A unified nomenclature for vertebrate olfactory receptors

CURRENT STATUS: UNDER REVISION

Tsviya Olender Tsviya.olender@weizmann.ac.il
The Weizmann Institute of Science
Corresponding Author
ORCiD: 0000-0002-4194-6420

Tamsin E.M. Jones
European Molecular Biology Laboratory

Michal Twik
Weizmann Institute of Science

Elspeth Bruford
European Molecular Biology Laboratory

Doron Lancet
Weizmann Institute of Science

DOI:
10.21203/rs.2.14887/v1

SUBJECT AREAS
Evolutionary Biology Evolutionary Developmental Biology

KEYWORDS
Olfaction, Nomenclature, Olfactory receptors, Orthologs, Paralogs, Evolution
Abstract

Background Olfactory receptors (ORs) are G protein-coupled receptors with a crucial role in odor detection. A typical mammalian genome harbors ~1000 OR genes and pseudogenes; however, different gene duplication/deletion events have occurred in each species, resulting in complex orthology relationships. While the human OR nomenclature is widely accepted and based on phylogenetic classification into 18 families and further into subfamilies, for other mammals different and multiple nomenclature systems are currently in use, thus concealing important evolutionary and functional insights. Results Here we describe the Mutual Maximum Similarity (MMS) algorithm, a systematic classifier for assigning a human-centric nomenclature to any OR gene based on inter-species hierarchical pairwise similarities. MMS was applied to the OR repertoires of seven mammals and zebrafish. Altogether, we assigned symbols to 10,249 ORs. This nomenclature is supported by both phylogenetic and synteny analyses. The availability of a unified nomenclature provides a framework for diverse studies, where textual symbol comparison allows immediate identification of potential ortholog groups as well as species-specific expansions/deletions; for example, Or52e5 and Or52e5b represent a rat-specific duplication of OR52E5. Another example is the complete absence of OR subfamily OR6Z among primate OR symbols. In other mammals, OR6Z members are located in one genomic cluster, suggesting a large deletion in the great ape lineage. An additional 14 mammalian OR subfamilies are missing from the primate genomes. While in chimpanzee 87% of the symbols were identical to human symbols, this number decreased to ~50% in dog and cow and to ~30% in rodents, reflecting the adaptive changes of the OR gene superfamily across diverse ecological niches. Application of the proposed nomenclature to zebrafish revealed similarity to mammalian ORs that could not be detected from the current zebrafish olfactory receptor gene nomenclature. Conclusions We have
consolidated a unified standard nomenclature system for the vertebrate OR superfamily. The new nomenclature system will be applied to cow, horse, dog and chimpanzee by the Vertebrate Gene Nomenclature Committee and its implementation is currently under consideration by other relevant species-specific nomenclature committees.

Background

Olfactory receptors (ORs) are G protein-coupled receptors with an essential role in odor detection. Being the largest gene family in vertebrates, a typical mammalian genome harbors ~1000 OR genes and pseudogenes; however, the numbers of functional OR genes vary enormously among genomes of different animals, reflecting the adaptation of organisms to different environments [1-4]. ORs are distributed in clusters on most mammalian chromosomes. There are strong indications of a common ancestry for most OR clusters [5], a feature which might be related to common cis-regulatory elements [6, 7]. Nevertheless, processes of gene duplication and gene deletion have taken place in each species [1-4], making orthology relationships difficult to determine [8], and hence requiring careful manual curation for the assignment of gene nomenclature. Another complexity arises from the high content of OR pseudogenes in some organisms, such as human (55% pseudogenes) [9]. Thus, assigning orthology-based symbols to the OR gene superfamily is challenging and requires conceptual translation of all OR pseudogenes.

For many years, an official nomenclature system has been in place for human ORs [10] that is widely accepted and utilized by the community. The human nomenclature is based on a sequence similarity classification of the OR repertoire into 18 families and > 300 subfamilies, where symbols consist of the root “OR” followed by a family numeral, subfamily letter(s), and a numeral representing the individual gene within the subfamily. For example, OR3A1 is member 1 of family 3, subfamily A, and OR7E12P is an OR pseudogene that is member 12 of family 7, subfamily E. The details of the classification
method were previously described [9-12]. Briefly, a new gene is classified into the same subfamily if it shows at least 60% protein sequence identity to the best hit; family membership is based on at least 40% sequence identity at the protein level. This nomenclature has already been applied to dog, platypus and opossum [5, 13, 14] and is available to the community via a dedicated database, the Human Olfactory Receptor Data Explorer (HORDE) [11, 15, 16].

In some other vertebrates, different nomenclature systems are currently in use. For example, several nomenclature systems have previously been published for mouse. One utilized the prefix ‘MOR', followed by a family number, a hyphen (-) and a number representing the individual gene within the family, with 'P' at the end to denote a pseudogene (e.g. MOR1-1 and MOR185-9P) [17]; another was based on genomic location [18]. The current Mouse Genome Informatics (MGI) official nomenclature uses the root ‘Olfr’ followed by a number, with ‘-ps’ and another number at the end for pseudogenes (e.g. Olfr562 and Olfr1001-ps1). This serial number-based nomenclature conceals important structural and functional insights. Moreover, it deviates from the rule applied to almost all other genes, whereby, when possible, the symbols for orthologous genes in human and other vertebrates should be identical (excluding capitalization). Another example of deviation from this rule is the zebrafish OR nomenclature, which is based on a phylogenetic classification into subfamilies with sequential numbers starting from 101 (e.g. or101-1 and or102-1 are two genes in two different subfamilies) [19]. As fish ORs are highly diverged [20], the designated OR subfamilies in fish are expected to be lineage-specific and, therefore, this nomenclature [19] is not useful to detect similarities across fish and vertebrates.

