Passive Triangulation Attack on ORide

Shyam Murthy and Srinivas Vivek

Abstract. Privacy preservation in Ride Hailing Services is intended to protect privacy of drivers and riders. ORide is one of the early RHS proposals published at USENIX Security Symposium 2017. In the ORide protocol, riders and drivers, operating in a zone, encrypt their locations using a Somewhat Homomorphic Encryption scheme (SHE) and forward them to the Service Provider (SP). SP homomorphically computes the squared Euclidean distance between riders and available drivers. Rider receives the encrypted distances and selects the optimal rider after decryption. In order to prevent a triangulation attack, SP randomly permutes the distances before sending them to the rider.

In this work, we use propose a passive attack that uses triangulation to determine coordinates of all participating drivers whose permuted distances are available from the points of view of multiple honest-but-curious adversary riders. An attack on ORide was published at SAC 2021. The same paper proposes a countermeasure using noisy Euclidean distances to thwart their attack. We extend our attack to determine locations of drivers when given their permuted and noisy Euclidean distances from multiple points of reference, where the noise perturbation comes from a uniform distribution.

We conduct experiments with different number of drivers and for different perturbation values. Our experiments show that we can determine locations of all drivers participating in the ORide protocol. For the perturbed distance version of the ORide protocol, our algorithm reveals locations of about 25% to 50% of participating drivers. Our algorithm runs in time polynomial in the number of drivers.

Keywords: Ride Hailing Services, Privacy and Censorship, Attack, ORide, Triangulation.
1 Introduction

Ride-Hailing Services (RHS) and Ride-Sharing Services (RSS) have become popular world over. RHS are typically managed by big organizations like Uber, Ola, etc. RSS tend to be carpool or vanpool services offered by individuals in a peer-to-peer car sharing model like Sidecar, Relay Rides, etc. There are many advantages of both these services like being environment friendly as well as being cost-effective. In order to provision their services, RHS Service Providers (SP) gather personal information from users, where users are both riders and drivers. Such information is needed for billing and statistics as well as to comply with regulatory requirements. This might lead to a breach of privacy either due to negligence on part of the SP [23], [16] or by the SP itself trying to snoop user information for advertising or other purposes. Therefore, privacy concerns of users need to be addressed in order make RHS/RSS secure.

A number of works are available in the literature that deal with privacy preservation in RHS (PP-RHS). While rider privacy concerns have received a lot of attention in PP-RHS literature, there are not many works that deal with driver privacy. There have been many instances in the media where driver safety is compromised. The article [17] reports of how a gang makes use of ride-hailing apps to harvest driver locations for robbery. Another article [7], claims that some regular (non-SP) taxi drivers, pretending to be customers, located Uber vehicles to attack them. These incidents provide a motivation to consider driver-threat models that leak locations of drivers to riders.

ORide [13] is one of the early RHS proposals which primarily aims to provide secure and efficient ride matching between riders and participating drivers. ORide and many subsequent PP-RHS solutions make use of homomorphic encryption schemes as their primary cryptographic construct. Homomorphic encryption schemes allow computation on ciphertexts such that the result of computation is available only after decryption. A Fully Homomorphic Encryption (FHE) scheme allows homomorphic addition and multiplication any number of times at the cost of large ciphertexts and huge computation latency. A Somewhat Homomorphic Encryption (SHE) scheme also allows addition and multiplication but only for a pre-defined number of times with the advantage of much smaller ciphertext size and lesser computational latency. Hence, SHE schemes are more popular in practical solutions, e.g., ORide in which the FV SHE scheme [4] is used to provide 112-bit security. Most of the PP-RHS solutions use semantically secure encryption schemes in their protocol. However, possible side-effects of adapting these encryption schemes to RHS applications need to be considered carefully which otherwise might give scope for adversarial attacks.

In the ORide protocol, described in more detail in Section 2.1, rider and drivers rely on SHE to send their encrypted locations to the SP. SP then homomorphically computes the encrypted squared Euclidean distances between rider and drivers. These encrypted distances are received by the rider who decrypts the distances, selects the smallest among them and informs the index of the selected driver. SP notifies the driver and helps establish a secure channel between rider and the selected driver after which both the parties proceed with
ride completion. The paper considers drivers’ location-harvesting attacks where a malicious rider might try to triangulate drivers by making three simultaneous fake ride requests and obtain distances. They propose a countermeasure where SP permutes the list of drivers’ indices before forwarding to rider. This is aimed to thwart the ability of the adversary to correlate driver distances and hence perform triangulation. However, we show that four colluding adversary riders, by using only the uncorrelated driver distances available to each of them as per the ORide protocol, and using triangulation, can reveal the coordinates of all the participating drivers.

Alongside the RHS proposals, a number of attacks on some of the works are also available in the literature, a few of them are mentioned in Section 5. We note here that the attacks are important to help make the protocols more robust and thus aid in development of truly privacy-preserving versions of RHS protocols. The work by Kumaraswamy et al. [9] proposes a location-harvesting attack on the ORide protocol, where they show that a rider can determine the exact locations of 45% of the responding drivers. They make use of the fact that the planar coordinates in the ORide protocol are integers and obtain all lattice points inside a circle of radius n_d centered at rider’s actual location, where n_d is the distance computed by rider between herself and driver d. They then reduce the number of potential locations, to about 2 on average, using topology information of the region and by making use of the fact that a driver must be at a motorable location in rider’s zone. They propose a countermeasure to thwart this attack where the driver, instead of encrypting her actual location, encrypts a uniform random location within a perturbation distance ρ from her original location to respond to rider’s request. In effect, using anonymised driver location will result in the rider decrypting a noisy distance between herself and the driver but all the other steps in the original ORide protocol remain unchanged, and we term this as the noisy variant of ORide. They show that by using such anonymised locations, drivers are successful in preserving their anonymity against their attack.

In this paper, we show that a sufficient number of adversary riders colluding with one another and using only the uncorrelated noisy distances available to them, can reveal locations of about 25% to 50% of participating drivers. Each of our successfully recovered locations will be a distance at most 2ρ from a driver’s original location. Our solution neither makes use of topology information of the region nor relies on encoding mechanism of driver coordinates. While the attack of [9] on the ORide protocol reveals coordinates of about 45% of participating drivers, our attack on the same reveals the coordinates of all participating drivers.

