One year cross-sectional study in adult and neonatal intensive care units reveals the bacterial and antimicrobial resistance genes profiles in patients and hospital surfaces

Ana Paula Christoffi, Aline Fernanda Rodrigues Sereia, Giuliano Netto Flores Cruz, Daniela Carolina de Bastiani, Vanessa Leitner Silva, Camila Hernandez, Ana Paula Metran Nascente, Ana Andrea dos Reis, Renata Gonçalves Viessi, Andrea dos Santos Pereira Marques, Bianca Silva Braga, Telma Priscila Lovizio Raduan, Marines Dalla Valle Martin, Fernando Gatti de Menezes, Luiz Felipe Valter de Oliveira*

*BiomeHub, Florianopolis, Brazil
Albert Einstein Israelite Hospital, São Paulo, Brazil

*Correspondence
Luiz Felipe Valter de Oliveira
felipe@biomehub.com

Keywords: Hospital microbiome, 16S rRNA, bacteria, antimicrobial resistance, high throughput sequencing, MDR, HAI.

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
Abstract

Several studies have shown the ubiquitous presence of bacteria in the hospital environmental surfaces, staff, and patients. Frequently, these bacteria are related to HAI (healthcare-associated infections) and carry antimicrobial resistance (AMR). These HAI-related bacteria contribute to a major public health issue by increasing patient morbidity and mortality during or after hospital stay. Bacterial high-throughput amplicon gene sequencing along with AMR genes identification and whole genome sequencing (WGS) are new biotechnological tools that allow multiple-sample screening for a diversity of bacteria. In this paper, we used these methods to perform an one-year cross-sectional profiling of bacteria and AMR genes in adult and neonatal intensive care units (ICU and NICU) in a Brazilian public hospital. Our results showed high abundances of HAI-related bacteria as *S. epidermidis*, *S. aureus*, *K. pneumoniae*, *A. baumannii* complex, *E. coli*, *E. faecalis* and *P. aeruginosa* in patients and hospital surfaces. Most abundant AMR genes detected throughout ICU and NICU were *mecA*, *blaCTX-M-1* group, *blashV*-like and *blaKPC*-like. We found that NICU environment and patients were more widely contaminated with pathogenic bacteria than ICU. Patient samples, despite the higher bacterial load, have lower bacterial diversity than environmental samples in both units. Finally, we also identified contamination hotspots in the hospital environment showing constant frequencies of bacterial and AMR contamination throughout the year. WGS sequencing, 16S rRNA oligotypes and AMR identification allowed a high-resolution data analysis for bacterial characterization and its distributions along the hospital microbiome profile.
Introduction

Hospital indoor environment including surfaces, staff and patients are the focus of major recent investigations regarding the microbiome and its bacterial composition (1–4). This became possible due to the dissemination of culture-independent microbiology methods using next-generation DNA sequencing. Culture-independent methods are less time-consuming and skewed to specific cultivable microorganisms, allowing large-scale screening and surveillance of microorganisms, including those that do not grow well in laboratory conditions (5–9).

Several studies already demonstrated the presence and persistence of bacterial pathogens in hospital surfaces, like Enterococcus, Staphylococcus aureus, Acinetobacter, Escherichia coli, Klebsiella, Pseudomonas aeruginosa and Serratia marcescens (10–12). These microorganisms, among others listed by CDC – Centers for Disease Control and Prevention (https://www.cdc.gov/hai/index.html) - are known as nosocomial pathogens related to Healthcare-associated infections (HAI). These pathogenic bacteria can also harbor multidrug-resistance genes (MDR) and confer a broad spectrum of antimicrobial resistance (AMR) - a matter of major concern in public health, leading to increased patient morbidity and mortality during or after hospital stay (13,14).

Hospital contaminated environments, including surfaces and staff, are well recognized as reservoirs and transmission sources for HAI-related pathogens (2,12,15–21). In this scenario, the study of hospital microbiome has substantial implications in the healthcare system: the continuous monitoring of hospital environment, bacterial tracking, and detailed epidemiological investigations may contribute to decrease HAI rates and improve healthcare system quality. In this study, by monthly collecting DNA samples from environment and patients, we investigated the microbiome of adult and neonatal intensive care units (ICU and NICU) from a local public hospital over a one-year period. We perform exhaustive molecular assessment to understand the profiles of bacterial abundances as well as antimicrobial resistance genes from the healthcare environment and patient samples.

Material and Methods

Study design

This study was performed in a public hospital in the city of São Paulo, Brazil. A twelve-month project was designed comprising adult intensive care unit (ICU) and neonatal intensive care unit (NICU) samples from environmental surfaces and patients. From August-2018 to July-2019, patient beds and common use areas were sampled each month, as well as patient nasal and rectal swabs. For neonatal patients, stool swabs were collected instead of rectal. Bed environmental surface samples were collected from medical and hospital equipment, furniture, critical structure points, and bed accessories – all characterized as high contact surfaces (Supplementary table 1). All patient samples collected were from the same beds included in the environmental sampling. Among common areas included are: nurse station, as well as common use medical equipment. Additionally, some bacterial isolates were obtained by the hospital microbiology laboratory for further genomic analysis. This project was approved by the Albert Einstein Israelite Hospital ethics committee (number 2.585.209) All participants were informed about the study aims and sampling was carried out upon a signature of an informed consent by the patient or a legal representative.
Sample collection and DNA extraction

Samples were collected using a sterile dry cotton swab, without transport media. The swab was moistened with a sterile saline solution (0.9% NaCl) prior to sample collection. The swabs were transported to the laboratory facilities at room temperature and processed within a maximum of 24h after sample collection. Bacterial DNA from the samples was obtained through a thermal lysis (96 °C – 10 min) followed by a purification step with AMPure XP Magnetic Beads (Beckman Coulter, USA). Negative controls were included in each lysis and DNA extraction batch.

Library preparation and DNA sequencing

We performed amplicon sequencing library preparation for bacteria using the V3/V4 16S rRNA gene primers 341F and 806R (22,23) in a two-step equivolumetric PCR protocol (24). The first PCR was performed with V3/V4 universal primers containing a partial Illumina adaptor, based on TruSeq structure (Illumina, USA) that allows a second PCR with the indexing sequences similar to procedures described previously (25). Here, we add unique dual-indexes per sample in the second PCR. Two microliters of individual sample DNA were used as input in each first PCR reaction. The PCR reactions were carried out using Platinum Taq (Invitrogen, USA) with the conditions: 95°C for 5 min, 25 cycles of 95°C for 45s, 55°C for 30s and 72°C for 45s and a final extension of 72°C for 2 min for PCR 1. In PCR 2 the conditions were 95°C for 5 min, 10 cycles of 95°C for 45s, 66°C for 30s and 72°C for 45s and a final extension of 72°C for 2 min. All PCR reactions were performed in triplicate. The final PCR reactions were cleaned up using AMPureXP beads (Beckman Coulter, USA) and an equivalent volume of each sample was added in the sequencing pool. At each batch of PCR, a negative control reaction was included (CNR). The final DNA concentration of the libraries pool was estimated with Picogreen dsDNA assays (Invitrogen, USA) and then diluted for accurate qPCR quantification using KAPA Library Quantification Kit for Illumina platforms (KAPA Biosystems, USA). The sequencing pool was adjusted to a final concentration of 11 pM (for V2 kits) or 18 pM (for V3 kits) and sequenced in a MiSeq system (Illumina, USA), using the standard Illumina primers provided by the manufacturer kit. Single-end 300 cycle runs were performed using V2x300, V2x500 or V3x600 sequencing kits (Illumina, USA) with sample coverages set to 45,000 reads per sample in all sequencing runs (Supplementary table 2).

