Elementary properties of Ca\(^{2+}\) channels and their influence on multivesicular release and phase-locking at auditory hair cell ribbon synapses

Jacopo Magistretti\(^1\), Paolo Spaiardi\(^2\), Stuart L. Johnson\(^3\) and Sergio Masetto\(^2\)*

\(^1\) Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Pavia, Italy. \(^2\) Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy. \(^3\) Department of Biomedical Science, University of Sheffield, Sheffield, UK

Voltage-gated calcium (Ca\(^{V}_{1.3}\)) channels in mammalian inner hair cells (IHCs) open in response to sound and the resulting Ca\(^{2+}\) entry triggers the release of the neurotransmitter glutamate onto afferent terminals. At low to mid sound frequencies cell depolarization follows the sound sinusoid and pulses of transmitter release from the hair cell generate excitatory postsynaptic currents (EPSCs) in the afferent fiber that translate into a phase-locked pattern of action potential activity. The present article summarizes our current understanding on the elementary properties of single IHC Ca\(^{2+}\) channels, and how these could have functional implications for certain, poorly understood, features of synaptic transmission at auditory hair cell ribbon synapses.

Keywords: inner hair cell, Ca\(^{2+}\) channel, patch-clamp, phase locking, cochlea, ribbon synapse, multivesicular release, Eps8

Introduction

The mammalian auditory system has evolved specialized structures and cellular mechanisms that allow sound information to be relayed to the brain with unparalleled temporal precision. Our ability to localize sound sources in the environment depends on the preservation of timing accuracy along the auditory pathway. Low-frequency sounds are localized by specialized cells in the brainstem that compare the temporal delay between the phase-locked activity originating from the two ears, which can be as small as ten microseconds (Köppl, 1997; Carr and Macleod, 2010). The localization of high frequency sounds relies more on the detection of intensity differences between the outputs of the two ears, but the timing information obtained from the beginning and end of the sound envelope also has an important role (Moore, 1991; McAlpine, 2005). The intricate cellular mechanisms responsible for such exquisite temporal performance are still not well understood.

The initial step in the conversion of sound into an electrical signal takes place in the inner hair cells (IHCs), the primary sensory receptors of the cochlea, whereby sound-induced deflection of the hair bundle gates mechano-electrical transducer (MET) channels allowing the depolarizing flow of K\(^{+}\) ions into the cell. The interplay of the transducer current with the cells basolateral membrane currents generates the characteristic IHC receptor potential (Russell and Sellick, 1978), the size of which is graded to sound level. A fraction of MET channels are open at rest (Johnson et al., 2012), resulting in a tonic inflow of K\(^{+}\) which depolarizes the IHC in vivo. The in vivo resting membrane potential
(V_m) activates a proportion of voltage-gated Ca^{2+} channels that is thought to drive the tonic release of glutamate onto afferent terminals (Glowatzki and Fuchs, 2002). The resulting AMPA-receptor-mediated post-synaptic depolarization is converted into a resting discharge of action potentials in the afferent fiber that is referred to as its spontaneous rate (Liberman, 1978). Upon sound stimulation, a greater proportion of MET channels are opened, which increases IHC depolarization and consequently Ca^{2+} influx/transmitter release. Any given IHC contacts numerous afferent nerve terminals, which extend from cochlear ganglion cells. IHCs provide the sole synaptic input to those neurons. Moreover, each IHC contacts a given ganglion cell through a single synaptic site; thus, all the information the hair cell has to transmit to the neuron must be funneled through that one synaptic site (Trussell, 2002). IHCs' synaptic sites contain a special structure called the “ribbon”, which is covered with synaptic vesicles (von Gersdorff, 2001). Ribbons are thought to ensure a continuous supply of vesicles to the plasma membrane for exocytosis during endless ongoing stimulation (Fuchs, 2005). Moreover, at the presynaptic side of each ribbon synapse a pool of 16–30 ready-to-release docked vesicles can be found in the squid giant synapse (Neher, 1998; Augustine, 1999), as found in the squid giant synapse (Neher, 1998; Augustine, 2001; Oheim et al., 2006). The assumption is that Ca^{2+} influx is needed for vesicle docking and synaptic vesicle fusion (Fuchs, 2005). Also still largely unexplained is the transduction system's ability to phase-lock the afferent spiking to a particular time point (phase) of the low-to-mid-frequency sinusoidal sound wave independent of its intensity (Rose et al., 1967; Fuchs, 2005; Goutman, 2012). Indeed, increasingly larger receptor potentials, driven by increasingly louder sounds, should cause more Ca^{2+} influx and increasingly faster vesicular fusion (Fuchs, 2005).

In this article we focus on the elementary properties of IHC Ca_v1.3Ca^{2+} channels, which represent 90% of IHC Ca^{2+} channels (Platzer et al., 2000), and how they could underline some of the still poorly understood characteristics of synaptic transmission at individual IHC ribbon synapses.

Results and Discussion

Ca^{2+} Channel Number and Open Probability

The total number of Ca^{2+} channels in a single IHC has been estimated in two ways: (1) using non-stationary fluctuation analysis of macroscopic (whole-cell) Ca^{2+} tail currents (Brandt et al., 2005; Vincent et al., 2014; Wong et al., 2014); and (2) by comparing the macroscopic (whole-cell) and elementary (cell-attached) Ca^{2+} current amplitudes (Zampini et al., 2010, 2013, 2014). The former uses the variability in size and shape of repeated deactivating Ca^{2+} tail currents (upon repolarization from a voltage step that activates the maximal macroscopic current) to estimate the channel number, single channel current and open probability (P_o). The latter is a direct measure of elementary Ca^{2+} current (i_{Ca}) size and P_o that is used to work out the number of channels from the size of the macroscopic Ca^{2+} current (i_{Ca}). The number of Ca^{2+} channels per IHC estimated from fluctuation analysis is about 1, 800 (Brandt et al., 2005; Vincent et al., 2014; Wong et al., 2014). In cell-attached recordings, P_o was measured over long-lasting (500 ms) depolarizing voltage steps, in order to collect a large number of openings for reliable analysis. However, Ca^{2+} channels clearly underwent inactivation during these long pulses, as indicated by the shape of the ensemble-average currents (Zampini et al., 2013, 2014). If single channel analysis was limited to the initial 40 ms of the sweeps, P_o (at about –20 mV) increased from 0.024 to 0.06 in middle-turn IHCs (Zampini et al., 2014) and from 0.21 (Zampini et al., 2013) to 0.51 in basal-turn IHCs (data re-analyzed for the present study). The resulting total number of Ca^{2+} channels would be 6, 400 in adult middle turn IHCs and 1, 152 in adult basal turn IHCs. For basal-turn IHCs, from which we have collected most data, an average of 1, 152 Ca^{2+} channels per IHC would equate to 74 channels per synapse and 5 channels per vesicle (Figure 1), given that there are 14 ribbon synapses per cell (Zampini et al., 2013) and 10% of Ca^{2+} channels are believed to be extrasynaptic (Meyer et al., 2009). This is consistent with the model proposed by Wong et al. (2014) for apical-coil mouse IHCs where there are estimated to be up to 90 Ca^{2+} channels per release site.

