Measurement of the Effective Weak Mixing Angle in \(pp \overline{p} \rightarrow Z/\gamma^* \rightarrow e^+e^- \) Events
V. M. Abazov et al. (D0 Collaboration)
Phys. Rev. Lett. 115, 041801 — Published 22 July 2015
DOI: 10.1103/PhysRevLett.115.041801
Measurement of the effective weak mixing angle in $p\bar{p} \rightarrow Z/\gamma^* \rightarrow e^+e^-$ events

V.M. Abazov, S. Snyder, B.S. Acharya, M. Adams, J.P. Agnew, G.D. Alexeev, G. Alkhazov, A. Alton, A. Askew, S. Atkins, K. Augsten, C. Avila, F. Badauld, B. Baldin, D.V. Bandurin, S. Banerjee, E. Barberis, P. Baringer, J.F. Bartlett, U. Bassler, V. Bazzetta, E. Bean, M. Begalli, L. Bellantoni, S.B. Beri, G. Bernardi, R. Bernhard, I. Bertram, M. Bensançon, R. Beuselinck, P.C. Bhat, S. Bhatia, V. Bhatnagar, G. Blazej, S. Blessing, K. Bloom, A. Boehlein, D. Boline, E.E. Boos, G. Borissov, M. Borsyova, A. Brandt, O. Brandt, R. Brock, A. Bros, D. Brown, X.B. Bu, M. Buchler, V. Buescher, V. Bunichev, S. Burdin, C.P. Buszello, E. Camacho-Pérez, B.C.K. Casey, H. Castilla-Valdez, S. Caughron, S. Chakrabarti, K.M. Chan, A. Chandra, E. Chapon, G. Chen, S.W. Cho, S. Choi, B. Clough, S. Cihangir, D. Claes, J. Clutter, M. Cooke, W.E. Cooper, V. Corcoran, F. Coudenc, M.-C. Couinou, D. Cutts, A. Das, G. Davies, S.J. de Jong, E. De La Cruz-Burelo, F. Déjiot, R. Demina, D. Denisov, S.P. Denisov, S. Desai, C. Deterre, K. DeVaughan, H.T. Diehl, M. Diesburg, F.P. Ding, A. Domínguez, A. Dubey, L.V. Dudko, A. Duperrin, S. Dutt, M. Eads, D. Edmunds, J. Ellison, V.D. Elvira, Y. Enari, H. Evans, V.N. Evdokimov, A. Fauré, L. Feng, T. Ferbel, F. Fiedler, F. Fillhaust, W. Fisher, H.E. Fisk, M. Fortner, H. Fox, S. Fues, P.H. Garbincius, A. García-Bellido, J.A. García-González, V. Gavrilov, S. Geng, G. Ginther, O. Golovanov, P.D. Grannis, S. Greder, H. Greenlee, G. Grenier, Ph. Gris, J.-F. Grivaz, A. Grohsjean, S. Gründenahl, M.W. Grünwald, T. Guillemin, G. Gutierrez, P. Gutierrez, J. Haley, L. Han, K. Harder, A. Harel, J.M. Hauptman, J. Hays, T. Head, T. Hebbeker, D. Hedlin, H. Hegab, A.P. Heinson, U. Heintz, C. Hensel, I. Heredia-De La Cruz, K. Herness, G. Hesketh, M.D. Hildreth, R. Hirosky, T. Hoang, J.D. Hobbs, B. Hoeneisen, J. Hogan, M. Holzfeld, J.L. Holzhauser, I. Howley, Z. Hubacek, 