Comparing data quality between online panel and intercept samples

Mingnan Liu

Abstract
Although some research effort has been devoted to the comparison of probability- and nonprobability-based Web surveys, different types of nonprobability-based samples have not been thoroughly examined. This exploratory study compares the data quality between online panel and intercept samples. Online panel refers to a pre-recruited and profiled pool of respondents. An intercept sample is a pool of respondents that are obtained through banners, ads, or promotions. Anyone can click on them and subsequently respond to a survey. Respondents are not pre-recruited or profiled. Three surveys with 52, 29, and 19 questions, respectively, were administered to both samples. Propensity score weighting adjustment is used for the analyses. The results show that the completion rates are higher for the panel than the intercept sample. The completion times are similar for these two samples. Data quality, on average, tends to be higher for panel than intercept samples.

Keywords
Nonprobability survey, web survey, online panel, intercept sample, data quality, satisficing

Introduction
Research has shown that many factors contribute to the rapid growth of Web surveys, including high Internet penetration, low cost, timeliness, and so on (see, for example, Fricker and Schonlau, 2002; Sheehan, 2001; Wright, 2005). A major challenge that Web surveys face is the lack of a sampling frame of the general population and hence making inference from it. Couper (2000) classifies Web surveys into two broad categories: nonprobability-based and probability-based. He further classifies nonprobability-based Web surveys into three groups, namely, polls as entertainment, unrestricted self-selected surveys, and volunteer opt-in panels.

This study focuses on the last two types of nonprobability-based Web surveys and compares data quality between them through six surveys. As indicated by the name, unrestricted self-selected surveys, or a web intercept sample, usually use open invitations (e.g. banners or ads on websites) and impose no restriction on survey access. The identity of the potential respondents is unknown, and the personal contact information is usually not sought and no re-contact is attempted. It relies on recruiting anyone who happens to be passing through a website at a particular time. In contrast, opt-in panels collect panelists’ contact information, along with profile data at the sign-up stage for contacting and targeting respondents in later surveys. Previous research has examined different nonprobability sample acquisition strategies (Alvarez et al., 2003).

Nonprobability samples have been used in many fields. For example, researchers in fields like psychology and market research have long used nonprobability samples for experimental studies. For those types of studies, the representativeness of the sample is not critical. However, other aspects of data quality, in particular, the conscientiousness of the respondents, are of critical importance. Satisficing theory is often cited as a framework for understanding respondents’ cognitive process and efforts when responding to survey questions (Krosnick, 1991, 1999). According to this theory, respondents can be classified into two broad categories: optimizers and satisficers. Optimizers are those who carefully and conscientiously go through each cognitive step, including comprehension, retrieval, judgment and estimation, reporting, and mapping, before providing an answer. On the
other hand, satisficers tend to take cognitive shortcuts and stop the cognitive process as soon as they reach a good enough yet not perfect answer.

Why should we expect the data quality as measured by satisficing to differ between the two sample sources? To answer this question, it is necessary to explain the nature of the two sample sources first. The intercept samples in this study come from offer walls. An offer wall is a page that appears within a mobile app that offers users rewards in exchange for completing some tasks. In this study, a survey invitation was offered on the offer wall when mobile game players needed additional game coins to continue with their games. Game players can click on one of the offers (tasks) displayed on the offer wall, and a survey is one of the offers. If the participants click on the survey invite, they will be redirected to the survey. Once they have completed the survey, participants are directed back to the offer wall page to collect their rewards and continue with their previous actions, in this case, mobile games. The online panel used in this study is SurveyMonkey Audience, an online nonprobability-based Web access panel. The panelists are recruited from over 30 million people who complete SurveyMonkey surveys every month. After one completes a survey on the SurveyMonkey platform, he or she will be directed to a landing page, called the survey thanks-page. On that web page, participants are asked to sign up for SurveyMonkey Audience. After signing up, panelists need to first take a profile survey asking a variety of demographic characteristics and behaviors, which are later used for targeting.

Three major differences between the intercept sample and the online panel under study can influence their data quality. First, the context of the survey environment could be different. For the intercept respondents, the survey is during the process of another action in which they are engaged. The respondents probably have more motives to rush through the survey so that they can return to their previous actions. This may lead to suboptimal data quality, that is, satisficing behaviors (Krosnick, 1991, 1999; Krosnick and Alwin, 1987). Although the survey-taking context of the panel respondents is not clear, considering that they are invited by emails, they have more control over the time and place at which they take the survey. Thus, it is less likely for panel respondents to start taking a survey when they are in the middle of another task and having to rush through the survey.

