The surgeon’s perspective: a retrospective study of wide local excisions taken to healthy subcutaneous fat in the management of advanced hidradenitis suppurativa

Eran Shavit, MD
Andrew Pawliwec, MBBS, MSc
Afsaneh Alavi, MD, MSc
Ralph George, MD

Accepted July 15, 2019

Correspondence to:
E. Shavit
Department of Medicine
Women’s College Hospital, 5 South
76 Grenville St
Toronto ON M5S 1B2
erans29@gmail.com

DOI: 10.1503/cjs.003119

Background: Hidradenitis suppurativa (HS) is a chronic debilitating folliculopilosebaceous disease that affects the skin most commonly in the axilla, groin, inframammary, genital and buttock areas. Surgical intervention may be an appropriate option in selected cases, but there is a risk of recurrence. The purpose of this study was to assess the results of wide local excision (WLE) to healthy subcutaneous fat with secondary intention healing in patients with HS who were under concurrent surgical and dermatologic care.

Methods: We conducted a retrospective review of 192 consecutive HS consultations to a general surgical service, identifying patients treated with WLE. Cases involving minor procedures (deroofing, incision and drainage) were excluded. Data on patient demographics, surgical site, method of closure, complications and recurrence were extracted from patient charts. We also conducted a literature review of surgical procedures in the management of HS.

Results: A total of 66 patients underwent 133 WLE to healthy subcutaneous fat. All patients were under concurrent medical care directed by a dermatologist. No medical therapies, including biological treatments, were interrupted or withheld for surgery. One hundred procedures were closed primarily with rotation or advancement flaps and 33 by secondary intention healing. Local recurrence occurred in 18% of primary closures and 18% of secondary intention closures (p = 0.98, χ² test, no difference between groups). One patient with secondary intention healing returned to the emergency department for bleeding; 34% of patients with primary closure experienced some dehiscence (23% major, 11% minor separation). Two patients with axillary disease had restrictions in their ability to raise their arm that required physiotherapy. Median follow-up was 14.5 (range 1–55) months.

Conclusion: Resection to healthy subcutaneous fat during WLE provides disease control comparable to that with deeper resections, simplifying care.

Contexte : L'hidradénite suppurée (HS) est une maladie invalidante chronique du follicule pilo-sébacé qui affecte la peau principalement au niveau de l’aisselle, de l’aïne, du pli sous-mammaire et du siège. Une intervention chirurgicale pourrait être une option appropriée dans certains cas, mais il y a un risque de récurrence. Le but de cette étude était d’évaluer les résultats d’une excision locale large (ELL) jusqu’aux tissus adipeux sous-cutanés sains suivie de cicatrisation secondaire chez des patients atteints d’HS recevant concomitamment des soins chirurgicaux et dermatologiques.

Méthodes : Nous avons procédé à une revue rétrospective de 192 consultations consécutives pour HS dans un service de chirurgie générale et nous avons recensé les patients traités par ELL. Les cas impliquant des interventions mineures (par incision-drainage) ont été exclus. Les données démographiques, le site chirurgical, la méthode de suture, les complications et les récurrences ont été enregistrés à partir des dossiers des patients. Nous avons aussi procédé à une revue de la littérature sur les interventions chirurgicales pour l’HS.

Résultats : En tout, 66 patients ont subi 133 interventions d’ELL jusqu’aux tissus adipeux sous-cutanés sains. Tous les patients prenaient concomitamment un traitement médicamenteux sous la supervision d’un dermatologue. Aucun des traitements médicamenteux, y compris les agents biologiques, n’a été suspendu ou interrompu pour la chirurgie. Cent interventions ont été refermées principalement par lambeaux de rotation ou d’avancement et 33 par cicatrisation secondaire. Les récurrences
Idiopathic suppurative hidradenitis (HS) is a chronic disease affecting the folliculopilosebaceous unit. The disease was roughly divided into 3 surgical stages by Hurley, but newer staging systems have been described and apply to the evaluation of medical therapies. In its severe forms the disease is a painful, malodorous, socially isolating condition that profoundly affects patients’ lives. It typically begins in adolescence or early adulthood. The condition can be exacerbated by obesity and smoking but is not caused by either. It is characterized by recurrent inflammatory nodules in characteristic areas, but repeated episodes can create heaped scars and chronic sinuses or tunnels under the skin surface.

