Characterisation of patients with severe asthma in the UK Severe Asthma Registry in the biologic era

Jackson, D. J., Busby, J., Pfeffer, P. E., Menzies-Gow, A., Brown, T., Gore, R., Doherty, M., Mansur, A., Message, S., Niven, R., Patel, M., & Heaney, L. (2020). Characterisation of patients with severe asthma in the UK Severe Asthma Registry in the biologic era. Thorax. https://doi.org/10.1136/thoraxjnl-2020-215168

Published in:
Thorax

Document Version:
Publisher's PDF, also known as Version of record

Queen's University Belfast - Research Portal:
Link to publication record in Queen's University Belfast Research Portal

Publisher rights
Copyright 2021 the authors. This is an open access Creative Commons Attribution-NonCommercial License (https://creativecommons.org/licenses/by-nc/4.0/), which permits use, distribution and reproduction for non-commercial purposes, provided the author and source are cited.

General rights
Copyright for the publications made accessible via the Queen's University Belfast Research Portal is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The Research Portal is Queen's institutional repository that provides access to Queen's research output. Every effort has been made to ensure that content in the Research Portal does not infringe any person's rights, or applicable UK laws. If you discover content in the Research Portal that you believe breaches copyright or violates any law, please contact openaccess@qub.ac.uk.
Original research

Characterisation of patients with severe asthma in the UK Severe Asthma Registry in the biologic era

David J Jackson,1,2 John Busby,3 Paul E Pfeffer,4 Andrew Menzies-Gow,5 Thomas Brown,6 Robin Gore,7 Martin Doherty,8 Adel H Mansur,9 Simon Message,11 Robert Niven,12 Mitesh Patel,13 Liam G Heaney,14,15 on behalf of the UK Severe Asthma Registry

ABSTRACT

Background The UK Severe Asthma Registry (UKSAR) is the world’s largest national severe asthma registry collecting standardised data on referrals to UK specialist services. Novel biologic therapies have transformed the management of type 2(T2)-high severe asthma but have highlighted unmet need in patients with persistent symptoms despite suppression of T2-cytokine pathways with corticosteroids.

Methods Demographic, clinical and treatments characteristics for patients meeting European Respiratory Society / American Thoracic Society severe asthma criteria were examined for 2225 patients attending 15 specialist severe asthma centres. We assessed differences in biomarker low patients (fractional exhaled nitric oxide (FeNO) <25 ppb, blood eosinophils <150/μL) compared with a biomarker high population (FeNO ≥25 ppb, blood eosinophils ≥150/μL).

Results Age (mean 49.6 (14.3) y), age of asthma onset (24.2 (19.1) y) and female predominance (62.4%) were consistent with prior severe asthma cohorts. Poor symptom control (Asthma Control Questionnaire-6: 2.9 (1.4)) with high exacerbation rate (4 (IQR: 2, 7)) were common despite high-dose treatment (51.7% on maintenance oral corticosteroids (mOCS)). 68.9% were prescribed biologic therapies including mepolizumab (50.3%), benralizumab (26.1%) and omalizumab (22.6%). T2-low patients had higher body mass index (32.1 vs 30.2, p<0.001), depression/anxiety prevalence (12.3% vs 7.6%, p=0.04) and mOCS use (57.9% vs 42.1%, p<0.001). Many T2-low asthmatics had evidence of a historically elevated blood eosinophil count (0.35 (0.13, 0.60)).

Conclusions The UKSAR describes the characteristics of a large cohort of asthmatics referred to UK specialist severe asthma services. It offers the prospect of providing novel insights across a range of research areas and highlights substantial unmet need with poor asthma control, impaired lung function and high exacerbation rates. T2-high phenotypes predominate with significant differences apparent from T2-low patients. However, T2-low patients frequently have prior blood eosinophilia consistent with possible excessive corticosteroid exposure.

INTRODUCTION

Severe asthma has been defined by the European Respiratory Society / American Thoracic Society (ERS/ATS) as asthma which requires treatment with high-dose inhaled corticosteroids (ICS) plus a second controller (and/or systemic corticosteroids) to prevent it from becoming ‘uncontrolled’ or which remains ‘uncontrolled’ despite this therapy.1 Although some estimates have suggested that severe asthma affects approximately 5%–10% of the total asthma population,1,2 it is well recognised that many patients prescribed high-dose inhaled treatment remain poorly controlled because of suboptimal adherence to treatment or poor inhaler technique despite regular use. Once these two critical aspects of asthma care have been addressed the true prevalence of patients who remain poorly controlled on maximally effective treatment has been addressed.

Although the majority of the asthma population,1,2 it is well recognised that many patients prescribed high-dose inhaled treatment remain poorly controlled because of suboptimal adherence to treatment or poor inhaler technique despite regular use. Once these two critical aspects of asthma care have been addressed the true prevalence of patients who remain poorly controlled on maximally effective treatment has been addressed.1,2 Although some estimates have suggested that severe asthma affects approximately 5%–10% of the total asthma population,1,2 it is well recognised that many patients prescribed high-dose inhaled treatment remain poorly controlled because of suboptimal adherence to treatment or poor inhaler technique despite regular use. Once these two critical aspects of asthma care have been addressed the true prevalence of patients who remain poorly controlled on maximally effective treatment has been addressed.
costs associated with routine clinical care, as well as the significant morbidity associated with systemic corticosteroids in this population. With our improved understanding of the central role of type-2 (T2) inflammation in severe asthma alongside the advent of biologic therapies targeting elements of the T2 inflammatory cascade, the original BTS Registry underwent a number of important structural changes and was renamed the UK Severe Asthma Registry (UKSAR). The data to be collected were initially agreed by consensus between UK Expert Physicians and in a subsequent Delphi Consensus of International Severe Asthma Experts, there was 95% agreement with the UKSAR data fields. The patient population is well-characterised, with the participating centres all being specialist multidisciplinary units for asthma care with all patients undergoing systematic assessment prior to inclusion in the registry.

