Derivatives and Real Roots of Graph Polynomials

Xueliang Li and Yongtang Shi
Center for Combinatorics and LPMC
Nankai University, Tianjin 300071, China
Email: lxl@nankai.edu.cn, shi@nankai.edu.cn

Abstract

Graph polynomials are polynomials assigned to graphs. Interestingly, they also arise in many areas outside graph theory as well. Many properties of graph polynomials have been widely studied. In this paper, we survey some results on the derivative and real roots of graph polynomials, which have applications in chemistry, control theory and computer science. Related to the derivatives of graph polynomials, polynomial reconstruction of the matching polynomial is also introduced.

Keywords: graph polynomial; derivatives; real roots; polynomial reconstruction

AMS Subject Classification (2010): 05C31, 05C90, 05C35, 05C50

1 Introduction

Many kinds of graph polynomials have been introduced and extensively studied, such as characteristic polynomial, chromatic polynomial, Tutte polynomial, matching polynomial, independence polynomial, clique polynomial, etc.

Let G be a simple graph with n vertices and m edges, whose vertex set and edge set are $V(G)$ and $E(G)$, respectively. The complement \overline{G} of G is the simple graph whose vertex set is $V(G)$ and whose edges are the pairs of nonadjacent vertices of G. For terminology and notation not defined here, we refer to [3].

Denote by $A(G)$ the adjacency matrix of G. The characteristic polynomial of G is defined as

$$\phi(G, x) = \det(\lambda I - A(G)) = \sum_{i=0}^{n} a_i x^{n-i}.$$

The roots $\lambda_1, \lambda_2, \ldots, \lambda_n$ of $\phi(G, x) = 0$ are called the eigenvalues of G. For more results on $\phi(G, x)$, we refer to [10, 11].
Denote by \(m(G, k) \) the \(k \)-th matching number of \(G \) for \(k \geq 0 \). We assume that \(m(G, 0) = 1 \). For \(k \geq 1 \), \(m(G, k) \) is defined as the number of ways in which \(k \) pairwise independent edges can be selected in \(G \). The matching polynomial is defined as

\[
\alpha(G, x) = \sum_{k \geq 0} (-1)^k m(G, k) x^{n-2k}.
\]

There is also an auxiliary polynomial \(\alpha(G, x, y) \), which is defined as

\[
\alpha(G, x, y) = \sum_{k \geq 0} (-1)^k m(G, k) x^{n-2k} y^k.
\]

Note that \(\alpha(G, x, y) = y^{n/2} \alpha(G, xy^{-1/2}) \). In view of this fact, we may define an auxiliary polynomial of \(\phi(G, x, y) \):

\[
\phi(G, x, y) = y^{n/2} \phi(G, xy^{-1/2}) = \sum_{k \geq 0} a_k x^{n-k} y^{k/2}.
\]

Note that \(\phi(G, x, y) \) is a polynomial in \(y \) if and only if \(G \) is bipartite.

Denote by \(n(G, k) \) the \(k \)-th independence number of \(G \) for \(k \geq 0 \). We assume that \(n(G, 0) = 1 \). For \(k \geq 1 \), \(n(G, k) \) is defined as the number of ways in which \(k \) pairwise independent vertices can be selected in \(G \). The independence polynomial is defined as

\[
\omega(G, x) = \sum_{k \geq 0} (-1)^k n(G, k) x^{n-k},
\]

which is also called independent set polynomial in \([35]\) and stable set polynomial in \([58]\). For more results on the independence polynomials, we refer the surveys \([42, 61]\).

Denote by \(c(G, k) \) the \(k \)-th clique number of \(G \) for \(k \geq 0 \). We assume that \(c(G, 0) = 1 \). For \(k \geq 1 \), \(c(G, k) \) is defined as the number of ways in which \(k \) pairwise adjacent vertices can be selected in \(G \). Note that \(c(G, 1) = n \) and \(c(G, 2) = m \). The clique polynomial is defined as

\[
c(G, x) = \sum_{k \geq 0} (-1)^k c(G, k) x^{n-k}.
\]

Note that the clique polynomial of a graph \(G \) is exactly the independence polynomial of the complement \(\overline{G} \) of \(G \), i.e., \(c(G, x) = \alpha(\overline{G}, x) \). Obviously, we also have

\[
c(G, x) + c(\overline{G}, x) = \alpha(G, x) + \alpha(\overline{G}, x).
\]

The following results are easily obtained.

