DIFFUSE EMISSION MEASUREMENT WITH THE SPECTROMETER ON INTEGRAL AS AN INDIRECT PROBE OF COSMIC-RAY ELECTRONS AND POSITRONS

LAURENT BOUCHET1,2, ANDREW W. STRONG3, TROY A. PORTER4, IGOR V. MOSKALENKO4,
ELISABETH JOURDAIN1,2, AND JEAN-PIERRE ROQUES1,2
1 Université de Toulouse, UPS-OMP, IRAP, Toulouse, France; bouchet@cesr.fr
2 CNRS, IRAP, 9 Av. colonel Roche, BP 44346, F-31028 Toulouse cedex 4, France
3 Max-Planck-Institut für extraterrestrische Physik, Postfach 1603, 85740 Garching, Germany
4 Hansen Experimental Physics Laboratory, Stanford University, Stanford, CA 94305, USA
Received 2011 May 3; accepted 2011 June 29; published 2011 September 1

ABSTRACT

Significant advances have been made in the understanding of the diffuse Galactic hard X-ray continuum emission using data from the INTEGRAL observatory. The diffuse hard power-law component seen with the SPectrometer on INTEGRAL (SPI) has been identified with inverse-Compton emission from relativistic (GeV) electrons on the cosmic microwave background and Galactic interstellar radiation field. In the present analysis, SPI data from 2003 to 2009, with a total exposure time of \(\sim 10^9 \) s, are used to derive the Galactic ridge hard X-ray spatial distribution and spectrum between 20 keV and 2.4 MeV. Both are consistent with predictions from the GALPROP code. The good agreement between measured and predicted emission from keV to GeV energies suggests that the correct production mechanisms have been identified. We discuss the potential of the SPI data to provide an indirect probe of the interstellar cosmic-ray electron distribution, in particular for energies below a few GeV.

Key words: Galaxy: general – Galaxy: structure – gamma rays: general – gamma rays: ISM

Online-only material: color figures

1. INTRODUCTION

The Galactic ridge is known to be an intense source of continuum hard X-ray and \(\gamma \)-ray emission. The hard X-ray emission was discovered by a rocket experiment in 1972 (Bleach et al. 1972), and interstellar emission has subsequently been observed from keV to MeV energies by the satellites HEAO-1, EXOSAT, Temna, ASCA, Ginga, RXTE, the Compton Gamma Ray Observatory (CGRO)/COMPTEL, and Granat/SIGMA, and more recently by Chandra, XMM-Newton, and INTEGRAL. Previous analyses of INTEGRAL data showed that, up to 100 keV, a large fraction of the total emission from the inner Galaxy is due to point sources, and the diffuse emission associated with the Galactic ridge is only one-tenth of the total Galactic emission in the 25–100 keV band (Lebrun et al. 2004; Strong et al. 2004; Bouchet et al. 2005, 2008). These analyses also showed that the diffuse emission dominates the hard X-ray sky above 300 keV.

Continuum emission of a diffuse, interstellar nature is expected in the hard X-ray and \(\gamma \)-ray regime from several physical processes: positron annihilation (through intermediate formation of positronium), inverse-Compton (IC) scattering of the interstellar radiation field (ISRF) and bremsstrahlung on the interstellar gas from cosmic-ray (CR) electrons and positrons, and via decay of neutral pions produced in interactions of CR nuclei with the interstellar gas. Extensive studies of the Galactic diffuse \(\gamma \)-ray emission in the context of CR propagation models have been carried out by, e.g., Strong et al. (2000, 2004, 2010) and Strong (2010).

In the present analysis, the data accumulated by the SPectrometer on board the INTEGRAL observatory (SPI) are used to derive the spatial morphology and the spectral shape of the Galactic diffuse emission, taking advantage of the greatly increased observational data and significant advances in analysis techniques. This builds on our previous work, described in Bouchet et al. (2008) and Porter et al. (2008), where we have presented sky maps and spectra of the Galactic plane and demonstrated the presence of a hard power-law continuum emission, which was interpreted as IC emission from CR electrons and positrons upscattering the Galactic ISRF. For further introductory material and background information on this topic, we refer the reader to these earlier papers.

2. INSTRUMENT AND OBSERVATIONS

The European Space Agency’s INTEGRAL observatory was launched from Baikonour, Kazakhstan, on 2002 October 17. The SPI spectrometer (Vedrenne et al. 2003) observes the sky in the 20 keV to 8 MeV range with an energy resolution ranging from 2 to 8 keV. It consists of an array of 19 high-purity germanium detectors operating at 80 K. Its geometric surface area is 508 cm² with a thickness of 7 cm. In addition to its spectroscopic capabilities, SPI can image the sky with a spatial resolution of \(\sim 2^\circ \) (FWHM) over a field of view (FoV) of 30° because of a coded mask located 1.7 m above the detector plane. Despite this modest angular resolution, it is possible to locate intense sources with an accuracy of a few arcminutes (Dubath et al. 2005). The assembly is surrounded by a 5 cm thick bismuth germanate shield, which stops particles arriving from outside the FoV and measures their flux. The instrument’s in-flight performance is described in Roques et al. (2003). Because of the small number of detectors, SPI’s imaging capability relies on a specific observational strategy, which is based on a dithering procedure (Jensen et al. 2003): the pointing direction varies around a target in steps of \(\sim 2^\circ \) within a five-by-five square or a seven-point hexagonal pattern. In general, a pointing lasts between 30 and 60 minutes, and along its three-day orbit, INTEGRAL operates \(\sim 85\% \) of the time outside Earth’s radiation belts. We have analyzed observations recorded from 2003 February 22 through 2009 January 2, covering the entire sky.
2.1. Data Selection and Preparation

We exclude data taken during viewing periods (exposures) that have high background contamination or are dominated by short transient sources which are not useful for our study of the diffuse emission. For example, viewing periods containing solar flares and periods when the spacecraft enters the radiation belts are excluded from the analysis in order to remove periods when the data were dominated by high backgrounds. For energies around 1 MeV, high-energy particles saturate the electronics and can generate false triggers. However, it is possible to use these data thanks to other electronics (via pulse shape discriminators or PSDs) not affected by the saturation problem. These electronics operate in parallel to the fast pre-amplifier output, generating an independent trigger for photon energies between 650 keV and 2.2 MeV. The trigger signal issued by the PSD electronics is used to confirm and select events between 650 keV and 2.2 MeV. The procedure is explained in more detail in Jourdain & Roques (2009).

A further selection based on the χ^2 between the sky model and the data was made. For a few viewing periods, the sky modeling does not correspond very well with the data. Reduced χ^2 values, contrary to the systematics for the sky model and hence do not bring useful information on the diffuse emission. These viewing periods account for only $\sim 2\%$ of the whole data set. Therefore, we do not use these exposures in the present analysis. After their removal, the data set contains 38,699 exposures for the analysis below 650 keV, the PSD electronics did not operate during some of the viewing periods. Therefore, we also excluded these viewing periods, with the total number in our data set for this energy range then further reduced to 36,486. The global χ^2, and the maximum χ^2 per pointing, are given in Table 1 for the best model (see Section 4.2).

The data contained in the 196–200 keV and 1336–1342 keV band correspond to strong instrumental background lines and are not used in the analysis. The first band contains the 198 keV line due to the de-excitation of an isomeric state of 71Ge. The second band contains the 1337 keV line related to 60Ge K-shell electron capture, which may blend with the 1333 keV 60Fe line. We bin the data between 20 keV and 2.4 MeV into 24 energy bands for the spectral analysis, and into 7 large energy bands for imaging or diffuse continuum morphology analysis. For the latter analysis, the data contained in the 1170–1176, 1330–1336, and 1806–1809 keV bands are removed because they contain counts from the 60Fe and 26Al radioactive lines (see Section 6).

