PLURISUBHARMONIC DOMINATION IN BANACH SPACES

Imre Patyi

1. Introduction.

Given a complex manifold M, one says that plurisubharmonic, resp. holomorphic, domination is possible in M if for any locally bounded function $u: M \to \mathbb{R}$ there is a continuous plurisubharmonic function $w: M \to \mathbb{R}$, resp. a Banach space $(V, \| \cdot \|_V)$ and a holomorphic function $h: M \to V$, such that

$$u(x) \leq w(x), \quad \text{resp.} \quad u(x) \leq \|h(x)\|_V, \quad \text{for every } x \in M.$$

These notions were introduced and studied by Lempert in [L2]. The main result there is that if a Banach space X has an unconditional basis and $\Omega \subset X$ is a pseudoconvex open set, then holomorphic, hence also plurisubharmonic domination is possible in Ω. This result subsequently formed the basis for the study of analytic sheaves and cohomology groups in Banach spaces in [L3,LP,P1-2,S]. The goal of this paper is to prove that plurisubharmonic domination is possible in Banach spaces that have a Schauder basis (or are a direct summand of one that does, i.e., in separable Banach spaces with the bounded approximation property); this class includes all separable Banach spaces that occur in practice. In particular, domination is possible in the important Banach spaces $C[0,1]$ and $L^1[0,1]$, spaces that do not have an unconditional basis. More precisely, we shall prove

Theorem 1.1. Let X be a Banach space and $\Omega \subset X$ an open subset. If X has a Schauder basis and Ω is pseudoconvex, then plurisubharmonic domination is possible in Ω. The same holds if X is just separable but Ω is convex.

The second part of the theorem easily follows from the first. It would follow for all pseudoconvex Ω in a separable space if the following could be proved: Given a Banach space X_0, a closed subspace $X \subset X_0$, and a pseudoconvex $\Omega \subset X$, there is a pseudoconvex $\Omega_0 \subset X_0$ such that $\Omega = \Omega_0 \cap X$. — It seems likely that under the assumptions of Theorem 1.1 holomorphic domination is also possible, but a proof of this will have to wait for another publication. When Ω is convex, holomorphic domination was already proved in [P3].

In its structure, the proof of Theorem 1.1 is similar to the proof in [L2]. The main new idea here and already in [P3] is that, at least when $\Omega = X$, it is possible to work through the proof with functions that are defined on all of X; and once the theorem is known for $\Omega = X$, the general case is not hard to prove. By contrast, [L2] treated all $\Omega \subset X$ on equal footing; it had to deal with holomorphic functions defined on subsets of X, and approximate them uniformly by entire functions. The
required Runge–type approximation theorems are only known in Banach spaces with an unconditional basis (or, more generally, in spaces with a finite dimensional unconditional decomposition, see [J,L1,Me]) and this restricted the scope of [L2].

Since most results of [LP] depended on the hypothesis of plurisubharmonic domination, by Theorem 1.1 those results hold in spaces with a Schauder basis. For example, combining Theorem 1.1 with [LP, Theorem 2] gives the following generalization of Cartan’s Theorems A and B:

Theorem 1.2. Suppose a Banach space X has a Schauder basis, $\Omega \subset X$ is a pseudoconvex open subset, and $S \to \Omega$ a cohesive sheaf. Then:

(a) There is a completely exact resolution $\cdots \to E_1 \to E_0 \to S \to 0$; and
(b) $H^q(\Omega, S) = 0$, $q = 1, 2, \ldots$, holds for the higher sheaf cohomology groups.

The notions occurring in this theorem are defined in [LP], to which we refer the reader; for fundamentals of complex analysis in Banach spaces the book [Mu] can be consulted.

