Safety and efficacy of double-balloon catheter for cervical ripening: a Bayesian network meta-analysis of randomized controlled trials

Ge Zhao¹, Guang Song²* and Jing Liu¹*

Abstract

Background: Various methods are used for cervical ripening during the induction of labor. Mechanical and pharmacological methods are commonly used for cervical ripening. A double-balloon catheter was specifically developed to ripen the cervix and induce labor; however, the efficacy of the double-balloon catheter in cervical ripening compared to other methods is unknown.

Methods: We searched five databases and performed a Bayesian network meta-analysis. Six interventions (double-balloon catheter, Foley catheter, oral misoprostol, vaginal misoprostol, dinoprostone, and double-balloon catheter combined with oral misoprostol) were included in the search. The primary outcomes were cesarean delivery rate and time from intervention-to-birth. The secondary outcomes were as follows: Bishop score increment; achieving a vaginal delivery within 24 h; uterine hyperstimulation with fetal heart rate changes; need for oxytocin augmentation; instrumental delivery; meconium staining; chorioamnionitis; postpartum hemorrhage; low Apgar score; neonatal intensive care unit admission; and arterial pH.

Results: Forty-eight randomized controlled trials involving 11,482 pregnant women were identified. The cesarean delivery rates of the cervical ripening with a double-balloon catheter and oral misoprostol, oral misoprostol, and vaginal misoprostol were significantly lower than cervical ripening with a Foley catheter (OR = 0.48, 95% CI: 0.23–0.96; OR = 0.74, 95% CI: 0.58–0.93; and OR = 0.79, 95% CI: 0.64–0.97, respectively; all P < 0.05). The time from intervention-to-birth of vaginal misoprostol was significantly shorter than the other five cervical ripening methods. Vaginal misoprostol and oral misoprostol increased the risk of uterine hyperstimulation with fetal heart rate changes compared to a Foley catheter. A double-balloon catheter with or without oral misoprostol had similar outcomes, including uterine hyperstimulation with fetal heart rate changes compared to a Foley catheter.

Conclusion: Double-balloon catheter did not show superiority when compared with other single method in primary and secondary outcomes of labor induction. The combination of double-balloon catheter with oral misoprostol was significantly reduced the rate of cesarean section compared to Foley catheter without increased risk of uterine hyperstimulation with fetal heart rate changes, which was shown in oral or vaginal misoprostol.

*Correspondence: liujing9936@163.com

© The Author(s) 2022. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.
Introduction
Labor induction is a common obstetric procedure; 20 to 30% of deliveries are induced worldwide [1]. Successful induction of labor depends on the status of the cervix at the time of induction. A poor Bishop score has been shown to be associated with an unacceptably high induction failure rate [2]. Medical interventions are necessary to induce cervical ripening prior to initiation of labor if the Bishop score is ≤ 6 [3–5].

Methods of cervical ripening can be broadly categorized into mechanical and pharmacological methods [4, 6]. Mechanical methods apply pressure from inside the cervical canal to force dilation. The local pressure stimulates the release of prostaglandins (PGs), which facilitate cervical remodeling. Foley catheters and transcervical double-balloon catheters are the two major devices utilized for mechanical dilation [7]. Compared with the unilateral pressure of a single-balloon catheter, the double-balloon catheter offers an improved mechanism of dilation between the internal and external cervical os [8]. There are a variety of pharmaceutical agents available for cervical ripening, including PGs, oxytocin, estrogens, and mifepristone. PGE2 cervical ripening with controlled-release dinoprostone inserts has gained widespread use in clinical practice. Misoprostol, a synthetic structural analog of PGE1, has been shown to be effective in labor induction and is often used as an off-label drug for inducing labor.

To determine if the double-balloon catheter was better than other methods, recent clinical trials have been designed to compare the efficacy and safety with a Foley catheter [9], dinoprostone insert [10], and misoprostol [11]; however, the results have not led to a consensus. We therefore conducted a network meta-analysis (NMA) comparing the double-balloon catheter with four commonly used cervical ripening methods among pregnant women in the third trimester with intact membranes. The purpose of this study was to provide a comprehensive overview of the available evidence involving the use of a double-balloon catheter for cervical ripening in clinical practice.

Methods
The pre-registered protocol was implemented in the PROSPERO database (CRD42022317381). This NMA was reported in accordance with the PRISMA guidelines (Supplemental Table S1).

Search strategy
The PubMed, MEDLINE, Embase, ClinicalTrials.gov, and Cochrane Library databases were searched on March 18, 2022 to identify the relevant studies by two investigators. The keywords in the search strategy were as follows: “cervical ripening” or “labor, induced”; and “double-balloon catheter” or “single-balloon catheter/Foley catheter” or “dinoprostone” or “misoprostol” (Supplemental Table S2). Additionally, we searched the references of articles to further identify literature that met the criteria.

Data extraction and extraction
Original studies were eligible if the following criteria were met: (I) randomized controlled trial (RCT) studies; (II) full text available in English; and (III) the efficacy and safety of different interventions (double-balloon catheter, single balloon catheter/Foley catheter, oral misoprostol, vaginal misoprostol, 10-mg controlled-release dinoprostone vaginal insert, and double-balloon catheter combined with misoprostol/dinoprostone) for cervical ripening in women with an unfavorable cervix and with intact membranes were assessed.

Original studies were ineligible for the following reasons: (I) reviews, observational studies, case control studies, abstracts, letters, or case reports; (II) trials including women whose pregnancies were ≤ 28 weeks gestational age, non-cephalic presentations, multiple pregnancies, or a previous cesarean section(s); (III) other forms of dinoprostone (gel or tablet); or (IV) laboratory animal studies. In the case of several publications from the same study, the study with the greatest number of cases and most relevant information was included.

The first author, year of publication, treatment groups, and number of participants in each group, age (years), nulliparity, gestational age (weeks), balloon volume (mL), misoprostol route and dose, and outcomes were extracted from the eligible studies.

Outcomes
The primary outcomes were cesarean delivery rate and the time from intervention-to-birth. The secondary outcomes included achieving vaginal delivery within 24 h, Bishop score increment, uterine hyperstimulation with fetal heart rate changes, oxytocin augmentation, instrumental delivery, meconium-stained amniotic fluid, maternal adverse events (chorioamnionitis and postpartum hemorrhage), and neonatal adverse events.

Keywords: Cervical ripening, Labor induction, Double-balloon catheter, Foley, Dinoprostone, Misoprostol, Meta-analysis
Statistical analysis
Prior to analysis, the risk of trial bias was assessed for the included studies using the Cochrane Collaboration's tool. The mean difference (MD) and 95% confidence interval (CI) were the time from intervention-to-birth and Bishop score increment. Odds ratios (ORs) were used to report the cesarean delivery rate, achieving vaginal delivery within 24 h, uterine hyperstimulation with fetal heart rate changes, oxytocin augmentation, instrumental delivery, and meconium-stained amniotic fluid. We evaluated the efficacy and safety of different interventions for cervical ripening in women with an unfavorable cervix and intact membranes using an NMA. In this Bayesian NMA, random-effects and consistency models were used to analyze data and carry out the NMA (4 chains, 50,000 iterations, and 20,000 per chain). We assessed inconsistencies using the node-splitting method, and inconsistencies are reported by the Bayesian P values. An overall grading of the quality of evidence was conducted using the GRADE system. To rank the outcomes, we used the surface under the cumulative ranking curve (SUCRA) as an indicator (worst: 0; best: 1) for each intervention. We analyzed the symmetry of a comparison-adjusted funnel plot to evaluate possible small sample effects and used Begg's and Egger's tests to evaluate publication bias in the included studies. A p value < 0.05 was considered statistically significant for asymmetry. All analyses were conducted using the "gemtc" package of R (version 4.0.2; R Foundation, Vienna, Austria) and Stata (version 16.0; StataCorp, College Station, TX, USA).