Second, incentives are different between these two sample sources. For the intercept sample, respondents are rewarded with game coins or lives in order for them to continue with the game. They benefit directly from taking the survey. For the panel survey, SurveyMonkey rewards panelists with charitable donations. There is no direct financial benefit from taking surveys for the panelists. The literature has examined the impact of incentives on the web survey response rate (Bosnjak and Tuten, 2003; Dykema et al., 2013; Göritz, 2006; Göritz and Wolff, 2007). One study examined cash incentives and charity donation and found that the charity donation actually decreased survey participation (Pedersen and Nielsen, 2014). Another study showed that incentives improved not only survey participation but also data quality (Van Veen et al., 2015). The direct incentive used in the intercept sample can probably provide more motivation to the respondents, and hence, they are more likely to treat the survey more seriously and give more conscientious responses. On the other hand, the charity donation in the panel survey suggests that respondents are doing the survey for altruistic reasons rather than personal benefit. Research has shown that altruistic-oriented people are more likely to accept survey requests (Abraham et al., 2006; Groves et al., 2000). In principle, those people should also be more likely to provide better data quality. Considering these, the different incentive strategies between the two sample sources produce competing expectations on their impacts on data quality.

Third, the survey experience is different between the two sample sources. The online panel respondents, in principle, should have more survey experience than the intercept samples. The literature shows either negative (Toepoel et al., 2008) or no correlation (Matthijssse et al., 2015) between survey experience and data quality. Given the mixed findings in the literature and the lack of data on survey experience, no specific prediction will be made based on this.

It is important to note that in this study, all intercept respondents used mobile devices, while panel respondents could choose from all types of devices, including mobile and non-mobile. Therefore, the mode could be another contributor to the difference, if any, between the panel and intercept samples. Previous studies found similar responses from both mobile and non-mobile survey participants (Couper et al., 2015). However, the current design does not allow a separation of the effects.

Data and measures

Three surveys with 52, 29, and 19 questions were tested on both online panel and intercept samples in the United States. The surveys were conducted in May 2015. Surveys were programmed and administered using the SurveyMonkey platform. The completion rate is calculated as follows:

\[
\text{Completion rate} = \frac{\text{No. of completed surveys}}{\text{No. of surveys finished the first page}}
\]

The 52-question survey is the most comprehensive; the other two are shorter versions of the 52-question survey. The data quality indicators are drawn from the satisficing literature (Krosnick, 1991, 1999). The satisficing literature suggests that satisficers, as opposed to optimizers, stop their cognitive process as soon as they reach a good enough but not optimal answer when they are responding to survey questions. The study also supplemented the satisficing indicators with other data quality measures. The measures used in the 52-question version include (1) response rounding of numeric questions—the percentage of numeric answers that...
are integers of 5; (2) straightlining of matrix questions—the percentage of respondents selecting the same response option regardless of the items in a matrix; (3) trap questions—the percentage of failed trap responses. An example of a trap question is “Please select B regardless of your real answer,” and failure means selection of any options other than “B” (for more examples, see Jones et al., 2015); (4) knowledge question answers—the percentage of inaccurate answers to knowledge questions; (5) sensitive questions—the percentage of socially desirable answers; (6) open-ended response quality—the number of characters for the open-ended responses; (7) time to complete in seconds—the median time for completing the entire survey. The 29-question and 19-question surveys included fewer questions.

Table 1 summarizes the measures in each survey. All questions were required.

Given the nature of this study, that is, to compare the survey responses from two different sample sources, it is impossible to conduct a strictly randomized experiment. Consequently, the sample compositions, in terms of demographic variables, in each pair of surveys under comparison can be different. To remove as much of the impact of demographic difference as possible, I analyze the data using t-tests or chi-square tests, with the propensity score weight. Specifically, I first fit a propensity model to predict participation in the online panel versus intercept survey, using variables that are potentially related to the response propensity for both surveys. The variables used in the three surveys are different, as the short surveys have fewer variables than the long survey. For the 52-question survey, the variables used in the propensity model include gender, age, race/ethnicity, education level, marital status, household income level, house ownership, insurance ownership, credit card ownership, census region, party ID, and ideology. The variables for the 29-question survey include gender, age, race/ethnicity, education level, marital status, household income level, census region, party ID, and ideology. The variables for the 19-question survey include gender, age, race/ethnicity, education level, household income level, and census region. Next, I create the propensity weight by taking the inverse of the probability of responding to the online panel versus intercept sample. In all models, a full propensity distribution was used for adjustment. Each propensity model showed balanced distributions of the variables used in the model, suggesting that the propensity model performed well.

