A genome-scale analysis of the cis-regulatory circuitry underlying sonic hedgehog-mediated patterning of the mammalian limb

Steven A. Vokes,1,5 Hongkai Ji,2,3 Wing H. Wong,3 and Andrew P. McMahon1,4,6

1Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts 02138, USA; 2Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland 21205, USA; 3Department of Statistics, Stanford University, Stanford, California, 94305, USA; 4Harvard Stem Cell Institute, Harvard University, Cambridge, Massachusetts 02138, USA

Sonic hedgehog (Shh) signals via Gli transcription factors to direct digit number and identity in the vertebrate limb. We characterized the Gli-dependent cis-regulatory network through a combination of whole-genome chromatin immunoprecipitation (ChIP)-on-chip and transcriptional profiling of the developing mouse limb. These analyses identified ∼5000 high-quality Gli3-binding sites, including all known Gli-dependent enhancers. Discrete binding regions exhibit a higher-order clustering, highlighting the complexity of cis-regulatory interactions. Further, Gli3 binds inertly to previously identified neural-specific Gli enhancers, demonstrating the accessibility of their cis-regulatory elements. Intersection of DNA binding data with gene expression profiles predicted 205 putative limb target genes. A subset of putative cis-regulatory regions were analyzed in transgenic embryos, establishing Blimp1 as a direct Gli target and identifying Gli activator signaling in a direct, long-range regulation of the BMP antagonist Gremlin. In contrast, a long-range silencer cassette downstream from Hand2 likely mediates Gli3 repression in the anterior limb. These studies provide the first comprehensive characterization of the transcriptional output of a Shh-patterning process in the mammalian embryo and a framework for elaborating regulatory networks in the developing limb.

[Keywords: Sonic hedgehog; limb; morphogen; gli; cis-regulatory network]

Supplemental material is available at http://www.genesdev.org.

Received May 8, 2008; revised version accepted August 5, 2008.

The vertebrate limb is one of the best studied models of how morphogen signaling elaborates a complex pattern (for review, see McGlinn and Tabin 2006). Shh secreted by a discrete posterior organizing center, the zone of polarizing activity (ZPA), is thought to act as a long-range, concentration-dependent signal that regulates both the number and identity of digits that arise from the distal mesenchyme of the developing limb bud. Both the concentration and time of Shh signaling are critical, and growth couples with morphogen activity to give the final digit pattern [Yang et al. 1997; Harfe et al. 2004; Towers et al. 2008; Zhu et al. 2008]. Shh actions are mediated through the Gli transcriptional effector family [Gli1-3]. Of these, Gli3 appears to play a crucial role in regulating digit number; loss of Gli3 repressor leads to polydactyly and suppresses the loss of digits [2–5] observed in Shh mutants [Litingtung et al. 2002; te Welscher et al. 2002b]. Interactions between the limb mesenchyme and the apical ectodermal ridge [AER] are critical for digit development.

The Shh pathway is thought to maintain the limb outgrowth-promoting role of AER produced FGFs through the regulation of a BMP antagonist, Gremlin [Zuniga et al. 1999; Khokha et al. 2003]. In turn, AER signaling is essential for maintaining Shh expression [Laufer et al. 1994; Niswander et al. 1994]. Genetic analyses have suggested that Shh-mediated loss of Gli3 repressor activity underlies the Shh → Gremlin → AER circuit, but whether this is a direct action of Gli repressor has not been addressed [Litingtung et al. 2002; te Welscher et al. 2002b].

How digits are regulated at the transcriptional level is less clear. Genetic studies have indicated a close interaction between members of the 5’HoxD complex, which

5Present address: Section of Molecular Cell and Developmental Biology, Institute for Cellular and Molecular Biology, The University of Texas at Austin, 2500 Speedway, Austin, TX 78712, USA.
6Corresponding author.
E-MAIL mcintosh@mch.harvard.edu; FAX (617) 496-3762.
Article is online at http://www.genesdev.org/cgi/doi/10.1101/gad.1693008.
have been implicated in the regulation of digit identity and Shh. Initially, 5′HoxD activity is required for the onset of Shh expression (Tarchini et al. 2006). However, as the digit field emerges, HoxD members become targets of Shh regulation. How is not clear, but the identification of a global control region (GCR) outside of the HoxD complex suggests an interaction with this distal regulatory element. Shh also regulates expression of Bmp2 within the distal, digit-forming limb mesenchyme, and experiments modulating BMP levels in the chick have suggested that Bmp2 may act as a secondary relay to regulate digit identity (Dahn and Fallon 2000; Drossopoulou et al. 2000). However, genetic studies in the mouse have not supported this view (Bandyopadhyay et al. 2006); consequently, the precise roles of BMPs are contentious.

We attempted to understand the roles of Shh signaling by identifying the targets of Gli3 action in the developing mouse limb. These studies provide a framework for the primary regulatory networks downstream from Shh signaling and identify new links between Shh and other signaling pathways in driving limb outgrowth. In addition to identifying targets of Gli repression regulating critical outputs in the developmental program, our work demonstrates that the Gli activator forms play a critical role in the limb patterning circuitry.

Results

In a previous study, we developed an approach to conditionally produce a Flag-tagged form of a Gli activator and examined Hedgehog (Hh) action in patterning neural progenitors in vitro (Vokes et al. 2007). Here, we introduced a cDNA encoding a Flag-epitope-tagged Gli3 repressor (Yuen et al. 2006) into the ubiquitous Rosa26 promoter to enable Cre-dependent conditional expression in Hh target regions in vivo (see the Materials and Methods; Supplemental Fig. S1A–C). When RosaGli3TFlag/c/c mice were crossed to mice carrying the early limb mesenchyme-specific Prrx1:Cre transgene (Logan et al. 2002), they produce Gli3TFlag at levels that are comparable with the endogenous protein (Supplemental Fig. S1C). Mice exhibited a variety of limb defects including a variable preaxial forelimb polydactyly, limb truncation, and reduced mineralization (Supplemental Fig. S1D). These phenotypes suggest that Gli3TFlag is active and modifies both Shh action in initial limb patterning and later Indian hedgehog action in growth and differentiation of the endochondral skeleton.

