Scientific opinion of Flavouring Group Evaluation 502 (FGE.502): grill flavour ‘Grillin’ 5078’

Beltoft, Vibe Meister; Nørby, Karin Kristiane; EFSA Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids (CEF)

Published in:
EFSA Journal

Link to article, DOI:
10.2903/j.efsa.2017.4973

Publication date:
2017

Document Version
Publisher’s PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
EFSA Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids (CEF) (2017). Scientific opinion of Flavouring Group Evaluation 502 (FGE.502): grill flavour ‘Grillin’ 5078’. EFSA Journal, 15(9), [e04973]. https://doi.org/10.2903/j.efsa.2017.4973

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
Scientific opinion of Flavouring Group Evaluation 502 (FGE.502): grill flavour ‘Grillin’ 5078’

EFSA Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids (CEF), Vittorio Silano, Claudia Bolognesi, Laurence Castle, Kevin Chipman, Jean-Pierre Cravedi, Karl-Heinz Engel, Paul Fowler, Roland Franz, Konrad Grob, Rainer Gurtler, Trine Huseøy, Sirpa Kärenlampi, Maria Rosaria Milana, Karla Pfaff, Gilles Riviere, Jannavi Srinivasan, Maria de Fátima Tavares Poças, Christina Tlustos, Detlef Wölflé, Holger Zorn, Ulla Beckman Sundh*, Romualdo Benigni, Mona-Lise Binderup, Leon Brimer, Francesca Marcon, Daniel Marzin, Pasquale Mosesso, Gerard Mulder, Agneta Oskarsson, Camilla Svendsen, Maria Carfi, Carla Martino and Wim Mennes

Abstract

The EFSA Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids (CEF Panel) was requested to deliver a scientific opinion on the implication for human health of the product Grillin’ 5078 [FL-no: 21.003] in the Flavouring Group Evaluation 502, according to Regulation (EC) No 1331/2008 and Regulation (EC) No 1334/2008 of the European Parliament and of the Council. The product is derived from heat-treated high oleic sunflower oil and intended to be used as a food flavouring with charbroiled or grilled aroma in a wide variety of food categories either in liquid or powder form. Information on manufacturing and compositional data was considered adequate to show the reproducibility of the production process. However, the Panel noted that a considerable amount of the non-volatile fraction of the product could not be identified. The chronic dietary exposure to the substance estimated using the Added Portions Exposure Technique (APET) was calculated to be 60 mg/person per day for a 60-kg adult and 37.8 mg/person per day for a 15-kg child. The data submitted for evaluating the genotoxic potential of the flavouring was considered insufficient. There are still 12 substances in the flavouring for which the evaluation of genotoxic potential is pending. No toxicity studies have been provided on the final product itself. Only information on a number of constituents of the flavouring and data on toxicity of several thermally treated fats and oils were provided by the applicant. However, the Panel considered the time-temperature conditions that were applied in the preparation of the substances tested as not comparable to those applied in the course of the production of the flavouring. The Panel concluded that on the basis of the data provided by the applicant the safety of Grillin’ 5078 cannot be established.

© 2017 European Food Safety Authority. EFSA Journal published by John Wiley and Sons Ltd on behalf of European Food Safety Authority.

Keywords: Grillin’ 5078, FGE.502, FL-no: 21.003, other flavouring, complex mixture

Requestor: European Commission
Question number: EFSA-Q-2016-00002
Correspondence: fip@efsa.europa.eu

* Member of the Standing Working Group on Flavourings of the EFSA Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids (CEF) until 16th June 2017.
Panel members: Claudia Bolognesi, Laurence Castle, Kevin Chipman, Jean-Pierre Cravedi, Karl-Heinz Engel, Paul Fowler, Roland Franz, Konrad Grob, Rainer Gürtler, Trine Husøy, Sirpa Kärenlampi, Wim Mennes, Maria Rosaria Milana, Karla Pfaff, Gilles Riviere, Jannavi Srinivasan, Maria de Fátima Tavares Poças, Vittorio Silano, Christina Tlustos, Detlef Wölfe and Holger Zorn.

Note: The full opinion will be published in accordance with Article 12(3) of Regulation (EC) No 1331/2008 once the decision on confidentiality will be received from the European Commission. The following information has been provided under the confidentiality framework and has been redacted awaiting the decision of the Commission: steps, parameters and flow diagram of the production process.

Acknowledgements: The Panel wishes to thank the following for the support provided to this scientific output: the EFSA staff Maria Anastassiadou and the hearing experts Vibe Beltoft and Karin Nørby.

Suggested citation: EFSA CEF Panel (EFSA Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids), Silano V, Bolognesi C, Castle L, Chipman K, Cravedi J-P, Engel K-H, Fowler P, Franz R, Grob K, Gürtler R, Husøy T, Kärenlampi S, Milana MR, Pfaff K, Riviere G, Srinivasan J, Tavares Poças MF, Tlustos C, Wölfe D, Zorn H, Beckman Sundh U, Benigni R, Binderup M-L, Brimer L, Marcon F, Marzin D, Mosesso P, Mulder G, Oskarsson A, Svedsen C, Carfi M, Martino C and Mennes W. 2017. Scientific opinion of Flavouring Group Evaluation 502 (FGE.502): grill flavour ‘Grillin’ 5078’. EFSA Journal 2017;15(9):4973, 33 pp. https://doi.org/10.2903/j.efsa.2017.4973

ISSN: 1831-4732

© 2017 European Food Safety Authority. EFSA Journal published by John Wiley and Sons Ltd on behalf of European Food Safety Authority.

This is an open access article under the terms of the Creative Commons Attribution-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited and no modifications or adaptations are made.
Table of contents

Abstract ... 1
1. Introduction .. 4
1.1. Background and Terms of Reference as provided by the requestor .. 4
1.1.1. Background ... 4
1.1.2. Terms of Reference .. 4
1.2. Information on existing authorisation and/or evaluations from other authorities 4
2. Data and methodologies .. 4
2.1. Data ... 4
2.2. Methodologies .. 4
3. Assessment ... 4
3.1. Technical data ... 4
3.1.1. Identity .. 4
3.1.2. Specifications .. 5
3.1.3. Manufacturing process .. 5
3.1.4. Compositional data .. 6
3.1.5. Stability, reaction and fate in food .. 10
3.1.6. Particle size .. 11
3.2. Structural/metabolic similarity to substances present in existing FGEs ... 11
3.3. Information on existing evaluations from EFSA .. 11
3.4. Exposure assessment .. 11
3.4.1. Chronic dietary exposure .. 11
3.4.2. Acute dietary exposure .. 12
3.5. Biological and toxicological data ... 12
3.5.1. Genotoxicity .. 12
3.5.2. Conclusion on genotoxicity .. 13
3.5.3. Absorption, distribution, metabolism and excretion .. 14
3.5.4. Acute toxicity ... 14
3.5.5. Short-term and subchronic toxicity ... 14
3.5.6. Chronic toxicity and carcinogenicity ... 14
3.5.7. Reproductive and developmental toxicity .. 14
3.5.8. Conclusion on toxicity .. 14
4. Conclusions .. 15
Documentation provided to EFSA .. 15
References ... 15
Abbreviations ... 16
Appendix A – Volatile constituents of Grillin’ 5078 ... 18
Appendix B – Use Levels and Exposure Calculations ... 24
Appendix C – Genotoxicity data .. 30
Appendix D – Developmental toxicity and chronic toxicity data on thermally oxidised oleic-acid-based oils as provided by the applicant ... 31
Appendix E – Methodology ... 32
Appendix F – Flow diagram of the production process of Grillin’ 5078 (confidential) 33
1. Introduction

1.1. Background and Terms of Reference as provided by the requestor

1.1.1. Background

The use of flavourings in food is regulated under Regulation (EC) No 1334/2008 of the European Parliament and of Council of 16 December 2008 on flavourings and certain food ingredients with flavouring properties for use in and on foods. On the basis of article 9(e) of this Regulation, an evaluation and approval are required for ‘other flavourings’.

Regulation (EC) No 1331/2008 applies for the evaluation and approval of new ‘other flavourings’.

An application for authorisation as a new ‘other flavouring’ of the product Grillin’ 5078, an oil-based grill flavouring product derived from heat-treated sunflower oil has been submitted to the Commission.

In order for the Commission to be able to consider its inclusion in the Union list of flavourings and source materials (Annex I of Regulation (EC) No 1334/2008), the European Food Safety Authority (EFSA) should carry out a safety assessment of this product as a new ‘other flavouring’.

1.1.2. Terms of Reference

The European Commission requests EFSA to carry out a safety assessment on the product Grillin’ 5078 as a new ‘other flavouring’ in accordance with Regulation (EC) No 1331/2008 establishing a common authorisation procedure for food additives, food enzymes and food flavourings.

1.2. Information on existing authorisation and/or evaluations from other authorities

The Panel is not aware of any official evaluations of Grillin’ 5078 performed by national or international authorities. According to the applicant the substance is listed in the US Code of Federal Regulations (CFR), Part 21 Sec 172.515.

2. Data and methodologies

2.1. Data

The applicant has submitted a dossier in support of its application for the authorisation of the flavouring Grillin’ 5078 for use in a wide range of foods (Red Arrow Products Company LLC, 2015).

2.2. Methodologies

The assessment was conducted in line with the principles described in the EFSA Guidance on transparency in the scientific aspects of risk assessment (EFSA Scientific Committee, 2009) and following the relevant existing Guidance from the EFSA Scientific Committee.

The current ‘Guidance on the data required for the risk assessment of flavourings to be used in or on foods’ (EFSA CEF Panel, 2010) has been followed by the CEF Panel for the evaluation of the application for authorisation of ‘Flavourings other than Flavouring Substances – Information to be supplied with an application for the authorisation of Other Flavourings’ (PART B. IV) (see Appendix E).

3. Assessment

3.1. Technical data

3.1.1. Identity

The applicant has provided the following information with respect to the identity of the flavouring Grillin’ 5078.

1 Regulation (EC) No 1334/2008 of the European Parliament and of the Council of 16 December 2008 on flavourings and certain food ingredients with flavouring properties for use in and on foods and amending Council Regulation (EEC) No 1601/91, Regulations (EC) No 2232/96 and (EC) No 110/2008 and Directive 2000/13/EC. OJ L 354, 31.12.2008, p. 34–50.