Results
Baseline characteristics of included studies
Our exhaustive search strategy retrieved 2,981 potentially relevant publications from six databases. After screening and reading the full-text articles, 48 RCTs were included in our final analyses (Fig. 1) [10–57]. These RCTs were conducted between 1997 and 2021 (Table 1) and were carried out in Asia (China, India, Iran, Israel, and}
Author, year	Country	Groups	Numbers	Age (years)	Nulliparity (%)	Gestational age (weeks)	Balloon volume (mL)	Misoprostol dose	Outcomes
Wing, 1997 [12]	USA	Dinoprostone	98	NR	42.9	39.2 ± 2.3	-	-	[1] [2] [5] [8] [9] [12] [13] [14]
		Vaginal misoprostol	99	NR	48.5	39.5 ± 2.4	-	25 mcg every 4 h up to 6 doses	[1] [2] [5] [8] [9] [12] [13] [14]
Bennett, 1998 [13]	Canada	Vaginal misoprostol	102	28.7 ± 4.9	72.5	40.6 ± 1.2	-	50 mcg every 4 h up to 5 doses	[1] [2] [5] [8] [9] [12] [13] [14]
		Oral misoprostol	104	27.5 ± 5.0	66.3	40.8 ± 1.1	-	50 mcg every 4 h up to 9 doses	[1] [2] [5] [8] [9] [12] [13] [14]
Wing, 1999 [14]	USA	Oral misoprostol	110	NR	48.2	39.2 ± 1.7	-	50 mcg every 4 h up to 6 doses	[1] [2] [5] [8] [9] [12] [13] [14]
		Vaginal misoprostol	110	NR	48.2	38.6 ± 2.0	-	25 mcg every 4 h up to 6 doses	[1] [2] [5] [8] [9] [12] [13] [14]
Fisher, 2001 [15]	Canada	Vaginal misoprostol	64	27.0 ± 4.5	56.2	41.0 ± 2.3	-	50 mcg every 3 h up to 48 h	[1] [2] [5] [8] [9] [12] [13] [14]
		Oral misoprostol	62	27.0 ± 6.0	64.5	41.0 ± 1.5	-	50 mcg every 6 h up to 48 h	[1] [2] [5] [8] [9] [12] [13] [14]
Khoury, 2001 [16]	USA	Dinoprostone	39	28.1 ± 7.0	59.0	39.9 ± 1.4	-	-	[1] [2] [5] [8] [9] [12] [13] [14]
		Vaginal misoprostol	79	29.7 ± 6.3	62.0	40.0 ± 1.2	-	35 mcg every 4.5 h up to 6 doses or 50 mcg every 4.5 h up to 6 doses	[1] [2] [5] [8] [9] [12] [13] [14]
Kwon, 2001 [17]	Canada	Oral misoprostol	78	27.2 ± 5.4	56.4	40.3 ± 1.8	-	50 mcg every 6 h up to 8 doses	[1] [2] [5] [8] [9] [12] [13] [14]
		Vaginal misoprostol	82	27.6 ± 5.1	52.4	40.3 ± 1.7	-	50 mcg every 6 h up to 8 doses	[1] [2] [5] [8] [9] [12] [13] [14]
Sciscione, 2001 [18]	USA	Foley catheter	58	25.1 ± 6.9	70.6	> 28	30 mL	-	[1] [2] [5] [8] [9] [12] [13] [14]
		Vaginal misoprostol	53	25.9 ± 6.9	71.7	> 28	-	50 mcg every 4 h up to 6 doses	[1] [2] [5] [8] [9] [12] [13] [14]
Shetty, 2001 [19]	UK	Oral misoprostol	122	28.0 ± 6.8	59.8	41.0 ± 1.3	-	50 mcg every 4 h up to 5 doses	[1] [2] [5] [8] [9] [12] [13] [14]
		Vaginal misoprostol	123	28.0 ± 7.8	61.8	41.0 ± 1.3	-	50 mcg every 4 h up to 5 doses	[1] [2] [5] [8] [9] [12] [13] [14]
le Roux, 2002 [20]	South Africa	Vaginal misoprostol	120	27.9 (mean)	43.3	39 (mean)	-	50 mcg every 6 h up to 4 doses	[1] [2] [5] [8] [9] [12] [13] [14]
		Oral misoprostol	120	28.1 (mean)	36.0	38.3 (mean)	-	50 mcg every 6 h up to 4 doses	[1] [2] [5] [8] [9] [12] [13] [14]
Chung, 2003 [21]	USA	Vaginal misoprostol	49	26.3 ± 6.8	67.3	39.8 ± 2.3	-	25 mcg every 3 h up to 6 doses	[1] [2] [5] [8] [9] [12] [13] [14]
		Foley catheter	54	26.5 ± 6.0	61.1	40.0 ± 2.1	30 mL	-	[1] [2] [5] [8] [9] [12] [13] [14]
Author, year	Country	Groups	Numbers	Age (years)	Nulliparity (%)	Gestational age (weeks)	Balloon volume (mL)	Misoprostol dose	Outcomes
-----------------------	---------	-----------------	---------	-------------	-----------------	-------------------------	---------------------	---------------------------------------	----------
Nopdonrattakoon, 2003	Thailand	Oral misoprostol	53	24.9 ± 5.5	NR	39.0 ± 1.0	-	50 mcg every 4 h up to 6 doses	①②③④⑤⑥⑦⑧
		Vaginal misoprostol	53	25.3 ± 5.5	NR	39.1 ± 1.1	-	50 mcg every 4 h up to 6 doses	
Ramsey, 2003	USA	Dinoprostone	38	26.7 ± 3.6	NR	39.3 ± 1.3	-	-	⑧
		Vaginal misoprostol	38	27.9 ± 4.6	NR	39.3 ± 1.6	-	-	⑥
Shetty, 2003	UK	Oral misoprostol	51	28.6 ± 6.2	56.9	40.7 ± 1.3	-	100 mcg every 4 h up to 5 doses	①②③④⑤⑥⑦⑧⑬
		Vaginal misoprostol	50	28.0 ± 5.5	56.0	40.9 ± 1.1	-	25 mcg every 4 h up to 5 doses	⑧
Paungmora, 2004	Thailand	Oral misoprostol	75	29.1 ± 4.9	78.7	41.0 ± 1.3	-	100 mcg every 6 h up to 8 doses	①②③④⑤⑥⑦⑧⑬
		Vaginal misoprostol	76	28.2 ± 4.7	73.7	40.5 ± 1.0	-	50 mcg every 6 h up to 8 doses	①②③④⑤⑥⑦⑧⑬
Rozenberg, 2004	France	Vaginal misoprostol	70	29.0 ± 5.2	62.9	41.3 ± 1.6	-	50 mcg every 6 h up to 1 dose in the first day and 50 mcg every 4 h up to 3 doses in the second day	①②③④⑤⑥⑦⑧⑬
Adeniji, 2005	Nigeria	Dinoprostone	70	29.0 ± 3.7	67.1	41.4 ± 2.1	-	50 mcg every 6 h up to 4 doses	①②③④⑤⑥⑦⑧⑬
		Vaginal misoprostol	50	30.2 ± 3.5	52.0	39.9 ± 1.7	-	50 mcg every 6 h up to 4 doses	①②③④⑤⑥⑦⑧⑬
		Foley catheter	46	30.5 ± 3.8	43.5	40.2 ± 1.3	30 mL	-	①②③④⑤⑥⑦⑧⑬
Afolabi, 2005	Nigeria	Vaginal misoprostol	29	NR	44.8	NR	-	100 mcg once	①②③④⑤⑥⑦⑧⑬
		Foley catheter	28	NR	46.2	NR	30 mL	-	①②③④⑤⑥⑦⑧⑬
Gelsen, 2005	Turkey	Vaginal misoprostol	100	25.9 ± 5.9	46.0	41.0 (mean)	-	50 mcg every 6 h up to 4 doses	①②③④⑤⑥⑦⑧⑬
		Foley catheter	100	24.4 ± 4.1	47.0	41.0 (mean)	50 mL	-	①②③④⑤⑥⑦⑧⑬
Owolabi, 2005	Nigeria	Vaginal misoprostol	60	29.6 ± 0.8	19.0	40.7 ± 0.2	-	50 mcg every 6 h up to 2 doses	①②③④⑤⑥⑦⑧⑬
		Foley catheter	60	31.1 ± 0.8	22.8	40.3 ± 0.3	30 mL	-	①②③④⑤⑥⑦⑧⑬
Ayaz, 2009	Saudi Arabia	Oral misoprostol	44	34.3 (mean)	NR	NR	-	50 mcg every 4 h up to 4 doses	①②③④⑤⑥⑦⑧⑬
		Vaginal misoprostol	44	35.9 (mean)	NR	NR	-	50 mcg every 4 h up to 4 doses	①②③④⑤⑥⑦⑧⑬
Ozkan, 2009	Turkey	Vaginal misoprostol	56	NR	51.8	> 37	-	50 mcg every 4 h up to 5 doses	①②③④⑤⑥⑦⑧⑬
		Dinoprostone	56	NR	57.1	> 37	-	-	①②③④⑤⑥⑦⑧⑬
Author, year	Country	Groups	Numbers	Age (years)	Nulliparity (%)	Gestational age (weeks)	Balloon volume (mL)	Miso prostol dose	Outcomes
-------------	---------	--------	---------	-------------	-----------------	------------------------	---------------------	------------------	----------
Pennell, 2009 [33]	Australia	Double-balloon catheter	107	27.0 ± 6.0	100.0	40.0 ± 1.5	80 mL	-	①②③④⑤⑥⑦⑧⑨⑩⑪
