A note on local antimagic chromatic number of lexicographic product graphs

Gee-Choon Lau¹, Wai-Chee Shiu², K. Premalatha³, Ruixue Zhang⁴, M. Nalliah⁵

¹Faculty of Computer & Mathematical Sciences, Universiti Teknologi MARA (Johor Branch, Segamat Campus), 85000, Malaysia.
geeclau@yahoo.com

²Department of Mathematics, The Chinese University of Hong Kong, Shatin, Hong Kong, China.
weshiu@associate.kbu.edu.hk

³National Centre for Advanced Research in Discrete Mathematics, Kalasalingam Academy of Research and Education, Krishnan Kovil, India.
preamalatha.sep26@gmail.com

⁴School of Mathematics and Statistics, Qingdao University, Qingdao, 266071, China.
rx.zhang87@qdu.edu.cn

⁵Department of Mathematics, School of Advanced Sciences, Vellore Institute of Technology, Vellore-632 014, India.
nalliahklu@gmail.com

Abstract

Let $G = (V, E)$ be a connected simple graph. A bijection $f : E \rightarrow \{1, 2, \ldots, |E|\}$ is called a local antimagic labeling of G if $f^+(u) \neq f^+(v)$ holds for any two adjacent vertices u and v, where $f^+(u) = \sum_{e \in E(u)} f(e)$ and $E(u)$ is the set of edges incident to u. A graph G is called local antimagic if G admits at least a local antimagic labeling. The local antimagic chromatic number, denoted $\chi_{la}(G)$, is the minimum number of induced colors taken over local antimagic labelings of G. Let G and H be two disjoint graphs. The graph $G[H]$ is obtained by the lexicographic product of G and H. In this paper, we obtain sufficient conditions for $\chi_{la}(G[H]) \leq \chi_{la}(G)\chi_{la}(H)$. Consequently, we give examples of G and H such that $\chi_{la}(G[H]) = \chi(G)\chi(H)$, where $\chi(G)$ is the chromatic number of G. We conjecture that (i) there are infinitely many graphs G and H such that $\chi_{la}(G[H]) = \chi_{la}(G)\chi_{la}(H) = \chi(G)\chi(H)$, and (ii) for $k \geq 1$, $\chi_{la}(G[H]) = \chi(G)\chi(H)$ if and only if $\chi(G)\chi(H) = 2\chi(H) + \lfloor \frac{\chi(H)}{2k+1} \rfloor$, where $2k+1$ is the length of a shortest odd cycle in G.

Keywords: lexicographic product; regular; local antimagic chromatic number.

2020 Mathematics Subject Classification: 05C78, 05C69

1 Introduction

Let $G = (V, E)$ be a connected simple graph of order p and size q. A bijection $f : E \rightarrow \{1, 2, \ldots, q\}$ is called a local antimagic labeling of G if $f^+(u) \neq f^+(v)$ holds for any two adjacent vertices u and v, where $f^+(u) = \sum_{e \in E(u)} f(e)$ and $E(u)$ is the set of edges incident to u. Clearly, a local antimagic labeling induces a proper coloring of G. The function f is called a local antimagic t-coloring of G if f induces a proper t-coloring of G, and we say $c(f) = t$. The local antimagic chromatic number of G, denoted by $\chi_{la}(G)$, is the minimum number of $c(f)$, where f takes over all local antimagic labelings of G. Interested readers may refer to [5, 6, 10] for results related to local antimagic chromatic numbers of graphs.

Let G and H be two disjoint graphs. The lexicographic product $G[H]$ of graphs G and H is a graph such that its vertex set is the cartesian product $V(G) \times V(H)$, and any two vertices (u, u') and (v, v') are adjacent in $G[H]$ if and only if either $uv \in E(G)$ or $u = v$ and $u'v' \in E(H)$. In [9], the first two authors studied the exact value of $\chi_{la}(G[O_n])$, where O_n is a null graph of order $n \geq 2$. Motivated by the above result, we investigate the sharp upper bound of $\chi_{la}(G[H])$ for any two disjoint non-null graphs G and H in this paper. We present the sufficient conditions for $\chi_{la}(G[H]) \leq \chi_{la}(G)\chi_{la}(H)$ holding. Further, we conjecture that (i) there are infinitely

¹Corresponding author (ruixuezhang7@163.com)
many graphs G and H with $\chi_{la}(G[H]) = \chi_{la}(G)\chi_{la}(H) = \chi(G)\chi(H)$, where $\chi(G)$ is the chromatic number of G; and (ii) for any positive integer k, $\chi_{la}(G[H]) = \chi(G)\chi(H)$ if and only if $\chi(G)\chi(H) = 2\chi(H) + \lceil \frac{\chi(H)}{k} \rceil$, where $2k + 1$ is the length of the shortest odd cycle in G. We refer to [3] for all undefined notation.