Sequencing data analysis

The sequenced reads obtained were processed using an in-house developed bioinformatics pipeline described below (BiomeHub, Brazil – hospital_microbiome_rna16s:v0). Illumina FASTQ files had the primers trimmed and their accumulated error evaluated (24). Only one mismatch is allowed in the primer sequence that should be present at the beginning of the read. The whole read sequence is discarded if this criterion is not met. Reads were analyzed with the Deblur package (26) to remove possible erroneous reads and then identical read sequences were grouped into oligotypes (clusters with 100% identity). The sequence clustering with 100% identity provides a higher resolution for the amplicon sequencing variants (ASVs), also called sub-OTUs (sOTUs) (27) - herein denoted as oligotypes. Next, VSEARCH (28) was used to remove chimeric amplicons.

An additional filter was implemented to remove oligotypes below the frequency cutoff of 0.2% in the final sample counts. We also implemented a negative control filter, since hospital microbiome generally are low biomass samples (24). In each processing batch, we also used negative controls for the DNA extraction and PCR reactions. If any oligotypes are recovered
in the negative control results, they are checked against the samples and automatically removed from the results only if their abundance (in number of reads) are no greater than two times their respective counts in the sample. The remaining oligotypes in the samples are used for taxonomic assignment with the BLAST tool (29) against a reference genomic database (encoderef16s_rev6_190325). This in-house database was constructed with complete and draft bacterial genomes, focused on clinically relevant bacteria, obtained from NCBI. It is composed of 11,750 sequences including 1,843 different bacterial taxonomies.

Taxonomy was assigned to each oligotype using a lowest common ancestor (LCA) algorithm. If more than one reference can be assigned to the same oligotype with equivalent similarity and coverage metrics (e.g. two distinct reference species mapped to oligotype “A” with 100% identity and 100% coverage), the taxonomical assignment algorithm leads the taxonomy to the lowest level of possible unambiguous resolution (genus, family, order, class, phylum or kingdom), according to the similarity thresholds previously established (30).

After quality check of sequencing yield (Supplementary Table 2), the resulting oligotype tables, analogous to traditional OTU tables, were processed and normalized as previously described (24). Oligotype sequences served as input for FastTree 2.1 software (31) to construct phylogenetic trees and allow beta-diversity analysis with UniFrac distances (32). Additional analysis were performed using R (version 3.6.0) and the Phyloseq package (33). When suited, non-parametric comparisons were performed using Kruskall-Wallis and Wilcoxon tests implemented in R (34). Alpha diversity analysis was performed using the “plot_richness” function in Phyloseq.

RGene – antimicrobial resistance gene analysis

A panel comprising relevant β-lactamases, Vancomycin, Methicillin and Colistin antimicrobial resistance genes in Brazilian scenario was tested: blactX-M-1 group, blactX-M-2 group, blactX-M-8 group, blactX-M-9 group, blages-like, blaimp-like, blakpc-like, blandm-like, blashv-like, blaspM-like, blavim-like, blaOXA-143-like, blaOXA-23-like, blaOXA-48-like, blaOXA-51-like, blaOXA-72-like, vanA, vanB, mecA and MCR1. The detection was performed using Real-Time PCR with QSY hydrolysis probes labeled with FAM®, VIC® and NED® (Applied Biosystems, USA).

Real Time PCR reactions were carried out using 10 µL of final volume per sample, containing 2 µL of the same previously sequenced DNA samples, 0.2 U Platinum Taq, 1 X Buffer, 3 mM MgCl2, 0.1 mM dNTP, 0.12 X ROX™ and 0.2 µM of each forward and reverse specific primer following the thermal conditions: 95 °C for 5 min with 35 cycles of 95 °C for 15s, 60 °C for 30s and 72°C for 30s. Negative and positive reaction controls were included in all the assays. All the samples were analyzed in experimental triplicate. Real Time reactions were performed in an ABI 7500 Fast Real-Time PCR System (Applied Biosystems, USA). Samples were considered positive when at least two of the experimental replicates were below the quantification cycle 33 using an experimental threshold of 0.05.

Bacterial genomes

Bacterial isolates were processed as described above for DNA extraction, and the sequencing library preparation was performed using Nextera Flex with CD indexes (Illumina, USA), according to manufacturer instructions. Samples were sequenced in a MiSeq system (Illumina, USA), in paired-end 150 pb configuration, with coverage of 1 million reads per sample.

Sequenced genomes were analyzed using A5 (35), SPAdes (36) and Prokka (37). Species identification and average nucleotide identity (ANI) were performed using the JSpecies platform (38). The whole genome sequence was used to identify the Multi Locus
Sequence Typing (MLST 2.0) as previously described (39). Clonality analysis was performed among bacteria of same species using NDTree (40) to assess genome single nucleotide variants (SNVs) and evaluating ANI values using JSpecies ANIm calculations (38).

Results

Samples and high-throughput amplicon sequencing

A total of 1,978 samples were collected from August-2018 to July-2019. In the adult intensive care unit (ICU) 1,062 samples were collected, of which 138 were from patients, 676 from beds, and 248 from the common healthcare environment. In the neonatal intensive care unit (NICU), 916 samples were collected, being 111 from patients, 598 from beds, and 207 from common healthcare environment (detailed sample collection sites described in Supplementary Table 1).

Twelve sequencing runs were performed resulting in 78,840,894 reads, with an average and standard deviation of 6,570,075 ± 813,906 reads per run and 30,942 ± 3,468 reads by sample (Supplementary table 2). In the log\textsubscript{10} scale, patient and healthcare environment median reads in ICU and NICU reflects the scales of microbial load in the samples (Figure 1). Some months showed lower medians, suggesting samples with lower bacterial load, however, the annual profile is pretty similar.

Considering quality reads that passed through our bioinformatics pipeline, 98.74% of reads could be classified as bacteria (kingdom), 97.84% were classified at family level, 89.14% at genus level, and 67.28% at species level. Of the global sequencing results, 40.96% of the reads could be identified in a HAI-related Bacteria group (here denoted HAIrB group: Acinetobacter baumanii complex, Escherichia coli, Enterococcus faecalis, Enterococcus faecium, Klebsiella pneumoniae, Proteus mirabilis, Pseudomonas aeruginosa, Staphylococcus aureus and Staphylococcus epidermidis), corresponding to 60.87% of the results at species level.

Throughout the assessed year, 19.79% of the identified bacterial DNA belonged to the genus Staphylococcus (11.79% S. epidermidis and 3.03% S. aureus, 4.97% other species). Other HAIrB had the following frequencies: 7.39% - A. baumannii complex, 7.06% - E. coli, 3.27% - Enterococcus and 5.73% - K. pneumoniae. Thus, we can state that the genus Staphylococcus and the species S. epidermidis have predominant observed proportions in this hospital microbiome throughout this year of analysis.

Bacterial diversity analysis

Alpha diversity analysis for both ICU and NICU showed higher and more variable values of Shannon index in the healthcare environment than in patient samples along the year (Figure 2a). Similar pattern was observed when looking at specific sampling sites within units (Figure 2b). Longitudinal profiles of alpha diversity along the year in different hospital locations and specific collection sites are shown in Supplementary figure 1, revealing highly variable values even among equivalent sample sites within and between months.

