Evidence for Semileptonic $B^- \rightarrow p\bar{p}\ell^- \bar{\nu}_\ell$ Decays

K.-J. Tien, M.-Z. Wang, I. Adachi, H. Aihara, D. M. Asner, V. Aulchenko, T. Aushev, A. M. Bakich, B. Baê, B. Bhuyan, A. Bozek, M. Braêko, T. E. Browder, P. Chang, V. Chekelian, A. Chen, P. Chen, B. G. Cheon, K. Chilikin, R. Chistov, I.-S. Cho, K. Cho, V. Chobanova, Y. Choi, D. Cinabro, J. Dalseno, M. Danilov, Z. Doležal, Z. Drásal, D. Dutta, S. Eidelman, H. Farhat, J. E. Fast, T. Ferber, V. Gaur, S. Ganguly, R. Gillard, Y. M. Goh, B. Golob, J. Haba, H. Hayashi, Y. Hori, Y. Hoshi, W.-S. Hou, Y. B. Hsiung, M. Huschle, H. J. Hyun, T. Iijima, A. Ishikawa, R. Itoh, Y. Iwasaki, T. Julius, D. H. Kah, J. H. Kang, E. Kato, T. Kawasaki, H. Kichimi, C. Kiesling, D. Y. Kim, H. J. Kim, J. B. Kim, J. H. Kim, Y. J. Kim, J. Klucar, B. R. Ko, P. Kodyês, S. Korpar, P. Križan, B. Krokovny, B. Kronenbitter, T. Kuhr, T. Kumita, A. Kuzmin, Y.-J. Kwon, S.-H. Lee, J. Li, Y. Li, J. Libby, C. Liu, Y. Liu, D. Liventsev, P. Lukin, K. Miyabayashi, H. Miyata, G. B. Mohanty, A. Moll, R. Mussa, E. Nakano, M. Nakao, Z. Natkaniec, M. Nayak, E. Nedelkovska, C. Ng, N. K. Nisar, S. Nishida, O. Nitoh, S. Ogawa, S. Okuno, S. L. Olsen, W. Ostrowicz, C. Oswald, C. W. Park, H. Park, H. K. Park, T. K. Pedlar, R. Pestotnik, M. Petriê, L. E. Piilonen, M. Ritter, M. Röhrken, A. Rostomyan, H. Sahoo, T. Saito, Y. Sakai, S. Sandilya, D. Santel, L. Santelj, T. Sanuki, Y. Sato, V. Savinov, O. Schneider, G. Schnell, C. Schwanda, D. Semmler, K. Senyo, O. Seon, M. E. Sevior, M. Shapkin, C. P. Shen, T.-A. Shibata, J.-G. Shiu, A. Sibidanov, Y.-S. Sohn, A. Sokolov, S. Staniê, M. Stariê, M. Steder, M. Sumihama, T. Sumiyoshi, K. Tanida, G. Tatsishvili, Y. Teramoto, M. Uchida, S. Uehara, T. Uglov, Y. Unno, S. Uno, P. Urquijo, S. E. Vahsen, C. Van Hulse, P. Vanhoefer, G. Varner, K. E. Varvell, A. Vinokurova, V. Vorobyev, M. N. Wagner, C. H. Wang, P. Wang, M. Watanabe,
Y. Watanabe, K. M. Williams, E. Won, J. Yamaoka, Y. Yamashita, S. Yashchenko, Z. P. Zhang, V. Zhilich, V. Zhulanov, and A. Zupanc (The Belle Collaboration)