Ca^{2+} Channels and the Nanodomain

In a presynaptic nanodomain coupling of Ca^{2+} inflow—synaptic vesicle release (Stanley, 1993; Fedchyshyn and Wang, 2005), mathematical modeling predicts that a single Ca^{2+} channel may control vesicle release at each docking site (Weber et al., 2010). On the other hand, the opening of several Ca^{2+} channels may be necessary for the fusion of more distant vesicles at other synapses (microdomain; Borst and Sakmann, 1996). In IHCs, the linear Ca^{2+} dependence of exocytosis (Brandt et al., 2005; Johnson et al., 2005, 2009; Goutman and Glowatzki, 2007) has been explained using a nanodomain model for the coupling between Ca^{2+} channels and synaptic vesicles. In such a model, the Ca^{2+} sensor for vesicle fusion is located within a radius of tens of nanometers from the Ca^{2+} channel (Moser et al., 2006), as found in the squid giant synapse (Neher, 1998; Augustine, 2001; Oheim et al., 2006). The assumption is that Ca^{2+} influx through a single channel is sufficient to activate release of a nearby vesicle. With depolarization, the increase in Ca^{2+} channel P_o saturates the Ca^{2+} sensor, and therefore the postsynaptic response grows in linear proportion to the presynaptic Ca^{2+} current as additional Ca^{2+} channel openings bring with them

1 These values have been obtained in the presence of 5-µM BayK 8644, which stabilizes Cav1-channel openings and increases their P_o. In the absence of BayK 8644, P_o was approximately two-fold lower. Since, however, both whole-cell and cell-attached recordings were obtained in the presence of BayK 8644, the estimated number of Ca^{2+} channel would not be invalidated. BayK 8644 is also routinely used in fluctuation-analysis studies to increase P_o, which is favorable for estimating the channel number. Under such conditions, a maximal P_o of ~0.8 has been estimated (Brandt et al., 2005; Vincent et al., 2014; Wong et al., 2014).
their own “unit” of vesicular release. More direct evidence for the nanodomain coupling between Ca\(^{2+}\) channels and vesicle release sites in IHCs has come from the fact that the rapidly binding Ca\(^{2+}\) chelator BAPTA had a more prominent inhibitory effect on exocytosis than the more slowly acting EGTA (Moser and Beutner, 2000). The prediction is in fact that only the fast Ca\(^{2+}\) binding kinetics of BAPTA, but not the slower binding to EGTA, would be able to interrupt the action of Ca\(^{2+}\) in a nanodomain, as shown for the squid giant synapse (Adler et al., 1991; Augustine et al., 2003). However, Goutman and Glowatzki (2007) found that different concentrations of EGTA were able to slow the onset and rise time of the fast component of release at the hair cell afferent synapse, concluding that the Ca\(^{2+}\) sensor (likely to be on the vesicle) is approximately 23 nm from the Ca\(^{2+}\) channel. Because of the high affinity of the Ca\(^{2+}\) sensor (Beutner et al., 2001), one or few Ca\(^{2+}\) channel openings might still be sufficient for activating release, reconciling the effect of EGTA with a nanodomain model. Although the molecular identity of the Ca\(^{2+}\) sensor remains uncertain (Safieddine and Wenthold, 1999; Roux et al., 2006; Beurg et al., 2010; Johnson et al., 2010; Pangrsic et al., 2010), its binding to Ca\(^{2+}\) is highly cooperative, seemingly requiring the binding of five calcium ions to trigger release (Beutner et al., 2001). Vesicular release becomes more sensitive to Ca\(^{2+}\) inflow during IHC maturation, showing a more classical high-order dependence on Ca\(^{2+}\)-current (\(I_{\text{Ca}}\)) amplitude until the onset of hearing at around post-natal day 12, whereupon the release of synaptic vesicles becomes linearly dependent on \(I_{\text{Ca}}\) amplitude, as described above (Johnson et al., 2005, 2009). Some authors have hypothesized that linearization might depend on a change in the Ca\(^{2+}\)-sensor properties leading to lowered Ca\(^{2+}\)-binding cooperativity (Murphy et al., 2004; Thoresen et al., 2004; Johnson et al., 2005, 2010; Dulong et al., 2009). Heil and Neubauer (2010) have shown that, in principle, a linear dependence of synaptic release on Ca\(^{2+}\) influx, as that observed in adult hair cells, can emerge if different release sites, each one of which endowed with the same, supralinear Ca\(^{2+}\) sensitivity, are differently exposed to Ca\(^{2+}\) entering through voltage-gated Ca\(^{2+}\) channels. To fit real data, 75% to 90% of release sites were required to be exposed to 20- to 200-fold lower Ca\(^{2+}\) concentrations than those most effectively exposed to Ca\(^{2+}\) inflow. This would imply that in adult IHCs most releasable vesicles are under the control of Ca\(^{2+}\) microdomains (rather than nanodomains), or that an even looser spatial relation exists between them and voltage-gated Ca\(^{2+}\) channels. Until this is not demonstrated, such interpretation can be regarded as an interesting theoretical possibility. Morphologically, maturation-dependent linearization of vesicular release on \(I_{\text{Ca}}\) amplitude is accompanied by a change in the IHC active zone/postsynaptic density complexes that are initially multiple, small and spot-like and then become large single structures. There is also a topographical re-arrangement of Ca\(^{2+}\) channels, which matches that of the active zones: Ca\(^{2+}\) channels are initially located in several smaller, round clusters and then form a larger stripe-like cluster (Wong et al., 2014). Indeed, in the absence of Eps8, which plays a crucial role in the physiological maturation of mammalian cochlear IHCs, the developmental linearization of the exocytotic Ca\(^{2+}\) sensitivity in IHCs does not occur (Zampini et al., 2011).

