Dexamethasone mediates pancreatic cancer progression by glucocorticoid receptor, TGFβ and JNK/AP-1

Li Liu1,2, Ewa Aleksandrowicz1,2, Frank Schönsiegel1,2, Daniel Grüner1,2, Nathalie Bauer1,2, Clifford C. Nwaeburu1,2, Zhefu Zhao1,2, Jury Gladkich1,2, Torsten Hoppe-Tichy3, Eitan Yefenof4, Thilo Hackert2, Oliver Strobel2 and Ingrid Herr*1,2

Glucocorticoids such as dexamethasone are widely co-prescribed with cytotoxic therapy because of their proapoptotic effects in lymphoid cancer, reduction of inflammation and edema and additional benefits. Concerns about glucocorticoid-induced therapy resistance, enhanced metastasis and reduced survival of patients are largely not considered. We analyzed dexamethasone-induced tumor progression in three established and one primary human pancreatic ductal adenocarcinoma (PDA) cell lines and in PDA tissue from patients and xenografts by FACS and western blot analysis, immunohistochemistry, MTT and wound assay, colony and spheroid formation, EMSA and in vivo tumor growth and metastasis of tumor xenografts on chicken eggs and mice. Dexamethasone in concentrations observed in plasma of patients favored epithelial–mesenchymal transition, self-renewal potential and cancer progression. Ras/JNK signaling, enhanced expression of TGFβ, vimentin, Notch-1 and SOX-2 and the inhibition of E-cadherin occurred. This was confirmed in patient and xenograft tissue, where dexamethasone induced tumor proliferation, gemcitabine resistance and metastasis. Inhibition of each TGFβ receptor-1, glucocorticoid receptor or JNK signaling partially reversed the dexamethasone-mediated effects, suggesting a complex signaling network. These data reveal that dexamethasone mediates progression by membrane effects and binding to glucocorticoid receptor.

Cell Death and Disease (2017) 8, e3064; doi:10.1038/cddis.2017.455; published online 5 October 2017

Pancreatic ductal adenocarcinoma (PDA) is one of the most aggressive malignancies1 that frequently arises from chronic pancreatitis, grows embedded in inflamed tissue2 and is associated with pronounced cachexia.3 Glucocorticoid medication has specific indications in reduction of inflammation,4,5 stimulation of appetite in cancer patients suffering from cachexia,3 control of pain and fatigue, suppression of nausea and emesis induced by chemotherapy,6 reduction of tumor-related edema in metastatic epidermal spinal cord compression7 and relief of bowel obstruction.8 Glucocorticoids are steroid hormones and cortisol, the major form, is endogenously produced and secreted by the adrenal cortex in response to stress. Synthetic glucocorticoids such as dexamethasone are among the most commonly prescribed anti-inflammatory drugs and their frequent administration in tumor therapy is originally based on their proapoptotic effects in lymphoid malignancies.9 However, concerns about the widespread use of glucocorticoids for therapy of solid tumors have been expressed repeatedly,5,9,10 with studies indicating an increased likelihood of metastasis in breast cancer patients11,12 or increased risks of skin cancer and non-Hodgkin’s lymphoma among users of systemic glucocorticoids.13 Several laboratory and animal experiments have demonstrated that glucocorticoids induce resistance to chemotherapy in the majority of solid tumor entities, including PDA.6,10,14 Glucocorticoids transduce their broad spectrum of activities by binding to its cytoplasmic receptor to form a glucocorticoid receptor complex that is then conveyed to the nucleus under the control of certain chaperones.15,16 In the nucleus, the glucocorticoid receptor binds directly to glucocorticoid response elements in promoter regions17 to regulate transcription, or controls the function of other transcription factors, such as NF-κB and AP-1.18 This affects the expression of several target genes, one of which is transforming growth factor-β (TGFβ).16,19 In PDA, TGFβ induces epithelial–mesenchymal transition (EMT),20 cancer stem cell (CSC) signaling and metastasis,21,22 involving the upregulation of the mesenchymal marker vimentin and downregulation of the epithelial marker E-cadherin.23 TGFβ autoactivates its own mRNA expression and protein secretion by the induction of the cJun mRNA,24 whose protein product is a subunit of the transcription factor AP-1 that in turn transcriptionally regulates the TGFβ promoter.25 Glucocorticoids also modulate multiple kinases such as RAS and JNK, for example, by nonspecific interactions with the cell membrane or binding to a membrane-bound glucocorticoid receptor.15,26 JNK phosphorylates and thereby activates cJun and other AP-1 subunits that regulate the complex program of gene expression that defines an invasive phenotype.27

In the present study we show that dexamethasone induces tumor progression of PDA by utilizing a complex signaling
network with the major mediators TGFβ, glucocorticoid receptor and JNK signaling.

