Identification of major constituents in Ephedra foliata Naturally Growing in Iraq by TLC, GC-MS and UPLC-ESI-MS/MS

Ahmed S. Khaleefa*1 and Maha N. Hamad**

* Ministry of Health and Environment, Baghdad, Iraq.
** Department of Pharmacognosy and Medicinal Plants, College of Pharmacy, University of Baghdad, Baghdad, Iraq

Abstract

The aerial part of Ephedra foliata Family Ephedraceae have long been used in traditional medicine and now Ephedra species have medicinal, ecological, and commercial value. The variety of pharmacological actions of this plant is due to its chemical constituents. Ephedrine and related alkaloids are the new potential medicinal value of Ephedra supplements for weight loss or performs an improvement. Other pharmacological actions like antibacterial and antifungal effects of the phenolic acid compounds, the immunosuppressive action of the polysaccharides, and the antitumor action of flavonoids. The genus of this plant wildly distributed throughout Asia, America, Europe, and North Africa. The study is aimed at screening the phytochemical constituents due to the importance of pharmacological actions of this plant. That is done by maceration the aerial part of Ephedra foliata with 80% ethanol for 9 days and fractionated by n-hexane, chloroform, ethyl acetate, and n-butanol. The n-hexane, chloroform, n-butanol fractions, and isolated compounds were analyzed by gas chromatography-mass spectrometry, thin layer chromatography; ultra-performance liquid chromatography coupled with electrospray ionization mass/ mass spectrometry. The various chromatographic and spectroscopic results indicate the presence of a different type of phytochemicals like ephedrine, 6-hydroxy kynurenic acid, vicenin 2 and quercetin 3-sophoroside-7-rhamnoside. These active constituents of Ephedra foliata have been identified play a crucial role in our life due to its pharmacological actions.

Keywords: Ephedra, Gas chromatography, Mass spectrometry, Ultra-performance liquid chromatography electrospray ionization mass/ mass, 6-hydroxy kynurenic acid.

Received: 14/10/2019
Accepted: 10/3/2020

DOI: https://doi.org/10.31351/vol29iss2pp48-61

*Corresponding author E-mail: ameerzayona88@gmail.com

Iraqi Journal of Pharmaceutical Science

48
For at least five thousand years, ephedra plants have been used in traditional medicines in which dry stems are used for symptoms derived from the common cold, flu, asthma, bronchitis, nasal congestion and hay fever\(^{(1)}\). The ephedra plant is also used for the treatment of arthritis, fever, hives, dyspnea, headache, joint and bone pain, wheezing and hypotension\(^{(2)}\). *Ephedra* corresponds to a genus of gymnosperms including over 50 species of tropical and subtropical, small, much-branched shrubs founds in the dry regions of both hemispheres\(^{(3)}\). It is related to the Gnetophyta division of gymnosperms plants and is related to the conifers\(^{(4)}\). The plant species are short, evergreen and virtually leafless shrubs that grow about (60 to 90 cm) tall. The stems are green in color, slender, erect, small ribbed and channeled, about (1.5 mm) in diameter and commonly terminating in a sharp point. Nodes are (4 to 6 cm) apart, and small triangular leaves appear at the stem nodes which are usually reddish brown\(^{(5)}\). These species grow in dry weather over wide parts of the Northern hemisphere including North America, Europe, North Africa, and Southwest and Central Asia\(^{(6)}\).

