Research Article

Ernest Baaﬁ*, Mavis Akom, Adelaide Agyeman, Cynthia Darko, Ted Carey

Breeding farmer and consumer preferred sweetpotatoes using accelerated breeding scheme and mother–baby trials

https://doi.org/10.1515/opag-2020-0055
received June 13, 2020; accepted August 21, 2020

Abstract: Increased sweetpotato utilization has become an important breeding objective recently, with much emphasis on the development of non-sweet sweetpotatoes for income and food security in Ghana. The objective of this study was to evaluate 26 elite non-sweet and less sweet sweetpotato genotypes with regard to their release as commercial varieties using mother–baby trial. The 26 sweetpotato genotypes were tested multilocational on-farm across five ecozones from 2016 to 2017. These genotypes were selected from accelerated breeding scheme carried out from 2010 to 2013. There were no year-by-ecozone-by-genotype and year-by-ecozone interactions. However, ecozone-by-genotype interaction was significant for storage root dry matter, beta-carotene, iron and zinc content. This implies that the relative performance of the genotypes for storage root yield was stable across locations and years. Genotypic differences were found for all the traits and indicated that selection of superior genotypes across ecozone was possible. Storage root yield ranged from 7 t/ha to 39 t/ha, while dry matter content ranged from 34% to 46%. The storage root cooking quality preference was comparable with farmers’ check. Ten superior genotypes were identiﬁed for release as commercial varieties based on their staple-preferred taste, higher storage root yield, higher dry matter content, earliness, resistance to the sweetpotato virus, sweetpotato weevil and Alcidodes.

Keywords: beta-carotene, genotype, G × E, non-sweet, staple-type

1 Introduction

Sweetpotato (Ipomoea batatas L. (Lam)) belongs to the botanical family Convolvulaceae (Thottappilly 2009) and its among the few crop plants of major economic importance in the family for food globally (Eich 2008), which may be due to the Agrobacterium infection which occurred in its evolution (Kynsda et al. 2015). The potential of sweetpotato in food security and global well-being has been reported (Van Hal 2000; Bouvelle-Benjamin 2007; Low et al. 2009; Betty 2011; Health Research Staff 2012; Jacobi 2013; Oliver 2015; Eating Well 2019). It is the fourth most important root and tuber crop in Ghana in terms of production (Baafi et al. 2016c). Its annual production is estimated at 1,35,000 tonnes, representing just under 0.6% of root and tuber crops produced in Ghana (FAOSTAT 2013).

Improved high-yielding crop varieties stimulate transition from low-productivity subsistence agriculture to a high-productivity agro-industrial economy (Just and Zilberman 1988; Asfaw et al. 2012; Mackill and Khush 2018; Voss-Fels et al. 2019). Sweetpotato has remained an untapped resource in Ghana despite giant strides made in releasing high yielding varieties (Adu-Kwarteng et al. 2001; Ellis et al. 2001; Adu-Kwarteng et al. 2002; Meludu et al. 2003; Zuraida 2003; Baafi 2014). The decision to adopt a new cultivar is complexly related to field and yield performance as well as consumer taste acceptability (Sugri et al. 2012). Consumer preference is critical in determining the suitability of sweetpotato to any locality (Tomlins et al. 2004; Kwach et al. 2010). It is reported that some cultivars were not adopted because of lack of sufficient consideration of farmers’ and consumers’ preference (Toomey 1999; Banziger and Cooper 2001; Derera et al. 2006). Effective breeding
should be based on clear identification of stakeholders’ constraints and preferences (Adesina and Zinnah 1993; Sal et al. 2000; Baafi et al. 2015b). Consumers in Ghana prefer non-sweet sweetpotatoes with high dry matter content (Sam and Dapaah 2009; Baafi 2014; Baafi et al. 2015b). Locally available sweetpotatoes have very sweet taste, limiting their consumption as a staple food (Missah and Kissiedu 1994). Orange-fleshed sweetpotatoes were introduced to combat vitamin A deficiency at relatively cheaper cost but they have low dry matter content (Baafi 2014). High dry matter is one of the important attributes that affects consumer preference in most of sub-Saharan Africa (Tumwegamire et al. 2004). Development of end-user preferred sweetpotatoes has become key objective in sweetpotato breeding in Ghana (Baafi et al. 2016c) as higher yield is important in crop breeding (Rausel et al. 2002).

