Effect of Fucoxanthinol on Pancreatic Ductal Adenocarcinoma Cells from an N-Nitrosobis(2-oxopropyl)amine-initiated Syrian Golden Hamster Pancreatic Carcinogenesis Model

MASARU TERASAKI1,2, YUSAKU NISHIZAKA1, WATARU MURASE1, ATSUHITO KUBOTA1, HIROYUKI KOJIMA1,2, MARESHIGE KOJOMA1, TAKUJI TANAKA3, HAYATO MAEDA4, KAZU MIYASHITA5, MICHISHIRO MUTOH6 and MAMI TAKAHASHI7

1School of Pharmaceutical Sciences and 2Advanced Research Promotion Center, Health Sciences University of Hokkaido, Hokkaido, Japan;
3Department of Diagnostic Pathology and Research Center of Diagnostic Pathology, Gifu Municipal Hospital, Gifu, Japan;
4Faculty of Agriculture and Life Science, Hirosaki University, Aomori, Japan;
5Center for Industry-University Collaboration, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan;
6Department of Molecular-Targeting Prevention, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan;
7Central Animal Division, National Cancer Center, Tokyo, Japan

Abstract. Background/Aim: Fucoxanthinol (FxOH) is a marine carotenoid metabolite with potent anti-cancer activity. However, little is known about the efficacy of FxOH in pancreatic cancer. In the present study, we investigated the inhibitory effect of FxOH on six types of cells cloned from N-nitrosobis(2-oxopropyl)amine (BOP)-induced hamster pancreatic cancer (HaPC) cells. Materials and Methods: FxOH action and its molecular mechanisms were investigated in HaPC cells using flow-cytometry, comprehensive gene array, and western blotting analyses. Results: FxOH (5.0 μM) significantly suppressed the growth of four out of six types of HaPC cells. Moreover, FxOH significantly suppressed cell cycle, chemokine, integrin, actin polymerization, microtubule organization and PI3K/AKT and TGF-β signals, and activated caspase-3 followed by apoptosis and anoikis induction in HaPC-5 cells. Conclusion: FxOH may have a high potential as a cancer chemopreventive agent in a hamster pancreatic carcinogenesis model.

Pancreatic cancer is one of the most lethal cancers worldwide because it is treatment resistant and has aggressive potential for metastasis/invasion with resultant poor prognosis. From the GLOBOCAN 2018 estimates, 432,242 pancreatic cancer deaths occur per year (4.5% of total) (1), and the 5-year survival rate remains poor at 10% (2). Accumulating evidence suggests that aberrant network integrity of gene mutation, gene methylation, transcriptome, microRNA, non-coding RNA, proteome, tumor microenvironment, and immune cells are crucial for human pancreatic cancer development. In particular, highly carcinogenic point mutations in driver genes, such as KRAS, CDKN2A, TP53, and SMAD4, are observed in many specimens (3-7). Pancreatic intraepithelial neoplasia (PanIN) is a premalignant lesion in pancreatic carcinogenesis and has the stepwise progress graded as four types from mild to severe. KRAS, CDKN2A, TP53 and SMAD4 are somatically mutated in turn along with the malignant progression of PanIN, followed by the cancer progression (8).

N-nitrosobis(2-oxopropyl)amine (BOP)-treated Syrian golden hamsters are a chemical carcinogenesis model that represents human pancreatic cancer because it induces PanIN, and pancreatic ductal adenocarcinoma resembles human pancreatic cancer, which also includes similar genetic mutations such as in K-ras, CDKN2A, and SMAD4 (9). Therefore, the BOP-induced hamster pancreatic cancer...
model is a useful model to investigate the mechanism of carcinogenesis and in the identification of chemopreventive agents against pancreatic cancer. Several cancer prevention experiments using BOP-treated hamsters revealed that natural dietary materials, such as fermented brown rice, 4-methylthio-3-butenyl isothiocyanate, benzyl isothiocyanate, sulforaphane, green tea polyphenols, and β-carotene may be candidate cancer chemopreventive agents; however, the anti-cancer mechanisms involved remain elusive (10-13).

Fucocanthin (Fx) is a highly polar carotenoid that has a distinctive allene and a 5,6-monoepoxide. Fx predominantly accumulates in marine brown algae, some of which are used in foods. Dietary Fx is converted to its deacetylated form fucocanthinol (FxOH) mainly in the intestine of humans as well as in mice (14, 15).

To date, human interventional studies aimed at preventing cancer with Fx or FxOH have been limited. On the other hand, many reports have shown that Fx has anti-cancer activity in various cancers in vitro and in vivo (16-23). Regarding FxOH, it suppressed tumorigenesis in immunodeficient NOD-SCID mice (24). It also induced apoptosis in colon cancer cells and colon cancer stem-like spheroids through attenuation of integrin, mitogen-activated protein kinase (MAPK), nuclear factor-kB, phosphatidylinositol-3 kinase/protein kinase B (PI3K/AKT), peroxisome proliferator-activated receptor, signal transducers and activators of transcription (STAT), chloride intracellular channel 4 (CLIC4), and caspase signaling (25-28). These molecules are also involved in migration, invasion, epithelial-mesenchymal transition, and cell-cycle arrest. However, little information is available on the anti-cancer function of FxOH in pancreatic cancer.

Herein, we showed the apoptosis-inducing effect of FxOH on a cell line cloned from pancreatic ductal adenocarcinoma in a BOP-treated hamster and elucidated its molecular mechanisms.

**Materials and Methods**

*Chemicals.* All-trans-FxOH (purity, ≥98%) was extracted and purified from algal lipids by Dr. Hayato Maeda (Hiroasaki University, Japan). Anti-C-X-C chemokine receptor type 4 (CXCR4) and anti-CXCR7 antibodies were purchased from BioVision (Milpitas, CA, USA) and Novus Biologicals (Littleton, CO, USA), respectively. Anti-Akt (pan), anti-cyclin B1, anti-phosphorylated focal adhesion kinase [pFAK(Tyr397)], anti- integrin α5, anti-integrin β1, anti-integrin β4, and anti-caspase-3 antibodies were obtained from GeneTex (Irvine, CA, USA). Anti-cyclin D1, anti-pMEK1/2(Ser217/221), anti-pERK1/2(Thr202/Tyr204), anti-pAkt(Ser473), and anti-pAkt(Thr308) antibodies were from Cell Signaling Technology (Danvers, MA, USA). Anti-cyclin D2 and anti-integrin β8 antibodies were purchased from Bios Antibodies (Beijing, PR China) and R&D Systems (Minneapolis, MN, USA), respectively. Anti-pPaxillin (Tyr31) and anti-p53 antibodies were obtained from Novex (San Diego, CA, USA) and Thermo Scientific (Waltham, MA, USA), respectively. The cells were routinely maintained in Dulbecco’s modified Eagle medium (DMEM, Wako Pure Chemicals, Osaka, Japan) containing 10% heat-inactivated fetal bovine serum (FBS), 4 mM L-glutamine, 40,000 U/l penicillin, and 40 mg/l streptomycin. All other reagents and solvents used were of analytical grade.

*Establishment of cell lines.* Female Syrian golden hamsters (5-week-old, Japan SLC, Shizuoka, Japan) were acclimated for a week and injected subcutaneously with BOP (Nacalai Tesque, Kyoto, Japan) 4 times (on days 1, 3, 5, and 7) at a dose of 10 mg/kg body weight. CE-2 pellets (CLEA Japan, Shizuoka, Japan) were used as a standard diet, and 1 group of hamsters was fed Quick Fat pellets (QF) (CLEA Japan, Shizuoka, Japan). Hamsters were sacrificed with deep anesthesia at 38-90 weeks of age, and then the pancreas from each hamster was taken and part of the tumor collected. Most pancreatic tissue was placed in 10% formalin/phosphate-buffered saline for 2-3 days. Histopathologic diagnosis of pancreatic tissue in the hamster was performed by a highly proficient pathologist. The animal experiments were approved by the Institutional Guidelines for Animal Care and Use in the National Cancer Center Research Institute.

The tumor sections were minced using scissors and cultured in 5% FBS/RPMI-1640 (Wako Pure Chemicals, Osaka, Japan) medium in 24-well plates. When the cultured cells reached confluence, they were seeded in another dish (6-well plates), and then in a larger dish (100-mm in diameter). The established cell lines were designated hamster pancreatic cancer (HaPC)-1, -2, -3, -4, and -5 derived from a hamster given CE-2, and HaPC-6 from a hamster given QF.

