Nutrient Content, Protein Fractionation, and Utilization of Some Beans as Potential Alternatives to Soybean for Ruminant Feeding

A. Jayanegara*, S. P. Dewi, & M. Ridla

*Department of Animal Nutrition and Feed Technology, Faculty of Animal Science, Bogor Agricultural University
Graduate School of Animal Nutrition and Feed Science, Bogor Agricultural University
Jalan Agatis, Kampus IPB Darmaga, Bogor 16680, Indonesia
(Received 27-06-2016; Reviewed 05-08-2016; Accepted 06-10-2016)

ABSTRACT

This experiment aimed to determine nutrient content, protein fraction, and in vitro rumen fermentation of some alternative beans in comparison to soybean. Samples used were napier grass, soybean, redbean, groundnut, pigeonpea, cowpea, bambarabean, and mungbean. Samples were determined for their proximate composition, Van Soest’s fiber fraction, and Cornell protein fraction. The samples were subsequently evaluated for their fermentation characteristics and digestibility by using a two-stage in vitro rumen fermentation technique, maintained at 39 °C for 2 × 48 h. The in vitro incubation was performed in three consecutive runs by following a randomized complete block design in which each sample per run was represented by four fermentation tubes. Results revealed that all experimental beans contained high crude protein (CP), i.e. above 200 g/kg dry matter (DM), but only soybean and groundnut had CP contents higher than 300 g/kg DM. Redbean had the lowest crude fiber and acid detergent fiber contents among the beans. Soybean contained high proportion of rapidly degraded CP fraction, but low in slowly degraded and unavailable CP fractions. High proportion of slowly degraded CP fraction was found in redbean and bambarabean. Redbean, pigeonpea, cowpea, and mungbean were better than soybean, groundnut, and bambarabean with regard to DM degradability and DM digestibility values (P<0.05). Concentration of total VFA was the highest in the incubation of redbean. It was concluded that groundnut, redbean, pigeonpea, cowpea, and mungbean have the potency to be used to substitute soybean for ruminant feeding.

Key words: bean, alternative feed, protein fraction, ruminant, rumen

Kata kunci: kacang-kacangan, pakan alternatif, fraksi protein, ruminansia, rumen

*Corresponding author:
E-mail: anuraga.jayanegara@gmail.com
INTRODUCTION

Adequate and balance nutrients are necessary to ensure optimal livestock production and health, including energy and protein supply. Typically, in Indonesia and elsewhere, energy demand of livestock is relatively easier to meet from feed rather than protein demand, causing unbalance supply between energy and protein. The use of protein supplements is a common approach to overcome such insufficient protein supply. Soybean, either fullfat or defatted soybean (soybean meal), has been used as a main protein supplement for monogastric and ruminant animals in many regions of the world (Campos et al., 2014; Jolazadeh et al., 2015; Liu et al., 2016) including in Indonesia (Akhsan et al., 2015; Faradillah et al., 2015). Among protein supplements originated from plant sources, soybean is considered as superior with regard to its protein content and quality. Protein contents of soybean and soybean meal are around 35%-52% DM (Vollmann, 2016). Protein in soybean is highly digestible and rich in lysine, tryptophan, threonine, isoleucine, and valine, in which these amino acids are generally deficient in cereal grains (Yildiz & Todorov, 2014). However, with an increasing demand on soybean for animal feed and other purposes, and on the other hand, risks that may limit soybean production such as soil degradation, global warming (Hao et al., 2010), etc., there is an urgent need to search for alternative protein sources other than soybean.

Beans are generally known for their high protein contents due to their symbiotic relationships with nitrogen-fixing bacteria, i.e. *Rhizobium* sp. that are able to take up nitrogen from the air, thus have the capacity to accumulate more nitrogenous compounds in the tissue (Goh et al., 2016). A number of beans available in Indonesia are redbean (*Phaseolus vulgaris*), groundnut (*Arachis hypogaea*), pigeonpea (*Cajanus cajan*), cowpea (*Vigna unguiculata*), bambarabean (*Vigna subterranea*), and mungbean (*Phaseolus radiatus*). Although these beans have been traditionally used for human consumption in Indonesia (Haliza et al., 2007; 2010), they are rarely used as animal feed. Furthermore, the informations about their nutritional contents, qualities, and utilizations for animals are very limited. Therefore this experiment aimed to determine nutrient content, protein fraction, and in vitro rumen fermentation of some alternative beans in comparison to soybean as a reference of commonly used protein supplement.

