Functional ion channels in human pulmonary artery smooth muscle cells: Voltage-dependent cation channels

Amy L. Firth¹, Carmelle V. Remillard², Oleksandr Platosyn², Ivana Fantozzi², Eun A. Ko¹, Jason X.-J. Yuan²,³

¹The Salk Institute for Biological Studies, La Jolla, California, USA, ²Department of Medicine, University of California, San Diego, La Jolla, California, USA, and ³Department of Medicine (Section of Pulmonary, Critical Care, Sleep and Allergy), Institute for Personalized Respiratory Medicine, University of Illinois at Chicago, Chicago, Illinois, USA

ABSTRACT

The activity of voltage-gated ion channels is critical for the maintenance of cellular membrane potential and generation of action potentials. In turn, membrane potential regulates cellular ion homeostasis, triggering the opening and closing of ion channels in the plasma membrane and, thus, enabling ion transport across the membrane. Such transmembrane ion fluxes are important for excitation–contraction coupling in pulmonary artery smooth muscle cells (PASMC). Families of voltage-dependent cation channels known to be present in PASMC include voltage-gated K⁺ (Kv) channels, voltage-dependent Ca²⁺-activated K⁺ (Kca) channels, L- and T-type voltage-dependent Ca²⁺ channels, voltage-gated Na⁺ channels and voltage-gated proton channels. When cells are dialyzed with Ca²⁺-free K⁺ solutions, depolarization elicits four components of 4-aminopyridine (4-AP)-sensitive Kv currents based on the kinetics of current activation and inactivation. In cell-attached membrane patches, depolarization elicits a wide range of single-channel K⁺ currents, with conductances ranging between 6 and 290 pS. Macroscopic 4-AP-sensitive Kv currents and iberiotoxin-sensitive Kca currents are also observed. Transcripts of (a) two Na⁺ channel α-subunit genes (SCN5A and SCN6A), (b) six Ca²⁺ channel α-subunit genes (α₁A, α₁B, α₁D, α₁E and α₁G) and many regulatory subunits (α₂δ, β₁-4, and γ₁), (c) 22 Kv channel α-subunit genes (Kv1.1 - Kv1.7, Kv1.10, Kv2.1, Kv3.1, Kv3.3, Kv3.4, Kv4.1, Kv4.2, Kv5.1, Kv6.1-Kv6.3, Kv9.1, Kv9.3, Kv10.1 and Kv11.1) and three Kv channel β-subunit genes (Kvβ1-3) and (d) four Kca channel α-subunit genes (Slo1 and SK2-SK4) and four Kca channel β-subunit genes (Kcaβ1-4) have been detected in PASMC. Tetrodotoxin-sensitive and rapidly inactivating Na⁺ currents have been recorded with properties similar to those in cardiac myocytes. In the presence of 20 mM external Ca²⁺, membrane depolarization from a holding potential of -100 mV elicits a rapidly inactivating T-type Ca²⁺ current, while depolarization from a holding potential of -70 mV elicits a slowly inactivating dihydropyridine-sensitive L-type Ca²⁺ current. This review will focus on describing the electrophysiological properties and molecular identities of these voltage-dependent cation channels in PASMC and their contribution to the regulation of pulmonary vascular function and its potential role in the pathogenesis of pulmonary vascular disease.

Key Words: Ca²⁺ channel, K⁺ channel, membrane potential, Na⁺ channel, pulmonary hypertension

INTRODUCTION

Intracellular ion homeostasis, cell volume and membrane excitability are all important mechanisms regulated by the membrane permeability to cations and anions. It is this transmembrane ion flux that is the predominant factor in controlling excitation–contraction (EC) coupling mechanisms in pulmonary artery smooth muscle cells (PASMC). Electromechanical and pharmacomechanical coupling processes are the two major EC coupling mechanisms. Of these, it is the electric excitability that plays an important role in EC coupling in the pulmonary vasculature,[1,2] predominantly controlled...
by the transmembrane ion flux in PASMC. Indeed, many vasoactive substances also alter the membrane potential \(E_m\) in these cells.[3,4] Expression and functionality of ion channels in the plasma membrane is also important in modulation of cell motility, migration and proliferation by governing the cytoplasmic free \(\text{Ca}^{2+}\) concentration \([\text{Ca}^{2+}]_{\text{cyt}}\).

A rise in \([\text{Ca}^{2+}]_{\text{cyt}}\) in PASMC triggers pulmonary vasoconstriction[5] and stimulates cell proliferation[6] and migration,[7] leading to pulmonary vascular remodeling.[8] The mechanisms involved in the regulation of \([\text{Ca}^{2+}]_{\text{cyt}}\) directly control vasomotor tone and vascular wall thickness; two major determinants of pulmonary vascular resistance (PVR). Because PVR is inversely proportional to the fourth power of the radius \(r\) of the pulmonary arterial lumen \(\text{PVR} = \frac{8L\eta}{\pi r^4}\), a very small change in \(r\) would thus cause a large change in PVR. As a consequence, pulmonary vasoconstriction will also increase PVR by reducing the arterial radius. Pulmonary arterial pressure (PAP), a diagnostic criterion for PAH, is a product of PVR and cardiac output. Pulmonary vasoconstriction and vascular medial hypertrophy caused by excessive PASMC proliferation and migration contribute considerably to the elevated PVR in patients with pulmonary hypertension. Indeed, dysfunction of a number of ion channels has been implicated in a variety of cardiopulmonary diseases, such as pulmonary arterial hypertension,[8,9] spontaneous genetic systemic arterial hypertension[10–13] and heart failure.[14] Therefore, defining the molecular identities and electrophysiological properties of plasmalemmal ion channels in human PASMC will help to enhance our understanding of normal EC coupling mechanisms, to define the pathogenic roles of ion channels in pulmonary vascular disease and to develop new therapeutic approaches for patients with pulmonary hypertension.

As mentioned above, EC coupling requires a change in membrane potential to alter vascular tone. Ion channels are sarcolemmal pores selectively permeable to either cations (\(\text{Na}^+\), \(\text{Ca}^{2+}\), \(\text{K}^+\)) or anions (\(\text{Cl}^-\)). Both anions and cations are distributed on either side of the cell membrane, and their transmembrane movement is based on their electrochemical gradient, a potential- and concentration-based driving force for the ions, i.e. flowing from more-concentrated to less-concentrated zones and, for cations, from positive to less-negative sites to those with a more negative membrane potential. In human cells, \(\text{Na}^+ (~140 \text{ mM})\) and \(\text{Ca}^{2+} (~2 \text{ mM})\) are the dominant cations in the external fluid (concentrations similar to those found in blood plasma), whereas \(\text{K}^+ (~140 \text{ mM})\) is the dominant cation in the cell cytoplasm. \(\text{Cl}^-\), the most dominant anion in vascular smooth muscle cells,[15] is unevenly distributed between the cytosol and the extracellular fluids, and plays an important role in controlling osmolarity, cell volume, excitability and ion homeostasis [Table 1]. Additionally, ion channels expressed in the plasma membrane also play important roles in the regulation of secretion, migration, proliferation, differentiation and apoptosis. In vascular smooth muscle cells, the resting \(E_m\) is predominantly regulated by the permeability and the concentration gradients of \(\text{K}^+\) across the plasma membrane. The reason that the resting \(E_m\) (~40 to -55 mV) in vascular smooth muscle cells is not equal to the \(\text{K}^+\) equilibrium potential (approximately -85 mV) indicates that other cation (e.g., \(\text{Na}^+\) and \(\text{Ca}^{2+}\)) and anion (e.g., \(\text{Cl}^-\)) channels also

Current Type	Na\(^+\) mM	Ca\(^{2+}\) mM	K\(^+\) mM	Mg\(^{2+}\) mM	Cl\(^-\) mM	Cs\(^+\) mM	ATP mM	EGTA mM	Glu mM	HEPES mM	pH
\(I_{\text{Na}}\) (whole cell)	141	-	4.7	3	151.7	-	-	1	10	10	7.4
Bath	141	-	4.7	3	151.7	-	-	1	10	10	7.4
Pipette	10	-	-	4	143	135	5	10	-	10	7.2
\(I_{\text{Ca}}\) (whole cell)	110	20	4.7	1.2	157.1	-	-	-	10	10	7.4
Bath	110	20	4.7	1.2	157.1	-	-	-	10	10	7.4
Pipette	10	-	-	4	143	135	5	10	-	10	7.2
\(I_{\text{K(V)}}\) (whole cell)	141	-	4.7	3	151.7	-	-	1	10	10	7.4
Bath	141	-	4.7	3	151.7	-	-	1	10	10	7.4
Pipette	10	0	135	4	143	-	5	10	-	10	7.2
\(I_{\text{K(Ca)}}\) (whole cell)	141	1.8	4.7	1.2	151.7	-	-	-	10	10	7.4
Bath	141	1.8	4.7	1.2	151.7	-	-	-	10	10	7.4
Pipette	10	0 (8.8)	135	4	143	-	5	- (10)	-	10	7.2

\(I_{\text{K(Ca)}}\) (cell attached) | Bath | 141 | 1.7 | 4.7 | 1.2 | 151.7 | - | - | - | 10 | 10 | 7.4 |
Bath	141	1.7	4.7	1.2	151.7	-	-	-	10	10	7.4	
Pipette	10	-	125	4	129	-	5	0.1	-	10	7.2	
\(I_{\text{K(V)}}\) (cell attached)	Bath	141	1.8	4.7	1.2	151.7	-	-	-	10	10	7.4
Bath	141	1.8	4.7	1.2	151.7	-	-	-	10	10	7.4	
Pipette	5	0	137	1.2	143.2	-	5	0.1	0	10	7.2	
contribute to regulating the E_m. This review will provide an in-depth summary of the molecular identities and electrophysiological properties of voltage-dependent cation channels in PASMC, focusing on Na⁺ and Ca²⁺ channels, which are opened by membrane depolarization and responsible for cell excitation, and voltage-gated Kv and Kca channels, which are responsible for controlling resting E_m and repolarization when the cells are stimulated.

Passive cell membrane properties of human PASMC

The whole-cell patch clamp configuration\(^{[16]}\) may be likened to an electrical circuit [Figures 1 and 2a]. A capacitor is made with two charged surfaces separated by a dielectric substance. The pipette itself is such a dielectric substance with two charged surfaces and, therefore, is represented by a capacitor in the circuit. Pipette capacitance (C_p, measured in Farads, F) is complicated in character, but its contribution to the overall circuit is usually minimized electronically by injecting a current transient designed to pre-charge the glass surface to the new desired potential. The pore of the pipette presents a resistance to current flow that may be easily measured before seal formation (R_e, measured in Ohms, Ω). During whole-cell access, however, this resistance is increased by further resistance to current flow due to the contents or geometry of the cell itself ("series resistance" or "access resistance," R_a), i.e. resistance to filling the entire cytosolic space with the desired amount of charge or potential due to interaction of charges with proteins or due to limited flux through long cell processes or narrow cell geometry.

Once the cytosolic space of the cell is voltage clamped, the cell membrane also presents its own capacitance. Unlike the pipette, the cell membrane is of relatively uniform thickness and uniform dielectric content (lipids); therefore, in most cells, the specific membrane capacitance (C_m), which is normalized by the area of the plasma membrane, is $\sim 1 \mu\text{F/cm}^2$;\(^{[17]}\) and a measure of the cell capacitance is a good indicator of cell size. The cell membrane itself is a very good dielectric, presenting a resistance of several gigaOhms (gigaΩ) when the membrane channels are closed at rest, in effect stopping the flow of charge across the membrane. However, the membrane resistance (R_m) is strongly influenced by the presence of ion conductances through the membrane ion channels.