Weighted UniFrac analysis showed similar distribution patterns among samples across the year (Figure 2c), without clear separation between months, but with a slightly differential distribution of samples from August to November 2018, December 2018 to February 2019, and April to July 2019 (Supplementary figure 2). ICU and NICU samples have similar beta-diversity profiles (Figure 2d), and only patient samples seem to cluster more closely (Figure 2e).
Bacterial profiling in the hospital

Several bacterial taxonomies were identified in this study and classified into phylum, family, genus and species levels. Proteobacteria are by far the most predominant bacteria phylum found in the results of both ICU and NICU, followed by Firmicutes, Actinobacteria and Bacteroidetes. The most abundant families found were: Enterobacteriaceae, Staphylococcaceae, Moraxellaceae, Pseudomonadaceae, Corynebacteriaceae, Streptococcaceae, Enterococcaceae, Peptophilaceae, Prevotellaceae and Bacteroidaceae; major genus were: Staphylococcus, Acinetobacter, Pseudomonas, Corynebacterium, Klebsiella, Escherichia, Streptococcus, Enterococcus, Bacteroides and Proteus. This higher rank classifications are also in agreement with the most representative species found in the data: Staphylococcus epidermidis, Klebsiella pneumoniae, Acinetobacter baumannii complex, Escherichia coli, Staphylococcus aureus, Enterococcus faecalis, Pseudomonas aeruginosa, Acinetobacter iwoffii, Pseudomonas stutzeri and Staphylococcus haemolyticus. The top 10 bacteria found for each taxonomy level in the results from ICU and NICU can be visualized in Supplementary figure 3, faceted by time points and sampling sites.

Considering the previously defined HAIrB group we evaluated the proportion of positive samples for each of the individual HAIrB species in each month of the project. ICU healthcare environment and patients (Figure 3a and 3b) share high proportions of positive samples for S. epidermidis. In the environment, S. epidermidis was constant all over the year, but patient samples has a more oscillating pattern. A. baumannii complex is more present in environment samples, while E. coli is proportionally more detected in patient samples. In the overall profile it seems that ICU healthcare environment have constant positivity proportions for the species along the year, where ICU patients varies for most bacteria, not being at constant rates along the year. NICU bacteria detected in most environmental samples are S. epidermidis, E. faecalis and A. baumannii complex, with higher proportions in samples along the year. Environmental E. coli, K. pneumoniae, and S. aureus were more temporally distributed, resembling the NICU patient positive samples proportions (Figure 3c and 3d). In patient samples, the bacteria with highest detection rates were E. faecalis, E. coli, K. pneumoniae, and S. epidermidis.

Contamination hotspots and longitudinal profiles

Given the observed HAIrB annual profiles, we aimed to identify possible hospital locations as contamination hotspots. Figures 4a through 4f suggest that patient samples show higher total abundance of HAIrB than environmental samples, regardless of the hospital unit. The pattern is consistent even when we split the samples according to sampling sites grouped by similarity (Figures 4b and 4e).

Within ICU, the highest HAIrB levels were observed in PT samples, with progressively lower values for bed, common use equipment, nurse station, entrance hall, and hands hygiene sink. More specifically, ICU patient rectum and nasal samples have the higher HAIrB values (Figure 4c), while the balances, taps, and alcohol dispensers showed the lowest contamination levels. NICU locations also showed highest HAIrB abundance for PT samples and lowest for entrance hall (Figure 4e). In specific sample collection sites, NICU patient stool, oximeter, and patient nasal samples have the higher HAIrB values (Figure 4f), while door handles plus access buttons, alcohol dispensers, IV stand, medication car, emergency car, phototherapy, minifridge and screen had the lowest HAIrB median counts.

The HAIrB profiles can be assessed with respect to their longitudinal variation (Figures 5a and 5b). While not all sites were evenly sampled, many show consistent trends. For instance, medical equipment such as oximeter, monitor, and infusion bombs showed almost constant
abundance over the entire year, regardless of the hospital unit. Some sampling sites such as ICU alcohol dispenser and tap showed higher values at the end of the study period. A similar pattern was observed in NICU, although with seemingly high initial levels.

Nonetheless, many sites show heterogeneous profiles in terms of HAIrB contamination. For instance, NICU computer and infusion bombs, as well as ICU telephone and door handle plus access button, show well-defined sample distributions outside the trend line in various months. This could be result of occasional increase or decrease in decontamination practices by hospital staff, but also a sampling artifact (especially in those cases in which sample size is minimal, e.g., NICU medical records). Additionally, some sites were not evaluated at all time points. The ICU bench reached particularly low values in March-2019 and was not further monitored, while curtains and stethoscopes started being assessed near the middle of the study period. This is in agreement with the ethical guidelines imposed on this study as monitoring was primarily driven by patient-care concerns.

Source tracking and bacterial dispersion

Oligotype sequences, corresponding to amplicon sequence variants (ASVs), were used to investigate the bacterial dispersion among samples and identify possible contamination flows. ICU and NICU most abundant HAIrB-related oligotypes were visualized as frequency heatmaps (Figure 6). In ICU (Figure 6a), the most frequent oligotype detected was oligotype_1, classified by our pipeline as S. epidermidis, and present in ~70% or more environmental samples, as well as in ~50% of patient samples. Oligotype_4, identified as S. aureus, was also shared across environmental and patients samples in high proportions, as well as P. aeruginosa oligotype_12, K. pneumoniae oligotypes_19, _20, _6 and _63, E. coli oligotype_2, E. faecium oligotype_24 and E. faecalis oligotype_5.

In general, the selected oligotypes showed highest proportions in samples from patients and beds, regardless of the unit sampled. Still, NICU samples seem to present higher dispersion. Except for samples from the hospital entrance, all the above cited oligotypes were found in elevated proportions in patient, bed, stations, and equipment samples. A. baumannii complex oligotypes (_7, _3, _25 and _89) were more abundantly found in healthcare environment samples. In NICU (Figure 6b), the most frequent oligotype in all sample locations was also S. epidermidis oligotype_1. E. faecalis oligotype_5 was abundantly found in patient, bed and equipment samples, showing lower but relevant presence in stations and entrances as well. Similar to ICU oligotypes, E. coli oligotype_2, P. aeruginosa oligotype_12, S. aureus oligotype_4 and K. pneumoniae oligotypes_19, _20 and _6 were highly dispersed and shared between different location samples. In NICU, A. baumannii complex oligotypes were detected in both patient and environmental samples, differing from ICU where they were prevalent in environmental samples.

The longitudinal profiles of the main oligotypes and their correspondent bacteria in ICU showed that oligotype_1 appears as the main source of S. epidermidis throughout the year, in the environment and in the patient samples (Supplementary figure 4a and 4b). A trend line from quantile regression suggests an abundance increase of this oligotype for patients from February-2019, despite lower values in June-2019. Other ICU HAIrB did not show specific oligotype-related temporal patterns, as they presented more heterogeneous and discontinuous monthly variations (Supplementary figure 4 c-f). NICU samples presented the same pattern for S. epidermidis, related to the same oligotype_1 sequence, highly abundant across all study period in the environment (Supplementary figure 4 g-h). Patient samples showed more significant increases from April-2019. In addition, NICU shows high abundance of E. faecalis oligotypes, mainly represented by oligotype_5 in patient stool samples, but also contaminating the surrounding environment - mainly the beds.
Detailed oligotype positivity rates across time points is shown in Supplementary figure 5. In addition, these contamination frequencies for HAIRB group were plotted as risk maps for ICU and NICU (Supplementary figure 6 and 7). These maps and red spots represent the monthly contamination in specific hospital locations, suggesting NICU has a more constantly contaminated environment than ICU, with no major HAIRB reduction over the year.

Bacterial isolates identification and genomes characterization

ICU and NICU 17 bacterial isolates previously identified by the hospital microbiology laboratory using conventional techniques were analyzed through whole genome sequencing (WGS) and confirmed 88% of the previous microbiological results (15 out of 17 isolates) (Table 1). For the two diverging samples, one was identified just as *Klebsiella* by the microbiology lab but with WGS we were able to classify it as *K. pneumoniae*. Another sample, identified as *K. oxytoca* by the microbiology laboratory, was classified as *K. michiganensis* by WGS analysis. Additionally, 16S rRNA gene sequencing was performed for these isolated bacteria, also resulting in 88% agreement with the conventional microbiology laboratory, differing for the same two samples of *Klebsiella*. One of them (*Klebsiella*) was classified as *K. pneumoniae* by our bioinformatics pipeline and the other one (*K. oxytoca*) could not be differentiated below Enterobacteriaceae family level. Thus, WGS and 16S rRNA sequencing presented 94.11% agreement in the taxonomical classifications, only differing in the resolution level for the *K. michiganensis* in the amplicon 16S rRNA gene sequencing (Table 1).

