A Holistic Robust Motion Control Framework for Autonomous Platooning

Hong Wang, Li-Ming Peng, Zichun Wei, Kai Yang, Xian-Xu ‘Frank’ Bai, Luo Jiang, and Ehsan Hashemi, Senior Member, IEEE

Abstract—Safety is the foremost concern for autonomous platooning. The vehicle-to-vehicle (V2V) communication delays and the sudden appearance of obstacles will trigger the safety of the intended functionality (SOTIF) issues for autonomous platooning. This research proposes a holistic robust motion controller framework (MCF) for an intelligent and connected vehicle platoon system. The MCF utilizes a hierarchical structure to resolve the longitudinal string stability and the lateral control problem under the complex driving environment and time-varying communication delays. Firstly, the H-infinity feedback controller is developed to ensure the robustness of the platoon under time-varying communication delay in the upper-level coordination layer (UCL). The output from UCL will be delivered to the lower-level motion-planning layer (LML) as reference signals. Secondly, the model predictive control (MPC) algorithm is implemented in the LML to achieve multi-objective control, which comprehensively considers the reference signals, the artificial potential field, and multiple vehicle dynamics constraints. Furthermore, three critical scenarios are co-simulated for case studies, including platooning under time-varying communication delay, merging, and obstacle avoidance scenarios. The simulation results indicate that, compared with single-structure MPC, the proposed MCF can offer a better suppression on position error propagation, and get improvements on maximum position error in the three scenarios by 19.2%, 59.8%, and 15.3%, respectively. Lastly, the practicability and effectiveness of the proposed MCF are verified via the hardware-in-the-loop experiment. The average conducting time of the proposed method on the Speedgoat real-time target machine is 1.1 milliseconds, which meets the real-time requirements.

Index Terms—Autonomous platooning, motion control, MPC, H-infinity controller.

I. INTRODUCTION

A. Motivation

The intelligent and connected vehicle (ICV) technique plays a critical role in the future intelligent transportation system (ITS). It provides effective solutions to deal with the existing traffic problems, such as traffic accidents and traffic jams [1], [2], [3]. One of the typical applications of the ICV technique is the autonomous platooning. Compared with the automation of a single vehicle, the platooning control of ICVs is currently applied more extensively on the transportation missions. These missions have the characteristics of high degrees of specialization, independent scenarios, and a narrow operational design domain (ODD), such as mining trucks, port transporters, and heavy-duty vehicles on the freeway [4], [5]. Platooning indicates that the vehicles should follow the velocity of the leading vehicle while keeping a limited inter-vehicle space to improve traffic efficiency and energy consumption [6]. However, the limited inter-vehicle spaces add pressure on the guarantee of safety for autonomous platooning [7]. Moreover, in terms of the implementation of autonomous platooning, it still suffers great risks from the insufficiency of functionality and intended functionality, since ICVs rely on the complex perception, control and communication systems with uncertainty to sense the environment and generate control commands with complicated disturbance [8].

Compared with the functional safety issues related to the malfunction of electrical/electronic (E/E) systems, the safety of the intended functionality (SOTIF) is defined in the standard ISO 21448 as the absence of unreasonable risks due to hazards that result from insufficiency of the intended functionality or reasonably foreseeable misuse [9]. According to the system theoretic process analysis (STPA) accomplished by the EU project ENSEMBLE [10], there are several types of SOTIF challenges for autonomous platooning such as the infrastructure problems, the misuses of human drivers, communication problems and external disturbance, etc. In particular, the communication and external disturbance challenges will jeopardize the SOTIF in longitudinal and lateral control, which is essential for autonomous platooning [11]. For instance, Fig. 1 depicts a critical scenario for autonomous platooning, where the platoon needs to avoid obstacle vehicles with the vehicle-to-vehicle...
(V2V) communication. The V2V communication delay and the sudden appearance of obstacles may cause collisions in autonomous platoon due to the functional insufficiencies of the longitudinal and lateral control. The main focus of this research is to design a controller framework that guarantees the safety of the ICV platoon in corresponding critical scenarios by collaborative longitudinal and lateral control.

B. Related Research

The longitudinal string stability of a platoon means that the perturbation of the leading vehicle should not be amplified while propagating along the string. Significant research efforts have been continuously devoted to maintaining longitudinal string stability for autonomous platooning. It was pointed out in [12] that the conventional adaptive cruise control with the predecessor following (PF) topology could not guarantee the string stability. The development of vehicle-to-everything (V2X) technique provides the possibility of sharing the state information among the vehicles [13], [14]. For instance, a parsimonious shooting heuristic algorithm is proposed with the help of V2X wireless communication, to optimize the platoon’s trajectory which guarantees the string stability with considerations of car-following safety [15]. However, the communication delay and packet dropouts occurring during the V2X process will jeopardize the string stability of the platoon and even cause vehicle collisions [16].

In the context of autonomous platooning, V2X communications play a crucial role in enabling the vehicle to collect information about its operational design domain, including the presence of other traffic participants, road conditions and weather conditions [17]. The communication delay for V2X devices can range from a few milliseconds to several hundred milliseconds, depending on the type of V2X technology being used and the specific operational scenario. For example, Dedicated Short-Range Communications (DSRC) can have communication delays in the range of a few tens of milliseconds [18], [19], [20], which is suitable for safety critical applications of platooning. On the other hand, cellular V2X (C-V2X) which uses LTE network infrastructure for communication, may have communication delays in the range of several hundred milliseconds, making it more applicable for non-critical applications [21], [22].

SOTIF aims to identify and mitigate risks that can arise from the system’s intended functionality, even if the system is functioning correctly [9]. It includes scenarios where the system’s output is not what is expected, but still within the range of normal operation [23]. In terms of communication delay existing in the V2X system of the autonomous platoon, the delayed information of surrounding traffic participants may still be reliable for the system’s output to be converged to an acceptable range of normal operation. However, it still carries potential hazards and risks. The influence of the communication delay to the robustness of vehicle platoons was analyzed and considered in many research [24], Zhou et al. proposed a decentralized robust controller to guarantee the string stability of an autonomous platoon, which utilizes super twisting second-order sliding mode disturbance observer to model the communication delay as disturbances [25]. An H-infinity controller based on the Lyapunov-Krasovskii approach was proposed for the string stability of the heterogeneous vehicle platoon in [26] to deal with the communication delay. Zheng et al. [27] proposed a distributed MPC based on unidirectional communication topology to ensure the string stability of heterogeneous platoon. The authors adopted the sum of each vehicle’s cost function as the Lyapunov candidate to theoretically verify its stability. A constant and homogeneous communication delay was considered in the existing studies. However, the communication delay tends to be heterogeneous and time-varying in practice due to the vehicle speed and communication density [18]. Therefore, it is more appealing to develop a controller for autonomous platoon that considers the heterogeneous and time-varying communication delay.

Besides, while the conventional single-structure robust controllers can maintain the longitudinal string stability in specific scenarios, they are still lack of the considerations of the obstacle avoidance and vehicle dynamics limitations. In fact, autonomous platooning is a multi-objective problem. When the driving safety of the platoon confronts complicated scenarios, it is inadequate to only maintain the longitudinal string stability [28]. The lateral control should be implemented while simultaneously considering the obstacles and vehicle dynamic limitations [29], which is not yet well addressed in the available research literature. For the automation of a single vehicle, the driving safety is guaranteed by the optimal motion planning. The common algorithms used for motion planning include the graph-based methods such as the A-star algorithm [30], the meta-heuristic optimization methods such as genetic algorithm and simulated annealing [31], and the artificial potential field (APF) method [32]. Optimization-based approaches are among the state-of-the-art approaches in the field of motion planning for autonomous vehicles [33]. Among these approaches, the MPC has been well studied and applied due to its ability to handle multiple constraints [34], [35], [36]. For example, the APF-based MPC controller was used to calculate the optimal trajectory with the multi-objective constraints in [37], comprehensively considering the obstacles.

