A Study on Dilazep: II. Dilazep Attenuates Lysophosphatidylcholine-Induced Mechanical and Metabolic Derangements in the Isolated, Working Rat Heart

A.N. Ehsanul Hoque, Nina Hoque, Hiroko Hashizume and Yasushi Abiko*

Department of Pharmacology, Asahikawa Medical College, Asahikawa 078, Japan

Received August 16, 1994 Accepted December 9, 1994

ABSTRACT—The effects of dilazep, d-propranolol and lidocaine on the mechanical and metabolic changes induced by lysophosphatidylcholine (LPC) were studied in isolated, perfused working rat heart. After a stabilization period, the heart was perfused for 5 min with LPC (10 μM) alone, LPC plus dilazep (5, 10 or 20 μM), LPC plus d-propranolol (30 or 50 μM) or LPC plus lidocaine (30 or 100 μM) and then perfused with normal Krebs-Henseleit bicarbonate (KHB) buffer for a further 20 min. Perfusion with LPC for 5 min followed by KHB for 20 min irreversibly decreased cardiac mechanical function, decreased the tissue levels of adenosine triphosphate and creatine phosphate significantly, and increased the tissue levels of lactate and free fatty acids including arachidonic acid. Dilazep or d-propranolol significantly attenuated the mechanical and metabolic changes induced by LPC, but lidocaine did not. These results indicate that the exogenous LPC causes ischemia-like changes, suggesting that LPC is one of the important factors in producing ischemia-reperfusion derangements in terms of mechanical and metabolic functions, and that both dilazep and d-propranolol can prevent the LPC-induced myocardial damage.

Keywords: Dilazep, Lysophosphatidylcholine, Working heart, Adenosine triphosphate, Free fatty acid

In the preceding report (1), we concluded that the anti-ischemic action of dilazep is probably due to its energy-sparing effect. Other factors, however, cannot be excluded from the mechanism of the anti-ischemic action of dilazep. One of the candidates believed responsible for ischemia-induced changes is lysophosphoglycerides, because during ischemia lysophosphoglycerides increase in the heart and in the effluents from myocardium (2–4). In addition, lysophosphoglycerides produce cardiac arrhythmias (2, 5, 6), suggesting that lysophosphoglycerides contribute to cardiac arrhythmias that occur during ischemia and post-ischemic reperfusion (simply expressed as reperfusion in the present study). If lysophosphoglycerides are responsible for arrhythmias during ischemia and reperfusion, there is no reason to discard the view that they are also responsible for other ischemic changes including mechanical dysfunction and metabolic derangements. In support of this view, lysophosphatidylcholine (LPC) has been shown to produce myocardial cell injury in addition to arrhythmias (7).

The present study therefore was designed to examine for the first time whether exogenous LPC could cause ischemia-like mechanical and metabolic changes in the isolated working rat heart and whether dilazep attenuates the LPC-induced changes. LPC was used as one of the lysophosphoglycerides because it accumulates in the ischemic heart (2). To exclude extracardiac factors, we employed an isolated heart preparation. As reference drugs, d-propranolol and lidocaine were employed because these drugs, like dilazep, attenuate ischemia-reperfusion-induced mechanical and metabolic changes of the heart (8, 9).

MATERIALS AND METHODS

Heart perfusion

Male Sprague-Dawley rats (280–340 g; Sankyo Labo Service Corporation, Sapporo) were anesthetized with sodium pentobarbital (50 mg/kg, i.p.). After thoracotomy, the hearts were quickly removed and perfused according to the Langendorff method at a constant pressure

*Part of the present study has been reported at the Xth International Congress of Pharmacology, Montreal, Canada, July 24–29, 1994.