1University of the Basque Country UPV/EHU, 48080 Bilbao
2University of Bonn, 53115 Bonn
3Budker Institute of Nuclear Physics SB RAS and Novosibirsk State University, Novosibirsk 630090
4Faculty of Mathematics and Physics, Charles University, 121 16 Prague
5University of Cincinnati, Cincinnati, Ohio 45221
6Deutsches Elektronen–Synchrotron, 22607 Hamburg
7Justus-Liebig-Universität Gießen, 35392 Gießen
8Gifu University, Gifu 501-1193
9Hanyang University, Seoul 133-791
10University of Hawaii, Honolulu, Hawaii 96822
11High Energy Accelerator Research Organization (KEK), Tsukuba 305-0801
12Ikerbasque, 48011 Bilbao
13Indian Institute of Technology Guwahati, Assam 781039
14Indian Institute of Technology Madras, Chennai 600036
15Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049
16Institute of High Energy Physics, Vienna 1050
17Institute for High Energy Physics, Protvino 142281
18INFN - Sezione di Torino, 10125 Torino
19Institute for Theoretical and Experimental Physics, Moscow 117218
20J. Stefan Institute, 1000 Ljubljana
21Kanagawa University, Yokohama 221-8686
22Institut für Experimentelle Kernphysik, Karlsruher Institut für Technologie, 76131 Karlsruhe
23Korea Institute of Science and Technology Information, Daejeon 305-806
24Korea University, Seoul 136-713
25Kyungpook National University, Daegu 702-701
26 École Polytechnique Fédérale de Lausanne (EPFL), Lausanne 1015
27 Faculty of Mathematics and Physics,
University of Ljubljana, 1000 Ljubljana
28 Luther College, Decorah, Iowa 52101
29 University of Maribor, 2000 Maribor
30 Max-Planck-Institut für Physik, 80805 München
31 School of Physics, University of Melbourne, Victoria 3010
32 Moscow Physical Engineering Institute, Moscow 115409
33 Moscow Institute of Physics and Technology, Moscow Region 141700
34 Graduate School of Science, Nagoya University, Nagoya 464-8602
35 Kobayashi-Maskawa Institute, Nagoya University, Nagoya 464-8602
36 Nara Women's University, Nara 630-8506
37 National Central University, Chung-li 32054
38 National United University, Miaoli 36003
39 Department of Physics, National Taiwan University, Taipei 10617
40 H. Niewodniczanski Institute of Nuclear Physics, Krakow 31-342
41 Nippon Dental University, Niigata 951-8580
42 Niigata University, Niigata 950-2181
43 University of Nova Gorica, 5000 Nova Gorica
44 Osaka City University, Osaka 558-8585
45 Pacific Northwest National Laboratory, Richland, Washington 99352
46 Panjab University, Chandigarh 160014
47 University of Pittsburgh, Pittsburgh, Pennsylvania 15260
48 University of Science and Technology of China, Hefei 230026
49 Seoul National University, Seoul 151-742
50 Soongsil University, Seoul 156-743
51 Sungkyunkwan University, Suwon 440-746
52 School of Physics, University of Sydney, NSW 2006
53 Tata Institute of Fundamental Research, Mumbai 400005
54 Excellence Cluster Universe, Technische Universität München, 85748 Garching
55 Toho University, Funabashi 274-8510
56 Tohoku Gakuin University, Tagajo 985-8537
Abstract

We find evidence for the semileptonic baryonic decay $B^- \rightarrow p\bar{p}\ell^-\bar{\nu}_\ell$ ($\ell = e, \mu$), based on a data sample of 772 million $B\bar{B}$ pairs collected at the $\Upsilon(4S)$ resonance with the Belle detector at the KEKB asymmetric-energy electron-positron collider. A neural-network based hadronic B-meson tagging method is used in this study. The branching fraction of $B^- \rightarrow p\bar{p}\ell^-\bar{\nu}_\ell$ is measured to be $(5.8^{+2.4}_{-2.1}$ (stat.) ± 0.9 (syst.)) $\times 10^{-6}$ with a significance of 3.2σ, where lepton universality is assumed. We also estimate the corresponding upper limit: $B(B^- \rightarrow p\bar{p}\ell^-\bar{\nu}_\ell) < 9.6 \times 10^{-6}$ at the 90% confidence level. This measurement helps constrain the baryonic transition form factor in B decays.