Theorem 1. Let \(G_1 \) and \(G_1 \) be two vertex-disjoint graphs. Then we have

\[
c(G_1 \cup G_2, x) = c(G_1, x) + c(G_2, x) - 1, \quad \alpha(G_1 \cup G_2, x) = \alpha(G_1, x) \cdot \alpha(G_2, x);
\]

\[
c(G_1 + G_2, x) = c(G_1, x) \cdot c(G_2, x), \quad \alpha(G_1 + G_2, x) = \alpha(G_1, x) + \alpha(G_2, x) - 1.
\]
In [35], the authors obtained the following similar result.

Theorem 2. Let G_1 and G_2 be two vertex-disjoint graphs with n_1 and n_2 vertices, respectively. Then

$$c(G_1 \times G_2, x) = n_2 \cdot c(G_1, x) + n_1 \cdot c(G_2, x) - (n_1 + n_2 + n_1n_2x) + 1.$$

For more properties on $c(G, x)$ and $\alpha(G, x)$, we refer to [35].

Many properties of graph polynomials have been widely studied. In this paper, we survey some results on the derivative and real roots of graph polynomials, which have applications in chemistry, control theory and computer science. Related to the derivatives of graph polynomials, polynomial reconstruction of the matching polynomial is also introduced.

2 Derivatives of graph polynomials

The derivatives of the characteristic polynomial were examined by Clarke [9] and the following result was showed.

Theorem 3. Let G be a simple graphs and $\phi(G, x)$ be the characteristic polynomial of G. Then

$$\frac{d\phi(G, x)}{dx} = \sum_{v \in V(G)} \phi(G - v, x).$$

Gutman and Hosoya [28] got a similar result for the matching polynomial.

Theorem 4. Let G be a simple graphs and $\alpha(G, x)$ be the matching polynomial of G. Then

$$\frac{d\alpha(G, x)}{dx} = \sum_{v \in V(G)} \alpha(G - v, x).$$

One can get the first derivative of the independence polynomial and clique polynomial, which have similar expressions as the matching polynomial and characteristic polynomial. That is,

$$\frac{d\omega(G, x)}{dx} = \sum_{v \in V(G)} \omega(G - v, x), \quad \frac{dc(G, x)}{dx} = \sum_{v \in V(G)} c(G - v, x).$$

Although the four first derivatives obey fully analogous expressions, their proofs existing in the literatures, are quite dissimilar. Li and Gutman [44] provided a unified approach to all these formulas by introducing a general graph polynomial.

Let f be a complex-valued function defined on the set of graphs \mathcal{G} such that $G_1 \cong G_2$ implies $f(G_1) = f(G_2)$. Let G be a graph on n vertices and $S(G)$ be the set of all subgraphs of G. Define

$$S_k(G) = \{H : H \in S(G) \text{ and } |V(H)| = k\}, \quad p(G, k) = \sum_{H \in S_k(G)} f(H).$$
Then, the general graph polynomial of G is defined as

$$P(G, x) = \sum_{k=0}^{n} p(G, k)x^{n-k}.$$

Actually, let

$$f(H) = \begin{cases} (-1)^{|V(H)|/2} & \text{if } H \text{ is 1-regular;} \\ 0 & \text{otherwise.} \end{cases}$$

Then the resulting polynomial is the matching polynomial. Let

$$f(H) = \begin{cases} (-1)^{|V(H)|} & \text{if } H \text{ is no edges;} \\ 0 & \text{otherwise.} \end{cases}$$

Then the resulting polynomial is the independence polynomial. Let

$$f(H) = \begin{cases} (-1)^{r(H)} \cdot 2^{c(H)} & \text{if all components of } H \text{ are 1- or 2-regular;} \\ 0 & \text{otherwise,} \end{cases}$$

where $r(H)$ is the number of components in H and $c(H)$ is the number of cycles in H. Then the resulting polynomial is the characteristic polynomial. Let

$$f(H) = \begin{cases} (-1)^{|V(H)|} & \text{if } H \text{ is a complete graph;} \\ 0 & \text{otherwise.} \end{cases}$$

Then the resulting polynomial is the clique polynomial.

