Semi-Cartesian Squares
And The Snake Lemma

Jean-Claude Raoult

À Claude Chevalley, dont le cours de DEA (1965-1966) m’a fait découvrir les carrés semi-cartésiens.

Résumé: On démontre le lemme du serpent de façon purement catégorique (§ 3). Aucun point n’apparaîtra, ni « points » au sens de Grothendieck ni pseudo-éléments (Guglielmetti & Zaganidis [2009]). En revanche, un fort usage sera fait des carrés semi-cartésiens (§ 2) introduits par Chevalley. Le paragraphe 1 est dévolu à quelques résultats de base sur les catégories abéliennes utilisés par la suite.

Abstract: The snake lemma is proved entirely within category theory (§ 3) without the help of “points with value in...” à la Grothendieck nor pseudo-elements (Guglielmetti & Zaganidis [2009]). Instead, we use consistently semi-cartesian squares (§ 2), promoted by Chevalley. Section 1 is devoted to a few basic results on abelian categories, for further use.

This paper is mainly intended to promote the semi-cartesian squares, introduced by Chevalley in a course given at the IHP, and is an example of their flexibility. The first two sections are extracted from this course. The third is a purely categorical proof of the snake lemma.

Categories are supposed to be known: objects and arrows between objects. Arrows are composed associatively and each object X has an identity arrow denoted 1_X. The dual or opposite category has same objects but arrows are reversed. The class of arrows from X to Y is denoted by $\text{Hom}_C(X,Y)$. In a small category, arrows form a set (objects also, why?). An initial (final) object is an object with a unique arrow to (from) every object. By definition, monomorphisms are arrows that are simplifiable from the left ($mu = mv \Rightarrow u = v$) and epimorphisms arrows simplifiable from the right ($up = vp \Rightarrow u = v$). Categories will be denoted by bold upper case letters.

A functor is a mapping between categories $F : C \to D$ compatible with the identities and composition. Given two functors F and G from C to D, a natural (or functorial) morphism $\phi : F \to G$ is a family of arrows of D indexed by the objects of C, such that the squares of figure 1 are commutative for all arrows $X \to Y$ of C. If C is a small category, functors from C to D are the objects of a category $\text{F}(C, D)$ the arrows of which are the natural morphisms.

Figure 1.

1 20 avenue J.B. Marrou, 63122 Ceyrat, jean-claude.raoult@sfr.fr
1. Summary of abelian category

Given a small category I of indices, a functor \(A : I \to C \) can be seen as a commutative diagram of type I in C. With every object \(X \) of C is associated a constant diagram \((K_X, i) = X\) and \((K_X, j_1) = 1_X\). A projective (inductive) limit of a functor \(A : I \to C \) is a right (left) adjoint of functor \(K : X \to K_X \) i.e. \(\text{Hom}_{I,F(C)}(K_X, A) \cong \text{Hom}_{C}(X, \text{lim proj} A) \) (resp. \(\text{Hom}(A,K_X) \cong \text{Hom}(\text{lim ind} A, X) \)).

\[\text{Hom}_{I,F(C)}(K_X, A) \cong \text{Hom}_{C}(X, \text{lim proj} A) \]

\[\text{Lim}(A) \cong \text{Hom}(\text{lim ind} A, X) \]

Examples: 1) \(I = \emptyset \) the projective (inductive) limit of the empty set is the final (initial) object.
2) \(I = \{1,2\} \) the projective limit of \(A_1, A_2 \) is the product \(A_1 \times A_2 \) and the inductive limit is the sum \(A_1 + A_2 \).
3) \(I = \{2\} \) a constant diagram \((K_X, A) \cong \text{Hom}_{C}(X, \text{lim proj} A) \) is the kernel of \(q \) if \(A_u \cong A \) for every \(u \) of \(I \).
4) \(I = \{1 \to 0 \to 2\} \) the projective limit of \(A_1 \to A_0 \leftarrow A_2 \) is the cartesian square or fiber product built on these arrows (left square beneath). The inductive limit is got by reversing the arrows: it is a cocartesian square or amalgamated sum (right square beneath).