PACS numbers: 13.20.-v, 13.25.Hw, 14.40.Nd
Measurements of charmless semileptonic B decays play an important role in the determination of the fundamental parameter $|V_{ub}|$ of the Cabibbo-Kobayashi-Maskawa (CKM) matrix \cite{1} in the Standard Model. However, all previous efforts have mainly been focused on $\bar{B} \to M\ell\bar{\nu}_\ell$ \cite{2,3}, where M stands for a charmless meson. There are no observations to date of semileptonic B decays with a charmless baryon-antibaryon pair in the final state. The most stringent upper limit to date has been set by the CLEO collaboration with $\mathcal{B}(B^- \to p\bar{p}\ell^−\bar{\nu}_\ell) < 5.2 \times 10^{-3}$ \cite{4}. The corresponding decay diagram is shown in Fig. 1.

A theoretical investigation based on phenomenological arguments suggests that the branching fraction of exclusive semileptonic B decays to a baryon-antibaryon pair is only about $10^{-5} - 10^{-6}$ \cite{5}, so sensitivity to such decays with the current data sets accumulated at the B-factories is marginal. In fact, there have been no final states with charmed baryons to date in semileptonic B decays. The BaBar collaboration only reported an upper limit of $\mathcal{B}(\bar{B} \to \Lambda^+_c X\ell^−\bar{\nu}_\ell)/\mathcal{B}(\bar{B} \to \Lambda^+_c X) < 3.5\%$ \cite{6} at the 90% confidence level (C.L.).

A recent paper \cite{7} used experimental inputs \cite{8-12} to estimate the B to baryon-antibaryon transition form factors predicted an unexpectedly large branching fraction, $(1.04 \pm 0.38) \times 10^{-4}$, for $B^- \to p\bar{p}\ell^-\bar{\nu}_\ell$ ($\ell = e, \mu$). This is at the same level as many known $\bar{B} \to M\ell\bar{\nu}_\ell$ decays such as $\bar{B} \to \pi\ell\bar{\nu}_\ell$ \cite{13}. This meta-analysis triggered our direct experimental search, whose results could be used to improve the theoretical understanding of baryonic B decays, if the predicted branching fraction is confirmed, many similar decays will become available and, with improved theoretical understanding, they will be helpful in determining $|V_{ub}|$ in future.

![FIG. 1: Leading diagram for $B^- \to p\bar{p}\ell^−\bar{\nu}_\ell$ decay.](image)

In this study, we use the full data set of 772×10^6 $B\bar{B}$ pairs collected at the $\Upsilon(4S)$ resonance with the Belle detector \cite{14} at the KEKB asymmetric-energy e^+e^- (3.5 on 8 GeV)
The Belle detector is a large-solid-angle magnetic spectrometer that consists of a silicon vertex detector (SVD), a 50-layer central drift chamber (CDC), an array of aerogel threshold Cherenkov counters (ACC), a barrel-like arrangement of time-of-flight scintillation counters (TOF), and an electromagnetic calorimeter comprised of CsI(Tl) crystals (ECL) located inside a superconducting solenoid coil that provides a 1.5 T magnetic field. An iron flux return located outside of the coil is instrumented to detect K_L^0 mesons and to identify muons (KLM). The detector is described in detail elsewhere.

Monte Carlo (MC) event samples are simulated to evaluate signal efficiency, optimize selection criteria and determine the shapes for signal and background distributions in our analysis. For the signal decays, three million events are generated for each final state lepton flavour of electron or muon. The MC simulation takes into account the experimental conditions pertaining to different running periods of the Belle experiment and the accumulated integrated luminosity for each period. Several MC samples are used to estimate four categories of background: continuum ($e^+e^- \rightarrow q\bar{q}$, where $q = u, d, s, c$), $B\bar{B}$ (modelling $b \rightarrow c$ transitions), rare B decays and charmless semileptonic B decays ($b \rightarrow u\ell\nu$ transitions), corresponding to 5, 5, 50 and 20 times the integrated luminosity of data, respectively. All MC samples are generated using the EvtGen package, and detector simulation is performed using GEANT. Previous studies of similar baryonic B decays, viz. $B^- \rightarrow p\bar{p}\pi^-$, $B^- \rightarrow p\bar{p}K^-$, and $B^- \rightarrow p\bar{p}K^*-\ell\nu$, found that the proton-antiproton mass distributions have low mass enhancements near threshold. We therefore assume that the $p\bar{p}$ pairs have an invariant mass distribution centred at 2.2 GeV/c^2 with a width of about 0.2 GeV/c^2.

