Regulation of plant ER oxireductin 1 (ERO1) activity for efficient oxidative protein folding

Motonori Matsusaki[^1,2], Aya Okuda[^1,3], Koichi Matsuo[^5], Kunihiko Gekko[^3], Taro Masuda[^6], Yurika Naruo[^4], Akiho Hirose[^2], Keiichi Kono[^6], Yuichiro Tsuchi[^2], and Reiko Urade[^3,4]

From the ^1Division of Agronomy and Horticultural Science, Graduate School of Agriculture, Kyoto University, Uji, Kyoto 611-0011, Japan and the ^2Hiroshima Synchrotron Radiation Center, Hiroshima University, Kagamiyama, Higashi-hiroshima, Hiroshima 739-0046, Japan

Edited by Ursula Jakob

In the endoplasmic reticulum (ER), ER oxireductin 1 (ERO1) catalyzes intramolecular disulfide-bond formation within its substrates in coordination with protein-disulfide isomerase (PDI) and related enzymes. However, the molecular mechanisms that regulate the ERO1–PDI system in plants are unknown. Reduction of the regulatory disulfide bonds of the ERO1 from soybean, GmERO1a, is catalyzed by enzymes in five classes of PDI family proteins. Here, using recombinant proteins, vacuum-ultraviolet circular dichroism spectroscopy, biochemical and protein refolding assays, and quantitative immunoblotting, we found that GmERO1a activity is regulated by reduction of intramolecular disulfide bonds involving Cys-121 and Cys-146, which are located in a disordered region, similarly to their locations in human ERO1. Moreover, a GmERO1a variant in which Cys-121 and Cys-146 were replaced with Ala residues exhibited hyperactive oxidation. Soybean PDI family proteins differed in their ability to regulate GmERO1a. Unlike yeast and human ERO1s, for which PDI is the preferred substrate, GmERO1a directly transferred disulfide bonds to the specific active center of members of five classes of PDI family proteins. Of these proteins, GmpDIS-1, GmpDIS-2, GmpDIM, and GmPDIL7 (which are group II PDI family proteins) failed to catalyze effective oxidative folding of substrate RNase A when there was an unregulated supply of disulfide bonds from the C121A/C146A hyperactive mutant GmERO1a, because of its low disulfide-bond isomerization activity. We conclude that regulation of plant ERO1 activity is particularly important for effective oxidative protein folding by group II PDI family proteins.

The folding of most proteins synthesized in the endoplasmic reticulum (ER) involves intramolecular disulfide-bond formation catalyzed by protein-disulfide isomerase (PDI) (EC 5.3.4.1) and other PDI family proteins (1–4). PDI, composed of four thioredoxin-folded domains (designated a, b, b’, and a’), catalyzes the formation, isomerization, and reduction of disulfide bonds via one or both of the CXxC active centers, which are located in domains a and a’ and assist in oxidative protein folding (Fig. 1). Disulfides in the active centers of PDI family proteins are reduced by catalyzing the oxidation of substrate dithiol groups. The reduced active center of PDI must then be re-oxidized prior to catalyzing the next oxidation reaction.

Yeast ER oxireductin 1p (ERO1p) (5, 6), mammalian ERO1 (ERO1α and ERO1β) (7, 8), and plant ERO1 enzymes (9–11) reportedly oxidize PDI family proteins, and the respective enzymatic properties have been characterized. ERO1p, ERO1α, and ERO1β preferentially oxidize PDI but not other PDI family proteins (Erp57, Erp72, P5, and Erp46) (12, 13). By contrast, plant ERO1 (soybean ERO1: GmERO1a) exhibits broad substrate specificity, oxidizing five PDI family proteins: GmPDIL-1, GmPDIM, GmPDIS-1, GmPDIS-2, and GmPDIL7 (10). The two active centers of PDI are known to undergo asymmetric oxidation catalyzed by ERO1s. In the yeast PDI ortholog (Pdi1p), the active center of domain a is preferentially oxidized by ERO1p (12). By contrast, human ERO1α oxidizes the active center of PDI domain a’ (14–16).

Such asymmetric active-center oxidation by PDIs provides a major clue as to how the enzymes catalyze both oxidation and isomerization/reduction reactions. It was suggested that yeast Pdi1p domain a catalyzes substrate oxidation, whereas domain a’ catalyzes isomerase or reductase reactions (14). Asymmetric oxidation of human PDI results from docking of ERO1α to PDI domain b’, which is also a substrate-binding site and aligns the active centers of ERO1α and PDI a’ (17). Because the a active center of human PDI can be oxidized via intramolecular thiol-disulfide exchange with the a’ active center, PDI domain a can also oxidize substrates.

Previously, we found that GmERO1a preferentially oxidizes the a’ active center of GmPDIM, a plant ortholog of mamma-
Regulation of plant ERO1 activity

Several systems in mammalian cells function to quench \(\text{H}_2\text{O}_2 \) produced by the PDI/ERO1 pathway and thus mitigate \(\text{H}_2\text{O}_2 \) cytotoxicity. Peroxiredoxin IV (PRDX4) (31–34), PDI peroxidases (GPx7 and GPx8) (35), and vitamin K epoxide reductase use \(\text{H}_2\text{O}_2 \) to oxidize PDI (36). These reaction systems are thus also useful as adjuncts to the PDI/ERO1 pathway. In addition, these enzymes exhibit a relatively broad specificity for PDI family proteins. Erp46 and P5 are oxidized by PRDX4, and Erp72, Erp57, and P5 are oxidized by GPx7/8 (i.e. oxidizing equivalents are supplied to multiple PDI family proteins by PRDX4 and Gpx7/8 using \(\text{H}_2\text{O}_2 \) generated by ERO1α). A type II transmembrane GSH peroxidase–like protein located in the ER and Golgi apparatus of plants has also been described (37). However, whether this enzyme functions as an adjunct to the PDI/ERO1 system in the ER like GPx7/8 has not been determined. In addition, the mechanism regulating the ERO1/PDI system in plants remains to be elucidated.

In this study, we examined the mechanism by which plant ERO1 activity is regulated and the relationship of this mechanism to oxidative protein folding. We found that plant ERO1 activity is regulated by the reduction of intramolecular disulfide bonds and that this regulatory mechanism is essential for effective oxidative protein folding mediated by various PDI family proteins. Based on these data, we propose that the regulation of ERO1 activity functions as a safety mechanism that maintains the integrity of the oxidative protein folding process.

Results

Plant ERO1 activity is regulated by redox of intramolecular disulfide bonds

Both human and yeast ERO1 are activated \textit{in vivo} under reducing conditions created by the addition of dithiothreitol (DTT). The active form of ERO1 is detectable as a band known as “ox-1” by SDS-PAGE under nonreducing conditions (38). Incubation of ERO1 with \textit{Escherichia coli} thioredoxin 1 (Trx1), which is known to be a good substrate for ERO1s, reportedly generates ox-1 \textit{in vitro} (24). Therefore, to determine whether plant ERO1 activity is regulated in a similar manner in yeast and humans, we examined the redox status of GmERO1a in cul-

Figure 1. Model of inter- and intramolecular electron transfer cascade between ERO1 and PDI in humans. In the oxidation of PDI by ERO1, ERO1 transfers electrons from the active center of PDI domain a’ to \(\text{O}_2 \). In PDI, electrons are transferred intramolecularly from domain a to domain a’. The black ellipses indicate the reduced domains a or a’ of PDI, and the red ellipses indicate the oxidized domains. The gray ellipses indicate PDI domain b or b’. For ERO1, the two SH and S–S (black text) indicate the thiols and disulfide of the shuttle cysteine pair, and the S–S (green text) indicates the disulfide of the active cysteine pair. In inactive form (ox-2) of ERO1, the regulatory cysteines (red) formed disulfide bonds with the shuttle cysteines, which are reduced in active form (ox-1).
Regulation of plant ERO1 activity

Figure 2. Change in GmERO1a redox status. A, cultured soybean cells (DG330) were incubated with or without 1 mM DTT at 25 °C. Change in GmERO1a redox status was analyzed by nonreducing SDS-PAGE and Western blotting using anti-GmERO1 serum after N-ethylmaleimide treatment of the proteins extracted from cultured soybean cells. B and C, change in GmERO1a (B) and Trx1 (C) redox status during oxidation catalyzed by GmERO1a was analyzed by nonreducing SDS-PAGE after alkylation with N-ethylmaleimide (E) and 4-acetamido-4′-maleimidylstilbene-2,2′-disulfonic acid (C) treatment. Proteins were stained with silver-staining (B) or Coomassie Brilliant Blue G-250 (C). B, dotted line indicates the position of ox-2 band. C, red, reduced Trx1; ox, oxidized Trx1.

tured soybean cells treated with DTT, and also in vitro during the reaction with Trx1. After treatment of soybean culture cells with DTT, a new GmERO1 band (ox-1) appeared on SDS-PAGE, with mobility on the gel lower than that of original GmERO1 (ox-2) (Fig. 2A). Upon incubation of recombinant GmERO1a with Trx1, GmERO1a incubated for 2 min migrated slower through the gel than the un-incubated control, indicating the reduction of intramolecular disulfide bonds (Fig. 2B). As Trx1 became fully oxidized by 60 min (Fig. 2C), GmERO1a migrated faster, indicating re-formation of the intramolecular disulfide bonds in GmERO1a. These results strongly suggested that activity of plant ERO1, similar to yeast and human ERO1, is regulated via reduction of intramolecular disulfide bonds.

