Implementation of Response Surface Methodology for Phenol Degradation using *Pseudomonas putida* (NCIM 2102)

V. Sridevi*,1, M.V.V. Chandana Lakshmi1, A.V.N. Swamy2 and M. Narasimha Rao3

1Centre for Biotechnology, Department of Chemical Engineering, Andhra University, Visakhapatnam-03, Andhra Pradesh, India
2Department of Biotechnology, J.N.T.U. Pulivendula, Anantapur Dist, Andhra Pradesh, India
3Al-Ameer College of Engineering and Information Technology, College of Engineering, Gudilova, Anandapuram, Visakhapatnam, Andhra Pradesh, India

Abstract

Phenol, a major pollutant in several industrial wastewaters is often used as a model compound for studies on biodegradation. Experiments were performed as a function of glucose (0.4-1.6 g/l), ammonium sulfate (0.5-2.0 g/l) and concentration of metal ion, Mn²⁺ (0.01-0.04 g/l) by *Pseudomonas putida* (NCIM 2102), at constant phenol concentration 0.100 g L⁻¹. Optimization of these three process parameters for phenol degradation was studied. Statistically designed experiments using response surface methodology (RSM) was used to get more information about the significant effects and the interactions between the three parameters. A 2³ full – factorial central composite designed technique was employed for experimental design and analysis of the results. The optimum process conditions for maximizing phenol degradation (removal) were recognized as follows; glucose (0.8229 g/l), ammonium sulphate(1.5183 g/l) and metal ion concentration, [Mn²⁺](0.0195 g/l) A maximum % phenol degradation of 98.24 was obtained at these optimum parameters.

Keywords: Biodegradation; Batch; *Pseudomonas putida* (NCIM 2102); Central Composite Design; Correlation coefficient

Introduction

The potential of microorganisms to catabolise and metabolise xenobiotic compounds has been recognized as a potentially effective means of toxic and hazardous waste disposal [1]. Phenol and its derivatives have long been recognized as some of the most persistent means of toxic and hazardous waste disposal [1]. Phenol and its xenobiotic compounds has been recognized as a potentially effective wastewater varies from 10 mgL⁻¹ to 300 mgL⁻¹ [6] but this can rise to phenol acting as a water pollutant [3]. The concentration of phenol in paints and varnish [4,5]. Good solubility of phenol in water and its pesticide production, steel manufacturing and the production of it is more commonly produced artificially from industrial activities such as petroleum processing plastic manufacturing, resin production, pesticide production, steel manufacturing and the production of paints and varnish [4,5]. Solubility of phenol in water and its high contents in industrial effluents testify to a high probability of phenol acting as a water pollutant [3]. The concentration of phenol in wastewater varies from 10 mg L⁻¹ to 300 mg L⁻¹ [6] but this can rise to 4.5 g L⁻¹ in very polluted water [7]. Phenol vapors acting as air pollutant precipitate from the air in the soil like other substances.

Owing to their toxic effects, including permeabilisation of the cell membrane and cytoplasmic coagulation, phenol can damage sensitive cells and thus cause profound health and environmental problems, particularly during wastewater treatment process [8]. It is also known as a carcinogenic and teratogenic agent, which affects both the environment and human beings. Phenol concentrations in the range of 100-400µg/mL caused the complete inhibition of photosynthesis [9]. Phenol removal from the industrial wastewaters is necessary, prior to the wastewater discharge [10].

Several methods such as physico-chemical [11] and biological methods [12] have been employed in the treatment or removal of phenol and its compounds [13]. The physico-chemical methods are costly and often produce undesirable products which are toxic, requiring further treatment steps [14,15]. Hence, the biological treatment method is preferred as it has the potential to almost degrade completely with innocuous end products and minimum secondary metabolites [16].

Biodegradation of phenol and its derivative compounds has been extensively investigated and several studies have shown that phenol can be aerobically degraded by a wide variety of pure cultures of microorganisms such as *Cryptococcus elinovic* [17], *Fusarium flociferum*, *Alcaligenes eutrophus* [18], *Bacillus staphylophilus*, *Burkholderia cepacia* G4, *Pseudomonas putida* [19], *Pseudomonas aeruginosa*, [20] *Acinetobacter sp* Strain W-17 [21].

In general, optimization studies involving the one-factor at a time approach are not only tedious, but also tend to overlook the effects of interacting factors and might lead to misinterpretations of the results. On the other hand, statistical planned experiments effectively solve such problems; minimize the error in determining the effect of parameters and the results are achieved in an economical manner [22].