The use of different nomenclature in different organisms creates difficulties both when comparing genes across species and, especially, when the same gene is reported more
than once under different names. Although this situation is also common with other genes, it becomes especially confusing in large gene families that are found in multiple species, such as the ORs. Next generation technologies are dramatically increasing the number of sequenced vertebrates. Therefore, the availability of a unified and widely accepted nomenclature that encodes homology relationships becomes more important than ever. Here, we propose a unified nomenclature system for vertebrate OR genes and pseudogenes. The nomenclature is human-centric and therefore based on the human classification system for OR genes. Using a dedicated algorithm (Mutual Maximum Similarity, MMS), we applied our nomenclature system to the OR repertoires of mouse, rat, cow, dog, horse, orangutan and chimpanzee and, finally, also to zebrafish, a more distantly related vertebrate species. We show that the nomenclature captures the phylogenetic relationships among the studied species and provides a powerful framework for diverse studies of vertebrate ORs. A unified nomenclature for the OR gene family can also serve as a model for other large multigene families, allowing researchers to easily make cross-species comparisons in complex groups of genes. All of the nomenclature data are available from the HORDE database (https://genome.weizmann.ac.il/horde/), and are under consideration by the relevant species-specific nomenclature committees that are using an alternative OR nomenclature, namely MGNC for mouse [21], RGNC for rat [22] and ZNC for zebrafish [23]. The Vertebrate Gene Nomenclature Committee (VGNC) [24] are currently naming genes within chimpanzee, cow, dog and horse and will adopt this OR nomenclature in these species.

Results

The MMS algorithm

The MMS algorithm assigns human-based OR symbols by detecting the inter-species hierarchical pairwise similarities (Fig. 1). The algorithm first analyzes the all-versus-all
BLASTP identity matrix of the given OR repertoire versus human. Mutual best hits with 80% identity are first identified and are assigned the same symbol as the human best hit, second-best ortholog candidates with 80% identity are then identified and are assigned with the human best hit gene symbol with the addition of the letters B, C, etc. For example, OR9A4 is the mutual best hit and OR9A4B is the second best hit. The remaining ORs are compared to non-human ORs to detect non-human OR orthology relationships. OR genes that have not already been named in the above steps are classified into families and subfamilies as shown in Fig. 1 and as explained in [11], either as a new member of a subfamily with the n+1 subfamily member number, or classified into a novel subfamily [11]. At the step of subfamily classification (Step 4, Fig. 1), the similarity matrix includes the within-species OR repertoire in addition to the other species’ OR repertoires. This step is required for the correct classification of species-specific subfamilies. An exception to the above order of comparisons was made for the rat, where the repertoire was initially compared to mouse before detecting best human matches, to take into account the close evolutionary distance of the rodents. Symbols are composed of uppercase letters and Arabic numbers, except in rodents where, by convention, only the first letter is capitalized and the suffix “-ps” is used for pseudogenes in place of “P”.

Classification of mammalian OR repertoires

We used the MMS algorithm to assign symbols to the OR repertoires of the mouse, rat, dog, cow, horse, chimpanzee and orangutan (Table 1). Across all 7 mammalian species, the OR genes and pseudogenes were classified into 18 families and 681 subfamilies (Additional file 1, Additional file 2).

The fraction of genes and pseudogenes assigned as putative orthologs of a human gene (including those with the B/C/D suffix) varies from 83.9% in chimpanzee to ~27% in
rodents (Additional file 3: Fig. S1). These numbers are in line with the literature and reflect the rapid evolution of the OR gene family [8, 18], including the differences between human and chimpanzee OR repertoires[25]. As expected, genes whose symbols are shared among more than one mammal contain a significantly higher fraction of intact ORs, as compared to genes that were assigned as novel subfamily members (Additional file 3: Fig. S2).

To test if genes assigned as best and second best hits to a human OR gene also lie in syntenic regions, we analyzed mammalian multiz genome alignments [26]. We found that 88% of the mutual best hits and 62% of the second best hits aligned to the exact genomic location of the corresponding human ortholog, and 96% of the mutual-best hits and 82% of the second best are aligned within a distance of < 100 kb. Thus, most of the ORs that were classified by the MMS algorithm as putative orthologs also reside in the approximate expected syntenic location. We note that due to the rapid evolution of the OR gene family synteny is not always expected to be preserved among orthologs.