3. DATA ANALYSIS

The signal recorded by the SPI camera on the 19 Ge detectors is composed of contributions by each source (point-like or extended) in the FoV convolved with the instrument response (see Appendix A), plus the background. For N_s sources located in the FoV, the counts D_p^d obtained during an exposure (pointing) p in detector d for a given energy band, can be expressed by the relation

$$D_p^d = \sum_{j=1}^{N_s} R_{p,j}^d S_{p,j} + B_p^d,$$

where $R_{p,j}^d$ is the response of the instrument for the source j, $S_{p,j}$ is the flux of the source j, and B_p^d is the background recorded of the pointing p for detector d. For a given pointing p, D_p^d, $R_{p,j}^d$, and B_p^d are vectors of N^d_s, here 19, elements. For a given set of N_p exposures, we have to solve a system of $N_p \times N^d_s$ equations (Equation (1)). For extended/ diffuse sources, we assume a spatial morphology given by an analytic function or a model sky map. To reduce the number of free parameters related to the background, we take advantage of the stability of relative count rates between detectors to rewrite the background term as

$$B_p^d = A_p \times U^d \times \epsilon_p^d,$$

where A_p is a normalization coefficient per pointing related to the background intensity, U^d represents the background count rate pattern on the SPI camera for the dth detector (U^d is a 19 element vector), and ϵ_p^d is the effective observation time for pointing p and detector d. The number of parameters necessary to model the background reduces to N_p (U is assumed to be known and can be, in some cases, determined independently from “empty field” exposures (see Section 3.1)).

The number of free parameters in the set of $N_p \times N^d_s$ equations is then $N_p \times N_s + N_p$ (for the N_s sources and the background intensities). An additional reduction of the number of parameters can be obtained because many sources vary on timescales larger than the exposure timescale. Furthermore, many point sources are weak enough to be considered as having a constant flux within the statistical errors, especially for higher energies. Then

Table 1

Energy Band (keV)	27–36	25–50	50–100	100–200	200–600	600–1800
Number of exposures	38699	38699	38699	38699	38699	36486
Reduced χ^2	1.18	1.27	1.07	1.05	1.04	1.03
Degree of freedom	656914	649991	664354	666411	666695	628753
Number of point sources	256	254	121	53	20	4
Number of parameters	15581	22504	8141	6084	5900	5606
Exposure maximum reduced χ^2	4.2	5.2	3.1	3.0	3.0	3.1
Exposures with Reduced $\chi^2(p)$ $<$ 2	38342	38690	38436	38471	38473	36450
Reduced $\chi^2(p)$ $<$ 3	38513	38232	38698	38698	38699	36485

Notes. Reduced χ^2 is the total χ^2 between the data and the best sky model convolved with the instrument response divided by the degrees of freedom. Reduced $\chi^2(p)$ is the exposure χ^2 divided by the number of working detectors (computed for each exposure p).
the $N_p \times N_s$ parameters related to the sources are reduced to N_s^{eff} parameters. For example, in the 25–50 keV range, for 257 sources and 38,699 pointings, $N_s^{\text{eff}} \simeq 22,500$ “time bins.”

3.1. Background

The modeling of the instrumental background is an important issue and challenge for the data analysis. The distribution of the instrumental background in the detector plane changes significantly during the period spanned by the observations because two detectors failed early in the mission (detector 2 on 2003 December 7 and detector 17 on 2004 July 17). The “uniformity” map or background pattern (Equation (2)) should ideally be derived from “empty field” observations. However, the dedicated SPI “empty fields” are too rare to derive suitable and precise “uniformity” maps for the large data set used in the present analysis. Another way to determine the background pattern is to solve Equation (1) for the intensities of both sources, background, and detector pattern simultaneously.

The resulting patterns are therefore model dependent because of the unavoidable cross-talk between the extended source emission and the background pattern (and sources). These effects have been intensively studied above and around 500 keV, where many high latitude exposures can be considered as “empty field” exposures (see Bouchet et al. 2010) because they contained no detectable sources. For the present study, this has a minor impact because the sky model is sufficiently well approximated and hence the derived intensities are not significantly affected.

We treat the background intensity as varying with time and test several timescales. Timescales above 6 hr give poor χ^2. In general, the F-test shows that using a background intensity, A_p (Equation (2)), which varies on an exposure timescale (\sim2800 s), 2 or 4 hr does not improve the fit compared to using a background timescale of \sim6 hr. The \sim6 hr timescale analysis also produces slightly reduced error bars because there are less free parameters for background and source components. However, the intensities are perfectly compatible with those obtained with a more variable background (timescale <6 hr).

We therefore use a background timescale of \sim6 hr throughout the following analysis.

Finally, the standard configuration used for the analysis consists of computing the background pattern per period between two detector annealings (performed every \sim6 months to restore the detector energy resolution) with an intensity normalization that varies with a 6 hr timescale (leading to \sim6000 intensities to be fitted for the 38,699 exposures).

3.2. Sky Modeling

The data contain contributions from point sources, positron annihilation radiation (511 keV line plus positronium continuum) and from the process of interest in this study, the “diffuse” (non-annihilation) continuum emission, in addition to backgrounds. To extract the diffuse flux with SPI, information for the source positions along with their variability timescales is required. We therefore need to build a sky model to derive the corresponding fluxes.

3.2.1. Point-source Emission

We follow a similar method to that described in Bouchet et al. (2008) where the point-source contributions are simultaneously extracted together with the diffuse and background components. For each source, the algorithm divides the total observation time into smaller time intervals, down to the exposure duration, where the source can be considered to have a constant flux. The algorithm, based on signal segmentation (Scargle 1998), can detect localized time structures and generally characterize intensity variations. It allows the construction of “time bins” intervals for each source and energy band. The a priori information can thus be introduced in the source terms through their position and variability timescales. The intensities in these “time bins” are parameters to be fitted. The catalogs derived in this way optimize the signal-to-noise ratio of both sources and diffuse emission.

However, it is difficult to take into account all transient sources, especially on the shortest timescales (Bird et al. 2010). The information about precise burst locations in time was not
Figure 2. 50–100 keV intensity sky map including both sources and diffuse emission. The diffuse part of the image has pixels of different size and is first downsampled to a common pixel size of $3\degree \times 2\degree 6$; thereafter the image is smoothed by a 3×3 pixel boxcar.

(A color version of this figure is available in the online journal.)

Table 2
Information on Spectral Energy Bands

Energy Band (keV)	20–27	27–36	36–49	49–66	66–90	90–121	121–163	163–220
Number of point sources	256	256	251	193	158	122	77	48
Reduced χ^2	1.088400	1.178813	1.124047	1.058390	1.087771	1.03193	1.024928	1.025746
Degree of freedom	656914	656914	656921	664753	664804	666291	666370	666415
Energy band (keV)	220–298	298–402	402–505	505–516	516–732	732–988	988–1170	1170–1176
Number of point sources	34	17	13	11	11	11	2	2
Reduced χ^2	1.007953	1.006851	1.013379	0.999983	1.014998	1.002269	1.003606	1.000524
Degree of freedom	666587	666604	666608	666610	666610	628746	628755	628755
Energy band (keV)	1176–1330	1330–1336	1336–1400	1400–1600	1600–1806	1806–1812	1812–2200	2200–2414
Number of point sources	2	2	2	2	2	1	1	1
Reduced χ^2	1.000548	0.997189	0.999347	1.004202	1.003443	1.000513	1.002443	1.001612
Degree of freedom	628755	628755	628755	628755	628755	628756	628756	628756

Note. PSD+PE data (38699 exposures) are used for energies below 650 keV and only PSD data (36486 exposures) above.

The resulting SPI all-sky survey allows us to identify 254 point sources in the 25–50 keV energy band, with 123, 53, and 26 of the point sources identified in the lower energy band still emitting in the 50–100, 100–200, and 200–600 keV bands, respectively (see Tables 1 and 2). Figure 2 shows the 50–100 keV all-sky map.

For the spectral analysis, a given source is considered to emit as long as its spectrum is detected above 1σ. Table 2 gives the number of point sources used to model the data in the different energy bands. More details on the point-source analysis will be given in a forthcoming paper, while in the present work we focus on the diffuse emission.

