison with each of the narrow-slit spectra. The relation was analytically approximated with a quadratic function of wavelength that was then applied to the narrow slit observations. Finally, the GMOS instrumental response was calculated by dividing the spectrum of EG 274 with a synthetic template and smoothly interpolating the ratio. The template was created by normalizing an appropriate DA model atmosphere to the catalogued flux \(V = 11.03, \) \(B = 8.73(7) \) [see \(§4.5 \) for more details on the model atmospheres used in this work]. Prior to comparison, we smoothed the template with a Gaussian kernel to match the resolution of the observed spectrum and excluded the cores of the Balmer lines.

Given the possible issues with the detector gain and the flat fielding, both of which could affect the flux calibration, we obtained an additional smaller set of spectra of the WD companion, the comparison star and the spectro-photometric standard Feige110 using the two-armed Low Resolution Imaging Spectrometer (LRIS) [Oke et al. 1995] of the Keck telescope on the night of 2008 August 3 (Table 1). During the night the sky was photometric and the seeing as determined from the images was \(\sim 0.7 \). Two 300 s images each in \(V \) and \(B \) were obtained. Of these, however, the first had reduced count rates for all stars and a distorted point-spread function, possibly because the telescope and instrument had not yet settled when the exposure was started; we have not used that image. For calibration, sets of 30 s \(B \) and \(V \) images of the photometric standard field PG1633+099 were acquired both before and after the science frames.

Following standard prescriptions, individual frames were bias-corrected and flat-fielded using twilight flats. Hot pixels and cosmic rays were replaced by a median over their neighbours. The instrumental fluxes were measured inside \(3\, \text{s} \) radii and then corrected to a radius of \(7'' \) using measurements of bright isolated stars. For the calibration, we used 5 standard stars with a range of \(B - V \) colors in the PG1633+099 field [Stetson 1990]. Measured magnitudes were compared to their catalogued counterparts to derive zero-points and colour terms. Both calibration sets yielded similar results. Small differences in airmass were corrected using standard values for La Silla. The root-mean-square residuals of the zero points in both bands were \(\sim 0.01 \) mag.

For the observations we used the atmospheric dispersion corrector and both narrow, \(0.7 \), and wide, \(8.7 \), slits. The light was split with a dichroic at 6800 Å and directed on the two arms of LRIS (blue and red arm hereafter). On the blue arm we used a 600 lines mm\(^{-1}\) grism, blazed at 4000 Å, that covers 3100–5600 Å with a resolution of \(\Delta \lambda = 3.2 \) Å or \(\Delta v = 220 \) km s\(^{-1}\). On the red arm we used the 1200 lines mm\(^{-1}\) grating, blazed at 8000 Å, that covers 7600–8900 Å at \(\Delta \lambda = 2.1 \) Å or \(\Delta v = 75 \) km s\(^{-1}\). The blue-side detector is a mosaic of two Marconi CCDs with 4096 × 4096 pixels 15 \(\mu \)m on the side, which we read-out unbinned.

The spectra were extracted and calibrated as above. Here, on the blue arm we replaced the poorly exposed part of the flat fields shortward of 4000 Å with unity and normalized the rest using a third degree polynomial. On the red side we normalized the flat field using a bi-linear fit. Wavelength calibration was done using arc spectra and sky lines. On the blue arm we used the well exposed arc frames taken at the beginning of the night to establish an overall solution that had rms residuals of 0.16 Å for 22 lines fitted with a third-degree polynomial and then calculated offsets using the less well-exposed arc frames taken throughout the night. For the red arm we used the well exposed arc-frames taken interspersed with the science exposures. Here, we corrected for offsets by shifting the bright OH and O\(^{2} \) lines at 8344.602, 8430.174 and 8827.096 Å to laboratory values. Flux calibration was again done as above; we found that the solution was consistent with that obtained from Gemini (see also below).
we inferred transit images, by calibrating relative to our velocity standard, WD 1743–132, which has $V = 14.290$, $B - V = 0.300$ (Mermilliod et al. 1990), and thus, using the relations of Fukugita et al. (1996), $g' = V + 0.56(B - V) - 0.12 = 14.34$. We find $g' = 18.23$ for the comparison star and, using the average magnitude difference $\Delta g' = 3.091(17)$ between the WD and the comparison, we infer $g' = 21.32$ for the WD (here, the uncertainty will be dominated by systematics, but should be $\lesssim 0.05$ mag). These numbers are consistent with the $g' = 18.39(7)$ and 21.42(7) expected from our SOAR photometry.

