Изменение вентиляционной функции легких в процессе формирования хронической обструктивной болезни легких и при ее сочетании с раком легкого

Добнер С.Ю.1, Дубаков А.В.2, Поровский Я.В.2, Тузиков С.А.1,2, Миллер С.В.1, Родионов Е.О.1,2

1 Научно-исследовательский институт (НИИ) онкологии, Томский национальный исследовательский медицинский центр (НИМИЦ) Российской академии наук
Россия, 634009, г. Томск, пер. Кооперативный, 5
2 Сибирский государственный медицинский университет (СибГМУ)
Россия, 634050, г. Томск, Московский тракт, 2

РЕЗЮМЕ
Цель. Изучение вентиляционной функции легких у пациентов с различной степенью тяжести хронической обструктивной болезни легких (ХОБЛ) и при ее сочетании с раком легкого (РЛ), а также установление особенностей респираторных нарушений с помощью спирографии и бодиплетизмографии.

Материалы и методы. Проведено клинико-функциональное исследование 57 лиц (10 здоровых (группа контроля), 30 больных с ХОБЛ и 17 больных, у которых РЛ сочетался с ХОБЛ) при помощи диагностического комплекса Masterlab Pro (Erich Jaeger, Германия).

Результаты. При начальной стадии ХОБЛ наиболее информативно снижение максимального объема скорости на уровне 75% от форсированной жизненной емкости легких (МОС 75) – вентиляционного показателя, характеризующего проходимость мелких дыхательных путей. При прогрессировании бронхиальной обструкции отмечались как обструктивные, так и рестриктивные нарушения, характеризующиеся снижением объема форсированного выдоха за первую секунду, жизненной емкости легких, изменением структуры общей емкости легких в виде увеличения отношения остаточного объема легких к общей емкости легких и повышения бронхиального сопротивления. У пациентов, страдающих РЛ в сочетании с нетяжелой ХОБЛ, показатели вентиляции легких и бронхиальное сопротивление не отличались от пациентов с ХОБЛ, имеющих аналогичную степень бронхиальной обструкции. При РЛ в сочетании с более тяжелой ХОБЛ, в отличие от пациентов, страдающих аналогичной тяжестью ХОБЛ, установлено снижение проходимости бронхов крупного, среднего и мелкого диаметра (пиковая объемная скорость, МОС25, МОС50, МОС75), свидетельствующее о развитии генерализованной бронхиальной обструкции.

Заключение. Современная диагностика нарушений вентиляции легких у больных РЛ в сочетании с ХОБЛ должна быть направлена на выявление, а медикаментозная терапия – на максимальное инвивидуализированное обратимых компонентов бронхиальной обструкции с целью повышения функционального резерва системы дыхания и снижения риска послеоперационных осложнений, вызванных ХОБЛ.

Ключевые слова: хроническая обструктивная болезнь легких, рак легкого, вентиляционная функция легких, спирография, бодиплетизмография.

Конфликт интересов. Авторы декларируют отсутствие явных и потенциальных конфликтов интересов, связанных с публикацией настоящей статьи.

Источник финансирования. Авторы заявляют об отсутствии финансирования.

Соответствие принципам этики. Все пациенты подписали информированное согласие на проведение исследования. Исследование одобрено локальным этическим комитетом НИИ онкологии, Томский НИМИЦ (протокол № 10 от 26.09.2016).

Добнер Светлана Юрьевна, e-mail: dobnersv@gmail.com.
Changes in the ventilation function of the lungs during the formation of chronic obstructive pulmonary disease and its combination with lung cancer

Dobner S.Yu.1, Dubakov A.V.2, Porovskiy Ya.V.2, Tuzikov S.A.1,2, Miller S.V.1, Rodionov E.O.1,2

1 Cancer Research Institute, Tomsk National Research Medical Center (TNRMC) of Russian Academy of Sciences
5, Kooperativny Str., Tomsk, 634009, Russian Federation
2 Siberian State Medical University
2, Moscow Trakt, Tomsk, 634050, Russian Federation

ABSTRACT

Aim. To study the ventilation function of the lungs in patients with varying degrees of severity of chronic obstructive pulmonary disease (COPD) and in patients with COPD combined with lung cancer (LC), as well as to establish the features of its disorders using spirometry and body plethysmography.