		Foley catheter	110	26.0 ± 7.0	100.0	40.0 ± 1.5	30 mL	-	①②③④⑤⑥⑦⑧⑨⑩⑪
Cromi, 2011 [34]	Italy	Foley catheter	265	32.1 ± 4.7	69.1	39.8 ± 1.9	50 mL	-	①②③④⑤⑥⑦⑧⑨⑩⑪⑬
		Dinoprostone	132	31.0 ± 4.9	67.4	39.8 ± 2.0	-	-	①②③④⑤⑥⑦⑧⑨⑩⑪⑬
Roudsari, 2011 [35]	Iran	Vaginal misoprostol	49	24.3 ± 4.0	NR	39.8 ± 1.4	-	25 mcg every 4 h up to 6 doses	①②③④⑤⑥⑦⑧⑨⑩⑪⑬
		Foley catheter	59	24.2 ± 5.0	NR	40.0 ± 0.9	50 mL	-	①②③④⑤⑥⑦⑧⑨⑩⑪⑬
Salim, 2011 [36]	Israel	Foley catheter	145	28.8 ± 6.1	53.1	39.2 ± 1.4	60 mL	-	①②③④⑤⑥⑦⑧⑨⑩⑪⑬
		Double-balloon catheter	148	29.2 ± 5.5	52.7	39.0 ± 1.6	80 mL	-	①②③④⑤⑥⑦⑧⑨⑩⑪⑬
Roudsari, 2011 [35]	Iran	Vaginal misoprostol	49	24.3 ± 4.0	NR	39.8 ± 1.4	-	25 mcg every 4 h up to 6 doses	①②③④⑤⑥⑦⑧⑨⑩⑪⑬
		Foley catheter	59	24.2 ± 5.0	NR	40.0 ± 0.9	50 mL	-	①②③④⑤⑥⑦⑧⑨⑩⑪⑬
Jozwiak, 2013 [39]	Netherlands	Foley catheter	107	30.5 ± 4.0	72.0	39.1 ± 1.9	30 mL	-	①②③④⑤⑥⑦⑧⑨⑩⑪⑬
		Dinoprostone	119	31.7 ± 5.2	70.0	39.8 ± 2.1	-	-	①②③④⑤⑥⑦⑧⑨⑩⑪⑬
Ugwu, 2013 [40]	Nigeria	Foley catheter	45	28.9 ± 4.3	44.0	40.7 ± 1.5	30 mL	-	①②③④⑤⑥⑦⑧⑨⑩⑪⑬
		Vaginal misoprostol	45	28.7 ± 4.9	42.0	40.2 ± 1.7	-	25 mcg every 4 h up to 6 doses	①②③④⑤⑥⑦⑧⑨⑩⑪⑬
Edwards, 2014 [41]	USA	Foley catheter	185	28.0 ± 6.4	57.3	39.1 ± 1.4	30 mL	-	①②③④⑤⑥⑦⑧⑨⑩⑪⑬
		Dinoprostone	191	26.9 ± 5.9	66.5	39.2 ± 1.5	-	-	①②③④⑤⑥⑦⑧⑨⑩⑪⑬
Jozwiak, 2014 [42]	Netherlands	Foley catheter	56	31.0 ± 5.0	66.1	39.1 ± 2.2	30 mL	-	①②③④⑤⑥⑦⑧⑨⑩⑪⑬
		Vaginal misoprostol	64	32.3 ± 5.2	64.1	39.8 ± 2.1	-	25 mcg every 4 h up to 3 doses	①②③④⑤⑥⑦⑧⑨⑩⑪⑬
Suffecool, 2014 [43]	USA	Dinoprostone	31	28.0 ± 7.1	100	40.2 ± 1.5	-	-	①②③④⑤⑥⑦⑧⑨⑩⑪⑬
		Double-balloon catheter	31	27.5 ± 6.4	100	40.9 ± 1.1	80 mL	-	①②③④⑤⑥⑦⑧⑨⑩⑪⑬
Wang, 2014 [44]	China	Double-balloon catheter	67	27.9 ± 3.9	100	39.3 ± 2.1	80 mL	-	①②③④⑤⑥⑦⑧⑨⑩⑪⑬
		Dinoprostone	59	27.8 ± 3.4	100	39.0 ± 1.3	-	-	①②③④⑤⑥⑦⑧⑨⑩⑪⑬
Chavakula, 2015 [45]	India	Vaginal misoprostol	46	25.1 ± 4.7	69.6	37.8 ± 1.2	-	25 mcg every 6 h up to 6 doses	①②③④⑤⑥⑦⑧⑨⑩⑪⑬
		Foley catheter	54	24.3 ± 3.9	63.0	37.7 ± 1.1	30 mL	-	①②③④⑤⑥⑦⑧⑨⑩⑪⑬
Author, year	Country	Groups	Numbers	Age (years)	Nulliparity (%)	Gestational age (weeks)	Balloon volume (mL)	Misoprostol dose	Outcomes
---------------	-----------	--	---------	-------------	-----------------	------------------------	---------------------	-----------------	--
Du, 2015 [46]	China	Double-balloon catheter	76	28.5 ± 4.6	89.5	40.5 ± 0.9	80 mL + 80 mL	-	
Ezechukwu, 2015 [47]	Nigeria	Dinoprostone	79	27.3 ± 3.3	91.1	40.6 ± 0.8	-	50 mcg every 6 h up to 4 doses	
		Oral misoprostol	70	27.2 ± 4.5	62.9	40.6 ± 1.5	-	50 mcg every 6 h up to 4 doses	
		Vaginal misoprostol	70	28.2 ± 3.7	60.0	40.7 ± 1.6	-	50 mcg every 6 h up to 4 doses	
Kehl, 2015 [1]	Germany	Double-balloon catheter with oral misoprostol	162	30.0 ± 6.0	53.7	40.4 ± 1.1	80 mL + 80 mL	50 mcg orally every 4 h up to 3 doses in the first 24 h then 100 mcg orally every 4 h up to 3 doses in the next 24 h and then 100 mcg vaginally every 4 h up to 3 doses	
		Oral misoprostol	151	30.0 ± 6.5	60.9	40.3 ± 1.1	-	50 mcg orally every 4 h up to 3 doses in the first 24 h then 100 mcg orally every 4 h up to 3 doses in the next 24 h and then 100 mcg vaginally every 4 h up to 3 doses	
Noor, 2015 [48]	India	Vaginal misoprostol	60	25.1 ± 2.8	41.7	39.1 ± 1.4	-	25 mcg every 4 h up to 6 doses	
Shechter-Maor, 2015 [49]	Israel	Dinoprostone	44	25.6 ± 4.1	31.8	39.4 ± 1.2	50 mL	-	
		Oral misoprostol	26	28.5 ± 5.3	50.0	40.0 ± 1.0	-	100 mcg orally every 4 h up to 3 doses in the first 24 h then 100 mcg orally every 4 h up to 3 doses in the next 24 h and then 100 mcg vaginally every 4 h up to 3 doses	
		Oral misoprostol	26	28.5 ± 5.0	50.0	40.0 ± 1.3	NR	100 mcg orally every 4 h up to 3 doses in the first 24 h then 100 mcg orally every 4 h up to 3 doses in the next 24 h and then 100 mcg vaginally every 4 h up to 3 doses	
Hoppe, 2016 [50]	USA	Foley catheter	48	29.9 ± 6.0	52.1	38.9 ± 2.0	30 mL	-	
		Oral misoprostol	50	30.7 ± 5.2	50.0	38.9 ± 2.1	80 mL + 80 mL	-	
Sayed Ahmed, 2016 [51]	Egypt	Foley catheter	39	25.5 ± 5.1	100	40.4 ± 2.4	50 mL	-	
		Oral misoprostol	39	25.7 ± 4.8	100	40.6 ± 2.4	80 mL + 80 mL	-	
ten Eikelder, 2016 [52]	Netherlands	Foley catheter	924	31.7 ± 5.2	66.0	39.5 ± 2.1	-	50 mcg every 4 h up to 3 doses per day up to 4 days	
		Foley catheter	921	31.4 ± 5.9	64.7	39.6 ± 2.1	30 mL	-	
Author, year	Country	Groups	Numbers	Age (years)	Nulliparity (%)	Gestational age (weeks)	Balloon volume (mL)	Misoprostol dose	Outcomes
-------------	-------------	----------------------	---------	-------------	-----------------	------------------------	---------------------	-----------------------------------	----------
Yenuberi, 2016 [53]	India	Vaginal misoprostol	380	25.0 ± 4.2	69.2	39.9 ± 1.0	-	25 mcg every 4 h up to 3 doses	(①)(②)(③)(⑤)(⑥)(⑧)(⑨)(⑪)(⑬)
		Oral misoprostol	383	25.5 ± 3.8	71.0	39.7 ± 1.1	-	50 mcg for the first dose and then 100mcg every 4 h up to 3 doses totally	(①)(②)(③)(⑤)(⑥)(⑧)(⑨)(⑪)(⑬)
Somirathne, 2017 [54]	Sri Lanka	Foley catheter	89	28.8 ± 4.9	49.4	> 40.9	60 mL	-	(①)(②)(③)(⑤)(⑦)(⑧)(⑩)(⑬)
		Oral misoprostol	91	28.6 ± 5.5	50.5	> 40.9	-	50 mcg every 4 h up to 3 doses	(①)(②)(③)(⑤)(⑦)(⑧)(⑩)(⑬)
Leigh, 2018 [55]	India and UK	Foley catheter	300	24.0 ± 3.5	82.3	38.2 ± 2.2	30 mL	-	(①)(②)(③)(⑤)(⑦)(⑧)(⑩)(⑬)
		Oral misoprostol	302	23.7 ± 3.1	78.1	38.1 ± 2.1	-	25 mcg every 2 h up to 12 doses	(①)(②)(③)(⑤)(⑦)(⑧)(⑩)(⑬)
Abdī, 2021 [56]	Iran	Vaginal misoprostol	60	27.4 ± 5.4	100	42.4 ± 2.1	-	25 mcg once	(①)(②)(③)
		Foley catheter	60	29.5 ± 6.2	100	42.8 ± 4.7	30 mL	-	(①)(②)(③)(⑤)(⑦)(⑧)(⑩)(⑬)
Digusto, 2021 [10]	France	Double-balloon catheter	607	31.1 ± 5.2	66.1	41.0 - 42.0	80 mL + 80 mL	-	(①)(②)(③)(⑤)(⑦)(⑧)(⑩)(⑬)
		Dinoprostone	609	31.3 ± 5.1	65.8	41.0 - 42.0	-	(①)(②)(③)(⑤)(⑦)(⑧)(⑩)(⑬)	
Slot, 2021 [57]	Israel	Foley catheter	94	27.8 ± 5.1	53.2	39.8 ± 1.9	40 mL	-	(①)(②)(③)(⑤)(⑦)(⑧)(⑩)(⑬)