2 Bounds of $\chi_{la}(G[H])$

Before presenting our main results, we introduce some necessary notation and known results which will be used in this section.

Let $[a, b] = \{n \in \mathbb{Z} \mid a \leq n \leq b\}$ and $S \subseteq \mathbb{Z}$. Let S^- and S^+ be a decreasing sequence and an increasing sequence of S, respectively.

Lemma 2.1 ([7] Lemma 2.2). For positive integers q and p, let $S_p(a) = [p(n-1) + 1, pa]$, $1 \leq a \leq q$. Then,

(i) \(S_p(a) \mid 1 \leq a \leq q \) is a partition of \([1, pq]\);

(ii) when $a < b$, every term of $S_p(a)$ is less than that of $S_p(b)$;

(iii) for each $1 \leq i \leq p$, the sum of the i-th term of $S_p^+(a)$ and that of $S_p^-(b)$ is independent of i, where $1 \leq a, b \leq q$;

(iv) for any positive integer k and each $1 \leq i \leq p$, $\sum_{l=1}^{k} (i$-th term of $S_p^+(a_l)) + \sum_{l=1}^{k} (i$-th term of $S_p^-(b_l))$ is independent of i, where $1 \leq a_l, b_l \leq q$.

Note that the proof of Lemma 2.1 in [7] shows that the sum of i-term of $S_p^+(a)$ and that of $S_p^-(b)$ is $p(a + b - 1) + 1$. According to the definitions of $S_p^+(a)$ and $S_p^-(b)$, we shall write the sequence $S_p^+(a)$ and $S_p^-(a)$ as column vectors in this paper. Now we are ready to present our first main result.

Theorem 2.2. Suppose H admits a local antimagic t-coloring f that satisfies the following conditions:

(a) for each vertex, the number of even incident edge labels equals the number of odd incident edge labels under f;

(b) when $f^+(u) = f^+(v)$, $\deg(u) = \deg(v)$;

(c) when $f^+(u) \neq f^+(v)$, $p f^+(u) + \frac{1}{2} \deg(u)(p - 1) \neq p f^+(v) - \frac{1}{2} \deg(v)(p - 1)$ holds for a fixed integer p.

Then $\chi_{la}(pH) \leq t$.

Proof. Let $V(H) = \{x_1, \ldots, x_n\}$ and L be the labeling matrix of H according to f (for definition of labeling matrix, please see [11]). Now we define a guide matrix M by adding a ‘+’ sign to all odd entries and a ‘−’ sign to all even entries in L. The concept of guide matrix was introduced in [7].

We define p matrices L_1, \ldots, L_p as follows. For each $1 \leq i \leq p$, the (j, k)-entry of L_i is the i-th term of $S_p^+(a)$ (resp. $S_p^-(a)$) if the corresponding (j, k)-entry of M is $+a$ (resp. $-a$), where $1 \leq a \leq |E(H)|$.

From the condition (a), for each row of L, the number of odd entries equals that of even entries. Thus, let a_1, \ldots, a_s denote the odd numerical entries of the j-th row of L and b_1, \ldots, b_s denote the even numerical entries of the j-th row of L, where s is a positive integer. Now,

$$r_j(L_i) = \sum_{l=1}^{s} [i$-th term of $S_p^+(a_l)] + \sum_{l=1}^{s} [i$-th term of $S_p^-(b_l)]$$.
By Lemma \(2.1\) (iv), \(r_j(L_i)\) is constant for a fixed \(j\). Actually, it is \(p \sum_{l=1}^{s} (a_l + b_l) - ps + s = pr_j(L) - k(p - 1) = pf^+(x_j) - \frac{1}{2} \deg(x_j)(p - 1)\). By conditions (a) and (b), the diagonal block matrix

\[
\begin{pmatrix}
L_1 & \star & \cdots & \star \\
\star & L_2 & \cdots & \star \\
\vdots & \vdots & \ddots & \vdots \\
\star & \star & \cdots & L_p
\end{pmatrix}
\]

is a local antimagic labeling of \(pH\). Thus \(\chi_{la}(pH) \leq t\). \(\square\)

It is known that \(\chi_{la}(K_{1,2n}) = 2n + 1\) and \(\chi_{la}(mK_{1,2n}) = 2nm + 1\) \([2\ Corollary 3]\). Clearly, the upper bound stated in Theorem \(2.2\) is not sharp. From Theorem \(2.2\) we obtain the following result immediately.

Corollary 2.3. If \(H\) is an \(r\)-regular graph \((r \geq 2)\) with a local antimagic \(t\)-coloring \(f\) satisfying the condition (a) of Theorem \(2.2\) then \(\chi_{la}(pH) \leq t\) holds for any positive integer \(p\).

