Identification of three Asian Hediste species (Polychaeta: Nereididae) by PCR-RFLP analysis of the mitochondrial 16S rRNA gene

Hiroaki Tosui¹ & Masanori Sato²*

¹ Department of Chemistry and Bioscience, Faculty of Science, Kagoshima University, Kagoshima 890–0065, Japan
² Department of Earth and Environmental Sciences, Faculty of Science, Kagoshima University, Kagoshima 890–0065, Japan

Received 18 September 2007; Accepted 27 November 2007

Abstract: An easy polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) analysis was designed to identify the three morphologically similar nereidid polychaete species Hediste atoka, Hediste diadroma and Hediste japonica which often dominate in estuarine macrobenthic fauna in eastern Asia. Restriction digestion analysis of the PCR products of the partial mitochondrial 16S rRNA gene (approximately 600 bp) of these three species, using EcoRV and TspEI endonucleases, generated species-specific restriction patterns. The PCR-RFLP method enables easy and accurate identification of the three Hediste species.

Key words: Hediste, polychaetes, 16S rRNA, PCR-RFLP, species identification

Hediste species (Nereididae, Polychaeta, Annelida) often dominate in macrobenthic fauna in shallow brackish waters in eastern Asia (Sato & Nakashima 2003), and therefore play an important role in the activity of nutrient cycling in an estuary ecosystem (Tsuchiya & Kurihara 1979, Sayama & Kurihara 1983, Kikuchi 1986, Iwamatsu et al. 2007). The Asian Hediste involves three morphologically similar species (Hediste atoka, Hediste diadroma and Hediste japonica), and these commonly coexist in the same place, forming a species complex (Sato & Nakashima 2003, Sato 2004, Hanafiah et al. 2006). Comparisons of their ecology, life history and other biological aspects render interesting insights to clarify the evolutionary significance of sympatric or parapatric occurrence of these closely related species. However, these studies have been difficult to do because the morphologies of the three species are so similar that their identification is not easy. The three species are clearly distinguishable by complete allele substitutions at several allozyme loci (e.g., lactate dehydrogenase), which are detectable by electrophoretic analysis (Sato & Masuda 1997, Sato & Nakashima 2003). However, the analysis needs plenty of fresh materials, and complicated procedures.

The present study was carried out to develop a simple, rapid and accurate method for identification of the three Hediste species by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) patterns of the partial mitochondrial 16S rRNA gene.

A total of 15 individuals of H. atoka, 13 individuals of H. diadroma and 10 individuals of H. japonica were examined. The collection sites in Japan are shown in Table 1 & Fig. 1. Mature worms of H. japonica and H. diadroma were collected with a scoop net during reproductive swarming near the water surface at night during the spring tides of the cold season. Mature and immature worms of H. atoka and immature worms of H. japonica were collected from sediment samples dug from intertidal flats within estuaries. Three species were morphologically identified for mature worms of all three species and immature worms of H. japonica according to the key of Sato & Nakashima (2003). H. atoka at the immature stage was identified by a diagnostic electrophoretic pattern of lactate dehydrogenase according to the method of Sato & Masuda (1997). The whole body or a part of the body of each fresh sample was frozen and stored at −50°C, or fixed in 99% ethanol and stored at −20°C prior to actual DNA isolation. The samples preserved in ethanol were placed in a PBS (phosphate-buffered saline) for 30 min before the DNA extraction. From both materials (frozen and ethanol-preserved), the same results were obtained.

Total DNA was extracted with the spin-column method (DNeasy Tissue kit, QIAGEN) using the middle part of worms 0.5–1.0 cm in length, following the DNeasy protocol for animal tissues. Polymerase chain reactions were performed using Platinum PCR SuperMix High Fidelity (Invitrogen) on a DNA Thermal Cycler 480 (PE Biosystems). Used as a primer pair were 16SbrH (CCGGTCTGAAGCTCAGTACGT) and 16SarL (CCGCTGTATGATCAAAAACAT), which were designed by Palumbi (1996). The cycling regimes were as fol-
lows: initial denaturation at 94°C for 3 min, followed by 34 cy-
clcles of strand denaturation at 94°C for 30 sec, annealing at
50°C for 30 sec and primer extension at 68°C for 90 sec, and
final 5-minute extension at 68°C.

An aliquot of the PCR products was withdrawn from each
tube and recovered by ethanol precipitation, then 1
m
DNA
digested by 2.5 U of
Eco
RV (TOYOBO, Japan) or
Tsp
EI (TOYOBO, Japan) at 37°C for 3 h. Then they were loaded into a 5%
polyacrylamide gel and electrophoresed in a mini slab gel
electrophoresis equipment at 100 V using Tris-borate-EDTA
(TBE) buffer and detected by staining with SYBR Gold nu-
cleic acid gel stain (Molecular Probes).