Results

Dexamethasone favors EMT-related tumor progression. Cancer spheres were isolated from the primary PDA xenograft line T30 and let either untreated or were treated in vitro with 1 μM (0.4 μg/ml) dexamethasone or solvent alone as control. This concentration resembles peak levels of 0.3 to 3 μg/ml that can be measured in patient plasma 2 to 16 h after intake of 2.49 mg/kg dexamethasone. After 48 h, equal amounts of viable cells were transplanted onto the left and right flanks of immunodeficient mice (n = 6). At 3 weeks after transplantation, the xenografts were resected and the volumes determined. Representative photographs of resected tumors and tumor-bearing mice, the individual tumor sizes (black dots) and the means per group (black line) are shown, *P < 0.05. (e) The expression of the proliferation marker Ki-67 was detected in xenograft sections by immunohistochemistry, under ×400 magnification, and representative images are shown. The percentage of Ki-67-positive cells was determined by counting the number of dark brown cells in 10 visual fields, and the mean percentages ± S.D. are shown, *P < 0.05. (d) Double immunofluorescence staining of xenograft sections for the epithelial marker E-cadherin and the mesenchymal marker vimentin (red). The cell nuclei were counterstained with DAPI (blue). Cell sections were analyzed under ×400 magnification, and representative images are shown. For evaluation of the expression levels, a semiquantitative scoring system was used, based on the determination of the intensity expression and percentage of positive cells was determined by visual judgment with double-blind method: extremely strong expression and very high percentage (≥75%) (+++), strong expression and high percentage (≥50%) (++), moderate expression and medium percentage (≥25%) (+), weak expression and low percentage (≤25%) (+) and absent (−). (e) Representative paraffin-embedded sections (HD5897-1A, HD5266-1A) derived from primary PDA tumor tissue from patients with documented preoperative administration of glucocorticoids (GC, n = 17) or not (CO, n = 17) were evaluated as described above.
AsPC-1, BxPc-3 and MIA-PaCa2 cells with dexamethasone, gemcitabine or both together, or let the cells untreated, before they were transplanted to the CAM of fertilized chicken eggs. After 9 days, large tumor xenografts developed in all dexamethasone-treated groups, even in the presence of gemcitabine, whereas the tumor sizes in groups that have not received dexamethasone were smaller and almost undetectable after gemcitabine treatment (Figure 2a and Supplementary Figure S1a). Dexamethasone usage was associated with enhanced proliferation and the combination with gemcitabine prevented it, as found by Ki-67 immunofluorescence staining and counting of positive cells (Figure 2b and Supplementary Figure S1b). In addition, the expression of E-cadherin was inhibited and the expression of vimentin was increased upon dexamethasone treatment (Figure 2c and Supplementary Figure S1c), together with an enhanced invasive potential, as concluded from PCR detection of human Alu sequences in genomic DNA from chick CAM and liver. Whereas 31% of the CAM and 0% of the liver tissues were Alu positive in eggs with untreated AsPC-1 cells, dexamethasone increased the percentage to 85% and 60%, respectively (Figure 2d and Supplementary Figure S1d). Similarly, dexamethasone increased the invasion of BxPc-3 and MIA-PaCa2 tumor cells to the CAM from 20% to 40% and from 30% to 70%, respectively (Figure 2d and Supplementary Figure S1e). Internal chicken GAPDH controls were performed and the results confirmed equal conditions (Supplementary Figure S1f). No significant differences in the mean weights of the embryos occurred between the groups (Supplementary Figure S1g), suggesting that no toxic side effects occurred.

To further highlight the influence of dexamethasone to tumor progression, the cells were treated with dexamethasone, followed by western blot analysis. Each cell line exhibited an already basal expression of the glucocorticoid receptor and dexamethasone further induced (MIA-PaCa2, BxPc-3) or repressed (AsPC-1) it (Supplementary Figure S2a). This implies a functional autoregulation of the glucocorticoid receptor by its ligand, as previously described.30 Dexamethasone switched the epithelial cell morphology to a more

Table 1 Protein expression in patient PDA tissues

Patient ID	Viment	E-Cad	SOX2	Notch1	TGFβ	P-cJun
Controls without glucocorticoid treatment						
HD 5921-1B	++	+++	++	++	++	++
HD 6040-1A	++	+++	+	++	++	++
HD 6041-1A	++	+++	+	++	++	++
HD 6055-1C	+++	+++	+	++	++	++
HD 6065-1A	+	+++	+	++	++	++
HD 6122-1A	++	+++	+	++	++	++
HD 6137-1A	+	+++	+	++	++	++
HD 6144-1B	++	+++	+	++	++	++
HD 6121-1A	++	+++	+	++	++	++
HD 6127-1A	++	+++	+	++	++	++
HD 5913-1B	++	+++	+	++	++	++
HD 6053-1B	++	+++	+	++	++	++
HD 6069-1A	+++	+++	+	++	++	++
HD 6034-1A	++	+++	+	++	++	++
HD 6026-1A	+	+++	+	++	++	++
HD 5897-1A	+	+++	+	++	++	++
HD 5934-1B	+	+++	+	++	++	++
Glucocorticoid treatment						
Fluticasone-17 propionate 250 μg						
HD 5174-1A	+++	+	++	+++	+	++
Fluticasone furoate 100 μg						
HD 5266-1A	+++	+	+++	++	+++	++
Budesonide 3 mg						
HD 5353-1A	+++	+	+++	+	+++	++
Prednisolone 2 mg						
HD 5522-1A	+++	+	+++	+	+++	++
Budesonide diopropionate 100 μg						
HD 5676-1A	+++	+	+++	+	+++	++
Prednisolone 5 mg						
HD 5746-1A	+++	+	+++	+	+++	++
Budesonide 200 μg						
HD 5909-1E	+++	+	+++	+	+++	++
Prednisolone 20 mg						
HD 6133-1A	+++	+	+++	+	+++	++
Budesonide diopropionate 100 μg						
HD 5082-2A	+++	+	+++	+	+++	++
Fluticasone furoate 27.5 μg						
HD 5954-1A	+++	+	+++	+	+++	++
Prednisolone 5 mg						
HD 5025-1A	+++	+	+++	+	+++	++
Budesonide 200 μg						
HD 5777-1A	+++	+	+++	+	+++	++
Budesonide 100 μg						
HD 5833-2A	+++	+	+++	+	+++	++
Budesonide 200 μg						
HD 5835-1B	+++	+	+++	+	+++	++
Prednisolone 5 mg						
HD 5936-1A	+++	+	+++	+	+++	++
Budesonide 200 μg						
HD 5858-1A	+++	+	+++	+	+++	++
Budesonide 200 μg						
HD 5808-1A	+++	+	+++	+	+++	++
Average	+++	+	+++	+	+++	++

Glucocorticoids were taken either orally or were inhaled. Marker expression was determined by immunohistochemistry and fluorescence microscopy. The intensity of fluorescence and the percentage of positive cells were determined by double-blind visual judgment: very strong expression and very high percentage (≥75%) (+++), strong expression and high percentage (≥50%) (+++), moderate expression and medium percentage (≥25%) (+), weak expression and low percentage (≤25%) (+) and absent (−).
spindle-shaped phenotype, as shown by microscopy 240 h after dexamethasone treatment (Supplementary Figure S2b). The migratory activity increased significantly upon dexamethasone treatment, as measured by scratch and transwell assays (Supplementary Figures S2c and d). This was accompanied by the inhibition of E-cadherin and the induction of vimentin in AsPC-1 and BxPc-3 cells, as detected by double immunofluorescence staining (Supplementary Figure S2e). Dexamethasone did not alter the expression of E-cadherin and vimentin in MIA-PaCa2 cells because of already high
basal expression levels. These results suggest that dexamethasone induces EMT-related tumor progression.

