In silico analysis of putative drug and vaccine targets of the metabolic pathways of *Actinobacillus pleuropneumoniae* using a subtractive/comparative genomics approach

Biruk T. Birhanu¹, Seung-Jin Lee¹, Na-Hye Park¹, Ju-Beom Song², Seung-Chun Park¹,*

¹Laboratory of Veterinary Pharmacokinetics and Pharmacodynamics, College of Veterinary Medicine, and ²Department of Chemistry Education, Teachers College, Kyungpook National University, Daegu 41566, Korea

Actinobacillus pleuropneumoniae is a Gram-negative bacterium that resides in the respiratory tract of pigs and causes porcine respiratory disease complex, which leads to significant losses in the pig industry worldwide. The incidence of drug resistance in this bacterium is increasing; thus, identifying new protein/gene targets for drug and vaccine development is critical. In this study, we used an *in silico* approach, utilizing several databases including the Kyoto Encyclopedia of Genes and Genomes (KEGG), the Database of Essential Genes (DEG), DrugBank, and Swiss-Prot to identify non-homologous essential genes and prioritize these proteins for their druggability. The results showed 20 metabolic pathways that were unique and contained 273 non-homologous proteins, of which 122 were essential. Of the 122 essential proteins, there were 95 cytoplasmic proteins and 11 transmembrane proteins, which are potentially suitable for drug and vaccine targets, respectively. Among these, 25 had at least one hit in DrugBank, and three had similarity to metabolic proteins from *Mycoplasma hyopneumoniae*, another pathogen causing porcine respiratory disease complex; thus, they could serve as common therapeutic targets. In conclusion, we identified glyoxylate and dicarboxylate pathways as potential targets for antimicrobial therapy and tetra-acyldisaccharide 4ʹ-kinase and 3-deoxy-D-manno-octulosonic-acid transferase as vaccine candidates against *A. pleuropneumoniae*.

Keywords: *Actinobacillus pleuropneumoniae*, drug target, *in silico*, metabolic networks and pathways, vaccine target

Introduction

The respiratory disease known as porcine respiratory disease complex (PRDC) is a widespread problem on intensive pig farms worldwide. PRDC is a polymicrobial disease that is caused by various viral and bacterial agents, including *Mycoplasma hyopneumoniae* and *Actinobacillus pleuropneumoniae*, which are considered to be the primary pathogen in pigs [27]. Coinfection with these two pathogens is known to cause more severe disease than infection with either pathogen alone or with other agents [5].

A. pleuropneumoniae is a Gram-negative, facultative anaerobic bacterium that belongs to the family *Pasteurellaceae*. The organism is known to cause porcine pleuropneumonia, a severe contagious respiratory disease that often leads to very rapidly evolving pleuropneumonia, which is characterized by hemorrhagic necrotizing pneumonia and fibrinous pleuritis, and most commonly affects pigs aged 18 to 20 weeks [14]. The polysaccharide capsule and exotoxins of *A. pleuropneumoniae* are the major virulence determinants and are responsible for the pathogenesis of pleuropneumonia [2,15].

Over the last two decades, increasing numbers of *A. pleuropneumoniae* strains have been isolated that are resistant to a number of commonly utilized drugs for treating pleuropneumonia in pigs [19,37,40]. This alarming increase in the incidence of antimicrobial resistance has initiated a search for new therapeutics against these ‘superbugs’. Current developments in the fields of genomics and proteomics have opened new avenues into the development of new antimicrobial agents and vaccine targets for combating drug resistance [31].

Different researchers have discussed the significance of *in silico* approaches for the identification of vaccine and drug targets. Morya *et al*. [24] identified drug targets in *Staphylococcus aureus* by analyzing its metabolic pathways. Likewise, vaccine and therapeutic drug targets in methicillin-resistant *S. aureus* [35], *Mycobacterium abscessus* [32], *Mycobacterium ulcerans*
Drug and vaccine targets of metabolic pathways of *A. pleuropneumoniae* were identified by using the same approach. However, there are no reported therapeutic target data available for the metabolic pathways in *A. pleuropneumoniae*. Herein, using the available genome sequences and genetic/proteomic database resources, we identified putative targets for antibiotics and vaccine therapy in *A. pleuropneumoniae* by undertaking an in silico comparative and subtractive genomic/proteomic metabolic pathway analysis approach.

Materials and Methods

Comparative metabolic pathway analysis of the pathogen and its hosts

The genomic nucleotide and protein sequences of three strains of *A. pleuropneumoniae* (serovar 5, [Refseq: NC_009053.1], serovar 7 [NC_010939.1], and serovar 3) and the genome sequences of pig (host; taxid: 9821) and human (*Homo sapiens*) were downloaded from the National Center for Biotechnology Information (NCBI) database. The metabolic pathways of host and pathogen were compared to distinguish the unique and common metabolic pathways by using BLASTP (NCBI, USA). To identify potential drug targets in the pathogen, search engines like NCBI-BLAST and saved databases were used (Fig. 1).

KEGG comparison of the metabolic pathways in the pathogen and its host

The sequences of proteins in the metabolic pathways of the pathogen and its host were compared. The Kyoto Encyclopedia of Genes and Genomes (KEGG) databases (KEGG, Japan) were used to retrieve and compare the metabolic pathways in the whole genome sequences of three strains of *A. pleuropneumoniae* [17]. A manual comparison of the metabolic pathways of the natural host (pig), human, and *A. pleuropneumoniae* was conducted. Pathways that were not present in pig and human, but were present in the pathogen, were considered unique pathways, while the others were considered common pathways. The amino acid sequences of the proteins in the common and unique pathways of the pathogen were identified and downloaded from the NCBI database.

Non-homologous essential pathogen protein selection

A two-step comparison method was used to identify the non-homologous essential proteins in the bacterium. Proteins of *A. pleuropneumoniae* were first compared to the host proteome to select non-homologous proteins, then, the identified

Fig. 1. Schematic of the *in silico* method used. Each protein was checked for homology in the respective databases. NCBI, National Center for Biotechnology Information; KEGG, Kyoto Encyclopedia of Genes and Genomes; DEG, Database of Essential Genes; PDB, Protein Data Bank; 3D, three-dimensional.
non-homologous proteins were compared with the essential proteins in the Database of Essential Genes (DEG). The non-homologous sequences of *A. pleuropneumoniae* serotype 5B were aligned with the experimentally verified essential genes of *Haemophilus influenzae* Rd KW20 (NC000907) and with the protein sequences from 36 others Gram-positive and -negative bacteria in the DEG [22]. Comparative searches of host proteins were limited by using the available options under BLASTP criteria. Screening of hits was based on a threshold expectation value (e-value) of 0.005, matching similarity of $\leq 35\%$, and minimum bit score of 100. The identified proteins were further filtered using DEG microbial BLASTP based on their essentiality, with a cutoff e-value of 10^{-10} and a least possible bit score of 100 [22].

