Validation of presepsin measurement for mortality prediction of sepsis: a preliminary study

Seung Min Baik1,2, Jin Park3, Tae Yoon Kim4, Se Hong Choi5, Kyung Sook Hong6

1Division of Critical Care Medicine, Department of Surgery, Ewha Womans University Mokdong Hospital, Ewha Womans University College of Medicine, Seoul; 2Department of Surgery, Korea University College of Medicine, Seoul, Korea; 3Division of Critical Care Medicine, Department of Neurology and 4Division of Critical Care Medicine, Department of Surgery, Ewha Womans University Seoul Hospital, Ewha Womans University College of Medicine, Seoul, Korea; 5Graduate Program in System Health Science and Engineering, Ewha Womans University College of Nursing, Seoul, Korea

Background: Sepsis and septic shock remain the leading causes of death in critically ill patients worldwide. Various biomarkers are available to determine the prognosis and therapeutic effects of sepsis. In this study, we investigated the effectiveness of presepsin as a sepsis biomarker.

Methods: Patients admitted to the intensive care unit with major or minor diagnosis of sepsis were categorized into survival and non-survival groups. The white blood cell count and serum C-reactive protein, procalcitonin, and presepsin levels were measured in all patients.

Results: The study included 40 patients (survival group, 32; non-survival group, 8; mortality rate, 20%). The maximum serum presepsin levels measured during intensive care unit admission were significantly higher in the non-survival group (median [interquartile range]: 4,205.5 pg/ml [1,155.8–10,094.0] vs. 741.5 pg/ml [520.0–1,317.5], P<0.05). No statistically significant intergroup differences were observed in the maximum, minimum, and mean values of the white blood cell count, as well as serum C-reactive protein, and procalcitonin levels. Based on the receiver operating characteristic curve, the area under the curve for presepsin as a predictor of sepsis mortality was 0.764. At a cut-off value of 1,898.5 pg/ml, the sensitivity and specificity of presepsin for prediction of sepsis-induced mortality were 75.0% and 87.5%, respectively.

Conclusions: Early diagnosis of sepsis and prediction of sepsis-induced mortality are important for prompt initiation of treatment. Presepsin may serve as an effective biomarker for prediction of sepsis-induced mortality and for evaluation of treatment effectiveness.

Key Words: biomarkers; mortality; presepsin; sepsis; septic shock

INTRODUCTION

Sepsis is a life-threatening organ dysfunction caused by a dysregulated host response to infection [1]. Despite the availability of the Surviving Sepsis Campaign: International Guidelines for Management of Sepsis and Septic Shock 2021 [2], sepsis and septic shock remain major causes of death in critically ill patients; more than 1.7 million adults were diagnosed with sepsis annually in the United States, with 270,000 sepsis-induced deaths [3].

Various biomarkers are available for evaluation of the prognosis and therapeutic effects
The study included patients admitted to the ICU with a major or minor diagnosis of sepsis between March and May 2021. The diagnosis of sepsis followed the "Sepsis-3" diagnostic criteria. Patients who consented to do-not-resuscitate order or to discontinue life-sustaining treatment were excluded from the study. First of all, the following demographic and clinical data were recorded from patients who meet inclusion criteria: sex, age, body mass index (BMI), diagnosis, mortality rate, length of ICU stay, ICU mortality, the Acute Physiology and Chronic Health Evaluation (APACHE) II score, Sequential Organ Failure Assessment (SOFA) score, duration of mechanical ventilation, use of continuous renal replacement therapy (CRRT), and the norepinephrine infusion rate. The following laboratory tests were performed during ICU admission: the WBC count, neutrophil count (%), serum CRP, lactate, PCT, and presepsin levels. The period of data collection for laboratory tests is from the date of inclusion criteria to the date of discharge from the ICU.