While there has been considerable research on the longitudinal string stability of the autonomous platoon, research on the lateral motion planning of the platoon remains limited. Despite some initial studies in this field, for instance, an integrated longitudinal and lateral control system for autonomous platoon...
was proposed to conduct the lane-keeping and lane-changing maneuvers [38]. However, the maneuvers were passively determined by a finite state machine for the supervisor of the platoon and the movement of the platoon mainly relied on the pre-defined lane-changing trajectory. Similar combined longitudinal and lateral control approaches were proposed in [39] and [40] which mainly aimed to resolve the trajectory tracking issues on curvatures. However, other traffic participants were neglected in the previous research which enabled the ODD over-idealized. Thus, an effective solution to the motion planning problem for autonomous platooning still remains as a challenge in the case of platooning control. When the vehicles move simultaneously as a platoon, the motion planning will encounter issues, e.g. high occupation of lane space and low mobility. As the overtaking and merging scenarios occur frequently, the lane space requirement and the risk will both be high if the vehicles change the lane simultaneously. Therefore, the distributed controllers should be deployed, which also means that the lateral control of autonomous vehicles in the platoon should be independent while the longitudinal control is coordinated to guarantee the longitudinal string stability.

The above discussion demonstrates that the conventional single-structure control strategies are insufficient for the comprehensive requirements of platooning control. As a result, this article presents a motion controller framework to resolve aforementioned issues for autonomous platoon. To simplify the problem and focus on the goals, the following assumptions are made. 1) The investigated platoon only consists of homogeneous vehicles. 2) Only Predecessor-leader following communication made. 3) The time-varying delay is assumed to fluctuate between 50-150 ms. 4) Necessary perception information can be accurately measured and transmitted through V2X communication.

C. Contribution

In brief, the main contributions of this article are as follows:

i) An H-infinity feedback controller is designed to guarantee the longitudinal string stability of the autonomous platoon, subject to time-varying communication delay, time delay in propulsion, and dynamic fluctuation of leading vehicle. The time-varying communication delay, modeled as a system uncertainty, is more realistic than the constant and homogeneous delay used in the existing literature.

ii) The APF-based distributed MPC controllers are designed to achieve asynchronous motion planning and obstacle avoidance in critical scenarios, which fill in gaps of lateral control of autonomous platooning with considerations of other traffic participants.

iii) A holistic robust motion controller framework is proposed to achieve collaborative longitudinal and lateral control for autonomous platooning, which is limited investigated in existing literature yet. The string stability and lateral safety are balanced by comprehensively considering the reference signal from the H-infinity controller, the artificial potential field, and multiple vehicle dynamics constraints.

iv) The Hardware-in-the-loop experiment is conducted to verify the effectiveness and real-time capacity of the proposed framework.

D. Article Organization

The remaining of this article is organized as follows. In Section II, the H-infinity feedback controller is designed and analyzed. The APF-based distributed MPC controllers are also presented in this section. Furthermore, the holistic robust motion controller framework (MCF) is modeled and discussed. In Section III, the case studies are carried out, and the performance of the proposed MCF is analyzed with corresponding scenarios. Moreover, the comprehensive capacity of the proposed MCF and the promising improvements are discussed. The experimental verification of the proposed framework is given in Section IV. The conclusion and future work are demonstrated in Section V.
In (3), \(A_i, B_{ai}, B_{wi} \) denote the system matrix, control matrix and disturbance matrix of the \(i \)th vehicle in the platoon, respectively, which are given as:

\[
A_i = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & -1/\tau_i \end{bmatrix}, \quad B_{ai} = \begin{bmatrix} 0 & 0 & -1/\tau_i \end{bmatrix}^T, \\
B_{wi} = \begin{bmatrix} 0 & 0 & 1/\tau_i \\ 0 & 0 & 1 \end{bmatrix}
\]

and \(u_i \) and \(w_i = [a_0, a_0]^T \) are the control input and disturbance, respectively. The acceleration \(a_0 \) of the leading vehicle is regarded as a disturbance, since it is an external input drifting the platoon system away from the equilibrium position. \(\tau_i \) is the time delay in propulsion. The state space model of each vehicle in the platoon is consistent because the platoon is considered a homogeneous system.

To achieve string stability within an autonomous platoon, the linear feedback control law is utilized for each following vehicle, subject to the predecessor-leader following (PLF) topology. To account for the potential uncertainty introduced by time-varying communication delays within the PLF topology, the control gain \(u_i \) is designed in the following manner:

\[
u_i = \bar{K}_1 x_{Hi}(t - \lambda_i) + \bar{K}_2 x_{H(i-1)}(t - \lambda_i)
s.t. \lambda_i \in [0, \mu_1], \lambda_i < \mu_1 < 1
\]

where \(\bar{K}_1 \) and \(\bar{K}_2 \) denote the control gain matrix of the \(i \)th vehicle, \(x_{Hi}(t - \lambda_i) \) and \(x_{H(i-1)}(t - \lambda_i) \) refer to the system state vectors under the communication delay, and \(\lambda_i, \mu_1 \) represent the communication delay, upper bound of the communication delay and the upper bound of the derivative of the communication delay, respectively.

Considering the platoon state vector \(X = [x_{H1}, x_{H2}, ..., x_{Hn}]^T \), the platoon control input can be defined as follows:

\[
U = KX(t - \lambda_i)
\]

Moreover, the platoon state space model is constructed as follows:

\[
\dot{X}(t) = AX(t) + Bu_i XK(t - \lambda_i) + B_w W(t) \\
Z(t) = CX(t) \\
X(t) = \theta(t) \quad (t \in [-\infty, 0])
\]

where \(Z(t) = [\delta_1, \delta_2, ..., \delta_n]^T, C = I_n \otimes [1, 0, 0], A, B_u, B_w \) denote the platoon system matrix, control matrix and disturbance matrix, respectively. All these matrices are diagonal matrices, and omitted here for simplicity. The initial status of the platoon is \(\theta(t) \), \(Z(t) \) represents the output matrix, \(I_n \) refers to the \(n \)-dimensional identity matrix, and the symbol \(\otimes \) denotes the Kronecker product.

The robustness of a system to uncertainties and external disturbances is a foundational system-theoretic concept, and the H-infinity norm plays a substantial role in uncertainty modelling and robust controller synthesis [43]. For the platoon state space model shown in (6), the performance index \(J(W) \) is defined as:

\[
J(W) = \int_0^\infty \left[Z^T(t)Z(t) - \gamma^2 W^T(t)W(t) \right] dt
\]

where \(\gamma \) denotes the performance index of the H-infinity controller.

Theorem 1: For the given time-varying delay \((\lambda_\iota [0, h_1]) \), \(\lambda_\iota < \mu_1 < 1 \) and scalar \(\gamma > 0 \), the platoon system asymptotically stable and satisfies \(J(W) < 0 \), if there exist matrices \(P > 0, \tilde{Z} > 0, \tilde{Q} > 0 \) and any appropriately dimensioned matrices \(Y \) and \(I \) (identity matrix) such that the following inequality is satisfied:

\[
\begin{bmatrix}
A_1 & B_u Y + \tilde{Z} & B_w \tilde{P} A^T & \tilde{P} C^T \\
* & -\tilde{Q} - \frac{\tilde{Z}}{h_1} & 0 & (B_u Y)^T \\
* & * & -\gamma^2 I & B_w^T \\
* & * & * & -\frac{\tilde{P} \tilde{Z} + \tilde{Q}}{h_1} \\
* & * & * & -I
\end{bmatrix} < 0
\]

where \(A_1 = AP + \tilde{P} A^T + \frac{\tilde{Q}}{\tau_1} - \tilde{Z} \).