1.1 Triangulation

Triangulation is a well-known method in navigation and surveying where the position of an object can be determined based on angles measured from multiple points of reference. The term triangulation has been used in different contexts. In the field of image processing and computer vision, the term triangulation refers to the process of finding the position of a point in space by using its position in
two images taken with different cameras [5]. In computational geometry, polygon triangulation is a basic algorithm where a polygon is decomposed into a set of non-intersecting triangles [14]. In this paper, we use the term triangulation to mean determining the planar coordinates of an object based on distances measured from multiple reference points.

1.2 Threat Model

As mentioned earlier, users in RHS can either be drivers who sign up with the SP to offer rides for profit or riders who wish to avail ride services for a fee. Either of the three entities, namely the SP, driver or rider can be an adversary trying to learn more about other parties. The SP, holding personal user information, has a reputation to maintain and hence would typically refrain from taking an active adversarial role, except that it is curious. Riders can be subjected to profiling or even physical attacks, where drivers are the adversary entities. Riders or other outsiders masquerading as legitimate riders can be the adversary entities trying to obtain driver information like location, identity etc. In the ORide protocol, riders and drivers are modeled as active adversaries and SP is an honest-but-curious adversary. Riders and drivers do not collude with SP and that the SP does not provide the users with malicious apps.

In this work, we consider the adversarial model as that of ORide. We look at driver location-harvesting attacks by adversary rider entities. In other words, the rider is the adversary trying to glean location information about participating drivers and the SP is unaware of presence of such an adversary. The adversary, in this case, will follow the protocol correctly but uses the information gathered during the protocol to infer more than what is ordinarily available in the protocol. Multiple adversary riders participate in the attack, share information with one another and thus collude among themselves to perform driver location-harvesting attack. In a practical scenario, a competitor SP can masquerade as a set of riders with the intention of gleaning location information about drivers working for other SP(s).

1.3 Our Contribution

We present two driver location-harvesting attacks, one on the ORide protocol and another on the variant of the ORide protocol suggested as countermeasure in the attack paper of [9].

Our first attack algorithm, given in Section 3.3, makes use of triangulation to harvest drivers’ locations. The ORide protocol claims to preserve driver anonymity in addition to providing an efficient and privacy-preserving ride hail- ing protocol. In particular, they claim to provide a countermeasure for driver triangulation attack by malicious riders. This is done by randomly permuting driver responses before forwarding them to requesting riders, thus preventing the rider adversaries from correlating distances between the adversary and responding drivers. Our attack uses four honest-but-curious passive adversary riders in collusion, where each adversary gets uncorrelated drivers’ distances in random
permuted order. We experimentally show that our algorithm is successful in obtaining exact coordinates of all drivers who respond to ride requests, thus negating one of the security claims of the ORide paper. Our attack recovers coordinates of all responding drivers, by picking points that are at exact distances received by at least three adversaries, and is independent of the underlying road topology, whereas the attack in [9] uses road information and recovers about half the number of responding drivers.

We next consider an attack on the noisy variant of the ORide protocol which was proposed in [9] as a countermeasure mechanism for a topology-based driver location-harvesting attack proposed in the same paper. In the countermeasure solution, each rider obtains uncorrelated and noisy (squared) distances to anonymised locations within a circle of radius ρ, the perturbation distance, around each of the responding drivers, which is the noisy variant of the ORide protocol. In Section 3.4, we provide an algorithm to recover locations of responding drivers in the noisy variant of the ORide protocol. We use 12 colluding adversaries in this attack where each adversary is honest-but-curious and passive, all of whom receive permuted n noisy distances from n participating drivers. Using n such distances each from two adversaries, our attack looks at all intersecting $2n^2$ points and then does a brute force over distances available with all other adversaries and eliminates unsuitable points. We run our experiments for different values of ρ and for different zone sizes as described in Section 4. Our results are tabulated in Tables 2 and 3 which show that we obtain coordinates of about 25% to 50% of participating drivers. Each of our successfully recovered coordinates will be at a distance at most 2ρ from a driver’s original location.

Our algorithms are heuristic in nature and each runs in time $O(dn^3)$, for d adversaries and n drivers participating in the protocol. Our attack can result in large-scale inference of drivers’ locations which might lead to unwanted consequences. We note here that our attack does not reveal anything about the driver private information other than their location. Our attacks are independent of the underlying encryption scheme and the coordinate encoding mechanism.

The rest of the paper is organized as follows. Section 2.1 describes the ORide protocol and its noisy variant. Section 3 explains the attacks followed by our experiments and results in Section 4. Related works in Section 5 gives some details of literature that identify vulnerabilities in PP-RHS solutions. The algorithm for the two attacks are given in Appendix A.

2 Overview of ORide [13] and its Noisy Variant [9]

In this section, we begin with a brief overview of ORide and present only those details that are needed to demonstrate our attacks. Next, we describe the noisy variant of the ORide protocol which mitigates a location-harvesting attack from [9].
2.1 ORide [13]

ORide is a privacy-preserving ride-hailing service protocol. The protocol is summarized in the following steps:

1. There are three parties involved in the protocol: rider, service provider (SP) and drivers.
2. SP does not collude with rider or drivers. Drivers and riders are honest-but-curious adversaries trying to learn more about the other party than what is expected from the protocol. The protocol aims to preserve the identity and location information of drivers and riders from SP and from each other.
3. During initialization, SP creates and publishes zones in its area of operation. Zones are demarcated based on historical driver and ride densities (aka anonymity set) in the region and such information is available to all drivers and riders alike.
4. Rider, wanting to hail a ride, picks a (public key, private key) pair for a semantically secure SHE scheme, encrypts her locations using the public key and sends the ciphertext and public key to SP requesting a ride. The authors use the FV SHE scheme [4] to demonstrate the working of the protocol. Since the basic SHE scheme (without HEEAN/CKKS extensions [3]) works on integers, locations are encoded as integers in UTM\(^1\) format.
5. SP forwards the request to all drivers in rider’s zone.
6. Available drivers encrypt their locations using the public key and send the ciphertext to SP.
7. SP does not have the secret keys to decrypt the received ciphertexts. The semantic security of the underlying SHE scheme ensures the privacy of the encrypted data with respect to SP.
8. SP uses the homomorphic properties of the SHE scheme to securely compute the squares of the Euclidean distances between each of the received drivers’ encrypted locations and the encrypted rider location.
9. SP randomly permutes the results before forwarding them to rider. This is done to prevent correlation of driver responses by rider and thus helps to prevent triangulation attack by multiple colluding riders trying to derive driver locations.
10. Rider uses the SHE private key to decrypt the distances, sorts the resulting plaintext, chooses the index associated with the smallest value and informs the SP.
11. SP enables the rider and selected driver to establish a secure communication channel between each other. Following this, the rider and driver complete their ride establishment privately.
12. In addition to the aforementioned features, the protocol also provides convenience features like ride payment, reputation rating, accountability etc., which are not relevant for the attack in our paper. The interested reader is referred to the original paper for more details.

