INDEPENDENT AND AUTOMATIC EVALUATION OF ACOUSTIC-TO-ARTICULATORY INVERSION MODELS

Maud Parrot\textsupERS{1}, Juliette Millet\textsupERS{1,2,3}, Ewan Dunbar\textsupERS{1,2}

\textsupERS{1} CoML, ENS/CNRS/EHESS/INRIA/PSL Research University, Paris, France
\textsupERS{2} Université de Paris, LLF, CNRS, Paris, France
\textsupERS{3} CRI, Dpartement Frontières du Vivant et de l’Apprendre, IIFR, Université de Paris

ABSTRACT

Reconstruction of articulatory trajectories from the acoustic speech signal has been proposed for improving speech recognition and text-to-speech synthesis. However, to be useful in these settings, articulatory reconstruction must be speaker independent. Furthermore, as most research focuses on single, small datasets with few speakers, robust articulatory reconstruciton could profit from combining datasets. Standard evaluation measures such as root mean square error and Pearson correlation are inappropriate for evaluating the speaker-independence of models or the usefulness of combining datasets. We present a new evaluation for articulatory reconstruction which is independent of the articulatory data set used for training: the phone discrimination ABX task. We use the ABX measure to evaluate a Bi-LSTM based model trained on 3 datasets (14 speakers), and show that it gives information complementary to the standard measures, and enables us to evaluate the effects of dataset merging, as well as the speaker independence of the model.

Index Terms— articulatory inversion, speech representation, machine learning, bi-LSTM

1. INTRODUCTION

Acoustic-to-articulatory inversion is the problem of finding a mapping from acoustic features to a set of articulatory measures (see \cite{1,2,3,4,5,6} for recent models: see \cite{7} for a review). Reconstructed articulatory trajectories have been shown to improve text-to-speech synthesis \cite{8,7}, speech accent conversion \cite{9}, and automatic speech recognition \cite{10,4}, in particular for dysarthric speech \cite{11}; they can also be used in the automatic detection of clinical conditions which have an impact on speech production, such as Parkinson’s \cite{12}. \textit{Speaker independent} reconstruction is essential for most of these applications, and, as such, some method for evaluating speaker-independent articulatory reconstruction is needed.

The two principal metrics for evaluating articulatory reconstruction are the root mean square error (RMSE) and the Pearson correlation coefficient (PCC) between the measured and the predicted articulatory trajectories. However, the goal of a speaker-independent model is not precise prediction of reference measures. First, the shapes of speakers’ vocal tracts vary in ways that cannot be captured by simple normalization. Second, recording conditions (coil placement in electromagnetic articulography: EMA), vary across and within recordings. Moreover, acoustic-to-articulatory inversion is a one-to-many problem: two different articulatory trajectories can produce the same sound. We do not want to penalize models that choose to reconstruct another trajectory which is correct but different from the reference. Finally, articulatory data is needed to calculate these measures, which is costly to obtain. We propose a standardized evaluation based on an ABX phone discrimination test \cite{13} of trajectories reconstructed for an acoustic-only corpus. The evaluation has the advantage of being independent of the training data set and of the true reference articulatory trajectories, much like the independent evaluation of \cite{14}, which uses human listeners to evaluate speech re-synthesis on the basis of the reconstructed trajectories. Our evaluation, however, is completely automatic\textsupERS{1}.

We train a bi-LSTM model closely resembling that of \cite{1} on three data sets (MOCHA–TIMIT, EMA–IEEE, USC–TIMIT), and apply the ABX phone discrimination evaluation on different training set, validation set, and test set. We compare ABX phone discrimination scores to standard metrics.

2. METHOD

2.1. Model architecture

To demonstrate our evaluation, we use a bidirectional recurrent neural network architecture similar to that of \cite{1}, but with the addition of a convolutional layer that acts as a low pass filter after the readout layer. The network has two feed-forward layers of 300 units each that act as feature extractors, two bidirectional layers of 300 units each, a convolutional layer as a low pass filter, and, finally, a feed-forward layer with as many units as the number of trajectories predicted (see Figure \ref{fig:2}).