15. V. Hure, Y. Hynek, J. Iashvili, Y. Ichchen, R. Illingworth, A.S. Ito, S. Jabeen, M. Jaffré, A. Jayasinghe, M.S. Jeong, R. Jesik, P. Jiang, K. Johns, E. Johnson, M. Johnson, A. Jonckheere, P. Jonsson, J. Joshi, A.W. Jung, A. Juste, E. Kajfasz, D. Karmanov, I. Katsanos, M. Kaur, R. Kehoe, S. Kerniche, N. Khlatayan, A. Khanov, A. Kharchilava, Y.N. Kharzheev, I. Kiselevich, J.M. Kohli, A.V. Kozelov, J. Kraus, M. Kuman, A. Kupco, T. Kurča, V.A. Kuzmin, S. Lammer, P. Lebrun, H.S. Lee, S.W. Lee, X. Lei, J. Lellouch, D. Li, H. Li, L. Li, Y. Li, J.K. Lim, D. Lincoln, J. Linnemann, V.V. Lipaev, R. Lipton, H. Liu, Y. Liu, A. Lobodenko, M. Lokajíček, R. Lopes de Sa, R. Luna-García, A.L. Lyon, A.K.A. Maciel, R. Madar, R. Magaña-Villalba, S. Malik, V.L. Malyshev, J. Mansour, J. Martínez-Ortega, S.C.L. McGivern, M.A. Meijer, D. Melitechoux, D. Menezes, P.G. Mercadante, M. Merklin, A. Meyer, J. Meyer, F. Miconi, N.K. Mondal, M. Mulhearn, E. Nagy, M. Narain, R. Nayyar, H.A. Neal, J.P. Negret, P. Neustroev, H.T. Nguyen, T. Nummenn, J. Orjuna, N. Osman, J. Osta, A. Pal, N. Parashar, V. Parihar, S.K. Park, R. Partridge, N. Parua, A. Patwa, B. Penning, M. Perilov, Y. Peters, K. Petridis, G. Petrillo, P. Pétron, M.-A. Pleier, V.M. Podstavkov, A.V. Popov, M. Prewitt, D. Price, N. Prokopenko, J. Qian, A. Quad, B. Quinn, P.N. Ratoff, I. Razumov, I. Ripp-Baudot, F. Rizatdinova, M. Rominsky, A. Ross, C. Royon, P. Rubinov, R. Ruchti, G. Sajot, I. Sánchez-Hernández, M.P. Sanders, A.S. Santos, G. Savage, M. Savitskiy, L. Sawyer, T. Scanlon, R.D. Schamberger, Y. Scheglov, H. Schellman, C. Schwaneberger, R. Schwienhorst, J. Sekaric, H. Severini, E. Shabalina, V. Shary, S. Shaw, A.A. Shechu, D. Simak, P. Skubic, P. Slattery, D. Smirnov, G.R. Snow, J. Snow, S. Snyder, S. Söldner-Rembold, L. Sönnenschein, K. Soustruznik, J. Stark, D.A. Stoyanova, M. Strauss, L. Suter, P. Svoisky, M. Titov, V.V. Tokmenin, Y.-T. Tsai, D. Tsybychev, B. Tuchming, C. Tully, L. Uvarov, L. Uvarov, S. Uzunyan, R. Van Kooten, W.M. van Leeuwen, N. Varela, E.W. Varnes, I.A. Vasilyev, A.Y. Verkheev, L.S. Vertogradov, M. Vezzoni, M. Vesterinen, D. Vilanova, P. Volac, H.D. Wahl, M.H.L.S. Wang, J. Warchol, G. Watts, M. Wayne, J. Weichert, L. Welty-Rieger, M.R.J. Williams, G.W. Wilson, M. Wobisch, D.R. Wood, T.R. Wyatt, Y. Xie, R. Yamada.
S. Yang, T. Yasuda, Y.A. Yatsunenko, W. Ye, Z. Ye, H. Yin, K. Yip, S.W. Youn, J.M. Yu, J. Zennamo, T.G. Zhao, B. Zhou, M. Zielinski, D. Zieminska, and L. Zivkovic (The D0 Collaboration*)