\(^1\) Universal Transverse Mercator: a map-projection system for geographical locations [21]
In Section 8 of the ORide paper, the authors consider location-harvesting attacks by outsiders. They consider triangulation attack on drivers where the adversary can obtain driver coordinates by making three simultaneous ride requests from different locations. They consider two methods to mitigate the attack. The first one is to make it financially expensive, wherein they impose a charge on riders who issue ride requests followed by cancellations. The second method is to permute the list of drivers’ indices for each ride request so as to thwart the ability of the adversary to correlate rider request with driver responses. In this paper, we provide an attack on the second mitigation method mentioned above.

2.2 Noisy Variant of ORide [9]

The paper [9] proposes a location-harvesting attack on the ORide protocol. Their attack describes a method where a rider in ORide, by issuing a single ride request, is able to determine the exact locations of about 40% of the responding drivers. Their method uses the topology, terrain and road network information of the area to mount the attack. Their method is a variant of the classical Gauss’ circle problem of finding lattice points on a circle of known radius. They find integer coordinates on a circle of radius equal to the distance between rider and responding driver, with center of circle being the rider location. They then reduce the number of possible locations by using road network information by picking points that lie only on motorable areas. In the same paper, in order to thwart the attack mentioned therein, the authors propose a simple countermeasure where each driver anonymises her location by choosing a random location within a distance ρ from her original location. In other words, in response to a ride request, a driver instead of encrypting her actual location, would pick a random anonymised location inside a circle of radius ρ around her actual location and sends the encryption of that anonymised location. The value of ρ is determined by the ride-hailing application provided by SP based on observed driver density in the specific zone, available to both drivers and riders. SP then homomorphically computes the squared Euclidean distance between the rider location and the anonymised location and forwards the same to rider. After decryption, rider would thus obtain a noisy distance between herself and the responding driver.

The maximum distance between the actual location and the random anonymised location is the perturbation distance ρ. Due to this perturbation, the authors of [9] show a marked increase in driver anonymity with respect to rider. Note that increasing the perturbation distance would decrease accuracy of selected closest driver, thereby requiring the SP to select the perturbation distance carefully to prevent customer dis-satisfaction. Finally, the authors give recommendation for perturbation distance based on grid size. We term this variation of ORide as noisy ORide.

We also give an attack on noisy ORide to try and recover coordinates of participating drivers.
3 Location Harvesting Attacks

In this section, we describe our location-harvesting attacks on the ORide protocol. We start with a basic triangulation attack wherein the received responses can be correlated to the respective drivers. As mentioned in Section 2.1, the ORide protocol has a mechanism to thwart such an attack; so we propose an attack which is an adaptation of the basic triangulation attack to recover driver coordinates of all participating drivers in the ORide protocol. We then look at the attack on the noisy version of ORide. Our attack, in this case, will try to recover a point within the perturbation circle around the driver’s actual location. The algorithms of our attack are given in Appendix A as Algorithms 1 and 2.

3.1 Preliminaries

We consider the honest-but-curious adversary model in our attack. The adversary rider follows the protocol and tries to obtain more information based on driver response than is ordinarily available as per the protocol. SP does not collude with any of the parties. Multiple adversaries participate in the attack and all of them collude among themselves. RHS providers operate in specific geographic areas and for ease of management, the SP demarcates the area into suitably sized zones. Based on their location, the SP associates riders and drivers to a specific zone for purposes of ride hailing and ride availability advertisements, respectively.

Definition: Adversary Circle: Adversary circle w.r.t adversary A_α, at location α, and i^{th} driver D_i, denoted by $K_{\alpha,R_{\alpha,i}}$, is a circle centered at α with radius $R_{\alpha,i}$, the squared Euclidean distance between A_α and D_i (at her original or anonymised location).

Definition: Perturbation Circle: Perturbation circle w.r.t a driver’s (actual or potential) location χ, denoted by $P_{\chi,n\rho}$, is a circle centered at χ and radius equal to $n\rho$ ($n \in \mathbb{R}$), and ρ is the perturbation distance. In the ORide protocol, driver would set n to 0 since there is no perturbation being added to her original location. In the noisy variant of ORide, driver would set $n=1$ when responding to ride request. Adversary rider would set $n=2$ while executing the procedures from Algorithm 2.

Remarks:

1. None of the attacks described in this paper make use of any geographical information or road network topology in the area of operation.
2. The location and identity of the entity requesting a ride are encrypted, hence the SP will not be able to distinguish between an adversary ride request from a legitimate one.
3. Each adversary entity is indistinguishable from one another. In a practical attack, there might be just one single physical device masquerading as multiple adversaries.
4. UTM coordinates are used by the ORide protocol since they use integer based BFV-SHE scheme [4] in their protocol. ORide could possibly be adapted to
use CKKS FHE scheme [3] to encrypt real number coordinates in (latitude, longitude) format. Our attack is agnostic of the underlying encryption scheme or coordinate scheme since it only uses Euclidean distances computed between drivers and adversaries.