*Cell viability assay.* HaPC-1–6 cells were adhered at a density of 5×10^4 cells/ml into a 24-well plate in 10% FBS/DMEM medium for 3.5 h. Cells were then incubated in 1% FBS/DMEM medium with FxOH (final concentrations, 1.0 and 5.0 μM) or vehicle alone [dimethylsulfoxide (DMSO)] for 1 day. Cell viability was determined using a WST-1 reagent assay. The absorbance was monitored using an ELISA reader at 450 nm (TECAN Japan, Tokyo, Japan).

*Cell cycle analysis.* HaPC-5 cells were adhered at a density of 5×10^4 cells/ml into 100-mm dishes in 10% FBS/DMEM medium for 3.5 h. Cells were then incubated in 1% FBS/DMEM medium with FxOH (final concentration, 5.0 μM) or vehicle alone (DMSO) for 2 days. The cells were trypsinized, fixed with 70% ethanol, and then treated with ribonuclease A (Nacalai Tesque, Kyoto, Japan). Nuclei in the cells were stained with propidium iodide (Sigma-Aldrich, St Louis, MO, USA), and the cells were suspended with 0.1% bovine serum albumin (BSA)/phosphate-buffered saline. The ratios of Sub-G1 (apoptosis-like cells), G1, S, and G2/M phases were determined using a FACSARia-III flow cytometer (BD Biosciences).

*Total RNA preparation.* HaPC-5 cells were adhered at a density of 5×10^4 cells/ml into 100-mm dishes in 10% FBS/DMEM medium for 3.5 h. Cells were then incubated in 1% FBS/DMEM medium with FxOH (final concentration, 5.0 μM) or vehicle alone (DMSO) for 1 day. Total RNA from HaPC-5 cells with or without 5.0 μM FxOH treatment was isolated using an RNeasy Mini Kit with RNase-Free DNase Set and QIAshredder (QIAGEN, Valencia, CA, USA) in accordance with the manufacturer’s instructions. The concentration of total RNA was measured using Nanodrop ND-1000 (NanoDrop, Wilmington, DE, USA). Subsequently, quantitation of total RNA was determined using an Agilent 2100 bioanalyzer.
Chalfont St. Giles, UK). The membrane was incubated in Tris-electroblotted onto a PVDF membrane (Amersham Bioscience, Rad, Hercules, CA, USA). Ten μg of protein was separated using a whole cell lysates was determined using the Bradford assay (Bioharvested and lysed in lysis buffer. The protein concentration in HaPC-5 cells with or without 5.0 μM FxOH treatment were was performed using a LightCycler ®Nano real-time PCR system (final concentration, 5.0 μM) or vehicle alone (DMSO) for 1 day. qPCR was performed as follows: initial denaturation for 5 min at 95°C, followed by 40 cycles of 15 s at 95°C and 45 s at 60°C. qPCR was performed using the g:Profiler tool (https://biit.cs.ut.ee/gprofiler), based on the gene ontology (GO) database (http://www.geneontology.org/).

Quantitative-polymerase chain reaction (qPCR). The cDNA was synthesized from total RNA using a High Capacity cDNA Reverse Transcription kit (Thermo Fisher Scientific, Waltham, MA). Gene primer and probe sequences were as follows: Ackr3-forward (5’-AGG TAG GTA TCA GGC AGA G-3’), Ackr3-reverse (5’-CAC CTC CAG CTA TAA GAA G-3’), glyceraldehyde-3-phosphate dehydrogenase (GAPDH)-forward (5’-GTT GGA ACC CAG TGC ATA GA-3’), GAPDH-reverse (5’-GOG TGT GAA CCA TGA CAA GT-3’), Ackr3 probe (5’-56-FAM/TGT GTG CTG CTT GGT GTG GTG CT/3lABkFQ/-3’) and GAPDH probe (5’-56-FAM/CTG CAC CAC ZEN/CTG GCT GAA ATG/3lABkFQ/-3’) (Integrated DNA Technologies, Coralville, IA). The cDNA template (10 ng), primers (final 500 pM)/probe (final 250 pM) sets (Integrated DNA Technologies, Coralville, IA, USA), PrimeTime Gene Expression Master Mix (Integrated DNA Technologies), and distilled water were mixed (total volume, 20 μl). qPCR was performed as follows: initial denaturation for 5 min at 95°C, followed by 40 cycles of 15 s at 95°C and 45 s at 60°C. qPCR was performed using a LightCycler®Nano real-time PCR system (Roche Diagnostics, Mannheim, Germany).

Western blotting. HaPC-5 cells were adhered at a density of 5×10^4 cells/ml in 100 mm dishes in 10% FBS/DMEM medium for 3.5 h. Cells were then incubated in 1% FBS/DMEM medium with FxOH (final concentration, 5.0 μM) or vehicle alone (DMSO) for 1 day. HaPC-5 cells with or without 5.0 μM FxOH treatment were harvested and lysed in lysis buffer. The protein concentration in whole cell lysates was determined using the Bradford assay (BioRad, Hercules, CA, USA). Ten μg of protein was separated using a sodium dodecyl sulfate-10% polyacrylamide gel. Gels were electroblotted onto a PVDF membrane (Amsershamb Bioscience, Chalfont St. Giles, UK). The membrane was incubated in Tris-buffered saline containing 0.1% polyoxyethylene (20) sorbitan monolaurate with 1% BSA (1% BSA/Tris-buffered saline containing 0.1% Tween 20 (TBS-T) at room temperature for 1 h, and probed with each of the primary antibodies (1:1,000 dilution) in 1% BSA/TBS-T at 4°C overnight. The membranes were then probed with horseradish peroxidase-conjugated anti-mouse or anti-rabbit secondary antibody (1:2,000 dilution) in 1% BSA/TBS-T at room temperature for 1 h. Protein bands were visualized using a chemiluminescence reagent (Millipore, Billerica, MA, USA).

Statistics analysis. All the values are expressed as the mean±standard error (SE). All differences were examined using the Student’s t-test or exact test with edgeR between two groups, and one-way ANOVA with Tukey–Kramer post-hoc tests for multiple comparisons. Significant differences were presented at \(p<0.05\), \(*p<0.01\) or exact p-values.

**Results**

Characterization of six types of pancreatic ductal adenocarcinoma cancers in BOP-treated hamster. Pathological findings revealed that several types of pancreatic cancers exist in BOP-treated hamsters. These were pathologically diagnosed as papillary adenocarcinoma, well differentiated tubular adenocarcinoma, moderately differentiated tubular adenocarcinoma, and poorly differentiated adenocarcinoma. These cells cloned from the six types of pancreatic adenocarcinomas were designated as HaPC-1–6 (Figure 1 and Table I).

**Effect of FxOH on cell growth in HaPC-1–6 cells.** The growth of HaPC-1, -4, -5, and -6 cells was significantly decreased in a dose-dependent manner by FxOH treatment. Little significant difference in the cell growth of HaPC-2 and -3 cells was observed with FxOH treatment. The percentages of cell growth (control 100%) were as follows: 1.0 μM FxOH, 89.8±2.8%; 5.0 μM FxOH, 88.3±2.0% in HaPC-1 cells; 1.0 μM FxOH, 97.4±6.0%; 5.0 μM FxOH, 85.6±1.7% in HaPC-6 cells; 1.0 μM FxOH, 82.5±2.8%; 5.0 μM FxOH, 76.6±2.2% in HaPC-5 cells; and 1.0 μM FxOH, 98.0±1.1%; 5.0 μM FxOH, 93.1±2.0% in HaPC-6 cells (Figure 2).

