Multiple Antenna Technologies for Beyond 5G

Jiayi Zhang, Member, IEEE, Emil Björnson, Senior Member, IEEE, Michail Matthaiou, Senior Member, IEEE, Derrick Wing Kwan Ng, Senior Member, IEEE, Hong Yang, Senior Member, IEEE, and David J. Love, Fellow, IEEE

Abstract

Multiple antenna technologies have attracted large research interest for several decades and have gradually made their way into mainstream communication systems. Two main benefits are adaptive beamforming gains and spatial multiplexing, leading to high data rates per user and per cell, especially when large antenna arrays are used. Now that multiple antenna technology has become a key component of the fifth-generation (5G) networks, it is time for the research community to look for new multiple antenna applications to meet the immensely higher data rate, reliability, and traffic demands in the beyond 5G era. We need radically new approaches to achieve orders-of-magnitude improvements in these metrics and this will be connected to large technical challenges, many of which are yet to be identified. In this survey paper, we present a survey of three new multiple antenna related research directions that might play a key role in beyond 5G networks: Cell-free massive multiple-input multiple-output (MIMO), beamspace massive MIMO, and intelligent reflecting surfaces. More specifically, the fundamental motivation and key characteristics of these new technologies are introduced. Recent technical progress is also presented. Finally, we provide a list of other prospective future research directions.

Index Terms

Beyond 5G, cell-free massive MIMO, beamspace, intelligent reflecting surface.

J. Zhang is with the School of Electronic and Information Engineering, Beijing Jiaotong University, Beijing 100044, P. R. China. (e-mail: jiayizhang@bjtu.edu.cn).
E. Björnson is with the Department of Electrical Engineering (ISY), Linköping University, Linköping, Sweden. (e-mail: emil.bjornson@liu.se).
M. Matthaiou is with the Institute of Electronics, Communications and Information Technology (ECIT), Queen’s University Belfast, UK, BT3 9DT. (e-mail: m.matthaiou@qub.ac.uk).
D. W. K. Ng is with the School of Electrical Engineering and Telecommunications, University of New South Wales, NSW 2052, Australia. (e-mail: w.k.ng@unsw.edu.au).
H. Yang is with Nokia Bell Labs, Murray Hill, NJ 07974 USA. (e-mail: h.yang@nokia-bell-labs.com).
D. J. Love is with the School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN 47907 USA. (e-mail: djlove@purdue.edu).
I. INTRODUCTION

The demand for higher data rates and traffic volumes seems to be never-ending, thus the quest for delivering the required services must always continue. The cellular network technology has evolved from using fixed sector antennas to flexible multiple antenna solutions. Recently, the first release of 5G New Radio (NR) was finished by 3GPP and the first commercial networks are already operational. Massive multiple-input multiple-output (MIMO), defined in [1] as being base stations with at least 64 antennas, is becoming a mainstream and mature technology. However, this is not the end of the MIMO development, but only the end of the beginning. As access to wireless connectivity becomes critical in our everyday lives, our expectations on ubiquitous coverage and service quality continue to grow. Many future requirements that can be conceived cannot, as of today, be addressed by 5G; for example, exceptionally high bit rates, ultra-low latencies, great energy efficiency, robustness against blocking and jamming, and wireless charging.

It is time to analyze what lies beyond 5G, or rather what the current Multiple Antenna Technologies can be evolved into beyond what is currently envisaged. Potential paradigm shifts in wireless network design for beyond 5G are Cell-free massive MIMO, beamspace massive MIMO, and intelligent reflecting surfaces. These topics are covered in Section II, Section III, and Section IV, respectively. New roles that these MIMO technologies can play for UAV-supported communication and in sub-THz bands are discussed in Section V, while the main conclusions are provided in Section VI.

II. CELL-FREE MASSIVE MIMO

The 5G cellular technology can provide data rates and traffic volumes far above previous cellular technologies, and will also reduce the latency in the data connections [2]. Yet, these improvements are primarily achieved by users that happen to be located in the cell centers, while the inter-cell interference and handover issues that are inherent in the cellular architecture will fundamentally limit the cell-edge performance. To address these issues, beyond-5G networks need to avail of the cell-free paradigm, where the absence of cell boundaries alleviates the inter-cell interference and handover issues but new challenges arise. This is the topic of this section.
A. Motivation

The cellular concept was introduced in the 1970s to achieve more efficient use of the limited radio resources [3]. Instead of requiring the transmitter to communicate directly with the receiver, which might be located at another continent and thus require very high transmit power, cellular networks consist of fixed access points (APs) that communicate with the transmitter and receiver. The transmitter sends its data to a nearby AP using relatively low power. The AP forwards the data to an AP that is near the receiver (typically over cables or other wireless bands) and can send the data to the receiver with relatively low power. This enabled better spatial reuse of the frequency spectrum and the AP densification has been the main way for cellular networks to handle higher traffic volumes [4]. However, the densification also leads to more inter-cell interference and more frequent handovers. Most of the traffic congestion in cellular networks nowadays is at the cell edges, since cell-center users can easily run their preferred applications thanks to the high peak data rates. The 95%-likely data rates, that define the user-experienced performance [5], remain to be mediocre in 5G networks.

The solution to these issues might be to connect each user with a multitude of APs [6], [7]; if there were only one huge cell in the network, there is by definition no inter-cell interference and no need for handovers. This solution has been explored in the past, using names such as network MIMO [7], [8], distributed MIMO [9], and coordinated multi-point (CoMP) [10]. However, their practical implementation requires immense fronthaul signaling for channel state information (CSI) and data sharing, as well as huge computational complexity. To reduce the fronthaul signaling and computational complexity, a common approach was to divide the network into disjoint clusters containing a few neighboring APs [11]–[13], so that only these need to exchange CSI and data. This network-centric approach can provide some performance gains [14], but only partially address the interference and handover issues, which remain along the cluster edges.

The key to fully resolve these issues is to let each user be served by those APs that can reach it with a non-negligible signal strength [15]–[17]. This creates a user-centric network [18], where each AP collaborates with different sets of APs when serving different users. It is the users that select which set of APs that they are best served by, not the network. Early experiments with cell-free networks are described in [19], but it is only in recent years that the concept has gained large traction from academia [20], [21], where the name Cell-free massive
Figure 1: Illustration of the network architecture in Cell-free massive MIMO.

MIMO has been coined [22], [23]. In a nutshell, it is a combination of the best aspects of network MIMO that were conceived in the last decade and the analytical framework from the massive MIMO literature, recently surveyed in the textbooks [24], [25].

B. Basics of Cell-Free Massive MIMO

A cell-free massive MIMO network consists of a large number of APs that jointly and coherently serve a much smaller number of users on the same time-frequency resource. The network operates in time-division duplex (TDD) mode and exploits uplink-downlink channel reciprocity [22], [23], so that each AP can acquire CSI between itself and all users from uplink pilots. This CSI is sufficient to implement coherent transmission and reception [26], so only data signals must be shared between APs. To enable such information flows, the APs are assumed to be connected via fronthaul to edge-cloud processors that take care of data encoding and decoding. These are often called central processing units (CPUs) in the literature and the structure is reminiscent of the cloud radio access network (C-RAN) architecture. One can, thus, view C-RAN as an enabler of Cell-free massive MIMO. The CPUs are normally assumed to only know the long-term channel qualities, while only the APs have instantaneous CSI. Fig. 1 shows the basic network architecture of a Cell-free massive MIMO system.

The spectral efficiencies that users can achieve in Cell-free massive MIMO have been analyzed in a series of previous works. The original papers [22], [23] considered single-
antenna APs, single-antenna users, Rayleigh fading channels, and infinite capacity error-free fronthaul connections. Later works have studied more realistic setups, such as single-antenna APs with Rician fading channels [27], [28], multi-antenna APs with uncorrelated [29], [30] or correlated [31], [32] fading, and multi-antenna users [33], [34]. The impact of finite-resolution fronthaul connections was considered in [30]. The general conclusion is that Cell-free massive MIMO works well in all these cases, thus it is suitable for a variety of deployment scenarios.

One performance benchmark for Cell-free massive MIMO is a cellular network with the same set of APs, but where each user is only served by one AP. The first paper on the topic showed that Cell-free massive MIMO can achieve nearly fivefold improvement in terms of 95%-likely per-user spectral efficiency [22]. If both the APs and the UEs are equipped with multiple antennas, the 95%-likely per-user performance can be further enhanced [34]. Another relevant benchmark is conventional Cellular massive MIMO, consisting of a relatively small number of APs, each equipped with a large number of antennas. Such comparisons have been carried out in [32], [35] and show that Cell-free massive MIMO can substantially improve the 95%-likely per-user spectral efficiency, while Cellular massive MIMO is the preferred choice for cell-center users. This underlines the point that the cell-free paradigm is not about achieving higher peak performance, but a more uniform performance within the coverage area. On the other hand, the energy efficiency of cell-free massive MIMO was considered in [35], [36], which showed that it can improve the energy efficiency (measured in bit/Joule) by nearly ten times compared to Cellular massive MIMO. Hence, the two main reasons to adopt Cell-free massive MIMO in beyond 5G networks are the vastly higher 95%-likely spectral efficiency and energy efficiency.

C. System Model and Key Characteristics

We will now explain the key characteristics of Cell-free massive MIMO in further detail by considering a basic system model. We assume there are L APs in the network, each equipped with N antennas, and K single-antenna users. User k is served by a subset $\mathcal{M}_k \subset \{1, \ldots, L\}$ of the APs, which have been selected in a user-centric manner. Fig. 2 exemplifies how the APs can be divided into partially overlapping subsets when serving the users.

The channel between AP l and user k is denoted by $h_{kl} \in \mathbb{C}^N$, and it is the same for uplink and downlink due to the TDD operation. The users send uplink pilots that enable AP l to compute local estimates \hat{h}_{kl} of the channels to all users ($k = 1, \ldots, K$). Different channel estimators can be used depending on the channel model, but we will not cover those details.
to keep the description general and short; we refer the interested readers to [28], [34], [37].

1) Uplink Data Transmission: Let s_k denote the unit-power signal that user k wants to convey in the uplink. The user assigns a transmit power $p_k \geq 0$ to the signal and transmits it simultaneously with all other users, thereby expecting that the network can spatially separate the users’ signals. The received uplink signal $y_{ul}^l \in \mathbb{C}^N$ at AP l becomes

$$y_{ul}^l = \sum_{i=1}^{K} h_{il} \sqrt{p_i} s_i + n_k,$$ \hspace{1cm} (1)

where $n_k \sim \mathcal{N}(0, \sigma^2 I_N)$ is the complex-valued independent additive white Gaussian noise and I_N denotes the $N \times N$ identity matrix. Note that (1) is a summation of the users’ signals received over different channels. The APs with indices in \mathcal{M}_k will use their received signals \{\(y_{ul}^l: l \in \mathcal{M}_k\)\} to jointly detect the signal transmitted from user k. More precisely, each AP selects a receive combining vector $v_{kl} \in \mathbb{C}^N$ and computes the inner product $v_{kl}^H y_{ul}^l$, where H denotes the conjugate transpose. This scalar is then sent to the CPU which combines the contributions from all the APs that serve user k:

$$\sum_{l \in \mathcal{M}_k} v_{kl}^H y_{ul}^l = \sum_{l \in \mathcal{M}_k} \sum_{i=1}^{K} v_{kl}^H h_{il} \sqrt{p_i} s_i + \sum_{l \in \mathcal{M}_k} v_{kl}^H n_k.$$ \hspace{1cm} (2)

By following a standard methodology from the massive MIMO literature [25, Theorem 4.4] to compute a lower bound on the uplink capacity, an achievable spectral efficiency for user k is

$$\text{SE}^{(ul)}_k = \log_2 \left(1 + \text{SINR}^{(ul)}_k \right)$$ \hspace{1cm} (3)
where $\text{SINR}_{k}^{(ul)}$ can be interpreted as an effective signal-to-interference-and-noise ratio (SINR) and is given by

$$\text{SINR}_{k}^{(ul)} = \frac{p_k \left| \mathbb{E} \left\{ \sum_{l \in M_k} \mathbf{v}_{kl}^{H} \mathbf{h}_{kl} \right\} \right|^2}{\sum_{i=1}^{K} p_i \mathbb{E} \left\{ \left| \sum_{l \in M_k} \mathbf{v}_{kl}^{H} \mathbf{h}_{il} \right|^2 \right\} - p_k \mathbb{E} \left\{ \sum_{l \in M_k} \mathbf{v}_{kl}^{H} \mathbf{h}_{kl} \right\}^2 + \sigma^2 \sum_{l \in M_k} \mathbb{E} \{ \| \mathbf{v}_{kl} \|^2 \} }.$$ \hfill (4)

The expectations in (4) are taken with respect to random channel fading realizations. One can compute the SINR using Monte-Carlo simulations for any channel distribution and any way of selecting the combining vectors.

The combining vectors are to be selected at the respective APs based on locally available CSI, which means that AP l should select \mathbf{v}_{kl} as a function of the estimates $\{ \hat{\mathbf{h}}_{il} : i = 1, \ldots, K \}$ from itself to the different users. Before describing some common combining methods, we divide the vector into two parts:

$$\mathbf{v}_{kl} = a_{kl} \frac{\bar{\mathbf{v}}_{kl}}{\sqrt{\mathbb{E} \{ \| \mathbf{v}_{kl} \|^2 \} }},$$ \hfill (5)

where $a_{kl} \in \mathbb{C}$ is a deterministic weighting factor and $\mathbf{v}_{kl} / \sqrt{\mathbb{E} \{ \| \mathbf{v}_{kl} \|^2 \} }$ is a unit-power combining vector that depends on the CSI. The purpose of the weighting factors is that APs with good channel conditions should get higher weights and thereby have a large influence on the combined signal in (2). The use of such weights is also known as large-scale fading decoding [38], particularly when the weights are selected at the CPU based on channel statistics from the entire network. A general expression for the optimal weights is found in [32].

The receive combining vectors can be computed in different ways. The original paper [22] on Cell-free massive MIMO considered maximal ratio (MR) combining, where $\bar{\mathbf{v}}_{kl} = \hat{\mathbf{h}}_{kl}$. This method maximizes the received signal power without taking the existence of other users into account. One key benefit of using this method is that expectations in (4) can often be computed in closed form; for example, under uncorrelated [22] or correlated [32] Rayleigh fading and for Rician fading [28]. However, higher spectral efficiencies are achieved by regularized zero-forcing (RZF) which the combining vector can be expressed as:

$$\bar{\mathbf{v}}_{kl} = (\sum_{i=1}^{K} p_i \hat{\mathbf{h}}_{il} \hat{\mathbf{h}}_{il}^{H} + \sigma^2 \mathbf{I}_N)^{-1} \hat{\mathbf{h}}_{kl}.$$ \hfill (6)
Interestingly, RZF outperforms MR even in the case of single-antenna APs \cite{39}, but is not an optimal combining method since that would require all the APs to jointly select their receive combining. There are also other methods proposed in the literature, such as local minimum mean-square error (MMSE) combining \cite{32}.

