Development and evaluation of a technique for *in vivo* monitoring of 60Co in human liver

GH Gomes, MC Silva, JQ Mello, ALA Dantas and BM Dantas
Instituto de Radioproteção e Dosimetria- IRD-CNEN
E-mail: bmdantas@ird.gov.br

Abstract: 60Co is an artificial radioactive metal produced by activation of iron with neutrons. It decays by beta particles and gamma radiation and represents a risk of internal exposure of workers involved in the maintenance of nuclear power reactors. Intakes can be quantified through *in vivo* monitoring. This work describes the development of a technique for the quantification of 60Co in human liver. The sensitivity of the method is evaluated based on the minimum detectable effective doses. The results allow to state that the technique is suitable either for monitoring of occupational exposures or evaluation of accidental intakes.

1. Introduction

60Co is a synthetic radioactive isotope with a half-life of 5.27 years produced in nuclear reactors. It decays to the stable isotope 60Ni, emitting β particle. The activated nickel nucleus emits two γ rays with energies of 1.17 and 1.33 MeV [1]. 60Co is a result of multiple stages of neutron activation of iron components of the reactor structure, posing a risk of occupational internal exposure to workers involved in the handling and maintenance of parts and equipment potentially contaminated in nuclear power units. Measurable quantities are also produced as a by-product of typical nuclear power plant operation and may be detected externally when leaks occur. Internal monitoring procedures aimed to identify and quantify intakes by inhalation and ingestion may be accomplished through *in-vivo* measurements.

The IRD whole-body counter has been recently calibrated to perform lung monitoring using a NaI(Tl)8x4 scintillation detector [2] installed in a shielded room designed originally for low activity measurement [3].

This work describes the standardization and evaluation of the sensitivity of a technique for *in-vivo* measurement of 60Co in human liver.

2. Materials and Methods

The calibration of the detection system is performed using a LLNL thorax phantom [4] containing a certified 60Co liver phantom supplied by the University of Cincinnati. The procedure allows obtaining a calibration factor which correlates the net count rate in specific regions of interest (ROI) and the activity present in the phantom. This parameter is necessary to calculate the activity content in the liver of an individual potentially exposed and measured *in vivo* using the whole body counter detection system.

2.1. *Determination of the calibration factor*

The LLNL thorax with a liver phantom (Figure 1a) containing an activity of (34501 +/- 345) Bq of 60Co was placed on the monitoring chair located inside the shielded room of the IRD whole-body counter and the Pb-collimated NaI(Tl)3x3 detector was positioned at a distance of 2 cm between the
surface of the phantom and the front face of the crystal (Fig. 1 b). A series of five counts of 300 seconds were performed at the standard geometry and the spectra saved for subsequent calculations.

Figure 1c presents a γ-spectrum of 60Co showing the two characteristic peaks of 1173 and 1332 keV. Three regions-of-interest (ROI) were defined including a range of energy from [1086-1264] for the first peak, [1264-1438] for the second and a third region of [1086-1438].

Figure 1. (a) The LLNL thorax containing a liver phantom; (b) Setup for the calibration of the NaI(Tl)3x3 scintillation detector installed in shielded room of the IRD-WBC; (c) Gama spectrum of 60Co obtained with the NaI(Tl)3x3 scintillation detector showing the two photopeaks of 1713 and 1333 keV used for the calculation of the calibration factor.

After the counts have been completed, the calculation of the calibration factors (CF) in each ROI was performed. The CF expresses the ratio between the average net count rate of the five counts, in cps, and the activity of the phantom, in Bq, as follows:

$$CF_{cps/Bq} = \frac{cps}{A}$$

Where: cps is the net count rate (averaged cps of the phantom and A (Bq) = 60Co activity content of the liver phantom.

2.2. Evaluation of sensitivity

In order to be considered useful for internal dosimetry purposes, any technique should, at least, be able to detect an activity that would result in a committed effective dose below 1 mSv, taking into consideration the most likely internal exposure scenario [5]. Thus, the evaluation of the sensitivity of the method was based on the calculation of the MDA (minimum detectable activity) and the corresponding MDI (minimum detectable intake) and the MDED (minimum detectable effective dose).

Such calculations were based on the biokinetic and dosimetric models of 60Co in human body applied to a realistic internal exposure scenario. According to the model ICRP 78 [6], 60Co is distributed throughout the whole body and a significant fraction is retained in the liver.

The MDA of the method is calculated as follows [7]:

$$MDA = \frac{4.65\sqrt{N}}{CF \times T} + \frac{3}{CF \times T}$$

Where: N = Total counts of the background in the ROI; CF = Calibration Factor (cps/Bq) and T = count time.

The MDI is a function of the MDA and depends on the exposure scenario and time elapsed between intake and the *in vivo* measurement. It is calculated as follows:

$$MDI = \frac{MDA}{m(t)_{inh}}$$
Where: MDA = Minimum Detectable Activity (Bq) and m(t) = Retention fraction in the compartment of interest, in Bq/Bq.

