LARGE DEVIATION PRINCIPLES FOR HYPERSINGULAR RIESZ GASES
Douglas P. Hardin, Thomas Leblé, Edward Saff, Sylvia Serfaty

To cite this version:
Douglas P. Hardin, Thomas Leblé, Edward Saff, Sylvia Serfaty. LARGE DEVIATION PRINCIPLES FOR HYPERSINGULAR RIESZ GASES. 2020. hal-03040321

HAL Id: hal-03040321
https://hal.science/hal-03040321v1
Preprint submitted on 4 Dec 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
LARGE DEVIATION PRINCIPLES FOR HYPERSINGULAR RIESZ GASES

DOUGLAS P. HARDIN, THOMAS LEBLÉ, EDWARD B. SAFF, SYLVIA SERFATY

Abstract. We study \(N \)-particle systems in \(\mathbb{R}^d \) whose interactions are governed by a Riesz potential \(|x - y|^{-s}| \) with an external field in the hypersingular case \(s > d \). We provide both macroscopic results as well as microscopic results in the limit as \(N \to \infty \) for random point configurations with respect to the associated Gibbs measure at reciprocal temperature \(\beta \). We show that a large deviation principle holds with a rate function of the form ‘\(\beta \)-Energy + Entropy’, yielding that the microscopic behavior (on the scale \(N^{-1/d} \)) of such \(N \)-point systems is asymptotically determined by the minimizers of this rate function. In contrast to the asymptotic behavior in the integrable case \(s < d \), where on the macroscopic scale \(N \)-point empirical measures have limiting density independent of \(\beta \), the limiting density for \(s > d \) is strongly \(\beta \)-dependent.

Keywords: Riesz gases, Gibbs measure, Large deviation principle, Empirical measures, Minimal energy

Mathematics Subject Classification: Primary 82D10, 82B05 Secondary 31C20, 28A78

1. Introduction and main results

1.1. Hypersingular Riesz gases. Let \(d \geq 1 \) and \(s \) be a real number with \(s > d \). We consider a system of \(N \) points in the Euclidean space \(\mathbb{R}^d \) with hypersingular Riesz pairwise interactions, in an external field \(V \). The energy \(\mathcal{H}_N(\vec{X}_N) \) of the system in a given state \(\vec{X}_N = (x_1, \ldots, x_N) \in (\mathbb{R}^d)^N \) is defined to be

\[
\mathcal{H}_N(\vec{X}_N) := \sum_{1 \leq i \neq j \leq N} \frac{1}{|x_i - x_j|^s} + \frac{N^{s/d}}{d} \sum_{i=1}^{N} V(x_i).
\]

The external field \(V \) is a confining potential, growing at infinity, on which we shall make assumptions later. The term hypersingular corresponds to the fact that the singularity of the kernel \(|x - y|^{-s}| \) is non-integrable with respect to the Lebesgue measure on \(\mathbb{R}^d \). The particles are assumed to live in a confinement set \(\Omega \subseteq \mathbb{R}^d \).

For any \(\beta > 0 \), the canonical Gibbs measure associated to (1.1) at inverse temperature \(\beta \) and for particles living on \(\Omega \) is given by

\[
d\mathbb{P}_{N,\beta}(\vec{X}_N) = \frac{1}{Z_{N,\beta}} \exp \left(-\beta N^{-s/d} \mathcal{H}_N(\vec{X}_N) \right) \mathbf{1}_{\Omega^N}(\vec{X}_N) d\vec{X}_N,
\]

The research of the first and third authors was supported, in part, by the U. S. National Science Foundation under the grant DMS-1516400 and was facilitated by the hospitality and support of the Laboratoire Jacques-Louis Lions at UPMC.
where \(d \hat{X}_N \) is the Lebesgue measure on \((\mathbb{R}^d)^N\), \(1_{\Omega^N}(\hat{X}_N)\) is the indicatrix function of \(\Omega^N\), and \(Z_{N,\beta} \) is the “partition function”; i.e., the normalizing factor
\[
Z_{N,\beta} := \int_{\Omega^N} \exp \left(-\beta N^{s/d} \mathcal{H}_N(\hat{X}_N) \right) \, d\hat{X}_N.
\]
The scaling of the temperature as \(\beta N^{-s/d} \) is introduced because \(\mathcal{H}_N(\hat{X}_N) \) typically grows like \(N^{1+s/d} \) as \(N \to \infty \). We will call the statistical physics system described by (1.1) and (1.2) a hypersingular Riesz gas.

Statistical mechanics of Riesz gases have been studied in [LS15] for a different range of the parameter \(s \), namely \(\max(d-2,0) \leq s < d \), and a large deviation principle for the empirical fields (which encode the microscopic behavior of the particles at scale \(N^{-1/d} \), averaged in a certain way) is derived there. A first goal of the present paper is to extend this work to the hypersingular, \(s > d \), case. Such statistical mechanics models are of interest see e.g. [Maz11, Section 4.2], [BLW16]. Studying the case \(s > d \) could also be a first step towards the study of physically more relevant interactions as the Lennard-Jones potential. More

The minimizers of the \(N \)-point Riesz interaction (with or without the external field \(V \)) have been the subject of much attention recently; we refer e.g to [HS05, HS04, HSVar] and the references therein. The contribution of the present paper to the field of study lies in the description of the minimizers (in the limit \(N \to \infty \)) at the microscopic scale. We define a Riesz energy \(\mathcal{W}_s \) for infinite random point configurations which is the counterpart of the renormalized energy of [PS14, LS15, Leb16] (defined for \(s < d \)), and is expected to be minimized by lattices in some cases. To any minimizing sequence \(\{X_N\}_N \) of the \(N \)-point Riesz interaction, we associate a limit object (a random tagged point process) which describes the point configurations \(X_N \) at scale \(N^{-1/d} \), and which is shown to minimize this energy functional.

Another interesting feature is the following observation. In the case \(s < d \), the global, macroscopic behavior can be studied using classical potential theory: the empirical measure \(\frac{1}{N} \sum_{i=1}^N \delta_{x_i} \) is found to converge rapidly to some equilibrium measure determined uniquely by \(\Omega \) and \(V \) and obtained as the unique minimizer of the potential-theoretic functional
\[
\int_{\mathbb{R}^d \times \mathbb{R}^d} |x-y|^{-s}d\mu(x)d\mu(y) + \int_{\mathbb{R}^d} V \, d\mu.
\]
We refer e.g. to [ST97] for a comprehensive treatment of this question (among others). In particular, in the case \(s < d \), the macroscopic behavior is independent of the temperature, and it is only at next order that a dependancy on \(\beta \) appears (see [LS15]). In contrast in the hypersingular case, due to the scaling on the temperature, we find that the empirical measure has a limit which depends on \(\beta \) in quite an intricate way (see Theorem 1.3).

1.2. Assumptions and first notation.

1.2.1. Assumptions. In the rest of the paper, we assume that \(\Omega \subset \mathbb{R}^d \) is closed with positive \(d \)-dimensional Lebesgue measure and that
\[
\partial \Omega \text{ is } C^1,
\]
\[
V \text{ is a continuous, non-negative real valued function on } \Omega.
\]
Furthermore if Ω is unbounded, we assume that
\begin{equation}
\lim_{|x| \to +\infty} V(x) = +\infty,
\end{equation}
and
\begin{equation}
\exists M > 0 \text{ such that } \int \exp(-MV(x))\,dx < +\infty.
\end{equation}

The assumption (1.4) on the regularity of $\partial \Omega$ is mostly technical and we believe that it could be relaxed to e.g. $\partial \Omega$ is locally the graph of, say, a Hölder function in \mathbb{R}^d. However it is unclear to us what the minimal assumption could be (e.g., is it enough to assume that $\partial \Omega$ has zero measure?). An interesting direction would be to study the case where Ω is a p-rectifiable set in \mathbb{R}^d (see e.g. [BHRS16, HSVar]).

Assumption (1.5) is quite mild (in comparison e.g. with the corresponding assumption in the $s < d$ case, where one wants to ensure some regularity of the so-called equilibrium measure, which is essentially two orders lower than that for V) and we believe it to be sharp for our purposes. Assumption (1.6) is an additional confinement assumption, and (1.7) ensures that the partition function $Z_{N,\beta}$, defined in (1.3), is finite (at least for N large enough). Indeed the interaction energy is non-negative, hence for N large enough (1.7) ensures that the integral defining the partition function is convergent.

1.2.2. General notation. We let X be the space of point configurations in \mathbb{R}^d (see Section 2.1 for a precise definition). If Ω is some measurable space and $x \in \Omega$ we denote by δ_x the Dirac mass at x.

1.2.3. Empirical measure and empirical fields. Let $\bar{X}_N = (x_1, \ldots, x_N)$ in Ω^N be fixed.

- We define the empirical measure $\text{emp}(\bar{X}_N)$ as
\begin{equation}
\text{emp}(\bar{X}_N) := \frac{1}{N} \sum_{i=1}^{N} \delta_{x_i}.
\end{equation}
It is a probability measure on Ω.

- We define \bar{X}_N' as the finite configuration rescaled by a factor $N^{1/d}$
\begin{equation}
\bar{X}_N' := \sum_{i=1}^{N} \delta_{N^{1/d}x_i}.
\end{equation}
It is a point configuration (an element of X), which represents the N-tuple of particles \bar{X}_N seen at microscopic scale.

- We define the tagged empirical field $\mathbf{Emp}_N(\bar{X}_N)$ as
\begin{equation}
\mathbf{Emp}_N(\bar{X}_N) := \int_{\Omega} \delta(x, \theta_{N^{1/d}x} \cdot \bar{X}_N')\,dx,
\end{equation}
where θ_x denotes the translation by $-x$. It is a positive measure on $\Omega \times X$.

Let us now briefly explain the meaning of the last definition (1.10). For any $x \in \Omega$, $\theta_{N^{1/d}x} \cdot \bar{X}_N'$ is an element of X which represents the N-tuple of particles \bar{X}_N centered at x and seen at microscopic scale (or, equivalently, seen at microscopic scale and then centered at $N^{1/d}x$). In particular any information about this point configuration in a given ball (around the origin) translates to an information about \bar{X}_N' around x. We may thus think of $\theta_{N^{1/d}x} \cdot \bar{X}_N'$ as encoding the behavior of \bar{X}_N' around x.
The measure
\[(1.11) \quad \int_{\Omega} \delta_{\theta_{N^{1/d_x}} \cdot \vec{X}^N_N} \, dx\]
is a measure on \(X\) which encodes the behaviour of \(\vec{X}^N_N\) around each point \(x \in \Omega\). We may think of it as the “averaged” microscopic behavior (although it is not, in general, a probability measure, and its mass can be infinite). The measure defined by (1.11) would correspond to what is called the “empirical field”.

The tagged empirical field \(\text{Emp}_N(\vec{X}_N)\) is a finer object, because for each \(x \in \Omega\) we keep track of the centering point \(x\) as well as of the microscopic information \(\theta_{N^{1/d_x}} \cdot \vec{X}^N_N\) around \(x\). It yields a measure on \(\Omega \times X\) whose first marginal is the Lebesgue measure on \(\Omega\) and whose second marginal is the (non-tagged) empirical field defined above in (1.11). Keeping track of this additional information allows one to test \(\text{Emp}_N(\vec{X}_N)\) against functions \(F(x, C) \in C^0(\Omega \times X)\) which may be of the form
\[F(x, C) = \chi(x) \tilde{F}(C),\]
where \(\chi\) is a smooth function localized in a small neighborhood of a given point of \(\Omega\), and \(\tilde{F}(C)\) is a continuous function on the space of point configurations. Using such test functions, we may thus study the microscopic behavior of the system after a small average (on a small domain of \(\Omega\)), whereas the empirical field only allows one to study the microscopic behavior after averaging over the whole \(\Omega\).

1.2.4. Large deviations principle. Let us recall that a sequence \(\{\mu_N\}_N\) of probability measures on a metric space \(X\) is said to satisfy a Large Deviation Principle (LDP) at speed \(r_N\) with rate function \(I: X \to [0, +\infty]\) if the following holds for any Borel set \(A \subset X\)
\[\inf_{\overline{A}} I \leq \liminf_{N \to \infty} \frac{1}{r_N} \log \mu_N(A) \leq \limsup_{N \to \infty} \frac{1}{r_N} \log \mu_N(A) \leq -\inf_{\overset{\circ}{A}} I,\]
where \(\overset{\circ}{A}\) (resp. \(\overline{A}\)) denotes the interior (resp. the closure) of \(A\). The functional \(I\) is said to be a good rate function if it is lower semi-continuous and has compact sub-level sets. We refer to [DZ10] and [Var16] for detailed treatments of the theory of large deviations and to [RAS15] for an introduction to the applications of LDP’s in the statistical physics setting.

