Cold Tolerance Evaluation in a Diallel among Open-pollinated Sweet Corn Cultivars

P. Revilla, J.R. Hotchkiss, and W.F. Tracy
Department of Agronomy, University of Wisconsin–Madison, WI 53706

Abstract. Many sweet corn hybrids germinate poorly and have low seedling vigor in cold soils. Sources of cold tolerance and an understanding of its inheritance would benefit sweet corn production. Our objective was to determine the genetics of cold tolerance among open-pollinated progenitors of modern sweet corn. Six open-pollinated sweet corn cultivars were used as parents of a diallel. The 15 crosses plus reciprocals, parents, and checks were evaluated in cold chambers. Growing conditions were 14 hours with light at 15°C and 10°C without light at 10°C. Days to emergence, shoot dry weight, and root dry weight were recorded. The experiment was repeated in the greenhouse under warm conditions. Variation for cold tolerance was present among the crosses and cultivars. The variation was primarily due to general combining ability (GCA) effects, with specific combining ability (SCA) effects and reciprocal effects being significant for seedling dry mater. Howling Mob had significant favorable GCA for all cold tolerance traits and resulted in the most cold-tolerant hybrids. ‘Country Gentleman’ and ‘Evergreen’ were the slowest emerging parents. Days to emergence under cold conditions was not correlated to days to emergence under warm conditions. The correlations between root weight (cold) and root weight (warm) and shoot weight (cold) and shoot weight (warm) were significant, positive, and relatively large. In this material it appears that seedling vigor under warm conditions could be used to predict seedling size under cold conditions.

In many sweet corn production areas, production is limited by poor seedling emergence and vigor in cold, wet soils. The minimum temperature for germination, emergence, and growth of corn is ≈9 to 10°C (Blacklow, 1972; Crevenco et al., 1983; Eagles and Hardacre, 1979). Problems during emergence and early stages of development have been attributed to many factors, including reduced endosperm weight and level of carbohydrate reserves, poor pericarp integrity, and increased susceptibility to pathogens (Andrew, 1982; Styer and Cantifille, 1983; Tracy, 2000). Sweet corn with the sugary1 (su1) genotype has less starch in the endosperm relative to starchy corn (Sobraliske and Andrew, 1980). Supersweet (srauenken2, sh2) seed in which endosperm weight is less than half that of su1 has even fewer carbohydrate reserves (Schmidt and Tracy, 1988). The effect of seed size on germination is complex and has been related to emergence, seedling weight, and other factors involved in early growth (Bockstaller and Girardin, 1994). Poor emergence and vigor observed in sweet corn is related to both biotic and abiotic factors (Tracy, 2000). Cracks in the pericarp can result in rapid inhibition and leakage of electrolytes from the seed. The leachate may stimulate the development of pathogenic fungi (Tracy, 2000).

While early planting of sweet corn may result in cold stress, early planting is often desirable due to several biological and economic advantages. In the upper Midwest, early planted corn escapes a number of important diseases, including common rust (Puccinia sorghi) and maize dwarf mosaic virus (Tracy, 2000), and results in cold stress, early planting is often desirable. In addition, processing factories to start processing earlier thereby increasing productivity per factory. Consequently, cold tolerant germplasm sources would be useful.

Several studies have been conducted to determine the relative amounts of genetic variability for cold tolerance in corn. Brockling (1990) evaluated rate of emergence of tropical corn, from Mexico and Peru, under cold conditions. He found that Mexican races adapted to 1800 m or higher had faster emergence (Hotchkiss et al., 1990) from the Seed Savers collection based on morphology, pedigree, and molecular markers. In a separate study they (Revilla and Tracy, 1997) identified two latent heterotic patterns. ‘Country Gentleman’ by ‘Northern Flint’ cultivars ‘Golden Bantam’, ‘Pease Crosby’, and ‘Lindsey Meyer Blue’ is a strong heterotic pattern. A secondary pattern involves ‘Stowell’s Evergreen’ by ‘Golden Bantam’, ‘Pease Crosby’, and ‘Lindsey Meyer Blue’. Since these cultivars include the progenitors of modern sweet corn germplasm, they are a primary source to study the genetics of cold tolerance in sweet corn. Our objective was to determine genetics of cold tolerance among open-pollinated progenitors of modern sweet corn.