Ion channels are selectively permeable to specific cations, and have a gating mechanism that may be controlled by voltage or other methods. Ion channels produce a conductance (g, measured in Siemens, S) that is dependent on the transmembrane electrical potential energy (ΔE, or E_g, measured in Volts, V), and defined by Ohm's law, $I_g = gE$, where I_g is the conductance or current through that particular type of channel. Because Ohm's law defines resistance as the inverse of conductance, the overall membrane resistance is the inverse of the sum of all the conductances present on the membrane. The simple measurement of overall membrane resistance is therefore a good indicator of the amount of current carried through all the open channels on the membrane. As many membrane channels are voltage dependent, the membrane resistance likewise varies with membrane potential.

By employing a small hyperpolarizing command voltage step (V_{cmd}), for example from -70 mV to -85 mV (close to...
the equilibrium potential for K$^+$, current transient (I_{tran}) is induced [Figure 2b]. The cell membrane capacitance (C_m) can then be determined by pClamp software based on the equation: $C_m = \int (V_{\text{comm}}) / I_{\text{tran}}$. The membrane input resistance (R_m) is then calculated from the equation: $R_m = (R_{\text{total}} \times R_m) / (R_{\text{seal}} - R_{\text{total}})$, where R_{seal} and R_{total} are the resistance determined, respectively, from the steady currents of I_{tran} in response to V_{comm} (-5 mV) before and after break-in. As shown in Figure 2c, C_m can range from 15 pF to 45 pF, with an average C_m of 34±5 pF measured in 220 PASMC. The specific membrane capacitance can be calculated from the mean values of C_m and cell surface capacitance for PASMC, this is in the region of 1.25 μF/cm2, similar to the 1.3 μF/cm2 reported in rat caudal artery smooth muscle cells.[18] R_m under resting conditions is usually very high in the vascular smooth muscle cells.[19] Indeed, the calculated R_m in PASMC ranges from 1 GΩ to 12 GΩ, with an average R_m of 5±1 GΩ ($n=171$) [Figure 2d]. Importantly, the duration of PASMC in cell culture conditions does not significantly alter the values for C_m and R_m [Figure 2e and f].

Membrane potential can be measured in the current-clamp (I=0) mode. The resting E_m in cultured human PASMC is approximately -45±5 mV [Figure 3a], and is slightly less negative than that observed in freshly dissociated PASMC from animals.[20,21] As previously mentioned, E_m is less negative than the E_m (approximately -85 mV), which suggests that E_m in these cells is also controlled by the permeability of other ions (e.g., Na$^+$, Ca$^{2+}$ and Cl$^-$). The equilibrium potentials for Na$^+$, Ca$^{2+}$ and Cl$^-$ are believed to be +66, +122 and -26 mV, respectively, in native vascular smooth muscle cells.[15] In some PASMC, spontaneous electrical activity has been observed under resting conditions [Figure 3b], suggesting that these cells are electrically excitable.[22] This spontaneous electrical activity in PASMC is dependent upon the presence of extracellular Ca$^{2+}$ [Figure 3b].[23-25]

Evolution and diversity of the pore-forming voltage-gated cation channels

Ion-selective voltage-gated cation channels generate electrical activity in cells by undergoing rapid conformational changes from an impermeable structure to a highly permeable pore in the membrane through which ions can pass. Based on inherent similarities

Figure 2: Passive membrane properties of human pulmonary artery smooth muscle cells (PASMC). (a) The cell and pipette form a circuit in the whole-cell patch-clamp configuration. Membrane capacitance (C_m) and resistance (R_m) are indicators of cell size and transmembrane ion flux, respectively. (b) C_m is often used to indicate that the membrane is ruptured. In the cell-attached configuration (“Seal”), C_m measured as the surface area under the transient spikes, is small. Upon whole-cell access (“Break-in”), C_m is greatly increased. (c and d) Frequency distribution of C_m and R_m within a cell population. (e and f) C_m ($n=220$) and R_m ($n=171$) of human PASMC do not vary over time in culture.

Figure 3: Electrically active human pulmonary artery smooth muscle cells (PASMC). (a) Histogram showing the wide distribution of resting E_m in human PASMC. E_m was measured in the current clamp (I=0) mode. (b) Spontaneous action potentials recorded in human PASMC are abolished when external Ca$^{2+}$ is removed. Electrical activity is restored upon return to normal physiological Ca$^{2+}$ (1.8 mM)
in the transmembrane domain structure of Na+, Ca2+ and K+ channel pore-forming α subunits, it is widely agreed upon that voltage-gated cation channels share a common ancestor. The basic building block of all these channels is a one-domain (1D) two-transmembrane segment (2TM) protein with an ion-selective pore/loop region between the transmembrane segments, reminiscent of prokaryotic and eukaryotic K+ selective inward rectifier channels [Figure 4]. Indeed, K+ channels are the oldest of the voltage-gated cation channels as examples of these have been found in both prokaryotic and eukaryotic organisms. Over time, multiple gene duplications and modifications elaborated this channel by the addition of four transmembrane segments, forming 1D six-transmembrane segment (6TM) protein that constitutes the basic pore-forming α-unit of mammalian voltage-gated cation channels. From this point, the evolution of voltage-gated ion channels diverged, with ion selectivity being a key element to channel diversification. Figure 4 provides a simple phylogenetic tree of voltage-gated cation channels based on sequence identity and domain arrangement.

K+ channels evolved into the most diverse family of channels, mainly due to the sheer number of α-subunits and possible αβ4 subunit combinations. Four superfamilies of human K+ channels have maintained the 1D-6TM motif, and multiple α-subunits have surfaced for each: ether-a-go-go (eag, erk, elk; 3 isoforms in human), KQT (5 isoforms in humans), Kca (maxi-Kca and SKca; 6 isoforms in humans) and Kv (11 subfamilies and ≥30 isoforms) (see Coetzee et al. for review[28]). The sequence identity varies greatly within (e.g., 35–88% identity between Kv1 and Kv9) and between (e.g., 8–17% identity between Kv and Kca) the families.[23] Chromosomal site analysis of the known human isoforms also suggests that K+ channels have existed for a long time. Genes encoding 1D-6TM K+ channels are found on at least 13 human chromosomes, with little evidence of clustering of genes except in the case of a few Kv channels (Figure 5 depicts the chromosomal location of channel pore-forming and regulatory subunits identified in human PASMC). Kv channel α-subunits alone can be found on 10 chromosomes within the human genome.

Na+ and Ca2+ channels evolved after K+ channels were well established.[27] A few theories have been put forth to explain the development of four-domain (4D) -6TM channels from 1D-6TM channels: (a) two rounds of gene duplication of 1D-6TM K+ channels (1D+2D, 2D+4D) and mutations within the pore region to alter ion selectivity created the 4D-6TM Ca2+ and Na+ channels;[26] Coupled with mutations within the pore to alter ion selectivity, this evolutionary cascade would have produced the 4D-6TM Ca2+ and Na+ channels. (b) 1D- and 4D-6TM channels have a common 1D-6TM cyclic-nucleotide gated (CNG) channel ancestor, with S4 and pore regions similar to voltage-gated K+, Ca2+ and Na+ channels. In addition to structural similarities, CNG channels also exhibit some voltage sensitivity and are permeable to both monovalent and divalent cations, making it an ideal common precursor.[26] More recently, Durell and Guy[29] showed that a Ca2+ channel with a 1D-6TM motif could be detected in the akylaphilic bacterium Bacillus halodurans, plain. This suggests that more mutations conferring Ca2+ selectivity in bacterial 1D-6TM channels occurred before any gene duplication occurred and prior to the development of lower eukaryotes (protozoans), where 4D-6TM Ca2+ channels have been identified.[26,29]

The first 4D-6TM proteins were voltage-dependent Ca2+ channels (VDCC), with early gene identification revealing multiple channels within the same tissue or cell. Eventually, Ca2+ channels were classified as low-voltage activated (LVA) or high-voltage activated (HVA) VDCC (see below and Catterall[30] for review). Ca2+ influx via VDCC has already been established as an effector or trigger in numerous cellular processes, with the different channel subtypes sometimes playing different roles. The variety of functional roles for VDCC correlates well with the significant structural diversity between the 10 VDCC α subunits currently identified (α1A-1I, α1S).[30] Although the six isoforms identified in human PASMC represent each of the five

![Figure 4: Proposed phylogenetic tree depicting the evolution of voltage-dependent cation channels.](image-url)
Ca2+ channel subtypes, there is only electrophysiological evidence for the L- and T-type channels in PASMC[31,32] (also see below). As for voltage-gated K+ channels, the associated genes are encoded on at least five human chromosomes, with no grouping of α-subunits encoding for similar currents on the same chromosome. For example, α\textsubscript{1C} and α\textsubscript{1D}, both encoding for L-type VDCC in human PASMC, are located on chromosomes 12 and 3, respectively, while those encoding for T-, N-, R- and P/Q-type channels are scattered on chromosomes 17, 9, 1 and 19, respectively [Figure 5]. Furthermore, while the structure of T-type VDCC is very similar to that of LVA channels, the sequence identity between them is <25%, implying that the HVA and LVA subfamilies represent radically different evolutionary branches.[26]

Like T-type Ca2+ currents (I\textsubscript{Ca(T)}), Na+ currents are rapidly activating transient currents activated at more negative membrane potentials. In lower eukaryotes, Ca2+ was the primary charge carrier;[26] purely Na+-dependent action potentials were not common until the advent of the early metazoans. This has led to speculation that low-voltage activated and rapidly activating Na+ channels evolved from Ca2+ channels in parallel with the evolution of the first nervous systems. Sequence analysis has shown that ligand-binding sites (e.g., carboxy-terminal calmodulin-binding site) may be conserved within the 4D-6TM voltage-gated Ca2+ and Na+ channels, suggesting a similar evolutionary precursor.[33,34] Of particular interest is a putative calmodulin (CaM)-binding site located in the carboxy-terminal regions of both Na+ and Ca2+ channels.[35]

Figure 5: Chromosomal location of ion channel genes expressed in human pulmonary artery smooth muscle cells (PASMC). All isoforms of pore-forming and regulatory subunits of Na+, voltage-dependent Ca2+ channels, Kv, and Kca channels identified in human PASMC are shown. Chromosomal location is based on the primer sequences described in Table 2.
and K⁺ counterparts. The SCN5A and 6A isoforms expressed in PASMC are typically found in cardiac and uterine muscle. Unlike K⁺ and Ca²⁺ channel α–subunit genes, all Na⁺ channel α–subunit genes map within four chromosomes (2, 3, 12 and 17) containing homeobox (HOX) gene clusters.[37] HOX genes have been predicted to have existed in ancestral chordates, suggesting that the initial expansion of Na⁺ channels is associated with multiple chromosome duplications occurring after the divergence from invertebrate to pre-vertebrate chordates. The fact that many of the SCN genes are clustered on two chromosomes also suggests that intrachromosomal duplications also occurred over time.