For each survey, I conduct two sets of analyses. I first analyze all the samples together to compare intercept versus panel. Then, I separate the mobile panel respondents and compare them with the intercept respondents since all intercept respondents in this study used mobile devices. The numbers of respondents in the mobile samples for the three panel surveys are 178, 131, and 88, respectively, for the 52-, 29-, and 19-question surveys. The propensity score weights are calculated separately for these two sets of analyses.

Results

Completion rate

The completion rates for intercept surveys were significantly lower than the completion rates for panel surveys for all three versions of surveys (Table 2). When comparing completion rates across the three surveys for intercept and panel samples separately, a clear trend emerges: a short survey leads to a higher completion rate.

52-question survey

Table 3 presents the survey responses between intercept and panel respondents.

Time to complete. The median time to completion for the intercept and panel surveys was not significantly different between the all samples and mobile samples only.

Response rounding. One item showed a significant difference, in which the panel survey produces more rounded answers than the intercept survey. When only comparing mobile respondents, panel respondents tend to provide more rounded answers than intercept respondents, although the differences were not significant.

Straightlining. Straightlining is measured through two sets of multi-item rating scales, one with five items and the other

Table 1. Response quality indicators by surveys.

Measures	52-question	29-question	19-question	Test	
Response latency	All questions	All questions	All questions	Median seconds	t-test
Rounding	5 numeric questions	4 numeric questions	1 numeric question	% Rounded answers	t-test
Straightlining	Two multi-item scales	One multi-item scale (5 items)	One multi-item scale (5 items)	% Straight-lined responses	t-test
Trap question	4 questions	3 questions	1 question	% Trapped answers	t-test
Knowledge question	4 questions	2 questions	1 question	% Incorrect answers	t-test
Sensitive question	5 questions	2 questions	1 question	% Desirable answers	t-test
Open-ended question	1 question	1 question	1 question	Number of characters	t-test
Self-rate difficulty	1 question	1 question	1 question	4 categories	χ²
with six items. For the 6-item scale, panel respondents are significantly less likely to straightline than intercept respondents \((t = −2.11, p < .05)\). The difference is smaller and not significant for the mobile-only comparison.

Trap question. Three trap questions were asked in the survey, where the first one is much easier than the other two. For the easy question (Trap 1), almost all respondents answered it correctly. For the two more difficult questions, significantly fewer panel respondents failed than did intercept respondents (Trap 2: \(t = −2.91, p < .01\); Trap 3: \(t = 5.07, p < .001\)). The same trend is found for the mobile-only respondents (Trap 2: \(t = 3.06, p < .01\); Trap 3: \(t = 4.86, p < .001\)).

Knowledge question. Four knowledge questions were asked in the surveys and panel respondents were more likely to provide correct answers to all of them than were intercept respondents, although only two are significant in the all

Table 2. Completion rates between intercept and panel for the three surveys.

	52-question		29-question		19-question	
	Intercept (1)	Panel (2)	Intercept (3)	Panel (4)	Intercept (5)	Panel (6)
Completed first page	1328	494	1880	466	1096	435
Completed entire survey	1004	423	1467	419	897	410
Completion rate	76%	86%	78%	90%	82%	94%

\(t = 5.08, p < .001\) \(t = 6.99, p < .001\) \(t = 7.90, p < .001\)

Table 3. Data quality indicators for 52-question intercept and panel surveys.