Roughly speaking, a LDP at speed \(r_N\) with rate function \(I\) expresses the following fact: the probability measures \(\mu_N\) concentrate around the points where \(I\) vanishes, and any point \(x \in X\) such that \(I(x) > 0\) is not “seen” with probability \(1 - \exp(-NI(x))\).

1.3. Main results.

1.3.1. Large deviations of the empirical fields. We let \(\mathfrak{P}_{N, \beta}\) be the push-forward of the Gibbs measure \(\mathfrak{P}_{N, \beta}\) (defined in (1.2)) by the map \(\text{Emp}_N\) defined in (1.10). In other words, \(\mathfrak{P}_{N, \beta}\) is the law of the random variable “tagged empirical field” when \(\vec{X}_N\) is distributed following \(\mathfrak{P}_{N, \beta}\).

The following theorem, which is the main result of this paper, involves the functional \(\mathcal{F}_{\beta} = \mathcal{F}_{\beta, s}\) defined in (2.26). It is a free energy functional of the type “\(\beta\) Energy + Entropy” (see Section 2.2, 2.3 and 2.4 for precise definitions). The theorem expresses the fact that the microscopic behavior of the system of particles is determined by the minimization of the functional \(\mathcal{F}_{\beta}\) and that configurations \(\vec{X}_N\) having empirical fields \(\text{Emp}(\vec{X}_N)\) far from a minimizer of \(\mathcal{F}_{\beta}\) have negligible probability of order \(\exp(-N)\).
Theorem 1.1. For any $\beta > 0$, the sequence $\{P^{N,\beta}\}$ satisfies a large deviation principle at speed N with good rate function $F_\beta - \min F_\beta$.

Corollary 1.2. The first-order expansion of $\log Z_{N,\beta}$ as $N \to \infty$ is

$$\log Z_{N,\beta} = -N \min F_\beta + o(N).$$

1.3.2. Large deviations of the empirical measure. As a byproduct of our microscopic study, we derive a large deviation principle which governs the asymptotics of the empirical measure (which is a macroscopic quantity). Let us denote by $\text{emp}_{N,\beta}$ the law of the random variable $\text{emp}(\tilde{X}_N)$ when \tilde{X}_N is distributed according to $P^{N,\beta}$. The rate function $I_\beta = I_{\beta,s}$ is a functional defined in Section 2.4, which has no simple expression in general (see (2.27)).

Theorem 1.3. For any $\beta > 0$, the sequence $\{\text{emp}_{N,\beta}\}$ obeys a large deviation principle at speed N with good rate function $I_\beta - \min I_\beta$. In particular, the empirical measure converges almost surely to the unique minimizer of I_β.

The rate function I_β is quite complicated to study in general. However, we may characterize its minimizer in some particular cases:

Proposition 1.4. Let $\mu_{V,\beta}$ be the unique minimizer of I_β.

(1) If $V = 0$ and Ω is bounded, then $\mu_{V,\beta}$ is the uniform probability measure on Ω for any $\beta > 0$.

(2) If V is arbitrary and Ω is bounded, $\mu_{V,\beta}$ converges to the uniform probability measure on Ω as $\beta \to 0$.

(3) If V is arbitrary, $\mu_{V,\beta}$ converges to $\mu_{V,\infty}$ as $\beta \to +\infty$, where $\mu_{V,\infty}$ is the limit empirical measure for energy minimizers as defined in the paragraph below.

1.3.3. The case of minimizers. Our remaining results deal with energy minimizers (in statistical physics, this corresponds to setting $\beta = +\infty$). Let $\{\tilde{X}_N\}$ be a sequence of point configurations in Ω such that for any $N \geq 1$, \tilde{X}_N has N points and minimizes H_N on Ω_N.

The macroscopic behavior is known from [HSVar]: there is a unique minimizer $\mu_{V,\infty}$ (the notation differs from [HSVar]) of the functional

$$C_{s,d} \int_{\Omega} \rho(x)^{1+s/d} dx + \int_{\Omega} V(x) \rho(x) dx$$

among probability densities ρ over Ω ($C_{s,d}$ is a constant depending on s,d defined in (2.10)), and the empirical measure $\text{emp}(\tilde{X}_N)$ converges to $\mu_{V,\infty}$ as $N \to \infty$. See (5.4) for an explicit formula for $\mu_{V,\infty}$.

The notation for the next statement is given in Sections 2.1 and 2.3. Let us simply say that W_s (resp. W_e) is an energy functional defined for a random point configuration (resp. a point configuration), and that $\mathcal{M}_{\text{stat},1}(\mathcal{F})$ (resp. $\mathcal{X}_{\mu_{V,\infty}(x)}$) is a particular subset of random point configurations (resp. of point configurations in \mathbb{R}^d). The intensity measure of a random tagged point configuration is defined in Section 2.1.7.

Proposition 1.5. We have:

(1) $\{\text{Emp}(\tilde{X}_N)\}$ converges weakly (up to extraction of a subsequence) to some minimizer \mathcal{P} of W_s over $\mathcal{M}_{\text{stat},1}(\mathcal{F})$.

(2) The intensity measure of \mathcal{P} coincides with $\mu_{V,\infty}$.

(3) For \mathcal{P}-almost every (x,C), the point configuration C minimizes $W_s(C)$ within the class $X_{\mu_{V,\infty}(x)}$.
The first point expresses the fact that the tagged empirical fields associated to minimizers converge to minimizers of the “infinite-volume” energy functional \mathcal{W}_s. The second point is a rephrasing of the global result cited above, to which the third point adds some microscopic information.

The problem of minimizing the energy functionals \mathcal{W}_s, \mathcal{W}_s' or \mathcal{W}_s'' is hard in general. In dimension 1, however, it is not too difficult to show that the “crystallization conjecture” holds, namely that the microscopic structure of minimizers is ordered and converge to a lattice:

Proposition 1.6. Assume $d = 1$. The unique stationary minimizer of \mathcal{W}_s is the law of $u + \mathbb{Z}$, where u is a uniform choice of the origin in $[0,1]$.

In dimension 2, it would be expected that minimizers are given by the triangular (or Abrikosov) lattice, we refer to [BL15] for a recent review of such conjectures.

2. **General definitions**

All the hypercubes considered will have their sides parallel to some fixed choice of axes in \mathbb{R}^d. For $R > 0$ we let K_R be the hypercube of center 0 and sidelength R. If $A \subset \mathbb{R}^d$ is a Borel set we denote by $|A|$ its Lebesgue measure, and if A is a finite set we denote by $|A|$ its cardinal.

2.1. **(Random) (tagged) point configurations.**

2.1.1. **Point configurations.** We refer to [DVJ03] for further details and proofs of the claims.

- If $A \subset \mathbb{R}^d$, we denote by $\mathcal{X}(A)$ the set of locally finite point configurations in A or equivalently the set of non-negative, purely atomic Radon measures on A giving an integer mass to singletons. We abbreviate $\mathcal{X}(\mathbb{R}^d)$ as \mathcal{X}.
- For $C \in \mathcal{X}$, we will often write C for the Radon measure $\sum_{p \in C} \delta_p$.
- The sets $\mathcal{X}(A)$ are endowed with the topology induced by the weak convergence of Radon measures (also known as vague convergence). These topological spaces are Polish, and we fix a distance $d_\mathcal{X}$ on \mathcal{X} which is compatible with the topology on $\mathcal{X}(A)$ (and whose restriction on $\mathcal{X}(A)$ is also compatible with the topology on $\mathcal{X}(A)$).
- For $x \in \mathbb{R}^d$ and $C \in \mathcal{X}$ we denote by $\theta_x \cdot C$ “the configuration C centered at x” (or “translated by $-x$”), namely

\[
\theta_x \cdot C := \sum_{p \in C} \delta_{p-x}.
\]

We will use the same notation for the action of \mathbb{R}^d on Borel sets: if $A \subset \mathbb{R}^d$, we denote by $\theta_x \cdot A$ the translation of A by the vector $-x$.

2.1.2. **Tagged point configurations.**

- When $\Omega \subset \mathbb{R}^d$ is fixed, we define $\mathcal{X} := \Omega \times \mathcal{X}$ as the set of “tagged” point configurations with tags in Ω.
- We endow \mathcal{X} with the product topology and a compatible distance $d_\mathcal{X}$. Tagged objects will usually be denoted with bars (e.g., \mathcal{P}, \mathcal{W}, \ldots).
2.1.3. Random point configurations.
- We denote by $\mathcal{P}(\mathcal{X})$ the space of probability measures on \mathcal{X}; i.e., the set of laws of random point configurations.
- The set $\mathcal{P}(\mathcal{X})$ is endowed with the topology of weak convergence of probability measures (with respect to the topology on \mathcal{X}), see [LS15, Remark 2.7].
- We say that P in $\mathcal{P}(\mathcal{X})$ is stationary (and we write $P \in \mathcal{P}_{\text{stat}}(\mathcal{X})$) if its law is invariant by the action of \mathbb{R}^d on \mathcal{X} as defined in (2.1).

2.1.4. Random tagged point configurations.
- When $\Omega \subset \mathbb{R}^d$ is fixed, we define $\mathcal{M}(\mathcal{X})$ as the space of measures \mathcal{P} on \mathcal{X} such that
 1. The first marginal of \mathcal{P} is the Lebesgue measure on Ω.
 2. For almost every $x \in \Omega$, the disintegration measure \mathcal{P}^x is an element of $\mathcal{P}(\mathcal{X})$ for almost every $x \in \Omega$.
- We say that \mathcal{P} in $\mathcal{M}(\mathcal{X})$ is stationary (and we write $\mathcal{P} \in \mathcal{M}_{\text{stat}}(\mathcal{X})$) if \mathcal{P}^x is in $\mathcal{P}_{\text{stat}}(\mathcal{X})$ for almost every $x \in \Omega$.
- Let us emphasize that, in general, the elements of $\mathcal{M}(\mathcal{X})$ are not probability measures on \mathcal{X} (e.g., the first marginal is the Lebesgue measure on Ω).

2.1.5. Density of a point configuration.
- For $C \in \mathcal{X}$, we define $\text{Dens}(C)$ (the density of C) as
 $$(2.2) \quad \text{Dens}(C) := \liminf_{R \to \infty} \frac{|C \cap K_R|}{R^d}.$$
- For $m \in [0, +\infty]$, we denote by \mathcal{X}_m the set of point configurations with density m.
- For $m \in (0, +\infty)$, the scaling map
 $$(2.3) \quad \sigma_m : C \mapsto mC$$
is a bijection of \mathcal{X}_m onto \mathcal{X}_1, of inverse $\sigma_{1/m}$.

2.1.6. Intensity of a random point configuration.
- For $P \in \mathcal{P}_{\text{stat}}(\mathcal{X})$, we define $\text{Intens}(P)$ (the intensity of P) as
 $$\text{Intens}(P) := \mathbb{E}_P [\text{Dens}(C)].$$
- We denote by $\mathcal{P}_{\text{stat},m}(\mathcal{X})$ the set of laws of random point configurations $P \in \mathcal{P}(\mathcal{X})$ that are stationary and such that $\text{Intens}(P) = m$. For $P \in \mathcal{P}_{\text{stat},m}(\mathcal{X})$, the stationarity assumption implies the formula
 $$\mathbb{E}_P \left[\int_{\mathbb{R}^d} \varphi \, d\mathcal{P} \right] = m \int_{\mathbb{R}^d} \varphi(x) \, dx, \text{ for any } \varphi \in C_c(\mathbb{R}^d).$$

2.1.7. Intensity measure of a random tagged point configuration.
- For \mathcal{P} in $\mathcal{M}_{\text{stat}}(\mathcal{X})$, we define $\text{Intens}(\mathcal{P})$ (the intensity measure of \mathcal{P}) as
 $$\text{Intens}(\mathcal{P})(x) = \text{Intens}(\mathcal{P}^x),$$
 which really should, in general, be understood in a dual sense: for any $f \in C_c(\mathbb{R}^d)$,
 $$\int f \, d\text{Intens}(\mathcal{P}) := \int_{\Omega} f(x) \, \text{Intens}(\mathcal{P}^x) \, dx.$$
- We denote by $\mathcal{M}_{\text{stat},1}(\mathcal{X})$ the set of laws of random tagged point configurations \mathcal{P} in $\mathcal{M}(\mathcal{X})$ which are stationary and such that
 $$\int_{\Omega} \text{Intens}(\mathcal{P})(x) \, dx = 1.$$
If \(P \) has intensity measure \(\rho \) we denote by \(\sigma_\rho(P) \) the element of \(\mathcal{M}(\mathcal{X}) \) satisfying
\[
(\sigma_\rho(P))^x = \sigma_{\rho(x)}(P^x), \quad \text{for all } x \in \Omega,
\]
where \(\sigma \) is as in (2.3).

