Serotonergic Suppression of Mouse Prefrontal Circuits Implicated in Task Attention

Michael K. Tian,1 Eric F. Schmidt,2 and Evelyn K. Lambe1,3,4

DOI: http://dx.doi.org/10.1523/ENEURO.0269-16.2016

1Department of Physiology, University of Toronto, Toronto, ON, Canada, 2Laboratory of Molecular Biology, Rockefeller University, New York, NY, 3Department of Obstetrics and Gynecology, University of Toronto, Toronto, ON, Canada, and 4Department of Psychiatry, University of Toronto, Toronto, ON, Canada

Visual Abstract

Serotonin (5-HT) regulates attention by neurobiological mechanisms that are not well understood. Layer 6 (L6) pyramidal neurons of prefrontal cortex play an important role in attention and express 5-HT receptors, but the serotonergic modulation of this layer and its excitatory output is not known. Here, we performed whole-cell recordings and pharmacological manipulations in acute brain slices from wild-type and transgenic mice expressing either eGFP or eGFP-channelrhodopsin in prefrontal L6 pyramidal neurons. Excitatory circuits between L6 pyramidal neurons and L5 GABAergic interneurons, including a population of interneurons essential for task attention, were investigated using optogenetic techniques. Our experiments show that prefrontal L6 pyramidal neurons are subject to strong serotonergic inhibition and demonstrate direct 5-HT-sensitive connections between prefrontal L6 pyramidal neurons and two classes of L5 interneurons. This work helps to build a neurobiological framework to appreciate serotonergic disruption of task attention and yields insight into the disruptions of attention observed in psychiatric disorders with altered 5-HT receptors and signaling.

Key words: corticothalamic neurons; interneurons; medial prefrontal cortex; optogenetics; serotonin (5-HT)

Significance Statement

Although serotonin shapes and biases attention, the mechanisms underlying this phenomenon are not well understood. Layer 6 (L6) pyramidal neurons of medial prefrontal cortex play a critical role in performance on attention tasks, but their serotonergic modulation is unclear. Using electrophysiology and optogenetic techniques, we investigated the effects of serotonin on L6 pyramidal neurons and their local cortical circuits. We discovered a direct and serotonin-sensitive functional link from prefrontal L6 pyramidal neurons to GABAergic interneurons in L5, two populations of neurons essential for attention.
Introduction

The medial prefrontal cortex (mPFC) is critical for “top-down” executive control of attention (Miller and Cohen, 2001; Knudsen, 2007), and disruption of its signaling impairs normal performance on attention tasks (Muir et al., 1996; Miner et al., 1997; Granon et al., 1998). Layer 6 (L6) of mPFC, in particular, plays an important role in attention (Allito and Usrey, 2003; West et al., 2006; Zikopoulos and Barbas, 2006; Kassam et al., 2008; Bailey et al., 2010; Guillery and Sherman, 2002) and is a major source of corticothalamic output (Guillery and Sherman, 2002; Thomson et al., 2002; Mercer et al., 2005; Watts and Thomson, 2005; West et al., 2006; Zikopoulos and Barbas, 2006; Parikh et al., 2007; Sherman, 2007; Kassam et al., 2008; Bailey et al., 2010; Thomson, 2010). Much less, however, is known about the cortico-cortical collaterals of L6 pyramidal neurons in mPFC. This question is increasingly urgent in view of recent work from primary sensory cortex showing that L6 pyramidal neurons send robust excitatory projections to fast-spiking cortical interneurons which achieve strong gain control over the cortical column (Olsen et al., 2012), together with recent work from mPFC showing that fast-spiking prefrontal interneurons are essential for attention (Kim et al., 2016). In mPFC, there remains much to be understood about the local targets of prefrontal L6 pyramidal neurons and the susceptibility of these attention circuits to neuromodulators such as serotonin.

Serotonin (5-HT) is known to shape and bias attention in human and nonhuman primates, with reduction of brain 5-HT enhancing attention (Schmitt et al., 2000; Gallagher et al., 2003; Boooli et al., 2005; Wingen et al., 2007) and elevation of brain 5-HT impairing attention task performance (Riedel et al., 2005; Oranje et al., 2008; Watson et al., 2015). Yet the mechanisms underlying this relationship between 5-HT and attention are not well understood. As in primates, the deep layers of mPFC in rodents are well innervated by serotonin afferents (Wilson and Mol-
light did not have effects in brain slices from mice lacking channelrhodopsin-2. Translating ribosome affinity purification (TRAP) and quantitative reverse-transcription (qRT)-PCR were used to confirm that Syt6 and Epyc-Cre neurons indeed represent an overlapping population of L6 glutamatergic neurons. All experimental animal procedures were performed in accordance with the University of Toronto and Rockefeller University Institutional Animal Care and Use Committee regulations.

Electrophysiology

Coronal brain slices (400 μm) for electrophysiological recordings were obtained from adult male mice (postnatal 60 to 170 days; mean ± SEM; 101 ± 4 days; n = 41 mice). Brains were rapidly excised and chilled in 4°C oxygenated sucrose artificial cerebrospinal fluid (ACSF; 254 mM sucrose, 10 mM d-glucose, 24 mM NaHCO3, 2 mM CaCl2, 2 mM MgSO4, 3 mM KCl, 1.25 mM NaH2PO4; pH 7.4). Coronal slices (400 μm thick, 2.34–0.74 mm from bregma) were cut on a Dosaka Linear Slicer (SciMedica, Costa Mesa, CA) and recovered in 30°C oxygenated ACSF (128 mM NaCl, 10 mM d-glucose, 26 mM NaHCO3, 2 mM CaCl2, 2 mM MgSO4, 3 mM KCl, 1.25 mM NaH2PO4; pH 7.4) for at least 2 h.

Recovered slices were transferred to a perfusion chamber on the stage of a BX50W1 microscope (Olympus, Tokyo, Japan). ACSF was bubbled (95% O2, 5% CO2 at room temperature) and perfused the chamber at a rate of 3–4 ml/min. In addition to recording from L6 pyramidal neurons based on neuronal morphology and anatomical landmarks in wild-type mice, L6 in Syt6 mice was landmarked with fluorescently identified eGFP-positive neurons (X-cite Series 120; Lumen Dynamics, Mississauga, Canada; Tian et al., 2014). Recording electrodes (2–4 MΩ) containing 120 mM potassium gluconate, 5 mM KCl, 2 mM MgCl2, 4 mM K2-ATP, 0.4 mM Na2-GTP, 10 mM Na2-phosphocreatine, and 10 mM HEPES buffer (adjusted to pH 7.3 with KOH) were used to patch L6 pyramidal neurons. Interneurons in L5 were identified visually based on their unique morphology in infrared differential interference contrast (small, circular somata) in contrast to L5 pyramidal neurons (oriented, triangular shaped somata, relatively thick apical dendrites toward pia). A subset of patched interneurons was filled with Alexa Fluor 594 (20 μM) or Texas red dextran (0.15%) in the patch solution for morphological confirmation of these criteria. Interneurons were further subclassified as FS or nFS based on their intrinsic firing patterns and maximal spike frequency. Multiphoton images were acquired with a Ti:sapphire laser (Mai Tai, Spectra-Physics, Fremont, CA) using an Olympus Fluoview FV1000 microscope and an Olympus XLPLN N25× water-immersion objective. Neuronal membrane potential and holding current were recorded with an EPC10 (HEKA Electronik, Lambrecht/Pfalz, Germany) and corrected for the liquid junction potential (14 mV). All data were acquired at 20 kHz and low-pass filtered at 3 kHz with pClamp software (Molecular Devices, Palo Alto, CA). Threshold potentials for action potentials were detected using a derivative threshold of at least 20 mV/ms, and action potential amplitude was calculated as the change in membrane potential from threshold to the peak of the action potential. Intrinsic properties of L6 pyramidal neurons, as well as L5 FS and nFS interneurons, are summarized in Table 1.