MATERIALS AND METHODS

Sample Collection and Preparation

Samples used in the present experiment were napier grass (*Pennisetum purpureum*), soybean (*Glycine max*), redbean (*Phaseolus vulgaris*), groundnut (*Arachis hypogaea*), pigeonpea (*Cajanus cajan*), cowpea (*Vigna unguiculata*), bambarabean (*Vigna subterranea*), and mungbean (*Vigna radiata*). Napier grass was collected from experimental station of Faculty of Animal Science, Bogor Agricultural University, and the beans were purchased from a traditional market in Bekasi, Indonesia. All samples were immediately oven-dried at 60 °C for 24 h and then ground to pass a 1 mm sieve for further chemical composition analysis and in vitro incubation.

Chemical Composition Determination

Samples were determined for their dry matter (DM), organic matter (OM), crude protein (CP), crude fiber (CF), and ether extract (EE) contents according to AOAC (2005). An oven at 105 °C and a furnace at 550 °C were employed to determine DM and OM contents of samples, respectively. Contents of CP and EE were determined by using micro-Kjeldahl and Soxhlet extraction apparatus, respectively. Sequential digestion with H₂SO₄ and NaOH solutions was performed to obtain CF. Neutral detergent fiber (NDF) and acid detergent fiber (ADF) were determined by following the procedures of Van Soest et al. (1991). Analysis of NDF was performed without using α-amylase and sodium sulfite and expressed exclusive of residual ash. Determination of ADF was similar to NDF except that the solution used was acid detergent solution. Gross energy was determined by using a bomb calorimeter.

Determination of CP fraction followed the protocol of Licitra et al. (1996) that is based on the original Cornell Net Carbohydrate and Protein System (CNCPS; Sniffen et al., 1992). The CP was divided into three main fractions, i.e. fraction A (non-protein nitrogen, NPN), fraction B (true protein), and fraction C (unavailable protein). Fraction B is further divided into three fractions namely B1, B2, and B3 in which they have different degradation rates in the rumen. Fraction B1 is a rapidly degraded CP in the rumen, whereas B2 and B3 are immediately and slowly degraded CP, respectively. Fraction A was obtained by precipitating true protein with trichloroacetic acid (TCA); it was calculated by the difference between CP and the precipitated true protein. Fraction C is regarded as acid detergent insoluble crude protein (ADICP) and was determined by measuring CP content of ADF. Similar to ADICP, neutral detergent insoluble crude protein (NDICP) was determined by measuring CP content of NDF. Procedures for ADICP and NDICP measurements were adopted according to Jayanegara et al. (2016). Determination of B1, B2, and B3 fractions require determination of soluble crude protein (SCP). The SCP is defined as true protein soluble in buffer at rumen pH. It was measured by mixing 0.5 g sample with 50 mL borate-phosphate buffer and 1 mL of 10% sodium azide solution. Subsequently the B fractions were calculated as follow:

\[B1 = SCP - NPN \]
\[B2 = CP - SCP - NDICP \]
\[B3 = NDICP - ADICP \]

All of the chemical composition analyses were performed in duplicate. Proximate composition and Van Soest’s fiber fractions were expressed as g/kg DM whereas fiber fractions were expressed as proportions to their corresponding CP contents (g/kg CP).

In Vitro Rumen Fermentation

The ground samples were evaluated for their
fermentation characteristics and digestibility by using a two-stage in vitro rumen fermentation technique (Tilley & Terry, 1963). An amount of 0.5 g sample was inserted into a fermentation glass tube and added with 40 mL McDougall’s buffer. About 10 ml of rumen fluid was then added into the tube. Rumen fluid was obtained from two fistulated Ongole crossbred cattle, taken through the fistula before morning feeding. The cattle were cared for according to animal welfare standard of LIPI Cibinong Bogor. All tubes were continuously flushed with CO₂ for 30 s to ensure anaerobic condition and immediately closed with ventilated rubbers. The in vitro incubation was performed in three consecutive runs (replicates) at different weeks in which each sample per run was represented by four fermentation tubes; two tubes were completed after 48 h incubation with buffered-rumen fluid (first stage) and the remaining tubes were continued for another 48 h incubation with pepsin-HCl solution (second stage). After the first stage of incubation, the tubes were centrifuged at 4,000 rpm for 10 min. The supernatant was taken for subsequent VFA analysis and determination of ammonia concentration by using gas chromatography technique and Conway micro-diffusion method, respectively. The residue was analysed for DM, OM, and CP to obtain DM degradability (DMDe), OM degradability (OMDe), and CP degradability (CPDe) values, respectively. In the second stage of in vitro fermentation, the supernatants in the remaining tubes were discarded after centrifugation. Subsequently, an amount of 50 mL pepsin-HCl 0.2% solution was added into each tube and incubation was performed for another 48 h, but without closing with the ventilated rubbers. The residue was separated with supernatant through filtration using Whatman paper no. 41 and analysed for DM, OM, and CP to obtain DM digestibility (DMDi), OM digestibility (OMDi), and CP digestibility (CPDi) values.

