Original Research Article

Studies on Bioefficacy of Aqueous Plant Extracts against *Pectobacterium carotovorum* causing Black Leg and Soft Rot of Potato

G. Biswal* and N. K. Dhal

Department of Plant Pathology, College of Agriculture, Odisha University of Agriculture and Technology, India

*Corresponding author

Abstract

Studies were conducted in the Department of Plant Pathology, Odisha University of Agriculture and Technology, Bhubaneswar following inhibition zone technique to test the bio-efficacy of plant extracts in vitro against *Pectobacterium carotovorum* causing pre-emergence and post-emergence rotting, black leg in field soft rot in potato. The seeds of locally grown trees, spices and weeds are used in the tests. These were *Terminalia chebula* (Chebulic myrobalan), *T. belerica* (Beleric myrobalan), *Emblcia officinalis* (Indian goose berry), (Azadirachata indica) (Neem), (Greater cardamom), *Rauvolfia serpentina* (Snake root), *Coriandrum sativum* (Dhania), *Cuminum cyminum* (Cumin), *Nigella sativa* (Black cumin), *Foeniculum vulgare* (Fennel), *Piper nigrum* (Black pepper), *Cassia fistula* (Indian laburn), *Cassia tora* (Senna tora). It was observed that *R.serpentina* exhibited maximum size of inhibition zone 13.53 followed by *A.subulatum* (11.33) against the test bacterial species. The inhibition zone was found to be 10.0mm in seed extracts of *T.chebula* and dried flower extracts of *Syzygium caryophyllus* while 9.30mm in *F.vulgare*, 8.68 in *C.cuminus* and 8.03mm in *N.sativa*. There was no statistically significant difference in inhibiting activity between *A.aromaticum* (7.97mm) and *A.indica* (7.92mm). The inhibition was same (7.01mm) in both *T.bellirica* and *C.viscosa*. In *P.nigrum*, *C.fistula* and *C.tora* also expressed same inhibiting activity (6.95mm). Minimum inhibition zone was observed in *E.officinalis* (6.68mm).

Keywords

Bioefficacy, Aqueous plant extracts, Antibacterial activity, Black leg and Soft rot

Article Info

Accepted: 26 September 2020
Available Online: 10 October 2020

Introduction

Potato (*Solanum tuberosum*) is considered as the most potential and nutritionally superior crop for fighting against hunger in both developing and under developed countries. Globally potato diseases mainly revealed the presence of 30 fungal, 7 bacterial and 36 viral diseases causing loss individually or collectively to the crop. The blackleg and soft rot cased by *Pectobacterium carotovorum* is an important disease of potato of the country, damaging the crop during pre and post emergence stage, growing period, harvest and post harvest operations like storage, transport and also at consumer level. The disease was found to be severe in immaturely harvested and peeled tubers while transported under poorly ventilated condition and under normal package of practices, i.e. 4% in north western
plains and 10% in eastern and peninsular India and 4-8% in hills (Somani and Shekhawat, 1990). In different locations of Odisha the black leg incidence varied from 1.35 to 4.36% in growing period and 4.19 to 6.47% of soft rot of tubers during harvest (Biswa and Dhal, 2013). The use of plant products have remarkable effects in plant disease management (Cowan, 1990 and Newman et al., 2000). The use organic farming is now gaining popularity. Different parts of many plants have antimicrobial properties. In this context the seeds of some commonly grown trees, weeds, medicinal plants and spices were tested against *P. carotovorum* causing black leg and soft rot of potato.

The seeds used in the studies were *Terminalia chhebula* (Chhebulic myrobalan), *T. belerica* (Beleric myrobalan), *Emblica officinalis* (Indian goose berry), *Azadirachata indica* (Neem), (Greater cardamom), *Rauwolfia sepentina* (Snake root), *Coriandrum sativum* (Dhania), *Cuminum cyminum* (Cumin), *Nigella sativa* (Black cumin), *Foeniculum vulgare* (Fennel), *Piper nigrum* (Black pepper), *Cassia fistula* (Indian laburn), *Cassia tora* (Senna tora) as well as dry flower buds of *Syzygium aromaticum* (clove) were collected (Table 1). These were washed several times in sterilized water and air dried. Fifty grams from selected seeds and dried flower buds along with 50ml of double distilled water were taken grinded with the help of pestal and mortar to a fine pulp. The pulp was filtered through two layers of muslin cloth and gently pressed to get maximum filtrate.

