Background
Osteoporosis is a skeletal disorder characterized by compromised bone strength predisposing a person to an increased risk of fracture [1]. Bone mineral density (BMD) is commonly used to diagnose osteoporosis and to predict individual fracture risk [2-4]. Recent genome-wide studies based on hip BMD identified novel susceptibility genes for osteoporosis [5,6]. Besides BMD, a growing body of evidence suggested that bone size (BS) per se also plays an important role in determining bone strength and fracture risk [7-9]. Women not only lose bone density after menopause but also have an increase in skeletal size as a result of periosteal apposition [10]. Previous studies showed that women with hip fractures have larger hip BS [11-20]. Bone must indeed be flexible since it must be able to absorb energy by deforming, to shorten and widen when

Abstract

Background: Bone size (BS) variation is under strong genetic control and plays an important role in determining bone strength and fracture risk. Recently, a genome-wide association study identified polymorphisms associated with hip BS variation in the PLCL1 (phospholipase c-like 1) locus. Carriers of the major A allele of the most significant polymorphism, rs7595412, have around 17% larger hip BS than non-carriers. We therefore hypothesized that this polymorphism may also influence postmenopausal complications.

Methods: The effects of rs7595412 on hip BS, bone mineral density (BMD), vertebral fractures, serum Crosslaps and osteocalcin levels were analyzed in 1,191 postmenopausal Danish women.

Results: This polymorphism had no influence on hip and spine BS as well as on femur and spine BMD. Women carrying at least one copy of the A allele had lower levels of serum osteocalcin as compared with those homozygous for the G allele (p = 0.03) whereas no effect on serum Crosslaps was detected. Furthermore, women homozygous for the A allele were more affected by vertebral fractures than those carrying at least one copy of the G allele (p = 0.04).

Conclusions: In postmenopausal women, our results suggest that the PLCL1 rs7595412 polymorphism has no obvious effect on hip BS or BMD but may be nominally associated with increased proportion of vertebral fracture and increased levels of osteocalcin.
compressed, and to lengthen and narrow in tension without cracking [21]. Previous studies have demonstrated that BS variation is under strong genetic control, with heritability greater than 50% [9,22-25]. Moreover, segregation analyses have suggested that at least one major gene for BS variation exists in Caucasians [26-28] and in Chinese [29]. Candidate genes have been reported to influence hip BS [30-32]. However, these studies have presented conflicting data, due in part to small sample size and differences in the genetic background of control and case subjects [33]. Recently, the first genome-wide association study to search for novel genes underlying hip BS variation was conducted [34]. Four SNPs associated with hip BS in the PLCL1 locus had or approached genome-wide significance level in women. PLCL1 encodes an inositol 1,4,5-trisphosphate (IP3) binding protein that can inhibit IP3 mediated calcium signaling [35], an important pathway that regulates the response of bone cells to mechanical signals [36,37]. The most significant SNP, rs7595412, located in intron 3, achieved a p value of 3.72×10^{-7}. Carriers of the major A allele have significant SNP, rs7595412, located in intron 3, achieved a p value of 3.72×10^{-7}. Carriers of the major A allele have

Quantitative trait measures

Women underwent a thorough examination. Height and weight were measured to the closest 0.1 cm and 0.1 kg, respectively, to calculate BMI (weight in kilograms divided by the square of height in meters). BMD at the distal forearm was measured by a DTX200 arm scanner (Osteometer MediTech, Rødovre, Denmark). BMD at the lumbar spine L1-L4, total hip, and femoral neck was measured by a Hologic QDR4500 scanner (software version 9.03D; Hologic, Waltham, MA, USA). The hip BS was measured as total bone area (cm2) calculated as the sum of the areas of neck, trochanteric, and intertrochanteric regions as measured by DXA and the spine BS (cm2) as the sum of the area of L1-L4. The bone formation marker of osteocalcin was measured by the Elecsys N-MID Osteocalcin assay, and the bone resorption marker of the C-terminal telopeptide of collagen type I by the Elecsys CTx assay (Roche, Basel, Switzerland). The ratio of the anterior and posterior heights of each vertebral body was determined digitally, and a difference of >20% between the anterior and posterior edges was considered as a radiographic vertebral fracture. None of the fractures were caused by a traffic accident. Hip fractures were based on self-reported information from a questionnaire.