We will now illustrate the performance behaviors. Fig. 3 shows the cumulative distribution function (CDF) of the per-user spectral efficiency in a setup with $L = 100$ single-antenna APs and $K = 40$ users uniformly distributed in a 1×1 km square. We refer to \cite{22} for further details on the simulation parameters. The CDF is computed by considering different random realizations of the AP and user locations.

There are three curves where all users transmit at full power and one curve where power control is used to maximize the worst-user spectral efficiency in the network, using an algorithm from \cite{22}. The highest spectral efficiency is achieved by Cell-free massive MIMO when using local minimum mean-squared error (L-MMSE) combining and the optimal weights from \cite{32}. All users benefit from using that method compared to the case of small cells, where each user connects to the AP providing the highest value. It is particularly the weakest “cell-edge” users that benefit from the cell-free approach, while users that happen to be very close to an AP does not benefit much. If L-MMSE is replaced with MR, the strongest users (which are interference-limited) lose in performance while the weakest users (which are noise-limited) are barely affected. If one further applies the power-control scheme from \cite{22}, the 1% weakest users get an improvement in spectral efficiency but the gain is barely visible since these users are noise-limited from the beginning.

The conclusion is that Cell-free massive MIMO can greatly improve the performance.
for the weakest users in a network. The gains are achieved by coherent processing of the signals received at multiple AP. Power control policies can be used to shape the CDF curves in different ways. The previous works [22], [38], [40] have considered the design of power control that maximizes the worst-user performance, which might not be the desired optimization criterion since a minor performance improvement comes at the price of reducing most users’ performance by a lot (as shown in Fig. [3]). Other power control schemes need to be developed in the future.

2) Downlink Data Transmission: Let ς_k denote the unit-power downlink signal intended for user k. Each AP $l \in \mathcal{M}_k$ that serves this user maps the scalar signal to its N antennas using a precoding vector $w_{kl} \in \mathbb{C}^N$, thus making $w_{kl}\varsigma_k$ the transmitted signal. When all APs follow that procedure, the received downlink signal $y_{dl}^k \in \mathbb{C}$ at user k becomes

$$y_{dl}^k = \sum_{i=1}^{K} \sum_{l \in \mathcal{M}_i} h_{il}^T w_{il} \varsigma_i + n_k,$$

where $n_k \sim \mathcal{N}(0, \sigma^2)$ is independent additive noise. By following a similar methodology as in the uplink, an achievable spectral efficiency for user k is [25, Theorem 4.6]

$$\text{SE}_{k}^{(dl)} = \log_2 \left(1 + \text{SINR}_{k}^{(dl)} \right) \text{bit/s/Hz}, \quad (8)$$

where $\text{SINR}_{k}^{(dl)}$ can be interpreted as an effective SINR and is given by

$$\text{SINR}_{k}^{(dl)} = \frac{\left| \mathbb{E} \left\{ \sum_{l \in \mathcal{M}_k} h_{il}^T w_{kl} \right\} \right|^2}{\sum_{i=1}^{K} \mathbb{E} \left\{ \left| \sum_{l \in \mathcal{M}_i} h_{il}^T w_{il} \right|^2 \right\} - \mathbb{E} \left\{ \left| \sum_{l \in \mathcal{M}_k} h_{kl}^T w_{kl} \right|^2 \right\} + \sigma^2}. \quad (9)$$

The expectations in (9) are taken with respect to random channel fading realizations. One can compute the SINR using Monte-Carlo simulations for any channel distribution and any way of selecting the precoding vectors.

As described earlier, it is preferable if AP l selects its precoding vector based only on its locally available CSI, which consists of the estimates $\{ \hat{h}_i : i = 1, \ldots, K \}$ from itself to the different users. Before describing some common precoding methods, we divide the vector into two parts:

$$w_{kl} = \sqrt{\rho_{kl}} \frac{\tilde{w}_{kl}}{\sqrt{\mathbb{E}\{\|\tilde{w}_{kl}\|^2\}}}, \quad (10)$$

where $\rho_{kl} \geq 0$ represents the transmit power that AP l assigns to user k and $w_{kl}/\sqrt{\mathbb{E}\{\|w_{kl}\|^2\}}$.

October 2, 2019 DRAFT
is a unit-power precoding vector that determines the spatial directivity of the signal. Similar to the uplink, the original papers [22], [23] considered MR precoding, where \(\bar{w}_{kl} = \hat{h}_{kl}^* \), which is also known as conjugate beamforming since \(^* \) denotes complex conjugation. This method directs the transmission towards the intended receiver without taking the existence of other users into account. One key benefit of using this method is that expectations in (9) can often be computed in closed form for many common channel models [28], [32]. However, it has recently been shown in [39] that signal-to-leakage-and-noise ratio (SLNR) precoding with

\[
\bar{w}_{kl} = \left(\sum_{i=1}^{K} \rho_{il} \hat{h}_{il}^* \hat{h}_{il} + \sigma^2 I_N \right)^{-1} \hat{h}_{kl}^*
\]

provides higher spectral efficiencies by balancing between maximizing the signal power at the intended receiver and minimizing the interference that leaks to non-intended receivers. Interestingly, SLNR outperforms MR even in the case of single-antenna APs [39] and the computational complexity is almost the same. Nevertheless, SLNR precoding is not the optimal method. Other papers consider similar methods such as full-pilot zero-forcing [41] and L-MMSE [37] precoding.

For brevity, we will not provide any simulation results for the downlink, because the performance of the different precoding methods are reminiscent of their uplink counterparts. However, we stress that the selection of the transmit power \(\rho_{kl} \) is more complicated in the downlink than in the uplink, because each AP needs to select how to distribute their power between different users. Some different power allocation schemes are found in [22], [23], [42], but further work is still required to deal with other criteria than maximization of the worst users’ performance.

D. Scalable Large-Scale Deployment

The main challenge in designing Cell-free massive MIMO is to achieve a network architecture that is scalable in the sense of being implementable in a large network, spanning an entire city. One way to define scalability is to consider the limit \(K \to \infty \) and evaluate if the network could still operate in that case [37]. More precisely, the computational complexity at each AP and its fronthaul capacity requirement must be independent of \(K \). All the combining and precoding methods described above can be modified to satisfy that condition if each AP is only allowed to serve a fixed number of users, irrespective of how large the network is. This is a natural restriction since the users are typically distributed over the network and...
thereby close to different APs. It was shown in [37] that this restriction has a negligible impact on the spectral efficiency.

Note that there are other issues that are harder to implement in a scalable way. Downlink power allocation is one such issue, where each AP needs to assign power to the users that it serves without having complete knowledge about the channel conditions that other APs are facing. Any global power allocation optimization must have a complexity that grows with K, thus making the implementation infeasible in large networks. Heuristic power allocation schemes can be found in [15], [23], [26], [42], but it is intrinsically hard to evaluate how well they perform in practice. Hence, further work is necessary to understand how to perform effective and scalable power allocation.

An uplink counterpart to downlink power allocation is the selection of the combining weights a_{kl}, which can be selected optimally [32], [38] but the complexity will grow with K. There is currently no good understanding how to select these weights in a distributed but effective manner. Uplink power control can potentially also have an important impact.

There is also a series of papers that consider partially centralized precoding and combining for Cell-free massive MIMO [32], [37], [38], [43]. These methods allow for interference suppression between APs, which can substantially increase the spectral efficiency. First steps toward a scalable implementation of these methods are taken in [37].

Another aspect is related to C-RAN and the fronthaul infrastructure because a large network will require multiple CPUs and the encoding/decoding tasks that need to be carried out at the CPU level must be distributed between them. Some first works in these directions are found in [19], [42], [44], but there is no quantitative comparison of different network infrastructures.

E. Open Research Problems

The above brief survey of Cell-free massive MIMO provides a quick overview from its inception to the state-of-the-art. Although much research has been carried out leading to much scientific progress in recent years, there remain several important and interesting open research problems which we believe are necessarily relevant in propelling the technology to the next stage. We shall discuss three such problems, not in any particular order, in the following.

1) Power Control: As already mentioned, power control, especially downlink power control, still requires much research. The optimal power control coefficients, such as the ones for max-min power control [22], [23], can be obtained using second-order cone programming.
Unfortunately, these methods are not fast enough for real-time implementation. Unlike cellular systems, where downlink and uplink power controls are symmetric in the sense that each has the same number of power control coefficients, there is a different number of coefficients in cell-free networks. There are K coefficients in the uplink, while if each of the M APs is serving all K users, there are MK power control coefficients in the downlink. Even when taking into account that only a subset of APs serves each user, there still will be $\sum_{k=1}^{K} \#(\mathcal{M}_k) \geq K$ coefficients to select in the downlink, where $\#(\mathcal{M}_k)$ denotes the number of elements in the set \mathcal{M}_k. Hence, the computational complexity for downlink power control is particularly high. In a cellular system where each user is served by a single AP, practical power control works to maintain a target SINR iteratively for each user, i.e., when the target SINR for a particular user is exceeded, the allocated power for that user is lowered and vice versa. It has been shown such algorithm converges \[45\]–\[49\] under some very general assumptions. Nevertheless, this approach cannot be directly applied in Cell-free massive MIMO where each user is simultaneously served by many APs, which must coordinate their decisions (some may increase their power while some may decrease) and must also satisfy per-AP power constraints. Furthermore, the impact of real-world power control with finite discrete power levels must also be investigated. In addition, how to use power control to effectively strike a balance between sum spectral efficiency and user fairness is also not well understood, since the max-min fairness approach may be sacrificing too much in the sum spectral efficiency to provide absolute fairness to all users. While the proportional fairness metric is often used in cellular networks, the picture can be quite different in cell-free networks, where the users’ SINRs are distributed in a very different way. When it comes to the uplink, there is evidence \[43\], \[50\] that full power transmission might work well in many practical scenarios. This marks a significant departure from cellular thinking that full power transmission does not work for the uplink \[51\]. We should mention that although there are only K power control coefficients, they can interact with the $\sum_{k=1}^{K} \#(\mathcal{M}_k)$ weights in (5). If these can be jointly optimized in a computationally efficient way, further performance improvement may be achieved.

2) Fronthaul/Backhaul Provisioning: With a large number of AP’s scattered across the intended coverage area, it is obvious that the burden of fronthaul/backhaul for cell-free networks will be much heavier than that in a traditional cellular system. Wired provision via optical fiber is cost-prohibitive except in premium venues or if serial connections can be used \[20\]. Wireless provision is a viable option but comes with its own set of challenges, such
as the availability of spectrum and all the difficulties of reliably delivering ultra-high data rates wirelessly. One idea is to use a “dual layer” architecture where a cellular massive MIMO hauls a Cell-free massive MIMO system [52]. For cell-free networks to become a successful reality, more out-of-the-box ideas for fronthaul/backhaul provisions are undoubtedly needed and the best C-RAN methods must be utilized. Another angle of attacking this same problem is to research the means of minimizing the fronthaul/backhaul requirements, by decentralizing the processing as far as possible and heavily quantize the signals sent over the fronthaul [30] or using distributed quantization techniques [53]–[58]. A recent overview of the trade-offs between fronthaul requirements and the uplink performance for some well-known processing schemes is provided in [50]. A main conclusion is that there are opportunities to exploit the specificities of the fronthaul architecture to optimize its utilization and create semi-distributed methods.

3) Network Scalability: One definition of “network scalability” from [37] was provided earlier, based on letting $K \to \infty$, but other definitions are also possible. Generally speaking, it refers to the ability to meaningfully expand the performance of a small system to an “arbitrarily” larger system. For massive MIMO, a larger system means a larger number of service antennas. Taking the fronthaul/backhaul capacity and network computing power limitations into account, a skeleton for scalable Cell-free massive MIMO operation was provided in [37], [42]. But how to optimally and seamlessly associate each user to a group of APs and select the necessary signal processing and power control remain a very challenging problem—any attempt to globally optimize these operations would be fundamentally unscalable. Another facet of scalability is how the performance scale with respect to the increase of the number of APs, L, while keeping the number of users K fixed. For example, it is shown in [43] that the uplink minimum data rate does not scale with L when using MR processing. Scaling laws should also be investigated for real-world channels, such as with mixed LoS and non-LoS propagation, and other non-stationary channels [59], [60]. For LoS channels, approaches used in [61], [62] for cellular networks can be adapted for cell-free networks [63].

III. BEAMSSPACE MASSIVE MIMO

The more antennas that are used in a MIMO transceiver, and the higher the carrier frequency and bandwidth are, the more complicated the implementation becomes. The way to reduce the implementation complexity, without sacrificing too much in performance or operational flexibility, is to utilize the spatial structure of the channels and transceiver hard-
ware. In this section, we describe beamspace massive MIMO, which is the general concept that underpins hybrid beamforming and its future successors. We particularly focus on recent progress and open problems related to using lens arrays for beamspace massive MIMO.

A. Motivation

Early research in single-user MIMO focused on open-loop techniques that achieve MIMO benefits without any transmit-side knowledge of CSI. The most popular open-loop techniques are diversity techniques (e.g., space-time block codes and space-time trellis codes) and multiplexing techniques (e.g., spatial multiplexing) [64], [65]. The performance of these techniques is severely limited, in terms of most measures of performance, because the transmission is not adapted to the current CSI in any way.

In the early 2000s, the single-user MIMO research shifted to techniques that adapt the transmit signal to the channel conditions using some level of transmit-side CSI [66]–[70]. This simplest kind of adaptation is linear precoding, where a multiple antenna open-loop signal is adapted to the channel by multiplying it by a precoding matrix before transmission [66]. The benefit is that spatial CSI adaptation is now encapsulated in the precoding matrix. Linear precoding has had a widespread impact with inclusion in multiple standards including 4G LTE, 5G NR, and versions of IEEE 802.11.

Because commercially available MIMO transmitters have typically had fewer than eight antennas, linear precoding has historically been implemented using direct digital implementation. For example, LTE Release 8 systems limit the base station to having at most four antenna ports. With these small array sizes, direct digital processing of precoding was generally practical because it is cost-effective for small arrays to use a relatively high-resolution ADC at each transmit element. In this kind of implementation, it is convenient to think of the linear precoder as a single matrix that is multiplied by a transmit signal, avoiding many sophisticated formulations of precoder design.