2. Ball bundles.

Let X be a Banach space. If $U \subset X$ is open, we write $\text{psc}(U)$ for the family of continuous functions on \overline{U} that are plurisubharmonic on U. By saying that a subset $\Omega \subset X$ is pseudoconvex we imply that it is open. Suppose X has a Schauder basis e_1, e_2, \ldots, and introduce the projections $\pi_N: X \to X$,

$$\pi_N \sum_{1}^{\infty} \lambda_j e_j = \sum_{1}^{N} \lambda_j e_j, \quad \lambda_j \in \mathbb{C}; \quad \pi_0 = 0, \quad \pi_\infty = \text{id}.$$

We choose the norm $\| \cdot \|$ on X so that for all $x \in X$

$$(2.1) \quad \|\pi_N x - \pi_M x\| \leq \|\pi_n x - \pi_m x\|, \quad 0 \leq n \leq N \leq M \leq m \leq \infty;$$

thus e_1, e_2, \ldots form a bimonotone Schauder basis. Put furthermore $\varrho_N = \text{id} - \pi_N$, $Y_N = \varrho_N X$. Given $N = 0, 1, 2, \ldots$, $A \subset \pi_N X \approx \mathbb{C}^N$, and a continuous $r: A \to [0, \infty)$, the sets

$$A(r) = \{x \in X: \pi_N x \in A, \|\varrho_N x\| < r(\pi_N x)\} \quad \text{and} \quad A[r] = \{x \in X: \pi_N x \in A, \|\varrho_N x\| \leq r(\pi_N x)\}$$

are ball bundles over finite dimensional bases. Any open $\Omega \subset X$ can be exhausted by such ball bundles as follows (see [L2, Section 3]). Let $d(x) = \min\{1, \text{dist}(x, X \setminus \Omega)\}$ and, given $\alpha \in (0, 1)$,

$$D_N(\alpha) = \{t \in \pi_N X: \|t\| < \alpha N, \quad 1 < \alpha N d(t)\},$$

$$\Omega_N(\alpha) = \{x \in X: \pi_N x \in D_N(\alpha), \quad \|\varrho_N x\| < \alpha d(\pi_N x)\}.$$

For example, if $\Omega = X$ then $\Omega_N(\alpha) = \emptyset$ for $N \leq 1/\alpha$ and

$$(2.4) \quad \Omega_N(\alpha) = \{x \in X: \|\pi_N x\| < \alpha N, \|\varrho_N x\| < \alpha\} \quad \text{for } N > 1/\alpha.$$

From now on we assume Ω is pseudoconvex.
Proposition 2.1. (a) Each $\Omega_N(\alpha) \subset \Omega$ is pseudoconvex.

(b) $\Omega_n(\gamma) \subset \Omega_N(\beta)$ if $n \leq N, \gamma \leq \beta/4$.

(c) Given γ, each $x \in \Omega$ has a neighborhood contained in all but finitely many $\Omega_N(\gamma)$.

This is [L2, Proposition 3.1]. We also introduce another exhaustion of Ω by certain $\Omega^N(\gamma)$; these are ball bundles with respect to the decomposition $X = \pi_{N+1}X \oplus Y_{N+1}$. Let $\gamma \in (0, 1)$,

$$p^N(s) = \max\left\{\frac{\|\pi_N s\|}{N}, \frac{1}{N d(s)}, \frac{\|\varrho_N s\|}{d(s)}\right\}, \quad s \in \Omega \cap \pi_{N+1}X,$$

$$D^N(\gamma) = \{s \in \Omega \cap \pi_{N+1}X: p^N(s) < \gamma\},$$

$$\Omega^N(\gamma) = \{x \in \pi_{N+1}^{-1}D^N(\gamma): \|\varrho_{N+1}x\| < \gamma d(\pi_{N+1}x)\}.$$

According to [L2, Proposition 3.2] we have:

Proposition 2.2. If $\gamma < 1/4$ then $\Omega_N(\gamma) \subset \Omega^N(4\gamma)$ and $\Omega_N^N(\gamma) \subset \Omega_N(4\gamma)$.

