1. Introduction

Novel and high temperature superconductivity often competes with and appears in close proximity to strongly correlated electron phases. Doniach phase diagrams [1] are helpful in visualizing the competing phenomena in such a compound. At one end of the phase diagram, the compound is in a correlated non-Fermi liquid like state. This may be a Mott insulating, orbital ordering, spin density wave, charge density wave, heavy fermion or pseudo-gap phases. The tuning parameter is generally electron/hole concentration by doping, pressure, or strain. As the tuning parameter is varied, the strongly correlated phase is suppressed and at low temperatures superconductivity emerges. Further variation in the tuning parameter reduces the electron correlations even further giving rise to a strange metallic phase before eventually crossing over into a Fermi liquid like state. For some compounds these phases are mutually exclusive while for others superconductivity may coexist with the preceding strongly correlated phase. Figure 1 is a simple picture portraying such a phase diagram and is equally applicable to copper based superconductors, heavy fermion superconductors, and iron based superconductors. An understanding of the correlated state would most certainly shed light on the mechanism of novel superconductivity, and therefore may help in our efforts to design new high-temperature superconductors.

The low temperature ground state of the parent compounds of the iron based superconductors is an antiferromagnetic spin density wave with an orthorhombic or monoclinic crystal lattice. Above the magnetostructural transition (T_N/T_S), they are paramagnets with tetragonal crystal lattice [2, 3]. It is not clear if this transition is driven by magnetic fluctuations [4, 5] or orbital ordering [6, 7, 8, 9]. The suppression of this antiferromagnetic state by various means causes superconductivity to emerge [10]. In certain families of the iron based compounds superconductivity and antiferromagnetism coexist. There is evidence that the quantum critical fluctuations associated with the magnetostructural transition are nematic in character and extend in to the normal state of these compounds [11, 12]. Point contact spectroscopy (PCS) has been found to be sensitive to these nematic electron phases. In this review we summarize the results of PCS measurements in the normal state of the iron based superconductors. Section 2 gives a brief introduction to the technique of point contact spectroscopy, Section 3 presents and discusses the experimental results obtained, along with the theoretical efforts made to interpret them, Section 4 talks about non-ideal point contact junctions, and we conclude in Section 5 by enumerating the insights PCS has provided to the field, additional experiments that need to be performed and the outstanding challenges with regards to the interpretation of PCS data.

2. Point Contact Spectroscopy

Planar tunneling into superconducting Pb gives nonlinearities in the conductance corresponding to the Eliashberg function, $\alpha^2 F(\omega)$, as was first demonstrated by McMillan and Rowell in 1965 [13, 14]. If the Pb is driven normal (by applying magnetic field or raising temperature), conductance is constant as per Harrison’s theorem [15]. (Harrison’s theorem shows that when planar tunneling into a Fermi liquid at low bias, the Fermi velocity divides out the density of states.) In 1974, however, Yanson found nonlinearities corresponding to $\alpha^2 F(\omega)$ in a shorted Pb planar tunnel junction where the Pb had been driven normal by applied magnetic field [16]. Yanson and co-workers showed that their observed nonlinearities arose from the nano-
shorts, or “point contacts” through the tunnel barrier. The measurement, therefore, was not tunneling, but quasiparticle scattering; hence PCS is also called quasiparticle scattering spectroscopy (QPS).

It is easy to understand what is detected in PCS or QPS through a simple, non-quantum mechanical picture. There are three size regimes of a metallic junction: ballistic, also called the Sharvin limit, where the junction is smaller than the electron scattering length; diffusive, where the junction size is between the elastic and inelastic scattering lengths; and thermal, where the junction is larger than the electron mean free path. There are many good reviews describing these regimes [17][18][19], so we simply point out the basics here. In the thermal regime, the junction acts like a simple resistor and spectroscopic information cannot be derived. In the ballistic regime, electrons are injected a scattering length into the bulk of the sample, and the Eliashberg function is detected when the electron is inelastically backscattered into the orifice: scattering is detected as a slight decrease in the conductance due to the backflow of electrons. This is a small effect and is detected as dips in the second harmonic d^2I/dV^2. In the diffusive regime, there is some spectroscopic information, but depending on how close or far the junction is from the ballistic/thermal limit, the spectra can exhibit a range of smearing. Section 4 of this review compares and contrasts thermal and non-thermal limit data. We also point out an important diagnostic: observing signatures apparent in the resistivity (such as phase transitions) can indicate that the junction is in the thermal limit.

