The Three-User Finite-Field Multi-Way Relay Channel with Correlated Sources

Lawrence Ong, Gottfried Lechner, Sarah J. Johnson, and Christopher M. Kellett

Abstract—This paper studies the three-user finite-field multi-way relay channel, where the users exchange messages via a relay. The messages are arbitrarily correlated, and the finite-field channel is linear and is subject to additive noise of arbitrary distribution. The problem is to determine the minimum achievable source-channel rate, defined as channel uses per source symbol needed for reliable communication. We combine Slepian-Wolf source coding and functional-decode-forward channel coding to obtain the solution for two classes of source and channel combinations. Furthermore, for correlated sources that have their common information equal their mutual information, we propose a new coding scheme to achieve the minimum source-channel rate.

Index Terms—Bidirectional relaying, common information, correlated sources, linear block codes, finite-field channel, functional-decode-forward, multi-way relay channel

I. INTRODUCTION

We study the three-user multi-way relay channel (MWRC) with correlated sources, where each user transmits its data to the other two users via a single relay, and where the users’ messages can be correlated. The MWRC is a canonical extension of the extensively studied two-way relay channel (TWRC), where two users exchange data via a relay [1]–[10]. Adding users to the TWRC can change the problem significantly [11]–[13]. The MWRC has been studied from the point of view of channel coding and source coding.

In channel coding problems, the sources are assumed to be independent, and the channel noisy. The problem is to find the capacity, defined as the region of all achievable channel rate triplets (bits per channel use at which the users can encode/send on average). For the Gaussian MWRC with independent sources, Gündüz et al. [13] obtained asymptotic capacity results for the high SNR and the low SNR regimes. For the finite-field MWRC with independent sources, Ong et al. [14], [15] constructed the functional-decode-forward coding scheme, and obtained the capacity region. For the general MWRC with independent sources, however, the problem remains open to date.

In source coding problems, the sources are assumed to be correlated, but the channel noiseless. The problem is to find the region of all achievable source rate triplets (bits per message symbol at which the users can encode/send on average). The source coding problem for the three-user MWRC was solved by Wyner et al. [16], using cascaded Slepian-Wolf source coding [17].

In this paper, we study both source and channel coding in the same network, i.e., transmitting correlated sources through noisy channels (cf. our recent work [18] on the MWRC with correlated sources and orthogonal uplinks). For most communication scenarios, the source correlation is fixed by the natural occurrence of the phenomena, and the channel is the part that engineers are “unwilling or unable to change” [19]. Given the source and channel models, we are interested in finding the limit of how fast we can feed the sources through the channel. To this end, define source-channel rate [20] (also known as bandwidth ratio [21]) as the average channel transmissions used per source tuple. Our aim is then to derive the minimum source-channel rate required such that each user can reliably and losslessly reconstruct the other two users’ messages.

In the multi-terminal network, it is well known that separating source and channel coding, i.e., designing them independently, is not always optimal (see, e.g., the multiple-access channel [22]). Designing good joint source-channel coding schemes is difficult, let alone finding an optimal one. Gündüz et al. [20] considered a few networks with two senders and two receivers, and showed that source-channel separation is optimal for certain classes of source structure. In this paper, we approach the MWRC in a similar direction. We show that source-channel separation is optimal for three classes of source/channel combinations, by constructing coding schemes that achieve the minimum source-channel rate.

Recently, Mohajer et al. [23] solved the problem of linear deterministic relay networks with correlated sources. They constructed an optimal coding scheme, where each relay injectively maps its received channel output to its transmitted channel input. While this scheme is optimal for deterministic networks, such a scheme (e.g., the amplify-forward scheme in the additive white Gaussian noise channel) suffers from noise propagation in noisy channels and has been shown to be suboptimal for the MWRC with independent sources [13].

II. MAIN RESULTS

A. Source and Channel Models

We consider the MWRC depicted in Figure 1 where three users (denoted by 1, 2, and 3) exchange messages through a noisy channel with the help of a relay (denoted by 0). For each node $d \in \{0, 1, 2, 3\}$, we denote its source by W_d, its input to the channel by X_d, and its received channel output by Y_d. Let $W_0 = \emptyset$, as the relay has no source.
is not uniformly distributed, i.e., its entropy H field users (simultaneously) in downlink and a finite-field m source symbols of user n/m to the N independently according to (1). The channel is memoryless m of source-channel rate κ is fixed for all channel uses. The source-channel rate, i.e., the users, where W Fig. 1. The three-user finite field MWRC with correlated sources: The relay, which takes the form $p(w_1, w_2, w_3)$. (1)

The channel consists of a finite-field **uplink** from the users to the relay, which takes the form $Y_0 = X_1 \oplus X_2 \oplus X_3 + N_0$, (2) and a finite-field **downlink** from the relay to each user $i \in \{1, 2, 3\}$, which takes the form $Y_i = X_0 \oplus N_i$, (3) where $X_d, Y_d, N_d \in \mathcal{F}$, for all $d \in \{0, 1, 2, 3\}$, for some finite field \mathcal{F} of cardinality $|\mathcal{F}| = F$ with the associated addition \oplus. Here, F can be any prime power. We assume that the noise N_d is not uniformly distributed, i.e., its entropy $H(N_d) < \log F$; otherwise, it will randomize the channel, and no information can be sent through.

Each user sends m source symbols to the other two users (simultaneously) in n channel uses. We refer to the m source symbols of user i as its message, denoted by $W_i \triangleq \{W_i[1], W_i[2], \ldots, W_i[m]\}$, where each symbol triplet $(W_1[u], W_2[u], W_3[u])$ for $u \in \{1, 2, \ldots, m\}$ is generated independently according to (1). The channel is memoryless in the sense that the channel noise N_d for all nodes and all channel uses are independent, and the distribution $p(n_d)$ is fixed for all channel uses. The source-channel rate, i.e., the number of channel uses per source triplet, is denoted by $\kappa \triangleq n/m$.

We assume that each user has all its m source symbols prior to the n channel use1 and consider the following block code of source-channel rate n/m:

1. The t-th transmitted channel symbol of each node d depends on its message and its previously received channel symbols, i.e., $X_d[t] = f_d(t(W_d, Y_d[1], Y_d[2], \ldots, Y_d[t−1]),$ for all $d \in \{0, 1, 2, 3\}$ and for all $t \in \{1, 2, \ldots, n\}$.
2. Each user i estimates the messages of the other users from its own message and all its received channel symbols, i.e., user i decodes the messages from users j and k as $(\hat{W}_j, \hat{W}_k) = h_i(Y_j, W_i)$, for all distinct $i, j, k \in \{1, 2, 3\}$. We denote $\mathbf{Y}_i \triangleq \{Y_i[1], Y_i[2], \ldots, Y_i[n]\}$

Note that utilizing feedback is permitted in our system model. This is commonly referred to as the **unrestricted** MWRC (cf. the **restricted** MWRC2). We will see later that for the classes of source/channel combinations for which we find the minimum source-channel rate, feedback is not used. This means that feedback provides no improvement to source-channel rate for these cases.