To focus our analysis on the period of Shh-mediated regulation of distal digit organization, we optimized a chromatin immunoprecipitation (ChIP) protocol to enable the direct identification of Gli3 targets in limb buds at embryonic day 11.5 [E11.5]. A high level of enrichment of Gli target genes was obtained using ∼2.3 × 10^6 cells per ChIP. Three technical replicates comprising all limbs from a single litter (approximately nine embryos) provided sufficient sample for the interrogation of multiple tiling arrays required for a whole-genome hybridization. Data was processed using CisGenome software [http://www.biostat.jhsph.edu/~hji/cisgenome; H. Ji, H. Jiang, W. Ma, D.S. Johnson, R.M. Myers, and W.H. Wong, in prep.], identifying 20,587 potential Gli-binding regions (GBRs) with an estimated false discovery rate (FDR) of 9.8% [Supplemental Table S1]. The GBRs were binned according to rank and the overall Gli enrichment level was obtained for each bin. Bins containing a Gli enrichment level of ≥2 were selected, reducing the list to the top 19,704 scoring regions (FDR < 5%) [Fig. 1A]. A selected subset of the 19,732 regions were validated by qPCR. Within the top ranked 5274 GBRs qPCR validated Gli3-dependent enrichment was confirmed in >50%; 11 of 17 shared an enrichment >3.99-fold [three standard deviations from controls] [Supplemental Fig. S2A]. This group of 5274 regions displayed a mean ChIP-binding region of 854 base pairs [bp] [Supplemental Fig. S2B] and a low FDR (FDR < 0.1%, SD ≥ 6). All subsequent computational and experimental analyses focused on this highly biologically significant data set of GBRs with high levels of enrichment [Supplemental Data Set 1] although regions identified in the remaining data set are nonetheless statistically significant [Fig. 1A; Supplemental Table S1].

Genomic topography and binding site clustering

Analysis of ChIP products discovered a substantial enrichment in Gli motif sites within GBRs consistent with our expectations [Vokes et al. 2007]. In all, 55% of these regions contain a high-quality Gli motif. Those GBRs exhibiting the highest levels of fold enrichment also contain the highest percentage of Gli motif enrichment [Fig. 1B]. When compared with matched control genomic regions, we observed a significant enrichment of GBRs within ±2 kb of the transcriptional start site (TSS) [Fig. 1C]. However, relatively few (594; 11%) of the GBRs were present within this proximal regulatory region, suggesting long-range interactions between promoter and distal regulatory sites [see later for functional evidence]. GBRs were not significantly enriched within any other genomic feature [e.g., intergenic regions, intragenic regions, exons, introns, or untranslated regions] [Supplemental Table S2].

The high percentage of GBRs (45%) that did not contain a Gli-binding motif may reflect an indirect mechanism [e.g., Gli3-dependent protein–protein interactions with another DNA-binding protein or a nonphysiological DNA association]. When the overall rate of sequence conservation was compared, GBRs without Gli motifs were, in fact, somewhat more conserved [Fig. 1D]. Thus, as a population, these are unlikely to represent spurious binding sites. When compared with the entire data set, ChIP products containing Gli motifs were more significantly enriched around a TSS [16.3% of all binding regions] than those without Gli motifs [5.1% vs. 3.9% for controls] [Supplemental Table S2]. A very small number of the binding regions without mapped Gli motifs do, in fact, contain a limb-specific variant of the Gli motif [Table 1], and a further subset of these binding sites
could contain low-quality Gli motifs that were below the likelihood ratio cutoff of 500.

To determine whether GBRs containing Gli motifs cluster, we computed the pairwise distance between directly neighboring binding regions and compared this with randomly chosen Gli motifs from the genome (Ji et al. 2006). This analysis demonstrates that GBRs are not randomly distributed but cluster at the 100-kb scale (Fig. 1E). We next examined the clustering tendency of all ChIP-binding regions irrespective of a Gli motif and also detected a significant clustering of all peaks at the level of 100 kb (Fig. 1F,G). Clustering was even evident in 1–2-Mb windows (Supplemental Fig. S3); within a 1-Mb window, we observe significant clusters of seven or more binding regions accounting for 1917 Gli-binding sites (Supplemental Fig. S3C,D) that represent 36.35% of all Gli sites. Thus, long-range clustering of Gli3-binding sites is a significant overall property. However, we did not observe any correlation in the clustering between Gli motif-positive and -negative GBRs [see the Supplemental Material].

Gli3 recognizes homologous and heterologous enhancers

A previous analysis of Shh action on neural progenitors identified 25 biologically significant Gli1-binding sites (Vokes et al. 2007). Among these are neural specific Shh target genes (FoxA2, Nkx2-2, Nkx2-9, and Titf1/Nkx2.1) and more general targets of the pathway (Ptc1, Ptc2, Hhip, Rab34, and Gli1) that are also expressed in the limb. Gli3 bound to each of the general targets in the limb [with multiple inputs confirmed for Ptc1] to similar regions observed by Gli1 in neural progenitors [Table 2]. In all, the set of 5274 GBRs included 16/25 neural Gli1-binding regions [four more were in the 19,732 GBR data set] with the surprising inclusion of neural-specific Gli1-binding regions. Thus, cis-binding regions mediat-
Table 1. De novo motif discovery in Gli target genes

Motif discovered from	Motif logo	Limb target Gli+ GBRs; Gli+ GBRs only (396)	Limb target Gli+ GBRs; Gli+ GBRs only (186)	Limb target Gli+ GBRs; Gli+ GBRs only (74)	Nonlimb target all GBRs	Nonlimb targets Gli− GBRs only (2511)	Nonlimb target Gli− GBRs only (2107)
Limb target with Gli motif	4.95 (471)	1.04 (35)	1.06 (13)	3.68 (3129)	5.51 (2844)	0.85 (285)	
Limb target with Gli motif	2.13 (3131)	0.64 (331)	0.87 (165)	1.21 (15807)	1.64 (13101)	0.53 (2706)	
Limb target with Gli motif	2.02 (1062)	0.69 (127)	1.06 (72)	1.27 (5978)	1.67 (4764)	0.66 (1214)	
Limb target no Gli motif	1.30 (175)	2.56 (121)	2.07 (36)	1.80 (2158)	1.55 (1130)	2.18 (1028)	

We identified 205 Gli target genes in the limb that contained at least one Gli motif-containing binding region and performed de novo motif discovery using a GMS on all binding regions associated with these genes, dividing these into binding regions with a Gli motif and binding regions with no Gli motif. The table reports motifs with an enrichment value of ≥2 relative to matched genomic controls and a log ratio >500 (underlined). The table also indicates the relative enrichment in the other populations as well as in all GBRs that are not associated with limb genes. The numbers in parentheses indicate the total number of motifs discovered. Note that a few (35) Gli motifs are discovered in the limb targets with no Gli motif. This reflects differences in the Gli motif used for mapping, which we had discovered previously (Vokes et al. 2007) and the motif discovered in the limb. Gli+ GBRs refers to those containing Gli motifs, while Gli− GBRs do not contain a Gli motif.