The theory for PCS as a spectroscopic technique for quasiparticle scattering off excitation modes (e.g., phonons, magnons) has been well developed [20][21]. For single-band s-wave superconductors, the theory is also well established. The seminal work of Blonder, Tinkham, and Klapwijk (BTK) [22] shows how to map out the superconducting density of states from the tunneling to the metallic (Andreev reflection) [23] limits. We stress that the data obtained in the tunneling and Andreev limits look completely different, but with the correct BTK analysis, one can obtain the same spectroscopic results: the gap, phonons, and in the case of extending the BTK theory, the order-parameter symmetry [24][25].

However, there is a lack of theoretical work explaining PCS spectra on novel, strongly correlated materials with nontrivial electron matter. There is no Fermi golden rule type of theory indicating that an increased density of states would yield a larger junction conductance. Nowack and Klug [26] did show how it is possible to explain energy-dependent density of states (DOS) with standard first-order ballistic point-contact theory, but as they state, “a theory treating electronic DOS and scattering as interconnected would be preferable.”

Recent work has shown that the PCS technique detects density of states arising from strong electron correlations. For heavy fermion compounds, the onset of the Kondo lattice appears as a Fano line shape in the PCS spectra [27]. PCS is also sensitive to the hybridization gap and Fano resonance in the heavy fermion compounds, the onset of the Kondo lattice appears as a Fano line shape in the PCS spectra [27].

In the iron based superconductors, Arham et al. [29] have shown that an increase in the zero-bias conductance can be associated with an increase in the single-particle density of states arising from the onset of orbital ordering fluctuations. This not only shows that these materials do indeed exhibit such “electron matter” but also that PCS is a powerful bulk probe of such states.

PCS is carried out in two different configurations: the needle anvil method and the soft PCS method [19][21]. In the needle-anvil method, an electrochemically sharpened or mechanically cut metallic tip is brought into gentle contact with the sample to serve as the counter electrode. Gold, silver or platinum wires are normally used as counter electrodes because of their inertness. In the soft PCS method, the counter electrode is mechanically stuck to the sample using conducting silver paint or epoxy. Sometimes, an insulating layer of aluminum oxide is deposited on the sample before affixing the counter electrode. Parallel, nanoscale channels are introduced for ballistic current transport by fritting [30] across the oxide layer. The needle-anvil method gives more control over the junction resistance while soft PCS has the advantage of being more stable with temperature change.