*To whom correspondence should be addressed.
of 90 cmH\textsubscript{2}O for 10 min (stabilization period), and then they were perfused according to the working heart method at a left atrial filling pressure of 12.5 cmH\textsubscript{2}O and an afterload pressure of 90 cmH\textsubscript{2}O for 35 min (8, 10). The solution for perfusion was a modified Krebs-Henseleit bicarbonate (KHB) buffer (119.4 mM NaCl, 4.7 mM KCl, 2.9 mM CaCl\textsubscript{2}, 1.2 mM MgSO\textsubscript{4}, 1.2 mM KH\textsubscript{2}PO\textsubscript{4}, 25.0 mM NaHCO\textsubscript{3}, 11.0 mM glucose and 0.5 mM EDTA-2Na) equilibrated with a gas mixture of 95\% O\textsubscript{2} + 5\% CO\textsubscript{2} and maintained at 37 °C. Aortic pressure and heart rate were monitored with a pressure transducer placed in the aortic cannula. Cardiac mechanical function was defined as RPP (peak aortic pressure multiplied by heart rate). Coronary flow (defined as the flow coming from the cannula inserted into the pulmonary artery) was measured with a graded glass cylinder.

Experimental protocol and heart groups

After 10 min of working heart perfusion, the perfusion solution was changed for 5 min to the KHB buffer containing LPC alone, LPC plus dilazep (5, 10 or 20 \mu M), LPC plus d-propranolol (30 or 50 \mu M), LPC plus lidocaine (30 or 100 \mu M) or LPC plus bovine serum albumin (BSA) (10 \mu M). The concentration of LPC used in the present study was 10 \mu M. After treatment with LPC or LPC plus drugs for 5 min, the hearts were perfused with KHB buffer for a further 20 min. In some experiments, the hearts were perfused with LPC alone for 5 or 25 min.

The hearts were divided into 12 groups: control (n=10), LPC 5 min (n=6), LPC 25 min (n=6), LPC (LPC 5 min + KHB 20 min) (n=12), LPC plus dilazep (5 \mu M) (n=8), LPC plus dilazep (10 \mu M) (n=12), LPC plus dilazep (20 \mu M) (n=10), LPC plus d-propranolol (30 \mu M) (n=8), LPC plus d-propranolol (50 \mu M) (n=5), LPC plus lidocaine (30 \mu M) (n=4), LPC plus lidocaine (100 \mu M) (n=4) and LPC plus BSA (10 \mu M) (n=5). In the control group, the hearts were perfused with KHB by the working heart perfusion method for 35 min without LPC or any drug. The hearts were freeze-clamped at the end of KHB perfusion. In the LPC 5 min and LPC 25 min groups, the hearts were perfused with LPC alone for 5 min and 25 min, respectively. These hearts were freeze-clamped at the end of LPC perfusion. In the LPC (LPC 5 min + KHB 20 min) group, hearts were perfused with LPC for 5 min and then perfused with KHB for 20 min. In LPC plus drug or LPC plus BSA groups, hearts were perfused with LPC plus drug or LPC plus BSA, respectively, for 5 min and then perfused with KHB for 20 min. In these groups, the hearts were freeze-clamped at the end of the 20 min perfusion with KHB. Freeze-clamping of the heart was performed by the use of a Wollenberger's clamp chilled in liquid nitrogen (−173 °C). The frozen myocardial samples were stored at −173 °C until the bio-chemical analysis was performed.

Assay of the tissue high-energy phosphates and lactate

A part of the frozen cardiac tissue sample (about 0.8 – 1 g) was pulverized in a mortar and pestle cooled to the temperature of liquid nitrogen. High-energy phosphates (adenosine triphosphate, ATP; adenosine diphosphate, ADP; adenosine monophosphate, AMP; and creatine phosphate, CrP) and lactate were extracted from the pulverized tissue sample with perchloric acid and then neutralized with KOH. These products of energy metabolism were assayed by standard enzymatic methods (11–13) using a spectrophotometer (Gilford system 2600; Gilford Instrument Laboratories, Inc., Oberlin, OH, USA). Energy charge potential (ECP) was calculated according to the following formula:

\[ECP = \frac{(ATP + 0.5 \text{ ADP})}{(ATP + \text{ ADP} + \text{ AMP})} \]