mcg microgram, mL milliliter, PO Per orals, PV Per vagina
① cesarean delivery rate; ② time from intervention-to-birth; ③ achieving vaginal delivery within 24 h; ④ Bishop score increment; ⑤ uterine hyperstimulation with fetal heart rate changes; ⑥ oxytocin augmentation; ⑦ instrumental delivery; ⑧ meconium-stained amniotic fluid; ⑨ Chorioamnionitis; ⑩ postpartum hemorrhage; ⑪ Apgar score < 7 in 5 min; ⑫ Apgar score < 7 in 1 min; ⑬ neonatal intensive care unit admission
Saudi Arabia, Sri Lanka, Thailand, and Turkey), Australia, Europe (France, Germany, Italy, the Netherlands, and the UK), and North America (the USA and Canada). Six types of intervention were assessed, including oral misoprostol, vaginal misoprostol, dinoprostone, Foley catheter, double-balloon catheter, and double-balloon catheter with oral misoprostol. All of the studies were two-arm with 11,482 pregnant women. The balloon volume, misoprostol dose, and outcomes of each study are shown in Table 1. The evaluation of bias risk for all RCTs is presented in Supplemental Figure S1 and S2.

Primary outcomes
The cesarean delivery rate in patients who underwent cervical ripening with a double-balloon catheter and oral misoprostol, oral misoprostol, and vaginal misoprostol were significantly lower than a Foley catheter (OR = 0.48, 95% CI: 0.23–0.96; OR = 0.74, 95% CI: 0.58–0.93; and OR = 0.79, 95% CI: 0.64–0.97, respectively; all \(P < 0.05 \); Fig. 2, Supplemental Table S3). The time from intervention-to-birth of vaginal misoprostol was significantly shorter than the other five interventions (Fig. 2, Supplemental Table S4).

Secondary outcomes
All of the head-to-head comparisons are shown in Supplemental Table S5–S16. Compared to a Foley catheter, vaginal misoprostol resulted in a higher improvement in the Bishop score (MD = 2.80, 95% CI: 0.55–5.08) and lower rate of oxytocin augmentation (OR = 0.14, 95% CI: 0.094–0.21), but a higher risk of uterine hyperstimulation with fetal heart rate changes (OR = 7.72, 95% CI: 2.44–41.59).

