Gender stereotypes in the mediated personalization of politics: Empirical evidence from a lexical, syntactic and sentiment analysis

Emanuele Brugnoli, Rosaria Simone and Marco Delmastro

ABSTRACT
The media attention to the personal sphere of famous and important individuals has become a key element of the gender narrative. Here we combine lexical, syntactic and sentiment analysis to investigate the role of gender in the personalization of a wide range of political office holders in Italy during the period 2017-2020. On the basis of a score for words that is introduced to account for gender unbalance in both representative and news coverage, we show that the political personalization in Italy is more detrimental for women than men, with the persistence of entrenched stereotypes including a masculine connotation of leadership, the resulting women’s unsuitability to hold political functions, and a greater deal of focus on their attractiveness and body parts. In addition, women politicians are covered with a more negative tone than their men counterpart when personal details are reported. Further, the major contribution to the observed gender differences comes from online news rather than print news, suggesting that the expression of certain stereotypes may be better conveyed when click baiting and personal targeting have a major impact.

KEYWORDS
Gender bias; political personalization; stereotypes; data analytics

1. Introduction
Gender stereotypes are widespread and display structural effects even in more egalitarian and more developed countries (Breda, Jouini, Napp, & Thebault, 2020). They may contribute to gender disparities in the pursuit of societally important fields (Master, Meltzoff, & Cheryan, 2021). Their origin can be linked to the social and cultural environment, and the educational system (Carlana, 2019). In this context, information plays a fundamental role in generating, disseminating and reinforcing gender stereotypes. For instance, the media image of politics as a masculine realm (Bauer, 2015) can depress the political ambitions of young women and discourage political elites from selecting women (Van der Pas & Aaldering, 2020).

The current media communication is even more characterized by sensation and entertainment (¨Ornebring & Jönsson, 2004) and the phenomenon of personalization become a fundamental concept in the discussion on how political news evolves through time (Landerc, 2013). At a coarse level, one speaks of personalization for referring to a focus on individual politicians rather than on the institutions they represent. More subtly, personalization implies a shift in media focus from the politician as a public office holder to the politician as a private individual. In the former case it is labelled as “individualization”, in the latter case as “privatization” (Van Aelst, Sheafer, & Stanyer, 2012). In this realm, gender stereotypes can be translated into the association of women politicians with private life (O’Neill, Savigny, & Cann, 2016), phys-
cal beauty (Conroy, Oliver, Breckenridge-Jackson, & Heldman, 2015) and supporting roles (Koenig, Eagly, Mitchell, & Ristikari, 2011).

The aim of this article is therefore to assess the presence of gender stereotypes in the news through an innovative data driven approach based on lexical, syntactic and sentiment analysis to compare the media attention addressed to men and women politicians in a statistically sound way. With some more details, first we compare the Italian media coverage of men and women politicians for a wide and differentiated number of public roles: ministers, undersecretaries of state, governors and mayors of cities with more than sixty thousand inhabitants. So, the analyzed universe of politicians is large and representative of all political parties in Italy. In addition, the analysis covers a four-year timeframe (2017-2020) that comprises two changes of government, a constitutional referendum, a general election, several both local and regional elections, and the occurrence of considerable events (e.g., the outbreak of the Covid-19 pandemic and the related social and economic effects and policies). Second, we analyze the universe of all the articles (i.e., more than 1.8 million news items) reported in all national (and multiregional) newspapers and online news outlets which are related to the selected politicians. It is worth mentioning that these news sources reach the vast majority of citizens who get informed. Third, we define a robust methodology to identify and then statistically analyze the lexical, syntactic and sentiment gender patterns of news production. Namely, we build a lexicon of words which account for personal details (i.e., physical traits, moral attitudes, and economic and financial background) and are attributed to the political actors under scrutiny by analyzing the syntactic dependencies of the politician-word pair in the sentences where they are both mentioned. In addition, for each of these terms we determine its semantic orientation in the political domain.

The proposal is robust with respect to the structural gender unbalance in both representative and coverage: specifically, the exploratory data analysis relies on the definition of a coverage index adjusted for gender bias, that allows to safely measure the diversity in incidence, stratified for word category, and identify gender-distinctive words. Quantile regression is then applied to jittered sentiment scores to assess the extent to which differences related to the gender of the politician and to the type of news source (print or online) are significant and relevant.

The findings highlight the existence of persistent, entrenched gender stereotypes, especially when going online (i.e., in online news outlets compared to traditional newspapers). Women politicians receive more focus on the privatization dimension than men (physical and socio-economic characteristics), whereas the coverage of their men colleagues is higher on the individualization dimension (moral and behavioral characteristics). In particular, men are depicted as powerful, active and violent, while women are told as not fit to hold a public office, concentrating a greater deal of focus on their attractiveness and body parts. Finally, we find that women politicians are depicted with a more negative tone with respect to each of the analyzed categories.

1 Most existing studies concern a single context, and this could lead to stronger gender bias in reporting. For instance, the political actors under scrutiny are most powerful offices rather than representatives at local level (Atkeson & Krebs, 2008), the focus is most solely on electoral campaigns and rarely even routine time (Aaldering & Van Der Pas, 2020; Gerber, Karlan, & Bergan, 2009), the majority of the extant work is conducted in the United States and less work is done in multi-party systems (Van der Pas & Aaldering, 2020).

2 Note that most of existing studies rely instead on the content analysis of a relatively small amount of articles, which in turn allows to manually identify the presence of personalizing elements and assign a polarity orientation (Trimble, Wagner, Sampert, Raphael, & Gerrits, 2013; Van Aelst et al, 2014; Wagner, Trimble, & Sampert, 2010).
2. Materials and methods

2.1. The selection of news media sources

To ensure the most representative picture of both traditional and new media, we considered a wide range of national and local newspapers and online news outlets that are active in Italy during the period January 2017 - November 2020 (see Supplemental online material for the complete list of sources). We selected all the major Italian newspapers which are the ones that still have a great influence on the political agenda (Drago, Nannicini, & Sobbrio, 2014). In 2020, the 83 considered newspapers reached 22 million Italians, i.e., 43% of the population aged more than 18 (source: GfK Mediamonitor). We also included as sources more than 250 online-only news outlets, that monthly reach 38 million Italians, i.e., 93% of the total internet audience (source: ComScore). In sum, we considered the universe of online-only and traditional news sources covering a broad spectrum of points of views and reaching the great majority of Italian citizens who get informed.

2.2. The proposed approach

Figure 1 shows the architectural overview of our method.

![Diagram showing the proposed approach](image_url)

Figure 1. Overview of the proposed approach.

The input to the system is a collection of news items filtered according to the occurrence of named entities referring to the political offices under scrutiny. The output of the system is an assessment of the personalized coverage and the corresponding sentiment concerning the politicians under investigation. All the procedural steps are...
illustrated in Supplemental online material.

To identify the personalizing elements of the coverage, we construct a word lexicon based on several key indicators which are representative of the media coverage of personal details (Trimble et al., 2013; Van Aelst et al., 2012). The lexicon is divided into three categories that aim at capturing the context of each word: i) moral and behavioral attitude; ii) physical appearance and personal style; and iii) social and economic background. For each of these terms we determine its semantic orientation in the political domain.

2.3. Data collection

To include offices at both local and national level, the target under scrutiny comprises all the Italian politicians serving as ministers, undersecretaries of state, governors and mayors of cities with more than sixty thousand inhabitants. Presidents of the Republic and Prime Ministers are both excluded from the analysis, since no woman has ever occupied such roles in Italy. Data have been gathered by means of a media monitoring platform developed by the IT company Volocom Technology. The exact breakdown of both the coverage dataset (D_c) and the personalization datasets (D_p) is presented in Table 1. The reported values concern the number of political offices under scrutiny;

Coverage dataset	Personalization dataset			
F	M	F	M	
Politicians	57	213	56	211
Contents	328,842	1,519,115	19,185	82,429
Sentences	689,574	3,368,608	21,599	97,589
Words	929,160	5,075,651	23,875	110,765
Distinct words	17,722	36,238	1,357	1,793

Table 1. Breakdown of both the coverage and personalization datasets divided by gender.

the number of media contents with the mention of at least one of such politicians; the related sentences containing such mentions; the number of words and unique words, respectively, contained in the syntactic neighborhood of the named entities mentioned. Note that the term “word” is used for referring to its base form. Moreover, albeit we aim to refer to sentences as coded units to analyze, for the sake of simplicity we consider words instead. Indeed, the syntactic neighborhood of the named entity mentioned consists of a single lexicon word in almost all the sentences in D_p (see Supplemental online material for further details).