The filtrate from each plant part was collected and kept separately in different sterile specimen tubes and centrifused at 1500 rpm for 15 minutes. The supernatant liquid was drawn carefully into a 5ml syringe and then passed through membrane filter of 0.45nm size to sterilize the extract. The filter sterilized extract of each part collected in sterilized specimen tube with screw cap and stored in deep freeze maintained at -20°C. The extracts were evaluated in vitro following the inhibition zone technique.

In this technique, two drops of bacterial suspension of each test bacterium were transferred on to the petriplate containing NSA medium and spreaded over the surface of the medium with the help of a sterilized glass spreader. Three sets of Hi-media discs (5mm), soaked for one minute in each plant extracts were placed on the media surface of each petriplate at the equidistance from the centre. In each set four numbers of discs were used to hold sufficient quantity of the plant extract. Two sets of petridishes were used for testing each plant extract petriplates were incubated at 27±1°C for 24 hours in a BOD incubator. After the incubation period, the

Materials and Methods

The clean and healthy seeds of fifteen plants, i.e. *Terminalia chhebula* (Chhebulic myrobalan), *T. belerica* (Beleric myrobalan), *Emblica officinalis* (Indian goose berry), (Azadirachata indica (Neem), (Greater cardamom), *Rauwolfia sepentina* (Snake root), *Coriandrum sativum* (Dhania), *Cuminum cyminum* (Cumin), *Nigella sativa* (Black cumin), *Foeniculum vulgare* (Fennel), *Piper nigrum* (Black pepper), *Cassia fistula* (Indian laburn), *Cassia tora* (Senna tora) as well as dry flower buds of *Syzygium aromaticum* (clove) were collected (Table 1). These were washed several times in sterilized water and air dried. Fifty grams from selected seeds and dried flower buds along with 50ml of double distilled water were taken grinded with the help of pestal and mortar to a fine pulp. The pulp was filtered through two layers of muslin cloth and gently pressed to get maximum filtrate.

The seeds used in the studies were *Terminalia chhebula* (Chhebulic myrobalan), *T. belerica* (Beleric myrobalan), *Emblica officinalis* (Indian goose berry), (Azadirachata indica (Neem), (Greater cardamom), *Rauwolfia sepentina* (Snake root), *Coriandrum sativum* (Dhania), *Cuminum cyminum* (Cumin), *Nigella sativa* (Black cumin), *Foeniculum vulgare* (Fennel), *Piper nigrum* (Black pepper), *Cassia fistula* (Indian laburn), *Cassia tora* (Senna tora) as well as dry flower buds of *Syzygium aromaticum* (clove) were collected (Table 1). These were washed several times in sterilized water and air dried. Fifty grams from selected seeds and dried flower buds along with 50ml of double distilled water were taken grinded with the help of pestal and mortar to a fine pulp. The pulp was filtered through two layers of muslin cloth and gently pressed to get maximum filtrate.

The seeds used in the studies were *Terminalia chhebula* (Chhebulic myrobalan), *T. belerica* (Beleric myrobalan), *Emblica officinalis* (Indian goose berry), (Azadirachata indica (Neem), (Greater cardamom), *Rauwolfia sepentina* (Snake root), *Coriandrum sativum* (Dhania), *Cuminum cyminum* (Cumin), *Nigella sativa* (Black cumin), *Foeniculum vulgare* (Fennel), *Piper nigrum* (Black pepper), *Cassia fistula* (Indian laburn), *Cassia tora* (Senna tora) as well as dry flower buds of *Syzygium aromaticum* (clove) were collected (Table 1). These were washed several times in sterilized water and air dried. Fifty grams from selected seeds and dried flower buds along with 50ml of double distilled water were taken grinded with the help of pestal and mortar to a fine pulp. The pulp was filtered through two layers of muslin cloth and gently pressed to get maximum filtrate.