The following theorem was obtained by Li and Gutman in [44].

Theorem 5. For the graph polynomial $P(G, x)$ of G, we have

$$\frac{d}{dx} (P(G, x)) = \sum_{v \in V(G)} P(G - v, x).$$

Furthermore, Gutman [24, 27] got the first derivative formula for $\alpha(G, x, y)$:

$$\partial \alpha(G, x, y) / \partial y = - \sum_{uv \in E(G)} \alpha(G - u - v, x, y).$$

To find an expression for $\partial \phi(G, x, y) / \partial y$ of a bipartite graph was posed by Gutman as a problem in [23]. A solution of this problem was offered by Li and Zhang [48].

Theorem 6. For a bipartite graph G,

$$\partial \phi(G, x, y) / \partial y = - \sum_{uv \in E(G)} \phi(G - u - v, x, y) - \sum_{C \subseteq G} n(C) y^{n(C)/2-1} \phi(G - C, x, y),$$

where C is a cycle, possessing $n(C)$ vertices.
The above theorem was proved by using Sachs Theorem for the coefficients of the characteristic polynomial and by verifying the equality of the respective coefficients of the polynomials on the left- and right-hand sides of Eq. (1). In [29], the authors put forward another route to Eq. (1), from which it become evident that Eq. (1) holds for an arbitrary graph.

Moreover, if we define
\[P(G, x, y) = \sum_{i+j=n} p(G, k)x^iy^j, \]
then we can obtain
\[\frac{\partial P(G, x, y)}{\partial y} = ny^{-1}P(G, x, y) - xy^{-1} \sum_{v \in V(G)} P(G - v, x, y). \]

Derivatives of other graph polynomials have also been studied, such as the cube polynomial [5], the Tutte polynomial [15], the Wiener polynomial [39], etc.

3 Polynomial reconstruction of the matching polynomial

The derivative of a graph polynomial is related the problem of polynomial reconstruction. This section aims to prove that graphs with pendant edges are polynomial reconstructible and, on the other hand, to display some evidence that arbitrary graphs are not, which is given in [47].

The famous (and still unsolved) reconstruction conjecture of Kelly [38] and Ulam [63] states that every graph \(G \) with at least three vertices can be reconstructed from (the isomorphism classes of) its vertex-deleted subgraphs.

With respect to a graph polynomial \(P(G) \), this question may be adapted as follows: Can \(P(G) \) of a graph \(G = (V, E) \) be reconstructed from the graph polynomials of the vertex deleted-subgraphs, that is from the collection \(P(G-v) \) for \(v \in V \)? Here, this problem is considered for the matching polynomial of a graph. For results about the polynomial reconstruction of other graph polynomials, see the article by Brešar, Imrich, and Klavžar [4, Section 1] and the references therein. For additional results, see [59, Section 7] [60, Subsection 4.7.3].

The matching polynomial we considered here is the generating function of the number of its matchings with respect to their cardinality, denoted by \(M(G, x, y) \), which is different from the above \(\alpha(G, x) \) and \(\alpha(G, x, y) \). Let \(G = (V, E) \) be a graph. A matching in \(G \) is an edge subset \(A \subseteq E \), such that no two edges in \(A \) have a common vertex. The matching polynomial \(M(G, x, y) \) is defined as
\[M(G, x, y) = \sum_{A \subseteq E \text{ is a matching}} x^{\text{def}(G, A)}y^{|A|}, \]
where \(\text{def}(G, A) = |V| - |\bigcup_{e \in A} e| \) is the number of vertices not included in any of the edges of \(A \). A matching \(A \) is a perfect matching, if its edges include all vertices, that means if \(\text{def}(G, A) = 0 \). A near-perfect matching \(A \) is a matching that includes all vertices except one, that means \(\text{def}(G, A) = 1 \). For more information about matchings and the matching polynomial, see [17, 22, 51].