2.4. POS tagging and dependency parsing

Part-of-speech (POS) information can be considered the first step in semantic disambiguation (Wilks & Stevenson, 1998) and sentiment analysis (Pang & Lee, 2008). Adjectives are indeed considered the primary source of subjective content (Hatzivassiloglou & Wiebe, 2000; Whitelaw, Garg, & Argamon, 2005; Yu & Hatzivassiloglou, 2003) as well as the gauge of personality features of politicians (Caprara, 2007; Caprara, Schwartz, Capanna, Vecchione, & Barbaranelli, 2006; Caprara, Schwartz, Vecchione, & Barbaranelli, 2008; Simonton, 1986). Nevertheless,
this does not imply that other parts of speech cannot be used for referring to personal
details. We argue that nouns (e.g., skirt, son, hair) as well as verbs (e.g., love, wear,
tease) can also be strong indicators for personalization (Fast, Vachovsky, & Bernstein,
2016), then we also consider them as sources of subjective content to analyze.

For identifying the words in a sentence which are actually attributed to a given target,
linear n-grams in the sense of adjacent strings of tokens, parts of speech, etc. could
be not satisfactory (see Supplemental online material for a detailed discussion). To
overcome this problem we rely on the syntactic n-grams methodology, i.e. instead of fol-
lowing the sequential order in the sentence, the linguistic pattern of the words is based
on their respective position in the syntactic parse tree. We argue that the words which
appear nearby a named entity in the dependency tree are more likely candidates for
personalizing expressions than those farther by. Through the SpaCy linguistic parser
(Honnibal, Montani, Van Landeghem, & Boyd, 2020) trained on a corpus of annotated
news media texts in Italian Bosco, Dell’Orletta, Montemagni, Sanguinetti, and Simi
(2014); Bosco, Montemagni, and Simi (2013), we first split the text of each media
content into sentences, then we produce the POS tag for each word and the syntactic
tree of each sentence.

2.5. A lexicon of semantic-oriented words describing personal details in
the political domain

To the best of our knowledge, there are no publicly available lexical resources in
Italian language which are designed to account for the personalization phenomenon
in the political domain. Hence, we decide to create a manual lexicon, starting from a
selection of suitable words (1,249 unique lemmas) extracted from a preexisting lexicon
of hate words (Bassignana, Basile, & Patti, 2018). As a second step, we expand the
lexicon by systematically investigating key indicators of personalized news coverage,
i.e., personality traits and behavioral attitude, coverage of the family, past life and
upbringing, leisure time, love life, age, appearance, social background and economic
opportunities (Trimble et al., 2013; Van Aelst et al., 2012). The third step consists of
identifying any further personalizing word in the coverage dataset, and then ensures
an exhaustive inventory of all the personalizing terms occurring in the news media
contents under investigation. The final lexicon is composed of 3,303 words divided in
2,125 adjectives, 1,084 nouns and 94 verbs.

Once the lexicon is complete, we deal with the semantic orientation of the single
words. To this aim, we hire five annotators for manually assigning to each word one of
the following sentiment scores: -1, 0 and 1 for negative, neutral and positive meanings,
respectively. To summarize the semantic orientation of a single word in our lexicon, we
assign it the average value of the five scores received during the annotation process.
Hence, the aggregate sentiment score assigned to a lexicon word can be one of the
eleven terms of the sequence \(\left(\frac{k-5}{5} \right)_{k=0}^{10} \). The resulting values are then grouped into
ordinal categories: negative (strong and weakly), neutral, positive (weakly and strong).
See Supplemental online material also for downloading the resource.

2.6. An index reporting gender homogeneity in coverage, after adjusting
for coverage bias

Since the political offices in Italy are mainly coupled with men candidates, this nat-
urally implies that the whole women representative receives less media coverage than
the men counterpart. Therefore, to compare the words’ coverage per women and men, respectively, we need to define a gendered score for each word that takes into account the women-men unbalance concerning both the number of politicians and gender-coverage. Following the methodology reported in Supplemental online material, the score of a word \(w \) is measured by the coverage bias index \(I \) given by the normalized difference between the (adjusted) incidence rate \(\tilde{t}_F(w) \) associating the word with women and the (adjusted) incidence rate \(\tilde{t}_M(w) \) associating the word with men (See Supplemental online material for details), that is:

\[
I(w) = \frac{\tilde{t}_F(w) - \tilde{t}_M(w)}{\tilde{t}_F(w) + \tilde{t}_M(w)}, \quad I(w) \in [-1, 1].
\]

(1)

It is straightforward to notice that \(I(w) = 1 \) if and only if \(w \) is used exclusively for women politicians, whereas \(I(w) = -1 \) if and only if \(w \) is used for their men colleagues only. See Supplemental online material for the definition of the adjusted incidence rate and for a discussion on the reliability of the coverage bias index \(I \) under different scenarios.

2.7. Dissimilarity of word frequency distributions

Aside from studying the distribution of the coverage bias index \(I \), we also pursue an analysis of the words’ frequency distributions with the goal of determining possible gender-distinctive words. To this aim, we borrow the rationale of Leti diversity index \((\text{Leti}, 1983) \) and we define an index of dissimilarity between women and men representations as follows:

\[
\text{Diss} = \frac{c_F \cdot c_M}{c_F + c_M} \sum_{w \in D_c} |\tilde{t}_F(w) - \tilde{t}_M(w)|, \quad \text{Diss} \in [0, 1].
\]

(2)

where \(c_F \) and \(c_M \) are the correction factors defined to adjust the aforementioned incidence rates and thus make them comparable in view of the strong unbalance of the dataset (See Supplemental online material for details). Next, we compute the leave-one-out dissimilarity to identify gender-distinctive personalizing words. Thus, for each word \(w^* \in D_c \) we compute the dissimilarity between men and women frequency distributions obtained after omitting \(w^* \), namely:

\[
\text{Diss}_{(-w^*)} = \frac{c_F^* \cdot c_M^*}{c_F^* + c_M^*} \sum_{w \in D_c \setminus w^*} |\tilde{t}_F^*(w) - \tilde{t}_M^*(w)|, \quad \text{Diss}_{(-w^*)} \in [0, 1],
\]

(3)

where the superscript * means that correction factors and adjusted incidence rates are calculated on \(D_c \setminus \{w^*\} \). Finally, we identify as gender-distinctive those words \(w^* \) such that \(\text{Diss}_{(-w^*)} < \text{Diss} \), namely those words whose omission from \(D_c \) contributes to reduce the dissimilarity of words coverage between gender. In particular, a word \(w^* \) such that \(\text{Diss}_{(-w^*)} < \text{Diss} \) is considered men-distinctive if \(\tilde{t}_M(w^*) > \tilde{t}_F(w^*) \) and women-distinctive otherwise.
3. Results

3.1. Gender gaps in the mediated personalization of politics

Figure 2 shows the Probability Density Function (PDF) of the coverage bias index \(I\) defined in (1) over the personalizing wording with regard to the political actors under scrutiny, conditional to each analyzed category.

Moreover, Table 2 reports some descriptive statistics for the coverage bias index \(I\) for the total counts per words category.

Category	\(\mu\)	\(\gamma_3\)	\(D_5\)	\(Q_3\)	\(D_9\)	IQR
Moral and behavioral characteristics	-0.185	0.142	-0.122	0.454	0.828	1.454
Physical characteristics	0.134	-0.419	0.391	0.931	1.000	1.931
Social and economic characteristics	-0.074	-0.029	0.005	0.647	1.000	1.647

Assuming that gender balance would correspond to a symmetric distribution with mean at \(I = 0\), evidence is found that political coverage is biased in favour of men with respect to moral and behavioral characteristics. On the contrary, the coverage bias index presents a strong negative skewness for physical characteristics, which along with a positive average, indicate that political journalism towards women focuses a strong amount of attention to physical characteristics. It should be noted that this result is also confirmed by the time analysis that shows a persistent and structural difference typical of entrenched stereotypes (see Supplemental online material for details).