Looking at individual acquisition frames, the scatter of the magnitude difference was ~ 0.05 mag, somewhat larger than expected based on measurement noise, though with no obvious correlation with orbital phase. We find somewhat smaller scatter from convolving individual flux calibrated WD and comparison spectra with the Bessell B-band, and using those to determine differences (see Table 1). Ignoring the two points from our worst night (2006 May 26), the root-mean-square scatter is 0.032mag. Since no obvious phase dependence is found, this places a limit on the irradiation of the WD atmosphere from the pulsar. However, the limit is too weak to be useful: Assuming a spin-down luminosity of $L_{\text{spin}} = dE/dt = -4\pi^2I\dot{P}/P^3 \sim 4.8 \times 10^{33}$ ergs s$^{-1}$ and defining an irradiation temperature $T_{\text{irr}} = (L_{\text{spin}}/4\pi a^2)^{1/4} \sim 3800$ K (where from Table 2 we inferred $a \approx 1.8 \times 10^{11}$ cm), the expected orbital modulation is only $\Delta L/L \approx \left(\frac{\mathcal{R}_{\text{WD}}}{4\pi a^2}\right)/L_{\text{WD}} \sin i \approx \left[\frac{T_{\text{irr}}}{4T_{\text{WD}}\sin i}\right] \lesssim 4 \times 10^{-3}$.

4 RESULTS

4.1 Radial velocities

Radial velocities of the WD, the comparison and the velocity standard were extracted by fitting their spectra with templates using the method discussed in Bassa et al. (2006). For the comparison, we first classified it using the on-line atlas by R. O. Gray. We find that its spectrum resembles that of a G0V star, with an uncertainty of about 1 subtype. Comparing with various spectra from the UVESPOP library of high resolution spectra (Bagnulo et al. 2003), we find the best fit for the G1V star HD 20807 (where, to match the resolution of the observations, we convolve the UVESPOP spectra with a Gaussian with FWHM equal to that of the seeing, truncated at the slit width). We fitted this template to each spectrum for a range of velocities, from -600 to 600 km s$^{-1}$ with a step size of 5 km s$^{-1}$. We corrected for the 11.5 km s$^{-1}$ barycentric velocity of HD 20807 after the fact.

Similarly, the WD spectra were compared to an appropriate DA model atmosphere. The latter was determined iteratively, where we first fitted a high S/N single spectrum with a grid of model atmospheres created by one of us (D. Koester, see next section), then used the best fit solution to shift the spectra and average them at zero velocity, and finally fitted the average again to determine the best template. For WD 1743–132 we fitted the single spectrum with the grid and determined all parameters simultaneously.

For all above fits, we multiplied the templates with a 3rd degree polynomial to account for the normalization and possible variations with wavelength (see §4.5 for details). Our best fits gave typical reduced χ^2 values of $\chi^2_{\text{red,min}} \sim 1.2$, 2.2 and 1.6 for the WD, the comparison star, and the velocity standard, respectively. Best-fit velocities were determined by fitting a parabola to the χ^2 values to within 60 km s$^{-1}$ of minimum, with uncertainties taken to be the difference in velocity over which χ^2 increased by $\chi^2_{\text{red,min}}$ (thus effectively increasing our uncertainties to account for the fact that $\chi^2_{\text{red,min}}$ did not equal unity).

For the Keck spectra, we proceeded similarly. Here on the red side, we could not use the UVES spectrum due to a gap over the Ca II triplet, and hence we used instead a $T_{\text{eff}} = 6000$ K, $\log g = 4.5$ dex model by Zwitter et al. (2004). As we trust the absolute wavelength calibration of this observation most (being calibrated relative to telluric emission lines), we use this estimate of the velocity below to transform all velocities to the barycentric reference frame.

4.2 Radial-velocity orbit and mass ratio

In Table 1 we list the measured radial velocities for all targets, with barycentric corrections applied. For determining the orbit, we folded the barycentric velocities using the ephemeris in Table 2, and fitted for a circular orbit keeping the orbital period and time of accenting node passage fixed to the timing values. The fit gave a radial velocity semi-amplitude of $K_{\text{obs}} = 165 \pm 7$ km s$^{-1}$ and a systemic radial velocity of $\gamma = -50 \pm 4$ km s$^{-1}$ with $\chi^2_{\text{red}} = 1.55$ for 16 degrees of freedom.

The radial velocity of the comparison star in the Gemini dataset varied as much as 55 km s$^{-1}$ which is considerably higher than the uncertainties of individual points. We found no evidence for binarity and thus we attribute the large scatter to systematics, likely induced by slit positioning errors and differential atmospheric diffraction. For that reason, we chose to use velocities relative to the comparison star, Δv. This choice relies on the assumption that both the WD and the comparison star are affected by the same systematics. This should be correct to first order, but given the relatively large separation of the two stars on the slit, their different distances from the centre of rotation of the instrument, and their different colours, small second-order differences may remain. Even if any are present however, they should not be correlated with orbital phase (since our measurements are taken on many different nights), and thus be taken into account automatically by our rescaling of the measurement errors such that reduced χ^2 equals unity.

