Conventional Pituitary Irradiation Is Effective in Lowering Serum Growth Hormone and Insulin-Like Growth Factor-I in Patients with Acromegaly

P. J. Jenkins, P. Bates, M. N. Carson, P. M. Stewart, and J. A. H. Wass, on behalf of the UK National Acromegaly Register Study Group

Departments of Endocrinology, St. Bartholomew’s Hospital (P.J.J.), London EC1A 7BE; Jersey Hospital (P.B.), Jersey JE2 3PL; Royal Infirmary (M.N.C.), Edinburgh EH16 4SA; Queen Elizabeth Hospital (P.M.S.), Birmingham B15 2TH; and Churchill Hospital (J.A.H.W.), Oxford OX3 7LJ, United Kingdom

Background: There has been recent controversy as to the effectiveness of conventional pituitary irradiation in reducing circulating GH levels to less than 2.5 ng/ml and/or normalization of serum IGF-I.

Objectives: Our objectives were to determine the effects of conventional pituitary irradiation on 1) lowering of serum GH and IGF-I levels, 2) the proportion of patients who achieve a GH level less than 2.5 ng/ml and a normal age-corrected IGF-I and the time taken to achieve this, and 3) the incidence of hypopituitarism and other adverse effects.

Design: We conducted retrospective data collection from 14 centers throughout the United Kingdom.

Patients: We studied 1840 patients with acromegaly, of whom 884 had received conventional pituitary irradiation.

Measurements: We assessed circulating GH and IGF-I levels and pituitary function at intervals after irradiation.

Results: Mean GH levels declined from 13.5 to 5.3 ng/ml at 2 yr after irradiation, to 2.0 ng/ml by 10 yr, and to 1.1 ng/ml at 20 yr. Twenty-two percent of patients achieved a level less than 2.5 ng/ml by 2 yr, 60% by 10 yr, and 77% by 20 yr. The interval to achieve this depended on the preirradiation GH level. IGF-I levels fell in parallel to those of GH with 63% of patients having a normal level by 10 yr. The proportions of patients with new pituitary hormone deficiencies 10 yr after irradiation were 18% for LH/FSH, 15% for ACTH, and 27% for TSH. No other side effects were noted.

Conclusions: In this, the largest series reported, conventional pituitary irradiation is shown to be an effective and safe means of reducing both serum GH and IGF-I concentrations in patients with acromegaly.

Acknowledgments.

First Published Online January 10, 2006

* For names of members of the UK National Acromegaly Register Study Group, see Acknowledgments.

JCEM is published monthly by The Endocrine Society (http://www.endo-society.org), the foremost professional society serving the endocrine community.
2.5 ng/ml and a normal age-corrected IGF-I and the time taken to achieve this, and 3) the incidence of hypopituitarism and other adverse effects.

Patients and Methods

Patients

Patient data have been retrospectively and prospectively collected from 14 centers throughout the United Kingdom. A standard pro forma has been used to enter data from review of individual case records from 1970–2004. At the time of this analysis, the records of 1840 patients with acromegaly had been entered on the UK National Register, of whom 884 patients had received pituitary irradiation. One hundred sixty-three patients were excluded from the analysis because irradiation had occurred before pituitary surgery or because they had been treated with pituitary irradiation on more than one occasion. Of the remaining patients, 44 who had received stereotactic radiotherapy, 13 who had received yttrium implants, and eight who had received unspecified forms of radiotherapy were also excluded. Of the remaining 656 patients who had received conventional external megavoltage pituitary irradiation, 193 had received irradiation but not pituitary surgery and 463 had undergone pituitary surgery before irradiation.

Pituitary irradiation

Precise details on the administration of external beam radiotherapy could not be obtained in all cases. Irradiation was delivered via a three-field technique to 400 (84%) of the 479 patients where this information was available. Total radiation dosage was recorded for 544 (83%) patients, and the median administered dose was 45 Gy, this being the dose administered in 358 (66%) of the cases. In only 63 cases (12%) did the total dose fall outside the range 40–50 Gy, the range being 10–55 Gy. The most common schedule for external beam fractionation was 45 Gy in 25 fractions (1.8 Gy per fraction) spread over 30–45 d. Where details of dosing schedules were available (472 patients, 72%), fraction doses fell outside the range 40–50 Gy, the range being 10–55 Gy. The median administered dose was 45 Gy, this being the dose that could not be obtained in all cases. Irradiation was delivered via a three-field technique to 14 centers throughout the United Kingdom. A standard frontal). GH (mean value from five serum samples taken at intervals through a single day over a 10-h period) and fasting plasma IGF-I levels are measured by in-house RIAs (coefficient of variation, <10%). A total of 159 patients have received pituitary irradiation, of which 144 (22% of the overall number of patients) fulfill the criteria for analysis of either GH (n = 144) or IGF-I (n = 39).