2.2. Specific relative entropy.
• Let \(P \) be in \(\mathcal{P}_{\text{stat}}(\mathcal{X}) \). The specific relative entropy \(\text{ent}[P|\Pi] \) of \(P \) with respect to \(\Pi \), the law of the Poisson point process of uniform intensity 1, is given by
\[
\text{ent}[P|\Pi] := \lim_{R \to \infty} \frac{1}{|K_R|} \text{Ent}(P_{|K_R}|\Pi_{|K_R})
\]
where \(P_{|K_R} \) denotes the process induced on (the point configurations in) \(K_R \), and \(\text{Ent}([\cdot]) \) denotes the usual relative entropy (or Kullbak-Leibler divergence) of two probability measures defined on the same probability space.
• It is known (see e.g. [RAS15]) that the limit (2.5) exists as soon as \(P \) is stationary, and also that the functional \(P \mapsto \text{ent}[P|\Pi] \) is affine lower semi-continuous with compact sub-level sets (it is a good rate function).
• Let us observe that the empty point process has specific relative entropy 1 with respect to \(\Pi \).
• If \(P \) is in \(\mathcal{P}_{\text{stat},m}(\mathcal{X}) \) we have (see [LS15, Lemma 4.2.])
\[
\text{ent}[P|\Pi] = \text{ent}[\sigma_m(P)|\Pi]m + m \log m + 1 - m,
\]
where \(\sigma_m(P) \) denotes the push-forward of \(P \) by (2.3).

2.3. Riesz energy of (random) (tagged) point configurations.

2.3.1. Riesz interaction. We will use the notation \(\text{Int} \) (as “interaction”) in two slightly different ways:
• If \(C_1, C_2 \) are some fixed point configurations, we let \(\text{Int}[C_1,C_2] \) be the Riesz interaction between \(C_1 \) and \(C_2 \).
\[
\text{Int}[C_1,C_2] := \sum_{p \in C_1, q \in C_2, p \neq q} \frac{1}{|p - q|^s}.
\]
• If \(C \) is a fixed point configuration and \(A, B \) are two subsets of \(\mathbb{R}^d \) we let \(\text{Int}[A,B](C) \) to be the Riesz interaction between \(C \cap A \) and \(C \cap B \); i.e.,
\[
\text{Int}[A,B](C) := \text{Int}[C \cap A, C \cap B] = \sum_{p \in C \cap A, q \in C \cap B, p \neq q} \frac{1}{|p - q|^s}.
\]
• Finally, if \(\tau > 0 \), we let \(\text{Int}_\tau \) be the truncation of the Riesz interaction at distances less than \(\tau \); i.e.,
\[
\text{Int}_\tau[C_1,C_2] := \sum_{p \in C_1, q \in C_2, |p - q| \geq \tau} \frac{1}{|p - q|^s}.
\]
2.3.2. Riesz energy of a finite point configuration.

- Let $\omega_N = (x_1, \ldots, x_N)$ be in $\mathbb{R}^d \setminus 0$. We define its Riesz s-energy as

\[
E_s(\omega_N) := \int_{\omega_N} \int_{\omega_N} \frac{1}{|x_i - x_j|^s}.
\]

- For $A \subset \mathbb{R}^d$, we consider the N-point minimal s-energy

\[
E_s(A, N) := \inf_{\omega_N \in A^N} E_s(\omega_N).
\]

- The asymptotic minimal energy $C_{s,d}$ is defined as

\[
C_{s,d} := \lim_{N \to \infty} \frac{E_s(K_{1,N})}{N^{1+s/d}}.
\]

The limit in (2.10) exists as a positive real number (see [HS04, HS05]).

- By scaling properties of the s-energy, it follows that

\[
\lim_{N \to \infty} \frac{E_s(K_{R,N})}{N^{1+s/d}} = C_{s,d} R^{-s}.
\]

2.3.3. Riesz energy of periodic point configurations. We first extend the definition of the Riesz energy to the case of periodic point configurations.

- We say that $\Lambda \subset \mathbb{R}^d$ is a d-dimensional Bravais lattice if $\Lambda = U\mathbb{Z}^d$, for some nonsingular $d \times d$ real matrix U. A fundamental domain for Λ is given by $D(\Lambda) = U[-\frac{1}{2}, \frac{1}{2})^d$, and the co-volume of Λ is $|\Lambda| := \text{vol}(D(\Lambda)) = |\det U|$.

- If C is a point configuration (finite or infinite) and Λ a lattice, we denote by $C + \Lambda$ the configuration $\{p + \lambda \mid p \in C, \lambda \in \Lambda\}$. We say that C is Λ-periodic if $C + \Lambda = C$.

- If C is Λ-periodic, it is easy to see that we have $C = (C \cap D(\Lambda)) + \Lambda$. The density of C is thus given by

\[
\text{Dens}(C) = \frac{|C \cap D(\Lambda)|}{|\Lambda|}.
\]

Let Λ be a lattice and $\omega_N = \{x_1, \ldots, x_N\} \subset D(\Lambda)$.

- We define, as in [HSS14] for $s > d$, the Λ-periodic s-energy of ω_N as

\[
E_{s,\Lambda}(\omega_N) := \sum_{x \in \omega_N} \sum_{y \in \omega_N + \Lambda \setminus x} \frac{1}{|x - y|^s}.
\]

- It follows (cf. [HSS14]) that $E_{s,\Lambda}(\omega_N)$ can be re-written as

\[
E_{s,\Lambda}(\omega_N) = N \zeta(\Lambda) + \sum_{x \neq y \in \omega_N} \zeta(\Lambda, x - y),
\]

where

\[
\zeta(\Lambda) = \sum_{0 \neq v \in \Lambda} |v|^{-s}
\]
denotes the Epstein zeta function and

\[
\zeta(\Lambda, x) := \sum_{v \in \Lambda} |x + v|^{-s}
\]
denotes the Epstein-Hurwitz zeta function for the lattice Λ.
Denoting the minimum \(\Lambda \)-periodic \(s \)-energy by
\[
E_{s,\Lambda}(N) := \min_{\omega_N \in D_{\Lambda}^N} E_{s,\Lambda}(\omega_N),
\]
it is shown in [HSS14] that
\[
\lim_{N \to \infty} \frac{E_{s,\Lambda}(N)}{N^{1+s/d}} = C_{s,d} |\Lambda|^{-s/d},
\]
where \(C_{s,d} \) is as in (2.10).

The constant \(C_{s,d} \) for \(s > d \) appearing in (2.10) and (2.15) is known only in the case \(d = 1 \) where \(C_{s,1} = \zeta(2s) = 2\zeta(s) \) and \(\zeta(s) \) denotes the classical Riemann zeta function. For dimensions \(d = 2, 4, 8, \) and 24, it has been conjectured (cf. [CK07, BHS12] and references therein) that \(C_{s,d} = \zeta_{\Lambda_d}(s) \) for \(\Lambda_d \) denoting the equilateral triangular (or hexagonal) lattice, the \(D_4 \) lattice, the \(E_8 \) lattice, and the Leech lattice (all scaled to have co-volume 1) in the dimensions \(d = 2, 4, 8, \) and 24, respectively.

2.3.4. Riesz energy of an infinite point configuration.

- Let \(C \) be an (infinite) point configuration. We define its Riesz \(s \)-energy as
\[
W_s(C) := \liminf_{R \to \infty} \frac{1}{R^d} \sum_{p \neq q \in C \cap K_R} \frac{1}{|p - q|^s} = \liminf_{R \to \infty} \frac{1}{R^d} \text{Int}[K_R, K_R](C).
\]

If \(C = \emptyset \), we define \(W_s(C) = 0 \). The \(s \)-energy is non-negative and can be \(+\infty \).

- We have, for any \(C \) and any \(m \in (0, +\infty) \)
\[
W_s(\sigma_m C) = m^{-(1+s/d)} W_s(C).
\]

It is not difficult to verify (cf. [CK07, Lemma 9.1]), that if \(\Lambda \) is a lattice and \(\omega_N \) is a \(N \)-tuple of points in \(D_{\Lambda} \) we have
\[
W_s(\omega_N + \Lambda) = \frac{1}{|\Lambda|} E_{s,\Lambda}(\omega_N).
\]

In particular, we have (in view of (2.13))
\[
W_s(\Lambda) = |\Lambda|^{-1} \zeta_{\Lambda}(s).
\]

2.3.5. Riesz energy for laws of random point configurations.

- Let \(P \) be in \(\mathcal{P}(\mathcal{X}) \), we define its Riesz \(s \)-energy as
\[
\mathbb{W}_s(P) := \liminf_{R \to \infty} \frac{1}{R^d} \text{E}_P \text{[Int}[K_R, K_R](C)].
\]

- Let \(\bar{P} \) be in \(\mathcal{M}(\mathcal{X}) \), we define its Riesz \(s \)-energy as
\[
\mathbb{W}_s(\bar{P}) := \int_{\Omega} \mathbb{W}_s(\bar{P}^x) \, dx.
\]

- Let \(\bar{P} \) in \(\mathcal{M}(\mathcal{X}) \) with intensity measure \(\rho \). It follows from (2.17), (2.21) and the definition (2.4) that
\[
\mathbb{W}_s(\bar{P}) = \int_{\Omega} \rho(x)^{1+s/d} \mathbb{W}_s \left(\left(\sigma_{\rho}(\bar{P}) \right)^x \right) \, dx.
\]
Let us emphasize that we define W_s as in (2.20) and not by $E_P[W_s]$. Fatou’s lemma easily implies that
\begin{equation}
E_P[W_s] \leq W_s(P)
\end{equation}
and in fact, in the stationary case, we may show that equality holds (see Corollary 3.4).

2.3.6. Expression in terms of the two-point correlation function. Let P be in $\mathcal{P}(\mathcal{X})$ and let us assume that the two-point correlation function of P, denoted by $\rho_{2,P}$ exists in some distributional sense. We may easily express the Riesz energy of P in terms of $\rho_{2,P}$ as follows
\begin{equation}
W_s(P) = \liminf_{R \to \infty} \frac{1}{R^d} \int_{[0,R]^d} \frac{1}{|x-y|^s} \rho_{2,P}(x,y) \, dx \, dy.
\end{equation}
If P is stationary, the expression can be simplified as
\begin{equation}
W_s(P) = \liminf_{R \to \infty} \int_{[-R,R]^d} \frac{1}{|v|^s} \rho_{2,P}(v) \prod_{i=1}^d \left(1 - \frac{|v_i|}{R}\right) \, dv,
\end{equation}
where $\rho_{2,P}(v) = \rho_{2,P}(0,v)$ (we abuse notation and see $\rho_{2,P}$ as a function of one variable, by stationarity) and $v = (v_1, \ldots, v_d)$. Both (2.24) and (2.25) follow from the definitions and easy manipulations, proofs (in a slightly different context) can be found in [Leb16].

2.4. The rate functions.

2.4.1. Definitions.
- For P be in $\mathcal{M}(\mathcal{X})$, we define
\[\nabla(P) := \int V(x) \text{d} \left(\text{Intens}(P)\right)(x).\]
This is the energy contribution of the potential V.
- For P be in $\mathcal{M}_{\text{stat.1}}(\mathcal{X})$, we define
\begin{equation}
\mathcal{F}_\beta(P) := \beta \left(\nabla_s(P) + \nabla(P)\right) + \int_{\Omega} \left(\text{ent}[P^\beta]\Pi - 1\right) \, dx - 1.
\end{equation}
It is a free energy functional, the sum of an energy term $\nabla_s(P) + \nabla(P)$ weighted by the inverse temperature β and an entropy term.
- If ρ is a probability density we define $I_\beta(\rho)$ as
\begin{equation}
I_\beta(\rho) := \int_{\Omega} \rho(x) \inf_{P \in \mathcal{P}_{\text{stat.1}}(\mathcal{X})} \left(\beta \rho(x)^{s/d} \nabla_s(P) + \text{ent}[P]\Pi\right) \, dx
+ \beta \int_{\Omega} \rho(x) V(x) \, dx + \int_{\Omega} \rho(x) \log \rho(x) \, dx.
\end{equation}
This complicated expression is obtained in Section 5.1 as a “contraction” (in the language of Large Deviations theory) of the functional \mathcal{F}_β.
2.4.2. Properties.

Proposition 2.1. For all \(\beta > 0 \), the functionals \(\mathcal{F}_\beta \) and \(I_\beta \) are good rate functions. Moreover, \(I_\beta \) is strictly convex.

Proof. It is proven in Proposition 3.3 that \(\mathbb{W}_s \) is lower semi-continuous on \(\mathcal{M}_{\text{stat},1}(\mathcal{X}) \). As for \(\mathcal{V} \), we may observe that, if \(P \in \mathcal{M}_{\text{stat},1}(\mathcal{X}) \),

\[
\mathcal{V}(P) = \int_{\Omega \times \mathcal{X}} (V(x)|C \cap K|) \, dP(x,C),
\]

and that \((x,C) \mapsto V(x)|C \cap K|\) is lower semi-continuous on \(\mathcal{X} \), thus \(\mathcal{V} \) is lower semi-continuous on \(\mathcal{M}_{\text{stat},1}(\mathcal{X}) \), moreover, it is known that \(\text{ent}\{\cdot|\Pi\} \) is lower semi-continuous (see Section 2.2).