\textsupERS{1}All code for pre-processing the datasets and for training and testing the model is fully available at \url{https://github.com/bootphon/articulatory_inversion.git}
2.2. Loss function

The usual loss function for articulatory inversion is the root mean square error (RMSE), which minimizes the L2 distance between the real and predicted trajectory. The Pearson correlation coefficient (PCC) is also typically examined, in addition to the RMSE values, as it ignores any systematic differences between speakers that can be described linearly. The PCC measures the degree of linear relationship between two variables X and Y.

\[
PCC(X, Y) = \frac{Cov(X, Y)}{\sigma_X \sigma_Y} \tag{1}
\]

We experiment with including the PCC in the loss function, \(y \) the reconstructed trajectory \(y^* \) the reference:

\[
L(y, y^*) = RMSE(y, y^*) - \beta \cdot PCC(y, y^*) \tag{2}
\]

We use \(\beta = 1000 \) (in order to account for the differences in scale between the RMSE and PCC values).\(^2\)

2.3. Convolutional layer as low pass filter

Articulatory gestures are not only continuous but also smooth. We impose smoothing on the predicted output trajectories by integrating a convolutional layer that acts as a low pass filter at the output of our neural network. This avoids unnecessary backpropagation of error due to non-smooth predicted trajectories. We used the following filter of order 5, with a Hanning window to restrict the support, where \(N \) is the size of the Hanning window and \(f_t, \forall n \in [0, N - 1] \):

\[
w(n) \propto \left(1 - \cos\left(2\pi \frac{n}{N - 1}\right)\right) \text{sinc}\left(2\pi f_t(n - \frac{N - 1}{2})\right) \tag{3}
\]

2.4. ABX phone discrimination evaluation

An ABX phone discrimination test of a representation of speech consists of extracting the representations of triplets of stimuli (A, B, and X), and computing the distance \(d(A, X) \), between A and X, and \(d(B, X) \), between B and X. X is of the same phonetic category as either A or B. Taking A to be the correct answer, we compute \(\delta = d(B, X) - d(A, X) \). If \(\delta > 0 \), the model has chosen A; if \(\delta < 0 \), it has chosen B. As in previous work evaluating acoustic models with this method \(^{[15]}^{[16]} \), the percent correct for all pairs of categories are combined into a global ABX discriminability score. We follow previous literature and use dynamic time warping (DTW) based on cosine distance to align sequences of differing length \(^{[17]} \). The final distance between the two sequences is the mean of the cosine distance between the matched frames along the alignment path.

3. ARTICULATORY DATASETS

3.1. Description

All the data used are freely available. MOCHA–TIMIT\(^[^4]\) is a database that contains EMA and acoustic data for 460 utterances (20 min) read by two English speakers \(^{[18]} \). USC–TIMIT\(^[^4]\) provides EMA data for four speakers on the MOCHA–TIMIT sentences (15 min); and EMA–IEEE\(^[^4]\) contains eight speakers reading 720 sentences, once each at a normal rate, and once at a fast speech rate (47 min per speaker).\(^3\) The combined duration is 461 min.

3.2. Articulatory trajectories

We use measures in the sagittal plane (x: back to front of head; y: chin to forehead). The two-dimensional articulatory points available in our datasets are: tongue body (TB), tongue tip (TT), tongue dorsum (TD), upper lip (UL), lower lip (LL), lower incisor (LI), and velum (V). Not all measures are available for all speakers. The velum trajectory is only available in MOCHA–TIMIT, and we exclude specific articulators for certain speakers where the standard deviation was less than 0.5 mm and visual verification suggested strongly that the measure was wrong.\(^4\) In training conditions combining speakers within corpora, we use the common articulators.

