Variance Reduction via Primal-Dual Accelerated Dual Averaging for Nonsmooth Convex Finite-Sums

Chaobing Song 1 Stephen J. Wright 1 Jelena Diakonikolas 1

Abstract
Structured nonsmooth convex finite-sum optimization appears in many machine learning applications, including support vector machines and least absolute deviation. For the primal-dual formulation of this problem, we propose a novel algorithm called Variance Reduction via Primal-Dual Accelerated Dual Averaging (VRPDA 2). In the nonsmooth and general convex setting, VRPDA 2 has the overall complexity \(O(nd \log \min\{1/\epsilon, n\} + d/\epsilon) \) in terms of the primal-dual gap, where \(n \) denotes the number of samples, \(d \) the dimension of the primal variables, and \(\epsilon \) the desired accuracy. In the nonsmooth and strongly convex setting, the overall complexity of VRPDA 2 becomes \(O(nd \log \min\{1/\epsilon, n\} + \sqrt{nd}/\epsilon) \) in terms of both the primal-dual gap and the distance between iterate and optimal solution. Both these results for VRPDA 2 improve significantly on state-of-the-art complexity estimates—which are \(O(nd \log \min\{1/\epsilon, n\} + \sqrt{nd}/\epsilon) \) for the nonsmooth and general convex setting and \(O(nd \log \min\{1/\epsilon, n\} + \sqrt{nd}/\sqrt{\epsilon}) \) for the nonsmooth and strongly convex setting—with a simpler and more straightforward algorithm and analysis. Moreover, both complexities are lower bounds for general convex finite-sum optimization, because our approach makes use of additional, commonly occurring structure. Numerical experiments reveal competitive performance of VRPDA 2 compared to state-of-the-art approaches.

1. Introduction
We consider large-scale regularized nonsmooth convex empirical risk minimization (ERM) of linear predictors in machine learning. Let \(b_i \in \mathbb{R}^d, i = 1, 2, \ldots, n \), be sample vectors with \(n \) typically large; \(g_i : \mathbb{R} \to \mathbb{R}, i = 1, 2, \ldots, n \), be possibly nonsmooth convex loss functions associated with the linear predictor \(\langle b_i, x \rangle \); and \(\ell : \mathbb{R}^d \to \mathbb{R} \) be an extended-real-valued, \(\sigma \)-strongly convex \((\sigma \geq 0) \) and possibly nonsmooth regularizer that admits an efficiently computable proximal operator. The problem we study is

\[
\min_{x \in \mathbb{R}^d} f(x) := g(x) + \ell(x) := \frac{1}{n} \sum_{i=1}^n g_i(b_i^T x) + \ell(x), \quad (P)
\]

where \(g(x) := \frac{1}{n} \sum_{i=1}^n g_i(b_i^T x) \). Instances of the nonsmooth ERM problem \((P) \) include \(\ell_1 \)-norm and \(\ell_2 \)-norm regularized support vector machines (SVM) and least absolute deviation. For practicality of our approach, we require in addition that the convex conjugates of the functions \(g_i \), defined by \(g_i^* (y_i) := \sup_{z \in \mathbb{R}^d} \{z y_i - g_i(z_i)\} \), admit efficiently computable proximal operators. (The examples mentioned above have this property.) From the statistical perspective, nonsmoothness in the loss function is essential for obtaining a model that is both tractable and robust. But from the optimization viewpoint, nonsmooth optimization problems are intrinsically more difficult to solve. On one hand, the lack of smoothness in \(g \) precludes the use of black-box first-order information to obtain efficient methods. On the other hand, the use of structured composite optimization methods that rely on the proximal operator of \(g \) is out of question here too, because the proximal operator of the sum \(\frac{1}{n} \sum_{i=1}^n g_i(b_i^T x) \) may not be efficiently computable w.r.t. \(x \), even when the proximal operators of the individual functions \(g_i(\cdot) \) are.

Driven by applications in machine learning, computational statistics, signal processing, and operations research, the nonsmooth problem \((P) \) and its variants have been studied for more than two decades. There have been two main lines of work: deterministic algorithms that exploit the underlying simple primal-dual structure to improve efficiency (i.e., dependence on the accuracy parameter \(\epsilon \)) and randomized algorithms that exploit the finite-sum structure to improve scalability (i.e., dependence on the number of samples \(n \)).

Exploiting the primal-dual structure. A naïve approach for solving \((P) \) would be subgradient descent, which requires access to subgradients of \(g(x) \) and \(\ell(x) \). To find a solution \(x \) with \(f(x) - f(x^*) \leq \epsilon \), where \(x^* \) is an optimal solution

\[\text{Proceedings of the 38th International Conference on Machine Learning, PMLR 139, 2021. Copyright 2021 by the author(s).}\]
of (P) and \(\epsilon > 0\) is the desired accuracy, the subgradient method requires \(O(1/\epsilon^2)\) iterations for the nonsmooth convex setting. This complexity is high, but it is also the best possible if we are only allowed to access “black-box” information of function value and subgradient. To obtain improved complexity bounds, we must consider approaches that exploit structure in (P). To begin, we note that (P) admits an explicit and simple primal-dual reformulation:

\[
\min_{x \in \mathbb{R}^d} \left\{ \frac{1}{n} \sum_{i=1}^{n} g_i(x) \right\},
\]

where \(B = \frac{1}{n}[b_1, b_2, \ldots, b_n]^T\) and \(g^*(y) = \frac{1}{n} \sum_{i=1}^{n} g_i^*(y_i)\) with the convex conjugate functions \(g_i^*(\cdot)\) satisfying \(g_i(b_i^T x) = \sup_{y_i} \{ y_i (b_i, x) - g_i^*(y_i) \}\). The nonsmooth loss \(g(x)\) in (P) is thereby decoupled into a bilinear term \(\langle B x, y \rangle\) and a separable function \(g^*(y)\) that admits an efficiently computable proximal operator. Due to the possible nonsmoothness of \(g(x)\), we can assume only that \(L(x, y)\) is concave w.r.t. \(y\)—but not strongly concave. Therefore, Problem (PD) is \(\sigma\)-strongly convex-(general) concave \((\sigma > 0)\).

By adding a strongly convex regularizer to the dual variable of (PD), Nesterov (2005b) optimized a smoothed variant of (P) using acceleration, thus improving the complexity bound from \(O(1/\epsilon^2)\) to \(O(1/\epsilon)\). Later, Nemirovski and Nesterov, respectively, showed that extragradient methods such as mirror-prox (Nemirovski, 2004) and dual extrapolation (Nesterov, 2007) can obtain the same \(O(1/\epsilon)\) complexity bound for (PD) directly, without the use of smoothing or Nesterov’s acceleration. (Extragradient methods perform updates twice per iteration, for both primal and dual variables.) Chambolle & Pock (2011) introduced an extrapolated primal-dual hybrid gradient (PDHG) method to obtain the same \(O(1/\epsilon)\) complexity, using an extrapolation step on either the primal or dual variable rather than an extragradient step. Thus, PDHG needs to update primal and dual variables just once per iteration. All three kinds of methods have been extensively studied from different perspectives (Nesterov, 2005a; Chen et al., 2017; Tran-Dinh et al., 2018; Song et al., 2020b; Diakonikolas et al., 2020). For large \(n\), the focus has been on randomized variants with low-per-iteration cost (Zhang & Lin, 2015; Alacaoglu et al., 2017; Tan et al., 2018; Chambolle et al., 2018; Carmon et al., 2019; Lei et al., 2019; Devraj & Chen, 2019; Alacaoglu et al., 2020).

Exploiting the finite-sum structure. The deterministic methods discussed above have per-iteration cost \(O(nd)\), which can be prohibitively high for large \(n\). There has been much work on randomized methods whose per-iteration cost is independent of \(n\). To be efficient, the iteration count of such methods cannot increase too much over the deterministic methods. A major development in the past decade of research has been the use of variance reduction in randomized optimization algorithms, which reduces the per-iteration cost and improves the overall complexity. For the variant of Problem (P) in which \(g(x)\) is smooth, there exists a vast literature on developing efficient finite-sum solvers; see for example Roux et al. (2012); Johnson & Zhang (2013); Lin et al. (2014); Zhang & Lin (2015); Allen-Zhu (2017); Zhou et al. (2018); Lan et al. (2019); Song et al. (2020a).

The **Variance Reduction via Accelerated Dual Averaging (VRADA)** algorithm of Song et al. (2020a) matches all three lower bounds from Woodworth & Srebro (2016); Hannah et al. (2018) for the smooth and (general/full-conditioned strongly/well-conditioned strongly) convex settings, using a simple, unified algorithm description and convergence analysis. As discussed in Song et al. (2020a), the efficiency, simplicity, and unification of VRADA are due to a novel initialization strategy and to randomizing accelerated dual averaging rather than accelerated mirror descent (as was done in Allen-Zhu (2017)). These results provide the main motivation for our current work.

When the loss function is nonsmooth, classical variance reduction approaches such as SVRG and SAGA (Johnson & Zhang, 2013; Defazio et al., 2014) are no longer applicable. Allen-Zhu & Hazan (2016); Allen-Zhu (2017) propose to smoothen and regularize (P) and then apply existing finite-sum solvers, such as Katyusha. As shown by Allen-Zhu (2017), in the nonsmooth and general convex setting, the resulting overall complexity is improved from \(O\left(\frac{nd}{\epsilon^2}\right)\) to \(O(\min\{\frac{1}{\epsilon}, n\} + \frac{\sqrt{n}d}{\epsilon})\); in the nonsmooth and strongly convex setting, it is improved from \(O\left(\frac{nd}{\epsilon^2}\right)\) to \(O(\min\{\frac{1}{\epsilon}, n\} + \frac{\sqrt{n}d}{\epsilon})\). Both of these improved complexity results match the lower bounds of Woodworth & Srebro (2016) for general nonsmooth finite-sums when \(\epsilon\) is small. However, the smoothing and regularization require tuning of additional parameters, which complicates the algorithm implementation. Meanwhile, it is not clear whether the complexity can be further improved to take advantage of the additional ERM structure of (P).

For the nonsmooth ERM problem (P) considered here, and its primal-dual formulation, the literature is much scarcer (Dang & Lan, 2014; Alacaoglu et al., 2017; Chambolle et al., 2018; Carmon et al., 2019; Latafat et al., 2019; Fercq & Bianchi, 2019; Alacaoglu et al., 2020). All existing methods target (PD) directly and focus on extending the aforementioned deterministic algorithms to this case. Because sampling one element of the finite sum from (P) is reduced to sampling one dual coordinate in (PD), all these methods can be viewed as coordinate variants of the deterministic counterparts. For convenience, we explicitly rewrite (PD) in the following finite-sum primal-dual-form:

\[
\min_{x \in \mathbb{R}^d} \max_{y \in \mathbb{R}^n} \frac{1}{n} \sum_{i=1}^{n} \{g_i(b_i, x) - g_i^*(y_i)\} + \ell(x).
\]
Table 1. Overall complexity and per-iteration cost for solving (FS-PD) in the σ-strongly convex-general concave setting ($\sigma \geq 0$). (“—” indicates that the corresponding result does not exist or is unknown.)

Algorithm	General Convex (Primal-Dual Gap)	Strongly Convex (Primal-Dual Gap)	Strongly Convex (Distance to Solution)	Per-Iteration Cost
RPD Dang & Lan (2014)	$O\left(\frac{n^{3/2}d}{\epsilon}\right)$	$O\left(\frac{n^{3/2}d}{\sqrt[5]{\epsilon}}\right)$	—	$O(d)$
SMART-CD Alacaoglu et al. (2017)	$O\left(\frac{n}{\epsilon}\right)$	—	—	$O(d)$
Carmon et al. (2019)	$O(n d + \frac{\sqrt{n}d(n+d)\log(nd)}{\epsilon})$	—	—	$O(n + d)$
SPDHG Chambolle et al. (2018)	$O\left(\frac{n}{\epsilon}\right)$	—	$O\left(\frac{nd}{\sigma\sqrt{d}}\right)$	$O(d)$
PURE-CD Alacaoglu et al. (2020)	$O\left(\frac{n^2d}{\epsilon}\right)$	—	—	$O(d)$
VRPDA (This Paper)	$O(nd \log \min\{\frac{1}{\epsilon}, n\} + \frac{d}{\sqrt{\epsilon}})$	$O(nd \log \min\{\frac{1}{\epsilon}, n\} + \frac{d}{\sqrt{\epsilon}})$	$O(nd \log \min\{\frac{1}{\epsilon}, n\} + \frac{d}{\sqrt{\epsilon}})$	$O(d)$

*1 It is only applicable when ϵ is small enough (see Chambolle et al. (2018, Theorem 5.1)).

Existing approaches.
Table 1 compares VRPDA2 to existing randomized algorithms for solving (FS-PD) in terms of the overall complexity and per-iteration cost under the setting of uniform sampling and general (i.e., not necessarily sparse) data matrix. The algorithms RPD, SMART-CD, SPDHG, and PURE-CD all attain $O(d)$ per-iteration cost, but have overall complexity no better than that of the deterministic algorithms in both the nonsmooth and general/strongly convex settings. Meanwhile, the algorithms of Carmon et al. (2019) perform full-coordinate updates with $O(n + d)$ per-iteration cost and improve the dependence on the dimension d when $n \geq d$. However, the overall dependence on the dominant term n is still not improved, which raises the question of whether it is even possible to simultaneously achieve the low $O(d)$ per-iteration cost and reduce the overall complexity compared to the deterministic algorithms. Addressing this question is the main contribution of our work.

Our contributions.
We propose the VRPDA2 algorithm for (FS-PD) in the σ-strongly convex-general concave setting ($\sigma \geq 0$), which corresponds to the nonsmooth and σ-strongly convex setting of (P) ($\sigma \geq 0$). For both $\sigma = 0$ and $\sigma > 0$, VRPDA2 has $O(d)$ per-iteration cost and significantly improves the best-known overall complexity results in a unified and simplified way. As shown in Table 1, to find an ϵ-accurate solution in terms of the primal-dual gap, the overall complexity of VRPDA2 is

$$
\begin{cases}
O(nd \log \min\{\frac{1}{\epsilon}, n\} + \frac{d}{\sqrt{\epsilon}}), & \text{if } \sigma = 0, \\
O(nd \log \min\{\frac{1}{\epsilon}, n\} + \frac{d}{\sqrt{\epsilon}}), & \text{if } \sigma > 0,
\end{cases}
$$

which is significantly better than any of the existing results for (FS-PD). In particular, we only need $O(nd \log n)$ overall cost to attain an ϵ-accurate solution with $\epsilon = \Omega\left(\frac{1}{n \log(n)}\right)$. Meanwhile, when ϵ is sufficiently small compared to $1/n$, so that the second term in the bound becomes dominant, the overall complexity ($O\left(\frac{d}{\epsilon}\right)$ for $\sigma = 0$ and $O\left(\frac{d}{\sqrt{\sigma} \epsilon}\right)$ for $\sigma > 0$) is independent of n, thus showing a $\Theta(n)$ improvement compared to the deterministic algorithms. To the best of our knowledge, even for smooth g_i’s, the improvement of existing algorithms is at most $\Theta(\sqrt{n})$ and is attained by accelerated variance reduction methods such as Katyusha (Allen-Zhu, 2017) and VRADA (Song et al., 2020a).

Comparison to lower bounds.
Our results may seem to contradict the iteration complexity lower bounds for composite objectives, which are $\Omega(n + \sqrt{n})$ for nonsmooth and general convex objectives and $\Omega(n + \sqrt{d})$ for nonsmooth and σ-strongly convex objectives (Woodworth & Srebro, 2016). In Woodworth & Srebro (2016, Section 5.1), the hard instance for proving the lower bounds has the form $f(x) = \frac{1}{n} \sum_{i=1}^{n} f_i(x)$—but each f_i is a sum of $k + 1$ “simple” terms, each having the form of our g_i’s. The complexity in Woodworth & Srebro (2016) for this hard instance is enabled by hiding the individual vectors corresponding to each simple term, an approach that is typical for oracle lower bounds. In their example, $k = \Theta\left(\frac{1}{\sqrt{d}}\right)$, so the total number of simple terms is $nk = \Theta\left(\frac{\sqrt{n}}{\epsilon}\right)$, which leads to the second term in the lower bound. (The first $\Omega(n)$ term in this lower bound comes from setting $\epsilon = \frac{1}{n \log(n)}$.) Applying our upper bound for iteration complexity to this hard case, we replace n by $nk = \Theta\left(\frac{\sqrt{n}}{\epsilon}\right)$ to obtain $O\left(\frac{\sqrt{n}}{\epsilon} \log(\frac{\sqrt{n}}{\epsilon})\right)$—higher than the Woodworth & Srebro (2016) lower bound would be if we were to replace n by nk. Thus, our results do not contradict these well known lower bounds.