Dexamethasone induces TGFβ signaling. Because TGFβ is a key player in EMT, we measured its expression by western blot analysis.31 Dexamethasone induced the expression of the 25/26 kDa form of mature TGFβ protein in AsPC-1, MIA-PaCa2 and BxPc-3 cells within 0.5 h and further induced it during the subsequent 24 h, followed by downregulation at 48 h (Figure 3a). This was associated with a decrease of soluble TGFβ1 protein in the cell supernatant after dexamethasone that may be explained by receptor binding and as detected by ELISA assay (Figure 3b and Supplementary Figure S3a). In contrast, coincubation of the glucocorticoid receptor antagonist mifepristone (RU486) counteracted the dexamethasone-induced dropdown of soluble TGFβ1. These results are underlined by coincubation experiments with the TGFβ receptor-I and -II inhibitor LY2109761 that significantly revised the dexamethasone-induced gemcitabine resistance, as measured in AsPC-1 cells by assays for viability, clonogenicity and spheroid formation (Figures 3c–e and Supplementary Figures S3b–d). Remarkably, dexamethasone did not induce gemcitabine resistance upon cotreatment of cells shortly after detachment of the cells from the culture dish with trypsin (data not shown), suggesting that trypsin removed membrane-associated dexamethasone-binding partners, for example, membrane-bound glucocorticoid receptor and other cell surface receptors. To obtain knowledge whether cancer progression was induced, we treated the cells 48 h after trypsinization with dexamethasone for 2, 6, 12 and 24 h, followed by western blot analysis of the pluripotency markers SOX2 and Notch1 and saw that dexamethasone rapidly induced the expression of both proteins (Figure 3f and Supplementary Figure S3e). To verify these data in tissues from patients, we performed immunofluorescence staining. Fluorescence microscopy revealed a higher expression of TGFβ, SOX2 and Notch1 in tissue of patients who received a glucocorticoid before surgery ($n=17$) compared with tissue of patients who received no glucocorticoid ($n=17$, Figure 3g and Table 1). Because diverse glucocorticoids were administered to patients, these results suggest that not only dexamethasone but also other glucocorticoids induce TGFβ1-dependent EMT and tumor progression.

Dexamethasone mediates Ras/JNK and AP-1 signaling. To measure rapid membrane and kinase effects of dexamethasone, we detected the expression of Ras/JNK signaling and AP-1 activity, known to activate TGFβ expression.32 Dexamethasone led to enhanced RAS expression and phosphorylation of c-Jun within 2 to 5 min in MIA-PaCa2, AsPC-1 and BxPc-3 cells, with peaks at 10 to 45 min, as measured by western blot analysis and JNK/SAP kinase assays (Figure 4a). An enhanced binding activity of the transcription factor and JNK-target cJun/AP-1 occurred within 2 h, with peaks at 12 and 24 h as detected by EMSA and oligonucleotides of the vimentin promoter AP-1 binding site (Figure 4b). Immunofluorescence staining of human PDA tissue transplanted to mice revealed that the expression of P-cJun was still increased at late time points after dexamethasone treatment (Figure 4c, compare Figures 1a and b). Similar results were obtained by staining of patient tissue that demonstrated a higher expression of P-cJun upon intake of a glucocorticoid before surgery (Figure 4d and Table 1).

To evaluate the impact of each key player, we treated AsPC-1 cells with dexamethasone and gemcitabine alone or together and in the presence or absence of inhibitors of the glucocorticoid receptor (mifepristone/RU486), the TGFβ receptor (LY2109761) or JNK signaling (SP600125). Each inhibitor alone partially reversed the dexamethasone-mediated gemcitabine resistance as examined 72 and 96 h after treatment by MTT assay (Figure 5a and Supplementary Figure S4a). Western blot analysis shows that RU486 inhibited the dexamethasone-induced upregulation of TGFβ and its mediator P-Smad2, along with inhibition of Notch1, SOX2 and P-cJun expression (Figures 5b and c). LY2109761 inhibited the upregulation of TGFβ, P-Smad2, SOX2 and P-cJun, but had no effect on Notch1 expression. Similarly, SP600125 inhibited the activation of all examined proteins. These results were verified in vivo in MIA-PaCa2 cells and by the use of the TGFβ receptor inhibitor (Figure 5d). AsPC-1 cells were treated with dexamethasone and gemcitabine alone or together, ± LY2109761, followed by xenotransplantation of equal amounts of viable cells to the CAM of fertilized chicken eggs. At 10 days after transplantation, the tumors were resected and the tumor volumes were detected by calipers. In confirmation with our in vitro results, the inhibition of TGFβ signaling reversed the dexamethasone-induced gemcitabine resistance. The measurement of the invasion potential by Alu-PCR showed that 70% of CAM tissues from dexamethasone groups were Alu positive, but LY210976
reduced the percentage to 50% (Figure 5e). Accordingly, 30% of CAM tissues from the dexamethasone and gemcitabine combination groups were Alu positive, but LY210976 reduced it to 20%. Internal chicken GAPDH controls for Alu PCR reactions demonstrated equal conditions (Supplementary Figure S4b). These results suggest that a dexamethasone-induced complex signaling network mediates tumor progression with TGFβ, RAS/JNK and AP-1 as key players.
Dexamethasone and pancreatic cancer progression
Li Liu et al

Discussion
Whereas glucocorticoids have many advantages for cancer patients, our present results hint to undesirable side effects in PDA, namely the induction of tumor progression, chemotheraphy resistance and metastasis by a complex sequence of signaling (Figure 6).