3.3. Vocal tract parameters

As in previous works \(^{[21]}^{[22]} \), we add vocal tract variables, using slightly different formulas from \(^{[21]} \). We calculate two tract variables from the position of the lips, the vertical lip aperture (VLA) and the horizontal lip protrusion (HPRO):

\[
VLA = UL_y - LL_y \tag{4}
\]

\[
HPRO = \frac{UL_x + LL_x}{2} \tag{5}
\]

\(^1\)\(\text{http://data.cstr.ed.ac.uk/mocha} \)

\(^2\)\(\text{https://sail.usc.edu/SPAN/usc-timit/} \)

\(^3\)\(\text{https://yale.app.box.com/s/cfn8hj2puveo65rq54rplml2mk7moj3h/folder/30415804819} \)

\(^4\)\(\text{We also conducted held-out tests on the single-speaker MNGU0 database, which we do not report due to preprocessing issues.} \)

\(^5\)\(\text{The list of articulators used by speaker is available at} \) \(\text{https://github.com/bootphon/articulatory_inversion.git} \)
We also add the tongue tip constriction (TTC: the cosine of the angle of the tongue tip off the horizontal axis) and the tongue body constriction (TBC: the cosine of the angle of the tongue body off the horizontal axis).

\[
TTC = \frac{TT_x}{\sqrt{TT_x^2 + TT_y^2}} \quad (6) \quad TBC = \frac{TB_x}{\sqrt{TB_x^2 + TB_y^2}} \quad (7)
\]

4. EXPERIMENTS

We compare standard reconstruction scores against ABX scores as evaluations of speaker-independence, both within and across corpora. Within corpus, we compare models trained in a speaker-specific setting, on a single speaker, with models trained in a speaker-independent setting, training on multiple speakers. We randomly hold out data in the speaker-specific setting for validation and test (for calculating the reconstruction scores: 70% train, 10% validation, 20% test). In the speaker-independent setting, we validate on a subset of the speakers, test on one speaker, and train on the rest. The speaker-specific model gives an expected upper bound on reconstruction. We expect that speaker-independent models will give poorer reconstruction, but we seek to use the ABX score to assess whether this degradation is due to failure to reconstruct linguistically relevant articulatory information, or failure to reconstruct speaker-specific detail.

To test the effect of merging corpora, we compare a model trained in a multi-corpus setting (with speakers EMA–IEEE: M01, MOCHA–TIMT: FSEW0, and USC–TIMIT: M1 held out for validation and test) against a single-corpus setting, training on EMA–IEEE, which contains the most complete set of articulators (speaker M01 still held out for test). Here, rather than training on all articulators common to all speakers, we learn to reconstruct all trajectories by ignoring error on missing articulators for backpropagation.

4.1. Model parameters

We use the Adam optimizer with early stopping on the validation set (learning rate 0.001, batch size 10, patience 5). The weights of the low pass filter are fixed according to (3) with \(N = 50 \) to give a transition band of 0.08. The convolution has one channel, stride of 1, and padding such that the output has the same size as the input. The cutoff frequency \(f_c \) is 10Hz.

4.2. Data preprocessing

We use as input the thirteen first MFCCs + \(\Delta \) + \(\Delta \Delta \) with window size of 25ms and stride of 10ms. We add 10 context windows: the 5 previous and 5 following frames, as in [23]. We remove silences based on the transcription file (when available). We normalize the MFCCs per speaker, removing the mean and dividing by the standard deviation.

We pre-smooth the articulatory trajectories, applying a low pass filter with a cutoff frequency of 10Hz for all the data sets except for EMA–IEEE, for which we use 20Hz. We remove leading and trailing silences ends using the transcription when available. We reduce EMA sampling rates to 100Hz to have a single articulatory frame per MFCC frame. Since EMA coils move gradually during recording [24], we normalize each articulatory measure by subtracting the mean over the 60 previous and following recordings of the same speaker and divide by the speaker-specific standard deviation.

4.3. Reconstruction scores

RMSE (mm) and RMSE computed on normalized trajectories are computed on every feature except TTC and TBC, and PCC is computed on every feature available.