Thus \(\mathcal{F}_\beta \) is lower semi-continuous. Since \(\mathbb{W}_s \) and \(\mathcal{V} \) are bounded below, the sub-level sets of \(\mathcal{F}_\beta \) are included in those of \(\text{ent}\{\cdot|\Pi\} \), which are known to be compact (see again Section 2.2).

Thus \(\mathcal{F}_\beta \) is a good rate function.

The functional \(I_\beta \) is easily seen to be lower semi-continuous, and since \(\mathbb{W}_s \), \(\text{ent} \) and \(\mathcal{V} \) are bounded below, the sub-level sets of \(I_\beta \) are included into those of \(\int_{\Omega} \rho \log \rho \) which are known to be compact, thus \(I_\beta \) is a good rate function.

To prove that \(I_\beta \) is strictly convex in \(\rho \), it is enough to prove that the first term in the right-hand side of (2.27) is convex (the second one is clearly affine, and the last one is well-known to be strictly convex). We may observe that the map

\[
\rho \mapsto \beta \rho^{1+s/d} \mathbb{W}_s(P) + \rho \text{ent}\{P|\Pi\} - \rho
\]

is convex for all \(P \) (because \(\mathbb{W}_s(P) \) is non-negative), and the infimum of a family of convex functions is also convex, thus

\[
\rho \mapsto \inf_{P \in \mathcal{P}_{\text{stat},1}(\mathcal{X})} \left(\beta \rho^{1+s/d} \mathbb{W}_s(P) + \rho \text{ent}\{P|\Pi\} \right)
\]

is convex in \(\rho \), which concludes the proof. \(\square \)

3. Preliminaries on the energy

3.1. General properties.

3.1.1. Minimal energy of infinite point configurations. In this section, we connect the minimization of \(\mathcal{W}_s \) (defined at the level of infinite point configurations) with the asymptotics of the \(N \)-point minimal energy as presented in Section 2.3.2. Let us recall that the class \(\mathcal{X}_m \) of point configurations with mean density \(m \) has been defined in Section 2.1.5.

Proposition 3.1. We have

\[
\inf_{C \in \mathcal{X}_1} \mathcal{W}_s(C) = \min_{C \in \mathcal{X}_1} \mathcal{W}_s(C) = C_{s,d},
\]

where \(C_{s,d} \) is as in (2.10). Moreover, for any \(d \)-dimensional Bravais lattice \(\Lambda \) of co-volume 1, there exists a minimizing sequence \(\{C_N\}_N \) for \(\mathcal{W}_s \) over \(\mathcal{X}_1 \) such that \(C_N \) is \(N^{1/d} \Lambda \)-periodic for \(N \geq 1 \).

Proof. Let \(\Lambda \) be a \(d \)-dimensional Bravais lattice \(\Lambda \) of co-volume 1, and for any \(N \) let \(\omega_N \) be a \(N \)-point configuration minimizing \(E_{s,\Lambda} \).

We define

\[
C_N := N^{1/d} (\omega_N + \Lambda).
\]
By construction, \(\mathcal{C}_N \) is a \(N^{1/d} \Lambda \)-periodic point configuration of density 1. Using the scaling property (2.17) and (2.18), we have
\[
W_s(\mathcal{C}_N) = \frac{W_s(\omega_N + \Lambda)}{N^{1+s/d}} = \frac{E_{s,\Lambda}(\omega_N)}{N^{1+s/d}}.
\]
On the other hand, we have by assumption \(E_{s,\Lambda}(\omega_N) = \mathcal{E}_{s,\Lambda}(N) \). Taking the limit \(N \to \infty \) yields, in light of (2.15), \(\lim_{N \to \infty} W_s(\mathcal{C}_N) = C_{s,d} \). In particular we have (3.2)
\[
\inf_{\mathcal{C} \in \mathcal{X}_1} W_s(\mathcal{C}) \leq C_{s,d}.
\]
To prove the converse inequality, let us consider \(\mathcal{C} \) in \(\mathcal{X}_1 \) arbitrary. We have by definition (see (2.8) and (2.16))
\[
W_s(\mathcal{C}) = \lim_{R \to \infty} \frac{E_s(\mathcal{C} \cap K_R)}{R^d} = \lim_{R \to \infty} \frac{1}{R^{d+s}} E_s \left(\frac{1}{R} \mathcal{C} \cap K_1 \right),
\]
and, again by definition (see (2.9))
\[
E_s \left(\frac{1}{R} \mathcal{C} \cap K_1 \right) \geq \mathcal{E}_s \left(K_1, |\mathcal{C} \cap K_R| \right).
\]
We thus obtain
\[
W_s(\mathcal{C}) \geq \lim_{R \to \infty} \frac{\mathcal{E}_s \left(K_1, |\mathcal{C} \cap K_R| \right)}{|\mathcal{C} \cap K_R|^{1+s/d}} \left(\frac{|\mathcal{C} \cap K_R|}{R^d} \right)^{1+s/d}.
\]
Using the definition (2.10) of \(C_{s,d} \) we have
\[
\lim_{R \to \infty} \frac{\mathcal{E}_s \left(K_1, |\mathcal{C} \cap K_R| \right)}{|\mathcal{C} \cap K_R|^{1+s/d}} \geq C_{s,d},
\]
and by definition of the density, since \(\mathcal{C} \) is in \(\mathcal{X}_1 \) we have
\[
\lim_{R \to \infty} \left(\frac{|\mathcal{C} \cap K_R|}{R^d} \right)^{1+s/d} = 1.
\]
It yields \(W_s(\mathcal{C}) \geq C_{s,d} \) and so (in view of (3.2))
\[
\inf_{\mathcal{C} \in \mathcal{A}_1} W_s(\mathcal{C}) = C_{s,d}.
\]
It remains to prove that the infimum is achieved. Let us start with a sequence \(\{\omega_M\}_{M \geq 1} \) such that \(\omega_M \) is a \(M^d \)-point configuration in \(K_M \) satisfying (3.3)
\[
\inf_{\mathcal{C} \in \mathcal{A}_1} W_s(\mathcal{C}) = C_{s,d}.
\]
Such a sequence of point configurations exists by definition of \(C_{s,d} \) as in (2.10), and by the scaling properties of \(E_s \). We define a configuration \(\mathcal{C} \) inductively as follows.
- Let \(r_1, c_1, s_1 = 1 \) and let us set \(\mathcal{C} \cap K_{r_1} \) to be \(\omega_1 \).
- Assume that \(r_N, s_N, c_N \) and \(\mathcal{C} \cap K_{r_N} \) have been defined. We let
\[
s_{N+1} = \left[c_{N+1} r_N + (c_{N+1} r_N)^{1/2} \right],
\]
with \(c_{N+1} > 1 \) to be chosen later. We also let \(r_{N+1} \) be a multiple of \(s_{N+1} \) large enough, to be chosen later. We tile \(K_{r_{N+1}} \) by hypercubes of sidelength \(s_{N+1} \) and we define \(\mathcal{C} \cap K_{r_{N+1}} \) as follows:
 - In the central hypercube of sidelength \(s_{N+1} \), we already have the points of \(\mathcal{C} \cap K_{r_N} \) (because \(r_N \leq s_{N+1} \)) and we do not add any points. In particular, this ensures that each step of our construction is compatible with the previous ones.
In all the other hypercubes, we paste a copy of $\omega_{c_{N+1}r_N}$ “centered” in the hypercube in such a way that
\begin{equation}
\text{all the points are at distance } \geq \left(\frac{c_{N+1}r_N}{s_{N+1}}\right)^{\frac{1}{2}}\text{ of the boundary.}
\end{equation}
This is always possible because $\omega_{c_{N+1}r_N}$ lives, by definition, in an hypercube of sidelength $c_{N+1}r_N$ and because we have chosen s_{N+1} as in (3.5).

We claim that the number of points in K_{r_N+1} is always less than r_{N+1}^d (as can easily be checked by induction) and is bounded below by
\begin{equation}
\left(\frac{r_{N+1}}{s_{N+1}}\right)^d - 1 \left(\frac{r_{N+1}}{s_{N+1}}\right)^d.
\end{equation}
Thus it is easy to see that if c_{N+1} is chosen large enough and if r_{N+1} is a large enough multiple of s_{N+1}, then
\begin{equation}
\text{the number of points in } r_{N+1} \text{ is } r_{N+1}^d (1 - o_N(1)).
\end{equation}
Let us now give an upper bound on the interaction energy $\text{Int}[K_{r_N+1}, K_{r_N+1}](C)$. We recall that we have tiled K_{r_N+1} by hypercubes of sidelength s_{N+1}.

– Each hypercube as a self-interaction energy given by $E_s(\omega_{c_{N+1}r_N})$, except the central one, whose self-interaction energy is bounded by $O(r_N^d)$ (as can be seen by induction).

– The interaction of a given hypercube with the union of all the others can be controlled because, by construction (see (3.6)) the configurations pasted in two disjoint hypercubes are far away from each other. We can compare it to
\begin{equation}
\hat{\rho}_s^\infty r = \left(\frac{r_{N+1}}{s_{N+1}}\right)^{\frac{1}{2}}\frac{s_{N+1}^d}{r^d} dr,
\end{equation}
and an elementary computation shows that it is negligible with respect to s_{N+1}^d (because $d < s$).

We thus have
\begin{equation}
\text{Int}[K_{r_N+1}, K_{r_N+1}](C) \leq \left(\frac{r_{N+1}}{s_{N+1}}\right)^d - 1 E_s(\omega_{c_{N+1}r_N}) + O(r_N^d) + \left(\frac{r_{N+1}}{s_{N+1}}\right)^d o_N \left(\frac{s_{N+1}^d}{r^d}\right).
\end{equation}
We may now use (3.4) and get that
\begin{equation}
\frac{1}{r_{N+1}^d} \text{Int}[K_{r_N+1}, K_{r_N+1}](C) \leq C_{s,d} + o_N(1).
\end{equation}
Let C be the point configuration constructed as above. Taking the limit as $N \to \infty$ in (3.7) shows that C is in X_1, and (3.8) implies that $W_s(C) \leq C_{s,d}$, which concludes the proof of (3.1).

3.1.2. Energy of random point configurations. In the following lemma, we prove that for stationary P the limit defining $W_s(P)$ as in (2.20) is actually a limit, and that the convergence is uniform of sublevel sets of W_s (which will be useful for proving lower semi-continuity).

Lemma 3.2. Let P be in $\mathcal{P}_{\text{stat}}(X)$. The following limit exists in $[0, +\infty]$
\begin{equation}
\forall s(P) := \lim_{R \to \infty} \frac{1}{R^d} \mathbb{E}_P \left[\text{Int}[K_R, K_R] \right].
\end{equation}
Moreover we have as $R \to \infty$

\begin{equation}
(3.10) \quad \left| \mathcal{W}_s(P) - \frac{1}{R^d} \mathbb{E}_P[\text{Int}[K_R, K_R]] \right| \leq C \left(\mathcal{W}_s(P)^{\frac{2}{1+s/d}} + \mathcal{W}_s(P) \right) o_R(1),
\end{equation}

with $o_R(1)$ depending only on s, d.

Proof. We begin by showing that the quantity

\[
\frac{1}{n^d} \mathbb{E}_P[\text{Int}[K_n, K_n](C)]
\]

is non-decreasing for integer values of n.

For $n \geq 1$, let $\{K_v\}_{v \in \mathbb{Z}^d \cap K_n}$ be a tiling of K_n by unit hypercubes, indexed by the centers $v \in \mathbb{Z}^d \cap K_n$ of the hypercubes, and let us split $\text{Int}[K_n, K_n]$ as

\[
\text{Int}[K_n, K_n] = \sum_{v, v' \in \mathbb{Z}^d \cap K_n} \text{Int}[^\sim{K}_v, ^\sim{K}_{v'}].
\]

Using the stationarity assumption and writing $v = (v_1, \ldots, v_d)$ and $|v| := \max_i |v_i|$, we obtain

\[
\mathbb{E}_P \left[\sum_{v, v' \in \mathbb{Z}^d \cap K_n} \text{Int}[^\sim{K}_v, ^\sim{K}_{v'}] \right] = \sum_{v \in \mathbb{Z}^d \cap K_{2n}} \mathbb{E}_P \left[\text{Int}[^\sim{K}_0, ^\sim{K}_v] \right] \prod_{i=1}^d (n - |v_i|).
\]

We thus get

\begin{equation}
(3.11) \quad \frac{1}{n^d} \mathbb{E}_P[\text{Int}[K_n, K_n]] = \sum_{v \in \mathbb{Z}^d \cap K_{2n}} \mathbb{E}_P \left[\text{Int}[^\sim{K}_0, ^\sim{K}_v] \right] \prod_{i=1}^d \left(1 - \frac{|v_i|}{n} \right),
\end{equation}

and it is clear that this quantity is non-decreasing in n, in particular the limit as $n \to \infty$ exists in $[0, +\infty]$. We may also observe that $R \mapsto \text{Int}[K_R, K_R]$ is non-decreasing in R. It is then easy to conclude that the limit of (3.9) exists in $[0, +\infty]$.