Measurement of Presepsin Levels
We measured presepsin levels along with PCT levels in patients diagnosed with sepsis by the "Sepsis-3" diagnostic criteria. From the first day of admission to the ICU, presepsin levels were measured simultaneously with PCT. Afterwards, when the intensivist determined that re-measurement of PCT levels was necessary, presepsin was also measured. A chemiluminescence enzyme immunoassay was performed using magnetic particles to measure presepsin levels.

Statistical Analysis
We performed intergroup comparison of the variables included in this study. Categorical variables were analyzed using the chi-squared test. Numeric variables, such as age, BMI, length of ICU stay, the APACHE II and SOFA scores, duration of mechanical ventilation, and the norepinephrine infusion rate were expressed as median (interquartile range) and were analyzed using the Mann-Whitney U-test. Results of individ-

KEY MESSAGES
- Sepsis and septic shock are the leading causes of death in critically ill patients.
- Procalcitonin, presepsin, and lactate are some of the biomarkers available for diagnosis of sepsis and prediction of sepsis-induced mortality.
- Serum presepsin levels may serve as an effective biomarker for prediction of sepsis-induced mortality.

MATERIALS AND METHODS

Research Ethics
The study was approved by the Institutional Review Board of Ewha Womans University Seoul Hospital (No. SEUMC 2022-01-020) and waived the informed consents due to the retrospective study.

Patients, Data Collection and Study Design
The study included patients admitted to the ICU with a major
ual laboratory tests for each patient were expressed as maximum, minimum, and mean values and were analyzed using the Mann-Whitney U-test. With regard to laboratory tests, we created a receiver operating characteristic (ROC) curve to determine the optimal indicator for mortality prediction. The optimal cut-off value for mortality was selected as the point at which the sum of sensitivity and specificity was highest. All statistical analyses were performed using the IBM SPSS version 26.0 (IBM Corp., Armonk, NY, USA). The figure was created using CorelDRAW 2019 (Corel Corp., Ottawa, Canada).

RESULTS

Patient Characteristics

This study was performed between March and May 2021 and included 40 patients categorized into the survival group (32 patients) and non-survival group (8 patients; mortality rate, 20%). Mechanical ventilation was used in 27 patients (survival group, 19; non-survival group, 8). CRRT was used only in four patients in the non-survival group. No statistically significant intergroup difference was observed in the APACHE II score, SOFA score, length of ICU stays, and norepinephrine infusion rates. Table 1 shows patient characteristics.

Laboratory Findings and Accuracy of Mortality Prediction

The maximum serum presepsin levels measured during ICU admission were significantly higher in the non-survival than in the survival group (median [interquartile range]: 4,205.5 pg/ml [1,155.8–10,094.0] vs. 741.5 pg/ml [520.0–1,317.5], P<0.05). Additionally, the maximum, minimum, and mean PCT values were higher in the non-survival group; however, the difference was statistically nonsignificant. The maximum, minimum, and mean serum CRP levels were higher in the survival group, although the difference was statistically nonsignificant (Table 2). The maximum serum presepsin level was significantly higher in the non-survival group, and notably, only this difference was statistically significant.

Figure 1 shows the ROC curves for sepsis-induced mortality prediction. The AUCs calculated from the ROC curves were 0.764 for presepsin and 0.744 for the WBC count (P<0.05). The AUC for lactate was 0.700, although this value was statistically nonsignificant (P=0.105). At a cut-off value of 1,898.5 pg/ml, sensitivity and specificity of serum presepsin for sepsis-induced mortality prediction were 75.0% and 87.5%, respectively.