To examine the effects of 5-HT on L6 pyramidal neurons near rest and during spiking, we performed whole-cell patch-clamp recording in voltage clamp at ~75 mV and in current clamp with current injections to elicit either constant spiking (2–3 Hz) at baseline or an initial membrane potential of ~75 mV before depolarizing current injections (1 s, 25-pA steps, 15-s intervals) were used to assess input–output relationships. For the latter experiment, the frequency of action potential firing was measured for each depolarizing current step and plotted against the magnitude of the injected current step.

Pharmacology

Acute responses to 5-HT were probed by bath application of 5-HT (serotonin creatinine sulfate, Sigma-Aldrich, St. Louis, MO; 10 μM; 30 s) in ACSF. To examine the effect of 5-HT on the excitability of L6 pyramidal neurons, 5-HT (10 μM) was bath applied until a steady-state response was reached, and remained in bath throughout the duration of the input–output test protocols (~2 min total application). Selective antagonists and agonists were from Tocris (Bristol, UK), except where mentioned. Agonists for 5-HT1A receptors (30 nM WAY100635, 10 μM 8-OH-DPAT) and 5-HT2A receptors (30 nM MDL100907; 2 μM ketanserin; 300 nM to 3 μM ritanserin) were applied in bath for 10 min before further experiments with 5-HT. There were no significant differences between effects of 300 nM and 3 μM ritanserin, and results were grouped for analysis. TCB-2 was used as a specific agonist of 5-HT2A receptors (300 nM to 1 μM). Other agonists and antagonists used for characterization of the 5-HT response in L6 neurons were as follows: 2 μM tetrodotoxin (TTX) (Alomone Labs, Jerusalem, Israel), 20 μM 6-cyano-7-nitroquinoxaline-2,3-dione, 50 μM d-2-amino-5-phosphonovaleric acid, 100 μM picrotoxin, 1 μM CGP52432, and 10 μM 8-OH-DPAT.

Table 1. Intrinsic electrophysiological properties of three groups of neurons recorded: pyramidal neurons in L6, FS interneurons in L5, and nFS interneurons in L5.

Neuron Type	RMP (mV) ± SEM	Input resistance (MΩ) ± SEM	Spike amplitude (mV) ± SEM	Peak firing frequency (Hz) ± SEM	n
Layer 6 pyramidal	-90.2 ± 0.6	128.5 ± 3.9	83.1 ± 0.6	22.4 ± 0.8	122
Layer 5 FS interneurons	-85.2 ± 1.2	114.3 ± 9.8	59.5 ± 2.2	109.8 ± 23.3	19
Layer 5 nFS interneurons	-82.7 ± 1.6	235.9 ± 30.0*	79.7 ± 1.9**	34.1 ± 3.0**	22

Neuronal properties shown are resting membrane potential (RMP), input resistance, spike amplitude, and peak firing frequency upon injection of a maximal suprathreshold current. Data are shown as mean ± SEM. Comparisons between L5 FS and nFS interneurons: *p < 0.05, **p < 0.001, unpaired t-tests.
Optogenetic stimulation

Channelrhodopsin-expressing neurons in Epyc-ChR2 mice were stimulated by blue LED light (473 nm) delivered by optic fiber (Thorlabs, Newton, NJ) mounted on a mechanical micromanipulator (Narishige International, East Meadow, NY). Light stimulation was directed directly to L6 of mPFC by targeted positioning of the optic fiber. Twenty light pulses (2–5 ms each) were delivered at 20 Hz to stimulate L6 neurons. This stimulation profile was sufficient to elicit robust activation of L6 pyramidal neurons expressing channelrhodopsin. In control experiments with brain slices from littersmate mice lacking channelrhodopsin, light stimulation did not elicit a response in either L6 pyramidal neurons or L5 interneurons. Responses to light stimulation in L6 pyramidal neurons and L5 interneurons were measured in current-clamp from a baseline membrane potential of ~75 mV held by continuous injection of depolarizing current. Response latency in L6 pyramidal neurons expressing channelrhodopsin was calculated from the time of light-on to the onset of the corresponding membrane potential change. Time-to-spike for L6 neurons from light-on was also calculated using the peak of the first resulting action potential. In L5 interneurons, the latency to response from L6 activation was calculated in voltage clamp as the time taken from light-on to the onset of the postsynaptic current, then corrected by the time-to-spike in L6 pyramidal neurons. Pairwise analysis of the effects of 5-HT on the excitation of L5 interneurons by optogenetic activation of L6 were performed using light stimulus that was able to elicit at least four action potentials in patched L5 interneurons. Light stimulus intensity to elicit a baseline of at least four action potentials did not differ between FS and nFS interneurons (t_{14} = 1.4, p = 0.18, unpaired t-test).

Statistical analysis

All recordings were analyzed using Clampfit software (Molecular Devices). Statistical analyses were performed with GraphPad Prism (GraphPad Software, La Jolla, CA). Analyses performed were one-sample t test, unpaired Student’s t test, paired Student’s t test, one-way ANOVA, two-way ANOVA, and two-way repeated-measures ANOVA. All tests were two-sided. Dunnett’s multiple comparison tests were performed post hoc to compare changes in action potential firing in L6 neurons elicited by 5-HT. Sidak’s multiple comparison tests were used to compare differences in spike frequency at individual injected current steps in the presence of 5-HT. All data are presented as mean ± SEM.

