A refinement of Heath-Brown’s theorem on quadratic forms

Andrey Dymov, Sergei Kuksin, Alberto Maiocchi, and Sergei Vlăduț

Abstract

In his paper from 1996 on quadratic forms Heath-Brown developed a version of the circle method to count points in the intersection of an unbounded quadric with a lattice of short period, if each point is given a weight, and approximated this quantity by the integral of the weight function against a measure on the quadric. The weight function is assumed to be C^∞-smooth and vanish near the singularity of the quadric. In our work we allow the weight function to be finitely smooth, not vanish at the singularity and have an explicit decay at infinity.

The paper uses only elementary number theory and is available to readers without a number-theoretical background.
1 Introduction

1.1 Setting and result

Let us consider a non-degenerate quadratic form with integer coefficients on \mathbb{R}^d, $d \geq 4$,

$$F(z) = \frac{1}{2} A z \cdot z,$$ \hspace{1cm} (1.1)

which implies that A can be chosen as a non–degenerate symmetric matrix with integer elements whose diagonal elements are even. If F is sign–definite, then for $t \in \mathbb{R}$ the quadric

$$\Sigma_t = \{z : F^t(z) = 0\}, \quad F^t := F - t,$$ \hspace{1cm} (1.2)

is either an ellipsoid or an empty set, while in the non sign–definite case Σ_t is an unbounded hyper-surface in \mathbb{R}^d, which is smooth if $t \neq 0$, while Σ_0 is a cone and has a singular point at zero.

Let \mathbb{Z}_L^d be the lattice of a small period L^{-1},

$$\mathbb{Z}_L^d = L^{-1} \mathbb{Z}^d, \quad L \geq 1,$$

and let w be a regular real function on \mathbb{R}^d which means that w and its Fourier transform $\hat{w}(\xi)$ are continuous functions which decay at infinity sufficiently fast:

$$|w(z)| \leq C |z|^{-d-\gamma}, \quad \forall z \in \mathbb{R}^d, \quad |\hat{w}(\xi)| \leq C |\xi|^{-d-\gamma}, \quad \forall \xi \in \mathbb{R}^d,$$ \hspace{1cm} (1.3)

for some $\gamma, C > 0$, where $|\cdot|$ denotes the Euclidean norm. Our goal is to study the behaviour of series

$$N_L(w; A, m) := \sum_{z \in \Sigma_m \cap \mathbb{Z}_L^d} w(z),$$

where $m \in \mathbb{R}$ is such that $L^2 m$ is an integer\footnote{E.g., $m = 0$ – this case is the most important for us.} Let

$$w_L(z) := w(z/L).$$

Then, obviously,

$$N_L(w; A, m) = N_1(w_L; A, L^2 m) =: N(w_L; A, L^2 m).$$ \hspace{1cm} (1.4)

We will also write $N_L(w; A) := N_L(w; A, 0)$ and $N(w_L; A) := N(w_L; A, 0)$. To study $N_L(w; A, m)$ we closely follow the circle method in the form, given
to it by Heath-Brown in [10]. Our notation differs a bit from that in [10]. Namely, under the scaling $z = z'/L$, $z' \in \mathbb{Z}^d$, we count (with weights) solutions of equation $F(z') = mL^2$, $z' \in \mathbb{Z}^d$, while Heath-Brown writes the equation as $F(z') = m$, $z' \in \mathbb{Z}^d$, so that his m corresponds to our L^2m.

We start with a key theorem which expresses the analogue of Dirac’s delta function on integers, i.e. the function $\delta : \mathbb{Z} \to \mathbb{R}$ such that $\delta(n) := \begin{cases} 1 & \text{for } n = 0 \\ 0 & \text{for } n \neq 0 \end{cases}$, through a sort of Fourier representation. This result goes back at least to Duke, Friedlander and Iwaniec [4] (cf. also [11]), and we state it in the form, given in [10, Theorem 1]; basically, it replaces (a major arc decomposition of) the trivial identity $\delta(n) = \int_0^1 e^{2\pi i \alpha n} d\alpha$ employed in the usual circle method.

In the theorem below for $q \in \mathbb{N}$ we denote by $e_q(x) := e^{2\pi i qx}$, and denote by $\sum \ast$ the summation over residues a with $(a, q) = 1$, i.e., over all integers $a \in [1, q - 1]$, relatively prime with q.

Theorem 1.1. For any $Q \geq 1$, there exists $c_Q > 0$ and a smooth function $h(x, y) : \mathbb{R}_+ \times \mathbb{R} \to \mathbb{R}$, such that

$$\delta(n) = c_Q Q^{-2} \sum_{q=1}^{\infty} \sum_{a \text{ (mod } q)} e_q(anh \left(\frac{q}{Q}, \frac{n}{Q^2}\right)) \quad (1.5)$$

The constant c_Q satisfies $c_Q = 1 + O_N(Q^{-N})$ for any $N > 0$, while h is such that $h(x, y) \leq c/x$ and $h(x, y) = 0$ for $x > \max(1, 2|y|)$ (so for each n the sum in (1.5) contains finitely many non zero terms).

Since for any function \tilde{w} on \mathbb{R}^d the quantity $N(\tilde{w}; A, t)$ may be written as $\sum_{z \in \mathbb{Z}^d} \tilde{w}(z) \delta(F(t)(z))$, then Theorem 1.1 allows to represent the series $N(\tilde{w}; A, t)$ as an iterated sum. Transforming that sum further using the Poisson summation formula as in [10, Theorem 2] we arrive at the following result:

Theorem 1.2 (Theorem 2 of [10]). For any regular function \tilde{w}, any t and any $Q \geq 1$ we have the expression

$$N(\tilde{w}; A, t) = c_Q Q^{-2} \sum_{c \in \mathbb{Z}^d} \sum_{q=1}^{\infty} q^{-d} S_q(c) I_q^0(c), \quad (1.6)$$

\(^2\text{In [10] the result below is stated for } \tilde{w} \in C^\infty_0. \text{ But the argument there, based on the Poisson summation, applies as well to regular functions } \tilde{w}.\)
with
\[S_q(c) = S_q(c; A, t) := \sum_{a \pmod{q}}^{\ast} \sum_{b \pmod{q}} e_q(a F^t(b) + c \cdot b) \quad (1.7) \]
and
\[I^0_q(c) = I^0_q(c; A, t, Q) := \int_{\mathbb{R}^d} \tilde{w}(z) h \left(\frac{q}{Q} \frac{F^t(z)}{Q^2} \right) e_q(-z \cdot c) \, dz. \quad (1.8) \]

We will apply Theorem 1.2 to examine for large \(L \) the sum \(N(w_L; A, L^2 m) = N_L(w; A, m) \), choosing \(\tilde{w} = w_L, t = L^2 m \) and \(Q = L \geq 1 \) and estimating explicitly the leading terms in \(L \) of \(S_q(c) \) and \(I^0_q(c) \) as well as the remainders. The answer will be given in terms of the integral
\[\sigma_\infty(w) = \sigma_\infty(w; A, t) = \int_{\Sigma_t} w(z) \mu^{\Sigma_t}(dz) \quad (1.9) \]
(which is singular if \(t = 0 \)). Here \(\mu^{\Sigma_t}(dz) = |\nabla F(z)|^{-1} dz|_{\Sigma_t} = |Az|^{-1} dz|_{\Sigma_t} \), with \(dz|_{\Sigma_t} \) representing the volume element over \(\Sigma_t \), induced from the standard euclidean structure on \(\mathbb{R}^d \), and \(A \) the symmetric matrix in (1.1). For regular functions \(w \) this integral converges (see Section 7).

To write down the asymptotic for \(N_L(w; A, m) \) we will need the following quantities, where \(p \) ranges over all primes and \(c \in \mathbb{Z}^d \):
\[\sigma^c_p(A) = \sigma^c_p(A; L^2 m) := \sum_{l=0}^{\infty} p^{-dl} S^c_p(c; A, L^2 m), \quad \sigma^c := \sigma^0, \quad (1.10) \]
where \(S_1 \equiv 1 \),
\[\sigma^c(A) := \prod_p (1 - p^{-1}) \sigma^c_p(A, 0), \quad \sigma^*(A) := \sigma^*_0(A) = \prod_p (1 - p^{-1}) \sigma_p(A, 0), \]
and
\[\sigma(A, L^2 m) = \prod_p \sigma^0_p(A, L^2 m) = \prod_p \sigma_p(A, L^2 m). \quad (1.11) \]
The products in the formulas above are taken over all primes. In the asymptotics, where these quantities are used, they are bounded uniformly in \(L \) (see Theorems 1.3 and 1.4 as well as Proposition 1.5).

 Everywhere below for a function \(f \in C^k(\mathbb{R}^d) \) we denote
\[\|f\|_{n_1, n_2} = \sup_{z \in \mathbb{R}^d} \max_{|\alpha| \leq n_1} |\partial^\alpha f(z)| (z)^{n_2}. \]
where \(n_1 \in \mathbb{N} \cup \{0\}, n_1 \leq k, \) and \(n_2 \in \mathbb{R} \). Here
\[
\langle x \rangle := \max\{1, |x|\} \quad \text{for} \quad x \in \mathbb{R}^l, \quad l \in \mathbb{N},
\]
and \(|\alpha|_1 \equiv \sum \alpha_j \) for any integer vector \(\alpha \in (\mathbb{N} \cup \{0\})^d \). By \(C^{n_1,n_2}(\mathbb{R}^d) \) we denote a linear space of \(C^{n_1} \)-smooth functions \(f : \mathbb{R}^d \to \mathbb{R} \), satisfying \(\|f\|_{n_1,n_2} < \infty \).

Note that if \(w \in C^{d+1,d+1}(\mathbb{R}^d) \) then the function \(w \) is regular, so Theorem 1.2 applies. Indeed, the first relation in (1.3) is obvious. To prove the second note that for any integer vector \(\alpha \in (\mathbb{N} \cup \{0\})^d \), \(\xi^\alpha \hat{w}(\xi) = (\frac{1}{2\pi})^{\frac{|\alpha|}{2}}\partial_\xi^\alpha \hat{w}(\xi) \). But if \(|\alpha|_1 \leq d + 1 \), then \(|\partial_\xi^\alpha w| \leq C(\xi)^{-d-1} \), so \(\partial_\xi^\alpha w \) is an \(L_1 \)-function. Thus its Fourier transform \(\partial_\xi^\alpha \hat{w} \) is a bounded continuous function for each \(|\alpha|_1 \leq d + 1 \) and the second relation in (1.3) also holds.

Now we formulate our main results. First we treat the case \(d \geq 5 \).

Theorem 1.3. Assume that \(d \geq 5 \). Then for any \(0 < \varepsilon \leq 1 \) there exist positive constants \(K_1(d,\varepsilon), K_2(d,\varepsilon) \) and \(K_3(d,\varepsilon) \), with \(K_2(d,\varepsilon) \leq K_3(d,\varepsilon) \), such that if \(w \in C^{K_1,d}(\mathbb{R}^d) \cap C^{0,K_3}(\mathbb{R}^d) \) and a real number \(m \) satisfies \(L^2m \in \mathbb{Z} \), then
\[
|N_L(w; A, m) - \sigma_{\infty}(w)\sigma(A, L^2m)L^{d-2}| \leq CL^{d/2+\varepsilon} \left(\|w\|_{K_1,K_2} + \|w\|_{0,K_3} \right),
\]
where the constant \(C \) depends on \(d, \varepsilon, m \) and \(A \). The constant \(\sigma(A, L^2m) \) is bounded uniformly in \(L \) and \(m \). In particular if \(\varepsilon = 1/2 \), then one can take \(K_1 = 2d(d^2 + d - 1), K_2 = 4(d+1)^2 + 3d + 1 \) and \(K_3 = K_1 + 3d + 4 \).

Next we study the case \(d = 4 \), restricting ourselves for the situation when \(m = 0 \).

Theorem 1.4. Assume that \(d = 4 \) and \(m = 0 \). Then for any \(0 < \varepsilon < 1/5 \) there exist positive constants \(K_1(\varepsilon) \) and \(K_2(\varepsilon) \), such that for \(w \in C^{K_1,K_2}(\mathbb{R}^d) \)
\[
|N_L(w; A, 0) - \eta(0)\sigma_{\infty}(w)\sigma(A)L^{d-2}\log L - \sigma_1(w; A, L)L^{d-2}| \leq C_0L^{d-2-\varepsilon}\|w\|_{K_1,K_2},
\]
where the constant \(C_0 \) depends on \(\varepsilon \) and \(A \). The constant \(\eta(0) \) is 1 if the determinant \(\det A \) is a square of an integer and is 0 otherwise. The \(L \)-independent constant \(\sigma^*(A) \) is finite while the constant \(\sigma_1 \) satisfies
\[
|\sigma_1(w; A, L)| \leq C_0\|w\|_{K_1,K_2}
\]
uniformly in \(L \). In the case of a square determinant \(\det A \), when \(\eta(0) = 1 \), it is given by (1.24). In the case of a non–square determinant \(\det A \), when
\(\eta(0) = 0 \) and the term \(\sigma_1(w; A, L)L^{d-2} \) gives the asymptotic of the sum \(N_L \), the constant \(\sigma_1(w; A, L) \) does not depend on \(L \) and has the form

\[
\sigma_1(w; A) = \sigma_\infty(w) L(1, \chi) \prod_p (1 - \chi(p)p^{-1})\sigma_p(A, 0),
\]

(1.14)

where \(\chi \) is the Jacobi symbol \(\left(\frac{\det(A)}{\star} \right) \) and \(L(1, \chi) \) is the Dirichlet L–function.\(^3\)

If \(\eta(0)\sigma^*(A) = 0 \), then the asymptotic (1.13) degenerates. Similar (1.12) also degenerates to an upper bound on \(N_L \), unless we know that \(\sigma(A, L^2m) \) admits a suitable positive lower bound, for all \(L \). Luckily enough, the required lower bounds often exist, see below Proposition 1.5.

Theorems 1.3 and 1.4 refine Theorems 5, 6 and 7 from [10] in three respects: firstly, now the weight function \(w \) has finite smoothness and sufficiently fast decays at infinity, while in [10] \(w \in C_0^\infty \). Secondly, we specify how the remainder depends on \(w \). Thirdly and the most importantly, we remove the restriction that the support of \(w \) does not contain the origin, imposed in [10] in a number of crucial statements. These improvements are crucial for us since in our work [6], dedicated to the problem of wave turbulence, the two theorems above are used in the situation when \(w(0) \neq 0 \) and the support of \(w \) is not compact. A similar specification of the Heath-Brown method was obtained in [1, Section 5] to study an averaging problem, related to the questions, considered in [6]. Apart from wave turbulence and averaging, the replacement of sums over integer points of a quadric by integrals, with careful estimating the remainders, is needed in Kolmogorov Arnold Moser theory for partial differential equations, e.g. see (C.2) in [8]. The publications [8, 1, 6] are recent. We are certain that these days, when people, working in PDEs and dynamical systems, treat complicated non-linear phenomena with resonances more and more often, there will be increasing demand for the instrumental asymptotics (1.12), (1.13) and their variations. Our paper uses only basic results from the number theory and is well available to readers from Analysis.

We note that the papers [9] and [10] treat the sums \(N_L(w; A, m) \) for even and odd dimensions \(d \) correspondingly, without the restriction that \(w(0) \neq 0 \), in a more general context than our Theorems 1.3 and 1.4. However, due to this generality the corresponding constants in the asymptotical in \(L \) formulas in [9] and [10] are very implicit (e.g., the question whether they vanish or not is highly non-trivial). The connection of the constants with singular integrals.

\(^3\)Concerning the classical notion of the Jacobi symbol and the Dirichlet L–function we refer a reader without number-theoretical background e.g. to [15] and [12].
like (1.9) and the dependence of the remainders in the asymptotics on the weight function \(w \), crucial for application in analysis, is not clear. Another feature of [9, 10] is the use of rather advanced adelic technique, which makes it difficult for readers without serious number-theoretical background to use the result and the method of the work.

Remarks. 1) Theorem 1.3 is a refinement of Theorem 5 of [10], while Theorem 1.4 refines Theorems 6 and 7 of [10]. In [10] also is available some asymptotic in \(L \) information about behaviour of the sums \(N_L(w; A, m) \) when \(d = 4, m \neq 0 \) and \(d = 3, m = 0 \). Since our proof of Theorems 1.3 and 1.4 is based on ideas from [10], strengthened by Theorem 7.3 which is valid for \(d \geq 3 \), then most likely our approach allows to generalise the above-mentioned results of [10] for \(d = 3, 4 \) to the case when \(w \in C^{K_1, K_2} (R^d) \) with suitable \(K_1, K_2 \).

2) In our work the dependence of constants in estimates on \(m \) is uniform on compact intervals, while the dependence on the operator \(A \) is only via the norms of \(A \) and \(A^{-1} \).

3) The values of constants \(K_j(d, \varepsilon) \) in (1.12), given in Theorem 1.3, are far from optimal since it was not our goal to optimise them.

4) As the theorems’ proof are based on the representation (1.9), then the function \(w \) should be regular (see (1.3)). But this holds true if \(w \in C^{d+1, d+1} \) and so is valid if the constants \(K_1, K_2 \) are sufficiently big. E.g. if \(K_1, K_2 \) are as big as in the last line of the assertion of Theorem 1.3.

Brief discussion of the proofs. We present in full only a proof of Theorem 1.3, which resembles that of [10, Theorem 5] with an additional control of how the constants depend on \(w \). The significant difference from the argument of Heath-Brown comes in Sections 3 and 4, where we do not assume that the function \(w \) vanishes near the origin, the last assumption being crucial in the analysis of integrals in Sections 6 and 7 of [10]. To cope with this difficulty, which becomes apparent e.g. in Proposition 3.8 below, we have to examine the smoothness at zero of function

\[
t \mapsto \sigma_\infty(w; A, t)
\]

and its decay at infinity. The corresponding analysis is performed in Section 7. There, using the techniques, developed in [5] to study integrals (1.9), we prove that function (1.13) is \(([d/2] - 2) \)-smooth, but in general for even \(d \) its derivative of order \((d/2 - 1) \) may have a logarithmic singularity at zero. There we also estimate the rate of decay of function (1.15) at infinity.

The proof of Theorem 1.4 resembles that of Theorems 6 and 7 of [10] with a new addition given by Proposition 3.8, based on the result of Section 7.
We thus limit ourselves to a sketch of the theorem’s demonstration, given in Section 1.3 in parallel to that of Theorem 1.3, and point out the main differences between the two proofs. Establishing Theorem 1.4 we use certain results from [10] (namely, Lemmas 30 and 31) without proof.

Lower bounds for constant from the asymptotics. Let us now discuss lower bounds for the constants \(\sigma(A, L^2m) \) and \(\sigma^*(A) \) from Theorems 1.3 and 1.4.

Proposition 1.5.

(i) If \(d \geq 5 \) then there exist positive constants \(c(A) < C(A) \) such that \(0 < c(A) \leq \sigma(A, L^2m) \leq C(A) < \infty \) for any non-degenerate matrix \(A \), uniformly in \(L \) and \(m \).

(ii) If \(d = 4 \) and \(m = 0 \) we have \(\sigma^*(A) > 0 \) for any non-degenerate matrix \(A \) such that the corresponding equation \(2F(z) = Az \cdot z = 0 \) has non-trivial solutions in every \(p \)-adic field (in particular this holds if the equation has a non-trivial solution in \(\mathbb{Z}^4 \)).

See Theorems 4, 6 and 7 of [10]. We do not prove this result, but just note that its demonstration uses a refinement of the calculation in the second part of the proof of Lemma 2.3. Namely, while the lemma gives an upper bound for the desired quantity, a more thorough analysis permits also to establish the claimed lower bounds.

In Appendix B we give essentially a complete calculation, proving Proposition 1.5 in the case of the simplest quadratic form \(F = \sum_{i=1}^{d/2} x_i y_i \), \(d = 2s \geq 4 \), and \(m = 0 \). A proof of the proposition for any \(A \) may follow the same lines, replacing explicit formulas by some general results (e.g. Hensel’s Lemma).