Compared to a Foley catheter, oral misoprostol had a lower rate of oxytocin augmentation (OR = 0.29, 95% CI: 0.18–0.46), but a higher risk of uterine hyperstimulation with fetal heart rate changes (OR = 4.30, 95% CI: 1.08–29.56) and a higher rate of meconium-stained amniotic fluid (OR = 1.73, 95% CI: 1.09–3.32).

Compared to a Foley catheter, a double-balloon catheter with or without oral misoprostol had similar outcomes, including uterine hyperstimulation with fetal heart rate changes (OR = 4.75, 95% CI: 0.26–294.50).

No difference in achieving vaginal delivery within 24 h, instrumental delivery, chorioamnionitis, postpartum hemorrhage, neonatal intensive care unit admission, and arterial pH among these interventions were revealed (Supplemental Tables S5, S9, S11, S12, S15, and S16).

Network geometry, inconsistency, certainty of evidence, and publication bias
Network geometry is shown in Supplemental Figure S3. The evaluation of inconsistencies for all outcomes are presented in Supplemental Figures S4-S16. We noted a significance level (\(P > 0.05 \)) for most cases, which indicated that inconsistency was not sufficient to influence the conclusion of this NMA. According to the SUCRA value, ranking of all interventions was done (Fig. 3). Finally, we used the GRADE system to evaluate the certainty of evidence (Table 2). No significant asymmetry was demonstrated in the funnel plot of major primary and secondary outcomes (Supplemental Figures S17 and S18). The results of Begg’s and Egger’s tests are shown in Supplemental Table S17.

Discussion
This NMA provides evidence for the relative efficacy and safety of double-balloon catheters for cervical ripening. A large amount of evidence was pooled to allow us to indirectly compare the clinical efficacy and safety profile of a double-balloon catheter with a Foley catheter, misoprostol (oral/vaginal), and a controlled-release dinoprostone insert for cervical ripening and labor induction in women with unfavorable cervixes during the third trimester of pregnancy. These five methods are commonly used for cervical ripening. Our analysis demonstrated that the double-balloon catheter was not superior to other methods with respect to the cesarean section rate, time from intervention-to-birth, and maternal and neonatal adverse events. The combined use of a double-balloon catheter and oral misoprostol significantly reduced the cesarean section rate compared to a Foley catheter without an increased risk of uterine hyperstimulation with fetal heart rate changes, as occurred with oral or vaginal misoprostol alone.

To ripen the cervix, a number of methods are used; however, there is little consensus regarding which method is best [58]. It has been suggested that catheter Balloons were equally effective in cervical ripening as pharmacological methods, with no significant differences in mode of delivery or perinatal outcome [59]. The double-balloon catheter was specifically developed for inducing labor. The mechanism of action by which the double-balloon catheter ripens the cervix is achieved by pressure applied to the external and internal os. The vaginal balloon is used to hold the balloon in the extra-amniotic space during cervix softening and distensibility. As the ripening process continues, the device can spontaneously expel itself early [8].

Previous systematic reviews on the safety and effectiveness of double-balloon catheters have been published; however, these reviews have been limited to pairwise meta-analyses [60–63]. In contrast, NMAs provide an important method of including a large amount of direct and indirect evidence from comparisons of many different interventions. In this NMA, we did not demonstrate...
Fig. 2 Forest plots of network meta-analysis of all trials for primary and secondary outcomes.
an advantage to the double-balloon to other single method in various primary and secondary outcomes of labor induction. When combined with oral misoprostol, the double-balloon catheter was shown to reduce the cesarean delivery rate compared with a Foley catheter. Vaginal misoprostol alone improved the outcomes of labor induction, including the cesarean section rate, time from intervention-to-birth, Bishop score increment, and oxytocin augmentation. Even though vaginal misoprostol alone appeared to be the most effective method in cervical ripening, use of vaginal misoprostol was associated with the highest incidence of uterine hyperstimulation with fetal heart rate changes. Oral misoprostol was shown to have similar efficiency and safety to vaginal misoprostol in our analysis. The resulting uterine hyperstimulation with misoprostol use is consistent with previous studies [52, 64, 65]. Interestingly, uterine hyperstimulation with fetal heart rate changes did not occur with a double-balloon catheter combined with oral misoprostol. This finding may be due to the additional cervical dilation effect of the double-balloon catheter. This effect could reduce the misoprostol dose and the risk of uterine hyperstimulation [66].

Unlike previous studies [60, 63], we did not find any difference in Bishop score improvement between double-balloon and Foley catheters. Chorioamnionitis is a major concern when double-balloon catheters are used. According to our analysis, there were no significant difference in chorioamnionitis between a double-balloon catheter and any other method. Although there was a higher proportion of 5-min Apgar scores < 7 with double-balloon catheter and oral misoprostol use, there were only a few cases and there were no differences in umbilical artery pH, thus this finding was not clinically relevant. Therefore, this NMA indicated that the combination of a double-balloon catheter with oral misoprostol may be a preferable choice in view of the reduction in the cesarean section rate and lack of significant adverse outcomes.

Our analysis evaluated the safety and efficacy of double-balloon catheters. The combined effect of a double-balloon catheter with other cervical ripening methods was also included in our study. However, we did not identify any randomized controlled trial to assess the combined effect of controlled-release dinoprostone and a double-balloon catheter, although this combination may improve the induction outcome much like the combined effect with misoprostol. The high cost of controlled-release dinoprostone and a double-balloon catheter should be the reason. We did not perform an NMA to compare the combined effect of a Foley catheter with other cervical...
Outcome	Study number	Participants number	Effect estimates (95% CI)	Conclusion	GRADE Quality score
Cesarean delivery rate	47	11,215	Double-balloon catheter with oral misoprostol vs. Foley catheter: OR = 0.48, 95% CI: 0.23–0.96; Oral misoprostol vs. Foley catheter: OR = 0.74, 95% CI: 0.58–0.93; Vaginal misoprostol vs. Foley catheter: OR = 0.79, 95% CI: 0.64–0.97	Double-balloon catheter with oral misoprostol, oral misoprostol, and vaginal misoprostol superior to Foley catheter	Moderatea
Time from intervention-to-birth (min)	31	7956	Vaginal misoprostol vs. double-balloon catheter with oral misoprostol: MD = -800.17, 95% CI: -1597.71–-3.01; Vaginal misoprostol vs. double-balloon catheter: MD = 320.31, 95% CI: -568.84–-74.77; Vaginal misoprostol vs. oral misoprostol: MD = -204.68, 95% CI: -414.34–-41.6; Vaginal misoprostol vs. Foley catheter: MD = -243.93, 95% CI: -407.61–-85.42; Vaginal misoprostol vs. dinoprostone: MD = -259.09, 95% CI: -450.10–-74.08	Vaginal misoprostol superior to double-balloon catheter with oral misoprostol, double-balloon catheter, Foley catheter, and dinoprostone	Moderate3
Achieving vaginal delivery within 24 h	22	5154	More details in Supplemental Table S5	No difference among these interventions	Lowab
Bishop score increment	8	1533	Vaginal misoprostol vs. Foley catheter: MD = 2.80, 95% CI: 1.35–5.08	Vaginal misoprostol, oral misoprostol, and dinoprostone inferior to Foley catheter	Moderate3
Uterine hyperstimulation with fetal heart rate changes	27	7673	Vaginal misoprostol vs. Foley catheter: OR = 7.72, 95% CI: 2.44–41.59; Oral misoprostol vs. Foley catheter: OR = 4.30, 95% CI: 1.08–29.56; Dinoprostone vs. Foley catheter: OR = 5.74, 95% CI: 1.06–50.85	Vaginal misoprostol, oral misoprostol, and dinoprostone inferior to Foley catheter	Moderate3
Oxytocin augmentation	36	9536	Vaginal misoprostol vs. Foley catheter: OR = 0.14, 95% CI: 0.09–0.21; Oral misoprostol vs. Foley catheter: OR = 0.29, 95% CI: 0.18–0.46; Dinoprostone vs. Foley catheter: OR = 0.33, 95% CI: 0.20–0.54; Vaginal misoprostol vs. double-balloon catheter: OR = 0.09, 95% CI: 0.04–0.18; Oral misoprostol vs. double-balloon catheter: OR = 0.18, 95% CI: 0.08–0.39; Double-balloon catheter with oral misoprostol vs. double-balloon catheter: OR = 0.18, 95% CI: 0.04–0.74; Dinoprostone vs. double-balloon catheter: OR = 0.21, 95% CI: 0.12–0.36; Vaginal misoprostol vs. oral misoprostol: OR = 0.49, 95% CI: 0.34–0.69; Vaginal misoprostol vs. dinoprostone: OR = 0.42, 95% CI: 0.26–0.67	Vaginal misoprostol, oral misoprostol, and dinoprostone superior to Foley catheter; Vaginal misoprostol, oral misoprostol, double-balloon catheter with oral misoprostol, and dinoprostone superior to double-balloon catheter; Vaginal misoprostol superior to oral misoprostol and dinoprostone	Moderate3
Instrumental delivery	25	7140	More details in Supplemental Table S9	No difference among these interventions	Moderatea
Meconium-stained amniotic fluid	28	6241	Oral misoprostol vs. Foley catheter: OR = 1.73, 95% CI: 1.09–3.32	Oral misoprostol inferior to Foley catheter	Moderate3
Chorioamnionitis	10	2410	More details in Supplemental Table S11	No difference among these interventions	Moderatea
Table 2 (continued)