After subtracting the velocity of the comparison star, we obtain $K_{\text{obs}} = 166 \pm 6$ km s$^{-1}$, $\Delta \gamma = -101 \pm 4$ km s$^{-1}$ with
Radial velocity measurements of the companion to PSR J1738+0333 as a function of the orbital phase. Filled black circles depict the points used to fit the orbit and the blue line the best-fit solution. Red crosses indicate two outliers that we excluded and the black line the best-fit solution with these points included. The latter agrees well and is almost indistinguishable. The blue triangle shows the Keck point. The green line depicts the velocity of the pulsar as inferred from radio timing. All velocities are relative to the comparison star, but corrected for its estimated velocity of the pulsar as inferred from radio timing. As mentioned above, we believe the wavelength calibration is most reliable for the Keck spectrum, so we adopt this velocity. For PSR J1738+0333, correcting for the gravitational red-shift of the white dwarf of \(3 \text{km s}^{-1}\) (using the mass and radius derived in §6), we infer a systemic velocity of \(\gamma = -42 \pm 16 \text{km s}^{-1}\).

\[\chi^2_{\text{red}} = 1.07. \] This orbit is shown in Fig. 2. This fit has two outliers, which both are from spectra taken in the night with the worst condition (they are also outliers in the relative flux between the WD and the comparison star; see Table 1). Excluding these, we find \(K_{\text{obs}} = 167 \pm 5 \text{km s}^{-1}\) and \(\Delta \gamma = -103 \pm 3 \text{km s}^{-1}\) with \(\chi^2_{\text{red}} = 0.93\) for 14 degrees of freedom. We will use these latter values as our best estimates, but note that all fits gave consistent results, so our inferences do not depend on this choice.

Because the exposure time is a significant fraction of the orbit \(t_{\text{exp}} \approx 0.12 P_{b}\), the observed semi-amplitude is affected by velocity smearing. This reduces the measured amplitude by a factor \(\sin(\pi t_{\text{exp}}/P_{b})/\pi t_{\text{exp}}/P_{b} = 0.976\). Thus, the true radial-velocity amplitude is \(K_{\text{WD}} = 171 \pm 5 \text{km s}^{-1}\).

Likewise, the semi-amplitude of the pulsar’s projected radial velocity is \(K_{\text{PSR}} = 2\pi cx/P_{b} = 21.103059(2) \text{km s}^{-1}\), where \(x\) is the projected semi-major axis of the pulsar orbit. Based on the two values calculated above we derive a mass ratio of \(q = K_{\text{WD}}/K_{\text{PSR}} = 8.1 \pm 0.2\).

4.3 Systemic velocity

The systemic velocity \(\Delta \gamma\) derived above is relative to the comparison star. Thus, for an absolute value one needs to obtain an estimate of the true velocity of the latter. From the Gemini spectra we derived an average value of \(64 \pm 5 \text{km s}^{-1}\). As discussed above, the individual velocities have a large scatter and one may thus worry about systematics. It seems, that these are of the order of \(15 - 20 \text{km s}^{-1}\). First, for the velocity standard WD 1743–132 we find a velocity of \(-58.6 \pm 1 \text{km s}^{-1}\), which is offset by \(14.2 \text{km s}^{-1}\) from the catalogue value of \(-72.8 \text{km s}^{-1}\) (Red 1996). Second, for the comparison star, our Keck spectrum yields \(61 \pm 5 \text{km s}^{-1}\). As mentioned above, we believe the wavelength calibration is most reliable for the Keck spectrum, so we adopt this velocity.

4.4 Interstellar reddening

We calculated the run of reddening along the line of sight using the Galactic extinction model of Drimmel et al. (2003). We find that the interstellar extinction increases smoothly to reach a maximum value of \(A_V = 0.56\) at 1.3 kpc and remains constant thereafter. This is similar to the maximum value along this line of sight of \(A_V = 0.65\) inferred from the maps of Schlegel et al. (1998). Therefore, for both PSR J1738+0333 and the comparison value we adopt \(A_V = 0.56 \pm 0.09\), with the uncertainty taken to be the difference between the two models.

We can now use these results to estimate the distance of the comparison star: Adopting \(M_V = 4.3\) and \((B-V)_0 = 0.57\) for a G0V star (Cox 2000) and \(A_B = 1.321 A_V\) (Schlegel et al. 1998) we obtain a distance of \(\sim 4.3\) kpc for both bands. As a sanity check for the systemic velocity derived above, we can calculate the expected velocity of the comparison star for the photometric parallax: Assuming the Galactic potential of Kenyon et al. (2008), a distance to the Galactic center of 8.0 kpc and a peculiar velocity of the Sun relative to the local standard of rest of \((U, V, W) = (10.00, 5.25, 7.17) \text{km s}^{-1}\) (Cox 2000), we find that the local standard of rest at the position of the comparison star moves with a speed of \(\sim 60 \text{km s}^{-1}\). Given the uncertainties of the model and our measurements and the possibility of peculiar motion, the latter agrees well with our estimated value.

4.5 Temperature and surface gravity of the WD

The zero-velocity average spectrum (Fig. 3) shows deep Balmer lines up to H12, typical for a WD with a hydrogen atmosphere and low surface gravity.

Quantitative estimates for the atmospheric parameters were obtained by modelling the spectrum with a grid of DA model atmospheres extending from 7000 K to 25000 K and \(\log g = 6.00\) to \(\log g = 8.00\) with step-sizes of 100 K and 0.1 dex respectively. The models used in this work are a recent update of the grid presented in Koester (2008) which incorporates the improved treatment of pressure broadening of the absorption lines by Tremblay & Bergeron (2009).