We assume that dexamethasone-induced therapy resistance and tumor progression depends on interactions with membrane-associated factors, for example, the membrane-bound glucocorticoid receptor coupled to G proteins, and the activation of downstream signaling. This assumption is based on our observation that freshly trypsinized cells did not respond with tumor progression to dexamethasone treatment—most likely because trypsin removed membrane-associated binding partners from the cell surface. Such membrane-mediated actions of glucocorticoids were already observed in lower vertebrate species and are believed to represent the more evolutionarily ancient forms of glucocorticoid receptor signaling. This very old way might have become dominant in PDA cells during the dedifferentiation process of normal cancer cells into CSCs. Several recent reports support our observation of dexamethasone-induced EMT and cancer progression. For example, elevated JNK activity in breast cancer did not induce apoptosis as expected, but cell migration and EMT, along with an enhanced expression of vimentin and AP-1. In addition, targeting of RAS/JNK eliminated CSC features and prevented tumor formation in pancreatic cancer. Similarly, a pivotal role of JNK in the maintenance of self-renewal and tumorigenicity in glioma stem-like cells was demonstrated. Moreover, AP-1 was defined as a critical regulator of a complex program of gene expression mediating an invasive phenotype. However, there are reports that published the opposite effects. One study for example claimed that dexamethasone inhibited the invasiveness of a human pancreatic cancer cell line that was examined by in vitro invasion assay and expression of MMP-9. Another study found a dexamethasone-induced inhibition of in vitro invasion of the PDA cell line Panc-TuI and, after orthotopic transplantation to immunodeficient mice, reduced tumor growth and metastasis. We do not know the reason for these obvious discrepancies to our results, but suspect that it might be because of differences in cell lines, experimental conditions and data evaluation. For example, the conclusions are drawn from one cell line only in both studies. In addition, the in vitro invasion assays are highly susceptible to faults, the presented pictures are out of focus and not quantitatively evaluated. Next, the PDA cell line Panc-TuI was used that we never evaluated, and therefore it might well be that this is one of a few solid tumor cells that are sensitive to dexamethasone treatment. In the orthotopic xenograft experiments, dexamethasone was not applied to inhibit primary tumor growth as in our study, but first when the xenografts were resected with the intention to prevent a relapse. Moreover, orthotopic transplantation to the mouse pancreas by median laparatomy is known to result in xenograft tumors that strongly vary in size. Thus, the measurement of an increase in tumor volume over time by in vivo imaging and the presentation of the results as ‘mean increase of tumor volume over time’ may provide the most accurate results. However, Egberts et al. evaluated tumor growth only once at the end of the experiment and presented the results as ‘mm’. An explanation of how the tumor volumes were evaluated was not provided and hence we are not able to judge the method.

Signaling by the cytoplasmic glucocorticoid receptor was involved in our system as well, and may have mediated the enhanced expression of TGFβ by binding to the glucocorticoid-responsive element in the TGFβ promoter, as concluded from partial inhibition by mifepristone/RU486. Similarly, glucocorticoid receptor/AP-1 interactions might have enforced the signaling cascade by the binding of AP-1 to respective binding sites in the TGFβ and vimentin promoters, and to other target genes that are involved in stemness and progression. Positive feedback loops mediated by autoactivation of cJun transcription by AP-1 and the
The subsequent activation of TGFβ, which in turn activates Ras/JNK signaling and cJun activation by phosphorylation, have enforced the scenario.25 Our results obtained after inhibition of JNK signaling confirmed a direct link of dexamethasone-induced rapid and most likely nongenomic TGFβ and RAS/JNK action,41 with subsequent cJun/AP-1-mediated upregulation of vimentin,42 along with downregulation of E-cadherin.43 Interestingly, we observed that the amount of soluble TGFβ1 ligand in cell culture supernatant of dexamethasone treatment was diminished, hinting to the binding of TGFβ1 to its receptor. This assumption is underlined by our result that a TGFβ receptor I/II blocker partially neutralized the dexamethasone-induced tumor progression. We do not exclude that a complex network of other signaling cascades is involved, such as glucocorticoid receptor-chromatin interactions, that are described to require AP-1 as a major partner.44 In this regard, the loss of glucocorticoid receptor in transgenic mice resulted in tumorigenesis because of defective chromosome segregation.18

We observed the induction of RAS/JNK signaling by dexamethasone, whose relation to dexamethasone-induced anti-apoptotic signaling in breast cancer by interaction with protein kinases PI3-K and Akt is well known.45 This matches to our data, because PI3-K and Akt are the best-characterized RAS effectors.26 Other involved key players may be the serum and glucocorticoid-regulated kinase-1 (SGK1), as reported by Conzen and colleagues10,46–48 in breast, ovarian and prostate cancer. In a human breast cancer xenograft model, the inhibition

Figure 4 Dexamethasone induces rapid Ras/JNK and cJun/AP-1 signaling. (a) MIA-PaCa2, AsPC-1 and BxPc-3 cells were left untreated (CO) or were cultured in 1 μM dexamethasone (DEX) for 2 to 60 min as indicated. Then, cells were quickly put on ice and protein extracts were prepared. The expression of Ras was detected by western blot analysis. β-Actin served as loading control. The phosphorylation of cJun at Serin 63 (P-cJun) was examined by a JNK/SAP kinase assay and phosphorylated cJun (P-cJun was detected by SAPK/JNK kinase assay. Nonphosphorylated cJun served as a control for equal conditions). (b) The cells were left untreated (CO) or were treated with 1 μM dexamethasone (DEX), and at the time points indicated nuclear protein extracts were harvested. The DNA binding was analyzed by EMSA, using a specific biotin-labeled oligonucleotide probe of the AP-1 consensus sequence as present in the vimentin promoter. (c) Tissue sections from human primary PDA xenografts growing on mice, as described in Figures 1a and b were stained with an antibody specific for phosphorylated cJun to detect the expression of P-cJun29 by immunofluorescence microscopy at ×400 magnification, and representative images are shown. The cell nuclei were counterstained with DAPI (blue). (d) Representative paraffin-embedded sections (HD 6041-1A, HD 5522-1A) derived from primary PDA tumor tissue from patients with documented preoperative administration of glucocorticoids (GC, n = 17) or not (CO, n = 17) were evaluated by immunofluorescence for expression of P-cJun.29 The cell nuclei were counterstained with DAPI (blue). The sections were analyzed under ×400 magnification, and representative images are shown. For evaluation of the expression levels, a semiquantitative scoring system was used, as described in Figure 1d
of glucocorticoid receptor signaling reversed the glucocorticoid-induced chemotherapy resistance, in line with our results, where the inhibition of the glucocorticoid receptor partially reversed the dexamethasone-induced gemcitabine resistance.

In summary, we suggest a careful weighing of advantages and disadvantages of glucocorticoids in therapy of solid tumors and the use of alternatives such as nonsteroidal medicaments for treatment of inflammation, emesis, edema, allergies and immune response. Our data may be of clinical relevance with regard to the still frequent use of glucocorticoid medication, but also considering the known elevated levels of endogenous glucocorticoids in chronic pancreatitis, under severe stress conditions, in chronic depression, after protein-rich meals and acute smoking.
β and vimentin are expressed. Soluble TGF-β that control the expression of numerous target genes. As a consequence, E-cadherin transcription factors, coactivators, corepressors and chromatin remodeling factors associate with Smad4 and translocate to the nucleus, where they interact with recruitment and phosphorylation of Smad proteins. Activated Smad proteins (binds to the surface receptor TGF-β expression of Notch-1, SOX-2 and vimentin. Soluble TGF-β binds to its own and to the TGF-β ligand, leading to the intracellular JNK/SAP kinases were immunoprecipitated from cell extract, and a kinase reaction was performed according to the instructions of the manufacturer (New England Biolabs, Frankfurt, Germany). Phosphorylated cJun was detected by western blot using a rabbit polyclonal antibody specific for cJun phosphorylated at serine 63. Mouse mAb cJun (L70811, New England Biolabs) served as a control for equal conditions.