Non-homogeneous quadratic polynomials. Now consider a non-homogeneous quadratic polynomial \(F \) with the second order part, equal to \(F \) in (1.1):

\[
F(z) = \frac{1}{2} Az \cdot z + z_* \cdot z + \tau, \quad z_* \in \mathbb{R}^d, \quad \tau \in \mathbb{R},
\]

and the corresponding set \(\Sigma^F = \{ z : F(z) = 0 \} \), \(N_L(w; F) = \sum_{z \in \Sigma^F \cap \mathbb{Z}^d_L} w(z) \).

Denote \(\bar{z} = A^{-1} z_* \), \(z' = z + \bar{z} \), \(m = \frac{1}{2} \bar{z} \cdot A z + \tau \),

and assume that \(\bar{z} \in \mathbb{Z}^d_L \) and \(L^2 \tau \in \mathbb{Z} \). Then \(L^2 m \in \mathbb{Z} \), \(z' \in \mathbb{Z}^d_L \) if and only if \(z \in \mathbb{Z}^d_L \), and \(F(z) = F(z') - m \). So setting \(w^3(z') = w(z' - \bar{z}) \) we have \(N_L(w; F) = N_L(w^3; A, m) \). Since

\[
\sigma_{\infty}(w^3; A, m) = \int_{\Sigma^F w^3(z')} \frac{dz'}{|\nabla F(z')}| = \int_{\Sigma^F} w(z) \frac{dz}{|\nabla F(z)|} =: \sigma_{\infty}(w; F),
\]

then we arrive at the following corollary from Theorem 1.3:

\[\text{This holds e.g. if } \det A = \pm 1 \text{ and } z_* \in \mathbb{Z}^d_L.\]
Corollary 1.6. If \(d \geq 5 \), the quadratic form \(F \) is as in Theorem 1.3. \(F \) is a non-homogeneous quadratic form as above and \(L \) is such that \(\tau := A^{-1}z_* \in \mathbb{Z}^d \), \(\tau L^2 \in \mathbb{Z} \), then for any \(0 < \varepsilon \leq 1 \) and \(w \in C^{1,2}(\mathbb{R}^d) \cap C^{0,3}(\mathbb{R}^d) \) we have

\[
|N_L(w; F) - \sigma_{\infty}(w; F) \sigma(A, L^2 m)L^{d-2}| \leq CL^{d/2+\varepsilon}(\|w\|_{K_1,K_2} + \|w\|_{0,K_3}).
\]

Here the constants \(K_1, K_2, K_3 \) depend on \(d \) and \(\varepsilon \), while \(C \) depends on \(d, \varepsilon, A \) and \(\tau, |z_*| \).

Notation and agreements. We write \(A \lesssim a, b \) if \(A \leq CB \), where the constant \(C \) depends on \(a \) and \(b \). Similar, \(O(a,b)(\|w\|_{m_1,m_2}) \) stands for a quantity, bounded in absolute value by \(C(a, b)\|w\|_{m_1,m_2} \). We do not indicate the dependence on the matrix norms \(\|A\|, \|A^{-1}\| \) and on the dimension \(d \) since most of our estimates depend on these quantities.

We always assume that function \(w \) belongs to the space \(C^{m,n}(\mathbb{R}^d) \) with sufficiently large \(m, n \). If in the statement of an assertion we employ the norm \(\|w\|_{a,b} \) then we assume that \(w \in C^{a,b}(\mathbb{R}^d) \).

We denote \(e_q(x) = e^{2\pi i x/q} \) and abbreviate \(e_1(x) = e(x) \). By \(\lceil \cdot \rceil \) we denote the ceiling function, \(\lceil x \rceil = \min_{n \in \mathbb{Z}}\{n \geq x\} \). By \(\mathbb{N} \) we denote the set of positive integers.

Acknowledgements. The authors thank Professor Heath-Brown for advising them concerning the paper [10]. The work of AD was funded by a grant from the Russian Science Foundation (Project 20-41-09009) [Sections 1-7] and by the Grant of the President of the Russian Federation (Project MK-1999-2021.1.1) [Sections A-C]. Research of SK was equally supported by the Ministry of Science and Higher Education of the Russian Federation (megagrant No. 075-15-2022-1115) and by l’Agence Nationale de la Recherche (France), grant 17-CE40-0006.

1.2 Scheme of the proof of Theorem 1.3

Let \(d \geq 5 \). As it has been already discussed, if \(w \) satisfies assumptions of the theorem with sufficiently large constants \(K_i \) then \(w \) is regular in the sense of Section 1.1, so Theorem 1.2 applies. Then, according to (1.6) and (1.4),

\[
N_L(w; A, m) = c_L L^{-2} \sum_{e \in \mathbb{Z}^d} \sum_{q=1}^{\infty} q^{-d} S_q(e) I_q(e),
\] (1.16)
where the sum \(S_q(c) = S_q(c; A, L^2 m) \) is given by (1.7) with \(t = L^2 m \) and the integral \(I_q(c) - by (1.8) with \(\tilde{w} = w_L, Q = L \) and \(t = L^2 m \),

\[
I_q(c; A, m, L) := \int_{\mathbb{R}^d} w \left(\frac{z}{L} \right) h \left(\frac{q}{L}, \frac{F_L^2 m(z)}{L^2} \right) e_q(-z \cdot c) \, dz .
\] (1.17)

Denoting

\[
n(c; A, m, L) = \sum_{q=1}^{\infty} q^{-d} S_q(c) I_q(c) ,
\]
we have \(N_L(w; A, m) = c_L L^{-2} \sum_{c \in \mathbb{Z}^d} n(c) \). Then for any \(\gamma_1 \in (0, 1/2) \) we write \(N_L \) as

\[
N_L(w; A, m) = c_L L^{-2} (J_0 + J_{\geq 1} + J_{> 1}) ,
\] (1.18)

where

\[
J_0 := n(0) , \quad J_{\geq 1} := \sum_{c \neq 0, |c| \leq L^{\gamma_1}} n(c) , \quad J_{> 1} := \sum_{|c| > L^{\gamma_1}} n(c) .
\] (1.19)

Proposition 5.1 (which is a modification of Lemmas 19 and 25 from [10]) implies that

\[
|J_{> 1}| \lesssim_{\gamma_1, m} \|w\|_{\eta, 2\eta_0 + d + 1}
\]

with \(\eta_0 := \lceil d + (d + 1)/\gamma_1 \rceil \) (see Corollary 5.2). In Proposition 6.1 following Lemmas 22 and 28 from [10], we show that

\[
|J_{\geq 1}| \lesssim_{\gamma_1, m} L^{d/2 + 2 + \gamma_1(d+1)} (\|w\|_{\tilde{N}, d+5} + \|w\|_{0, \tilde{N} + 3d+4}) ,
\] (1.20)

\(\tilde{N} = \lceil d^2/\gamma_1 \rceil - 2d \).

To analyse \(J_0 \) we write it as \(J_0 = J_0^+ + J_0^- \), where

\[
J_0^+ := \sum_{q > \rho L} q^{-d} S_q(0) I_q(0) , \quad J_0^- := \sum_{q \leq \rho L} q^{-d} S_q(0) I_q(0) ,
\] (1.21)

with \(\rho = L^{-\gamma_2} \) for some \(0 < \gamma_2 < 1 \) to be determined. Lemma 4.2 which is a combination of Lemmas 16 and 25 from [10], modified using the results from Section 7, implies that

\[
|J_0^+| \lesssim L^{d/2 + 2 + \gamma_2(d/2 - 1)} \|w\|_{L^1} \lesssim L^{d/2 + 2 + \gamma_2(d/2 - 1)} \|w\|_{0, d+1} .
\]
Finally Lemma 4.3, which is a combination of Lemma 13 and simplified Lemma 31 from [10] with the results from Section 7, establishes that J_0 equals

$$L^d \sigma_{\infty}(w) \sigma(A, L^2 m) + O_{\gamma_2 \sigma}(\|w\|_{d/2-2,d-1} + \|w\|_{0,d+1}) L^{d/2+2+\gamma_2(d/2-2)}$$

(see (1.9) and (1.11)). Identity (1.18) together with the estimates above implies the desired result if we choose $\gamma_2 = \varepsilon/(d/2 - 1)$ and $\gamma_1 = \varepsilon/(d + 1)$.

Uniform in L and m boundedness of the product $\sigma(A, L^2 m)$ follows from Lemma 2.3.

1.3 Scheme of the proof of Theorem 1.4

In this section we assume that $d = 4$ and $m = 0$. The proof proceeds exactly as in the previous section up to formula (1.20), which is not sharp enough for the case $d = 4$ and should be replaced by

$$|J^{\gamma_1}_c - L^d \sum_{c \neq 0} \eta(c) \sigma^* (A) \sigma^c (w; A, L) | \lesssim_{\gamma_1} L^{7/2+(d+4)\gamma_1} \|w\|_{\tilde{K}_1, \tilde{K}_2}$$

(1.22)

for appropriate constants \tilde{K}_1, \tilde{K}_2, where the terms $\sigma^c (A)$ are introduced in (1.10), terms $\sigma^c_\infty (w; A)$ are given by

$$\sigma^c_\infty (w; A, L) := L^{-d} \sum_{q=1}^{\infty} q^{-1} I_q (c; A, 0, L) ,$$

(1.23)

and the constants $\eta(c) = \pm 1$ are defined in Lemma A.1. In particular, $\eta(0) = 1$ if the determinant $\det A$ is a square of an integer and $\eta(0) = 0$ otherwise.

The proof of the bound (1.22) makes use of Lemma A.1 (Lemma 30 of [10]), involving only minor modifications of the argument in [10] and is left to the reader.

The bound on J_0 must be refined too and this is done in Appendix A. We consider only the case when the determinant $\det A$ is a square of an integer, so in particular $\eta(0) = 1$. The opposite case can be obtained by minor modification of the latter, following [10] (see Appendix A for a discussion). In Proposition A.3 which is a combination of Lemmas 13, 16 and 31 of [10], modified using Proposition 3.8 we prove that in the case of square determinant $\det A$

$$J_0 = \sigma_\infty (w) \sigma^* (A) L^d \log L + K(0) L^d$$

$$+ O_{\varepsilon} (L^{d-\varepsilon} (\|w\|_{d/2-2,d-1} + \|w\|_{0,d+1})) ,$$

11
where a constant \(K(0) = K(0; w, A) \) is defined in Section \(\text{A.1} \). Again, identity (1.18) together with the estimates above implies the desired result if we choose \(\gamma_1 = (\frac{1}{2} - \varepsilon)/(d + 4) \) and put

\[
\sigma_1(w; A, L) := K(0) + \sum_{c \neq 0} \eta(c) \sigma_c^*(A) \sigma_{\infty}(w; A, L).
\]

Finiteness of the products \(\sigma_c^*(A) \) follow from Lemma \(\text{A.2} \) while the claimed in the theorem estimate for the constant \(\sigma_1(w; A, L) \) is established in Section \(\text{A.3} \).

2 Series \(S_q \)

Now we start to prove Theorem 1.3, following the scheme presented in Section \(\text{1.2} \). Part of the assertions, forming the proof, do not use that \(d \geq 5 \). So below in all assertion involving the dimension \(d \), we indicate the real requirements on \(d \). We recall that the constants in estimates may depend on \(d \) and \(A \), but this dependence is not indicated (see \(\text{Notation and agreements} \)).

In the present section we analyse the sums \(S_q(c) = S_q(c; A, L^2m) \) entering, in particular, the definitions of the singular series \(\sigma(A, L^2m) \) and \(\sigma_p(A, L^2m) \).

Lemma 2.1 (Lemma 25 in \([10] \)). For any \(d \geq 1 \) we have \(|S_q(c; A, L^2m)| \lesssim q^{d/2+1} \), uniformly in \(c \in \mathbb{Z}^d \).

Proof. According to (1.17), an application of the Cauchy-Schwarz inequality shows that

\[
|S_q(c)|^2 \leq \phi(q) \sum_{a \pmod q}^* \left| \sum_{b \pmod q} e_q(aF^{L^2m}(b) + c \cdot b) \right|^2
\]

\[
= \phi(q) \sum_{a \pmod q}^* \sum_{u, v \pmod q} e_q(a(F^{L^2m}(u) - F^{L^2m}(v)) + c \cdot (u - v)),
\]

where \(\phi(q) \) is the Euler totient function. Since \(F^t(z) = \frac{1}{z} (A \cdot z - t) \), then

\[
F^{L^2m}(u) - F^{L^2m}(v) = (A \cdot w + F(w)) = v \cdot A \cdot w + F(w).
\]

So

\[
e_q(a(F^{L^2m}(u) - F^{L^2m}(v)) + c \cdot (u - v)) = e_q(aF(w) + c \cdot w) e_q(a \cdot F \cdot A \cdot w).
\]
Now we see that the summation over v in (2.1) produces a zero contribution, unless each component of the vector $A w$ is divisible by q. This property holds for at most a finite number N of vectors w, where the constant N depends only on $\det A$. Thus,

$$|S_q(c)|^2 \lesssim \phi(q) \sum_{a \pmod{q}}^{*} \sum_{v \pmod{q}} 1 \leq \phi^2(q) q^d.$$

□

The lemma’s assertion shows that the sums σ_p^e, defined in (1.10), are finite:

Corollary 2.2. If $d \geq 5$, for any prime p we have $|\sigma_p^e(A, L^2m)| \lesssim 1$.

Recall that $\sigma(A, L^2m) = \prod_p \sigma_p(A, L^2m)$ (see (1.11)).

Lemma 2.3. For any $d \geq 5$ and $1 \leq X \leq \infty$ we have

$$\sum_{q \leq X} q^{-d} S_q(0) = \sigma(A, L^2m) + O(X^{-d/2+2}).$$

In particular, $\sigma(A, L^2m) = \sum_{q=1}^{\infty} q^{-d} S_q(0)$. So $|\sigma(A, L^2m)| \lesssim 1$ in view Lemma 2.1.

Proof. We start by showing the multiplicative property of trigonometric sums

$$S_{qq'}(0) = S_q(0)S_{q'}(0), \quad (2.2)$$

whenever $(q, q') = 1$ (cf. Lemma 23 from [10]). By definition

$$S_{qq'}(0) = \sum_{a \pmod{qq'}}^{*} \sum_{v \pmod{qq'}} e_{qq'}(aF^{L^2m}(v)).$$

When $(q, q') = 1$ we can replace the summation on a (mod qq') by a double summation on a_q modulo q and $a_{q'}$ modulo q' by writing $a = qa_{q'} + q'a_q$. Thus

$$S_{qq'}(0) = \sum_{a_q \pmod{q}}^{*} \sum_{a_{q'} \pmod{q'}}^{*} e_{qq'}(a_qF^{L^2m}(v))e_{q'}(a_{q'}F^{L^2m}(v)).$$

Then we replace the summation on v (mod qq') with the double summation on v_q modulo q and $v_{q'}$ modulo q' by writing $v = qq'v_{q'} + q'qv_q$, where q
and \(\bar{q}' \) are defined through relations \(q \bar{q} = 1 \pmod{q'} \) and \(q' \bar{q}' = 1 \pmod{q} \). We observe that

\[
F_{L^2m}(v) = q^2 \bar{q}^2 F(v_{q'}) + q'^2 \bar{q}'^2 F(v_q) + q \bar{q} q' \bar{q}' A v_{q'} \cdot v_q - L^2 m ,
\]

so that

\[
e_q(a_q F_{L^2m}(v)) = e_q(a_q q'^2 \bar{q}'^2 F(v_q) - a_q L^2 m) = e_q(a_q F_{L^2m}(v_q)) .
\]

This gives (2.2).

Next we note that, due to Lemma 2.1,

\[
\sum_{q \geq X} q^{-d} |S_q(0)| \lesssim \sum_{q \geq X} q^{-d/2+1} \lesssim X^{-d/2+2} .
\]

By (2.2) and the definition of \(\sigma \),

\[
\sigma = \lim_{n \to \infty} \sigma^n , \quad \sigma^n = \prod_{p \leq n} \sum_{l=0}^{n} p^{-d} S_{p^l}(0) = \sum_{q \in P_n} q^{-d} S_q(0) ,
\]

where \(p \) are primes and \(P_n \) denotes the set of natural numbers \(q \) with prime factorization of the form \(q = p_1^{k_1} \cdots p_m^{k_m} \), where \(2 \leq p_1 < p_2 \cdots < p_m \leq n \), \(k_j \leq n \) and \(m \geq 0 \) (\(m = 0 \) corresponds to \(q = 1 \)). Since any \(q \leq n \) belongs to \(P_n \), then according to (2.3),

\[
\left| \sum_{q \in P_N} q^{-d} S_q(0) - \sum_{q \leq X} q^{-d} S_q(0) \right| \lesssim X^{-d/2+2} \quad \forall N \geq X ,
\]

for any finite \(X > 0 \). Passing in this estimate to a limit as \(N \to \infty \) we recover the assertion if \(X < \infty \). Then the result with \(X = \infty \) follows in an obvious way. \(\square \)

3 Singular integrals \(I^0_q \)

3.1 Properties of \(h(x, y) \)

Following [10], Section 3, we construct the function \(h(x, y) \in C^\infty(\mathbb{R}_+, \mathbb{R}) \), entering Theorem 1.1 starting from the weight function \(w_0 \in C^\infty_0(\mathbb{R}) \), defined as

\[
w_0(x) = \begin{cases}
\exp\left(\frac{1}{x^2 - 1}\right) & \text{for } |x| < 1 \\
0 & \text{for } |x| \geq 1
\end{cases}
\]

(3.1)

14
We denote $c_0 := \int_{-\infty}^{\infty} w_0(x) \, dx$ and introduce the shifted weight function

$$
\omega(x) = \frac{4}{c_0} w_0(4x - 3),
$$

which of course belongs to $C^\infty_0(\mathbb{R})$. Obviously, $0 \leq \omega \leq 4e^{-1}/c_0$, ω is supported on $(1/2, 1)$, and $\int_{-\infty}^{\infty} \omega(x) \, dx = 1$.

The required function $h : \mathbb{R}_+ \times \mathbb{R} \to \mathbb{R}$ is defined in terms of ω as $h(x, y) := h_1(x) - h_2(x, y)$ with

$$
h_1(x) := \sum_{j=1}^{\infty} \frac{1}{x_j} \omega(x_j), \quad h_2(x, y) := \sum_{j=1}^{\infty} \frac{1}{x_j} \omega\left(\frac{|y|}{x_j}\right).
$$

(3.2)

For any fixed pair (x, y) each of the two sum in j contains a finite number of nonzero terms. So h is a smooth function.

In [10], Section 3, it is shown how to derive Theorem 1.1 from the definition (3.2). Here we limit ourselves to providing some relevant properties of h, proved in Section 4 of [10]. In particular these properties imply that for small x, $h(x, y)$ behaves as the Dirac delta function in y.

Lemma 3.1 (Lemma 4 in [10]). We have:

1. $h(x, y) = 0$ if $x \geq 1$ and $|y| \leq x/2$.

2. If $x \leq 1$ and $|y| \leq x/2$, then $h(x, y) = h_1(x)$, and for any $m \geq 0$

$$
\left| \frac{\partial^m h(x, y)}{\partial x^m} \right| \lesssim_m \frac{1}{x^{m+1}}.
$$

3. If $|y| \geq x/2$, then for any $m, n \geq 0$

$$
\left| \frac{\partial^{m+n} h(x, y)}{\partial x^m \partial y^n} \right| \lesssim_{m,n} \frac{1}{x^{m+1} |y|^n}.
$$

Lemma 3.2 (Lemma 5 in [10]). Let $m, n, N \geq 0$. Then for any x, y

$$
\left| \frac{\partial^{m+n} h(x, y)}{\partial x^m \partial y^n} \right| \lesssim_{N,m,n} \frac{1}{x^{1+m+n}} \left(\delta(n)x^N + \min \left\{ 1, (x/|y|)^N \right\} \right).
$$

Lemma 3.2 with $m = n = N = 0$ immediately implies

Corollary 3.3. For any $x, y \in \mathbb{R}_+ \times \mathbb{R}$ we have $|h(x, y)| \lesssim 1/x$.

5Actually it is proved there that any function h defined through (3.2) with arbitrary weight function $\omega \in C^\infty_0(\mathbb{R})$, supported on $[1/2, 1]$, may provide a representation of $\delta(n)$.