Assay of the tissue FFA

The levels of tissue free fatty acids (FFA) were measured according to the method described in our previous study (10). Briefly, the frozen cardiac tissue (about 150 mg) was pulverized in a mortar cooled with liquid nitrogen, and tissue FFA were extracted from the pulverized tissue with chloroform/methanol (2:1) containing 0.05\% butylated hydroxytoluene (as an anti-oxidant), and FFA in the extract were then converted to their fluorescent derivatives with 9-anthryldiazomethane in methanol. After incubation at room temperature for 1 hr, the fluorescent derivatives of FFA were filtered with a MilliporeTM filter (FH 0.5 \mu m; Nihon Millipore Kogyo K.K., Yonezawa) and injected into a reverse-phase high-performance liquid chromatography system with a Zorbax-ODS column (0.46 x 25 cm; DuPont, Philadelphia, PA, USA). Methanol/distilled water (100:80) was used as the mobile phase. The level of individual FFA was determined by comparing the peak height of the FFA with that of a known amount of heptadecanoic acid (an internal standard).

Drugs

Dilazep was supplied by Kowa Company (Tokyo). d-Propranolol hydrochloride was supplied by ICI Pharma (Osaka). LPC, biochemicals, reagents and enzymes were purchased from Sigma Chemical Company (St. Louis, MO, USA).

Statistical analyses

All data are expressed as means±S.E.M. The significance of differences between means was analyzed by means of the analysis of variance, followed by Duncan's multiple range test for unpaired observations and by Student's \(t \)-test for paired observations. \(P < 0.05 \) was considered significant.
RESULTS

Cardiac mechanical function

Changes in RPP during 35 min of working heart perfusion in the presence or absence of LPC alone or LPC plus drugs are illustrated in Figs. 1 and 2. Values of RPP of the hearts before treatment with LPC alone or LPC plus drugs were similar in all the groups. In the control hearts, RPP increased when Langendorff perfusion was switched to working heart perfusion, and the RPP remained nearly constant until the end of working heart perfusion. LPC was given to the heart for 5 min from 10 min after the working heart perfusion. LPC decreased the heart rate to 0/min and it also decreased aortic pressure to 0 mmHg; therefore, RPP became 0 mmHg/min after 5 min of LPC treatment. Data on coronary flow before the beginning of LPC perfusion (10 min in Figs. 1 and 2) and those at the end of working heart perfusion (35 min in Figs. 1 and 2) are shown in Table 1.

To determine whether dilazep, d-propranolol or lidocaine could counteract the harmful effects of LPC on the myocardium, a series of hearts were perfused with a combination of LPC and one of these drugs. When dilazep (10 or 20 μM) (Fig. 1) or d-propranolol (30 or 50 μM) (Fig. 2) were present with LPC for 5 min, RPP significantly recovered after 20 min of KHB perfusion. When lidocaine (30 or 100 μM) was present with LPC, however, RPP did not recover (Fig. 2). When BSA was present with LPC, RPP did not decrease but remained unchanged from the control level (Fig. 1), suggesting that only LPC that is not bound to protein produces the cardiac effect. Table 1 indicates that dilazep (10 and 20 μM) and d-propranolol (30 μM) significantly increased the coronary flow compared to LPC (LPC 5 min + KHB

Table 1. Effects of dilazep, d-propranolol and lidocaine on the changes of coronary flow (ml/min) after 10 min of working heart perfusion (before LPC addition) and at the end of 35 min working heart perfusion.

	n	Before LPC	After 35 min of working heart perfusion
Control	10	18.11±0.57	11.69±0.89
LPC 25 min	6	17.98±0.74	2.67±0.21*
LPC (LPC 5 min + KHB 20 min)	12	17.49±0.83	3.86±0.32*
LPC + 5 μM Dilazep	8	17.73±0.55	4.37±0.32*
LPC + 10 μM Dilazep	12	18.17±0.77	6.73±0.75*
LPC + 20 μM Dilazep	10	17.24±0.31	5.73±0.24*
LPC + 30 μM d-Propranolol	8	18.75±0.51	7.43±0.66*
LPC + 50 μM d-Propranolol	5	17.45±0.29	5.03±0.32*
LPC + 30 μM Lidocaine	4	17.28±0.68	3.73±0.21*
LPC + 100 μM Lidocaine	4	18.73±0.35	3.78±0.20*
LPC + BSA	5	17.50±0.55	11.34±0.85

Values represent mean±S.E.M. (ml/min). n = number of experiments. Groups are the same as those described in Figs. 1 and 3. *P<0.05 vs control group, **P<0.05 vs LPC (LPC 5 min + KHB 20 min) group.
20 min) group at the end of the 35-min working heart perfusion, although d-propranolol at 50 μM increased the RPP significantly without any significant increase in coronary flow.