\[\begin{array}{ccc}
P & \longrightarrow & A_2 \\
\downarrow & & \downarrow \\
A_1 & \longrightarrow & A_0 \\
\end{array} \]

\[\begin{array}{ccc}
A_0 & \longrightarrow & A_1 \\
\downarrow & & \downarrow \\
A_2 & \longrightarrow & S \\
\end{array} \]

\[\begin{array}{ccc}
P & \longrightarrow & A_2 \\
\downarrow & & \downarrow \\
A_1 & \longrightarrow & A_0 \\
\end{array} \]

\[\begin{array}{ccc}
A_0 & \longrightarrow & A_1 \\
\downarrow & & \downarrow \\
A_2 & \longrightarrow & S \\
\end{array} \]

Definition 1. A category is abelian if
1) it contains a null objet (i.e. initial and final) denoted by \(0 \);
2) it accepts finite projective and inductive limits;
3) every monomorphism is a kernel and every epimorphism is a cokernel.

These axioms are due to P. Freyd [1964]. They are preserved by duality.

The null arrow \(A \to B \) is the composed arrow \(A \to 0 \to B \); the kernel of a single arrow \(u : A_1 \to A_2 \) is the kernel of \((u,0)\). It is easy to show that every kernel is a monomorphism and that every cokernel is an epimorphism. Condition (3) shows that these two notions coincide and more precisely:

Lemma 1. 1) If \(n \) is a kernel of an epimorphism \(q \), then \(q \) is a cokernel of \(n \). 2) If \(q \) is a cokernel of a monomorphism \(n \), then \(n \) is a kernel of \(q \).

Case 2 is dual of case 1. For case 1, \(q \) is a cokernel of an arrow \(f : qf = 0 \) and there exists therefore a unique arrow \(g \) such that \(f = ng \) because \(n \) is a kernel of \(q \). Suppose an arrow \(u \) such that \(a = 0 \). Then \(ung = uf = 0 \) and since \(q \) is a cokernel of \(f \), there exists a unique arrow \(v \) such that \(u = vq \), QED.

One can deduce the following decomposition of the arrows.

Proposition 1. Every arrow can be decomposed into \(f = mq \) where \(m \) is a monomorphism and \(q \) an epimorphism. This decomposition is unique up to a unique isomorphism.

Soit \(m \) the kernel d'une arrow cokernel \(p \) of \(f \). Then \(pf = 0 \iff (\exists! q) f = mq \). To show that \(q \) is an epimorphism, let us remark:

a) \(f \) epimorphism \(\iff p = 0 \iff m \) invertible (because \(pm = 0 \iff pnmr^\top = p = 0 \))

b) Decompose \(q \) like \(q: n \) is a kernel of a cokernel of \(q \). Considering a), it is enough to show that \(n \) is invertible. Now let \(r \) stisfying \(rnm = 0 \). Then \(rmns = rrf = 0 \). Since \(p \) is a cokernel of \(f \), \((\exists ! l) r = tp \). Hence \(p \) is a cokernel of \(mn \) and from lemma 1, \(mn \) is a kernel of \(p \). But \(m \) is also a kernel of \(p \), therefore \(n \) is invertible.
c) Let \(f = m'q' \) be an other decomposition. Since \(p \) is a cokernel of \(m'q' \) and \(q' \) is an epimorphism, \(p \) is a cokernel of \(m' \). By lemma 1, \(m' \) is a kernel of \(p \). Since \(m \) is another one, they are isomorphic, \(\text{QED} \).

Corollary. An arrow which is a monomorphism and an epimorphism is an isomorphism.

The decomposition of \(f \) into an epimorphism followed by a monomorphism is unique up to isomorphisms. But \(f \) has two such decompositions: \(1f = f1 \). Therefore it is invertible, \(\text{QED} \).

Proposition 2. If \(q \) is an epimorphism, then \(mq \) and \(m \) have same cokernel. The converse is true if \(m \) is a monomorphism. If \(m \) is a monomorphism, then \(mq \) and \(m \) have same kernel. The converse is true if \(m \) is an epimorphism.