Statistics

All data are expressed as mean ± 95% unless otherwise stated. Changes in proportion of patients achieving target GH levels against time were assessed by χ² test for trend. Significance was taken as a P value of <0.05.

Results

Patients

The mean age at time of irradiation was 48 ± 12 yr (range, 14–80 yr). The median interval between surgery and irradiation was 198 d (range, 1 d to 22 yr; 5–95th percentile, 20 d to 7 yr), and the median duration of follow-up since irradiation was 7 yr (interquartile range, 3–13 yr), with 35% of patients being followed up for up to 5 yr, 26% up to 10 yr, 20% up to 15 yr, 10% up to 20 yr, and 9% for more than 20 yr.

GH

Among all patients, the mean serum GH level fell from a baseline value of 13.5 to 5.8 ng/ml at 2 yr (56.0% decrease), 3.3 ng/ml at 5 yr (74.4% decrease), 2.0 ng/ml at 10 yr (82.5% decrease), 1.4 ng/ml at 15 yr (88.2% decrease), and 1.1 ng/ml at 20 yr (92.7% decrease) (Fig. 1). Among all patients, 22% achieved a level of less than 2.5 ng/ml at 2 yr, 36% at 5 yr, 60% by 10 yr, 74% by 15 yr, and 77% by 20 yr (Fig. 2). A similar, but exaggerated fall also occurred in the 60 patients with a baseline GH level of more than 30 ng/ml; the mean level of 64.5 ng/ml decreased to 16.5 ng/ml at 2 yr (74.3% decrease), 6.2 ng/ml at 5 yr (90.4% decrease), 4.4 ng/ml at 10 yr (93.2% decrease), 2.3 ng/ml at 15 yr (96.4% decrease), and 0.9 ng/ml at 20 yr (98.5% decrease) (P < 0.0001 for trend).

The proportion of patients who achieved a safe GH level and the time to do so depended on the baseline GH level (Fig. 2). Thus, for patients with a preirradiation GH level of less than 10 ng/ml, 35, 49, 73, 88, and 100% achieved GH of less than 2.5 ng/ml by 2, 5, 10, 15, and 20 + years post irradiation respectively, compared with 11, 27, 51, 69, and 79% of patients with a preirradiation GH level of 10–30 ng/ml at the same time points and 10, 16, 48, 67, and 67%, respectively, of patients with a preirradiation GH level of more than 30 ng/ml (P < 0.0001) for all comparisons between groups. There was no influence of age or sex on GH decline.

Similar results were obtained from independent analysis of the largest single series of patients from one center, St. Bartholomew’s Hospital. The overall mean GH level was 12.5 ng/ml preirradiation and 5.6, 3.4, 2.1, and 1.8 ng/ml at 2, 5, 10, and 15 yr post irradiation, respectively, with levels less than 2.5 ng/ml occurring in 27, 33, 51, and 72% of patients at 2, 5, 10, and 15 yr post irradiation (P < 0.0001 for all comparisons between groups).

IGF-I

IGF-I levels fell in parallel with those of serum GH; the proportion of patients achieving an IGF-I level within the normal range increased steadily with time: 38% at 2 yr, 50%
at 5 yr, 63% at 10 yr, 56% at 15 yr, and 55% at 20+ yr (Fig. 3) \((P < 0.0001 \text{ for trend}) \). Similar results were seen in the patients from St. Bartholomew’s Hospital, with 46% having a normal IGF-I level at 5 yr and 59% at 10 yr after irradiation. Again, the proportion of patients with normal IGF-I levels at increasing time points after irradiation was influenced by basal GH levels; in those with basal GH levels less than 10 ng/ml, IGF-I levels were normal in 40, 50, 70, 67, and 100% of patients at 2, 5, 10, 15, and 20+ yr, respectively, post irradiation. In those with basal GH levels between 10 and 30 ng/ml, the respective figures were 25, 43, 41, 36, and 71%, and in those with basal GH levels more than 30 ng/ml, they were 0, 30, 50, 17, and 38% \((P < 0.0001 \text{ for all comparisons between groups}) \).