The aims of the current article are to describe the demographic and clinical characteristics of severe asthma patients in the UKSAR, to describe current biologic selection in eligible patients and to examine the difference between patients who are T2 biomarker-high and T2 biomarker-low at registration.

MATERIALS AND METHODS

Patients in UKSAR are enrolled to the registry after referral to Specialist UK Severe Asthma Centres with uncontrolled asthma (ie, severe symptoms or frequent exacerbations) at the Global Initiative for Asthma (GINA) treatment steps 4 and 5. The UKSAR has database ethical approval from the Office of Research Ethics Northern Ireland (15/NI/0196) and all patients provide written informed consent. All clinical centres in England are part of the NHS England Specialist Commissioning Network and operate on a ‘hub and spoke’ basis which aims to provide standardised multidisciplinary assessment and access to therapies under guidance issued by the National Institute for Clinical and Healthcare Excellence. Northern Ireland has a single-centre regional service (Belfast) and UKSAR also includes a single specialist regional centre in Scotland (online supplemental appendix 1).

Data were collected from November 2016 to February 2020. Baseline (at the time of registration) demographic and clinical variables are listed in (online supplemental appendix 2, but in brief, UKSAR captures 105 core variables classified into nine categories: patient demographics, medical history, investigations, lung function, allergy testing, Asthma Control Questionnaire, EuroQoL Questionnaire, asthma medication, and systematic assessment summary and management plan. Follow-up data are collected annually. The information recorded at each visit are listed in online supplemental appendix 3, however, follow-up data are not reported in this manuscript. The number of exacerbations was defined as a count of exacerbations requiring rescue systemic corticosteroids in the past 12 months. The number of hospitalisations and emergency department admissions for asthma was the number in the past 12 months. Asthma control was measured using the Asthma Control Questionnaire-6 (ACQ6). In this analysis, all patients were assessed by their treating clinician as fulfilling the criteria for severe asthma as defined by ERS/ATS Guidelines. T2-biomarker low patients were defined as fractional exhaled nitric oxide (FeNO) < 25 ppb and blood eosinophil count < 150 cells/µL at registration. These cut-points were chosen as phase 3 clinical trials of targeted anti-interleukin 5 (IL5) and anti-IL4R biologic therapies have shown little benefit below these thresholds in patients with severe asthma. The T2-high comparator cohort was defined when both these biomarkers were above these thresholds.

All patients entered into UKSAR have undergone a thorough systematic multidisciplinary assessment as previously described in UK services. At this assessment, centres are asked to confirm that patients fulfil the ERS/ATS criteria for asthma that they have evaluated and optimised adherence to their current treatment plan and a management plan including additional treatments is registered (see online supplemental). Consecutive patients completing this assessment, and consenting to registry participation are entered on to the UKSAR.

Statistical analysis

This was a hypothesis generating study with no pre-specified hypotheses. Descriptive statistics were calculated for the entire cohort and for specific patient subgroups. Mean (with SD) and median (with IQR) were presented for continuous variables as appropriate. Categorical variables were summarised using counts and percentages. Univariate hypothesis tests between groups were conducted using t-test, Mann-Whitney U test or χ² test. All analyses were conducted using the STATA V.16 software package (StataCorp).

RESULTS

Demographic, clinical characteristics and comorbidities

Two thousand two hundred and twenty-five adult patients with severe asthma according to ERS/ATS criteria registered between November 2016 and February 2020 from 15 centres across the UK are included in this data. The mean age at registration was 49.6 years (14.3) with a mean age at onset of 24.2 years (19.1). 62.4% were female and 79.1% Caucasian. Self-reported atopic disease was recorded in 62.8%; in those reporting a history of atopic disease and proceeding to skin prick test or radioallergosorbent (RAST) test, 72% (858 of 1189 patients) were positive to a perennial environmental allergen. In those reporting no atopic disease, 29% (207 of 707) were positive to skin prick or RAST-positive suggesting clinical history was of limited utility in identifying atopy in this group. Only 3.5% reported current smoking whereas 68.3% of patients were never-smokers.

Patients were poorly controlled with a mean ACQ6 of 2.9 (1.4), and a median of 4 (IQR: 2, 7) exacerbations in the previous year. Lung function highlighted significant airflow obstruction and gas trapping with a FEV₁ of 65.3 (21.3 %) predicted, a residual volume of 132% (44.1%). Reported comorbidities included gastro-oesophageal reflux (16.9%), nasal polyposis (16.4%), depression or anxiety (8.3%) and eczema (2.9%) (table 1).

Biomarker profile

The median blood eosinophil count at registration was 0.33 (IQR: 0.16, 0.60) cells×10⁹/L with the median highest historical result recorded as 0.62 (IQR: 0.40, 1.00) cells×10⁹/L. Median FeNO levels were 39.0 (IQR: 20.0, 75.0) ppb and the median total IgE was 181 (IQR: 60, 480) IU/mL (table 2). These levels highlight a predominantly T2-high profile in patients entered into the UKSAR.