Translating ribosome affinity purification and quantitative RT-PCR

Adult (8–12 weeks old) Epyc-Cre mice under ketamine/xylazine (100/10 mg/kg) anesthesia received single bilateral stereotaxic injections of 0.25 μl AAV-FLEX-EGFP-L10a virus (3.75 × 10^{12} genome copies/ml) into the mPFC (1.54 AP from bregma, 0.4 ML, -1.80 DV from dura). Animals were sacrificed in a controlled CO2 chamber 3 weeks after surgery, brains were rapidly dissected in ice-cold Hanks balanced salt solution containing 2.5 mM HEPES-KOH (pH 7.4), 35 mM glucose, 4 mM NaHCO3, and 100 μg/ml cycloheximide. The cortex was isolated from the rest of the brain, and each hemisphere was split along the coronal plane at the level of the genu of the corpus callosum (~1.6 mm AP from bregma). The rostral portion was saved as the “PFC” and used for TRAP. Tissue from three mice (male and female) was pooled for each sample, and three biological replicates were collected. Polysome immunoprecipitations (IPs) were carried out as previously described (Schmidt et al., 2012; Heiman et al., 2014). Briefly, the tissue was homogenized in extraction buffer containing 10 mM HEPES-KOH (pH 7.4), 150 mM KCl, 5 mM MgCl2, 0.5 mM dithiothreitol, 100 μg/ml cycloheximide, RNasin (Promega, Madison, WI), and SUPERas-In (Invitrogen, San Diego, CA) RNase inhibitors, and complete EDTA-free protease inhibitors (Roche, Basel, Switzerland), and then cleared by centrifugation at 2000 × g. HEPES CA-630 (NP-40, Sigma-Aldrich) and diheptanoyl phosphatidylcholine (Avanti Polar Lipids, Alabaster, AL) were both added to the S2 supernatant for a final concentration of 1% each, followed by centrifugation at 20,000 × g. Polysomes were immunoprecipitated from the S20 supernatant using 100 μg monoclonal anti-EGFP antibodies (50 μg each of clones 19C8 and 19F7; Heiman et al., 2008) bound to biotinylated protein L (Pierce, Thermo Fisher, Waltham, MA) coated streptavidin-conjugated magnetic beads (Invitrogen), and washed in high salt buffer containing 10 mM HEPES-KOH (pH 7.4), 350 mM KCl, 5 mM MgCl2, 1% IGEPEL CA-630, 0.5 mM dithiothreitol, 100 μg/ml cycloheximide, and RNasin RNase inhibitors (Promega). IPs were carried out overnight at 4°C. Bound RNA was purified using the Absolutely RNA Nanoprep kit (Agilent, Santa Clara, CA). RNA was also purified from the pre-IP supernatant to serve as whole-PFC “input” samples. RNA quantity was measured with a NanoDrop 1000 spectrophotometer, and quality was assayed on an Agilent 2100 Bioanalyzer. Only samples with RNA integrity values >7.0 were used for qRT-PCR analysis. cDNA was synthesized from 15 ng of IP or input total RNA using the Ovation qPCR System (NuGEN Technologies, Carlos, CA) following the manufacturer’s protocol. qRT-PCR was performed on an Applied Biosystems StepOnePlus Fast Real-Time PCR System using commercially available Taqman assays (Table 2) and following standard cycling conditions (50°C for 2 min, 95°C for 10 min, 40 cycles of 95°C for 15 s and 60°C for 1 min). Ten nanograms of cDNA was used for each qRT-PCR reaction, and technical triplicates were run for each of the biological triplicates from TRAP IP and input samples. The mean C_T for technical replicates was used for quantification. Data were normalized to Gapdh by the comparative C_T (2^{–ΔΔCT}) method (Livak and Schmittgen, 2001). Data are presented as mean ± SEM of biological triplicates. Statistical significance was calculated between the normalized expression values (2^{ΔCT}) from the IP and input biological replicates for each gene by Student’s t test in Microsoft Excel.

Results

Serotonin robustly inhibits L6 pyramidal neurons of mPFC

Here, we investigated the electrophysiological consequences of 5-HT on pyramidal neurons in L6 of mPFC.
Experiments in voltage clamp showed robust and replicable outward currents (58.3 ± 6.4 pA, n = 28; Fig. 1A, B) in response to bath application of 5-HT (10 μM, 30 s). These 5-HT–elicited currents were dose-dependent, with an EC_{50} of 5.7 ± 0.1 μM (n = 7, r^2 = 0.9). The lack of significant change in these responses to blocking voltage-gated sodium channels with TTX (2 μM, 10 min in bath; t_12 = 1.2, p = 0.3, n = 4, paired t test), to blocking AMPA, NMDA, and GABA-A receptors (6-cyano-7-nitroquinoxaline-2,3-dione [20 μM], 2-amino-5-phosphonovaleric acid [50 μM], picROTOxin [100 μM], t_29 = 0.5, p = 0.6, n = 7, paired t test; Fig. 1A, D), as well as to blocking these synaptic receptors together with GABA-B blockade with CGP54232 (10 μM; t_31 = 0.27, p = 0.8, n = 4, paired t test) suggest direct mediation by 5-HT receptors on L6 pyramidal neurons themselves.

We found that the specific 5-HT_{1A} antagonist WAY100635 (30 nm, 10 min in bath) significantly reduced the 5-HT–mediated current in L6 pyramidal neurons (∼70% reduction to 18.3 ± 2.6 pA, t_{18} = 4.9, p < 0.0001, n = 19, unpaired t test; Fig. 1B–D). The 5-HT_{1A} agonist 8-OH-DPAT (10 μM) elicited outward currents of similar magnitude to the 5-HT current in L6 pyramidal neurons (5-HT, 61.2 ± 12.8 pA; 8-OH-DPAT, 48.5 ± 11.1 pA, t_6 = 1.6, p = 0.2, n = 6, paired t test).

To investigate the functional effects of 5-HT on L6 pyramidal neurons during excitation, we used current-clamp and bath-applied 5-HT in the presence of injected positive depolarizing current sufficient to elicit action potential firing (2–3 Hz). Under these conditions, 5-HT hyperpolarized L6 neurons (–16.3 ± 1.6 mV, n = 17) and fully and significantly inhibited action potential firing in every recorded neuron (t_7 = 13.5, p < 0.0001, n = 8, paired t test; Fig. 1E, H, I). This suppression was repeatable in the same neuron after washout and was not affected by the presence of synaptic blockers (Fig. 1E, H, I). Antagonism of 5-HT_{1A} receptors by WAY100635 significantly reduced the 5-HT–mediated hyperpolarization (∼7.8 ± 0.7 mV, t_{18} = 5.0, p < 0.0001, n = 19, unpaired t test; Fig. 1F–I). Unexpectedly, however, 5-HT still robustly and significantly inhibited action potential firing in every neuron (t_{12} = 12, p < 0.0001, n = 14, paired t test; Fig. 1F–I). This strong and significant suppression of L6 spiking by 5-HT was also observed in the presence of synaptic blockers (t_3 = 4.8, p = 0.02, n = 4, paired t test). These data show a robust and repeatable 5-HT inhibition of L6 neurons by 5-HT with a component mediated by 5-HT_{1A} receptors. However, the continued suppression of action potential firing by 5-HT after blockade of 5-HT_{1A} receptors suggests the involvement of an additional 5-HT–mediated mechanism for inhibition of mPFC L6 pyramidal neurons.

Serotonergic 5-HT1A and 5-HT2A receptors cooperate in inhibiting L6 pyramidal neurons

To interrogate this unidentified component of 5-HT inhibition of L6 pyramidal neurons, action potentials were elicited by a series of incremental square depolarizing pulses before and during 5-HT application. Despite the stronger activation, 5-HT still significantly reduced spike frequency at each injected current step, as shown by the significant right-shift in the input–output curve (inhibitory effect of 5-HT: F \(_{(1,72)} = 31\), p < 0.0001, n = 22, repeated measures two-way ANOVA; Fig. 2A). Post hoc tests show that significantly fewer action potentials were elicited by input current in 5-HT compared with baseline at every step (p < 0.05, Sidak’s multiple comparisons test). Of note, the 25-pA step was suprathreshold for 17 of 22 neurons at baseline and only 3 of 22 neurons in 5-HT (p < 0.0001, Fisher’s exact test). Spiking was significantly restored after a 5-min washout of 5-HT (F \(_{(1,72)} = 28\), p < 0.0001, repeated-measures two-way ANOVA). Activation of 5-HT_{1A} receptors by 8-OH-DPAT also significantly suppressed firing of L6 neurons (50-pA current injection, baseline, 4.0 ± 1.1 Hz; 8-OH-DPAT, 0.8 ± 0.6 Hz; t_9 = 5.3, p = 0.003, n = 6, paired t test), as did 8-OH-DPAT across a range of depolarizing steps (F \(_{(3,12)} = 35.7\), p < 0.0001, two-way repeated measures ANOVA, data not shown).