Proof: Based on the Lyapunov stability theorem, the Lyapunov-Krasovskii functional is defined as

\[
V(X_i) = X^T(t)PX(t) + \frac{1}{1 - \mu_1} \int_{t-\lambda_1}^t X^T(s)Q_1 X(s)ds \\
+ \int_{t-h_1}^t (s + (h_1 - t)) X^T(s)Z_1 X(s)ds
\]

where \(P, Q_1 \) and \(Z_1 \) are positive definite matrices to be found. Furthermore, the H-infinity controller can fulfill the desired performance index, if it satisfies the following condition:

\[
\frac{\|Z(t)\|_\infty}{\|W(t)\|_\infty} < \gamma
\]

Using linear transformation and Schur Complementary Lemma, the condition given in (10) is transformed as follows:

\[
Z^T(t)Z(t) - \gamma^2 W^T(t)W(t) < \varepsilon^T \Phi_1 \varepsilon
\]

where

\[
\Phi_1 = \begin{bmatrix}
A_2 & PB_u K + \frac{Z_1}{h_1} & PB_w A^T & C^T \\
* & -Q_1 - \frac{Z_1}{h_1} & 0 & (B_u K)^T \\
* & * & -\gamma^2 I & B_w^T \\
* & * & * & -\frac{Z_1}{h_1} \\
* & * & * & -I
\end{bmatrix}
\]

The inequality given in (11) can be satisfied when \(\Phi_1 < 0 \). The \(\text{diag}(P, P, I, I, I) \) is used to multiply on the both sides of \(\Phi_1 \), and let \(P = P^{-1}, Y = K P^{-1}, \tilde{Z} = P^{-1} Z_1 P^{-1} \) and \(\tilde{Q} = P^{-1} Q_1 P^{-1} \). Subsequently, the necessary and sufficient condition given in (8) can be formulated, and thus Theorem 1 is proved.

The matrix inequalities cannot be computed directly due to the nonlinear elements in (8). The transformation algorithm in [44] is used to transform the original non-linear matrices inequality to non-linear optimization problem constrained by linear matrix
inequalities. The non-linear element in (8) is replaced by \(\bar{S} = \bar{P} \bar{Z}^{-1} \bar{P} \) to get \(\Phi_2 \). The non-linear optimization problem can be represented as follows:

\[
\begin{align*}
\min & \quad trace \left\{ \bar{S} \bar{T} + \bar{P} \bar{J} + \bar{Z} \bar{R} \right\} \\
\text{s.t.} & \quad \Phi_2 > 0; \quad \bar{P} > 0; \quad \bar{Q} > 0; \quad \bar{Z} > 0 \\
\end{align*}
\]

\[
\bar{T} \quad \bar{J} \quad \geq 0 \quad \bar{S} \quad I \quad \geq 0 \\
\bar{P} \quad \bar{I} \quad \bar{Z} \quad \bar{R} \quad \geq 0
\]

(12)

where \(\bar{T} = \bar{S}^{-1}, \bar{J} = \bar{P}^{-1}, \bar{R} = \bar{Z}^{-1} \).

The non-linear optimization problem (12) can be solved to obtain the optimized solution of \(\bar{P}, \bar{Y}, \bar{Q}, \bar{Z} \) via the Cone Complementarity Linearization method in [45]. Furthermore, the control gain \(\bar{K} = Y \bar{P} \) can be computed.

Remark 1: The Cone Complementarity Linearization and non-linear optimization are implemented via MATLAB and MOSEK toolbox. Since that the scale of (8) increases when the number of following vehicle increases, the Lyapunov-Razumikhin functional is a better method than the Lyapunov-Krasovskii functional in resolving the control problem of large-scale networks, which is also used when the system delay is unknown or rapidly varying [46]. To enhance the scalability of the proposed method, we will study the stability of autonomous platoon based on the Razumikhin theorem in the future work. Furthermore, the increasing complexity of Lyapunov functional candidate tends to decrease the conservativeness of the system stability conditions at the expense of increased computational complexity.

Lemma 1: Theoretically let \(\bar{\xi} = F(t, \xi) \):

(i) The stable equilibrium point \(F(t_0, 0) = 0 \) is asymptotically stable if for each \(\epsilon > 0 \), there is \(\eta = \eta(\epsilon, t_0) > 0 \) such that \(\| \bar{\xi}(t_0) \| < \eta \Rightarrow \| \bar{\xi}(t) \| < \epsilon, \quad \forall t \geq t_0 > 0; \) and there is \(c = c(t_0) > 0 \) such that \(\lim_{t \to \infty} \bar{\xi}(t) = 0 \), for all \(\| \bar{\xi}(t_0) \| < \epsilon \).

(ii) The stable equilibrium point \(F(t_0, 0) = 0 \) is uniformly asymptotically stable if for each \(\epsilon > 0 \), there is \(\eta = \eta(\epsilon) > 0 \), which is independent of \(t_0 \) such that \(\| \bar{\xi}(t_0) \| < \eta \Rightarrow \| \bar{\xi}(t) \| < \epsilon, \quad \forall t \geq t_0 > 0; \) and there is \(c > 0 \), which is also independent of \(t_0 \), such that \(\lim_{t \to \infty} \bar{\xi}(t) = 0 \), for all \(\| \bar{\xi}(t_0) \| < \epsilon \), uniformly in \(t_0 \); that is, for each \(\epsilon > 0 \), there is \(t(\epsilon) > 0 \) such that \(\| \bar{\xi}(t) \| < \epsilon, \quad \forall t \geq t_0 + t(\epsilon), \forall \| \bar{\xi}(t_0) \| < \epsilon \).

B. Model Predictive Controller Design

For model simplification and computational efficiency, the 3-DOF kinematic bicycle dynamic model in [47] will be utilized in the process of MPC controller design for each vehicle \(i \) in the platoon. The bicycle model not only considers the longitudinal and lateral motion of the vehicle, but also takes into account the yaw motion, tire slip angles and steering angle which will benefit the accurate control of the vehicle, especially on lane-changing maneuvers. For brevity, the subscripts \(i \) are omitted from the dynamic model. The vehicle model with longitudinal, lateral and yaw dynamics is governed by the following equations:

\[
m(\ddot{u} - vr) = F_{xy}
\]

where \(m \) and \(I_z \) are the vehicle’s mass and the moment of inertia, respectively, and \(l_y \) and \(l_x \) represent the distance from the vehicle’s CG (center of gravity) to the front and rear axles, respectively. The vehicle’s longitudinal and lateral velocities are denote by \(\ddot{u} \) and \(v \), respectively, \(r \) is the vehicle yaw rate, \(F_{xy} \) is the total longitudinal force of tires, and \(F_{xy} \) and \(F_{xy} \) are the total lateral forces of the front and rear tires, respectively.

Besides, the vehicle’s motion with respect to global coordinates is given by:

\[
\dot{X} = \dot{u}\cos \varphi - v \sin \varphi, \quad \dot{Y} = \dot{u} \sin \varphi + v \cos \varphi
\]

where \(\varphi \) denotes the vehicle heading angle, \(X \) and \(Y \) are the vehicle longitudinal and lateral positions with respect to the global coordinate, respectively.