Genomic investigation analysis was performed by searching for the specific 16S rRNA gene sequences in each isolated WGS results and comparing them to the oligotypes identified in the ICU and NICU amplicon samples. The same 16S rRNA fragment sequence corresponding to oligotype_4 was found in all *S. aureus* isolated genomes, even the one from before the project period. In the *S. epidermidis* WGS results we found the oligotype_1 sequence; *E. faecalis* presented the oligotype_5; *P. aeruginosa* oligotype_12; and some of the *E. coli* isolates had the oligotype_2 (Table 1). Two *E. coli* bacterial isolates from NICU in 2019 did not have any correspondence of their 16S rRNA sequences in the amplicon hospital microbiome survey. Furthermore, specific 16S rRNA sequences from *Klebsiella* WGS results, isolated from ICU and NICU, were not detected in the hospital microbiome oligotypes either.

In addition, genomic MLST profiling was performed along with clonality analysis using WGS results. These analyses separated *S. aureus* in three MLST strains (ST398, ST2383 and ST1435) and two clonal groups (*S. aureus* Group 1 and 2). Group 2 includes bacterial isolates from October-2018 and January-2019, both from NICU, however, these two isolates were more distantly related (195 SNVs, 99.93 ANIm and an average of 98.47% nucleotides aligned) than the Group1 isolates from October-2018 (97 SNVs, 99.99 ANIm and an average of 99.90% nucleotides aligned). The most different *S. aureus* (ST1435) was the only one carrying a *meca* resistance gene and isolated in the hospital prior to this project. In addition the *S. epidermidis* isolated from the ICU in November-2018 belongs to ST2 and also carries the *meca* resistance gene. The two *E. faecalis* were from the same MLST strain (ST21), but not sufficiently similar to be considered clonal (>5,000 SNVs, 99.59 ANIm and an average of 92.18% nucleotides aligned). One *E. faecalis* was isolated from ICU and the other from NICU. *P. aeruginosa* isolated, both from ICU, were identified as different MLST strains (ST245 and ST1816 containing 1 SNP from the canonical strain) and not clonally related (>9,000 SNVs, 99.29 ANIm and an average of 90.29% nucleotides aligned). Only two *E. coli* isolated from NICU in January-2019 belongs to the same MLST strain (ST69) and clonal group (*E. coli* Group 1 - with 10 SNVs, 99.97 ANIm and an average of 99.74% nucleotides aligned). However, these clonal *E. coli* genomes are the ones without corresponding 16S rRNA oligotypes in the microbiome survey. This WGS analysis from bacterial isolates corroborates...
our bioinformatics pipeline taxonomical identification for the species-level classification of most relevant oligotypes identified in this microbiome project.

Antimicrobial resistance genes profile in the hospital microbiome samples

Antimicrobial resistance genes were searched every month in healthcare environment and patient samples in both ICU and NICU. In ICU, a total of 135 environmental samples (14%) and 51 patient samples (36%) were positive for any resistance gene. In 3.7% of environmental samples and 15% of patient samples more than one resistance gene was detected. In 72 ICU beds tested, 22 of them showed the same resistance gene found in samples from its respective inpatient. Resistance genes positivity over the twelve-month period in the ICU showed that mecA, blaCTX-M-1 group, blashv-like, blakpc-like and vanA were the most prevalent genes detected (Figure 7a). Other genes were detected in lower frequencies and in different periods, such as blaspm-like detected from May to June – 2019, blaoxa-51-like detected from January to May – 2019, and blanDM-like not continuously detected. Patients showed more positive samples than healthcare environment (Figure 7b). However, proportionally, patients have far fewer samples collected than environment. In terms of specific sampling sites (Figure 7c), mecA gene was found widely distributed and with higher proportions in samples such as patient nose and equipment as telephone, door handles/access buttons, respirators, computers, electrocardiograph, gas ruler, oximeters, among others. blakpc-like was frequently found in dialysis equipment, stethoscope, gas ruler and bedrails, as well as in patient rectum samples and similar to blasiv-like distributions. vanA gene distributions is also higher in stethoscopes, electrocardiograph, bedrails, infusion bomb and patient rectum samples.

In NICU, a total of 112 environmental samples (13%) and 32 patient samples (30%) tested positive for any resistance gene. In 1.6% of environmental samples and 9.9% patient samples more than one resistance gene was detected. Among 60 NICU tested beds, 19 showed the same resistance genes as its respective inpatient. Assessment of AMR genes in the NICU demonstrated higher positivity of mecA gene over all the twelve months, with higher frequencies from August-2018 to November-2018 and from May-2019 to July-2019 (Figure 7d). blactx-M-1 group, blashv-like were also detected, but most frequently from January-2019 to June-2019. Patients also showed high positivity for AMR genes, with exception for mecA gene, which was even more present in environmental samples (Figure 7e). Also, mecA gene was found in higher proportions of most samples analyzed (Figure 7f), but even more frequent in respirators, sphygmanometers, material cars, incubators gates and drawers, gas ruler and stethoscopes samples. blashv-like was mostly found in patient stool samples as well as in balance, bedrail and sphygmanometer samples.

Correlating the most abundant AMR genes in patients with healthcare environments, and adjusting the proportion of samples for each group, we could observe that there is an overlapping frequency pattern: when the AMR gene is in higher frequencies for environmental samples, they are also higher in patient samples (Figure 8). Giving the experimental design carried out in this study, we were not able to define the actual contamination source, the environment or the patient. We could, nonetheless, observe their close relationship.

Discussion

Hospital microbiome comprehension, and more specifically bacterial pathogen tracking, can be of great relevance to understand, reduce and prevent healthcare associated infections (HAI). In this paper we have demonstrated the application of high-throughput, next generation (NGS) amplicon sequencing to screen, monitor and track bacterial profiles in a hospital environment. Additionally, we used the same NGS samples for AMR/MDR genes
profiling through real-time PCR and compared the amplicon results with WGS analysis of bacterial isolates from ICU and NICU.

Several bacterial investigations have been carried out in intensive care units, since ICUs are related to high rates of HAI and MDR acquired infections (4,21,41–43). Some ICU studies using high-throughput sequencing reveal bacterial profiles that would not be recovered only by conventional microbiology methods, given its specificity and selectivity for known types of bacteria (5,44,45). The method we used in this study was also culture-independent, but designed to allow comparisons relative to the bacterial load in the samples. Previous studies have already demonstrated that total sequence reads from NGS samples (library size) do not need to be arbitrary, thereby allowing bacterial load estimation (24,46). Thus, allowing the identification of temporal profiles and critical sample collection sites suited to be the focus of hospital cleaning interventions.

The bacterial profile found in this study for ICU and NICU environments is similar to other intensive care studies, with Proteobacteria and Firmicutes as the most abundant bacterial phyla detected (1,2,5). However, most abundant bacterial genera and species detected in our study varied, particularly because of the high rates of specific HAI related bacteria detected.

