tumor in the brain. Exclusion of these cancer patients from clinical trials is a major cause of their limited therapeutic options. We report a novel drug-screening platform (METPlatform) based on organotypic cultures which allows identifying effective anti-metastasis agents in the presence of the organ microenvironment. By applying this approach to brain metastasis, we identified heat shock protein 90 (HSP90) as a promising therapeutic target for CNS dissemination. DEBIO-0932, a blood-brain barrier permeable HSP90 inhibitor, shows high potential against mouse and human brain metastases from different primary origin and oncoprogenic profile at clinically relevant stages of the disease, including a novel model of local relapse after neurosurgery. Furthermore, in situ proteomic analysis of brain metastases treated with the chaperone inhibitor revealed non-canonical clients of HSP90 as potential novelulators of onc gene metastasis and actionable mechanisms of resistance driven by autophagy. Combined therapy using HSP90 and autophagy inhibitors showed synergistic effects compared to sublethal concentrations of each monotherapy, demonstrating the potential of METPlatform to design and test rationale combination therapies to target metastases more effectively. Finally, we have exploited METPlatform as “avatars” to show that brain tumor PDOCs predict response of the corresponding patient to standard of care, thus proving the potential of METPlatform for improving personalized care in cancer. In conclusion, our work validates METPlatform as a potent resource for metastasis research integrating drug-screening and unbiased omic approaches that is fully compatible with human samples and questions the rationale of excluding patients with brain metastasis from clinical trials. We envision that METPlatform will be established as a clinically relevant strategy to personalize the management of metastatic disease in the brain and elsewhere.

BSC-03. ADAPTATION OF COLORRECTAL CANCER CELLS TO THE BRAIN MICROENVIRONMENT: THE ROLE OF IRS2
Inbal Greenberg1,2, Anat Klein1, Rachel Grossman1, Ethan Sokol1, Eilam Yeinas1, Paula Ohel2, Ronit Satchi-Fainaro2, Bertrand Lang2, Hadas Reuenstein1, Tami Rubner1,2, Ido Wold1,2, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel, Tel Aviv University, Tel Aviv, Israel, 1Massachusetts Institute of Technology, MA, USA, 2Purple Biotech Ltd., Rehovot, Israel, 3TyrNovo Ltd., Rehovot, Israel, 4TyrNovo Ltd., Rehovot, Israel

Colorectal cancer (CRC) reflects the fourth most frequent etiology of brain metastasis (BM). Yet, molecular mechanisms supporting it are unknown. We aimed to explore drivers enabling adaptation of CRC cells to the brain and decipher mechanisms facilitating the process. We analyzed the FoundationOne database, which contains genomic alterations data of cancer-related genes in over 16,000 human CRC primary and metastasis samples. Increased prevalence of IRS2 gene amplification was observed in 13% of BM, compared to only 3% of primary tumors or other metastatic sites. IRS2 is a cytoplasmic adaptor mediating effects of insulin and IGF-1 receptors and is involved in more aggressive behavior of different cancer types. In agreement with the genomic data, immunohistochemistry of human clinical samples showed increased expression of IRS2 protein in BM. We constructed an in vitro system mimicking the brain microenvironment using cultured human astrocytes or their conditioned media. Under these conditions, IRS2-overexpressed CRC cells survived better and formed larger 3D spheres. IRS2-silenced CRC cells showed a mirror image. Moreover, in an intracranial CRC BM mouse model, IRS2-overexpressed cells generated larger brain lesions, while silencing IRS2 dramatically decreased tumor outgrowth and extended survival. Interestingly, transcriptomic analysis revealed enrichment of oxidative phosphorylation (OXPHOS) and Wnt/β-catenin pathways by IRS2. Indeed, IRS2-expressing cells showed increased mitochondrial activity and glycolysis-independent viability. Furthermore, IRS2-expressing cells had increased β-catenin transcriptional activity. Interestingly, β-catenin or IRS2 inhibition (using NT219) in IRS2-expressing cells decreased their viability, β-catenin transcriptional activity, and OXPHOS gene expression, suggesting involvement of IRS2 in modulating OXPHOS through β-catenin. IRS2 is known to confer S-FU resistance; consequently, we showed that combination of S-FU and NT219 worked in synergy, inhibited the formation of BM, and extended animal survival. These data reveal the unique genomic profile of CRC BM and suggest IRS2 inhibition as a novel target for treatment of these patients.

BSC-04. TUMOR-EDUCATED PLATELETS PROMOTE BREAST CANCER BRAIN METASTASIS AND THERAPEUTIC RESISTANCE
Elie Tabet, Balchos Tannous; Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA

Platelets have been shown to play an important role in systemic and local tumor modulation. Once encountered by tumor cells, platelets are educated to collect and release pro-tumor factors in the tumor/micro-
environment, serving as a guiding partner for metastasis. This educational program, however, is not well understood. Here, we show that tumor-educated platelets (TEPs) acquire tumor promoting functions and drive breast metastasis, creating new therapeutic sites including TEPs as a novel therapeutic target as well as therapeutic resistance. Importantly, TEPs promoted an increased pro-tumorigenic effect on metastatic breast cancer, compared to their wild-type counterpart, leading to epithelial to mesenchymal transition through CX3CR1 signaling axis with CHP (co-expression) transcription factor. Our findings point to the important role of TEPs in breast cancer brain metastasis and therapeutic resistance, which could have a major implication in other tumor types, endorsing TEPs as a potential therapeutic target.