**Effect of FxOH on apoptosis induction and cell-cycle arrest in HaPC-5 cells.** Treatment of HaPC-5 cells with 5.0 μM FxOH showed drastic morphological changes from an elongated cell form to a thin spindle form (Figure 3A). Western blotting showed that cells in sub-G1 phase were significantly increased by 5.0 μM FxOH treatment: G 0/G1 phase, control cells, 65.8±0.1% and FxOH-treated cells, 71.7±0.4%; G 2/M phase, control cells, 32.3±2.0% in HaPC-5 cells. The ratio of HaPC-5 cells in each cell cycle phase was significantly changed by 5.0 μM FxOH treatment: G 0/G1 phase, control cells, 65.8±0.1% and FxOH-treated cells, 71.7±0.4%; G 2/M phase, control cells, 15.0±0.2% and FxOH-treated cells, 10.0±0.4%. The proportion of HaPC-5 cells in S phase did not significantly differ between control and FxOH-treated cells (Figure 3B).
Effect of FxOH on the transcriptome in HaPC-5 cells. Transcriptome alterations in HaPC-5 cells after 5.0 μM FxOH treatment for 1 day were investigated. As a result, volcano plots showed that the number of down-regulated genes was greater than that of up-regulated genes in both fold-change and p-value (Figure 4A). Heat maps were used to display one-way hierarchical clustering of the 1,213 genes that showed differences between the two groups (Figure 4B). Overall, 344 up-regulated and 869 down-regulated genes (total 1,213 genes) were altered in FxOH-treated HaPC-5 cells compared to control cells (Figure 4C). The top 16 GO terms for biological processes and 1 GO term for cellular components were significantly enriched in the 344 up-regulated genes. The genes in the GO terms on response to hormone (15 genes), taxis (13 genes), muscle tissue development (11 genes), and euchromatin (4 genes) were mainly associated with growth and inflammation, although few up-regulated genes involved in apoptosis induction were observed (Figure 5 and Table II). The genes for cellular response to hormone stimulus and chemotaxis are not shown in Table II, because the genes contained in these were similar for responses to hormone and chemotaxis, respectively. The top 20 GO terms for biological processes and cellular components and the top 12 GO terms for molecular function were significantly enriched in the 869 down-regulated genes. The GO terms for mitotic cell-cycle process (53 genes), cell surface (33 genes), supramolecular polymer (30 genes), supramolecular complex (30 genes), supramolecular fiber organization (33 genes), tubulin binding (21 genes), and microtubule binding

Table I. Pathological findings for six cell lines cloned from pancreatic ductal adenocarcinoma of BOP-initiated Hamster.

| Hamsterno. | Adenocarcinoma | Feature | Cell line\(^a\) |
|------------|----------------|---------|-----------------|
| 1          | 1              | Pap ADC\(^b\) >>> | HaPC-1 |
| 1          | 2              | Por     | HaPC-2 |
| 1          | 3              | Por >> Pap ADC | HaPC-3 |
| 1          | 4              | Por >> Tub2 | HaPC-4 |
| 1          | 5              | Tub2 >> Por | HaPC-5 |
| 2          | 6              | Tub2 >>> Tub\(^e\) | HaPC-6 |

BOP, N-Nitrosobis(2-oxopropyl)amine; HaPC, Hamster pancreatic cancer. \(^a\)Name of cell lines cloned from each pancreatic tumor. \(^b\)Pap ADC, papillary adenocarcinoma. \(^c\)Tub2, moderately differentiated tubular adenocarcinoma. \(^d\)Por, poorly differentiated adenocarcinoma. \(^e\)Tub1, well differentiated tubular adenocarcinoma.
(19 genes) were mainly correlated with many signals as follows: cell cycle, cell division, chemokine, cadherin, extracellular matrix, integrin, actin polymerization, microtubule organization, Ras, transforming growth factor beta (TGF-β) and wingless/integrated (Wnt). Moreover, a GO term for regulation of the MAPK cascade for biological processes was decreased by FxOH treatment (Figure 6, Tables III and IV).

Figure 2. Effects of fucoxanthinol (FxOH) on cell growth in pancreatic cancer HaPC-1–6 cells. HaPC-1-6 cells were treated with 1.0 and 5.0 μM FxOH for 1 day. Cell viability was measured using WST-1 reagent assay. The cell viability of control cells was set as 100%. Means±SE (n=6). *p<0.05 vs. control cells (vehicle only).

Figure 3. Effects of fucoxanthinol (FxOH) on apoptosis induction in pancreatic cancer HaPC-5 cells. HaPC-5 cells were treated with 5.0 μM FxOH for 2 days. (A) Phase contrast microscopy images. Bar, 200 μm. (B) Proportion of sub-G1 phase (apoptotic-like cells) and cells in each cell-cycle phase (G1, S and G2/M) in FxOH-treated and control HaPC-5 cells, which were evaluated using a FACSAtia-III flow cytometer are shown. Means±SE (n=3). **p<0.01.
Figure 4. Effects of fucoxanthinol (FxOH) on the transcriptome profile in HaPC-5 cells. HaPC-5 cells were treated with 5.0 μM FxOH for 1 day. Gene alterations between FxOH-treated HaPC-5 cells and control cells were analyzed using a next-generation sequencer NovaSeq 6000 system and sequencing control software (version 1.4.0). Levels of gene expression with ≥2.0 and ≤−2.0 -fold with cutoff p-value <0.05 in FxOH-treated HaPC-5 cells and control cells are presented as a sample with equivalently mixed mRNAs with triplicate experiments. (A) Volcano plots between the two groups. (B) Hierarchical clustering analysis for 1,213 genes with significant expression level differences between the two groups. (C) Number of up- (≥2.0-fold), and down-regulated (≤−2.0-fold) genes between the two groups. Yellow, up-regulated genes. Blue, down-regulated genes.

Figure 5. Gene ontology (GO) enrichment profiles of genes up-regulated by fucoxanthinol (FxOH) treatment in HaPC-5 cells. The functional interpretation of genes up-regulated by ≥2.0-fold and cutoff p-value <0.05 were performed using g:Profiler. The top 16 GO terms in more than four gene sizes are shown. (A) Sixteen GO terms in a biological process category. (B) One GO term in a cellular component category.
cells after 5.0 μM FxOH treatment for 1 day was evaluated. In FxOH-treated HaPC5 cells in comparison with that of control cells. cSignificant difference between HaPC5 cells with and without FxOH treatment.

Effect of FxOH on Ackr3 (Cxcr7) gene expression in HaPC-5 cells. The gene expression of Ackr3 (Cxcr7) in HaPC-5 cells after 5.0 μM FxOH treatment for 1 day was evaluated.

**Table II. Up-regulated genes in HaPC-5 cells treated with FxOH**.

| Gene symbol | Description | Fold<sup>b</sup> | p-Value<sup>c</sup> |
|-------------|-------------|-----------------|-----------------|
| **Response to hormone** | | | |
| Prkcq | Protein kinase C theta | 8.6 | 0.001 |
| Notch1 | Notch 1 | 7.4 | 0.026 |
| Socs2 | Suppressor of cytokine signaling 2 | 5.3 | <0.001 |
| Chem1 | Cholinergic receptor muscarinic 1 | 5.0 | 0.061 |
| Gdf15 | Growth differentiation factor 15 | 4.8 | <0.001 |
| Ly6g6d | Lymphocyte antigen 6 family member G6D | 4.3 | 0.122 |
| Slit3 | Slit guidance ligand 3 | 3.8 | <0.001 |
| Met2c | Myocyte enhancer factor 2C | 3.3 | 0.148 |
| Nr1b4 | Nuclear receptor subfamily 1 group H member 4 | 3.1 | 0.011 |
| Fibin | Fin bud initiation factor homolog (zebrafish) | 2.9 | 0.014 |
| Nr4a1 | Nuclear receptor subfamily 4 group A member 1 | 2.8 | 0.016 |
| Areg | Amphiregulin | 2.3 | 0.12 |
| Rorb | RAR related orphan receptor B | 2.3 | <0.001 |
| Spp1 | Secreted phosphoprotein 1 | 2.1 | <0.001 |
| Ddit4 | DNA damage inducible transcript 4 | 2.1 | <0.001 |
| **Taxis** | | | |
| Hoxb9 | Homeobox B9 | 11.1 | <0.001 |
| Prkcq | Protein kinase C theta | 8.6 | 0.001 |
| Notch1 | Notch 1 | 7.4 | 0.026 |
| LOC101840973 | Ephrin type-A receptor 7 | 4.2 | 0.022 |
| Tafs18 | TNF superfamily member 18 | 4.1 | <0.001 |
| Dysf | Dysferlin | 3.9 | <0.001 |
| Slit3 | Slit guidance ligand 3 | 3.8 | <0.001 |
| Ch25h | Cholesterol 25-hydroxylase | 3.3 | 0.104 |
| LOC101827575 | C-X-C motif chemokine 2-like | 3.1 | <0.001 |
| Hsd3b7 | Hydroxy-delta-5-steroid dehydrogenase, 3 beta- and steroid delta-isomerase 7 | 2.4 | <0.001 |
| Tbr1 | T-box, brain 1 | 2.3 | 0.068 |
| Il17ra | Interleukin 17 receptor A | 2.3 | <0.001 |
| Dcc | DCC netrin 1 receptor | 2.2 | 0.176 |
| **Muscle tissue development** | | | |
| Notch1 | Notch 1 | 7.4 | 0.026 |
| LOC101840643 | Cytochrome P450 26B1 | 3.8 | <0.001 |
| Mef2c | Myocyte enhancer factor 2C | 3.3 | 0.148 |
| Nup1 | Nuclear protein 1, transcriptional regulator | 3.2 | <0.001 |
| Nr4a1 | Nuclear receptor subfamily 4 group A member 1 | 2.8 | 0.016 |
| Aft3 | Activating transcription factor 3 | 2.3 | <0.001 |
| Ifrd1 | Interferon related developmental regulator 1 | 2.3 | <0.001 |
| Maff | MAF bZIP transcription factor F | 2.3 | <0.001 |
| Pparc-1a | PPARG coactivator 1 alpha | 2.2 | 0.004 |
| Ankrd2 | Ankyrin repeat domain 2 | 2.0 | 0.068 |
| Kdm6b | Lysine demethylase 6B | 2.0 | <0.001 |
| **Euchromatin** | | | |
| Nr5b4 | Nuclear receptor subfamily 1 group H member 4 | 3.1 | 0.011 |
| LOC101829141 | Histone H1.3 | 2.5 | 0.021 |
| LOC101826763 | Histone H1.2 | 2.4 | 0.095 |
| Ankrd2 | Ankyrin repeat domain 2 | 2.0 | 0.069 |

