EHDs meet the retromer
Complex regulation of retrograde transport

Jing Zhang, Naava Naslavsky and Steve Caplan*

Department of Biochemistry and Molecular Biology and Eppley Cancer Center; University of Nebraska Medical Center; Omaha, NE USA

Keywords: EHD1, EHD3, EH-domain, retromer, endocytic trafficking, recycling, retrograde transport, Rabankyrin-5

Retromer-mediated transport of endocytic membranes from endosomes to the trans-Golgi network (TGN). Dysregulation of these pathways can result in multiple ailments, including late-onset Alzheimer disease. One of the key retrograde transport regulators, the retromer complex, is tightly controlled by many factors, including the C-terminal Eps15 homology domain (EHD) proteins. This mini-review focuses on recent findings and discusses the regulation of the retromer complex by EHD proteins and the novel EHD1 interaction partner, Rabankyrin-5.

Endocytic Transport

Endocytic transport is essential for various cellular functions such as the regulation of membrane homeostasis, expression of cell surface receptors and signal transduction. 1,2 It is also exploited by certain pathogens and protein toxins for their entry into the cell and subsequent cytotoxic activities. 3,4 Therefore, elucidation of the underlying mechanisms of this trafficking is crucial for identifying new therapeutic targets and for successful drug delivery.

Endocytic pathways are highly regulated by numerous proteins, including Rab GTPases, 5-8 soluble NSF attachment protein receptor (SNAREs) proteins, 9,10 and the C-terminal Eps15 homology domain (EHD) proteins. 11,12 Rab proteins are key regulators of endocytic trafficking. They are reversibly associated with specific membrane organelles in a manner dependent on their GTP-bound status, and they mediate distinct endocytic steps via recruitment of coat components, 13 molecular motors, 14-17 and tethering factors. 18,19 Ultimately vesicle fusion to target membranes is facilitated by SNARE-induced activity. 20,21

Another family of endocytic regulators, the EHD proteins, has drawn intense interest in recent years. The four mammalian EHDs, EHD1–4, regulate multiple steps in the endocytic trafficking pathways. 22 In contrast to Rab family members, EHD proteins contain an ATP-binding G domain. 23 The structure of EHDs suggests a function in the scission of vesicles upon ATP hydrolysis. 24 This is supported by a recent study demonstrating that EHD1 promotes clathrin- and dynamin-dependent synaptic vesicle budding, 25 in coordination with amphiphysin. 26

Retrograde Transport and Retromer

Following their transport through the TGN, newly synthesized proteins are dispatched to the plasma membrane (and/or secreted) or targeted to endocytic organelles via anterograde transport. To maintain membrane homeostasis in the TGN, proteins and lipids need to be replenished by the process of retrograde transport, which returns membranes from early, late, and recycling endosomes to the TGN (Fig. 1). 26,27 Retrograde transport is important for many cellular functions, including lysosome biogenesis and development. 31-36 Dysregulation of this pathway is associated with a variety of diseases including late-onset Alzheimer disease and other neuronal disorders. 37

Protein sorting into the retrograde pathway is regulated by multiple factors, and the better known ones include clathrin and epsinR, 38 AP-1, 39 Oculocerebrorenal Syndrome of Lowe (OCRL), 40 Golgi-associated γ-containing ARF binding protein 3 (GGA3), 41 Phosphofurin Acidic Cluster Sorting protein 1 (PACS1), 41 Rab9, TIP47, 42,43 SNX3,44-47 and the retromer complex, a key regulator of retrograde transport. 48,49

Retromer is an evolutionary conserved heterotrimeric complex that consists of two subcomplexes: a sorting nexin (SNX) dimer comprised of SNX1/2 50-52 or SNX5/6, 53 and a cargo recognition heterotrimer comprised of vacuolar protein sorting (Vps) 26/29/35. 54 The retromer SNX proteins contain a phox homology (PX) domain that can bind to the phosphatidylinositol 3-monophosphate/3,5-bisphosphate, 55,56 and a Bin-Amphipathic-Rvs (BAR) domain that detects membrane curvature and/or tubulates membranes. 57-59 Retromer-mediated tubule formation occurs with the highest frequency during the Rab5-to-Rab7 endosomal transition, 60,61 and the scission of the tubules is regulated by the WASH (Wiskott-Aldrich Syndrome protein family Homolog) complex. 62-64