	All samples	Mobile samples only					
	Intercept	Panel	\(t\)	Intercept	Panel	\(t\)	
Sample size	1004	423	0.68	1004	178	-0.88	
Time to complete (median seconds)	458	462	0.27	467.5	446	-0.54	
Rounding (% rounded)							
Fast food	31.3	31.2	-0.03	29.9	36	1.25	
Alcoholic drinks	18.7	25.1	-1.82	19.9	24.7	1.09	
TV watch	47.5	57.9	2.14*	48.4	57.9	1.74	
SMS	77.1	72.6	-1.15	76.8	84.8	1.79	
Friends	29.7	31.4	0.39	31.7	30.3	-0.26	
Straightlining (% straight-lined)	5Q scale	13.1	14.2	0.27	10.1	8.4	-0.54
6Q scale	5.6	2.8	-2.11*	5	3.9	-0.65	
Trap question (% failed)							
Trap 1	1.6	1.9	0.34	1.9	1.7	0.17	
Trap 2	75.2	61.0	2.91**	73.8	57.3	3.06***	
Trap 3	57.2	32.4	5.07***	56.2	30.3	4.86***	
Knowledge question (% incorrect)							
Knowledge 1	28.3	22.9	-1.26	26.3	22.5	-0.84	
Knowledge 2	26.2	16.3	-2.34*	25.9	16.9	-2.05*	
Knowledge 3	5.2	3.8	-1.12	5.6	2.8	-1.77	
Knowledge 4	59.8	50.1	-1.99*	59.8	59	-0.15	
Sensitive question (%)							
Never smoked 100 cigarettes lifetime	63.1	65.5	0.49	68.4	68	-0.08	
Not smoke at all	94.8	92.7	-1.31	94.9	91.6	-1.44	
Never used Marijuana/Hashish	56.7	54.1	-0.52	56.9	48.9	-1.46	
Heterosexual/straight	92.4	92.9	0.24	91.3	92.7	0.52	
Number of sex partners	1.66	0.04	3.28***	1.83	0.87	4.26***	
Open-ended (no. of characters)	15.0	25.8	5.89***	15.4	24.1	5.88***	
Task difficulty (%)							
Very easy	\(χ^2\)	\(χ^2\)	17.73	62.7	69.7	13.95	
Somewhat easy	29.5	24.1	30.2	27.5			
Very/somewhat hard	7.9	4.0	7.1	2.8			

*\(p<.05\), **\(p<.01\), ***\(p<.001\).
samples comparison and one is significant among the mobile samples. In the mobile-only comparison, the intercept sample provided significantly more wrong answers than the panel sample to one question.

Sensitive question. Among the five sensitive questions, only the one on the number of sexual partners shows a significant difference; intercept respondents report more lifetime sexual partners than panel respondents (all samples: \(t = 3.28, p < .01 \); mobile samples: \(t = 4.26, p < .001 \)).

Open-ended question. Panel respondents provided longer responses to the open-ended question than intercept respondents, and this was the case for both the all samples (\(t = 5.89, p < .001 \)) and mobile samples only (\(t = 5.88, p < .001 \)). Most of the open-ended responses were valid, although the panel respondents provided even fewer invalid responses than the intercept respondents in the all samples analysis (\(t = −2.13, p < .05 \)).

To sum up, there are 21 indicators under comparison, and for all samples, eight data points show significant differences between the two sample sources. When restricted to mobile respondents only, only four comparisons are significantly different. It needs to be pointed out that the mobile panel sample size is relatively small (\(n = 178 \)), and therefore, the lack of significant findings may simply be lower. To reflect the data quality difference while accounting for the smaller sample size, I calculated the average difference between the intercept and panel samples (except time to complete and open-ended response because these are in a different metric from the other variables), and it is 3.77 for all samples comparison and 2.48 for mobile comparison. A positive number suggests lower data quality for the intercept than the panel sample. This means that, on average, intercept respondents produced somewhat worse data quality than panel respondents.

29-question survey

The 29-question survey contained the same set of data quality indicators as the 52-question survey, although fewer questions for each indicator (Table 4).

Time to complete.** Similar to the 52-question survey, in this 29-question survey, the median time to completion for intercept and panel surveys was not significantly different for both the all samples and mobile samples only.**

Rounding. Four numeric questions were used to measure response rounding. Intercept respondents gave significantly more rounded answers to only one question (\(t = −2.24, p < .05 \)) in the all samples analysis. The disparity between the two samples becomes smaller and is not significant in the mobile-only analysis.

Table 4. Data quality indicators for 29-question intercept and panel surveys.