Table 1. Patients’ clinical characteristics in survival and non-survival groups

Characteristics	Survival group (n=32)	Non-survival group (n=8)	P-value
Age (yr)	80.5 (65.25–88.75)	73.5 (62.75–82.00)	0.434
Sex (male:female)	15:17	5:3	0.625
BMI (kg/m²)	22.2 (19.70–25.33)	22.7 (21.85–28.31)	0.325
APACHE II score	26.0 (21.25–34.75)	26.5 (25.25–31.25)	0.955
SOFA score	6.0 (3.25–9.00)	8.5 (5.00–11.50)	0.174
ICU stay period (day)	6.5 (2.00–20.50)	22.5 (17.50–71.25)	0.008
Mechanical ventilator (n=27)	19 (70.4)	8 (29.6)	0.037
Mechanical ventilator period	7 (2.0–33.0)	19.5 (13.75–68.25)	0.031
CRRT (n=4)	0	4	0.001
Norepinephrine infusion rate (µg/kg/min)	0.01 (0.00–0.10)	0.03 (0.00–0.25)	0.804

Values are presented as median (interquartile range) or number (%).

BMI: body mass index; APACHE: Acute Physiology and Chronic Health Evaluation; SOFA: Sequential Organ Failure Assessment; ICU: intensive care unit; CRRT: continuous renal replacement therapy.
Presepsin is a soluble N-terminal fragment of the differentiat-
ed marker protein cluster of differentiation 14 (CD14), which is
released into the circulation during monocyte activation after
the host cells recognize lipopolysaccharide (LPS) produced by
an infectious agent. CD14, a 55 kDa glycoprotein, is expressed
on monocytes and macrophage membranes and is released
into the circulation as soluble CD14, which induces a Toll-
like receptor 4-specific inflammatory response that mediates
the response to LPS released by an infectious agent [12,15].
Inflammation triggers PCT production via direct pathways
that are activated by LPS or other toxic metabolites released by
microorganisms and indirect pathways that are activated sec-
ondary to the action of inflammatory mediators such as IL-6
and tumor necrosis factor-a [16]. CRP (an acute-phase protein
of hepatic origin) production is increased in response to IL-6
secretion by macrophages and T cells during inflammation
[17]. Therefore, various mechanisms underlie the release of
different biomarkers; we attempted to identify the optimal bio-
marker for sepsis.

In this study, the mortality rate in patients with sepsis and
septic shock was 20%, which was similar to findings reported
by previous studies. We observed that serum presepsin levels
were strongly associated with mortality in critically ill patients.
Among the biomarkers commonly used in the management
of critically ill patients, particularly in those with sepsis, serum

DISCUSSION

Presepsin is a soluble N-terminal fragment of the differentiat-
ed marker protein cluster of differentiation 14 (CD14), which is
released into the circulation during monocyte activation after
the host cells recognize lipopolysaccharide (LPS) produced by
an infectious agent. CD14, a 55 kDa glycoprotein, is expressed
on monocytes and macrophage membranes and is released
into the circulation as soluble CD14, which induces a Toll-
like receptor 4-specific inflammatory response that mediates
the response to LPS released by an infectious agent [12,15].
Inflammation triggers PCT production via direct pathways
that are activated by LPS or other toxic metabolites released by
microorganisms and indirect pathways that are activated sec-
ondary to the action of inflammatory mediators such as IL-6
and tumor necrosis factor-a [16]. CRP (an acute-phase protein
of hepatic origin) production is increased in response to IL-6
secretion by macrophages and T cells during inflammation
[17]. Therefore, various mechanisms underlie the release of
different biomarkers; we attempted to identify the optimal bio-
marker for sepsis.

In this study, the mortality rate in patients with sepsis and
septic shock was 20%, which was similar to findings reported
by previous studies. We observed that serum presepsin levels
were strongly associated with mortality in critically ill patients.
Among the biomarkers commonly used in the management
of critically ill patients, particularly in those with sepsis, serum

Table 2. Comparison of the maximum, minimum, and mean values of laboratory parameters between survival and non-survival groups

