AN APPLICATION OF A C^2-ESTIMATE FOR A COMPLEX MONGE-AMPÈRE EQUATION

CHANG LI, LEI NI, AND XIAOHUA ZHU

Abstract. By studying a complex Monge-Ampère equation, we present an alternate proof to a recent result of Chu-Lee-Tam concerning the projectivity of a compact Kähler manifold N^n with $\text{Ric}_k < 0$ for some integer k with $1 < k < n$, and the ampleness of the canonical line bundle K_N.

Dedicated to the 110th anniversary of S. S. Chern with a great honor.

1. Introduction

In a recent preprint [4], the authors proved the following result.

Theorem 1.1 (Chu-Lee-Tam). Assume that (N^n, ω_q) is a compact Kähler manifold $(n = \dim_{\mathbb{C}}(N))$ with $\text{Ric}_k(X, \overline{X}) \leq -(k+1)\sigma |X|^2$ for some $\sigma \geq 0$. Then K_N is nef and is ample if $\sigma > 0$.

The curvature notion Ric_k is defined as the Ricci curvature of the k-dimensional holomorphic subspaces of the holomorphic tangent bundle $T'N$. Hence it coincides with the holomorphic sectional curvature $H(X)$ when $k = 1$, and with the Ricci curvature when $k = n = \dim_{\mathbb{C}}(N)$. The condition $\text{Ric}_k > 0$ is significantly different from its Riemannian analogue, i.e. the so-called q-Ricci of Bishop-Wu [2], since it exams only the holomorphic subspaces in $T'N$, thus unlike its Riemannian analogue, $\text{Ric}_k > 0$ (< 0) does not imply $\text{Ric}_{k+1} > 0$ (< 0). The study of the condition of $\text{Ric}_k < 0$ was initiated to generalize the hyperbolicity of Kobayashi to the k-hyperbolicity of a compact Kähler manifold by the second author [6]. It is closely related to the degeneracy of holomorphic mappings from \mathbb{C}^k into concerned manifolds (cf. Theorem 1.3 of [6]). Moreover it was recently proved by the second author that $\text{Ric}_k > 0$ implies that M is projective and rational connected. The above result of Chu-Lee-Tam answers a question raised by the second author in [6] regarding the projectivity of a compact Kähler manifold with $\text{Ric}_k < 0$ affirmatively. In view of the fact that $\text{Ric}_k < 0$ is the same as the holomorphic section curvature $H < 0$, the above result generalizes the earlier work of [13, 12].

The proof of [4] is via the study of a twisted Kähler-Ricci flow. In this note we prove the result via the Aubin-Yau solution [1, 16] to a complex Monge-Ampère equation (which is similar to the equation for the Kähler-Einstein metric in the negative first Chern class). This was the method utilized in [13]. Here a modification the Monge-Ampère equation (cf. (3.2)) is necessary to adapted the idea to the curvature condition $\text{Ric}_k < 0$ when $n > k > 1$.

2010 Mathematics Subject Classification. 32Q10, 32Q15, 32W20, 53C55.

Key words and phrases. Kähler metrics, holomorphic sectional curvature, Ric_k, complex Monge-Ampère equation, Schwarz Lemma, nef and ample line bundle, canonical line bundle.
which then makes a more direct alternate proof possible. The method here also extends to
the more general setting considered in [4].

It was proved in [8] that any compact Kähler manifold with the second scalar curvature
$S_2 > 0$ (simply put S_k is the average of Ric_k) must be projective. It remains an interesting
question if $S_2 < 0$, or $\text{Ric}_k^+ < 0$, also implies the projectivity. For more backgrounds and
references related to the theorem please refer to [7]. One can also find the definitions
and motivations of several other curvature notions, including S_2, Ric_k^+, and problems related
to them in [7].

2. Preliminaries

Here we collect some algebraic estimates as consequences of the assumption $\text{Ric}_k(\mathbf{X}, \overline{\mathbf{X}}) \leq
-(k + 1)\sigma|\mathbf{X}|^2$, $\forall (1,0)$-type tangent vector \mathbf{X}. They are useful for related estimate for a
Monge-Ampère equation (cf. [5,6] below) Since the result is known for $k = 1$, n we always
assume that $1 < k < n$. The first is Lemma 2.1 of [4].

