Hybrid Quantum-Classical Heuristic for the Bin Packing Problem

Mikel Garcia de Andoin1,2,3, Eneko Osaba2, Izaskun Oregi2, Esther Villar-Rodriguez2, Mikel Sanz1,3,4,5

1Department of Physical Chemistry, University of the Basque Country UPV/EHU, Apartado 644, 48940 Leioa, Spain
2TECNALIA, Basque Research and Technology Alliance (BRTA), 48160 Derio, Spain
3EHU Quantum Center, University of the Basque Country UPV/EHU, 48940 Leioa, Spain
4IKERBASQUE, Basque Foundation for Science, Plaza Euskadi 5, 48009 Bilbao, Spain
5BCAM - Basque Center for Applied Mathematics, Alameda de Mazarredo 14, 48009 Bilbao, Spain

mikel.garciadeandoin@ehu.eus, eneko.osaba@tecnalia.com

ABSTRACT

Optimization problems is one of the most challenging applications of quantum computers, as well as one of the most relevant. As a consequence, it has attracted huge efforts to obtain a speedup over classical algorithms using quantum resources. Up to now, many problems of different nature have been addressed through the perspective of this revolutionary computation paradigm, but there are still many open questions. In this work, a hybrid classical-quantum approach is presented for dealing with the one-dimensional Bin Packing Problem (1dBPP). The algorithm comprises two modules, each one designed for being executed in different computational ecosystems. First, a quantum subroutine seeks a set of feasible solutions to the problem at hand. Secondly, a classical computation subroutine builds complete solutions to the problem from the subsets given by the quantum subroutine. Being a hybrid solver, we have called our method H-BPP. To test our algorithm, we have built 18 different 1dBPP instances as a benchmarking set, in which we analyse the fitness, the number of solutions and the performance of the QC subroutine. Based on these figures of merit we verify that H-BPP is a valid technique to address the 1dBPP.

CCS CONCEPTS
• Mathematics of computing → Combinatorial optimization;
• Theory of computation → Quantum computation theory.

KEYWORDS
Quantum Computing; Bin Packing Problem; Combinatorial Optimization; Hybrid Quantum Algorithm

1 INTRODUCTION

Computational optimization is a highly studied research topic within the wider Artificial Intelligence field. Its contrasted applicability is one of the main reasons of the success of this knowledge area, which is reverted to address a myriad of real-world oriented tasks.

Usually, the efficient tackling of optimization problems involves the need of significant computational resources, making impractical the adoption of a brute-force approach. For this reason, the formulation of time-efficient solving strategies has emerged as a hot topic, leading to the design of a plethora of heterogeneous techniques during the last decades.

At the time this paper is written, the vast majority of optimization algorithms have been conceived for being executed on classical computers. In this context, Quantum Computing (QC, \cite{66}) has recently emerged as a promising paradigm for facing optimization problems. In a nutshell, QC provides a revolutionary approach for dealing with complex problems with a possible significant advantage\cite{3}. Today, QC is the pivotal point of a growing amount of experimental and theoretical scientific studies \cite{35, 53, 62}.

Despite the potential demonstrated by QC, this research field is still at its dawn, and the available quantum processors present some limitations in terms of performance and capability \cite{4, 27}. Issues such as the reduced size of the quantum processors, the inaccurate control of the quantum resources, or the limitations in material science should be faced by researchers and engineers on their effort towards fault-tolerant quantum-computing. As a result of these handicaps, two kind of solvers prevail in the current literature: i) purely quantum approaches, whose objective is to face a problem employing only QC resources, and quantum-classical hybrid techniques, which are conceived to enhance applicability within the short and mid-term QC limitations.

In this context, our objective with this paper is to take a step forward in QC by proposing a quantum-classical hybrid algorithm for addressing one of the best-known combinatorial optimization problems: the Bin Packing Problem (BPP, \cite{32}). Although it is a canonical use case, the BPP often emerges in a wide variety of industrial problems. To our best knowledge, this problem has not yet been faced from a QC perspective. Thus, the present work represents a step further over the current QC literature, presenting the following contributions:

• We introduce a quantum-classical hybrid algorithm for solving the well-known one-dimensional BPP (1dBPP,\cite{52}). The algorithm is composed of two modules, each one designed for being executed in different computational ecosystems.
First, a QC-based module is employed for finding the set of feasible bin configurations of the problem at hand. In other words, this module seeks as many feasible bins as possible, considering the constraints of the problem (i.e., the weight of the items and the capacity of the bins available). The second module, which is implemented to be run in classical computers, takes as input the list of feasible subsets provided by the QC-based module, and generates complete solutions to the problem finding the optimal combination of subsets. As it is a hybrid solver, we have called our method H-BPP. To the best of our knowledge, it is the first time that a BPP is solved using such strategy.

- As mentioned, the proposed method has been developed for facing the 1dBPP. Despite related problems, such as the knapsack problem [61] or the subset-sum problem [16] have been considered in the literature, no variant of the BPP has been studied from a QC perspective up to now. Therefore, taking into account the scientific and business interest that BPP-related problems still arise in the community and in the industry [10, 11], it is relevant to further research in this direction. For testing the performance and accuracy of our method, we have conducted a preliminary but extensive experimentation over 18 synthetically-generated heterogeneous instances of the 1dBPP, with sizes ranging from 10 to 12 items. Results obtained by our algorithm are compared with the ones obtained by a brute-force algorithm.

The rest of this manuscript is structured as follows: we present in Section 2 a brief introduction on QC and BPP. Afterwards, the problem addressed in this paper, the 1dBPP, is described in Section 3. In Section 4, we delve into the main characteristics of our hybrid algorithm. Experimental setup and results are discussed in Section 5. Finally, in Section 6 we summarize our conclusions and outline future research lines.

2 BACKGROUND

This section briefly introduces the two main pillars of this paper: Quantum Computing, in Section 2.1; and the Bin Packing Problem, in Section 2.2.