Voltage-gated Na⁺ Channels
In a variety of excitable cells, including smooth muscle cells, voltage-gated Na⁺ channels are responsible for generating action potentials. Activation of the channels induces membrane depolarization and thus increases [Ca²⁺]cyt by promoting Ca²⁺ influx through the sarcolemmal VDCC and the reverse mode Na⁺/Ca²⁺ exchanger.[38,39] The fact that many of the SCN genes are clustered on multiple chromosomes occurring after the divergence from invertebrate to pre-vertebrate chordates. Furthermore, voltage-gated Na⁺ channels may serve as a pathway for Ca²⁺ entry under pathological and pathophysiological conditions.[41,42]

Biophysical properties of voltage-gated Na⁺ currents (INa)
The inward INa(V) observed in PASMC possesses similar biophysical and pharmacological characteristics to those previously identified in other vascular smooth muscle cells;[39,43-46] sensitivity to tetrodotoxin (≤1 μM for total inhibition), -60 to -50 mV activation threshold, -70 to -65 mV half-inactivation voltage (τinact ≤4 ms) and -25 to -15 mV half-activation voltage (τact ≈1 ms). In cultured human PASMC dialyzed with Cs⁺-containing solution, a rapidly inactivating inward Na⁺ current is observed in the absence of extracellular Ca²⁺ [Figure 6a]. As mentioned above, the current activates at potentials close to -60 mV and peaks at approximately +10 mV [Figure 6a]. These currents also inactivate rapidly, with the half-inactivation (V0.5) occurring at approximately -65 mV and complete inactivation occurs at -20 mV [Figure 6b]. Equimolar replacement of external Na⁺ with N-methyl-D-glucamine (NMDG) or extracellular application of 1 μM tetrodotoxin (TTX) is sufficient to abolish the currents [Figure 6c], suggesting that the currents in PASMC are carried by Na⁺ influx through the TTX-sensitive, voltage-gated Na⁺ channels similar to those described in neurons and cardiomyocytes.[40] The window currents determined by the overlap between the activation and inactivation curves are in the voltage range of -60 to -20 mV in human PASMC cultured in growth medium [Figure 6b, right panel]; these values are similar to those in other vascular smooth muscle cells, suggesting the participation of Na⁺ currents in the regulation of resting Eₘ in human PASMC.

![Figure 6: Electrophysiological and pharmacological properties of voltage-gated Na⁺ currents (INa,Cont) in human pulmonary artery smooth muscle cells (PASMC). Cells are dialyzed with a Cs⁺-containing pipette solution [Table 1]. (a) Representative currents were elicited by depolarizing the cell to a holding potential of -70 mV to test potentials between -80 mV and +80 mV (protocol at bottom). Upper left inset: Steady-state activation and inactivation of currents occurred within <5 ms and <16 ms, respectively. Lower right inset: Summarized INa(V) I-V relationship. (b) Currents were evoked by a step depolarization to 0 mV from different conditioning potentials (-120 mV and -20 mV) applied for 10 s prior to the test depolarization (left). Voltage-dependent steady-state availability (I(V)/I(V)max) and normalized conductance–voltage relationship (gNa/Vm) of the peak INa amplitude. The /I(V)max and gNa/Vm curves were best fitted using exponential and Boltzman equations, respectively. (c) INa(V) is completely suppressed by equimolar replacement of extracellular Na⁺ with N-methyl-D-glucamine (NMG) or extracellular application of 1 μM tetrodotoxin. Currents were elicited by step depolarizations from -70 mV to 0 mV.](image-url)
Voltage-gated Na⁺ channel genes expressed in human PASMC

A complex of three glycoprotein subunits forms functional Na⁺ channels: a pore-forming α-subunit and two β-subunits that modulate channel gating and membrane expression [Figure 7a]. The α-subunit alone can form a functional channel and is composed of four domains, each containing six transmembrane segments (S1–S6) and a pore loop (P region). Each S4 segment is believed to act as a voltage sensor, while the S5-pore loop-S6 segments form the transmembrane pore itself. Using reverse transcriptase-polymerase chain reaction (RT-PCR), seven Na⁺ channel-related gene transcripts (SCN1B, 2A, 2B, 4A, 8A, 9A and 11A) have been detected in PASMC [Figure 7b]. Transcripts for SCN5A and SCN6A have not yet been detected in PASMC. All of these isoforms are expressed in the brain [Figure 7b]. The combined functional and molecular identification of Na⁺ currents and channels in human PASMC suggest that voltage-gated Na⁺ channel activity and expression may relate to PASMC excitability, contractility, proliferation and differentiation.

Phenotypical change of voltage-gated Na⁺ channel expression in freshly dissociated and cultured VSMC

Voltage-gated TTX-sensitive Na⁺ currents (I_{Na(V)}) have been described in several types of human vascular smooth muscle cells cultured from the aorta and pulmonary arteries. On only rare occasions have I_{Na(V)} been recorded in freshly dissociated human vascular

Figure 7: Molecular identity of voltage-gated Na⁺ channels in human pulmonary artery smooth muscle cells (PASMC). (a) Structural arrangement of Na⁺ channel α-, β₁- and β₂-subunits. (b) The mRNA expression of cloned Na⁺ channels in human brain (Br) and PASMC (PA). Polymerase chain reaction (PCR)-amplified products displayed for the transcripts of SCN2A, SCN4A, SCN5A, SCN6A and β-actin. “-RT”, PCR performed with no reverse transcriptase (RT). “M”, 100 bp DNA ladder. (c) A phylogenetic tree showing the inferred evolutionary relationships among different Na⁺ channel genes.
smooth muscle cells, although they are readily detected when the same cells are cultured.\cite{46} Although it may be due to a technical problem (e.g., the rapid inactivation of the currents and the large size of most freshly dissociated smooth muscle cells to record \(I_{\text{Na}(V)}\)), the relative inability to detect \(I_{\text{Na}(V)}\) in freshly dissociated, but not cultured, cells from the same vascular bed may bear some relation to cell dedifferentiation and proliferation.\cite{46} More specifically, voltage-gated Na\(^+\) channel expression and activity may be required to facilitate the transition from a “contractile” to “synthetic” or “proliferative” phenotype.\cite{45,49} However, \(I_{\text{Na}(V)}\) have been recorded in both freshly dispersed rabbit\cite{42} and cultured human\cite{45} PASMC. This raises the possibility that the development and expression of functional voltage-gated Na\(^+\) channels in cultured cells acts as a trigger for cell differentiation and proliferation, possibly via enhanced \([\text{Ca}^{2+}]_{\text{cyt}}\) as discussed below.

Functional properties of voltage-gated Na\(^+\) channels in human PASMC

Na\(^+\) channels appear to play an important role in the regulation of \([\text{Ca}^{2+}]_{\text{cyt}}\) and sarcotlemmal \(\text{Ca}^{2+}\) influx by different mechanisms. Firstly, in cardiac myocytes, enhanced TTX-sensitive \(I_{\text{Na}(V)}\) causes a localized transient increase in \([\text{Na}^{+}]_{\text{cyt}}\) thereby activating reverse-mode \(\text{Na}^{+}/\text{Ca}^{2+}\) exchange and increasing \([\text{Ca}^{2+}]_{\text{cyt}}\) with the subsarcolemmal space between the plasma membrane and SR.\cite{41} The \(\text{Ca}^{2+}\) newly introduced into the cytoplasm can then trigger further \(\text{Ca}^{2+}\) release from the SR (which ultimately will cause contraction and stimulate proliferation and migration) or replenish SR \(\text{Ca}^{2+}\) pools by \(\text{Ca}^{2+}\)-ATPase-mediated re-uptake.\cite{42,50} Secondly, TTX-sensitive Na\(^+\) channels are promiscuous, i.e. they can allow permeation of other cations (such as \(\text{Ca}^{2+}\)) under certain conditions (e.g., absence of extracellular Na\(^+\), presence of tracing doses of steroids such as ouabain and digoxin).\cite{42,51} \(\text{Ca}^{2+}\) influx through promiscuous Na\(^+\) channels can contribute to local and global cardiac \(\text{Ca}^{2+}\) signaling, especially in heart failure patients treated with digoxin.\cite{52} In addition to its modulating \([\text{Ca}^{2+}]_{\text{cyt}}\), the permeability of \(\text{Na}^{+}\) channels to \(\text{Ca}^{2+}\) may also play a role in the contractile-to-proliferative cellular transition. Thirdly, voltage-gated Na\(^+\) channels are essential in the generation of action potentials in many excitable cells, thereby regulating \([\text{Ca}^{2+}]_{\text{cyt}}\) based on evidence from expressed SCN5A channels.\cite{33,53} We can speculate that \(\text{Ca}^{2+}/\text{CaM}\)-mediated regulation of voltage-gated Na\(^+\) channels may play an important role in the coupling of human PASMC excitation and contraction.

VDCC

In excitable cells, the opening of VDCC is a critical mechanism responsible for muscle contraction induced by neuronal and humoral stimulation. There are at least five types of VDCC described in neurons and cardiomyocytes: L-type, T-type, P/Q-type, R-type and N-type.\cite{54,55} These \(\text{Ca}^{2+}\) channels have been sorted based on their electrophysiological, pharmacological, kinetic and molecular properties. VDCC have also been separated into two groups based on their activation voltage. HVA VDCC include all but T-type channels, with the latter classified as LVA VDCC. HVA channels activate at membrane potentials between -50 mV and -20 mV, while LVA channels activate at more negative potentials approximating -70 mV. Typically, only currents generated by L- and T-type channels have been measured in cardiovascular tissues, while all current types have been recorded in neuronal tissues.\cite{54}

Whole-cell VDCC currents (\(I_{\text{Ca}}\))

In human PASMC, a large, slowly inactivating inward \(\text{Ca}^{2+}\) current is observed when cells are held at -70 mV and depolarized to 0 mV [Figure 8a]. The current activates close to -20 mV, with a maximal activation of approximately +15 mV. Removal of extracellular \(\text{Ca}^{2+}\) abolishes the currents, confirming that the currents are due to \(\text{Ca}^{2+}\) influx. Nifedipine, a dihydropyridine blocker of VDCC, is also able to significantly inhibit the currents. The currents present in PASMC are, therefore, mainly due to \(\text{Ca}^{2+}\) influx through dihydropyridine-sensitive L-type \(\text{Ca}^{2+}\) channels. Less frequently, and while being held at a very negative potential (-100 mV), depolarization to a test potential to -20 mV can elicit a rapidly activating transient inward \(\text{Ca}^{2+}\) current [Figure 8b and c]. This transient

![Figure 8](image-url)
current activates and inactivates rapidly in comparison with the L-type current [Figure 8a], with a threshold potential for activation of approximately -36 mV at a holding potential of -90 mV. The biophysical properties of these currents are very similar to the T-type Ca2+ current observed in aortic[56] and renal artery[57] smooth muscle cells, rat PASMC[58] and cardiomyocytes.[59]

Endogenously expressed genes that encode VDCC in human PASMC
As for voltage-gated Na+ channels, the pore-forming VDCC α1-subunits (10 identified isoforms) are composed of four, six transmembrane segment domains [Figure 9a] that, when expressed alone, can create functional channels.[47] The pore-forming S5-loop-S6 segments and the voltage-sensing S4 segments are integral to the function of α1-subunits. Three different regulatory subunits are also part of the greater Ca2+ channel complex.[53,60-62] β−-subunits (four isoforms with their associated subtypes) play multiple roles in regulating channel membrane expression of α1-subunits, current kinetics and biophysical properties. Extracellular α2δ-subunits (two isoforms plus their subtypes) that are attached to the plasma membrane via a disulfide linkage can influence current amplitude and inactivation rates, and likely play a major role in stabilizing the incorporation of the Ca2+ channel complex into the plasma membrane. Finally, γ-subunits (six known isoforms) may modulate channel assembly and channel subtype-specific current kinetics, both effects being highly dependent on the nature of the co-expressed β− and α2δ-subunits [Figure 9a]. At the RNA level, transcripts for six pore-forming α1-subunits have been detected in human PASMC, encoding for all five VDCC types: α1A (P/Q-type), α1B (N-type), α1C and α1D (L-type), α1E (R-type) and α1G (T-type) [Figure 9b]. Additionally, a variety of regulatory subunit isoforms are also present, including α2δ [Figure 9c], β1-4 [Figure 9d] and γ6 [Figure 9e] in human PASMC. From the current molecular and electrophysiological evidence, it may be speculated that the α1C-subunit may encode the L-type VDCC, while the α1G encodes for the T-type VDCC in human PASMC.