Response Surface Methodology, which is supported by software, is an empirical modelization technique derives for the evaluation of the relationship of a set of controlled experimental factors and observed results. It requires a prior knowledge of the processes to achieve statistical model [23].

In this study, phenol biodegradation was investigated in a batch reactor using *P. putida* (NCIM 2102). Chemical parameters like carbon source (glucose, galactose, D-xylene, fructose and sucrose), inorganic nitrogen source (ammonium sulfate, sodium nitrate, disodium phosphate and sodium phosphate) and metal ions (Manganese, lead, cobalt and Cu (II)) at various concentrations were studied. The effects of these chemical parameters on the phenol degradation were also discussed based on response surface methodology.

*Corresponding author: V. Sridevi, Associate Professor, Centre for Biotechnology, Department of Chemical Engineering, Andhra University, Visakhapatnam-03, Andhra Pradesh, India. E-mail: vellurisridevi@yahoo.co.in

Received March 29, 2011; Accepted June 21, 2011; Published June 22, 2011

Citation: Sridevi V, Lakshmi MVVC, Swamy AVN, Rao MN (2011) Implementation of response surface methodology for phenol degradation using *Pseudomonas putida* (NCIM 2102). J Bioremed Biodegrad 2:121. doi:10.4172/2155-6199.1000121

Copyright: © 2011 Sridevi V. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Design of Experiments

Response surface methodology is an empirical modeling technique derived to the evaluation of the relationship of a set of controlled experimental factors and observed results [24]. It requires a prior knowledge of the process to achieve statistical model [25-28]. Basically this optimization of process involves three major steps, which are, performing the statistically designed experiments, estimating the coefficients in a mathematical model and predicting the response and checking the adequacy of the model [29].

\[Y = f(X_1, X_2, X_3, ..., X_n) \]

(1)

The true relationship between \(Y \) and \(X_i \) may be complicated and, in most cases, it is unknown, however, a second-degree quadratic polynomial can be used to represent the function in the range of interest:

\[Y = R_0 + \sum_{i=1}^{k} R_i X_i + \sum_{i=1}^{k} \sum_{j=1}^{i} R_{ij} X_i X_j + e \]

(2)

where \(X_1, X_2, ..., X_n \) are the input variables which affect the response \(Y \), \(R_i, R_{ij}, R_{ik} \) and Ri (i = 1-k, j = 1-k) are the known parameters, \(e \) is the random error. A second-order model is designed such that variance of \(Y \) is constant for all points equidistant from the centre of the design:

\[X_i = \left(\frac{X_i - X_i^c}{\Delta X_i} \right) \]

(3)

where \(X_i \) is the coded value, \(X_i^c \) is the actual value at the center point and \(\Delta X_i \) is the step change value. The parameters and their values (in brackets) were three levels, namely glucose (0, 0.4, 0.8, 1.2, 1.6 g/L), ammonium sulfate (0.5, 1.0, 1.5, 2.0 g/L) and concentration of metal ion Mn\(^{2+}\) (0, 0.01, 0.02, 0.03, 0.04 g/L) at constant phenol concentration 100 g/L were studied using Statistica 6.0. This also enabled the identification of significant effects of the interactions for the batch studies. In system involving three significant independent variables \(X_1, X_2 \), and \(X_3 \), the mathematical relationship of the response of these variables can be approximated by quadratic (second degree) polynomial equation:

\[Y = b_0 + b_1 X_1 + b_2 X_2 + b_3 X_3 + b_{12} X_1 X_2 + b_{13} X_1 X_3 + b_{23} X_2 X_3 \]

(4)

where \(Y \) is the predicted value, \(b_0 \) is the constant, \(X_1 \) is the glucose, \(X_2 \) is the ammonium sulfate, \(X_3 \) is Mn\(^{2+}\); \(b_1, b_2 \) and \(b_3 \) are linear coefficients, \(b_{12}, b_{13} \) and \(b_{23} \) are cross product coefficients and \(b_{11}, b_{22} \) and \(b_{33} \) are quadratic coefficients. The low, middle and high levels of each variable were designated as -1, 0, and +1 respectively, as given in Table 1. A total of 20 runs were necessary to estimate the coefficients of the model using multiple linear regressions. The design of experiments was carried out for analysis using the Statistica 6.0 version.