Genotyping

The rs7595412 SNP was genotyped using an AOD (assay on demand) kit (Applied Biosystems). The PCR was performed with a GeneAmp 9700 PCR system. The conditions for the TaqMan reaction were 95°C for 10 s and 40 cycles of 92°C for 15 s, 60°C for 1 min, and 15°C for 5 s. Allelic discrimination was performed through capillary electrophoresis analysis, using an Applied Biosystems 3730x DNA analyzer and GeneMapper3.7 software. The genotypes were determined with an ABI PRISM 7900 HT sequence detection system. There was a 98% genotyping efficiency.
success rate, and the genotyping error rate was assessed by sequencing 384 control and 384 hyperglycemic participants and by re-genotyping a random 10% sample. No difference was found with the first genotyping results; thus, the genotyping error rate was estimated to be 0%.

Statistical analysis
Multivariate linear regression models, taking into account age and BMI, were performed for testing the association between rs7595412 and osteoporosis quantitative traits. Osteocalcin and crosslaps levels were log-transformed before analysis to obtain normality and symmetry of variances. All P values were two-sided. R statistics (version 2.6.1) software was used for general statistical analysis.

Results
The clinical characteristics of the 1,191 postmenopausal Danish women are presented in Table 1. We genotyped all of them for the rs7595412 SNP and identified 943 A/A, 229 A/G and 19 G/G subjects (Table 2). The genotypic distribution was in Hardy-Weinberg equilibrium (p = 0.24). The PLCL1 polymorphism was associated neither with hip BS nor with spine BS variations (Table 2). Furthermore, a BMD test measuring the mineral density (such as calcium) in the distal part of the arm, femur neck, total femur, total spine was performed (Table 2). No association between the rs7595412 SNP and BMD levels was found. Serum osteocalcin and crosslaps concentrations were also measured in the studied individuals (Table 2). Women carrying at least one copy of the A allele had lower levels of osteocalcin as compared with those homozygous for the G allele (A/A + A/G: 29.18 [19.50-43.65] ng/ml vs G/G: 35.57 [21.47-58.93] ng/ml, p = 0.03) whereas no effect on Crosslaps was detected. History of vertebral and hip fractures was also recorded (Table 2). Women homozygous for the A allele were more affected by such fractures than those carrying at least one copy of the G allele (A/A: 18.8% vs A/G + G/G: 14.9%, p = 0.04) whereas no effect on hip fractures was observed.

Discussion
Due to its incidence and clinical consequences, osteoporosis followed by vertebral, hip, and forearm fractures represents an outstanding problem of nowadays’ health care. Because of its high mortality rate hip fractures are of special interest. The proportion of fractures caused by postmenopausal osteoporosis increases with age. Costs of examinations and treatment of women with postmenopausal osteoporosis and fractures are also increasing and represent a significant amount all over the world. Several risk factors are known in the pathogenesis of osteoporosis, first of all the lack of sufficient calcium and vitamin D intake, age, circumstances known to predispose falling, but also genetic factors. Osteodensitometry by DXA is among the most important method to evaluate osteoporosis, since decrease in BMD, defined as the ratio of the bone mineral content to BS, strongly correlates with fracture incidence. Hip BS, as such, was also found to be a valuable marker for hip fracture [11-20]. Recently, a genome-wide association study identified the rs7595412 SNP (minor allele frequency = 11.7%), located in the PLCL1 locus, as strongly associated with hip BS variation in 50-year-old subjects [34].

Table 2: rs7595412 SNP effects on osteoporosis traits in postmenopausal Danish women