The nanodomain interaction between the active Ca\(^{2+}\) channel and the Ca\(^{2+}\) sensor (Figure 1) seems necessary to ensure that Ca\(^{2+}\) provided by one or a few Ca\(^{2+}\) channels is sufficient to trigger vesicle release with minimal delay before it diffuses away or is buffered. However, the nanodomain scenario does not necessarily mean that any Ca\(^{2+}\)-channel opening, however brief, will be sufficient to saturate the Ca\(^{2+}\) sensor and trigger vesicle release. The idea that the Ca\(^{2+}\) sensor is easily saturated by single Ca\(^{2+}\) channel openings implies that, given the channel’s mean open time (\(\tau\)), the

![Figure 1](image_url)
fraction of channel openings long enough to saturate the \(\text{Ca}^{2+} \) sensor will be dominant over the fraction of shorter, non-saturating, openings. For instance, if a channel open duration equals to one tenth of \(\tau \) (i.e., 1.65 ms at \(-20 \text{ mV} \); Zampini et al., 2013) is sufficient to saturate the \(\text{Ca}^{2+} \) sensor, then \(\sim 90\% \) of the openings will be long enough to bring about the same result. This would facilitate the phase-locking of vesicle release to sound frequencies of a few kHz (Palmer and Russell, 1986) where it would need to be triggered by depolarizing stimuli as short as the positive-going phase of the stimulus (a few hundreds microseconds) whilst maintaining a constant phase relationship (Pickles, 1996; Rossing, 2007). The sub-ms activation and deactivation kinetics of IHC \(\text{Ca}^{2+} \) channels (first channel openings are estimated to occur with a delay of about 50 \(\mu \text{s} \) in physiological conditions; Zampini et al., 2013, 2014), would be suitably rapid to encode sound onset and support phase-locking.

Properties of EPSCs Generated by IHC Synapse Activation

Patch-clamp recordings from single nerve terminals contacting rat IHCs have shown that various types of EPSCs are evoked by IHC depolarization, from miniature EPSCs (mEPSCs) to large multi- or monophasic events seemingly resulting from the fusion of up to 20 vesicles (Glowatzki and Fuchs, 2002). The most abundant events (>70%), however, were large monophasic EPSCs (M-EPSCs), corresponding to the size of 3–6 summed mEPSCs (Glowatzki and Fuchs, 2002; Goutman and Glowatzki, 2007). M-EPSCs have also been observed in lower vertebrates, and presumed to result from the simultaneous release of multiple vesicles (Keen and Hudspeth, 2006; Suryanarayanan and Slaughter, 2006; Li et al., 2009; Schnee et al., 2013). Important for the following discussion, it has recently been suggested that M-EPSCs could underlie accurate phase-locking of spikes in the auditory fibers (Goutman, 2012; Li et al., 2014). In this section we attempt to reconcile the features of EPSCs with the properties of the single IHC \(\text{Ca}^{2+} \) channels.

The frequency of M-EPSCs during a step depolarization of IHCs increases in proportion to the stimulus amplitude, but at all voltages these large events appear to dominate over the lower-amplitude or less synchronous events. In immature rat IHCs, M-EPSC frequency was 2 Hz at \(-50 \text{ mV} \) and 20 Hz at \(-20 \text{ mV} \) (Goutman and Glowatzki, 2007) and seemed to be generally higher in more adult rats (Grant et al., 2010).

Under the assumption that mEPSCs are due to the release of single neurotransmitter quanta, and therefore correspond to the full fusion of single vesicles, the fact that M-EPSCs are the dominant postsynaptic events during sustained IHC depolarization suggests there is an intrinsic mechanism devoted to maximizing the release synchrony of a relatively homogeneous number of vesicles at IHC ribbon synapses. So far three models have been proposed for such a mechanism: (1) the ribbon itself, or proteins associated with the ribbon, facilitate the coordinated fusion of multiple vesicles docked at the active zone (Glowatzki and Fuchs, 2002; Singer et al., 2004); (2) the \(\text{Ca}^{2+} \) nanodomain around an open \(\text{Ca}^{2+} \) channel drives the simultaneous release of multiple vesicles (Jarsky et al., 2010; Graydon et al., 2011); and (3) multiple vesicles fuse together prior to fusing with the IHC membrane (termed compound fusion) (Matthews and Sterling, 2008). More recently, it has been proposed that the event corresponding to the full fusion of a single vesicle is in fact the M-EPSC, which would therefore represent a big-size elementary event, whereas the lower-amplitude EPSCs would result from incomplete or transitory fusion events, and multiphasic EPSCs from the flickering of the fusion pore between open and closed states (Chapochnikov et al., 2014). In the case of the incomplete or flickering fusion events, only small amounts of neurotransmitter would be released for every opening of the fusion pore, thus producing submaximal activation of postsynaptic receptors. Uniquantal release would also be consistent with the high rates of sound-driven spikes in spiral ganglion neurons (up to about Hz; Taberner and Liberman, 2005) given a maximal presynaptic release rate of about 700 Hz (Pangrsc et al., 2010)—see Figure 1 in Chapochnikov et al. (2014).

