A large retroperitoneal lipoblastoma
A case report and literature review

Saki Sakamoto, MDa, Naoki Hashizume, MDa, Suguru Fukahori, MD, PhDa, Shinji Ishii, MD, PhDb, Nobuyuki Saikusa, MD, PhDb, Motomu Yoshida, MD, PhDb, Daisuke Masui, MD, Naruki Higashidate, MD, Shiori Tsuruhisa, MD, Shuich Ozono, MD, PhDb, Masahiko Tanigawa, MD, Yoshiaki Naito, MD, PhDc, Yoshiaki Tanaka, MD, PhDad, Minoru Yagi, MD, PhDa

Abstract

Introduction: Lipoblastoma is a rare benign soft tissue tumor that occurs most commonly in infants and children. However, retroperitoneal lipoblastomas are rare, occurring in <5% of cases. We report a case of large retroperitoneal lipoblastoma and the largest collection of known retroperitoneal lipoblastomas in children in the literature.

Case presentation: A 3-year-old girl presented with left abdominal mass. Magnetic resonance imaging (MRI) revealed a soft tissue mass measuring 12 × 8 × 6 cm in the retroperitoneal region. The mass had a clearly defined margin and a reticular pattern with an interposing fat component. Based on these findings, the mass was suspected to be a soft-tissue tumor, most likely lipoblastoma.

Laparotomy with resection of the retroperitoneal mass was performed. The tumor was easily dissected from the retroperitoneal space without injury to surrounding structure.

A histopathological examination demonstrated the mature proliferation of adipocytes and spindle-shaped cells separated by fibrovascular septa accompanied by myxoid changes. The cells were separated into lobules by septa, and areas of immature adipocytes showing a signet-ring or multivacuolar appearance were present at the periphery. Histopathological diagnosis was lipoblastoma. Follow-up at 6 months revealed no evidence of recurrence.

Conclusion: Retroperitoneal lipoblastoma is rare and tends to be large in size when diagnosed at presentation. Complete resection should not be delayed, as impingement on the surrounding structures is imminent.

Abbreviations: MRI = magnetic resonance imaging, PLAG1 = pleomorphic adenoma gene 1.

Keywords: lipoblastoma, pediatrics, retroperitoneal

1. Introduction

Lipoblastoma is a rare benign soft tissue tumor that occurs most commonly in infants and children.[1,2] The vast majority are detected in children <3 years of age, with >80% of cases occurring before the age of 3 and 40% before the age of 1. Approximately 70% of these tumors occur in the extremities, trunk, head, and neck. However, retroperitoneal lipoblastomas are rare, occurring in <5% of cases.[1,2]

We herein report a case of a large, retroperitoneal lipoblastoma and the largest collection of known retroperitoneal lipoblastomas in children in the literature.

2. Case report

A 3-year-old girl presented with left abdominal swelling. There was no evident congenital abnormalities at birth nor any familial history of disease.

On a physical examination, the child had a soft, moderately distended left abdomen that was not tender when palpated. The hemoglobin, alphafetoprotein, and beta-human chorionic gonadotropin levels were normal. Abdominal ultrasound showed a heterogeneous soft tissue mass measuring 12 × 8 × 6 cm. Magnetic resonance imaging (MRI) revealed a well-encapsulated soft tissue mass lesion in the retroperitoneal region. The mass had a clearly defined margin and a reticular pattern with an interposing fat component showing a reduced signal on fat suppression inversion recovery imaging (Fig. 1A and B). Based on these findings, the mass was suspected to be a malignant soft-tissue tumor, most likely lipoblastoma.

Laparotomy with resection of the retroperitoneal mass was performed under general anesthesia. A well-encapsulated mass was loosely attached to the retroperitoneum. The tumor was easily dissected from the retroperitoneal space without injury to adjacent structures. It was well circumscribed with a thin, fibrous capsule and a yellow, lobulated fatty parenchyma separated by thin fibrous septa with punctate vessels (Fig. 2).
Figure 1. (A) T1-weighted magnetic resonance imaging coronal view images obtained for a large, well-circumscribed mass that appeared to be multilobulated causing a significant mass effect in the left retroperitoneal region (close arrows). (B) The fat component showed a reduced signal on fat suppression inversion recovery imaging (close arrows).

Figure 2. The cut surface of the lipoblastoma revealed a yellow-tan, lobulated mass with no areas of necrosis or hemorrhaging.
A histopathological examination demonstrated the mature proliferation of adipocytes and spindle-shaped cells with bland nuclei separated by fibrovascular septa accompanied by myxoid changes. The cells were separated into lobules by septa, and areas of immature adipocytes showing a signet-ring or multivacuolar appearance were present at the periphery (Fig. 3A and B). A chromosome analysis of the tumor showed no pleomorphic adenoma gene 1 (PLAG1) oncogene rearrangements. Follow-up at 6 months revealed no evidence of recurrence.

