Ruthenium nanoparticles decorated curl-like porous carbons for high performance supercapacitors

Bih-Show Lou, Pitchaimani Veerakumar, Shen-Ming Chen, Vediyappan Veeramani, Rajesh Madhu & Shang-Bin Liu

The synthesis of highly dispersed and stable ruthenium nanoparticles (RuNPs; ca. 2–3 nm) on porous activated carbons derived from Morina Oleifera fruit shells (MOC) is reported and were exploited for supercapacitor applications. The Ru/MOC composites so fabricated using the biowaste carbon source and ruthenium acetylacetonate as the co-feeding metal precursors were activated at elevated temperatures (600–900 °C) in the presence of ZnCl₂ as the pore generating and chemical activating agent. The as-prepared MOC carbonized at 900 °C was found to possess a high specific surface area (2522 m² g⁻¹) and co-existing micro- and mesoporosities. Upon incorporating RuNPs, the Ru/MOC nanocomposites loaded with modest amount of metallic Ru (1.0–1.5 wt%) exhibit remarkable electrochemical and capacitive properties, achieving a maximum capacitance of 291 F g⁻¹ at a current density of 1 A g⁻¹ in 1.0 M H₂SO₄ electrolyte. These highly stable and durable Ru/MOC electrodes, which can be facilely fabricated by the eco-friendly and cost-effective route, should have great potentials for practical applications in energy storage, biosensing, and catalysis.

Porous activated carbon (PAC)-related materials offer great advantages for practical applications, such as adsorbents, energy storage, catalyst supports, and electrodes for fuel cells. Moreover, owing to the intrinsic properties, such as high surface area, diversified morphology, good electrical conductivity, and tailorable porosity, PACs are also favorable materials as supports for metal nanoparticles (NPs) or metal oxides, and have been widely applied as biomolecule sensors, biomedical engineering materials, toxic molecules/heavy metal detectors, and supercapacitors. In terms of the latter, aside from the widely studied carbon materials such as graphene, carbon nanotubes, and ordered mesoporous carbons, PACs are easy to prepare, eco-friendly, and cost-effective; they may be prepared from renewable biomass precursors through facile carbonization and activation routes, for examples, from tree barks or leaves, plants, fruits, grain or seed shells, lignin, food derivatives, marine products, and so on. Typically, the synthesis of PACs from biomass feedstock invokes a chemical activation method in which activating agents such as ZnCl₂, KOH, NaOH, or H₃PO₄ are commonly introduced along with the biomass precursor. Upon completion of a subsequent carbonization treatment, the substrate was then washed with concentrated HCl to obtain the PAC as the final product.

We report herein the synthesis of stable, highly dispersed ruthenium nanoparticles (RuNPs) on PACs derived from Morina Oleifera fruit shells. Morina Oleifera is a fast-growing, deciduous tree also known as the "drumstick tree", mostly cultivated in Asian countries such as India, Philippines, and is also commonly seen in Africa, South America, the Caribbean and other Oceania countries. Compare to other biomass feedstock, Morina Oleifera, which belongs to the family of Moringaceae, is not only abundant in nature but also known to produce highly nutritious fruit that have medicinal and other applications. Moreover, the Morina Oleifera also contains cellulose, hemicellulose, and lignin that are desirable as precursors for fabrication of PACs with wormhole-like microstructures preferable as supports for electrochemical and energy storage applications. By graphitizing the biowaste carbon precursor, namely Morina Oleifera fruit shells along with ZnCl₂ as activating
Ru(acac)₃ followed by MW irradiation and thermal reduction at 900 °C; (c) activation and carbonization treatments; (d) addition of Ru(acac)₃, followed by MW irradiation and thermal reduction at 900 °C; (e) Ru/MOC nanocomposite electrode for supercapacitor application.

Figure 1. Illustration of the synthesis route for Ru/MOC nanocomposites. (a) Moringa Oleifera fruit shells; (b) thermal irradiation by microwave (MW); (c) activation and carbonization treatments; (d) addition of Ru(acac)₃, followed by MW irradiation and thermal reduction at 900 °C; (e) Ru/MOC nanocomposite electrode for supercapacitor application.

Ru(acac)₃ serves as the metal precursor as well as a secondary carbon source, which warrants not only simultaneous reduction of Ru(III) to Ru(0) but also a high dispersion of RuNPs on the carbon support. It is noteworthy that, here, the Ru(acac)₃ represents the first report to exploit Moringa oleifera fruit shells as the primary carbon source to fabricate PAC materials for such applications. As will be shown latter that the Ru/MOC nanocomposites prepared by this innovative facile and cost-effective route are indeed suitable as high-performance electrode materials for high-power supercapacitors.

Results and Discussion

Figure 2a shows the XRD patterns of the as-prepared MOC and Ru/MOC samples. For the MOC-Tₓ samples prepared at different carbonization temperatures (Tₓ = 600–900 °C), two broad peaks at 2θ = 22.2 and 43.4° respectively corresponding to the (002) and (100) diffractions of amorphous graphitic carbon were observed. On the other hand, for the Ru/MOC-900 composites reduced at 900 °C with different metal loadings (x = 1.0 and 1.5 wt%), additional sharp diffraction peaks at 2θ = 38.3, 42.2, 44.0, 58.3, 69.4, and 78.4° were evident, which may be assigned to the (100), (002), (101), (102), (110), and (103) diffraction planes of hexagonal close-packed (hcp) Ru metal (JCPDS-ICDD card No. 06-0663)⁶⁹. The Raman spectra of the MOC and Ru/OMC samples exhibited two main peaks located at 1363 and 1585 cm⁻¹ (Fig. 2b), which may be attributed to vibration bands of carbons in disordered graphite (D band) and the E₂g mode of the graphite (G band), which is related to vibrations of sp² carbon in two-dimensional (2D) graphene sheet. Moreover, for Ru/MOC-900 composites at 900 °C, an additional broadening peak corresponding to the overtone of the D band (i.e., the 2D band) at 2712 cm⁻¹ was also observed³¹. Accordingly, the G to D band intensity ratio (I₆/I₅) is usually used to assess the crystalline structure of the graphitic carbons, as depicted in Table 1. That an I₆/I₅ of 1.21 was observed for the MOC-900 and Ru/MOC-900, indicating a high degree of graphitization for the PAC supports.