Commercial array sizes, however, are poised to scale dramatically over the coming years. Millimeter-wave and massive MIMO transmitters equipped with on the order of a hundred antennas are commonly discussed in the literature. As the number of antenna elements increases, there are multiple benefits to rethinking the signal processing and implementation of linear precoding. The most popular approach is using a beamspace MIMO formulation.
B. Signal Model

Considering a single-user MIMO system, the standard input-output expression is

\[y = Hs + n, \]

where \(y \in \mathbb{C}^{N_r} \) is the received signal, \(H \in \mathbb{C}^{N_r \times N_t} \) is the channel matrix, \(x \in \mathbb{C}^{N_t} \) is the transmitted signal, and \(n \in \mathbb{C}^{N_r} \) is additive noise (which could include multiuser interference when the model is extended to a multiple user system). In a precoding formulation with \(M \) parallel data streams, the transmit signal \(s \) is decomposed into a linear precoder \(W \in \mathbb{C}^{N_t \times M} \) and an open-loop signal \(x \in \mathbb{C}^M \) according to

\[s = Wx. \]

As mentioned earlier, in a fully digital implementation, the multiplication in (13) is performed using a standard digital processor.

A beamspace approach decomposes the precoder further as a product of two different precoders as

\[W = W_1 W_2, \]

where \(W_1 \in \mathbb{C}^{N_t \times N_{v,t}} \) and \(W_2 \in \mathbb{C}^{N_{v,t} \times M} \) for some positive integer \(N_{v,t} \). Plugging this into (12), yields

\[y = HW_1 W_2 x + n. \]

The two precoders may be constrained and selected using drastically different criteria.

The receiver might also use linear processing. In this setup, the receiver applies a linear combining filter \(Z \in \mathbb{C}^{N_r \times N_{v,r}} \) and processes the received signal \(y_v = Z^H y \). Typically, the precoder \(W_1 \) and receiver \(Z \) are selected first. Then, the second transmit precoder \(W_2 \) is
selected conditioned on the selected W_1 and Z. Thus, W_2 is selected using a *virtual* or *effective* (e.g., see the discussion in [70]–[73]) $N_r \times N_v$ MIMO model

$$y_v = H_v W_2 x + n,$$

(16)

where the virtual/effective channel is $H_v = Z^H H W_1$. Note that in the case when linear receive processing is not explicitly used, the linear receiver can be assumed implicitly assumed to be $Z = I_{N_r}$. The input-output model (16) is illustrated in Fig. 4.

For some channel models and linear processing architectures that are exploiting the channel structure, the virtual channel H_v can exhibit a variety of advantageous properties. A common assumption is that the virtual channel H_v is *sparse* [74], meaning that H_v contains a limited number of non-zero entries. One example is when Z and W_1 contain the left and right singular vectors of H. In a practical deployment, entries will usually not be exactly zero, but the matrix can have a limited number of entries that are much larger in magnitude than the remaining entries.

This sparsity can simplify the operation and intuitive behavior of W_2 in many situations. In extreme cases where H_v is diagonal, W_2 can be thought of as performing virtual subchannel selection and power loading.

C. History

Beamspace approaches have recently received much interest for application in massive MIMO and millimeter wave (mmWave) communication. The idea of beamspace processing, however, has a long history dating back to early radar systems [75], [76]. Radar systems have regularly employed arrays with hundreds of elements dating back to at least the 1960s [77]. In cellular systems, the beamspace is widely utilized in LTE-A through the idea of dual-codebook precoding. Release 10 of LTE-A first included a dual codebook approach for eight-antenna downlink precoding. The matrix W_1, often called the wideband matrix, was selected to adapt to spatial characteristics of the channel [78]. The matrix W_2 was then chosen conditioned on W_1.

The idea of virtualized channel processing became central under the concept of *transparency* in LTE-A. Coordinated multipoint systems allow a user equipment (UE) to receive a signal sent from multiple geographically distributed transmission points, which could be utilizing diverse forms of precoding and multi-user transmission. To simplify the control, knowledge, and computational burden on the UE, the standard allows the UE to be configured...
with multiple reference signals and CSI processes. In beamspace formulation, the UE could be configured with K reference signals and CSI processes. The multiple transmission points could send reference signals over each of the possible first precoders $W_1[1], \ldots, W_1[K]$. The sounded precoder $W_1[k]$ would have a corresponding virtual channel $H_v[k]$. The user would then send feedback for selection of the precoder (i.e., through the corresponding CSI process) for each of the respective virtual channels.

This virtual approach allows operators and manufacturers to deploy sophisticated precoding schemes and easily upgrade to new precoding schemes because the user is not required to have any knowledge of $W_1[1], \ldots, W_1[K]$. The user is only required to know the number of reference signals, CSI processes, and corresponding configuration information for each. This kind of future-proof thinking has carried on in 3GPP for a variety of purposes. More recently, the practical use of beamspace has been reinvigorated because of the interest in hybrid beamforming and precoding at mmWave frequencies [79].

D. Implementation

The vast majority of beamspace techniques are based on phase-shifter architectures. In this approach, the first precoder is of the form

$$W_1 = \alpha_1 \left[e^{j\phi_{0,0}} \ldots e^{j\phi_{0,N_{v,t}-1}} \\ \vdots \quad \ddots \quad \vdots \\ e^{j\phi_{N_{t}-1,0}} \ldots e^{j\phi_{N_{t}-1,N_{v,t}-1}} \right]$$

(17)

where α_1 is a gain factor and $\{\phi_{m,n}\}$ are phases. The approach could similarly be applied to the combining matrix Z at the receiver.

The most common phase choices are based on the discrete Fourier transform (DFT) matrix. In this scenario, $\phi_{m,n} = 2\pi mn/N_t$ for $n = 0, \ldots, N_t - 1$ and $m = 0, \ldots, N_{v,t} - 1$. These phase selections offer many benefits when the array is a uniform linear array (ULA) and far-field communication is considered. As shown in [71] for the case of ULAs at the transmit and receiver, the channel H can be written as

$$H = \int_{-1/2}^{1/2} \int_{-1/2}^{1/2} G(\theta_r, \theta_t) a_v(\theta_r) a_H^*(\theta_t) d\theta_r d\theta_t,$$

(18)

where θ_t is the normalized angle-of-departure (AoD), θ_r is the normalized angle-of-arrival...
(AoD), $G(\theta_r, \theta_t)$ is the scattering function at AoD θ_t and AoA θ_r, and

$$a_t(\theta_t) = \frac{1}{\sqrt{N_t}} \left[1 e^{-j2\pi \theta_t} \ldots e^{-j2\pi (N_t-1)\theta_t} \right]^T,$$

$$a_r(\theta_r) = \frac{1}{\sqrt{N_r}} \left[1 e^{-j2\pi \theta_r} \ldots e^{-j2\pi (N_r-1)\theta_r} \right]^T.$$ \hspace{1cm} (19) \hspace{1cm} (20)

The choice of a DFT-based precoder and linear receiver then correspond to uniformly sampling the AoD and AOA spaces, respectively.

These phase shifters could be implemented digitally, but there are a variety of practical benefits that come from an analog or radio-frequency (RF) domain implementation [80], [81]. In the RF domain approach, the phase shifters are applied after the digital-to-analog converter (DAC) when used at the transmitter and before the analog-to-digital converter (ADC) at the receiver. The lack of amplitude variation in the entries of W_1 means that the phase shifters can be efficiently implemented using RF integrated circuit (RFIC) and microwave monolith integrated circuit techniques.

In the case of DFT precoding, the precoder can be also implemented using a Butler matrix [82], [83]. The Butler matrix operates for the square matrix scenario (i.e., $N_t = N_{v,t}$ or $N_r = N_{v,r}$). It is implemented as a passive network using phase couplers and phase shifters.

E. Beamspace Using Lens Arrays

Recent advances in RF technology have moved away from using discrete antenna elements, making antenna arrays that function more like an optical system. This can be achieved using lens arrays. Among various definitions, [84] defines a lens array as a device whose main function is to “provide variable phase shifting for electromagnetic rays at different points on the lens aperture so as to achieve angle-dependent energy focusing property.”

With the development of mmWave communications over the past decade, lens-based topologies have come at the forefront of wireless communications research. The reason is simple: By harnessing the focusing capabilities of lens arrays, we can focus the electromagnetic power arriving from different directions on different lens ports, thereby transforming the spatial MIMO channel into its sparse beamspace representation. Most importantly, by doing so we can select only a small number of dominant beams ($\ll N_{v,t} N_{v,r}$) that carry most of the electromagnetic energy in order to reduce the effective dimension of the MIMO channel matrix for signal processing manipulations along with the associated number of RF chains. Moreover, compared to typical hybrid mmWave systems with phase shifters (see for e.g.,
and references therein), lens arrays offer substantial hardware and power savings.

The first approach that combined the properties of lens arrays with the beamspace methodology can be found in [86]. This paper proposed the concept of the continuous aperture phased MIMO (CAP-MIMO), which uses a discrete lens array (DLA) to enable a quasi-continuous aperture phased MIMO operation at mmWave frequencies. The same research group published a stream of papers on this topic underpinned by physical demonstrations [87], [88]. In the following, we will overview the most recent advances in the area of lens-array based MIMO topologies and also identify some open problems that require further research in the near future.

1) Channel estimation: Conventional hybrid mmWave systems with high-resolution phase shifters offer much greater flexibility in the analog precoder design than lens-arrays (e.g., using compressed sensing techniques as in [79], [89]), which translates into enhanced channel estimation accuracy. Lens-based topologies are inherently inflexible in this sense since the analog precoders have to be DFT matrices. This makes the conventional channel estimation schemes tailored towards hybrid architectures with phase shifters problematic. We can categorize the channel estimation schemes for lens-based topologies that have been developed over the past years into two categories:

- **Narrowband channel estimation:** The estimation of the narrowband beamspace MIMO channels with lens arrays was originally studied in [90], [91]. Both techniques, though seemingly different, harness the sparsity of the beamspace channel to select only the dominant beams which capture most of the electromagnetic power. By doing so, the dimension of the beamspace channel is substantially reduced and this facilitates the signal processing manipulations; for instance, in [91] the conventional linear minimum mean square error (LMMSE) estimator was used. The weakness with the approach in [90] is that the number of pilot symbols to scan across all the beams is proportional to the number of antennas. In the massive MIMO regime, this number will scale badly leaving limited resources for data transmission. An alternative route for improving the channel estimation accuracy is through the support detection (SD)-based scheme of [92], [93]. Here, the main idea is to decompose the total channel estimation problem into a series of sub-problems each containing a sparse channel component. As a next step, for each of these components, their support is first detected and removed in a sequential way.

- **Wideband channel estimation:** In a massive antenna array, it is very likely that the
propagation delay across the array is comparable to the symbol period. In such a case, different antenna elements will receive different time-domain symbols emanating from the same physical path at the same sampling time. This phenomenon is known in the literature as the *spatial-wideband effect* [94], [95]. With wideband signaling, such an effect will cause *beam squint* in the frequency domain meaning that the AoAs (AoDs) will become frequency-dependent.\(^1\) Despite the importance of this phenomenon, to the best of our knowledge, the only relevant paper is [96], which proposed a successive support detection (SSD) technique; the main idea here is that each sparse path component has frequency-dependent support determined by its spatial direction which can be estimated using beamspace windows. Then, the authors apply the principle of serial interference cancelation on each single path component. It is also worth mentioning two earlier works in the area of wideband channel estimation for hybrid systems with phase shifters, these are [97] and [85]. In the former, simultaneous orthogonal matching pursuit (SOMP) algorithm was proposed while in the former utilized the orthogonal matching pursuit (OMP) technique. Yet, none of these papers considers the beam squint effect.

Open challenges: From the above discussion, it is obvious that the area of channel estimation for lens-based topologies at mmWave frequencies is still in its infancy. We will now try to outline some open problems that require further investigation:

1) Following a stream of recent papers [94], [95], [98], one can recast the channel estimation problem as a channel reconstruction problem by harnessing the *AoA-delay reciprocity* between the uplink and downlink in an FDD system. Hence, one only needs to regularly estimate the frequency-dependent path gains. A comprehensive performance analysis is currently missing.

2) The area of channel estimation for 3D lenses is also very timely given the importance of such geometries at higher frequencies (e.g., mmWave, sub-THz bands). A recent article on this topic is [99], which showed that the dominant entries of the channel matrix of 3D lens arrays form a dual crossing shape and then introduced an iterative algorithm that leverages this property.

3) As was previously mentioned, lens arrays offer substantial hardware and power savings compared to phase shifters. Nevertheless, the total implementation cost and power

\(^1\)To articulate the importance of beam squint one can think of an OFDM system where each subcarrier will experience distinct AoAs for the same physical path, thereby making channel estimation and transceiver design complicated exercises.
consumption of a mmWave transceiver can be further reduced by deploying coarse ADC quantizers. In such a case, the problem of channel estimation becomes far more complicated, particularly for wideband systems where different antennas at each sampling time collect non-identical data symbols [95]. To the best of our knowledge, the only relevant paper in this space is [100], which addressed channel estimation using the Expectation-Maximization (EM) algorithm.

2) Hardware imperfections: Lens arrays are lossy devices, as was identified already in some early papers in the field of microwave engineering and antenna theory (e.g., [101]). A neat classification of the different types of losses in constrained lens arrays can be found in [102]. Yet, in the field of communications engineering, hardware imperfections of lens arrays is a vastly unexplored problem. We will now provide an overview of some recent contributions in this context.

In [103], the aggregate impact of switching errors and spillover losses was characterized for an uplink multiuser MIMO mmWave system with a lens array at the BS. The former losses are a result of imperfect absorption and isolation characteristics of concurrent RF switches, which result in impedance mismatches and poor port to port isolation [104]. On the other hand, spillover losses are due to the fact that the finite number of antenna elements renders the sampling of the AoAs imperfect. As such, the RF power desired for a particular beam port also leaks into neighboring beam ports. In Fig. 5, the E-field distribution inside the substrate of the Rotman lens of [104] is presented, which clearly shows that a portion of the energy is dissipated towards one of the dummy ports and the remaining portion is bounced back to other beam ports.

On a similar note, it is worth mentioning [105] which provided a full electromagnetic characterization of spillover losses at 28 GHz and demonstrated that the electromagnetic focusing inside a lens is more accurate towards the broadside excitation angles (see Fig. 6). As a matter of fact, as we move towards $\phi = 50^\circ$, we observe not only E/M energy spillover but also reflections towards the opposite ports. A very recent contribution is [106], which examines the power leakage problem (equivalent to the spillover problem mentioned before) in mmWave massive MIMO systems with lens arrays. The authors proposed a beam alignment precoding scheme to alleviate this inherent problem by developing a phase shifter network (PSN) structure.