3.2.2. Annihilation Radiation Spectrum

Between 250 keV and 511 keV annihilation radiation is the dominant emission process with two components associated with the Galactic bulge and disk. We assume that the spatial morphologies for the Galactic bulge annihilation line and positronium continuum are the same. The bulge morphology is described by a combination of 3\times2 and 11\times8 Gaussians centered at $l = -0.6$ and $b = 0.0$ with the ratio of the 11\times8 to the 3\times2 Gaussian flux fixed to 2.16 (Bouchet et al. 2010). For the disk, we follow the Bouchet et al. (2010) modeling for the 511 keV line emission using either a 240μm NIR/DIRBE5 map or a halo morphology (see also Weidenspointner et al. 2008; Churazov et al. 2010). Note that in the present analysis we are performing a similar analysis to that described in Bouchet et al. (2010), but over a wider energy range for the annihilation radiation line and ortho-positronium continuum emission.

The bulge spatial morphology is sufficiently distinct from the diffuse continuum (plus annihilation disk) spatial morphology to be extracted separately from the data, without suffering from “cross-talk.” On the other hand, the disk annihilation continuum is weak compared to the ridge emission and too close in spatial shape to be distinguishable. Consequently, the disk contribution

http://lambda.gsfc.nasa.gov
cannot be directly measured, but only inferred from the diffuse continuum measurements (Section 6).

3.2.3. “Diffuse” Emission

To derive the spatial morphology of the diffuse emission (diffuse continuum and annihilation radiation), we use two approaches. The first is sky “imaging” and the second involves sky model fitting.

For “imaging,” sky pixels containing the flux of the diffuse emission (sum of annihilation radiation plus diffuse continuum) are built. The point-source locations are then introduced separately as a priori information (Bouchet et al. 2008). Intensities of both diffuse pixels and point sources are parameters to be fitted.

For sky model fitting, several parameterized model distributions representing the annihilation radiation spectrum and diffuse continuum emission are directly tested against the data. The spatial morphology of the annihilation radiation spectrum, diffuse continuum emission, and point-source locations are introduced separately as a priori information. Intensities and fluxes for all the components are parameters to be fitted.

In both cases, sky parameters and background intensities, along with detector patterns, are fitted to the data through the response matrix to maximize the likelihood function.

3.3. Core Algorithm

The tools used for background modeling, imaging, and model fitting were specifically developed for the analysis of SPI data and described in Bouchet et al. (2008). To determine the sky model parameters, we adjust the data through a multi-component fitting algorithm, based on the likelihood test statistic. The core algorithm to handle such a large, but sparse, system is based on MUMPS6 (Amestoy et al. 2006) together with an error computation method dedicated and optimized for the SPI response matrix structure (Rouet 2009; Tzvetomila 2009).

4. “DIFFUSE” CONTINUUM ANALYSIS RESULTS

4.1. Galactic Emission Spatial Morphology

To determine the (model independent) spatial distribution of the Galactic ridge emission, the entire sky is divided into pixels. The sky exposure (Figure 1) is extremely non-uniform. To compensate, the pixels are chosen to have different sizes in latitude and longitude to extract fluxes with a comparable signal-to-noise ratio in each pixel over the whole sky. Because the point-source intensities are derived simultaneously, the pixel sizes also have to be chosen large enough to avoid “cross-talk” with point sources.

The number of unknowns (the diffuse part of the sky to be “imaged” contains 201 pixels for $E < 600$ keV and 121 pixels above) is high but reasonable compared to the available data, and the problem is easily tractable using a simple likelihood maximization to determine all the corresponding intensities and error estimates. For this particular analysis, the fitted intensities are constrained to be positive. This constraint stabilizes the “imaging” system of equations to be solved. Figure 3 shows the all-sky intensity images of the diffuse emission in several energy bands. These images and profiles give a qualitative view of the diffuse emission, but very localized structures outside the region delimited by $|l| > 10^\circ$ and $|b| < 30^\circ$ may be missed, due to the sizes of the pixel in this region.

To quantify more easily the behavior of the diffuse emission, we present our results in terms of longitude and latitude profiles in Figures 4 and 5. These figures are obtained by integrating the flux measured for $|b| \leq 6^\circ$ in longitude or $|l| < 23^\circ$ in latitude, and $|b| \leq 8^\circ$ and $|l| \leq 60^\circ$ for the 600–1800 keV band.

Because the images and profiles have a low signal-to-noise ratio, in order to have more quantitative measurements a

6 MUMPS (Multifrontal Massively Parallel sparse direct Solver) software developed by the IRIT/ENSEEIHT laboratory (http://mumps.enseeiht.fr)
Figure 4. Longitude profiles of the Galactic ridge emission in different energy bands, observed with SPI (crosses). The best-fit template maps consisting of a combination of GALPROP IC distribution, $A_{4.9\mu m}$, and the annihilation radiation contribution (Table 3) is shown in blue. $A_{4.9\mu m}$ (stellar emission) and IC contributions are shown, respectively, in red and green. The pink dash-dotted line is the annihilation radiation contribution in the 200–600 keV energy band. The orange thin line (best absolute model) is a model consisting of IC plus DIRBE-based 4.9 μm template for energy below 49 keV and IC plus 60 μm emission map between 49 keV and 200 keV.

Figure 5. Same as Figure 4, but for Galactic latitude. (A color version of this figure is available in the online journal.)

produces corrected maps to an accuracy of $\sim 10\%$. We denote these maps as A_{λ} where λ is the wavelength. For example, the $A_{4.9\mu m}$ map is motivated by the probable stellar origin for the Galactic ridge emission below 100 keV (Krivonos et al. 2007).

The IC maps are based on a physical model for the IC emission generated with the GALPROP code (Section 5.1). Note that the IC map spatial morphology is energy dependent, whereas the spatial morphology for the other templates is independent of energy band.

All template sky maps are convolved with the instrument response and compared to the data. The resulting fit parameters are given in Table 3.

If a single template is fitted (with intensity as free parameter), the IC templates (models 54z04LMS or 54z04LMS-efactor, described in Section 5.3) are the best tracers for the spatial distribution of the diffuse continuum. They provide a better fit to the whole-sky distribution because they account for the emission at high latitudes, but are not always the best fit in the ridge region, where the NIR/DIRBE maps fit the emission better. The best non-IC map is the $A_{4.9\mu m}$, especially for the low energy range ($E < 200$ keV), consistent with the results of Krivonos et al. (2007) who found that this map traces the diffuse stellar emission distribution at low energies. The IC

complementary analysis was performed in which the diffuse continuum spatial morphology is modeled using several template maps (Table 3), separately or in combination.

Several DIRBE emission maps have been tested as tracers of the diffuse emission: the NIR/DIRBE map ($1–10$ μm) related to the stellar emission, the MIR/DIRBE map ($10–30$ μm) related to dust nanograins and PAHs heated to high temperatures, and the FIR/DIRBE map ($30–240$ μm) related to \sim micron-sized dust grains emitting in thermal equilibrium with the heating Galactic ISRF. We have also tested 21 cm H I (Dickey & Lockman 1990) and 12CO (Dame et al. 2001) maps. The CO templates trace the molecular gas of the Galaxy (which can be related to the distribution of the young stellar populations), and are used to represent the spatial distribution for the nucleosynthesis lines.

Our analysis employs extinction-corrected IR maps, where the method is described in Krivonos et al. (2007), which
templates constitute the best model of the whole-sky “diffuse” emission, but our derived map contains some unresolved source component in the ridge region. Therefore, an additional second map is needed to model more accurately the excess in the region $|b| < 10^\circ$.