Fig. 1. Percentage of all patients achieving a serum GH level less than 2.5 ng/ml (bars) and the mean GH level (line) in the years after pituitary irradiation.

Fig. 2. The percentage of patients achieving a GH level of less than 2.5 ng/ml (bars) and the mean GH level (line) in the years after pituitary irradiation according to the baseline GH level.
Adverse effects

The proportion of patients with functioning pituitary axes declined with time (Fig. 4) \((P < 0.0001\) for trend for all axes), such that at 10 yr after irradiation, 58, 50, and 44% were deficient in LH/FSH, ACTH, and TSH, respectively. However, the proportion of patients with deficiencies before pituitary irradiation was 40, 35, and 17%, respectively. Among all patients, there were no cases of secondary intracranial tumor formation or visual impairment after irradiation.

Discussion

These data comprise the largest series of patients detailing the effects of pituitary irradiation in acromegaly. They confirm the efficacy of irradiation in lowering serum GH levels.

Fig. 3. The percentage of patients achieving a normal IGF-I level in the years after pituitary irradiation, grouped according to the baseline GH level before irradiation. Note for some basal GH values, there was 0% with a normal IGF-I value and therefore no bar is visible.

Fig. 4. The proportion of patients with normally functioning pituitary axes after pituitary irradiation.
with a 50% decline in the first 2 yr, 75% by 5 yr, and a continuing fall thereafter. This evolving effect emphasizes the importance of long-term monitoring of these patients. It is interesting that a more rapid rate of decline in GH values occurred in those patients with the highest baseline GH secretion, an effect that might be related to the large size of the tumors. Although a number of previous studies have also demonstrated that pituitary irradiation reduces serum GH values, the majority have involved small numbers of patients, especially with regard to long-term follow-up (12, 16–24). There are also differences in long-term ascertainment; a low rate of follow-up may reflect a selection bias toward those patients with poor outcome, and thus ongoing symptoms, because of high biochemical activity.

Differences in the definition of cure also hinder direct comparisons between series. The majority of early studies used a target GH level of less than 5 ng/ml as representing a satisfactory outcome (12, 16, 18, 20, 22). It is now generally accepted that a mean level of less than 2.5 ng/ml should be the aim because such a level is associated with restoration of mortality rates toward those of the nonacromegalic population (5).

These limitations have been overcome in the present study by first, the large number of patients; second, the prolonged duration of follow-up, up to 25 yr post irradiation; and third, more stringent criteria with regard to efficacy. Using these criteria, among all patients, almost 25% achieved a safe GH level at 2 yr and 60% by 10 yr with the proportion continuing to increase with further follow-up, so that by 20 yr, more than 75% of patients had safe GH levels. The current data have also confirmed that the single most important factor governing the eventual success of irradiation is the initial baseline serum GH level. Of those patients with a preirradiation level of less than 10 ng/ml, 88% achieved a level of less than 2.5 ng/ml at 15 yr compared with 67% of those with a baseline level of more than 30 ng/ml. The proportion of patients who received primary radiotherapy in this series is higher than might be expected with current management strategies, and the resulting high basal GH levels will have reduced the rate of GH normalization.

These data also clarify the effects of pituitary irradiation on serum IGF-I levels, with more than 60% of patients achieving a level within the normal range by 10 yr. Reasons for the slight discrepancy between the decline in IGF-I levels and the more impressive results of GH decline might reflect the maintenance of GH pulsatile secretion after irradiation, which is able to stimulate hepatic IGF-I production, even with a mean GH level of less than 2.5 ng/ml (25). Another possible explanation might relate to the increased proportion of female patients becoming estrogen deficient in the years after irradiation and the consequent increased hepatic IGF-I sensitivity to circulating GH. However, regardless of the precise explanation, our reported effects on IGF-I are in line with other recent reports (21, 22, 25, 26), which report normalization in 60–70% of patients by 10 yr and up to 85% by 15 yr. The marginally lower normalization rate in the present data may reflect the large number of patients with very elevated GH levels before irradiation. The reasons for the increased proportion of patients with normal IGF-I levels at 10 yr compared with 15 or 20 yr are likely to reflect the cross-sectional analysis of the available data at these time points. Unlike the GH data, there are insufficient subjects with sequential IGF-I levels at all these time points to allow a cohort study. Regardless, these studies and the present data are in contrast to those of another study in which there was little apparent effect on serum IGF-I with levels remaining elevated in 95% of patients at 10 yr post irradiation (15). However, this report was limited by the small number of patients, both at baseline and especially for prolonged follow-up, and wide differences between patients in the irradiation modalities, techniques, and doses.