2 Regulation (EC) No 1331/2008 of the European Parliament and of the Council of 16 December 2008 establishing a common authorisation procedure for food additives, food enzymes and food flavourings. OJ L 354, 31.12.2008, p. 1–6.
Chemical name: Not applicable (complex mixture)
FL-no: 21.003
CAS number: Not available
EINECS number: Not available
Synonyms: Not available
Trade name: Grillin’ 5078
Chemical formula: Not applicable (complex mixture)
Structural formula: See Appendix A for some of the volatile constituents of Grillin’ 5078
Molecular weight: Not applicable (complex mixture)

3.1.2. Specifications

The specifications for Grillin’ 5078 as proposed by the applicant are listed in Table 1.

Table 1: Specifications for Grillin’ 5078 as proposed by the applicant

Product name:	Grillin’ 5078
Description:	Amber oil with a grill aroma
Solubility:	Soluble in oil; insoluble in water
Aroma:	Strong charbroiled/chargrilled flavour
Source material:	High oleic sunflower oil
Content:	> 99% non-GMO sunflower oil and < 1% grill flavour
Specific gravity:	0.893–0.928 g/mL
Microbiological specification:	The material does not support microorganism growth
Formulation:	Grillin’ 5078 is used in the liquid or powder form

The Panel does not agree with the specification proposed by the applicant for the ‘Content’. According to information provided by the applicant, a considerable part of the sunflower oil (~ 10%) used as the source material of the flavouring is converted into unidentified constituents in the course of the production process (see Section 3.1.4).

3.1.3. Manufacturing process

Source material

The flavouring Grillin’ 5078 is produced starting from high oleic sunflower oil. According to the certificate provided by the supplier, the oil is obtained by expeller pressing from a United States Department of Agriculture (USDA)-approved variety. The edible oil has been refined, bleached, winterised and deodorised. According to information provided in a technical data sheet by the supplier, the oil is routinely monitored for organophosphate and organochlorine pesticide residues; no detectable levels have been reported. Levels of lead, cadmium, chromium, mercury and arsenic are also below the respective limits of detection (0.05 mg/kg). Compositional data regarding the distribution of fatty acids are presented in Table 2.

Table 2: Compositional data of high oleic sunflower oil used as the source for the production of the flavouring Grillin’ 5078 (Columbus Vegetable Oils, 2014)

Components	Amount %
Total fat (g)(a)	100
Saturated fat (g)(a)	9.0
Polyunsaturated fatty acids (g)(a)	9.5
Monounsaturated fatty acids (g)(a)	81.0
Trans-fatty acids (g)(a)	0.5
16:0 Palmitic(b)	5.0
18:0 Stearic(b)	4.0
The flavouring neither contains nor is produced from genetically modified organisms (GMOs). The sunflower oil is obtained from non-genetically modified sunflower seeds.

Production Process

Sunflower oil is preheated to **5078** at a temperature between **5078** involving air injection. After a reaction time of **5078**, the product is cooled to **5078** and subjected to filtration (Appendix F), to obtain the liquid form.

In addition to this liquid form, Grillin’ 5078 is also manufactured as powder. To this end, liquid Grillin’ 5078 is microencapsulated with a carbohydrate-based polymer. Spray-drying results in a powdered product containing **5078** of Grillin’ 5078.

3.1.4. Compositional data

Volatile constituents

In the original submission, the data provided by the applicant were focused on the volatile constituents of the flavouring.

Three batches of Grillin’ 5078 were investigated by solid phase microextraction and gas chromatography/mass spectrometry (GC/MS); a total of 115 volatile constituents were reported (Table 3). The concentrations reported were estimated relative to an internal standard. No validation data for the quantification step (e.g. differences between the constituents in the course of the headspace extraction or differences in GC-responses compared to the internal standard) were reported. Therefore, the Panel considered the provided data as semiquantitative.

The volatile constituents amounted to an average content of 0.75% of Grillin’ 5078. The main part (62%) of the volatile fraction is accounted for by four aldehydes: 2-undecenal, 2-decenal, nonanal and 2,4-decadienal.

The applicant assigned the volatile constituents of Grillin’ 5078 to six congeneric groups:

1) aliphatic linear unsaturated alcohols and aldehydes (56.2% of the volatile fraction or 0.42% of Grillin’ 5078);
2) aliphatic linear saturated alcohols, aldehydes, carboxylic acids, and related esters (28% of the volatile fraction or 0.21% of Grillin’ 5078);
3) aliphatic hydrocarbons (8.3% of the volatile fraction or 0.062% of Grillin’ 5078);
4) aliphatic ketones (3.8% of the volatile fraction or 0.029% of Grillin’ 5078);
5) cyclic ethers (2.6% of the volatile fraction or 0.020% of Grillin’ 5078);
6) aromatic derivatives (0.3% of the volatile fraction or 0.002% of Grillin’ 5078).

Despite the described analytical shortcomings regarding the quantification, the Panel considered the batch-to-batch variability of the volatile constituents reported in Table 3 as acceptable. The data provided indicate that the production process is reproducible.
Table 3: Volatile constituents identified and semi-quantified in Grillin’ 5078 via headspace (HS) solid phase microextraction (SPME) – GC/MS

Constituent	CG no.	Concentration (mg/kg)	Average		
α,β-unsaturated aldehydes, acids, alcohols	1				
2-Propenal	1	5.7 8.8 6.2	6.9		
2-Butenal	1	5.2 7.7 6.9	6.6		
2-Propen-1-ol	1	2.6 2.9 2.3	2.6		
2-Pentenal	1	3.5 4.6 3.7	3.9		
2-Buten-1-ol	1	1.8 2.6 2	2.1		
2-Hexenal	1	6.1 10 6	7.4		
2-Heptenal	1	54 73 69	65.3		
2,4-Hexadienal	1	4.6 5.6 4.5	4.9		
2-Octenal	1	22 29 26	25.7		
2-Nonenal	1	56 76 66	66		
2-Propenoic acid	1	29 53 29	37		
2-Decenal	1	1,500 1,800 2,100	1,800		
2-Undecenal	1	1,600 1,800 2,400	1,933.3		
2,4-Decadienal (isomer)	1	24 30 30	28		
2,4-Decadienal (isomer)	1	91 100 120	103.7		
Hexenoic acid	1	5.9 8.7 7	7.2		
2,4-Undecadienal	1	22 27 23	24		
Heptenoic acid	1	10 14 13	12.3		
Octenoic acid	1	9 13 11	11		
Heptadecenal	1	39 60 86	61.7		
Primary alcohols, aldehydes, acids, esters	2		2,139		
Acetaldehyde	2	2.6 4.7 2.6	3.3		
Propanal	2	3.2 3.9 3.7	3.6		
Butanal	2	5 7.2 5.7	6		
Pentanal	2	12 18 14	14.7		
Hexanal	2	26 39 33	32.7		
Heptanal	2	30 48 39	39		
1-Pentanol	2	3.5 4.2 5	4.2		
Octanal	2	72 97 88	85.7		
1-Hydroxy-2-propanone	2	8.7 16 10	11.6		
Nonanal	2	650 890 880	806.7		
Acetic acid	2	62 140 71	91		
1-Heptanol	2	34 41 44	44.7		
Decanal	2	43 70 55	56		
Formic acid	2	110 310 170	196.7		
Propanoic acid	2	24 40 26	30		
Octanol	2	25 29 38	30.7		
Butanoic acid	2	17 30 20	22.3		
Methylbutyrolactone	2	38 53 39	43.3		
Butyrolactone	2	67 100 70	79		
γ-Hexalactone	2	29 41 31	33.7		
Pentanoic acid	2	15 27 18	20		
Hexanoic acid	2	27 42 33	34		
γ-Octalactone	2	55 75 61	63.7		
Constituent	CG no.	Concentration (mg/kg)	Average		
-----------------------------	--------	-----------------------	---------		
		Lot no. 1	Lot no. 2	Lot no. 3	
Heptanoic acid	2	23	40	31	31.3
Pentadecanal	2	12	16	15	14.3
Octanoic acid	2	44	64	50	52.7
\(\gamma\)-Nonalactone	2	23	34	31	29.3
Nonanoic acid	2	96	170	140	135.3
Decanoic acid	2	59	73	83	71.7
4-Oxopentanoic acid	2	40	64	67	57
Aliphatic hydrocarbons	3				623
Heptane	3				5.2
Heptene	3	5.4	7.4	6.1	6.3
Octane	3	21	30	29	26.7
Octene	3	5.6	7.3	5.8	6.2
Nonane	3	3.2	4.5	3.9	3.9
Nonene	3	3.3	5.5	4	4.3
Decane	3	3.4	2.9	2.4	2.9
Decene	3	5.9	9	6.1	7
Butyl cyclopentene	3	14	20	16	16.7
Undecane isomers (3)	3	24	35	27	28.7
Undecadiene	3	19	24	18	20.3
Tridecane	3	6.6	7.6	7.1	7.1
Dodecadecane	3	22	25	20	22.3
Tetradecane	3	8.1	12	10	10
2-Nonanone	3	5.9	10	7.3	7.7
Pentadecane	3	15	19	16	16.7
Cyclotetradecane	3	10	13	12	11.7
Nonyl cyclohexane	3	15	17	16	16
Hexadecane	3	43	51	48	47.3
Heptadecane	3	18	23	19	20
Heptadecane	3	250	300	290	280
Decyl cyclohexene	3	15	18	17	16.7
Nonadecene	3	24	28	20	24
Octadecene	3	14	17	16	15.7
Ketones	4				290
Acetone	4	3.9	4.6	3.3	3.9
2-Butanone	4	2.5	3.6	3.1	3.1
3-Butene-2-one	4	4.3	5.6	3.5	4.5
2-Methyl-1-penten-3-ol	4	7.7	11	6.9	8.5
3-Methyl-2-butanone	4	2.2	2.5	2.4	2.4
2-Hexanone	4	3.4	4.4	3.9	3.9
2-Heptanone	4	5.9	8.4	7	7.1
4-Octanone	4	7.2	11	7.8	8.7
3-Octanone	4	3.4	5.5	4.5	4.5
2-Octanone	4	12	16	14	14
2-Cyclopenten-1-one	4	15	25	16	18.7
1-Octen-3-ol	4	2.8	3.8	3.8	3.5
2-Cyclohexen-1-one	4	6.9	10	7.3	8.1
2-Decanone	4	11	16	12	12
2,4-Hexanediione	4	21	29	23	24.3
In addition, the applicant provided the following compositional information on the flavouring:

In six batches of Grillin’ 5078, the concentrations of cadmium, lead, mercury and arsenic were shown to be below the limits of detection (0.010 mg/kg) of the applied analytical technique (inductively coupled plasma mass spectrometry (ICP-MS)).