Materials and methods. A clinical and functional study of 57 individuals was carried out with 10 healthy patients (control group), 30 patients with COPD and 17 patients in whom LC was combined with COPD using the Masterlab Pro diagnostic complex (Erich Jaeger, Germany).

Results. In patients with early COPD, a decrease in MEF75 (a ventilation parameter characterizing small airway patency) is the most informative. With the progression of bronchial obstruction, both restrictive and obstructive disorders, characterized by a decrease in FEV1, VC, a change in the structure of the total lung capacity in the form of an increase in the RV/TLC ratio such as an increase in the RV/TLC ratio and an increase in bronchial resistance were recorded. In patients with LC and mild COPD, pulmonary volumes, capacities, flow-volume loop and bronchial resistance parameters did not differ from patients with COPD with a similar bronchial obstruction. In patients with LC and more severe COPD, in contrast to patients suffering from a similar severity of COPD, a decrease in the patency of large, medium and small diameter bronchi (PEF, MEF25, MEF50, MEF75) was detected, which indicated development of generalized bronchial obstruction.

Conclusion. Modern diagnostics of pulmonary ventilation disorders in patients with LC and COPD should be aimed at identifying the disease, and drug therapy should target maximum leveling of reversible components of bronchial obstruction in order to increase the functional reserve of the respiratory system and reduce the risk of postoperative complications caused by COPD.

Key words: chronic obstructive pulmonary disease, lung cancer, pulmonary ventilation function, spirometry, bodyplethysmography.

Conflict of interest. The authors declare no apparent or potential conflicts of interest related to the publication of this article.

Source of financing. The authors received no specific funding for this work.

Conformity to the principles of ethics. All patients signed an informed consent to participate in the study. The study was approved by the local Ethics Committee at Cancer Research Institute, TNRMC (Protocol No. 10 of 26.09.2016).

For citation: Dobner S.Yu., Dubakov A.V., Porovskiy Ya.V., Tuzikov S.A., Miller S.V., Rodionov E.O. Changes in the ventilation function of the lungs during the formation of chronic obstructive pulmonary disease and its combination with lung cancer. Bulletin of Siberian Medicine. 2020; 19 (4): 61–66. https://doi.org/10.20538/1682-0363-2020-4-61-66.
ВВЕДЕНИЕ

Хроническая обструктивная болезнь легких (ХОБЛ) и рак легких (РЛ) обычно сосуществуют и представляют собой ряд клинических проблем [1–3]. При этом именно ХОБЛ чаще всего приводит к снижению функции внешнего дыхания и является фактором, определяющим частоту осложнений и риск летального исхода у ряда больных с РЛ [4, 5].

Диагноз ХОБЛ в значительной мере является функциональным. Характеристики вентиляционной функции легких (ВФЛ), а именно объем форсированного выдоха за первую секунду (ОФВ1), жизненная емкость легких (ЖЕЛ), индекс Тиффно являются золотым стандартом диагностики ХОБЛ [1]. Однако часто в дебюте заболевания обструктивные нарушения, развивающиеся в дистальных отделах бронхиального дерева, более эффективно диагностируются с помощью показателей максимальной объемной скорости (МОС) воздушного потока форсированного выдоха и методом бодиплетизмографии [6, 7]. Бодиплетизмография дополнительно позволяет определить бронхиальное сопротивление (Raw), диагностировать проявления гиперинфляции легких, которые используются в пульмонологии как достоверные признаки бронхообструкции и измнения эластических свойств легочной ткани [7, 8]. Выявление нарушений этих показателей помогает ранней диагностике ХОБЛ и более эффективной терапии данной распространенной патологии легких [7].

Ежегодно в России РЛ заболевают 63–65 тыс., а в мире – 1,04 млн человек, что составляет 12,8% от всех регистрируемых случаев новообразований [9]. Характерным для повседневной клинической практики является увеличение количества оперированных больных старших возрастных групп с высоким процентом послеоперационных осложнений [2, 4]. В ближайшем будущем предполагается дальнейшее увеличение демографического старения населения и количества больных с коморбидной патологией [10, 11].

