Global and exponential attractors of the three dimensional viscous primitive equations of large-scale moist atmosphere

Bo Youa,∗, Fang Lib
a School of Mathematics and Statistics, Xi’an Jiaotong University, Xi’an, 710049, P. R. China
b School of Mathematics and Statistics, Xidian University, Xi’an, 710126, P. R. China

Abstract
This paper is concerned with the long-time behavior of solutions for the three dimensional viscous primitive equations of large-scale moist atmosphere. We prove the existence of a global attractor in $(H^2(\Omega))^4 \cap V$ for the three dimensional viscous primitive equations of large-scale moist atmosphere by asymptotic a priori estimate and construct an exponential attractor by using the smoothing property of the semigroup generated by problem (2.4)-(2.12). As a byproduct, we obtain the fractal dimension of the global attractor for the semigroup generated by problem (2.4)-(2.12) is finite, which is in consistent with the results in [22, 23].

Keywords: Global attractor, Exponential attractor, Primitive equations, Smoothing property, Asymptotic a priori estimate.

2010 MSC: 35Q35, 35B40, 37C60.

1. Introduction

In this paper, we consider the long-time behavior of solutions for the following three dimensional viscous primitive equations of large-scale moist atmosphere in the pressure coordinate system (see [13, 16, 31, 35])

\begin{align}
\frac{\partial v}{\partial t} + (v \cdot \nabla)v + w \frac{\partial v}{\partial z} + \nabla \Phi + \frac{1}{Ro} f' v^+ + L_4 v &= 0, \\
\frac{\partial \Phi}{\partial z} + \frac{bP}{p}(1 + aq)T &= 0, \\
\nabla \cdot v + \frac{\partial w}{\partial z} &= 0, \\
\frac{\partial T}{\partial t} + v \cdot \nabla T + w \frac{\partial T}{\partial z} - \frac{bP}{p}(1 + aq)w + L_2 T &= Q_1, \\
\frac{\partial q}{\partial t} + v \cdot \nabla q + w \frac{\partial q}{\partial z} + L_3 q &= Q_2
\end{align}

in the domain

\[\Omega = M \times (0, 1), \]

where M is a bounded domain in \mathbb{R}^2 with smooth boundary ∂M. The unknown functions for problem (1.1)-(1.5) are the horizontal velocity field $v = (v_1, v_2)$, the vertical velocity w in p-coordinate system, the mixing ratio of water vapor in the air q, the temperature T and the geopotential Φ. Here $v^+ = (-v_2, v_1)$, $f = 2 \cos \theta_0$ is the Coriolis parameter, Ro is the Rossby number, P is an approximate value of pressure at the surface of the earth, p_0 represents the pressure of the upper atmosphere and $p_0 > 0$, the variable z satisfies $p = (P - p_0)z + p_0$ ($0 < p_0 \leq p \leq P$), Q_1, Q_2,...
motion is approximated by the hydrostatic balance. We observe that the above system is similar to the

For the sake of simplicity, let

where

Denote by Γ_u, Γ_b and Γ_l the upper, the bottom and the lateral boundaries of Ω, respectively. They are given by

Equations (1.1)-(1.5) are subject to the following boundary conditions

where \vec{n} is the normal vector to Γ_l, α, β are positive constants.

In addition, we add the initial conditions to the system (1.1)-(1.8)

In the past several decades, the primitive equations of the atmosphere, the ocean and the coupled atmosphere-ocean have been extensively studied from the mathematical point of view (see [4, 11, 13, 14, 15, 19, 26, 27, 30, 32] etc). By introducing p-coordinate system and using some technical treatments, Lions, Temam and Wang in [26] obtained a new formulation for the primitive equations of large-scale dry atmosphere which is a little similar with Navier-Stokes equations of incompressible fluid, and they proved the existence of weak solutions for the primitive equations of the atmosphere. In [27], Lions, Temam and Wang introduced the primitive equations of large-scale ocean and proved the existence of weak solutions and the well-posedness of local in time strong solutions for the primitive equations of large-scale ocean, and estimated the dimension of the universal attractor. Based on the works of Lions, Temam and Wang in [26, 27], many authors continued to consider the well-posedness of solutions for the primitive equations of large-scale atmosphere (see [2, 5, 6, 11, 12, 13, 16, 20, 19, 30, 34, 38, 59]). However, the uniqueness of weak solutions and the global existence of strong solutions for the three dimensional primitive equations of large-scale ocean and atmosphere dynamics with any initial datum remain unresolved. Until 2007, Cao and Titi [4] decomposed the three dimensional primitive equations of large-scale ocean and atmosphere dynamics into two systems by using the idea of the decomposition of semigroup, one is similar with the two dimensional incompressible Navier-Stokes equations, the other is the reaction-convection-diffusion equations. As we known, the solutions of each system were fairly regular. Cao and Titi performed some a priori estimates about the solutions of each system by which they obtained some a priori estimates of strong solutions for the three
dimensional primitive equations of large-scale ocean and atmosphere dynamics, which implies the well-posedness of strong solutions for the three dimensional primitive equations of large-scale ocean and atmosphere dynamics, they resolved the open question posed in [26, 27]. Meanwhile, the long-time behavior of solutions for the three dimensional primitive equations of large-scale ocean and atmosphere dynamics has been considered extensively (see [7, 10, 13, 14, 15, 17, 18, 21, 22, 23, 25, 37]). In particular, in [14], Guo and Huang obtained a weakly compact global attractor, \mathcal{A} for the primitive equations of large-scale atmosphere which captures all the trajectories. The existence of a global attractor in V for the primitive equations of large-scale atmosphere and ocean dynamics was proved by Ning Ju in [21] by using the Aubin-Lions compactness theorem under the assumption $Q \in L^2(\Omega)$. In [22, 23], the authors have proved the finite dimensional global attractor for the 3D viscous primitive equations by using the squeezing property. As we known, the solutions of the stationary primitive equations of large-scale moist atmosphere are contained in the global attractor for the corresponding evolutionary primitive equations of large-scale moist atmosphere, it is meaningful to consider the regularity of the global attractor for the three dimensional primitive equations of large-scale moist atmosphere.

Nowadays, the study of exponential attractors has also an interest on its own. In contrast to an exponential attractor, the global attractor has two essential drawbacks: on the one hand, the rate of attraction of the trajectories may be small and it is usually very difficult to estimate this rate in terms of the physical parameters of the problem. On the other hand, it is very sensitive to perturbations such that the global attractor can change drastically under very small perturbations of the initial dynamical system. These drawbacks obviously lead to essential difficulties in numerical simulations of global attractors and even make the global attractor unobservable in some sense. However, an exponential attractor attracts exponentially the trajectories and will thus be more stable. Furthermore, in some situations, the global attractor can be very simple and thus fails to capture interesting transient behaviors. In such situations, an exponential attractor could be a more suitable object. Therefore, it is useful to explore the existence of an exponential attractor for the three dimensional primitive equations of large-scale moist atmosphere.

The main purpose of this paper is to study the long-time behavior of solutions for the three dimensional viscous primitive equations of large-scale moist atmosphere. In the next section, we reformulate problem (1.1)-(1.11) and give some notations used in the sequel. Section 3 is devoted to performing some a priori estimates of solutions of problem (2.4)-(2.12) to obtain the existence of absorbing sets in V and $(H^2(\Omega))^4 \cap V$ of the semigroup generated by problem (2.4)-(2.12). In the last section, we prove the existence of a global attractor in $(H^2(\Omega))^4 \cap V$ for problem (2.4)-(2.12) by asymptotic a priori estimate and construct an exponential attractor by using the smoothing property of the semigroup generated by problem (2.4)-(2.12). As a byproduct, we obtain the fractal dimension of the global attractor for the semigroup generated by problem (2.4)-(2.12) is finite, which is in consistent with the results in [22, 23].

Throughout this paper, let X be a Banach space endowed with the norm $\| \cdot \|_X$ and let $\| u \|_p$ be the $L^p(\Omega)$-norm of u for $1 \leq p \leq \infty$, and let C be a generic positive constant.

2. New formulation and functional setting

2.1. New formulation

Integrating the equation (1.3) in the z direction, we obtain

$$w(x, y, z, t) = w(x, y, 0, t) - \int_0^\infty \nabla \cdot v(x, y, \zeta, t) d\zeta.$$

Employing $w(x, y, 0, t) = w(x, y, 1, t) = 0$ (see (1.6) and (1.7)), we find

$$w(x, y, z, t) = -\int_0^\infty \nabla \cdot v(x, y, \zeta, t) d\zeta$$

and

$$\int_0^1 \nabla \cdot v(x, y, \zeta, t) d\zeta = \nabla \cdot \int_0^1 v(x, y, \zeta, t) d\zeta = 0.$$

Integrating the equation (1.2) with respect to z, we obtain

$$\Phi(x, y, z, t) = \Phi(x, y, t) - \int_0^z \frac{bP}{p(c)} (1 + aq(x, y, \zeta, t)) T(x, y, \zeta, t) d\zeta,$$

(2.3)
where $\Phi_i(x, y, t)$ is a free function to be determined.

We infer from (2.14), (2.13) that the following new formulation for problem (1.1)-(1.11)

\[
\frac{\partial \tilde{v}}{\partial t} + (\nu \cdot \nabla)v = - (\int_0^\infty \nabla \cdot v(x, y, \zeta, t) \, d\zeta) \frac{\partial \nu}{\partial \zeta} + \nabla \Phi_i(x, y, t) + \frac{1}{Ro} \tilde{v}^i + L_1 v
\]

\[
- \int_0^\infty \frac{bP}{p(\zeta)} \nabla[(1 + aq(x, y, \zeta, t))T(x, y, \zeta, t)] \, d\zeta = 0, \tag{2.4}
\]

\[
\frac{\partial T}{\partial t} + \nu \cdot \nabla T - (\int_0^\infty \nabla \cdot v(x, y, \zeta, t) \, d\zeta) \frac{\partial T}{\partial \zeta} + L_2 T + \frac{bP}{p}(1 + aq)(\int_0^\infty \nabla \cdot v(x, y, \zeta, t) \, d\zeta) = Q_1, \tag{2.5}
\]

\[
\frac{\partial q}{\partial t} + \nu \cdot q = (\int_0^\infty \nabla \cdot v(x, y, \zeta, t) \, d\zeta) \frac{\partial q}{\partial \zeta} + L_3 q = Q_2 \tag{2.6}
\]

with the following boundary conditions

\[
\frac{\partial \nu}{\partial \zeta}|_{\Gamma_s} = 0, \frac{\partial v}{\partial \zeta}|_{\Gamma_s} = 0, \nu \cdot \vec{n}|_{\Gamma_s} = 0, \frac{\partial \nu}{\partial \zeta} \times \vec{n}|_{\Gamma_s} = 0, \tag{2.7}
\]

\[
\frac{1}{R_{L2}} \frac{\partial T}{\partial \zeta}|_{\Gamma_s} = 0, \frac{\partial T}{\partial \zeta}|_{\Gamma_s} = 0, \frac{\partial T}{\partial \zeta}|_{\Gamma_s} = 0, \tag{2.8}
\]

\[
\frac{1}{R_{L4}} \frac{\partial q}{\partial \zeta}|_{\Gamma_s} = 0, \frac{\partial q}{\partial \zeta}|_{\Gamma_s} = 0, \frac{\partial q}{\partial \zeta}|_{\Gamma_s} = 0 \tag{2.9}
\]

and the initial data

\[
v(x, y, z, 0) = v_0(x, y, z), \tag{2.10}
\]

\[
T(x, y, z, 0) = T_0(x, y, z), \tag{2.11}
\]

\[
q(x, y, z, 0) = q_0(x, y, z). \tag{2.12}
\]

Denote

\[
\tilde{v}(x, y) = \int_0^1 v(x, y, \zeta) \, d\zeta
\]

and

\[
\tilde{v} = v - \tilde{v}
\]

Taking the average of (2.4) and combining Green’s formula with the boundary conditions (2.7), we obtain

\[
\frac{\partial \tilde{v}}{\partial t} + (\tilde{v} \cdot \nabla)\tilde{v} + (\tilde{v} \cdot \nabla)\tilde{v} + (\nabla \cdot \tilde{v})\tilde{v} + \nabla \Phi_i(x, y, t) - \frac{1}{Re_1} \Delta \tilde{v}
\]

\[
+ \frac{1}{Ro} \tilde{v}^i - \int_0^\infty \frac{bP}{p(\zeta)} \nabla[(1 + aq(x, y, \zeta, t))T(x, y, \zeta, t)] \, d\zeta = 0 \tag{2.13}
\]

which is subject to the boundary conditions

\[
\nabla \cdot \tilde{v} = 0, \tilde{v} \cdot \vec{n}|_{\Gamma_s} = 0, \frac{\partial \tilde{v} \times \vec{n}|_{\Gamma_s} = 0. \tag{2.14}
\]