Yet, further experiments suggest that 5-HT recruits an additional receptor beyond 5-HT_{1A} to inhibit the excitability of L6 pyramidal neurons. Significant 5-HT suppression of L6 neuronal excitability continued after antagonism of 5-HT_{1A} receptors by WAY100635, with a significantly right-shifted input–output curve (inhibitory effect of 5-HT in WAY100635: F \(_{(1,72)} = 72\), p < 0.0001, n = 10, repeated measures two-way ANOVA; Fig. 2B). Consistent with our above data, this result suggests the participation of at least one additional subtype of 5-HT receptor in inhibiting L6 pyramidal neurons. The 5-HT_{2A} receptors that are coexpressed with 5-HT_{1A} receptors in 48% of L6 pyramidal neurons in mouse mPFC (Table 3 in Amargós-Bosch et al., 2004) are an unusual candidate to underlie the 5-HT–mediated suprathreshold suppression of spiking. These receptors typically recruit excitatory effectors (Lambe and Aghajanian, 2001; Zhang andArsenault.
Figure 1. 5-HT inhibits L6 pyramidal neurons of medial prefrontal cortex. Responses to 5-HT were probed in voltage-clamp and current-clamp by bath application of 5-HT. Representative voltage-clamp traces of the 5-HT response in L6 pyramidal neurons show that responses to 5-HT are stable and persist in the presence of synaptic blockers (A), are significantly suppressed by WAY100635 (B), and are similarly suppressed by a combination of WAY100635 and synaptic blockers (C). D, 5-HT elicits strong outward currents on L6 pyramidal neurons of mPFC (n = 28) that can be pharmacologically modulated (F(2,53) = 11.8, p < 0.0001, one-way ANOVA). Post hoc analyses show that these currents persist in the presence of synaptic blockers (q = 0.2, p > 0.05, n = 7, Dunnett’s multiple comparison test) but are significantly suppressed by WAY100635 (q = 4.6, p < 0.0001, n = 19). Responses to 5-HT were probed in current-clamp in L6 pyramidal neurons of medial prefrontal cortex with current injection to elicit steady firing (−2–3 Hz) at baseline. Representative current-clamp traces show that responses to 5-HT are inhibitory, repeatable, and unaffected by synaptic blockers (E) and not fully blocked by WAY100635 (F) or by WAY100635 and synaptic blockers (G). H, L6 pyramidal neurons of mPFC are strongly hyperpolarized by 5-HT (n = 26). Post hoc analyses of pharmacological effects on this hyperpolarization (F(2,50) = 17, p < 0.0001, one-way ANOVA) show that this inhibition is unaffected by synaptic blockers (q = 0.8, p > 0.5, n = 6, Dunnett’s multiple comparison test) but greatly reduced by WAY100635 (q = 5.4, p < 0.0001, n = 21). I, Action potential firing was significantly affected by 5-HT (F(4,103) = 37, p < 0.0001, one-way ANOVA). Post hoc analyses reveal that baseline firing was strongly suppressed by 5-HT (q = 9, p < 0.0001, n = 17, Dunnett’s multiple comparison test) and remained suppressed by 5-HT in synaptic blockers (q = 6.1, p < 0.0001, n = 6). The suppression was not blocked by WAY100635 (q = 8.8, p < 0.0001, n = 16) and returned to baseline levels after washout of 5-HT (q = 2.3, p > 0.05, n = 36).

2005; Weisstaub et al., 2006; Benekareddy et al., 2010; Weber and Andrade, 2010; Avesar and Gulledge, 2012), although previous work has demonstrated the capacity of serotonin and 5-HT2A agonists to exert direct inhibitory effects through 5-HT2A receptors or heteromers (Carr et al., 2002; Kurrasch-Orbaugh et al., 2003; González-Maeso et al., 2007; Moreno et al., 2011). We found that adding the selective 5-HT2A antagonist MDL100907 abol-
Figure 2. Combined activation of serotonergic 5-HT$_{1A}$ and 5-HT$_{2A}$ receptors mediate inhibition of L6 neuronal excitability at suprathreshold potentials. Incremental current steps were injected into patched L6 pyramidal neurons, and their output in firing frequency was measured. Shown are representative recordings of the response to a 150-pA current step in single L6 pyramidal neurons (left) and the response to the same 150-pA current step in the presence of 5-HT (middle). The input–output relationship for each group is plotted (right). A, The input–output relationship of L6 pyramidal neurons is significantly right-shifted by 5-HT ($F_{(1,168)} = 31, p < 0.0001$, repeated-measures two-way ANOVA). Post hoc analysis showed significantly fewer elicited action potentials at every input step ($p < 0.05$, Sidak’s multiple comparisons test). B, L6 excitability is significantly suppressed by 5-HT in the presence of WAY100635 ($p < 0.0001$, $F_{(1,72)} = 72$, repeated-measures two-way ANOVA), an effect especially prominent at higher input steps (125– to 200-pA steps, $p < 0.05$, Sidak’s multiple comparisons test). C, L6 suppression by 5-HT is fully blocked by simultaneous blockade of both 5-HT$_{1A}$ and 5-HT$_{2A}$ receptors by specific antagonists WAY100635 and MDL100907 ($F_{(1,32)} = 0.8, p = 0.4$, repeated-measures two-way ANOVA). D, TCB-2, a selective 5-HT$_{2A}$ receptor agonist, inhibits L6 neuronal firing ($F_{(1,80)} = 24, p < 0.0001$, repeated-measures two-way ANOVA), also more prominently at higher input steps (125– to 200-pA steps, $p < 0.05$, Sidak’s multiple comparisons test).
ished the remaining inhibitory effects elicited by 5-HT on the input–output of L6 neurons (no significant effects of 5-HT in WAY100635 and MDL100907: $F_{(1,32)} = 0.8, p = 0.4, n = 5$, repeated-measures two-way ANOVA; Fig. 2C). A similar blockade of the inhibitory effects of 5-HT on L6 neurons was also seen when other 5-HT2A antagonists were applied together with WAY100635, such as ketanserin (2 μM) or ritanserin (300 nM to 1 μM; $F_{(1,48)} = 0.3, p = 0.6, n = 7$, repeated-measures two-way ANOVA).

To probe further the power of 5-HT2A receptors to inhibit L6 pyramidal neurons in mPFC, we applied a potent 5-HT2A agonist, TCB-2 (300 nM to 1 μM). Here, we observed a strong inhibition of L6 neuronal excitability, with a significant right-shift of the input–output relationship (inhibitory effect of TCB-2: $F_{(1,80)} = 24, p < 0.0001, n = 11$, repeated-measures two-way ANOVA; Fig. 2D). Pretreatment with MDL100907 abolished the inhibitory effect of TCB-2 ($F_{(1,16)} = 1.2, p = 0.3, n = 3$, repeated-measures two-way ANOVA). Taken together, our results suggest that 5-HT inhibition of mPFC L6 pyramidal neurons is mediated by a combination of 5-HT1A and 5-HT2A receptors acting in concert. However, substantial future work will be needed to elucidate the mechanisms by which these receptors individually and together work to suppress the excitability of L6 pyramidal neurons.