We used phylogenetic analysis to assess the accuracy of the nomenclature assignment. Though in general phylogenetic analysis cannot fully resolve the relationships within the OR superfamily due to low bootstrap values [27], this is possible within subfamilies, as shown in Figure 2A. The relationships between the genes in subfamily 10D can

Species	genes	pseudogenes	total	genome
chimpanzee	396	427	823	PanTro4
orangutan	321	466	787	PonAbe2
dog	803	206	1009	CanFam3
cow	1110	695	1805	BosTau8
horse	1101	1372	2473	EquCab2
mouse	1142	247	1389	Mm10
rat	1333	457	1790	Rn6
zebrafish	158	14	172	DanRer10
total	6365	3884	10249	

Table 1
Immediately be recognized from the phylogenetic tree as well as from the symbols (Fig. 2A). These relationships would not be easily detected using, for example, the current approved mouse gene nomenclature (Fig. 2B). For each of the 50 largest OR subfamilies, representing 45% of the total number of ORs in these species, we generated Maximum Likelihood and Bayesian phylogenies (Additional files 4 and 5). We then compared the within-subfamily groupings in these phylogenies against the hierarchical naming results. We found that the nomenclature assignments were largely congruent with the phylogenetic groupings of ORs within a subfamily, and 195 exceptions for which there was strong phylogenetic support for recategorization were renamed manually (see Additional files 4 and 5). We note that the majority of the ORs that were renamed manually have similarity scores just short of a cut-off that would have led them to be named in line with the phylogeny. Although it is inevitable that rigid similarity cut-offs will occasionally result in this type of classification issue, we provide evidence that the vast majority of OR genes are classified in agreement with phylogenetic analysis. We manually updated a very small proportion of the total OR symbols in this study to ensure that the classification is as accurate as possible in this initial cohort of species. This will ensure that when more species’ OR repertoires are classified using the MMS algorithm, the set of ORs that they are being compared to are classified correctly. We performed phylogenetic analysis only within subfamilies, and not in larger family groupings, because it is well established in the literature that due to rapid evolution within the OR superfamily, deeper nodes in OR phylogenies are extremely challenging to resolve with confidence [27]. Because of the relative difficulty in assigning deeper family and subfamily relationships using phylogenetic analysis, the MMS method is preferable to phylogenetic classification because it is able to rapidly classify ORs into families with a reproducible and consistent methodology. Nevertheless, as this work is ongoing we note that updates to the genome
assemblies of the studied organisms, and future refinements to the MMS algorithm, may result in minor changes to some symbols prior to final approval by nomenclature committees.

The overall congruence of our MMS nomenclature assignment algorithm with both syntenic comparison across species, and phylogenetic analyses within OR subfamilies, is highly supportive of our methodology for easily, rapidly and accurately classifying newly identified OR repertoires in a given species.

Systematic gene family nomenclature as a tool for evolutionary studies

The unified nomenclature system presented here provides a framework for evolutionary studies of vertebrate ORs. We used our subfamily classification to calculate the Pearson correlations coefficients between the classified OR repertoires from each species, using the number of members of each subfamily. (Fig. 3, Additional file 2). The result is in line with evolutionary expectations, where closely related species, namely primates (human, chimpanzee, orangutan), *Laurasiatheria* (dog and cow), and rodents (mouse and rat) are clustered together. We observed that the human and chimpanzee subfamily classifications are closer (0.98 Pearson) than those of mouse and rat (0.90 Pearson). This is expected given that human and chimpanzee diverged ~6-12 million years ago [28, 29], whereas mouse and rat diverged ~12-24 million years ago [30].

This nomenclature classification also allows the immediate identification of species-specific expansions and deletions. For example, in the species studied the OR4D subfamily has up to 18 members, except for in horse where it has 57. Horse OR4D genes are found within 18 clusters, where the largest cluster contains 17 genes. In total, we identified 147 subfamilies for which the gene count in one of the studied organisms was at least double that in the other organisms, presumably representing species-specific expansions (Additional file 6: Table S1A). The OR subfamily 6Z is entirely absent from the primate
genomes analyzed, while in other mammals members of this subfamily lie in a single genomic cluster, suggesting a large deletion in the primate lineage. Ten other mammalian OR subfamilies were not identified in the primate genomes studied, of which six are encoded from a single genomic cluster in the mammalian genome, as is subfamily 6Z (Additional file 6: Table S1B), and an additional 14 subfamilies were not identified in the rodents, of which 8 are encoded in a single genomic cluster (additional file 6: Table S1B).

We further used the assigned OR symbols of the human, chimpanzee and orangutan to perform a three-way repertoire comparison (Fig. 4). This analysis identified 437 symbols (51.1% of the human ORs) that are shared among all 3 apes, with a significantly higher presentation of class I ("fishlike", OR families 51-56) OR genes (p=4e-6, chi-square); 215 (29.6%) symbols are shared only between human and chimpanzee, and 55 symbols are shared only between human and orangutan (Fig. 4). Thus, the use of our nomenclature shows that despite the similarity in the OR repertoire size, and in pseudogene content within primates, the gene content is different, in line with previous published findings [25].

Classification of zebrafish ORs

In an effort to extend this work to non-mammalian species, we classified the OR repertoire of *Danio rerio* (zebrafish), a popular model organism in studies of the olfactory system [31, 32, Friedrich, 2014 #31, Abreu, 2016 #32, 33]. Previous publications [19, 20] identified a repertoire of ~140 OR genes in the zebrafish genome which, although smaller than that of mammalian OR repertoires, shows greater intra-species sequence diversity than in mammals. As mentioned previously, the study of [19] also proposed a nomenclature for zebrafish ORs which is based on phylogenetic classification and groups the zebrafish ORs into classes and not into families and subfamilies. We used version GRCz10 of the zebrafish genome to identify an updated repertoire of 172
zebrafish OR genes, including 13 pseudogenes. We then used the MMS algorithm to assign symbols to each of the zebrafish genes. However, as zebrafish ORs are very distant from mammalian ORs and are expected to be classified into different OR families, we initially manually named zebrafish-specific OR family representatives which were added to the library with the classified ORs (hierarchical clustering, Additional file 3: Fig. S3). Importantly, the OR family numbers were selected to fit with the classes of [19], with a distinct set of family numbers for every class (Additional file 3: Table S2). We then proceeded with the symbol assignment process by applying the MMS algorithm using the same cutoff criteria that we used for mammals (see Methods). The zebrafish OR repertoire was classified into 20 families, of which 2 are shared with mammals (OR families 6 and 55) (Fig. 5). We note that the similarity to mammalian ORs could not be detected using the nomenclature suggested in [19].