Subtracting (2.13) from (2.4), we have

\[
\frac{\partial \tilde{v}}{\partial t} + (\tilde{v} \cdot \nabla)\tilde{v} - (\int_0^\infty \nabla \cdot \tilde{v}(x, y, \zeta, t) \, d\zeta) \frac{\partial \tilde{v}}{\partial \zeta} + (\tilde{v} \cdot \nabla)\tilde{v} + (\tilde{v} \cdot \nabla)\tilde{v} - \int_0^\infty \frac{bP}{p(\zeta)} \nabla[(1 + aq(x, y, \zeta, t))T(x, y, \zeta, t)] \, d\zeta
\]

\[
+ \frac{1}{Ro} \tilde{v}^i + L_1 \tilde{v} + \int_0^\infty \frac{bP}{p(\zeta)} \nabla[(1 + aq(x, y, \zeta, t))T(x, y, \zeta, t)] \, d\zeta - (\tilde{v} \cdot \nabla)\tilde{v} + (\tilde{v} \cdot \nabla)\tilde{v} = 0, \tag{2.15}
\]

which is supplemented with the boundary conditions

\[
\frac{\partial \tilde{v}}{\partial \zeta}|_{\Gamma_s} = 0, \frac{\partial \tilde{v}}{\partial \zeta}|_{\Gamma_s} = 0, \tilde{v} \cdot \vec{n}|_{\Gamma_s} = 0, \frac{\partial \tilde{v} \times \vec{n}|_{\Gamma_s} = 0. \tag{2.16}
\]
2.2. Functional spaces and some lemmas

To study problem (2.4)-(2.12), we introduce some function spaces. Let

\[V_1 = \left\{ v \in (C^\infty(\bar{\Omega}))^2 : \frac{\partial v}{\partial x} \bigg|_{\Gamma_0} = 0, \frac{\partial v}{\partial y} \bigg|_{\Gamma_0} = 0, v \cdot \bar{n} \bigg|_{\Gamma_0} = 0, \int_0^1 \nabla \cdot v(x, y, \xi) \, d\xi = 0 \right\}, \]

\[V_2 = \left\{ T \in C^\infty(\bar{\Omega}) : (\frac{1}{R_{t_2}} \frac{\partial T}{\partial z} + \alpha T) \bigg|_{\Gamma_0} = 0, \frac{\partial T}{\partial n} \bigg|_{\Gamma_0} = 0, \int_0^{\infty} |T(z = 1)|^2 \, dz = 0 \right\}, \]

\[V_3 = \left\{ q \in C^\infty(\bar{\Omega}) : (\frac{1}{R_{t_1}} \frac{\partial q}{\partial z} + \beta q) \bigg|_{\Gamma_0} = 0, \frac{\partial q}{\partial n} \bigg|_{\Gamma_0} = 0, \int_0^{\infty} |q(z = 1)|^2 \, dz = 0 \right\}. \]

Denote the closure of \(V_1, V_2, V_3 \) by \(V_1, V_2, V_3 \) with respect to the following norms, respectively, given by

\[||v||^2 = \frac{1}{R_{t_1}} \int_{\Omega} (\nabla v)^2 \, dx \, dy + \frac{1}{R_{t_2}} \int_{\Omega} (\partial_z v)^2 \, dx \, dy, \]

\[||T||^2 = \frac{1}{R_{t_1}} \int_{\Omega} (\nabla T)^2 \, dx \, dy + \frac{1}{R_{t_2}} \int_{\Omega} (\partial_z T)^2 \, dx \, dy + \alpha \int_M |T(z = 1)|^2 \, dx, \]

\[||q||^2 = \frac{1}{R_{t_1}} \int_{\Omega} (\nabla q)^2 \, dx \, dy + \frac{1}{R_{t_2}} \int_{\Omega} (\partial_z q)^2 \, dx \, dy + \beta \int_M |q(z = 1)|^2 \, dx, \]

\[||(v, T, q)||^2_V = ||v||^2 + ||T||^2 + ||q||^2, ||(v, T, q)||^2_{L^2(\Omega)} = ||v||^2_{L^2(\Omega)} + ||T||^2_{L^2(\Omega)} + ||q||^2_{L^2(\Omega)}, \]

for any \(v \in V_1, T \in V_2, q \in V_3 \), and let \(H_1 = \) the closure of \(V_1 \) with respect to the norm in \((L^2(\Omega))^2 \), \(V = V_1 \times V_2 \times V_3, H = H_1 \times L^2(\Omega) \times L^2(\Omega) \).

3. Some a priori estimates of strong solutions

3.1. The well-posedness of strong solutions

We start with the following general existence and uniqueness of solutions for problem (2.4)-(2.12) which can be obtained by the methods used in [4, 21, 24, 33]. Here we only state it.

Theorem 3.1. Assume that \(Q_1 \in L^2(\Omega) \) and \(Q_2 \in L^2(\Omega) \). Then for each \((v_0, T_0, q_0) \in V\), there exists a unique strong solution \((v, T, q) \in C([0, \infty); V)\) for problem (2.4)-(2.12), which depends continuously on the initial data in \(V \).

By Theorem 3.1 we can define the operator semigroup \(\{S(t)\}_{t \geq 0} \) in \(V \) as

\[S(\cdot) : \mathbb{R}^+ \times V \to V, \]

which is \((V, V)\)-continuous.

3.2. Some a priori estimates of strong solutions

In this subsection, we give some a priori estimates of strong solutions for problem (2.4)-(2.12), which imply the existence of absorbing sets for the semigroup \(\{S(t)\}_{t \geq 0} \) associated with problem (2.4)-(2.12).

3.2.1. \(L^2(\Omega) \) estimates of \(q \)

Taking the inner product of (2.6) with \(q \) in \(L^2(\Omega) \), we obtain

\[\frac{1}{2} \frac{d}{dt} ||q||^2 + ||q||^2 = \int_{\Omega} Q_2 q \, dx \, dy. \tag{3.1} \]

Thanks to

\[||q||^2 \leq 2||q(z = 1)||_{L^2(M)}^2 + 2||\partial_z q||^2, \]

we find

\[\frac{||q||^2}{2R_{t_1} + \beta} \leq \frac{1}{R_{t_2}} \int_{\Omega} (\partial_z q)^2 \, dx \, dy + \beta \int_M |q(z = 1)|^2 \, dx. \tag{3.2} \]
It follows from \(3.1\)–\(3.3\) that
\[
\frac{d}{dt} \|q\|_2^2 + \|q\|_2^2 \leq (2Rt_4 + \frac{2}{\beta})\|Q_2\|_2^2.
\]
Using \(3.2\) again, we obtain
\[
\frac{d}{dt} \|q\|_2^2 + \frac{\|q\|_2^2}{2Rt_4 + \frac{2}{\beta}} \leq (2Rt_4 + \frac{2}{\beta})\|Q_2\|_2^2.
\]
We infer from the classical Gronwall inequality that
\[
\|q\|_2^2 \leq \|q_0\|_2^2 \exp\left(\frac{-t}{2Rt_4 + \frac{2}{\beta}}\right) + (2Rt_4 + \frac{2}{\beta})^2\|Q_1\|_2^2,
\]
which implies that
\[
\|q\|_2^2 + \int_t^{t+1} \|q(t)\|_2^2 dt \leq \rho_1 \tag{3.3}
\]
for any \(t \geq T_1\). For brevity, we omit writing out these bounds explicitly here and we also omit writing out other similar bounds in our future discussion for all other uniform a priori estimates.

3.2.2. \((L^2(\Omega))^3\) estimates of \((\nu, T)\)

Multiplying \(2.3\) by \(\nu\) and integrating over \(\Omega\), we obtain
\[
\frac{1}{2} \frac{d}{dt} \|\nu\|_2^2 + \|\nu\|_2^2 = \int_\Omega \left(\int_0^t \frac{bP}{p(\xi)} \nabla \cdot (1 + aq(x, y, \xi, t)) T(x, y, \xi, t) \, d\xi \right) \cdot \nu \, dx dy dz. \tag{3.4}
\]
Taking the inner product of \(2.5\) with \(T\) in \(L^2(\Omega)\), we find
\[
\frac{1}{2} \frac{d}{dt} \|T\|_2^2 + \|T\|_2^2 = \int_\Omega Q \cdot T \, dx dy dz - \int_\Omega \left(\int_0^t \frac{bP}{p(\xi)} (1 + aq) (\int_0^t \nabla \cdot \nu(x, y, x, \xi, t) \, d\xi) \right) T \, dx dy dz. \tag{3.5}
\]
Integrating by parts and combining \(2.3\) with \(2.7\), we obtain
\[
\int_\Omega \left(\int_0^t \frac{bP}{p(\xi)} \nabla \cdot (1 + aq(x, y, \xi, t)) T(x, y, \xi, t) \, d\xi \right) \cdot \nu \, dx dy dz
= - \int_\Omega \left(\int_0^t \frac{bP}{p(\xi)} (1 + aq(x, y, \xi, t)) T(x, y, \xi, t) \, d\xi \right) (\nabla \cdot \nu) \, dx dy dz
= \int_\Omega \left(\int_0^t \frac{bP}{p} (1 + aq)(\int_0^t \nabla \cdot \nu(x, y, \xi, t) \, d\xi) \right) T \, dx dy dz. \tag{3.6}
\]
It follows from \(3.4\)–\(3.6\) and Hölder inequality that
\[
\frac{1}{2} \frac{d}{dt} (\|\nu\|_2^2 + \|T\|_2^2) + \|\nu\|_2^2 + \|T\|_2^2 \leq \|Q_1\|_2 \|T\|_2. \tag{3.7}
\]
Notice that
\[
\|\nu\|_2^2 + \|T\|_2^2 \leq C_M \frac{\|T\|_2^2}{2Rt_2 + \frac{2}{\alpha}} \tag{3.8}
\]
Therefore, we deduce from \(3.7\)–\(3.8\), Hölder inequality and Young inequality that
\[
\frac{d}{dt} (\|\nu\|_2^2 + \|T\|_2^2) + \frac{\|\nu\|_2^2}{C_M} + \frac{\|T\|_2^2}{2Rt_2 + \frac{2}{\alpha}} \leq (2Rt_2 + \frac{2}{\alpha})\|Q_1\|_2^2,
\]
which implies that
\[
\|\nu\|_2^2 + \|T\|_2^2 + \int_t^{t+1} \|\nu(t)\|_2^2 + \|T(t)\|_2^2 dt \leq \rho_2 \tag{3.9}
\]
for any \(t \geq T_2 \geq T_1\).
3.2.3. $L^6(\Omega)$ estimates of q

Multiplying (2.5) by $|q|^2q$ and integrating over Ω, we have
\[
\frac{1}{6} \frac{d}{dt} ||q||^6 + \frac{5}{9} ||q^3||^2 \leq ||q^3||^2 \frac{5}{4} ||Q_2||^2 \\
\leq C ||Q_2||^2 ||q^3||^2 ||q|| \\
= C ||Q_2||^2 ||q||^2 ||q^3||.
\]

Using Young inequality, we obtain
\[
\frac{d}{dt} ||q||^2 \leq C ||Q_2||^2.
\]

Therefore, we infer from the uniform Gronwall inequality and (3.4) that
\[
||q||^2 + \int_0^{t+1} ||q(T)||^2 dt \leq \rho_3
\]
for any $t \geq T_2 + 1$.

3.2.4. $L^6(\Omega)$ estimates of T

Taking the inner product of (2.5) with $|T|^4T$ in $L^2(\Omega)$, we deduce
\[
\frac{1}{6} \frac{d}{dt} ||T||^6 + \frac{5}{9} ||T^3||^2 \leq ||T^3||^2 \frac{5}{4} ||Q_1||^2 + \int_0^t \frac{bP}{p}(1+aq) \left(\int_{\Omega} \nabla \cdot v(x,y,\zeta,\tau) d\zeta \right) ||T^4T|| dx dy dz \\
\leq C ||Q_1||^2 ||T^3||^2 ||T||^2 + C ||\nabla v||_2 ||T^3||^2 ||T^3|| + I_1,
\]
where
\[
I_1 = \int_0^t \frac{abP}{p} q \left(\int_{\Omega} \nabla \cdot v(x,y,\zeta,\tau) d\zeta \right) ||T^4T|| dx dy dz.
\]

Now, we estimate I_1 as follows.
\[
I_1 \leq C \int_0^t ||q||_{L^2(M)} \int_0^1 ||\nabla v(x,y,\zeta,\tau)|| d\zeta ||T^4||_{L^4(M)} dz \\
\leq C \left(\int_0^t ||\nabla v||_{L^2(M)} d\tau \right) ||q||_{L^6(M)} ||T^3||^2 ||T^3||^{1/2} ||T^3|| \\
\leq C ||\nabla v||_2 ||q||_6 ||T^3||^2 ||T^3||^{1/2} ||T^3||.
\]

We deduce from (3.11)–(3.12) that
\[
\frac{d}{dt} ||T||^6 \leq C ||Q_1||^2 + C ||\nabla v||^2 + C ||q||^2_6 ||\nabla v||^2.
\]

Combining the uniform Gronwall inequality with (3.3), (3.10), we obtain
\[
||T||^6 + \int_0^{t+1} ||T(T)||^2 dt \leq \rho_3
\]
for any $t \geq T_2 + 2$.