3.2 Basic Triangulation Attack

In the basic triangulation attack, three colluding riders located sufficiently close to one another issue ride requests simultaneously. Each rider computes the distance values using responses obtained from the SP, for each responding driver. The drivers’ locations can be computed easily as long as the distances corresponding to a specific driver can be correlated with respect to each of the riders. If \(A_\alpha, A_\beta \) and \(A_\gamma \) be three adversary riders, \(R_{\alpha,i}, R_{\beta,i} \) and \(R_{\gamma,i} \) be distances computed for driver \(D_i \) by each of the adversaries, respectively, then the point of intersection of \(K_{\alpha,R_{\alpha,i}}, K_{\beta,R_{\beta,i}} \) and \(K_{\gamma,R_{\gamma,i}} \) would give the location of driver \(D_i \). The ORide paper specifically mentions a possible triangulation attack and provides a mechanism to thwart the same as described in 2.1. In the following section, we describe our attack to overcome the same.

3.3 Attack on ORide Protocol

As described in Section 2.1, ORide provides a mechanism to thwart the basic rider triangulation attack. They prevent the ability of adversary rider to correlate the computed distances without which the basic triangulation attack described in Section 3.2 would not be possible. Our attack uses triangulation and involves multiple adversaries placed far away from one another. Our algorithm runs in time \(\mathcal{O}(dn^3) \), for \(d \) adversaries and \(n \) drivers. In our experiments, four adversary entities were enough to reveal all responding drivers’ locations. Each adversary entity issues a ride request (almost) simultaneously following the ORide protocol. SP then computes distances homomorphically from the received responses, permutes the order of received responses and forwards the set of encrypted distances to each requester, respectively. Hence, each adversary obtains \(n \) distances in random permuted order. Each adversary colludes with one another to execute Algorithm 1. A brief description of the algorithm is given below.

Description of Algorithm 1

– Let \(A_\alpha \) denote the adversary rider, where \(\alpha \in [1,4] \). For \(n \) responding drivers, each \(A_\alpha \) would receive \(n \) distances.

– Two adversary entities, say, \(A_1 \) and \(A_2 \) w.l.o.g, each use their respective \(n \) distance values to form \(K_{1,R_{1,i}} \) and \(K_{2,R_{2,i}} \), for \(i \in [1,n] \), respectively.

– \(A_1 \) and \(A_2 \) collude and intersect \(K_{1,R_{1,i}} \), for \(i \in [1,n] \), and \(K_{2,R_{2,j}} \), for \(j \in [1,n] \), to obtain a set \(L \) of \(2n^2 \) intersection points. This is done in the procedure \texttt{ObtainCircleIntersectionPoints}.

– Each of the other two adversary entities \(A_3 \) and \(A_4 \) use their respective \(n \) distance values to form \(K_{3,R_{3,i}} \) and \(K_{4,R_{4,i}} \), for \(i \in [1,n] \), respectively.
A3 and A4 each check if points in the L set lie on their respective circles.
Points that do not lie on either of the circles are filtered out from L. This is done in procedure FilterInCorrectCoordinates.
At the end of this procedure only valid drivers’ coordinates are present in the set L.

3.4 Attack on Noisy Version of ORide

As described in Section 2.2, [9] gives a location-harvesting attack on ORide paper and a countermeasure solution for their attack. In this section, we give an attack on the solution proposed in that paper. Our attack uses a variation of triangulation and involves multiple adversaries placed far away from one another. Our algorithm runs in time $O(dn^3)$, for d adversaries and n drivers. In our experiments, we use 12 adversary entities for the attack.

Formally, let A_i be the i^{th} adversary rider, $i \in [1, 12]$ at location (x_{A_i}, y_{A_i}). Each A_i issues a ride request (almost) simultaneously following the ORide protocol. As part of the attack mitigation given in [9], a driver at location (x_D, y_D), upon receiving the request, picks a uniformly random location (\hat{x}_D, \hat{y}_D) inside a perturbation circle of radius ρ centered at (x_D, y_D), encrypts that random location and responds to the ride request. SP receives the response, uses it to homomorphically compute the squared Euclidean distance between (x_{A_i}, y_{A_i}) and (\hat{x}_D, \hat{y}_D) and forwards the same to A_i. A_i then uses the secret key to decrypt the computed distances to obtain the noisy distances between itself and each of the responding drivers. The adversaries collude with one another and execute Algorithm 2. The steps of the algorithm are described below.

Remark: The distances received by each adversary are in random order of drivers. Hence, the subscript j in $R_{\alpha,j}$ is just an enumeration and not a driver identifier.

Description of Algorithm 2

- Each adversary A_α, for $\alpha \in [1, m]$, is placed at a location far away from one another inside the zone, and each one receives noisy Euclidean distances from each of the participating drivers D_i, for $i \in [1, n]$.
- Let $R_\alpha = \{R_{\alpha,1}, \ldots, R_{\alpha,n}\}$ be the list of distances received by adversary A_α from n drivers in some random order.
- Two adversary entities, say, A_1 and A_2 w.l.o.g, each use their respective n distance values to form $K_{1,R_{\alpha,i}}$ and $K_{2,R_{\alpha,i}}$, for $i \in [1, n]$, respectively.
- A_1 and A_2 collude and intersect $K_{1,R_{\alpha,i}}$ for $i \in [1, n]$, and $K_{2,R_{\alpha,j}}$, for $j \in [1, n]$, to obtain the set L_1 of $2n^2$ intersection points, n (to be determined) of which are potential points inside each driver’s perturbation circle. This is done in the procedure ObtainCircleIntersectionPoints.
- For driver locations that are close to being collinear with locations of A_1 and A_2, there is a high probability that the adversary circles do not intersect. In order to retrieve such points, we pick two other adversaries A_3 and A_4 located at points that are non-collinear to locations of both A_1 and A_2.

Passive Triangulation Attack on ORide

- A_3 and A_4 collude and intersect $K_{3,R_{3,i}}$, for $i \in [1,n]$, and $K_{4,R_{4,j}}$, for $j \in [1,n]$, to obtain the set L_2 of $2n^2$ intersection points as mentioned above.

- We pick the first point p from L_1. We draw perturbation circle $P_{p,2\rho}$. (The radius of the perturbation circle is set this way since two points in the driver’s perturbation circle of radius ρ will be at a distance at most 2ρ from one another.)

- Using each of the n distances available at next adversary A_α, we look for intersection of $P_{p,2\rho}$ and $K_{\alpha,R_{\alpha,i}}$, for $i \in [1,n]$. If none of the K circles intersect $P_{p,2\rho}$ at real points, we discard p. Otherwise, it is retained. This is done in procedure FilterOutSuperfluousPoints.