The seeds used in the studies were *Terminalia chhebula* (Chhebulic myrobalan), *T. belerica* (Beleric myrobalan), *Emblica officinalis* (Indian goose berry), (Azadirachata indica (Neem), (Greater cardamom), *Rauwolfia sepentina* (Snake root), *Coriandrum sativum* (Dhania), *Cuminum cyminum* (Cumin), *Nigella sativa* (Black cumin), *Foeniculum vulgare* (Fennel), *Piper nigrum* (Black pepper), *Cassia fistula* (Indian laburn), *Cassia tora* (Senna tora) as well as dry flower buds of *Syzygium aromaticum* (clove) were collected (Table 1). These were washed several times in sterilized water and air dried. Fifty grams from selected seeds and dried flower buds along with 50ml of double distilled water were taken grinded with the help of pestal and mortar to a fine pulp. The pulp was filtered through two layers of muslin cloth and gently pressed to get maximum filtrate.
petriplates were examined for development of inhibition zone around the discs. The diameters of each zone of inhibition was measured and recorded and analysed statistically to assess the antimicrobial properties of plant extracts against each test bacterium (Gomez and Gomez, 1984). In control the paper discs were soaked in sterilized water.

Results and Discussion

All the selected aqueous plant extracts exhibited various levels of antibacterial activity against *P. carotovorum*, the test bacterial species (Table 2). The aqueous seed extracts of *R. serpentina* exhibited highest length of inhibition zone 13.53 (Fig.1) followed by *A. subulatum* (11.33mm) against the test bacterial species. The inhibition zone was found to be 10.0mm in seed extracts of *T. chebula* while 9.30mm in *F. vulgare*, 8.68 in *C. cyminum* and 8.03mm in *N. sativa*.

There was no significant difference in antibacterial activity between *A. aromaticum* (7.97mm) and *A. indica* (7.92mm). The antibacterial activity was as par as in *T. bellirica* (7.00mm) and *C. viscosa* (7.01mm) while in *C. sativum* it was 7.28mm. The seed extracts of *P. nigrum*, *C. fistula* and *C. tora* expressed same activity (6.95 mm). Minimum inhibition zone (Fig.2) was observed in *E. officinalis* (6.68mm). No zone of inhibition of bacterial growth was observed in control. The inhibition zone in aqueous seed extracts ranged from 6.68mm to 13.53mm (Fig.3).

Several workers reported on the antimicrobial properties of above mentioned seed extracts and also the different parts of respective plants. Negi et al (2014) recorded the antibacterial activities of *R serpentine*. In *A. subulatum* bio-chemical and biological activities had been studied by Bisht et al., (2011).

Antibacterial activity of black myrobalan (*Terminalia chebula*) against *Helicobacter pylori* had been studied and reported (Malekzadeh et al., 2001). Rathre and Qureshi (2016) compiled the traditional uses and pharmacological behaviour of *F. vulgare*. Lacobellis et al., 2005 reported the antibacterial activity of *C. cyminum*. Parihar et al (2012) detected the antioxidant immunomodulatory and antimicrobial activity of *Amomum aromaticum* against *Klebsiella pneumonia*. Dharmarate et al (2018) reported antibacterial properties of *T. bellirica* against selected multi drug resistant bacteria.

Datta and Kundabala, (2013) studied the antimicrobial efficacy of endodontic irrigants from *Azadirachta indica*. Saeed and Tariq (2007) reported the antimicrobial activities of *Emblica officinalis* and *Coriandrum sativum* against gram positive bacteria and *Candida albicans*. Kalane et al., (2011) studied the antimicrobial activity of *Cassia tora*. Zou et al., (2015) worked on antibacterial mechanism and activities of black pepper chloform extract.

The antibacterial activity of black myrobalan (*Terminalia chebula*) against *Helicobacter pylori* had been reported (Malekzadeh et al, 2001). Mnif and Aifa (2015) compiled the beneficial effect of cumin (*Cuminum cyminum L.*) from traditional uses to potential biomedical applications. Raja Ratna Reddy et al., (2016) recorded the antimicrobial activity of *Azadirachta indica* (neem) leaf, bark and seed extracts. And Nunez and Aquino (2012) recorded antimicrobial property of *S. aromaticum*.