Voltage-gated K+ Channels
Functionally, both voltage-gated (Kv) channels and Ca2+-activated K+ (Kca) channels (see below) are sensitive to voltage changes. In other words, these channels are activated by membrane depolarization and are deactivated by membrane hyperpolarization. A fundamental difference between Kv and Kca channels is their response to Ca2+: in vascular smooth muscle cells, Kv channels are inhibited by cytoplasmic Ca2+.[53,63] and Kca channels are activated by cytosolic Ca2+.[19,64] The existence of other types of Kv channels, such as inward rectifier (Kir), ATP-sensitive (KATP) and tandem-pore (Kt) channels, has also been demonstrated in vascular smooth muscle cells.[19,65,66] This review focuses only on the voltage-dependent channels; Kv and Kca channels.

Classification based on unitary conductance
Macroscopic currents of Kv (IKV) and Kca (IK(Ca)) channels can be readily dissociated based on their pharmacological properties and Ca2+-dependence. Additionally, the single-channel conductance for each of these channels can also serve to distinguish them from each other. The traces shown in Figure 10 are representative cell-attached recordings from PASMC, where multiple channel subtype openings can be recorded from the same patch using identical Ca2+-containing perfusion solutions. As shown in Figure 10a, large amplitude K+ currents (a) and several small amplitude currents (b–f) can be recorded in a cell-attached membrane patch. In addition to the various amplitudes of the recorded K+ currents, the duration of the channel openings varies in human PASMC. Examples of long-lasting channel and “flickery” openings are shown in Figures 10b and c. In cell-attached patches of PASMC, multiple amplitudes of outward K+ currents can be elicited by steadily holding the patch at different potentials. Representative openings for channels with seven different conductance levels are shown in Figure 11. The large amplitude current (225 pS and 189 pS) openings are likely generated by the activation of large-conductance Kca channels,[67] while the 33 pS, 81 pS and 6 pS channels may represent unitary currents through different Kv channels or small to intermediate conductance Kca channels.

In addition to its regulation of current amplitude, membrane potential can also affect the gating properties of these channels, e.g., the open probability (Popen). For the 189 pS channel shown in Figure 10, Popen increased with membrane depolarization from 0.0005 at 0 mV to 0.014 at +50 mV and 0.27 at +90 mV. Similarly, Popen for the 33 pS channel increased from 0.04 at +60 mV to 0.43 at +90 mV, from 0.09 at +40 mV to 0.01 at +90 mV for the 141 pS channel and from 0.007 at +40 mV to 0.02 at +90 mV for the 6 pS channel. Therefore, both the single channel amplitude and the open probability of Kca and Kv channels are influenced by membrane potential in human PASMC.

Whole-cell voltage-gated K+ (Kv) currents
In order to record optimal whole-cell (macroscopic) Kv currents (IKV), cells are commonly perfused with Ca2+-free bath solution (plus 1 mM EGTA) and dialyzed with Ca2+-free pipette solution (plus 10 mM EGTA). Depolarizing the cells from a holding potential of -70 mV to a series of test potentials ranging from -60 mV to +80 mV elicits outward K+ currents, with a threshold potential of activation at approximately -45 mV. Four families of whole-cell IKV currents can be distinguished.
Figure 9: Molecular identity of voltage-dependent Ca\(^{2+}\) channels (VDCC) in pulmonary artery smooth muscle cells (PASMC). (a) Structural arrangement of Ca\(^{2+}\) channel α-, β-, α\(_{2}\)-, and γ-subunits. (b–e) The mRNA expression of α (1A-1F, 1S), α\(_{2}\) (δ1 and δ3), β (1–4), and γ (1–6) subunits for L-, T-, P/Q-, N- and R-type VDCC in human PASMC (hPASMC) and brain tissues (hBrain). “M,” 100 bp DNA ladder. (f) A phylogenetic tree showing the inferred evolutionary relationships among different Ca\(^{2+}\) channel genes.
based on their activation and inactivation kinetics: (i) rapidly activating and slowly inactivating $I_{\text{K(V)}}$ [Figure 12a], (ii) rapidly activating and non-inactivating $I_{\text{K(V)}}$ [Figure 12b], (iii) slowly activating and non-inactivating $I_{\text{K(V)}}$ [Figure 12c] and (iv) rapidly activating and rapidly inactivating $I_{\text{K(V)}}$ [Figure 12d]. Activation time constants (τ_{act}) can be separated into two components corresponding to the rapidly and slowly activating currents (<3 ms and >3 ms, respectively) [Figure 12e, top panel]. Inactivation constants (τ_{inact}) are much more variable, as shown in Figure 12e, bottom panel, with the midpoint between rapid and slow inactivation being approximately 100 ms. The half-activation occurs at +25 mV for each type of current. In PASMC, the family of Kv channels can thus be grossly divided into two categories: (a) delayed rectifier Kv channels generating slowly activating and non- or slowly inactivating currents and (b) rapidly activating and rapidly inactivating currents originating from the activation of transient 'A'-type currents similar to those observed in phasic smooth muscle, cardiomyocytes and neurons. [68-71]

Extracellular application of 5 mM 4-AP, a common K_v channel inhibitor, reversibly decreases K_v currents [Figure 13]. While the slow inactivation kinetics of three of the different currents are typical of most native delayed-rectifier K^+ currents recorded in vascular SMCs,[19,25] the 4-AP-sensitive rapidly activating and inactivating current may represent a different class of K^+ current less commonly observed in vascular SMC. Based on its rapid inactivation (<100 ms) kinetics, this component closely resembles the transient I_{A}-type current that has been observed in phasic smooth muscle cells,[71,72] cardiac cells[68] and neurons.[70] Heteromeric assembly of K^+ channel α-subunits may account for the notable diversity of K^+ currents within the same cell system. When the electrophysiological properties of PASMC Kv currents are compared with those generated by cloned Kv channel α-subunits,[28,73-75] it is clear that the native channels' properties are intermediaries of those different clones forming the functional channels.

Figure 10: Single-channel K^+ currents in cell-attached patches of human pulmonary artery smooth muscle cells (PASMC). (a) Recordings from a human PASMC showing the variability of current amplitudes (a-f) within the same patch. The horizontal broken line indicates the level of currents when the channels are closed. Unitary K_v (b) and K_{Ca} (c) openings can be sustained (a) or flickery (b). (c). View of flickery and sustained $I_{\text{K(Ca)}}$ on expanded time scales

Figure 11: Range of single-channel conductances of K^+ channels observed in human pulmonary artery smooth muscle cells (PASMC). Floating bar graph showing modes, medians and ranges of the seven conductance classes identified in human PASMC. The number of cells exhibiting particular channel conductances is indicated by the gray-shaded bars
The behavior of single channels within a patch provides some evidence for the heteromeric assembly of the pore-forming units [Figure 10]. Cloned Kv channels have a wide range of single-channel conductances that do not always match with the conductance of native Kv channels. For example, the single-channel conductances for Kv1.1, Kv1.2 and Kv1.5 channels expressed in heterologous expression systems are reported to be 10 pS, 9–17 pS and 8 pS, respectively.

The conductance of native Kv channels in vascular SMC at physiological K+ concentrations (5 mM internal, 140 mM external) ranges between 5 pS and 11 pS,[72,78] and between 15 pS and 70 pS in symmetrical (140 mM) K+ conditions.[79-81] While the differences between native and cloned Kv conductances may relate to differences in the expression systems (e.g., pulmonary
artery vs. HEK 293 cells), splicing or post-translational modifications, it is quite likely that native Kv channels are heterotetramers.

The association of multiple β-subunits with the functional α-tetramer may further influence the biophysical properties of native currents,[73] including those in human PASMC. Cytoplasmic Kv channel β-subunits associate with the S6 segment and carboxy-terminal region of Kvα-subunits via their own highly conserved carboxy terminus.[62] The most dramatic functional effect of Kv channel β-subunit association with Kv channel α is to confer inactivation onto the non-inactivating channels [Figure 14] and to confer redox and O₂ sensitivity onto the Kv channels.[83,84] In extreme cases, they convert non-inactivating Kv currents into rapidly inactivating transient currents.[85] In the case of the Kv channel β1-subunit, this occurs via the pore-blocking effect of an amino-terminal inactivation ball domain similar to that found on the “subunit.”[85] Other β-subunits modulate current kinetics by shifting the activation curve, slowly deactivating the current, enhancing slow inactivation or altering peak current amplitude by acting as an open-channel blocker.[82,86] Finally, Kv channel β−subunits may participate in α-subunit assembly and transport to the plasma membrane, and enhance the interaction of α-subunits with protein kinases.[82,87] Given the diversity of roles and properties of Kv α− and β-subunits, it is not altogether surprising that Kv channel activity is central to numerous processes that rely on membrane potential regulation, such as hypoxic pulmonary vasoconstriction,[21,88-90] cell proliferation[6,91] and myogenic reactivity.[92]

Kv channel genes expressed in human PASMC
As mentioned above, native Kv channels are believed to be heteromeric tetramers composed of the pore-forming α-subunits and regulatory cytoplasmic β-subunits (α/β) [28,93] [Figure 15a]. Transcripts of Kv channel genes detected by RT-PCR on mRNA isolated from human PASMC and brain tissues are shown for each Kv channel subunit in Table 2. Brain tissue is commonly used as a positive control for the mRNA expression of ion channels due to its high expression of the majority of known ion channels. In human PASMC, at least 22 Kvα-subunits and 3 Kvβ-subunits [Figure 15b] have been identified. It is currently unknown as to how many of these transcripts are transcribed leading to expression of a functional channel/protein in PASMC. Figure 15c shows a phylogenetic diagram of Kv channels.

Macroscopic Ca²⁺-activated K⁺ currents
To record Kca currents, cells need to be superfused with 1.8 mM Ca²⁺-containing bath solution and dialysed with an EGTA-free pipette solution. Depolarization from a holding potential of -70 mV to a series of test potentials ranging from -60 mV to +80 mV will elicit both Kca and Kv currents. The noisy currents dominant at positive potentials are representative of whole-cell Kca currents (I_K(Ca)) observed in freshly dissociated animal vascular smooth muscle cells.[21,69] In direct comparison with I_K(Ca) it activates slowly with relatively little inactivation. Extracellular application of known inhibitors of Kca channels such as 1 mM TEA, 50 nM iberiotoxin or 50 nM charybdotoxin can significantly block the noisy I_K(Ca) while having a negligible effect on I_K(Ca). These findings in PASMC are consistent with observations in systemic vascular smooth muscle cells.[19,70,80] Dialysis of PASMC with a high (500 μM) Ca²⁺-containing pipette solution (containing 8.8 mM EGTA and 10 mM CaCl₂) yields slowly activating outward currents that are significantly inhibited by extracellular application of the Kca blockers iberiotoxin and charybdotoxin. The slow activation kinetics of the I_K(Ca) is consistent with the kinetics of the currents measured in cells transected with the maxi-K⁺ channel gene, hSlo-α,.[94,95]

In cell-attached patches of PASMC, increased [Ca²⁺] by FCCP (which depolarizes and releases Ca²⁺ from mitochondria)[96] causes a significant increase in the steady-state open probability of the large-conductance IK(Ca) [Figure 16a]. Extracellular application of dihydroepiandrosterone, an agent that opens Kca channels via cAMP/cGMP-independent pathways,[97] also increases the P_open of large-conductance I_K(Ca)

