Implementation of CNOT and Toffoli gates with higher-dimensional spaces

Wen-Qiang Liu1,2, Hai-Rui Wei1,*, Leong-Chuan Kwek3,4,5

1School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China
2Center for Quantum Technology Research and Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurements (MOE), School of Physics, Beijing Institute of Technology, Beijing 100081, China
3Centre for Quantum Technologies, National University of Singapore, Singapore 117543, Singapore
4MajuLab, CNRS-UNS-NUS-NTU International Joint Research Unit, Singapore UMI 3654, Singapore
5National Institute of Education and Institute of Advanced Studies, Nanyang Technological University, Singapore 637616, Singapore

* hrwei@ustb.edu.cn

July 20, 2021

Abstract

Minimizing the number of necessary two-qubit gates is an important task in quantum information processing. By introducing non-computational quantum states in auxiliary spaces, we construct effective circuits for the controlled-NOT (CNOT) gate and the n-control-qubit Toffoli gate with $(2^n - 1)$ qubit-qudit gates and $(2^n - 2)$ single-qudit gates. We propose the polarization CNOT and Toffoli gates based on the designed quantum circuits in linear optics by operating on the spatial-mode degree of freedom of photons. Our optical schemes can be achieved with a higher success probability and no extra auxiliary photons are needed.

Contents

1 Introduction

2 Construction of CNOT and Toffoli gates with higher-dimensional spaces
 2.1 Synthesis of a CNOT gate using qutrits
 2.2 Construction of Toffoli gates with higher-dimensional spaces
 2.2.1 Synthesis of a three-qubit Toffoli gate using qutrits
 2.2.2 Synthesis of n-control-qubit Toffoli gate using qudits

3 Implementation of CNOT and Toffoli gates with linear optics
 3.1 Implementation of a P-SWAP gate with linear optics
 3.2 Implementation of a CNOT gate with linear optics
 3.3 Implementation of a Toffoli gate with linear optics
1 Introduction

Multi-qubit quantum gates have complex structures and play an important role in quantum computing [1], quantum algorithms [2–5], cryptography [6], etc. [7]. The most popular paradigm for implementing a quantum gate is the quantum circuit model [1,8]. Quantum circuits can be realized by sequences of two-qubit gates and single-qubit gates in principle [1]. The cost (also called complexity) of the quantum circuits usually is measured by the number of the two-qubit entangled gates involved in the quantum circuit, because they introduce more imperfections and more demands than the single-qubit gates. However, when the cost of a quantum circuit is high, it is difficult to perform the experiments because of the low computing fidelity and limited coherence time. Moreover, the cost of a universal quantum circuit increases exponentially with the accumulation of the number of qubits. The theoretical lower bound for simulating an n-qubit universal quantum circuit is $(4^n - 3n - 1)/4$ controlled-NOT (CNOT) gates in qubit system [9]. Hence, it is crucial to find an effective method for building a universal quantum circuit in the simplest possible way.

Several matrix decomposition techniques have been introduced to optimize a large-scale quantum circuit [10–16]. Two-qubit universal quantum circuits have also been constructed with the lowest cost (resources) in qubit systems [9,17–19]. However, there is still a gap between the current best result [13] and the theoretical lower bound [9] for a multi-qubit universal quantum circuit. Fortunately, Ralph et al. [20] found that the quantum circuit may be optimized further by using higher-dimensional Hilbert spaces, and this proposal was later experimentally demonstrated in optical [21] and superconducting systems [22]. Following this, Liu et al. [23,24] reduced the cost of the n-qubit universal circuit to $(5/16) \times 4^n - (5/4) \times 2^n + 2n$ CNOT gates when n was even and $(5/16) \times 4^n - 2^n + 2(n - 1)$ CNOTs when n was odd. Liu et al. simplified a Fredkin gate from eight CNOTs to five CNOTs [25] or three qubit-qudit gates [26]. In addition, higher-dimensional quantum systems have also been studied [27,28] and applied in quantum computing [29,32], quantum communication [33,40], and quantum metrology [41].

The Toffoli (controlled-NOT-NOT) gate, a three-qubit conditional operation, is one of the most popular universal multi-qubit quantum gates [42]. It is also an essential component in complex quantum algorithms [2–5], quantum error correction [13,44], and quantum fault tolerance [45,46]. In 1995, Barenco et al. [1] proposed a concrete construction of a three-qubit Toffoli gate with five two-qubit entangled gates. When two-qubit gates are restricted to CNOT gates, the optimal cost of a Toffoli gate increases to six [47]. In 2013, Yu et al. [48,49] confirmed that the minimum resource for simulating a three-qubit Toffoli gate is five two-qubit gates. In 2020, Kiktenko et al. [50] constructed a generalized m-qubit Toffoli gate with $(2m - 3)$ CNOTs based on qudits. Independent of the standard decomposition-based approach, Toffoli gates have been implemented experimentally in superconducting circuits [22,44], linear optics [21,29,51,53], trapped ions [54], atoms [55,56], and quantum dots [57].
Ralph et al. [20, 21] first proposed an interesting scheme for synthesizing a Toffoli gate using three qubit-qudit CNOT gates and two single-qutrit X_A gates. The main idea of the works in Refs. [20, 21] was to extend temporarily the higher-dimensional subspaces on one of the controlled qubit carriers and then perform corresponding logical operations. Using the same method as Refs. [20, 21], in this paper, we propose an alternative scheme to implement the CNOT and Toffoli gates based on the partial-swap (P-SWAP) gates by using higher-dimensional spaces. Specifically, $(2^n - 1)$ qubit-qudit and $(2^n - 2)$ single-qudit gates are required to implement an n-control-qubit Toffoli gate. In addition, using the spatial-mode degree of freedom (DOF) of the single-photon, we design a feasible optical architecture for implementing CNOT and Toffoli gates with linear optics. Our proposals have several other advantages: (i) Our optical implementation of the CNOT gate does not require an extra entangled photon pair or a single-photon, and the success probability of the gate is enhanced. (ii) Linear optical Toffoli gates can be constructed with a higher success probability than other existing optical schemes [20, 21, 58]. (iii) Our schemes are simple and feasible with the current technology.

2 Construction of CNOT and Toffoli gates with higher-dimensional spaces

2.1 Synthesis of a CNOT gate using qudits

A CNOT gate with two P-SWAP gates using qudits is shown in Fig. 1. The gate qudits are encoded on two computational states, $|0\rangle$ and $|1\rangle$. The single-qudit X_A gate provides a three-dimensional subspace on the control qubit. In the following, we describe the construction process of our protocol in detail.

Figure 1: Synthesis of a CNOT gate. The single-qudit X_A gate implements the transformation $|1\rangle \leftrightarrow |2\rangle$. The controlled node \odot is turned on for the input $|0\rangle$ or $|1\rangle$. That is, a swap operation is applied to c and t, if and only if, the control qubit c is in the state $|0\rangle$ or $|1\rangle$. H is a single-qubit Hardmard gate to achieve operations $|0\rangle \leftrightarrow \frac{1}{\sqrt{2}}(|0\rangle + |1\rangle)$ and $|1\rangle \leftrightarrow \frac{1}{\sqrt{2}}(|0\rangle - |1\rangle)$. σ_z completes $\sigma_z|0\rangle = |0\rangle$ and $\sigma_z|1\rangle = -|1\rangle$.

Suppose that the state of the system is initially

$$|\phi_0\rangle = \alpha_1|0_c\rangle|0_t\rangle + \alpha_2|0_c\rangle|1_t\rangle + \alpha_3|1_c\rangle|0_t\rangle + \alpha_4|1_c\rangle|1_t\rangle.$$

(1)

where α_i ($i = 1, 2, 3, 4$) are complex coefficients that satisfy the normalization condition $\sum_{i=1}^{4} |\alpha_i|^2 = 1$. Subscripts c and t denote the control and target qudits, respectively.

First, qubit c undergoes a single-qudit gate X_A, which introduces an ancillary state $|2\rangle$ on c and completes the transformations $|1_c\rangle \leftrightarrow X_A|1_c\rangle$ and $|0_c\rangle \leftrightarrow X_A|0_c\rangle$. After the X_A gate
and a Hadamard (\(H\)) gate are applied to \(c\) and \(t\), the initial state \(|\phi_0\rangle\) is changed to

\[
|\phi_1\rangle = \frac{1}{\sqrt{2}} [\alpha_1 |0_c\rangle |0_t\rangle + \alpha_2 |0_c\rangle |1_t\rangle + \alpha_3 |2_c\rangle |0_t\rangle + \alpha_4 |2_c\rangle |1_t\rangle].
\] (2)

Second, a P-SWAP gate is applied to \(c\) and \(t\), and it transforms \(|\phi_1\rangle\) into

\[
|\phi_2\rangle = \frac{1}{\sqrt{2}} [\alpha_1 |0_c\rangle + |1_c\rangle] |0_t\rangle + \alpha_2 |0_c\rangle - |1_c\rangle |0_t\rangle
+ \alpha_3 |2_c\rangle |0_t\rangle + \alpha_4 |2_c\rangle |1_t\rangle].
\] (3)

Here, the P-SWAP gate performs a swap operation only between two computational states \(|0\rangle\) and \(|1\rangle\), that is,

\[
\begin{align*}
|00\rangle & \xrightarrow{\text{P-SWAP}} |00\rangle, & |01\rangle & \xrightarrow{\text{P-SWAP}} |10\rangle, \\
|10\rangle & \xrightarrow{\text{P-SWAP}} |01\rangle, & |11\rangle & \xrightarrow{\text{P-SWAP}} |11\rangle, \\
|20\rangle & \xrightarrow{\text{P-SWAP}} |20\rangle, & |21\rangle & \xrightarrow{\text{P-SWAP}} |21\rangle.
\end{align*}
\] (4)

Third, a \(\sigma_z\) operation acts on \(t\) to change \(|\phi_2\rangle\) to

\[
|\phi_3\rangle = \frac{1}{\sqrt{2}} [\alpha_1 |0_c\rangle + |1_c\rangle] |0_t\rangle + \alpha_2 |0_c\rangle - |1_c\rangle |0_t\rangle
+ \alpha_3 |2_c\rangle |0_t\rangle + \alpha_4 |2_c\rangle |1_t\rangle].
\] (5)

Finally, after the P-SWAP gate, the \(X_A\) gate and \(H\) operation are applied to \(c\) and \(t\) again, \(|\phi_3\rangle\) is changed to

\[
|\phi_4\rangle = \alpha_1 |0_c\rangle |0_t\rangle + \alpha_2 |0_c\rangle |1_t\rangle + \alpha_3 |1_c\rangle |1_t\rangle + \alpha_4 |1_c\rangle |0_t\rangle.
\] (6)

Note that Eq. (6) is a CNOT gate, and such a construction can be achieved in linear optics with a high success probability and without additional photons (see Sec. 3).

2.2 Construction of Toffoli gates with higher-dimensional spaces

2.2.1 Synthesis of a three-qubit Toffoli gate using qutrits

Based on the designed CNOT and P-SWAP gates, the process for implementing a three-qubit Toffoli gate with four-dimensional space is presented in Fig. 2.