Immunohistochemistry. Staining was performed on established cell lines growing in chambers of the Nunc Lab-Tek Chamber Slide system (Sigma-Aldrich Chemie), or on 6 µm frozen or paraffin-embedded tissue sections as previously described.50 The antibodies were mouse monoclonal against vimentin (V9, Abcam, Cambridge, UK), phosphorylated (P)-p44/42 MAPK (Cell Signaling Technology, Cambridge, UK), β-actin (Sigma-Aldrich, Munich, Germany), rabbit monoclonal against E-cadherin (24E10, Abcam), Ras (EPR3255, Abcam), Notch1 (Cell Signaling), rabbit polyclonal against TGF/β1/2/3 (Cell Signaling), SOX2 (Abcam), phosphorylated Smad2 (Life Technologies, Darmstadt, Germany), c-Jun and phosphorylated c-Jun (P-cJun) (Cell Signaling), glucocorticoid receptor (H-300, Santa Cruz Biotechnology, Heidelberg, Germany) and secondary goat anti-mouse or goat-anti rabbit IgG horseradish peroxidase-conjugated antibodies (Santa Cruz).

Figure 5 Dexamethasone mediates tumor progression by a complex signaling network. (a) AsPC-1 cells were left untreated (CO1) or were treated with vehicle alone (CO2: EtOH 1:25 000; CO3: EtOH 1:12 500; CO4: EtOH 1:12 500+DMSO 1:1000; CO5: EtOH 1:12 500+DMSO 1:2000) or with mifepristone/RJ486 (RJ, 1 µM), LY2109761 (LY, 10 µM) and SP600125 (SP, 10 µM). After 30 min, 1 µM dexamethasone (DEX) was added. After 48 h, 50 nM gemcitabine was added to the respective groups (GEM, D&G) for additional 96 h, followed by MTT assay. The percentage of viable cells in the control groups was set to 100%, and the significance was evaluated. **p<0.01. (b) AsPC-1 cells were left untreated or were treated with mifepristone/RJ486 (RJ, 1 µM), LY2109761 (LY, 10 µM) and SP600125 (SP, 10 µM) and the respective vehicle controls. After 30 min, 1 µM dexamethasone (DEX) was added to the groups indicated and the expression of TGF/β-P-Smad2. Notch1, SOX2, P-cJun and cJun was examined by western blot analysis. β-Actin served as loading control. (c) Column diagrams depicting the relative protein levels of the western blot bands above, as detected by Image Studio (LI-COR Biosciences GmbH, Bad Homburg vor der Höhe, Germany) after normalization to β-actin. The pixel density in the controls was set to 1. **p<0.05, **p<0.01. (d) Mia-PaCa2 cells were treated as described in Figure 3c, followed by transplantation of 1×10^6 viable cells to fertilized chicken eggs (n=15 per group) at day 9 of embryonic development. The tumor xenografts were analyzed as described in Figure 2a. Representative images of the tumor sizes are shown, *p<0.05, **p<0.01. (e) Genomic DNA was isolated from CAM (n=10) tissue directly adjacent to the tumor xenografts and the expression of human Alu sequences was evaluated as described in Figure 2d.

FACS analysis. The cells were treated with FITC-conjugated annexin-V (Life Technologies, Darmstadt, Germany), and FACS analysis was performed as previously described.50

Colony assay. At 48 h after treatment, the cells were reseeded in complete medium in 6-well tissue culture plates. The colonies were evaluated 14 days later, as previously described.50

Spheroid assay. Cells were cultured in human NeuroCult NS-A serum-free medium with supplements (STEMCELL Technologies, Cologne, Germany), and analysis of spheroid formation was performed as previously described.50

Western blot. Western blot was performed as previously described.50 The antibodies were: mouse monoclonal against vimentin (V9, Abcam, Cambridge, UK), phosphorylated (P)-p44/42 MAPK (Cell Signaling Technology, Cambridge, UK), β-actin (Sigma-Aldrich, Munich, Germany), rabbit monoclonal against E-cadherin (24E10, Abcam), Ras (EPR3255, Abcam), Notch1 (Cell Signaling), rabbit polyclonal against TGF/β1/2/3 (Cell Signaling), SOX2 (Abcam), phosphorylated Smad2 (Life Technologies, Darmstadt, Germany), c-Jun and phosphorylated c-Jun (P-cJun) (Cell Signaling), glucocorticoid receptor (H-300, Santa Cruz Biotechnology, Heidelberg, Germany) and secondary goat anti-mouse or goat-anti rabbit IgG horseradish peroxidase-conjugated antibodies (Santa Cruz).

Figure 6 Model of dexamethasone mediated cross-signaling leading to tumor progression. Dexamethasone (DEX) enters the cytoplasm and binds to the glucocorticoid receptor (GR) to form glucocorticoid-glucocorticoid receptor homodimers that enter the nucleus, interact with other transcription factors such as cJun/AP-1 and bind to glucocorticoid receptor element-containing target genes, involving TGF/β and cJun. This activates the expression of TGF/β and cJun/VP-1. cJun/AP-1 binds to its own and to the TGF/β promoter and reinforces the expression. Besides, cJun/AP-1 binds to other target genes and thereby activates, for example, the expression of Notch-1, SOX-2 and vimentin. Soluble TGF/β/ligand is secreted and binds to the surface receptor TGF/βRI/II kinase complex, leading to the intracellular JNK/SAP kinases. Activated Smad proteins associate with Smad4 and translocate to the nucleus, where they interact with transcription factors, coactivators, corepressors and chromatin remodeling factors that control the expression of numerous target genes. As a consequence, E-cadherin and vimentin are expressed. Soluble TGF/β ligand can also activate other surface membrane receptors and thereby activates Ras/JNK signaling that contributes to the scenario by increasing cJun/AP-1 expression. All these amplifying mechanisms together may converge into proliferation, EMT and metastasis. The glucocorticoid receptor antagonist mifepristone (RU486), the TGF/βRI/II kinase inhibitor LY2109761 and the JNK inhibitor SP600125 interfere with this crosstalk, but none of the inhibitors on their own are able to completely block it.