Above 600 keV, the IC map fits the data very well, although a marginally better fit can be obtained with the 1.25 μm map. However, the improvement over the IC map is small and is restricted to this energy range. A combination of IC and 1.25 μm maps is also marginally a better fit to the data in the 600–1800 keV band, but, as similarly for the other possible combinations of maps, does not really improve the fit, considering the number of extra degrees of freedom introduced. Furthermore, when the maps are combined the contribution

Table 3
Galactic Diffuse Morphology Modeling with Synthetic Maps

Energy Band (keV)	Modeling with a Single Synthetic Map	Modeling with a combination of IC-ID54z04LMS-efactor (hereafter IC) plus another synthetic map	Modeling with a combination of IC-ID54z04LMS-efactor (hereafter IC) plus another synthetic map
	Energy band (keV)	25–50	50–100
		25–100	100–200
		200–600	600–1200
		1200–1800	600–1800
1.25 μm	345.1	84.5	119.7
2.2 μm	181.9	65.7	85.6
3.5 μm	153.7	55.0	76.6
4.9 μm	160.3	46.8	75.0
12 μm	961.6	90.4	109.6
25 μm	1149.7	85.3	127.4
60 μm	1000.0	54.7	82.8
100 μm	850.9	50.7	76.0
140 μm	863.1	56.1	86.9
240 μm	952.9	74.9	111.6

Notes. Results of template fitting in several energy ranges. Values of the maximum-likelihood ratio $-2 \times (\ln L - \ln L_0) \approx \Delta \chi^2$. The sky model consists of point sources + diffuse (maps) + bulge (Gaussian of 3:2 and 11:8 centered at $l = -0:6$ and $b = 0:0$) for energies below 516 keV, except for the “all map” case (*) where the bulge is included for all energy bands. The first column contains the synthetic map name used; the first line displays the energy bands in keV unit. Note that the maximum-likelihood ratio is zero by definition for the “all maps” model (*), which corresponds to the combination of the best models by band.

* These are IR extinction-corrected maps (Section 4.1). IC-ID54z04LMS and IC-ID54z04LMS-efactor are IC distribution maps computed with the GALPROP code (Section 5.1). For each energy band, highlighted numbers and models are the absolute best-fit model (bold italic) and the models used throughout this analysis. The reduced χ^2, for the models in bold, are 1.27, 1.07, 1.05, 1.04, 1.03, 1.01, and 1.02, respectively, for the 25–50, 50–100, 100–200, 200–600, 600–1200, 1200–1800, and 600–1800 keV bands.
of each separate map is difficult to measure, due to both the statistics and/or the unavoidable "cross-talk." So, above 600 keV, qualitatively, the best diffuse spatial emission model is the IC map.

At energies below 600 keV, the situation is more complex. In addition to the diffuse continuum, the annihilation radiation component is modeled as described in Section 3.2.2. A single IC map is not sufficient to fit the rest of the emission distribution because it does not fit the peak along the Galactic plane well. An additional map such as DIRBE, CO, or H1 is needed to reproduce this structure. Table 3 indicates that below 600 keV, better fits to the spatial morphology emission can be obtained by combining two maps. For the 25–600 keV band, a combination of IC and the 4.9 μm, 3.5 μm, or A4.9 μm maps give the best fits. For the 25–50 keV band, an overall best fit can be obtained with a combination of the IC and the 4.9 μm maps. This is consistent with the stellar origin for the Galactic ridge emission in the X-ray domain proposed by Krivonos et al. (2007).

Based on these results, and to simplify the statistical analysis, the emission profiles are finally fitted with a combination of the A4.9 μm plus IC and bulge maps below 600 keV, and with a pure IC map above 600 keV, see Figures 4 and 5, and Table 3. With this method the signal-to-noise ratio of the derived diffuse total emission is optimized. Using the absolute best-fit model for each narrow energy band (bold italic in Table 3) instead of the adopted model (bold in Table 3) does not change the results significantly.

4.2. Galactic Ridge Spectral Analysis

In the previous section, we considered the spatial morphology and choice of skymap templates. We now turn to the spectral analysis. To extract spectra, we fix the sky model so that the diffuse spectrum morphology below 732 keV (the relevant upper spectral channel above 600 keV), is modeled with a linear combination of A4.9 μm and an IC map computed using GALPROP, plus two Gaussians representing the bulge annihilation radiation component. For energies above 732 keV, the morphology is modeled by the IC map plus three spectral lines (Section 6). The intensities of the spatial components related to the diffuse emission together with sources and background intensities are adjusted to the data as described in Section 3.3.

Details on the individual component separation procedure are given in Appendix A. The bulge morphology differs significantly from the A4.9 μm and IC map components and there is very little "cross-talk," hence this component is easily extracted separately (Table 4). On the other hand, IC and A4.9 μm components are more difficult to disentangle due to their rather similar morphologies. Nevertheless, it is possible to separate the contribution of each map (Table 4). To take into account the "cross-talk" between the IC and A4.9 μm components, we add, in addition to statistical errors on fluxes, artificial systematic errors. When deriving these components, the data above ~1 MeV are not used because the lower statistics do not allow for the distinction. The IC and A4.9 μm spatially derived maps are then fitted as a superposition of three expected physical spectral components:

1. emission by "unresolved sources," dominating below ~50 keV, modeled by an exponential cutoff power-law spectrum;
2. annihilation radiation spectrum modeled using a Gaussian centered at 511 keV with 2.5 keV FWHM plus positronium continuum (Ore & Powell 1949); and
3. diffuse continuum mainly attributed to interstellar emission, modeled by a power law.

The diffuse spectral fitted parameters following the above procedure for the central radian defined by |l| < 30° and |b| < 15° are given in Table 4.

The IC extracted component is found to have a power-law index ~1.8 with a 100 keV flux 9 × 10−5 photons cm−2 s−1 keV−1. The A4.9 μm tracer component is found to have a much harder power-law index of ~1 with an intensity significantly lower than the IC component. In other words, the IC component dominates the flux over the sky. For the full sky, the ratio of IC to A4.9 μm components is 14, 8, 1.8, and 0.95 at 50, 100, 500, and 1 MeV, respectively. When considering only the central radian, the IC component contains 15% at 20 keV rising to 25% at 1 MeV of the total IC sky flux. The 20–100 keV flux ratio of IC to A4.9 μm component is ~9 for the whole sky and 2.6 for the central radian.

The final fit is made for the total spectrum (sum of all components) by combining the spectral information obtained from each spatial morphology component fit. For this step, the A4.9 μm and IC power-law indices and intensities are fixed while fitting the other components. We also introduce a cutoff in the A4.9 μm component to steepen its contribution at higher energies (above 1 MeV) where it would be inconsistent with the data from the higher energy instruments otherwise. We model the component related to unresolved sources with a single exponential cutoff spectrum.

If the summed spectral components for IC, A4.9 μm, and annihilation radiation are directly decomposed into the three spectral components described above, then the resulting spectral shape is similar to that described in the previous paragraph. The interstellar emission component is then best fit by a power law of index ~1.4–1.5. It results in a diffuse continuum spectrum very similar to that of the summed power laws of the IC and A4.9 μm components. The total diffuse spectrum for the central radian region is presented in Figure 6.

These results are consistent with our previous work (Bouchet et al. 2008), except that the diffuse continuum power law obtained with the IC maps has a higher intensity (20%–30% at 50 keV). This is due to the large latitude extent of this model, which contributes significant integrated flux very far from the Galactic ridge, and is not included in Bouchet et al. (2008).

Above 1 MeV, the decomposition of the emission into two spatial components gives too much uncertainty for each component. We therefore show our determination of the diffuse emission based on estimating a minimum and maximum extracted intensity for each component. To do this, we fitted the spatial morphology with the A4.9 μm tracer, which gives nearly the minimum extracted flux, while the IC map gives the maximum extracted flux. A similar spectral analysis as that described above was then performed. The range of uncertainty is shown as a shaded area in Figure 6.