High-energy phosphates

In the control group, the ATP value was 14±0.2 μmol/g dry wt. The levels of ATP in the LPC 25 min and LPC (LPC 5 min + KHB 20 min) groups were significantly lower than that in the control group (Fig. 3). In the LPC 5 min group, the ATP level was similar to that in the control group. The levels of ATP in the LPC+5 μM Dila, LPC+10 μM Dila, LPC+20 μM Dila, LPC+30 μM d-Pro, LPC+50 μM d-Pro and LPC+BSA groups were significantly higher than that in the LPC (LPC 5 min + KHB 20 min) group, whereas the levels of ATP in the LPC+30 μM Lido and LPC+100 μM Lido groups were not significantly higher than that in the LPC (LPC 5 min + KHB 20 min) group.

Changes in the levels of CrP (Fig. 4) and ECP (Fig. 5) were similar to those of ATP. These results indicate that the depletion of high-energy phosphate induced by LPC were attenuated by dilazep or d-propranolol but not by lidocaine. It should be noted that there is no difference between the LPC 5 min and control groups in the ATP and ECP levels, although the CrP level in the LPC 5 min group was lower than that in the control group.

Lactate

The tissue level of lactate in the control group was 4.55±0.68 μmol/g dry wt (Fig. 6). The level of lactate, a marker of ischemia in tissues, increased significantly in LPC 5 min, LPC 25 min and LPC (LPC 5 min + KHB 20 min) groups compared to the control group. In the LPC+5 μM Dila, LPC+10 μM Dila, LPC+20 μM Dila, LPC+60 μM d-Pro, LPC+50 μM d-Pro, LPC+100 μM Lido and LPC+BSA groups, the tissue levels of lactate were significantly lower than that in the LPC (LPC 5 min + KHB 20 min) group, whereas the level of lactate in the LPC+30 μM Lido group was not significantly different from that in the LPC (LPC 5 min + KHB 20 μM) group.

Arachidonic acid and other FFA

The levels of arachidonic acid are shown in Fig. 7. In the control group, the value of arachidonic acid was 18.39±1.34 nmol/g dry wt. The levels of arachidonic acid in the LPC 25 min and LPC (LPC 5 min + KHB 20 min) groups were significantly higher than that in the control group. In the LPC 5 min group, the arachidonic acid level was almost the same as that in the control group. The levels of arachidonic acid in the LPC+5 μM Dila, LPC+10 μM Dila, LPC+20 μM Dila, LPC+30 μM d-Pro, LPC+50 μM d-Pro and LPC+BSA groups were significantly lower than that in the LPC (LPC 5 min + KHB 20 min) group. The effect of LPC on the tissue levels of linoleic acid (Fig. 8), palmitoleic acid (Fig. 9) and stearic acid (Fig. 10) was essentially the same as that on the levels of arachidonic acid.

DISCUSSION

Before the experiments with drugs, we examined the effect of LPC on the cardiac metabolism in three kinds of experiments: experiments with LPC 5 min, experiments with LPC 25 min and experiments with LPC 5 min followed by KBH for 20 min. We found in the isolated working rat heart for the first time that LPC 5 min did not change the ATP and FFA levels, while LPC 25 min decreased the ATP level and increased the FFA levels markedly, and that LPC 5 min followed by KBH for 20 min decreased the ATP level and increased the FFA levels as did the LPC 25 min, although the degrees of change were smaller. The concentration of LPC was chosen as 10 μM,
Fig. 4. The level of creatine phosphate (CrP) in the heart. Groups and symbols are the same as those in Fig. 3.

Fig. 5. The level of energy charge potential (ECP) in the heart. Groups and symbols are the same as those in Fig. 3.

Fig. 6. The level of lactate in the heart. Groups and symbols are the same as those in Fig. 3.

