Direct interaction studies between Aspergillus fumigatus and human immune cells; what have we learned about pathogenicity and host immunity?

Charles O. Morton1*, Maria Bouzani2, Juergen Loeffler2 and Thomas R. Rogers3

INTRODUCTION

The fungus Aspergillus fumigatus (teleomorph Neosartorya fumigata; O’Gorman et al., 2009) normally plays a role in the decay of plant organic matter in the environment (Gugnani, 2003). It is also an opportunistic pathogen that causes a spectrum of diseases in humans ranging from allergic reactions to life-threatening invasive disease in immunocompromised individuals (Neofytos et al., 2009). Invasive aspergillosis (IA) is the most severe disease caused by the fungus and is the leading cause of mycosis-related mortality in the immunocompromised (McCormick et al., 2010b). Invasive aspergillosis is usually caused by the inhalation of asexual spores (conidia) into the alveoli. It is estimated that 200–300 conidia are inhaled daily (Laige, 1999). Conidia are covered in a layer of hydrophobin which is inert to the immune system (Aima-conda et al., 2009) and the presence of dihydroxynaphthalene (DHN)-melanin in the cell wall interferes with host endocytosis (Thywissen et al., 2011) leading to potential long-term survival of inhaled resting conidia. Proteomic analysis of resting conidia indicated the presence of enzymes that allow rapid adaptation to the environment in which the fungus germinates and the establishment of infection in the absence of competent antifungal defenses (Tschitschibain et al., 2010). The cellular innate immune system usually provides protection against IA by neutralizing germinating conidia (Hausenberg et al., 2011).

Immunity to fungal infection requires the concerted activity of the cells of the immune system (Figure 1). The importance of alveolar macrophages and neutrophils has been the subject of relatively extensive research and will not be the major focus of this review. We will primarily focus on dendritic cells (DC), monocytes, and the emerging role of natural killer (NK) cells in immunity to IA, examining how these analyses have added to the understanding of fungal virulence and immunity to IA.

INTERACTIONS WITH INNATE IMMUNE CELLS

The first immune cells to interact with germinating fungal spores are the alveolar macrophages and neutrophils that are recruited to the site of infection. These cells recognize pathogen-associated molecular patterns (PAMPs), e.g., β-1,3-glucan, galactomannan, and chitin, that are exposed on the surface of germinating conidia or hyphae through pathogen-recognition receptors (PRR) such as Toll-like receptors (TLR; Netea et al., 2003) and Dectin-1 (Brown, 2006). It has been observed in murine models that neutrophils play an essential role in defense against germinating conidia (Mircescu et al., 2009; Ibrahim-Granet et al., 2010). Interference with the innate immune response is a primary factor in the initiation of IA; neutropenia is a primary risk factor for IA (De Paauw et al., 2008). However, increasing evidence suggests that neutrophils and macrophages act cooperatively to defend against infection (Silva, 2011).

MACROPHAGES

The population of resident alveolar macrophages (AM) are thought to be the first immune cells to encounter A. fumigatus in the lung (Figure 1). The interaction between A. fumigatus and...
Morton et al. Immune cell interactions with A. fumigatus

FIGURE 1 | Schematic diagram of cells of the innate immune system interacting with Aspergillus fumigatus in the vicinity of an alveolus. The resident alveolar macrophages (1) are first to encounter the fungus and initiate the inflammatory response (Segal, 2007; Volling et al., 2007; Slesiona et al., 2012). Neutrophils (2) are recruited to the site of infection by chemoattractant cytokines, they are necessary for clearance of the fungal infection (Sugui et al., 2008; Brakhage et al., 2010; Fallon et al., 2010). Dendritic cells (3) actively scan the body for potential infectious agents; they phagocytose pathogens and drain to the lymph nodes where they can present antigens from the degraded pathogen to induce an adaptive immune response (Bozza et al., 2002; Mezger et al., 2008; Morton et al., 2011). Monocytes, progenitors for macrophages and some dendritic cell (4) are present in blood; they can phagocytose fungal elements and release proinflammatory cytokines (Rodland et al., 2008; Loeffler et al., 2008). NK cells (5) are present in blood and can be attracted to sites of infection; they release antimicrobial molecules that can directly kill invading fungi (Park et al., 2000; Bouzari et al., 2011). The tables are summaries of the key features of the interactions between A. fumigatus with each immune cell based on the studies cited in each section. The figure is not to scale.
macrophages has provided an important model for the study of phagocytosis of the fungus. Conidia are phagocytosed by AM and killed following acidification of the phagolysosome and activation of antimicrobial enzymes (e.g., cathepsin D and chitinase; Ibrahim-Granet et al., 2003). Reactive oxygen species (ROS) are required to kill conidia but are not directly responsible for killing the fungus (Philippe et al., 2003; Cornish et al., 2008). AM along with direct antifungal activity also release cytokines to initiate an inflammatory response to fungal infection (Agarwal et al., 2007).