At each point of the grid that we scanned, we fitted for the normalization with a polynomial function of the wavelength. This was found necessary in order to account for the (up to) \(\sim 10\%\), slowly varying continuum deviations, caused by in-perfect flux calibration. Assuming our flux calibration is perfect (namely, using a normalization factor that does not vary with wavelength) resulted in a poor fit with large scale
structure in the residuals and lines systematically deeper than the best-fit model (best-fit values: $T_{\text{eff}} = 9010 \pm 50$ K, $\log g = 6.81 \pm 0.12$ dex with $\chi^2_{\text{red}} \sim 9$). Similarly underestimated lines were obtained using a fitting routine normally used by one of us (D. Koester) that assumes a fixed slope for the continuum over the length of each line. The former comparison revealed that there was also a smaller spectral range between 4400–4780 Å with features similar with the ones seen in the flat fields (see §3), likely associated with the holographic grating (we were alerted to this effect because it was much more obvious for the companion of PSR J1909–3744; vK+12). Fortunately, no Balmer lines are present in this region, and hence we simply modelled the spectrum excluding this range (specifically, we fitted the ranges 3700–4400, and 4780–4960 Å). Like for our radial-velocity fits, we accounted for the spectral resolution by convolving the models with a truncated Gaussian.

Using the choices described above we obtain $T_{\text{eff}} = 9129 \pm 20$ K (implying a spectral type DA5.5) and $\log g = 6.55 \pm 0.07$ dex with $\chi^2_{\text{red,min}} \simeq 1.5$ (for ~ 800 points and 6 parameters). Here, the best-fit values and statistical uncertainties were determined by fitting the χ^2 surface with a paraboloid as in Bassa et al. (2006). We verified these estimates using a Monte-Carlo simulation with 10^6 iterations (see Fig. 4). The results are almost identical, with the simulation giving slightly larger uncertainties. However, as we will see below, the systematic uncertainties are larger.

The best-fit model is shown in Fig. 3. Most lines are matched almost perfectly, but H11 and H12 are slightly underestimated. We do not know the reason for this. As the continuum matches very well, it cannot be due to errors in the flux calibration (which would be multiplicative), while most other observational issues (scattered light, etc.) would lead to lines that have reduced rather than increased depth.

Given the above discrepancies, as well as previous experience with fitting model atmospheres, it is likely our uncertainties are dominated by systematics rather than measurement errors. We investigated this in three ways. First, we tried small changes in the assumed spectral resolution (by 5 %) and varied the different polynomial degrees for the continuum (2nd to 4th order). The former had only very small effect (~ 20 K changes in T and ~ 0.03 dex changes in $\log g$), while changing the degree of the polynomial caused larger differences: 0.1 dex (1.5σ) for the surface gravity and up to 150 K (7σ) for the temperature. Our central values are based on a 3rd degree polynomial, since it gave the best fit for the higher lines.

As a second check, we obtained an independent measure of the atmospheric parameters using the Keck spectrum. Again using a third-degree polynomial for the continuum, and fitting the same wavelength regions, we find $T_{\text{eff}} = 9281 \pm 110$ K and $\log g = 6.57 \pm 0.13$ dex. Here, switching between polynomials for the continuum normalization had a slightly smaller impact on the estimated values (~ 100 K in T and ~ 0.1 in $\log g$). While the surface gravity agrees almost perfectly with the Gemini value, the effective temperature is somewhat higher, suggesting, again, that temperature is more sensitive to our modelling assumptions.

Finally, we fitted the individual spectra with the model.
atmospheres and obtained a mean temperature of $< T > = 9153 \pm 38$ K with an rms scatter of 155 K.

From the above, it is clear the formal uncertainty on especially the temperature is too small, and we adopt as realistic estimates $T_{\text{eff}} = 9130 \pm 150$ K and $\log g = 6.55 \pm 0.10$ dex. Fortunately, the effect of the larger temperature uncertainty on the derived masses is small (see §4.4), because the mass-radius relation is much more sensitive to surface gravity than to temperature. For our mass calculation below, we thus choose to inflate the original χ^2 map to include the systematics mentioned above but preserve information about the covariance between parameters.

Finally we searched the average spectrum for signatures of rotational broadening. For that we proceeded in two ways: First, we broadened a 9000 K, $\log g = 6.5$ model atmosphere using the analytical profile of Gray (2005) with a limb darkening coefficient of 0.3 and scanned a grid of rotational velocities $0 \leq v_\lambda \sin \iota \leq 1500 \text{ km s}^{-1}$ in steps of 50 km s$^{-1}$. Second, we let all parameters free. In both cases we accounted for the spectral resolution of the instrument as above. We find the rotational broadening consistent with zero with the 1σ upper limit being 440 and 510 km s$^{-1}$ respectively.

