The Genomes of *Oryza sativa*: A History of Duplications

Jun Yu1,2,*, Jun Wang1,2,*, Wei Lin1,*, Songgang Li1,3,*, Heng Li1,4,*, Jun Zhou1,*, Peixiang Ni1,*, Wei Dong1,*, Songnian Hu2, Changqing Zeng1, Jiaoguo Zhang1, Yong Zhang1,3, Ruiqiang Li1, Zuyuan Xu1, Shengting Li1, Xianran Li1, Hongkun Zheng1, Lijuan Cong1, Liang Lin1, Jinaning Yin1, Jianing Geng1, Guangyuan Li1, Jianping Shi1, Juan Liu1, Hong Lv1, Jun Li1, Jing Wang1,3, Yajun Deng1, Longhua Ran1, Xiaoli Shi1,3, Xiyan Wang1,3, Qingfa Wu1, Changfeng Li1, Xiaoyu Ren1, Jinqiang Wang1, Xiaoling Wang1, Dawei Li1, Dongyuan Liu1, Xiaowei Zhang1, Zhendong Ji1, WenmingZhao1, Yongqiao Sun1, Zhenpeng Zhang1, Jingyue Bao1, Yuyun Han1, Lingli Dong1, Jia Ji1, Peng Chen1, Shuming Wu1, Jinsong Liu1, Ying Xiao1, Dongbo Bu1, Jianlong Tan1, Li Yang1, Chen Ye1, Jingfen Zhang6, Jingyi Xu6, Yan Zhou2, Yingpu Yu2, Bing Zhang2, Shulin Zhuang2, Haibin Wei2, Bin Liu1, Meng Lei1, Hong Yu2, Yuanze Li1, Hao Xu2, Shulin Wei1, Ximiao He1, Lijun Fang2, Zengjin Zhang1, Yunze Zhang1, Xiangang Huang1, Zhixi Su2, Wei Tong1, Jinhong Li2, Zongzhong Tong1, Shuangli Li1, Jia Ye2, Lishun Wang1, Lin Fang1, Tingting Lei1, Chen Chen1, Huan Chen2, Zhao Xu1, Haihong Li1, Haiyan Huang1, Feng Zhang1, Huayong Xu2, Na Li1, Caifeng Zhao1, Shuting Li1, Lijun Dong1, Yanqiang Huang1, Long Li1, Yan Xi1, Qihui Qi1, Wenjie Li1, Bo Zhang1, Wei Hu1, Yanling Zhang1, Xiangjun Tian2, Yongzhi Jiao1, Xiaohu Liang1, Jiao Jin1,7, Lei Gao1,8, Wei Mou1,9, Siqi Liu1,2, Wen Wang2,8, Longping Yuan9, Mengliang Cao9, Jason McDermott10, Ram Samudrala10, Jian Wang1,2*, Gane Ka-Shu Wong1,2,11*, Xiaoyu Ren1, Jingqiang Wang1, Xiaoling Wang1, Dawei Li1, Dongyuan Liu1, Xiaowei Zhang1, Zhendong Ji1, Wenming Zhao1, Yongqiao Sun1, Zhenpeng Zhang1, Jingyue Bao1, Yuyun Han1, Lingli Dong1, Jia Ji1, Peng Chen1, Shuming Wu1, Jinsong Liu1, Ying Xiao1, Dongbo Bu1, Jianlong Tan1, Li Yang1, Chen Ye1, Jingfen Zhang6, Jingyi Xu6, Yan Zhou2, Yingpu Yu2, Bing Zhang2, Shulin Zhuang2, Haibin Wei2, Bin Liu1, Meng Lei1, Hong Yu2, Yuanze Li1, Hao Xu2, Shulin Wei1, Ximiao He1, Lijun Fang2, Zengjin Zhang1, Yunze Zhang1, Xiangang Huang1, Zhixi Su2, Wei Tong1, Jinhong Li2, Zongzhong Tong1, Shuangli Li1, Jia Ye2, Lishun Wang1, Lin Fang1, Tingting Lei1, Chen Chen1, Huan Chen2, Zhao Xu1, Haihong Li1, Haiyan Huang1, Feng Zhang1, Huayong Xu2, Na Li1, Caifeng Zhao1, Shuting Li1, Lijun Dong1, Yanqiang Huang1, Long Li1, Yan Xi1, Qihui Qi1, Wenjie Li1, Bo Zhang1, Wei Hu1, Yanling Zhang1, Xiangjun Tian2, Yongzhi Jiao1, Xiaohu Liang1, Jiao Jin1,7, Lei Gao1,8, Wei Mou1,9, Siqi Liu1,2, Wen Wang2,8, Longping Yuan9, Mengliang Cao9, Jason McDermott10, Ram Samudrala10, Jian Wang1,2*, Gane Ka-Shu Wong1,2,11*, Huaming Yang1,2*

1 Beijing Institute of Genomics of the Chinese Academy of Sciences, Beijing Genomics Institute, Beijing Proteomics Institute, Beijing, China, 2 James D. Watson Institute of Genome Sciences of Zhejiang University, Hangzhou Genomics Institute, Key Laboratory of Genomic Bioinformatics of Zhejiang Province, Hangzhou, China, 3 College of Life Sciences, Peking University, Beijing, China, 4 Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing, China, 5 Beijing North Computation Center, Beijing, China, 6 Bioinformatics Laboratory for Computing Technology, Chinese Academy of Sciences, Beijing, China, 7 Department of Statistics and Financial Mathematics, College of Mathematical Sciences, Peking University, Beijing, China, 8 Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China. 9 National Hybrid Rice R & D Center, Changsha, China, 10 Computational Genomics Group, Department of Microbiology, University of Washington, Seattle, Washington, United States of America, 11 UW Genome Center, Department of Medicine, University of Washington, Seattle, Washington, United States of America

We report improved whole-genome shotgun sequences for the genomes of *indica* and *japonica* rice, both with multimegabase contiguity, or almost 1,000-fold improvement over the drafts of 2002. Tested against a nonredundant collection of 19,079 full-length cDNAs, 97.7% of the genes are aligned, without fragmentation, to the mapped super-scaffolds of one or the other genome. We introduce a gene identification procedure for plants that does not rely on similarity to known genes to remove erroneous predictions resulting from transposable elements. Using the available EST data to adjust for residual errors in the predictions, the estimated gene count is at least 38,000–40,000. Only 2%–3% of the genes are unique to any one subspecies, comparable to the amount of sequence that might still be missing. Despite this lack of variation in gene content, there is enormous variation in the intergenic regions. At least a quarter of the two sequences could not be aligned, and where they could be aligned, single nucleotide polymorphism (SNP) rates varied from as little as 3.0 SNP/kb in the coding regions to 27.6 SNP/kb in the transposable elements. A more inclusive new approach for analyzing duplication history is introduced here. It reveals an ancient whole-genome duplication, a recent segmental duplication on Chromosomes 11 and 12, and massive ongoing individual gene duplications. We find 18 distinct pairs of duplicated segments that cover 65.7% of the genome; 17 of these pairs date back to a common time before the divergence of the grasses. More important, ongoing individual gene duplications provide a never-ending source of raw material for gene genesis and are major contributors to the differences between members of the grass family.

Citation: Yu J, Wang J, Lin W, Li S, Li H, et al. (2005) The genomes of *Oryza sativa*: A history of duplications. PLoS Biol 3(2): e38.

Introduction

The importance of the rice genome is reflected in the fact that rice was the first crop plant to have its genome sequenced; astonishingly, it was sequenced by four independent research teams at Beijing Institute of Genomics [1], Syngenta [2], International Rice Genome Sequencing Project (IRGSP) [3,4,5], and Monsanto. Beijing analyzed the two parental strains, 93–11 and PA64s, for a popular land race of super-hybrid rice, LYP9, and released a 2.4x draft for 93–11, a cultivar of the *indica* subspecies. This draft was acquired by a whole-genome shotgun (WGS) method [6]. Syngenta and IRGSP worked on *Nipponbare*, a cultivar of the *japonica* subspecies. Syngenta also used a WGS method and published a 6x draft. IRGSP used the clone-by-clone method [7] and
released a 10x draft that incorporates the Syngenta data. Their publications include the finished version of Chromosomes 1, 4, and 10. These efforts have been widely hailed not only because rice feeds much of the world’s population but also because rice is expected, through comparative analyses, to play a major role in understanding the grass family of crop plants [8,9,10,11,12,13]. We will report on an improved version of Beijing indica, which brings the coverage of the 93–11 dataset up to 6.28x. In addition, we improved Syngenta japonica by reassembling their sequence from the raw traces (National Center for Biotechnology Information Trace Archive; http://www.ncbi.nlm.nih.gov/Traces/trace.cgi) and combining that information with our 93–11 assembly.

We achieved almost three orders of magnitude of improvement in long-range contiguity, and put essentially all the genes on the map, by combining the two WGS assemblies in a manner that preserves the single nucleotide polymorphism (SNP) information for indica–japonica differences. Both of these WGS assemblies were constructed independent of the information in IRGSP japonica. Hence, the two japonica assemblies allow us to compare the WGS and clone-by-clone methods objectively. By taking the clone-by-clone assembly as a “gold standard,” we can estimate the intrinsic misassembly rates for our two WGS assemblies—not just the japonica WGS but also the indica WGS, as identical assembly procedures are used and both contain 6x coverage. If we compare IRGSP japonica to Beijing indica, any increases in the discrepancy rate beyond this intrinsic misassembly rate can be attributed to indica–japonica differences. In the same spirit, genes are identified for all three assemblies using the same annotation procedures, to assess gene content differences without the methodological inconsistencies that have plagued previous comparisons. Finally, we introduce a simple method for analyzing gene duplications that resolves the contradictory claims that rice is an ancient aneuploid [14] and an ancient polyploid [15]. In the process, we demonstrate that duplication of individual genes plays a major role in the continuing evolution of the grass genomes.