2.1 Introduction to Quantum Computing

Quantum computing takes advantage of quantum resources to solve computational problems. Indeed, exploiting entanglement and superposition properties, some quantum algorithms have shown potential to speed up the convergence towards a solution for certain problems. Two representative algorithms that show quantum advantage are Grover’s algorithm for the unstructured searching problem [33] and Shor’s algorithm for the integer factorization [64]. Even though in these two cases a speedup is achieved, not every problem can benefit from employing quantum resources [1], especially in the current Near-Intermediate Scale Quantum era [43, 67] (NISQ, noisy quantum hardware with a size in the order of 10-100 qubits [59]). However, quantum algorithms might have a speedup compared with classical approximate algorithms for particularly hard problems (i.e., problems in the approxNP-hard set), such as the Max-E3-SAT problem [36], [73].

Within the framework of quantum computing, there are three main different paradigms. Firstly, digital quantum computing (DQC) [23], which works with a sequence of ideal operations (or gates) taken from an universal set. For implementing algorithms in this paradigms, we have a plethora of gate-based quantum computers (IBM1, Google2, Rigetti3, ColdQuanta4), which allows users to run programs written as the application of successive gates. Then, analog quantum computing (AQC) is a less flexible but much more robust approach [37]. In AQC, a controllable quantum system is manipulated to mimic the system of interest. This approach also includes quantum annealing and simulators, which can be implemented in any system which provides a way to adiabatically modify the system Hamiltonian (D-Wave5, Xanadu6). Finally, an universal quantum computing paradigm has been proposed, namely digital-analog (DAQC [57]). This approach combines the robustness of AQC with the flexibility of DQC. The algorithms are implemented by alternating the application of (digital) single-qubit gates with analog entangling blocks. Running a circuit using DAQC requires a hardware in which one has access to fast single-qubit gates and an interaction Hamiltonian, as it has been implemented in different platforms.

Encouraged by early results, the quantum-computing and computer science-communities have conducted a huge effort for achieving quantum advantage. As a prominent example of this research, an information processing task performed by a QC was proven unaffordable for any classical computer. Even though this has been attained for certain artificial problems [9, 72], achieving this for a useful application is still an open question. Approximate optimization problems are considered a suitable target for this goal. On this regard, quantum annealing takes advantage of a purely quantum mechanism, the adiabatic theorem [18, 38], to find the ground state of a Hamiltonian which encodes the solution to the problem [25, 34]. A family of near-term quantum algorithms that have shown a reasonable success are variational quantum algorithms (VQAs) [20], with variational quantum eigensolvers (VQE) and quantum approximate optimization algorithm (QAOA) [26] as the most prominent examples. These algorithms relay on the classical optimization of control parameters with the objective of obtaining the best possible solution given a certain amount of resources. On another vein, hybrid quantum algorithms employs quantum algorithms to speedup certain operations, while subrogating some tasks to classical routines [24, 49]. When evaluating quantum algorithms, it should be noted that the probability to obtain a solution is unlikely to reach exactly 1. On top of this, the problems of efficiently encoding information into a quantum system and retrieving it by means of measurements are generally open problems.

2.2 BPP state of the art

A paradigmatic example of a NP-Hard problem is the BPP, which is a classical combinatorial optimization problem whose objective is to pack a finite set of items into a group of available bins. More

1https://www.ibm.com/quantum-computing/
2https://www.quantumai.google/
3https://www.rigetti.com/
4https://www.coldquanta.com/
5https://www.dwavesys.com/
6https://www.xanadu.ai/
Hybrid Quantum-Classical Heuristic for the Bin Packing Problem

GECCO ’22 Companion, July 9–13, 2022, Boston, MA, USA

precisely, the goal is to minimize the total number of bins used not exceeding the fixed maximum capacity of each bin considered in the solution. The packaging of items or packages in different containers or bins is a daily and crucial task in the field of production and logistics. For this reason, multiple packaging problems can be formulated depending on the size of the items to be packed, as well as the size and capacity of the containers. These types of issues have been widely discussed in the literature for several decades, giving rise to remarkable survey and review papers [44, 46, 48].

The 1dBPP is considered to be the simplest packaging problem. Anyway, despite its simplicity, it is applied to a wide variety of real-world problems [8, 70]. Furthermore, it is frequently used as a benchmarking problem [28, 55]. Recent works focused on 1dBPP led to the proposition of novel methods for its resolutions, such as the parallel cooperative grouping genetic algorithm introduced in [40], the branch-and-price-and-cut technique proposed in [71], or the adaptive fitness-dependent optimizer developed in [2].

Beyond its basic formulation, several variants of the 1dBPP have been proposed in order to give an answer to some specific constraints. Some examples of these variants can be found in [39], in which a maximum number of items per bin is fixed; or in [21], in which items should be placed in bins according to some concrete time intervals. Further variants of the basic 1dBPP can be found in [22]. In this present research, the canonical version of the 1dBPP is considered. This variant still gathers lots of attention from the community, as can be seen in recent surveys such as [51] and [52].

Additionally, based on the original formulation of the 1dBPP, many variants have been recently proposed in recent literature to address real-world situations. On this regard, two are the most frequently referred variants of the BPP. The first one is the two dimensional BPP (2dBPP, [45]), in which each item is described by two different parameters: height and width. There are many works in the recent literature that revolve around this problem and its resolution. In [41], for example, the authors address this problem with a genetic algorithm, adding a search mechanism called Crow Search to increase the exploration capacity of the algorithm. In the work [47] a hybrid approach applied to the same problem is presented. Additional examples can be found in articles like [15] or [63]. A second variant is the three-dimensional BPP (3dBPP, [50]), in which each packet has three dimensions: height, width, and depth. Consequently, the containers in which the packages are stored have three dimensions as well. This variant has also been widely investigated by the community [54, 60].