User i makes a decoding error if $(\hat{W}_j, \hat{W}_k) \neq (W_j, W_k)$. We define P_e as the probability that one or more users make a decoding error, and say that source-channel rate $\kappa \triangleq n/m$ is **achievable** if the following is true: for any $\zeta > 0$, there exists at least one block code of source-channel rate κ with $P_e < \zeta$. The aim of this paper is to find the infimum of achievable source-channel rates, denoted by κ^\ast. For the rest of the paper, we refer to κ^\ast as the minimum source-channel rate.

Remark 1: Theoretical interest aside, the finite-field channel considered in this paper shares two important properties with the AWGN channel (commonly used to model wireless environments). Firstly, the channel is linear, i.e., the channel output is a function of the sum of all inputs. Secondly, the noise is additive. Sharing these two properties, optimal coding schemes derived for the finite-field channel shed light on the AWGN channel (commonly used to model wireless environments). This is commonly referred to as the **AWGN** MWRC [2], [5], [13], [24]. We will refer to κ^\ast as the minimum source-channel rate.

Remark 1: Theoretical interest aside, the finite-field channel considered in this paper shares two important properties with the AWGN channel (commonly used to model wireless environments). Firstly, the channel is linear, i.e., the channel output is a function of the sum of all inputs. Secondly, the noise is additive. Sharing these two properties, optimal coding schemes derived for the finite-field channel shed light on the AWGN channel (commonly used to model wireless environments). This is commonly referred to as the **AWGN** MWRC [2], [5], [13], [24]. We will refer to κ^\ast as the minimum source-channel rate.

B. Main Results

We will now state the main result of this paper. The technical terms (in italics) in the theorem will be defined in Section [I-C] following the theorem.

Theorem 1: The minimum source-channel rate is given by

$$\kappa^\ast = \max_{\text{distinct } i,j,k} \left\{ \frac{H(W_j, W_k | W_i)}{\log F - \max\{H(N_0), H(N_i)\}} \right\}^\dagger$$

(4)

if the sources have any one of the following:

1. **almost-balanced conditional mutual information**, or
2. **skewed conditional entropies** (on any symmetrical finite-field channel), or
3. **their common information equals their mutual information**.

For Cases 1 and 2, we derive the achievability (upper bound) of κ^\ast using existing (i) Slepian-Wolf source coding and

1This assumption merely simplifies our analysis. Even if the source generation and the channel uses occur simultaneously (m source triplets and n channel uses per unit time), we can always transmit in blocks. We first wait for m source triplets to be generated, and then use the channel n times to transmit these source symbols (while waiting for the next m triplets generation), and so on. Taking the number of blocks to be sufficiently large, the source-channel rate can be made as close to n/m as desired.

2The length of a bold-faced vector, either m for source symbols or n for channel symbols is clear from context.

3Note that $\log F - \max\{H(N_0), H(N_i)\} > 0$ by definition, since the noise at each receiver is not uniformly distributed.
(ii) functional-decode-forward channel coding for independent sources. We abbreviate this pair of source and channel coding scheme by SW/FDF-IS. We derive a lower bound using cut-set arguments. While the achievability for these two cases is rather straightforward, what we find interesting is that using the scheme for independent messages is actually optimal for two classes of source/channel combinations. Furthermore, although the source-channel rates achievable using SW/FDF-IS cannot be expressed in a closed form, we are able to derive closed-form conditions for two classes of sources where the achievability of SW/FDF-IS matches the lower bound.

In SW/FDF-IS, the source coding—while compressing—destroys the correlation among the sources, and hence channel coding for independent sources is used. For Case 3, the sources have their common information equal their mutual information, meaning that each source is able to identify the parts of the messages it has in common with other source(s). For this case, we again use Slepian-Wolf source coding, but we conserve the parts that the sources have in common. We then design a new channel coding scheme that takes the common parts into account. Here, the challenge is to optimize the functions of different parts that the relay should decode. We show that the new coding scheme is able to achieve κ^*. For all three cases, the coding schemes are derived based on the separate source-channel coding architecture. Also, for Cases 1 and 3, κ^* is found when only the sources satisfy certain conditions, and this is true independent of the underlying finite-field channel, i.e., any F and any noise distribution.

C. Definitions

In this section, we define the technical terms in Theorem 1.

1) Symmetrical Channel:

Definition 1: A finite-field MWRC is symmetrical if

$$H(N_1) = H(N_2) = H(N_3).$$

(5)

Otherwise, we say that the channel is asymmetrical.

We can think of $H(N_i)$ as the noise level on the downlink from the relay to user i. So, a symmetrical channel requires that the downlinks from the relay to all the users are equally noisy. We do not impose any condition on the uplink noise level, $H(N_0)$.

2) Almost-Balanced Conditional Mutual Information:

Definition 2: The sources are said to have almost-balanced conditional mutual information (ABCMI) if

$$I(W_i; W_j | W_k) \leq I(W_j; W_k | W_i) + I(W_i; W_k | W_j),$$

(6)

for all distinct $i, j, k \in \{1, 2, 3\}$. Otherwise, the sources are said to have unbalanced conditional mutual information.

Putting it another way, for unbalanced sources, we can always find a user $A \in \{1, 2, 3\}$, such that

$$I(W_B; W_C | W_A) = I(W_A; W_B | W_C) + I(W_A; W_C | W_B) + \eta,$$

(7)

for some $\eta > 0$ and distinct $B, C \in \{1, 2, 3\} \setminus \{A\}$.

3) Skewed Conditional Entropies:

Definition 3: Sources with unbalanced conditional mutual information are said to have skewed conditional entropies (SCE) if, in addition to (7),

$$H(W_B, W_C | W_A) \geq \max \left\{ H(W_A; W_B | W_C), H(W_A; W_C | W_B) \right\} + \eta, \quad (8)$$

for the same η as in (7).

4) Common Information Equals Mutual Information:

Lastly, we define common information in the same spirit as Gács and Körner [25]. For two users, Gács and Körner defined common information as a value on which two users can agree (using the terminology of Witsenhausen [26]). The common information between two random variables can be as large as mutual information (in the Shannon sense), but no larger.

The concept of common information was extended to multiple users by Tyagi et al. [27], where they considered a value on which all users can agree. In this paper, we further extend common information to values on which different subsets of users can agree. We now formally define a class of sources, where their common information equals their mutual information.