Successful development and release of staple-type sweetpotatoes requires accelerated breeding scheme (ABS) (Grüneberg et al. 2004) and mother–baby trial approach. The advantage of ABS is that each botanical seed of sweetpotato is a potential variety, and once the seeds rapidly multiply, multilocational seed of sweetpotato is a potential variety, and once the approach. The advantage of ABS is that each botanical

2 Materials and methods

The breeding work began with a survey aimed at identifying constraints and breeding priorities that will facilitate increased sweetpotato utilization in Ghana in 2011 (Baafi 2014; Baafi et al. 2015b). Concurrently, genetic potential of the collected germplasm was exploited to identify the useful genetic variation for the development of non-sweet sweetpotatoes from 2011 to 2012 (Baafi 2014; Baafi et al. 2015a; 2016d). This was followed by hybridization of parental genotypes selected in 2012 and on-station multilocational evaluation of F1 progenies in 2013 (Baafi 2014; Baafi et al. 2016a; 2016b; Baafi et al. 2017). Twenty-six elite F1s selected were tested multilocational on-farm in 2016 and 2017 using mother–baby trial approach. The 26 genotypes were divided into five groups, each subset having five genotypes (except group 2, which had six; Table 1). The trials were established in the major sweetpotato growing areas in the five ecozones of Ghana (Table 2). Six farmers were selected at each ecozone in collaboration with the Ministry of Food and Agriculture staff. Five farmers were given a subset each for planting (baby trial). The sixth farmer planted all the 26 genotypes

Group	Genotype*	Field I.D.
GP 1	82 × 87−13	AGRA SP 25
61 × 87−1	AGRA SP 01	
87 × 61−88	AGRA SP 11	
79 × 82−4	AGRA SP 21	
82 × 50−21	AGRA SP 22	
82 × 87−11	AGRA SP 24	
87 × 61−24	AGRA SP 07	
87 × 61−21	AGRA SP 06	
79 × 82−3	AGRA SP 20	
79 × 21−8	AGRA SP 13	
79 × 50−10	AGRA SP 27	
GP 2	61 × 87−15	AGRA SP 02
87 × 61−58	AGRA SP 09	
87 × 61−13	AGRA SP 04	
79 × 50−4	AGRA SP 15	
79 × 50−12	AGRA SP 19	
GP 3	87 × 61−3	AGRA SP 03
87 × 61−16	AGRA SP 05	
87 × 61−11	AGRA SP 12	
79 × 50−8	AGRA SP 17	
82 × 50−32	AGRA SP 23	
GP 4	82 × 61−27	AGRA SP 08
87 × 61−65	AGRA SP 10	
79 × 50−6	AGRA SP 16	
82 × 79−1	AGRA SP 26	
79 × 50−9	AGRA SP 18	

*61 = Ogyefo; 81 = Histarch; 50 = Apomuden; 82 = Beauregard; 79 = CIP 443035; 21 = Resisto.
Each farmer used the best-bet variety as check. Planting was on ridges at spacing of 1×0.3 m, giving a plant population density of 33,333 plants per hectare. Harvesting was at four months after planting, and the plants on the two central ridges were used for data taking, excluding the plants at the ends.

2.1 Data collection

Twenty plants were harvested per plot for data collection. Storage roots considered were as reported by Ekanayake et al. (1990). The physicochemical traits determined were beta-carotene, total sugars, starch, iron, and zinc content using the near-infrared reflectance spectroscopy (NIRS) (Tumwegamire et al. 2011). Dry matter content was calculated as the ratio of the weight of the dry sample expressed as a percentage of the weight of the fresh sample. In addition, the incidence and severity of diseases and pests (sweetpotato virus disease, sweetpotato weevil and *Alcidodes*) were scored on a scale of 1–5, where 1 – no disease/damage; 2 – minimum; 3 – average; 4 – high; and 5 – all plants affected. Incidence indicates the percentage of plants affected by disease or pest. At harvest of the mother trials, field days were organized for farmers to assess the vegetative part and the storage root yields as well as the cooking quality of the genotypes compared with their best-bet variety.

2.2 Data analysis

Data for 18 out of the 26 genotypes were analysed due to missing information alongside farmers’ variety. The analysis excluded data on AGRA SP 02, AGRA SP 03, AGRA SP 10, AGRA SP 15, AGRA SP 18, AGRA SP 21, AGRA SP 22 and AGRA SP 26. The data were analysed using split-split plot design *(YEAR = main plot; ECOZONE = sub-plot; GENOTYPE = sub-sub-plot)*. The data on the sensory evaluation were presented graphically.