Considering an arbitrary normalization three-qubit initial state

\[
|\psi_0\rangle = \alpha_1 |0_{c1}\rangle |0_{c2}\rangle |0_t\rangle + \alpha_2 |0_{c1}\rangle |0_{c2}\rangle |1_t\rangle + \alpha_3 |0_{c1}\rangle |1_{c2}\rangle |0_t\rangle + \alpha_4 |0_{c1}\rangle |1_{c2}\rangle |1_t\rangle
+ \alpha_5 |1_{c1}\rangle |0_{c2}\rangle |0_t\rangle + \alpha_6 |1_{c1}\rangle |0_{c2}\rangle |1_t\rangle + \alpha_7 |1_{c1}\rangle |1_{c2}\rangle |0_t\rangle + \alpha_8 |1_{c1}\rangle |1_{c2}\rangle |1_t\rangle.
\] (7)

First, the \(X_A\) gate acts on \(c_2\) to achieve \(|1_{c2}\rangle \xrightarrow{X_A} |2_{c2}\rangle\) and \(|0_{c2}\rangle \xrightarrow{X_A} |0_{c2}\rangle\). After the first P-SWAP gate is executed on \(c_1\) and \(c_2\), \(|\psi_0\rangle\) becomes

\[
|\psi_1\rangle = \alpha_1 |0_{c1}\rangle |0_{c2}\rangle |0_t\rangle + \alpha_2 |0_{c1}\rangle |0_{c2}\rangle |1_t\rangle + \alpha_3 |0_{c1}\rangle |2_{c2}\rangle |0_t\rangle + \alpha_4 |0_{c1}\rangle |2_{c2}\rangle |1_t\rangle
+ \alpha_5 |0_{c1}\rangle |1_{c2}\rangle |0_t\rangle + \alpha_6 |0_{c1}\rangle |1_{c2}\rangle |1_t\rangle + \alpha_7 |1_{c1}\rangle |2_{c2}\rangle |0_t\rangle + \alpha_8 |1_{c1}\rangle |2_{c2}\rangle |1_t\rangle.
\] (8)
Second, a CNOT gate is applied to \(c_1 \) and \(t \) (which can be achieved by the circuit in the dotted rectangle), resulting in

\[
|\psi_2\rangle = \alpha_1|0_{c_1}\rangle|0_{c_2}\rangle|0_t\rangle + \alpha_2|0_{c_1}\rangle|0_{c_2}\rangle|1_t\rangle + \alpha_3|0_{c_1}\rangle|2_{c_2}\rangle|0_t\rangle + \alpha_4|0_{c_1}\rangle|2_{c_2}\rangle|1_t\rangle \\
+ \alpha_5|1_{c_1}\rangle|1_{c_2}\rangle|0_t\rangle + \alpha_6|0_{c_1}\rangle|1_{c_2}\rangle|1_t\rangle + \alpha_7|1_{c_1}\rangle|2_{c_2}\rangle|1_t\rangle + \alpha_8|1_{c_1}\rangle|2_{c_2}\rangle|0_t\rangle. \tag{9}
\]

Finally, the P-SWAP and \(X_A \) gates are applied again. The two operations induce \(|\psi_2\rangle \) as the final state

\[
|\psi_3\rangle = \alpha_1|0_{c_1}\rangle|0_{c_2}\rangle|0_t\rangle + \alpha_2|0_{c_1}\rangle|0_{c_2}\rangle|1_t\rangle + \alpha_3|0_{c_1}\rangle|1_{c_2}\rangle|0_t\rangle + \alpha_4|0_{c_1}\rangle|1_{c_2}\rangle|1_t\rangle \\
+ \alpha_5|1_{c_1}\rangle|0_{c_2}\rangle|0_t\rangle + \alpha_6|1_{c_1}\rangle|0_{c_2}\rangle|1_t\rangle + \alpha_7|1_{c_1}\rangle|1_{c_2}\rangle|1_t\rangle + \alpha_8|1_{c_1}\rangle|1_{c_2}\rangle|0_t\rangle. \tag{10}
\]

From Eqs. (9) and (10), one can see that a three-qubit Toffoli gate can be simulated using three nearest-neighbor qubit-qudit gates and two single-qutrit gates.

2.2.2 Synthesis of \(n \)-control-qubit Toffoli gate using qudits

Using a higher-dimensional space, the method can be applied to any multi-qubit Toffoli gate. As shown in Fig. 3, an \(n \)-control-qubit Toffoli gate is constructed with \((2n-1)\) qubit-qudit and \((2n-2)\) single-qudit gates, which flips the target qubit states \(|0\rangle \) and \(|1\rangle \) if and only if the \(n \) control-qubits are all \(|1\rangle \). Here, single-qudit gates \(X_a, X_b, \ldots, X_n \) create multi-level qudits on \(c_n \) and complete transformations \(|0_{c_n}\rangle \leftrightarrow |2_{c_n}\rangle, |1_{c_n}\rangle \leftrightarrow |3_{c_n}\rangle, |0_{c_n}\rangle \leftrightarrow |4_{c_n}\rangle, \ldots, |0_{c_n}\rangle \leftrightarrow |n_{c_n}\rangle \) when \(n \) is even or \(|0_{c_n}\rangle \leftrightarrow |2_{c_n}\rangle, |1_{c_n}\rangle \leftrightarrow |3_{c_n}\rangle, |0_{c_n}\rangle \leftrightarrow |4_{c_n}\rangle, \ldots, |1_{c_n}\rangle \leftrightarrow |n_{c_n}\rangle \) when \(n \) is odd. These single-qudit gates can temporally expand the two-dimensional space of \(c_n \) to an \((n+1)\)-dimensional subspace. All CNOT and P-SWAP gates act on computational states \(|0\rangle \) and \(|1\rangle \). The synthesis requires only \(O(n) \) qubit-qudit gates and the low-cost advantage is more evident in our scheme as the number of qubits increases.

3 Implementation of CNOT and Toffoli gates with linear optics

3.1 Implementation of a P-SWAP gate with linear optics

In the previous section, we proposed the simulation of CNOT and Toffoli gates based on P-SWAP gates and auxiliary higher-dimensional spaces. In an optical system, two computational states can be encoded on the polarization DOF of a single photon in the spatial-mode \(i \), that is, \(|0\rangle \equiv |H\rangle_i \) and \(|1\rangle \equiv |V\rangle_i \). Here, \(H \) and \(V \) represent the horizontal and vertical polarized
components, respectively. The higher-dimensional state can be encoded on the V-polarized component in a new spatial-mode i', that is, $|2\rangle \equiv |V\rangle_{i'}$. The qutrit operation X_A can be achieved by employing a polarizing beam splitter (PBS), which reflects the V-polarized component and transmits the H-polarized component, respectively. Before describing the implementation of the CNOT gate, we first detail the step-by-step construction of the P-SWAP gate with linear optical elements.

As shown in Fig. 4, the injected photon 1 is divided into H-polarized component and
V-polarized component by a PBS. The H-polarized component passes into the spatial-mode 1_{in}, which is encoded on $|H\rangle_{1_{in}} \equiv |0\rangle$ (and V-polarized component in the spatial-mode 1_{in} is encoded on $|V\rangle_{1_{in}} \equiv |1\rangle$), while the V-polarized component is reflected into another spatial-mode $1'_{in}$, which is encoded on $|V\rangle_{1'_{in}} \equiv |2\rangle$. The photon 2 from the spatial-mode 2_{in} is encoded on $|H\rangle_{2_{in}} \equiv |0\rangle$ and $|V\rangle_{2_{in}} \equiv |1\rangle$. A general injected photon state can be considered as

$$|\varphi_0\rangle = (\alpha_1 \hat{a}_{H_{1_{in}}}^{\dagger} \hat{a}_{H_{2_{in}}}^{\dagger} + \alpha_2 \hat{a}_{H_{1_{in}}}^{\dagger} \hat{a}_{V_{2_{in}}}^{\dagger} + \alpha_3 \hat{a}_{V_{1_{in}}}^{\dagger} \hat{a}_{H_{2_{in}}}^{\dagger} + \alpha_4 \hat{a}_{V_{1_{in}}}^{\dagger} \hat{a}_{V_{2_{in}}}^{\dagger} + \alpha_5 \hat{a}_{V_{1'_{in}}}^{\dagger} \hat{a}_{H_{2_{in}}}^{\dagger} + \alpha_6 \hat{a}_{V_{1'_{in}}}^{\dagger} \hat{a}_{V_{2_{in}}}^{\dagger})|\text{vac.}\rangle.$$

(11)

Here $|\text{vac.}\rangle$ is the state vector of vacuum.

First, PBS$_1$ and PBS$_2$ transmit the H-photons into modes 1 and 3 to interact with half-wave plates HWP$^{45^\circ}$ and HWP$^{22.5^\circ}$ and reflect the V-photons into modes 2 and 4 to interact with HWP$^{45^\circ}$ and HWP$^{67.5^\circ}$. Here, HWP$^{45^\circ}$ is a half-wave plate set to 45 degrees and achieves the qubit-flip operation $\hat{a}_H^{\dagger} \leftrightarrow \hat{a}_V^{\dagger}$. HWP$^{22.5^\circ}$ completes the transformations

$$\hat{a}_H^{\dagger} \xrightarrow{\text{HWP}^{22.5^\circ}} \frac{1}{\sqrt{2}}(\hat{a}_H^{\dagger} + \hat{a}_V^{\dagger}), \quad \hat{a}_V^{\dagger} \xrightarrow{\text{HWP}^{22.5^\circ}} \frac{1}{\sqrt{2}}(\hat{a}_H^{\dagger} - \hat{a}_V^{\dagger}).$$

(12)

HWP$^{67.5^\circ}$ results in

$$\hat{a}_H^{\dagger} \xrightarrow{\text{HWP}^{67.5^\circ}} \frac{1}{\sqrt{2}}(-\hat{a}_H^{\dagger} + \hat{a}_V^{\dagger}), \quad \hat{a}_V^{\dagger} \xrightarrow{\text{HWP}^{67.5^\circ}} \frac{1}{\sqrt{2}}(\hat{a}_H^{\dagger} + \hat{a}_V^{\dagger}).$$

(13)

The above operations, PBS$_1 \rightarrow$ HWP$^{45^\circ}$ (HWP$^{45^\circ}$) and PBS$_2 \rightarrow$ HWP$^{22.5^\circ}$ (HWP$^{67.5^\circ}$) cause $|\varphi_0\rangle$ to become

$$|\varphi_1\rangle = \frac{1}{\sqrt{2}}[\alpha_1 \hat{a}_{V_{1_{in}}}^{\dagger} (\hat{a}_{H_{3}}^{\dagger} + \hat{a}_{V_{3}}^{\dagger}) + \alpha_2 \hat{a}_{V_{1_{in}}}^{\dagger} (\hat{a}_{H_{4}}^{\dagger} + \hat{a}_{V_{4}}^{\dagger}) + \alpha_3 \hat{a}_{H_{2}}^{\dagger} (\hat{a}_{H_{3}}^{\dagger} + \hat{a}_{V_{3}}^{\dagger}) + \alpha_4 \hat{a}_{H_{2}}^{\dagger} (\hat{a}_{H_{4}}^{\dagger} + \hat{a}_{V_{4}}^{\dagger}) + \alpha_5 \hat{a}_{V_{1'_{in}}}^{\dagger} (\hat{a}_{H_{3}}^{\dagger} + \hat{a}_{V_{3}}^{\dagger}) + \alpha_6 \hat{a}_{V_{1'_{in}}}^{\dagger} (\hat{a}_{H_{4}}^{\dagger} + \hat{a}_{V_{4}}^{\dagger})]|\text{vac.}\rangle.$$