For front-wheel-steering system, the linear tire model is implemented, and the vehicle’s lateral force can be defined as:

\[
F_{yf} = -C_{\alpha_f} \alpha_f = C_{\alpha_f} \left(\delta - \frac{v + l_f r}{\bar{u}} \right)
\]

\[
F_{yr} = -C_{\alpha_r} \alpha_r = C_{\alpha_r} \left(-\frac{v - l_r r}{\bar{u}} \right)
\]

where \(C_{\alpha_f} \) and \(C_{\alpha_r} \) denote the cornering stiffness of the front and rear tires, respectively, \(\alpha_f \) and \(\alpha_r \) refer to slip angle of the front and rear tires, respectively, and \(\delta \) denotes the steering angle.

Subsequently, the state space model of a single vehicle is defined as:

\[
x(t + k + 1) = A_M x(t + k) + B_M u_c(t + k)
\]

\[
y(t + k) = C_M x(t + k)
\]

where the subscript \(t \) denotes the current timestamp, \(k \) is the prediction step, \(x = [\dot{u} \dot{v} \dot{\varphi} X Y]^T, \quad u_c = [F_{xy}, \delta]^T, \quad y = [Y, \bar{u}]^T, \quad A_M, B_M, C_M \) denote the platoon system matrix, control matrix and output matrix, respectively. The desired outputs \(Y_{des} \) and \(\bar{u}_{des} \) are received from the global planning module of the platoon (assumed to be known) and UCL, respectively.

\[
y_{des} = [Y_{des}, \bar{u}_{des}]^T
\]

Besides, the actuator capacities of the vehicle are processed as

\[
|\delta| \leq \delta_{max}, \quad |F_{xy}| \leq F_{xy_{max}}
\]

where \(\delta_{max} \) and \(F_{xy_{max}} \) denote the maximum steering angle and the maximum longitudinal force, respectively.

There are three types of obstacles that should be avoided on traffic roads, including non-crossable obstacles such as obstacle vehicles or pedestrians, crossable bumps, and road boundaries [47].

For brevity, the functions of crossable obstacle and road boundaries are not shown here, which can be found in [47]. The potential field of non-crossable obstacles can be expressed as a function of safety distance \(s [48] \), which is denoted as follows:

\[
U_{NC}(X, Y) = \frac{a \alpha_{\theta}}{s^b} = \frac{a}{s} \left(\frac{\alpha_{\theta} X}{\sqrt{\frac{\partial X}{\partial Y}^2 + 1}} \right)^b
\]
where \(a \) and \(b \) are the density and shape parameters of the non-crossable potential field, respectively, \(dX \) and \(dY \) are the longitudinal and lateral distances between the ego vehicle and the obstacle vehicle, respectively. The safety distance \(s \) is normalized by the safe longitudinal \(X_s \) and lateral distance \(Y_s \) from obstacle, which are defined as:

\[
s = \left(\frac{dX}{X_s} \cos \theta + \frac{dY}{Y_s} \sin \theta \right)^2 + \left(-\frac{dX}{X_s} \sin \theta + \frac{dY}{Y_s} \cos \theta \right)^2 \right)^{1/2}
\]

\[
X_s = X_0 + \bar{u}T + \frac{\Delta v_o^2}{2a_n}
\]

\[
Y_s = Y_0 + (\bar{u} \sin \theta + \bar{u}_o \sin \theta)T + \frac{\Delta v_o^2}{2a_n}
\]

where \(X_0 \) and \(Y_0 \) are the minimum longitudinal and lateral distances, respectively, \(T \) is the safe time gap, \(\bar{u} \) and \(\bar{u}_o \) are the longitudinal velocities of the ego and obstacle vehicles, respectively, \(\theta \) is the heading angle between the ego and obstacle vehicles, \(\bar{o} \) is the heading angle between \(s \) and \(dX \), and \(\Delta v_o \) and \(\Delta v_o \) are the longitudinal and lateral approaching velocities, respectively. \(a_n \) is the comfortable acceleration. For brevity, the safe distance \(s \) is given under the condition of non-contact from [37], where more details can be found. And it is assumed to be a constant acceleration model in the horizon of MPC.

Hence, the optimization problem can be expressed as follows:

\[
\min_{u_c, \bar{x}} \sum_{k=1}^{N_p} \| y(t + k, t) - y_{des}(t + k, t) \|^2_T + \| e_k \|^2_H
\]

\[
+ \| u_c(t + k + 1, t) - u_c(t + k - 2, t) \|^2_R
\]

\[
+ \| u_c(t + k + 1, t) \|^2_N + \| \bar{U} \|^2_C(t + k, t) \| Q_{obs} \|
\]

s.t. \((k = 1, \ldots, N_p)\)

\[
x(t + k + 1) = A_M x(t + k) + B_M u_c(t + k)
\]

\[
y(t + k) = C_M x(t + k)
\]

\[
u_{c_{\text{min}}}(t + k - 1) \leq u_c(t + k - 1) \leq u_{c_{\text{max}}}(t + k - 1)
\]

\[
\Delta u_{c_{\text{min}}}(t + k - 1) \leq \Delta u_c(t + k - 1) \leq \Delta u_{c_{\text{max}}}(t + k - 1)
\]

\[
u_c(t + k) = u_c(t + k - 1), \forall k \geq N_c
\]

where \(N_p \) and \(N_c \) are the prediction and control horizons, respectively, \(e_k \) is the vector of slack variables at steps ahead of the current time, \(x(t + k) \) represents the predicted state values of the system, \(y(t + k) \) denotes the predicted outputs of the system over the prediction horizon, \(u_{c_{\text{min}}} \) and \(u_{c_{\text{max}}} \) are the lower and upper bounds of the actuator, respectively, and \(\Delta u_{c_{\text{min}}} \) and \(\Delta u_{c_{\text{max}}} \) are the variation ranges of control variables at each time. In the cost function shown in (21), matrices \(T, H, R, S \) and \(Q_{obs} \) are the weight matrices corresponding to the tracking of the desired output, slack variables, the variation of the control input, the control input, and the APF, respectively.

Due to the non-linearity and non-convexity of APF, it needs to be transformed to corresponding quadratic convex optimization problem, as shown in [47], [49]. After the convex process, the optimal control problem is a convex quadratic optimization problem. It is similar to a corresponding nonlinear problem solved by Sequential Quadratic Programming (SQP) in one sequence. Based on the upper bound method from [50], the closer the problem’s initial value is to the minimum, which is equivalent to the anticipated vehicle point being closer to the vehicle position at the minimum, the smaller the optimization error. The performance of this solver will be presented in the case studies.

C. Framework Design

Fig. 2 depicts the overall structure of the holistic robust motion controller framework. In this article, the MCF divides the platooning control into upper-level coordination layer (UCL) and lower-level motion-planning layer (LML) to solve the comprehensive platooning control problem. Due to complex individual movements of vehicles in autonomous platoon, the control of autonomous platoon’s longitudinal string stability should be considered from a systematic perspective. As depicted in Fig. 2, the proposed H-infinity feedback controller is implemented in the UCL to achieves the longitudinal coordination and robustness of the platoon from a systematic perspective. On the other hand, the distributed controllers should be deployed to ensure functional independence of lateral control for the flexibility and safety of the platoon system. The proposed APF-based MPC is implemented in the LML, which guarantees the independence of the lateral control. Additionally, it achieves multi-objective control based on the reference signal from the UCL, multiple constraints of vehicle dynamics and the APF.