The amplified partial mitochondrial 16S rRNA gene before
enzyme digestion was estimated to be approximately 600 bp.
Restriction digestion analyses of the PCR product of the three
Hediste species generated species-specific restriction patterns
(Table 2 & Fig. 2). In EcoRV digestion, two fragments (ap-
proximately 330 bp and 190 bp) were produced for
H. atoka,
whereas no cleavage was observed for
H. diadroma
and
H. japonica.
In TspEI digestion, two well-defined fragments (ap-
proximately 260 bp, 100 bp and 60 bp) and several small fragments
below 60 bp were produced for
H. atoka
and
H. japonica.
The small prod-
ucts less than 60 bp digested by
Tsp
EI were not easily identi-
fied. All specimens of each species examined in the present
study showed species-specific patterns independing on their lo-
calities.

Table 1. Collecting data for three Hediste species.

Species	Collection	Date	Preservation (Sexual maturity)	Number of individuals
Hediste atoka	Takase-gawa River (1)	1 June 1992	frozen (M)	3
	Shinjo-gawa River (2)	3 June 1992	frozen (M)	3
	Kumano-gawa River (4)	3 January 1997	frozen (I)	3
	Omoi-gawa River (8)	26 September 1991	frozen (M)	1
	Kotsuki-gawa River (9)	23 February 2004	ethanol-fixed (M)	1
	Kotsuki-gawa River (9)	19 March 2004	ethanol-fixed (M)	3
	Kotsuki-gawa River (9)	3 April 2004	ethanol-fixed (M)	1
Hediste diadroma	Nanakita-gawa River (3)	26 April 1994	frozen (M)	2
	Ohashi-gawa River (5)	2 April 2007	frozen (M)	3
	Omuta-gawa River (7)	23 December 2003	ethanol-fixed (M)	1
	Omuta-gawa River (7)	21 January 2004	ethanol-fixed (M)	3
	Omoi-gawa River (8)	4 April 2004	ethanol-fixed (M)	2
	Kotsuki-gawa River (9)	23 February 2004	ethanol-fixed (M)	1
	Kotsuki-gawa River (9)	19 May 2004	ethanol-fixed (M)	1
Hediste japonica	Higashiyoga (6)	28 July 1995	frozen (I)	2
	Omuta-gawa River (7)	4 January 1999	ethanol-fixed (M)	1
	Omuta-gawa River (7)	23 November 2003	ethanol-fixed (M)	2
	Omuta-gawa River (7)	6 December 2003	ethanol-fixed (M)	3
	Omuta-gawa River (7)	11 December 2003	ethanol-fixed (M)	1
	Omuta-gawa River (7)	5 January 2004	ethanol-fixed (M)	1

*1 Numbers in parentheses correspond with numbers in Fig. 1.
*2 M: mature worms, I: immature worms.

Fig. 1. Collection sites of three Hediste species. Numbers on
the map correspond with Table 1. 1. Takase-gawa River (Aomori),
2. Shinjo-gawa River (Aomori), 3. Nanakita-gawa River (Miyagi),
4. Kumano-gawa River (Wakayama), 5. Ohashi-gawa River (Shi-
mane), 6. Higashiyoga (Saga), 7. Omuta-gawa River (Fukuoka),
8. Omoi-gawa River (Kagoshima), 9. Kotsuki-gawa River
(Kagoshima).
Actually, we could identify species-specific allozyme loci (Sato & Masuda 1997). In this aspect, the present method is superior to electrophoretic analysis of fixed materials such as gametes, larvae and juveniles. In this case, difficulty in species identification in adults was worked out using PCR-RFLP analyses. It has also been a useful tool for species identification in larvae of mussels (Côrte-Real et al. 1994), asteroids (Evans et al. 1998) and spiny lobsters (Chow et al. 2006).

Our data indicate that the PCR-RFLP method using EcoRV and TspEI restriction enzymes enable easy and accurate identification of the three sympatric morphologically similar Hediste species. The EcoRV digestion of the PCR products can distinguish H. atoka from the other two species, and the TspEI digestion of the PCR products can distinguish H. diadroma from the other two species.

The present method would be applicable to species identification by use of a small amount of freshly frozen or ethanol-fixed materials such as gametes, larvae and juveniles. In this aspect, the present method is superior to electrophoretic analysis of species-specific allozyme loci (Sato & Masuda 1997). Actually, we could identify H. atoka with a specimen immersed in 75% ethanol at room temperature for 17 years (data not shown).