Variable	Survival group (n=32)	Non-survival group (n=8)	P-value
Maximum presepsin level (pg/ml)	741.5 (520.0–1,317.5)	4,205.5 (1,155.8–10,094.0)	0.014
Minimum presepsin level (pg/ml)	532.5 (362.5–781.5)	2,143.5 (662.0–4,559.5)	0.030
Average presepsin level (pg/ml)	649.0 (403.5–825.2)	3,668.8 (938.0–7,339.8)	0.023
Maximum PCT level (μg/L)	0.885 (0.745–1.688)	1.165 (0.685–10.165)	0.900
Minimum PCT level (μg/L)	0.675 (0.170–0.885)	0.605 (0.498–0.783)	0.855
Average PCT level (μg/L)	0.778 (0.507–1.214)	0.838 (0.633–5.364)	0.539
Maximum WBC count (x10^3/μl)	12.630 (9.290–16.080)	16.270 (10.420–18.045)	0.184
Minimum WBC count (x10^3/μl)	9.070 (6.260–10.870)	8,555 (6,155–14,568)	0.959
Average WBC count (x10^3/μl)	10.997 (8.950–13.310)	11.655 (8.022–17.145)	0.505
Maximum CRP level (mg/dl)	10.945 (5.498–14.873)	7.050 (4.483–17.310)	0.332
Minimum CRP level (mg/dl)	3.510 (1.793–10.095)	3.680 (2.458–7.338)	0.847
Average CRP level (mg/dl)	7.625 (4.615–12.248)	6.053 (3.428–10.827)	0.562
Maximum lactate level (mg/dl)	12.10 (8.88–18.03)	34.20 (9.90–80.30)	0.118
Minimum lactate level (mg/dl)	8.65 (6.60–12.23)	34.20 (6.70–50.70)	0.118
Average lactate level (mg/dl)	11.05 (8.18–14.63)	34.20 (8.78–62.75)	0.138

Values are presented as median (interquartile range).
PCT: procalcitonin; WBC: white blood cell; CRP: C-reactive protein.
Acute and Critical Care 2022 November 37(4):527-532

Validation of the accuracy of presepsin for sepsis

Seung Min Baik, et al.

Presepsin is shown to be superior to serum PCT (which is recommended by the Surviving Sepsis Campaign Guidelines 2021 as a sepsis biomarker) [2].

Many studies have reported the effectiveness and usefulness of presepsin measurement in patients with sepsis. Masson et al. [6] observed that the serum presepsin level on the day of admission to the ICU was significantly higher in non-survivors than in survivors, and this value was associated with the 28-day mortality rate. However, other studies have reported that measurement of serum PCT, CRP, and presepsin was of moderate diagnostic value in patients with sepsis. Therefore, owing to lack of consistent evidence to support its usefulness, presepsin is currently not included in the guidelines [18]. Early diagnosis followed by prompt and appropriate treatment of sepsis is essential immediately after diagnosis as recommended by the Surviving Sepsis Campaign Treatment Bundle [19].

According to the most recent update to the Surviving Sepsis Campaign Guidelines 2021, the level of evidence for the use of PCT for diagnosis of sepsis is weak [2]. According to the guidelines, evaluation of serum PCT levels and clinical symptoms should not take precedence over evaluation of clinical symptoms alone for decision-making regarding initiation of antibiotics, and PCT estimation is recommended to guide antibiotic discontinuation.

In this study, serum lactate levels were not significantly associated with sepsis-induced mortality, although several studies have reported an association between serum lactate levels and sepsis-induced mortality [20]. The Surviving Sepsis Campaign Guidelines 2021 currently recommend the use of serum lactate as a useful aid for evaluation of patients with sepsis. Sepsis, a life-threatening organ dysfunction caused by a dysregulated host response to infection [1], is associated with a broad range of diagnostic criteria owing to the multifactorial etiology of this condition. Broad diagnostic criteria can be considered to have a high incidence. Most patients require critical care management owing to the high mortality rate of sepsis. The ICU is a limited and critical resource; therefore, diagnosis of sepsis and sepsis-induced mortality prediction are important. However, biomarkers that are strongly associated with sepsis or septic shock are currently unavailable. Therefore, much research has focused on the high diagnostic value of presepsin, and several studies have reported its usefulness as a sepsis biomarker [6,11,12,14,21]. In this study, we observed that presepsin showed high accuracy for sepsis-induced mortality prediction. Although the Surviving Sepsis Campaign Guidelines 2021 do not currently discuss the utility of presepsin as a sepsis bio-

marker, further research is warranted to gain a deeper understanding of the effectiveness of this agent.