BSCI-05. ABL2-HSF1-E2F SIGNALING AXIS PROMOTES LUNG ADENOCARCINOMA BRAIN METASTASIS

Marie Pendergast, Jacob Hoj, Benjamin Mayrov; Duke University School of Medicine, Durham, NC, USA

Brain metastases are the most common intracranial tumors in adults and are associated with increased patient morbidity and mortality. Limited therapeutic options are currently available for the treatment of brain metastasis. We have identified an actionable signaling pathway utilized by metastatic tumor cells whereby the transcriptional regulator Heat Shock Factor 1 (HSF1) drives a transcriptional program, divergent from its canonical role as the master regulator of the heat shock response, leading to enhanced expression of a subset of E2F transcription factor family gene targets. We show how HSF1 protein is required for survival and outgrowth by metastatic lung cancer cells in the brain parenchyma. Unexpectedly, we identified the ABL2 tyrosine kinase as an upstream regulator of HSF1 protein expression, and showed that the Src-homology 3 (SH3) domain of ABL2 directly interacts with HSF1 protein at a non-canonical, proline-independent SH3 interaction motif. Importantly, knockdown of ABL2 impairs expression of HSF1 protein and HSF1-E2F transcriptional gene targets. Notably, we found that pharmacologic inhibition of the ABL kinase axis using selective ABL allostERIC inhibitors, but not ATP-competitive inhibitors, ablates the physical interaction between ABL2 and HSF1, leading to markedly decreased expression of HSF1, E2F1 and E2F8 proteins in brain-metastatic lung cancer cells, and depletion of HSF1-E2F transcriptional targets. These findings highlight potential differences affecting intra- and intercellular protein-protein interactions induced by allostERIC versus ATP-competitive kinase inhibitors that have important therapeutic implications. Importantly, the targetable nature of the ABL2-HSF1-E2F signaling network identifies ABL allostERIC inhibitors as a potentially effective therapy for the treatment of metastatic lung cancers characterized by high expression of HSF1.

BSCI-06. PHAGE DISPLAY BIOPANNING IDENTIFIES AMOT REGULATING CELL MORPHOTY IN BRAIN METASTASIS-INITIATING CELLS

Chunhua Sui,1,2*, Marine Potier,1 JongMyung Kim,1 James Liu,1; 1H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA; 2Tianjin Medical University Cancer Institute and Hospital, Tianjin, China

OBJECTIVE: Metastatic brain tumors (MBTs) are the most common type of cancer brain tumor. The dysfunction of MBTs from their parental tumors, the effective therapies for primary tumors often are not working in brain metastases. Even more new intracranial lesions were developed though the primary lesion was controlled. The occurrence of brain metastasis-initiating cells (BMICs) suggested the possibility of its spread intracranially. Here we aimed to explore the biological behavior in cell motility of BMICs and understand the potential mechanisms. **METHODS:** In vitro and in vivo phage display biopanning strategies were used to isolate dodecapeptides that specifically target BMICs by selecting against primary lung cancer cells and normal brain cells. In silico analysis was used to derive specific protein targets in BMICs. Potential targets were narrowed down through analysis in patient databases and verified for their presence in BMIC through RT-PCR. Cell migration and adhesion in BMICs were analyzed using transwell, scratch, and adhesion assays. Protein expression and cell morphology were detected by immunofluorescence. Immune blot was performed to detect the epithelial-mesenchymal related molecules and explore protein-protein interactions (RIP). In silico analysis of BICs specific peptides and Angiomotin (Amot) as a potential target in BMICs. Amot was found to be overexpressed in BMICs compared to primary lung cancer cells. Kaplan-Meier analysis demonstrated Amot was negatively correlated with overall survival among lung adenocarcinoma patients. Knockdown of Amot in BMICs decreased the capability of cell migration and adhesion, through the downregulation of E-Cadherin. Amot was found to maintain the E-Cadherin in BMICs through reducing ubiquitination of E-Cadherin. Furthermore, the knockdown of E-Cadherin decreased cell migration and adhesion due to the decrease in cad42 activity. **CONCLUSIONS:** Amot plays a role in promoting migration and adhesion in BMICs through preservation of E-Cadherin.