Assume that the platoon consists of \(i + 1 \) vehicles in total, including one leading vehicle and \(i \) following vehicles. Under the PLF communication topology, the following vehicles receive both the state information of the leading vehicle and its preceding vehicle. In addition, each vehicle within the platoon sends its vehicle state information to the controller framework, i.e., \(\mathbf{x}_i = \{ \bar{o}_i, v_i, r_i, \varphi_i, X_i, Y_i \} \) and obstacle vehicle information is perceived i.e., \(\mathbf{V}_{obs} = \{ X_{s,j}, Y_{s,j}, v_{z,s,j}, v_{y,s,j} \} \). Then, the upper-level controller calculates the reference speed for each vehicle \(i \). Meanwhile, the lower-level controller optimizes the final control actions with considerations of the longitudinal string stability, the artificial field and multiple vehicle dynamics constraints, and finally send them to the vehicle \(i \). With the UCL and LML connected, the proposed MCF enhances system robustness and achieves a favorable trade-off between longitudinal string stability and lateral safety under the help of robust control and multi-objective rolling optimization. When the autonomous platoon is proceeding without encountering obstacles, the proposed MCF mainly conducts the commands from H infinity controller, which is consistent with Theorem 1 so that it can maintain string stability of the system. When there are obstacles vehicles intruding, the proposed MCF can conduct obstacle avoidance based on APF to guarantee the safety of vehicles in the platoon. Moreover, a hierarchical structure achieves a more comprehensive performance without complicating the controller synthesis compared with a consensus method. Besides, it ensures the scalability of the algorithm for other safety-related issues. For instance, the UCL of the
proposed MCF can be modified with other specialized robust controllers.

For simplicity, the platoon constructed for H-infinity controller design consists of homogeneous vehicles. It is assumed that H-infinity controller is designed offline according to the vehicle number and parameter variation of the platoon. Subsequently, the corresponding feedback control gains are stored in distributed storage devices of each vehicle in the platoon, which can be searched online and obtained by each vehicle in the platoon when the platoon is initially organized. Overall, this study focuses on the motion planning of the autonomous platoon. Thus, the perception and global planning modules are assumed to be functioning properly and the data processed by these two modules are accurate and ready to use.

Besides, the LML tends to choose aggressive maneuvers in order to follow the reference signal delivered from the UCL, while the platoon is avoiding the obstacles. Thus, for a smoother and safer longitudinal and lateral collaborative controller performance, an adaptive control algorithm for adjusting the control weight of the reference signal is designed based on the APF value. The algorithm enables the control weight of the reference signal to be reduced while following the obstacle avoidance procedure. The weight matrix \(T \) includes two parts, i.e., \(T = [Q_Y, Q_{ref}] \), where \(Q_Y \) and \(Q_{ref} \) are weight parameters for \(\bar{u}_{des} \) and \(\bar{u}_{des} \), respectively. To achieve the goal aforementioned, the \(Q_{ref} \) is designed as follows:

\[
Q_{ref} = Q_0 \left(\frac{1}{\sigma_0} + \sum_{j=1}^{m} \frac{1}{\sigma_j + U_{NC, j}} \right)
\]

where \(Q_{ref}, Q_0, \sigma_j \) represent the control weight of reference signal, the control weight of reference signal while proceeding the regular platooning, and the adjustment parameter of the \(j \)th obstacle, respectively. The pseudocode of the working procedure for the proposed MCF is demonstrated in Table I.

III. CASE STUDIES

In this section, the functionality of the proposed MCF is verified by designing and analyzing three critical scenarios. The implementation of the scenarios is based on the co-simulation of MATLAB/Simulink and TruckSim. The transportation truck is modeled in TruckSim with great fidelity. Table II shows part of the simulation parameters.

A. Platooning Scenario Under Time-Varying Communication Delay

In this scenario, the string stability of platoon utilizing the proposed MCF under time-varying delay is demonstrated. As depicted in Fig. 3, the platoon consists of four commercial vehicles, and the inter-vehicle spacing is set to 20 m. The initial longitudinal velocity of the vehicles in the platoon is 20 m/s, and the leading vehicle will accelerate from 20 m/s to 22 m/s with an overshoot, as in [27]. The time-varying communication delay is bounded between 50-150 ms and its derivative is less than one, as shown in Fig. 4. The time-varying communication delays in different channels are given with different random seeds to achieve variation.
TABLE I
PSEUDOCODE OF THE WORKING PROCEDURE FOR THE HOLISTIC ROBUST MOTION CONTROLLER FRAMEWORK

Algorithm 1 Pseudocode of the working procedure
1: Input:
2: The number of vehicles in the platoon N, desired distance between each vehicle D_{v};
3: The state of obstacle vehicle: V_{obstr};
4: The state of vehicles in the platoon: x_{pl};
5: Output: The longitudinal force $F_{x,i}$ and the steering angle $\delta_{f,i}$;
6: Initialization:
7: Search for the H-infinity feedback control gain K of UCL;
8: Set the weight matrices $T, Q_{\text{ref},i}, S, H, R$ of LMP;
9: While platoon is proceeding:
10: Receive the state of obstacle vehicles: $V_{\text{obstr}} = \{X_{x,j}, Y_{x,j}, v_{x,j}, \psi_{x,j}, i\}_{j=1:M}$ # M is the number of obstacle vehicles;
11: Receive the state of vehicles in the platoon: $x_{\text{pl}} = \{x_{i}, v_{i}, \psi_{i}, X_{i}, Y_{i}\}_{i=1:N}$;
12: UCL calculates the reference velocity for each vehicle i in the platoon based on equation (4): $V_{\text{ref},i}$;
13: LML calculates the APF value for each vehicle j: $U_{\text{MCF},j}$;
14: LML calculates the adaptive weight $Q_{\text{ref},j}$ for each vehicle i to update T;
15: For $i = 1 : N$ do:
16: $J_i = 0$ # The cost of LML for each vehicle i in the platoon;
17: For $k = 1 : N_{p}$ do: # N_p is the prediction horizon in LML;
18: Predict the states of obstacle vehicles and ego vehicle to obtain $U_{\text{MCF}}(t+k), y_i(t+k), y_{\text{ref}}(t+k), u_{\text{ref}}(t+k)$;
19: # Sum the loss at each prediction step:
20: $J_{i} = J_{i} + \|y_{i}(t+k, t) - y_{\text{ref}}(t+k, t)\|^2_T + \|U_{\text{MCF}}(t+k, t) - u_{\text{ref}}(t+k, t)\|^2_R + \|v_{i}(t+k, t) - v_{\text{ref}}(t+k, t)\|^2_R + \|\psi_{i}(t+k, t) - \psi_{\text{ref}}(t+k, t)\|^2_R$;
21: End
22: Minimize J_i and output the control states: the longitudinal force $F_{x,i}$ and the steering angle $\delta_{f,i}$ to control the vehicle i.
23: End

TABLE II
VEHICLE AND SIMULATION PARAMETERS USED IN CASE STUDIES

Parameters	Value	Parameters	Value
m	5760 kg	N_v	300
l_f	1.11 m	$Q_{\text{ref},i}$	375
l_s	3.89 m	R	100
I_Z	34802.6 kg m²	R_1	2.156
C_{α_f}	259752 N/rad	R_2	0.306
C_{α_r}	260000 N/rad	N_p	25
h_1	250 ms	σ_0	2
b	1.23	σ_j	4

Fig. 4. The time-varying delay in V2V communication.