For a graph \(G = (V, E) \) with a vertex \(v \in V \), \(G_{-v} \) is the graph arising from the deletion of \(v \), i.e., arising by the removal of \(v \) and all the edges incident with \(v \). The multiset of (the isomorphism classes of) the vertex-deleted subgraphs \(G_{-v} \) for \(v \in V \) is the deck of \(G \). The polynomial deck \(D_P(G) \) with respect to a graph polynomial \(P(G) \) is the multiset of \(P(G_{-v}) \) for \(v \in V \). A graph polynomial \(P(G) \) is polynomial reconstructible, if \(P(G) \) can be determined from \(D_P(G) \).

By arguments analogous to those used in Kelly’s Lemma [38], the derivative of the matching polynomial of a graph \(G = (V, E) \) equals the sum of the polynomials in the corresponding polynomial deck.

Proposition 1 (Lemma 1 in [18]). Let \(G = (V, E) \) be a graph. The matching polynomial \(M(G, x, y) \) satisfies

\[
\frac{\delta}{\delta x} M(G, x, y) = \sum_{v \in V} M(G_{-v}, x, y).
\]

In other words, all coefficients of the matching polynomial except the one corresponding to the number of perfect matchings can be determined from the polynomial deck and thus also from the deck:

\[
m_{i,j}(G) = \frac{1}{i} \sum_{v \in V} m_{i,j}(G_{-v}) \quad \forall i \geq 1,
\]

where \(m_{i,j}(G) \) is the coefficient of the monomial \(x^i y^j \) in \(M(G, x, y) \).

Consequently, the (polynomial) reconstruction of the matching polynomial reduces to the determination of the number of perfect matchings.

Proposition 2. The matching polynomial \(M(G, x, y) \) of a graph \(G \) can be determined from its polynomial deck \(D_M(G) \) and its number of perfect matchings. In particular, the matching polynomial \(M(G, x, y) \) of a graph with an odd number of vertices is polynomial reconstructible.

Tutte [62, Statement 6.9] showed that the number of perfect matchings of a simple graph can be determined from its deck of vertex-deleted subgraphs and therefore gave an affirmative answer on the reconstruction problem for the matching polynomial.

The matching polynomial of a simple graph can also be reconstructed from the deck of edge-extracted and edge-deleted subgraphs [18, Theorem 4 and 6] and from the polynomial
deck of the edge-extracted graphs [24, Corollary 2.3]. For a simple graph G on n vertices, the matching polynomial is reconstructible from the collection of induced subgraphs of G with $\lfloor \frac{n}{2} \rfloor + 1$ vertices [20, Theorem 4.1].

The following result is from [47] for simple graphs with pendant edges.

Theorem 7. Let $G = (V, E)$ be a simple graph with a vertex of degree 1. Then, G has a perfect matching if and only if each vertex-deleted subgraph G_{-v} for $v \in V$ has a near-perfect matching.

As proved recently by Huang and Lih [36], this statement can be generalized to arbitrary simple graphs.

Corollary 8. Let $G = (V, E)$ be a forest. Then G has a perfect matching if and only if each vertex-deleted subgraph G_{-v} for $v \in V$ has a near-perfect matching.

Forests have either none or one perfect matching, because every pendant edge must be in a perfect matching (in order to cover the vertices of degree 1) and the same holds recursively for the subforest arising by deleting all the vertices of the pendant edges. Therefore, from Proposition 2 and Corollary 8, the polynomial reconstructibility of the matching polynomial follows.

Corollary 9. The matching polynomial $M(G, x, y)$ of a forest is polynomial reconstructible.

On the other hand, arbitrary graphs with pendant edges can have more than one perfect matching. However, Corollary 8 can be extended to obtain the number of perfect matchings. For a graph $G = (V, E)$, the number of perfect matchings and of near-perfect matchings of G is denoted by $p(G)$ and $np(G)$, respectively.

Theorem 10. Let $G = (V, E)$ be a simple graph with a pendant edge $e = \{u, w\}$ where w is a vertex of degree 1. Then we have

$$p(G) = np(G_{-u}) \leq np(G_{-v}) \quad \forall v \in V$$

and particularly

$$p(G) = \min \{np(G_{-v}) \mid v \in V\}.$$

By applying this theorem, the number of perfect matchings of a simple graph with pendant edges can be determined from its polynomial deck and the following result is obtained as a corollary.