3. Experimental Results

Point contact spectroscopy has been used extensively to study the iron based superconductors; primarily in their superconducting regime to determine the order parameter magnitude and symmetry. In this review however, we are concentrating on the non-superconducting temperatures and dopings of these compounds. Anomalous signatures have been observed in the normal states of the 122, 11 and 1111 families of the iron based superconductors.
Figure 2: (a) From [29]. Conductance spectra for BaFe$_2$As$_2$. Conductance enhancement with peaks at \sim 65 mV superimposed on a parabolic background was observed at low temperatures. The peaks moved in as the temperature was increased and the enhancement survived well above T_S (red curve). (b) From [29]. Ba(Fe$_{0.95}$Co$_{0.05}$)$_2$As$_2$ displayed a coexistence of magnetism and superconductivity. At low temperatures, clear Andreev peaks were observed [right inset (b); the arrows are pointing out the Andreev peaks]. A conductance enhancement with peaks at \sim 65 mV coexisted with the Andreev spectra and evolved with temperature as it did for BaFe$_2$As$_2$. This enhancement increased logarithmically near zero bias [left inset (b)]. (c) From [29]. The overdoped compound Ba(Fe$_{0.875}$Co$_{0.125}$)$_2$As$_2$ showed Andreev spectra below T_c. It did not have conductance peaks at higher bias values like the Co underdoped compounds. (d) From [31]. Below T_c the overdoped compound Ba(Fe$_{0.9}$Co$_{0.1}$)$_2$As$_2$ showed Andreev reflection. Above T_c the spectra was slightly V-shaped and had a dip at zero bias. It flattened out with further increase in temperature. (e) From [29]. The hole underdoped Ba$_{0.8}$K$_{0.2}$Fe$_2$As$_2$ has a coexistence of superconductivity and magnetism. It showed Andreev spectra below T_c and no higher bias conductance enhancement. This was in contrast to the data obtained from electron underdoped Ba(Fe$_{1-x}$Co$_x$)$_2$As$_2$ (Figure 2b). (f) From [29]. Instead of Andreev reflection, the hole overdoped Ba$_{0.55}$K$_{0.45}$Fe$_2$As$_2$ sometimes showed a dip around zero bias below T_c that survived well into the normal regime. The might have been due to surface contamination or phase separation in the compound. The inset shows the zero bias conductance versus temperature.
3.1. 122 Compounds

3.1.1. Ba(Fe$_{1-x}$Co$_x$)$_2$As$_2$

Arham et al. [29] reported conductance spectra on Ba(Fe$_{1-x}$Co$_x$)$_2$As$_2$, spanning the entire phase diagram. Part of their data is reproduced in Figure 2. For the undoped parent compound (Figure 2a), at the lowest temperature (blue curve), they saw a dip at zero bias and two asymmetric conductance peaks at ~ 65 mV. This double peak feature was superimposed on a parabolic background. As the temperature was increased, the dip at zero bias filled up, the conductance peaks moved inward, and the bias voltage range of the conductance enhancement decreased. No dramatic change occurred as T_S was crossed (red curve). The enhancement eventually disappeared at 177 K, more than 40 K above T_c. The enhancement eventually disappeared at 177 K, more than 40 K above T_c. The enhancement eventually disappeared at 177 K, more than 40 K above T_c. The enhancement eventually disappeared at 177 K, more than 40 K above T_c. The enhancement eventually disappeared at 177 K, more than 40 K above T_c.

For underdoped Ba(Fe$_{1-x}$Co$_x$)$_2$As$_2$ (Figure 2b), where superconductivity coexists with long range magnetic order, they observed Andreev reflection at low voltage biases in the superconducting state. However, just like the parent compound, two conductance peaks occurred at ~ 65 mV. Above the onset temperature of the superconducting transition, Andreev reflection completely disappeared and the high bias conductance evolved just like it did for BaFe$_2$As$_2$. The right inset in Figure 2b shows a zoom in of the Andreev reflection features while the left inset plots the conductance spectra above T_c on a log plot.

For overdoped Ba(Fe$_{1-x}$Co$_x$)$_2$As$_2$ (Figure 2c), Andreev reflection was observed in the superconducting state, but unlike the underdoped compounds, no higher bias conductance peaks were detected. Above T_c (the superconducting transition temperature), a parabolic background remained which flattened with further increase in temperature.

Tortella et al. [31] reported conductance spectra on slightly overdoped Ba(Fe$_{1-x}$Co$_x$)$_2$As$_2$ (Figure 2d). Below T_c they observed Andreev reflection with no extraneous features at high bias. Above T_c, they were left with a slightly V-shaped curve that progressively filled up on further increase of temperature. This agreed with what Arham et al. observed for strongly overdoped Ba(Fe$_{1-x}$Co$_x$)$_2$As$_2$. The insets in the figure show the resistance and AC susceptibility of the compound with temperature.

It appears that underdoped Ba(Fe$_{1-x}$Co$_x$)$_2$As$_2$ has rich features in the normal phase; high bias conductance peaks are observed at low temperature that merge together to form a zero bias enhancement that survives beyond the magnetostructural transition. On the other hand, overdoped Ba(Fe$_{1-x}$Co$_x$)$_2$As$_2$ has a V shaped parabolic background in the normal state that flattens with increasing temperature.

