Influência da ginástica laboral no desempenho cognitivo de trabalhadores

Influence of workplace exercise on workers’ cognitive performance

Débora Nayara Félix Barbosa da Silva¹, Heloiana Karoliny Campos Faro²,¹, Marília Padilha Martins Tavares³, Luiz Inácio do Nascimento Neto¹, Pedro Moraes Dutra Agrícola⁴, Daniel Gomes da Silva Machado¹,⁵

RESUMO | Introdução: Atividades ocupacionais demandam esforços físicos e cognitivos. Nesse sentido, a ginástica laboral parece ser uma atividade que pode promover ganhos físicos interessantes dentro do ambiente de trabalho. Entretanto, pouco se sabe sobre a influência dessa atividade sobre o desempenho cognitivo. Objetivos: O objetivo do presente estudo foi avaliar a influência da ginástica laboral no desempenho cognitivo de trabalhadores de setores administrativos. Métodos: Estudo transversal, no qual foram avaliados 16 funcionários praticantes de ginástica laboral e 14 funcionários não praticantes (grupo controle). As avaliações aconteceram após 3 meses de aplicação do programa de ginástica laboral (atividade de alongamento, duas-três vezes/semana, 10-15 minutos/dia). Foram avaliados o nível de atividade física e o desempenho cognitivo utilizando-se o teste de Stroop e bloco de Corsi. Resultados: Não houve diferença significativa (p > 0,05) entre os grupos em nenhuma das fases do teste de cores de Stroop e no efeito Stroop (349,3 ± 103,52 vs. 416,0 ± 129,7 ms; 5,37 ± 2,11 vs. 10,12 ± 6,55 %erro), bem como na sequência de blocos acertados (5,50 ± 0,82 vs. 5,57 ± 0,76 blocos) e no escore total dos blocos de Corsi (45,19 ± 15,96 vs. 46,93 ± 15,93; p > 0,77 pontos). Conclusões: Os resultados do estudo sugerem que 12 semanas de ginástica laboral não exercem influência sobre o desempenho cognitivo dos trabalhadores.

Palavras-chave | exercício físico; cognição; função executiva; ginástica; memória.

ABSTRACT | Introduction: Occupational tasks require physical and cognitive efforts. Within this context, workplace exercise seems to be a promising intervention to improve physical capacity. However, little is known about the influence of workplace exercise on cognitive performance. Objectives: This study aimed to evaluate the influence of workplace exercise on cognitive performance in administrative office workers. Methods: This cross-sectional study included 16 workers who performed workplace exercise training and 14 workers who did not (control group). The assessments were conducted after 3 months of workplace exercise training (stretching exercises, two to three times/week, 10-15 minutes/day). Physical activity level was assessed with the short form of International Physical Activity Questionnaire, while cognitive performance was assessed using computerized versions of Stroop color-word test and Corsi block-tapping test. Results: There was no significant difference between the groups in any Stroop test phases or in Stroop interference (349,3 ± 103,52 vs. 416,0 ± 129,7 ms; 5,37 ± 2,11 vs. 10,12 ± 6,55 %error; p > 0,05). No difference was found in Corsi test sequence of blocks (5,50 ± 0,82 vs. 5,57 ± 0,76 blocks) or in the total score (45,19 ± 15,96 vs. 46,93 ± 15,93 points; p > 0,77). Conclusions: The results of this study suggest that 12 weeks of workplace exercise training does not improve the cognitive performance of office workers.

Keywords | physical exercise; cognition; executive function; training; memory.
INTRODUÇÃO

A rotina de trabalho nos setores administrativos busca implementar processos organizacionais padronizados e eficientes, a fim de melhorar a qualidade do serviço prestado e o gerenciamento do tempo. Porém, essa rotina pode impor aos trabalhadores cargas elevadas constantes, muitas vezes sem pausas, podendo desencadear problemas relacionados aos relacionamentos interpessoais e ao sistema osteomuscular. Esse cenário se mostra propício à queda do desempenho funcional, em consequência de fatores como falta de motivação, insatisfação e prejuízos à saúde, tais como tendinite, lesões por esforço repetitivo (LER), lesões por traumas cumulativos (LTC) ou distúrbios osteomusculares relacionados ao trabalho (DORT).