Open challenges: It is an indisputable fact that the performance characterization of lens topologies in the presence of hardware imperfections requires synergies between communi-
Figure 5: Electric field distribution 200 μm inside the substrate layer of the Rotman lens in [104].

(a) $\phi = 0^\circ$
(b) $\phi = 12.5^\circ$

(c) $\phi = 26.5^\circ$
(d) $\phi = 50^\circ$

Figure 6: Surface E-field distribution 200 μm inside the substrate layer of the 13×13 Rotman lens at multiple AoAs, denoted by ϕ. Data taken from [105].

cations engineers and microwave engineers. Unfortunately, these two communities have very often been working in isolation from each other and this has created a critical knowledge gap. In this context, a non-exhaustive list of open problems is the following:

1) The impact of the switching matrix is largely overlooked in the literature. In an ideal world, this matrix is binary and each row of it contains only one nonzero entry corresponding to the selected beam index. Yet, practical switches are not fully
absorptive, which implies that energy is reflected back to the lens beam ports, whilst
the poor isolation between switches causes energy leakage in the neighboring switches
[103].

2) The investigation of non-ideal mmWave RF components (e.g., mixers, local oscillators,
 power amplifiers) which induce in and out-of-band distortions is a very important
 topic since their aggregate impact can seriously undermine the theoretically predicted
 performance.

3) **Physical implementation:** The physical implementation of lens arrays based commu-
nication system is a new topic and we will now pinpoint the most important advances. We first
recall that the two most popular approaches to implementing E/M energy focusing using lens
arrays are layered scattering and guided wave techniques [107]. A contemporary overview
of the different types of lens arrays and their key characteristics can be found in [108]. Also,
we refer the readers to [109], which meticulously covers Rotman lens-based MIMO systems
with beam selection and digital beamforming.

A CAP-MIMO demonstrator at 10 GHz was first presented in [87] and later extended
to multibeam operation at 28 GHz in [88], [110]. In [111], a MIMO system at 77 GHz
that uses different types of RF lenses was manufactured and measured. The authors also
proposed a multivariance codebook quantization scheme to reduce the feedback overhead. The
same group also developed a number of prototypes at 28 GHz using a hyperbolic, dielectric
lens made from polyethylene for static and mobile applications [112]. The authors in [113]
presented a 2D beam steerable lens antenna prototype at 71–76 GHz with a 64-element feed
antenna, that can deliver 700 Mbit/s throughput at an operating range of 55 m. Most recently,
[114] synthesized and measured a 28 GHz lens array using constant dielectric material with
antenna feeds for multibeam operation. This geometry was shown to systematically out-
perform a ULA and the Rotman lens solution of [105] thanks to sharper electromagnetic
focusing.

IV. INTELLIGENT REFLECTING SURFACES

While the great spectral efficiency gains offered by MIMO communication are well estab-
lished [115], there are doubts regarding the technology’s ultimate cost and energy efficiency.
In fact, it was shown in [116] that an exceedingly larger number of antennas is not the
way to improve the energy efficiency (measured in bit/Joule) of future networks, as the total
energy consumption increases linearly with respect to the numbers of RF chains required
by the active components while the data rates only grows logarithmically. There have been attempts to maximize the energy efficiency of MIMO systems by both optimizing the power allocation \([117]–[119]\) and the network topology \([120]–[122]\). While these works find an optimal trade-off between data rates and energy consumption, the optimal design is often one with many hardware components and therefore high cost. Hence, the advantages of MIMO do not come for free and the performance improvements of the wireless technology might eventually saturate due for financial reasons. Hence, the design of spectral and energy efficient communication with low hardware cost is of utmost importance for realizing economically sustainable wireless communication networks \([123]\), \([124]\). In this section, we explore one potential way to achieve that by using passive MIMO antennas in an architecture known as \textit{intelligent reflecting surface (IRS)} \([125]\) or \textit{software-controlled metasurfaces} \([126]\).

\section*{A. Motivation}

The roll-out of MIMO has fueled the development of high-speed wireless communication systems. However, the performance of a wireless system is still determined by its channel. Specifically, the E/M waves radiated by a transmitter experience reflections, refraction, diffractions, and pathloss in the channel before reaching a receiver. Conventionally, the communication channel is treated as an uncontrollable environment which can be modeled probabilistically \([127]\), \([128]\). In fact, most of the communication techniques developed in the literature (e.g., beamforming, diversity, channel coding) were designed to either counteract or exploit the effects of the channel without changing its behavior. In contrast, the recently proposed IRS concept builds on manipulating the propagation of E/M waves in a communication channel so as to improve the performance of communication systems. Specifically, an IRS is a metasurface consisting of a large set of tiny elements that diffusely reflects incoming signals in a controllable way. IRS builds on the classical concept of reconfigurable reflectarrays \([129]\) with the added requirement of having real-time reconfigurability and control.

Normally, a surface scatters the incoming wave in the main direction determined by Snell’s law \([130]\) but with an increasing beamwidth, which is determined by the size of the surface relative to the wavelength \([131]\). While perfect specular mirror reflections often occur in the visible light range, that is typically not the case for radio signals which have the order of \(10^5\) longer wavelengths \([131]\). The use of metasurface cannot change the reflection losses, but it can create anomalous reflection \([132]\), meaning that the main direction of the reflected signal can be controlled. This can be achieved by letting every point on the surface induce
A certain phase-shift to the incoming signal. Ideally, this should be done in a continuous way over the surface, but metasurfaces approximate this using many discrete “meta-atoms” of a sub-wavelength size that each induce a distinct phase-shift. Hence, an IRS is an array of meta-atoms that each scatter the incoming signals with a controllable phase-shift, so that the joint effect of all phase-shifts is a reflected beam in a selected direction. This resembles beamforming from a classical phased array but with the main difference that the signal is not generated in the array but elsewhere. Fig. 7 illustrates how different phase-shift patterns among the meta-atoms lead to the incoming signal being reflected as a beam in different directions.
Unlike cell-free massive MIMO systems and cooperative relays, which also attempt to improve the propagation conditions by deploying active hardware components, an IRS is believed to only require a small operational power making it suitable for implementation in energy-limited systems. For example, when using meta-atoms with size 8×8 mm, the energy consumption is only 125 mW/m2, which is considerably lower than for many existing wireless communication devices [137]. Furthermore, an IRS can be of thin and conformable material, allowing for nearly invisible deployment on building facades and interior walls. Hence, once a conventional network has been deployed, one or multiple IRS can be flexibly deployed to mitigate coverage holes that have been detected or to provide additional capacity in areas where that is needed.

In practice, the deployment of an IRS in conventional MIMO systems facilitates two types of beamforming which are illustrated in Fig. 8. In Fig. 8(a), there is one IRS deployed in a system assisting the communication between a multiple-antenna transmitter and a user. The information signal is radiated from the transmitter. A direct path may exist between the transmitter and the user for communication, and beamforming is performed at the transmitter to improve the signal reception at the user. Meanwhile, the information signal is also received by the IRS due to the broadcast nature of wireless channels and the IRS will reflect the signal. With the help of an IRS controller, the main direction of the reflection can be controlled. In particular, proper phase shifts are introduced on all the meta-atoms to deliberately create a coherent combination of their individually scattered signals, thereby creating a signal beam focused at the user. The larger the surfaces is, the narrower the beam will be. This strategy is known as energy focusing [125], [136], [138]. On the other hand, if a direct path does not
exist due to heavy shadowing or blockage, the transmitter should perform beamforming with respect to the IRS. Then, the IRS can act as a non-amplifying relay which reflects and focuses the incident information signal to the users for assisting the end-to-end communication. In Fig. 8(b), we consider a scenario where a multiple-antenna transmitter serves user 1 in the existence of user 2. We assume that the two users have different security clearance levels where the message of user 1 should not be decodable at user 2. In this situation, destructive reflection can be performed at the IRS, by adjusting the phases of the scattered signals to null out the signal at user 2. This strategy is known as energy nulling [125], [136], [138]. These two types of beamforming have broad applications, such as physical layer security, interference management, coverage extension, capacity improvement, etc.

B. Signal Model of IRS

The amalgamation of IRS and conventional communication systems has introduced a new paradigm for the design of energy-efficient communication. In this paper, we focus on the point-to-point communication system in Fig. 8(a) for the illustration of the signal model. There is a transmitter equipped with M antennas serving a single-antenna user. In particular, an IRS consists of N meta-atom elements is deployed to assist the end-to-end communication. Besides, an IRS controller is adopted to control each meta-atom such that the phase of the scattered incident signal can be dynamically adjusted to achieve different purposes. Assuming deterministic flat-fading channels, the signal received at the single-antenna user is

$$ y = \left(\begin{array}{cc} h_d^T \Theta G & h_r^T \end{array} \right) w x + z, \quad (21) $$

where $x \in \mathbb{C}$ and $w \in \mathbb{C}^{M \times 1}$ are the unit-power information symbol and beamforming vector from the transmitter for the user, respectively. Furthermore, $h_d \in \mathbb{C}^{M \times 1}$, $h_r \in \mathbb{C}^{N \times 1}$, and $G \in \mathbb{C}^{N \times M}$ denote the channels of the transmitter-to-user, IRS-to-user, transmitter-to-IRS links, respectively. The diagonal matrix $\Theta \in \mathbb{R}^{N \times N}$ contains the phase-shifts $\theta_1, \ldots, \theta_N$ that are introduced at the different meta-atoms of the IRS. Finally, $z \sim \mathcal{N}_\mathbb{C}(0, \sigma^2)$ denotes the independent noise at the receiver.

To reach the system model in (21), it is assumed that the delay spread of the reflected

2This system model can be used for many different purposes. We only exemplify the use of it for information transfer, but we stress that wireless power transfer, cognitive radio, information nulling, etc. can also be considered in future works.
path is approximately same as the delay spread of the direct path, which is valid if the IRS is placed close to either the transmitter or the user. The channels h_d, h_r, G can be modeled as conventional MIMO channels, and each might consist of multiple paths. The antenna gains at the transmitter, receiver, and each meta-atom are also included in the channels to keep the notation simple.

1) Spectral Efficiency Optimization: If the receiver knows the composite channel, an achievable spectral efficiency is $\log_2(1 + \text{SNR})$ where the signal-to-noise ratio (SNR) at the user is

$$\text{SNR} = \frac{|(h_r^T \Theta G + h_d^T)w|^2}{\sigma^2}. \quad (22)$$

To maximize the spectral efficiency, the transmit beamforming vector w and the phase-shift matrix Θ can be jointly optimized to maximize the SNR. This can be mathematically formulated as the following optimization problem:

$$\max_{w, \Theta} |(h_r^T \Theta G + h_d^T)w|^2 \quad (23)$$

subject to

$$\|w\|^2 \leq P_{\text{max}}, \quad (24)$$

$$0 \leq \theta_n \leq 2\pi, \quad \forall n = 1, \ldots, N, \quad (25)$$

where P_{max} in (24) denotes the maximum transmit power budget of the transmitter and (25) is the constraint on the phase introduced by each reflection element. Although the constraints span a convex feasible set, the objective function in (23) is non-concave due to the coupling between w and Θ. For $M \geq 2$, there is generally no systematic approach for solving such non-convex optimization problems optimally and efficiently. In some cases, brute force approaches are needed to obtain the globally optimal solution which incurs a prohibitively high computational complexity even for moderate-sized systems. To strike a balance between system complexity and performance, different suboptimal approaches (e.g., alternating optimization, semidefinite relaxation, successive convex approximation, manifold optimization, etc.) have been proposed in the literature to obtain a computationally efficient solution [125], [136], [138], [139].

In Fig. 9, we provide simulation results illustrating the performance gain brought by the deployment of an IRS in a MIMO system. We follow a similar system setting as in [125]. We assume that there is an IRS located at 51 m away from a MIMO transmitter equipped with $M = 2$ transmit antennas. There exists a user located on a horizontal line which is parallel...
Figure 9: SNR versus the horizontal distance \(d \) between the transmitter and the IRS for various schemes.

to the one connecting the transmitter and the IRS. The vertical distance between the user and the horizontal line is 2 m and the transmit power of the transmitter is 0 dBm. The horizontal distance between the transmitter and the IRS is \(d \) m and different values are considered in Fig. 9. We compare the SNR that is achieved by three schemes: 1) benchmark scheme, 2) suboptimal scheme, 3) baseline without an IRS. The results of the benchmark and suboptimal schemes are obtained by solving the optimization problem in (23) via semi-definite relaxation (SDR), leading to an upper bound, and SDR with Gaussian randomization, respectively. It can be observed from Fig. 9 that the IRS can substantially increase the SNR compared to the baseline without an IRS. The SNR gains are largest when the user is close to the IRS, which is logical since otherwise the reflected path would be too weak make a true contribution in the numerator of (22). The SNR grows with the number of meta-atoms \(N \) and a critical number is needed before the IRS provides a substantial gain, due to additional pathloss that is created when the signal needs to first reach the IRS and then reach the user. We also notice that the suboptimal scheme provides almost the same performance as the benchmark.

C. Open Research Problems

The introduction of an IRS into a traditional communication system revolutionizes the design of beamformers and network topologies. In the following, we discuss some research challenges for IRS-assisted MIMO communication systems.
1) **Channel Estimation:** The performance of an IRS depends on its beamfocusing capability which relies on the availability of CSI at the IRS controller. In other words, we need to acquire the information about the channels h_r, h_d, and G in order to properly select Θ and w. In general, the transmitter-to-user link, h_d, can be obtained by applying traditional channel estimation strategies based on pilot transmission. In contrast, the channel estimation for the transmitter-to-IRS and the IRS-to-user links is more challenging due to the following three reasons. First, an IRS consists of passive elements which cannot initiate transmission to facilitate accurate channel estimation. Second, although the IRS controller may be equipped with a simple communication module for exchanging wireless control signals between the IRS and the transmitter, its limited computational ability may introduce an exceedingly long delay for estimating both G and h_r. Third, in order to achieve a reasonable system performance, a large aperture with a large number of meta-atom elements is required [140]. For example, there can be 15,625 meta-atoms in a 1×1 m IRS, if each one is 8×8 mm as was considered in [137] for 5 GHz communication. Performing channel estimation for such a high-dimensional channel would put heavy signal processing burdens and energy consumption at wireless transceivers. Hence, there is an emerging need for the design of low-cost channel estimation algorithms for IRS-supported communication, which might be achieved using parametrizable channel models or sparsity [141]. The beamspace approach, described in Section [III], might be a key part of the solution.