Trait	A/A	A/G	G/G	Log-Additive (p value)	Recessive (p value)	Dominant (p value)
Hip Bone Size (cm²)						
N	943	229	19			
Arithmetic mean	36.5 ± 3.6	36.4 ± 3.7	35.9 ± 4.0	0.26	0.47	0.30
Spine Bone Size (cm²)						
N	58.3 ± 5.3	58.1 ± 5.0	57.6 ± 6.2	0.49	0.57	0.55
Bone Mineral Density (g/cm²)						
Distal part of the arm	0.358 ± 0.077	0.367 ± 0.072	0.335 ± 0.064	0.45	0.12	0.18
Femur Neck	0.667 ± 0.105	0.666 ± 0.101	0.658 ± 0.075	0.44	0.62	0.47
Total Femur	0.791 ± 0.122	0.784 ± 0.131	0.757 ± 0.083	0.16	0.19	0.24
Total Spine	0.880 ± 0.149	0.890 ± 0.164	0.843 ± 0.122	0.94	0.24	0.66
Serum Crosslaps (ng/ml/#)	0.359 [0.189-0.684]	0.351 [0.187-0.658]	0.457 [0.230-0.905]	0.68	0.10	0.97
Serum Osteocalcin (ng/ml/#)	29.19 [19.51-43.67]	29.12 [19.46-43.59]	35.57 [21.47-58.93]	0.36	0.03	0.71
Vertebral fractures (Yes/No/na)	177/729/37	34/192/3	3/16/0	na	na	0.04
Hip fractures (Yes/No/na)	23/917/3	6/222/1	0/19/0	na	na	0.91

Data are presented as arithmetic mean ± standard deviation or as #geometric mean [± standard deviation range]
P-values are from linear or logistic regression models adjusted for BMI and age
na: a low number of women homozygous for the G allele have had vertebral or hip fractures
In the present study of postmenopausal Danish women who were 20 years older, we did not observe such association (minor allele frequency = 11.2%). Women over 65 years of age are at particular risk to develop osteoporosis which may partly explain this lack of association. The age-related changes in bone size after the menopause caused by endocortical resorption and periosteal bone apposition have been shown to occur especially in postmenopausal women with increased bone loss [10] but this point is still under debate [41]. The PLCL1 genetic variation was also nominally associated with lower levels of serum osteocalcin. Markers of bone resorption, like Cross-laps, are usually elevated in postmenopausal women with osteoporosis as compared with normal postmenopausal women, but the markers of bone formation, like osteocalcin, are much less elevated and may indeed be decreased [42,43]. This pattern of changes in bone turnover suggests that an extent of imbalance of bone resorption and bone formation occurs in osteoporosis [44]. Serum levels of osteocalcin were previously found to be either lower [45,46], similar [47,48] or even slightly elevated [49,50] in patients with postmenopausal osteoporosis than in the control subjects. In their study, Liu and colleagues did not find any effect of PLCL1 SNPs on hip and spine BMD [34]. We confirmed the lack of effect on spine BMD and found no association with femur BMD. However, Liu and colleagues found marginally significant association of the PLCL1 SNPs with spine BS [34]. We did not observe any effect on spine BS but our results suggest an effect on the backbone since the proportion of vertebral fractures was slightly higher in postmenopausal women homozygous for the rs7595412 A allele than in the other subjects. At menopause, bone turnover increases, leading to poorer bone quality and if the increased bone resorption is not balanced with bone formation, the risk of fracture increases too [51]. Given the low proportion of hip fractures in our study samples, we could not correctly assess the impact of the PLCL1 rs7595412 polymorphism on this phenotype.

Our analyses were hypothesis-driven, based on previous studies, and therefore not adjusted for multiple testing. However, false positive results cannot be excluded, so further studies using a large number of samples are necessary to confirm what was observed on vertebral fractures and serum osteocalcin levels. Furthermore, fine-mapping and functional analyses may help to identify etiologic polymorphisms in the PLCL1 gene which may have a higher impact on hip BS and related phenotypes.

Conclusions
In postmenopausal women, our results suggest that the PLCL1 rs7595412 polymorphism has no obvious effect on hip BS and BMD but may be associated with increased proportion of vertebral fracture and increased levels of osteocalcin.

Abbreviations
BS: Bone Size; BMD: Bone Mineral Density.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
SC managed the study, carried out the genetic analyses and drafted the manuscript. ED carried out the genotyping experiments. IB participated in the design of the study, carried out the genetic analyses and drafted the manuscript. MAK participated in the design of the study and carried out the genetic analyses. PF coordinated the study. All authors read and approved the final manuscript.