We shall also need the following analogs of [L2, Lemma 4.1, Proposition 4.2]:

Lemma 2.3. Suppose $A_2 \subset \subset A_3 \subset \subset A_4$ are relatively open subsets of $\pi_N X$, $A_1 \subset A_2$ is compact and holomorphically convex in A_4. Let $r_i: A_4 \to (0, \infty)$ be continuous, $i = 1, 2, 3, r_i < r_{i+1}$, and $-\log r_1$ plurisubharmonic. Given $v \in \text{psc}(X)$, there is a continuous plurisubharmonic $w: \pi_{N}^{-1}A_4 \to \mathbb{R}$ such that

$$w(x)\begin{cases} < 0, & \text{if } x \in A_1[r_1] \\ > v(x), & \text{if } x \in A_3(r_3) \setminus A_2(r_2). \end{cases}$$

Proof. As in the proof of [L2, Lemma 4.1] we construct a Banach space $(V, \| \cdot \|_V)$ and a holomorphic function $\psi: \pi_{N}^{-1}A_4 \to V$ such that $\|\psi\|_V < 1/4$ on $A_1[r_1]$ and $\|\psi\|_V > 4$ on $A_3(r_3) \setminus A_2(r_2)$. (This corresponds to choosing $r_4 = \infty$ there. The construction does not use the approximation hypothesis of Lemma 4.1.) Since v is bounded on a neighborhood of the compact set A_1, there is a $q \in (0, \infty)$ such that

$$v(y) \leq q, \quad \text{if } \pi_N y \in A_1 \quad \text{and} \quad \|\varrho_N y\| \leq 4^{-q} \max_{A_1} r_1.$$

Let K be the set of linear forms on V of norm ≤ 1, and define the continuous plurisubharmonic function w by

$$w(x) = 2q \log(\|\psi(x)\| + 1/4) + \sup_{k \in K} v(\pi_N x + (k\psi(x))\varrho_N x), \quad x \in \pi_{N}^{-1}A_4.$$

To check that w is continuous and plurisubharmonic, it is enough to do the same for the sup in (2.7). As the argument $a(x, k) = \pi_N x + (k\psi(x))\varrho_N x$ is a holomorphic function of $(x, k) \in \pi_{N}^{-1}(A_4) \times V^*$ and v is continuous and plurisubharmonic on
Proposition 2.4. Let $0 < 4^2 \beta < \alpha < 4^{-2}$, $N = 1, 2, \ldots$. If $v \in \text{psc}(X)$, there is a continuous plurisubharmonic $w: \pi_{N+1}^{-1}\Omega \to \mathbb{R}$ such that

\[
 w(x)\begin{cases} < 0, & \text{if } x \in \Omega_N(\beta) \\ > v(x), & \text{if } x \in \Omega_{N+1}(4\alpha) \setminus \Omega_N(\alpha). \end{cases}
\]

Proof. Let $A_4 = \Omega \cap \pi_{N+1}X$ and with notation in (2.3), (2.5) define bounded sets

\[
 A_1 = \{ s \in A_4: p^N(s) \leq 4\beta \}, \quad A_2 = D^N(\alpha/4), \quad A_3 = D_{N+1}(4\alpha),
\]

of which A_1 is compact, and A_2, A_3 are open in A_4. Let furthermore $r_1 = 4\beta d$, $r_2 = \alpha d/4$, and $r_3 = 4\alpha d$. We apply Lemma 2.3 with N replaced by $N + 1$. Clearly $A_1 \subset A_2$ is plurisubharmonically, hence holomorphically convex in A_4 (see [H, Theorem 4.3.4]). By (2.3), (2.5), and by Proposition 2.2

\[
 A_1[r_1] \supset \Omega^N(4\beta) \supset \Omega_N(\beta), \quad A_2[r_2] = \Omega^N(\alpha/4) \subset \Omega_N(\alpha).
\]

Proposition 2.1b implies $\overline{A_2(r_2)} \subset \Omega_{N+1}(4\alpha) = A_3(r_3)$. Intersecting with $\pi_{N+1}X$, $\overline{A_2} \subset A_3$ follows, and $\overline{A_3} \subset A_4$ is obvious. Therefore by Lemma 2.3 there is a continuous plurisubharmonic $w: \pi_{N+1}^{-1}A_4 = \pi_{N+1}^{-1}\Omega \to \mathbb{R}$ as claimed: $w < 0$ on $A_1[r_1] \supset \Omega_N(\beta)$ and $w > v$ on $A_3(r_3) \setminus A_2(r_2) \supset \Omega_{N+1}(4\alpha) \setminus \Omega_N(\alpha)$.