3.2.5. $(L^6(\Omega))^2$ estimates of \bar{v}

Multiplying (2.15) by $|\bar{v}|^2 \bar{v}$ and integrating over Ω, we deduce

\[
\frac{1}{6} \frac{d}{dt} |\bar{v}|^6_6 + \frac{1}{Re} \int_\Omega |\nabla \bar{v}|^2 |\bar{v}|^4 dx dy dz + \frac{1}{Re} \int_\Omega |\partial_t \bar{v}|^2 |\bar{v}|^4 dx dy dz + \frac{4}{9} |\bar{v}|^3_3^2 \leq C \int_\Omega (|\nabla \bar{v}|^2 |\bar{v}|^4 dx dy dz + C \int_M (|\bar{v}|^2 dz)(\int_0^1 |\nabla \bar{v}|^2 dz) dx dy + I_2,
\]

where

\[
I_2 = \int_{\Omega} \left(\int_0^\infty \frac{bP}{p(\zeta)} [(1 + aq)T] d\zeta - \int_0^1 \left(\int_0^\infty \frac{bP}{p(\zeta)} [(1 + aq)T] d\zeta \right) d\zeta \right) (\nabla \cdot |\bar{v}|^4 \bar{v}) dx dy dz.
\]

In the following, we estimate I_2 by using Hölder inequality.

\[
I_2 \leq C \left\| \int_0^\infty \frac{bP}{p(\zeta)} [(1 + aq)T] d\zeta \right\|_{L^6_6} \left\| |\nabla \bar{v}|^2 |\bar{v}|^2 \right\|_{L^6_6}^2
\]

\[
\leq C |T|_6 \left\| |\nabla \bar{v}|^2 |\bar{v}|^2 \right\|_{L^6_6}^2 + C \left\| \int_0^1 |qT| d\zeta \right\|_{L^6_6} \left\| |\nabla \bar{v}|^2 |\bar{v}|^2 \right\|_{L^6_6}^2.
\]

Due to

\[
\left\| \int_0^1 |qT| d\zeta \right\|_{L^6_6(M)}^6 = \int_M \left(\int_0^1 |qT| d\zeta \right)^6 dx dy
\]

\leq \int_M \left(\int_0^1 |qT|^2 d\zeta \right)^3 \left(\int_0^1 |T|^2 d\zeta \right)^3 dx dy
\]

\leq \left(\int_M \left(\int_0^1 |q|^2 d\zeta \right)^6 dx dy \right)^\frac{1}{2} \left(\int_M \left(\int_0^1 |T|^2 d\zeta \right)^6 dx dy \right)^\frac{1}{2}
\]

\leq \left(\int_M \left(\int_0^1 |q|^2 dx dy \right)^6 d\zeta \right)^\frac{1}{2} \left(\int_0^1 \left(\int M |T|^2 dx dy \right)^6 d\zeta \right)^\frac{1}{2}
\]

\leq \left(\int_0^1 \left(\int M |q|^2 |\nabla \bar{v}|^2 |\bar{v}|^2 dx dy \right)^{\frac{3}{2}} d\zeta \right)^\frac{1}{2} \left(\int_0^1 \left(\int M |T|^2 dx dy \right)^6 d\zeta \right)^\frac{1}{2}
\]

\leq C \left(\int_0^1 \left(\int M |q|^2 |\nabla \bar{v}|^2 |\bar{v}|^2 dx dy \right)^{\frac{3}{2}} d\zeta \right)^\frac{1}{2} \left(\int_0^1 \left(\int M |T|^2 dx dy \right)^6 d\zeta \right)^\frac{1}{2}
\]

which implies that

\[
I_2 \leq C |T|_6 \left\| |\nabla \bar{v}|^2 |\bar{v}|^2 \right\|_{L^6_6}^2 + C |q|_6^6 \left\| |\nabla \bar{v}|^2 |\bar{v}|^2 \right\|_{L^6_6}^2 + C \left\| \int_0^1 |qT| d\zeta \right\|_{L^6_6} \left\| |\nabla \bar{v}|^2 |\bar{v}|^2 \right\|_{L^6_6}^2.
\]

It follows from Hölder inequality that

\[
\int_\Omega |\nabla \bar{v}|^2 |\bar{v}|^4 dx dy dz \leq \int_M |\bar{v}|^4 dx dy dz \left(\int_0^1 |\bar{v}|^2 d\zeta \right)^2 dx dy
\]

\leq \left\| |\bar{v}|^4 |\nabla \bar{v}|^2 |\bar{v}|^2 dx dy \right\|_{L^6_6}^2 \left(\int_0^1 |\bar{v}|^2 d\zeta \right)^2 dx dy.
\]

(3.16)

Thanks to

\[
\int_M |\bar{v}|^2 dx dy = \int_M |\bar{v}|^3 dx dy
\]

\leq C \int_M |\bar{v}|^6 dx dy \int_M |\nabla \bar{v}|^2 \bar{v}^2 dx dy,
\]

we obtain

\[
\left(\int_0^1 \left(\int M |\bar{v}|^{12} dx dy \right)^{\frac{1}{2}} d\zeta \right)^2 \leq C \left(\int_\Omega |\bar{v}|^6 dx dy dz \right)^{\frac{1}{2}} \left(\int_\Omega |\nabla \bar{v}|^2 dx dy dz \right)^{\frac{1}{2}}.
\]
Therefore, we deduce from (3.16)-(3.17) that
\[
\int_{\Omega} |\nabla v|^3 \, dxdydz \leq C |\nabla v|_{L^6(\Omega)}^\frac{1}{2} |\nabla v|_{L^2(\Omega)}^\frac{1}{2} (\int_{\Omega} |\nabla v|^4 \, dxdydz)^\frac{1}{4} (\int_{\Omega} |\nabla v|^4 \, dxdydz)^\frac{3}{4}.
\] (3.18)
Repeating the similar process with the above, we deduce
\[
\int_{t}^{t+1} \int_{\Omega} |\nabla v|^4 \, dxdydz \leq C |\nabla v|_{L^4(\Omega)} \|I\|_{H^1(\Omega)}.
\] (3.19)
We infer from (3.14)-(3.15), (3.18)-(3.19) that
\[
\frac{d}{dt} |v|^6 + \frac{2}{Re_1} \int_{\Omega} |\nabla v|^4 \, dxdydz + \frac{2}{Re_2} \int_{\Omega} |\partial_t v|^4 \, dxdydz + 2 ||v||^2 \leq C(||v||_{L^2(\partial\Omega)}^2 + ||v||_{H^1(\Omega)}^2 + C ||T||_6^2 ||v||_{L^6(\Omega)}^4 + C ||q||_0 ||T||_6 ||v||_{L^4(\Omega)}^2).
\] (3.20)
Therefore, it follows from (3.3), (3.9), (3.10) and (3.13) that
\[
||v||^6_6 + \int_{t}^{t+1} \int_{\Omega} |\nabla v|^4 \, dxdydz \, d\tau \leq \rho_5 \] (3.21)
for any \(t \geq T_2 + 3. \)

3.2.6. \((H^1(M))^2\) estimates of \(\tilde v\)

Taking the inner product of equation (2.13) with \(-\Delta \tilde v\) in \(L^2(\Omega)\) and combining the boundary conditions (2.14), we obtain
\[
\frac{1}{2} \frac{d}{dt} |\nabla \tilde v|_{L^2(M)}^2 + \frac{1}{Re_1} \int_{M} |\Delta \tilde v|^2 \, dxdy \leq C \int_{M} |\nabla \tilde v| |\Delta \tilde v| \, dxdy + C \int_{M} (\int_{0}^{t} |\nabla \tilde v| |\nabla \tilde v| \, d\gamma) |\Delta \tilde v| \, dxdy,
\] (3.22)
where we have used the following equalities
\[
\int_{M} \nabla \Phi_n(x, y, t) \cdot \Delta \tilde v \, dxdy = 0,
\]
\[
\int_{\partial M} \frac{b}{p(x)} \nabla [(1 + aq(x, y, z, t))T(x, y, z, t)] \, d\gamma \cdot \Delta \tilde v \, dxdy = 0.
\]
In the following, we give the estimates of each term of the right hand side of (3.22)
\[
\int_{M} |\nabla \tilde v| |\Delta \tilde v| \, dxdy \leq C ||\tilde v||_{L^2(M)} ||\tilde v||_{L^2(M)} ||\Delta \tilde v||_{L^2(M)} \]
\[
\leq C ||\tilde v||_{L^2(M)}^2 ||\nabla \tilde v||_{L^2(M)} \, \|\Delta \tilde v\|_{L^2(M)}^2,
\] (3.23)
It follows from (3.23) that
\[
\frac{d}{dt} ||\nabla \tilde v||_{L^2(M)}^2 + \frac{1}{Re_1} \int_{M} |\Delta \tilde v|^2 \, dxdy \leq C ||\tilde v||_{L^2(M)}^2 ||\nabla \tilde v||_{L^2(M)}^2 + C ||\tilde v||_{L^2(M)}^2 + C ||\nabla \tilde v||_{L^2(M)}^2.
\]
In view of (3.9), (3.20) and the uniform Gronwall inequality, we obtain
\[
||\nabla \tilde v||_{L^2(M)}^2 \leq \rho_6 \] (3.24)
for any \(t \geq T_2 + 4. \)
3.2.7. \((L^2(\Omega))^2\) estimates of \(v_z\)

Denoted by \(u = v_z\). It is clear that \(u\) satisfies the following equation obtained by differentiating the equation (2.4) with respect to \(z\):

\[
\frac{\partial u}{\partial t} + L_1 u + (v \cdot \nabla) u - (\int_0^\xi (v \cdot \nabla) \nabla \zeta \frac{\partial u}{\partial z} + (u \cdot \nabla) v - (\nabla \cdot v) u + \frac{1}{Ro} f u^* - \frac{bP}{p} \nabla [(1 + aq) T] = 0
\]

(3.25)

subject to the boundary conditions

\[
u|_{\Gamma_v} = 0, \quad u|_{\Gamma_b} = 0, \quad u \cdot \vec{n}|_{\Gamma_l} = 0, \quad \frac{\partial u}{\partial \vec{n}} \times \vec{n}|_{\Gamma_l} = 0.
\]

(3.26)

Multiplying (3.25) by \(u\) and integrating over \(\Omega\), we find

\[
\frac{1}{2} \frac{d}{dt} ||u||_2^2 + ||u||^2 = - \int_\Omega [(u \cdot \nabla) v - (\nabla \cdot v) u - \frac{bP}{p} \nabla [(1 + aq) T] \cdot u] \, dx dy dz
\]

\[
\leq C \int_\Omega |v||u||\nabla u| \, dx dy dz + C \int_\Omega |T||\nabla u| \, dx dy dz + C \int_\Omega |T||q||\nabla u| \, dx dy dz.
\]

(3.27)

Next, we estimate the right hand side of (3.27) term by term.

\[
\int_\Omega |T||\nabla u| \, dx dy dz \leq ||T||_{L^2} ||\nabla u||_{L^2},
\]

(3.28)

\[
\int_\Omega |v||u||\nabla u| \, dx dy dz \leq ||v||_{L^6} ||u||_{L^3} ||\nabla u||_{L^2}
\]

\[
\leq C ||v||_{L^6} ||u||_{L^3}^\frac{1}{2} ||u||^\frac{1}{2},
\]

(3.29)

\[
\int_\Omega |T||q||\nabla u| \, dx dy dz \leq ||T||_{L^1} ||q||_{L^6} ||\nabla u||_{L^2}
\]

\[
\leq C ||T||_{L^1}^\frac{1}{2} ||T||^\frac{1}{2} ||q||_{L^6} ||\nabla u||_{L^2}.
\]

(3.30)

It follows from (3.27)-(3.30) that

\[
\frac{d}{dt} ||u||_2^2 + ||u||^2 \leq C ||v||_{L^6}^2 ||u||_2^2 + C ||T||_{L^2}^2 + C ||q||_{L^6}^2 ||T||^2.
\]

It is shown in [21] that

\[
||v||_{L^6} \leq C ||v||_{L^2} + C ||\nabla v||_{L^2} + ||\vec{v}||_{L^6},
\]

which implies that

\[
||v||_{L^6}^2 \leq \rho^7
\]

(3.31)

for any \(t \geq T_2 + 4\).