Both WGS sequences, and details of our analyses, are available from our own Web site (Beijing Genomics Institute Rice Information System; http://rise.genomics.org.cn) [16]. The version of IRGSP japonica that we use was downloaded October 5, 2003, from GenBank and DNA Data Bank of Japan according to the guidelines at http://www.genome.arizona.edu/shotgun/rice/status and the physical map at http://rsgp.dna.affrc.go.jp/IRGSP/download.

Results

WGS Assembly of indica and japonica

Many legitimate concerns have been raised about the differing qualities of the rice sequences that have been published [17,18] and on the idea that they must be “finished” [19,20]. Higher quality is of course a good thing, but it does come at a cost, and lost in the discussion is the reality that cost–benefit factors have always been important in sequencing. Most notably, all genome projects to date have focused primarily on the euchromatic regions that can be cloned and sequenced, even though important genes are missed as a result. For example, an essential 5.1-Mb fertility gene [21] resides in the heterochromatic Y chromosome of the Drosophila genome. In plant genomes, costs are primarily driven by the intergenic retrotransposon clusters [22] that account for about half of the rice genome, and even more of the larger maize (6x) and wheat (38x) genomes. Hence, our objective is merely to have all the genes assembled in one piece, without fragmentation, and anchored to the maps. A similar objective has been proposed [23,24] for crop genomes in general. Our benchmark is the set of full-length japonica cDNAs from the Knowledge-Based Oryza Molecular-Biological Encyclopedia [25] that contains 19,079 nonredundant cDNAs (nr-KOME).

We begin with a few definitions. At the end of any WGS, a substantial fraction of the reads (specifically, those whose sequences are highly repeated across the genome) are invariably left unassembled. The usable reads are assembled into contigs, scaffolds, and super-scaffolds. In a contig, the identity of every base is defined. In contrast, scaffolds and super-scaffolds have gaps (regions of known length but otherwise unknown base content). The difference is that one refers to the sequence before any linking information from indica and japonica sources are combined (scaffold) and the other refers to the sequence after they are combined (super-scaffold). All of the raw data that went into these WGS assemblies are listed in Table S1, and the assembly procedure itself is outlined in Figure 1.

Compared with our previous 4.2x assembly of indica, more shotgun reads and a few directed finishing reads were added to increase the coverage to 6.28x. We did not use the older assembly at all. Instead, we went back to the raw reads and reassembled them, with an updated version of RePS [26,27] that incorporates some recent concepts from Phusion [28]. Increasing coverage is essential for reducing single-base error rates. Based on the estimates from RePS, 97.2% and 94.6% of our new assembly has an error rate of better than 10^{-3} and 10^{-4}, respectively. For the older assembly, the percentages were only 90.8% and 83.5%, respectively. Equally important, and as expected from Poisson sampling statistics [29], increasing coverage improves the scaffold size to a point where, even without additional finishing effort, most of the nr-KOME cDNAs can be aligned in one piece, without fragmentation. All we had to do was find a way to link these scaffolds together to create larger super-scaffolds, which could then be anchored to the physical [30] and genetic [31] maps.

Mapped super-scaffolds for Beijing indica have a N50 size (the size above which half of the total length of a sequence dataset is found) of 8.3 Mb, which is a thousand times better than our previous draft, as shown in Table 1. We used an unorthodox method to construct super-scaffolds of megabase size from initial scaffolds of 30-kb size. Most of the increase in long-range contiguity came from combining the two WGS assemblies, not from the bacterial artificial chromosome (BAC) end pairs, which were of limited utility because their insert sizes were too large. Notice that in combining indica and japonica data, we use the alternate subspecies only for order and orientation information, not to fill missing bases. In other words, every base in the indica assembly is from indica. Not one single base is from japonica. Another key point is that Syngenta japonica is our reassembly of their raw data, not the published assembly. By using RePS for both WGS assemblies, we obtain error estimates for every base, which will later be essential for use in polymorphism detection. We would concede that if genes are ordered differently in indica and
japonica, there is a small probability that by forcing the two subspecies together, we lose this information. However, there is no evidence of a major reordering of the genes because, if there were, it would have been seen in all these years of genetic mapping. The benefits thus outweigh the risks.

Figure 1. Basic Algorithm for Construction of Scaffolds and Super-Scaffolds

We start with the smallest plasmids and progressively work our way up to the largest BACs. Only links with two or more pieces of supporting evidence are made. These include 34,190 “anchor points” constructed from a comparison of indica and japonica. Each anchor is a series of high-quality BlastN hits (typically 98.5% identity) put together by a dynamic programming algorithm that allows for small gaps to accommodate the polymorphic intergenic repeats. Typical anchor points contain four BlastN hits at a total size of 9 kb (including gaps). Notice how in the beginning indica and japonica are processed separately, to construct what we called scaffolds. Only at the end do we use data from one subspecies to link scaffolds in the other subspecies, and these are what we called super-scaffolds.

Table 1. Summary of Assembled Contigs, Scaffolds, and Super-Scaffolds

Assembly	Number of Pieces	N50 Size (kb)	Total Size (Mb)	Number of Pieces	N50 Size (kb)	Total Size (Mb)	Number of Pieces	Total Size (Mb)	Number of Reads	Total Size (Mb)
Contigs										
Beijing indica	32,301	24.9	389.6	31,751	36.2	463,554	39.5			
Syngenta japonica	29,268	21.6	368.2	16,978	17.0	721,081	47.2			
Scaffolds										
Beijing indica	29,881	28.6	399.9	23,548	26.9	463,554	39.5			
Syngenta japonica	23,891	30.6	372.4	13,173	13.6	721,081	47.2			
Super-scaffolds										
Beijing indica	149	8,274.5	373.9	10,479	52.5	13,461	5.5			
Syngenta japonica	119	11,616.4	352.8	7,658	38.3	10,871	10.9			
IRGSP japonica	5,394	330.3	363.2	--	--	--	--			

Each piece can be further subdivided on the basis of whether or not it is mapped and, if not, on the basis of its size. N50 refers to the size above which half of the total length of the sequence set can be found. An equivalent size for the unassembled reads is computed by dividing the number of high-quality Q20 bases (estimated single-base error rate of 10^{-5}) by the effective shotgun coverage.

DOI: 10.1371/journal.pbio.0030038.g001
difference is real, because the two genome sizes are based on the same procedures and similar WGS datasets. Although many smaller pieces fall between the cracks in the maps, these unassembled pieces turn out to be extremely gene poor. Hence, in our submission to DNA Data Bank of Japan/European Molecular Biology Library/GenBank, we omit unassembled reads and unassembled pieces smaller than 2 kb, which has the advantage of also filtering out nonrice contaminants from inevitable mix-ups in the lab.

Physical distance is defined along a pseudo-chromosome where gaps of estimated size larger than 200 kb (a typical BAC) are collapsed to 200 kb. Between adjacent super-scaffolds, where by definition we do not have an estimated gap size, we insert a 5-kb gap. To validate the long-range accuracy of our assemblies, we compared physical and genetic distances, as shown in Figures S1 and S2. We use only those 1,519 markers that can be found in all three rice assemblies by Blastn at E-values of 10^{-100}. There are two classes of discrepancies. First, the marker is on different chromosomes. All three rice assemblies agree with each other but not with the genetic map in 135 of 152 such markers. In the second class, the disagreement is on positions within a chromosome, and all three rice assemblies agree with each other but not with the genetic map in 41 of 60 such markers. Only a small handful of discrepancies are unique to any one assembly. It is highly unlikely that all three rice assemblies will make the same mistake, so we conclude that on the scale of hundreds of kilobases, our WGS data are better than the genetic map. Computed over every five markers, the mean (median) recombination rate is 4.5 (4.2) cM/Mb.

We do expect smaller-scale misassemblies in the WGS data, as, for example, in Beijing indica, 98.1%, 71.0%, and 39.3% of the unassembled, assembled-but-unmapped, and mapped pieces, respectively, contain 20-mer repeats that are estimated to occur at least twice in the genome. About half of these 20-mer repeats are recognizable transposable elements (TEs) in RepeatMasker (http://www.repeatmasker.org), and TE compositions in different categories of assembled data are summarized in Table S2. The most problematic misassemblies are those that occur within genes, as these affect our ability to annotate the genome. Hence, we compared the WGS data to gene sequences defined by nr-KOME and excised from IRGSP japonica. We searched for alignment discrepancies of at least 500 bp, consistent with misassembled reads, and interpreted any increase in the discrepancy rate from Syngenta japonica to Beijing indica as being due to polymorphic differences.

There are remarkably few genes with discrepancies in coding exons, only 0.23% in Syngenta japonica and 1.44% in Beijing indica. If we include UTR exons and introns, the rates are 0.84% in Syngenta japonica and 5.65% in Beijing indica. Hence, the implication is that WGS misassemblies occur less frequently than polymorphic differences.

Table 2 shows the number of nr-KOME cDNAs that are found in each of the three rice assemblies, using the criterion that 95% of the coding region must be alignable in BLAT [32]. Some cDNAs align to multiple pieces of the assembly, but most align to one single piece. Even if we consider only the latter case, all three rice assemblies are at least 91.2% complete. Regardless of the assembly, the gaps seem to be random, as genes that are fragmented in one assembly are often intact in another. Of the cDNAs, 98.1% can be found in one piece in either Beijing indica or Syngenta japonica (if we also insist that they be anchored to the map, this number becomes 97.7%). Combining all three rice assemblies results in 98.6% completeness. Strikingly, only 0.7% of the genes align to the unmapped Beijing indica sequence, despite the fact these unmapped data were 12.3% of the searched sequence. This is the first of many examples that we will provide to support the idea that the unmapped pieces are extremely gene poor.