The overall results show that the hospital environment maintains a close relationship with the patients' microbiome in their respective care units, a pattern also observed for AMR genes. In this project, the experimental design was not constructed to identify the definitive sources of bacterial contaminations (patients, environment or healthcare professionals), as done by other studies that could correlate the contamination of patients according to the environment and their length of stay at the hospital (1). However, we observed the NICU bacterial profiles with wide and continuous contaminations over the year, suggesting a flow between patients and environment by factors like healthcare workers or visitors, since NICU patients are restricted to their incubators and do not have deliberated access to their surrounding environment. Other studies already showed the resemblance between NICU environment and the gut microbes of premature infants (47). Some sample positivity reduction observed in NICU for *S. aureus*, *S. epidermidis* and *mecA* AMR gene could be attributed to infection control interventions during November and December of 2018. The NICU underwent exhaustive cleaning and sanitation processes, including shifting locations from November of 2018 until January 2019. In the ICU rigorous hygienization processes were also reported by the hospital in December-2018. This could explain the variations in the bacterial and AMR profiles during this period and shortly after.

In both ICU and NICU, throughout this study period, patient samples yielded the highest bacterial load, despite their lower alpha-diversities. Yet, these comprised the only sample group with apparent clustering in beta-diversity analysis. This patient profile can be explained by the fact that they showed a particular microbiota, with predominance of only a few bacteria, which is generally expected for nasal samples, but not for fecal/rectal samples (48,49). This diversity may be related to patient infections or microbiota imbalance due to hospitalization (50–52). Recent studies have shown that immediately after birth, newborns are colonized by the maternal and surrounding microbiota. Infants from cesarean sections, mothers treated with prophylactic antibiotics, or not breastfed during the neonatal period have altered microbiota profiles, as well as colonization by opportunistic pathogens associated with the hospital environment, such as *Enterococcus, Enterobacter* and *Klebsiella* (Shao et al., 2019). The implications of microbiota changes during hospitalization period is not fully understood yet. Another healthcare issue that may be directly associated with microbiome diversity is the development of sepsis. Studies have identified low intestinal microbiota diversity and *Staphylococcus* predominance as risk factors for sepsis in neonates born at 24-27 weeks of gestation (53). In adults, the risk of sepsis has also been studied related to the microbiome profile imbalance and other associated factors (54).
We detected AMR genes more frequently in rectal/stool samples, but also considerable in nasal samples. mecA, blaCTX-M-1 group, blashV-like and blakPC-like were by far the most frequent AMR genes detected in patients, but also spread in the hospital environment. Meticillin-resistant S. aureus (MRSA) carrying mecA gene is a rising threat to public health (55). This gene has been found not only in hospital environments, but also circulating in the community and not only restricted to S. aureus, but also detected among other species from the genera, including S. epidermidis (56,57). Carbapenem resistance and Extended spectrum β-lactamases genes detected here (blakPC-like, blaCTX-M-1 group, blashV-like and) were commonly reported in studies from Brazilian hospital environments as a serious problem in urgent need of actions to reduce their spreading rates (58,59).

In both NICU and ICU units, we highlight the large variation across monthly assessed specific sites. In each month, while the overall microbial load varied in one direction (increase or decrease), there were still samples indicating divergent degrees of contamination. This suggests a lack homogeneity or reproducibility in the sanitation processes. Another possibility, the rapid re-contamination of the environment with HAI bacteria after cleaning due to external sources, e.g., healthcare workers and visitors. This study was not designed to evaluate the sanitation processes, but rather to deepen our understanding of the hospital bacteriome. WGS analysis of bacterial isolates allowed us to complement the amplicon sequencing results by confirming the taxonomical identification for several 16S rRNA amplicons and by showing that bacterial microbiome profiles, recovered in patient and environmental samples, were from real significant bacterial strains widely spread in the hospital intensive care units.

Therefore, through a one-year-long hospital surveillance study we were able to demonstrate how NGS technologies can be applied to large-scale, fast, and cost-effective monitoring of hospital microbial contamination, thereby improving infection control practices. Effective identification of HAI hotspots and contamination flows with pathogenic bacteria, in multiple sampling sites simultaneously, represents an unprecedented resolution gain for hospital microbiological control and epidemiological surveillance.

Author Contributions
AC performed the analysis and wrote the manuscript. AS, GC, LO performed the analysis and reviewed the manuscript. DB, VS performed the laboratory sample analysis. AN, AR, RV, AM, BB, TR performed the sample collection. AS, LO, CH, TR, MM, FM were responsible for the project design and approvals.

Conflict of interest
AC, AS, GC, DB, VS, LO are currently full-time employees of BiomeHub (SC, Brazil), a research and consulting company specialized in microbiome technologies.

Data availability
All sequence data are deposited in NCBI BioProject PRJNA604445

References
1. Lax S, Sangwan N, Smith D, Larsen P, Handley KM, Richardson M, Guyton K, Krezalek M, Shogan BD, Defazio J, et al. Bacterial colonization and succession in a newly opened hospital. Science Translational Medicine (2017) 9:eaah6500. doi:10.1126/scitranslmed.aah6500
2. Ribeiro L, Lopes EM, Kishi LT, Ribeiro L, Menegueti M, Gaspar G, Silva-Rocha R, Guazzaroni M-E. Microbial Community Profiling in Intensive Care Units Expose Limitations in Current Sanitary
Standards. *Frontiers in Public Health* (2019) 7:240. doi:10.3389/fpubh.2019.00240

3. Chng K, Li C, Bertrand D, Ng A, Kwaj H, Low H, Tong C, Xu L, Av-Shalom TV, Khor C, et al. Cartography of opportunistic pathogens and antibiotic resistance genes in a tertiary hospital environment. *Biorxiv* (2019)644740. doi:10.1101/644740

4. Mora M, Mahnert A, Koskinen K, Pausan MR, Oberauner-Wappis L, Krause R, Perras AK, Gorkiewicz G, Berg G, Moissl-Eichinger C. Microorganisms in Confined Habitats: Microbial Monitoring and Control of Intensive Care Units, Operating Rooms, Cleanrooms and the International Space Station. *Frontiers in Microbiology* (2016) 7:1573. doi:10.3389/fmicb.2016.01573

5. Oberauner L, Zachow C, Lackner S, Högenauer C, Smolle K-H, Berg G. The ignored diversity: complex bacterial communities in intensive care units revealed by 16S pyrosequencing. *Sci Reports* (2013) 3:1413. doi:10.1038/srep01413

6. Crofts TS, Gasparrini AJ, Dantas G. Next-generation approaches to understand and combat the antibiotic resistome. *Nature Reviews Microbiology* (2017) 15:nrmicro.2017.28. doi:10.1038/nrmicro.2017.28

7. Didelot X, Bowden R, Wilson D, Peto T, Crook D. Transforming clinical microbiology with bacterial genome sequencing. *Nature Publishing Group* (2012) 13:601. doi:10.1038/nrg2226

8. Deurenberg RH, Bathoorn E, Chlebowicz MA, Couto N, Ferdous M, García-Cobos S, Kooistra-A, Raangs EC, Rosema S, Veloo A, et al. Application of next generation sequencing in clinical microbiology and infection prevention. *J Biotechnol* (2017) 243:16–24. doi:10.1016/j.jbiotec.2016.12.022

9. Christoff AP, Sereia AF, Hernandes C, de Oliveira LF. Uncovering the hidden microbiota in hospital and built environments: New approaches and solutions. *Experimental Biology and Medicine* (2019)153537021882185. doi:10.1177/1535370218821857

10. Kramer A, Schwebke I, Kampf G. How long do nosocomial pathogens persist on inanimate surfaces? A systematic review. *BMCM Infectious Diseases* (2006) 6:130. doi:10.1186/1471-2334-6-130

11. de Abreu P, Farias P, Paiva G, Almeida A, Morais P. Persistence of microbial communities including Pseudomonas aeruginosa in a hospital environment: a potential health hazard. *BMC Microbiology* (2014) 14:1–10. doi:10.1186/1471-2180-14-118