Materials and Methods

Cell culture. The human established PDA cell lines Mia-PaCa2, AsPC-1 and BxPc-3 were obtained from the American Type Culture Collection (Manassas, VA, USA) and were cultured as previously described.50

Reagents. Stock solutions of dexamethasone (25 mM, ≥98% pure, Sigma-Aldrich Chemie, Munich, Germany) and mifepristone (RU486, 50 mM, ≥98% pure, Sigma-Aldrich) were prepared in ethanol. LY2109761 (10 mM, ≥99% pure, Selleckchem, Munich, Germany) and SP600125 (20 mM, ≥99% pure, Selleckchem) were prepared in DMSO. Gemcitabine (126 mM, Lilly Deutschland, Bad Homburg, Germany) was freshly diluted in cell culture medium to prepare a 100 µM stock solution. The final concentrations of the solvents in media were 0.1% or less.

Cell viability. Cell viability was measured using 3(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) as previously described.50

SAP/JNK assay. JNK/SAP kinases were immunoprecipitated from cell extract, and a kinase reaction was performed according to the instructions of the manufacturer (New England Biolabs, Frankfurt, Germany). Phosphorylated cJun was detected by western blot using a rabbit polyclonal antibody specific for cJun phosphorylated at serine 63. Mouse mAb cJun (L70811, New England Biolabs) served as a control for equal conditions.

Immunohistochemistry. Staining was performed on established cell lines growing in chambers of the Nunc Lab-Tek Chamber Slide system (Sigma-Aldrich Chemie), or on 6 µm frozen or paraffin-embedded tissue sections as previously described.50 The antibodies were mouse monoclonal against cytokeratin (Cyt)-19 (Abcam), rabbit monoclonal against E-cadherin (Cell Signaling Technology, Wiesbaden-Nordenstadt, Germany), SOX2 (Santa Cruz), E-cadherin (Cell Signaling Technology), rabbit polyclonal against vimentin (Abcam), or on 6 µm frozen or paraffin-embedded tissue sections as previously described.50

Scratch assay. Cells (6×10^5) were seeded in 6-well plates and grown to confluence overnight. A line was scraped within the cell layer using the fine end of a 10 µl white pipette tip. Images of migrating cells were obtained with a Nikon Eclipse TS100 microscope (Nikon, Tokyo, Japan).

Transwell assay. Cells (10^5 cells/cm²) were seeded in 24-well plates with transwell polycarbonate filters (8 µm,Coming Life Sciences, Amsterdam, The Netherlands). The number of transmigrated cells was counted under a Nikon Eclipse TS100 microscope.

EMSA. Nuclear protein extracts were prepared with the NucBuster Protein Extraction Kit (Merck, Darmstadt, Germany), and the bandshift reaction was
performed using the Light Shift Chemiluminescent EMSA Kit, according to the manufacturer's instructions (Thermo Fisher Scientific, Bonn, Germany). Biotin 3' end-labeled oligonucleotides or unlabeled oligonucleotides (MWG Biotech, Ebersberg, Germany), corresponding to the vimentin AP-1 site at the promoter region -715/-676.51 were: AP-1-sense: 5'-AGGCGCGGTTGATCCGCGGCA-3'; and AP-1-antisense: 5'-GGTGCCGGGATTGACTCCGCGGCT-3' (Consensus AP-1 sites are underlined).

Xenotransplantation to chicken eggs. Tumor cells were transplanted to the chorionicallantoic membrane52 of fertilized eggs from genetically identical hybrid LB chicken, followed by treatment and evaluation of tumor take and volume as previously described.50

Alu PCR. Genomic DNA was isolated from chick tissue using the DNeasy Blood and Tissue Kit (Qiagen, Hilden, Germany), and PCR was performed with primers for human Alu sequences: Alu-sense: 5’-GGAGGGATCGGATCCGCGGCA-3’; and Alu-antisense: 5’-CCCCACCTAGAGGCAACTCTTTC-3’ (MWG Biotech, Ebersberg, Germany). Chicken GAPDH-sense: 5'-AGGCAAGGTCGCCGTTGAGCG-3’; and chicken GAPDH-antisense: 5'-GGTGCCGGGATTGACTCCGCGGCT-3’ (MWG Biotech).

Tumor xenotransplantation to immunodeficient mice. The primary PDA xenograft line T30 was isolated from surgical specimens, which were mechanically minced, and transplanted into the flanks of NMRI (nu/nu) mice, followed by subtransplantation as recently described.53 Cancer spheres were isolated from T30 xenografts and cultured in NeuroCult NS-A serum-free medium with supplements (STEMCELL Technologies, Cologne, Germany), followed by in vitro treatment and subcutaneous injection into the left and right flanks of 6-week-old NMRI (nu/nu) male mice, 6 animals per group. The tumor volumes (V) were determined 3 weeks after transplantation using two diameters and were calculated with the formula: V = 1/2 (length x width^2). The experiments were performed in the animal facilities of the University of Heidelberg after receiving approval from the authorities (Regierungspräsidium Karlsruhe, Karlsruhe, Germany).

Statistical analysis. All in vitro experiments except the colony-forming assays were performed three times in triplicate (n=9), and the quantitative data are presented as the means ± S.D. The colony-forming assays were performed twice in sextuplicate (n=12). For the in vivo transplantation experiments, 20 eggs (n=20) or 6 mice with tumors on both flanks per group (n=12) were used. The significance of the data was analyzed with Student's t-test. Variances in the tumor volumes were evaluated with the Kruskal–Wallis test and the Mann–Whitney test with Bonferroni correction. *P* < 0.05 was considered statistically significant and **P** < 0.01 was considered highly statistically significant.

Conflict of Interest

The authors declare no conflict of interest.

Acknowledgements. We express our gratitude to Dr. Svetlana Karakhanova for text revision and we are grateful to Dr. W Gross for help with statistical evaluation. The tissue bank of our clinic (PancoBank) was funded by the Heidelberger Stiftung Chirurgie, the Federal Ministry of Education and Research (BMBF 031A213), Heidelberger Stiftung Chirurgie, Stiftung für Krebs- und Palliativbetreuung, the team of the European Pancreas Center (E Soyka, S Bauer, A Hieronymus, B Hambach) and the Biomaterial Bank Heidelberg/MBMH (Professor Dr. P Schirmacher; BMBF 01EY1101).

Author contributions

IH and LL: concept, design and interpretation of data. LL, FS, DG, EA, NB, CCN, ZZ, JG, OS and TH-T: acquisition and analysis of data. IH, LL and EY: writing, review and revision of the manuscript.

