Maximum wind pressure over India

P. K. JAIN
Meteorological Office, Poona
(Received 1 April 1970)

ABSTRACT. Maximum wind speeds in gusts at 26 stations in India have been studied and wind pressure maps prepared for different return periods by using the theory of distribution of extreme values.

1. Introduction

A knowledge of the maximum wind pressure likely in different parts of the country is of great importance and value to structural engineers. To meet this need, the ISI brought out in 1965 the Indian Standards Code of Practice for Structural Safety of Buildings : Loading Standards (Revised). Maps included in this publication show the maximum wind pressure that may be expected. The coastal values are estimates based on winds experienced when severe storms struck these areas. While these maps indicate extreme values, there is great demand for probabilities of different wind speeds likely in different parts of the country. To evaluate such probabilities, a good network of stations equipped with continuous recording wind instruments is essential. Although the network has been greatly improved and expanded in recent years, yet the number with over ten years continuous records is 26 only. Nevertheless, it was considered that it might be useful to examine the available wind data and present them in the form of probability values and maps. The results of the study are presented in this paper. Maps showing probabilities of maximum wind pressure for the different stations have also been included.

2. Data

There are 26 stations equipped with anemographs which have continuous analysed wind records for varying periods from 1944 but not less than 10 years. The highest wind speed in gusts recorded in each year have been collected for all such stations.

Wherever wind data were available for two sites at the same station, the higher value has been taken except for Calcutta and Bombay where the data at both the sites, i.e., Dum Dum-Alipore and Colaba-Santacruz respectively, were analysed separately. Further since one of the basic requirements of the method used in the present study is that the data considered for analysis should be available for a continuous period, the wind data missing for a year in between have been interpolated by comparing three years data, i.e., for the preceding year, the year in question and the succeeding year, with the corresponding data of the neighbouring station having more or less similar climatic environment. These stations are Jodhpur, Jaipur, Visakhapatnam and Gopalpur. For Jodhpur the station considered for interpolation is Jaipur and for Visakhapatnam it is Gopalpur and vice versa. Such occasions of missing data are, however, very few.

3. Variation of gusts with height

The heights of wind instruments at the different stations vary, but most of them are in the range of 10 to 30 m. The question of reduction of extreme gust values to a common height of 10 m was carefully examined in the light of available information. A formula for variation of gusts with height due to Deacon (1955) is

\[\frac{v_2}{v_1} = \left(\frac{h_1}{h_2} \right)^{0.85} \]

This is based on too few observations. In India it has been noticed that two anemographs located in a nearby sites have shown widely varying values, e.g., Dum Dum—Alipore, Colaba—Santacruz etc. Due to lack of sufficient observational data and the above consideration which introduce so much uncertainty reduction of data to standard height of 10 m was not made.

4. Method

The extreme value distribution due to Fisher and Tippet (type II) is

\[F(X) = \exp \left(-\left(\frac{X}{B} \right)^{-A} \right) \]

\(F(X) \) is the probability of an extreme value being less than \(X \); \(B \) is the scale parameter and \(A \) is a
Station	No. of yrs of record	Period	Speeds likely to be exceeded once in stated number of years	Highest speed on record	Mean annual speed max.
Ahmedabad	17	1953-1969	91 111 120 149 168 190 131 89		
Allahabad	22	1948-1969	103 128 148 178 204 234 163 99		
Bangalore	21	1949-1969	88 96 103 111 118 125 107 81		
Bhopal	18	1952-1969	106 119 128 141 151 161 120 95		
Bombay (Colaba)	26	1944-1969	96 104 109 116 122 127 107 87		
Bombay (Santa Cruz)	17	1953-1969	85 98 107 121 132 144 113 80		
Calcutta (Ali pore)	24	1946-1969	114 129 140 155 168 181 138 102		
Calcutta (Dom Dum)	22	1948-1969	114 132 145 164 179 196 147 106		
Goa	15	1954-1968	94 107 118 132 144 157 125 88		
Gopalpur	22	1948-1969	103 119 131 148 162 177 144 97		
Hyderabad	15	1955-1969	106 128 145 170 192 216 145 100		
Jagdalpur	12	1958-1969	92 107 117 132 144 158 109 84		
Jaipur	18	1952-1969	99 116 130 149 165 182 144 91		
Jambsherdpur	26	1944-1969	120 143 161 187 209 233 171 111		
Jodhpur	18	1948-1966	112 139 161 193 220 252 152 104		
Kodalkanal	22	1948-1969	101 112 119 130 139 148 114 92		
Lucknow	16	1954-1969	106 121 132 147 160 174 128 100		
Madras	22	1948-1969	99 115 127 143 157 171 135 94		
Nagpur	20	1959-1969	114 129 139 154 166 178 138 105		
New Delhi	22	1948-1969	119 135 147 164 178 192 159 107		
Poona	22	1948-1969	92 106 116 130 142 154 122 87		
Sagar Island	20	1959-1969	110 123 132 145 155 166 147 101		
Veraval	12	1958-1969	103 120 133 151 166 182 122 94		
Visakhapatnam	22	1948-1969	108 124 136 152 165 179 146 101		
Baroda	10	1948-1957	72 78 82 88 93 97 83 68		

The parameter which depends on the shape of the distribution. On taking twice the logarithm it can be expressed as—

\[X = \text{Exp.} \left(\log \frac{B}{A} \log \log \left(\frac{I}{F} \right) \right) \] (1)

If the return period is \(R \), then \(F = 1 - \left(\frac{1}{R} \right) \).