Next, we tried to identify the cysteine residues involved in the regulation of GmERO1a activity. Alignment of the amino acid sequences of human ERO1α, yeast ERO1p, and plant ERO1 (GmERO1a) revealed that active-center cysteines (shuttle cysteine pair and active cysteine pair) are conserved (Fig. 3A). In addition to the active-center cysteines, several regulatory cysteines in human ERO1α were also conserved in plants. In studies of the crystal structures, both the shuttle cysteines (Cys-94 and Cys-99) and regulatory cysteines (Cys-104 and Cys-131) of human ERO1α were found to be located in a single intrinsically flexible loop region (22). Unfortunately, no crystals of recombinant GmERO1a were obtained, despite repeated attempts.

Therefore, vacuum-UV CD (VUVCD) spectra of recombinant GmERO1a were collected over the wavelength range 172–260 nm to compare the secondary structure of GmERO1a with that of human ERO1α (Fig. 3B). The spectrum exhibited two negative peaks around 222 and 208 nm and one positive peak around 190 nm, indicating that the recombinant GmERO1a had high α-helix content. The secondary structural contents of recombinant GmERO1a were estimated as 51.1% α-helix and 5.5% β-strand and the number of α-helix segments to be 20 (Table S1). These estimated contents by VUVCD analysis are similar to those of human ERO1α obtained from the crystal structure (48.9% α-helix and 6.4% β-strand) (Table S1). The positions of secondary structure of GmERO1 on the amino acid sequence are predicted by combining a neural network (NN) analysis treating the amino acid sequence with the secondary structure data obtained from the VUVCD analysis (VUVCD–NN method) (Fig. 3C). Conserved putative shuttle cysteines (Cys-113 and Cys-118) and adjacent putative regulatory cysteines (Cys-121, Cys-123, and Cys-146) were located in a disordered region of GmERO1a, analogous to the context of shuttle and regulatory cysteines in human ERO1α.

To assess the function of the putative shuttle, active and regulatory cysteines in GmERO1a, we prepared recombinant GmERO1a mutants in which alanine residues were substituted for Cys-113 and Cys-118 (putative shuttle cysteine residues), Cys-370 (putative active-cysteine residue), and Cys-121, Cys-123, and Cys-146 (putative regulatory cysteine residues). All mutants were expressed as soluble proteins in E. coli cells. However, the C370A mutant was not used in the experiments because this protein became insoluble and lost during the purification process. The other mutants were purified as stable, soluble proteins. These proteins were analyzed by SDS-PAGE under reducing and nonreducing conditions (Fig. 4A). The nonreducing SDS-polyacrylamide gel indicates the oxidation state of the protein as purified, which could include a number of different disulfide bond states. Under nonreducing conditions, all of the GmERO1a mutants migrated slower on SDS-PAGE than WT GmERO1a, suggesting that Cys-113, Cys-118, Cys-121, Cys-123, and Cys-146 form intramolecular disulfide bonds. Although there are slight differences in the VUVCD spectra among the mutants, the secondary structures of all mutants were basically similar to those of WT GmERO1a (Fig. 3B and Fig. S1 and Table S1), indicating that the mutations did not affect proper folding of the polypeptides.

To assess the function of Cys-113, Cys-118, Cys-121, Cys-123, and Cys-146, we assayed the ability of the mutant GmERO1a enzymes to oxidize GmPDIL7, a soybean PDI family protein with a single redox active-site CGHC in domain A. The C370A mutant was not used in the experiments because this protein became insoluble and lost during the purification process. The other mutants were purified as stable, soluble proteins. These proteins were analyzed by SDS-PAGE under reducing and nonreducing conditions (Fig. 4A). The nonreducing SDS-polyacrylamide gel indicates the oxidation state of the protein as purified, which could include a number of different disulfide bond states. Under nonreducing conditions, all of the GmERO1a mutants migrated slower on SDS-PAGE than WT GmERO1a, suggesting that Cys-113, Cys-118, Cys-121, Cys-123, and Cys-146 form intramolecular disulfide bonds. Although there are slight differences in the VUVCD spectra among the mutants, the secondary structures of all mutants were basically similar to those of WT GmERO1a (Fig. 3B and Fig. S1 and Table S1), indicating that the mutations did not affect proper folding of the polypeptides.

To assess the function of Cys-113, Cys-118, Cys-121, Cys-123, and Cys-146, we assayed the ability of the mutant GmERO1a enzymes to oxidize GmPDIL7, a soybean PDI family protein with a single redox active-site CGHC in domain A that is readily oxidized by recombinant WT GmERO1a in vitro (39). Oxidation of GmPDIL7 by GmERO1a was assayed by experiments coupled with GSH disulfide reductase, and NADPH reduced (NADPH) consumption (Fig. 4B). The reaction was performed in the presence of GSH, as a substrate for oxidation by GmPDIL7 oxidized by GmERO1a. As expected, the GmERO1a C113A and C118A mutants did not consume NADPH because these cysteines constitute the shuttle cysteine pair essential for oxidation of the substrate (Fig. 4C). A pronounced lag phase was observed in NADPH consumption by
Regulation of plant ERO1 activity

A

[Diagram showing the regulation of plant ERO1 activity with various proteins and sequences]

B

[Graphs showing the activity of different ERO1 variants]

C

GmER01a	Human ERO1α
GmER01a	69
Human ERO1α	50

GmER01a	Human ERO1α
GmER01a	129
Human ERO1α	110

GmER01a	Human ERO1α
GmER01a	225
Human ERO1α	230

GmER01a	Human ERO1α
GmER01a	273
Human ERO1α	290

GmER01a	Human ERO1α
GmER01a	325
Human ERO1α	350

GmER01a	Human ERO1α
GmER01a	383
Human ERO1α	407

GmER01a	Human ERO1α
GmER01a	438
Human ERO1α	467
Regulation of plant ERO1 activity

WT GmERO1a, which we interpreted to reflect activation of the GmERO1a catalytic activity. The rate of NADPH consumption reached a maximum 12 min after initiation of the reaction (Fig. 4, C and D). The C121A and C146A GmERO1a mutants exhibited enhanced catalytic activity, with 1.2- and 1.5-fold increases in the maximal rate of NADPH consumption relative to the WT enzyme (Fig. 4D). The C121A/C146A double mutant exhibited a higher maximal rate of NADPH consumption (1.7-fold higher than that of WT GmERO1a). Additionally, the time required to reach the maximum NADPH consumption rate was shortened to 8.5, 6.5, and 7 min in the C121A, C146A, and C121A/C146A mutants (Fig. 4D). These results suggest that both Cys-121 and Cys-146 normally form regulatory disulfide bonds with other cysteines (perhaps with shuttle cysteines Cys-113 and Cys-118), thus suppressing GmERO1a activity (Fig. 4E). Interestingly, the C123A mutant exhibited a 1.6-fold decrease in the maximal rate of NADPH consumption relative to the WT enzyme, and the time required to reach the maximum NADPH consumption rate was prolonged to 14 min. However, mutation of Cys-123 had no other effect on either the maximum NADPH consumption rate or the lag phase observed with the C146A and C121A/C146A mutants. Taken together, these results suggest that the activity of GmERO1a is fine-tuned by the formation or reduction of disulfide bonds between multiple combinations of cysteines.

PDI family proteins convert GmERO1a from the ox-2 to ox-1 form to differing extents

PDI regulates the activities of yeast and human ERO1 in a feedback manner. In the reduced state, yeast and human PDIs can reduce the regulatory disulfides, and thereby activate yeast ERO1p and human ERO1α/β (40, 41). In the oxidized state, human PDI can re-oxidize the regulatory disulfides, and thereby inhibit the activity of ERO1α (42). Based on those observations and our own experimental results, we hypothesized that the activation of WT GmERO1a, which involves Cys-121 and Cys-146, depends upon the presence of PDI. We therefore examined the ability of various PDI family proteins to reduce the regulatory disulfides of GmERO1a. The majority of recombinant GmERO1a molecules purified from E. coli exists in the ox-2 (oxidized) state. No transition of GmERO1a from the ox-2 to the reduced and activated ox-1 form was observed in the presence of GSH but in the absence of the PDI family protein (Fig. 5A). As expected, incubation of GmERO1a with GmpPDIS-1 in the presence of GSH resulted in the appearance of the ox-1 form by 0.5 min. The ox-1 level increased with continued incubation as the ox-2 level decreased. These results indicated that GmpPDIS-1, reduced by GSH, converted GmERO1a from the ox-2 to ox-1 form. In contrast to GmpPDIS-1, GmpPDL-2 did not convert GmERO1a from the ox-2 to ox-1 form. GmpPDIM, GmpPDIS-1, GmpPDIS-2, and GmpPDIL-7 did, however, convert GmERO1a from the ox-2 to ox-1 form.

The rate of ox-2 to ox-1 conversion differed between PDI family proteins. GmpPDIL-1 exhibited the highest ox-2 to ox-1 GmERO1a conversion rate, reaching a plateau within 10 min (Fig. 5B). GmpPDIL-1 converted ~80% of GmERO1a to the ox-1 form within 5 min. To determine the contribution of the active centers in domains a and a′ of GmpPDIL-1, we examined the conversion activity of the active-center mutants. Both the C141A/C421A and C73A/C76A active-center mutants converted GmERO1a from the ox-2 to ox-1 form, indicating that both active centers of can convert GmERO1a (Fig. 5B and Fig. S2A). However, the active centers differed in terms of conversion activity; the C418A/C421A mutant converted GmERO1a to the ox-1 form more rapidly and to a greater percentage than either WT GmpPDIL-1 or the C73A/C76A mutant.