3.2. The role of gender in the quality of coverage and in the sentiment expressed through personalization

Besides wondering whether women politicians receive more media attention on personal details, we also account for gender differences in the ways those details are
reported. To this aim, among the gender-distinctive personalizing words of each category, we select those words \(w^* \) for which the difference \(\text{Diss}(w^*) < \text{Diss} \) is large enough (see (2) and (3)). This filtering returns men politicians stereotypically depicted as powerful, active and violent. On the contrary, women are strongly perceived as not fit to hold public office. It is also interesting to note that all the words referring to parenting are unbalanced towards women, as if to stress the role played by powerful parents in the political careers of their daughters. With respect to physical characteristics instead, men politicians are mainly depicted with reference to size while women receive a greater deal of focus on their attractiveness and body parts (see Supplemental online material for details).

The lexicon words used to identify the personalized items of media coverage are also annotated with the semantic orientation assigned by five annotators hired to this aim. The reliability of the annotation process turns out to be fairly high, as gauged by the Krippendorff’s \(\alpha = 0.712 \). Then, we rely on the average values of the single sentiment scores assigned to each personalizing word to evaluate the gender differences in the sentiment expressed through personalization. Table 3 shows, for each analyzed facet of the personalization phenomenon, the fraction of negative, neutral and positive wording with regard to the women and men representations. To be thorough, we also report the distribution of the lexicon words over the sentiment categories.

Facet	Negative	Neutral	Positive			
	strong	weakly	strong			
Moral and behavioral	Lexicon	51.09%	15.86%	9.25%	7.93%	15.87%
	Men	23.24%	18.90%	19.24%	22.35%	16.28%
	Women	28.20%	19.80%	16.14%	19.77%	16.19%
Physical	Lexicon	29.41%	23.26%	28.18%	13.54%	5.61%
	Men	13.39%	13.82%	46.30%	22.79%	3.70%
	Women	15.28%	17.49%	40.03%	21.16%	6.04%
Social and economic	Lexicon	41.02%	17.22%	26.74%	13.19%	1.83%
	Men	5.32%	14.91%	54.54%	23.23%	2.00%
	Women	3.08%	15.30%	48.56%	31.97%	1.09%

Table 3. Fraction of negative, neutral and positive wording with regard to lexicon, men and women representations, respectively, for each analyzed facet of personalization.

As highlighted with bold font, the negative tone is always greater (in percent) on women politicians than on their men counterparts, with the only exception of strong negative descriptions concerning the socio-economic category. A reverse trend concerns instead neutral and uplifting portrayals.

3.3. Print news versus online news: the personalization phenomenon as a function of the type of media source

Compared to print newspapers, online news outlets have a number of characteristics that can affect the personalization phenomenon and widen the differences between women and men representations. Indeed, online-only news outlets are presumed to be influenced more strongly by personalized algorithms, click baiting phenomenon, and individual comments on news stories (Skovsgaard, 2014). To check this hypothesis we consider the frequency distribution of words count per gender conditional to both
dataset (coverage and personalization) and source type (traditional newspapers and online news outlets). The χ^2 test of independence for both these contingency tables is highly significant, indicating a strong association between gendered coverage (personalization) and source type. Specifically, observed coverage (personalization) provided by online sources is higher than expected under the assumption of independence for women, whereas it is lower than expected for men. The converse is true for traditional sources: observed coverage (personalization) for women is lower than expected if no association were present, whereas it is higher for men (see Table S4 in Supplemental online material). The empirical distribution of the coverage-bias index I given source type is substantially similar to the PDF of Figure 2 with respect to any of the considered personalization categories, both for traditional newspapers and online news outlets. Hence, political coverage results biased in favour of men with respect to moral and behavioral characteristics, whereas it results biased towards women with regard to physical characteristics, both for traditional newspapers and online news outlets. The coverage bias density distribution for socio-economic characteristics, instead, is more heterogeneous. Concerning the tone of personalized coverage, we estimate a quantile regression model based on the observations of the personalization dataset (conditional to each analyzed category) for the (jittered) sentiment score distribution (Y_i) as a function of dummy variables for Gender, Source type, and their interaction:

$$\text{Quantile}(Y_i) = \beta_0 + \beta_1 \text{Gender}_i + \beta_2 \text{Source}_i + \beta_3 \text{Gender}_i \cdot \text{Source}_i.$$ (4)

Table 4 reports the estimated conditional quantiles for each of the 12 groups identified by cross-classifying gender, source type and word categories. Specifically, the quantile regression was meant to test: i) if strong and weak negative tones (in terms of first decile D_1 and first quartile Q_1, resp.), neutral tone (in terms of median D_5), and weak and positive tones (in terms of third quartile Q_3 and ninth decile D_9) are addressed to women and men in a significantly different way; ii) if this circumstance depends in turn on the source type; and iii) the extent by which gender differences vary from tradition to online sources.

Category	Gender	Source type	D_1	Q_1	D_5	Q_3	D_9
Moral and behavioral	F	Online -1.000 -0.801 -0.208 0.503 0.813					
		Traditional -0.999 -0.795 -0.203 0.506 0.813					
	M	Online -0.999 -0.792 -0.195 0.508 0.977					
		Traditional -0.995 -0.606 -0.007 0.599 0.810					
Physical	F	Online -0.997 -0.598 -0.002 0.393 0.600					
		Traditional -0.815 -0.589 -0.002 0.388 0.598					
	M	Online -0.806 -0.394 0.001 0.391 0.597					
		Traditional -0.799 -0.400 0.000 0.384 0.592					
Social and economic	F	Online -0.595 -0.193 0.004 0.398 0.596					
		Traditional -0.413 -0.015 0.007 0.401 0.599					
	M	Online -0.592 -0.021 0.002 0.212 0.411					
		Traditional -0.594 -0.194 -0.002 0.385 0.590					

Table 4. Estimated (conditional) quantiles from regression model (4).

Hereafter, we comment only on the significant results: with the only exception of socio-economic facet for men politicians, negative sentiment results stronger for online news outlets than it is for traditional newspapers. This is especially true for physical and socio-economic features of the women representative, and moral-behavioral details
of the men counterpart. Moreover, with the only exception of traditional coverage on socio-economic details, negative sentiment is stronger for women than it is for men. This is true to a greater extent for online coverage on physical characteristics.

4. Discussion

This paper provides robust evidence on the presence of different and stereotyped narratives of news media when dealing with the gender of the politicians. The space of our investigation is represented by all the articles produced by almost the entire universe of Italian traditional newspapers and online news outlets over the four-year period 2017-2020. Our method relies on a hybrid approach combining lexical, syntactic and sentiment analysis. Namely, we build a lexicon of words which account for personal details and are attributed to the political actors under scrutiny by analyzing the syntactic dependencies of the politician-word pair in the sentences where they are both mentioned. In addition, for each of these terms we determine its semantic orientation in the political domain. Further, since the political offices in Italy are mainly coupled with men candidates, we introduce on a statistical index which assigns a gender bias coverage score to each word by taking into account the women-men unbalance concerning both the number of politicians and coverage. Our findings show that personalization in Italy is still a gendered phenomenon, with women politicians typically receiving more mentions (in percent) to their private, i.e., physical and socio-economic characteristics, throughout the period under investigation. Moreover, an assessment of the differences in the ways politicians are discussed reveals that stereotypically men are depicted as powerful, active and violent, whereas women are strongly perceived as not fit to hold a public office. In addition, with respect to physical appearance, women politicians receive a greater deal of focus on their attractiveness and their body parts. Finally, by investigating the personalization phenomenon as a function of the type of source, we find that the major contribution to the personalized overrepresentation and more negative sentiment concerning women politicians comes from online news outlets rather than traditional newspapers, suggesting that the expression of certain stereotypes may be better conveyed when personalized algorithms and click baiting logics have a major impact.

Funding

This work was partially supported by the European Union’s Rights, Equality and Citizenship Programme (2014-2020) under Grant n. 875263.

References

Aaldering, L., & Van Der Pas, D. J. (2020). Political leadership in the media: Gender bias in leader stereotypes during campaign and routine times. *British Journal of Political Science, 50*(3), 911–931.

Atkeson, L. R., & Krebs, T. B. (2008). Press coverage of mayoral candidates: The role of gender in news reporting and campaign issue speech. *Political Research Quarterly, 61* (2), 239-252.

Bassignana, E., Basile, V., & Patti, V. (2018). Hurtlex: A multilingual lexicon of words to hurt. In *5th italian conference on computational linguistics, clic-it 2018* (Vol. 2253, p. 1-6).
Bauer, N. M. (2015). Emotional, sensitive, and unfit for office? Gender stereotype activation and support female candidates. *Political Psychology, 36*(6), 691-708.

