Monitoring energy efficiency of condensing boilers via hybrid first-principle modelling and estimation

Harish Satyavada a, Simone Baldi b, *

a General Electric Global Research, Whitefield, Bangalore, India
b Delft Center for Systems and Control, Delft University of Technology, Delft, The Netherlands

ARTICLE INFO

Article history:
Received 23 February 2017
Received in revised form 14 September 2017
Accepted 25 September 2017
Available online 13 October 2017

Keywords:
Hybrid modelling
State-dependent switching
Dynamic monitoring
Condensing boiler
Multiple-model estimation

ABSTRACT

The operating principle of condensing boilers is based on exploiting heat from flue gases to pre-heat cold water at the inlet of the boiler: by condensing into liquid form, flue gases recover their latent heat of vaporization, leading to 10–12% increased efficiency with respect to traditional boilers. However, monitoring the energy efficiency of condensing boilers is complex due to their nonlinear dynamics: currently, (static) nonlinear efficiency curves of condensing boilers are calculated at quasi-stationary regime and ‘a posteriori’, i.e. from data collected during chamber tests: therefore, with this static approach, it is possible to monitor the energy efficiency only at steady-state regime. In this work we propose a novel model-based monitoring approach for condensing boilers that extends the operating regime for which monitoring is possible: the approach is based on a hybrid dynamic model of the condensing boiler, where state-dependent switching accounts for dynamically changing condensing/non condensing proportions. Monitoring the energy efficiency over the boiler’s complete dynamic regime is possible via switching estimators designed for the different condensing/non condensing modes. By using real-world boiler efficiency data we show that the proposed approach results in a (dynamic) nonlinear efficiency curve which gives a more complete description of the condensing boilers operation than static nonlinear efficiency curves: in addition, the dynamic curve can be derived ‘a priori’, i.e. from first principles, or from data collected during normal boiler operation (without requiring special chamber tests).

© 2017 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Many reports and data confirm that in both Europe and US energy used by buildings accounts for over one third of energy consumption and CO2 emissions [1]. Among the possible ways to improve energy efficiency in the building sector, developing better control and energy monitoring strategies can result in 10–40% energy savings [2]. The most accurate control and energy monitoring strategies are model-based: this means that mathematical models of the energy and heat transfer dynamics of the building equipment are developed and used to design better operational strategies (for energy-efficient control) or to monitor deviations of the energy consumptions from nominal patterns (for monitoring of energy efficiency). In this work we will focus on monitoring the energy efficiency of condensing boilers, which are becoming a more and more crucial equipment inside heating, ventilating and air conditioning (HVAC) systems: in fact, boiler operation has been estimated in around 85% of the HVAC energy consumption and 67% of the HVAC CO2 emissions [3]. Nowadays condensing boilers are replacing less energy-efficient traditional boilers [4,5]. The operating principle of condensing boilers is based on exploiting heat from flue gases to pre-heat cold water at the inlet of the boiler. When flue gases condense into liquid form, they recover their latent heat of vaporization (see Fig. 1). The condensing mode can result in as much as 10–12% increase in efficiency with respect to traditional boilers. For the condensing mode to be activated, return water temperature at the boiler inlet should be low and below the dew temperature of the flue gas: when this condition is not maintained, the boiler will operate in the traditional non-condensing mode [6].

External conditions and ageing (wearing of materials, isolation,
temperature, while in Ref. [17] the static seasonal efficiency of condensing boilers is normalized with respect to efficiency at full load. Static models are also used to calculate flue gas exit temperature and condensation rate of water vapor as a function of return water temperature: in Ref. [18] a payback period for retrofitting a conventional boiler into a condensing boiler is calculated based on static combustion and heat transfer calculations; in Ref. [19] a static model of a condensing heater is developed to evaluate the impact of relative humidity on the efficiency; Ref. [20] derives static charts for boiler combustion efficiency according to different natural gas blends characteristics parameters. On the other end of the spectrum are models based on computational fluid dynamic [21] that, due to their complexity, can be used to study new materials, but they cannot be used for real-time monitoring or control purposes [22].