Compared with GmpPDIL-1, GmpPDIM catalyzed conversion of the ox-2 form of GmERO1a to the ox-1 form at a lower rate (Fig. 5C). The reaction plateaued with ~80% of GmERO1a converted to the ox-1 form. The C192A/C195A GmpPDIM mutant converted GmERO1a to the ox-1 form more rapidly and to a greater percentage than the C64A/C67A mutant (Fig. 5C and Fig. S2B).

Compared with GmpPDIL-1 and GmpPDIM, GmpPDIS-1 and GmpPDIS-2 exhibited lower activity in converting GmERO1a from the ox-2 to ox-1 form (Fig. 5, D and E). The rates of conversion of GmpPDIS-1 and GmpPDIS-2 were lower than that of GmpPDIL-1, with only 50% of GmERO1a converted to the ox-1 form even after 20 min. The C176A/C179A GmpPDIS-1 mutant exhibited higher activity than the C57A/C60A GmpPDIS-1 mutant, suggesting that domain a has higher conversion activity than domain a′ (Fig. 5D and Fig. S2C). The conversion activity of the C175A/C178A GmpPDIS-2 mutant is comparable with the WT and slightly higher than that of the C56A/C59A (Fig. 5E and Fig. S2D).

GmpPDIL-7, which has one active site, also converted GmERO1a from the ox-2 to ox-1 form in a manner comparable with that of GmpPDIL-1 (Fig. 5, A and F), converting >80% of GmERO1a to the ox-1 form within 10 min.

Next, using semi-quantitative Western blot analysis, we determined the content and molar ratios of each of the PDI family proteins and GmERO1 in immature soybean cotyledons (Table 1). The GmpPDIL-1 was markedly higher than that of other PDI family proteins, with a molar ratio of GmpPDIL-1 to the total amount of other PDI family proteins of 3.4. Previously, we reported that a wheat ortholog of GmpPDIL-1 (TaPDIL1) exhibited the highest content among PDI family proteins in the wheat caryopses throughout the grain-filling period (43). Furthermore, the content of GmERO1 was extremely low compared with that of other PDI family proteins (Table 1). The molar ratio of total PDI family protein content to that of GmERO1 was 178. Collectively, these data suggest that the redox status of GmpPDIL-1 plays a crucial role in the regulation of GmERO1a activity in the ER.

Figure 3. Secondary structure of GmERO1a. A, schematic illustration and alignment of amino acid sequences around the cysteine residues of GmERO1a with human ERO1a and yeast ERO1p. Numbered circles indicate positions of cysteine residues. Lines connecting circles indicate disulfide bonds. B, UVCD spectra of recombinant wildtype (WT) GmERO1a and mutants in which cysteine residues were substituted with alanine residues. Colored lines in each spectrum indicate mutants in which the indicated cysteine residues were replaced with alanine residues. Number on each spectrum indicates the cysteine residue replaced with alanine. C, alignment of secondary structures of GmERO1a and human ERO1α. Secondary structures of GmERO1a were predicted from the UVCD–NN method. Secondary structural data of human ERO1α were obtained from the crystal structure (Protein Data Bank code 3AHR). α-Helix, β-strand, and coil regions are indicated in purple, light blue, and black in the amino acid sequences, respectively. Cys-113, Cys-118, Cys-121, Cys-123, and Cys-146 are highlighted in yellow.
Figure 4. Identification of cysteine residues involved in the activity of GmERO1a. A, WT GmERO1a and mutants in which cysteine residues were substituted with alanine residues were separated by nonreducing (left) or reducing SDS-PAGE (right) on the same gel and stained with Coomassie Brilliant Blue G-250. Dotted line indicates the position of the WT GmERO1a band. B, schematic representation of the coupling reaction of oxidation of recombinant GmPDIL-7–truncated N-terminal transmembrane region (ΔTM PDIL-7) by GmERO1a and the reduction of GSSG by GSH-disulfide reductase (GR) in the presence of GSH and NADPH. C, oxidation of ΔTM PDIL-7 by WT GmERO1a and cysteine mutants. Oxidation reactions were carried out without (dotted line) or with 1 μM WT GmERO1a (black line), C113A mutant (blue-gray line), C118A mutant (gray line), C121A mutant (green line), C123A mutant (orange line), C146A mutant (red line), C121A/C146A mutant (pink line), C123A/C146A mutant (blue line), or C121A/C123A/C146A mutant (purple line) in the presence of 3 μM ΔTM GmPDIL7, 3 mM GSH, 120 μM NADPH, and 1 unit/ml GSH reductase. Rate of ΔTM GmPDIL7 oxidation was monitored as the decrease in NADPH. Schematic representation of ΔTM GmPDIL7 is shown at the top of the graph. CGHC is the active center located in domain a. D, maximum oxidation rate (y axis) was calculated from the maximum slope of oxidation curves shown in C. Lag phase (x axis) was time until achieving maximum oxidation rate. Black circle, WT GmERO1a; green circle, C121A; orange circle, C123A; red circle, C146A; pink triangle, C121A/C146A; blue triangle, C123A/C146A; purple square, C121A/C123A/C146A. Data are presented as the mean ± S.E. of n = 3–4 experiments. E, model of disulfide connectivity and intramolecular electron transfer in GmERO1a. Active WT GmERO1a (ox-1) contains a shuttle disulfide bond between Cys-113 and Cys-118, whereas Cys-121 and Cys-146 are reduced. The electrons obtained from PDI family proteins are transferred from the shuttle cysteine pairs to FAD via the active cysteine pair (Cys-370 and Cys-373). However, the inactive form (ox-2) possesses Cys-113–Cys-146 and Cys-118–Cys-121 disulfide bonds, which are not functional for intramolecular electron transfer. C121A/C146A mutant (HA GmRO1a) constitutively contains the shuttle disulfide bond.
GmERO1a oxidizes PDI family proteins asymmetrically

Previously, we have found that plant ERO1 has a broader substrate specificity than human and yeast ERO1, which preferentially oxidize PDI (10, 39). GmERO1a oxidizes five soybean PDI family proteins (at different rates): GmPDIL-1, GmPDIM, GmPDIS-1, GmPDIS-2, and GmPDIL7 (Fig. 6A, black bars).

Figure 5. Conversion of ox-2 GmERO1a to the ox-1 form by reduced PDI family proteins. A, GmERO1a (5 μM) was incubated with 2 μM reduced GmPDIL-1, GmPDIL-2, GmPDIM, GmPDIS-1, GmPDIS-2, or ΔTM GmPDIL7 in the presence of 10 mM GSH at 25 °C, then treated with N-ethylmaleimide, and subjected to nonreducing SDS-PAGE. Proteins were stained with Coomassie Brilliant Blue G-250. B–F, schematic representations of WT PDI family proteins and respective mutants are shown. Numbers in the designations of mutants indicate cysteine residues substituted with alanine residues. GmERO1a and each PDI family protein (circles) or respective domain (green triangles) or domain a’ (orange squares) active-center cysteine mutant was incubated and separated as described in A. The percentage of GmERO1a in the ox-1 form was calculated based on the ox-1 and ox-2 band intensities. Data are presented as the mean ± S.E. of n = 3 experiments.

Table 1
Amounts of PDI family proteins and GmERO1 in the immature soybean cotyledon

The intensities of the bands immunostained with antiserum against each PDI family proteins or GmERO1 were semi-quantified. Data are represented as mean ± S.E. of n = 3.

	GmPDIL-1	GmPDIL-2	GmPDIM	GmPDIS-1	GmPDIS-2	GmPDIL7	GmERO1a
nmol/g protein	160.1 ± 44.3	0.8 ± 0.1	6.9 ± 0.9	28.7 ± 5.5	6.2 ± 2.7	4.2 ± 0.4	1.2 ± 0.5
Molar ratio to GmERO1a	136.8	0.7	5.9	24.5	5.3	3.6	1.0
but not GmPDIL-2, which has a PDI-like domain organization identical to GmPDIL-1 and exhibits high oxidative refolding activity in the presence of GSH redox buffer (44). Such differences in rates of oxidation of PDI family proteins by GmERO1a likely reflect differences in the abilities of PDI family proteins to activate GmERO1a. To confirm this, we determined the oxidation rates of PDI family proteins by the C121A/C146A-hyperactive GmERO1a. The C121A/C146A-hyperactive GmERO1a oxidized GmPDIL-1, GmPDM, GmPDIS-1, GmPDIS-2, and GmPDIL7 at higher reaction rates than WT GmERO1a (Fig. 6A, white bars), but the relative rates for the different PDI proteins were similar to the pattern observed with WT GmERO1a. Also, like WT GmERO1a, C121A/C146A-hyperactive GmERO1a did not oxidize GmPDIL-2. For the human proteins, crystal structure and domain-swapping analyses demonstrated that replacement of PDI domain b1 with domain b1 of Erp57, which has a PDI-like domain organization but low reactivity with ERO1α, substantially altered the affinity and reactivity for ERO1α (17, 22, 45). Therefore, it was expected that the differences in rates of oxidation of PDI family proteins by activated GmERO1a were associated with differences in the affinity of GmERO1a for the various PDI family proteins. Accordingly, we examined the affinity of GmERO1a for soybean PDI family proteins using far-Western blot analysis with recombinant WT GmERO1a as the bait and each of the PDI family proteins as prey. GmERO1a bound to all of the PDI family proteins, including GmPDIL-2, but with different affinities (Fig. 6B). The rates of oxidation by GmERO1a and affinities for PDI family proteins