Results obtained from N₂ adsorption/desorption isotherms (77 K) showed that all MOC-based samples exhibit H1-type isotherms (see Fig. 2c; cf. IUPAC classification). The presence of a weak hysteresis loop at P/P₀ of ca. 0.4 together with the notable increase in N₂ uptake at low relative pressures reveal the coexistence of micro- and mesoporosities in these carbon substrates.²² According to the specific surface areas and pore volumes responsible for the micro- and mesoporosities may be derived, as depicted in Table 1. Further calculations by density functional theory (DFT) indicate that these MOC materials have an average mesopore size of ca. 4.0 nm (see Supporting Information, Fig. S1). Based on the above results, it is clear that the MOC-900, which possesses the highest BET surface area (Sₚ = 2522 m² g⁻¹) and total pore volume (Vₚ = 1.78 cm³ g⁻¹), exhibits superior textural properties and I₆/I₅ value. Compared to its counterparts carbonized at relatively lower temperatures, it is indicative that the MOC-900 substrate is more suitable for application as electrode material owing to the anticipated higher electrical conductivity and porosity, which are favorable for electron transport and ion diffusion. Upon loading RuNPs onto the MOC-900 support, consistent decreases in both microporous and mesoporous surface area and pore volume with increasing Ru loading were observed (Table 1), indicating the successful dispersion of metal NPs in both types of pores. This is also supported by the pore size distribution profiles (Supporting Information, Fig. S1), which showed notable decrease in micropores along with narrowing of mesopore distribution.

The role of activating agent, namely ZnCl₂, during activation of MOC is worthy for further exploration. During the process, the impregnated ZnCl₂ tends to promote dehydration of the carbon substrate, leading to charring and aromatization along with the creation of porosities. It is anticipated that mobile liquid ZnCl₂ (m.p. ~
283 °C) should be formed during the initial stage of the activation. Further increasing the activation temperature beyond 750 °C (boiling point of ZnCl2 ca. 730 °C), strong interactions between carbon atoms and Zn species, which result in considerable collapses between the carbon interlayers to create pores in the matrix, as illustrated in Fig. 3.

It has been shown that the generation of micro- and mesoporosities (Table 1) is provoked by the elimination of hydrogen and oxygen atoms from the carbon substrate by ZnCl2, leading to the formation of water rather than oxygenated organic species. The amount of activating agent, activation temperature, and subsequent washing by HCl were all found to have profound effect on the evolution of porosity within the MOC. At a fixed activation temperature, a gradual increase in BET surface area \(S_{\text{tot}} \) of the as-synthesized MOC with increasing dosage of ZnCl2 was observed (Supporting Information, Fig. S2). For examples, at a low carbonization temperature (600 °C), the MOC prepared in absence of ZnCl2 exhibited a rather low \(S_{\text{tot}} = 50.6 \text{ m}^2 \text{ g}^{-1} \). On the other hand, the surface area of MOC increased from ca. 210 to 718 \text{ m}^2 \text{ g}^{-1} \) when prepared in the presence of 0.5 and 2.0 g of the activating agent (Supporting Information, Fig. S3). A more pronounced effect was found for activation temperature, for example, upon increasing the temperature from 600 to 900 °C while in presence of a fixed amount of activating agent.

![Figure 2](https://example.com/figure2.png)

Figure 2. Physicochemical properties of various MOC-Tc and Ruₓ/MOC-Tc materials. (a) XRD profiles. (b) Raman spectra. (c) \(N_2 \) adsorption/desorption isotherms. (d) TGA curves.

Sample	\(T_c \) (°C)	Ru loading (wt%)	\(M_p \) (nm)	\(S_{\text{tot}} \) (m² g⁻¹)	\(S_{\text{micro}} \) (m² g⁻¹)	\(V_{\text{mic}} \) (cm³ g⁻¹)	\(V_{\text{meso}} \) (cm³ g⁻¹)	\(D_p \) (Å)	\(I_g/I_D \) (%)
MOC-600	600	—	—	718	286	0.98	0.20	0.78	3.7
MOC-700	700	—	—	1384	456	1.02	0.30	0.72	3.8
MOC-800	800	—	—	1924	480	1.33	0.39	0.94	3.9
MOC-900	900	—	—	2522	576	1.78	0.46	1.33	4.3
Ruₓ/MOC-900	900	1.0	2.8	2473	506	1.69	0.37	1.32	4.1
Ruₓ/MOC-900	900	1.5	3.1	2015	439	1.48	0.29	1.19	3.9

Table 1. Textural properties of various as-prepared MOC and Ru/MOC samples. (a) Carbonization temperature in °C. (b) Ru loading in wt% deduced from EDX and TGA results. (c) RuNP size in nm determined by FE-TEM analysis. (d) Brunauer-Emmet-Teller (BET) surface areas in unit of m² g⁻¹; \(S_{\text{tot}} \) and \(S_{\text{micro}} \) denotes total and microporous surface area, respectively; \(S_{\text{micro}} \) determined by t-plot analysis. (e) Total pore volume in cm³ g⁻¹ calculated at P/P₀ = 0.99 of the N2 adsorption/desorption isotherm; \(V_{\text{tot}}, V_{\text{micro}}, \) and \(V_{\text{meso}} \) represents total, microporous, and mesoporous pore volume, respectively, \(V_{\text{meso}} = V_{\text{tot}} - V_{\text{micro}} \). (f) Average pore size determined by non-local DFT calculations. (g) G to D band intensity ratio obtained from Raman data.
ZnCl₂ (2.0 g), the surface area of the resulting MOC increased drastically from 718 to 2522 m² g⁻¹. These results are consistent with earlier literature reports. The TGA profiles of various MOC and Ru/MOC nanocomposites are displayed in Fig. 2d, their corresponding DTA curves are shown in Fig. S4 of the Supporting Information. Aside from the slight weight-loss below 150 °C due to desorption of physisorbed water, all samples also showed a strong weight-loss at ca. 620 °C, which should be associated with combustion of the MOC material. The nearly complete weight-loss observed for the as-synthesized MOC-Tₚ (Tₚ = 600–900 °C), indicating a complete oxidation of MOC by combustion and that nearly no trace of other ingredients (e.g., Zn species) were present in the PAC materials. By comparison, while the Ru-loaded MOCs also exhibited two distinct weight-loss peaks at 50–150 and 400–620 °C, respectively, a residual weight-loss of ca. 9.8 and 11.6 wt% was observed for the Ru₁/MOC-900 and Ru₁.5/MOC-900, respectively, indicating the anticipated presence of remanent ruthenium oxides.