Asthma medication patterns

All patients were on high-dose ICS and long-acting beta agonist therapy with a median ICS dose of 2000 (IQR: 1600, 2000) mcg BDP equivalent. Of these, 53.5% were additionally on a long-acting antimuscarinic antagonist (LAMA), 48.9% on a leukotriene receptor antagonist (LTRA) and 27.2% on theophylline. There was no evidence of greater airflow obstruction among those prescribed a LAMA (FEV₁/FVC ratio: 63.2%) compared

Jackson DJ, et al. Thorax 2021;76:220–227. doi:10.1136/thoraxjnl-2020-215168

221
with those not prescribed one (FEV/FVC: 64.2%), p = 0.111. 51.7% were on maintenance oral corticosteroids (mOCS) with a median daily dose of 10 (IQR: 5, 15) mg prednisolone. 68.9% were prescribed biologic therapy including mepolizumab with a median daily dose of 10 (IQR: 5, 15) mg prednisolone. 51.7% were on maintenance oral corticosteroids (mOCS)

Comparison of biologic prescribed and non-prescribed patients with severe asthma

A comparison of the demographic and clinical characteristics between patients prescribed biologic therapies and those treated with conventional therapies highlighted significant differences in several domains. While the age and gender distribution were similar, a greater proportion of those prescribed biologics were Caucasian (80.6% vs 75.5%; p = 0.024). Patients on biologics were also more likely to be never-smokers (70.8% vs 62.7%) and less likely to be current smokers (2.2% vs 6.4%; p < 0.001).

Patients treated with biologics had evidence of more severe airflow obstruction (FEV1, fractional exhaled nitric oxide; LAMA, long-acting antimuscarinic antagonist; SABA, short acting β2-agonist).

Clinical characteristics of anti-IgE versus anti-IL5/5R treated patients

Analysis of the clinical and phenotypic characteristics of the biologic treated patients highlighted a number of significant differences between those prescribed the anti-IgE mAb omalizumab from those prescribed the anti-IL-5/5R mAbs mepolizumab, reslizumab or benralizumab.

Table 1 Demographic, clinical characteristics and comorbidities*

Number of patients	2225
Age at first assessment	49.6 (14.3)
Gender	Male 836 (37.6%)
Ethnicity	Caucasian 1744 (79.1%)
BMI (kg/m²)	30.8 (7.1)
Smoking status	Never smoker 1490 (68.3%)
Atopic disease	1378 (62.8%)
Spirometry	FEV1 (% predicted) 65.3 (21.3)
FEV1/FVC	83.1 (19.7)
Residual volume (% predicted)	63.4 (17.3)
Total lung capacity (% predicted)	132.0 (44.1)
ACQ6 Score	103.9 (18.7)
Exacerbations requiring rescue steroids in last year	4 (0, 7)
Eczema	193 (10.0%)
Nasal polyps	356 (16.4%)
Depression or anxiety	180 (8.3%)
Depression or anxiety	180 (8.3%)

*Mean (SD), median (IQR) or count (%) as appropriate.

Table 2 Medication and biomarkers*

Number of patients	2225
Blood eosinophil count (N/10⁶ L)	0.33 (0.16, 0.60)
Highest blood eosinophil count (N/10⁶ L)	0.62 (0.40, 1.00)
FeNO (ppb)	39.0 (20.0, 75.0)
IgE (IU/mL)	181 (60, 480)
Maintenance oral steroids	1142 (51.7%)
Maintenance oral steroid dose (mg)	10 (5, 15)
Inhaled steroid dose (mcg, BDP equivalent)	2000 (1600, 2000)
LAMA	1161 (53.5%)
Theophylline	595 (27.2%)
SABA	2089 (95.1%)
Leukotriene receptor antagonist	1048 (48.9%)
Maintenance macrolide	199 (9.3%)
Nebuliser	533 (24.5%)
Prior anti-IgE therapy	251 (11.5%)
Initiate/continue biologic therapy	1524 (68.9%)
Biologic therapy name	329 (22.6%)
Dupilumab	5 (0.3%)
Mepolizumab	731 (32.6%)
Benralizumab	380 (26.1%)
Reslizumab	9 (0.6%)

*Mean (SD), median (IQR) or count (%) as appropriate.

†Highest blood count is the highest recorded in available prior medical records. FeNO, fractional exhaled nitric oxide; LAMA, long-acting antimuscarinic antagonist; SABA, short acting β2-agonist.
Table 3

Table 3 Biologic population versus non-biologic population*
Biologic therapy

Age at first assessment
18–34
35–54
55–79
>80
Age at onset of symptoms
<12
12–18
>18
Gender
Female
Male
Ethnicity
Caucasian
Non-Caucasian
BMI (kg/m²)
Smoking status
Never smoked
Ex-smoker
Current smoker
Atopic disease
Spinal bone density (T-Score)
Femoral neck bone density (T-Score)
FEV₁ (% predicted)
FVC (% predicted)
FEV₁/FVC
Residual volume (% predicted)
Total lung capacity (% predicted)
ACQ6 Score
Rescue steroids in last year
Hospital admissions for asthma in last year
Invasive ventilations (ever)
Eczema
Nasal polyps
Gastro-oesophageal reflux
Depression or anxiety
Blood eosinophil count (N/10⁹L)
FeNO (ppb)
IgE (IU/mL)
Prior anti-IgE therapy
*Mean (SD), median (IQR) or count (%) as appropriate. **Highest blood count is the highest recorded in available prior medical records. ACQ, Asthma Control Questionnaire; BMI, body mass index; FeNO, fractional exhaled nitric oxide; LAMA, long-acting antimuscarinic antagonist; SABA, short-acting β2-agonist.