12. Soto-Giron MJ, Rodriguez-R LM, Luo C, Elk M, Ryu H, Hoelle J, Domingo JW, Konstantinidis KT. Biofilms on Hospital Shower Hoses: Characterization and Implications for Nosocomial Infections. *Applied and Environmental Microbiology* (2016) 82:2872–2883. doi:10.1128/AEM.03529-15

13. Alp E, Damani N. Healthcare-associated infections in Intensive Care Units: epidemiology and infection control in low-to-middle income countries. *The Journal of Infection in Developing Countries* (2015) 9:1040–1045. doi:10.3855/jidc.6832

14. Calfee DP. Crisis in Hospital-Acquired, Healthcare-Associated Infections. *Annual Review of Medicine* (2012) 63:359–371. doi:10.1146/annurev-med-081210-144458

15. Otter JA, Yezli S, Salkeld J, French GL. Evidence that contaminated surfaces contribute to the transmission of hospital pathogens and an overview of strategies to address contaminated surfaces in hospital settings. *American Journal of Infection Control* (2013) 41:S6–S11. doi:10.1016/j.ajic.2012.12.004

16. Weber DJ, Anderson D, Rutala WA. The role of the surface environment in healthcare-associated
infections. *Current Opinion in Infectious Diseases* (2013) 26:338–344. doi:10.1097/QCO.0b013e3283630f04

17. Otter JA, Yezli S, French GL. The Role Played by Contaminated Surfaces in the Transmission of Nosocomial Pathogens. *Infection Control & Hospital Epidemiology* (2011) 32:687–699. doi:10.1086/660363

18. Weber DJ, Rutala WA, Miller MB, Huslage K, Sickbert-Bennett E. Role of hospital surfaces in the transmission of emerging health care-associated pathogens: Norovirus, Clostridium difficile, and Acinetobacter species. *Am J Infect Control* (2010) 38:S25–S33. doi:10.1016/j.ajic.2010.04.196

19. Hota B. Contamination, disinfection, and cross-colonization: are hospital surfaces reservoirs for nosocomial infection? *Clinical infectious diseases: an official publication of the Infectious Diseases Society of America* (2004) 39:1182–9. doi:10.1086/424667

20. Goyal S, Khot SC, Ramachandran V, Shah KP, Musher DM. Bacterial contamination of medical providers’ white coats and surgical scrubs: A systematic review. *Am J Infect Control* (2019) doi:10.1016/j.ajic.2019.01.012

21. Russotto V, Cortegiani A, Raineri S, Giarratano A. Bacterial contamination of inanimate surfaces and equipment in the intensive care unit. *Journal of Intensive Care* (2015) 3:54. doi:10.1186/s40560-015-0120-5

22. Wang Y, Qian P-Y. Conservative fragments in bacterial 16S rRNA genes and primer design for 16S ribosomal DNA amplicons in metagenomic studies. *PloS one* (2009) 4:e7401. doi:10.1371/journal.pone.0007401

23. Caporaso J, Lauber C, Walters W, Berg-Lyons D, Huntley J, Fierer N, Owens S, Betley J, Fraser L, Bauer M, et al. Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. *The ISME Journal* (2012) 6: doi:10.1038/ismej.2012.8

24. Cruz G, Christoff A, de Oliveira L. Equivolumetric protocol generates library sizes proportional to total microbial load in next-generation sequencing. *Biorxiv* (2020)2020.02.03.932301. doi:10.1101/2020.02.03.932301

25. Caporaso J, Lauber C, Walters W, Berg-Lyons D, Lozupone C, Turnbaugh P, Fierer N, Knight R. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. *Proceedings of the National Academy of Sciences* (2010) 108 Suppl:4516. doi:10.1073/pnas.100080107/DCSupplement

26. Amir A, naald D, Navas-Molina JA, Kopylova E, Morton JT, Xu Z, Kightley EP, Thompson LR, Hyde ER, Gonzalez A, et al. Deblur Rapidly Resolves Single-Nucleotide Community Sequence Patterns. *mSystems* (2017) 2:e00191-16. doi:10.1128/mSystems.00191-16

27. Knight R, Vrbanac A, Taylor BC, Aksenov A, Callewaert C, Debelius J, Gonzalez A, Kosciolek T, McCall L-I, naald D, et al. Best practices for analysing microbiomes. *Nat Rev Microbiol* (2018) 16:410–422.

28. Rognes T, Flouri T, Nichols B, Quince C, Mahé F. VSEARCH: a versatile open source tool for metagenomics. *PeerJ* (2016) 4:e2584. doi:10.7717/peerj.2584

29. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. *Journal of Molecular Biology* (1990) 215:403–410. doi:10.1016/S0022-2836(05)80360-2

30. Yarza P, Yilmaz P, Pruesse E, Glöckner F, Ludwig W, Schleifer K-H, Whitman WB, Euzéby J,
Amann R, Rosselló-Móra R. Uniting the classification of cultured and uncultured bacteria and archaea using 16S rRNA gene sequences. *Nature Reviews Microbiology* (2014) 12:nrmicro3330. doi:10.1038/nrmicro3330

31. Price MN, Dehal PS, Arkin AP. FastTree 2 – Approximately Maximum-Likelihood Trees for Large Alignments. *PLoS ONE* (2010) 5:e9490. doi:10.1371/journal.pone.0009490

32. Lozupone C, Knight R. UniFrac: a New Phylogenetic Method for Comparing Microbial Communities. *Applied and Environmental Microbiology* (2005) 71:8228. doi:10.1128/AEM.71.12.8228-8235.2005

33. McMurdie PJ, Holmes S. phyloseq: An R Package for Reproducible Interactive Analysis and Graphics of Microbiome Census Data. *PLoS ONE* (2013) 8:e61217. doi:10.1371/journal.pone.0061217

34. Hothorn T, Hornik K, van de Wiel MA, Zeileis A. Implementing a class of permutation tests: the coin package. *Journal of Statistical Software* (2008) 28:23. Available at: dare.ubvu.vu.nl

35. Coil D, Jospin G, Darling AE. A5-miseq: an updated pipeline to assemble microbial genomes from Illumina MiSeq data. *Bioinformatics* (2015) 31:587–589. doi:10.1093/bioinformatics/btu661

36. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, Lesin VM, Nikolenko SI, Pham S, Prijibelski AD, et al. SPAdes: A New Genome Assembly Algorithm and Its Applications to Single-Cell Sequencing. *Journal of Computational Biology* (2012) 19:455–477. doi:10.1089/cmb.2012.0021

37. Seemann T. Prokka: rapid prokaryotic genome annotation. *Bioinformatics* (2014) 30:2068–2069. doi:10.1093/bioinformatics/btu153

38. Richter M, Rosselló-Móra R, Glöckner F, Peplies J. JSpeciesWS: a web server for prokaryotic species circumscription based on pairwise genome comparison. *Bioinformatics* (2016) 32:929–931. doi:10.1093/bioinformatics/btv681

39. Larsen MV, Cosentino S, Rasmussen S, Friis C, Hasman H, Marvig R, Jelsbak L, Sicheritz-Pontén T, Ussery DW, Aarestrup FM, et al. Multilocus Sequence Typing of Total-Genome-Sequenced Bacteria. *Journal of Clinical Microbiology* (2012) 50:1355–1361. doi:10.1128/JCM.06094-11

40. Kaas RS, Leekitcharoenphon P, Aarestrup FM, Lund O. Solving the Problem of Comparing Whole Bacterial Genomes across Different Sequencing Platforms. *PLoS ONE* (2014) 9:e104984. doi:10.1371/journal.pone.0104984

41. Adams RI, Bateman AC, Bik HM, Meadow JF. Microbiota of the indoor environment: a meta-analysis. *Microbiome* (2015) 3:1–18. doi:10.1186/s40168-015-0108-3