Figure 6. Substrate specificity of GmERO1a for PDI family proteins. A, oxidation of each PDI family protein by WT GmERO1a (black bars) or C121A/C146A-hyperactive mutant GmERO1a (HA) (white bars), determined as described in the legend for Fig. 4B. B, GmERO1a binds to PDI family proteins with different affinities. Far-Western blot analysis was performed with each PDI family protein as prey and GmERO1a as bait. Bound GmERO1a was detected using anti-GmERO1a serum. At the bottom lane (GmERO1a), 2.5, 1.7, 1.1, 0.74, 0.49, 0.32, or 0.22 pmol GmERO1a was dotted as a positive control. The amount of GmERO1a bound on each spot of PDI family proteins was calculated based on the dot intensities and GmERO1a standard dots using ImageJ software. All experiments were performed on the same nitrocellulose membrane. Value written in red below each dot indicates the amount (picomoles) of GmERO1a bound on each dot. C–F, relative ratio of maximum oxidation rates WT GmPDIL-1 (C), GmPDM (D), GmPDIS-1 (E), and GmPDIS-2 (F) and respective active-cysteine residue mutants by WT (solid bars) or HA GmERO1a (checkered bars). Numbers in the designations of mutants indicate cysteine residues substituted with alanine residues. The rates of oxidation of PDI family proteins were monitored as amount of NADPH consumed in the presence of 1 μM WT or HA GmERO1a and 3 μM of each PDI family protein or respective mutant in the presence of 3 mM GSH, 120 μM NADPH, and 1 unit/ml GSH reductase. Data are presented as the mean ± S.E. of n = 3 experiments.
Regulation of plant ERO1 activity

Table 2
Redox potential of PDI family proteins and their active centers

Protein	GmPDIL-1	GmPDIL-2*	GmPDIM*	GmPDIS-1	GmPDIS-2	GmPDIL7*
E_o (mV)	-173.8±1.3	-166.9±1.3	-160.3±0.7	-172.8±0.5	-162.6±3.1	-187.40±2.8
WT	a	a’				
a	-171.4±5.1	-169.3±5.4	-146.7±4.9	-188.1±11.3	-177.2±6.9	
a’	-177.9±1.9	-163.4±3.5	-166.0±7.1	-184.2±6.8	-170.2±5.8	

* Data are from Ref. 10.
* Data are from Ref. 39.

showed poor correlation, with exception of GmPDIL7, which was found to be a superior substrate of GmERO1a, but exhibited very weak affinity for GmERO1a.

Human ERO1α/β oxidizes domain a’ of human PDI more preferentially than it oxidizes domain a (13, 15). This asymmetric oxidation of PDI domains is thought to be related to the opposing functional roles of domains a and a’ as a disulfide isomerase and disulfide oxidase, respectively. We determined the rates of oxidation of the active-cysteine mutants of PDI family proteins by WT and C121A/C146A-hyperactive GmERO1a. Both GmPDIL-1 (C418A/C421A) and GmPDIL-1 (C73A/C76A) were oxidized at almost the same rate (Fig. 6C), suggesting that GmERO1a oxidizes both domains a and a’ of GmPDIL-1. However, domain oxidation of GmPDIM, GmPDIL-1, and GmPDIL-2 was asymmetric. GmERO1a oxidized GmPDIM (C64A/C67A) much more effectively than it oxidized GmPDIM (C192A/C195A) (Fig. 6D), indicating that domain a’ is more readily oxidized than domain a. In contrast to GmPDIM, domain a of GmPDIL-1 and GmPDIS-2 was preferred by GmERO1a because GmERO1a oxidized GmPDIL-1 (C176A/C179A) and GmPDIL-2 (C175A/C178A) much more effectively than GmPDIL-1 (C57A/C60A) and GmPDIS-2 (C56A/C59A) (Fig. 6, E and F). GmPDIL-1 (C176A/C179A) and WT GmPDIL-1 and GmPDIS-2 were oxidized by GmERO1a at almost the same rate. GmPDIM (C64A/C67A) was oxidized more slowly than WT GmPDIM, suggesting that the active center of domain a of GmPDIM plays an important role for oxidation of domain a’.

In human PDI, the redox reaction is affected by differences in the reduction potential E_o of the active-center disulfides (15, 46). However, there was no significant difference in the E_o values of soybean PDI family protein-active centers (Table 2). The domain specificity of GmERO1a is therefore probably associated with the interactions between the various PDI family proteins and GmERO1a.

Loss of regulation of GmERO1a diminishes the effectiveness of oxidative folding catalyzed by PDI family proteins

Maintenance of the appropriate redox status in the active centers of PDI family proteins is critical for effective oxidative folding of unfolded proteins. Feedback regulation of ERO1 activity is thought to play a critical role in the maintenance of proper redox status (24). We therefore examined the PDI-catalyzed oxidative folding of RNase A as a model substrate in the presence of C121A/C146A-hyperactive GmERO1a lacking feedback regulation activity. The maximum oxidative refolding rate of RNase A by GmPDIL-1 in the presence of C121A/C146A-hyperactive GmERO1a increased to 1.7 times the rate observed in the presence of WT GmERO1a (Fig. 7A). GmPDIL-2, which is not oxidized by GmERO1a, could not mediate the refolding of RNase A. The refolding activities of GmPDIM, GmPDIL-1, GmPDIS-2, and GmPDIL-7 were significantly lower than that of GmPDIL-1 in the presence of WT GmERO1a. As the rates at which GmERO1a oxidized GmPDIL-1, GmPDIS-2, GmPDIM, and GmPDIL-7 were equal to or higher than that of GmPDIL-1 (Fig. 5A), and the very low refolding activities of these PDI family proteins in the presence of GmERO1a are likely associated with their low activities in terms of isomerizing disulfide bonds into the native configuration. Other noteworthy results were also obtained in the presence of C121A/C146A-hyperactive GmERO1a. Minimal oxidative refolding of RNase A catalyzed by GmPDIS-1 and GmPDIL-2 was detected in the presence of C121A/C146A-hyperactive GmERO1a (Fig. 7A).

We then sought the cause of the lower activities of some PDI family proteins, such as GmPDIS-1, in the presence of the C121A/C146A-hyperactive GmERO1a. Oxidative refolding of unfolded proteins is generally thought to proceed via a two-step process, consisting of the introduction of nonnative disulfide bonds in the substrate followed by isomerization of the disulfide bonds to restore the native conformation. To identify the rate-determining step in the oxidative refolding by PDI family proteins, we used nonreducing SDS-PAGE to analyze the folding intermediates. These experiments focused on GmPDIL-1 and GmPDIS-1, because GmPDIL-1 is the plant ortholog of PDI, and immunoprecipitation experiments revealed that GmPDIL-1 associates with GmPDIS-1 in the ER and in vitro (Fig. 5A). Incubation of denatured and reduced RNase A and GmPDIL-1 for various times in the presence of WT GmERO1a resulted in the oxidation of most RNase A molecules to form an intermediate with nonnative disulfide bonds, leading to the appearance of a weakly-staining band at the same position as native RNase A within 5 min (Fig. 7B). With incubation between 10 and 20 min, this band increased in intensity, with an accompanying decrease in that of the intermediates. As 80% of the RNase activity was recovered within 10 min (Fig. 5A), the band migrating at the same position as native RNase A was identified as refolded RNase A. In the presence of C121A/C146A-hyperactive GmERO1a, a clearly distinguishable native RNase A band appeared within 5 min (Fig. 5A), and most RNase A molecules were folded by 10 min (Fig. 5A), indicating that the more rapid oxidation of GmPDIL-1 by C121A/C146A-hyperactive GmERO1a accelerated the overall oxidative folding of RNase A. The C418A/C421A and C73A/C76A active-center cysteine mutants also refolded RNase A in the presence of
GmERO1α (Fig. S4, A and B), suggesting that the active centers in domains α and α’ are capable of catalyzing the refolding of RNase A using oxidation equivalents supplied by both WT and C121A/C146A-hyperactive GmERO1α. These results suggest that the first-step reaction (introduction of nonnative disulfide bonds) is the rate-limiting step in the overall oxidative folding process catalyzed by GmPDIL-1 (Fig. 7C). The ability of GmPDIL-1 to isomerize disulfide bonds into their native conformation is very strong. Even in the presence of 10 mM C121A/C146A-hyperactive GmERO1α against GmPDIL-1, the rate of RNase A refolding catalyzed by GmPDIL-1 remained constant, although the lag time before the commencement of RNase A refolding declined (Fig. S5B).