Bosco, C., Dell’Orletta, F., Montemagni, S., Sanguinetti, M., & Simi, M. (2014, dec). The Evalita 2014 dependency parsing task. In *Proceedings of evalita ’14, evaluation of nlp and speech tools for italian* (p. 1-8). Pisa, Italy: Association for Computational Linguistics.

Bosco, C., Montemagni, S., & Simi, M. (2013, aug). Converting Italian treebanks: Towards an Italian Stanford dependency treebank. In *Proceedings of the 7th linguistic annotation workshop and interoperability with discourse* (p. 61-69). Sofia, Bulgaria: Association for Computational Linguistics.

Breda, T., Jouini, E., Napp, C., & Thebault, G. (2020). Gender stereotypes can explain the gender-equality paradox. *Proceedings of the National Academy of Sciences, 117*(49), 31063-31069.

Caprara, G. V. (2007). The personalization of modern politics. *European Review, 15*(2), 151–164.

Caprara, G. V., Schwartz, S., Capanna, C., Vecchione, M., & Barbaranelli, C. (2006). Personality and politics: Values, traits, and political choice. *Political Psychology, 27*(1), 1-28.

Caprara, G. V., Schwartz, S. H., Vecchione, M., & Barbaranelli, C. (2008). The personalization of politics: Lessons from the Italian case. *European Psychologist, 13*(3), 157–172.

Carlana, M. (2019, 03). Implicit Stereotypes: Evidence from Teachers’ Gender Bias. *The Quarterly Journal of Economics, 134*(3), 1163-1224.

Conroy, M., Oliver, S., Breckenridge-Jackson, I., & Heldman, C. (2015). From ferraro to palin: sexism in coverage of vice presidential candidates in old and new media. *Politics, Groups, and Identities, 5*(4), 573-591.

Drago, F., Nannicini, T., & Sobbrio, F. (2014, July). Meet the press: How voters and politicians respond to newspaper entry and exit. *American Economic Journal: Applied Economics, 6*(3), 159-88.

Fast, E., Vachovsky, T., & Bernstein, M. S. (2016, may). Shirtless and dangerous: Quantifying linguistic signals of gender bias in an online fiction writing community. In *Proceedings of the tenth international aaai conference on web and social media (icwsm 2016)* (p. 112-120). Cologne, Germany: AAAI Press.

Gerber, A. S., Karlan, D., & Bergan, D. (2009, April). Does the media matter? A field experiment measuring the effect of newspapers on voting behavior and political opinions. *American Economic Journal: Applied Economics, 1*(2), 35-52.

Hatzivassiloglou, V., & Wiebe, J. M. (2000). Effects of adjective orientation and gradability on sentence subjectivity. In *Proceedings of the 18th conference on computational linguistics - volume 1* (p. 299–305). USA: Association for Computational Linguistics.

Honnibal, M., Montani, I., Van Landeghem, S., & Boyd, A. (2020). spaCy: Industrial-strength Natural Language Processing in Python. Zenodo.

Koenig, A. M., Eagly, A. H., Mitchell, A. A., & Ristikari, T. (2011). Are leader stereotypes masculine? a meta-analysis of three research paradigms. *Psychological Bulletin, 137*(4), 616-642.

Landerer, N. (2013). Rethinking the logics: A conceptual framework for the mediatization of politics. *Communication Theory, 23*(3), 239-258.

Letti, G. (1983). *Statistica descrittiva*. Il Mulino.

Master, A., Meltzoff, A. N., & Cheryan, S. (2021). Gender stereotypes about interests start early and cause gender disparities in computer science and engineering. *Proceedings of the National Academy of Sciences, 118*(48).

Örnebring, H., & Jönsson, A. M. (2004). Tabloid journalism and the public sphere: a historical perspective on tabloid journalism. *Journalism Studies, 5*(3), 283-295.

O’Neill, D., Savigny, H., & Cann, V. (2016). Women politicians in the UK press: not seen and not heard? *Feminist Media Studies, 16*(2), 293-307.

Pang, B., & Lee, L. (2008, jan). Opinion mining and sentiment analysis. *Found. Trends Inf. Retr., 2*(1–2), 1–135.

Simonton, D. K. (1986). Presidential personality: Biographical use of the Gough adjective
check list. *Journal of Personality and Social Psychology, 51*(1), 149–160.

Skovsgaard, M. (2014). A tabloid mind? professional values and organizational pressures as explanations of tabloid journalism. *Media, Culture & Society, 36*(2), 200-218.

Trimble, L., Wagner, A., Sampert, S., Raphael, D., & Gerrits, B. (2013). Is it personal? Gendered mediation in newspaper coverage of Canadian national party leadership contests, 1975–2012. *The International Journal of Press/Politics, 18*(4), 462-481.

Van Aelst, P., Sheafer, T., & Stanyer, J. (2012). The personalization of mediated political communication: A review of concepts, operationalizations and key findings. *Journalism, 13*(2), 203-220.

Van der Pas, D. J., & Aaldering, L. (2020, 02). Gender Differences in Political Media Coverage: A Meta-Analysis. *Journal of Communication, 70*(1), 114-143.

Wagner, A., Trimble, L., & Sampert, S. (2019). One smart politician: Gendered media discourses of political leadership in Canada. *Canadian Journal of Political Science, 52*(1), 141–162.

Whitelaw, C., Garg, N., & Argamon, S. (2005). Using appraisal groups for sentiment analysis. In *Proceedings of the 14th acm international conference on information and knowledge management* (p. 625–631). New York, NY, USA: Association for Computing Machinery.

Wilks, Y., & Stevenson, M. (1998). The grammar of sense: Using part-of-speech tags as a first step in semantic disambiguation. *Natural Language Engineering, 4*(2), 135–143.

Yu, H., & Hatzivassiloglou, V. (2003). Towards answering opinion questions: Separating facts from opinions and identifying the polarity of opinion sentences. In *Proceedings of the 2003 conference on empirical methods in natural language processing* (p. 129–136). USA: Association for Computational Linguistics.
SUPPLEMENTAL MATERIAL FOR
Gender stereotypes in the mediated personalization of politics: Empirical evidence from a lexical, syntactic and sentiment analysis

Supplementary text

List of news media sources

Table S1 reports the list of all the news media sources that produced the contents analyzed in the paper, divided by type of source (traditional newspapers or online news outlets).

Headline	Source set
24Emilia	Online news outlets
4 Minuti	Online news outlets
7per24	Online news outlets
Affari Italiani	Online news outlets
Agorà 24	Online news outlets
Agrigento Oggi	Online news outlets
AgrigentoWeb	Online news outlets
AlQamah	Online news outlets
altarimini.it	Online news outlets
Alto Adige	Traditional newspapers
Ancona Today	Online news outlets
Ancona Notizie	Online news outlets
Arezzo Web	Online news outlets
Augusta Online	Online news outlets
Avellino Today	Online news outlets
Avvenire	Traditional newspapers
Bagheria News	Online news outlets
Bari Today	Online news outlets
Basilicata Notizie	Online news outlets
Blasting News	Online news outlets
Blitz Quotidiano	Online news outlets
Blog Beppe Grillo	Online news outlets
Blog Sicilia	Online news outlets
Blogo	Online news outlets
Bologna Today	Online news outlets

Continued on next page
Headline	Source set
Bologna2000	Online news outlets
Brescia Oggi	Traditional newspapers
Brescia Today	Online news outlets
Brindisi Report	Online news outlets
CalNews.it	Online news outlets
Campania Su Web	Online news outlets
CanicattiWeb	Online news outlets
CastelloIncantato	Online news outlets
CastelVetranoSelinunte	Online news outlets
Catania Oggi	Online news outlets
Catania Today	Online news outlets
Catania46	Online news outlets
Catanzaro Informa	Online news outlets
CefaluNews	Online news outlets
Centonove.it	Online news outlets
Cesena Today	Online news outlets
ChartaBianca	Online news outlets
Chieti Today	Online news outlets
Città della Spezia	Online news outlets
City News	Online news outlets
CoriglianoCalabro	Online news outlets
Corriere Adriatico	Traditional newspapers
Corriere Comunicazioni	Online news outlets
Corriere del Mezzogiorno	Traditional newspapers
Corriere del Trentino	Traditional newspapers
Corriere del Veneto	Traditional newspapers
Corriere dell’Alto Adige	Traditional newspapers
Corriere dell’Umbria	Traditional newspapers
Corriere Della Calabria	Online news outlets
Corriere della Sera	Traditional newspapers
Corriere delle Alpi	Traditional newspapers
Corriere dello Sport	Traditional newspapers
Corriere dello Sport Stadio	Traditional newspapers
Corriere di Bologna	Traditional newspapers
Corriere di Romagna	Traditional newspapers
Corriere di Sciacca	Online news outlets
Corriere Fiorentino	Traditional newspapers
corrierediroma-news.it	Online news outlets
Cronaca Qui	Traditional newspapers
cronacadelveneto.com	Online news outlets
cronacadiverona.com	Online news outlets
Cronache di Caserta	Traditional newspapers
Cronache di Napoli	Traditional newspapers
cronachemaceratesi.it	Online news outlets
Crotone24News	Online news outlets
Dagospia	Online news outlets
Data Sport	Online news outlets