(14)

Second, photons in mode $1'_{in}$ are then split into modes 1’ and 1” by a balanced polarization beam splitter (BS), i.e., $\hat{a}_{V_{1'_{in}}}^{\dagger} \xrightarrow{\text{BS}} (\hat{a}_{V_{1'}^{\dagger}}^{\dagger} + \hat{a}_{V_{1''}^{\dagger}}^{\dagger})/\sqrt{2}$. Photons emitted from modes 2 and 4 (1 and 3) are split into modes 5 and 6 (7 and 8) by PBS$_3$ (PBS$_4$) and followed by HWP$^{22.5^\circ}$ (HWP$^{67.5^\circ}$). These elements change $|\varphi_1\rangle$ as

$$|\varphi_2\rangle = \frac{1}{2\sqrt{2}}[\alpha_1 (\hat{a}_{H_{2}}^{\dagger} + \hat{a}_{V_{2}}^{\dagger}) (-\hat{a}_{H_{2}}^{\dagger} + \hat{a}_{V_{2}}^{\dagger} + \hat{a}_{H_{8}}^{\dagger} + \hat{a}_{V_{8}}^{\dagger}) + \alpha_2 (\hat{a}_{H_{7}}^{\dagger} + \hat{a}_{V_{7}}^{\dagger}) (\hat{a}_{H_{7}}^{\dagger} + \hat{a}_{V_{7}}^{\dagger} + \hat{a}_{H_{6}}^{\dagger} + \hat{a}_{V_{6}}^{\dagger}) + \alpha_3 (\hat{a}_{H_{6}}^{\dagger} + \hat{a}_{V_{6}}^{\dagger}) (-\hat{a}_{H_{7}}^{\dagger} + \hat{a}_{V_{7}}^{\dagger} + \hat{a}_{H_{6}}^{\dagger} + \hat{a}_{V_{6}}^{\dagger}) + \alpha_4 (\hat{a}_{H_{6}}^{\dagger} + \hat{a}_{V_{6}}^{\dagger}) (-\hat{a}_{H_{8}}^{\dagger} + \hat{a}_{V_{8}}^{\dagger} + \hat{a}_{H_{6}}^{\dagger} + \hat{a}_{V_{6}}^{\dagger}) + \alpha_5 (\hat{a}_{V_{1'}^{\dagger}}^{\dagger} + \hat{a}_{V_{1''}^{\dagger}}^{\dagger}) (-\hat{a}_{H_{2}}^{\dagger} + \hat{a}_{V_{2}}^{\dagger} + \hat{a}_{H_{8}}^{\dagger} + \hat{a}_{V_{8}}^{\dagger}) + \alpha_6 (\hat{a}_{V_{1'}^{\dagger}}^{\dagger} + \hat{a}_{V_{1''}^{\dagger}}^{\dagger}) (\hat{a}_{H_{2}}^{\dagger} + \hat{a}_{V_{2}}^{\dagger} + \hat{a}_{H_{8}}^{\dagger} - \hat{a}_{V_{8}}^{\dagger})]|\text{vac.}\rangle.$$

(15)
Third, PBS$_5$ (PBS$_6$) induces photons into modes 9 and 10 (11 and 12). Photons in modes 10 and 12 will undergo HWP$^{45^\circ}$. Thus, the state of the system evolves as

$$|\varphi_3\rangle = \frac{1}{2\sqrt{2}} \left[\alpha_1 (\hat{a}^\dagger_{H_{11}} + \hat{a}^\dagger_{H_{12}})(-\hat{a}^\dagger_{H_{11}} + \hat{a}^\dagger_{H_{12}} + \hat{a}^\dagger_{H_9} + \hat{a}^\dagger_{H_{10}}) \\
+ \alpha_2 (\hat{a}^\dagger_{V_{10}} + \hat{a}^\dagger_{V_{12}})(\hat{a}^\dagger_{V_{10}} + \hat{a}^\dagger_{V_{9}} - \hat{a}^\dagger_{V_{11}}) \\
+ \alpha_3 (\hat{a}^\dagger_{V_{12}} + \hat{a}^\dagger_{V_{11}})(-\hat{a}^\dagger_{H_{11}} + \hat{a}^\dagger_{H_{12}} + \hat{a}^\dagger_{H_9} + \hat{a}^\dagger_{H_{10}}) \\
+ \alpha_4 (\hat{a}^\dagger_{V_{12}} + \hat{a}^\dagger_{V_{11}})(\hat{a}^\dagger_{V_{10}} + \hat{a}^\dagger_{V_{9}} + \hat{a}^\dagger_{V_{12}} - \hat{a}^\dagger_{V_{11}}) \\
+ \alpha_5 (\hat{a}^\dagger_{V_{12}} + \hat{a}^\dagger_{V_{11}})(-\hat{a}^\dagger_{H_{11}} + \hat{a}^\dagger_{H_{12}} + \hat{a}^\dagger_{H_9} + \hat{a}^\dagger_{H_{10}}) \\
+ \alpha_6 (\hat{a}^\dagger_{V_{12}} + \hat{a}^\dagger_{V_{11}})(\hat{a}^\dagger_{V_{10}} + \hat{a}^\dagger_{V_{9}} + \hat{a}^\dagger_{V_{12}} - \hat{a}^\dagger_{V_{11}})] |\text{vac.}\rangle. \right.$$ (16)

The state $|\varphi_3\rangle$ also has the form

$$|\varphi_3\rangle = |\varphi_4\rangle + |\varphi_2\rangle + |\varphi_3\rangle_1 + |\varphi_3\rangle_2$$ (17)

$$+ \frac{1}{2\sqrt{2}} \left[\alpha_1 (\hat{a}^\dagger_{H_{11}} + \hat{a}^\dagger_{H_{12}})(-\hat{a}^\dagger_{H_{11}} + \hat{a}^\dagger_{H_{12}}) \\
+ \alpha_2 (-\hat{a}^\dagger_{H_{11}} \hat{a}^\dagger_{V_{11}} + \hat{a}^\dagger_{H_{11}} \hat{a}^\dagger_{V_{12}} - \hat{a}^\dagger_{V_{11}} \hat{a}^\dagger_{H_{12}} + \hat{a}^\dagger_{V_{12}} \hat{a}^\dagger_{H_{12}}) \\
+ \alpha_3 (-\hat{a}^\dagger_{H_{11}} \hat{a}^\dagger_{V_{11}} + \hat{a}^\dagger_{V_{11}} \hat{a}^\dagger_{V_{12}} - \hat{a}^\dagger_{V_{11}} \hat{a}^\dagger_{H_{12}} + \hat{a}^\dagger_{V_{12}} \hat{a}^\dagger_{H_{12}}) \\
+ \alpha_4 (\hat{a}^\dagger_{V_{12}} + \hat{a}^\dagger_{V_{11}})(\hat{a}^\dagger_{V_{12}} - \hat{a}^\dagger_{V_{11}}) \\
+ \alpha_5 (\hat{a}^\dagger_{V_{12}} + \hat{a}^\dagger_{V_{11}})(\hat{a}^\dagger_{H_9} + \hat{a}^\dagger_{H_{10}}) \\
+ \alpha_6 (\hat{a}^\dagger_{V_{12}} + \hat{a}^\dagger_{V_{11}})(\hat{a}^\dagger_{V_{6}} + \hat{a}^\dagger_{V_{10}})] |\text{vac.}\rangle. \right.$$ (18)

Here the four orthogonal states $|\varphi_4\rangle$, $|\varphi_2\rangle$, $|\varphi_3\rangle_1$, and $|\varphi_3\rangle_2$ are given by

$$|\varphi_4\rangle = \frac{1}{2\sqrt{2}} \left(\alpha_1 \hat{a}^\dagger_{H_9} \hat{a}^\dagger_{H_{12}} + \alpha_2 \hat{a}^\dagger_{V_{10}} \hat{a}^\dagger_{H_{12}} + \alpha_3 \hat{a}^\dagger_{H_9} \hat{a}^\dagger_{V_{12}} + \alpha_4 \hat{a}^\dagger_{V_{9}} \hat{a}^\dagger_{V_{12}} \\
+ \alpha_5 \hat{a}^\dagger_{V_{11}} \hat{a}^\dagger_{H_{12}} + \alpha_6 \hat{a}^\dagger_{V_{10}} \hat{a}^\dagger_{V_{12}}) |\text{vac.}\rangle. \right.$$ (19)

$$|\varphi_2\rangle = \frac{1}{2\sqrt{2}} \left(\alpha_1 \hat{a}^\dagger_{H_9} \hat{a}^\dagger_{H_{12}} + \alpha_2 \hat{a}^\dagger_{V_{10}} \hat{a}^\dagger_{H_{12}} + \alpha_3 \hat{a}^\dagger_{H_9} \hat{a}^\dagger_{V_{12}} + \alpha_4 \hat{a}^\dagger_{V_{10}} \hat{a}^\dagger_{V_{12}} \\
+ \alpha_5 \hat{a}^\dagger_{V_{11}} \hat{a}^\dagger_{H_{12}} + \alpha_6 \hat{a}^\dagger_{V_{10}} \hat{a}^\dagger_{V_{12}}) |\text{vac.}\rangle. \right.$$ (20)

$$|\varphi_3\rangle_1 = \frac{1}{2\sqrt{2}} \left(\alpha_1 \hat{a}^\dagger_{H_9} \hat{a}^\dagger_{H_{11}} + \alpha_2 \hat{a}^\dagger_{V_{10}} \hat{a}^\dagger_{H_{11}} + \alpha_3 \hat{a}^\dagger_{H_9} \hat{a}^\dagger_{V_{11}} + \alpha_4 \hat{a}^\dagger_{V_{9}} \hat{a}^\dagger_{V_{11}} \\
- \alpha_5 \hat{a}^\dagger_{V_{11}} \hat{a}^\dagger_{H_{11}} - \alpha_6 \hat{a}^\dagger_{V_{10}} \hat{a}^\dagger_{V_{11}}) |\text{vac.}\rangle. \right.$$ (21)

$$|\varphi_3\rangle_2 = \frac{1}{2\sqrt{2}} \left(\alpha_1 \hat{a}^\dagger_{H_9} \hat{a}^\dagger_{H_{11}} + \alpha_2 \hat{a}^\dagger_{V_{10}} \hat{a}^\dagger_{H_{11}} + \alpha_3 \hat{a}^\dagger_{H_9} \hat{a}^\dagger_{V_{11}} + \alpha_4 \hat{a}^\dagger_{V_{10}} \hat{a}^\dagger_{V_{11}} \\
- \alpha_5 \hat{a}^\dagger_{V_{11}} \hat{a}^\dagger_{H_{11}} - \alpha_6 \hat{a}^\dagger_{V_{10}} \hat{a}^\dagger_{V_{11}}) |\text{vac.}\rangle. \right.$$
Based on Eqs. (18-21), one can see that there are four desired coincidence outcomes for the construction of the post-selection P-SWAP gate (see Tab. 1).