It is well known that Fisher and Tippett type I distribution, when fitted on the logarithm scale, follows a type II distribution with the condition that \(A = 1/b \) and \(B = e^a \) where, \(a \) and \(b \) are the constants of type I distribution and are known as location and scale parameters respectively. They are taken as mean and standard deviations of the data series and are greater than zero. This relationship between the two distributions is of considerable advantage in computing the parameters of type II distribution as it is easier to work out parameters of type I distribution. The parameters of the type I distribution are first worked out on the logarithmic, values of the data instead of actual
values and are then converted to the parameters of type II distribution by the relations, \(A = \frac{1}{b} \) and \(B = e^\alpha \). Having known \(A \) and \(B \), value of \(X \) in (1) for different return periods for different values of \(F \) can easily be found out.

5. Computations

\(a \) and \(b \) were first found out from the logarithm of extreme wind values instead of actual values. The procedure given by Lieblein and described by Thom (1966) has been followed in calculating \(a \) and \(b \). As a requirement of the above procedure the data series at each station has been divided into sub-groups of six items. In case of the data series not being a multiple of six, viz., 10 items, the series will be divided into two groups of six and four items respectively and will be multiplied with corresponding weightages.

The values of \(F \) corresponding to different return periods 2, 5, 10, 25, 50, 100 years are 50, 80, 90, 96, 98, 99, respectively. Knowing the values of \(A \), \(B \) and \(F \) for different return periods values of \(X \) were calculated using relation (1). The values of \(X \) for different return periods are given in Table 1.

6. Maximum wind pressure

The maximum wind pressure values for the return periods of 10, 25, 50 and 100 years have been found using formula \(P = KV^2 \), where, \(P \) is the wind pressure in kg/m², \(V \) is the wind speed in kmph and \(K \) is a constant equal to \(\cdot006 \). These values are given in Table 2. Maps showing values of maximum wind pressure have been prepared for the return periods of 50 and 100 years and are shown in Figs. 1 and 2.

7. Discussion

1. Since type II distribution is bounded below at zero while type I is unbounded at both ends, it is logical to fit type II distribution in the case of winds as it has a strict lower bound of zero and no known physical least upper bound.

2. The results obtained by fitting type II distribution in respect of north Indian stations are compared with the results obtained by Sharmas et al. (1967) by fitting type I distribution. It is noticed that in the former case, the values are generally higher than those in the latter case. In the latter case the values of wind obtained for the return period 5 years were compared with actual data recorded and it is found that the actual values in case of Jaipur and Lucknow have already been exceeded twice during the subsequent four years of their study which indicates that fitting of type I distribution is not satisfactory.

3. A comparison of the maximum wind pressure values obtained for different stations for 100 years return period and the values given in ISI map shows that in the former case they are generally higher except along east coast, where the values are generally lower. This is because of the fact that ISI map takes into account the estimated maximum wind speeds when severe storms struck the different parts of the coast. The two maps are therefore not
TABLE 2

Maximum wind pressure for different return periods

Station	Maximum wind pressure force (kg/m²) for the return period (year)	10	50	100
Ahmedabad	95	133	169	217
Allahabad	131	190	250	329
Bangalore	64	74	81	94
Bhopal	98	119	137	156
Bombay (Colaba)	71	81	89	97
Bombay (Santacruz)	69	88	105	124
Calcutta (Alipore)	118	144	169	197
Calcutta (Dum Dum)	126	161	192	230
Gaya	111	139	161	188
Goa	84	105	124	148
Gopalpur	103	131	157	188
Hyderabad	126	173	211	260
Jagdalpur	82	105	124	150
Jaipur	101	133	163	199
Jammu Saidpur	156	210	262	326
Jodhpur	156	223	290	381
Kodaikanal	85	101	116	131
Lucknow	105	130	154	182
Madras	97	123	148	175
Nagpur	116	142	165	190
New Delhi	130	161	190	221
Poona	81	101	121	142
Sagar Island	105	126	144	165
Verral	106	137	165	190
Visakhapatnam	111	139	163	192
Baroda	49	46	52	58

S. Probability maps

The preparation of maps of probability of maximum wind pressures was considered. As is well known extreme wind differ considerably even between two neighboring sites, e.g., the maximum wind speeds recorded at Colaba and Juhu (Bombay) were 80 and 94 mph respectively on the same day (22 November 1948). Other examples could be mentioned. The topography is also an important factor. A much closer network than the very sparse one of about two dozen stations for a country of India's size is essential for preparation of reliable probability maps. For these reasons, it is advisable not to draw isopleth maps as is usual with these two few data. They would be misleading. The probability values now derived and plotted on maps (Figs. 1 and 2) should, therefore, be regarded as applicable in their immediate neighbourhood only.

Acknowledgement — The author is indebted to Shri K. N. Rao, Deputy Director General of Observatories (Climatology and Geophysics), for his encouragement and guidance in the study and also for his useful suggestions in the original manuscript.

REFERENCES

1955 Quart. J.R. met. Soc., 81, p. 562.
1948 Wind data for Wind Mills, Sci. Notes, 6, 63.
1965 Code of Practice of Structural Safety of Buildings: Loading Standards, 15-875-1964.
1967 Indian J. Met. Geophys., 18, p. 139.
1966 W.M.O. Tech. Note, 81.

Desceen. E. L.
India met. Dep.
Indian Standards Inst.
Sharma, B. L. and Sehgal, U. N.
Theom, H. C. S.