Materials and Methods

Microorganism

The microorganism P. putida (NCIM 2102) was procured from culture collection NCL, Pune. The microorganism was maintained on beef extract: 1.0 g/L; yeast extract: 2.0 g/L; peptone: 5.0 g/L; sodium chloride: 5.0 g/L and agar: 20.0 g/L. The medium was adjusted to pH 7.0 by 1N sodium hydroxide. It was stored at 4°C ± 1°C for further use.

Optimization studies

The chemical parameters namely glucose (0, 0.4, 0.8, 1.2, 1.6 g/L), ammonium sulfate (0, 0.5, 1.0, 1.5, 2.0 g/L) and concentration of metal ion Mn\(^{2+}\) (0, 0.01, 0.02, 0.03, 0.04 g/L) at constant 0.100 g/L phenol concentration were studied in the minimal medium composed of dihydrogen potassium phosphate: 1.5 g/L; potassium dihydrogen phosphate: 0.5 g/L; ammonium sulfate: 0.5 g/L; sodium chloride: 0.5 g/L; sodium sulfate: 3.0 g/L; yeast extract: 2.0 g/L; glucose: 0.5 g/L; ferrous sulfate: 0.002 g/L and calcium chloride: 0.002 g/L by P.putida (NCIM 2102) for the maximum degradation of phenol. Samples were withdrawn at regular intervals for phenol determination. From the above experiments the range of glucose, ammonium sulfate and concentration of metal ion Mn\(^{2+}\) were chosen for further optimization of the design.

Design of experiments

To optimize the range of experiments the 2\(^3\) full-factorial Central Composite Design (CCD) was applied. The range and the levels of the process variables under study are given in Table 1: glucose (0, 0.4, 0.8, 1.2, 1.6 g/L), ammonium sulfate (0, 0.5, 1.0, 1.5, 2.0 g/L) and concentration of metal ion Mn\(^{2+}\) (0, 0.01, 0.02, 0.03, 0.04 g/L) which served as critical variables \(X_1, X_2 \), and \(X_3 \), respectively.

Estimation of phenol

Phenol was determined quantitatively by the Spectrophotometric method (DR/ 4000 V, Hach) using 4-amino antipyrine as the color reagent (\(\lambda_{max} \): 500nm) according to standard methods of analysis [30].

Results and Discussion

Effect of carbon source

Microorganisms acquire nutrients, electrons and energy from their environments to support growth. Biodegradation of organic substrates provide microorganisms with energy and building materials that are used for growth of new cells, cell maintenance and co-metabolism of other less degradable substances [31].

In general, microorganisms grow mostly in a medium supplemented with additional substrates [32]. Hence, growth could be manipulated by addition of two or more nutrients simultaneously [33-35]. If a microbial population is grown on mixed substrates present in the medium, the microbes consume only one, or both the substrates. Consequently, several utilization patterns can be observed. In mixed substrates, individual substrates can have synergistic, antagonistic or no effect on one another, resulting in a growth rate that is higher, lower or the same than if the substrates are present individually [36,37].

Hence, different carbon sources were selected for two reasons. First, phenol is a toxic compound representing wastes of industrial origin. Second, these conventional carbon sources are non-toxic, a common substrate which can represent wastes of urban or agricultural origin. In this study, the effect of six different carbon sources namely glucose, galactose, D-xylose, fructose and sucrose in the range of 0-1.6 g/L on the degradation of phenol were studied and shown in Figure1. From Figure 1, it can be observed that glucose is the best carbon source among all and the % of phenol degradation obtained was 73.43. Phenol degradation increased up to a glucose concentration of 0.8gL\(^{-1}\) and

Variables	Coded levels	Value
Glucose concentration (g/l)	(X_1)	
(NH₄)₂SO₄ (g/l)	(X_2)	
Metal ion concentration (Mn⁴⁺) (g/l)	(X_3)	

X_1	X_2	X_3	
0	0.6	1.0	1.4
0.4	0.6	1.0	1.4
0.8	0.6	1.0	1.4

Table 1: Experimental range and levels of the independent variables.
thereafter it decreased and the degradation was almost inhibited at a concentration of 1.6 gL⁻¹. This may be due to catabolite repression by glucose as reported by Papanastasiou [38] i.e the presence of glucose could inhibit utilization of the target substrate. Satansangee and Ghosh [39] have also reported that glucose interferes with phenol uptake. This result coincides with Kar et al. [40] who reported that phenol degradation was completely inhibited when glucose concentration was at 2 gL⁻¹. Hence 0.8 gL⁻¹ glucose concentration was considered to be the optimum carbon source.