(i) When one chooses the event that photons come from output mode pairs (9, 12) and (1', 12), the state $|\varphi_3\rangle$ will collapse into $|\varphi_4\rangle$, and the P-SWAP gate is completed.

(ii) When one chooses the event that photons come from output mode pairs (10, 12) and (1'', 12), the state $|\varphi_3\rangle$ will collapse into $|\varphi_5\rangle$, and the P-SWAP gate is completed.

(iii) When one chooses the event that photons come from output mode pairs (9, 11) and (1', 11), the state $|\varphi_3\rangle$ will collapse into $|\varphi_3\rangle$. And then, a phase flip operation, $a_{V_1'} \rightarrow -a_{V_1'}$, should be applied to complete the P-SWAP gate. Such feed-forward operation can be achieved by setting an HWP$^{0\circ}$ in spatial mode 1'. The spatial-based classical feed-forward operations has been experimentally demonstrated recently [59, 62].

(iv) When one chooses the event that photons come from output mode pairs (10, 11) and (1'', 11), the state $|\varphi_3\rangle$ will collapse into $|\varphi_2\rangle$. And then, an HWP$^{90\circ}$ is set in spatial mode 1'' to complete the P-SWAP gate.

Putting all the pieces together one can find that the quantum circuit shown in Fig. 4 completes a linear optical P-SWAP gate in the coincidence basis with a success probability of $4 \times 1/8 = 1/2$. The success (or the output modes) of the scheme can be heralded by using the success instances in the post-selection in the applications.

Table 1: Coincident expectation outgoing values for six logic basis inputs.
Input

\hat{a}_{H_0}
\hat{a}_{H_11}
\hat{a}_{V_0}
\hat{a}_{V_1}
\hat{a}_{V_0}
\hat{a}_{V_1}

3.2 Implementation of a CNOT gate with linear optics

As shown in Fig. 5 a P-SWAP-based CNOT gate can be realized in the coincidence basis with linear optical elements. PBS plays a role in the qutrit X_A to provide an additional spatial mode. The operation in the black dotted rectangle corresponds to a P-SWAP gate in Fig. 4.

First, after the two photons are injected into modes 1 and 2, the input state of the system is given by

$$|\chi_0\rangle = (\alpha_1 \hat{a}_{H_1} \hat{a}_{H_2} + \alpha_2 \hat{a}_{H_1} \hat{a}_{V_2} + \alpha_3 \hat{a}_{V_1} \hat{a}_{H_2} + \alpha_4 \hat{a}_{V_1} \hat{a}_{V_2}) |\text{vac.}\rangle.$$ (22)

Second, photons 1 and 2 execute a PBS1 and an HWP$^{22.5\circ}$, respectively, to pass through the first P-SWAP gate. After the photons interact with the first P-SWAP gate, the outing
photons emitted from spatial mode pairs \((9, 12)\) and \((1', 12)\), or \((10, 12)\) and \((1'', 12)\) (as an input) will be led to the next HWP\(^{0\circ}\) and the rightmost P-SWAP gate. PBS\(_1\), HWP\(^{22.5\circ}\), and the leftmost P-SWAP gate change \(|\chi_0\rangle\) into \(|\chi_{9,1',12}\rangle\) or \(|\chi_{10,1'',12}\rangle\). Here,

\[
|\chi_{9,1',12}\rangle_1 = \frac{1}{4} \left[\alpha_1 (a_{H9}^+ + a_{V9}^+) a_{H12}^+ + \alpha_2 (a_{H9}^+ - a_{V9}^+) a_{H12}^+ \\
+ \alpha_3 a_{V1'}^+ (a_{H12}^+ + a_{V12}^+) + \alpha_4 a_{V1'}^+ (a_{H12}^+ - a_{V12}^+) \right] |\text{vac.}\),
\]

\[
|\chi_{10,1'',12}\rangle_1 = \frac{1}{4} \left[\alpha_1 (a_{H10}^+ + a_{V10}^+) a_{H12}^+ + \alpha_2 (a_{H10}^+ - a_{V10}^+) a_{H12}^+ \\
+ \alpha_3 a_{V1''}^+ (a_{H12}^+ + a_{V12}^+) + \alpha_4 a_{V1''}^+ (a_{H12}^+ - a_{V12}^+) \right] |\text{vac.}\).
\]

Third, HWP\(^{0\circ}\) acts on mode 12 to complete \(a_{H12}^+ \rightarrow a_{H12}^+\) and \(a_{V12}^+ \rightarrow -a_{V12}^+\). The second P-SWAP gate produces eight desired outcomes of the system, that is, (i) when the outing photons emitted from spatial mode pairs \((9, 12)\) and \((1', 12)\), the state \(|\chi_{9,1',12}\rangle_1\) and \(|\chi_{10,1'',12}\rangle_1\) both become

\[
|\chi_{9,1',12}\rangle_2 = \frac{1}{8\sqrt{2}} \left[\alpha_1 a_{H9}^+ (a_{H12}^+ + a_{V12}^+) + \alpha_2 a_{H9}^+ (a_{H12}^+ - a_{V12}^+) \\
+ \alpha_3 a_{V1'}^+ (a_{H12}^+ + a_{V12}^+) + \alpha_4 a_{V1'}^+ (a_{H12}^+ + a_{V12}^+) \right] |\text{vac.}\).
\]

(ii) When the outing photons emitted from spatial mode pairs \((10, 12)\) and \((1'', 12)\), the state \(|\chi_{9,1',12}\rangle_1\) and \(|\chi_{10,1'',12}\rangle_1\) both become

\[
|\chi_{10,1'',12}\rangle_2 = \frac{1}{8\sqrt{2}} \left[\alpha_1 a_{H10}^+ (a_{H12}^+ + a_{V12}^+) + \alpha_2 a_{H10}^+ (a_{H12}^+ - a_{V12}^+) \\
+ \alpha_3 a_{V1''}^+ (a_{H12}^+ + a_{V12}^+) + \alpha_4 a_{V1''}^+ (a_{H12}^+ + a_{V12}^+) \right] |\text{vac.}\).
\]

(iii) When the outing photons emitted from spatial mode pairs \((9, 11)\) and \((1'', 11)\), the state \(|\chi_{9,1',12}\rangle_1\) and \(|\chi_{10,1'',12}\rangle_1\) both become

\[
|\chi_{9',1''}\rangle_2 = \frac{1}{8\sqrt{2}} \left[\alpha_1 a_{H9}^+ (a_{H11}^+ + a_{V11}^+) + \alpha_2 a_{H9}^+ (a_{H11}^+ - a_{V11}^+) \\
- \alpha_3 a_{V1'}^+ (a_{H11}^+ + a_{V11}^+) - \alpha_4 a_{V1'}^+ (a_{H11}^+ + a_{V11}^+) \right] |\text{vac.}|.
\]
(iv) When the outing photons emitted from spatial mode pairs (10, 11) and (1′′, 11), the state $|\chi_{10,1''11}\rangle_1$ and $|\chi_{10,1'12}\rangle_1$ both become

$$|\chi_{10,1''11}\rangle_2 = \frac{1}{8\sqrt{2}}[\alpha_1 \hat{a}_{H_{10}}^\dagger (\hat{a}_{H_{11}}^\dagger + \hat{a}_{V_{11}}^\dagger) + \alpha_2 \hat{a}_{H_{10}}^\dagger (\hat{a}_{H_{11}}^\dagger - \hat{a}_{V_{11}}^\dagger)
- \alpha_3 \hat{a}_{V_{10}}^\dagger (\hat{a}_{H_{11}}^\dagger - \hat{a}_{V_{11}}^\dagger) - \alpha_4 \hat{a}_{V_{10}}^\dagger (\hat{a}_{H_{11}}^\dagger + \hat{a}_{V_{11}}^\dagger)]|\text{vac.}\rangle.$$

(28)

Fourth, as shown in Fig. 5, PBS$_2$ leads the photons in modes 9 (i.e., $\hat{a}_{H_{9}}^\dagger |\text{vac.}\rangle$) and 1′ (i.e., $\hat{a}_{V_{1}}^\dagger |\text{vac.}\rangle$) into one output mode, and combines the photons in modes 10 (i.e., $\hat{a}_{H_{10}}^\dagger |\text{vac.}\rangle$) and 1′′ (i.e., $\hat{a}_{V_{1}}^\dagger |\text{vac.}\rangle$) into one output mode. After PBS$_2$ and HWP$^{22.5\circ}$, (i) when the photons emitted from output pair (9, 12), we obtain the two-fold output state

$$|\chi_{9,12}\rangle_3 = \frac{1}{8}(\alpha_1 \hat{a}_{H_{9}}^\dagger \hat{a}_{H_{12}}^\dagger + \alpha_2 \hat{a}_{H_{9}}^\dagger \hat{a}_{V_{12}}^\dagger + \alpha_3 \hat{a}_{V_{9}}^\dagger \hat{a}_{V_{12}}^\dagger + \alpha_4 \hat{a}_{V_{9}}^\dagger \hat{a}_{H_{12}}^\dagger)|\text{vac.}\rangle.$$

(29)

The CNOT gate is completed.

(ii) When the photons emitted from output pair (10, 12), we obtain the two-fold output state

$$|\chi_{10,12}\rangle_3 = \frac{1}{8}(\alpha_1 \hat{a}_{H_{10}}^\dagger \hat{a}_{H_{12}}^\dagger + \alpha_2 \hat{a}_{H_{10}}^\dagger \hat{a}_{V_{12}}^\dagger + \alpha_3 \hat{a}_{V_{10}}^\dagger \hat{a}_{V_{12}}^\dagger + \alpha_4 \hat{a}_{V_{10}}^\dagger \hat{a}_{H_{12}}^\dagger)|\text{vac.}\rangle.$$

(30)

The CNOT gate is completed.

(iii) When the photons emitted from output pair (9, 11), we obtain the two-fold output state

$$|\chi_{9,11}\rangle_3 = \frac{1}{8}(\alpha_1 \hat{a}_{H_{9}}^\dagger \hat{a}_{H_{11}}^\dagger + \alpha_2 \hat{a}_{H_{9}}^\dagger \hat{a}_{V_{11}}^\dagger - \alpha_3 \hat{a}_{V_{9}}^\dagger \hat{a}_{V_{11}}^\dagger - \alpha_4 \hat{a}_{V_{9}}^\dagger \hat{a}_{H_{11}}^\dagger)|\text{vac.}\rangle.$$

(31)

And then an HWP$^{0\circ}$ is set in the output mode 9 to complete the CNOT gate.