The morphology and structural properties of the as-synthesized and Ru-loaded MOCs are examined by using FE-SEM/TEM, as shown in Figs 4 and 5. The as-prepared MOCs clearly possess abundant porosities, which tend to increase with increasing carbonization temperature, as illustrated in the magnified SEM and TEM images (see Supporting Information, Figs. S5 and S6). This can be seen by the TEM images of MOC-900 sample taken at...
different magnifications (Fig. 4), which clearly indicate the presence of interconnected micro- and mesopores with a curl-like morphology. For the MOC-900, a rather broad distribution of mesopore sizes in the range of ca. 5–20 nm on the surfaces of the curl-like MOCs may be inferred.

Moreover, the dispersion of RuNPs on the surfaces of MOC-900 may be clearly observed for both Ru-loaded samples, as shown in Fig. 5. Further analysis indicate that the RuNPs has an average particle size of ca. 3 nm for both Ru1.5/MOC-900 and Ru1.0/MOC-900 nanocomposites, as illustrated in Fig. S7 of the Supporting Information. For the latter, analysis based on selected area electron diffraction (SAED) pattern (Inset, Fig. 5c) revealed the presence of (100), (002), (101), (102), (110), and (103) reflections corresponding to crystalline hcp structure of Ru metal. Based on the FE-TEM image of a single Ru metal NP (Fig. 5d), a lattice spacing of 0.230 nm was determined, in excellent agreement with the value derived from the XRD data of the (002) lattice plane (Fig. 2a). Moreover, analysis of the energy-dispersive X-ray (EDX) result (Fig. 5e) indicates the existence of various signals corresponding to C Kα (0.2 keV), Cu Lα,β (0.9 keV), Cu Kα (8.0 keV), Cu Kβ (8.9 keV), Ru Lα,β (2.6 keV), Ru Lγ (3.2 keV), and Ru Kα (19.2 keV), respectively. The Cu signals arise from diffuse scattering of the Cu grid support80. The above results confirm a complete thermal reduction of Ru(acac)3 to RuNPs, which are uniformly dispersed over the structural framework of the MOC support.

The surface properties of the MOC-900 sample and Ru/MOC composites were further examined by X-ray photoelectron spectroscopy (XPS), as shown in Fig. 6. The XPS survey spectrum of the as-prepared MOC-900 (Fig. 6a) exhibits the anticipated C 1s (282–290 eV) and O 1s (530–535 eV) signals. The spectrum near the C 1s and O 1s regions, which are displayed in Fig. 6d,e, respectively, may further be deconvoluted to identify C–C (284.8 eV), C–O (286.0 eV), and C=O (289.2 eV) functional groups as well as the corresponding oxygen states of C=O (521.8 eV) and C–O (533.1 eV). For the Ru1.0/MOC-900 and Ru1.5/MOC-900 nanocomposites, additional overlapping peaks at binding energy of 284.3 and 280.7 eV may be ascribed to the characteristic peak of Ru 3d^{3/2} and Ru 3d^{5/2}81, further confirming the formation of metallic Ru by the chemical reduction.

Electrochemical Behavior of Ru/MOC-900 Electrodes. The electrochemical properties of the MOC-900, Ru1.0/MOC-900, and Ru1.5/MOC-900 electrode materials were assessed by cyclic voltammetry (CV) and galvanostatic charge-discharge (GCD) method. The CV curves observed for various Ru/MOC-based electrodes in 1.0 M H₂SO₄ aqueous electrolyte solution are depicted in Fig. 7a, which all exhibited the typical rectangular shape electro double-layer capacitor (EDLC) behavior. Nonetheless, compared to the Ru/MOC electrode, the metal-free MOC-900 electrode showed only weak capacitive behavior. Among the three MOC-based electrodes examined, the Ru1.0/MOC-900 electrode was found to exhibit an excellent pseudocapacitive redox property in the potential ranges of 0.4–0.6 V. As shown earlier, the RuNPs embedded in the Ru/MOC-900 are highly dispersed in the carbon support, leading to a notable decrease in total surface area and pore volume with increasing metal loading (Table 1). As such, the inferior capacitive performance observed for the Ru1.0/MOC-900 electrode compared to its counterpart with lower Ru loading (1.0 wt%) may be attributed to hindrance in electron transport and ion diffusion.
Figure 6. XPS spectra of various samples: (a) as-prepared MOC-900, (b) Ru₁.₀/MOC-900, and (c) Ru₁.₅/MOC-900 and their corresponding (d) C₁s and (e) O₁s spectrum.

Figure 7. Electrochemical performances of assorted MOC-based electrodes. (a) CV curves recorded in 1.₀ M H₂SO₄ aqueous electrolyte at a scan rate of 10 mV s⁻¹. (b) Corresponding specific capacitances observed for various electrodes. (c) CV curves recorded at different scan rates (10–500 mV s⁻¹). (d) GCD curves at different current densities (1–20 A g⁻¹). (e) Variations of specific capacitance with current density. (f) Cyclic stability test at a constant current density of 4 A g⁻¹.
by the embedded metal. Overall, a maximum capacitance of 291 F g\(^{-1}\) was observed for the Ru\(_{1.0}\)/MOC-900 electrode comparing to that of its MOC-900 and Ru\(_{1.5}\)/MOC-900 counterparts, as shown in Fig. 7b.