Identification of a core set of Shh-responsive limb gli target genes

In order to define a core set of Shh-responsive direct target genes in the limb, we associated Gli3-binding sites with Shh-dependent transcriptional responses. Using exon arrays, we compared wild-type E11.5 forelimbs with forelimbs from Shh-null [constitutive Gli repressor], MhoxCre.R26SmoM2 [maximal Gli activation] [Jong et al. 2004], Gli3-null [loss of major repressor], and Smo/Gli3 double mutant [loss of Gli activator and Gli repressor] backgrounds. In addition, we profiled E11.5 forelimbs microdissected into an anterior 1/3 compartment [Ant] or posterior 2/3-d compartment [Post]; Gli1 expression in the posterior sample defines the active Shh signaling domain [Fig. 3A; Lewis et al. 2001]. These lists were used to identify 753 genes whose expression profiles resembled known Shh-responsive genes and genes exhibiting pairwise changes in mutant scenarios or in Ant/Post fractions [Fig. 3B; Supplemental Data Set 2].

To determine if a meaningful association would be made between GBRs and differentially expressed genes, we counted the number of GBRs associated with Shh-responsive genes and compared it with binding sites associated with randomly selected genes to define an FDR. Significantly more binding regions were associated with Shh-responsive genes [Supplemental Fig. S4A]. Those GBRs located within a region 10 kb upstream of and 25 kb downstream from the TSS of differentially regulated genes showed a FDR of 50%. As an independent measure of the significance of binding regions associated with differentially expressed genes, we examined their conservation levels. GBRs associated with differentially expressed genes are significantly more conserved out to a distance of >1 Mb, albeit with a very high FDR [Supplemental Fig. S4B]. Thus, our initial strategy likely underestimates the total number of associated GBRs. To further optimize this association, we noted that genes associated with development and transcription are enriched within gene deserts that are devoid of coding regions [Ovcharenko et al. 2005]. Consistent with this, Gli3 peaks associated with differentially expressed genes have fewer intervening TSSs than randomly chosen.
genes [Supplemental Fig. S4C]. We therefore incorporated information about the gene density into the final FDR determination [Supplemental Fig. S4D]. We supplemented this list by searching for clustered binding regions and intersected these with differentially expressed genes [see the Materials and Methods].

The pooled data identified 656 GBR–gene pairs, involving 656 GBRs and 261 genes. We further restricted our criteria for direct target genes to those associated with the binding regions containing Gli motifs [Fig. 3B]. These 396 binding regions correspond to 205 unique genes [Supplemental Data Set 3], representing the core set of candidates under direct Gli transcriptional control in the developing limb. The Gli target genes include known Hh pathway components such as *Ptc1*, *Ptc2*, *Hhip*, and *Gli1*, several of which are known to undergo Shh-dependent transcriptional feedback regulation. A surprising number of putative targets are themselves transcription factors; 48 of the 205 unique genes are associated with DNA-dependent regulation of transcription. These include multiple members of the *HoxD* family, and cofactors such as *Pbx*, *Meis1*, and *Meis2* suggestive of extensive regulation of Hox transcriptional complexes. Several interactions are observed with Tbx transcription factors (*Tbx2*, *Tbx3*, and *Tbx4*). Interestingly, *Tbx2* and *Tbx3* are thought to play upstream roles in the activation of Shh [Nissim et al. 2007]. The data suggest a reciprocal regulatory mechanism. Putative targets are highly enriched for GO categories involved in development and morphogenesis [Supplemental Fig. S5]. Many of these genes, including *Gremlin* and *Hand2* (Fig. 4C,J) and other predicted targets, exhibit limb expression patterns that are broader or only partially overlapping with the Shh-responsive region determined by *Ptc1* and *Gli1* expression. Thus, the observed gene expression patterns may reflect the integration of multiple regulatory inputs. That cross-regulatory interactions may engage other signaling pathways is evident in the significant enrichment for genes associated with the TGF-β family [BMPs], and Wnt pathway activity in addition to the Shh pathway components [Supplemental Table S5].

Discovery of DNA motifs enriched in GBRs

To determine whether any additional transcription factor–binding sites were enriched in Gli-containing binding regions and to identify sites enriched in non-Gli-containing regions, we performed de novo motif analysis using a Gibbs motif sampler [GMS] as described previously [Ji et al. 2006; Vokes et al. 2007]. In addition to a Gli motif, we recovered two G/C-rich motifs [Table 1]; a similar sequence has been observed in other large-scale ChIP analyses [Ji et al. 2006]. We also identified a composite motif specifically enriched in Gli-binding sites that do not contain Gli motifs. This motif contained an E-box indicative of basic helix–loop–helix [bHLH] homeodomain transcription factor binding fused to an ATTA motif, the core binding site for homeodomain transcription factors [FDR = 39%]. However, as this motif was enriched within the larger subset of GBRs not associated with Shh modulated gene expression [Table 1], the significance to Gli3 regulation in the limbs is not clear. We also mapped all TRANSFAC human and mouse motifs to GBRs relative to matched genomic controls. Using this criteria, we found variants of an E-box enriched in limb GBRs with or without Gli motifs. Further, Me2 and Chx10 motifs were specifically enriched in limb peaks devoid of Gli motifs [Supplemental Table S3]. The core TAAT sequences in the Chx10 homeodomain factor is consistent with the composite E-box + Homebox motif discussed above.

Functional characterization of Gli cis-regulatory elements

In order to explore the contributions of GBRs, we selected those associated with a number of genes that display distinct expression within the limb for functional transgenic analysis. Gli1 is a transcriptional activator and a global target of Gli activator response in all known Hh target fields [Bai et al. 2004]. An unusually broad, bimodal GBR (3.7 kb) is observed in Gli1 intrinsic

Table 2. Comparison of GBRs with neural Gli1-binding regions

Gene	Chr.	Start	End	Limb rank	Neural rank
Ptc1	13	63575428	63576802	231	1
Nlx2-2	2	146878930	146880274	600	2
Ptc1	13	63577408	63579384	639	3
Nlx2-9	12	57358763	57540207	13650	4
Ptc1	12	63582452	63583345	846	5
Nlx2-9	12	57352279	57352775	1965	6
Rab34	11	7800555	78006295	273	7
Ptc1	4	116596146	116597172	1785	8
Ptc1	13	63571609	63572403	514	9
Ttf1	12	57437994	57438997	2479	10
Gli1	10	126742682	126745015	152	11
Hhip	8	82951843	82952643	1713	12
FoxA2	2	147728005	147728949	12443	13
Ptc1	4	116593211	116594180	43	14
Cart1	10	102441515	102442143	—	15
Ptc1	13	63579981	63581640	846	16
Prdx2	8	87387103	87387644	1803	17
Cart1	10	102453670	102454700	—	18
Ptc1	13	63636236	63637109	16130	19
Hhip	8	82950172	82951020	—	20
Flr3	2	140368851	140369475	—	21
Pax9	12	57634104	57634760	14011	22
Ncor2	5	125468224	125468890	1183	23
Zic3	20	54381562	54382236	—	24
Hand2	8	60226045	60226746	296	25