GmPDIS-1 introduced nonnative disulfide bonds in all RNase A molecules within 5 min; by 5–10 min, oxidized intermediates and a few native RNase A molecules were generated (Fig. 7D). In the presence of C121A/C146A-hyperactive GmERO1α, nonnative disulfide bonds were introduced in all RNase A molecules within 5 min. After 10 min, the RNase A migrated as a single band immediately above that of native RNase A. As no recovery of RNase A activity was detected in the reaction consisting of GmPDIS-1 in the presence of C121A/C146A-hyperactive GmERO1α (Fig. 7A and S4C), the band migrating immediately above native RNase A was determined to represent dead-end products containing nonnative disulfide bonds. In contrast to the case of GmPDIL-1, these results suggest that the second-step reaction (isomerization of disulfide bonds into the native conformation) is the rate-limiting step in the oxidative folding process catalyzed by GmPDIS-1 (Fig. 7E). Continuous oxidation of GmPDIS-1 by nonregulated GmERO1α results in the introduction of nonnative disulfide bonds in the substrate that cannot be isomerized into the native conformation by GmPDIS-1, resulting in the accumulation of dead-end products. These data indicate that the feedback regulation of GmERO1α plays an important role in oxidative folding catalyzed by PDI family proteins such as GmPDIS-1.

Because GmPDIL-1 and GmPDIS-1 associate in the ER, we examined the impact of dysregulation of GmERO1α-associated cooperative refolding with GmPDIL-1 and GmPDIS-1. At low molar ratios of C121A/C146A-hyperactive GmERO1α to GmPDIL-1 and RNase A (0.02 to 1 and 8 μM), the maximum oxidative folding rate of RNase A increased with the addition of GmPDIS-1 in a GmPDIS-1 concentration-dependent manner.
Regulation of plant ERO1 activity

(Fig. 7F). The effect of GmPDIS-1 addition was synergistic, suggesting that GmPDIS-1 compensates for the insufficient formation of nonnative disulfide bonds in RNase A by GmPDIL-1. However, at high molar ratios of C121A/C146A-hyperactive GmERO1a to GmPDIL-1 and RNase A (3 to 1 and 8 μM), adding GmPDIS-1 inhibited oxidative refolding (Fig. 7G). In the presence of WT GmERO1a, by contrast, the addition of GmPDIS-1 accelerated oxidative refolding at both low and high molar ratios of WT GmERO1a to GmPDIL-1 and RNase A (Fig. 7, H and I).

Discussion

In this study, we demonstrated that the activity of plant ERO1 (GmERO1a) is regulated by the reduction and/or exchange of disulfide bonds involving residues Cys-121 and Cys-146. The location of these cysteine residues in GmERO1a is similar to that of the regulatory cysteines (Cys-104 and Cys-131) in human ERO1α, near the shuttle cysteine pair. Analyses of the crystal structures of constitutively active and inactive human ERO1α mutants revealed that the regulatory cysteines are located within an intrinsically flexible loop exhibiting electron shuttle activity that is finely tuned by intra-loop disulfide-bond rearrangement (22). As the VUVCD–NN method predicted that Cys-146 of GmERO1a is located in the intrinsically flexible loop, GmERO1a activity could be regulated in a manner similar to human ERO1α. The additional Cys-208–Cys-241 disulfide bond in human ERO1α functions to “clamp” the two helices that seal the flavin cofactor FAD. The a′-active center of PDI unclamps this seal by forming a Cys-208– and Cys-241–dependent mixed-disulfide complex with ERO1α to facilitate entry of O2 molecules into the flavoprotein-active center (28, 47). In GmERO1a, Cys-217 and Cys-226 are located in positions similar to Cys-208 and Cys-241 of human ERO1α. Indeed, a brief but nonnegligible lag phase in the GmPDIL-1–catalyzed oxidative folding of RNase A was observed in the presence of the C121A/C146A-hyperactive GmERO1a, suggesting the presence of a regulation mechanism that does not involve Cys-121/Cys-146. We also found that substitution of Cys-123 with an Ala residue diminished the oxidation activity of GmERO1a and prolonged the lag phase until the oxidation rate reached a maximum. Moilanen et al. (30) identified a third regulatory disulfide bond involving human ERO1α Cys-166 and ERO1β Cys-165, which forms a mixed–disulfide-linked complex with the a′-active center cysteine of PDI in the inactive state. Substitution of ERO1α Cys-166 or ERO1β Cys-165 with an Ala residue reportedly causes activity of human ERO1α to decline over the course of the assay, with a concomitant shortening of the lag phase (i.e. enhancement of the activation rate). As the Cys-123 mutation in C121A/C146A-hyperactive GmERO1a had no effect on either activity or activation rate, this suggests that Cys-123 stabilizes the active form of WT GmERO1a.

Analyses of the interactions between GmERO1α and PDI family proteins revealed that PDI family proteins also regulate GmERO1α. However, GmPDIL-2 (which is not a substrate of GmERO1α) did not regulate GmERO1α, in contrast to the observation that human PDI family proteins, which are not good substrates of ERO1α, function as potent regulators of ERO1α/β (41). Furthermore, the activity of GmPDIL-1, GmP-DIM, GmPDIS-1, GmPDIS-2, and GmPDIL7 as regulators of GmERO1α differed. The specific characteristics of PDI family proteins that lead to differential activation of GmERO1α may be necessary to elicit the oxidative folding enzymatic activity of each PDI family protein.

GmERO1α oxidizes both the a and a′ domains of GmPDIL-1. GmERO1α also preferentially oxidizes the C-terminal a′ domain of GmPDIM and the N-terminal a domains of GmPDIS-1 and GmPDIS-2. This broad specificity and the differences in domain preference of GmERO1α for PDI family proteins appear to be important in the intra- and intermolecular relay of electrons between GmERO1α, the PDI family protein, and the substrate during oxidative folding, although the underlying structural details remain unclear. We previously found that GmPDIS-2 and GmPDIM associate in the ER and that GmPDIL-2 synergistically accelerates oxidative refolding in vitro using oxidizing equivalents obtained by GmPDIM from GmERO1α (10). In this process, a disulfide bond introduced in the active center of domain a′ of GmPDIM by GmERO1α is transferred to the active center of the GmPDIM domain a and both domains a and a′ of GmPDIL-2. In this study, we demonstrated that GmPDIS-1 associates with GmPDIL-1 in the ER and accelerates oxidative refolding catalyzed by GmPDIL-1 in such a way as to compensate for the lack of disulfide bonds.

In this study, we showed that plant PDI family proteins are categorized into two groups based on the rate-limiting enzymatic activity (e.g. formation of nonnative disulfide bonds in the substrate protein or isomerization of disulfide bonds into the native conformation). Formation of nonnative disulfide bonds in the substrate protein is the rate-limiting activity of group I PDI family proteins (GmPDIL-1 and GmPDIL-2), whereas isomerization of disulfide bonds into the native conformation is the rate-limiting activity of group II PDI family proteins (GmPDIM, GmPDIS-1, GmPDIS-2, and GmPDIL7). Our folding experiments involving the C121A/C146A-hyperactive mutant GmERO1α indicated that dead-end products containing non-native disulfide bonds that cannot be isomerized to the native conformation are generated by group II PDI family proteins. The generation of these dead-end products is prevented by feedback regulation of GmERO1α activity. The rapid generation of a supply of oxidizing equivalents by C121A/C146A-hyperactive GmERO1α was found to accelerate the rate of oxidative folding by the group I PDI family protein GmPDIL-1. In addition, the rate of oxidative folding catalyzed by GmPDIL-1 was increased by interaction with GmPDIS-1, which associates with GmPDIL-1 in the presence of WT GmERO1α or C121A/ C146A-hyperactive GmERO1α at a molar ratio similar to that occurring in vivo. However, levels of C121A/C146A-hyperactive GmERO1α above this threshold inhibit synergistic folding catalyzed by GmPDIL-1 and GmPDIS-1, demonstrating the importance of feedback regulation of GmERO1α for group II PDI family proteins. These data also importantly suggest that GmPDIL-1 can activate GmERO1α and the increase supply of oxidizing equivalents via GmPDIS-1 as required in vivo by feedback. Decreased activation of GmERO1α by GmPDIL-1 and GmPDIS-2 probably prevents excessive oxidation of their active-center cysteines by GmERO1α.
In eukaryotes, the PDI/ER01 system is a major supplier of disulfides necessary for the oxidative folding of nascent proteins in the ER. In humans, electron transfer between PDI family proteins occurs in a hierarchical cascade from PDI, the main substrate of Ero1\(^{13}\). Here, we demonstrated that plant ERO1 (GmERO1a) has broad substrate specificity, and can oxidize not only the PDI ortholog (GmPDIL-1), but also other PDI family proteins (GmPDIM, GmPDIS-1, GmPDIS-2, and GmPDIL7). These findings suggest that, in the plant system, the electron transfer network of the ERO1/PDI family proteins is distinct from the human system. The oxidation power of this system is taken from O\(_2\) by ERO1, resulting in the generation of H\(_2\)O\(_2\), which is highly toxic to the cells. Regulation of ERO1 activity is thus thought to be necessary to protect cells from excessive H\(_2\)O\(_2\) generation (48–50). In this study, we demonstrated that the presence of an unregulated supply of disulfide bonds by hyperactive ERO1 leads to inhibition of folding. This implies that feedback regulation of ERO1 plays important roles not only in regulating the redox status of the active center of PDI family proteins, especially group II PDI proteins, but also in protection from H\(_2\)O\(_2\) generation. In addition, we showed that the concentration ratio between PDI family members and ERO1 is important for efficient oxidative protein folding. Fig. 8 provides a framework for understanding oxidative protein folding in the ER of plants, at different abundance ratios of ERO1 to PDI family proteins, and for either WT or hyperactive ERO1. At a proper molar ratio of WT ERO1 to PDI family proteins, oxidized PDI family proteins introduce disulfide bonds in unfolded protein (D\(_{\text{red}}\)) producing denatured protein with nonnative disulfide bonds (D\(_{\text{ox}}\)), and reduced PDI family proteins rearrange the disulfide bonds to the native ones (N) (Fig. 8A). However, when a molar ratio of WT ERO1 to PDI family proteins is improperly high, too many disulfide bonds beyond the isomerization capacity of PDI family proteins are supplied by ERO1, resulting in part of D\(_{\text{red}}\) becoming denatured proteins with dead-end disulfides (D\(_{\text{end}}\)) (Fig. 8B). At a proper molar ratio of hyperactive ERO1 to PDI family proteins, many disulfide bonds within the limit of isomerization capacity of PDI family proteins are supplied by hyperactive ERO1 to D\(_{\text{red}}\), resulting in D\(_{\text{red}}\) becoming N effectively. However, at an improperly high molar ratio of hyperactive ERO1 to PDI family proteins, too many disulfide bonds are supplied by hyperactive ERO1, resulting in most of D\(_{\text{red}}\) becoming D\(_{\text{end}}\) (Fig. 8D). The properties of plant PDI family proteins and the regulation of plant ERO1 revealed in this work should be useful for understanding oxidative protein folding in other eukaryotes as well.