Let us now quantify the speed of convergence. First, we observe that for $|v| \geq 2$ we have

\[
\mathbb{E}_P \left[\text{Int}[^\sim{K}_0, ^\sim{K}_v] \right] \leq O \left(\frac{1}{|v - 1|^s} \right) \mathbb{E}_P[N_0 N_v],
\]

where N_0, N_v denotes the number of points in $^\sim{K}_0, ^\sim{K}_v$. Indeed, the points of $^\sim{K}_0$ and $^\sim{K}_v$ are at distance at least $|v - 1|$ from each other (up to a multiplicative constant depending only on d).

On the other hand, Hölder’s inequality and the stationarity of P imply

\[
\|N_0 N_v\|_{L^1(P)} \leq \|N_0\|_{L^{1+s/d}(P)} \|N_v\|_{L^{1+s/d}(P)} = \|N_0\|_{L^{1+s/d}(P)}^2,
\]

and thus we have $\mathbb{E}_P[N_0 N_v] \leq \mathbb{E}_P[N_0]^{\frac{2}{1+s/d}}$. On the other hand, it is easy to check that for P stationary,

\[
\mathbb{E}_P[N_0^{1+s/d}] \leq C \mathcal{W}_s(P)
\]

for some constant C depending on d, s. Indeed, the interaction energy in the hypercube $^\sim{K}_0$ is bounded below by some constant times $N_0^{1+s/d}$, and (3.11) shows that

\[
\mathcal{W}_s(P) \geq \mathbb{E}_P \left[\text{Int}[^\sim{K}_0, ^\sim{K}_0] \right].
\]
We thus get
\[
\mathcal{W}_s(P) - \sum_{v \in \mathbb{Z}^d \cap K_{2n}} E_P \left[\text{Int}[\tilde{K}_v, \tilde{K}_v] \right] \prod_{i=1}^d \left(1 - \frac{|v_i|}{n} \right) \\
\leq \mathcal{W}_s(P)^{\frac{2}{1+s/d}} \left(\sum_{v \in \mathbb{Z}^d \cap K_{2n}, |v| \geq 2} \frac{1}{|v|} \left(1 - \prod_{i=1}^d \left(1 - \frac{|v_i|}{n} \right) \right) + \sum_{|v| \geq 2n} \frac{1}{|v|^s} \right) \\
+ \frac{1}{n} \sum_{|v|=1} E_P \left[\text{Int}[\tilde{K}_0, \tilde{K}_v] \right].
\]

It is not hard to see that the parenthesis in the right-hand side goes to zero as \(n \to \infty \). On the other hand, we have
\[
\sum_{|v|=1} E_P \left[\text{Int}[\tilde{K}_0, \tilde{K}_v] \right] \leq \mathcal{W}_s(P).
\]

Thus we obtain
\[
\mathcal{W}_s(P) - \frac{1}{n^d} E_P \left[\text{Int}[K_n, K_n] \right] \leq \left(\mathcal{W}_s(P)^{\frac{2}{1+s/d}} + \mathcal{W}_s(P) \right) o_n(1),
\]
with a \(o_n(1) \) depending only on \(d, s \) and it is then not hard to get (3.10).

For any \(R > 0 \), the quantity \(\text{Int}[K_R, K_R] \) is continuous and bounded below on \(\mathcal{X} \), thus the map
\[
P \mapsto \frac{1}{R^d} E_P \left[\text{Int}[K_R, K_R] \right]
\]
is lower semi-continuous on \(\mathcal{P}(\mathcal{X}) \). The second part of Lemma 3.2 shows that we may approximate \(\mathcal{W}_s(P) \) by \(\frac{1}{R^d} E_P \left[\text{Int}[K_R, K_R] \right] \) up to an error which \(o_R(1) \), uniformly on sub-level sets of \(\mathcal{W}_s \). The next proposition follows easily.

Proposition 3.3.
(1) The functional \(\mathcal{W}_s \) is lower semi-continuous on \(\mathcal{P}_{\text{stat},1}(\mathcal{X}) \).
(2) The functional \(\overline{\mathcal{W}}_s \) is lower semi-continuous on \(\overline{\mathcal{P}}_{\text{stat},1}(\overline{\mathcal{X}}) \).

We may also prove the following equality (which settles a question raised in Section 2.3.5).

Corollary 3.4. Let \(P \) be in \(\mathcal{P}_{\text{stat},1}(\mathcal{X}) \), then we have
\[
\mathcal{W}_s(P) = \lim_{R \to \infty} \frac{1}{R^d} E_P \left[\text{Int}[K_R, K_R](C) \right] = E_P \left[\liminf_{R \to \infty} \frac{1}{R^d} \text{Int}[K_R, K_R](C) \right].
\]

Proof. As was observed in (2.23), Fatou’s lemma implies that
\[
E_P \left[\liminf_{R \to \infty} \frac{1}{R^d} \text{Int}[K_R, K_R](C) \right] \leq \liminf_{R \to \infty} \frac{1}{R^d} E_P \left[\text{Int}[K_R, K_R](C) \right] = \mathcal{W}_s(P),
\]
(the last equality is by definition). On the other hand, with the notation of the proof of Lemma 3.2, we have for any integer \(n \) and any \(C \) in \(\mathcal{X} \)
\[
\frac{1}{n^d} \text{Int}[K_n, K_n](C) = \frac{1}{n^d} \sum_{v, v' \in \mathbb{Z}^d \cap K_R} \text{Int}[\tilde{K}_v, \tilde{K}_{v'}],
\]
and the right-hand side is dominated under \(P \) (as observed in the previous proof), thus the dominated convergence theorem applies. \(\square \)
3.2. Derivation of the infinite-volume limit of the energy. The following result is central in our analysis. It connects the asymptotics of the N-point interaction energy $\{H_N(\vec{X}_N)\}_N$ with the infinite-volume energy $\overline{W}_s(\overline{P})$ of an infinite-volume object: the limit point \overline{P} of the tagged empirical fields $\{\overline{\text{Emp}}_N(\vec{X}_N)\}_N$.

Proposition 3.5. For any $N \geq 1$, let $\vec{X}_N = (x_1, \ldots, x_N)$ be in Ω^N, let μ_N be the empirical measure and P_N be the tagged empirical field associated to \vec{X}_N; i.e.,

$$\mu_N := \text{emp}(\vec{X}_N), \quad P_N := \overline{\text{Emp}}_N(\vec{X}_N),$$

as defined in (1.8) and (1.10). Let us assume that

$$\liminf_{N \to \infty} H_N(\vec{X}_N) < +\infty.$$

Then, up to extraction of a subsequence,

- $\{\mu_N\}_N$ converges weakly to some μ in $\mathcal{M}(\Omega)$,
- $\{P_N\}_N$ converges weakly to some P in $\mathcal{M}_{\text{stat},1}(\mathcal{X})$,
- $\text{Intens}(P) = \mu$.

Moreover we have

$$\liminf_{N \to \infty} \frac{H_N(x_1, \ldots, x_N)}{N^{1+s/d}} \geq \overline{W}_s(\overline{P}) + V(\overline{P}). \tag{3.12}$$

Proof. Up to extracting a subsequence, we may assume that $H_N(\vec{X}_N) = O(N^{1+s/d})$. First, by positivity of the Riesz interaction, we have for $N \geq 1$

$$\int_{\Omega} V \, d\mu_N \leq \frac{H_N(\vec{X}_N)}{N^{1+s/d}}.$$

and thus $\int_{\Omega} V \, d\mu_N$ is bounded. By (1.5) and (1.6) we know that V is bounded below and has compact sub-level sets. An easy application of Markov’s inequality shows that $\{\mu_N\}_N$ is tight, and thus it converges (up to another extraction). It is not hard to check that $\{P_N\}_N$ converges (up to extraction) to some \overline{P} in $\mathcal{M}(\mathcal{X})$ (indeed the average number of points per unit volume is constant, which implies tightness, see e.g. [LS15, Lemma 4.1]) whose stationarity is clear (see again e.g. [LS15]).

Let $\tilde{\rho}$ be the intensity measure of P (in the sense of Section 2.1.7), we want to prove that $\tilde{\rho} = \mu$ (which will in particular imply that P is in $\mathcal{M}_{\text{stat},1}(\mathcal{X})$). It is a general fact that $\tilde{\rho} \leq \mu$ (see e.g. [LSZ15, Lemma 3.7]), but it could happen that a positive fraction of the points cluster together, resulting in the existence of a singular part in μ which is missed by $\tilde{\rho}$ so that $\tilde{\rho} < \mu$. However, in the present case, we can easily bound the moment (under P_N) of order $1+s/d$ of the number of points in a given hypercube K_R. Indeed, let $\{\tilde{K}_i\}_{i \in I}$ be a covering of Ω by disjoint hypercubes of sidelength $RN^{-1/d}$, and let $n_i = N\mu_N(\tilde{K}_i)$ denote the number of points from \vec{X}_N in \tilde{K}_i. We have, by positivity of the Riesz interaction

$$H_N(\vec{X}_N) \geq \sum_{i \in I} \text{Int}[\tilde{K}_i, \tilde{K}_i] \geq C \sum_{i \in I} \frac{n_i^{1+s/d}N^{s/d}}{R^s},$$

for some constant $C > 0$ (depending only on s and d) because the minimal interaction energy of n points in \tilde{K}_i is proportional to $\frac{n^{1+s/d}N^{s/d}}{R^s}$ (see (2.10), (2.11)). Since $H_N(\vec{X}_N) = \overline{W}_s(\overline{P})$
\(O(N^{1+s/d})\) by assumption, we get that \(\sum_{i \in I} n_i^{1+s/d} = O(N)\), with an implicit constant depending only on \(R\). It implies that \(x \mapsto N\mu_N(B(x, RN^{-1/d}))\) is uniformly (in \(N\)) locally integrable on \(\Omega\) for all \(R > 0\), and arguing as in [LS15, Lemma 3.7] we deduce that \(\tilde{\rho} = \mu\).

We now turn to proving (3.12). Using the positivity and scaling properties of the Riesz interaction and a Fubini-type argument we may write, for any \(R > 0\)

\[
\inf \Omega \Omega'(\tilde{X}_N) \geq N^{1+s/d} \int_{\Omega \times \hat{\Omega}} \frac{1}{R^d} \inf \left[K_R, K_R \right](\mathcal{C}) d\mathcal{P}_N(x, \mathcal{C}).
\]

Of course we have, for any \(M > 0\),

\[
\int_{\Omega \times \hat{\Omega}} \frac{1}{R^d} \inf \left[K_R, K_R \right](\mathcal{C}) d\mathcal{P}_N(x, \mathcal{C}) \geq \int_{\Omega \times \hat{\Omega}} \frac{1}{R^d} \left(\inf \left[K_R, K_R \right](\mathcal{C}) \wedge M \right) d\mathcal{P}_N(x, \mathcal{C}),
\]

and thus the weak convergence of \(\mathcal{P}_N\) to \(\mathcal{P}\) ensures that

\[
\int_{\Omega \times \hat{\Omega}} \frac{1}{R^d} \inf \left[K_R, K_R \right](\mathcal{C}) d\mathcal{P}_N(x, \mathcal{C}) \geq \int_{\Omega \times \hat{\Omega}} \frac{1}{R^d} \left(\inf \left[K_R, K_R \right](\mathcal{C}) \wedge M \right) d\mathcal{P}(x, \mathcal{C}) + o_N(1).
\]

Since this is true for all \(M\) we obtain

\[
\liminf_{N \to \infty} \frac{\inf \Omega \Omega'(\tilde{X}_N)}{N^{1+s/d}} \geq \int_{\Omega \times \hat{\Omega}} \frac{1}{R^d} \left(\inf \left[K_R, K_R \right](\mathcal{C}) \right) d\mathcal{P}(x, \mathcal{C}).
\]

Sending \(R\) to \(+\infty\) and using Proposition 3.1 we get

\[
(3.13) \quad \liminf_{N \to \infty} \frac{\inf \Omega \Omega'(\tilde{X}_N)}{N^{1+s/d}} \geq \liminf_{R \to \infty} \int_{\Omega \times \hat{\Omega}} \frac{1}{R^d} \left(\inf \left[K_R, K_R \right](\mathcal{C}) \right) d\mathcal{P}(x, \mathcal{C}) =: \mathcal{W}_s(\mathcal{P}).
\]

On the other hand, the weak convergence of \(\mu_N\) to \(\mu\) and Assumption 1.5 ensure that

\[
(3.14) \quad \liminf_{N \to \infty} \int_{\Omega} V d\mu_N \geq \int_{\Omega} V d\mu.
\]

Combining (3.13) and (3.14) gives (3.12). \(\square\)

Proposition 3.5 can be viewed as a \(\Gamma\)-liminf result (in the language of \(\Gamma\)-convergence). We will prove later (e.g. in Proposition 4.5, which is in fact a much stronger statement) the corresponding \(\Gamma\)-lim sup.