Figure 14: Co-transfection of Kvβ-subunits affects KCNA5 channel kinetics. HEK-293 cells were transiently transfected with wild-type KCNA5 alone (KCNA5) or in the presence of Kvβ1.3-HA (KCNA5/Kvβ1.3). Representative current recordings (a) and I-V curves (b) are shown (pulse protocol, lower panel). (c) Averaged currents (left) and normalized currents (right) at +60 mV in cells transiently transfected with WT KCNA5 alone (KCNA5) or WT KCNA5 + Kvβ1.3-HA (KCNA5/Kvβ1.3).
Figure 15: Molecular identity of voltage-gated K^+ (Kv) channels in pulmonary artery smooth muscle cells (PASMC). (a) Structural arrangement of Kv channel α- and β-subunits (a), the tetrameric association of α-subunits (b) and the ball-and-chain inactivation mechanism for $I_{K(V)}$ (b). (b) The mRNA expression of reverse transcriptase-polymerase chain reaction products using Kv1 (a), Kvβ (b), Kv2 (c), Kv3 (d), Kv4 (e), Kv5 (f), Kv6 (g), Kv9 (h) and Kv11 (i) primers in human PASMC (P) and brain (b) tissues. “M,” 100 bp DNA ladder. (c) A phylogenetic tree showing the inferred evolutionary relationships among different Kv channel genes.
Molecular identities of Kca channels in human PASMC

Unlike the mainly heterotetrameric Kv channels, Kca channels are predominantly homomeric tetramers composed of the pore-forming α-subunits and the auxiliary β-subunits [Figure 17a]. Several human Kca channel α-subunits that encode the large (maxi-Kca) - and small (SKca) -conductance Kca channels have been cloned and characterized in vascular SMC. In addition to the pore-forming α-subunit, several β-subunits have also been identified. Maxi-Kca α1 (hSlo-α1) is highly expressed in human PASMC [Figure 17a]. Four β-subunits (Maxi-Kca β1-4) are also detected by RT-PCR in PASMC [Figure 17b]. Three (SK2-4) pore-forming subunits are observed at the (mRNA level for SKca channels [Figure 17c].

Table 3 shows the biophysical and pharmacological properties, along with the molecular identifies of, voltage-dependent cation channels in human PASMC. The information shown in Table 3 is certainly incomplete and it is important to conduct more studies to reveal all voltage-dependent cation channels that are functionally expressed in animal and human PASMC.

Contribution of Cation Channels to the Regulation of E_m and $[Ca^{2+}]_{cyt}$ in Human PASMC

A rise in $[Ca^{2+}]_{cyt}$ in PASMC causes pulmonary vasoconstriction and stimulates PASMC proliferation. Changes in E_m regulates $[Ca^{2+}]_{cyt}$ in PASMC. E_m is primarily determined by the concentration gradients across the plasma membrane of electrically charged ions, mainly Na+, Ca2+, K+ and Cl–, and their relative permeability. At rest, the concentration of intracellular K+ (~140 mM) is much greater than that of the extracellular space (~5 mM) because of Na+-K+ ATPase pump activity, and the K+ permeability across the plasma membrane is far greater than that of Na+, Ca2+ and Cl–.[15,106] Therefore, the resting E_m is mainly determined by the permeability of K+ ($E_K \approx -85$ mV) and the activity of Na+-K+ ATPase.

Extracellular application of 5 mM 4-AP, which is known to reduce $I_{K(V)}$ [Figure 13], can reversibly cause membrane depolarization in human PASMC, whereas iberiotoxin, an inhibitor of Kca channels, has little effect on E_m. Increasing extracellular K+ concentration (e.g., from 4.7 mM to 60 mM) also shifts the K+ equilibrium potential and depolarizes E_m. It can, therefore, be proposed that 4-AP-sensitive Kv channels are active and contribute to the regulation of the resting E_m in PASMC. Increasing extracellular K+ concentration (e.g., from 4.7 mM to 60 mM) also shifts the K+ equilibrium potential and depolarizes E_m. It can, therefore, be proposed that 4-AP-sensitive Kv channels are active and contribute to the regulation of the resting E_m in PASMC. Therefore, the resting E_m in PASMC is an important determinant of $[Ca^{2+}]_{cyt}$ in SMC because of the voltage dependence of Ca2+ influx via voltage-dependent L-type VDCC and the reverse mode of Na+/Ca2+ exchanger. Consistent with its inhibitory effect on E_m, it depolarizes the membrane potential, E_m. The reverse mode of Na+/Ca2+ exchanger with its inhibitory effect on E_m, it depolarizes the membrane potential, E_m. The reverse mode of Na+/Ca2+ exchanger.

Figure 16: Single-channel Ca2+-activated K+ (Kca) currents ($i_{K(Ca)}$) in cell-attached membrane patches of human pulmonary artery smooth muscle cells (PASMC). (a) FCCP (5 μM) enhances large-amplitude $i_{K(Ca)}$ open probability (P_{open}) (a) by causing a transient $[Ca^{2+}]_{cyt}$ increase. (b) Dihydroepiandrosterone (0.1 mM) also enhances the large-amplitude $i_{K(Ca)}$ P_{open}. (c) Cyclopiazonic acid (5 μM), an inhibitor of sarcoplasmic reticulum (SR) Ca2+ pump, increases the activity of a smaller amplitude $i_{K(Ca)}$ (a) by causing SR Ca2+ release from the cytosol (b).
Table 2: Oligonucleotide sequences of the RT-PCR primers

Standard names (Accession no.)*	Size (bp)	Predicted sense/antisense Location (nt)	Gene (chromosome)
Voltage-gated Na⁺ channels			
SCN2A (X65361)	629	5'-ACATCTGTTGAAAGCTTGAGTAG-3'/5'-CAGTAGGGAGCGCCGGAACAG-3'	1157-1179
SCN4A (M81758)	684	5'-GCCGTTCAACGACCAACACACC-3'/5'-AGATGCTTGCCACCTTCATG-3'	932-954, 1763-1785
SCN5A (M77235.1)	466	5'-AGAGGAGGCTGCCAGCAAATCG-3'/5'-CCTGGGTTTACCAAAAGTTGAC-3'	1647-1669, 1906-1928
SCN6A (M91556)	507	5'-CATGAGGGTGGCAAGACAGA-3'/5'-ATCAGAGGACGCTCTGAGC-3'	1422-1444, 2971-3000
β-actin (M10277)	661	5'-GGGGGGTCACCCACACTGTACATC-3'/5'-CTAGAAGCATTTGCGGTGGACG-3'	2134-2162, 2971-3000
Voltage-gated Ca²⁺ channels			
L-type			
αS (NM_000069)	246	5'-GGGAGCGGAGGAAGTAATCC-3'/5'-CTCAAGGAGCTGGCTTTTG-3'	46-65, 272-291
αC (NM_000719)	357	5'-TCTTTTACCCCAAATGCTTAC-3'/5'-CTCCTGTGTTGTAGACAGCT-3'	1875-1894, 2212-2231
αD (XM_003238)	258	5'-GCCAGATGTTGACACAGA-3'/5'-CAGTGCCCTGTTCTGAGA-3'	1819-1838, 2057-2076
αF (NM_005183)	251	5'-CATCTTCTCCAGCTTCTTC-3'/5'-CTCCTCATACTCCTGCTG-3'	863-882, 1113-1133
T-type			
αG (AF029229)	250	5'-TTCTCCAAGATGACCTCAT-3'/5'-TGCTCTCTGAGCTGTACT-3'	494-513, 724-743
αF (NM_021096)	357	5'-TCTTTTACCCCAAATGCTTAC-3'/5'-CTCCTGTGTTGTAGACAGCT-3'	1875-1894, 2212-2231
αF (XM_010005)	270	5'-GCCAGATGTTGACACAGA-3'/5'-CAGTGCCCTGTTCTGAGA-3'	1819-1838, 2057-2076
N-type			
αB (XM_015804)	254	5'-GCCAGACCGAGAGAA-3'/5'-TGCTCTCTGAGCTGTACT-3'	2041-2060, 2275-2294
P/Q-type			
αA (XM_051369)	250	5'-TTGCCTCTACAGAAAGCACA-3'/5'-TCCAAGATGCGCTCTGTC-3'	2458-2477, 2688-2707
R-type			
αG (XM_001815)	253	5'-GGGAGCGGAGGAAGTAATCC-3'/5'-CTCAAGGAGCTGGCTTTTG-3'	988-1007, 1221-1240
αG (XM_167505)	178	5'-AGTGAGATGCTGGAAC-3'/5'-ACAAGGCTCCTGATGACTG-3'	1231-1250, 1389-1408
αF (XM_035446)	167	5'-GCCAGATGTTGACACAGA-3'/5'-CAGTGCCCTGTTCTGAGA-3'	1819-1838, 2057-2076
β1 (XM_054993)	253	5'-GCCAGACCGAGAGAA-3'/5'-TGCTCTCTGAGCTGTACT-3'	976-995, 1209-1228
β2 (XM_059901)	241	5'-CCAACACGCGAGAGAA-3'/5'-AACACAAAAAGGGCAAAACCT-3'	2097-2116, 2318-2337
β3 (NM_000724)	248	5'-GAGGAGATCTTGGGACA-3'/5'-GTACCTTGTTGATGGGCA-3'	406-425, 634-653
β3 (XM_028766)	262	5'-GAGGAGATCTTGGGACA-3'/5'-GTACCTTGTTGATGGGCA-3'	406-425, 634-653
γ1 (AF216867)	250	5'-GATGTTGACCAAGCCGATCC-3'/5'-TCGAGAGGAGGAGGAGGAGG-3'	235-255, 455-475
γ2 (XM_008262)	249	5'-GGCCTTTGTTGAGTGTTGTT-3'/5'-TGCATCTCCTGGAGGAGG-3'	5-24, 1221-1240
γ3 (NM_006078)	259	5'-CTTGGGGGGAGGAAATGTCTAGA-3'/5'-CAAGAGGAGGAAATGTGGA-3'	1327-1346, 1566-1585
γ4 (NM_006539)	299	5'-CAAGAGGAGGAAATGTGGA-3'/5'-CTACAGCCGCCAGAAGAACA-3'	407-426, 686-705
γ5 (NM_014408)	337	5'-CGTGAAGATGGCTCAAGAGA-3'/5'-CTCGATCATAGCGGGCAGCT-3'	471-490, 788-807
γ6 (AF361351)	271	5'-TTGGGAGGACCTCTGTATAC-3'/5'-GCACTGAGTGCAGCACAGA-3'	460-479, 711-730
γ6 (AF361352)			

Firth, et al.: Ion channels in human PASMC
Table 2 continued

Standard names (Accession no.) *	Size (bp)	Predicted sense/antisense Location (nt)	Gene (Chromosome)
Voltage-gated K⁺ channels			
Kv1.1 (KCN1A) (NM_000217)	258	5'-CGGGGTCACTCCTGTTTCTCTA-3' / 5'-CCCTCAAGTTTCCTCGGTGTA-3'	1005-1024 12p13
Kᵥ1.2 (KCN2A) (NM_004974)	200	5'-ATGAGAATGGGCTCCT-3' / 5'-CCCACTATCTTCCCCCCTAT-3'	986-1005 1p13
Kᵥ1.3 (KCN3A) (NM_002232)	259	5'-TCTGCTATGCTCCTGTTT-3' / 5'-TTCTTCCCCAGGTACTG-3'	1166-1185 1p21-p13.3
Kᵥ1.4 (KCN4A) (NM_002233)	571	5'-TGGCCGCTACAGTCTCAGT-3' / 5'-ATCCATACAAACCACCAT-3'	1640-1658 11q13.4-q14.1
Kᵥ1.5 (KCN5) (NM_002234)			
Kᵥ1.6 (KCN6) (NM_002235)			
Kᵥ1.7 (KCN7) (NM_031886)			
Kᵥ1.10 (KCN10) (NM_005549)			
Voltage-dependent Ca²⁺-activated K⁺ channels			
MaxiKca-α1 (NM_002247)	442	5'-CTACTGGGAGGTTTTCATCTGCTG-3' / 5'-TGCTGCTAAACTCCAC-3'	2210-2232 10q11
MaxiKca-β1 (NM_004137)	363	5'-TCACTGCTGCTGCTGCTGCTG-3' / 5'-TGCTGCTGCTGCTGCTGCTGCTG-3'	2185-2203 2p24
MaxiKca-β2 (AF-348982)	227	5'-GCCAAGCTTAAACACCTAAA-3' / 5'-GCCAAGCTTAAACACCTAAA-3'	890-900

Firth, et al.: Ion channels in human PASMC
Membrane depolarization generated by raising the extracellular K⁺ concentration from 4.7 mM to 60 mM results from an ~20 mV shift of E_K toward less-negative potentials. As a result of this rightward shift in E_K and the subsequent depolarization of E_m, $[Ca^{2+}]_{\text{cyt}}$ is elevated [Figure 18b], an effect significantly attenuated by the removal of extracellular Ca²⁺. Membrane depolarization-mediated elevation of $[Ca^{2+}]_{\text{cyt}}$ is therefore mainly due to Ca²⁺ influx through nifedipine-sensitive VDCC in human PASMC.