Lemma 2.1. Under the assumption that $\text{Ric}_k(\mathbf{X}, \overline{\mathbf{X}}) \leq -(k + 1)\sigma|\mathbf{X}|^2$ the following estimate holds

$$(k - 1)|\mathbf{X}|^2 \text{Ric}(\mathbf{X}, \overline{\mathbf{X}}) + (n - k)R(\mathbf{X}, \overline{\mathbf{X}}, \mathbf{X}, \overline{\mathbf{X}}) \leq -(n - 1)(k + 1)\sigma|\mathbf{X}|^4. \quad (2.1)$$

The result follows by summing $\text{Ric}_k(\mathbf{X}, \overline{\mathbf{X}}) \leq -(k + 1)\sigma|\mathbf{X}|^2$ (the assumption) for a suitable
chosen unitary basis. By using a Royden’s trick [9] the following result was derived out of
Lemma 2.1 (cf. [4] Lemma 2.2).

Lemma 2.2. Let (N, ω) be a compact Kähler manifold with

$\text{Ric}_k(\mathbf{X}, \overline{\mathbf{X}}) \leq -(k + 1)\sigma|\mathbf{X}|^2 \quad (2.2)$

for some $\sigma \geq 0$. Let $\tilde{\omega} = \omega \tilde{g}$ be another Kähler metric on N. Set

$$G = \text{tr}_\omega \omega.$$

Then the following estimate holds

$$2\tilde{g}^{ij} \tilde{g}^{kl} R_{ijkl} \leq \frac{-n - 1}{n - k} G \frac{(G^2 + \gamma^2)}{G \cdot \text{tr}_{\tilde{g}} \text{Ric} - \frac{k - 1}{n - k} \langle \omega, \text{Ric} \rangle \tilde{g}}. \quad (2.3)$$

Proof. Here we provide a proof using the averaging technique (cf. Appendix of [6]) instead
of Royden’s trick since the argument is more transparent. Pick a normal frame $\{\frac{\partial}{\partial z^i}\}$ so
that $\tilde{g}_{ij} = \delta_{ij}$ and $g_{ij} = |\lambda_i|^2 \delta_{ij}$. Then $\frac{\partial}{\partial \overline{z}^i}$, with $g = \frac{\partial}{\partial \overline{z}^i}$, is a unitary frame for ω. Lemma 2.1 implies that (Einstein convention applied)

$$2(n - k) R_{ijkl} |\lambda_i|^2 |\lambda_j|^2 + (k - 1)G \text{Ric}^\omega_s |\lambda_s|^2 + (k - 1) \text{Ric}^\omega_{ij} |\lambda_i|^4$$

$$= n(n + 1) \int_{\mathbb{S}^{2n-1}} (k - 1)|\mathbf{Y}|^2 \text{Ric}^\omega(\mathbf{Y}, \overline{\mathbf{Y}}) + (n - k)R^\omega(\mathbf{Y}, \overline{\mathbf{Y}}, \overline{\mathbf{Y}})$$

$$\leq -(n - 1)(k + 1)n(n + 1)\sigma \int_{\mathbb{S}^{2n-1}} |\mathbf{Y}|^4 = -(n - 1)(k + 1)\sigma (G^2 + |\lambda|_4^4).$$

Here $\mathbf{Y} = \lambda_i w^i \frac{\partial}{\partial \overline{w}^i}$ with respect to a normal frame $\{\frac{\partial}{\partial \overline{w}^i}\}$, Ric^ω and R^ω_{ijkl} are the Ricci and
curvature tensor expressed with respect to the metric ω (namely the unitary frame $\{\frac{\partial}{\partial \overline{w}^i}\}$). The result then follows by identifying the terms invariantly. \square
For the application it is useful to write (2.3) as

$$2\tilde{g}^{ij} \tilde{g}^{kl} R_{ijkl} \leq \frac{-(n-1)(k+1)\sigma}{n-k} \left(G^2 + |g|^2 \right) - \frac{k-1}{n-k} G \cdot \text{tr}_g \text{Ric}$$

$$+ \frac{k-1}{n-k} \left(\langle \text{Ric}, \bar{\omega} \rangle_g \langle \omega, \bar{\omega} \rangle_g - \langle \omega, \text{Ric} \rangle_g \right). \quad (2.4)$$