Furthermore, variations with a variable number of additional restrictions or constraints arising from real-world use cases have been studied, usually leading to an increment of the problem complexity. Some examples are i) the minimum clearance of the container [6], ii) load balancing inside the container [69], iii) expiration dates of rapidly perishable products [58], iv) transport restrictions [56], or v) possible packet fragmentation [14].

In addition to these restrictions, the problem has been treated from different computational approaches, highlighting the single-objective and multi-objective variants [65].

To sum up, the research around BPP-related problems is still vibrant today. Even the most basic variant of the BPP, the 1dBPP, still gathers a significant attention from the community. However, as far as we know, there is no work in the literature that deals with this problem from the QC perspective. On the contrary, there are few publications mentioning the BPP and quantum algorithms, but most of them discuss it from quantum-inspired classical algorithms perspective [29, 42, 68]. Furthermore, slightly related with the 1dBPP, there are quantum algorithms solving the subset-sum problem [5, 13, 17]. However, these algorithms take advantage of some-problem specific properties which can not straightforwardly be translated to our scheme.

For this reason, this paper implies a remarkable step forward in the literature, tackling a BPP problem through a hybrid classical-quantum algorithm.

3 THE ONE DIMENSIONAL BIN PACKING PROBLEM

As mentioned beforehand, this paper is focused on solving a BPP variant known as 1dBPP. The problem can be formally defined as follows [51]: considering a maximum amount of n bins \(B_1, B_2, \ldots, B_n\) of equal non-negative capacity \(C\), and a set of \(n\) items \(W = \{w_1, w_2, \ldots, w_n\}\), where \(w_i\) is a positive value \(0 < w_i \leq C\) representing the weight of item \(i\), the objective is to find the smallest amount of bins \(b \leq n\) such that partition \(L = B_1 \cup B_2 \cup \ldots \cup B_b\) fills the whole \(W\). Furthermore, the sum of the item weights in each bin must not exceed \(C\).

Regarding the codification used for representing a solution to the problem, the well-known binary encoding has been considered. In this way, the 1dBPP can be formulated in the following way:

\[
\min b
\]

Subject to:

\[
\sum_{i=1}^{n} w_i x_{i}^{(j)} \leq C, \forall j \in \{1, \ldots, b\},
\]

\[
\sum_{j=1}^{b} x_{i}^{(j)} = 1, \forall i \in \{1, \ldots, n\},
\]

\[
x_{i}^{(j)} \in \{0, 1\}, \forall i \in \{1, \ldots, n\}, \forall j \in \{1, \ldots, b\},
\]

where \(b\) is the number of employed bins, such that the set of bins is \(\{B_1, \ldots, B_b\}\), and \(x_{i}^{(j)} = 1\) if item \(i\) is in bin \(j\).

This strategy has the advantage of being fully compliant with digital QC devices, designed for working with binary variables. On this basis, one solution to the 1dBPP is provided by means of \(b\) binary arrays of size \(n\) \((L = \{x_1^{(1)}, \ldots, x_n^{(1)}\}, \{x_1^{(2)}, \ldots, x_n^{(2)}\}, \ldots, \{x_1^{(b)}, \ldots, x_n^{(b)}\})\). Let us assume a possible instance composed by 10 items \((n = 10)\). By using a binary representation, one feasible solution comprising two bins \((b = 2)\) might be:

\[
B_1 = \{0, 1, 1, 0, 0, 0, 1, 1, 0, 0\}
\]

\[
B_2 = \{1, 0, 0, 1, 1, 0, 0, 1, 1\}
\]

meaning that four items \((w_2, w_3, w_7\) and \(w_9)\) are placed in the first bin, while the remaining six assigned to the second one, hence being the intersection \(0\). This solution can also be encoded as \((L = \{x_1^{(1)} = 0, x_2^{(1)} = 1, x_3^{(1)} = 1, x_4^{(1)} = 0, x_5^{(1)} = 0, x_6^{(1)} = 1, x_7^{(1)} = 1, x_8^{(1)} = 0, x_9^{(1)} = 0, x_{10}^{(1)} = 0\}, \{x_1^{(2)} = 1, x_2^{(2)} = 0, x_3^{(2)} = 0, x_4^{(2)} = 0\})\).
As can be deduced, for these solutions to be feasible, each item \(w_i \) should be placed in one, and only one, bin \(B_j \), and the capacity \(C \) should not be exceeded by any \(B_j \).

As the BPP is a combinatorial optimization problem, one can find a quadratic unconstrained binary optimization (QUBO) formulation for solving it. With this QUBO formulation, it is immediate to map it to an Ising Hamiltonian whose ground state corresponds to the solution of the original problem. However, the QUBO formulation comes with a cost in terms of employing extra bits or qubits to express the problem. In particular, for the 1dBPP we would need \(n^2 \) to encode the assignment of the packages to the container. To encode the first constraint (Eq. 2) we can introduce slack variables \(\Lambda_i \). Employing a binary codification of the slack variables, we would need to introduce \(\log_2(C) \) ancillary qubits per container. Since the second constraint (Eq. 3) is given as an equality, so it can be implemented without additional qubits. By measuring the quantum state in the computational basis, the third constraint would be fulfilled by construction. With all these ingredients, we could run a quantum annealing algorithm to solve the full 1dBPP problem, but at the expense of employing \(n^2 + n \log_2(C) \) qubits, which is impractical within the limitations in size of NISQ systems. Thus, we have avoided to address the full problem with a quantum annealing algorithm.

4 PROPOSED QUANTUM BASED HEURISTIC FOR SOLVING THE BPP

In this section, we propose a hybrid quantum-classical algorithm for solving 1dBPP, that is, the H-BPP. The algorithm is divided into two main subroutines. In the first one, a quantum annealing algorithm is executed multiple times to sample feasible configurations of items in a single bin. When this first subroutine ends, a classical subroutine is run, whose objective is to optimally combine the previous list of feasible subsets, considering that each item is assigned to a feasible bin. As a result of this second subroutine, the algorithm returns the best solutions found, this is, the solutions requiring the minimum amount of containers to accommodate all items. A diagram with the overview of H-BPP is shown in Fig. 1. In the rest of the section, we explain these two subroutines in detail.