In a nanodomain scenario, hypotheses 2 and 3, as well as the model by Chapochnikov et al. (2014), would all be compatible with an M-EPSC being triggered by the opening of a single \(\text{Ca}^{2+} \) channel. In the case of hypothesis 1, the simultaneous opening of multiple \(\text{Ca}^{2+} \) channels, each associated with a different vesicle, could be required to activate the molecular machinery responsible for the coordinated, synchronous release of the same vesicle subset. It is unlikely, however, that multiple \(\text{Ca}^{2+} \) channel openings summate to produce M-EPSCs, given that M-EPSCs of similar amplitude are also observed, although at a much lower frequency, when the IHC is at rest, a membrane potential at which the probability of two or more \(\text{Ca}^{2+} \) channels being simultaneously open is negligible (Figure 1). Consistent with this hypothesis, EPSC size and shape heterogeneity persists when release probability is reduced by abolition of IHC \(\text{Ca}^{2+} \) influx (Chapochnikov et al., 2014), whereas synchronized M-EPSCs would be expected to become less represented in lower extracellular \(\text{Ca}^{2+} \).

Burst Openings of \(\text{Ca}_{1.3} \) Channels May Improve the Reliability of Synaptic Transmission in IHCs

Single-channel studies have revealed an interesting feature of \(\text{Ca}_{1.3} \) channels. We found that these channels are generally reluctant to open, but when they do, they open in bursts and maintain a very high open probability for a substantial amount of time (Zampini et al., 2010, 2013, 2014). In our recordings, a given \(\text{Ca}^{2+} \) channel could remain closed for several consecutive 500 ms depolarizing sweeps, and then suddenly shift to a bursting mode in which prolonged sequences of openings interrupted by brief closings produced periods of activity with a \(P_o \) close to 1. Therefore, the majority of \(\text{Ca}^{2+} \) influx occurs via the bursting activity of \(\text{Ca}^{2+} \) channels, and is otherwise (i.e., outside bursts) negligible. Early studies on \(\text{Ca}_{1.2} \) channels also showed different modes of gating (Hess et al., 1984; Nowycky et al., 1985) which were called mode 0 (closed), 1 (brief and rare openings) and 2 (unusually long openings), and it was suggested that the exit from mode 0 depended on the metabolic state of the cell.
including tail currents. Therefore, only the subset of channels operating in the P cell recording, the proportion of channels opening according to the high-

2

Magistretti et al. Inner hair cell Ca

2

these conditions, the most effective modality for Ca

2

and trigger vesicle release. One could hypothesize that, under

Ca

2

absence of BayK 8644 (Zampini et al., 2010).

Nowycky et al., 1985; Ceña et al., 1989). In our experiments BayK 8644 was normally added to the pipette solution to increase

Ca

2

IHCs (Goutman, 2012; Rose et al., 1967). The independence of phase-locking on intensity is hard to reconcile with either the Ca

2

microdomain or nanodomain control of IHC exocytosis. In a microdomain, Ca

2

influx through several Ca

2

channels at a presynaptic site would resemble the macroscopic I

Ca

Since I

Ca

amplitude and activation speed increase with depolarization (Figure 3B), it is expected that neurotransmitter release will occur sooner the more intense the stimulus. In other words, increasing stimuli should produce progressively more phase-advanced afferent responses. A decrease in synaptic delay with increasing depolarization has been seen in rat IHCs (Goutman, 2012; see also Li et al., 2014 for frog auditory papilla hair cells). In a nanodomain, on the other hand, the latency-to-first Ca

2

channel opening decreases significantly with depolarization (Figure 3B). Therefore, either in a micro- or a nanodomain, depolarization would shorten the delay for Ca

2

-dependent exocytosis and modify the phase of the response, interfering with phase-locking to that particular sound frequency.

A mechanism by which the accuracy of afferent phase-locking could be preserved independent of sound intensity has been proposed, involving the balance between short-term facilitation and depression of transmitter release at the hair cell ribbon synapse (Cho et al., 2011; Goutman, 2012). In this hypothesis, Ca

2

channel facilitation that occurs at voltages close to the resting membrane potential is compensated by synaptic vesicle depletion during prolonged trains of activity, producing a constant synaptic delay despite varying stimulus intensity (Goutman, 2012). However, a phase-advance should

Ca

2

Channel Properties and Phase-Locked Exocytosis

Afferent fibers innervating apical- and middle-turn cochlear IHCs show phase-locked spiking activity to sound frequencies up to a few kHz, independent of stimulus intensity (Figure 3A; Rose et al., 1967). The independence of phase-locking on intensity is hard to reconcile with either the Ca

2

microdomain or nanodomain control of IHC exocytosis. In a microdomain, Ca

2

influx through several Ca

2

channels at a presynaptic site would resemble the macroscopic I

Ca

Since I

Ca

amplitude and activation speed increase with depolarization (Figure 3B), it is expected that neurotransmitter release will occur sooner the more intense the stimulus. In other words, increasing stimuli should produce progressively more phase-advanced afferent responses. A decrease in synaptic delay with increasing depolarization has been seen in rat IHCs (Goutman, 2012; see also Li et al., 2014 for frog auditory papilla hair cells). In a nanodomain, on the other hand, the latency-to-first Ca

2

channel opening decreases significantly with depolarization (Figure 3B). Therefore, either in a micro- or a nanodomain, depolarization would shorten the delay for Ca

2

-dependent exocytosis and modify the phase of the response, interfering with phase-locking to that particular sound frequency.

A mechanism by which the accuracy of afferent phase-locking could be preserved independent of sound intensity has been proposed, involving the balance between short-term facilitation and depression of transmitter release at the hair cell ribbon synapse (Cho et al., 2011; Goutman, 2012). In this hypothesis, Ca

2

channel facilitation that occurs at voltages close to the resting membrane potential is compensated by synaptic vesicle depletion during prolonged trains of activity, producing a constant synaptic delay despite varying stimulus intensity (Goutman, 2012). However, a phase-advance should

2

Assuming that the same channel activity patterns also occur during whole-cell recording, the proportion of channels opening according to the high-
P o burst mode would conceivably dominate the macroscopic Ca

2

currents, including tail currents. Therefore, only the subset of channels operating in the high-P o mode would be considered when fluctuation analysis is carried out.