Theorem 2.4. Let \(G\) be a graph of order \(p\) admitting a local antimagic \(\chi_{la}(G)\)-coloring \(g\) and \(H\) be a graph of order \(n\) admitting a local antimagic \(\chi_{la}(H)\)-coloring \(h\). Suppose \(h\) satisfies the following conditions:

(i) For each vertex, the number of even incident edge labels equals the number of odd incident edge labels under \(h\);

(ii) when \(h^+(u) = h^+(v)\), \(\deg_H(u) = \deg_H(v)\);

(iii) when \(h^+(u) \neq h^+(v)\), \(ph^+(u) - \frac{1}{2} \deg_H(u)(p - 1) \neq ph^+(v) - \frac{1}{2} \deg_H(v)(p - 1)\).

Moreover, \(g\) satisfies the following conditions:

(iv) when \(g^+(u) = g^+(v)\), \(\deg_G(u) = \deg_G(v)\), and

(v) when \(g^+(u) \neq g^+(v)\), \(g^+(u)n^3 - \frac{(n^3 - n)\deg_G(u)}{2} \neq g^+(v)n^3 - \frac{(n^3 - n)\deg_G(v)}{2}\).

Then \(\chi_{la}(G[H]) \leq \chi_{la}(G)\chi_{la}(H)\).

Proof. Let \(q(G)\) and \(q(H)\) denote the sizes of \(G\) and \(H\) respectively. Clearly, \(G[H]\) is a graph of order \(pn\) and size \(pq(H) + q(G)n^2\). Suppose that \(\{u_1, \ldots, u_p\}\) and \(\{x_1, \ldots, x_n\}\) are the vertex lists of \(G\) and \(H\) respectively. According to these vertex lists, we define that \(A_G\) and \(A_H\) are the adjacency matrices of \(G\) and \(H\) respectively. Thus the adjacency matrix of \(G[H]\) can be expressed as

\[A_G \otimes J_n + I_p \otimes A_H,\]

where \(J_n\) is an \(n \times n\) matrix whose entries are all 1, \(I_p\) is an identity matrix of order \(p\), and \(A_G \otimes J_n\) is the Kronecker product of \(A_G\) and \(J_n\). Note that \(A_G \otimes J_n\) is the adjacency matrix of \(G[O_n]\) and \(I_p \otimes A_H\) is the adjacency matrix of \(O_p[H]\), where \(O_n\) and \(O_p\) are null graphs of orders \(n\) and \(p\). Therefore, the diagonal blocks of \(A_G \otimes J_n\) are zero matrices and only the diagonal blocks of \(I_p \otimes A_H\) are non-zero matrices.

Now we shall label the edges of \(O_p[H]\) and \(G[O_n]\) separately. According to the definition, \(O_p[H] \cong pH\). Since \(H \in \mathcal{H}\), by Theorem \(2.2\) \(pH\) has a local antimagic \(\chi_{la}(H)\)-coloring, say \(\phi\), by using integers in \([1, pq(H)]\) such that for each vertex \((u_i, x_j)\) in \(O_p[H]\), \(\phi^+(u_i, x_j)\) is independent of \(i\), where \(1 \leq i \leq p\). The labeling matrix of \(\phi\) is denoted by \(\mathcal{M}_1\).

Next we shall label \(G[O_n]\) by integers in \([1, q(G)n^2]\). This labeling was constructed in the proof of \(2.1\) Theorem 2.1. For completeness, we list the outline of the construction.

Let \(M_g\) be the labeling matrix of \(G\) corresponding to \(g\). Suppose \(\Omega\) is a magic square of order \(n\). Let \(\Omega_i = \Omega + (i - 1)n^2J_n\), where \(1 \leq i \leq q(G)\) and \(\psi_0\) be the labeling of \(G[O_n]\) such that its labeling matrix \(\mathcal{M}\) is defined by replacing each entry of \(M_G\) with an \(n \times n\) matrix as follows:

3
(1) replace \(\ast \) by \(\star \) which is an \(n \times n \) matrix whose entries are \(\ast \);

(2) replace \(i \) by \(\Omega_i \), if \(i \) lies in the upper triangular part of \(M_i \);

(3) replace \(i \) by \(\Omega_i^T \), if \(i \) lies in the lower triangular part of \(M_i \), where \(\Omega_i^T \) is the transpose of \(\Omega_i \).