Prioritizing the essential non-homologous proteins as drug targets

The identified essential non-homologous proteins of the bacterium were prioritized as potential therapeutic targets, based on their molecular and structural organization. Protein molecular weight was determined with the computational tools and drug target-associated data available in the Swiss-Prot database (UniProt) [36]. The biological significance and subcellular localization of the proteins was predicted by CELLO v2.5 (multi-class support vector machine classification system) [41], and the transmembrane regions were predicted by using TMHMM v2.0 [20]. In addition, the experimentally and computationally solved three-dimensional structures were determined by using the Protein Data Bank (PDB, USA) [1] and ModBase [28], respectively. To predict the protective antigens and subunit vaccines, VaxiJen v2.0 was used [8].

Druggability of non-homologous essential proteins of *A. pleuropneumoniae*

DrugBank (ver. 4.3) [38], which contains unique bioinformatic and cheminformatic data on drugs and drug targets, was used to determine the druggability of the identified essential proteins. The proteins were aligned by using the default parameters with the available drug entries, which included U.S. Food and Drug Administration (FDA)-approved small molecule drugs, biotech (protein/peptide) drugs, nutraceuticals, and experimental drugs.

Results

In this study, *A. pleuropneumoniae* L20 (serotype 5b), with 104 identified pathways, was selected. The sequences of three different *A. pleuropneumoniae* strains are deposited in the NCBI-KEGG database. *A. pleuropneumoniae* JL03 (serotype 3) and *A. pleuropneumoniae* AP76 (serotype 7) have 105 and 106 pathways, respectively. We selected the strain with all of the common pathways for further analysis. Comparison of the selected pathways in the pathogen to the 295 and 299 pathways in pig and human, respectively, showed that 29 pathways were unique to the pathogen. Twenty of these pathways were metabolic pathways (Table 1). More than 900 proteins were involved in the common and unique metabolic pathways; however, only 273 of them were non-homologous to both pig and human, based on the established KEGG cutoff value.

We aligned these non-homologous proteins with the essential protein sequences of *Haemophilus influenzae* Rd KW20 (NC000907), which shares 85% genome similarity with *A. pleuropneumoniae*, in the DEG and identified 122 essential non-homologous proteins in *A. pleuropneumoniae*. These essential proteins were involved in 40 different metabolic pathways, and, of these 122 proteins, 13 were from 6 different unique metabolic pathways, which were only present in the pathogen.

These non-homologous proteins were compared with all of the essential proteins of the 37 bacteria in the DEG. The greatest numbers of homologous proteins were found for the essential

No.	Name	KEGG entry
1	Monobactam biosynthesis	apl00261
2	Geraniol degradation	apl00281
3	Carbapenem biosynthesis	apl00332
4	Benzoylate degradation	apl00362
5	Novobiocin biosynthesis	apl00401
6	Phosphonate and phosphinate metabolism	apl00440
7	D-Alanine metabolism	apl00473
8	Streptomycin biosynthesis	apl00521
9	Lipopolysaccharide biosynthesis	apl00540
10	Peptidoglycan biosynthesis	apl00550
11	Chloroalkane and chloroalkene degradation	apl00623
12	Naphthalene degradation	apl00626
13	Aminobenzoate degradation	apl00627
14	Glyoxylate and dicarboxylate metabolism	apl00630
15	Nitrotoluene degradation	apl00633
16	Ethylbenzene degradation	apl00642
17	C5-Branched dibasic acid metabolism	apl00660
18	Methane metabolism	apl00680
19	Limonene and pinene degradation	apl00903
20	Caprolactam degradation	apl00930
21	Biosynthesis of secondary metabolites	apl01110
22	Microbial metabolism in diverse environments	apl01120

The unique pathways were identified from the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway database of the *A. pleuropneumoniae* L20 (serotype 5b) strain, which has 104 metabolic pathways. The pathways in this strain were compared with the 295 and 299 metabolic pathways of pig and human, respectively.
proteins of *Synechococcus elongate* PCC 7942, *Mycobacterium tuberculosis* H37Rv II, and *Acinetobacter baylyi* ADP1, with 130, 127, and 126 hits, respectively. The smallest number of hits was for *Salmonella enterica* subsp. enterica serovar Typhimurium str. 14028S, with only nine homologous proteins (Fig. 2).

The cellular localization of each non-homologous protein was determined by using the CELLO database, and the results showed 95 cytoplasmic, 11 transmembrane, 4 periplasmic, and 2 outer membrane proteins as well as 10 proteins with undetermined localization. In the unique pathways, there were 7 cytoplasmic, 2 transmembrane, 1 periplasmic, and 1 outer membrane proteins and 2 with undetermined cellular localization. However, the TMHMM server predicted 14 transmembrane proteins, and 9 (64.3%) of them matched with the CELLO prediction (Table 2). Furthermore, 11 of them showed an antigenicity prediction > 0.4 in VaxiJen v2.0 (Table 3).

DrugBank was used to categorize the druggability of the identified essential proteins. Of the non-homologous essential proteins, 24 had a hit in DrugBank of an approved, nutraceutical, investigational, or experimental drug (Table 4). Six genes, appser1_11470, accC, guaA, rpoA, asd, and murC, had hits in DrugBank, with an e-value limit of 10−25. Each of these genes had at least one hit of an approved, nutraceutical, or experimental drug.

The molecular weight of each essential protein was determined by using UniProt. Among the 122 essential non-homologous proteins, 120 had a low molecular weight (< 110 kDa; Table 2).

The essential proteins of *A. pleuropneumoniae* were then cross-checked for similarity to the proteins of *M. hyopneumoniae*, which is a major component of PRDC. Three proteins with similarity to essential proteins of *M. hyopneumoniae* were identified: DNA-directed RNA polymerase subunit alpha, rpoA; methionine-tRNA ligase, metG; and glutamate-tRNA ligase, gltX.