Fig. 7. The level of arachidonic acid in the heart. Groups and symbols are the same as those in Fig. 3.
because in the preliminary experiment, we found that this was the minimum concentration that produces irreversible mechanical dysfunction at the end of KHB perfusion for 20 min following LPC perfusion for 5 min. It is of interest to note that after 5 min of LPC perfusion, the level of ATP did not change, although the level of CrP decreased and the level of lactate increased, indicating that 5 min LPC perfusion does not inflict severe damage to the heart. However, after 20 min of the KHB perfusion following 5 min LPC perfusion, metabolic changes became very severe, suggesting that LPC perfusion for 5 min predisposes the heart to metabolic damage. From the results obtained above, we employed the experiments with LPC 5 min followed by KHB for 20 min as a control for experiments with drugs. Interestingly, dilazep and d-propranolol significantly attenuated both mechanical and metabolic alterations induced by LPC (Figs. 1 and 2, Table 1). These results demonstrate for the first time that dilazep and d-propranolol counteract the effect of exogenous LPC that produces cardiac damage in isolated working rat hearts. There was an increase in coronary flow in experiments with dilazep or d-propranolol (Table 1), except for 50 μM d-propranolol. This increase in coronary flow can be one of the reasons why dilazep and d-propranolol attenuated the LPC-induced mechanical dysfunction and metabolic changes. Nevertheless, there is no coronary vasodilating effect of dilazep or d-propranolol (1), and therefore one cannot determine whether the drug-induced attenuation of the cardiac dysfunction and metabolic changes induced by LPC is a cause or a result of the increase in coronary flow.

Why does LPC produce ischemia-like changes in the heart? Because the pattern of metabolic changes induced
by LPC is very similar to those induced by ischemia and reperfusion, it is possible to assume that LPC affects oxidative production of ATP in the cardiac mitochondria. This view is partially supported by the fact that LPC uncouples oxidative phosphorylation in the rat liver mitochondria (14). Another possible mechanism of LPC-induced derangements is Ca\(^{2+}\)-overload that leads to damage of the heart cells. It has been shown that LPC produces Ca\(^{2+}\)-overload in rabbit cardiac myocytes (15) and potentiates Ca\(^{2+}\) accumulation in rat cardiac myocytes (16). Although the exact mechanism by which LPC induces intracellular Ca\(^{2+}\)-overload remains speculative, several mechanisms have been proposed: 1) LPC has a direct effect to increase the sarcolemmal permeability to Ca\(^{2+}\) (17), 2) LPC increases the level of myocardial cyclic AMP (18), which may cause Ca\(^{2+}\)-influx via slow Ca\(^{2+}\) channel (19), 3) LPC activates protein kinase C directly (20, 21) or indirectly (22) leading to Ca\(^{2+}\)-overload, 4) LPC inhibits myocardial Na\(^{-}\)-K\(^{+}\) ATPase and therefore may increase the intracellular Na\(^{-}\) concentration with consequent acceleration of Na\(^{+}/Ca\(^{2+}\) exchange (23, 24) leading to Ca\(^{2+}\)-overload, 5) LPC produces long-lasting bursts of Na\(^{+}\) channel openings (25) leading to Ca\(^{2+}\)-overload. If there is Ca\(^{2+}\)-overload, mitochondrial damage would also occur. Ver Donk et al. (15) found that on exposure to LPC mitochondria showed complete deterioration of ultrastructure.

Since phospholipase A\(_2\) (PLA\(_2\)) is a Ca\(^{2+}\) dependent enzyme, LPC-induced Ca\(^{2+}\)-overload leads to an increase in the PLA\(_2\) activity (26). In fact, LPC at low concentration can directly increase the PLA\(_2\) activity (27), leading to release of lysophosphoglycerides and FFA. Furthermore, the low tissue level of ATP produced by either ischemia or LPC may also result in increased FFA accumulation (28–30). According to Sargent et al. (7), accumulation of LPC observed in isolated rat hearts after myocardial ischemia may not be solely responsible for the observed contractile dysfunction and LDH release. The results of the present study, however, show that the degree of increase of arachidonic acid after reperfusion following ischemia is similar to that induced by 5 min LPC (10 \(\mu\)M) perfusion followed by 20 min KHB perfusion (1). This suggests that LPC is one of the causes of ischemia-reperfusion damage to the heart, because accumulation of arachidonic acid may reflect accumulation of lysophosphoglycerides released from membrane phospholipids.