To further assess the characteristics of the Ru\(_{1.0}\)/MOC-900 nanocomposite for its practical application as electrode material for supercapacitors, we conducted further electrochemical studies. As can be seen from the CV curves recorded at varied scan rates from 10 to 500 mV s\(^{-1}\) shown in Fig. 7c, all curves retained the rectangular-shape even at high scan rates, which indicates that the Ru\(_{1.0}\)/MOC-900 electrode indeed exhibits excellent capacitive property with good electrical conductivity\(^{82}\). Moreover, based on the GCD curves measured for the Ru\(_{1.0}\)/MOC-900 electrode at different current densities from 1 to 20 A g\(^{-1}\) (Fig. 7d), a gradual decrease in the corresponding specific capacitance with current density from 291 to 94 F g\(^{-1}\) was observed (Fig. 7e). The durability of the Ru/MOC electrode was also evaluated. As shown in Fig. 7f, the Ru\(_{1.0}\)/MOC-900 electrode retained over 90% of its initial capacitance after more than 2000 charge-discharge cycles when recorded at a constant current density of 4 A g\(^{-1}\), revealing an extraordinary stability and durability. For comparison, the textural and capacitive properties of other activated carbon (AC)-electrodes derived from various biomass feedstock are depicted in Table 2\(^{23,24,28,45–52}\). It is indicative that the Ru/MOC electrode exhibits comparable capacitive performance even with a modest Ru loading of only 1 wt%. The MOC material derived from Moringa Oleifera fruit shells clearly has the advantage of achieving a high surface area (2473 m\(^2\) g\(^{-1}\)), this together with the use of a activating agent (ZnCl\(_2\)) and thermal reduction procedures help to facilitate dispersion of the metal (Ru) NPs and formation of micro- and mesoporosities favorable for electron transport and ion diffusion in the MOC matrix, hence, the superior electrochemical performances and excellent stability and durability well-suited for application of high-performance supercapacitors.

To enhance the energy densities, the fabricated symmetric cell supercapacitor was operated at various potential ranges (Fig. 8a) and scan rates (Fig. 8b). Accordingly, the corresponding calculated specific capacitance of 36.2 to 11.5 F g\(^{-1}\) was obtained using the known total mass of the electrodes. The increase in capacitive current with increasing scan rate may be ascribed due to intercalation and deintercalation of ions\(^{88}\). Likewise, the GCD curves recorded at different potential ranges and current densities are displayed in Fig. 8c,d, respectively, which corresponds to a maximum specific capacitance and current density of 31.6 F g\(^{-1}\) and 0.25 A g\(^{-1}\), respectively. The curves recorded at different potential ranges and current densities are displayed in Fig. 8c,d, respectively, which corresponds to a maximum specific capacitance and current density of 31.6 F g\(^{-1}\) and 0.25 A g\(^{-1}\), respectively. The specific capacitance so obtained is comparable to earlier literature reports\(^{83}\).

The long-term stability of the symmetric cell supercapacitor was also tested up to 1000 charge-discharge cycles at a current density of 0.75 A g\(^{-1}\). As a result, ca. 97% of its initial capacitance was retained after 1000 cycles (Fig. 8e). Finally, the correlation between power and energy densities of such solid-state device was also investigated; a maximum energy density of 6.3 Wh kg\(^{-1}\) at a power density of 250 W kg\(^{-1}\) was achieved (Fig. 8e).

In summary, a series of novel porous activated carbon materials derived from Moringa Oleifera fruit shells via a facile annealing and chemical activation process using ZnCl\(_2\) as activating agent have been developed and exploited as electrode support for electrochemical energy storage. When incorporated with RuNPs by thermal reduction using ruthenium(III) acetylacetonate as the metal precursor, the Ru/MOC materials so fabricated exhibit not only superior textural properties but also excellent capacitive properties with extraordinarily stability and durability. A maximum specific capacitance of 291 F g\(^{-1}\) was achieved for the Ru\(_{1.0}\)/MOC-900° C electrode (Ru loading 1.0 wt%; activation temperature 900° C) at a current density of 1 A g\(^{-1}\). The results obtained from a cyclic charge-discharge test showed that the same electrode retained more than 90% of its original capacitance after 2000 consecutive test cycles at 4 A g\(^{-1}\). We believe that these MOC materials, which possess desirable textural properties, co-existing micro- and mesoporosities, and good electrical conductivities should render prospective applications in high-performance energy storage devices, biosensors, and catalysis, especially when combining with different metal oxides or conductive polymers as porous composites.

Experimental Materials. Research grade ruthenium(III) acetylacetonate (Ru(acac)\(_3\), 96%; Acros), zinc chloride (ZnCl\(_2\); Sigma-Aldrich), potassium hydroxide (KOH; Sigma-Aldrich) and poly vinyl alcohol (PVA; Shimakyu) were purchased commercially and used without further purification. Drumstick fruit shells (Moringa Oleifera; Family: Moringaceae) were collected from Theni district, Tamil Nadu, India. All solutions were prepared using doubly distilled water.