4.1 Quantum annealing algorithm for the subset sampling subroutine

The objective of the subset sampling subroutine is to obtain a set of feasible subsets, which effectively reduces the search space for the classical solution construction algorithm. On this regard, we define a feasible subset as a set of items \(B_j \subset \{1, \ldots, n\} \) such that they fulfill the constraint from Equation 2 for a single container. The process of sampling feasible subsets will be performed with a quantum annealing algorithm.
system, we do a one-to-one assignment of each binary variable to a qubit, where we represent the state in the computational basis \(x_i = 1 \equiv |1\rangle_i \) and \(x_i = 0 \equiv |0\rangle_i \). This way, a classical bit \(x_i \) has a one-to-one map to a local Hamiltonian term of the form \((\mathbb{I} - \sigma_i^z)/2\), where \(\sigma_i^z \) is the Pauli \(\mu \) operator acting on qubit \(i \).

Additionally, we cannot generate stepwise Hamiltonians in a real system, so we have to find an implementable model for Equation 6. Instead of employing a single Hamiltonian, we divide the search of feasible subsets. To achieve this, we divide the problem into a number of quadratic Hamiltonians in which the (possibly degenerated) ground state corresponds to configurations for which \(\sum_i w_i x_i = C - \alpha/2\beta \), i.e., the ground states correspond to subsets with a total weight equal or lower than the maximum capacity \(C \).

For this, we employ the following quadratic Hamiltonian

\[
H_p = \alpha \left(\sum_i w_i x_i - C \right) + \beta \left(\sum_i w_i x_i - C \right)^2
\]

where \(\epsilon_w \equiv \sum_i w_i / 2 - C \). \(H_p \) has two-body interactions between all pairs of qubits, i.e. it is an all-to-all (ATA) Hamiltonian. The two parameters \(\alpha, \beta \) allow us to tweak the sum of the weights of the packages, and the energy penalty added to the states not fulfilling the condition. This way, we can sample the allowed configurations by setting \(\alpha = 2\beta(C - k\Lambda_w) \), where \(\Lambda_w \) is the minimum weight difference between two different configurations and \(k = 1,\ldots,C/\Lambda_w \).

Since we cannot know how many runs for the different values of \(\alpha \) are required for sampling all possible configurations, we set a total number of runs. Then, we will repeat the annealing algorithm for each value of \(\alpha \) and save all the results obtained as shown in Algorithm 1. A visual representation of the subroutine sampling strategy is displayed in Figure 2.

Algorithm 1: Quantum annealing subroutine for the subset sampling

Data: \(w_i, C, \alpha, \beta, \#\text{runs} \)

1. For \(k = 1,\ldots,C/\Delta_w \) do
 1. Update Hamiltonian parameter, \(\alpha = 2\beta(C - k\Delta_w) \);
 2. For \(i = 1,\ldots,\#\text{runs} C/\Delta_w \) do
 1. Run the quantum annealing algorithm, \(B_j \);
 2. Add the result to the list of subsets, \(F \leftarrow B_j \);

Result: The list of all sampled subsets, \(F \)

Once implemented, we have to run the quantum annealing algorithm. For this, we have two distinct alternatives. On the one hand, we can use a quantum annealer in which we have the resources to implement the evolution under our problem Hamiltonian. On the other hand, we can simulate the digitized evolution, i.e. approximating the time dependant evolution with \(n_T \) time-independent evolution steps [12], with a DQC or DAQC implementation. With the currently available quantum hardware capabilities and qubit connectivity topology, we can not directly simulate the evolution under \(H_p \). Thus, we have to resort to methods that simulate an ATA Hamiltonian with limited resources, for example, using the decomposition shown in [30].

4.2 Solution Generator Heuristic

This section briefly describes the heuristic procedure used to solve the 1dBPP by using as input the set of feasible subsets \(F \) computed in the previous subroutine. Specifically, the proposed scheme aims at seeking, among the elements in \(F \), an optimal combination that packages all items in \(W \). In this case, the search strategy has the objective of finding the configuration with the smallest number of bins. It is important to highlight that this algorithm has been designed to be run in classical devices.

Algorithm 2: Classical heuristic for finding the best combination of bins

Data: \(F, W, \text{MaxIter} \)

1. Initialize solution set, \(S = \emptyset \);
2. For \(c = 1,\ldots,\text{MaxIter} \) do
 1. Initialize number of bins, \(b = 0 \);
 2. Initialize the set of assigned packages, \(A = \emptyset \);
 3. Randomly shuffle elements in \(F \);
 4. For \(j = 1,\ldots,|F| \) do
 1. Select subset \(j \) from \(F \); \(B_j = F[j] \);
 2. If all elements in \(B_j \) are unassigned, \((B_j \cap A) = \emptyset \)
 1. Include items in \(B_j \) in \(A \); \(A = A + B_j \);
 2. Increment the number of bins, \(b = b + 1 \);
 5. If all packages are assigned, \(W = A \)
 1. Add solution to \(S \leftarrow S \cup \{b\} \);
 2. Break for loop;

Result: \(\min S \)

The pseudocode of the proposed heuristic is given in Algorithm 2. As aforementioned the procedure gets the set of feasible subsets \(F \) and creates a solution (lines 6-11) by looking for bins (lines 7-9) that might package all the items in \(W \) (line 10). Note that this search is made sequentially in \(F \), so this strategy cannot guarantee the optimal solution if it is computed just once. To improve the search, the algorithm repeats this procedure \(\text{MaxItems} \) times (line 2), saving the computed solution in a temporary variable \(S \). Finally, the procedure outputs the solution with the smallest number of bins stored in \(S \).