Comparison of limb GBRs and neural GBRs. The top 25 Gli1-binding sites in neural EBs compared with Gli3-binding sites in limb buds. Coordinates indicate GBRs. The rank refers to the relative position of the peak sorted by the maximum TileMap MA statistic associated with each peak; the asterisk indicates that the rank is out of the top 5274 binding regions reported as biologically significant in our analysis. Underlined genes refer to binding regions that have been validated in transgenic embryos.
sequences that span the first noncoding exon (Fig. 3C). Six Gli motifs are identified within this domain; multiple sites have been noted in previous gel shift assays [Dai et al. 1999]. A 3.4-kb fragment encompassing this region-directed β-galactosidase activity to the ventral CNS, consistent with our earlier report of Gli1 binding to this region in neural progenitors [Table 2 and a subregion of the Gli1 expression domain in the posterior limb [seven of eight embryos] [Fig. 4A,A’]. The GBR contained two E-box motifs; when these were mutated, a lower percentage of transgenics exhibited posterior limb expression [one of four embryos]. However, the expression domain was identical to the unmodified version (data not shown). Thus, these motifs are not essential for directing Gli1 expression to its normal limb domains.

Blimp1 (Prdm1) encodes a DNA-binding protein that recruits chromatin modifiers and plays a central role in the regulation of several stem/progenitor cell populations [Ohinata et al. 2005; Horsley et al. 2006]. Blimp1 is expressed in the ZPA where its activity is required to maintain the ZPA and, consequently, normal Shh expression in the posterior limb (Ohinata et al. 2005; Horsley et al. 2006). A 996-bp fragment representing the major binding site replicated the posterior Gremlin domain observed with a 70-kb fragment in the earlier study [eight of 12 transgenic embryos] [Figs. 4C,C’]. As with the 70-kb element, expression is excluded from the anterior limb mesenchyme where Gremlin is normally present. Thus, distinct modes of regulation appear to govern Gremlin expression in different regions of the limb mesenchyme [see the Discussion].

Comparison of Shh−/− and Shh−/−; Gli3−/− compound mutants has suggested that Shh regulates Gremlin through the loss of Gli3 repressor rather than by a Gli activator function [Fig. 4D–F; Litingtung et al. 2002; te Welscher et al. 2002b]. To determine if transgenic expression was Gli-dependent, we generated two independent mutations in this site [GremM1 and GremM2] and in one of these [GremM1] also nine additional mutations altering the sequence of even low-probability Gli sites [GremM3]. Surprisingly, no appropriate reporter expression was observed in any of these regions [total of zero of 36 transgenics; Fig. 4G; data not shown]. This data suggests that a direct Gli activator input governs Gremlin’s Shh-dependent limb expression and that the restoration of Gremlin expression in Shh−/−; Gli3−/− mutants reflects

Figure 2. Gli3 binds to heterologous neural Gli enhancers associated with silenced genes. (A) CisGenome visualization of neural Gli1 enrichment for Nkx2.2 using Agilent arrays reported in Vokes et al. (2007) shows that the binding region overlaps with that for Gli3 binding in the limb [red arrows]. The transcript is enriched for Histone H3K27me3. (B,C) Nkx2.2 transcripts are not detectable by in situ hybridization in either wild-type or Gli3 mutant limb buds at E11.5. (D) Embryos processed in parallel show appropriate neural expression at E10.5. (E) Similar results are seen for Nkx2.1 ChIPs and these transcripts are also not detectable by in situ hybridization in wild-type or Gli3 mutant limb buds (shown in F,G). (H) Embryos processed in parallel show appropriate neural expression at E10.5. An artifact of the transmitted light generates a shadow in D and H. No signal is observed in dissected limb samples.

Gremlin encodes a BMP antagonist that is postulated to act downstream from Shh to maintain the AER. Consequently, Gremlin mutants lose Shh expression as the AER to ZPA feedback loop is broken and fail to develop distal limb structures [Zuniga et al. 1999; Khokha et al. 2003]. In contrast to Blimp1, Gremlin expression is excluded from the ZPA but extends throughout most of the distal limb mesenchyme [Fig. 4C] [Zuniga et al. 1999; Scherz et al. 2004]. We identified four GBRs [Fig. 3D] in a −70-kb region −40–110 kb downstream from Gremlin that was previously shown to drive reporter gene expression to the Gremlin limb domain [Zuniga et al. 2004]. A 438-bp fragment representing the major binding site replicated the posterior Gremlin domain observed with a 70-kb fragment in the earlier study [eight of 12 transgenic embryos] [Figs. 4C,C’]. As with the 70-kb element, expression is excluded from the anterior limb mesenchyme where Gremlin is normally present. Thus, distinct modes of regulation appear to govern Gremlin expression in different regions of the limb mesenchyme [see the Discussion].

Comparison of Shh−/− and Shh−/−; Gli3−/− compound mutants has suggested that Shh regulates Gremlin through the loss of Gli3 repressor rather than by a Gli activator function [Fig. 4D–F; Litingtung et al. 2002; te Welscher et al. 2002b]. To determine if transgenic expression was Gli-dependent, we generated two independent mutations in this site [GremM1 and GremM2] and in one of these [GremM1] also nine additional mutations altering the sequence of even low-probability Gli sites [GremM3]. Surprisingly, no appropriate reporter expression was observed in any of these regions [total of zero of 36 transgenics; Fig. 4G; data not shown]. This data suggests that a direct Gli activator input governs Gremlin’s Shh-dependent limb expression and that the restoration of Gremlin expression in Shh−/−; Gli3−/− mutants reflects
an indirect role of the removal of Gli3 repressor activity (see the Discussion).

Hand2 encodes a transcriptional regulator that acts genetically upstream of Shh to positively regulate Shh expression. In turn, Hand2 is restricted posteriorly by Gli3-mediated repression [Fig. 4J; Charité et al. 2000;
of Gremlin stained for –/H11032 (A) G0 transgenic analysis of putative Gli enhancer do-
C/H11032 2658 GENES & DEVELOPMENT

Figure 4. (Vokes et al. Vokes et al. 2002a). Thus, Shh-mediated derepres-
sion of Gli3 activity appears to govern the limb mesen-
chyme domain of Hand2. Two major GBRs were identi-
ﬁed in phylogenetically conserved regions ~10 kb and
~85 kb downstream from the Hand2 transcript unit
[Hand2-10K and Hand2-85K, respectively; Figure 3E].
Neither a 433-bp region encompassing Hand2-10K or a
composite of the 10K [433 bp] and 85K [850 bp] GBRs
[Hand2-10K + 85K] displayed limb expression [zero of
five embryos [data not shown] and zero of four embryos
[Fig. 4L], respectively]. The assayed regions therefore
lack enhancer activity and either act as silencers or have
no discernible function.