Fungal survival during interactions with AM is associated with fungal DHN-melanin inhibiting acidification of the phagolysosome (Thywissen et al., 2011). This promotes germination of the conidia and escape from the AM through hyphal growth (Slesiona et al., 2012). Another factor that is important for fungal survival during encounters with AM is the production of siderophores, deletion of genes encoding these iron scavenging molecules decreased fungal survival within the AM phagolysosome (Schrettl et al., 2010).

NEUTROPHILS

Neutrophils are recruited to the site of infection by cytokines, primarily IL-8 in the lung, and are important players in the inflammatory response associated with the clearance of fungal infection (Belloccio et al., 2004; Bonnett et al., 2006; Park and Mehrad, 2009). These cells recognize fungi through PRR–PAMP interactions and can phagocytose pathogenic microbes. Neutrophils are also capable of attacking hyphae through the production of neutrophil extracellular traps (NET) which are formed when neutrophils undergo autolysis releasing their DNA into the surrounding environment to impede the progress of infection (Bruns et al., 2010). NET formation is important in inhibition of hyphal growth and their formation can be induced by both conidia and hyphae (McCormick et al., 2010a). Interestingly, restoration of NET formation in neutrophils from a patient with chronic granulomatous disease (CGD) restored resistance to IA (Bianchi et al., 2011).

Transcriptional analysis of A. fumigatus that is directly interacting with neutrophils has been conducted and has revealed that there is a complex response by genes involved in oxidative stress and fatty acid catabolism (Sugui et al., 2008). Up-regulation of catalases (cat1 and cat2), superoxide dismutase (Mn-SOD), and thioredoxin reductase are consistent with a reaction to oxidative stress caused by the generation of ROS within the phagolysosome in neutrophils.

There was a shift in the metabolism of the fungus to a state similar to that observed under glucose limitation indicating that phagocytosis by neutrophils creates nutrient limiting conditions (Sugui et al., 2008). Transcription analysis of A. fumigatus initiating infection in the murine lung revealed that nutrient limitation could be a cue for a trophic switch requiring the induction of putative virulence genes (McDonagh et al., 2008). This behavior has been seen in fungi developed as biological control agents where nutrient limitation induced the expression of serine proteases that acted as virulence factors against invertebrates (St Leger et al., 1987; Segers et al., 1994). Up-regulation of secondary metabolite gene clusters including the gliotoxin gene cluster during infection of the murine lung may be important for the interaction with neutrophils since gliotoxin has been shown to inhibit phagocytosis and induce apoptosis of neutrophils (Comer et al., 2007).

INTERACTIONS WITH ANTIGEN-PRESENTING CELLS

The inflammatory response initiated by AM and neutrophils also attracts antigen-presenting cells (APC) from the blood and surrounding tissues through the activity of cytokines (Burns and Thrasher, 2004) and alarmins, such as defensins (Oppenheim et al., 2007). The primary APC are DCs and monocytes. The APC exist as a number of distinct subpopulations; monocyte subpopulations are CD14+CD16− and CD14+CD16+ (Serbina et al., 2009). In humans 90% of circulating monocytes have CD14+ CD16− markers, these can phagocytose conidia and inhibit germination but secrete small amounts of TNF-alpha. However, CD14+ CD16+ monocytes, the remaining 10%, do not inhibit germination but secrete large amounts of TNF-alpha (Serbina et al., 2009). Monocytes are precursor cells for specific populations of DC and macrophages (Osugi et al., 2002).