1. LAFEX, Centro Brasileiro de Pesquisas Físicas, Rio de Janeiro, Brazil
2. Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
3. Universidade Federal do ABC, Santo André, Brazil
4. University of Science and Technology of China, Hefei, People’s Republic of China
5. Universidad de los Andes, Bogotá, Colombia
6. Charles University, Faculty of Mathematics and Physics, Center for Particle Physics, Prague, Czech Republic
7. Czech Technical University in Prague, Prague, Czech Republic
8. Institute of Physics, Academy of Sciences of the Czech Republic, Prague, Czech Republic
9. Universidad San Francisco de Quito, Quito, Ecuador
10. LPC, Université Blaise Pascal, CNRS/IN2P3, Clermont, France
11. LPSC, Université Joseph Fourier Grenoble I, CNRS/IN2P3, Institut National Polytechnique de Grenoble, Grenoble, France
12. CPPM, Aix-Marseille Université, CNRS/IN2P3, Marseille, France
13. LAL, Université Paris-Sud, CNRS/IN2P3, Orsay, France
14. LPNHE, Universités Paris VI et VII, CNRS/IN2P3, Paris, France
15. CEA, Ifra, SPP, Saclay, France
16. IPHC, Université de Strasbourg, CNRS/IN2P3, Strasbourg, France
17. IPNL, Université Lyon 1, CNRS/IN2P3, Villeurbanne, France and Université de Lyon, Lyon, France
18. IPP, Physikalisches Institut A, RWTH Aachen University, Aachen, Germany
19. Physikalisches Institut, Universität Freiburg, Freiburg, Germany
20. II. Physikalisches Institut, Georg-August-Universität Göttingen, Göttingen, Germany
21. Institut für Physik, Universität Mainz, Mainz, Germany
22. Ludwig-Maximilians-Universität München, München, Germany
23. Panjab University, Chandigarh, India
24. Delhi University, Delhi, India
25. Tata Institute of Fundamental Research, Mumbai, India
26. University College Dublin, Dublin, Ireland
27. Korea Detector Laboratory, Korea University, Seoul, Korea
28. CINVESTAV, Mexico City, Mexico
29. Nikhef, Science Park, Amsterdam, the Netherlands
30. Radboud University Nijmegen, Nijmegen, the Netherlands
31. Joint Institute for Nuclear Research, Dubna, Russia
32. Institute for Theoretical and Experimental Physics, Moscow, Russia
33. Moscow State University, Moscow, Russia
34. Institute for High Energy Physics, Protvino, Russia
35. Petersburg Nuclear Physics Institute, St. Petersburg, Russia
36. Institució Catalana de Recerca i Estudis Avançats (ICREA) and Institut de Física d’Altes Energies (IFAE), Barcelona, Spain
37. Uppsala University, Uppsala, Sweden
38. Taras Shevchenko National University of Kyiv, Kiev, Ukraine
39. Lancaster University, Lancaster LA1 4YB, United Kingdom
40. Imperial College London, London SW7 2AZ, United Kingdom
41. The University of Manchester, Manchester M13 9PL, United Kingdom
42. University of Arizona, Tucson, Arizona 85721, USA
43. University of California Riverside, Riverside, California 92521, USA
44. Florida State University, Tallahassee, Florida 32306, USA
45. Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA
46. University of Illinois at Chicago, Chicago, Illinois 60607, USA
47. Northern Illinois University, DeKalb, Illinois 60115, USA
48. Northwestern University, Evanston, Illinois 60208, USA
49. Indiana University, Bloomington, Indiana 47405, USA
50. Purdue University Calumet, Hammond, Indiana 46323, USA
51. University of Notre Dame, Notre Dame, Indiana 46556, USA
52. Iowa State University, Ames, Iowa 50011, USA
53. University of Kansas, Lawrence, Kansas 66045, USA
54. Louisiana Tech University, Ruston, Louisiana 71272, USA
55. Northeastern University, Boston, Massachusetts 02115, USA
56. University of Michigan, Ann Arbor, Michigan 48109, USA
57. Michigan State University, East Lansing, Michigan 48824, USA
58. University of Mississippi, University, Mississippi 38677, USA
We present a measurement of the fundamental parameter of the standard model, the weak mixing angle \(\sin^2 \theta_W \) which determines the relative strength of weak and electromagnetic interactions, in \(p\bar{p} \to Z/\gamma^* \to e^+e^- \) events at a center of mass energy of 1.96 TeV, using data corresponding to 9.7 fb\(^{-1}\) of integrated luminosity collected by the D0 detector at the Fermilab Tevatron. The effective weak mixing angle is extracted from the forward-backward charge asymmetry as a function of the invariant mass around the \(Z \) boson pole. The measured value of \(\sin^2 \theta_W^{\text{eff}} = 0.23147 \pm 0.00047 \) is the most precise measurement from light quark interactions to date, with a precision close to the best LEP and SLD results.