The chemical constituents and pharmacological actions of Ephedra species

The aerial parts of various plant species first of all, ephedrine-type alkaloids, usually have from (0.02% to 3.4%) of six optically active alkaloids as shown in Figure 1.\(^{(7)}\) Ephedrine (EPH) is the major one including 30–90% of the total alkaloids, \((+)-\text{Pseudoephedrine (PSE)}\), the diastereomer of \((-)-\text{EPH}\), \((-)-\text{N-Methylephedrine}\), \((-)-\text{Norephedrine}\), \((+)-\text{N-Methylpseudoephedrine}\) and \((+)-\text{Norpseudoephedrine}\)\(^{(7)}\). Secondly, non-ephedrine alkaloids and amino compounds in Ephedra species. Ephedroxane\(^{(8)}\), Ephedradine \(\alpha\)\(^{(9)}\), cyclopropyl-\(\alpha\)-amino acid\(^{(10)}\), maokonine\(^{(11)}\), 6-methoxykynurenic acid\(^{(12)}\), N-methylbenzylamine\(^{(13)}\), Tertmethylpyrazine\(^{(14)}\), and 6-hydroxykynurenic acid\(^{(10)}\). Thirdly, Miscellaneous Non-alkaloidal Natural Constituents of Ephedra: *trans*-cinnamic acid, catechin, syringin, epicatechin, symplocoside, kaempferol 3-\(O\)-rhamnose 7-\(O\)-glucoside, isovitexin 2-\(O\)-rhamnose, herbacetin 7-\(O\)-glucoside, and pollentin B and herbacetin 7-\(O\)-neohesperidoside \(\text{\cite{15}}\). *Ephedra* species have numerous pharmacological actions for instance anti-inflammatory due to the inhibition of prostaglandin E2 biosynthesis\(^{(8)}\), antibacterial and antifungal \(^{(16)}\), anti-cancer activity\(^{(17)}\)\(^{(18)}\), CNS stimulant and perhaps thermogenic effects \(^{(19)}\), antiviral activity\(^{(20)}\) and finally antioxidant and hepatoprotective activity\(^{(21)}\).

This study was designed to investigate the phytochemicals and their proportions of the aerial part of *Ephedra foliata* naturally growing plants in Iraq.

Figure 1. Ephedrine-type alkaloids

Material and methods

Collection of plant materials:

Ephedra foliata was collected during March – June 2018 from Tikrit province, Iraq. This plant was authenticated by Dr. Khansaa Rasheed / Iraq Natural History Research Center and Museum Plant and Environment Department / University of Baghdad. The stems and aerial parts were, dried in a shed, rendered into a coarse powder.

Extraction

Extraction by maceration then fractionation according to active constituents. About 650 grams of aerial part the powdered plant material was soaked in 2500 ml (1:7) 80% ethanol, with regular shaking, at room temperature. After 3 days, the ethanol extracts are filtered, repeat the process 3 times for 9 days. The filtrate was evaporated to dryness under vacuum using a rotary evaporator, to get dried extract. The dark greenish residue was suspended in 250ml H\(_2\)O and partitioned successively with n-hexane, chloroform, ethyl acetate, and n-butanol until reaching a clear layer for each fraction. The first three fractions are dried over anhydrous sodium sulfates, filtered, and evaporated to dryness.\(^{(22)}\)
Phytochemical investigation of chemical constituents of Iraq Ephedra foliata:
Preliminary identification by chemical test:
1-Test for alkaloids:
- Mayer’s reagent.
- Wagner’s reagent
2-Test for flavonoids
About 5% alcoholic potassium hydroxide is added and then a few drops of 5% hydrochloric acid are added.
3-Test for phenols
Few milligrams of ethanol plant extract are treated with few drops of 1% ferric chloride (23).

Purification of crude alkaloidal extract:
The chloroform fraction was acidified by adding hydrochloric acid (5%). This solution was then placed in a separatory funnel and partitioned with equal volume of chloroform (four times). The upper aqueous acidic layer was separated and basified with ammonium hydroxide (25% NH₄OH) to PH 10 using PH meter. After the basification process, the solution becomes warm and allowed to stand for 2 hours. Then partitioned with an equal volume of chloroform in a separatory funnel (three times). The chloroform layer was separated, dried with anhydrous sodium sulfate, filtered and evaporated under reduced pressure then tested with Dragendorff and Mayer’s reagents (24).