Continued on next page
Headline	Source set
Dg Mag	Online news outlets
Diritto Di Cronaca	Online news outlets
ECNews	Online news outlets
Eco Di Basilicata	Online news outlets
Economia Sicilia	Online news outlets
EconomyUp	Online news outlets
Edicola Di Pinuccio	Online news outlets
emiliaromagnanews.it	Online news outlets
Estense	Online news outlets
FanPage	Online news outlets
ferrara24ore.it	Online news outlets
Firenze Today	Online news outlets
Foggia Today	Online news outlets
Forli 24 Ore	Online news outlets
Forli Today	Online news outlets
Formiche	Online news outlets
Gazzetta del Sud	Traditional newspapers
Gazzetta Dell’Emilia	Online news outlets
Gazzetta di Mantova	Traditional newspapers
Gazzetta di Modena	Traditional newspapers
Gazzetta di Parma	Traditional newspapers
Gazzetta di Reggio	Traditional newspapers
GazzettaJonica	Online news outlets
Genova Today	Online news outlets
Giornale Del Cilento	Online news outlets
Giornale di Brescia	Traditional newspapers
Giornale di Sicilia	Traditional newspapers
Giornale Il Sud	Online news outlets
Giornale L’Ora	Online news outlets
Giornale Nisseno	Online news outlets
Giornale DiLipari	Online news outlets
Giornalettismo	Online news outlets
GIPress	Online news outlets
Gomarche	Online news outlets
GrandangoloAgrigento	Online news outlets
Hercole	Online news outlets
Huffington Post	Online news outlets
I Giornali di Sicilia	Online news outlets
Il Centro	Traditional newspapers
Il Cittadino	Traditional newspapers
Il Crotonese	Online news outlets
Il Dispaccio	Online news outlets
Il Dubbio	Traditional newspapers
Il Fatto Nisseno	Online news outlets
Il Fatto Quotidiano	Traditional newspapers
Il Fogliettone	Online news outlets
Il Foglio	Traditional newspapers
Headline	Source set
--------------------------------	---------------------
Il Gazzettino	Traditional newspapers
Il Giornale	Traditional newspapers
Il Giornale D’Italia	Online news outlets
Il Giornale Di Vicenza	Traditional newspapers
Il Giorno	Traditional newspapers
Il Lametino	Online news outlets
Il Manifesto	Traditional newspapers
Il Mattino	Traditional newspapers
Il Mattino di Padova	Traditional newspapers
Il Messaggero	Traditional newspapers
Il Nuovo Giornale di Modena	Online news outlets
Il Pescara	Online news outlets
Il Piacenza	Online news outlets
Il Piccolo	Traditional newspapers
Il Post	Online news outlets
Il Quaderno.it	Online news outlets
Il Resto del Carlino	Traditional newspapers
Il Roma	Traditional newspapers
Il Secolo XIX	Traditional newspapers
Il Sole 24 Ore	Traditional newspapers
Il Tempo	Traditional newspapers
Il Tirreno	Traditional newspapers
IlCaffeGeopolitico	Online news outlets
ilcittadinodimessina.it	Online news outlets
lDiarioMetropolitano	Online news outlets
lDolomiti	Online news outlets
lFattoVesuviano	Online news outlets
lNordEstQuotidiano	Online news outlets
lPaeseNuovo	Online news outlets
lQuotidianoItaliano	Online news outlets
lSussidiario.net	Online news outlets
Infiltrato	Online news outlets
IonioNotizie	Online news outlets
IrpiniaNews	Online news outlets
Italia Oggi	Traditional newspapers
Key4Biz	Online news outlets
L’Adige	Traditional newspapers
L’Arena	Traditional newspapers
L’Eco di Bergamo	Traditional newspapers
L’Eco di Parma	Online news outlets
L’Osservatore Romano	Traditional newspapers
L’Unione Sarda	Traditional newspapers
L’Unità	Traditional newspapers
La Città di Salerno	Traditional newspapers
La Gazzetta del Mezzogiorno	Traditional newspapers
La Gazzetta dello Sport	Traditional newspapers
La Gazzetta Ennese	Online news outlets
Headline Source set	Source set
---------------------	------------
La Gazzetta Trapanese	Online news outlets
La Nazione	Traditional newspapers
La Nota 7	Online news outlets
La Nuova di Venezia e Mestre	Traditional newspapers
La Nuova Ferrara	Traditional newspapers
La Nuova Sardegna	Traditional newspapers
La Prealpina	Traditional newspapers
La Provincia di Como	Traditional newspapers
La Provincia di Cosenza	Traditional newspapers
La Provincia di Lecco	Traditional newspapers
La Provincia di Sondrio	Traditional newspapers
La Provincia di Varese	Traditional newspapers
La Provincia Pavese	Traditional newspapers
La Repubblica	Traditional newspapers
La Riviera Online	Online news outlets
La Sberla	Online news outlets
La Sicilia	Traditional newspapers
La Sicilia Web	Online news outlets
La Stampa	Traditional newspapers
La Tribuna di Treviso	Traditional newspapers
La Verità	Traditional newspapers
La Voce	Online news outlets
La Voce di Mantova	Traditional newspapers
La Voce di Romagna	Traditional newspapers
LAdigetto	Online news outlets
LameziaClick	Online news outlets
lascansione.net	Online news outlets
Latina Quotidiano	Online news outlets
Latina Today	Online news outlets
LaVoceDelNordEst	Online news outlets
LaVoceDelTrentino	Online news outlets
Le Cronache Lucane	Online news outlets
LecceCronaca	Online news outlets
LecceNews24	Online news outlets
LeccePrima	Online news outlets
Lecco Today	Online news outlets
LegnanoNews	Online news outlets
Lettera 43	Online news outlets
Libero	Traditional newspapers
Libero Reporter	Online news outlets
Libertà	Traditional newspapers
lindiscreto.it	Online news outlets
LinKiesta	Online news outlets
lintraprendente.it	Online news outlets
LiveSicilia	Online news outlets
Lo Spiffero	Online news outlets
Lo Strillone	Online news outlets

Continued on next page
Headline Source set	Headline Source set
LOccidentale Online news outlets	Lugonotizie Online news outlets
MadonieLive Online news outlets	Magaze Online news outlets
Marsala News Online news outlets	Mazara Online Online news outlets
Mazzara Online Online news outlets	Mc Net Tv Online news outlets
Megachip Online news outlets	MeridioNews Online news outlets
Messaggero Veneto Traditional newspapers	Messina Oggi Online news outlets
Messina Ora Online news outlets	MF Traditional newspapers
Milano Today Online news outlets	Mo24 Online news outlets
Modena Online Online news outlets	Modena Today Online news outlets
Modena Today Online news outlets	Modena2000 Online news outlets
MondoCatania Online news outlets	Monza Today Online news outlets
Monza Today Online news outlets	Msn Online news outlets
Nano Press Online news outlets	Napoli Today Online news outlets
Newz Online news outlets	NordMilano24 Online news outlets
Normanno Online news outlets	Notizie Online news outlets
Novara Today Online news outlets	Nta Calabria Online news outlets
Nuova Cosenza Online news outlets	Nuova Società Online news outlets
Nuovo Sud Online news outlets	Oggi Milazzo Online news outlets
Open Online Online news outlets	Padova News Online news outlets
Padova Oggi Online news outlets	Palermo Mania Online news outlets
Palermo Today Online news outlets	Parma Online Online news outlets
Parma Quotidiano Online news outlets	Parma Today Online news outlets
ParmaDaily.it Online news outlets	ParmaReport Online news outlets
Pavaglione Lugo Online news outlets	Perugia Today Online news outlets
Piacenza24 Online news outlets	PiacenzaSera.it Online news outlets
PiacenzaSera.it Online news outlets	Continued on next page