Table 3 Continued

Table 3 Biologic population versus non-biologic population*
No biologic therapy

Theophylline
SABA
Leukotriene receptor antagonist
Nebuliser
Prior anti-IgE therapy

Compared with anti-IL-5/5R treated patients, anti-IgE treated patients were younger at first assessment (47.6 vs 50.7 years old; p<0.001), had an earlier onset of symptoms (15.2 vs 27.5 years old; p<0.001), were more likely to be female (66.9% vs 61.0%; p=0.053) and had a higher reported history of atopic disease (86.7% vs 52.6%; p<0.001). In contrast, nasal polyposis was more prevalent in the anti-IL-5/5R patients (20.8% vs 11.1%, p<0.001). Prescribing of other asthma medications also differed with prescription of mOCS more prevalent in the anti-IL-5/5R patients (65.0% vs 44.6%, p<0.001) and the reverse being true for LTRA (43.3% vs 52.4%, p=0.014). In keeping with the specific clinical phenotypes these two classes of biologic therapies are targeted at, significant differences in T2 biomarker levels were observed with a higher registration (0.40 vs 0.22; p<0.001) and historic (and 0.72 vs 0.50; p<0.001) blood eosinophil count in those on anti-IL5/5R therapies and a higher total IgE in those on anti-IgE treatment (294 vs 143, p<0.001) (table 4). Interestingly although 22.6% of biologics patients were prescribedomalizumab, 44.8% of the total biologics cohort met published eligibility criteria for this therapeutic option.

Comparison of T2-high and T2-low patients

We identified 992 of 2225 (44.6%) patients categorised as T2-high and 210 (9.4%) T2-low using our composite biomarker definitions. Compared with T2-low patients, those in the T2-high group were more likely to be male (39.4% vs 32.9%, p=0.076), have an older age of symptom onset (25.9 vs 17.1 years old, p<0.001), be a never-smoker (69.7% vs 59.1%, p<0.001), have nasal polyposis (19.5% vs 10.8%, p=0.006) and have more severe airflow obstruction (FEV₁/FVC 63.6 vs 66.7, p=0.007). In contrast, T2-low patients had a higher body mass index (BMI) (32.1 vs 30.2, p<0.001), higher prevalence of depression and anxiety (12.3% vs 7.6%, p=0.040) and higher rate of current smoking (8.2% vs 2.2%, p<0.001). A greater proportion of T2-low patients were treated with mOCS (57.9% vs 42.1%, p<0.001) as well as theophylline (35.1% vs 23.4%, p<0.001) and more likely to have a home nebuliser (35.1% vs 19.6%, p<0.001). A history of atopic disease was also more prevalent in the T2-low group (71.5% vs 61.8%, p=0.028) although the median IgE was higher in the T2-high group (189 vs 155, p=0.007). Importantly, although the blood eosinophil count on registration was used to define T2 status, analysis of the historic blood eosinophil counts highlighted a median count of 0.35 (0.13, 0.60) in the T2-low group (table 5).
Asthma

Table 4 Anti-IgE versus anti-IL5

	Anti-IgE (n=329)	Anti-IL5 (n=1120)	P value
Age at first assessment	47.6 (14.6)	50.7 (14.1)	<0.001
18–34	71 (21.6%)	167 (14.9%)	
35–54	140 (42.6%)	481 (43.0%)	
55–79	117 (35.6%)	464 (41.5%)	
>80	1 (0.3%)	6 (0.5%)	
Age at onset of symptoms	15.2 (16.0)	27.5 (19.2)	<0.001
<12	168 (60.6%)	279 (27.8%)	
12–18	26 (9.4%)	95 (9.5%)	
>18	83 (30.0%)	630 (62.7%)	
Ethnicity	0.143		
Caucasian	261 (79.3%)	895 (80.8%)	
Non-Caucasian	68 (20.7%)	213 (19.2%)	
Gender	0.053		
Male	109 (33.1%)	437 (39.0%)	
Female	220 (66.9%)	683 (61.0%)	
BMI (kg/m²)	31.3 (6.8)	30.7 (7.0)	0.183
Smoking status	0.757		
Never smoked	233 (72.8%)	763 (69.8%)	
Ex-smoker	81 (25.3%)	307 (28.1%)	
Current smoker	6 (1.9%)	23 (2.1%)	
Atopic disease	281 (86.7%)	578 (52.6%)	<0.001
Spinal bone density (T-Score)	−0.7 (1.4)	−0.6 (1.4)	0.593
Femoral neck bone density (T-Score)	−0.3 (1.1)	−0.5 (1.2)	0.062
FEV₁ (% predicted)	63.4 (21.7)	64.9 (20.6)	0.321
FVC (% predicted)	82.4 (18.0)	83.7 (20.2)	0.369
FEV₁/FVC	61.8 (14.7)	63.0 (19.8)	0.355
Residual volume (% predicted)	138.7 (44.9)	136.8 (43.6)	0.684
Total lung capacity (% predicted)	105.6 (17.5)	105.4 (19.6)	0.913
ACQ6 Score	2.8 (1.5)	2.9 (1.4)	0.178
Rescue steroids in last year	4 (2.6)	4 (3.7)	0.020
Hospital admissions for asthma in last year	0 (0.1)	0 (0.1)	0.047
Invasive ventilations (ever)	44 (14.1%)	108 (10.2%)	0.134
Eczema	7 (2.2%)	17 (1.5%)	0.748
Nasal polyps	36 (11.1%)	230 (20.8%)	<0.001
Gastro-oesophageal reflux	44 (13.5%)	145 (13.1%)	0.979
Depression or anxiety	21 (6.5%)	65 (5.9%)	0.926
Blood eosinophil count (N/μL)	0.22 (0.10, 0.50)	0.40 (0.20, 0.68)	<0.001
Lowest blood eosinophil count (N/μL)	0.50 (0.30, 0.80)	0.72 (0.50, 1.10)	<0.001
FeNO (ppb)	31.0 (18.0, 61.0)	44.0 (24.0, 81.0)	<0.001
IgE (IU/mL)	294 (151, 485)	143 (47, 407)	<0.001
Maintenance oral steroids	145 (44.6%)	723 (65.0%)	<0.001
Maintenance oral steroid dose (mg)	10 (5, 15)	10 (8, 18)	0.054
Inhaled steroid dose (mg, BDP equivalent)	2000 (1600, 2000)	2000 (1600, 2000)	0.029
LAMA	176 (55.0%)	589 (54.4%)	0.859
Theophylline	102 (31.4%)	289 (26.4%)	0.106