Definition 4: Three correlated random variables (W_1, W_2, W_3) are said to have their common information equal their mutual information if there exists four random variables $V_{12}, V_{23}, V_{13},$ and V_{123} such that

$$V_{12} = \phi_{12}(W_1) = \phi_{21}(W_2), \quad (9)$$

$$V_{23} = \phi_{23}(W_2) = \phi_{32}(W_3), \quad (10)$$

$$V_{13} = \phi_{13}(W_1) = \phi_{31}(W_3), \quad (11)$$

$$V_{123} = \phi_{123}(W_1) = \phi_{213}(W_2) = \phi_{312}(W_3), \quad (12)$$

for some deterministic functions $\phi_i(\cdot)$, and

$$H(V_{12}) = I(W_1; W_2), \quad (13)$$

$$H(V_{23}) = I(W_2; W_3), \quad (14)$$

$$H(V_{13}) = I(W_1; W_3), \quad (15)$$

$$H(V_{123}) = I(W_1; W_3) - I(W_1; W_2) \quad \triangleq \quad I(W_1; W_2; W_3). \quad (16)$$

We give graphical interpretations using information diagrams for sources that have ABCMI and SCE in Appendix A and examples of sources that have ABCMI and their common information equal their mutual information in Section VI.

Definitions 2 and 3 are mutually exclusive, but Definitions 4 and 5 (or 4 and 3) are not. This means correlated sources that have their common information equal their mutual information must also have either ABCMI, SCE, or unbalanced mutual information without SCE. This leads to the graphical summary of the results of Theorem 1 in Figure 2.

D. Organization

The rest of this paper is organized as follows: We show a lower bound and an upper bound (achievability) to κ^* in Section III. In Section IV, we show that for Cases 1 and 2 in Theorem 1, the lower bound is achievable. In Section V, we
propose a coding scheme that takes common information into account, and show the source-channel rate achievable using this new scheme matches the lower bound. We conclude the paper with some discussion in Section VI.

III. LOWER AND UPPER BOUNDS TO κ^*

Denote the RHS of (4) as

$$\Phi \triangleq \max_{\text{distinct } i, j, k} \left\{ \frac{H(W_j, W_k | W_i)}{\log F - \max \{H(N_0), H(N_i)\}} \right\}. \quad (17)$$

We first show that Φ is a lower bound to κ^*. Using cut-set arguments [28, pp. 587–591], we can show that if source-channel rate κ is achievable, then

$$H(W_j, W_k | W_i) \leq \kappa \min \left\{ I(X_j, X_k; Y_0, Y_i | X_0, X_i), I(X_j, X_k; Y_0, Y_i | X_0, X_i) \right\}$$

$$\leq \kappa \left[\log_2 F - \max \{H(N_0), H(N_i)\} \right],$$

for all distinct $i, j, k \in \{1, 2, 3\}$. Here (18a) follows from Mohajer et al. [23, eqs. (11)–(12)] and (18b) follows from Ong et al. [15, Section III]. Re-arranging the equation gives the following lower bound to all achievable source-channel rates κ—and hence also to κ^*:

Lemma 1: For any three-user finite-field MWRC with correlated sources, the minimum source-channel rate is lower bounded as

$$\kappa^* \geq \Phi. \quad (19)$$

We now present the result of SW/FDF-IS coding scheme that first uses Slepian-Wolf source coding for the noiseless MWRC with correlated sources [29], followed by functional-decode-forward for independent sources (FDF-IS) channel coding for the MWRC [15]. This scheme achieves the following source-channel rates:

Lemma 2: For any three-user finite-field MWRC with correlated sources, SW/FDF-IS achieves all source-channel rates in \mathcal{K}, where

$$\begin{align*}
\mathcal{K} &= \left\{ \kappa \in \mathbb{R} \mid \kappa > \max_{\text{distinct } i, j, k} \left\{ \frac{H(W_j, W_k | W_i)}{R_i}, \frac{H(W_i, W_j | W_k)}{R_i + R_j} \right\} \right\},
\end{align*}$$

for some positive R_1, R_2, R_3 such that $R_j + R_k < \log F - \max \{H(N_0), H(N_i)\}$, for all distinct $i, j, k \in \{1, 2, 3\}$.

(20)

where \mathbb{R} is the set of real numbers. So, the minimum source-channel rate is upper bounded as

$$\kappa^* \leq \inf \mathcal{K}. \quad (21)$$

The proof is based on random coding arguments and can be found in Appendix [I]

Remark 2: The variables R_i are actually the channel code rates, i.e., the number of message bits transmitted by user i per channel use.

From Lemmas 1 and 2 we have the following result:

Corollary 1: For a three-user finite-field MWRC, if $\inf \mathcal{K} = \Phi$, then $\kappa^* = \Phi = \inf \mathcal{K}$, meaning that the minimum source-channel rate is known and is achievable using SW/FDF-IS.

Remark 3: The collection of source/channel combinations that satisfy Corollary 1 forms a class where the minimum source-channel rate is found, in addition to Theorem 1.

The challenge, however, is to characterize—in closed form—classes of source/channel combinations for which $\inf \mathcal{K} = \Phi$. For this, we need to guarantee the existence of three positive numbers R_1, R_2, R_3 satisfying the inequalities in (20) for every $\kappa > \Phi$.

Next, we will show that for Cases 1 and 2 in Theorem 1 SW/FDF-IS achieves all source-channel rates $\kappa > \Phi$.

IV. PROOF OF CASES 1 AND 2 IN THEOREM 1

A. Proof of Case 1 in Theorem 1

In this subsection, we will show that if the sources have ABCMI, then $\inf \mathcal{K} = \Phi$. Since any $\kappa \in \mathcal{K}$ relies on the existence of channel code rates (R_1, R_2, R_3), we first show the following proposition:

Proposition 1: Consider sources with ABCMI. Given any source-channel rate $\kappa > 0$, and any positive number $\delta > 0$, we can always find positive R_1, R_2, R_3 such that

$$\begin{align*}
\kappa R_1 &\geq H(W_1 | W_2, W_3) + \frac{\delta}{4}, \\
\kappa R_2 &\geq H(W_2 | W_1, W_3) + \frac{\delta}{4}, \\
\kappa R_3 &\geq H(W_3 | W_1, W_2) + \frac{\delta}{4}, \\
\kappa (R_1 + R_2) &\geq H(W_1, W_2 | W_3) + \frac{\delta}{2}, \\
\kappa (R_1 + R_3) &\geq H(W_1, W_3 | W_2) + \frac{\delta}{2}, \\
\kappa (R_2 + R_3) &\geq H(W_2, W_3 | W_1) + \frac{\delta}{2},
\end{align*}$$

(22) (23) (24) (25) (26) (27)
Proof of Proposition 1 It can be shown that choosing
\[\kappa R_i = H(W_i|W_j, W_k) + \frac{1}{2} I(W_i; W_k|W_j) \]
\[+ I(W_i; W_j|W_k) - I(W_j; W_k|W_i) + \delta \frac{\delta}{4}, \]
(28)
for all distinct \(i, j, k \in \{1, 2, 3\} \) satisfies (22)–(27). The expression in the square brackets is non-negative due to the ABCMI condition (6).