2) **Hardware Impairments:** The system models for IRS-assisted communication have been developed based on the assumption of perfect hardware. However, both IRSs and IRS controllers are preferably fabricated using low-cost components which will be subject to hardware impairments. For example, the phase-shifting capability might have limited resolution, such as only two states [132]. A preliminary study on the impact of finite resolution phase shifting is provided in [136]. Thorough performance analysis of IRS-assisted systems taking into account the impact of mutual coupling, phase noise, and other hardware impairments is desired in future work.

3) **Deployment of IRS:** The position of an IRS is crucial for achieving a useful performance improvement in IRS-assisted communication systems, as shown in Figure [9]. The SNR of the reflected path is proportional to the product of the pathlosses between the transmitter and the IRS and between the IRS and the receiver [131], which is why physically large surfaces are needed for an IRS to beat competing range-extension technologies such as relays [140]. Under optimized transmission, the SNR grows with the square of the surface area, since the
area first determines how large fraction of the transmitted power that reaches the SNR and then determines how narrowly it can be beamformed towards the receiver [142]. Hence, if a large IRS is placed at a location with clear line-of-sight with respect to the transmitter and close distance to the receiver, it can efficiently increase the SNR. However, such kind of deployment may not work well for helping the transmitter to convey multiple data streams for multiple users. In fact, the single strong line-of-sight path between the IRS and the transmitter might result in a low-rank MIMO channel in between which only offers a limited spatial multiplexing gain. To achieve a multiplexing gain, one should consider deploying multiple IRSs in the system to artificially create sufficient numbers of controllable “scatterers”. Yet, the optimal positioning of IRSs for maximizing the total system capacity is an open problem. Besides, the problem of controlling multiple IRSs and the associated channel estimation problem for joint reflection remains unsolved in the literature.

4) Identifying a “Killer Application”: There is a series of survey papers that speculate on how an IRS can be used in future networks [137], [138], [143], [144], but there is a need to demonstrate a “killer application” or a metric for which IRS-aided transmission make a paradigm shift in performance. Massive MIMO provides orders-of-magnitude improvement in spectral efficiency in sub-6 GHz bands and enables unprecedented data rates in mmWave bands. What will be the corresponding key benefit of IRS? Energy focusing and energy nulling, as illustrated in Fig. 8, can be also achieved with conventional beamforming methods, but likely result in higher implementation cost. Similarly, range extension is the classical use case of relays, which already have a low cost [140]. A relay can be much smaller than an IRS since its transmit power determines the signal amplification it provides, not the physical size as is the case of the IRS. The ability to control the propagation environment is conceptually appealing but must be associated with a practical performance gain. We need to think outside the box to find the right context in which IRS-supported systems will prevail.

V. MIMO MEETS OTHERS

The evolution of cellular technology has focused on creating a single system that can simultaneously support all communication applications. However, some important future applications (e.g., augmented reality (AR), virtual reality (VR), holography, ultra-reliable coverage) have so stringent requirements that the networks need to reconfigure itself to support these applications. It is envisioned that MIMO technology will continue to be a main driving force for the development in beyond 5G networks. In the following, we provide a
brief discussion on how other communication technologies would complement MIMO for fulfilling upcoming stringent quality-of-service (QoS) requirements set by potential future use cases.

A. Unmanned Aerial Vehicle-Based MIMO Communication

Although Massive MIMO can improve the SNR of a communication link proportionally to the number of antennas, there are harsh physical environments where this is not enough to provide decent coverage and capacity. For example, if heavy shadowing exists between a transmitter and a receiver due to blockage, the user device might not be able to connect to the network at all. Although Cell-free Massive MIMO, described in Section II, can be used to shorten distances between transmitter and receivers, this might not be sufficient to combat the shadowing due to the physical and financial constraints on where the fixed network infrastructure can be deployed. In fact, deploying a terrestrial infrastructure might be neither cost-effective nor feasible in practical cases such as in complex terrains, private areas, or remote areas. Also, on some occasions, terrestrial wireless networks are malfunctioning due to natural disasters, power outages, maintenance, etc. To handle these issues, aerial communication systems based on unmanned aerial vehicles (UAVs) is regarded as a promising new paradigm to facilitate fast and highly flexible deployment of communication infrastructure due to their high maneuverability [145]–[149]. In practice, UAVs equipped with MIMO communication modules can act as aerial base stations or an aerial relay to assist communication. Fig. [10] shows two common usages of UAVs. On the right-hand side of the figure, there is a blockage between a MIMO transmitter and a ground user. Then, a UAV can be deployed as an aerial relay for establishing a reliable communication link between the desired transceivers. It can either use traditional relaying protocols or, potentially, the new IRS approach described in Section [V]. On the left-hand side of Fig. [10] when communication infrastructure is out of service or unavailable, a UAV can be dispatched to serve as an aerial base station to create a temporary communication hotspot for multiple ground users. Unlike conventional ground base stations and relays deployed at fixed locations, the high mobility of UAVs introduces additional spatial degrees of freedom in resource allocation for improving system performance. In particular, when the locations of the users are known, UAVs can adapt their trajectory for flying close to a region with dense users to offer efficient communication services.

Despite the promising benefits brought by UAVs [145], [146], the integration of con-
conventional communication systems and UAV has imposed new challenges to researchers for the design of efficient MIMO communication systems. First, the unique constraints on size, weight, and energy consumption of UAVs are the major obstacles in applying conventional communication theories for improving the system performance. In practice, small UAVs (less than 25 kg) are commonly deployed due to safety reasons [146]. Under that weight restriction, UAVs can only carry a light load to achieve high mobility and low energy consumption. In particular, the limited surface area, battery capacity, and computational capability do not facilitate the implementation of Massive MIMO on UAVs. Second, in MIMO-UAV communication systems, the three types of channels (i.e., air-to-ground, ground-to-air, and air-to-air) are line-of-sight dominated. Although the line-of-sight channel characteristics facilitate the establishment of strong desired communication links, they are also vulnerable to multi-cell interference or potential eavesdropping [150]–[153]. While pilot contamination might be less of a problem for ground-to-ground than initially believed [115], it is a major concern in MIMO-UAV communications. Furthermore, the low-rank nature of light-of-sight MIMO channels also offers limited spatial multiplexing capabilities for carrying multiple data streams. Thus, novel MIMO communication techniques enabling efficient interference management and exploiting multiplexing gains are needed, potentially by exploiting multiple UAVs to create distributed arrays with a large aperture. Third, the performance of a MIMO-UAV depends on its trajectory and resource allocation design. In general, since the channels in MIMO-UAV systems are line-of-sight dominated, there is a non-trivial coupling between the trajectory of UAVs, location of users, and beamforming vectors design via trigonometric geometry. The joint design of trajectory and resource allocation generally leads to non-convex
problems and obtaining a globally optimal solution is challenging if not impossible. Up to now, there only exists one algorithm for achieving a globally optimal solution of the joint design problem for the case of a single-antenna UAV [148]. As a result, the use of advanced global optimization techniques is needed to solve the design optimization problems of MIMO-UAV to unleash its full potential for performance improvement.

There are many open problems related to realizing efficient MIMO-UAV systems:

1) 3D Beamforming: Traditionally, directional high-gain antennas with predefined antenna patterns are deployed to focus the signal energy onto the ground-based coverage area and simultaneously reducing inter-cell interference. Although this kind of deployment has worked well for ground users in past decades, until massive MIMO became a standard feature of 5G, it is not a viable option for UAVs. In particular, a fixed beam pattern is only suitable for fixed deployments with a 2D distribution of users, while a UAV is highly mobile and serve a 3D distribution of users. Hence, 3D beamforming is suitable for UAVs [154], [155]. By deploying a two-dimensional array at the bottom of a UAV and controlling the magnitudes and phases of each antenna element, adaptive beamforming can be achieved towards different locations on the ground. Unfortunately, the beamwidth is limited by the array’s aperture [25, Sec. 7.4] and thus a limited-sized UAV cannot achieve particularly narrow beams. However, zero-forcing and other interference mitigation methods can still be implemented. Efficient algorithms for joint 3D beamforming at the base station and trajectory design of the UAVs need to be developed.

2) UAVs Cooperation (Distributed MIMO): Due to the physical constraints on weight, size, and energy consumption of UAVs, only a small number of onboard antennas can be equipped at every single UAV which limits the MIMO gains. Nevertheless, the angular field of view (FoV) of UAV is usually small to ensure high SNR at the desired ground users, as shown in the left part of Fig. [10]. Yet, the small FoV can only provide limited coverage for communications. For example, when there is only one UAV serving a communication network having a large coverage area, a UAV may need to cruise back and forth in the system to satisfy the QoS requirements of all the users. This may introduce an exceedingly long delay and energy consumption in the system. Alternatively, the UAV can fly to a higher altitude where the coverage area is larger but that is associated with lower SNRs. One effective solution is to deploy multiple UAVs for improving system performance. In particular, a large service area can be divided into several small clusters, each of which is served by a small number of UAVs. Meanwhile, if there is high-rate communication among UAVs via air-to-air communication
links, distributed MIMO arrays can be formed by sharing antennas among all cooperative UAVs in each cluster for better interference mitigation and information transmission [156]–[159]. Depending on how this is implemented, methodology from the Cell-free Massive MIMO literature can be reused to achieve a lean and scalable architecture. In summary, a thorough study on user clustering and UAV cooperation algorithms are needed to achieve the performance gain that can be achieved via joint transmission from multiple UAVs.

B. MIMO for Sub-Terahertz Communications

Each new network generation usually requires new spectrum bands to enable deployment on top of legacy networks. Since the spectrum is scarce in sub-6 GHz bands, 5G will rely on a combination of sub-6 GHz spectrum that can provide wide-area coverage and mmWave spectrum for high capacity in hotspots [160]. The main reason for the exploration of mmWave spectrum is the relatively wide bandwidths that are available, while the main drawbacks are the more complicated hardware design and propagation conditions [161]. In free space, the intensity of an electromagnetic wave tapers off with the propagation distance in the same way in any band. However, since the size of a fixed-gain antenna shrinks with an increasing carrier frequency and thereby capture less energy, MIMO arrays are necessary in mmWave bands to achieve the same antenna aperture as in legacy systems. In the context of massive MIMO, this entails more fixed-gain antennas but the total antenna aperture does not need to be fully matched [162], [25, Sec. 7.5]. The implementation of compact MIMO arrays is one of the challenges that are tackled in 5G literature [163]–[165]. Furthermore, mmWave signals interact with objects in the propagation environment in a less favorable way, often limiting the coverage area to line-of-sight scenarios [166].

The first release of 5G supports the spectrum range 450 MHz to 52.6 GHz [160]. The range might increase in future releases but it is fair to say that 5G is a technology for the sub-100 GHz spectrum range. To identify new spectrum bands for beyond 5G network, we will have to move beyond the 100 GHz barrier. There are extremely wide bandwidths available above that barrier: at least 50 GHz in the range 90–200 GHz [167] and 100 GHz in the range 220–320 GHz [168]. Around 21 GHz of this spectrum is currently open for unlicensed use in the USA [169]. Although the concerned bands are, formally speaking, mmWave bands, it has become popular to call the 100–300 GHz range for the sub-THz bands to distinguish them from the mmWave bands considered in 5G [169].

The research into sub-THz communications is still in its infancy, but in comparison with
5G, we can expect even more directive transmission and limited range, with channels only consisting of line-of-sight paths and possible a few single-bounce reflections. On the other hand, with a bandwidth 100 GHz, the data rates can reach 1 Tbit/s at the cell center and 100 Gbit/s at the cell edge. Reaching such extreme data rates is the main reason for considering the sub-THz band. It might become suitable for fixed outdoor installations with high-gain antennas (e.g., fixed wireless access or fronthaul/backhaul links [170]) and short-range transmission to users that are mobile but move very slowly [171]. There is also a potential of using sub-THz signals for sensing, imaging, and positioning [169].

In the remainder of this section, we will briefly describe some of the MIMO-related challenges that will appear in sub-THz communications.

1) Hybrid Beamforming: The design of mmWave communications has become almost synonymous with hybrid analog-digital beamforming implementations, where a low-dimensional digital beamformer is combined with analog beamforming; for example, implemented using phase shifters as shown in Fig. [11]. It represents a compromise between hardware complexity and beamforming flexibility that simplifies the initial transceiver design. However, for the mmWave bands considered in 5G, hybrid beamforming is a temporary solution that is applied until digital transceivers can be built [144]. In fact, there are already digital testbeds for the 28 GHz band [172]. When moving to the sub-THz band, it will be natural to once again begin with building analog or hybrid transceivers [171], [173]. Each antenna element will be
so small that one cannot place a dedicated RF chain behind it [169]. By having a smaller number of RF chains connected to the antenna elements, the maximum beamforming gain can still be obtained by the beamforming design becomes more cumbersome.

Many of the same challenges that have been previously tackled in the mmWave literature [163]–[165] need to be revisited, under partially different conditions: a) More antenna elements per RF chain; b) Increasing frequency-selectivity in the channels due beam-squinting over wide bandwidths; c) Unknown propagation behaviors make it harder to use parameterized models for channel estimation; and d) Hardware impairments such as phase noise and non-linearities become increasingly influential on the performance [174]. It is plausible that low-resolution hardware must be utilized to achieve a cost and energy efficient implementation [175], [176], and there is a hope that the resulting distortion will (partially) fall into the null-space of the desired communication links [169], [177], [178]. It is necessary to first determine how the channel and hardware constraints will affect sub-THz bands and go back to the hybrid beamforming literature and determine which features remain. The beamspace approach, described in Section III is a suitable methodology when designing the signal processing for sub-THz bands.

2) Innovative Network Architectures: A typical sub-THz communication system will consist of a point-to-point MIMO channel with low rank, due to the directive transmission/reception and lack of scattering in higher bands. The multiple antenna technology can provide three main benefits: beamforming gain, spatial diversity, and spatial multiplexing. However, not all of these benefits can be utilized in every situation. A beamforming gain can be achieved even if the channel has low rank, provided that the channel state information is available.

Spatial diversity can be utilized to improve the reliability but requires a MIMO channel with (partially) independent fading between the antennas, which is not the case for low-rank MIMO channels. To combat this deficiency, it will be of interest to consider distributed antenna deployments, for example, based on the Cell-free massive MIMO methodology described in Section II. Spatial multiplexing also requires a high-rank channel and that can be achieved in the same way. Alternatively, the deployment of many IRS (described in Section IV) can improve the propagation conditions in similar ways.