Além disso, há uma grande demanda cognitiva envolvida nas tarefas ocupacionais, por vezes até maior que a demanda física. Nesse sentido, as funções executivas parecem desempenhar um papel importante, considerando a necessidade de lidar com planejamento, memória operacional, atividades multitarefas e/ou ambiguidades, entre outras. As funções executivas se referem a uma série de processos mentais necessários para realizar uma tarefa de maneira concentrada e de forma não automática, intuitiva ou instintiva. Em ocupações como a de funcionários de escritórios, essa capacidade se torna particularmente importante devido à presença de processos cognitivos complexos, tais como resolução de problemas e tomada de decisão.

A ginástica laboral (GL) se apresenta como uma forma de intervenção passível de ser aplicada no ambiente de trabalho, caracterizando-se pela realização de uma série de exercícios de alongamento, coordenação motora, força muscular e relaxamento no local de trabalho durante a jornada diária, visando atuar na prevenção de lesões ocasionadas pelo trabalho, normalizar as funções corporais e proporcionar momentos de descontração e socialização aos trabalhadores. A GL pode ser classificada, de acordo com o momento de sua realização, em preparatória, compensatória, relaxante ou corretiva. Essa intervenção apresenta, como vantagem, a quebra na rotina de trabalho, auxiliando na amenização do estresse e da cobrança pela produtividade. No aspecto psicossocial, a GL tem mostrado efeitos positivos sobre a qualidade de vida, incluindo diminuição dos sintomas de depressão e ansiedade, do desconforto decorrente da jornada de trabalho e do comportamento sedentário. No aspecto físico, foram reportadas melhorias na postura; diminuição de algias; prevenção de doenças ocupacionais; e aumento da flexibilidade, força e coordenação.

É interessante apontar que estudos têm demonstrado que indivíduos fisicamente ativos apresentam melhor desempenho cognitivo quando comparados aos sedentários. Além disso, tem sido demonstrado que tanto o exercício físico agudo quanto o crônico são capazes de melhorar o desempenho cognitivo. Entretanto, a maioria dos estudos foram realizados em locais voltados à prática de exercício físico, como as academias. Por outro lado, apesar da importância da função cognitiva para o desempenho ocupacional, sobretudo para os que trabalham em escritórios e afins, nenhum estudo investigou a influência do exercício físico no ambiente laboral e os potenciais efeitos sobre o desempenho cognitivo. Portanto, o objetivo do presente estudo foi avaliar a influência da prática da GL sobre a função executiva e a memória operacional visuoespacial de trabalhadores do setor administrativo. Considerando o exposto anteriormente, é possível que a GL tenha uma influência positiva no desempenho cognitivo.

MÉTODOS

DESENVOLVIMENTO DO ESTUDO

Estudo de natureza transversal, em que as avaliações ocorreram em duas sessões distintas. Na primeira sessão, os participantes foram entrevistados para o fornecimento de informações demográficas e responderam a um questionário sobre níveis de atividade física. Na segunda, os participantes realizaram os testes cognitivos no computador. Todos os testes foram aplicados apenas após três meses de intervenção com a GL. As avaliações ocorreram no próprio local de trabalho dos participantes.

AMOSTRA

Foram avaliados 30 servidores (13 homens e 17 mulheres), com idades de 21 a 65 anos, provenientes de diferentes setores administrativos da reitoria de uma universidade federal e que desempenhavam suas funções...
há pelo menos 1 ano. Parte dos servidores praticaram GL (n = 16), e os servidores que não participaram das sessões de GL foram incluídos no grupo controle (GC) (n = 14). As características gerais da amostra são apresentadas na Tabela 1. Foram incluídos na análise os participantes do grupo GL que frequentaram pelo menos 70% das sessões ofertadas. Os participantes foram excluídos da amostra ou da análise de dados em caso de abandono voluntário, não participação em alguma etapa do estudo ou devido a eventuais impossibilidades de análise dos dados. Todos os participantes foram esclarecidos a respeito dos objetivos e procedimentos do estudo e assinaram o termo de consentimento livre e esclarecido (TCLE). Este estudo foi conduzido seguindo todos os preceitos éticos estabelecidos na Declaração de Helsinki e foi aprovado pelo comitê de ética institucional (CAAE: 30412214.5.0000.5537).