For each vertex \((u_i, x_j) \in V(G[O_n]) \), the row sum of \(\mathcal{M} \) corresponding to the vertex \((u_i, x_j) \) is \(\psi_0^+(u_i, x_j) = g^+(u_i)M_i \), which is independent of \(j \). By condition (i), \(\psi_0 \) is a local antimagic labeling of \(G(O_n) \). According to condition (v), there are at most \(\chi(G) \) distinct row sums of \(\mathcal{M} \). Let \(\mathcal{M}_2 \) be the matrix obtained from \(\mathcal{M} \) by adding all numerical entries with \(pq(H) \) and \(\psi \) be the corresponding labeling. Then, \(\psi^+(u_i, x_j) = \psi_0^+(u_i, x_j) + n pq(H) \), which is independent of \(j \).

Therefore, \(\mathcal{M}_1 + \mathcal{M}_2 \) is a labeling matrix that corresponds to a local antimagic labeling of \(G[H] \), where \(\ast \) is treated as 0. Hence \(\chi_{la}(G[H]) \leq \chi_{la}(G)\chi_{la}(H) \).

The following is an example of Theorem 2.4.

Example 2.1. Let \(G \) be the one point union of two 4-cycles and \(H \) be the one point union of two 3-cycles. Figure 1 show the local antimagic 3-colorings of \(G \) and \(H \).

![Figure 1: Local antimagic 3-colorings of graphs G and H](image)

Note that \(\chi_{la}(G) = \chi_{la}(H) = 3 \). It is easy to check that the above local antimagic 3-colorings of \(G \) and \(H \) satisfy the conditions of Theorem 2.4 respectively. Then, the labeling matrices of \(G \) and \(H \) are shown below:

\[
M_G = \begin{pmatrix}
8 & 1 \\
2 & 7 \\
3 & 6 \\
1 & 4 \\
\end{pmatrix}, \quad M_H = \begin{pmatrix}
6 & 1 \\
5 & 2 \\
3 & 4 \\
\end{pmatrix}.
\]

Let
\[
L_1 = \begin{pmatrix}
42 & 1 \\
29 & 14 \\
2 & 28 \\
1 & 25 \\
\end{pmatrix}, \quad L_2 = \begin{pmatrix}
41 & 2 \\
30 & 13 \\
2 & 27 \\
1 & 23 \\
\end{pmatrix}, \quad L_3 = \begin{pmatrix}
40 & 3 \\
31 & 12 \\
3 & 24 \\
1 & 17 \\
\end{pmatrix},
\]
\[
L_4 = \begin{pmatrix}
39 & 4 \\
32 & 11 \\
3 & 25 \\
4 & 18 \\
\end{pmatrix}, \quad L_5 = \begin{pmatrix}
38 & 5 \\
33 & 10 \\
3 & 24 \\
4 & 19 \\
\end{pmatrix}, \quad L_6 = \begin{pmatrix}
37 & 6 \\
34 & 9 \\
3 & 23 \\
4 & 20 \\
\end{pmatrix},
\]
\[
L_7 = \begin{pmatrix}
36 & 7 \\
35 & 8 \\
3 & 21 \\
7 & 22 \\
\end{pmatrix}.
\]
Obviously, for each 1 ≤ i ≤ 7, the row sums of L_i are 43, 43, 57, 57, 58 respectively. Let Ω be a magic square of order 5 with row sum 65 and $\Omega_i = \Omega + 25(i - 1)J_5$, where 1 ≤ i ≤ 8. For each 1 ≤ i ≤ 8, let $\Psi_i = \Omega_i + 42J_5$. Then, the labeling matrix of $G[H]$ is

$$
\begin{pmatrix}
L_1 & \star & \star & \star & \star & \Psi_8 & \star & \Psi_1 \\
\star & L_2 & \star & \star & \star & \Psi_2 & \star & \Psi_7 \\
\star & \star & L_3 & \star & \star & \star & \Psi_6 & \Psi_3 \\
\star & \star & \star & L_4 & \star & \star & \Psi_4 & \Psi_5 \\
\Psi_5^T & \Psi_2^T & \star & \star & \star & \star & \Psi_7^T & \Psi_1^T \\
\star & \star \\
\Psi_5^T & \Psi_2^T & \Psi_6^T & \Psi_4^T & \Psi_7^T & \Psi_1^T & \Psi_3^T & \star & \star & L_7
\end{pmatrix}
$$

By calculating the row sums of the above matrix, we obtain that the distinct row sums are 1468, 1482, 1483, 1593, 1607, 1608, 2643, 2657, 2658. Thus, $\chi_{la}(G[H]) \leq 9$.

In [4], N. Ćižek and S. Klavžar gave the lower bound of chromatic number of the lexicographic product as follows.

Corollary 2.5 ([4, Corollary 3]). Let G be a nonbipartite graph. Then for any graph H, $\chi(G[H]) \geq 2\chi(H) + \lceil \frac{\chi(H)}{k} \rceil$, where $k \geq 1$ and $2k + 1$ is the length of a shortest odd cycle in G.

Combining Theorem 2.4 and Corollary 2.5, we obtain the following results.