- The above step is repeated for each point in L_1 as well as in L_2 and over each adversary circle of every adversary.

- At the end of the previous step, we are left with two sets of filtered points in L_1 and L_2.

- The procedures FilterOutNearbyInvalidPoints and SelectLikelyPoints take τ as an input parameter. It is the threshold distance between two points to filter out nearby points. In case of small zone size and/or large number of drivers, we end up with a large number of points in L_1 and L_2 close to each other. In such cases we set τ to $< 2\rho$ so as to enable filtering out more number of points.

- Within each L_i, $i \in [1,2]$, we discard points that are at a distance $\leq \tau$ from one another. In procedure FilterOutNearbyInvalidPoints, we find such points and pick only one of such nearby points.

- Finally, in the procedure SelectLikelyPoints, we compute the distance between each point in L_1 with each point in L_2 and pick only those points in L_1 that are at a distance $\leq \tau$ from at least one point in L_2. These picked points are output by the algorithm.

3.5 Correctness and Time complexity

The correctness of Algorithm 1 is based on the fact that given exact distances between driver and adversary locations, all the adversary circles intersect at the driver location.

Our attack in Algorithm 2 relies on the fact that when given adversaries located sufficiently far from one another and driver locations that are picked uniformly random within the perturbation circle of radius ρ centered around the respective driver original location, then with a high probability the intersection of two such sets of adversary circles would have an intersection point inside the perturbation circle of some driver, as shown in Figure 1. Since the maximum distance between two points inside a circle of radius ρ is 2ρ, we use one such intersection point as center of a circle of radius 2ρ and then look for the remaining adversary circles that will intersect this circle (of radius 2ρ).

However, when two adversary locations and a driver’s actual location are close to being collinear then there is a high probability that the circles w.r.t that particular driver do not intersect. Hence, we pick two other adversaries that are
located in such a way so as to obtain successful intersection of the adversary
circles corresponding to the missed drivers.

Algorithms 1 and 2, given in Appendix A and described in Section 3, each
run in time $O(dn^3)$, for d adversaries and n drivers.

Fig. 1. Grid showing three adversary circles intersecting within a driver circle.

3.6 Mobile drivers in the ORide protocol

In Sections 3.2 and 3.3, we consider the case of a driver at a location (x_D, y_D). It is possible that a driver in the ORide protocol looking to offer a ride might be mobile on the road. In this section, we consider such non-static drivers who respond to ride requests.

We feel it is reasonable to consider the driving speed of a driver looking for a ride to be about 25 kmph. This would translate to about 7 meters per second. Assuming that the average turnaround time between ride request and response is less than 10 seconds, the driver would have travelled about 70 meters. This would imply that the actual location of the driver would be off by at most ± 70 m from the derived location obtained as described in Section 3.3 which is a reasonable approximation of driver’s actual location. This problem of harvesting locations of mobile ORide drivers can also be seen as a problem in the noisy ORide variant where the perturbation ρ is about 75m. Hence, we can apply Algorithm 2 to obtain locations of mobile drivers in the ORide protocol.

4 Experiments and Results

Sagemath 8.6 [15] was used to implement the procedures mentioned in Algorithms 1 and 2. Our experiments were run on a commodity HP Pavilion laptop with 512 GB SSD and AMD Ryzen 5 processor. Our experiments take about 2 seconds to complete for 25 drivers and about 300 seconds to complete for 100 drivers. The Sagemath code for our attacks in Algorithms 1 and 2 are available at https://github.com/shyamsmurthy/cans2022.
Passive Triangulation Attack on ORide

Zone size

Zone size	Number of drivers = 25, 50, 75, 100
25 km²	100
100 km²	100

Table 1. Percentage of driver locations recovered for the ORide protocol (zero perturbation).

Number of Drivers	Perturbation radius (in meters)	\(\rho = 50 \)	\(\rho = 75 \)	\(\rho = 100 \)	\(\rho = 125 \)	\(\rho = 150 \)
25		60.8	59.7	51.6	49.3	42.8
50		50.1	43.8	42.5	35.4	33.3
75		46.9	35.7	30.9	27.9	28.2
100		38.7	29.1	25.1	25.2	24.8

Table 2. Percentage of driver locations recovered for zone size of 100 km².

Number of Drivers	Perturbation radius (in meters)	\(\rho = 50 \)	\(\rho = 75 \)	\(\rho = 100 \)
25		49.4	43.2	40.5
50		38.5	35.4	30.0
75		31.3	27.8	27.5
100		24.9	24.5	24.4

Table 3. Percentage of driver locations recovered for zone size of 25 km².

Adversary count	Zone size = 100 km²	Zone size = 25 km²
4	6.1	6.6
8	22.8	18.7
12	**46.9**	**31.3**
16	50.5	26.0

Table 4. Percentage of driver locations recovered for different adversary count for perturbation distance = 50 meters and number of drivers = 75.
4.1 Experiment Details

Our experiments were run for two zone sizes, 100 km2 and 25 km2, which we term as large and small zone sizes, respectively. For the large zone size, we ran experiments for perturbation values, ρ, of 0, 50, 75, 100, 125 and 150 meters. Perturbation value of 0 corresponds to our attack described in Section 3.3 and others correspond to our attack in Section 3.4. For the small zone, we have considered perturbation values, ρ, of 0, 50, 75 and 100 meters. These values are inline to what is mentioned in Section 3.2 of [9], where the perturbation values are so chosen as to maintain sufficient anonymity and also to provide good accuracy of driver selection in a given zone size. For each combination of (zone, ρ) we set n, the number of drivers, to 25, 50, 75 and 100.

At the start of each run of the experiment, the algorithm takes the zone coordinates and generates n uniformly distributed random points, namely the driver original locations, inside the zone. For a driver original location χ, and per adversary, a new uniform random point p is picked at a distance $\leq \rho$ from χ. The squared Euclidean distance between p and adversary location is given to the adversary in random order. For n drivers, each adversary will have n distance values. As is evident, this exactly mimics the rider scenario in the ORide protocol where, after decryption, the rider receives the squared Euclidean distances to each driver from herself. As described in Section 3.3, each adversary will collude with one another and execute the steps described in Algorithm 2 to obtain a set of η coordinates.