Discussion

Previously, the development of new antimicrobial agents and vaccine therapies was limited by our understanding of the biology of the target microbial agents. However, in this post-genomic era, advances in the fields of genomics and proteomics have allowed for *in silico* investigations of new drugs and vaccine targets, by using genomic and protein sequence resources [6]. *A. pleuropneumoniae*, a bacterium known to cause PRDC in pigs [27], is often resistant to most of the drugs commonly used to treat the disease [37]. Thus, alternative therapeutic agents are greatly needed. In this study, by using an *in silico* approach, we identified unique proteins in the metabolic pathways of *A. pleuropneumoniae* as potential targets for antimicrobial and vaccine therapy.

Multiple unique metabolic pathways were identified in *A. pleuropneumoniae* that are not present in their natural host. The presence of these unique pathways offers an opportunity to identify antimicrobials that specifically target the pathogen, and

![Fig. 2. Number of *Actinobacillus pleuropneumoniae* genes with essential gene hits in the Database of Essential Genes (DEG). The essential genes of *A. pleuropneumoniae* were identified by comparison to those of all 36 bacteria in the DEG.](www.vetsci.org)
Table 2. Cellular localization of non-homologous essential proteins of *Actinobacillus pleuropneumoniae* and their molecular weight (MW)

No.	Gene	Protein ID/UniProt	UniProt protein name	Subcellular localization	TMHMM	MW (Da)	Length (bp)
1	glpX	A3MZZ0	Fructose-16-bisphosphatase	Cytoplasmic	No	35,851	332
2	pykA	A3MYQ9	Pyruvate kinase	Cytoplasmic	No	51,512	479
3	aceF	A3N0D4	Acetyltransferase component of pyruvate dehydrogenase complex	Cytoplasmic	No	66,145	632
4	appser12_8180	E0FG80	Dihydrolipoyl dehydrogenase	Cytoplasmic	No	50,552	474
5	appser12_20010	E0FJK9	Alcohol dehydrogenase zinc-binding domain protein	Cytoplasmic	No	36,767	349
6	sucB	A3MZH2	Dihydrolipopolysine-residue succinyltransferase component of 2-oxoglutarate dehydrogenase complex	Cytoplasmic	No	45,119	409
7	frdD	D9PCW1	Fumarate reductase subunit D	Transmembrane	3	12,563	114
8	tktA	A3N0Z1	Transketolase	Cytoplasmic	No	73,263	668
9	rpiA	E0E9U4	Ribose-5-phosphate isomerase A	Cytoplasmic	No	23,255	219
10	appser10_16360	A3N2M1	23-diketo-4-gulonate reductase	Periplasmic/cytoplasmic	No	25,933	235
11	pgm	A3MZY7	Phosphoglucomutase/phosphomannomutase	Cytoplasmic/cytoplasmic	No	59,776	552
12	fucI	A3N2Y2	L-fucose isomerase	Cytoplasmic	No	65,176	588
13	fucK	A3N2Y3	L-fuculokinase	External/outer membrane	No	52,186	477
14	glgB	A3MZ64	14-alpha-glucan branching enzyme GlgB	Cytoplasmic	No	89,300	777
15	appser1_18790	E0EAV7	N-acetylglucosamine-6-phosphate deacetylase	Cytoplasmic	No	41,320	381
16	appser1_11470	E0E8N3	Formate acetyltransferase	Cytoplasmic	No	86,174	770
17	appser9_7010	E0E9X4	Phosphate acetyltransferase	Cytoplasmic	1	76,723	712
18	accC	A3N3G1	Biotin carboxylase	Cytoplasmic	No	49,234	447
19	ppc	A3MZZ7	Phosphonoxyruvinate carboxylase	Cytoplasmic	No	99,144	879
20	leuA	A3MZN1	2-isopropylmalate synthase	Cytoplasmic	No	55,881	513
21	ldhA	A3N3X7	Glycerate dehydrogenase	Cytoplasmic	No	34,312	316
22	leuC	A3MLY1	3-isopropylmalate dehydratase large subunit	Cytoplasmic	No	50,705	469
23	leuB	E0FF97	3-isopropylmalate dehydrogenase	Cytoplasmic	No	39,118	360
24	cydA	A3MZ15	Cytochrome oxidase subunit 1	Transmembrane	9	57,173	516
25	appser1_15650	E0E9U3	D-3-phosphoglycerate dehydrogenase	Cytoplasmic	No	44,368	409
26	napA	D9P8F5	Nitrate reductase	Periplasmic	No	93,572	827
27	cysT	A3N3E2	Sulfate transport system permease protein cysT	Transmembrane	7	29,770	270
28	cysA	A3N3E4	Sulfate/thiosulfate import ATP-binding protein CysA	Cytoplasmic	No	40,250	356
29	glpE	E0E5N2	Thiosulfate sulfurtransferase GlpE	Cytoplasmic	No	12,403	108
30	appser9_16390	E0EZX2	Serine acetyltransferase	Cytoplasmic	No	29,518	271
31	dmsC	A3N2X4	Anaerobic dimethyl sulfoxide reductase chain C	Cytoplasmic	No	30,080	277
32	fabD	A3N3T1	Malonyl CoA-acyl-carrier-protein transacylase	Cytoplasmic	No	32,654	311
33	appser12_20350	E0FJP3	3-oxoacyl-[acyl-carrier-protein] reductase	Cytoplasmic	No	25,133	241
34	fabA	E0FJD8	3-hydroxydecanoyl-[acyl-carrier-protein] dehydratase	Cytoplasmic	No	19,371	176
35	fabZ	E0E6N4	3-hydroxyacyl-[acyl-carrier-protein] dehydratase FabZ	Cytoplasmic	No	17,481	154
36	appser1_4350	E0E6M1	Long-chain-fatty-acid-CoA ligase	Cytoplasmic	No	63,288	563
37	glpK	A3MZ93	Glycerol kinase	Cytoplasmic	No	55,663	503
38	appser4_15300	E0ELZ7	1-acyl-sn-glycerol-3-phosphate acyltransferase	Transmembrane	2	27,292	244
39	appser1_8310	E0E7R7	Diacylglycerol kinase	Transmembrane	3	13,197	120
40	gpsA	E0EA03	Glycerol-3-phosphate dehydrogenase [NAD(P)+]	Cytoplasmic	No	36,052	336
Table 2. Continued