Discussion

We have consolidated a unified standard nomenclature system for the vertebrate OR superfamily, the largest gene family in the vertebrate genome, and one of the most challenging in terms of orthology relationship identification. We applied the nomenclature to a total of 10,249 genes from the OR repertoires of seven mammals, and zebrafish. The nomenclature is human-centric, a concept that is agreed upon by the vertebrate research community [34], and is based on sequence similarity. OR genes were assigned the same symbols as their putative human orthologs, or otherwise the same symbols as their putative orthologs in other species. If no ortholog was detected the gene was assigned into a relevant subfamily based on the degree of sequence similarity. This was achieved by the development of the MMS algorithm, a systematic classifier for assigning human-based nomenclature to any OR gene by detecting hierarchical similarity relationships between any two species. The algorithm allows more than a single ortholog per human
gene, thus reflecting as much as possible the many-to-many homology relationships that characterize the OR family. Although the algorithm was applied to only 7 vertebrate species, it can be applied to other species in a straightforward manner. The many-to-many relationships among the ORs, which stem from their dynamic evolution, make orthology predictions difficult. Nevertheless, our nomenclature facilitates easy identification of orthology and paralogy relationships within the OR superfamily, which is not possible using the current nomenclature systems across vertebrates. Moreover, our nomenclature assignment within subfamilies is very well supported by the phylogenetic analyses that we conducted. While there is no method that can provide 100% confidence in orthology assignment, we conclude that the major advantage of our MMS method is that it is able to rapidly, reproducibly and systematically classify all ORs in a given species’ OR repertoire, whereas this is not possible with phylogenetic classification.

We have shown that our nomenclature facilitates evolutionary studies of the OR gene families. Species-specific expansions or deletions as well as putative orthologs are identified instantly and clearly by their symbols. The utility of a unified nomenclature system as a tool in evolutionary studies was demonstrated by [35, 36]. These studies applied the human OR family classification method to OR repertoires coming from diverse mammalian taxa to identify specific expansions important for each habitat. The human OR family classification was used also by [37] to study the OR gene repertoire in several sauropsid genomes. Their results indicated a highly divergent composition of OR repertoires, which derives from lineage-specific combinations of gene expansions, losses, and retentions of ancestral OR genes. Nevertheless, those studies utilized only the family classification, and not the classification into subfamilies. Here, we have shown that the subfamily classification provides a simple way to identify large deletions (e.g. whole OR clusters), as well as species-specific expansions, at a higher resolution than using only the
family classification. By comparing the symbols of human ORs to those of the chimpanzee we obtained the same results as [25] who reported ~650 human-chimpanzee orthologs. Interestingly, that study identified ~420 OR orthologs among human, chimpanzee, and macaque, comparable to the number of putative orthologs that we found among human, chimpanzee and orangutan. The high representation of Class I OR genes in this group also fits well with a previous study, which found a higher proportion of intact genes among Class I ORs relative to Class II ORs in humans [12], which might suggest that a high proportion of Class I ORs are functional.

An open question is whether the nomenclature can be used for functional inference: that is, are interactions between ORs and odorants preserved across species in ORs that are directly orthologous or from the same subfamily. For example, both human OR1A1 and mouse Or1a1 show similar response to (S)-(-)-citronellol [38]. However, because the interaction between ORs and odorants is combinatorial, where a single OR may recognize more than a single odorant molecule [39], functional inference is not straightforward. A famous example is the mouse and rat “I7” (Or6a2) orthologs, which show different preferences for heptanal and octanal as a result of a single amino acid substitution [40]. A previous analysis of 18 OR orthologs in human, chimpanzee and rhesus macaque, and 17 orthologs in mouse and rat against a panel of 42 odorants revealed that while OR orthologs tend to show conserved ligand selectivity, their potency and/or efficacy can change dynamically during evolution [41]. As ligand information for most ORs is currently missing, any future functional inferences should be made with caution.

Finally, as a proof of concept, we extended our nomenclature system to a non-mammalian animal, the zebrafish. A previous comparative study of fish and tetrapods [20] suggested that the most recent common ancestor between jawed and jawless vertebrates had at least 2 OR genes, which evolved to nine in the common ancestor of fishes and tetrapods.
Eight of these expanded in the fish genome. Only 2 are present in the mammalian genome, Class I for families 52-56, and Class II for families 1-14, where Class II has expanded tremendously. Our nomenclature assigns a distinct set of family numbers to every class of OR genes (Additional file 3: Table S2) and thus is in agreement with the current understanding of the evolution of vertebrate ORs [19, 20]. The clear advantage of our novel nomenclature is that it allows instant identification of the ORs that are closest to mammalian ORs.