We use the hadronic-tag B reconstruction method to study B decays with a neutrino in the final state. Since the $\Upsilon(4S)$ decays predominantly into $B\bar{B}$, we fully reconstruct one B meson with selected fully-hadronic charmed final states, called B_{tag}. The NeuroBayes algorithm is used to provide an assessment for the quality of B_{tag} reconstruction. A total of 615 exclusive charged B hadronic decay channels are considered in the NeuroBayes neural network to reconstruct B_{tag} candidates. We reconstruct signal B candidates, called B_{cand}, from the remaining particles in the event. These candidates are reconstructed using final states consisting of three charged particles: one proton, one antiproton and one electron
or muon. To identify the neutrino, we define the missing mass squared as

$$M^2_{\text{miss}} = E^2_{\text{miss}}/c^4 - |\vec{p}_{\text{miss}}/c|^2,$$

where E_{miss} and \vec{p}_{miss} are the energy and momentum component of the four-vector $P_{\text{miss}} = P_{e^+} + P_{e^-} - P_{\text{B}_{\text{tag}}} - P_{\text{B}_{\text{cand}}}$ in the laboratory frame. In this study, we accept events whose missing mass is in the range $-1 \text{ GeV}^2/c^4 < M^2_{\text{miss}} < 3 \text{ GeV}^2/c^4$.

We ensure that tracks used for B_{cand} reconstruction have not been used in the B_{tag} reconstruction. In order to remove the secondary tracks generated by hadronic interactions with the detector material, we require $|dz| < 2.0 \text{ cm}$ and $dr < 0.4 \text{ cm}$, where dz and dr denote the distances at the point of closest approach to the interaction point (IP) along the positron beam and in the plane transverse to this axis, respectively. To identify charged particles, all relevant information provided by the CDC, TOF and ACC is taken into account. For lepton identification, additional information is provided by the ECL and KLM. We define L_p, L_K, L_π, L_e and L_μ as likelihoods for a particle to be identified as a proton, kaon, pion, electron, and muon, respectively, and the likelihood ratios: $R_{p/K} = L_p/(L_p + L_K)$, $R_{p/\pi} = L_p/(L_p + L_\pi)$, $R_e = L_e/(L_e + L_{\text{other}})$ and $R_\mu = L_\mu/(L_\mu + L_{\text{other}})$. For a track to be identified as a proton, it is required to satisfy the condition $R_{p/K} > 0.6$ and $R_{p/\pi} > 0.6$, and R_e and R_μ must be less than 0.95 for lepton rejection. To identify lepton candidates, tracks with $R_e > 0.6$, $R_\mu < 0.95$ are regarded as electrons and those with $R_\mu > 0.9$, $R_e < 0.95$ as muons. In the kinematic region of interest, charged leptons are identified with an efficiency of about 90%, while the probability of misidentifying a pion as an electron (muon) is 0.25% (1.4%). The proton identification efficiency is about 95%, while the probability of misidentifying a kaon or a pion as a proton is less than 10%. The momentum of an electron (muon) candidate in the laboratory frame must be greater than 300 (600) MeV/c. The lepton charge must be opposite that of the B_{tag}.

Tag-side B mesons are identified using the beam-energy-constrained mass, $M_{bc} \equiv \sqrt{E^*_{\text{beam}}/c^4 - |\vec{p}^*_B/c|^2}$, and the energy difference, $\Delta E \equiv E^*_B - E^*_{\text{beam}}$, where E^*_{beam} is the run-dependent beam energy, and E^*_B and \vec{p}^*_B are the reconstructed energy and momentum, respectively, of the B_{tag} in the rest frame of the $\Upsilon(4S)$. We require that $M_{bc} > 5.27 \text{ GeV}/c^2$ and $-0.15 \text{ GeV} < \Delta E < 0.1 \text{ GeV}$ to reject poorly reconstructed B_{tag} candidates. The differences in event topology between the more spherical $B\bar{B}$ events and the dominant jet-like continuum background is used to suppress the latter. Here, the ratio of the second to ze-
roth Fox-Wolfram moments Λ, the angle between the B_{tag} direction and the thrust axis, and the angle between the B_{tag} direction and the beam direction in the $\Upsilon(4S)$ rest frame are used to construct a NeuroBayes output value for continuum suppression $\alpha_{\text{tag}}^{\text{cs}}$. The B_{tag} with the largest value of $\alpha_{\text{tag}}^{\text{cs}}$ within a given event is retained; we accept events satisfying $\ln(\alpha_{\text{tag}}^{\text{cs}}) > -7$ for $B^− \to p\bar{p}e^−\bar{\nu}_e$ and $\ln(\alpha_{\text{tag}}^{\text{cs}}) > -6$ for $B^− \to p\bar{p}\mu^−\bar{\nu}_\mu$, according to the MC-determined selection optimization.