PACS numbers: 12.15.-y, 12.15.Mm, 13.85.Qk, 14.70.Hp

The weak mixing angle \(\sin^2 \theta_W \) is one of the fundamental parameters of the standard model (SM). It describes the relative strength of the axial-vector couplings \(g_A^f \) to the vector couplings \(g_V^f \) in neutral-current interactions of a \(Z \) boson to fermions \(f \) with Lagrangian

\[
\mathcal{L} = -i \frac{g}{2 \cos \theta_W} \bar{f} \gamma^\mu \left(g_V^f - g_A^f \gamma_5 \right) f Z_\mu ,
\]

with \(g_V^f = I_3^f - 2 Q_f^f \cdot \sin^2 \theta_W, g_A^f = I_3^f \), where \(I_3^f \) and \(Q_f^f \) are the weak isospin component and the charge of the fermion. At tree level and in all orders of the on-shell renormalization scheme, the weak mixing angle can be written in terms of the \(W \) and \(Z \) boson masses as \(\sin^2 \theta_W = 1 - M_W^2/M_Z^2 \). To include higher order electroweak radiative corrections, effective weak mixing angles are defined as

\[
\sin^2 \theta_W^{\text{eff}} = \frac{1}{4 |Q_f^f|} \left(1 - \frac{g_V^f}{g_A^f} \right) ,
\]

for each fermion flavor.

It is customary to quote the charged lepton effective weak mixing angle \(\sin^2 \theta_W^{\text{eff}} \), determined by measurements of observables around the \(Z \) boson pole. There is tension between the two most precise measurements of \(\sin^2 \theta_W^{\text{eff}} \), which are 0.23221\(\pm \)0.00029 from the combined LEP measurement, and 0.23098\(\pm \)0.00026 from the SLD measurement of the \(e^+e^- \) left-right polarization asymmetry \(A_{lr} \) [1]. An independent determination of the effective weak mixing angle is therefore an important precision test of the SM electroweak breaking mechanism.

At the Tevatron, the mixing angle can be measured in the Drell-Yan process \(p\bar{p} \to Z/\gamma^* \to \ell^+\ell^- \), through a forward-backward charge asymmetry in the distribution of the emission angle \(\theta^* \) of the negatively charged lepton momentum relative to the incoming quark momentum, defined in the Collins-Soper frame [2]. Events with \(\cos \theta^* > 0 \) are classified as forward \((F) \), and those with \(\cos \theta^* < 0 \) as backward \((B) \). The forward-backward charge asymmetry, \(A_{FB} \), is defined by

\[
A_{FB} = \frac{N_F - N_B}{N_F + N_B} ,
\]

where \(N_F \) and \(N_B \) are the numbers of forward and backward events. The asymmetry arises from the interference
between vector and axial vector coupling terms.

The asymmetry A_{FB} can be measured as a function of the invariant mass of the dilepton pair (M_{ee}). The presence of both vector and axial-vector couplings of the Z boson to fermions gives the most significant variation of A_{FB} in the vicinity of the Z boson pole, which is sensitive to the effective weak mixing angle.

Measurements of $\sin^2 \theta_W^\text{eff}$ have been reported previously by the CDF Collaboration in the $Z \rightarrow e^+e^-$ [3, 4] and $Z \rightarrow \mu^+\mu^-$ [5] channels, and the D0 Collaboration in the $Z \rightarrow e^+e^-$ channel [6, 7]. The angle $\sin^2 \theta_W^\text{eff}$ has also been measured at the LHC in pp collisions by the CMS Collaboration in the $Z \rightarrow \mu^+\mu^-$ channel at $\sqrt{s} = 7$ TeV [8].

This letter reports a measurement of the effective weak mixing angle from the A_{FB} distribution using 9.7 fb$^{-1}$ of integrated luminosity collected with the D0 detector at the Fermilab Tevatron collider. The precision of A_{FB}, which is extracted from A_{FB} in the range 1
to the effective weak mixing angle.