Why does dilazep or d-propranolol but not lidocaine attenuate the LPC-induced changes in the heart? According to Neufeld et al. (31), lidocaine is effective in the protection of the isolated rat heart from LPC-induced arrhythmias. There is a question as to why lidocaine does not attenuate the LPC-induced cardiac damage, whereas it attenuates the ischemia-induced (9) and H\(_2\)O\(_2\)-induced cardiac damage (32). Since lidocaine reduces the H\(_2\)O\(_2\)-induced accumulation of malondialdehyde in the heart (32), the mechanism of the protective effect of lidocaine is probably due to inhibition of lipid peroxidation or a free radical scavenging effect. It is clear from the results of the present study that the mechanism of the effect of lidocaine is not the anti-LPC effect. The mechanism of action of dilazep and d-propranolol, however, should be related to the anti-LPC effect.

There are some reports showing that dilazep produces a Ca\(^{2+}\) antagonizing effect in the guinea pig taenia coli (33) and in dog coronary artery (34). Dilazep also inhibits the histamine-stimulated cytosolic Ca\(^{2+}\) increase in cultured endothelial cells (35). If dilazep has the Ca\(^{2+}\) channel blocking action, it would decrease the intracellular concentration of Ca\(^{2+}\) effectively. The results of our recent study (K. Yazawa et al., unpublished observation) has revealed that dilazep inhibits the voltage-dependent Ca\(^{2+}\) channel in the guinea pig ventricular myocyte. Therefore, it is possible that dilazep protects the heart by preventing the increase of intracellular Ca\(^{2+}\) induced by LPC, leading to preservation of mitochondrial function that spares ATP. Sparing of ATP then leads to inhibition of accumulation of FFA (29). Furthermore, dilazep has a PLA\(_2\) inhibitory effect (36). Therefore, it is likely that dilazep can inhibit LPC-induced accumulation of FFA and hence attenuate LPC production. There is no information, however, as to the effect of d-propranolol on the Ca\(^{2+}\) channel. In regard to the effect of dilazep, there is a possibility that the drug protects against the LPC-induced cardiac damage via inhibiting adenosine uptake into cardiac cells and hence potentiating the effect of adenosine (37). In fact, stimulation of adenosine A\(_3\) receptor causes an inhibitory effect on ischemia-induced infarct size (38). The above assumption however is hypothetical, because there is no report suggesting that adenosine protects against the LPC-induced cardiac dysfunction and that d-propranolol inhibits adenosine uptake into cardiac cells.

In conclusion, although the exact mechanism still remains under study, our present results clearly indicate that LPC is an important factor in producing ischemic damage, and both dilazep and d-propranolol attenuate mechanical and metabolic changes induced by exogenous LPC.

Acknowledgments

The authors would like to express sincere thanks to Mr. Tadahiko Yokoyama for his skilful technical assistance and to Miss Aoi Rikiyama for her excellent secretarial work. We also wish to thank Mr. Simon Bayley for his help in preparing the manuscript. Dilazep and d-propranolol were kind gifts of Kowa Company (Tokyo) and ICI Pharma (Osaka), respectively.
REFERENCES

1 Hoque ANE, Hoque N, Hashizume H and Abiko Y: A study on dilaze: I. Mechanism of anti-ischemic action of dilaze is not coronary vasodilation but decreased cardiac mechanical function in the isolated, working rat heart. Jpn J Pharmacol 67, 225–232 (1995)

2 Sobel BE, Corr PB, Robison AK, Goldstein RA, Witkowski FX and Klein MS: Accumulation of lysophosphoglycerides with arrhythmogenic properties in ischemic myocardium. J Clin Invest 62, 546–553 (1978)

3 Shaikh NA and Downar E: Time course of changes in porcine myocardium phospholipid levels during ischemia. An assessment of the lysolipid hypothesis. Circ Res 49, 316–325 (1981)