As an inflammatory disease HS is managed collaboratively with medical and surgical approaches. Modern evidence-based guidelines address medical care, and surgery can play an important role in both localized and more severe disease. The choice of surgical intervention will depend on presentation. The most common procedure is incision and drainage, performed in the acute setting, such as in emergency departments. Other common procedures include deroofing, steroid injections and limited local excisions, which are typically done as office procedures. Wide local excision (WLE) is another technique in which excision extends beyond the margins of the gross disease and into the subcutaneous layer. It is often done for extensive axillary or groin involvement and can be closed by flaps, grafts or secondary intention healing. However, previous reports have suggested high recurrence rates, between 27% and 100% depending on the procedures performed. In recent years, a growing number of reports of surgical interventions for patients with HS have shown more promising results. Even in the setting of local recurrence postoperatively, the disease is usually more manageable and less extensive than preoperatively.

The purpose of this study was to assess the results of WLE with secondary intention healing to healthy subcutaneous fat in patients with HS who were under concurrent surgical and dermatologic care. We focused on WLE specifically to healthy adipose tissue rather than fascia, similar to full-thickness laser ablations, which have been found to produce good results. This technique is based on the understanding that HS has a pilosebaceous origin rather than an apocrine gland source. A shallower excision simplifies the procedure and can eliminate the need for complex reconstruction in many cases. This technique also expands the opportunities for secondary intention healing as a closure option.

Methods

A retrospective chart review of 192 consecutive HS consultations to a general surgical service at St. Michael’s Hospital in Toronto, Canada, was undertaken to identify patients treated with WLE. Patients who underwent minor procedures (deroofing, incision and drainage) were excluded. Data on patient demographics, surgical site, method of closure, complications and recurrence rate were extracted from patient charts.

This study was approved by the Unity Health Toronto Research Ethics Board of St. Michael’s Hospital, University of Toronto.

We also conducted a literature review of surgical approaches to the management of HS. We included only traditional surgical techniques (laser surgery and any other techniques using energy-based devices were excluded). We searched PubMed and EMBASE between 2000 and the end of June 2018 using the following terms: “hidradenitis suppurativa,” “acne inversa” and “surgery.” The literature search was limited to articles published in English.

Results

Sixty-six patients underwent 134 WLE. The median age of the patients was 37 years (range 18–61 yr). The sites of surgery were the axilla (44 procedures), the inguinal region (40 procedures), the breast and inframammary region (13 procedures), the genitals (vulva, mons, scrotum, 18 procedures), the posterior neck (2 procedures) and the buttocks, perianal and natal cleft areas (17 procedures). All WLE were extended to healthy subcutaneous fat. In all cases we removed gross disease including draining sinuses, obvious nodules and heaped scarring. While performing procedures we were attentive to any tracks or tunnels emanating from the more obvious disease. Our goal was to resect to healthy tissue radially as well as to healthy subcutaneous tissue in terms of depth.

One hundred procedures were closed primarily with rotation or advancement flaps and 34 were closed by secondary intention healing. Local recurrence was defined...
as disease appearing within 0.5 cm of the resection site; this
definition was based on a previous study.13 There was local
recurrence in 18% of cases (18 of 100) with primary clos­
ures and in 18% of cases (6 of 33) in which the wound
healed by secondary intention (p = 0.98, χ² test, no statisti­
cally significant difference between groups). One patient
with secondary intention healing returned to the emer­
gency department for bleeding, which was controlled with
silver nitrate; 34% of patients with primary closure experi­
cenced some dehiscence (23% experienced major dehis­
cence requiring nursing and home care, 11% experienced
minor separation). Two patients with axillary disease who
underwent primary closure experienced restrictions in
their ability to raise their arm that required physiotherapy.