The optimal objectives in the treatment of patients with acromegaly are now well established, comprising removal of the pituitary adenoma, restoration of normal GH secretion with preservation of remaining anterior pituitary function, and prevention of recurrence. Although transphenoidal surgery remains the first-line treatment for the majority of patients, its cure rate of between 40 and 80% according to the size of the tumor ensures that many patients will still require additional treatment. Furthermore, its success is also dependent on surgical expertise and should be performed only by experienced pituitary surgeons (27). The association between baseline GH levels and time to subsequent cure after irradiation demonstrates that even if not cured, the significant reduction in GH levels by surgery will improve the eventual efficacy of irradiation and decrease the interval to achieve a safe level. During this interval, persistent GH hypersecretion may require adjuvant medical therapy. Long-acting somatostatin analogs reduce serum GH levels to less than 2.5 ng/ml in approximately 50% of patients (11), but their drawbacks include cost, failure to treat the underlying disease, and long-term side effects, including an increased prevalence of gallstones (although these are usually asymptomatic). New therapies such as the GH receptor antagonist Pegvisomant may offer the hope of a more effective medical therapy, although their use has significant financial implications (28).

The reputed side effects of pituitary irradiation have long been regarded by some endocrinologists as arguing against its routine use. Such concerns include visual loss or deterioration, brain necrosis, secondary tumor formation, hypopituitarism, and neuropsychological damage. It is now clear that visual loss is extremely rare if the maximum daily radiation dosage is 2 cGy or less. There were no reported cases of visual deterioration after external beam radiotherapy in this series. A lack of visual disturbance was also reported in two other large series detailing the adverse effects of pituitary irradiation (29, 30). The incidence of secondary tumor formation after pituitary irradiation has been suggested to be 1–2% with prolonged follow-up (29). However, such studies are hampered by a lack of an adequate control population, and the discovery of incidental brain pathology in patients undergoing serial head imaging is a real possibility. Furthermore, those patients who do develop such tumors may have a predisposition to both a pituitary adenoma and intracranial tumor. Regardless of this, there were no cases of secondary intracranial tumor recorded among any patient in the present study. Although there is no doubt that irradiation does result in hypopituitarism, the varying sensitivities of the different hypothalamic-pituitary axes needs to be considered as does the prevalence of preexisting hypopituitar-
Radiotherapy and Acromegaly

Recent years single, high-dose, stereotactically delivered irradiation therapy has become available comprising either the γ-knife or multiple highly focused beams from a linear accelerator. By combining multiple, differently isocentered treatments, the dose distribution can be very accurately conformed to irregular targets. Although the use of these new techniques for pituitary tumors has their advocates, long-term efficacy data are lacking, and the published series have studied small numbers of patients. An early report on patients with acromegaly reported variable efficacy (35), although more recent data appear to suggest better results (36–40). However, additional long-term studies on large numbers of patients are necessary before firm conclusions can be drawn regarding the relative efficacy of stereotactic irradiation, the rate of decline of GH and IGF-I levels compared with conventional irradiation, and the side effects including hypopituitarism and its frequency and rate of onset.

In conclusion, this study has demonstrated that pituitary irradiation is an effective means of reducing not only serum GH but also IGF-I concentrations. It should be considered for patients with acromegaly who have persistent hypersecretion of GH after pituitary surgery, particularly in those not responsive to medical therapy. The preirradiation level will allow some prediction of the interval to achieve satisfactory post irradiation and thus the duration of medical therapy.