To address the former possibility, the 10K + 85K bind-
ing regions were attached to a Prrx1 regulatory cassette;
this contains a strong limb enhancer that drives broad
mesenchymal expression of transgenes in the limb [see
schematic Fig. 4M; Martin and Olson 2000]. While
Prrx1::lacZ expression is somewhat variable [nine of 14
transgenics exhibit limb expression], all embryos with
limb expression showed approximately similar levels of
β-galactosidase activity in both the anterior and poste-
rior limb mesenchyme [Fig. 4N]. In contrast, when the
10K + 85K binding regions were placed upstream of the
Prrx1 LacZ cassette, transgene activity was markedly re-
duced speciﬁcally in the anterior mesenchyme of the limb
[six of nine transgenics with limb expression] [Fig.
4O]. This suggests that these GBRs may act as silencer
elements in Gli3-mediated repression of Hand2 that
result in appropriate restriction to the posterior half of the
limb.

cis-regulatory mechanisms of Shh-dependent AP
patterning in the limb bud

The 656 GBRs associated with 205 genes showing Shh/
Gli-regulated expression changes provide a foundation
for dissecting the Gli cis-regulatory circuitry in limb de-
velopment. The Gli1, Blimp1, Gremlin, and Hand2
analyzes functionally validate the data set. However, a
full validation through transgenic experiments is not fea-
sible. To shed further light on novel regulatory interac-
tions, we examined a subset of genes that exhibit the
most pronounced asymmetry in their anterior versus
posterior expression through computational analysis of
the gene expression data [see Supplemental Table S6].
Whereas only 14% of randomly chosen genes are associ-
ated with GBRs, the posterior gene set contains 35 genes,
23 of which are closely associated with GBRs [Supple-
mental Table S6]. The core Shh pathway components
Gli1, Ptch1, and Ptch2 are all present. As these require
Gli activator input, these data likely represent Gli acti-
ator targets where Shh signaling levels are highest and
provide further evidence that Gli repressor and activator
forms recognize common targets. In addition to Hand2
discussed above, the posterior set includes a large num-
ber of transcription factors with known roles in limb de-
velopment: Hand2 [discussed above], Tbx2 [early role
in initiating Shh expression] [Nissim et al. 2007],
Hoxd13 [skeletal patterning] [Zakany and Duboule

Figure 4. (A–C) In situ hybridization of E11.5 limb buds indi-
cating gene expression patterns for Gli1, Blimp1, and Gremlin.
(A–C) G0 transgenic analysis of putative Gli enhancer do-

Please refer to the document for the full citation and further reading.
In light of this result, it is likely that a subpopulation of limb mesenchyme below the threshold is sensitive requiring relatively low numbers of cells (~2.3 x 10⁶ cells per ChIP) and the general strategy of a genetically inducible epitope-tagged transcription factor in the context of a specific developmental process, Shh-mediated patterning of the limb. The methodology is sensitive requiring relatively low numbers of cells (~2.3 x 10⁶ cells per ChIP) and the general strategy of a genetically inducible epitope-tagged transcription factor is broadly applicable to other Hh-mediated regulatory events and other transcriptional networks. We detect ~20,000 GBRs, focusing our analysis on a subset of ~5000 GBRs that are greater than six standard deviations from the mean. The substantial enrichment of Gli motifs within this population gives credence to the view that these are most likely to include biologically significant regulatory regions. While it is likely that some sites are missed, for example, where Gli3 binding occurs within a subpopulation of limb mesenchyme below the threshold of detection, the numbers of binding sites are consistent with genome scale studies in mammalian cell culture (Carroll et al. 2006; Yang et al. 2006; Johnson et al. 2007). Currently this represents the only large-scale data set for GBRs. The data incorporate a more limited set of 25 Gli1-binding regions identified in Shh patterning of neural tissue (Table 2), indicating that Gli activator and repressor forms have similar binding specificities in vivo as they exhibit in vitro (Kinzler and Vogelstein 1990; Hallikas et al. 2006; Vokes et al. 2007). These include neural specific target genes that are transcriptionally silent in the limb. Thus, their GBRs are accessible to Gli factors but Gli3 activity is not required for tissue-specific silencing. In light of this result, it is likely that a significant fraction of the GBRs may reflect genes regulated by Hh signals in other tissue contexts. Indeed, only 696 of the 5274 GBRs (12.4%) associate with Shh pathway-regulated genes in the limb. Whereas some of these may reflect genes regulated at earlier or later stages of limb development, a large number are probably “inert” binding sites as observed in whole-genome studies in Drosophila (Li et al. 2008).

Transgenic analyses of regulatory networks within mammalian systems have demonstrated that considerable distances often separate cis-regulatory regions from the TSSs they modulate and regulatory regions may lie 5’ or 3’ of a gene’s promoter. Existing promoter arrays contain cis-regulatory sequences that are relative close to the TSS (e.g., -7.5 kb upstream to +2.5 kb from the TSS). Because of this proximity, most studies have assumed that binding of a regulatory factor within this proximal domain associates with the regulation of that gene; they do not attempt to measure an explicit FDR. In whole-genome studies such as ours, however, the indeterminate distance between genes and their cognate regulatory regions makes assigning long-range binding sites a non-trivial problem. We estimated the FDR associated with varying distances and find that by including information about both the gene density of the region and clustering tendencies of binding regions, we are able to make and then validate predictions for direct Gli input into long-range cis-elements that are likely to regulate Gremlin (~100 kb from the 3’ end of the transcriptional unit), Blimp1 (~25 kb from the 3’ end of the transcriptional unit) and Hand2 (~10 kb and 85 kb downstream from the transcriptional unit). Of the 656 GBRs associated with differentially expressed limb genes, 252 are ~20 kb from a TSS with an FDR <50% (Supplemental Data Set 3). Thus, longer-range cis-regulatory interactions are relatively common in this Gli3 regulatory network and likely more generally in mammalian systems.