4.3. Diffuse Emission Contamination with Extragalactic Background Emission

The conventional coded-mask system provides, by construction, flux free from extragalactic background (EGB)
contamination, but for SPI we need a background model (see Section 3.1). Due to the background modeling, there is uncertainty associated with the level of diffuse EGB flux in our diffuse emission determination. The instrument background is modeled with a background pattern whose intensity varies on a ∼6 hr timescale (Section 3.1). Alternatively, it can also be modeled as above but with an additional isotropic term, which can be either stable in time (to represent the EGB) or variable in time (related to long term variations of the background component). Nevertheless, it is difficult to distinguish between the two, and the first one is preferred for its simplicity. In our analysis, for the region |l| ≤ 30° and |b| ≤ 15° we find that EGB contamination is negligible (<3%) below 600 keV. For energies above 600 keV, because of the lower statistics, if we assume that the measured diffuse emission is EGB-dominated, then the diffuse component is reduced by at most ∼28% in the region |l| < 30° and |b| < 15°. This is within the error bars and does not affect our conclusions associated with the modeling (see below).

Table 4
Diffuse (|l| < 30°, |b| < 15°) Spectral Fit

Spectral Model	Parameter	Value
Power law	Index	1.79 (fixed)
IC	Flux (×10^{-4}) at 100 keV	0.92 photons cm^{-2} s^{-1} keV^{-1} (fixed)
A_{EGB} power law	Index	0.95 (fixed)
Plus cutoff	Cutoff energy	3411±2371 keV
Exponential cutoff	Flux (×10^{-4}) at 100 keV	0.34 photons cm^{-2} s^{-1} keV^{-1} (fixed)
Cutoff energy	7.7±0.6	
Positronium continuum	Flux (×10^{-4}) at 50 keV	1.60±0.35 photons cm^{-2} s^{-1} keV^{-1}
Gaussian line at 511 keV	Flux (×10^{-4})	67.3±14.6 photons cm^{-2} s^{-1}
χ^2 (dof)	23(16)	

Fit of each of the extracted spatial component separately

Bulge a		
Positronium continuum	Flux (×10^{-4})	28.9±2.9 photons cm^{-2} s^{-1}
Gaussian line at 511 keV	Flux (×10^{-4})	9.1±0.7 photons cm^{-2} s^{-1}
χ^2 (dof)	11(11)	

Extracted A_{EGB} like spatial morphology component b

Power law	Index	0.95±0.22 [0.27-0.33]
Exponential cutoff	Flux (×10^{-4}) at 100 keV	0.34±0.21 [0.16-0.40] photons cm^{-2} s^{-1} keV^{-1}
Cutoff energy	11±11 [9.9-11.1] keV	
Positronium continuum	Flux at 50 keV	1.07±0.62 [0.72-0.99] photons cm^{-2} s^{-1} keV^{-1}
Gaussian line at 511 keV	Flux (×10^{-4})	1.58±1.58 photons cm^{-2} s^{-1} keV^{-1}
χ^2 (dof)	11(13)	

Extracted IC spatial morphology component c

Power law	Index	1.79±0.25 [0.23-0.25]
Exponential cutoff	Flux (×10^{-4}) at 100 keV	0.92±0.17 [0.12-0.17] photons cm^{-2} s^{-1} keV^{-1}
Cutoff energy	6.3±6.6 [3.3-2.6] keV	
Positronium continuum	Flux (×10^{-4}) at 50 keV	0.61±0.52 [0.26-0.51] photons cm^{-2} s^{-1} keV^{-1}
Gaussian line at 511 keV	Flux (×10^{-4})	35.7±21.0 photons cm^{-2} s^{-1}
χ^2 (dof)	10(8)	

Notes. Spectral model fitting results using both spatial morphology and spectral decomposition information. For the overall fit (20 keV–2.4 MeV), channels containing 26Al and 60Fe lines are omitted, the annihilation line energy is fixed to 511 keV with an FWHM fixed to 2.5 keV. The separate component fitting results (a–c) applied to fix some parameters and to enable a multi-component fit rely on the data below 1 MeV. The quoted errors are for a single parameter of interest (χ^2 = χ^2_{min}+1.0) except for those indicated between parenthesis that are for a single spectral model and two free parameters simultaneously (χ^2 = χ^2_{min}+2.35).

5. MODELING THE DIFFUSE EMISSION

5.1. GALPROP Models

The GALPROP code (Strong & Moskalenko 1998; Strong et al. 2000, 2004, 2007) including a new model for the Galactic ISRF is the basis for predicting Galactic diffuse emission in the energy range from keV to TeV energies, thus covering more than 10 orders of magnitude in energy (Porter et al. 2008). The goal of the GALPROP project is to combine CR and broadband diffuse emission data from radio to γ-rays into a single interpretative framework. Therefore, while the modeling and interpretation has most recently focused on γ-ray data from the Fermi mission, it is also applicable to other experiments like the Wilkinson Microwave Anisotropy Probe (WMAP), Planck, INTEGRAL, and Milagro.

In Porter et al. (2008), we used the so-called EGRET-excess-based model (Strong et al. 2004), which invoked CR proton and electron spectra different from those measured directly in the
solar system, in order to account for the γ-ray spectrum measured by EGRET. Now that the “GeV excess” in this spectrum has been shown to be absent in Fermi Large Area Telescope (LAT) data (Abdo et al. 2009), being presumably an EGRET instrumental effect, we use in the present work the “conventional model,” which requires consistency of the modeled CR intensities and spectra with those directly measured. We use the model (GALPROP ID 54_z04LMS) described in Strong et al. (2010), which reproduces the electron (plus positron) spectrum measured by Fermi-LAT (Abdo et al. 2010), but is not fitted to Fermi-LAT γ-ray data. It has a halo height of 4 kpc and includes CR reacceleration; for further details see Strong et al. (2010).

The calculations presented in Strong et al. (2004), Porter et al. (2008), and Strong et al. (2010) show the importance of secondary leptons in CRs for the proper calculation of the diffuse emission. Secondary CR positrons and electrons produced via interactions of energetic nucleons with interstellar gas are usually considered as a minor CR component. However, the secondary positron and electron flux is comparable to the primary electron flux around ~1 GeV in the interstellar medium (ISM), providing diffuse emission in addition to that from primary CR electrons. The enhancement is ~1.2–1.4 times higher in the IC γ-rays up to MeV energies relative to that from pure primary electrons. This leads to a considerable contribution of secondary positrons and electrons to the diffuse γ-ray flux via IC and bremsstrahlung and to a significant increase of the Galactic diffuse flux below 100 MeV. For a detailed breakdown of the primary and secondary leptonic components as a function of energy, see Porter et al. (2008) and Strong et al. (2010). Secondary positrons and electrons are, therefore, indirectly traced by hard X-rays and γ-rays. The spectrum of secondary positrons and electrons depends only on the ambient spectrum of nucleons, the interstellar gas, and the

5.2. Comparison of SPI Spectrum with GALPROP Models

Figure 7 compares our baseline GALPROP model with the spectrum measured by SPI. The agreement with the spectral shape is reasonable but the overall intensity is slightly lower than the data. Better agreement with the SPI data is obtained by considering a model with a higher normalization for the primary electron spectrum, which is illustrated in Figure 8 where the total electrons are increased by a factor of two over the baseline model. An interpretation for this increase can be that the locally

Figure 6. Spectra of the different emission components in the central region of the Galaxy (|l| < 30° and |b| < 15°). SPI measurements are black crosses. Violet squares: total emission of resolved sources. Violet line: power-law fit to the resolved sources emission (power-law index of 2.9 and flux at 100 keV × 10^{-4} photons cm^{-2} s^{-1} keV^{-1}). Blue: total diffuse emission; magenta: annihilation radiation spectrum (line + positronium); red: emission of low-energy “unresolved” sources. The possible range of variation of these components are represented with the shaded area. The dark green line is the deduced continuum emission thought to be dominated by CRs interacting in the ISM. The diffuse continuum best-fit spectrum based both on spatial morphology and spectral decomposition is indicated by the dashed cyan (A_{\text{sun}} spatial component) and green dashed lines (IC component). The sum of these two components is the brown dashed line, which is compared to the power-law fit with index 1.44 based solely on spectral decomposition (dark green line).