Isolation of some phytochemicals by using preparative TLC
Thin-layer chromatography was used to determine phytochemical compounds by using different solvent systems like chloroform; methanol (90: 1), Chloroform: acetone: formic acid (75: 16.5: 8.5) and Ethyl acetate: formic acid: acetic acid: water (80:5: 6: 10) for n-butanol fraction (25). While toluene-chloroform-ethanol-methanol (20:50:30:10), ethyl acetate-isopropanol-ammonia (100:2:1) and cyclohexane-ethanol-diethylamine (80:10:10) for chloroform fraction that were tried for identification to get the best separation and the largest number of spots (26).
- AS1 compound was isolated from n-butanol fraction using readymade preparative TLC silica gel GF254 plates and mobile phase Ethyl acetate: formic acid: acetic acid: water (80:5: 6: 10) (25). Detection of the AS1 compound was done by examination under UV light with wavelengths, 254 and 366 nm.
- AS2 compound tertiary amine alkaloid was isolated from purified chloroform fraction after basification using readymade aluminum oxide on TLC-glass plates and mobile phase toluene-chloroform-ethanol-methanol (20:50:30:10) (26). Detection of the AS2 compound was done using Dragedorff’s spray reagent is detected as a brown zone.

Identification of major constituents in Ephedra foliata
- The purity of each bands are verified by analytical TLC until a single point are obtained on the TLC plates for identification.

Identification and structural characterization of isolated compounds and phytochemicals in fractions were done by I-GC-MS analysis
The conditions used in the GC / MS analysis are compatible with the thermal desorption system (TD-20), GC / MSQP / 2010 Plus (Shimadzu, Japan) composed of an automatic sampler. The mass spectrometer instrument was connected. Column RTX-5MS (30 mm × 0.25 mm × 0.25 μm), operating in electronic printing mode at 70 eV. In this instrument, (99.99%) of helium gas is used as a carrier gas with a movement frequency (1.2 ml / min). The initial temperature of the column oven is 80 °C (isothermal for four minutes) with a constant increase from (5 °C / min to 310 °C), flow rate of (1.21 ml / min) and column pressure of 81, 7 kPa In the scanning interval of 0.50 s, the mass spectrum is prepared with a mass scan of (40to650) m/z (27).

II-Ultra performance liquid chromatography-electrospray ionization mass/ mass spectrometry (UPLC-ESI-MS/MS) analysis
Electrospray ionization mass spectrometry in negative and positive ions acquisition mode is performed in XEVO TQD triple quadruple instruments. Water Corporations, Milford, MA01757 USA UU. The sample solution (100 μg / ml) is prepared using high-performance liquid chromatography (HPLC) analytical grade methanol, the filtrate uses a membrane disk filter (0.2 μm), then subjected to LC / ESI / MS. The sample injection volume (10 μL) is injected into the UPLC instruments Equipped with C-18 reverse phase columns (ACQUITYS UPLC / BEH C18 Particle size of 1.7μm-2.1 ×50mm column). The mobile phase is prepared by filtration using a 0.2μm filter membrane disk and degassed by sonication before injections. The elution of the mobile phase is carried out with a flow rate of 0.2 ml per minute using a mobile gradient phase which includes two eluents: the eluent A is acidified in water with 0.1% of HCOOH and the eluent B is methanol acidified with 0.1% of HCOOH. The elution is performed using the gradient. The parameters for the analysis are performed using the negative ion mode as follow:150° C source temperature, 30eV cone voltage, 3kV capillary voltage, desolvation temperature about (440 °C, 50L / h) cone gas flow and desolvation gas flow of (900L / h)(28). Mass spectra are detected in electrospray ionization between m/z (100–1000). Peaks and spectra are processed using Maslynx (4.1) software and are tentatively identified by comparing their retention times and masses spectra with the reported data (27).
Results

Phytochemical investigation of chemical constituents of Ephedra foliata:

1-Preliminary identification by chemical test:

Various qualitative phytochemical screening tests were done to establish the chemical composition of each extract shown in Table1.

Phytochemical test	Type of phytochemical	Results
Mayer’s	Alkaloids	+
Wagner’s	Alkaloids	+
KOH	Flavonoids	+
Fecl3	Phenols	+

2-Thin layer chromatography TLC (analytical and preparative):

According to TLC results which are shown below A1 and A2 were found the best mobile phases for separation and isolation of AS1 and AS2 respectively as result shown below.