Both excitable and quiescent cells possess a negative resting $E_{m'}$, E_{n} is known to control electrical excitability (e.g., generation and propagation of action potentials), muscle contraction, apoptosis[112-114] and gene expression. [115,116] From the latter functions, it is apparent that the mechanisms controlling E_m and $[Ca^{2+}]_{\text{cyt}}$ are interrelated. Membrane depolarization elevates $[Ca^{2+}]_{\text{cyt}}$ mainly by activating VDCC[115,119,117,118] and the reverse-mode Na⁺/Ca²⁺ exchanger[110,111,119] in the plasma membrane. In smooth muscle cells, the voltage window of sarcolemmal L-type voltage-gated Ca²⁺ channels for sustained elevation of $[Ca^{2+}]_{\text{cyt}}$ ranges from -40 mV to -20 mV, and peaks at -30 mV, similar to what has been observed in human PASMC. The Na⁺/Ca²⁺ exchanger has a reversal potential ($E_{\text{Na-Ca}}$) of approximately -47 mV at rest, based on the equation: $E_{\text{Na-Ca}} = 3E_{\text{Na}} - 2E_{\text{Ca}}$, where E_{Na} is the Na⁺ equilibrium potential (approximately +66 mV) and

Table 2 continued

Standard names (Accession no.)*	Size (bp)	Predicted sense/antisense	Location (nt)	Gene (chromosome)
MaxiKca-β3 (NM_014407)	351	5'-GCTCAACAGTGCTTGGAAGACA-3'/ 5'-TGGCCACCGTCTTAAGATTG-3'	1013-1032	3q26.3-q27.1
MaxiKca-β4 (NM_014505)	300	5'-CTGAGTCACATCTTAGGCAG-3'/ 5'-TGGTCAGGACCACAATGAG-3'	662-681	12q14.1-q15
Kca-SK1 (NM_002248)	357	5'-CTTTCCTCCATTCAGGCT-3'/ 5'-TTTCCCTGCTTGATCTTAC-3'	1301-1320	19p13.1
Kca-SK2 (NM_021614)	451	5'-CAAGCAACACCTTTGGGGA-3'/ 5'-TGTTCTTGACTCCAGAGT-3'	1880-1899	5q22.3
Kca-SK3 (NM_002249)	349	5'-CTTTCATCTCTGCCACACTC-3'/ 5'-GGGGGTGTTGAAGGTGTAC-3'	1344-1363	1q21.3
Kca-SK4 (NM_002250)	399	5'-GCCCTGAGGAACACAGATTGA-3'/ 5'-AGAGCGTGGAGAGTCGTCCATA-3'	1673-1692	19q13.2

*The accession numbers in GenBank for the sequence used in designing the primers

Table 3: Biophysical properties and molecular identities of voltage-dependent cation channels expressed in human PASMC

Types of currents	Activation threshold	Blocked by (EC_{50})	Gene transcripts identified
I_{Na}	-34 mV	Tetrodotoxin	SCN5A, SCN6A
I_{Ca}	-24 mV (HVA)	Nickel	L-type (α_{Ca}, α_{Ca})
	-50 mV (LVA)	Nifedipine	T-type (α_{Ca})
			P/Q-type (α_{Ca})
			N-type (α_{Ca})
			R-type (α_{Ca})
			α_{Ca}
			β_{1}, β_{2}, β_{3}, β_{4}
$I_{\text{K(V)}}$	-55 mV	4-AP	K_{1.1}, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1-10
			K_{2.1}
			K_{3.1}, 3.3, 3.4
			K_{4.1}, 4.2
			K_{5.1}
			K_{6.1}, 6.2, 6.3
			K_{9.1}, 9.3
			K_{10.1}
			K_{11.1}
			K_{11}, β_{1}, β_{2}, β_{3}
$I_{\text{K(Ca)}}$	-25 mV	Iberiotoxin	Maxi-Kca α
		Charybdotoxin	Maxi-Kca β1, β2, β3, β4
			SK2, 3, 4
rapid Na+-induced depolarization and subsequent VDCC activation.

While Na+ and Ca2+ channel activation has a tendency to depolarize cells and enhance [Ca2+]cyt, K+ channel activation hyperpolarizes the membrane and decreases sarcolemmal Ca2+ influx. Because of their voltage- and/or Ca2+-dependence, K+ channels are key elements in the maintenance of E_m to the “near-resting” level. This review reflects on data that an inhibition of Kv channels with 4-AP induces membrane depolarization and increases [Ca2+]cyt by opening the nifedipine-sensitive L-type VDCC in human PASMC. An increase in [Ca2+]cyt is believed to play an important role in stimulating cell growth by activating

\[E_{Ca} \] is the Ca2+ equilibrium potential (approximately +122 mV). Membrane depolarization to potentials less negative than \(E_{Na,Ca} \) would activate the reverse-mode Na+/Ca2+ exchanger and promote Ca2+ influx.\[^{110,111,119}\] Thus, the sustained membrane depolarization in PASMC may produce a constant Ca2+ influx through voltage-gated Ca2+ channels\[^{106,109}\] and an inward Ca2+ transportation via the reverse mode of Na/Ca2+ exchange, and contribute to maintain the elevated [Ca2+]cyt that is crucial for PASMC contraction and proliferation. As discussed earlier, Na+ channel activation by membrane depolarization can also modulate [Ca2+]cyt by (i) controlling [Na+]cyt thereby modulating Na+/Ca2+ exchange activity, (ii) non-selective permeation of Ca2+ ions through Na+ channels and (iii) rapid Na+-induced depolarization and subsequent VDCC activation.

\[E_{Ca} \] is the Ca2+ equilibrium potential (approximately +122 mV). Membrane depolarization to potentials less negative than \(E_{Na,Ca} \) would activate the reverse-mode Na+/Ca2+ exchanger and promote Ca2+ influx.\[^{110,111,119}\] Thus, the sustained membrane depolarization in PASMC may produce a constant Ca2+ influx through voltage-gated Ca2+ channels\[^{106,109}\] and an inward Ca2+ transportation via the reverse mode of Na/Ca2+ exchange, and contribute to maintain the elevated [Ca2+]cyt that is crucial for PASMC contraction and proliferation. As discussed earlier, Na+ channel activation by membrane depolarization can also modulate [Ca2+]cyt by (i) controlling [Na+]cyt thereby modulating Na+/Ca2+ exchange activity, (ii) non-selective permeation of Ca2+ ions through Na+ channels and (iii) rapid Na+-induced depolarization and subsequent VDCC activation.

While Na+ and Ca2+ channel activation has a tendency to depolarize cells and enhance [Ca2+]cyt, K+ channel activation hyperpolarizes the membrane and decreases sarcolemmal Ca2+ influx. Because of their voltage- and/or Ca2+-dependence, K+ channels are key elements in the maintenance of E_m to the “near-resting” level. This review reflects on data that an inhibition of Kv channels with 4-AP induces membrane depolarization and increases [Ca2+]cyt by opening the nifedipine-sensitive L-type VDCC in human PASMC. An increase in [Ca2+]cyt is believed to play an important role in stimulating cell growth by activating

Figure 17: Molecular identity of Ca2+-activated K+ (Kca) channels in human pulmonary artery smooth muscle cells (PASMC). (a) Structural arrangement of Kca channel α- and β-subunits. The putative binding site for Ca2+ is shown on the C-terminal region of the α-subunit. (b–d) The mRNA expression of reverse transcriptase-polymerase chain reaction products for maxi Kca channel α1 and β1-4 subunits (b) and small- (SK1-3) and intermediate- (SK4) channels (c and d) are shown in human PASMC and brain tissues. “M,” 100 bp DNA ladder. (e) A phylogenetic tree showing the inferred evolutionary relationships among different Kca channel genes.
protein kinases and transcription factors that are essential for the progression of cell cycle.\[115,116,120-122\] Kv channels in PASM C may play an important role in modulating pulmonary vascular contractility and remodeling via regulating E_m and $[Ca^{2+}]_{cyt}$. Indeed, the roles of both Kca and Kv channels as feedback modulators of myogenic tone and agonist-induced vascular tone in systemic\[123-125\] and pulmonary arteries\[63,126-132\] are well documented.

CONCLUSIONS

In PASM C, EC-coupling is mainly achieved by a rise in $[Ca^{2+}]_{cyt}$, which is controlled by two related mechanisms, voltage-sensitive Ca$^{2+}$ influx (electromechanical coupling) and ligand-mediated Ca$^{2+}$ influx and mobilization (pharmacomechanical coupling). Membrane potential (E_m) and ion diffusion across the plasma membrane are dominantly regulated by the function and expression of ion-selective channels embedded in the plasma membrane. In addition, the activity of plasmalemmal ion channels and homeostasis of intracellular ions play important roles in the regulation of cell excitability, contraction, gene expression, proliferation, differentiation and apoptosis.\[22,102,133\] Electromechanical coupling mechanisms cause tonic and phasic vasomotor tone in blood vessels\[106,134\] and participate in regulating cell proliferation\[6\] and protein/gene expression.\[135\] An understanding of the electrophysiological properties and molecular composition of voltage-dependent ion channels in human PASM C may provide important information for the development of effective therapeutic approaches for patients with pulmonary vascular diseases.

Pulmonary vasoconstriction and vascular remodeling (i.e., intimal and medial hypertrophy due to smooth muscle cell proliferation and migration) greatly contribute to the elevated pulmonary vascular resistance in patients with pulmonary hypertension.\[126,137\] Because both E_m and Ca$^{2+}$ are recognized as important modulators of both vascular
tissue and cell growth, it is plausible that ion channels also play a role in these processes, particularly those ion channels that regulate and can be regulated by E_{K} and Ca^{2+}. Dysfunctional K$^{+}$ channels have been demonstrated to be involved in the pathogenesis of idiopathic pulmonary arterial hypertension.[10,11] There is no direct evidence to suggest alterations in Na$^{+}$ channel gene expression or function in pulmonary hypertension-induced vascular remodeling. Nonetheless, Na$^{+}$ channel-mediated regulation of $[Ca^{2+}]_{cyt}$ may be important in the modulation of cell proliferation. Similarly, VDCC upregulation or “gain-in-function” has not been directly involved in the pathogenesis of pulmonary arterial hypertension, although any abnormalities in its expression or function may alter the remodeling process. However, recent observations have reported an increase in store-operated Ca^{2+} channel activity during human PASMC proliferation,[13] suggesting that alternative Ca^{2+} influx pathways may be involved in the pulmonary vascular remodeling process. Targeting Ca^{2+}- (and Na$^{+}$-) permeable channels in the plasma membrane of pulmonary vascular smooth muscle cells and myofibroblasts is an efficient approach to develop a novel therapy for patients with pulmonary arterial hypertension.