Following are the limitations of this study: (1) The design of this single-center small-scale study is a drawback that cannot be ignored. Therefore, we plan further studies with multi-centers and larger sample numbers. Through this, we will confirm whether presepsin has important value in the treatment of sepsis patients. (2) Compared with estimation of the WBC count and serum lactate and CRP measurements, we did not frequently measure serum presepsin and PCT levels. (3) We did not consider the specific infection profile detected in each patient. The infection profile may be classified into fungal, viral, and bacterial infections; bacterial infections are further categorized into Gram-negative and Gram-positive bacterial infections. PCT levels were significantly higher in patients with gram-negative bacterial infections than in those with Gram-positive or fungal infections [22]. In contrast, serum presepsin levels were significantly higher in Gram-negative and Gram-positive bacterial and fungal infections [23]. Neither presepsin nor PCT is a specific biomarker for viral infections [24,25]. We intend to perform a multicenter large-scale study to validate the usefulness of presepsin measurement in sepsis.

In conclusion, presepsin may be potentially useful as a predictor of sepsis-induced mortality and to evaluate the effectiveness of treatment.

CONFLICT OF INTEREST

No potential conflict of interest relevant to this article was reported.

FUNDING

None.

ACKNOWLEDGMENTS

None.

ORCID

Seung Min Baik https://orcid.org/0000-0003-1051-6775
Jin Park https://orcid.org/0000-0002-4597-6344
Tae Yoon Kim https://orcid.org/0000-0002-2427-9881
Se Hong Choi https://orcid.org/0000-0003-2885-3032
Kyung Sook Hong https://orcid.org/0000-0002-8022-5693
AUTHOR CONTRIBUTIONS

Conceptualization: KSH. Data curation: SMB, SHC. Formal analysis: SMB. Methodology: all authors. Project administration: SMB. Visualization: SMB. Writing—original draft: SMB, KSH. Writing—review & editing: all authors.