Figure 2. TLC for chloroform fraction before basify (1), after basify (2) and pseudoephedrine standard (S) developed with A2 solvent system, at 254 nm and after Dragedorff’s spray reagent.

Figure 3. preparative TLC for isolated AS2 from chloroform fraction after basify with developed the A2 solvent system with Dragendorff reagent.

Figure 4. TLC of n-butanol fraction before hydrolysis with different titration under UV 253nm and 366nm.
Figure 5. Preparative TLC of n-butanol fraction before hydrolysis with different titration under UV366 nm to isolate AS1.

Figure 6. Preparative TLC of n-butanol fraction before hydrolysis with different titration under UV 254 nm to isolate AS1.

3-Gas chromatography mass spectrometry GC/MS:
A. GC/MS of n-hexane fraction: identification of phytochemical compounds in n-hexane fraction by gas chromatography mass spectrometry.

Table 2. Compounds identified in n-hexane fraction by GC/MS.

NO. of Peaks	Retention time (R.t)	name	base peak
1	31.725	1-Octadecyne	41.00
2	34.885	n-Heptadecanol-1	43.10
3	34.948	Hexadecanoic acid, ethyl ester	88.05
4	35.966	Hexadecanoic acid, trimethylsilyl ester	73.00
5	38.430	1-Methyl-1-(2-tridecyl)oxy-1-silacyclopentane	143.15
6	38.681	1-Octadecene	43.05
7	44.870	Di-n-octyl phthalate	149.00
8	52.711	17-Pentatriacontene	43.00
9	56.446	gamma.-Sitosterol	43.05
10	59.144	Stigmast-4-en-3-one	43.00

B. GC/MS of chloroform fraction: identification of phytochemical compounds in chloroform fraction by gas chromatography mass spectrometry.
Figure 8. GC/MS for chloroform fraction.

Table 3. Compounds identified in chloroform fraction GC/MS

No. of peak	Retention time	Name	M.WT	Base peak
1	20.663	3,4-dimethyl-5-phenyl-2-oxazolidinone	191	57.05
2	20.958	1-Undecene	154	41.05
3	21.175	Ephedrine	165	58
4	24.257	Phenol, 3,5-bis(1,1-dimethylethyl)-	206	191.05
21	34.537	Aziridine, 1,2-dimethyl-3-phenyl-, trans	147	146
33	38.194	Linoleic acid ethyl ester	196	57.05
58	48.991	Squalene	410	69

C. GC/MS for isolated AS2: identification of isolated AS2 compound from chloroform fraction by gas chromatography mass spectrometry.

Figure 9. GC MS for isolated AS2 compound from chloroform fraction after basify.
Identification of major constituents in Ephedra foliata

Table 4. Isolated AS2 compound identified by GC-MS (29-30)

No. of peak	Retention time	Name	Area %	M.WT	Base peak
2	20.818	Ephedrine	80.7	165	58.05

4. Ultra-performance liquid chromatography electrospray ionization mass/ mass (UPLC-ESI-MS/MS):

Identification of the results from UPLC-ESI-MS/MS depended on molecular weight, retention time and mass fragmentation through different sites specialized in the identification and confirms the result of a search with previous studies.

A. UPLC for isolated AS2: identification of isolated AS2 compound from chloroform fraction by ultra-performance liquid chromatography

Figure 11. UPLC for isolated AS2 from chloroform fraction after basification.
Identification of major constituents in Ephedra foliata

Figure 12. First mass for isolated AS2 peak 1 at retention time 4.1 min with major molecular ion [M+H]^+ 166.093.

Figure 13. Mass fragmentations for isolated AS2 compound.

Table 5. UPLC ESI MS/MS for isolated AS2 compound

peak no. of MS	R.T	[M+H]	Peak no. of MS	R.T	Base peak	Name	Reference
1	4.1	166	14	3.93	148.0392	Ephedrine	(31-32)
Identification of major constituents in Ephedra foliata

Figure 14. Structural elucidations of AS2 fragmentations (31)(32).