The data used in this analysis are collected by triggering requiring at least two electromagnetic (EM) clusters reconstructed in the central tracking system, a calorimeter and a muon system [9–11]. The central tracking system consists of a silicon microstrip tracker and a scintillating central fiber tracker, both located within a 1.9 T superconducting solenoidal magnet and optimized for tracking and vertexing capabilities at detector pseudorapidities of $|\eta_{det}| < 3$ [12]. Outside the solenoid, three liquid argon and uranium calorimeters provide coverage of $|\eta_{det}| < 3.5$ for electrons: the central calorimeter (CC) for $|\eta_{det}| < 1.1$, and two endcap calorimeters (EC) in the range $1.5 < |\eta_{det}| < 3.5$. Gaps between the cryostats create inefficient electron detection regions between $1.1 < |\eta_{det}| < 1.5$ that are excluded from the analysis. The muon system outside the calorimeter consists of drift chambers and scintillators before and after iron toroid magnets. The solenoid and toroid polarities are reversed every two weeks on average.

The data used in this analysis are collected by triggers requiring at least two electromagnetic (EM) clusters reconstructed in the central tracking system. The determination of their energies uses only the calorimeter information. Each EM cluster is further required to be in the CC or EC, with transverse momentum $p_T > 25$ GeV, and to have shower shapes consistent with that of an electron. For events with both EM candidates in the CC region (CC-CC), each EM object must have a spatially matched track reconstructed in the tracking system. For events with one EM cluster in the CC and the other in the EC region (CC-EC), only the CC candidate is required to have a matched track. For events with both candidates in the EC calorimeter (EC-EC), at least one EM object must have a matched track. All tracks must have $p_T > 10$ GeV and satisfy track quality criteria to maintain a low charge mis-identification probability. For CC-CC events, the two EM candidates are required to have opposite charges. For CC-EC events, the determination of “forward” or “backward” is made according to the charge measured for the track-matched CC EM candidate, whereas the charge of the EC higher quality matched track is used for EC-EC events [13].

Events are further required to have a reconstructed dielectron invariant mass in the range $75 < M_{ee} < 115$ GeV. A larger sample satisfying $60 < M_{ee} < 130$ GeV is used to understand detector responses and to tune the Monte Carlo (MC) simulation.

To maximize the acceptance, previously ignored electrons reconstructed near the boundaries of CC calorimeter modules [9] (φ-mod boundary) are included. The geometric acceptance is further extended compared with previous D0 results [7] from $|\eta_{det}| < 1.0$ to $|\eta_{det}| < 1.1$ for the CC, and from $1.5 < |\eta_{det}| < 2.5$ to $1.5 < |\eta_{det}| < 3.2$ for the EC. In addition, EC-EC events, which were excluded due to their poorer track reconstruction and calorimeter energy resolution, are now included. The extensions in $|\eta_{det}$ and φ-mod acceptances give a 70% increase in the number of events over what would be expected from the increase in integrated luminosity. An additional 15% increase is gained from improvements in the track reconstruction algorithm. The number of $Z \rightarrow e^+e^-$ candidate events in the data sample is 560,267 which includes 248,380 CC-CC events, 240,593 CC-EC events and 71,294 EC-EC events.

The MC Drell–Yan $Z/\gamma^* \rightarrow e^+e^-$ sample is generated by using the D0 simulation software, based on the leading-order PYTHIA generator [14] with the NNPDF2.3 [15] parton distribution functions (PDFs), followed by a GEANT-based simulation [16] of the D0 detector. The PYTHIA MC samples, with data events from random beam crossings overlaid, are mainly used to understand the geometric acceptance, and the energy scale and resolution of electrons in the calorimeter.