Table 4 Continued

	Anti-IgE (n=329)	Anti-IL5 (n=1120)	P value
SABA	313 (96.6%)	1054 (95.7%)	0.764
Leukotriene receptor antagonist	164 (52.4%)	466 (43.3%)	0.014
Maintenance macrolide	28 (9.0%)	103 (9.6%)	0.713
Nebuliser	89 (27.9%)	267 (24.5%)	0.442
Prior anti-IgE therapy	140 (42.8%)	77 (7.0%)	<0.001

*Mean (SD), median (IQR) or count (%) as appropriate.
†Highest blood count is the highest recorded in available prior medical records.
ACQ, Asthma Control Questionnaire; BMI, body mass index; FeNO, fractional exhaled nitric oxide; LAMA, long-acting inhaled antimuscarinic antagonist; SABA, short acting β2-agonist.

DISCUSSION

The UKSAR represents the largest national registry of its kind in the world recruiting patients with severe asthma who have been systematically evaluated at specialist asthma centres within the UK. This includes assessment and confirmation of severity, inflammatory phenotype, therapeutic intervention and related comorbidities. We report that the majority have evidence of T2 inflammation despite high rates of systemic corticosteroid use, that T2 low patients have a higher BMI and prevalence of anxiety/depression and that a significant unmet need exists despite currently available therapies.

In line with the increasing availability of biologic therapies targeting the T2-inflammatory pathway, we report a high uptake of biologic therapies in UKSAR, reflecting the fact that referrals and registry enrolment is prioritised by centres for biologic patients. This is despite eligibility criteria that are considered among the most demanding in the world.10–23 However, we also highlight the sobering finding that over half of the UKSAR are on maintenance OCS, continue to have a high exacerbation rate averaging four acute OCS courses/year and remain poorly controlled with an average ACQ6 of 2.9 at assessment.

The relative proportions of each biologic prescribed in the UKSAR reflect the duration of availability of the specific therapy at the time of this analysis, the size of the eligible population as well as individual prescribing habits of physicians. However, it is interesting to note that despite the relatively recent arrival of anti-IL5/5R therapies, these make up over 75% of all biologic prescribing. This may in part to relate to the relatively high use of mOCS to manage severe asthma in the UK and the lack of controlled data supporting OCS sparing efficacy with omalizumab compared with mepolizumab24 or benralizumab but may also relate to the prescribing limitations of body weight and IgE levels which limit access to omalizumab.25

In addition, many of the clinical characteristics that differentiate the patients prescribed anti-IgE from anti-IL5/5R in UKSAR are in keeping with current understanding of allergic and non-allergic asthma phenotypes as well as the results of responder analyses conducted following the phase 3 trials of T2 biologics.26 Specifically, we report that younger atopic patients with an earlier disease onset were proportionately more likely to be prescribed anti-IgE compared with mepolizumab24 or benralizumab but may also relate to the prescribing limitations of body weight and IgE levels which limit access to omalizumab.25

Our definition of T2-low severe asthma uses cut-points for blood eosinophil count and FeNO which have been identified in phase 3 clinical trials of biologics targeting anti-IL5/5R and anti-IL4R-α respectively, and which have identified little benefit of these therapies when the blood eosinophil count is <150 cells/μL.
Table 5 Comparison of T2-high and T2-low patients*

	T2-low (n=210)	T2-high (n=992)	P value
Age at first assessment	48.1 (15.1)	48.8 (14.3)	0.522
18–34	47 (22.4%)	173 (17.5%)	
35–54	84 (40.0%)	456 (46.1%)	
55–79	78 (37.1%)	360 (36.4%)	
>80	1 (0.5%)	1 (0.1%)	
Age at onset of symptoms	17.1 (16.3)	25.9 (19.1)	<0.001
<12	96 (53.6%)	282 (31.0%)	
12–18	18 (10.1%)	88 (9.7%)	
>18	65 (36.3%)	540 (59.3%)	
Gender			0.076
Female	141 (67.1%)	601 (60.6%)	
Male	69 (32.9%)	391 (39.4%)	
Ethnicity			0.012
Caucasian	178 (85.2%)	748 (76.4%)	
Non-Caucasian	31 (14.8%)	231 (23.6%)	
BMI (kg/m²)	32.1 (7.8)	30.2 (6.7)	<0.001
Smoking status			<0.001
Never smoked	123 (59.1%)	688 (69.7%)	
Ex-smoker	68 (32.7%)	277 (28.1%)	
Current smoker	17 (8.2%)	22 (2.2%)	
Atopic disease	148 (71.5%)	607 (61.8%)	0.028
Spinal bone density (T-Score)	−1.0 (1.4)	−0.7 (1.4)	0.010
Femoral neck bone density (T-Score)	−0.5 (1.1)	−0.4 (1.1)	0.314
FEV₁ (% predicted)	66.2 (22.6)	66.5 (20.6)	0.858
FVC (% predicted)	80.6 (19.8)	84.4 (18.7)	0.020
FEV₁/FVC	66.7 (14.8)	63.6 (13.7)	0.007
Residual volume (% predicted)	122.8 (44.1)	128.1 (44.7)	0.450
Total lung capacity (% predicted)	96.2 (22.8)	103.3 (17.7)	0.016
ACQ6 Score	3.1 (1.3)	2.9 (1.4)	0.161
Rescue steroids in last year	4 (1, 7)	4 (2, 8)	0.014
Hospital admissions for asthma in last year	0 (0, 2)	0 (0, 1)	0.005
Invasive ventilations (ever)	26 (15.5%)	73 (8.4%)	<0.001
Eczema	8 (3.9%)	29 (3.0%)	0.341
Nasal polyps	22 (10.8%)	190 (19.5%)	0.006
Gastro-oesophageal reflux	41 (20.2%)	173 (17.8%)	0.317
Depression or anxiety	25 (12.3%)	74 (7.6%)	0.040
Blood eosinophil count (N/10⁹/L)	0.07 (0.01, 0.10)	0.50 (0.30, 0.70)	<0.001
Highest blood eosinophil count (N/10⁹/L)	0.35 (0.13, 0.60)	0.76 (0.50, 1.15)	<0.001
FeNO (ppb)	14.0 (9.0, 18.0)	60.0 (39.0, 94.0)	<0.001
IgE (IU/ml)	155 (34, 437)	189 (67, 599)	0.007
Maintenance oral steroids	121 (57.9%)	415 (42.1%)	<0.001
Maintenance oral steroid dose (mg)	10 (5, 20)	10 (5, 15)	0.013