The simplest way to describe some dynamical behavior of condensing boilers is the lumped element model [23], whose main limitation is assuming that the heat exchange occurs in a single point: this does not allow to differentiate between the wet exchange of condensing mode and the dry exchange of non-condensing mode. For this reason, a more common approach is to couple the lumped element model with a nonlinear efficiency curve [24]: unfortunately, as the nonlinear efficiency curve is obtained from steady-state operation, there is no guarantee that the same efficiency curve is valid also in dynamic regime: actually, the boiler efficiency during transient behavior is typically lower than at steady state [8]. The approach in Ref. [25] proposes a set of equations based on steady-state operation and two point heat exchange which describe the main physical processes inherent to the boiler sub-components; in Ref. [26] the heat transfer between the flue gases and the water is calculated by the classical ε-NTU method and a fixed distribution of dry/wet heat exchange; in Ref. [27] the dynamic behavior of the model is obtained by extending the nonlinear efficiency curve (obtained) from steady-state data with thermal mass considerations; in Ref. [28], an analytical heat transfer model in a secondary heat exchanger was proposed to calculate the heat transferred from flue gas to cooling water and the condensation rate of water vapor in the flue gas. Unfortunately, by relying on the lumped element model idea, all these approaches neglect that the heat transfer in condensing boilers is spatially distributed and time dependent: the proportion of dry/wet exchange in condensing boilers change dynamically in space and time. Furthermore, in most works mentioned above, heat transfer is considered only through water and gas, while a more complex and realistic heat exchange model should include the heat transfer via the extended surface and the tube wall. Despite the numerous modelling approaches which have been listed, we can clearly identify a series of short-comings in existing condensing boiler models:

- Heat transfer dynamics are oversimplified to a static nonlinear efficiency curve. The efficiency curve is calculated by installers and specifiers of condensing boilers, at steady-state (e.g. in special adiabatic rooms). Therefore, current models are not able to capture the true heat transfer dynamics.
- The bimodal condensing/non-condensing behavior is oversimplified with two heat exchangers, one for dry and one for wet heat exchange, always in a fixed proportion. A model is required that can capture dynamical changes in space and time of dry/wet heat exchange.

With this work we will bridge these gaps and arrive to a novel monitoring approach. First, we exploit some preliminary ideas by the authors [29] to develop a model with state-dependent switching triggered by the temperature of the combustion gas; the switching mechanism is able to describe highly dynamic

\[\text{Fig. 1. Condensing boiler, retrieved from Ref. [7].}\]
behavior in heat transfer and distribution of dry/wet heat exchange. Then, we show that monitoring the energy efficiency over the boiler's complete dynamic regime is possible via switching estimators designed for the different condensing/non condensing modes. By using real-world boiler efficiency data we show that the proposed approach results in a (dynamic) nonlinear efficiency curve which gives a more complete description of the condensing boilers operation than static nonlinear efficiency curves: in addition, the dynamic curve can be derived ‘a priori’, i.e. from first principles, or from data collected during normal operation (without requiring special chamber tests). Due to its switching nature, the model can be suited for most of the hybrid control algorithms developed in recent years in the field of smart heating systems [16,23,30–32]. In addition, the proposed monitoring approach can potentially be combined with other space heating components, to the purpose of dynamic analysis of hybrid heat pump generators in residential [33] and district heating [34] systems. In particular, the monitoring algorithm can be integrated as a module of rule-based, model predictive control or mult oreivative energy management systems to predict energy supply and demands in buildings [35–38].

The rest of the paper is organized as follows: Section 2 gives the basics of dynamic boiler operation and develops a hybrid dynamical model of the condensing boiler, while Section 3 presents the dynamic monitoring architecture. In Section 4 the results coming from real-world boiler efficiency data are presented. Section 5 concludes the work.

2. Condensing boiler operation

Let us first present the basics of condensing boiler dynamic operation. Fig. 1 highlights some of the key components of the boiler: the burner with combustion chamber, two heat exchangers (primary and secondary) and the stack. The burner’s task is to mix fuel (natural gas) and oxygen to enable combustion via an extended surface, tube wall and water. The combustion gas moves through the heat exchanger, heat is transferred from gas to water, passing through different layers as sketched in Fig. 2. Let us identify four layers: combustion gas, extended surface, tube wall and water. The combustion gas

\[
\begin{align*}
\text{CH}_4 + \frac{2}{0.85}\text{O}_2 + \frac{7.56}{0.85}\text{N}_2 &\rightarrow \text{CO}_2 + 2\text{H}_2\text{O} + 8.89\text{N}_2 + 0.353\text{O}_2. \\
\end{align*}
\]

(1)

On the left-hand side of (1) we have methane, oxygen and nitrogen. The combustion gas are a mix of the products on the right-hand side of (1): 8.17% of CO₂ (carbon dioxide), 16.33% of H₂O (water vapor), 2.88% of O₂ (oxygen) and 72.62% of N₂ (nitrogen).