Transgenic mouse for examining the effect of L6 activation on L5 interneurons

It has been shown that L6 pyramidal neurons in primary sensory cortex exert robust gain modulation over superficial layers of the cortical column (Olsen et al., 2012) through strong connections to FS interneurons (Vélez-Fort and Margrie, 2012). In mPFC, recent work has demonstrated the importance of FS interneurons in L5 for performance on attention tasks (Kim et al., 2016). To investigate the effects of prefrontal L6 activation on its targets in the cortical column, we used the Epyc-Cre BAC transgenic mice that target Cre recombinase to L6 cells in mPFC, then generated Epyc-Cre;Ai:32 mice (Epyc-ChR2) to obtain expression of channelrhodopsin in those cells. Figure 3A and B shows a similar distribution of L6 cells labeled by Syt6-eGFP fluorescence, used in the initial electrophysiology experiments, and by Epyc-Cre, used for the optogenetic experiments. Because of the lack of reliable histological markers for L6 pyramidal neurons in mPFC, the TRAP technique (Heiman et al., 2008; Doyle et al., 2008) was used to interrogate the identity of the Epyc-Cre cells. An adeno-associated virus (AAV) vector (AAV-FLEX-EGFPPL10a) to express EGFP-tagged ribosomal protein L10a (EGFPPL10a) in a Cre-dependent manner was injected into the mPFC of Epyc-Cre mice, and anti-EGFP immunoprecipitations were performed to iso-
late tagged polysomes. Bound mRNAs were then purified and analyzed by qRT-PCR. These data are plotted in Figure 3C. There was a significant enrichment for the excitatory neuron marker, Slic17a7 (VGluT1), in the Epyc TRAP IP compared with whole PFC input. Two genes known to be expressed in L6 corticothalamic cells, Ntrst1 (Gong et al., 2007; Olsen et al., 2012; Mease et al., 2014) and Foxp2 (Ferland et al., 2003), were also significantly enriched in IP samples. In contrast, genes that label inhibitory interneurons (Gad1), astrocytes (Aldh111), or oligodendrocytes (Cnp) were significantly depleted from the IPs. Taken together, these data suggest that Epyc-Cre labels a population of L6 corticothalamic pyramidal cells. Importantly, the qPCR also revealed that Syt6 was highly enriched in the Epyc cells, demonstrating that the Syt6-eGFP and Epyc-Cre mice label an overlapping population of neurons. In contrast, levels of the housekeeping gene Gapdh were found to be similar between the TRAP IPs and whole PFC input. Similar results were obtained for the 5-HT receptors, Htr1a and Htr2a, suggesting these genes are expressed but not enriched in the Epyc cells, which was not surprising given the expression of 5-HTT1 and 5-HT2A in other populations of neurons in mouse mPFC beyond L6 (Chalmers and Watson, 1991; Pompeiano et al., 1992, 1994; Cornea-Hébert et al., 1999; Amargós-Bosch et al., 2004).

Optogenetic activation of L6 pyramidal neurons is sensitive to serotonin

In electrophysiological experiments from Epyc-ChR2, we found that L6 pyramidal neurons, but not nonpyramidal neurons, were strongly depolarized upon light stimulation (473 nm, train of 2-ms-duration pulses at 20 Hz for 1 s), which was targeted to L6 mPFC with optic fiber (Fig. 4A, B). In contrast, pretreatment L6 neurons of littermate controls lacking channelrhodopsin did not respond to light stimulation. To verify that L6 pyramidal neurons were directly activated by light stimulation, we measured the kinetics of their light-evoked excitation. L6 pyramidal neurons rapidly responded to light (<1-ms latency to onset of excitation), consistent with direct activation through expressed channelrhodopsin (Ernst et al., 2008). This response rises to threshold, giving an action potential peak at 4.7 ± 0.7 ms (time to L6 spike; n = 5).

The channelrhodopsin-expressing L6 neurons from Epyc-ChR2 mice showed sensitivity to 5-HT similar to that of the Syt6-eGFP cells in the above experiments. Light-mediated excitation of Epyc-ChR2 L6 neurons was significantly suppressed in the presence of 5-HT (F(1,24) = 10.3, p < 0.004, repeated-measures two-way ANOVA).

Optogenetic activation of L6 drives excitation of L5 interneurons

Because fast-spiking GABAergic neurons in mPFC are important to normal performance in attention tasks (Kim et al., 2016), we patched mPFC L5 interneurons in Epyc-ChR2 mice as potential downstream projection targets of L6 pyramidal neurons. We anticipated that light-mediated activation of L6 pyramidal neurons by targeted optic fiber would elicit postsynaptic responses in patched L5 interneurons. GABAAergic interneurons were visually identified by their morphology and intrinsic properties, and their spiking patterns in response to depolarizing current steps were documented. This experimental protocol yielded two distinct populations of interneurons: FS cells with characteristic action potential firing >40 Hz and nFS cells that displayed low-threshold firing characteristics. The intrinsic properties of these neurons are illustrated in Table 1. A subset of patched interneurons (n = 6 FS interneurons, n = 5 nFS interneurons) was filled with Alexa Fluor 594 (20 μm) or Texas red dextran (0.15%) in the patch solution to verify their morphology. Filled FS (6/6) and nFS (5/5) interneurons were morphologically characteristic of the respective subtypes of interneurons in cortex (Markram et al., 2004; Ascoli et al., 2008).

All of the L5 FS (n = 19) and nFS (n = 22) interneurons recorded responded to light stimulation positioned over L6 (20 Hz, 2- to 5-ms pulse duration, 20-pulse train). Light stimulation over other cortical layers did not produce a response. Latency between time to L6 spike and response onset in L5 interneurons was 1.1 ± 0.3 ms, consistent with a monosynaptic connection (Markram et al., 1997; Feldmeyer et al., 2005; Frick et al., 2008) from L6 (Fig. 4C). Activation of both FS and nFS interneurons by optogenetic stimulation of L6 was substantially and significantly reduced by TTX (F(1,0.9) = 19, p < 0.0001, two-way ANOVA). Together with the need for light activation over L6, it appears that channelrhodopsin is predominantly localized in the L6 pyramidal cell bodies and not in axon terminals impinging on the L5 interneurons.

Light stimulation over L6 elicited action potential firing in 100% of FS cells (Fig. 4D) and 70% of nFS cells. The firing pattern elicited in these two types of interneurons was different, with a greater number of spikes seen at the start of L6 stimulation in FS neurons and a more evenly distributed firing pattern observed in the nFS neurons (Fig. 5). The minimal L6 light to elicit a suprathreshold excitatory response did not differ significantly between FS and nFS L5 interneurons (t14 = 0.2, p = 0.8, unpaired t test), despite a significant difference in input resistance (t14 = 4.3, p = 0.0006, unpaired t test; Table 1). In response to maximal L6 light stimulation of L6, FS interneurons fired more action potentials than nFS interneurons (t14 = 4.4, p = 0.0007, unpaired t test).

Serotonin suppresses L6 activation of L5 interneurons

Because optogenetic stimulation in L6 resulted in robust and highly stable excitation of interneurons in L5 that did not decrease over time at baseline conditions (t11 = 0.8, p = 0.4, paired t test; Fig. 6A), it was straightforward to test the effect of 5-HT on this local circuit. We found that 5-HT strongly and significantly suppressed the number of action potentials elicited in L5 interneurons by optogenetic activation of L6 (FS cells: t9 = 3.8, p = 0.005, n = 9, paired t test; nFS cells: t9 = 5.7, p = 0.001, n = 7, paired t test; Fig. 6B). Of note, this suppression appeared to arise from 5-HT effects in L6, since interneurons in L5 showed minimal direct responses to 5-HT at −75 mV (2.7
Figure 4. Optogenetic activation of L6 pyramidal neurons of medial prefrontal cortex excites L5 interneurons. A, Schematic representation of light activation of L6 pyramidal neurons of medial prefrontal cortex in Epyc-ChR2 mice with axons projecting to L5 interneurons. B, Channelrhodopsin-expressing pyramidal L6 neurons were robustly excited by targeted light stimulation.

C, Postsynaptic target cell of layer 6 pyramidal neurons (Layer 5 interneuron)
over L6. The effects of increasing L6 light power are shown for one example L6 pyramidal neuron. C, Light activation of L6 robustly excited L5 interneurons. The effects of increasing L6 light power are shown for three different L5 interneurons. D, Top, close-up of the initial light-evoked action potential in L6 to show the timing from onset of light (blue dotted line) to peak of the spike (black dotted line). Scale bar: 20 mV, 1 ms. Note: In L6 the onset of depolarization from light is <1 ms. Bottom, voltage-clamp recording showing the light-evoked postsynaptic response in a L5 interneuron to demonstrate response latency. Scale bar: 40 pA, 1 ms. Postsynaptic responses in L5 interneurons were initiated 1.1 ± 0.3 ms after initial spike of L6 pyramidal neurons, as indicated by an arrow.