Effect of inorganic nitrogen source

Nitrogen is the next most important nutrient for the phenol degradation. The effect of four inorganic nitrogen sources namely ammonium sulfate, sodium nitrate, disodium phosphate and sodium phosphate in the range of 0-2.0 gL⁻¹ on the degradation of phenol were studied and shown in Figure 2. From Figure 2 it was observed that up to a concentration of 1.5 gL⁻¹ of ammonium sulfate, the phenol degradation was increased and further increase in the concentration, a detrimental effect was observed on phenol degradation. Hence, the optimum concentration of ammonium sulfate observed was 1.5 gL⁻¹ and the phenol degradation was 77.34%. The enhanced rate of phenol degradation at less than 1.5 gL⁻¹ ammonium sulfate can be attributed to the attenuation of phenol toxicity by ammonium sulfate and the increase in cell mass formed as a result of the additional nitrogen source.

This is in good agreement with Premalatha and Suseela Rajakumar [41] who reported that ammonium chloride at a concentration of 0.175 gL⁻¹ was the best nitrogen source for pentachlorophenol degradation, giving 100% degradation by day 5. Pentachlorophenol degradation by a mixed bacterial population was also enhanced by ammonium salts [42].

Effect of metal ions

The tolerance of different strains to metals varies widely and it is necessary to determine the optimum concentration to avoid the inhibitory effects caused when these cations are present in toxic concentrations. The present study investigates the effect of four different metal sources viz Manganese, lead, cobalt and Cu (II) in the range of 0-0.04 gL⁻¹ on phenol degradation by *P. putida* (NCIM 2102). From Figure 3, it was observed that Mn⁺² degraded maximum phenol when compared to lead, cobalt and Cu (II).

It may be observed that from Figure 3 that phenol degradation increased up to a concentration of 0.02 gL⁻¹ and further increase in Mn⁺² concentration had a detrimental effect on phenol degradation. Hence, the optimum concentration of Mn⁺² for phenol degradation by *P. putida* (NCIM 2102) was found to be 0.02 gL⁻¹ and the percentage of phenol degradation at this optimum value was 78.28. This result is in agreement with Premalatha and Suseela Rajakumar [41].

From Table 2, it is observed that Mn⁺² concentrations had the highest effect on phenol degradation compared to lead, cobalt and Cu (II). This is in good agreement with Satsangee and Ghosh [39] and Papanastasiou [38] who reported that phenol degradation was completely inhibited when glucose concentration was at 1.6 gL⁻¹. Hence, the optimum concentration of Mn⁺² observed was 0.02 gL⁻¹ and the percentage of phenol degradation was 78.28. This result coincides with Kar et al. [40] who reported that phenol degradation was completely inhibited when glucose concentration was at 2 gL⁻¹. Hence 0.8 gL⁻¹ glucose concentration was considered to be the optimum carbon source.
is in agreement with Kotresha and Vidyasagar [43] who reported that maximum degradation of phenol by *P. aeruginosa* MTCC 4996 was possible in the presence of 2.0 mM zinc. This may be due to the fact that microbes display a large range of tolerance and resistance to heavy metals [44]. Hughes and Poole [45] and Sterritt and Lester [46] also reported that addition of certain metal ions at low concentration enhances the degradation rate.

Evaluation of experimental results with CCD

The design of experiments was carried out for analysis using Statistica 6.0 software. The percentage phenol degradation obtained after 16 h incubation with 20 experimental runs and with different combinations of glucose concentration, (NH₄)₂SO₄ concentration and metal ion concentration (Mn²⁺) were estimated.

By applying multiple regression analysis on the experimental data, the following second order polynomial equation was found to represent the percentage phenol degradation adequately.

\[
Y = 44.5 + 60X_1 - 35.5X_2 + 29.2X_3 - 7.5X_1^2 + 617.2X_2^2 - 20382.1X_3^2 - 5.8X_1X_2 - 373.7X_2X_3 + 3.7375X_1X_3
\]