REFERENCES

1. Singer M, Deutschman CS, Seymour CW, Shankar-Hari M, Annane D, Bauer M, et al. The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA 2016;315:801-10.
2. Evans L, Rhodes A, Alhazzani W, Antonelli M, Coopersmith CM, French C, et al. Surviving sepsis campaign: international guidelines for management of sepsis and septic shock 2021. Crit Care Med 2021;49:e1063-143.
3. Rhee C, Dantes R, Epstein L, Murphy DJ, Seymour CW, Ivashyna TJ, et al. Incidence and trends of sepsis in US hospitals using clinical vs claims data, 2009-2014. JAMA 2017;318:1241-9.
4. Horeczko T, Green JP, Panacek EA. Epidemiology of the systemic inflammatory response syndrome (SIRS) in the emergency department. West J Emerg Med 2014;15:329-36.
5. Jekarl DW, Lee S, Kim M, Kim Y, Woo SH, Lee WJ. Procalcitonin as a prognostic marker for sepsis based on SEPSIS-3. J Clin Lab Anal 2019;33:e22996.
6. Masson S, Caironi P, Spanuth E, Thomae R, Panigada M, Sangiorgi G, et al. Presepsin (soluble CD14 subtype) and procalcitonin levels for mortality prediction in sepsis: data from the Albumin Italian Outcome Sepsis trial. Crit Care 2014;18:R6.
7. Jekarl DW, Lee SY, Lee J, Park VJ, Kim Y, Park JH, et al. Procalcitonin as a diagnostic marker and IL-6 as a prognostic marker for sepsis. Diagn Microbiol Infect Dis 2013;75:342-7.
8. Chalupa P, Beran O, Herwald H, Kaspríková N, Holub M. Evaluation of potential biomarkers for the discrimination of bacterial and viral infections. Infection 2011;39:411-7.
9. Lvovski V, Arnaud L, Parizot C, Freund Y, Juillien G, Ghillani-Dalbin P, et al. Cytokine profiles in sepsis have limited relevance for strafying patients in the emergency department: a prospective observational study. PLoS One 2011;6:e28870.
10. Harbarth S, Holeckova K, Froidevaux C, Pittet D, Ricou B, Grau GE, et al. Diagnostic value of procalcitonin, interleukin-6, and interleukin-8 in critically ill patients admitted with suspected sepsis. Am J Respir Crit Care Med 2001;164:396-402.
11. Yaegashi Y, Shirakawa K, Sato N, Suzuki Y, Kojika M, Inmai S, et al. Evaluation of a newly identified soluble CD14 subtype as a marker for sepsis. J Infect Chemother 2005;11:234-8.
12. Shozushima T, Takahashi G, Matsumoto N, Kojika M, Okamura Y, Endo S. Usefulness of presepsin (sCD14-ST) measurements as a marker for the diagnosis and severity of sepsis that satisfied diagnostic criteria of systemic inflammatory response syndrome. J Infect Chemother 2011;17:764-9.
13. Vodnik T, Kaljevic G, Tadic T, Majdic-Singh N. Presepsin (sCD14-ST) in preoperative diagnosis of abdominal sepsis. Clin Chem Lab Med 2013;51:2053-62.
14. Zou Q, Wen W, Zhang XC. Presepsin as a novel sepsis biomarker: World J Emerg Med 2014;5:16-9.
15. Wright SD, Ramos RA, Tobias PS, Ulevitch RJ, Mathison JC. CD14, a receptor for complexes of lipopolysaccharide (LPS) and LPS binding protein. Science 1990;249:1431-3.
16. Vijayan AL, Vanimaya, Ravindran S, SaiKant R, Kartik V, et al. Procalcitonin: a promising diagnostic marker for sepsis and antibiotic therapy. J Intensive Care 2017;5:51.
17. Thompson D, Pepys MB, Wood SP. The physiological structure of human C-reactive protein and its complex with phospholipid. Structure 1999;7:169-77.
18. Liu Y, Hou JH, Li Q, Chen KJ, Wang SN, Wang JM. Biomarkers for diagnosis of sepsis in patients with systemic inflammatory response syndrome: a systematic review and meta-analysis. Springerplus 2016;5:2091.
19. Levy MM, Evans LE, Rhodes A. The Surviving Sepsis Campaign bundle: 2018 update. Intensive Care Med 2018;44:925-8.
20. Northwick HA, Brunt LK, Mitchem KL, Chaloner C. Does lactate measurement performed on admission predict clinical outcome on the intensive care unit? A concise systematic review. Ann Clin Biochem 2012;49(PT 4):391-4.
21. Yamamoto T, Nishimura T, Kaga S, Uchida K, Tachibana Y, Esaki E, et al. Diagnostic accuracy of presepsin for sepsis by the new Sepsis-3 definitions. Am J Emerg Med 2019;37:1936-41.
22. Li S, Rong H, Guo Q, Chen Y, Zhang G, Yang J. Serum procalcitonin levels distinguish Gram-negative bacterial sepsis from Gram-positive bacterial and fungal sepsis. J Res Med Sci 2016;21:39.
23. Lippi G, Cervellin G. Can presepsin be used for screening invasive fungal infections? Ann Transl Med 2019;7:87.
24. Becker KL, Snider R, Nylen ES. Procalcitonin in sepsis and systemic inflammation: a harmful biomarker and a therapeutic target. Br J Pharmacol 2010;159:253-64.
25. Bateman RM, Sharpe MD, Jagger JE, Ellis CG, Solé-Violán I, López-Rodríguez M, et al. 36th International symposium on intensive care and emergency medicine: Brussels, Belgium. 15-18 March 2016. Crit Care 2016;20(Suppl 2):94.