All patients had ongoing dermatology follow-up.
Ninety-four percent of patients were taking medication at
the time of surgery; we did not discontinue any therapies
for the surgery. Fifty-one percent of patients were on oral
antibiotics (usually clindamycin/rifampin or doxycycline),
29% were on biologic therapy (anti-tumour necrosis
factor α) combined with oral antibiotics, 8% were on bio­
logic therapy combined with intravenous antibiotics
(ertapenem) and 6% were on biologic therapy alone.
Patients were treated to what we felt was maximal medical
benefit, and surgery focused on persistent areas of disease,
minor separation). Two patients with axillary disease who
underwent primary closure experienced restrictions in
their ability to raise their arm that required physiotherapy.

The median duration of follow-up was 14.5 months
(range 1–55 mo). All patients were followed concurrently
by dermatologic and surgical services. No patients were
lost to follow-up.

Our initial literature search produced 255 articles.
When we narrowed the search with the term “wide local
excision,” we found 30 publications, 8 of which were
review articles. Table 1 provides a summary of the 22 ar­
ticles that remained after we excluded the review articles,
including data on patient demographics, type of surgical
procedure, location of surgery and recurrence rate.

DISCUSSION

Hidradenitis suppurativa is a chronic, debilitating disease
that leads to clinically scarred areas in affected anatomic
regions, such as the axilla and genitals, leading to tremen­
dous disability, low self-esteem and substantially reduced
body image.15 The tunnels and ropelike scars in HS may
also be a place for growing biofilms as a potential trigger
for the recurrence of inflammation in these areas. Almost
70% of chronic lesions were shown to present with bio­
films, based on recent studies.18 Surgical intervention is
important for removal of these tunnels and scars. Con­
cerns have been raised previously about the high recur­
rence rate.19–21 Much of the surgical literature from 1997
to 2017 recommends extending excisions for HS to the
muscular fascia, removing apocrine gland projections into
the subcutaneous layer; these studies have reported recur­
rence rates of 3% to 54%.19–21 In 2018, Walter and col­
leagues reported a postoperative recurrence rate as high as
54.2%.22 In contrast, Deckers and colleagues reported a
38% recurrence rate when WLE was used.11 Recurrence
was defined in their study as a new inflammatory nodule
within 0.5 cm of the lesion.11,23

Our recurrence rate was 18% for primary closures and
18% for secondary intention closures, and the study
included only patients for whom excision was performed to
healthy subcutaneous adipose tissue. No patient underwent
resection to muscular fascia. The rationale for this
approach is the newer understanding of HS as a piloseba­
ceous unit disease rather than a disease of the sweat glands,
meaning that resection does not need to go to fascia but
rather simply to healthy tissue. This simplifies the surgery
and makes closures less complicated. When compared with
the results of earlier studies, our results were not superior,
but rather were equivalent to more aggressive approaches.
Our results are promising, suggesting equivalent or better
local control than most series, despite the purposeful effort
to limit the depth of tissue removed. Interestingly, only 2
(3%) of our patients with axillary disease experienced
restrictions in their ability to raise their arm that required
physiotherapy.

As mentioned earlier, all of our patients were under
medical care. Many were receiving combinations of med­
cal care to achieve as much medical control over their
inflammation as possible. Surgery (WLE) was reserved for
areas of persistent drainage and flaring that had not
responded to medical treatment.

The decision whether to close wounds with flaps or
with secondary intention healing was made case by case,
with patients’ input and preferences taken into consider­
aton. Patients were shown photos of previous cases that
involved secondary intention closure so that they would
know what to expect. Their preference was to use sec­
dary intention closure for larger defects. In our study, 43%
of axillary wounds, 13% of inguinal wounds, 23% of geni­
tal wounds and 41% of buttock (including perianal, natal
clint) wounds were closed by secondary intention healing.
The choice not to use skin grafts is not evidence-based but
it reflects our experience. There are a few advantages of
secondary intention closure over skin grafting, including
the following: the use of a donor site is avoided, no
immobilization is required (difficult areas are the axilla and
the inguinal regions), the patient is able to move and use
the extremity for maximum range of motion as the wound
heals, and it is an easier surgical approach.