Statistical Analysis

Chemical composition data were descriptively tabulated. In vitro incubation data were analysed by analysis of variance (ANOVA) following a randomized complete block design. Different batches of rumen fluid (taken at different weeks) served as the blocks. The following statistical model was employed:

\[Y_{ij} = \mu + \tau_i + \beta_j + \epsilon_{ij} \]

where \(Y_{ij} \) is the observed value for \(i^{th} \) treatment and \(j^{th} \) replicate, \(\mu \) is the overall mean, \(\tau_i \) is the treatment effect, \(\beta_j \) is the block effect (replicate) and \(\epsilon_{ij} \) is the random residual error. The significance was stated when the ANOVA result showed \(P<0.05 \) for a certain variable. Comparison among treatments was performed by using Duncan’s multiple range test. Prior to ANOVA, the data were checked for outlier values; any values ≤ –2 or ≥ 2 of their standardized residuals were categorized as outliers. Pearson correlation test was applied to the data to observe relationship among chemical composition and in vitro rumen fermentation parameters. All statistical analyses were performed by employing SPSS software version 20.

RESULTS

Chemical Composition

All experimental beans contained high CP, i.e., above 200 g/kg DM. Soybean and groundnut had CP contents higher than 300 g/kg DM (Table 1). Napier grass contained much higher CF, NDF, and ADF than those of the beans. Among all beans, redbean had the lowest CF and ADF contents. Other beans that had lower ADF in comparison to soybean were cowpea and mungbean. The content of EE was particularly high in groundnut and soybean. The two beans were also high in GE contents as compared to the other beans. Fraction A was high in napier grass but low in soybean (Table 2). Soybean contained high proportion of fraction B1 and B2, but low fraction B3 and C. High proportion of fraction B3 as well as NDICP was found in napier grass, redbean, and bambarabean. Fraction C was particularly very high in napier grass. Although bambarabean and mungbean were also high in fraction C, their contents were approximately one-third than that of napier grass.

In Vitro Rumen Fermentation

Napier grass had the lowest DMDe and DMDi in comparison to other feeds (\(P<0.05; \) Table 3). All beans generally had high DMDe and DMDi. Among the beans,

Table 1. Chemical composition (g/kg DM) and gross energy content of some feed materials (kcal/kg DM)

Feedstuff	OM	CP	CF	NDF	ADF	EE	GE
Napier grass	902	113	371	666	489	39.0	4252
Soybean	952	377	93.8	235	139	219	5691
Redbean	961	260	55.8	323	93.1	17.6	4474
Groundnut	975	339	128	200	174	476	6997
Pigeonpea	958	242	108	313	168	13.2	4257
Cowpea	963	273	69.8	417	117	18.0	4684
Bambarabean	950	237	76.0	366	161	68.9	4594
Mungbean	965	266	58.0	222	119	14.7	4420

Note: DM= dry matter; OM= organic matter; CP= crude protein; CF= crude fiber; NDF= neutral detergent fiber; ADF= acid detergent fiber; EE= ether extract; GE= gross energy.
redbean, pigeonpea, cowpea, and mungbean were better than soybean, groundnut, and bambarabean with regard to DMDe and DMDi values (P<0.05). Patterns of OMDe and OMDi values were similar to those of DMDe and DMDi, respectively. With regard to CPDe and CPDi, soybean and groundnut were superior in comparison to other beans (P<0.05). The lowest CPDe and CPDi were found in napier grass and followed by bambarabean. Proportions of CPDe to CPDi for napier grass, soybean, redbean, pigeonpea, cowpea, bambarabean, and mungbean were 58%, 92%, 92%, 82%, 64%, 70%, 80%, 64%, and 82%, respectively.

The highest concentration of total VFA was found in the incubation of redbean and the lowest was found in napier grass (Table 4). Groundnut produced the lowest total VFA among all experimental beans (P<0.05). Incubation of pigeonpea, cowpea, bambarabean, and mungbean resulted in similar total VFA concentrations. Proportion of C$_4$ was the highest for napier grass (P<0.05) whereas proportion of C$_3$ was the highest for bambarabean and redbean (P<0.05).

Correlation between Chemical Composition and In Vitro Rumen Fermentation Parameters

The concentration of CP was positively correlated with CPDe, CPDi, and ammonia concentration (P<0.01; Table 5). Fiber components, especially CF and ADF were negatively correlated with DMDe, DMDi, OMDe, and OMDi (P<0.05) but positively correlated with C$_4$, C$_3$, and C$_2$ proportions (P<0.05). The contents of EE and GE did not have any significant correlation with in vitro rumen fermentation parameters. Protein fraction B1 was positively correlated with CPDe, CPDi, and ammonia concentration (P<0.01) whereas, on the contrary, NDICP was inversely related with the in vitro rumen fermentation parameters (P<0.01). Fraction B3 had no significant correlation with CPDe and CPDi but it negatively correlated with ammonia concentration (P<0.05). Fraction C was negatively correlated with CPDe, CPDi, and ammonia (P<0.05).

