COMPARATION OF THEORETICAL PROPERTIES OF 3-METHYL-4-(3-BENZOXY-4-METHOXYBENZYLIDENAMINO)-4, 5-DIHYDRO-1H-1, 2, 4-TRIAZOL-5-ONE MOLECULE.

Gül Kotan¹, Şule Bahçeci², Nuri Yildirim³ and Haydar Yüksek⁴.

1. Vocational School, Kafkas University, Kars, 36100, Turkey.
2. Fatih Education Faculty, Karadeniz Technical University, Trabzon, Turkey.
3. Department of Chemistry, Karadeniz Technical University, Trabzon, Turkey.
4. Department of Chemistry, Kafkas University, Kars, 36100, Turkey.

Abstract

3-Methyl-4-(3-benzoxy-4-methoxybenzylidenamino)-4,5-dihydro-1H-1,2,4-triazol-5-one molecule was optimized by using the B3LYP/HF 631G(d,p) and B3LYP/HF 6311G(d,p) basis sets. This optimized structures used to calculation of the different theoretical properties of the compound. ¹H-NMR and ¹³C-NMR isotropic shift values were calculated by the method of GIAO using the program package Gaussian G09W. Experimental and theoretical values were inserted into the graphic according to equation of $\delta_{exp}=a+b$. δ_{calc}. The standard error values were found via SigmaPlot program with regression coefficient of a and b constants. The wdu4f program was used in defining IR data. IR absorption frequencies were compared with experimental data. Infrared spectrums were composed by using the data calculated. Additionally, bond lengths, dipole moments, HOMO-LUMO energys, Mulliken charges by using the B3LYP/HF 631G(d,p) and B3LYP/HF 6311G(d,p) basis sets of this compound were theoretically calculated. Finally, theoretical properties of the compound according to two different basis sets were compared.

Introduction:

Schiff base compounds are used as starting materials in the synthesis of important drugs, such as antibiotics and antiallergic, antiphlogistic, and antitumor substances (Barton & Ollis, 1979; Ingold, 1969; Layer, 1963). On the industrial scale, they have a wide range of applications, such as dyes and pigments (Taggi et.al., 2002). Schiff bases have also been employed as ligands for the complexation of metal ions (Aydogan et.al., 2001). Schiff bases are also becoming increasingly important in the dye and plastic industries as well as for the liquidcrystal technology and mechanistic investigation of drugs used in pharmacology, biochemistry and physiology (Casaszar et.al., 1985, Sheikhshoae & Sharif, 2006).

In the past years, by increasing development of computational chemistry, theoretically properties of Schiff bases were investigated. Quantum chemical calculation methods have widely been used to theoretically predict the structural, spectroscopic, thermodynamic and electronic properties of molecular systems. The quantum chemical calculation methods provide support for experimental structural and spectroscopic studies (Yüksek et.al., 2005a; Yüksek et.al., 2005b; Yüksek et.al., 2008a; Yüksek et.al., 2008b; Gökçe et.al., 2013; Gökçe et.al., 2014).

Corresponding Author:-Gül Kotan.
Address:-Vocational School, Kafkas University, Kars, 36100, Turkey.
Experimental data of 3-methyl-4-(3-benzoxy-4-methoxybenzylideno)4,5-dihydro-1H-1,2,4-triazol-5-one molecule was described in the literature (Bahçeci et al., 2016).