Outcome	Study number	Participants number	Effect estimates (95% CI)	Conclusion	GRADE Quality score
Postpartum hemorrhage	14	5421	More details in Supplemental Table S12	No difference among these interventions	Moderate^a
Apgar score < 7 in 5 min	26	8149	Vaginal misoprostol vs. double-balloon catheter with oral misoprostol: OR = 0.05, 95% CI: 0–0.93; Double-balloon catheter vs. double-balloon catheter with oral misoprostol: OR = 0.02, 95% CI: 0–0.42; Dinoprostone vs double-balloon catheter with oral misoprostol: OR = 0.04, 95% CI: 0–0.80; Foley catheter vs double-balloon catheter with oral misoprostol: OR = 0.04, 95% CI: 0–0.64	Vaginal misoprostol, double-balloon catheter, dinoprostone, and Foley catheter superior to double-balloon catheter with oral misoprostol	Moderate^b
Apgar score < 7 in 1 min	16	4367	Double-balloon catheter vs. dinoprostone: OR = 0.10, 95% CI: 0–0.85; Double-balloon catheter vs. vaginal misoprostol: OR = 0.08, 95% CI: 0–0.83; Double-balloon catheter vs. oral misoprostol: OR = 0.09, 95% CI: 0–0.92	Double-balloon catheter superior to dinoprostone, vaginal misoprostol, and oral misoprostol	Moderate^a
Neonatal intensive care unit admission	34	9351	More details in Supplemental Table S15	No difference among these interventions	Moderate^a
Arterial pH	9	1478	More details in Supplemental Table S16	No difference among these interventions	Moderate^a

CI: Confidence interval, MD: Mean difference, OR: Odds ratio

^a Rated down for serious imprecision;
^b Rated down for serious inconsistency
ripening methods in the present study. Because safety and efficacy was similar between double-balloon and Foley catheters, whether a Foley catheter combined with misoprostol has the same effect needs to be confirmed. It should be noted that a Foley catheter is much less expensive than a double-balloon catheter. In fact, use of a Foley catheter is a classic mechanical method for cervical ripening and widely used in low-resource settings [55, 67]. Among developing countries where health-related costs are a major concern, a Foley catheter is recommended as a better option than other cervical ripening methods.

Strengths

One of the strengths of our review was the application of an NMA. Our NMA was strictly confined to randomized trials and provided comprehensive comparisons between a double-balloon catheter and five other cervical ripening techniques, which increased the interpretation of the existing evidence. We calculated the probabilities of ranking cervical ripening methods using Bayesian analysis. Furthermore, to minimize potential bias due to the variation in the characteristics of the included women, we applied several restrictions for inclusion in the review. Specifically, we excluded studies that included outpatients or pregnant women who were in the second trimester. Third, only few included trials were of low quality. Moreover, our protocol was registered with PROSPERO before data abstraction commenced.

Future directions

First, because a Foley catheter is much less expensive than a double-balloon catheter, trials aimed to compare the efficacy of “the combination of a Foley catheter with misoprostol” and “the combination of a double-balloon catheter with misoprostol” needs to be conducted. Second, compared with inpatient management, women may be able to find better psychological and social support at home. Therefore, the safety of outpatient cervical priming of a double-balloon catheter also needs to be confirmed. Third, only one trial compared a double-balloon catheter with oral misoprostol to oral misoprostol alone [11], thus additional evidence is needed.

Limitation

The current meta-analysis had some limitations. First, to decrease the heterogeneity, we only included trials with the dinoprostone formulation that was most often used in the trials compared with a double-balloon catheter. Second, the misoprostol dose and the volume of the double-balloon or Foley catheter were variable, which may affect the credibility of the conclusion. Third, the characteristics of the participants, such as maternal age, parity, gestational age, body mass index, baseline Bishop score, and labor induction, were diverse and underlying confounders. Fourth, some of the involved trials were not double-blinded due to the nature of the intervention.

Conclusion

The clinical outcomes were similar between a double-balloon catheter alone and other single methods. For pregnant women with intact membranes after 28 weeks gestation, vaginal misoprostol was shown to be the most effective methods for cervical ripening with respect to the cesarean delivery rate, time from intervention-to-birth, and oxytocin augmentation; however, vaginal misoprostol was associated with higher rates of uterine hyperstimulation with fetal heart rate changes. The combination of a double-balloon catheter with oral misoprostol was the best method to reduce the likelihood of delivery by cesarean section without uterine hyperstimulation with fetal heart rate changes.

Abbreviations

CI: Confidence interval; MD: Mean difference; NMA: Network meta-analysis; OR: Odds ratio; RCT: Randomized controlled trial; SUCRA: Surface under the cumulative ranking curve.

Supplementary Information

The online version contains supplementary material available at https://doi.org/10.1186/s12884-022-04988-2.
The authors declare that they have no competing interests.

Not applicable.

Consent for publication

The study was approved by the Institutional Review Board (IRB) of the First Affiliated Hospital of China Medical University (No. 2022035 on February 25, 2022). The IRB waived the need for informed consent because this was a meta-analysis study based on published data.

Availability of data and materials

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

Declarations

Ethics approval and consent to participate

The study was approved by the Institutional Review Board (IRB) of the First Affiliated Hospital of China Medical University (NO. 2022035 on February 25, 2022). The IRB waived the need for informed consent because this was a meta-analysis study based on published data.

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Author details

1 Department of Obstetrics, The First Hospital of China Medical University, 25, 2022. The IRB waived the need for informed consent because this was a meta-analysis study based on published data.

2 Department of Ultrasound, Shengjing Hospital of China Medical University, Shenyang, China.

Received: 18 April 2022 Accepted: 19 August 2022

Published online: 06 September 2022

References

1. West HM, Jozwiak M, Dodd JM. Methods of term labour induction for women with a previous caesarean section. Cochrane Database Syst Rev. 2017;6:CD009792.