15
Lemma 3.4 (Lemma 6 in [10]). Fix $X \in \mathbb{R}_{>0}$ and $0 < x < C \min \{1, X\}$, for some $C > 0$. Then for any $N \geq 0$,

$$\int_{-X}^{X} h(x, y) \, dy = 1 + O_{N,C} \left(X x^{N-1} \right) + O_{N,C} \left(\frac{x^{N}}{X^{N}} \right).$$

Lemma 3.5 (Lemma 8 in [10]). Fix $X \in \mathbb{R}_{>0}$ and $n \in \mathbb{N}$. Let $x < C \min \{1, X\}$ for $C > 0$. Then

$$\left| \int_{-X}^{X} y^{n} h(x, y) \, dy \right| \lesssim_{N,C} X^{n} \left(X x^{N-1} + \frac{x^{N}}{X^{N}} \right).$$

The previous results are used to prove the key Lemma 9 of [10], which can be extended to the following

Lemma 3.6. Let a function $f \in C^{M-1,0}(\mathbb{R}) \cap L^{1}(\mathbb{R})$, $M \geq 1$, be such that its $(M-1)$-st derivative $f^{(M-1)}$ is absolutely continuous on $[-1, 1]$, and let $0 < x \leq C$ for some $C > 0$. Then for any $0 < \beta \leq 1$ and any $N \geq 0$,

$$\int_{\mathbb{R}} f(y) h(x, y) \, dy = f(0) + O_{M} \left(\frac{x^{M}}{\beta^{M+1}} \right) \int_{-X}^{X} |f^{(M)}(y)| \, dy \right)$$

$$+ O_{N,C} \left((x^{N} + \beta^{N}) \left(\| f \|_{M-1,0} + x^{-1} \| f \|_{L^{1}} \right) \right),$$

where $X := \min \{1, x/\beta\}$.

Proof. By Lemma 3.2 with $m = n = 0$, for any $N \geq 0$ we have $|h(x, y)| \lesssim_{N} (x^{N} + \beta^{N}) x^{-1}$ if $|y| \geq X$. So the tail-integral for $\int f h \, dy$ may be bounded as

$$\left| \int_{|y| \geq X} f(y) h(x, y) \, dy \right| \lesssim_{N} (x^{N} + \beta^{N}) x^{-1} \int_{|y| \geq X} |f(y)| \, dy \lesssim_{N} (x^{N} + \beta^{N}) x^{-1} \| f \|_{L^{1}}.$$

(3.4)

For the integral in $|y| < X$, instead we take the Taylor expansion of $f(y)$ around zero and get that

$$\int_{-X}^{X} f(y) h(x, y) \, dy = \sum_{j=0}^{M-1} \frac{f^{(j)}(0)}{j!} \int_{-X}^{X} y^{j} h(x, y) \, dy$$

$$+ O_{M} \left(\frac{x^{M}}{X} \int_{-X}^{X} |f^{(M)}(y)| \, dy \right),$$

(3.5)
by Corollary 3.3. Next we use Lemma 3.4 with N replaced by $N + 1$ to get that

$$f(0) \int_{-X}^{X} h(x, y) \, dy = f(0) + O_{N,C} \left(\|f\|_{0,0} \left(X x^N + \frac{x^{N+1}}{X^{N+1}} \right) \right), \quad (3.6)$$

while by Lemma 3.5 for any $j > 0$ we have

$$\left| \frac{f^{(j)}(0)}{j!} \int_{-X}^{X} y^j h(x, y) \, dy \right| \lesssim_{N,j,C} \|f\|_{j,0} X^j \left(X x^N + \frac{x^{N+1}}{X^{N+1}} \right). \quad (3.7)$$

Putting together (3.4)–(3.7), we obtain the desired estimate. Indeed, since $X \leq x/\beta$, then the term O_M in (3.5) is bounded by that in (3.3). Moreover, as $(x/X)^{N+1} = \max(x^{N+1}, \beta^{N+1}) \lesssim_C C x^N + \beta^N$, then the brackets in (3.6) and (3.7) are $\lesssim_C x^N + \beta^N$, where we also used that $X \leq 1$.

Lemma 3.6 is needed for the proof of Theorem 1.4, while for Theorem 1.3 we only need its simplified version:

Corollary 3.7. Let an integrable function f belong to the class $C^{M,0}(\mathbb{R})$, $M \in \mathbb{N}$, and $0 < x \leq C$ for some $C > 0$. Then, for any $0 < \delta < 1$,

$$\int_{\mathbb{R}} f(y) h(x, y) \, dy = f(0) + O_{M,C,\delta} \left(x^{M-\delta} \left(\|f\|_{M,0} + |f|_{L_1} \right) \right).$$

Proof. The assertion follows from Lemma 3.6 by choosing for any $0 < \delta < 1$, $\beta = x^{\delta/(M+1)}$ if $x \leq 1$ and $\beta = 1$ if $x > 1$. Indeed, then for $0 < x \leq 1$ we have that $x^{M-\beta^-(M+1)} = x^{M-\delta}$, and that

$$(x^N + \beta^N)x^{-1} \lesssim 2\beta^N x^{-1} \leq 2x^{M-\delta} \quad \text{if } N \geq N_\delta = (M-\delta+1)(M+1)/\delta.$$

While if $1 \leq x \leq C$, then $x^M \leq C^\delta x^{M-\delta}$, and choosing $N = 0$ we get that $(x^N + 1) = 2 \leq 2x^{M-\delta}$. The obtained relations imply the assertion.

3.2 Approximation for $I_q(0)$

In what follows it is convenient to write the integrals $I_q(c; A, L^2 m)$ as

$$I_q(c) = L^d \tilde{I}_q(c), \quad (3.8)$$

where

$$\tilde{I}_q(c) = \tilde{I}_q(c; A, m, L) = \int_{\mathbb{R}^d} w(z) \, h \left(\frac{q}{L}, F^m(z) \right) c_q(-z \cdot cL) \, dz. \quad (3.9)$$
The proposition below replaces Lemmas 11, 13 and Theorem 3 of [10]. In difference with those results we do not assume that $0 \not\in \text{supp} w$. Since for $c = 0$ the exponent e_q in the definition of the integral $I_q(c)$ equals one, we can consider $I_q(0)$ as a function of a real argument $q \in \mathbb{R}$, and we do so in the proposition below; we will use this in Appendix A.

Proposition 3.8. Let $q \in \mathbb{R}$, $q \leq CL$ with some $C > 0$.

a) If $d \geq 5$ and $N \ni M < d/2 - 1$, then for any $\delta > 0$,

$$I_q(0; A, m, L) = L^d \sigma_{\infty}(w; A, m) + O_{m, M, C, \delta} \left(q^{M-\delta} L^{d-M+\delta} \|w\|_{M, d+1} \right). \tag{3.10}$$

b) If $d = 4$, $N \ni M \leq d/2 - 1$ and $m = 0$, then for any $0 < \beta \leq 1$ and $N \geq 0$,

$$I_q(0; A, 0, L) = L^d \sigma_{\infty}(w; A, 0) + O \left(\beta^{-M-1} q^M L^{d-M} \left(\log \frac{q}{L\beta} \right)^d \|w\|_{M, d+1} \right)$$

$$\quad + O_{C, N} \left((q^N L^{d-N} + \beta^N) (\|w\|_{M-1, d+1} + L q^{-1} \|w\|_{0, d+1}) \right). \tag{3.11}$$

Proof. For $d \geq 4$, applying the co-area formula (see [3], Theorem 6.3) we re-write the integral in (3.9) with $c = 0$ in terms of integrals over hypersurfaces Σ_t as follows:

$$\tilde{I}_q(0) = \int \mathcal{I}(m+t) h(q/L, t) \, dt, \quad \mathcal{I}(t) = \int_{\Sigma_t} w(z) \mu_{\Sigma_t} (dz), \tag{3.12}$$

where the measure μ_{Σ_t} is the same as in (1.9). By Theorem 7.3,

$$\|\mathcal{I}\|_{k, \tilde{K}} \lesssim_{k, K, \tilde{K}} \|w\|_{k, \tilde{K}} \quad \text{if} \quad \tilde{K} < \frac{K + 2 - d}{2}, \quad K > d, \tag{3.13}$$

and $k < d/2 - 1$. Denote $f^m(y) = \mathcal{I}(m+y)$. Then $\|f^m\|_{k, \tilde{K}} \lesssim_{m, \tilde{K}} \|\mathcal{I}\|_{k, \tilde{K}}$, and by (3.13)

$$|f^m|_{L_1} = |\mathcal{I}|_{L_1} \lesssim \|\mathcal{I}\|_{0, d/3} \lesssim \|w\|_{0, d+1}. \tag{3.14}$$

To prove a) we apply Corollary 3.7 with $f = f^m$ and $x = q/L$ to the first integral in (3.12). Note that $f^m(0) = \mathcal{I}(m) = \sigma_{\infty}(w; A, m)$. Then, using (3.13) with $\tilde{K} = 0$, $K = d + 1$ and $k = M$ jointly with (3.14) we get that

$$\tilde{I}_q(0) = \sigma_{\infty}(w) + O_{M, m, C, \delta} \left(q^{M-\delta} L^{-M+\delta} \|w\|_{M, d+1} \right).$$

So (3.10) follows.
To establish (3.11), we apply Lemma 3.6 to write the integral in (3.12)
with \(m = 0\) as
\[
\int_{\mathbb{R}} I(t)h(x, t) \, dt = I(0) + O_M \left(\beta^{-M-1} x^M \left(\frac{1}{X} \int_{-X}^{X} |I^{(M)}(t)| \, dt \right) \right)
\]
\[
+ O_{C,N} \left((x^N + \beta M)(\|I\|_{M-1,0} + x^{-1}|I|_{L_1}) \right),
\]
where \(x = q/L\) and \(X = \min\{1, x/\beta\}\). By applying Theorem 7.3, with \(k = M\) and \(M = d + 1\), we get
\[
\int_{-X}^{X} |I^{(M)}(t)| \, dt \lesssim X (\log X) \|w\|_{M,d+1}.
\]
Using this estimate jointly with (3.13) and (3.14) we arrive at (3.11).

4 The \(J_0\) term

In this section we prove the following proposition concerning the term \(J_0\) defined in (1.19):

Proposition 4.1. Let \(d \geq 5\). Then for any \(0 < \gamma_2 < 1\),
\[
|J_0 - L^d \sigma_{\infty}(w) \sigma(A, L^2 m)| \lesssim_{\gamma_2,m} L^{\frac{d}{2}+2+\gamma_2(d/2-2)} \|w\|_{[d/2]-2,d+1}.
\]

Proof. To establish the result we write \(J_0\) in the form (1.21). Then the assertion follows from Lemmas 4.2 and 4.3 below which estimate the terms \(J_0^+\) and \(J_0^-\), noting that \(|w|_{L_1} \lesssim \|w\|_{0,d+1}\). \(\square\)

Lemma 4.2. Assume that \(w \in L_1(\mathbb{R}^d)\) and \(d \geq 3\). Then we have the bound
\[
|J_0^+| \lesssim L^{d/2+2+\gamma_2(d/2-1)} \|w\|_{L_1}, \text{ for any } \gamma_2 \in (0, 1).
\]

Proof. Since according to Lemma 2.1 \(|S_q(0)| \lesssim q^{d/2+1}\), then
\[
|J_0^+| \lesssim \sum_{q > L^{1-\gamma_2}} q^{-d/2+1} I_q(0).
\]

Writing integral \(I_q\) as in (3.8), by Corollary 3.3 we get \(|I_q(0)| \lesssim \frac{L^{d+1}}{q} |w|_{L_1} \),
Therefore,
\[
|J_0^+| \lesssim L^{d+1} |w|_{L_1} \sum_{q > L^{1-\gamma_2}} q^{-d/2} \lesssim L^{d+1} |w|_{L_1} L^{(-d/2+1)(1-\gamma_2)}
\]
\[
= L^{d/2+2+\gamma_2(d/2-1)} |w|_{L_1}.
\]

\(\square\)

19
Lemma 4.3. Let \(d \geq 5 \). Then for any \(\gamma_2 \in (0, 1) \),

\[
J_0^- = L^d \sigma_\infty(w) \sigma(A, L^2 m) + O_{\gamma_2, m}(L^{d/2+2+\gamma_2(d/2-2)} \|w\|_{[d/2]-2,d+1}).
\]

Proof. Inserting (3.10) with \(C = 1 \) into the definition of the term \(J_0^- \), we get \(J_0^- = I_A + I_B \), where

\[
I_A := L^d \sigma_\infty(w) \sum_{q \leq L^{1-\gamma_2}} q^{-d} S_q(0),
\]

\[
|I_B| \lesssim_{M, \delta, m} L^{d-M+\delta} \|w\|_{M,d+1} \sum_{q \leq L^{1-\gamma_2}} S_q(0) q^{-d+M},
\]

for \(M < d/2 - 1 \) and any \(\delta > 0 \). Lemma 2.3 implies that

\[
\sum_{q \leq L^{1-\gamma_2}} q^{-d} S_q(0) = \sigma(A, L^2 m) + O(L^{(-d/2+2)(1-\gamma_2)}),
\]

so

\[
I_A = L^d \sigma_\infty(w) \sigma(A, L^2 m) + O(\sigma_\infty(w) L^{d/2+2+\gamma_2(d/2-2)}),
\]

whereas \(|\sigma_\infty(w)| = |I(m)| \leq \|I\|_{0,0} \leq \|w\|_{0,d+1} \) on account of (3.13). As for the term \(I_B \), Lemma 2.3 implies that

\[
|I_B| \lesssim_{M, \delta, m} L^{d-M+\delta} \|w\|_{M,d+1} \sum_{q \leq L^{1-\gamma_2}} q^{-d/2+1+M}.
\]

Choosing \(M = \lceil d/2 \rceil - 2 \) and \(\delta = \gamma_2/2 \), we get

\[
|I_B| \lesssim_{\delta, m} \|w\|_{[d/2]-2,d+1} L^{d/2+2+\delta} \ln L \lesssim_{\gamma_2, m} \|w\|_{[d/2]-2,d+1} L^{d/2+2+\gamma_2}.
\]

\[
\square
\]

5 The \(J_{\gamma_1}^- \) term

We provide here an estimate of the term \(J_{\gamma_1}^- \) defined in (1.19). The key point of the proof is an adaptation of Lemma 19 of [10] to our case. We recall the notation (3.8).

Proposition 5.1. For any \(d \geq 1 \), \(N > 0 \) and \(\quad \cdot \neq 0 \),

\[
|\tilde{I}_q(c)| \lesssim_{N,m} \frac{L}{q} |c|^{-N} \|w\|_{N,2N+d+1}
\]

(5.1)
Proof. Let \(f_q(z) := w(z) h\left(\frac{q}{L}, F^m(z)\right) \). Since
\[
\frac{i}{2\pi L} |c|^{-2} \langle c \cdot \nabla z \rangle e_q(-z \cdot c L) = e_q(-z \cdot c L),
\]
then integrating by parts \(N \) times the integral \((5.9) \) we get that
\[
\left| \tilde{I}_q(c) \right| \leq \left(\frac{q}{2\pi L} |c|^{-2} \right)^N \int_{\mathbb{R}^d} \left| (c \cdot \nabla z)^N f_q(z) \right| \, dz
\]
\[
\lesssim_N \left(\frac{q}{L} \right)^N |c|^{-N} \sum_{0 \leq n \leq N} \max_{0 \leq l \leq n/2} \left| \frac{\partial^{n-l}}{\partial y^{n-l}} h\left(\frac{q}{L}, F^m(z)\right) \right| \times |z|^{n-2l} \left| \nabla_z^{N-n} w(z) \right| \, dz,
\]
where \(\frac{\partial}{\partial y} \) stands for the derivative of \(h \) with respect to the second argument.

Assume first that \(q \leq L \). Then, by Lemma 3.2 with \(N = 0 \),
\[
\max_{0 \leq l \leq n/2} \left| \frac{\partial^{n-l}}{\partial y^{n-l}} h\left(\frac{q}{L}, F^m(z)\right) \right| |z|^{n-2l} \left| \nabla_z^{N-n} w(z) \right| \leq
\]
\[
(L/q)^{n+1} (z)^{-d-1} \left\| w \right\|_{N-n,n+d+1}.
\]
This implies \((5.1) \) since \(n \leq N \). Let now \(q > L \). Then, due to item 1 of Lemma 3.1 \(h \) is different from zero only if
\[
2|F^m(z)| > \frac{q}{L}. \tag{5.2}
\]
Then for such \(z \) and for \(l \leq n \), item 3 of Lemma 3.1 implies that
\[
\left| \frac{\partial^{n-l}}{\partial y^{n-l}} h\left(\frac{q}{L}, F^m(z)\right) \right| \lesssim_{n-l} \frac{L}{q} \left| F^m(z) \right|^{n-l} \approx_{n-l} \frac{L}{q}^{n-l+1}.
\]
So
\[
\max_{0 \leq l \leq n/2} \left| \frac{\partial^{n-l}}{\partial y^{n-l}} h\left(\frac{q}{L}, F^m(z)\right) \right| |z|^{n-2l} \left| \nabla_z^{N-n} w(z) \right| \lesssim
\]
\[
\max_{0 \leq l \leq n} (L/q)^{n-l+1} \left\| w \right\|_{N-n,2N-n+d+1} (z)^{d+1}.
\]
Since from \((5.2) \) we have that \(q/L \lesssim_m (z)^2 \), then the first fraction above is bounded by \((L/q)^{N+1} \), and again \((5.1) \) follows. \(\square \)

As a corollary we get an estimate for \(J^\gamma_1 \):
Corollary 5.2. For J_{γ_1} defined in (1.19) with $\gamma_1 \in (0,1)$ and $d \geq 3$ we have

$$|J_{\gamma_1}| \lesssim_{\gamma_1, m} \|w\|_{N_0, 2N_0 + d + 1},$$

where $N_0 := [d + (d + 1)/\gamma_1]$.

Proof. Denoting by $\| \cdot \|_1$ the l^1-norm, by the definition of J_{γ_1} we have

$$|J_{\gamma_1}| \lesssim \sum_{s \geq L_{\gamma_1}} s^{d-1} \sum_{q=1}^\infty q^{-d} \sup_{|c| = s} |S_q(c)||I_q(c)|$$

$$\lesssim \sum_{s \geq L_{\gamma_1}} s^{d-1} \sum_{q=1}^\infty q^{1-d/2} L^d \sup_{|c| = s} |\tilde{I}_q(c)|$$

$$\lesssim_{N, m} \sum_{s \geq L_{\gamma_1}} s^{d-1} \sum_{q=1}^\infty q^{-d/2} s^{-N} L^{d+1} \|w\|_{N, 2N + d + 1},$$

where the second line follows from Lemma 2.1 while the third one – from Proposition 5.1. The sum in q is bounded by a constant. Choosing $N = N_0$ we get that

$$L^{d+1} \sum_{s \geq L_{\gamma_1}} s^{d-1} s^{-N} \leq L^{d+1} \sum_{s \geq L_{\gamma_1}} s^{-1-(d+1)/\gamma_1} \lesssim 1.$$

This concludes the proof. \square

6 The J_{γ_1} term

6.1 The estimate

Our next (and final) goal is to estimate the term J_{γ_1} from (1.18).

Proposition 6.1. For any $d \geq 3$ and $\gamma_1 \in (0,1/2)$,

$$|J_{\gamma_1}| \lesssim_{\gamma_1, m} L^{d/2 + 2 + \gamma_1 (d+1)} (\|w\|_{\tilde{N}, d + 5} + \|w\|_{0, \tilde{N} + 3d + 4}),$$

where $\tilde{N} = \tilde{N}(d, \gamma_1) := \lfloor d^2/\gamma_1 \rfloor - 2d$.