Remarkably, our upper bounds show that use of the finite-sum primal-dual formulation (FS-PD) can lead not only to improvements in efficiency (dependence on ϵ), as in Nesterov (2005b), but also scalability (dependence on n). As the ERM problem (P) is one of the main motivations for convex finite-sum solvers, it would be interesting to characterize the complexity of the problem class (P) from the aspect of oracle lower bounds and determine whether VRPDA2 attains optimal oracle complexity. (We conjecture that it does, at
When \(\sigma \) Averaging (worth noting that although \(\text{PDA} \) which is based on mirror-descent-type updates (\(\| \cdot \| \)) \(\text{VRPDA} \) strong and general convexity, allowing us to treat both cases definition of strongly convex functions that captures both convex-general concave settings that correspond to the non-smooth and (general/strongly) convex-(general/strongly) concave settings, our analysis is based on the classical estimate sequence technique, but with a novel design of the estimate sequences that requires careful coupling of primal and dual portions of the gap; see Section 3 for a further discussion. The resulting argument allows us to use a unified parameter setting and proper settings is deferred to future research. In the following, we provide standard definitions and proper/strongly updates (Hazan et al., 2016)).

\[f(\hat{x}) \geq f(x) + \langle g_f(x), \hat{x} - x \rangle + \frac{\sigma}{2} \| \hat{x} - x \|^2. \]

Since we work with general nonsmooth convex functions \(f \), we require that their \(\text{proximal operators} \), defined as solutions to problems of the form \(\min_{x \in \mathbb{R}^d} \{ f(x) + \frac{1}{2\tau} \| x - \hat{x} \|^2 \} \) are efficiently solvable for any \(\tau > 0 \) and any \(\hat{x} \in \mathbb{R}^d \).

Problem definition. As discussed in the introduction, our focus is on Problem (PD) under the following assumption.

Assumption 1. \(g^*(y) \) is proper, l.s.c., and \(\gamma \)-strongly convex (\(\gamma \geq 0 \)); \(\ell(x) \) is proper, l.s.c., and \(\sigma \)-strongly convex (\(\sigma \geq 0 \)); the proximal operators of \(g^* \) and \(\ell \) can be computed efficiently; and \(\| B \| = R \) for some \(R \in (0, \infty) \).

Observe that since \(g^* \) and \(\ell \) are assumed only to be proper, l.s.c., and (strongly) convex, they may contain indicators of closed convex sets in their description. Thus, certain constrained optimization problems are included in the problem class described by Assumption 1. We use \(\mathcal{X} \) and \(\mathcal{Y} \) to denote the domains of \(\ell \) and \(g^* \), respectively, defined by \(\mathcal{X} = \text{dom}(\ell) = \{ x : \ell(x) < \infty \}, \mathcal{Y} = \text{dom}(g^*) = \{ y : g^*(y) < \infty \} \). When \(\mathcal{X}, \mathcal{Y} \) are bounded, we use \(D_X, D_Y \) to denote their diameters: \(D_X = \max_{x, u \in \mathcal{X}} \| x - u \|, D_Y = \max_{y, v \in \mathcal{Y}} \| y - v \| \).

Note that Assumption 1 does not enforce a finite-sum structure of \(g^* \) (and \(g \)). Thus, for the results that utilize variance reduction, we will make a further assumption.

Assumption 2. \(g^*(y) = \frac{1}{n} \sum_{i=1}^n g_i^*(y_i) \), where each \(g_i^*(y_i) \) is convex and has an efficiently computable proximal operator. Further, \(\| b_i \| \leq R', \) for all \(i \in \{1, \ldots, n\} \).

Recall that \(B = \frac{1}{n} [b_1, b_2, \ldots, b_n]^T \). Observe that \(R = \| B \| \leq \frac{1}{n} \left(\sum_{i=1}^n \| b_i \|^2 \right)^{1/2} \leq \frac{1}{\sqrt{n}} \sum_{i=1}^n \| b_i \| \leq R' \).

Observe further that, under Assumption 2, \(g^*(y) \) is separable over its coordinates. As a consequence, the domain \(\mathcal{Y} \) of \(g^* \) can be expressed as the Cartesian product of \(\text{dom}(g_i^*) \). This structure is crucial for variance reduction, as the algorithm in this case relies on performing coordinate descent updates over the dual variables \(y \).

Primal-dual gap. Given \(x \in \mathbb{R}^d \), the primal value of the problem (PD) is \(P(x) = \max_{x \in \mathbb{R}^d} L(x, v) \). Similarly, the dual value (PD) is defined by \(D(y) = \min_{y \in \mathbb{R}^n} L(u, y) \). Given a primal-dual pair \((x, y) \in \mathbb{R}^d \times \mathbb{R}^n \), primal-dual gap is then defined by \(\text{Gap}(x, y) = P(x) - D(y) = \max_{(u, v) \in \mathbb{R}^d \times \mathbb{R}^n} \text{Gap}^{u, v}(x, y) \), where we define

\[\text{Gap}^{u, v}(x, y) = L(x, v) - L(u, y). \]
Observe that, by definition of \(P(x) \) and \(D(y) \), the maximum of \(\text{Gap}^{u,v}(x, y) \) for fixed \((x, y) \) is attained when \((u, v) \in \mathcal{X} \times \mathcal{Y} \); so we can also write \(\text{Gap}(x, y) = \max_{(u, v) \in \mathcal{X} \times \mathcal{Y}} \text{Gap}^{u,v}(x, y) \).

For our analysis, it is useful to work with the relaxed gap \(\text{Gap}^{u,v}(x, y) \). In particular, to bound the primal-dual gap \(\text{Gap}(x, y) \) for a candidate solution pair \((x, y) \) constructed by the algorithm, we first bound \(\text{Gap}^{u,v}(x, y) \) for arbitrary \((u, v) \in \mathcal{X} \times \mathcal{Y} \). The bound on \(\text{Gap}(x, y) \) then follows by taking the supremum of \(\text{Gap}^{u,v}(x, y) \) over \((u, v) \in \mathcal{X} \times \mathcal{Y} \). In general, \(\text{Gap}(x, y) \) can be bounded by a finite quantity only when \(\mathcal{X}, \mathcal{Y} \) are compact (Nesterov, 2005b; Ouyang & Xu, 2019). If either of \(\mathcal{X}, \mathcal{Y} \) is unbounded, to provide meaningful results and similar to Chambolle & Pock (2011), we assume that an optimal primal-dual pair \((x^*, y^*) \) for which \(\text{Gap}(x^*, y^*) = 0 \) exists, and bound the primal-dual gap in a ball around \((x^*, y^*) \).

Auxiliary results. Additional auxiliary results on growth of sequences that are needed when establishing convergence rates in our results are provided in Appendix C.

3. Primal-Dual Accelerated Dual Averaging

In this section, we provide the \(\text{PDA}^2 \) algorithm for solving Problem (PD) under Assumption 1. The results in this section provide the basis for our results in Section 4 for the finite-sum primal-dual setting.

\(\text{PDA}^2 \) is described in Algorithm 1. Observe that the points \(u, v \) in the definitions of estimate sequences \(\phi_k(x), \psi_k(y) \) do not play a role in the definitions of \(x_k, y_k \), as the corresponding \(\arg \min \) is independent of \(u \) and \(v \). They appear in the definitions of \(\phi_k(x), \psi_k(y) \) only for the convenience of the convergence analysis; the algorithm itself can be stated without them.

We now outline the main technical ideas in the \(\text{PDA}^2 \) algorithm. To bound the relaxed notion of the primal-dual gap \(\text{Gap}^{u,v}(\tilde{x}_k, \tilde{y}_k) \) discussed in Section 2, we use estimate sequences \(\phi_k(x), \psi_k(y) \) defined in the algorithm. Unlike the classical estimate sequences used, for example, in Nesterov (2005b), these estimate sequences do not directly estimate the values of the primal and dual, but instead contain additional bilinear terms, which are crucial for forming an intricate coupling argument between the primal and the dual that leads to the desired convergence bounds. In particular, the bilinear term in the definition of \(\psi_k \) is defined w.r.t. an extrapolated point \(x_{k-1} \). This extrapolated point is not guaranteed to lie in the domain of \(\ell \), but because this point appears only in bilinear terms, we never need to evaluate either \(\ell \) or its subgradient at \(x_{k-1} \). Instead, the extrapolated point plays a role in cancelling error terms that appear when relating the estimate sequences to \(\text{Gap}^{u,v}(\tilde{x}_k, \tilde{y}_k) \).

Our main technical result for this section concerning the convergence of \(\text{PDA}^2 \) is summarized in the following theorem. The proof of this result and supporting technical results are provided in Appendix A.

Theorem 1. Under Assumption 1, for Algorithm 1, we have, \(\forall (u, v) \in \mathcal{X} \times \mathcal{Y} \) and \(k \geq 1 \),

\[
\text{Gap}^{u,v}(\tilde{x}_k, \tilde{y}_k) \leq \frac{\|u - x_0\|^2 + \|v - y_0\|^2}{2A_k},
\]

where \(\tilde{x}_k = \frac{1}{A_k} \sum_{i=1}^{k} a_i x_i \), \(\tilde{y}_k = \frac{1}{A_k} \sum_{i=1}^{k} a_i y_i \).

Further, if \((x^*, y^*) \) is a primal-dual solution to (PD), then

\[
(1 + \sigma A_k)\|x_k - x^*\|^2 + \frac{1 + \gamma A_k}{2}\|y_k - y^*\|^2 \leq \|x_0 - x^*\|^2 + \|y_0 - y^*\|^2.
\]

In both cases, the growth of \(A_k \) can be bounded below as

\[
A_k \geq \frac{1}{\sqrt{2R}} \max \left\{ k, \left(1 + \frac{\sqrt{\sigma^2}}{\sqrt{2R}}\right)^{-k-1}, \frac{\sigma}{9\sqrt{2R}} \left(\|k - k_0\| + \max \left\{3.5\sqrt{R}, 1\right\}\right)^2, \frac{\gamma}{9\sqrt{2R}} \left(\|k - k_0'\| + \max \left\{3.5\sqrt{R}, 1\right\}\right)^2 \right\},
\]

where \(\cdot \) is the ceiling function, \(k_0 = \left\lfloor \frac{\sigma}{\sqrt{2R}} \right\rfloor \), and \(k_0' = \left\lfloor \frac{\gamma}{\sqrt{2R}} \right\rfloor \).

Remark 1. As \(\sigma \geq 0 \) and \(\gamma \geq 0 \), Theorem 1 guarantees that all iterates of \(\text{PDA}^2 \) remain within a bounded set, due to Eq. (2). In particular, \(x_k \in B(x^*, r_0), y_k \in B(y^*, \sqrt{2r_0}) \), where \(r_0 = \sqrt{\|x_0 - x^*\|^2 + \|y_0 - y^*\|^2} \) and \(B(z, r) \) denotes the Euclidean ball of radius \(r \), centered at \(z \). Moreover, by rearranging Eq. (2), we can conclude that \(\|x^* - x_k\|^2 \leq \frac{\gamma r_0^2}{1+\gamma A_k} \) and \(\|y^* - y_k\|^2 \leq \frac{2\sigma r_0^2}{1+\sigma A_k} \).
Remark 2. Observe that when the domains of g^* and ℓ are bounded (i.e., when $D_x < \infty$, $D_y < \infty$, and, in particular, in the setting of constrained optimization over compact sets), Theorem 1 implies the following bound on the primal-dual gap $\text{Gap}(\tilde{x}_k, y_k) \leq \frac{D_x^2 + D_y^2}{4k}$. This bound can be shown to be optimal, using results from Ouyang & Xu (2019). For unbounded domains of g^* and ℓ, it is generally not possible to have any finite bound on $\text{Gap}(x, y)$ unless $(x, y) = (x^*, y^*)$ (for a concrete example, see, e.g., Diakonikolas (2020)). In such a case, it is common to restrict u, v to bounded sets that include x^*, y^*, such as $B(x^*, r_0), B(y^*, \sqrt{2r_0})$ from Remark 1 (Chambolle & Pock, 2011).

Remark 3. To bound the function value gap $f(\tilde{x}_k) - f(x^*)$ for Problem (P) using Theorem 1, we need only that D_y is bounded, leading to the bound $f(\tilde{x}_k) - f(x^*) \leq \frac{4r_0^2 + D_y^2}{4k}$, where $r_0 = \sqrt{\|x_0 - x^*\|^2 + \|y_0 - y^*\|^2}$ as in Remark 1, since for $u \in B(x^*, r_0)$ we have that $\|u - x_0\| \leq 2r_0$. To see this, note that, as the iterates x_k of PDA are guaranteed to remain in $B(x^*, r_0)$ (by Remark 1), there is no difference between applying this algorithm to f or to $f + I_{B(x^*, r_0)}$, where $I_{B(x^*, r_0)}$ is the indicator function of $B(x^*, r_0)$. This allows us to restrict $u \in B(x^*, r_0)$ when bounding $f(\tilde{x}_k) - f(x^*)$ by $\text{Gap}^u,v(\tilde{x}_k, y_k)$. Note that for typical instances of nonsmooth ERM problems, the domain \mathcal{Y} of g^* is compact. Further, if g^* is strongly convex ($\gamma > 0$), then the set $\mathcal{Y} := \{\arg\max_{y \in \mathcal{Y}} \langle Bx, y \rangle - g^*(y) : x \in B(x^*, r_0)\}$ is guaranteed to be compact. This claim follows from standard results, as in this case $\arg\max_{y \in \mathcal{Y}} \langle Bx, y \rangle - g^*(y) = \nabla g(Bx)$ (by the standard Fenchel-Young inequality; see, e.g., Rockafellar & Wets (2009, Proposition 11.3)) and g is $\frac{1}{\gamma}$-smooth. Thus, $\sup_{x,u \in B(x^*, r_0)} \|v - y\| = \sup_{x,u \in B(x^*, r_0)} \|\nabla g(Bx) - \nabla g(Bu)\| \leq \frac{\gamma r_0}{2}$.

4. Variance Reduction via Primal-Dual Accelerated Dual Averaging

We now study the finite-sum form (FS-PD) of (PD), making use of the properties of the finite-sum terms described in Assumption 2. In Algorithm 2, we describe VRPDA2 which is a randomized coordinate variant of the PDA2 algorithm from Section 3. By extending the unified nature of PDA2, VRPDA2 provides a unified and simplified treatment for both the general convex-general concave ($\sigma = 0$) setting and the strongly convex-general concave setting.

To provide an algorithm with complexity better than the deterministic counterpart PDA2, we combine the deterministic initialization strategy of full primal-dual update in Steps 4-6 with randomized primal-dual updates in the main loop—a strategy inspired by the recent paper of Song et al. (2020a). The use of the factor n during initialization, in Step 7, helps to cancel an error term of order $O(n)$ in the analysis. The main loop (Steps 8-15) randomizes the main loop of PDA2 by introducing sampling in Step 10 and adding an auxiliary variable \tilde{x}_k that is updated with $O(d)$ cost in Step 13. (z_1 is initialized in Step 5.) In Step 11, we update the estimate sequence ψ_k by adding a term involving only the j_k component of the finite sum, rather than the entire sum, as is required in Step 8 of Algorithm 1. As a result, although we define the estimate sequence for the entire vector y_k, each update to y_k requires updating only the j_k coordinate of y_k. In Step 12, we use a “variance reduced gradient” $z_{k-1} + \langle y_{k,j} - y_{k-1,j} \rangle b_{j_k}$ to update ϕ_k, helping to cancel the error from the randomized update of Step 10. The update of the sequences $\{a_k\}, \{A_k\}$ appears to the end of the main loop, to accommodate their modified definitions. The modified update for a_{k+1} ensures that a_k cannot have exponential growth with a rate higher than $(1 + \frac{1}{n-1})$, which is an intrinsic constraint for sampling with replacement (see Song et al. (2020a); Hassan et al. (2018)).