The cargo-recognition complex trimer interacts with retromer cargos via Vps35. 65 The other two subunits, Vps29 and Vps26, bind to the C- and N-termini of Vps35, respectively. 66 Unlike the SNX proteins, the cargo-recognition complex does not contain lipid-binding domains. Its recruitment to the endosome requires the small GTPase Rab7, and can be inhibited by TBC1D5, a member of the Rab GAP family. 67 Rab5 is also involved in the recruitment of Vps26/29/35, possibly via its effect on the phosphatidylinositol 3-kinase. 68 The mechanism of mammalian retromer recruitment and assembly is still not fully understood.
EHD and Retromer

EHD proteins interact with and regulate retromer-mediated retrograde transport to the Golgi. EHD1 colocalizes and interacts with the retromer complex and regulate retromer-mediated membrane transport. For simplicity, only EHD proteins and their interaction partners are shown.

EHD3 are both required for the retromer-mediated transport to the Golgi. EHD3 might play a more prominent role at the early endosome. The underlying mechanism by which EHDs regulate the retromer complex remains to be elucidated.

Rabankyrin-5 (Rank-5) and Retromer

The wide variety of EHD-based functions is further enhanced by their interactions with multiple binding partners. These interactions generally occur between the EHD EH domain and a region of the binding partner that contains one or more asparagine-proline-phenylalanine (NPF) motif flanked by acidic residues. An example is the recently identified new EHD1 binding partner, Rank-5, that plays a role in retromer-mediated retrograde transport.

Rank-5, a Rab5 effector, is required for macropinocytosis and early endosome fusion. It is comprised of an N-terminal BTB (Bric-a-brac, Tramtrack and Broad complex)/POZ (Pox virus and zinc finger) domain, followed by 21 consecutive ankyrin repeats, and a C-terminal FYVE (Fab1, YOTB, Vac1, EEA1)-finger domain. While there is a NPFED motif located within the 5th ankyrin domain, we were initially unsure if this site would be exposed for binding; however, subsequent studies confirmed a direct interaction (ref. 73 and see Fig. 2). It is noteworthy that Rank-5 specifically binds to EHD1, but not the other EHDs, including EHD3. The latter EHD protein is the closest paralog of EHD1, sharing 86% sequence identity, suggesting the fine-tuning of individual EHD protein functions by their selective binding partners, despite the high level of homology among family members.

Rank-5 interacts with retromer to regulate its subcellular localization, and binding to EHD1 is required for Rank-5 regulation of retromer, since mutating the NPF motif did not rescue retromer mislocalization upon Rank-5 knockdown. The regulatory roles of Rank-5 at distinct steps of the membrane transport pathways are summarized in the model shown in Figure 3. Rank-5 promotes the formation of macropinosomes and plays a role in homotypic early-endosome fusion. Through binding to EHD1, Rank-5 is recruited to the retromer and influences the latter’s localization and retromer-mediated membrane transport. Depletion of Rank-5 or EHD1 compromises vesicular stomatitis virus-G (VSV-G) secretion, possibly indirectly by affecting Golgi membrane maintenance.

How EHD1 and Rank-5 regulate retromer function is still largely unknown. EHD1 localizes to the same complex with the retromer cargo-recognition units, but has little or no interaction with the SNX dimer. This led us to suggest that EHD1 might...
act on the Vps subcomplex and indirectly affect SNX localization and SNX1-decorated tubules. Since no direct interaction has been identified either between EHD1 or Rank-5 and the retromer, this highlights the importance of elucidating the other proteins in the complex to further understand the mechanisms of the EHD-mediated retromer regulation.