The inhibition zone in aqueous seed extracts ranged from 6.68mm to 13.53mm (Fig.3). It was indicated all the seeds used in the test had antibacterial properties against *P. carotovorum*.

3265
Sl.no	category	Scientific Name	Common name (English)	Family	Traditional uses
1	Medicinal tree	Terminalia chebula	Chebulic myrobalan	Combretaceae	It is used in treatment of constipations, colic pain, kidney dysfunction, eye diseases and sore throat. (https://vikaspedia.in/agriculture,Basa et al.,2017)
2	Medicinal tree	T.belerica	Beleric myrobalan	Combretaceae	It is used in treatment of constipations, colic pain, kidney dysfunction, eye diseases and sore throat. Seeds are edible(Kumar et al.,2018)
3	Medicinal tree	Emblica officinals	Aonla	Euphorbiaceae	Used in treatment of constipations, colic pain, kidney dysfunction, eye diseases and sore throat.(Sharma et al.,2003)
4	Spices	Amomum subulatum	Greater cardamom	Zingiberaceae	It is antimicrobial cardiac stimulant, carminative, diuretic stomachi (Bisht et al.,2011)
5	Medicinal plant	Rauvolvia serpentina	Snake root	Apocynaceae	Used for various ailments such as snakebites, insomnia, hypertension and insanity (Singh et al., 2017,Negi et al.,2014)
6	Weed plant	Cleome viscosa	Wild mustard	Cleomaceae	Used against fever, diarrhea, cardiac stimulant and carminative (Perumal Samy et al.,1999)
7	Spices	Coriandrum sativum	Coriander	Apiaceae	Seeds are antidiabetic, anti-inflammatory and lowers cholesterol. It is used as diuretic, carminative, stimulant, nagelstein, antihelminetic, hypoglycaemic (Waheed et al.,2006)
8	Spices	Cuminum cuminum	Cumin	Apiaceae	Seeds used as food additive, popular spice, flavouring agent in many cuisines. It is used against hypolipidemica, cancer and diabetes(Mnif and Aifa ,2015)
9	Tree	Azadirachata indica	Neem	Meliaceae	Anti oxidant, antimalarial, antimutagenic, anticarcinogenic, anti inflammatory, antihyperglycaemic, antiulcer and anti diabetic purposes (Venugopalan and Visweswaran, 2013)
10	Shade tree	Cassia tora	Senna tora	Fabaceae	Used against leprosy, bronchitis and cardiac disorders (Maity et al.,1998)
11	Spices	Nigella sativa	Black cumin	Ranunrulaceae	Commonly used for culinary and medicinal purposes as a remedy of hypertension and diabetes and as hypoglycemic, anti-inflammatory, antiulcer and broncho dilator (Bereksi et al., 2018)
12	Spices	Foeniculum vulgare	Fennel	Apiaceae	Fennel seeds helps in digestion, prevents acne, mouth fresher, beats bad breath(Al-Timimi ,2019)
13	Spices	Piper nigrum	Black pepper	Piperaceae	It is used as spice. It exhibit sedating, detoxification, hypotensive and anticancer activities. (Butt et al., 2012)
14	Spices	Amomum aromaticum	Aromatic cardamom	Zingiberaceae	Seeds are used to make a gangle or mouth wash to treat toothache, gingivitis and parodontosis. Seeds are antibacterial and use against stomachic, alleviate dyspepsia, fatulance, colic, vomiting, diarrhoea, cough (Basak et al., 2017)
15	Shade tree	Cassia fistula	Indian laburnum	Fabaceae	The bark is used in treatment of inflammatory swellings and as a cleaning agent for ulcers and wounds. It is believed to decrease purulent discharge and act as local antiseptic. The seeds are are antibilious, asperitif, carminative and laxative (Ajaya Kumar, et al., 2017)
16	Spices	Syzygium aromaticum	Cloves	Myrtaceae	The dried flower buds contain high antioxidants, regulate blood sugar, reduce stomach ulcers, may promote bone health (Chaieb et al.,2007)
Table.2 Inhibition of growth of bacterial species by aqueous seed extract under *in vitro* condition