Finally, as Algorithm 2 is tailored to the nonsmooth ERM problem (P), we only return the last iterate \tilde{x}_k or the weighted average iterate \tilde{x}_k^\star on the primal side, even though we provide guarantees for both primal and dual variables.

Algorithm 2 provides sufficient detail for the convergence analysis, but its efficient implementation is not immediately clear, due especially to Step 11. An implementable version is described in Appendix D, showing that the per-iteration cost is $O(d)$ and that $O(n)$ additional storage is required.

Our main technical result is summarized in Theorem 2. Its proof relies on three main technical lemmas that bound the growth of estimate sequences $\phi_k(x_k)$ and $\psi_k(y_k)$ below and above. Proofs are provided in Appendices B and C.

Theorem 2. Suppose that Assumption 2 holds. Then for any $(u, v) \in \mathcal{X} \times \mathcal{Y}$, the vectors $x_k, y_k, k = 2, 3, \ldots, K$ and the average $\tilde{x}_k = \frac{1}{K} \sum_{i=1}^{K} a_i x_i$, generated by Algorithm 2 satisfy the following bound for $k = 2, 3, \ldots, K$:

$$E[\text{Gap}^u,v(\tilde{x}_k, y_k)] \leq \frac{n(\|u - x_0\|^2 + \|v - y_0\|^2)}{2A_k},$$

where $y_k := \frac{\sum_{i=1}^{k} b_i}{A_k} u + \sum_{i=2}^{k} (a_i - (n-1)a_{i-1}) y_i$.

Moreover, if (x^*, y^*) is a primal-dual solution to (PD), then

$$E \left[\frac{n}{4} \left(\|y^* - y_k\|^2 + \frac{n+\sigma A_k}{2} \|x^* - x_k\|^2 \right) \right] \leq \frac{n(\|x^* - x_0\|^2 + \|y^* - y_0\|^2)}{2}.$$

In both cases, A_k is bounded below as follows:

$$A_k \geq \max \left\{ \frac{n-1}{2R^2} \left(1 + \frac{1}{n-1} \right)^k \mathbb{1}_{k \leq k_0}, \frac{(n-1)^2 \sigma}{(4R^2)^2 n} (k - k_0 + n - 1)^2 \mathbb{1}_{k \geq k_0}, \frac{n(k - K_0 + n - 1)}{2R^2} \mathbb{1}_{k \geq K_0} \right\},$$

where $k_0 = 0, k_1 = 1, \ldots, K$.

Algorithm 2 Variance Reduction via Primal-Dual Accelerated Dual Averaging (VRPDA2)

1. **Input**: $(x_0, y_0) \in X \times Y$, $(u, v) \in X \times Y$, $\sigma \geq 0$, $R' > 0$, K, n.
2. $\phi_0(\cdot) = \frac{1}{2} \| - x_0 \|^2$, $\psi_0(\cdot) = \frac{1}{2} \| - y_0 \|^2$.
3. $a_0 = A_0 = 0$, $\alpha_1 = \frac{1}{2R'}$.
4. $y_1 = \arg\min_{y \in \mathbb{R}^d} \{ \psi_1(y) := \psi_0(y) + \tilde{a}_1((-Bx_0, y - v) + g^*(y)) \}$.
5. $z_1 = B^T y_1$.
6. $x_1 = \arg\min_{x \in \mathbb{R}^d} \{ \tilde{\phi}_1(x) := \phi_0(x) + \tilde{a}_1((x - u, z_1) + \ell(x)) \}$.
7. $\psi_1 := n\psi_1, \phi_1 := n\phi_1, a_1 = A_1 = n\tilde{a}_1, a_2 = \frac{1}{n-1}a_1, A_2 = A_1 + a_2$.
8. **for** $k = 2, 3, \ldots, K$ **do**
9. \hspace{1em} $x_{k-1} = x_{k-1} + \frac{a_k}{a_k-1} (x_k - x_{k-2})$.
10. **Pick** j_k uniformly at random in $[n]$.
11. $y_k = \arg\min_{y \in \mathbb{R}^n} \{ \psi_k(y) = \psi_{k-1}(y) + a_k (B_{j_k}^T \tilde{x}_{k-1} - y + g^*_j(y_j)) \}$.
12. $x_k = \arg\min_{x \in \mathbb{R}^d} \{ \phi_k(x) = \phi_{k-1}(x) + a_k ((x - u, z_{k-1} + y_{k-1} - y_{k-1,j_k})) B_{j_k} + \ell(x)) \}$.
13. $z_k = x_{k-1} + \frac{1}{2} (y_{k,j_k} - y_{k-1,j_k}) B_{j_k}$.
14. $a_{k+1} = \min \left((1 + \frac{1}{n-1}) a_k, \frac{\sqrt{(n(n+\sigma)A_k)}}{2R'} \right), A_{k+1} = A_k + a_{k+1}$.
15. **end for**
16. **return** x_K or \tilde{x}_K := $\frac{1}{A_K} \sum_{i=1}^K a_i x_i$.

where $\mathbb{1}$ denotes the indicator function, $K_0 = \left[\frac{\log(n)}{\log(n) + \log(n-1)} \right]$, $k_0 = \left[\frac{\log(B_{n,\rho,R'})}{\log(n) + \log(n-1)} \right]$, and

\[B_{n,\rho,R'} = \frac{\sigma n(n-1)}{4R'} + \sqrt{\left(\frac{\sigma(n(n-1))}{4R'} \right)^2 + n^2} \]

\[\geq n \max \left\{ 1, \frac{\sigma(n(n-1))}{2R'} \right\} . \]

Observe that, due to the randomized nature of the algorithm, the convergence bounds are obtained in expectation w.r.t. the random choices of coordinates j_k over iterations.

Now let us comment on the iteration complexity of VRPDA2, given target error $\epsilon > 0$. For concreteness, let $D^2 := \| u - x_0 \|^2 + \| u - y_0 \|^2$, where D^2 can be bounded using the same reasoning as in Remarks 2 and 3. To bound the gap by ϵ, we need $A_k \geq \frac{D^2}{2\epsilon}$. When $\epsilon \geq \frac{\sqrt{nR_D^2}}{n-1},$ then $k = \left\lceil \frac{\log(nR_D^2)}{\log(n) + \log(n-1)} \right\rceil = O \left(n \log \left(\frac{R_D}{\epsilon} \right) \right)$ iterations suffice, as in this case $k \leq k_0$. When $\epsilon < \frac{\sqrt{nR_D^2}}{n-1},$ then the bound on k is obtained by ensuring that either of the last two terms bounding A_k below in Theorem 2 is bounded below by $\frac{nD^2}{2\epsilon}$, leading to $k = O \left(n \log(B_{n,\rho,R'}) + \min \left\{ \frac{R_D}{\sqrt{n}}, \frac{R_D^2}{\epsilon} \right\} \right)$.

5. Numerical Experiments

We study the performance of VRPDA2 using the elastic-net-regularized support vector machine (SVM) problem, which corresponds to (P) with $g_j(b_j^T x) = \max \{ 1 - c_j b_j^T x, 0 \}$, $c_j \in \{ 1, -1 \}$ and $\ell(x) = \lambda \| x \|_1 + \frac{1}{2} \| x \|_2^2$, $\lambda \geq 0$, $\sigma \geq 0$.

This problem is nonsmooth and general convex if $\sigma = 0$ or strongly convex if $\sigma > 0$. Its primal-dual formulation is

\[\min_{x \in \mathbb{R}^d, -1 \leq y \leq 0, \in \mathbb{I}[n]} L(x, y), \]

\[L(x, y) = \frac{1}{n} \sum_{i=1}^n \left((c_i b_i, x) - 1 \right) + \lambda \| x \|_1 + \frac{\sigma}{2} \| x \|_2^2. \]

We compare VRPDA2 with two competitive algorithms SPDHG (Chambolle et al., 2018) and PURE-CD (Alacaoglu et al., 2020) on standard a9a and MNIST datasets from the LIBSVM library (LIB). Both datasets are large, with $n = 32, 561, d = 123$ for a9a, and $n = 60, 000, d = 780$ for MNIST. For simplicity, we normalize each data sample to unit Euclidean norm, so that the Lipschitz constants appearing in the analysis (such as R' in VRPDA2) are at most 1. We then scale these Lipschitz constants by $\{ 0.1, 0.25, 0.5, 0.75, 1 \}^2$. As is standard for SVM, we plot the function value gap of the primal problem (P) in terms of the number of passes over the dataset. The plotted function value gap was evaluated using an estimated value f^* of $f^* = \arg\min_x f(x)$. For the plots to depict an accurate estimate of the function value gap, the true function value gap $f^* - f^*$ must dominate the error of the estimate $\tilde{f}^* - f^*$.

In our numerical experiments, this is achieved by running the algorithms 30 times as many iterations as are shown in the plots, choosing the lowest function value f_{\min} observed over this extended run and over all algorithms, and setting $\tilde{f}^* = f_{\min} - \delta$, where δ is either 10^{-8} or 10^{-13}, depending on the value of σ.

We fix the l_1-regularization parameter λ to 10^{-4} and vary $\sigma \in \{ 0, 10^{-8}, 10^{-4} \}$, to represent the general convex, ill-posed problems from Image Denoising.

1For each sample of MNIST, we assign the label as 1 if it is in $\{ 5, 6, \ldots, 9 \}$ and −1 otherwise.
2In our experiments, all the algorithms diverge when the Lipschitz constant is set to 0.1.
conditioned strongly convex, and well-conditioned strongly convex settings, respectively. For all the settings, we provide the comparison in terms of the average and last iterate. As can be observed from Figure 1, the iterate averaging yields much smoother curves, decreasing monotonically, and is generally more accurate than the last iterate. This is expected for the nonsmooth and general convex setting, as there are no theoretical guarantees for the last iterate, while for other cases the guarantee for the last iterate is on the distance to optimum, not the primal gap. As can be seen in Figure 1, the average iterate of VRPDA2 is either competitive with or improves upon SPDHG and PURE_CD.

As can be observed from Figure 1, there is a noticeable difference in the performance of all the algorithms when their function value gap is evaluated at the average iterate versus the last iterate. For VRPDA2, a dual averaging-style method that has a sparsity-promoting property (Xiao, 2010), this difference comes from the significantly different sparsity of the average iterate and last iterate. As shown in Figure 2, the average iterate is less sparse but provides a more accurate fit, while the last iterate is sparser (and thus more robust) but less accurate. For SPDHG, the last iterate is significantly more accurate than the average iterate in the strongly convex settings ($\sigma \in \{10^{-8}, 10^{-4}\}$), because simple uniform average we use may not be the best choice for the two settings. Meanwhile, the better performance of SPDHG compared with VRPDA2 in terms of the last iterate is due partly to the fact that it is a mirror descent-style algorithm with less-sparse last iterate. In our experiments, the PURE_CD algorithm is always worse than VRPDA2 and SPDHG, which is partly consistent with its worse convergence guarantee as shown in Table 1. However, as PURE_CD is targeted to sparse datasets, it may have a better runtime performance in such settings, as shown in Alacaoglu et al. (2020).

Meanwhile, the performance of the average iterate of VRPDA2 and the last iterate of SPDHG is almost the same (the figures for the average iterate and the last iterate under the
Variance Reduction via Primal-Dual Accelerated Dual Averaging

(a) $a9a$, $\sigma = 0$, average (b) $a9a$, $\sigma = 0$, last (c) MNIST, $\sigma = 0$, average (d) MNIST, $\sigma = 0$, last

(e) $a9a$, $\sigma = 10^{-8}$, average (f) $a9a$, $\sigma = 10^{-8}$, last (g) MNIST, $\sigma = 10^{-8}$, average (h) MNIST, $\sigma = 10^{-8}$, last

(i) $a9a$, $\sigma = 10^{-4}$, average (j) $a9a$, $\sigma = 10^{-4}$, last (k) MNIST, $\sigma = 10^{-4}$, average (l) MNIST, $\sigma = 10^{-4}$, last

Figure 2. Comparison of sparsity for VRPDA2, SPDHG, and PURE CD run for the elastic net-regularized SVM problem, on $a9a$ and MNIST datasets. In all the plots, σ is the strong convexity parameter of the regularizer ℓ; “last” refers to the last iterate, “average” to the average iterate. For all problem instances, VRPDA2 generally constructs the sparsest solutions out of the three algorithms. (The number of nonzeros is computed by counting the elements with absolute value larger than 10^{-7}.)

same setting use the same scale), which is surprising in that VRPDA2 has n-times better theoretical guarantees than SPDHG for small ϵ. The better theoretical guarantee of VRPDA2 comes from the particular initialization strategy inspired by Song et al. (2020a). Nevertheless, similar to the experimental results in Song et al. (2020a), no significant performance gain (or loss) due to this initialization strategy is observed in practice. Thus, it is of interest to explore whether the initialization strategy is essential for improved algorithm performance or if it is needed only for the theoretical argument to go through.

6. Discussion

We introduced VRPDA2, a variance-reduced primal-dual accelerated dual averaging algorithm for structured nonsmooth ERM problems in machine learning. We show that VRPDA2 leverages the separable structure of common ERM problems to achieve the best known convergence rates on this class of problems, with good practical performance. It even improves upon the lower bounds for (general, non-structured) composite optimization. It remain an open question to obtain tighter lower bounds for the problem class to which VRPDA2 applies, possibly certifying its optimality, at least for small target error ϵ. Another direction is addressing settings with strongly convex loss functions currently not addressed by VRPDA2, which may require very different techniques.

Acknowledgements

CS acknowledges support from the NSF award 2023239. JD acknowledges support from the Office of the Vice Chancellor for Research and Graduate Education at the University of Wisconsin–Madison with funding from the Wisconsin Alumni Research Foundation. SW acknowledges support from NSF Awards 1740707, 1839338, 1934612, and 2023239 and Subcontract 8F-30039 from Argonne National Laboratory.
References

LIBSVM Library. https://www.csie.ntu.edu.tw/~cjlin/libsvm/index.html. Accessed: Feb. 3, 2020.

Alacaoglu, A., Dinh, Q. T., Fercoq, O., and Cevher, V. Smooth primal-dual coordinate descent algorithms for nonsmooth convex optimization. In Proc. NIPS’17, 2017.

Alacaoglu, A., Fercoq, O., and Cevher, V. Random extrapolation for primal-dual coordinate descent. In Proc. ICML’20, 2020.

Allen-Zhu, Z. Katyusha: The first direct acceleration of stochastic gradient methods. In Proc. ACM STOC’17, 2017.

Allen-Zhu, Z. and Hazan, E. Optimal black-box reductions between optimization objectives. In Proc. NIPS’16, 2016.

Allen-Zhu, Z. and Orecchia, L. Linear coupling: An ultimate unification of gradient and mirror descent. In Proc. ITCS’17, 2017.

Carmon, Y., Jin, Y., Sidford, A., and Tian, K. Variance reduction for matrix games. In Proc. NeurIPS’19, 2019.

Chambolle, A. and Pock, T. A first-order primal-dual algorithm for convex problems with applications to imaging. Journal of mathematical imaging and vision, 40(1):120–145, 2011.

Chambolle, A., Ehrhardt, M. J., Richtárik, P., and Schonlieb, C.-B. Stochastic primal-dual hybrid gradient algorithm with arbitrary sampling and imaging applications. SIAM Journal on Optimization, 28(4):2783–2808, 2018.

Chen, Y., Lan, G., and Ouyang, Y. Accelerated schemes for a class of variational inequalities. Mathematical Programming, 165(1):113–149, 2017.

Dang, C. and Lan, G. Randomized first-order methods for saddle point optimization. arXiv preprint arXiv:1409.8625, 2014.

Defazio, A., Bach, F., and Lacoste-Julien, S. SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives. In Proc. NIPS’14, 2014.