± 6.0 pA, \(p = 0.9, n = 29, \) one-sample \(t \) test). Furthermore, these interneurons showed no change to spiking elicited by depolarizing steps of current amplitudes similar to those elicited by optogenetic stimulation of L6 (FS interneurons, \(F_{(1,9)} = 3.1, p = 0.1, \) repeated-measures two-way ANOVA; nFS interneurons, \(F_{(1,18)} = 3.4, p = 0.1, \) repeated-measures two-way ANOVA; data not shown). The excitation of L5 interneurons by L6 optogenetic activation was no longer sensitive to 5-HT upon blockade of 5-HT\(_{1A}\) and 5-HT\(_{2A}\) receptors (\(t_{15} = 0.9, p = 0.4, \) paired \(t \) test, \(n = 10 \) FS interneurons, \(n = 6 \) nFS interneurons; Fig. 6C). Overall, these results demonstrate the ability of L6 pyramidal neurons to excite a diverse group of inhibitory interneurons in L5 and the sensitivity of this effect to suppression by serotonergic 5-HT\(_{1A}\) and 5-HT\(_{2A}\) receptors.

Discussion

In this study, we show robust serotonergic inhibition of L6 pyramidal neurons and their output to L5 interneurons. This suppression of L6 activity by 5-HT is driven by the combined effects of 5-HT\(_{1A}\) and 5-HT\(_{2A}\) receptors. Using transgenic mice and optogenetic techniques, we illustrate a functional link between L6 pyramidal neurons and L5 interneurons potentially important to performance on attention tasks. Light stimulation in L6 strongly excited L5 interneurons. This excitatory connection was inhibited by 5-HT and was restored in the presence of 5-HT\(_{1A}\) and

Figure 5. Two distinct groups of interneurons are found in L5 and are activated by light stimulation of L6 pyramidal neurons. **A**, FS interneurons of L5 characterized by injection of current steps. **B**, Representative trace of an L5 FS interneuron activated by L6. Note the rapidly depressing response to L6 activation. **C**, Activation of FS interneurons by L6 elicited action potential firing primarily during the initial phase of activation that rapidly depressed over the duration of the stimulation (number of elicited action potentials in first half of stimulation vs. second half: \(t_9 = 7.2, p < 0.0001, \) unpaired \(t \) test). **D**, nFS interneurons of L5 characterized by injection of current steps. **E**, Representative trace of a L5 nFS interneuron activated by L6, demonstrating a more regular firing pattern. **F**, L5 nFS interneurons were activated by L6 and fired in a regular pattern over the course of the stimulation (number of elicited action potentials in first half of stimulation vs. second half: \(t_7 = 1.9, p = 0.1, \) unpaired \(t \) test).
5-HT$_{2A}$ antagonists. Taken together, these results suggest that 5-HT$_{1A}$ and 5-HT$_{2A}$ receptors mediate a strong inhibitory drive in L6 that can suppress its local activation of cortical targets in L5, which others have shown to be critical to attention (Kim et al., 2016).

Prefrontal L6 pyramidal neurons excite a diverse group of interneurons in L5

We found that L6 pyramidal neurons excited both FS and nFS interneurons in L5 of mPFC. These groups of interneurons likely represent the parvalbumin-expressing (PV) and somatostatin-expressing (SOM) groups of interneurons, which together form the majority of interneurons in cortical L5 (Kawaguchi and Kubota, 1997; Rudy et al., 2011). Both perisomatic PV and dendrite-targeting SOM interneurons are strong mediators of activity on downstream cortical pyramidal output (Kawaguchi and Kubota, 1997; Glickfeld et al., 2009; Kvitsiani et al., 2013; Hangya et al., 2014), with mPFC PV interneuron activity particularly important to normal performance on attention tasks (Kim et al., 2016). Our finding of a functional connection between L6 and L5 interneurons suggests a means by which L6 could influence mPFC cortical gain modulation, as has been observed in primary sensory cortices (Olsen et al., 2012; Bortone et al., 2014). These findings are in agreement with previous work in primary sensory cortex that examined anatomical and functional connections within the cortical column (Zhang and Deschênes, 1997; Thomson et al., 2002; Mercer et al., 2005; Watts and Thomson, 2005; West et al., 2006; Kim et al., 2014). This research suggests that activation of L6 is a driver of intracortical inhibition leading to a widespread suppression of cortical targets, observed in vivo in visual cortex (Beierlein et al., 2003; Olsen et al., 2012; Bortone et al., 2014). The L6 excitation of nFS in addition to FS interneurons in mPFC suggests additional complexity in association cortex. Our data show for the first time that excitatory output from L6 can drive interneuron activity in L5 in mPFC, a region critical for attention and other executive functions.
Serotonergic inhibition of this L6-to-L5 intracortical circuit

We found that 5-HT, via stimulation of 5-HT_{1A} and 5-HT_{2A} receptors, inhibited L6 pyramidal neurons and their activation of L5 interneurons. These two receptors show substantial colocalization in L6 pyramidal neurons in mPFC of mouse (Table 3 in Amargós-Bosch et al., 2004), yet typically appear to exert opposing electrophysiological effects in other cortical layers (BenekeReddy et al., 2010; Avesar and Gulledge, 2012; Stephens et al., 2014). Whereas 5-HT_{1A} receptors are known inhibitory receptors acting via Kir3 channels (Goodfellow et al., 2014; Johnston et al., 2014), 5-HT_{2A} receptors act through a less well-characterized set of channels to excite certain populations of neurons, including a subset of L5 pyramidal neurons in mPFC (Willins et al., 1999; BenekeReddy et al., 2010; Weber and Andrade, 2010; Avesar and Gulledge, 2012). Direct inhibition of L6 pyramidal neurons by 5-HT_{2A} receptors could arise from a number of possible mechanisms, including the suppression of sodium channels (Carr et al., 2002) or via 5-HT_{2A} heteromers with inhibitory signaling (González-Maeso et al., 2007; Moreno et al., 2011; Viñals et al., 2015). Pyramidal neurons in L6 also have prominent afterhyperpolarizations (Proulx et al., 2015), known to affect excitability. Accordingly, the G_{A4}^{-}\text{-coupled 5-HT}_{2A} receptors may affect the excitability of these neurons by modulating channels contributing to different phases of the afterhyperpolarization (Gulledge and Stuart, 2005; Gulledge et al., 2009; but see also: Villalobos et al., 2005; Villalobos et al., 2011). Complex and carefully controlled future work will be necessary to identify the mechanisms underlying the 5-HT_{2A} receptor-mediated inhibition of L6 pyramidal neuron excitability.

In investigating FS and nFS interneurons in L5, we found that the majority of these cells did not respond strongly to 5-HT. A minority showed electrophysiological responses (FS, 4/13; nFS, 2/16), predominantly inward currents (less than –20 pA) that were insufficient to elicit spiking. These proportions are consistent with the literature on the expression of 5-HT receptors in small proportion of L5 interneurons (Abi-Saab et al., 1999; Santana et al., 2004; Rudy et al., 2011; Celada et al., 2013). Our findings were not significantly altered by the inclusion or exclusion of these neurons. Control experiments with GABA-A and GABA-B blockers suggest that 5-HT receptors on interneurons are not significantly involved in the 5-HT suppression of L6 pyramidal neurons. Taken together, our data support the hypothesis that the combined activation of both 5-HT_{1A} and 5-HT_{2A} receptors can inhibit neuronal excitability in L6 neurons of prefrontal cortex. However, further pharmacological work is required to examine the specific downstream mechanisms underlying this inhibition of L6 pyramidal neurons. Furthermore, additional investigations into the consequences of serotonergic inhibition of L6 on local network dynamics will provide more insight into the nature of these important associative circuits and how they control attention.