No.	Gene	Protein ID/ UniProt	UniProt protein name	Subcellular localization	TMHMM	MW (Da)	Length (bp)
41	glpA	A3MZ97	Glycerol-3-phosphate dehydrogenase	Cytoplasmic	No	61,956	561
42	appser1_4570	E0E6P3	Phosphatidylglycerophosphatase B	Transmembrane	5	26,861	234
43	rsaA	A3N0D7	Ribose-phosphate pyrophosphokinase	Cytoplasmic	No	34,207	316
44	purT	E0E8V7	Phosphoribosylglycinamide formyltransferase 2	Cytoplasmic	No	42,969	393
45	purK	A3N025	N5-carboxyaminomimidazole ribonucleotide synthase	Cytoplasmic	No	41,028	362
46	ushA	A3N0D1	UshA	Periplasmic	No	60,896	547
47	mazG	A3MZS6	Predicted pyrophosphatase	Cytoplasmic	No	22,929	199
48	gpt	E0E665	Xanthine phosphoribosyltransferase	Cytoplasmic	No	17,726	157
49	guaA	A3MZV8	GMP synthase [glutamine-hydrolyzing]	Cytoplasmic	No	58,318	523
50	appser1_11000	E0E816	Ribonucleoside-diphosphate reductase	Cytoplasmic	No	85,074	756
51	appser12_1810	E0EF1	Ribonucleotide reductase alpha subunit	Outer membrane	No	63,022	554
52	rpoA	A3N382	DNA-directed RNA polymerase subunit alpha	Cytoplasmic	No	36,540	329
53	rpoB	E0E8I6	DNA-directed RNA polymerase subunit beta	Cytoplasmic	No	149,710	1342
54	dnaA	A3N1B1	DNA-directed DNA polymerase	Cytoplasmic	No	129,802	1158
55	appser1_170	A3N1B1	DNA polymerase III subunit beta	Cytoplasmic	No	41,198	367
56	dnaX	A3MY7	DNA polymerase III subunit gamma/tau	Cytoplasmic	No	77,048	688
57	cyaA	A3N160	Adenylate cyclase	Outer membrane/cytoplasmic	No	97,029	842
58	pyrH	A3MZT5	Uridylate kinase	Cytoplasmic	No	25,701	237
59	udk	A3N0J4	Uridine kinase	Cytoplasmic	No	25,032	217
60	appser12_5200	E0FD8	Serine 3-dehydrogenase	Cytoplasmic	No	27,004	249
61	appser1_7720	E0E7K8	Aspartokinase	Cytoplasmic	No	48,488	450
62	appser1_2720	E0E660	Homoserine dehydrogenase	Cytoplasmic	No	88,030	818
63	asd	E0E5F8	Aspartate-semialdehyde dehydrogenase	Cytoplasmic	No	40,421	370
64	thrC	A3N2E7	Threonine synthase	Cytoplasmic	No	46,446	426
65	trpA	A3MZ18	Tryptophan synthase alpha chain	Cytoplasmic	No	28,934	269
66	trpB	E0F308	Tryptophan synthase beta chain	Cytoplasmic	No	42,883	396
67	argD	A3N3R2	Diaminobutyrate-2-oxoglutarate aminotransferase	Cytoplasmic	No	46,677	431
68	metC	A3MZ38	Cystathionine beta-lyase	Cytoplasmic	No	44,050	396
69	appser1_7620	E0E7I3	O-acetylhomoserine/O-acetylserine sulphhydrase	Cytoplasmic	No	46,186	422
70	APL_1197	A3N1J9	3-hydroxyacid dehydrogenase	Cytoplasmic	No	30,382	288
71	dapA	A3NQQ9	4-hydroxy-tetrahydrodipicolinate synthase	Cytoplasmic	No	31,419	295
72	argD	A3MYW6	Acetylornithine aminotransferase	Cytoplasmic	No	41,875	393
73	dapF	E0EA26	Diaminopimelate epimerase	Cytoplasmic	No	30,412	274
74	murF	A3MY86	UDP-N-acetylumamoyl-tripeptide--D-alanyl-D-alanine ligase	Cytoplasmic	No	50,346	464
75	hisG	E0ENG6	ATP phosphoribosyltransferase	Cytoplasmic	No	33,226	299
76	hisB	E0DFX6	Histidine biosynthesis bifunctional protein HisB	Cytoplasmic	No	41,284	363
77	hisC	A3N3V9	Histidinol-phosphate aminotransferase	Cytoplasmic	No	38,672	350
78	aroB	E0E605	3-dehydroquinate synthase	Cytoplasmic	No	40,043	366
79	aroC	A3N0B0	Chorismate synthase	Cytoplasmic	No	38,893	360
80	trpD	A3N1G7	Anthranilate phosphoribosyltransferase	Cytoplasmic	No	36,243	334
81	metG	A3MZ70	Methionine--tRNA ligase	Cytoplasmic	No	77,118	679
82	murD	E0EHR5	UDP-N-acetylumamoylalanine--D-glutamate ligase	Cytoplasmic	No	47,020	436
83	murC	E0EHS2	UDP-N-acetylumamoylalanine--L-alanine ligase	Cytoplasmic	No	51,502	475
84	ddl	E0EHS3	D-alanine--D-alanine ligase	Cytoplasmic	No	32,704	303
85	pepA	A3N1A7	Probable cytosol aminopeptidase	Cytoplasmic	No	54,219	499
86	pepN	A3N1Y8	Aminopeptidase N	Cytoplasmic	No	100,131	869
No.	Gene	Protein ID/ UniProt	UniProt protein name	Subcellular localization	TMHMM	MW (Da)	Length (bp)
-----	----------	---------------------	--	--------------------------	-------	---------	-------------
87	appser1_2760	E0E664	Aminoacyl-histidine dipeptidase	Cytoplasmic	No	56,563	515
88	gor	A3N1P3	Glutathione reductase	Cytoplasmic	No	49,025	456
89	lpxA	A3MZC5	Acyl-[acyl-carrier-protein]-UDP-N-acetylglycosamine O-acyltransferase	Cytoplasmic	No	28,735	264
90	lpxD	A3MZC7	UDP-3-O-acetylglycosamine N-acetyltransferase	Cytoplasmic	No	35,947	341
91	lpxK	E0FHMM	Tetra-acyldisaccharide 4'-kinase	Transmembrane	1	36,236	326
92	kdtA	A3N1D6	3-deoxy-D-manno-octulosonic-acid transferase	Inner membrane/ cytoplasmic	1	48,112	426
93	APL_1131	A3N1D5	Uncharacterized protein	Transmembrane	11	50,295	449
94	appser4_16420	E0EMA9	Penicillin-binding protein 2	Periplasmic/ outer membrane	1	73,376	653
95	ftsl	A3MY84	Peptidoglycan synthetase Ftsl	Outer membrane	1	76,609	686
96	appser4_9750	E0EFK0	D-alanyl-D-alanine carboxypeptidase/D-alanyl-D-alanine-endopeptidase	Cytoplasmic	No	52,514	480
97	thiD	A3MZQ5	Phosphomethylpyrimidine kinase	Cytoplasmic/ inner membrane/ periplasmic	No	16,265	152
98	iscS	E0FGP5	Cysteine desulfurase IscS	Cytoplasmic	No	45,699	408
99	ribBA	P50855	Riboflavin biosynthesis protein RibBA	Cytoplasmic	No	44,740	401
100	appser1_4210	E0E6K7	Riboflavin synthase alpha chain	Cytoplasmic	No	23,390	215
101	pdxY	A3N2D3	Pyridoxamine kinase	Cytoplasmic	No	31,505	266
102	appser1_610	E0E9J9	Transcriptional regulator nadR	Cytoplasmic	No	31,844	439
103	coaA	E0EA06	Pantothenate kinase	Cytoplasmic	No	36,457	316
104	coaD	D9P743	Phosphopantetheine adenyltransferase	Cytoplasmic	No	17,586	158
105	appser12_9920	E0FGQ4	Dithiobiotin synthetase	Cytoplasmic	1	25,342	219
106	bioA	A3NOV2	Adenosylmethionine-8-amino-7-oxononanoate aminotransferase	Cytoplasmic	No	47,998	432
107	bioD	E0FGQ2	ATP-dependent dethiobiotin synthetase BioD	Cytoplasmic	No	24,187	214
108	bioD	E0E718	ATP-dependent dethiobiotin synthetase BioD	Cytoplasmic	No	26,692	239
109	bioB	E0EB9	Biotin synthase	Cytoplasmic	No	37,601	336
110	appser1_9500	E0EB36	Dihydrofolate reductase	Cytoplasmic	No	18,632	162
111	queF	A3NOK4	NADPH-dependent 7-cyano-7-deazaguanine reductase	Outer membrane/ cytoplasmic	No	32,106	279
112	gltX	A3N1S5	Glutamate--tRNA ligase	Cytoplasmic	No	54,190	479
113	hemL	A3N2K3	Glutamate-1-semialdehyde 21-aminomutase	Peri/cytoplasmic	No	45,267	426
114	hemH	E0EB93	Ferrochelatase	Outer membrane/ cytoplasmic	No	36,279	319
115	appser9_11630	E0EYJ7	Menaquinone-specific isochorismate synthase	Cytoplasmic/ Transmembrane	No	48,461	426
116	menD	A3N348	2-succinyl-5-enolpyruyl-6-hydroxy-3-cyclohexene-1-carboxylate synthase	Cytoplasmic	No	62,667	568
117	menB	E0EA5	14-dihydroxy-2-naphthoyl-CoA synthase	Cytoplasmic	No	31,841	285
118	dxr	A3MZA4	1-deoxy-D-xylulose 5-phosphate reductoisomerase	Cytoplasmic	No	42,953	396
119	ispE	A3NOD8	4-diphosphocytidyl-2-C-methyl-D-erythritol kinase	Cytoplasmic	No	31,309	285
120	ispF	E0EQX9	2-C-methyl-D-erythritol 24-cyclophosphate synthase	Cytoplasmic	No	17,245	158
121	ispH	A3N2G8	4-hydroxy-3-methylbut-2-enyl diphosphate reductase	Cytoplasmic	No	34,035	314
122	ispB	A3N3T3	Octaprenyl-diphosphate synthase	Cytoplasmic	No	36,102	331
Table 3. Antigenic prediction of the transmembrane proteins of *Actinobacillus pleuropneumoniae* using Vaxijen v.20 [8]