B. UPLC for isolated AS1: identification of isolated AS1 compound from n-butanol fraction by ultra-performance liquid chromatography

Figure 15. UPLC for isolated AS1 compound from n-butanol fraction before hydrolysis at peak 3.

Figure 16. First mass for isolated AS1 compound peak 3 at retention time 3.92 min with major molecular ion [M-H] 204.0892
Identification of major constituents in Ephedra foliata

Figure 17. Mass fragmentation for isolated AS1 compound.

Table 6. UPLC ESI MS/MS for isolated AS1 compound

peak no. of MS¹	R.T¹	[M-H]	Peak no. of MS²	R.T²	Base peak	Name	Reference
3	3.92	204.0892	10	4.04	159.9218	6-hydroxykynurenic acid	(33-30-34-35)

Figure 18. Structural elucidations of AS2 fragmentations

C. UPLC n-butanol fraction: identification of phytochemical compounds in n-butanol fraction by ultra-performance liquid chromatography

Figure 19. UPLC for n-butanol fraction.
Identification of major constituents in Ephedra foliata

Table 7. Identified compounds by UPLC-ESI-MS/MS fragmentation of n-butanol fraction:

Peak no.	Compound name	Class	Rt.	M.W	MS¹ M-H	Rt.	MS/MS	References
6	vicenin 2	Flavonoid glycosides	7.29	594	593,19 31	7.58	593,575, 565,533, 503,475,459,445,431,38 2,353, 311,105,87,73	(36-37-38)
9	Quercetin 3-sophoroside-7-rhamnoside	Flavonoid glycosides	7.99	772	771,26 51	7.3	771,505,461,447,341,30 1,299,271,253,179,161,1 47,133,103,73,59,43	(39-40-41)
3	6-hydroxykynureninic acid	quinoline-2-carboxylic acid	3.32	205	204.08 92	3.8	204,176,159.9, 158,132,9,117.9	(33-34-35)
Identification of major constituents in Ephedra foliata

Discussion

Natural products have always been a preferred choice of all as it plays a great role in discovering new medicines. The Hexane fraction of the plant was investigated by GC-MS which revealed the presence of gamma-Sitosterol and Stigmast-4-en-3-one, the chromatogram showed peaks with retention times (56.446 and 59.114) respectively and corresponding to the molecular ion peaks in comparison with NIST database as shown in (Figure7, Table 2). The chloroform fraction of the plant was investigated by TLC, GC MS and UPLS-ESI- MS/MS which showed the presence of a different type of secondary metabolites like alkaloids and triterpene. AS2 compound isolated from chloroform fraction after basify by alumina TLC Plates investigated as ephedrine due to its acidity. The chloroform fraction of the plant was investigated by TLC, GC MS and UPLS-ESI- MS/MS which showed the presence of a different type of secondary metabolites like alkaloids and triterpene. AS2 compound isolated from chloroform fraction after basify by alumina TLC Plates investigated as ephedrine due to its acidity. The chloroform fraction of the plant was investigated by TLC, GC MS and UPLS-ESI- MS/MS which showed the presence of a different type of secondary metabolites like alkaloids and triterpene.

Conclusion

The results of the current study showed isolate ephedrine from chloroform fraction after purification. While 6-hydroxykynurenine acid presence in n-butanol fraction due to its acidity. The active components of E. foliata have been identified play a crucial role in our life due to its pharmacological actions.