Proposition 6.1 will follow from the next lemma which is a modification of Lemma 22 in [10] and is proved in the next subsection:

Lemma 6.2. For any $d \geq 3$ and $c \neq 0$,

$$|I_q(c)| \lesssim_{\gamma_1, m} L^{d/2 + 1 + \gamma_1} (q/|c|)^{d/2 - 1 - \gamma_1} (\|w\|_{\tilde{N}, d + 5} + \|w\|_{0, \tilde{N} + 3d + 4}),$$

where \tilde{N} and γ_1 are the same as above.
Proof of Proposition 6.1. Accordingly to Lemma 2.1, \(
|J^\gamma_1| \lesssim \sum_{c \neq 0, |c| \leq L\gamma_1} \sum_{q=1}^{\infty} q^{-d/q^{d/2+1}} |I_q(c)| \lesssim L^{d\gamma_1} \max_{c \neq 0, |c| \leq L\gamma_1} |I_q(c)| \sum_{q=1}^{\infty} q^{-d/q^{d/2+1}}
\)

\[
= L^{d\gamma_1} \left(\sum_{q<L} + \sum_{q\geq L} \right) q^{-d/q^{d/2+1}} \max_{c \neq 0, |c| \leq L\gamma_1} |I_q(c)| = J_- + J_+ ,
\]

with
\[
J_- := L^{d\gamma_1} \sum_{q<L} q^{-d/q^{d/2+1}} \max_{c \neq 0, |c| \leq L\gamma_1} |I_q(c)| ,
J_+ := L^{d\gamma_1} \sum_{q \geq L} q^{-d/q^{d/2+1}} \max_{c \neq 0, |c| \leq L\gamma_1} |I_q(c)| .
\]

Corollary 3.3 together with (3.8), (3.9) implies
\[
|I_q(c)| \lesssim L^{d+1} \frac{d}{q} |w| L_1 ,
\]
so that
\[
J_+ \lesssim L^{d\gamma_1} L^{d+1} |w| L_1 \sum_{q \geq L} q^{-d/q^{d/2+1}} \lesssim L^{d\gamma_1+d/q^{d/2+1}+2} |w| L_1 \lesssim L^{d\gamma_1+d/q^{d/2+1}+2} \|w\|_{0,d+1}.
\]

On the other hand, since \(|c| \geq 1\), from Lemma 6.2, we get
\[
J_- \lesssim \gamma_{1,m} L^{d\gamma_1} L^{d/q^{d/2+1}+\gamma_1} \left(\|w\|_{\bar{N},d+5} + \|w\|_{0,\bar{N}+3d+4} \right) \sum_{q<L} q^{-\gamma_1}
\]
\[
\lesssim \gamma_{1,m} L^{d\gamma_1} L^{d/q^{d/2+1}+\gamma_1} \left(\|w\|_{\bar{N},d+5} + \|w\|_{0,\bar{N}+3d+4} \right) L^{\gamma_1(d+1)+d/q^{d/2+1}}.
\]

\(\square\)

6.2 Proof of Lemma 6.2

We begin with

6.2.1 Application of the inverse Fourier transform

Note that the proof is nontrivial only for \(q \lesssim L|c|\): indeed, for any \(\alpha > 0\) the bound (6.1) implies that
\[
|I_q(c)| \lesssim L^d |w| L_1 \lesssim \alpha L^d (L|c|/q)^{-d/q^{d/2+1}+\gamma_1} |w| L_1 \quad \text{if} \quad q \geq \alpha L|c|,
\]

23
since \(|c| \geq 1\) and \(-d/2 + 1 + \gamma_1 < 0\). So, it remains to use again the inequality
\(|w|_{L^1_1} \lesssim \|w\|_{0,d+1}^0.

Let us take a small enough \(\alpha = \alpha(d, \gamma_1, A) \in (0,1)\) and assume that
\(q < \alpha|c|L\). Consider the function \(w_2(x) = 1/(1 + x^2)\) and set
\[
\tilde{w}(z) := \frac{w(z)}{w_2(F^m(z))} = w(z)(1 + F^m(z)^2). \tag{6.2}
\]

Let
\[
p(t) := \int_{-\infty}^{+\infty} w_2(v)h(q/L, v)e(-tv) \, dv, \quad e(x) := e_1(x) = e^{2\pi ix}. \tag{6.3}
\]

This is the Fourier transform of function \(w_2(\cdot)h(q/L, \cdot)\). Then, expressing
\(w_2h\) via \(p\) by the inverse Fourier transform and writing
\(w(z) = \tilde{w}(z)w_2(F^m(z))\), we find that
\[
w(z)h(q/L, F^m(z)) = \tilde{w}(z) \int_{-\infty}^{+\infty} p(t)e(tF^m(z)) \, dt.
\]

Inserting this representation into (3.9) we get
\[
\tilde{I}_q(c) = \int_{-\infty}^{+\infty} p(t)e(-tm) \left(\int_{\mathbb{R}^d} \tilde{w}(z)e(tF(z) - u \cdot z) \, dz\right) \, dt, \quad u := cL/q.
\]

Note that
\(|u| = |c|L/q > \alpha^{-1} > 1\)

since \(q < \alpha|c|L\). Now let us denote \(W_0(x) = c_0^{-d} \prod_{i=1}^d w_0(x_i)\) (see (3.1)).
Then \(W_0 \in C\infty_0(\mathbb{R}^d)\), \(W_0 \geq 0\) and
\[
\text{supp } W_0 = [-1, 1]^d \subset \{x \in \mathbb{R}^d : |x| \leq \sqrt{d}\}, \quad \int_{\mathbb{R}^d} W_0(x) \, dx = 1. \tag{6.4}
\]

Let us set \(\delta = |u|^{-1/2} < \sqrt{\alpha}\) and write \(\tilde{w}\) as
\[
\tilde{w}(z) = \delta^{-d} \int_{\mathbb{R}^d} W_0 \left(\frac{z-a}{\delta}\right) \tilde{w}(z) \, da.
\]

Then setting \(b := \frac{z - a}{\delta}\) we get that
\[
|\tilde{I}_q(c)| \leq \int_{\mathbb{R}^d} \int_{-\infty}^{+\infty} |p(t)| |I_{a,t}| \, dt \, da,
\]

\[24\]
where in view of (6.4),
\[I_{a,t} := \int_{\{|b| \leq \sqrt{d}\}} W_0(b) \tilde{w}(z) e(tF(z) - u \cdot z) \, db, \quad z := a + \delta b. \]

Consider the exponent in the integral \(I_{a,t} \):
\[f(b) = f_{a,t}(b) := tF(a + \delta b) - u \cdot (a + \delta b). \]

At the next step we will estimate integral \(I_{a,t} \), regarding \((a, t)\) as a parameter. Consider another parameter \(R \), satisfying
\[1 \leq R \leq |u|^{1/3}; \]
its value will be chosen later. Below we distinguish two cases:

1. \((a, t)\) belongs to the “good” domain \(S_R \), where
 \[S_R = \{ (a, t) : |\nabla f(0)| = |\delta |tAa - u| \geq R \langle t/|u| \rangle = R \langle \delta^2 t \rangle \}; \]

2. \((a, t)\) belongs to the ”bad” set \(S_R^c = (\mathbb{R}^d \times \mathbb{R}) \setminus S_R \).

6.2.2 Integral over \(S_R \).

We consider first the integral over the good set \(S_R \):

Lemma 6.3. For any \(d \geq 1, N \geq 0 \) and \(R \geq 2\|A\|\sqrt{d} \) we have
\[\int_{S_R} |p(t)| |I_{a,t}| \, da \, dt \lesssim_{N,m} \frac{L}{q} R^{-N} \|w\|_{N,d+5}. \quad (6.5) \]

Proof. Let \(l := \nabla f(0)/|\nabla f(0)| \) and \(L = 1 \cdot \nabla b \). Then for \((a, t) \in S_R \) and \(|b| \leq \sqrt{d} \) (see (6.4)),
\[|L f(b)| = |L f(0) + \delta^2 t \nabla f(0) \cdot A b/|\nabla f(0)|| \geq |\nabla f(0)| - \delta^2 |t| A b| \]
\[\geq R \langle \delta^2 t \rangle - \delta^2 |t| A \|L \|/2 < R \langle \delta^2 t \rangle \geq R/2. \quad (6.6) \]

Since \((2\pi i L f(b))^{-1} L e(f(b)) = e(f(b))\), then integrating by parts \(N \) times integral \(I_{a,t} \) we get
\[|I_{a,t}| \lesssim_{N} \max_{|b_i| \leq 1 \forall i} \max_{0 \leq k \leq N} \left| \frac{L^{N-k} \tilde{w}(\delta b + a)}{L f(b)^{N+k}} \right|. \]
where we have used that \(L^m f(b) = 0 \) for \(m \geq 3 \). Since \(|L^2 f(b)| \leq \delta^2 |t||A| \), then in view of (6.6)
\[
\frac{|L^2 f(b)|}{|Lf(b)|} \leq \delta^2 |t||A| = \frac{2||A||}{R} \leq \frac{1}{\sqrt{d}}.
\]
So using that \(\frac{1}{|Lf(b)|} \geq \frac{2}{R} \), we find
\[
|I_{a,t}| \lesssim N R^{-N} \max_{|b_i| \leq 1} \max_{0 \leq k \leq N} |L^k \tilde{w}(\delta b + \alpha)|.
\]
Thus, denoting by \(1_{S_R} \) the indicator function of the set \(S_R \), we have
\[
\int_{\mathbb{R}^d} |I_{a,t}| 1_{S_R} da \lesssim N R^{-N} \int_{\mathbb{R}^d} (a)^{d+1} \max_{|b_i| \leq 1} \max_{0 \leq k \leq N} |L^k \tilde{w}(\delta b + \alpha)| \frac{da}{a^{d+1}} \lesssim N R^{-N} \|w\|_{N,d+1} \lesssim_{N,m} R^{-N} \|w\|_{N,d+5},
\]
for every \(t \). Then
\[
\text{l.h.s. of (6.5)} \lesssim_{N,m} R^{-N} \|w\|_{N,d+5} \int_{-\infty}^{+\infty} |p(t)| dt. \tag{6.7}
\]
To prove (6.5) it remains to show that
\[
\int_{-\infty}^{+\infty} |p(t)| dt \lesssim L/q. \tag{6.8}
\]
In virtue of Lemma 3.2 with \(N = 2 \),
\[
\left| \frac{\partial^k}{\partial v^k} h(x,v) \right| \lesssim_k x^{-k-1} \min\{1, x^2/v^2\}, \quad k \geq 1,
\]
and by Corollary 3.3, \(|h(x,v)| \lesssim x^{-1} \). Then an integration by parts in (6.3) shows that, for any \(M \geq 0 \),
\[
|p(t)| \lesssim_M |t^{-M}| \left(\int_{-\infty}^{\infty} \left| w_2^{(M)}(v) \right| x^{-1} dv \right.
\]
\[
+ \max_{1 \leq k \leq M} \int_{-\infty}^{\infty} \left| w_2^{(M-k)}(v) \right| x^{-k-1} \min\{1, x^2/v^2\} dv \right),
\]
where \(x := q/L \). Writing the latter integral as a sum \(\int_{|v| \leq x} + \int_{|v| > x} \) we see that
\[
\int_{|v| \leq x} = x^{-k-1} \int_{|v| \leq x} \left| w_2^{(M-k)}(v) \right| dv \lesssim_M x^{-k}
\]
26
\[\int_{|v|>x} x^{-k+1} \int_{|v|>x} \frac{|w_2^{(M-k)}(v)|}{v^2} dv \lesssim_M x^{-k}. \]

Then, for any \(M \geq 0 \)
\[|p(t)| \lesssim_M \left(\frac{q}{L} |t| \right)^{-M} \] if \(\frac{q}{L} < 1 \) and \[|p(t)| \lesssim_M \left(\frac{q}{L} \right)^{-1} |t|^{-M} \] if \(\frac{q}{L} \geq 1 \).

Choosing \(M = 2 \) when \(|t| > \langle L/q \rangle \) and \(M = 0 \) when \(|t| \leq \langle L/q \rangle \) we get (6.8).

6.2.3 Integral over \(S_{R^c} \)

Now we study the integral over the bad set \(S_{R^c} \).

Lemma 6.4. For any \(d \geq 1, 1 \leq R \leq |u|^{1/3} \) and \(0 < \beta < 1 \) we have
\[\int_{S_{R^c}} |p(t)||I_{a,t}| da dt \lesssim_R R^d |u|^{-d/2+1+\beta}\|w\|_{0,K(d,\beta)}, \]

where \(K(d,\beta) = d + \lceil d^2/2\beta \rceil + 4 \).

Proof. On \(S_{R^c} \) we use for \(I_{a,t} \) the easy upper bound
\[|I_{a,t}| \lesssim \max_{|b_i| \leq 1 \forall i} |\tilde{w}(\delta b + a)| \leq \|\tilde{w}\|_{0,0}. \] (6.10)

The fact that \((a,t) \in S_{R^c} \) implies that the integration in \(da \) for a fixed \(t \) is restricted to the region, where \(|4a - t^{-1}u| \leq (R/\delta |t|)\langle t/|u| \rangle \), or
\[\left| a - \frac{A^{-1}u}{t} \right| \leq \|A^{-1}\| \frac{R}{\delta |t|} \langle t/|u| \rangle. \] (6.11)

We first consider the case \(|t| \geq |u|^{1-\beta/d} \). Since \(|u| > 1 \), then considering separately the cases \(|t| \leq |u| \) and \(|t| \geq |u| \) we see that
\[\frac{R}{\delta |t|} \langle t/|u| \rangle \leq R|u|^{-1/2+\beta/d}. \] (6.12)

In view of (6.10) - (6.12),
\[\left| \int_{R^d} |I_{a,t}|1_{S_{R^c}(a,t)} da \right| \lesssim_R R^d |u|^{-d/2+\beta}\|\tilde{w}\|_{0,0}. \]
Since $|F^m(z)| \lesssim_m (z)^2$, by definition (5.2) of the function \tilde{w} we have $\|\tilde{w}\|_{0,0} \lesssim_m \|w\|_{0,4}$. Then the r.h.s. above is $\lesssim_m R^d|u|^{-d/2+\beta} \|w\|_{0,4}$. Taking into account that, by (6.8), $\int_{|t|\geq |u|^{1-\beta/d}} |p(t)| dt \lesssim \frac{L}{q} \leq |u|$, we get

$$\int_{|t|\geq |u|^{1-\beta/d}} \left(\int_{\mathbb{R}^d} |p(t)||I_{a,t}1_{S_R^c}(a,t) da \right) dt \lesssim_m R^d|u|^{-d/2+1+\beta} \|w\|_{0,4}. \tag{6.13}$$

Now let $|t| \leq |u|^{1-\beta/d}$. Then the r.h.s. of (6.11) is bounded by the quantity $\|A^{-1}||R/(\delta|t|)|$, so that $|a| \gtrsim |A^{-1}u|/|t| - \|A^{-1}||R/(\delta|t|)|$. Since $|A^{-1}u| \geq C_A|u|$ and $R \leq |u|^{1/3}$, then

$$|a| \gtrsim_A \frac{|u| - RC_A\sqrt{|u|}}{|t|} \geq (1 - C_A|u|^{-1/6}) \frac{|u|}{|t|} \geq \frac{1}{2} \frac{|u|}{|t|} \geq \frac{1}{2} |u|^{\beta/d}$$

with $C_A = C_A^{-1}\|A^{-1}\|$, since $|u| \leq \alpha$, if α is so small that $1-C_A\alpha^{1/6} \geq 1/2$. Then $1 \lesssim |a|/|u|^{\beta/d}$ on S_R^c, so that $|1_{S_R^c}(a,t)| \lesssim |u|^{-d/2+\beta/|a|^2/2\beta-1}$, and we deduce from (6.10) that for such values of t

$$\int_{\mathbb{R}^d} |I_{a,t}1_{S_R^c}(a,t) da| \lesssim |u|^{-d/2+\beta/|a|^2/2\beta-1} \int_{\mathbb{R}^d} \frac{|a|^{d/2\beta-1}}{|b| \leq |\delta b + a|} da$$

$$\lesssim_m |u|^{-d/2+\beta/|a|^2/2\beta-1} \|w\|_{0,K(d,\beta)},$$

where $K(d, \beta) = d + [d^2/2\beta] + 4$. On the other hand, by (6.9) with $M = 0$, $\int_{|t|\leq |u|^{1-\beta/d}} |p(t)| dt \lesssim |u|^{1-\beta/d}$, from which we obtain

$$\int_{|t|\leq |u|^{1-\beta/d}} \left(\int_{\mathbb{R}^d} |p(t)||I_{a,t}1_{S_R^c}(a,t) da \right) dt \lesssim_m |u|^{-d/2+1} \|w\|_{0,K(d,\beta)}. \tag{6.14}$$

Putting together (6.13) and (6.14) we get the assertion.

\[\square \]

6.2.4 End of the proof

In order to complete the proof of Lemma 6.2 we combine Lemmas 6.3 and 6.4 to get that

$$|\tilde{I}_q(c)| \lesssim_{N,m} \left(\frac{L}{q} R^{-N} + R^d|u|^{-d/2+1+\beta} \right) \left(\|w\|_{N,d+5} + \|w\|_{0,K(d,\beta)} \right).$$

We fix here $\gamma_1 \in (0,1/2)$, $\beta = \gamma_1/2$, $R = |u|^{\frac{\gamma_1}{2}} \leq |u|^{\frac{1}{4}}$ and pick $N = \left[\frac{d^2}{\gamma_1} \right] - 2d > 0$ (notice that $R \geq \alpha^{-\gamma_1/2d} \geq 2\|A\|\sqrt{d}$ if α is small enough, so that assumption of Lemma 6.3 is satisfied). Then $K(d, \beta) = N + 3d + 4$, $R^{-N} \leq |u|^{-d/2+1+\gamma_1} \leq |c| (L|c|/q)^{-d/2+\gamma_1}$ since $|c| \geq 1$. Moreover, $R^d|u|^{-d/2+1+\beta} = |u|^{-d/2+1+\gamma_1} = (L|c|/q)^{-d/2+1+\gamma_1}$. This concludes the proof. \[\square \]
7 Integrals over quadrics

Our goal in this section is to study integrals \(I(t; w) \) over the quadrics \(\Sigma_t \). We start with a case of quadratic forms \(F \), written in a convenient normal form (Theorem 7.1), and show later in Section 7.4 (Theorem 7.3) how to reduce general integrals \(I(t; w) \) to those, corresponding to the quadratic forms like that. In this section we assume that

\[
d \geq 3
\]

and not use the bold font to denote vectors since most of variables we use are vectors.

7.1 Quadratic forms in normal form

On \(\mathbb{R}^d = \mathbb{R}^n_u \times \mathbb{R}^{d_1}_x \times \mathbb{R}^{d_1}_y = \{ z = (u, x, y) \} \), where \(d \geq 3, n \geq 0 \) and \(d_1 \geq 1 \), consider the quadratic form

\[
F(z) = \frac{1}{2}|u|^2 + x \cdot y = \frac{1}{2}Az \cdot z , \quad A(u, x, y) = (u, y, x). \tag{7.1}
\]

Note that \(A \) is an orthogonal operator, \(|Az| = |z| \). As in Section 1.1 we define the quadrics \(\Sigma_t = \{ z : F(z) = t \} \), \(t \in \mathbb{R} \). Note that for \(t \neq 0 \) \(\Sigma_t \) is a smooth hypersurface, while \(\Sigma_0 \) is a cone with a singularity at the origin. We denote the volume element on \(\Sigma_t \) (on \(\Sigma_0 \) \{0\} if \(t = 0 \)), induced from \(\mathbb{R}^d \), as \(d\mu |_{\Sigma_t} \) and set

\[
\mu^{\Sigma_t}(dz) = |Az|^{-1}dz |_{\Sigma_t} \tag{7.2}
\]

(see below concerning this measure when \(t = 0 \)).