DISCUSSION

Although all alternative beans had relatively high CP contents, none of them had equal CP in comparison to soybean. Typical CP contents in redbean, groundnut, pigeonpea, cowpea, bambarabean, and mungbean are (means±sd) 248±15, 297±31, 232±22, 252±22, 198±31, and 258±28 g/kg DM, respectively (FAO, 2016), in which data on CP contents of the beans in the present experiment were within the range reported by FAO. Protein in soybean is known to be easily degraded in the rumen and therefore it is high in the proportion of

Table 2. Protein fraction of some feed materials (g/kg CP)

Feedstuff	A	B1	B2	NDICP	B3	C
Napier grass	315	49.0	142	494	168	326
Soybean	45.6	571	296	86.9	24.5	62.4
Redbean	182	543	54.6	221	161	59.8
Groundnut	146	577	169	109	28.0	80.8
Pigeonpea	220	322	352	106	106	103
Cowpea	143	515	256	86.9	27.7	59.3
Bambarabean	258	150	383	210	106	103
Mungbean	180	449	243	128	116	116

Note: CP= crude protein; A= non-protein nitrogen; B1= rapidly degraded protein; B2= intermediately degraded protein; NDICP= neutral detergent insoluble crude protein; B3= slowly degraded protein; C= unavailable protein.

Table 3. In vitro degradability and digestibility of some feed materials (g/kg) (n= 3 replicates)

Feedstuff	DMDe	DMDi	OMDe	OMDi	CPDe	CPDi
Napier grass	266	475	260	429	244	422
Soybean	548	755	415	740	796	861
Redbean	672	888	567	824	636	787
Groundnut	564	698	454	683	787	854
Pigeonpea	698	893	613	894	531	763
Cowpea	676	878	588	874	625	783
Bambarabean	526	774	384	758	444	697
Mungbean	703	896	619	892	652	793
SEM	21.0	21.4	21.4	26.2	18.7	

P-value <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

Note: Means in the same column with different superscripts differ significantly (P<0.05).

DMDe= dry matter degradability; DMDi= dry matter digestibility; OMDe= organic matter degradability; OMDi= organic matter digestibility; CPDe= crude protein degradability; CPDi= crude protein digestibility; SEM= standard error of mean.

Table 4. In vitro ruminal volatile fatty acid (VFA) profile and ammonia concentrations of some feed materials (n=3 replicates)

Feedstuff	Total VFA (mM)	C2 (%)	C3 (%)	C4 (%)	Ammonia (mM)
Napier grass	46.8	66.5	17.5	13.9	7.15
Soybean	59.5	61.1	18.8	20.1	45.6
Redbean	79.6	60.8	20.6	19.0	31.6
Groundnut	48.6	62.2	18.5	19.4	37.2
Pigeonpea	64.3	59.6	19.6	20.8	27.6
Cowpea	65.8	60.6	18.8	19.2	34.7
Bambarabean	61.6	60.4	21.2	18.4	21.0
Mungbean	64.4	59.7	19.5	20.8	35.4
SEM	2.13	0.503	0.311	0.640	1.73

P-value <0.001 <0.001 <0.001 <0.001 <0.001

Note: Means in the same column with different superscripts differ significantly (P<0.05).

C2= acetate; C3= propionate; C4= butyrate; SEM= standard error of mean.
rumen degradable protein (Maxin et al., 2014). The present study confirmed such finding further, a reduction of rumen degradable to rumen undegradable protein resulted in high urinary N and total N excretion. A high ratio of rumen degradable to rumen undegradable protein of the beans. Some beans such as groundnut, pigeonpea, and cowpea showed high proportions of B1 and B2 like Redbean and bambarabean apparently good sources of rumen undegradable protein as shown by their high proportions of fraction B3. Some beans such as groundnut, pigeonpea, and cowpea showed high proportions of B1 and B2 like Redbean and bambarabean apparently good sources of rumen undegradable protein as shown by their high proportions of fraction B3. Some beans such as groundnut, pigeonpea, and cowpea showed high proportions of B1 and B2 like