References

1. Morton JF. Major medicinal plants: Botany, culture, and uses. Charles C. Thomas, Springfield, 1977;111-80.
2. Yakubu MT, Bilbis LS, Lawal M, Akanji MA. Evaluation of selected parameters of rat liver and kidney function following repeated administration of yohimbine. Biokemistri. 2003;15(2):50–6.
3. LaFeber W, Abbott B. America, Russia, and the Cold War, 1945-1975. Wiley; 1972.
4. Rydin C, Korall P. Evolutionary relationships in Ephedra (Gnetales), with implications for seed plant phylogeny. Int J Plant Sci. 2009;170(8):1031–43.
5. Blumenthal M, King P. Ma huang: ancient herb, modern medicine, regulatory dilemma. HerbalGram (USA). 1995;
6. Caveney S, Charlet DA, Freitag H, Maier-Stolte M, Starratt An. New Observations On The Secondary Chemistry Of World Ephedra (Ephedraceae). Am J Bot. 2001;88(7):1199–208.
7. Leung AY. Ephedrine, Ephedra, Mahuang, Mahuanggen-What are They. In: AHPA Ephedra international symposium, Arlington, VA. 1999.
8. Kasahara Y, Hikino H, Tsurufuji S, Watanabe M, Ohuchi K. Antiinflammatory actions of ephedrines in acute inflammations. Planta Med. 1985;51(04):325–31.
9. Hikino H, Kiso Y, Ogata M, Konno C, Aisaka K, Kubota H, et al. Pharmacological Actions of Analogues of Feruloylhistamine, an Imidazole Alkaloid of Ephedra RootsI. Planta Med. 1984;50(06):478–80.
10. Starratt AN, Caveney S. I .Quinoline -2-carboxylic acids from Ephedra species . Phytochemistry. 1996;42(5):1477–1478.
11. Tamada M, Endo K, Hikino H. Maokinine, hypertensive principle of Ephedra roots [drug plants]. Planta Medica (Germany, FR). 1978;
12. Nawwar MAM, Barakat HH, Buddrust J, Linscheidt M. Alkaloidal, lignan and phenolic constituents of Ephedra alata. Phytochemistry. 1985;24(4):878–9.
13. Chen AL, Stuart EH, Chen KK. The occurrence of methylbenzylamine in the extract of Ma Huang. J Am Pharm Assoc. 1931;20(4):339–45.
14. Khan IA, Abourashed EA. Leung’s encyclopedia of common natural ingredients: used in food, drugs and cosmetics. John Wiley & Sons; 2011.
15. Amakura Y, Yoshimura M, Yamakami S, Yoshida T, Wakana D, Hyuga M, et al. Characterization of phenolic constituents from Ephedra herb extract. Molecules. 2013;18(5):5326–34.
16. Khan A, Jan G, Khan A, Gul Jan F, Bahadur A,
Danish M. In vitro antioxidant and antimicrobial activities of Ephedra gerardiana (root and stem) crude extract and fractions. Evidence-Based Complement Altern Med. 2017;2017.

17. Oshima N. Efficient Preparation of Ephedrine Alkaloids-free Ephedra Herb Extract and Its Antitumor Effect and Putative Marker Compound. Yakugaku zasshi J Pharm Soc Japan. 2017;137(2):173–7.

18. Hyuga S, Hyuga M, Oshima N, Maruyama T, Kamakura H, Yamashita T, et al. Ephedrine alkaloids-free Ephedra Herb extract: a safer alternative to ephedra with comparable analgesic, anticancer, and anti-influenza activities. J Nat Med. 2016;70(3):571–83.

19. Murray MT. The Healing power of herbs: The enlightened person’s guide to the worders of medicinal plants. California, US: Prime Publishing; 1995.

20. Murakami T, Harada H, Suico MA, Shuto T, Suzu S, Kai H, et al. Ephedrae herba, a component of Japanese herbal medicine Mao-to, efficiently activates the replication of latent human immunodeficiency virus type I (HIV-1) in a monocytic cell line. Biol Pharm Bull. 2008;31(12):2334–7.

21. Al-Rimawi F, Abu-Lafi S, Abbadi J, Alamarneh AAA, Sawahreh RA, Odeh I. Analysis of phenolic and flavonoids of wild Ephedra alata plant extracts by LC/PDA and LC/MS and their antioxidant activity. African J Tradit Complement Altern Med. 2017;14(2):130–41.

22. Wu C, Wang F, Liu J, Zou Y, Chen X. A comparison of volatile fractions obtained from Lonicera macranthoides via different extraction processes: ultrasound, microwave, Soxhlet extraction, hydrodistillation, and cold maceration. Integr Med Res. 2015;4(3):171–7.