AVALIAÇÃO DO NÍVEL DE ATIVIDADE FÍSICA

A versão curta do questionário internacional de atividade física (International Physical Activity Questionnaire – Short Form, IPAQ-SF) foi utilizada para avaliação do nível habitual de atividade física\(^{16}\). As questões calculam o tempo semanal gasto e as atividades físicas de intensidades moderada e vigorosa, bem como o tempo que o indivíduo passa sentado por dia (dias úteis e dias de final de semana). O questionário foi aplicado de forma autoadministrada, e todas as dúvidas foram sanadas.

AVALIAÇÃO DO DESEMPENHO COGNITIVO

Foi utilizada uma versão computadorizada do teste de cores de Stroop (TCS, TESTINPACS\(^{17}\)) para medir a velocidade de processamento e o controle inibitório (Figura 1A). O teste sempre oferece duas opções de resposta, que podem ser escolhidas utilizando os botões direcional esquerdo (<) e direito (>) do teclado. O teste consiste em três fases, compostas por 12 estímulos em cada uma delas, sempre com duas opções de resposta: 1) congruente – o participante deve indicar a cor contida em um quadrado com a opção que corresponde ao seu

Figura 1. Representação gráfica dos testes cognitivos aplicados no presente estudo. O painel A representa o teste de cores de Stroop e suas fases congruentes (A1: deve-se associar a cor do retângulo ao seu respectivo nome. Resposta: verde), neutra (A2: deve-se associar o nome da cor escrita ao seu correspondente. Resposta: verde) e incongruente (A3: deve-se considerar a cor da fonte e ignorar o nome da cor escrita. Resposta: azul). As respostas foram fornecidas utilizando os botões direcionais do teclado (< ou >). O painel B mostra a realização do teste de blocos de Corsi, no qual nove retângulos aparecem distribuídos de forma aleatória na tela e acendem, um de cada vez, durante 1 segundo. Depois que o último retângulo apagar, o participante deve clicar sobre os quadrados que acenderam na mesma ordem mostrada, utilizando o mouse.
nome; 2) neutra – o participante deve indicar o nome da cor escrita em fonte branca; e 3) incongruente – o participante deve indicar a cor da fonte e ignorar o significado da palavra (interferência da palavra). O tempo de resposta (TR) e a acurácia foram registrados em uma planilha do Microsoft Office Excel®. O TR dos estímulos respondidos corretamente e o percentual de acertos foram considerados para análise. Adicionalmente, através da diferença do TR e da quantidade de erros entre as fases incongruente e neutra, calculou-se o efeito ou a interferência de Stroop como medida de controle inibitório. Previamente à aplicação do teste, os indivíduos receberam explicação verbal dos objetivos e dos procedimentos do teste, e foram concedidas três tentativas de familiarização com o teste.

Uma versão computadorizada do teste de blocos de Corsi (TBC) foi utilizada para avaliar a memória operacional e visuoespacial dos trabalhadores18. O TBC consiste em um conjunto de nove blocos azuis sobre um fundo preto, dispostos aleatoriamente na tela (Figura 1B). A seguir, alguns blocos acendem (ficam amarelos) em sequência, ficando cada um aceso por aproximadamente 1 segundo. Depois que o último bloco apagar, o participante deve clicar sobre os blocos na mesma sequência mostrada. O teste é iniciado com uma sequência composta de dois blocos, e um bloco é adicionado à medida que o sujeito avança (e.g., 2, 3, 4, n...). São realizadas duas tentativas para cada sequência de blocos. O teste é finalizado quando são cometidos dois erros em uma mesma sequência. O número correspondente à maior sequência de blocos corretamente respondida e o escore total (sequência x número de acertos) foram utilizados para as análises.