	All samples	Mobile samples only				
	Intercept	Panel	Intercept	Panel		
Sample size	1467	419	1469	131		
Time to complete (median seconds)	268	271	0.19	275	292	1.29
Rounding (% rounded)						
Fast food	27.8	33.4	28.4	32.1		
Alcoholic drinks	24.2	22	21.5	19.1		
TV watch	59.8	50.1	57.7	50.4		
SMS	80.8	75.2	79.6	89.3		
Straightlining (% straight-lined)	11.9	9.3	−0.89	10.7	9.2	−0.47
Trap question (% failed)						
Trap 2	97.5	96.9	97.1	97.7		
Trap 3	34.6	44.9	32	42		
Knowledge question (% incorrect)						
Knowledge 1	30.9	26	32	26		
Knowledge 4	65.1	46.3	66.6	53.4		
Sensitive question (% desirable)						
Not smoke at all	91.5	93.1	89.5	93.1		
Never used Marijuana/Hashish	57.9	55.8	−0.44	59.2	60.3	0.19
Open-ended (no. of characters)	15.3	29.5	6.59***	15.3	25.9	3.88***
Task difficulty (%)						
Very easy	72.1	77.6	70.6	76.3		
Somewhat easy	23.1	21.2	23.9	20.6		
Very/somewhat hard	4.8	1.2	5.5	3.0		

*\(p < .05 \), ***\(p < .001 \).
Methodological Innovations

Only the 5-item scale was asked in this survey and the difference between the two samples is small and not significant for both the all samples and mobile-only comparisons.

The two more difficult trap questions were used in this survey. The difference of the percentages of failed respondents for Trap 2 is small between the two samples but large for Trap 3 (t = 2.13, p < .05, all samples). The difference in the mobile-only sample is not significant.

Two knowledge questions were kept for this version of the survey. Panel respondents consistently provided more accurate answers than intercept respondents, although the difference was significant only for the Knowledge 4 question (all samples: t = 4.34, p < .001; mobile respondents: t = 2.25, p < .05).

Two questions on smoking and drug use were asked, and the responses were similar between the two samples and no significant differences were found.

Panel respondents provided longer responses to the open-ended question than intercept respondents, and this was the case for both the all samples (t = 6.59, p < .001) and mobile samples only (t = 3.88, p < .001)

Across all the data quality indicators except for response latency, the average difference is 3.16 for all samples and 0.71 for the mobile samples comparison.

With the exception of the sensitive questions, the 19-question survey included all the data quality indicators. However, only one question was asked for each data quality indicator (Table 5).

Table 5. Data quality indicators for 19-question intercept and panel surveys.

	All samples	Mobile samples only			
	Intercept	Panel	Intercept	Panel	t
Sample size	897	410	897	88	
Time to complete	161	152	158	185	−1.13
Rounding (% rounded)	22.3	22.2	22	18.2	−0.03
Straightlining (%	14.3	6.6	16.7	8	−2.82**
Straightlined 5Q					
Scale					
Trap question (%)	2.6	2.4	3.7	5.7	−0.15
Trap 1					
Knowledge question	29.2	22.9	33.8	18.2	−1.69
Knowledge 1					
Open-ended (no. of	15.0	26.9	14.2	26.4	6.93***
characters)					
Task difficulty					
Very easy	77	86.8	76.9	89.8	22.35**
Somewhat easy	19.1	11.5	18.4	6.8	4.7
Very/somewhat hard	3.9	1.7	4.7	3.4	

*p<.05, **p<.01, ***p<.001.

Straightlining. Only the 5-item scale was asked in this survey and the difference between the two samples is small and not significant for both the all samples and mobile-only comparisons.

Trap question. The two more difficult trap questions were used in this survey. The difference of the percentages of failed respondents for Trap 2 is small between the two samples but large for Trap 3 (t = 2.13, p < .05, all samples). The difference in the mobile-only sample is not significant.

Knowledge question. Two knowledge questions were kept for this version of the survey. Panel respondents consistently provided more accurate answers than intercept respondents, although the difference was significant only for the Knowledge 4 question (all samples: t = 4.34, p < .001; mobile respondents: t = 2.25, p < .05).

Sensitive question. Two questions on smoking and drug use were asked, and the responses were similar between the two samples and no significant differences were found.

Open-ended question. Panel respondents provided longer responses to the open-ended question than intercept respondents, and this was the case for both the all samples (t = 6.59, p < .001) and mobile samples only (t = 3.88, p < .001)

Across all the data quality indicators except for response latency, the average difference is 3.16 for all samples and 0.71 for the mobile samples comparison.

19-question survey

With the exception of the sensitive questions, the 19-question survey included all the data quality indicators. However, only one question was asked for each data quality indicator (Table 5).

Time to complete. The median time to completion for the intercept and panel surveys was not significantly different when all samples were combined. However, for the mobile-only samples, the median time was significantly longer for the panel than the intercept sample.

Rounding. The differences between the two samples were small and not significant for both all samples and mobile-only respondents.