4.6 White dwarf radius from photometry

We can use the best-fit atmosphere model, the observed fluxes, and the distance to obtain an estimate of the WD radius. In terms of magnitudes,

$$m_\lambda - 5 \log(d/10 \text{ pc}) - A_\lambda = 43.234 - 5 \log(R/R_\odot) - 2.5 \log F_\lambda + c_\lambda$$

(1)

where m_λ is the apparent magnitude in band λ, the numerical term is $-5 \log(R/R_\odot/10 \text{ pc})$, F_λ is the emitted flux per unit surface area integrated over the relevant filter, and c_λ the zero-point. Convolving the best-fit model with the B and V band passes of Bessel (1990) yields $F_B = 6.289 \times 10^7 \text{ erg cm}^{-2} \text{s}^{-1} \AA^{-1}$ and $F_V = 4.353 \times 10^7 \text{ erg cm}^{-2} \text{s}^{-1} \AA^{-1}$. Here the uncertainty due to the fit is $\sim 5\%$ (mostly due to the $\sim 1.5\%$ uncertainty in temperature). Using the zero-points of Bessel (1990), $c_B = -20.498$ and $c_V = -21.100$, and the reddening inferred in §4.4 we obtain radii $R = 0.042 \pm 0.004 R_\odot$ and $R = 0.042 \pm 0.004 R_\odot$ for B and V, respectively (with the uncertainty dominated by the uncertainty in the parallax).

4.7 Masses of the white dwarf and the pulsar

The mass of the WD can be estimated using a mass-radius relation appropriate for low mass helium white dwarfs. We use the finite-temperature relation for low mass helium white dwarfs from Panei et al. (2000), which gave good agreement for the companion of PSR J1909–3744 (vK+12).

For the calculation we proceeded as follows: We sampled the inflated χ^2 surface derived in [4,3] in a Monte-Carlo simulation using 10^6 points uniformly distributed in the $T_{\text{eff}} - \log g$ plane. For each point within the expectations, we
linearly interpolated the 8000 and 12000 K models of Panei et al. (2000) for WDs with extended hydrogen envelopes to the given temperature and calculated the mass and radius at the cross-section of the observed value (which scales as \(g = GM/R^2 \)) and the model. Subsequently, we calculated the mass of the pulsar, assuming a normal distribution for the mass ratio with \(q = 8.1 \pm 0.2 \) (see Table 2). Furthermore, we calculated the inclination using the mass function \(f_M \) of the binary \((\sin^2 i = f_M(M_{WD} + M_{PSR})^2/M_{WD}^2) \).

We show the mass distribution in Fig. 4. Since the mass-radius relation is steeper towards higher masses, the companion’s mass distribution is asymmetric, with larger wings towards higher masses. The same holds for the distribution for the radius, with larger wings towards smaller radii. The error on the pulsar mass is dominated by the uncertainties in the companion’s mass estimate. To summarize, the values that we will be using for the rest of this paper are:

- \(M_{WD} = 0.181^{+0.007,+0.017}_{-0.005,-0.017} \, M_\odot \), \(M_{PSR} = 1.47^{+0.07,+0.14}_{-0.06,-0.08} \, M_\odot \), \(R_{WD} = 0.037^{+0.004,+0.007}_{-0.003,-0.007} \, R_\odot \) and \(i = 32.6^{+1.0,+2.1}_{-1.0,-2.1} \). Here, the errors separated by commas are the corresponding 68% and 95% intervals spanned by the Monte-Carlo realizations.

Finally, we also derived mass estimates using two different sets of tracks, that gave reliable results for PSR J1909−3744 (vK+12): The tracks of Serenelli et al. (2001) yielded \(M_{WD} = 0.183^{+0.007,+0.011}_{-0.004,-0.007} \, M_\odot \) and \(R_{WD} = 0.037^{+0.005,+0.007}_{-0.004,-0.007} \, R_\odot \), almost identical to the above. The tracks of Panei et al. (2007) yielded slightly different values: \(M_{WD} = 0.179_{-0.005,-0.007}^{+0.005,+0.029} \, M_\odot \) and \(R_{WD} = 0.038_{-0.003,-0.004}^{+0.005,+0.016} \, R_\odot \). However, we note that these models predict a cooling age much smaller than the characteristic age of the pulsar (see next section).

4.8 Cooling age

We compared the absolute photometric magnitudes in \(B \) and \(V \) with the theoretical cooling tracks of Serenelli et al. (2001) for solar metallicity progenitors to infer the cooling age of the WD. We did this by minimizing a \(\chi^2 \) merit function based on the sum of differences between observed and model fluxes in both bands. The track of Serenelli et al. (2001) closest in mass to the companion of PSR J1738+0333 is that of a 0.169 \(M_\odot \), for which we find \(\tau_c \approx 4.2 \) Gyr. For that age and mass, the predicted temperature and surface gravity are \(T_{eff} \approx 8500 \) K and \(\log g \approx 6.35 \) dex. For our best-fit spectroscopic estimates the same track yields \(\tau_c \approx 2.6 \) Gyr. Since the observed mass is slightly heavier, its cooling age must be somewhat lower. Using the 0.193 \(M_\odot \) track, we get \(\tau_c \approx 600 \) Myrs. The large difference is due to the dichotomy around 0.2 \(M_\odot \) expected between WDs with thick and thin hydrogen atmospheres. Using the tracks of Panei et al. (2007), for the mass of 0.175 \(M_\odot \) inferred using those, we again find short ages, \(\tau_c \approx 500 \) Myrs from the photometry and \(\tau_c \approx 450 \) Myrs for the spectroscopic parameters.