Gene Identification and Classification

We used an unorthodox method for gene identification. The conventional method, epitomized by Ensembl [33], uses sequence similarity to known genes and proteins to remove erroneous predictions, which are a serious problem for vertebrates because of the preponderance of large, multiexon genes, some of which can be megabases in size. However, plant genes are only a few kilobases in size, and given that Arabidopsis is still the only other sequenced plant, the Ensembl approach would remove many valid genes in a misguided effort to control a less serious problem. We removed erroneous predictions by relying instead on the fact most of them are actually TEs that are mistakenly called genes. Ultimately, our method is vindicated by whole-genome microarray experiments using 70-mer oligos that are hybridized to mRNA from five different tissue types. One finds that 82% of predicted rice genes with no homologs in Arabidopsis can be detected in this manner, as opposed to 88% of

Table 2. Summary of nr-KOME cDNAs with Complete Alignments (Not Including UTRs) in Each of the Three Rice Assemblies

Assembly	Mapped				Total	
	Found in Genome	Aligned in One Piece	Unmapped (≥ 2 kb)			
			Found in Genome	Aligned in One Piece		
			Total			
Beijing indica	97.1%	90.5%	1.0%	0.7%	98.1%	91.2%
Syngenta japonica	98.6%	94.2%	0.7%	0.6%	99.3%	94.8%
IRGSP japonica	97.1%	94.0%	—	—	97.1%	94.0%
Beijing + Syngenta	99.2%	97.7%	0.4%	0.4%	99.6%	98.1%
Beijing + IRGSP	99.4%	97.8%	0.1%	0.1%	99.5%	97.9%
All three assemblies	99.6%	98.5%	0.1%	0.0%	99.6%	98.6%

We require that 99% of the gene be aligned, but there are two ways to count. “Found in genome” will accept fragmented genes that are aligned in multiple pieces, whereas “aligned in one piece” will not. DOI: 10.1371/journal.pbio.0030038.t002
predicted rice genes with homologs (L. Ma, J. Wang, C. Chen, X. Liu, N. Su, et al., unpublished data).

For the purpose of discussion, we will classify rice genes as WH (with homolog) or NH (no homolog), based on sequence similarity to *Arabidopsis*, with the stringency set to a level that is typically found in the literature. Nucleotide sequences are translated into protein sequences, and the *Arabidopsis* genome is searched in all six reading frames using TBlastN at E-values of \(10^{-7}\). Putative exons are chained together, and success is declared if we can account for either 50% of the protein or 100 residues. We are not concerned that more sensitive search algorithms might identify homologies that we missed. Even the best algorithms are limited in their ability to identify structural homology by sequence similarity [34]. The main objective is to show how genes that are highly homologous or nonhomologous are sufficiently different as to merit special attention in data analysis, and the simplest way to emphasize this is to draw a dividing line.

For methodological consistency, we annotated all three rice assemblies using the same procedures. We use FGENESH [35] for gene prediction because it has been shown to be the best of the available ab initio algorithms for rice [1]. An updated performance assessment is shown in Figure S3. The challenge in removing erroneous predictions resulting from TEs lies in how we compensate for the fact that the database used by RepeatMasker is incomplete. Figure 2 demonstrates how grass genomes are organized as gene islands of low copy number separated by intergenic repeat clusters of high copy number. We set a dividing line at copy number 10, not because there are no TEs below it but because there are few genes above it. Specifically, for genes defined by nr-KOME, 99.4% of the exons and 98.1% of the introns are attributed to 20-mers of copy number under 10. Using the finished sequence of Chromosomes 1 and 10, we show in Figure S4 that the mean (median) sizes are 23.7 kb (9.6 kb) for gene islands and 5.6 kb (3.5 kb) for intergenic repeat clusters. Applying RepeatMasker to these intergenic repeat clusters only identifies 47.6% as TEs, overwhelmingly gypsy and copia. We therefore propose to filter the predictions by removing genes for which 50% of their coding region is attributable to any combination of RepeatMasker TEs or 20-mers of copy number over 10.

Although this filter might remove some real genes, it removes only a small fraction of them, as demonstrated by the nr-KOME cDNAs, where it eliminates 0.9% of these genes. In contrast, applying this same filter to the FGENESH predictions eliminates 19%-22% of the gene set, as indicated in Table 3. We believe that most of the removed predictions are TEs and that the benefits of removing these artifacts outweigh the risks of removing real genes. After this procedure, the gene counts range from 49,088 (Beijing indica) to 45,824 (Syngenta japonica) to 43,635 (IRGSP japonica). Previous estimates for Chromosomes 1, 4, and 10 made no such correction and found slightly larger numbers. About 45%-47% of predicted genes are NH, in contrast to 34.3% of nr-KOME cDNAs. This discrepancy is due to a combination of prediction errors and the fact that NH genes are difficult to clone because they are poorly expressed (data not shown).

Radically different numbers have been given for mean gene size, from 2.6 kb in Chromosome 10 to 4.5 kb in our previous article. As we show in Table 4, much of this discrepancy can be explained by differences in definition. Predicted genes have a mean (median) size of 2.5 kb (1.8 kb). We get the same result for nr-KOME if we exclude UTRs, but we get a size of 3.6 kb (2.9 kb) if we include UTRs. If we restrict the genes to WH genes, this raises the gene size to 4.0 kb (3.4 kb).

Even after removing likely TEs, two particular subclasses warrant caution, as they contain a higher than normal rate of erroneous predictions, which is reflected in a reduced rate of confirmation by ESTs. Overall, we used 200,648 ESTs from *indica*, *japonica*, and other rice subspecies. The confirmation rule is exact match over 100 bp. Genes predicted in unmapped sequences are confirmed at much lower rates than genes predicted in mapped sequences—about 11 times lower, even after removing 3.4 times as many unmapped genes as likely TEs. Genes unique to only one assembly also show lower confirmation rates, by a factor of roughly nine.

Figure 2. A Region on Beijing *indica* Chromosome 2, Showing Three Gene Islands Separated by Two Intergenic Repeat Clusters of High 20-mer Copy Number

Transposable elements identified by RepeatMasker are classified based on the nomenclature of Table S2. Depicted genes include both nr-KOME cDNAs and FGENESH predictions.

DOI: 10.1371/journal.pbio.0030038.g002
and despite the fact that we had 34,190 genes, major differences are seen in the intergenic regions. Only 260 Mb in gene content between IRGSP japonica and indica subspecies, which is plausibly comparable to the amount of missing sequence that might still be missing. There is little difference between indica and japonica, as a fraction of the totals, 2.2% and 3.3% of genes in Beijing indica are unique to the japonica sequence to proteins involved in known interactions. The rates vary from as little as 3.0 SNP/kb in coding regions to as much as 27.6 SNP/kb in identifiable TEs. Biological functions are inferred by and displayed within the Bioverse framework by combining more than seven of the latest computational techniques, including profile–profile comparison to well-curated protein families, motif discovery, and structural assignment/prediction. Note that we do not use transitive annotations, as their error propagation rates are too high. We present these results in Gene Ontology (GO) and InterPro formats. Functions are assigned to 60.2% of WH genes and even to 17.5% of NH genes, reflecting the fact that Bioverse uses highly sensitive techniques. Figure 4 shows a couple of our GO comparisons, focused on plant-specific categories in Gramene. From the fraction of the gene set in each category, rice and Arabidopsis are remarkably similar. FGENESH-predicted genes and nr-KOME cDNAs exhibit very similar patterns too, confirming the unbiased nature of these cDNAs. InterPro domain categories tell much the same story, and these data are summarized in Table S4.

Bioverse is distinguished from other annotation pipelines in that it also determines protein–protein interactions. Two proteins are predicted to interact if they are both similar in sequence to proteins involved in known interactions. The known interactions are taken from numerous sources, including Protein Data Bank and the Database of Interacting Proteins (which stores yeast two-hybrid studies, affinity column studies, and literature searches). The resultant network has 1,879 proteins/nodes with 8,902 unique

Table 3. Number of FGENESH Predictions in All Three Rice Assemblies

Method	Assembly	Mapped N (Genes)	Percent w/EST	Unmapped (≥ 2 kb) N (Genes)	Percent w/EST	Total N (Genes)	Percent w/EST
Before filtering	Beijing indica	55,350	28.6	7,601	3.2	62,951	25.5
	Syngenta japonica	51,131	29.5	5,754	3.0	56,885	26.8
	IRGSP japonica	55,745	28.7	3,291	4.2	49,088	31.9
After filtering	Beijing indica	45,797	33.9	2,589	2.7	45,824	32.6
	Syngenta japonica	43,235	34.4			43,635	34.7
	IRGSP japonica	43,635	34.7				

Filtering refers to the process in which we remove predictions where 50% of the coding region is attributable to any combination of RepeatMasker TEs or 20-mers of copy number over ten. EST confirmation requires 100 bp of exact match. DOI: 10.1371/journal.pbio.0030038.t003

Table 4. Characteristics of FGENESH Predictions and nr-KOME cDNAs

Characteristic	FGENESH-Predicted Genes	nr-KOME cDNAs			
	Beijing indica	Syngenta japonica	IRGSP japonica	Exclude UTRs	Include UTRs
Number of genes	49,088	45,824	43,635	19,079	19,079
NH percentage	46.6	46.5	44.8	34.3	34.3
Coding region	1,137 (876)	1,195 (903)	1,167 (897)	998 (876)	998 (876)
Exons per gene	4.3 (3)	4.5 (3)	4.5 (3)	4.4 (3)	5.3 (4)
Genomic size	2,462 (1,739)	2,547 (1,816)	2,537 (1,807)	2,430 (1,802)	3,644 (2,939)

Predicted genes do not include UTRs. Mean (median) are both given. DOI: 10.1371/journal.pbio.0030038.t004

when compared with the 35,052–36,940 genes that are shared by all three assemblies, as summarized in Figure 3. A more detailed analysis is given in Table S3. What is important is that few of these genes are likely to be real. We can use the ratio of the EST confirmation rates to correct our gene count estimates. Beijing indica is computed as [(36,940 × 39.6) + (1967 × 28.1) + (1586 × 20.4) + (8595 × 4.9)]/39.6 = 40,216. Similarly, we get 37,794 for Syngenta japonica and 37,581 for IRGSP japonica. If unique genes are truly expressed at lower levels than shared genes, this procedure might underestimate the gene count. One should thus interpret these numbers as lower bounds.