Data on the sum of dioxins and polychlorinated biphenyls (PCBs) were determined for six batches of Grillin’ CB-200SF and were below the maximum levels for the sum of dioxins and PCBs, as laid down by Regulation (EC) No 1881/2006. However, it is not clear to what extent this legislation is applicable to the flavouring Grillin’ 5078.

The content of benzene in Grillin’ 5078 was below the limit of detection of the applied methodology (0.01 mg/kg).

Data on 21 polycyclic aromatic hydrocarbons (PAHs) have been provided for three batches of Grillin’ 5078. The Panel noted that the sum of the four PAHs benzo(a)pyrene, benzo(a)anthracene, benzo(b)fluoranthene and chrysene was below the legislative limit of 10 μg/kg for oils and fats used as ingredients in food, as set by Regulation (EC) No 1881/2006. However, it is not clear to what extent this legislation is applicable to the flavouring Grillin’ 5078.

The applicant reported a content of 1.6 g trans-fatty acids/100 g fat in Grillin’ 5078, which is approximately three times higher than in the high oleic sunflower oil used as the source. Considering

Constituent	CG no.	Concentration (mg/kg)	Average	
Heptanedione	4	Lot no. 1 25 Lot no. 2 38 Lot no. 3 26	29.7	
2-Undecanone	4	Lot no. 1 11 Lot no. 2 14 Lot no. 3 10	11.7	
2,5-Octanedione	4	Lot no. 1 48 Lot no. 2 61 Lot no. 3 47	52	
Tridecanone	4	Lot no. 1 39 Lot no. 2 51 Lot no. 3 44	44.7	
Nonen-3-ol	4	Lot no. 1 20 Lot no. 2 25 Lot no. 3 27	24	
Cyclic ethers	5	Furan Lot no. 1 2.6 Lot no. 2 3.6 Lot no. 3 3.4	197	
2,3-Dihydrofuran	5	Lot no. 1 1.8 Lot no. 2 2.2 Lot no. 3 1.9	2	
2-Methyltetrahydrofuran	5	Lot no. 1 2.4 Lot no. 2 3.6 Lot no. 3 3	3	
3-Methylfuran	5	Lot no. 1 1.5 Lot no. 2 2 Lot no. 3 1.7	1.7	
2,3-Dihydro-2,5-dimethylfuran	5	Lot no. 1 3.4 Lot no. 2 4.1 Lot no. 3 2.3	3.3	
2,3-Dihydro-5-methylfuran	5	Lot no. 1 3.1 Lot no. 2 3.8 Lot no. 3 2.9	3.3	
Butyl cyclopentane	5	Lot no. 1 3.6 Lot no. 2 4.7 Lot no. 3 3.3	3.9	
2-Propyltetrahydrofuran	5	Lot no. 1 7 Lot no. 2 10 Lot no. 3 8.3	8.4	
2-Propyltetrahydrofuran	5	Lot no. 1 7.9 Lot no. 2 12 Lot no. 3 7.8	9.2	
2-Butyltetrahydrofuran	5	Lot no. 1 36 Lot no. 2 51 Lot no. 3 37	41.3	
2-Pentylfuran	5	Lot no. 1 4.7 Lot no. 2 6.4 Lot no. 3 6.1	5.7	
2-Methyl-1,6-dioxaspiro[4,4]nonane	5	Lot no. 1 4.6 Lot no. 2 5.6 Lot no. 3 5.1	5.1	
2-Heptylfuran	5	Lot no. 1 10 Lot no. 2 12 Lot no. 3 10	10.7	
Furfural	5	Lot no. 1 3 Lot no. 2 4.1 Lot no. 3 3.5	3.5	
2-Octylfuran	5	Lot no. 1 49 Lot no. 2 62 Lot no. 3 60	57	
2H-Pyran-2-one	5	Lot no. 1 14 Lot no. 2 18 Lot no. 3 14	15.3	
Tetrahydro-2H-pyran-2-one	5	Lot no. 1 20 Lot no. 2 20 Lot no. 3 21	20.3	
Aromatic derivatives	6	Benzaldehyde Lot no. 1 4.1 Lot no. 2 5.6 Lot no. 3 5	4.9	
Phenol	6	Lot no. 1 17 Lot no. 2 24 Lot no. 3 17	19.3	
Total volatile organic compounds (VOC) mg/kg				7,380

Other constituents

In addition, the applicant provided the following compositional information on the flavouring:

In six batches of Grillin’ 5078, the concentrations of cadmium, lead, mercury and arsenic were shown to be below the limits of detection (0.010 mg/kg) of the applied analytical technique (inductively coupled plasma mass spectrometry (ICP-MS)).

Data on the sum of dioxins and polychlorinated biphenyls (PCBs) were determined for six batches of Grillin’ CB-200SF and were below the maximum levels for the sum of dioxins and PCBs, as laid down by Regulation (EC) No 1881/2006. However, it is not clear to what extent this legislation is applicable to the flavouring Grillin’ 5078.

The content of benzene in Grillin’ 5078 was below the limit of detection of the applied methodology (0.01 mg/kg).

Data on 21 polycyclic aromatic hydrocarbons (PAHs) have been provided for three batches of Grillin’ 5078. The Panel noted that the sum of the four PAHs benzo(a)pyrene, benzo(a)anthracene, benzo(b)fluoranthene and chrysene was below the legislative limit of 10 μg/kg for oils and fats used as ingredients in food, as set by Regulation (EC) No 1881/2006. However, it is not clear to what extent this legislation is applicable to the flavouring Grillin’ 5078.

The applicant reported a content of 1.6 g trans-fatty acids/100 g fat in Grillin’ 5078, which is approximately three times higher than in the high oleic sunflower oil used as the source. Considering

3 Regulation (EC) No 1881/2006 of the European Parliament and of the Council of 19 December 2006 setting maximum levels for certain contaminants in foodstuffs. OJ L 364, 20.12.2006, p. 5–24.
the use levels proposed by the applicant (Appendix B), the lowest limit set in the European Union (EU) countries with limiting legislation on trans-fatty acids (i.e. 2 g trans-fatty acids/100 g fat; ‘Report from the Commission to the European Parliament and the Council regarding trans fats in foods and in the overall diet of the Union population’ (SANTE/11129/2015-EN Rev. 4)) can be complied with.

Overall composition

The Panel asked for additional compositional data going beyond the elucidation of the quantitatively minor volatile fraction and providing in particular information on the amount of unidentified non-volatile constituents in the flavouring.

In response to this request, the applicant performed the following combination of analyses and calculations in order to describe the overall composition of Grillin’ 5078:

i) Determination of the total fatty acids (TFA) via hydrolysis and esterification
 TFA: 85.4%

ii) Determination of the free fatty acids (FFA) via titration
 FFA: 1.72%

iii) Calculation of the glycerol-bound fatty acids (TFA – FFA) and extrapolation to triglycerides based on a proportion of 95.6% oleic acid in triglycerides
 TFA – FFA: 85.4 – 1.72% = 83.68%
 Triglycerides: 87.55%

iv) Determination of the volatile constituents via HS-SPME
 Volatile constituents: 0.75%

v) Determination of the water content via Karl Fischer
 Water: 0.18%

vi) Calculation of the unidentified non-volatile mass:
 100 (%) – triglycerides (%) – free fatty acids (%) – volatiles (%) – water (%) = 9.8%

The resulting overall composition of Grillin’ 5078 is shown in Figure 1.

![Figure 1: Overall composition of Grillin’ 5078](image)

The Panel considered that by this approach the proportion of unidentified constituents (9.8%) is likely to be underestimated. In the absence of water, liberation of free fatty acids is likely to leave behind unsaturated species that have molecular masses in the range of diglycerides. This type of reaction was shown to occur above 300°C (Grob, 1981).

3.1.5. Stability, reaction and fate in food

No information was provided by the applicant.
3.1.6. Particle size

No information was provided by the applicant on the particle size in the powder formulation.

3.2. Structural/metabolic similarity to substances present in existing FGEs

Of the 115 volatile compounds identified in the three batches of Grillin’ 5078, 54 are identical to substances presently on the Union list of chemically defined flavouring substances,\(^4\) whereas 10 compounds are unidentified isomers of flavouring substances present in the Union list (Appendix A). Forty-two of the 54 flavouring substances have been evaluated to be of no safety concern when the intake is estimated based on the Maximised Survey-derived Daily Intake (MSDI) approach. For the remaining 12 substances (FL-no: 05.060, 05.076, 05.081, 05.108, 05.102, 05.109, 05.070, 05.171, 05.189, 13.059, 13.069 and 13.162), additional genotoxicity data are pending to rule out concerns regarding genotoxicity.

The volatile constituents identified in Grillin’ 5078, which are also listed as flavouring substances in the Union list, are compiled in Appendix A. The FL-no, the name in the Union list and the current status regarding the evaluation by EFSA are presented.

3.3. Information on existing evaluations from EFSA

Grillin’ 5078 has not been evaluated by EFSA before.

3.4. Exposure assessment

The data for estimating exposure (i.e. normal and maximum occurrence levels for refined subcategories of foods and beverages) are reported in Appendix B.

3.4.1. Chronic dietary exposure

The exposure assessment to be used for the safety evaluation of the flavouring is the chronic added portions exposure technique (APET) estimate (EFSA CEF Panel, 2010). The chronic APET for [FL-no: 21.003] has been calculated for adults and children (see Table 4). Based on use levels provided by the applicant (see Appendix B), the chronic APET calculation is based on the combined normal occurrence level.

Although the flavouring is not intended to be used in food categories specifically intended for infants and toddlers, these could still be exposed through the consumption of foods from the general food categories, which may contain the flavouring. However, at present, there is no generally accepted methodology to estimate chronic dietary exposure in these age groups resulting from consumption of foods from the general categories. Exposure of infants and toddlers is currently under consideration by EFSA.

Table 4: APET – Chronic dietary exposure to Grillin’ 5078

Use level	Added (b)	Other dietary sources (c)	Combined (d)			
	\(\mu g/\text{kg bw per day}\)	\(\mu g/\text{person per day}\)	\(\mu g/\text{kg bw per day}\)	\(\mu g/\text{person per day}\)		
Adults (e)	1,000	60,000	0	0	1,000	60,000
Children (f)	2,520	37,800	0	0	2,520	37,800

(a): APET: added portions exposure technique; bw: body weight: the chronic APET calculation is based on the combined normal occurrence level.