Corollary 2.6. Suppose G and H are graphs satisfying the conditions listed in Theorem 2.4. If the length of a shortest odd cycle in G is $2k + 1$, then $2\chi(H) + \lceil \frac{\chi(H)}{k} \rceil \leq \chi(G[H]) \leq \chi_{la}(G[H]) \leq \chi_{la}(G)\chi_{la}(H)$. In particular, if C_3 is a subgraph of G, then $3\chi(H) \leq \chi_{la}(G[H]) \leq \chi_{la}(G)\chi_{la}(H)$.

Proof. $\chi(G[H]) \leq \chi_{la}(G[H])$ is trivial. The lower bound follows from Corollary 2.5 and the upper bound follows from Theorem 2.4. \qed

Corollary 2.7. Let G and H be regular graphs and H admit a local antimagic $\chi_{la}(H)$-coloring h. Suppose for each vertex of H, the number of even incident edge labels equals the number of odd incident edge labels under h. If the length of a shortest odd cycle in G is $2k + 1$, then $2\chi(H) + \lceil \frac{\chi(H)}{k} \rceil \leq \chi(G[H]) \leq \chi_{la}(G[H]) \leq \chi_{la}(G)\chi_{la}(H)$. In particular, if C_3 is a subgraph of G, then $3\chi(H) \leq \chi_{la}(G[H]) \leq \chi_{la}(G)\chi_{la}(H)$.

By applying Corollary 2.7, we can obtain $\chi_{la}(G[H])$ for some graphs G and H. An example is shown in Example 2.2.

Example 2.2. Let $G = C_3 \times K_2$ and H be the octahedral graph. Figure 2 presents their local antimagic 3-colorings which are shown in [8].

![Figure 2: Local antimagic 3-colorings of graphs G and H](image-url)
It is easy to verify that G and H satisfy the conditions of Corollary 2.7, which implies that $3\chi(H) \leq \chi_{la}(G[H]) \leq \chi_{la}(G)\chi_{la}(H)$. Since $\chi_{la}(G) = \chi_{la}(H) = 3$, $\chi_{la}(G[H]) = 9$.

In [8, Theorem 3.3], the first two authors proved that $\chi_{la}(C_{2m} \vee O_{2n}) = 3$ for $m \geq 2, n \geq 1$, where $C_{2m} \vee O_{2n}$ is the join of graphs C_{2m} and O_{2n}. In the following, we give another local antimagic 3-coloring of $C_{2m} \vee O_{2n}$ that satisfies the conditions (i) and (ii) of Theorem 2.4.

Theorem 2.8. For $m \geq 2$ and $n \geq 1$, there is a local antimagic 3-coloring of $C_{2m} \vee O_{2n}$ satisfying conditions (i) and (ii) of Theorem 2.4.

Proof. Let $V(C_{2m}) = \{u_i \mid 1 \leq i \leq 2m\}$ and $V(O_{2n}) = \{v_j \mid 1 \leq j \leq 2n\}$. We separate $C_{2m} \vee O_{2n}$ into two edge-disjoint graphs, C_{2m} and $O_{2m} \vee O_{2n}$, where $V(O_{2m}) = V(C_{2m})$.

Firstly, define a labeling for C_{2m}. Let $f: V(C_{2m}) \to [1, 2m]$ such that $f(u_i u_{i+1}) = i$, where $1 \leq i \leq 2m$ and $u_{2m+1} = u_1$.

Thus, $f^+(u_1) = 2m + 1$, $f^+(u_i) = 2i - 1$ for $2 \leq i \leq 2m$.

Next, we define a labeling g for $O_{2m} \vee O_{2n} \cong K_{2m, 2n}$. The labeling matrix of g is $\begin{pmatrix} \star & B \\ B^T & \star \end{pmatrix}$ under the vertex lists $V(O_{2m}) = \{u_1, u_3, \ldots, u_{2m-1}, u_2, u_4, \ldots, u_{2m}\}$ and $V(O_{2n}) = \{v_1, v_2, \ldots, v_{2n}\}$. So we only need to fill the integers in $[2m + 1, 2m + 4m]$ into the matrix B.

Let M be a guide matrix as follows:

$$
\begin{pmatrix}
-2 & -3 & -2 & -1 & 2 & -2n + 1 & -2n + 4 & -2n + 2 & -2n + 3 & -5 \\
2n + 1 & 2n & (2n + 1) & (2n - 1) & (2n) & (2n - 2) & (2n - 3) & \cdots & (2n - 3) & 2n - 2
\end{pmatrix}
$$

We replace each entry of M to a column vector according to the rules:

1. replace $-a$ to $2S_m^m(a) - J_{m,1}$; replace $+a$ to $2S_m^m(a) - J_{m,1}$, where $J_{m,1}$ is an $m \times 1$ matrix with all entries 1;
2. replace $-a$ to $2S_m^m(a)$; replace $+a$ to $2S_m^m(a)$.