In the present paper, theoretical values of compound were calculated theoretically on the computer. Molecule was optimized by using the B3LYP/HF 631G(d,p) and B3LYP/HF 6311G(d,p) basis sets (Frisch et al., 2009; Wolinski, Hilton & Pulay, 1990). Starting from this optimized structure with 1H-NMR and 13C-NMR spectral data (Table 1) and IR spectral values according to GIAO (Wolinski et al., 1990) method was calculated using the method of Gaussian G09W program package in gas phase. Theoretically and experimentally values (Bahçeci et al., 2016) were plotted according to $\exp = a + b \cdot \delta$ Equ. a and b constants regression coefficients with a standard error values were found using the SigmaPlot program (Table 2). The correlation graphs for chemical shifts drawn with 1H-NMR, 13C-NMR and 1H-NMR(DMSO), 13C-NMR(DMSO) spectral data of the molecule (Fig. 3). Theoretically calculated IR data are multiplied with appropriate adjustment factors (Merrick et al., 2007) and the data obtained according to HF and DFT method are formed using theoretical infrared spectrum (Fig. 4, 5). The identification of calculated IR data was used in veda4f program (Jamróz, 2004) (Table 3). Additionally, bond lengths (Table 4), Mulliken charges (Mulliken, 1955) (Table 5), the HOMO (the highest occupied molecular orbitals) - LUMO (lowest unoccupied molecular orbitals) energy (Fig. 5, 6) and dipole moments (Table 6) of this compound was found by using two basis sets.

![Chemical formula of compound](image)

Figure 1: Chemical formula of compound

Methods:

The quantum chemical calculations were carried out with Density Functional Theory (DFT) and Hartree-Fock (HF) methods using 631G(d,p) and 6311G(d,p) basis set at the Gaussian 09W program package on a computing system (Frisch et al., 2009). Firstly, the compound was optimized by using the B3LYP/HF 631G(d,p) and B3LYP/HF 6311G(d,p) basis sets (Frisch et al., 2009; Wolinski, Hilton & Pulay, 1990). Thus, the most stable geometrical conformer of compound was obtained. Then, 1H-NMR and 13C-NMR isotropic shift values were calculated with method of GIAO (Wolinski et al., 1990). The veda4f program was used in defining IR data (Jamróz, 2004). Otherwise, bond lengths, dipole moments, the HOMO-LUMO energy, and Mulliken charges (Mulliken, 1955) of compound were calculated theoretically on the computer. Theoretical properties of the compound according to two different basis sets were compared.

Theoretical Calculations:

![Optimized structure of the molecule](image)

Figure 2: The optimized structure of the molecule with DFT/B3LYP/631G(d,p) (1) and DFT/B3LYP/6311G(d,p) (2) levels
There is such a relationship between R

The optimized R² values of the compound with B3LYP/631G(1) level:

The optimized R² values of the compound with B3LYP/6311G(2) level:

There is such a relationship between R² values of the compound. Found standard error rate and a, b constants regression values were calculated according to formuleexpx = a +b. δ calc Eq. These values for compound were shown in the table 2. Theoretical and experimental carbon and proton chemical shifts ratios between acording to a, b ve R² values, liner a correlation were observed.
Table 2: The correlation data for chemical shifts of the molecule

	¹/²C (DMSO)		¹/²H(DMSO)					
²								
DFT/631G	0.9934	2.9357	1.0244	-6.8507	0.8617	1.1174	1.0485	0.8687
HF/631G	0.9898	3.7732	0.9869	5.8241	0.8220	1.2678	0.9617	0.0200

1/2 C (DMSO)
2 | R² | S. error | a | b | ² | R² | S. error | a | b |
DFT/631G | 0.9936 | 2.9800 | 0.9547 | -14.369 | 0.8437 | 1.1880 | 1.0751 | 0.8786 |
HF/631G | 0.9885 | 4.0078 | 0.9416 | 0.9226 | 0.8009 | 1.3410 | 0.9589 | 0.1621 |

Figure 3: The correlation graphs for B3LYP/HF 631G(d,p)/6311G(d,p) chemical shifts of the molecule

The vibration frequency of the compound: Theoretically IR values were calculation veda 4f programme and scala values were obtain. Theoretically calculated IR data are multiplied with appropriate adjustment factors respectively 0.9617, 0.8992, 0.9688, 0.9059 for DFT/631G(d,p), HF/631G(d,p) and DFT/6311G(d,p), HF/6311G(d,p) basis sets. The negative frequency in the data was not found. This result, structure of compound were shown stable. IR spectrums were drawn with obtained values according to HF and DFT method. Theoretically IR values were compare with experimentally IR values. The result of this compare were found corresponding with each other of values. Experimentally carbonyl peak (C=O) in 1704, 1730 cm⁻¹ and theoretically (C=O) peak in 1768 cm⁻¹ for 631G(d,p), 1762 cm⁻¹ for 6311G(d,p) were observed.