3 Results

There were no year-by-ecozone-by-genotype interaction *(Y \times E \times G)* and year-by-ecozone interaction *(Y \times E)* for
all the traits (Table 3). However, ecozone-by-genotype (E × G) was significant \((p < 0.05)\) for storage root dry matter, beta-carotene, iron, and zinc content. Genotypic differences were significant \((p < 0.05)\) for all the traits. AGRA SP 13 had the highest storage root yield (39.20 t/ha) across ecozones over two years, while AGRA SP 16 was the lowest (7.39 t/ha) (Table 4). Eleven genotypes had comparable yield across ecozones over two years as the farmers’ check (Table 4). AGRA SP 16 and AGRA SP 12 had the lowest (34.32%) and the highest (45.53%) storage root dry matter content across ecozones over two years (Table 5). In all, 13 genotypes had comparable dry matter content as the farmers check across ecozones over two years (Table 5). All the genotypes were resistant to..
sweetpotato virus disease, sweetpotato weevil and *Alcidodes*. Cooking quality preference of the genotypes was comparable to the farmers’ check (Table 1). Beta-carotene content of the genotypes across ecozones over two years ranged from 0.73 mg/100 g DW (AGRA SP 11) to 28.46 mg/100 g DW (AGRA SP 20). Their iron and zinc values were 1.36–2.24 mg/100 g DW and 0.67–1.35 mg/100 g DW. These values were given by AGRA SP 24 and AGRA SP 16. The highest (18.12%) and the lowest (10.94%) total sugar content were given by AGRA SP 24 and AGRA SP 11, respectively, while AGRA SP 04 and AGRA SP 16 gave the highest (79.49% DW) and the lowest (67.73% DW) starch content, respectively (Table 6).

Table 5: Storage root dry matter content (%) of the sweetpotato genotypes across ecozones over two years

Genotype	Coastal savannah	Forest	Guinea savannah	Transition	Grand mean								
	2016	2017	Mean										
AGRA SP 01	41.46	41.54	43.00	44.10	41.51	42.81	42.12	43.22	42.67	38.13	38.88	44.82	41.75
AGRA SP 04	46.20	46.46	46.33	44.22	43.37	43.79	48.41	41.61	45.01	45.76	42.03	38.49	44.76
AGRA SP 05	47.26	48.29	47.77	44.58	41.07	42.83	46.96	47.67	47.32	44.40	40.54	44.51	45.10
AGRA SP 06	46.67	47.01	46.84	41.64	41.62	41.63	45.70	47.72	46.71	39.44	37.09	47.03	43.36
AGRA SP 07	42.31	45.64	43.97	43.59	42.05	42.82	43.59	44.86	44.23	38.97	37.85	42.46	42.36
AGRA SP 08	42.71	44.92	43.81	40.91	41.98	41.45	44.59	45.06	44.82	39.12	35.78	37.45	41.88
AGRA SP 09	41.38	41.64	41.51	42.09	43.39	42.74	36.67	40.32	38.49	39.50	37.01	38.25	40.25
AGRA SP 11	49.27	46.50	47.88	44.64	44.36	44.50	45.85	43.17	44.51	46.34	41.42	43.88	45.19
AGRA SP 12	49.89	45.88	47.88	41.77	43.71	42.74	47.40	46.66	47.03	47.76	41.17	44.47	45.53
AGRA SP 13	41.45	44.68	43.06	34.95	37.83	36.39	44.95	43.83	44.39	39.95	43.29	41.62	39.71
AGRA SP 14	39.38	38.40	38.89	33.66	34.42	34.04	37.64	37.01	37.33	33.66	27.05	28.80	34.76
AGRA SP 16	32.33	35.59	33.96	30.85	39.12	34.98	38.74	37.98	38.36	30.85	29.80	29.96	34.32
AGRA SP 17	38.27	35.19	36.73	30.01	28.26	29.13	45.98	34.88	40.43	35.97	28.89	32.43	46.38
AGRA SP 19	36.03	36.22	36.12	32.06	36.31	34.19	38.55	40.83	39.69	35.00	29.78	32.39	35.60
AGRA SP 20	38.60	38.69	38.64	33.68	35.20	34.44	31.95	36.33	34.14	36.79	32.78	34.78	35.50
AGRA SP 23	44.12	48.38	46.25	41.31	44.41	42.86	39.93	44.61	42.27	46.28	39.72	43.00	43.59
AGRA SP 24	39.07	43.42	42.14	32.61	41.76	37.39	40.17	41.12	40.65	36.58	33.05	34.81	38.47
AGRA SP 25	40.46	36.78	38.62	33.43	36.88	35.15	34.07	35.70	34.88	37.06	31.63	34.35	35.75
FV	39.22	37.69	38.46	42.26	45.78	44.02	41.40	37.45	39.43	30.87	39.39	35.13	39.26