VI. Conclusion

Multiple antenna technology has become mainstream with 5G, where it plays a key role in significantly improving capacity, coverage, and QoS over legacy cellular networks. While
there are still many practical aspects that must be dealt with before 5G can reach its full potential, it is never too early to search for new multiple antenna technologies for beyond 5G applications. In addition to providing revolutionary performance gains to beyond 5G networks, the new technologies must also provide orders-of-magnitude gain in energy efficiency at a reasonable cost—to enable scalable ubiquitous connectivity.

In this survey, we outline three very promising beyond 5G research directions: Cell-free massive MIMO, beamspace MIMO, and IRS. Reference points set by recent technical advances in conjunction with historic perspectives are presented in terms of system models, performance analyses, signal processing schemes, and deployment visions. Importantly, we provide in-depth discussions on crucial open problems in each of these areas. From a broader perspective, networks are becoming increasingly complex and heterogeneous in the future, with conventional massive MIMO technology being combined with distributed cell-free deployments, supported by IRS, and signal processing simplifications enabled by the beamspace methodology. These technologies may be used in both conventional frequency bands and new sub-THz bands, and the networks might include UAVs for improved coverage. Even after decades of research and development, we believe that multiple antenna technology will remain to be a very important and exciting research avenue for beyond 5G systems.

REFERENCES

[1] L. Sanguinetti, E. Björnson, and J. Hoydis, “Towards massive MIMO 2.0: Understanding spatial correlation, interference suppression, and pilot contamination,” CoRR, vol. abs/1904.03406, 2019. [Online]. Available: http://arxiv.org/abs/1904.03406
[2] V. W. S. Wong, R. Schober, D. W. K. Ng, and L.-C. Wang, Key Technologies for 5G Wireless Systems. Cambridge, U.K.: Cambridge Univ. Press, 2017.
[3] V. H. MacDonald, “The cellular concept,” Bell System Technical Journal, vol. 58, no. 1, pp. 15–41, 1979.
[4] M. Cooper, “The myth of spectrum scarcity,” DYNA llc, Tech. Rep., Mar. 2010. [Online]. Available: https://ecfsapi.fcc.gov/file/7020396128.pdf
[5] ITU, “Minimum requirements related to technical performance for IMT-2020 radio interface(s),” ITU-R M.2410-0, Tech. Rep., Nov. 2017.
[6] S. Shamai and B. M. Zaidel, “Enhancing the cellular downlink capacity via co-processing at the transmitting end,” in Proc. IEEE VTC Spring, vol. 3, 2001, pp. 1745–1749.
[7] S. Venkatesan, A. Lozano, and R. Valenzuela, “Network MIMO: Overcoming intercell interference in indoor wireless systems,” in Proc. Asilomar Conference on Signals, Systems and Computers, 2007, pp. 83–87.
[8] G. Caire, S. Ramprashad, and H. Papadopoulos, “Rethinking network MIMO: Cost of CSIT, performance analysis, and architecture comparisons,” in Proc. IEEE ITA, 2010.
[9] O. Simeone, O. Somekh, H. V. Poor, and S. Shamai, “Distributed MIMO in multi-cell wireless systems via finite-capacity links,” in Proc. IEEE ISCCSP, 2008, pp. 203–206.
[10] P. Marsch, S. Brück, A. Garavaglia, M. Schulist, R. Weber, and A. Dekorsy, “Clustering,” in *Coordinated multi-point in mobile communications: From theory to practice*, P. Marsch and G. Fettweis, Eds. Cambridge, 2011, ch. 7, pp. 139–159.

[11] P. Marsch and G. Fettweis, “On multicell cooperative transmission in backhaul-constrained cellular systems,” *Annals of Telecommunications-Annales des Télécommunications*, vol. 63, no. 5-6, pp. 253–269, May 2008.

[12] J. Zhang, R. Chen, J. G. Andrews, A. Ghosh, and R. Heath, “Networked MIMO with clustered linear precoding,” *IEEE Trans. Wireless Commun.*, vol. 8, no. 4, pp. 1910–1921, Apr. 2009.

[13] H. Huang, M. Trivellato, A. Hottinen, M. Shafi, P. Smith, and R. Valenzuela, “Increasing downlink cellular throughput with limited network MIMO coordination,” *IEEE Trans. Wireless Commun.*, vol. 8, no. 6, pp. 2983–2989, Jun. 2009.

[14] A. Osseiran, J. F. Monseur, and P. Marsch, *5G Mobile and Wireless Communications Technology*. Cambridge: Cambridge University Press, 2016, ch. 9, Coordinated Multi-Point Transmission in 5G.

[15] E. Björnson, N. Jaldén, M. Bengtsson, and B. Ottersten, “Optimality properties, distributed strategies, and measurement-based evaluation of coordinated multicell OFDMA transmission,” *IEEE Trans. Signal Process.*, vol. 59, no. 12, pp. 6086–6101, Dec. 2011.

[16] S. Kaviani, O. Simeone, W. Krzymien, and S. Shamai, “Linear precoding and equalization for network MIMO with partial cooperation,” *IEEE Trans. Veh. Technol.*, vol. 61, no. 5, pp. 2083–2095, June 2012.

[17] P. Baracca, F. Boccardi, and V. Braun, “A dynamic joint clustering scheduling algorithm for downlink CoMP systems with limited CSI,” in *Proc. IEEE ISWCS*, 2012, pp. 830–834.

[18] E. Björnson and E. Jorswieck, “Optimal resource allocation in coordinated multi-cell systems,” *Foundations and Trends® in Communications and Information Theory*, vol. 9, no. 2-3, pp. 113–381, Feb. 2013.

[19] S. Perlman and A. Forenza, “An introduction to pCell,” 2015, Artemis Networks LLC, White paper. [Online]. Available: http://www.rearden.com/artemis/An-Introduction-to-pCell-White-Paper-150224.pdf

[20] G. Interdonato, E. Björnson, H. Q. Ngo, P. Frenger, and E. G. Larsson, “Ubiquitous cell-free massive MIMO communications,” *EURASIP J. Wireless Commun.Netw.*, vol. 2019, no. 1, p. 197, Jan. 2019.

[21] J. Zhang, S. Chen, Y. Lin, J. Zheng, B. Ai, and L. Hanzo, “Cell-free massive MIMO: A new next-generation paradigm,” *IEEE Access*, 2019.

[22] H. Q. Ngo, A. Ashikhmin, H. Yang, E. G. Larsson, and T. L. Marzetta, “Cell-free massive MIMO versus small cells,” *IEEE Trans. Wireless Commun.*, vol. 16, no. 3, pp. 1834–1850, Mar. 2017.

[23] E. Nayebi, A. Ashikhmin, T. L. Marzetta, H. Yang, and B. D. Rao, “Precoding and power optimization in cell-free Massive MIMO systems,” *IEEE Trans. Wireless Commun.*, vol. 16, no. 7, Jul. 2017.

[24] T. L. Marzetta, E. G. Larsson, H. Yang, and H. Q. Ngo, *Fundamentals of Massive MIMO*. Cambridge University Press, 2016.

[25] E. Björnson, J. Hoydis, and L. Sanguinetti, “Massive MIMO networks: Spectral, energy, and hardware efficiency,” *Foundations and Trends® in Signal Process.*, vol. 11, no. 3-4, pp. 154–655, 2017.

[26] E. Björnson, R. Zakhour, D. Gesbert, and B. Ottersten, “Cooperative multicell precoding: Rate region characterization and distributed strategies with instantaneous and statistical CSI,” *IEEE Trans. Signal Process.*, vol. 58, no. 8, pp. 4298–4310, Aug. 2010.

[27] H. Q. Ngo, H. Tataria, M. Matthaiou, S. Jin, and E. G. Larsson, “On the performance of cell-free massive MIMO in Ricean fading,” in *Proc. IEEE Asilomar Conference on Signals, Systems, and Computers*, Nov. 2018, pp. 980–984.

[28] Ö. Özdogan, E. Björnson, and J. Zhang, “Performance of cell-free massive MIMO with Ricean fading and phase shifts,” *IEEE Trans. Wireless Commun.*, 2019.

[29] Z. Chen and E. Björnson, “Channel hardening and favorable propagation in cell-free massive MIMO with stochastic geometry,” *IEEE Trans. Commun.*, vol. 17, no. 11, pp. 5205–5219, Nov. 2018.
[30] M. Bashar, H. Q. Ngo, A. G. Burr, D. Maryopi, K. Cumanan, and E. G. Larsson, “On the performance of backhaul constrained cell-free massive MIMO with linear receivers,” in *Asilomar Conference on Signals, Systems and Computers*, Nov. 2018.

[31] W. Fan, J. Zhang, E. Björnson, S. Chen, and Z. Zhong, “Performance analysis of cell-free massive MIMO over spatially correlated fading channels,” in *Proc. IEEE ICC*, 2019, pp. 1–6.

[32] E. Björnson and L. Sanguinetti, “Making cell-free massive MIMO competitive with MMSE processing and centralized implementation,” *CoRR*, vol. abs/1903.10611, 2019. [Online]. Available: http://arxiv.org/abs/1903.10611

[33] S. Buzzi and C. D’Andrea, “Cell-free massive MIMO: User-centric approach,” *IEEE Commun. Lett.*, vol. 6, no. 6, pp. 706–709, Jun. 2017.

[34] T. C. Mai, H. Q. Ngo, and T. Q. Duong, “Cell-free massive MIMO systems with multi-antenna users,” in *Proc. IEEE GlobalSIP*, 2018, pp. 828–832.

[35] H. Yang and T. L. Marzetta, “Energy efficiency of massive MIMO: Cell-free vs. cellular,” in *Proc. IEEE VTC Spring*, 2018, pp. 1–5.

[36] H. Q. Ngo, L.-N. Tran, T. Q. Duong, M. Matthaiou, and E. G. Larsson, “On the total energy efficiency of cell-free massive MIMO,” *IEEE Trans. Green Commun. Netw.*, vol. 2, no. 1, pp. 25–39, Jan. 2017.

[37] E. Björnson and L. Sanguinetti, “Scalable cell-free massive MIMO systems,” *arXiv*, Aug 2019. [Online]. Available: https://arxiv.org/abs/1908.03119

[38] E. Nayebi, A. Ashikhmin, T. L. Marzetta, and B. D. Rao, “Performance of cell-free massive MIMO systems with MMSE and LSFD receivers,” in *Asilomar Conference on Signals, Systems and Computers*, 2016.

[39] E. Björnson and L. Sanguinetti, “A new look at cell-free Massive MIMO: Making it practical with dynamic cooperation,” in *Proc. Annual IEEE International Symposium on Personal, Indoor and Mobile Radio Communications*, 2019.

[40] M. Bashar, K. Cumanan, A. G. Burr, M. Debbah, and H. Q. Ngo, “On the uplink max-min SINR of cell-free massive MIMO systems,” *IEEE Trans. Wireless Commun.*, vol. 18, no. 4, pp. 2021–2036, Apr. 2019.

[41] G. Interdonato, M. Karlsson, E. Björnson, and E. G. Larsson, “Downlink spectral efficiency of cell-free massive MIMO with full-pilot zero-forcing,” in *Proc. IEEE GlobalSIP*, 2018, pp. 1003–1007.

[42] G. Interdonato, P. Frenger, and E. G. Larsson, “Scalability aspects of cell-free massive MIMO,” in *Proc. IEEE ICC*, 2019.

[43] H. Yang and E. G. Larsson, “Can massive MIMO support uplink intensive applications?” in *Proc. IEEE WCNC*, 2019.

[44] A. G. Burr, M. Bashar, and D. Maryopi, “Ultra-dense radio access networks for smart cities: Cloud-RAN, fog-RAN and “cell-free” massive MIMO,” in *Proc. IEEE PIMRC*, 2018.

[45] J. Zander, “Performance of optimum transmitter power control in cellular radio systems,” *IEEE Trans. Veh. Technol.*, vol. 41, no. 1, pp. 57–62, 1992.

[46] G. J. Foschini and Z. Miljanic, “A simple distributed autonomous power control algorithm and its convergence,” *IEEE Trans. Veh. Technol.*, vol. 42, no. 4, pp. 641–646, Nov. 1993.

[47] R. D. Yates et al., “A framework for uplink power control in cellular radio systems,” *IEEE J. Sel. Areas Commun.*, vol. 13, no. 7, pp. 1341–1347, Sep. 1995.

[48] S. V. Hanly, “An algorithm for combined cell-site selection and power control to maximize cellular spread spectrum capacity,” *IEEE J. Sel. Areas Commun.*, vol. 13, no. 7, pp. 1332–1340, Sep. 1995.