FIGURE 2 | Idealized traces showing elementary Ca

2+ channel currents. (A) The traces show the activity of five Ca

2+ channels each opening with a P o of 0.2 (a value similar to the average P o found in cell-attached recordings at −20 mV in adult IHCs: Zampini et al., 2013). (B) The activity of five Ca

2+ channels with one opening with a P o of 0.8 (gating mode 2; top trace) and 4 channels opening with a P o of 0.05. Note that in this case the average P o for the 5 channel group is 0.2, as it is in (A). In both (A) and (B) the vertical dashed lines indicate time points at which no Ca

2+ channels are open (see text). Note that the simultaneous occurrence of no openings in all 5 channels is clearly more frequent in (A) than in (B). By convention, the inward current is indicated by the downward deflection of the trace; “c” is closed, “o” is open.

Ca

2+ Channel Properties and Phase-Locked Exocytosis

Afferent fibers innervating apical- and middle-turn cochlear IHCs show phase-locked spiking activity to sound frequencies up to a few kHz, independent of stimulus intensity (Figure 3A; Rose et al., 1967). The independence of phase-locking on intensity is hard to reconcile with either the Ca

2+ microdomain or nanodomain control of IHC exocytosis. In a microdomain, Ca

2+ influx through several Ca

2+ channels at a presynaptic site would resemble the macroscopic I

Ca

Since I

Ca

amplitude and activation speed increase with depolarization (Figure 3B), it is expected that neurotransmitter release will occur sooner the more intense the stimulus. In other words, increasing stimuli should produce progressively more phase-advanced afferent responses. A decrease in synaptic delay with increasing depolarization has been seen in rat IHCs (Goutman, 2012; see also Li et al., 2014 for frog auditory papilla hair cells). In a nanodomain, on the other hand, the latency-to-first Ca

2+ channel opening decreases significantly with depolarization (Figure 3B). Therefore, either in a micro- or a nanodomain, depolarization would shorten the delay for Ca

2+ -dependent exocytosis and modify the phase of the response, interfering with phase-locking to that particular sound frequency.

A mechanism by which the accuracy of afferent phase-locking could be preserved independent of sound intensity has been proposed, involving the balance between short-term facilitation and depression of transmitter release at the hair cell ribbon synapse (Cho et al., 2011; Goutman, 2012). In this hypothesis, Ca

2+ channel facilitation that occurs at voltages close to the resting membrane potential is compensated by synaptic vesicle depletion during prolonged trains of activity, producing a constant synaptic delay despite varying stimulus intensity (Goutman, 2012). However, a phase-advance should

2+Assuming that the same channel activity patterns also occur during whole-cell recording, the proportion of channels opening according to the high-
P o burst mode would conceivably dominate the macroscopic Ca

2+ currents, including tail currents. Therefore, only the subset of channels operating in the high-P o mode would be considered when fluctuation analysis is carried out.
FIGURE 3 | Phase-locking and the Ca\(^{2+}\) current. (A) Idealized traces showing a sinusoidal receptor potential (V\(_{\text{MET}}\); black line) and resulting Ca\(^{2+}\) current (I\(_{\text{Ca}}\); red line) in response to a 400 Hz sound wave with a low (upper panel) and high (lower panel) intensity. The horizontal dashed line indicates the adult mouse IHC resting membrane potential (V\(_{\text{rest}}\) = −60 mV; Johnson et al., 2011). Asterisks indicate peak of I\(_{\text{Ca}}\) (red) and of V\(_{\text{MET}}\) depolarization (black). The resulting increase in intracellular [Ca\(^{2+}\)] elicits phase-locked M-EPSCs (green trace; M-EPSC re-drawn from Glowatzki and Fuchs, 2002) which are encoded in action potentials at the primary auditory afferents (blue trace). One EPSC can trigger only one spike (Rutherford et al., 2012), while no vesicles would be released during interspike intervals (i.e., spike discharge would reflect vesicle release probability; Moezzi et al., 2014). As a result of the increased Ca\(^{2+}\) channel P\(_{\text{o}}\) with IHC depolarization, louder sounds (bottom panel) elicit more action potentials (less failures) with the same timing (phase-locking), as indicated by the vertical dashed lines. Note that, as shown in the bullfrog auditory papilla (Figure 5 in Li et al., 2014), I\(_{\text{Ca}}\) phase-lags V\(_{\text{MET}}\), while M-EPSCs only occur in the V\(_{\text{MET}}\) repolarizing phase. Action potentials further lag V\(_{\text{MET}}\) due to the time required by electrotonic currents to depolarize the encoder region up to the spiking voltage threshold (∼0.5 ms; Rutherford et al., 2012). (B) Idealized elementary and macroscopic Ca\(^{2+}\) currents elicited by a voltage step from the resting membrane potential of −70 mV to −50 mV (top) or −20 mV (bottom). Activation kinetics of the macroscopic current re-drawn from Johnson and Marcotti (2008), deactivation kinetics re-drawn from Zampini et al. (2014). Increasing IHC depolarization reduces the latency and the time-to-peak of I\(_{\text{Ca}}\) and I\(_{\text{Ca,rep}}\), while it decreases or increases the amplitude of I\(_{\text{Ca}}\) or I\(_{\text{Ca,rep}}\), respectively.

The properties of single Ca\(^{2+}\) channel currents could underlie the preservation of phase-locked transmission in a nanodomain in two possible ways. In the first scenario, as the IHC depolarizes, the amplitude of I\(_{\text{Ca}}\) decreases due to the reduction in driving force for Ca\(^{2+}\) entry (Figure 3B; Zampini et al., 2013). This would counteract the more rapid channel opening, such that the delay to Ca\(^{2+}\) sensor saturation for exocytosis may be comparable at different stimulus levels. This mechanism would allow the preservation of a constant phase relationship to changing sound intensity (Figure 4A). In a second scenario, a constant phase relation could be maintained by the effect of IHC repolarization on I\(_{\text{Ca}}\). During the repolarizing phase of a

still be observed for the first cycles of the response before vesicle depletion occurs, whereas the first latencies (latency of the responses to first cycles) showed the same phase for all events (Goutman, 2012). This model, moreover, would imply that the afferent response to the first cycle/s of the sound wave would occur at different times depending on the sound level.