Table 3: The calculated frequencies values of the molecule optimized with 1 and 2 levels

Vibration Types	Experimental	Skalab dft(1)	Skalab hf(1)	Skalab dft(2)	Skalab hf(2)
τ HCCC(16)	700	692	724	682	684
τ HCCC(11)	771	779	809	797	826
τ HCOC(27)	1262	1268	1277	1179	1197
v NC(34)	1603	1591	1625	1613	1710
v OC(90)	1730, 1704	1768	1809	1762	1809
v NH(100)	3172	3557	3556	3566	3561
Figure 4: Experimental (a) and theoretical IR spectrums and simulated with DFT/B3LYP/631G(d,p) (b) and HF/B3LYP/631G(d,p) (c) levels of the molecule.
Figure 5:- Theoretical IR spectrums and simulated with DFT/B3LYP/6311G(d,p) (d) and HF/B3LYP/6311G(d,p) (e) levels of the molecule.

Table 4:- The calculated bond lengths B3LYP/HF 631G(d,p) and B3LYP/HF 6311G(d,p) of the molecule.

Bond Lengths	DFT/631G	HF/631G	DFT/6311G	HF/6311G	
1 C(1)-N(35)	1.300	1.269	1.296	1.266	
2 C(1)-N(37)	1.388	1.378	1.388	1.378	
3 C(1)-C(18)	1.486	1.488	1.485	1.487	
4 N(35)-N(36)	1.382	1.371	1.380	1.370	
5 N(36)-H(19)	1.006	0.990	1.005	0.990	
6 N(36)-C(2)	1.370	1.346	1.368	1.346	
7 C(2)-O(39)	1.223	1.203	1.216	1.196	
8 C(2)-N(37)	1.417	1.385	1.419	1.387	
9 N(37)-N(38)	1.373	1.367	1.370	1.365	
10 N(38)-C(3)	1.290	1.260	1.285	1.258	
11 C(3)-H(20)	1.088	1.075	1.086	1.075	
12 C(3)-C(4)	1.461	1.470	1.461	1.471	
13 C(4)-C(5)	1.408	1.399	1.406	1.399	
14 C(4)-C(9)	1.399	1.380	1.395	1.378	
15 C(5)-H(21)	1.083	1.072	1.082	1.072	
16 C(5)-C(6)	1.382	1.364	1.379	1.362	
17 C(6)-O(40)	1.382	1.375	1.380	1.374	
18 C(6)-C(7)	1.415	1.401	1.413	1.401	
19 C(7)-O(41)	1.356	1.337	1.355	1.335	
20 C(7)-C(8)	1.396	1.381	1.394	1.380	
21 C(8)-H(22)	1.083	1.072	1.081	1.071	
22 C(8)-C(9)	1.395	1.390	1.393	1.390	
23 C(9)-H(23)	1.086	1.076	1.084	1.075	
24 O(40)-C(10)	1.386	1.341	1.388	1.340	
25 C(10)-O(42)	1.204	1.185	1.197	1.178	
26 C(10)-C(11)	1.493	1.488	1.491	1.489	
27 C(11)-C(12)	1.401	1.389	1.399	1.388	
28 C(11)-C(16)	1.402	1.390	1.399	1.389	
29 C(12)-H(24)	1.083	1.072	1.082	1.072	
30 C(12)-C(13)	1.394	1.384	1.389	1.383	
31 C(13)-H(25)	1.085	1.075	1.083	1.074	
32 C(13)-C(14)	1.395	1.384	1.394	1.384	
33 C(14)-H(26)	1.086	1.075	1.084	1.075	
34 C(14)-C(15)	1.397	1.386	1.393	1.386	
35 C(15)-H(27)	1.085	1.075	1.083	1.074	
36 C(15)-C(16)	1.391	1.382	1.391	1.381	
37 C(16)-H(28)	1.084	1.073	1.082	1.073	
	Bond	Distance (Å)	Distance (Å)	Distance (Å)	Distance (Å)
---	---------------	--------------	--------------	--------------	--------------
38	C(7)-O(41)	1.356	1.337	1.355	1.335
39	O(41)-C(17)	1.422	1.402	1.423	1.402
40	C(17)-H(29)	1.096	1.085	1.095	1.079
41	C(17)-H(30)	1.089	1.084	1.088	1.085
42	C(17)-H(31)	1.096	1.079	1.094	1.085
43	C(18)-H(32)	1.094	1.083	1.092	1.083
44	C(18)-H(33)	1.094	1.083	1.092	1.083
45	C(18)-H(34)	1.090	1.080	1.089	1.080