Using the same EST adjustments, the number of predicted genes in Beijing indica that are not found in either japonica assembly is 1,064. Conversely, Syngenta japonica has 1,517 predicted genes that are not in indica (the number for IRGSP japonica is 1,479). As a fraction of the totals, 2.2% and 3.3% of indica and japonica genes, respectively, are unique to the subspecies, which is plausibly comparable to the amount of sequence that might still be missing. There is little difference in gene content between indica and japonica, but major differences are seen in the intergenic regions. Only 260 Mb (72%) of the mapped sequences can be aligned. This remains true no matter how much we relax the alignment parameters, and despite the fact that we had 34,190 “anchor points” (see Figure 1), which ensure that the indica–japonica comparisons are always made between the same regions of the chromosomes from the two subspecies. This unfavorable fraction would be even larger if unmapped and unassembled sequences were included. Notice also that 20-mer repeat content is 59.2% in mapped-but-unaligned regions, as compared to 31.8% in mapped-and-aligned regions. Everything that we see is consistent with the fact that plant intergenic regions are rapidly evolving. As further proof of this fact, Table 5 shows the SNP rates in these alignable regions. The rates vary from as little as 3.0 SNP/kb in coding regions to as much as 27.6 SNP/kb in identifiable TEs.

The characteristics of FGENESH-predicted genes and nr-KOME cDNAs are remarkably similar. FGENESH-predicted genes and nr-KOME cDNAs exhibit very similar patterns too, confirming the unbiased nature of these cDNAs. InterPro domain categories tell much the same story, and these data are summarized in Table S4.

Bioverse is distinguished from other annotation pipelines in that it also determines protein–protein interactions. Two proteins are predicted to interact if they are both similar in sequence to proteins involved in known interactions. The known interactions are taken from numerous sources, including Protein Data Bank and the Database of Interacting Proteins (which stores yeast two-hybrid studies, affinity column studies, and literature searches). The resultant network has 1,879 proteins/nodes with 8,902 unique
interactions. Figure 5 highlights a small portion of this network, for defense proteins (i.e., classified as "defense related" under GO molecular function or "defense response" under GO biological process) and their direct neighbors in the network. Many occupy central positions, meaning the network would fall apart if they were removed. Such genes are essential for cell survival [44]. More details can be found at http://bioverse.compbio.washington.edu.

Unlike the genes, we do not bother to show a different number for each assembly, because they are very similar. DOI: 10.1371/journal.pbio.0030038.g003

Evidence of Whole-Genome Duplication

Duplication of individual genes, chromosomal segments, or even entire genomes is an important source of raw materials for gene genesis [45]. In the extreme case of a whole-genome duplication (WGD), convincing examples are difficult to find because of the expected rapid loss of duplicated genes and because the rate of individual gene duplication is high enough to mask any remnants of an ancient WGD [46]. Yeast was the first genome in which a WGD was detected [47]. In plants, the existence issue is not disputed, as polyploidy is common [48,49,50,51,52,53], but even with complete genome sequence, many details remain obscure. For Arabidopsis, the number and timing of these duplication events is still unknown [54,55,56,57,58,59]. For rice, segmental duplications were known [60,61,62] before the rice genome sequence was published. However, detailed analysis of this sequence has resulted in the contradictory assertions that rice is an ancient aneuploid [14] and an ancient polyploid [15]. Here, we resolve this conflict by showing that every conceivable class of duplication that could have happened did in fact happen, including a WGD.

We accept that every class of duplication is present in the same genome, and we thus explicitly assign, to every homolog pair, a status as to the class of duplication from which it came. For the sake of discussion, we define three classes: segmental duplication of multiple genes along a chromosome, tandem duplication of individual genes, and a category called background duplications to encompass everything else that cannot be so easily classified. In this conception, a WGD is a collection of segmental duplications that cover a majority of the genome, all of which date back to a common time in evolutionary history. All three rice assemblies give the same result, so we show only Beijing indica.

Unlike previous analyses, we avoid predicted genes. Instead, we define a homolog pair to be a single nr-KOME cDNA and one of its potentially many homologs within rice. These homologs are defined by translating the cDNA's coding sequence into protein and searching the rice genome in all six reading frames for putative exons, with TBlastN at E-values of 10^-7. Exons in the same order and orientation are linked together, and success is declared if these linked exons account for 50% of the original protein sequence. This technique has the advantage that the homolog need not be a cDNA or a predicted gene (as neither dataset is likely to be complete). In fact, the homolog might even be a remnant of an ancient duplication that is no longer a functional gene. Complications are found at two extremes. Many cDNAs have no homologs, but many others have too many homologs. In particular, 24.5% of WH genes have no homologs in rice, whereas 64.4% of NH genes have no homologs in rice. Because NH genes are dispersed throughout the genome, sandwiched between WH genes, we cannot adopt a strict colinearity rule in our search for duplicated segments. There would be too many exceptions. Conversely, when there is at least one homolog in rice, the mean (median) number of homologs per cDNA is 40 (5). Rather than deal with the complexities of this situation, we focus first on the cDNAs with one and only one homolog. This reduces the background duplication noise and allows us to identify trend lines
indicative of segmental and tandem gene duplications. We can then add back those cDNAs with more than one homolog that we had rejected earlier by using our newly defined trend lines to constrain the choices.

The above procedure leaves us with 2,271 homolog pairs (or cDNAs). We adopt a graphical approach, because in the presence of massive background noise, trend lines are often easier to identify by eye than by software. Figure 6 depicts Chromosomes 2 and 6, and Figure S7 depicts all 12 chromosomes. There are 18 pairs of duplicated segments that together cover 65.7% of the length of all the mapped super-scaffolds. The mean (median) number of homolog pairs per segment is 34 (23). The segment sizes are 6.9 Mb (5.4 Mb), and they differ by 45% (42%) within a segment pair, which is not at all unexpected given the rapidly evolving nature of the rice intergenic regions. Instances of multiple duplicated segments on the same chromosomal region are extremely rare, covering only 0.9% of the total length. No additional multilevel duplications are detected if we use cDNAs with up to two homologs, as opposed to those with only one. Notice also that there are duplicated segments on all 12 rice chromosomes, as summarized in Figure 7.

One can date the duplications by computing the number of substitutions per silent site (Ks). Multiple substitution corrections are done within K-Estimator [63]. To improve our statistics, we now include the higher-order homologs (those cDNAs with more than one homolog that we had removed before). Table 6 shows that this doubles or triples...
the number of homolog pairs in every segment and brings the mean (median) to 74 (53). The resultant Ks distribution is shown in Figure 8. One pair of segments on Chromosomes 11 and 12 is more recent in origin and has more homolog pairs per unit length than all the others. It was previously identified in many publications. If we ignore this segment pair, the mean Ks is 0.69, dating the duplication event to 53 million years ago (Mya), assuming a neutral evolutionary rate of 6.5×10^{-9} substitutions per silent site per year [64]. Most of the uncertainties are due to the multiple-substitution corrections for Ks. Another popular algorithm for Ks [65] dates the duplication event to 94 Mya.

The molecular clock can also vary between genes and between taxa [66,67]. Evidence for the former is seen in the width of the distribution for Ks in Figure 8, which has a standard deviation of 49.8% based on individual homolog pairs (as opposed to 14.5% when based on duplicated segment pairs). We believe that the variation between genes will cancel out, but we cannot remove the systematic error resulting from the multiple-substitution corrections or the potential error in the 6.5×10^{-9} evolutionary rate (which was derived from a small number of genes). However, all we really want to know is whether the duplication event occurred before or after the origin of the grasses, 55–70 Mya [68]. To this end, phylogenetic approaches can be used, albeit for a limited number of genes, because so few plants have been fully sequenced. A majority of these phylogenies indicate that the duplication event occurred before this pivotal point in evolution [14]. Almost certainly, the duplication event occurred after the divergence of monocots and eudicots, 170–235 Mya [69]. However, the best evidence for the statement that the duplication event must have predated the origin of the grasses is the fact that there is no other way to reconcile it with the widely observed synteny between different grass genomes [70]. In striking contrast, the Chromosome 11 to 12 duplication dates back to just 21 Mya, which postdates the origins of the grasses by a comfortable margin.

If we accept that a WGD occurred before the divergence of maize–rice, and that a duplication in Chromosomes 11 and 12 occurred afterward, we might then expect to find two levels of duplication in this region of rice. We thus extended our analysis to consider cDNAs that map to as many as four loci. Undaunted, we decided to try another approach and analyzed the maize–rice synteny, starting from the maize genetic map [71]. The results are given in Figures S8 and S9. We found 35 pairs of syntenic segments covering 71.4% and 52.9% of the maize and rice genomes, respectively. All previously identified segments are confirmed, except for those on Chromosomes 11 and 12 of rice. No synteny is found in the vicinity of this recent duplication. There are many explanations, and they need not contradict our hypothesis, as only 65.7% of the rice genome is in identifiably duplicated segments, and the region from Chromosome 11 to 12 is a minuscule 3.0% of the genome. It is possible that any traces of the WGD had already been lost by the time this recent duplication occurred. The region is also sufficiently small that any synteny with maize would be difficult to detect. It is too early to draw conclusions, especially as maize–rice synteny appears to be much more complicated than previously thought [72].

Given how so much of the rice genome is covered by segmental duplications, and the fact that all but one of our 18 segment pairs date back to the same time, give or take a standard deviation of 14.5%, the simplest interpretation is that a WGD did occur and that it happened before the origin.
of the grasses. However, it is equally clear that other classes of duplications are also present, and these are worth investigating too.