(iv) When the photons emitted from output pair (10, 11), we obtain the two-fold output state

$$|\chi_{10,11}\rangle_3 = \frac{1}{8}(\alpha_1 \hat{a}_{H_{10}}^\dagger \hat{a}_{H_{11}}^\dagger + \alpha_2 \hat{a}_{H_{10}}^\dagger \hat{a}_{V_{11}}^\dagger - \alpha_3 \hat{a}_{V_{10}}^\dagger \hat{a}_{V_{11}}^\dagger - \alpha_4 \hat{a}_{V_{10}}^\dagger \hat{a}_{H_{11}}^\dagger)|\text{vac.}\rangle.$$

(32)

And then an HWP$^{0\circ}$ is set in the output mode 10 to complete the CNOT gate.

Based on above orthogonal two-fold states $|\chi_{9,12}\rangle_3$, $|\chi_{10,12}\rangle_3$, $|\chi_{9,11}\rangle_3$, and $|\chi_{10,11}\rangle_3$, one can find that after the feed-forward operations are only applied to the rightmost P-SWAP gate, an optical post-selection CNOT gate can be completed with a success probability of $8 \times 1/64 = 1/8$. Remarkably, additional entangled photon pairs or single photons are necessary for previous schemes [59, 61, 63, 64], but are not required for our CNOT gate. In addition, the success probability of the gate is improved on the results without an auxiliary photon [65, 67].

3.3 Implementation of a Toffoli gate with linear optics

We propose the implementation of a Toffoli gate based on the designed P-SWAP and CNOT gates. As shown in Fig. 6, three photons are injected into modes 1, 2, and 3, simultaneously, the initial state is given by

$$|\Xi_0\rangle = (\alpha_1 \hat{a}_{H_{1}}^\dagger \hat{a}_{H_{2}}^\dagger \hat{a}_{H_{3}}^\dagger + \alpha_2 \hat{a}_{H_{1}}^\dagger \hat{a}_{H_{2}}^\dagger \hat{a}_{V_{3}}^\dagger + \alpha_3 \hat{a}_{H_{1}}^\dagger \hat{a}_{V_{2}}^\dagger \hat{a}_{H_{3}}^\dagger + \alpha_4 \hat{a}_{H_{1}}^\dagger \hat{a}_{V_{2}}^\dagger \hat{a}_{V_{3}}^\dagger + \alpha_5 \hat{a}_{V_{1}}^\dagger \hat{a}_{H_{2}}^\dagger \hat{a}_{H_{3}}^\dagger + \alpha_6 \hat{a}_{V_{1}}^\dagger \hat{a}_{H_{2}}^\dagger \hat{a}_{V_{3}}^\dagger + \alpha_7 \hat{a}_{V_{1}}^\dagger \hat{a}_{V_{2}}^\dagger \hat{a}_{H_{3}}^\dagger + \alpha_8 \hat{a}_{V_{1}}^\dagger \hat{a}_{V_{2}}^\dagger \hat{a}_{V_{3}}^\dagger)|\text{vac.}\rangle.$$

(33)
First, after photons go through the PBS\(_1\) and the leftmost P-SWAP gate, when the outing photons emitted from path pairs (9, 12) and (1', 12), or (10, 12) and (1'', 12), we can obtain two desired states,

\[
|\Xi_{1a}\rangle = \frac{1}{2\sqrt{2}} \left(\alpha_1 \hat{a}_{H_{12}}^\dagger \hat{a}_H^\dagger \hat{a}_3^\dagger + \alpha_2 \hat{a}_{H_{12}}^\dagger \hat{a}_H^\dagger \hat{a}_3^\dagger + \alpha_3 \hat{a}_{V_{12}}^\dagger \hat{a}_{H_3}^\dagger + \alpha_4 \hat{a}_{H_{12}}^\dagger \hat{a}_{V_1}^\dagger \hat{a}_{V_3}^\dagger + \alpha_5 \hat{a}_{V_{12}}^\dagger \hat{a}_{V_9}^\dagger \hat{a}_{H_3}^\dagger + \alpha_6 \hat{a}_{H_{12}}^\dagger \hat{a}_{V_9}^\dagger \hat{a}_{V_3}^\dagger + \alpha_7 \hat{a}_{V_{12}}^\dagger \hat{a}_{V_{12}}^\dagger \hat{a}_{H_3}^\dagger + \alpha_8 \hat{a}_{V_{12}}^\dagger \hat{a}_{V_{12}}^\dagger \hat{a}_{V_3}^\dagger \right) |\text{vac.}\rangle,
\]

(34)

\[
|\Xi_{1b}\rangle = \frac{1}{2\sqrt{2}} \left(\alpha_1 \hat{a}_{H_{12}}^\dagger \hat{a}_{H_{10}}^\dagger \hat{a}_H^\dagger + \alpha_2 \hat{a}_{H_{12}}^\dagger \hat{a}_{H_{10}}^\dagger \hat{a}_3^\dagger + \alpha_3 \hat{a}_{H_{12}}^\dagger \hat{a}_{V_{12}}^\dagger \hat{a}_{H_3}^\dagger + \alpha_4 \hat{a}_{H_{12}}^\dagger \hat{a}_{V_1}^\dagger \hat{a}_{V_3}^\dagger + \alpha_5 \hat{a}_{H_{12}}^\dagger \hat{a}_{V_{10}}^\dagger \hat{a}_H^\dagger + \alpha_6 \hat{a}_{H_{12}}^\dagger \hat{a}_{V_{10}}^\dagger \hat{a}_3^\dagger + \alpha_7 \hat{a}_{V_{12}}^\dagger \hat{a}_{V_{12}}^\dagger \hat{a}_{H_3}^\dagger + \alpha_8 \hat{a}_{V_{12}}^\dagger \hat{a}_{V_{12}}^\dagger \hat{a}_{V_3}^\dagger \right) |\text{vac.}\rangle,
\]

(35)

Second, the states described by Eqs. (34) and (35) are considered as the inputs for the next CNOT gate acting on photon 1 and photon 3. When the outing photons emitted from path pairs (9, 11), (9, 12), (10, 11), or (10, 12), which can yield 16 desired states \(|\Xi_{i,9,k}\rangle_1\) (two-fold) and \(|\Xi_{i,10,k}\rangle_1\) (two-fold). Here, \(|\Xi_{i,9,k}\rangle_1\) and \(|\Xi_{i,10,k}\rangle_1\) with \(i \in \{9, 10\}\) and \(k \in \{11, 12\}\) are described by

\[
|\Xi_{i,9,k}\rangle_1 = \frac{1}{\sqrt{6}} \left(\alpha_1 \hat{a}_{H_{10}}^\dagger \hat{a}_{H_{10}}^\dagger \hat{a}_H^\dagger + \alpha_2 \hat{a}_{H_{10}}^\dagger \hat{a}_{H_{10}}^\dagger \hat{a}_3^\dagger + \alpha_3 \hat{a}_{H_{10}}^\dagger \hat{a}_{V_1}^\dagger \hat{a}_{V_3}^\dagger + \alpha_4 \hat{a}_{H_{10}}^\dagger \hat{a}_{V_1}^\dagger \hat{a}_{V_3}^\dagger + \alpha_5 \hat{a}_{H_{10}}^\dagger \hat{a}_{V_9}^\dagger \hat{a}_H^\dagger + \alpha_6 \hat{a}_{H_{10}}^\dagger \hat{a}_{V_9}^\dagger \hat{a}_3^\dagger + \alpha_7 \hat{a}_{V_{10}}^\dagger \hat{a}_{V_{10}}^\dagger \hat{a}_{H_3}^\dagger + \alpha_8 \hat{a}_{V_{10}}^\dagger \hat{a}_{V_{10}}^\dagger \hat{a}_{V_3}^\dagger \right) |\text{vac.}\rangle,
\]

(36)

\[
|\Xi_{i,10,k}\rangle_1 = \frac{1}{6\sqrt{2}} \left(\alpha_1 \hat{a}_{H_{10}}^\dagger \hat{a}_{H_{12}}^\dagger \hat{a}_H^\dagger + \alpha_2 \hat{a}_{H_{10}}^\dagger \hat{a}_{H_{12}}^\dagger \hat{a}_3^\dagger + \alpha_3 \hat{a}_{H_{10}}^\dagger \hat{a}_{V_{12}}^\dagger \hat{a}_{H_3}^\dagger + \alpha_4 \hat{a}_{H_{10}}^\dagger \hat{a}_{V_{12}}^\dagger \hat{a}_{V_3}^\dagger + \alpha_5 \hat{a}_{H_{10}}^\dagger \hat{a}_{V_{10}}^\dagger \hat{a}_H^\dagger + \alpha_6 \hat{a}_{H_{10}}^\dagger \hat{a}_{V_{10}}^\dagger \hat{a}_3^\dagger + \alpha_7 \hat{a}_{V_{10}}^\dagger \hat{a}_{V_{10}}^\dagger \hat{a}_{H_3}^\dagger + \alpha_8 \hat{a}_{V_{10}}^\dagger \hat{a}_{V_{10}}^\dagger \hat{a}_{V_3}^\dagger \right) |\text{vac.}\rangle.
\]

(37)