DESCRIÇÃO DAS SESSÕES DE GL

As sessões de GL foram realizadas na reitoria de uma universidade federal. O programa de GL fazia parte de um grande projeto da instituição voltado aos servidores chamado “Viver em Harmonia”, que visava auxiliar diretamente no estilo de vida dos trabalhadores. As sessões de GL ocorriam de duas a três vezes por semana, com duração de 10 a 15 minutos, totalizando 30 sessões ao longo dos 3 meses. Os exercícios eram predominantemente de alongamento, utilizando apenas os movimentos corporais, sem o auxílio de aparelhos.

ANÁLISE ESTATÍSTICA

A normalidade quanto à distribuição dos dados foi confirmada utilizando o teste de Shapiro-Wilk. Os dados foram expostos como média e desvio padrão (DP). O teste t para amostras independentes foi utilizado para comparação das características gerais da amostra, assim como para as variáveis de desfecho entre os grupos (TR e percentual de acertos no teste de Stroop e sequência e escore no TBC). O g de Hedges foi utilizado como medida do tamanho do efeito, mais adequado para amostras com menos de 20 indivíduos19. O g de Hedges foi calculado por meio da divisão entre a diferença das médias dos grupos e o DP agrupado e ponderado [g = (M1-M2)/DP agrupado e ponderado]. A magnitude do efeito foi interpretada de acordo com o recomendado por Hopkins et al.20 em “trivial” (< 0,20), “pequena” (0,20-0,59), “moderada” (0,60-1,19), “grande” (1,20-1,99) e “muito grande” (≥ 2,0). Um valor de p < 0,05 foi adotado como significância estatística. Os dados foram analisados no software SPSS V.20.0.

RESULTADOS

A Tabela 1 apresenta as características gerais da amostra. Não houve diferença para idade, variáveis antropométricas ou nível de atividade física entre os grupos. Os participantes do grupo GL compareceram, em média, a 79,8% das sessões.

Com relação às medidas de desfecho, não foram encontradas diferenças significativas entre os grupos no TR (Figura 2A), com efeito de magnitude trivial nas fases congruente (g = 0,014) e incongruente (g = 0,003) e pequena na fase neutra (g = 0,203). Embora não houve diferença estatisticamente significativa para a acurácia (Figura 2B), verificou-se um efeito de magnitude pequena nas três fases do TCS (g = 0,477, g = 0,384 e g = 0,339 para as fases 1, 2 e 3, respectivamente). Similarmente, não houve diferença significativa no efeito Stroop para o TR (Figura 2C) ou para os erros adicionais cometidos (Figura 2D); no entanto, o tamanho do efeito da diferença foi de magnitude moderada (g = 0,718 e g = 0,904, respectivamente). Adicionalmente, não houve diferença significativa quanto ao desempenho no teste de memória operacional visuoespacial para a sequência de blocos (GL: 5,50 ± 0,82 vs. GC: 5,57 ± 0,76; g = 0,086) e quanto ao
escore do teste (GL: 45,19 ± 15,96 vs. GC: 46,93 ± 15,93; g = 0,065) entre os grupos (p = 0,77).

DISCUSSÃO

O presente estudo avaliou a influência da GL sobre a função executiva e memória operacional visuoespacial em trabalhadores dos setores administrativos. Os resultados encontrados não indicaram diferenças estatisticamente significativas entre os grupos para ambos os domínios cognitivos. Até onde sabemos, este foi o primeiro estudo a avaliar a influência da prática da GL sobre aspectos cognitivos dos trabalhadores, o que impossibilita comparações diretas com estudos relacionados à GL.

Tabela 1. Características gerais do grupo de praticantes de ginástica laboral (GL) e grupo controle (GC)

Variáveis	GL (n = 16)	GC (n = 14)	Valor de p
Idade (anos)	41,63±14,26	37,64±11,77	0,42
Massa corporal (kg)	65,25±9,86	68,85±16,00	0,46
Estatura (m)	1,67±0,07	1,62±0,10	0,10
Índice de massa corporal (kg.m⁻²)	23,20±2,35	25,89±4,64	0,05
Tempo de caminhada (min.sem⁻¹)	100,3±93,6	226,4±219,4	0,06
Tempo de atividade física moderada (min.sem⁻¹)	127,2±105,1	129,3±140,5	0,96
Tempo de atividade física vigorosa (min.sem⁻¹)	7312±125,5	975±138,8	0,62
Tempo sentado (h.dia⁻¹)	6,81±2,26	8,14±2,77	0,16

