Triangular modular curves of low genus

Juanita Duque-Rosero

Joint work with John Voight

August 2022
Once upon a time, there were elliptic curves

We consider the Legendre family of elliptic curves

\[E_t : y^2 = x(x - 1)(x - t) \]

for a parameter \(t \neq 0, 1, \infty \).

- Cyclic covers of \(\mathbb{P}^1 \) branched at 4 points.
- Parametrization by the modular curve \(X(2) = \mathbb{P}^1 \).
- We can consider additional level structure.

Example: specify a cyclic \(N \)-isogeny \((X_0(N)) \) or an \(N \)-torsion point \((X_1(N)) \).
Generalizing elliptic curves

We consider the family of curves:

$$X_t : y^m = x^{e_0}(x - 1)^{e_1}(x - t)^{e_t}$$

with $t \neq 0, 1, \infty$.

- Cyclic covers of \mathbb{P}^1 that are branched at 4 points.
- X_t has a cyclic group of automorphisms of order m defined over $\mathbb{Q}(\zeta_m)$.
- Prym(X_t) an isogeny factor of Jac(X_t).

The family Prym(X_t) extends to a family of abelian varieties over \mathbb{P}^1.
Why triangular modular curves?

- [Cohen & Wolfart ’90, Archinard ’03]. The extension of the family $\text{Prym}(X_t)$ is parameterized by triangular modular curves.

- [Darmon ’04]. Darmon’s program: there is a dictionary between finite index subgroups of the triangle group $\Delta(a, b, c)$ and approaches to solve the generalized Fermat equation

$$x^a + y^b + z^c = 0.$$
Main theorem

Theorem [DR & Voight '22]

For any \(g \in \mathbb{Z}_{\geq 0} \) there are finitely many Borel-type triangular modular curves \(X_0(a, b, c; \mathfrak{p}) \) of genus \(g \) with nontrivial prime level \(\mathfrak{p} \). The number of curves \(X_0(a, b, c; \mathfrak{p}) \) of genus \(g \leq 2 \) are as follows:

- 56 curves of genus 0
- 130 curves of genus 1
- 180 curves of genus 2.

We have a similar result for \(X_1(a, b, c; \mathfrak{p}) \).
Triangle groups

Definition

Let $a, b, c \in \mathbb{Z}_{\geq 2} \cup \{\infty\}$. The triangle group is a group with presentation:

$$\Delta(a, b, c) := \langle \delta_a, \delta_b, \delta_c \mid \delta_a^a = \delta_b^b = \delta_c^c = \delta_a \delta_b \delta_c = 1 \rangle$$

We only consider hyperbolic triangles. This is the triple (a, b, c) is hyperbolic:

$$\chi(a, b, c) := \frac{1}{a} + \frac{1}{b} + \frac{1}{c} - 1 < 0$$
Let $a, b, c \in \mathbb{Z}_{\geq 2} \cup \{\infty\}$. The **triangle group** is a group with presentation:

$$\Delta(a, b, c) := \langle \delta_a, \delta_b, \delta_c \mid \delta^a_a = \delta^b_b = \delta^c_c = \delta_a \delta_b \delta_c = 1 \rangle$$

We only consider hyperbolic triangles. This is the triple (a, b, c) is hyperbolic:

$$\chi(a, b, c) := \frac{1}{a} + \frac{1}{b} + \frac{1}{c} - 1 < 0$$
Triangular modular curves
Construction

There is an embedding

\[\Delta \hookrightarrow \text{PSL}_2(\mathbb{R}) \]

That can be explicitly given by square roots, \(\sin(\pi/s) \) and \(\cos(\pi/s) \) for \(s \in \{a, b, c\} \).

A triangular modular curve TMC is given by the quotient

\[X(1) = X(a, b, c; 1) := \Delta \backslash \mathcal{H} \]
Triangular modular curves

Construction

There is an embedding

$$\Delta \hookrightarrow \text{PSL}_2(\mathbb{R})$$

That can be explicitly given by square roots, \(\sin(\pi/s)\) and \(\cos(\pi/s)\) for \(s \in \{a, b, c\}\).