Fig. 5. Position error: (a) without delay and (b) with time-varying delay.

The platoon position error without delay and with delay are shown in Fig. 5(a) and (b), respectively. As indicated, the proposed MCF is eligible to maintain the platoon longitudinal string stability with and without time-varying communication delay. The position error converges to the equilibria after $t_0 = 6$ s, thus eventually enables the position error to converge to the asymptotical stability, which is consistent with Theorem 1. Furthermore, the convergence of position error is uniform, and its deviation is independent of t_0. It is complied with the definition of uniformly asymptotically stable in Lemma 1.

As shown in the Fig. 5(a), when the platoon proceeds without the communication delay, the position error of each vehicle in the platoon is less than 1 m and converges to 0 after 6 s. Fig. 5(b) shows that when the platoon proceeds under the time-varying communication delay, there is a slight position error deviation after 4 s between the leading vehicle and each following vehicle, because the transmitted vehicular states of the leading vehicle is delayed [51]. However, the position error between each following vehicle can be controlled effectively and converges to 0. Fig. 6(a) and (b) show the velocity of vehicles in the platoon without and with the time-varying delay, respectively. As shown in Fig. 6, when overshoots occur between 2 s and 4 s, the proposed MCF enables the following vehicles to track the velocity of the leading vehicle with or without the communication delay and converge to the uniform asymptotic stability after 6 s.

B. Merging Scenario

In this scenario, an obstacle vehicle on the ramp aggressively merges into the platoon cruising lane, and the platoon is cut in by the sudden-appearing obstacle, as depicted in Fig. 7. Specifically, this scenario consists of four commercial vehicles within the platoon and an obstacle vehicle. And the obstacle
vehicle on the ramp merges into the first lane with a velocity of 15 m/s. Under the time-varying communication delay, the platoon is initialized at a velocity of 20 m/s and an inter-vehicle space of 50 m on the first lane.

Fig. 8(a) shows the overall movement of the platoon with the initial and final states. As it is depicted, the obstacle vehicle merges into the platoon cruising lane from the ramp on the right side and cut into the platoon after the leader vehicle. Fig. 8(b) illustrates that starting from 1.6 s, the following vehicle 1 is the first vehicle that encounters the obstacle vehicle. It starts to overtake the obstacle vehicle due to the slower velocity of the obstacle vehicle. In Fig. 8(c) and (d), the following vehicle 2 and 3 encounters the obstacle vehicle at 11.5 s and 21.8 s correspondingly, and similar overtaking maneuvers can be observed. After encountering the obstacle vehicle, the remaining following vehicles in the platoon conduct the obstacle avoidance motion planning to catch up with the preceding vehicles. Eventually, as it is shown in Fig. 8(a), the platoon realizes the safety operations under the merging scenario.

The position error is shown in Fig. 9. Under the time-varying communication delay, a position error deviation exists between each following vehicle and the leading vehicle, as shown in \bar{s}_1. Moreover, due to the obstacle avoidance, the position error fluctuates but finally converges to uniform asymptotic stability after 30s. The velocity diagram shown in Fig. 10 demonstrates that the velocity converge to the uniform asymptotic stability after each vehicle in the platoon accomplishes the obstacle avoidance.
FIG. 11. Obstacle avoidance scenario with critical blocking moment under time-varying communication delay.

FIG. 12. Movement of the platoon in obstacle avoidance scenario. (a) The initial and final positions of the platoon and obstacles. (b) The platoon encounters the obstacles at $t = 9.5\, s$. (c) The obstacles form a temporary blocking on the road at $t = 49\, s$. (d) The overtaking maneuver of the following vehicle 2.

C. Obstacle Avoidance Scenario

The following section presents a critical scenario where the platoon encounters a temporary roadblock caused by obstacle vehicles, which has been developed for the purpose of validation. Specifically, this scenario consists of four commercial vehicles within the platoon and two obstacle vehicles. The communication delay is bounded between 50–150 ms. Under the time-varying delay, the platoon is initialized at a velocity of 18 m/s and an inter-vehicle space of 50 m on the first lane. The first obstacle vehicle is initialized with a velocity of 15 m/s ahead of the platoon on the first lane and the second obstacle vehicle is initialized with a velocity of 17 m/s behind the platoon on the second lane. When part of the platoon has overtaken the first obstacle vehicle, the second obstacle vehicle will appear in parallel with the first obstacle vehicle which will form a temporary blocking on both the first lane and second lane for a while, as shown in Fig. 11.

The platoon movement diagram is shown in Fig. 12. The leading vehicle of the platoon firstly encounters obstacle vehicle 1 on the first lane at $t = 9.5\, s$ and then conducts the overtaking in Fig. 12(b). Additionally, when vehicles in the platoon encounter obstacle vehicle 1, they conduct obstacle avoidance asynchronously to reduce the lane space requirements and risks. As it is depicted in Fig. 12(c), the obstacle vehicles temporarily block the road at 49 s which challenges the motion planning of following vehicle 2. Due to the blocking, it needs to balance the trade-off between driving safety and string stability of the platoon, which makes its pass less moderate than the others in Fig. 12(d). Eventually, as it can be interpreted from the final positions in Fig. 12(a), all the vehicles within the platoon safely carry out lane changing and overtaking with the proposed MCF.

Fig. 13 depicts the position error. It can be noted that the position error fluctuates during obstacle avoidance but eventually converges to uniform asymptotic stability. Due to the existence of communication delay, there is a position error deviation between each following vehicles and the leading vehicle. The velocity diagram of the platoon is shown in Fig. 14, and the control commands are shown in Fig. 15. When each vehicle in the platoon encounters the obstacle vehicle 1, it first decelerates to keep safe distance, and then accelerates to change the lane. During the blocking, there is a fluctuation of the velocity of following vehicle 2. The variation of Q_{ref} is shown in Fig. 16, which achieves a smoother and safer longitudinal and lateral collaborative controller performance. Due to the increase in the APF value, the control weight Q_{ref} of the reference signal generated from the UCL for following vehicle 2 will decrease. Hence, the following vehicle 2 will be controlled mainly based on the safety considerations and executing the obstacle avoidance. As the velocity of obstacle vehicle 2 is higher than that of obstacle vehicle 1, the following vehicle 2 accelerates to change to the second lane, then decelerates to follow obstacle vehicle 2. It eventually accelerates to catch up with the preceding vehicles.
D. Comparison

To demonstrate advantages of the proposed design over the existing ones, Table III compares the performance of the proposed MCF and the robust distributed model predictive controllers (DMPC) from [27] in the same platooning scenario. $\|s_i\|$ denotes the ∞-norm of the position error between the ith and the $(i-1)$th vehicles. As shown in Table III, the position error decreases from s_1 to s_3 at a faster rate along the string with the proposed MCF compared with the robust DMPC (PF or PLF). It indicates that the proposed MCF can offer a better suppression of the disturbance propagation. The maximum position error of the proposed MCF is higher than those of the robust DMPC simulated with passenger vehicle models, due to parameter difference between commercial and passenger vehicles, such as the vehicle mass. However, the maximum position error is less than 1 m with both the proposed MCF and the robust DMPC. It demonstrates the robustness of the autonomous platoon using the proposed MCF against the leader disturbance.