BSCI-07. MULTIOMICS CHARACTERIZATION OF BRAIN METASTASIS IN MULTIPLE HISTOLOGIES IDENTIFIES ENRICHMENT OF OXIDATIVE PHOSPHORYLATION AS A PROMISING THERAPEUTIC TARGET

Kazutaka Fukumura,1 Ping Bao,2 Malgorzata3, Grant Fischer1; Xiaoming Hu,1 Xiang Zhang,1 Daoshui2, Bistrit Debich1, Michael Davies1, Jason Huse1; 1The University of Texas MD Anderson Cancer Center, TX, USA, 2Baylor College of Medicine, TX, USA

PURPOSE: Brain metastasis (BM) is a lethal complication from systematic malignant tumors, and the incidence is approximately 10–30% of patients with advanced cancer. Extensive genomic analyses with large sample sets and the following functional studies revealed clinically relevant characteristics for BMs. However, these studies have not identified specific abnormalities driving BM in multiple tumor histologies yet. To identify molecular pathogenesis and promising therapeutic targets shared across multiple histologies of BMs, we performed multiomics molecular profiling, along with functional studies using in vitro and in vivo BM models. **METHODS:** Frozen tissues of patient-matched BMs and primary tumors (or extracranial metastases) from breast cancer (N = 14), lung cancer (N = 14) and renal cell carcinomas (N = 7) patients were carried out whole-exome sequencing, mRNA-Seq and reverse-phase protein microarrays and parent and brain metastatic derivatives of MDA-MB-231 and S447 were examined to assess findings from the multiomics datasets. SCID/Beige mice were inoculated with MDA-MB-231 cells via tail vein injection and administered an oxidative phosphorylation (OXPHOS) inhibitor by oral gavage daily for 36 days. RESULTS: In multifroms, BMs were enriched for enrichment of OXPHOS shared across the histologies of BMs. Brain metastatic derivative cell lines also demonstrated enhanced oxidative metabolism, along with the sensitivity to an OXPHOS inhibitor. Moreover, in vivo studies revealed that OXPHOS inhibition significantly impaired the formation of BMs, and fresh brain metabolic derivatives from the murine BM model exhibited the higher oxidative metabolism and sensitivity to the OXPHOS inhibitor as the prior in vitro studies. **CONCLUSIONS:** Our multiomics characterization of BMs demonstrates heightened oxidative metabolism shared across the BM histologies, and that OXPHOS inhibition affects more effectively for brain metastatic derivatives rather than the parentals. Further investigation focusing on metabolic abnormalities in BM will likely develop promising therapeutic strategies against BMs.

BSCI-08. IN VIVO TWO-PHOTON CHARACTERIZATION OF TUMOR-ASSOCIATED MACROPHAGES AND MICROGLIA (TAM/M) AND CX3CR1 DURING DIFFERENT STEPS OF BRAIN METASTASIS FORMATION FROM LUNG CANCER

Wenlong Zhang,1,2, Philipp Karschajw,1,2, Iven-Alex von Mucke-Heim1,2, Matthias Mulazzani,1 Xi Yan Zhou,1 Tao Xu,1 Jens Blobner1,3, Nico Teske1, Sigrid Langer1, Niklas Thom1, Hellen Ishikawa-ankerhold1, Andreas Srauube1, Joerg-Christian Tonn1, Tao Xu1; 1Institute of Medical Chemistry and Molecular Pharmacology, Ludwig-Maximilians-University, Munich, Germany, 2The authors contributed equally.

BACKGROUND: Brain metastases represent a common complication of lung cancer and dramatically limit prognosis in affected patients. The influence of tumor-associated macrophages and microglia (TAM/M) and their receptor CX3CR1 on different steps of brain metastasis formation from lung cancer is poorly characterized, but might be of therapeutic relevance. **METHODS:** We established an orthotopic cerebral metastasis model using CX3CR1-proficient (CX3CR1^{+/mice}) and -deficient (CX3CR1^{−/−}) mice with green-fluorescent TAM/M. A cranial window was prepared, and intracarotid injection of red-fluorescent Lewis Lung Carcinoma-cells (LLC) was performed two weeks later. Formation of brain metastases was followed by repetitive-photon laser scanning microscopy. **RESULTS:** After intracarotid injection, intravascular tumour cells extravasated into the cerebral parenchyma and eventually formed micrometastases (<50 cells) and mature metastases (>30 cells). We observed of extravasated tumor cells by TAM/M during early steps of metastatic growth. Notably, these anti-tumor effects of TAM/M diminished during later steps of metastasis formation and were accompanied by TAM/M accumulation and activation. CX3CR1-deficiency resulted in a lower number of extravasated tumor cells, and only a small number of TAM/M were visualized during early steps of metastasis formation (extravasation, formation of micrometastases) in such mice. In contrast, progression of extravasated tumor cells into micrometastases was more frequently found in CX3CR1-deficient mice. Overall, these mechanisms resulted in a comparable number of mature micrometastases between CX3CR1-deficient and -proficient mice. **CONCLUSION:** Our findings indicate that tissue-specific role of CX3CR1 might not be a suitable therapeutic approach to prevent cerebral dissemination of lung cancer cells. Given the close interaction between TAM/M and tumor cells during metastasis formation, other therapeutic approaches are needed.