Materials and Methods

Six open-pollinated sweet corn cultivars were used as parents: ‘Country Gentleman’, ‘Golden Bantam’, ‘Pease Crosby’, and ‘Stowell’s Evergreen’ from a sweet corn collection maintained by the Department of Agronomy and Life Sciences, Univ. of Wisconsin–Madison; ‘Howling Mob’ (SS IA DR G) from the Seed Savers collection (Adelman et al., 1993); and ‘Pease Crosby’ (PI 255983) from the North Central Plant Introduction Center, Ames, Iowa. These cultivars are diverse and historically important germplasm. Four checks were also included: ‘Maiz Dulce’, ‘WCDNT’s’, ‘NS-CT’, and the commercial su1 hybrid ‘Jubilee’. ‘Maiz Dulce’ is a high-altitude Mexican land race homozygous for su1. ‘WCDNT’s’ (su1) was developed at the Univ. of Wisconsin–Madison and contains 95% ‘Cacahuacintle Dulce’ (high-altitude Mexican germplasm) and 50% temperate sweet germplasm. ‘NS-CT’ is a Nebraska field corn synthetic developed for cold tolerance. In a previous screening study we had determined that these cultivars represent a range of response to cold tolerance (Hotchkiss et al., 1997).

Seed was produced for all populations and hybrids in one year and in one location to reduce environmental effects on seed quality. ‘Jubilee’ was produced commercially. All populations were grown on Plano silt loam (fine-silty, mixed, mesic Typic Argudolls) at the West Madison Agronomic Research Station in Summer 1993. Nursery rows were over-planted by machine and thinned to 15 plants per row. Rows were 5.3 m in length with 0.76 m between rows. A single cross (method II of Griffing, 1956) was made among the six cultivars, in 1993. For each cross, pollen from 25 plants from
one cultivar was bulked. The pollen bulk was used to pollinate 25 plants from the second cultivar. This was done twice so at least 50 plants from each cultivar were used to make each cross.

The 15 hybrids plus reciprocals, six parents, and four checks were planted in 27 x 54-cm trays filled with autoclaved sand, in two growth chambers (Percival Manufacturing Corp., Boone, Iowa). Each chamber had four shelves. The experimental design was a randomized complete block with seven replications. A replication consisted of two plastic trays placed on one shelf. Temperatures within the growth chambers were 14 ± 1°C and 10 ± 1°C for 14-h days and 10-h nights, respectively. These temperatures were chosen because they were slightly higher than the minimum temperature for corn growth (Blacklow, 1972; Crevecour et al., 1983; Eagles and Hardacre, 1979) and allowed measurable growth on entries in a previous study (Hotchkiss et al., 1997). Fluorescent light was provided for 14 h per day. Five kernels per plot from each entry were weighed and planted. In an attempt to control seed rotting pathogens, kernels were dusted with captan ([N-(trichloromethyl)thio]-4-cyclohexene-1,2-dicarboximide) before planting. Kernels were placed 2–5 cm deep. Trays were fertilized with “Peter’s” solution (20–20–20) and covered with clear plastic tops to maintain moisture. To minimize effect of location within the growth chamber, the two trays comprising each replication were rearranged as a unit within chambers. Trays were moved on a daily basis during the first 14 d after planting, then every other day until the experiment was terminated.

Traits measured were: days to emergence, percent emergence, and seedling root and shoot dry weight. Stand counts were recorded every 2 d until 42 d after planting. These counts were used to obtain days to emergence. Plants were thinned to 25 plants from each entry (Hotchkiss et al., 1997; Smith and Millet, 1964).