6
Table S1 – continued from previous page

Headline	Source set
Picchio News	Online news outlets
Pisa Today	Online news outlets
Piu Notizie	Online news outlets
Puglia Live	Online news outlets
QtSicilia	Online news outlets
Quotidiano di Puglia	Traditional newspapers
Quotidiano di Sicilia	Traditional newspapers
Ragusa Oggi	Online news outlets
RagusaNews	Online news outlets
Ravenna Today	Online news outlets
Ravenna24Ore.it	Online news outlets
Ravennanotizie.it	Online news outlets
ravennawebtv.it	Online news outlets
Redacon	Online news outlets
Reggio Nel Web	Online news outlets
Reggio Report	Online news outlets
Reggio Sera	Online news outlets
Reggio2000	Online news outlets
ResegoneOnline	Online news outlets
Rete News 24	Online news outlets
Rimini Today	Online news outlets
Roma	Traditional newspapers
Roma Today	Online news outlets
Salerno Today	Online news outlets
Sanremo News	Online news outlets
Sardegna Oggi	Online news outlets
Sardinia Post	Online news outlets
Sassari Notizie	Online news outlets
Sassuolo Oggi	Online news outlets
Sassuolo2000	Online news outlets
Savona Notizie	Online news outlets
SciroccoNews	Online news outlets
SceltoTrentino	Online news outlets
SempioneNews	Online news outlets
Settesere	Online news outlets
Si24	Online news outlets
Sicilia Journal	Online news outlets
Sicilia Today	Online news outlets
Sicilia24h	Online news outlets
SiciliaInformazioni	Online news outlets
SiciliaNews24	Online news outlets
Sicilians	Online news outlets
Siracusa Live	Online news outlets
Siracusa News	Online news outlets
Siracusa Oggi	Online news outlets
Stretto Web	Online news outlets
Strill	Online news outlets

Continued on next page
Table S1 – continued from previous page

Headline	Source set
SudPress	Online news outlets
TargatoCN	Online news outlets
Telestense	Online news outlets
TempoStretto	Online news outlets
The Social Post	Online news outlets
Tiscali	Online news outlets
Today	Online news outlets
Torino Today	Online news outlets
TP24	Online news outlets
TPI News	Online news outlets
Trapani Oggi	Online news outlets
TrapaniOk	Online news outlets
Trentino	Traditional newspapers
Trento Today	Online news outlets
Treviso Today	Online news outlets
Trieste Prima	Online news outlets
TuttoSport	Traditional newspapers
Udine Today	Online news outlets
Urban Post	Online news outlets
Vai Taormina	Online news outlets
Varese News	Online news outlets
Venezia Today	Online news outlets
Verona Sera	Online news outlets
Vicenza Today	Online news outlets
vivereancona.it	Online news outlets
ViviEnna	Online news outlets
vocceditalia.it	Online news outlets
Web Marte	Online news outlets
Yahoo Notizie	Online news outlets
Zoom Sud	Online news outlets

Preprocessing procedure

The space of our investigation is represented by the universe of all the articles reported in all national (and multiregional) newspapers and online news outlets during the period from January 2017 to November 2020. The news items collected are filtered according to the occurrence of named entities referring to the political offices under scrutiny. We consider as named entity one of the following mentions:

- name + surname, e.g. *Chiara Appendino, Attilio Fontana*
- role + surname, e.g. *Governor De Luca, Minister Fedeli, Undersecretary Castelli*
- specific role, e.g. *Governor (or President) of Lazio, Governor (or President) of the Lazio Region, Mayor of Rome, Minister of Interior*

We first perform a sequence of actions to the texts of the resulting collection of news items D_c. These steps include the splitting of contents into sentences and the pruning of sentences not mentioning the entities investigated, the part-of-speech (POS) tagging and the dependency parsing tasks. In addition, the single words are reduced to their
base (or lemma) forms by means of a manually created list token-lemma available at https://github.com/brema76/lemmatization-ita. Further, a list of terms which do not add much meaning to a sentence (stopwords) is filtered out together with digits, special characters and URL addresses. Second, we exploit the syntactic structures of the remaining sentences in order to select only the words which are more likely to be attributed to the named entity mentioned. In addition, for each of these terms we determine its semantic orientation in the political domain.

Syntactic n-grams Vs linear n-grams

The personalization literature which relies on computer-assisted content analysis mainly consists in searching for media contents that contain at least one of the words of a pre-specified lexicon within a certain linear distance to the politician under scrutiny ([Aaldering, van der Meer, & Van der Brug, 2018](#); [Aaldering & Vliegenthart, 2016](#); [Hollanders & Vliegenthart, 2011](#)). Nevertheless, for identifying the words in a sentence which are actually attributed to a given target, linear n-grams in the sense of adjacent strings of tokens, parts of speech, etc. could be not satisfactory. For instance, consider the sentence

The mayor of Rome met the actress visiting the capital.

Since the personalizing word actress is at distance 3 from the named entity mayor of Rome, any system based on linear n-grams with \(n \geq 3 \) would regard it as referred to the political office holder. One possible approach for overcoming this problem is the use of syntactic n-grams. Instead of following the sequential order in the sentence, the linguistic pattern of the words is based on their respective position in the syntactic parse tree. We argue that the words which appear nearby a named entity in the dependency tree are more likely candidates for personalizing expressions. For instance, adjectives generally appear in a dependency tree close to the nouns they describe. Hence, we limit our scope to the syntactic neighborhoods of the named entities which refer to the politicians under scrutiny, by keeping only adjectives, nouns and verbs (except auxiliary and modal). Figure S1 shows the dependency tree of the aforementioned example sentence.

![Figure S1. The dependency tree of the example sentence.](image)

The words within the red rectangle represent the named entity under scrutiny, whereas the green circles represent the corresponding syntactic neighbors. Since these latter are both excluded from the analysis (*the* is a stopword and *meet* is not in our lexicon), the sentence is pruned, notwithstanding the simultaneous presence of a named entity under investigation (*mayor of Rome*) and a personalizing word (*actor*).
Words as coded units to analyze

Fig. S2 shows the complementary cumulative distribution function (CCDF) of both the number of syntactic neighbors per sentence (main plots) and the number of sentences per politician (inset plots). Data are divided by both dataset (coverage and personalization, respectively) and gender.

Despite the considerable difference in coverage between women and men, the two representatives exhibit very similar patterns with respect to the number of both sentences and syntactic neighbors. Furthermore, in almost all the sentences in the personalization dataset D_p, the syntactic neighborhood of the named entity mentioned consists of a single lexicon word. Hence, albeit we aim to refer to sentences as coded units to analyze, for the sake of simplicity we consider the single lexicon words instead.

The sentiment classification of personalizing words in the political domain

The annotators hired for manually assigning a sentiment score to each personalizing word (-1, 0 and 1 for negative, neutral and positive meanings, respectively), are instructed to proceed by contextualizing the words to annotate in the political domain. The task of identifying the semantic orientation of the single words as referer to political offices requires indeed a particular attention. For instance, the terms teenager, fairy, powerful, tempting could have a positive or neutral sentiment in a more general context, but they certainly gain a negative sense when attributed to politicians. To summarize the semantic orientation of a single word in our lexicon, we assign it the average value of the five scores received during the annotation process. According to their aggregate sentiment scores, we further classify the lexicon words as depicted in Table S2.

Aside from the aggregate sentiment score of each lexicon word, we also measure the agreement among annotators as results from the Krippendorff’s alpha (α). This coefficient accounts for the reliability of the annotation process by returning a real
value between 0 (total disagreement) and 1 (perfect agreement). Note that \(\alpha \) also accounts for different metrics. Since the sentiment scores assigned by each annotator have the meaning of ranks, we use the ordinal metric \(\text{Krippendorff, 2004} \).

The definition of the coverage bias index \(I \)

For a word \(w \) observed in the coverage dataset \(D_c \), let \(|w_F| \) and \(|w_M| \) be the counts for women and men, respectively. Let \(|F| \) and \(|M| \) be the total number of women and men politicians for which at least one record is found in \(D_c \). Let \(|D_F| \) and \(|D_M| \) be the total number of words addressed to women and men, respectively, so that \(|D_T| = |D_F| + |D_M| \) is the total number of words listed in \(D_c \). Thus, \(a_F = \frac{|D_F|}{|F|} \) and \(a_M = \frac{|D_M|}{|M|} \) are the average numbers of words per woman and man, respectively.