With this result, we now prove Case 1 of Theorem 1. We need to show that any source-channel rate \(\kappa > \Phi \) is achievable, i.e., the source-channel rate
\[\kappa = \max_{\text{distinct } i, j, k} \left\{ \frac{H(W_j, W_k|W_i) + \delta}{\log F - \max \{H(N_0), H(N_i)\}} \right\}, \]
(29)
for any \(\delta > 0 \), lies in \(K \). Here, \(\delta \) is independent of \(F, W_i, \) and \(N_i \).

For a source-channel rate in (29), we choose \(\{R_i\} \) as in (28). Substituting (25)–(27) into (29), the second inequality in (20) is satisfied. Also, (25)–(27) imply the first inequality in (20). Hence, \(\kappa \in K \). This proves Case 1 in Theorem 1.

B. Proof of Case 2 in Theorem 1

We need to show that if the sources have SCE and the channel is symmetrical, then the source-channel rate in (29) is achievable for any \(\delta > 0 \). Recall that sources that have SCE must have unbalanced conditional mutual information, for which we can always re-index the users as \(A, B, \) and \(C \) satisfying (7) for some fixed \(\eta > 0 \).

For achievability in Lemma 2 we first show the existence of \(\{R_A, R_B, R_C\} \) satisfying the following conditions:

Proposition 2: Consider sources with unbalanced conditional mutual information. Given any source-channel rate \(\kappa > 0 \), and any positive number \(\delta > 0 \), we can always find positive \(R_A, R_B, \) and \(R_C \) such that
\[\kappa R_A = H(W_A|W_B, W_C) + \frac{\delta}{4}, \]
(30)
\[\kappa R_B > H(W_B|W_A, W_C) + \frac{\eta}{2} + \frac{\delta}{4}, \]
(31)
\[\kappa R_C > H(W_C|W_A, W_B) + \frac{\eta}{2} + \frac{\delta}{4}, \]
(32)
\[\kappa (R_A + R_B) = H(W_A, W_B|W_C) + \frac{\eta}{2} + \frac{\delta}{2}, \]
(33)
\[\kappa (R_A + R_C) = H(W_A, W_C|W_B) + \frac{\eta}{2} + \frac{\delta}{2}, \]
(34)
\[\kappa (R_B + R_C) = H(W_B, W_C|W_A) + \frac{\eta}{2} + \frac{\delta}{2}, \]
(35)
for \(\eta > 0 \) defined in (7).

Proof of Proposition 2 Constraint (7) implies the following:
\[I(W_B; W_C|W_A) + I(W_A; W_B|W_C) - I(W_A; W_C|W_B) = 2I(W_A; W_B|W_C) + \eta > \eta, \]
(36)
\[I(W_B; W_C|W_A) + I(W_A; W_C|W_B) - I(W_A; W_B|W_C) = 2I(W_A; W_C|W_B) + \eta > \eta. \]
(37)
First, we can always choose a positive number \(R_A \) as in (30). In addition, we choose
\[\kappa R_B = H(W_B|W_A, W_C) + \frac{1}{2} I(W_B; W_C|W_A) \]
\[+ I(W_A; W_B|W_C) - I(W_A; W_C|W_B) + \delta \frac{\delta}{4}, \]
(38)
\[\kappa R_C = H(W_C|W_A, W_B) + \frac{1}{2} I(W_B; W_C|W_A) \]
\[+ I(W_A; W_C|W_B) - I(W_A; W_B|W_C) + \delta \frac{\delta}{4}. \]
(39)
Substituting (36) into (38), we get (31); substituting (37) into (39), we get (32). Summing different pairs from (30), (38), and (39), we get (33)–(35).

Furthermore, for a symmetrical channel, we can define
\[H_{\downlink} = H(N_A) = H(N_B) = H(N_C), \]
(40)
So, (8) for SCE and (40) for symmetrical channels imply that the source-channel rate in (29) equals
\[\kappa = \frac{H(W_B, W_C|W_A) + \delta}{\log F - \max \{H(N_0), H_{\downlink}\}}. \]
(41)
Hence, we only need to show that the source-channel rate (41) is achievable for any \(\delta > 0 \).

We first choose \(R_A, R_B, \) and \(R_C \) as in (30), (38), and (39), respectively. From (33)–(35), we get
\[\kappa (R_A + R_B) = H(W_A, W_B|W_C) + \frac{\eta}{2} + \frac{\delta}{2}, \]
(42c)
\[\kappa (R_A + R_C) = H(W_A, W_C|W_B) + \frac{\eta}{2} + \frac{\delta}{2}, \]
(42d)
\[\kappa (R_B + R_C) = H(W_B, W_C|W_A) + \frac{\eta}{2} + \frac{\delta}{2}, \]
(42e)
where (42c) and (42d) follow from (8), (42b), (42f), and (42e) follow from (41). This means the second inequality in (20) is satisfied. From (30)–(35), we know that the first inequality in (20) is also satisfied. Hence, the source-channel rate (41) is indeed achievable for any \(\delta > 0 \).

C. A Numerical Example Showing that SW/FDF-IS is Not Always Optimal

In this section, we give an example showing that SW/FDF-IS can be suboptimal. Consider the following sources: \(W_1 = (U_1, U_{12}, U_{13}) \), \(W_2 = (U_2, U_{12}, U_{23}) \), and

\(^*\)Note that \(\eta \), which is determined by the sources’ correlation, is strictly greater than zero; see its definition in (7).
This means we can re-write Φ as follows:

$$\Phi = \max \left\{ H(W_1, W_2 | W_3) \bigg| \max_{i, j, k} H(W_j, W_k | W_i) \right\}.$$

(48)

As mentioned earlier, we will use a separate-source-channel-coding architecture, where we first perform source coding and then channel coding. We will again use random coding arguments. More specifically, we will use random linear block codes for channel coding.

A. Source Coding

We encode each $V_S \in \{V_S[1], V_S[2], \ldots, V_S[m]\}$ to c_S, which is a length-ℓ_S finite-field (of size F) vector, for all $S \in \{12, 23, 13, 123\}$ (see Definition 4 for the definition of V_S). We also encode each W_i to c_i, which is a length-ℓ_i finite-field vector. So, each message W_i is encoded into four subcodes, e.g., W_1 is encoded into $(c_1, c_{12}, c_{13}, c_{123})$. Some subcodes—the common parts—are shared among multiple sources.

Using the results of distributed source coding [17], [29], if m is sufficiently large and if

$$\frac{\ell_i \log F}{m} > H(W_i | W_j, W_k),$$

for all i,

(49)

$$\frac{\ell_{ij} \log F}{m} > I(W_i; W_j | W_k),$$

for all $i < j$,

(50)

$$\frac{\ell_{123} \log F}{m} > I(W_1; W_2; W_3),$$

(51)

then we can decode $(c_1, c_{12}, c_{13}, c_{123})$ to W_1, $(c_2, c_{12}, c_{23}, c_{123})$ to W_2, and $(c_3, c_{13}, c_{23}, c_{123})$ to W_3 with an arbitrarily small error probability. We show the proof in Appendix C.