Gli regulatory circuitry and modes of Gli action

Our analysis of several Gli3-binding regions in mediating cis-regulatory control of endogenous target genes validate the approach and data set, providing interesting new insights into cross-regulatory mechanisms that contribute to limb patterning. In the mouse, Blimp1 expression precedes Shh (Vincent et al. 2005) and analysis of Blimp1 mutants indicates that Blimp1 regulates Shh levels (Robertson et al. 2007). Our results suggest that a Shh–Gli regulatory input plays a reciprocal role in maintaining Blimp1 expression, a feedback mechanism essential for forming the most posterior digits (Robertson et al. 2007). In the pectoral fin of the zebrafish, Shh is also required for maintenance, but not induction, of Blimp1. Further, Shh lies genetically upstream of Blimp1-mediated regulation of slow twitch muscle fibers (Baxendale et al. 2004; Lee and Roy 2006). Given the critical role of Blimp1 in several stem/progenitor cell compartments and Shh’s roles in maintenance of stem/progenitor cells, we speculate that this regulatory module may play a broader role in other tissues.

Two major signaling pathways are specifically en-
riched among target genes of Gli regulation; as expected, the Hh pathway itself where feedback systems play an important role in modulating activity and output, and the BMP pathway [Supplemental Table S5]. BMP signaling plays a crucial role in regulating limb outgrowth through the AER [see above] and is postulated to play a role in patterning digit identity when signaling is modulated in the chick limb [Dahn and Fallon 2000; Drossopoulou et al. 2000]. However, removal of BMP activity in the mouse mesenchyme gives a normal range of digits but supernumerary preaxial and post-axial digits (Selever et al. 2004; Bandyopadhyay et al. 2006). We identify both Bmp2 and Gremlin as direct targets and provide functional evidence for the Shh–Gremlin interaction. A GBR >100 kb downstream from the gene encoding this critical BMP antagonist mediates a direct Gli activator activity in the posterior half of the normal Gremlin expression domain. Interestingly, although our data clearly demonstrate a Gli activator role, derepression of Gli3 in Shh−/−; Gli3−/− [Litingtung et al. 2002; te Welscher et al. 2002b] or Smo−/−;Gli3−/− [Fig. 4E] compound mutants appears to be sufficient for distal expression of Gremlin in both anterior and posterior domains. Bmp2 is expressed in these mutants and Bmp2 can activate Gremlin in a Shh-independent fashion [Capdevila et al. 1999; Litingtung et al. 2002, Nissim et al. 2006]. Moreover, BMP signaling is essential for all Gremlin expression [Capdevila et al. 1999]. Together these data suggest a model where BMP input, through a regulatory module that remains to be determined, provides a tonic level of Gremlin activity throughout the distal limb mesenchyme. In the posterior compartment of the limb, close to the Shh source, a distinct Gli activator-dependent enhancer independently regulates Gremlin. This accounts for the higher level of Gremlin expression evident in both the chick and mouse on this posterior limb domain and its persistence in Smo−/−;Gli3−/− mutants [Figs. 4H,I,5].

Our analysis suggests a model where Gli3 acts through a cis-acting silencer region to directly repress Hand2; Shh signaling attenuates Gli3 repressor production [Wang et al. 2000] enabling the maintenance of Hand2 expression in the posterior limb mesenchyme. The predicted silencer likely interacts with positive acting elements located outside of the GBR assayed. Chromosome capture conformation studies will likely shed important light on this and many other long-range interactions mediating Gli regulatory function. Further, new methodologies will likely improve silencer analysis, almost certainly an artificially underestimated component of regulatory networks.

Future studies

The present analysis provides a regulatory scaffold for the construction of Gli-dependent subcircuits in limb development [Fig. 5]. In addition to an ongoing analysis of predicted targets and their roles in the Shh-dependent limb patterning process, a number of questions raised herein warrant further study. First, many putative Shh target genes have expression patterns that reflect multiple regulatory inputs. We know that at some regulatory level, the transcriptional processes must integrate additional signaling pathways including Wnt, FGF, BMP, and Notch. By analogy with other model systems, integra-

![Figure 5](https://genesdev.cshlp.org)
tion of these inputs at the level of cis-regulatory modules is an attractive proposition. However, we do not detect an enrichment for Smad (BMP pathway) or Lef/Tcf (Wing pathway)-binding motifs in GBRs. Second, nearly half of the binding regions do not contain a predicted Gli motif even though this subset is more conserved at the phylogenetic level than those containing direct Gli-binding sites. This may indicate Gli3 association without direct DNA binding. Gli proteins have been shown to associate with other transcriptional regulators such as Smads, β-catenin, and 5′HoxD proteins in various contexts [Li et al. 1998; Chen et al. 2004; Ulloa et al. 2007]. The enrichment of a composite bHLH/homeodomain bipartite motif may provide a clue to these interactions. Additional DNA/chromatin interaction and in vivo expression studies will be required to understand this interesting population of Gli targets.

Materials and methods

Generation of mouse strains and ChIP-on-chip

We generated a cDNA encoding a truncated form of mouse Gli3 containing the first 740 amino acids of mouse Gli3 [a gift from Dr. Ulrich Rüther] to make a Gli3 repressor (Gli3T) with a C-terminal 3XFlag epitope [Sigma]. Gli3T was targeted to the Rosa26 locus [Supplemental Fig. S1A, Soriano 1999] in YFP3.1 embryonic stem (ES) cells [Supplemental Fig. S1B–C] [Mao et al. 2005] to generate a Cre-inducible Gli3 repressor line. Rosa Gli3T/c/c females were crossed with Prrx1Cre homozygous males and litters were assayed at E11.5. ChIP and LMPCR was performed as described previously [Vokes et al. 2007] with minor modifications [see the Supplemental Material] and DNA products were hybridized to the Mouse Tiling 2.0R array set or Mouse Promoter 1.0R array [single samples]. The Histone H3K27Me3 antibody [Abcam ab6002] was incubated with anti-mouse IgG beads [Dynal #112.01] and the Pan Histone H3 antibody [Abcam ab1791] with anti-rabbit IgG beads [Dynal #112.03]. ChIPs were processed as above using a single non-pooled ChIP from one litter of wild-type [Swiss-Webster] anterior or posterior limb fractions [two biological replicates]. These were assayed on Affymetrix Mouse Promoter 1.0R arrays. Probes in Affymetrix tiling arrays were remapped to the mm8 build 36 version of the mouse genome—all coordinates in this study are reported in mm8. Raw data were quantile-normalized and binding regions were determined using the new version of TileMap incorporated into CisGenome using a moving average [MA] [see the Supplemental Material, Ji and Wong 2005]. All expression and tiling array data associated with this study have been deposited to the GEO database [GSE11062 and GSE11063].