Given the above notation, consider the incidence rates:

\[
 t_F(w) = \frac{|w_F|}{|D_F|}, \quad t_M(w) = \frac{|w_M|}{|D_M|}
\]

(1)

reporting the importance of a word count relative to total number of words per women and men, respectively. Given the structural under-presence of women in politics, it is reasonable to find \(|D_F| < |D_M| \) and \(|F| < |M| \). However, if the average number of words per individual is constant given gender \((a_F \approx a_M) \), one could claim that news coverage is homogeneous and women and men are equally represented. In order to adjust the observed incidence rates for gender bias given by (1), we define the coverage factors to be the importance of \(a_F \) and \(a_M \) relative to their average \(\bar{a} = \frac{1}{2}(a_F + a_M) \).

Specifically, the proposal is to adjust the total counts \(|D_F| \) and \(|D_M| \) with correction factors \(c_F \) and \(c_M \) defined as:

\[
 c_F = \frac{a_F}{\bar{a}}, \quad c_M = \frac{a_M}{\bar{a}}.
\]

(2)

Consequently, we propose to measure gender bias in coverage in terms of the adjusted incidence rates:

\[
 \tilde{t}_F(w) = \frac{t_F(w)}{c_F|D_F|}, \quad \tilde{t}_M(w) = \frac{t_M(w)}{c_M|D_M|}
\]

(3)
Clearly, if news coverage is gender-balanced, then both c_F and c_M will be close to 1 and one recovers (1) from (3). The smaller a_F is relative to \tilde{a} instead, the stronger is the magnification effect on words’ count needed to compare words’ incidence rates for women with those of men in order to account for unbalanced coverage. Dually, the larger is a_M with respect to \tilde{a}, the higher c_M will and thus the corresponding word’s incidence \tilde{t}_M will be more mitigated.

The reliability of I

We give an assessment on the reliability of the coverage bias index I, by investigating its behavior under different scenarios. Figure S3 shows the values of I (y-axis) for increasing values of $|D_F|$ (x-axis), ranging from 0 to the observed total number of word counts $|D_T|$ in the coverage dataset.

![Figure S3. The behavior of the coverage bias index I for different scenarios.](image)

Let us consider the case of a word w such that $|w_F| = |w_M|$ which corresponds to the solid lines. First focus on the black solid line, corresponding to the circumstance of a sample balanced for gender ($|F| = |M|$). In this case:

- $I(w) = 0$ if and only if $|D_F| = |D_M| = \frac{|D_T|}{2}$.
- If $|D_F| < \frac{|D_T|}{2}$ instead, since $|F| = |M|$, average of words count per women is lower than average words count per men. Thus, $I(w) > 0$ for each word w such that $|w_F| = |w_M|$ and the usage of w is positively biased for women (the observed value for $|D_F|$ is identified, for reference, by the vertical dotted line).

Then consider the blue solid line, corresponding to the observed unbalanced sample.

- Under the scenario $|D_F| = |D_M|$, the density of words per women is higher than it is for men. Thus, $I(w) < 0$ for each word w such that $|w_F| = |w_M|$ and w is relatively more used for men than for women.
- For a word w such that $|w_F| = |w_M|$, it is possible to find $I(w) = 0$ only if $|D_F| < |D_M|$ (see the intersection point of the blue solid line with the line $I = 0$). Then, for the unbalanced sample of individuals, for a word w such that
\[|w_F| = |w_M|, \] homogeneity of coverage given gender \((I(w) = 0)\) is reached only for \(|D_F| < |D_M|\).

- The blue solid line is constantly below the black solid line: this indicates that, for all values of \(|D_F|\), the coverage bias index \(I(w)\) of a word \(w\) such that \(|w_F| = |w_M|\) is constantly lower if \(|F| < |M|\) than if \(|F| = |M|\). Indeed, for a fixed value of \(|D_F|\), the average number of words per individual is lower for women than it is for men if \(|F| < |M|\) than if \(|F| = |M|\).

The yellow solid line corresponds to the scenario in which \(|F| > |M|\): in particular we set \(|F| = 3|M|\). In this case, if \(|D_F| = |D_M| = \frac{|D_T|}{2}\), for each word \(w\) such that \(|w_F| = |w_M|\), the coverage index will assume positive values to account for the lower coverage per individual observed for women.

Lastly, we study the behavior of \(I\) for a word \(w\) such that \(|w_F| \neq |w_M|\). Consider first the case \(|w_F| < |w_M|\) (dashed lines of Figure S3), it holds that:

- With respect to the case \(|w_F| = |w_M|\), in the scenario of equilibrium \(|F| = |M|\) and \(|D_F| = |D_M|\) (black dashed line), the index value \(I(w)\) is lower than 0, correctly reporting that the word is more used for men than it is for women.
- Given this benchmark, if \(|F| < |M|\) but \(|D_F| = |D_M|\) (blue dashed line), the index value would further decrease to account also for the lower density of words per men with respect to that of women. This circumstance applies for all values of \(|D_F|\).
- Given the equilibrium benchmark, if \(|F| > |M|\) but \(|D_F| = |D_M|\) (yellow dashed line), \(i\) would increase instead to account for the higher density of words per men with respect to that of women (by penalized the word frequency). This circumstance applies for all values of \(|D_F|\).

Dual reasoning applies for a word \(w\) such that \(|w_F| > |w_M|\) (dotted lines of Figure S3).

Comparing the levels of personalized coverage of women and men representatives

Fig. S4 shows the percentage of media coverage containing references to personal details of the political offices under scrutiny, with respect to different textual units.

![Figure S4](image_url). Personalization coverage with respect to different textual units.
Namely, we consider the media contents and the sentences contained therein where a politician is mentioned, as well as the (distinct) personalizing words which constitute the syntactic neighborhood of the corresponding named entity. The observations underlying each empirical Probability Density Function (PDF) curve represent the single politicians and the corresponding sizes the amount of personal coverage they received. The vertical lines indicate the average rates as a result of considering all the politicians as a whole. Except a few offices who, nonetheless, do not attract a significant personal reporting, the fraction of personalized coverage is always below 10% for every other politician. The breakdown by gender reveals instead that women representative attracts more personal reporting with respect to all the textual units considered, especially words and distinct words.

To gain a deeper insight into the nature of this gender-differentiated coverage, we analyze different aspects of the personalization in relation to news content. Namely, each personalized element is classified according to whether it refers to moral-behavioral characteristics, physical characteristics, or socio-economic characteristics. Fig. S5 displays the distribution of the lexicon words among the specified categories and the number of times they are used as references to women and men politicians, respectively (right panel). Moreover, it shows that media attention on personal details of women politicians is distributed over the three categories similarly to the men representative (left panel).

![Figure S5](image)

Figure S5. The distribution of the lexicon words between the three facets of the personalization, and the corresponding cumulative frequency with regard to the women and men coverage, respectively (right panel). The fraction of women and men personalized coverage, respectively, with respect to the same facets of the phenomenon (left panel). Behavior of the coverage bias index I for different scenarios.

Nevertheless, women politicians generally receive more attention on their private life (nearly 2.5% and 5% more than their men colleagues with respect to physical and socio-economic characteristics, respectively). To the contrary, there is a greater focus on moral and behavioral characteristics of men politicians (nearly 8% more than the women representative).

Analysis of the personalization phenomenon through time

To check whether the observed gaps are due to specific and time-limited events or they reflect the persistence of entrenched gender stereotypes, we also investigate the
personalization phenomenon through time. Namely, we consider the time series whose data-points are represented by the daily fraction of personalized coverage concerning each analyzed category for women and men politicians, respectively, and we estimate the underlying trends in each time series by taking a 3-months simple moving average (Arce, 2004), i.e. the data-point at time t is given by the mean over the last 90 data-points:

$$\bar{p}(t) = \frac{1}{90} \sum_{\tau=1}^{90} p(t - \tau + 1)$$ \hspace{1cm} (4)

where $p(t)$ is the actual daily fraction of personalized coverage at time t.

Coverage on both physical and socio-economic characteristics results almost continuously higher for women than men politicians (89-11% and 82-18% of data-points, respectively), suggesting that such personal details typically receive more focus when concerning the women representative. Instead, with respect to moral and behavioral characteristics, neither of the two series is constantly over the other and a number of alternations occurs throughout the period (women prevalence covers 54% of data-points, men prevalence 46%).