4.4. ABX scores

The ABX test is performed on the 1-second English (speech-only) test data set from the Zero Resource Speech Challenge 2017 [16], consisting of data from 24 speakers taken from the LibriVox audio book collection, labelled using the 39 CMU-DICT phonemes plus \(\text{ax} \) for [a]. Stimuli are triphones differing in the central phone (beg–bag, api–ati, etc). Within-speaker triplets contain three triphones from a single speaker (e.g., \(A = \text{beg}_{T1}, B = \text{bag}_{T1}, X = \text{bag}’_{T1} \)). In across-speaker triplets, \(A \) and \(B \) come from the same speaker, and \(X \) to another. \(A = \text{beg}_{T1}, B = \text{bag}_{T1}, X = \text{bag}_{T2} \). The scores for a given contrast are first averaged across all (pairs of) speakers for which triplets can be constructed, before averaging over all contexts, and over all pairs of central phones and being converted to an error rate by subtracting from 1. We exclude contrasts with less than three contexts and for which critical articulators were missing from the data.

5. RESULTS

The model attains reconstruction scores on speaker-specific training for FSEW0 which are comparable to existing results (RMSE-mm: 1.43, RMSE-norm: 0.55, PCC: 0.77).

5.1. Speaker-independence within corpus

Table[1] compare the average across speakers in the speaker-specific setting against the average over all one-speaker-held-out training configurations in the speaker-independent setting.

As expected, the speaker-independent condition shows degradation in the three reconstruction scores, compared to the speaker-specific condition.

\[\text{For example, oral–nasal contrasts such as [ana]–[ada]–[ana], which depend necessarily on the position of the velum: a complete list is provided at } \text{https://github.com/bootphon/articulatory inversion.git}\]
Table 1. Comparison between speaker-specific (Sp) and speaker-independent (Ind) settings. R: RMSE, Rn: normalized RMSE, A-w: within-speaker ABX, A-a: across-speaker ABX. Smaller is better for all measures except PCC. Scores are averages across training subsets (see section 4).

	MOCHA–TIMIT	USC–TIMIT	EMA–IEEE												
	R	Rn	PCC	A-w	A-a	R	Rn	PCC	A-w	A-a	R	Rn	PCC	A-w	A-a
Sp	1.380	0.557	0.759	23.9	32.2	1.478	0.608	0.747	24.5	33.8	1.557	0.501	0.840	22.1	30.5
Ind	2.184	0.851	0.417	24.6	32.0	2.310	0.917	0.199	24.3	33.9	2.198	0.688	0.672	18.4	24.8

Table 2. Effects of training one or multiple corpora.

	M01 (EMA–IEEE)	M1 (USC–TIMIT)	FSEW0 (MOCHA)	ABX							
	R	Rn	PCC	R	Rn	PCC	R	Rn	PCC	w	a
Single-corpus	1.79	0.66	0.72	2.05	1.13	0.02	2.72	1.11	0.08	18.9	25.0
Multi-corpus	1.80	0.66	0.71	1.89	1.04	0.14	2.61	0.98	0.22	19.7	26.7

The ABX scores, calculated on an external speech corpus, provide a different picture. The differences between the two training conditions are small for both MOCHA–TIMIT and USC–TIMIT. Although we lose information about detailed articulatory tracks in the speaker-independent condition, this information is not relevant to coding phonemic contrasts. In the EMA–IEEE corpus, the loss in reconstruction between speaker-specific and speaker-independent conditions is smaller. This may be due to having more data per speaker, or it may be that the measures in this corpus are more similar across speakers. The ABX scores, however, show an improvement in the speaker-independent condition, meaning that, with this corpus, the speaker-independent model not only does not lose linguistically relevant information, but in fact even better reconstructs linguistically relevant articulatory information. This fact is lost by looking only at the reconstruction scores.