(b): APET Added is calculated on the basis of the normal amount of flavouring added to a specific food category.

(c): APET Other Dietary Sources is calculated based on the natural occurrence of the flavouring in a specified food category.

(d): APET Combined is calculated based on the combined amount of added flavouring and naturally occurring flavouring in a specified food category.

(e): For the adult APET calculation, a 60-kg person is considered representative.

(f): For the child APET calculation, a 3-year-old child with a 15 kg bw is considered representative.

\(^4\) Commission Recommendation 2011/696/EU of 18 October 2011 on the definition of nano-materials. Official Journal of the European Union L257/38-40 on 20.10.2010 http://ec.europa.eu/environment/chemicals/nanotech/pdf/commission_recommendation.pdf
3.4.2. Acute dietary exposure

The acute APET calculation for [FL-no: 21.003] is based on the combined maximum occurrence level and large portion size, i.e. three times standard portion size (see Appendix B).

Although the flavouring is not intended to be used in food categories specifically intended for infants and toddlers, these could still be exposed through consumption of foods from the general food categories. At present, there is no generally accepted methodology to estimate acute dietary exposure in these age groups. Exposure of infants and toddlers is currently under consideration by EFSA.

Data for the acute APET value for the flavouring are given in Table 5.

Use level	Acute APET (a)	Added (b)	Other dietary sources (c)	Combined (d)		
	µg/kg bw per day	µg/person per day	µg/kg bw per day	µg/person per day	µg/kg bw per day	µg/person per day
Adults (e)	30,000	1,800,000	0	0	30,000	1,800,000
Children (f)	75,600	1,134,000	0	0	75,600	1,134,000

(a): APET: added portions exposure technique; bw: body weight: the acute APET calculation is based on the combined maximum occurrence level.
(b): APET Added is calculated on the basis of the maximum amount of flavouring added to a specific food category.
(c): APET Other Dietary Sources is calculated based on the natural occurrence of the flavouring in a specified food category.
(d): APET Combined is calculated based on the combined amount of added flavouring and naturally occurring flavouring in a specified food category.
(e): For the adult APET calculation, a 60-kg person is considered representative.
(f): For the child APET calculation, a 3-year-old child with a 15 kg bw is considered representative.

3.5. Biological and toxicological data

3.5.1. Genotoxicity

In vitro

Bacterial Reverse Mutation Assay

In order to investigate the potential of Grillin’ 5078 and/or its metabolites to induce gene mutations in bacteria, an Ames test was performed according to OECD Test Guideline 471 (OECD, 1997) and following Good Laboratory Practice (GLP) in Salmonella Typhimurium (TA98, TA100, TA1535 and TA1537 strains) and Escherichia coli (WP2 uvrA strain) in the presence and absence of metabolic activation. Two separate experiments were performed using the plate incorporation method. Appropriate positive control chemicals and acetone (as a vehicle control) were evaluated concurrently. All positive control chemicals induced significant increases in revertant colony numbers, confirming the sensitivity of the tests and the efficacy of the S9-mix, while negative controls were within the historical control ranges. The concentrations tested were 1.5, 5.0, 15, 50, 150, 500, 1,500 and 5,000 µg per plate. The precipitate was observed at 500 µg per plate and above. No toxicity was observed. No increase in revertant colony numbers was observed in S. Typhimurium and E. coli strains at any concentration tested both in the presence and absence of metabolic activation. The Panel noted that the potential mutagenic activity of some chemicals resulting from the heating of the sunflower oil during the production of Grillin’ 5078 (e.g. aldehydes) could not be detected using the plate incorporation assay and requested a repetition of the assay applying the pre-incubation method. The applicant did not provide the additional information requested because ‘OECD 471 TG did not specifically mention testing sunflower oil (or the components thereof)’ and the condition for testing in the pre-incubation method was considered ‘not to mimic real life heating or use of sunflower oil for human consumption’. The Panel considered these justifications as not valid because even though the OECD TG 471 does not always require the application of the pre-incubation method, some compounds were mentioned in the OECD test guideline 471, including aldehydes and allyl compounds, that may be detected more efficiently using the pre-incubation method as well as ‘special cases’, such as volatile chemicals, for which alternative procedures are strongly recommended.

Since the applicant declined to provide these data, no conclusions can be drawn regarding the potential of Grillin’ 5078 to induce gene mutations in bacteria.
In vitro micronucleus assay

The in vitro micronucleus assay was carried out according to OECD Test Guideline 487 (OECD, 2014) and following GLP. Whole blood cultures from healthy donors were treated with Grillin’ 5078 following two experimental conditions: a short treatment with and without S9-mix (4 + 20 h recovery) and a continuous treatment without S9-mix (24 + 0 h recovery). Cytochalasin B (final concentration of 6 µg/mL) was added to each culture after short treatment periods, while in the continuous treatment, cultures were treated with the test article in the presence of cytochalasin B. Appropriate vehicle (acetone) and positive controls were used. All positive controls induced a statistically significant increase of micronucleus frequency and the system was considered sensitive and valid. Two thousand cells were scored per concentration. Based on the result of a dose-finding assay, the concentrations tested in the micronucleus assay were 10, 25 and 50 µg/mL in all treatment conditions. Precipitate was observed at the highest dose; cytotoxicity was observed up to 33% relative to the vehicle control (at 50 µg/mL, 4 + 20 h, +S9-mix). No statistically significant increase in the frequency of micronucleated binucleated cells (MNBN) was observed at any concentration and treatment condition. The Panel concluded that Grillin’ 5078 did not induce significant increase in the frequency of MNBN cells when tested up to 50 µg/mL both in the presence and absence of metabolic activation.

Further details on the two above listed studies are given in Appendix C.

In vivo

Grillin’ 5078 has not been tested under in vivo conditions. Instead the applicant has taken the approach to provide data on a number of substances found in Grillin’ 5078. As is the case for the in vitro studies, these substances have been evaluated by EFSA in FGE.200 (EFSA CEF Panel, 2014b) and in FGE.203 (EFSA CEF Panel, 2014a), for which additional genotoxicity data have been requested. Therefore, the Panel considered that these additional data do not change the conclusions on the in vitro genotoxic potential of Grillin’ 5078.

Furan

The Panel noted the presence of furan and furan derivatives (e.g. 3-methylfuran) in the volatile fraction of Grillin’ 5078 (see Section 3.1.4).

For furan, a concern with respect to genotoxicity and carcinogenicity has been identified (EFSA CONTAM Panel, 2004).

The data on genotoxicity of furan were discussed in the EFSA opinion on furan (EFSA CONTAM Panel, 2004), where it was concluded that the weight of evidence indicates that furan-induced carcinogenicity is probably attributable to a genotoxic mechanism. Up to now a point of departure (PoD) for the risk assessment for furan has not been derived by EFSA. From the literature, suggestions for a PoD can be extracted, e.g. a BMDL10 of 1,230 µg furan/kg body weight (bw) per day for hepatocellular tumours (Carthew et al., 2010) or a BMDL10 of 140 µg furan/kg bw per day for cholangiocarcinomas (VKM, 2012).

The Panel is aware that the amount of information on the toxicity of furan has increased tremendously over the last decade including 90-day oral toxicity studies in rats and mice (Gill et al., 2010, 2011) and a new chronic oral toxicity study in rats (Von Tungeln et al., 2017). This new information is currently under evaluation by EFSA’s Panel on Contaminants in the Food Chain (CONTAM Panel).

The Panel concluded that the assessment of the toxicological relevance of the levels of furan in Grillin’ 5078 should take into account the results of the ongoing evaluation of furan and furan derivatives by the CONTAM Panel.

3.5.2. Conclusion on genotoxicity

Overall, the Panel concluded that the in vitro and in vivo data set provided by the applicant for Grillin’ 5078 is insufficient to evaluate the genotoxic potential of the flavouring.
In addition, the Panel noted that for 12 flavouring substances identified as volatile constituents of Grillin’ 5078 (FL-no: 05.060, 05.076, 05.081, 05.108, 05.102, 05.109, 05.070, 05.171, 05.189, 13.059, 13.069 and 13.162), additional genotoxicity data are required to rule out a concern for genotoxicity (Appendix A).

3.5.3. Absorption, distribution, metabolism and excretion
The applicant provided descriptions of the metabolism of volatile substances belonging to ‘congeneric groups’ listed in Section 3.1.4. (Red Arrow Products Company LLC, 2015).
These data provided for selected volatile constituents only, were considered to be insufficient by the Panel to support the evaluation of Grillin’ 5078.

3.5.4. Acute toxicity
No information was provided by the applicant on acute toxicity for Grillin’ 5078.

3.5.5. Short-term and subchronic toxicity
No short-term and subchronic toxicity studies have been performed with Grillin’ 5078.
The applicant only presented data on some volatile substances (2,4-decadienal (NTP, 2011; Damske et al., 1980), 2-hexenal (Gaunt et al., 1971), 1-octene (Til et al., 1988, report not provided by the applicant), two of which have been identified in the flavouring.
The Panel concluded that the data provided are not sufficient to support the evaluation of Grillin’ 5078.

3.5.6. Chronic toxicity and carcinogenicity
No chronic toxicity or carcinogenicity studies have been performed with the flavouring Grillin’ 5078 itself.
The applicant only referred to data on 2,4-hexadienal (NTP, 2003), as a representative substance for the volatile constituents identified in the flavouring.
In addition, the applicant referred to data from a 2-year feeding study with rats, administered diets containing 15% of soybean oil (hydrogenated to an iodine value of 70 and 108, respectively) that had been used under practical restaurant-type conditions for frying at 182°C, 8 h daily for a total of 84 and 60 h, respectively (Nolen et al., 1967). A similarly treated, hydrogenated soybean oil (iodine value 108) containing 1.6 ppm methylsilicone, was heated for 216 h at 182°C. Also, cotton oil (heated 49 h) and lard (heated 116 h) were used. The authors reported no changes in the toxicological parameters checked, which included histopathology and clinical-chemical measurements in urine and blood. A decreased growth in the heated oil-groups as compared to rats that received only the fresh hydrogenated soybean oil (iodine value 108) was observed after 2 and 12 months, which, according to the authors, may be related to decreased absorbability as a result of heating. Similar results were obtained in a 50-week feeding study with four dogs administered a diet containing 15% partially hydrogenated soybean oil (iodine value 107) used under practical restaurant-type conditions for frying (182°C) for 56 h (Nolen, 1973) (Appendix D).