Third, above 16 states are considered as inputs for the rightmost P-SWAP gate acting on photon 1 and photon 2. When the photon emitted from path pairs (9, 12) and (1', 12), or (9, 11) and (1', 11), or (10, 12) and (1'', 12), or (10, 11) and (1'', 11), we can obtain 64 desired states \(|\Xi_{12,9,k}\rangle_2, |\Xi_{12,10,k}\rangle_2, |\Xi_{11,9,k}\rangle_2\) and \(|\Xi_{11,10,k}\rangle_2\). Here, eight-fold states \(|\Xi_{12,9,k}\rangle_2,\)
\[|\Xi_{12,10,k}\rangle_2, |\Xi_{11,9,k}\rangle_2, \text{ and } |\Xi_{11,10,k}\rangle_2 \text{ with } k \in \{11,12\} \text{ are described by} \]
\[
|\Xi_{12,9,k}\rangle_2 = \frac{1}{64} \left[\alpha_1 \hat{a}_{H_1}^{\dagger} \hat{a}_{H_9}^{\dagger} \hat{a}_{H_k}^{\dagger} + \alpha_2 \hat{a}_{H_12}^{\dagger} \hat{a}_{H_9}^{\dagger} \hat{a}_{V_k}^{\dagger} \\
+ \alpha_3 \hat{a}_{H_12}^{\dagger} \hat{a}_{V_9}^{\dagger} \hat{a}_{H_k}^{\dagger} + \alpha_4 \hat{a}_{H_12}^{\dagger} \hat{a}_{V_9}^{\dagger} \hat{a}_{V_k}^{\dagger} \\
+ \alpha_5 \hat{a}_{V_12}^{\dagger} \hat{a}_{H_9}^{\dagger} \hat{a}_{H_k}^{\dagger} + \alpha_6 \hat{a}_{V_12}^{\dagger} \hat{a}_{H_9}^{\dagger} \hat{a}_{V_k}^{\dagger} \\
+ \alpha_7 \hat{a}_{V_12}^{\dagger} \hat{a}_{V_9}^{\dagger} \hat{a}_{V_k}^{\dagger} + \alpha_8 \hat{a}_{V_12}^{\dagger} \hat{a}_{V_9}^{\dagger} \hat{a}_{H_k}^{\dagger} \right] \text{vac.},
\]
\[
|\Xi_{12,10,k}\rangle_2 = \frac{1}{64} \left[\alpha_1 \hat{a}_{H_1}^{\dagger} \hat{a}_{H_9}^{\dagger} \hat{a}_{H_k}^{\dagger} + \alpha_2 \hat{a}_{H_12}^{\dagger} \hat{a}_{H_9}^{\dagger} \hat{a}_{V_k}^{\dagger} \\
+ \alpha_3 \hat{a}_{H_12}^{\dagger} \hat{a}_{V_9}^{\dagger} \hat{a}_{H_k}^{\dagger} + \alpha_4 \hat{a}_{H_12}^{\dagger} \hat{a}_{V_9}^{\dagger} \hat{a}_{V_k}^{\dagger} \\
+ \alpha_5 \hat{a}_{V_12}^{\dagger} \hat{a}_{H_9}^{\dagger} \hat{a}_{H_k}^{\dagger} + \alpha_6 \hat{a}_{V_12}^{\dagger} \hat{a}_{H_9}^{\dagger} \hat{a}_{V_k}^{\dagger} \\
+ \alpha_7 \hat{a}_{V_12}^{\dagger} \hat{a}_{V_9}^{\dagger} \hat{a}_{V_k}^{\dagger} + \alpha_8 \hat{a}_{V_12}^{\dagger} \hat{a}_{V_9}^{\dagger} \hat{a}_{H_k}^{\dagger} \right] \text{vac.},
\]
\[
|\Xi_{11,9,k}\rangle_2 = \frac{1}{64} \left[\alpha_1 \hat{a}_{H_1}^{\dagger} \hat{a}_{H_9}^{\dagger} \hat{a}_{H_k}^{\dagger} + \alpha_2 \hat{a}_{H_11}^{\dagger} \hat{a}_{H_9}^{\dagger} \hat{a}_{V_k}^{\dagger} \\
- \alpha_3 \hat{a}_{H_11}^{\dagger} \hat{a}_{V_9}^{\dagger} \hat{a}_{H_k}^{\dagger} - \alpha_4 \hat{a}_{H_11}^{\dagger} \hat{a}_{V_9}^{\dagger} \hat{a}_{V_k}^{\dagger} \\
+ \alpha_5 \hat{a}_{V_11}^{\dagger} \hat{a}_{H_9}^{\dagger} \hat{a}_{H_k}^{\dagger} + \alpha_6 \hat{a}_{V_11}^{\dagger} \hat{a}_{H_9}^{\dagger} \hat{a}_{V_k}^{\dagger} \\
- \alpha_7 \hat{a}_{V_11}^{\dagger} \hat{a}_{V_9}^{\dagger} \hat{a}_{V_k}^{\dagger} - \alpha_8 \hat{a}_{V_11}^{\dagger} \hat{a}_{V_9}^{\dagger} \hat{a}_{H_k}^{\dagger} \right] \text{vac.},
\]
\[
|\Xi_{11,10,k}\rangle_2 = \frac{1}{64} \left[\alpha_1 \hat{a}_{H_1}^{\dagger} \hat{a}_{H_9}^{\dagger} \hat{a}_{H_k}^{\dagger} + \alpha_2 \hat{a}_{H_11}^{\dagger} \hat{a}_{H_9}^{\dagger} \hat{a}_{V_k}^{\dagger} \\
- \alpha_3 \hat{a}_{H_11}^{\dagger} \hat{a}_{V_9}^{\dagger} \hat{a}_{H_k}^{\dagger} - \alpha_4 \hat{a}_{H_11}^{\dagger} \hat{a}_{V_9}^{\dagger} \hat{a}_{V_k}^{\dagger} \\
+ \alpha_5 \hat{a}_{V_11}^{\dagger} \hat{a}_{H_9}^{\dagger} \hat{a}_{H_k}^{\dagger} + \alpha_6 \hat{a}_{V_11}^{\dagger} \hat{a}_{H_9}^{\dagger} \hat{a}_{V_k}^{\dagger} \\
- \alpha_7 \hat{a}_{V_11}^{\dagger} \hat{a}_{V_9}^{\dagger} \hat{a}_{V_k}^{\dagger} - \alpha_8 \hat{a}_{V_11}^{\dagger} \hat{a}_{V_9}^{\dagger} \hat{a}_{H_k}^{\dagger} \right] \text{vac.}.
\]

Finally, as shown in Fig. 6, the photons emitted from modes 9 (i.e., \(\hat{a}_{H_9}\) |vac.\)) and 1’ (i.e., \(\hat{a}_{V_9}\) |vac.\)) are combined into the same output mode by PBS2. The photons emitted from modes 10 (i.e., \(\hat{a}_{H_{10}}\) |vac.\)) and 1'' (\(\hat{a}_{V_{10}}\) |vac.\)) are also led to the same output mode by PBS2. Therefore, after PBS2, (i) when the photons emitted from output pairs (12, 9, k) with \(k \in \{11,12\}\), simultaneously, we obtain the eight-fold state
\[
|\Xi_{12,9,k}\rangle_3 = \frac{1}{64} \left[\alpha_1 \hat{a}_{H_12}^{\dagger} \hat{a}_{H_9}^{\dagger} \hat{a}_{H_k}^{\dagger} + \alpha_2 \hat{a}_{H_12}^{\dagger} \hat{a}_{H_9}^{\dagger} \hat{a}_{V_k}^{\dagger} \\
+ \alpha_3 \hat{a}_{H_12}^{\dagger} \hat{a}_{V_9}^{\dagger} \hat{a}_{H_k}^{\dagger} + \alpha_4 \hat{a}_{H_12}^{\dagger} \hat{a}_{V_9}^{\dagger} \hat{a}_{V_k}^{\dagger} \\
+ \alpha_5 \hat{a}_{V_12}^{\dagger} \hat{a}_{H_9}^{\dagger} \hat{a}_{H_k}^{\dagger} + \alpha_6 \hat{a}_{V_12}^{\dagger} \hat{a}_{H_9}^{\dagger} \hat{a}_{V_k}^{\dagger} \\
+ \alpha_7 \hat{a}_{V_12}^{\dagger} \hat{a}_{V_9}^{\dagger} \hat{a}_{V_k}^{\dagger} + \alpha_8 \hat{a}_{V_12}^{\dagger} \hat{a}_{V_9}^{\dagger} \hat{a}_{H_k}^{\dagger} \right] \text{vac.}.
\]

The three-photon Toffoli gate is completed.
neously, we obtain the eight-fold state

\[|\Xi_{12,10,k}^\pm\rangle_3 = \frac{1}{64} \left[\alpha_1 \hat{a}_{H_1} \hat{a}_{H_9} \hat{a}_{H_k} + \alpha_2 \hat{a}_{H_1} \hat{a}_{H_9} \hat{a}_{V_k} + \right. \\
- \alpha_3 \hat{a}_{H_1} \hat{a}_{V_9} \hat{a}_{H_k} - \alpha_4 \hat{a}_{H_1} \hat{a}_{V_9} \hat{a}_{V_k} + \right. \\
+ \alpha_5 \hat{a}_{V_1} \hat{a}_{H_9} \hat{a}_{H_k} + \alpha_6 \hat{a}_{V_1} \hat{a}_{H_9} \hat{a}_{V_k} - \alpha_7 \hat{a}_{V_1} \hat{a}_{V_9} \hat{a}_{H_k} - \alpha_8 \hat{a}_{V_1} \hat{a}_{V_9} \hat{a}_{V_k} \left. \right] \text{[vac.]}.
\]

The three-photon Toffoli gate is also completed.

(iii) When the photons emitted from outport pairs \((11,9,k)\) with \(k \in \{11,12\}\), simultaneously, we obtain the eight-fold state

\[|\Xi_{11,9,k}^\pm\rangle_3 = \frac{1}{64} \left[\alpha_1 \hat{a}_{H_1} \hat{a}_{H_9} \hat{a}_{H_k} + \alpha_2 \hat{a}_{H_1} \hat{a}_{H_9} \hat{a}_{V_k} + \right. \\
- \alpha_3 \hat{a}_{H_1} \hat{a}_{V_9} \hat{a}_{H_k} - \alpha_4 \hat{a}_{H_1} \hat{a}_{V_9} \hat{a}_{V_k} + \right. \\
+ \alpha_5 \hat{a}_{V_1} \hat{a}_{H_9} \hat{a}_{H_k} + \alpha_6 \hat{a}_{V_1} \hat{a}_{H_9} \hat{a}_{V_k} - \alpha_7 \hat{a}_{V_1} \hat{a}_{V_9} \hat{a}_{H_k} - \alpha_8 \hat{a}_{V_1} \hat{a}_{V_9} \hat{a}_{V_k} \left. \right] \text{[vac.]}.
\]

And then an HWP\(^{0\circ}\) is set in the output mode 9 to complete the three-photon Toffoli gate.

(iv) When the photons emitted from outport pairs \((11,10,k)\) with \(k \in \{11,12\}\), simultaneously, we obtain the eight-fold state

\[|\Xi_{11,10,k}^\pm\rangle_3 = \frac{1}{64} \left[\alpha_1 \hat{a}_{H_1} \hat{a}_{H_9} \hat{a}_{H_k} + \alpha_2 \hat{a}_{H_1} \hat{a}_{H_9} \hat{a}_{V_k} + \right. \\
- \alpha_3 \hat{a}_{H_1} \hat{a}_{V_9} \hat{a}_{H_k} - \alpha_4 \hat{a}_{H_1} \hat{a}_{V_9} \hat{a}_{V_k} + \right. \\
+ \alpha_5 \hat{a}_{V_1} \hat{a}_{H_9} \hat{a}_{H_k} + \alpha_6 \hat{a}_{V_1} \hat{a}_{H_9} \hat{a}_{V_k} - \alpha_7 \hat{a}_{V_1} \hat{a}_{V_9} \hat{a}_{H_k} - \alpha_8 \hat{a}_{V_1} \hat{a}_{V_9} \hat{a}_{V_k} \left. \right] \text{[vac.]}.
\]

And then an HWP\(^{0\circ}\) is set in the output mode 10 to complete the three-photon Toffoli gate.

Based on above orthogonal eight-fold states described by Eqs. (43,44,45), one can find that our proposal can be achieved with a higher success probability \((64 \times 1/64^2 = 1/64)\) than the simplified CNOT-based one \((1/72)\) \([20,21]\) and the one without a decomposition-based approach \((1/133)\) \([58]\). In addition, optical single-qudit operation ensembles \(X_a, X_b, \cdots, X_n\) can be achieved by employing a sequence of PBSs, and the linear optical \(n\)-control-photon Toffoli gate can be implemented in principle (see Fig. 7).