Corollary 11. The matching polynomial $M(G, x, y)$ of a simple graph with a pendant edge is polynomial reconstructible.
While it is true that the matching polynomials of graphs with an odd number of vertices or with a pendant edge are polynomial reconstructible, it does not hold for arbitrary graphs.

There are graphs which have the same polynomial deck and yet their matching polynomials are different. Although there are already counterexamples with as little as six vertices, it seems that nothing has been published before in connection with the question addressed here.

Remark 1. The matching polynomial $M(G, x, y)$ of an arbitrary graph is not polynomial reconstructible. The minimal counterexample for simple graphs (with respect to the number of vertices and edges) are constructed in \[47\].

The question arises here: whether or not there are such counterexamples consisting of graphs with an arbitrary even number of vertices. In \[47\], we gave an affirmative answer to this question.

4 Roots of beta-polynomials and independence polynomials

Polynomials whose all zeros are real-valued numbers are said to be real. Several graph polynomials have been known to be real; among them the matching polynomial $\alpha(G, x)$ plays a distinguished role \[21, 34\].

Polynomials with only real roots arise in various applications in control theory and computer science \[65\], but also admit interesting mathematical properties on their own. Newton noted that the sequence of coefficients of such polynomials form a log-concave (and hence unimodal) sequence. These polynomials also have strong connections to totally positive matrices.

The fact that for all graphs, all zeros of the matching polynomial are real-valued was first established by Heilmann and Lieb \[34\].

Let C be a circuit contained in a graph G. If C is a Hamiltonian cycle, then $\alpha(G - C, x) \equiv 1$. In certain considerations in theoretical chemistry \[1, 40, 54, 55\], graph polynomials $\beta(G, C, x)$ are encountered, defined as

$$\beta(G, C, x) = \alpha(G, x) - 2\alpha(G - C, x) \tag{6}$$

and

$$\beta(G, C, x) = \alpha(G, x) + 2\alpha(G - C, x) \tag{7}$$

Formula (6) is used in the case of so-called Hückel-type circuits, whereas formula (7) for the so-called Möbius-type circuits. For details, see \[54\]. These polynomials are also called **circuit characteristic polynomials** \[1\].
Already in the first paper devoted to this topic [11], Aihara mentioned that the zeros of the \(\beta \)-polynomials are real-valued, but gave no argument to support his claim. In the meantime, for a number of classes of graphs it was shown that \(\beta(G, C, x) \) is indeed a real polynomial [25, 26, 30, 40, 49, 55, 41]. In addition to this, by means of extensive computer searches not a single graph with non-real \(\beta \)-polynomial could be detected. The following conjecture has been put forward by Gutman and Mizoguchi in [25, 26, 30].

Conjecture 1. For any circuit \(C \) contained in any graph \(G \), the \(\beta \)-polynomials \(\beta(G, C, x) \), Eqs. (6) and (7), are real.

Many results have been obtained. In particular, \(\beta(G, C, x) \) has been shown to be real for unicyclic graphs [30], bicyclic graphs [55], graphs in which no edge belongs to more than one circuit [55], graphs without 3-matchings (i.e., \(m(G, 3) = 0 \)) [40], several (but not all) classes of graphs without 4-matchings (i.e., \(m(G, 4) = 0 \)) [41].

In [46], Li et al. showed that the conjecture is true for complete graphs. Actually, they proved a stronger result for complete graphs.

Theorem 12. For any circuit \(C \) in the complete graph \(K_n \), the polynomial

\[
\beta(K_n, C, t; x) = \alpha(K_n, x) + t\alpha(K_n - C, x)
\]

is real for any real \(t \) such that \(|t| \leq n - 1\).

The proof offered in [46] relies on an earlier published theorem by Turán. In [45], Li and Gutman presented an elementary self-contained proof for complete graphs. Finally, in [50], Li et al. showed that the conjecture is true for all graphs, and therefore completely solved this conjecture.