Variables	CP	CF	NDF	ADF	EE	GE	A	B1	B2	NDICP	B3	C
DMDi	0.53	-0.89**	-0.72*	-0.90**	-0.15	-0.04	-0.49	0.66	0.18	-0.83*	-0.58	-0.85**
DMDi	0.45	-0.91**	-0.63	-0.90**	-0.31	-0.19	-0.42	0.55	0.25	-0.77*	-0.48	-0.83*
OMDi	0.35	-0.75*	-0.56	-0.76*	-0.28	-0.17	-0.36	0.58	0.07	-0.70	-0.53	-0.69
OMDi	0.45	-0.91**	-0.63	-0.90**	-0.31	-0.19	-0.42	0.55	0.25	-0.77*	-0.48	-0.83*
CPDe	0.96**	-0.69	-0.88**	-0.76*	0.56	0.68	-0.93*	0.95**	-0.03	-0.84*	-0.66	-0.80*
CPDi	0.93**	-0.87**	-0.93**	-0.91**	0.40	0.52	-0.84*	0.88**	0.17	-0.94*	-0.69	-0.94**
Total VFA	0.16	-0.71*	-0.29	-0.70	-0.55	-0.45	-0.22	0.37	-0.09	-0.36	0.08	-0.60
C2	-0.57	0.95**	0.75*	0.92**	0.15	0.05	0.46	-0.50	-0.48	0.85**	0.59	0.87**
C3	0.13	-0.69	-0.37	-0.62	-0.31	-0.29	0.05	0.02	0.28	-0.28	0.13	-0.53
C4	0.69	-0.80*	-0.86**	-0.81*	0.07	0.16	-0.63	0.65	0.38	-0.90*	-0.80*	-0.79*
Ammonia	0.96**	-0.74*	-0.86**	-0.80*	0.41	0.54	-0.96**	0.93**	0.09	-0.88*	-0.71*	-0.83*

Note: *= P<0.05; **= P<0.01.

CP= crude protein; CF= crude fiber; NDF= neutral detergent fiber; ADF= acid detergent fiber; EE= ether extract; GE= gross energy; A= non-protein nitrogen; B1= rapidly degraded protein; B2= immediately degraded protein; NDICP= neutral detergent insoluble crude protein; B3= slowly degraded protein; C= unavailable protein; DMDe= dry matter degradability; DMDi= dry matter digestibility; OMDe= organic matter degradability; OMDi= organic matter digestibility; CPDe= crude protein degradability; CPDi= crude protein digestibility; VFA= volatile fatty acid; C2= acetate; C3= propionate; C4= butyrate.
complexes, heat-damaged protein, and Maillard products (Licitra et al., 1996). Further, it is highly resistant to microbial enzymes, does not provide amino acids post-ruminally (Sniffen et al., 1992), and generally considered unavailable for ruminants (Pelletier et al., 2010). The negative correlations between protein fraction C with CPDe, CPDi, and ammonia concentration in the present study confirmed such concept. Our previous study also observed a negative relationship between ADICP proportion in feedstuffs and their protein digestibility (Jayanegara et al., 2016).

Apart from the good quality of protein found in redbean, low CF and ADF contents in the bean show its potency as animal feed. Such low fiber content leads to high DMDe, DMDi, OMDe, and OMDi values since lignocellulose is known to be hardly degraded and fermented by microbes under anaerobic environment as present in the rumen (Laconi & Jayanegara, 2015; Rouches et al., 2016). High digestibility of redbean is confirmed by the high total VFA production as an end product of microbial metabolism in the rumen, particularly from carbohydrate (both structural and non-structural) fermentation (Scharen et al., 2016). Confiriming this result, a main factor determining total VFA production rate is rumen fermentable organic matter intake; there is a strong linear positive relationship between both variables (Noziere et al., 2011). In the case of groundnut that produced low total VFA, it is apparently due to the high EE or fat content. Fat in the form of triglyceride undergoes lipolysis in which fatty acids are separated from glycercol (Buccioni et al., 2012). Glycercol is further metabolized to result VFA but fatty acids are not metabolized by rumen microbes. Rather, fatty acids undergo saturation process of the double bonds known as biohydrogenation (Jayanegara et al., 2012). Therefore the contribution of fat to VFA is only from glycercol fermentation and it is considered as small amount, taking into consideration that glycercol is a three carbon molecule whereas fatty acids are medium to long chain (>12 carbon molecule), depend on the origin of the fat. Additionally, one molecule of triglyceride is consisted of one molecule of glycercol and three molecules of fatty acids. The VFA is later used as energy source by the host animals and may contribute to about 70% of their total energy requirement (Bergman, 1990).

Each individual VFA has its own fate after absorption in which acetate is a precursor of milk fat and propionate is a precursor of glucose and milk sugar or lactose synthesis (Aluwong et al., 2010; Fievez et al., 2012). In the present study, higher percentage of acetate is due to higher proportion of fiber, either CF, NDF or ADF. This result is supported by a meta-analysis study of Noziere et al. (2011) that observe an increase in molar percentage of undegradable protein proportion, whereas the other two beans contain substantially higher proportion of undegradable protein. Redbean in particular may strategically be used as a source of protein by-pass in ration. Although CP content of redbean is not as superior as soybean, it has a comparative advantage due to its low CF and ADF contents. In the case of bambarabean, its utilization may be limited since it contains considerable proportion of undegraded protein (fraction C).