Biomass feedstock	Surface area (m\(^2\) g\(^{-1}\))	Precursor/ZnCl\(_2\)	Electrolyte	Reference	
Sugar cane bagasses	1080	1:1.75	300	1 M H\(_2\)SO\(_4\)	23
Banana fibers	1097	1:5	296	1 M Na\(_2\)SO\(_4\)	28
Coffee beans	1019	1:1	368	1 M H\(_2\)SO\(_4\)	45
Coffee shells	842	1:20	150	6 M KOH	46
Camellia Oleifera fruit shells	1935	1:4	374	1 M H\(_2\)SO\(_4\)	47
Walnut shells	1073	2 M ZnCl\(_2\)	117	6 M KOH	48
Fermented rice	2106	—	219	0.1 M KOH	49
Potato wastes	1052	1:2	255	2 M KOH	50
Coconut shells	2440	1:3	246	0.5 M H\(_2\)SO\(_4\)	51
Waste filter paper	2170	1:4	302	6 M KOH	52
Moringa Oleifera fruit shells	2473	1:1	291	1 M H\(_2\)SO\(_4\)	This work

Table 2. Comparisons of textual and capacitive properties of various biomass-derived activated carbons. (a) BET surface area in m\(^2\) g\(^{-1}\). (b) Ratio of carbon precursor to ZnCl\(_2\). (c) Capacitance in F g\(^{-1}\).
Characterization Methods. All powdered x-ray diffraction (XRD) experiments were recorded on a PANalytical (X’Pert PRO) diffractometer using CuKα radiation (λ = 0.1541 nm). Nitrogen adsorption/desorption isotherm measurements were carried out on a Quantachrome Autosorb-1 volumetric adsorption analyzer at −196 °C. Prior to measurement, the sample was purged with flowing N₂ at 150 °C for at least 12 h. The pore size distributions were derived from density functional theory (DFT) calculations. The morphology of the sample was studied by field-emission transmission electron microscopy (FE-TEM) at room temperature (25 °C) using an electron microscope (JEOL JEM-2100F) operating at 200 kV. Elemental compositions of various samples were carried out with an energy-dispersive x-ray (EDX) analyser; an accessory of the FE-TEM facility. X-ray photoelectron spectroscopy (XPS) measurements were performed using a ULVAC-PHI PHI 5000 VersaProb apparatus. Thermogravimetric analyses (TGA) were done on a Netzsch TG-209 instrument under air atmosphere. All Raman spectra were recorded on a Jobin Yvon T64000 spectrometer equipped with a charge coupled device (CCD) detector cooled with liquid nitrogen. The backscattering signal was collected with an Ar⁺ laser centered at 488 nm as the excitation source.

Synthesis of Activated Carbon (MOC). The Moringa Oleifera fruit shells were first air-dried and cut into pieces, then subjected to microwave irradiation (typically for 1–2 h) to obtain the pyrolytic MO fruit shells (denoted as MOFS). Typically, the activation of the carbon precursor was carried out by impregnating 1.0 g of MOFS in aqueous solution of ZnCl₂ (2.0 g) under sonication, followed by an evaporation treatment at 80 °C. The dried MOFS/ZnCl₂ mixture was then heated at different temperatures (600, 700, 800, and 900 °C) for 5 h under...
N₂ atmosphere at a heating rate of 5 oC min⁻¹. Finally, the sample was washed with 2 M HCl solution and washed with hot deionized water until reaching a pH = 7. The sample was then dried at 80 °C in an air oven. The final as-synthesized carbon products so obtained are named as activated *Morinda Oleifera* carbons (MOCs) and the samples prepared at different carbonization temperature (Tc; in °C) are denoted as MOC-Tc.

Preparation of Ru/MOC nanocomposite. Typically, a known amount of activated carbon (MOC) was first impregnated in nitric acid (HNO₃) solution for 3 h at 80 °C in an ultrasonic bath. The hydrophilic mixture was then filtrated and dried at room temperature. Then, 0.1 g of the treated powdered MOC-900 sample was impregnated into an ethanol solution (3 mL) containing desirable amount of Ru(acac)₃ under continuous ultrasonication for 1 h. Subsequently, the sample vacuum dried to remove the solvent, then subjected to microwave irradiation (at 200 °C for 2 h), followed by pyrolysis at high temperature (900 °C) under N₂ atmosphere for 5 h. The nanocomposites so prepared are denoted as Ru/MOC-900, where x represents the Ru loading (x = 1.0 or 1.5 wt%).

Fabrication of Ru/MOC Electrodes. For supercapacitor applications, the Ru/MOC-electrodes were prepared by mixing Ru/MOC (85 wt%) and graphite (15 wt%) with 0.4 mL of N-methylpyrrolidone to form a homogeneous slurry. Then, ca. 15 μL of the above slurry was coated on a stainless steel electrode with a dimension of about 1 x 1 cm² by means of the solution-casting method, followed by drying overnight at 60 °C. The mass loading of Ru/MOC on the substrate was estimated to be ca. 1.5 mg cm⁻². For comparison purpose, separate MOC-electrodes (in absence of Ru) were also prepared following the above procedures. For fabricating the symmetric supercapacitor cell, two Ru/MOC electrodes were attached face to face by using PVA/H₂SO₄ gel electrolyte as a separator.

Electrochemical Studies. Electrochemical properties of various MOC-900 and Ru/MOC-900 electrodes were assessed by using a three-electrode system (in 1.0 M KOH aqueous electrolyte solution) consisting of the fabricated working electrode, Ag/AgCl as the reference electrode, and a platinum (Pt) wire as the counter electrode. All the cyclic voltammetry (CV) and galvanostatic charge-discharge (GCD) experiments were performed on an electrochemical work station (CH Instrument; CHI627). Prior to each measurement, the cell was soaked in the aqueous electrolyte solution (1 M H₂SO₄) for a few hours. Typically, the CV profiles of the electrodes were recorded in the potential range of –1.0 to 0.0 V. The specific capacitance of various electrodes were calculated according to equation reported elsewhere²⁰,²⁴.