3. Domination in the whole space.

We prove the following special case of Theorem 1.1:

Proposition 3.1. Suppose a Banach space X has a Schauder basis and $v: X \to \mathbb{R}$ is a locally bounded function. There is a $w \in \text{psc}(X)$ such that $u(x) < w(x)$ for $x \in X$.

We shall use the assumptions and the notation of section 2. If $x \in X$ and $\varepsilon > 0$, $B(x, \varepsilon) \subset X$ will stand for the ball of radius ε, centered at x. The key is the following

Proposition 3.2. Given $u: X \to \mathbb{R}$, suppose there is an $\varepsilon > 0$ and for every $x \in X$ a $w_x \in \text{psc}(X)$ such that $u < w_x$ on $B(x, \varepsilon)$. Then there is a $w \in \text{psc}(X)$ such that $u < w$.
Proof. We can assume \(u > 0 \) everywhere. Fix a positive \(\alpha < \min(\varepsilon, 4^{-2}) \), and with \(N = 1, 2, \ldots \), consider the compact set \(A = \overline{\Omega_N}(\alpha) \cap \pi_N X \); here \(\Omega_N(\alpha) \) refers to the exhaustion of \(X = \Omega \) defined in (2.3) or (2.4). As each \(t \in A \) has a neighborhood \(U \subset \pi_N X \) such that \(\Omega_N(\alpha) \cap \pi_N^{-1} U \subset B(t, \varepsilon) \), there is a finite \(T \subset A \) such that

\[
\Omega_N(\alpha) \subset \bigcup_{t \in T} B(t, \varepsilon).
\]

It follows that \(v_N = \max\{w_t; t \in T\} \in \text{psc}(X) \) satisfies \(v_N > u \) on \(\Omega_N(\alpha) \). Let \(0 < \beta < \alpha/4^2 \). By Proposition 2.4, there is \(w_N \in \text{psc}(X) \) with

\[
w_N(x) \begin{cases} < 0, & \text{if } x \in \Omega_N(\beta) \\ > v_N(x), & \text{if } x \in \Omega_{N+1}(\alpha) \setminus \Omega_N(\alpha), \end{cases}
\]

and \(w = \sup\{v_1, w_1, w_2, \ldots \} \) will do.

Proof of Proposition 3.1. Suppose the claim is not true, and \(u \) cannot be dominated by any \(w \in \text{psc}(X) \). In light of Proposition 3.2 there must be a ball \(B(x_1, 1) \) on which \(u \) cannot be dominated by a \(w \in \text{psc}(X) \), i.e.,

\[
u_1 = \begin{cases} u & \text{on } B(x_1, 1) \\ 0 & \text{on } X \setminus B(x_1, 1), \end{cases}
\]

cannot be plurisubharmonically dominated. Again by Proposition 3.2, there must be a ball \(B(x_2, 1/2) \) on which \(u_1 \) cannot be dominated, and so on. We obtain a sequence \(B(x_k, 1/k) \) of balls such that

\[
u_k = \begin{cases} u & \text{on } \bigcap_1^k B(x_j, 1/j) \\ 0 & \text{on } X \setminus \bigcap_1^k B(x_j, 1/j), \end{cases}
\]

cannot be plurisubharmonically dominated. In particular \(\bigcap_1^k B(x_j, 1/j) \neq \emptyset \). Hence \(\|x_j - x_k\| < (1/j) + (1/k) \), and the \(x_j \) have a limit \(x \). But \(u \) is bounded on some neighborhood of \(x \), so on some \(B(x_k, 1/k) \); hence \(u_k \) is bounded and can be dominated by a constant. This is a contradiction, which then proves the claim.