HaPC, Hamster pancreatic cancer; FxOH, fucoxanthinol. *Among all 1,213 genes significantly changed, up-regulated 43 genes classified to response to hormone, taxis, muscle tissue development and euchromatin in Gene Ontology (GO) term analysis are showed. Fold change of gene expression in FxOH-treated HaPC5 cells in comparison with that of control cells. Significant difference between HaPC5 cells with and without FxOH treatments by an exact test on edgeR.
Effect of FxOH on protein expressions in HaPC-5 cells. Based on the cell-cycle arrest and transcriptome analysis, the effect of FxOH on protein expression and activation in HaPC-5 cells was determined. FxOH treatment decreased the expression levels of cyclin D1, cyclin B1, CXCR7, integrin α5, pFAK(Tyr 397), pPaxillin(Tyr 31), pAKT(Ser 473), and pSmad2(Ser 465/467) and increased that of pERK1/2(Thr 202/Tyr 204) in HaPC-5 cells. Expression of cleaved caspase-3 (p17/p19), the active form of caspase-3, was increased in HaPC-5 cells after FxOH treatment. Little difference between FxOH-treated HaPC-5 cells and control cells was observed for cyclin D2, CXCR4, integrin β1, integrin β4, integrin β8, pAKT(Thr 308), AKT(pan), pMEK1/2(Ser 217/221), Smad2, pro-caspase-3, and p53 (Figure 8).

Discussion
The present study demonstrated that FxOH induced apoptosis in HaPC-5 cells through suppression of many...
Table III. Down-regulated genes in HaPC-5 cells treated with FxoOH	extsuperscript{2}.

| Gene symbol | Description | Fold \textsuperscript{b} | p-Value \textsuperscript{c} |
|-------------|-------------|--------------------------|--------------------------|
| Thsd4       | Kif22       | Spry1                    | Cdkn2d                   | Ncapg                     | Kif18a                   | E2f7                     | Ccne2                    | Nusap1                   | Cenpa                     | Anln                     | Pgm5                     |
|             | Kinesin family member 22 | Sprouty RTK signaling antagonist 1 | Cyclin dependent kinase inhibitor 2C | APC, WNT signaling pathway regulator | E2F transcription factor 7 | Cyclin A2 | Nucleolar and spindle associated protein 1 | Centromere protein A | Anillin actin binding protein | cAMP-dependent protein kinase inhibitor alpha | Proline and serine rich coiled-coil 1 | F-box protein 5 | Aurora kinase B | Checkpoint kinase 2 | Cytoskeleton associated protein 2 | BUB1 mitotic checkpoint serine/threonine kinase B | Epithelial cell transforming 2 | Extra spindle pole bodies like 1, separate | Polo like kinase 1 | Kinesin family member 2C | Suppressor APC domain containing 2 | ZW10 interacting kinetochore protein | Kinesin family member 20B | RAD51 paralog C | Cyclin dependent kinase 1 | Kinetochore localized astrin/SPAG5 binding protein | Forkhead box M1 | Thyroid hormone receptor interactor 13 | Transforming acidic coiled-coil containing protein 3 | Shugoshin 1 | Sperm associated antigen 5 | Cell division cycle associated 8 | Cell division cycle 20 | WD repeat domain 62 | Glycoprotein mb | S-phase kinase associated protein 2 | Centriole, cilia and spindle associated protein | NDC80, kinetochore complex component | Cell division cycle associated 5 | Pituitary tumor-transforming 1 | Structural maintenance of chromosomes 4 | Mitotic arrest deficient 2 like 1 | Kinesin family member 20A | NIMA related kinase 2 | Cyclin E2 | Kinesin family member 18A | Non-SMC condensin I complex subunit G | Cyclin dependent kinase inhibitor 2D | Sprouty RTK signaling antagonist 1 | TPX2 | Kinesin family member 22 | Collagen type I alpha 1 chain | Thrombospondin type 1 domain containing 4 | Phosphoglucomutase 5 |

\textsuperscript{a} Terasaki et al: Apoptosis Induction in Hamster Pancreatic Cancer Cells by Fucoxanthinol