The predicted values of percentage phenol degradation using the above equation are given in Table 2 along with experimental values. The coefficients of the regression model (Eq. 5) calculated are listed in Table 3, in which they contain three linear, three quadratic and three interaction terms and one block term. The significance of each coefficient was determined by Student’s t-test and p-values, which are listed in Table 3. The larger the magnitude of the t-value and smaller the p-value, the more significant is the corresponding coefficient. This implies that the first order and second order main effects of glucose concentration, (NH₄)₂SO₄ concentration and metal ion concentration (Mn²⁺) are highly significant as is evident from their respective p-values. They are more significant at the second order. This indicates that they can act as limiting nutrients and small variations in their concentration will alter either growth rate or product formation rate or both to a considerable extent. The interaction effect of metal ion concentration (Mn²⁺) and glucose concentration was found to be significant (p≤0.05). The remaining two interaction terms i.e. glucose concentration × (NH₄)₂SO₄ and (NH₄)₂SO₄ × metal ion concentration (Mn²⁺) were found to be insignificant (Table 3).

The parity plot (Figure 4) showed a satisfactory correlation between the experimental and predicted values (obtained from Eq. 5) of percentage phenol degradation, wherein, the points cluster around the diagonal line which indicated the optimal fit of the model, since the deviation between the experimental and predicted values was minimal.

The results of the second order response surface model fitting in the form of Analysis of Variance (ANOVA) were given in Table 4. It is required to test the significance and adequacy of the model. The Fisher ratio, the F-value (= S²_e/S²), is a statistically valid measure of how well the factors describe the variation in the data about its mean. The greater the F-value is from unity, the more certain it is that the factors explain adequately the variation in the data about its mean, and the estimated factor effects are real. The ANOVA of the regression model demonstrates that the model is highly significant, as is evident from the Fisher’s F-test (F_reduced = 20.62065) and a very low probability value (P_reduced > F = 0.000026).

The goodness of the fit of the model was checked by the determination coefficient (R²). The R² value provides a measure of how much variability in the observed response values can be explained by the experimental variables and their interactions. The R² value is always between 0 and 1. The closer the R² value is to 1, the stronger the model is and the better it predicts the response. In this case, the value of the determination coefficient (R² = 0.9488) indicates that 94.88 % of the variability in the response could be explained by the model. In addition, the value of the adjusted determination coefficient (Adj R² = 0.9028) is

Term	Coefficient	Value	Standard error of coefficient	t-value	p-value
Constant	b₀	44.5	6.292	7.07296	0.000003*
Glucose concentration	b₁	60.0	10.210	5.87255	0.000157*
(NH₄)₂SO₄	b₂	-35.5	5.402	-6.56617	0.000003*
Metal ion concentration (Mn²⁺)	b₃	29.2	3.759	7.77009	0.000015*
Glucose concentration × Glucose concentration	b₁₁	-7.5	0.879	-8.51224	0.000007*
(NH₄)₂SO₄ × (NH₄)₂SO₄	b₂₂	617.2	173.295	3.56154	0.005168*
Metal ion concentration (Mn²⁺) × Metal ion concentration (Mn²⁺)	b₃₃	-20382.2	2202.723	-9.25315	0.000003*
Glucose concentration × (NH₄)₂SO₄	b₁₂	-5.8	2.950	-1.98299	0.075496
(NH₄)₂SO₄ × Metal ion concentration (Mn²⁺)	b₂₃	373.7	147.504	2.53382	0.029676
Metal ion concentration (Mn²⁺) × Glucose concentration	b₃₁	3.7375	1.47504	2.53382	0.029676*

* Significant (p≤0.05)

Table 4: ANOVA for the entire quadratic model.

Figure 4: Parity plot showing the distribution of experimental vs. predicted values of phenol degradation (%) obtained by *Pseudomonas putida* (NCIM 2102).
also very high to advocate for a high significance of the model. The predicted and experimental percentage phenol degradation at the optimum levels of chemical conditions was also determined by using (Eq. 5). Figures 5-7 represent the isoresponse contour and surface plots for the optimization of chemical conditions of phenol degradation.

The effects of the glucose concentration and (NH₄)₂SO₄ concentration on the percentage phenol degradation showed in Figure 5. An increase in the (NH₄)₂SO₄ concentration with glucose concentration up to the optimum point increased the percentage phenol degradation to a maximum level and a further increase in the (NH₄)₂SO₄ concentration with glucose concentration the trend is reversed.

The interaction effect of the metal ion concentration (Mn²⁺) and (NH₄)₂SO₄ concentration on the percentage phenol degradation in Figure 6 clearly indicates a proper combination for degradation of phenol. An increase in the (NH₄)₂SO₄ concentration with metal ion concentration (Mn²⁺) increased the phenol degradation gradually but at a higher (NH₄)₂SO₄ concentration and metal ion concentration (Mn²⁺) the trend is reversed. The optimum for maximum phenol degradation lies near the centre point of the (NH₄)₂SO₄ concentration and metal ion concentration (Mn²⁺).