If \(q \) is an epimorphism, every arrow \(t \) satisfies \(tm = 0 \iff tmq = 0 \). Hence, \(m \) and \(mq \) have same cokernel. Conversely, decompose \(q \) into an epimorphism \(e \) and a monomorphism \(n \): The direct part shows that \(mne \) and \(mn \) have same cokernel. The hypothesis becomes: monomorphisms \(m \) and \(mn \) have same cokernel. They are therefore kernel of the same arrow; they are isomorphic and \(n \) is invertible: \(q \) is an epimorphism.

The second assertion is the dual of the first, \(\text{QED} \).

Proposition 3. If \(ba \) is a kernel of \(e \) and \(b \) is a monomorphism, then \(a \) is a kernel of \(cb \).

Let \(t \) be an arrow with \(cbt = 0 \). Since \(ba \) is a kernel of \(e \), there exists a unique arrow \(s \) such that \(bt = bas \). Since \(b \) is a monomorphism, \(t = as \), \(\text{QED} \).

The following notion is a well-known generalisation of the notion of kernel and cokernel.

Definition 2. Let two successive morphisms \(f = mq \) and \(g = np \), decomposed into epimorphisms followed by monomorphisms. The sequence \((f, g)\) is exact when \(m \) is a kernel of \(p \).

Equivalently (prop. 2), one can require that \(m \) be a kernel of \(g \), or that \(p \) be a cokernel of \(m \), or that \(p \) be a cokernel of \(f \).

Finally, recall that in an abelian category, there exists an isomorphism from the sum to the product and that the insertions \(i : A \to A+B \) and \(j : B \to A+B \), and the projections \(p : A\times B \to A \) and \(q : A\times B \to B \) satisfy

\[
pi = 1, \quad qi = 0, \\
pj = 0, \quad qj = 1, \\
iq + jq = 1
\]

These equalities characterize the direct sum of \(A \) and \(B \), which will be denoted by \(A + B \).

2. Semi-cartesian squares

What does one get by composing cartesian and cocartesian squares? Semi-cartesian squares in the following sense.

Proposition 1. Let \(ca = db \) be a commutative square as in Fig. 2. Let \(B + C \) be the direct sum with insertions \((i,j)\) and projections \((p,q)\); construct the fiber product \((P, f, g)\) of \((c,d)\) with the kernel \(n \) of
cp – dq, and the amalgamated sum \((S, r,s)\) of \((a,c)\) with the cokernel \(t\) of \(ia + jb\). Then there exist unique arrows \(e : A \rightarrow P\) and \(m : S \rightarrow C\) making commutative the obvious triangles of figure 2. Then the following conditions are equivalent:

(i) \(e\) is an epimorphism,
(ii) \(m\) is a monomorphism,
(iii) the sequence \(0 \rightarrow P \overset{p}{\rightarrow} B + C \overset{t}{\rightarrow} S \overset{0}{\rightarrow}\) is exact,
(iv) the sequence \(A \overset{ia + jb}{\rightarrow} B + C \overset{cp – dq}{\rightarrow} D\) is exact.

When constructing \(P\) and \(S\) we defined
\[
\begin{align*}
f &= pn, & g &= qn, \\
r &= ti, & s &= - tj.
\end{align*}
\]
So there exists a unique \(e\) with \(a = fe\) and \(b = ge\); and a unique \(m\) with \(e = mr\) and \(d = ms\).

Composing on the right \(1_S = ip + jq\) with \(ne\), one finds \(ne = ia + jb\). Therefore \(t\) is a cokernel of \(ne\).

(i) \(\iff\) (iii): For the sequence in (iii) to be exact, it is necessary and sufficient that \(t\) be a cokernel of \(n\), that is, that \(e\) be an epimorphism.

(iii) \(\iff\) (ii): Condition (iii) is preserved by duality and is thus is equivalent to (ii) which is dual of (i).

(iii) \(\iff\) (iv): because \(n\) is a monomorphism and \(q\) an epimorphism.

(iv) \(\iff\) (iii): because the cokernel \(t\) of \(ne\) is cokernel of a kernel of \(mt = cp – dq\), that is of \(n\), hence (iii), QED.

Definition. — A commutative square is semi-cartesian if it satisfies the conditions of proposition 1.