Straightlining. More straight-lined responses existed in the intercept than the panel samples, and the differences were significant for both analyses (all samples: t = −2.82, p < .01; mobile respondents: t = −2.08, p < .05).

Trap question. Only the easiest trap question was retained in this survey. Hence, the failure rates were quite low and similar between the two samples.

Knowledge question. Panel respondents provided more accurate answers than did the intercept respondents. The difference was significant for the mobile respondents (t = 2.25, p < .05).

Open-ended question. Panel respondents provided longer responses to the open-ended question than intercept respondents, and this was the case for both the all samples (t = 6.93, p < .001) and mobile samples only (t = 3.12, p < .01).

On average, the difference between the intercept and panel samples is 3.57 for the all samples comparison and 6.52 for the mobile samples comparison.

Task difficulty

At the end of each survey, the respondents are also asked to evaluate the level of difficulty of the survey through a 4-point
rating scale. For the 52-question survey, the differences between the panel and intercept samples were not significant. For both the 29- and 19-question surveys, significantly more panel respondents thought the survey to be very easy than intercept respondents, in all samples comparison. The same pattern emerged for mobile samples only in the 19-question survey.

Conclusion and discussion

Different survey sampling strategies have their own pros and cons. Previous studies have largely focused on the examination of nonprobability survey data quality by benchmarking the survey estimates on external probability benchmarks. To our knowledge, this is the first study that compares data quality between intercept and panel surveys. Instead of examining the representativeness of the survey data, this study focuses on respondent satisficing, a data quality perspective that is of crucial importance for nonprobability surveys.

The completion rates of panel surveys are consistently higher than intercept surveys, regardless of the survey length. This suggests that the online panel has advantages over the intercept in terms of cost and efficiency. One thing to point out is that the higher completion rate for the panel survey may be due to the fact that PC respondents tend to have greater response propensity than mobile respondents in general, and, should we remove the PC respondents from the completion rate calculation, a different pattern might emerge. Unfortunately, such data were not captured in the platform for me to calculate a mobile-only completion rate for the panel sample.

For the 52-question survey, the overall comparison between the two samples revealed eight significant differences among 21 data points. Among the eight significant data points, six showed indications of superior data quality for the panel compared to the intercept sample. However, after restricting the comparison to mobile-only respondents for the panel, the number of significant differences drops to four and all but one suggest that a panel survey produces better quality data than does an intercept survey. Similarly, for the 29-question survey, among the 13 data points studied, three showed significant differences, among which two indicated that the panel survey respondents had fewer satisficing behaviors. Only one data indicator remains significant and it indicates that intercept respondents produce better data among mobile respondents. The 19-question survey only has six data points under comparison, of which two showed significant differences; both indicated that panel respondents satisfice less than intercept respondents. Interestingly, for the mobile-only comparison, one more data quality indicator becomes significant.

The fewer significant differences in the mobile samples could be due to the smaller sample size of mobile respondents in the panel survey. Another analytical approach we took was to calculate the average difference between the two sample sources across all data quality indicators in each survey. The results show that the panel respondents engaged in fewer satisficing behaviors than the intercept samples.

The cost of each complete response was US$3.00 in the 19-question survey, US$4.50 in the 29-question survey, and US$7.00 in the 52-question survey, for both panel and intercept samples. There is no financial benefit in choosing one over the other.

There are several limitations to this study that future research could address. First, the panel sample is a combination of both mobile and non-mobile respondents, but the intercept sample is entirely mobile, and hence with the data available, it is not possible to separate out the sample source effect from the mode effect. Other studies have found few differences in data quality between mobile and PC respondents (for a review, see Couper et al., 2015), and they provide some confidence for me to believe most of the differences observed are due to the sample sources rather than the mode. However, it is very important for future study to tease out the mode effect from sample differences. Second, not all propensity models are the same. The shorter surveys have fewer predictors in the model than do the longer surveys simply because fewer questions are asked in the shorter surveys. Consequently, the power of propensity score weighting adjustment is not equal across the three survey lengths and it may therefore contribute to the data quality difference. Should there be the same propensity model for all surveys, the difference between intercept and panel might be further reduced for the shorter surveys. Third, there is more than one way of recruiting and inviting survey participants from intercept samples. For example, participants could be recruited through more targeted approaches, by targeting populations that are potentially interested in the survey and using messages that appeal to their altruism (for examples, see Barratt et al., 2015; Barratt and Lenton, 2015). A different recruiting and incentive strategy might appeal to different sectors of the population and hence lead to different data quality. Future studies should examine whether the findings in this study hold if the intercept samples are recruited differently. Last but not least, this study targeted the general population, without any targeting or screening. Everyone from the intercept and panel samples was eligible for this study. In reality, many web surveys target a specific group or people with specific characteristics. Whether the findings of this study hold when the goal of the survey is to target a subgroup of the population is unknown, and I encourage future study to explore this.