SED (5%) = 1.18

FV = farmers’ check/standard; genotypes highlighted were the proposed varieties for release.

Significant G × E for storage root dry matter, beta-carotene, iron, and zinc content indicates that the sweetpotato genotypes varied for these traits relative to the different environments. Significant G × E for storage root dry matter and beta-carotene content has been reported (Chiona 2009; Oduro 2013). G × E interaction is important in evaluating genotype adaptation, selecting parents and developing genotypes with improved end-product quality (Ames et al. 1999), and may complicate selection for such traits (Rosie and Hamblin 1981; Falconer and Mackay 1996; Martin 2000; Ebdon and Gauch 2002; Gauch 2006). This is because progress from selection is realized only when the genotypic effects can be separated from the environmental effects (Miller et al. 1958). However, beta-carotene could be an exemption because of the orange-flesh colour associated with it (Gruneberg et al. 2015). The non-existence of G × E for storage root yield suggests that progress from selection for storage root yield can be realized (Mohammed et al. 2012; Nwangburuka and Denton 2012).

Significant differences observed among the sweetpotato genotypes for the traits indicate that superior genotypes can be identified and selected. The storage root yield of 11 of the sweetpotato genotypes tested was either higher or comparable to the farmers’ best-bet. This

4 Discussion

Mother–baby trial approach helped the farmers to gain experience with a few of the sweetpotato genotypes and rigorously assess them. Its use in the evaluation of crop varieties has been reported (Muungani et al. 2007; Nhlela et al. 2007). The use of ABS in sweetpotato breeding has also been reported (Andrade et al. 2017).
indicates that farmers will adopt these genotypes along with their other preferred attributes.

Significant differences have been reported among different sweetpotato genotypes evaluated earlier elsewhere for dry matter, starch and sugar content (McLaurin and Kays 1992; Morrison et al. 1993; Ravindran et al. 1995; Kays et al. 2005; Gasura et al. 2008; Aina et al. 2009; Shumbusha et al. 2014). The high dry matter content of these sweetpotato genotypes is an important attribute for meeting the needs of consumers in Ghana and West Africa.

Suitability of a variety depends on the characteristics a farmer is looking for and includes sensory characteristics (Ndolo et al. 2001), and also diseases and pest tolerance. Of the 18 sweetpotato genotypes presented in the results, 11 were preferred as the farmers’ best-bet when cooked. Stakeholders prefer sweetpotatoes with high storage root dry matter because that suits their food preparation preferences. Cooking causes changes in physical, sensory and chemical characteristics of the final product (Vitrac et al. 2000; Fontes et al. 2011). Low dry matter varieties lose mealinlessness when cooked, affecting textural characteristic preference. They also absorb more oil when fried, which is not economical to the processors and not healthy to the consumers.

Sugar content of the sweetpotato genotypes was comparable to those reported (Grüneberg et al. 2009b). The 11 non-sweet and less sweet genotypes selected during sensory test make them the staple-type sweetpotatoes preferred by Ghanaians. This is because sweetpotato genotypes that are non-sweet and less sweet allow daily consumption (Lebot 2010).

Sweetpotato has a considerable amount of genetic variation for beta-carotene (Manrique and Hermann 2000). Diversity in sweetpotato flesh colour has been reported (Warammboi et al. 2011). Beta-carotene content increases with increased intensity of the orange-flesh colour of the storage root (Baaﬁ et al. 2016a) and is used in addressing vitamin A deficiency (Low et al. 2007; Low 2013; 2017). The range of values obtained in this study was comparable to those reported by Grüneberg et al. (2009a).