The major subgroups of DC include myeloid DC (mDC), plasmacytoid DC (pDC), and monocyte-derived DC (moDC). Both mDC and pDC occur in low numbers within the bloodstream which is why moDC are frequently used in experiments since they can be generated in large numbers. It has been postulated that moDC in the body may represent an auxiliary inflammatory pathway whereas mDC and pDC are the specialized surveillance subsets of DC (Osugi et al., 2002). APC link the innate and adaptive arms of the immune response since the antigens induce a pathogen-specific T helper cell response (Bozza et al., 2002).

DENDRITIC CELLS

Dendritic cells act as a surveillance system for the body; they can be found in the majority of tissues and the circulatory system in an immature state (Wuthrich et al., 2012). They act by sampling their microenvironment for potential microbial pathogens, uptake of a microbe leads to DC maturation and the presentation of microbial antigens in the lymph nodes activates specific T cells. These cells drive the adaptive immune system to produce a Th-1 or Th-2 type response; the inflammatory Th-1 response is associated with the clearance of fungal infection.

Whole genome analyses of the interaction between immature moDC, from healthy donors, and A. fumigatus have been conducted for both organisms. Analysis of the moDC transcriptome revealed that exposure to A. fumigatus induced a pro-inflammatory response and indicated the importance of Dectin-1 in fungal recognition. Among the genes that were up-regulated were CCL20, IL1B, IL8, and PTX-3. The expression of SYK and IL2RA were considered indicative of a role for DC in the activation of NK cells (Mezger et al., 2008). This expression pattern was confirmed by transcriptional analysis using a microarray of 120 immune-related genes which also showed the induction of a pro-inflammatory response of moDC to A. fumigatus (Morton et al., 2011).

Direct interaction between moDC and A. fumigatus leads to rapid phagocytosis of the fungal cells with phagocytosis of 48% of conidia after 2 h (Bozza et al., 2002) and 88% after 3 h (Morton et al., 2011). As mentioned with fungal survival in macrophages,
germ tubes of *A. fumigatus* emerged from moDC after 6 h, which coincided with an increase in moDC cell death. Whole genome transcriptome analysis of *A. fumigatus* interacting with immature DC (iDC) at four time points over 12 h identified 210 differentially regulated genes which showed significant up-regulation of genes involved in fermentation, drug transport, pathogenesis, and response to oxidative stress (Morton et al., 2011). It was interesting that catabolases were not up-regulated by the *A. fumi-
gatus* during interaction with moDC, this contrasts with the data from interactions with neutrophils. This occurs because DCs do not acidify the phagolysosome; this is achieved by tightly con-
trolling ROS generation and contributes to antigen preservation (Watts, 2006).

In contrast to the transcription response in murine lungs there was no differential regulation of the glutoxin gene cluster. How-
ever, Asp1 was up-regulated as germ tubes emerged after 9 h co-
incubation, which corresponded with an increase in CCL20 expression in the iDC. The allergen Asp1 is a fungal ribotoxin; a class of RNases that cleave RNA in ribosomes leading to disrupted protein synthesis and apoptosis in target cells (Lacadena et al., 2007). CCL20 expression had previously been linked to Asp1 in an experiment where moDC were co-incubated with puri-
fied Asp1 (Ok et al., 2009). CCL20 is associated with allergic, Th2, responses in conditions such as asthma (Reihman et al., 2003). As an allergen Asp1 interacts with moDC to induce an allergic response, characterized by CCL20 expression, which is seen in allergic bronchopulmonary aspergillosis (ABPA, Lacadena et al., 2007).

It has been reported that pDC were able to inhibit the growth of *A. fumigatus* hyphae through contact-independent cytotoxicity (Ramirez-Ortiz et al., 2011). This study indicated a close resemblance between the antifungal activities of pDC and NK cells (Bouzani et al., 2011).