ACKNOWLEDGEMENT

This research was funded by Indonesian Ministry of Research, Technology, and Higher Education through “Penelitian Unggulan Perguruan Tinggi – Penelitian Unggulan Divisi” research grant. All authors are grateful to Mr. Sofyan, Mrs. Eneh, and Mrs. Dian Anggraeni for excellent technical helps during the experimental period.

REFERENCES

Akbarian, A., M. Khorvash, G. R. Ghorbani, E. Ghasemi, M. Dehghan-Banadaky, P. Shawrang, & M. H. Ghaffari. 2014. Effects of roasting and electron beam irradiating on protein characteristics, ruminal degradability and intestinal digestibility of soybean and the performance of dairy cows. Livest. Sci. 168:45-52. http://dx.doi.org/10.1016/j.livsci.2014.07.019

Akhsan, F., L. K. Nuswantara, & J. Achmadi. 2015. Combination of soybean meal and Hibiscus tiliacus leaf in the goat diet: effect on some parameters of protein metabolism. J. Indonesian Trop. Anim. Agric. 40:100-106. http://dx.doi.org/10.14710/ijttaa.40.2.100-106

Alemu, A. W., J. Dijkstra, A. Bannink, J. France, & E. Kebreab. 2011. Rumen stoichiometric models and their contribution and challenges in predicting enteric methane production. Anim. Feed Sci. Technol. 166-167:761-778. http://dx.doi.org/10.1016/j.anifeedsci.2011.04.054

Aluwong, T., P. I. Kobo, & A. Abdullahi. 2010. Volatile fatty acids production in ruminants and the role of monocarboxylate transporters: a review. African J. Biotechnol. 9:6229-6232.

AOAC. 2005. Official Methods of Analysis. 18th Edition. AOAC International, Arlington, VA, USA.

Bannink, A., J. Kogut, J. Dijkstra, J. France, E. Kebreab, A. M. Van Vuuren, & S. Tamminga. 2006. Estimation of the stoichiometry of volatile fatty acid production in the rumen of lactating cows. J. Theor. Biol. 238:36-51. http://dx.doi.org/10.1016/j.jtbi.2005.05.026

Bartley, E. E., A. D. Davidovich, G. W. Barr, G. W. Griffel, A.
D. Dayton, C. W. Deyoe, & R. M. Bechtle. 1976. Ammonia toxicity in cattle. I. Rumen and blood changes associated with toxicity and treatment methods. J. Anim. Sci. 43:835-841. http://dx.doi.org/10.2527/1976.434383x

Bergman, E. N. 1990. Energy contributions of volatile fatty acids from the gastrointestinal tract in various species. Physiol. Rev. 70:567-590.

Buccioni, A., M. Decandia, S. Minieri, G. Molle, & A. Cabiddu. 2012. Lipid metabolism in the rumen: new insights on lipolysis and biohydrogenation with an emphasis on the role of endogenous plant factors. Anim. Feed Sci. Technol. 174:1-25. http://dx.doi.org/10.1016/j.anifeedsci.2012.02.009

Campos, A. F., O. G. Pereira, K. G. Ribeiro, S. A. Santos, & S. D. C. Valadares Filho. 2014. Impact of replacing soybean meal in beef cattle diets with inactive dry yeast, a sugarcane by-product of ethanol distilleries and sugar mills. Anim. Feed Sci. Technol. 190:38-46. http://dx.doi.org/10.1016/j.anifeedsci.2014.01.003

De Campeneere, S., J. L. De Boever, J. M. Vanacker, & D. L. De Brabander. 2010. Reducing nitrogen excretion and soybean meal use by feeding a lower rumen degradable protein balance and protected soybean meal to dairy cattle. Arch. Anim. Nutr. 64:85-97. http://dx.doi.org/10.1080/17450391003625011

FAO (Food and Agriculture Organization of the United Nations). 2016. Feedipedia: Animal Feed Resources Information System. http://www.feedipedia.org/ [20 June 2016].