Acknowledgments

The contributors to the UK National Acromegaly Register are: J. S. Bevan, Aberdeen Royal Infirmary, Aberdeen; A. B. Atkinson, Royal Victoria Hospital, Belfast; M. C. Sheppard and P. M. Stewart, Queen Elizabeth Hospital, Birmingham; S. R. Peacey, Bradford Hospitals, NHS Trust, Bradford; C. M. Dayan, Royal Royal Infirmary, Bristol; K. Chatjerje, Addenbrooke’s Hospital, Cambridge; M. F. Scanlon, University Hospital of Wales, Cardiff; G. P. Leese, Ninewells Hospital, Dundee; A. W. Patrick, Edinburgh Royal Infirmary, Edinburgh; B. R. Walker, Western General Hospital, Edinburgh; B. Vadia, Royal Devon and Exeter Hospital, Exeter; J. M. C. Connell, Western Infirmary, Glasgow; S. L. Atkin, Hull Royal Infirmary, Hull; S. Orme, The General Infirmary at Leeds, Leeds; T. A. Howlett, Leicester Royal Infirmary, Leicester; J. P. Vora, Royal Liverpool University Hospital, Liverpool; P. J. Jenkins, J. P. Monson, A. B. Grossman, and S. L. Chew, St. Bartholomew’s Hospital, London; S. Aylwin, King’s College Hospital, London; P. Bouloux, Royal Free Hospital London, London; J. R. E. Davis, Manchester Royal Infirmary, Manchester; S. Shalet and P. J. Trainer, Christie Hospital, Manchester; R. A. James, Royal Victoria Infirmary, Newcastle; J. A. H. Wass, Churchill Hospital, Oxford; P. A. Vice and J. S. Howell, Royal Preston Hospital, Preston; R. Ross and J. Newell-Price, Northern General Hospital, Sheffield; R. C. Clayton, (Stoke) City General Hospital, Stoke; and P. Jennings, York Hospital, York. Data entry personnel included A. Booth, Aberdeen and Dundee; N. Brown and A. Alexander, Belfast; N. Holden and L. Jablonski, Birmingham; D. Wright, Bradford; M. Hunt and J. Taheri, Bristol; C. Holmes and E. Woods, Cambridge; T. Brown and S. Roberts, Cardif; M. Carson, Edinburgh; L. Goss and S. Revesz, Exeter; K. Campbell and D. Grant, Glasgow; B. Allan and S. Cleary, Hull; C. Spink, Leeds; T. Howlett, Leicester, M. Chapman, P. Corlett, B. Morton, and P. Whittingham, Liverpool; L. Conrich, C. Gaygon, and S. Owusu-Antwi, E. Stobie, and E. Walker-Scott, London (St. Bartholomew’s); J. Gilbert, London (Kings); C. Gaygon, London (The Royal Free); T. Drowley and C. Gibson, Manchester (MRI); M. Roberts, L. Smethurst, and C. Smith, Manchester (The Christie); J. Gebbie, P. Henderson, K. Johnstone, and A. Murphy, Newcastle; C. Cowshill and V. Fazal-Sanderson, Oxford; S. Parkinson, Preston; A. Doane, V. Ibbotson, and R. Lynch, Sheffield; M. Brown, Stoke; and E. Barry, York.

We are grateful to all of our colleagues who collected and entered data onto the Register. The UK National Acromegaly Register Study Group is grateful to Novartis Pharmaceuticals for their unconditional financial support.