The last parameter to be calculated is the MDED, which is a function of the MDI and the dose coefficient, e(g), associated to the intake scenario adopted in the simulation. It is calculated as follows:

$$\text{MDED}_{\text{Bq}} = \text{MDI}_{\text{inh}} \times e(g)_{\text{inh}}$$ (4)

Where: MDI = Minimum Detectable Intake (Bq) and e(g)$_{\text{inh}}$ = Dose coefficients (mSv/Bq).

The values of “m(t)”, in Bq/Bq, where generated for a period of 1 to 14 days after a single intake of 60Co via ingestion using the software AIDE [7]. The dose coefficient, e(g), in mSv/Bq, correspond to the committed effective dose resulting from an intake of 1 Bq.

3. Results and Discussion

Table 1 presents the calibration parameters (Regions of Interest, Calibration Factors and respective MDAs).

Table 1. Results of the calibration of the NaI(Tl)3x3 detector for in vivo measurement of 60Co in the liver, comparing three regions of interest

Calibration Parameters	ROI (Channels)	ROI (keV)	CF (Cps/Bq)	MDA (Bq)
	347-418	1086 - 1264	0.00142	114
	418-488	1264 - 1438	0.00131	126
	347-488	1086 - 1438	0.00291	79

ROI #3 (347-488) was elected since it has shown to be the most sensitive based on its corresponding MDA. Therefore, the following calculation where all based on this ROI. The next step was to calculate the MDI and the MDED in the period of 1 to 14 days after the intake.

Table 2 presents the values of MDI and MDED derived from the selected MDA, considering a scenario of a single intake of 60Co via ingestion.

Table 2. Minimum Detectable Intakes and Minimum Detectable Effective Doses over a period of 1 to 15 days after the intake, assuming a scenario of a single intake of 60Co by ingestion. (Dose coefficient = 3.41x10$^{-6}$ mSv/Bq)

T (d)	m(t) (Bq/Bq)	MDI (Bq)	MDED (mSv)
1	3.21 x 103	2.48 x 104	0.084
2	4.20 x 103	1.89 x 104	0.065
3	4.23 x 103	1.88 x 104	0.064
4	4.04 x 103	1.97 x 104	0.067
5	3.81 x 103	2.09 x 104	0.071
10	2.94 x 103	2.70 x 104	0.092
14	2.50 x 103	3.18 x 104	0.108
4. Conclusions

Based on the sensitivity of the method, expressed by the MDED, it is concluded that the technique is able to detect activity levels of 60Co in the liver derived from intakes via ingestion that would result in committed effective doses in the order of microsieverts. It should be noted that up to 14 days after the intake, the MDED is still about 10 times below 1 mSv, the suggested Registry Level for occupational exposure, according to the IAEA [5].

The results obtained in this work allow concluding that the proposed technique is sensitive enough for the control of intakes of 60Co via ingestion. The technique is suitable for a routine monitoring program aimed to control this type of exposure in nuclear power stations. The methodology is valid either in routine operations or in special tasks like the ones performed during maintenance of the reactor. It can also be useful for the evaluation of accidental intakes.

5. References

[1] US EPA 2017. https://www.epa.gov/radiation/radionuclide-basics-cobalt-60
[2] Mello JQ, Lucena EA, Dantas ALA and Dantas BM 2016. Development and evaluation of a technique for in vivo monitoring of 60Co in human lungs. J.of Physics. Conference Series (Print). , v.733, p.012089
[3] Oliveira CAN, Lourenço MC, Dantas BM, Lucena EA and Laurer GR 1989. The IRD/CNEN whole body counter: Background and calibration results. Radiat. Prot. Dosm. v.29 (3) 203.
[4] Spitz HB, Glover S, Liu N, Smith B, Hickman D, Kruchten D and Anderson L 1994. Measurement of the attenuation coefficient for Livermore thoracic phantom lungs fabricated using contemporary materials. Health Phys., v.67, n.1, p.39-46.
[5] International Atomic Energy Agency (IAEA) 1999. Assessment of Occupational Exposure Due to Intakes of Radionuclides - Safety Standards Series, no. RS-G-1.2
[6] International Commission on Radiological Protection (ICRP) 1998. Publication 78: Individual Monitoring for Internal Exposure of Workers,
[7] International Standard Organization. Radiation Protection (ISO) 2001. Performance Criteria for Radiobioassy. Part 1: General principles.
[8] Bertelli L, Melo DR; Lipsztein JL and Cruz-Suarez R 2008. AIDE: Internal Dosimetry Software. Radiation Protection Dosimetry v. 130(3), p. 358-367.

Acknowledgment

The authors would like to thank the support of FINEP / MCTI (Project 01.10.0650.01)