The gas right after the reaction in (1) has the same temperature as the flame (constant pressure adiabatic flame temperature): as the combustion gas moves through the heat exchanger, heat is transferred from gas to water, passing through different layers as sketched in Fig. 2. Let us identify four layers: combustion gas, extended surface, tube wall and water. The combustion gas

\[
\begin{align*}
\frac{\partial T_g}{\partial t} &= -\frac{w_g}{\rho_g A_s} \frac{\partial T_g}{\partial l} - \frac{h_l D_l}{c_g \rho_g A_s} (T_g - T_s) \\
\frac{\partial T_w}{\partial t} &= -\frac{w_w}{\rho_w A_t} \frac{\partial T_w}{\partial l} - \frac{h_t D_t}{c_w \rho_w A_t} (T_w - T_l).
\end{align*}
\]

(2)

(3)

where the first term on the right-hand side of (2) comes from the heat exchange within the gas and the second term comes from the heat exchange with the extended surface at temperature T_s. In (2), c_g is the specific heat capacity in [kJ/kg C], w_g the mass flow rate in [kg/s], and ρ_g density in [kg/m³] of the combustion gas, respectively. The constants h_l, D_l and A_s are the tube internal surface convection coefficient in [kW/m²·C], the perimeter of the heat transfer surface in [m], and the free flow area in [m²] on the gas side. The first term on the right-hand side of (3) comes from the heat exchange within water and the second term comes from the heat exchange with the tube wall at temperature T_l. In (3), c_w is the specific heat capacity in [kJ/kg C], w_w the mass flow rate in [kg/s], and ρ_w the density in [kg/m³] of water, respectively. The constants h_t, D_t and A_t are the tube internal surface convection coefficient in [kW/m²·C], the perimeter of the heat transfer surface in [m], and the effective free flow area in [m²] on the water side respectively. The tube wall temperature T_l and extended surface temperature T_s evolve dynamically according to [40]:

\[
\begin{align*}
\frac{dT_l}{dt} &= -\frac{h_l}{c_l \rho_l D_l} (T_l - T_w) - \frac{R_s D_m}{c_w \rho_w D_w} (T_l - T_s) \\
\frac{dT_s}{dt} &= -\frac{h_s}{c_s \rho_s D_s} (T_s - T_g) - \frac{R_s D_m}{c_s \rho_s D_s} (T_s - T_l).
\end{align*}
\]

(4)

(5)

where the first term on the right-hand side of (4) comes from the heat exchange with water and the second term comes from the heat exchange with the extended surface. In (4), ρ_l is the density in [kg/m³], c_l the specific heat capacity in [kJ/kg C] of the tube wall material, respectively. The constants d_l, d_t and D_m are the tube wall thickness in [m], the extended surface wall thickness in [m], and the thermal resistance between tube wall and extended surface core in [kW/m²·C]. The first term on the right-hand side of (5) comes from the heat exchange with gas and the second term comes from the heat exchange with tube wall. In (5), ρ_s is the density in [kg/m³], and c_s the specific heat capacity in [kJ/kg C] of extended surface material, respectively. Similar equations as (2)–(5) have been derived by the authors in Ref. [29]: however, differently from Ref. [29], here we have further increased the flexibility of the model because the parameter D_m, which is the perimeter at the interface between tube wall and the extended surface, can be used to finely regulate (with D_1 < D_m < D_3) the heat exchange through conduction. Note that (2)–(5) are equations related to sensible heat [41], i.e. they do not include any latent heat, as it will be explained hereafter.

2.1. Hybrid dynamics of latent heat

By spatially discretizing the partial differential equations (2) and (3) (gas and water side) we obtain ordinary differential equations. As a consequence, (4) and (5) must be spatially discretized as well. Fig. 2 shows that the four layers of the heat exchanger are discretized into n elements. The symbols T_g, w_g, x, x−1, x+1, ..., n represent the temperature of gas, water, tube wall and extended surface in section x, each one modelled as a separate state. The
The combustion gas, which is about 54.4 °C, results that the phenomenon occurring under this condition is called dry exchange as water vapor remains vaporized. The heat transfer in \(\text{kJ/s} \) due to phase change comes from the moment of combustion gas varies from element to element as the boiler is a constant-pressure combustion system (at atmospheric pressure). Thus, the density will change according to the ideal gas law \(\frac{pV}{RT} = m \). In order to take into account the counter flow nature of the condensing boiler, a backward discretization has been used in the first equation of (6), while a forward discretization has been used in the second equation of (6).