Availability of supporting data

The data sets supporting the conclusions of this article are included within the article and its supplemental files and thus available.

Declaration of originality

The authors declare that the manuscript shows original data that are their own work and were not published before.

Ethical approval and consent to participate

Surgical samples were obtained in anonymous form from the tissue bank of our clinic (PancoBank) under the approval of the ethical committee of the University of Heidelberg and after written consent was obtained from the patients (see 301/2001, S-4072/2010, S-562/2012). All the diagnoses were established using the conventional clinical and histological criteria of the World Health Organization (WHO). All the surgical resections were indicated according to the principles and practices of oncological therapy.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

1. Gukovskaya AS, Pandol SJ. Cell death pathways in pancreatitis and pancreatic cancer. Pancreatology 2004; 4: 567–586.
2. Guerra C, Collado M, Navas C, Schuhmacher AJ, Hernandez-Porras I, Canamero M et al. Pancreatitis-induced inflammation contributes to pancreatic cancer by inhibiting oncogene-induced senescence. Cancer Cell 2011; 19: 728–739.
3. Mueller TC, Burmeister MA, Bachmann J, Martignoni ME. Cachexia and pancreatic cancer: are there treatment options? World J Gastroenterol 2014; 20: 9361–9373.
4. Overman RA, Yeh JY, Deal CL. Prevalence of oral glucocorticoid usage in the United States: a general population perspective. Arthritis Care Res (Hoboken) 2013; 65: 234–239.
5. Whitehouse MW. Anti-inflammatory glucocorticoid drugs: reflections after 60 years. J Immunopharmacol 2011; 1: 1–19.
6. Herr I, Pfitzenmaier J. Glucocorticoid use in prostate cancer and other solid tumours: implications for effectiveness of cytotoxic treatment and metastases. Lancet Oncol 2006; 7: 425–430.
7. Weissman DE. Glucocorticoid treatment for brain metastases and epidural spinal cord compression: a review. J Clin Oncol 1987; 6: 543–551.
8. Feuer DJ, Bradley KE. Systematic review and meta-analysis of corticosteroids for the resolution of malignant bowel obstruction in advanced gynaecological and gastrointestinal cancers. Systematic Review Steering Committee. Ann Oncol 1999; 10: 1035–1041.
9. Haid M. Steroid antitumors may be harmful. N Engl J Med 1981; 304: 1327.
10. Velden RA, Conzen SD. The influence of glucocorticoid signaling on tumor progression. Brain Behav Immun 2013; 30S: s26–s31.
11. Hensen HG, Hjort GH. The influence of corticoid steroids on the frequency of spleen metastases in patients with breast cancer, Acta Pathol Microbiol Scand 1958; 44: 205–212.
12. Sherlock P, Hartmann WH. Adrenal steroids and the pattern of metastases of breast cancer. JAMA 1982; 181: 313–317.
13. Sorensen HT, Mellemkjaer L, Nielsen GL, Baron JA, Olsen JH, Karagas MR. Skin cancers and non-Hodgkin lymphoma among users of systemic glucocorticoids: a population-based cohort study. J Natl Cancer Inst 2004; 96: 709–711.
14. Zhang CJ, Kolb A, Buchler P, Cato AC, Mattern J, Rittgen W et al. Corticosteroid co-treatment induces resistance to chemotherapy in surgical resections, xenografts and established cell lines of pancreatic cancer. BMC Cancer 2006; 6: 61.
15. Hubner S, Tuckermann J. Molecular mechanisms of the glucocorticoid receptor in steroid therapy - lessons from transgenic mice. Biomol Concepts 2012; 3: 241–253.
16. Rhen T, Cidlowski JA. Antiinflammatory action of glucocorticoids–new mechanisms for old drugs. N Engl J Med 2005; 353: 1711–1723.
17. Gresner OA, Fang M, Li H, Lu LG, Gresner AM, Gao CF. Connective tissue growth factor (CTGF/CCN2) in serum is an indicator of fibrogenic progression and malignant transformation in patients with chronic hepatitis B infection. Clin Chim Acta 2013; 426: 126–131.
18. Matthews LC, Berry AA, Morgan DJ, Poolman TM, Bauer K, Kramer F et al. Glucocorticoid receptor regulates accurate chromosome segregation and is associated with malignancy. Proc Natl Acad Sci USA 2015; 112: 5479–5484.
19. Parrell JM, Meisler N, Cutrono KR. Identification of a glucocorticoid response element in the human transforming growth factor beta 1 gene promoter. Int J Biochem Cell Biol 1998; 30: 623–627.
20. Massague J. TGFbeta signaling in context. Nat Rev Mol Cell Biol 2012; 13: 616–630.
21. Kabashima A, Higuchi H, Takaihi H, Matsuzaki Y, Suzuki S, Izumiya M et al. Side population of pancreatic cancer cells predominates in TGF-beta-mediated epithelial to mesenchymal transition and invasion. J Nat Cancer 2009; 124: 2771–2779.
22. Sainkova AV, Liu L, Platen M, Gladkich J, Sainkova O, Rychich E et al. Hypoxia induces EMT in low and highly aggressive pancreatic tumor cells but only cells with cancer stem cell characteristics acquire mitigated proliferative potential. Proc Natl Acad Sci USA 2012; 11: 14639–14644.

23. Huber MA, Kraut N, Beug H. Molecular requirements for epithelial-mesenchymal transition during tumor progression. Curr Opin Cell Biol 2005; 17: 548–558.

24. Hanawa K, Hata T, Goto T, Kato Y, Ide Y, Aoya T et al. Enhanced jun gene expression is an early genomic response to transforming growth factor beta stimulation. Mol Cell Biol 1989; 9: 1255–1262.

25. Kim SJ, Angel P, Lafyatis R, Hattori K, Kim KY, Sporn MB. Requirement of TGF-beta receptor-dependent activation of the human vimentin promoter. Nucleic Acids Res 1996; 24: 2679–2686.

26. Xu J, Lamouille S, Derynck R. TGF-beta-induced epithelial to mesenchymal transition. Curr Opin Cell Biol 2009; 21: 482–489.

27. Santibanez JF. JNK mediates TGF-beta1-induced epithelial mesenchymal transdifferentiation. J Cell Biol 1996; 134: 805–813.

28. Burnstein KL, Bellingham DL, Jewell CM, Powell-Oliver FE, Cidlowski JA. Enhanced c-jun gene expression during differentiation of the C2C12 skeletal myogenic cell line requires Smad, AP-1 and Sp1 family members. Biochim Biophys Acta 2007; 1773: 427–439.