\textsuperscript{b} Table III. Continued
Table III. Continued

| Gene symbol | Description                                                                 | Fold<sup>b</sup> | p-Value<sup>c</sup> |
|-------------|-----------------------------------------------------------------------------|------------------|---------------------|
| Fkbp1b      | FK506 binding protein 1B                                                   | -6.7             | <0.001              |
| Fbn1        | Fibrillin 1                                                                | -3.4             | <0.001              |
| Nusap1      | Nucleolar and spindle associated protein 1                                | -3.3             | <0.001              |
| Cryab       | Crystallin alpha B                                                         | -3.2             | <0.001              |
| Col4a6      | Collagen type IV alpha 6 chain                                             | -3.2             | <0.001              |
| Tubb3       | Tubulin beta 3 class III                                                   | -3.1             | <0.001              |
| Psrc1       | Proline and serine rich coiled-coil 1                                      | -2.8             | 0.001               |
| Ckap2       | Cytoskeleton associated protein 2                                           | -2.8             | <0.001              |
| Ptk1        | Polo like kinase 1                                                         | -2.7             | <0.001              |
| Kif2c       | Kinesin family member 2C                                                   | -2.7             | <0.001              |
| Cdk1        | Cyclin dependent kinase 1                                                  | -2.5             | <0.001              |
| Gise1       | G2 and S-phase expressed 1                                                 | -2.5             | <0.001              |
| Knstrn      | Kinetochoore localized astrin/SPAG5 binding protein                        | -2.5             | <0.0017             |
| Rac3        | Ras-related C3 botulinum toxin substrate 3                                | -2.5             | 0.070               |
| Bfsp2       | Beaded filament structural protein 2                                       | -2.5             | <0.001              |
| Lmbn1       | Lamin B1                                                                   | -2.4             | <0.001              |
| Krt80       | Keratin 80                                                                 | -2.4             | 0.095               |
| Synn        | Synemin                                                                    | -2.4             | <0.001              |
| Spag5       | Sperm associated antigen 5                                                  | -2.3             | <0.001              |
| Tube1       | Tubulin epsilon 1                                                          | -2.2             | <0.001              |
| Ccsap       | Centriole, cilia and spindle associated protein                            | -2.2             | <0.001              |
| Kif1c       | Kinesin family member C1                                                   | -2.2             | <0.001              |
| Cormil1     | Capping protein regulator and myosin 1 linker 1                            | -2.1             | <0.001              |
| Kif20a      | Kinesin family member 20A                                                  | -2.1             | <0.001              |
| Kif18a      | Kinesin family member 18A                                                  | -2.1             | <0.001              |
| Tpx2        | TPX2, microtubule nucleation factor                                         | -2.0             | <0.001              |
| Krt25       | Keratin 25                                                                 | -2.0             | <0.001              |
| Kif22       | Kinesin family member 22                                                   | -2.0             | <0.001              |
| Cellular component – supramolecular complex                                                                                     |
| Col11a1     | Collagen type I alpha 1 chain                                              | -15.0            | <0.001              |
| Thsd4       | Thrombospondin type 1 domain containing 4                                  | -11.5            | <0.001              |
| Pgm5        | Phosphoglucomutase 5                                                       | -8.4             | <0.001              |
| Fkbp1b      | FK506 binding protein 1B                                                   | -6.7             | <0.001              |
| Fbn1        | Fibrillin 1                                                                | -3.4             | <0.001              |
| Nusap1      | Nucleolar and spindle associated protein 1                                | -3.3             | <0.001              |
| Cryab       | Crystallin alpha B                                                         | -3.2             | <0.001              |
| Col4a6      | Collagen type IV alpha 6 chain                                             | -3.2             | <0.001              |
| Tubb3       | Tubulin beta 3 class III                                                   | -3.1             | <0.001              |
| Psrc1       | Proline and serine rich coiled-coil 1                                      | -2.8             | <0.001              |
| Ckap2       | Cytoskeleton associated protein 2                                           | -2.8             | <0.001              |
| Ptk1        | Polo like kinase 1                                                         | -2.7             | <0.001              |
| Kif2c       | Kinesin family member 2C                                                   | -2.7             | <0.001              |
| Cdk1        | Cyclin dependent kinase 1                                                  | -2.5             | <0.001              |
| Gise1       | G2 and S-phase expressed 1                                                 | -2.5             | <0.001              |
| Knstrn      | Kinetochoore localized astrin/SPAG5 binding protein                        | -2.5             | <0.001              |
| Rac3        | Ras-related C3 botulinum toxin substrate 3                                | -2.5             | 0.070               |
| Bfsp2       | Beaded filament structural protein 2                                       | -2.5             | <0.001              |
| Lmbn1       | Lamin B1                                                                   | -2.4             | <0.001              |
| Krt80       | Keratin 80                                                                 | -2.4             | 0.095               |
| Synn        | Synemin                                                                    | -2.4             | <0.001              |
| Spag5       | Sperm associated antigen 5                                                  | -2.3             | <0.001              |
| Tube1       | Tubulin epsilon 1                                                          | -2.2             | <0.001              |
| Ccsap       | Centriole, cilia and spindle associated protein                            | -2.2             | <0.001              |
| Kif1c       | Kinesin family member C1                                                   | -2.2             | <0.001              |
| Cormil1     | Capping protein regulator and myosin 1 linker 1                            | -2.1             | <0.001              |
| Kif20a      | Kinesin family member 20A                                                  | -2.1             | <0.001              |
| Kif18a      | Kinesin family member 18A                                                  | -2.1             | <0.001              |

Table III. Continued
Table III. Continued

| Gene symbol | Description                                                                 | Fold<sup>b</sup> | p-Value<sup>c</sup> |
|-------------|--------------------------------------------------------------------------------|------------------|---------------------|
| Tpx2        | TPX2, microtubule nucleation factor                                           | –2.0             | <0.001              |
| Krt25       | Keratin 25                                                                   | –2.0             | <0.001              |
| Kif22       | Kinesin family member 22                                                     | –2.0             | <0.001              |
| Col1a1      | Collagen type I alpha 1 chain                                                 | –15.0            | <0.001              |
| Thsd4       | Thrombospondin type 1 domain containing 4                                    | –11.5            | <0.001              |
| Sorbs2      | Sorbin and SH3 domain containing 2                                           | –10.0            | <0.001              |
| Edn1        | Endothelin 1                                                                  | –6.9             | <0.001              |
| Adams14     | ADAM metallopeptidase with thrombospondin type 1 motif 14                    | –5.5             | <0.001              |
| Wnt4        | Wnt family member 4                                                           | –4.8             | <0.001              |
| Cdh5        | Cadherin 5                                                                    | –4.1             | <0.001              |
| Apc         | APC, WNT signaling pathway regulator                                          | –3.4             | <0.001              |
| Ldbp2       | Latent transforming growth factor beta binding protein 2                     | –3.3             | <0.001              |
| Cryab       | Crystallin alpha B                                                            | –3.2             | <0.001              |
| Ctgf        | Connective tissue growth factor                                               | –3.1             | <0.001              |
| Tgfb2       | Transforming growth factor beta 2                                             | –3.1             | <0.001              |
| Efemp2      | EGF containing fibulin like extracellular matrix protein 2                   | –3.0             | 0.001               |
| Prsrc1      | Proline and serine rich coiled-coil 1                                         | –2.8             | 0.001               |
| Fbxo5       | F-box protein 5                                                               | –2.8             | <0.001              |
| Ckap2       | Cytoskeleton associated protein 2                                             | –2.8             | <0.001              |
| Prger4      | Prostaglandin E receptor 4                                                    | –2.7             | <0.001              |
| Kif2c       | Kinesin family member 2C                                                      | –2.7             | <0.001              |
| Pdgfra      | Platelet derived growth factor receptor alpha                                 | –2.6             | <0.001              |
| Phldb2      | Pleckstrin homology like domain family B member 2                             | –2.6             | <0.001              |
| Cdc42ep2    | CDC42 effector protein 2                                                      | –2.5             | <0.001              |
| Ldfr        | Low density lipoprotein receptor                                               | –2.5             | <0.001              |
| Pde4a       | Phosphodiesterase 2A                                                          | –2.4             | <0.001              |
| Loxl3       | Lysyl oxidase like 3                                                          | –2.3             | <0.001              |
| Kia1211     | KIAA1211 ortholog                                                             | –2.2             | <0.001              |
| Coro2b      | Coronin 2B                                                                    | –2.2             | <0.001              |
| Ccsap       | Centriole, cilia and spindle associated protein                               | –2.2             | <0.001              |
| P3h4        | Prolyl 3-hydroxylase family member 4 (non-enzymatic)                          | –2.2             | <0.001              |
| Carmil1     | Capping protein regulator and myosin 1 linker 1                               | –2.1             | <0.001              |
| Kif18a      | Kinesin family member 18A                                                     | –2.1             | <0.001              |
| LOC101839568| Cytochrome P450 1B1                                                           | –2.1             | 0.039               |
| Krt25       | Keratin 25                                                                    | –2.0             | <0.001              |
| Kif24       | Kinesin family member 24                                                      | –2.0             | <0.001              |
| Kif26a      | Kinesin family member 26A                                                     | –5.7             | <0.001              |
| Gsk2        | Growth arrest specific 2                                                      | –3.6             | 0.031               |
| Nupsap1     | Nucleolar and spindle associated protein                                      | –3.3             | <0.001              |
| Cep70       | Centrosomal protein 70                                                         | –3.0             | <0.001              |
| Prsrc1      | Proline and serine rich coiled-coil 1                                         | –2.8             | 0.001               |
| Prc1        | Protein regulator of cytokinesis 1                                            | –2.8             | <0.001              |
| Prkl        | Polo like kinase 1                                                            | –2.7             | <0.001              |
| Kif2c       | Kinesin family member 2C                                                      | –2.7             | <0.001              |
| Kif20b      | Kinesin family member 20B                                                     | –2.5             | <0.001              |
| Kif15       | Kinesin family member 15                                                       | –2.4             | <0.001              |
| Pde4b       | Phosphodiesterase 4B                                                          | –2.4             | <0.001              |
| Spaq5       | Sperm associated antigen 5                                                     | –2.3             | <0.001              |
| Mdm1        | Mdm1 nuclear protein                                                          | –2.3             | <0.001              |
| Ccsap       | Centriole, cilia and spindle associated protein                               | –2.2             | <0.001              |
| Kif18b      | Kinesin family member 18B                                                     | –2.2             | <0.001              |
| Kif2c       | Kinesin family member C1                                                      | –2.2             | <0.001              |
| Kif20a      | Kinesin family member 20A                                                     | –2.1             | <0.001              |
| Kif18a      | Kinesin family member 18A                                                     | –2.1             | <0.001              |
| Dpy26l2     | Dihydropyrimidinase like 2                                                    | –2.0             | <0.001              |
| Kif24       | Kinesin family member 24                                                      | –2.0             | <0.001              |
| Kif22       | Kinesin family member 22                                                      | –2.0             | <0.001              |