Thanks to the uniform Gronwall inequality, (3.32) and (3.31), we obtain

\[
||\partial_t v||_{L^2}^2 + \int_{t}^{t+1} ||\partial_t v(\tau)||^2 \, d\tau \leq \rho_8
\]

(3.32)

for any \(t \geq T_2 + 5\).
3.2.8. \((L^2(\Omega))^2\) estimates of \((T_z, q_z)\)

Taking the inner product of equation (2.6) with \(-\frac{\partial T}{\partial z}\) in \(L^2(\Omega)\) and combining the boundary conditions (2.2), (2.9), we find

\[
\frac{1}{2} \frac{d}{dt}(\|q_z\|^2 + R_1\beta\|q_z\|^2) + \frac{1}{R_1}\|\nabla q_z\|^2 \leq \int \Omega \partial_z q_z + \int \Omega (\nabla \cdot v(x, y, \xi, t) d\xi) \frac{\partial^2 q}{\partial z^2} dxdydz
\]

\[
\leq \int \Omega \|q_z\|\partial_z q_z - R_2\alpha \int \Omega \|\nabla T\|_2^2 - \int \Omega \|\nabla T\|_2^2 \frac{\partial^2 T}{\partial z^2} dxdydz
\]

\[
\leq \int \Omega \|q_z\|\partial_z q_z + \frac{R_2\alpha}{2} \int \Gamma \|\nabla q_z\|_2^2 + C\|\nabla v_z\|_2\|q_z\|_3 + C\|\nabla q_z\|_2\|\nabla q_z\|_2 + C\|v_z\|_3 \|\nabla q_z\|_2. \tag{3.33}
\]

Using Hölder inequality, we have

\[
\int_{\Gamma_0} (\nabla \cdot v)q^2 dxdy = \int \left(\int_{\Omega} (\nabla \cdot v(x, y, \xi, t) d\xi) + \int_{\Omega} (\nabla \cdot v(x, y, \xi, t) d\xi) \right) q(z = 1) dxdy
\]

\[
\leq C(\|\nabla v_z\|_2 + \|\nabla v\|_2)\|q_z\|_2^2(\Gamma_0) \leq C(\|\nabla v_z\|_2 + \|\nabla v\|_2)\|q_z\|_2^2(\Gamma_0). \tag{3.34}
\]

Multiplying (2.5) by \(-\frac{\partial T}{\partial z}\) and integrating over \(\Omega\), and using the boundary conditions (2.2), (2.3), we find

\[
\frac{1}{2} \frac{d}{dt}(\|T_z\|^2 + R_2\alpha\|T_z\|^2) + \frac{1}{R_1}\|\nabla T_z\|^2 + \frac{\alpha R_1}{R_1}\|\nabla T_z\|^2 \leq -\int \Omega \partial_z T_z + \int \Omega (v \cdot \nabla - \nabla \cdot (v \cdot v)) T_z dxdydz + \int \Omega \frac{b_p}{p}(1 + aq)(v \cdot v) T_z dxdydz
\]

\[
\leq \int \Omega \|q_z\|\partial_z q_z + \frac{R_2\alpha}{2} \int \Gamma \|\nabla q_z\|_2^2 + C\|\nabla v_z\|_2\|T_z\|_3 + C\|\nabla q_z\|_2\|v_z\|_3 + C\|\nabla T_z\|_2\|T_z\|_2 + C\|\nabla v_z\|_2\|T_z\|_3 + C\|\nabla q_z\|_2\|\nabla q_z\|_2 + C\|\nabla T_z\|_2\|\nabla q_z\|_2. \tag{3.35}
\]

Similarly, we have

\[
\int_{\Gamma_0} (v \cdot v)T_z^2 dxdy \leq C(\|\nabla v_z\|_2 + \|\nabla v\|_2)\|T_z\|_2(\Gamma_0)\|T_z\|_2^2(\Gamma_0). \tag{3.36}
\]

Therefore, by virtue of Young inequality, the uniform Gronwall inequality and (3.33)-(3.36), we obtain

\[
\|q_z\|^2 + R_1\beta\|q_z\|^2 + \|T_z\|^2 + R_2\alpha\|T_z\|^2 \leq \int_t^{t+1} \|\nabla q_z\|^2 dxdydz + \frac{1}{R_1}\int_{t}^{t+1} \|\partial_z q_z\|^2 + \frac{\alpha R_1}{R_1}\int_{t}^{t+1} \|\nabla T_z\|^2 \leq \rho_0 \tag{3.37}
\]

for any \(t \geq T_2 + 6\).
3.2.9. $L^2(\Omega)$ estimates of $(\nabla v, \nabla T, \nabla q)$

Taking the inner product of equation (2.3) with $-\Delta v$ in $L^2(\Omega)$ and combining the boundary condition (2.7), we have

$$\frac{1}{2} \frac{d}{dt} \|\nabla v\|_2^2 + \frac{1}{R_{E1}} \int_\Omega |\Delta v|^2 \, dx \, dy + \frac{1}{R_{E2}} \int_\Omega |\nabla \partial_x v|^2 \, dx \, dy \\
\leq C \int_0^t \int_\Omega |\partial \cdot v||\Delta v| \, dx \, dy + C \int_\Omega \|v\|\|\Delta v\| \, dx \, dy \\
- \int_\Omega \int_0^t \frac{b_P}{p(\xi)} \nabla \cdot [(1 + aq(x, y, \xi, t)) T(x, y, \xi, t)] \, dx \, dy \cdot \Delta v \, dx \, dy \, dz.$$ \hspace{1cm} (3.38)

In the following, we estimate each term of the right hand side of (3.38).

$$\int_\Omega |v||\nabla||\Delta v| \, dx \, dy \, dz \leq C\|v\|_6 \|\nabla v\|_6 \|\Delta v\|_2$$ \hspace{1cm} (3.39)

$$\int_\Omega \int_0^t \frac{b_P}{p(\xi)} \nabla \cdot [(1 + aq(x, y, \xi, t)) T(x, y, \xi, t)] \, dx \, dy \cdot \Delta v \, dx \, dy \, dz \leq C\|\nabla T\|_2 \|\Delta v\|_2 + C\|q\|_6 \|\nabla T\|_3 \|\Delta v\|_2 + C\|T\|_6 \|\nabla q\|_3 \|\Delta v\|_2.$$ \hspace{1cm} (3.41)

Multiplying (2.6) by $-\Delta q$ and integrating over Ω, we have

$$\frac{1}{2} \frac{d}{dt} \|\nabla q\|_2^2 + \frac{1}{R_{q1}} \int_\Omega |\Delta q|^2 \, dx \, dy + \frac{1}{R_{q2}} \int_\Omega |\nabla \partial_x q|^2 \, dx \, dy + \frac{1}{p(\xi)} \int_\Omega |\nabla q|^2 \, dx \, dy \\
\leq C \int_0^t \int_\Omega |\partial \cdot q||\Delta q| \, dx \, dy + C \int_\Omega \|v\|\|\Delta q\| \, dx \, dy + ||Q||_2 \|\Delta q\|_2$$ \hspace{1cm} (3.42)

Taking the inner product of equation (2.5) with $-\Delta T$ in $L^2(\Omega)$ and combining the boundary condition (2.8), we find

$$\frac{1}{2} \frac{d}{dt} \|\nabla T\|_2^2 + \frac{1}{R_{T1}} \int_\Omega |\Delta T|^2 \, dx \, dy + \frac{1}{R_{T2}} \int_\Omega |\nabla \partial_x T|^2 \, dx \, dy + \alpha \int_\Omega |\nabla T|^2 \, dx \, dy \\
\leq C \int_0^t \int_\Omega |\partial \cdot T||\Delta T| \, dx \, dy + C \int_\Omega \|v\|\|\Delta T\| \, dx \, dy + ||Q||_2 \|\Delta T\|_2$$ \hspace{1cm} (3.43)

From the uniform Gronwall inequality, Young inequality and (3.37)-(3.43), we obtain

$$\|\nabla v\|_2^2 + \|\nabla q\|_2^2 + \|\nabla T\|_2^2 \leq \frac{1}{R_{T1}} \int_0^{t+1} \|\Delta T\|_2^2 + \frac{1}{R_{q1}} \int_0^{t+1} \|\Delta q\|_2^2 + \frac{1}{R_{q2}} \int_0^{t+1} \|\nabla q\|_2^2 + \frac{1}{R_{T2}} \int_0^{t+1} \|\nabla \partial_x T\|_2^2$$ \hspace{1cm} (3.44)

for any $t \geq T_2 + 7.$
3.2.10. \((L^2(\Omega))^2\) estimates of \(v_z\)

Multiplying \((3.25)\) by \(|a|^3u\) and integrating over \(\Omega\), and combining the boundary condition \((3.26)\), we find

\[
\frac{1}{6} \frac{d}{dt} ||u||^6_t + \frac{1}{Re_1} \int_\Omega |\nabla u|^2 |u|^4 \, dx dy dz + \frac{1}{Re_2} \int_\Omega |\partial_t u|^2 |u|^4 \, dx dy dz + \frac{4}{9} ||u||^3_t^6 = \int_\Omega (\nabla \cdot v) |u|^6 \, dx dy dz + \int_\Omega \frac{bP}{p} \nabla [(1 + aq)T] \cdot |u|^4 u \, dx dy dz - \int_\Omega [\nabla (\nabla v) \cdot |u|^4 u \, dx dy dz].
\]

(3.45)

Next, we estimate each term of the right hand side of \((3.45)\).

\[
\left| \int_\Omega (\nabla \cdot v) |u|^6 \, dx dy dz \right| \leq C \int_\Omega |\nabla |u|^4||u|^3 \, dx dy dz \leq C ||v||_6 ||u||^4 ||\nabla u||^3 \leq C ||v||_6 ||u||^4 ||\nabla u||^3 \leq \left(||v||_6 ||u||^4 ||\nabla u||^3 \right)^2.
\]

(3.46)

\[
\left| \int_\Omega \frac{bP}{p} \nabla [(1 + aq)T] \cdot |u|^4 u \, dx dy dz \right| \leq ||u||^4 \frac{bP}{p} \nabla [(1 + aq)T] ||T||_2 \leq C \frac{bP}{p} ||\nabla [(1 + aq)T]||_2 ||u||^4 ||T||_2 \leq C ||\nabla u||^2 ||T||_2 + ||\nabla T||_{12} ||a||_{12} ||u||^4 ||u||^3.
\]

(3.47)

and

\[
\left| - \int_\Omega [\nabla (\nabla v) \cdot |u|^4 u \, dx dy dz \right| \leq C \int_\Omega |\nabla u||\nabla u||_2 \int_\Omega \left| \int_\Omega \nabla \cdot (v(x, y, \zeta, t)) d\zeta \right| \left(\int_\Omega \nabla (\nabla v) \cdot |u|^4 u \, dx dy dz \right) \leq C ||v||_6 ||a||^{12} \leq \left(||v||_6 ||u||^4 ||\nabla u||^3 \right)^2 \leq \left(||v||_6 ||u||^4 ||\nabla u||^3 \right)^2.
\]

(3.48)

Combining \((3.45)-(3.48)\) with the uniform Gronwall inequality and Young inequality, we have

\[
||\partial_z v||^6_t \leq \rho_{11}
\]

(3.49)

for any \(t \geq T_2 + 8\).