3.1.2. Ba$_{1-y}$K$_y$Fe$_2$As$_2$

Since electron underdoped Ba(Fe$_{1-x}$Co$_x$)$_2$As$_2$ has rich features in the normal state, an obvious question is what does the normal state spectra on hole underdoped Ba$_{1-y}$K$_y$Fe$_2$As$_2$ looks like. Arham et al. [29] presented data on a Ba$_{0.8}$K$_{0.2}$Fe$_2$As$_2$ (Figure 2e). The sample has a V shaped parabolic background in the normal state. At temperatures, along with Andreev reflection, they observed conductance peaks at higher bias voltages, on the order of 50 mV or more (Figures 3e, f). These peaks reduced in size as the temperature was increased and eventually disappeared close to 140 K, the Neel temperature of the parent compound BaFe$_2$As$_2$.

3.1.3. CaFe$_2$As$_2$ and SrFe$_2$As$_2$

Arham et al. [29] also probed CaFe$_2$As$_2$ and SrFe$_2$As$_2$. The data for SrFe$_2$As$_2$ (Figure 3a) was very similar to that of BaFe$_2$As$_2$, with conductance enhancement around zero bias that set in before the magnetostructural transition. However, for CaFe$_2$As$_2$ (Figure 3b), the conductance enhancement disappeared around 100-110 K, much before the magnetostructural transition (170 K).

3.2. 11 Compounds

3.2.1. Fe$_{1+y}$Te

Arham et al. [29] presented data on the parent compound for the iron chalcogenide superconductor. Fe$_{1+y}$Te showed a conductance enhancement that survived above the magnetic and structural transition temperatures (Figure 3c). The conductance enhancement was observed till 75 K ($T_N = T_S \sim 59$ K).

To summarize the work of Arham et al. [29], BaFe$_2$As$_2$, SrFe$_2$As$_2$, underdoped Ba(Fe$_{1-x}$Co$_x$)$_2$As$_2$ and Fe$_{1+y}$Te exhibited a conductance enhancement that in above T_S, CaFe$_2$As$_2$ only showed the enhancement below T_S while Ba$_{0.8}$K$_{0.2}$Fe$_2$As$_2$ did not show any conductance enhancement. Overdoped Ba(Fe$_{1-x}$Co$_x$)$_2$As$_2$ does not have a T_S and only showed Andreev spectra below T_c. The high bias background for all compounds except for Ba$_{0.8}$K$_{0.2}$Fe$_2$As$_2$ was an upward facing parabola.

3.3. 1111 Compounds

3.3.1. SmFeAsO$_{1-y}$F$_y$

Daghero et al. [33] studied the 1111 compound SmFeAsO$_{1-y}$F$_y$. Below T_N, Andreev reflection was present, and above T_c, a broad conductance enhancement at zero bias was observed (Figure 3d). The enhancement reduced in amplitude with increasing temperature and disappeared around 140 K, the Neel temperature of the parent compound SmFeAsO.

3.3.2. LaFeAsO$_{1-x}$F$_x$

Gonnelli et al. [34] studied the 1111 compound LaFeAsO$_{1-x}$F$_x$, with a nominal 10% F doping. At the lowest temperatures, along with Andreev reflection, they observed conductance peaks at higher bias voltages, on the order of 50 mV or more (Figures 3e, f). These peaks reduced in size as the temperature was increased and eventually disappeared close to 140 K, the Neel temperature of the parent compound LaFeAsO.
Figure 3: (a) From [29]. Conductance spectra for SrFe$_2$As$_2$. The conductance enhancement lasted above T_S and the spectra was similar to that of BaFe$_2$As$_2$ (Figure 2a). (b) From [29]. Conductance spectra for CaFe$_2$As$_2$. In this case the conductance enhancement disappeared before T_S. (c) From [29]. Conductance spectra for Fe$_{1.13}$Te showed an enhancement that lasted above T_S. (d) From [33]. At the lowest temperature Andreev reflection was observed for SmFeAsO$_{0.8}$F$_{0.2}$. The arrows are pointing out the Andreev peaks. Above T_c (~ 51 K), a broad conductance enhancement at zero bias was observed. The enhancement reduced in amplitude with increasing temperature and disappeared around 140 K, the Neel temperature of the parent compound SmFeAsO. (e, f) From [34]. At the lowest temperatures, along with the Andreev spectra for LaFeAsO$_{1-x}$F$_x$ (with a nominal 10% F doping), conductance peaks at higher bias voltages, on the order of 50 mV or more were also observed. These peaks reduced in size as the temperature was increased and eventually disappeared close to 140 K, the Neel temperature of the parent compound LaFeAsO.
3.4. Discussion of Experimental Results

