Supplemental Figure S1. Multiple sequence alignments and phylogenetic analysis of MdMYB46 orthologs.

A. Multiple sequence alignments of AtMYB46 orthologs in Eucalyptus (Eucalyptus grandis; EgMYB2); Pine (Pinus taeda; PtMYB4), grapevine (Vitis vinifera; VvMYB46), alfalfa (Medicago truncatula; MtMYB46), soybean (Glycine max; GmMYB46), rice (Oryza sativa; OsMYB46), maize (Zea mays; ZmMYB46), sorghum (Sorghum bicolor; SbMYB46), barley (Hordeum vulgare; HvMYB46), brachypodium (Brachypodium distachyon; BdMYB46), birch (Betula platyphylla, BplMYB46) and apple (Malus × domestica Borkh, MdMYB46). R2, R3 functional regions were marked in the red box. B. Phylogenetic analysis of AtMYB46/83 orthologs. MYB58, MYB63 and their homologs (PtMYB1/8/21a, PnMYB28/192 and EgMYB1) are included as the outgroup. AtMYB46 and MdMYB46 were marked with red frame. Proteins in the blue half brackets represent the members in the same subfamily with MdMYB46.
Supplemental Figure S2. Transcriptional levels of *MdMYB46* in transgenic apple. A. Schematic shown the overexpressing and RNAi vector of *MdMYB46*. B. *MdMYB46* expression levels in non-transgenic GL-3 apple plants, *MdMYB46*-overexpressing apple plants (OE-MdMYB46) and *MdMYB46*-RNAi plants (RNAi-MdMYB46). The error bars indicate the standard deviation (SD) from three biological replicates. Asterisk indicates significant differences between the transgenic lines and GL-3 (*P* < 0.05, based on t-test).
Supplemental Figure S3. Phenotypes of *MdMYB46*-overexpressing Arabidopsis and apple. A. Phenotypic differences between *MdMYB46*-overexpressing Arabidopsis plants and non-transgenic wild type (WT). The curling blade was marked in the red box. B. Differences in petal structure between *MdMYB46*-overexpressing Arabidopsis and WT. C. Phenotype of *MdMYB46*-overexpressing apple plants and WT.
Supplemental Figure S4. Differences in transcriptional levels of lignin biosynthesis-related genes between *MdMYB46*-overexpressing Arabidopsis plants and wild type. A-E. The error bars indicate the standard deviation (SD) from three biological replicates. Different letters indicate significant differences (*P* < 0.05, based on Duncan’s multiple range test). WT represents the non-transgenic wild type while L1, L3 and L6 represent the transgenic lines.
Supplemental Figure S5. Changes in expression of genes related to cellulose biosynthesis in \textit{MdMYB46}-overexpressing Arabidopsis and apple. A. Transcriptional levels of cellulose biosynthesis-related genes in \textit{MdMYB46}-overexpressing apple plants and non-transgenic plants (GL-3). B-D. Transcriptional levels of cellulose biosynthesis-related genes in \textit{MdMYB46}-overexpressing Arabidopsis plants and the non-transgenic wild type (WT). The error bars indicate the standard deviation (SD) from three biological replicates. Different letters indicate significant differences ($P < 0.05$, based on Duncan’s multiple range test).
Supplemental Figure S6. Transcriptional levels of stress signaling genes under ABA, salt and drought stress and in *MdMYB46* transgenic apples. A. B. C. The expression levels of stress signaling genes in non-transgenic GL-3 apple plants under ABA, NaCl and mannitol treatment. The error bars indicate the standard deviation (SD) from three biological replicates. Different letters indicate significant differences (*P* < 0.05, based on Duncan’s multiple range test).
Supplemental Table S1 Primers used in this study