Finally, the suggested relatively large age of the system (4 Gyr plus 2–10 Gyr for the progenitor to have evolved) motivated us to compare our observations with models for lower metallicity progenitors. Using the 0.183 \(M_\odot \), \(Z = 0.001 \) track of Serenelli et al. (2002) we obtain \(\tau_c \approx 5 \) Gyr.

The above analysis demonstrates that with the current set of observations it is difficult to constrain the cooling age of the WD, since this depends on both the thickness of the WD envelope and the metallicity of its progenitor. Future, more precise constraints on the parallax and consequently on the radius, might help to discriminate between different cases.

4.9 3D velocity and Galactic motion

In 3D we computed the two components of the transverse velocity based on the parallax and proper motion estimates from radio timing measurements of the pulsar. Combined with the systemic radial velocity \(\gamma = -42 \pm 16 \) km s\(^{-1}\) from the optical observations of the white dwarf (Table 3), we have the full 3D velocity and can compute the Galactic path back in time (like was done for PSR J1012+5307 by Lazaridis et al. 2009). For our calculations we have used the Galactic potential of Kenyon et al. (2008), verifying our results with those of Kuijken & Gilmore (1989) and Paczynski (1990). We infer that the PSR J1738+0333 system has an eccentric orbit with a Galacto-centric distance between 6 and 11 kpc, and an oscillating \(Z \)-motion with an amplitude of 1 kpc and a (averaged) period of 125 Myr. We also calculated the peculiar velocity of the system with respect to the local standard of rest at every transition of the Galactic plane \((Z = 0) \) during the last 4 Gyr, and find that it ranges between 70 and 160 km s\(^{-1}\). We will discuss this further in 5.1.

5 RAMIFICATIONS

In Table 2 we list the properties of the system derived in previous sections and in Fig. 5 we show our constraints on the masses. In what follows we discuss the ramifications of our work for stellar and binary astrophysics.

5.1 Kinematics

PSR J1738+0333 has a velocity of 85 ± 17 km s\(^{-1}\) with respect to the local standard of rest that co-rotates with the Galaxy \((Z = 0) \) at the distance of the pulsar. The latter compares well with the mean transverse velocity for the bulk of MSPs with measured proper motions (e.g. \(\sim 85 \) km s\(^{-1}\) according to Hobbs et al. 2005). Our semi-quantitative analysis in 4.8 shows that the system’s velocity varies as much as 150 km s\(^{-1}\) over the course of its Galactic orbit. Based on the simplified potential of Kenyon et al. (2008) used herein, PSR J1738+0333 has a peculiar velocity between 70 km s\(^{-1}\) and 160 km s\(^{-1}\) when it crosses the Galactic plane \((Z = 0) \). Thus, assuming that the system had a small peculiar motion before the SN explosion, the systemic velocity after the formation of the NS must have been in that range. This is consistent with a SN explosion with a small, or even negligible kick (Tauris & Bailes 1996, Nice & Taylor 1995).

5.2 Evolutionary history

Millisecond pulsars with low-mass helium WD companions are expected to form through mainly two different channels depending on the initial separation of the progenitor binary (e.g. Tauris 2011 and references therein). The initial separation of the progenitor binary determines the evolutionary
systems were first studied in detail by Pylyser & Savonije (1989) and is expected that magnetic braking (aided to some extent by envelopes) — do not allow for a perfect tidal circularization.

Regardless of the evolutionary path followed, the mass transfer was sub-Eddington (e.g. Tauris & Savonije 1999) and thus one would expect that a substantial fraction of the transferred mass leaving the donor was accreted by the neutron star. For PSR J1738+0333, this is demonstrably false: The minimum mass of the donor star can be constrained from our WD mass estimate to be $\gtrsim 1 M_\odot$ because the available time for evolution is limited by the Hubble time (minus the cooling age of the WD). The amount of mass lost by the donor is $M_{\text{donor}} - M_{\text{WD}}$, while the amount accreted by the pulsar is $M_{\text{PSR}} - M_{\text{init}}$, with the last term being the birth mass prior to accretion. For any realistic birth mass of the neutron star at the low end of its “canonical” birth mass range ($\gtrsim 1.20 M_\odot$), we find that more than 60% of the in-falling matter must have escaped the system (after correcting for the conversion from baryonic mass to gravitational mass). This translates to an accretion efficiency of only $\varepsilon < 0.40$. This result confirms the findings of Tauris & Savonije (1999) who concluded that a substantial fraction of the transferred matter in LMXBs is lost from the system, even at sub-Eddington mass-transfer rates.

More constraining (but less stringent) estimates are also obtained for the 6.3 h orbital period binary, PSR J0751+1807 (Nice et al. 2008) for which we find $\varepsilon \sim 0.1 \sim 0.3$.