Conclusions

We developed a unified and standardized nomenclature system for ORs that can be easily applied across all vertebrates. The nomenclature allows for easy and immediate cross-species comparisons and provides a powerful framework for evolutionary studies. Implementation of the proposed nomenclature by the VGNC is currently in progress.

Methods

OR gene sequences. We used the HORDE pipeline [11] to establish the OR repertoires of the species described in this work. The pipeline mines OR gene and pseudogene sequences out of any given genome to obtain the complete OR repertoire of that species, and is based on a series of TBLASTN searches as explained in detail in [11]. The OR repertoires (Table 1) were compared to relevant publications and public resources including Mouse Genome Informatics (MGI, [42]), Rat Genome Database (RGD, [43]), The Zebrafish Information Network (ZFIN, [44]), as well as Ensembl [45] and NCBI [46]. The sizes of the identified repertoires are in good agreement with those resources, as well as with published studies [19, 20, 47]. See Additional file 1, and Additional file 7 for more details and protein sequences.

MMS algorithm. MMS is based on a comparison of a given OR repertoire to a sequence
library with classified ORs. The algorithm, encoded by a serial of Perl scripts, is composed of 1. Preparation of input libraries; 2. Calculation of the all-vs-all similarity matrix; 3. Symbol assignment. In step 1 the algorithm prepares the required libraries and other relevant parameters (length, symbols etc.). The algorithm uses 2 libraries, one with human ORs and the second with non-human classified ORs. While the human OR library is constant, the second library grew progressively as more species were included, such that mouse (the first classified species) was compared only to human, rat was compared to mouse and human and so on. After running BLASTP, MMS determines the best hit for every OR gene from human and non-human ORs and vice-versa. In addition, the best hit within the given OR repertoire is determined (required in step 4, Fig. 1). The best hit is calculated as the hit with the highest % identity, where the % identity is defined as the number of identical amino-acids divided by the mean gene length in the pairwise comparison. In a second round of MMS, the % identity was defined as the number of identical amino-acids divided by the length of the shorter gene in each pairwise comparison. This was done to ensure the reliable classification of OR pseudogenes which tend to have a shorter conceptual translation, and thus some pseudogenes might not be classified correctly when mean length is used in the % identity calculation. Finally, symbols are assigned as explained in Fig. 1 and above.

Synteny tests. To test if potential orthologous genes are syntenic to a human gene we used the on-line UCSC liftOver tool (https://genome.ucsc.edu/cgi-bin/hgLiftOver), which converts genome coordinates between assemblies based on alignments of the human genome (GRCh38) to other genomes. The genome assemblies we used are given in Table 1. We used the default parameters and allowed multiple output regions. Where multiple output regions were returned, the region closest to the human OR ortholog was selected for synteny analysis.
Assigning symbols to zebrafish ORs. We used hierarchical clustering to select representatives from each OR subfamily (Additional file 3: Fig. S3). This was done by creating a multiple alignment of the full zebrafish OR repertoire using clustalx2 [48] followed by calculation of the sequence identity matrix using BioEdit [49]. We then applied hierarchical clustering to the sequence identity matrix using Matlab2016a with “unweighted average distance” and “correlation” parameters in the hierarchical tree creation, and a cutoff of 0.48 for the ‘distance’ criterion in the clustering. This yielded a crude estimation of the zebrafish OR family structure, which allowed a random selection of OR family representatives. MMS was then applied, where the zebrafish representatives previously selected were included in the non-human OR sequence library. This was sufficient to classify 80% of the zebrafish OR genes. The process was completed by selecting additional OR family representatives using a phylogenetic tree (Fig. 5) and repetition of the MMS process.

Phylogenetic analysis. Predicted coding sequences of the members of the 50 largest mammalian OR subfamilies (by the total number of ORs in human, chimpanzee, orangutan, horse, cattle, dog, mouse and rat) were used for phylogenetic analysis. For each subfamily, alignments were generated using ClustalX 2.1 [48] including the predicted conceptual translation sequence of all intact OR genes, as well as pseudogenes with no more than 2 frame-disruptions. Alignments were trimmed using trimAl v1.4 [50] to remove positions with more than 80% gaps. The Maximum Likelihood trees were reconstructed using the IQTree webserver [51], using the “AUTO” amino acid substitution model, and the ultra-fast bootstrap option (UFBoot) [52] with 1000 samples. Maximum Likelihood consensus trees are displayed with ultrafast bootstrap values on the branch nodes (Additional file 4). The Bayesian trees were inferred using MrBayes v3.2 [53], with amino acid model prior set to mixed, number of generations = 1,000,000, and burn-in set to
25%. FigTree v1.4.3[54] was used for tree visualization. Bayesian trees are displayed with posterior probabilities on the branch nodes (Fig. 2A, Additional file 5).

For phylogenetic analysis of zebrafish ORs, a neighbor-joining tree was constructed with MEGA7 [55] using the p-distance method for estimating the evolutionary distances in units of the number of amino acid differences per site.

List Of Abbreviations

OR: olfactory receptor; MMS: Mutual Maximum Similarity; VGNC: Vertebrate Gene Nomenclature Committee.

Declarations

Ethics approval and consent to participate. Not applicable

Consent for publication. Not applicable.

Availability of data and materials. All data generated in this study are included in this published article, its supplementary information files, and in the Human Olfactory Receptor Data Explorer database (HORDE, https://genome.weizmann.ac.il/horde/).

Competing interests. The authors declare that they have no competing interests.