4. PROOF OF THE LARGE DEVIATION PRINCIPLES

As in [LS15], the main obstacle for proving Theorem 1.1 is to deal with the lack of upper semi-continuity of the interaction, namely that there is no upper bound of the type

\[
\mathcal{H}_N(\tilde{X}_N) \leq N^{1+s/d} \left(\mathcal{W}_s(\mathcal{P}) + \mathcal{V}(\mathcal{P}) \right)
\]

which holds in general under the mere condition that \(\mathfrak{Emp}_N(\tilde{X}_N) \approx \mathcal{P}\) (cf. (1.10) for a definition of the tagged empirical field). This yields a problem for proving the large deviations lower bound (in contrast, lower semi-continuity holds and the proof of the large deviations upper bound is quite simple). Let us briefly explain why.

Firstly, due its singularity at 0, the interaction is not uniformly continuous with respect to the topology on the configurations. Indeed a pair of points at distance \(\varepsilon\) yields a \(\varepsilon^{-s}\) energy but a pair of points at distance \(2\varepsilon\) has energy \((2\varepsilon)^{-s}\), with \(|\varepsilon^{-s} - (2\varepsilon)^{-s}| \to \infty\), although these two point configurations are very close for the topology on \(X\).
Secondly, the energy is non-additive: we have in general
\[
\text{Int}[C_1 \cup C_2, C_1 \cup C_2] \neq \text{Int}[C_1, C_1] + \text{Int}[C_2, C_2].
\]
Yet the knowledge of \(\overline{\text{Emp}}_N \) (through the fact that \(\overline{\text{Emp}}_N(\vec{X}_N) \in B(\overline{\mathcal{P}}, \varepsilon) \)) yields only local information on \(\vec{X}_N \), and does not allow one to reconstruct \(\vec{X}_N \) globally. Roughly speaking, it is like partitioning \(\Omega \) into hypercubes and having a family of point configurations, each belonging to some hypercube, but without knowing the precise configuration-hypercube pairing. Since the energy is non-additive (there are non-trivial hypercube-hypercube interactions in addition to the hypercubes’ self-interactions), we cannot (in general) deduce \(H_N(\vec{X}_N) \) from the mere knowledge of the tagged empirical field.

In Section 4.3, the singularity problem is dealt with by using a regularization procedure similar to that of [LS15], while the non-additivity is shown to be negligible due to the short-ranged nature of the Riesz potential for \(s > d \).

4.1. A LDP for the reference measure. Let \(\text{Leb}_{\Omega N} \) be the Lebesgue measure on \(\Omega^N \), and let \(\overline{Q}_N \) be the push-forward of \(\text{Leb}_{\Omega N} \) by the “tagged empirical field” map \(\overline{\text{Emp}}_N \) defined in (1.10). Let us recall that \(\Omega \) is not necessarily bounded, hence \(\text{Leb}_{\Omega N} \) may have an infinite mass and thus there is no natural way of making \(\overline{Q}_N \) a probability measure.

Proposition 4.1. Let \(\mathcal{P} \) be in \(\mathcal{M}_{\text{stat},1}(\mathcal{X}) \). We have
\[
\lim_{\varepsilon \to 0} \liminf_{N \to \infty} \frac{1}{N} \log \overline{Q}_N \left(B(\mathcal{P}, \varepsilon) \right) = \lim_{\varepsilon \to 0} \limsup_{N \to \infty} \frac{1}{N} \log \overline{Q}_N \left(B(\mathcal{P}, \varepsilon) \right) = - \int_{\Omega} \left(\text{ent}[\mathcal{P}^\varepsilon|\Pi] - 1 \right) d\mathcal{X} - 1.
\]

Proof. If \(\Omega \) is bounded, Proposition 4.1 follows from the analysis of [LS15, Section 7.2], see in particular [LS15, Lemma 7.8]. The only difference is that the Lebesgue measure on \(\Omega \) used in [LS15] is normalized, which yields an additional factor of \(\log |\Omega| \) in the rate function. The proof extends readily to a non-bounded \(\Omega \) because the topology of weak convergence on \(\mathcal{M}(\mathcal{X}) \) is defined with respect to test functions which are compactly supported on \(\Omega \). \(\square \)

4.2. A LDP upper bound.

Proposition 4.2. Let \(\mathcal{P} \) be in \(\mathcal{M}_{\text{stat},1}(\mathcal{X}) \). We have
\[
\lim_{\varepsilon \to 0} \limsup_{N \to \infty} \frac{1}{N} \log \mathcal{P}_{N,\beta}(B(\mathcal{P}, \varepsilon)) \leq -\mathcal{F}_\beta(\mathcal{P}) + \limsup_{N \to \infty} \left(-\frac{\log Z_{N,\beta}}{N} \right).
\]

Proof. Using the definition of \(\mathcal{P}_{N,\beta} \) as the push-forward of \(\mathcal{P}_{N,\beta} \) by \(\overline{\text{Emp}}_N \) we may write
\[
\mathcal{P}_{N,\beta}(B(\mathcal{P}, \varepsilon)) = \frac{1}{Z_{N,\beta}} \int_{\Omega^N \cap \{ \overline{\text{Emp}}_N(X_N) \in B(\overline{\mathcal{P}}, \varepsilon) \}} \exp \left(-\beta N^{-s/d}H_N(X_N) \right) dX_N.
\]
From Proposition 3.5 and Proposition 3.3 we know that for any sequence \(X_N \) such that \(\overline{\text{Emp}}_N(X_N) \in B(\overline{\mathcal{P}}, \varepsilon) \) we have
\[
\liminf_{N \to \infty} \frac{H_N(X_N)}{N^{1+s/d}} \geq \mathcal{W}_s(\mathcal{P}) + \mathcal{V}(\mathcal{P}) + o_\varepsilon(1).
\]
We may thus write
\[
\limsup_{N \to \infty} \frac{1}{N} \log \mathbb{P}_{N, \beta}(B(P, \varepsilon)) \leq -\beta \left(\mathbb{W}_s(P) + \mathbb{V}(P) \right)
\]
\[- \log \mathbb{P}_{N, \beta}(B(P, \varepsilon)) + \limsup_{N \to \infty} \left(- \frac{\log Z_{N, \beta}}{N} \right) + o_\varepsilon(1).
\]

Using Proposition 4.1 we know that
\[
\limsup_{N \to \infty} \frac{1}{N} \log \mathbb{P}_{N, \beta}(B(P, \varepsilon)) = - \mathbb{W}_s(P) + \mathbb{V}(P) - \mathbb{F}(P) - 1 + o_\varepsilon(1),
\]
which, in view of the definition of \(\mathbb{F}_\beta \) as in (2.26), yields (4.2).

\[\square \]

4.3. A LDP lower bound. The goal of the present section is to prove a matching LDP lower bound:

Proposition 4.3. Let \(P \) be in \(\mathcal{M}_{\text{stat}, 1}(X) \). We have
\[
\liminf_{\varepsilon \to 0} \liminf_{N \to \infty} \frac{1}{N} \log \mathbb{P}_{N, \beta}(B(P, \varepsilon)) \geq - \mathbb{W}_s(P) + \mathbb{V}(P) - \mathbb{F}(P) - 1 + \liminf_{N \to \infty} \left(- \frac{\log Z_{N, \beta}}{N} \right).
\]

For \(N \geq 1 \) and \(\delta > 0 \), let us define the set \(T_{N, \delta}(P) \) as
\[
T_{N, \delta}(P) = \left\{ \hat{X}_N \mid \frac{\mathcal{H}_N(\hat{X}_N)}{N^{1+s/d}} \leq \mathbb{F}_\beta(P) + \delta \right\}.
\]

We will rely on the following result:

Proposition 4.4. Let \(P \) be in \(\mathcal{M}_{\text{stat}, 1}(X) \). For all \(\varepsilon, \delta > 0 \) we have
\[
\liminf_{N \to \infty} \frac{1}{N} \log \mathbb{P}_{N, \beta}(B(P, \varepsilon) \cap T_{N, \delta}(P)) \geq - \int_\Omega \left(\text{ent}[P^x|\Pi] - 1 \right) dx - 1.
\]

Proof of Proposition 4.4. We may assume that \(\Omega \) is compact and that the intensity measure of \(P \), denoted by \(\rho \), is continuous, compactly supported and bounded below. Indeed we can always approximate \(P \) by random point processes satisfying these additional assumptions. For any \(N \geq 1 \), we let \(\hat{\rho}_N(x) := \rho(xN^{-1/d}) \) and we let \(\Omega_N := N^{1/d} \Omega \).

In fact, for simplicity we will assume that \(\Omega \) is some large hypercube. The argument below readily extends to the case where \(\Omega \) can be tiled by small hypercubes, and any \(C^1 \) domain can be tiled by small hypercubes up to some “boundary parts” which are negligible for our concerns (a precise argument is given e.g. in [LS15, Section 6]).
For $R > 0$, we let $\{\tilde{K}_i\}_{i \in I}$ be a partition of Ω_N by hypercubes of sidelength R. For R, M, we denote by $\tilde{P}_{R,M}$ the restriction\footnote{That is, $\tilde{P}_{R,M} \in \mathcal{M}(\Omega \times \mathcal{X}[K_R])$.} to K_R of \tilde{P}, conditioned to the event

\begin{equation}
\{ |C \cap K_R| \leq MR^d \}.
\end{equation}

Step 1. Generating microstates.

For any $\varepsilon > 0$, for any $M, R > 0$, for any $\nu > 0$, for any $N \geq 1$, there exists a family $A = A(\varepsilon, M, R, \nu, N)$ of point configurations C such that:

1. $C = \sum_{i \in I} C_i$ where C_i is a point configuration in \tilde{K}_i.
2. $|C| = N$.
3. The “discretized” empirical field is close to $\tilde{P}_{R,M}$

\begin{equation}
\tilde{P}_d(C) := \frac{1}{|I|} \sum_{i \in I} \delta_{(N-1/d\varepsilon, \theta_{\varepsilon}, C_i)} \text{ belongs to } B(\tilde{P}_{R,M}, \nu),
\end{equation}

where x_i denotes the center of \tilde{K}_i.
4. The associated empirical field is close to \mathcal{P}

\begin{equation}
\mathcal{P}_e(C) := \int_{\Omega} \delta_{(x, \theta_{x1/d\varepsilon} C)} \, dx \text{ belongs to } B(\mathcal{P}, \varepsilon).
\end{equation}

Note that $\mathcal{P}_e(C) = \overline{\text{Emp}_N(N^{-1/d}C)$.
5. The volume of A satisfies, for any $\varepsilon > 0$

\begin{equation}
\liminf_{M \to \infty} \liminf_{R \to \infty} \liminf_{\nu \to 0} \lim_{N \to \infty} \frac{1}{|I|} \log \text{Leb}_{1/N}(A) \geq - \int_{\Omega} (\text{ent}[\mathcal{P}_e | \Pi] - 1) - 1.
\end{equation}

This is essentially [LS15, Lemma 6.3] with minor modifications (e.g. the Lebesgue measure in [LS15] is normalized, which yields an additional logarithmic factor in the formulas).

We will make the following assumption on A

\begin{equation}
|C_i| \leq 2MR^d \text{ for all } i \in I.
\end{equation}

Indeed for fixed M, when \tilde{P}_d is close to $\tilde{P}_{R,M}$ (for which (4.6) holds), the fraction of hypercubes on which (4.10) fails to hold as well as the ratio of excess points over the total number of points (namely N) are both small. We may then “redistribute” these excess points among the other hypercubes without affecting (4.8) and changing the energy estimates below only by a negligible quantity.

Step 2. First energy estimate.