Devraj, A. M. and Chen, J. Stochastic variance reduced primal dual algorithms for empirical composition optimization. In Proc. NeurIPS’19, 2019.

Diakonikolas, J. Halpern iteration for near-optimal and parameter-free monotone inclusion and strong solutions to variational inequalities. In Proc. COLT’20, 2020.

Diakonikolas, J., Daskalakis, C., and Jordan, M. I. Efficient methods for structured nonconvex-nonconcave min-max optimization. arXiv preprint arXiv:2011.00364, 2020.

Fercoq, O. and Bianchi, P. A coordinate-descent primal-dual algorithm with large step size and possibly nonseparable functions. SIAM Journal on Optimization, 29(1):100–134, 2019.

Hannah, R., Liu, Y., O’Connor, D., and Yin, W. Breaking the span assumption yields fast finite-sum minimization. In Proc. NeurIPS’18, 2018.

Hazan, E. et al. Introduction to online convex optimization. Foundations and Trends® in Optimization, 2(3-4):157–325, 2016.

Johnson, R. and Zhang, T. Accelerating stochastic gradient descent using predictive variance reduction. In Proc. NIPS’13, 2013.

Lan, G., Li, Z., and Zhou, Y. A unified variance-reduced accelerated gradient method for convex optimization. In Proc. NeurIPS’19, 2019.

Latafat, P., Freris, N. M., and Patrinos, P. A new randomized block-coordinate primal-dual proximal algorithm for distributed optimization. IEEE Transactions on Automatic Control, 64(10):4050–4065, 2019.

Lei, Q., Zhuo, J., Caramanis, C., Dhillon, I. S., and Dimakis, A. G. Primal-dual block generalized Frank-Wolfe. In Proc. NeurIPS’19, 2019.

Lin, Q., Lu, Z., and Xiao, L. An accelerated proximal coordinate gradient method. In Proc. NIPS’14, 2014.

Nemirovski, A. Prox-method with rate of convergence $O(1/t)$ for variational inequalities with Lipschitz continuous monotone operators and smooth convex-concave saddle point problems. SIAM Journal on Optimization, 15(1):229–251, 2004.

Nesterov, Y. Excessive gap technique in nonsmooth convex minimization. SIAM Journal on Optimization, 16(1):235–249, 2005a.

Nesterov, Y. Smooth minimization of non-smooth functions. Mathematical programming, 103(1):127–152, 2005b.

Nesterov, Y. Dual extrapolation and its applications to solving variational inequalities and related problems. Mathematical Programming, 109(2-3):319–344, 2007.

Nesterov, Y. Universal gradient methods for convex optimization problems. Mathematical Programming, 152(1-2):381–404, 2015.
Ouyang, Y. and Xu, Y. Lower complexity bounds of first-order methods for convex-concave bilinear saddle-point problems. *Mathematical Programming*, pp. 1–35, 2019.

Rockafellar, R. T. and Wets, R. J.-B. *Variational analysis*, volume 317. Springer Science & Business Media, 2009.

Roux, N., Schmidt, M., and Bach, F. A stochastic gradient method with an exponential convergence rate for finite training sets. In *Proc. NIPS’12*, 2012.

Song, C., Jiang, Y., and Ma, Y. Variance reduction via accelerated dual averaging for finite-sum optimization. In *Proc. NeurIPS’20*, 2020a.

Song, C., Zhou, Z., Zhou, Y., Jiang, Y., and Ma, Y. Optimistic dual extrapolation for coherent non-monotone variational inequalities. In *Proc. NeurIPS’20*, 2020b.

Tan, C., Zhang, T., Ma, S., and Liu, J. Stochastic primal-dual method for empirical risk minimization with O(1) per-iteration complexity. In *Proc. NeurIPS’18*, 2018.

Tran-Dinh, Q., Fercoq, O., and Cevher, V. A smooth primal-dual optimization framework for nonsmooth composite convex minimization. *SIAM Journal on Optimization*, 28 (1):96–134, 2018.

Woodworth, B. E. and Srebro, N. Tight complexity bounds for optimizing composite objectives. In *Proc. NIPS’16*, 2016.

Xiao, L. Dual averaging methods for regularized stochastic learning and online optimization. *Journal of Machine Learning Research*, 11(Oct):2543–2596, 2010.

Zhang, Y. and Lin, X. Stochastic primal-dual coordinate method for regularized empirical risk minimization. In *Proc. ICML’15*, 2015.

Zhou, K., Shang, F., and Cheng, J. A simple stochastic variance reduced algorithm with fast convergence rates. In *Proc. ICML’18*, 2018.
A. Omitted Proofs from Section 3

We start by proving two auxiliary lemmas that bound the growth of the estimate sequences \(\phi_k(x_k) \) and \(\psi_k(y_k) \) above and below, respectively.

Lemma 1. In Algorithm 1, \(\forall (u, v) \in \mathcal{X} \times \mathcal{Y} \) and \(k \geq 1 \), we have

\[
\psi_k(y_k) \leq A_k g^*(v) + \frac{1}{2} \|v - y_0\|^2 - \frac{1 + \gamma A_k}{2} \|v - y_k\|^2 \\
\phi_k(x_k) \leq A_k \ell(u) + \frac{1}{2} \|u - x_0\|^2 - \frac{1 + \sigma A_k}{2} \|u - x_k\|^2.
\]

Proof. By the definition of \(\psi_k(y) \) in Algorithm 1, it follows that, \(\forall k \geq 1 \),

\[
\psi_k(y) = \sum_{i=1}^{k} a_i((-Bx_{i-1}, y - v) + g^*(y_k)) + \frac{1}{2} \|y - y_0\|^2.
\]

As, by definition, \(y_k = \arg\min_{y \in \mathbb{R}^n} \psi_k(y) \) (see Algorithm 1; observe that, by definition of \(\psi_k \), it must be \(y_k \in \mathcal{Y} \)), it follows that there exists \(g^*(y_k) \in \partial g^*(y_k) \) such that

\[
\sum_{i=1}^{k} a_i(-Bx_{i-1} + g^*(y_k)) + (y_k - y_0) = 0.
\]

Thus, for any \(v \in \mathbb{R}^n \), we have that, \(\forall k \geq 1 \),

\[
\psi_k(y_k) = \sum_{i=1}^{k} a_i((-Bx_{i-1}, y_k - v) + g^*(y_k)) + \frac{1}{2} \|y_k - y_0\|^2
\]

\[
= \sum_{i=1}^{k} a_i((g^*(y_k), v - y_k) + g^*(y_k)) + (y_k - y_0, v - y_k) + \frac{1}{2} \|y_k - y_0\|^2
\]

\[
= A_k((g^*(y_k), v - y_k) + g^*(y_k)) + (y_k - y_0, v - y_k) + \frac{1}{2} \|y_k - y_0\|^2.
\]

As \(g^* \) is assumed to be \(\gamma \)-strongly convex, we have that \((g^*(y_k), v - y_k) + g^*(y_k) \leq g(v) - \frac{\gamma}{2} \|v - y_k\|^2 \). Thus, using that \((y_k - y_0, v - y_k) + \frac{1}{2} \|y_k - y_0\|^2 = \frac{1}{2} \|v - y_0\|^2 - \frac{1}{2} \|v - y_k\|^2 \), we further have

\[
\psi_k(y_k) \leq A_k \left(g^*(v) - \frac{\gamma}{2} \|v - y_k\|^2 \right) + \frac{1}{2} \|v - y_0\|^2 - \frac{1 + \gamma A_k}{2} \|v - y_k\|^2
\]

\[
= A_k g^*(v) + \frac{1}{2} \|v - y_0\|^2 - \frac{1 + \gamma A_k}{2} \|v - y_k\|^2,
\]

as claimed.

Bounding \(\phi_k(x_k) \) can be done using the same sequence of arguments and is thus omitted. \(\square \)

Lemma 2. In Algorithm 1, we have: \(\forall (u, v) \in \mathcal{X} \times \mathcal{Y} \) and \(k \geq 1 \),

\[
\psi_k(y_k) \geq \psi_{k-1}(y_{k-1}) + \frac{1 + \gamma A_k}{2} \|y_k - y_{k-1}\|^2 + a_k(g^*(y_k) + \langle -Bx_k, y_k - v \rangle)
\]

\[
+ a_k(B(x_k - x_{k-1}), y_k - v) - a_{k-1}(B(x_{k-1} - x_{k-2}), y_{k-1} - v)
\]

\[
- a_{k-1}(B(x_{k-1} - x_{k-2}), y_k - y_{k-1}),
\]

\[
\phi_k(x_k) \geq \phi_{k-1}(x_{k-1}) + \frac{1 + \sigma A_k}{2} \|x_k - x_{k-1}\|^2 + a_k((x_k - u, B^Ty_k) + \ell(x_k)).
\]

Proof. By the definition of \(\psi_k(y_k) \), the fact that \(y_{k-1} \) is optimal for \(\psi_{k-1} \), and the \(1 + \gamma A_{k-1} \)-strong convexity of \(\psi_{k-1}(y_{k-1}) \), we have the following: \(\forall k \geq 1 \),

\[
\psi_k(y_k) = \psi_{k-1}(y_k) + a_k((-Bx_{k-1}, y_k - v) + g^*(y_k))
\]

\[
\geq \psi_{k-1}(y_{k-1}) + \frac{1 + \gamma A_k}{2} \|y_k - y_{k-1}\|^2 + a_k((-Bx_{k-1}, y_k - v) + g^*(y_k)).
\]
On the other hand, by the definition of \bar{x}_{k-1}, we also have

$$
\langle -B\bar{x}_{k-1}, y_k-v \rangle = \langle -B(x_{k-1}-x_k), y_k-v \rangle + \langle -Bx_k, y_k-v \rangle
$$

$$
= \langle B(x_k-x_{k-1}), y_k-v \rangle - \frac{a_{k-1}}{a_k} \langle B(x_{k-1}-x_{k-2}), y_k-v \rangle + \langle -Bx_k, y_k-v \rangle
$$

$$
= \langle B(x_k-x_{k-1}), y_k-v \rangle - \frac{a_{k-1}}{a_k} \langle B(x_{k-1}-x_{k-2}), y_{k-1}-v \rangle
$$

$$
- \frac{a_{k-1}}{a_k} \langle B(x_{k-1}-x_{k-2}), y_k-y_{k-1} \rangle + \langle -Bx_k, y_k-v \rangle.
$$

Hence, combining Eqs. (3) and (4), we have

$$
\psi_k(y_k) \geq \psi_{k-1}(y_{k-1}) + \frac{1+\gamma A_{k-1}}{2} \|y_k-y_{k-1}\|^2 + a_k g^*(y_k)
$$

$$
+ a_k \langle B(x_k-x_{k-1}), y_k-v \rangle - a_{k-1} \langle B(x_{k-1}-x_{k-2}), y_{k-1}-v \rangle
$$

$$
- a_{k-1} \langle B(x_{k-1}-x_{k-2}), y_k-y_{k-1} \rangle + a_k \langle -Bx_k, y_k-v \rangle.
$$

Similarly, by the definition of ϕ_k, the $(1+\sigma A_{k-1})$-strong convexity of ϕ_{k-1}, and $x_{k-1} = \arg \min_{x \in \mathbb{R}^d} \phi_{k-1}(x)$, we have $\forall k \geq 1$ that

$$
\phi_k(x_k) = \phi_{k-1}(x_k) + a_k \langle x_k-u, B^Ty_k \rangle + \ell(x_k)
$$

$$
\geq \phi_{k-1}(x_{k-1}) + \frac{1+\sigma A_{k-1}}{2} \|x_k-x_{k-1}\|^2 + a_k \langle x_k-u, B^Ty_k \rangle + \ell(x_k),
$$

completing the proof.

We are now ready to prove Theorem 1.

Theorem 1. Under Assumption 1, for Algorithm 1, we have, $\forall (u,v) \in \mathcal{X} \times \mathcal{Y}$ and $k \geq 1$,

$$
\text{Gap}^{u,v}(\bar{x}_k, \bar{y}_k) \leq \frac{\|u-x_0\|^2 + \|v-y_0\|^2}{2A_k},
$$

where $\bar{x}_k = \frac{1}{A_k} \sum_{i=1}^{k} a_i x_i$, $\bar{y}_k = \frac{1}{A_k} \sum_{i=1}^{k} a_i y_i$.

Further, if (x^*, y^*) is a primal-dual solution to (PD), then

$$
(1+\sigma A_k)\|x_k-x^*\|^2 + \frac{1+\gamma A_k}{2} \|y_k-y^*\|^2
$$

$$
\leq \|x_0-x^*\|^2 + \|y_0-y^*\|^2.
$$

In both cases, the growth of A_k can be bounded below as

$$
A_k \geq \frac{1}{\sqrt{2R}} \max \left\{ k, \left(1 + \frac{\sqrt{\sigma}}{\sqrt{2R}} \right)^{k-1} \right\},
$$

$$
\frac{\sigma}{9\sqrt{2R}} \left[k - k_0 \right]_+ + \max \left\{ 3.5\sqrt{R}, 1 \right\},
$$

$$
\frac{\gamma}{9\sqrt{2R}} \left[k - k'_0 \right]_+ + \max \left\{ 3.5\sqrt{R}, 1 \right\},
$$

where $\lceil \cdot \rceil = \max\{\cdot, 0\}$, $k_0 = \left[\frac{\sigma}{9\sqrt{2R}} \right]$, and $k'_0 = \left[\frac{\gamma}{9\sqrt{2R}} \right]$.

Proof. Applying Lemma 2, we have
\[
\psi_k(y_k) + \phi_k(x_k) \geq \psi_{k-1}(y_{k-1}) + \phi_{k-1}(x_{k-1}) + a_k(B(x_k - x_{k-1}), y_k - y_{k-1}) + a_k(B(x_{k-1} - x_{k-2}, y_{k-1} - y_k)
\]
\[
+ \left[1 + \gamma A_{k-1}\|y_k - y_{k-1}\|^2 + \frac{1 + \sigma A_{k-1}}{2}\|x_k - x_{k-1}\|^2\right] - a_{k-1}(B(x_{k-1} - x_{k-2}, y_k - y_{k-1}) + a_k(g^*(y_k) + \ell(x_k) - \langle Bu, y_k\rangle + \langle x_k, B^Tv\rangle)\right]_1.
\]
(5)

The terms from the first line in this inequality give a recursive relationship for the sum of estimate sequences \(\psi_k + \phi_k\). The terms from the second line telescope. Thus, we only need to focus on bounding the terms inside \([\cdot]_1\) and \([\cdot]_2\).