FIGURE 4 | A model for phase-locking based on the properties of elementary Ca\(^{2+}\) currents. (A) The combined effects of the decrease in first latency and the decrease of elementary Ca\(^{2+}\)-current amplitude brought about by IHC depolarization, resulting in a hypothetical “threshold” Ca\(^{2+}\) concentration for exocytotic Ca\(^{2+}\)-sensor saturation (blue horizontal dashed line) being reached with similar timing as for a lower depolarization. This model would only work if vesicle release is governed by a single Ca\(^{2+}\) channel coupled in a nanodomain to the vesicle/Ca\(^{2+}\)-sensor. (B) During high-frequency stimuli (e.g., 1 KHz), signal transmission likely depends upon elementary tail current (asterisks), particularly for high-intensity stimuli where the elementary current would be minimized by the smaller I\(_{\text{Ca}}\) driving force.
rapid cyclic stimulus, the large increase in driving force for Ca$^{2+}$ would increase the amplitude of the current flowing through an already open Ca$^{2+}$ channel. If repolarization is sufficiently fast, the amplitude of the elementary Ca$^{2+}$ current would quickly rise to levels high enough to promptly saturate the Ca$^{2+}$ sensor. These “saturation events” will cluster in a limited time window during the depolarizing phase, regardless of the amplitude of the foregoing depolarization, as long as it has opened the Ca$^{2+}$ channel. During the macroscopic Ca$^{2+}$ “tail” currents elicited by fast repolarization, the amplitude of elementary currents would be maximized with minimal jitter (Figure 3B). Their duration would also be short, since channel deactivation is faster than activation, which would be favorable for phase-locking towards the upper sound frequency limit (Figure 4B). Recent studies have shown that when IHCs are stimulated with a voltage sinusoid to mimic sound, the largest M-EPSCs occurred most frequently during the depolarizing rather than the depolarizing phase (see e.g., Figure 3 in Goutman, 2012; Figure 5 in Li et al., 2014), even when the synaptic delay (0.7–0.8 ms; Palmer and Russell, 1986) is taken into account. During high-frequency stimulation, the maximal speed of macroscopic Ca$^{2+}$ current development occurs during the early repolarizing phase of the cycle (Figure 5 in Li et al., 2014). Tail Ca$^{2+}$ currents have been shown to elicit time-locked M-EPSCs (Goutman, 2012). Finally, M-EPSCs elicited by depolarizing voltage steps delivered to rat IHCs (Goutman, 2012) and frog auditory hair cells (Graydon et al., 2014) appear better phase-locked during the Ca$^{2+}$ tail current upon repolarization rather than to the peak I_{Ca}. In the amphibian papilla, in which each afferent fiber receives input from several synaptic ribbons, the faster, less variable tail Ca$^{2+}$ currents would seem better suited for triggering synchronous vesicle fusion than the stochastic opening of Ca$^{2+}$ channels at different presynaptic sites. Therefore, in this second scenario, although IHC depolarization is necessary to open Ca$^{2+}$ channels, subsequent IHC repolarization appears optimally suited for synchronizing post-synaptic activity with sound frequencies around the phase-locking limit.

In conclusion, it is possible that the elementary properties of IHC Ca$^{2+}$ channels underlie several as yet unexplained features of the afferent response. The sub-ms first latency would ensure that at least some Ca$^{2+}$ channels open with very short delay, allowing even relatively high frequency stimuli to be followed. The bursting behavior of Ca$^{2+}$ channels, on the other hand, would increase the reliability of signal transmission. Finally, in a nanodomain where vesicle fusion is controlled by a single Ca$^{2+}$ channel, the elementary current amplitude and opening latency could balance each other to produce constant phase-locking of the afferent response despite variations in sound intensity. The elementary tail currents would provide a rapid and large Ca$^{2+}$ influx at the highest sound frequencies possible.

Author and Contributors

JM, PS, SLJ, and SM substantially contributed to the conception or design of the work, analysis and/or interpretation of data, drafting of the text and/or figures, revision, final approval of the version to be published and agree to be accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved.

Acknowledgments

This work has been supported by Fondazione Cariplo, grant n° 2011-0596, to SM. SLJ is a Royal Society University Research Fellow.

References

Adler, E. M., Augustine, G. J., Duffy, S. N., and Charlton, M. P. (1991). Alien intracellular calcium chelators attenuate neurotransmitter release at the squid giant synapse. *J. Neurosci.* 11, 1496–1507.

Augustine, G. J. (2001). How does calcium trigger neurotransmitter release? *Curr. Opin. Neurobiol.* 11, 320–326. doi: 10.1016/s0959-4388(00)00214-2

Augustine, G. J., Santamaria, F., and Tanaka, K. (2003). Local calcium signaling in neurons. *Neuron* 40, 331–346. doi: 10.1016/s0896-6273(03)00639-1

Bourg, M., Michalki, N., Safieddine, S., Bouleau, Y., Schneggenburger, R., Chapman, E. R., et al. (2010). Control of exocytosis by synaptotagmins and otoferlin in auditory hair cells. *J. Neurosci.* 30, 13281–13290. doi: 10.1523/neurosci.2528-10.2010

Beutner, D., Voets, T., Neher, E., and Moser, T. (2001). Calcium dependence of exocytosis and endocytosis at the cochlear inner hair cell afferent synapse. *Neuron* 29, 681–690. doi: 10.1016/s0896-6273(01)00243-4

Borst, J. G., and Sakmann, B. (1996). Calcium influx and transmitter release in a fast CNS synapse. *Nature* 383, 431–434. doi: 10.1038/383431a0

Brandt, A., Khimich, D., and Moser, T. (2005). Few CaV1.3 channels regulate the exocytosis of a synaptic vesicle at the hair cell ribbon synapse. *J. Neurosci.* 25, 11577–11585. doi: 10.1523/neurosci.3411-05.2005