This series leaves us preferring secondary intention over
primary intention closure for many cases. Secondary inten­
tion closure seems advantageous for wider areas of exci­
sion. It enables us to avoid skin grafting and complex flaps
with disease control that is equivalent to that of more
involved surgical approaches. Secondary intention closure
provided for good range of motion with good cosmosis
Study and country	No. of patients	Study design	Sex	Age, yr	Location of surgery (%)	Type(s) of procedure(s)	Recurrence rate, %
Walter et al., 2018 Germany	48	Single centre, retrospective	48 men (57.1%), 36 women (42.9%)	Median 54.2 (range 14–66)	Axillary (22.1), inguinal/ femoral (37.2), genital (12.3), gluteal/anal (25), other (2.8)	WLE with secondary intention closure	54.2
Decker et al., 2018 The Netherlands	84	Single centre, retrospective	103 men, 152 women	48 men (57.1%), 36 women (42.9%)	Axillary, breast, inguinal area, perineum, mons pubis/suprapubis, presacrum, perianus, abdomen, inner thighs, gluteal	WLE with secondary intention closure	38
Kofler et al., 2018 Germany	255	Retrospective, questionnaires	103 men, 152 women	Median 38 (range 14–66)	Axillary, breast, inguinal area, perineum, mons pubis/suprapubis, presacrum, perianus, abdomen, inner thighs, gluteal	WLE with secondary intention closure	69*
Humphries et al., 2016 United States	17	Single centre, retrospective	4 men, 13 women	Mean 36.8 (range 18–65)	Axillary, breast, inguinal area, perineum, mons pubis/suprapubis, presacrum, perianus, abdomen, inner thighs, gluteal	WLE with secondary intention closure	11.8
Blok et al., 2015 The Netherlands	113	Retrospective	36 men (31.9%), 77 women (68.1%)	Mean 42.5 (range 14–66)	Axillary, breast, inguinal area, perineum, mons pubis/suprapubis, presacrum, perianus, abdomen, inner thighs, gluteal	WLE with secondary intention closure	29.2
Wormald et al., 2014 United Kingdom	27	Retrospective, questionnaires	8 men (30%), 19 women (70%)	Mean 34.7 (range 14–66)	Axillary, breast, inguinal area, perineum, mons pubis/suprapubis, presacrum, perianus, abdomen, inner thighs, gluteal	WLE with secondary intention closure	3.7
van Rappard et al., 2012 The Netherlands	57	Retrospective, questionnaires	10 men (18%), 47 women (82%)	Mean 42.5 (range 14–66)	Axillary, breast, inguinal area, perineum, mons pubis/suprapubis, presacrum, perianus, abdomen, inner thighs, gluteal	WLE with secondary intention closure	34
Alharbi et al., 2012 Germany	32	Retrospective	12 men (37.5%), 20 women (62.5%)	Mean 34.7 (range 14–66)	Axillary, breast, inguinal area, perineum, mons pubis/suprapubis, presacrum, perianus, abdomen, inner thighs, gluteal	WLE with secondary intention closure	16.75
Büyükasık et al., 2011 Turkey	15	Retrospective	9 women, 5 men	Mean 36.8 (range 14–66)	Axillary, breast, inguinal area, perineum, mons pubis/suprapubis, presacrum, perianus, abdomen, inner thighs, gluteal	WLE with secondary intention closure	5.5
van der Zee et al., 2010 The Netherlands	44	Retrospective	41 women, 3 men	Mean 35 (range 29–43)	Axillary, breast, inguinal area, perineum, mons pubis/suprapubis, presacrum, perianus, abdomen, inner thighs, gluteal	Excision and primary closure	17
Civelek et al., 2010 Turkey	14	Retrospective	9 women, 5 men	Mean 35 (range 29–43)	Axillary, breast, inguinal area, perineum, mons pubis/suprapubis, presacrum, perianus, abdomen, inner thighs, gluteal	WLE with secondary intention closure	29
Menderes et al., 2010 Turkey	27	Retrospective	19 men (70%), 8 women (30%)	Mean 42.5 (range 24–58)	Axillary, breast, inguinal area, perineum, mons pubis/suprapubis, presacrum, perianus, abdomen, inner thighs, gluteal	WLE with secondary intention closure	7.5
Rieger et al., 2009 Switzerland and Austria	8	Retrospective	7 women (87.5%), 1 man (12.5%)	Mean 35 (range 18–49)	Axillary, breast, inguinal area, perineum, mons pubis/suprapubis, presacrum, perianus, abdomen, inner thighs, gluteal	WLE with secondary intention closure	0
Mandal et al., 2005 Scotland	106	Retrospective	Median at onset 36 (range 17–70)	Both axillae (86.2), 1 axilla (21.6), axilla and groin (9.0), groin only (14.6), perineum (9.0), perianoscopy (5.5), other (3.4)	WLE with or without STSG, with diffuse disease (86% of inguinoscrotal cases)	70†	
Kagan et al., 2005 United States	57	Retrospective	15 men (26%), 42 women (74%)	Mean 34 (range 19–62)	Axillary, breast, inguinal area, perineum, mons pubis/suprapubis, presacrum, perianus, abdomen, inner thighs, gluteal	Local, wide, other	Not provided
Altman et al., 2004 Germany	20	Retrospective	6 men (30%), 14 women (70%)	Mean 36 (range 20–50)	Axillary, breast, inguinal area, perineum, mons pubis/suprapubis, presacrum, perianus, abdomen, inner thighs, gluteal	WLE and flaps	15
Kuo and Ohara, 2003 Japan	6	Retrospective	4 men (66%), 2 women (33%)	Mean 34.7 (range 19–62)	Axillary, breast, inguinal area, perineum, mons pubis/suprapubis, presacrum, perianus, abdomen, inner thighs, gluteal	WLE and grafts	0
after healing, simplified the surgical procedure and is supported by other studies in the literature. The disadvantage of secondary intention healing is the dressing care required until the wound is closed. This was well tolerated in our patients, who are generally used to dressing care for their active disease. The patients who underwent primary closure experienced dehiscence of more than 30% (minor and major dehiscence) even though they were being maintained on their preoperative medical treatments. All patients in this series were followed by a dermatologist and had their medical therapy continued in the perioperative and postoperative periods. Seventy-seven percent of patients were on biologic therapies, and these were not discontinued or withheld perioperatively. In this series we were not able to show a difference in outcome for the patients on biologics; however, we emphasize the necessity of continuation of such treatment throughout the management of patients with HS.