References

1. Lee, J., Kim, J. & Hyeon, T. Recent progress in the synthesis of porous carbon materials. *Adv. Mater.* **18**, 2073–2094 (2006).
2. Hu, Z., Srinivasan, M. & Ni, Y. Preparation of mesoporous high-surface-area activated carbon. *Adv. Mater.* **12**, 62–65 (2000).
3. Vix-Guterl, C. et al. Electrochemical energy storage in ordered porous carbon materials. *Carbon* **43**, 1293–1302 (2005).
4. Chen, Y. & Liu, Y. Preparation of porous carbon with high dispersion of Ru nanoparticles by sol-gel method and its application in hydrogen storage. *J. Mater. Chem. A* **2**, 9193–9199 (2014).
5. Roldán, L., Marco, Y. & García-Bordéjé, E. Function of the support and metal loading on catalytic carbon dioxide reduction using ruthenium nanoparticles supported on carbon nanofibers. *ChemCatChem* **7**, 1347–1356 (2015).
6. Li, Y., Pan, C., Han, W., Chai, H. & Liu, H. An efficient route for the preparation of activated carbon supported ruthenium catalysts with high performance for ammonia synthesis. *Catal. Today* **174**, 97–105 (2011).
7. Veerakumar, P. et al. Highly stable and active palladium nanoparticles supported on porous carbon for practical catalytic applications. *J. Mater. Chem. A* **2**, 16015–16022 (2014).
8. Liu, S. H. et al. Controlled synthesis of highly dispersed platinum nanoparticles in ordered mesoporous carbons. *Chem. Commun.* **52**, 3435–3437 (2016).
9. Liu, S. H. et al. Fabrication and characterization of well-dispersed and highly stable PtRu nanoparticles on carbon mesoporous material for applications in direct methanol fuel cell. *Chem. Mater.* **20**, 1622–1628 (2008).
10. Liu, S. H., Chiang, C. C., Wu, M. T. & Liu, S. B. Electrochemical activity and durability of platinum nanoparticles supported on ordered mesoporous carbons for oxygen reduction reaction. *Int. J. Hydrogen Energy* **35**, 8149–8154 (2010).
11. Liu, S. H. et al. Fabrication and electrocatalytic performance of highly stable and active platinum nanoparticles supported on nitrogen-doped ordered mesoporous carbons. *J. Mater. Chem. B* **1**, 12489–12496 (2011).
12. Hung, C. T. et al. Highly nitrogen-doped mesoscopic carbons as efficient metal-free electrocatalysts for oxygen reduction reactions. *J. Mater. Chem. A* **2**, 20030–20037 (2014).
13. Veerakumar, P. et al. Porous carbon-modified electrodes as highly selective and sensitive sensors for detection of dopamine. *Analyst* **139**, 4994–5000 (2014).
14. Veeramani, V., Madhu, R., Chen, S. M., Veerakumar, P. & Liu, S. B. Heteroatom-enriched porous carbon/nickel oxide nanocomposites as enzyme-free highly sensitive sensors for detection of glucose. *Sens. Actuators B* **221**, 1384–1390 (2015).
15. Veeramani, V. et al. Cajeput leaf bark derived activated carbon for the practical electrochemical detection of vanillin. *New J. Chem.* **39**, 9109–9115 (2015).
16. Cha, C., Shin, S. R., Annabi, M. R. & Khademhosseini, A. Carbon-based nanomaterials: multifunctional materials for biomedical engineering. *ACS Nano* **7**, 2891–2897 (2013).
17. Veerakumar, P. et al. Nickel nanoparticles decorated porous carbons for highly active catalytic reduction of organic dyes and sensitive detection of Hg(II) ions. *ACS Appl. Mater. Interfaces* **7**, 24810–24821 (2015).
18. Madhu, R., Veeramani, V. & Chen, S. M. Fabrication of a novel gold nanospheres/activated carbon nanocomposite for enhanced electrocatalytic activity toward the detection of toxic hydrazine in various water samples. *Sens. Actuators B* **204**, 382–387 (2014).
19. Gao, Y. et al. Chemical activation of carbon nano-onions for high-rate supercapacitor electrodes. *Carbon* **51**, 52–58 (2013).
20. Madhu, R., Veeramani, V., Chen, S. M., Veerakumar, P. & Liu, S. B. Functional porous carbon/nickel oxide nanocomposites as binder-free electrodes for supercapacitors. *Chem. Eur. J.* **21**, 8200–8206 (2015).
21. Wang, K. et al. Promising biomass-based activated carbons derived from willow catkins for high performance supercapacitors. *Electrochimica Acta* **166**, 1–11 (2015).
22. Wang, R. et al. Promising porous carbon derived from celtuce leaves with outstanding supercapacitance and CO₂ capture performance. *ACS Appl. Mater. Interfaces* **4**, 5800–5806 (2012).
23. Rufford, T. E., Hulicova-Jurcakova, D., Khosta, K., Zhu, Z. & Lu, G. Q. Microstructure and electrochemical double-layer capacitance of carbon electrodes prepared by zinc chloride activation of sugar cane bagasse. *J. Power Sources* **195**, 912–918 (2010).
24. Madhu, R., Sankar, K. V., Chen, S. M. & Selvan, R. K. Eco-friendly synthesis of activated carbon from dead mango leaves for the ultrahigh sensitive detection of toxic heavy metal ions and energy storage applications. RSC Adv. 4, 1225–1233 (2014).

25. Li, J. & Wu, Q. Water bamboo-derived porous carbons as electrode materials for supercapacitors. New J. Chem. 39, 3859–3864 (2015).

26. Li, Z. et al. A sheet-like porous carbon for high-rate supercapacitors produced by the carbonization of an eggplant. Carbon 92, 11–14 (2015).

27. Wu, X. et al. Biomass-derived sponge-like carbonaceous hydrogels and aerogels for supercapacitors. ACS Nano 7, 5389–5397 (2013).

28. Subramanian, V. et al. Supercapacitors from activated carbon derived from banana fibers. J. Phys. Chem. C 111, 7527–7531 (2007).

29. Senthilkumar, S. T., Kalai Selvan R., Melo, J. S. & Sanjeeviraja, C. High performance solid-state electric double layer capacitor from redox mediated gel polymer electrolyte and renewable tamarind fruit shell derived porous carbon. ACS Appl. Mater. Interfaces 5, 10541–10550 (2013).

30. Sun, L. et al. From coconut shell to porous graphene-like nanosheets for high-power supercapacitors. J. Mater. Chem. A 1, 6462–6470 (2013).

31. Gao, Y. et al. Porous carbon made from rice husk as electrode material for electrochemical double layer capacitor. Appl. Energy 153, 41–47 (2015).