Faradillah, F., R. Mutia, & L. Abdullah. 2015. Substitution of soybean meal with Indigofera zollingeriana top leaf meal on egg quality of Coturnix coturnix japonica. Med. Pet. 38:192-197. http://dx.doi.org/10.5398/medpet.2015.38.3.192

Fievez, V., E. Colman, J. M. Castro-Montoya, I. Stevanov, & B. Vaerenberg. 2010. Prevalence and branched-chain fatty acids as biomarkers of ruminant function-an update. Anim. Feed Sci. Technol. 172:51-65. http://dx.doi.org/10.1016/j.anifeedsci.2011.12.008

Goh, C. H., A. B. Nicotra, & U. Mathesius. 2016. The presence of nodules on legume root systems can alter pheno- typic plasticity in response to internal nitrogen independent of nitrogen fixation. Plant Cell Environ. 39:883-896. http://dx.doi.org/10.1111/pce.12672

Haliza, W., E. Y. Purwani, & R. Thahir. 2007. Pemanfaatan ka- canc-kacang lokal sebagai substitusi bahan baku tempe dan tahu. Buletin Teknologi Pascapanen Pertanian 3:1-8.

Haliza, W., E. Y. Purwani, & R. Thahir. 2010. Pemanfaatan kacang-kacang lokal mendukung diversifikasi pangan. Pengembangan Inovasi Pertanian 3:278-245.

Hao, X. Y., X. Han, H. Ju, & E. D. Lin. 2010. Impact of climatic change on soybean production: a review. Chinese J. Appl. Ecol. 21:2697-2706.

Higgs, R. J., L. E. Chase, & M. E. Van Amburgh. 2012. Development and evaluation of equations in the Cornell Net Carbohydrate and Protein System to predict nitrogen excretion in lactating dairy cows. J. Dairy Sci. 95:2004-2014. http://dx.doi.org/10.3168/jds.2011-4810

Holder, V. B., S. W. El-Kadi, J. M. Tricarico, E. S. Vanzant, K. R. McLeod, & D. L. Harmon. 2013. The effects of crude protein concentration and slow release urea on nitrogen metabolism in Holstein steers. Arch. Anim. Nutr. 67:93-103. http://dx.doi.org/10.1080/1745039X.2013.773647

Jayanegara, A., M. Kreuzer, & F. Leiber. 2012. Ruminal disappearance of polysaturated fatty acids and appearance of biohydrogenation products when incubating linseed oil with alpine forage plant species in vitro. Livest. Sci. 147:104-112. http://dx.doi.org/10.1016/j.livsci.2012.04.009

Jayanegara, A., S. Marquardt, E. Wina, M. Kreuzer, & F. Leiber. 2013. In vitro indications for favourable non-additive effects on ruminal methane mitigation between high-phenolic and high-quality forages. Br. J. Nutr. 109:615-622. http://dx.doi.org/10.1017/S0007114512001742

Jayanegara, A., E. Wina, & J. Takahashi. 2014. Meta-analysis on methane mitigating properties of saponin-rich sources in the rumen: influence of addition levels and plant sources. Asian Australas. J. Anim. Sci. 27:1426-1435. http://dx.doi.org/10.5713/ajas.2014.14086

Jayanegara, A., G. Goel, H. P. S. Makkar, & K. Becker. 2015. Divergence between purified hydrolysable and condensed tannin effects on methane emission, rumen fermentation and microbial population in vitro. Anim. Feed Sci. Technol. 209:60-68. http://dx.doi.org/10.1016/j.anifeedsci.2015.08.002

Jayanegara, A., S. P. Dewi, N. Laylli, E. B. LacoNi, Nahrowi, & M. Ridia. 2016. Determination of cell wall protein from selected feedstuffs and its relationship with ruminal protein digestibility in vitro. Med. Pet. 39:134-140. http://dx.doi.org/10.5398/medpet.2016.39.2.134

Jolazadeh, A. R., M. Dehghan-Banadaky, & K. Rezayazdi. 2015. Effects of soybean meal treated with tannins extracted from pistachio hulls on performance, ruminal fermentation, blood metabolites and nutrient digestion of Holstein bulls. Anim. Feed Sci. Technol. 203:33-40. http://dx.doi.org/10.1016/j.anifeedsci.2015.02.005

Lacomi, E. B., & A. Jayanegara. 2015. Improving nutritional quality of cocoa pod (Theobroma cacao) through chemical and biological treatments for ruminant feeding: in vitro and in vivo evaluation. Asian Australas. J. Anim. Sci. 28:343-350. http://dx.doi.org/10.5713/ajas.13.0798

Licitra, G., T. M. Hernandez, & P. J. Van Soest. 1996. Standardization of procedures for nitrogen fractionation of ruminant feeds. Anim. Feed Sci. Technol. 57:347-358. http://dx.doi.org/10.1016/0377-8401(95)00837-3

Liu, Y., N. W. Jaworski, O. J. Rojas, & H. H. Stein. 2016. Energy concentration and amino acid digestibility in high protein canola meal, conventional canola meal, and in soybean meal fed to growing pigs. Anim. Feed Sci. Technol. 212:52-62. http://dx.doi.org/10.1016/j.anifeedsci.2015.11.017