3.5.7. Reproductive and developmental toxicity
No reproductive or developmental toxicity studies have been performed with Grillin’ 5078 as such.
The applicant only provided data on developmental toxicity studies on two volatile substances (1-hexene (Gingell et al., 1999) and 1-tetradecene (report not provided by the applicant).
In addition, the applicant presented data from a two-generation study with rats administered diets containing 15% partially hydrogenated soybean oil (iodine value 107) that had been used under practical restaurant-type conditions for frying at 182°C for 56 h (Nolen, 1972). According to the authors, there was no evidence of deleterious effects on the reproductive parameters, nor were any teratogenic effects observed (Appendix D).

3.5.8. Conclusion on toxicity
A considerable portion of the flavouring remains unidentified. No toxicity studies have been performed with the flavouring itself. Considering that the volatile fraction of the flavouring amounts to
0.75%, the Panel concluded that the data provided for some of the volatile constituents (see Sections 3.5.5, 3.5.6 and 3.5.7) are not sufficient to demonstrate the safety of Grillin’ 5078.

The Panel also considered the referred data on feeding studies with partially hydrogenated soybean oil that had been used under practical restaurant-type conditions for frying (at 182°C for 56 h) as not suitable to demonstrate the safety of Grillin’ 5078. The Panel considered, in particular, the time-temperature conditions as not comparable. The soybean oil used for the feeding studies had been partially hydrogenated before the heat-treatment which might result in a reduced susceptibility to oxidation reactions.

Several compound classes are known to be formed upon thermo-oxidation of fats and oils. In addition to polymerisations resulting in dimeric and higher oligomeric triglycerides, the formation of monomeric oxidised triglycerides has been reported. Glycerol-bound epoxy-, hydroxy- and keto-fatty acids are the main types of oxidation products (e.g. Dobarganes and Marquez-Ruiz, 2006). A few quantitative data on the formation of these oxidation products are available; for example, a total of 1.23 g/100 g of epoxy-, keto- and hydroxy-acids have been reported in high oleic sunflower oil subjected to thermo-oxidation for 10 h at 180°C (Marmesat et al., 2008). However, the kinetics of their formation as a function of the applied temperature is not known.

The soybean oil used for the feeding studies had been partially hydrogenated before the heat treatment which might result in a reduced susceptibility to oxidation reactions.

It is well known that reaction rates may increase exponentially as a function of temperature and it is also very likely that, at these high temperatures at which Grillin’ 5078 is produced, different chemical reaction pathways may occur than under conditions of restaurant-type food processing.

In addition, the heat-treatment of sunflower oil in the course of the production of Grillin’ 5078 involves the injection of air into the reactor, which might result in an increased oxidation rate. Therefore, Grillin’ 5078 cannot be considered equivalent to the heated oils used in the feeding studies.

4. Conclusions

The Panel concluded that the in vitro and in vivo data provided by the applicant for Grillin’ 5078 are insufficient to evaluate the genotoxic potential of the flavouring.

In addition, for 12 volatile compounds identified in Grillin’ CB-200SF (FL-no: 05.060, 05.076, 05.081, 05.108, 05.102, 05.109, 05.070, 05.171, 05.189, 13.059, 13.069 and 13.162), additional genotoxicity data are required, according to their pending evaluations as flavouring substances.

A considerable portion of the flavouring remains unidentified.

The Panel considered the data on feeding studies with partially hydrogenated soybean oil that had been treated under restaurant-type conditions for frying as not suitable to demonstrate the safety of Grillin’ 5078. The Panel considered, in particular, the time-temperature conditions employed to produce these oils as not comparable to those applied to produce Grillin’ 5078.

The Panel concluded that on the basis of the data provided by the applicant the safety of Grillin’ 5078 cannot be established.

Documentation provided to EFSA

1) Red Arrow Products Company LLC, Oct 2015 The safety evaluation of flavourings ‘other than flavouring substances’: Grillin’ 5078 (grill flavour 5078). Unpublished report submitted by Red Arrow Products Company LLC.

2) Red Arrow Products Company LLC, Jan 2017. Responses to the request of additional information on the product Grillin’ 5078 [FL-no: 21.003], (EFSA-Q-2016-00002). Including Exhibit A1 to A8. Unpublished data submitted to Red Arrow Products Company LLC.

References

Carthew P, Dinovi M and Setzer RW, 2010. Application of the margin of exposure (MoE) approach to substances in food that are genotoxic and carcinogenic: example: Furan (CAS No. 110-00-9). Food and Chemical Toxicology, 48 (Suppl. 1), S69–S74.

Columbus Vegetable oils, 2014. High oleic sunflower oil #430. Technical data sheet and product overview.

Damske DR, Mecler FJ, Beliles RP and Liverman JL, 1980. 90 -day toxicity study in rats. 2,4-decadienal. Final report. Litton Bionetics, Inc., Maryland. LBI Project no. 21130-02, 4 June 1980. Unpublished report submitted by EFFA to SCF.

Dobarganes MS and Marquez-Ruiz G, 2006. In: Erickson MD (ed.). Deep Frying: Chemistry, Nutrition and Practical Applications, 2nd Edition. AOCS Press, Champaign, IL. pp. 2066–2069.
EFSA Panel (EFSA Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids), 2010. Scientific Opinion on guidance on the data required for the risk assessment of flavourings to be used in or on foods. EFSA Journal 2010;8(6):1623, 38 pp. https://doi.org/10.2093/j.efsa.2010.1623

EFSA Panel (EFSA Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids), 2014a. Scientific Opinion on Flavouring Group Evaluation 203, Revision 1 (FGE.203Rev1): α,\,β-Unsaturated aliphatic aldehydes and precursors from chemical subgroup 1.1.4 of FGE.19 with two or more conjugated double-bonds and with or without additional non-conjugated double-bonds. EFSA Journal 2014;12(4):3626, 31 pp. https://doi.org/10.2903/j.efsa.2014.3626

EFSA Panel (EFSA Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids), 2014b. Scientific Opinion on Flavouring Group Evaluation 200 (FGE.200): 74 α,\,β-unsaturated aldehydes and precursors from subgroup 1.1.1 of FGE.19. EFSA Journal 2014;12(6):3709, 50 pp. https://doi.org/10.2903/j.efsa.2014.3709

EFSA CONTAM Panel (EFSA Panel on Contaminants in the Food Chain), 2004. Report of the CONTAM Panel on provisional findings on furan in food. EFSA Journal 2004;2(12):137, 43 pp. https://doi.org/10.2903/j.efsa.2004.137

EFSA Scientific Committee, 2009. Scientific Opinion. Transparency in Risk Assessment – Scientific Aspects. Guidance of the Scientific Committee on Transparency in the Scientific Aspects of Risk Assessments carried out by EFSA, Part 2: general principles. EFSA Journal 2009;7(5):1–22, 1051 pp. https://doi.org/10.2903/j.efsa.2009.1051

FAO/WHO, 2008. Evaluation of certain food additives. Sixth report of the joint FAO/WHO expert committee on food additives. Rome, 17–26 June 2008. WHO technical report series, No 952.

Gaunt IF, Colley J, Wright M, Creasey M, Grasso P and Gangoli SD, 1971. Acute and short-term toxicity studies on trans-2-hexenal. Food and Cosmetics Toxicology, 9, 775–786.

Gill S, Bondy G, Lefebvre DE, Becalski A, Kavanagh M, Hou Y, Turcotte AM, Barker M, Weld M, Vavasour E and Cooke GM, 2010. Subchronic oral toxicity study of furan in Fischer-344 rats. Toxicologic Pathology, 38, 619–630.

Gill S, Kavanagh M, Barker M, Weld M, Vavasour E, Hou Y and Cooke GM, 2011. Subchronic oral toxicity study of furan in B6C3F1 Mice. Toxicologic Pathology, 39, 787–794.

Gingell R, Bennick JE and Malley LA, 1999. Subchronic inhalation study of 1-hexene in Fischer 344 Rats. Drug and Chemical Toxicology, 22, 507–528.

Grob K, 1981. Degradation of triglycerides in gas chromatographic capillaries: studies by reversing the column. Journal of Chromatography, 205, 289–296.

Marmesat S, Velasco J and Dobarganes MC, 2008. Quantitative determination of epoxy acids, keto acids and hydroxy acids formed in fats and oils at frying temperatures. Journal of Chromatography, 205, 289–296.

Nolen GA, 1972. Effects of fresh and used hydrogenated soybean oil on reproduction and teratology in rats. Journal of American Oil Chemical Society, 49, 688–693.

Nolen GA, 1973. A feeding study of a used, partially hydrogenated soybean oil, frying fat in dogs. Journal of Nutrition, 103, 1248–1255.

Nolen G, Alexander J and Artman N, 1967. Long-term rat feeding study with used frying oils. Journal of Nutrition, 93, 337–348.

NTP (National Toxicology Program), 2003. Toxicology and carcinogenesis studies of 2,4-hexadienal in F344/N rats and B6C3F1 mice (gavage studies). NTP TRS 509.

NTP (National Toxicology Program), 2011. Studies of 2,4-decadienal (CAS NO. 25152-84-5) in F344/N rats and B6C3F1 mice (gavage studies). Toxicity Report Series Number 76. NIH Publication No. 11-5969.

OECD, 1997. Test No. 471: bacterial reverse mutation test. OECD Publishing, Paris. Available online: https://doi.org/10.1787/9789264071247-en

OECD, 2014. Test No. 487: In Vitro Mammalian Cell Micronucleus Test. OECD Publishing, Paris. Available online: https://doi.org/10.1787/9789264224438-en

Til HP, Wouterson RA, Feron VJ and Clary J, 1988. Evaluation of the oral toxicity of acetaldehyde and formaldehyde in a 4-week drinking-water study in rats. Food and Chemical Toxicology, 26, 447–452.

VKM (Norwegian Scientific Committee for Food Safety), 2012. Risk assessment of furan exposure in the Norwegian population; Opinion of the Panel on Food Additives, Flavouring, Processing Aids, Materials in Contact with Food and Cosmetics and the Panel on Contaminants of the Norwegian Scientific Committee for Food Safety. 107 pp.

Von Tungeln LS, Walker NJ, Olson GR, Mendoza MC, Felton RP, Thorn BT, Marques MM, Pogribny IP, Doerge DR and Beland FA, 2017. Low dose assessment of the carcinogenicity of furan in male F344/N Nctr rats in a 2-year gavage study. Food and Chemical Toxicology, 99, 170–181.