Conclusion/Summary

Much progress has been made in understanding the regulation of the retromer complex. The recent studies demonstrating the involvement of EHD proteins in retromer-based transport raise many new questions. For example, where is the site of EHD action? Do EHD proteins act in the recruitment of retromer components or the scission of retromer-containing tubules? Do EHD paralogs play distinct roles in the regulation of retrograde transport? Are recycling endosomes involved (ref. 13 and Fig. 1)? Are there other binding partners that participate in this process? How do Rab5, EHDs, and their common interaction partners orchestrate the regulation of retromer? Further investigation will be required to significantly enhance our understanding of the role of EHDs on retromer regulation.
Cozier GE, Carlton J, McGregor AH, Gleson PA, Teasdale RD, Mellor H, et al. The phox homology (PX) domain-dependent, 3-phosphoinositide-mediated association of sorting nexin-1 with an early sorting endosomal compartment is required for its ability to regulate epidermal growth factor receptor degradation. J Biol Chem 2002; 277:48730-8; PMID:12198132; http://dx.doi.org/10.1074/jbc.M206982200

Frost A, Perera R, Roux A, Spasov K, Desteaing O, Egelman EH, et al. Structural basis of membrane invagination by F-BAR domains. Cell 2008; 132:807-17; PMID:18329367; http://dx.doi.org/10.1016/j.cell.2007.12.041

Peter BJ, Kent HM, Milks IG, Valls Y, Butler PJ, Evans PR, et al. BAR domains as sensors of membrane curvature: the amphiphysin BAR structure. Science 2004; 303:495-9; PMID:14645856; http://dx.doi.org/10.1126/science.1092586

Pylypenko O, Lundmark R, Rasmusson E, Carlsson SR, Rak A. The PX-BAR membrane-remodeling unit of sorting nexin 9. EMBO J 2007; 26:4788-800; PMID:17948057; http://dx.doi.org/10.1038/sj.emboj.7601889

Marti M, Bujny MV, Zeuchner D, Geerts WJ, Griffith J, Petensen CM, et al. SNX1 defines an early endosomal recycling exit for sortilin and mannose 6-phosphate receptors. Traffic 2008; 9:380-93; PMID:18088823; http://dx.doi.org/10.1111/j.1600-0854.2007.00686.x

van Weering JR, Verkade P, Cullen PJ. SNX-BAR-mediated endosome tubulation is co-ordinated with endosome maturation. Traffic 2012; 13:94-107; PMID:21973056; http://dx.doi.org/10.1111/j.1600-0854.2011.01297.x

Gomez TS, Billadeau DA. A FAM21-containing WASH complex regulates receptor-dependent sorting. Dev Cell 2009; 17:609-711; PMID:19922874; http://dx.doi.org/10.1016/j.devcel.2009.09.009

Harbour ME, Breusegem SY, Antrobus R, Freeman C, Reid E, Seaoman MN. The cargo-selective retromer complex is a recruiting hub for protein complexes that regulate endosomal tubule dynamics. J Cell Sci 2010; 123:3703-17; PMID:20923837; http://dx.doi.org/10.1242/jcs.071472

Tembkin P, Lauffer B, Jager S, Cimermancic P, Krogan NJ, von Zastrow M. SNX27 mediates retromer tubule formation. Cell 2012; 148:29-37; PMID:22193161; http://dx.doi.org/10.1038/necb2374

Cullen PJ, Korswagen HC. Sorting nexin provide diversity for retromer-dependent trafficking events. Nat Cell Biol 2012; 14:249-37; PMID:22193161; http://dx.doi.org/10.1038/necb2374

Watson T, Attar N, Bujny MV, Oakley J, Traer CJ, Cullen PJ. A loss-of-function screen reveals SNX1 and SNX5 as potential components of the mammalian retromer. J Cell Sci 2007; 120:45-54; PMID:17184574; http://dx.doi.org/10.1242/jcs.03302

Haft CR, de la Luz Sierra M, Balford R, Lesnai MA, Barr VA, Taylor SI. Human orthologs of yeast vacuolar protein sorting proteins Vps26, 29, and 35: assembly into multimeric complexes. Mol Biol Cell 2000; 11:4105-16; PMID:11025111

Carlton J, Bujny M, Peter BJ, Oorschot VM, Rutherford A, Mellor H, et al. Sorting nexin-1 mediates tubular endosome-to-TGN transport through coincidence sensing of high-curvature membranes and 3-phosphoinositides. Curr Biol 2004; 14:1791-800; PMID:15498486; http://dx.doi.org/10.1016/j.cub.2004.09.077