Ongoing Individual Gene Duplications

Tandem duplications are represented by the trend along the diagonal, Y = X, that is observed in all chromosomes (see Figures 6 and S7). Segmental duplications within the same chromosome are possible, but their trend would not be along the diagonal, and none were actually seen in our analysis. As an indicator of the prevalence of the three different duplication classes, we use the number of homolog pairs before and after the inclusion of higher-order homologs. Segmental duplications contain 609 and 1,340 pairs, whereas tandem duplications contain 311 and 957 pairs. We can increase the tandem numbers by relaxing our definitions to allow two TBlastN homologs of an nr-KOME cDNA to count as a homolog pair (instead of insisting that one always be a cDNA). This is what we use in the Ks distribution plot of Figure 8, which contains 1,696 homolog pairs. Rather than a maximum in the distribution at some nonzero Ks, we find a big peak at zero Ks, followed afterward by an exponential decay. The implication is that tandem duplication is an ongoing evolutionary process that provides an endless source of raw materials for gene genesis. If we adopt the methods and parameters of the Arabidopsis genome paper, we find that 16.5% of the rice genome is tandemly duplicated, compared to 16.2% of the Arabidopsis genome. Note, however, that the Ks distribution for tandemly duplicated genes in Arabidopsis is highly unusual, in the sense that it does not exhibit the big peak at zero Ks that is seen in virtually every other plant genome [52].

In addition to segmental and tandem duplications, there is a third and last class of duplications that looks like background noise in our figures. The number of homolog pairs is 1,351 and 32,384 before and after higher-order homologs, respectively, although with no trend line to constrain the choice of homologs, that second number is almost certainly an overestimate, since only 4,212 cDNAs are involved. Surprisingly few of these higher-order homologs are the result of processed pseudogenes, as the number of cases in which a multiexon cDNA pairs with a single-exon TBlastN homolog is 9.8%. To demonstrate how overwhelmingly these higher-order homologs contribute to the background noise, Figure 9 depicts what Chromosome 2 would have looked like if we had included them. For simplicity of interpretation, Figure 8 is the Ks distribution of the cDNAs with one and only one homolog. This distribution has characteristics of the distribution for tandem duplications—large peak at zero Ks followed by exponential decay—except that the magnitudes of the Ks are much larger for background duplications. We believe that most of these background duplications were

Figure 6. Duplicated Segments in the Beijing indica Assembly
Depicted here are the plots for Chromosomes 2 (A) and 6 (B). Each data point represents the coordinated genomic positions in a homolog pair, consisting of one nr-KOME cDNA and its one and only TBlastN homolog in rice. Shown on the x-axis is the position of a gene on the indicated chromosome, and shown on the y-axis is the position of its homolog on any of the rice chromosomes, with chromosome number encoded by the colors indicated on the legend at the right.

DOI: 10.1371/journal.pbio.0030038.g006

Figure 7. Graphical View of All Duplicated Segments
The 12 chromosomes are depicted along the perimeter of a circle, not in order but slightly rearranged so as to untangle the connections between segments. Overall, we cover 65.7% of the genome.

DOI: 10.1371/journal.pbio.0030038.g007
Table 6. Summary of Duplicated Segments in the Beijing indica Assembly

Segment 1	Segment 2	One and Only One Homolog With Higher-Order Homologs	nr-KOME start cDNA	nr-KOME stop cDNA	
Chr01	3.6	10.1	6.5	Chr05	3.9
Chr01	14.1	17.8	3.7	Chr05	3.7
Chr01	23.0	42.3	19.3	Chr05	30.9
Chr01	44.7	46.2	1.5	Chr05	18.7
Chr02	15.6	30.8	15.2	Chr04	8.1
Chr02	2.0	10.2	8.3	Chr06	32.8
Chr02	31.0	36.4	5.4	Chr06	15.5
Chr03	10.6	19.9	9.3	Chr07	27.7
Chr03	35.8	39.8	4.0	Chr07	1.1
Chr03	2.5	6.4	0.9	Chr10	16.3
Chr03	3.9	8.8	0.9	Chr10	1.0
Chr03	26.0	31.4	5.4	Chr12	19.3
Chr04	29.3	31.3	2.0	Chr08	9.2
Chr04	23.8	26.5	2.6	Chr10	15.5
Chr04	15.7	16.8	1.8	Chr09	3.9
Chr08	18.8	30.0	11.2	Chr09	8.2
Chr11	0.0	6.6	6.5	Chr12	0.5
Chr11	15.3	22.6	7.3	Chr12	13.9
MEAN		6.4			
TOTAL		108.3	130.0	529	

We give start and stop positions on the pseudo-chromosome, segment sizes, number of homolog pairs, mean Ks rates, percentage of homolog pairs with Ks < 0.25, and flanking nr-KOME cDNAs. One set of numbers is for the initial analysis of those cDNAs with one and only one homolog. A second is for the analysis of additional cDNAs with higher-order homologs.

Chr, Chromosome.

Our WGD is in good agreement with the results of Paterson et al. [15], but we can also explain the seemingly contradictory correlation between NH genes and tandem duplications. Tandem and segmental duplications show markedly different Ka/Ks distributions, a popular test for evolutionary selection, where Ka and Ks refer to the fraction of non-synonymous and synonymous sites, respectively, that are changed within a homolog pair [73]. Ka/Ks is one under neutrality, below one under purifying selection, and above one under adaptive selection. Tandem duplications tend to have larger Ka/Ks values, as we show in Figure 10. The averages are 0.720 (tandem) and 0.365 (segmental), and more homolog pairs exhibit Ka/Ks > 1 in tandem duplications. This is consistent with the observation that more recent duplications tend to have larger Ka/Ks values [74] and with the idea that, immediately after duplication, one of the two genes undergoes a fast evolving phase [75]. Finally, let us consider again those nr-KOME cDNAs with one and only one homolog. Among the ones assigned to a tandem duplication, 65.3% are NH, but among the ones assigned to a segmental duplication, 29.8% are NH. Hence, there is a marked correlation between NH genes and tandem duplications.

Our WGD is in good agreement with the results of Paterson et al. [15], but we can also explain the seemingly contradictory results of Vandepoele et al. [14] First, they did not have a complete genome; about two-thirds of their segmental duplications were interrupted by a break in the assembly. Second, their algorithms were very likely confounded by the many NH genes with no homologs in rice itself and by the many individual gene duplications that in aggregate masked the WGD. In fact, their segmental duplications had a Ks distribution similar to ours, but they only covered 15% of the genome. Then, when they examined the distribution of Ks for all duplicates, what they found was a big peak at zero Ks. This lead them to conclude there was no WGD, when, in fact, almost every class of duplication that had been hypothesized was present, and they needed only to allow for that.

Discussion

Until recently, Arabidopsis was the only sequenced plant genome. When two rice genomes were first published in draft format, the comparative analyses that could be done were hindered by a lack of long-range contiguity. Now, there are three plant genomes (indica rice, japonica rice, and Arabidopsis) with multimegabase contiguity. In our analyses, we strived to maintain methodological consistency. To assess the accuracy of our assemblies, we first compared IRGSP japonica to Syngenta japonica, so that polymorphic differences would not be a confounding factor. To compare gene content in the three rice assemblies, we annotated them all with the same procedures. Our conclusion is that, even if the WGS method does fall just slightly short of the clone-by-clone method in terms of accuracy and completeness, it comes remarkably close. This is why all the genome-sequencing projects now being funded by the National Human Genome Research Institute (in the United States) are being done with WGS methods (http://www.genome.gov/11007951). Rice is also now one of the few
organisms with the luxury of having a complete genome sequence for two important subspecies. Comparisons of *indica* and *japonica* reveal strikingly little difference in the gene content, but there are massive intergenic differences. This vindicates our strategy to focus on genic sequences, because if the intergenic sequences are so unstable even between *indica* and *japonica*, they are highly unlikely to be functional.

Our analysis of the duplication history in rice resolves a simmering dispute and, at the same time, raises some intriguing questions. We find evidence for an ancient WGD, a recent segmental duplication, and massive ongoing individual gene duplications. This last phenomenon can explain certain unexpected findings. Sequencing of orthologous loci between grass genomes has identified many smaller-scale rearrangements that were not seen in the original map-based studies. Many of these exceptions to synteny are due to tandem duplications [76,77,78], which makes sense, given how these duplications are a frequent and ongoing event for grass genome evolution. In addition, the massive ongoing individual gene duplications provide a never-ending source of raw material for gene genesis. We believe that the large number of rice NH genes is a transient effect of this ongoing process. The contrary argument is that any such transients cannot be long-lived, as one of the two genes must decay rapidly to avoid the dosage-doubling problem [79,80]. We believe this is irrelevant when there is a continual injection of new gene duplicates. Additional details must, however, be deferred to a future article, in which we can better address other important issues, such as the critical need to confirm NH genes in proteomics and conservation in the maize genome sequence.

Looking toward the future, we would point out that the Chinese Superhybrid Rice Genome Project was designed to include not only a major subspecies of rice, namely, the *indica* variety represented by 93–11, but also the maternal strain of the *LYP9* superhybrid, PA64s, which has a complex breeding history incorporating genetic material from *indica*, *japonica*, and *javanica*—all of the major subspecies of cultivated rice. Work on PA64s is continuing at our Beijing center. For the research community, we will be providing DNA microarrays to facilitate the systematic studies of gene expression in different tissues and developmental stages, and under different physiological and environmental conditions. We will develop molecular markers for mapping causative genes in mutant lines and marker-assisted breeding. This publication, and the associated data release, is also a fitting way to celebrate the end of 2004, which the United Nations General Assembly declared to be the International Year of Rice (http://www.fao.org/rice2004).