After source coding, user 1 has $(c_1, c_{12}, c_{13}, c_{123})$. In order for it to decode (W_2, W_3), it must receive (c_{2}, c_{3}, c_{23}) from the other users through the channel. Similarly, users 2 and 3 must each obtain subcodes that they do not already have through the channel.

In contrast to the source coding used for Cases 1 and 2, here, we have generated source codes where the users share some subcodes. So, instead of using existing FDF-IS channel codes (designed for independent sources), we will design channel codes that take the common subcodes into account.

B. Channel Coding

After source coding, the users now send $\{c_i, c_{ij}\}$ to the relay on the uplink. The common subcode known to all three users, i.e., c_{123}, need not be transmitted. Similar to FDF-IS, we will design channel codes for the relay to decode functions of the transmitted messages. This can be realized using linear block codes of the following form:

$$x = (c \otimes G) \oplus q,$$

(52)

where $c \in F^\ell$ is the message vector, $G \in F^{\ell \times n}$ code generator matrix, $q \in F^n$ is a random dither, and $x \in F^n$ is the channel codeword. All elements are in F, and \otimes is the multiplication in F. Each element in G and in q is independently and uniformly chosen over F, and is known to the relay.
We now state the following lemma as a direct result of using linear block codes [15]:

Lemma 3: Each user i transmits $c_i \in F^n$ using the linear block code of the form \(52 \) with a common \(\mathbb{G} \) and independently generated q_i for each user. The relay receives

\[
Y_0 = X_1 \oplus X_2 \oplus X_3 \oplus N_0 \in F^n
\]

and knowing its own subcodes

\[
c_{12} \oplus c_{13}, c_{12} \oplus c_{3}, c_{1} \oplus c_{23}, c_{12} \oplus c_{13}
\]

Note that c_T is a finite-field vector of length ℓ_T. Generate F^n codewords of length n, where each codelet is independently generated according to the uniform distribution $p(x_i)$. Index the codewords by $x_0(c_T)$. After decoding c_T, the relay transmits $x_0(c_T)$ on the downlink. By reducing the decoding space of each user—since each user has some side information about c_T—we can show the following (see, e.g., Ong and Johnson [30]):

Lemma 4: If user i knows (a priori) $\ell' \leq \ell_T$ elements in c_T, then it can reliably decode c_T if n is sufficiently large and if

\[
\left(\frac{\ell_T - \ell'}{n} \right) \log F < I(X_0; Y_0) = \log F - H(N_i).
\] (56)

Note that random codes are used on the downlink instead of linear codes.

Knowing $c_3^{(3)}$ of length $\ell_T - \ell_T$ and $\ell_3 - \ell_3$, user 1 can reliably decode c_T if

\[
\left(\frac{\ell_T + \ell_3 + \ell_3}{n} \right) \log F < \log F - H(N_i).
\] (57)

From c_T and knowing its own subcodes $c_1^{(1)}, c_1^{(2)}, c_1^{(3)}, c_1^{(1)}, c_1^{(2)}$, and $c_3^{(3)}$, user 1 can then obtain $c_1^{(1)}, c_1^{(2)}, c_1^{(3)}$, $c_1^{(1)}$, and $c_3^{(2)}$.

Similarly, we can show that user 3 can reliably decode c_T if

\[
\left(\frac{\ell_1 + \ell_3 + \ell_3}{n} \right) \log F < \log F - H(N_3).
\] (59)

We now state the following lemma as a direct result of using linear block codes [15]:

Lemma 3: Each user i transmits $c_i \in F^n$ using the linear block code of the form \(52 \) with a common \(\mathbb{G} \) and independently generated q_i for each user. The relay receives

\[
Y_0 = X_1 \oplus X_2 \oplus X_3 \oplus N_0 \in F^n
\]

and knowing its own subcodes

\[
c_{12} \oplus c_{13}, c_{12} \oplus c_{3}, c_{1} \oplus c_{23}, c_{12} \oplus c_{13}
\]

Note that c_T is a finite-field vector of length ℓ_T. Generate F^n codewords of length n, where each codelet is independently generated according to the uniform distribution $p(x_i)$. Index the codewords by $x_0(c_T)$. After decoding c_T, the relay transmits $x_0(c_T)$ on the downlink. By reducing the decoding space of each user—since each user has some side information about c_T—we can show the following (see, e.g., Ong and Johnson [30]):

Lemma 4: If user i knows (a priori) $\ell' \leq \ell_T$ elements in c_T, then it can reliably decode c_T if n is sufficiently large and if

\[
\left(\frac{\ell_T - \ell'}{n} \right) \log F < I(X_0; Y_0) = \log F - H(N_i).
\] (56)

Note that random codes are used on the downlink instead of linear codes.

Knowing $c_3^{(3)}$ of length $\ell_T - \ell_T$ and $\ell_3 - \ell_3$, user 1 can reliably decode c_T if

\[
\left(\frac{\ell_T + \ell_3 + \ell_3}{n} \right) \log F < \log F - H(N_i).
\] (57)

From c_T and knowing its own subcodes $c_1^{(1)}, c_1^{(2)}, c_1^{(3)}, c_1^{(1)}, c_1^{(2)}$, and $c_3^{(3)}$, user 1 can then obtain $c_1^{(1)}, c_1^{(2)}, c_1^{(3)}$, $c_1^{(1)}$, and $c_3^{(2)}$.

Similarly, we can show that user 3 can reliably decode c_T if

\[
\left(\frac{\ell_1 + \ell_3 + \ell_3}{n} \right) \log F < \log F - H(N_3).
\] (59)

Recovering Other Users’ Messages: We have shown that from c_T, each user can obtain all other users’ subcodes. If

\[
(49)\text{–}(51)
\]

are satisfied and if m is sufficiently large, each user i can reliably decode the messages of the other users, i.e., W_j and W_k from the subcodes.