5 EXPERIMENTAL SETUP, RESULTS AND DISCUSSION

This section is devoted to showcasing the whole experimentation conducted in this study. To this end, this section has been divided into two different subsections, the first aiming at describing the experimental setup (Section 5.1), and the second focused on showing and discussing the main results obtained by our H-BPP (Section 5.2).

5.1 Experimental Setup

As pointed in the introduction, the benchmark comprises the resolution of 18 different synthetic instances. With the main intention
would see Dirac delta functions that represent the penalty force algorithm which exhaustively seeks for the minimum number of bins. In case all items cannot be inserted into a single bin (note that none of these cases have been contemplated in our benchmark). Otherwise, it starts an iterative process following one. First, the technique checks if all items of the instance can fit into maximum capacity, \(C = \frac{C}{2} \), a 2-component Gaussian mixture model with centers established in \(C/3 \) and \(2C/3 \), and a uniform distribution between 0 and \(C \). We summarize the characteristics of the whole benchmark in Table 1. Finally, in order to assure the replicability of this study, all the algorithms, instances, and data used in this work are publicly available.

As mentioned in the previous paragraph, the size of the instances has been chosen considering the QC hardware limitations, but also the computational restrictions of the brute-force algorithm used for measuring the quality of our developed H-BPP. On this regard, as a preliminary study, our main objective is to compare the outcomes obtained by our implemented method with the optimal results of the preliminary study, our main objective is to compare the outcomes obtained by our implemented method with the optimal results of the whole benchmark in Table 1. Finally, in order to assure the replicability of this study, all the algorithms, instances, and data used in this work are publicly available.

Table 2 summarizes the outcomes reached by H-BPP for all instances. Each entry on the table depicts the following metrics:

- **Fitness average** \(\bar{b} \): this metric shows the average value of \(b \) found by H-BPP, considering that the lower the value, the better the result.
- **Average number of optima** \(\bar{\#optima} \): considering that each instance counts with more than one optimal solution, the value \(\#optima \) represents the average number of optima that the H-BPP has found per each run.
- **Average size of the ideal subset in \(F \)**: considering one specific instance of the 1dBPP, the ideal subset is composed of all the \(B \) bin configurations needed to build the whole set of optima solutions. On this regard, the **average size of the ideal subset \(F \)** represents the average amount of bins that the H-BPP has found per run which are part of this complete ideal subset. This metric helps to independently assess the H-BPP performance.

These results have been computed over 10 independent runs conducted for each instance. At this point, it should be pointed that \(\#optima \) and the **average size of the ideal subset in \(F \)** are calculated using these runs in which the algorithm has obtained the optimal value. Furthermore, we also show in Table 2 the optimal values for each test case on each of the considered metrics. Thus, we provide the optimal solution (Opt.) and the total number of optimum configurations \(\#optima \) for each instance, as well as the size of the optimal ideal subset \(\text{size of opt. ideal sub.} \).

Several remarks can be drawn from these outcomes. The first one is to highlight the performance of the proposed method on instances composed by 10 items, in which the H-BPP reaches the optimal results in the 100% of the cases. It is important to observe restrictions, \(b \) value is increased by 1. This iterative procedure is executed until the algorithm finds a solution in which all items fit into \(b \) bins. After finding the optimal value of \(b \), and in the interest of exhaustive experimentation, the algorithm continues the execution in order to find each and every possible item assignment combination considering those \(b \) bins. In other words, the brute-force algorithm finds all the optimal solutions, if more than one exists. It is noteworthy that we define two \(L \) and \(L' \) solutions as different if the arrangement of items \(\{x_1^{(1)}, \ldots, x_n^{(1)}\}, \ldots, \{x_1^{(b)}, \ldots, x_n^{(b)}\} \) differs on its composition, and not in the artificial order promoted by the bin code \(j \).

Lastly, the circuit implementing the digitized quantum annealing algorithm has been simulated with a classical computer. As a first approximation to the problem, we have employed an ideal setup, in which we have assumed we have an ATA connectivity and noiseless gates. For the initial Hamiltonian, we used \(H_0 = \sum_j h_0 \sigma_j^y \), where \(h_0 > 0 \) is a tweakable parameter. A more rigorous analysis would require to introduce the effect of noise and the extra steps required to simulate the evolution in a hardware with limited resources. For this work, we run the algorithm with the following set of parameters: \#runs=1000, \(\beta = \text{min}(w_j)/5 \), \(\tau = 10^{-15} \text{s} \), \(\pi/2 = 500 \), and \(h_0 = 10 \). We have selected these parameters based on previous experience solving similar problems and adjusting them to obtain the maximum fidelity within a reasonable range of values [31].

5.2 Results and Discussion

![Figure 2: Representation of the sampling strategy used in the 1dBPP problem. The x axis ticks shows the ideal weights of the subsets we are sampling in each step, while the y axis shows the energy of the eigenvalues. If one implements the strategy for not measuring the same eigenvector twice, we would see Dirac delta functions that represent the penalty factors added to the measured states.](https://bitbucket.org/mikel_gda/bpp)
that this trend is maintained regardless the total number of optima or the size of the optimal ideal subset, assuming that an instance with less number of optima or a reduced optimal ideal subset is harder to be optimized. The performance demonstrated by H-BPP in the instance 10.150.U is a specially noteworthy example of this situation. This instance counts with 8 optimum values and a size of optimal ideal subset of 17. These values makes 10.150.U the most complex 10-item case to solve. In any case, H-BPP obtains not only the optimum in all the 10 independent runs (which is the main objective of the method), but a remarkable amount of optima (more than the 60% of them) and a significant percentage of the ideal subset (higher than the 80%).