[49] ——, “Capacity and power control in spread spectrum macrodiversity radio networks,” *IEEE Trans. Commun.*, vol. 44, no. 2, pp. 247–256, Feb. 1996.
[50] E. Bjørnson and L. Sanguinetti, “Making cell-free massive MIMO competitive with MMSE processing and centralized implementation,” CoRR, vol. abs/1903.10611, 2019. [Online]. Available: http://arxiv.org/abs/1903.10611
[51] H. Yang and T. L. Marzetta, “A macro cellular wireless network with uniformly high user throughputs,” in IEEE VTC-Fall, 2014.
[52] T. L. Marzetta and H. Yang, “Dual-tier wireless communication system,” Jul. 2016, US Patent 9,402,191.
[53] P. K. Varshney, Distributed Detection and Data Fusion. Springer, 1997.
[54] R. S. Blum, “Distributed detection for diversity reception of fading signals in noise,” IEEE Trans. Inf. Theory, vol. 45, no. 1, pp. 158–164, Jan. 1999.
[55] B. Chen, L. Tong, and P. K. Varshney, “Channel-aware distributed detection in wireless sensor networks,” IEEE Signal Process. Mag., vol. 23, no. 4, pp. 16–26, July 2006.
[56] D. R. Brown III, U. Madhow, M. Ni, M. Rebholz, and P. Bidigare, “Distributed reception with hard decision exchanges,” IEEE Trans. Wireless Commun., vol. 13, no. 6, pp. 3406–3418, June 2014.
[57] J. Choi, D. J. Love, D. R. Brown III, and M. Boutin, “Quantized distributed reception for MIMO wireless systems using spatial multiplexing,” IEEE Trans. Signal Process., vol. 63, no. 13, pp. 3537–3548, July 2015.
[58] J. Choi, D. J. Love, and T. P. Bidigare, “Coded distributed diversity: A novel distributed reception technique for wireless communication systems,” IEEE Trans. Signal Process., vol. 63, no. 5, pp. 1310–1321, March 2015.
[59] A. Ali, E. de Carvalho, and R. W. Heath, Jr., “Linear receivers in non-stationary massive MIMO channels with visibility regions,” IEEE Wireless Commun. Lett., 2019.
[60] E. De Carvalho, A. Ali, A. Amiri, M. Angelichinoski, and R. W. Heath, Jr., “Non-stationarities in extra-large scale massive MIMO,” arXiv:1903.03085, 2019.
[61] H. Yang and T. L. Marzetta, “Massive MIMO with max-min power control in line-of-sight propagation environment,” IEEE Trans. Commun., vol. 65, no. 11, pp. 4685–4693, Nov. 2017.
[62] H. Yang, H. Q. Ngo, and E. G. Larsson, “Multi-cell massive MIMO in LoS,” in Proc. IEEE GLOBECOM, 2018.
[63] H. Yang, “Cell-free Massive MIMO in LoS,” Bell Labs Manuscript, 2019.
[64] S. Alamouti, “A simple transmit diversity technique for wireless communications,” IEEE J. Sel. Areas Commun., vol. 16, no. 8, pp. 1451–1458, Oct. 1998.
[65] V. Tarokh, N. Seshadri, and A. Calderbank, “Space-time codes for high data rate wireless communication: Performance analysis and code construction,” IEEE Trans. Inf. Theory, vol. 44, no. 2, pp. 744–765, Mar. 1998.
[66] A. Scaglione, P. Stoica, S. Barbarossa, G. B. Giannakis, and H. Sampath, “Optimal designs for space-time linear precoders and decoders,” IEEE Trans. Signal Process., vol. 50, no. 5, pp. 1051–1064, May 2002.
[67] A. El Gamal and U. Madhow, “Space-time transmit precoding with imperfect feedback,” IEEE Trans. Inf. Theory, vol. 47, no. 6, pp. 2632–2639, Sep. 2001.
[68] G. Jönsson and M. Skoglund, “Quantized feedback information in orthogonal space–time block coding,” IEEE Trans. Inf. Theory, vol. 50, no. 10, pp. 2473–2486, Oct. 2004.
[69] S. Zhou and G. B. Giannakis, “Optimal transmitter eigen-beamforming and space-time block coding based on channel mean feedback,” IEEE Trans. Signal Process., vol. 50, no. 10, pp. 2599–2613, Oct. 2002.
[70] D. J. Love and R. W. Heath, Jr., “Limited feedback unitary precoding for spatial multiplexing systems,” IEEE Trans. Inf. Theory, vol. 51, no. 8, pp. 2967–2976, Aug. 2005.
[71] A. M. Sayeed, “Deconstructing multiantenna fading channels,” IEEE Trans. Signal Process., vol. 50, no. 10, pp. 2563–2579, Oct. 2002.
[72] D. J. Love, R. W. Heath, Jr., V. Lau, D. Gesbert, B. D. Rao, and M. Andrews, “An overview of limited feedback in wireless communication systems,” IEEE J. Sel. Areas Commun., vol. 26, no. 8, pp. 1341–1365, Oct. 2008.
[73] Z. Hong, K. Liu, R. W. Heath, Jr., and A. M. Sayeed, “Spatial multiplexing in correlated fading via the virtual channel representation,” IEEE J. Sel. Areas Commun., vol. 21, no. 5, pp. 856–166, Jun. 2003.

[74] A. M. Sayeed and V. Raghavan, “Maximizing MIMO capacity in sparse multipath with reconfigurable antenna arrays,” IEEE J. Sel. Areas Commun., vol. 1, no. 1, pp. 156–166, Jun. 2007.

[75] D. Chapman, “Partial adaptivity for the large array,” IEEE Trans. Antennas Propag., vol. 24, no. 5, pp. 685–696, Sep. 1976.

[76] M. A. Richards, Fundamentals of Radar Signal Processing. New York, NY, USA: McGraw-Hill, 2005.

[77] M. I. Skolnik, Introduction to Radar Systems. New York, NY, USA: McGraw-Hill, 2001.

[78] 3GPP TSG RAN WG1, “Way forward on 8Tx codebook for Rel.10 DL MIMO,” Aug. 2010, Tdoc R1-105001.

[79] O. El Ayach, S. Rajagopal, S. Abu-Surra, Z. Pi, and R. W. Heath, Jr., “Spatially sparse precoding in millimeter wave MIMO systems,” IEEE Trans. Wireless Commun., vol. 13, no. 3, pp. 1499–1513, March 2014.

[80] X. Zhang, A. F. Molisch, and S. Kung, “Variable-phase-shift-based RF-baseband codesign for MIMO antenna selection,” IEEE Trans. Signal Process., vol. 53, no. 11, pp. 4091–4103, Nov. 2005.

[81] P. Sudarshan, N. B. Mehta, A. F. Molisch, and J. Zhang, “Channel statistics-based RF pre-processing with antenna selection,” IEEE Trans. Wireless Commun., vol. 5, no. 12, pp. 4091–4103, Dec. 2006.

[82] J. Butler and R. Lowe, “Beam-forming matrix simplifies design of electronically scanned antennas,” Elect. Design, vol. 9, pp. 170–173, Apr. 1961.

[83] A. F. Molisch and X. Zhang, “FFT-based hybrid antenna selection schemes for spatially correlated MIMO channels,” IEEE Commun. Lett., vol. 8, no. 1, pp. 36–38, Jan. 2004.

[84] Y. Zeng and R. Zhang, “Millimeter wave MIMO with lens antenna array: A new path division multiplexing paradigm,” IEEE Trans. Commun., vol. 64, no. 4, pp. 1557–1571, Apr. 2016.

[85] K. Venugopal, A. Alkhateeb, N. Gonzalez Prielic, and R. W. Heath, Jr., “Channel estimation for hybrid architecture-based wideband millimeter wave systems,” IEEE J. Sel. Areas Commun., vol. 35, no. 9, pp. 1996–2009, Sep. 2017.

[86] A. M. Sayeed and N. Behdad, “Continuous aperture phased MIMO: Basic theory and applications,” in Proc. Allerton, Sep. 2010, pp. 1196–1203.

[87] J. Brady, N. Behdad, and A. M. Sayeed, “Beamspace MIMO for millimeter-wave communications: System architecture, modeling, analysis, and measurements,” IEEE Trans. Antennas Propag., vol. 61, no. 7, pp. 3814–3827, Jul. 2013.

[88] A. M. Sayeed and J. Brady, “Beamspace MIMO channel modeling and measurement: Methodology and results at 28GHz,” in Proc. IEEE GC Wkshps, Dec. 2016, pp. 1–6.

[89] W. Zhang, T. Kim, D. J. Love, and E. Perrins, “Leveraging the restricted isometry property: Improved low-rank subspace decomposition for hybrid millimeter-wave systems,” IEEE Trans. Commun., vol. 66, no. 11, pp. 5814–5827, Nov. 2018.

[90] J. Hogan and A. M. Sayeed, “Beam selection for performance-complexity optimization in high-dimensional MIMO systems,” in Proc. CISS, 2016, pp. 337–342.

[91] L. Yang, Y. Zeng, and R. Zhang, “Channel estimation for millimeter-wave MIMO communications with lens antenna arrays,” IEEE Trans. Veh. Technol., vol. 67, no. 4, pp. 3239–3251, Apr. 2018.

[92] X. Gao, L. Dai, S. Han, C. I, and X. Wang, “Reliable beamspace channel estimation for millimeter-wave massive MIMO systems with lens antenna array,” IEEE Trans. Wireless Commun., vol. 16, no. 9, pp. 6010–6021, Sep. 2017.

[93] Y. Han, J. Lee, and D. J. Love, “Compressed sensing-aided downlink channel training for FDD massive MIMO systems,” IEEE Trans. Commun., vol. 65, no. 7, pp. 2852–2862, July 2017.

[94] B. Wang, F. Gao, S. Jin, H. Lin, and G. Y. Li, “Spatial- and frequency-wideband effects in millimeter-wave massive MIMO systems,” IEEE Trans. Signal Process., vol. 66, no. 13, pp. 3393–3406, Jul. 2018.
[95] B. Wang, F. Gao, S. Jin, H. Lin, G. Y. Li, S. Sun, and T. S. Rappaport, “Spatial-wideband effect in massive MIMO with application in mmWave systems,” IEEE Commun. Mag., vol. 56, no. 12, pp. 134–141, Dec. 2018.

[96] X. Gao, L. Dai, S. Zhou, A. M. Sayeed, and L. Hanzo, “Wideband beamspace channel estimation for millimeter-wave MIMO systems relying on lens antenna arrays,” IEEE Trans. Signal Process., vol. 67, no. 18, pp. 4809–4824, Sep. 2019.

[97] Z. Gao, C. Hu, L. Dai, and Z. Wang, “Channel estimation for millimeter-wave massive MIMO with hybrid precoding over frequency-selective fading channels,” IEEE Commun. Lett., vol. 20, no. 6, pp. 1259–1262, Jun. 2016.

[98] Y. Han, Q. Liu, C. Wen, M. Matthaiou, and X. Ma, “Tracking FDD massive MIMO downlink channels by exploiting delay and angular reciprocity,” IEEE J. Sel. Topics Signal Process., pp. 1–1, 2019.

[99] W. Ma and C. Qi, “Channel estimation for 3-D lens millimeter wave massive MIMO system,” IEEE Commun. Lett., vol. 21, no. 9, pp. 2045–2048, Sep. 2017.

[100] E. Vlachos, J. S. Thompsom, M. A. B. Abbasi, V. F. Fusco, and M. Matthaiou, “Robust estimator for lens-based hybrid MIMO with low-resolution sampling,” in Proc. IEEE SPAWC, 2019.

[101] D. McGrath, “Planar three-dimensional constrained lenses,” IEEE Trans. Antennas Propag., vol. 34, no. 1, pp. 46–50, Jan. 1986.

[102] D. S. Popovic, “Constrained lens arrays for communication systems with polarization and angle diversity,” Ph.D. dissertation, University of Colorado, Boulder, 2002.

[103] H. Tataria, M. Matthaiou, P. J. Smith, G. C. Alexandropoulos, and V. F. Fusco, “Impact of processing and switching errors in lens based massive MIMO systems,” in Proc. IEEE SPAWC, 2018.

[104] M. A. B. Abbasi, V. F. Fusco, and M. Matthaiou, “Millimeter wave hybrid beamforming with Rotman lens: Performance with hardware imperfections,” in Proc. IEEE ISWCS, 2019.

[105] M. A. B. Abbasi, H. Tataria, V. F. Fusco, and M. Matthaiou, “On the impact of spillover losses in 28 GHz Rotman lens arrays for 5G applications,” in Proc. IEEE IMWS-5G, 2018.

[106] T. Xie, L. Dai, D. W. K. Ng, and C. Chae, “On the power leakage problem in millimeter-wave massive MIMO with lens antenna arrays,” IEEE Trans. Signal Process., vol. 67, no. 18, pp. 4730–4744, Sep. 2019.

[107] J. Y. Lau and S. V. Hum, “Reconfigurable transmitarray design approaches for beamforming applications,” IEEE Trans. Antennas Propag., vol. 60, no. 12, pp. 5679–5689, Dec. 2012.

[108] W. Hong and et al., “Multibeam antenna technologies for 5G wireless communications,” IEEE Trans. Antennas Propag., vol. 65, no. 12, pp. 6231–6249, Dec. 2017.

[109] Y. Gao, M. Khalili, F. Zheng, and T. Kaiser, “Rotman lens based hybrid analogdigital beamforming in massive MIMO systems: Array architectures, beam selection algorithms and experiments,” IEEE Trans. Veh. Technol., vol. 66, no. 10, pp. 9134–9148, Oct. 2017.

[110] A. M. Sayeed, C. Hall, and Y. Zhu, “A lens array multi-beam MIMO testbed for real-time mmwave communication and sensing,” in Proc. ACM mmNets workshop, Oct. 2017, pp. 1196–1203.

[111] T. Kwon, Y. Lim, B. Min, and C. Chae, “RF lens-embedded massive MIMO systems: Fabrication issues and codebook design,” IEEE Trans. Microw. Theory Techn., vol. 64, no. 7, pp. 2256–2271, Jul. 2016.

[112] Y. J. Cho, G. Suk, B. Kim, D. K. Kim, and C. Chae, “RF lens-embedded antenna array for mmwave MIMO: Design and performance,” IEEE Commun. Mag., vol. 56, no. 7, pp. 42–48, Jul. 2018.

[113] J. Ala-Laurinaho and et al., “2-D beam-steerable integrated lens antenna system for 5G E-band access and backhaul,” IEEE Trans. Microw. Theory Techn., vol. 64, no. 7, p. 22442255, Jul. 2016.

[114] M. A. B. Abbasi, V. F. Fusco, H. Tataria, and M. Matthaiou, “Constant-ε, lens beamformer for low-complexity millimeter-wave hybrid MIMO,” IEEE Trans. Microw. Theory Techn., vol. 67, no. 7, p. 28942903, Jun. 2019.
[115] E. Bjørnson, J. Hoydis, and L. Sanguinetti, “Massive MIMO has unlimited capacity,” IEEE Trans. Wireless Commun., vol. 17, no. 1, pp. 574–590, Jan. 2018.

[116] D. W. K. Ng, E. S. Lo, and R. Schober, “Energy-Efficient Resource Allocation in OFDMA Systems with Large Numbers of Base Station Antennas,” IEEE Trans. Wireless Commun., vol. 11, no. 9, pp. 3292–3304, Sep. 2012.

[117] J. Xu and L. Qiu, “Energy efficiency optimization for MIMO broadcast channels,” IEEE Trans. Wireless Commun., vol. 12, no. 2, pp. 690–701, Feb. 2013.

[118] D. Nguyen, L. Tran, P. Pirinen, and M. Latva-aho, “Precoding for full duplex multiuser MIMO systems: Spectral and energy efficiency maximization,” IEEE Trans. Signal Process., vol. 61, no. 16, pp. 4038–4050, Aug. 2013.

[119] L. Venturino, A. Zappone, C. Risi, and S. Buzzi, “Energy-efficient scheduling and power allocation in downlink OFDMA networks with base station coordination,” IEEE Trans. Wireless Commun., vol. 14, no. 1, pp. 1–14, Jan. 2015.

[120] E. Bjørnson, L. Sanguinetti, J. Hoydis, and M. Debbah, “Optimal design of energy-efficient multi-user MIMO systems: Is massive MIMO the answer?” IEEE Trans. Wireless Commun., vol. 14, no. 6, pp. 3059–3075, June 2015.