In addition, to measure the cumulative difference between the two trends, we rely on the area of the region R between the moving average curves $\bar{p}_F(t)$ and $\bar{p}_M(t)$, and bounded on the left and right by the lines $t = t_s$ and $t = t_f$, respectively, where t_s and t_f are the extreme values of the time domain. The area of R is given by

$$A = \int_{t_s}^{t_f} |\bar{p}_F(t) - \bar{p}_M(t)| \, dt$$ \hspace{1cm} (5)

and it holds $A = A_F + A_M$, where A_F is the area of the region where $\bar{p}_F(t) > \bar{p}_M(t)$ and A_M is the area of the region where $\bar{p}_M(t) > \bar{p}_F(t)$.

Table S3 shows the values of A_F, A_M and A for each analyzed category, as a result of the numerical approximation of (5) using Simpson’s rule (Jeffreys & Jeffreys, 1999).

Category	A_F	A_M	A
Moral and behavioral	1.073	0.996	2.069
Physical	1.770	0.044	1.814
Social and economic	4.571	0.701	5.272

Table S3. Area of the region between the moving average curves $\bar{p}_F(t)$ and $\bar{p}_M(t)$, and bounded on the left and right by the lines $t = t_s$ and $t = t_f$, respectively, where t_s and t_f are the extreme values of the time domain. For each analyzed category, A_F is calculated for any t such that $\bar{p}_F(t) > \bar{p}_M(t)$, A_M for any t such that $\bar{p}_M(t) > \bar{p}_F(t)$, and A over the entire time domain.

Despite the physical trends define the smallest region, the breakdown by gender reveals the irrelevance of the few parts with a men prevalence. The moving average curves concerning moral and behavioral characteristics limit a little bit larger region, but the parts with women and men prevalence, respectively, are approximately equivalent. Finally, the socio-economic moving averages are combined with both the biggest region and the greatest difference between areas of the subregions with women and
men prevalence, respectively. Summarizing, the coverage gaps concerning private life (physical appearance and socio-economic background) can be reasonably framed as a result of the persistence of entrenched female stereotypes, being such personal descriptions almost continuously higher for female than male politicians throughout the period. Instead, the lack of a clear dominant trend regarding moral and behavioral characteristics suggests a more mitigated (or at least a more balanced) effect of gender stereotypes.

Gender differences in the content of media coverage

The wordclouds of Figure S6 show a comparison of the most distinctive words of women and men politicians, respectively, with regard to each analyzed facet of personalization. A word w^* belonging to one of the analyzed facet of personalization for which $Diss_{-w^*} < Diss$ is considered men-distinctive if $t_M(w^*) > t_E(w^*)$, women-distinctive otherwise. The font size of w^* is proportional to the difference $Diss - Diss_{-w^*}$ and represents the dissimilarity of the frequency distributions obtained after omitting w^* from the dataset.

![Figure S6. Comparison of the most distinctive personalized words of women and men politicians.](image)

The Moral and behavioral wordle shows that stereotypically men politicians are depicted as:

- powerful: sheriff/sceriffo, strong/duro, colonel/colonnello, intrusive/invadenza, impetuosity/irruenza;
- active: mediator/mediatore, advocate/fautore, ability/abilità, desire/voglia, cynical/cinico, unscrupulous/spregiudicato, fiery/fiero, bold/azzardato, convulsive/convulso, competitive/competitivo;
- violent: underworld/malavita, bad/cattivo, assassin/assassino, beast/bestia, animal/animale, barbarian/barbaro, dictator/dittatore, warlike/bellicosso.

On the contrary, it is impressive how strongly women are perceived as not fit to hold public office: unfit/inadeguato, incapability/incapacità, unprepared/impreparato, gaffe, madness/follia, incompetent/incapace, unsuitable/inadatto, embarrassment/figuraccia, stupid/scemo, disastrous/disastroso, trouble/pasticcio, jerk/cretino, misinformed/disinformato, inexperienced/inesperto.
Along this path, concerning social and economic characteristics, it is interesting to note that all the words referred to parenting (mum/mamma, mother/madre, father/padre, dad/papà-babbo) are unbalanced towards women, as if to stress the role played by powerful parents in the political careers of their daughters.

With respect to physical characteristics, it is worth to differentiate between physical appearance, clothing and body parts. With reference to physical appearance, men politicians are mainly depicted with reference to size: soft/molle, slender/secco, puffy/gonfio, exaggerated/esagerato, robust/robusto, dwarf/nano, imposing/imponente, massive/massiccio, clumsy/maldestro, portly/corpulento, smug/tronfio, fat/grasso, skinny/magro. On the other hand, women politicians receive a greater deal of focus on their attractiveness: pretty/bello, smile/sorriso, lover/amante, tall/alto, fashion parade/sfilata, cute/carino, beauty queen/reginetta, baby girl/bambolina, fairy/fatina, sexy. With reference to clothing, male politicians are mostly portrayed with casual outfits (sweatshirt/felpa, vest/gilet, shirt/maglietta, hat/cappello, shorts/pantaloncino, jacket/giaccone), whereas female with stylish ones (blouse/blusa, pantsuit/pantalone, dress/abito, suit/completo, blazer/giacca, tailleur, collar/colletto, tie/cravatta). Finally, with a few exception in favour of men (nose/naso, tummy/pancia, stomach/stomaco, back/schiena), body parts are mentioned more as reference to women (eye/occhio, backside/sedere, mouth/bocca, ear/orecchio, neck/collo, foot/piede, leg/gamba, bosom/seno, lip/labbro, nail/unghia, blonde hair/biondo).

The restriction to negative meanings does not produce significant differences with the general wordles of Figure S6 as regards to both Moral and behavioral category and Physical category. This implies that most of the gender-distinctive words in such categories are assigned with a negative sentiment. With reference to socio-economic characteristics, a negative sentiment towards men is mostly associated with underworld and criminal organizations (adept/sequace, servility/servilismo, gun/pistola, freemason/massone, freemasonry/massoneria, hierarch/gerarca, clique/casca, gang/cricca, rabble/gentaglia, henchman/tirapiedi, whoremonger/protettore, pimp/pappone, kidnapper/sequestratore, usury/usura, clientelist/clientelare, dealer/trafficante). On the other hand, a negative sentiment towards women is mainly used to describe their economic status (rich/ricco, poor/povero, billionaire/miliardario, burgeois/borghese, poverty/miseria, scrooge/paperone, baron/barone, homeless/senzatetto, pauper/meschino, needy/poverello, viscount/visconte).

Coverage dataset	Personalization dataset			
	F	M	F	M
Traditional newspapers	550,681	3,106,012	14,803	71,415
(565,822)	(3,090,871)	(15,289)	(70,929)	
Online news outlets	378,479	1,969,639	9,072	39,350
(363,338)	(1,984,780)	(8,586)	(39,836)	
χ^2 statistics	1225.7	52.0		

Table S4. Words count per gender conditional to both dataset (coverage and personalization) and source type (traditional newspapers and online news outlets). Corresponding χ^2 statistics is reported. Expected frequency under the assumption of independence of coverage between gender of the politician and source type are reported in smaller italics font for each cell.
Dataset S1 (separate file)

List of 3,303 personalizing words annotated with the corresponding sentiment classification as referred to political offices. Words are grouped by category: Moral and behavioral, Physical, Social and economic.
References

Aaldering, L., van der Meer, T., & Van der Brug, W. (2018). Mediated leader effects: The impact of newspapers’ portrayal of party leadership on electoral support. The International Journal of Press/Politics, 23(1), 70-94.

Aaldering, L., & Vliegenthart, R. (2016). Political leaders and the media. Can we measure political leadership images in newspapers using computer-assisted content analysis? Quality & Quantity, 50(5), 1871-1905.

Arce, G. R. (2004). Nonlinear signal processing: A statistical approach. Wiley.

Hollanders, D., & Vliegenthart, R. (2011). The influence of negative newspaper coverage on consumer confidence: The Dutch case. Journal of Economic Psychology, 32(3), 367-373.

Jeffreys, H., & Jeffreys, B. (1999). Methods of mathematical physics (3rd ed.). Cambridge University Press.

Krippendorff, K. (2004). Reliability in content analysis. Human Communication Research, 30(3), 411-433.