Limitations

Our study has some limitations, including patient selection and retrospective design, and therefore the risk of bias. Also, our study is limited by its relatively small sample size.

Conclusion

Wide local excision to healthy subcutaneous adipose tissue provides good control of HS. The 18% local recurrence rate reported here is at the better end of the rates reported in other series in the literature. Wide local excision with secondary intention closure is a useful and practical surgical approach, which is facilitated by not resecting to fascia. It can simplify the surgical procedure while providing equivalent local control and extremity function. Primary closure in HS is associated with a significant dehiscence rate of which surgeons and patients should be aware. Larger studies with a better design and longer follow-up are required to determine the optimal surgical approach and optimal medical control.

Affiliation: From the Department of Medicine, Women's College Hospital, and the Department of Surgery, CIBC Breast Centre, St. Michael's Hospital, University of Toronto, Toronto, Ont.

Competing interests: None declared.

Contributors: E. Shavit, A. Alavi and R. George designed the study. All authors acquired the data, which E. Shavit, A. Alavi and R. George analyzed. E. Shavit and R. George wrote the article, which all authors reviewed and approved for publication.

References

1. Jemec GB. Clinical practice. Hidradenitis suppurativa. *N Engl J Med* 2012;366:158-64.

2. Hurley H. Axillary hyperhidrosis apocrine bromhidrosis, hidradenitis suppurativa, and familial benign pemphigus; surgical approach. In: Roenigh R, Roenigh H, editors. *Dermatologic surgery*. New York: Marcel Dekker; 1989:729-39.

3. Sartorius K, Emtestam L, Jemec GB, et al. Objective scoring of hidradenitis suppurativa reflecting the role of tobacco smoking and obesity. *Br J Dermatol* 2009;161:831-9.