3.2.11. \((L^2(\Omega))^2\) estimates of \((T_{\alpha}, q_{\alpha})\)

Denoted by \(\theta = T_{\alpha}\). It is clear that \(\theta\) satisfies the following equation by differentiating the equation \((2.5)\) with respect to \(z\):

\[
\frac{\partial \theta}{\partial t} + L_2 \theta + v \cdot \nabla \theta = (\int_\Omega \nabla \cdot v(x, y, \zeta, t) d\zeta) \frac{\partial \theta}{\partial \zeta} + \partial_z v \cdot \nabla T - (\nabla \cdot v) \theta + \frac{bP}{p} \nabla [(1 + aq)T] + bP \frac{p - p_0}{p^2} \int_\Omega \nabla \cdot v(x, y, \zeta, t) d\zeta = \partial \cdot Q_1.
\]

(3.50)

supplemented with the boundary conditions

\[
\left(\frac{1}{Rt_2} \theta + \alpha T \right) |_{\Gamma} = 0, \theta_{\Gamma_0} = 0, \frac{\partial \theta}{\partial n} |_{\Gamma} = 0.
\]

(3.51)

Taking the inner product of equation \((3.50)\) with \(|\theta|^4 \theta\) in \(L^2(\Omega)\) and combining the boundary conditions \((3.51)\), we know

\[
\frac{1}{6} \frac{d}{dt} ||\theta||^6_t + \frac{5}{9R_1} \int_\Omega |\nabla |\theta|^2||^2 \, dx dy dz + \frac{5}{9R_2} \int_\Omega |\partial_t |\theta|^2||^2 \, dx dy dz + \alpha^2 \frac{Rt_2}{R_1} \int_\Omega \frac{\partial \theta}{\partial t} |T|^2 T \, dx dy
\]

\[
= \int_\Omega (\nabla \cdot v)|\theta|^6 \, dx dy dz + \int_\Omega \partial_z Q_1 |\theta|^4 \theta \, dx dy dz - \int_\Omega (v \cdot \nabla T)|\theta|^4 \theta \, dx dy dz - \int_\Omega \frac{bP}{p} \nabla [(1 + aq)T] |\theta|^4 \theta - \int_\Omega \frac{abP}{p} \frac{p - p_0}{p^2} \int_\Omega \nabla \cdot v(x, y, \zeta, t) d\zeta |\theta|^4 \theta.
\]

(3.52)
In the following, we give the estimates of each term in the right hand side of (3.52).

\[
\left| \int_{\Omega} (\nabla \cdot v)(\theta^6) \, dx dy dz \right| \leq C \int_{\Omega} |v||\nabla|\theta^4||\partial \theta^3| \, dx dy dz \\
\leq C||v||_2||\theta^4||_2\|\nabla|\theta^3|_2 \\
\leq C||v||_2||\theta^4||_2^\frac{3}{2} (||\nabla|\theta^3|_2 + ||\partial \theta^3||_2)^\frac{1}{2},
\]

(3.53)

\[
\left| \int_{\Omega} \partial_z Q_1|\theta^4| \, dx dy dz \right| \leq C \int_{\Omega} |\partial_z Q_1||\theta^5| \, dx dy dz \\
\leq C||\partial_z Q_1||_2||\theta^5||_2 \\
\leq C||Q_1||_H(\Omega)||\theta^5||_2^\frac{3}{2} \|\theta^4||_H(\Omega),
\]

(3.54)

\[
\left| \int_{\Omega} (v \cdot \nabla T)|\theta^4| \, dx dy dz \right| \leq C \int_{\Omega} |v||\nabla T||\theta^5| \, dx dy dz \\
\leq C||v||_2||\nabla T||_2||\theta^4||_2^\frac{5}{2} \|\theta^3||_1 \|\theta^4||_H(\Omega),
\]

(3.55)

\[
\left| \int_{\Omega} \frac{bP}{p}(1 + aq)(\nabla \cdot v)(\theta^4) \, dx dy dz \right| \leq C(||v||_2 + ||q||_6||v||_3)||\theta^4||_2^\frac{5}{2} \|\theta^3||_1 \|\theta^4||_H(\Omega),
\]

(3.56)

\[
\left| \int_{\Omega} \frac{abP}{p^2}(1 + aq)(\nabla \cdot v)(\theta^4) \, dx dy dz \right| \leq C(||v||_2 + ||q||_6||v||_3)||\theta^4||_2^\frac{5}{2} \|\theta^3||_1 \|\theta^4||_H(\Omega),
\]

(3.57)

\[
a^5 R_2^5 \int_{\Gamma_\kappa} \frac{\partial \theta}{\partial z} |T|^4 \, dxdy = a^5 R_2^5 \int_{\Gamma_\kappa} \left(\frac{\partial T}{\partial t} + v \cdot \nabla T - \frac{1}{R_1} \Delta T - Q_1 \right) |T|^4 \, dxdy \\
= \frac{a^5 R_2^5}{6} \int_{\Gamma_\kappa} |T|^6 \, dxdy + a^5 R_2^5 \int_{\Gamma_\kappa} (v \cdot \nabla T)|T|^4 \, dxdy \\
+ \frac{5a^5 R_2^5}{9R_1} \int_{\Gamma_\kappa} |\nabla|T|^3|^2 \, dxdy - a^5 R_2^5 \int_{\Gamma_\kappa} Q_1 |T|^4 \, dxdy,
\]

(3.59)

\[
\left| a^5 R_2^5 \int_{\Gamma_\kappa} (v \cdot \nabla T)|T|^4 \, dxdy - a^5 R_2^5 \int_{\Gamma_\kappa} Q_1 |T|^4 \, dxdy \right| \\
\leq C||v||_{L^2(\Gamma_\kappa)}||\nabla|T|^3||_{L^2(\Gamma_\kappa)}||T|^3||_{L^2(\Gamma_\kappa)} + C||Q_1||_{L^2(\Gamma_\kappa)}||T|^4||_{L^\infty(\Gamma_\kappa)} \\
\leq C||v||_{H(\Omega)}||\nabla|T|^3||_{L^2(\Gamma_\kappa)}||T|^3||_{L^2(\Gamma_\kappa)} + C||Q_1||_{H(\Omega)}||T|^4||_{L^2(\Gamma_\kappa)}||T|^4||_{H(\Omega)},
\]

(3.60)

Denoted by \(\eta = q_\alpha \). It is clear that \(\eta \) satisfies the following equation by differentiating the equation (2.6) with respect to \(z \):

\[
\frac{\partial \eta}{\partial t} + L \eta + v \cdot \nabla \eta - (\int_0^z \nabla \cdot v(x, y, \zeta, t) \, d\zeta) \frac{\partial \eta}{\partial z} + \partial_z v \cdot \nabla q - (\nabla \cdot v) \eta = \partial_z Q_2
\]

(3.61)
supplemented with the boundary conditions
\[
\frac{1}{Rt_3} \eta + \beta q |_{r_+} = 0, \eta |_{r_+} = 0, \frac{\partial q}{\partial t} |_{r_+} = 0. \tag{3.62}
\]

Similarly, we have the following inequality
\[
\frac{d}{dt} \|\eta\|_{L^6(\Omega, t)}^6 + \frac{\beta^2 Rt_3^2}{Rt_3} \|q\|_{L^6(\Omega, t)}^6 + \frac{\beta^2 Rt_3^2}{Rt_3} \int_{t_0}^t \|\eta\|_{L^6(\Omega, t')}^6 \, d\tau + \frac{2 \beta^2 Rt_3^2}{Rt_3} \int_{t_0}^t \|\partial_t \eta\|_{L^6(\Omega, t')}^6 \, d\tau + \frac{2 \beta^2 Rt_3^2}{Rt_3} \int_{t_0}^t \|\eta\|_{L^6(\Omega, t')}^6 \, d\tau \\
\leq C \|v\|_{L^6(\Omega)}^6 + C \|Q_2\|_{H^1(\Omega)}^6 \|\eta\|_{L^6(\Omega)}^6 + C \|v\|_{L^6(\Omega)}^6 \|\eta\|_{L^6(\Omega)}^6 + C \|Q_2\|_{H^1(\Omega)}^6 \|\eta\|_{L^6(\Omega)}^6, \tag{3.63}
\]

Employing the uniform Gronwall inequality and Young inequality, using (3.50)-(3.63), yields
\[
\|q_t\|_{L^6(\Omega, t)}^6 + \|q\|_{L^6(\Omega, t)}^6 \leq \rho_{12} \tag{3.64}
\]
for any \(t \geq T_2 + 9 \).

3.2.12. H estimates of \((v_t, T, q_t, q_t)\)

Denoted by \(\pi = v_t, \xi = T, \chi = q_t \). It is clear that \(\pi, \xi, \chi \) satisfies the following equations by differentiating (2.4)-(2.6) with respect to \(t \), respectively.

\[
\frac{\partial \pi}{\partial t} + L \pi + (v \cdot \nabla) \pi - \left(\int_{0}^{\infty} \nabla \cdot v(x, y, \xi, t) d\xi \right) \frac{\partial \pi}{\partial x} + (\pi \cdot \nabla) v - \int_{0}^{\infty} \frac{abP}{p(\xi)} \nabla \chi(x, y, \xi, t) T(x, y, \xi, t) d\xi + \frac{1}{R_0} \chi \|
\]

\[
+ \nabla \cdot \Phi(x, y, t) - \left(\int_{0}^{\infty} \nabla \cdot v(x, y, \xi, t) d\xi \right) \frac{\partial \pi}{\partial x} - \int_{0}^{\infty} \frac{bP}{p(\xi)} \nabla \{1 + aq(x, y, \xi, t)\} \chi(x, y, \xi, t) d\xi = 0, \tag{3.65}
\]

\[
\frac{\partial \xi}{\partial t} + L \xi + v \cdot \nabla \xi - \left(\int_{0}^{\infty} \nabla \cdot v(x, y, \xi, t) d\xi \right) \frac{\partial \xi}{\partial x} + \pi \cdot \nabla T + \int_{0}^{\infty} \nabla \cdot v(x, y, \xi, t) d\xi = 0, \tag{3.66}
\]

\[
\frac{\partial \chi}{\partial t} + L \chi + v \cdot \nabla \chi - \left(\int_{0}^{\infty} \nabla \cdot v(x, y, \xi, t) d\xi \right) \frac{\partial \chi}{\partial x} + \pi \cdot \nabla \chi - \left(\int_{0}^{\infty} \nabla \cdot v(x, y, \xi, t) d\xi \right) \frac{\partial \chi}{\partial x} = 0 \tag{3.67}
\]

subject to the boundary conditions
\[
\frac{\partial \pi}{\partial x} |_{r_+} = 0, \frac{\partial \pi}{\partial x} |_{r_+} = 0, \frac{\partial \pi}{\partial x} \times \vec{n} |_{r_+} = 0, \frac{\partial \pi}{\partial n} |_{r_+} = 0, \tag{3.68}
\]

\[
\frac{\partial \xi}{\partial x} + \beta \xi |_{r_+} = 0, \frac{\partial \xi}{\partial x} |_{r_+} = 0, \frac{\partial \xi}{\partial n} |_{r_+} = 0, \tag{3.69}
\]

\[
\frac{\partial \chi}{\partial x} + \beta \chi |_{r_+} = 0, \frac{\partial \chi}{\partial x} |_{r_+} = 0, \frac{\partial \chi}{\partial n} |_{r_+} = 0. \tag{3.70}
\]

Multiplying (3.65), (3.66), (3.67) by \(\pi, \xi, \chi \) respectively, integrating over \(\Omega \), we obtain
\[
\frac{1}{2} \frac{d}{dt} \|\pi\|_{L^2(\Omega)}^2 + \|\pi\|_{L^2(\Omega)}^2 = - \int_{\Omega} \left(\nabla \cdot v \right) \chi \left(\int_{0}^{\infty} \nabla \cdot v(x, y, \xi, t) d\xi \right) \frac{\partial \pi}{\partial x} \, \pi \, dx \, dy \, dz + \int_{\Omega} \int_{0}^{\infty} \frac{abP}{p(\xi)} \nabla \chi(x, y, \xi, t) T(x, y, \xi, t) d\xi \cdot \pi \, dx \, dy \, dz \\
+ \int_{\Omega} \int_{0}^{\infty} \frac{bP}{p(\xi)} \nabla \{1 + aq(x, y, \xi, t)\} \chi(x, y, \xi, t) d\xi \cdot \pi \, dx \, dy \, dz, \tag{3.71}
\]

\[
\frac{1}{2} \frac{d}{dt} \|\xi\|_{L^2(\Omega)}^2 + \|\xi\|_{L^2(\Omega)}^2 = - \int_{\Omega} \left(\nabla \cdot v \right) \xi \, dx \, dy \, dz + \int_{\Omega} \left(\int_{0}^{\infty} \nabla \cdot v(x, y, \xi, t) d\xi \right) \frac{\partial T}{\partial x} \xi \, dx \, dy \, dz \\
- \int_{\Omega} \frac{abP}{p(\xi)} \chi \left(\int_{0}^{\infty} \nabla \cdot v(x, y, \xi, t) d\xi \right) \xi \, dx \, dy \, dz \\
- \int_{\Omega} \frac{bP}{p(\xi)} \{1 + aq(x, y, \xi, t)\} \nabla \cdot v(x, y, \xi, t) d\xi \xi \, dx \, dy \, dz. \tag{3.72}
\]
Taking the inner product of (2.6) with \(v \) and \(\pi \) and \(\chi \), we derive from (3.80)-(3.83) that
\[
\frac{1}{2} \frac{d}{dt} \|v\|_{L^2}^2 + \|\pi\|_{L^2}^2 = - \int_{\Omega} (\pi \cdot \nabla q) v \, dx dy dz + \int_{\Omega} \left(\int_{0}^{\infty} \nabla \cdot \pi(x, y, \zeta, t) \, d\zeta \right) \frac{\partial \chi}{\partial x} \, dx dy dz.
\] (3.73)