3. PROOF OF THEOREM 1.1

Assume that the canonical line bundle K_N of (N, ω) is not nef. Then there exists $\epsilon_0 > 0$ such that $\epsilon_0 [\omega] - C_1(N)$ is nef but not Kähler. Thus, $\forall \epsilon > 0$, $(\epsilon + \epsilon_0)[\omega] - C_1(N)$ is Kähler. This means that there exists a smooth function ϕ_ϵ such that

$$\omega_\epsilon := (\epsilon_0 + \epsilon)\omega - \text{Ric}(\omega) + \sqrt{-1} \partial \bar{\partial} \phi_\epsilon > 0. \quad (3.1)$$

By Aubin-Yau’s existence theorem and a priori estimate for a complex Monge-Ampère equation, we first prove the theorem below.

Theorem 3.1. Let (N, ω) be a compact Kähler manifold which satisfies (2.2) for some $\sigma \geq 0$. Then K_N is nef.

Proof. For any $\epsilon > 0$, we consider the complex Monge-Ampère equation for ψ_ϵ,

$$\left(\left(\epsilon + \epsilon_0 \right) \omega - \text{Ric}(\omega) + \sqrt{-1} \partial \bar{\partial} (\phi_\epsilon + \psi_\epsilon) \right)^n = e^{\phi_\epsilon + \psi_\epsilon + \frac{1}{2(n-k)} \langle \phi_\epsilon + \psi_\epsilon, \omega \rangle_g} \quad (3.2)$$

and

$$(\epsilon + \epsilon_0)\omega - \text{Ric}(\omega) + \sqrt{-1} \partial \bar{\partial} (\phi_\epsilon + \psi_\epsilon) > 0. \quad (3.3)$$

By the Aubin-Yau theorem [11, 16], there is a unique solution ψ_ϵ of (3.2). For simplicity, we let

$$\tilde{\omega}_\epsilon := (\epsilon + \epsilon_0)\omega - \text{Ric}(\omega) + \sqrt{-1} \partial \bar{\partial} (\phi_\epsilon + \psi_\epsilon) = \omega_\epsilon + \sqrt{-1} \partial \bar{\partial} \psi_\epsilon,$$

$$\sigma_\epsilon := \phi_\epsilon + \psi_\epsilon. \quad (3.4)$$

Then taking $\partial \bar{\partial} \log(\cdot)$ on both sides of (3.2), we see that (3.2) is equivalent to

$$\tilde{\text{Ric}}_\epsilon := \text{Ric}(\tilde{\omega}_\epsilon) = \text{Ric}(\omega) - \sqrt{-1} \partial \bar{\partial} \left(\sigma_\epsilon + \frac{k-1}{2(n-k)} \sigma_\epsilon \right)$$

$$= -\tilde{\omega}_\epsilon + (\epsilon + \epsilon_0)\omega - \sqrt{-1} \frac{k-1}{2(n-k)} \partial \bar{\partial} \sigma_\epsilon. \quad (3.5)$$

Let $G = G_\epsilon = \text{tr}_{\tilde{\omega}_\epsilon} \omega$. Then by the calculation in the proof of the Schwarz Lemma [15], and in particular (2.3) of [8] (also see computations in the earlier work of [9, 5]), as well as the C^2-estimate computation in [11, 10] (a slight different calculation was done in [16, 11]), we have that

$$\tilde{\Delta}_\epsilon (\log G) \geq \frac{1}{G} \left(\tilde{\text{Ric}}_{g_\epsilon} \tilde{g}^{ij} \tilde{g}^{kl} \tilde{R}_{ijkl} - \tilde{g}_\epsilon^{ij} \tilde{g}_\epsilon^{kl} \tilde{R}_{ijkl} \right). \quad (3.6)$$