Since there can be more than one B_{cand} in an event, we select the candidate with the smallest χ^2 value obtained from a fit to the B vertex. The fraction of events with multiple candidates is estimated from MC to be 0.21% for $B^− \to p\bar{p}e^−\bar{\nu}_e$ and 0.17% for $B^− \to p\bar{p}\mu^−\bar{\nu}_\mu$. The overall signal efficiency obtained is 0.279% for $B^− \to p\bar{p}e^−\bar{\nu}_e$ and 0.222% for $B^− \to p\bar{p}\mu^−\bar{\nu}_\mu$. Since the reconstruction efficiency may differ between data and MC, we correct these efficiency estimates based on control sample studies. For proton and lepton identification, we use $\Lambda \to p\pi^-$ and $\gamma\gamma \to \ell^+\ell^-$ samples, respectively. The corrections are about -4.4% and -3.1% for $B^− \to p\bar{p}e^−\bar{\nu}_e$ and -5.7% and -1.7% for $B^− \to p\bar{p}\mu^−\bar{\nu}_\mu$.

For the B_{tag} reconstruction efficiency, we use $B^− \to X^0_c\ell^−\bar{\nu}_\ell$ samples, where X^0_c denotes a meson containing a c quark, and estimate correction factors of -14.8% for $B^− \to p\bar{p}e^−\bar{\nu}_e$ and -16.4% for $B^− \to p\bar{p}\mu^−\bar{\nu}_\mu$. Applying these corrections, the signal efficiency in data is estimated to be $(0.220 \pm 0.011)\%$ for $B^− \to p\bar{p}e^−\bar{\nu}_e$ and $(0.172 \pm 0.008)\%$ for $B^− \to p\bar{p}\mu^−\bar{\nu}_\mu$.

We perform a one-dimensional extended unbinned likelihood fit that maximizes the function

$$\mathcal{L} = \frac{e^{-(N_{\text{sig}} + N_{\text{bkg}})}}{N!} \prod_{i=1}^{N} [N_{\text{sig}}P_{\text{sig}}(M_{\text{miss}}^2) + N_{\text{bkg}}P_{\text{bkg}}(M_{\text{miss}}^2)], \quad (2)$$

where i is the event index, N_{sig} and N_{bkg} denote the fitted yields of signal and background, and P_{sig} and P_{bkg} denote the probability density functions (PDFs) in our signal extraction model. We use three Gaussian functions to describe P_{sig} for $B^− \to p\bar{p}e^−\bar{\nu}_e$ and for $B^− \to p\bar{p}\mu^−\bar{\nu}_\mu$. For background, since no peak is present near the signal region, we combine both continuum and B decays backgrounds to form one PDF. We use a normalized second-order Chebyshev polynomial function to represent P_{bkg} for each mode. The shape of the signal PDF is determined from the MC simulation, while the shape of the background is floated. The rare B decay and $b \to u\ell\nu$ backgrounds are not included in the fit, because less than 0.1 events are expected to be found on average in the fitting region.