At present, we lack a theoretical model to explain the conductance enhancement observed in the normal state of all these compounds. Daghero et al. [33] speculated that the zero bias conductance enhancement observed in SmFeAsO$_{1-x}$F$_x$ might have a magnetic origin since it disappeared around the Neel temperature of the parent compound. Gonnelli et al. [34] speculated that the features they observe in the normal state of LaFeAsO$_{1-x}$F$_x$ might be tied to short range antiferromagnetic fluctuations, as it also disappeared close to the Neel temperature of the parent compound. Szabo et al. [32] raised the possibility of phase separation in these compounds giving rise to the anomalous spectra.

Arham et al. [29] noticed a correlation between the presence of conductance enhancement around zero bias and in-plane resistive anisotropy in the compounds. For detwinned underdoped AEFe$_2$As$_2$ it has been shown that below T_S a resistive anisotropy exists [35, 36, 37]. Above T_S there is notable anisotropy for AE = Ba, negligible anisotropy for AE = Sr, and no anisotropy for AE = Ca (Fig. 5 in [37]). Detwinned Fe$_{1+y}$Te also shows a resistive anisotropy above the structural transition [38]. The anisotropy above T_S is sensitive to the uniaxial required to detwin the samples. Detwinned underdoped Ba$_{1-x}$K$_x$Fe$_2$As$_2$ does not show any anisotropy at all, either below or above T_S [39].

The presence or absence of the in-plane resistive anisotropy matches whether or not a conductance enhancement is detected. The correlation of the conductance enhancement with the resistive anisotropy indicates they are likely caused by the same underlying physics. Arham et al. [29] constructed a revised phase diagram for Ba(Fe$_{1-x}$Co$_x$)$_2$As$_2$ marking a new line on the underdoped side showing the temperature below which the conductance enhancement was observed (Figure 4a).

Theoretical work by Lee et al. [40] showed that orbital fluctuations above T_S were expected to provide extra contributions to the single-particle density of states (DOS) at zero energy. The DOS followed a log dependence as the energy was increased. Arham et al. compared their data with this prediction and found that the conductance enhancement for BaFe$_2$As$_2$ above T_S followed a log dependence from \sim 40 mV to \sim 90 mV (Figure 4b). They obtained similar fits above T_S for SrFe$_2$As$_2$ and Fe$_{1+x}$Te. Furthermore, the absence of similar effects in the data on Ba$_{0.6}$K$_{0.4}$Fe$_2$As$_2$ was consistent with the prediction that crystals that did not show the resistance anisotropy would also not exhibit the excess conductance due to orbital fluctuations. Their data therefore strongly indicated that the enhancement in conductance observed was a consequence of orbital fluctuations.

It should be kept in mind that the conductance (dI/dV) measured by point-contact spectroscopy does not directly correspond to the density of states. PCS data is a convolution of the Fermi velocity and the energy-dependent density of states along with any scattering processes that might be present. For normal metals, the Fermi velocity and the density of states are inversely related and cancel each other out [15]. There is a lack of theoretical models for interpreting PCS data on correlated metals, where the DOS are energy dependent and do not cancel out with the Fermi velocity when dI/dV is measured. A theory considering both the energy dependence of the electronic DOS and scattering processes would be extremely helpful in obtaining a better understanding of the experimental data.