Carabelli, V., Hernández-Guijo, J. M., Baldelli, P., and Carbone, E. (2001). Direct autocrine inhibition and cAMP-dependent potentiation of single type-Ca$^{2+}$ channels in bovine chromaffin cells. *J. Physiol.* 532, 73–90. doi: 10.1111/j.1469-7793.2001.0073g.x

Carr, C. E., and Macleod, K. M. (2010). Microseconds matter. *PLoS Biol.* 8:e1000405. doi: 10.1371/journal.pbio.1000405

Ceria, V., Stutzin, A., and Rojas, E. (1989). Effects of calcium and Bay K-8644 on calcium currents in adrenal medullary chromaffin cells. *J. Membr. Biol.* 112, 255–265. doi: 10.1007/bf01870956

Chapochnikov, N. M., Takago, H., Huang, C. H., Pangršic, T., Khimich, D., Neef, J., et al. (2014). Uniquantal release through a dynamic fusion pore is a candidate mechanism of hair cell exocytosis. *Neuron* 83, 1389–1403. doi: 10.1016/j.neuron.2014.08.003

Cho, S., Li, G. L., and von Gersdorff, H. (2011). Recovery from short-term depression and facilitation is ultrafast and Ca$^{2+}$ dependent at auditory hair cell synapses. *J. Neurosci.* 31, 5682–5692. doi: 10.1523/neurosci.5453-10.2011

Dulon, D., Safieddine, S., Jones, S. M., and Petit, C. (2009). Otoferlin is critical for a highly sensitive and linear calcium-dependent exocytosis at vestibular hair cell ribbon synapses. *J. Neurosci.* 29, 10474–10487. doi: 10.1523/neurosci.1009-09.2009

Fedchunyn, M. J., and Wang, L. (2005). Developmental transformation of the release modality at the calyx of Held synapse. *J. Neurosci.* 25, 4131–4140. doi: 10.1523/neurosci.0350-05.2005

Fuchs, P. A. (2005). Time and intensity coding at the hair cell’s ribbon synapse. *J. Physiol.* 566, 7–12. doi: 10.1113/jphysiol.2004.082214

Glowatzki, E., and Fuchs, P. A. (2002). Transmitter release at the hair cell ribbon synapse. *Nat. Neurosci.* 5, 147–154. doi: 10.1038/nn96
Liberman, M. C. (1978). Auditory-nerve response from cats raised in a low-noise chamber. *J. Acoust. Soc. Am.* 63, 442–455. doi: 10.1121/1.381736
Matthews, G., and Sterling, P. (2008). Evidence that vesicles undergo compound fusion on the synaptic ribbon. *J. Neurosci.* 28, 5403–5411. doi: 10.1523/jneurosci.0935-08.2008
McAlpine, D. (2005). Creating a sense of auditory space. *J. Physiol.* 566, 21–28. doi: 10.1113/jphysiol.2005.083113
Meyer, A. C., Frank, T., Khimich, D., Hoch, G., Riedel, D., Chapochnikov, N. M., et al. (2009). Tuning of synapse number, structure and function in the cochlea. *Nat. Neurosci.* 12, 444–453. doi: 10.1038/nn.2293
Mozee, B., Iannella, N., and McDonnell, M. D. (2014). Modeling the influence of short term depression in vesicle release and stochastic calcium channel gating on auditory nerve spontaneous firing statistics. *Front. Comput. Neurosci.* 8:163. doi: 10.3389/fncom.2014.00163
Moore, D. R. (1991). Anatomy and physiology of binaural hearing. *Audology* 30, 125–134. doi: 10.3109/0206991990728787
Moser, T., and Teunter, D. (2000). Kinetics of exocytosis and endocytosis at the cochlear inner hair cell afferent synapse of the mouse. *Proc. Natl. Acad. Sci. U S A* 97, 883–888. doi: 10.1073/pnas.97.2.883
Moser, T., Neef, A., and Khimich, D. (2006). Mechanisms underlying the temporal precision of sound coding at the inner hair cell ribbon synapse. *J. Physiol.* 576, 55–62. doi: 10.1113/jphysiol.2006.114835
Murphy, G. J., Glückfeld, L. L., Balsen, Z., and Isaacson, S. J. (2004). Sensory neuron signaling to the brain: properties of transmitter release from olfactory nerve terminals. *J. Neurosci.* 24, 3023–3030. doi: 10.1523/jneurosci.5745-03.2004
Neher, E. (1998). Vesicle pools and Ca\(^{2+}\) microdomains: new tools for understanding their roles in neurotransmitter release. *Neuron* 20, 389–399. doi: 10.1016/s0896-6771(00)80983-6
Nowicky, M. C., Fox, A. P., and Tsien, R. W. (1985). Long-opening mode of gating of neuronal calcium channels and its promotion by the dihydropyridine calcium agonist Bay K 8644. *Proc. Natl. Acad. Sci. U S A* 82, 2178–2182. doi: 10.1073/pnas.82.7.2178
Oheim, M., Kirchhoff, F., and Stühmer, W. (2006). Calcium microdomains in regulated exocytosis. *Cell Calcium* 40, 423–439. doi: 10.1016/j.cca.2006.08.007
Palmer, A. R., and Russell, I. J. (1986). Phase-locking in the cochlear nerve of the guinea-pig and its relation to the receptor potential of inner hair-cells. *Hear. Res.* 25, 1–5. doi: 10.1016/0378-5955(86)90002-x
Pangrsc, T., Lasarow, L., Reuter, K., Takago, H., Schwander, M., Riedel, D., et al. (2010). Hearing requires otoferlin-dependent efficient replenishment of synaptic vesicles in hair cells. *Nat. Neurosci.* 13, 869–876. doi: 10.1038/nn.2578
Pickles, J. O. (1996). *An Introduction to the Physiology of Hearing.* San Diego: Academic Press Inc.
Platzer, J., Engel, J., Schrott-Fischer, A., Stephan, K., Bova, S., Chen, H., et al. (2000). Congenital deafness and sinoatrial node dysfunction in mice lacking class D L-type Ca\(^{2+}\) channels. *Cell 102*, 89–97. doi: 10.1016/s0092-8674(00)00013-1
Rose, J. E., Brugge, J. F., Anderson, D. J., and Hind, J. E. (1967). Phase-locked response to low-frequency tones in single auditory nerve fibers of the squirrel monkey. *J. Neurophysiol.* 30, 769–793.
Rossing, T. D. (2007). *Springer Handbook of Acoustics.* New York: Springer.
Roux, I., Safieddine, S., Nouvian, R., Grati, M., Simmler, M. C., Bahloul, A., et al. (2006). Otoferlin, defective in a human deafness form, is essential for exocytosis at the auditory ribbon synapse. *Cell 127*, 277–289. doi: 10.1016/j.cell.2006.08.040
Russell, I. J., and Sellick, P. M. (1978). Intracellular studies of hair cells in the mammalian cochlea. *J. Physiol.* 284, 261–290. doi: 10.1113/jphysiol.1978.sp012540
Rutherford, M. A., Chapochnikov, N. M., and Moser, T. (2012). Spike encoding of neurotransmitter release timing by spiral ganglion neurons of the cochlea. *J. Neurosci.* 32, 4773–4789. doi: 10.1523/jneurosci.4511-11.2012
Safieddine, S., and Wenthold, R. J. (1999). SNARE complex at the ribbon synapses of cochlear hair cells: analysis of synaptic vesicle- and synaptic membrane-associated proteins. *Eur. J. Neurosci.* 11, 803–812. doi: 10.1046/j.1460-9586.1999.00487.x
Schnee, M. E., Castellano-Muñoz, M., and Ricci, A. J. (2013). Response properties from turtle auditory hair cell afferent fibers suggest spike generation is driven by synchronized release both between and within synapses. *J. Neurophysiol.* 110, 204–220. doi: 10.1152/jn.00121.2013
Singer, J. H., Lassová, L., Vardi, N., and Diamond, J. S. (2004). Coordinated multivesicular release at a mammalian ribbon synapse. Nat. Neurosci. 7, 826–833. doi: 10.1038/nn1280