Serotonin, prefrontal attention circuitry, and attention deficits in psychiatric illness

Prefrontal attention circuitry is complex, and attentional performance can be perturbed by extremes of mPFC activity in either direction (Pezze et al., 2014). Serotonin shapes and biases attention in humans and rodents, with low levels of 5-HT enhancing attention (Schmitt et al., 2000; Gallagher et al., 2003; Booj et al., 2005) and higher levels of 5-HT disrupting attention (Riedel et al., 2005; Wingen et al., 2007; Watson et al., 2015) through 5-HT_{1A} and 5-HT_{2A} receptors (Wingen et al., 2007). Stress is well known to raise prefrontal serotonin levels (Adell et al., 1997; Fujino et al., 2002; Bland et al., 2004), and similar behavioral manipulations disrupt attention (Minor et al., 1984; Sänger et al., 2014). Intriguingly, elevation of intracortical 5-HT has been strongly associated with deficits in attention (Puimala and Sirviö, 1998) and increases in impulsivity (Dalley et al., 2002). Specific activation of 5-HT_{1A} and 5-HT_{2A} receptors results in similar attention deficits (Carli and Samanin, 2000; Koskinnen et al., 2000). Conversely, infusion of antagonists to 5-HT_{2A} receptors into mPFC improved performance on attention tasks in rodents and reduced impulsivity (Passetti et al., 2003; Winstanley et al., 2003).

Although manipulation of 5-HT receptors specifically in mPFC can manipulate attention, certain key experiments (e.g., attention under stress or in models of dysregulated 5-HT signaling) remain to be done. Based on our findings, rising levels of cortical 5-HT may increase cortical noise owing to suppression of L6-mediated cortical inhibition. Increasing the signal-to-noise ratio is strongly correlated with attentional focus (Briggs et al., 2013; Pratte et al., 2013), whereas deficits can arise from increasing cortical noise in prefrontal cortex (Pezze et al., 2014). Similarly, disruptions to normal excitation of L6 neurons of mPFC can lead to attention deficits in rodents, although previous studies have focused on cholinergic stimulation of L6 (Bailey et al., 2010; Guillemin et al., 2011). Our study is the first to demonstrate the strong inhibitory modulation exerted on L6 by 5-HT and the resultant decrease in its ability to stimulate interneuron activity in L5. Taken together, this evidence shows that L6 of mPFC is a candidate locus of action for the modulatory effects of 5-HT on attention. Based on recent work in nonhuman primates (Watson et al., 2015), it is tempting to speculate that 5-HT levels in deep mPFC may modulate the balance between social vigilance and attentional task performance, a phenomenon that is impaired in several neuropsychiatric illnesses.

References

Abi-Saab WM, Bubser M, Roth RH, Deutch AY (1999) 5-HT2 receptor regulation of extracellular GABA levels in the prefrontal cortex. Neuropsychopharmacology 20:92–96. CrossRef Medline

Adell A, Casanovas JM, Artigas F (1997) Comparative study in the rat of the actions of different types of stress on the release of 5-HT in raphe nuclei and forebrain areas. Neuropsychopharmacology 36:735–741. Medline

Alitto HJ, Usrey WM (2003) Corticothalamic feedback and sensory processing. Curr Opin Neurobiol 13:440–445. Medline
of cortical interneurons. Curr Opin Neurobiol 26:117–124. Cross-Ref Medline

Heiman M, Kulicke R, Fenster RJ, Greengard P, Heintz N (2014) Cell type-specific mRNA purification by translating ribosome affinity purification (TRAP), Nat Protoc 9:1282–1291. Cross-Ref Medline

Heiman M, Schaefer A, Gong S, Peterson JD, Day M, Ramsey KE, Suárez-Fariñas M, Schwarz C, Stephan DA, Surmeier DJ, et al. (2008) A translational profiling approach for the molecular characterization of CNS cell types. Cell 135:738–748. Cross-Ref Jans LAW, Riedel WJ, Markus CR, Blok A, Blokland A (2007) Serotoninergic vulnerability and depression: assumptions, experimental evidence and implications. Mol Psychiatry 12:522–543. Cross-Ref

Johnston A, McBain CJ, Fisahn A (2014) 5-Hydroxytryptamine1A receptor-activation hyperpolarizes pyramidal cells and suppresses hippocampal gamma oscillations via Kir3 channel activation. J Physiol (Lond) 592:4187–4199. Cross-Ref

Kane MJ, Angoa-Peréz M, Briggs DI, Sykes CE, Francescotti DM, Rosenberg DR, Kuhn DM (2012) Mice genetically depleted of brain serotonin display social impairments, communication deficits and repetitive behaviors: possible relevance to autism. PLoS ONE 7:e48975 Cross-Ref Medline

Kassam SM, Herman PM, Goodfellow NM, Alves NC, Lambe EK (2008) Developmental excitation of corticothalamic neurons by nictinicot acetylcholine receptors. J Neurosci 28:8756–8764. Cross-Ref Medline

Kawaguchi Y, Kubota Y (1997) GABAergic cell subtypes and their synaptic connections in rat frontal cortex. Cereb Cortex 7:476–486. Cross-Ref Medline

Kim H, Åhrlund-Richter S, Wang X, Deisseroth K, Carlén M (2016) Prefrontal parvalbumin neurons in control of attention. Cell 164:208–218. Cross-Ref Medline

Kim J, Matney CJ, Blankenship A, Hestrin S, Brown SP (2014) Layer 6 corticofugal neurons activate a cortico output layer, layer 5a. J Neurosci 34:9565–9566. Cross-Ref Medline

Knudsen E (2007) Fundamental components of attention. Annu Rev Neurosci 30:57–78. Cross-Ref Medline

Koskinen T, Ruotsalainen S, Puumala T, Lappalainen R, Koivisto E, Virtanen S (2000) Impaired response control of rats in a five-choice serial reaction time task. Neuropharmacology 39:471–481. Cross-Ref Medline

Kurasch-Orbaugh DM, Parrish JC, Watts VJ, Nichols DE (2003) A complex signaling cascade links the serotonin2A receptor to phospholipase A2 activation: the involvement of MAP kinases. J Neurochem 86:980–991. Cross-Ref Medline

Kvitašiān D, Ranade S, Hangya B, Taniguchi H, Huang JZ, Kepes A (2013) Distinct behavioural and network correlates of two interneuron types in prenatal cortex. Nature 498:363–366. Cross-Ref Medline

Lambe EK, Aghajanian GK (2001) The role of Kv1.2-containing potassium channels in serotonin-induced glutamate release from thalamocortical terminals in rat frontal cortex. J Neurosci 21:9955–9963. Cross-Ref Medline

Linley SB, Hoover WB, Vertes RP (2013) Pattern of distribution of serotonergic fibers to the orbitofrontal and insular cortex in the rat. J Chem Neuroanat 48-49:29–43. Cross-Ref Medline

Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25:402–408. Cross-Ref Medline

Luck S, Gold J (2008) The construct of attention in schizophrenia. Biol Psychiatry 64:34–39. Cross-Ref Medline

Markram H, Lübke J, Frotscher M, Roth A, Sakmann B (1997) Physiology and anatomy of synaptic connections between thick tufted pyramidal neurons in the developing rat neocortex. J Physiol (London) 500:409–440. Cross-Ref Medline