29. Vogelmann R, Nguyen-Tat MD, Giehl K, Adler G, Wedlich D, Menke A. TGF-beta-induced downregulation of E-cadherin-based cell-cell adhesion depends on PI3-kinase and PTEN. J Cell Sci 2005; 118 (Pt 20): 4901–4912.

30. Xu J, Lamouille S, Derynck R. TGF-beta-induced epithelial to mesenchymal transition generates cells with properties of stem cells. Cell 2009; 139: 704–717.

31. Huber MA, Kraut N, Beug H. Molecular requirements for epithelial-mesenchymal transition during tumor progression. Curr Opin Cell Biol 2005; 17: 548–558.

32. Santibanez JF. JNK mediates TGF-beta1-induced epithelial mesenchymal transdifferentiation of mouse transformed keratinocytes. FEBS Lett 2006; 580: 5363–5369.

33. Tasker JG, Di S, Malcher-Lopes R. Minireview: rapid glucocorticoid signaling via membrane-associated receptors. FEBS Lett 2005; 579: 5479–5483.

34. Tasker JG, Di S, Malcher-Lopes R. Minireview: rapid glucocorticoid signaling via membrane-associated receptors. FEBS Lett 2005; 579: 5479–5483.

35. Mani SA, Guo W, Liao MJ, Eaton EN, Ayyanan A, Zhou AY et al. Snail promotes epithelial-mesenchymal transition by upregulating vimentin. Cancer Cell 2008; 14: 255–268.

36. Okada M, Shibuya K, Sato A, Seino S, Seino M et al. Targeting the K-Ras–JNK axis eliminates cancer stem-like cells and prevents pancreatic tumor formation. Oncotarget 2014; 5: 11500–11512.

37. Yoon CH, Kim MJ, Kim RK, Lim EJ, Choi KS, An S et al. C-Jun N-terminal kinase has a pivotal role in the maintenance of self-renewal and tumorigenesis in glioma stem-like cells. Oncogene 2012; 31: 4655–4666.

38. Hirata M, Itchi M, Tsuchida A, Ooshii H, Harada K, Kajiymama G. Dexamethasone inhibits invasiveness of a human pancreatic cancer cell line. Int J Oncol 1996; 8: 327–330.

39. Egberts JH, Schmiudt DB, Patzold M, Kettler B, Tepel J, Kalthoff H et al. Dexamethasone reduces tumor recurrence and metastasis after pancreatic tumor resection in SCID mice. Cancer Biol Ther 2008; 7: 1044–1050.

40. Ritting SR, Coutinho L, Arran EM, Kolbe MB. AP-1/jun binding sites mediate survival inducibility of the human vimentin promoter. Nucleic Acids Res 1993; 17: 1619–1633.

41. Yue J, Sun B, Liu G, Muler KM. Requirement of TGF-beta receptor-dependent activation of c-Jun N-terminal kinases (JNKs)/stress-activated protein kinases (Saps) for TGF-beta up-regulation of the urokinase-type plasminogen activator receptor. J Cell Physiol 2004; 199: 284–292.

42. Wu Y, Zhang X, Salim M, Lin X, Zehner ZE. TGFbeta1 regulation of vimentin gene expression during differentiation of the C2C12 skeletal myogenic cell line requires Smads, AP-1 and Sp1 family members. Biochim Biophys Acta 2007; 1773: 427–439.

43. Vogelmann R, Nguyen-Tat MD, Giehl K, Adler G, Wedlich D, Menke A. TGF-beta-induced downregulation of E-cadherin-based cell-cell adhesion depends on PI3-kinase and PTEN. J Cell Sci 2005; 118 (Pt 20): 4901–4912.

44. Biddle SC, John S, Sabo PJ, Thurman RE, Johnson TA, Schiltz RL et al. Transcription factor AP1 potentiates chromatin accessibility and glucocorticoid receptor binding. Mol Cell 2011; 43: 145–155.

45. Mikosz CA, Brickett DR, Sharkey MS, Moran TW, Conzen SD. Glucocorticoid receptor-mediated protection from apoptosis is associated with induction of the serine/threonine survival kinase gene, sgg-1. J Biol Chem 2001; 276: 16649–16654.

46. Melhem A, Yamada SD, Fleming GF, Delgado B, Brickett DR, Wu W et al. Administration of glucocorticoids to ovarian cancer patients is associated with expression of the anti-apoptotic genes SGK1 and MKP1/DUSP1 in ovarian tissues. Clin Cancer Res 2009; 15: 3196–3204.

47. Sahoo S, Brickett DR, Korcherginsky M, Conzen SD. Coordinate expression of the PI3-kinase downstream effectors serum and glucocorticoid-induced kinase (SGK1) and Akt-1 in human breast cancer. Eur J Cancer 2005; 41: 2754–2759.

48. Szmulowitz RZ, Chung E, Al-Ahmadi H, Daniel S, Korcherginsky M, Razmazria A et al. Serum/glucocorticoid-regulated kinase 1 expression in primary human prostate cancers. Prostate 2012; 72: 157–164.

49. Garde AH, Persson R, Hansen AM, Osterberg K, Orbaek P, Eif F et al. Effects of lifestyle factors on concentrations of salivary cortisol in healthy individuals. Scand J Clin Lab Invest 2009; 69: 242–250.

50. Zhang Y, Liu L, Fan P, Bauer N, Gladkich J, Rychich E et al. Aspirin counteracts cancer stem cell features, desmplasia and gemcitabine resistance in pancreatic cancer. Oncotarget 2015; 6: 9999–10015.

51. Summers CL, Steiner JM, Chrysoyoekos SA, Bosselet M, Gelmann EP. Regulation of c-jun gene transcription in human breast cancer cell lines. Cell Growth Differ 1994; 5: 839–846.

52. Mani SA, Guo W, Liao MJ, Eaton EN, Ayriyan A, Zhou Y et al. The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell 2008; 133: 704–715.

53. Lonnardo E, Herrmann PC, Mueller MT, Huber S, Balic A, Miranda-Lorenzo I et al. Nodal/Activin signaling drives self-renewal and tumorigenicity of pancreatic cancer stem cells and provides a target for combined drug therapy. Cell Stem Cell 2011; 9: 433–446.

Cell Death and Disease is an open-access journal published by Nature Publishing Group. This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

The Author(s) 2017

Supplementary Information accompanies this paper on Cell Death and Disease website (http://www.nature.com/cddis)