Next, we estimate the right hand side of (3.71)-(3.73) term by term.
\[
- \int_{\Omega} (\pi \cdot \nabla)v - \left(\int_{0}^{\infty} \nabla \cdot \pi(x, y, \zeta, t) \, d\zeta \right) \frac{\partial v}{\partial x} \, dx dy dz \leq C \|\nabla \pi\|_{L^2} \|v\|_{L^2} + C \|\pi\|_{L^2} \|\nabla \pi\|_{L^2},
\] (3.74)
\[
- \int_{\Omega} (\pi \cdot \nabla T) \xi \, dx dy dz + \int_{\Omega} \left(\int_{0}^{\infty} \nabla \cdot \pi(x, y, \zeta, t) \, d\zeta \right) \frac{\partial T}{\partial x} \xi \, dx dy dz \leq C \|\nabla \pi\|_{L^2} \|T\|_{L^2} + C \|\pi\|_{L^2} \|\nabla \pi\|_{L^2},
\] (3.75)
\[
\int_{\Omega} \int_{0}^{\infty} \frac{abP}{p(\zeta)} \nabla \left[(1 + aq(x, y, \zeta, t)) \xi(x, y, \zeta, t) \right] \, dx dy dz \leq C \|\xi\|_{L^2} \|v_0\|_{L^2} \|\nabla \pi\|_{L^2} + C \|\xi\|_{L^2} \|v_0\|_{L^2} \|\nabla \pi\|_{L^2},
\] (3.76)
\[
\int_{\Omega} \int_{0}^{\infty} \frac{abP}{p(\zeta)} \nabla \left[(1 + aq(x, y, \zeta, t)) \xi(x, y, \zeta, t) \right] \, dx dy dz \leq C \|\xi\|_{L^2} \|v_0\|_{L^2} \|\nabla \pi\|_{L^2} + C \|\xi\|_{L^2} \|v_0\|_{L^2} \|\nabla \pi\|_{L^2},
\] (3.77)
\[
\int_{\Omega} \int_{0}^{\infty} \frac{abP}{p(\zeta)} \nabla \left[(1 + aq(x, y, \zeta, t)) \xi(x, y, \zeta, t) \right] \, dx dy dz \leq C \|\xi\|_{L^2} \|v_0\|_{L^2} \|\nabla \pi\|_{L^2} + C \|\xi\|_{L^2} \|v_0\|_{L^2} \|\nabla \pi\|_{L^2},
\] (3.78)

and
\[
\int_{\Omega} \int_{0}^{\infty} \frac{abP}{p(\zeta)} \nabla \left[(1 + aq(x, y, \zeta, t)) \xi(x, y, \zeta, t) \right] \, dx dy dz = 0.
\] (3.79)

We infer from (3.71)-(3.79) that
\[
\frac{d}{dt} \left(\|v\|_{L^2}^2 + \|\pi\|_{L^2}^2 + \|\chi\|_{L^2}^2 \right) + \left(\|\xi\|_{L^2}^2 \right) + \left(\|\pi\|_{L^2}^2 \right) + \left(\|\xi\|_{L^2}^2 \right)
\leq \left(\|v_0\|_{L^2}^2 \right) + \left(\|\xi\|_{L^2}^2 \right) + \left(\|\pi\|_{L^2}^2 \right) + \left(\|\xi\|_{L^2}^2 \right),
\] (3.80)

Taking the inner product of (2.6) with \(\chi \) in \(L^2(\Omega) \), we obtain
\[
\|\chi\|_{L^2}^2 = \int_{\Omega} \nabla \cdot v - \int_{\Omega} \left(\int_{0}^{\infty} \nabla \cdot \pi(x, y, \zeta, t) \, d\zeta \right) \frac{\partial \chi}{\partial x} \, dx \, dy \, dz \\
\leq \|Q_2\|_{L^2} \|v_0\|_{L^2} + C \|\nabla \nabla q\|_{L^2} \|v_0\|_{L^2} + \|L_3\|_{L^2} \|v_0\|_{L^2} + C \|\nabla \nabla q\|_{L^2} \|v_0\|_{L^2} + C \|\nabla \nabla q\|_{L^2} \|v_0\|_{L^2} + C \|\nabla \nabla q\|_{L^2} \|v_0\|_{L^2}.
\] (3.81)

Similarly, we have
\[
\|\xi\|_{L^2}^2 \leq \|Q_2\|_{L^2} \|v_0\|_{L^2} + C \|\nabla \nabla \nabla T\|_{L^2} \|v_0\|_{L^2} + \|\nabla \nabla q\|_{L^2} \|v_0\|_{L^2} + \|L_3\|_{L^2} \|v_0\|_{L^2} + C \|\nabla \nabla q\|_{L^2} \|v_0\|_{L^2} + C \|\nabla \nabla q\|_{L^2} \|v_0\|_{L^2}.
\] (3.82)

and
\[
\|\pi\|_{L^2}^2 \leq C \|\nabla \nabla \nabla v_0\|_{L^2} \|v_0\|_{L^2} + C \|\nabla \nabla q\|_{L^2} \|v_0\|_{L^2} + \|L_4\|_{L^2} \|v_0\|_{L^2} + C \|\nabla \nabla q\|_{L^2} \|v_0\|_{L^2} + C \|\nabla \nabla q\|_{L^2} \|v_0\|_{L^2}.
\] (3.83)

By the uniform Gronwall inequality and Young inequality, we derive from (3.80)-(3.83) that
\[
\|v(t)\|_{L^2}^2 + \|\pi(t)\|_{L^2}^2 + \|\xi(t)\|_{L^2}^2 \leq \rho_{13}
\] (3.84)
for any \(t \geq T_2 + 10 \).

Moreover, we have
\[
\int_{t}^{t+1} \|v\|^2 \, dt + \int_{t}^{t+1} \|T\|^2 \, dt + \int_{t}^{t+1} \|q\|^2 \, dt \leq \rho_{14}
\] (3.85)
for any \(t \geq T_2 + 10 \).
3.2.13. V estimates of (v, T, q)

Multiplying (3.65) by $L_i \pi$ and integrating over Ω, we get

$$\frac{1}{2} \frac{d}{dt} |\pi|^2 + |L_1 \pi|_2^2 \leq C||v||_0 ||\nabla \pi||_2 |L_1 \pi|_2 + C |||\nabla v||_2^2 ||\nabla \pi||_2^2 |L_1 \pi|_2 + C ||\nabla T||_2 |L_1 \pi|_2$$

$$+ C ||\nabla T||_2 |L_1 \pi|_2 + C ||\nabla \pi||_2 |L_1 \pi|_2 + C ||\nabla \pi||_2 |L_1 \pi|_2 + C ||\nabla \pi||_2 |L_1 \pi|_2$$

Similarly, we have the following inequalities

$$\frac{1}{2} \frac{d}{dt} |\pi|^2 + |L_2 \pi|_2^2 \leq C||v||_0 ||\nabla \pi||_2 |L_2 \pi|_2 + C |||\nabla v||_2^2 ||\nabla \pi||_2^2 |L_2 \pi|_2$$

$$+ C ||\nabla T||_2 |L_2 \pi|_2 + C ||\nabla \pi||_2 |L_2 \pi|_2 + C ||\nabla \pi||_2 |L_2 \pi|_2$$

$$+ C ||\nabla \pi||_2 |L_2 \pi|_2$$

and

$$\frac{1}{2} \frac{d}{dt} |\pi|^2 + |L_3 \pi|_2^2 \leq C||v||_0 ||\nabla \pi||_2 |L_3 \pi|_2 + C |||\nabla v||_2^2 ||\nabla \pi||_2^2 |L_3 \pi|_2$$

$$+ C ||\nabla \pi||_2 |L_3 \pi|_2 + C ||\nabla \pi||_2 |L_3 \pi|_2 + C ||\nabla \pi||_2 |L_3 \pi|_2$$

Employing the uniform Gronwall inequality and Young inequality, yield

$$|v|^2 + |T|^2 + |q|^2 \leq \rho_{15} \quad (3.86)$$

for any $t \geq T_2 + 11$.

3.2.14. $(H^2(\Omega))^d \cap V$ estimates of (v, T, q)

Taking the inner product of (24) with $L_1 v$ in $L^2(\Omega)$, we obtain

$$||L_1 v||_2^2 \leq C||v||_0 ||\nabla v||_2 |L_1 v|_2 + C |||\nabla v||_2^2 ||\nabla T||_2 |L_1 v|_2$$

$$+ C ||\nabla v||_2 |L_1 v|_2 + C ||\nabla \pi||_2 |L_1 v|_2 + C ||\nabla \pi||_2 |L_1 v|_2$$

Similarly, we have the following inequalities

$$||L_2 T||_2^2 \leq C||v||_0 ||\nabla \pi||_2 |L_2 T|_2 + C |||\nabla v||_2^2 ||\nabla \pi||_2^2 |L_2 T|_2$$

$$+ C ||\nabla \pi||_2 |L_2 T|_2 + C ||\nabla \pi||_2 |L_2 T|_2 + C ||\nabla \pi||_2 |L_2 T|_2$$

and

$$||L_3 q||_2^2 \leq C||v||_0 ||\nabla \pi||_2 |L_3 q|_2 + C |||\nabla v||_2^2 ||\nabla \pi||_2^2 |L_3 q|_2$$

Therefore, we have

$$||v||^2 + ||T||^2 + ||q||^2 \leq \rho_{16}$$

for any $t \geq T_2 + 10$, which implies that

$$||v, T, q||_{(H^2(\Omega))^d \cap V} \leq \rho_{17} \quad (3.87)$$

for any $t \geq T_2 + 10$.

By virtue of (3.3), (3.9), (3.32), (3.37), (4.42), (4.57), we have

Theorem 3.2. Assume that $Q_1 \in L^2(\Omega)$ and $Q_2 \in L^2(\Omega)$. Then the semigroup $(S(t))_{t \geq 0}$ associated with the initial-boundary problem (24)-(2.12) possesses an absorbing set in V. That is, there exists a positive constant K_1 satisfying for any bounded subset B of V, there exists a positive time $\tau_1 = \tau_{1, B}$ depending on the norm of B such that for any $t \geq \tau_1$, we have

$$||v(t), T(t), q(t)||_V = ||S(t)(v_0, T_0, q_0)||_V \leq K_1.$$
From Hölder inequality and Theorem 3.3, we deduce that
\[
\|(v(t), T(t), q(t))\|_{(H^2(\Omega))^3 \cap V} = \|S(t)(v_0, T_0, q_0)\|_{(H^2(\Omega))^3 \cap V} \leq R_2.
\]

4. The existence of attractors

4.1. The existence of global attractors

The abstract theory of global attractor can be referred to [1, 6, 28, 33, 36, 40]. In this section, we prove the existence of global attractors of the semigroup \(\{S(t)\}_{t \geq 0}\) generated by the initial-boundary problem (2.4)-(2.12).

Thanks to the compactness of \((H^2(\Omega))^3 \cap V \subset V\), we have the following result.

Theorem 4.1. Assume that \(Q_1 \in H^1(\Omega)\) and \(Q_2 \in H^1(\Omega)\). Then the semigroup \(\{S(t)\}_{t \geq 0}\) corresponding to problem (2.4)-(2.12) has a global attractor \(\mathcal{A}_V\) in \(V\).

Remark 4.1. Under the assumptions that \(Q_1 \in L^2(\Omega)\) and \(Q_2 \in L^2(\Omega)\), the existence of a global attractor \(\mathcal{A}_V\) in \(V\) of the semigroup \(\{S(t)\}_{t \geq 0}\) associated with problem (2.4)-(2.12) can be also obtained by the Aubin-Lions compactness Lemma as in [21].

Next, we prove the asymptotical compactness of the semigroup \(\{S(t)\}_{t \geq 0}\) generated by the initial-boundary problem (2.4)-(2.12).

Theorem 4.2. Assume that \(Q_1 \in H^1(\Omega)\) and \(Q_2 \in H^1(\Omega)\). Then the semigroup \(\{S(t)\}_{t \geq 0}\) generated by problem (2.4)-(2.12) is asymptotically compact in \((H^2(\Omega))^3 \cap V\).

Proof. Let \(B_0\) be an absorbing set in \((H^2(\Omega))^3 \cap V\) of the semigroup \(\{S(t)\}_{t \geq 0}\) generated by problem (2.4)-(2.12) obtained in Theorem 3.3. Then we need only to show that for any \((v_n(t_0), T_{n(t_0)}, q_{n(t_0)})\) \((n = 1, 2, \ldots)\) is pre-compact in \((H^2(\Omega))^3 \cap V\), where \((v_n(t_0), T_{n(t_0)}, q_{n(t_0)}) = S(t_0)(v_n, T_0, q_0)\).

In fact, from Theorem 3.3 and the compactness of \((H^2(\Omega))^3 \cap V \subset (W^{1,3}(\Omega))^3 \cap V\), we know that \((v_n(t_0), T_{n(t_0)}, q_{n(t_0)})\) \((n = 1, 2, \ldots)\) is pre-compact in \((W^{1,3}(\Omega))^3 \cap V\) and \((W^{1,3}(\Omega))^3 \cap V\) is compact in \((W^{1,3}(\Omega))^3 \cap V\) and \(H\), respectively. Without loss of generality, we assume that \((v_n(t_0), T_{n(t_0)}, q_{n(t_0)})\) \((n = 1, 2, \ldots)\) is a Cauchy sequence in \((W^{1,3}(\Omega))^3 \cap V\) and \(H\), respectively.