Equations in (6) are valid till the moisture entrained in the flue products as water vapor remains vaporized. The heat transfer from element to element as the boiler is a constant-pressure combustion system (at atmospheric pressure). Thus, the density will change according to the ideal gas law \(\frac{pV}{RT} = m \). In order to take into account the counter flow nature of the condensing boiler, a backward discretization has been used in the first equation of (6), while a forward discretization has been used in the second equation of (6).

Possible boiler modes as a function of the number of sections is given in Table 1: the table illustrates how the modes can go from all sections in dry exchange to all sections in wet exchange.

Table 1

No. of sections	Modes
1	D-W
2	DD-DW-WW
3	DDD-DDW-DDWW-WWWW
...	...
\(n \)	\(n + 1 \)

Due to the monotonic properties of the temperature in a boiler (the water temperature is increasing from inlet to outlet and the gas temperature is decreasing from inlet to outlet), the boiler can work in at most \(n + 1 \) configurations, depending on how many sections are operating in wet regime (from 0 sections to \(n \) sections). A representation of possible boiler modes as a function of the number of sections is given in Table 1: the table illustrates how the modes can go from all sections in dry exchange to all sections in wet exchange.
\[
A_d^a = \begin{bmatrix}
\frac{w_g}{\rho_g A_t} & h_t D_t & 0 & 0 & \frac{h_t D_t}{c_g \rho_g A_t} \\
0 & \frac{w_w}{\rho_w A_t} & h_t D_t & 0 & 0 \\
0 & 0 & \frac{h_t}{c_l \rho_d} & R_{2d} D_m & 0 \\
0 & \frac{h_t}{c_l \rho_d} & 0 & \frac{R_{2d} D_m}{c_l \rho_d D_x} & 0 \\
\frac{h_t}{c_l \rho_d D_x} & 0 & \frac{R_{2d} D_m}{c_l \rho_d D_x} & 0 & \frac{R_{2d} D_m}{c_l \rho_d D_x}
\end{bmatrix}
\]

(10)

\[
I_d^a = \begin{bmatrix}
\frac{w_g}{\rho_g A_t} & 0 & 0 & 0 & 0 \\
0 & \frac{w_w}{\rho_w A_t} & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{bmatrix}
\]

while

\[
A_d^w = \begin{bmatrix}
0 & 0 & \frac{h_t D_t}{c_l \rho_d} & 0 & 0 \\
0 & \frac{w_w}{\rho_w A_t} & 0 & \frac{h_t D_t}{c_l \rho_d} & 0 \\
0 & 0 & \frac{R_{2d} D_m}{c_l \rho_d D_x} & \frac{h_t}{c_l \rho_d} & 0 \\
0 & 0 & 0 & \frac{R_{2d} D_m}{c_l \rho_d D_x} & \frac{2h_t}{c_l \rho_d}
\end{bmatrix}
\]

(11)

\[
I_d^w = \begin{bmatrix}
\frac{w_g}{\rho_g A_t} & 0 & 0 & 0 & 0 \\
0 & \frac{w_w}{\rho_w A_t} & 0 & 0 & 0 \\
\frac{c_g w_g}{c_l \rho_d D_x} & 0 & 0 & 0 & 0
\end{bmatrix}
\]

(13)

By putting together the \(n+1\) configurations, we obtain

\[
\frac{dT}{dt} = A_i(\theta) \bar{T} + B_i(\theta) \bar{\Gamma}, \ i \in \{0, 1, \ldots, n\},
\]

(14)

where \(T \in \mathbb{R}^{4n}\) is the collection of all temperatures in all sections, \(\Gamma = [T_{m+1}, \ldots, T_{m+4n}] \in \mathbb{R}^{4n}\) are the gas temperature in the first section and the return water temperature at the last section, and the matrices \(A_i \in \mathbb{R}^{4n \times 4n}\) and \(B_i \in \mathbb{R}^{4n \times 4n}\) are derived accordingly (the effect of neighbor sections disappears after coupling the sections together). In (14), the switching from one configuration \(i\) to another is driven by \(T_{m+1}\) in the different sections. Finally, \(\theta\) represents a set of parameters which is crucial to monitoring efficiency; in our case we assume that the following parameters influence efficiency:

- \(h_t\), \(h_l\) and \(R_{2d}\) whose value might change due to limescale deposit and aging;
- \(w_w\) is also affected by limescale deposit, and most importantly, usually not measured in practice.