A similar effect on the response was observed for the glucose concentration at any level of the metal ion concentration (Mn²⁺) an increase in the glucose concentration with metal ion concentration (Mn²⁺) up to the optimum point increased the percentage phenol degradation to maximum level and a further increase in the glucose concentration with metal ion concentration (Mn²⁺) decreased the phenol degradation is shown in Figure 7.

Therefore, an optimum was observed near the central value of glucose concentration, (NH₄)₂SO₄ concentration and metal ion concentration (Mn²⁺). The optimum conditions for maximum phenol degradation were obtained at a glucose concentration of 0.8229g.L⁻¹, (NH₄)₂SO₄ concentration of 1.5183g.L⁻¹ and metal ion concentration (Mn²⁺) of 0.0195g.L⁻¹. A maximum % phenol degradation of 98.24 was obtained at these optimum parameters. The experimental and predicted phenol degradation at optimum conditions of degradation were also determined (Table 5).

The effects of the glucose concentration and (NH₄)₂SO₄ concentration on the percentage phenol degradation showed in Figure 7. An increase in the (NH₄)₂SO₄ concentration with glucose concentration up to the optimum point increased the percentage phenol degradation to a maximum level and a further increase in the (NH₄)₂SO₄ concentration with glucose concentration the trend is reversed.

![Figure 5: Response and contour plot of glucose concentration vs. (NH₄)₂SO₄ concentration on % phenol degradation (Metal ion concentration (Mn²⁺)) was kept constant at 0.02 g/l).](image1)

![Figure 6: Response and contour plot of Metal ion concentration (Mn²⁺) vs. (NH₄)₂SO₄ concentration on % phenol degradation (Glucose concentration was kept constant at 0.8 g/l).](image2)

![Figure 7: Response and contour plot of Metal ion concentration (Mn²⁺) vs. Glucose concentration on % phenol degradation (NH₄)₂SO₄ was kept constant at 1.5 g/l).](image3)

Table 5: Experimental and predicted values of nutritional parameters for optimum phenol degradation (%).

Variables	Optimum values	Optimum phenol degradation (%)
Glucose concentration	0.8229	98.24
(gl⁻¹), (X₁)		
(NH₄)₂SO₄ (gl⁻¹), (X₂)	1.5183	98.26
Metal ion concentration	0.0195	
(Mn²⁺) (gl⁻¹), (X₃)		

Citation: Sridevi V, Lakshmi MVVC, Swamy AVN, Rao MN (2011) Implementation of Response Surface Methodology for Phenol Degradation using Pseudomonas putida (NCIM 2102). J Bioremed Biodegrad 2:121. doi:10.4172/2155-6199.1000121
Conclusion

The present study shows the potential of the *P. putida* (NCIM 2102) for phenol waste water treatment. The performance of this strain in biodegradation of phenol in the medium is excellent. The central composite design selected as a response surface method proved to be suitable for performing bioremediation studies in complex system where the toxicity of the pollutant to the microorganism do not permit a straightforward study [47]. The response surface methodology using 2² full-factorial composite design was adopted to optimize the process variables like carbon source, inorganic nitrogen and metal ion concentration for the microbial degradation of phenol by *P. putida* (NCIM 2102). The optimum conditions for maximum phenol degradation were obtained at a glucose concentration of 0.8229 gL⁻¹, (NH₄)₂SO₄ concentration of 1.5183 gL⁻¹ and metal ion concentration (Mn²⁺) of 0.0195 gL⁻¹. A maximum % phenol degradation of 98.24 was obtained at these optimum parameters. The designed generated may be used for designing a treatment plant for phenol waste effluents where collection can be achieved on a large scale.

References

1. Agarry SE, Durojaye AO, Yusuf RO, Aremu MO, Solomon BO, et al. (2008) Biodegradation of phenol in refinery wastewater by pure cultures of *Pseudomonas aeruginosa* NCIB 950 and *Pseudomonas fluorescens* NCIM 3756. Int J Environ Poll 32: 3-11.

2. Chandrakant K, Aravind M, Manjunath N, Dae Jin Yun (2006) Phenol degradation by immobilized cells of *Arthrobacter citreus*. Biodeg 17: 47-55.