Molecular function – tubulin binding

| Kif26a      | Kinesin family member 26A                                                     | –5.7             | <0.001              |
| Gsk2        | Growth arrest specific 2                                                      | –3.6             | 0.031               |
| Nupsap1     | Nucleolar and spindle associated protein                                      | –3.3             | <0.001              |
| Cep70       | Centrosomal protein 70                                                         | –3.0             | <0.001              |
| Prc1        | Protein regulator of cytokinesis 1                                            | –2.8             | <0.001              |
| Prkl        | Polo like kinase 1                                                            | –2.7             | <0.001              |
| Kif2c       | Kinesin family member 2C                                                      | –2.7             | <0.001              |
| Kif20b      | Kinesin family member 20B                                                     | –2.5             | <0.001              |
| Kif15       | Kinesin family member 15                                                       | –2.4             | <0.001              |
| Pde4b       | Phosphodiesterase 4B                                                          | –2.4             | <0.001              |
| Spaq5       | Sperm associated antigen 5                                                     | –2.3             | <0.001              |
| Mdm1        | Mdm1 nuclear protein                                                          | –2.3             | <0.001              |
| Ccsap       | Centriole, cilia and spindle associated protein                               | –2.2             | <0.001              |
| Kif18b      | Kinesin family member 18B                                                     | –2.2             | <0.001              |
| Kif2c       | Kinesin family member C1                                                      | –2.2             | <0.001              |
| Kif20a      | Kinesin family member 20A                                                     | –2.1             | <0.001              |
| Kif18a      | Kinesin family member 18A                                                     | –2.1             | <0.001              |
| Dpy26l2     | Dihydropyrimidinase like 2                                                    | –2.0             | <0.001              |
| Kif24       | Kinesin family member 24                                                      | –2.0             | <0.001              |
| Kif22       | Kinesin family member 22                                                      | –2.0             | <0.001              |

417
genes and signal transduction pathways. This is the first study suggesting the anti-proliferating effect of FxOH on cell lines from a hamster pancreatic cancer model.

No associations between pathological findings and growth inhibition in FxOH-treated HaPC-1–6 were observed (Table I and Figure 2). However, FxOH significantly suppressed the growth of HaPC-1, -4, -5, and -6 cells among the six types of HaPC cells (Figure 2). Thus, we decided to elucidate the molecular mechanisms of the growth inhibitory effects using FxOH-treated HaPC-5 cells, which showed the highest growth inhibition. For example, 5.0 μM FxOH treatment significantly induced apoptosis in HaPC-5 cells with G1 phase arrest (Figure 3B).

Transcriptome analysis revealed that FxOH treatment significantly inhibited gene sets for cell cycle, cell division, chemokine, cadherin, extracellular matrix, integrin, actin polymerization, microtubule organization, and the pathways of the renin–angiotensin system, MAPK, TGF-β, and Wnt in HaPC-5 cells (Figure 6, Tables III and IV). On the other hand, the renin–angiotensin system, MAPK, TGF-β, and Wnt in related to cell cycle, chemokines, adhesion, apoptosis, and polymerization, microtubule organization, and the pathways of profiles, we confirmed alterations in the levels of proteins significantly inhibited gene sets for cell cycle, cell division, interleukin, and activation of the vascular endothelial growth

Table III. Continued

| Molecular symbol | Description | Fold b | p-Value c |
|------------------|-------------|--------|-----------|
| Kif26a | Kinesin family member 26A | -5.7 | <0.001 |
| G02 | Growth arrest specific 2 | -3.6 | 0.031 |
| Nasap1 | Nucleolar and spindle associated protein 1 | -3.3 | <0.001 |
| Psrc1 | Proline and serine rich coiled-coil 1 | -2.8 | 0.001 |
| Prc1 | Protein regulator of cytokinesis 1 | -2.8 | <0.001 |
| Ptk1 | Polo like kinase 1 | -2.7 | <0.001 |
| Kif2c | Kinesin family member 2C | -2.7 | <0.001 |
| Kif20b | Kinesin family member 20B | -2.5 | <0.001 |
| Kif15 | Kinesin family member 15 | -2.4 | <0.001 |
| Spag5 | Sperm associated antigen 5 | -2.3 | <0.001 |
| Mdm1 | Mdm1 nuclear protein | -2.3 | <0.001 |
| Ccsap | Centriole, cilia and spindle associated protein | -2.2 | <0.001 |
| Kif18b | Kinesin family member 18B | -2.2 | <0.001 |
| Kifc1 | Kinesin family member 1C | -2.2 | <0.001 |
| Kif20a | Kinesin family member 20A | -2.1 | <0.001 |
| Kif18a | Kinesin family member 18A | -2.1 | <0.001 |
| Dpyd2 | Dihydropyrimidinase like 2 | -2.0 | <0.001 |
| Kif24 | Kinesin family member 24 | -2.0 | <0.001 |
| Kif22 | Kinesin family member 22 | -2.0 | <0.001 |

HaPC, Hamster pancreatic cancer; FxOH, fucoxanthinol. aAmong all 1,213 genes significantly changed, down-regulated genes classified to biological process (1 gene ontology (GO) term), cellular component (3 GO terms) and molecular function (2 GO terms) in GO term analysis are showed. bFold change of gene expression in FxOH-treated HaPC5 cells in comparison with that of control cells. cSignificant difference between HaPC5 cells with and without FxOH treatments by an exact test on edgeR.
factor, PI3K/AKT, mammalian target or rapamycin, and MAPK pathways (31, 32). CXCR7 is highly expressed in both pancreatic cancer tissue and pancreatic cancer cell lines (33). This protein expression is positively associated with poor prognosis in pancreatic cancer patients (32, 34-36).

FxOH treatment also decreased the expression of integrin α5, and the activation of FAK and Paxillin, which are downstream regulators of integrins, in HaPC-5 cells (Figure 8). Anoikis is caspase-dependent apoptosis that happens after the detachment of cancer cells from the extracellular matrix via attenuation of integrin signaling along with the suppression of PI3K/AKT, MAPK, and TGF-β signals (37-39). Our previous studies demonstrated that Fx and FxOH induce anoikis in murine colorectal tissue and in colon cancer DLD-1 cells, respectively, through suppression of

Table IV. Down-regulated genes in HaPC-5 cells treated with FxOH.

| Cellular component – cell surface | Description | Fold^b | p-Value^c |
|----------------------------------|-------------|--------|-----------|
| Lipg                             | Lipase, G, endothelial type | –12.7  | <0.001    |
| Fut4                             | Fucosyltransferase 4        | –10.3  | <0.001    |
| Aspap                            | Alanyl aminopeptidase, membrane | –7.0   | <0.001    |
| Lyp                              | Lipopolysaccharide binding protein | –7.0   | <0.001    |
| Itgb8                            | Integrin subunit beta 8     | –5.8   | <0.001    |
| Fohl1b                           | Folate hydrolase 1B          | –5.0   | <0.001    |
| Adams9                           | ADAM metallopeptidase with thrombospondin type 1 motif 9 | –4.9   | 0.003     |
| Bgn                              | Biglycan                  | –4.2   | <0.001    |
| Cdl5                             | Cadherin 5                | –4.1   | <0.001    |
| Mxro8                            | Matrix remodeling associated 8 | –3.7   | <0.001    |
| Cxcr4                            | C-X-C motif chemokine receptor 4 | –3.5   | <0.001    |
| Abcc2                            | ATP binding cassette subfamily C member 2 | –3.5   | <0.001    |
| Pckx6                            | Proprotein convertase subtilisin/kexin type 6 | –3.4   | <0.001    |
| Adams7                           | ADAM metallopeptidase with thrombospondin type 1 motif 7 | –3.3   | <0.001    |
| Ephb6                            | EPH receptor B6            | –3.2   | <0.001    |
| Aqpl11                           | Aquaporin 11              | –3.2   | <0.001    |
| Salt2                            | Sulfatase 2                | –3.2   | <0.001    |
| Gpc4                             | Glypican 4                 | –2.7   | <0.001    |
| Itgb4                            | Integrin subunit beta 4    | –2.7   | <0.001    |
| Pdgfra                           | Platelet derived growth factor receptor alpha | –2.6   | <0.001    |
| Efrn5                            | Ephrin A5                  | –2.6   | <0.001    |
| Rto4r                            | Reticulin 4 receptor        | –2.6   | <0.001    |
| Ldtr                             | Low density lipoprotein receptor | –2.5   | <0.001    |
| Ptej                             | Protein tyrosine phosphatase, receptor type J | –2.3   | <0.001    |
| Vasa                             | Vasorin                    | –2.3   | <0.001    |
| Rgma                             | Repulsive guidance molecule family member a | –2.2   | <0.001    |
| Ackr3                            | Atypical chemokine receptor 3 | –2.1   | <0.001    |
| Sparc                            | Secreted protein acidic and cysteine rich | –2.1   | <0.001    |
| Csf1r                            | Colony stimulating factor 1 receptor | –2.0   | <0.001    |
| Ramp2                            | Receptor activity modifying protein 2 | –2.0   | 0.017     |
| Rtn4rl1                          | Reticulin 4 receptor like 1 | –2.0   | <0.001    |