The fit results are shown in Fig. 2. We determine the fit significance in terms of σ, the
standard deviation of a normal distribution, with \(\sqrt{-2 \ln(L_0/L_{\text{max}})} \), where \(L_0 \) and \(L_{\text{max}} \) represent the maximum likelihood values from the fit with \(N_{\text{sig}} \) set to zero, and with all parameters allowed to float, respectively. We also take into account the systematic effects from the signal decay model and PDF shape. The significance is 3.0\(\sigma \) for \(B^- \to p\bar{p}e^-\bar{\nu}_e \) and 1.3\(\sigma \) for \(B^- \to p\bar{p}\mu^-\bar{\nu}_\mu \). Assuming lepton universality and equal branching fractions for \(B^- \to p\bar{p}e^-\bar{\nu}_e \) and \(B^- \to p\bar{p}\mu^-\bar{\nu}_\mu \), we obtain a combined fit result with a significance of 3.2\(\sigma \).

The systematic uncertainties on the branching fractions are summarised in Table II and described below. Correlated (uncorrelated) errors are added linearly (in quadrature). Each systematic uncertainty for the combined fit is conservatively considered to be the larger of the uncertainties for \(B^- \to p\bar{p}e^-\bar{\nu}_e \) and \(B^- \to p\bar{p}\mu^-\bar{\nu}_\mu \), except for the fitting region uncertainty.

The systematic uncertainty due to charged-track reconstruction is estimated to be 0.35% per track, using partially reconstructed \(D^{*+} \to D^0(\pi^+\pi^-\pi^0)\pi^+ \) decays. We estimate the uncertainty due to proton and lepton identification using the \(\Lambda \to p\pi^- \) and \(\gamma\gamma \to \ell^+\ell^- \) samples, respectively. For tag calibration, the uncertainties are estimated to be 4.3% for each of the two modes, using the \(B^- \to X_{s,t}^0\ell^-\bar{\nu}_\ell \) sample. The uncertainty due to the error on the total number of \(BB \) pairs is 1.4%. The uncertainty due to the signal MC modeling
of the $p\bar{p}$ mass threshold enhancement is obtained by comparing the efficiency difference between signal MC and the phase space decay model. The uncertainties due to the signal PDF shape are studied by varying each Gaussian parameter by $\pm 1\sigma$ and observing the yield difference. Finally, the upper bound chosen for the fitting region which has a large effect on the fit results is varied from 2 to 4 GeV2/c4 with a step size of 0.2 GeV2/c4; we take one standard deviation of the ensemble of obtained fit results to estimate the uncertainty. These are conservative estimates as the statistical uncertainty is also included.

In addition to quoting branching fractions, we also estimate the corresponding upper limits at the 90% confidence level by finding the value of N that satisfies:

$$\int_0^N \mathcal{L}(n)dn = 0.9 \int_0^\infty \mathcal{L}(n)dn,$$

where $\mathcal{L}(n)$ denotes the likelihood of the fit result and n is the number of signal events. The systematic uncertainties are taken into account by replacing $\mathcal{L}(n)$ with a smeared likelihood function:

$$\mathcal{L}(n) = \int_{-\infty}^\infty \mathcal{L}(n') e^{-(n-n')^2/2\sigma_{syst}^2} \frac{1}{\sqrt{2\pi\sigma_{syst}}} dn',$$

where σ_{syst} is the systematic uncertainty of the associated signal yield n'.

Table II summarizes our results. The upper limits include systematic uncertainties.

In conclusion, we have performed a search for the four-body semileptonic baryonic B de-
TABLE II: Measured results and upper limits for the branching fractions (B), where systematic uncertainties are taken into account.

Mode	B (10^{-6})	U.L. (10^{-6})
$B^- \to p\bar{p}e^-\bar{\nu}_e$	$8.2^{+3.7}_{-3.2} \pm 0.6$	13.8
$B^- \to p\bar{p}\mu^-\bar{\nu}_\mu$	$3.1^{+3.1}_{-2.4} \pm 0.7$	8.5
Combined sample	$5.8^{+2.4}_{-2.1} \pm 0.9$	9.6

cay $B^\to p\bar{p}\ell^-\bar{\nu}_\ell$ ($\ell = e, \mu$) using a neural-network based hadronic B tagging method. We find evidence for a signal with a significance of 3.2σ and a branching fraction of $(5.8^{+2.4}_{-2.1}\text{(stat.)} \pm 0.9\text{(syst.)}) \times 10^{-6}$. This measurement is consistent with the theoretical investigation in Ref. [5]. As the statistical significance of our reported evidence is marginal, we also set an upper limit on the branching fraction: $B(B^- \to p\bar{p}\ell^-\bar{\nu}_\ell) < 9.6 \times 10^{-6}$ (90% C.L.). Our result is clearly lower than the recent meta-analysis expectation of $\sim 10^{-4}$ [7]. It will be interesting to investigate the theoretical modeling of the baryonic transition form factors in B decays in light of this new information. With the proposed next generation B-factories, such semileptonic baryonic B decays can be studied precisely and future results may be useful in further constraining the corresponding CKM matrix elements.