Figura 2. Comparação do tempo de resposta (TR) (A) e do percentual de acertos (B) nas fases congruentes (Con), neutra (Neu) e incongruente (Inc), assim como o efeito ou a interferência de Stroop sobre o TR (C) e o percentual de erros (D) adicionais obtido pela diferença entre a fase incongruente e neutra do teste de cores de Stroop nos grupos de ginástica laboral (GL) e controle.
As possíveis explicações para os achados são fatores relacionados às características do exercício (tipo, duração e intensidade) e à duração da intervenção. A GL é uma atividade de intensidade leve, que foi realizada com sessões de alongamento sem equipamento, com frequência de duas a três vezes por semana. A maioria dos estudos que mostraram efeitos positivos do exercício sobre a cognição utilizaram exercício em intensidade moderada16,21,22. Portanto, é provável que a demanda fisiológica (intensidade) da GL seja muito baixa para resultar em modificações significativas na cognição. Esses resultados sugerem a possível existência de um limiar mínimo de intensidade do exercício para que os benefícios cognitivos agudos e crônicos sejam obtidos.

Outro fator que pode ter influenciado os resultados diz respeito à aderência às sessões de treinamento, relacionada ao volume de treino mensal. Os participantes do grupo GL atenderam cerca de 70% das sessões, sendo que apenas três participantes atingiram 90% de frequência. Isso significa que, das 30 sessões oferecidas, a maioria dos participantes atendeu a um pouco mais de 20 sessões, resultando em um baixo volume total de treinamento. Vale ressaltar que a baixa adesão e aderência a programas de atividade física não é um problema exclusivo de intervenções com atividade física no ambiente de trabalho, acontecendo, inclusive, em espaços especializados na promoção de exercício físico, como academias23. No que diz respeito à GL, Soares et al.5 evidenciaram um paradoxo em que 96% dos funcionários reconheciam que a GL poderia ser benéfica, mas que 83% deles não participavam das sessões de GL. De fato, há uma resistência por parte dos trabalhadores à prática da GL. Por exemplo, no presente estudo, a distribuição dos participantes em cada grupo foi feita por conveniência, a partir da escolha deles, pois vários trabalhadores se recusaram a participar da GL. Portanto, estudos futuros devem procurar utilizar estratégias para aumentar o envolvimento e a aderência dos trabalhadores aos programas de GL.

É importante destacar que o nível habitual de atividade física é positivamente associado à função e estrutura cerebral2,21. Ademais, tem sido sugerido que o tempo despendido em atividades sedentárias (atividades que envolvem um gasto energético muito baixo, < 1,5 equivalentes metabólicos), como ficar sentado ou deitado durante o período de vigília, como acontece na maioria das funções ocupacionais administrativas, resulta em efeitos indesejados em diversos níveis, inclusive o cognitivo24. Nesse sentido, vale destacar que ambos os grupos foram considerados fisicamente ativos, pois atingiam mais de 150 minutos de atividade física de intensidade moderada ou vigorosa por semana25 e apresentavam tempo sentado durante os dias similares. Portanto, é possível que a prática de atividade física habitual dos participantes do presente estudo tenha influenciado nos resultados obtidos e que a intervenção com a GL, da maneira como foi realizada, tenha promovido pouco ou nenhum efeito adicional na função cognitiva. Vale destacar, no entanto, que o desempenho cognitivo não é influenciado apenas pela prática de atividade física, mas também por uma gama de fatores como gênero, idade, histórico familiar, nível educacional, tabagismo, trauma craniano, etnia, alimentação, estresse mental e socialização26, fatores que não foram controlados no presente estudo.