Limescale can build up on the water pipes of the heat exchanger and create an insulating layer which inhibits heat transfer to the water. It has been calculated that a 1 mm layer of limescale causes a 7% increase in boiler energy to meet the same heat demand, thus significantly modifying the boiler efficiency curve [43]. Limescale phenomena can be regarded as a combination of degradation of the boiler efficiency curve and changes in the mass flow rate, which have to be detected and diagnosed by the monitoring tools.

All values related to fluid properties (mass, density, specific heat capacity) and boiler dimensions (perimeter, area, volume) are assumed not to change with time: since \(h_t, h_l, R_{2d}, w_g\) and \(w_w\) appear in a linear fashion in (14), a linear-in-the-parameters estimator can be used to monitor their value [44].

\[
\frac{d\hat{T}}{dt} = \bar{A}_m \hat{T} + (\bar{A}_i(\theta) - \bar{A}_m) \bar{T} + \bar{B}_i(\theta) \bar{\Gamma}
\]

(15)

where \(\bar{A}_m \in \mathbb{R}^{4n \times 4n}\) are Hurwitz matrices and the different estimators are activated synchronously depending on \(T_{m+1}\) in the different sections. Other least-squares or gradient-based estimators can be used in place of (15) [44]. By comparing \(\bar{A}_i\) and \(\bar{B}_i\) with their nominal values, one can monitor trends in parameter changes: the proposed dynamic monitoring algorithm can be sketched as in Fig. 3, where the different estimators, one for each regime, are activated based on state-dependent conditions.
3.1. Reducing the need for measurements

The monitoring algorithm in (15) exploits the underlying assumption that the entire state \mathbf{T} can be measured. This can be quite a strong assumption, as temperatures of tube wall and extended surface might be quite difficult to measure. There are several approaches to relax this assumption. The first one is observer-based monitoring, which requires only measurements water and/or gas temperature. Consider the following descriptions of one section x in dry and wet exchange regime

$$
\frac{dT_x}{dt} = A_x^d T_x + L_x^d \frac{dT_{wng}}{dt} + B_x^d w_{ng}$$

$$
\frac{dT_x}{dt} = A_x^w T_x + L_x^w \frac{dT_{wng}}{dt} + B_x^w w_{ng}
$$

(16)

$$
\mathbf{y}_x = C_x T_x = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix} T_x
$$

where the matrix C_x is used to isolate the measurable variables T_{wng} and T_{wng}. The following adaptive observer can be adopted

$$
\frac{dT_x}{dt} = \tilde{A}_x(\theta) T_x + \tilde{B}_x(\theta) \mathbf{y}_x - \mathbf{v} = \mathbf{C} \mathbf{T}_x, \quad i \in \{0, 1, \ldots, n\}
$$

$$
\frac{\mathbf{y}_x}{dt} = \tilde{A}_x(\theta) \mathbf{y}_x + \tilde{B}_x(\theta) \mathbf{y}_x + \mathbf{K}_e(\theta) (\mathbf{y} - \mathbf{y}_x), \quad \mathbf{y} = \mathbf{C} \mathbf{T}_x.
$$

(17)

with $\mathbf{C} \in \mathbb{R}^{2n \times 4n}$, $\mathbf{y} \in \mathbb{R}^{2n}$ collecting the measurements of gas and water temperature in all sections, and $\mathbf{K}_e \in \mathbb{R}^{4n \times 2n}$ has to be designed, eventually at every time step, is such a way that $(\tilde{A}_x(\theta) - \mathbf{C})$ is a Hurwitz matrix. Provided that the couple $(\tilde{A}_x(\theta), \mathbf{C})$ is detectable, using classical results from adaptive control [44], stability of the observer can be proven. If the inputs to the boiler are persistently exciting, then the estimates $\tilde{A}_x(\theta)$ and $\tilde{B}_x(\theta)$ (updated via a gradient-based algorithm) can converge to their true values.

The resulting dynamic monitoring architecture can also be sketched as in Fig. 3, where the different estimators, one for each regime, are activated based on state-dependent conditions. The activation of the different estimators can be based on active measurements of the modes or on mode-identification mechanisms. Active measurements of the modes require that T_{wng}, the state that is responsible for the switching, is measurable. This means that the number of sections under consideration cannot be greater than the number of sensors measuring T_{wng} along the heat exchanger (at most one section for each sensor). Since measurements of water temperature are quite common in boilers, an alternative approach is to have T_{wng}, as the state that is responsible for the switching: this is motivated by the fact that nonlinear efficiency curves are given as a function of water temperature. Therefore, different sensors of water or gas temperature along the heat exchanger should be available in order to accurately identify the modes: in the absence of many sensors (e.g. in the presence of two sensors to measure inlet/outlet water temperature and a sensor to measure gas flue temperature), one should resort to mode-identification techniques, which include nonlinear estimation techniques [45,46], identification methods for hybrid systems [47,48], and estimation via multiple-models [49–51]. Note that for all these techniques, in general, a trade-off exists between available measurements and accuracy of the estimation of the active mode. Therefore, the complexity of the monitoring mechanism (the $n + 1$ possible configurations) is always driven by the number of available sensors.