A triangular modular curve TMC is given by the quotient

$$X(1) = X(a, b, c; 1) := \Delta \backslash \mathcal{H}$$
Level structure

Let p be a prime with $p \nmid 2abc$. We consider the number field

$$E = E(a, b, c) := \mathbb{Q} \left(\cos \left(\frac{2\pi}{a} \right), \cos \left(\frac{2\pi}{b} \right), \cos \left(\frac{2\pi}{c} \right), \cos \left(\frac{\pi}{a} \right) \cos \left(\frac{\pi}{b} \right) \cos \left(\frac{\pi}{c} \right) \right).$$

Let \mathfrak{p}/p be a prime of E. There is a homomorphism

$$\pi_{\mathfrak{p}} : \Delta \to \text{PXL}_2(\mathbb{Z}_E/\mathfrak{p}).$$

We can decide between PSL_2 and PGL_2 from the behavior of \mathfrak{p} in an extension of E.
Level structure

\[\pi_\mathfrak{p} : \Delta \to \text{PXL}_2(\mathbb{Z}_E/\mathfrak{p}). \]

The **principal congruence subgroup of level** \(\mathfrak{p} \) is:

\[\Gamma(\mathfrak{p}) := \ker \pi_\mathfrak{p} \leq \Delta. \]

The **TMC of level** \(\mathfrak{p} \) is:

\[X(\mathfrak{p}) = X(a, b, c; \mathfrak{p}) := \Gamma(\mathfrak{p}) \setminus \mathcal{H} \]

Note: we can extend this definition to primes \(\mathfrak{p} \) relatively prime to \(\beta(a, b, c) \cdot d_{F|E} \).
Isomorphic curves

Example. Consider the triples $(2,3,c)$ with $c = p^k$, $k \geq 1$ and $p \geq 5$ prime. Then

$$E_k := E(2,3,c) = \mathbb{Q}(\lambda_{2c}) = \mathbb{Q}(\zeta_{2c})^+.$$

The prime p is totally ramified in E so $\mathbb{F}_{p_k} \simeq \mathbb{F}_p$ for $p_k \mid p$. Thus

$$X(2,3,p^k; p_k) \simeq X(2,3,p; p_1).$$
Isomorphic curves

A hyperbolic triple \((a, b, c)\) is admissible for \(\mathfrak{p}\) if the order of \(\pi_\mathfrak{p}(\delta_s)\) is \(s\) for all \(s \in \{a, b, c\}\).

For the rest of this talk \((a, b, c)\) represents a hyperbolic admissible triple.
Let $H_0 \leq \text{PXL}_2(\mathbb{Z}_E / \mathfrak{p})$ be the image of the upper triangular matrices in $\text{XL}_2(\mathbb{Z}_E / \mathfrak{p})$.

$$\Gamma_0(\mathfrak{p}) = \Gamma_0(a, b, c; \mathfrak{p}) := \pi^{-1}_\mathfrak{p}(H_0).$$

We define the TMC with level \mathfrak{p}:

$$X_0(\mathfrak{p}) = X_0(a, b, c; \mathfrak{p}) := \Gamma_0(\mathfrak{p}) \backslash \mathcal{H}.$$

The maps to $X(1)$ are Belyi maps!

We can also construct $X_1(a, b, c; \mathfrak{p})$ and we get

$$X(\mathfrak{p}) \to X_1(\mathfrak{p}) \to X_0(\mathfrak{p}) \to X(1)$$
Ramification

Lemma. Let $G = \text{PXL}_2(\mathbb{F}_q)$ with $q = p^r$ for p prime. (a, b, c) is a hyperbolic admissible triple. Let $\sigma_s \in G$ have order $s \geq 2$ and if $s = 2$ suppose $p = 2$. Then the action of σ_s on G/H_0 has:

- orbits of length s and

\[
\begin{cases}
0 \text{ fixed points if } s | (q + 1), \\
1 \text{ fixed point if } s = p, \\
2 \text{ fixed points if } s | (q - 1).
\end{cases}
\]

In particular s must divide one between $q + 1, p, q + 1$ for all $s \in \{a, b, c\}$ and we understand the ramification of the cover

$$X_0(p) \to \mathbb{P}^1.$$
A bound on the number of TMCs of bounded genus

Theorem [DR & Voight ’22]. Let $g_0 \geq 0$ be the genus of $X_0(a, b, c; \mathfrak{p})$. Recall that $q := \# \mathbb{F}_\mathfrak{p}$. Then

$$q \leq \frac{2(g_0 + 1)}{|\chi(a, b, c)|} + 1.$$

In particular the number of TMCs $X_0(a, b, c; \mathfrak{p})$ of genus g_0 is finite.