(A color version of this figure is available in the online journal.)

Figure 7. Spectrum of the diffuse emission for (|l| < 30° and |b| < 15°). Black data points are for SPI (positron annihilation, 26Al and 56Fe lines are shown in red pink). Green data points are for COMPTEL. The blue/pink line is the total emission as calculated with the GALPROP code, with the primary electron spectrum based on Fermi-LAT measurements. Green solid line: total inverse-Compton emission (IC); red solid line: π^0-decay; green thin line: IC (optical); green short-dashed thin line: IC (IR); green dotted thin line: IC (CMB); cyan solid line: bremsstrahlung emission.

(A color version of this figure is available in the online journal.)

Figure 8. Same as Figure 7, with the primary electron spectrum increased by a factor of two relative to that used in Figure 7.

(A color version of this figure is available in the online journal.)

8 The discovery of enhanced positron fluxes above 10 GeV by the PAMELA instrument is of not importance here since, despite this component, at those energies primary electrons fully dominate the lepton fluxes.
measured spectrum is not typical of the global average at the solar position, or that the CR source distribution is more peaked toward the inner Galaxy than that used in the baseline model. Alternatively, Figure 9 shows other possibilities to increase the IC component, either by increasing the Galactic CR halo height from 4 kpc to 10 kpc, or by increasing the input luminosity of the bulge component for the ISRF by a factor of 10. The uncertainty associated with the bulge input luminosity, metallicity gradient, and other factors all contribute so that the ISRF in the inner Galaxy is not as constrained as observed locally. Currently, the radial distribution of CR sources is not well known or constrained, and a factor two increase of the electrons in the inner few kpc is possible. The same effect could be obtained with secondary CR positrons and electrons if their CR nuclei progenitors were increased by a similar factor, but then this could be inconsistent with the diffuse γ-ray emission measured by the Fermi-LAT, which is mainly produced by the same CR nuclei. A larger halo is suggested by analysis of CR data (Trotta et al. 2010) and γ-rays (Strong 2010). Unfortunately, the morphology of these components is not distinguishable by SPI over the spatial region currently covered. Future observations at higher latitudes would allow discrimination between the different halo/enhanced ISRF combinations, but this will be the subject of future work.

5.3. Comparison of IC Spectrum with Template-fitted Spectrum

As a further check, we compare power-law approximations of the GALPROP models with those derived from template fitting. The best power-law fit to the GALPROP model spectrum shown in Figure 7 (ID 54z04LMS) is $N(E) = 0.16 \times E^{-1.76}$, where E is the energy in keV. The power-law fit to the SPI-extracted IC template is $N(E) = 0.34 \times E^{-1.79}$, which is two times higher than the GALPROP model intensity. For the model shown in Figure 8 (model 54_z04LMS_efactorS, which has the primary electrons increased by a factor of two), the best power-law fit to the model in the range 20 keV–5 MeV is $N(E) = 0.29 \times E^{-1.76}$. Meanwhile, the power-law fit to the SPI-extracted IC template is now $N(E) = 0.30 \times E^{-1.78}$, which is completely consistent with the model spectrum. Similar results can be obtained for the other models involving modifications to the CR confinement volume, or the intensity of the ISRF in the inner Galaxy. Thus, it seems that at least some enhancement in the inner Galaxy is required for the diffuse emission, but it can be due to a combination of effects. These we will explore in a subsequent work.

5.4. Electron Energies Probed by the SPI Data

The photon energy range from 50 keV to 2 MeV is sensitive to IC from electrons below about 5 GeV. To illustrate this, Figure 10 shows GALPROP model calculations as in Figure 7, but for primary electron source spectra cutoff below 1 GeV and 5 GeV, respectively. The 5 GeV cutoff removes most of the emission in the SPI range, which comes mainly from CMB and far-IR component of the ISRF. With the 1 GeV cutoff much of the emission is restored, showing that most of the IC in the energy range considered in this paper comes from electrons between 1 and 5 GeV. For these energies, the locally measured CR electron spectrum is strongly affected by heliospheric modulation and the SPI measurements can allow indirect probing of the interstellar spectrum of these CRs. In turn, understanding the heliospheric transport of CRs could be improved because uncertainties on the true interstellar CR spectra directly affect the heliospheric model predictions.

6. NON-IC DIFFUSE COMPONENTS: 26Al, 60Fe LINES AND ANNIHILATION RADIATION EMISSION

The main focus of this paper is continuum emission, so for the lines and positronium we restrict ourselves to a check on the consistency of our global diffuse spectrum, because these components are extracted simultaneously. These topics will be explored in greater detail in a separate paper.

The 26Al line has been shown to be intrinsically narrow with a 2σ upper limit on the width of less than 1.3 keV (Wang et al. 2009). To take into account the emission of this diffuse line, we use an energy band from 1806 keV to 1812 keV. The line is strong compared to the continuum flux in this band and is essentially unaffected by the assumed underlying power-law parameters and diffuse continuum spatial shape. The contribution in counts of this line through its interaction with the detectors (Compton effect, etc.) was subtracted from the continuum prior to the diffuse continuum data analysis. The 26Al line is detected at 13σ with a flux of $3.3-3.6 \times 10^{-4}$ photons cm$^{-2}$ s$^{-1}$ in the inner Galaxy ($|l| < 30^\circ$ and $|b| < 10^\circ$, which agrees with earlier measurements; Wang et al. 2009 and references therein).
Table 5
“Fermi Bubbles” 2σ Upper Limits

Energy Band (keV)	25–50	50–100	100–200	200–600	600–1800
Upper Galactic latitude bubble	<1.6	<1.8	<1.3	<1.5	<1.2
Lower Galactic latitude bubble	<1.6	<1.8	<1.3	<1.5	<1.2

Notes. Fluxes are in unit of 10^{-3} photons cm$^{-2}$ s$^{-1}$.

* For the 25–50 keV band (Section 7.1), the fluxes of all the sky components are constrained to be positive.

8. SUMMARY AND DISCUSSION

New results on the diffuse emission spatial morphology and spectrum in the range 20 keV–2.4 MeV have been obtained from the analysis of six years of SPI data. Over this energy range, what is seen as diffuse emission is the result of the superposition of several physical processes: annihilation radiation, cosmic nuclear γ-ray lines, diffuse continuum due to interstellar emission, and unresolved sources. In the present analysis, we have been able to isolate each of these diffuse components. We have explored uncertainties and limitations due to the data reduction along with the spatial morphology modeling.

The diffuse emission intensity in the central radian ($\|b\| < 30^\circ$ and $|b| < 15^\circ$) is estimated to be one-tenth of the total emission (including sources) below 100 keV and one-third in 100–300 keV band. The diffuse emission spectrum has the following main features:

1. The diffuse continuum spectrum (apart from positronium) is fitted by a power law of index 1.4–1.5, with a flux at 100 keV of 1.1×10^{-4} photons cm$^{-2}$ s$^{-1}$ keV$^{-1}$. This power law, thought to be related to interstellar emission, can be decomposed into two spatial components: the IC component with a power law of index 1.8 and a flux at 100 keV of $\sim 10^{-4}$ photons cm$^{-2}$ s$^{-1}$ keV$^{-1}$ and another component which can be modeled with an extinction-corrected 4.9 μm DIRBE-based template, whose spectral shape is a power law with an index of ~ 1 and a flux at 50 keV of $\sim 3\times10^{-5}$ photons cm$^{-2}$ s$^{-1}$ keV$^{-1}$. This additional component is weak below 200 keV compared to the IC component.

2. The diffuse continuum flux around 1 MeV is found compatible with the CGRO/COMPTEL measurement.

3. The IC emission distribution predicted by the GALPROP code is in fair agreement with the data. However, a model with an electron spectrum increased by a factor of two over the standard model based on the electrons (plus positrons) measured by Fermi-LAT is in better agreement. Also, an increased ISRF in the Galactic bulge or a large Galactic CR halo are other reasonable possibilities to that can lead to an increased flux. The data analyzed in this paper do not allow a distinction to be made between these possibilities.