All the genotypes were resistant to sweetpotato virus disease, sweetpotato weevil and Alcidodes, which are the major disease and pests attacking sweetpotato. This indicates that the superior genotypes when released as commercial varieties will be preferred by farmers.
Table 6: Quality traits of the sweetpotato genotypes across ecozones over two years

Genotype	Beta-carotene (mg/100 g) DW	Total sugars (%) DW	Starch content (%) DW	Iron (mg/100 g) DW	Zinc (mg/100 g) DW
AGRA SP 01	2.06	16.13	75.77	1.49	0.86
AGRA SP 04	2.51	11.10	79.49	1.60	0.76
AGRA SP 05	2.38	10.97	78.26	1.55	0.77
AGRA SP 06	7.25	10.94	76.55	1.65	0.89
AGRA SP 07	7.25	15.29	76.57	1.47	0.73
AGRA SP 08	7.25	14.55	77.45	1.45	0.81
AGRA SP 09	2.85	14.47	77.01	1.57	0.78
AGRA SP 11	0.73	15.06	76.44	1.49	0.73
AGRA SP 12	3.78	11.47	78.65	1.65	0.89
AGRA SP 13	11.38	16.56	74.62	1.39	0.72
AGRA SP 14	6.03	16.57	73.03	1.82	1.06
AGRA SP 16	15.31	17.01	67.73	2.24	1.35
AGRA SP 17	16.14	17.29	68.01	2.03	1.21
AGRA SP 19	21.10	17.08	73.93	1.47	0.86
AGRA SP 20	28.46	18.12	70.41	1.65	0.89
AGRA SP 23	16.30	15.70	76.33	1.54	0.76
AGRA SP 24	6.92	15.15	76.65	1.36	0.67
AGRA SP 25	2.52	16.60	73.58	1.61	0.89
SED (5%)	0.96	0.84	1.85	0.08	0.05

5 Conclusion

Based on the cooking quality preference, storage root yield, dry matter content, taste and resistance to major diseases and pests relative to farmers’ best-bet, 10 genotypes AGRA SP 04, AGRA SP 05, AGRA SP 06 and AGRA SP 12 (bland-staple taste); AGRA SP 07, AGRA SP 09 and AGRA SP 13 (less sweet-staple taste); and AGRA SP 23, AGRA SP 19 and AGRA SP 20 (less sweet-orange-flesh) were recommended for release as commercial varieties to farmers. Four of these genotypes, AGRA SP 07, AGRA SP 09, AGRA SP 13 and AGRA SP 20, were officially released by the National Seed Council of Ghana as commercial varieties in June 2019 after recommendation for their release by the National Varietal Release and Registration Committee in 2018. Their respective varietal names are CRI-Vern Gracen, CRI-AGRA SP09, CRI-AGRA SP13 and CRI-Kofi Annan.

Acknowledgments: CSIR-Crops Research Institute Fumesua, Ghana and Alliance for a Green Revolution in Africa (AGRA) funded the breeding activities and varietal release. The International Potato Center (CIP) through the SASHA Project (Grant no. OPP1019987) co-funded the quality trait analysis using the NIRS, and the final release of the varieties.

Conflict of interest: There is no conflicts of interest or potential conflicts of interest.