Applying Lemma [2.2] (namely (2.1)) to $G = G_\epsilon$ we have the estimate

$$\frac{1}{G} \tilde{g}_\epsilon^{ij} \tilde{g}_\epsilon^{kl} \tilde{R}_{ijkl} \leq \frac{-(n-1)(k+1)\sigma}{2(n-k)} \left(G^2 + \frac{1}{2(n-k)} |g|^2 \right) - \frac{k-1}{n-k} \text{tr}_{\tilde{g}_\epsilon} \text{Ric}$$

$$+ \frac{k-1}{2(n-k)} \frac{1}{G} \left(G \cdot \text{tr}_{\tilde{g}_\epsilon} \text{Ric} - \langle \omega, \text{Ric} \rangle_{\tilde{g}_\epsilon} \right). \quad (3.7)$$
Choosing local coordinates such that \((\tilde{g}_e)_{ij} = \delta_{ij}\), \(g_{ij} = g_{ij}\delta_{ij}\), then we also have

\[
G \cdot \mathrm{tr}_{\tilde{g}_e} \mathrm{Ric} - \langle \omega, \mathrm{Ric} \rangle_{\tilde{g}_e} = \sum_i \mathrm{Ric}_{\tilde{g}_e} \left(\sum_k g_{kk} - g_{ii} \right) = \sum_i \left(\mathrm{Ric}_{\tilde{g}_e} \left(\sum_{k \neq i} g_{kk} \right) \right) \\
\leq \sum_i ((\epsilon + \epsilon_0)g_{ii} + u_{e_{ii}}) \left(\sum_k g_{kk} - g_{ii} \right) \\
= (\epsilon + \epsilon_0)G^2 - (\epsilon + \epsilon_0)\langle \sqrt{-1}\partial\bar{\partial}u_e, \omega \rangle_{\tilde{g}_e}.
\]

Here we used (3.3) in the third line. Plugging this into (3.7), we have

\[
\frac{1}{G} \tilde{g}_e^{ij} g^i_{k} g^j_{l} R_{ijkl} \geq \frac{\sigma(n - 1)(k + 1) - (k - 1)(\epsilon + \epsilon_0)}{2(n - k)} G \\
+ \frac{\sigma(n - 1)(k + 1) + (k - 1)(\epsilon + \epsilon_0)}{2(n - k)} |g_{\tilde{g}_e}|^2 \\
- \frac{k - 1}{2(n - k)} \Delta_e u_e + \frac{k - 1}{2(n - k)} \frac{1}{G} \langle \sqrt{-1}\partial\bar{\partial}u_e, \omega \rangle_{\tilde{g}_e}.
\]

On the other hand, a direct calculation using (3.3) can express the first term in (3.6) as

\[
\frac{1}{G} \tilde{g}_e^{ij} g_{k}^{ij} \tilde{g}_e^i g_{l}^j = \frac{1}{G} \langle \mathrm{Ric}_{\tilde{g}_e}, \omega \rangle_{\tilde{g}_e} \\
= \frac{1}{G} \langle -\bar{w}_e + (\epsilon + \epsilon_0)\omega - \sqrt{-1}\partial\bar{\partial} \left(\frac{k - 1}{2(n - k)} u_e \right), \omega \rangle_{\tilde{g}_e} \\
= \frac{1}{G} \langle -\bar{w}_e + (\epsilon + \epsilon_0)\omega, \omega \rangle_{\tilde{g}_e} - \frac{1}{G} \frac{1}{2(n - k)} \langle \sqrt{-1}\partial\bar{\partial}u_e, \omega \rangle_{\tilde{g}_e}.
\]

Note that we used (3.5) in the third line above. Combining (3.6), (3.9) and (3.10), we have

\[
\tilde{\Delta}_e (\log G) \geq \frac{\sigma(n - 1)(k + 1) - (k - 1)(\epsilon + \epsilon_0)}{2(n - k)} G \\
+ \frac{\sigma(n - 1)(k + 1) + (k - 1)(\epsilon + \epsilon_0)}{2(n - k)} |g_{\tilde{g}_e}|^2 \\
+ \frac{(k - 1)}{(n - k)} \mathrm{tr}_{\tilde{g}_e} \mathrm{Ric} - \frac{(k - 1)}{2(n - k)} \tilde{\Delta}_e u_e \\
+ \frac{1}{G} \langle -\bar{w}_e + (\epsilon + \epsilon_0)\omega, \omega \rangle_{\tilde{g}_e}.
\]