5.2. Merging corpora

Results comparing multi-corpus with single-corpus training are shown in Table 2. ABX scores in the multi-corpus condition are similar to those in the single-corpus condition, and, in fact, slightly worse, suggesting that adding speakers from additional corpora to the training is not beneficial to the speaker-independent model. Again, the reconstruction measures do not go in the same direction, improving slightly when corpora are added. It is possible that the addition of more data is helping to better reconstructing (informative) speaker-specific subphonemic information; but we observe that the appreciable improvement is exclusively in the novel corpora, suggesting that the improvements in reconstruction may be due to improved modelling of acoustic channel or coil placement properties specific to these corpora. This points to the differences among corpora, and the incompatibility that can exist between them, leading to potentially worse articulatory reconstructions when using them together, information that would be lost without the ABX score.

6. CONCLUSION

We have proposed an ABX phone discrimination measure for the evaluation of speaker-independent acoustic-to-articulatory models. The measure is independent of the articulatory trajectories, and thus does not penalize models for failing to capture speaker-specific articulatory details, it comes from a single external corpus, avoiding the inherent instability of held-out measures, and it is automatic, unlike speech-synthesis based evaluations. Our ABX score only assesses the presence of information needed to contrast the phones labelled in the corpus used (40 English phoneme labels), but they can be replaced by finer-grained allophonic labels, if desired. One caveat of phone discriminability is that it will vary as a function of the set of articulatory dimensions reconstructed, not only of how well they are reconstructed. So this measure can only be used to compare models that reconstruct the same articulators. Nevertheless, we have shown that it can give important information complementary to traditional reconstruction scores, indicative of the degree to which improvements or declines in reconstruction are due to failure to reconstruct speaker-specific properties.

7. ACKNOWLEDGEMENTS

This research was supported by the École Doctorale Frontières du Vivant (FdV) – Programme Bettencourt, by Facebook AI Research, and by grants ANR-17-CE28-0009 (GEOMPHON), ANR-11-IDFI-023 (IIFR), ANR-18-IDEX-001 (UdP), ANR-10-LABX-0083 (EFL).

8. REFERENCES

[1] P. Liu, Q. Yu, Z. Wu, S. Kang, H. Meng, and L. Cai, “A deep recurrent approach for acoustic-to-articulatory inversion,” in 2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), April 2015, pp. 4450–4454.
[2] Lingyun Yu, Jun Yu, and Qiang Ling, “Synthesizing 3d acoustic-articulatory mapping trajectories: Predicting articulatory movements by long-term recurrent convolutional neural network,” in 2018 IEEE Visual Communications and Image Processing (VCIP). IEEE, 2018, pp. 1–4.

[3] Patrick Lumban Tobing, Hirokazu Kameoka, and Tomoki Toda, “Deep acoustic-to-articulatory inversion mapping with latent trajectory modeling,” in 2017 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC). IEEE, 2017, pp. 1274–1277.

[4] Vikramjit Mitra, Ganesh Sivaraman, Chris Bartels, Hosung Nam, Wen Wang, Carol Espy-Wilson, Dimitra Vergyri, and Horacio Franco, “Joint modeling of articulatory and acoustic spaces for continuous speech recognition tasks,” in 2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2017, pp. 5205–5209.

[5] Nadee Seneviratne, Ganesh Sivaraman, and Carol Espy-Wilson, “Multi-corpus acoustic-to-articulatory speech inversion,” Proc. Interspeech 2019, pp. 859–863, 2019.

[6] Dagoberto Porras, Alexander Sepúlveda-Sepúlveda, and Tamás Gábor Csapó, “Dnn-based acoustic-to-articulatory inversion using ultrasound tongue imaging,” arXiv preprint arXiv:1904.06083, 2019.

[7] Korin Richmond, Zhenhua Ling, and Junichi Yamagishi, “The use of articulatory data in speech synthesis applications: An overview and application of the articulatory movement database,” Acoustical Science and Technology, vol. 36, no. 6, pp. 467–477, 2015.

[8] Beiming Cao, Myung Jong Kim, Jan PH van Santen, Ted Mau, and Jun Wang, “Evaluating articulatory information in deep learning-based text-to-speech synthesis,” in INTERSPEECH, 2017, pp. 254–258.