Primer Name	Primer Sequence
For transgenic vectors	
MdMYB46-eGFP	F: GTCGACATGAGGAAGCCAGAACCCTCC
R: GGATCCACTTTGGTAGTCAAGAAAAAG	
MdMYB46 (Y2H)	F:GGATCTTGAGGAAGCCAGAACCCTCC
R:GTCGACTCAACTTTGGTAGTCAAGAAAAAG	
MdMYB46-N	F:GGATCTCAGGAAGCCAGAACCCTCC
R:GTTCGACTCACTTTGGTAGTCAAGAAAAAG	
(Y2H)	F:GGA TCCTGAGGAAGCCAGAACCCTCC
R:GTCGACTCACTTTGGTAGTCAAGAAAAAG	
MdMYB46-C	F:GGA TCCTGAGGAAGCCAGAACCCTCC
R:GTCGACCTCACTTTGGTAGTCAAGAAAAAG	
(Y2H)	F:GGA TCCTGAGGAAGCCAGAACCCTCC
R:GTCGACCTCACTTTGGTAGTCAAGAAAAAG	
MdMYB46- pRI	F: GTCGACATGGAACAAAAGTTGATTTCTGAA
R: GGATCCATGAGGAAGCCAGAACCCTCC	
MYC-MdMYB46- pRI	F: GTCGACATGGAAGCCAGAACCCTCC
R: GGATCCACCTGAGGAAGCCAGAACCCTCC	
RNAi-MdMYB46	FF:TCTAGATCCCTCCCCATAGATGGTTTCA
FR:AAGCTTAACCCTCAGGTACCATC	
For EMSA probes	
pMdMYB58	F: TGGTGCTTTTGAGATTATTAGGTGTATTTGGAGCCGCAAT
R: ATTCGCGCTCACCACATACCTAATAAATCTCAAGCAACCA	
pMdMYB63	F: TTTGTGTTGGAGGTCAATTTGGTAGTTTCCACACCAA
R: CTTCGTTGGAACCTAACCACATGGACCTCACAACAAA	
pMdCAD	F: TAATATAGGAAGCATAATTTTTAATTAAT
R: ATTTAGTAAAATTTTGCTTCCATAATTTA	
pMdCOMT	F: ACACAAATAGTCAACCTAATTTGTTAGTGTATTTGTCA
R: TGACAAATACTACCAATTGACCTCACAACAAA	
pMdCCR	F: ACACCAACTAATAACACACCAACTAAAATCATCATTATT
R: AAAAAATGATATTTTATGTTAGGTTTATTGAGGGTTT	
pMdRD22	F: ATCTTAATTAGGTGTGTGAGACATCTTTGCAATAAAA
AAACCAACTCATATT |
R: AATATGAGTTGGTTTTTTATTGCAAGATGTCTCGACACA
CCTAATTAAGAT

pMdRD29A
F: AAAAAATTGATTTACCTAACATTACTACTTAT
R: ATAATAGTAGTATGITAGTATGAAATATCAATTATTT

pMdAREB1A
F: AATTCAACCTAACCTTTAATCCGTATTATATATGGATGAG
TTGGTGTGGATATTGG
R: CCAAAATCACCAACCCCAACTCACATCAAAATATATAGAATGATT
AAAGTTAGGTTGAATT