4.2 Discussion of results

In our experiments for the attack on ORide protocol described in Section 3.3, we exactly recover n locations corresponding to each of the n drivers participating in the ORide RHS protocol and are given in Table 1.

The results from our experiments to recover driver locations for the attack described in Section 3.4, namely noisy ORide, are given in Tables 2 and 3. Each table gives the percentage of driver coordinates that are valid, averaged over 20 runs. By valid, we mean that the recovered driver coordinates are at a distance $\leq 2\rho$ from an original driver location. Determining the set of valid locations is done during post-processing of the results as explained in Section 4.3. We see that as the number of drivers increases, the number of valid locations revealed decreases. This is due to the fact that the number of circle intersections increases as square of number of drivers, hence, resulting in a large number of false positives, thus decreasing the accuracy of the results. In our experiments, we use τ as a parameter, to filter out values in procedures FilterOutNearbyAlliedPoints and SelectLikelyPoints in Algorithm 2.

Table 4 gives the percentage of successfully recovered driver locations, out of 75 participating drivers and perturbation distance of 50 meters, for varying number of adversary entities of 4, 8, 12 and 16. We see that with 12 adversaries we get an optimum recovery percentage. With lesser number of adversaries, fewer points get eliminated resulting in lower success rate. With higher number of
adversary circles and with a smaller grid size, far too many points get eliminated also resulting in a lower success rate. Although, with zone size of 100 km2 the recovery percentage is better for 16 adversaries, the gain is not proportional to the extra overhead, hence we choose to keep the number of adversaries as 12.

Attack of [9]	40	Required	Required
Our Attack	100	Not Required	Not Required

Table 5. Comparison of our attack with the attack of [9]

Attack Conditions
ORide paper [13] (Section 8)
Rider can correlate driver with respective exact distance
Our Attack (Algorithm 1)
Drivers’ exact distances are randomly permuted by SP
Our Attack (Algorithm 2)
Drivers’ perturbed distances are randomly permuted by SP

Table 6. Summary comparison of our attacks with triangulation attack considered in ORide paper [13]

In Tables 5 and 6, we give a summary comparison of our attacks with that of [9] and the triangulation attack considered in the ORide paper [13], respectively.

4.3 Post-processing of our experiment results

At the end of each run, the experiment will return η number of coordinates, where η may or may not be equal to n. As mentioned earlier, at the start of every run, n original driver locations are generated. During post-processing, we compare each of the η values with n and pick only those that is at a distance $\leq 2\rho$ from one of the n values. These picked values are deemed *valid* driver locations.

Remark: To obtain the percentage of valid locations we divide the number of valid driver locations by $\max(n, \eta)$.
5 Related Works

5.1 Ride-Hailing Services

Zhao et al. [23] perform a systematic study of leakage of drivers’ sensitive data and show that large scale data harvesting of such information is possible. They analyze apps provided to drivers by Uber, Lyft and other popularly deployed SPs and show that a malicious outsider SP can harvest driver data using the apps. ORide is one of the early PP-RHS solutions that not only uses a semantically secure SHE scheme to encrypt user and driver locations to enable an SP to anonymously match drivers with riders, but also supports RHS features like easy payment, reputation rating, accountability etc. Kumaraswamy et al. [9] give a location-harvesting attack on ORide. Using a single ride request they demonstrate that a rider can reveal locations of up to 40% of participating drivers. Their attack makes use of the geography and road network of the area to identify motorable areas to determine likely driver locations. They provide a countermeasure to thwart the attack while preserving sufficient anonymity.

Wang et al. propose TRACE [20], a privacy-preserving dynamic spatial query solution using bilinear pairing to encrypt locations of drivers and riders. Kumaraswamy and Vivek [10] disprove the privacy claims of the TRACE protocol. Their attack exploits shared randomness used across different messages and recovers masked plaintext used in the initial part of the RHS protocol. lpRide by Yu et al. [22] uses modified Paillier cryptosystem [12] for encrypting RNE transformed locations of riders and drivers. All homomorphic distance computations and optimum driver selection operations are performed on a single SP server. [18] propose an attack on the modified Paillier scheme used in lpRide, allowing the service provider to recover locations of all riders and drivers in the region. Vivek [19] gives an attack on the lpRide protocol. Their attack does cryptanalysis of the modified version Paillier cryptosystem and show that any rider/driver will be able to learn the location of any other rider participating in the RHS.

5.2 Triangulation

Triangulation is a popular technique used in recovering 2 and 3-dimensional structure of an object using images from multiple points of reference. This problem is non-trivial in the presence of noise [5]. There are a number of works in the field of computer vision that work on recovering points in space when given image coordinates perturbed by noise, and using camera matrices [5], [6], [11]. In the field of computational geometry, the term polygon triangulation means decomposition of a polygon into a set of triangles [1], [8], [2].

6 Conclusion and Future Work

In this paper, we presented driver location-harvesting attacks on the ORide paper based on passive triangulation. We recover coordinates of all participating
drivers in the ORide protocol. We also look at an attack on a noisy version of the ORide protocol where we recover about 25% to 50% of participating drivers’ locations.

One possible method to decrease the effectiveness of our attack might be for a driver to vary, within some known bounds, the radius of her perturbation circle for each response. This would force us to use the largest possible perturbation radius in our attack algorithm, possibly reducing its effectiveness. However, this might also have an effect on the driver selection algorithm. Therefore, both the countermeasure solution and our attack on the same need to be experimentally evaluated, which we leave for future work.

As part of a future work, our method of adapting triangulation attack can be explored for other protocols that make use of uncorrelated distances for privacy preservation. Our method and analysis are based on heuristics, a theoretical analysis would be very useful to correlate successful driver location recovery with perturbation radius.

Acknowledgements. We thank the anonymous reviewers for their invaluable comments and suggestions, which helped us improve the manuscript. This work was partly funded by the INSPIRE Faculty Award (DST, Govt. of India) and the Infosys Foundation Career Development Chair Professorship grant for Srinivas Vivek.