Regarding the instances composed by 12 items, despite some results are slightly degraded, the overall performance of the method is still meritorious considering the current capacities of QC resources and that the input parameters of the quantum annealing subroutine have not been optimized in this preliminary study. In this way, there are three specific 12-item instances in which the H-BPP gets the optimal results on each of the 10 independent executions: 12.100.1G, 12.100.U and 12.120.U. If we further analyze the composition of these cases, it can be seen how they count with a high number of optima. This situation makes easier the optimal resolution of these cases, in which the weight of finding some concrete subsets is crucial for reaching the optimum of the problem. In other words, some specific examples are more restrictive than others, since few limited subsets are compulsory needed for obtaining any optima. Not finding these subsets in the quantum annealing algorithm for the subset sampling subroutine (Section 4.1) leads to the impossibility of the method to reach the optimal solution.

Table 3: Average size of ideal subset found by H-BPP in those runs that the optimal solution is not found.

Instance	Avg. size of ideal sub.	Instance	Avg. size of ideal sub.
12.100.2G	10.2 (out of 31)	12.120.2G	15.2 (out of 29)
12.100.1G	17.0 (out of 34)	12.120.1G	19.1 (out of 38)
12.120.1G	11.5 (out of 21)	12.120.1G	28.13 (out of 54)

6 CONCLUSIONS AND FUTURE WORK

In this work, we present a new hybrid quantum-classical algorithm for solving 1dBPP. The idea that we have introduced is to use a quantum annealing algorithm to reduce the space of possible solutions. This is performed by searching for feasible configurations of items fitting in a single bin. Within this reduced search space,
the algorithm implements a classical heuristic for generating the configuration minimizing the number of containers. As a proof of concept, we have compared the accuracy of our results against a classical brute-force algorithm. Employing a benchmark composed by 18 randomly generated instances with different number of packages and weight distributions, we have found that our algorithm is capable of reliably finding the optimal solution for the smaller instances. For the instances with a higher number of packages, the performance of the algorithm slightly degrades. However, the reduction of the search space and the expected resource consumption of the quantum annealing algorithm in terms of the qubit number, allows us to find approximate solutions for larger instances, while the brute-force algorithm can not find the solution in a reasonable time.

Despite of the simplicity of the problem solved in this work, this paves the way for addressing more complex BPP problem variants (such as the two-dimensional or three-dimensional BPPs) using hybrid quantum-classical algorithms. There is room for improvement regarding the quantum annealing subroutine, and the selection of its hyper-parameters. As a future work, we have planned to improve the classical module of the H-BPP, in order to increase the probability of finding the subset of packages found in the optimal configurations. In this regard, we need to perform further analysis of the algorithm to prove the possible advantage of using a complete quantum algorithm for the whole process. We also leave the possibility of expanding the algorithm developed in this exploratory work to other problems whose solution can also be divided into different partial solutions.

ACKNOWLEDGMENTS

The research leading to this paper has received funding from the QUANTEK project (ELKARTEK program from the Basque Government, expedient no. KK-2021/00070). Additionally, MS acknowledges support from Spanish Ramón y Cajal Grant RYC-2020-030503-I, the projects QMiCS (820505) and OpenSuperQ (820363) of the EU Flagship on Quantum Technologies, from the EU FET Open project Quromorphic (828826) and EPIQUS (899368), as well as from IQM Quantum Computers project 'Generating quantum algorithms and quantum processor optimization’. MgDa acknowledges support from the UPV/EHU and TECNALIA 2021 PIF contract call.