For any $R, M, \tau > 0$, the map defined by

$$
C \in \mathcal{X}(K_R) : \longrightarrow \text{Int}_\tau|C, C| \wedge \frac{(2MR^d)^2}{\tau^s}
$$

(where Int_τ is as in (2.7)) is continuous on $\mathcal{X}(K_R)$ and bounded (this is precisely the reason for conditioning that the number of points are bounded). We may thus write, in view of (4.6)
and (4.7), (4.10),
\[
\int_{\Omega \times \mathcal{X}(K_R)} \text{Int}_\tau \ d\mathcal{P}_d = \int_{\Omega \times \mathcal{X}(K_R)} \text{Int}_\tau \wedge \frac{(2MR^d)^2}{\tau^s} d\mathcal{P}_d \\
= \int_{\Omega \times \mathcal{X}(K_R)} \text{Int}_\tau \wedge \frac{(2MR^d)^2}{\tau^s} d\mathcal{P}_{R,M} + o_\nu(1) = \int_{\Omega \times \mathcal{X}(K_R)} \text{Int}_\tau \ d\mathcal{P}_{R,M} + o_\nu(1).
\]
Moreover we have
\[
\lim_{M \to \infty} \lim_{R \to \infty} \frac{1}{R^d} \int_{\Omega \times \mathcal{X}(K_R)} \text{Int}_\tau \ d\mathcal{P}_{R,M} = \mathbb{W}_s(\mathcal{P}) + o_\tau(1),
\]
thus we see that, with (4.7)
\[
(4.11) \lim_{M \to \infty, R \to \infty} \lim_{\nu \to 0} \frac{1}{N} \sum_{i \in I} \text{Int}_\tau\left[C_i, C_i \right] = \mathbb{W}_s(\mathcal{P}) + o_\tau(1).
\]

Step 3. Regularization.
In order to deal with the short-scale interactions that are not captured in \(\text{Int}_\tau \), we apply the regularization procedure of [LS15, Lemma 5.11]. Let us briefly present this procedure:

1. We partition \(\Omega_N \) by small hypercubes of sidelength \(6\tau \).
2. If one of these hypercubes \(K \) contains more than one point, or if it contains a point and one of the adjacent hypercubes also contains a point, we replace the point configuration in \(K \) by one with the same number of points but confined in the central, smaller hypercube \(K' \subset K \) of side length \(3\tau \) and that lives on a lattice (the spacing of the lattice depends on the initial number of points in \(K \)).

This allows us to control the difference \(\text{Int} - \text{Int}_\tau \) in terms of the number of points in the modified hypercubes.

In particular we replace \(\mathcal{A} \) by a new family of point configurations, such that
\[
(4.12) \frac{1}{N} \sum_{i \in I} \left(\text{Int} - \text{Int}_\tau \right)\left[C_i, C_i \right] \leq C\tau^{-s/d}E_{\mathcal{P}_d}\left[\left(\left(|C \cap K_{12\tau}| \right)^{2+s/d} - 1 \right)_{+} \right].
\]
The right-hand side of (4.12) should be understood as follows: any group of points which were too close to each other (without any precise control) have been replaced by a group of points with the same cardinality, but whose interaction energy is now similar to that of a lattice. The energy of \(n \) points in a lattice of spacing \(\frac{\tau}{n^{1/d}} \) scales like \(n^{2+s/d}\tau^{-s} \), and taking the average over all small hypercubes, is similar to computing \(\frac{1}{\tau^d} E_{\mathcal{P}_d} \).

As \(\nu \to 0 \) we may then compare the right-hand side of (4.12) with the same quantity for \(\mathcal{P}_d \), namely
\[
\tau^{-s/d}E_{\mathcal{P}_d}\left[\left(\left(|C \cap K_{12\tau}| \right)^{2+s/d} - 1 \right)_{+} \right]
\]
which can be shown to be \(o_\tau(1) \) (following the argument of [LS15, Section 6.3.3]), because it is in turn of the same order as
\[
E_{\mathcal{P}_d}\left[\left(\text{Int} - \text{Int}_\tau \right) [K_1, K_1] \right],
\]
which goes to zero as \(\tau \to 0 \) by dominated convergence.

We obtain
\[
(4.13) \lim_{\tau \to 0} \lim_{M, R \to \infty} \lim_{\nu \to 0} \frac{1}{N} \sum_{i \in I} \left(\text{Int} - \text{Int}_\tau \right)\left[C_i, C_i \right] = 0
\]
and combining (4.13) with (4.11) we get that

\[
\lim_{\tau \to 0} \lim_{M \to \infty} \lim_{R \to \infty} \lim_{\nu \to 0} \lim_{N \to \infty} \frac{1}{N} \sum_{i \in I} \text{Int}[C_i, C_i] \leq \mathbb{W}_s(\bar{\mu}).
\]

Step 4. Shrinking the configurations. For \(R > 0 \) we let \(R' := R \sqrt{d/s} \).

It is not true in general that \(\text{Int}[C_i, C_i] \) can be split as the sum \(\sum_{i \in I} \text{Int}[C_i, C_i] \). However since the Riesz interaction decays fast at infinity it is approximately true if the configurations \(C_i \) are separated by a large enough distance. To ensure that, we “shrink” every configuration \(C_i \) in \(K_i \), namely we rescale them by a factor \(\frac{1}{1 - \frac{R'}{R}} \). This operation affects the discrete average (4.7) but not the empirical field; i.e., for any \(\varepsilon > 0 \), if \(M, R \) are large enough and \(\nu \) small enough, we may still assume that (4.8) holds. The interaction energy in each hypercube \(K_i \) is multiplied by \(\left(1 - \frac{R'}{R} \right)^{-s} = 1 + o_R(1) \), but the configurations in two distinct hypercubes are now separated by a distance at least \(R' \). Since (4.10) holds, an elementary computation implies that we have, for any \(i \) in \(I \)

\[
\text{Int}[C_i, \sum_{j \neq i} C_j] = M^2 R^d \frac{R'}{R^s} O(1),
\]

with a \(O(1) \) depending only on \(d, s \). We thus get

\[
\text{Int}[C, C] = \sum_{i \in I} \text{Int}[C_i, C_i] + N M^2 \frac{R^d}{R^s} O(1),
\]

but \(\frac{R^d}{R^s} = o_R(1) \) by the choice of \(R' \) (and the fact that \(d < s \)) and thus (in view of (4.14) and the effect of the scaling on the energy)

\[
\lim_{\tau \to 0} \lim_{M \to \infty} \lim_{R \to \infty} \lim_{\nu \to 0} \lim_{N \to \infty} \frac{1}{N} \text{Int}[C, C] \leq \mathbb{W}_s(\bar{\mu}).
\]

We have thus constructed a large enough (see (4.9)) volume of point configurations in \(\Omega_N \) whose associated empirical fields converge to \(\bar{\mu} \) and such that

\[
\frac{1}{N} \text{Int}[C, C] \leq \mathbb{W}_s(\bar{\mu}) + o(1).
\]

We may view these configurations at the original scale by applying a homothety of factor \(N^{-1/d} \), this way we obtain point configurations \(\tilde{X}_N \) in \(\Omega \) such that

\[
\frac{1}{N^{1 + s/d}} E_s(\tilde{X}_N) \leq \mathbb{W}_s(\bar{\mu}) + o(1).
\]

It is not hard to see that the associated empirical measure \(\mu_N \) converges to the intensity measure of \(\bar{\mu} \) and since \(V \) is continuous we also have

\[
\frac{1}{N} \int_{\mathbb{R}} V d\mu_N = \mathbb{V}(\bar{\mu}) + o(1).
\]

This concludes the proof of Proposition 4.4. □

We may now prove the LDP lower bound.
Proof of Proposition 4.3. Proposition 4.4 implies (4.3), indeed we have
\[
\mathbb{P}_{N,\beta}(B(P, \varepsilon)) = \frac{1}{Z_{N,\beta}} \int_{\Omega \cap \{\text{Emp}(\hat{X}_N) \in B(P, \varepsilon)\}} \exp \left(-\beta N^{-s/d} H_N(\hat{X}_N) \right) d\hat{X}_N
\]
\[
\geq \frac{1}{Z_{N,\beta}} \int_{\Omega \cap \{\text{Emp}(\hat{X}_N) \in B(P, \varepsilon) \cap T_{N,\delta}(P)\}} \exp \left(-\beta N^{-s/d} H_N(\hat{X}_N) \right) d\hat{X}_N
\]
and (4.5) allows us to bound below the last integral as
\[
\liminf_{\delta \to 0, \varepsilon \to 0, N \to \infty} \frac{1}{N} \log \int_{\Omega \cap \{\text{Emp}(\hat{X}_N) \in B(P, \varepsilon) \cap T_{N,\delta}(P)\}} d\hat{X}_N \geq -\int_{\Omega} (\text{ent}[\mathcal{P}^x \mid \Pi] - 1) - 1.
\]

\[\square\]

4.4. Proof of Theorem 1.1 and Corollary 1.2. From Proposition 4.2 and Proposition 4.3, the proof of Theorem 1.1 is standard. Exponential tightness of \(\mathbb{P}_{N,\beta}\) comes for free (see e.g. [LS15, Section 4.1]) because the average number of points is fixed, and we may thus improve the weak large deviations estimates (4.2), (4.2) into the following: for any \(A \subset \mathcal{M}_{\text{stat}}(\mathcal{X})\) we have
\[
-\inf_{A} \mathcal{F}_{\beta} + \liminf_{N \to \infty} \left(-\frac{\log Z_{N,\beta}}{N} \right)
\leq \liminf_{N \to \infty} \frac{1}{N} \log \mathbb{P}_{N,\beta}(A) \leq \limsup_{N \to \infty} \frac{1}{N} \log \mathbb{P}_{N,\beta}(A)
\leq -\inf_{A} \mathcal{F}_{\beta} \limsup_{N \to \infty} \left(-\frac{\log Z_{N,\beta}}{N} \right).
\]

We easily deduce that
\[
\lim_{N \to \infty} \frac{\log Z_{N,\beta}}{N} = -\min_{\mathcal{M}_{\text{stat}}(\mathcal{X})} \mathcal{F}_{\beta},
\]
which proves Corollary 1.2, and that the LDP for \(\mathbb{P}_{N,\beta}\) holds as stated in Theorem 1.1.

4.5. Proof of Theorem 1.3.

Proof. Theorem 1.3 follows from an application of the “contraction principle” (see e.g. [RAS15, Section 3.1]). Let us consider the map \(\widetilde{\mathcal{M}}(\mathcal{X}) \to \mathcal{M}(\Omega)\) defined by
\[
\widetilde{\text{Intens}} : \mathcal{P} \mapsto \int_{\mathcal{X}} \delta_x E_{\mathcal{P}^x} [\mathcal{C} \cap K_1].
\]
It is continuous on \(\mathcal{M}_{\text{stat}}(\mathcal{X})\) and coincides with \(\text{Intens}\). By the contraction principle, the law of \(\widetilde{\text{Intens}}(\text{Emp}(\hat{X}_N))\) obeys a large deviation principle governed by
\[
\rho \mapsto \inf_{\text{Intens}(\mathcal{P}) = \rho} \mathcal{F}_{\beta}(\mathcal{P}),
\]
which is easily seen to be equal to \(I_{\beta}(\rho)\) as defined in (2.27).
For technical reasons (a boundary effect), it is not true in general that \(\widehat{\text{Intens}}(\text{Emp}(\vec{X}_N)) = \text{emp}(\vec{X}_N) \), however we have
\[
\text{dist}_{\mathcal{M}(\Omega)} \left(\widehat{\text{Intens}}(\text{Emp}(\vec{X}_N)), \text{Emp}(\vec{X}_N) \right) = o_N(1),
\]
uniformly for \(\vec{X}_N \in \Omega \). In particular, the laws of \(\widehat{\text{Intens}}(\text{Emp}(\vec{X}_N)) \) and of \(\text{emp}(\vec{X}_N) \) are exponentially equivalent (in the language of large deviations), thus any LDP can be transferred from one to the other. This proves Theorem 1.3. \(\square \)

5. Additional proofs: Propositions 1.4, 1.5 and 1.6

5.1. Limit of the empirical measure. From Theorem 1.3 and the fact that \(I_\beta \) is strictly convex we deduce that \(\text{emp}(\vec{X}_N) \) converges almost surely to the unique minimizer of \(I_\beta \).

Proof of Proposition 1.4.

First, if \(V = 0 \) and \(\Omega \) is bounded, \(I_\beta \) can be written as
\[
I_\beta(\rho) := \int_\Omega \rho(x) \inf_{P \in \mathcal{P}_{\text{stat},1}(\chi)} \left(\beta \rho(x)^{s/d} W_s(P) + \text{ent}[P|\Pi] \right) dx + \int_\Omega \rho(x) \log \rho(x) dx.
\]
We claim that both terms in the right-hand side are minimized when \(\rho \) is the uniform probability measure on \(\Omega \) (we may assume \(|\Omega| = 1 \) to simplify, without loss of generality). This property is well-known for the relative entropy term \(\int_\Omega \rho(x) \log \rho(x) \). Moreover we may observe that
\[
\rho \mapsto \inf_{P \in \mathcal{P}_{\text{stat},1}(\chi)} \left(\beta \rho(x)^{s/d} W_s(P) + \text{ent}[P|\Pi] \right)
\]
is convex in \(\rho \) (for similar reasons as in the proof of Proposition 2.1), and thus (since \(\int_\Omega \rho = 1 \))
\[
\int_\Omega \rho(x) \inf_{P \in \mathcal{P}_{\text{stat},1}(\chi)} \left(\beta \rho(x)^{s/d} W_s(P) + \text{ent}[P|\Pi] \right) dx
\]
is also minimal for \(\rho \equiv 1 \). Thus the empirical measure converges almost surely to the uniform probability measure on \(\Omega \), which proves the first point of Proposition 1.4.