Hence

\[
\tilde{\Delta}_e \left(\log G - \frac{k - 1}{2(n - k)} u_e \right) \geq \frac{\sigma(n - 1)(k + 1) - (k - 1)(\epsilon + \epsilon_0)}{2(n - k)} G \\
+ \frac{\sigma(n - 1)(k + 1) + (k - 1)(\epsilon + \epsilon_0)}{2(n - k)} |g_{\tilde{g}_e}|^2 \\
+ \frac{(k - 1)}{(n - k)} \left(\mathrm{tr}_{\tilde{g}_e} \mathrm{Ric} - \tilde{\Delta}_e u_e \right) \\
+ \frac{1}{G} \langle -\bar{w}_e + (\epsilon + \epsilon_0)\omega, \omega \rangle_{\tilde{g}_e}.
\]
Next, we observe that
\[|g|_{\bar{g}_{\epsilon}}^2 \geq \frac{G^2}{n}, \]
\[-\Delta_{\epsilon} u_{\epsilon} = -\bar{g}_{\epsilon ij} \left(\bar{\nabla}_{\epsilon} \bar{\nabla} - (\epsilon + \epsilon_0) g_{ij} \right) \]
\[= -n - \bar{g}_{\epsilon} \text{Ric} + (\epsilon + \epsilon_0) G, \quad \text{and} \]
\[\frac{1}{G}((\epsilon + \epsilon_0) \omega - \bar{\omega}_{\epsilon}, \omega)_{\bar{g}_{\epsilon}} = \frac{1}{G}(\epsilon + \epsilon_0)|g|^2_{\bar{g}_{\epsilon}} - \frac{1}{G}G \geq -1. \]

Plugging these three inequalities/equation above into (3.12), we see that
\[\hat{\Delta}_{\epsilon} (\log G - \frac{(k - 1)}{2(n - k)} u_{\epsilon}) \]
\[\geq \left(\frac{n}{n} \cdot \frac{\sigma(n - 1)(k + 1) - (k - 1)(\epsilon + \epsilon_0)}{2(n - k)} \right) G + \left(\frac{(\epsilon + \epsilon_0)(k - 1)2n}{(n - k)2n} \right) G \]
\[+ \left(\frac{\sigma(n - 1)(k + 1) + (k - 1)(\epsilon + \epsilon_0)}{2(n - k)n} \right) G - 1 - n \frac{(k - 1)}{n - k} \]
\[= \left(\frac{(n + 1)\sigma(n - 1)(k + 1)}{2(n - k)n} + \frac{(\epsilon + \epsilon_0)(k - 1)(n + 1)}{2(n - k)n} \right) G - 1 - n \frac{(k - 1)}{n - k} \]
\[\geq \max \left\{ \left(\frac{(n + 1)\sigma(n - 1)(k + 1)}{2(n - k)n}, \frac{(\epsilon + \epsilon_0)(k - 1)(n + 1)}{2(n - k)n} \right) \right\} \cdot G - 1 - n \frac{(k - 1)}{n - k}. \]

Now we apply the maximum principle to get a lower estimate of $\tilde{\omega}_{\epsilon}$. At the maximum of u_ϵ, say x_0, since $\sqrt{-1} \partial \bar{\partial} u_\epsilon \leq 0$ we have that $((\epsilon + \epsilon_0) \omega - \text{Ric}(\omega))(x_0) \geq \tilde{\omega}_{\epsilon} > 0$ and $e^{\frac{2(n - k)}{n}} \sup_N u_\epsilon = e^{\frac{2(n - k)}{n}} u_\epsilon(x_0) \leq \frac{((\epsilon + \epsilon_0) \omega - \text{Ric}(\omega))^n}{\tilde{\omega}_n} \leq C$, for some C independent of ϵ.

This proves a uniform upper bound for u_ϵ, and hence that
\[\sup_N \tilde{\omega}_n \leq C, \quad \text{equivalently } W_n \geq C^{-1}, \quad \text{with } W_n := \frac{\omega^n}{\tilde{\omega}_n}. \] (3.14)

Again we apply the maximum principle to log $G - \frac{(k - 1)}{2(n - k)} u_\epsilon$. By (3.13), at the point x_0', where the maximum of log $G - \frac{(k - 1)}{2(n - k)} u_\epsilon$ is attained, we have that
\[G(x_0') \leq C \text{ for some } C \text{ independent of } \epsilon. \] (3.15)

Since $GW_{\frac{k - 1}{n - 1}} = Ge^{-\frac{k - 1}{n - 1}u_\epsilon}$, we infer that $\sup_N \left(GW_{\frac{k - 1}{n - 1}} \right)$ is also attained at x_0'.