For a \(k_* \in \mathbb{N} \cup \{0\} \) and a function \(f \) on \(\mathbb{R}^d \) satisfying

\[
f \in C^{k_*, M}(\mathbb{R}^d) , \quad M > d , \tag{7.3}
\]

we will study the integrals

\[
I(t) = I(t; f) = \int_{\Sigma_t} f(z)\mu^{\Sigma_t}(dz) . \tag{7.4}
\]

Our first goal is to demonstrate the following result:

Theorem 7.1. For the quadratic form \(F(z) \) as in (7.1) and a function \(f \in C^{k_*, M}(\mathbb{R}^d) \), \(M > d \), consider integral \(I(t; f) \), defined in (7.4). Then the
function $I(t)$, defined by (7.4), is C^k-smooth if $k < d/2 - 1$, $k \leq k_s$, and is C^k-smooth outside zero if $k \leq \min(d/2 - 1, k_s)$. For $0 < |t| \leq 1$ we have

$$
\left| \partial^k I(t) \right| \lesssim_{k,M} \|f\|_{k,M} \quad \text{if } k < d/2 - 1,
\left| \partial^k I(t) \right| \lesssim_{k,M} \|f\|_{k,M} (1 - \ln |t|) \quad \text{if } k \leq d/2 - 1.
$$

(7.5)

While for $|t| \geq 1$, denoting $\kappa = \frac{M+2-d}{2}$, we have

$$
\left| \partial^k I(t) \right| \lesssim_{k,M} \|f\|_{k,M} (t)^{-\kappa} \quad \text{if } 1 \leq k \leq d/2 - 1, \ k \leq k_s,
\left| I(t) \right| \lesssim_{M,\kappa'} \|f\|_{0,M} (t)^{-\kappa'} \quad \forall \kappa' < \kappa.
$$

(7.6)

An example, see [7, Example A.3], shows that in general the log-factor cannot be removed from the r.h.s. in (7.5).

The theorem is proved below in number of steps. In the proof for a given vector $x \in \mathbb{R}^{d_1}$ we consider its orthogonal complement in $\mathbb{R}^{d_1} -$ the hyperspace x^\perp. We denote its elements \bar{x}, and provide x^\perp with the Lebesgue measure $d\bar{x}$. If $d_1 = 1$, then x^\perp degenerates to the space $\mathbb{R}^0 = \{0\}$, and $d\bar{x}$ to the δ-measure at 0. Practically it means that when $d_1 = 1$, the spaces x^\perp and y^\perp (and integrals over them) disappear from our construction. It makes the case $d_1 = 1$ easier, but notationally different from $d_1 \geq 2$. For example, in formula (7.8) with $d_1 = 1$ the affine space $\sigma^\perp_\xi (u', x')$ becomes the point $(u', x', (t - \frac{1}{2}|u'|^2)|x'|^{-2}x')$, the measure $d\mu^\Sigma_\xi |\Sigma_\xi|$ in (7.14) becomes $du|x|^{-1}dx$, etc. Accordingly, below we write the proof only for $d_1 \geq 2$, leaving the case $d_1 = 1$ as an easy exercise for the reader.

7.2 Disintegration of the two measures

Our goal in this subsection is to find a convenient disintegration of the measures $dz |\Sigma_\xi$ and μ^Σ_ξ, following the proof of Theorem 3.6 in [3].

Recall that we write elements $z \in \mathbb{R}^d$ as $z = (u, x, y)$, where $u \in \mathbb{R}^d$ and $x, y \in \mathbb{R}^{d_1}$. Let us denote $\Sigma^\xi_t = \{(u, x, y) \in \Sigma_t : x \neq 0\}$ (if $t < 0$, then $\Sigma^\xi_t = \Sigma_t$). Then for any t Σ^ξ_t is a smooth hypersurface in \mathbb{R}^d, and the mapping

$$
\Pi^\perp_t : \Sigma^\perp_t \rightarrow \mathbb{R}^n \times \mathbb{R}^{d_1} \setminus \{0\}, \quad (u, x, y) \mapsto (u, x),
$$

(7.7)

is a smooth affine euclidean vector bundle. Its fibers are

$$
\sigma^\perp_t (u', x') := (\Pi^\perp_t)^{-1} (u', x') = \left(u', x', x'^\perp + \frac{t - \frac{1}{2}|u'|^2}{|x'|^2} x' \right),
$$

(7.8)
where x'^{\perp} is the orthogonal complement to x' in \mathbb{R}^{d_1}. For any $x' \neq 0$ denote

$$U_{x'} = \left\{ x : |x - x'| \leq \frac{1}{2}|x'| \right\}, \quad U = \mathbb{R}^n \times U_{x'} \times \mathbb{R}^{d_1}.$$

Now we construct a trivialisation of the bundle Π_x^x over U. To do this we fix in \mathbb{R}^{d_1} any orthonormal frame (e_1, \ldots, e_{d_1}) such that the ray $\mathbb{R}+e_1$ intersects $U_{x'}$. Then

$$x_1 > 0 \quad \forall x = (x_1, \ldots, x_{d_1}) =: (x_1, \bar{x}) \in U_{x'}.$$

We wish to construct an affine in the third argument diffeomorphism

$$\Phi_t : \mathbb{R}^n \times U_{x'} \times \mathbb{R}^{d_1-1} \to U \cap \Sigma_t$$

of the form

$$\Phi_t(u, x, \bar{\eta}) = (u, x, \Phi_t^{u,x} (\bar{\eta})), \quad \Phi_t^{u,x}(\bar{\eta}) = (\varphi_t (u, x, \bar{\eta}), \bar{\eta}) \in \mathbb{R}^{d_1}, \quad \bar{\eta} \in \mathbb{R}^{d_1-1}. \quad (7.9)$$

We easily see that $\Phi_t(u, x, \bar{\eta}) \in \Sigma_t$ if and only if

$$\varphi_t (u, x, \bar{\eta}) = \frac{t - \frac{1}{2}|u|^2 - \bar{x} \cdot \bar{\eta}}{x_1}. \quad (7.10)$$

The mapping $\bar{\eta} \to \Phi_t^{u,x} (\bar{\eta})$ with this function φ_t is affine, and the range of Φ_t equals $U \cap \Sigma_t$.

In the coordinates $(u, x, \eta_1, \bar{\eta}) \in \mathbb{R}^n \times U_{x'} \times \mathbb{R} \times \mathbb{R}^{d_1-1}$ on the domain $U \subset \mathbb{R}^d$ the hypersurface Σ_t^{x} is embedded in \mathbb{R}^d as a graph of the function $(u, x, \bar{\eta}) \mapsto \eta_1 = \varphi_t$. Accordingly, in the coordinates $(u, x, \bar{\eta})$ on $U \cap \Sigma_t$ the volume element on Σ_t reads as $\tilde{\rho}_t(u, x, \bar{\eta}) du \, dx \, d\bar{\eta}$, where

$$\tilde{\rho}_t = \left(1 + |\nabla \varphi_t|^2\right)^{1/2} = \left(1 + \frac{|u|^2 + |\bar{\eta}|^2 + |\bar{x}|^2 + x_1^{-2} (t - \frac{1}{2}|u|^2 - \bar{x} \cdot \bar{\eta})^2}{x_1^2}\right)^{1/2}. \quad (7.10)$$

Passing from the variable $\bar{\eta} \in \mathbb{R}^{d_1-1}$ to $y = \Phi_t^{u,x} (\bar{\eta}) \in \sigma_t^x (u, x)$ we replace $d\bar{\eta}$ by $|\det \Phi_t^{u,x} (\bar{\eta})| d\sigma_t^x (u, x) y$. Here $d\sigma_t^x (u, x) y$ is the Lebesgue measure on the $(d_1 - 1)$-dimensional affine euclidean space $\sigma_t^x (u, x)$ while by $\det \Phi_t^{u,x}$ we denote the determinant of the linear mapping $\Phi_t^{u,x}$, viewed as a linear isomorphism of the euclidean space $\mathbb{R}^{d_1-1} = \{ \bar{\eta} \}$ and the tangent space to $\sigma_t^x (u, x)$, identified with the euclidean space $x^{\perp} \subset \mathbb{R}^{d_1}$. Accordingly we write the volume element on $\Sigma_t \cap U$ as $\rho_t(u, x, y) du \, dx \, d\sigma_t^x (u, x) y$ with

$$\rho_t(u, x, y) = \tilde{\rho}_t(u, x, \bar{\eta}) |\det \Phi_t^{u,x} (\bar{\eta})|, \quad (u, x, y) \in \Sigma_t, \quad \text{where} \quad \Phi_t^{u,x} (\bar{\eta}) = y.$$
Now we will calculate the density ρ_t. Let us take any point $z_s = (u_s, x_s, y_s) \in U \cap \Sigma_t$ and choose a frame (e_1, \ldots, e_{d_1}) such that $e_1 = x_s/|x_s|$. Then

$$x_s = (|x_s|, 0), \quad y_s = (y_{s1}, \bar{y}_s), \quad y_{s1} = \left(\frac{t - \frac{1}{2}|u_s|^2}{|x_s|}\right), \quad \bar{y}_s \in \mathbb{R}^{d_1-1}.$$

So (see (7.9)–(7.10)) the mapping Φ_t is such that $\Phi_t^{u_s,x_s}(\bar{y}) = (y_{s1}, \bar{y}) = \tilde{y} \in \Sigma_t^1(u_s, x_s)$ (i.e. $\varphi_t(z_s) = y_{s1}$). In these coordinates $\rho_t(u_s, x_s, y_{s1}, \bar{y}) = \tilde{\rho}_t(u_s, x_s, \tilde{y}_s)$, which equals

$$(1 + |x_s|^{-2} (|u_s|^2 + |\bar{y}_s|^2 + |y_{s1}|^2))^{1/2} = \frac{(|x_s|^2 + |u_s|^2 + |\bar{y}_s|^2 + |y_{s1}|^2)^{1/2}}{|x_s|}$$

That is, $\rho_t(z_s) = \frac{|z_s|}{|x_s|}$. Since z_s is any point in $U \cap \Sigma_t$, then we have proved

Proposition 7.2. The volume element $dz|_{\Sigma_t^0}$ with respect to the projection Π_t^0 disintegrates as follows:

$$dz|_{\Sigma_t^0} = du|x|^{-1} dx \, |z| d\sigma_t^1(u, x) y. \quad (7.11)$$

That is, for any function $f \in C_0^0(\Sigma_t^0)$,

$$\int f(z) dz|_{\Sigma_t^0} = \int_{\mathbb{R}^n} \int_{\mathbb{R}^{d_1}} |x|^{-1} \left(\int_{\sigma_t^1(u, x)} |z| f(z) d\sigma_t^1(u, x) y \right) dx \, du.$$

Similarly, if we set $\Sigma_t^y = \{(u, x, y) \in \Sigma_t : y \neq 0\}$ and consider the projection

$$\Pi_t^y : \Sigma_t^y \to \mathbb{R}^n \times \mathbb{R}^{d_1}\setminus\{0\}, \quad (u, x, y) \mapsto (u, y),$$

then

$$dz|_{\Sigma_t^y} = dy|y|^{-1} dy \, |z| d\sigma_t^1(u, y) x. \quad (7.12)$$

Let us denote $\Sigma_0^0 = \{(u, x, y) \in \Sigma_t : x = y = 0\}$. Then $\Sigma_t \setminus \Sigma_0^0$ is a smooth manifold and $dz|_{\Sigma_t}$ defines on it a smooth measure.

By (7.11) and (7.12), for any t the volume of the set $\{z \in \Sigma_t \setminus \Sigma_0^0 : 0 < |x|^2 + |y|^2 \leq \varepsilon\}$ goes to zero with ε. So assigning to Σ_0^0 zero measure we extend $dz|_{\Sigma_t}$ to a Borel measure on Σ_t such that each set $\{z \in \Sigma_t : |z| \leq R\}$ has a finite measure and

$$(dz|_{\Sigma_t})(\sigma_t^0 \cup \sigma_t^y) = 0. \quad (7.13)$$

32
By (7.11) and (7.12) function \(|z|^{-1}\) is locally integrable \(\Sigma_t\) with respect to the measure \(dz|_{\Sigma_t}\). So \(\mu^{\Sigma_t}\) (see (7.2)) is a well defined Borel measure on \(\Sigma_t\). Since \(|Az| = |z|\), then, in view of (7.11) and (7.12),
\[
d\mu^{\Sigma_t}|_{\Sigma_t} = du|x|^{-1}dx\sigma_x^t(u,x)y, \quad d\mu^{\Sigma_t}|_{\Sigma_t} = du|y|^{-1}dy\sigma_y^t(u,y)x. \tag{7.14}
\]

The measure \(\mu^{\Sigma_t}\) defines on \(\mathbb{R}^d\) a Borel measure, supported by \(\Sigma_t\). It will also be denoted \(\mu^{\Sigma_t}\).

7.3 Analysis of the integral \(I(t; f)\)

Note that for any \(t\) the mapping
\[
L_t : \Sigma^x_0 \to \Sigma^x_t, \quad (u, x, y) \mapsto (u, x, y + t|x|^{-2}x)
\]
defines an affine isomorphism of the bundles \(\Pi_0|_{\Sigma^x_0}\) and \(\Pi_t|_{\Sigma^x_t}\). Since \(L_t\) preserves the Lebesgue measure on the fibers, then in view of (7.11) it sends the measure \(\mu^{\Sigma_0}\) to \(\mu^{\Sigma_t}\). Using (7.14) we get that for any \(t\) the integral \(I(t)\), defined in (7.4), may be written as
\[
I(t; f) = \int_{\Sigma^x_0} f(L_t(z))\mu^{\Sigma_0}(dz) = \int_{\mathbb{R}^n \times \mathbb{R}^d} |x|^{-1} \left(\int_{\sigma(u,x)} f(u, x, y + t|x|^{-2}x) d\sigma_x^t(u,x)y \right) du dx. \tag{7.15}
\]

Here \(\sigma(u, x) := \sigma_x^t(u, x) = x^+ - \frac{1}{2}|u|^2|x|^{-2}x\).

We recall that \(f(u, x, y)\) satisfies (7.3). Taking any smooth function \(\varphi(t) \geq 0\) on \(\mathbb{R}\) which vanishes for \(|t| \geq 2\) and equals one for \(|t| \leq 1\) we write \(f = f_{00} + f_1\), where \(f_{00} = \varphi((x,y)|^2)\) and \(f_1 = (1 - \varphi((x,y)|^2))\). Denoting \(B_r(\mathbb{R}^m) = \{\xi \in \mathbb{R}^m : |\xi| \leq r\}\) and \(B^r(\mathbb{R}^m) = \{\xi \in \mathbb{R}^m : |\xi| \geq r\}\) we see that
\[
\text{supp } f_{00} \subset \mathbb{R}^n \times B_{\sqrt{2}}(\mathbb{R}^{2d_1}), \quad \text{supp } f_1 \subset \mathbb{R}^n \times B^1(\mathbb{R}^{2d_1}). \tag{7.16}
\]

Setting next \(f_{11}(z) = f_1(z)(1 - \varphi(4|x|^2))\), \(f_{10}(z) = f_1(z)\varphi(4|x|^2)\) we write
\[
f = f_{00} + f_{11} + f_{10}.
\]

Since \((x, y) \in B^1(\mathbb{R}^{2d_1})\) implies that \(|x| \geq 1/\sqrt{2}\) or \(|y| \geq 1/\sqrt{2}\), then in view of (7.16),
\[
\text{supp } f_{11} \subset \mathbb{R}^n \times B^{1/2}(\mathbb{R}^{d_1}_x) \times \mathbb{R}^{d_1}_y, \\
\text{supp } f_{10} \subset \mathbb{R}^n \times \mathbb{R}^{d_1}_x \times B^{1/\sqrt{2}}(\mathbb{R}^{d_1}_y). \tag{7.17}
\]
Obviously, for \(i, j = 0, 1 \) we have \(\| f_{ij} \|_{k,m} \leq C_{k,m} \| f \|_{k,m} \), for all \(k \leq k_\ast, m \leq M \).

Setting \(\mathcal{I}_{ij}(t) = \mathcal{I}(t; f_{ij}) \) we have:

\[
\mathcal{I}(t; f) = \mathcal{I}_{00}(t) + \mathcal{I}_{10}(t) + \mathcal{I}_{11}(t).
\]

7.3.1 Integral \(\mathcal{I}_{00}(t) \)

By (7.15) \(\mathcal{I}_{00}(t) \) is a continuous function, and for \(1 \leq k \leq k_\ast \),

\[
\partial_k \mathcal{I}_{00}(t) = \int_{\mathbb{R}^n} \left(\int_{B_{\sqrt{2}}(\mathbb{R}^d_1)} |x|^{-1}dx \right) du
\]

\[
\int_{y \in \sigma(u,x)} (d^k/dt^k) f_{00}(u, x, y + t|x|^{-2}x) \, ds_{(u,x)} y
\]

\[
= \int_{\mathbb{R}^n} \int_{B_{\sqrt{2}}(\mathbb{R}^d_1)} |x|^{-1} \left(\int_{y \in \sigma(u,x)} d^k_y f_{00}(u, x, y + t|x|^{-2}x) \, [x|^{-2}x] \, d\sigma_{(u,x)} y \right) dx du,
\]

(7.18)

where by \(d^k_y f_{00} \left[|x|^{-2}x \right] \) we denote the action of the differential \(d^k_y f_{00} \) on the set of \(k \) vectors, each of which equals to \(|x|^{-2}x \). Setting \(\tau = t - \frac{1}{2}|u|^2 \), for \(y \in \sigma(u,x) \) we have

\[
y + t|x|^{-2}x = \bar{y} + \tau|x|^{-2}x, \quad \text{for some } \bar{y} \in x^\perp.
\]

(7.19)

Then we write the integral over \(y \) in (7.18) as

\[
\int_{x^\perp} d^k_y f_{00}(u, x, \bar{y} + \tau|x|^{-2}x) \, [x|^{-2}x] \, d\bar{y}.
\]

(7.20)

Since \(|ar{y} + \tau x|^{-2}x|^2 = |\bar{y}|^2 + \tau^2 |x|^{-2} \), then on the support of the integrand

\[
|x| \leq \sqrt{2}, \quad |\bar{y}|^2 + \tau^2 |x|^{-2} \leq 2.
\]

(7.21)

In particular,

\[
|\tau| = |t - \frac{1}{2}|u|^2| \leq \sqrt{2}|x| \leq 2 \quad \text{in (7.20)}.
\]

(7.22)

By (7.16) the diameter of the domain of integration in (7.20) is bounded by \(\sqrt{2} \). So, for any \(m \geq 0 \) integral (7.20) is bounded by \(C_{k,m} |x|^{-k} \langle u \rangle^{-m} \| f \|_{k,m} \).