References

1. Orme SM, McNally RJ, Cartwright RA, Belchetz PE 1998 Mortality and cancer incidence in acromegaly: a retrospective cohort study. J Clin Endocrinol Metab 83:2730–2734
2. Jenkins PJ, Besser M 2001 Clinical perspective: acromegaly and cancer: a problem. J Clin Endocrinol Metab 86:2935–2941
3. Bates AS, Van’t Hoff W, Jones JM, Clayton RN 1993 An audit of outcome of treatment in acromegaly. Q J Med 86:293–299
4. Swearingen B, Barker 2nd FG, Katznelson L, Biller BM, Grinspoon S, Klibanski A, Moayeri N, Black PM, Zervas NT 1998 Long-term mortality after transsphenoidal surgery and adjunctive therapy for acromegaly. J Clin Endocrinol Metab 83:3419–3426
5. Giustina A, Barkan A, Casanueva FF, Cavagnini F, Frohman L, Ho K, Veldhuis J, Wess J, Von Werder K, Melmed S 2000 Criteria for cure of acromegaly: a consensus statement. J Clin Endocrinol Metab 85:526–529
6. Sheaves R, Jenkins P, Blackbum P, Huneidi AH, Afsar F, Medbak S, Grossman AB, Besser GM, Wess JA 1999 Outcome of transsphenoidal surgery for acromegaly using strict criteria for surgical cure. Clin Endocrinol (Oxf) 45:407–413
7. Ahmed S, Elsheikh M, Stratton IM, Page RC, Adams CB, Wess JA 1999 Outcome of transsphenoidal surgery for acromegaly and its relationship to surgical experience. Clin Endocrinol (Oxf) 50:561–567
8. Bates PR, Carson MN, Wess JA, Surgical outcomes for acromegaly vary widely: a report on behalf of the UK National Acromegaly Study Group. Program of the 83rd Annual Meeting of The Endocrine Society, Denver, CO, 2001, p 331 (Abstract P2-179)
9. Lancranjan I, Atkinson AB 1999 Results of a European multicentre study with Sandostatin LAR in acromegalic patients. Sandostatin LAR Group. Pituitary 1:105–114
10. Turner HE, Vadivale A, Keenan J, Wess JA 1999 A comparison of lanreotide and octreotide LAR for treatment of acromegaly. Clin Endocrinol (Oxf) 51:275–280
11. Jenkins PJ 2000 The use of long-acting somatostatin analogues in acromegaly. Growth Horm IGF Res 10(Suppl B):S111–S117
12. Feek KM, McLelland J, Seth J, Toff AD, Irvine WJ, Padfield P, Edwards CR 1984 How effective is external pituitary irradiation for growth hormone-secreting pituitary tumors? Clin Endocrinol (Oxf) 20:401–408
13. Jenkins PJ, Plowman PN 2001 Radiotherapy for acromegaly. In: Wass JAH, ed. Handbook of acromegaly. Bristol, UK: BioScientifica; 65–76
14. Ciccarelli EC, Orsello SH, Plowman PN 1988 Prolonged lowering of growth hormone after radiotherapy in acromegalic patients followed over 15 years. In: Landolt AM, Heitz PU, Zapf J, Girard J, Del Pozo E, eds. Advances in pituitary adenoma research, advances in biosciences. Vol 69. Oxford, UK: Pergamon Press; 260–272
15. Barkan AL, Halasz I, Domfeldt KJ, Jaffe CA, Frieberg RD, Chandler WF, Sandler HM 1997 Pituitary irradiation is ineffective in normalizing plasma insulin-like growth factor I in patients with acromegaly. J Clin Endocrinol Metab 82:3187–3191
16. Roth J, Gordon P, Brace K 1970 Efficacy of conventional pituitary irradiation in acromegaly. N Engl J Med 282:1385–1391
17. Eastman RC, Gordon P, Roth J 1979 Conventional supervoltage irradiation is an effective treatment for acromegaly. J Clin Endocrinol Metab 48:931–940
18. Macleod AF, Clarke DG, Pambakian H, Lowy C, Sonksen PH, Collins CD 1989 Treatment of acromegaly by external irradiation. Clin Endocrinol (Oxf) 30:303–314
19. Thalassinos NC, Tsagarakis S, Ioannides G, Tzavara I, Papavasiliou C 1998 Megavoltage pituitary irradiation lowers but seldom leads to safe GH levels in acromegaly: a long-term follow-up study. Eur J Endocrinol 138:160–163
20. Goffman TE, Dewan R, Arakaki R, Gorden P, Oldfield EH, Glastine E 1992 Persistent or recurrent acromegaly. Long-term endocrinologic efficacy and neurologic safety of postsurgical radiotherapy. Cancer 69:271–275
21. Biermasz NR, Dulken HV, Roelfsema F 2000 Postoperative radiotherapy in acromegaly is effective in reducing GH concentration to safe levels. Clin Endocrinol (Oxf) 53:321–327
22. Powell JS, Wardlaw SL, Post KD, Freda PU 2000 Outcome of radiotherapy for acromegaly using normalization of insulin-like growth factor I to define cure. J Clin Endocrinol Metab 85:2068–2071