Possible mechanisms for mass ejection discussed in the literature include propeller effects, accretion disc instabilities and direct irradiation of the donor’s atmosphere from the pulsar (e.g. Illarionov & Sunyaev 1975, van Paradijs 1997).
The mass of PSR J1738+0333

6 CONCLUSIONS

The main result of this work is the determination of the component masses of the PSR J1738+0333 system and adds to the three previously known MSP-LMWD binaries with spectroscopic information (PSR J1012+5307, van Kerkwijk et al. 1996; PSR J1911−5958A, Bassa et al. 2006; PSR J1909−3744, vK+12).

Our mass estimates are derived independently of any strong field effects and thus transform the PSR J1738+0333 system into a gravitational laboratory, which – due to its short orbital period, gravitationally asymmetric nature, and timing stability – provides the opportunity to test the radiative properties of a wide range of alternatives to GR (see Paper II for details).

Figure 5. Constrains on the masses derived from our observations. The shaded region is excluded because it would require \(\sin i > 1 \). Our constraint on the mass ratio is indicated by diagonal lines, and that on the WD mass by horizontal lines, with the red ones giving the central value and 1σ uncertainties using the mass-radius relation of Panei et al. (2007), the black dashed ones the 1σ range inferred using the models of Panei et al. (2007) and the black dotted the 1σ limit based on Serenelli et al. (2001).

Based on our measurements of the component masses, GR predicts an orbital decay of \(\dot{P}_b = -2.77^{+0.15}_{-0.15} \times 10^{-14} \). While the actual \(\dot{P}_b \) inferred observationally is still less precise than this prediction, it will eventually provide a precise test for the input physics of atmospheric and evolutionary models. Assuming the validity of GR, one can confront the spectroscopic WD mass estimate implied by the mass ratio and intrinsic orbital decay of the system and thus test the assumptions for stellar astrophysics and WD composition that were used to model the evolution of the WD. Additionally, this mass estimate, combined with parallax and absolute photometry constrains independently the surface gravity of the WD. The current estimates on these parameters imply a surface gravity of \(\log g = 6.45 \pm 0.07 \) dex. While this is formally more accurate than our spectroscopic constraint, it might still be dominated by systematics on the distance, arising from correlations between the parallax and DM variations (see Paper II for details).

Finally, the interpretation of the mass estimates within the context of our current understanding for binary evolution implies that a significant fraction of the accreted material during the LMXB phase is ejected by the system. The discovery and study of more similar systems in the future will allow further tests of this result.

ACKNOWLEDGEMENTS

We thank the Gemini staff for their expert execution of our observations, Rachel Rosen and Susan Thompson for obtaining the SOAR data, and the MPIfR pulsar group for discussions. The results of this paper are mostly based on observations obtained at the Gemini Observatory, which is operated by the Association of Universities for Research in Astronomy (AURA) under a cooperative agreement with the NSF on behalf of the Gemini partnership: the National Science Foundation (United States), the Science and Technology Facilities Council (United Kingdom), the National Research Council (Canada), CONICYT (Chile), the Australian Research Council (Australia), CNPq (Brazil) and CONICET (Argentina). Some of the data presented herein were obtained at the W.M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W.M. Keck Foundation. The SOAR Telescope is a joint project of: Conselho Nacional de Pesquisas Científicas e Tecnológicas CNPq-Brazil, The University of North Carolina at Chapel Hill, Michigan State University, and the National Optical Astronomy Observatory. Balmer/Lyman lines in the models were calculated with the modified Stark broadening profiles of Tremblay & Bergeron (2009), kindly made available by the authors. We thank J. Panei and collaborators for sharing their 2007 models. P.F. gratefully acknowledges the financial support by the European Research Council for the ERC Starting Grant BEACON under contract no. 279702 This research made extensive use of NASA’s ADS and CDS’s SIMBAD services.
REFERENCES