Observe that, by the definition (1) of \(\text{Gap}^u,v(x, y)\), we have
\[
[\cdot]_2 = a_k(\text{Gap}^u,v(x_k, y_k) + g^*(v) + \ell(u)).
\]
(6)

To bound \([\cdot]_1\), observe first that
\[
a_{k-1}(B(x_{k-1} - x_{k-2}, y_k - y_{k-1}) \leq a_{k-1}\|B\|\|x_{k-1} - x_{k-2}\|\|y_k - y_{k-1}\|
\leq Ra_{k-1}\|x_{k-1} - x_{k-2}\|\|y_k - y_{k-1}\|,
\]
where we have used Cauchy-Schwarz inequality, definition of the operator norm, and \(\|B\| \leq R\) (which holds by Assumption 1). Applying Young’s inequality, we have for all \(k \geq 2\) that
\[
a_{k-1}(B(x_{k-1} - x_{k-2}, y_k - y_{k-1}) \leq \frac{R^2 a_{k-1}^2}{2(1 + \gamma A_{k-1})}\|x_{k-1} - x_{k-2}\|^2 + \frac{1 + \gamma A_{k-1}}{2}\|y_k - y_{k-1}\|^2
\leq \frac{R^2 a_{k-1}^2}{2(1 + \gamma A_{k-2})}\|x_{k-1} - x_{k-2}\|^2 + \frac{1 + \gamma A_{k-1}}{2}\|y_k - y_{k-1}\|^2
= \frac{1 + \sigma A_{k-2}}{4}\|x_{k-1} - x_{k-2}\|^2 + \frac{1 + \gamma A_{k-1}}{2}\|y_k - y_{k-1}\|^2,
\]
(7)

where the second line is by \(A_{k-1} \geq A_{k-2}, \forall k\), and the third line is by the definition of \(a_{k-1}\) in Algorithm 1. Hence, we have for \(k \geq 2\) that
\[
[\cdot]_1 \geq \frac{1 + \sigma A_{k-1}}{2}\|x_k - x_{k-1}\|^2 - \frac{1 + \sigma A_{k-1}}{2}\|x_{k-1} - x_{k-2}\|^2.
\]
(8)

For \(k = 1\), we have
\[
[\cdot]_1 = \frac{1 + \gamma A_0}{2}\|y_1 - y_0\|^2 + \frac{1 + \sigma A_0}{2}\|x_1 - x_0\|^2 - a_0(B(x_0 - x_{-1}, y_1 - y_0)
= \frac{1}{2}\|y_1 - y_0\|^2 + \frac{1}{2}\|x_1 - x_0\|^2.
\]
(9)

When we sum \([\cdot]_1\) over \(1, 2, \ldots, k\), we obtain from (8) and (9) that the telescoped sum is bounded below by
\[
\frac{1 + \sigma A_{k-1}}{2}\|x_k - x_{k-1}\|^2 - \frac{1 + \sigma A_{k-1}}{2}\|x_{k-1} - x_{k-2}\|^2 + \frac{1}{2}\|y_1 - y_0\|^2 + \frac{1}{2}\|x_1 - x_0\|^2
= \frac{1 + \sigma A_{k-1}}{2}\|x_k - x_{k-1}\|^2 + \frac{1}{2}\|y_1 - y_0\|^2.
\]
(10)
Thus, by combining Eqs. (5)–(6), telescoping from 1 to \(k \), and using (10), we have

\[
\psi_k(y_k) + \phi_k(x_k) \geq \psi_0(y_0) + \phi_0(x_0) + a_k(b(x_k - x_{k-1}), y_k - v) - a_0(b(x_0 - x_{-1}), y_0 - v) \\
+ \frac{1 + \sigma A_{k-1}}{2} \|x_k - x_{k-1}\|^2 + \frac{1}{2} \|y_1 - y_0\|^2 \\
+ \sum_{i=1}^{k} a_i(\text{Gap}^u(v(x_i, y_i) + g^*(v) + \ell(u)) \\
= a_k(b(x_k - x_{k-1}), y_k - v) + \frac{1 + \sigma A_{k-1}}{2} \|x_k - x_{k-1}\|^2 \\
+ \sum_{i=1}^{k} a_i(\text{Gap}^u(v(x_i, y_i) + A_k(g^*(v) + \ell(u))),
\]

where we have used \(\phi_0(x_0) = \psi_0(y_0) = 0 \) and \(x_0 = x_{-1} \), which holds by assumption. By rearranging Eq. (11) and using the bounds on \(\phi_k(x_k) \) and \(\psi_k(y_k) \) from Lemma 1, we have

\[
\sum_{i=1}^{k} a_i\text{Gap}^u(v(x_i, y_i)) \leq -a_k(b(x_k - x_{k-1}), y_k - v) - \frac{1 + \sigma A_{k-1}}{2} \|x_k - x_{k-1}\|^2 \\
+ \frac{1}{2} \|v - y_0\|^2 - \frac{1 + \gamma A_k}{2} \|v - y_k\|^2 \\
+ \frac{1}{2} \|u - x_0\|^2 - \frac{1 + \sigma A_k}{2} \|u - x_k\|^2.
\]

By using the same sequence of arguments leading to Eq. (7), but with \(v \) replacing \(y_{k-1} \) and \(k + 1 \) replacing \(k \), we have that the following bound holds for all \(k \geq 1 \):

\[
-a_k(b(x_k - x_{k-1}), y_k - v) \leq \frac{1 + \sigma A_{k-1}}{2} \|x_k - x_{k-1}\|^2 + \frac{1 + \gamma A_k}{4} \|y_k - v\|^2.
\]

By combining with Eq. (12), we obtain

\[
\sum_{i=1}^{k} a_i\text{Gap}^u(v(x_i, y_i)) \leq \frac{1}{2} \|u - x_0\|^2 + \frac{1}{2} \|v - y_0\|^2 \\
- \frac{1 + \sigma A_k}{2} \|u - x_k\|^2 - \frac{1 + \gamma A_k}{4} \|v - y_k\|^2.
\]

To complete bounding the primal-dual gap, it remains to observe that for any fixed \(u, v \), \(\text{Gap}^u(v, x, y) \) is separable and convex in \(x, y \). Thus, by the definition of \(\tilde{x}_k, \tilde{y}_k \) and Jensen’s inequality, we have that

\[
\text{Gap}^u(v(x_k, y_k)) \leq \frac{1}{A_k} \sum_{i=1}^{k} a_i\text{Gap}^u(v(x_i, y_i)) \leq \frac{\|u - x_0\|^2 + \|v - y_0\|^2}{2A_k}.
\]

To bound \(\|x_k - x^*\|^2 + \|y_k - y^*\|^2 \), note that for \((u, v) = (x^*, y^*) \) we must have \(\text{Gap}^u(v, x, y) \geq 0 \), for all \((x, y) \), since \((x^*, y^*) \) is a primal-dual solution. Thus, rearranging Eq. (13), we arrive at the claimed bound

\[
(1 + \sigma A_k)\|x_k - x^*\|^2 + \frac{1 + \gamma A_k}{2} \|y_k - y^*\|^2 \leq \|x_0 - x^*\|^2 + \|y_0 - y^*\|^2.
\]

To complete the proof, it remains to bound the growth of \(A_k \). We do this using the relationship \(A_k - A_{k-1} = a_k = \sqrt{\frac{1 + \sigma A_{k-1}}{2}} \). When either \(\gamma = 0 \) or \(\sigma = 0 \), the bound follows by applying Lemma 6. If \(\sigma > 0 \) and \(\gamma > 0 \), then we have \(A_k - A_{k-1} = a_k \geq \sqrt{\frac{\sigma \gamma}{2R}} A_{k-1} \), which leads to

\[
A_k = A_1 \left(1 + \sqrt{\frac{\sigma \gamma}{2R}} \right)^{k-1} = \frac{1}{\sqrt{2R}} \left(1 + \sqrt{\frac{\sigma \gamma}{2R}} \right)^{k-1},
\]

as claimed.

\[\square \]
B. Omitted Proofs from Section 4

We start by showing the following identity for the initial estimate sequence $\psi_1(y_1) + \phi_1(x_1)$.

Lemma 3. For the initialization steps (Lines 2-7 of Algorithm 2), we have, for all $(u,v) \in X \times Y$ that

$$\psi_1(y_1) + \phi_1(x_1) = \frac{n}{2}||y_1 - y_0||^2 + \frac{n}{2}||x_1 - x_0||^2 + a_1(Gap^{u,v}(x_1, y_1) + g^*(v) + \ell(u) + \langle x_1 - x_0, B^T(y_1 - v) \rangle).$$

Proof. By the definition of $\tilde{\psi}_1(\cdot)$ and $\tilde{\phi}_1(\cdot)$, we have

$$\tilde{\psi}_1(y_1) = \frac{1}{2}||y_1 - y_0||^2 + \tilde{a}_1((-Bx_0, y_1 - v) + g^*(y_1)),$n
$$\tilde{\phi}_1(x_1) = \frac{1}{2}||x_1 - x_0||^2 + \tilde{a}_1((x_1 - u, B^T y_1) + \ell(x_1)).$$

Thus, using the definition (1) of $\text{Gap}^{u,v}$, we have:

$$\tilde{\psi}_1(y_1) + \tilde{\phi}_1(x_1) = \frac{1}{2}||y_1 - y_0||^2 + \frac{1}{2}||x_1 - x_0||^2 + \tilde{a}_1((x_1 - u, B^T y_1) + \ell(x_1)).$$

We have by definition that $\psi_1 = n\tilde{\psi}_1, \phi_1 = n\tilde{\phi}_1,$ and $a_1 = n\tilde{a}_1$, so the result follows when we multiply both sides of this expression by n. \qed

The following two lemmas now bound the growth of $\psi_k(y_k) + \phi_k(x_k)$ below and above, and are the main technical lemmas used in proving Theorem 2.

Lemma 4. For all steps of Algorithm 2 with $k \geq 2$, we have, $\forall (u,v) \in X \times Y$,

$$\psi_k(y_k) \leq \sum_{i=2}^{k} a_i g^*_j(v_j) + a_1 g^*(v) + \frac{n}{2}||v - y_0||^2 - \frac{n}{2}||v - y_k||^2,$n
$$\phi_k(x_k) \leq A_k \ell(u) + \frac{n}{2}||u - x_0||^2 - \frac{n + \sigma A_k}{2}||u - x_k||^2.$$

Proof. By the definition of $\psi_k(y)$ in Algorithm 2, it follows that, $\forall k \geq 2$,

$$\psi_k(y) = \sum_{i=2}^{k} a_i (-b^T_{j_i} x_{i-1} - y_{j_i} - v_{j_i})$$
$$+ \left(\frac{n}{2}||y - y_0||^2 + a_1((-Bx_0, y - v) + g^*(y)) \right) \tag{14}$$

and

$$\phi_k(x) = \sum_{i=2}^{k} a_i (\langle x - u, z_{i-1} + (y_{i,j_i} - y_{i-1,j_i}) b_{j_i} \rangle + \ell(x))$$
$$+ \left(\frac{n}{2}||x - x_0||^2 + a_1(\langle x - u, B^T y_1 \rangle + \ell(x)) \right) \tag{15}.$$

By the first-order optimality condition in the definition of y_k (see Algorithm 2), it follows that there exists $g^*_k(y_k) \in \partial g^*(y_k)$ such that

$$\sum_{i=2}^{k} a_i(-b^T_{j_i} x_{i-1} + (g^*_j(y_k)) e_{j_i} + n(y_k - y_0) + a_1(-Bx_0 + g^*_k(y_k)) = 0,$$
where e_j denotes the jth standard basis vector (i.e., a vector whose element j equals one, while all the remaining elements are zero) and $(g'_j, (y_{k,j}))$ denotes the jth element of $g^r(y_k)$. By rearranging this expression, we obtain

$$-a_1 B x_0 - \sum_{i=2}^k a_i b_j^T x_{i-1} e_j = - \sum_{i=2}^k a_i (g'_j)^T (y_{k,j}) e_j - n(y_k - y_0) - a_1 g^r(y_k). \quad (16)$$

By setting $y = y_k$ in (14), then substituting from (16), we obtain

$$\psi_k(y_k) = \sum_{i=2}^k a_i ((g'_j)^T (y_{k,j}) + v_j - y_{k,j}) + g^r(y_k) + a_1 (g^r(y_k), v - y_k) + g^r(y_k)
+ \langle n(y_k - y_0), v - y_k \rangle + n^2 \| y_k - y_0 \|^2
\leq \sum_{i=2}^k a_i g^r(v_j) + a_1 g^r(v) + n^2 \||v - y_k\|^2 - n^2 \|v - y_k\|^2,$$

where we have used $\langle g^r(y_k), v - y_k \rangle + g^r(y_k) \leq g^r(v)$ (by convexity of g^r) and $\langle n(y_k - y_0), v - y_k \rangle + n^2 \| y_k - y_0 \|^2 = \frac{n}{2} \| v - y_k \|^2 - \frac{n}{2} \| v - y_k \|^2$.

The bound on $\phi_k(x_k)$ follows from a similar sequence of arguments. By the first-order optimality in the definition of x_k, we have that there exists $g^r(x_k) \in \partial \ell(x_k)$ such that

$$\sum_{i=2}^k a_i (z_{i-1} + (y_{i,j}, -y_{i-1,j}), b_j) + g^r(x_k) + n(x_k - x_0) + a_1 (B^T y_1 + g^r(x_k)) = 0,$$

which rearranges to

$$\sum_{i=2}^k a_i (z_{i-1} + (y_{i,j}, -y_{i-1,j}), b_j) + a_1 B^T y_1 = - \sum_{i=2}^k a_i g^r(x_k) - n(x_k - x_0) - a_1 g^r(x_k).$$

By using this expression in Eq. (15) with $x = x_k$, we obtain

$$\phi_k(x_k) = \sum_{i=2}^k a_i ((g^r(x_k), u - x_k + \ell(x_k)) + a_1 ((g^r(x_k), u - x_k) + \ell(x_k))
+ \langle n(x_k - x_0), u - x_k \rangle + n^2 \| x_k - x_0 \|^2
\leq \sum_{i=2}^k a_i (\ell(u) - \frac{\sigma}{2} \| u - x_k \|^2) + a_1 (\ell(u) - \frac{\sigma}{2} \| u - x_k \|^2) + n^2 \| u - x_0 \|^2 - n^2 \| u - x_k \|^2
= A_k \ell(u) + n^2 \| u - x_0 \|^2 - \frac{n^2 + \sigma A_k}{2} \| u - x_k \|^2,$$

where we have used $\langle g^r(x_k), u - x_k \rangle + \ell(x_k) \leq \ell(u) - \frac{\sigma}{2} \| u - x_k \|^2$ (by σ-strong convexity of ℓ) and $\langle n(x_k - x_0), u - x_k \rangle + \frac{n}{2} \| x_k - x_0 \|^2 - \frac{n}{2} \| u - x_k \|^2$. The last line follows from the definition of A_k. \hfill \Box

Lemma 5. For all steps of Algorithm 2 with $k \geq 2$, taking expectation on all the randomness in the algorithm, we have for all $(u, v) \in \mathcal{X} \times \mathcal{Y}$ that

$$\mathbb{E} [\psi_k(y_k)] \geq \mathbb{E} [\psi_{k-1}(y_{k-1}) + n^2 \| y_k - y_{k-1} \|^2 + a_k g^r(y_{k,j}, j)] + a_k (B(x_k - x_{k-1}), y_k - v) - a_{k-1} (B(x_{k-1} - x_k), y_k - y_{k-1})
- a_k (B(x_k - x_{k-1}), y_k - y_{k-1}) + a_k \ell(B(x_k, y_k - v))
- (n - 1) a_k \left(\langle B(x_{k-1} - u), y_k - y_{k-1} \rangle + \langle B(u, y_k - y_{k-1}) \rangle \right),$$

$$\mathbb{E} [\phi_k(x_k)] \geq \mathbb{E} [\phi_{k-1}(x_{k-1}) + \frac{n^2 + \sigma A_{k-1}}{2} \| x_k - x_{k-1} \|^2 + a_k \langle (x_k - u, B^T y_k) + (n - 1)(x_k - u, B^T (y_k - y_{k-1})) + \ell(x_k) \rangle].$$
Proof. By the definition of ψ_k, we have

$$
\psi_k(y_k) = \psi_{k-1}(y_k) + a_k(-b_{j_k}^T\bar{x}_{k-1}(y_{k,j_k} - v_{j_k}) + g_{j_k}^*(y_{k,j_k}))
$$

$$
= \psi_{k-1}(y_{k-1}) + [\psi_{k-1}(y_k) - \psi_{k-1}(y_{k-1})]_1
$$

$$
+ [a_k(-b_{j_k}^T\bar{x}_{k-1}(y_{k,j_k} - v_{j_k}) + g_{j_k}^*(y_{k,j_k}))]_2.
$$

(17)

To bound $\psi_k(y_k)$ in expectation and obtain the claimed bound, we need to bound the terms in $[\cdot]_1$ and $[\cdot]_2$. To do so, let \mathcal{F}_k be the natural filtration that contains all the randomness up to and including iteration k. In what follows, we will use the tower property of conditional expectation, which guarantees $\mathbb{E}[] = \mathbb{E}[\mathbb{E}[]|\mathcal{F}_{k-1}]$.