Apesar de não haver diferença significativa entre as variáveis cognitivas, a magnitude do tamanho do efeito sobre o controle inibitório foi moderada, o que sugere a possibilidade de um efeito positivo da GL nesse domínio cognitivo. Nesse sentido, a literatura tem evidenciado os benefícios da GL em outros aspectos, como na dor lombar4, na qualidade de vida, em sintomas depressivos, em dores na coluna, na autoestima6 e na coordenação motora9. Além disso, é importante fomentar a prática de atividade física por parte dos trabalhadores, uma vez que isso traz benefícios não apenas na esfera pessoal, mas também em aspectos relacionados ao trabalho. Por exemplo, Pedersen et al.27 realizaram uma intervenção com exercício no local de trabalho ao longo de um ano, a qual resultou na redução da pressão arterial sistólica, do percentual de gordura e das dores no ombro e nas costas, assim como no aumento da força muscular e da capacidade cardiorrespiratória. Portanto, intervenções com exercício físico no local de trabalho, como a GL, representam uma alternativa com excelente relação custo-benefício tanto para a empresa quanto para o funcionário.

As limitações do presente estudo incluem sua natureza transversal, o que impossibilitou o estabelecimento de uma relação de causa e efeito, além do fato de o ambiente de avaliação não ter sido controlado, uma vez que as avaliações ocorreram no local de trabalho. Além disso, a
CONCLUSÃO

Embora a prática de 3 meses de GL não tenha sido associada a diferenças significativas no desempenho cognitivo dos trabalhadores, o tamanho do efeito da diferença entre os grupos, particularmente na função inibitória, foi de magnitude moderada. É importante destacar que há um corpo relativamente consistente de conhecimento que demonstra os benefícios da GL para fatores como prevenção e tratamento de doenças ocupacionais, diminuição de algias, melhoria na coordenação, entre outros. Portanto, apesar dos resultados nulos do presente estudo, a prática da GL é recomendada devido aos demais benefícios adquiridos. Sugerimos que intervenções com GL incluam outras formas de atividade além do alongamento, tais como exercícios aeróbios ou de fortalecimento muscular utilizado a massa corporal ou bandagens elásticas, além de maior duração do treino por sessão.