4. Domination in a general \(\Omega \).

Consider a pseudoconvex subset \(\Omega \) of a Banach space \(X \) that has a Schauder basis.

Proposition 4.1. Given a locally bounded \(u: \Omega \to \mathbb{R} \), there is a continuous plurisubharmonic \(w: \Omega \to \mathbb{R} \) such that \(u(x) < w(x) \) for \(x \in \Omega \).

Proof. Again we make the assumptions and use notation introduced in Section 2. Fix \(0 < \alpha < 4^{-2} \) and \(0 < \beta < \alpha/4^2 \). For \(N = 0, 1, \ldots \) let \(U_N = \bigcap_{j \geq N} \Omega_j(4\alpha) \). By Proposition 2.1c, these are open sets and exhaust all of \(\Omega \). We prove by induction that there are \(w_N \in \text{psc}(U_{N+1}) \) such that

\[
w_N \begin{cases} < 0 & \text{on } \Omega_N(\beta) \\ > u & \text{on } U_{N+1} \setminus U_N, \\ \end{cases} \quad \text{and} \quad w_N > w_{N-1} \text{ on } \partial U_N.
\]
(When $N = 0$, the last requirement is vacuous, $U_0 = \Omega_0 \langle 4\alpha \rangle = \emptyset$.) The functions

$$u_N = \begin{cases} u & \text{on } \overline{U_{N+1}} \\ 0 & \text{on } X \setminus \overline{U_{N+1}}, \end{cases}$$

are locally bounded. Applying Proposition 3.1 we obtain $w_0 \in \text{psc}(U_1)$ with $w_0 > u_0$; then (4.1) is satisfied for $N = 0$.

Next suppose that w_0, \ldots, w_{N-1} have already been found. Again by Proposition 3.1 there is $v \in \text{psc}(X)$ such that $v > u_N$ on X and $v > w_{N-1}$ on ∂U_N. Further, by Proposition 2.4 there is a continuous plurisubharmonic $v': \pi_{N+1}^{-1} \Omega \to \mathbb{R}$ such that

$$v' \begin{cases} < 0 & \text{on } \Omega_N \langle \beta \rangle \\ > v & \text{on } \Omega_{N+1} \langle 4\alpha \rangle \setminus \Omega_N \langle \alpha \rangle. \end{cases}$$

In view of Proposition 2.1b, $U_N \supset \Omega_N \langle \alpha \rangle$, and so $U_{N+1} \setminus U_N \subset \Omega_{N+1} \langle 4\alpha \rangle \setminus \Omega_N \langle \alpha \rangle$. It follows that $w_N = v'|U_{N+1} \in \text{psc}(U_{N+1})$ satisfies (4.1).

Define $w: \Omega \to \mathbb{R}$ by

$$(4.2) \quad w(x) = \sup \{w_N(x), w_{N+1}(x), \ldots\}, \quad \text{if } x \in U_{N+1} \setminus U_N, \ N = 0, 1, 2, \ldots.$$

By (4.1) and Proposition 2.1c, the sup is locally finite, and so defines a continuous plurisubharmonic function on $U_{N+1} \setminus \overline{U_N}$, hence on $\Omega \setminus \bigcup_{N \geq 1} \partial U_N$. But w is also continuous and plurisubharmonic in some neighborhood of any $x_0 \in \partial U_N$. Indeed, choose $N \leq M$ so that

$$x_0 \in \partial U_N \cap \partial U_{N+1} \cap \cdots \cap \partial U_M \cap U_{M+1}, \text{ and } x_0 \notin \overline{U_{N-1}}.$$

By (4.1), $w_M(x_0) > w_{M-1}(x_0) > \cdots > w_{N-1}(x_0)$. By continuity, it follows that for x near x_0,

$$w(x) = \sup \{w_M(x), w_{M+1}(x), \ldots\}, \quad \text{cf (4.2)}.$$

Since w_j for $j \geq M$ is continuous and plurisubharmonic on a neighborhood of x_0, so is w. Finally, (4.1) implies $w > u$, and the proof is complete.