Abbreviations

Abbreviation	Description
APET	Added Portions Exposure Technique
BMDL	benchmark dose level
bw	body weight
CAS	Chemical Abstract Service

www.efsa.europa.eu/efsajournal 16 EFSA Journal 2017;15(9):4973
Abbreviation	Full Form
CEF	EFSA Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids
CFR	US Code of Federal Regulations
CONTAM	EFSA Panel on Contaminants in the Food Chain
DATA	Evidence Management Unit, EFSA
EFFA	European Flavour Association
EINECS	European Inventory of Existing Commercial chemical Substances
FAO	Food and Agriculture Organization of the United Nations
FFA	free fatty acids
FGE	Flavouring Group Evaluation
FL-no	FLAVIS number
GC	gas chromatography
GLP	Good Laboratory Practice
GMO	genetically modified organisms
GSFA	General Standard for Food Additives
HS-SPME	headspace solid phase microextraction
ICP-MS	inductively coupled plasma mass spectrometry
JECFA	The Joint FAO/WHO Expert Committee on Food Additives
MNBN	micronucleated binucleated cells
MS	mass spectrometry
MSDI	Maximised Survey-Derived Daily Intake
NOAEL	no observed adverse effect level
OECD	Organisation for Economic Co-operation and Development
PAHs	polycyclic aromatic hydrocarbons
PCB	polychlorinated biphenyl
PoD	point of departure
SCF	Scientific Committee on Food
SPET	Single Portion Exposure Technique
TFA	total fatty acids
USDA	United States Department of Agriculture
VOC	volatile organic compound
WHO	World Health Organization
Appendix A – Volatile constituents of Grillin’ 5078

Table A.1: Summary of evaluation status for the volatile constituents of Grillin’ 5078, some of which are also used as flavouring substances and evaluated by EFSA

Constituents of Grillin’ 5078 (no of isomers)	Union List substance name (FL-no)	CASrn	Chemical structure	EFSA conclusion on the Union list substance	Comments
2-Propenal	–	107-02-8			
2-Butenal	–	107-18-6	Unspecified isomer		
2-Propenal-1-ol	–	6117-91-5			
2-Pentenal	Pent-2-enal [05.102]	764-39-6			
2-Buten-1-ol	–	2-Propen-1-ol-1		Unspecified isomer	
2-Hexenal	2-Hexenal [05.189]	505-57-7			
2-Heptenal	2-Heptenal [05.070]	2463-63-0			
2,4-Hexadienal	Hexa-2(trans),4(trans)-dienal [05.057]	142-83-6			
2-Octenal	Oct-2-enal [05.060]	2363-89-5		(c)	
2-Nonenal	Non-2-enal [05.171]	2463-53-8		(b)	
2-Propenoic acid	–	79-10-7			
2-Decenal	Dec-2-enal [05.076]	3913-71-1			
2-Undecenal	2-Undecenal [05.109]	2463-77-6			
2,4-Decadienal (2)	2,4-Decadienal [05.081]	2363-88-4			
Hexenoic acid	2-Hexenoic acid [08.119]	1191-04-4			
	Hex-3-enolic acid [08.050]	4219-24-3			
2,4-Undecadienal	Undeca-2,4-dienal [05.108]	13162-46-4			
Heptenoic acid	trans-2-Heptenoic acid [08.123]	10352-88-2			
Octenoic acid	2-Octenoic acid [08.114]	1871-67-6			
Heptadecenyal	–	110-62-3			
Acetaldehyde	Acetaldehyde [05.001]	75-07-0			
Propanal	Propanal [05.002]	123-38-6			
Butanal	Butanal [05.003]	123-72-8			
Pentanal	Pentanal [05.005]	110-62-3			

Source: www.efsa.europa.eu/efsajournal 18 EFSA Journal 2017;15(9):4973
Constituents of Grillin’ 5078 (no of isomers)	Union List substance name (FL-no)	CASrn	Chemical structure	EFSA conclusion on the Union list substance	Comments
Hexanal	Hexanal [05.008]	66-25-1	![Chemical structure](image)	(o)	
Heptanal	Heptanal [05.031]	111-71-7	![Chemical structure](image)	(a)	
1-Pentanol	Pentan-1-ol [02.040]	71-41-0	![Chemical structure](image)	(a)	
Octanal	Octanal [05.009]	124-13-0	![Chemical structure](image)	(a)	
1-Hydroxy-2-propanone	1-Hydroxypropan-2-one [07.169]	116-09-6	![Chemical structure](image)	(a)	
Nonanal	Nonanal [05.025]	124-19-6	![Chemical structure](image)	(a)	
Acetic acid	Acetic acid [08.002]	64-19-7	![Chemical structure](image)	(a)	
1-Heptanol	Heptan-1-ol [02.021]	111-70-6	![Chemical structure](image)	(a)	
Decanal	Decanal [05.010]	112-31-2	![Chemical structure](image)	(a)	
Formic acid	Formic acid [08.001]	64-18-6	![Chemical structure](image)	(a)	
Propanoic acid	Propionic acid [08.003]	79-09-4	![Chemical structure](image)	(a)	
Octanol	Octan-1-ol [02.006]	111-87-5	![Chemical structure](image)	(a)	(e)
Butanoic acid	Butyric acid [08.005]	107-92-6	![Chemical structure](image)	(a)	
Methylbutyrolactone	Pentano-1,4-lactone [10.013]	108-29-2	![Chemical structure](image)	(a)	(e)
Butyrolactone	Butyro-1,4-lactone [10.006]	96-48-0	![Chemical structure](image)	(a)	
γ-Hexalactone	Hexano-1,4-lactone [10.021]	695-06-7	![Chemical structure](image)	(o)	
Pentanoic acid	Valeric acid [08.007]	109-52-4	![Chemical structure](image)	(o)	
Hexanoic acid	Hexanoic acid [08.009]	142-62-1	![Chemical structure](image)	(o)	
Constituents of Grillin’ 5078 (no of isomers)	Union List substance name (FL-no)	CASrn	Chemical structure	EFSA conclusion on the Union list substance	Comments
--	----------------------------------	---------	--------------------	---	----------
γ-Octalactone	Octano-1,4-lactone [10.022]	104-50-7		(o)	
Heptanoic acid	Heptanoic acid [08.028]	111-14-8		(a)	
Pentadecanal		2765-11-9			
Octanoic acid	Octanoic acid [08.010]	124-07-2		(o)	
γ-Nonalactone	Nonano-1,4-lactone [10.001]	104-61-0		(o)	
Nonanoic acid	Nonanoic acid [08.029]	112-05-0		(o)	
Decanoic acid	Decanoic acid [08.011]	334-48-5		(o)	
4-Oxopentanoic acid	4-Oxovaleric acid [08.023]	123-76-2		(a)	
Heptane		142-82-5			
Heptene		–			
Octane		111-65-9		Unspecified isomer	
Octene	1-Octene [01.070]	111-66-0		(o)	(e)
Nonane		111-84-2			
Nonene		–		Unspecified isomer	
Decane		124-18-5			
Decene		–		Unspecified isomer	
Butyl cyclopentene		–		Unspecified isomer	
Undecene isomers (3)		–		Unspecified isomer	
Undecadiene		–		Unspecified isomer	
Tridecane		629-50-5		CH₃-(CH₂)₁₁-CH₃	
Dodecadiene		–		Unspecified isomer	
Tetradecane	Tetradecane [01.057]	629-59-4		(o)	
2-Nonanone	Nonan-2-one [07.020]	821-55-6		(a)	
Constituents of Grillin’ 5078 (no of isomers)	Union List substance name (FL-no)	CASrn	Chemical structure	EFSA conclusion on the Union list substance	Comments
---	----------------------------------	-------	-------------------	---	----------
Pentadecane	Pentadecane [01.054]	629-62-9	![Chemical Structure](image1)	(a)	
Cyclotetradecane	–	295-17-0	![Chemical Structure](image2)		
Nonyl cyclohexane	–	2883-02-5	![Chemical Structure](image3)		
Hexadecene	–		![Chemical Structure](image4)	Unspecified isomer	
Heptadecane	–	629-78-7	CH\(_3\)-(CH\(_2\))\(_{15}\)-CH\(_3\)		
Heptadecene	–		![Chemical Structure](image5)	Unspecified isomer	
Decyl cyclohexene	–		![Chemical Structure](image6)	Unspecified isomer	
Nonadecene	–		![Chemical Structure](image7)	Unspecified isomer	
Octadecene	–		![Chemical Structure](image8)	Unspecified isomer	
Acetone	Acetone [07.050]	67-64-1	![Chemical Structure](image9)	(a)	
2-Butanone	Butan-2-one [07.053]	78-93-3	![Chemical Structure](image10)	(a)	
3-Butene-2-one	–	78-94-4	![Chemical Structure](image11)		
2-Methyl-1-penten-3-ol	–	2088-07-5	![Chemical Structure](image12)		
3-Methyl-2-butaneone	3-Methylbutan-2-one [07.178]	563-80-4	![Chemical Structure](image13)	(a)	
2-Hexanone	–	591-78-6	![Chemical Structure](image14)		
2-Heptanone	Heptan-2-one [07.002]	110-43-0	![Chemical Structure](image15)	(a)	
4-Octanone	–	589-63-9	![Chemical Structure](image16)		
3-Octanone	Octan-3-one [07.062]	106-68-3	![Chemical Structure](image17)	(a)	
2-Octanone	Octan-2-one [07.019]	111-13-7	![Chemical Structure](image18)	(a)	
Constituents of Grillin’ 5078 (no of isomers)	Union List substance name (FL-no)	CASrn	Chemical structure	EFSA conclusion on the Union list substance	Comments
---	----------------------------------	--------	-------------------	---	----------
2-Cyclopenten-1-one		930-30-3	![Chemical structure](image)	(o)	
1-Octen-3-ol	Oct-1-en-3-ol [02.023]	3391-86-4	![Chemical structure](image)		
2-Cyclohexen-1-one		930-68-7	![Chemical structure](image)		
2-Decanone	Decan-2-one [07.150]	693-54-9	![Chemical structure](image)	(o)	
2,4-Hexanedione		3002-24-2	![Chemical structure](image)		
Heptanedione	Heptan-2,3-dione [07.064]	96-04-8	![Chemical structure](image)	(o)	(e)
2-Undecane		112-12-9	![Chemical structure](image)		
2,5-Octanedione		3214-41-3	![Chemical structure](image)		
Tridecanone	Tridecan-2-one [07.103]	593-08-8	![Chemical structure](image)	(o)	(e)
Nonen-3-ol	Non-1-en-3-ol [02.187]	21964-44-3	![Chemical structure](image)	(o)	(e)
Furan		110-00-9	![Chemical structure](image)		
2,3-Dihydrofuran		1191-99-7	![Chemical structure](image)		
2-Methyltetrahydrofuran		96-47-9	![Chemical structure](image)		
3-Methylfuran		930-27-8	![Chemical structure](image)		
2,3-Dihydro-2,5- dimethylfuran		17108-52-0	![Chemical structure](image)		
2,3-Dihydro-5-methylfuran		1487-15-6	![Chemical structure](image)		
Constituents of Grillin’ 5078 (no of isomers)