4. Simulation and real-world results

The efficiency of the boiler is the ratio between output power (water side) and input power (gas side): the input power P_{in} in [kW] is calculated from

$$
P_{in} = w_{ng} H,
$$

(18)

where w_{ng} is the mass flow rate in [kg/s] and H, the low heating value of natural gas in [kJ/kg], respectively. The output power is given by Ref. [52]:

$$
P_{out} = w_w C_w (T_{sup} - T_{ret}),
$$

(19)

where T_{sup} in [°C] is the supply water temperature at the boiler outlet and T_{ret} in [°C] the return water temperature at the boiler inlet. As a consequence

Efficiency = \frac{P_{out}}{P_{in}} \cdot 100.

(20)

To draw the efficiency curve stemming from the proposed modelling approach, simulations have been performed on a MATHLAB® implementation of the condensing boiler with $n = 5$ sections. The parameters w_{ng}, w_w and T_{ret} are kept constant during the simulation till steady state is reached. Then, efficiency is obtained from (20). The steady-state simulations are run over different values of T_{ret}, ranging from 20 °C to 70 °C. Fig. 4 shows the resulting efficiency curve as a function of T_{ret} for three different flow rates (w_{ng}). It can be observed that the efficiency curve resembles the typical condensing boiler efficiency curve appearing in literature [41]. Note that, as expected, greater efficiency is attained when return water temperature is below the dew point.

4.1. Comparisons with real-world efficiency curves

It is important to validate the proposed approach against real-world boilers. In order to do so, we use a CREST condensing boiler by Lochinvar, whose efficiency curve and parameters can be found in Refs. [53] and [54]. The idea is to see if the efficiency curve of the proposed model can match the efficiency of a real condensing boiler. The boiler has water volume 215 gallons ($-0.814 m^3$), 272 sq. ft. heating surface ($-25 m^2$), water mass flow rate in the range 350-45 gallon per minute (22.082–2.839 kg/s), and firing rate range 3,220,000–184,000 (Btu/h) ($-944-54$ [kW],
which for a heating value of 55,500 kJ/kg gives approximately a methane mass flow rate of 0.0170−0.0001 kg/s. Fig. 5 shows a good match between the efficiency curves of the CREST boiler and of the proposed model. The values for the identified parameters are shown in Table 2. The error between the real efficiency curve and our proposed model is around 0.5%. To see how the accuracy of the model changes for changing number of sections, Fig. 6 shows a better match with the CREST boiler by using \(n = 7 \) sections. Furthermore, Fig. 7 shows that the accuracy is a decreasing function of the number of sections: in practice, increasing the number of sections also requires more sensors, in order to be able to identify all the modes in Table 1. Therefore, as explained in Section 3.1, a trade-off should be made between accuracy and available sensors.

From literature we know that steady-state efficiency can be different than transient efficiency [8]: Fig. 8 shows that, as expected, transient efficiency is lower than steady-state efficiency. Note that no state-of-the-art approach based on static nonlinear efficiency curve can provide the transient efficiency of a boiler. Therefore, Fig. 8 shows that what we gain with the proposed
approach is a monitoring procedure over the entire dynamic operating range of the boiler: in particular, the two transient efficiency curves in Fig. 8 are calculated from (20) in two instants of time before the steady-state is reached. In order to show the effect of degradations on the efficiency curve, we decrease the nominal h₀, hᵣ and Kᵣ in Table 2, and plot again the efficiency curves with such values. Fig. 9 shows that the performance curve is indeed degraded with respect to the nominal one in Fig. 5, thus indicating that the proposed model can be used to monitor efficiency degradation. Only steady-state degradation is shown in Fig. 9 for better visibility.