Denoting \(R = |u|, r = |x| \) we get that

\[
|\partial^k \mathcal{I}_{00}(t)| \leq_{k,M} \| f \|_{k,M} \int_0^{\sqrt{2}} r^{d_1-k-2} \left(\int_0^R r^{n-1} R^{-M} \chi_{|r| \leq \sqrt{2}r} \, dR \right) dr.
\]

(7.23)
If \(n = 0 \), then the integral over \(R \) should be removed from the r.h.s. Below we estimate the integral \(\partial^k \mathcal{I}_{00}(t) \) separately for the cases \(n = 0 \) and \(n \geq 1 \).

a) If \(n = 0 \), then \(\tau = t \), we get from (7.22) that \(|x| \geq t/\sqrt{2} \) and see from (7.19) that, for \(t \neq 0 \), \(\mathcal{I}_{00}(t) \) is \(C^{k_*} \)-smooth (since \(f \in C^{k_*} \)). Then from (7.23) we obtain

\[
|\partial^k \mathcal{I}_{00}(t)| \lesssim_{k,M} \|f\|_{k,M} \int_{|t|/\sqrt{2}}^{\sqrt{2}} x^{d_1-k-2} \chi_{|t| \leq 2} \, dr .
\]

(7.24)

From here it follows that

\[
|\partial^k \mathcal{I}_{00}(t)| \lesssim_k \|f\|_{k,M} \quad \text{if} \quad k \leq \min(d_1 - 2, k_*),
\]

\[
|\partial^k \mathcal{I}_{00}(t)| \lesssim_k \|f\|_{k,M} (1 + |\ln|t||) \quad \text{if} \quad k \leq \min(d_1 - 1, k_*) ,
\]

(7.25)

while \(\mathcal{I}_{00}(t) = 0 \) for \(|t| \geq 2 \).

b) If \(n \geq 1 \), then to estimate \(\partial^k \mathcal{I}_{00}(t) \) we split the integral for \(\mathcal{I}_{00}(t) \) in a sum of two. Namely, for a fixed \(t \neq 0 \) we write \(f_{00} \) as \(f_{00} = f_{00<} + f_{00>} \), with \(f_{00<} = f_{00} \varphi(8|x|^2/t^2) \), where \(\varphi \) is the function, used to define the functions \(f_{ij}, 0 \leq i, j \leq 1 \). Then

\[
supp f_{00<} \subset \{ 2|x| \leq |t| \}, \quad supp f_{00>} \subset \{ 2\sqrt{2}|x| \geq |t| \} .
\]

(7.26)

With an obvious notation we have \(\mathcal{I}_{00}(t) = \mathcal{I}_{00<}(t) + \mathcal{I}_{00>}(t) \), where

\[
\mathcal{I}_{00<}(t) = \int_{\mathbb{R}^n} \int_{B_{\sqrt{2}|x|}(\mathbb{R}^d) \cap B_{|t|/2}(\mathbb{R}^d)} \chi_{|x|} \left(\int_{\left| y \in \sigma(u,x) \right| \left| x^2 + |y + t|x|^{-2}x| \right| \leq 2} f_{00<}(u, x, y + t|x|^{-2}x) \, dx \right) \, du ,
\]

\[
\mathcal{I}_{00>}(t) = \int_{\mathbb{R}^n} \int_{B_{2\sqrt{2}|x|}(\mathbb{R}^d) \cap B_{|t|/2}(\mathbb{R}^d)} \chi_{|x|} \left(\int_{\left| y \in \sigma(u,x) \right| \left| x^2 + |y + t|x|^{-2}x| \right| \leq 2} f_{00>}(u, x, y + t|x|^{-2}x) \, dx \right) \, du .
\]

Consider first function \(\mathcal{I}_{00<}(t) \). We observe that, by (7.19), for \(y \in \sigma(u,x) \) and \(|x| \leq |t|/2 \) (cf. (7.25))

\[
|y + t|x|^{-2}x| \geq |\tau||x|^{-1} = \left| t - \frac{1}{2}|u|^2 \right| |x|^{-1} \geq -t|^{-1} > \sqrt{2}, \quad \text{for} \ t < 0 ,
\]

35
so that \(I_{00}(t) = 0 \) for \(t < 0 \). For \(t > 0 \), performing the change of variables
\(\sqrt{tu'} = u, \ ty' = x \), we get
\[
I_{00}(t) = t^{d/2-1} \int_{\mathbb{R}^n} \int_{B_r(\mathbb{R}^d) \cap B_{1/2}(\mathbb{R}^d)} |x'|^{-1} \varphi(8|x'|^2)
\left(\int_{y \in \sigma(u',x')} f_{00}(\sqrt{tu'}, tx'; y + |x'|^{-2}x') \, dx' \, du' \right),
\]
where we notice that \(\sigma(u', x') = \sigma(u, x) \). We differentiate with respect to \(t \), observing that, by induction in \(l \), for any \(l \) and \(k \) we have
\[
\frac{d^k}{dt^k} I_{00}(t) = \sum_{l_1 + l_2 + l_3 = k} c_{l_1, l_2, l_3} t^{l_1 - l_2/2} \left(u^{l_2} \cdot \nabla u \right)^{l_2}(x^{l_3} \cdot \nabla x)^{l_3} g(\sqrt{tu}', tx'),
\]
for any sufficiently regular function \(g \) and suitable constants \(c_{l_1, l_2, l_3} \). From this we get
\[
\left| \frac{d^k}{dt^k} I_{00}(t) \right| \leq_{k, M} \max_{l_1 + l_2 + l_3 = k} t^{d/2-1-l_1-l_2/2} \| f \|_{k, M} \int_{\mathbb{R}^n} |u|^{l_2} \langle u' \sqrt{t} \rangle^{-M} \int_{B_r(\mathbb{R}^d) \cap B_{1/2}(\mathbb{R}^d)} |x'|^{l_3-1} \left(\int_{y \in \sigma(u', x')} d_{\sigma(u', x')} y \right) \, dx' \, du'.
\]
Denoting points of the space \(x^1 \) as \(\bar{y} \), we see that the integral over \(d_{\sigma(u', x')} y \) is bounded by
\[
\int_{|x'|^2 + |\bar{y} + \tau'|^{-2}|x'|^2 \leq 2} 1 \, d\bar{y}, \quad \tau' = 1 - \frac{1}{2} |u'|^2.
\] (7.27)
By (7.22), on the support of the integrand \(|\tau'| \leq \sqrt{2}|x'| \). So there
\[
1 - \sqrt{2}|x'| \leq \frac{|u'|^2}{2} \leq 1 + \sqrt{2}|x'|.
\] (7.28)
As the the domain of integration in \(\bar{y} \) is bounded, then integral (7.27) is bounded by a constant. So putting \(|x'| = r', |u'| = R' \) and using (7.28) we have
\[
\left| \frac{d^k}{dt^k} I_{00}(t) \right| \leq_{k, M} \max_{l_1 + l_2 + l_3 = k} \| f \|_{k, M} t^{d/2-1-l_1-l_2/2-1} \int_0^{1/2} r'^{d_1-2+l_3} \left(\int_{\sqrt{2}(1+\sqrt{2}r')} R'^{m-1+l_2} (R'^2 t)^{-M/2} dR' \right) dr'.
\]
Since \(r' \leq 1/2 \), then on the domain of integration \(\sqrt{2 - \sqrt{2}} \leq R' \leq \sqrt{2 + \sqrt{2}} \), while \(\sqrt{2} \sqrt{1 + \sqrt{2} r'} - \sqrt{2} \sqrt{1 - \sqrt{2} r'} \lesssim r' \). So the integral in \(dR' \) is bounded by \(C\langle t \rangle^{-M/2} r' \). Therefore

\[
|\partial^k I_{00} < (t)| \lesssim_{k,M} \max_{l_1+l_2+l_3=k} \|f\|_{k,M,t} d^{d/2-l_1-l_2/2-1} \langle t \rangle^{-M/2} \int_0^{1/2} r'^{d_1-1+l_3} \, dr'.
\]

This implies that for \(0 < t \leq 4 \), for any \(k \leq k_* \) and any \(d_1 \geq 1 \) we have

\[
|\partial^k I_{00} < (t)| \lesssim_k \|f\|_{k_0} d^{d/2-k-1}.
\] (7.29)

While for any \(t \geq 4 \) and any \(k \leq k_* \),

\[
|\partial^k I_{00} < (t)| \lesssim_{k,M} \max_{l_1+l_2+l_3=k} \|f\|_{k,M,t} d^{d/2-M/2-l_1-l_2/2-1} \times \int_0^{\sqrt{2} t} r'^{d_1-1+l_3} \, dr' \lesssim_{k,M} \|f\|_{k,M,t} (M+2+k+2d_1-d)/2. \] (7.30)

We recall that \(I_{00} < (t) \) vanishes for \(t < 0 \).

For \(I_{00} > (t) \) we first note that by (7.21) and (7.26) function \(I_{00} > (t) \) vanishes if \(|t| > 4 \). Next, by induction in \(k \), we observe that

\[
\frac{d^k}{dt^k} g(t|x|^2)(1 - \varphi(8|x|^2/t^2)) = \sum_{l_1+l_2+l_3=k} c_{l_1,l_2,l_3} |x|^{2(l_2-l_1)} t^{-3l_2-l_3} \times \left((x \cdot \nabla)^{l_1} g \right) \frac{d^{l_2}}{dy^{l_2}} (1 - \varphi),
\] (7.31)

where \(c_{l_1,l_2,l_3} = 0 \) if \(l_3 > 0 \) and \(l_2 = 0 \). Since \(\varphi' \neq 0 \) only for \(|t|/2\sqrt{2} \leq |x| \leq |t|/2 \), then

\[
\frac{d^{l_2}}{dy^{l_2}} (1 - \varphi) t^{-3l_2-l_3} \lesssim_{l_2,l_3} |x|^{-3l_2-l_3}, \quad l_2 > 0,
\]

so that

\[
|\frac{d^k}{dt^k} g(t|x|^2)(1 - \varphi(8|x|^2/t^2))| \lesssim_k |x|^{-k} \|g\|_{k,0}.
\]

From here, in a way analogous to (7.23), putting again \(|x| = r \) and \(|u| = R \), we get that

\[
|\partial^k I_{00} > (t)| \lesssim_{k,M} \|f\|_{k,M} \int_{|t|/2\sqrt{2}}^{\sqrt{2}} r'^{d_1-k-2} \left(\int_0^\infty R^{n-1} (R)^{-M} \chi_{|r| \leq \sqrt{2} r} \, dR \right) dr.
\]
(here and below \(\int_a^b \, dr = 0 \) if \(b \leq a \)). Since on the integration domain, due to (7.26) and the indicator function \(\chi_{|\tau| \leq \sqrt{2} r} \), we have \(R^2 \leq 6 \sqrt{2} r \), then

\[
|\partial^k \mathcal{I}_{00}(t)| \lesssim_{k,M,n} \| f \|_{k,M} \int_0^{\sqrt{2} |t|/2} dr \frac{r^{d/2-k-2}}{|r|^{1/2}}, \quad k < d/2 - 1, \quad k \leq d/2 - 1.
\]

If \(k < d/2 - 1 \), then by the above \(\partial^k \mathcal{I}_{00}(t) \) is bounded for all \(t \). In this case, modifying the integrand in (7.18) by the factor \(\chi_{|x| \geq \varepsilon} \), we see that thus obtained functions \(\mathcal{I}_{00}^\varepsilon \) satisfy the same estimates as the functions \(\mathcal{I}_{00}, \mathcal{I}_{00}^\varepsilon \) above, so the function \(\mathcal{I}_{00}^\varepsilon \) also does. The functions \(\partial^k \mathcal{I}_{00}^\varepsilon(t) \) with \(\varepsilon > 0 \) obviously are continuous in \(t \) and converge to \(\partial^k \mathcal{I}_{00}(t) \) uniformly on bounded intervals. So the latter function also is continuous.

7.3.2 Integral \(\mathcal{I}_{11}(t) \).

Due to (7.17) and similar to (7.18), (7.20), for any \(k \leq k_* \) we have

\[
\partial^k \mathcal{I}_{11}(t) = \int_{\mathbb{R}^n} \int_{|x| \geq 1/2} |x|^{-1} \left(\int_{x^\perp} d^k f_{11}(u, x, \bar{y} + \tau x |x|^{-2}) |x||x|^{-2} \, d\bar{y} \right) dx du.
\]

We easily see that \(\mathcal{I}_{11}(t) \) is a \(C^k \)-smooth function and, since \(M > d \) and \(|\bar{y} + \tau x |x|^{-2}| \geq |\bar{y}| \), then

\[
|\partial^k \mathcal{I}_{11}(t)| \lesssim_{k,M} \| f \|_{k,M} \quad \forall t.
\]

Now let \(|t| \geq 1\). Let us write \(\partial^k \mathcal{I}_{11} \) as

\[
\partial^k \mathcal{I}_{11}(t) = \int_{\mathbb{R}^n} \int_{|x| \geq 1/2} |x|^{-k-1} \int_{x^\perp} \Phi_k(\bar{z}) \, d\bar{y} dx du,
\]

where \(\bar{z} = (u, x, \bar{y}), \bar{y} \in x^\perp \), and

\[
|\Phi_k(\bar{z})| \lesssim_k \| f \|_{k,M} (\bar{z})^{-M}, \quad \bar{z} = (u, x, \bar{y} + \tau x |x|^{-2}).
\]

Obviously,

\[
|\bar{z}| \geq |\bar{z}|, \quad |\bar{z}| \geq 2^{-1/2} (|\bar{z}| + |\tau||x|^{-1}).
\]

Below we separate the cases \(n \geq 1 \) and \(n = 0 \).
1) Let \(n \geq 1 \).
 a) We first integrate in (7.34) over \(u \) in the spherical layer
 \[
 O := \{ u : |\tau| = |t - \frac{1}{2}|u|^2| \leq \frac{1}{2}t \}.
 \]
 It is empty if \(t < 0 \), while for \(t \geq 0 \), \(O = \{ u : t \leq |u|^2 \leq 3t \} \). By (7.35) and the first relation in (7.36), for \(t \geq 0 \) the part of the integral in (7.34) with \(u \in O \) is bounded by
 \[
 K := C_k \| f \|_{k,M} \int_O \int_{|x|\geq1/2} |x|^{-k-1} \int_{x^+} (|t| + |x|^2 + |\tilde{y}|^2)^{-M/2} dy dx du.
 \]
 Since \(\int_O 1 du \leq Ct^{n/2} \), then by putting \(r = |x| \), \(|t| + r^2 = T^2 \) and \(R = |\tilde{y}|/T \) we find that
 \[
 K \lesssim_k \| f \|_{k,M} t^{n/2} \int_{1/2}^{\infty} r^{d_1-2-k} T^{d_1-1-M} \int_0^{\infty} R^{d_1-2} (1 + R^2)^{-M/2} dR dr.
 \]
 The integral in \(dR \) is bounded since \(M > d_1 \), so that
 \[
 K \lesssim_{k,M} \| f \|_{k,M} t^{n/2} \int_{1/2}^{\infty} r^{d_1-2-k} (|t| + r^2)^{(d_1-1-M)/2} dr.
 \]
 Recalling that we are considering the case \(t \geq 1 \), we put \(r = \sqrt{t}l \). Then
 \[
 K \lesssim_{k,M} \| f \|_{k,M} t^{n/2} \int_{1/2}^{\infty} l^{d_1-2-k} (1 + l^2)^{(d_1-1-M)/2} dl.
 \]
 Since \(M > 2d_1 \), the integral over \(l \) converges and we get
 \[
 K \lesssim_{k,M} \| f \|_{k,M} t^{n/2} \int_{1/2}^{\infty} l^{d_1-2-k} (1 + l^2)^{(d_1-1-M)/2} dl.
 \]
 with \(Y = \ln t \) if \(k = d_1 - 1 \) and \(Y = 1 \) otherwise. Then, in the case \(Y = 1 \) the component of (7.34), corresponding to \(u \in O \), is bounded by
 \[
 C(k,M,d) \| f \|_{k,M} t^{-\kappa}, \quad \kappa = \frac{M + 2 - d}{2}, \quad (7.37)
 \]
 for all \(|t| \geq 1 \), since \(\max(0,k + 1 - d_1) \leq k \). If \(Y = \ln t \) the same estimate holds in the case \(d_1 \geq 2 \) since \(\max(0,k + 1 - d_1) < k \). In the case \(d_1 = 1 \) and \(Y = \ln t \) (i.e. \(k = 0 \)) we get (7.37) with \(\kappa \) replaced by any \(\kappa' < \kappa \) (and constant \(C \) depending on \(\kappa' \)).
 b) Now consider the integral for \(u \in O^c = \mathbb{R}^n \setminus \bar{O} \). There \(|\tau| = |t - \frac{1}{2}|u|^2| \geq \frac{1}{2}|t| \). So, by inequalities (7.35) and (7.36), \(|\Phi_k(\bar{z})| \lesssim_k (|u|, |\bar{y}|)^{-M} \) and
|Φ_k(\vec{z})| \lesssim_k (|t||x|^{-1} + |x|)^{-M}. Let M = M_1 + M_2, M_j \geq 0. Then the part of the integral (7.34) for u \in O^c is bounded by

\[C\|f\|_{k,M} \int_{|x| \geq 1/2} |x|^{-1-k} (|t||x|^{-1} + |x|)^{-M_1} \left(\int_{\mathbb{R}^n} \int_{x^\perp} \langle (u, \vec{y}) \rangle^{-M_2} d\vec{y} du \right) dx \]

Choosing \(M_2 = n + d_1 - 1 + \gamma \) with \(0 < \gamma < 1 \) (then \(M_1, M_2 > 0 \) since \(M > d \)) we achieve that the integral over \(du d\vec{y} \) is bounded by \(C(\gamma) \), for any \(\gamma \). Since by Young’s inequality \(^6\)

\[(A + B)^{-1} \leq C_a A^{-a} B^{a-1}, \quad 0 < a < 1, \]

for any \(A, B > 0 \), then \((|t||x|^{-1} + |x|)^{-M_1} \leq C_a |x|^{(2a-1)M_1} |t|^{-aM_1} \) \((0 < a < 1)\). So the integral above is bounded by

\[C(\gamma)\|f\|_{k,M} |t|^{-aM_1} \int_{|x| \geq 1/2} |x|^{-1-k+bM_1} dx, \quad b = 2a - 1 \in (-1, 1). \]

Denote \(b_* = \frac{1+k-d_1}{M_1} \). Then for \(b = b_* \) the exponent for \(|x| \) in the formula above equals \(-d_1\), and \(b_* > -1 \) if \(\gamma \) is sufficiently small, since \(M > d \). Noting that

\[a(b_*) M_1 = \frac{b_* + 1}{2} M_1 = \frac{M + 2 + k - d - \gamma}{2} = \kappa + \frac{k}{2} - \frac{\gamma}{2} \]

(\(\kappa \) was defined in (7.37)), we see that the part of integral (7.34), corresponding to \(u \in O^c \), is bounded by (7.37) if \(k \geq 1 \), while for \(k = 0 \) it is bounded by (7.37) with \(\kappa \) replaced by any \(\kappa' < \kappa \).

2) Now let \(n = 0 \). Then

\[\left| \partial^k \mathcal{I}_{11}(t) \right| \leq \int_{|x| \geq 1/2} |x|^{-1-k} \int_{x^\perp} \Phi_k(\hat{z}) d\hat{y} dx, \quad \hat{z} = (x, \vec{y}) , \quad (7.39) \]

where \(|\Phi_k(\hat{z})| \lesssim_k (\hat{z})^{-M} \) with \(\hat{z} = (x, \vec{y} + tx|x|^{-2}) \). Repeating literally the step 1b) above with \(n = 0 \) we get that for \(|t| \geq 1 \) the integral in (7.39) may also be bounded by (7.37). We recall that for \(|t| \leq 1 \) the derivative \(\partial^k \mathcal{I}_{11}(t) \) was estimated in (7.33).

\(^6\)Indeed, by Young’s inequality with \(p = 1/a, q = 1/(1-a) \) we have that \(A^a B^{(1-a)} \leq aA + (1-a)B \leq C_a (A + B) \). This proves the assertion.
7.3.3 Integral \(I_{10}(t) \).

Now we use the second disintegration in (7.14) instead of the first. Since by (7.17) on the support of the integrand \(|y| \geq 1/\sqrt{2}\), then repeating the argument above with \(x\) and \(y\) swapped we get that \(I_{10}(t) \) meets the same estimates as \(I_{11}(t) \).

7.3.4 End of the proof of Theorem 7.1

Finally, – combining together relations (7.25), (7.29), (7.32) and (7.33) we estimate \(\partial^k I(t) \) for \(0 < |t| \leq 4 \), while

– combining together (7.30), (7.37), (7.38) and using the fact that \(\partial^k I_{00}(t) \) and \(\partial^k I_{00}(t) \) vanish for \(|t| \geq 4 \) when \(n = 0 \), we estimate \(\partial^k I(t) \) for \(t \geq 4 \).

For the reason, explained at the end of Section 7.3.1, the involved derivatives are continuous functions. This proves the theorem.

7.4 Linear transformations of quadrics

In this subsection we denote by \(C_0 \) spaces of continuous functions with compact support.

In \(\mathbb{R}^d = \{z\} \) let us consider a quadratic form with real coefficients \(F(z) = \frac{1}{2}Az \cdot z \) of signature \((n_0, n_+, n_-)\) such that \(n_0 = 0\), \(n_+ \geq n_- =: d_1 \geq 1\). Denote \(n = n_+ - n_- \).