Figure 8. Model of oxidative protein folding by the multiple PDI family proteins/ERO1 system in plants. A, oxidative protein folding at a proper molar ratio of WT ERO1 to PDI family proteins. Oxidized PDI family proteins introduce disulfide bonds in unfolded protein (D\(_{\text{red}}\)), and reduced PDI family proteins rearrange the disulfide bonds to the native ones, producing correctly folded native protein (N). Reduced PDI family proteins convert inactive ERO1 (ox-2) to the active form (ox-1). B, oxidative protein folding at an improperly high molar ratio of WT ERO1 to PDI family proteins. Oxidized PDI family proteins introduce disulfide bonds in D\(_{\text{red}}\), and reduced PDI family proteins produce N. However, too many disulfide bonds beyond isomerization capacity of PDI family proteins are supplied by ERO1, resulting in part of D\(_{\text{red}}\) becoming denatured proteins with dead-end disulfides (D\(_{\text{end}}\)). C, oxidative protein folding at a proper molar ratio of hyperactive ERO1 to PDI family proteins. Many disulfide bonds within the limit of isomerization capacity of PDI family proteins are supplied by hyperactive ERO1 to D\(_{\text{red}}\), resulting in D\(_{\text{red}}\) becoming N effectively. D, oxidative protein folding at an improperly high molar ratio of hyperactive ERO1 to PDI family proteins. Too many disulfide bonds are supplied by hyperactive ERO1, resulting in most of D\(_{\text{red}}\) becoming D\(_{\text{end}}\). The number of copies of boxes are reflecting the relative concentration of the proteins.
Expression containing 0.5 mM isopropyl
SDS-PAGE sample buffer containing 1 mM 4
the indicated times, reactions were quenched by addition of
ence of 0.5 mM isopropyl
Expression of recombinant proteins was induced in the pres-
GmERO1a and its cysteine mutants) or without (GST–PDI
Bio, Inc.) were used for the expression of recombinant proteins.
Cultivation of soybean cells
staining kit (Wako Co.)
separated on 15% polyacrylamide gels and stained with a silver-
and incubated for 2 h at 37° C. After quenching, samples were
SDS-PAGE sample buffer containing 25 mM
G-250. GmERO1a redox status was quenched by addition of
acrylamide gels and stained with Coomassie Brilliant Blue
100
J. Biol. Chem.

DIS-1, GST–GmPDIS-2, and GST–GmPDIL-7 were expressed
GmPDIL-1, GST–GmPDIL-2, GST–GmPDIM, GST–GmP-
reactions were amplified by PCR using the primers listed in Table S2 and then
constructed as follows. The appropriate DNA fragments were
subcloned into the pGEX6p-2 vector (GE Healthcare). BL21
(DE3) cells (Takara Bio, Inc.) transformed with (GST–GmERO1a and its cysteine mutants) or without (GST–PDI
family proteins and respective cysteine mutants) pTF16 (Takara
Bio, Inc.) were used for the expression of recombinant proteins. Expression of recombinant proteins was induced in the presence
of 0.5 mM isopropyl β-d-thiogalactopyranoside, extracted by sonication, and purified by GSH–Sepharose 4B column chromatography (GE Healthcare) followed by digestion with PreScission protease (GE Healthcare) and further purification by TSK gel G3000SW column chromatography (Tosoh Co., Ltd.). Purified GmERO1a and respective mutants were incubated in Laemmli’s SDS-loading buffer (38) with and without reducing reagent containing 25 mM N-ethylmaleimide at 37 °C for 2 h and then subjected to nonreducing SDS-PAGE. Proteins were stained with Coomassie Brilliant Blue G-250. For expression and purification of Trx1, an expression vector for Trx1 was constructed as follows. The cDNA was amplified from total RNA extracted from E. coli (TOP-10F) (Invitrogen) using the RT-PCR primers shown in Table S2. The vector was then subcloned into the pET-46 Ek/LIC expression vector (Novagen). Expression of recombinant Trx1 was induced in LB medium containing 0.5 mM isopropyl β-d-thiogalactopyranoside and 100 μg/ml ampicillin at 37 °C for 3 h. Recombinant Trx1 was purified using nickel-nitrilotriacetic acid chromatography (Invitrogen) followed by gel-filtration chromatography on a TSK gel G3000SW column (Tosoh).

Trx1 oxidation assays
Recombinant Trx1 was reduced using DTT and desalted using a Zeba Spin Desalting column (Thermo Fisher Scientific). Reactions with Trx1 were initiated by adding 1 μM GmERO1a to 50 μM reduced Trx1 in 50 mM Tris-HCl (pH 7.5) at 25 °C. At the indicated times, reactions were quenched by addition of SDS-PAGE sample buffer containing 1 mM 4′-acetamido-4′-
maleimidylstilbene-2,2′-disulfonic acid and incubated for 2 h at 37 °C. After quenching, samples were separated on 15% polyacrylamide gels and stained with Coomassie Brilliant Blue G-250. GmERO1a redox status was quenched by addition of SDS-PAGE sample buffer containing 25 mM N-ethylmaleimide and incubated for 2 h at 37 °C. After quenching, samples were separated on 15% polyacrylamide gels and stained with a silver-staining kit (Wako Co.)

Cultivation of soybean cells
Soybean DG330 (rpc00051) cells were provided by RIKEN BioResource Center which is participating in the National Bio-
Resource Project of the MEXT, Japan (53). Cells were cultured, propagated, and passaged in a 200-ml Erlenmeyer flask containing 80 ml of 0.25% gellan gum-solidified Murashige and Skoog medium at 25 °C under 5000 1× continuous light.

VUVCD spectroscopy
The VUVCD measurements of GmER01a and its cysteine
mutants were measured over the wavelength range of 172–260 nm by the VUVCD spectrophotometer at the Hiroshima Syn-
chrotron Radiation Center (HISOR) (54). Details regarding the optical and electronic setup of this spectrophotometer are described elsewhere (54, 55). Calibration of the ellipticity amplitude and wavelength position was confirmed by monitoring the CD spectra of an aqueous solution of ammonium d-camphor-10-sulfonate. The spectra were recorded with a 1.0-mm slit using a 4-s time constant and 20 nm/min scan speed, and final spectra were obtained by averaging eight accumu-
lations and subtracting signals associated with the buffer solution. The secondary structure contents and numbers of segments of GmER01a and its cysteine mutants were estimated by the SELCON3 program (56) with the VUVCD spectra and secondary structure dataset of 31 reference proteins (57, 58). The positions of the secondary structures on the amino acid sequences of GmER01a and its mutants were predicted by combining VUVCD analysis with the NN algorithm. This combination method was detailed previously (54, 59).

GmER01a mutant oxidation activity assays
Oxidation activity was assessed using a coupled assay follow-
ing the decrease in absorbance at 340 nm due to the consump-
tion of NADPH (Oriental Yeast Co., Ltd.) by GSH reductase (Sigma), as described previously (10, 35, 60). A molar extinction coefficient for NADPH of 6,200 M⁻¹ cm⁻¹ was used for calculations. GmER01a (or respective mutant) (1 μM) was incubated with each recombinant PDI family protein (3 μM) in 100 mM HEPES buffer (pH 7.5) containing 2 mM CaCl₂, 150 mM NaCl, 3 mM GSH, 120 μM NADPH, and 1 unit/ml GSH reductase (Sigma) at 25 °C.

Far-Western blot analysis
Far-Western blot analyses were carried out as described pre-
viously (10). Briefly, purified recombinant PDI family protein and BSA (as prey proteins) were spotted onto a nitrocellulose membrane (GenScript Biotech Corp.). The membrane was blocked with 20 mM Tris-HCl (pH 8) containing 150 mM NaCl, 0.05% Tween 20, and 5% nonfat dry milk (blocking solution) at 4 °C for 16 h and incubated in 0.2 μM GmER01a as bait protein in blocking solution without nonfat dry milk (TBST) for 3 h at 4 °C. The membrane was incubated with anti-GmER01a antiserum (10) and then horseradish peroxidase-conjugated anti-guinea pig IgG as the secondary antibody (Promega Corp.) diluted with blocking solution as the secondary antibody. Blots were washed four times with TBST for 20 min/wash and de-
veloped using Western Lightning chemiluminescence reagent (PerkinElmer Life Sciences).