ACKNOWLEDGMENTS

This work was supported by grants from the National Heart, Lung and Blood Institute of the National Institutes of Health (HL 066012 and HL 098053). We would like to thank Mehran Mandegar, Jian W ang, Tiffany Sisson and El yssa D. Burg for their excellent work for generating the unpublished data shown in this review.

REFERENCES

1. Casteels R, Kitamura K, Kuriyama H, Suzuki H. Excitation-contraction coupling in the smooth muscle cells of the rabbit main pulmonary artery. J Physiol 1977;271:63-79.
2. Madden JA, Dawson CA, Harder DR. Hypoxia-induced activation in small isolated pulmonary arteries from the cat. J Appl Physiol 1985;59:113-9.
3. Beech DJ. Actions of neurotransmitters and other messengers on Ca$^{2+}$ channels and K$^{+}$ channels in smooth muscle cells. Pharmacol Ther 1997;73:91-119.
4. Wang Q, Large WA. Action of histamine on single smooth muscle cells dispersed from the rabbit pulmonary artery. J Physiol 1993;468:125-39.
5. Devine CE, Somlyo AP, Somlyo AV. Sarcoplasmic reticulum and function of voltage-gated Ca$^{2+}$ channels in the plasma membrane of pulmonary vascular smooth muscle cells and myofibroblasts is an efficient approach to develop a novel therapy for patients with pulmonary arterial hypertension.

ACKNOWLEDGMENTS

This work was supported by grants from the National Heart, Lung and Blood Institute of the National Institutes of Health (HL 066012 and HL 098053). We would like to thank Mehran Mandegar, Jian Wang, Tiffany Sisson and El yssa D. Burg for their excellent work for generating the unpublished data shown in this review.

REFERENCES

1. Casteels R, Kitamura K, Kuriyama H, Suzuki H. Excitation-contraction coupling in the smooth muscle cells of the rabbit main pulmonary artery. J Physiol 1977;271:63-79.
2. Madden JA, Dawson CA, Harder DR. Hypoxia-induced activation in small isolated pulmonary arteries from the cat. J Appl Physiol 1985;59:113-9.
3. Beech DJ. Actions of neurotransmitters and other messengers on Ca$^{2+}$ channels and K$^{+}$ channels in smooth muscle cells. Pharmacol Ther 1997;73:91-119.
4. Wang Q, Large WA. Action of histamine on single smooth muscle cells dispersed from the rabbit pulmonary artery. J Physiol 1993;468:125-39.
5. Devine CE, Somlyo AP, Somlyo AV. Sarcoplasmic reticulum and function of voltage-gated Ca$^{2+}$ channels in the plasma membrane of pulmonary vascular smooth muscle cells and myofibroblasts is an efficient approach to develop a novel therapy for patients with pulmonary arterial hypertension.

ACKNOWLEDGMENTS

This work was supported by grants from the National Heart, Lung and Blood Institute of the National Institutes of Health (HL 066012 and HL 098053). We would like to thank Mehran Mandegar, Jian Wang, Tiffany Sisson and El yssa D. Burg for their excellent work for generating the unpublished data shown in this review.

REFERENCES

1. Casteels R, Kitamura K, Kuriyama H, Suzuki H. Excitation-contraction coupling in the smooth muscle cells of the rabbit main pulmonary artery. J Physiol 1977;271:63-79.
2. Madden JA, Dawson CA, Harder DR. Hypoxia-induced activation in small isolated pulmonary arteries from the cat. J Appl Physiol 1985;59:113-9.
3. Beech DJ. Actions of neurotransmitters and other messengers on Ca$^{2+}$ channels and K$^{+}$ channels in smooth muscle cells. Pharmacol Ther 1997;73:91-119.
4. Wang Q, Large WA. Action of histamine on single smooth muscle cells dispersed from the rabbit pulmonary artery. J Physiol 1993;468:125-39.
5. Devine CE, Somlyo AP, Somlyo AV. Sarcoplasmic reticulum and function of voltage-gated Ca$^{2+}$ channels in the plasma membrane of pulmonary vascular smooth muscle cells and myofibroblasts is an efficient approach to develop a novel therapy for patients with pulmonary arterial hypertension.

ACKNOWLEDGMENTS

This work was supported by grants from the National Heart, Lung and Blood Institute of the National Institutes of Health (HL 066012 and HL 098053). We would like to thank Mehran Mandegar, Jian Wang, Tiffany Sisson and El yssa D. Burg for their excellent work for generating the unpublished data shown in this review.

REFERENCES

1. Casteels R, Kitamura K, Kuriyama H, Suzuki H. Excitation-contraction coupling in the smooth muscle cells of the rabbit main pulmonary artery. J Physiol 1977;271:63-79.
2. Madden JA, Dawson CA, Harder DR. Hypoxia-induced activation in small isolated pulmonary arteries from the cat. J Appl Physiol 1985;59:113-9.
3. Beech DJ. Actions of neurotransmitters and other messengers on Ca$^{2+}$ channels and K$^{+}$ channels in smooth muscle cells. Pharmacol Ther 1997;73:91-119.
4. Wang Q, Large WA. Action of histamine on single smooth muscle cells dispersed from the rabbit pulmonary artery. J Physiol 1993;468:125-39.
5. Devine CE, Somlyo AP, Somlyo AV. Sarcoplasmic reticulum and function of voltage-gated Ca$^{2+}$ channels in the plasma membrane of pulmonary vascular smooth muscle cells and myofibroblasts is an efficient approach to develop a novel therapy for patients with pulmonary arterial hypertension.

ACKNOWLEDGMENTS

This work was supported by grants from the National Heart, Lung and Blood Institute of the National Institutes of Health (HL 066012 and HL 098053). We would like to thank Mehran Mandegar, Jian Wang, Tiffany Sisson and El yssa D. Burg for their excellent work for generating the unpublished data shown in this review.

REFERENCES

1. Casteels R, Kitamura K, Kuriyama H, Suzuki H. Excitation-contraction coupling in the smooth muscle cells of the rabbit main pulmonary artery. J Physiol 1977;271:63-79.
2. Madden JA, Dawson CA, Harder DR. Hypoxia-induced activation in small isolated pulmonary arteries from the cat. J Appl Physiol 1985;59:113-9.
3. Beech DJ. Actions of neurotransmitters and other messengers on Ca$^{2+}$ channels and K$^{+}$ channels in smooth muscle cells. Pharmacol Ther 1997;73:91-119.
4. Wang Q, Large WA. Action of histamine on single smooth muscle cells dispersed from the rabbit pulmonary artery. J Physiol 1993;468:125-39.
5. Devine CE, Somlyo AP, Somlyo AV. Sarcoplasmic reticulum and function of voltage-gated Ca$^{2+}$ channels in the plasma membrane of pulmonary vascular smooth muscle cells and myofibroblasts is an efficient approach to develop a novel therapy for patients with pulmonary arterial hypertension.
gated Na⁺ channel in a hydrozoan jellyfish: Insights into the evolution of voltage-gated Na⁺ channel genes. Receptors Channels 1999;4:493-506.

36. Goldin AL. Resurgence of sodium channel research. Annu Rev Physiol 2001;63:871-94.

37. Plummer NW, Meisler MH. Evolution and diversity of mammalian sodium channel genes. Genomics 1999;37:323-31.

38. Aron A, Hanley JM, Blaustein MP. Na⁺ entry via store-operated channels modulates Ca²⁺ signaling in arterial myocytes. Am J Physiol Cell Physiol 2000;278:C163-73.

39. Bocca G, Choby C, Frazier JF, Quignard JF, Nargeot J, Dayanithi G, et al. Regulation of Ca²⁺ homeostasis by atypical Na⁺ currents in cultured human coronary microvessels. Circ Res 1999;85:606-13.

40. Fozzard HA, January CT, Makielski JC. New studies of the excitatory sodium currents in heart muscle. Circ Res 1985;56:475-85.

41. Leblanc N, Hume JR. Sodium current induced release of calcium from intracellular stores in human pig and rabbit arteries. Pflugers Arch 2000;440:149-52.

42. Cox RH, Zhou Z, Tulenko TN. Voltage-gated sodium channels in human aortic smooth muscle cells. J Vac Res 1998;35:310-7.

43. James AF, Okada T, Horie M. A fast transient outward current in cultured cells from human pulmonary artery smooth muscle. Am J Physiol 1999;277:H128-37.

44. Quignard JF, Ryckwaert F, Albat B, Nargeot J, Richard S. A novel tetrodotoxin-sensitive Na⁺ current in primary cultured myocytes from human, pig and rabbit arteries. Pflugers Arch 2000;440:149-52.

45. Randall AD. The molecular basis of voltage-gated Ca²⁺ channel diversity: Role in channel function. Trends Neurosci 1998;21:148-54.

46. Gelband CH, Gelband H. Ca²⁺ release from intracellular stores is an initial step in hypoxic pulmonary vasoconstriction of rat pulmonary artery resistance vessels. Circulation 1997;96:3647-54.

47. Rogawski MA. The A-current: How ubiquitous a feature of excitable cells is it? Trends Neurosci 1985;8:214-9.

48. Felix R. Channelopathies: Ion channel defects linked to heritable clinical disorders. J Med Genet 2000;37:729-40.

49. James AF, Okada T, Horie M. A fast transient outward current in cultured cells from human pulmonary artery smooth muscle. Circ Res 1985;56:475-85.

50. Fozzard HA, January CT, Makielski JC. New studies of the excitatory sodium currents in heart muscle. Circ Res 1985;56:475-85.

51. Bernard V, Hume JR. Modulation of K⁺ and Ca²⁺ channels by oxygen. Circ Res 1999;85:338-48.

52. Patel AJ, Honoré E. Molecular physiology of oxygen-sensitive potassium channels. Eur Respir J 2001;18:221-7.

53. Clément-Chomienne O, Ishii K, Walsh MP, Cole WC. Identification, cloning and expression of rabbit vascular smooth muscle K.1.5 and comparison with native delayed rectifier K⁺ current. J Physiol 1999;515:653-67.

54. Hart PJ, Overturf KE, Russell SN, Carl A, Hume JR, Sanders KM, et al. Cloning and expression of a Kv1.2 class delayed rectifier K⁺ channel from canine colonic smooth muscle. Proc Natl Acad Sci U S A 1993;90:5659-63.

55. Volú KA, Matsuoka JJ, Shibata EF. A voltage-dependent potassium current in rabbit coronary artery smooth muscle cells. J Physiol 1991;439:751-68.

56. Afsari EF, Malcolm AT, Walsh MP, Cole WC. b-Adrenoceptor activation and PKA regulate delayed rectifier K⁺ channels of vascular smooth muscle cells. Am J Physiol 1998;275:H1448-59.

57. Schulz CH, Hume JR. Ionic currents in single smooth muscle cells of the canine renal artery. Circ Res 1992;71:745-55.

58. Ishikawa T, Hume JR, Keef KD. Modulation of K⁺ and Ca²⁺ channels by histamine H₁-receptor stimulation in rabbit coronary artery cells. J Physiol 1993;468:379-400.