In the following, we will prove that \((v_n(t_0), T_{n(t_0)}, q_{n(t_0)})\) \((n = 1, 2, \ldots)\) is a Cauchy sequence in \((H^2(\Omega))^3 \cap V\).

Then, by simply calculations, we have
\[
\begin{align*}
L_3q_n(t_n) - L_3q_m(t_m) &\leq \left| \frac{\partial q_n(t_n)}{\partial t} - \frac{\partial q_m(t_m)}{\partial t} \right|_2 \|L_2q_n(t_n) - L_2q_m(t_m)\|_2 + \|v_n(t_n) - v_m(t_m)\|_3 \|\nabla q_n(t_n)\|_6 \|L_3q_n(t_n) - L_3q_m(t_m)\|_2 \\
&+ \|v_n(t_n)\|_6 \|\nabla q_n(t_n) - \nabla q_m(t_m)\|_3 \|L_3q_n(t_n) - L_3q_m(t_m)\|_2 \\
&+ \|\nabla v_n(t_n) - \nabla v_m(t_m)\|_3 \frac{\partial q_n(t_n)}{\partial t} \|L_3q_n(t_n) - L_3q_m(t_m)\|_2 \\
&+ \|\nabla v_m(t_m)\|_3 \frac{\partial q_m(t_m)}{\partial t} \|L_3q_m(t_m) - L_3q_m(t_m)\|_2.
\end{align*}
\]

From Hölder inequality and Theorem 3.3, we deduce that \((q_n(t_n))_{n=1}^\infty\) is a Cauchy sequence in \(H^2(\Omega)\).

Similarly, we can also prove \((v_n(t_n), T_{n(t_n)})\) \((n = 1, 2, \ldots)\) is a Cauchy sequence in \((H^2(\Omega))^3\). The proof of Theorem 4.2 is completed.

Therefore, from Theorem 3.3 and Theorem 4.2 we immediately obtain the following result.

Theorem 4.3. Assume that \(Q_1 \in H^1(\Omega)\) and \(Q_2 \in H^1(\Omega)\). Then the semigroup \(\{S(t)\}_{t \geq 0}\) associated with problem (2.4)-(2.12) has a global attractor \(\mathcal{A}\) in \((H^2(\Omega))^3 \cap V\).
4.2. The existence of an exponential attractor

In this section, inspired by the idea in [8], we prove the existence of an exponential attractor in V for the three dimensional viscous primitive equations of large-scale moist atmosphere. The definition about exponential attractor can be referred to [4, 8, 9].

In order to estimate the fractal dimension of the exponential attractor in V, we need the following lemma.

Lemma 4.1. ([8]) Let X and Y be two metric spaces and $f : X \to Y$ be α-Hölder continuous on the subset $A \subset X$. Then

$$d_{f}(f(A),Y) \leq \frac{1}{\alpha}d_{f}(A,X).$$

In particular, the fractal dimension does not increase under a Lipschitz continuous mapping.

In the following, we first prove the first Theorem about the smoothing property of the semigroup $\{S(t)\}_{t \geq 0}$ generated by problem (4.24) - (4.2).

Theorem 4.4. Assume that $Q_{1} \in H^{1}(\Omega)$ and $Q_{2} \in H^{1}(\Omega)$. Let $(v^{i}, \Phi^{i}, T^{i}, q^{i})$ be the solution of problem (4.16) with the initial data $(v^{i}_{0}, T^{i}_{0}, q^{i}_{0}) \in V$, $i = 1, 2$. Then the following estimate holds

$$\|v(t), T^{i}(t), q^{i}(t)\|_{\Omega} \leq q_{1} \frac{t}{\alpha} + \frac{1}{\alpha} \|v^{i}_{0}, T^{i}_{0}, q^{i}_{0}\|_{\Omega}$$

for any $t \geq \tau_{2}$, where $\tau = \tau - \tau_{2}, q_{1} \text{ and } q_{2}$ are positive constants which only depend on $\Omega, \alpha, \beta, R_{t_{2}}, R_{t_{4}}, ||Q_{1}||_{H^{1}(\Omega)}$ and $||Q_{2}||_{H^{1}(\Omega)}$.

Proof. Let $(v, \Phi, T, q) = (v^{1} - v^{2}, \Phi^{1} - \Phi^{2}, T^{1} - T^{2}, q^{1} - q^{2})$, then (v, Φ, T, q) satisfies the following equations

$$
\begin{align*}
\frac{\partial v}{\partial t} + (v^{i} \cdot \nabla) v - \int_{\Omega} \nabla \cdot v(x, y, \xi, t) \, d\xi &= \frac{\partial}{\partial t} v(x, y, \xi, t) + \frac{1}{\alpha} v(x, y, \xi, t) + \frac{1}{\alpha} v^{i} \cdot \nabla v(x, y, \xi, t), \\
\frac{\partial T}{\partial t} + v \cdot \nabla T - \int_{\Omega} \nabla \cdot v(x, y, \xi, t) \, d\xi &= \frac{\partial}{\partial t} T(x, y, \xi, t) + \frac{1}{\alpha} q(x, y, \xi, t) + \frac{1}{\alpha} q^{i} \cdot \nabla T(x, y, \xi, t), \\
\frac{\partial q}{\partial t} + q^{i} \cdot \nabla q - \int_{\Omega} \nabla \cdot v(x, y, \xi, t) \, d\xi &= \frac{\partial}{\partial t} q(x, y, \xi, t) + \frac{1}{\alpha} q^{i} \cdot \nabla q(x, y, \xi, t)
\end{align*}
$$

with the following boundary conditions

$$
\begin{align*}
\frac{\partial v}{\partial n} |_{y} = 0, \frac{\partial T}{\partial n} |_{y} = 0, \frac{\partial q}{\partial n} |_{y} = 0, \\
(\frac{\partial v}{\partial n} + \alpha T) |_{y} = 0, \frac{\partial T}{\partial n} |_{y} = 0, \frac{\partial q}{\partial n} |_{y} = 0, \\
(\frac{1}{\alpha} \frac{\partial v}{\partial n} + \beta q) |_{y} = 0, \frac{\partial v}{\partial n} |_{y} = 0, \frac{\partial q}{\partial n} |_{y} = 0
\end{align*}
$$

and the initial data

$$
\begin{align*}
v(x, y, z, 0) &= v^{i}_{0}(x, y, z) - v^{i}_{0}(x, y, z), \\
T(x, y, z, 0) &= T^{i}_{0}(x, y, z) - T^{i}_{0}(x, y, z), \\
q(x, y, z, 0) &= q^{i}_{0}(x, y, z) - q^{i}_{0}(x, y, z).
\end{align*}
$$

Multiplying the first equation of (4.2) by v and integrating over Ω, we obtain

$$
\frac{1}{2} \frac{d}{dt} \|v\|^{2} + \|v\|^{2} = \int_{\Omega} (v \cdot \nabla v)^{2} \cdot v \, dx dy dz - \int_{\Omega} \int_{0}^{t} \frac{h_{P}}{p(\xi)} \nabla \cdot (1 + aq^{i}(x, y, \xi, t)) T(x, y, \xi, t) \, d\xi \cdot v \, dx dy dz
$$

Taking the inner product of the second equation of (4.2) with T in $L^{2}(\Omega)$ and combining the second equation of (4.3), we get

$$
\frac{1}{2} \frac{d}{dt} \|T\|^{2} + \|T\|^{2} = \int_{\Omega} (v \cdot \nabla T)^{2} \cdot T \, dx dy dz + \int_{\Omega} \int_{0}^{t} \frac{h_{P}}{p(\xi)} (1 + aq^{i}) \int_{0}^{t} \nabla \cdot v(x, y, \xi, t) \, d\xi \cdot T \, dx dy dz
$$

$$
- \int_{\Omega} \int_{0}^{t} \nabla \cdot v(x, y, \xi, t) \, d\xi \cdot T^{2} \, dx dy dz + \int_{\Omega} \int_{0}^{t} \frac{h_{P}}{p(\xi)} \nabla \cdot v^{i}(x, y, \xi, t) \, d\xi \cdot T \, dx dy dz.
$$
Multiplying the third equation of \((4.2)\) by \(q\) and integrating over \(\Omega\), we obtain
\[
\frac{1}{2} \frac{d}{dt} \|q\|_{L^2}^2 + \|q\|_{L^2}^2 = \int_{\Omega} (v \cdot \nabla q^2) q \, dx \, dy \, dz - \int_{\Omega} \left(\int_{0}^{t} \nabla \cdot v(x, y, \zeta, t) \, dt \right) \frac{\partial q^2}{\partial z} q \, dx \, dy \, dz. \tag{4.7}
\]
From \((4.5)-(4.7)\) and H"older inequality, we deduce that
\[
\frac{d}{dt} \|(v, T, q)\|_{H^1}^2 + 2\|(v, T, q)\|_{H^1}^2 \leq C\|v\|_{L^3} \|\nabla v\|_{L^2} \|v\|_{L^6} + C\|v\|_{L^2}^2 \|\nabla v\|_{L^2} \|v\|_{L^2} + C\|q\|_{L^6} \|\nabla v\|_{L^2} \|T\|_{L^6} + C\|v\|_{L^3} \|\nabla T\|_{L^2} \|T\|_{L^6} + C\|v\|_{L^2} \|\nabla T\|_{L^2} \|v\|_{L^2} + C\|q\|_{L^6} \|\nabla v\|_{L^2} \|T\|_{L^6} + C\|v\|_{L^3} \|\nabla q\|_{L^2} \|v\|_{L^6} + C\|q\|_{L^6} \|\nabla q\|_{L^2} \|v\|_{L^2}.
\]
It follows from Theorem \(3.3\) and Young inequality that
\[
\frac{d}{dt} \|(v, T, q)\|_{H^1}^2 + \|(v, T, q)\|_{H^1}^2 \leq C\mathcal{C}^{\mathcal{C}} \|(v, T, q)\|_{H^1}^2
\]
for any \(t \geq t_2\).

We infer from the classical Gronwall inequality that
\[
\|(v(t), T(t), q(t))\|_{H^1}^2 + \int_{0}^{t} \||(v(s), T(s), q(s))\|_{H^1}^2 \, ds \leq e^{C\mathcal{C}^{\mathcal{C}} \|(v(0), T(0), q(0))\|_{H^1}^2}
\]
for any \(t \geq t_2\), where \(C\) is a positive constant.

Taking the inner product of the first equation of \((4.2)\) with \(L_1 v\) in \(L^2(\Omega)\) and combining the first equation of \((4.3)\), we get
\[
\frac{1}{2} \frac{d}{dt} \|v\|_{L^2}^2 + \|L_1 v\|_{L^2}^2 \leq \|v\|_{L^3} \|\nabla v\|_{L^6} \|\Delta v\|_{L^2} + C\|v\|_{L^2} \|\nabla v\|_{L^2} \|\Delta v\|_{L^2} + \|v\|_{L^3} \|\nabla v\|_{L^6} \|L_1 v\|_{L^2} + C\|v\|_{L^2} \|\nabla v\|_{L^2} \|L_1 v\|_{L^2} + C\|q\|_{L^6} \|\nabla v\|_{L^2} \|L_1 v\|_{L^2}.
\]
for any $t \geq \tau_2$. \hfill \(\square \)

The second Theorem is concerned with the time regularity of the semigroup $\{S(t)\}_{t \geq 0}$ generated by problem \((2.4)-(2.12) \). The proof is standard and we only state it here.

Theorem 4.5. Assume that $Q_1 \in H^1(\Omega)$ and $Q_2 \in H^1(\Omega)$. Then for any bounded subset $B \subset V$, there exists a positive constant ϱ_1 and a constant ρ_1 such that

$$\|S(t)v_0, T_0, q_0) - S(t)v_0, T_0, q_0)\|_V \leq \varrho_1|t - \hat{t}|$$

for any $t, \hat{t} \geq 0$ and any $(v_0, T_0, q_0) \in B$, where $S(t)v_0, T_0, q_0)$ is the solution of problem \((2.4)-(2.12) \) with initial data (v_0, T_0, q_0).

Finally, we prove the existence of an exponential attractor for problem \((2.4)-(2.12) \).

Theorem 4.6. Assume that $Q_1 \in H^1(\Omega)$ and $Q_2 \in H^1(\Omega)$. Let $\{S(t)\}_{t \geq 0}$ be a semigroup generated by problem \((2.4)-(2.12) \). Then the semigroup $\{S(t)\}_{t \geq 0}$ possesses an exponential attractor $\mathcal{E} \subset V$; namely,

(i) \mathcal{E} is compact and positively invariant with respect to $S(t)$, i.e.,

$$S(t)\mathcal{E} \subset \mathcal{E}$$

for any $t \geq 0$.

(ii) The fractal dimension $\text{dim}_F(\mathcal{E}, V)$ of \mathcal{E} is finite.