Protein	Gene	TMHMM	Antigen probability*
APL_1526	frdD	3	Antigen
APL_0644	appser9_7010	1	Antigen
APL_0297	cydA	9	Antigen
APL_1846	cystT	7	Antigen
APL_1676	dmsC	8	Antigen
APL_1488	appser4_15300	2	Non-antigen
APL_0768	appser1_8310	3	Antigen
APL_0417	appser1_4570	5	Antigen
APL_1278	lpxK	1	Antigen
APL_1132	kdtA	1	Non-antigen
APL_1131	APL_1131	11	Antigen
APL_1599	appser4_16420	1	Antigen
APL_0012	fsl	1	Antigen
APL_0940	appser12_9920	1	Non-antigen

*Threshold value used was 0.4.

Table 4. Similarity of the non-homologous proteins of *Actinobacillus pleuropneumoniae* to the binding proteins of FDA-approved drugs from DrugBank [38]

KEGG ID	Gene	DrugBank ID	Drug name	Drug group
APL_0771	appser12_8180	DB03147	Flavin adenine dinucleotide	Approved
APL_0983	tka	DB01987	Thiamin Diphosphate	Experimental
APL_1573	appser10_16360	DB01694	D-tartaric acid	Experimental
APL_1684	fuc	DB03078	Fucitol	Nutraceutical, experimental
APL_1036	appser1_11470	DB01992, DB03278	Coenzyme A, D-Treitol, Oxamic Acid	Nutraceutical, experimental
		DB03394		
APL_1865	accC	DB08074	3-(3-methylbut-2-en-1-yl)-3H-purin-6-amine, 4-(2-amino-1,3-thiazol-4-yl)pyrimidin-2-amine, 4-[1-(2,6-dichlorobenzyl)-2-methyl-1H-imidazol-4-yl]pyrimidin-2-amine, 2-amine, 6-(2,6-dibromophenyl)pyridino[2,3-d]pyrimidin-2-amine, 7-diamine, 6-(2,6-DIETHOXYPHENYL)PYRIDO[2,3-D], PYRIDINE-2,7-DIAMINE, 7-(2,5-dihydropropyl-1-yl)-6-phenylpyrido[6,5-d]pyrimidin-2-amine, (2-AMINO-1,3-OXAZOLIDIN-4-ONE, 3-(3-METHYL-2-EN-1-YL)-3H-PURIN-6-AMINE, 6-(2-PHENOXYETHOXY)-1,3,5-TRIAZINE-2,4-DIAMINE	Experimental
APL_0339	ppc	DB04317	3,3-Dichloro-2-Phosphonomethyl-Acrylic Acid	Experimental
APL_1511	appser9_16390	DB01992	Coenzyme A	Nutraceutical
APL_1992	appser12_20350	DB04450	Heptyl 1-Thiophypropanoside, S-([N-(2-HYDROXY-4-	
		DB08404, DB08405	[HYDROXY(OXIDO)PHOSPHINO]OXY]-3,3-DIMETHYL BUTANOYL)-BETA-ALANYLAMINO[ETHYL] HEXANETHIOATE, S-([N-(2-HYDROXY-4-([HYDROXY(OXIDO)PHOSPHINO]OXY]-3,3-DIMETHYL BUTANOYL)-BETA-ALANYLAMINO[ETHYL] HEXANETHIOATE	Nutraceutical
thus, should be safe. Targeting essential genes/proteins in unique metabolic pathways, which are required for survival and replication, provides an extra advantage for designing potent therapeutic agents, since they should interfere with the survival and/or replication of the pathogen [23,42]. Determining the cellular localization of a protein is an essential step toward identifying it as a potential target for therapeutic intervention [33]. This leads to elucidation of the function of each protein, which helps to differentiate between targets for antimicrobial agents and those for vaccine therapy [12]. Most of the identified non-host essential cytoplasmic proteins could serve as targets for antimicrobial treatment.