5. Conclusions

Developing accurate and dynamic models of condensing boilers is a key enabler to energy efficiency via better controls and monitoring strategies. In contrast with the state of the art, where model-based monitoring algorithms for energy efficiency are on simplified nonlinear efficiency curves calculated at static (or quasi-stationary) regimes, in this work we proposed a novel monitoring algorithm relying on a hybrid dynamic first-principle modelling. Because of the fact that such model accounts for dynamic heat transfer phenomena and for a time-varying distribution of condensing/non condensing heat exchange, dynamic monitoring of the energy efficiency of condensing boilers during their complete dynamics regime is possible by appropriately designing a set of observers. Interestingly, the proposed approach not only recovers (at steady-state) the static nonlinear efficiency curve, but it also results in a dynamic nonlinear efficiency curve that state-of-the-art approaches cannot provide. The efficiency curve has been shown both in the nominal and degraded case, where degradation in efficiency has been modelled as changes in heat transfer coefficients due to limescale. Comparisons with real-life boiler efficiency data have been presented.

Acknowledgment

The authors would like to acknowledge Ondrej Holub and Petr Endel from Honeywell Labs for useful discussion about the boiler combustion and operating principles.

References

[1] Pérez-Lombard I, Ortiz J, Pout C. A review on buildings energy consumption information. Energy Build 2008;40(3):394–8.
[2] Cockcroft J, Samuel A, Tuohy P. Development of a methodology for the evaluation of domestic heating controls. 2007.
[3] Central Heating System Specifications. Domestic heating by gas: boiler systems - guidance for installers and specifiers. 2008.
[4] Weiss M, Dittmar L, Junginger M, Patel MK, Blok K. Market diffusion, technological learning, and cost-benefit dynamics of condensing gas boilers in The Netherlands. Energy Policy 2009;37(8):2962–76.
[5] Vignali G. Environmental assessment of domestic boilers: a comparison of condensing and traditional technology using life cycle assessment methodology. J Clean Prod 2017;142(Part 4):2493–508.
[6] Seungro L, Sung-Min K, Chang-Eon L. Performances of a heat exchanger and pilot boiler for the development of a condensing gas boiler. Energy 2011;36:945–51.
[7] Energy Efficiency and Renewable Energy. Building America solution center: condensing boilers. 2015.
[8] Sorensen K. Dynamic boiler performance: modelling, simulating and optimizing boilers for dynamic operation. 2004.
[9] Ternoveanu A, Njordakumana P. Dynamic model of a hot water boiler. In: Climat 2000 conference, Brussels; 1997.
[10] Sreepradha C, Panda RC, Bhuvaneswari NS. Mathematical model for integrated coal fired thermal boiler using physical laws. Energy 2017;118:985–98.
[11] Sun L, Li D, Lee KY, Xue Y. Control-oriented modeling and analysis of direct efficiency balance in coal-fired boiler-turbine unit. Control Eng Pract 2016;55:38–55.
[12] Zhang J, Wang N, Wang S. Fuzzy-neuron intelligent coordination control for a unit power plant. Asian J Control 2001;3:57–63.
[13] Zhang Y, He Y, Wu M, Zhang J. Control for discrete-time markovian jump systems with partial information on transition probabilities. Asian J Control 2013;15:1397–406.
[14] Lawrynczuk M. Nonlinear predictive control of a boiler-turbine unit: a state-space approach with successive on-line model linearisation and quadratic optimisation. [ISA] Transactions March 2017;67:476–55.
[15] Lazzarin BM, Schibulda L. Performance analysis of heating plants equipped with condensing boilers. Heat Recovery Sys 1986;6:269–76.
[16] Chen Q, Finney K, Li H, Zhang X, Zhou J, Shariﬁ V, et al. Condensing boiler applications in the process industry. Appl Energy 2012;99:30–6.
[17] Rosa L, Tosato R. Experimental evaluation of seasonal efficiency of condensing boilers. Energy Build 1990;14:237–41.
[18] Che D, Liu Y, Gao C. Evaluation of retrofitting a conventional natural gas fired boiler into a condensing boiler. Energy Convers Manag 2004;45(20):3251–66.
[19] Barros JP, Azevedo JLT, Monteiro L. Effect of relative humidity in the efficiency of condensing gas water heater appliance. Appl Therm Eng 2014;65(12):96–73.
[20] Lo Basso G, Nastasi B, G D Artiasso, Cumo F. How to handle the hydrogen enriched natural gas blends in combustion efficiency measurement procedure of conventional and condensing boilers. Energy 2017;123:615–36.
[21] Trojanowski R, Butcher T, Worek M, Wei G. Polymer heat exchanger design for condensing boiler applications. Appl Thermal Eng 2016;103:150–8.
[22] de Oliveira V, Karimi A. Robust and gain-scheduled pid controller design for condensing boilers by linear programming. IFAC Proc Vol 2012;45(3):335–40.
[23] Bojča M, Dragicević S, Milp optimization of energy supply by using a boiler, a condensing turbine and a heat pump. Energy Conver Manag 2002;43:
Tzivanidis C, Antonopoulos KA, Gioti F. Numerical simulation of cooling energy performance degradation of condensing boilers. Energy Convers Manag 2017;136:329–39.