pMdDREB2A
F: AAAGCGCAAAAAACCAAAACCAGCAGAAAAAG
R: CTTTTTCTGCTGGTTTGGTGTTCCTCGCTTT

For reporter genes

pMdMYB58
F: CTGCAGATGGTGTTGGCAAACTTTACA
R: GGATCCCATATGAAATCAGTTGGAAGAGGAAGGAAGA

pMdMYB63
F: CTGCAGTTAATCCTAACTATAGAGTGTTGCT
R: GGATCCCTAGTAGGAGATGGGAAACGTC

pMdCAD
F: CTGCAGGTGTAATAATGGGCAAGAAGATTA
R: GGATCCGACACATTTTAGTTATGAGAATTA

pMdCOMT
F: CTGCAGGAGGTGTGGCTGCTGATCATG
R: GGATCCCTGAGAGCAAGGAAGGCAAGTAAT

pMdCCR
F: CTGCAGAAACCTATTGAGATTGCATTAC
R: GGATCCCTGAGAGCAGAGCAGACAGAG

pMdRD22-P4
F: CTGCAGATTGAATAACCAAAATCAAAGAAGAGAAGA
R: GGATCCCTGTTTTTGTTGTCACGTA

pMdRD29A-P1
F: CTGCAGTGGCAGGAGCCTACGATTCCTCC
R: GGATCCCTGACGTGCACATGGTCACGTA

pMdAREB1A-P2
F: CTGCAGGATCTATCGAGGATGACTCTT
R: GGATCCATCATTTATGTTTCAATGAA

pMdDREB2A-P1
F: CTGCAGCAAAATCGGCAAATCCTCCGAAT
R: GGATCCCAACTCAACCAACACCTCAGAA

pMdRD22m
F: TAATTAAGTGTGTCGAGACATCTTGGCAATA
AAAGGCAAACCTCA
R: TAGGTGTGCTTTTATTGCAAGGATTTGTCACGTA
CTGCACACACTTATA

pMdRD29Am
F: CTAATAATTTGATTTGCTAACCATTACTACTATTAT
R: ATATAAATGTGATGAGGCAAAATCAAATTTTAG
Gene	Primer 1 Sequence	Primer 2 Sequence
pMdAREB1Am	F: CAGCCTAACTTTAAATCCGTTTATTTATTGGATTGAGT	R: ATCACTAAACCTCAATCCAAATAAAACCGGATTTAAAAGTGTCG
pMdDREB2Am	F: GCAAAGCGCAAAGCCAACCGCAGAAAAAGGC	R: GCCCTTTTTCTGCTGTTTTGCTTTTGCGCTTTTC
For ChIP-PCR		
pMdMYB58	F: AGTCTCGCTATATGGTATATG	R: GGTACTCTAAAACAAATTATAAG
pMdMYB63	F: AAGAGTGCTGGTTTTTGCA	R: TCATGATTTTTAAAGCGATCGTT
pMdCAD	F: CCCAATTCCGGTGATGAAAT	R: GCAGAAACCGAATGATGTC
pMdCOMT	F: AGTACATTTTTACTAAAGGG	R: ACAGATGCTGAGTCTATAGTAT
pMdCCR	F: AGTCATTTTACACCATGATC	R: ATGTGACAGGAGTAACCATGAC
pMdRD22-P1	F: ATGTGTCTTTTAACTAA	R: TGTAGGAGCAAGGAGAGAC
pMdRD22-P2	F: GTTAACAGATTTATCTAG	R: GGACTGGTCACTGGTTTGTAC
pMdRD22-P3	F: CAATGACCAGTCCAAGCTATA	R: GATGTGTATTTTAGGCATTCA
pMdRD22-P4	F: ACTAAAATCCAAGCACCATGT	R: CACCGGAAATGAAAGGACAGAC
pMdRD29A-P1	F: GATGTAGTGTGGTATAAAT	R: CTAGGGTTTACAAACATTGGACA
pMdRD29A-P2	F: TCCTCTATCCTACCTACTCT	R: TCTGTCGCTTCTGGAGCGAGCA
pMdAREB1A-P1	F: GCTGCAGAAGCCCTTTGATT	R: AGTCAATTCCTGATACATATCA
pMdAREB1A-P2	F: GAATAAGGTCTATGTCTATTTT	R: TGGACAAATAACATGCATGAG
pMdAREB1A-P3	F: CGTTGTCCGGCTCAAGCCTTTC	R: TCCACGTTTTCTTGAATGGAG
Gene	Primer 1	Primer 2
--------------	----------	----------
pMdDREB2A-P1	F: TATCGGAAATATCTAGAGGA	R: ATTCGAGAAAAGTCGAAAGCT

For qRT-PCR

Gene	Primer 1	Primer 2
MdMYB46(DL)	F: CATCCTCACCTGCAATAAAAAA	R: GGTAGTCAAGAAAGGAAATG
MdMYB58(DL)	F: TGGCTTACCTTTACTGGAAAGT	R: TGAATGGGAGGAAATTGGTGT
MdMYB63(DL)	F: GTTACTTGCAAAAGTGAGCTT	R: AAGAAAGCCACGTTGAAAGT
MdC4H(DL)	F: ACATGAACCTCCAGGATGCCA	R: GAGATACTGAAGTCGTTCCC
MdC3H(DL)	F: CTACTTCATTTTGAGACGAG	R: CGGAGTAGGCACGACTTGAC
MdCAD(DL)	F: ATGCAAGAAGCTGCTGACTCA	R: GAAGCTCCCTCTGATTTGTCTT
MdF5H(DL)	F: AGCCCTCTAGGTTCCTGAAAG	R: GTCAAGCTCAGTGGTCCAT
MdHCT(DL)	F: TGCTTTGGTGCGTATGGA TGA	R: CCAAGTCGGAATCATGGATGA
Md4CL(DL)	F: CCCTGATACGGGTGCTCGCT	R: CGGTCGACGATGAGAGACTCG
MdCOMT(DL)	F: GGTGAAGGTTGGGTTGTGAT	R: GATTCGAGCCAGGACAGGTGAA
MdCCR	F: TCACATTCTGGCTGATTGAGAC	R: CTTCTGGTTTTGGAACCTTGAT
MdCESA4	F: TGTTACTTTGTTCAGTTCCTT	R: ATCCCAATATACACCCGAGTT
MdCESA8	F: GGCCCTGCTCTTCTCCCTGTT	R: CTCACTGTGATGTTCCAGAGA
MdRD22(DL)	F: TGATGGGGTGAATGTTAAAG	R: GAACCCAGACACATGTCA
MdRD29A(DL)	F: CTGAAGAAGGTAAGAGGAGGA	R: CCTTCAAAATATCTCCTTG
MdRD29B(DL)	F: CCAAATTACCATCCTCACC	R: CCTTGGACCTTCTGCTC