Table 5 Continued

	T2-low (n=210)	T2-high (n=992)	P value
Inhaled steroid dose (mcg, BDP equivalent)	2000 (1600, 2000)	2000 (1600, 2000)	0.733
LAMA	116 (56.0%)	527 (54.2%)	0.790
Theophylline	73 (35.1%)	228 (23.4%)	0.001
SABA	196 (94.2%)	937 (95.3%)	0.801
Leukotriene receptor antagonist	107 (53.0%)	488 (50.8%)	0.784
Maintenance macrolide	23 (11.4%)	76 (7.9%)	0.248
Nebuliser	73 (35.1%)	189 (19.6%)	<0.001
Prior anti-IgE therapy	36 (17.3%)	99 (10.2%)	0.008

Mean (SD), median (IQR) or count (%) as appropriate. *Highest blood count is the highest recorded in available prior medical records. ACQ, Asthma Control Questionnaire; BMI, body mass index; FeNO, fractional exhaled nitric oxide; LAMA, long-acting antimuscarinic antagonist; SABA, short-acting β2-agonist.

μL or FeNO is <25 ppb.⁶ ¹⁷ Although previous reports of mild-moderate asthma using sputum analysis have described an approximate 50–50 split between T2-high and T2-low phenotypes,⁶ ¹⁷ it is increasingly recognised that severe asthma is predominantly associated with a T2-high phenotype. In keeping with this, we found that while the median blood eosinophil count at registration in the UKSAR was 0.3 cells×10⁹/L, the previous historic (prior to UKSAR registration) median level was 0.62 cells×10⁹/L with levels greater than 0.4 cells×10⁹/L in 75% of the cohort, reflecting prominent blood eosinophilia despite substantial background treatment. The median FeNO of 39 ppb further supports background T2 inflammatory pathway activation in this group. Recent data have demonstrated that when corticosteroids are down-titrated in a UK severe asthma population, T2-biomarkers increase, with the maximal prevalence of T2-low severe asthma reported at 5%.²⁹

Indeed, what is perhaps surprising is that such high T2 biomarker levels were evident despite the very high inhaled and systemic steroid utilisation in this cohort and despite adherence assessment. Dividing our cohort into T2-high and T2-low groups based on the combination of blood eosinophils and FeNO at registration highlighted that only a minority of patients fulfilled the biomarker definition of T2-low asthma. Moreover, analysis of the historic blood eosinophil count in the T2-low group revealed a median level consistent with a T2-high diagnosis and more than 25% of patients had readings in excess 0.6 cells×10⁹/L. Taken together it highlights the difficulties in labelling asthmatics as T2-low given the variability of biomarkers such as the blood eosinophil count and FeNO in relation to background corticosteroid treatment,²⁹ ³⁰ which are known to suppress these biomarkers. Consequently, this and any comparison of T2 phenotypes using biomarker stratification at a single timepoint, when on high-dose corticosteroid treatment is challenging and prone to misclassification of patients. It also suggests that corticosteroid treatment in these persistently symptomatic patients may be elevated beyond a point where there would be any additional therapeutic benefit. Consistent with this, we noted that 58% of these patients were on maintenance OCS.

In light of the high level of morbidity and mortality which we have previously highlighted to be associated with systemic steroids,³¹ and the recognition that this therapy is only associated with clinical benefit in the presence of T2 inflammation, it would
suggest a greater level of OCS stewardship is required in these patients. In addition, further work is required to establish the mechanism of persistent poor symptom control in these patients who lack objective evidence of T2 inflammation as this presumably drives some clinicians to increase corticosteroid treatment despite the absence of T2 inflammation. Importantly this will require detailed consideration of extrapolummary factors given the elevated BMI and reduced total lung capacity observed in this group.\(^2\) It is also striking that the rescue corticosteroid use in this T2-biomarker low group is identical to the T2-high group, given T2-biomarkers have consistently been shown to have prognostic value in terms of exacerbation risk. Additionally, one would anticipate therapeutic benefit from corticosteroids in exacerbations in the T2-high population, but it remains unclear if this is also the case in biomarker low patients. As such, understanding the mechanism and inflammatory phenotype of exacerbation events in T2-biomarker low patients is an important future research question. This same issue applies to the residual 50% of exacerbation events seen in clinical trials of biologic therapies targeting T2-pathways and clinical trials are underway to try and explore this issue further in patients on mepolizumab and benralizumab (NCT03324230 and NCT04102800).

It was also noteworthy that we did not see higher prescription rates of LAMA and/or macrolide therapy in the T2 low group despite these therapies frequently being discussed as possible therapeutic options when a T2 inflammatory signal appears absent in severe asthma and particularly given the high symptom burden in this population. We cannot identify if these therapies were previously tried and withdrawn but ongoing follow-up will identify any additional treatment in these patients and if corticosteroid treatment is reduced.