To the best of our knowledge, the lateral control for autonomous platoon in critical scenarios has not been explored in literature yet. Therefore, the APF-based MPC is utilized to develop the single-structure MPC for autonomous platoon in further comparison. While the single-structure MPC doesn’t consider the robustness of the autonomous platoon against time-varying communication delay, it can achieve both the longitudinal following and lateral control under a predecessor-leader following topology. For various scenarios under time-varying communication delay, the performance comparison of the holistic MCF and single-structure MPC is given in Fig. 17. In platooning scenario, the holistic MCF can effectively suppress the position error from s_1 to s_3 under the velocity fluctuation of the leading vehicle. Specifically, it achieves a 19.2% improvement in the maximum position error $\max\{\bar{s}_i\}$ compared with single-structure MPC, as shown in Fig. 17. In obstacle avoidance and merging scenarios, the holistic MCF can guarantee a better balance of the trade-off between the driving safety and string stability than single-structure MPC, with a faster decreasing rate of position error. The maximum position errors of holistic MCF are improved by 59.8% and 15.3% in obstacle avoidance and merging scenarios, respectively.
E EXPERIMENTAL VERIFICATION

Since the comprehensive control performance of the proposed MCF has been studied by numerical simulation in Section III, the hardware-in-the-loop (HIL) experiment is conducted to further demonstrate the real-time performance of the proposed MCF in this section. The layout and connection of the experimental platform is shown in Fig. 18. As the proposed MCF is distributed on each of the vehicles in the platoon, for the validation of the real-time performance, the MCF algorithm of the first following vehicle is deployed on the Speedgoat real-time target machine (Intel Core i7, 2.5 GHz), while the vehicle dynamic models, traffic scenarios and remaining platoon with MCF are implemented in the Concurrent real-time simulator (iHawk 45810, multi-core, RTX 3090 GPU) of Hirain test platform. The MCF algorithm of one vehicle runs on the Speedgoat real-time target machine (Intel Core i7, 2.5 GHz), while the vehicle dynamic models and traffic scenario is implemented in the Concurrent real-time simulator (iHawk 45810, multi-core, RTX 3090 GPU) of Hirain test platform.

To verify the effectiveness of our method, the experiment is set the same as the obstacle avoidance scenario in Section IV without artificially added communication delay, which will be explored in our future works. The platoon movement diagram of the HIL experiment is shown in Fig. 19 and all critical moments are highlighted with squares. In the numerical simulation, vehicles within the platoon encounter obstacle vehicles and conduct obstacle avoidance asynchronously at $t = 7.9$ s, $t = 27$ s, $t = 46$ s, and $t = 82$ s as expected. Especially at 46 s, the obstacle vehicles temporarily block the road. Unlike the simulation results in the third case study, no aggressive maneuvers are observed for the second following vehicle while it is overtaking the first obstacle vehicle and optimizing its trajectory to avoid potential collisions with the second obstacle vehicle. The reason might be due to the better computational capabilities of the Speedgoat. Overall, the platoon successfully avoids obstacle vehicles and is reunited as one in the end.

Fig. 20 depicts the position error in the HIL experiment. It can be noted that the position error fluctuates during obstacle avoidance but eventually converges to uniform asymptotic stability. Since there is no artificially-add communication delay, the position error between each following vehicle can be controlled effectively and converges to 0. Furthermore, it should be noted that the average conducting time of the proposed method on the Speedgoat real-time target machine is 1.1 milliseconds, which meets the real-time requirements. The HIL experiment demonstrates the effectiveness and real-time capability of the proposed MCF in critical scenarios.

V. CONCLUSION

In this article, a holistic robust motion controller framework (MCF) was proposed to guarantee the safety of the platoon system. The longitudinal and lateral collaborative control problem of platooning was investigated. With the hierarchical structure, the H-infinity feedback controller was implemented in the UCL and the APF-based MPC was implemented in the LML. To summarize, comprehensive performance is considered in the holistic framework for autonomous platooning. It includes robustness, multi-objective control, obstacle avoidance ability, real-time capability and scalability. In order to validate the effectiveness of the MCF, three critical scenarios were constructed via the co-simulation of Simulink and TruckSim. The simulation results indicated that the platoon’s longitudinal string stability and obstacle avoidance capability could be efficiently realized by the MCF. And it can get a well improvement in multi-objective control performance compared with the single-structure MPC. Besides, the proposed MCF possessed a good scalability since that more robust controllers can be included in the hierarchical structure. Moreover, the HIL experiment was conducted to verify the effectiveness and real-time capability of the proposed MCF.

In summary, the proposed MCF has demonstrated promising results in homogeneous platooning contexts. However, several
open issues and future directions warrant further investigation. One crucial avenue for future work is the generalization of the proposed method to heterogeneous platooning, where vehicles with different capabilities, sizes, or functionalities form a platoon. Expanding the method to handle heterogeneous platooning introduces several challenges that need to be addressed. Firstly, heterogeneous platooning requires considerations about different vehicle dynamic characteristics such as speed differentials and braking capabilities to maintain harmonized driving behavior and ensure safety and stability. Secondly, the communication topologies and coordination protocols must be extended to accommodate varying vehicle characteristics such as different acceleration capabilities or communication ranges. This requires designing dynamic algorithms that can adapt to the diverse capabilities within the platoon and ensures effective communication and coordination. Furthermore, it is important to explore the impact of heterogeneous platooning on traffic flow and infrastructure. Analyzing the interactions and effects of mixed platoons on other vehicles, pedestrians, and traffic signals will contribute to a comprehensive understanding of the broader implications.

REFERENCES

[1] J. Lee and B. Park, “Development and evaluation of a cooperative vehicle intersection control algorithm under the connected vehicles environment,” IEEE Trans. Intell. Transp. Syst., vol. 13, no. 1, pp. 81–90, Mar. 2012.
[2] Z. Deng, J. Fan, Y. Shi, and W. Shen, “A coevolutionary algorithm for cooperative platoon formation of connected and automated vehicles,” IEEE Trans. Veh. Technol., vol. 71, no. 12, pp. 12461–12474, Dec. 2022.
[3] X. Tang et al., “Prediction-uncertainty-aware decision-making for autonomous vehicles,” IEEE Trans. Intell. Veh., vol. 7, no. 4, pp. 849–862, Dec. 2022.
[4] S. E. Shladover et al., “Automated vehicle control developments in the PATH program,” IEEE Trans. Veh. Technol., vol. 40, no. 1, pp. 114–130, Feb. 1991.
[5] J. Borek, B. Groelke, C. Earnhardt, and C. Vermillion, “Economic optimal control for minimizing fuel consumption of heavy-duty trucks in a highway environment,” IEEE Trans. Control Syst. Technol., vol. 28, no. 5, pp. 1652–1664, Sep. 2020.
[6] C. Hong et al., “A joint design of platoon communication and control based on LTE-V2V,” IEEE Trans. Veh. Technol., vol. 69, no. 12, pp. 15893–15907, Dec. 2020.
[7] Z. Ju, H. Zhang, and Y. Tian, “Deception attack detection and estimation for a local vehicle in vehicle platooning based on a modified UIFIR estimator,” IEEE Internet Things J., vol. 7, no. 5, pp. 3693–3705, May 2020.
[8] J. Liu, H. Wang, L. Peng, Z. Cao, D. Yang, and J. Li, “PNNUA: Perception neural networks uncertainty aware decision-making for autonomous vehicle,” IEEE Trans. Intell. Transp. Syst., vol. 23, no. 12, pp. 24555–24568, Dec. 2022.
[9] Road Vehicles-Safety of the Intended Functionality, ISO/PAS 21448, International Organization Standardization, Geneva, Switzerland, 2019.
[10] L. Kontstantinopoulou, A. Coda, and F. Schmidt, “Specifications for multi-brand truck platooning,” in Proc. 8th Int. Conf. Weight-In-Motion, 2019, pp. 8–p.
[11] B. Wang, Y. Luo, Z. Zhong, and K. Li, “Robust non-fragile fault tolerant control for ensuring the safety of the intended functionality of cooperative adaptive cruise control,” IEEE Trans. Intell. Transp. Syst., vol. 23, no. 10, pp. 18746–18760, Oct. 2022.
[12] P. Seiler, A. Pant, and K. Hedrick, “Disruption propagation in vehicle strings,” IEEE Trans. Autom. Control, vol. 49, no. 10, pp. 1835–1842, Oct. 2004.
[13] Y. Li, W. Chen, S. Peeta, and Y. Wang, “Platoon control of connected multi-vehicle systems under V2X communications: Design and experiments,” IEEE Trans. Intell. Transp. Syst., vol. 21, no. 5, pp. 1891–1902, May 2020.
[14] C. Zhao, X. Duan, L. Cai, and P. Cheng, “Vehicle platooning with non-ideal communication networks,” IEEE Trans. Veh. Technol., vol. 70, no. 1, pp. 18–32, Jan. 2021.
R. Rajamani, H.-S. Tan, B. K. Law, and W.-B. Zhang, “Demonstration of integrated longitudinal and lateral control for the operation of automated vehicles in platoons,” IEEE Trans. Control Syst. Technol., vol. 8, no. 4, pp. 695–708, Jul. 2000.