Exon gene expression arrays

All gene expression experiments used E11.5 forelimbs. Samples were hybridized to Mouse Exon 1.0ST arrays [Affymetrix]. The data were normalized and gene level expression indices were computed using GeneBASE software [Xing et al. 2006; Kapur et al. 2007]. We then generated the following pairwise comparisons using PowerExpress, which implements the gene selection methods described in Paik et al. [2007]: Shh < wild type, SmoM2 > wild type, Gli3 < wild type, Gli3 > wild type, Ant < Post, Ant > Post. Genes with an FDR > 25% and a fold change ≥ 2 were selected. We did not generate pairwise comparisons for a certain combinations with SmoGli3 and Gli3 mutants because data from these arrays contained significant variability. To identify additional genes that were Shh-responsive, we performed the following multiple sample comparisons using an FDR = 10% and a posterior probability cutoff of ≤ 25%: (1) Ant < Post and Shh < wild type < SmoM2, (2) Ant < Post and Shh < wild type < SmoM2 and Gli3 < SmoGli3, (3) Ant < Post and Shh < wild type < SmoM2 and wild type > SmoGli3. To define polarized gene sets representing both anterior and posterior compartments, we used the gene expression data on dissected anterior and posterior limb buds, Shh mutant limb buds, and SmoM2 limb buds [see Supplemental Table S6].

Assignment of Gli target genes

To calculate an initial intersection of binding regions with expression data, we identified 753 genes differentially expressed in at least one of the pairwise or multivariable comparisons in the exon array data. We counted the number of GBRs located within a given distance of their TSS, and we compared the observed number with random expectations [see the Supplemental Material, Supplemental Fig. S4A]. To incorporate information about intervening transcripts [gene density], each of the 5274 GBRs was associated with a gene encoding the closest differentially expressed transcript. We counted the number of GBR–gene pairs separated by ≤ Wbp and ≤ K intervening promoters and compared the observed number with random expectations [see the Supplemental Material, Supplemental Fig. S4D]. In order to explore binding regions located further away from genes, we collected the 689 GBRs in the 123 binding clusters reported in Figure 1F and repeated the same peak–gene association procedure for these 689 GBRs [Supplemental Table S4]. To determine motif enrichment, GMS was run on various data sets [see the Supplemental Material]. As a complementary motif analysis, we further mapped all TRANSFAC human and mouse motifs to GBRs and computed the relative enrichment r1 compared with matched genomic controls [see the Supplemental Material].

Transgenic experiments

To test for enhancer activity, we first visually scanned the annotated GBRs and adjusted fragment size in an attempt to recover an entire cis-regulatory domain based on visual inspection of conserved sequence using MultiZ alignments. These extended GBRs were PCR amplified inserted into pHSPl68lacZ2XINS [Vokes et al. 2007] [coordinates are described in the Supplemental Material]. The Hand2 constructs were tested for repressive activity in pSilencer, a modified version of pBSMhox—a precursor construct for Prrx1Cre [Logan et al. 2002]—where a LacZ expression cassette was inserted downstream from the Prrx1 regulatory sequences that drive limb expression [Fig. 4P].

Acknowledgments

We thank Zhenjuan Wang and Manfred Baetscher [Harvard Genome Modification Facility] for pronuclear injections, Benjamin Allen, Jennifer Couget [FAS Center for Systems Biology], Joshua Mugford, Joo-Seop Park, and Courtney Yuen for advice, Yi Xing and Karen Kapur for providing exon array analysis software and expertise, Baolin Wang for providing the Gli3 antibody, and Renate Hellmiss for help with figures. Alex Schier and Clift Tabin provided helpful advice either during the project or on the manuscript. We acknowledge support from the Helen Hay Whitney Foundation and Charles A. King Trust, Bank of
References

Bai, C.B., Stephen, D., and Joyner, A.L. 2004. All mouse ventral A.P.M.

Vokes et al.

Bandyopadhyay, A., Tsuji, K., Cox, K., Harfe, B.D., Rosen, V.,

Capdevila, J., Tsukui, T., Rodriquez Esteban, C., Zappavigna,

Dai, P., Akimaru, H., Tanaka, Y., Maekawa, T., Nakafuku, M.,

Drossopoulou, G., Lewis, K.E., Sanz-Ezquerro, J.J., Nikbakht,

Harfe, B.D., Scherz, P.J., Nissim, S., Tian, H., McMahon, A.P.,

Horsley, V., O’Carroll, D., Tooze, R., Ohnata, Y., Saitou, M.,

Jeong, J., Mao, J., Tenzen, T., Kottmann, A.H., and McMahon,

Ji, H., and Wong, W.H. 2005. TileMap: Create chromosomal map of
tiling array hybridizations. Bioinformatics 21: 3629–3636.

Ji, H., Vokes, S.A., and Wong, W.H. 2006. A comparative analysis of
genome-wide chromatin immunoprecipitation data for mammalian transcription factors. Nucleic Acids Res. 34: e146. doi: 10.1093/nar/gkl803.

Johnson, D.S., Mortazavi, A., Myers, R.M., and Wold, B. 2007. Genome-wide mapping of in vivo protein–DNA interactions. Science 316: 1497–1502.

Kapur, K., Xing, Y., Ouyang, Z., and Wong, W.H. 2007. exon

array assessment of gene expression. Genome Biol. 8: R82. doi:

10.1186/gb-2007-8-5-r82.

Khokha, M.K., Hsu, D., Brunet, L.J., Dionne, M.S., and Harland,

R.M. 2003. Gremlin is the BMP antagonist required for maintenance of Shh and Fgf signals during limb patterning. Nat. Genet. 34: 303–307.

Kiefer, S.M., Ohlemiller, K.K., Yang, J., McDill, B.W., Kohlhase,

J., and Rauchman, M. 2003. Expression of a truncated Sall1 transcriptional repressor is responsible for Townes-Brocks syndrome births. Hum. Mol. Genet. 12: 2221–2227.

Kinzler, K.W. and Vogelstein, B. 1990. The Gli gene encodes a nuclear protein which binds specific sequences in the human genome. Mol. Cell. Biol. 10: 634–642.

Kuiper, S., Feitsma, H., Sheth, R., Korving, J., Reijnen, M., and

Meijlink, F. 2005. Function and regulation of Axl4 in limb development: Complex genetic interactions with Gli3 and Shh. Dev. Biol. 285: 534–544.

Lauffer, E., Nelson, C.E., Johnson, R.L., Morgan, B.A., and Tabin,

C. 1994. Sonic hedgehog and Fgf-4 act through a signaling cascade and feedback loop to integrate growth and patterning of the developing limb bud. Cell 79: 993–1003.

Lee, B.C. and Roy, S. 2006. Blimp-1 is an essential component of the genetic program controlling development of the pectoral limb bud. Dev. Biol. 300: 623–634.

Lee, T.I., Jenner, R.G., Boyer, L.A., Guenther, M.G., Levine, S.S.,

Kumar, R.M., Chevalier, B., Johnstone, S.E., Cole, M.F.,

Isom, K., et al. 2006. Control of developmental regulators by Polycomb in human embryonic stem cells. Cell 125: 301–313.