A new method of electron energy calibration is developed and applied to both the data and MC, which significantly reduces the systematic uncertainty due to the electron energy measurement. The weak mixing angle, which is extracted from A_{FB} as a function of M_{ee}, depends strongly on the position of the peak value of M_{ee}. Therefore, it is critical to have a precise electron energy measurement and a consistent measured peak value of M_{ee} from different regions of the detector across various Tevatron running conditions. In Ref. [7], an overall scale factor was applied to simulations to model the detector response for electron energy depositions, where the scale factor is determined by comparing the M_{ee} spectrum in data and MC, yielding a large uncertainty due to background estimation and detector resolution. In this analysis, a new energy calibration method is applied to the data and the MC separately. The energy mea-
measurement depends not only on the η_{det}, but also on the instantaneous luminosity [17]. For CC electrons, an instantaneous luminosity-dependent scale factor ($\alpha_{\text{EC}}^{\eta}$) and an η_{det}-dependent scale factor ($\alpha_{\eta}^{\text{EC}}$) are applied to the electron energy. For EC electrons in addition to the scale factors $\alpha_{\text{EC}}^{\eta}$ and $\alpha_{\eta}^{\text{EC}}$, an η_{det}-dependent offset β_{η}^{EC} is introduced to model the electron energy. For EC electrons in addition to the scale factors $\alpha_{\text{EC}}^{\eta}$ and $\alpha_{\eta}^{\text{EC}}$, an η_{det}-dependent offset β_{η}^{EC} is introduced to model the electron energy. All correction factors are determined by scaling the peak of the M_{ee} distribution as a function of instantaneous luminosity and η_{det} to be consistent with the Z boson mass measured by LEP ($M_Z = 91.1875$ GeV) [1]. The CC correction factors are tuned with the CC-CC events. To remove one degree of freedom, β_{η}^{EC} is expressed as a function of $\alpha_{\eta}^{\text{EC}}$, and the relationship is measured with the CC-EC events. The values of $\alpha_{\eta}^{\text{EC}}$ and $\beta_{\eta}^{\text{EC}}(\alpha_{\eta}^{\text{EC}})$ are fitted using the EC-EC events. After the calibration, the standard deviation δM of the M_{ee} peak values in different η_{det} regions is ≈ 20 MeV. Various closure tests are performed to check the validity of the calibration procedure. For example, an extra η_{det}-dependent offset is applied to the corrected energy and fixed by performing the calibration again. The extra offset is found to be consistent with δM. The ratio of δM to M_Z is propagated into the uncertainty of the $\sin^2 \theta_W$ measurement to estimate the systematic uncertainty arising from the energy calibration.

After the electron energy calibration, an additional electron energy resolution smearing is derived and applied to the MC simulations. The smearing factors are determined by requiring consistent widths of the M_{ee} distribution to those in data. For the CC ϕ-mod boundary electrons, the resolution smearing is modeled with a Crystal Ball function [18]. For other electrons, the smearing is modeled with a Gaussian function.

Additional corrections and reweightings are applied to the MC simulation to improve the agreement with data. The scale factors of the electron identification efficiency between the MC and the data are measured using the tag-and-probe method [19] and applied to the MC distributions as functions of p_T^e and η_{det}. The simulation is further corrected for higher-order effects not included in PYTHIA by reweighting the MC events at the generator level in two dimensions (p_T and rapidity y of the Z boson) to match RESBOS [20] predictions. In addition, next-to-next-to-leading order QCD corrections are applied as a function of M_Z [20, 21]. The distribution of the instantaneous luminosity and the z coordinate of the $p\bar{p}$ collision vertices are also weighted to match those in the data. Since A_{FB} is defined as a ratio of numbers of events, many small uncertainties cancel out. Only the electron selection efficiency scale factor in these additional corrections contributes significantly to the final uncertainty.

The charge of the particle track matched to the EM cluster is used to determine if the EM cluster is associated to an electron or positron and to classify the event as forward or backward. The charge misidentification probability is given by the number of $p\bar{p} \rightarrow Z/\gamma^* \rightarrow e^+e^-$ events reconstructed with same-sign as a proportion of the total number of $p\bar{p} \rightarrow Z/\gamma^* \rightarrow e^+e^-$ events. The probabilities are measured in data and MC. The charge of electrons and positrons reconstructed in the MC is randomly changed to match the misidentification probability in the data averaged over p_T spectrum of electrons. In the CC region the average charge misidentification rate in data is about 0.3%, whereas in the EC region it varies from 1% at $|\eta_{\text{det}}| = 1.5$ to 10% at $|\eta_{\text{det}}| = 3.0$. The statistical uncertainty of the measured charge misidentification rate is included as a systematic uncertainty.