3. Discussion

Lipoblastomas are soft tissue tumors composed of embryonal/fetal fat and characterized by a benign nature, early presentation, male predominance, and rapid growth.\(^1\)\(^{-}4\) The long-term prognosis for lipoblastoma is usually excellent.\(^5\) Metastases have never been reported, and the recurrence rates have been reported to range from 9% to 22%, which is attributed to incomplete initial excision of the tumor.\(^3\),\(^6\),\(^7\) Some reports suggest that lipoblastoma may spontaneously mature or

Figure 3. A histopathologic examination revealed areas with myxoid adipocytes and lipoblasts and other areas with more mature adipocytes with clear cytoplasm (bar = 200 \(\mu\)m) (A). The mass was separated into lobules by well-defined fibrous septa. Higher magnification of the tumor cells readily demonstrated the myxoid character of the lipoblasts' cytoplasm (bar = 20 \(\mu\)m) (B).
Report	Year	Sex	Age at excision	Onset	Size, cm	Location	Preoperative diagnosis	Pathological diagnosis	Operation	Follow-up	Recurrence	Complication
Chung[3]	1973	NR	NR	NR	NR	NR	NR	Lipoblastomatosis	NR	NR	NR	NR
Tanig[14]	1986	F	3 y	L hypochondrial mass	48	L retroperitoneal lesion	Lipoma	Lipoblastoma	CR	6 mo	—	—
Jimenez[16]	1986	M	12 y	R abdominal mass, leg venous stasis	19.5 × 12 × 6	R retroperitoneal lesion	Retropertoneal sarcoma	Lipoblastoma	CR	5 y	—	Chronic venous stasis of both legs
		M	7 mo	R abdominal mass	15 × 10 × 9	R retroperitoneal lesion	Wilms tumor or neuroblastoma	Lipoblastoma	CR	4 y	—	—
Fisher[16]	1981	F	7 mo	R abdominal mass	NR	R retroperitoneal lesion	NR	Lipoblastomatosis	NR	NR	NR	NR
St. Omer[7]	1992	M	5 y	Abdominal pain and distension, vomiting	NR	L retroperitoneal lesion	NR	Lipoblastoma	CR	NR	NR	NR
Chi[16]	1995	M	1 y	Abdominal distension	16 × 12 × 10	R retroperitoneal lesion	NR	Lipoblastomatosis	CR	NR	NR	NR
Collins[18]	1997	M	34 mo	Vomiting	421	L retroperitoneal lesion	NR	Lipoblastoma	NR	1 y	—	—
Huang[20]	1998	M	8 mo	Abdominal distension, constipation	NR	Lower back muscle, retroperitoneum and spinal canal	NR	Lipoblastomatosis	IR	Dead	—	Septic shock
Polkono[7]	1999	M	5 mo	R lower abdominal mass	14 × 12 × 9	R retroperitoneal lesion	Lipoblastoma (FNAC)	Lipoblastoma	CR	5 y	—	NR
Dilley[8]	2001	NR	NR	Urinary tract infection	18 × 9 × 6	L retroperitoneal lesion	Lipoblastoma (FNAC)	Lipoblastoma	CR	11 mo	—	NR
Chun[20]	2001	M	29 mo	Abdominal distension	19.5 × 16 × 12.5	Retroperitoneum	NR	Lipoblastoma	CR	9 y	—	NR
Dokucu[21]	2003	M	12 mo	Abdominal mass, R lower extremity swelling	10 × 12	Lower outer quadrant of abdominal cavity	NR	Lipoblastoma	CR	15 mo	—	—
McKay[3]	2006	M	17 mo	NR	417	Midline retroperitoneal lesion	Neuroblastoma	Lipoblastoma	CR	NR	—	NR
Speer[23]	2007	NR	NR	Abdominal pain and distension	NR	NR	NR	Lipoblastoma	CR	NR	—	NR
Kok[17]	2010	F	4 y	Abdominal distension	25 × 20 × 7	L retroperitoneal lesion	Cystic mass	Lipoblastoma	CR	36 mo	—	—
Api[37]	2010	F	22 d	Screening for fever malformation	62 × 3 × 3	R retroperitoneal lesion	Hemangioendothelioma	Lipoblastoma	IR	10 mo	—	NR
Buchharof[9]	2012	F	2 y	Palpable abdominal mass	15 × 11 × 8	R lower quadrant	Lipomatous tumor of retroperitoneal origin	Lipoblastoma	CR	2 y	—	—
Susam-sen[24]	2017	M	11.5 mo	Stomach ache, swelling in the abdominal region, constipation	9 × 5	NR	Lipoma, lipoblastoma	Lipoblastoma	CR	81 mo	—	—
		M	29.5 mo	Stomach ache, abdominal mass, constipation	13 × 10	L retroperitoneal lesion	Lipoblastoma, liposarcoma	Lipoblastoma	CR	2 mo	—	—
Our case	2018	F	3 y	Palpable abdominal mass	12 × 8 × 6	L retroperitoneal adenome	Lipomatous tumor of retroperitoneal origin	Lipoblastoma	CR	6 mo	—	—