Sl.No	Scientific Name	Common name (English)	Local name	Diameter of inhibition zone in mm
1	*Terminalia chebula*	Chebulic myrobalan	Harida	10.00(3.24)
2	*T.myrobalan*	Beleric myrobalan	Bahada	7.00(2.74)
3	*Emblica officinals*	Aonla	Aonla	6.68(2.68)
4	*Amomum subulatum*	Greater cardamom	Bada alaicha	11.33(3.44)
5	*Rauvolfia serpentine*	Snake root	Patal garuda	13.63(3.72)
6	*Cleome viscosa*	Wild mustard	Banasorisha	7.01(2.74)
7	*Coriandrum satium*	Coriander	Dhania	7.28(2.79)
8	*Cuminum cyminum*	Cumin	Jeera	8.68 (3.03)
9	*Azadirachata indica*	Neem	Nimba	7.92(2.86)
10	*Cassia tora*	Senna tora	Chhota chakunda	6.95(2.73)
11	*Nigella sativa*	Black cumin	Kala jeera	8.03(2.92)
12	*Foeniculum vulgare*	Fennel	Panamadhuri	9.30(3.13)
13	*Piper nigrum*	Black pepper	Golamarcha	6.95(2.73)
14	*Amomum aromaticum*	Aromatic cardamom	Alaicha	7.97(2.91)
15	*Cassia fistula*	Indian laburnum	Sunari	6.95(2.73)
16	*Syzygium caryophyllus*	Clove	Labanga	10.00(0.71)
17	Sterilized Water			0.00(0.71)

Figures in parentheses are in \(\sqrt{x+0.5}\) transformed values
Fig.1 Inhibition zone observed in *R. serpentina*, Fig.2-Inhibition zone observed in *E. officinallis*

Fig.3 Histogram showing zone of inhibition (in mm) in different aqueous extracts against the test pathogen

The antibacterial property of *T. chhebula* (Chhebulic myrobalan), *T. belerica* (Beleric myrobalan), *E. officinalis* (Indian goose berry), *A. subulatum*, (Greater cardamom), *R. serpentina* (Snake root), *C. sativum* (Dhania), *C. cymimum* (Cumin), *N. sativa* (Black cumin), *Foeniculum vulgare* (Fennel), *Piper nigrum* (Black pepper), *A. aromaticum* (aromatic cardamom) against *P. carotovorum* are reported to be new in India. Use of such extracts as tuber treatment at planting time, basal drenching in field and also tuber treatment in storage after harvest are to be tested.

References

Ajay Kumar K, Satis S, Sayeed I, Hedge K. (2017). Therapeutic uses of *Cassia fistula*: Review. *Int. J. Pharma. Chem. Res*. 31 (1):38-43

Ali BH, Blunden G. (2003). Pharmacological and toxicological properties of *Nigella sativa*. *Phytother. Res*. 17(4):299-305

Al-Timimi LN (2019). Antibacterial and anticancer activities of Fenugreek seed extract. *Asian Pacific J. Cancer Prevent*. 209(12):3771-3776

Ardha Jyoti, K. And Suba Rao, B. (2010). In vitro antibacterial activity of *Cleome viscosa*. *Pharma Sci.Monitor Reprtr*. 1(2):71-78

Basa SJ, Jayashankar Reddy V, Koshma M, Hanumanthu G, Dadakhalandar S. (2017). A review on *Terminalia chebula*. *Inter. J. Pharmaco. Res*. 7(10):187-191

Basak, S., Sharma, G.C., Rangan, L. 2010. Ethnomedical uses of Zingiberaceous
plants of North East India. *J. Ethnopharmacol.* 132(1):286-296

Bereksi MS, Hassaine H, Bekhechi C, Abdelouahid DE. (2018). Evaluation of antibacterial activity of some medicinal plant extracts commonly used in Algerian Traditional Medicine against some Pathogenic Bacteria. *Pharmacogon. J.* 10(3): 507-512.