Declaration of conflicting interests

The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Funding

The author(s) received no financial support for the research, authorship, and/or publication of this article.

Note

1. For all three surveys, the first page only included one introductory sentence: “We would like to hear about your experiences.
and your opinions on some important issues. There are no right or wrong answers.” No questions were asked on the first page. The survey platform could only track and calculate the completion rate conditional on Page 1. The completion rate for the entire survey was not available.

References

Abraham KG, Maitland A and Bianchi SM (2006) Nonresponse in the American time use survey: Who is missing from the data and how much does it matter? Public Opinion Quarterly 70(5): 676–703.

Alvarez RM, Sherman RP and VanBeselaere C (2003) Subject acquisition for web-based surveys. Political Analysis 11(1): 23–43.

Barratt MJ and Lenton S (2015) Representativeness of online purposive sampling with Australian cannabis cultivators. International Journal of Drug Policy 26(3): 323–326. DOI: 10.1016/j.drugpo.2014.10.007.

Barratt MJ, Ferris JA and Lenton S (2015) Hidden populations, online purposive sampling, and external validity: Taking off the blindfold. Field Methods 27(1): 3–21. DOI: 10.1177/1525822X14526838.

Bosnjak M and Tuten TL (2003) Prepaid and promised incentives in web surveys: An experiment. Social Science Computer Review 21(2): 208–217. DOI: 10.1177/089443930321002006.

Couper MP (2000) Review: Web surveys—A review of issues and approaches. Public Opinion Quarterly 64(4): 464–494.

Couper MP, Antoun C and Mavletova A (2015) Mobile web surveys: A total survey error perspective. Paper presented at the international total survey error conference, Baltimore, MD, 19–22 September.

Dykema J, Stevenson J, Klein L, et al. (2013) Effects of e-mailed versus mailed invitations and incentives on response rates, data quality, and costs in a web survey of university faculty. Social Science Computer Review 31(3): 359–370. DOI: 10.1177/0894439312465254.

Fricker RD and Schonlau M (2002) Advantages and disadvantages of internet research surveys: Evidence from the literature. Field Methods 14(4): 347–367.

Göritz AS (2006) Cash lotteries as incentives in online panels. Social Science Computer Review 24(4): 445–459. DOI: 10.1177/0894439305286127.

Göritz AS and Wolff H-G (2007) Lotteries as incentives in longitudinal web studies. Social Science Computer Review 25(1): 99–110. DOI: 10.1177/0894439306292268.

Groves RM, Singer E and Corning A (2000) Leverage-Saliency theory of survey participation: Description and an illustration. Public Opinion Quarterly 64(3): 299–308.

Jones MS, House LA and Gao Z (2015) Respondent screening and revealed preference axioms: Testing quantitating methods for enhanced data quality in web panel surveys. Public Opinion Quarterly. Epub ahead of print 2 June. DOI: 10.1093/poq/nf5015.

Krosnick JA (1991) Response strategies for coping with the cognitive demands of attitude measures in surveys. Applied Cognitive Psychology 5(3): 213–236.

Krosnick JA (1999) Survey research. Annual Review of Psychology 50(1): 537–567.

Krosnick JA and Alwin DF (1987) An evaluation of a cognitive theory of response-order effects in survey measurement. Public Opinion Quarterly 51(2): 201–219.

Matthijssse SM, de Leeuw ED and Hox JJ (2015) Internet panels, professional respondents, and data quality. Methodology 11(3): 81–88. DOI: 10.1027/1614-224a/a000094.

Pedersen MJ and Nielsen CV (2014) Improving survey response rates in online panels: Effects of low-cost incentives and cost-free text appeal interventions. Social Science Computer Review. Epub ahead of print 17 December. DOI: 10.1177/0894439314563916.

Sheehan KB (2001) E-Mail survey response rates: A review. Journal of Computer-Mediated Communication. Epub ahead of print January. DOI: 10.1111/j.1083-6101.2001.tb00117.x.

Toepoel V, Das M and Van Soest A (2008) Effects of design in web surveys: Comparing trained and fresh respondents. Public Opinion Quarterly 72(5): 985–1007. DOI: 10.1093/poq/nfn060.