Funding. This work is supported by NHGRI Grant U41HG003345 and Wellcome Trust grant 208349/Z/17/Z.

Authors’ contributions. TO and DL developed the MMS algorithm, and were responsible for deciphering the OR sequences and the application of MMS. TO was responsible for most of the analyses. TJ and EB were responsible for the manual curation of the symbols and the mammalian phylogenetic analyses. All authors contributed to the manuscript writing. All authors read and approved the final manuscript.

Acknowledgements. We acknowledge the valuable input of our colleagues at the HGNC, in particular Bethan Yates for developing a framework to curate and disseminate the OR
nomenclature in VGNC species.

References

1. Bear DM, Lassance JM, Hoekstra HE, Datta SR. The Evolving Neural and Genetic Architecture of Vertebrate Olfaction. Curr Biol. 2016;26(20):R1039-R49.

2. Nei M, Niimura Y, Nozawa M. The evolution of animal chemosensory receptor gene repertoires: roles of chance and necessity. Nat Rev Genet. 2008;9(12):951-63.

3. Hoover KC. Evolution of olfactory receptors. Methods Mol Biol. 2013;1003:241-9.

4. Hasin-Brumshtein Y, Lancet D, Olender T. Human olfaction: from genomic variation to phenotypic diversity. Trends Genet. 2009;25(4):178-84.

5. Aloni R, Olender T, Lancet D. Ancient genomic architecture for mammalian olfactory receptor clusters. Genome Biol. 2006;7(10):R88.

6. Degl'Innocenti A, D'Errico A. Regulatory Features for Odorant Receptor Genes in the Mouse Genome. Front Genet. 2017;8:19.

7. Iwata T, Niimura Y, Kobayashi C, Shirakawa D, Suzuki H, Enomoto T, et al. A long-range cis-regulatory element for class I odorant receptor genes. Nat Commun. 2017;8(1):885.

8. Lapidot M, Pilpel Y, Gilad Y, Falcovitz A, Sharon D, Haaf T, et al. Mouse-human orthology relationships in an olfactory receptor gene cluster. Genomics. 2001;71(3):296-306.

9. Olender T, Lancet D, Nebert DW. Update on the olfactory receptor (OR) gene superfamily. Hum Genomics. 2008;3(1):87-97.

10. Glusman G, Bahar A, Sharon D, Pilpel Y, White J, Lancet D. The olfactory receptor gene superfamily: data mining, classification, and nomenclature. Mamm Genome. 2000;11(11):1016-23.

11. Olender T, Nativ N, Lancet D. HORDE: comprehensive resource for olfactory receptor
12. Glusman G, Yanai I, Rubin I, Lancet D. The complete human olfactory subgenome. Genome Res. 2001;11(5):685-702.

13. Olender T, Fuchs T, Linhart C, Shamir R, Adams M, Kalush F, et al. The canine olfactory subgenome. Genomics. 2004;83(3):361-72.

14. Warren WC, Hillier LW, Marshall Graves JA, Birney E, Ponting CP, Grutzner F, et al. Genome analysis of the platypus reveals unique signatures of evolution. Nature. 2008;453(7192):175-83.

15. Marenco L, Wang R, McDougal R, Olender T, Twik M, Bruford E, et al. ORDB, HORDE, ODORactor and other on-line knowledge resources of olfactory receptor-odorant interactions. Database (Oxford). 2016;2016.

16. Safran M, Chalifa-Caspi V, Shmueli O, Olender T, Lapidot M, Rosen N, et al. Human Gene-Centric Databases at the Weizmann Institute of Science: GeneCards, UDB, CroW 21 and HORDE. Nucleic Acids Res. 2003;31(1):142-6.

17. Zhang X, Firestein S. The olfactory receptor gene superfamily of the mouse. Nat Neurosci. 2002;5(2):124-33.

18. Young JM, Friedman C, Williams EM, Ross JA, Tonnes-Priddy L, Trask BJ. Different evolutionary processes shaped the mouse and human olfactory receptor gene families. Hum Mol Genet. 2002;11(5):535-46.

19. Alioto TS, Ngai J. The odorant receptor repertoire of teleost fish. BMC Genomics. 2005;6:173.

20. Niimura Y, Nei M. Evolutionary dynamics of olfactory receptor genes in fishes and tetrapods. Proc Natl Acad Sci U S A. 2005;102(17):6039-44.

21. Smith CL, Blake JA, Kadin JA, Richardson JE, Bult CJ, Mouse Genome Database G. Mouse Genome Database (MGD)-2018: knowledgebase for the laboratory mouse.
22. Shimoyama M, De Pons J, Hayman GT, Laulederkind SJ, Liu W, Nigam R, et al. The Rat Genome Database 2015: genomic, phenotypic and environmental variations and disease. Nucleic Acids Res. 2015;43(Database issue):D743-50.

23. Howe DG, Bradford YM, Conlin T, Eagle AE, Fashena D, Frazer K, et al. ZFIN, the Zebrafish Model Organism Database: increased support for mutants and transgenics. Nucleic Acids Res. 2013;41(Database issue):D854-60.

24. Yates B, Braschi B, Gray KA, Seal RL, Tweedie S, Bruford EA. Genenames.org: the HGNC and VGNC resources in 2017. Nucleic Acids Res. 2017;45(D1):D619-D25.

25. Go Y, Niimura Y. Similar numbers but different repertoires of olfactory receptor genes in humans and chimpanzees. Mol Biol Evol. 2008;25(9):1897-907.