### MONOCYTES

Monocytes originate from the bone marrow and, in response to certain immunological cues, such as IA, they migrate via the cir-
culation to the lungs, where they differentiate into DC (Cramer et al., 2011). In mice, Ly6C<sup>+</sup> monocytes express the chemokine receptor CCR2 which appears to influence their migration from bone marrow into the circulation (Serbina and Pamer, 2006). In the steady state, circulating CCR2<sup>+</sup>Ly6C<sup>+</sup> cells differentiate into CD11b<sup>+</sup> DCs while CCR2 Ly6C<sup>−</sup> cells differentiate into CD11b<sup>−</sup> DCs (Jakubzick et al., 2008). However, in experimental pulmonary *Aspergillus* infection CCR2<sup>+</sup>Ly6C<sup>+</sup> cells differentiate into CD11b<sup>+</sup> DCs. This results in phagocytosis of fungal conidia through recognition of β-1,3-glucan by Dectin-1. Although mono-
cytes can inhibit fungal growth it is controversial as to whether they can actually kill *Aspergillus*. Monocytes are also APCs, and through the PRRs TLR, pentraxin 3, and C type lectins, they can trigger adaptive T cell responses.

The transcriptional responses of healthy human donor mono-
cytes to *A. fumigatus* have been the subject of comparable studies. The response of donor monocytes to *A. fumigatus* conidia measured over 1800 genes differentially expressed when compared to unstimulated control monocytes (Cortez et al., 2006), while over 400 genes were expressed solely in response to *A. fumigatus* conidia compared to monocytes stimulated with lipopolysaccha-
ride (LPS, Rodland et al., 2008). In the study of Cortez et al. (2006), over 80% of monocytes had phagocytosed conidia which was comparable to the results for moDC (Morton et al., 2011). The expression of cytokine receptor encoding genes IL1 and IL10 progressively increased over the 6 h time course as did the expression of chemokine receptor genes CXCL2, CCL3, CCL4, and CCL20. Of genes that encode PRRs PTX-3 (long pentraxin 3) expression also increased over this time course. Interestingly, there was down-
regulation of TLR1 and no change in expression of either TLR2 or TLR4 (Cortez et al., 2006). The study from Rodland et al. (2008) differed in that a significant increase in expression of TLR5 was observed. This had not been identified previously as having a role in host defense against moulds; it was hypothesized that this may suggest a role for regulatory T cells in immunity to IA. By contrast, there was no up-regulation of other TLR gene expression; how-
ever they did observe up-regulation of IRF8 and IRAK1 expression. Interferon regulating factors are transcription factors involved in pro-inflammatory cytokine responses. Another potentially impor-
tant finding was production of anti-apoptotic gene responses in *A. fumigatus* infected monocytes. Further in vitro experiments by this group support a role for TLR5 in immune response to *A. fumigatus* (Rodland et al., 2011).

*Aspergillus fumigatus* exists as different morphotypes (conidi-
a and hyphae) during infection, the transcriptional response of donor monocytes to *A. fumigatus* hyphae has also been mea-
sured (Loeffler et al., 2009). After 3 h co-incubation 862 monocyte genes were differentially regulated in response to *A. fumi-
gatus* hyphae compared to 206 in response to resting conidia. A range of cytokines and chemokines had increased expression in response to *A. fumigatus* conidia and hyphae however there was no differ-
rential regulation of either TLR2 or TLR4. In parallel ELISA assays the authors noted increased production of IL-8, CCL2, and CCL20 which together with the finding of increased expression of plas-
minogen activating genes and PTX-3 might suggest a mechanism for pulmonary thrombosis and local tissue injury at the site of *Aspergillus* infection.

From the findings of these three transcriptome studies, innate immune molecules, pro-inflammatory cytokines, and immunomodulatory responses appear to be central to the host monocyte response to *Aspergillus* infection. It would be impor-
tant to translate these data to the clinical setting by experimentally studying the in vitro capacity of immunosuppressed patients' monocytes to respond to *Aspergillus* challenge

### INTERACTIONS WITH NK CELLS

Natural killer cells are innate immune lymphocytes that have been extensively studied due to their ability to kill virus infected and transformed cells without any prior immunization (Caligiuri, 2008). They have an immunoregulatory role, which is fulfilled via the release of several cytokines, predominantly interferon-γ (IFN-
γ) as well as chemokines and growth factors (Smyth et al., 2003). Upon infection or inflammation, NK cells migrate from the blood to the lungs, where they become activated (Calley, 2009). During infection by non-viral pathogens regulation of NK cell function is relatively indirect, resulting from signals delivered by accessory cells (Newman and Riley, 2007), but there is growing evidence...
of a direct interplay between NK cells and pathogenic microbes, including bacteria (Sorrier et al., 2006), parasites (Hansen et al., 2007), and yeast (Ma et al., 2004). The interaction between NK cells and A. fumigatus is a particularly interesting and relatively unexplored field.