Acknowledgements
This work was supported by the French Government “Agence Nationale de la Recherche”, the French Region of Nord Pas De Calais (“Contrat de Projets État-Région”), and the following charities: “Association Française des Diabétiques, Programme National de Recherche sur le Diabète” and “Association de Langue Française pour l’Étude du Diabète et des Maladies Métaboliques”. We thank Marianne Deweider and Frederic Alleaert for the DNA bank management.

References
1. Osteoporosis prevention, diagnosis, and therapy. Jama 2001, 285(6):785-795.
2. Marshall D, Johnell O, Wedel H: Meta-analysis of how well measures of bone mineral density predict occurrence of osteoporotic fractures. Bmj 1996, 312(7041):1254-1259.
3. Cummings SR, Black DM, Nevitt MC, Browner W, Cauley J. Ensrud K, Genant HK, Palermo L, Scott J, Vogt TM: Bone density at various sites for prediction of hip fractures. The Study of Osteoporotic Fractures Research Group. Lancet 1993, 341(8837):72-75.
4. Cranney A, Jamal SA, Tsang JF, Josse RG, Leslie WD: Low bone mineral density and fracture burden in postmenopausal women. Cmaj 2007, 177(6):575-580.
5. Yang TL, Chen XD, Guo Y, Lei SF, Wang JT, Zhou Q, Pan F, Chen Y, Zhang ZX, Dong SS, Xu XH, Yan H, Liu X, Qiu C, Zhu XZ, Chen T, Li M, Zhang H, Zhang L, Drees BM, Hamilton JF, Papastain CJ, Recker RR, Song XP, Cheng J, Deng HW: Genome-wide copy-number-variation study identified a susceptibility gene, UGT2B17, for osteoporosis. Am J Hum Genet 2008, 83(6):663-674.
6. Strykarsdottr0 U, Hallid0rsjon BV, Grettarssdottr0 S, Gudbjartsson DF, Walters GB, Ingvarsson T, Jonsdottir T, Saemundsdottir J, Center JR, Nguyen TV, Bagger Y, Gulcher JR, Esman IA, Christiansen C, Sigurdsson G, Kong A, Thorsteinsson U, Stefansson K: Multiple genetic loci for bone mineral density and fractures. N Engl J Med 2008, 358(22):2355-2365.
7. Cheng XG, Lowet G, Boonen S, Nicholson PH, Brys P, Nijs J, Dequeker J: Assessment of the strength of proximal femur in vitro: relationship to femoral bone mineral density and femoral geometry. Bone 1997, 20(3):213-218.
8. Edmondson SJ, Singer KP, Day RE, Price RI, Breidahl PD: Ex vivo estimation of thoracolumbar vertebral body compressive strength: the relative contributions of bone densitometry and vertebral morphology. Osteopora Int 1997, 7(2):142-148.
9. Livshits G, Yakovenko K, Kobylansky E: Quantitative genetic study of radiographic hand bone size and geometry. Bone 2003, 32(2):191-198.
10. Ahlborg GH, Jønsson O, Turner CH, Rannevik G, Karlsson MK: Bone loss and bone size after menopause. N Engl J Med 2003, 349(2):272-281.

11. Faulkner KG, Cummings SR, Black D, Palermo L, Gluer CC, Genant HK: Simple measurement of femoral geometry predicts hip fracture: the study of osteoporotic fractures. J Bone Miner Res 1993, 8(10):1211-1217.

12. Cummings SR, Cauley JA, Palermo L, Ross PD, Wiansch RD, Black D, Faulkner KG: Racial differences in hip axis lengths might explain racial differences in rates of hip fracture. Study of Osteoporotic Fractures Research Group. Osteoporos Int 1994, 4(4):226-229.

13. Rossouw JR, Manson ES: Hip axis length in an Italian osteoporotic population. Br J Radiol 2000, 73(873):597-92.

14. Deng HY, Xu FH, Davies KM, Heaney R, Recker RR: Differences in bone mineral density, bone mineral content, and bone area size in fracture and non-fracturing women, and their relationships at the spine and hip. J Bone Miner Metab 2006, 24(6):358-366.

15. Shen H, Long JR, Xiong DH, Guo YF, Xiao P, Liu YZ, Zhao LJ, Liu YJ, Deng HY, Li JL, Recker RR, Deng HW: A genomewide scan for quantitative trait loci underlying areal bone size variation in 358 Caucasian families. J Bone Miner Res 2006, 21(5):748-759.