We obtain an explicit formula for the genus

$$g(X_0(a, b, c; \mathfrak{p})).$$
A bound on the number of TMCs of bounded genus

Theorem [DR & Voight ’22]. Let $g_0 \geq 0$ be the genus of $X_0(a, b, c; \mathfrak{p})$. Recall that $q := \# \mathbb{F}_q$. Then

$$q \leq \frac{2(g_0 + 1)}{| - 1/42 |} + 1.$$

In particular the number of TMCs $X_0(a, b, c; \mathfrak{p})$ of genus g_0 is finite.

We obtain an explicit formula for the genus

$$g(X_0(a, b, c; \mathfrak{p})).$$
Enumeration algorithm

Main algorithm

Input: $g_0 \in \mathbb{Z}_{\geq 0}$.

Output: A list of $(a, b, c; p)$ such that $X_0(a, b, c; \mathfrak{p})$ has genus bounded by g_0 where \mathfrak{p} is a prime of $E(a, b, c)$ of norm p.

1. Generate a list of possible q values.
2. For each q find all q-admissible hyperbolic triples (a, b, c).
3. Compute the genus g of $X_0(a, b, c; \mathfrak{p})$ by checking divisibility.
4. If $g \leq g_0$ add $(a, b, c; p)$ to the list lowGenus.
Magma implementation

> time countBoundedGenus(100);
[56, 130, 180, 206, 232, 254, 245, 285, 289, 320, 298, 335, 308, 363, 329, 320,
362, 398, 309, 428, 365, 389, 398, 422, 366, 442, 412, 440, 392, 489, 353, 502, 430,
432, 467, 455, 402, 500, 461, 494, 417, 531, 369, 520, 469, 445, 491, 566, 438, 559,
459, 507, 485, 568, 472, 558, 485, 500, 499, 595, 369, 574, 515, 506, 534, 562, 463,
600, 496, 590, 503, 685, 469, 598, 562, 570, 617, 637, 510, 699, 581, 590, 595, 700,
552, 657, 583, 619, 549, 691, 485, 659, 600, 621, 605, 611, 463, 682, 574, 617, 526
]
Time: 77.310
Main theorem

Theorem [DR & Voight ’22]

For any $g \in \mathbb{Z}_{\geq 0}$ there are finitely many Borel-type triangular modular curves $X_0(a, b, c; \mathfrak{p})$ of genus g with nontrivial prime level \mathfrak{p}. The number of curves $X_0(a, b, c; \mathfrak{p})$ of genus $g \leq 2$ are as follows:

- 56 curves of genus 0
- 130 curves of genus 1
- 180 curves of genus 2.
Future work

Compute explicit lists for composite level.

Find models using Belyi maps and compute rational points of TMCs of low genus. [Klug, Musty, Schiavone & Voight, ’14].

Example: the curve $X_0(3,3,4; p_7)$ is defined over the number field k with defining polynomial $x^4 - 2x^3 + x^2 - 2x + 1$. We have

$$X_0(3,3,4; p_7) \sim \mathbb{P}^1_k.$$

Conjecture. For all $g \in \mathbb{Z}_{\geq 0}$, there are only finitely many admissible triangular modular curves of genus g of nontrivial level $\mathfrak{N} \neq (1)$ with $\Delta(a, b, c)$ maximal.
Output for $X_0(a, b, c; p)$ of genus 0

a	b	c	p
2	3	7	7
2	3	7	2
2	3	7	13
2	3	7	29
2	3	7	43
2	3	8	7
2	3	8	3
2	3	8	17
2	3	8	5
2	3	9	19
2	3	9	37
2	3	10	11
2	3	10	31
2	3	12	13
2	3	12	5