The first demonstration of a role for NK cells in the host defense against IA was achieved in a neutropenic mouse model of IA. The early influx of NK cells into the lungs of mice with IA was linked to an increase in pulmonary CCL2, neutralization of CCL2 impaired the recruitment of NK cells and led to increased mortality (Morrison et al., 2003). A similar experimental model indicated that IFN-γ, produced in the lungs by NK cells, triggers antifungal mechanisms and mediates the protective impact of NK cells (Park et al., 2009). This indicated that NO, is considered the mediator of the cytokine action. In contrast, the activation of iNKT cells to secrete IFN-γ remains to be elucidated.

VACCINE AND THERAPEUTIC DEVELOPMENT

The strong evidence, provided by the studies mentioned in this review, for the ability of immune cells to control the growth of A. fumigatus in vitro has suggested the possibility of using innate immune cells as vaccines against IA. The ability of purified A. fumigatus antigens to modulate the immunity of DC (UK et al., 2009) and the capacity of Aspergillus-pulsed DC to drive a Th1 host immune response in mice (Bozza et al., 2003) have indicated the vaccination potential of DC (Roy and Klein, 2012). The transfer of NK cells to immunosuppressed patients to generate a protective response against IA is also possible. To date, existing reports show a protective effect of NK cell transfer to animal hosts with IA (Park et al., 2009). However, the promising evidence is counter-balanced by the limited number of studies, the potential side effects and the unknown characteristics of the candidate treatment group.

The in vitro interactions of monococytes and Aspergillus with the antifungal drugs voriconazole or lipid formulations of amphotericin B have been investigated. The results suggest that under the experimental conditions used these drugs can promote pro-inflammatory immune responses of monococytes to A. fumigatus hyphae (Simitopoulos et al., 2008, 2011), suggesting a possible role in clearing the fungus in vivo. The use of exogenous IFN-γ as an immunomodulatory adjunct to antifungal therapy has been found to be effective in individual renal transplant cases with A. fumigatus pulmonary infection (Armstrong-James et al., 2010). The likely mechanism is by IFN-γ immunotherapy enhancing the ability of pulmonary phagocytic cells to promote pro-inflammatory responses in Aspergillus infection which facilitates clearance of the fungus.

CONCLUSION

Studies of the interactions between A. fumigatus and immune cells have contributed greatly to the understanding of the host–pathogen interaction during aspergillosis (Figure 4). These have indicated that under in vitro conditions the fungus can survive interactions with macrophages and DC through its ability to adapt to the harsh environmental conditions within the host rather than a defined pathology reliant on specific virulence factors. In identifying the roles of lesser studied immune cells in defense against IA it has been possible to identify novel therapeutic strategies that may eventually ease the burden of IA.

ACKNOWLEDGMENTS

The authors would like to thank the European Science Foundation for funding the ESF Fuminomics consortium that enabled the collaboration for this article.

REFERENCES

Agranov, K., Yang, D. H., Ahrens, A. B., Vissa, A. I., Liu, Y., Sagar, E. A., et al. (2007). Macrophage migration inhibitory factor expression in ovary cancer. Am. J. Obstet. Gynecol. 196, 548.e341–e347.

Bouzani, V., Barry, I., Bozza, S., Kusmeyer, O., Paraccio, A., Biddis, M., et al. (2009). Surface hydrophobin prevents immune recognition of airborne fungal spores. Nature 460, 1117–1121.

Armstrong-James, D., Teo, I. A., Bhat, S., Petrova, M. A., Tsai, D., Dorling, A., et al. (2010). Exogenous interferon-gamma immunotherapy for invasive fungal infections in kidney transplant patients. Am. J. Transplant. 10, 1796–1805.

Belkacem, S., Murri, S., Paraccio, A., Favalli, F., Bozza, S., Montagnoli, C., et al. (2004). TLR4 governs neutrophil activity in aspergillosis. J. Immunol. 173, 7408–7415.

Bianchi, M., Nicosia, M. J., Slez, U., Urban, C. F., and Hochberg, J. (2011). Restoration of antifungal defense by neutrophil extracellular traps in human chronic granulomatous disease after gene therapy is calprotectin-dependent. J. Allergy Clin. Immunol. 127, 1246–1252.e1247.