To bound $[\cdot]_1$, we use the definition of ψ_{k-1} from Algorithm 2, and the facts that y_{k-1} is optimal for ψ_{k-1} and that ψ_{k-1} is the sum of the n-strongly convex function ψ_1 with $k - 2$ additional convex terms. We thus obtain

$$
[\cdot]_1 = \psi_{k-1}(y_k) - \psi_{k-1}(y_{k-1}) \geq \frac{n}{2}\|y_k - y_{k-1}\|^2.
$$

(18)

To bound $[\cdot]_2$, observe that y_k and y_{k-1} only differ over the coordinate j_k, which is chosen uniformly at random, independent of the history. Further, recall that $B = \frac{1}{n}[b_1, b_2, \ldots, b_n]^T$, and let B_{-j_k} denote the matrix B with its j_kth row replaced by a zero vector. Then, we have

$$
\mathbb{E}[-b_{j_k}^T\bar{x}_{k-1}(y_{k,j_k} - v_{j_k})|\mathcal{F}_{k-1}] = \mathbb{E}[-nB\bar{x}_{k-1}, y_k - v] + \langle nB_{-j_k}\bar{x}_{k-1}, y_k - v \rangle|\mathcal{F}_{k-1}
$$

$$
= \mathbb{E}[-nB\bar{x}_{k-1}, y_k - v]|\mathcal{F}_{k-1} + \langle (n-1)B\bar{x}_{k-1}, y_{k-1} - v \rangle,
$$

where the second equality follows from y_k being equal to y_{k-1} over all the coordinates apart from j_k, and from j_k being chosen uniformly at random. Taking expectations on both sides of the last equality and using $\langle B\bar{x}_{k-1}, y_k - v \rangle = \langle B\bar{x}_{k-1}, y_k - y_{k-1} \rangle + \langle B\bar{x}_{k-1}, y_{k-1} - v \rangle$ and the tower property of conditional expectation, we have

$$
\mathbb{E}[-b_{j_k}^T\bar{x}_{k-1}(y_{k,j_k} - v_{j_k})] = \mathbb{E}\left[\langle -nB\bar{x}_{k-1}, y_k - v \rangle \right] - \mathbb{E}\left[\langle B\bar{x}_{k-1}, y_{k-1} - y_{k-1} \rangle \right].
$$

(19)

To finish bounding $\mathbb{E}[-b_{j_k}^T\bar{x}_{k-1}(y_{k,j_k} - v_{j_k})]$ (and, consequently, $\mathbb{E}[[\cdot]_2]$), we now proceed to bound the terms inside the expectations in Eq. (19). First, adding an subtracting \bar{x}_{k-1} in the first inner product term and using the definition of \bar{x}_{k-1}, we have

$$
\langle B\bar{x}_{k-1}, y_k - v \rangle = \langle -B(\bar{x}_{k-1} - x_k), y_k - v \rangle - \langle Bx_k, y_k - v \rangle
$$

$$
= \langle B(x_k - \bar{x}_{k-1}), y_k - v \rangle - \frac{a_k - 1}{a_k} \langle B(x_{k-1} - x_{k-2}), y_k - v \rangle - \langle Bx_k, y_k - v \rangle
$$

$$
= \langle B(x_k - \bar{x}_{k-1}), y_k - v \rangle - \frac{a_k - 1}{a_k} \langle B(x_{k-1} - x_{k-2}), y_k - y_{k-1} \rangle - \langle Bx_k, y_k - v \rangle.
$$

(20)

On the other hand, using the definition of \bar{x}_{k-1}, we also have

$$
\langle B\bar{x}_{k-1}, y_k - y_{k-1} \rangle = \langle Bx_k - x_{k-2}, y_k - y_{k-1} \rangle + \frac{a_k - 1}{a_k} \langle B(x_{k-1} - x_{k-2}), y_k - y_{k-1} \rangle
$$

$$
= \langle B(x_k - u), y_k - y_{k-1} \rangle + \langle Bu, y_k - y_{k-1} \rangle
$$

$$
+ \frac{a_k - 1}{a_k} \langle B(x_{k-1} - x_{k-2}), y_k - y_{k-1} \rangle.
$$

(21)

Thus, combining Eqs. (19)-(21) with the definition of $[\cdot]_2$, we have:

$$
\mathbb{E}[[\cdot]_2] = \mathbb{E}\left[\frac{a_k g_{j_k}^*(y_{k,j_k})}{a_k} + \langle B(x_k - \bar{x}_{k-1}), y_k - v \rangle - \frac{a_k - 1}{a_k} \langle B(x_{k-1} - x_{k-2}), y_k - v \rangle
$$

$$
- n\frac{a_k - 1}{a_k} \langle B(x_{k-1} - x_{k-2}), y_k - y_{k-1} \rangle - \langle Bx_k, y_k - v \rangle
$$

$$
- \langle (n-1)a_k \left(\langle B(x_{k-1} - u), y_k - y_{k-1} \rangle + \langle Bu, y_k - y_{k-1} \rangle\right)\right].
$$

(22)

The bound on $\psi_k(y_k)$ from the statement of the lemma now follows by combining Eq. (17) with Eqs. (18) and (22).
To bound \(\phi_k(x_k) \), we use similar arguments to those we used above for bounding \(\psi_k(y_k) \). In particular, from the definition of \(\phi_k(x_k) \), and using that \(\phi_{k-1}(x_{k-1}) \) is \((n + \sigma A_{k-1})\)-strongly convex and minimized at \(x_{k-1} \), we have

\[
\phi_k(x_k) \geq \phi_{k-1}(x_{k-1}) + \frac{n + \sigma A_{k-1}}{2} \|x_k - x_{k-1}\|^2 + a_k \left(\langle x_k - u, z_{k-1} + (y_{k,j} - y_{k-1,j}) b_{j,k} \rangle + \ell(x_k) \right).
\]

(23)

Since \(y_k \) and \(y_{k-1} \) only differ on their \(j_k \) element, by the definition of \(z_k \), we have \(z_k = z_{k-1} + B^T (y_k - y_{k-1}) \), so by a recursive argument it follows that \(z_i = B^T y_i \) for all \(i = 1, 2, \ldots, k \). Thus, we have

\[
z_{k-1} + (y_{k,j} - y_{k-1,j}) b_{j,k} = B^T y_{k-1} + n B^T (y_k - y_{k-1}) = B^T y_k + (n - 1) B^T (y_k - y_{k-1}),
\]

and consequently

\[
\langle x_k - u, z_{k-1} + (y_{k,j} - y_{k-1,j}) b_{j,k} \rangle = \langle x_k - u, B^T y_k \rangle + (n - 1) \langle x_k - u, B^T (y_k - y_{k-1}) \rangle.
\]

(24)

To complete the proof, it remains to combine Eqs. (23) and (24).

\[\square\]

Using Lemmas 3–5, we are now ready to prove our main result.

Theorem 2. Suppose that Assumption 2 holds. Then for any \((u, v) \in \mathcal{X} \times \mathcal{Y}\), the vectors \(x_k, y_k, k = 2, 3, \ldots, K \) and the average \(\tilde{x}_k = \frac{1}{A_k} \sum_{i=1}^k a_i x_i \) generated by Algorithm 2 satisfy the following bound for \(k = 2, 3, \ldots, K \):

\[
\mathbb{E}[\text{Gap}^{u,v}(\tilde{x}_k, \tilde{y}_k)] \leq \frac{n \left(\|u - x_0\|^2 + \|v - y_0\|^2 \right)}{2 A_k},
\]

where \(\tilde{y}_k := \frac{n a_k y_k + \sum_{i=2}^k (n a_i - (n-1) a_{i+1}) y_i}{A_k} \).

Moreover, if \((x^*, y^*)\) is a primal-dual solution to (PD), then

\[
\mathbb{E} \left[\frac{n}{4} \|y^* - y_k\|^2 + \frac{n + \sigma A_k}{2} \|x^* - x_k\|^2 \right] \leq \frac{n \left(\|x^* - x_0\|^2 + \|y^* - y_0\|^2 \right)}{2}.
\]

In both cases, \(A_k \) is bounded below as follows:

\[
A_k \geq \max \left\{ \frac{n - 1}{2R'} \left(1 + \frac{1}{n - 1} \right) \mathbb{1}_{k \leq k_0}, \left(\frac{n - 1}{2R'} \right)^2 n \mathbb{1}_{k \geq k_0}, \frac{n (k - K_0 + n - 1)}{2R'} \mathbb{1}_{k \geq K_0} \right\},
\]

where \(\mathbb{1} \) denotes the indicator function, \(K_0 = \left\lfloor \frac{\log(n)}{\log(n) - \log(n - 1)} \right\rfloor \), \(k_0 = \left\lfloor \frac{\log B_{n,c',R'}}{\log(n) - \log(n - 1)} \right\rfloor \), and

\[
B_{n,c',R'} = \frac{\sigma n (n - 1)}{4R'} + \sqrt{\left(\frac{\sigma n (n - 1)}{4R'} \right)^2 + n^2}
\]

\[
\geq n \max \left\{ 1, \frac{\sigma (n - 1)}{2R'} \right\}.
\]

Proof. Fix any \((u, v) \in \mathcal{X} \times \mathcal{Y}\). By combining the bounds on \(\psi_k(y_k) \) and \(\phi_k(x_k) \) from Lemma 5, we have \(\forall k \geq 2 \) that

\[
\mathbb{E}[\psi_k(y_k) + \phi_k(x_k)] \geq \mathbb{E} \left[\psi_{k-1}(y_{k-1}) + \phi_{k-1}(x_{k-1}) \right. \right.
\]

\[
+ a_k \left(B(x_k - x_{k-1}), y_k - v \right) - a_{k-1} \left(B(x_{k-1} - x_{k-2}), y_{k-1} - v \right) + P_k + Q_k, \right. \right. \]

(25)
We now proceed to bound E which telescopes. Combining the bound on
\[E = \alpha \beta \]
where
\[P_k = \frac{n}{2} ||y_k - y_{k-1}||^2 + \frac{n + \sigma A_k - 1}{2} ||x_k - x_{k-1}||^2 \\
- na_k \langle B(x_k - x_{k-2}), y_k - y_{k-1} \rangle + (n - 1) a_k \langle x_k - x_{k-1}, B^T(y_k - y_{k-1}) \rangle \]
and
\[Q_k = a_k g^*_j(y_{k,j}) + \ell(x_k) - \langle B u, y_k \rangle + \langle x_k, B^T v \rangle - (n - 1) \langle B u, y_k - y_{k-1} \rangle. \]
(27)

Observe that the first line Eq. (25) gives the desired recursive relationship for the sum of estimate sequences, while the

second line telescopes. Thus, we only need to focus on bounding P_k and Q_k.

To bound P_k, we start by bounding the inner product terms that appear in it. Recall that y_k and y_{k-1} only differ on coordinate j_k. We thus have
\[\langle B(x_{k-1} - x_{k-2}), y_k - y_{k-1} \rangle = \frac{1}{n} b^T_{j_k}(x_{k-1} - x_{k-2})(y_{k,j_k} - y_{k-1,j_k}) \leq \frac{1}{n} \left(\frac{R^2}{2\alpha} \left(b^T_{j_k}(x_{k-1} - x_{k-2}) \right)^2 + \frac{\alpha}{2} (y_{k,j_k} - y_{k-1,j_k})^2 \right), \]
for any $\alpha > 0$, by Young’s inequality. Further, as, by Assumption 2, $\max_{1 \leq j \leq n} ||b_j|| \leq R'$, applying Cauchy-Schwarz inequality, we have that $b^T_{j_k}(x_{k-1} - x_{k-2}) \leq R'||x_{k-1} - x_{k-2}||$, and, hence
\[\langle B(x_{k-1} - x_{k-2}), y_k - y_{k-1} \rangle \leq \frac{1}{n} \left(\frac{R^2}{2\alpha} \left(||x_{k-1} - x_{k-2}||^2 + \frac{\alpha}{2} ||y_k - y_{k-1}||^2 \right) \right). \]
(28)

Similarly, $\forall \beta > 0$,
\[\langle B(x_k - x_{k-1}), y_k - y_{k-1} \rangle \geq -\frac{1}{n} \left(\frac{R^2}{2\beta} \left(||x_k - x_{k-1}||^2 + \frac{\beta}{2} ||y_k - y_{k-1}||^2 \right) \right). \]
(29)

Thus, by combining Eqs. (26), (28), and (29), we have that $\forall \alpha, \beta > 0$
\[P_k \geq \frac{n^2 - \alpha n a_k - \beta (n - 1) a_k}{2n} ||y_k - y_{k-1}||^2 \\
+ \frac{n(n + \sigma A_k - 1) - (n - 1) a_k R^2}{2n} ||x_k - x_{k-1}||^2 - \frac{a_k - 1 R^2}{2\alpha} ||x_{k-1} - x_{k-2}||^2. \]

Taking $\alpha = \frac{n}{2a_k - 1}$, $\beta = \frac{n}{2a_k}$, and recalling that by our choice of step sizes in Algorithm 2, $a_k \leq \sqrt{\frac{n + \sigma A_k - 1}{2R}}$, $\forall k \geq 2$, we can further simplify the bound on P_k to
\[P_k \geq \frac{n + \sigma A_k - 1}{4} ||x_k - x_{k-1}||^2 - \frac{n + \sigma A_k - 2}{4} ||x_{k-1} - x_{k-2}||^2, \]
(30)

which telescopes. Combining the bound on P_k from Eq. (30) with the initial bound on $\psi_k(y_k) + \phi_k(x_k)$ from Eq. (25) and telescoping, we have
\[\mathbb{E}[\psi_k(y_k) + \phi_k(y_k)] \geq \mathbb{E}[\psi_1(x_1) + \phi_1(y_1) \\
+ a_k \langle B(x_k - x_{k-1}), y_k - v \rangle - a_1 \langle B(x_1 - x_0), y_1 - v \rangle \\
+ \frac{n + \sigma A_k - 1}{4} ||x_k - x_{k-1}||^2 - \frac{n}{4} ||x_1 - x_0||^2 + \sum_{i=2}^{k} Q_i]. \]
(31)

We now proceed to bound $\mathbb{E}\left[\sum_{i=2}^{k} Q_i \right]$. Observe first that $g^*_j(i,j) = n \sum_{j \neq j} g^*_j(i,j)$. Thus,
\[\mathbb{E}[g^*_j(y_{i,j})] = \mathbb{E}\left[n \left(g^*(y_i) - \frac{1}{n} \sum_{j \neq j} g^*_j(y_{i-1,j}) \right) | F_{i-1} \right] \\
= \mathbb{E}[ng^*(y_i) - (n - 1)g^*(y_{i-1})] .
\]
where F_{t-1} is the natural filtration, containing all randomness up to and including iteration $i - 1$. Therefore, we can bound $\mathbb{E}[\sum_{i=2}^{k} Q_i]$ as follows:

$$
\mathbb{E}[\sum_{i=2}^{k} Q_i] = \mathbb{E}\left[\sum_{i=2}^{k} a_i(n g^*(y_i) - (n-1)g^*(y_{i-1})) \right] + \mathbb{E}\left[\sum_{i=2}^{k} a_i \ell(x_i) \right] \\
+ \mathbb{E}\left[\sum_{i=2}^{k} a_i(-n\langle Bu, y_i \rangle + (n-1)\langle Bu, y_{i-1} \rangle + \langle x_i, B^T v \rangle) \right] \\
= \mathbb{E}\left[n a_k g^*(y_k) + \sum_{i=2}^{k-1} (n a_i - (n-1)a_{i+1})g^*(y_i) - (n-1)a_2 g^*(y_1) \right] \\
+ \mathbb{E}\left[-n a_k \langle Bu, y_k \rangle + \sum_{i=2}^{k-1} (-n a_i + (n-1)a_{i+1})\langle Bu, y_i \rangle + (n-1)a_2 \langle Bu, y_1 \rangle \right] \\
+ \mathbb{E}\left[\sum_{i=2}^{k} a_i \ell(x_i) + \sum_{i=2}^{k} a_i \langle x_i, B^T v \rangle \right].
$$

(32)

On the other hand, recall that, by Lemma 3, we have

$$
\psi_1(y_1) + \phi_1(x_1) = \frac{n}{2}\|y_1 - y_0\|^2 + \frac{n}{2}\|x_1 - x_0\|^2 \\
+ a_1(g^*(y_1) + \ell(x_1) - \langle Bu, y_1 \rangle + \langle x_1, B^T v \rangle + \langle x_1 - x_0, B^T (y_1 - v) \rangle) \\
= \frac{n}{2}\|y_1 - y_0\|^2 + \frac{n}{2}\|x_1 - x_0\|^2 \\
+ (n-1)a_2 (g^*(y_1) - \langle Bu, y_1 \rangle) \\
+ a_1 (\ell(x_1) + \langle x_1, B^T v \rangle + \langle x_1 - x_0, B^T (y_1 - v) \rangle),
$$

(33)

where we have used the setting $a_2 = \frac{a_i}{n+1}$ of Algorithm 2.