REFERENCES

[1] Scott Aaronson. 2010. BQP and the Polynomial Hierarchy. In Proceedings of the Forty-Second ACM Symposium on Theory of Computing (Cambridge, Massachusetts, USA) (STOC ’10). Association for Computing Machinery, New York, NY, USA, 141–150.
[2] Duaa Salama Abdul-Minaam, Wadha Mohammed Edkeelh, Saqar Al-Mutairi, Mohamed A Awad, and Walaa H El-Ashmawi. 2020. An adaptive fitness-dependent optimizer for the one-dimensional bin packing problem. IEEE Access 8 (2020), 97950–97974.
[3] Akshay Ajagekar, Travis Humble, and Fengqi You. 2020. Quantum computing based hybrid solution strategies for large-scale discrete-continuous optimization problems. Computers & Chemical Engineering 132 (2020), 106630.
[4] FF Al Adeh. 2017. Natural Limitations of Quantum Computing. Int J Swarm Intel Evol Comput 6, 152 (2017), 2.
[5] Jonathan Alcoseb, Yassine Hamoudi, Antoine Jouy, Felix Klingelhöfer, and Miklos Santha. 2021. Classical and quantum dynamic programming for Subset-Sum and variants. arXiv:2111.07059 [quant-ph].
[6] Ricardo De Almeida and Maria Teresinha Arns Steiner. 2016. Resolution of one-dimensional bin packing problems using augmented neural networks and minimum bin slack. International Journal of Innovative Computing and Applications 7, 4 (2016), 214–224.
[7] M. H. S. Amin. 2009. Consistency of the Adiabatic Theorem. Physical Review Letters 102 (2009), 220401. Issue 22.
[8] Enrico Angelelli, Nicola Biamonte, and Carlo Filippi. 2014. Optimal interval scheduling with a resource constraint. Computers & operations research 51 (2014), 268–281.
[9] Frank Arute, Kunal Arya, Ryan Babbush, Dave Bacon, Joseph C. Bardin, Rami Barends, Rupak Biswas, Sergio Boixo, Fernando G. S. L. Brandao, David A. Buell, Brian Burkett, Yu Chen, Zijun Chen, Ben Chiaro, Roberto Collins, William Courtney, Andrew Dunsworth, Edward Farhi, Brooks Foxen, Austin Fowler, Craig Gidney, Marissa Giustina, Rob Graff, Keith Guillen, Steve Haeberge, Matthew P. Harrigan, Michael J. Hartmann, Alan Ho, Markuus Hoffmann, Trotst Huang, Travis S. Humble, Sergier V. Isakov, Evan Jeffrey, Zhang Jiang, Dvir Kafri, Kostyantyn Kechedzhi, Julian Kelly, Paul V. Klimov, Sergey Knysh, Alexander Korotkov, Fedor Kostritsa, David Landhuis, Mike Lindmark, Erik Lucero, Dmitry Lyakh, Salvatore Mandra, Jarrod McClean, Matthew McEwen, Anthony Mezragrant, Xiao Mi, Kristel Michielsen, Masoud Mohseni, Josh Mutts, Oier Naaman, Matthew Neeley, Charles Neill, Murphy Yuezhen Niu, Eric Ostby, Andre Petukhov, John C. Platt, Chris Quintana, Eleanor G. Rieffel, Pedram Roushan, Nicholas C. Robin, Daniel Sank, Kevin J. Sattinger, Vadam Sneluyanuky, Kevin J. Sung, Matthew D. Trevithick, Amit Vainsencher, Benjamin Villalonga, Theodore White, Z. Jamie Yao, Ping Yeh, Adam Zalcman, Hartmut Neven, and John M. Martinis. 2019. Quantum supremacy using a programmable superconducting processor. Nature 574, 7779 (2019), 505–510.
[9] Nurjen Aydin, Ibrahim Muter, and Ö Ilker Birbil. 2020. Multi-objective temporal bin packing problem: An application in cloud computing. Computers & Operations Research 121 (2020), 104959.
[10] N. Aydin, I. Muter, and S. Ilker Birbil. 2019. Bin packing problem with time dimension: An application in cloud computing.
[11] R. Barends, A. Shabani, L. Lamata, J. Kelly, A. Mezzacapo, U. Las Heras, R. Babbush, A. G. Fowler, B. Campbell, Yu Chen, Z. Chen, B. Chiaro, A. Dunsworth, E. Jeffrey, E. Lucero, A. Megrant, J. Y. Mutus, M. Neeley, C.Neill, P. J. J. O’Malley, C. Quintana, P. Roushan, D. Sank, A. Vainsencher, J. Wenner, T. C. White, E. Solano, H. Neven, and John M. Martinis. 2016. Digitized adiabatic quantum computing with a superconducting circuit. Nature 534, 7606 (2016), 222–226.
[12] Daniel J. Bernstein, Staacey Jeffery, Tanja Lange, and Alexander Mayrer. 2013. Quantum Algorithms for the Subset-Sum Problem. In Post-Quantum Cryptography, Philippe Gaborit (Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg, 16–33.
[13] Luca Bertazzi, Bruce Golden, and Xingyin Wang. 2019. The bin packing problem with item fragmentation: a worst-case analysis. Discrete Applied Mathematics 261 (2019), 63–77.
[14] Vanessa MR Bezerra, Alãe AS Leao, José Fernando Oliveira, and Maristela O Santoso. 2020. Models for the two-dimensional level strip packing problem – a review and a computational evaluation. Journal of the Operational Research Society 71, 4 (2020), 606–627.
[15] Xavier Bonnetain, Rémi Brucot, André Schrotenholzer, and Yixin Shen. 2020. Improved classical and quantum algorithms for subset-sum. In International Conference on the Theory and Application of Cryptology and Information Security. Springer, 633–666.
[16] Xavier Bonnetain, Rémi Brucot, André Schrotenholzer, and Yixin Shen. 2020. Improved Classical and Quantum Algorithms for Subset-Sum. arXiv:2002.05276 [quant-ph].
[17] M. Born and V. Fock. 1928. Beweis des Adiabatensatzes. Zeitschrift für Physik 425, 1868 (1928), 71, 4 (2020), 606–627.
[18] M. Born and V. Fock. 1928. Beweis des Adiabatensatzes. Zeitschrift für Physik 425, 1868 (1928), 71, 4 (2020), 606–627.
[19] Stephen Boyd and Lieven Vandenberghe. 2004. Convex Optimization. Cambridge University Press.
[20] M. Cerino, Andrew Arrasmith, Ryan Babbush, Simon C. Benjamin, Suguru Endo, Keisuke Fujii, Jarrod R. McClean, Konst Prime, Xiao Yuan, Lukasz Czirjak, and Patrick J. Coles. 2021. Variational quantum algorithms. Nature Reviews Physics 3 (2021), 625–644.
[21] Edward G Coffman, Jr, Michael R Garey, and David S Johnson. 1983. Dynamic bin packing. SIAM J Comput 12, 2 (1983), 227–258.
[22] Jónas Jónasson and Mads Haahr. 2018. Variants of Classical One Dimensional Bin Packing. In Handbook of Approximation Algorithms and Metaheuristics, Second Edition. Chapman and Hall/CRC, 519–538.
[23] David Elieser Deutsch. 1989. Quantum algorithms for the Subset-Sum Problem. In Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences 425, 1868 (1989), 73–90.
[24] Yongcheng Ding, Xi Chen, Lucas Lamata, Enrique Solano, and Mikl Sanz. 2021. Implementation of a Hybrid Classical-Quantum Annealing Algorithm for Logistic Network Design. SN Computation Science 2, 1 (2022), 68.
[25] Krzysztof Domino, Mátýas Konorczyk, Krzysztof Krawiec, Konrad Jablonski, Sebastian Deffner, and Bartlomej Gardas. 2021. Quantum annealing in the NSQ era: railway conflict management. arXiv:2111.07059 [quant-ph].
[26] Edward Farhi, Jeffrey Goldstone, and Sam Gutmann. 2014. A Quantum Approximate Optimization Algorithm. arXiv:1411.4028 [quant-ph].
Asier Galicia, Borja Ramon, Enrique Solano, and Mikel Sanz. 2020. Enhanced AV Navaneeth and MR Dileep. 2021. A study and analysis of applications of Andrea Lodi, Silvano Martello, and Daniele Vigo. 2002. Heuristic algorithms for Andrea Lodi, Silvano Martello, and Michele Monaci. 2002. Two-dimensional Johan Håstad. 2001. Some Optimal Inapproximability Results. Lov K. Grover. 1996. A Fast Quantum Mechanical Algorithm for Database Searching. In Proceedings of the Twenty-Eight Annual ACM Symposium on Theory of Computing (Philadelphia, Pennsylvania, USA) (STOC ’96). Association for Computing Machinery, New York, NY, USA, 212–219.