Using the standard diagonal normal form for a symmetric quadratic form, we construct a linear transformation

\[
L : \mathbb{R}^d \to \mathbb{R}^d, \quad z \mapsto Z = (u, x, y), \quad u \in \mathbb{R}^n, \quad x, y \in \mathbb{R}^{d_1},
\]

such that \(Q(L(z)) = F(z) \), where \(Q(Z) = \frac{1}{2}|u|^2 + x \cdot y \). Consider the corresponding quadrics \(\Sigma_t^Q = \{Z : Q(Z) = t\}, \Sigma_t^F = \{z : F(z) = t\} \), and the \(\delta \)-measures \(\mu_t^Q, \mu_t^F \) on them (e.g. see [13] Section II.7):

\[
\langle \mu_t^Q, f^Q \rangle = \lim_{\varepsilon \to 0} \frac{1}{2\varepsilon} \int_{t-\varepsilon \leq Q(Z) \leq t+\varepsilon} f^Q(Z) dZ, \quad (7.40)
\]

\[
\langle \mu_t^F, f^F \rangle = \lim_{\varepsilon \to 0} \frac{1}{2\varepsilon} \int_{t-\varepsilon \leq F(z) \leq t+\varepsilon} f^F(z) dz,
\]

Section 7.4 is the only part of our work, where quadratic forms are allowed to have non-rational coefficients.
where \(f^Q, f^F \in C_0(\mathbb{R}^d) \) and \(\langle \mu, f \rangle \) signifies the integral of a function \(f \) against a measure \(\mu \). Then \(\mu^Q_t \) and \(\mu^F_t \) are Borel measures in \(\mathbb{R}^d \), supported by \(\Sigma^Q_t \) and \(\Sigma^F_t \) respectively, and for \(f^Q \in C_0(\Sigma^Q_t \setminus \{0\}) \) and \(f^F \in C_0(\Sigma^F_t \setminus \{0\}) \) we have

\[
\langle \mu^Q_t, f^Q \rangle = \int_{\Sigma^Q_t} \frac{f^Q(Z)}{|\nabla Q(Z)|} dZ |_{\Sigma^Q_t}, \quad \langle \mu^F_t, f^F \rangle = \int_{\Sigma^F_t} \frac{f^F(z)}{|\nabla F(z)|} dz |_{\Sigma^F_t},
\]

where \(dZ |_{\Sigma^Q_t(\text{or } F)} \) is the volume element on \(\Sigma^Q_t(\text{or } F) \setminus \{0\} \), induced from \(\mathbb{R}^d \), see [13]. Now let \(f^F = f^Q \circ L \). Then the integral in (7.40) equals

\[
\int_{t-\epsilon \leq Q(Z) \leq t+\epsilon} f^Q(Z) dZ = |\det(L)| \int_{t-\epsilon \leq F(z) \leq t+\epsilon} f^F(z) dz,
\]

so passing to the limit we get that

\[
L \circ (|\det(L)| \mu^F_t) = \mu^Q_t. \tag{7.41}
\]

Thus, to examine the function

\[
t \mapsto I^F(t; f) = \langle \mu^F_t, f \rangle, \quad \mu^F_t = |\nabla F(z)|^{-1} dz |_{\Sigma^F_t}, \tag{7.42}
\]

we are free to use any linear coordinate system in \(\mathbb{R}^d \) since changing the coordinates we only modify function \(I^F \) by a constant factor.

7.5 Sign definite forms

Finally let us consider the case when \(n_0 = 0 \) and \(\min(n_+, n_-) = 0 \), i.e. when the form \(F(z) = \frac{1}{2}Az \cdot z \) is sign–definite and non degenerate. Suppose for definiteness that \(n_- = 0 \). Then there exists a linear transformation \(L \) such that \(F(z) = Q(L(z)) \), where \(Q(Z) = \frac{1}{2}|Z|^2 \), \(Z \in \mathbb{R}^d \). The quadric \(\Sigma_t \) reduces to the empty set for \(t < 0 \), so function \(I^F(t) \) (see (7.42)) vanishes for \(t < 0 \). The calculation of previous subsection remains true in this case, so (7.41) and the change of coordinates \(Z = \sqrt{2t} Z' \) show that

\[
I^F(t; f) = C(d, L)t^{-1} \int_{|Z| = \sqrt{2t}} f^Q(Z) \mu_{\sqrt{t}}(dZ) = C(d, L)t^{d/2-1} \int_{|Z'| = 1} f^Q(\sqrt{2t} Z') \mu_{\sqrt{1}}(dZ'), \quad t > 0, \quad f^Q = f \circ L^{-1},
\]
where $\mu_{S^{d-1}}$ is the volume element on the $d-1$ sphere of radius r. From this relation we immediately get that for any $k \leq \min(d/2 - 1, k_*)$,

$$\left| \partial^k T^F(t) \right| \lesssim_k \| f \|_{k,0} \quad \text{if} \quad 0 \leq t \leq 1,$$

and

$$\left| \partial^k T^F(t) \right| \lesssim_{k,M} \| f \|_{k,M} t^{-(M+2+k-d)/2} \quad \text{if} \quad t \geq 1.$$

7.6 General result

We sum up the obtained results in the following

Theorem 7.3. Consider any nondegenerate quadratic form $F(z) = \frac{1}{2} Az \cdot z$ on \mathbb{R}^d, $d \geq 3$, and a function $f \in C^{k,M}(\mathbb{R}^d)$, $M > d$. Then the corresponding integral $T^F(t; f) = \langle \mu^F, f \rangle$ (see (7.42)) meets the assertions of Theorem 7.1.

Proof.
i) If $n_+ \geq n_-$, then by means of a linear change of variable F may be put to the normal form (7.1), where $d_1 \geq 0$. Now the assertion follows from the argument in Subsections 7.4, 7.5 and Theorem 7.1.

ii) If $n_- > n_+$, then the quadratic form $-F$ is as in i), and the assertion follows again since obviously $T^{-F}(t; f) = T^F(-t; f)$. \qed

A The J_0 term: case $d = 4$

In this section we find asymptotic for the term J_0 from (1.19) in the case

$$d = 4 \quad \text{and} \quad m = 0.$$

(A.1)

Below in this section we always assume (A.1).

A.1 Preliminary results and definitions

We will need Lemmas 30 and 31 of [10], restricted for the case $m = 0$ and $d = 4$, which we state below without a proof. Recall that constants $\sigma^*_c(A)$ are defined in (1.10) and $\sigma^*(A) = \sigma^*_0(A)$. Set $\alpha := 7/2$ and recall (A.1).

Lemma A.1 (Lemma 30 of [10]). For any $\varepsilon > 0$ and $X \in \mathbb{N}$,

$$\sum_{q \leq X} S_q(c; A, 0) = \eta(c)\sigma^*_c(A) \sum_{q \leq X} q^{d-1} + O_\varepsilon(X^{\alpha+\varepsilon}(1 + |c|)),$$

(A.2)

where $\eta(c) = 1$ if $c \cdot A^{-1}c = 0$ and at the same time $\det A$ is a square of an integer, and $\eta(c) = 0$ otherwise. Moreover, $|\sigma^*_c(A)| \lesssim_\varepsilon 1 + |c|^\varepsilon$ when $\eta(c) \neq 0$.

43
Lemma A.2 (Lemma 31 of [III]). Assume that the determinant $\det A$ is a square of an integer. Then for any $\varepsilon > 0$ and $X \in \mathbb{N}$,

$$
\sum_{q \leq X} q^{-d} S_q(0; A, 0) = \sigma^*(A) \log X + \hat{C}_A + O_\varepsilon(X^{\alpha+\varepsilon-d}) ,
$$

where \hat{C}_A is a constant depending only on A. Otherwise, if $\det A$ is not a square of an integer, then for any $\varepsilon > 0$ and $X \in \mathbb{N}$

$$
\sum_{q \leq X} q^{-d} S_q(0; A, 0) = L(1, \chi) \prod_p (1 - \chi(p)p^{-1}) \sigma_p(A, 0) + O_\varepsilon(X^{-1/2+\varepsilon}) ,
$$

where χ is the Jacobi symbol $\frac{\det(A)}{*}$ and $L(1, \chi)$ is the Dirichlet L-function.

We will also need the following construction. Let us define for $r \in \mathbb{R}_{>0}$

$$
I^*(r) := \tilde{I}_{rL}(0) = \int_{\mathbb{R}^d} w(z) h\left(r, F^0(z)\right) \, dz . \tag{A.3}
$$

Consider a function $K(\rho; w, A), \rho \in \mathbb{R}_{>0}$, given by

$$
K(\rho) := \eta(0) \sigma^*(A) \left(\sigma_\infty(w; A, 0) \log \rho + \int_\rho^\infty r^{-1} I^*(r) \, dr \right) + \sigma_\infty(w; A, 0) \hat{C}_A , \tag{A.4}
$$

where constant $\eta(0)$ is defined according to Lemma A.1 and \hat{C}_A — according to Lemma A.2. Note that functions $I^*(r)$ and $K(\rho)$ do not depend on L.

We claim that function $K(\rho), \rho > 0$, can be extended at $\rho = 0$ by continuity. Indeed, for $0 < \rho_1 < \rho_2 \leq 1$

$$
K(\rho_2) - K(\rho_1) = \eta(0) \sigma^*(A) \left(\sigma_\infty(w; A, 0) \log(\rho_2/\rho_1) - \int_{\rho_1}^{\rho_2} r^{-1} I^*(r) \, dr \right) . \tag{A.5}
$$

Using that $I^*(r) = L^{-d} I_{rL}(0)$ (see (A.3)), we write the term $I^*(r)$ from (A.5) in the form, given by Proposition 3.8 b). Then $I^*(r)$ takes the form of the r.h.s. of (3.11), divided by L^d, with $q = rL$. The leading term in the obtained formula for $I^*(r)$ is $\sigma_\infty(w; A, 0)$ and the corresponding integral $\int_{\rho_1}^{\rho_2} r^{-1} I^*(r) \, dr$ in (A.5) cancels the first term in the brackets of (A.5). Then, setting $M = d/2 - 1$, $\beta = r^\ast$, $\bar{\gamma} = \gamma/d$ and $0 < \gamma < 1$ in the just discussed formula for $I^*(r)$, obtained from (3.11), we get the estimate

$$
|K(\rho_2) - K(\rho_1)| \lesssim_N \|w\|_{d/2-1,d+1} \int_{\rho_1}^{\rho_2} \left(r^{d/2(2(1-\bar{\gamma})-2(\log r) + r^{N-2} + r^{\bar{\gamma}N-2}) \, dr
\lesssim_N \rho_2^{d/2-1-\gamma} \|w\|_{d/2-1,d+1} .
$$

44
The last inequality here is obtained by choosing \(N = N(\gamma) \) to be sufficiently large and writing \(r^{d/(2(1-\gamma))-2} \langle \log r \rangle \lesssim r^{d/(2(1-\gamma))-2-\gamma/2} = r^{d/2-2-\gamma} \). Therefore \(K(\rho) \) extends at \(\rho = 0 \) by continuity and

\[
|K(\rho) - K(0)| \lesssim \rho^{d/2 - 1 - \gamma} \|w\|_{d/2-1,d+1},
\]

so the function \(K \) is \((d/2 - 1 - \gamma)\)-Hölder continuous at zero, for any \(\gamma > 0 \).

A.2 Estimate for \(J_0 \)

Argument in this section is related to Section 13 of [10]. Here we restrict ourselves for the case when the determinant \(\det A \) is a square of an integer, so in particular \(\eta(0) = 1 \). We use this specification only in the proof of Lemma A.5 when applying Lemma A.2. The case of non-square determinant is easier and can be obtained similarly, using the second assertion of Lemma A.2.

Proposition A.3. Assume that the determinant \(\det A \) is a square of an integer. Then for any \(0 < \varepsilon < 1/5 \),

\[
J_0 = \sigma_\infty(w; A, 0)\sigma^*(A)L^d \log L + K(0; w, A)L^d + O_\varepsilon \left(\|w\|_{d/2-1,d-1} + \|w\|_{0,d+1} \right).
\]

Proof. To establish Proposition A.3 we write \(J_0 \) in the form (1.21), \(J_0 = J_0^+ + J_0^- \), where

\[
J_0^+ := \sum_{q > \rho L} q^{-d} S_q(0) I_q(0) \quad \text{and} \quad J_0^- := \sum_{q \leq \rho L} q^{-d} S_q(0) I_q(0),
\]

with \(\rho \leq 1 \). Then the assertion follows from Lemmas A.4 and A.5 below. Recall that \(\alpha = 7/2 \).

Lemma A.4. Let \(w \in L_1(\mathbb{R}^d) \). Then for any \(\gamma > 0 \), any \(\rho \leq 1 \) and \(L \) satisfying \(\rho L > 1 \),

\[
\left| J_0^+ - L^d q(0) \sigma^*(A) \int_0^\infty r^{-1} I^*(r) \, dr \right| \lesssim \gamma \left(\rho^{\alpha+\gamma-d-1} L^{\alpha+\gamma} + \rho^{-2} L^{d-1} \right) |w|_{L_1}.
\]

Proof. To simplify the notation, in this proof we denote \(I_q := I_q(0) \) and \(S_q := S_q(0) \). Let us recall the summation by parts formula for sequences \((f_q)\) and \((g_q)\):

\[
\sum_{m < q \leq n} f_q (g_q - g_{q-1}) = f_n g_n - f_{m+1} g_m - \sum_{m < q < n} (f_{q+1} - f_q) g_q.
\]
We take arbitrary \(R \in \mathbb{N} \) and apply the latter with \(m = R, n = 2R, f_q = q^{-d}I_q \) and \(g_q = \sum_{R < q' \leq q} S_{q'} \), so that \(g_R = 0 \) and \(S_q = g_q - g_{q-1} \) for \(q > R \). We find
\[
\sum_{R < q \leq 2R} q^{-d}S_qI_q = (2R)^{-d}I_{2R} \sum_{R < q \leq 2R} S_q
- \sum_{R < q' \leq q} \tilde{\partial}_q(q^{-d}I_q) \sum_{R < q' \leq q} S_{q'},
\tag{A.7}
\]
where for a sequence \((a_q)\) we denote \(\tilde{\partial}_q a_q := a_{q+1} - a_q \). By (3.8)–(3.9),
\[
I_q = L^d \int_{\mathbb{R}^d} w(z)h(\frac{q}{L}, F^0(z)) \, dz.
\]
So,
\[
|I_q| \lesssim \frac{L^{d+1}}{q}|w|_{L^1} \quad \text{and} \quad |\partial_q I_q| \lesssim \frac{L^{d+1}}{q^2}|w|_{L^1}, \tag{A.8}
\]
where the first estimate above follows from Corollary 3.3 while the second one — from Lemma 3.2 with \(m = 1, n = N = 0 \). Then, \(|\tilde{\partial}_q(q^{-d}I_q)| \lesssim L^{d+1}q^{-d-2}|w|_{L^1} \). According to (A.2) with \(\varepsilon \) replaced by \(\gamma \), for \(R' \leq 2R \)
\[
\sum_{R < q \leq R'} S_q = \eta(0)\sigma^*(A) \sum_{R < q \leq R'} q^{d-1} + O_\gamma(R^{\alpha+\gamma}), \tag{A.9}
\]
where we recall that \(\sigma^*_0(A) = \sigma^*(A) \). Let us view the r.h.s. of (A.7) as a linear functional \(G((S_q)) \) on the space of sequences \((S_q)\). Then, inserting formula (A.9) in the r.h.s. of (A.7), we get
\[
\sum_{R < q \leq 2R} q^{-d}S_qI_q = \eta(0)\sigma^*(A)G((q^{d-1}))
+ O_\gamma \left(L^{d+1}|w|_{L^1}(R^{-d-1+\alpha+\gamma} + \sum_{R < q \leq 2R} q^{-d-2+\alpha+\gamma}) \right), \tag{A.10}
\]
where the \(O_\gamma \) term is obtained by applying (A.8) together with the estimate for \(\tilde{\partial}_q(q^{-d}I_q) \) above and replacing the sums \(\sum S_q, \sum S_{q'} \) in the r.h.s. of (A.7) by \(O_\gamma(R^{\alpha+\gamma}) \). According to the summation by parts formula (A.7) with \(S_q \) replaced by \(q^{d-1} \), we have \(\sum_{R < q \leq 2R} q^{-d}q^{d-1}I_q = G((q^{d-1})) \). Thus, by (A.10),
\[
\sum_{R < q \leq 2R} q^{-d}S_qI_q = \eta(0)\sigma^*(A) \sum_{R < q \leq 2R} q^{-1}I_q + O_\gamma \left(L^{d+1}R^{-d-1+\alpha+\gamma}|w|_{L^1} \right).
\]

46
Thus, the both terms in the r.h.s. of (A.11) are bounded by
\[(\rho L)^{d-1} |w|^{1}. \]

It remains to compare the sum \(A := \sum_{q > \rho L} q^{-1} I_q \) with the integral \(B := L^d \int_{\rho}^{\infty} r^{-1} I^*(r) dr \). Since \(L^d I^*(r) = I_{rL} \), then changing the variable of integration \(r \) to \(q = rL \), \(B \) takes the form \(\int_{\rho L}^{\infty} q^{-1} I_q dq \). Then,
\[
|A - B| \leq \left| \sum_{q > \rho L} q^{-1} I_q - \int_{\rho L}^{\infty} q^{-1} I_q dq \right| + \left| \int_{\rho L}^{\rho L+1} q^{-1} I_q dq \right|. \tag{A.11}
\]

Due to (A.8), \(|q^{-1} I_q| \lesssim q^{-2} L^{d+1} |w|^{1} \) and \(|\partial_q (q^{-1} I_q)| \lesssim q^{-3} L^{d+1} |w|^{1} \). Thus, the both terms in the r.h.s. of (A.11) are bounded by \((\rho L)^{-2} L^{d+1} |w|^{1} \).

Recall that \(\hat{C}_A \) is a constant arising in Lemma A.2.

Lemma A.5. Assume that the determinant \(\det \) \(A \) is a square of an integer.
Then for any \(\gamma > 0 \), \(N > 1 \), any \(\rho \leq 1 \) and \(L \) satisfying \(\rho L > 1 \),
\[
J_0 = L^d \sigma_\infty(w; A, 0) \left(\sigma^*(A) \log(\rho L) + \hat{C}_A \right) + O_{\gamma,N} \left(\left(\frac{\rho^{\alpha+\gamma}}{L^{\alpha+\gamma}} \right. \right. \\
\left. \left. + L^d (\rho \log L + \rho^{N-1} + L^{1-d}) \right) ||w||_{d/2-1,d+1} \right).
\]

Proof. Inserting Proposition B.3 b) with \(M = d/2 - 1 = 1 \) and \(\beta = 1 \) into the definition of the term \(J_0 \), we get \(J_0 = I_A + I_B \), where
\[
I_A := L^d \sigma_\infty(w) \sum_{q \leq \rho L} q^{-d} S_q(0) \quad \text{and} \quad I_B := \sum_{q \leq \rho L} S_q(0) q^{-d} (f_q + g_q),
\]
with
\[
|f_q| \lesssim q L^{d-1} \left(\log \left(\frac{q}{L} \right) \right) ||w||_{d/2-1,d+1};
\]
\[
|g_q| \lesssim q^N L^{d-N} + 1 L q^{-1} ||w||_{d-1,d+1}.
\]
By Lemma A.2

\[\sum_{q \leq \rho L} q^{-d} S_q(0) = \sigma^*(A) \log(\rho L) + \tilde{C}_A + O_\gamma((\rho L)^{\alpha+\gamma-d}). \]

So,

\[I_A = L^d \sigma_\infty(w) \left(\sigma^*(A) \log(\rho L) + \tilde{C}_A \right) + O_\gamma(\sigma_\infty(w) L^{\alpha+\gamma} \rho^{\alpha+\gamma-d}), \]

whereas

\[|\sigma_\infty(w)| = |\sigma_\infty(w; A, 0)| = |I(0)| \leq \|I\|_{0,0} \lesssim_A \|w\|_{0,d+1} \] \hspace{1cm} (A.12)

on account of (3.13). As for the term \(I_B \), since \(d = 4 \), Lemma 2.1 implies that

\[|I_B| \lesssim \sum_{q \leq \rho L} q^{-1} |f_q| + |g_q| \lesssim_N L^d \left(\rho \log L + \rho^{N-1} + L^{1-d} \right) \|w\|_{d/2-1,d+1}, \]

for \(N \geq 2 \). The obtained estimates on \(I_A \) and \(I_B \) imply the assertion. \(\square \)

Now we conclude the proof of Proposition A.3. The leading term of \(J_0 \) is given by the sum of leading terms from formulas for \(J^+_0 \) and \(J^-_0 \) in Lemmas A.4 and A.5. Since \(\eta(0) = 1 \), it takes the form

\[L^d \sigma^*(A) \left(\int_0^\infty r^{-1} \tilde{I}^*(r) \, dr + \sigma_\infty(w) \log(\rho L) \right) + L^d \sigma_\infty(w) \tilde{C}_A \]

\[= \sigma_\infty(w) \sigma^*(A) L^d \log L + K(0) L^d + O_\gamma \left(L^d \rho^{d/2-1-\gamma} \|w\|_{d/2-1,d+1} \right), \]

where in the last equality we used (A.4) and (A.6). Then we find

\[J_0 = \sigma_\infty(w) \sigma^*(A) L^d \log L + K(0) L^d + O_\gamma, N \left((\rho^{\alpha+\gamma-d-1} L^{\alpha+\gamma} + \rho^{-2} L^{d-1} + L^d (\rho^{d/2-1-\gamma} + \rho \log L + \rho^{N-1} + L^{1-d}) \|w\|_{d/2-1,d+1} \right), \]

since \(|w|_{L_1} \lesssim \|w\|_{0,d+1} \). We now pick \(\rho = L^{-1/5} \) and \(N = 2 \), and, using that \(d = 4 \), get the assertion of proposition. \(\square \)

A.3 Estimate for \(\sigma_1(w; A, L) \)

In this section we get an upper bound for the subleading order term \(\sigma_1 \) of the asymptotics from Theorem 1.4.