References

[1] Adesina AA, Zinnah MM. Technology characteristics, farmers’ perceptions and adoption decisions: a tobit model application in Sierra Leone. Agric Econ. 1993;9(4):297–311.
[2] Adu-Kwarteng E, Otoo JA, Oduro I. Screening of sweetpotato for poundability into ‘fufu’. Eighth triennial conference of ISTRC-AB. 2001. Nigeria, West Africa: International Institute of Tropical Agriculture; 2001.
[3] Adu-Kwarteng E, Otoo JA, Osei CK, Baning IS. Sweetpotato: the crop of the future. Ghana: Factsheet published by the communications and Extension division of Crops Research Institute – Council for Scientific and Industrial Research; 2002.
[4] Aina AJ, Falade KO, Akingbala JO, Titus P. Physicochemical properties of twenty-one caribbean sweetpotato cultivars. Int J Food Sci Technol. 2009;44:1696–704.
[5] Ames NP, Clarke JM, Marchylo BA, Dexter JE, Woods SM. Effect of environment and genotype on drumwheat gluten strength and pasta viscoelasticity. Cereal Chem. 1999;76:582–6.
[6] Andrade MI, Ricardo J, Naico A, Alvaro A, Makunde GS, Low L, et al. Release of orange-fleshed sweetpotato (Ipomoea batatas [L.] Lam.) cultivars in mozambique through an accelerated breeding scheme. J Agric Sci. 2017;355:919–29.
[7] Asfaw S, Shiferaw B, Simtowe F, Lipper L. Impact of modern agricultural technologies on smallholder welfare: evidence from Tanzania and Ethiopia. Food Policy. 2012;37(3):283–95.
[8] Baafi E. Development of end-user preferred sweetpotato varieties in Ghana. PhD thesis. West Africa Centre for Crop Improvement (WACCI), University of Ghana; 2014.
[9] Baafi E, Gracen VE, Blay ET, Ofori K, Manu-Aduening J, Carey EE. Evaluation of sweetpotato accessions for end-user preferred traits improvement. Afr J Agric Res. 2015a;10(50):4632–45.
[10] Baafi E, Manu-Aduening J, Carey EE, Ofori K, Blay ET, Gracen VE. Constraints and breeding priorities for increased sweetpotato utilization in Ghana. Sustainable Agric Res. 2015b;4(4):1–16. doi: 105539/sarv4n4p1.
[11] Baafi E, Blay ET, Ofori K, Gracen VE, Manu-Aduening J, Carey EE. Breeding superior orange-fleshed sweetpotato cultivars for West Africa. J Crop Improvement. 2016a;30(3):293–310.
[12] Baafi E, Carey EE, Blay ET, Ofori K, Gracen VE, Manu-Aduening J. Genetic incompatibilities in sweetpotato and implications for breeding end-user preferred traits. Australian J Crop Sci. 2016b;10(6):887–94.
[13] Baafi E, Manu-Aduening J, Gracen VE, Ofori K, Carey EE, Blay ET. Development of end-user preferred sweetpotato
Breeding farmer and consumer preferred sweetpotatoes

[16] Baafi E, Ofori K, Blay ET, Gracen VE, Manu-Aduening J, Carey EE. Exploitation of genetic potential of sweetpotato for end-user traits improvement. Afr Crop Sci J. 2016d;24(4):377–87.

[17] Baafi E, Ofori K, Carey EE, Gracen VE, Blay ET, Manu-Aduening J. Genetic control of beta-carotene, iron and zinc content in sweetpotato. J Plant Stud. 2017;6(1):1–10.

[18] Banziger M, Cooper M. Breeding for low input conditions and consequences for participatory plant breeding: examples from tropical maize and wheat. Euphytica. 2001;122:503–19.

[19] Betty JB. Evaluating sweetpotato as an intervention food to prevent vitamin A deficiency. Compr Rev Food Sci Food Saf. 2011;10:118–30.

[20] Bouvelle-Benjamin AC. Sweetpotato: a review of its past, present and future role in human nutrition. California, USA: Elsevier Academic Press; 2007. p. 3–48.

[21] Chiona M. Towards enhancement of β-carotene content of high dry mass sweetpotato genotypes in Zambia. Pietermaritzburg, Republic of South Africa: University of KwaZulu-Natal; 2009.

[22] Derera J, Tongoona P, Langyintuo A, Laing MD, Vivek B. Farmer perception on maize cultivars in the marginal eastern belt of Zimbabwe and their implications for breeding. Afr Crop Sci J. 2006;14(1):1–5.

[23] Eating Well10 everyday superfoods [online]. Eating well magazine, Shelburne, Vermont, (accessed 16.07.19).

[24] Ebdon JS, Gauch HG. Additive main effect and multiplicative interaction analysis of national turf grass performance trials: I. Interpretation of genotype × environment interaction. Crop Sci. 2002;42:489–96.

[25] Eich E. Solanaceae and Convolvulaceae: secondary metabolites, biosynthesis, chemotaxonomy, biological and economic significance (a handbook). Amsterdam: Springer, Berlin 637 pp. Ochse, J. 1980 Vegetables of the Dutch East Indies Asher & Co; 2008.

[26] Ekanayake IJ, Malagamba P, Midmore DJ. Effect of water stress on yield indices of sweetpotatoes. In: Howeler RH, editor. Proceedings 8th symposium of the International Society for Tropical Root Crops. Bangkok, Thailand: 1990. p. 724.

[27] Ellis WO, Oduro I, Fianko K, Otoo JA, editors. Quality of gari from eighteen sweetpotato varieties. In proc 8th ISTRC AB Symp. Ibadan Nigeria, 2001.

[28] Fontes LCB, Oliverira FG, Collares-Queiroz FP. Optimization of the deep fat frying processes of sweet potato chips in palm olein or stearin. Am J Food Technol. 2011;6:348–61.