В связи с этим понятен повышенный интерес к оценке ХОБЛ как фактора, который может привести к осложнениям в периоперационном периоде у оперируемых больных РЛ [4, 5]. Применение существующих эффективных методов диагностики нарушений ВФЛ у этого контингента больных – важная задача современных научных исследований.

Целью исследования явилось изучение ВФЛ у пациентов с различной степенью тяжести ХОБЛ и при сочетании у больных РЛ с ХОБЛ, а также выявление особенностей ее нарушений с помощью спирографии и бодиплетизмографии.

МАТЕРИАЛЫ И МЕТОДЫ

Для решения поставленной цели проведено клинико-функциональное исследование 57 лиц – 10 здоровых (группа контроля), 30 больных с ХОБЛ и 17 больных, у которых РЛ сочетался с ХОБЛ. Выборку включенных в исследование лиц формировали из пациентов, находящихся на лечении в терапевтической клинике СибГМУ и отделении торакальной онкологии НИИ онкологии Томского НИМЦ.

Среди больных ХОБЛ, по данным исследования ВФЛ, у восьми имелись клинические признаки бронхита и обструкции мелких дыхательных путей, но ОФВ1 был в норме (группа 0). У остальных 22 больных диагностирована ХОБЛ согласно критериям по диагностике ХОБЛ [1]: в группе 1 (10 человек) – ОФВ1 ≥ 80% от должных значений, в группе 2 (12 человек) ОФВ1 < 80%, из них у семи больных – 50% ≤ ОФВ1 < 80% и у пяти – 30% ≤ ОФВ1 < 50% от должных значений. У шести больных с РЛ в сочетании с ХОБЛ ОФВ1 ≥ 80% от должных значений (группа 3), у остальных 11 (группа 4) ОФВ1 составил <80%, из них у девяти – 50% ≤ ОФВ1 < 80% и у двух – 30% ≤ ОФВ1 < 50% от должных значений.

Оценку ВФЛ осуществляли на универсальной камере Masterlab Pro (Erich Jaeger, Германия). Исследование проводилось утром натощак в условиях относительного покоя в ортостатическом положении больного. Все пациенты исследованных групп не получали терапию бронхоактивными препаратами по поводу ХОБЛ. Методами спирографии и пневмотахографии анализировали минутный объем дыхания, ЖЕЛ, ОФВ1, индекс Тиффно (ОФВ1/ЖЕЛ), показатели кривой «поток – объем» (ПО) – пиковую объемную скорость (ПОС), максимальную объемную скорость в момент выдоха 25% от форсированной жизненной емкости легких (ФЖЕЛ), максимальную объемную скорость в момент выдоха 50% ФЖЕЛ (MОС50), максимальную объемную скорость в момент выдоха 75% ФЖЕЛ (MОС75). С помощью бодиплетизмографии определяли структуру общей емкости легких: остаточный объем легких (ООЛ), отношение остаточного объема легких к общей емкости легких (ООЛ/ОЕЛ), а также бронхиальное сопротивление (Raw).

Средний возраст исследованных лиц в группе контроля (52,6 ± 2,7) года. У пациентов, страдающих ХОБЛ, группы 2 средний возраст составил (59,7 ± 3,0) года, они старше пациентов группы 0 (48,2 ± 3,0; p = 0,01) и группы 1 ((49,0 ± 2,2) года; p = 0,02). Средний возраст больных РЛ в сочетании с ХОБЛ в группе 3 составил (56,7 ± 2,0) года, группе 4 – (60,8 ± 2,0) года. Пациенты группы 3 были старше (p = 0,03) пациентов группы 1 с аналогичной степенью снижения ОФВ1

Бюллетень сибирской медицины. 2020; 19 (4): 61–66

Оригинальные статьи
Верификацию ХОБЛ осуществляли путем сбора жалоб, анамнеза, физического исследования и анкетирования с помощью вопросника для диагностики ХОБЛ (шкалы CAT и mMRC) [1, 12]. В группы РЛ в сочетании с ХОБЛ (группы 3 и 4) включены больные с РЛ IА–IIА стадиями. В группу 3 включены шесть пациентов, из них II стадию имели три пациента, еще у трех диагностирована IIIА стадия. В группе 4 у трех пациентов выявлены IА–IIА стадиямемококлеточного рака легкого, у семи пациентов – IIIА стадия и у одного – IIА стадия. Центральный РЛ был выявлен у 12 (70,6%), периферический РЛ – у 5 (29,4%).