With decreasing temperature, all the excess conductance curves in the data by Arham et al. [29] developed a dip at zero bias that sharpened as the temperature was lowered further. Similar dips at zero bias and peaks at high voltages were observed by Gonnelli et al [34]. This could happen if there are two dominant scattering processes with opposite voltage dependence at work and the crossover between them giving rise to a peak in dI/dV. PCS on Kondo systems shows a similar effect where the Kondo scattering and phonon scattering give rise to
Evidence for normal-state nematicity from detwinned samples is complicated by the symmetry-breaking pressure applied to detwin the crystal. Apart from the resistive anisotropy already discussed, ARPES [50] detects orbital ordering, and optical conductivity [48], and ARPES [49] (angle resolved photoemission spectroscopy). However, Gonnelli et al. [34] obtained this feature from LaFeAsO$_1$-xF$_x$, which does not have a spin density wave present. In addition, the conductance rises logarithmically along the dip (Figure 1b, left inset). These two observations lend credence to the scattering scenario.

There is an interesting trend between the order of the magnetostructural phase transition and the presence of the conductance enhancement in the normal state. The transition is second order for those compounds that show the enhancement in the normal state. The transition is second order for those compounds that do not (CaFe$_2$As$_2$ [44] and K doped BaFe$_2$As$_2$ [41]).

4. Non-ideal point contact junctions

To obtain spectroscopic information from PCS, it is imperative that the junctions are devoid of joule heating effects and any artifacts that may occur due to the junction design. Heating effects will wash out any spectroscopic information while a faulty junction design will display features not representative of the bulk crystal. For point contact on superconductors, the usual test is to check whether the spectra can be explained by the BTK model [22]. Baltz et al. [55] have covered the various unwanted features that may show up in PCS spectra on superconductors, and compared them with ideal PCS spectra.

The case of point contact spectra in the normal state of iron based superconductors is more complicated since there is no BTK like theory to differentiate good point contacts from the bad ones. However, there are other tell-tale signs that may be used to determine the quality of the junction.

An important characteristic of point contacts in the thermal limit is that dV/dI at low temperature tracks the bulk resistivity. dV/dI is the inverse of the conductance of the point contact junction. Arham et al. (Figure 5) showed that if their point contact junctions were large enough, they did end up in the thermal limit; the spectra followed bulk resistivity and looked completely different from the junctions in the diffusive limit. Figure 5a shows the bulk resistivity of BaFe$_2$As$_2$ while Figure 5b shows dV/dI curves for two junctions, one in the thermal limit, and one in the non-thermal limit. The junction in the thermal limit reproduces the bulk resistivity curve while the non-thermal junction looks completely different.

The parent iron based compounds undergo a magnetostructural transition that shows up as a sharp gradient change in the bulk resistivity. The thermal limit junction in Figure 5b produced a corresponding kink in the conductance spectra at ~ 52 mV while the non-thermal junction did not. This means that
when the thermal limit junction was biased at \(\sim 52 \text{ mV} \), its local temperature had risen to \(\sim 132 \text{ K} \), the \(T_s \) of BaFe\(_2\)As\(_2\).

Another way to check the reproducibility of the spectra is to form point contact junctions using various methods. Apart from the needle-anvil and soft PCS techniques already described, point contact junctions may be formed via nanolithography or break-junction technique \cite{21}. In nanolithography, a counter-electrode smaller than the electron mean free path is patterned onto the compound, while in the break-junction technique, the compound is broken in situ, and then the two pieces are brought together to form a junction. If different methods show similar spectra, it may be concluded that the spectra cannot be an artifact based on the junction design. Arham et al. have obtained similar spectra on Fe\(_{1+y}\)Te using needle-anvil and soft PCS (Figure 4d in \cite{29}).