4. Kimball AB, Jemec GB, Yang M, et al. Assessing the validity, responsiveness and meaningfulness of the hidradenitis suppurativa clinical response (HiSCR) as the clinical endpoint for hidradenitis suppurativa treatment. *Br J Dermatol* 2014;171:1434-42.

5. Alikhani A, Lynch PJ, Eisen DB. Hidradenitis suppurativa: a comprehensive review. *J Am Acad Dermatol* 2009;60:539-61.

Table 1 (part 2 of 2). Summary of articles on surgical interventions in patients with hidradenitis suppurativa published since 2000

Study and country	No. of patients	Study design	Sex	Age, yr	Location of surgery (%)	Type(s) of procedure(s)	Recurrence rate, %
Bocchini et al.28	56	Retrospective	52 men (93%), 36 women (64%)	Mean 40	Gluteal, perineal, inguinal	WLE	1.8
Tanaka et al.29	19	Retrospective	Mean 40.7 (range 30–58)	Axillary, inguinal, gluteal areas, other	WLE	Primary flaps, graft	43
Bohn and Svensson30	138	Retrospective, questionnaires	Average 23	Axilla, inguinal, perineal/perianal, inframammary, other	WLE	Primary graft	33
Soldin et al.31	59	Retrospective	Average 32 (range 16–65)	Axilla	Local excision and WLE	26.6%, 7.7%	
Rompel et al.32	106	Retrospective	Average 32 (range 16–65)	Axilla	WLE	2.5	

PMH = past medical history; SD = standard deviation; STSG = split-thickness skin grafting; WLE = wide local excision.

*Reported by patients via questionnaires.

†In the primary closure series.

‡Secondary intention healing in 32 patients (57.1%); delayed skin grafting in 24 patients (42.9%).

§Local excision.

¶Excision of all hair-bearing skin.
van Straalen KR, Schneider-Burrus S, Prens EP. Current and future treatment of hidradenitis suppurativa. Br J Dermatol 2018;10.1111/bjd.16768.

Alavi A, Lynde C, Alhusayen R, et al. Approach to the management of patients with hidradenitis suppurativa: a consensus document. J Cutan Med Surg 2017;21:513-24.

Pink A, Anzengruber F, Navarini AA. Acne and hidradenitis suppurativa. Br J Dermatol 2018;178:619-31.

Medzhidzadeh A, Hazen PG, Bechara FG, et al. Recurrence of hidradenitis suppurativa after surgical management: a systematic review and meta-analysis. J Am Acad Dermatol 2015;73(Suppl 1):S70-7.

Posch C, Monshi B, Quint T, et al. The role of wide local excision for the treatment of severe hidradenitis suppurativa (Hurley grade III): retrospective analysis of 74 patients. J Am Acad Dermatol 2017;77:123-129.e5.

Mitchell KM, Beck DE. Hidradenitis suppurativa. Surg Clin North Am 2002;82:1187-97.

Ritz JP, Runkel N, Haier J, et al. Extent of surgery and recurrence rate of hidradenitis suppurativa. Int J Color Res 1998;13:164-8.

Deckers IE, Dahi Y, van der Zee HH, et al. Hidradenitis suppurativa treated with wide excision and second intention healing: a meaningful local cure rate after 253 procedures. J Eur Acad Dermatol Venereol 2018;32:459-62.

Hazen PG, Hazen BP. Hidradenitis suppurativa: successful treatment using carbon dioxide laser excision and marsupialization. Dermatol Surg 2010;36:208-13.

Levoska MA, Nicholson CL, Hamzavi IH. A retrospective review of light- and laser-based management of hidradenitis suppurativa. Semin Cutan Med Surg 2017;36:67-74.

Abdel Azim AA, Salem RT, Abdelghani R. Combined fractional carbon dioxide laser and long-pulsed neodymium: yttrium-aluminum-garnet (1064 nm) laser in treatment of hidradenitis suppurativa: a prospective randomized intra-individual controlled study. Int J Dermatol 2018;57:1135-44.