HaPC, Hamster pancreatic cancer; FxOH, fucoxanthinol. ^aAmong 1,213 genes with significantly changed in expression levels, 32 down-regulated genes classified as cell surface among cellular components in the gene ontology term analysis are shown. ^bFold change in gene expression in FxOH-treated HaPC-5 cells in comparison with that of control cells. ^cSignificant difference between HaPC-5 cells with and without FxOH treatments using an exact test in edgeR.
integrin signals (25, 26). FxOH is also known to down-regulate many cytoskeletal genes in HaPC-5 cells (Figure 6, Tables III and IV). Taking into consideration that integrins interact with the extracellular matrix and intracellular cytoskeleton, and promote migration/metastasis in cancer cells (40-42), it was suggested that FxOH may suppress firstly CXCR7 and integrin α5 on cellular membrane, and then alter the down-streams of PI3K/AKT, FAK/Paxillin, TGF-β and cell cycle signals, actin polymerization and microtubule organization in HaPC-5 cells, followed by apoptosis and anoikis inductions.

A previous study revealed the growth inhibition by Fx in a human pancreatic cancer MIA PaCa-2 cell (43). On the other hands, crocetinic acid, a carotenoid having two carboxylic acids, induced apoptosis in human pancreatic cancer MIA PaCa-2 cells and suppressed a tumorigenesis in the xenograft model mice by inhibiting EGFR and AKT pathways (44). Lycopene, a hydrophobic carotenoid, could induce apoptosis in human pancreatic cancer PANC-1 cells by inhibiting the activation of NF-κB signals through suppression of reactive oxygen species (45). Further studies are needed to elucidate the effects of FxOH in pancreatic cancer cells.

In conclusion, FxOH modified the expression levels of 1,213 genes and induced apoptosis in a pancreatic ductal adenocarcinoma HaPC-5 cell cloned from a pancreatic cancer hamster model. Moreover, the protein expression and activation levels of cyclin D1, cyclin B1, CXCR7, integrin α5, pFAK(Tyr397), pPaxillin(Tyr31), pAKT(Ser473), and pSmad2(Ser465/467), which play central roles in cell cycle, chemokine, adhesion, and TGF-β signals were significantly suppressed. Our findings suggested that FxOH may have
high potential as a cancer chemopreventive agent in a hamster pancreatic carcinogenesis model.

Conflicts of Interest

No conflicts of interest.

Authors’ Contributions

M. Terasaki conceived and designed the study and wrote the paper. M. Terasaki, Y.N., W. M., T. T. and M. Takahashi performed the experiments. A. K., H. K., M. K., H. M., K. M. and M. Takahashi reviewed and edited the manuscript. All Authors read and approved the final manuscript.

Acknowledgements

This work was supported in part by the Japan Society for the Promotion of Science KAKENHI (Grant Number 20K05879, 19H05652 and 19K07150).

References

1 Ferlay J, Colombet M, Soerjomataram I, Mathers C, Parkin DM, Piñeros M, Znaor A and Bray F: Estimating the global cancer incidence and mortality in 2018: GLOBOCAN sources and methods. Int J Cancer 144(8): 1941-1953, 2019. PMID: 30350310. DOI: 10.1002/ijc.31937
2 American Cancer Society: Cancer Facts and Figures 2020. American Cancer Society, Atlanta, GA USA. Available at: https://www.cancer.org/research/cancer-facts-statistics/all-cancer-facts-figures-2020.html [Last accessed on February 12, 2021]
3 Paleo F, Nicolle R, Blum Y, Cros J, Marisa L, Demetter P, Quertinmont E, Srvcak M, Elarouci N, Iovanna J, Franchimont D, Vcseti L, Galdon MG, Deviære J, de Reynies A, Laurent-Puig P, Van Laethem JL, Bachet JB and Marechal R: Stratification of pancreatic ductal adenocarcinoma based on tumor and microenvironment features. Gastroenterology 155(6): 1999-2013.e3, 2018. PMID: 30165049. DOI: 10.1053/j.gastro.2018.08.033
4 Cancer Genome Atlas Research Network. Electronic address: andrew_aguirre@dfci.harvard.edu. and Cancer Genome Atlas Research Network: Integrated Genomic Characterization of Pancreatic Ductal Adenocarcinoma. Cancer Cell 32(2): 185-203.e13, 2017. PMID: 28810144. DOI: 10.1016/j.ccell.2017.07.007
5 Bailey P, Chang DK, Nones K, Johns AL, Patch AM, Ginpras MC, Miller DK, Christ AN, Bruxner TJ, Quinn MC, Nourse C, Murtaugh LC, Harlilwong I, Idrisoglu S, Manning S, Nourbakhsh E, Wani S, Fink L, Holmes O, Chin V, Anderson MJ, Kazakoff E, Wani S, Leonard C, Newell F, Waddell N, Wood S, Xu Q, Wilson PJ, Cloonan N, Kassahn KS, Taylor D, Quek K, Robertson A, Fantano L, Mincarelli L, Sanchez LN, Evers L, Wu J, Finne M, Cowley MJ, Jones MD, Colvin EG, Nakajima H, Humphrey ES, Chantrill LA, Mawson A, Humphris J, Chou A, Pajic M, Scarlett CJ, Pinho AV, Giry-Laterri erre M, Roalman I, Samra JS, Kench JG, Lovell JA, Merrett ND, Toon CW, Epari K, Nguyen NQ, Barbour A, Zeps N, Morahan-Jones K, Jamieson NB, Graham JS, Duthie G, Oien K, Hair J, Grützmann R, Maitra A, Iacobuzio-Donahue CA, Wolfgang CL, Morgan RA, Lawlor RT, Corbo V, Bassi C, Russev B, Capelli P, Salvia R, Tortora G, Mukhopadhyay D, Petersen GM, Australian Pancreatic Cancer Genome Initiative., Munzy DM, Fisher WE, Karim SA, Eshleman JR, Hruban RH, Pilarsky C, Morton JP, Sansom OJ, Scarp a A, Musgrove EA, Bailey UM, Hofmann O, Sutherland RL, Wheeler DA, Gill AJ, Gibbs RA, Pearson JV, Waddell N, Biankin AV and Grimmond SM: Genomic analyses identify molecular subtypes of pancreatic cancer. Nature 531(7592): 47-52, 2016. PMID: 26909576. DOI: 10.1038/nature16965
6 Witkiewicz AK, McMillan EA, Balaji U, Baek G, Lin WC, Mansour J, Mollae M, Wagner KU, Koduru P, Yopp A, Choti MA, Yeo CJ, Moule P, White MA and Knudsen ES: Whole-exome sequencing of pancreatic cancer defines genetic diversity and therapeutic targets. Nat Commun 6: 6744, 2015. PMID: 25855536. DOI: 10.1038/ncomms7744
7 Jones S, Zhang X, Parsons DW, Lin JC, Leary RJ, Angenendt P, Mankoo P, Carter H, Kamiyama H, Jimeno A, Hong SM, Fu B, Lin MT, Calhoun ES, Kamiyama M, Walter K, Nikolskaya T, Nikolsky Y, Hartigan J, Smith DR, Hidalgo M, Leach SD, Klein AP, Jaffee EM, Goggins M, Maitra A, Iacobuzio-Donahue C, Eshleman JR, Kern SE, Hruban RH, Karchin R, Papadopoulos N, Parmigiani G, Vogelstein B, Velculescu VE and Kinzler KW: Core signaling pathways in human pancreatic cancers revealed by global genomic analyses. Science 321(5897): 1801-1806, 2008. PMID: 18772397. DOI: 10.1126/science.1164368
8 Cicenas J, Kvederaviciute K, Mesarite K, Mesarite-Kausiliene E, Skeberdyte A and Cicenas J: KRAS, TP53, CDKN2A, SMAD4, BRCA1, and BRCA2 mutations in pancreatic cancer. Cancers (Basel) 9(5): 42, 2017. PMID: 28452926. DOI: 10.3390/cancers9050042
9 Takahashi M, Mori M, Mutoh M, Wakabayashi K and Nakagama H: Experimental animal models of pancreatic carcinogenesis for prevention studies and their relevance to human disease. Cancers (Basel) 3(1): 582-602, 2011. PMID: 24212630. DOI: 10.3390/cancers3010582
10 Kuno T, Takahashi S, Tomita H, Hisamatsu K, Hara A, Hirata A, Kobayashi H and Mori H: Preventive effects of fermented brown rice and rice bran against N-nitrosobis-(2-oxopropyl)amine-induced pancreatic tumorigenesis in male hamsters. Oncol Lett 10(6): 3377-3384, 2015. PMID: 26788138. DOI: 10.3892/ol.2015.3809
11 Okamura T, Umemura T, Inoue T, Tatsuki M, Ishii Y, Nakamura Y, Park EY, Sato K, Matsu O, Okamoto S, Nishikawa A and Ogawa K: Chemopreventive effects of 4-methlythio-3-butenyl isothiocyanate (Raphasatin) but not curcinum against pancreatic carcinogenesis in hamsters. J Agric Food Chem 61(9): 2103-2108, 2013. PMID: 23387327. DOI: 10.1021/jf3003174
12 Kuroiwa Y, Nishikawa A, Kitamura Y, Sato K, Matsuo T, Okamoto S, Nishikawa A and Ogawa K: Chemopreventive effects of 4-methylthio-3-butenyl isothiocyanate (Raphasatin) but not curcinum against pancreatic carcinogenesis in hamsters. J Agric Food Chem 61(9): 2103-2108, 2013. PMID: 23387327. DOI: 10.1021/jf3003174
13 Majima T, Tsutsui M, Nishino H, Tsunoda T and Konishi Y: Inhibitory effects of beta-carotene, palm carotene, and green tea polyphenols on pancreatic carcinogenesis initiated by N-nitrosobis-(2-oxopropyl)amine in Syrian golden hamsters.
26 Terasaki M, Iida T, Kikuchi F, Tamura K, Endo T, Maeda H, Hamada J, Osada K, Miyashita K and Mutoh M: Glycine and succinic acid are effective indicators of the suppression of epithelial-mesenchymal transition by fucosanthenol in colorectal cancer stem-like cells. Oncol Rep 40(1): 414-424, 2018. PMID: 29693702. DOI: 10.3892/or.2018.6398