32. Madhu, R. et al. Honeycomb-like porous carbon-coalt oxide nanocomposite for high-performance enzymeless glucose sensor and supercapacitor applications. ACS Appl. Mater. Interfaces 7, 15812–15820 (2015).

33. Xiong, W. et al. Composite of macroporous carbon with honeycomb-like structure from mullusc shell and NiCo2O4 nanowires for high-performance supercapacitor. ACS Appl. Mater. Interfaces 6, 19416–19423 (2014).

34. Huang, J. et al. Hierarchical porous graphene carbon-based supercapacitors. Chem. Mater. 27, 2107–2113 (2015).

35. Guevara, A. P.

36. Richter, N., Siddhuraju, P. & Becker, K. Evaluation of nutritional quality of moringa (Moringa oleifera Lam.) leaves as an alternative protein source for Nile tilapia (Oreochromis niloticus L.). J. Ethnopharmacol. 197, 55–61 (2015).

37. Amaglo, N. K.

38. Sui, Z., Meng, Q., Zhang, X., Ma, R. & Cao, B. Green synthesis of carbon nanotube-graphene hybrid aerogels and their use as versatile agents for water purification. J. Mater. Chem. B 2, 8767–8771 (2012).

39. Wang, W. et al. Hydrous ruthenium oxide nanoparticles anchored to graphene and carbon nanotube hybrid foam for supercapacitors. Sci. Rep. 4, 44 (2014).

40. Lin, Y. S., Lee, K. Y., Chen, K. Y. & Huang, Y. S. Superior capacitive characteristics of RuO2 nanorods grown on carbon nanotubes. Appl. Surf. Sci. 256, 1042–1049 (2009).

41. Kim, Y. T., Tadai, K. & Mitani, T. Highly dispersed ruthenium oxide nanoparticles on carboxylated carbon nanotubes for supercapacitor electrode materials. J. Mater. Chem. 15, 4914–4921 (2005).

42. Ferrero, G. A., Sevilla, M. & Fuertes, A. B. Mesoporous carbons synthesized by direct carbonization of citrate salts for use as high-performance capacitors. Carbon 88, 239–251 (2015).

43. Li, H., Wang, R. & Cao, R. Physical and electrochemical characterization of hydrous ruthenium oxide/ordered mesoporous carbon composites as supercapacitor. Micropor. Mesopor. Mater. 111, 22–38 (2008).

44. Zhang, C. et al. Enhanced electrochemical performance of hydrous RuO2/mesoporous carbon nanocomposites via nitrogen doping. ACS Appl. Mater. Interfaces 6, 9751–9759 (2014).

45. Porada, S. et al. Direct prediction of the desalination performance of porous carbon electrodes for capacitive deionization. Energy Environ. Sci. 6, 3700–3712 (2013).

46. Rufford, T. E., Hulicova-Jurcakova, D., Zhu, Z. & Lu, G. Q. Hydrous ruthenium oxide nanoparticles anchored to graphene and carbon nanotube hybrid foam for supercapacitors. Sci. Rep. 4, 44 (2014).

47. Zhang, J., Gao, S. et al. Large scale production of biomass-derived N-doped porous carbon spheres for oxygen reduction and supercapacitors. J. Mater. Chem. A 2, 3317–3324 (2015).

48. Ma, G. et al. Nitrogen-doped porous carbon derived from biomass waste for high-performance supercapacitor. Bioresource Technol. 197, 137–142 (2015).

49. Jain, A. et al. Mesoporous activated carbons with enhanced porosity by optimal hydrothermal pre-treatment of biomass for supercapacitor applications. Micropor. Mesopor. Mater. 218, 55–61 (2015).

50. Chang, B., Guo, Y., Li, Y. & Yang, H. Hierarchical porous carbon derived from recycled waste filter paper as high-performance supercapacitor electrodes. RSC Adv. 5, 72019–72027 (2015).

51. Hayashi, J., Kaezahaya, A., Munoyama, K. & Walkinson, A. P. Preparation of activated carbon from lignin by chemical activation. Carbon 38, 1873–1878 (2000).

52. Lei, H., Wang, Y. & Hsu, J. Porous graphitic carbon materials prepared from cornstarch with the assistance of microwave irradiation. Micropor. Mesopor. Mater. 210, 39–45 (2015).

53. Olson, M. E. & Carlquist, S. Stem and root anatomical correlations with life form diversity, ecology, and systematics in Moringa (Moringaceae). Bot. J. Linn. Soc. 135, 315–348 (2001).

54. Iqbal, S. & Banger, M. I. Effect of season and production location on antioxidant activity of Moringa oleifera leaves grown in Pakistan. J. Food Compos. Anal. 19, 544–551 (2006).

55. Richter, N., Siddhuraju, P. & Becker, K. Evaluation of nutritional quality of moringa (Moringa oleifera Lam.) leaves as an alternative protein source for Nile tilapia (Oreochromis niloticus L.). Aquaculture 217, 399–611 (2003).

56. Amaglo, N. K. et al. Profiling selected phytochemicals and nutrients in different tissues of the multipurpose tree Moringa oleifera L., grown in Ghana. Food Chem. 122, 1047–1054 (2010).

57. Guevara, A. P. et al. An antitumor promoter from Moringa oleifera Lam. Mutat. Res. Genet. Toxicol. Environ. Mutagen. 440, 181–188 (1999).

58. Costa-Lotufo, L. V. et al. Studies of the anticancer potential of plants used in Bangladeshi folk medicine. J. Ethnopharmacol. 99, 21–30 (2005).

59. Mahajan, S. G. & Mehta, A. A. Immunosuppressive activity of ethanolic extract of seeds of Moringa oleifera Lam in experimental immune inflammation. J. Ethnopharmacol. 130, 183–186 (2010).

60. Warhurst, A. M., Mcconnachie, G. L. & Pollard, S. J. T. Characterisation and applications of activated carbon produced from Moringa oleifera seed husks by single-step steam pyrolysis. Water Res. 31, 759–766 (1997).