4 Discussion and Conclusion

The optimal cost of a Toffoli gate is six CNOT gates using the standard decomposition-based approach in qubit system \([47]\). The theoretical lower bound of a Toffoli gate is five two-qubit gates in qubit system \([48]\). Ralph et al. \([20]\) first reduced the cost of a Toffoli gate to three qubit-qudit CNOT gates by introducing a qutrit. Using the same idea as the works in Refs. \([20,21]\), we designed an alternative the quantum circuit to implement the Toffoli gate with
Figure 7: Implementation of an \((n + 1)\)-photon Toffoli gate.

A higher success probability based on the P-SWAP gates, which required the same number of qubit-qudit gates as the protocols in Refs. \[20, 21\]. The required qubit-qudit entangled gates are all nearest neighbors in our construction of the three-qubit Toffoli gate. Note that the nearest-neighbor quantum gate where each qubit interacts only with its nearest neighbors requires less resource overhead than the long-range one. For example, a long-range CNOT gate acting on the first qubit and the third qubit is constructed by four nearest-neighbor CNOT gates \[68\]. In addition, \((2n - 1)\) qubit-qudit gates and \((2n - 2)\) single-qudit gates can simulate an \(n\)-control-qubit Toffoli gate in higher-dimensional spaces.

Linear optics has inherent probability characteristics for the implementation of controlled quantum gates. With the help of an additional entangled photon pair \[60\, 63\] or a single photon \[64\], optical CNOT gate with a success probability of \(1/4\) or \(1/8\) can be realistically implemented. Without auxiliary photons, CNOT gate with a success probability of \(1/9\) has been experimentally demonstrated in linear optics \[65\, 67\]. Remarkably, the success probability of our P-SWAP-based CNOT gate is enhanced to \(1/8\) without additional photons. Moreover, the success probability of our P-SWAP-based Toffoli gate \((1/64)\) is higher than the CNOT-based protocols \((1/72)\) \[20\, 21\] and it is also higher than the no-decomposition-based one \((1/133)\) \[58\].

The multi-level system is essential to realize our schemes. In optical system, we can encode polarization DOF of photons as two computational qubits and spatial-mode DOF as the qudit (extra level). We can also encode these levels on orbital angular momentum of photons. Besides, diamond nitrogen-vacancy defect center \[69\, 70\] and superconducting system \[71\, 72\] can also provide available multiple levels to implement the universal quantum gates due to their long coherence time and flexible manipulation.

In summary, by introducing higher-dimensional spaces, we proposed simplified CNOT and Toffoli gates. A three-qubit Toffoli gate can be simulated with two P-SWAP, one CNOT, and two single-qudit gates. \(2(n - 1)\) qubit-qudit gates and \(2(n - 2)\) single-qudit gates are sufficient for constructing an \(n\)-control-qubit Toffoli gate. Following the simplified synthesis, as a feasible example, linear optics architectures for implementing CNOT and Toffoli gates were designed with a higher success probability.
Acknowledgments

This work is supported by the National Natural Science Foundation of China under Grant No. 11604012, the Fundamental Research Funds for the Central Universities under Grants FRF-TP-19-011A3 and No. 230201506500024, and a grant from the China Scholarship Council. L.-C.K. is supported by the Ministry of Education and the National Research Foundation Singapore.

References

[1] A. Barenco, C. H. Bennett, R. Cleve, D. P. DiVincenzo, N. Margolus, P. Shor, T. Sleator, J. A. Smolin and H. Weinfurter, *Elementary gates for quantum computation*, Physical Review A **52**, 3457 (1995), doi:10.1103/PhysRevA.52.3457.

[2] L. K. Grover, *Quantum mechanics helps in searching for a needle in a haystack*, doi:10.1103/PhysRevLett.79.325 (1997).

[3] P. W. Shor, *Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer*, SIAM Review **41**, 303 (1999), doi:10.1137/S0036144598347011.

[4] C. Figgatt, D. Maslov, K. Landsman, N. M. Linke, S. Debnath and C. Monroe, *Complete 3-qubit Grover search on a programmable quantum computer*, Nature Communications **8**, 1918 (2017), doi:10.1038/s41467-017-01904-7.

[5] Y. Nam, Y. Su and D. Maslov, *Approximate quantum Fourier transform with $o(n \log(n))$ T gates*, npj Quantum Information **6**, 26 (2020), doi:10.1038/s41534-020-0257-5.

[6] N. Gisin, G. Ribordy, W. Tittel and H. Zbinden, *Quantum cryptography*, Reviews of Modern Physics **74**, 145 (2002), doi:10.1103/RevModPhys.74.145.

[7] M. A. Nielsen and I. L. Chuang, *Quantum Computation and Quantum Information: 10th Anniversary Edition*, Cambridge University Press, doi:10.1017/CBO9780511976667 (2010).

[8] B. P. Lanyon, M. Barbieri, M. P. Almeida and A. G. White, *Experimental quantum computing without entanglement*, Physical Review Letters **101**, 200501 (2008), doi:10.1103/PhysRevLett.101.200501.

[9] V. V. Shende, I. L. Markov and S. S. Bullock, *Minimal universal two-qubit controlled-NOT-based circuits*, Physical Review A **69**, 062321 (2004), doi:10.1103/PhysRevA.69.062321.

[10] N. Khaneja and S. J. Glaser, *Cartan decomposition of SU(2^n) and control of spin systems*, Chemical Physics **267**, 11 (2001), doi:10.1016/S0301-0104(01)00318-4.

[11] M. Möttönen, J. J. Vartiainen, V. Bergholm and M. M. Salomaa, *Quantum circuits for general multiqubit gates*, Physical Review Letters **93**, 130502 (2004), doi:10.1103/PhysRevLett.93.130502.
[12] S. S. Bullock and G. K. Brennen, *Canonical decompositions of n-qubit quantum computations and concurrence*, Journal of Mathematical Physics 45, 2447 (2004), doi:10.1063/1.17237012.

[13] V. V. Shende, S. S. Bullock and I. L. Markov, *Synthesis of quantum-logic circuits*, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 25, 1000 (2006), doi:10.1109/TCAD.2005.855930.

[14] D. D’Alessandro and F. Albertini, *Quantum symmetries and Cartan decompositions in arbitrary dimensions*, Journal of Physics A: Mathematical and Theoretical 40, 2439 (2007), doi:10.1088/1751-8113/40/10/013.

[15] Y. M. Di and H. R. Wei, *Synthesis of multivalued quantum logic circuits by elementary gates*, Physical Review A 87, 012325 (2013), doi:10.1103/PhysRevA.87.012325.

[16] R. Iten, R. Colbeck, I. Kukuljan, J. Home and M. Christandl, *Quantum circuits for isometries*, Physical Review A 93, 032318 (2016), doi:10.1103/PhysRevA.93.032318.

[17] F. Vatan and C. Williams, *Optimal quantum circuits for general two-qubit gates*, Physical Review A 69, 032315 (2004), doi:10.1103/PhysRevA.69.032315.

[18] G. Vidal and C. M. Dawson, *Universal quantum circuit for two-qubit transformations with three controlled-NOT gates*, Physical Review A 69, 010301(R) (2004), doi:10.1103/PhysRevA.69.010301.

[19] V. V. Shende, S. S. Bullock and I. L. Markov, *Recognizing small-circuit structure in two-qubit operators*, Physical Review A 70, 012310 (2004), doi:10.1103/PhysRevA.70.012310.

[20] T. C. Ralph, K. J. Resch and A. Gilchrist, *Efficient Toffoli gates using qudits*, Physical Review A 75, 022313 (2007), doi:10.1103/PhysRevA.75.022313.

[21] B. P. Lanyon, M. Barbieri, M. P. Almeida, T. Jennewein, T. C. Ralph, K. J. Resch, G. J. Pryde, J. L. O’brien, A. Gilchrist and A. G. White, *Simplifying quantum logic using higher-dimensional Hilbert spaces*, Nature Physics 5, 134 (2009), doi:10.1038/nphys1150.

[22] A. Fedorov, L. Steffen, M. Baur, M. P. da Silva and A. Wallraff, *Implementation of a Toffoli gate with superconducting circuits*, Nature 481, 170 (2012), doi:10.1038/nature10713.

[23] K. Liu, W. D. Li, W. Z. Zhang, P. Shi, C. N. Ren and Y. J. Gu, *Optimizing quantum circuits using higher-dimensional Hilbert spaces*, Acta Physica Sinica 61, 120301 (2012), doi:10.7498/aps.61.120301.

[24] W. D. Li, Y. J. Gu, K. Liu, Y. H. Lee and Y. Z. Zhang, *Efficient universal quantum computation with auxiliary Hilbert space*, Physical Review A 88, 034303 (2013), doi:10.1103/PhysRevA.88.034303.

[25] W. Q. Liu and H. R. Wei, *Optimal synthesis of the Fredkin gate in a multilevel system*, New Journal of Physics 22, 063026 (2020), doi:10.1088/1367-2630/ab8e13.

[26] W. Q. Liu, H. R. Wei and L. C. Kwek, *Low-cost Fredkin gate with auxiliary space*, Physical Review Applied 14, 054057 (2020), doi:10.1103/PhysRevApplied.14.054057.
[27] A. Sawicki and K. Karnas, *Criteria for universality of quantum gates*, Physical Review A 95, 062303 (2017), doi:10.1103/PhysRevA.95.062303.

[28] A. Sawicki and K. Karnas, *Universality of single-qudit gates*, Annales Henri Poincaré 18, 3515 (2017), doi:10.1007/s00023-017-0604-z.

[29] K. Lemr, K. Bartkiewicz, A. Ćernoch, M. Dušek and J. Soubusta, *Experimental implementation of optimal linear-optical controlled-unitary gates*, Physical Review Letters 114, 153602 (2015), doi:10.1103/PhysRevLett.114.153602.

[30] A. Babazadeh, M. Erhard, F. Wang, M. Malik, R. Nouroozi, M. Krenn and A. Zeilinger, *High-dimensional single-photon quantum gates: concepts and experiments*, Physical Review Letters 119, 180510 (2017), doi:10.1103/PhysRevLett.119.180510.

[31] X. Gao, M. Erhard, A. Zeilinger and M. Krenn, *Computer-inspired concept for high-dimensional multipartite quantum gates*, Physical Review Letters 125, 050501 (2020), doi:10.1103/PhysRevLett.125.050501.

[32] Y. Wang, Z. Hu, B. C. Sanders and S. Kais, *Qudits and high-dimensional quantum computing*, Frontiers in Physics 8, 479 (2020), doi:10.3389/fphy.2020.589504.

[33] N. J. Cerf, M. Bourennane, A. Karlsson and N. Gisin, *Security of quantum key distribution using d-level systems*, Physical Review Letters 88, 127902 (2002), doi:10.1103/PhysRevLett.88.127902.