27 Yokoyama R, Kojima H, Takai R, Ohta T, Maeda H, Miyashita K, Mutoh M and Terasaki M: Effects of CLLC4 on fucosanthenol-induced apoptosis in human colorectal cancer cells. Nutrition and Cancer: 1-10, 2020. DOI: 10.1080/01635581.2020.1779760

28 Mei C, Zhou S, Zhu L, Ming J, Zeng F and Xu R: Anti-tumor effects of laminaria extract fucosanthenol on lung cancer. Mar Drugs 15(2): 39, 2017. PMID: 28212270. DOI: 10.3390/md15020039

29 Nomiyaama H, Osada N and Yoshie O: A family tree of vertebrate chemokine receptors for a unified nomenclature. Dev Comp Immunol 35(7): 705-715, 2011. PMID: 21295066. DOI: 10.1016/j.dci.2011.01.019

30 Huynh C, Dingemans J, Meyer Zu Schwabedissen HE and Sidharta PTN: Relevance of the CXCR4/CXCR7-CXCL12 axis and its effect in pathophysiological conditions. Pharmacol Res 161: 105092, 2020. PMID: 32758634. DOI: 10.1016/j.phrs.2020.105092

31 Guo JC, Li J, Zhou L, Yang JY, Zhang ZG, Liang ZY, Zhou WX, You L, Zhang TP and Zhao YP: CXCL12-CXCR7 axis contributes to the invasive phenotype of pancreatic cancer. Oncotarget 7(38): 62006-62018, 2016. PMID: 27542220. DOI: 10.18632/oncotarget.11330

32 Heinrich EL, Lee W, Lu J, Lowy AM and Kim J: Chemokine CXCL12 activates dual CXCR4 and CXCR7-mediated signaling pathways in pancreatic cancer cells. J Transl Med 10: 68, 2012. PMID: 22427349. DOI: 10.1186/1479-5876-10-68

33 Han F, Wang W, Yan J, Xiao L and Yang L: Prognostic significance of CXCR7 in cancer patients: a meta-analysis. Cancer Cell Int 18: 212, 2018. PMID: 30574021. DOI: 10.1186/s12935-018-0702-0

34 Terasaki M, Mima M, Kudoh S, Endo T, Maeda H, Hamada J, Osada K, Miyashita K and Mutoh M: Glycine and succinic acid are effective indicators of the suppression of epithelial-mesenchymal transition by fucosanthenol in colorectal cancer stem-like cells. Oncol Rep 40(1): 414-424, 2018. PMID: 29693702. DOI: 10.3892/or.2018.6398

35 Yokoyama R, Kojima H, Takai R, Ohta T, Maeda H, Miyashita K, Mutoh M and Terasaki M: Effects of CLLC4 on fucosanthenol-induced apoptosis in human colorectal cancer cells. Nutrition and Cancer: 1-10, 2020. DOI: 10.1080/01635581.2020.1779760

36 Mei C, Zhou S, Zhu L, Ming J, Zeng F and Xu R: Anti-tumor effects of laminaria extract fucosanthenol on lung cancer. Mar Drugs 15(2): 39, 2017. PMID: 28212270. DOI: 10.3390/md15020039
41 Ridley AJ, Schwartz MA, Burridge K, Firtel RA, Ginsberg MH, Borisy G, Parsons JT and Horwitz AR: Cell migration: integrating signals from front to back. Science 302(5651): 1704-1709, 2003. PMID: 14657486. DOI: 10.1126/science.1092053

42 Ali MRK, Wu Y, Tang Y, Xiao H, Chen K, Han T, Fang N, Wu R and El-Sayed MA: Targeting cancer cell integrins using gold nanorods in photothermal therapy inhibits migration through affecting cytoskeletal proteins. Proc Natl Acad Sci USA 114(28): E5655-E5663, 2017. PMID: 28652358. DOI: 10.1073/pnas.1703151114

43 Tsuboi M, Etoh H, Kato K, Nakatugawa H, Kato H, Maejima Y, Matsumoto G, Mori H, Hosokawa M, Miyashita K, Tokuda H, Suzuki N and Maoka T: Nitrocapsanthin and nitrofucoxanthin, respective products of capsanthin and fucoxanthin reaction with peroxynitrite. J Agric Food Chem 59(19): 10572-10578, 2011. PMID: 21899264. DOI: 10.1021/jf203493k

44 Rangarajan P, Subramaniam D, Paul S, Kwatra D, Palaniyandi K, Islam S, Harihar S, Ramalingam S, Gutheil W, Putty S, Pradhan R, Padhye S, Welch DR, Anant S and Dhar A: Crocetinic acid inhibits hedgehog signaling to inhibit pancreatic cancer stem cells. Oncotarget 6(29): 27661-27673, 2015. PMID: 26317547. DOI: 10.18632/oncotarget.4871

45 Jeong Y, Lim JW and Kim H: Lycopene Inhibits Reactive Oxygen Species-Mediated NF-ĸB Signaling and Induces Apoptosis in Pancreatic Cancer Cells. Nutrients 11(4), 2019. PMID: 30939781. DOI: 10.3390/nu11040762

Received January 8, 2021
Revised February 4, 2021
Accepted February 14, 2021