For instance, a cartesian square \((e\) is invertible), or a cocartesian square \((m\) is invertible), is semi-cartesian. Next is a partial converse in which notations are those of figure 2.

Proposition 2. — In a semi-cartesian square \(ca = db\), if \(a\) is a monomorphism, then \(d\) is a monomorphism and the square is cartesian. Si \(d\) is an epimorphism, then \(a\) is an epimorphism and the square is cocartesian.

With the notations of Fig. 2, since \(a\) is a monomorphism, \(e\) is also a monomorphism. Since it is an epimorphism, it is invertible and the given square is cartesian. Let \(k : N \rightarrow C\) be a kernel of \(d\) and \(o : N \rightarrow B\) the null arrow. There exists a unique arrow \(h : N \rightarrow A\) such that \(k = bh\) and \(o = ah\). But \(a\) is a monomorphism, therefore \(h = 0\), hence \(k = 0\), QED.

Contrary to arrows, squares will be written in the same order as they are drawn.

Proposition 3. —
1) Suppose \(K\) is cocartesian. Then \(KL\) semi-cartesian \(\iff\) \(L\) semi-cartesian.
2) Suppose \(L\) is cartesian. Then \(KL\) semi-cartesian \(\iff\) \(K\) semi-cartesian.
3) \(K\) and \(L\) semi-cartesians \(\Rightarrow\) \(KL\) semi-cartesian.

1) Let \((r; s)\) be an amalgamated sum of \((c, v)\) and \(m\) the unique arrow such that \(w = mr\) and \(d = ms\).

The square \(r(ca) = (sb)u\) is composed of cocartesian squares and therefore is cocartesian. then \(KL\) semi-cartesian \(\iff\) \(m\) monomorphism \(\iff\) \(L\) semi-cartesian (see Fig. 3).
5) Consider figure 4; set \(S = B +_A C \), with a unique monomorphism \(n : S \to D \); set \(T = S +_B E \). The square ACTE is then cocartesian (composition of cocartesian squares) hence a unique arrow \(m : T \to F \) making the diagram commutative. Since \(L \) is semi-cartesian and BSTE cocartesian, square SDFT is semi-cartesian from (1) and \(m \) is a monomorphism from proposition 2, QED.

This proposition shows that a semi-cartesian square remains a semi-cartesian square when is removed a cartesian square on the right or a cocartesian square on the left; and also that semi-cartesian squares are got by composing cartesian and cocartesian squares. This is always the case, as shown by the corollary of the following proposition.

Proposition 4. — Let \(KL \) be a semi-cartesian square. If \(K \) is an epimorphism, then \(L \) is semi-cartesian. If \(L \) is a monomorphism, then \(K \) is semi-cartesian.

Let us prove the first assertion; the second is dual.

Let \((r,s)\) be an amalgamated sum of \((u,ca)\); since \(KL \) is semi-cartesian, there exists a unique monomorphism \(m \) with \(mr = db \). Since \(b \) is an epimorphism, it is a cokernel of some \(z \), and \(rz = 0 \) (compose on the left with \(m \) monomorphism). This implies a unique \(t \) such that \(r = tb \); and \(tv = sc \) (compose on the right with epimorphism \(a \)).

Let square \(tv = sc \) is cocartesian; if \(xc = yv \), a fortiori \(xca = yva = ybu \) and since \((ru = s(ca))\) is a cocartesian square, there exists a unique \(n \) such that \(x = ns \) and \(yb = nr = ntb \). Since \(b \) is an epimorphism, one deduces \(y = nt \). Since \(m \) is a monomorphism, square \(L \) is semi-cartesian, QED.
In other terms, in the class of semi-cartesian squares, one can simplify by epimorphisms on the left and by monomorphisms on the right. Beware that the converse is false: a semi-cartesian square (for instance the identity) preceded by an epimorphism is not necessarily semi-cartesian (there exists epimorphisms that are not semi-cartesian).

Corollary. — *Semi-cartesian squares can be decomposed into a cocartesian epimorphism followed by a cartesian monomorphism.*

Decompose the square into an epimorphism followed by a monomorphism. Proposition 4 ensures that they are also semi-cartesian squares. From proposition 2, the first one is cocartesian and the second one is cartesian.