42. Hartmann EM, Hickey R, Hsu T, Román CM, Chen J, Schwager R, Kline J, Brown G, Halden RU, Huttenhower C, et al. Antimicrobial Chemicals Are Associated with Elevated Antibiotic Resistance Genes in the Indoor Dust Microbiome. *Environmental Science & Technology* (2016) 50:9807–9815. doi:10.1021/acs.est.6b00262

43. Poza M, Gayoso C, Gómez M, Rambo-Feal S, Tomás M, Aranda J, Fernández A, Bou G. Exploring bacterial diversity in hospital environments by GS-FLX Titanium pyrosequencing. *PloS one* (2012) 7:e44105. doi:10.1371/journal.pone.0044105

44. Bokulich NA, Mills DA, Underwood MA. Surface Microbes in the Neonatal Intensive Care Unit: Changes with Routine Cleaning and over Time. *Journal of Clinical Microbiology* (2013) 51:2617–2624. doi:10.1128/JCM.00898-13
45. Hu H, Johani K, Gosbell IB, Jacombs ASW, Almatroudi A, Whiteley GS, Deva AK, Jensen S, Vickery K. Intensive care unit environmental surfaces are contaminated by multidrug-resistant bacteria in biofilms: combined results of conventional culture, pyrosequencing, scanning electron microscopy, and confocal laser microscopy. *Journal of Hospital Infection* (2015) 91:35–44. doi:10.1016/j.jhin.2015.05.016

46. Minich JJ, Zhu Q, Janssen S, Hendrickson R, Amir A, Vetter R, Hyde J, ty M, Stillwell K, Benardini J, et al. KatharoSeq Enables High-Throughput Microbiome Analysis from Low-Biomass Samples. *mSystems* (2018) 3: doi:10.1128/mSystems.00218-17

47. Brooks B, Firek B, Miller C, Sharon I. Microbes in the neonatal intensive care unit resemble those found in the gut of premature infants. & (2014) 2:1. doi:10.1186/2049-2618-2-1

48. Naccache SN, Federman S, Veeraraghavan N, Zaharia M, Lee D, Samayo E, Bouquet J, Greninger AL, Luk K-C, Enge B, et al. A cloud-compatible bioinformatics pipeline for ultrarapid pathogen identification from next-generation sequencing of clinical samples. *Genome Res* (2014) 24:1180–1192. doi:10.1101/gr.171934.113

49. Marotz CA, Sanders JG, Zuniga C, Zaramela LS, Knight R, Zengler K. Improving saliva shotgun metagenomics by chemical host DNA depletion. *Microbiome* (2018) 6:42. doi:10.1186/s40168-018-0426-3

50. Ravi A, Halstead FD, Bamford A, Casey A, Thomson NM, van Schaik W, Snelson C, Goulden R, Foster-Nyarko E, vva G, et al. Loss of microbial diversity and pathogen domination of the gut microbiota in critically ill patients. *Microb Genom* (2019) 5: doi:10.1099/mgen.0.000293

51. Gasparrini AJ, Wang B, Sun X, Kennedy EA, Hernandez-Leyva A, Ndao MI, Tarr PI, Warner BB, Dantas G. Persistent metagenomic signatures of early-life hospitalization and antibiotic treatment in the infant gut microbiota and resistome. *Nat Microbiol* (2019) 4:2285–2297. doi:10.1038/s41564-019-0550-2

52. Pettigrew MM, Johnson KJ, Harris AD. The human microbiota: novel targets for hospital-acquired infections and antibiotic resistance. *Ann Epidemiol* (2016) 26:342–347. doi:10.1016/j.annepidem.2016.02.007

53. Madan JC, Salari R, Saxena D, Davidson L, O’Toole GA, Moore JH, Sogin ML, Foster JA, Edwards WH, Palumbo P, et al. Gut microbial colonisation in premature neonates predicts neonatal sepsis. *Archives Dis Child - Fetal Neonatal Ed* (2012) 97:F456. doi:10.1136/fetalneonatal-2011-301373

54. Beyaert R, Libert C. How Good Roommates Can Protect against Microbial Sepsis. *Cell Host & Microbe* (2018) 23:283–285. doi:10.1016/j.chom.2018.02.007

55. David MZ, Daum RS. Community-Associated Methicillin-Resistant Staphylococcus aureus: Epidemiology and Clinical Consequences of an Emerging Epidemic. *Clin Microbiol Rev* (2010) 23:616–687.

56. Guzmán-Blanco M, Mejía C, Isturiz R, Alvarez C, Bavestrello L, Gotuzzo E, Labarca J, Luna CM, Rodríguez-Noriega E, Salles M, et al. Epidemiology of meticillin-resistant Staphylococcus aureus (MRSA) in Latin America. *Int J Antimicrob Ag* (2009) 34:304–308. doi:10.1016/j.ijantimicag.2009.06.005

57. Cave R, Misra R, Chen J, Wang S, Mkrtchyan HV. Whole genome sequencing revealed new molecular characteristics in multidrug resistant staphylococci recovered from high frequency touched surfaces in London. *Sci Rep-uk* (2019) 9:9637. doi:10.1038/s41598-019-45886-6
58. Sampaio J, Gales A. Antimicrobial resistance in Enterobacteriaceae in Brazil: focus on β-lactams and polymyxins. Braz J Microbiol (2016) 47:31–37. doi:10.1016/j.bjm.2016.10.002

59. Rocha F, Pinto V, Barbosa F. The Spread of CTX-M-Type Extended-Spectrum β-Lactamases in Brazil: A Systematic Review. Microb Drug Resist (2016) 22:301–311. doi:10.1089/mdr.2015.0180

Figure Legends

Figure 1. Total sequenced reads (library size) for each month of samples collected in ICU and NICU healthcare environment (HE) and patients (PT). Boxplots represents median distributions for the total reads obtained in samples, considering log10 scales.

Figure 2. Diversity analysis. (A) Shannon alpha-diversity metrics for ICU and NICU healthcare environment (HE) or patient (PT) samples along the year of study, (B) Shannon index calculated for sample collected locations. PCoA plots with beta-diversity weighted UniFrac analysis considering the samples groups by (C) Month - August-2018 to Jul-2019, (D) Unit - ICU and NICU and (E) Collection site: Bed, Entrance, Equipment, Patient (PT) and Stations.

Figure 3. Most abundant bacterial proportion in samples from each month for (A) ICU environment, (B) ICU patients, (C) NICU environment and (D) NICU patients. Color scales indicates the most abundant proportions (red) to the least abundant (white).

Figure 4. Bacterial sequences detected for HAI related bacteria (HAIrB counts), including Acinetobacter baumanii complex, Escherichia coli, Enterococcus faecalis, Enterococcus faecium, Klebsiella pneumoniae, Proteus mirabilis, Pseudomonas aeruginosa, Staphylococcus aureus and Staphylococcus epidermidis in ICU samples for patient (PT) and healthcare environment (HE) (A), sample locations (B) and specific sampling sites (C). HAIrB counts for NICU samples considering patient (PT) and healthcare environment (HE) (D), sample locations (E) and specific sampling sites (F).

Figure 5. Longitudinal profile of bacteria present in samples specific sites collected along the year for ICU (A) and NICU (B), considering the previously established HAIrB group: Acinetobacter baumanii complex, Escherichia coli, Enterococcus faecalis, Enterococcus faecium, Klebsiella pneumoniae, Proteus mirabilis, Pseudomonas aeruginosa, Staphylococcus aureus and Staphylococcus epidermidis. Sequence reads are shown in log10 scales.

Figure 6. Source tracking. Oligotype heatmaps showing correspondence of their distribution across the sample locations. Top abundant HAIrB bacteria and their oligotypes were selected for visualization. (A) ICU and (B) NICU proportions of samples with the oligotype detected. Oligotypes are identified by a unique code, along with its count number (total reads detected along the analysis) and the bacterial taxonomy attributed by the Neotools pipeline. Color scales represents the proportion of positivity in the group of samples.