Several observations require further investigation. One of these is the differences observed in biologic prescribing between Caucasian and non-Caucasian patients in the UK. While it is possible that variances in access to care, cultural and language barriers as well as possible underlying endotype differences may all play a role this area, and we have noted different disease by ethnicity in UKSAR\(^3\) which we are actively exploring further in primary care datasets. Additionally, the higher rate of depression and anxiety seen in the T2-low group as well as the larger group of patients not prescribed a biologic therapy deserves attention. These patients are frequently on mOCS which have consistently been shown to have prognostic value in terms of exacerbation risk. Additionally, one would anticipate therapeutic benefit from corticosteroids in exacerbations in the T2-high population, but it remains unclear if this is also the case in biomarker low patients. As such, understanding the mechanism and inflammatory phenotype of exacerbation events in T2-biomarker low patients is an important future research question. This same issue applies to the residual 50% of exacerbation events seen in clinical trials of biologic therapies targeting T2-pathways and clinical trials are underway to try and explore this issue further in patients on mepolizumab and benralizumab (NCT03324230 and NCT04102800).

In summary, the UKSAR describes the characteristics of a very large cohort of severe asthmatics in routine clinical care across the UK with over 1500 patients treated with biologic therapies. It highlights current prescribing patterns, the predominance of the T2-high clinical phenotype in severe asthma and offers the prospect of providing novel insights across a range of research areas including real world responses to biologic therapies and the natural history of severe asthma.

Author affiliations

1. Guy’s Severe Asthma Centre, Guy’s and St Thomas’ NHS Foundation Trust, London, UK
2. Asthma UK Centre, King’s College London, London, UK
3. Centre for Public Health, Queen’s University Belfast School of Medicine, Dentistry and Biomedical Sciences, UK
4. Respiratory Medicine, Barts Health NHS Trust, London, UK
5. Lung Division, Royal Brompton and Harefield NHS Foundation Trust, London, UK
6. Respiratory Medicine, Portsmouth Hospitals NHS Trust, Portsmouth, UK
7. Respiratory Medicine, Cambridge University Hospitals Trust, Cambridge, UK
8. Respiratory Medicine, Chelsea and Westminster Hospital, London, UK
9. Heartlands Hospital, Heart of England NHS Foundation Trust, Birmingham, UK
10. University of Birmingham, UK
11. Respiratory Medicine, Gloucestershire Royal Hospital, Gloucester, UK
12. Wythenshawe Hospital, Manchester NHS Foundation Trust, UK
13. Respiratory Medicine, University Plymouth NHS Trust, Plymouth, UK
14. Centre for Experimental Medicine, Queen’s University Belfast School of Medicine, Dentistry and Biomedical Sciences, UK
15. Belfast Health & Social Care NHS Trust, UK

Acknowledgements

We thank the data input and medical staff in the UK Difficult Asthma Centres.

Collaborators

Dr Paul Dilworth, Royal Free London NHS Trust; Dr Aashish Vyas, Lancashire Teaching Hospital; Dr Rekha Chadhuri, Gartnavel General Hospital; Dr Deepak Subramanian, University Hospitals of Derby & Burton NHS; Dr Paddy Dennison, Southampton General Hospital.

Contributors

CIJ, JB, PEF, AMG, TB, RG, MD, AM, SM, RN, MP and LGH made substantial contributions to data acquisition, data analysis and interpretation, and drafting the manuscript. The final manuscript was approved by all the authors prior to submission.

Funding

The authors have not declared a specific grant for this research from any funding agency in the public, commercial or not-for-profit sectors.

Patient consent for publication

Not required.

Ethics approval

Approval for collection and analysis of pseudonymised UKSAR data was granted by ORECNI (15/NI/0196).

Provenance and peer review

Not commissioned; externally peer reviewed.

Data availability statement

No data are available.

Open access

This is an open access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited, appropriate credit is given, any changes made indicated, and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/.

ORCID iDs

Paul E Pfeffer http://orcid.org/0000-0003-0369-2885
Adel H Mansur http://orcid.org/0000-0002-8615-8778

REFERENCES

1. Chung KF, Sally Wenzel for the European respiratory Society/American thoracic Society severe asthma international guidelines Task force. European Respiratory Journal 2014;44:1378–137.
2. von Bülow A, Kriegbaum M, Backer V, et al. The prevalence of severe asthma and low asthma control among Danish adults. J Allergy Clin Immunol Pract 2014;2:759–67.
3. Heikkinen P-PW, Vener RR, Amlenik M, et al. The prevalence of severe refractory asthma. J Allergy Clin Immunol 2015;135:896–902.
4. Heaney LG, Brightling CE, Manzies-Gow A, et al. British thoracic society difficult asthma network. Refractory asthma in the UK: cross-sectional findings from a UK multicentre registry. Thorax 2010;65:787–94.
5. Burn J, Sims AJ, Patrick H, et al. Efficacy and safety of bronchial thermoplasty in clinical practice: a prospective, longitudinal, cohort study using evidence from the UK severe asthma registry. BMJ Open 2019;9:e026742.
6. Burn J, Sims AJ, Kelte K, et al. Procedural and short-term safety of bronchial thermoplasty in clinical practice: evidence from a national registry and hospital episode statistics. J Asthma 2017;54:872–9.

226

Jackson DJ, et al. Thorax 2021;76:220–227. doi:10.1136/thoraxjnl-2020-215168

8 Refractory asthma in the UK: cross-sectional findings from a UK multicentre registry, Thorax 2010;65:787–94. Published online on May 25, 2021. Downloaded from http://thorax.bmj.com/ on May 25, 2021 by guest. Protected by copyright.
7. Chaudhuri R, McSharry C, Heaney LG, et al. Effects of older age and age of asthma onset on clinical and inflammatory variables in severe refractory asthma. *Respir Med* 2016;118:46–52.