References

Chow S, Suzuki N, Imai H, Yoshimura T (2006) Molecular species identification of spiny lobster phyllosoma larvae of the genus Panulirus from the northwestern Pacific. Mar Biotechnol 8: 260–267.

Côrte-Real HB, Holland PWH, Dixon DR (1994) Inheritance of nuclear DNA polymorphism assayed in single bivalve larvae. Mar Biol 120: 415–420.

Evans BS, White RWG, Ward RD (1998) Genetic identification of asteroid larvae from Tasmania, Australia, by PCR-RFLP. Mol Ecol 7: 1077–1082.

Hanafiah Z, Sato M, Nakashima H, Tosuji H (2006) Reproductive swarming of sympatric nereidid polychaetes in an estuary of the Omuta-gawa River in Kyushu, Japan, with special reference to simultaneous swarming of two Hediste species. Zool Sci 23: 205–217.

Table 2. Cleavage pattern shown by fragment sizes of PCR products of the partial mitochondrial 16S rRNA gene after digestion by one of two restriction enzymes. The size of each fragment was checked against a 100-bp DNA mass ladder.

Restriction enzyme	Species	H. atoka	H. diadroma	H. japonica
EcoRV		330 bp	600 bp	600 bp
		190 bp		
TspEI		260 bp	210 bp	260 bp
		100 bp	60 bp	100 bp
		60 bp	<60 bp*	60 bp
		<60 bp*		<60 bp*

* Several bands were observed.

PCR-RFLP is a useful tool to identify morphologically indistinguishable species. This method has been applied in taxonomic, ecological or biogeographic studies in such marine invertebrates as mussels (Heath et al. 1995, Toro 1998), scallops (López-Piñón et al. 2002), and pearl oysters (Masaoka & Kobayashi 2005). In these cases, difficulty in species identification in adults was worked out using PCR-RFLP analyses. It has also been a useful tool for species identification in larvae of mussels (Côrte-Real et al. 1994), asteroids (Evans et al. 1998) and spiny lobsters (Chow et al. 2006).

Heath DD, Rawson PD, Hiblish TJ (1995) PCR-based nuclear markers identify alien blue mussel (Mytilus spp.) genotypes on the west coast of Canada. Can J Fish Aquat Sci 52: 2621–2627.

Iwamatsu S, Suzuki A, Sato M (2007) Nereidid polychaetes as major diets for migratory shorebirds at estuarine tidal flats of Fujimae-higata in Japan. Zool Sci 24: 676–685.

Kikuchi E (1986) Contribution of the polychaete, Neanthes japonica (Izuka), to the oxygen uptake and carbon dioxide production of an intertidal mud-flat of the Nanakita River estuary, Japan. J Exp Mar Biol Ecol 97: 81–93.

López-Piñón MJ, Insua A, Méndez J (2002) Identification of four scallop species using PCR and restriction analysis of the ribosomal DNA internal transcribed spacer region. Mar Biotechnol 4: 495–502.

Masaoka T, Kobayashi T (2005) Species identification of Pinctada imbricata using intergenic spacer of nuclear ribosomal RNA genes and mitochondrial 16S ribosomal RNA gene regions. Fish Sci 71: 837–846.

Palumbi SR (1996) Nucleic acids II: The polymerase chain reaction. In: Molecular Systematics, second ed. (eds Hillis DM, Moritz C, Mable BK) Sinauer, Massachusetts, pp. 205–247.

Sato M (2004) Diversity of polychaetes and environments in tidal flats: A study on the Hediste species group (Nereididae). Fossils 76: 122–133 (in Japanese with English summary).

Sato M, Masuda T (1997) Genetic differentiation in two sibling species of the brackish-water polychaete Hediste japonica complex (Nereididae). Mar Biol 130: 163–170.

Sato M, Nakashima A (2003) A review of Asian Hediste species complex (Nereididae, Polychaeta) with descriptions of two new species and a re-description of Hediste japonica (Izuka, 1908). Zool J Linn Soc 137: 403–445.

Sayama M, Kurihara Y (1983) Relationship between burrowing activity of the polychaetous annelid, Neanthes japonica (Izuka) and nitrification-denitrification processes in the sediments. J Exp Mar Biol Ecol 72: 233–241.

Toro JE (1998) PCR-based nuclear and mtDNA markers and shell morphology as an approach to study the taxonomic status of the Chilean blue mussel, Mytilus chilensis (Bivalvia). Aquat Living Resour 11: 347–353.

Tsuchiya M, Kurihara Y (1979) The feeding habits and food sources of the deposit-feeding polychaete, Neanthes japonica (Izuka). J Exp Mar Biol Ecol 36: 79–89.