A Algorithms for triangulation attack
Algorithm 1 Retrieve coordinates using Triangulation

1: procedure MAIN(R_1, \ldots, R_m)
2: Input: R_1, \ldots, R_m: the list of distances received by adversaries A_1, \ldots, A_m in that order
3: Output: Set of likely driver coordinates
4: $L \leftarrow$ ObtainCircleIntersectionPoints(R_1, R_2)
5: for $i \leftarrow 3, m$ do
6: \Comment{Use other adversary distances to filter in correct intersection points}
7: $L \leftarrow$ FilterInCorrectCoordinates(R_i, L)
8: end for
9: return L
10: end procedure

11: procedure ObtainCircleIntersectionPoints(R_α, R_β)
12: Input: R_α, R_β: the list of distances received by adversaries A_α and A_β, respectively
13: Output: Set of circle intersection points
14: $L \leftarrow$ null
15: for $i \leftarrow 1, \text{len}(R_\alpha)$ do
16: \Comment{len(X) gives number of elements in list X}
17: for $j \leftarrow 1, \text{len}(R_\beta)$ do
18: $p_1, p_2 = \text{CircleIntersectionPoints}(K_{\alpha, R_\alpha, i}, K_{\beta, R_\beta, j})$
19: if $p_1 \neq \text{null}$ then
20: Add p_1 and p_2 to L
21: end if
22: end for
23: end for
24: return L
25: end procedure

26: procedure FilterInCorrectCoordinates(R_γ, L)
27: Input: R_γ: the list of distances received by adversary A_γ, L: current set of intersection points
28: Output: Filtered set of coordinate points
29: $L_{\text{out}} \leftarrow$ null
30: for $i \leftarrow 1, \text{len}(L)$ do
31: for $j \leftarrow 1, \text{len}(R_\gamma)$ do
32: if $L[i]$ lies on $K_{\gamma, R_\gamma, i}$ then \Comment{Adversary circle, center : γ, radius : $R_{\gamma, i}$}
33: Add $L[i]$ to L_{out}
34: end if
35: end for
36: end for
37: return L_{out}
38: end procedure
Algorithm 2 Retrieve coordinates from noisy distances

1: procedure MAIN(R_1, \ldots, R_m)
2: Input : R_1, \ldots, R_m: the list of distances received by adversaries A_1, \ldots, A_m, respectively
3: Output : Set of likely driver coordinates

4: ⊳ Intersect adversary circles $K_{1,R_1,i}$ and $K_{2,R_2,i}$, for $i \in [1, n]$
5: $L_1 \leftarrow$ ObtainCircleIntersectionPoints(R_1, R_2)
6: for $i \leftarrow 3, m$ do ⊳ Use all the other adversary distance lists
7: $L_1 \leftarrow$ FilterOutSuperfluousPoints(R_i, L_1)
8: end for
9: ⊳ Intersect adversary circles $K_{3,R_3,i}$ and $K_{4,R_4,i}$, for $i \in [1, n]$
10: $L_2 \leftarrow$ ObtainCircleIntersectionPoints(R_3, R_4)
11: for $i \leftarrow 1, 2, 5, m$ do ⊳ Use all the other adversary distance lists
12: $L_2 \leftarrow$ FilterOutSuperfluousPoints(R_i, L_2)
13: end for
14: $L_1 \leftarrow$ FilterOutNearbyInvalidPoints($L_1, 2\rho$)
15: $L_2 \leftarrow$ FilterOutNearbyInvalidPoints($L_2, 2\rho$)
16: $L \leftarrow$ SelectLikelyPoints($L_1, L_2, 2\rho$)
17: return L
18: end procedure

19: procedure ObtainCircleIntersectionPoints(R_α, R_β)
20: Input : R_α, R_β: the list of distances received by adversaries A_α and A_β respectively.
21: Output : Set of circle intersection points
22: $L \leftarrow$ null
23: for $i \leftarrow 1, \text{len}(R_\alpha)$ do
24: for $j \leftarrow 1, \text{len}(R_\beta)$ do
25: $p_1, p_2 \leftarrow$ CircleIntersectionPoints($K_{\alpha,R_\alpha,i}, K_{\beta,R_\beta,j}$)
26: if $p_1 \neq$ null then
27: Add p_1 and p_2 to L
28: end if
29: end for
30: end for
31: return L
32: end procedure

33: procedure FilterOutSuperfluousPoints(R_γ, L)
34: Input : R_γ: the list of distances received by adversary A_γ, L: Current set of filtered circle intersection points
35: Output : Filtered set of circle intersection points
36: resultList \leftarrow null
37: for $i \leftarrow 1, \text{len}(L)$ do
38: for $j \leftarrow 1, \text{len}(R_\gamma)$ do
39: $q_1, q_2 \leftarrow$ CircleIntersectionPoints($P_{L[i],(2\rho)}, K_{\gamma,R_\gamma,j}$)
40: ⊳ Perturbation circle $P_{L[i],(2\rho)}$: Center : $L[i]$, Radius : 2ρ
41: if $q_1 \neq$ null then
42: Add $L[i]$ to resultList;
43: break
44: end if
45: end for
46: end for
47: return $resultList$
48: end procedure
49: procedure FilterOutNearbyInvalidPoints(L, T)
50: Input : L: the list of coordinate points, T: threshold distance to filter out points
51: Output : Filtered set of coordinate points such that neighbouring points that are ≤ threshold distance from points in the filtered set are removed
52: resultList ← null
53: for i ← 1, len(L) − 1 do
54: for j ← i + 1, len(L) do
55: if Euclidean distance(L[i], L[j]) ≤ T then
56: Add L[i] to resultList, if not already present
57: end if
58: end for
59: end for
60: return resultList
61: end procedure