Критерии включения: табакокурение, отсутствие другой патологии легких и тяжелой соматической патологии, которые могли повлиять на показатели функции внешнего дыхания на момент включения в исследование, отсутствие регулярной базовой и симптоматической терапии по поводу ХОБЛ, согласие на участие в исследовании, отсутствие регулярной базовой и симптоматической терапии по поводу ХОБЛ, согласие на участие в исследовании.

Статистическую обработку полученного материала осуществляли на персональном компьютере с использованием пакета статистических программ Statistica 10. Использовали методы вариационной статистики, данные представлены в виде медианы, 25-го и 75-го перцентиля Me (LQ;UQ).

Статистическая значимость различий средних значений признаков между группами оценивалась с помощью непараметрического теста Манна – Уитни для независимых выборок. Достоверными считали результаты при p ≤ 0,05.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

При анализе параметров ВФЛ, представленных в таблице, установлено, что при I степени обструкции на уровне МОС75 была в диапазоне референсных значений при наличии бронхиальной проходимости на уровне МОС75 в группах 0 и 1, а также у лиц контрольной группы и пациентов групп 0 и 1. Указанные различия в показаниях вентиляции между сравниваемыми группами отсутствовали в значениях бронхиального сопротивления.

При анализе показателей ВФЛ пациентов, страдающих РЛ в сочетании с ХОБЛ, представленных в таблице, установлено, что при I степени обструкции (группа 3) легочные объёмы и емкости не отличаются в среднем от характерных для больных ХОБЛ группы 1 с аналогичной степенью снижения ОФВ1. При сравнении ВФЛ пациентов РЛ в сочетании с ХОБЛ группы 4 и пациентов ХОБЛ с аналогичной степенью снижения ОФВ1 (группа 2) исследованные легочные объёмы и емкости не отличались, однако у больных группы 4 снижены показатели ПО – ПОС, МОС25, МОС50, МОС75, что свидетельствовало о распространенности обструкции. При этом между анализируемыми группами отсутствовали отличия в величине бронхиальной сопротивления.

Можно полагать, что в данном случае локальное сужение или полное закрытие просвета бронха (дистелектаз, ателектаз) новообразованием, ограниченным по протяженности, приводит к нарушению вентиляции участка токопроводящих путей. Рефлекс Эйлера – Лильестранда при этом ограничивает кровоток через гиповентилируемый участок, препятствуя тем самым циркуляции веноznой крови, а непораженные отделы легких способны компенсировать выявление РЛ через вентиляцию и увеличение ООЛ/ОЕЛ.

Несмотря на достигнутые положительные результаты в технике оперативного лечения РЛ в сочетании с ХОБЛ, конечные эффекты лечения остаются не вполне удовлетворительными, в первую очередь в связи со значительным количеством послеоперационных осложнений, обусловленных ХОБЛ [15]. Исследованиями установлено, что курение табака, в меньшей степени воздействие других патогенных частиц или газов являются основным фактором риска развития ХОБЛ. Они вызывают воспалительный процесс в легких, который, прогрессируя, ведет к характерным патофизиологическим рас-
строям: гиперсекреция слизи и цилиарной дисфункции, ограничению скорости воздушного потока и гиперинфляции, легочной гипертензии и системным эффектам, формируя обратимые и необратимые компоненты бронхиальной обструкции [6].

Можно ожидать, что современная функциональная диагностика и эффективная медикаментозная терапия обратимого компонента бронхиальной обструкции открывают перспективы в улучшении перинеоперационных результатов у больных РЛ в сочетании с ХОБЛ.

Таблица
Показатели ВФЛ в группе контроля, у пациентов с ХОБЛ и имеющих РЛ в сочетании с ХОБЛ, Me (LQ;UQ)
Показатель

ЖЕЛ
ОФВ1
ПОС
МОС25
МОС50
МОС75
ООЛ
ООЛ/ОЕЛ
Raw

Примечание. К – группа контроля.