Figure 6: HOMO-LUMO energy calculated with DFT/B3LYP/631G(d,p) and HF/B3LYP/631G(d,p) levels of the molecule.

Figure 7: HOMO-LUMO energy calculated with DFT/B3LYP/631G(d,p) and HF/B3LYP/631G(d,p) levels of the molecule.
Results and Discussion:

In this work, geometrical parameters and spectroscopic parameters such as IR, 1H-NMR and 13C-NMR spectra of molecule are calculated by Density Functional Theory (DFT) and Hartree-Fock (HF) methods with the 631G(d,p) and 6311G(d,p) two different basis sets. Obtained spectroscopic parameters are compared with experimental data. Furthermore, calculated theoretical data with the 631G(d,p) and 6311G(d,p) basis sets are compared with each other. The chemical shifts in the calculations 1H-NMR and 13C-NMR and IR vibrational frequencies are found to be compatible with the experimental data. Theoretical and experimental carbon and proton chemical shifts ratios between according to a, b ve R2 values, lineer a correlation were observed.

Furthermore, IR vibrational frequencies experimentally carbonyl peak (C=O) in 1706 cm$^{-1}$ and theoretically (C=O) peak in 1768 cm$^{-1}$ for 631G(d,p), 1762 cm$^{-1}$ for 6311G(d,p) were observed. The negative frequency in the IR data was not found. This result, structure of compound were shown stable. In addition, bond lengths, dipole moments, the HOMO-LUMO energy and Mulliken charges are calculated theoretically by using the B3LYP/HF 631G(d,p) and 6311G(d,p) basis sets.
References:
1. Aydogan, F., Ocal, N., Turgut, Z., Yolaçan, C. (2001): Bull. Korean Chem. Soc. 22 476480.
2. Barton, D. Ollis, W.D. (1979): Comprehensive Organic Chemistry, vol. 2. Oxford: Pergamon.
3. Bahçeci, Ş., Yıldırım, N., Güsoy-Kol, Ö., Beytur, M. & Yüksel, H. (2016): Synthesis and Antioxidant Properties of Some [2-Methoxy-5-(3-alkyl-4,5-dihydro-1H-1,2,4-triazol-5-one-4-yl)-azomethinphenylbenzoates. Der Pharma Chemica, 8 (15). 243-248.
4. Casasjar J., Morvay, J., Herczeg, O., Acta Phys. Chem. 31 (1985): 717722.
5. Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G.A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H.P., Izmaylov, A.F., Bloino, J., Zheng, G., Sonnenberg, J.L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J.A., Jr.Vreven, T., Peralta, J.E., Ogliaro, F., Bearpark, M., Heyd, J.J., Brothers, E., Kudin, N., Staroverov, V.V., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J.C., Iyengar, S.S., Tomasi, J., Cossi, M., Rega, N., Millam, J.M., Klene, M., Knox, J.E., Cross J.B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R.E., Yazyev, O., Austin, A.J., Cammi, R., Pomelli, C., Ochterski, J.W., Martin, L.R., Morokuma, K., Zakrzewski, V.G., Voth, G.A., Salvador, P., Dannenberg, J.J., Dapprich, S., Daniels A.D., Farkas, O., Foresman, J.B., Ortiz, J.V., Cioslowski, J., & Fox, D.J. (2009): Gaussian Inc., Wallingford, CT.