Gene Name	Forward Primer	Reverse Primer
MdAREB1A(DL)	CAGAGAATCAGCTGCCAGGT	TCTCCATGTCCTGATTCCTTC
MdAREB1B(DL)	TTAGAACTAGAGGCAGAAGT	CTGTCAATGTTCGTGTAAG
MdDREB2A(DL)	AAGAAAAGGGAGGGAGTAAT	ATAGTTGTAACCTCCATCTC
MdDREB2B(DL)	CTCTAATTCTGTCATCTA	AACATGTAATTCCCTCTGATA
MdActin	TGGTGAAAGGCTGGATTTG	CTGTGAGCAGAACTGGGTG
At4CL	ATGATGTGGAAGCAATTCGTGT	GGTTGGGTCAAACAGTTGTAT
AtCCOAOMT	GAAAATTTGGAGGAGTATTTG	CCACTGTTGGACAAAACCTAGAG
AtCESA4	GGGTCATTGTCTCATCTTT	TGCGGTTCCTCTCATTTAAC
AtCESA7	TAGACAGAAACAGAAACACC	CACTCTCGACAAAGTACA
AtCESA8	CCTTTTGGGTGATTCCTTC	CGTATCTTCTCTTAGCAA
AtMYB46	ACCACCTTACGAGTTGAACA	TGTTGGAATGACCTTTGAG
AtMYB58	GGTTCATAGATGGTTGACATCA	GGTTGAAATGACTTTCTAGG
AtMYB63	TCAAGAGCAACACAGAAGAA	TCTCTCTACCTCTCCATCAT
At18S	ACACGGGAGGTAGTGACAA	CCTCCAATGGATCTCGTTA
Supplemental Table S2 Sequence of cis-elements in this study

Cis-element	Sequence
M46RE	(A/G)(G/T)(A/T)GGT(A/G)
SMRE	ACC(A/T)A(A/C)(T/C)
SNBE	(T/A)NN(C/T)(T/C/G)TNNNNNNNA(A/C)GN(A/C/T)(A/T)
ABRE	ACGTGGC, ACGTGTC
DRE/TRE	G/ACCGAC, GGCCGACAT
MYBCORE	CAGTTA, CTGTTG
MYBR	TGGTTAG
Supplemental Table S3 Accession number of each gene in this study

Gene	Accession number
MdMYB46	MD03G1176000
MdMYB83A	MD07G1010500
MdMYB83B	MD02G1312700
MdSND1	MD06G1121400
MdMYB58	MD05G1224100
MdMYB63	MD10G1205400
MdCAD	MD05G1089800
MdCCR	MD17G1222400
MdC3H	MD08G1242900
MdC4H	MD11G1052900
MdCOMT	MD05G1083900
MdF5H	MD02G1136000
Md4CL	MD13G1257800
MdHCT	MD17G1225100
MdAREB1A:	MD15G1081800
MdAREB1B	MD05G1082000
MdDREB2A	MD01G1158600
MdDREB2B	MD04G1165400
MdRD22	MD15G1098800
MdRD29A	MD01G1201000
MdRD29B	MD07G1268800
MdCESA4	MD00G1061100
MdCESA8	MD10G1276500
At4CL	AT1G51680
AtCCoAOMT	AT4G34050
AtCESA4	AT5G44030
AtCESA7	AT5G17420
AtCESA8	AT4G18780
AtMYB58	AT1G16490
AtMYB63	AT1G79180
Supplemental Table S4 Partial study on genes related to stress response in apple

Gene	Accession number	References	Gene name in references
MdAREB1A	MD15G1081800	Ma et al., 2017	*AREB3.2*
MdAREB1B	MD05G1082000	Ma et al., 2017; Shao et al., 2019	*AREB2*
MdDREB2A	MD01G1158600	Zhao et al., 2012	MDP0000147009
MdDREB2B	MD04G1165400	Zhao et al., 2012	MDP0000153866
MdRD22	MD15G1098800	Shao et al., 2019	*MdRD22*
MdRD29A	MD01G1201000	An et al., 2018	*MdRD29A*
MdRD29B	MD07G1268800	Shao et al., 2019	*MdRD29B*