Van Veen F, Göritz AS and Sattler S (2015) Response effects of prenotification, prepaid cash, prepaid vouchers, and postpaid vouchers: An experimental comparison. Social Science Computer Review. Epub ahead of print May. DOI: 10.1177/0894439315585074.

Wright KB (2005) Researching internet-based populations: Advantages and disadvantages of online survey research, online questionnaire authoring software packages, and web survey services. Journal of Computer-Mediated Communication. Epub ahead of print April. DOI: 10.1111/j.1083-6101.2005.tb00259.x.

Author biography

Mingnan Liu, Ph.D., is a survey scientist at SurveyMonkey, Palo Alto, California, USA. He received his Ph.D. in survey methodology from the University of Michigan. His research covers a variety of areas, including survey measurement, nonresponse, and sampling bias.
Appendix 1

Question wordings and response options

(a) 52-question survey
(b) 29-question survey
(c) 19-question survey

Response rounding

(a) (b) During the past 30 days, how many times did you eat fast food, including drive-through, takeaway, and sitting down in the restaurant?

(a) (b) (c) During the past 30 days, on how many days did you have one or more alcoholic drinks?

(a) (b) On an average day, about how many hours do you watch television?

(a) (b) How many text messages have you sent and received on your phone in your current billing cycle?

(a) How many close friends do you have?

Straightlining

(a) (b) (c) Please tell us whether you would like to see more or less government spending in each area.

Area	Spend much more	Spend more	Spend the same as now	Spend less	Spend much less
The environment	○	○	○	○	○
Health	○	○	○	○	○
Education	○	○	○	○	○
The police and law enforcement	○	○	○	○	○
Unemployment benefits	○	○	○	○	○

(a) Do you agree or disagree with the following statement?

Statement	Agree strongly	Agree somewhat	Neither agree nor disagree	Disagree somewhat	Disagree strongly
Our society should do whatever is necessary to make sure that everyone has an equal opportunity to succeed	○	○	○	○	○
We have gone too far in pushing equal rights in this country	○	○	○	○	○
One of the big problems in this country is that we don’t give everyone an equal chance	○	○	○	○	○
This country would be better off if we worried less about how equal people are	○	○	○	○	○
It is not really that big a problem if some people have more of a chance in life than others	○	○	○	○	○
If people were treated more equally in this country, we would have many fewer problems	○	○	○	○	○
Methodological Innovations

Trap questions

(a) (c) Please select B as your answer choice.

- A
- B
- C
- D
- E

(a) (b) In the past 30 days, did you make a purchase online at any of the following website? Please select all that apply. We also want to see whether people are reading the questions carefully. To show that you’ve read this much, please mark both the Groupon and None of the above box below. That’s right, just select these two options only.

- amazon.com
- BestBuy.com
- ebay.com
- Groupon.com
- overstock.com
- Zappos.com
- None of the above

(a) (b) Regardless of how frequently you read the newspaper, what would you say are your favorite newspaper sections to read? Please check all that apply. We also want to see whether people are reading the questions carefully. To show that you’ve read this much, please mark both the Classified and None of the above box below. That’s right, just select these two options only.

- National
- Local
- Classified
- Sports
- Business
- Science and technology
- Opinion
- None of the above

Knowledge questions

(a) (b) (c) The logo for the Olympic Games comprises four interlocking rings.

- True
- False

(a) Antibiotics will kill viruses as well as bacteria.

- True
- False

(a) How many times can an individual be elected President of the United States under current laws?

(a) (b) For how many years is a US Senator elected, that is, how many years are there in one full term of office for a US Senator?

Sensitive questions

(a) (b) Do you now smoke cigarettes every day, some days, or not at all?

- Every day
- Some days
- Not at all

(a) Have you smoked at least 100 cigarettes in your entire life?

- Yes
- No
(a) (b) Have you ever, even once, used marijuana or hashish?
 o Yes
 o No

(a) Here is a list of terms that people sometimes use to describe themselves. Which option best describes how you think of yourself?
 o Heterosexual or straight
 o Homosexual, gay or lesbian
 o Bisexual

(a) How many sex partners have you had in the last 12 months?
Open-ended question

(a) (b) (c) What do you think is the most important problem facing the country today?
Survey difficulty

(a) (b) (c) How easy or difficult do you find the survey is?
 o Very easy
 o Somewhat easy
 o Somewhat hard
 o Very hard