Stand counts at 42 d after planting were used to calculate percent emergence. Seedlings were removed from trays on a per plot basis, rinsed in water, separated into roots and shoots, dried, and dried for 7 d at 120°C before weighing.

The warm evaluation followed the cold evaluation experimental procedure as described above, except the entries were grown in a greenhouse at ±24 ± 2°C. Stand counts were made every day until 12 d after planting. Percent and days to emergence, and root and shoot weights were obtained as described above.

Individual analyses of variance (ANOVar) were performed for each trait for both cold and warm experiments. Covariance analyses, using kernel weight as independent variable, were performed for each trait, and the relative efficiency of the covariance analysis was decided following Gomez and Gomez (1984).

Two ANOVar were performed. One included hybrids, reciprocals, parents, and checks. The other, with the hybrids plus reciprocals, was used to investigate combining abilities and reciprocal effects. Combining abilities and reciprocal effects, for the cold evaluation, were computed using the program “Diallel analysis and simulation” (Burrow and Coors, 1994). Cultivar effects were considered fixed. Phenotypic correlations between traits under cold and warm conditions were computed. SAS was used for ANOVA and covariance analysis, mean comparisons including checks, and correlation analysis (SAS, 1989).

Entries were ranked based on their performance in the cold environment using a rank-summation index with a scale of 1 to 40, allowing for ties (Mock and Skrifa, 1978). This index was obtained by first ranking means of days to emergence, and root and shoot weight. The rank of 1 represented the entry with the most desirable mean for that trait. Second, the ranks of the traits were summed for each entry. The sum was divided by three. A smaller index value indicated more cold tolerance.

Results and Discussion

In the ANOVA including parents and checks under cold conditions, entries differed for days to emergence and root and shoot dry weight but not for percent emergence. Entries also differed for kernel weight, thus covariance analyses were performed for the three cold tolerance traits on kernel weight. Days to emergence did not covary significantly with kernel weight. Root and shoot weight covaried significantly with kernel weight, but not enough to justify the use of kernel weight as covariate in subsequent analysis (Gomez and Gomez, 1984).

When confronted with columns of individual numbers relating to the same trait, a rank summation index is useful for summarizing data. Entries ranked from ‘WCNDTS’ (1, most cold tolerant) to ‘Country Gentleman’ (40, least cold tolerant) (Table 1). ‘WCNDTS’ was followed by two ‘Howling Mob’ hybrids, ‘Maiz Dulce’, and ‘Howling Mob’. The rank summation index makes ‘Howling Mob’s’ genetic contribution to cold tolerance quite clear. Nine of the top 14 hybrids have ‘Howling Mob’ as a parent. However, the 15 least cold tolerant hybrids had either ‘Country Gentleman’ or ‘Stowell’s Evergreen’ as a parent. Based on the rank summation index, the lightest roots had the lightest shoots. ‘Howling Mob’ and ‘NS-CT’ were the heaviest shoots. ‘Stowell’s Evergreen’ and ‘NS-CT’ had the lightest shoots and ranked just above the lightest. Relative root and shoot weights play a greater role in cold tolerance (Blum, 1988).

Under cold conditions days to emergence, root weight, and shoot weight were all correlated (Table 2). Negative correlations indicate that the more rapidly germinating entries had heavier shoots and roots. Stump (1984) found a positive association between days to emergence and seedling vigor under cold conditions. Keim and Gardner (1984) found significant positive correlations between seedling dry weight and vigor and emergence proportion under cold conditions. On the other hand, Mock and Eberhart (1984) found that the rate of cold emergence was not positively correlated with seedling dry matter. Correlations among these traits depend on the nature of the genetic material and the environmental conditions (Blum, 1988).

The correlation between root weight and shoot weight was relatively large and indicates it may be possible to select for improved root weight indirectly by selecting for heavier shoots. Given the greater time and effort required to collect data on roots this may be worthwhile. On the other hand, the correlations between root and shoot weight and days to emergence, while significant, were relatively small and indicate that both weight and emergence rate should be selected.