REFERÊNCIAS

1. Maciel RH, Albuquerque AMFC, Melzer AC, Leônidas SR. Quem se beneficia dos programas de ginástica laboral? Cad Psicol Soc Trab. 2005;8:71-86.
2. Hillman CH, Erickson KI, Kramer AF. Be smart, exercise your heart: exercise effects on brain and cognition. Nat Rev Neurosci. 2008;9(1):58-65.
3. Diamond A. Executive functions. Annu Rev Psychol. 2013;64:135-68.
4. Maciel RRBT, Santos NC, Portella DDA, Alves PGJM, Martinez BP. Effects of physical exercise at the workplace for treatment of low back pain: a systematic review with meta-analysis. Rev Bras Med Trab. 2018;16(2):225-35.
5. Soares RG, Assunção AA, Lima FPA. A baixa adesão ao programa de ginástica laboral: buscando elementos do trabalho para entender o problema. Rev Bras Saude Ocup. 2006;31(114):149-60.
6. Serra MVGB, Pimenta LC, Quemelo PRV. Efeitos da ginástica laboral na saúde do trabalhador: uma revisão da literatura. Rev Pesq Fisioter. 2014;4(3):197-205.
7. Oliveira JRG. A importância da ginástica laboral na prevenção de doenças ocupacionais. Rev Educ Fisioter. 2004;10(3):307-20.
8. Reis PF, Moro ARP, Contijo LA. A importância da manutenção de bons níveis de flexibilidade nos trabalhadores que executam suas atividades laborais sentados. Rev Prod Online. 2003;3(3).
9. Mezzomo SP, Contreira AR, Corazza ST. Os efeitos da ginástica laboral sobre as habilidades básicas de funcionamento de setores administrativos. Rev Bras Cienc Saude. 2010;8(25):6-13.
10. Filho CAAM, Alves CRR, Sepúlveda CA, Costa AS, Lancha Jr AH, Gualano B. Influência do exercício físico na cognição: uma atualização sobre mecanismos fisiológicos. Rev Bras Med Esporte. 2014;20(3):237-41.
11. McMorris T, Sproule J, Turner A, Hale BJ. Acute, intermediate intensity exercise, and speed and accuracy in working memory tasks: a meta-analytical comparison of effects. Physiol Behav. 2011;102(3-4):421-8.
12. Tsai C-L, Pan C-Y, Chen F-C, Wang C-H, Chou F-Y. Effects of acute aerobic exercise on a task-switching protocol and brain-derived neurotrophic factor concentrations in young adults with different levels of cardiorespiratory fitness. Exp Physiol. 2016;101(7):836-50.
13. Erickson KI, Voss MW, Prakash RS, Basak C, Szabo A, Chaddock L, et al. Exercise training increases size of hippocampus and improves memory. Proc Natl Acad Sci U S A. 2011;108(7):3017-22.
14. Spirduso WW. Physical fitness, aging, and psychomotor speed: a review. J Gerontol. 1980;35(6):850-65.
15. Lambourne K, Tomporowski P. The effect of exercise-induced arousal on cognitive task performance: a meta-regression analysis. Brain Res. 2010;1341:12-24.
16. Lee PH, Macfarlane DJ, Lam TH, Stewart SM. Validity of the international physical activity questionnaire short form (IPAQ-SF): a systematic review. Int J Behav Nutr Phys Act. 2011;8:115.
17. Córdova C, Karnikowski MGO, Pandossio JE, Nóbrega OT. Caracterização de respostas comportamentais para o teste de Stroop computadorizado - Testinpacs. Neurocienc. 2008;4(2):75-9.
18. Brunetti R, Del Gatto C, Delogu F. eCorsi: implementation and testing of the Corsi block-tapping task for digital tablets. Front Psychol. 2014;5:939.
19. Hedges LV. Distribution theory for glass’s estimator of effect size and related estimators. J Educ Stat. 1981;6(2):107-28.
20. Hopkins WG, Marshall SW, Batterham AM, Hanin J. Progressive statistics for studies in sports medicine and exercise science. Med Sci Sports Exerc. 2009;41(1):3-13.
21. Kashihara K, Maruyama T, Murota M, Nakahara Y. Positive effects of acute and moderate physical exercise on cognitive function. J Physiol Anthropol. 2009;28(4):155-64.
22. Yanagisawa H, Dan I, Tsuzuki D, Kato M, Okamoto M, Kyotoku Y, et al. Acute moderate exercise elicits increased dorsolateral prefrontal activation and improves cognitive performance with Stroop test. Neuroimage. 2010;50(4):1702-10.
23. Sperandei S, Vieira MC, Reis AC. Adherence to physical activity in an unsupervised setting: explanatory variables for high attrition rates among fitness center members. J Sci Med Sport. 2016;19(11):916-20.
24. Voss MW, Carr LJ, Clark R, Weng T. Revenge of the “sit” II: does lifestyle impact neuronal and cognitive health through distinct mechanisms associated with sedentary behavior and physical activity? Ment Health Phys Act. 2014;7(1):9-24.
25. Garber CE, Blissmer B, Deschenes MR, Franklin BA, Lamonte MJ, Lee I-M, et al. American College of Sports Medicine position stand. Quantity and quality of exercise for developing and maintaining cardiorespiratory, musculoskeletal, and neuromotor fitness in apparently healthy adults. Med Sci Sport Exerc. 2011;43(7):1334-59.
26. Antunes HKM, Santos RF, Cassilhas RC, Santos RVT, Bueno OFA, Mello MT. Exercício físico e função cognitiva: uma revisão. Rev Bras Med Esporte. 2006;12(2):108-14.
27. Pedersen MT, Blangsted AK, Andersen LL, Jørgensen MB, Hansen EA, Sjøgaard G. The effect of worksite physical activity intervention on physical capacity, health, and productivity: a 1-year randomized controlled trial. J Occup Environ Med. 2009;51(7):759-70.

Endereço para correspondência: Daniel Gomes da Silva Machado – Departamento de Educação Física – Campus Universitário da Universidade Federal do Rio Grande do Norte (UFRN). Av. Senador Salgado Filho, 3000 – Lagoa Nova – CEP 59.072-970 – Natal (RN), Brasil – E-mail: profdmachado@gmail.com

2021 Associação Nacional de Medicina do Trabalho
Este é um artigo de acesso aberto distribuído nos termos de licença Creative Commons