Lewis, P.M., Dunn, M.P., McMahon, J.A., Logan, M., Martin,

J.F., St-Jacques, B., and McMahon, A.P. 2001. Cholesterol modification of sonic hedgehog is required for long-range signaling activity and effective modulation of signaling by Ptc1. Cell 105: 599–612.

Li, X.Y., Macarrth, S., Bourgon, R., Nix, D., Pollard, D.A., Iyer,

V.N., Hechmer, A., Simirenko, L., Stapleton, M., Hendriks,

C.L., et al. 2008. Transcription factors bind thousands of active and inactive regions in the Drosophila blastoderm. PLoS Biol. 6: e277. doi: 10.1371/journal.pbio.0060027.

Lingtung, Y., Dahn, R.D., Li, Y., Fallon, J.F., and Chiang,

C. 2002. Shh and Gli3 are dispensable for limb skeleton formation but regulate digit number and identity. Nature 418: 979–983.

Liu, F., Massague, J., and Ruiz i Altaba, A. 1998. Carboxy-terminal truncated Gli3 proteins associate with Smads. Nat. Genet. 20: 325–326.

Logan, M., Martin, J.F., Nagy, A., Lobe, C., Olson, E.N., and

Tabin, C.J. 2002. Expression of Cre Recombinase in the developing mouse limb bud driven by a Prxl enhancer. Genesis 33: 77–80.

Mao, J., Barrow, J., McMahon, J., Vaughan, J., and McMahon,

A.P. 2005. An ES cell system for rapid, spatial and temporal analysis of gene function in vitro and in vivo. Nucleic Acids Res. 33: e155. doi: 10.1093/nar/gni146.

Martin, J.F. and Olson, E.N. 2000. Identification of a prxl limb enhancer. Genesis 26: 225–239.

McGlenn, E. and Tabin, C.J. 2006. Mechanistic insight into how Shh patterns the vertebrate limb. Curr. Opin. Genet. Dev.
Nissim, S., Allard, P., Bandyopadhyay, A., Harfe, B.D., and Scherz, P.J., Harfe, B.D., McMahon, A.P., and Tabin, C.J. 2004. Regulation of Gremlin expression in the posterior limb bud. Dev. Biol. 299: 12–21.

Nissim, S., Allard, P., Bandyopadhyay, A., Harfe, B.D., and Tabin, C.J. 2007. Characterization of a novel ectodermal signaling center regulating Tbx4 and Shh in the vertebrate limb. Dev. Biol. 304: 9–21.

Niswander, L., Jeffrey, S., Martin, G.R., and Tickle, C. 1994. A positive feedback loop coordinates growth patterns and patterning in the vertebrate limb. Nature 371: 609–612.

Ohihara, Y., Yager, B., O’Carroll, D., Ancelin, K., Ono, Y., Sano, M., Barton, S.C., Ohukunyach, T., Nussenzeig, M., Tarakhovsky, A., et al. 2005. Blimp1 is a critical determinant of the germ cell lineage in mice. Nature 436: 207–213.

Ovcharenko, I., Loots, G.G., Nobrega, M.A., Hardison, R.C., Miller, W., and Stubbs, L. 2005. Evolution and functional classification of vertebrate gene deserts. Genome Res. 15: 137–145.

Paik, J.H., Kollipara, R., Chu, G., Ji, H., Xiao, Y., Ding, Z., Miao, L., Tothova, Z., Horner, J.W., Carrasco, D.R., et al. 2007. FoxOs are lineage-restricted redundant tumor suppressors and regulate endothelial cell homeostasis. Cell 128: 309–323.

Qu, S., Niswender, K.D., Ji, Q., van der Meer, R., Keeney, D., Magnuson, M.A., and Wisdom, R. 1997. Polydactyly and ectopic ZPA formation in Alx4 mutant mice. Development 124: 3999–4008.

Robertson, E.J., Charatsi, I., Joyner, C.J., Koonce, C.H., Morgan, M., Islam, A., Paterson, C., Lejsek, E., Arnold, S.J., Kallies, A., et al. 2007. Blimp1 regulates development of the posterior forelimb, caudal pharyngeal arches, heart and sensory vibrissae in mice. Development 134: 4335–4345.

Robledo, R.F., Rajan, L., Li, X., and Lufkin, T. 2002. The Dlx5 and Dlx6 homeobox genes are essential for craniofacial, axial, and appendicular skeletal development. Genes & Dev. 16: 1089–1101.

Scherz, P.J., Harfe, B.D., McMahon, A.P., and Tabin, C.J. 2004. The limb bud Shh–Fgf feedback loop is terminated by expansion of former ZPA cells. Science 305: 396–399.

Selever, J., Liu, W., Lu, M.F., Behringer, R.R., and Martin, J.F. 2004. Bmp4 in limb bud mesoderm regulates digit pattern by controlling AER development. Dev. Biol. 276: 268–279.

Soriano, P. 1999. Generalized lacZ expression with the ROSA26 Cre reporter strain. Nat. Genet. 21: 70–71.

Tarchini, B., Duboule, D., and Kmita, M. 2006. Regulatory constraints in the evolution of the tetrapod limb anterior–posterior polarity. Nature 443: 985–988.

te Welscher, P., Fernandez-Teran, M., Ros, M.A., and Zeller, R. 2002a. Mutual genetic antagonism involving GLI3 and dHAND prepattern the vertebral limb bud mesenchyme prior to SHH signaling. Genes & Dev. 16: 421–426.

te Welscher, P., Zuniga, A., Kuijper, S., Drenth, T., Goedemans, H.J., Meijlink, F., and Zeller, R. 2002b. Progression of vertebral limb development through SHH-mediated counteraction of GLI3. Science 298: 827–830.

Towers, M., Mahood, R., Yin, Y., and Tickle, C. 2008. Integration of growth and specification in chick wing digit-pattern-
A genome-scale analysis of the cis-regulatory circuitry underlying sonic hedgehog-mediated patterning of the mammalian limb

Steven A. Vokes, Hongkai Ji, Wing H. Wong, et al.

Genes Dev. 2008, 22:
Access the most recent version at doi:10.1101/gad.1693008

Supplemental Material
http://genesdev.cshlp.org/content/suppl/2008/09/22/22.19.2651.DC1

References
This article cites 63 articles, 19 of which can be accessed free at:
http://genesdev.cshlp.org/content/22/19/2651.full.html#ref-list-1

License

Email Alerting Service
Receive free email alerts when new articles cite this article - sign up in the box at the top right corner of the article or click here.

Copyright © 2008, Cold Spring Harbor Laboratory Press