Baguin S., Jehin E., Ledoux C., Cabanac R., Melo C., Gilmozzi R., The ESO Paranal Science Operations Team 2003, The Messenger, 114, 10
Bass C. G., van Kerkwijk M. H., Koester D., Verbunt F., 2006, A&A, 456, 295
Bessell M. S., 1990, PASP, 102, 1181
Breton R. P., Rappaport S. A., van Kerkwijk M. H., Carter J. A., 2012, ApJ, 748, 115
Callanan P. J., Garnavich P. M., Koester D., 1998, MNRAS, 298, 207
Clemens J. C., Crain J. A., Anderson R., 2004, in A. F. M. Moorwood & M. Iye ed., Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series Vol. 5492 of Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, The Goodman spectrograph. pp 331–340
Cox A. N., 2000, Allen's astrophysical quantities. AIP Press
Demorest P. B., Pennucci T., Ransom S. M., Roberts M. S. E., Hessels J. W. T., 2010, Nature, 467, 1081
Drimmel R., Cabrera-Lavers A., López-Corredoira M., 2003, A&A, 409, 205
Dubus G., Lasota J.-P., Hameury J.-M., Charles P., 1999, MNRAS, 303, 139
Freire P. C. C., Bassa C. G., Wex N., Stairs I. H., Champion D. J., Ransom S. M., Lazarus P., Kaspi V. M., Hessels J. W. T., Kramer M., 2011, MNRAS, 412, 2763
Freire P. C. C., Wex N., Esposito-Farèse G., Verbiest J. P. W., Bailes M., Jacoby B. A., Kramer M., Stairs I. H., Antoniadis J., Janssen G. H., 2012, MNRAS, 423, 3328
Fukugita M., Ichikawa T., Gunn J. E., Doi M., Shimasaku K., Schneider D. P., 1996, AJ, 111, 1748
Gray D. F., 2005, The Observation and Analysis of Stellar Photospheres. Cambridge University Press
Hobbs G., Lorimer D. R., Bailes M., Ord S., Kuklarni S. R., 2005, ApJ, 629, L113
Kaspi V. M., Taylor J. H., Ryba M., 1994, ApJ, 428, 713
Kenyon S. J., Bromley B. C., Geller M. J., Brown W. R., 2008, ApJ, 680, 312
Koester D., 2008, ArXiv e-prints: 0812.0482
Kramer M., Stairs I. H., Manchester R. N., McLaughlin M. A., Lyne A. G., Ferdman R. D., Burgay M., Lorimer D. R., Possenti A., D’Amico N., Sarkissian J. M., Reynolds J. E., Joshi B. C., Freire P. C. C., Camilo F., 2006, Science, 314, 97
Kuijken K., Gilmore G., 1989, MNRAS, 239, 605
Lattimer J. H., Prakash M., 2004, Science, 304, 536
Lazaridis K., Wex N., Jessner A., Kramer M., Stappers B. W., Janssen G. H., Desvignes G., Purver M. B., Cognard I., Theureau G., Lyne A. G., Jordan C. A., Zensus J. A., 2009, MNRAS, 400, 805
Lorimer D. R., 2008, Living Reviews in Relativity, 11, http://www.livingreviews.org/lrr-2008-8
Ma B., Li X.-D., 2009, ApJ, 691, 1611
Mermilliod J.-C., Weis E. W., Duquennoy A., Mayor M., 1990, A&A, 235, 114
Nice D. J., Stairs I. H., Kasian L. E., 2008 Vol. 983 of American Institute of Physics Conference Series, Masses of Neutron Stars in Binary Pulsar Systems. pp 453–458
Nice D. J., Taylor J. H., 1995, ApJ, 441, 429
Nomoto K., Kondo Y., 1991, ApJ, 367, L19
Oke J. B., Cohen J. G., Carr M., Cromer D. J., Dingizian A., Harris F. H., Labrecque S., Lucinio R., Schaal W., Epis H., Miller J., 1995, PASP, 107, 375
Paczynski B., 1990, ApJ, 348, 485
Panel J. A., Althaus L. G., Benvenuto O. G., 2000, A&A, 353, 970
Panel J. A., Althaus L. G., Chen X., Han Z., 2007, MNRAS, 382, 779
Phinney E. S., 1992, Phil. Trans.:Phys. Sc. & Eng., 341, 39
Phinney E. S., Kulkarni S. R., 1994, ARA&A, 32, 591
Pylyser E., Savonije G. J., 1989, A&A, 208, 52
Reid I. N., 1996, AJ, 111, 2000
Savonije G. J., 1987, New As., 325, 416
Schlegel D. J., Finkbeiner D. P., Davis M., 1998, ApJ, 505, 525
Serenelli A. M., Althaus L. G., Rohrmann R. D., Benvenuto O. G., 2001, MNRAS, 325, 607
Serenelli A. M., Althaus L. G., Rohrmann R. D., Benvenuto O. G., 2002, MNRAS, 337, 1091
Shapiro I. I., 1964, Phys. Rev. Lett., 13, 789
Stetson P. B., 1990, PASP, 102, 932
Tauris T. M., 2011, in L. Schmidtobreick, M. R. Schreiber, & C. Tappert ed., Evolution of Compact Binaries Vol. 447 of PASP, Five and a Half Roads to Form a Millisecond Pulsar, p. 285
Tauris T. M., Bailes M., 1996, A&A, 315
Tauris T. M., Savonije G. J., 1999, A&A, 350, 928
Taylor J. H., Weisberg J. M., 1982, ApJ, 253, 908
Tremblay P.-E., Bergeron P., 2009, ApJ, 696, 1755
van der Sluys M. V., Verbunt F., Pols O. R., 2005, A&A, 440, 973
van Kerkwijk M. H., Bergeron P., Kulkarni S. R., 1996, ApJ, 467, L89
van Kerkwijk M. H., Rappaport S. A., Breton R. P., Justham S., Podsadlowski P., Han Z., 2010, ApJ, 715, 51
van Paradijs J., 1996, ApJ, 464, L139
Webbink R. F., Rappaport S., Savonije G. J., 1983, ApJ, 270, 678
Weisberg J. M., Nice D. J., Taylor J. H., 2010, ApJ, 722, 1030
Zwitter T., Castelli F., Munari U., 2004, A&A, 417, 1055