16. Karlsson KM, Sernbo I, Obrant KJ, Redlund-Johnell I, Johnell O: Evidence on major gene control of cortical index in pediatric cells in primary cultures. J Bone Miner Res 1997, 12(1):114-116.

17. Boonen S, Koutri R, Dequeker J, Aerssens J, Lowet G, Nijs J, Verbeke G, Lesaffre E, Geusens P: Determination of bone size of hip, spine, and wrist in human females from Middle Dalmatia, Croatia. Int J Osteoporos Relat骨min Dis 2002, 21(4):447-451.

18. Alonso CG, Curiel MD, Carranza FH, Cano RP, Perez AD: Femoral bone mineral density, neck-shaft angle and mean femoral neck width as predictors of hip fracture in men and women. Multicenter Project for Research in Osteoporosis. Osteoporos Int 2000, 11(8):714-720.

19. Seeman E, Delmas PD: Bone quality--the material and structural basis of bone strength and fragility. N Engl J Med 2006, 354(21):2250-2261.

20. Deng HW, Xu FH, Liu YZ, Shen H, Deng HY, Huang QY, Liu YJ, Conway T, Li JL, Davies KM, Recker RR, Miettinen OS: Cortical index and size of hand bones: segregation analysis and linkage with the 11q12-13 segment. Med Sci Monit 2003, 9(3):MT13-20.

21. Liu PY, Qin YJ, Recker RR, Deng HW: Evidence for a major gene underlying bone size variation in the Chinese. J Bone Miner Res 2004, 16(1):68-77.

22. Bagger YZ, Tanko LB, Alexandersen P, Qin G, Christiansen C: Radiographic measure of aortal calcification is a site-specific predictor of bone loss and fracture risk at the hip. J Intern Med 2006, 259(6):598-605.

23. C428-432.

24. Reich KM, Frangos JA: Effect of flow on prostaglandin E2 and inositol trisphosphate levels in osteoblasts. Am J Physiol 1991, 261(3 Pt 1):C428-432.

25. Bagger YZ, Tanko LB, Alexandersen P, Hansen HB, Qin G, Christiansen C: The long-term predictive value of bone mineral density measurements for fracture risk is independent of the site of measurement and the age at diagnosis: results from the Prospective Epidemiological Risk Factors study. Osteoporos Int 2006, 17(3):471-477.

26. Valimaki MJ, Tahtela R, Jones JD, Peterson JM, Riggs BL: Bone resorption in healthy and osteoporotic postmenopausal women: comparison markers for serum carboxy-terminal telopeptide of type I collagen and urinary pyridinium cross-links. Eur J Endocrinol 1994, 131(3):258-262.

27. Fairbrother UL, Tanko LB, Walley AJ, Christiansen C, Froguel P, Blakemore AI: Leptin receptor genotype at Gln223Arg is associated with body composition, BMD, and vertebral fracture in postmenopausal Danish women. J Bone Miner Res 2007, 22(4):544-550.

28. Li SF, Deng FY, Xiao SM, Chen XD, Deng HW: Association and haplotype analyses of the COL1A2 and ER-alpha gene polymorphisms with bone size and height in Chinese. Bone 2005, 36(3):533-541.

29. Zmuda JM, Cauley JA, Kuller LH, Ferrell RE: A common promoter variant in the cytochrome P450sccilpha (CYP17) gene is associated with bioavailability testosterone levels and bone size in men. J Bone Miner Res 2001, 16(5):911-917.

30. Raizig LG: Pathogenesis of osteoporosis: concepts, conflicts, and prospects. J Clin Invest 2005, 115(12):3318-3325.

31. Liu YZ, Wilson SG, Wang L, Liu XG, Guo YF, Li J, Yan H, Deloukas P, Soranzo N, Chinnapan-Horsley U, Cervino A, Williams FM, Xiong DH, Zhang YP, Jin TB, Levy S, Papasian CJ, Drees BM, Hamilton JJ, Recker RR, Spector TD: Salt in postmenopausal osteoporosis: genetic and environmental associations. Am J Hum Genet 2006, 78(6):1150-1161.