Markram H, Toledo-Rodríguez M, Wang Y, Gupta A, Silberberg G, Wu C (2004) Interneurons of the neocortical inhibitory system. Nat Rev Neurosci 5:793–807. Cross-Ref Medline

Marvel CL, Paradiso S (2004) Cognitive and neurological impairment in mood disorders. Psychiatr Clin N Am 27:19–36. vii-viii. Cross-Ref Medline

Mease RA, Krieger P, A, Groh A, Groh E (2014) Cortical control of adaptation and sensory relay mode in the thalamus. Proc Natl Acad Sci U S A 111:6798–6803. Cross-Ref Medline

Mengod G, Palacios JM, Cortés R (2015) Cartography of 5-HT1A and 5-HT2A receptor subtypes in prefrontal cortex and its projections. ACS Chem Neurosci 6:1089–1098. Cross-Ref Medline

Mercer A, West DC, Morris OT, Kirchhecker S, Kerkhoff JE, Thomson AM (2005) Excitatory connections made by presynaptic cortico-cortical pyramidal cells in layer 6 of the neocortex. Cereb Cortex 15:1485–1496. Cross-Ref Medline

Miller EK, Cohen JD (2001) An integrative theory of prefrontal cortex function. Annu Rev Neurosci 24:167–202. Cross-Ref Medline

Miner LA, Ostr M, Ostrander M, er, Sarter M (1997) Effects of ibotenic acid-induced loss of neurons in the medial prefrontal cortex of rats on behavioral vigilance: evidence for a deficit in selective attention. J Exp Psychol Anim Behav Process 10:543–556. Cross-Ref Medline

Miron TR, Jackson RL, Maier SF (1984) Effects of task-irrelevant cues and reinforcement delay on choice-escape learning following inescapable shock: evidence for a deficit in selective attention. J Exp Psychol Anim Behav Process 10:543–556. Cross-Ref Medline

Muir JL, Everett BJ, Robbins TW (1996) The cerebral cortex of the rat and visual attentional function: dissociable effects of mediofrontal, cingulate, anterior dorsolateral, and parietal cortex lesions on a five-choice serial reaction time task. Cereb Cortex 6:470–481. Cross-Ref Medline

Murrough JW, Iacovelli B, Alex Neumeister A, Neumeister E, Chary-NS, Iosifescu DV (2011) Cognitive dysfunction in depression: neurocircuitry and new therapeutic strategies. Neurobiol Learning Memory 96:553–563. Cross-Ref Medline

Muzerelle A, Scotto-Lomassese S, Bernard JF, Soiza-Reilly M, Gaspar P (2016) Conditional anterograde tracing reveals distinct targeting of individual serotonin cell groups (BS-B9) to the forebrain and brainstem. Brain Struct Funct 221:535–561. Cross-Ref Medline

Olsen SR, Bortone DS, Adesnik H, Scanziani M (2012) Gain control by layer six in cortical circuits of vision. Nature 483:47–52. Cross-Ref Medline

Oranje B, Jensen K, Wienberg M, Genthøj BY (2008) Divergent effects of increased serotonergic activity on psychophysiological parameters of human attention. Int J Neuropsychopharmacol 11:453–463. Cross-Ref Medline

Parikh V, Kozak R, Martinez V, Sarter M (2007) Prefrontal acetylcholine release controls cue detection on multiple timescales. Neuron 56:141–154. Cross-Ref Medline

Passetti F, Dalley JW, Robbins TW (2003) Double dissociation of serotonergic and dopaminergic mechanisms on attentional performance using a rodent five-choice reaction time task. Psychopharmacology (Berlin) 165:136–145. Cross-Ref Medline

Pezze M, McGarrity S, Mason R, Fone KC, Bast T (2014) Too little and too much: hypoactivation and disinhibition of medial prefrontal cortex cause attentional deficits. J Neurosci 34:9531–9746. Cross-Ref Medline

Pompeiano M, Palacios JM, Mengod G (1992) Distribution and cellular localization of mRNA coding for 5-HT2A receptor in the rat brain: correlation with receptor binding. J Neurosci 12:440–453. Cross-Ref Medline

Pompeiano M, Palacios JM, Mengod G (1994) Distribution of the serotonin 5-HT2 receptor family mRNAs: comparison between 5-HT2A and 5-HT2C receptors. Brain Res Molecular Brain Res 23:163–178. Cross-Ref Medline

Pratte MS, Ling S, Swisher JD, Tong F (2013) How attention extracts objects from noise. J Neurophysiol 110:1346–1356. Cross-Ref Medline

Proulx É, Fraser P, McLaurin J, Lambe EK (2015) Impaired cholinergic excitation of prefrontal attention circuitry in the TgCRND8eNeuro.org

September/October 2016, 3(5) e2069-16.2016
Villalobos C, Foehring RC, Lee JC, Andrade R (2011) Essential role of serotoninergic reuptake inhibition impair vigilance performance acutely and after subchronic treatment. J Psychopharmacol (Oxford) 19:12–20. CrossRef

Rudy B, Fishell G, Lee S, Hjerling-Leffler J (2011) Three groups of interneurons account for nearly 100% of neocortical GABAergic neurons. Dev Neurobiol 71:45–61. CrossRef Medline

Sänger J, Bechtold L, Schoofs D, Blaszkewicz M, Wascher E (2014) The influence of acute stress on attention mechanisms and its electrophysiological correlates. Front Behav Neurosci 8:353.CrossRef Medline

Santana N, Bortolozzi A, Serrats J, Mengod G, Artigas F (2004) Expression of serotonin1A and serotonin2A receptors in pyramidal and GABAergic neurons of the rat prefrontal cortex. Cereb Cortex 14:1100–1109. CrossRef Medline

Schmitt JA, Jorissen BL, Sobczak S, van Boxtel MP, Hogervorst E, Deutz WJ, Riedel W (2000) Tryptophan depletion impairs memory consolidation but improves focused attention in healthy young volunteers. J Psychopharmacol (Oxford) 14:21–29. CrossRef

Schneider SM (2007) The thalamus is more than just a relay. Curr Opin Neurobiol 17:417–422. CrossRef Medline

Stephens EK, Avesar D, Gulledge AT (2014) Activity-dependent serotonergic excitation of callosal projection neurons in the mouse prefrontal cortex. Front Neural Circuits 8:97.CrossRef Medline

Thomson A (2010) Neocortical layer 6, a review. Front Neuroanat 4:13.CrossRef Medline

Thomson AM, Bannister AP, Mercer A, Morris OT (2002) Target and temporal pattern selection at neocortical synapses. Philos Trans R Soc Lond Ser B Biol Sci 357:1781–1791. CrossRef Medline

Tian MK, Bailey CDC, Lambe EK (2014) Cholinergic excitation in mouse primary versus associative cortex: region-specific magnitude and receptor balance. Eur J Neurosci 40:2606–2618. CrossRef

Vélez-Fort M, Margrie TW (2012) Cortical circuits: layer 6 is a gain changer. Curr Biol 22:R411–R413. CrossRef Medline

Villalobos C, Beique J, Gingrich JA, Andrade R (2005) Serotonergic regulation of calcium-activated potassium currents in rodent prefrontal cortex. Eur J Neurosci 22:1120–1126. CrossRef Medline

Villalobos C, Foehring RC, Lee JC, Andrade R (2011) Essential role for phosphatidylinositol 4,5-bisphosphate in the expression, regulation, and gating of the slow afterhyperpolarization current in the cerebral cortex. J Neurosci 31:18303–18312.