Stanley, E. F. (1993). Single calcium channels and acetylcholine release at a presynaptic nerve terminal. Neuron 11, 1007–111. doi: 10.1016/0896-6273(93)90214-c

Suryanarayanan, A., and Slaughter, M. M. (2006). Synaptic transmission mediated by internal calcium stores in rod photoreceptors. J. Neurosci. 26, 1759–1766. doi: 10.1523/jneurosci.3895-05.2006

Taberner, A. M., and Liberman, M. C. (2005). Response properties of single auditory nerve fibers in the mouse. J. Neurophysiol. 93, 557–569. doi: 10.1152/jn.00574.2004

Thoreson, W. B., Rabl, K., Townes-Anderson, E., and Heidelberger, R. (2004). A highly Ca\(^{2+}\)-sensitive pool of vesicles contributes to linearity at the rod photoreceptor ribbon synapse. Neuron 42, 595–605. doi: 10.1016/s0896-6273(04)00254-5

Trussell, L. O. (2002). Transmission at the hair cell synapse. Nat. Neurosci. 5, 85–86. doi: 10.1038/nn0202-85

Vincent, P. F., Bouleau, Y., Safieddine, S., Petit, C., and Dulon, D. (2014). Exocytotic machineries of vestibular type I and cochlear ribbon synapses display similar intrinsic otoferlin-dependent Ca\(^{2+}\) sensitivity but a different coupling to Ca\(^{2+}\) channels. J. Neurosci. 34, 10853–10869. doi: 10.1523/jneurosci.0947-14.2014

von Gersdorff, H. (2001). Synaptic ribbons: versatile signal transducers. Neuron 29, 7–10. doi: 10.1016/s0896-6273(01)00175-1

Weber, A. M., Wong, F. K., Tufford, A. R., Schlichter, L. C., Matveev, V., and Stanley, E. F. (2010). N-type Ca\(^{2+}\) channels carry the largest current: implications for nanodomains and transmitter release. Nat. Neurosci. 13, 1348–1350. doi: 10.1038/nn.2657

Wolf, M., Eberhart, A., Glossmann, H., Striessnig, J., and Grigorieff, N. (2003). Visualization of the domain structure of an L-type Ca\(^{2+}\) channel using electron cryo-microscopy. J. Mol. Biol. 332, 171–182. doi: 10.1016/s0022-2836(03)00899-4

Wong, A. B., Rutherford, M. A., Gabrielaitis, M., Pangrsic, T., Göttfert, F., Frank, T., et al. (2014). Developmental refinement of hair cell synapses tightens the coupling of Ca\(^{2+}\) influx to exocytosis. EMBO J. 33, 247–264. doi: 10.1002/embj.201387110

Zampini, V., Johnson, S. L., Franz, C., Knipper, M., Holley, M. C., Magistretti, J., et al. (2013). Burst activity and ultrafast activation kinetics of CaV1.3 Ca\(^{2+}\) channels support presynaptic activity in adult gerbil hair cell ribbon synapses. J. Physiol. 591, 3811–3820. doi: 10.1113/jphysiol.2013.251272

Zampini, V., Johnson, S. L., Franz, C., Knipper, M., Holley, M. C., Magistretti, J., et al. (2014). Fine tuning of CaV1.3 Ca\(^{2+}\) channel properties in adult inner hair cells positioned in the most sensitive region of the Gerbil cochlea. PLoS One 9:e113750. doi: 10.1371/journal.pone.0113750

Zampini, V., Johnson, S. L., Franz, C., Lawrence, N. D., Münkner, S., Engel, J., et al. (2010). Elementary properties of CaV1.3 Ca(2+) channels expressed in mouse cochlear inner hair cells. J. Physiol. 588, 187–199. doi: 10.1113/jphysiol.2009.181917

Zampini, V., Rüttiger, L., Johnson, S. L., Franz, C., Furness, D. N., Waldhaus, J., et al. (2011). Eps8 regulates hair bundle length and functional maturation of mammalian auditory hair cells. PLoS Biol. 9:e1001048. doi: 10.1371/journal.pbio.1001048

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2015 Magistretti, Spaiardi, Johnson and Masetto. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution and reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.