N. N. Hegade, P. Chandarana, K. Paul, X. Chen, F. Alibarr-Araigada, and E. Solano. 2021. Portfolio Optimization with Digitized-Counterdiabatic Quantum Algorithms. arXiv:2112.08347 [quant-ph].

Dylan Herman, Cody Gooding, XiaoYuan Liu, Alexey Galda, Ilya Safro, Yue Sun, Marco Pistoia, and Yuri Alexeev. 2022. A Survey of Quantum Computing for Finance. arXiv:2201.02773 [quant-ph].

Johan Håstad. 2001. Some Optimal Inapproximability Results. Journal of the ACM 48, 3 (2001), 798–859.

Tom H. Johnson, Stephen R. Clark, and Dieter Jalsch. 2014. What is a quantum simulator? Journal of Quantum Technology 1, 1 (2014), 10.

Tonio Kato. 1950. On the Adiabatic Theorem of Quantum Mechanics. Journal of the Physical Society of Japan 5, 6 (1950), 435–459.

Kenneth L. Krause, Vincent Y Shen, and Herbert D Schwetman. 1975. Analysis of the two-dimensional bin packing problem. Journal of Heuristics 24, 11 (2019), 636–663.

Marco Fellous-Asiani, Jing Hao Chai, Robert S Whitney, Alexia Auffèves, and Mikel Garcia de Andoin, Ana Martin, and Mikel Sanz. 2022. Digital Analog Hybrid Quantum-Classical Heuristic for the Bin Packing Problem GECCO ’22 Companion, July 9–13, 2022, Boston, MA, USA 1–8.

LAUREN PUSEY-NAZZARO AND PRESANNA DATE. 2020. Adiabatic quantum optimization fails to solve the knapsack problem. arXiv:2008.07456 [quant-ph].

Abdullah Ash Sakh, Mahabubul Alam, Kouostubh Phalak, Aakashirsha Suresh, Rasti Osman Topaloglu, and Swaroop Ghosh. 2021. A survey and tutorial on security and resilience of quantum computing. In 2021 IEEE European Test Symposium (ETS). IEEE, 1–10.

Ines Sbai and Saoussen Krichen. 2019. A Hybrid PSA-LS approach for solving the Two-Dimensional Bin Packing Problem with weight capacities constraint. A case study. In Proceedings of the 9th International Conference on Information Systems and Technologies. 1–8.

F.W. Shor 1994. Algorithms for quantum computation: discrete logarithms and factoring. In Proceedings 35th Annual Symposium on Foundations of Computer Science. 124–134.

Kristina Yancey Spencer, Pavel V Tsvetkov, and Joshua J Jarrell. 2019. A greedy memetic algorithm for a multiobjective dynamic bin packing problem for storing cooling objects. Journal of Heuristics 25, 1 (2019), 1–45.

Andrew Steane. 1998. Quantum computing. Reports on Progress in Physics 61, 2 (1998), 117.

Daniel Stieck França and Raul Garcia-Patrón. 2021. Limitations of optimization algorithms on noisy quantum devices. Nature Physics 17, 11 (2021), 1221–1227.

Bhagaban Swain, Rajdeep Ghosh, and Pranjal Borah. 2014. Quantum Evolutionary Algorithm for Solving Bin Packing Problem. International Journal of Engineering and Computer Science 3 (2014), 61–67. Issue 8.

Alessio Trivella and David Pisinger. 2016. The load-balanced multi-dimensional bin-packing problem. Computers & Operations Research 74 (2016), 152–164.

Mark Van Houdenhoven, Jeroen M Van Oostrum, Erwin W Hans, Gerhard Wullink, and Geert Kamerzein. 2007. Improving operating room efficiency by applying bin-packing and portfolio techniques to surgical case scheduling. Anesthesi a & Analgesia 105, 3 (2007), 707–714.

Lijun Wei, Zhixing Luo, Roberto Baldacci, and Andrew Lim. 2020. A new branch-and-price-and-cut algorithm for one-dimensional bin-packing problems. INFORMS Journal on Computing 32, 2 (2020), 428–443.

Yulin Wu, Wan-Su Bao, Sirui Cao, Fusheng Chen, Ming-Cheng Chen, Xiawei Huang, Hui Khoon Ng. 2020. Limitations in quantum computing from resource constraints. Quantum Science and Technology 5, 4 (2020), 045007.

Andrew Lodi, Silvano Martello, and Michele Monaci. 2002. Two-dimensional bin-packing problems: A survey. European journal of operational research 141, 2 (2002), 241–252.

Andrea Lodi, Silvano Martello, Michele Monaci, and Daniele Vigo. 2014. Two-Dimensional Bin Packing Problems: Paradigms of combinatorial optimization: Problems and new approaches (2014), 105–129.

Andrea Lodi, Silvano Martello, and Daniele Vigo. 2002. Heuristic algorithms for the three-dimensional bin packing problem. European Journal of Operational Research 141, 2 (2002), 410–420.

Andrea Lodi, Silvano Martello, and Michele Monaci. 2002. Two-Dimensional Bin Packing Problems: Paradigms of combinatorial optimization: Problems and new approaches (2014), 105–129.

Andrew Lodi, Silvano Martello, and Michele Monaci. 2002. Two-Dimensional Bin Packing Problems: Paradigms of combinatorial optimization: Problems and new approaches (2014), 105–129.

Andrew Lodi, Silvano Martello, and Michele Monaci. 2002. Two-Dimensional Bin Packing Problems: Paradigms of combinatorial optimization: Problems and new approaches (2014), 105–129.

Andrea Lodi, Silvano Martello, and Michele Monaci. 2002. Two-Dimensional Bin Packing Problems: Paradigms of combinatorial optimization: Problems and new approaches (2014), 105–129.