Table 4. Continued

KEGG ID	Gene	DrugBank ID	Drug name	Drug group
APL_1889	fabA	DB03813	2-Decenoyl N-Acetyl Cysteamine	Experimental
APL_0375	gplK	DB02937, DB04551	Gamma-Arsono-Beta, 5'-Diphosphate, Fructose-1,6-Diphosphate	Experimental
APL_0775#	prsA	DB02798, DB03148	Alpha-Methylene Adenosine Monophosphate, Phosphomethylphosphonic Acid Adenosyl Ester	Experimental
APL_0255	gpt	DB01972, DB02134, DB02377, DB03942	Guanosine-5'-Monophosphate, Xanthine, Carboxylic PRPP	Experimental
APL_0592	guaA	DB04272	Citric Acid	Nutraceutical
APL_1784	rpoA	DB00615	Rifabutin	Approved
APL_0250	appser1_2720	DB07118	7-hydroxy-4-methyl-2H-chromen-2-one	Experimental
APL_0005	asd	DB03461, DB03502, DB03942	2'-Monophosphoadenosine 5'-Diphosphoribose, (4S)-4-[(2S)-2-Amino-3-Oxopropyl]Sulfanyl]L-Homoserinate, Aspartate-Semialdehyde	Experimental
APL_0352	metG	DB02151, DB02229, DB03799, DB03816, DB04015	Methionine Phosphonate, 5'-O-[L-Methionyl]-Sulphamoyl]Adenosine, Trifluoromethionine, Methionine Phosphinate	Experimental
APL_0016	murD	DB01673, DB02314, DB03080, DB08105, DB08106, DB08107, DB08108, DB08112	Uridine-5'-Diphosphate-N-Acetylmuramoyl-L-Alanine, Uridine-5'-Diphosphate-N-Acetylmuramoyl-L-Alanine-D-Glutamate, Lysine N-([6-BUTOXYNAPHTHALEN-2-YL]SULFONYL]-L-GLUTAMIC ACID, N-([6-BUTOXYNAPHTHALEN-2-YL]SULFONYL]-D-GLUTAMIC ACID, N-([6-PENTYLOXY]SULFONYL]-L-GLUTAMIC ACID, N-([6-CYANO-2-FLUOROBENZYL]OXY]NAPHTHALEN-2-YLSULFONYL]-D-GLUTAMIC ACID, N-([6-[4-CYANO-2-FLUOROBENZYL]OXY]NAPHTHALEN-2-YL]SULFONYL]-D-GLUTAMIC ACID	Experimental
APL_0019	murC	DB01673, DB03909, DB04395	Uridine-5'-Diphosphate-N-Acetylmuramoyl-L-Alanine, Adenosine-5'-[Beta, Gamma-Methylene]Triphosphate, Phosphoaminophosphonic Acid-Adenylate Ester	Experimental
APL_1243	gor	DB00336, DB03147	Nitrofural, Flavin adenine dinucleotide	Approved, approved
APL_1599	appser4_16420	DB00303, DB00671	Ertapenem, Cefixime	Approved and investigational, approved
APL_0012	rts1	DB00303	Ertapenem	Approved and investigational, approved
APL_0776	ispE	DB03687, DB04395	4-Diphosphocytidyl-2-C-Methyl-D-Erythritol, Phosphoaminophosphonic Acid-Adenylate Ester	Experimental

FDA, U.S. Food and Drug Administration; KEGG, Kyoto Encyclopedia of Genes and Genomes.
while the transmembrane proteins, as suggested by the TMHMM, could be potential vaccine targets [16]. These transmembrane proteins may be selected toxins/surface-exposed proteins and may be used for the production of a preventive vaccine that initiates antibody-mediated immunity [7].

Most of the identified essential proteins of *A. pleuropneumoniae* (120/122) had a low molecular weight, thereby providing a broad opportunity for selecting and utilizing these proteins as targets for therapeutic intervention. Low molecular weight proteins are likely to be soluble and purified easily, which makes them suitable drug targets [9]. Moreover, the existence of FDA-approved, nutraceutical, or experimental drugs with the ability to bind proteins similar to the identified essential proteins of the pathogen demonstrates the potential druggability of these proteins as therapeutic targets and offers the opportunity of using different combinations of drugs to treat *Actinobacillus pleuropneumoniae* infections in pigs. In fact, five FDA-approved drugs with hits in essential non-host *A. pleuropneumoniae* proteins were identified in this study.

Penicillin-binding protein 2 (PBP2) and peptidoglycan synthetase, which are from a unique pathway in *A. pleuropneumoniae*, have been previously characterized as drug targets in other pathogens. In *S. aureus*, PBP2 is the only bifunctional penicillin-binding protein [13,29], and the transpeptidase domain of the protein was reported to be critical for the survival and replication of the bacterium [28]. Peptidoglycan synthetase, FtsI, a cell division protein, is essential for the synthesis of peptidoglycan and catalyzes the synthesis of cross-linked peptidoglycan from lipid-linked precursors [25,34]. Hence, inhibition of these proteins/enzymes using one or more drugs might reduce the infection rate and incidence of drug resistance in *A. pleuropneumoniae*.

The remaining transmembrane proteins, either from unique or common pathways, which showed antigenic and MHC cleavability, have been suggested as targets for vaccine therapy. Specifically, tetra-acyldisaccharide 4′-kinase and 3-deoxy-D-manno-octulosonic-acid transferase, two transmembrane proteins in unique pathways, are involved in the synthesis of lipid A in the lipopolysaccharide layer [10]. Hence, these proteins could be targets for a host antibody response, since Gram-negative bacteria resist the host defense mechanism by upregulating their expression in the outer membrane. This upregulation results in an increased host response, which suggests the potential of these proteins as vaccine candidates [21,26,39].