Next, let us assume that \(V \) is arbitrary and \(\Omega \) bounded. It is not hard to see that for the minimizer \(\mu_{V,\beta} \) of \(I_\beta \) we have, as \(\beta \to 0 \)
\[
I_\beta(\mu_{V,\beta}) \geq I_\beta(\rho_{\text{unif}}) + O(\beta),
\]
where \(\rho_{\text{unif}} \) is the uniform probability measure on \(\Omega \). Moreover it is also true (as proven above) that the first term in the definition of \(I_\beta \) is minimal for \(\rho = \rho_{\text{unif}} \). We thus get that, as \(\beta \to 0 \)
\[
\int_\Omega \mu_{V,\beta} \log \mu_{V,\beta} - \int_\Omega \rho_{\text{unif}} \log \rho_{\text{unif}} = O(\beta),
\]
which implies (by Pinsker’s inequality) that \(\mu_{V,\beta} \) converges to the uniform probability measure on \(\Omega \) as \(\beta \to 0 \). This proves the second point of Proposition 1.4.

Finally for \(V \) arbitrary, the problem of minimizing of \(I_\beta \) is, as \(\beta \to \infty \), similar to minimizing
\[
\beta \left(\int_\Omega \rho(x)^{1+s/d} \min \mathbb{W}_s dx + \int_\Omega \rho(x)V(x) dx \right).
\]
Since \(\min \mathcal{W}_s = C_{s,d} \) we recover (up to a multiplicative constant \(\beta > 0 \)) the minimization problem studied in [HSVar], namely the problem of minimizing

\[
C_{s,d} \int_{\Omega} \rho(x)^{1+s/d} dx + \int_{\Omega} \rho(x)V(x) dx,
\]

among probability densities, whose (unique) solution is given by \(\mu_{V,\infty} \).

In order to prove that \(\mu_{V,\beta} \) converges to \(\mu_{V,\infty} \) as \(\beta \to \infty \), we need to make that heuristic rigorous, which requires an adaptation of [Leb16, Section 7.3, Step 2]. We claim that there exists a sequence \(\{P_k\}_{k \geq 1} \) in \(\mathcal{P}_{stat,1}(\mathcal{X}) \) such that

\[
\lim_{k \to \infty} \mathcal{W}_s(P_k) = C_{s,d}, \quad \forall k \geq 1, \text{ent}[P_k||\Pi] < +\infty.
\]

We could think of taking \(P_k = P \) where \(P \) is some minimizer of \(\mathcal{W}_s \) among \(\mathcal{P}_{stat,1}(\mathcal{X}) \), but it might have infinite entropy (e.g., if \(P \) was the law of the stationary process associated to a lattice, as in dimension 1). We thus need to “expand” \(P \) (e.g., by making all the points vibrate independently in small balls as described in [Leb16, Section 7.3, Step 2] in the case of the one-dimensional lattice). We may then write that, for any \(\beta > 0 \) and \(k \geq 1 \),

\[
I_\beta(\mu_{V,\beta}) \leq I_\beta(\mu_{V,\infty}) \leq \beta \left(\int_{\Omega} \mu_{V,\infty}(x)^{1+s/d} \mathcal{W}_s(P_k) + \int_{\Omega} \mu_{V,\infty}(x)V(x) dx \right) + \text{ent}[P_k||\Pi] + \int_{\Omega} \mu_{V,\infty}(x) \log \mu_{V,\infty}(x)
\]

where we have used (5.1) in the last inequality. Choosing \(\beta \) and \(k \) properly we thus see that

\[
C_{s,d} \int_{\Omega} \mu_{V,\beta}(x)^{1+s/d} + \int_{\Omega} \mu_{V,\beta}(x)V(x) \leq C_{s,d} \int_{\Omega} \mu_{V,\infty}(x)^{1+s/d} + \int_{\Omega} \mu_{V,\infty}(x)V(x) dx + o_\beta \to \infty(1).
\]

By convexity, it implies that \(\mu_{V,\beta} \) converges to \(\mu_{V,\infty} \) as \(\beta \to \infty \). \(\square \)

5.2. The case of minimizers.

Proof of Proposition 1.5. Let \(\{\vec{X}_N\}_N \) be a sequence of \(N \)-point configuration such that for all \(N \geq 1 \), \(\vec{X}_N \) minimizes \(\mathcal{H}_N \). From Proposition 3.5 we know that (up to extraction), \(\{\text{Emp}(\vec{X}_N)\}_N \) converges to some \(\mathcal{P} \in \overline{\mathcal{M}}_{stat,1}(\mathcal{X}) \) such that

\[
\mathcal{W}_s(\mathcal{P}) + \nabla(\mathcal{P}) \leq \liminf_{N \to \infty} \frac{\mathcal{H}_N(\vec{X}_N)}{N^{1+s/d}},
\]

and we have, by (2.23), (3.1) and the scaling properties of \(\mathcal{W}_s \),

\[
\mathcal{W}_s(\mathcal{P}) + \nabla(\mathcal{P}) \geq C_{s,d} \int_{\Omega} \rho(x)^{1+s/d} dx + \int_{\Omega} V(x)\rho(x) dx.
\]

where \(\rho = \text{Intens}(\mathcal{P}) \). We also know that the empirical measure \(\text{emp}(\vec{X}_N) \) converges to the intensity measure \(\rho = \text{Intens}(\mathcal{P}) \).

On the other hand, from [HSVar, Theorem 2.1] we know that \(\text{emp}(\vec{X}_N) \) converges to some measure \(\mu_{V,\infty} \) which is defined as follows: define \(L \) to be the unique solution of

\[
\int_{\Omega} \left[\frac{L - V(x)}{C_{s,d}(1+s/d)} \right]_{+}^{d/s} dx = 1.
\]
and let then $\mu_{V,\infty}$ be given by
\[(5.4) \quad \mu_{V,\infty}(x) := \left[\frac{L - V(x)}{C_{s,d}(1 + s/d)} \right]^{d/s} (x \in \Omega).\]

It is proven in [HSVar] that $\mu_{V,\infty}$ minimizes the quantity
\[(5.5) \quad C_{s,d} \int_{\Omega} \rho(x)^{1+s/d} dx + \int V(x) \rho(x) dx,
\]
among all probability density functions ρ supported on Ω. It is also proven that
\[(5.6) \quad \lim_{N \to \infty} H_N(\tilde{X}_N) = C_{s,d} \int_{\Omega} \mu_{V,\infty}(x)^{1+s/d} dx + \int V(x) \mu_{V,\infty}(x) dx,
\]

By unicity of the limit we have $\rho := \text{Intens}(P) = \mu_{V,\infty}$. In view of (5.2), (5.3), (5.6) and by the fact that $\mu_{V,\infty}$ minimizes (5.5) we get that
\[\overline{W}_s(P) + \overline{V}(P) = C_{s,d} \int_{\Omega} \mu_{V,\infty}(x)^{1+s/d} dx + \int V(x) \mu_{V,\infty}(x) dx,
\]
and that P is in fact a minimizer of $\overline{W}_s + \overline{V}$. We must also have
\[\overline{W}_s(P) = C_{s,d} \int_{\Omega} \mu_{V,\infty}(x)^{1+s/d} dx
\]
hence (in view of (2.23)) we get
\[W_s(C) = C_{s,d} \mu_{V,\infty}(x)^{1+s/d} = \min_{x \in \mu_{V,\infty}(x)} W_s, \text{ for } P\text{-a.e. } (x,C),
\]
which concludes the proof. \hfill \Box

5.3. The one-dimensional case. Proposition 1.6 is very similar to the first statement of [Leb16, Theorem 3], and we sketch its proof here.

Proof of Proposition 1.6. First, we use the expression of \overline{W}_s in terms of the two-point correlation function, as presented in (2.25)
\[\overline{W}_s(P) = \lim_{R \to \infty} \inf \int_{[-R,R]^d} \frac{1}{|v|^s} \rho_{2,P}(v) \left(1 - \frac{|v|}{R} \right) dv.
\]

Then, we split $\rho_{2,P}$ as the sum
\[\rho_{2,P} = \sum_{k=1}^{+\infty} \rho_{2,P}^{(k)},
\]
where $\rho_{2,P}^{(k)}$ is the correlation function of the k-th neighbor (which makes sense only in dimension 1). It is not hard to check that
\[\int \rho_{2,P}^{(k)}(x) = 1 \text{ and } \int x \rho_{2,P}^{(k)}(x) = k
\]
(the last identity holds because P has intensity 1 and is stationary). Using the convexity of
\[v \mapsto \frac{1}{|v|^s} \left(1 - \frac{|v|}{R} \right),
\]
we obtain that for any $k \geq 1$ it holds
\[
\int \frac{1}{|v|^s} \left(1 - \frac{|v|}{R}\right) \rho_{2,P}^{(k)} dv \geq \int \frac{1}{|v|^s} \left(1 - |v|\right) \delta_k(v) dv = \int \frac{1}{|v|^s} \left(1 - |v|\right) \rho_{2,P_Z}^{(k)}(v) dv,
\]
where $P_Z = u + Z$ (with u uniform in $[0,1]$) thus we have
\[
\mathcal{W}_s(P) \geq \mathcal{W}_s(P_Z),
\]
which proves that \mathcal{W}_s is minimal at P_Z.

\[\square\]

REFERENCES

[BHRS16] S. V. Borodachov, D. P. Hardin, A. Reznikov, and E. B. Saff. Optimal discrete measures for Riesz potentials. http://arxiv.org/abs/1606.04128, 2016.

[BHS12] J. S. Brauchart, D. P. Hardin, and E. B. Saff. The next-order term for optimal Riesz and logarithmic energy asymptotics on the sphere. Contemp. Math., 578:31–61, 2012.

[BL15] X. Blanc and M. Lewin. The crystallization conjecture: a review. EMS Surveys in Mathematical Sciences, 2(2):255–306, 2015.

[BLW16] T. Bloom, N. Levenberg, and F. Wielsinsky. A large deviation principle for weighted Riesz interactions. arXiv:1610.08422, 2016.

[CK07] H. Cohn and A. Kumar. Universally optimal distribution of points on spheres. Journal of the American Mathematical Society, 20(1):99–148, 2007.

[DVJ03] D. J. Daley and D. Vere-Jones. An introduction to the theory of point processes. Vol. I. Probability and its Applications (New York). Springer-Verlag, New York, second edition, 2003. Elementary theory and methods.

[DS14] T. Leblé, S. Serfaty. Large deviation principle for empirical fields of log and Riesz gases. http://arxiv.org/abs/1502.03970, 2015.

[LSZ15] T. Leblé, S. Serfaty, and O. Zeitouni. Large deviation principle for empirical fields of log and Riesz gases. http://arxiv.org/abs/1502.03970, 2015.

[Maz11] M. Mazars. Long ranged interactions in computer simulations and for quasi-2d systems. Communications in Mathematical Physics, pages 1–60, 2015.

[PS14] M. Petrache and S. Serfaty. Next order asymptotics and renormalized energy for Riesz interactions. Journal of the Institute of Mathematics of Jussieu, pages 1–69, 2014.

[ST97] E. B. Saff and V. Totik. Logarithmic Potentials with External Fields. Grundlehren der mathematischen Wissenschaften 316, Springer-Verlag, Berlin, 1997.

[Var16] S. R. S. Varadhan. Large Deviations, volume 27 of Courant Lecture Notes in Mathematics. Amer. Math. Soc., Providence, RI, 2016.
(Douglas P. Hardin) Center for Constructive Approximation, Department of Mathematics, Vanderbilt University, Nashville, TN, 37240, USA
E-mail address: doug.hardin@vanderbilt.edu

(Thomas Leblé) Courant Institute of Mathematical Sciences, 251 Mercer Street, New York University, New York, NY 10012-1110, USA
E-mail address: thomasl@math.nyu.edu

(Edward B. Saff) Center for Constructive Approximation, Department of Mathematics, Vanderbilt University, Nashville, TN, 37240, USA
E-mail address: edward.b.saff@vanderbilt.edu

(Sylvia Serfaty) Courant Institute of Mathematical Sciences, 251 Mercer Street, New York University, New York, NY 10012-1110, USA & Institut Universitaire de France & Sorbonne Universités, UPMC Univ. Paris 06, CNRS, UMR 7598, Laboratoire Jacques-Louis Lions, 4, place Jussieu 75005, Paris, France.
E-mail address: serfaty@cims.nyu.edu