Achievability: We now combine the above results. For any $\theta > 0$, we can choose $\{\ell_i, \ell_j\}$ (where $\ell_1 \leq \ell_3$, which is possible because $I(W_1; W_2 | W_3) \leq H(W_j | W_1, W_2)$) and a sufficiently large m so that the lengths of the subcodes for

Message length	ℓ_{23}	$\ell_1 + \ell_{12} - \ell_3 - \ell_{23}$	$\ell_3 - \ell_{12}$	ℓ_{12}	$\ell_3 - \ell_{12}$	$\ell_2 + \ell_{12} - \ell_3 - \ell_{13}$	ℓ_{13}
Messages	$c_1^{(1)}$	$c_1^{(3)}$	$c_1^{(2)}$	$c_2^{(1)}$	$c_2^{(3)}$	$c_2^{(2)}$	$c_2^{(1)}$
Channel uses	$\frac{\ell_{23}}{n}$	$\frac{\ell_{12} + \ell_{2} - \ell_{3} n}{n}$	$\frac{\ell_3}{n}$	$\frac{\ell_{12}}{n}$	$\frac{\ell_3 - \ell_{12}}{n}$	$\frac{\ell_{12} + \ell_{12} - \ell_{3} n}{n}$	$\frac{\ell_{13}}{n}$
Total channel uses	$\frac{\ell_{23}}{n}$	$\frac{\ell_{12} + \ell_{2} - \ell_{3} n}{n}$	$\frac{\ell_3}{n}$	$\frac{\ell_{12}}{n}$	$\frac{\ell_3 - \ell_{12}}{n}$	$\frac{\ell_{12} + \ell_{12} - \ell_{3} n}{n}$	$\frac{\ell_{13}}{n}$
source coding satisfy

\[H(W_i | W_j, W_k) < \frac{\ell_i \log F}{m} < H(W_i | W_j, W_k) + \theta, \]

for all \(i \), (60)

\[I(W_i; W_j | W_k) < \frac{\ell_{ij} \log F}{m} < I(W_i; W_j | W_k) + \theta, \]

for all \(i < j \), (61)

This means (49)–(50) are satisfied. It follows that

\[\frac{\kappa \ell_i + \ell_{ij} + \ell_j}{n} \log F < \frac{1}{\kappa} < \frac{1}{\kappa} \left(H(W_i | W_j, W_k) + I(W_i; W_j | W_k) + H(W_j | W_i, W_k) + 3 \theta \right), \]

which simplifies to

\[\frac{\ell_i + \ell_{ij} + \ell_j}{n} \log F < \frac{H(W_i, W_j | W_k) + 3 \theta}{n}, \]

for all \(i < j \). The length \(\ell_123 \) is chosen to satisfy (51).

Now, for any \(n/m \triangleq \kappa > \Phi \) in (48), i.e., \(\kappa = \max \{ \log F - H(N_0), \max_{i,j,k} \{ H(W_i, W_j, W_k) \} + \theta' \} \), we can choose a much smaller \(\theta' > 0 \) for (63) such that (55), (57), (58), and (59) are simultaneously satisfied. With a sufficiently large \(m \), each user can reliably decode the messages of the two other users. Hence, the source-channel rate \(\kappa \) in (48) is achievable. This proves the achievability of Theorem 1 for Case 3 when \(\ell_1 \leq \ell_3 \).

2) When \(\ell_2 > \ell_4 \)

(chosen when \(I(W_1; W_2 | W_3) > H(W_3 | W_1, W_2) \)).

The uplink transmission is shown in Table II and the lower bound in Lemma 1 and the achievable source-channel rates in Lemma 2 are applicable to the general finite-field MWRC with correlated sources, in addition to Cases 1 and 2 in Theorem 1. However, the coding technique in Section VI is useful only for sources that have their common information equal their mutual information.

Besides the coding schemes considered in this paper, one could treat the uplink (as a multiple-access channel with correlated sources) and the downlink (as a broadcast channel with receiver side information) separately to get potentially different achievable source-channel rates. In this case, on the uplink, we let the relay decode all three users’ messages \((W_1, W_2, W_3) \). An achievable channel rate region for the two-sender multiple-access channel with correlated sources was found by Cover et al. [31]. Then, on the downlink, we can use the result by Tuncel [32] for the relay to transmit \((W_1, W_2, W_3) \) to the users taking into account that each user \(i \) has side information \(W_i \).

Extending the results of Cover et al. [31] Theorem 2] to three senders, for the relay to be able to reliably decode \((W_1, W_2, W_3) \) on the uplink, \(\kappa \) must satisfy the following:

\[H(W_1, W_2, W_3) < \frac{\kappa I(X_1, X_2, X_3; Y_0)}{n} \]

\[\leq \frac{\kappa | \log F - H(N_0) |}{n}, \]

\[\Rightarrow \kappa > \frac{H(W_1, W_2, W_3)}{\log F - H(N_0)} \]

For the case where each user has non-zero message, \(H(W_1, W_2, W_3) = H(W_i) + H(W_j, W_k | W_i) > H(W_j, W_k | W_i) \) for all \(i \). Comparing (65) to (4), we see that this coding strategy is strictly suboptimal for all Cases 1–3 in Theorem 1 when \(H(N_0) \geq \max_{i \in \{1, 2, 3\}} H(N_i) \). However, this strategy may achieve better (i.e., lower) source-channel rates than SW/FDF-IS in general. We leave the derivation of the rates to the reader—it is straightforward given the results by Cover et al. and Tuncel.

In this paper, we have only investigated the separate-source-channel coding architecture without feedback. Though we have identified source/channel combinations where the minimum source-channel rate is found, the problem remains open in general. Two directions which one could explore are joint source-channel coding and feedback.

\section*{B. Optimality of Source-Channel Separation}

We now give a numerical example where none of the coding schemes in this paper achieves the lower bound \(\Phi \). Let the sources be

\[W_1 = V_1 \oplus V_{12} \oplus V_{13}, \]

\[W_2 = V_2 \oplus V_{12} \oplus V_{23}, \]

\[W_3 = V_3 \oplus V_{13} \oplus V_{23} \]

where all \(V_i \in \{0, 1\} \) are independent random variables, and \(\oplus \) denotes modulo-two addition. We choose

\[Pr\{V_1 = 1\} = 0.3, Pr\{V_2 = 1\} = Pr\{V_3 = 1\} = \]

\[0.2. \]

\begin{table}[h]
\centering
\caption{Uplink transmission using linear block codes when \(\ell_{12} > \ell_3 \), \(\ell_T = \ell_1 + \ell_{12} + \ell_2 \)}
\begin{tabular}{|c|c|c|c|c|}
\hline
Message length & \(\ell_1 \) & \(\ell_3 \) & \(\ell_{12} - \ell_3 \) & \(\ell_2 \) \\
\hline
Messages & \(c_1 \) & \(c_1^{(1)} \) & \(c_1^{(2)} \) & \(e_2 \) \\
\hline
Messages & \(c_3 \) & \(0 \) & \(0 \) & \(c_3^{(1)} \) \\
\hline
Channels & \(1/4 \) & \(1/4 \) & \(1/4 \) & \(1/4 \) \\
\hline
Total channel uses & \(n \) & \(1/4 \) & \(1/4 \) & \(1/4 \) \\
\hline
\end{tabular}
\end{table}
0.029, \Pr\{V_{12} = 1\} = \Pr\{V_{13} = 1\} = 0.103, and \Pr\{V_{23} = 1\} = 0.33. For this choice, we have \(H(W_1|W_2, W_3) = 0.90, H(W_2|W_1, W_3) = H(W_3|W_1, W_2) = 0.70, H(W_1, W_2|W_3) = H(W_1, W_3|W_2) = H(W_2, W_3|W_1) = 1.65\).