Schneider-Burrus S, Jost A, Peters EMJ, et al. Association of hidradenitis suppurativa with body image. JAMA Dermatol 2018;154:447-51.

Ring HC, Bay L, Nilsson M, et al. Bacterial biofilm in chronic lesions of hidradenitis suppurativa. Br J Dermatol 2017;176:993-1000.

Soldin MG, Tulley P, Kaplan H, et al. Chronic axillary hidradenitis — the efficacy of wide excision and flap coverage. Br J Plast Surg 2000;53:434-6.

Danby FW, Hazen PG, Boer J. New and traditional surgical approaches to hidradenitis suppurativa. J Am Acad Dermatol 2015;73(Suppl 1):S62-5.

Blok JL, Boersma M, Terra JB, et al. Surgery under general anesthesia in severe hidradenitis suppurativa: a study of 363 primary operations in 113 patients. J Eur Acad Dermatol Venereol 2015;29:1590-7.

Walter AC, Meissner M, Heister M, et al. Surgical treatment of hidradenitis suppurativa: an analysis of postoperative outcome, cosmetic results and quality of life in 255 patients. J Eur Acad Dermatol Venereol 2018;32:1570-74.

Humphries LS, Kueberuwa E, Beederman M, et al. Wide excision and healing by secondary intent for the surgical treatment of hidradenitis suppurativa: a single-center experience. J Plast Reconstr Aesthet Surg 2016;69:554-66.

Wormald JC, Balzano A, Clibbon JJ, et al. Surgical treatment of severe hidradenitis suppurativa of the axilla: thoracodorsal artery perforator (TDAP) flap versus split skin graft. J Plast Reconstr Aesthet Surg 2014;67:1118-24.

van Rappard DC, Mooij JE, Mekkes JR. Mild to moderate hidradenitis suppurativa treated with local excision and primary closure. J Eur Acad Dermatol Venereol 2012;26:998-902.

Alharbi Z, Kauczok J, Pflaum N. A review of wide surgical excision of hidradenitis suppurativa. BMC Dermatol 2012;12:9.

Büyükasik O, Hasdemir AO, Kahramansoy N, et al. Surgical approach to extensive hidradenitis suppurativa. Dermatol Surg 2011;37:835-42.

Civelek B, Aksoy K, Bileen E, et al. Reconstructive options in severe cases of hidradenitis suppurativa. Cent Eur J Med 2010;5:674-8.

Menderes A, Sunay O, Vayvada H, et al. Surgical management of hidradenitis suppurativa. Int J Med Sci 2010;7:240-7.

Rieger UM, Erba P, Pierer G, et al. Hidradenitis suppurativa of the groin treated by radical excision and defect closure by medial thigh lift: aesthetic surgery meets reconstructive surgery. J Plast Reconstr Aesthet Surg 2009;62:1355-60.

Mandal A, Watson J. Experience with different treatment modules in hidradenitis suppurativa: a study of 106 cases. Surgeon 2005;3:23-6.

Kagan RJ, YakHopf KP, Warner P, et al. Surgical treatment of hidradenitis suppurativa: a 10-year experience. Surgery 2005;138:734-40, discussion 740-1.

Altmann S, Fansa H, Schneider W. Axillary hidradenitis suppurativa: a further option for surgical treatment. J Cutan Med Surg 2004;8:6-10.

Kuo HW, Ohara K. Surgical treatment of chronic gluteal hidradenitis suppurativa: reused skin graft technique. Dermatol Surg 2003;9:173-8.

Bocchini SF, Haber-Gama A, Kiss DR, et al. Gluteal and peripheral hidradenitis suppurativa: surgical treatment by wide excision. Dis Colon Rectum 2003;46:944-9.

Tanaka A, Hatoko M, Tada H, et al. Experience with surgical treatment of hidradenitis suppurativa. Ann Plast Surg 2001;47:636-42.

Bohn J, Svensson H. Surgical treatment of hidradenitis suppurativa. Stand J Plast Reconstr Hand Surg 2001;35:305-9.

Rompel R, Petres J. Long-term results of wide surgical excision in 106 patients with hidradenitis suppurativa. Dermatol Surg 2000;26:638-43.