Bennett, C. R., Cornish, E. J., Harmon, A. G., and Burnet, J. B. (2006). Early neutrophil recruitment and aggregation in the murine lung inhibit germination of Aspergillus fumigatus conidia. Infect. Immun. 74, 6528–6539.

Bozza, M., Elmaleh, H., and Leffler, J. (2012). Functional analysis is
Brown, G. D. (2006). Dectin-1: a signaling molecule in innate recognition of Aspergillus fumigatus. J. Infect. Dis. 201, 1023–1026. review article, a scientist's perspective.

Boehringer, M., Miehle, A., Ebel, F., Kurzin, O., Morton, C. O., et al. (2011). Human NK cell display important antifungal activity against Aspergillus fumigatus, which is directly mediated by INF-γ-gamma release. J. Immunol. 187, 1389–1396.

Bozza, S., Gattorno, S., Brach, A., Montagnoli, C., Gattorno, S., Bozza, S., Gaziano, R., Spreca, A., Bacci, Bouzani, M., Ok, M., McCormick, A., Cortez, K. J., Lyman, C. A., Kottilil, S., Kim, H. S., Reddix, B., Yang, J., et al. (2006). Functional genomics of innate host defense molecules in normal human monocytes in response to Aspergillus fumigatus. J. Immunol. 74, 2339–2346.

Braun, S., Rivers, A., and Hohl, T. M. (2011). Immune responses against Aspergillus fumigatus: what have we learned? Clin. Exp. Immunol. 154, 215–222.

Callery, F. J. (2009). Natural killer cells in infection and inflammation of the lung. J. Immunol. 183, 1661–1662.

De Beaux, P., Walsh, T. J., Donohue, J. P., Scoville, D. A., Edwards, J. E., Calabro, T., et al. (2006). Revised definitions of invasive fungal disease from the European Organization for Research and Treatment of Cancer/Fungus Infections Cooperative Group and the National Institute of Allergy and Infectious Diseases Mycoses Study Group (EORTC/MSG) Consensus Group. Clin. J. Oncol. Pract. 12, 1003–1013.

Falkon, F. J., Rivers, A. P., and Karchin, K. (2010). Inhibition of neutrophil function following exposure to the Aspergillus fumigatus toxin fumagillin. J. Med. Microbiol. 59, 623–635.

Hanssen, D. S., Berndt, N. J., Cie, Q. J., and Schefold, C. (2007). NK cell elicitation of innate immune responses to Aspergillus fumigatus in vitro and in infected lung tissue is dependent on NK cell-dependent activation of NK cells. J. Immunol. 178, 5779–5780.

Hansgen, M., Bohson, J., Krappmann, S., Braukle, A., and Ganz, M. (2011). Phagocyte responses towards Aspergillus fumigatus. Int. J. Mol. Med. 30, 495–500.

Hedrén, M., Geijer, P., Wahlbeck, M., and Långström, P. (2007). Glutamine from Aspergillus fumigatus affects phagocytes and the organization of the actin cytoskeleton by distinct unresolved pathways in human neutrophils. Microbes Infect. 9, 47–54.

Kornish, E. J., Hurgen, B. J., Mobic, J., Monneron, K., Burritt, L. N., Taylor, R. M., Jaro, S. N., et al. (2008). Reduced neutrophilic adhesion of dimethylphosphate oxidase-independent resistance to Aspergillus fumigatus in alveolar macrophages. J. Immunol. 180, 6845–6857.

Cortesi, K., Lyon, C. A., Kellner, S., Kim, H. S., Reddix, B., Yang, J., et al. (2006). Functional genomics of innate host defense molecules in normal human monocytes in response to Aspergillus fumigatus. J. Immunol. 74, 2339–2346.

Cramer, R. A., Rivera, A., and Hohl, T. M. (2011). Immune responses against Aspergillus fumigatus: what have we learned? Clin. Exp. Immunol. 154, 215–222.

Callery, F. J. (2009). Natural killer cells in infection and inflammation of the lung. J. Immunol. 183, 1661–1662.