For the channel, let \(\mathcal{F} = \{0, 1, 2, 3\}\), which gives log \(F = 2\). We choose \(\Pr\{N_0 = 0\} = 1\) and \(\Pr\{N_0 = 1\} = 0\) for \(a \in \{1, 2, 3\}\), giving \(H(N_i) = 0\). For each \(i \in \{1, 2, 3\}\), we set \(\Pr\{N_i = 0\} = 0.0533, \Pr\{N_i = 1\} = 0.9467,\) and \(\Pr\{N_i = a\} = 0\) for \(a \in \{2, 3\}\), giving \(H(N_i) = 0.30\). This means, log \(F - H(N_0) = 2\), and log \(F - H(N_i) = 1.70\) for all \(i \in \{1, 2, 3\}\).

In this example, \(\Phi = 0.9705\). If \(\kappa = 0.9\) is achievable, then (from Lemma 2) we must be able to find some \(R_2\) and \(R_3\) satisfying \(R_2 + R_3 > H(W_2, W_3|W_1)/\kappa = 1.833,\) and \(R_2 + R_3 < \log F - \max\{H(N_0), H(N_1)\}\) = 1.7. Since the conditions cannot be simultaneously met, \(\kappa = 0.9\) is not achievable using SW/FDF-IS. As the sources’ common information does not equal their mutual information, we cannot use the coding scheme derived in Section V.

This example shows that the separation schemes derived in this paper cannot achieve the lower bound in some cases. However, to show that separation is suboptimal, one has to explore all possible separation schemes and show that some joint source-channel scheme achieves a better source-channel rate.

C. Examples of Sources in Cases 1 and 3

In this paper, we have identified three classes of source/channel combinations where the minimum source-channel rate is found. The first class is sources that have almost-balanced conditional mutual information (ABCMI). An example of sources that have ABCMI is interchangeable random variables in the sense of Chernoff and Teicher [33], where “every subcollection of the random variables has a joint distribution which is a symmetric function of its arguments.” This can model sensor networks where the sensors are equally-spaced on a circle to detect a phenomenon occurring at the center of the circle. However, the ABCMI conditions are looser than that of interchangeable random variables as the former only requires that mutual information between any two sources has roughly the same value (see Appendix A), and also, the marginal distribution of the variables can be vastly different.

Another class for which we have derived the minimum source-channel rate is when the sources have their common information equal their mutual information. An example is correlated sources in the sense of Han [34], where the sources can be written as \(W_1 = (U_{11}, U_{12}, U_{13}, U_{123}), W_2 = (U_{21}, U_{12}, U_{23}, U_{123}),\) and \(W_3 = (U_{31}, U_{13}, U_{23}, U_{123}),\) where \(U_{11}, U_{12}, U_{13}, U_{123}, U_{21}, U_{23}, U_{13}, U_{23}, U_{123}\) are mutually independent random variables. Using sensor networks as an example again, each node here has multiple sensing capabilities, e.g., temperature, light, sound. As these measurements display different behavior spatially, some remain constant across subsets of sensors, e.g., nodes 1 and 2 always sense the same temperature but different light intensity.

As for the class of sources with skewed conditional entropies, the conditions appear to be purely mathematical in nature.

ACKNOWLEDGMENT

The authors would like to thank Roy Timo for discussions on Gacs and Körner’s common information and other helpful comments.

APPENDIX A

GRAPHICAL INTERPRETATION OF SOURCES THAT HAVE ABCMI AND SCE

Figure 3 shows the relationship among the entropies and mutual information for the three source messages \(W_1, W_2,\) and \(W_3\) for the cases described above. Referring to Figure 3(a), the shaded areas represent the mutual information between any two source messages given the third source message. For ABCMI, we have that any of the three shaded areas must not be bigger than the sum of the other two shaded areas. Suppose that the sources do not have ABCMI, then they must have unbalanced conditional mutual information, i.e., we can find a user \(i\) where \(I(W_B; W_C|W_A)\) is larger than the sum of \(I(W_A; W_B|W_C)\) and \(I(W_A; W_C|W_B)\) by an amount \(\eta > 0\) (see Figure 3(b)). In addition, for sources that have SCE, we also have that for the two messages, \(W_B\) and \(W_C\), whose mutual information conditioned on \(W_A\), i.e., \(I(W_B; W_C|W_A)\), is larger than the sum of the other two pairs by the amount \(\eta\), their entropy conditioned on \(W_A\), i.e., \(H(W_B, W_C|W_A)\), is also greater than that of any other pair (conditioned on the message of the third user) by at least \(\eta\). The information diagram for SCE is depicted in Figure 3(b).

APPENDIX B

PROOF OF LEMMA 2

We first quote two existing results of (i) channel coding for the three-user MWRC with independent messages and (ii) source coding with side information.

A. Functional-Decode-Forward for Independent Sources (FDF-IS) Channel Coding

The following channel-coding setting assumes that the source messages are independent:

Lemma 5 (Ong et al. [15]): Consider the MWRC depicted in Figure 1 where each user \(i\)’s message \(W_i\) is uniformly distributed in \(\{1, 2, \ldots , M_i\}\) (we consider a single copy, i.e., \(m = 1\)), and where \(W_1, W_2,\) and \(W_3\) are independent. The channel is used \(n\) times according to the block code (with \(m = 1\)) specified in Section I-A. Each user can then decode the messages of the other two users (with its \(n\) received channel symbols and its own message) with an arbitrarily small error probability if \(n\) is sufficiently large, and if

\[
\log M_i + \log M_j < \log F - \max\{H(N_0), H(N_i)\},
\]

for all distinct \(i, j, k \in \{1, 2, 3\}\).
present their indices to a relay; the relay in turn re-encodes satisfying (67) and (68), for

\[I(W_1; W_2 | W_3) = I(W_1; W_3 | W_2) \]

\[I(W_2; W_3 | W_1) \]

\[W_1 \]

\[W_3 \]

\[W_2 \]

(a) almost-balanced conditional mutual information (ABCMI)

\[H(W_A, W_C | W_B) \]

\[H(W_A, W_B | W_C) \]

\[I(W_B; W_C | W_A) \]

\[H(W_B, W_C | W_A) \]

(b) skewed conditional entropies (SCE)

Fig. 3. Entropy diagrams of three correlated sources: the values of \(H(\cdot) \) can be represented as signed measures on each diagram; the measures are drawn proportional to the areas (except for the measure of the region \(* \), which can be negative)

B. Slepian-Wolf Source Coding

The following source-coding setting assumes that the channel is noiseless:

Lemma 6 (Cover [29]): Consider only the three users with their respective length-\(m \) messages \(\{W_i\} \) generated according to [1]. Each user \(i \) encodes its messages \(W_i \) to an index \(V_i \in \{1, 2, \ldots, M_i\} \), and gives its index to the other two users. Each user can then decode the messages of the other two users (with the received indices and its own message) with an arbitrarily small error probability if \(m \) is sufficiently large, and if

\[\frac{\log M_i}{m} > H(W_i | W_j, W_k) \]

\[\frac{\log M_i + \log M_j}{m} > H(W_i, W_j | W_k) \]

for all distinct \(i, j, k \in \{1, 2, 3\} \).