Proposition 5. — Consider two successive commutative squares K and L as in figure 6.

1) Suppose that K is a kernel of L. Then:
 a) w monomorphism \Rightarrow K cartesian.
 b) L semi-cartesian \Rightarrow u epimorphism.

2) Dually suppose that L is a cokernel of K. Then:
 c) u epimorphism \Rightarrow L cocartesian.
 d) K semi-cartesian \Rightarrow w monomorphism.

Assertions (a),(b) are dual of (c),(d).

Let us show (a). Consider figure 7, in which (s, t) verifies only $sc = tv$. Then $0 = sca = tva = tbu$ hence $tb = 0$ since u is an epimorphism. Since d is cokernel of b, there exists a unique arrow z such that $t = zd$. One checks $s = zw$ by composing with epimorphism c on the right.

Let us show (b). After decomposing L with the help of the above corollary, one may assume that L is a cocartesian epimorphism. Let $u = me$ be the decomposition of u into an epimorphism followed by a monomorphism. If one shows that d is a cokernel of bm, then bm will be a kernel of d (cf. lemma 1 § 1) as is b, and therefore m will be invertible. Now let t be such that $tbm = 0$. It follows $tbme = 0 = tva$. Since c is a cokernel of a, there is a unique arrow s such that $sc = tv$. Since L is cocartesian, there exists a unique arrow z such that $t = zd$ (and $s = zw$), QED.

5. The snake lemma

The snake lemma constructs an exact sequence connecting kernels and cokernels.

Proposition 1. — Suppose two successive squares K and L, where L is semi-cartesian. If (a, c) is exact and $db = 0$, then (b, d) is exact. Dually, supposing K semi-cartesian, then if (b, d) is exact and $ca = 0$, then (a, c) is exact.
Let \(Q \) be the cokernel of \(K \) so that \(L = KI \) (see Fig. 7). Since \(ca = 0 \) and \(db = 0 \), there exist unique arrows \(i \) and \(j \) such that \(c = ip \) and \(d = jq \). Then \(I \) is semi-cartesian (prop. 4 § 2). Since the sequence \((a,c)\) is exact, \(i \) is a monomorphism. From proposition 2 § 2, \(j \) also is a monomorphism (and \(I \) is cartesian): \((b,d)\) is exact, \(\text{q.e.d.} \)

For each arrow \(u \) one selects a kernel arrow of \(u \) and denotes its source by \(\text{Ker}(u) \). In this way, \(\text{Ker}(u) \) becomes a functor.

Proposition 2. — Kernel functors are left-exact; cokernel functors are right-exact.

Kernels are (finite) projective limits. Therefore, they commute with projective limits. Dually, cokernel functors \(\text{Coker} \) are right-exact.

The following lemma, called the snake lemma, connects these two functors.

Lemma. — Given a diagram like Fig. 7, in which \(i, j, k \) are kernels of \(u, v, w \), and \(p, q, r \) are their cokernels, in which \(c \) is a cokernel of \(a \) and \(b \) is a kernel of \(d \), there exists an arrow \(\delta \) such that the following sequence is exact:

\[
\text{Ker}(u) \to^s \text{Ker}(v) \to^t \text{Ker}(w) \to^\delta \text{Coker}(u) \to^r \text{Coker}(v) \to^\gamma \text{Coker}(w).
\]

Decompose \(a = me \) into an epimorphism \(e \) followed by a monomorphism \(m \) as in figure 7. There exists arrows \(i' \) and \(u' \) such that \(js = mi' \) and \(vm = bu' \), because \(s, m \) and \(b \) are the respective kernels of \(t, c \) and \(d \). And since the functor \(\text{Ker} \) is left exact, \(i' \) is a kernel of \(u' \). In this way, changing notations, one may assume that \(a \) is a kernel of \(c \) and dually that \(d \) is a cokernel of \(b \).