23. Gul R, Jan SU, Faridullah S, Sherani S, Jahan N. Preliminary Phytochemical Screening , Quantitative Analysis of Alkaloids , and Antioxidant Activity of Crude Plant Extracts from Ephedra intermedia Indigenous to Balochistan. 2017;2017(Figure 1).

24. Kumar S. Asian Journal of Pharmaceutical Science & Technology Alkaloidal Drugs - A Review. 2014;4(3):107–19.

25. Performance H. Chromatographic Fingerprint Analysis of Herbal Medicines. Vol. 5. Chromatographic Fingerprint Analysis of Herbal Medicines. 2011.

26. Edition S. “ SIS, Characterization of phenolic constituents from Ephedra herb extract.

27. Yang FQ, Li SP, Zhao J, Lao SC, Wang YT. Optimization of GC–MS conditions based on resolution and stability of analytes for simultaneous determination of nine sesquiterpenoids in three species of Curcuma rhizomes. J Pharm Biomed Anal. 2007;43(1):73–82.

28. Hassan WHB. Upc-Pda-Esi-Ms / Ms Analysis , Isolation Of Chemical Constituents , Cytotoxic , Antioxidant , Antiviral And Antimicrobial Activities Of The Aerial Parts Of Lycium Shawai. 2017;(October).

29. index @ webbook.nist.gov. Available from: https://webbook.nist.gov/30.

30. (+)-Ephedrine @ www.restek.com. Available from: https://www.restek.com/compound/view/321-98-2/(+)-Ephedrine

31. Bijlsma L, Sancho J V., Hernández F, Niessen WMA. Fragmentation pathways of drugs of abuse and their metabolites based on QTOF MS/MS and MS E accurate-mass spectra. J Mass Spectrom. 2011;46(9):865–75.

32. Fernández M del MR, Samyn N. Ultra-performance liquid chromatography- tandem mass spectrometry method for the analysis of amphetamines in plasma. J Anal Toxicol. 2011;35(8):577–82.

33. Macnicol PK. Isolation for 6-hydroxykynurenec acid from the tobacco leaf. Biochem J. 1968;107(4):473–9.

34. Shen Z, He K, Xu M, Zeng K, Pan J, Ou F, et al. Development and validation of a sensitive LC-MS/MS method for the determination of 6-hydroxykynurenec acid in rat plasma and its application to pharmacokinetics study. J Chromatogr B Anal Technol Biomed Life Sci. 2019;1116(February):44–50. Available from: https://doi.org/10.1016/j.jchromb.2019.03.033

35. HMDB003328 @ www.hmdb.ca .Available from: http://www.hmdb.ca/ metabolites / HMDB003328

36. index @ spectra.psc.riken.jp . Available from: http://spectra.psc.riken.jp/37.

37. Hassan WHB, Abdelaziz S, Al Yousef HM. Chemical Composition and Biological Activities of the Aqueous Fraction of Parkinsonia aculeata L. Growing in Saudi Arabia. Arab J Chem [Internet]. 2019;12(3):377–87. Available from: https://doi.org/10.1016/j.ajch.2018.08.003

38. Hussein SAM, Barakat HH, Nawar MAM, Willuhn G. Flavonoids from Ephedra aphylla. Phytochemistry. 1997;45(7):1529–32.

39. 536f34b50fc643530879518ec737d8d18ac49135 @ cfmid.wishartlab.com [Internet]. Available from: http://cfmid.wishartlab.com/queries/536f34b50fc643530879518ec737d8d18ac49135

40. Trapero A, Ahrazem O, Rubio-Moraga A, Jimeno ML, Gómez MD, Gómez-Gómez L. Characterization of a glucosyltransferase enzyme involved in the formation of kaempferol and quercetin sophorosides in Crocus sativus. Plant Physiol.
Identification of major constituents in Ephedra foliata

41. index @ cfmid.wishartlab.com [Internet]. Available from: http://cfmid.wishartlab.com/

42. Roy Jk, Price Jm. The identification of quinoline derivatives obtained from the urine of normal rabbits and swine. J Biol Chem. 1959;234:2759–63.