59. Martens JR, Kwak YG, Tamkun MM. Modulation of Kv channel a- and b-subunits in the bovine pulmonary arterial circulation. Am J Physiol Lung Cell Mol Physiol 2001;281:L1350-60.

60. Hulme JJ, Copdock EA, Felpke A, Martens JR, Tamkun MM. Oxygen sensitivity of cloned voltage-gated K⁺ channels expressed in the pulmonary vasculature. Circ Res 1999;85:489-97.

61. Patel AJ, Honoré E. Molecular physiology of oxygen-sensitive potassium channels. Eur Respir J 2001;18:221-7.

62. Schmidt-Chomienne O, Ishii K, Walsh MP, Cole WC. Identification, cloning and expression of rabbit vascular smooth muscle K.1.5 and comparison with native delayed rectifier K⁺ current. J Physiol 1999;515:653-67.

63. Hart PJ, Overturf KE, Russell SN, Carl A, Hume JR, Sanders KM, et al. Cloning and expression of a Kv1.2 class delayed rectifier K⁺ channel from canine colonic smooth muscle. Proc Natl Acad Sci U S A 1993;90:5659-63.

64. Volú KA, Matsuoka JJ, Shibata EF. A voltage-dependent potassium current in rabbit coronary artery smooth muscle cells. J Physiol 1991;439:751-68.

65. Afsari EF, Malcolm AT, Walsh MP, Cole WC. b-Adrenoceptor activation and PKA regulate delayed rectifier K⁺ channels of vascular smooth muscle cells. Am J Physiol 1998;275:H1448-59.

66. Rasmusson RL, Wang S, Castellino RC, Morales MJ, Strauss HC. The b-subunit, Kvb1.2, acts as a rapid open channel blocker of NH₂ terminal subunit of b-subunit. Nature 1994;369:289-454.

67. Barry DM, Neirncheville H, Wunder F, Lorra C, Percej DN, Dolly JO, et al. Channelopathies: Ion channel defects linked to heritable clinical disorders. J Med Genet 1999;37:729-40.

68. Gulbis JM, Mann S, MacKinnon R. Structure of a voltage-dependent K⁺ channel beta subunit. Cell 1999;97:943-52.

69. Firth, et al. Ion channels in human PASMC.
potassium currents in cultured rat pulmonary but not mesenteric arterial myocytes. Am J Physiol 1993;264:L116-23.

91. Yu Y, Platschyn O, Zhang J, Krick S, Zhao Y, Rubin LJ, et al. Jun decreases voltage-gated K+ channel activity in pulmonary artery smooth muscle cells. Circulation 2001;104:1557-63.

92. Knot HJ, Nelson MT. Regulation of membrane potential and diameter by voltage-dependent K+ channels in rabbit myogenic cerebral arteries. Am J Physiol 1995;269:H1348-55.

93. Chandy KG, Gutman GA. Voltage-gated K+ channels. In: North RA, editor. Ligand- and Voltage-Gated Ion Channels. Boca Raton, FL: CRC; 1995. p. 1-71.

94. Alioua A, Tanaka Y, Wallner M, Hofmann F, Ruth P, Meera P, et al. The large-conductance, voltage-dependent, and calcium-sensitive K+ channel, Hslo, is a target of cAMP-dependent protein kinase phosphorylation in vivo. J Biol Chem 1998;273:23950-6.

95. Toro L, Wallner M, Meera P, Tanaka Y. Maxi-Kca, a unique member of the voltage-gated K channel superfamily. News Physiol Sci 1998;13:112-7.

96. Stull JT, Kamm KE, Taylor DA. Calcium control of smooth muscle membrane depolarization in pulmonary artery myocyte apoptosis. Am J Physiol Lung Cell Mol Physiol 2001;281:L887-94.

97. Farrukh IS, Peng W, Orlinska U, Hoidal JR. Effect of dehydroepiandrosterone on hypoxic pulmonary vasoreactivity: A Ca2+-activated K+ channel opener. Am J Physiol 1997;274:L186-95.

98. Neylon CB, Lang RJ, Fu Y, Bobik A, Reinhart PH. Molecular cloning and characterization of the intermediate-conductance Ca2+-activated K+ channel in vascular smooth muscle: Relationship between Kca channel diversity and smooth muscle cell function. Circ Res 1999;85:e53-43.

99. Tanaka Y, Meera P, Song M, Kraus HG, Toro L. Molecular constituents of maxi Kca channels in human coronary smooth muscle: Predominant a + b subunit complexes. J Physiol 1997;502:545-57.

100. Stull JT, Kamm KE, Taylor DA. Calcium control of smooth muscle contractility. Am J Med Sci 1988;296:241-5.

101. Berridge MJ. Calcium signalling and cell proliferation. Bioessays 1995;17:917-930.

102. Means AR. Calcium calmodulin and cell cycle regulation. FEBS Lett 1994;347:1-4.

103. Dolmetsch RE, Lewis RS, Goodnow CC, Healy JJ. Differential activation of transcription factors induced by Ca2+ response amplitude and duration. Nature 1997;386:855-8.

104. Ginty DD. Calcium regulation of gene expression: Isn’t that spatial? Neuron 1997;18:183-6.

105. Johnson CM, Hill CS, Chawla S, Treisman R, Bading H. Calcium controls gene expression via three distinct pathways that can function independently of the Ras/mitogen-activated protein kinases (ERKs) signaling cascade. J Neurosci 1997;17:6189-202.

106. Nelson MT, Patlak JB, Worley JF, Standen NB. Calcium channels, potassium channels, and voltage dependence of arterial smooth muscle tone. Am J Physiol 1990;259:C3-C18.

107. Short AD, Bian J, Ghosh TK, Waldron RT, Rybak SL, Gill DL. Intracellular Ca2+ pool content is linked to control of cell growth. Prog Natl Acad Sci U S A 1993;90:4986-90.

108. He H, Lam M, McCormick TS, Distelhorst CW. Maintenance of calcium homeostasis in the endoplasmic reticulum by Bcl-2. J Cell Biol 1997;138:129-28.

109. Fleischmann BK, Murray RK, Kotlikoff ML. Voltage window for sustained elevation of cytosolic calcium in smooth muscle cells. Prog Natl Acad Sci U S A 1994;91:11914-8.

110. Kohomo O, Levi AJ, Bridge JH. Relation between reverse sodium-chloride exchange and sarcoplasmic reticulum calcium release in guinea pig ventricular cells. Circ Res 1994;74:550-6.

111. Blaustein MP, Lederer WJ. Sodium/chloride exchange: Its physiological implications. Physiol Rev 1999;79:763-854.

112. Franklin JL, Sanz-Rodriguez C, Juhasz A, Deckwerth TL, Johnson EM Jr. Chronic depolarization prevents programmed death of sympathetic neurons in vitro but does not support growth: Requirement for Ca2+ influx but not Trk activation. J Neurosci 1995;15:643-64.

113. Koike T, Martin DP, Johnson EM Jr. Role of Ca2+ channels in the ability of membrane depolarization to prevent neuronal death induced by trophic-factor deprivation: Evidence that levels of internal Ca2+ determine nerve growth factor dependence of sympathetic ganglion cells. Prog Natl Acad Sci U S A 1998;95:6421-5.

114. Yu SP, Yeh CH, Semsi SL, Cogwaj RJ, Canzoniero LM, Farhangrazi ZS, et al. Mediation of neuronal apoptosis by enhancement of outward potassium current. Science 1997;278:114-7.

115. Rosen LB, Ginty DD, Weber MJ, Greenberg ME. Membrane depolarization and calcium influx stimulate MEK and MAP kinase via activation of Ras. Neuron 1994;4:1207-21.

116. Sheng M, McFadden G, Greenberg ME. Membrane depolarization and calcium induce c-fos transcription via phosphorylation of transcription factor CREB. Neuron 1990;4:571-82.

117. Tsien RW, Tsien RY. Calcium channels, stores, and oscillations. Annu Rev Cell Biol 1990;6:715-60.

118. Van Breemen C, Saiha K. Cellular mechanisms regulating [Ca2+]i, smooth muscle. Annu Rev Physiol 1989;51:315-29.

119. Sham JS, Cleemann L, Morad M. Gating of the cardiac Ca2+-release channel: The role of Na+ current and Na+-Ca2+ exchange. Science 1992;255:850-3.

120. Chao TS, Byron KL, Lee KM, Villereal M, Rosner MR. Activation of MAP kinases by calcium-dependent and calcium-independent pathways. Stimulation by thapsigargin and epidermal growth factor. J Biol Chem 1992;267:19876-83.

121. Dynlacht BD. Regulation of transcription by proteins that control the cell cycle. Nature 1997;389:149-52.

122. Husain M, Jiang L, See V, Bein K, Simons M, Alper SL, et al. Differential activation of calcium-activated K+ channels in vascular smooth muscle cell proliferation by plasma membrane Ca2+-ATPase. Am J Physiol 1997;272:H1457-99.

123. Brayden JE, Nelson MT. Regulation of arterial tone by activation of calcium-dependent potassium channels. Science 1992;256:532-5.

124. Jaggar JH, Mage GM, Nelson MT. Voltage-dependent K+ currents in smooth muscle cells from mouse gallbladder. Am J Physiol 1998;274:L887-94.

125. Khan SA, Meisburger KH, Miller WL, Solomon CA. Role of calcium-activated K+ channels in vasodilation induced by nitroglycerine, acetylcholine and nitric oxide. J Pharmacol Exp Ther 1993;267:1327-35.

126. Barman SA. Potassium channels mediate canine pulmonary vasoreactivity to protein kinase C activation. Am J Physiol 1999;277:L588-603.

127. Hasunuma K, Rodman DM, McMurtry IF. Effects of K+ channel blockers on vascular tone in the perfused rat lung. Am Rev Respir Dis 1991;144:884-7.

128. Peng W, Hoidal JR, Farrukh IS. Regulation of Ca2+-activated K+ channels in pulmonary vascular smooth muscle cells: Role of nitric oxide. J Appl Physiol 1998;86:1264-72.

129. Shimoda LA, Sylvester JT, Sham JS. Inhibition of voltage-gated K+ current in rat intrapulmonary arterial myocytes by endothelin-1. Am J Physiol 1998;274:L186-93.

130. Yuan XJ, Sugiyama T, Goldman WF, Rubin LJ, Blaustein MP. A mitochondrial uncoupler increases Kca currents but decreases Kv currents in pulmonary artery myocytes. J Appl Physiol 1996;80:91-8.

131. Barman SA. Potassium channels modulate canine pulmonary vasoreactivity to protein kinase C activation. Am J Physiol 1999;277:L588-603.

132. Yu SP, Choi DW. Ions, cell volume, and apoptosis. Prog Natl Acad Sci U S A 2000;97:9360-2.

133. Somlo SY, Somlo AP. Electromechanical and pharmacomechanical coupling in vascular smooth muscle. J Pharmacol Exp Ther 1986;159:129-45.

134. Morgan KG. Calcium and vascular smooth muscle tone. Am J Med 1987;82:9-15.

135. Stenmark KR, Mecham RP. Cellular and molecular mechanisms of pulmonary vascular remodeling. Annu Rev Physiol 1997;59:89-144.

136. Rubin LJ, Rich S. Primary Pulmonary Hypertension. New York, NY: Marcel Dekker Inc.; 1997.

137. Golovina VA, Platschyn O, Bailey CL, Wang J, Limusavan A, Sweeney M, et al. Upregulated TRP and enhanced capacitative Ca2+ entry in human pulmonary artery myocytes during proliferation. Am J Physiol Heart Circ Physiol 2001;280:H1746-55.