Theorem 13. For any circuit \(C \) contained in any graph \(G \), all roots of the polynomial \(\beta(G, C, x) \) are real.

Chudnovsky and Seymour [8] proved the following result for independence polynomial.

Theorem 14. If \(G \) is clawfree, then all roots of its independence polynomial are real.

Theorem 14 extends a theorem of [34], answering a question posed by Hamidoune [33] and Stanley [58]. Since all line graphs are clawfree, this extends the result of [34]. Later, Levit and Mandrescu studied the roots of independence polynomials of almost all very well-covered graphs [43]. In [53], Mandrescu showed that starting from a graph \(G \) whose independence polynomial has only real roots, one can build an infinite family of graphs, whose independence polynomials have only real roots.

Real roots of other graph polynomials have also been extensively studied, such as edge-cover polynomial [2], the expected independence polynomial [7], domination polynomial...
sigma-polynomial [67], chromatic polynomial [14] [37] [66], Wiener polynomial [12], flow polynomial [37], Tutte polynomial [16] [64], etc. For more results on the roots of graph polynomials, we refer to [13] [31] [32] [52] [56] [57] [65].

Acknowledgment

The authors are supported by NSFC and the “973” program.

References

[1] J. Aihara, Resonance energies of benzenoid hydrocarbons, *J. Amer. Chem. Soc.* 99 (1977), 2048–2053.

[2] S. Akbari and M.R. Oboudi, On the edge cover polynomial of a graph, *European J. Combin.* 34 (2013), 297–321.

[3] J.A. Bondy, U.S.R. Murty, *Graph Theory*, GTM 244, Springer-Verlag, New York, 2008.

[4] B. Brešar, W. Imrich and S. Klavžar, Reconstructing subgraph-counting graph polynomials of increasing families of graphs, *Discrete Math.* 297 (1-3)(2005), 159–166.

[5] B. Brešar, S. Klavžar and R. Škrekovski, The cube polynomial and its derivatives: the case of median graphs, *Electron. J. Combin.* 10 (2003), R3.

[6] J.I. Brown and J. Tufts, On the roots of domination polynomials, *Graphs Combin.* 30 (2014), 527–547.

[7] J.I. Brown, K. Dilcher and D.V. Manna, On the roots of expected independence polynomials, *J. Graph Theory* 73 (2013), 322–326.

[8] M. Chudnovsky and P. Seymour, The roots of the independence polynomial of a clawfree graph, *J. Combin. Theory, Ser. B* 97 (2007), 350–357.

[9] F.H. Clarke, A graph polynomial and its applications, *Discrete Math.* 3 (1972), 305–313.

[10] D. Cvetković, M. Doob, I. Gutman and A. Torgašev, *Recent Results in the Theory of Graph Spectra*, North-Holland, Amsterdam, 1988.

[11] D. Cvetković, M. Doob and H. Sachs, *Spectra of Graphs—Theory and Applications*, Academic Press, New York, 1980.
[12] M. Dehmer, A. Ilić, Location of zeros of Wiener and distance polynomials, *PLoS ONE* 7(2012), e28328.

[13] M. Dehmer, Y. Shi and A. Mowshowitz, Discrimination power of graph measures based on complex zeros of the partial Hosoya polynomial, *Appl. Math. Comput.* 250(2015), 352–355.

[14] F. Dong and K. Koh, On upper bounds for real roots of chromatic polynomials, *Discrete Math.* 282(2004), 95–101.

[15] J.A. Ellis-Monaghan and C. Merino, Graph polynomials and their applications I: The Tutte polynomial, in “M. Dehmer, *Structural Analysis of Complex Networks*”, Birkhäuser, Boston (2011), 219–255.

[16] J.A. Ellis-Monaghan, Exploring the Tutte-Martin connection, *Discrete Math.* 281(1-3)(2004), 173-187.

[17] E.J. Farrell, An introduction to matching polynomials, *J. Combin. Theory, Ser. B* 27(1)(1979), 75–86.

[18] E.J. Farrell and S.A. Wahid, On the reconstruction of the matching polynomial and the reconstruction conjecture, *International Journal of Mathematics and Mathematical Sciences* 10(1)(1987), 155–162.