6. Gökçe, H., Bahçeli, S., Akyıldırım, O., Yüksel, H. and Güsoy-Kol, Ö. (2013): The Syntheses, Molecular Structures, Spectroscopic Properties (IR, Micro–Raman, NMR and UV–vis) and DFT Calculations of Antioxidant 3-alkyl-4-[3-methoxy-4-(4-methylbenzoyl)benzylidenamino]-4,5-dihydro-1H-1,2,4-triazol-5-one Molecules. Letters in Organic Chemistry 10 (6): 395-441.
7. Gökçe, H., Akyıldırım, O., Bahçeli, S., Yüksel, H. and Güsoy-Kol, Ö. (2014): The 1-acetyl-3-methyl-4-[3-methoxy-4-(4-methylbenzoyl)benzylidenamino]-4,5-dihydro-1H-1,2,4-triazol-5-one Molecule Investigated by a Joint Spectroscopic and Quantum Chemical Calculations Journal of Molecular Structure DOI: http://dx.doi.org/10.1016/j.molstruc.2013.10.044, 1056-1057: 273-284.
8. Ingold, C.K. (1969): Structure and Mechanism in Organic Chemistry, second ed.
9. Jamróz, M.H. (2004): Vibrational Energy Distribution Analysis: VEDA 4 program, Warsaw.
10. Layer, R.W. (1963): Chem. Rev. 63 489510.
11. Mulliken, R.S.(1955): Electronic Population Analysis on LCAO-MO Molecular Wave Functions, Journal of Chemical Physics, 23, 1833–1840.
12. Merrick, J.P., Moran, D., Radom, L. (2007): An Evaluation of Harmonic Vibrational Frequency Scale Factors. Journal of Physical Chemistry, 111 (45), 11683-11700.
13. Sheikhshoaei, I., Sharif, M.A. (2006): ActaCrystallogr. E 62 35633565.
14. Taggi, A.E., Hafez, A.M., Wack, H., Young, B., Ferraris, D., Lectka, T. J. (2002): Am. Chem.Soc. 124 66266635.
15. Wolinski, K., Hilton, J.F. and Pulay, P.J. (1990): Am. Chem. Soc., 112, 512.
16. Yüksel, H., Çakmak, İ., Sadi, S., Alkan, M. and Baykara, H. (2005): Synthesis and GIAO NMR Calculations for Some Novel 4-Heteroarylidenamino-4,5-dihydro-1H-1,2,4-triazol-5-one Derivatives: Comparison of Theoretical and Experimental 1H and 13C Chemical Shifts Int. J. Mol. Sci 6 219-229.
17. Yüksel, H., Güsoy, Ö., Çakmak, İ. and Alkan, M. (2005): Synthesis and GIAO NMR Calculations for Some New 4,5-Dihydro-1H-1,2,4-triazol-5-one Derivatives: Comparison of Theoretical and Experimental 1H and 13C Chemical Shifts Magn. Reson. Chem.43 585-587.
18. Yüksel, H., Alkan, M., Bahçeçi, Ş., Çakmak, İ., Ocak, Z., Baykara, H., Aktaş, Ö. And Ağyel, E. (2008): Synthesis, Determination of pKa Values and GIAO NMR Calculations of Some New 3-Alkyl-4-(p-methoxybenzoylamino)-4,5-dihydro-1H-1,2,4-triazol-5-ones J. Mol. Struc 873 142-148.
19. Yüksel, H., Alkan, M., Çakmak, İ., Ocak, Z., Bahçeçi, Ş., Calapoglu, M., Elmasat, M., Kolomuç, A. and Aksu, H. (2008): Preparation, GIAO NMR calculations and acid properties of some novel 4,5-dihydro-1H-1,2,4-triazol-5-one derivatives with their antioxidant activities Int. J. Mol. Sci 9 12-32.