Note that Wyner et al. [16] derived a similar result with an additional constraint on the relay. In their setup, the users present their indices to a relay; the relay in turn re-encodes and presents its index to the users.

C. Proof of Lemma 2

We use Slepian-Wolf source coding. Each user \(i \) encodes its length-\(m \) message \(W_i \) to an index \(V'_i \in \{1, 2, \ldots, M_i - 1\} \), satisfying (67) and (68), for \(i \in \{1, 2, 3\} \). Each user \(i \) randomly generates a dither \(D_i \) uniformly distributed in \(\{0, 1, \ldots, M_i - 1\} \), and forms its encoded message \(V_i = V'_i + D_i \mod M_i \). The dithers are made known to all nodes. Now, \(V_1, V_2, \) and \(V_3 \) are mutually independent, and each \(V_i \) is uniformly distributed in \(\{0, 1, \ldots, M_i - 1\} \).

We then use FDF-IS channel coding for the users to exchange the encoded independent messages \(V_1, V_2, \) and \(V_3 \) via the relay in \(n \) channel uses. From Lemma 5, if (66) is satisfied, then each user \(i \) can reliably recover \(V'_i \) and \(V''_i \). Knowing the dithers, it can also recover \(V'_j \) and \(V''_j \). From Lemma 6 if (67) and (68) are satisfied, then each user \(i \) can reliably recover \((W_j, W_k) \).

Noting that \(\kappa \triangleq \frac{n}{m} \) and defining \(R_i = \log M_i/n \), the conditions for achievability, i.e., (66), (67), and (68), can be expressed as (20).

APPENDIX C

CODING FOR SOURCES THAT HAVE THEIR COMMON INFORMATION EQUAL THEIR MUTUAL INFORMATION

We perform source coding for correlated sources [17], [29]. Consider the source message \(W_1 \). Clearly, \(H(V_{12}|V_1) = H(V_{13}|V_1) = H(V_{123}|V_1) = 0 \), since \(V_{(1, \ldots)} \) are deterministic functions of \(W_1 \). Now since \(V_{12} \) captures all information that \(W_1 \) and \(W_2 \) have in common (because \(H(V_{12}) = I(W_1; W_2) \)), we have \(H(V_{123}|V_{12}) = 0 \). Similarly \(H(V_{123}|V_{13}) = 0 \).

So, we can reliably reconstruct \(W_1 \) from \((c_1, c_{12}, c_{13}, c_{123}) \) if \(m \) is sufficiently large, and if the following inequalities hold [29] Theorem 2:

\[(\ell_1 \log F)/m > H(W_1 | V_{12}, V_{13}, V_{123}) \]

\[= H(W_1 | W_2, V_3), \]

\[(\ell_2 \log F)/m > H(V_{12} | W_1, V_{13}, V_{123}) = 0, \]

\[(\ell_3 \log F)/m > H(V_{13} | W_1, V_{12}, V_{123}) = 0, \]

\[(\ell_{123} \log F)/m > H(V_{123} | W_1, V_{12}, V_{13}) = 0, \]

\[(\ell_{12} \log F)/m > H(V_{12} | V_{13}, V_{123}) = H(W_1 | W_2, V_3) + I(W_1; W_2 | W_3), \]

\[(\ell_{13} \log F)/m > H(V_{13} | V_{12}, V_{123}) = H(W_1 | W_3, V_2) + I(W_1; W_3 | W_2), \]

\[(\ell_{12} \log F)/m > H(V_{12} | V_{13}, V_{123}) = H(W_1 | W_2, V_3) + I(W_1; W_2 | W_3), \]

\[(\ell_{13} \log F)/m > H(V_{13} | V_{12}, V_{123}) = H(W_1 | W_3, V_2) + I(W_1; W_3 | W_2), \]

\[(\ell_{123} \log F)/m > H(V_{123} | V_{12}, V_{13}) = 0, \]

\[(\ell_{12} \log F)/m > H(V_{12} | V_{13}, V_{123}) = H(W_1 | W_2, V_3) + I(W_1; W_2 | W_3), \]

\[(\ell_{13} \log F)/m > H(V_{13} | V_{12}, V_{123}) = H(W_1 | W_3, V_2) + I(W_1; W_3 | W_2), \]

\[(\ell_{123} \log F)/m > H(V_{123} | V_{12}, V_{13}) = 0, \]
Here, we need to consider all possible non-empty subsets of \(\{\ell_1, \ell_{12}, \ell_{13}, \ell_{123}\} \) on the LHS. We have omitted some trivial inequalities where the RHS equals zero. Repeating the above for sources 2 and 3, and simplifying, we have (49)–(51).

References

[1] R. Knopp, “Two-way radio networks with a star topology,” in *Proc. Int. Zurich Semin. Commun. (IZS)*, Zurich, Switzerland, Feb. 22–24 2006, pp. 154–157.

[2] B. Rankov and A. Wittneben, “Achievable rate regions for the two-way relay channel,” in *Proc. IEEE Int. Symp. Inf. Theory (ISIT)*, Seattle, USA, July 9–14 2006, pp. 1668–1672.

[3] L. Ong, S. J. Johnson, and C. M. Kellett, “An optimal coding strategy for the binary multi-way relay channel,” in *IEEE Commun. Lett.*, vol. 59, no. 1, pp. 51–63, Jan. 2008.

[4] T. M. Cover and J. A. Thomas, *Elements of Information Theory*, 2nd ed. Wiley-Interscience, 2006.

[5] T. M. Cover, “A proof of the data compression theorem of Slepian and Wolf for ergodic sources,” *IEEE Trans. Inf. Theory*, vol. IT-21, no. 2, pp. 226–228, Mar. 1975.

[6] L. Ong and S. J. Johnson, “The capacity region of the restricted two-way relay channel with any deterministic uplink,” *IEEE Commun. Lett.*, vol. 16, no. 3, pp. 396–399, Mar. 2012.

[7] T. M. Cover, A. A. El Gamal, and M. Salehi, “Multiple access channels with arbitrarily correlated sources,” *IEEE Trans. Inf. Theory*, vol. IT-26, no. 6, pp. 648–657, Nov. 1980.

[8] E. Tuncel, “Slepian-Wolf coding over broadcast channels,” *IEEE Trans. Inf. Theory*, vol. 52, no. 4, pp. 1469–1482, Apr. 2006.

[9] T. Cui, T. Ho, and J. K. Wolf, “Noiseless coding of correlated information sources,” *Ann. Math. Stat.*, vol. 29, no. 1, pp. 118–130, Mar. 1958.

[10] R. Knopp, “Two-way radio networks with a star topology,” in *Proc. Int. Zurich Semin. Commun. (IZS)*, Zurich, Switzerland, Feb. 22–24 2006, pp. 154–157.