De Beaux, P., Walsh, T. J., Donohue, J. P., Scoville, D. A., Edwards, J. E., Calabro, T., et al. (2006). Revised definitions of invasive fungal disease from the European Organization for Research and Treatment of Cancer/Fungus Infections Cooperative Group and the National Institute of Allergy and Infectious Diseases Mycoses Study Group (EORTC/MSG) Consensus Group. Clin. J. Oncol. Pract. 12, 1003–1013.

Falkon, F. J., Rivers, A. P., and Karchin, K. (2010). Inhibition of neutrophil function following exposure to the Aspergillus fumigatus toxin fumagillin. J. Med. Microbiol. 59, 623–635.

Hanssen, D. S., Berndt, N. J., Cie, Q. J., and Schefold, C. (2007). NK cell elicitation of innate immune responses to Aspergillus fumigatus in vitro and in infected lung tissue is dependent on NK cell-dependent activation of NK cells. J. Immunol. 178, 5779–5780.

Hansgen, M., Bohson, J., Krappmann, S., Braukle, A., and Ganz, M. (2011). Phagocyte responses towards Aspergillus fumigatus. Int. J. Mol. Med. 30, 495–500.

Hedrén, M., Geijer, P., Wahlbeck, M., and Långström, P. (2007). Glutamine from Aspergillus fumigatus affects phagocytes and the organization of the actin cytoskeleton by distinct unresolved pathways in human neutrophils. Microbes Infect. 9, 47–54.

Kornish, E. J., Hurgen, B. J., Mobic, J., Monneron, K., Burritt, L. N., Taylor, R. M., Jaro, S. N., et al. (2008). Reduced neutrophilic adhesion of dimethylphosphate oxidase-independent resistance to Aspergillus fumigatus in alveolar macrophages. J. Immunol. 180, 6845–6857.

Cortesi, K., Lyon, C. A., Kellner, S., Kim, H. S., Reddix, B., Yang, J., et al. (2006). Functional genomics of innate host defense molecules in normal human monocytes in response to Aspergillus fumigatus. J. Immunol. 74, 2339–2346.

Cramer, R. A., Rivera, A., and Hohl, T. M. (2011). Immune responses against Aspergillus fumigatus: what have we learned? Clin. Exp. Immunol. 154, 215–222.

Callery, F. J. (2009). Natural killer cells in infection and inflammation of the lung. J. Immunol. 183, 1661–1662.

De Beaux, P., Walsh, T. J., Donohue, J. P., Scoville, D. A., Edwards, J. E., Calabro, T., et al. (2006). Revised definitions of invasive fungal disease from the European Organization for Research and Treatment of Cancer/Fungus Infections Cooperative Group and the National Institute of Allergy and Infectious Diseases Mycoses Study Group (EORTC/MSG) Consensus Group. Clin. J. Oncol. Pract. 12, 1003–1013.

Falkon, F. J., Rivers, A. P., and Karchin, K. (2010). Inhibition of neutrophil function following exposure to the Aspergillus fumigatus toxin fumagillin. J. Med. Microbiol. 59, 623–635.

Hanssen, D. S., Berndt, N. J., Cie, Q. J., and Schefold, C. (2007). NK cell elicitation of innate immune responses to Aspergillus fumigatus in vitro and in infected lung tissue is dependent on NK cell-dependent activation of NK cells. J. Immunol. 178, 5779–5780.

Hansgen, M., Bohson, J., Krappmann, S., Braukle, A., and Ganz, M. (2011). Phagocyte responses towards Aspergillus fumigatus. Int. J. Mol. Med. 30, 495–500.

Hedrén, M., Geijer, P., Wahlbeck, M., and Långström, P. (2007). Glutamine from Aspergillus fumigatus affects phagocytes and the organization of the actin cytoskeleton by distinct unresolved pathways in human neutrophils. Microbes Infect. 9, 47–54.
Philipps, B., Ibrahim-Granet, O., Pre-voet, M. C., Gougeaud-Peñalo, M. A., Sanchez-Peiro, M., Van Der Maaten, A., et al. (2013). Killing of Aspergillus fumigatus by alveolar macrophages is modulated by reactive oxygen intermediates. Infect. Immun. 81, 5054–5062.

Ramirez-Oritz, G. Z., Lee, C. K., Wang, J. P., Koon, L., Spahr, C. A., and Leutzi, S. S. (2011). A non-redundant role for phosphatidylinositol diphosphate in host defense against the human fungal pathogen Aspergillus fumigatus. Cell Host Microbe 9, 413–424.