The background is suppressed by the strict requirements on the quality of the matched track. The main contribution is from multijet events, in which jets are misreconstructed as electrons, and is estimated from data. The multijet production from the proton anti-proton initial state produces jets, and hence fake electrons, nearly symmetrically with respect to the forward and backward hemispheres [7, 22]. Multijet events are selected by reversing some of the electron selection cuts to study the differential distributions of the multijet background, which are different from the real multijet background that passes all the electron selections. Therefore, a correction factor is applied as a function of electron p_T, given by the ratios of the efficiencies for EM-like jets (which are selected in a multijet-enriched data sample and pass all the electron selections) and “reverse-selected” jets. The normalization of the multijet background is determined by fitting the sum of the M_{ee} distributions of multijet events and the signal MC events to the distribution from the selected data events. The W+jets, $Z/\gamma^* \rightarrow \tau\tau$, di-boson ($WW$ and WZ), $\gamma\gamma$ and $t\bar{t}$ backgrounds are estimated using the PYTHIA MC simulations. At the Z boson peak, the multijet background is 0.3% and the sum of the di-boson, W+jets, $Z/\gamma^* \rightarrow \tau\tau$, $\gamma\gamma$ and $t\bar{t}$ backgrounds is about 0.05%. The M_{ee} and $\cos \theta^*$ distributions of data and of the sum of signal MC and background expectations are in good agreement with the SM predictions [23].

The AFB distributions as a function of mass are obtained for CC-CC, CC-EC and EC-EC categories by summing the samples of specific solenoid and toroid magnet polarities, after weighting each by the integrated luminosity for the sample. This weighted combination provides cancellation of asymmetries due to variations in detector response and acceptance with η_{det} and p_T. The weak mixing angle is extracted from the background-subtracted A_{FB} spectrum in the regions $75 < M_{ee} < 115$ GeV for CC-CC and CC-EC events, and $81 < M_{ee} < 97$ GeV for EC-EC events by comparing the data to simulated A_{FB} templates corresponding to different input values of $\sin^2 \theta_W$. The mass window for EC-EC events is narrower to take into account the differences in track reconstruction and energy measurement. The templates are obtained by reweighting M_Z and $\cos \theta^*$ distributions
TABLE I: Measured $\sin^2 \theta_W$ values and corresponding uncertainties. Uncertainties from higher-order corrections and the PDFs are not included.

	CC-CC	CC-EC	EC-EC	Combined
$\sin^2 \theta_W$	0.23142	0.23143	0.22977	0.23139
Statistical	0.00116	0.00047	0.00276	0.00043
Systematic	0.00009	0.00009	0.00019	0.00008
Energy Calibration	0.00003	0.00001	0.00004	0.00001
Energy Smearing	0.00001	0.00002	0.00013	0.00002
Background	0.00002	0.00001	0.00002	0.00001
Charge Misidentification	0.00002	0.00004	0.00012	0.00003
Electron Identification	0.00008	0.00008	0.00005	0.00007
Fiducial Asymmetry	0.00002	0.00001	0.00001	0.00001
Total	0.00116	0.00048	0.00277	0.00044

The measurement is dominated by statistical uncertainties. Systematic uncertainties are treated as uncorrelated but the total uncertainty does not depend on whether they are taken to be correlated or uncorrelated. The results were therefore combined by using the corresponding uncertainties as weights, giving

$$\sin^2 \theta_W = 0.23139 \pm 0.00043 \text{ (stat.)} \pm 0.00008 \text{ (syst.)} \pm 0.00017 \text{ (PDF)}.$$

The PDF uncertainty is estimated by reweighting the PDF set in the MC simulations to different sets of the NNPDF2.3, computing the $\sin^2 \theta_W$ value for each set, and taking the standard deviation of these values as the uncertainty [15].

To have a consistent SM definition and make our result comparable with previous measurements, a LO PYTHIA interpretation of the weak mixing angle with CTEQ6.6 PDF set [24] is compared to the predictions from a modified NLO RESBOS with the same PDF set. RESBOS has a more sophisticated treatment of electroweak effects and
uses different values of effective weak mixing angle for leptons and up or down quarks [25]. This study indicates that a 0.00008 positive shift in $\sin^2 \theta_{\text{eff}}$ for RESBOS relative to LO PYTHIA that changes the measured leptonic effective weak mixing angle to $\sin^2 \theta_{\text{eff}} = 0.23147 \pm 0.00047$, with the same breakdown of uncertainties as above. The estimated correction due to higher order QCD effects is negligibly small [5]. The comparison between our measurement and other experimental results is shown in Fig. 2. Our measurement is consistent with the current world average.