H. Zhao, D. Sun, M. Zhao, Q. Pu, and C. Tang, “Combined longitudinal and lateral control for heterogeneous nodes in mixed vehicle platoon under V2I communication,” IEEE Trans. Intell. Transp. Syst., vol. 23, no. 7, pp. 6751–6765, Jul. 2022.

J. Guo, “Coordinated longitudinal and lateral control of autonomous electric vehicles in a platoon,” SAE, Warrendale, PA, USA, SAE Tech. Paper, 2016-01-1875, 2016.

F. Gao, S. E. Li, Y. Zheng, and D. Kum, “Robust control of heterogeneous vehicular platoon with uncertain dynamics and communication delay,” IET Intell. Transport Syst., vol. 10, no. 7, pp. 503–513, 2016.

S. E. Li, X. Qin, Y. Zheng, J. Wang, K. Li, and H. Zhang, “Distributed platoon control under topologies with complex eigenvalues: Stability analysis and controller synthesis,” IEEE Trans. Control Syst. Technol., vol. 27, no. 1, pp. 206–220, Jan. 2019.

P. E. Paré, E. Hashemi, R. Stern, H. Sandberg, and K. H. Johansen, “Networked model for cooperative adaptive cruise control,” IFAC-PapersOnLine, vol. 52, no. 20, pp. 151–156, 2019.

Y. S. Moon, P. Park, W. H. Kwon, and Y. S. Lee, “Delay-dependent robust stabilization of uncertain state-delayed systems,” Int. J. Control, vol. 74, no. 14, pp. 1447–1455, 2001.

L. El Ghaoui, F. Oustry, and M. AitRami, “A cone complementarity linearization algorithm for static output-feedback and related problems,” IEEE Trans. Auto. Control, vol. 42, no. 8, pp. 1171–1176, Aug. 1997.

M. Wu, Y. He, and J.-H. She, “Delay-dependent stabilization for systems with multiple unknown time-varying delays,” Int. J. Control, Automat., Syst., vol. 4, no. 6, pp. 682–688, 2006.

H. Wang, Y. Huang, A. Khajepour, Y. Zhang, Y. Rasekhipour, and D. Cao, “Crash mitigation in motion planning for autonomous vehicles,” IEEE Trans. Intell. Transp. Syst., vol. 20, no. 9, pp. 3313–3323, Sep. 2019.

J. Schulman, J. Ho, A. X. Lee, I. Awwal, H. Bradlow, and P. Abbeel, “Finding locally optimal, collision-free trajectories with sequential convex optimization,” in Robotics: Science and Systems, vol. 9, no. 1, Princeton, NJ, USA: Citeseer, 2013, pp. 1–10.

Y. Rasekhipour, I. Fadakar, and A. Khajepour, “Autonomous driving motion planning with obstacles prioritization using lexicographic optimization,” Control Eng. Pract., vol. 77, pp. 235–246, 2018.

P. T. Boggs and J. W. Tolle, “Sequential quadratic programming,” Acta Numerica, vol. 4, pp. 1–51, 1995.

F. de Oliveira Souza, L. A. B. Torres, L. A. Mozelli, and A. A. Neto, “Stability and formation error of homogeneous vehicular platoons with communication time delays,” IEEE Trans. Intell. Transp. Syst., vol. 21, no. 10, pp. 4338–4349, Oct. 2020.

Hong Wang received the Ph.D. degree from the Beijing Institute of Technology in China, Beijing, China, in 2015. She is currently a Research Associate Professor with Tsinghua University, Beijing. From 2015 to 2019, she was a Research Associate of Mechanical and Mechatronics Engineering with the University of Waterloo, Waterloo, ON, Canada. She has authored or coauthored more than 60 papers on top international journals. Her research interests include the safety of the on-board AI algorithm, safe decision-making for intelligent vehicles, and test and evaluation of SOTIF. Since 2017, she has been the IEEE Member. She was an Associate Editor for 2019 Intelligent Vehicles Symposium held in Paris, France.

Li-Ming Peng received the B.Eng. degree in vehicle engineering in 2019 from the Hefei University of Technology, Hefei, China, where he is currently working toward the master’s degree with the Department of Vehicle Engineering. His research interests include decision-making and vehicle dynamics control for autonomous platooning, and the SOTIF of the intelligent and connected vehicle.

Zichun Wei received the B.S. degree in mechanical engineering from Miami University, Oxford, OH, USA, in 2018 and the M.S. degree in electrical engineering from the University of Southern California, Los Angeles, CA, USA, in 2020. He is currently working toward the Ph.D. degree with the Department of Industrial and Systems Engineering, The Hong Kong Polytechnic University, Hong Kong. His research interests include multi-objective control, data-driven control and motion planning for robotics, and autonomous systems.

Ehsan Hashemi (Senior Member, IEEE) received the Ph.D. degree in vehicle engineering from the Wuhuan University of Technology, Wuhan, China, in 2018. He is currently working toward the Ph.D. degree with the Department of Automotive Engineering, Chongqing University, Chongqing, China. His research interests include autonomous vehicles.

Jian Li received the Ph.D. degree in mechanical and mechatronics system engineering from Southwest University, Chongqing, China, in 2013. He is currently an Associate Professor with the Department of Vehicle Engineering, Hefei University of Technology, Hefei, China. He was a Joint Ph.D. Student of the Chongqing University and University of Maryland, College Park, MD, USA. His research focuses on new mechatronics-based vehicle dynamics and control with emphasis on intelligent/ unmanned vehicles. Dr. Li is an Associate Editor for the Journal of Intelligent Material Systems and Structures and SAE International Journal of Connected and Automated Vehicles.

Xian-Xu ‘Frank’ Bai received the Ph.D. degree in information science and technology from Chongqing University, Chongqing, China, in 2013. He is currently an Associate Professor with the Department of Vehicle Engineering, Hefei University of Technology, Hefei, China. He received the B.S. degree from the Wuhan University of Technology, Wuhan, China, in 2018. He is currently working toward the M.S. degree in the Department of Mechanical Engineering, University of Alberta, Edmonton, AB, Canada. His research interests include distributed control, cooperative intelligent transport system, and human-robot interaction.