Another check for thermal PCS junctions is to compare the \(dI/dV \) (\(V \), low T) curve with the zero bias conductance curve, \(dI/dV \) (0 mV, T). The local temperature in a thermal junction is related to the bias voltage by \(T_{2\text{max}} = T_{\text{bias}}^2 + V^2/4L \) where \(L \) is the Lorentz number of the compound. In such a scenario, there is a substantial overlap between ZBC and \(dI/dV \). Arham et al. compared the two quantities for thermal and non-thermal junctions using the appropriate values for the Lorentz number. As expected, for thermal junctions ZBC and \(dI/dV \) overlapped while for non-thermal junctions they did not (Figure 6 in \cite{29}).

The parent Fe\(_{122}\) pnictides, Fe\(_{11}\) chalcogenides and LaFe\(_{2}\)O\(_{1+y}\)-\(F_x \) have very different resistivity curves. Despite this, at low temperatures in their normal states, they show similar conductance spectra. This provides further evidence that the work of Gonnelli et al. \cite{34} and Arham et al. \cite{29} is not in the thermal regime and that the same scattering mechanisms are at work in these compounds. Figure 6 \cite{29} shows bulk resistance and zero bias conductance curves for BaFe\(_2\)As\(_2\), CaFe\(_2\)As\(_2\) and Fe\(_{1+y}\)Te. The insets show \(dI/dV \) at different temperatures. Despite having remarkably different temperature dependence for bulk resistivity, the zero bias conductance and \(dI/dV \) for the three compounds follow a similar trend.

5. Outstanding Challenges and Conclusions

To conclude, point contact spectroscopy in the normal state of certain iron based compounds shows some unique features. BaFe\(_2\)As\(_2\), underdoped Ba(Fe\(_{1-x}\)Co\(_x\))\(_2\)As\(_2\), SrFe\(_2\)As\(_2\) and Fe\(_{1+y}\)Te show a conductance enhancement around zero bias that sets in above the magnetostructural transition. This conductance enhancement might arise due to orbital fluctuations that increase the single particle DOS at zero energy. CaFe\(_2\)As\(_2\) only shows a conductance enhancement below \(T_s \), while underdoped BaFe\(_{1-y}\)K\(_x\)Fe\(_2\)As\(_2\) does not show any conductance enhancement above \(T_c \). The prevalence of the enhancement matches exactly with the presence of an in-plane resistive anisotropy in the bulk compounds. SmFe\(_{2}\)O\(_{1+y}\)-\(F_x \) and LaFe\(_{2}\)O\(_{1+y}\)-\(F_x \) show similar features that disappear close to the magnetic transition temperatures of their undoped parent compounds. As the temperature is lowered, in all cases apart from SmFe\(_{2}\)O\(_{1+y}\)-\(F_x \), the conductance enhancement around

![Figure 6](image-url)
zero bias develops a dip. The reason for this behavior is not clear.

A major challenge is to come up with a microscopic theory for point contact spectroscopy on correlated materials; something that would incorporate the relationship between PCS and the local density of states along with the energy dependent scattering processes intrinsic to these compounds.

There also needs to be more experimental work done on the iron based superconductors. It would be interesting to know the conductance enhancement is present in the normal state of BaFe$_2$(As$_{1-x}$P$_x$)$_2$ and NaFe$_{1-x}$Co$_x$As. In addition, PCS needs to be performed on these compounds under applied magnetic field and when the crystals have been detwinned by applied pressure.

Overall, point contact spectroscopy provides strong indication for electronic nematicity arising from orbital fluctuations in those iron based compounds that have an in-plane resistive anisotropy in the normal state. This matches up with what has been observed by ARPES, optical conductivity and inelastic neutron scattering in these compounds.

Acknowledgments

This work was supported by the Center for Emergent Superconductivity, an Energy Frontier Research Center funded by the US Department of Energy, Office of Science, Office of Basic Energy Sciences under Award No. DE-AC0298CH1088.