![FIG. 2: (color online). Comparison of measured $\sin^2 \theta_{\text{eff}}$ with results from other experiments. The average is a combination of A_{FB}^{ℓ}, $A_1(P_x^\ell)$, A_2 (SLD), A_{FB}^{τ}, A_{FB}^{μ}, and Q_{FB}^{had} measurements from the LEP and SLD Collaborations [1].](image)

In conclusion, we have measured the effective weak mixing angle $\sin^2 \theta_{\text{eff}}$ from the distribution of the forward-backward charge asymmetry A_{FB} in the process $p\bar{p} \rightarrow Z/\gamma^* \rightarrow e^+e^-$ at the Tevatron. This measurement, which supersedes that reported in [7], uses nearly twice the integrated luminosity and significantly extends the electron acceptance. The primary systematic uncertainty is reduced by introducing a new electron energy calibration method. The result from 9.7 fb$^{-1}$ of integrated luminosity is $\sin^2 \theta_{\text{eff}} = 0.23147 \pm 0.00047$. This result is the most precise measurement from light quark interactions, and is close to the precision of the world’s best measurements performed by the LEP and SLD Collaborations.

ACKNOWLEDGEMENTS

We thank the staffs at Fermilab and collaborating institutions, and acknowledge support from the Department of Education and National Science Foundation (United States of America); Alternative Energies and Atomic Energy Commission and National Center for Scientific Research/National Institute of Nuclear and Particle Physics (France); Ministry of Education and Science of the Russian Federation, National Research Center “Kurchatov Institute” of the Russian Federation, and Russian Foundation for Basic Research (Russia); National Council for the Development of Science and Technology and Carlos Chagas Filho Foundation for the Support of Research in the State of Rio de Janeiro (Brazil); Department of Atomic Energy and Department of Science and Technology (India); Administrative Department of Science, Technology and Innovation (Colombia); National Council of Science and Technology (Mexico); National Research Foundation of Korea (Korea); Foundation for Fundamental Research on Matter (The Netherlands); Science and Technology Facilities Council and The Royal Society (United Kingdom); Ministry of Education, Youth and Sports (Czech Republic); Bundesministerium für Bildung und Forschung (Federal Ministry of Education and Research) and Deutsche Forschungsgemeinschaft (German Research Foundation) (Germany); Science Foundation Ireland (Ireland); Swedish Research Council (Sweden); China Academy of Sciences and National Natural Science Foundation of China (China); and Ministry of Education and Science of Ukraine (Ukraine).

We thank Dr. W. Sakumoto for his help in assuring that the CDF and D0 collaborations used a similar phenomenological framework for these measurements.

[1] G. Abbiendi et al. (LEP Collaborations ALEPH, DELPHI, L3 and OPAL, SLD Collaboration, LEP Electroweak Working Group, SLD Electroweak, and Heavy Flavor Groups), Phys. Rep. 427, 257 (2006).
[2] J. C. Collins and D. E. Soper, Phys. Rev. D 16, 2219 (1977).
[3] D. Acosta et al. (CDF Collaboration), Phys. Rev. D 71, 072002 (2005).
[4] T. Aaltonen et al. (CDF Collaboration), Phys. Rev. D 88, 072002 (2013).
[5] T. Aaltonen et al. (CDF Collaboration), Phys. Rev. D 89, 072005 (2014).
[6] V. M. Abazov et al. (D0 Collaboration), Phys. Rev. Lett. 101, 191801 (2008).
D0 uses a cylindrical coordinate system with the \(z\) axis along the beam axis in the proton direction. Angles \(\theta\) and \(\phi\) are the polar and azimuthal angles, respectively. Pseudorapidity is defined as \(\eta = -\ln[\tan(\theta/2)]\) where \(\theta\) is measured with respect to the interaction vertex. In the massless limit, \(\eta\) is equivalent to the rapidity \(y = (1/2) \ln[(E + p_z)/(E - p_z)]\), and \(\eta_{\text{det}}\) is the pseudorapidity measured with respect to the center of the detector.