CR = complete resection, F = female, FNAC = fine-needle aspiration cytology, IR = incomplete resection, L = left, M = male, NR = not reported, R = right.

[1] Staged resection.
highest sensitivity for the pathology of the tumor, as the increased
includes sarcomas, neuroblastomas, and teratomas. MRI has the
atively. The differential diagnosis of the tumor is broad and
other.[19,23] Three cases reported complications associated with
lipoblastomatosis in one and adhesion to the kidney in the
incomplete resection or prior recurrence.[9] Resection and a pathological examination are ultimately needed for
achieving a definitive diagnosis.

The recent use of cytogenetics has proven to be helpful for the
diagnosis, as translations involving the long arm of chromosome 8,
particularly 8q11-13, with or without PLAG1 oncogene rear-
rangements, have been found to be associated with lipoblasto-
mas.[10–13] This rearrangement targets the PLAG1 gene and has
been reported in 82% of lipoblastomas, only 3% of conventional
lipomas and never in myxoid liposarcoma.[13,15] However, in
the present case, PLAG1 oncogene rearrangements were not found.
A literature search was performed using the electronic database
“PubMed” for all patients’ reports in the English literature with
retroperitoneal lipoblastoma using the search term “retroperito-
neal lipoblastoma.” Relevant data were extracted from all primary
reported patients. Patients included in multiple reports were used
only once for the analysis. All patient data were combined to create
this report. There have been 26 cases of pediatric retroperitoneal
lipoblastomas, as shown in Table 1.[1–4,7,10,14–24] No recurrences
were reported. Clinical features of the current case have been
consistent with those previously reported, including her age, sex,
position, size and location of tumor, preoperative diagnosis,
pathological diagnosis operation, and complications.

Nineteen of the 26 cases, including the current case, have been
described in detail in the literature. These patients were 12 males
and 7 females. The age at presentation ranged from 22 days to 12
years (median 17 months). The tumors ranged in longitudinal
length from 10 to 25 cm except for 1 neonatal patient. The
retroperitoneal tumors were always large in size and weight[2,12]
due to their location. Tumors were located at the right side in 7
patients, at the left side in 7 patients, and at the midline in 2
patients. The others did not report the side of retroperitoneal
details. One patient was diagnosed at a screening for fetal
malformations.[23] Five were diagnosed with lipoblastomatosis. In
the review, almost all of the patients required complete resection;
one patient had intraspinal extension requiring 3 separate
surgeries for complete resection.[4] However, 2 patients were
resected incompletely due to multiple retroperitoneal lesions of
lipoblastomatosis in one and adhesion to the kidney in the
other.[19,23] Three cases reported complications associated with
umor resection.[15,19,21] One patient developed chronic bilateral
venostasis after excision,[15] one required internal iliac artery and
vein reconstruction at resection,[21] and one developed septic
shock and died.[19] MRI cannot solely be relied on for the
diagnosis of lipoblastoma. However, it was almost used for
follow-up and evaluation of recurrent tumors.

Appropriate length of follow-up for lipoblastoma remains
controversial. Various lengths of follow-up have been suggested,
including 2 years,[9,19] 3 years,[22] and 5 years.[4] The average time
to recurrence was noted to be 3 years (range, 4 months to 10
years).[23] This report highlighted that there was no recurrence after
complete resection. Moreover, complete resection should not be
delayed so that the surrounding structures were not injured.

In conclusion, retroperitoneal lipoblastoma tends to be large in
size (>10 cm) when diagnosed at presentation. However, the vast
majority of all resections were well tolerated with benign
postoperative courses. Complete resection should not be delayed,
as impingement on the surrounding structures is imminent.

Acknowledgments
We thank Dr. Mitsuru Miyachi in Department of Pediatrics,
Graduate School of Medical Science, Kyoto Prefectural Univer-
sity of Medicine for analysing PLAG1 oncogene rearrangements.