Rabin, J., Hsu, Y., Chen, L. C., Medz, B., and Gordon, T. (2003). Airway epithelial cells release MIP-1alpha/IL22 in response to cytokines and ambient particulate matter. Am J Respir Cell Mol Biol. 28, 648–654.

Rodland, E. K., Age-Wick, E., Halvorsen, B., Muller, F., and Fred, S. S. (2011). Toll like receptor 5 (TLR5) may be involved in the immunological responses to Aspergillus fumigatus in vitro. Med. Mycol. 49, 375–379.

Rodland, E. K., Mattingsdal, M., Olstad, O. K., Oswebo, R., Kierulf, P., Muller, F., et al. (2008). Expression of genes in normal human monocytes in response to Aspergillus fumigatus. Med. Mycol. 46, 347–356.

Roy, R. M., and Klein, B. S. (2012). Differential role of TLR-pathways in human monocytes during response to Aspergillus fumigatus conidia. J. Immunol. 189, 3278–3287.

Serbina, N. V., and Patzer, E. G. (2006). Monocyte emigration from bone marrow during bacterial infection requires signals mediated by chemokine receptor CCR2. Nat. Immunol. 7, 111–117.

Silva, M. T. (2011). Macrophage phagocytosis of neutrophils at inflammatory foci: a cooperative mechanism in the control of infection and infectious inflammation. J. Leukoc. Biol. 90, 675–683.

Simitsopoulou, M., Boon, L., Specht, C. A., and Latge, J. P. (2011). A non-redundant role for mammalian toll-like receptors in host defense against the human fungal pathogen Aspergillus fumigatus. FEMS Microbiol. Lett. 325, 230–234.

Smith, M. J., Osterry, E. K., Kelly, J. M., Westroud, J. A., Street, S. E., Yagit, H., et al. (2005). Activation of NK cell cytotoxicity. Mol. Immunol. 42, 303–310.

Sperti, R., Jolle, N., Albors, U., Hibi, H., and Omata, A. (2006). MyD88-dependent IFN-gamma production by NK cells is key for control of Legionella pneumophila infection. J. Immunol. 176, 6162–6171.

Steger, R., J., Cernacky, A. K., and Cooper, B., R. (1997). Characterization of cuticle-degrading protease produced by the entomopathogen Metarhizium anisopliae. Arch. Biochem. Biophys. 353, 221–232.

Sugui, J. A., Kim, H. S., Zarember, K. A., Hung, C. C., Gallin, J. I., Nierman, W. C., et al. (2008). Genes differentially expressed in conidia and hyphae of Aspergillus fumigatus upon exposure to human neutrophils. PLoS ONE 3, e2955. doi: 10.1371/journal.pone.0002955

Tettelin, J., Albrecht, D., Prick, M., Garbke, R., Aimananda, V., Clavero, C., et al. (2010). Proteome profiling and functional classification of intracellular proteins from conidia of the human-pathogenic mold Aspergillus fumigatus. J. Proteome Res. 9, 5427–5442.

Tiwari, A., Ainekamp, T., Dahae, H. M., Schmid, B., Piel, P. F., et al. (2011). Candidal dihydroxynaphthalene melanin of the human pathogenic fungus Aspergillus fumigatus interferes with the host endocytic pathway. Front. Microbiol. 2:96. doi: 10.3389/fmicb.2011.00096

Wollng, K., Brakhage, A. A., and Sailer, H. D. (2007). Apoptosis inhibition of alveolar macrophages upon interaction with conidia of Aspergillus fumigatus. FEMS Microbiol. Lett. 275, 230–236.

Watts, C. (2006). Phagosome neutrality in host defense. Cell. 125, 17–19.

Wehrle, M., Dasp, G. S. S., and Klein, B. (2012). Adaptive immunity to fungi. Annu. Rev. Immunol. 30, 115–146.

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Received: 27 July 2012; accepted: 15 November 2012; published online: 03 December 2012.

Copyright © 2012 Morton, Bosani, Leffler, and Rogers. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in other forums, provided the original authors and source are credited and subject to any copyright notice(s) concerning any third-party graphics etc.