In the case when the determinant \(\det A \) is not a square of an integer, \(\sigma_1 \) is given by (1.14) and the task is not complicated. Indeed, according to
Lemma A.2, the product $\prod_p (1 - \chi(p)p^{-1})\sigma_p(A, 0)$ is finite (and independent from L). On the other hand, by (A.12), $|\sigma_\infty(w; A, 0)| \lesssim \|w\|_{0,d+1}$. Thus,

$$|\sigma_1(w; A, L)| \lesssim \|w\|_{0,d+1}.$$

In the case when $\det A$ is a square, σ_1 is given by (1.24) and the required estimate is less trivial.

Proposition A.6. Assume that $\det A$ is a square of an integer. Then

$$|\sigma_1(w; A, L)| \lesssim \|w\|_{\tilde{N}, \tilde{N}+3d+4},$$

where $\tilde{N} := d^2(d+3)-2d$.

Proof. Since $\eta(c)$ takes values 0 or 1, then according to the definition (1.24) of σ_1, we have

$$|\sigma_1(c)| \leq |K(0)| + \sum_{c \neq 0; \eta(c)=1} |\sigma^*_c(A)\sigma_\infty^c(w)|.$$

(A.13)

Let us first estimate the term $K(0)$. According to (A.6),

$$|K(1) - K(0)| \lesssim \|w\|_{d/2-1,d+1}.$$

(A.14)

On the other hand, $\sigma^*(A)$ is independent from L and, in view of Lemma A.2, is finite. Then, by the definition (A.4) of $K(\rho)$,

$$|K(1)| \lesssim \int_1^\infty r^{-1}|I^*(r)| \, dr + |\sigma_\infty(w; A, 0)\hat{C}_A|.$$

Due to the definition (A.3) of the integral $I^*(r)$ and Corollary 3.3, $|I^*(r)| \lesssim r^{-1}|w|_{L_1} \lesssim r^{-1}\|w\|_{0,d+1}$. Then, in view of (A.12), $|K(1)| \lesssim \|w\|_{0,d+1}$, so that, by (A.14),

$$|K(0)| \lesssim \|w\|_{d/2-1,d+1}.$$

(A.15)

Let us now estimate the terms $\sigma_\infty^c(w)$, which are given by (1.23):

$$\sigma_\infty^c(w) = L^{-d} \sum_{q=1}^\infty q^{-1}I_q(c; A, 0, L) = Y_1(c) + Y_2(c),$$

where $Y_1 = L^{-d} \sum_{q=1}^{|c|^{-M}} q^{-1}I_q(c)$, $Y_2 = L^{-d} \sum_{q>|c|^{-M}} q^{-1}I_q(c)$ and $M \in \mathbb{N}$ will be chosen later. Using that $d = 4$, according to Lemma 6.2,

$$|Y_1(c)| \lesssim \gamma L^{-1+\gamma}|c|^{-1+\gamma}C(w) \sum_{q=1}^{L|c|^{-M}} q^{-\gamma} \lesssim |c|^{-(1-\gamma)(M+1)}C(w),$$

49
where we denoted $C(w) := \|w\|_{N,d+5} + \|w\|_{0,N+3d+4}$. On the other hand, by Proposition 5.1 $|I_q(c)| \lesssim N L^{d+1} q^{-1} |c|^{-N} \|w\|_{N,2N+d+1}$ for every $N \in \mathbb{N}$. So,

$$|Y_2(c)| \lesssim N L |c|^{-N} \|w\|_{N,2N+d+1} \sum_{q > L|c|^{-M}} q^{-2} \lesssim |c|^{-N+M} \|w\|_{N,2N+d+1}.$$

Thus,

$$|\sigma_\infty(c)(w)| \lesssim \gamma \left(|c|^{-(1-\gamma)(M+1)} + |c|^{-N+M} \right) \left(\|w\|_{N,2N+3d+4} + \|w\|_{N,2N+d+1} \right).$$

By Lemma A.1 $|\sigma^*_c(A)| \lesssim 1 + |c|^\gamma$ if $\eta(c) = 1$, so we get

$$\sum_{c \neq 0: \eta(c) = 1} |\sigma^*_c(A)\sigma_\infty(c)(w)| \lesssim \gamma \|w\|_{N,2N+3d+4} + \|w\|_{N,2N+d+1},$$

once M and $N - M$ are sufficiently large and γ is sufficiently small. Choosing $M = d$, $N = 2d+1$ and $\gamma = 1/(d+3)$, we get $N = d^2(d + 3) - 2d$. Together with (A.13) and (A.15), this implies the assertion of the proposition.

B Constants $\sigma(A,0)$ and $\sigma^*(A)$

It is clear that our result provides an approximation to the series $N_L(w; A, m)$ through the singular integral $\sigma_\infty(c)$ only if the singular series $\sigma(c, m)$ or $\sigma^*(A)$ are strictly positive. In fact, the singular series is known to be strictly positive under a very general condition, namely, for non-singular forms of any degree that have non-singular solutions in \mathbb{R} and in every p-adic field (provided the singular series is absolutely convergent), see, e.g., Section 7 of [14]. However, since the most interesting case in applications to mathematical physics is the case of the quadratic form $F_d(x,y)$ below, we give in this Appendix a direct elementary treatment of the evaluation of the constants $\sigma(A,0)$ for $d \geq 5$ and $\sigma^*(A)$ for $d = 4$ in this case, independent of the general theory.

In this section we consider the case when the quadratic form reads as

$$F(x,y) = \Sigma_{i=1}^{d/2} x_i y_i =: F_d(x,y) \quad \text{where} \quad d = 2s \geq 4 \quad (B.1)$$

and $x = (x_1, \ldots, x_s)$, $y = (y_1, \ldots, y_s)$. Our goal is to evaluate the constants $\sigma(A,0)$ for $d \geq 5$ and $\sigma^*(A)$ for $d = 4$. Below we use the usual notation for the relation that an integer m divides or non-divides an integer vector s (e.g. $2|(8,6)$ and $2 \nmid (8,7)$).
In view of the definitions (1.10)–(1.11), our first aim is to compute the constants $\sigma_p(A, 0)$. For a prime p and $k \in \mathbb{N}$ let consider the set

$$S_p(k) = \{(x, y) \mod p^k : F_d(x, y) = 0 \mod p^k\}$$

and denote $N_p(k) := \#S_p(k)$. Note that the set $S_p(k)$ and the constant $N_p(k)$ depend on d. Then the constants σ_p can be rewritten as

$$\sigma_p(d) := \sigma_p(A, 0) = \lim_{k \to \infty} \frac{N_p(k)}{p^{d-1}k}.$$ \hspace{1cm} (B.2)

This relation is mentioned in [10], p. 199, without a proof; we sketch its rigorous derivation at the end of this appendix.

Let $N_p(d) := N_p(1)$ be the number of \mathbb{F}_p-rational points on $\{F_d = 0 \mod p\}$.

Lemma B.1. For any prime p,

$$\sigma_p(d) = \frac{N_p(d) - 1}{p^{d-1} - p^{1-d}}. \hspace{1cm} (B.3)$$

Proof. For $j = 0, 1, \ldots, k$ we define $S_p(k, j)$ as a set of $(x, y) \in S_p(k)$ such that

$$(x, y) = p^j(x', y') \mod p^k, \text{ where } p \nmid (x', y').$$

So $S_p(k, 0) = \{(x, y) \in S_p(k) : p \nmid (x, y)\}$ and $S_p(k, k) = \{(0, 0)\}$. Sets $S_p(k, j)$ and $S_p(k, j')$ with $j \neq j'$ do not intersect, and denoting $N_p(k, j) = \#S_p(k, j)$ we have

$$S_p(k) = \bigcup_{j=0}^{k} S_p(k, j), \quad N_p(k) = \sum_{j=0}^{k} N_p(k, j).$$

In particular, $N_p(1, 0) = N_p - 1$ since $N_p(1, 1) = 1$. We claim that

$$N_p(k, 0) = N_p(k - 1, 0)p^{(d-1)},$$

and thus

$$N_p(k, 0) = N_p(1, 0)p^{(d-1)(k-1)} = (N_p - 1)p^{(d-1)(k-1)}. \hspace{1cm} (B.4)$$

Indeed, we argue by induction in k. Let $k = 2$ and $(x, y) \in S_p(2, 0)$. Let us write (x, y) as $(x_0 + pa, y_0 + pb)$ with $(x_0, y_0), (a, b) \in \mathbb{F}_p^d$. Then $p \nmid (x_0, y_0)$, so $(x_0, y_0) \in S_p(1, 0)$. Let us now fix any $(x_0, y_0) \in S_p(1, 0)$ and look for $(a, b) \in \mathbb{F}_p^d$ such that $(x_0 + pa, y_0 + pb) \in S_p(2, 0)$. Since $p^2F(a, b) = 0$ mod
p^2 and $p \nmid (x_0, y_0)$, then relation $F(x, y) = 0 \pmod{p^2}$ implies a non-trivial linear equation on $(a, b) \in \mathbb{F}_p^d$. So each $(x_0, y_0) \in S_p(1, 0)$ generates exactly p^{d-1} vectors $(x, y) \in S_p(2, 0)$, which proves the formula for $k = 2$. This argument remains valid for any $k \geq 2$, by representing $(x, y) \pmod{p^k}$ in the form $(x_0 + p^{k-1}a, y_0 + p^{k-1}b)$ with $(x_0, y_0) \in \mathbb{F}_p^{d-1}$ and $(a, b) \in \mathbb{F}_p^d$.

Let now $(x, y) \in S_p(k, j)$ with $j \geq 1$. Then $(x, y) = p^j(x', y') \pmod{p^k}$, where $p \nmid (x', y')$ and (x', y') satisfies $p^{2j}F(x', y') = 0 \pmod{p^k}$. Thus $(x', y') \in S_p(k - 2j, 0)$, if $j \leq \frac{k-1}{2}$, i.e. $j \leq \lfloor \frac{k-1}{2} \rfloor =: j_k$. The correspondence $(x, y) \mapsto (x', y')$ is a well defined mapping from $S_p(k, j)$ to $S_p(k - 2j, 0)$. Indeed, if $(x_1, y_1) \sim (x, y)$ in $S_p(k, j)$, then $p^{k-j}|((x_1', y_1') - (x', y'))$, so $(x_1', y_1') \sim (x', y')$ in $S_p(k - 2j, 0)$. Since this map is obviously surjective, then it is a bijection of $S_p(k, j)$ onto $S_p(k - 2j, 0)$, which in view of (B.4) implies

$$N_p(k, j) = N_p(k - 2j, 0) = (N_p - 1)p^{(d-1)(k-2j-1)}.$$

By (B.4) this formula as well holds for $j = 0$.

Any (x, y) such that $p^j|(x, y)$ with $j \geq j_k + 1$ satisfies $F(x, y) = 0 \pmod{p^k}$. Thus

$$\sum_{j=j_k+1}^{k} N_p(k, j) = \#\{(x, y) \pmod{p^k} : (x, y) = 0 \pmod{p^{j_k+1}}\} = p^{d(k-j_k-1)} \leq p^{dk/2}.$$

Therefore

$$N_p(k) = (N_p - 1)p^{(d-1)(k-1)}\sum_{j=0}^{j_k} p^{-2j(d-1)} + O(p^{dk/2}).$$

So

$$\sigma_p = \lim_{k \to \infty} \frac{N_p(k)}{p^{(d-1)k}} = (N_p - 1)p^{1-d}\sum_{j=0}^{\infty} p^{-2j(d-1)} = \frac{p^{1-d}(N_p - 1)}{1 - p^{2-d}}.$$

which proves (B.3). \hfill \square

Let then deduce a formula for $N_p(d)$ using induction in $d/2 = s$. For $d = 2$ we have $N_p(2) = \#\{(x, y) \in \mathbb{F}_p^2 : xy = 0 \pmod{p}\} = 2p - 1$. Next,

$$N_p(d + 2) = \#\{\text{solutions with } x_{s+1} = 0\} + \#\{\text{solutions with } x_{s+1} \neq 0\}$$

$$= pN_p(d) + (p - 1)p^d.$$

Therefore for any even $d = 2s \geq 2$,

$$N_p(d) = p^{d-1} + p^s - p^{s-1},$$

52
and thus
\[\sigma_p(d) = \frac{1 + p^{1-s} - p^{-s} - p^{1-d}}{1 - p^{2-2d}} = \frac{(1 + p^{1-s})(1 - p^{-s})}{1 - p^{2-2d}}. \]

Since by Euler’s formula \(\prod_l (1 - p^{-l}) = 1/\zeta(l) \) for any \(l > 1 \), then in the case \(d = 4 \) we get from (1.11) and the obtained formula for \(\sigma_p(d) \) that
\[\sigma(A, 0; d = 4) = \prod_p \sigma_p(4) = \frac{\zeta(6)}{\zeta(2)} \prod_p (1 + p^{-1}). \]

This does not converge, but
\[\sigma^*(A; d = 4) = \prod_p (1 - p^{-1}) \sigma_p(4) = \frac{\zeta(6)}{\zeta(2)^2} = \frac{4\pi^2}{105} \simeq 0.376, \]
converges. Further,
\[\sigma(A, 0; d = 6) = \frac{\zeta(2)\zeta(10)}{\zeta(3)\zeta(4)} \simeq 1.265, \quad \sigma(A, 0; d = 8) = \frac{\zeta(3)\zeta(14)}{\zeta(4)\zeta(6)} \simeq 1.092, \]
whereas
\[1 < \sigma(A, 0; d) = \frac{\zeta(s - 1)\zeta(2d - 2)}{\zeta(s)\zeta(d - 2)} = \frac{(1 + 2^{1-s})(1 + 2^{2-4s})}{(1 + 2^{-s})(1 + 2^{2-2s})} + o(1) = 1 + o(1) \]
tends to 1 when \(d = 2s \geq 10 \) grows.

It remains to prove (B.2). By definition (1.10), \(\sigma_p = \sum_{t=0}^{\infty} p^{-dt} S_{p^t}(0) \), where
\[S_{p^t}(0) = \sum_{a \mod p^t} \sum_{b \mod p^t} \epsilon_p(aF(b)). \]

Note that \(p^{-dt} S_{p^t}(0) = 1 \) for \(t = 0 \), while for \(t = 1 \):
\[
p^{-d} S_p(0) = p^{-d} \sum_{a=1}^{p-1} \sum_{b \mod p} \epsilon_p(aF(b))
= p^{-d} \sum_{a=1}^{p-1} \sum_{b \mod p, p|F(b)} 1 + p^{-d} \sum_{a=1}^{p-1} \sum_{b \mod p, p|F(b)} \epsilon_p(aF(b))
= p^{-d}(p - 1)N_p(d) + p^{-d}(-1)(p^d - N_p(d)) = p^{1-d}N_p(d) - 1, \]
since
\[
\sum_{a=1}^{m-1} \epsilon_m(a) = -1, \quad (B.5)
\]
53
for any \(n, m \neq 0 \) such that \((m,n) = 1\). Therefore
\[\sum_{t=0}^{1} p^{-dt} S_{p^t}(0) = p^{1-d} N_{p}(1). \]

We proceed now by induction, supposing that, for \(k \geq 1 \),
\[\sum_{t=0}^{k} p^{-dt} S_{p^t}(0) = p^{(1-d)k} N_{p}(k). \]

Then we write
\[S_{p^{k+1}}(0) = \sum_{a \text{ mod } p^{k+1}} \sum_{b \text{ mod } p^{k+1}} e_{p^{k+1}}(aF(b)) = \Sigma_1 + \Sigma_2 + \Sigma_3, \]

where we have defined
\[\Sigma_1 := \sum_{a \text{ mod } p^{k+1}} \sum_{F(b)} 1 = p^{k}(p-1)N_{p}(k+1), \]
\[\Sigma_2 := \sum_{a \text{ mod } p^{k+1}F(b) = lp^k} e_{p}(al) = -p^k(p^d N_{p}(k) - N_{p}(k+1)), \]
\[\Sigma_3 := \sum_{a \text{ mod } p^{k+1}F(b) = lp^s} \sum_{s=0}^{k-1} e_{p^{k+1-s}}(al) = 0, \]

with a non-zero \(l = l(b) \) such that \(p \nmid l \). The equalities above essentially follow by a repeated application of (B.5).

This way we have got
\[\frac{S_{p^{k+1}}(0)}{p^{d(k+1)}} = \frac{p^{k+1}N_{p}(k+1) - p^{d+k} N_{p}(k)}{p^{d(k+1)}} = \frac{N_{p}(k+1) - N_{p}(k)}{p^{(d-1)(k+1)}} - \frac{N_{p}(k)}{p^{(d-1)k}}, \]

which completes the induction step, thus proving (B.2).

References

[1] T. Buckmaster P. Germain Z. Hani J. Shatah, Effective dynamics of the nonlinear Schrödinger equation on large domains, Comm. Pure Appl. Math. 71 1407–1460, (2018).

[2] J.W.S. Cassels, Rational Quadratic Forms, North-Holland Mathematics Studies, 1982.

[3] I. Chavel, Riemannian Geometry: a Modern Introduction, CUP 2006.
[4] W. Duke, J. Friedlander and H. Iwaniec, *Bounds for automorphic L-function*, Invent. Math., 112 (1993), 1-8.

[5] A. Dymov, S. Kuksin, *Formal expansions in stochastic model for wave turbulence 1: kinetic limit*, Comm. Math. Physics. 382 (2021), 951-1014.

[6] A. Dymov, S. Kuksin, A. Maiocchi, S. Vlăduţ, *The long space-period limit for equations of discrete turbulence*, arXiv:2104.11967.

[7] A. Dymov, S. Kuksin, A. Maiocchi, S. Vlăduţ, *Some remarks on Heath-Brown’s theorem on quadratic forms*, arXiv:2104.11794.

[8] H.L. Eliasson, B. Grébert, S.B. Kuksin, *KAM for the nonlinear beam equation*, GAFA 26 (2016), 1588-1715.

[9] J.R. Getz, *Secondary terms in asymptotics for the number of zeros of quadratic forms over number fields*, J. Lond. Math. Soc. (2) 98 (2018), 275-305.

[10] D.R. Heath–Brown, *A new form of the circle method, and its application to quadratic forms*, J. Reine Angew. Math. 481 (1996), 149-206.

[11] H. Iwaniec, *The circle method and the Fourier coefficients of modular forms*, in: Number theory and related topics, 47–55 (Tata Institute of Fundamental Research, Bombay, 1989).

[12] A.A. Karatsuba, *Basic Analytic Number Theory*, Springer, 2012

[13] A. I. Khinchin, *Mathematical Foundations of Statistical Mechanics*, Dover 1949.

[14] B. J. Birch, *Forms in Many Variables*, Proc. R. Soc. Lond. A 265 (1962), 245-263.

[15] J-P. Serre, *A Course in Arithmetic*, Springer, 1973.

[16] T.H. Tran, *Secondary terms in asymptotics for the number of zeros of quadratic forms*, arXiv:1910.14530.

[17] G.L.Watson, *Integral Quadratic Forms*, Cambridge Tracts in Math. 51 (Cambridge UP , 1960).