By GM-AM inequality $G \cdot W_{\frac{k - 1}{n - 1}} \leq \left(\frac{d}{n} \right)^{\frac{k - 1}{n - 1}} \leq C \left(\frac{d}{n} \right)^{\frac{k - 1}{n - 1}}$ at x_0'. This, together with (3.15), implies $\sup_N \left(GW_{\frac{k - 1}{n - 1}} \right) \leq C$ for some $C > 0$ independent of ϵ. Combining this with (3.14) we have that
\[G \leq C \text{ hence } \tilde{\omega}_\epsilon \geq A \omega, \] (3.16)

for a constant $A > 0$ independent of ϵ. This is a contradiction to that $\epsilon_0 [\omega] - C_1(N)$ is not Kähler by taking $\epsilon \to 0$. This completes the proof of Theorem 3.1.

A remark is appropriate to compare the above proof with that of [13]. The idea of using an Aubin-Yau solution is the same. The difference lies in the details. First we came up with a modified Monge-Ampère equation to accommodate the new curvature condition. Secondly Wu-Yau’s proof [13] of the C^2-estimate can be obtained by a direct application
of Royden’s version of Yau’s Schwarz lemma (precisely, Theorem 1, p554 of [9]). Namely no additional proof is necessary for bounding G under the assumption of [13] (namely the holomorphic sectional curvature $H < 0$), in view of an obvious lower bound on $\text{Ric}(\tilde{\omega})$ from (3.3). By comparison, some nontrivial manipulations are needed above (at the least to the best knowledge of the authors) to get the C^2-estimate since one can not infer any useful information from (3.6) directly under $\text{Ric}_k < 0$ for some $k > 1$.

Once the nefness of K_N is established, the ampleness of K_N follows as Theorem 7 of [13] provided that $\sigma > 0$. In this case we take $\epsilon_0 = 0$. By considering the Monge-Ampère equation (3.2), repeating the argument above, since $\sigma > 0$ is assumed now, we still can have the uniform estimates (3.14), (3.16) and the upper bound of u_ϵ from the key estimate (3.13) independent of ϵ.

Moreover the elementary inequality $\text{tr}_{\omega} \tilde{\omega}_\epsilon \leq \frac{1}{(n-1)!} (\text{tr}_{\omega_0} \omega)^{n-1} \frac{\omega^n}{\omega_{\epsilon}}$ implies that $\text{tr}_{\omega} \tilde{\omega}_\epsilon \leq C$. Hence we have that $\tilde{\omega}_\epsilon$ and ω are equivalent. Namely for some $C > 0$ independent of ϵ

$$C^{-1} \omega \leq \tilde{\omega}_\epsilon \leq C \omega. \tag{3.17}$$

This also gives the C^0-estimate (namely the lower bound of u_ϵ) by the equation (3.24). The C^3-estimate of Calabi [1, 16, 11] also applies here (cf. [12] for an adapted calculation to a settings similar to (3.2)). Alternatively one can also use the $C^{2, \alpha}$-estimate of Evans as in [10]. Uniform estimates for up to the third order derivatives of u_ϵ allow one to apply the Arzela-Ascoli compactness to get a convergent subsequence out of u_ϵ as $\epsilon \to 0$.

Taking $\epsilon \to 0$, and letting $u_\infty := \lim_{\epsilon \to 0} u_\epsilon$ and $\omega_\infty := -\text{Ric}(\omega) + \sqrt{-1} \partial \bar{\partial} u_\infty > 0$, then it is easy to see that (3.2) becomes

$$(-\text{Ric}(\omega) + \sqrt{-1} \partial \bar{\partial} u_\infty)^n = e^{u_\infty + \frac{k-1}{2(n-k)} u_\infty} \omega^n.$$

Taking $\partial \bar{\partial} \log(\cdot)$ on both sides of the above equation we have that

$$\text{Ric}(\omega_\infty) = -\omega_\infty - \frac{k-1}{2(n-k)} \sqrt{-1} \partial \bar{\partial} u_\infty.$$

This implies that K_N is ample. The existence of a Kähler-Einstein metric is known by Aubin-Yau’s theorem.