Materials and Methods

Construction of reference cDNAs: nr-KOME. The initial Knowledge-Based Oryza Molecular-Biological Encyclopedia dataset [25] had 28,444 *japonica* cDNAs with complete open reading frames. These cDNAs were aligned to Syngenta *japonica*, and when two alignments overlapped by at least 100 bp, the smaller cDNA was removed. A small number of clones could not be aligned—not even partially—to any of our three rice assemblies (Beijing *indica*, Syngenta *japonica*, and IRGSP *japonica*). Removing these as nonrice contaminants gave a set of 19,079 nonredundant cDNAs that we call nr-KOME. Because the sequence quality is so high, we could use the longest open reading frame for the overwhelming majority of these cDNAs, without having to correct for sequencing errors. Minor corrections are applied to 2.5% of these cDNAs, following the methods first developed for GenScan [81].
Repeats and their effects on WGS misassembly. The basic procedure for converting sequence reads into contigs and scaffolds was described in our original publication on RePS [26], our WGS assembler. A common source of confusion is the distinction between mathematically defined repeats (MDRs) and biologically defined repeats. What we focus on are MDRs, which refer to 20-mer sequences that are exactly repeated in the genome, without regard to their underlying biological context. In our nomenclature, “depth” refers to the number of times that a 20-mer appears in the unassembled sequence reads and “copy number” refers to the number of times that it appears in the (correctly assembled) genome. “Coverage” is the number of times that the genome is redundantly sampled, and therefore depth = copy number × coverage. Special procedures are used to compute depths efficiently [27].

In a WGS assembly, the problems arise from the MDRs, which are not equivalent to the biologically defined repeats. For example, TEs qualify as biologically defined repeats, and they can be recognized, even after many millions of years of degradation, by specialized programs like RepeatMasker (http://www.repeatmasker.org). However, the degradation makes it trivial to distinguish between two copies of an ancient TE, so these do not cause assembly problems. It is also relatively easy to distinguish between gene duplicates, because their introns and flanking intergenic regions are under fewer evolutionary constraints than their exons. Even for recent TEs and gene duplicates, assembly problems can be avoided, because RePS computes the copy number for every 20-mer in the WGS assembly, and it will refuse to join anything that might be ambiguous. Indeed, the only way a misassembly can occur is if there is a low copy MDR and its copy number is underestimated by RePS. All of our tests show that, although this can happen, it is a rare event.

On the usefulness (or not) of BAC end pairs. The fundamental challenge was that we had to create super-scaffolds of megabase size from scaffolds of 30-kb size. It is generally thought that BAC end pairs are useful for this purpose, but this is not true when the BAC inserts, typically 122–187 kb, are much bigger than the scaffold sizes. Instead of linking adjacent scaffolds, they link every fourth to sixth scaffold. The fact that the density of BAC ends is 2.3 kb does not help, because their introns and flanking intergenic regions are under fewer evolutionary constraints than their exons. Even for recent TEs and gene duplicates, assembly problems can be avoided, because RePS computes the copy number for every 20-mer in the WGS assembly, and it will refuse to join anything that might be ambiguous. Indeed, the only way a misassembly can occur is if there is a low copy MDR and its copy number is underestimated by RePS. All of our tests show that, although this can happen, it is a rare event.

Figure 9. A View of All Duplications Found on Rice Chromosome 2

In contrast to Figure 6, where we featured those cDNAs with one and only one TBLASTN homolog, here we show all detectable TBLASTN homologs, up to a maximum of 1,000 per cDNA. DOI: 10.1371/journal.pbio.0030038.g009

Misassemblies versus polymorphic differences. To verify our WGS assemblies on the smaller-length scales that are more characteristic of genes, we compare them with IRGSP japonica, taking the latter as the “gold standard” not because it is perfect but because it more likely to be correct. We focus on gene regions by aligning nr-KOME cDNAs to IRGSP japonica and excising the sequences from the 5' to 3' UTRs, including introns and an additional 500 bp at both ends. What we search for are potential misassemblies due to misplaced reads. Given that a typical read is 500 bp, these should appear as segments of 500 bp or more in which the excised gene sequence cannot be aligned with the WGS assembly. Such discrepancies are noted based on where they occur in the context of the gene. Although it is possible to detect more than one discrepancy per gene, we only count the most serious discrepancy in each gene based on the likelihood of it being functional. The prioritization is from coding exon, to UTR exon, to intron. Notice that discrepancies of this nature are not always from misassemblies. In the Beijing indica comparison, they can also be due to polymorphic differences. Although there is no way to tell what any particular discrepancy is, we know the misassembly rate from the Syngenta japonica comparison. Therefore, any increase in the discrepancy rate in the Beijing indica comparison can be attributed to polymorphic differences.

Ab initio predictions of WH versus NH genes. FGENESH [35] behaves very differently for WH and NH genes, as defined by nr-KOME. Following the methods of our recent review [84], we compute false positive (FP) and false negative (FN) rates. Error rates are given on a per amino acid basis. This means that in addition to correctly
identifying the coding bases, we require the reading frame to be correctly determined. WH genes show very low error rates (FP = 0.10 and FN = 0.05). Although NH genes show higher error rates (FP = 0.35 and FN = 0.25), these are not that much worse than human genes (FP = 0.30 and FN = 0.12), and like it or not, error rates like these are the state of the art in ab initio prediction. On closer examination, it is clear that most of the problems in rice are caused by single-exon genes with small coding regions, which are more prevalent among NH genes and form a category that all ab initio algorithms handle poorly. This category of genes does not affect the gene count because FP and FN cancel each other out. We therefore focus on removing TEAs that are mistakenly called genes.

Comparison of indica-japonica to identify SNPs. The sequence alignments for *indica* and *japonica* are straightforward, with almost no chance of paralog confusion, because of our 34,190 unique “anchor points” (see Figure 1). We partition the sequence into four nonoverlapping categories called unassembled, assembled, unmapped, and aligned. The last category is where almost all of the genes are, and where we can get polymorphism data. Detailed sequence alignments are computed with CrossMatch, a Smith-Waterman algorithm that is included in Phrap (http://www.phrap.org). This is preferred to any of the BLAST alignment tools, which, although they are faster, occasionally miss subtle details. To discriminate between polymorphisms and sequencing errors, we use the error probability p attached to every base, and given the similarity measure s for both Q and R. Following in the line of another study in the days of large-scale polymorphism discovery [85], we use thresholds of $Q > 23$ at the SNP site and $Q > 15$ for the two flanking 5-bp regions. Experience has taught us that higher thresholds (30 and 22, respectively) are required for the indels. For comparison, an independent analysis [86] reported mean rates of 7.1 SNP/kb and 2.0 indel/kb for 50% of these SNPs experimentally confirmed. Our SNP rates are two times higher because we aligned more of the intergenic sequence. If we eliminate this factor, say, by restricting our sites to the introns of the genes defined by nr-KOME, our rates are 6.1 SNP/kb and 1.3 indel/kb, which are actually lower than the rates from that independent analysis.

On the reliability of the p-p interaction data. Bioverse annotations in this article are dated July 2003 (FGENESH) and November 2002 (nr-KOME). Two proteins are said to interact if they are similar to two other proteins that are known to interact. Our criterion is that the product of the similarity measures (percentage identity) must exceed 0.15. For example, two proteins with 45% and 30% identity to two other proteins that are experimentally determined to interact would be rejected, as their score is 0.45 × 0.30 = 0.135. The reliability of this approach, especially for transfer of interaction data between organisms, has been demonstrated in *Saccharomyces cerevisiae*. *Caenohabditis elegans*, *Drosophila melanogaster*, and *Heliocobacter pylori* analyses [87]. As an example of a predicted interaction for rice that has been independently confirmed, Bioverse identification numbers 21736 and 8526 (score 0.21) show an interaction between CDK-activating kinase and cyclin [88]. A general way to verify the predicted interactions is to compare them against known protein complexes in the Protein Data Bank. Unfortunately, there are few Protein Data Bank structures from rice, and even fewer are of protein complexes. Given this dearth of experimentally determined interactions for rice, Bioverse is almost the only source of large-scale interaction data.

Details of the duplication and synteny analysis. We defined a homolog pair as a single nr-KOME cDNA and its TblastN homolog, but occasionally that TblastN homolog will overlap with another cDNA. To avoid double counting, we keep only the larger of these two cDNAs. Segmental duplications are decomposed into classes I, II, and III. Correspondence between *indica* and *japonica* is indicated by drawing a connecting line between the 5’ ends of the nr-KOME cDNAs that clearly align to both assemblies.

Supporting Information

Figure S1. Genetic Versus Physical Map Distance for All 12 Rice Chromosomes, Based on Beijing *indica*

Similar results are seen with the other two assemblies, *Syngenta japonica* and IRGSP *japonica*.

Found at DOI: 10.1371/journal.pbio.0030038.sg001 (1 MB EPS).

Figure S2. Number of Discrepant Markers in Comparisons of Genetic and Physical Maps for 1,519 Markers Found in All Three Rice Assemblies

We count discrepancies where the markers are found (A) on different chromosomes and (B) in different locations on the same chromosome.

Found at DOI: 10.1371/journal.pbio.0030038.sg002 (458 KB ZIP).

Figure S3. Gene Prediction by FGENESH, Tested against nr-KOME cDNAs

Genomic size refers to the unspliced transcript, with introns, but constrained to the region from the start to stop codons. CDS size refers to the spliced transcript, without introns. Predictions are assessed with FP and FN rates, where per-aa (per amino acid) refers to the fact that we check whether the reading frame is correct.

Found at DOI: 10.1371/journal.pbio.0030038.sg003 (351 KB ZIP).

Figure S4. Distribution of Sizes for Gene Islands and Intergenic Repeat Clusters, Based on Complete Sequence of Chromosomes 1 and 10 from IRGSP *japonica*

Intergenic repeat clusters are regions of size larger than 1.5 kb (i.e., between a MTc and a *gypsy/copia* TE), where most of the 20-mer copy numbers exceed ten. Lower copy number regions are tolerated up to a “maximum gap size,” which defaults to 150 bp. Regions lying between two adjacent intergenic repeat clusters are taken to be gene islands.