Let $\begin{pmatrix} B_1 \\ B_2 \end{pmatrix}$ be the resulting matrix, where B_1 and B_2 are $m \times 2n$ matrices. The row sums of B_1 in column matrix is

$$
(2S_m^m(2) - J_{m,1}) + (2S_m^m(3) - J_{m,1}) + 2S_m^m(2) + 2S_m^m(2n - 1) + \sum_{i=1}^{n-2} 2S_m^m(2i + 1) + \sum_{j=2}^{n-1} 2S_m^m(2j + 1) - J_{m,1}
$$

$$
= 4S_m^m(2n - 1) + 2[S_m^m(2) + S_m^m(2)] + 2 \sum_{i=1}^{n-2} [S_m^m(2i + 1) + S_m^m(2i + 1)] - nJ_{m,1}
$$

$$
= 4S_m^m(2n - 1) + 2(3m + 1)J_{m,1} + 2 \sum_{i=1}^{n-2} [m(4i + 1) + 1]J_{m,1} - nJ_{m,1}
$$

$$
= 4S_m^m(2n - 1) + [4mn^2 - 10mn + 10m + n - 2]J_{m,1} = A_1.
$$

Clearly, the entries of the column matrix A_1 form a decreasing sequence with common difference 4. Now the first column of B_1 is the vector $2S_m^m(2) - J_{m,1}$. We shift each entry of this vector downward to 1 and move the last entry of this vector to the top, i.e., add the entries by 2 except the $(1, 1)$-entry and subtract the $(1, 1)$-entry by 2$(m - 1)$. Let this new matrix be B_1'. Now, the first column of B_1' has entries $2m + 1, 4m - 1, 4m - 3, \ldots, 2m + 3$ so that the second entry up to the last entry of the first column of B_1' form a decreasing sequence with common difference 2 and the difference between the first entry and second entry is 2 - 2m.

Similarly the row sums of B_2 in column matrix is
\[
4S_m^-(2n + 1) + 4S_m^-(2n) + 4S_m^+(4) + 2 \sum_{i=3}^{n-1} [S_m^+(2i) + S_m^-(2i)] - nJ_{m,1}
\]
\[
= 4S_m^-(2n + 1) + (4m(2n + 3) + 1)J_{m,1} + [2m(n - 3)(2n + 3) + 2(n - 3)]J_{m,1} - nJ_{m,1}
\]
\[
= 4S_m^-(2n + 1) + [4mn^2 + 2mn - 6m + n - 2]J_{m,1} = A_2.
\]

It is clear that the entries of the column matrix \(A_2\) form a decreasing sequence with common difference 4.

Combining the labelings \(f\) and \(g\), we have a labeling \(\phi\) for the whole graph \(C_{2m} \cup O_{2n}\). One may check that \(\phi^+(u_{2j-1}) = f^+(u_{2j-1}) + r_j(B_1) = 4mn^2 - 2mn + 6m + n + 1\) for each \(1 \leq j \leq m\); and \(\phi^+(u_{2i}) = f^+(u_{2i}) + r_i(B_2) = 4mn^2 + 10mn - 2m + n + 1\) for each \(1 \leq i \leq m\). Hence \(\phi^+(u_{2i}) > \phi^+(u_{2j-1})\) for \(1 \leq i, j \leq m\).

Clearly, the column sum of \((B'_1 \ B'_2)\) is \((4mn + 4m + 1)m\). So \(\phi^+(v_i) = (4mn + 4m + 1)m\).

\[
\phi^+(u_{2j-1}) - \phi^+(v_i) = 4mn^2 - 4m^2n - 4m^2 - 2mn + 5m + n + 1
\]
\[
= 4mn(m - m - 1) - 4m^2 + 2mn + 5m + n + 1. \tag{2.1}
\]

If \(n \geq m + 2\), then \(\phi^+(u_{2i}) - \phi^+(v_i) \geq \phi^+(u_{2j-1}) - \phi^+(v_i) \geq 4mn - 4m^2 + 2mn + 5m + n + 1 > 0\).

\[
\phi^+(v_i) - \phi^+(u_{2i}) = 4m^2n - 4mn^2 + 4m^2 - 10mn + 3m - n - 1
\]
\[
= 4mn(m - n - 2) + 4m^2 - 2mn + 3m - n - 1. \tag{2.2}
\]

If \(m \geq n + 2\), then \(\phi^+(v_i) - \phi^+(u_{2j-1}) > \phi^+(v_i) - \phi^+(u_{2i}) > 0\).