Thus, combining Eqs. (31)–(33), we have

$$
\mathbb{E}[\psi_k(y_k) + \phi_k(y_k)] \geq \mathbb{E}\left[a_k \langle B(x_k - x_{k-1}) \rangle, y_k - v \rangle + \frac{n + \sigma A_{k-1}}{4} \|x_k - x_{k-1}\|^2 \right] \\
+ \frac{n}{2}\|y_1 - y_0\|^2 + \frac{n}{2}\|x_1 - x_0\|^2 \\
+ n a_k g^*(y_k) + \sum_{i=2}^{k-1} (n a_i - (n-1)a_{i+1})g^*(y_i) \\
- n a_k \langle Bu, y_k \rangle + \sum_{i=2}^{k-1} (-n a_i + (n-1)a_{i+1})\langle Bu, y_i \rangle \\
+ \sum_{i=1}^{k} a_i \ell(x_i) + \sum_{i=1}^{k} a_i \langle x_i, B^T v \rangle \right].
$$

Using convexity of g^* and ℓ (to apply Jensen’s inequality) and the definitions of \tilde{x}_k, \tilde{y}_k, it now follows that

$$
\mathbb{E}[\psi_k(y_k) + \phi_k(y_k)] \geq \mathbb{E}\left[a_k \langle B(x_k - x_{k-1}) \rangle, y_k - v \rangle + \frac{n + \sigma A_{k-1}}{4} \|x_k - x_{k-1}\|^2 \right] \\
+ \frac{n}{2}\|y_1 - y_0\|^2 + \frac{n}{2}\|x_1 - x_0\|^2 \\
+ A_k (g^*(\tilde{y}_k) + \ell(\tilde{x}_k) - \langle Bu, \tilde{y}_k \rangle + \langle \tilde{x}_k, B^T v \rangle) \right].
$$

(34)
Convexity can be used here because, due to our setting of \(a_i\), we have \(na_i - (n - 1)a_{i+1} \geq 0\), \(na_k + \sum_{i=2}^{k-1} (na_i - (n - 1)a_{i+1}) = na_2 + \sum_{i=3}^{k} a_i = A_k\), as \(na_2 = a_1 + a_2\), and \(\tilde{x}_k, \tilde{y}_k\) are chosen as

\[
\tilde{y}_k = \frac{1}{A_k} \left(na_k y_k + \sum_{i=2}^{k-1} (na_i - (n - 1)a_{i+1}) y_i \right),
\]

\[
\tilde{x}_k := \frac{1}{A_k} \sum_{i=1}^{k} a_k x_i.
\]

Recalling the definition (1) of \(\text{Gap}^u,v(x, v)\) and rearranging Eq. (34), we have

\[
A_k \mathbb{E}[\text{Gap}^u,v(\tilde{x}_k, \tilde{y}_k)] \leq \mathbb{E} \left[\psi_k(y_k) + \phi_k(x_k) - A_k(g^*(v) + \ell(u)) \right]
\]

\[
- a_k \langle B(x_k - x_{k-1}), y_k - v \rangle - \frac{n + \sigma A_{k-1}}{4} \|x_k - x_{k-1}\|^2
\]

\[
- \frac{n}{2} \|y_k - y_0\|^2 - \frac{n}{4} \|x_1 - x_0\|^2
\]

To complete the proof, it remains to apply Lemma 4, and simplify. In particular, as

\[
\mathbb{E} \left[\sum_{i=2}^{k} a_i g^*(v) + a_1 g^*(v) \right] = \sum_{i=2}^{k} a_i g^*(v) + a_1 g^*(v) = A_k g^*(v),
\]

we have

\[
\mathbb{E}[\psi_k(y_k) + \phi_k(y_k)] \leq \mathbb{E} \left[A_k g^*(v) + \frac{n}{2} \|v - y_0\|^2 - \frac{n}{2} \|v - y_k\|^2 \right]
\]

\[
+ A_k \ell(u) + \frac{n}{2} \|u - x_0\|^2 - \frac{n + \sigma A_k}{2} \|u - x_k\|^2
\]

which leads to

\[
A_k \mathbb{E}[\text{Gap}^u,v(\tilde{x}_k, \tilde{y}_k)] \leq \mathbb{E} \left[\frac{n}{2} \|u - x_0\|^2 + \frac{n}{2} \|v - y_0\|^2 \right] - \frac{n}{2} \|v - y_k\|^2 - \frac{n + \sigma A_k}{2} \|u - x_k\|^2
\]

\[
- a_k \langle B(x_k - x_{k-1}), y_k - v \rangle - \frac{n + \sigma A_{k-1}}{4} \|x_k - x_{k-1}\|^2
\]

\[
- \frac{n}{2} \|y_k - y_0\|^2 - \frac{n}{4} \|x_1 - x_0\|^2
\]

Finally, we have from Young’s inequality and the definition of \(a_k\) that

\[
- a_k \langle B(x_k - x_{k-1}), y_k - v \rangle \leq a_k \|B\| \|x_k - x_{k-1}\| \|y_k - v\|
\]

\[
\leq R a_k \|x_k - x_{k-1}\| \|y_k - v\|
\]

\[
\leq R^2 a_k^2 \|x_k - x_{k-1}\|^2 + \frac{n}{4} \|v - y_k\|^2
\]

\[
\leq \frac{n + \sigma A_{k-1}}{4} \|x_k - x_{k-1}\|^2 + \frac{n}{4} \|v - y_k\|^2
\]

leading to

\[
A_k \mathbb{E}[\text{Gap}^u,v(\tilde{x}_k, \tilde{y}_k)] \leq \mathbb{E} \left[\frac{n}{2} \|u - x_0\|^2 + \frac{n}{2} \|v - y_0\|^2 \right] - \frac{n}{4} \|v - y_k\|^2 - \frac{n + \sigma A_k}{2} \|u - x_k\|^2
\]

Similarly as in the proof of Theorem 1, it now follows that, \(\forall (u, v) \in X \times Y\),

\[
\mathbb{E}[\text{Gap}^u,v(\tilde{x}_k, \tilde{y}_k)] \leq \frac{n}{2} \|u - x_0\|^2 + \frac{n + \sigma A_k}{2} \|x_k - x_0\|^2
\]

and, as \(\text{Gap}^x,y^*(\tilde{x}_k, \tilde{y}_k) \geq 0\), we also have

\[
\mathbb{E} \left[\frac{n}{4} \|y^* - y_k\|^2 + \frac{n + \sigma A_k}{2} \|x_k - x_k\|^2 \right] \leq \frac{n}{2} \|x^* - x_0\|^2 + \frac{n}{2} \|y^* - y_0\|^2
\]

The bound on \(A_k\) follows by applying Lemma 7 (Appendix C). \qed
C. Growth of Sequences

We start first with a general lemma that is useful for bounding the convergence rate of both PDA and VRPDA.

Lemma 6. Let \(\{A_k\}_{k \geq 0} \) be a sequence of nonnegative real numbers such that \(A_0 = 0 \) and \(A_k \) is defined recursively via
\[
A_k = A_{k-1} + \sqrt{c_1^k + c_2 A_{k-1}},
\]
where \(c_1 > 0 \), and \(c_2 \geq 0 \). Define \(K_0 = \lceil \frac{c_2}{\sqrt{c_1}} \rceil \). Then
\[
A_k \geq \left\{ \begin{array}{ll}
\frac{c_2}{\sqrt{c_1}} (k - K_0 + \max\left\{3\sqrt{c_1^k}, 1\right\})^2, & \text{if } c_2 > 0 \text{ and } k > K_0, \\
\frac{c_2}{\sqrt{c_1}} c_1 k, & \text{otherwise}.
\end{array} \right.
\]

Proof. As, by assumption, \(c_2 \geq 0 \), we have that \(A_k \geq A_{k-1} + c_1 \), which, combined with \(A_0 = 0 \), implies \(A_k \geq c_1 k \). Thus, we only need to focus on proving the stated bound in the case that \(c_2 > 0 \) and \(k > K_0 \).

To prove the lemma, let us start by assuming that there exist \(p, q, k_0 \) such that
\[
A_{k_0} \geq pq^2, \quad \text{and} \quad A_{k_0-1} \geq p(k - 1 - k_0 + q)^2, \tag{36}
\]
for some \(k \geq k_0 + 1 \) (observe that the inequalities are consistent for \(k - 1 = k_0 \)). Then, by induction on \(k \), we can prove that \(A_k \geq p(k - k_0 + q)^2 \), for some specific \(p, q, k_0 \). In particular:

\[
A_k \geq A_{k-1} + \sqrt{c_2 A_{k-1}} \\
\geq p(k - 1 - k_0 + q)^2 + \sqrt{c_2 p(k - 1 - k_0 + q)^2} \\
= p(k - k_0 + q)^2 + p(1 - 2q) + \sqrt{c_2 p(k - 1 - k_0 + q)^2} \\
= p(k - k_0 + q)^2 + p(1 - 2q) + \sqrt{c_2 p(k - 1 - k_0 + q)} + p(1 - 2q) + \sqrt{c_2 p(1 - 1 + q)}.
\]

Let \(c_2 = 9p \) and \(q \geq 1 \). Then, we have
\[
A_k \geq p(k - k_0 + q)^2 + p(k - k_0) + p(1 - 2q) + 3p(-1 + q) \\
\geq p(k - k_0 + q)^2 + p(-1 + q) \\
\geq p(k - k_0 + q)^2,
\]
where we have used \(k \geq k_0 + 1 \).

It remains to show that we can choose \(p, q, k_0 \) that make the definition of \(A_k \) from the statement of the lemma consistent with the assumption from Eq. (36).

If \(c_2 \leq 9c_1 \), we have \(A_1 = c_1 \geq \frac{c_2}{\sqrt{c_1}} = p \). Thus, to satisfy Eq. (36), we can set \(k_0 = K_0 = \lceil \frac{c_2}{\sqrt{c_1}} \rceil = 1 \) and \(q = 3 \sqrt{\frac{c_2}{c_1}} \). On the other hand, if \(c_2 > 9c_1 \), we have \(A_1 = c_1 < \frac{c_2}{\sqrt{c_1}} = p \). Thus, by setting \(k_0 = K_0 = \lceil \frac{c_2}{\sqrt{c_1}} \rceil \) and \(q = 1 > 3 \sqrt{\frac{c_2}{c_1}} \) and using that \(A_k \geq c_1 k \) (argued at the beginning of the proof), we have \(A_{k_0} \geq \frac{c_2}{\sqrt{c_1}} = p \).

We now examine the properties of the sequence \(\{a_k\}_{k \geq 1} \) defined in Algorithm 2 and restated here:
\[
a_1 = \frac{n}{2R'}, \quad a_2 = \frac{1}{n - 1} a_1, \quad a_k = \min\left\{ \left(1 + \frac{1}{n - 1}\right) a_{k-1}, \sqrt{n(n + \sigma A_{k-1})/2R'} \right\}, \quad \text{for } k \geq 3. \tag{37}
\]
We also examine growth properties of \(\{A_k\}_{k \geq 1} \) defined by \(A_k = \sum_{i=1}^{k} a_i \).

Proposition 1. Suppose that \(n \geq 2 \). Then there exists an index \(k_0 \) such that \(A_k = \frac{n-1}{2R'} \left(1 + \frac{1}{n-1}\right)^k \) for all \(k \leq k_0 \), where
\[
k_0 = \left\lceil \frac{\log B_{n,\sigma,R'}}{\log n - \log(n - 1)} \right\rceil,
\]
and
\[
B_{n,\sigma,R'} = \frac{\sigma n(n-1)}{4R'} + \sqrt{\left(\frac{\sigma n(n-1)}{4R'}\right)^2 + n^2} \geq n \max\left\{1, \frac{\sigma(n-1)}{2R'}\right\}.
\]
Further, \[(n - 1) \log B_{n, \sigma, R'} \leq k_0 \leq 1.1(n - 1) \log B_{n, \sigma, R'} + 1,\]
and we can conclude that the dependence of \(k_0\) on \(n\) is \(k_0 = \Omega(n \log n)\).

Proof. Cases \(k = 1, 2\) can be verified by inspection, as \(A_1 = a_1 = \frac{n}{2R'} = \frac{n - 1}{2R'} (1 + \frac{1}{n - 1})\) and \(A_2 = a_1 + a_2 = a_1 (1 + \frac{1}{n - 1}) = \frac{n - 1}{2R'} \left(1 + \frac{1}{n - 1}\right)^2\). Observe that also \(a_2 = \frac{1}{2R'} (1 + \frac{1}{n - 1})\). For \(k \geq 2\), as long as \(a_{k-1} (1 + \frac{1}{n - 1}) \leq \frac{\sqrt{n(n + \sigma A_{k-1})}}{2R'}\) for all successive iterates, we have that
\[a_k = a_{k-1} \left(1 + \frac{1}{n - 1}\right) = \frac{1}{2R'} \left(1 + \frac{1}{n - 1}\right)^{k-1}.\]

As \(A_k = \sum_{i=1}^{k} a_i\), we have
\[A_k = \frac{n}{2R'} + \frac{1}{2R'} \sum_{i=2}^{k} \left(1 + \frac{1}{n - 1}\right)^{i-1} = \frac{n}{2R'} + \frac{1}{2R'} \left(\left(1 + \frac{1}{n - 1}\right)^k - 1 \right) - 1\]
\[= \frac{n - 1}{2R'} \left(1 + \frac{1}{n - 1}\right)^k.\]

Now let \(k_0\) be the first iteration for which
\[a_{k_0} \left(1 + \frac{1}{n - 1}\right) > \frac{\sqrt{n(n + \sigma A_{k_0})}}{2R'}\] (38).

Since \(k_0\) is the first such iteration, we also have (by the argument above) that \(a_{k_0} = \frac{1}{2R'} \left(1 + \frac{1}{n - 1}\right)^{k_0 - 1}\) and \(A_{k_0} = \frac{n - 1}{2R'} \left(1 + \frac{1}{n - 1}\right)^{k_0}\). Thus, by using these equalities and squaring both sides in (38), we obtain
\[\frac{n^2}{(n - 1)^2} \cdot \frac{1}{(2R')^2} \left(1 + \frac{1}{n - 1}\right)^{2(k_0 - 1)} > \frac{n^2 + n\sigma \frac{n - 1}{2R'} \left(1 + \frac{1}{n - 1}\right)^{k_0}}{(2R')^2}.\]

After simplifying the last expression, we have
\[\left(1 + \frac{1}{n - 1}\right)^{2k_0} > n^2 \left(1 + \frac{\sigma(n - 1)}{2nR'} \left(1 + \frac{1}{n - 1}\right)^{k_0}\right),\]
and we seek the smallest positive integer \(k_0\) that satisfies this property. By introducing the notation \(r := \left(1 + \frac{1}{n - 1}\right)^{k_0}\), we can write this condition as
\[r^2 > n^2 \left(1 + \frac{\sigma(n - 1)}{2nR'} r\right) \Leftrightarrow r^2 - \frac{\sigma n(n - 1)}{2R'} r - n^2 > 0,\]
from which we obtain (by solving the quadratic) that \(r > B_{n, \sigma, R'}\), where
\[B_{n, \sigma, R'} := \frac{1}{2} \left(\frac{\sigma n(n - 1)}{2R'} + \sqrt{\left(\frac{\sigma n(n - 1)}{2R'}\right)^2 + 4n^2}\right),\]
which is identical to the definition of \(B_{n, \sigma, R'}\) in the statement of the result.

Thus, \(k_0\) is the smallest integer such that
\[\left(1 + \frac{1}{n - 1}\right)^{k_0} > B_{n, \sigma, R'},\]
or, in other words, $k_0 = \lceil \kappa_0 \rceil$, where κ_0 satisfies

$$\left(1 + \frac{1}{n-1}\right)^{\kappa_0} = B_{n,\sigma,R'},$$

which yields the main result when we take logs of both sides.