We also remark that the argument can be easily modified to prove the same result under the assumption:

$$\alpha |X|^2 \text{Ric}(X, \overline{X}) + \beta R(X, \overline{X}, X, \overline{X}) \leq -\sigma |X|^4, \forall X \text{ of } (1,0)-\text{type},$$

for some positive constants α, β and $\sigma > 0$. The existing literatures (e.g. [14]) is enough to extend Theorem 1.1 to the case that Ric_k is quasi-negative (as well as σ above is quasi-positive) proving that K_N is big. We leave the details to interested readers.

Acknowledgments

The first author’s research is supported by China Postdoctoral Grant No. BX20200356. The research of the second author is partially supported by “Capacity Building for Sci-Tech Innovation-Fundamental Research Funds”.

References

[1] T. Aubin, *Nonlinear analysis on manifolds. Monge-Ampère equations*. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 252. Springer-Verlag, New York, 1982.
[2] R. L. Bishop and R. J. Crittenden, *Geometry of manifolds*. Reprint of the 1964 original. AMS Chelsea Publishing, Providence, RI, 2001. xii+273 pp.

[3] S. S. Chern, *Holomorphic mappings of Hermitian manifolds of same dimension*. Proc. Symp. Pure Math. 11, Amer. Math. Soc., 1968, 157-170.

[4] J. Chu, M.-C. Lee, L.-F. Tam, *Kähler manifolds with negative k-Ricci Curvature*. ArXiv preprint:2009.06297.

[5] Y. C. Lu, *On holomorphic mappings of complex manifolds*. J. Differential Geom. 2 (1968), 299–312.

[6] L. Ni, *Liouville theorems and a Schwarz Lemma for holomorphic mappings between Kähler manifolds*. Comm. Pure Appl. Math., to appear.

[7] L. Ni, *The fundamental group, rational connectedness and the positivity of Kähler manifolds*. Crelle, accepted. ArXiv preprint:1902.00974.

[8] L. Ni and F. Zheng, *Positivity and Kodaira embedding theorem*. ArXiv preprint:1804.09696.

[9] H. L. Royden, *The Ahlfors-Schwarz lemma in several complex variables*. Comment. Math. Helv. 55 (1980), no. 4, 547–558.

[10] Siu, Y.-T. *Lecture on Hermitian-Einstein metrics for stable bundles and Kähler-Einstein metrics*. Birkhäuser, Basel, 1987.

[11] G. Tian, *Canonical metrics in Kähler geometry*. Birkhäuser Verlag, 2000.

[12] V. Tosatti and X. Yang, *An extension of a theorem of Wu-Yau*. J. Differential Geom. 107 (2017), no. 3, 573–579.

[13] D. Wu, and S.-T. Yau, *Negative holomorphic curvature and positive canonical bundle*. Invent. Math. 204 (2016), no. 2, 595–604.

[14] D. Wu, and S.-T. Yau, *A remark on our paper ‘negative holomorphic curvature and positive canonical bundle’*. Comm. Anal. Geom. 24 (2016) no. 4, 901–912.

[15] S.-T. Yau, *A general Schwarz lemma for Kähler manifolds*. Amer. J. Math. 100 (1978), no. 1, 197–203.

[16] S.-T. Yau, *On Ricci curvature of a compact Kähler manifold and the complex Monge-Ampère equation, I*, Comm. Pure and Appl. Math. 31 (1978), 339–411.

Chang Li. HUA LOO-KENG CENTER FOR MATHEMATICAL SCIENCES, ACADEMY OF MATHEMATICS AND SYSTEMS SCIENCE, CHINESE ACADEMY OF SCIENCES, BEIJING, P.R.CHINA, 100190

Email address: changli@pku.edu.cn

Lei Ni. DEPARTMENT OF MATHEMATICS, UNIVERSITY OF CALIFORNIA, SAN DIEGO, LA JOLLA, CA 92093, USA

Email address: leni@ucsd.edu

Xiaohua Zhu. SCHOOL OF MATHEMATICAL SCIENCE, PEKING UNIVERSITY, BEIJING, CHINA

Email address: xhzhu@math.pku.edu.cn