[121] S. Mohammed, “Impact of transceiver power consumption on the energy efficiency of zero-forcing detector in massive MIMO systems,” IEEE Trans. Commun., vol. 62, no. 11, pp. 3874–3890, Nov. 2014.

[122] E. Bjørnson, L. Sanguinetti, and M. Kountouris, “Deploying dense networks for maximal energy efficiency: Small cells meet massive MIMO,” IEEE J. Sel. Areas Commun., vol. 34, no. 4, pp. 832–847, Apr. 2016.

[123] S. Tombaz, A. Västberg, and J. Zander, “Energy- and cost-efficient ultra-high-capacity wireless access,” IEEE Wireless Commun. Mag., vol. 18, no. 5, pp. 18–24, Oct. 2011.

[124] Q. Wu, G. Y. Li, W. Chen, D. W. K. Ng, and R. Schober, “An overview of sustainable green 5G networks,” IEEE Wireless Commun., vol. 24, no. 4, pp. 72–80, Aug. 2017.

[125] Q. Wu and R. Zhang, “Intelligent reflecting surface enhanced wireless network via joint active and passive beamforming,” IEEE Trans. Wireless Commun., Aug. 2019.

[126] C. Liaskos, S. Nie, A. Tsoliaridou, A. Pitsillides, S. Ioannidis, and I. Akylidiz, “A new wireless communication paradigm through software-controlled metasurfaces,” IEEE Commun. Mag., vol. 56, no. 9, pp. 162–169, Sep. 2018.

[127] D. Tse and P. Viswanath, Fundamentals of Wireless Communication, 1st ed. Cambridge University Press, 2005.

[128] T. S. Rappaport, Wireless Communications: Principles And Practice, 2/E. Pearson Education, 2010.

[129] J. Shaker, M. Chaharmir, and J. Ethier, Reflectarray Antennas: Analysis, Design, Fabrication, and Measurement. Artech House, 2014.

[130] C. A. Balanis, Advanced Engineering Electromagnetics, 2nd ed. John Wiley & Sons, 2012.

[131] O. Özdogan, E. Björnson, and E. G. Larsson, “Intelligent reflecting surfaces: Physics, propagation, and pathloss modeling,” CoRR, 2019.

[132] L. Liang, M. Qi, J. Yang, X. Shen, J. Zhai, W. Xu, B. Jin, W. Liu, Y. Feng, C. Zhang, H. Lu, H.-T. Chen, L. Kang, W. Xu, J. Chen, T. J. Cui, P. Wu, and S. Liu, “Anomalous terahertz reflection and scattering by flexible and conformal coding metamaterials,” Advanced Optical Materials, vol. 3, no. 10, pp. 1374–1380, Oct. 2015.

[133] A. M. H. Wong and G. V. Eleftheriades, “Perfect anomalous reflection with a bipartite huygens’ metasurface,” Phys. Rev. X, vol. 8, p. 011036, Feb. 2018.

[134] D. Headland, T. Niu, E. Carrasco, D. Abbott, S. Sriram, M. Bhaskaran, C. Fumeaux, and W. Withayachumnankul, “Terahertz reflectarrays and nonuniform metasurfaces,” IEEE J. Sel. Topics Quantum Electron., vol. 23, no. 4, pp. 1–18, Jul. 2017.

[135] C. Huang, A. Zappone, G. C. Alexandropoulos, M. Debbah, and C. Yuen, “Reconfigurable intelligent surfaces for energy efficiency in wireless communication,” IEEE Trans. Wireless Commun., pp. 1–1, 2019.
[136] Q. Wu and R. Zhang, “Beamforming optimization for intelligent reflecting surface with discrete phase shifts,” in Proc. IEEE ICASSP, 2019, pp. 7830–7833.

[137] C. Liaskos, S. Nie, A. Tsioliaridou, A. Pitsillides, S. Ioannidis, and I. Akyildiz, “A New Wireless Communication Paradigm through Software-Controlled Metasurfaces,” IEEE Commun. Maga., vol. 56, no. 9, pp. 162–169, Sep. 2018.

[138] W. Qingqing and Z. Rui, “Towards smart and reconfigurable environment: Intelligent reflecting surface aided wireless network,” arXiv:1905.00152, 2019.

[139] D. Xu, X. Yu, Y. Sun, D. W. K. Ng, and R. Schober, “Resource allocation for secure IRS-assisted multuser MISO systems,” arXiv:1907.03085, 2019.

[140] E. Björnson, Ö. Özdogan, and E. G. Larsson, “Intelligent reflecting surface vs. decode-and-forward: How large surfaces are needed to beat relaying?” arXiv:1906.03949, 2019.

[141] Z.-Q. He and X. Yuan, “Cascaded channel estimation for large intelligent metasurface assisted massive MIMO,” arXiv:1905.07948, 2019.

[142] E. Björnson and L. Sanguinetti, “Demystifying the power scaling law of intelligent reflecting surfaces and metasurfaces,” in Proc. IEEE CAMSAP, Dec. 2019.

[143] M. Di Renzo, M. Debbah, D.-T. Phan-Huy, A. Zappone, M.-S. Alouini, C. Yuen, V. Sciancalepore, G. C. Alexandropoulos, J. Hoydis, H. Gacanin et al., “Smart radio environments empowered by reconfigurable AI metasurfaces: An idea whose time has come,” EURASIP J. Wireless Commun. and Networking, vol. 2019, no. 1, p. 129, 2019.

[144] E. Björnson, L. Sanguinetti, H. Wymeersch, J. Hoydis, and T. L. Marzetta, “Massive MIMO is a realitywhat is next?: Five promising research directions for antenna arrays,” Digital Signal Process., 2019.

[145] Q. Wu, L. Liu, and R. Zhang, “Fundamental trade-offs in communication and trajectory design for UAV-enabled wireless network,” IEEE Wireless Commun., vol. 26, no. 1, pp. 36–44, Feb. 2019.

[146] Y. Zeng, R. Zhang, and T. J. Lim, “Wireless communications with unmanned aerial vehicles: Opportunities and challenges,” IEEE Commun. Mag., vol. 54, no. 5, pp. 36–42, May 2016.

[147] Q. Wu and R. Zhang, “Common throughput maximization in UAV-enabled OFDMA systems with delay consideration,” IEEE Trans. Comm., vol. 66, no. 12, pp. 6614–6627, Dec. 2018.

[148] Y. Sun, D. Xu, D. W. K. Ng, L. Dai, and R. Schober, “Optimal 3D-trajectory design and resource allocation for solar-powered UAV communication systems,” IEEE Trans. Commun., vol. 67, no. 6, pp. 4281–4298, Jun. 2019.

[149] R. Li, Z. Wei, L. Yang, D. W. Kwan Ng, N. Yang, J. Yuan, and J. An, “Joint trajectory and resource allocation design for UAV communication systems,” in Proc. IEEE GC Wkshps, Dec 2018, pp. 1–6.

[150] M. Cui, G. Zhang, Q. Wu, and D. W. K. Ng, “Robust trajectory and transmit power design for secure UAV communications,” IEEE Trans. Veh. Technol., vol. 67, no. 9, pp. 9042–9046, Sep. 2018.

[151] D. Xu, Y. Sun, D. W. K. Ng, and R. Schober, “Robust resource allocation for UAV systems with uav jittering and user location uncertainty,” in Proc. IEEE GC Wkshps, Dec 2018, pp. 1–6.

[152] X. Sun, C. Shen, D. W. K. Ng, and Z. Zhong, “Robust trajectory and resource allocation design for secure UAV-aided communications,” in Proc. IEEE ICC Wkshps, May 2019.

[153] X. Sun, D. W. K. Ng, Z. Ding, Y. Xu, and Z. Zhong, “Physical layer security in UAV systems: Challenges and opportunities,” arXiv:1909.06785, 2019.

[154] Y. Zeng, J. Lyu, and R. Zhang, “Cellular-connected UAV: Potential, challenges, and promising technologies,” IEEE Wireless Commun., vol. 26, no. 1, pp. 120–127, Feb. 2019.

[155] Y. Zhu, G. Zheng, and M. Fitch, “Secrecy rate analysis of UAV-enabled mmwave networks using Maté hardcore point processes,” IEEE J. Sel. Areas Commun., vol. 36, no. 7, pp. 1397–1409, Jul. 2018.
[156] G. Barriac, R. Mudumbai, and U. Madhow, “Distributed beamforming for information transfer in sensor networks,” in *Proc. IEEE Symp. Information Process. Sensor Networks*, April 2004, pp. 81–88.

[157] R. Mudumbai, G. Barriac, and U. Madhow, “On the feasibility of distributed beamforming in wireless networks,” *IEEE Trans. Wireless Commun.*, vol. 6, no. 5, pp. 1754–1763, May 2007.

[158] D. R. Brown III and H. V. Poor, “Time-slotted round-trip carrier synchronization for distributed beamforming,” *IEEE Trans. Signal Process.*, vol. 56, no. 11, pp. 5630–5643, Nov. 2008.

[159] S. Goguri, D. Ogbe, S. Dasgupta, R. Mudumbai, D. Brown III, D. J. Love, and U. Madhow, “Optimal precoder design for distributed transmit beamforming over frequency-selective channels,” *IEEE Trans. Wireless Commun.*, vol. 17, no. 11, pp. 7759–7773, Nov. 2018.

[160] S. Parkvall, E. Dahlman, A. Furuskär, and M. Frenne, “NR: The new 5G radio access technology,” *IEEE Communications Standards Magazine*, vol. 1, no. 4, pp. 24–30, 2017.

[161] T. S. Rappaport, S. Sun, R. Mayzus, H. Zhao, Y. Azar, K. Wang, G. N. Wong, J. K. Schulz, M. Samimi, and F. Gutierrez, “Millimeter wave mobile communications for 5G cellular: It will work!” *IEEE Access*, vol. 1, pp. 335–349, 2013.

[162] E. G. Larsson, T. L. Marzetta, H. Q. Ngo, and H. Yang, “Antenna count for massive MIMO: 1.9 GHz vs. 60 GHz,” *IEEE Commun. Mag.*, vol. 56, no. 9, pp. 132–137, Sep. 2018.

[163] R. W. Heath, N. Gonzalez-Prelcic, S. Rangan, W. Roh, and A. M. Sayeed, “An overview of signal processing techniques for millimeter wave MIMO systems,” *IEEE J. Select. topics signal process.*, vol. 10, no. 3, pp. 436–453, Apr. 2016.

[164] M. Xiao, S. Mumtaz, Y. Huang, L. Dai, Y. Li, M. Matthaiou, G. K. Karagiannidis, E. Björnson, K. Yang, C. I, and A. Ghosh, “Millimeter wave communications for future mobile networks,” *IEEE J. Sel. Areas Commun.*, vol. 35, no. 9, pp. 1909–1935, Sep. 2017.

[165] A. F. Molisch, V. V. Ratnam, S. Han, Z. Li, S. L. H. Nguyen, L. Li, and K. Haneda, “Hybrid beamforming for massive mimo: A survey,” *IEEE Commun. Mag.*, vol. 55, no. 9, pp. 134–141, Sep. 2017.

[166] E. Björnson, L. V. der Perre, S. Buzzi, and E. G. Larsson, “Massive MIMO in sub-6 GHz and mmWave: Physical, practical, and use-case differences,” *IEEE Wireless Commun. Mag.*, 2019.

[167] M. Saad, C. F. Bader, J. Palicot, Y. Corre, G. Gougeon, and J.-B. Dore, “D1.0: B5G wireless Tbps scenarios and requirements,” BRAVE, Tech. Rep., Nov. 2018.

[168] H. Shams, M. J. Fice, L. Gonzalez-Guerrero, C. C. Renaud, F. van Dijk, and A. J. Seeds, “Sub-THz wireless over fiber for frequency band 220-280 GHz,” *J. Lightw. Technol.*, vol. 34, no. 20, pp. 4786–4793, Oct. 2016.

[169] T. S. Rappaport, Y. Xing, O. Kanhere, S. Ju, A. Madanayake, S. Mandal, A. Alkhateeb, and G. C. Trichopoulos, “Wireless communications and applications above 100 GHz: Opportunities and challenges for 6G and beyond,” *IEEE Access*, vol. 7, pp. 78729–78757, Jun. 2019.

[170] J. Edstam, J. Hansryd, S. Carpenter, T. Emanuelsson, Y. Li, and H. Zirath, “Microwave backhaul beyond 100 GHz,” *Ericsson Technology Review*, no. 2, pp. 1–14, Feb. 2017.

[171] A. Faisal, H. Sarieddeen, H. Dahrouj, T. Y. Al-Naffouri, and M.-S. Alouini, “Ultra-massive MIMO systems at Terahertz bands: Prospects and challenges,” *arXiv:1902.11090*, 2019.

[172] N. Tawa, T. Kuwabara, Y. Maruta, M. Tania, and T. Kaneko, “28 GHz downlink multi-user MIMO experimental verification using 360 element digital AAS for 5G Massive MIMO,” in *Proc. EuMC*, 2018.

[173] I. F. Akyildiz and J. M. Jornet, “Realizing ultra-massive MIMO (1024×1024) communication in the (0.06–10) Terahertz band,” *Nano Commun. Networks*, vol. 8, pp. 46–54, 2016.

[174] N. N. Moghadam, G. Fodor, M. Bengtsson, and D. J. Love, “On the energy efficiency of mimo hybrid beamforming
for millimeter-wave systems with nonlinear power amplifiers,” *IEEE Trans. Wireless Commun.*, vol. 17, no. 11, pp. 7208–7221, Nov. 2018.

[175] J. Mo and R. W. Heath, “High SNR capacity of millimeter wave MIMO systems with one-bit quantization,” in *Proc. IEEE ITA Workshop*, no. 2, 2014, pp. 1–5.

[176] D. S. Palguna, D. J. Love, T. A. Thomas, and A. Ghosh, “Millimeter wave receiver design using low precision quantization and parallel ΔΣ architecture,” *IEEE Trans. Wireless Commun.*, vol. 15, no. 10, pp. 6556–6569, Oct. 2016.

[177] E. Björnson, J. Hoydis, M. Kountouris, and M. Debbah, “Massive MIMO systems with non-ideal hardware: Energy efficiency, estimation, and capacity limits,” *IEEE Trans. Inf. Theory*, vol. 60, no. 11, pp. 7112–7139, 2014.

[178] E. Björnson, L. Sanguinetti, and J. Hoydis, “Hardware distortion correlation has negligible impact on UL Massive MIMO spectral efficiency,” *IEEE Trans. Commun.*, vol. 67, no. 2, pp. 1085–1098, Feb. 2019.