1) If \(n = m + 1\), then \(\phi^+(u_{2j-1}) - \phi^+(v_i) = -2m^2 + 8m + 2 \neq 0\) (since the discriminant is not a prefect square) and \(\phi^+(u_{2i}) - \phi^+(v_i) = 10m^2 + 12m + 2 > 0\).

2) If \(n = n\), then \(\phi^+(u_{2j-1}) - \phi^+(v_i) = -6m^2 + 6m + 1 > 0\) and \(\phi^+(u_{2i}) - \phi^+(v_i) = 6m^2 - 2m + 1 > 0\).

3) If \(n = m - 1\), then \(\phi^+(u_{2j-1}) - \phi^+(v_i) = -10m^2 + 12m < 0\), but \(\phi^+(u_{2i}) - \phi^+(v_i) = 2m^2 - 8m \neq 0\) when \(m \\neq 4\). So, for \(n = m - 1 = 3\), we have to find another labeling for \(C_8 \cup O_6\).

Label the edges of \(C_8\) by 1, 3, 2, 5, 4, 7, 6 in natural order. Let this labeling be \(f\). So the induced vertex of \(u_1, u_2, \ldots, u_8\) are 7, 9, 11, 5, 7, 9, 11, 13.

We start from a \(8 \times 6\) magic rectangle \(\Omega\) (shown below). Add each entry by 8 and swap some entries within the same column (indicated in italic). We have

\[
\Omega = \begin{pmatrix}
1 & 44 & 9 & 36 & 29 & 28 \\
2 & 43 & 10 & 35 & 30 & 27 \\
3 & 42 & 11 & 34 & 31 & 26 \\
4 & 41 & 12 & 33 & 32 & 25 \\
45 & 8 & 37 & 16 & 17 & 24 \\
46 & 7 & 38 & 15 & 18 & 23 \\
47 & 6 & 39 & 14 & 19 & 22 \\
48 & 5 & 40 & 13 & 20 & 21 \\
\end{pmatrix} \quad \rightarrow \quad \begin{pmatrix}
7 & 9 & 52 & 17 & 44 & 37 & 36 \\
11 & 10 & 51 & 18 & 43 & 38 & 31 \\
7 & 11 & 50 & 19 & 42 & 39 & 34 \\
11 & 12 & 49 & 20 & 41 & 40 & 29 \\
9 & 53 & 16 & 45 & 24 & 27 & 32 \\
9 & 54 & 15 & 46 & 23 & 26 & 33 \\
13 & 55 & 14 & 47 & 22 & 25 & 30 \\
5 & 56 & 13 & 48 & 21 & 28 & 35 \\
\end{pmatrix} = 202
\]

This matrix forms a labeling matrix of a labeling \(g\) of \(K_{8,6}\) under the vertex list \(\{u_1, u_3, u_5, u_7, u_2, u_6, u_8, u_4\}\) of \(C_8\). The column in front of the matrix is the corresponding induced vertex labels under \(f\) on \(C_8\), and the column behind of the matrix is the induced vertex labels of the labeling \(\phi\) for \(C_8 \cup O_6\). Thus \(\phi^+(u_{2i-1}) = 202, \phi^+(u_{2i}) = 206\) and \(\phi^+(v_j) = 260\) for \(1 \leq i \leq 4\) and \(1 \leq j \leq 6\).

Clearly all labels are used. So \(\phi\) is a local antimagic 3-coloring for \(C_{2m} \cup O_{2n}\). Moreover, the number of even incident edge labels equals the number of odd incident edge labels for each vertex. Hence \(\phi\) satisfies condition (i) and (ii) of Theorem 2.4.
Corollary 2.9. If $G = C_3 \times K_2$ and $H = C_{2m} \lor O_{2n}$, $m \geq 2$, $n \geq 1$, then $\chi_{la}(G[H]) = 9$.

Proof. Keep all notation defined in the proof of Theorem 2.3. Now $\deg_H(u_i) = 2n + 2$, $\deg_H(v_i) = 2m$ and $p = 6$. By Theorems 2.4 and 2.8, it suffices to check condition (iii) of Theorem 2.4, i.e., $6[\phi^+(u_1) - \phi^+(v_1)] - 5(n + 1 - m) \neq 0$ and $6[\phi^+(v_1) - \phi^+(u_2)] - 5(m - n - 1) \neq 0$.

By (2.1), we have
\[
6[4mn(n - m - 1) - 4m^2 + 2mn + 5m + n + 1] - 5(n + 1 - m)
= -24m^2 + 24mn^2 - 24m^2n - 12mn + 35n + m + 1
= 24mn(n - m) - 24m(m - 1) - 12mn + 11m + n + 1. \tag{2.3}
\]

Clearly (2.3) is a perfect square. When $n \geq m + 2$, (2.3) $\geq 36mn - 24m^2 + 35m + n + 1 > 0$. When $n = m + 1$, (2.3) $= 12mn - 24m^2 + 35m + n + 1 = -12m^2 + 48m + 2 \neq 0$ since the discriminant is 2400 which is not a perfect square.