Found at DOI: 10.1371/journal.pbio.0030038.sg004 (2.5 MB EPS).

Figure S5. Gene and TE Densities for Beijing *indica* Chromosome 7, as a Percentage of Sequence Length

Near the centromeres, there is an increase in TE density (especially for the large, class I TEs such as *gypsy* and *copia*) and a decrease in gene density. This is not an artifact of the fact that WGS assemblies underrepresent larger TEs, as much the same effect is observed when we use IRGSP *japonica* instead (data not shown).

Found at DOI: 10.1371/journal.pbio.0030038.sg005 (5.8 MB EPS).

Figure S6. Coordinated Annotation of the Individual Chromosomes for Beijing *indica* and Syngenta *japonica*

We depict all the genetic markers, nr-KOME cDNAs, FGENESH gene predictions, and transposable elements identified by RepeatMasker. Genes are depicted as WH (colored blue) or NH (colored red) based on their similarity to *Arabidopsis*. TEs are decomposed into classes I, II, and III. Correspondence between *indica* and *japonica* is indicated by drawing a connecting line between the 5’ ends of the nr-KOME cDNAs that clearly align to both assemblies.

Found at DOI: 10.1371/journal.pbio.0030038.sg006 (9.6 MB ZIP).

Figure S7. Duplicated Segments in the Beijing *indica* Assembly for All 12 Chromosomes, Plotted in the Manner of Figure 6, and with a Total of 12 Panels

Found at DOI: 10.1371/journal.pbio.0030038.sg007 (507 KB ZIP).

Figure S8. Complete Synteny between Maize and Rice I

Each point indicates the genomic positions for a maize genetic marker and its highest confidence match in rice. The x-axis shows a specific chromosome for one genome, and the y-axis shows all chromosomes for a second genome, with the chromosome numbers color-coded as per the legend. We show here 12 panels for rice.

Found at DOI: 10.1371/journal.pbio.0030038.sg008 (316 KB PDF).

Figure S9. Complete Synteny between Maize and Rice II

Each point indicates the genomic positions for a maize genetic marker and its highest confidence match in rice. The x-axis shows a specific chromosome for one genome, and the y-axis shows all...
chromosomes for a second genome, with the chromosome numbers color-coded as per the legend. We show here ten panels for maize.

Table S1. Raw Data for Beijing indica and Syngenta japonica Assemblies

Read length is the number of Q20 bases with an error rate of 10^{-3} or better. Effective coverage is based on the depth of reads in contigs over 5 kb in size, ignoring regions with 20-mer repeats. Clone insert sizes are specified in terms of tenth and 90th percentiles.

Table S2. Transposable ElementsIdentified with RepeatMasker Are Put into Classes I, II, and III

As a result of our efforts to identify indica–japonica polymorphisms, the sequence is divided into four nonoverlapping categories: unassembled, assembled-but-unmapped, mapped-but-unaligned, and aligned (with all the SNPs).

Table S3. Detailed Analysis of Gene Overlaps from Figure 3

For each region of the Venn diagram, we use BLAT to align the predicted gene to the other assembly (or assemblies) where the gene is supposedly missing. The objective is to determine whether the sequence that is missing, or whether the discrepancy is due to the errors in the ab initio predictions. What we find is a bit of both. However, fragmented sequence assemblies are not a problem. If the gene is found at all, it is usually found in one piece. What is striking is that predicted genes that are unique to the two WGS assemblies do tend to be genuinely missing from IRGSP japonica sequence. This supports the idea that the WGS method can sometimes identify genes that are not well represented in the BAC clone libraries.

Table S4. Table of InterPro Domain Rankings

One table compares predicted genes from Arabidopsis and Beijing indica. The second table compares predicted genes from Beijing indica with nr-KOME dDNA.

Accession Numbers

The DNA Data Bank of Japan/European Molecular Biology Laboratory/GenBank (BGI-RIS http://rise.genomics.org.cn [16]) project accession numbers for the WGS sequences discussed in this article are Beijing indica (AAAA00000000, version AAAA02000000) and Syngenta japonica (AACV00000000, version AACV01000000).

Acknowledgments

This project was funded through Chinese Academy of Sciences (grants KSCX1-WX-03, KSCX2-SW-223, and KSCX2-SW-306), Commission for Economy Planning Ministry of Science and Technology (grants 2001AA225041, 2002AA229021, 2002AA104250, 2002AA254011, 2001AA235011, 2001AA251011, 2004AA231050, and 2003AA071600), National Natural Science Foundation of China (grants 30391920, 30905139, 30470578, 30201004, and 30570572), China Agriculture Research System and Beijing Municipal Government, Zhejiang Provincial Government, Hangzhou Municipal Government, Zhejiang University, and China National Grid. Some funding is from the United States National Human Genome Research Institute (grant 1 P50 HG02551), the United States National Science Foundation (grant DBI 0217241), and Searle Scholars Program.

Competing interests. The authors have declared that no competing interests exist.

Author contributions. The following authors conceived and designed the experiments: Jun Yu, Jian Wang, Gane Ka-Shu Wong, and Huanning Yang.

The following authors performed the experiments: Jun Yu, Wei Lin, Jin Zhou, Wei Dong, Songnian Hu, Changqing Zeng, Zuyun Xu, Xianran Li, Liang Lin, Jianming Yin, Jianing Geng, Jianping Shi, Yajun Deng, Qingfu Wu, Changfeng Li, Jingjiang Wang, Dawei Li, Xiaowei Zhang, Yongqiao Sun, Zhenpeng Zhang, Jingyue Bao, Peng Chen, Yingyu Yu, Meng Li, Jinhong Li, Zongzhong Tong, Shuangli Li, Tingting Lei, Huan Chen, Haiyan Huang, Feng Zhang, Caifeng Zhao, Yanqing Huang, Yan Xi, Qiuqiu Qi, Weni Li, Bo Zhang, Jian Wang, and Huanming Yang.

The following authors analyzed the data: Jun Wang, Songgang Li, Heng Li, Peixiang Ni, Jiangguo Zhang, Yong Zhang, Ruiqiang Li, Shengtong Li, Hongkun Zheng, Lijuan Cong, Guangyuan Li, Jin Liu, Hong Lv, Jin Li, Jing Wang, Xiaoyun Ren, Xiaoling Wang, Dongyuan Li, Zhendong Jin, Wenming Zhao, Yujun Han, Lingli Dong, Jia Ji, Jinsong Liu, Ying Xiao, Li Yang, Chen Ye, Yan Zhou, Bing Zhang, Shulin Zhang, Habin Wei, Hong Yu, Yuanchun Li, Hao Xu, Lijun Fang, Zengjin Zhang, Yunze Zhang, Xiangang Huang, Zhixi Su, Wei Tong, Jia Ye, Chen Chen, Huayong Xu, Na Li, Shuting Li, Lijun Dong, Long Li, Wei Hu, Xianjun Tian, Yongzhi Jiao, Xiaohuo Liang, Jason McDermott, Ram Samudrala, and Gane Ka-Shu Wong.

The following authors contributed reagents/materials/analysis tools: Jun Wang, Songgang Li, Heng Li, Peixiang Ni, Jiangguo Zhang, Yong Zhang, Ruiqiang Li, Shengtong Li, Hongkun Zheng, Guangyuan Li, Jin Liu, Longhua Ran, Xiaoli Shi, Xiyan Wang, Xiaoyun Ren, Dongyuan Li, Wenming Zhao, Yujun Han, Shuming Wu, Jinsong Liu, Dongbo Hu, Jianlong Tan, Chen Ye, Jingfeng Zhang, Jingyi Xu, Yan Zhou, Bin Lu, Shulin Wei, Xinmiao He, Zengjin Zhang, Xiangang Huang, Lishun Wang, Lin Fang, Xiao Li, Haihong Li, Lijun Dong, Yanling Zhang, Jia Jin, Lei Gao, Weimou Zheng, Bailin Hao, Siji Liu, Wen Wang, Longqing Yuan, Mengliang Cao, Jason McDermott, Ram Samudrala, Jian Wang, and Huanning Yang.

The following authors wrote the paper: Jun Yu and Gane Ka-Shu Wong.

References

1. Yu J, Hu S, Wang J, Wong GK, Li S, et al. (2002) A draft sequence of the rice genome (Oryza sativa L. ssp. indica). Science 296: 79–92.

2. Goff SA, Ricke D, Lan TH, Presting G, Wang R, et al. (2002) A draft sequence of the rice genome (Oryza sativa L. ssp. japonica). Science 296: 92–100.

3. Sasaki T, Matsumoto T, Yamamoto K, Sakata K, Baba T, et al. (2002) The structure, activity, and evolution of rice chromosome 10. Science 300: 1566–1569.

4. Olson MV (2001) The maps. Clone by clone by clone. Nature 409: 816–818.

5. The Rice Chromosome 10 Sequencing Consortium (2005) In-depth view of structure, activity, and evolution of rice chromosome 10. Science 306: 1566–1569.

6. Myers EW, Sutton GG, Delcher AL, Dew IM, Fasulo DP, et al. (2000) A whole-genome assembly of Drosophila. Science 287: 2196–2204.

7. Deseny M (2005) Towards an accurate sequence of the rice genome. Curr Opin Plant Biol 8: 101–105.

8. Feuillet C, Keller B (2002) Comparative genomics of grass genome structure and evolution. Ann Rev Plant Biol 53: 3–10.

9. Vandepoele K, Simillion C, Van de Peer Y (2003) Evidence that rice and barley are ancient aneuploids. Plant Cell 15: 2196–2204.

10. Livingstone K, Rieseberg LH (2002) Rice genomes: A grainy view of future evolutionary research. Curr Biol 12: R70–R71.

11. Sasaki T, Sederoff RR (2003) Genome studies and molecular genetics. The Genomes of Oryza sativa. Dordrecht: Kluwer Academic Publishers.