Glycerate dehydrogenase, 3-isopropylmalate dehydratase large subunit, 3-isopropylmalate dehydrogenase, D-3-phosphoglycerate dehydrogenase, D-alanine–ligase, acyl-[acyl-carrier-protein]–UDP-N-acetylglucosamine O-acyltransferase, UDP-3-O-acetylglucosamine N-acyltransferase, and D-alanyld-alanine carboxypeptidase/D-alanyl-D-alanine-endopeptidase are among the cytoplasmic proteins in unique metabolic pathways, and these can be targeted for the development of novel antimicrobial agents against *A. pleuropneumoniae*.

The cytoplasmic enzyme glyceraldehyde dehydrogenase (ldhA) is an essential protein from a unique pathway; moreover, it is involved in eight different metabolic pathways, but mainly in glyoxylate and dicarboxylate metabolism, which is crucial for the synthesis of carbohydrates in the anabolic pathway by converting acetyl CoA. Thus, blockage of this specific enzyme or the pathway might lead to bacterial cell death due to carbohydrate limitation. Therefore, the glyoxylate and dicarboxylate metabolic pathway could be a useful drug target for *A. pleuropneumoniae*.

Furthermore, three of the essential proteins of *A. pleuropneumoniae* are also essential for *M. hyopneumoniae*, which is another major component of PRDC [6]. The DNA-directed RNA polymerase subunit alpha rpoA, which is involved in purine and pyrimidine metabolism, had a hit with an FDA-approved drug. Methionine-tRNA ligase (metG), which is an essential protein in selenocompound metabolism, had a hit in DrugBank for an experimental drug. Glutamate-tRNA ligase (gltX), an essential protein in porphyrin and chlorophyll metabolism and aminoacyl-tRNA biosynthesis, catalyzes the binding of glutamate to tRNA (Glu) in a two-step reaction. Phosphorylation of this enzyme by HipA, a toxin and serine/threonine kinase, results in amino acid starvation; prevents replication, transcription, translation, and cell-wall synthesis, and it inhibits growth, leading to multidrug resistance and persistence [11,18,30]. Targeting these proteins in both pathogens could be beneficial for preventing antimicrobial resistance and pig loss due to PRDC.

In conclusion, *in silico* approaches are of paramount importance when identifying target proteins and metabolic pathways as potential drug and vaccine therapy targets. In this study, we identified the glyoxylate and dicarboxylate pathways and glyceraldehyde dehydrogenase as putative targets for antimicrobial therapy against *A. pleuropneumoniae*; moreover, we identified tetra-acyldisaccharide 4′-kinase and 3-deoxy-D-manno-octulosonic-acid transferase as prospective vaccine targets. In addition, we identified three non-host essential proteins that are common to both *A. pleuropneumoniae* and *M. hyopneumoniae*; proteins that could serve as targets for antimicrobial therapy against both pathogens. However, although an *in silico*-based approach involves a series of screens for proteins that can be used as potential drug targets and vaccine candidates, the method has a major limitation in that the identified target proteins require experimental confirmation of their potential. In addition, non-protein vaccine and drug targets cannot be identified by applying this method [31]. Thus, a study should be undertaken to identify any unlisted pathogenic genes of *A. pleuropneumoniae* and determine the practicability of using the proteins and pathways identified as targets for drug and vaccine therapies.
Acknowledgments

This research was supported by the Kyungpook National University Bokhyeon Research Fund, 2016.

Conflict of Interest

The authors declare no conflicts of interest.