By (2.2), we have
\[
6[4mn(m - n - 2) + 4m^2 - 2mn + 3m - n - 1] - 5(m - n - 1)
= 4m^2 + 24m^2n - 24mn^2 - 60mn + 13m - n - 1
= 24mn(m - n) - 12m(m - n) + 12m^2 + 13m - n - 1. \tag{2.4}
\]

Clearly (2.4) > 0 for $m \geq n + 2$. When $m \leq n$, (2.4) $\leq -48mn + 12m + 13m - n - 1 = 12m(m - 4n + 1)m - n - 1 < 0$. When $m = n + 1$, then H is regular so condition (iii) holds. The proof is complete.

Example 2.3. Let $V(C_6) = \{u_1, u_3, u_5, u_2, u_4, u_6\}$ and $V(O_8) = \{v_j \mid 1 \leq j \leq 8\}$ be the vertex lists of C_6 and O_8. According to the proof of Theorem 2.4, we label the edges of C_6 by 1 to 6 in natural order. So the induced vertex labels are 7, 3, 5, 7, 9, 11. Then

G	7	17	8	42	14	41	26	29	191
5	11	15	10	40	16	39	28	27	191
9	9	13	12	38	18	37	30	25	191
3	54	48	53	19	47	20	35	32	311
7	52	46	51	21	45	22	33	34	311
11	50	44	49	23	43	24	31	36	311

The column in front of the matrix is the corresponding induced vertex labels under χ_{la}, and the column behind of the matrix is the induced vertex labels of the labeling ϕ for $C_6 \lor O_8$. One may check that the column sum of the matrix is 183, which is $\phi^+(v_j)$ for all j.

Corollary 2.9 shows that there exist infinitely many graphs H such that $\chi_{la}(G[H]) = \chi_{la}(G)\chi_{la}(H) = \chi(G)\chi(H)$. We end this note with the following conjectures.

Conjecture 2.1. There exist infinitely many graphs G and H respectively such that $\chi_{la}(G[H]) = \chi_{la}(G)\chi_{la}(H) = \chi(G)\chi(H)$.

Conjecture 2.2. For $k \geq 1$ and graph G and H, $\chi_{la}(G[H]) = \chi(G)\chi(H)$ if and only if $\chi(G)\chi(H) = 2\chi(H) + \left\lceil \frac{\chi(H)}{2k} \right\rceil$, where $2k + 1$ is the length of a shortest odd cycle in G.

References

[1] S. Arumugam, K. Premalatha, M. Bacă and A. Semaničová-Feňovčíková, Local antimagic vertex coloring of a graph, Graphs Comb. 33, 275–285 (2017).

[2] M. Bacă, A. Semaničová-Feňovčíková and T.M. Wang, Local antimagic chromatic number for copies of graphs, Mathematics, 9, 1230 (2021).

[3] J.A. Bondy and U.S.R. Murty, Graph theory with applications, New York, MacMillan, 1976.
[4] N. Čižek and S. Klavžar, On the chromatic number of the lexicographic product and the Cartesian sum of graphs, *Discrete Math.*, **134**, 17–24 (1994).

[5] G.C. Lau, H.K. Ng and W.C. Shiu, Affirmative solutions on local antimagic chromatic number, *Graphs Combin.*, **36**(5), 1337–1354 (2020).

[6] G.C. Lau, H.K. Ng and W.C. Shiu, On local antimagic chromatic number of cycle-related join graphs, *Discuss. Math. Graph Theory*, **41**, 133–152 (2021).

[7] G.C. Lau and W.C. Shiu, On local antimagic total labeling of amalgamation graphs, (2022) [arXiv:2203.06337v1](https://arxiv.org/abs/2203.06337).

[8] G.C. Lau and W.C. Shiu, On join product and local antimagic chromatic number of regular graphs, (2022) [arXiv:2203.06394v1](https://arxiv.org/abs/2203.06394).

[9] G.C. Lau and W.C. Shiu, On local antimagic chromatic number of lexicographic product graphs, (2022) [arXiv:2203.16359](https://arxiv.org/abs/2203.16359).

[10] G.C. Lau, W.C. Shiu and H.K. Ng, On local antimagic chromatic number of graphs with cut-vertices, to appear in *Iran. J. Math. Sci. Inform.*, (2022) [arXiv:1805.04801](https://arxiv.org/abs/1805.04801).

[11] W.C. Shiu, P.C.B. Lam and S-M. Lee, Edge-magicness of the composition of a cycle with a null graph, *Congr. Numer.*, **132**, 9–18 (1998).