[29] Gassara E, Mashingaidze AB, Mukasa SB. Genetic variability for tuber yield, quality, and virus disease complex in Uganda sweetpotato germplasm. Afr Crop Sci J. 2008;16(2):147–60.

[30] Gauch HG. Statistical analysis of yield trials by AMMI and GGE. Crop Sci. 2006;46:1488–500.

[31] Grüneberg WJ, Abidin E, Ndolo P, Pereira CA, Hermann M. Variance component estimations and allocation of resources for breeding sweetpotato under East African conditions. Plant Breed. 2004;123:311–5.

[32] Grunenberg WJ,栋ma R, Andrade M, Dapaah H. Sweetpotato breeding. In: Andrade M, Barker I, Dapaah H, Elliot H, Fuentes S, Grunenberg W, Kapunga R, Rokschel J, Labarta R, Lembaga B, Locchi C, Low J, Lyman J, Mwanga R, Ortiz O, Oswald A, Thiele G. Unleashing the potential of sweetpotato in sub-Saharan Africa: current challenges and way forward. Lima, Peru: International potato center (CIP); 2009a. p. 1–42 (Working Paper 2009-1).

[33] Grünenberg WJ,栋ma R, Andread M, Dapaah H. Unleashing the potential of sweetpotato in sub-Saharan Africa: current challenges and way forward. Challenge theme Paper 1: sweetpotato breeding. CIP – Social Sciences working paper 2009-1; 2009b. p. 1–42.

[34] Grünenberg WJ, Ma D, Mwanga ROM, Carey EE, Huamani K, Diaz F, et al. Advances in sweetpotato breeding from 1992 to 2012. In: Low J, Nyongesa M, Quinn S, Parker M, editors. Potato and sweetpotato in Africa: transforming the value chains for food and nutrition security. Wallingford, UK: Cab International; 2015. p. 3–68.

[35] Health Research Staff. Superfoods: the 101 best foods to live longer and feel younger. Melrose, Florida: Millwood Media; 2012.

[36] Jacobi D. The superfoods cookbook: nutritious meals for any time of day using nature’s healthiest foods. San Francisco, California: Weldon Owen Inc.; 2013.

[37] John H. Extension education: conducting effective agricultural demonstrations. Frankfort: Kentucky Cooperative Extension Service, University of Kentucky College of Agriculture, Lexington, and Kentucky State University; 1997.

[38] Just RE, Zilberman D. The effects of agricultural development policies on income distribution and technological change in agriculture. J Dev Econ. 1988;28(2):193–216.

[39] Kamanga BCG, Kanyama-Phiri G, Snapp S. Experiences with farmer participatory mother–baby trials and watershed management to improve soil fertility options in Malawi. Vol. S, Network Methods Working Paper CIMMYT, Natural Resources Group, Maize and Economics Programmes; 2001. p. 1–17.

[40] Kays SJ, Wang Y, McLaurin WJ. Chemical and geographical assessment of the sweetness of the cultivated sweetpotato clones of the world. J Am Soc Horticult Sci. 2005;130(4):591–7.

[41] Kwach JK, Odhiambo GO, Dida MM, Gichuki ST. Participatory consumer evaluation of twelve sweetpotato varieties in Kenya. Afr J Biotechnol. 2010;9:1600–9.

[42] Kyndt T, Quispea D, Zhaic H, Jarred R, Ghislainb M, Liuc Q, et al. The genome of cultivated sweet potato contains agrobacterium t-DNAs with expressed genes: an example of a naturally transgenic food crop. Proc Natl Acad Sci U S A. 2015;112(18):5844–9. www.pnas.org/cgi/doi/10.1073/pnas.1419685112.

[43] Lefot V. Sweetpotato. In: Bradshaw JE, editor. Root and tuber crops, handbook of plant breeding, 7. Springer Science + Business Media, LLC; 2010. p. 97. doi: 10.1007/978-0-387-92765-7_3.

[44] Low JW. Biofortified crops with a visible trait: the example of orange-fleshed sweetpotato in sub-Saharan Africa. In: Preedy VR, Srirajaskanthan R, Patel VB, editors. Handbook of
food fortification and health: from concepts to public health applications. New York: Springer; 2013.

[46] Low JW, Arimond M, Osman N, Cunguara B, Zano F, Tschirley D. A food-based approach introducing orange-fleshed sweetpotatoes increased vitamin A intake and serum retinol concentrations in young children in Mozambique. J Nutr. 2007;137:3209–327.