3. Muhammad F, Ahmed Z, Riazuddin S, Rajoka MI, Khalid AM (2002) Estimation and removal of phenol in pharmaceutical industrial effluents from paracetamol and aspirin manufacturing units. OnLine J Biol Sci 2: 587-590.

4. Mahadevawamy M, Mall ID, Prasad B, Mishra IM (1997) Removal of phenol by adsorption on coal fly ash and activated carbon. Pollut Res 16: 170-175.

5. Banypahadhyay K, Das D, Maitri BR (1998) Kinetics of phenol degradation using *Pseudomonas putida* MTCC 1194. Bioprocess Eng 18: 7-13.

6. Annadurai G, Rajesh babu S, Mahesh KPO, Murugun T (2000) Adsorption and biodegradation of phenol by chitosan-immobilized *Pseudomonas putida* (NCIM 2174). Bioproc Eng 22: 493-501.

7. Bond RG, Straub RB (1974) Handbook of Environmental Control. CRC Press, USA, vol. IV.

8. Silhankova V (1995) In: Microbiologie pro potravinare a biotechnology. Rustova knivka, Victoria Publishing, Praha 239-242.

9. Tsompatisidis E, Henbest RGC, Battey NH, Hadley P (2010) The influence of ultraviolet radiation on growth, photosynthesis and phenolic levels of green and red lettuce: potential for exploiting effects of ultraviolet radiation in a production system. Ann Appl Biol 156: 357-368.

10. Maria Kopyto, Luz Adriana Puentes Jacome (2008) Alternative for phenol degradation in oil contaminated wastewaters using an adapted bacterial biofilm layer. Rudarsko-geološki-nafni zbornik 20: 71-82.

11. Christine DF, bdul Rashid NA, Ibrahim Z, Pikang MT (2006) Development of an enzyme assay and preliminary kinetic studies for the enzyme (s) from *Candida tropicalis* RETL-Crl involved in phenol degradation, Pakistan J Biol Sci 9: 805-809.

12. Indu Nair C, Jayachandran K, Shankar Shashidhar (2008) Biodegradation of Phenol. African J Biotechnol 7: 4951-4958.

13. Kobayshi H, Rittman BE (1982) Microbial removal of hazardous organic compounds. Environ Sci Tech 19: 470-481.

14. Collis LD, Daugulis AJ (1997) Biodegradation of phenol at high initial concentration in two-phase partitioning batch and fed- batch bioreactors. Biotechnol Bioeng 55: 155-162.

15. Thavasi R, Jayalakshmi S (2003) Bioremediation potential of hydrocarbonoclastic bacteria in cuddalore harbour waters (India). Res J Chem Environ 7: 17-22.

16. Watanabe K (2001) Microorganisms relevant to bioremediation. Curr Opin Biotechnol 12: 231-241.

17. Morsen A, Rehm HU (1990) Degradation of phenol by mixed culture of *Pseudomonas putida* and *Cryptococcus eillinovii* adsorbed on activated carbon, Appl Microbiol Biotechnol 28: 283-288.

18. David L, Nicholas DL (1999) Growth of *Ralstonia eutropha* on inhibitory concentrations of phenol- diminished growth can be attributed to hydrophobic perturbation of phenol hydroxylase activity. Enz Micro Tech 25: 271-277.

19. Koltuni G, Robinson CW, Inmias WE (1991) Phenol degradation by psychrophilic strain of *Pseudomonas putida*. Appl Microbiol Biotechnol 34: 539-543.

20. Oboinien BO, Amigum B, Ojumu TV, Ogukunle OA, Adetunji OA, et al. (2005) Substrate inhibition kinetics of phenol degradation by *Pseudomonas aeruginosa* and *Pseudomonas fluorescens*. Biotechnol 4: 56-61.

21. Abd-El-Haleem D, Beshay U, Abdelhamid AO, Moazad H, Zaki S (2003) Effects of mixed nitrogen sources on biodegradation of phenol by immobilized *Acinetobacter* sp. strain (W-17). African J Biotech 2: 8-12.

22. Abdel-Fattah YR, EL-Helou ER, Ghanem KM, Loffy WA (2007) Application of factorial designs for optimization of avicelase production by a thermophilic *Geobacillus isolate*. J Microbiol 2: 13-23.

23. Agarry SE, Solomon BO, Audu TOK (2010) Optimization of process variables for the batch degradation of phenol by *Pseudomonas fluorescens* using response surface methodology. Int J Chem Tech 2: 33-45.