4. An additional component is required below 50 keV. This excess over the IC emission is well modeled with the near-IR/DIRBE 4.9 μm map. This low-energy component has an exponential spectrum with a cutoff at 8 keV and a flux at 50 keV of $\sim 2 \times 10^{-4}$ photons cm$^{-2}$ s$^{-1}$ keV$^{-1}$. It can interpreted in terms of the stellar origin as proposed by Krivonos et al. (2007).

The diffuse continuum emission spectrum obtained with the present analysis confirms and improves on the results reported in Bouchet et al. (2008) and Porter et al. (2008). Below 100 keV, it is also compatible with results obtained from the Imager on Board the INTEGRAL Satellite analysis (Krivonos et al. 2007; Türler et al. 2010). In addition, we found that our global diffuse spectrum is consistent through the measured characteristics of nuclear lines (26Al, 60Fe) and annihilation radiation spectrum.

There is no detection in the SPI energy range of the “Fermi bubbles” at the present level of sensitivity.

SPI will continue to provide new data for at least the next three years. Meanwhile, Fermi-LAT will be operating at least over this time span, and analysis of its data will continue to yield further information on the diffuse γ-ray emission \gtrsim100 MeV. An analysis showing the complementarity.
of the data provided by these instruments, enabling us to probe the physical processes producing the diffuse emission, is given in Strong (2010). Together with existing data from other instruments, the data from these two currently operating missions allow the investigation of the CR electron spectrum at all energies, which will eventually enable an unambiguous decomposition of the diffuse γ-ray sky.

The INTEGRAL/SPI project has been completed under the responsibility and leadership of CNES. We are grateful to ASI, CEA, CNES, DLR, ESA, INTA, NASA and OSTC for support.

GALPROP development is partially funded via NASA grants NNX09AC15G and NNX10AE78G.

Some of the results in this paper have been derived using the HEALPix (Górski et al. 2005) package.

APPENDIX A

FORM OF SPI RESPONSE MATRIX

The SPI response R has been split into three components which correspond to the detector response to the photopeak events: $R^{(1)}$; non-photopeak events that interact first in a detector: $R^{(2)}$(Compton interaction, ...); and photons that interact first in the passive material surrounded the detector: $R^{(3)}$.

$$ R(E, E_{\text{ph}}, \theta, d) = \sum_{i=1}^{3} R^{(i)}(E, E_{\text{ph}}, \theta, d). \quad (A1) $$

Here E stands for the detected energy, E_{ph} for the incident photon energy, θ for the incident photon direction relative to the telescope axis, and d for the detector number. The templates $R^{(i)}$ were found to a good approximation to not vary with detector or incident photon energy, and only their normalization changes (Sturmer et al. 2003). The templates are thus determined for a given photon energy and only the normalization or efficiency (Sturmer et al. 2003). The templates are thus determined for a given photon energy and only the normalization or efficiency is calculated for every incident photon direction and detector number. In short, each component has been again split in two parts. The first part is the Imaging Response Function (IRF) and the second part is the Redistribution Matrix File (RMF). The IRFs contain the detector effective area as a function of the detector number (d), the incident photon direction (θ), and the incident photon energy (E_{ph}). The RMFs contain information about the energy distribution of detector counts (E) for photons of a given incident energy (E_{ph}). The response is rewritten as

$$ R(E, E_{\text{ph}}, \theta, d) = \sum_{i=1}^{3} \text{IRF}^{(i)}(E_{\text{ph}}, \theta, d) \times \text{RMF}^{(i)}(E, E_{\text{ph}}) \quad (A2) $$

$$ \int R(E, E_{\text{ph}})dE = 1. \quad (A3) $$

This decomposition into static components reduces the computation time and storage. More details can be found in Sturmer et al. (2003).

The detector counts C produces by a source (incident photon direction θ) emitting a spectrum $S(E_{\text{ph}}, \theta)$ is

$$ C(E, d) = \sum_{i=1}^{3} \int \text{IRF}^{(i)}(E_{\text{ph}}, \theta, d) \times \text{RMF}^{(i)}(E, E_{\text{ph}})S(E_{\text{ph}}, \theta)dE_{\text{ph}} \quad (A4) $$

For N_{e} exposures (or pointings), N_{d} detectors, N_{s} sources, and N_{e} energy band (Section 3), the equation is

$$ C(E, d, p) = \sum_{i=1}^{N_{s}} \sum_{i=1}^{3} \int \text{IRF}^{(i)}(E_{\text{ph}}, \theta_{s}, d, s) \times \text{RMF}^{(i)}(E, E_{\text{ph}})S(E_{\text{ph}}, \theta_{s})dE_{\text{ph}}. \quad (A6) $$

θ_{s} is the direction of the source number s relative to the telescope axis and $S(E_{\text{ph}}, \theta_{s})$ its incident photon spectrum.

The number of equations to hold simultaneously is then $N_{d} \times N_{p} \times N_{e}$ and the number of unknowns is $N_{s} \times N_{e}$, assuming no background and constant flux sources (Section 3).

Taking into account completely the response matrix requires us to solve a more complex equation than Equation (1) with extra additional dimensions in both data space (all detected energy or data channels) and photon space (incident photon energy). Fortunately, it is possible to use a close approximation of these equations to reduce it to the form of Equation (1). The latter system of equation is subsequently solved several times (for each energy band), with $N_{d} \times N_{p} \times N_{e}$ equations to hold simultaneously and N_{e} unknown.

A.1. Flux Extraction in Counts Space

To reduce the dimension of the problem to be solved, a flux extraction in counts space is first done and the resulting source counts are then converted into an incident photon spectrum. In this case only, the photopeak response part is used.

$$ C(E, d) = C^{(1)}(E, \theta, d) + C^{(2)}(E, \theta, d) + C^{(3)}(E, \theta, d) \quad (A7) $$

The term IRF$^{(1)}$ is photopeak efficiency (and omitting the energy resolution term for simplicity)

$$ \text{RMF}^{(1)}(E, E_{\text{ph}}) = \delta(E, E_{\text{ph}}) \quad (A8) $$

$$ C^{(1)}(E, \theta, d) = \text{IRF}^{(1)}(E, d) \times S(E, \theta). \quad (A9) $$

Then

$$ C(E, d) = \text{IRF}^{(1)}(E, d) \times S(E, \theta) \times \beta(E, \theta, d). \quad (A10) $$

For a fixed energy E, making the approximation that whatever the event types, the spatial distribution of counts over the detector plane (in function of the detector number d) is similar and hence does not depend on the detector number d ($\beta(E, \theta, d) \simeq \beta(E, \theta)$), then

$$ C(E, d) = \text{IRF}^{(1)}(E, \theta, d) \times S(E, \theta) \times \beta(E, \theta) = \text{IRF}^{(1)}(E, \theta, d) \times S^{\text{counts}}(E, \theta). \quad (A11) $$

Here S^{counts} is called the flux in counts space.

A.2. Direct Photon Flux Extraction—“Pseudo-efficiency”

It is possible to extract the source photon spectrum directly from the data. For that the emission spectrum’s spectral shape is assumed to be known and to be continuous in energy. This
shape can, for example, be extracted after a first flux extraction in counts space and conversion into incident photon spectrum. F_{Fitted} being the fitted photon spectrum, then

$$C(E, d) = \sum_{i=1}^{3} \int \text{IRF}(E_{\text{ph}}, \theta, d) \times \text{RMF}^{(i)}(E, E_{\text{ph}}) F_{\text{Fitted}}(E_{\text{ph}}, \theta) dE_{\text{ph}} \times S(E, \theta).$$

If $F_{\text{Fitted}}(E, \theta)$ is sufficiently close to the incident spectrum $S(E, \theta)$ then the above formula predicts counts in data space. It can be rewritten as

$$C(E, d) = R_{\text{Pseudo}}(E, \theta, d) \times S(E, \theta).$$

R_{Pseudo} is the response of the instrument assuming a continuous photon emission spectrum of known spectral shape (for one incident photon in each energy band).