Determination of the redox state of GmER01a reacting with PDI family proteins
Recombinant PDI family proteins and respective mutants were reduced using DTT and desalted using Zeba Spin Desalt-
ing columns (Thermo Fisher Scientific). GmERO1a (5 \mu M) was incubated with 2 \mu M each reduced PDI family protein and 10 mM GSH in 50 mM Tris-HCl buffer (pH 7.5) at 25 °C. At the indicated times, reactions were quenched for 2 h at 37 °C by addition of Laemmli’s SDS-loading buffer containing 25 mM N-ethylmaleimide. Proteins were separated on 10% polyacrylamide gels under nonreducing conditions and stained with Coomassie Brilliant Blue G-250. Staining intensity for each band was quantified using ImageJ software (National Institutes of Health).

Quantitative Western blot analysis

Soymban (Glycine max (L.) Merrill cv. Jack) seeds were planted in 5-liter pots and grown in a controlled-environment chamber at 25 °C under 16-h day/8-h night cycles. Seeds (230 mg) were collected from soybean plants, and the cotyledons were then isolated. Tissues were frozen in liquid nitrogen and then ground with a micro-pestle SK-100 (Tokken). Proteins were extracted by boiling for 5 min in Laemmli’s SDS-loading buffer containing a 1% mixture of protease inhibitors (Sigma). The protein concentration in the samples was measured using an RC/DC protein assay kit (Bio-Rad). Extracted proteins were separated along with known amounts of recombinant PDI family proteins and GmERO1 on the same gel by SDS-PAGE and then blotted onto polyvinylidene difluoride membranes (Bio-Rad). The blotted proteins were then immunostained using specific rabbit or guinea pig antiserum as primary antibodies and horseradish peroxidase-conjugated anti-rabbit IgG (Santa Cruz Biotechnology, Inc.) or anti-guinea pig IgG as the secondary antibody. Signals were visualized using Western Lightning Plus-ECL Enhanced Chemiluminescence Substrate (PerkinElmer Life Sciences) and an Image Quant LAS4010 imager (GE Healthcare). The amount of each protein was calculated based on the intensities of the sample and corresponding recombinant protein standard bands using ImageJ software.

Determination of redox equilibrium constants of PDI family proteins

Redox equilibrium constants of PDI family proteins and their active-center mutants (GmPDIL-1: C418A/C421A and C73A/C76A; GmPDIL-2: C175A/C178A) were determined with WT proteins as positive controls. The percent protein expression was calculated based on the intensities of the sample and corresponding recombinant protein standard bands using ImageJ software. The activity of the oxidized protein was determined with the addition of Laemmli’s SDS-loading buffer containing 25 mM -ethylmaleimide. Proteins were separated on 10% polyacrylamide gel without reducing reagent. Proteins were detected by Coomassie Blue G-250. Staining intensity for each band was quantified using ImageJ software (National Institutes of Health).

RNase A refolding assays

Thiol oxidative refolding activity was assayed as described previously (61, 62). Briefly, each reaction mixture contained 100 mM HEPES buffer (pH 7.5), 150 mM NaCl, 2 mM CaCl₂, GmERO1a, 2 mM cCMP, reduced and denatured RNase A, and recombinant PDI family proteins and respective mutants. The mixtures were incubated at 25 °C, and the formation of active RNase A was assessed spectrophotometrically by monitoring the hydrolysis of the RNase A substrate cCMP at 296 nm.

Gel-based RNase A refolding experiments

Analyses were carried out as described previously (10). In brief, the refolding reactions were performed by the addition of 1 \mu M GmERO1a or C121A/C146A-hyperactive GmERO1a in 100 mM HEPES buffer (pH 7.5), 150 mM NaCl, 2 mM CaCl₂, and 3 \mu M recombinant PDI family proteins and respective mutants along with 8 \mu M denatured and reduced RNase A. At the indicated time points, free thiols were blocked by the addition of Laemmli’s SDS-loading buffer containing 8 mM 4-acetamido-4-maleimidylstilbene-2,2-disulfonic acid. Proteins were then separated by SDS-PAGE on a 15% polyacrylamide gel without reducing reagent. Proteins were detected by Coomassie Blue staining.

Statistical analysis

All data are shown as the mean ± S.E. of at least three replicates. Welch’s t test (two-tailed, unpaired) or the Tukey-Kramer test was used for comparison of data from more than three experiments.

Author contributions—M. M. and R. U. conceptualization; M. M., A. O., K. M., K. G., and R. U. project administration; M. M., A. O., K. M., K. G., Y. N., A. H., K. K., Y. T., and R. U. writing-original draft; M. M. and R. U. supervision; M. M., A. O., and R. U. formal analysis; M. M. and R. U. supervision; M. M., A. O., and R. U. funding acquisition; M. M., A. O., K. M., K. G., Y. N., K. K., Y. T., and R. U. formal analysis; M. M. and R. U. supervision; M. M., A. O., and R. U. formal analysis; M. M. and R. U. supervision; M. M., A. O., K. M., K. G., Y. N., K. K., Y. T., and R. U. validation; M. M., A. O., K. M., K. G., Y. N., A. H., K. K., Y. T., and R. U. investigation; M. M., A. O., K. M., K. G., Y. N., A. H., K. K., Y. T., and R. U. visualization; M. M., A. O., K. M., K. G., T. M., Y. N., A. H., K. K., Y. T., and R. U. methodology; M. M., A. O., K. M., K. G., Y. N., A. H., K. K., Y. T., and R. U. writing-original draft; M. M. and R. U. project administration; M. M., A. O., K. M., K. G., and R. U. writing-review and editing.

References

1. Ellgaard, L., and Ruddock, L. W. (2005) The human protein-disulphide isomerase family: substrate interactions and functional properties. EMBO Rep. 6, 28–32 CrossRef Medline
2. Kozlov, G., Määttänen, P., Thomas, D. Y., and Gehring, K. (2010) A structural overview of the PDI family of proteins. FEBS J. 277, 3924–3936 CrossRef Medline
3. Wallis, A. K., and Freedman, R. B. (2013) Assisting oxidative protein folding: how do protein disulphide-isomerases couple conformational and structural overview of the PDI family of proteins.

J. Biol. Chem. (2019) 294(49) 18820–18835 18833
Regulation of plant ERO1 activity

20. Tu, B. P., and Weissman, J. S. (2002) The FAD- and O2-dependent reaction cycle of Ero1-mediated oxidative protein folding in the endoplasmic reticulum. *Mol. Cell* 10, 983–994 CrossRef Medline

21. Tu, B. P., Ho-Schleyer, S. C., Travers, K. J., and Weissman, J. S. (2000) Biochemical basis of oxidative protein folding in the endoplasmic reticulum. *Science* 290, 1571–1574 CrossRef Medline

22. Inaba, K., Masui, S., Iida, H., Vavassori, S., Sitia, R., and Suzuki, M. (2010) Crystal structures of human Ero1α reveal the mechanisms of regulated and targeted oxidation of PDI. *EMBO J.* 29, 3330–3343 CrossRef Medline

23. Tavender, T. J., and Bulleid, N. J. (2010) Molecular mechanisms regulating oxidative activity of the Ero1 family in the endoplasmic reticulum. *Antioxid. Redox Signal.* 13, 1177–1187 CrossRef Medline

24. Sevier, C. S., Qu, H., Heldman, N., Gross, E., Fass, D., and Kaiser, C. A. (2007) Modulation of cellular disulfide-bond formation and the ER redox environment by feedback regulation of Ero1. *Cell 129*, 333–344 CrossRef Medline

25. Ponsiero, A. J., Igbaria, A., Darch, M. A., Miled, S., Outten, C. E., Winther, J. R., Palais, G., D’Auteuil, B., Delaunay-Moisan, A., and Toledano, M. B. (2017) Endoplasmic reticulum transport of glutathione by Sec61 is regulated by Ero1 and Bip. *Mol. Cell* 67, 962–973.e5 CrossRef Medline

26. Appenzeller-Herzog, C., Riemer, J., Christensen, B., Sørensen, E. S., and Ellgaard, L. (2008) A novel disulfide switch mechanism in Ero1α balances ER oxidation in human cells. *EMBO J.* 27, 2977–2987 CrossRef Medline

27. Wang, L., Zhu, L., and Wang, C.-C. (2011) The endoplasmic reticulum sulfhydryl oxidase Ero1β drives efficient oxidative protein folding with loose regulation. *Biochem. J.* 434, 113–121 CrossRef Medline

28. Ramming, T., Okumura, M., Kanemura, S., Baday, S., Birk, J., Moe, S., Spiess, M., Jenö, P., Berneche, S., Inaba, K., and Appenzeller-Herzog, C. (2015) A PDI-catalyzed thiol–disulfide switch regulates the production of hydrogen peroxide by human ERO1. *Free Radic. Biol. Med.* 83, 361–372 CrossRef Medline

29. Kim, S., Sideris, D. P., Sevier, C. S., and Kaiser, C. A. (2012) Balanced Ero1 activation and inactivation establishes ER redox homeostasis. *J. Cell Biol.* 196, 713–725 CrossRef Medline