By using $\log(1 + \delta) \in ((1/1.1)\delta, \delta)$ for $\delta \in (0, 0.21)$, we have

$$\kappa_0 = \frac{\log B_{n,\sigma,R'} \log \left(1 + \frac{1}{n-1}\right)}{\log (1 + \frac{1}{n-1})} \in (1, 1.1)(n-1) \log B_{n,\sigma,R'}$$

for $n \geq 2$. The final claim is immediate.

Proposition 2. For k_0 defined in Proposition 1 and $n \geq 2$, we have for all $k \geq k_0$ that

$$a_k \left(1 + \frac{1}{n-1}\right) > \frac{\sqrt{n(n + \sigma A_k)}}{2R'}.\]

Thus, we have that

$$a_{k+1} = \frac{\sqrt{n(n + \sigma A_k)}}{2R'}, \quad \text{for all } k \geq k_0. \quad (39)$$

Proof. Suppose for the purpose of contradiction that there is $k \geq k_0$ such that

$$a_k \left(1 + \frac{1}{n-1}\right) > \frac{\sqrt{n(n + \sigma A_k)}}{2R'} \quad \text{(40)}$$

$$a_{k+1} \left(1 + \frac{1}{n-1}\right) \leq \frac{\sqrt{n(n + \sigma A_{k+1})}}{2R'} \quad \text{(41)}$$

It follows from (40) that

$$a_{k+1} = \frac{\sqrt{n(n + \sigma A_k)}}{2R'} \quad \text{(42)}$$

By squaring both sides of (41) and using (42) and $A_{k+1} = A_k + a_k$, we have

$$\left(1 + \frac{1}{n-1}\right)^2 a_{k+1}^2 \leq \frac{n(n + \sigma A_{k+1})}{(2R')^2}$$

$$\Leftrightarrow \left(\frac{n}{n-1}\right)^2 \frac{n(n + \sigma A_k)}{(2R')^2} \leq \frac{n(n + \sigma A_k + \sigma a_{k+1})}{(2R')^2}$$

$$\Leftrightarrow \left(\frac{n^2}{(n-1)^2} - 1\right) \frac{n(n + \sigma A_k)}{(2R')^2} \leq \frac{n \sigma a_{k+1}}{(2R')^2}$$

$$\Leftrightarrow 2n - 1 \frac{(n-1)^2 a_{k+1}^2}{(2n-1)} \leq \frac{n \sigma}{(2R')^2} a_{k+1}$$

$$\Leftrightarrow a_{k+1} \leq \frac{n(n-1)^2 \sigma}{(2R')^2 (2n-1)}$$

and it follows by taking logs of both sides of the last expression that

$$\log a_{k+1} \leq \log \left(\frac{1}{2R'}\right) + \log \left(\frac{n-1}{2n-1}\right) + \log \left(\frac{\sigma n(n-1)}{2R'}\right). \quad (43)$$
We now obtain a lower bound on \(a_{k_0} \). Since, as noted in the proof of Proposition 1, we have \(a_{k_0} = \frac{1}{2R'} \left(1 + \frac{1}{n-1} \right)^{k_0^{-1}} \), we have, using the definitions of \(k_0 \) and \(B_{n,\sigma,R'} \) in the statement of Proposition 1 that

\[
\log a_{k_0} = \log \left(\frac{1}{2R'} \right) + (k_0 - 1) \log \left(\frac{n}{n-1} \right) \\
= \log \left(\frac{1}{2R'} \right) - \log \left(\frac{n}{n-1} \right) + k_0 \log \left(\frac{n}{n-1} \right) \\
\geq \log \left(\frac{1}{2R'} \right) - \log \left(\frac{n}{n-1} \right) + \log(B_{n,\sigma,R'}) \\
> \log \left(\frac{1}{2R'} \right) - \log \left(\frac{n}{n-1} \right) + \log \left(\frac{\sigma(n-1)}{2R'} \right)
\]

Now for \(n \geq 2 \), we have

\[-\log \left(\frac{n}{n-1} \right) = \log \left(\frac{n-1}{n} \right) \geq \log \left(\frac{n-1}{2n-1} \right),\]

so by substituting in the last expression above, we obtain

\[\log a_{k_0} > \log \left(\frac{1}{2R'} \right) + \log \left(\frac{n-1}{2n-1} \right) + \log \left(\frac{\sigma(n-1)}{2R'} \right).\] \hspace{1cm} (44)

By comparing Eq. (43) and Eq. (44), we see that \(a_{k+1} < a_{k_0} \) which (since \(\{a_i\}_{i \geq 1} \) is a monotonically increasing sequence) implies that \(k + 1 < k_0 \), which contradicts our choice of \(k \). Thus, no such \(k \) exists, and our proof is complete. \(\square \)

Using Proposition 2, we have that for all \(k \geq k_0 \), \(A_{k+1} = A_k + \frac{\sqrt{n(n+\sigma A_k)}}{2R'} \). Thus, we can use Lemma 6 to conclude that after iteration \(k_0 \), the growth of \(A_k \) is quadratic. However, to obtain tighter constants, we will derive a slightly tighter bound in the following proposition.

Proposition 3. Let \(k_0, B_{n,\sigma,R'} \) be defined as in Proposition 1. Then, for all \(k > k_0 \), \(A_k \geq c(k - k_0 + n - 1)^2 \), where \(c = \frac{(n-1)^2\sigma}{(4R')^2n} \).

Proof. We prove the proposition by induction on \(k_0 \). Observe that \(B_{n,\sigma,R'} \geq \frac{\sigma(n-1)}{2R'} \). Applying Proposition 1, we have that

\[A_{k_0} \geq \frac{n-1}{2R'} B_{n,\sigma,R'} \geq \frac{(n-1)^2\sigma}{4(R')^2} = 4cn^2 \geq c(n-1)^2,\]

so the claim holds for \(k = k_0 \). Now assume that the claim holds for \(k \geq k_0 \) and consider iteration \(k + 1 \). We have

\[A_{k+1} = A_k + \frac{\sqrt{n^2 + n\sigma A_k}}{2R'} \]
\[> c(k - k_0 + n - 1)^2 + \frac{\sqrt{nc\sigma}}{2R'} (k - k_0 + n - 1).\]

Let us argue that \(\frac{\sqrt{nc\sigma}}{2R'} (k - k_0 + n - 1) \geq 2c(k - k_0 + n) \). We note first that

\[\frac{\sqrt{nc\sigma}}{2R'} = \frac{\sqrt{\sigma(n-1)\sqrt{\sigma}}}{2R'\sqrt{n}} = \frac{(n-1)\sigma}{8(R')^2} = \frac{n}{n-1} - 2c \implies 2c = \left(1 - \frac{1}{n} \right) \frac{\sqrt{nc\sigma}}{2R'}.\]

We then have

\[\frac{\sqrt{nc\sigma}}{2R'} (k - k_0 + n - 1) - 2c(k - k_0 + n) = \left(\frac{\sqrt{nc\sigma}}{2R'} - 2c \right) (k - k_0 + n) - \frac{\sqrt{nc\sigma}}{2R'} \]
\[\geq \frac{\sqrt{nc\sigma} + 1}{n} (k - k_0 + n) - \frac{\sqrt{nc\sigma}}{2R'} \geq 0,\]
where we have used \(k \geq k_0 \). Hence, we have that:
\[
A_{k+1} > c(k - k_0 + n - 1)^2 + 2c(k - k_0 + n) = c(k - k_0 + n)^2 + 1 > c(k - k_0 + n)^2,
\]
establishing the inductive step and proving the claim.

Proposition 3 is mainly useful when \(\sigma \) is not too small. For small or zero values of \(\sigma \), however, we can show that after \(k_0 \) iterations the growth of \(A_k \) is at least a linear function of \(k \), as follows.

Proposition 4. Let \(K_0 = \left\lceil \frac{\log(n)}{\log(n) - \log(n - 1)} \right\rceil, n \geq 2 \). Then, for all \(k \geq K_0 \), we have that \(A_k \geq \frac{n(k - K_0 + n - 1)}{2R^\tau} \).

Proof. Since \(K_0 \leq k_0 \), we have by Proposition 1 that \(A_{K_0} \geq \frac{n(n - 1)}{2R^\tau} \) and \(a_{K_0} \geq \frac{n - 1}{2R^\tau} \). As \(a_k = \min \left\{ (1 + \frac{1}{n - 1})a_{k-1}, \sqrt{n(1 + \sigma A_{k-1})} \right\} \) and \(\sigma \geq 0 \), for all \(k \geq 3 \), we have that \(a_k \geq \frac{n}{2R^\tau} \) for all \(k \geq K_0 + 1 \), leading to the claimed bound on \(A_k \).

We can now combine Propositions 1-4 to obtain a lower bound on \(A_k \), as summarized in the following lemma. Its proof is a direct consequence of Propositions 1-4, and is thus omitted.

Lemma 7. Let sequences \(\{a_k\}_{k \geq 1}, \{A_k\}_{k \geq 1} \) be defined by Eq. (37). Then:
\[
A_k \geq \max \left\{ \frac{n - 1}{2R^\tau} \left(1 + \frac{1}{n - 1} \right)^k 1_{k \leq k_0}, \frac{(n - 1)^2\sigma}{4R^\tau} (k - k_0 + n - 1)^2 1_{k \geq k_0}, \frac{n(n - K_0 + n - 1)}{2R^\tau} 1_{k \geq K_0} \right\},
\]
where \(1 \) denotes the indicator function and
\[
K_0 = \left\lceil \frac{\log n}{\log n - \log(n - 1)} \right\rceil, \quad k_0 = \left\lceil \frac{\log B_{n,\sigma,R^\tau}}{\log n - \log(n - 1)} \right\rceil,
\]
\[
B_{n,\sigma,R^\tau} = \frac{\sigma n(n - 1)}{4R^\tau} \left[1 + \sqrt{1 + \left(\frac{4R^\tau}{\sigma(n - 1)} \right)^2} \right] \geq n \max \left\{ 1, \frac{\sigma(n - 1)}{2R^\tau} \right\}.
\]

D. Efficient Implementation of VRPDA² and Other Computational Considerations

We discuss here an equivalent form of Algorithm 2 for which the aspects needed for efficient implementation are treated more transparently. To implement Algorithm 2, we use the proximal operator \(\text{prox}_{\tau f}(x_0) = \arg\min_x \{ \tau f(x) + \frac{1}{2\bar{\nu}} \| x - x_0 \|_2^2 \} \) for a scalar \(\tau > 0 \), a convex function \(f \) and a given \(x_0 \). This implementation version (shown here as Algorithm 3), maintains several additional vectors that are needed to keep track of coefficients in the "arg min" Steps 11 and 12 of Algorithm 2. In particular, we maintain a vector \(p_k \in \mathbb{R}^n \) that contains the coefficients of the linear term in \(y \) in the function \(\psi_k(\cdot) \), a vector \(r_k \in \mathbb{R}^n \) that contains coefficients of \(g_j^r(\cdot) \) in \(\psi_k(\cdot) \), and a vector \(q_k \in \mathbb{R}^d \) that is the coefficient of the linear term in \(x \) in the function \(\phi_k(n) \). Each of these vectors generally must be stored in full, and all are initialized in Step 7 of Algorithm 3. In Step 11 of Algorithm 3, only one component—the \(j_k \) component—of \(p_k \) and \(r_k \) needs to be updated. For \(r_k \), the cost of update is one scalar addition, whereas for \(p_k \) it requires computation of the inner product \(b_k^T \bar{b}_k \), which costs \(O(d) \) scalar operations if \(b_k \) is dense but potentially much less for sparse \(B \). The update of \(q_k \). (Step 14 of Algorithm 3) requires addition of scalar multiples of two vectors (\(z_{k-1} \) and \(b_{j_k} \)), also at a cost of \(O(d) \) operations in general. (Note that for the latter operation, savings are possible if \(B \) is sparse, but since \(z_{k-1} \) is generally dense, the overall cost will still be \(O(d) \).)

In discussing the original Algorithm 2, we noted that the \(\arg\min \) operation over \(y \) in Step 11 resulted in only a single component (component \(j_k \)) being different between \(y_{k-1} \) and \(y_k \). We make this fact explicit in Step 12 of Algorithm 3, where we show precisely the prox-operation that needs to be performed to recover the scalar \(y_{k,j_k} \).

To summarize, each iteration of Algorithm 3 requires several vector operations with the (possibly sparse) vector \(b_{j_k} \in \mathbb{R}^d \), several other vector operations of cost \(O(d) \), a prox operation involving \(\ell(x) \), and a scalar prox operation involving \(g_{j_k}^r \). There are no operations of cost \(O(n) \).

Initialization of Algorithm 3 involves significant costs, including one matrix-vector product each involving \(B \) and \(B^T \), one prox operation involving \(\ell(\cdot) \), a prox operation involving \(g^r(\cdot) \) (which can be implemented as \(n \) scalar prox operations involving \(g_1^r, g_2^r, \ldots, g_n^r \) in turn), and several vector operations of cost \(O(d + n) \). However, this cost is absorbed by the overall (amortized) computational cost of the algorithm, which adds to \(O(nd \log(\min\{n, 1/\epsilon\}) + \frac{2}{\sqrt{\epsilon}}) \) for the general convex case and \(O(nd \log(\min\{n, 1/\epsilon\}) + \frac{4}{\sqrt{\epsilon}}) \) for the strongly convex case, as stated in Theorem 2 and in Table 1.
Algorithm 3: Variance Reduction via Primal-Dual Accelerated Dual Averaging (VRPDA^2, Implementation Version)

1: **Input:** \((x_0, y_0) \in \mathcal{X} \times \mathcal{Y}, (u, v) \in \mathcal{X} \times \mathcal{Y}\).
2: \(a_0 = A_0 = 0, \tilde{a}_1 = \frac{1}{2R}, \tilde{p}_1 = -Bx_0\).
3: \(y_1 = \text{prox}_{\tilde{a}_1g^*}(y_0 - \tilde{a}_1\tilde{p}_1)\).
4: \(z_1 = B^Ty_1\).
5: \(x_1 = \text{prox}_{\tilde{a}_1\ell}(x_0 - \tilde{a}_1z_1)\).
6: \(a_1 = A_1 = n\tilde{a}_1, a_2 = \frac{1}{n}a_1, A_2 = A_1 + a_2\).
7: \(p_1 = a_1\tilde{p}_1, q_1 = a_1z_1, r_1 = \frac{1}{n}a_11\).
8: **for** \(k = 2, 3, \ldots, K\) **do**
9: \(\bar{x}_{k-1} = x_{k-1} + \frac{a_k}{a_k-1}(x_{k-1} - x_{k-2})\).
10: Pick \(j_k\) uniformly at random in \([n]\).
11: \(p_{k,i} = \begin{cases} p_{k-1,i}, & i \neq j_k \\ p_{k-1,i} - a_kb_i^*x_{k-1}, & i = j_k \end{cases} \quad r_{k,i} = \begin{cases} r_{k-1,i}, & i \neq j_k \\ r_{k-1,i} + a_k, & i = j_k \end{cases} \quad y_{k,i} = \begin{cases} y_{k-1,i}, & i \neq j_k \\ \text{prox}_{\frac{1}{n}r_{k,j_k}b_i^*}(y_{0,j_k} - \frac{1}{n}p_{k,j_k}), & i = j_k \end{cases} \quad q_k = q_{k-1} + a_k(z_{k-1} + (y_{k,j_k} - y_{k-1,j_k})b_{j_k})\).
12: \(x_k = \text{prox}_{\frac{1}{n}A_k}(x_0 - \frac{n}{a_k}q_k)\).
13: \(z_k = z_{k-1} + \frac{1}{n}(y_{k,j_k} - y_{k-1,j_k})b_{j_k}\).
14: \(a_{k+1} = \min \left(1 + \frac{1}{n}a_k, \sqrt{n(\sigma + a_k)} \right) \frac{2R}{\sigma} \right), A_{k+1} = A_k + a_{k+1}\).
15: **end for**
16: **return** \(x_K \text{ or } \bar{x}_K := \frac{1}{A_K} \sum_{k=1}^K a_kx_k\).