Construction of diagram 9. Let \((m,f)\) be the fiber product of \((k,c)\). The square \(hf = cm \) is cartesian and since \(e \) is an epimorphism, so is \(f \) and the square is cocommutative (prop. 5 § 2). Let \(z \) be a kernel of \(f \). Since \(cmz = kfx = 0 \) and \(a \) is a kernel of \(c \), there exists a unique arrow \(l \) such that \(al = mz \). The square thus built is a kernel of the square built over \(m \) and \(k \); since \(k \) is a monomorphism, this square is cartesian (prop. 5 § 2).
Dually, one builds the amalgamated sum \((n, g)\) of \((p, b)\). This square is cocartesian and since \(b\) is a monomorphism, so is \(g\) and the square is cartesian (prop. 2 § 2). Similarly, one builds the cokernel \(h\) of \(g\) and one completes the square over \(h\) and \(d\), which is a cokernel of the square built over \(g\) and \(b\); since \(p\) is an epimorphism, this square is cocartesian (prop. 5(c) § 2).

Proof. Arrow \(nvm\) satisfies \((nvm)z = g(pu)l = 0\) and since \(f\) is a cokernel of \(z\), there exists a unique arrow \(\theta\) such that \(nvm = \theta f\). Now \(h\theta\) is nul parce que \(h\theta f = 0\) and \(f\) is an epimorphism. Therefore \(\theta\) factorises through the kernel of \(h\), that is \(g\): there exists a unique arrow \(\delta\) such that \(\theta = g\delta\). This terminates the construction of \(\delta\).

There remains to show that the sequence \((t, \delta)\) is exact or again, since \(g\) is a monomorphism, that \((t, \theta)\) is exact; by the duality property \((d, x)\) will also be exact. It is already clear that \(nvt = 0\). Let us show that the sequence \((t, \theta)\) is exact.

Step 1: Notice that \(nva = gpu = 0\) implies that \(nv\) factorizes through the cokernel \(c\) of \(a\): \(nv = k\) for a unique arrow \(k\). Moreover, \(k\) and \(\theta\) are two monomorphisms.

Decompose \(n\) into an epimorphism \(\varepsilon\) followed by a monomorphism \(\zeta\). Since \((va, n)\) is an exact sequence, \(\varepsilon\) is a cokernel of \(va\); since \(c\) is a cokernel of \(a\), there exists a unique arrow \(\rho\) such that \(\rho c = \varepsilon v\) (see Fig. 11).

Step 2: The sequence \((va, n)\) is exact. Indeed, in figure 10, the sequence \((u, p)\) is exact, \(n(va) = gpυ = 0\) and square C is cocartesian by construction. Proposition 1 ensures that the sequence \((va, n)\) is exact. Since \((s, t)\) is exact, \(\sigma\) is a cokernel of \(s\). Since \(c\) is a cokernel of \(a\), there exists a unique arrow \(\nu\) such that \(\nu c = \varepsilon j\). And \(\nu = k\tau\) is a monomorphism, since \(k\) and \(\tau\) are two monomorphisms.

Decompose \(n\) into an epimorphism \(\varepsilon\) followed by a monomorphism \(\zeta\). Since \((va, n)\) is an exact sequence, \(\varepsilon\) is a cokernel of \(va\); since \(c\) is a cokernel of \(a\), there exists a unique arrow \(\rho\) such that \(\rho c = \varepsilon v\) (see Fig. 11).

Step 3: Now, square IV in fig. 11 is a cokernel of square III, and since \(l\) is an epimorphism, IV is cocartesian (prop. 5(c) § 2). Further, the sequence \((j, v)\) is exact and \(nv = 0\), as can be checked if we precede it with the epimorphism \(\sigma\): \(\rho v = \varepsilon vj = 0\). From proposition 1, \((v, \rho)\) is exact. Since \(v\) is a monomorphism, it is a kernel of \(\rho\), and also of \(\zeta\) since \(\zeta\) is a monomorphism. Proposition 3 of § 1 terminates the proof: \(\nu = k\tau\) is a kernel of \(\kappa\), therefore \(\tau\) is a kernel of \(kk = \theta\), QED.

REFERENCES

Peter J. Freyd: *Abelian categories*, Harper & Row(1964).

Rafael Guglielmetti & Dimitri Zaganidis: *Introduction à la théorie des catégories and aux lemmes de diagrammes*, mémoire de l’École Polytechnique Fédérale de Lausanne(2009).