(iii) \mathcal{E} attracts exponentially any bounded subset B of V, that is, there exists a positive nondecreasing function Q and a constant $\rho > 0$ such that

$$\text{dist}_V(S(t)B, \mathcal{E}) \leq Q(\|B\|_V)e^{-\rho t}$$

for any $t \geq 0$, where dist_V denotes the non-symmetric Hausdorff distance between sets in V and $\|B\|_V$ stands for the size of B in V. Moreover, both Q and ρ can be explicitly calculated.

Proof. We know from Theorems 3.3, 4.4, 4.5 that there exists a bounded subset B_0 in V and $t_1 \geq \tau_2 + 2 > 0$ such that the mapping $S = S(t_1) : B_0 \rightarrow B_0$ enjoys the smoothing property

$$\|S(v_0, T_0, q_0) - S(v_0, T_0, q_0)\|_V \leq \mathcal{K}\|v_0, T_0, q_0\|_V$$

for any (v_0, T_0, q_0) and $(v_0, T_0, q_0) \in B_0$.

Since B_0 is bounded in V, there exists a point $x_0 \in B_0$ and a positive constant R such that $B_0 \subset B(x_0, R, H)$, where $B(x_0, R, H)$ denotes a R-ball in H centered at $x_0 \in H$. We infer from (4.12) that $B(S x_0, KR, V)$ can cover the image $SB(x_0, R, H)$. Therefore, it follows from the compactness of $V \subset H$ that there exists a finite number of θR-ball in H with centers x_0^i for any fixed $\theta \in (0, 1)$. Moreover, the minimal number of balls in this covering can be estimated as follows:

$$N\theta(B(S x_0, KR, V), H) = N\theta(B(0, KR, V), H) = N\theta'(B(0, 1, V), H) =: N(\theta),$$

which implies that there exists a finite number $N(\theta) \geq 2$ of θR-ball in H centered at the points of $V_1 = \{x_0^i : i = 1, 2, \cdots, N(\theta)\} \subset S B_0$ to cover $S B_0$ and

$$\text{dist}_H(SB_0, V_1) \leq \theta R.$$

For any $i \in \{1, 2, \cdots, N(\theta)\}$, applying the above procedure to every ball $B(x_0^i, \theta R, H)$, we obtain there exists a finite number $N(\theta)^2$ of $\theta^2 R$-ball in H centered at the points of $V_2 = \{x_0^i : i = 1, 2, \cdots, N(\theta)^2\} \subset S^2 B_0$ to cover $S^2 B_0$ and

$$\text{dist}_H(S^2 B_0, V_2) \leq \theta^2 R.$$

Repeating this procedure, we deduce that there exists a finite number $N(\theta)^k$ of $\theta^k R$-ball in H centered at the points of $V_k = \{x_0^i : i = 1, 2, \cdots, N(\theta)^k\} \subset S^k B_0$ to cover $S^k B_0$ and

$$\text{dist}_H(S^k B_0, V_k) \leq \theta^k R.$$

(4.14)
Now, we define a sequence of sets \(E_1 = V_1, E_k = S E_{k-1} \cup V_k \) for any \(k \in \mathbb{Z}^+ \). Let

\[
E = \bigcup_{k=1}^{\infty} E_k
\]

and let \(E_0 \) be the closure of \(E \) in \(V \).

In what follows, we verify that \(E_0 \) is an exponential attractor for \(S \) in \(V \). First of all, the invariance follows immediately from our construction. Thanks to \(V_k \subset E_0 \) and \(\theta \in (0, 1) \), we infer from (4.14) that

\[
dist_H(S^k B_0, E_0) \leq \theta^k R = R e^{ln \theta},
\]

which implies that

\[
dist_V(S^k B_0, E_0) \leq \theta^k KR = KR e^{ln \theta}.
\]

Thanks to \(S B_0 \subset B_0 \) and

\[
\bigcup_{k \geq n} E_k \subset S^n B_0 \subset \bigcup_{h \in V_n} B(h, \theta^k KR, V).
\]

For any \(\epsilon > 0 \), there exists some smallest positive integer \(n \) such that \(\theta^k KR \leq \epsilon \). Therefore, we obtain

\[
N_\epsilon(E, V) \leq N_\epsilon \left(\bigcup_{k \geq n} E_k, V \right) + N_\epsilon \left(\bigcup_{k < n} E_k, V \right)
\]

\[
= N(\theta)^n + \sum_{k=1}^{n-1} \#E_k
\]

\[
\leq N(\theta)^n + \frac{n - 1}{N(\theta) - 1} - \frac{N(\theta)^2}{(N(\theta) - 1)^2} + \frac{N(\theta)^n + 1}{(N(\theta) - 1)^2}
\]

\[
\leq (2 + N(\theta))N(\theta)^n,
\]

which implies that

\[
dim_F(E, H) \leq \frac{\ln N(\theta)}{\ln \theta}.
\]

It follows from Lemma 4.4, and the continuity of \(V \subset H \) that

\[
dim_F(E, V) \leq \frac{\ln N(\theta)}{\ln \theta},
\]

which implies that

\[
dim_F(E_0, V) \leq \frac{\ln N(\theta)}{\ln \theta},
\]

Finally, we define

\[
E = \bigcup_{t \in [1, 2 \alpha]} S(t)E_0,
\]

It is easily verify that \(E \) is an exponential attractor of problem (2.4)–(2.14). \(\Box \)

Remark 4.2. Thanks to \(A \subset E \), we infer from Theorem 4.6 that the fractal dimension of the global attractor of problem (2.4)–(2.12) established in Theorem 4.1 is finite.

Acknowledgement

This work was supported by the National Science Foundation of China Grant (11401459) and the Natural Science Foundation of Shaanxi Province (2015JM1010).
References

[1] A. V. Babin, M. I. Vishik, Attractors of Evolution Equations, North-Holland, Amsterdam, 1992.
[2] C. S. Cao, J. K. Li, E. S. Titi, Global well-posedness of strong solutions to the 3D primitive equations with horizontal eddy diffusivity, Journal of Differential Equations 257(11) (2014) 4108–4132.
[3] C. S. Cao, J. K. Li, E. S. Titi, Local and global well-posedness of strong solutions to the 3D primitive equations with vertical eddy diffusivity, Archive for Rational Mechanics and Analysis 214(1) (2014) 35–76.
[4] C. S. Cao, E. S. Titi, Global well-posedness of the three-dimensional viscous primitive equations of large-scale ocean and atmosphere dynamics, Annals of Mathematics 166 (2007) 245–267.
[5] C. S. Cao, E. S. Titi, Global well-posedness of the 3D primitive equations with partial vertical turbulence mixing heat diffusion, Communications in Mathematical Physics 310 (2012) 537–568.
[6] V. Chepyzhov, M. Vishik, Attractors for equations of mathematical physics, American Mathematical Society, Providence, RI, 2002.
[7] I. Chueshov, A squeezing property and its applications to a description of long-time behaviour in the three-dimensional viscous primitive equations, Proceedings of the Royal Society of Edinburgh: Section A Mathematics 144(4) (2014) 711–729.
[8] M. Efendiev, A. Miranville, S. Zelik, Exponential attractors for a nonlinear reaction-diffusion system in \mathbb{R}^3, C. R. Math. Acad. Sci. Paris 330 (2000) 713–718.
[9] M. Efendiev, A. Miranville, S. Zelik, Infinite dimensional attractors for a non-autonomous reaction-diffusion system, Mathematische Nachrichten 248-249 (2003) 72–96.
[10] L. C. Evans, R. Gastler, Some results for the primitive equations with physical boundary conditions, Zeitschrift für angewandte Mathematik und Physik 64(6) (2013) 1729–1744.
[11] B. D. Ewaldy, R. Temam, Maximum principles for the primitive equations of the atmosphere, Discrete and Continuous Dynamical Systems A 7 (2003) 343–362.
[12] F. Guillén-González, N. Masmoudi, M. A. Rodríguez-Bellido, Anisotropic estimates and strong solutions for the primitive equations, Differential and Integral Equations 13 (1998) 1381–1408.
[13] B. L. Guo, D. W. Huang, Existence of weak solutions and trajectory attractors for the moist atmospheric equations in geophysics, Journal of mathematical physics 47 (2006) 1089–7658.
[14] B. L. Guo, D. W. Huang, On the existence of atmospheric attractors, Science in China D 51 (2008) 469–480.
[15] B. L. Guo, D. W. Huang, On the 3d viscous primitive equations of the large-scale atmosphere, Acta Mathematica Scientia B 29 (2009) 846–866.
[16] B. L. Guo, D. W. Huang, Existence of the universal attractor for the 3 – d viscous primitive equations of large-scale moist atmosphere, Journal of Differential Equations 251 (2011) 457–491.
[17] N. G. Holtz, I. Kukavica, V. Vicol, M. Ziane, Existence and regularity of invariant measures for the three dimensional stochastic primitive equations, Journal of Mathematical Physics 55 (2014) pp:051504.
[18] C. H. Hsiaia, M. C. Shuebe, Time-periodic solutions of the primitive equations of large-scale moist atmosphere: existence and stability, Applicable Analysis 94(9) (2015) 1926–1963.
[19] C. Hu, Asymptotic analysis of the primitive equations under the small depth assumption, Nonlinear Analysis 61 (2005) 425–460.
[20] C. Hu, R. Temam, M. Ziane, The primitive equations of the large scale ocean under the small depth hypothesis, Discrete and Continuous Dynamical Systems A 9 (2003) 97–131.
[21] N. Ju, The global attractor for the solutions to the three dimensional viscous primitive equations, Discrete and Continuous Dynamical Systems A 17 (2007) 159–179.
[22] N. Ju, The finite dimensional global attractor for the 3d viscous primitive equations, Discrete and Continuous Dynamical Systems 36(12) (2016) 7001–7020.
[23] N. Ju, R. Temam, Finite dimensions of the global attractor for 3d primitive equations with viscosity, Journal of Nonlinear Science 25(1) (2015) 131–155.
[24] G. Kobelkov, Existence of a solution “in whole” for the large-scale ocean dynamics equations, Comptes rendus de l’Académie des sciences de l’URSS 343 (2006) 283–286.
[25] K. Li, F. Li, Pullback attractor for nonautonomous primitive equations of large-scale ocean and atmosphere dynamics, Abstract and Applied Analysis 2013 (2013) Article ID 691615, 12 pages.
[26] J. L. Lions, R. Temam, S. Wang, New formulations of the primitive equations of atmosphere and applications, Nonlinearity 5 (1992) 237–288.
[27] J. L. Lions, R. Temam, S. Wang, On the solutions of the large-scale ocean, Nonlinearity 5 (1992) 1007–1053.
[28] Q. F. Ma, S. H. Wang, C. K. Zhong, Necessary and sufficient conditions for the existence of global attractors for semigroups and applications, Indiana University Mathematics Journal 51 (2002) 1541–1559.
[29] J. Málek, D. Pražák, Large time behavior via the method of ω-trajectories, Journal of Differential Equations 181 (2002) 243–279.
[30] T. T. Medjo, On the uniqueness of z-weak solutions of the three-dimensional primitive equations of the ocean, Nonlinear Analysis 11 (2010) 1413 –1421.
[31] J. Pedlosky, Geophysical Fluid Dynamics, Springer-Verlag, New York, 1987.
[32] M. Petcu, R. Temam, D. Wirosoetisno, Existence and regularity results for the primitive equations in two space dimensions, Communications on Pure and Applied Analysis 3 (2004) 115–131.
[33] R. Temam, Infinite-Dimensional Dynamical Systems in Mechanics and Physics, New York, Springer-Verlag, 1997.
[34] R. Temam, M. Ziane, Some mathematical problems in geophysical fluid dynamics, Handbook of Mathematical Fluid Dynamics 3 (2005) 535–658.
[35] G. K. Vallis, Atmospheric and Oceanic Fluid Dynamics: Fundamentals and Large-Scale Circulation, Cambridge University Press, Cambridge, 2006.
[36] M. H. Yang, C. Y. Sun, C. K. Zhong, Global attractors for p-laplacian equation, Journal of Mathematical Analysis and Applications 327 (2007) 1130–1142.
[37] B. You, S. Ma, Global attractors for three dimensional viscous primitive equations of large-scale atmosphere in log-pressure coordinate, Abstract and Applied Analysis 2013 (2013) Article ID 758730, 16 pages.
[38] M. C. Zelati, M. Fremond, R. Temam, J. Tribbia, The equations of the atmosphere with humidity and saturation: uniqueness and physical bounds, Physica D 264 (2013) 49–65.

[39] M. C. Zelati, A. M. Huang, I. Kukavica, R. Temam, M. Ziane, The primitive equations of the atmosphere in presence of vapor saturation, Nonlinearity 28 (2015) 625–668.

[40] C. K. Zhong, M. H. Yang, C. Y. Sun, The existence of global attractors for the norm-to-weak continuous semigroup and application to the nonlinear reaction-diffusion equations, Journal of Differential Equations 223 (2006) 367–399.