Constituent Name	Union List substance name (FL-no)	CASrn	Chemical Structure	EFSA conclusion on the Union list substance	Comments
Butyl cyclopentane	–	2040-95-1	![Chemical structure](image)		
2-Propyltetrahydropyran	–	3857-17-8	![Chemical structure](image)		
2-Propyltetrahydrofuran	–	3208-22-8	![Chemical structure](image)		
2-Butyltetrahydrofuran	–	1004-29-1	![Chemical structure](image)		
2-Pentylfuran	2-Pentylfuran [13.059]	3777-69-3	![Chemical structure](image)		(d)
2-Methyl-1,6-dioxaspiro[4,4]nonane	–	5451-15-0	![Chemical structure](image)		
2-Heptylfuran	2-Heptylfuran [13.069]	3777-71-7	![Chemical structure](image)		(d)
Furfural	Furfural [13.018]	98-01-1	![Chemical structure](image)		(a)
2-Octylfuran	2-Octylfuran [13.162]	4179-38-8	![Chemical structure](image)		(d)
2H-Pyran-2-one	–	504-31-4	![Chemical structure](image)		
Tetrahydro-2H-pyran-2-one	Pentano-1,5-lactone [10.055]	542-28-9	![Chemical structure](image)		(a)
Benzaldehyde	Benzaldehyde [05.013]	100-52-7	![Chemical structure](image)		(a)
Phenol	Phenol [04.041]	108-95-2	![Chemical structure](image)		(a)

FL-no: FLAVIS number; **CASrn**: CAS Registry Number.

(a): No safety concern at the estimated level of intake based on the MSDI approach.

(b): Evaluation in FGE.200, additional genotoxicity data are required.

(c): Evaluated in FGE.203Rev1, additional genotoxicity data are required.

(d): Evaluated in FGE.13Rev2 or FGE.67Rev1, additional genotoxicity data are required.

(e): The constituent of Grillin’ 5078, as reported by the applicant, is the unspecified isomer which is not identical to the corresponding specific isomer included in the Union list for flavourings. Therefore, footnotes (a) or (c), as appropriate, are only fully applicable to the substance present in the Union List.
Appendix B – Use levels and exposure calculations

Table B.1: Normal and maximum occurrence levels for refined categories of foods and beverages for Grillin’ 5078

CODEX code	Food categories(a)	Standard portions(b) (g)	Occurrence level as added flavouring substance (mg/kg)	Occurrence level from other sources(c) (mg/kg)	Combined occurrence level from all sources(e) (mg/kg)			
		Normal	Maximum	Average(d)	Normal	Maximum		
01.2	Fermented and renneted milk products (plain), excluding food category 01.1.2 (dairy-based drinks)	200	100	1,000	0	0	100	1,000
01.4	Cream (plain) and the like	15	100	800	0	0	100	800
01.5	Milk powder and cream powder and powder analogues (plain)	30	100	800	0	0	100	800
01.6	Dairy-based desserts (e.g. pudding, fruit or flavoured yoghurt)	40	100	2,000	0	0	100	2,000
01.7	Fats and oils essentially free from water	15	100	2,000	0	0	100	2,000
02.1	Fat emulsions mainly of type water-in-oil, including mixed and/or flavoured products based on fat emulsions	15	100	2,000	0	0	100	2,000
02.2	Processed vegetables (including mushrooms and fungi, roots and tubers, pulses and legumes, and aloe vera), seaweed, and nut and seed purees and spreads (e.g. peanut butter) and nuts and seeds	200	100	2,000	0	0	100	2,000
03.0	Cocoa products and chocolate products, including imitations and chocolate substitutes	40	100	1,000	0	0	100	1,000
03.1	Cocoa-based spreads, including fillings	30	100	1,000	0	0	100	1,000
05.2	Confectionery, including hard and soft candy, nougats, etc., other than 05.1, 05.3 and 05.4	30	100	1,000	0	0	100	1,000
06.3	Breakfast cereals, including rolled oats	30	100	1,000	0	0	100	1,000
CODEX code	Food categories (a)	Standard portions (g)	Occurrence level as added flavouring substance (mg/kg)	Occurrence level from other sources (mg/kg)	Combined occurrence level from all sources (mg/kg)			
------------	---	-----------------------	---	--	--			
06.4	Pastas and noodles and like products (e.g. rice paper, rice vermicelli, soya bean pastas and noodles)	200	100 2,000	0 0	100 2,000			
06.5	Cereal and starch based desserts (e.g. rice pudding, tapioca pudding)	200	100 2,000	0 0	100 2,000			
06.6	Batters (e.g. for breading or batters for fish or poultry)	30	100 2,000	0 0	100 2,000			
06.7	Pre-cooked or processed rice products, including rice cakes (Oriental type only)	200	100 2,000	0 0	100 2,000			
07.2	Fine bakery wares (sweet, salty, savoury) and mixes	80	100 2,000	0 0	100 2,000			
08.1	Fresh meat, poultry and game	200	100 2,000	0 0	100 2,000			
08.2	Processed meat, poultry and game products in whole pieces or cuts	100	100 2,000	0 0	100 2,000			
08.3	Processed comminute meat, poultry and game products	100	100 2,000	0 0	100 2,000			
08.4	Edible casings (e.g. sausage casings)	1	100 2,000	0 0	100 2,000			
09.1.1	Fresh fish	200	100 2,000	0 0	100 2,000			
09.2	Processed fish and fish products, including molluscs, crustaceans and echinoderms	100	100 2,000	0 0	100 2,000			
09.3	Semi-preserved fish and fish products, including molluscs, crustaceans and echinoderms	100	100 2,000	0 0	100 2,000			
09.4	Fully preserved, including canned or fermented, fish and fish products, including molluscs, crustaceans and echinoderms	100	100 2,000	0 0	100 2,000			
10.2	Egg products	100	100 2,000	0 0	100 2,000			
10.3	Preserved eggs, including alkaline. salted and canned eggs	100	100 2,000	0 0	100 2,000			
10.4	Egg-based desserts (e.g. custard)	125	100 1,000	0 0	100 1,000			
CODEX code	Food categories^(a)	Standard portions^(b) (g)	Occurrence level as added flavouring substance (mg/kg)	Occurrence level from other sources^(c) (mg/kg)	Combined occurrence level from all sources^(d) (mg/kg)			
------------	---	-----------------------------------	--	--	--			
11.3	Sugar solutions and syrups, and (partially) inverted sugars, including molasses and treacle, excluding products of food category 11.1.3 (soft white sugar, soft brown sugar, glucose syrup, dried glucose syrup, raw cane sugar)	30	100	1,000	100	1,000		
11.4	Other sugars and syrups (e.g. xylose, maple syrup, sugar toppings)	30	100	1,000	100	1,000		
11.2	Herbs, spices, seasonings and condiments (e.g. seasoning for instant noodles)	1	100	2,000	100	2,000		
11.3	Vinegars	15	100	1,000	100	1,000		
11.4	Mustards	15	100	2,000	100	2,000		
11.5	Soups and broths	200	100	2,000	100	2,000		
11.6	Sauces and like products	30	100	2,000	100	2,000		
11.7	Salads 120 g (e.g. macaroni salad, potato salad) excluding cocoa- and nut-based spreads of food categories 04.2.2.5 and 05.1.3	120	100	2,000	100	2,000		
11.9	Soybean-based seasonings and condiments	15	100	2,000	100	2,000		
11.9.1	Fermented soya bean products (e.g. miso)	40	100	2,000	100	2,000		
11.10	Protein products other than from soybeans	15	100	2,000	100	2,000		
11.12	Dietetic foods intended for special medical purposes (excluding food products of category 13.1 Infant formulae, follow-up formulae and other formulae for special medical purposes for infants)	200	100	2,000	100	2,000		
11.13	Dietetic formulae for slimming purposes and weight reduction	200	100	2,000	100	2,000		
11.14	Dietetic foods (e.g. supplementary foods for dietary use), excluding products of food categories 13.1 (Infant formulae, follow-up formulae and other formulae for special medical purposes for infants), 13.2–13.4 and 13.6	200	100	2,000	100	2,000		
11.15	Other non-alcoholic ('soft') beverages	300	100	2,000	100	2,000		
11.16	Beer and malt beverages	300	100	2,000	100	2,000		
CODEX code	Food categories (a)	Standard portions (b) (g)	Occurrence level as added flavouring substance (mg/kg)	Occurrence level from other sources (c) (mg/kg)	Combined occurrence level from all sources (d) (mg/kg)			
------------	---	---------------------------	--	---	--			
14.2.3	Grape wines	150	100 2,000	0 0	100 2,000			
14.2.5	Mead	150	100 2,000	0 0	100 2,000			
14.2.6	Distilled spirituous beverages containing more than 15% alcohol	30	100 2,000	0 0	100 2,000			
15.1	Snacks, potato-, cereal-, flour- or starch-based (from roots and tubers, pulses and legumes)	30	100 2,000	0 0	100 2,000			
15.2	Processed nuts, including coated nuts and nut mixtures (with e.g. dried fruit)	30	100 2,000	0 0	100 2,000			
15.3	Snacks – fish based	30	100 2,000	0 0	100 2,000			
16.0	Composite foods (e.g. casseroles, meat pies, mincemeat) – foods that could not be placed in categories 01–15	300	100 2,000	0 0	100 2,000			

(a): Most of the categories reported are the subcategories of Codex GSFA (General Standard for Food Additives) used by the JECFA in the SPET technique (FAO/WHO, 2008). In the case of category 13.2 (complementary foods for infants and young children), further refined categories have been created so that a specific assessment of dietary exposure can be performed in young children.

(b): For Adults. In case of foods marketed as powder or as concentrates, occurrence levels must be reported for the reconstituted product, considering the instructions reported on the product label or one of the standard dilution factors established by the JECFA (FAO/WHO 2008):
- 1/25 for powder used to prepare water-based drinks such as coffee, containing no additional ingredients,
- 1/10 for powder used to prepare water-based drinks containing additional ingredients such as sugars (ice tea, squashes, etc.),
- 1/7 for powder used to prepare milk, soups and puddings,
- 1/3 for condensed milk.