Under warm conditions, entries varied for days to emergence, and shoot and root weight but not percent emergence (Table 1). Cold days to emergence was uncorrelated with warm days to emergence indicating the necessity for evaluation under cold conditions (Table 2). The correlations between cold root weight and warm root weight and cold and warm shoot weight were relatively high and indicate that these traits could be selected under either warm or cold conditions with indirect gain expected for the alternative condition (Table 2).
Table 1. Means days to emergence and root and shoot weight under cold and warm conditions for 40 sweet corn entries, including 15 hybrids, 15 reciprocals, six parents, and four checks.

Genotype	Days emerg. (cold)	Root wt (cold)	Shoot wt (cold)	Days emerg. (warm)	Root wt (warm)	Shoot wt (warm)
WCDNTS	16.2	0.178	0.196	5.7	0.350	0.382
GBXHM	17.3	0.154	0.209	5.9	0.325	0.386
HMXLM	15.7	0.123	0.239	6.0	0.343	0.457
HM	17.7	0.148	0.234	6.0	0.352	0.396
Maiz Dulce	15.5	0.154	0.175	6.2	0.373	0.370
LMXHM	15.8	0.132	0.191	5.9	0.295	0.305
GBXLM	17.5	0.130	0.220	5.8	0.320	0.390
LMXPC	16.3	0.119	0.206	5.7	0.324	0.356
HMPC	18.4	0.140	0.236	6.0	0.394	0.425
HMXC	18.5	0.145	0.226	6.3	0.352	0.354
HMXG	18.2	0.144	0.203	6.3	0.301	0.337
HMXSE	17.8	0.146	0.187	6.2	0.346	0.351
GBXPC	18.0	0.129	0.213	6.8	0.283	0.342
LMXGB	16.7	0.117	0.192	5.7	0.243	0.307
PCXG	15.8	0.130	0.166	6.0	0.243	0.258
SEXHM	18.6	0.153	0.167	6.0	0.245	0.284
PCXHM	17.0	0.115	0.175	6.0	0.300	0.280
PC	18.5	0.097	0.175	6.0	0.245	0.304
PCXLM	18.7	0.110	0.183	5.8	0.242	0.281
GB	20.2	0.140	0.192	6.2	0.320	0.363
GBXCG	20.9	0.138	0.179	6.1	0.258	0.292
PCXCG	22.7	0.111	0.133	5.5	0.196	0.235
SEXLM	23.0	0.129	0.166	6.6	0.285	0.330
GBXCG	24.8	0.115	0.136	5.3	0.214	0.263
SE	25.8	0.123	0.159	5.9	0.284	0.304
GBXPC	26.0	0.102	0.135	5.8	0.169	0.224
LMXCL	27.1	0.103	0.146	5.7	0.285	0.277
SEXG	27.9	0.126	0.141	5.8	0.290	0.315
LM	29.7	0.082	0.160	6.2	0.290	0.343
PCXSE	30.8	0.099	0.130	5.6	0.225	0.250
LMXSE	31.9	0.105	0.139	5.7	0.222	0.248
PCXHM	32.8	0.093	0.130	5.7	0.207	0.269
LMXCG	33.3	0.090	0.139	5.8	0.227	0.251
SEXCG	34.3	0.119	0.128	6.5	0.243	0.256
CGXG	35.6	0.084	0.132	5.9	0.228	0.260
SE	36.5	0.112	0.124	6.2	0.291	0.324
GBXG	37.0	0.085	0.101	5.8	0.205	0.213
NS-CT	38.6	0.060	0.127	5.8	0.252	0.281
Jubilee	38.4	0.082	0.087	5.5	0.216	0.242
CG	40.1	0.064	0.106	5.9	0.165	0.138

Table 2. Phenotypic correlation coefficients for days to emergence, and root and shoot dry weight under cold (14/10 °C) and warm (24 °C) conditions from a diallel among six open pollinated sweet corn cultivars, including reciprocals and parents and four checks (N = 40).