4 Snyder DW, Craford JRWA, Glashow JL, Rankin D, Sobel BE and Corr PB: Lysophosphoglycerides in ischemic myocardium effluents and potentiation of their arrhythmogenic effects. Am J Physiol 241, H700–H707 (1981)

5 Corr PB, Witkowski FX and Sobel BE: Mechanisms contributing to malignant dysrhythmias induced by ischemia in the cat. J Clin Invest 61, 109–119 (1978)

6 Corr PB, Saftz JE, Lee BI, Gross RW, Keim C and Sobel BE: Pathophysiological concentrations of lysophosphatides responsible for electrophysiological alterations (abstract). Circulation 64, 221 (1981)

7 Sargent CA, Vesterqvist O, Ogletree ML and Grover GJ: Effects of endogenous and exogenous lysophosphatidylcholine in isolated perfused rat hearts. J Mol Cell Cardiol 25, 905–913 (1993)

8 Hoque ANE, Nasa Y and Abiko Y: Cardioprotective effect of d-propranolol in ischemic-reperfused isolated rat hearts. Eur J Pharmacol 236, 269–277 (1993)

9 Nakamura K, Ichihara K and Abiko Y: Effect of lidocaine on the accumulation of non-esterified fatty acids in the ischemic perfused heart. Eur J Pharmacol 169, 259–267 (1989)

10 Nasa Y, Hoque ANE, Ichihara K and Abiko Y: Cardioprotective effect of pindolol in ischemic-reperfused isolated rat hearts. Eur J Pharmacol 213, 171–181 (1992)

11 Gutmann I and Wahlefeld AW: L(+)-Lactate. Determination with lactate dehydrogenase and NAD. In Methods of Enzymatic Analysis, Edited by Bergmeyer HU, Vol 3, pp 1464–1468, Academic Press, New York (1974)

12 Lamprecht W, Stein P, Heinz F and Weisser H: Creatine phosphate. Determination with creatine kinase, hexokinase, and glucose-6-phosphate dehydrogenase. In Methods of Enzymatic Analysis, Edited by Bergmeyer HU, Vol 4, pp 1777–1781, Academic Press, New York (1974)

13 Lamprecht W and Trautschold I: Adenosine-5-triphosphate. Determination with hexokinase and glucose-6-phosphate dehydrogenase. In Methods of Enzymatic Analysis, Edited by Bergmeyer HU, Vol 4, pp 2101–2110, Academic Press, New York (1974)

14 Witter RF, Morrison A and Shepardson GR: Effect of isolecithin on oxidative phosphorylation. Biochim Biophys Acta 26, 120–129 (1957)

15 Ver Donk L, Verellen G, Geerts H and Borgers M: Lysophosphatidylcholine-induced Ca2+ overload in isolated cardiomyocytes and effect of cytoprotective drugs. J Mol Cell Cardiol 24, 977–988 (1992)

16 Sedlis SP, Corr PB, Sobel BE and Ahumada GG: Lysophosphatidylcholine potentiates Ca2+ accumulation in rat cardiac myocytes. Am J Physiol 244, H32–H38 (1983)

17 Corr PB, Snyder DW, Lee BI, Gross RW, Keim CR and Sobel BE: Pathological concentrations of lysophosphatides and the slow response. Am J Physiol 243, H187–H195 (1982)

18 Ahumada GG, Bergmann SR, Carlson E, Corr PB and Sobel BE: Augmentation of cyclic AMP content induced by lysophosphatidylcholine in rabbit hearts. Cardiovasc Res 13, 377–382 (1979)

19 Watanabe M and Besch HRJ: Cyclic adenosine monophosphate modulation of slow calcium influx channels in guinea pig hearts. Circ Res 35, 316–324 (1974)

20 Oishi K, Raynor I.R, Charp PA and Kuo JF: Regulation of protein kinase C by lysophospholipids. Potential role in signal transduction. J Biol Chem 263, 6865–6871 (1988)

21 Sasaki Y, Asaoka Y and Nishizuka Y: Potentiation of diacylglycerol-induced activation of protein kinase C by lysophospholipids. Fed Eur Biochem Soc 320, 47–51 (1993)