A.3. “Simplified” System of Equations

Finally, for N_s sources located in the FoV, the data $D(d, p, E)$ obtained during an exposure (pointing p) in the detector d for given energy E is

$$D_{dp} = \sum_{j=1}^{N_s} R_{dp,j} S_{p,j} + B_{dp}. \quad (A14)$$
B_{dp} is the background obtained during an exposure (pointing *p*) in detector *d* for given energy *E*. *R* can be either IRF^{(1)} or R_{pseudo}. The equation will be solved in this latter form (Equation (1)).

If the source emission spectrum follows a known spectral shape, then the counts predicted by the pseudo-efficiency method is more realistic. Anyway, this method can be more sensitive to errors in the simulated response matrix and storage simplification made, and requires the knowledge of the incident photon spectrum which might be continuous in energy. On the other hand, the flux extraction in counts space may predict inaccurate source counts as the photopeak-like assumed response is not the true response.

APPENDIX B

IMPACT OF THE ENERGY REDISTRIBUTION MATRIX FORM ON DIFFUSE MEASUREMENT

The first approximation (counts flux approximation) used only the photopeak part of the response to obtain fluxes in counts space in a first step. Then, these counts fluxes are converted into an incident photon spectrum. The “pseudo-efficiency” response allows us to obtain an incident photon spectrum directly.

For the counts flux approximation, for each point source a small fraction of the non-photopeak events could have been included in the background or vice versa. For a given point source, the effect is negligible on the extracted counts spectrum. Nevertheless, for the present analysis and due to the numerous point sources (accumulation effect) and their spatial distribution (most of them are located around the Galaxy plane), these counts residuals may sum-up to mimic a false diffuse-emission-like supplementary component. This effect is visible in Figure 11; actually, it is negligible for the whole sky spectrum but is important for the central radian region. It is not the case for the “pseudo-efficiency” approximation as long as a close estimate of each point-source incident photon spectral emission shape is available. The method gives by construction a better extraction of sources counts and separation from other components. Nevertheless, the method is sensitive to errors in the non-photopeak events response matrices.

Figure 11 shows the resulting diffuse spectrum of each component and the combined spectrum for the two approximations mentioned above plus a third case where the “pseudo-efficiency” is used for point sources, while photopeak response is used for all the diffuse components. These three analyses were done in parallel at each step of the study. They give an idea of the uncertainties/systematic. All produce compatible results above 100 keV; below, a larger intensity is found for the diffuse components as suspected. Anyway, we use results obtained with “pseudo-efficiency” as it is better adapted to model counts of all sources in the data space and hence a better separation of the background and sources terms.

REFERENCES

Abdo, A. A., Ackermann, M., Ajello, M., et al. 2009, Phys. Rev. Lett., 103, 251101

Abdo, A. A., Ackermann, M., Ajello, M., et al. 2010, Phys. Rev. Lett., 104, 101101

Amestoy, P. R., Guernouche, A., L’Excellent, J. Y., & Pralet, S. 2006, Parallel Comput., 32, 136

Bird, A. J., Bazzano, A., Bassani, L., et al. 2010, ApJS, 186, 1

Bleach, R. D., Boldt, E. A., Holt, S. S., Schwartz, D. A., & Serlemitsos, P. J. 1972, ApJ, 174, L101

Bouchet, L., Jourdain, E., Roques, J. P., et al. 2008, ApJ, 679, 1315

Bouchet, L., Roques, J. P., & Jourdain, E. 2010, ApJ, 720, 1772

Bouchet, L., Roques, J. P., & Mandrou, P., et al. 2005, ApJ, 635, 1103

Capelli, R., Warwick, R. S., Porquet, D., Gillessen, S., & Predehl, P. 2011, A&A, 430, A38

Churazov, E., Sazonov, S., Tsygankov, S., Sunyaev, R., & Harshavardhan, D. 2011, MNRAS, 411, 1727

Dame, T. M., Hartmann, D., & Thaddeus, P. 2001, ApJ, 547, 792

Dickey, J. M., & Lockman, F. J. 1990, ARA&A, 28, 215

Dobler, G., Finkbeiner, D. P., Cholis, I., Slatyer, T., & Weiner, N. 2010, ApJ, 717, 825

Dubois-Popatel, J., Roques, J. P., Sazonov, S., & Sunyaev, R. 2005, MNRAS, 357, 420

Gorski, K. M., Hivon, E., Banday, A. J., et al. 2005, ApJ, 622, 759

Higdon, J. C., Lingenfelter, R. E., & Rothschild, R. E. 2009, ApJ, 698, 350

Jensen, P. L., Clausen, K., Cassi, C., et al. 2003, A&A, 411, L7

Jourdain, E., & Roques, J. P. 2009, ApJ, 704, 17

Krivonos, R., Revnivtsev, M., Churazov, E., et al. 2007, A&A, 463, 957

Lebrun, F., Terrier, R., Bazzano, A., et al. 2004, Nature, 428, 293

Ore, A., & Powell, J. 1949, Phys. Rev., 75, 1696

Porter, T. A., Moskalenko, I. V., Strong, A. W., Orlando, E., & Bouchet, L. 2008, ApJ, 682, 400

Roques, J. P., Schanne, S., Von Kienlin, A., et al. 2003, A&A, 411, L91

Rouet, F. R., 2009, Partial Computation of the Inverse of a Large Sparse Matrix—Application to Astrophysics, INP-ENSEEIHT/IRIT, http://rouet.perso.enseeiht.fr/report.pdf

Scargle, D. 1998, ApJ, 504, 405

Smith, D. M. 2004, in Proc. 5th INTEGRAL Workshop on the INTEGRAL Universe, ed. V. Schönfelder, G. Lichti & C. Winkler (ESA SP-552; Noordwijk: ESA), 45

Strong, A. W. 2010, in Proc. ICATPP Conf. on Cosmic Rays for Particle and Astroparticle Physics (Singapore: World Scientific), in press (arXiv:1101.1381)

Strong, A. W., & Moskalenko, I. V. 1998, ApJ, 509, 212

Strong, A. W., Moskalenko, I. V., & Ptuskin, V. S. 2007, Ann. Rev. Nucl. Part. Sci., 57, 285

Strong, A. W., Moskalenko, I. V., & Reimer, O. 2000, ApJ, 537, 763

Strong, A. W., Moskalenko, I. V., & Reimer, O. 2004, ApJ, 613, 962

Strong, A. W., Porter, T. A., Digel, S. W., et al. 2010, ApJ, 722, L58

Sturmer, S. J., Schrader, C. R., Weidenspointner, G., et al. 2009, A&A, 411, L81

Su, M., Slater, T. R., & Finkbeiner, D. P. 2010, ApJ, 724, 1044

Terrier, R., Ponti, G., Belanger, G., et al. 2010, ApJ, 719, 143

Trotta, R. L., Johannesson, G., Moskalenko, I. V., et al. 2010, ApJ, 729, 106

T¨urler, M., Chernyakova, M., Courvoisier, T. J.-L., et al. 2010, A&A, 512, 49

Tzvetomila, S. 2009, Parallel Triangular Solution in the Out-of-core Multifrontal Approach for Solving Large Sparse Linear Systems, http://pantar.cerfacs.fr/6-26642-PhD-Dissertations.php

Vedrenne, G., Roques, J. P., Schönfelder, V., et al. 2003, A&A, 411, L63

Wang, W., Harris, M. J., Diehl, R., et al. 2007, A&A, 469, 1005

Wang, W., Lang, M. G., Diehl, R., et al. 2009, A&A, 496, 713

Weidenspointner, G., Skinner, G., Jean, P., et al. 2008, Nature, 451, 159