[34] B. P. Lanyon, T. J. Weinhold, N. K. Langford, J. L. O’Brien, K. J. Resch, A. Gilchrist and A. G. White, *Manipulating biphotonic qutrits*, Physical Review Letters 100, 060504 (2008), doi:10.1103/PhysRevLett.100.060504.

[35] M. Malik, M. Erhard, M. Huber, M. Krenn, R. Fickler and A. Zeilinger, *Multiphoton entanglement in high dimensions*, Nature Photonics 10, 248 (2016), doi:10.1038/nphoton.2016.12.

[36] Y. Zhang, M. Agnew, T. Roger, F. S. Roux, T. Konrad, D. Faccio, J. Leach and A. Forbes, *Simultaneous entanglement swapping of multiple orbital angular momentum states of light*, Nature Communications 8, 632 (2017), doi:10.1038/s41467-017-00706-1.

[37] F. Wang, M. Erhard, A. Babazadeh, M. Malik, M. Krenn and A. Zeilinger, *Generation of the complete four-dimensional Bell basis*, Optica 4, 1462 (2017), doi:10.1364/OPTICA.4.001462.

[38] X. M. Hu, Y. Guo, B. H. Liu, Y. F. Huang, C. F. Li and G. C. Guo, *Beating the channel capacity limit for superdense coding with entangled guquarts*, Science Advances 4, eaat9304 (2018), doi:10.1126/sciadv.aat9304.

[39] Y. H. Luo, H. S. Zhong, M. Erhard, X. L. Wang, L. C. Peng, M. Krenn, X. Jiang, L. Li, N. L. Liu, C. Y. Lu, A. Zeilinger and J. W. Pan, *Quantum teleportation in high dimensions*, Physical Review Letters 123, 070505 (2019), doi:10.1103/PhysRevLett.123.070505.
[40] X. M. Hu, C. Zhang, B. H. Liu, Y. Cai, X. J. Ye, Y. Guo, W. B. Xing, C. X. Huang, Y. F. Huang, C. F. Li and G. C. Guo, Experimental high-dimensional quantum teleportation, Physical Review Letters 125, 230501 (2020), doi:10.1103/PhysRevLett.125.230501.

[41] V. D’ambrosio, N. Spagnolo, L. Del Re, S. Slussarenko, Y. Li, L. C. Kwek, L. Marrucci, S. P. Walborn, L. Aolita and F. Sciarrino, Photonic polarization gears for ultra-sensitive angular measurements, Nature Communications 4, 2432 (2013), doi:10.1038/ncomms3432.

[42] Y. Shi, Both Toffoli and controlled-NOT need little help to do universal quantum computation, Quantum Information and Computation 3, 84 (2002), doi:10.1016/S0146-6410(03)00082-6.

[43] D. G. Cory, M. Price, W. Maas, E. Knill, R. Laflamme, W. H. Zurek, T. F. Havel and S. S. Somaroo, Experimental quantum error correction, Physical Review Letters 81, 2152 (1998), doi:10.1103/PhysRevLett.81.2152.

[44] M. D. Reed, L. DiCarlo, S. E. Nigg, L. Sun, L. Frunzio, S. M. Girvin and R. J. Schoelkopf, Realization of three-qubit quantum error correction with superconducting circuits, Nature 482, 382 (2012), doi:10.1038/nature10786.

[45] A. Paetznick and B. W. Reichardt, Universal fault-tolerant quantum computation with only transversal gates and error correction, Physical Review Letters 111, 090505 (2013), doi:10.1103/PhysRevLett.111.090505.

[46] J. Guillaud and M. Mirrahimi, Repetition cat qubits for fault-tolerant quantum computation, Physical Review X 9, 041053 (2019), doi:10.1103/PhysRevX.9.041053.

[47] V. V. Shende and I. L. Markov, On the CNOT-cost of Toffoli gates, Quantum Information and Computation 9, 461 (2008), doi:10.1134/S1063779609030058.

[48] N. Yu, R. Duan and M. Ying, Five two-qubit gates are necessary for implementing the Toffoli gate, Physical Review A 88, 010304(R) (2013), doi:10.1103/PhysRevA.88.010304.

[49] N. Yu and M. Ying, Optimal simulation of Deutsch gates and the Fredkin gate, Physical Review A 91, 032302 (2015), doi:10.1103/PhysRevA.91.032302.

[50] E. O. Kiktenko, A. S. Nikolaeva, P. Xu, G. V. Shlyapnikov and A. K. Fedorov, Scalable quantum computing with qubits on a graph, Physical Review A 101, 022304 (2020), doi:10.1103/PhysRevA.101.022304.

[51] M. Mičuda, M. Sedlák, I. Straka, M. Miková, M. Dušek, M. Ježek and J. Fiurášek, Efficient experimental estimation of fidelity of linear optical quantum Toffoli gate, Physical Review Letters 111, 160407 (2013), doi:10.1103/PhysRevLett.111.160407.

[52] M. Mičuda, M. Miková, I. Straka, M. Sedlák, M. Dušek, M. Ježek and J. Fiurášek, Tomographic characterization of a linear optical quantum Toffoli gate, Physical Review A 92, 032312 (2015), doi:10.1103/PhysRevA.92.032312.

[53] S. Ru, Y. Wang, M. An, F. Wang, P. Zhang and F. Li, Realization of deterministic quantum Toffoli gate with a single photon, Physical Review A 103, 022606 (2021), doi:10.1103/PhysRevA.103.022606.
[54] T. Monz, K. Kim, W. Hänsel, M. Riebe, A. Villar, P. Schindler, M. Chwalla, M. Hennrich and R. Blatt, Realization of the quantum Toffoli gate with trapped ions, Physical Review Letters 102, 040501 (2009), doi:10.1103/PhysRevLett.102.040501.

[55] I. I. Beterov, I. N. Ashkarin, E. A. Yakshina, D. B. Tretyakov, V. M. Entin, I. I. Ryabtsev, P. Cheinet, P. Pillet and M. Saffman, Fast three-qubit Toffoli quantum gate based on three-body Förster resonances in Rydberg atoms, Physical Review A 98, 042704 (2018), doi:10.1103/PhysRevA.98.042704.

[56] H. Levine, A. Keesling, G. Semeghini, A. Omran, T. T. Wang, S. Ebadi, H. Bernien, M. Greiner, V. Vuletić, H. Pichler and M. D. Lukin, Parallel implementation of high-fidelity multiqubit gates with neutral atoms, Physical Review Letters 123, 170503 (2019), doi:10.1103/PhysRevLett.123.170503.

[57] M. J. Gullans and J. R. Petta, Protocol for a resonantly driven three-qubit Toffoli gate with silicon spin qubits, Physical Review B 100, 085419 (2019), doi:10.1103/PhysRevB.100.085419.

[58] J. Fiurášek, Linear-optics quantum Toffoli and Fredkin gates, Physical Review A (6), 062313 (2006), doi:10.1103/PhysRevA.73.062313.

[59] T. B. Pittman, B. C. Jacobs and J. D. Franson, Probabilistic quantum logic operations using polarizing beam splitters, Physical Review A 64, 062311 (2001), doi:10.1103/PhysRevA.64.062311.

[60] X. H. Bao, T. Y. Chen, Q. Zhang, J. Yang, H. Zhang, T. Yang and J. W. Pan, Optical nondestructive controlled-NOT gate without using entangled photons, Physical Review Letters 98, 170502 (2007), doi:10.1103/PhysRevLett.98.170502.

[61] J. P. Li, X. Gu, J. Qin, D. Wu, X. You, H. Wang, C. Schneider, S. Höfling, Y. H. Huo, C. Y. Lu, N. L. Liu, L. Li et al., Heralded nondestructive quantum entangling gate with single-photon sources, Physical Review Letters 126, 140501 (2021), doi:10.1103/PhysRevLett.126.140501.

[62] W. B. Gao, A. M. Goebel, C. Y. Lu, H. N. Dai, C. Wagenknecht, Q. Zhang, B. Zhao, C. Z. Peng, Z. B. Chen, Y. A. Chen and J. W. Pan, Teleportation-based realization of an optical quantum two-qubit entangling gate, Proceedings of the National Academy of Sciences 107, 20869 (2010), doi:10.1073/pnas.1005720107.

[63] S. Gasparoni, J. W. Pan, P. Walther, T. Rudolph and A. Zeilinger, Realization of a photonic CNOT gate sufficient for quantum computation, Physical Review Letters 93, 020504 (2004), doi:10.1103/PhysRevLett.93.020504.

[64] J. Zeuner, A. N. Sharma, M. Tillmann, R. Heilmann, M. Gräfe, A. Moqanaki, A. Szameit and P. Walther, Integrated-optics heralded controlled-NOT gate for polarization-encoded qubits, npj Quantum Information 4, 13 (2018), doi:10.1038/s41534-018-0068-0.

[65] N. K. Langford, T. J. Weinhold, R. Prevedel, K. J. Resch, A. Gilchrist, J. L. O’Brien, G. J. Pryde and A. G. White, Demonstration of a simple entangling optical gate and its use in Bell-state analysis, Physical Review Letters 95, 210504 (2005), doi:10.1103/PhysRevLett.95.210504.
[66] N. Kiesel, C. Schmid, U. Weber, R. Ursin and H. Weinfurter, *Linear optics controlled-phase gate made simple*, Physical Review Letters 95, 210505 (2005), doi:10.1103/PhysRevLett.95.210505.

[67] R. Okamoto, H. F. Hofmann, S. Takeuchi and K. Sasaki, *Demonstration of an optical quantum controlled-NOT gate without path interference*, Physical Review Letters 95, 210506 (2005), doi:10.1103/PhysRevLett.95.210506.

[68] G. F. Viamontes, I. L. Markov and J. P. Hayes, *Quantum circuit simulation*, Springer Science (2009).

[69] Z. L. Xiang, S. Ashhab, J. Q. You and F. Nori, *Hybrid quantum circuits: Superconducting circuits interacting with other quantum systems*, Reviews of Modern Physics 85, 623 (2013), doi:10.1103/RevModPhys.85.623.

[70] G. Waldherr, Y. Wang, S. Zaiser, M. Jamali, T. Schulte-Herbrüggen, H. Abe, T. Ohshima, J. Isoya, J. F. Du, P. Neumann and J. Wrachtrup, *Quantum error correction in a solid-state hybrid spin register*, Nature 506, 204 (2014), doi:10.1038/nature12919.

[71] M. J. Peterer, S. J. Bader, X. Jin, F. Yan, A. Kamal, T. J. Gudmundsen, P. J. Leek, T. P. Orlando, W. D. Oliver and S. Gustavsson, *Coherence and decay of higher energy levels of a superconducting transmon qubit*, Physical Review Letters 114, 010501 (2015), doi:10.1103/PhysRevLett.114.010501.

[72] T. Bækkegaard, L. B. Kristensen, N. J. S. Loft, C. K. Andersen, D. Petrosyan and N. T. Zinner, *Realization of efficient quantum gates with a superconducting qubit-qutrit circuit*, Scientific Reports 9, 13389 (2019), doi:10.1038/s41598-019-49657-1.