23. Epaminonda P, Porretti S, Cappiello V, Bresolin A 2001 Efficacy of radiotherapy in normalizing serum IGF-I, acid-labile subunit (ALS) and IGFBP-3 levels in acromegaly. Clin Endocrinol (Oxf) 55:183–189
24. Gutt B, Hatzack C, Morrison K, Pollinger B, Schopohl J 2001 Conventional pituitary irradiation is effective in normalising plasma IGF-I in patients with acromegaly. Eur J Endocrinol 144:109–116
25. Barrande G, Pittino-Lungo M, Coste J, Ponvert D, Bertagna X, Rutten JP, Bertherat J 2000 Hormonal and metabolic effects of radiotherapy in acromegaly: long-term results in 128 patients followed in a single center. J Clin Endocrinol Metab 85:3779–3785
26. Biermasz NR, Van Dulken H, Roelfsema F 2000 Long-term follow-up results of postoperative radiotherapy in 36 patients with acromegaly. J Clin Endocrinol Metab 85:2476–2482
27. Clayton RN, Stewart PM, Wiss JA 1999 Pituitary surgery for acromegaly. Should be done by specialists. BMJ 319:588–589
28. Trainer PJ, Drake WM, Katsnelson L, Freda PU, Herman-Bonert V, van der Lely AJ, Dimaraki EV, Stewart PM, Friend KE, Vance ML, Besser GM, Scarlett JA, Thormer MO, Parkinson C, Klibanski A, Powell JS, Barkan AL, Sheppard MC, Masiomado M, Rose DR, Clemmons DR, Johansson G, Bengtsson BA, Stavrou S, Kleinberg DL, Cook DM, Phillips LS, Bidlingmaier M, Strasburger CJ, Hackett S, Zib K, Bennett WF, Davis RJ 2000 Treatment of acromegaly with the growth hormone-receptor antagonist pegvisomant. N Engl J Med 342:285–288
29. Bradin M, Ford D, Ashley S, Bliss JM, Crowley S, Mason M, Rajan B, Trapesh D 1992 Risk of second brain tumour after conservative surgery and radiotherapy for pituitary adenoma. BMJ 304:1343–1346
30. Jones A 1991 Radiation oncogenesis in relation to the treatment of pituitary tumours. Clin Endocrinol (Oxf) 35:379–397
31. Rosen T, Bengtsson BA 1990 Premature mortality due to cardiovascular disease in hypopituitarism. Lancet 336:285–288
32. Tomlinson JW, Holden N, Hills RK, Whealey K, Clayton RN, Bates AS, Sheppard MC, Stewart PM 2001 Association between premature mortality and hypopituitarism. West Midlands Prospective Hypopituitary Study Group. Lancet 357:425–431
33. Peace KA, Orme SM, Padayatty SJ, Godfrey HP, Belchetz PE 1998 Cognitive dysfunction in patients with pituitary tumour who have been treated with transfrontal or transsphenoidal surgery or medication. Clin Endocrinol (Oxf) 49:391–396
34. Ayuk J, Clayton RN, Holder G, Sheppard MC, Stewart PM, Bates AS 2004 Growth hormone and pituitary radiotreatement, but not serum insulin-like growth factor-I concentrations, predict excess mortality in patients with acromegaly. J Clin Endocrinol Metab 89:1613–1617
35. Thoren M, Rahn T, Guo WY, Werner S 1991 Stereotactic radiosurgery with the cobalt-60 gamma unit in the treatment of growth hormone-producing pituitary tumors. Neurosurgery 29:663–668
36. Pollock BE, Kondziolka D, Lunsford LD, Flickinger JC 1994 Stereotactic radiosurgery for pituitary adenomas: imaging, visual and endocrine results. Acta Neurochir Suppl (Wien) 62:23–28
37. Park YG, Chang JW, Kim EY, Chung SS 1996 Gamma knife surgery in pituitary microadenomas. Yonsei Med J 37:165–173
38. Landolt AM, Haller D, Lomax N, Scheib S, Schubiger O, Siegfried J, Wells G 1998 Stereotactic radiosurgery for recurrent surgically treated acromegaly: comparison with fractionated radiotherapy. J Neurosurg 88:1002–1008
39. Attanasio R, Epaminonda P, Motto E, Giugni E, Ventrella L, Cozzi R, Farabola M, Loli P, Beck-Peccoz P, Arosio M 2003 Gamma-knife radiosurgery in acromegaly: a 4-year follow-up study. J Clin Endocrinol Metab 88:3105–3112
40. Castinetti F, Taieb D, Kuhn JM, Chanson P, Tamura M, Jaquet P, Conte-Devolx B, Regis J, Dufour H, Brue T 2005 Outcome of gamma knife radiosurgery in 82 patients with acromegaly: correlation with initial hypersecretion. J Clin Endocrinol Metab 90:4483–4488

JCEM is published monthly by The Endocrine Society (http://www.endo-society.org), the foremost professional society serving the endocrine community.