Bisht VK, Negi JS, Bhandari AK, Sunderiyal RC. (2011). *Ammomum subulatum* Roxb: Traditional biochemical and biological activities. *African J. Agricultu. Res.* 6(24): 5386-5390.

Biswal G and Dhal, NK (2013). Survey on natural occurrence of diseases in potato at various locations of Odisha. *Internat. J. Plant Protect.* 6(1): 188-191.

Butt MS, Pasha I, Sultan MT, Randhwa MA, Saeed F, Ahmed W. (2012). Black pepper and health claims: a comprehensive treatises. *Crit. Rev. Food. Sci.* 53:875-886.

Chaieb K, Hajlaoui H, Znantarr T, AmeBenKhala, N, Rouabhai 2007. The chemical composition and biological activity of clove essential oils. *Phytotherapy Res.* 21(6):501-506.

Cowan MM (1999) Plant products as microbial agents. *Clinical Microbial Reviews.* 2(4): 63-78.

Dharmaratne MPJ, Manoraj A, Thevanesam V, Ekanayake A, Kumar NS, Liyanapathirana V, Abeyratne E and Bandara BR. (2018). *Terminalia bellirica* fruit extracts: in vitro antibacterial activity against selected multidrug resistant bacteria, radical scavengeing activity and cytotoxicity study on BHK-21 cells. BMC Complementary and Alternative Medicine 18(1): 1-12.

Dutta A, Kundabala M (2013). Antimicrobial efficacy of endodontic irrigants from *Azadirachta indica*: An invito study. *Acta Odontologica Scandinavica.* 71(6):1594-1598

Fern, K. (2020a). Tropical Plant Database.tropical.the ferns.info.2020-09-03< tropical. the ferns.info<view tropical.php

Fern, K. (2020b). Tropical Plant Database, tropical. the ferns.info<2020-09-04< tropical. the ferns.info<view tropical.php

Gomez, K.A. and Gomez, A.A. (1984). Statistical procedure for Agricultural Research. John Wiley and Sons. New York. pp. 680.

Kalane, V.J. and Chavan, R.T., Kalane, V.J. and Deshmkuh, V.L. (2011). Antimicrobial activity of *Cassia tora*. *Curr. Bot.*, 2(1):8-9.

Khan, KH. 2009. Role of Emblica officinalis in medicine-A review. *Botany Res. Internat.* 2(4):218-228.

Kalane, V.J. and Chavan, R.T., Kalane ,V.J. and Deshmkuh, V.L. (2011). Antimicrobial activity of Cassia tora. *Curr. Bot.*, 2(1):8-9.

Kumar N and Khurana SM. Phytochemistry and medicinal potential of the *Terminalia bellirica*. *Indian J. Natural Products Resources.* 9(2): 97-107

Lacobellis NS, Cantore PL, Capasso F, Senatore F 2005. Antibacterial activity of *Cuminum cyminum* and *Carum carvi* Essential oils. *J.Agric.Food Chem.* 53(1):57-61.

Mali RG (2010). A review on ethnobotany, phytochemistry and pharmacology. *Pharmaceutical Biol.* 48(1):105-112.

Maity, T.K., Mandal, S.C., Mulkherjee, P, Saha., B.P., Das, J., Pal, M and Saha, B.P. (1998). Studies on anti-inflammatory effect of *Cassia* leaf extract. *Phytother. Res.*, 12(3): 221-223.

Malekzadeh, F, Ehsanifar, H, Shahamat, M, Levin M, Colwell R.R. 2001. Antibacterial activity of black myrobalan (*Terminalia chebula*) against Helicobacter pylori. *Int. J.A ntimicrob Agents.* 18:85-88.

Mnif S and Aifa S. 2015. Cumin (*Cuminum intifolia* Linn.) and Moringa oleifera as natural antibacterial agents. *Int. J. Botanical Research.* 3:184-188.

Mosalaa S, Erfani M, Khakshoor M, Mahloob A, Rhamdani A. (2016). The antimicrobial activity of *Eucalyptus globulus* leaf extract on some Pathogenic Bacteria. *Complementary and Alternative Medicine.* 22(1): 1-5.