Trait	Root wt (cold)	Shoot wt (cold)	Days to emergence (cold)	Root wt (warm)	Shoot wt (warm)	Days to emergence (warm)
Root weight	-0.39**	0.73**	0.36**	0.67**	0.66**	0.93**
Shoot weight	0.37**	0.76**	0.87**	0.93**	0.87**	0.93**

Table 3. Hybrids, general (GCA) and specific (SCA) combining abilities, reciprocal effects and error mean squares for four cold tolerance related traits and kernel weight, from the analysis of variance of a diallel among six open pollinated sweet corn cultivars.

Trait	Hybrids	GCA	SCA	Reciprocals	Error
Days to emergence	22.080	75.939	9.092	11.920	6.994
Emergence (%)	361.576	---	---	---	---
Root weight (g)	0.003**	0.007**	0.001	0.002**	0.001
Shoot weight (g)	0.009**	0.031**	0.003**	0.006**	0.001

**Significant at the 0.05 and 0.01 levels, respectively.

*CG = Country Gentleman, GB = Golden Bantam, HM = Howling Mob, LM = Lindsey Meyer Blue, PC = Pease Crosby, and SE = Stowell’s Evergreen.

*Means under cold conditions.

*Means under warm conditions.

*Significant at the 0.01 level.
improving cold tolerance (Brooking, 1990; Eagles and Brooking, 1981). ‘Howling Mob’ and some of its hybrids compared favorably with the Mexican high altitude checks in this study. Inbreds derived from the cultivar ‘Golden Early Market’, which comes from a cross of ‘Golden Bantam’ and ‘Howling Mob’, are still in use today. ‘Howling Mob’ is well adapted to temperate conditions and could be useful as a source of cold tolerance in temperate breeding programs.

Literature Cited

Adelman, A., S. Demunth, B. Idstrom, J. Thuente, and K. Whealy. 1993. Seed Savers 1993 Yearbook. K. Whealy (ed.). Decorah, Iowa.

Andrew, R.W. 1954. Breeding maize for cold resistance. Euphytica 3:108.

Andrew, R.H. 1982. Factors influencing early seedling vigor of shrunken-2 maize. Crop Sci. 22:263.

Blum, A. 1988. Plant breeding for stress environments. CRC Press, Boca Raton, Fla.

Blacklow, W.M. 1972. Influence of temperature on germination and elongation of the radicle and shoot of corn (Zea mays L.). Crop Sci. 12: 647–650.

Bockstaller, C. and P. Girardin. 1994. Effects of seed size on maize growth from emergence to silking. Maydica 39:213–218.

Brooking, I.R. 1990. Variation amongst races of maize from Mexico and Peru for seedling emergence time at low soil temperatures. Maydica 35:35–40.

Burow, M.D. and J.G. Coers. 1994. Diallel: a microcomputer program for the simulation and analysis of diallel crosses. Agron. J. 86: 154–158.

Crevicour, M., R. Delrowt, and R. Bronchart. 1983. Effects of subminimal temperature on physiology and ultrastructure of Zea mays embryo during germination. Can. J. Bot. 61: 1117–1125.

Eagles, H.A., and L.R. Brooking. 1981. Populations of maize with more rapid and reliable seedling emergence than Corn Belt Dents at low temperatures. Euphytica 30:755–763.

Eagles, H.A. and A.K. Hardacre. 1979. Genetic variation in maize (Zea mays L.) for germination and emergence at 10 °C. Euphytica. 28:287–295.

Gomez, K.A. and A.A. Gomez. 1984. Statistical procedures for agricultural research. 2nd ed. Wiley, Singapore.

Griffling, B. 1956. Concept of general and specific combining ability in relation to diallel crossing systems. Aust. J. Biol. Sci. 9:463–493.