61. Pollard, S. J. T., Thompson, F. E. & Mcconnachie, G. L. Microporous carbons from Moringa oleifera husks for water purification in less developed countries. Water Res. 29, 337–347 (1995).

62. Akhtar, M., Hasany, S. M., Bhanzer, M. I. & Iqbal, S. Sorption potential of Moringa oleifera pods for the removal of organic pollutants from aqueous solutions. J. Hazard. Mater. 141, 546–556 (2007).
65. Bhuptawat, H., Folkard, G. K. & Chaudhari, S. Innovative physico-chemical treatment of wastewater incorporating Moringa oleifera seed coagulant. *J. Hazard. Mater.* **142**, 477–482 (2007).
66. Warhurst, A. M., Fowler D., Mcconnachie, G. L. & Pollard, S. J. T. Pore structure and adsorption characteristics of steam pyrolysis carbons from Moringa oleifera. *Carbon* **35**, 1039–1045 (1997).
67. Kalavathy, M. H., Swaroop, G., Padmini, E. & Miranda, L. R. A biosorbent for resorcinoladsorption-isotherm and kinetic studies. *Carbon Lett.* **10**, 23–32 (2009).
68. Kim, T. W., Park, I. S. & Ryoo, R. A. synthetic route to ordered mesoporous carbon materials with graphitic pore walls. *Angew. Chem. Int. Ed.* **42**, 4375–4379 (2003).
69. Liu, J., Bai, P. & Zhao, X. S. Ruthenium nanoparticles embedded in mesoporous carbon microfibers: preparation, characterization and catalytic properties in the hydrogenation of D-glucose. *Phys. Chem. Chem. Phys.* **13**, 3758–3763 (2011).
70. Malard, L. M., Pimenta, M. A., Dresselhaus, G. & Dresselhaus, M. S. Raman spectroscopy in graphene. *Phys. Rep.* **473**, 51–87 (2009).
71. Dong, X. et al. Synthesis of graphene-carbon nanotube hybrid foam and its use as a novel three-dimensional electrode for electrochemical sensing. *J. Mater. Chem.* **22**, 17044–17048 (2012).
72. Wang, Z. et al. Co-gelation synthesis of porous graphitic carbons with high surface area and their applications. *Carbon* **49**, 161–169 (2011).
73. Caturla, F., Molina-Sabio, M. & Rodriguez-Reinoso, F. Preparation of activated carbon by chemical activation with ZnCl2. *Carbon* **29**, 999–1007 (1991).
74. Hu, Z. & Vansant, E. F. A new composite adsorbent produced by chemical activation of chlorthylitile with zinc chloride. *J. Colloid. Inter. Sci.* **176**, 422–431 (1995).
75. Rodriguez-Reinoso, F. & Molina-Sabio, M. Activated carbons from lignocellulosic materials by chemical and/or physical activation: an overview. *Carbon* **30**, 1111–1118 (1992).
76. Hussein, M. Z., Zainal, Z., Ibrahim, R. & Kheong, K. K. The preparation of activated carbons from chips of oil palm trunk catalysed by ZnCl2/CO2: surface area and porosity studies. *J. Chem. Tech. Biotechnol.* **64**, 35–40 (1995).
77. Mayes, R. T. et al. Hierarchical ordered mesoporous carbon from phloroglucinol-glyoxal and its application in capacitive deionization of brackish water. *J. Mater. Chem.* **20**, 8674–8678 (2010).
78. Sun, L. et al. Magnetically separable porous graphitic carbon with large surface area as excellent adsorbents for metal ions and dye. *J. Mater. Chem.* **21**, 7232–7239 (2011).
79. Qie, L. et al. Synthesis of functionalized 3D hierarchical porous carbon for high-performance supercapacitors. *Energy Environ. Sci.* **6**, 2497–2504 (2013).
80. Veerakumar, P., Dhenadhayalan, N., Liu, K. C. & Liu, S. B. Highly stable ruthenium nanoparticles on 3D mesoporous carbon: an excellent opportunity for reduction reactions. *J. Mater. Chem. A* **3**, 23448–23457 (2015).
81. Bavand, R., Yelon, A. & Sacher, E. X-ray photoelectron spectroscopic and morphologic studies of Ru nanoparticles deposited onto highly oriented pyrolytic graphite. *Appl. Surf. Sci.* **355**, 279–289 (2015).
82. Zhou, Z. et al. Amorphous RuO2 coated on carbon spheres as excellent electrode materials for supercapacitors. *RSC Adv.* **4**, 6927–6932 (2014).
83. Du, X., Wang, C., Chen, M., Jiao, Y. & Wang, J. Electrochemical performances of nanoparticle Fe2O3/activated carbon supercapacitor using KOH electrolyte solution. *J. Phys. Chem. C* **113**, 2643–2646 (2009).
84. Lu, X. et al. Facile synthesis of large-area manganese oxide nanorodarrays as a high-performance electrochemical supercapacitor. *Energy Environ. Sci.* **4**, 2915–2921 (2011).

Acknowledgements

The financial supports of this work by the Ministry of Science and Technology (MOST), Taiwan (MOST-104-2410-H-182-015 to BSL, MOST 104-2113-M-001-019 to SBL and NSC101-2113-M-027-001-MY3 to SMC) are gratefully acknowledged.

Author Contributions

P.V. and S.B.L. conceived the synthesis method and fabricated the Ru/MOC nanocomposite samples. They also performed physicochemical characterization of the materials and composed the manuscript. V.V. and R.M. performed the supercapacitor studies, analysed the data and wrote the manuscript. S.M.C., S.B.L. and B.S.L. supervised and finalized the project. All authors discussed the results and contributed to the final paper.

Additional Information

Supplementary information accompanies this paper at http://www.nature.com/srep

Competing financial interests: The authors declare no competing financial interests.

How to cite this article: Lou, B.-S. et al. Ruthenium nanoparticles decorated curl-like porous carbons for high performance supercapacitors. *Sci. Rep.* **6**, 19949; doi: 10.1038/srep19949 (2016).

This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/