26. Blanchette M, Kent WJ, Riemer C, Elnitski L, Smit AF, Roskin KM, et al. Aligning multiple genomic sequences with the threaded blockset aligner. Genome Res. 2004;14(4):708-15.

27. Niimura Y, Nei M. Extensive gains and losses of olfactory receptor genes in mammalian evolution. PLoS One. 2007;2(8):e708.

28. Moorjani P, Amorim CE, Arndt PF, Przeworski M. Variation in the molecular clock of primates. Proc Natl Acad Sci U S A. 2016;113(38):10607-12.

29. Scally A, Dutheil JY, Hillier LW, Jordan GE, Goodhead I, Herrero J, et al. Insights into hominid evolution from the gorilla genome sequence. Nature. 2012;483(7388):169-75.

30. Gibbs RA, Weinstock GM, Metzker ML, Muzny DM, Sodergren EJ, Scherer S, et al. Genome sequence of the Brown Norway rat yields insights into mammalian evolution. Nature. 2004;428(6982):493-521.

31. Miyasaka N, Wanner AA, Li J, Mack-Bucher J, Genoud C, Yoshihara Y, et al. Functional
development of the olfactory system in zebrafish. Mech Dev. 2013;130(6-8):336-46.

32. Shao X, Lakhina V, Dang P, Cheng RP, Marcaccio CL, Raper JA. Olfactory sensory axons target specific protoglomeruli in the olfactory bulb of zebrafish. Neural Dev. 2017;12(1):18.

33. Whitlock KE. The sense of scents: olfactory behaviors in the zebrafish. Zebrafish. 2006;3(2):203-13.

34. Bruford EA. Highlights of the 'gene nomenclature across species' meeting. Hum Genomics. 2010;4(3):213-7.

35. Hayden S, Bekaert M, Crider TA, Mariani S, Murphy WJ, Teeling EC. Ecological adaptation determines functional mammalian olfactory subgenomes. Genome Res. 2010;20(1):1-9.

36. Hughes GM, Boston ESM, Finarelli JA, Murphy WJ, Higgins DG, Teeling EC. The Birth and Death of Olfactory Receptor Gene Families in Mammalian Niche Adaptation. Mol Biol Evol. 2018;35(6):1390-406.

37. Vandewege MW, Mangum SF, Gabaldon T, Castoe TA, Ray DA, Hoffmann FG. Contrasting Patterns of Evolutionary Diversification in the Olfactory Repertoires of Reptile and Bird Genomes. Genome Biol Evol. 2016;8(3):470-80.

38. Schmiedeberg K, Shirokova E, Weber HP, Schilling B, Meyerhof W, Krautwurst D. Structural determinants of odorant recognition by the human olfactory receptors OR1A1 and OR1A2. J Struct Biol. 2007;159(3):400-12.

39. Secundo L, Snitz K, Sobel N. The perceptual logic of smell. Curr Opin Neurobiol. 2014;25:107-15.

40. Gaillard I, Rouquier S, Chavanieu A, Mollard P, Giorgi D. Amino-acid changes acquired during evolution by olfactory receptor 912-93 modify the specificity of odorant recognition. Hum Mol Genet. 2004;13(7):771-80.
41. Adipietro KA, Mainland JD, Matsunami H. Functional evolution of mammalian odorant receptors. PLoS Genet. 2012;8(7):e1002821.

42. Eppig JT. Mouse Genome Informatics (MGI) Resource: Genetic, Genomic, and Biological Knowledgebase for the Laboratory Mouse. ILAR J. 2017;58(1):17-41.

43. Shimoyama M, Smith JR, Bryda E, Kuramoto T, Saba L, Dwinell M. Rat Genome and Model Resources. ILAR J. 2017;58(1):42-58.

44. Van Slyke CE, Bradford YM, Howe DG, Fashena DS, Ramachandran S, Ruzicka L, et al. Using ZFIN: Data Types, Organization, and Retrieval. Methods Mol Biol. 2018;1757:307-47.

45. Zerbino DR, Achuthan P, Akanni W, Amode MR, Barrell D, Bhai J, et al. Ensembl 2018. Nucleic Acids Res. 2018;46(D1):D754-D61.

46. Sharma S, Ciufot S, Starchenko E, Darji D, Chlumsky L, Karsch-Mizrachi I, et al. The NCBI BioCollections Database. Database (Oxford). 2018;2018.

47. Niimura Y, Matsui A, Touhara K. Extreme expansion of the olfactory receptor gene repertoire in African elephants and evolutionary dynamics of orthologous gene groups in 13 placental mammals. Genome Res. 2014;24(9):1485-96.

48. Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, et al. Clustal W and Clustal X version 2.0. Bioinformatics. 2007;23(21):2947-8.

49. Hall TA. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series. 1999;41:95-8.

50. Capella-Gutierrez S, Silla-Martinez JM, Gabaldon T. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics. 2009;25(15):1972-3.

51. Trifinopoulos J, Nguyen LT, von Haeseler A, Minh BQ. W-IQ-TREE: a fast online phylogenetic tool for maximum likelihood analysis. Nucleic Acids Res.
2016;44(W1):W232-5.

52. Minh BQ, Nguyen MA, von Haeseler A. Ultrafast approximation for phylogenetic bootstrap. Mol Biol Evol. 2013;30(5):1188-95.

53. Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A, Hohna S, et al. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst Biol. 2012;61(3):539-42.

54. [cited 1 April 2019]. Available from: http://tree.bio.ed.ac.uk/software/figtree.

55. Kumar S, Stecher G, Tamura K. MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. Mol Biol Evol. 2016;33(7):1870-4.

Additional Files

Additional file1 ORsymbols 100719.xls, **Additional file 1**: The symbols, genomic locations and aliases of the OR repertoires in this work.

Additional file2 OR subfamilies.xls, **Additional file 2**: Summary of the OR genes in subfamilies.

Additional file3 Supplementary figures.pptx, **Additional file 3: Fig S1.** The percentage of ORs assigned with human symbols. Dark blue = mutual best hits; light blue = second best hits. **Fig S2.** Percentage of pseudogenes with orthologous symbols (blue) versus pseudogenes with unique symbols (light blue). Orthologous symbol = symbol that is shared between at least two mammals (including human second best hits). Numbers are Fisher exact p values. **Fig S3.** Hierarchical clustering of the zebrafish sequence identity matrix. **Table S2-** The zebrafish OR family numbers.

Additional file4 ML phylo 20190711.pdf, **Additional file 4: Phylogenetic analysis of the 50 largest OR subfamilies using Maximum Likelihood.** Maximum Likelihood phylogenies were generated for the 50 largest OR subfamilies as described in the
Methods. Maximum likelihood consensus trees are displayed with ultrafast bootstrap values on the branch nodes. ORs that were renamed manually are annotated with an asterisk (*). Scale bar represents the number of amino acid changes per site.

Additional file 5: *Phylogenetic analysis of the 50 largest OR subfamilies using Bayesian inference*. Bayesian phylogenies were generated for the 50 largest OR subfamilies as described in the Methods. Bayesian trees are displayed with posterior probabilities on the branch nodes. ORs that were renamed manually are annotated with an asterisk (*). Scale bar represents the number of amino acid changes per site.

Figures
Figure 1

The MMS algorithm. A diagram illustrating the workflow of hierarchical symbol assignment with the MMS algorithm. After identification of the full OR repertoire in a given species, all vs all BLASTP similarity matrices are generated against the OR repertoires of human and other mammals whose repertoires have been classified. The classification criteria (highlighted in the left-hand yellow box), numbered 1-5, are applied in a stepwise fashion: genes that fail to pass the cutoff in step 1 are passed to step 2, and so on. Symbols are assigned based on the best hits as shown in the middle (blue) box. Examples of cow OR symbols at each classification step are shown in the right-hand (pink) box.
OR subfamily 10D classification. A. Bayesian phylogeny of subfamily 10D members. Human OR51E1 was used as the outgroup. The tree is displayed with posterior probabilities on the branch nodes. Scale bar represents the number of amino acid changes per site. The dotted line indicates that that the outgroup branch has been compressed for display purposes; the unmodified branch length can be viewed in Additional file 5. The subfamily member clades are each given a
different background color: OR10D1; yellow, OR10D3; purple, OR10D4; orange, and OR10D5; green. An asterisk denotes a gene that was classified manually based on the strength of phylogenetic evidence placing it within that clade.

Automated symbol assignment using the MMS algorithm is concordant with the clades resolved by phylogenetic analysis. B. Details of the classification of mouse OR10D genes. For each gene, the table shows the symbol suggested using the MMS algorithm alongside the MMS classification step in which it was assigned (see Fig.1), the current MGI symbol, and its closest human OR gene (by % identity).
Correlation among the mammalian OR repertoires. The Pearson correlation matrix was calculated using the number of members of each subfamily for each pair of species (Additional file 2). Only subfamilies that are shared by at least 2 mammals (378 subfamilies) were used in the analysis. As expected, the OR repertoires of closely related species show a higher correlation than those of less closely related species.
Figure 4

A three-way comparison of human, chimpanzee and orangutan OR symbols. A.

Examples of how one can use the nomenclature to compare the primate OR repertoires. Symbols that are found in all three primates are in orange boxes, missing symbols are in green boxes (putative deletions), and symbols that are duplicated in one of the species are in dark orange (putative duplications). B. A Venn diagram summarizing the comparison result. Numbers in white refer to OR gene count in human.
Phylogenetic analysis of zebrafish ORs. A neighbor-joining tree of all zebrafish OR genes and pseudogenes with up to 2 frame-disruptions, mouse OR representatives from families 55 and 6 (the mouse Or55b3 and Or6c75, indicated by red asterisks) and the bovine rhodopsin sequence as an outgroup. The tree is color-coded by the OR family classification where the OR family numbers are indicated next to the corresponding evolutionary branch (see Additional file 3: Table S2 for the relationship between family numbers and classes). All OR families’ main branches are supported by bootstrap values >90, except for OR family 60 and 40 as their location within the class clade was less certain (bootstrap values of 31 and 77, respectively). The 2 OR families that are shared with mammals are highlighted in yellow.
Supplementary Files

This is a list of supplementary files associated with the primary manuscript. Click to
download.

Additional file4 ML phylo 20190711.pdf
Additional file5 Bayesian phylo 20190711.pdf
Additional file2 OR subfamilies.xlsx
Additional file1 ORsymbols 100719.xlsx
Additional file7 OR peptide sequences.zip
Additional file3 Supplementary figures Aug19.pptx
Additional file6 TableS1 delDup.xlsx