2. Sciscione AC, McCullough H, Manley JS, Shlossman PA, Pollock M, Colmorgen GH. A prospective, randomized comparison of Foley catheter insertion versus intracervical prostaglandin E2 gel for preinduction cervical ripening. Am J Obstet Gynecol 1999;180(1 Pt 1):55–60.

3. Tenore JL. Methods for cervical ripening and induction of labor. Am Fam Physician. 2003;67(10):2123–8.

4. ACOG Practice Bulletin No. 107: Induction of labor. Obstet Gynecol. 2009;114(2 Pt 1):386–97.

5. Marroquin GA, Tudorica N, Salafia CM, Hecht R, Mikhail M. Induction of labor at 41 weeks of pregnancy among primiparas with an unfavorable Bishop score. Arch Gynecol Obstet 2013;288(5):989–93.

6. Jozwiak M, Bloemenkamp KW, Kelly AJ, Mol BW, Iiron O, Boulvain M. Mechanical methods for induction of labour. Cochrane Database Syst Rev. 2012(3):CD001233. https://doi.org/10.1002/14651858.CD001233.pub2.

7. Gelber S, Sciscione A. Mechanical methods of cervical ripening and labor induction. Clin Obstet Gynecol. 2006;49(3):642–57.

8. Atad J, Hallack M, Ben-David Y, Auslander R, Abramovici H. Ripening and dilatation of the unfavourable cervix for induction of labour by a double balloon device: experience with 250 cases. Br J Obstet Gynaecol. 1997;104(1):29–32.

9. Solt I, Frank Wolf M, Ben-Haroush S, Kaminiski S, Ophir E, Bornstein J. Foley catheter versus cervical double balloon for labor induction: a prospective randomized study. J Matern Fetal Neonat Med. 2021;34(7):1034–41.

10. Diguisto C, Le Gouge A, Arthus C, Winer N, Parant O, Poncelet C, Chaulier C, Hannigsberg J, Ducarme G, Gallot D, et al. Cervical ripening in prolonged pregnancies by silicone double balloon catheter versus vaginal dinoprostone slow release system: The MAGPOP randomised controlled trial. PLoS Med. 2021;18(2):e1003448.

11. Kehl S, Ziegler J, Schleussner E, Tuschy B, Berlit S, Kirsch J, Hagele F, Weiss C, Siemer J, Sutterlin M. Sequential use of double-balloon catheter and oral misoprostol versus oral misoprostol alone for induction of labour at term (CRBplus trial): a multicentre, open-label randomised controlled trial. BJOG. 2015;122(1):129–36.

12. Wing DA, Ortiz-Omphroy G, Paul RH. A comparison of intermittent vaginal administration of misoprostol with continuous dinoprostone for cervical ripening and labor induction. Am J Obstet Gynecol. 1997;177(3):612–8.

13. Bennett KA, Butt K, Crane JM, Hutchens D, Young DC. A masked randomized comparison of oral and vaginal administration of misoprostol for labor induction. Obstet Gynecol. 1998;92(4 Pt 1):481–6.

14. Wing DA, Ham D, Paul RH. A comparison of orally administered misoprostol with vaginally administered misoprostol for cervical ripening and labor induction. Am J Obstet Gynecol. 1999;180(5):1155–60.

15. Fisher SA, Mackenzie VP, Davies GA. Oral versus vaginal misoprostol for induction of labor: a double-blind randomized controlled trial. Am J Obstet Gynecol. 2001;185(4):906–10.

16. Khoury AN, Zhou QP, Gorenberg DM, Nies BM, Manley GE, Mecklenburg FE. A comparison of intermittent vaginal administration of two different doses of misoprostol suppositories with continuous dinoprostone for cervical ripening and labor induction. J Matern Fetal Med. 2001;10(3):186–92.

17. Kwon JS, Davies GAL, Mackenzie VP. A comparison of oral and vaginal misoprostol for induction of labour at term: a randomised trial. Br J Obstet Gynaecol. 2001;108(1):23–6.

18. Sciscione AC, Nguyen L, Manley J, Pollock M, Maas B, Colmorgen G. A randomized comparison of transcervical Foley catheter to intravaginal misoprostol for preinduction cervical ripening. Obstet Gynecol. 2001;97(4):603–7.

19. Shetty A, Danielian P, Templeton A. A comparison of oral and vaginal misoprostol tablets in induction of labour at term. Br J Obstet Gynaecol. 2001;108(3):238–43.

20. Le Roux PA, Olorunpa JO, Penny J, Anthony J. Oral and vaginal misoprostol compared with dinoprostone for induction of labor: a randomized controlled trial. Obstet Gynecol. 2002;99(2):201–5.

21. Chung JH, Huang WH, Rummey PJ, Garite TJ, Nageotte MF. A prospective randomized controlled trial that compared misoprostol, Foley catheter, and combination misoprostol–Foley catheter for labor induction. Am J Obstet Gynecol. 2003;189(4):1031–5.

22. Nopdonrattakoon L. A comparison between intravaginal and oral misoprostol for labor induction: a randomized controlled trial. J Obstet Gynecol Res. 2003;29(2):87–91.

23. Ramsey PS, Harris DY, Heise RH, Magtibay PM, Ramin KD. Comparative efficacy and cost of the prostaglandin analogs dinoprostone and misoprostol as labor preinduction agents. Am J Obstet Gynecol. 2003;188(2):560–5.

24. Shetty A, Livingstone I, Achariya S, Rice P, Danielian P, Templeton A. Oral misoprostol (100 microg) versus vaginal misoprostol (25 microg) in term labor induction: a randomized comparison. Acta Obstet Gynecol Scand. 2003;82(2):1103–6.

25. Paungmola N, Herabutya Y, Popp, Punyavachira P. Comparison of oral and vaginal misoprostol for induction of labor at term: a randomized controlled trial. J Obstet Gynaecol Res. 2004;30(5):358–62.

26. Rozenberg P, Chevret S, Senat MV, Brettelle F, Paule Bonnal A, Ville Y. A randomized trial that compared intravaginal misoprostol and dinoprostone vaginal insert in pregnancies at high risk of fetal distress. Am J Obstet Gynecol. 2001;188(2):560–5.

27. Shetty A, Livingstone I, Acharya S, Rice P, Danielian P, Templeton A. Oral misoprostol (100 microg) versus vaginal misoprostol (25 microg) in term labor induction: a randomized comparison. Acta Obstet Gynecol Scand. 2003;82(12):1103–6.

28. Paungmola N, Herabutya Y, Popp, Punyavachira P. Comparison of oral and vaginal misoprostol for induction of labor at term: a randomized controlled trial. J Obstet Gynaecol Res. 2004;30(5):358–62.

29. Gelisen O, Caliskan E, Dilbaz S, Ozdas E, Dilbaz B, Ozdas E, Haberal A. Induction of labor with three different techniques at 41 weeks of gestation or spontaneous follow-up until 42 weeks in women with...
30. Owolabi AT, Kuti O, Ogunlola IO. Randomised trial of intravaginal misoprostol and intracervical Foley catheter for cervical ripening and induction of labour. J Obstet Gynaecol. 2005;25(6):565–8.

31. Ayaz A, Saeed S, Farooq MU, Ahmed I, Bahoo MLA, Saeed M. Labor induction with randomization comparison of oral and intravaginal misoprostol in post date multigravida women. Malaysian J Med Sci. 2009;16(1):25–30.

32. Ozkan S, Caliskan E, Doger E, Yusceso I, Ozeren S, Vural B. Comparative efficacy and safety of vaginal misoprostol versus dinoprostone vaginal insert in labor induction at term: a randomized trial. Arch Gynecol Obstet. 2009;280(1):19–24.