8. Sweeney J, Patterson CC, Menzies-Gow A, et al. Comorbidity in severe asthma requiring systemic corticosteroid therapy: cross-sectional data from the optimum patient care research database and the British thoracic difficult asthma registry. *Thorax* 2016;71:339–46.

9. Gibeon D, Heaney LG, Brightling CE, et al. British thoracic Society difficult asthma network. dedicated severe asthma services improve health-care use and quality of life. *Chest* 2015;148:870–6.

10. Newby C, Heaney LG, Menzies-Gow A, et al. British thoracic Society severe refractory asthma network, statistical cluster analysis of the British thoracic Society severe refractory asthma registry: clinical outcomes and phenotype stability. *Pict One* 2014;9:e102987.

11. O’Neill S, Sweeney J, Patterson CC, et al. British thoracic Society difficult asthma Network. The cost of treating severe refractory asthma in the UK: an economic analysis from the British thoracic Society difficult asthma registry. *Thorax* 2015;70:376–8.

12. Thomson NC, Chaudhuri R, Heaney LG, et al. Clinical outcomes and inflammatory biomarkers in current smokers and exsmokers with severe asthma. *J Allergy Clin Immunol* 2013;131:1008–16.

13. Gibeon D, Batuwita K, Osmond M, et al. Obesity-Associated severe asthma represents a distinct clinical phenotype: analysis of the British thoracic Society difficult asthma registry patient cohort according to BMI. *Chest* 2013;143:406–14.

14. Sweeney J, Cess B, Menzies-Gow A, et al. British thoracic Society difficult asthma network, clinical management and outcome of refractory asthma in the UK from the British thoracic Society difficult asthma registry. *Thorax* 2012;67:754–6.

15. Balasubramani L, Elangovan N, Heaney LG, et al. Development of the International severe asthma registry (ISAR): a modified Delphi study. *J Allergy Clin Immunol Pract* 2019;7:578–86.

16. Ortega HG, Fancay SW, Mayer B, et al. Severe eosinophilic asthma treated with mepolizumab stratified by baseline eosinophil thresholds: a secondary analysis of the DREAM and MENSAS studies. *Lancet Respir Med* 2016;4:549–56.

17. Castro M, Corren J, Pavord ID, et al. Dupilumab efficacy and safety in moderate-to-severe uncontrolled asthma. *N Engl J Med* 2018;378:2486–96.

18. Heaney LG, Conway E, Kelly C, et al. Predictors of therapy resistant asthma: outcome of a systematic evaluation protocol. *Thorax* 2003;58:561–6.

19. Robinson DS, Campbell DA, Durham SR, et al. Asthma and allergy Research group of the National heart and lung Institute. systematic assessment of difficult-to-treat asthma. *Eur Respir J* 2003;22:478–83.

20. NICE. Omalizumab for treating severe persistent allergic asthma, 2013. Available: https://www.nice.org.uk/guidance/ta278

21. NICE. Mepolizumab for treating severe eosinophilic asthma, 2017. Available: https://www.nice.org.uk/guidance/ta431

22. NICE. Reslizumab for treating severe eosinophilic asthma, 2017. Available: https://www.nice.org.uk/guidance/ta479

23. NICE. Benralizumab for treating severe eosinophilic asthma, 2019. Available: https://www.nice.org.uk/guidance/ta565

24. Bel EH, Wenzel SE, Thompson PJ, et al. Oral glucocorticoid-sparing effect of mepolizumab in eosinophilic asthma. *N Engl J Med* 2014;371:1189–97.

25. Nair P, Wenzel S, Rabe KE, et al. Oral glucocorticoid-sparing effect of Benralizumab in severe asthma. *N Engl J Med* 2017;376:2448–58.

26. Bleeker ER, Wechsler ME, Fitzgerald JM, et al. Baseline patient factors impact on the clinical efficacy of benralizumab for severe asthma. *Eur Respir J* 2018;52. doi:10.1183/13993003.00936-2018. [Epub ahead of print: 18 10 2018].

27. Woodruff PG, Modrek B, Choy DF, et al. T-Helper type 2-driven inflammation defines major subphenotypes of asthma. *Am J Respir Crit Care Med* 2009;180:388–95.

28. McGrath KW, Iclovitch N, Boushey HA, et al. Asthma clinical research network of the National heart, lung, and blood Institute. A large subgroup of mild-to-moderate asthma is persistently non-eosinophilic. *Am J Respir Crit Care Med* 2012;185:612–9.

29. Heaney LG, Busby J, et al, on behalf of the investigators for the MRC Refractory Asthma Stratification Program. Randomised trial of treatment optimisation in patients with severe asthma using composite type-2 biomarkers to adjust corticosteroid dose versus a symptom/risk-based algorithm. *Lancet Respir Medicine* 2020.

30. Busby J, Holweg CTJ, Chai A, et al. Change in type-2 biomarkers and related cytokines with prednisolone in uncontrolled severe oral corticosteroid dependent asthmatics: an interventional open-label study. *Thorax* 2019;74:806–9.

31. Sweeney J, Patterson CC, Menzies-Gow A, et al. Comorbidity in severe asthma requiring systemic corticosteroid therapy: cross-sectional data from the optimum patient care research database and the British thoracic difficult asthma registry. *Thorax* 2016;71:339–46.

32. McDowell PJ, Heaney LG. Different endotypes and phenotypes drive the heterogeneity in severe asthma. *Allergy* 2020;75:302–10.

33. Busby J, Jackson DJ, Mansur AH, et al. British thoracic Society winter meeting 2019. *Programme and Abstracts*;74:F152.

34. Bloechlinger M, Reinau O, Spedding J, et al. Adverse events profile of oral corticosteroids among asthma patients in the UK: cohort study with a nested case-control analysis. *Respir Res* 2018;19:75.