Murali K, Nandini S, Kavya V, Appaiah H, Bhimasastry V, Pathak A, Singh, A. (2011). Antimicrobial and Antioxidant activities of *Azadirachta indica* A. J. L.: An invito study. *Acta Chimica* 2(3): 215-218.
cymimum L.) from traditional uses to potential biomedical applications. *Chem. Biodivers.* 12(5):733-42.

Negi JS, Bisht VK, Bhandaria AK, Bisht DS. 2014. Quantification of reserpine content and antibacterial activity of *Rauwolfia serpentina* (L) Benth. ex Kurz. *African J. Microbiol. Res.* 8(2):162-166.

Newman DJ, Cragg GM and Snader KM (2000). The influence of natural products upon drug discovery; *Nat. Products Reports.* 17: 215-234.

Nunej L.and Aqino, M.D., (2012). Microbial activity of clove essential oil. *Braz. J. Microbiol.* 43(4):255-260.

Parihar, L., Sharma, L., Kapoor, P., Parihar, P. (2012). Detection of antioxidant Immunomodulatory and antimicrobial activity of *Amomum aromaticum* against *Klebsiella pneumoniae*. *J.Phrm Res.* 5(2):901-905.

Perumal Samy, R, Ignacimuthu and Patric Raja, D. (1999). Preliminary screening of ethnomedicinal plants from India. *J Ethnopharmacol.*, 66(2); 235-240.

Ponnusamy, K., Ramadevi, S.R. and Hopper, W. (2009). Antibacterial activity of *Terminalia chebula* Retz. fruit extract. *African J. Microbiol. Res.* 3(4):180-184.

Raja Ratna Reddy Y, Krishna Kumari C, Lokanatha O, Mamatha S, Damodar Reddy C. (2016). Antimicrobial activity of *Azadirachta indica* (neem) leaf, bark and seed extracts. *Int. J. Res. Phytochem. Phrmacol.* 3(1):1-4.

Rathre MA, Qureshi M (2016). *Foeniculum vulgare*: A comprehensive review of its traditional use, phytochemistry, pharmacology and safety. *Arabian J. Chemistry.* 9(2):51574-51583

Saeed S and Tariq P. (2007). Antimicrobial activities of *Emblica officinalis* and *Coriandrum sativum* against gram positive bacteria and *Candida albicans*. *Pak J. Bot.* 39(3): 913-917.

Sharma, S. K, Perianayagam BJ, Joseph A, Christina AJM. 2003. Antiinflammatory activity of ethanol an aqueous extracts of *Emblica officinalis* Garth fruits. *Hamdard Medicus.* 46:75-78.

Somani AK and Shekhawat GS (1990). Bacterial soft rot of potato in India. Technical Bulletin. 21.CPRI, Shimla. Pp: 32.

Waheed, A., Miana G.A. Ahmad SI,Khan MA 2006. Clinical investigation of hypoglycemic effect of *Coriandrum sativum* in type-2 (NIDDM) diabetic patients. *Pakistan J. Pharmacol.* 23(1):7-11.

Valgas C, Souza SM, Smania EF,Smania A.2007. Screening methods to determine antibacterial activity of natural products. *Brazilian J. Microbiol.*38(2):369-380.

Venugopalan SK and Visweswaran N.2013. Neem (*Azadirachta indica*): Prehistory to contemporary medicinal uses to humankind. *Asian Pac J Trop Biomed.* 3(7): 505-514

Zou L, Hu Y-Y, Chen W-X.2015.Antibacterial mechanism and activities of black pepper chloform extract. *J Food Sci Technol.* 52(12): 8196-8203

How to cite this article:

Biswal, G. and Dhal, N. K. 2020. Studies on Bioefficacy of Aqueous Plant Extracts against *Pectobacterium carotovorum* causing Black Leg and Soft Rot of Potato *Int.J.Curr.Microbiol.App.Sci.* 9(10): 3263-3270. doi: https://doi.org/10.20546/ijcmas.2020.910.390