References

[1] S. Doniach, Physica B 91, 231 (1977).
[2] C. de la Cruz, Q. Huang, J. W. Lynn, J. Y. Li, W. Ratchill, J. L. Zarestky, H. A. Mook, G. F. Chen, J. L. Joo, N. L. Wang, and P. C. Dai, Nature (London) 453, 899 (2008).
[3] M. Rotter, M. Tegel, D. Johrendt, J. Schellenberg, W. Hermes, and R. Potgren, Phys. Rev. B 78, 020503 (2008).
[4] C. Fang, H. Yao, W.-F. Tsai, J. P. Hu, and S. A. Kivelson, Phys. Rev. B 77, 224509 (2008).
[5] R. M. Fernandes, E. Abrahams, and J. Schmalian, Phys. Rev. Lett. 107, 217002 (2011).
[6] C.-C. Chen, J. Macejko, A. P. Sorini, B. Moritz, R. R. P. Singh, and T. P. Devereaux, Phys. Rev. B 82, 100504(R) (2010).
[7] W. Lv, J. Wu, and P. Phillips, Phys. Rev. B 80, 224506 (2009).
[8] W. Lv, F. Kruger, and P. Phillips, Phys. Rev. B 82, 045125 (2010).
[9] C.-C. Lee, W.-G. Yin, and W. Ku, Phys. Rev. Lett. 103, 267001 (2009).
[10] Z.-A. Ren, W. Lu, J. Yang, W. Yi, X.-L. Shen, Z.-C. Li, G.-C. Che, X.-L. Dong, L.-L. Sun, F. Zhou, and Z.-X. Zhao, Chin. Phys. Lett. 25, 2215 (2008).
[11] J.-H. Chu, J. G. Analytis, K. D. Greve, P. L. McMahon, Z. Islam, Y. Yamamoto, and I. R. Fisher, Science 329, 824 (2010).
[12] L. W. Harriger, H. Q. Luo, M. S. Liu, C. Frost, J. P. Hu, M. R. Norman, and P. Dai, Phys. Rev. B 84, 054544 (2011).
[13] W. L. McMillan and J. M. Rowell, Phys. Rev. Lett. 14, 108 (1965).
[14] W. L. McMillan and J. M. Rowell, Superconductivity, edited by R. D. Parks (Marcel Dekker, New York, 1969), Vol. 1.
[15] W. A. Harrison, Phys. Rev. 123, 89 (1961).
[16] I. K. Yanson, J. Exp. Theor. Phys. 39, 506 (1974).
[17] W. K. Park and L. H. Greene, J. Phys.: Condens. Matter 21, 103203 (2009).
[18] D. Daghero, M. Tortello, G. A. Ummarino, and R. S. Gonnelli, Rep. Prog. Phys. 74, 124509 (2011).
T. P. Devereaux, I. R. Fisher, and Z.-X. Shen, Proc. Natl. Acad. Sci. USA 108, 6878 (2011).

[51] A. Dusza, A. Lucarelli, F. Pfuner, J.-H. Chu, I. R. Fisher, and L. Degiorgi, Europhys. Lett. 93, 37002 (2011).

[52] H. Park, K. Haule, and G. Kotliar, Phys. Rev. Lett. 107, 137007 (2011).

[53] S. Kasahara, H. J. Shi, K. Hashimoto, S. Tonegawa, Y. Mizukami, T. Shibauchi, K. Sugimoto, T. Fukuda, T. Terashima, Andriy H. Nevidomskyy, and Y. Matsuda, Nature 486, 382385 (2012).

[54] C.-L. Song, Y.-L. Wang, P. Cheng, Y.-P. Jiang, W. Li, T. Zhang, Z. Li, K. He, L. Wang, J.-F. Jia, H.-H. Hung, C. Wu, X. Ma, X. Chen, and Q.-K. Xue, Science 332, 1410 (2011); H.-H. Hung, C.-L. Song, X. Chen, X. Ma, Q.-k. Xue, and C. Wu, Phys. Rev. B 85, 104510 (2012).

[55] V. Baltz, A. D. Naylor, K. M. Seemann, W. Elder, S. Sheen, K. Westerholt, H. Zabel, G. Burnell, C. H. Marrows, and B. J. Hickey, J. Phys.: Condens. Matter 21, 095701 (2009).