References

1. Berman HM, Westbrook J, Feng Z, Gililand G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE. The protein data bank. Nucleic Acids Res 2000, 28, 235-242.
2. Bossé JT, Janson H, Beddek AJ, Rycroft AN, Kroll JS, Langford PR. *Actinobacillus pleuropneumoniae*: pathobiology and pathogenesis of infection. Microbes Infect 2002, 4, 225-235.
3. Butt AM, Nasrullah I, Tahir S, Tong Y. Comparative genomics analysis of *Mycobacterium ulcerans* for the identification of putative essential genes and therapeutic candidates. PLoS One 2012, 7, e43080.
4. Chawley P, Samal HB, Prava J, Suar M, Mahapatra RK. Comparative genomics study for identification of drug and vaccine targets in *Vibrio cholerae*: MurA ligase as a case study. Genomics 2014, 103, 83-93.
5. Chung WB, Bäckström LR, Collins MT. Experimental model of swine pneumatic pasteurellosis using crude *Actinobacillus pleuropneumoniae* cytotoxin and *Pasteurella multocida* given endobronchially. Can J Vet Res 1994, 58, 25-30.
6. Dame D, Suh JW, Lee SJ, Yohannes SB, Hossain MA, Park SC. Putative drug and vaccine target protein identification using comparative genomic analysis of KEGG annotated metabolic pathways of *Mycoplasma hyopneumoniae*. Genomics 2013, 102, 47-56.
7. Dono F, Liberatori S, Rodriguez-Ortega MJ, Rinaudo CD, Rosini R, Mora M, Scarselli M, Altindis E, D'Aurizio R, Stellina M, Margarit I, Maione D, Telford JL, Norais N, Grandi N, Gurfine A. Surftime analysis as a fast track to vaccine discovery: identification of a novel protective antigen for Group B Streptococcus hypervirulent strain COH1. Mol Cell Proteomics 2009, 8, 1728-1737.
8. Doytchinova IA, Flower DR. Bioinformatic approach for identifying parasite and fungal candidate subunit vaccines. Open Vaccine J 2008, 1, 22-26.
9. Duffield M, Cooper I, McAlister E, Bayliss M, Ford D, Oyston P. Predicting conserved essential genes in bacteria: in silico identification of putative drug targets. Mol Biosyst 2010, 6, 2482-2489.
10. Garrett TA, Que NL, Raetz CR. Accumulation of a lipid A precursor lacking the 4'-phosphate following inactivation of the *Escherichia coli* lpxK gene. J Biol Chem 1998, 273, 12457-12465.
11. Germain E, Castro-Roa D, Zenkin N, Gerdes K. Molecular mechanism of bacterial persistence by HipA. Mol Cell 2013, 52, 248-254.
12. Glory E, Murphy RF. Automated subcellular location determination and high-throughput microscopy. Dev Cell 2007, 12, 7-16.
13. Goffin C, Ghysen JM. Multimodal penicillin-binding proteins: an enigmatic family of orthologs and paralogs. Microbiol Mol Biol Rev 1998, 62, 1079-1093.
14. Gottschalk M. Actinobacillosis. In: Zimmerman JJ, Karriker LA, Schwartz KJ, Stevenson GW (eds.). Diseases of Swine. 10th ed. pp. 653-669, Wiley-Blackwell, Chichester, 2012.
15. Huang H, Potter AA, Campos M, Leightton FA, Wilson PJ, Haines DM, Yates WD. Pathogenesis of porcine *Actinobacillus pleuropneumoniae*, part II: roles of proinflammatory cytokines. Can J Vet Res 1999, 63, 69-78.
16. Hung MC, Link W. Protein localization in disease and therapy. J Cell Sci 2011, 124, 3381-3392.
17. Kanchisa M, Sato Y, Kawashima M, Furumichi M, Tanabe M. KEGG as a reference resource for gene and protein annotation. Nucleic Acids Res 2016, 44, D457-462.
18. Kaspary I, Rotem E, Weiss N, Ronin I, Balaban NQ, Glaser GE. HipA-mediated antibiotic persistence via phosphorylation of the glutamyl-tRNA-synthetase. Nat Commun 2013, 4, 3001.
19. Kim B, Min K, Choi C, Cho WS, Cheon DS, Kwon D, Kim J, Chae C. Antimicrobial susceptibility of *Actinobacillus pleuropneumoniae* isolated from pigs in Korea using new standardized procedures. J Vet Med Sci 2001, 63, 341-342.
20. Krogh A, Larsson B, von Heijne G, Sonnhammer EL. Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J Mol Biol 2001, 305, 567-580.
21. Li C, Ye Z, Wen L, Chen R, Tian L, Zhao F, Pan J. Identification of a novel vaccine candidate by immunogenic screening of *Vibrio parahaemolyticus* outer membrane proteins. Vaccine 2014, 32, 6115-6121.
22. Luo H, Lin Y, Gao F, Zhang CT, Zhang R. DEG 10, an update of the database of essential genes that includes both protein-coding genes and noncoding genomic elements. Nucleic Acids Res 2014, 42, D574-580.
23. Mobegi FM, van Hijum SA, Bughouth P, Bootsma HJ, de Vries SP, van der Gaast-de Jongh CE, Simonetti E, Langereis JD, Hermans PW, de Jonge MI, Zomer A. From microbial gene essentiality to novel antimicrobial drug targets. BMC Genomics 2014, 15, 958.
24. Morya VK, Dewaker V, Mecarty SD, Singh R. In silico analysis metabolic pathways for identification of putative drug targets for *Staphylococcus aureus*. J Comput Syst Biol 2010, 3, 62-69.
25. Nguyen-Dístèche M, Fraipont C, Bбудделмейер Н, Наннинга N, Нанинга N. The structure and function of *Escherichia coli* penicillin-binding protein 3. Cell Mol Life Sci 1998, 54, 309-316.
26. Nishio M, Okada N, Miki T, Haneda T, Danbara H. Identification of the outer-membrane protein PagC required for the serum resistance phenotype in *Salmonella enterica* serovar Choleraesuis. Microbiology 2005, 151, 863-873.
27. Opriessnig T, Giménez-Lirola LG, Halbur PG. Polymicrobial respiratory disease in pigs. Anim Health Res Rev 2011, 12, 133-148.
28. Pieper U, Webb BM, Dong GQ, Schneidman-Duhovny D,
Fan H, Kim SJ, Khuri N, Spill YG, Weinkam P, Hammel M, Tainer JA, Nilges M, Sali A. ModBase, a database of annotated comparative protein structure models and associated resources. Nucleic Acids Res 2014, 42, D336-346.

29. Pinho MG, Filipe SR, de Lancastre H, Tomasz A. Complementation of the essential peptidoglycan transpeptidase function of penicillin-binding protein 2 (PBP2) by the drug resistance protein PBP2A in *Staphylococcus aureus*. J Bacteriol 2001, 183, 6525-6531.

30. Potrykus K, Cashel M. (p)ppGpp: still magical? Annu Rev Microbiol 2008, 62, 35-51.

31. Seib KL, Dougan G, Rappuoli R. The key role of genomics in modern vaccine and drug design for emerging infectious diseases. PLoS Genet 2009, 5, e1000612.

32. Shanmugham B, Pan A. Identification and characterization of potential therapeutic candidates in emerging human pathogen *Mycobacterium abscessus*: a novel hierarchical *in silico* approach. PLoS One 2013, 8, e59126.

33. Simon I, Wright M, Flohr T, Hevezi P, Caras IW. Determining subcellular localization of novel drug targets by transient transfection in COS cells. Cytotechnology 2001, 35, 189-196.

34. Spratt BG. Distinct penicillin binding proteins involved in the division, elongation, and shape of *Escherichia coli* K12. Proc Natl Acad Sci U S A 1975, 72, 2999-3003.

35. Uddin R, Saced K, Khan W, Azam SS, Wadood A. Metabolic pathway analysis approach: identification of novel therapeutic target against methicillin resistant *Staphylococcus aureus*. Gene 2015, 556, 213-226.

36. UniProt Consortium. UniProt: a hub for protein information. Nucleic Acids Res 2015, 43, D204-212.

37. Vanni M, Merenda M, Barbarino G, Garbarino C, Luppi A, Tognetti R, Intorre L. Antimicrobial resistance of *Actinobacillus pleuropneumoniae* isolated from swine. Vet Microbiol 2012, 156, 172-177.

38. Wishart DS, Knox C, Guo AC, Shrivastava S, Hassanali M, Stothard P, Chang Z, Woolsey J. DrugBank: a comprehensive resource for *in silico* drug discovery and exploration. Nucleic Acids Res 2006, 34, D668-672.

39. Wu XB, Tian LH, Zou HJ, Wang CY, Yu ZQ, Tang CH, Zhao FK, Pan JY. Outer membrane protein OmpW of *Escherichia coli* is required for resistance to phagocytosis. Res Microbiol 2013, 164, 848-855.

40. Yoo AN, Cha SB, Shin MK, Won HK, Kim EH, Choi HW, Yoo HS. Serotypes and antimicrobial resistance patterns of the recent Korean *Actinobacillus pleuropneumoniae* isolates. Vet Rec 2014, 174, 223.

41. Yu CS, Chen YC, Lu CH, Hwang JK. Prediction of protein subcellular localization. Proteins 2006, 64, 643-651.

42. Zhang R, Lin Y. DEG 5.0, a database of essential genes in both prokaryotes and eukaryotes. Nucleic Acids Res 2009, 37, D455-458.