32. Reich KM, Frangos JA: Effect of flow on prostaglandin E2 and inositol trisphosphate levels in osteoblasts. Am J Physiol 1991, 261(3 Pt 1):C428-432.

33. Bagger YZ, Tanko LB, Alexandersen P, Qin G, Christiansen C: Radiographic measure of aortal calcification is a site-specific predictor of bone loss and fracture risk at the hip. J Intern Med 2006, 259(6):598-605.

34. Li SF, Deng FY, Xiao SM, Chen XD, Deng HW: Association and haplotype analyses of the COL1A2 and ER-alpha gene polymorphisms with bone size and height in Chinese. Bone 2005, 36(3):533-541.

35. Zmuda JM, Cauley JA, Kuller LH, Ferrell RE: A common promoter variant in the cytochrome P450sccilpha (CYP17) gene is associated with bioavailability testosterone levels and bone size in men. J Bone Miner Res 2001, 16(5):911-917.

36. Raizig LG: Pathogenesis of osteoporosis: concepts, conflicts, and prospects. J Clin Invest 2005, 115(12):3318-3325.

37. Liu YZ, Wilson SG, Wang L, Liu XG, Guo YF, Li J, Yan H, Deloukas P, Soranzo N, Chinnapan-Horsley U, Cervino A, Williams FM, Xiong DH, Zhang YP, Jin TB, Levy S, Papasian CJ, Drees BM, Hamilton JJ, Recker RR, Spector TD: Salt in postmenopausal osteoporosis: genetic and environmental associations. Am J Hum Genet 2006, 78(6):1150-1161.

38. Bagger YZ, Tanko LB, Alexandersen P, Qin G, Christiansen C: Radiographic measure of aortal calcification is a site-specific predictor of bone loss and fracture risk at the hip. J Intern Med 2006, 259(6):598-605.

39. Bagger YZ, Tanko LB, Alexandersen P, Hansen HB, Qin G, Christiansen C: The long-term predictive value of bone mineral density measurements for fracture risk is independent of the site of measurement and the age at diagnosis: results from the Prospective Epidemiological Risk Factors study. Osteoporos Int 2006, 17(3):471-477.

40. Li SF, Deng FY, Xiao SM, Chen XD, Deng HW: Association and haplotype analyses of the COL1A2 and ER-alpha gene polymorphisms with bone size and height in Chinese. Bone 2005, 36(3):533-541.

41. Zmuda JM, Cauley JA, Kuller LH, Ferrell RE: A common promoter variant in the cytochrome P450sccilpha (CYP17) gene is associated with bioavailability testosterone levels and bone size in men. J Bone Miner Res 2001, 16(5):911-917.

42. Raizig LG: Pathogenesis of osteoporosis: concepts, conflicts, and prospects. J Clin Invest 2005, 115(12):3318-3325.

43. Li SF, Deng FY, Xiao SM, Chen XD, Deng HW: Association and haplotype analyses of the COL1A2 and ER-alpha gene polymorphisms with bone size and height in Chinese. Bone 2005, 36(3):533-541.
48. Farley SM, Wergedal JE, Farley JR, Javier GN, Schulz EE, Talbot JR, Libanati CR, Lindegren L, Bock M, Goette MM, et al.: Spinal fractures during fluoride therapy for osteoporosis: relationship to spinal bone density. Osteoporos Int 1992, 2(5):213-218.

49. Hodsman AB, Drost DJ: The response of vertebral bone mineral density during the treatment of osteoporosis with sodium fluoride. J Clin Endocrinol Metab 1989, 69(5):932-938.

50. Guanabens N, Pares A, del Rio L, Roca M, Gomaz R, Munoz J, Rodes J: Sodium fluoride prevents bone loss in primary biliary cirrhosis. J Hepatol 1992, 15(3):345-349.

51. Leeming DJ, Henriksen K, Byrjalsen I, Qvist P, Madsen SH, Garnero P, Karsdal MA: Is bone quality associated with collagen age? Osteoporos Int 2009, 20(9):1461-1470.

Pre-publication history
The pre-publication history for this paper can be accessed here:

http://www.biomedcentral.com/1471-2350/10/145/pre-pub