ВЫВОДЫ

1. В группе пациентов с начальной ХОБЛ наиболее информативно снижение МОС75 – вентиляционного показателя, характеризующего проходимость междыхательных путей. При прогрессировании бронхиальной обструкции развиваются обструктивные и рестриктивные нарушения, характеризующиеся снижением ОФВ1, ЖЕЛ, изменением структуры общей емкости легких в виде увеличения ООЛ/ОЕЛ, свидетельствующие о развитии легочной гиперинфляции. Установлено, что большая степень обструктивных нарушений приводит к повышению бронхиального сопротивления.

2. У пациентов, страдающих РЛ в сочетании с нелегкой ХОБЛ, легочные объемы, емкости, показатели ПО и бронхиального сопротивления не отличались от пациентов ХОБЛ с аналогичной степенью бронхиальной обструкции.

3. При РЛ в сочетании с ХОБЛ с большей степенью обструктивных нарушений в отличие от страдающих ХОБЛ такой же степенью снижения ОФВ1 установлено развитие генерализованной бронхиальной обструкции на уровне бронхов крупного, среднего и мелкого диаметра (ПОС, МОС25, МОС50, МОС75), при отсутствии различий в статических и динамических лекочных объемах, в величине бронхиального сопротивления.

ЛИТЕРАТУРА

1. Чучалин А.Г., Авдеев С.Н., Айсанов З.Р., Белевский А.С, Лещенко И.В., Мещерякова Н.Н., Овчаренко С.И., Шме...
лев Е.И. Российское респираторное общество. Федеральные клинические рекомендации по диагностике и лечению хронической обструктивной болезни легких. Пульмонология. 2014; 3: 15–36.

2. Dai J., Yang P., Cox A., Jiang G. Lung cancer and chronic obstructive pulmonary disease: From a clinical perspective. Oncotarget. 2017; 8 (11): 18513–18524. DOI: 10.18632/oncotarget.14505.

3. Миллер Д.С., Пашковская Д.В., Поровский Я.В., Родионов Е.О., Миллер С.В., Тузиков С.А. Ранние клинические симптомы рака легкого в практике врача. Наука молодых (Eruditio Juvenium). 2019: 7 (2): 240–246. DOI: 10.23888/HMJ201972240-246.

4. Винник Ю.А., Гаврилов А.Ю. Особенности развития и профилактика осложнений плановой пульмонэктомии у больных раком легкого в зависимости от функционального состояния респираторной системы. Украинский журнал хирургии. 2012; 3 (18): 12–16.

5. Kim E.S., Kim Y.T., Kang C.H., Park I.K., Bae W., Choi S.M., Lee J., Park Y.S., Lee C.H., Lee S.M., Yim J.J., Kim Y.W., Han S.K. Prevalence of and risk factors for postoperative pulmonary complications after lung cancer surgery in patients with early-stage COPD. Int. J. Chron. Obstruct. Pulmon. Dis. 2016; 11: 1317–1326. DOI: 10.2147/COPD.S105206.

6. Шустов С.Б., Куренкова И.Г., Харитонов М.А., Асямов К.В. Изменение вентиляционной функции легких в процессе формирования патологических состояний респираторной системы. Пульмонология. 2017; 27 (3): 410–418. DOI: 10.18093/0869-0189-2017-27-3-410-418.

7. Савушкина О.И., Черняк А.В. Клиническое применение метода бодиплетизмографии. Практическая пульмонология. 2013; 2: 38–41.

8. Авдеев С.Н. Легочная гиперинфильтрация у больных ХОБЛ. Consilium medicum. 2006; 8 (3): 75–80.

9. Давыдов М.И., Петровский А.В. Онкология. Клинические рекомендации. М.: Ассоциация онкологов России, 2018: 976.

10. Чаулин А.М., Дупляков Д.В. Сердечно-сосудистые заболевания и хроническая обструктивная болезнь легких: этиопатогенетическая взаимосвязь и клиническое значение (обзор литературы). Сибирский медицинский журнал. 2020; 35 (2): 26–34. DOI: 10.29001/2073-8552-2020-35-2-26-34.

Поступила в редакцию 23.12.2019
Подписана в печать 30.04.2020