Figure 7. Antimicrobial resistance genes proportions of positivity in samples tested for (A) ICU along the year, (B) ICU between sources - patient (PT) and healthcare environment (HE), (C) ICU among specific sites, (D) NICU along the year, (E) NICU between sources - patient (PT) and environment (HE), (F) NICU among specific sites.

Figure 8. Antimicrobial resistance gene frequencies in patients (PT) and healthcare environment (HE) for each month analyzed across the year. (A) mecA gene in ICU, (B) blactx-M-1 group gene in ICU, (C) blasIV-like gene in ICU, (D) vanA gene in ICU, (E) blaspK-like gene in ICU, (F) mecA gene in NICU, (G) blactx-M-1 group gene in NICU, (H) blasIV-like gene in NICU.
Supplementary figures

Supplementary Figure 1. Shannon diversity profiles.

Supplementary Figure 2. Weighted UniFrac Beta-diversity profiles for all samples collected in both units, ICU and NICU separated in three different timelines.

Supplementary Figure 3. Most abundant bacteria detected and classified in four taxonomical ranks.

Supplementary Figure 4. Longitudinal profile of specific bacteria and its oligotypes most abundantly found in ICU and NICU.

Supplementary Figure 5. Proportion of positive samples for the most abundant oligotypes in ICU and NICU.

Supplementary Figure 6. Risk map ICU.

Supplementary Figure 7. Risk map NICU.

Supplementary table 1. Sample collection sites

Supplementary table 2. Monthly collected samples and sequencing information.
Table 1. Microorganisms isolated in the hospital microbiology laboratory in parallel to the project development (Aug-2018 to July-2019) and the subsequent additional identifications using 16S rRNA V3/V4 amplicon sequencing and whole genome sequencing (WGS) by the molecular biology laboratory.

Month	Unit	Microbiology Lab identification	16S rRNA -V3/V4 identity	16S rRNA oligotype	WGS identity	MLST identity	Clonal group identity
N/A	N/A	Staphylococcus aureus	Staphylococcus aureus	oligotype_4	Staphylococcus aureus	ST1435	-
Oct-18	NICU	Staphylococcus aureus	Staphylococcus aureus	oligotype_4	Staphylococcus aureus	ST2383	S. aureus Group 1
Oct-18	NICU	Staphylococcus aureus	Staphylococcus aureus	oligotype_4	Staphylococcus aureus	ST398	S. aureus Group 2
Oct-18	NICU	Staphylococcus aureus	Staphylococcus aureus	oligotype_4	Staphylococcus aureus	ST2383	S. aureus Group 1
Jan-19	NICU	Staphylococcus aureus	Staphylococcus aureus	oligotype_4	Staphylococcus aureus	ST398	S. aureus Group 2
Nov-18	ICU	Staphylococcus epidermidis	Staphylococcus epidermidis	oligotype_1	Staphylococcus epidermidis	ST2	-
Sep-18	ICU	Enterococcus faecalis	Enterococcus faecalis	oligotype_5	Enterococcus faecalis	ST21	-
Feb-19	NICU	Enterococcus faecalis	Enterococcus faecalis	oligotype_5	Enterococcus faecalis	ST21	-
Dec-18	ICU	Pseudomonas aeruginosa	Pseudomonas aeruginosa	oligotype_12	Pseudomonas aeruginosa	ST245	-
Feb-19	NICU	Pseudomonas aeruginosa	Pseudomonas aeruginosa	oligotype_12	Pseudomonas aeruginosa	ST18161	-
Oct-18	ICU	Klebsiella	Klebsiella pneumoniae	-	Klebsiella pneumoniae	ST307	-
Oct-18	NICU	Klebsiella oxytoca	Enterobacteriaceae	-	Klebsiella michiganensis	N/A	-
Nov-18	ICU	Escherichia coli	Escherichia coli	oligotype_2	Escherichia coli	ST131	-
Jan-19	NICU	Escherichia coli	Escherichia coli	-	Escherichia coli	ST69	E. coli Group 1
Jan-19	NICU	Escherichia coli	Escherichia coli	-	Escherichia coli	ST69	E. coli Group 1
Oct-18	ICU	Escherichia coli	Escherichia coli	oligotype_2	Escherichia coli	ST410	-
Sep-18	ICU	Escherichia coli	Escherichia coli	oligotype_2	Escherichia coli	ST10	-

*Isolated in the hospital previously the project period.

1 Has one allele with less than 100% identity (99.7992%).
Figure 1. Total sequenced reads (library size) for each month of samples collected in ICU and NICU healthcare environment (HE) and patients (PT). Boxplots represents median distributions for the total reads obtained in samples, considering log_{10} scales.
Figure 2. Diversity analysis. (a) Shannon alpha-diversity metrics for ICU and NICU healthcare environment (HE) or patient (PT) samples along the year of study, (b) Shannon index calculated for sample collected locations. PCoA plots with beta-diversity weighted UniFrac analysis considering the samples groups by (c) Month - August-2018 to Jul-2019, (d) Unit - ICU and NICU and (e) Collection site: Bed, Entrance, Equipment, Patient (PT) and Stations.
Figure 3. Most abundant bacterial proportion in samples from each month for (a) ICU environment, (b) ICU patients, (c) NICU environment and (d) NICU patients. Color scales indicates the most abundant proportions (red) to the least abundant (white).
Figure 4. Bacterial sequences detected for HAI related bacteria (HABR counts), including *Acinetobacter baumanii* complex, *Escherichia coli*, *Enterococcus faecalis*, *Enterococcus faecium*, *Klebsiella pneumoniae*, *Proteus mirabilis*, *Pseudomonas aeruginosa*, *Staphylococcus aureus* and *Staphylococcus epidermidis* in ICU samples for patient (PT) and healthcare environment (HE) (a), sample locations (b) and specific sampling sites (c). HABR counts for NICU samples considering patient (PT) and healthcare environment (HE) (d), sample locations (e) and specific sampling sites (f).
Figure 5. Longitudinal profile of bacteria present in samples specific sites collected along the year for ICU (a) and NICU (b), considering the previously established HAIRB group: *Acinetobacter baumanii* complex, *Escherichia coli*, *Enterococcus faecalis*, *Enterococcus faecium*, *Klebsiella pneumoniae*, *Proteus mirabilis*, *Pseudomonas aeruginosa*, *Staphylococcus aureus* e *Staphylococcus epidermidis*. Sequence reads are shown in log_{10} scales.
Figure 6. Source tracking. Oligotype heatmaps showing correspondence of their distribution across the sample locations. Top abundant HAIRB bacteria and their oligotypes were selected for visualization. (a) ICU and (b) NICU proportions of samples with the oligotype detected. Oligotypes are identified by a unique code, along with its count number (total reads detected along the analysis) and the bacterial taxonomy attributed by the Neotools pipeline. Color scales represents the proportion of positivity in the group of samples.
Figure 7. Antimicrobial resistance genes proportions of positivity in samples tested for (a) ICU along the year, (b) ICU between sources - patient (PT) and healthcare environment (HE), (c) ICU among specific sites, (d) NICU along the year, (e) NICU between sources - patient (PT) and environment (HE), (f) NICU among specific sites.
Figure 8. Antimicrobial resistance gene frequencies in patients (PT) and healthcare environment (HE) for each month analyzed across the year. (a) mecA gene in ICU, (b) blaCTX-M-1 group gene in ICU, (c) blaSHV-like gene in ICU, (d) vanA gene in ICU, (e) blaKPC-like gene in ICU, (f) mecA gene in NICU, (g) blaCTX-M-1 group gene in NICU, (h) blaSHV-like gene in NICU.