22 Ikeda U, Arisaka H, Takayasu T, Takeda K, Natsume T and Hosoda S: Protein kinase C activation aggravates hypoxic myocardial injury by stimulating Na+/H+ exchange. J Mol Cell Cardiol 20, 493–500 (1988)

23 Karli JN, Karikas PK, Hatzipavlou GM, Levis GM and Moulopoulos SN: The inhibition of Na+ and K+ stimulated ATPase activity of rabbit and dog heart sarcolemma by lysophosphatidylcholine. Life Sci 24, 1869–1876 (1979)

24 Owens K, Kenneth FF and Weglicki WB: Effects of fatty acid intermediates on Na+/K+ -ATPase activity of cardiac sarcolemma. Am J Physiol 242, H456–H461 (1982)

25 Burnashev NA, Undrovinas AI, Friedevijs JA, Makielski JC and Rensonshtraukh LV: Modulation of cardiac sodium channel gating by lysophosphatidylcholine. J Mol Cell Cardiol 23, Supp 1, 23–32 (1991)

26 Franson R, Waite M and Weglicki W: Solubilization and characterization of a neutral-active, calcium-dependent, phospholipase A2 from rabbit heart and isolated chick embryo myocytes. J Mol Cell Cardiol 15, 159–196 (1983)

27 Bentham JM, Higgins AJ and Woodward B: The effects of ischaemia, lysophosphatidylcholine and palmitoylcarcinine on rat heart phospholipase A2 activity. Basic Res Cardiol 82, Supp 1, 127–135 (1987)

28 Chien KR, Han A, Sen A, Buja LM and Willerson JT: Accumulation of unesterified arachidonic acid in ischemic canine myocardium: Relationship to a phosphatidylcholine deacylation-reacylation cycle and the depletion of membrane phospholipids. Circ Res 54, 313–322 (1984)

29 Gunn MD, Sen A, Chang A, Willerson JT, Buja LM and Chien KR: Mechanisms of accumulation of arachidonic acid in cultured myocardial cells during ATP depletion. Am J Physiol 249, H1188–H1194 (1985)

30 Van Der Vusse GJ, Glatz JFC, Stam HCG and Renens RJS: Fatty acid homeostasis in the normoxic and ischemic heart. Physiol Rev 72, 881–940 (1992)

31 Neufeld KJ, Ledernan CL, Choy PC and Man RYK: The effect of lidocaine on lysophosphatidylcholine-induced cardiac arrhythmias and cellular disturbances. Can J Physiol Pharmacol 63, 804–808 (1985)

32 Hara A, Matsumura H and Abiko Y: Lidocaine attenuates both mechanical and metabolic changes induced by hydrogen peroxide in the rat heart. Am J Physiol 265, H1478–H1485
33 Tamura H, Shirasawa Y, Hori H and Kondo S: Effects of dilazep on isolated smooth muscle. Folia Pharmacol Jpn 71, 757 – 768 (1975) (Abstr in English)

34 Nakagawa Y, Gudenzi M and Mustafa SJ: Calcium entry blocking activity of dilazep in dog coronary artery. Pharmacology 33, 148 – 156 (1986)

35 Okamura N, Shirasawa Y and Mitsui Y: Inhibitory action of dilazep on histamine-stimulated cytosolic Ca²⁺ increase in cultured human endothelial cells. Jpn J Pharmacol 59, 183 – 190 (1992)

36 Hattori M, Ogawa K, Satake T, Sugiyama S and Ozawa T: Depletion of membrane phospholipid and mitochondrial dysfunction associated with coronary reperfusion. Basic Res Cardiol 80, 241 – 250 (1985)

37 Mustafa SJ: Effects of coronary vasodilator drugs on the uptake and release of adenosine in cardiac cells. Biochem Pharmacol 28, 2617 – 2624 (1979)

38 Liu GS, Richards SC, Olsson RA, Mullane K, Walsh RS and Downey JM: Evidence that the adenosine A₁ receptor may mediate the protection afforded by preconditioning in the isolated rabbit heart. Cardiovasc Res 28, 1057 – 1061 (1994)