62: procedure SelectLikelyPoints(L1, L2, T)
63: Input : L1, L2: the list of filtered coordinate points, T: distance threshold for selection
64: Output : Set of likely driver coordinate points
65: L ← null
66: for i ← 1, len(L1) do
67: for j ← 1, len(L2) do
68: if L1[i] == L2[j] then
69: continue
70: end if
71: if Euclidean distance(L1[i], L2[j]) ≤ T then
72: Add L1[i] to L, if not already present
73: end if
74: end for
75: end for
76: return L
77: end procedure
[1] Baker, B.S., Grosse, E., Rafferty, C.S.: Nonobtuse triangulation of polygons. Discret. Comput. Geom. 3, 147–168 (1988). https://doi.org/10.1007/BF02187904
[2] Bucher-Karlsson, M.: On minimal triangulations of products of convex polygons. Discret. Comput. Geom. 41(2), 328–347 (2009). https://doi.org/10.1007/s00454-008-9087-5
[3] Cheon, J.H., Kim, A., Kim, M., Song, Y.S.: Homomorphic encryption for arithmetic of approximate numbers. In: Takagi, T., Peyrin, T. (eds.) Advances in Cryptology - ASIACRYPT 2017 - 23rd International Conference on the Theory and Applications of Cryptology and Information Security, Hong Kong, China, December 3-7, 2017, Proceedings, Part I. Lecture Notes in Computer Science, vol. 10624, pp. 409–437. Springer (2017). https://doi.org/10.1007/978-3-319-70694-8_15
[4] Fan, J., Vercauteren, F.: Somewhat practical fully homomorphic encryption. Cryptology ePrint Archive (2012). http://eprint.iacr.org/2012/144
[5] Hartley, R.I., Sturm, P.: Triangulation. Computer Vision and Image Understanding 68(2), 146–157 (1997). https://doi.org/https://www.sciencedirect.com/science/article/pii/S1077314297905476
[6] Hartley, R.I., Sturm, P.F.: Triangulation. Comput. Vis. Image Underst. 68(2), 146–157 (1997). https://doi.org/10.1006/cviu.1997.0547
[7] Hurriyet Daily News: Istanbul taxi drivers hunt down, beat up Uber drivers as tensions rise. https://www.hurriyetdailynews.com/istanbul-taxi-drivers-hunt-down-beat-up-uber-drivers-as-tensions-rise-128443 (2018), retrieved: June 11, 2020
[8] Kirkpatrick, D.G., Klawe, M.M., Tarjan, R.E.: Polygon triangulation in O (n log log n) time with simple data structures. Discret. Comput. Geom. 7, 329–346 (1992). https://doi.org/10.1007/BF02187846, https://doi.org/10.1007/BF02187846
[9] Kumaraswamy, D., Murthy, S., Vivek, S.: Revisiting driver privacy in oride. In: Selected Areas in Cryptography - SAC 2021 - 28th International Conference, University of Victoria, British Columbia, Canada (Virtual Event), September 29-October 01, 2020. Lecture Notes in Computer Science, Springer (2021)
[10] Kumaraswamy, D., Vivek, S.: Cryptanalysis of the privacy-preserving ride-hailing service TRACE. In: Adhikari, A., Küsters, R., Preneel, B. (eds.) Progress in Cryptology - INDOCRYPT 2021 - 22nd International Conference on Cryptology in India, Jaipur, India, December 12-15, 2021, Proceedings. Lecture Notes in Computer Science, vol. 13143, pp. 462–484. Springer (2021). https://doi.org/10.1007/978-3-030-92518-5_21, https://doi.org/10.1007/978-3-030-92518-5_21
[11] Mohr, R., Quan, L., Veillon, F.: Relative 3d reconstruction using multiple uncalibrated images. I. J. Robotic Res. 14, 619–632 (12 1995). https://doi.org/10.1177/027836499501400607
[12] Nabeel, M., Appel, S., Bertino, E., Buchmann, A.P.: Privacy preserving context aware publish subscribe systems. In: López, J., Huang, X., Sandhu, R. (eds.)
Network and System Security - 7th International Conference, NSS 2013, Madrid, Spain, June 3-4, 2013. Proceedings. Lecture Notes in Computer Science, vol. 7873, pp. 465–478. Springer (2013)

[13] Pham, A., Dacosta, I., Endignoux, G., Troncoso-Pastoriza, J.R., Huguenin, K., Hubaux, J.: ORide: A Privacy-Preserving yet Accountable Ride-Hailing Service. In: Kirda, E., Ristenpart, T. (eds.) 26th USENIX Security Symposium, USENIX Security 2017, Vancouver, BC, Canada, August 16-18, 2017. pp. 1235–1252. USENIX Association (2017)

[14] Siedel, R.: A simple and fast incremental randomized algorithm for computing trapezoidal decompositions and for triangulating polygons. Computational Geometry: Theory and Applications 1, 51–64 (1991)

[15] Stein, W., et al.: Sage Mathematics Software (Version 8.6). The Sage Development Team (2019), http://www.sagemath.org

[16] TechCrunch+: Ride-hailing app Careem reveals data breach affecting 14 million people. https://techcrunch.com/2018/04/23/careem-data-breach/ (2018), retrieved: May 01, 2022

[17] thejournal.ie: West Dublin gang using hailing apps to target older taxi drivers. https://www.thejournal.ie/west-dublin-taxi-robbery-4420178-Jan2019/ (2019), retrieved: June 11, 2020

[18] Vivek, S.: Attacks on a privacy-preserving publish-subscribe system and a ride-hailing service. CoRR (2021), https://arxiv.org/abs/2105.04351

[19] Vivek, S.: Attacks on a privacy-preserving publish-subscribe system and a ride-hailing service 13129, 59–71 (2021). https://doi.org/10.1007/978-3-030-92641-0_4, https://doi.org/10.1007/978-3-030-92641-0_4

[20] Wang, F., Zhu, H., Liu, X., Lu, R., Li, F., Li, H., Zhang, S.: Efficient and privacy-preserving dynamic spatial query scheme for ride-hailing services. IEEE Transactions on Vehicular Technology 67(11), 11084–11097 (2018)

[21] Wikipedia contributors: Universal Transverse Mercator coordinate system. https://en.wikipedia.org/wiki/Universal_Transverse_Mercator_coordinate_system (2020), retrieved: April 27, 2020

[22] Yu, H., Shu, J., Jia, X., Zhang, H., Yu, X.: lpride: Lightweight and privacy-preserving ride matching over road networks in online ride hailing systems. IEEE Trans. Vehicular Technology 68(11), 10418–10428 (2019)

[23] Zhao, Q., Zuo, C., Pellegrino, G., Lin, Z.: Geo-locating Drivers: A Study of Sensitive Data Leakage in Ride-Hailing Services. In: 26th Annual Network and Distributed System Security Symposium, NDSS 2019, San Diego, California, USA, February 24-27, 2019. The Internet Society (2019), https://www.ndss-symposium.org/ndss-paper/geo-locating-drivers-a-study-of-sensitive-data-leakage-in-ride-hailing-services/