[19] C.D. Godsil, Hermite polynomials and a duality relation for matchings polynomials, *Combinatorica* 1(3)(1981), 257–262.

[20] C.D. Godsil, Matchings and walks in graphs, *J. Graph Theory* 5(3)(1981), 285–297.

[21] C.D. Godsil and I. Gutman, On the theory of the matching polynomial, *J. Graph Theory* 5(1981), 137–144.

[22] I. Gutman, The acyclic polynomial of a graph, *Publications de l’Institut Mathmatique* 22(36)(1977), 63–69.

[23] I. Gutman, Research problem 134, *Discrete Math.* 88(1991), 105–106.

[24] I. Gutman, Some analytical properties of the independence and matching polynomials, *MATCH Commun. Math. Comput. Chem.*, 28(1992), 139–150.

[25] I. Gutman, A contribution to the study of real graph polynomials, *Publ. Elektrotehn. Fak. (Beograd) Ser. Mat.* 3(1992), 35–40.

[26] I. Gutman, A real graph polynomial?, *Graph Theory Notes New York* 22(1992), 33–37.

11
[27] I. Gutman, Some relations for the independence and matching polynomials and their chemical applications, *Bull. Acad. Serbe Sci. Arts (Cl. Sci. Math.)* **105**(1992), 39–49.

[28] I. Gutman and H. Hosoya, On the calculation of the acyclic polynomial, *Theor. Chim. Acta* **48**(1979), 279–286.

[29] I. Gutman, X. Li and H Zhang, On a formula involving the first derivative of the characteristic polynomial of a graph, *Publ. Elek. Tech. Fac. Ser. Math.* **4**(1993), 93–98.

[30] I. Gutman and N. Mizoguchi, A property of the circuit characteristic polynomial, *J. Math. Chem.* **5**(1990), 81–82.

[31] J. Haglund, Further investigations involving rook polynomials with only real zeros, *European J. Combin.* **21**(8)(2000), 1017–1037.

[32] J. Haglund, K. Ono and D.G. Wagner, Theorems and conjectures involving rook polynomials with only real zeros. In *Topics in Number Theory*, volume 467 of *Mathematics and Its Applications*, pages 207–222. Kluwer, 1999.

[33] Y.O. Hamidoune, On the numbers of independent k-sets in a clawfree graph, *J. Combin. Theory Ser. B* **50**(1990), 241–244.

[34] O.J. Heilmann and E.H. Lieb, Theory of monomer-dimer systems, *Commun. Math. Phys.* **25**(1972), 190–232.

[35] C. Hoede, X. Li, Clique polynomials and independent set polynomials of graphs, *Discrete Math.* **125**(1994), 219–228.

[36] K. Huang and K. Lih, A note on near-factor-critical graphs, arXiv:1404.5416, 2014.

[37] B. Jackson, Zeros of chromatic and flow polynomials of graphs, *J. Geom.* **76**(2003), 95–109.

[38] P.J. Kelly, A congruence theorem for trees, *Pacific J. Math.* **7**(1)(1957), 961–968.

[39] E.V. Konstantinova and M.V. Diudea, The Wiener polynomial derivatives and other topological indices in chemical research, *Croatica Chem. Acta* **73**(2)(2000), 383–403.

[40] M. Lepović, I. Gutman, M. Petrović and N. Mizoguchi, Some contributions to the theory of cyclic conjugation, *J. Serb. Chem. Soc.* **55**(1990), 193–198.

[41] M. Lepović, I. Gutman and M. Petrović, A conjecture in the theory of cyclic conjugation and an example supporting its validity, *MATCH Commun. Math. Chem.* **28**(1992), 219–234.
[42] V.E. Levit and E. Mandrescu, The independence polynomial of a graph—a survey, In: Proceedings of the 1st International Conference on Algebraic Informatics. 2005, pp. 233–254.

[43] V.E. Levit and E. Mandrescu, On the roots of independence polynomials of almost all very well-covered graphs, *Discrete Appl. Math.* **156**(2008), 478–491.

[44] X. Li and I. Gutman, A unified approach to the first derivatives of graph polynomials, *Discrete Appl. Math.* **58**(1995), 293–297.