We thank the KEKB group for excellent operation of the accelerator; the KEK cryogenics group for efficient solenoid operations; and the KEK computer group, the NII, and PNNL/EMSL for valuable computing and SINET4 network support. We acknowledge support from MEXT, JSPS and Nagoya’s TLPRC (Japan); ARC and DIISR (Australia); NSFC (China); MSMT (Czechia); CZF, DFG, and VS (Germany); DST (India); INFN (Italy); MEST, NRF, GSDC of KISTI, and WCU (Korea); MNiSW and NCN (Poland); MES and RFAAE (Russia); ARRS (Slovenia); IKERBASQUE and UPV/EHU (Spain); SNSF (Switzerland); NSC and MOE (Taiwan); and DOE and NSF (USA).

[1] M. Kobayashi and T. Maskawa, Prog. Theor. Phys. 49, 652 (1973).

[2] For example, H. Ha et al. (Belle Collaboration), Phys. Rev. D 83, 071101 (2011); P. del Amo Sanchez et al. (BABAR Collaboration), Phys. Rev. D 83, 032007 (2011); P. Urquijo et al.
Throughout this paper, the inclusion of the charge-conjugate mode decay is implied unless otherwise stated.

[3] N.E. Adam et al. (CLEO Collaboration), Phys. Rev. D 68, 012004 (2003).
[4] W.-S. Hou and A. Soni, Phys. Rev. Lett. 86, 4247 (2001).
[5] J.P. Lees et al. (BABAR Collaboration), Phys. Rev. D 85, 011102 (2012).
[6] C.Q. Geng and Y.K. Hsiao, Phys. Lett. B 704, 495 (2011).
[7] M.Z. Wang et al. (Belle Collaboration) Phys. Rev. Lett. 92, 131801 (2004).
[8] M.Z. Wang et al. (Belle Collaboration) Phys. Lett. B 617, 141 (2005).
[9] J.-H. Chen et al. (Belle Collaboration), Phys. Rev. Lett. 100, 251801 (2008).
[10] K. Abe et al. (Belle Collaboration) Phys. Rev. Lett. 89, 151802 (2002).
[11] B. Aubert et al. (BABAR Collaboration), Phys. Rev. D 74, 051101 (2006).
[12] J. Beringer et al. (Particle Data Group), Phys. Rev. D 86, 010001 (2012).
[13] A. Abashian et al. (Belle Collaboration), Nucl. Instrum. Methods Phys. Res. Sect. A 479, 117 (2002); also see detector section in J.Brodzicka et al., Prog. Theor. Exp. Phys. (2012) 04D001.
[14] S. Kurokawa and E. Kikutani, Nucl. Instrum. Methods Phys. Res. Sect. A 499, 1 (2003), and other papers included in this Volume; T.Abe et al., Prog. Theor. Exp. Phys. (2013) 03A001 and following articles up to 03A011.
[15] D. J. Lange, Nucl. Instrum. Methods Phys. Res. Sect. A 462, 152 (2001).
[16] R. Brun et al., GEANT 3.21, CERN Report DD/EE/84-1, 1984.
[17] J.-T. Wei et al. (Belle Collaboration), Phys. Lett. B 659, 80 (2008).
[18] B. Aubert et al. (BABAR Collaboration), Phys. Rev. D 72, 051101 (2005).
[19] M. Feindt et al., Nucl. Instrum. Methods Phys. Res. Sect. A 654, 432 (2011).
[20] G.C. Fox and S. Wolfram, Phys. Rev. Lett. 41, 1581 (1978).