5. Separable spaces.

Proposition 4.1 represents the first part of Theorem 1.1. To prove the second part, let X be separable and $\Omega \subset X$ convex and open. Embed X linearly into the space $X_0 = C[0, 1]$, so that $X \subset X_0$ is a (closed) linear subspace. We can assume $0 \in \Omega$. Let $B \subset X_0$ be an open ball centered at 0 such that $B \cap X \subset \Omega$. The convex hull Ω_0 of $B \cup \Omega$ is a convex, open subset of X_0. We claim that $\Omega_0 \cap X = \Omega$. Indeed, suppose $p \in X \setminus \Omega$. By the Hahn–Banach separation theorem, there is a real linear form $f: X \to \mathbb{R}$ such that

$$(5.1) \quad f(p) > f(x) \quad \text{for } x \in \Omega.$$

In particular, $f(p) > f(x)$ for $x \in B \cap X$. If $f_0: X_0 \to \mathbb{R}$ denotes a linear extension of f, having the same norm as f, then

$$(5.2) \quad f_0(p) > f_0(x) \quad \text{for } x \in B.$$
(5.1) and (5.2) imply $f_0(p) > f_0(x)$ for $x \in \Omega_0$, whence $p \notin \Omega_0$ as claimed. It follows that $\Omega = \Omega_0 \cap X$ is closed in Ω_0.

Any locally bounded $u: \Omega \to \mathbb{R}$ extends to the locally bounded function

$$u_0 = \begin{cases}
 u & \text{on } \Omega \\
 0 & \text{on } \Omega_0 \setminus \Omega.
\end{cases}$$

Since $X_0 = C[0,1]$ has a Schauder basis, by Proposition 4.1 u_0 can be dominated by a continuous plurisubharmonic v_0; then $v = v_0|\Omega$ dominates u, q.e.d.

References

[H] L. Hörmander, An introduction to complex analysis in several complex variables, (3rd ed.), North Holland, Amsterdam, 1990.

[J] B. Josefson, Approximation of holomorphic functions in certain Banach spaces, Internat. J. Math. 15 (2004), 467–471.

[L1] L. Lempert, Approximation of holomorphic functions of infinitely many variables, II, Ann. Inst. Fourier (Grenoble) 50 (2000), 423–442.

[L2] L. Lempert, Plurisubharmonic domination, J. Amer. Math. Soc. 17 (2004), 361–372.

[L3] L. Lempert, Vanishing cohomology for holomorphic vector bundles in a Banach setting, Asian J. Math. 8 (2004), 65–86.

[LP] L. Lempert, I. Patyi, Analytic sheaves in Banach spaces, Ann. Sci. Éc. Norm. Sup. 4ème série 40 (2007), 453–486.

[Me] F. Meylan, Approximation of holomorphic functions in Banach spaces admitting a Schauder decomposition, Ann. Scuola Norm. Sup. Pisa.(5) 5 (2006), 13–19.

[Mu] J. Mujica, Complex analysis in Banach spaces, North Holland, Amsterdam (1986).

[P1] I. Patyi, On complex Banach submanifolds of a Banach space, Contemp. Math. 435 (2007), 343–354.

[P2] I. Patyi, On holomorphic vector bundles over Banach spaces, Math. Ann. 341 (2008), 455–482.

[P3] I. Patyi, On holomorphic domination, I, arXiv:0910.0476.

[S] S. Simon, A Dolbeault isomorphism theorem in infinite dimensions, Trans. Amer. Math. Soc. 361 (2009), 87–101.

* *** *

Imre Patyi, Department of Mathematics and Statistics, Georgia State University, Atlanta, GA 30303-3083, USA, ipatyi@gsu.edu