[45] X. Li and I. Gutman, Elementary proof of the reality of the zeros of beta-polynomial of complete graphs, *Kragujevac J. Math.* **22**(2000), 49–56.

[46] X. Li, I. Gutman and G.V. Milovanovic, The beta-polynomials of complete graphs are real, *Publ. Inst. Math. (Beograd)* **67**(2000), 1–6.

[47] X. Li, T. Shi and M. Trinks, Polynomial reconstruction of the matching polynomial, *Electron. J. Graph Theory Appl.* **3**(1)(2015), 27–34.

[48] X. Li and H. Zhang, A solution to Gutman’s problem on the characteristic polynomials of bipartite graphs, *Discrete Math.* **154**(1996), 297–300.

[49] X. Li, B. Zhao and I. Gutman, More examples for supporting the reality of zeros of beta-polynomials, *J. Serb. Chem. Soc.* **60**(12)(1995), 1095–1101.

[50] X. Li, H. Zhao and L. Wang, A complete solution to a conjecture on beta-polynomials of graphs, *J. Math. Chem.* **33**(3-4)(2003), 189–193.

[51] L. Lovász and M.D. Plummer, *Matching Theory*, Volume 121 of *North-Holland Mathematics Studies*, North-Holland, 1986.

[52] J.A. Makowsky, E.V. Ravve and N.K. Blanchard, On the location of roots of graph polynomials, *European J. Combin.* **41**(2014), 1–19.

[53] E. Mandrescu, Building graphs whose independence polynomials have only real roots, *Graphs Combin.* **25**(2009), 545–556.

[54] N. Mizoguchi, Unified rule for stability of Hückel-type and Möbius-type systems, *J. Phys. Chem.* **92**(1988), 2754–2756.

[55] N. Mizoguchi, Circuit resonance energy. On the roots of circuit characteristic polynomial, *Bull. Chem. Soc. Japan* **63**(1990), 765–769.
[56] A. Nijenhuis, On permanents and the zeros of rook polynomials, *J. Combin. Theory Ser. A* 21(2)(1976), 240–244.

[57] C.D. Savage and M. Visontai, The s-Eulerian polynomials have only real root, *Trans. Amer. Math. Soc.* 367(2)(2015), 1441–1466.

[58] R.P. Stanley, Graph colorings and related symmetric functions: ideas and applications—a description of results, interesting applications, & notable open problems, *Discrete Math.* 193(1-3)(1998), 267–286.

[59] P. Tittmann, I. Averbouch and J.A. Makowsky, The enumeration of vertex induced subgraphs with respect to the number of components, *European J. Combin.* 32(7)(2011), 954–974.

[60] M. Trinks, *Graph Polynomials and Their Representations*, PhD thesis, TU Bergakademie Freiberg, 2012.

[61] M. Trinks, A survey on recurrence relations for the independence polynomials of hypergraphs, accepted by *Graphs Combin.*, arXiv: 1406.2990 [math.CO]

[62] W.T. Tutte, All the king’s horses (a guide to reconstruction), In J. Adrian Bondy and U. S. R. Murty, editors, *Graph Theory and Related Topics*, pages 15–33. Academic Press, 1979. Proceedings of the conference held in honour of Professor W. T. Tutte on the occasion of his sixtieth birthday, University of Waterloo, July 5-9, 1977.

[63] S.M. Ulam, A collection of mathematical problems, Number 8 in Interscience Tracts in Pure and Applied Mathematics, Interscience, New York, 1960.

[64] M.L. Vergnas, The Tutte polynomial of a morphism of matroids 5. Derivatives as generating functions of Tutte activities, *Eur. J. Comb.* 34(8)(2013), 1390–1405.

[65] M. Visontai, *Investigations of Graph Polynomials*, Master Thesis, 2007.

[66] D. Woodall, A zero-free interval for chromatic polynomials, *Discrete Math.* 101(1992), 333–341.

[67] H. Zhao, X. Li, S. Zhang and R. Liu, On the minimum real roots of the sigma-polynomials and chromatic uniqueness of graphs, *Discrete Math.* 281(1-3)(2004), 277–294.