[9] Sandesh Aryal and Ricardo Gutierrez-Osuna, “Accent conversion through cross-speaker articulatory synthesis,” in 2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2014, pp. 7694–7698.

[10] Alan Wrench and Korin Richmond, “Continuous speech recognition using articulatory data,” 2000.

[11] Emre Yılmaz, Vikramjit Mitra, Ganesh Sivaraman, and Horacio Franco, “Articulatory and bottleneck features for speaker-independent asr of dysarthric speech,” Computer Speech & Language, vol. 58, pp. 319–334, 2019.

[12] Seongjun Hahn and Jun Wang, “Parkinson’s condition estimation using speech acoustic and inversely mapped articulatory data,” in Sixteenth Annual Conference of the International Speech Communication Association, 2015.

[13] Thomas Schatz, Vijayaditya Peddinti, Francis Bach, Aren Jansen, Hynek Hermansky, and Emmanuel Dupoux, “Evaluating speech features with the minimal-pair abx task: Analysis of the classical mfc/plp pipeline,” 2013.

[14] Korin Richmond, Zhen-Hua Ling, Junichi Yamagishi, and Benigno Uria, “On the evaluation of inversion mapping performance in the acoustic domain,” in INTERSPEECH. Citeseer, 2013, pp. 1012–1016.

[15] Maarten Versteegh, Roland Thiollière, Thomas Schatz, Xuan Nga Cao, Xavier Anguera, Arent Jansen, and Emmanuel Dupoux, “The Zero Resource Speech Challenge 2015,” in INTERSPEECH-16, 2015.

[16] Ewan Dunbar, Xuan Nga Cao, Juan Benjumea, Julien Karadayi, Mathieu Bernard, Laurent Besacier, Xavier Anguera, and Emmanuel Dupoux, “The Zero Resource Speech Challenge 2017,” in ASRU. IEEE, 2017, pp. 323–330.

[17] Pavel Senin, “Dynamic time warping algorithm review,” Ms., Department of Information and Computer Sciences, University of Hawaii, 2008.

[18] Alan Wrench and William J. Hardcastle, “A multichannel articulatory speech database and its application for automatic speech recognition,” 2000.

[19] Shrikanth Narayanan, Asterios Toutios, Vikram Ramanarayan, Adam C. Lammert, Jangwon Kim, Sungbok Lee, Krishna Shinivas Nayak, Yoon-Chul Kim, Yinghua Zhu, Louis Goldstein, Dan Byrd, Erik Bresch, Prasanta Kumar Ghosh, Athanasios Katsamanis, and Michael I. Proctor, “Real-time magnetic resonance imaging and electromagnetic articulography database for speech production research (tc),” The Journal of the Acoustical Society of America, vol. 136 3, pp. 1307, 2014.

[20] Mark Tiede, Carol Y. Espy-Wilson, Dolly Goldenberg, Vikramjit Mitra, Hosung Nam, and Ganesh Sivaraman, “Quantifying kinematic aspects of reduction in a contrasting rate production task,” The Journal of the Acoustical Society of America, vol. 141, no. 5, pp. 3580–3580, 2017.

[21] Ganesh Sivaraman, Vikramjit Mitra, Hosung Nam, Mark Tiede, and Carol Espy-Wilson, “Unsupervised speaker adaptation for speaker independent acoustic to articulatory speech inversion,” The Journal of the Acoustical Society of America, vol. 146, pp. 316–329, 07 2019.

[22] Ganesh Sivaraman, Vikramjit Mitra, Hosung Nam, Mark K Tiede, and Carol Y Espy-Wilson, “Vocal tract length normalization for speaker independent acoustic-to-articulatory speech inversion,” in INTERSPEECH, 2016, pp. 455–459.

[23] Benigno Urias, Iain Murray, Steve Renals, and Korin Richmond, “Deep architectures for articulatory inversion,” in Proceedings of Interspeech. 2012, pp. 866–870, Curran Associates.

[24] Korin Richmond, Estimating Articulatory Parameters from the Acoustic Speech Signal, Ph.D. thesis, 01 2002.