Author contributions
Conceptualization: Shuichi Ozono.
Data curation: Suguru Fukahori, Shinji Issi.
Project administration: Motomu Yoshida, Daisuke Masui,
Naruki Higashidate, Shiiori Tsurhisa.
Supervision: Minoru Yagi.
Visualization: Masahiko Tanigawa, Yoshih Naitou.
Writing – original draft: Saki Sakamoto.
Writing – review and editing: Naoki Hashizume, Nobuyuki
Saikusa, Yoshiaki Tanaka, Minoru Yagi.
Naoki Hashizume orcid: 0000-0001-9366-361X.

References
[1] Burchhardt D, Fallon SC, Lopez ME, et al. Retroperitoneal
lipoblastoma: a discussion of current management. J Pediatr Surg
2012;47:e51–4.
[2] Chi TW, Shih SL, Ma YC. Retroperitoneal lipoblastoma: report of one case.
Zhonghua Min Guo Xiao Er Ke Yi Xue Han Za Zhi 1995;36:376–7.
[3] Chung EB, Enzinger FM. Benign lipoblastomatosis. An analysis of 35 cases.
Cancer 1973;32:482–92.
[4] McVay MR, Keller JE, Wagner CW, et al. Surgical management of
lipoblastoma. J Pediatr Surg 2006;41:1067–71.
[5] Cudnik R, Efron PA, Chen MK. Mesenchymal lipoblastoma: a rare location
in children. J Pediatr Surg 2008;43:e5–7.
[6] Perlis CS, Collins MH, Honig PJ. Forehead lipoblastoma mimicking a
hemangioma. Pediatrics 2000;105:123–8.
[7] Pollono DG, Tomarchio S, Drut R, et al. Retroperitoneal and deep-seated
lipoblastoma: diagnosis by CT scan and fine-needle aspiration biopsy.
Diagn Cytopathol 1999;20:295–7.
[8] Coffin CM. Lipoblastoma: an embryonal tumor of soft tissue related to
organogenesis. Semin Diagn Pathol 1994;11:99–103.
[9] Dilley AV, Patel DL, Hicks MJ, et al. Lipoblastoma: pathophysiology
and surgical management. J Pediatr Surg 2001;36:229–31.
[10] Kok KY, Telsinge RPU. Lipoblastoma: clinical features, treatment, and
outcome. World J Surg 2010;34:517–22.
[11] Hicks J, Dilley A, Patel D, et al. Lipoblastoma and lipoblastomatosis in
infancy and childhood: histopathologic, ultrastructural, and cytogenetic
features. Ultrastruct Pathol 2001;25:321–33.
[12] Bartuma H, Domaniski HA, Von Steyern FV, et al. Cytogenetic and
molecular cytogenetic findings in lipoblastoma. Cancer Genet Cytogenet
2008;183:60–3.
[13] Yoshida H, et al. Identification of COL3A1 and RAB22B as novel
translocation partner genes of PLAG1 in lipoblastoma. Genes Chromo-
somes Cancer 2014;53:606–11.
[14] Tanyel FC, Erdener A, Gunhan O, et al. Retroperitoneal lipoblastoma in
a three-year-old child. Turk J Pediatr 1986;26:259–61.
[15] Jimenez JF. Lipoblastoma in infancy and childhood. J Surg Oncol
1986;32:258–44.
[16] Fisher MF, Fletcher BD, Dahms BB, et al. Abdominal lipoblastomatosis: radiographic, echographic, and computed tomographic findings. Radiology 1981;138:593–6.

[17] St Omer L, Moule N, Duncan N, et al. Retroperitoneal lipoblastoma. Report of a case and review of the literature. West Indian Med J 1992;41:164–5.

[18] Collins MH, Chatten J. Lipoblastoma/lipoblastomatosis: a clinicopathologic study of 25 tumors. Am J Surg Pathol 1997;21:1131–7.

[19] Huang CC, Ko SF, Chuang JH, et al. Lipoblastomatosis combined with intestinal neuronal dysplasia. Arch Pathol Lab Med 1998;122:191–3.

[20] Chun YS, Kim WK, Park KW, et al. Lipoblastoma. J Pediatr Surg 2001;36:905–7.

[21] Dokucu AI, Oztruk H, Yildiz FR, et al. Retroperitoneal lipoblastoma involving the right common iliac artery and vein. Eur J Pediatr Surg 2003;13:268–71.

[22] Speer AL, Schofield DE, Wang KS, et al. Contemporary management of lipoblastoma. J Pediatr Surg 2008;43:1293–300.

[23] Api O, Akil A, Uzun MG, et al. Fetal retroperitoneal lipoblastoma: ultrasonographic appearance of a rare embryonal soft tissue tumor. J Matern Fetal Neonatal Med 2010;23:1069–71.

[24] Susam-Sen H, Yüksel B, Kutluk T, et al. Lipoblastoma in children: review of 12 cases. Pediatr Int 2017;59:545–50.