[47] Low JW, Mwangaruka CC, Denton OA. Heritability, character association and genetic advance in six agronomic and yield related characters in leaf Corchorus olitorius. Int J Agric Res. 2012;7(7):367–75.

[48] Low JW, Mwangaruka CC, Mwanga ROM, Andrade M, Carey E, Gibson P, Abuga D, et al. Sweetpotato in sub-Saharan Africa. Glob Food Security. 2017;14:23–30.

[49] Mackill DJ, Khush GS. Ir64: a high-quality and high-yielding mega variety. Rice. 2018;11(18):1–11.

[50] Manrique K, Hermann M. Effect of G × E interaction on root yield and beta-carotene content of selected sweetpotato (Ipomoea batatas (L.) Lam.) varieties and breeding clones. In: In: CIP Program Report 1999–2000. Lima, Peru: International Potato Center; 2000. p. 281–5.

[51] Martin N. Gene-environment interaction and twin studies. In: Spector T, Snieder H, Macgregor A, editors. Advances in twin and sib-pair analysis. London: Greenwich Medical Media; 2000. p. 43–150.

[52] McLaurin WJ, Kays SJ. Genetic diversity in sweetpotato flavor. In: The sweetpotato in the 21st century. Second Intl. Symp. Sweetpotato, Montgomery, Alast. 1992. p. 427.

[53] Meludu NT, Ajala CG, Akoroda MO. Poverty alleviation through the processing of sweetpotato tubers into toasted granules and consumer preferences in Nigeria. Afr J Root Tuber Crop. 2003;5(2):56–9.

[54] Miller PA, Williams JC, Robinson HF, Comstock RE. Estimates of genotypic and environmental variances and covariances in upland cotton and their implications in selection. Agron J. 1958;50:126–31.

[55] Missah A, Kissiedu AFK. Effect of time of harvesting on the yield and pest incidence of two sweetpotato varieties in the forest zone of Ghana. In Proc 5th ISTRC AB. 1994.

[56] Mohammed A, Geremew B, Amsalu A. Variation and association of quality parameters in Ethiopian durum wheat (Triticum turgidum L. var. Durum) genotypes. Int J Plant Breed Genet. 2012;6(3):17–31.

[57] Morrison TA, Pressey R, Kays SJ. Changes in α and β-amylose activities during storage of sweetpotato lines with varying starch hydrolysis potential. J Am Soc Hort Sci. 1993;118:236–42.

[58] Mutsaers HJW, Weber GK, Walker P, Fisher NM. A field guide for on-farm experimentation. IITA/CTA/ISNAR. Ibadan, Nigeria; 1997. p. 235.

[59] Muuogani D, Setimela P, Dimairo M. Analysis of multi-environment, mother–baby trial data using GGE biplots. Afr Crop Sci Proc. 2007;8:103–12.

[60] Ndhlala T, Nyamutowa E, KwaZira K. Evaluation of maize varieties in farmers’ fields in Zimbabwe using the mother–baby trial scheme. In: Muuogani D, Setimela P, Dimairo M, editors. Analysis of multi-environment, mother–baby trial data using GGE biplots. African crop Science proceedings, vol. 8. 2007. p. 103–12.

[61] Ndolo PJ, Mchato T, Carey EE, Gichuki ST, Ndinya C, Maling’a J. Participatory on-farm selection of sweetpotato varieties in Western Kenya. Afr Crop Sci J. 2001;9:41–8.

[62] Ndhlela T, Nyamutowa E, Kwazira K. Evaluation of maize varieties in farmers’ fields in Zimbabwe using the mother–baby trial scheme. In: Muuogani D, Setimela P, Dimairo M, editors. Analysis of multi-environment, mother–baby trial data using GGE biplots. African crop Science proceedings, vol. 8. 2007. p. 103–12.
[79] Voss-Fels KP, Stahl A, Hickey LT. Q&A: modern crop breeding for future food security. BMC Biol. 2019;17(18):1–7.

[80] Warammboi JG, Dennien S, Gidley MJ, Sopade P. Characterization of sweetpotato from Papua New Guinea and Australia: physicochemical, pasting and gelatinisation properties. Food Chem. 2011;126:1759–70.

[81] Zuraida N. Sweetpotato as an alternative food supplement during rice shortage. J Litbang Pertan. 2003;22(4):150–5.