30. Moilanen, A., Korhonen, K., Saaranen, M. J., and Ruddock, L. W. (2018) Molecular analysis of human Ero1 reveals novel regulatory mechanisms for oxidative protein folding. *Life Sci. Alliance* 1, e201800090 CrossRef Medline

31. Zito, E., Melo, E. P., Yang, Y., Wahlander, Å., Neubert, T. A., Ron, D. (2010) Oxidative protein folding by an endoplasmic reticulum-localized peroxiredoxin. *Mol. Cell* 40, 787–797 CrossRef Medline

32. Tavender, T. J., Springate, J. J., and Bulleid, N. J. (2010) Recycling of peroxiredoxin IV provides a novel pathway for disulfide formation in the endoplasmic reticulum. *EMBO J.* 29, 4185–4197 CrossRef Medline

33. Konno, T., Pinho Melo, E., Lopes, C., Mehmeti, I., Lenzen, S., Ron, D., and Avezov, E. (2015) ERO1-independent production of H2O2 within the endoplasmic reticulum fuels Prdx4-mediated oxidative protein folding. *J. Cell Biol.* 211, 253–259 CrossRef Medline

34. Kojima, R., Okumura, M., Masui, S., Kanemura, S., Inoue, M., Saiki, M., Yamaguchi, H., Hikima, T., Suzuki, M., Akiyama, S., and Inaba, K. (2014) Radically different thioredoxin domain arrangement of ERp46, an efficient disulfide bond introducer of the mammalian PDI family. *Structure* 22, 431–443 CrossRef Medline

35. Nguyen, V. D., Saaranen, M. J., Karala, A. R., Lappi, A. K., Wang, L., Raykhel, I. B., Alanen, H. I., Salo, K. E., Wang, C. C., and Ruddock, L. W. (2011) Two endoplasmic reticulum PDI peroxidoxins increase the efficiency of the use of peroxide during disulfide bond formation. *J. Mol. Biol.* 406, 503–515 CrossRef Medline

36. Rutkевич, L. A., and Williams, D. B. (2012) Vitamin K epoxide reductase contributes to protein disulfide formation and redox homeostasis within the endoplasmic reticulum. *Mol. Biol. Cell* 23, 2017–2027 CrossRef Medline

37. Attacha, S., Solbach, D., Bela, K., Moseler, A., Wagner, S., Schwarzländer, M., Aller, I., Müller, S. L., and Meyer, A. J. (2017) Glutathione peroxidase-like enzymes cover five distinct cell compartments and membrane surfaces in *Arabidopsis thaliana*. *Plant Cell Environ.* 40, 1281–1295 CrossRef Medline

38. Laemmli, U. K. (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. *Nature* 227, 680–685 CrossRef Medline

39. Okuda, A., Matsusaki, M., Masuda, T., and Urade, R. (2017) Identification and characterization of GmPDIL7, a soybean ER membrane-bound protein-disulfide isomerase family protein. *FEBS J.* 284, 414–428 CrossRef Medline
40. Niu, Y., Zhang, L., Ju, J., Wang, C. C., and Wang, L. (2016) Novel roles of the non-catalytic elements of yeast protein-disulfide isomerase in its interplay with endoplasmic reticulum oxidoreductin I. J. Biol. Chem. 291, 8283–8294 CrossRef Medline
41. Zhang, L., Niu, Y., Zhu, L., Fang, J., Wang, X., Wang, L., and Wang, C. C. (2014) Different interaction modes for protein-disulfide isomerase (PDI) as an efficient regulator and a specific substrate of endoplasmic reticulum oxidoreductin-1a (Ero1α). J. Biol. Chem. 289, 31188–31199 CrossRef Medline
42. Oka, O. B., Yeoh, H. Y., and Bulleid, N. J. (2015) Thiol-disulfide exchange between the PDI family of oxidoreductases negates the requirement for an oxidase or reductase for each enzyme. Biochem. J. 469, 279–288 CrossRef Medline
43. Kimura, S., Higashino, Y., Kitao, Y., Masuda, T., and Urade, R. (2015) Expression and characterization of protein-disulfide isomerase family proteins in bread wheat. BMC Plant Biol. 15, 73 CrossRef Medline
44. Kamauchi, S., Wadahama, H., Iwasaki, K., Nakamoto, Y., Nishizawa, K., Ishimoto, M., Kawada, T., and Urade, R. (2008) Molecular cloning and characterization of two soybean protein-disulfide isomerases as molecular chaperones for seed storage proteins. FEBS J. 275, 2644–2658 CrossRef Medline
45. Araki, K., and Inaba, K. (2012) Structure, mechanism, and evolution of erol family enzymes. Antioxid. Redox Signal. 16, 790–799 CrossRef Medline
46. Baker, K. M., Chakravarthi, S., Langton, K. P., Sheppard, A. M., Lu, H., and Bulleid, N. J. (2008) Low reduction potential of Ero1α regulatory disulphides ensures tight control of substrate oxidation. EMBO J. 27, 2988–2997 CrossRef Medline
47. Kanemura, S., Okumura, M., Yutani, K., Ramming, T., Hikima, T., Appenzeller-Herzog, C., Akiyama, S., and Inaba, K. (2016) Human ER oxidoreductin-1α (Ero1α) undergoes dual regulation through complementary redox interactions with protein-disulfide isomerase. J. Biol. Chem. 291, 23952–23964 CrossRef Medline
48. Ramming, T., Hansen, H. G., Nagata, K., Ellgaard, L., and Appenzeller-Herzog, C. (2014) GPx8 peroxidase prevents leakage of H₂O₂ from the endoplasmic reticulum. Free Radic. Biol. Med. 70, 106–116 CrossRef Medline
49. Hansen, H. G., Schmidt, J. D., Soltoft, C. L., Ramming, T., Geertz-Hansen, M. H., Christensen, B., Sørensen, E. S., Juncker, A. S., Appenzeller-Herzog, C., and Ellgaard, L. (2012) Hyperactivity of the Ero1α oxidase elicits endoplasmic reticulum stress but no broad antioxidant response. J. Biol. Chem. 287, 39513–39523 CrossRef Medline
50. Hansen, H. G., Soltoft, C. L., Schmidt, J. D., Birk, J., Appenzeller-Herzog, C., and Ellgaard, L. (2014) Biochemical evidence that regulation of Ero1β activity in human cells does not involve the isoform-specific cysteine. Biochim. Rep. 34, e00103 CrossRef Medline
51. Wadahama, H., Kamauchi, S., Ishimoto, M., Kawada, T., and Urade, R. (2007) Protein disulfide isomerase family proteins involved in soybean protein biogenesis. FEBS J. 274, 687–703 CrossRef Medline
52. Wadahama, H., Kamauchi, S., Nakamoto, Y., Nishizawa, K., Ishimoto, M., Kawada, T., and Urade, R. (2008) A novel plant protein-disulfide isomerase family homologous to animal P5- Molecular cloning and characterization as a functional protein for folding of soybean seed-storage proteins. FEBS J. 275, 399–410 CrossRef Medline
53. Asano, S., and Otohe, K. (2011) Production of phytochemicals by using habituated and long-term cultured cells. Plant Biotechnol. 28, 51–62 CrossRef
54. Matsuo, K., and Gekko, K. (2013) Construction of a synchrotron-radiation vacuum-ultraviolet circular-dichroism spectrophotometer and its application to the structural analysis of biomolecules. Bull. Chem. Soc. Jpn. 6, 675–689
55. Matsuo, K., Sakai, K., Matsushima, Y., Fukuyama, T., and Gekko, K. (2003) Optical cell with a temperature-control unit for a vacuum-ultraviolet circular dichroism spectrophotometer. Anal. Sci. 19, 129–132 CrossRef Medline
56. Seerama, N., and Woody, R. W. (2000) Estimation of protein secondary structure from circular dichroism spectra: comparison of CONTIN, SELCON, and CDSSTR methods with an expanded reference set. Anal. Biochem. 287, 252–260 CrossRef Medline
57. Matsuo, K., Yonehara, R., and Gekko, K. (2004) Secondary-structure analysis of proteins by vacuum-ultraviolet circular dichroism spectroscopy. J. Biochem. 135, 405–411 CrossRef Medline
58. Matsuo, K., Yonehara, R., and Gekko, K. (2005) Improved estimation of the secondary structures of proteins by vacuum-ultraviolet circular dichroism spectroscopy. J. Biochem. 138, 79–88 CrossRef Medline
59. Matsuo, K., and Gekko, K. (2013) Circular-dichroism and synchrotron-radiation circular-dichroism spectroscopy as tools to monitor protein structure in a lipid environment. Methods Mol. Biol. 974, 151–176 CrossRef Medline
60. Sato, Y., Kojima, R., Okumura, M., Hagiwara, M., Masui, S., Maegawa, K., Saiki, M., Horibe, T., Suzuki, M., and Inaba, K. (2013) Synergic cooperation of PDI family members in peroxiredoxin-4 driven oxidative protein folding. Sci. Rep. 3, 2456 CrossRef Medline
61. Creighton, T. E. (1977) Kinetics of refolding of reduced ribonuclease. J. Mol. Biol. 113, 329–341 CrossRef Medline
62. Lyles, M. M., and Gilbert, H. F. (1991) Catalysis of the oxidative folding of ribonuclease A by protein-disulfide isomerase: pre-steady-state kinetics and the utilization of the oxidizing equivalents of the isomerase. Biochemistry 30, 619–625 CrossRef Medline