Haskell, G. 1949. Studies with sweet corn. I. Cold treatment and germination. Plant and Soil II. 1:49–57.

Haskell, G. and W.R. Singleton. 1949. Use of controlled low temperature in evaluating the cold hardiness of inbred and hybrid maize. Agron. J. 41:34–40.

Hotchkiss, I.R., P. Revilla, and W.F. Tracy. 1997. Cold tolerance among open-pollinated sweet corn cultivars. HortScience 32:719–723.

Keim, K.R. and C.O. Gardner. 1984. Genetic variation for cold tolerance in selected and unselected maize populations. Field Crops Res. 8:143.

Mock, J.J. and S.A. Ebberhart. 1972. Cold tolerance in adapted maize populations. Crop Sci. 12:466.

Mock, J.J. and W.H. Skrdla. 1978. Evaluations of maize plant introductions for cold tolerance. Euphytica 27:27–32.

Murray, G.A. and C.S. Cooper. 1967. Endosperm utilization in relation to cold tolerance of orchard grass seedlings. Agron. J. 59:253.

Ondas, A., P. Revilla, R.A. Malvar, and M.E. Cartea. 1994. Development of sweet corn hybrids adapted to the environmental conditions of the Northwest of Spain. Maydica 39: 171–175.

Pendleton, J.W. 1965. Cultural practices—Spacing, etc. Proc. 20th Annu. Hybrid Corn Industry Res. Conf. p. 51–58.

Revilla, P. and W.F. Tracy. 1995a. Morphological characterization and classification of open-pollinated sweet corn cultivars. J. Amer. Soc. Hort. Sci. 120:112–118.

Revilla, P. and W.F. Tracy. 1995b. Isozyme variation and phylogenetic relationships among open-pollinated sweet corn cultivars. Crop Sci. 35:19–227.

Revilla, P. and W.F. Tracy. 1997. Heterotic patterns among open-pollinated sweet corn cultivars. J. Amer. Soc. Hort. Sci. 122:319–324.

SAS Institute. 1989. SAS/STAT user’s guide. Version 6.09. SAS, Cary, N.C.

Schmidt, D.H. and W.F. Tracy. 1988. Endosperm type, inbred background, and leakage of seed electrolytes during imbibition in sweet corn. J. Amer. Soc. Hort. Sci. 113:269.

Smith, P.G. and A.H. Millet. 1964. Germinating and sprouting responses of the tomato at low temperatures. J. Amer. Soc. Hort. Sci. 84: 480–484.

Soberalske, R.M. and R.H. Andrew. 1980. Gene effects on water soluble polysaccharides and starch of near-isogenic lines of sweet corn. Crop Sci. 20:201.

Stamp, P. 1984. Emergence and seedling growth of tropical highland maize and its topcrosses with Middle European hybrids. Z. Ackerpflanzenbau 153:116.

Styer, R.D. and D.J. Cantliiffe. 1983. Changes in seed structure and composition during development and their effects on leakage in two endosperm mutants of sweet corn. J. Amer. Soc. Hort. Sci. 108:721.

Tracy, W.F. 2000. Sweet corn, p. 155–199. In: A.R. Hallauer (ed.). Specialty corns. CRC Press, Boca Raton, Fla.

Trait	Gentleman	Golden Bantam	Howling Mob	Lindsey Meyer	Pease Crosby	Stowell’s Evergreen	LSDz	SEy
Days to emergence (d)	1.0195	-0.1514	-0.4846	-0.9135	-1.2565	1.7663	1.0316	0.3225
Shoot weight (g)	-0.0270	0.0074	0.0316	0.0143	0.0017	-0.0280	0.0126	0.0039
Root weight (g)	-0.0114	0.0070	0.0188	-0.0056	-0.0060	-0.0028	0.0124	0.0039

*Least significant difference at P = 0.05.

*Standard error.