(c): As natural constituent and/or developed during the processing and/or as carry over resulting from their use in animal feed.

(d): In order to estimate normal values in each category, only foods and beverages in which the substance is present in significant amount will be considered (e.g. for the category 'Fresh fruit' 04.1.1., the normal concentration will be the median concentration observed in all kinds of fruit where the flavouring substance is known to occur).

(e): As added flavouring or from other sources. The normal and maximum combined occurrence levels of the substance will be assessed by the applicant either by adding up occurrence levels from added use to that from other sources or by expert judgment based on the likelihood of their comcomitant presence. This will be done both for normal use levels and for maximum use levels.
Calculation of the dietary exposure - ‘Added Portions Exposure Technique’ (APET)\(^5\)

Chronic dietary exposure

The chronic APET calculations are based on the combined normal occurrence level by adding the highest contributing portion of food and highest contributing portion of beverages (either among soft drinks or alcoholic beverages) (see Table 4). The APET calculation for children is performed by adding the highest contributing portion of food and the highest contributing portion of beverages (among soft drinks). Furthermore, in the APET calculation for children, the portion sizes listed in Table B.1 are adjusted by a factor of 0.63 to take into account the smaller portion sizes consumed by children.

Adults

On the basis of normal occurrence level from added flavourings

Solid food: The maximum intake will be from category 16.0 (Composite foods (e.g. casseroles, meat pies, mincemeat) – foods that could not be placed in categories 01–15) with the normal combined occurrence level of 30 mg/adult per day.

Beverage: The maximum intake will be from categories 14.1 (Other non-alcoholic (‘soft’) beverages (expressed as liquid)) and 14.2.1 (Beer and malt beverages) with the normal combined occurrence level of 30 mg/adult per day.

The total APET will be 6 mg/adult per day corresponding to 1 mg/kg bw per day for a 60-kg person.

Children (3-year-old child of 15 kg body weight)

Solid food: The maximum intake will be from category 16.0 (Composite foods (e.g. casseroles, meat pies, mincemeat) – foods that could not be placed in categories 01–15) with the normal combined occurrence level of \(30 \times 0.63 = 18.9\) mg/child per day.

Beverage: The maximum intake will be from category 14.1 (Other non-alcoholic (‘soft’) beverages (expressed as liquid)) with the normal combined occurrence level of \(30 \times 0.63 = 18.9\) mg/child per day.

The total APET will be 37.8 mg/child per day corresponding to 2.5 mg/kg bw per day for a 15-kg child.

Conclusion

The higher of the two values among adults and children, expressed per kg/bw per day, should be used as the basis for the safety evaluation of the candidate substance, i.e. the value of 1.26 mg/kg bw per day for a 15-kg child should be compared to the appropriate no observed adverse effect level (NOAEL) for the candidate substance.

Infants and young children

The estimate to infant exposure is currently under consideration by EFSA.

Acute dietary exposure

The calculation is based on the maximum use levels and large portion size, i.e. three times standard portion size (see Table 5). Although the substance is not intended to be used in food categories specifically intended for infants and toddlers, these could still be exposed through consumption of foods from the general food categories, which may contain the substance. However, at present there is no generally accepted methodology to estimate exposure in these age groups resulting from consumption of foods from the general categories. The APET calculation for children the portion sizes listed in Table B.1 is adjusted by a factor of 0.63 to take into account the smaller portion sizes consumed by children.

Adults

The highest contribution comes from three portions of one of the following categories for which a highest exposure of \((3 \times 300 \text{ g}) \times 2,000 \text{ mg/kg} = 1,800 \text{ mg/adult day}\) could be estimated: 16.0

\(^{5}\) The APET has been calculated based on the occurrence levels in the food subcategories reported in the above table, with the exclusion of categories 13.2 (complementary foods for infants and young children).
(Composite foods (e.g. casseroles, meat pies, mincemeat) – foods that could not be placed in categories 01–15), 14.1 (Other non-alcoholic (‘soft’) beverages (expressed as liquid)) and 14.2.1 (Beer and malt beverages).

Children (3-year-old child of 15 kg body weight)

The highest contribution comes from three portions of one of the following categories for which a highest exposure of \((3 \times 300 \, \text{g}) \times 0.63 \times 2,000 \, \text{mg/kg} = 1,134 \, \text{mg/child day}\) could be estimated: 16.0 (Composite foods (e.g. casseroles, meat pies, mincemeat) – foods that could not be placed in categories 01–15) and 14.1 (Other non-alcoholic (‘soft’) beverages (expressed as liquid)).

Infants and young children

Acute dietary exposure is not calculated for infants and young children.
Appendix C – Genotoxicity data

Table C.1: Summary of genotoxicity data (in vitro)

Chemical name FL-no	Test system *in vitro*	Test object	Concentrations of substance and test conditions	Result	Reference	Comments
Grillin’ 5078 [21.003]	Reverse Mutation	*Salmonella* Typhimurium TA98, TA100, TA1535, TA1537 and *Escherichia coli* WP2 *uvrA*	1.5–5,000 µg/plate	Inconclusive*(a)*	Red Arrow Products Company LLC (2015)	The study was performed in accordance with OECD TG 471, with two separate experiments, ± S9, using the plate incorporation method. Precipitate was observed at 500 µg/plate and above.
Micronucleus Induction	Human peripheral blood lymphocytes	10, 25 and 50 µg/mL	Negative	Red Arrow Products Company LLC (2015)	The study was performed in accordance with OECD TG 487, ± S9 in the 4 + 20 h treatment – S9 in the 24 + 0 h treatment. Concentrations of 10, 25 and 50 µg/mL were used under all treatment conditions. Cytotoxicity of 33% was seen at 50 µg/mL.	

(a): Due to the lack of requested data, a conclusion cannot be drawn on a possible genotoxic effect of Grillin’ 5078 (see Section 3.5.1 for details).
Appendix D – Developmental toxicity and chronic toxicity data on thermally oxidised oleic acid-based oils as provided by the applicant

Developmental toxicity study on thermally oxidised oleic acid-based oils

Two generations of male and female rats were maintained on diets containing 15% of either a freshly hydrogenated soybean oil (iodine value 107) or hydrogenated soybean oil heated to 182°C for 56 h under practical restaurant-type frying conditions. The oil was stored frozen after addition of butylated hydroxytoluene (0.39 ppm) plus butylated hydroxyanisol (0.31 ppm). The first two litters of each generation were permitted to be born naturally. During the third pregnancy of each generation, one-half of the females were sacrificed on day 13 of gestation and inspected for early embryonic death. The remaining females were sacrificed on day 21 of gestation, and the fetuses were examined for either skeletal or soft tissue abnormalities. There was no evidence of any deleterious effects on the reproductive parameters or any teratogenic effects due to either hydrogenated soybean oil (Nolen, 1972).

Chronic toxicity on thermally oxidised oleic-acid-based oils

Groups of male and female rats (50/sex per group) were maintained on diets containing 15% of soybean oil (65–66% oleic acid) partially hydrogenated to iodine values of 70 and 108, respectively, that been heated at 182°C, 8 h daily for a total of 84–60 h, respectively, under practical restaurant-type frying conditions (Nolen et al., 1967); a similarly treated, hydrogenated soybean oil (iodine value 108) containing 1.6 ppm methylsilicone, was heated for 216 h at 182°C. Also, cotton oil (heated 49 h) and lard (heated 116 h) were used. The oils were stored frozen after addition of butylated hydroxytoluene (0.39 ppm) plus butylated hydroxyanisol (0.31 ppm).

Study diets were prepared fresh each week and kept refrigerated until dispensed into the feeding cups. Feeding was carried out three times per week, and any feed remaining in the cups was discarded, so that the longest period that any of the feed was unrefrigerated after mixing was 3 days. Untreated hydrogenated soybean oil was used in the control diet. Weekly measurement of body weight, food intake and food efficiency uptake and biweekly measurement of fat absorption showed no significant difference between test and control groups after 2 years. Haematological examination, clinical chemistry determinations, and urine and faeces analysis failed to reveal significant differences between test and control groups. Histopathological examinations of thymus, heart, lung, liver, stomach, pancreas, spleen, adrenal, kidney, mesenteric lymph nodes, ileum, gonads and any apparent neoplasms exhibited no evidence of lesions that could be associated with administration of the test diet (Nolen et al., 1967).

In a study in dogs, a similar partially hydrogenated soybean oil (iodine value 107) was used. It was kept at 182°C under practical restaurant-type frying conditions until it reached the end of its useful frying life (56 h). This used oil, or a fresh oil control, was fed to groups of two male and two female dogs at levels of 15% in a semipurified diet. Their effects were compared to those of a commercial dog feed from shortly after weaning until the dogs were 54 weeks old. There was no apparent difference in the growth of female dogs fed the diets. The male dogs fed the diet with used fat grew about the same as those fed the commercial dog feed, but both groups had reduced growth compared to dogs fed the diet with fresh fat. As in the rat studies, this reduced rate of growth for males was attributed to the lower absorbability of the used fat compared to the fresh. Otherwise, clinical examinations showed no significant differences between test and control animals. Histopathological examination revealed no lesions that could be attributed to administration of the test material (Nolen, 1973).
Appendix E – Methodology

The definition of ‘other flavouring’, referred to in Article 3(2)(h) of Regulation (EC) No 1334/2008 is ‘a flavouring added or intended to be added to food in order to impart odour and/or taste and which does not fall under the definitions of Article 3(2)(b) – (g) of Regulation (EC) No 1334/2008’, and the data requirements for its safety evaluation can be found in the EFSA scientific opinion: ‘Guidance on the data required for the risk assessment of flavourings to be used in or on foods’ (EFSA CEF Panel, 2010), Part B. IV. ‘Information to be supplied with an application for the authorisation of Other Flavourings’.

It is difficult to anticipate what kind of materials will undergo an evaluation as ‘Other Flavourings’, which suggests that the standard evaluation template is flexible. As a general approach, the following data should be provided:

- full description of the production process, with emphasis on the parameters that might influence the composition of the flavouring;
- identification and quantification of the substances present in the flavouring;
- specifications of the flavouring;
- exposure and toxicological data required to perform a risk assessment of the flavouring.
Appendix F – Flow diagram of the production process of Grillin’ 5078 (confidential)