24. Yamin Y, Abdul Hafiz Malek, Ahmad FH (2010) Response surface methodology study on removal of humic acid from aqueous solutions using anionic clay hydroalcalite. J Appl Sci 10: 2297-2303.

25. Gopinath SCB, Hilda A, Lakshmi Priya T, Annadurai G, Anbu P (2003) Statistical optimization of amylase production by *Aspergillus versicolor*. Asian J Microbiol Biotechnol Environ Sci 5: 327-330.

26. Box GEP, Behnkwen DW (1960) Three level design for the study of quantitative variables. Technometrics 2: 455-475.

27. Box GEP, Hunter JS (1957) Multi-factor experimental designs for exploring response surfaces. Ann Math Statist 28:195-241.

28. Cochran WG, Cox DW, John Wiley, Sons (1968) Experimental design. Inc New York 611-626.

29. Annadurai G, Ling LY, Lee JF (2008) Statistical optimization of medium components and growth conditions by Response Surface Methodology to enhance phenol degradation by *Pseudomonas putida*, J Haz Mat 151:171-178.

30. American Public Health Association (APHA) (1989) American Water Work Association, Water Pollution Control Federation, Standards methods for the examination of water and wastewater, 17th Edition. Washington DC 55: 9-62.

31. Cornelissen G, Sijm DT (1996) An energy budget model for the biodegradation and co-metabolism of organic substances. Chemosphere 33: 817-830.

32. Harder W, Dijkhuizen L, Postgate JR (1982) Strategies of mixed substrate utilization in microorganisms, Philosophical Transactions of the Royal Society of London Series B, Biol Sci 297: 459-480.

33. Rutgers M, Balk PA, van Dam K (1990) Quantification of multiple-substrate controlled growth-simultaneous ammonium and glucose limitation in chemostat cultures of *Klebsiella pneumoniae*. Arch Microbiol 153: 478-484.

34. Egli T (1991) On multiple-nutrient-limited growth of microorganisms with special reference to dual limitation by carbon and nitrogen substrates. Antonie van Leeuwenhoek 60: 225-234.

35. Egli T (1995) The ecological and physiological significance of the growth of heterotrophic microorganisms with mixtures of substrate. Adv Micro Ecol 10: 308-386.

36. Meyer JS, Marcus MD, Bergman HL (1984) Inhibitory interactions of aromatic heterotrophic microorganisms with mixtures of substrate. Adv Microb Ecol 14: 271-293.

37. Cornelissen G, Sijm DT (1996) An energy budget model for the biodegradation and co-metabolism of organic substances. Chemosphere 33: 817-830.
4-dichlorophenoxyacetate in the presence of glucose. Biotechnol Bioeng 24: 2001-2011.

39. Satsangee R, Ghosh P (1990) Anaerobic degradation of phenol using an acclimated mixed culture. Appl Microbiol Biotechnol 34: 127-130.

40. Kar S, Swaminathan T, Baradarajan A (1996) Studies on biodegradation of a mixture of toxic and nontoxic pollutant using *Arthrobacter* species. Bioproc Eng 15: 195-199.

41. Premalatha A, Suseela Rajakumar G (1994) Pentachlorophenol degradation by *Pseudomonas* aeruginosa. World J Microbiol Biotechnol 10: 334-337.

42. Valo R, Apajalahti J, Saikinoja Salonen M (1985) Studies on the physiology of microbial degradation of pentachlorophenol. Appl Microbiol Biotechnol 21: 313-319.

43. Kotresha D, Vidyasagar GM (2008) Isolation and characterization of phenol-degrading *Pseudomonas aeruginosa* MTCC 4996. World J Microbiol Biotechnol 24: 541-547.

44. Trevors JT, Oddie KM, Belliveau BH (1985) Metal resistance in bacteria FEMS. Microbiol Rev 32: 39-54.

45. Hughes MN, Poole RK, Chapman, Hall (1989) Metal toxicity In: Hughes MN, Poole RK (eds) Metals and Microorganisms. New York 252-302.

46. Sterritt RM, Lester JN (1980) Interactions of heavy metals with bacteria. Sci Total Environ 14: 5-17.

47. Rigas FV, Dritsa R, Marchant K, Papadopoulou EJ, Avramides I, et al. (2005) Biodegradation of lindane by *Pleurotus ostreatus* via central composite design. Environ Int 31: 191-196.