33. Pennell CE, Henderson JJ, O’Neill MJ, McChlery S, Doherty DA, Dickinson JE. Induction of labour in nulliparous women with an unfavourable cervix: a randomised controlled trial comparing double and single balloon catheters and PGE2 gel. BJOG. 2009;116(1):1443–52.

34. Comri A, Ghezzi F, Agosti M, Serati M, Uccella S, Airlat V, Bolis G. Is transcervical Foley catheter actually slower than prostaglandins in ripening the cervix? A randomised study. Am J Obstet Gynecol. 2011;204(4):338 e331-337.

35. Roudsari FV, Ayati S, Ghasemi M, Mofrad MH, Shakeri MT, Farshidi F, Shahanb M. Comparison of vaginal misoprostol with Foley catheter for cervical ripening and induction of labour. Iran J Pharm Res. 2011;10(1):149–54.

36. Salim R, Zafran N, Nachum Z, Garmi G, Kraiem N, Shalev E. Single-balloon catheter compared with double-balloon catheters for induction of labor: a randomized controlled trial. Obstet Gynecol. 2011;118(1):79–86.

37. Comri A, Ghezzi F, Uccella S, Agosti M, Serati M, Marchitelli G, Bolis P. A randomized trial of preinduction cervical ripening: dinoprostone vaginal insert versus double-balloon catheter. Am J Obstet Gynecol. 2012;207(2):e121-127.

38. Kandil M, Emrah T, Sayeed T, Masood A. Foley catheter versus intra-vaginal misoprostol for induction of labor in post-term gestations. Arch Gynecol Obstet. 2012;286(2):303–7.

39. Jozwiak M, Dude Rengerink K, Ten Eikelder M, van Pampus MG, Braescu AV, Lin MG. Foley catheter compared with the controlled-release dinoprostone vaginal insert: a randomized controlled trial. Obstet Gynecol. 2013;120(1):36–40.

40. Ugwu EO, Onah HE, Obi SN, Dim CC, Okezie OA, Chigbu CO, Okoro OS. Effect of the Foley catheter and synchronous low dose misoprostol administration on cervical ripening: a randomised controlled trial. J Obstet Gynecol Obstet Gynaecol. 2013;33(6):572–7.

41. Edwards RK, Szychowski JM, Berger JL, Petersen M, Szychowski JM, Bodea-

42. Jozwiak M, Ten Eikelder M, Rengerink KO, De Groot C, Feitsma H, Spaanderman M, Van Pampus M, De Leeuw JW, Mol BW, Bloemenkamp K. Foley catheter versus vaginal misoprostol: Randomized controlled trial (PROBAAT-P trial) and systematic review of literature. Eur J Obstet Gynecol Reprod Biol. 2013;170(1):137–45.

43. Sherman DJ, Frenkel E, Tovbin J, Caspi E, Bukovsky I. Ripening with a mechanical ripening catheter in pre-induction cervical ripening in post-dated pregnancies: a randomized controlled trial. Ceylon Med J. 2017;62(2):77. https://doi.org/10.4038/cmj.v62i2.8470.

44. Sheikh MA, Shiakh MA, Azam F, Azam F, Khan K, Ali SM, Parveen S. Foley Catheter versus Vaginal Misoprostol for Induction of Labour Using a Foley Catheter or Misoprostol: A Systematic Review and Meta-analysis. Obstet Gynecol Surg. 2016;71(10):260–30.

45. Yenuberi H, Abraham A, Sebastian A, Benjamin SJ, Jeyaseelan V, Mathews JE. A randomized double-blind placebo-controlled trial comparing stepwise oral misoprostol with vaginal misoprostol for induction of labour. Trop Doct. 2016;46(4):198–205. https://doi.org/10.1177/0049475515624856.

46. Somirathne D, Goonewardene M, Dasanayake L. Three doses of oral misoprostol versus an intra-cervical Foley catheter for 24 hours for pre-induction cervical ripening in post-dated pregnancies: a randomized controlled trial. Ceylon Med J. 2017;62(2):77. https://doi.org/10.4038/cmj.v62i2.8470.

47. Leigh S, Granby P, Haycox A, Mundle S, Bracken H, Khedkar V, Mulik J, Far- agher B, Easterling T, Turner MA, et al. Foley catheter vs. oral misoprostol to induce labour among hypertensive women in India: a cost-conse- quence analysis alongside a clinical trial. BJOG. 2018;125(3):1734–42.

48. Abd1 N, Alavi A, Pakbaz F, Darabi H. Vaginal misoprostol versus intracervical Foley catheter for cervical ripening in postdate primigravid women: a randomized clinical trial. BMC Pregnancy Childbirth. 2021;21(1):533. https://doi.org/10.1186/s12884-021-04011-0.

49. Soht I, Frank Wolf M, Ben-Haroush S, Kaminsky S, Ophir E, Bornstein J. Foley catheter versus cervical double balloon for labor induction: a prospective randomised study. J Matern Fetal Neonatal Med. 2021;34(7):1034–41. https://doi.org/10.1177/147670582019.1632776.

50. Jozwiak M, Mol BW, Bloemenkamp KW. Dutch consortium of studies in Obstetrics G, Fertility: Induction of labour in nulliparous women with an unfavourable cervix: BJOG. 2010;117(7):892; author reply 892–93.

51. Sherman DJ, Frenkel E, Tovbin J, Anelli S, Caspi E, Bukovsky I. Ripening of the unfavorable cervix with extraamniotic catheter balloon: clinical experience and review. Obstet Gynecol Surv. 1996;51(10):621–7.

52. Lajusticia H, Martinez-Dominguez S1, Perez-Roncero CR, Chadrau P, Perez-Lopez FR, Health O, Systematic Analyses P. Single versus double-balloon catheters for the induction of labor of singleton pregnancies: a meta-analysis of randomized and quasi-randomized controlled trials. Arch Gynecol Obstet. 2018;297(5):1089–100.

53. de los Reyes SX, Sheffield JS, Eke AC. Single versus Double-Balloon Transcervical Catheter for Labor Induction: A Systematic Review and Meta-Analysis. Am J Perinatol. 2019;36(8):790–7.

54. Liu YR, Pu CX, Wang XY, Wang XY. Double-balloon catheter versus dinoprostone insert for labour induction: a meta-analysis. Arch Gynecol Obstet. 2019;299(1):7–12.

55. Liu X, Wang Y, Zhang F, Zhang X, Ou R, Luo X, Qi H. Single- versus double-balloon catheters for labour induction and cervical ripening: a meta-analysis. BMC Pregnancy Childbirth. 2019;19(1):358.

56. Chen W, Xue J, Pehrah MK, Wen SW, Walker M, Gao Y, Tang Y. A systematic review and network meta-analysis comparing the use of Foley catheters, misoprostol, and dinoprostone for cervical ripening in the induction of labour. BJOG. 2016;123(3):346–54.

57. de Vaan MD, Ten Eikelder ML, Jozwiak M, Palmer KR, Davies-Tuck M, Bloemenkamp KW, Mol BWJ, Boullain M. Mechanical methods for induction of labour. Cochrane Database Syst Rev. 2019;10:CD008123.
66. Sanchez-Ramos L, Kaunitz AM, Wears RL, Delke I, Gaudier FL. Misoprostol for cervical ripening and labor induction: a meta-analysis. Obstet Gynecol. 1997;89(4):633–42.

67. Bracken H, Mundle S, Faragher B, Easterling T, Haycox A, Turner M, Altrevic Z, Winikoff B. Induction of labour in pre-eclamptic women: a randomised trial comparing the Foley balloon catheter with oral misoprostol. BMC Pregnancy Childbirth. 2014;14:308.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.