Lemort V, Rodriguez A, Lebrun J. Simulation of HVAC components with the help of an equation solver. In: Solar Heating and Cooling Programme International Energy Agency; 2008.

Makaire D, Ngedakumana P. Thermal performance of condensing boilers. In: 32nd TLM-IEA energy conservation and emission reduction in combustion; 2010. p. 1–11.

Aganovic A. Analysis of dynamical behavior of the boiler room at mechanical engineering faculty in sarajevo in standard exploitation conditions. 2013.

Jeong K, Kessen MJ, Biligeren H, Levy EK. Analytical modeling of water condensation in condensing heat exchanger. Int J Heat Mass Transfer 2010;53:2361–8.

Satyavada H, Baldi S. A novel modelling approach for condensing boilers based on hybrid dynamical systems. Machines 2016;4:10.

Michailidis I, Baldi S, Pichler MF, Kosmatopoulos EB, Santiago JR. Proactive control for solar energy exploitation: a German high-inertia building case study. Appl Energy 2015;155:409–20.

Seungro L, Sung-Min K, Chang-Eon L. An experimental study of a cylindrical multi-hole premixed burner for the development of a condensing gas boiler. Energy 2011;36:4190–7.

Michailidis I, Baldi S, Kosmatopoulos EB, Boutalis YS. Optimization-based automatic control for condensing boilers. In: Solar Heating and Cooling Programme International Energy Agency; 2011.

Aganovic A. Analysis of dynamical behavior of the boiler room at mechanical engineering faculty in sarajevo in standard exploitation conditions. 2013.

Di Perna C, Magri G, Giuliani G, Serenelli G. Experimental assessment and microgrids. Energy Procedia 2015;101:352–9.

Baldi S, Yuan S, Endel P, Holub O. Dual estimation: constructing building energy models from data sampled at low rate. Appl Energy 2016;169:81–92.

Paolletti S, Juloski A, LJ, Ferrari-Trecate G, Vidal R. Optimization of hybrid systems a tutorial. European J Control 2007;13(2):242–60.

Bako L. Identification of switched linear systems via sparse optimization. Automatica 2011;47(4):668–77.

Narendra KS, Balakrishnan J. Adaptive control using multiple models. IEEE Trans Autom Control 1997;42(2):171–87.

Hespainha JP, Liberzon D, Morse AS. Hysteresis-based switching algorithms for supervisory control of uncertain systems. Automatica 2003;39(2):263–72.

Baldi S, Ioannou PA, Kosmatopoulos EB. Adaptive mixing control with multiple estimators. Int J Adaptive Control Signal Process 2012;26(8):800–20.

Cengel Y, Boles M. Thermodynamics: an engineering approach. 8 edition. McGraw-Hill Education; 2014.

Green Shoots Controls. http://www.greenshootscontrols.net/?p=153.

Lochinvar. Crest condensing boiler. http://www.lochinvar.com/products/default.aspx?type=productline&lineid=177.

List of symbols

\(T_{c} \): combustion gas temperature
\(T_{w} \): water temperature
\(T_{t} \): tube wall temperature
\(T_{e} \): extended surface temperature
\(w_{g} \): combustion gas mass flow rate
\(w_{w} \): water mass flow rate
\(\rho_{g} \): combustion gas density
\(\rho_{w} \): water density
\(\rho_{t} \): tube wall density
\(\rho_{s} \): extended surface density
\(\rho_{c} \): combustion gas specific heat capacity
\(\rho_{c} \): water specific heat capacity
\(\rho_{c} \): tube wall specific heat capacity
\(\rho_{c} \): ext. surface specific heat capacity
\(D_{t} \): perimeter heat transfer surf. (gas side)
\(D_{w} \): perim. heat transfer surface (water side)
\(A_{f} \): effective free flow area (gas side)
\(A_{w} \): effective free flow area (water side)
\(h_{t} \): convection coefficient (gas side)
\(h_{w} \): convection coefficient (water side)
\(\delta_{t} \): extended surface thickness
\(\delta_{w} \): tube wall thickness
\(R_{t} \): thermal resistance tube-ext. surface
\(W_{heat} \): latent heat flow