Mahima, V. Kumar, S. K. Tomar, D. Roy, & M. Kumar. 2015. Effect of varying levels of formaldehyde treatment of mustard oil cake on rumen fermentation, digestibility in wheat straw based total mixed diets in vitro. Vet. World 8:551-555. http://dx.doi.org/10.14202/vetworld.2015.551-555

Marghazani, I. B., M. A. Jabbar, T. N. Pasha, & M. Abdullah. 2012. Effect of supplementation with protein differ for rumen degradability on milk production and nutrients utilization in early lactating Sahiwal cows. Ital. J. Anim. Sci. 11:58-62. http://dx.doi.org/10.4081/jas.2012.e11

Maxin, G., D. R. Ouellet, & H. Lapierre. 2013. Ruminal degradability of dry matter, crude protein, and amino acids in soybean meal, canola meal, corn, and wheat dried distillers grains. J. Dairy Sci. 96:5151-5160. http://dx.doi.org/10.3168/jds.2012-6392

Noziere, P., F. Glasser, & D. Sauvant. 2011. In vivo production and molar percentages of volatile fatty acids in the rumen: a quantitative review by an empirical approach. Animal 5:403-414. http://dx.doi.org/10.17177/1751731110002016

Pelletier, S., G. F. Tremblay, A. Bertrand, G. Belanger, Y. Castonguay, & R. Michaud. 2010. Dryling procedures affect non-structural carbohydrates and other nutritive value attributes in forage samples. Anim. Feed Sci. Technol. 157:139-150. http://dx.doi.org/10.1016/j.anifeedsci.2010.07.008

Rouches, E., I. Herpoel-Gimbert, J. P. Steyer, & H. Carrere. 2016. Improvement of anaerobic degradation by white-rot fungicide pretreatment of lignocellulosic biomass: a review. Renew. Sustainable Energy Rev. 59:179-198. http://dx.doi.org/10.1016/j.rser.2015.12.317

Scharen, M., G. M. Seyfang, H. Steingass, K. Dieho, J. Dijkstra,
L. Huther, J. Frahm, A. Beineke, D. Van Soosten, U. Meyer, G. Breves, & S. Danicke. 2016. The effects of a ration change from a total mixed ration to pasture on rumen fermentation, volatile fatty acid absorption characteristics, and morphology of dairy cows. J. Dairy Sci. 99:3549-3565. http://dx.doi.org/10.3168/jds.2015-10450

Seo, J. K., M. H. Kim, J. Y. Yang, H. J. Kim, C. H. Lee, K. H. Kim, & J. K. Ha. 2013. Effects of synchronicity of carbohydrate and protein degradation on rumen fermentation characteristics and microbial protein synthesis. Asian Australas. J. Anim. Sci. 26:358-365. http://dx.doi.org/10.5713/ajas.2012.12507

Sniffen, C. J., J. D. O’Connor, P. J. Van Soest, D. G. Fox, & J. B. Russel. 1992. A net carbohydrate and protein system for evaluating cattle diets: II. Carbohydrate and protein availability. J. Anim. Sci. 70:3562-3577. http://dx.doi.org/10.2527/1992.70113562x

Tilley, J. M. A., & R. A. Terry. 1963. A two-stage technique for the in vitro digestion of forage crops. Grass Forage Sci. 18:104-111. http://dx.doi.org/10.1111/j.1365-2494.1963.tb00355.x

Van Soest, P. J., J. B. Robertson, & B. A. Lewis. 1991. Methods for dietary fiber, neutral detergent fiber, and non-starch polysaccharides in relation to animal nutrition. J. Dairy Sci. 74:3583-3597. http://dx.doi.org/10.3168/jds.S0022-0302(91)78351-2

Vollmann, J. 2016. Soybean versus other food grain legumes: a critical appraisal of the United Nations International Year of Pulses 2016. Bodenkultur 67:17-24. http://dx.doi.org/10.1515/boku-2016-0002

Wang, C., J. X. Liu, S. W. Zhai, J. L. Lai, & Y. M. Wu. 2008. Effects of rumen degradable protein to rumen undegradable protein ratio on nitrogen conversion of lactating dairy cows. Acta Agric. Scand. A 58:100-103. http://dx.doi.org/10.1080/09064700802187210

Yang, J. Y., J. Seo, H. J. Kim, S. Seo, & J. K. Ha. 2010. Nutrient synchrony: is it a suitable strategy to improve nitrogen utilization and animal performance? Asian Australas. J. Anim. Sci. 23:972-979. http://dx.doi.org/10.5713/ajas.2010.r.04

Yildiz, E. & N. Todorov. 2014. The comparison of the main protein sources for dairy cows: a review. Bulgarian J. Agric. Sci. 20:428-446.