12. Mayer K, Mewes HW (2002) How can we deliver the large plant genomes? Trends Plant Sci 7: 191–196.

13. Bennetzen JL (2000) Comparative sequence analysis of plant nuclear genomes. Nucleic Acids Res 28: 173–177.

14. Samudrala, Jian Wang, and Huanming Yang.

15. Feuillet C, Keller B (2002) Comparative genomics. Nucleic Acids Res 32: D377–D382.

16. Bueler CR (2002) Current status of the sequence of the rice genome and strategies for finishing the rice genome project. Curr Opin Plant Biol 5: 173–177.

17. Bueler CR (2002) Obtaining the sequence of the rice genome and lessons learned along the way. Trends Plant Sci 7: 538–542.

18. Leach J, McCouch S, Slezak T, Sasaki T, Wessler S (2002) Why finishing the rice genome matters. Science 296: 45–45.

19. Palmer LE, McCombie WR (2002) On the importance of being finished. Genome Biol 3: commn010.1–2001.04.

20. Neelam K, Kurek R, Lammermann U, Bunemann H (2002) Mega-introns in the dynein gene DDIIC7(Y) on the heterochromatic Y chromosome give rise to the giant threads loops in primary spermatocytes of Drosophila hydei. Genetics 154: 759–769.

21. Bennetzen JL (2000) Comparative sequence analysis of plant nuclear genomes: Microcolinearity and its many exceptions. Plant Cell 12: 1021–1029.

22. Moyer K, Mewes HW (2002) How can we deliver the large plant genomes? Strategies and perspectives. Curr Opin Plant Biol 5: 173–177.

23. Rabinowicz PD, McCombie WR, Martienssen RA (2005) Gene enrichment in plant genomic shotgun libraries. Curr Opin Plant Biol 8: 150–156.

24. Kikuchi S, Sato K, Nagata T, Kagawashira N, Doo K, et al. (2003)
Collection, mapping, and annotation of over 28,000 cDNA clones from japonica rice. Science 301: 376–379.

26. Wong J, Wong GK, Ni P, Han Y, Huang X, et al. (2002) RePs: A sequence assembler that marks exact repeats identified from the shotgun data. Genome Res 12: 1268–1273.

27. Zhong L, Zhang K, Huang X, Ni P, Han Y, et al. (2003) A statistical approach designed for finding mathematically defined repeats in shotgun data and determining the length distribution of clone-inserts. Geno Prot Bioinfo 1: 43–51.

28. Machida JC, Ning NAV (2003) The phusion assembler. Genome Res 13: 81–90.

29. Lander ES, Waterman MS (1988) Genomic mapping by fingerprinting random clones: A mathematical analysis. Genomics 2: 231–239.

30. Chen M, Presting G, Barbazuk WB, Goicoechea JL, Blackmon B, et al. (2002) An integrated physical and genetic map of the rice genome. Plant Cell 14: 537–545.

31. Harushima Y, Yano M, Shomura A, Sato M, Shimano T, et al. (1998) A high-density rice genetic linkage map with 2275 markers using a single F2 population. Genetics 148: 479–494.

32. Kent WJ (2002) BLAT—The BLAST-like alignment tool. Genome Res 12: 656–664.

33. Birney E, Clamp M, Durbin R (2004) GeneWise and Genowise. Genome Res 14: 860–869.

34. Brenner SE, Chothia C, Hubbard TJ (1998) Assessing sequence comparison methods with reliably structurally identified distant evolutionary relationships. Proc Natl Acad Sci U S A 95: 6073–6078.

35. Salamov AA, Solovyev VV (2000) An in silio gene finding in Drosophila melanogaster DNA. Genome Res 10: 516–522.

36. Ma J, Devos KM, Bennetzen JL (2004) Analyses of LTR-retrotransposon structures reveal recent and rapid genomic DNA loss in rice. Genome Res 14: 249–257.

37. McDermott J, Samudrala R (2003) Bioverse: Functional, structural and contextual annotation of proteins and proteomes. Nucleic Acids Res 31: 3736–3737.

38. McDermott J, Samudrala R (2004) Enhanced functional information from protected protein networks. Trends Biotechnol 22: 60–62.

39. Camon E, Magrane M, Barrell D, Binns D, Fleischmann W, et al. (2003) The SWISS-PROT, TrEMBL and InterPro databases. Nucleic Acids Res 31: 489–491.

40. Mulder NJ, Apweiler R, Attwood TK, Bairoch A, Barrell D, et al. (2003) The Gene Ontology database and Information resource. Genome Res 13: 662–672.

41. Ware DH, Jaiswal P, Ni J, Yap IV, Pan X, et al. (2002) Gramene, a tool for grass genomics. Plant Physiol 130: 1587–1593.

42. Mullikin JC, Ning Z (2003) The phusion assembler. Genome Res 13: 81–90.

43. Wang P, Liu KD, Zhang R (2000) Segmental duplications are common in angiosperm genome evolution by phylogenetic analysis of chromosomal duplication events. Nature 422: 433–438.

44. Dominguez I, Graziano E, Gebhardt C, Barakat A, Berry S, et al. (2003) Plant genome archaeology: Evidence for conserved ancestral chromosome segments in dicotyledonous plant species. Plant Biotechnol J 1: 91–99.

45. Kishimoto N, Higo H, Abe K, Arai S, Saito A, et al. (1994) Identification of the duplicated segments in rice chromosomes 1 and 5 by linkage analysis of 600,000 DNA markers of known genetic positions. Genetics 138: 879–883.

46. Nagamura Y, Inoue T, Antonio B, Shimano T, Kajiya H, et al. (1995) Conservation of duplicated segments between rice chromosomes 11 and 12. Breeding Sci 45: 373–376.

47. Wang P, Liu KD, Zhang R (2000) Segmental duplications are common in the rice genome. Acta Bot Sin 42: 1110–1115.

48. Comeron JM (1999) K-Estimator: Calculation of the number of nucleotide substitutions per site and the confidence intervals. Bioinformatics 15: 765–764.

49. Gaut BS, Morton BR, McGinn CC, Clegg MT (1996) Substitution rate comparisons between grasses and palms: Symmetric rate differences at the nuclear gene Adh parallel rate differences at the plastid gene rbcL. Proc Natl Acad Sci U S A 93: 10274–10279.

50. Wang J, Li R, Zhang J, Zhao N, Liu X, et al. (2005) Estimating synonymous and nonsynonymous substitution rates under realistic evolutionary models. Mol Biol Evol 17: 32–45.

51. Doyle JJ, Gaut BS (2000) Evolution of genes and taxa: A primer. Plant Mol Biol 40: 1–23.

52. Wolfe KH (2001) Yesterday’s polyploids and the mystery of diploidization. Nat Rev Genet 2: 333–341.

53. Kellogg EA (2001) Evolutionary history of the grasses. Plant Physiol 125: 1575–1586.

54. Yang YW, Lai KN, Tai PY, Li WH (1999) Rates of nucleotide substitution in angiosperm mitochondrial DNA sequences and dates of divergence between Brassica and other angiosperm lineages. J Mol Evol 48: 597–604.

55. Hale MD, Devos KM (2000) Comparative genetics in the rice genome. Proc Natl Acad Sci U S A 95: 1971–1974.

56. Sharopova N, McMullin MD, Schultz L, Schroeder S, Sanchez-Villeda H, et al. (2002) Development and mapping of SSR markers for maize. Plant Mol Biol 48: 463–481.

57. Salje J, Piegu B, Cooke R, Delseny M (2004) New in silico insight into the synteny between rice (Oryza sativa L.) and maize (Zea mays L.) highlights reshuffling and identifies new duplications in the rice genome. Plant J 38: 298–309.

58. Graur D, Li WH (2000) Fundamentals of molecular evolution, 2nd edition. Sunderland: Sinauer. 481 p.

59. Nembaware V, Crum K, Kelso J, Seogheic C (2002) Impact of the presence of paralogs on sequence divergence in a set of mouse-human orthologs. Genome Res 12: 1370–1376.

60. Domazet-Loso T, Tautz D (2003) An evolutionary analysis of orphan genes in Drosophila. Genome Res 13: 2213–2219.

61. Gaut BS (2002) Evolutionary dynamics of grass genomes. New Phytol 154: 15–28.

62. Bennetzen JL, Ma J (2003) The genetic colinearity of rice and other cereals on the basis of genomic sequence analysis. Curr Opin Plant Biol 6: 128–133.

63. Delseny M (2004) Re-evaluating the relevance of ancestral shared synteny as a tool for crop improvement. Curr Opin Plant Biol 7: 120–131.

64. Prince VE, Pickett FB (2002) Splitting pairs: The diverging fates of paralogs on sequence divergence in a set of mouse-human orthologs. Genome Res 12: 1370–1376.

65. Kellogg EA (2003) What happens to genes in duplicated genomes. Proc Natl Acad Sci U S A 100: 1367–1372.

66. Burge C, Karlin S (1997) Prediction of complete gene structures in human genomic DNA. J Mol Biol 268: 78–94.

67. Waterston RH, Lindblad-Toh K, Birney E, Rogers J, Abri JF, et al. (2002) Initial sequencing and comparative analysis of the mouse genome. Nature 420: 520–562.

68. Mao L, Wood TC, Yu Y, Budiman MA, Tomkins J, et al. (2000) Rice transposable elements: A survey of 73,000 sequence-tagged- connectors. Genome Res 10: 982–990.

69. Wang J, Li R, Zhang J, Zheng H, Xu Z, et al. (2003) Vertebrate gene predictions and the problem of large genes. Nat Rev Genet 4: 741–749.

70. Alshuler D, Pollara VJ, Cowles CR, Van Etten WJ, Baldwin J, et al. (2000) A SNP map of the human genome generated by reduced representation shotgun sequencing. Nature 407: 513–516.

71. Shen YJ, Jiang H, Jin JP, Zhang ZB, Xi B, et al. (2004) Development of genome-wide DNA polymorphism database for map-based cloning of rice genes. Plant Physiol 135: 1198–1205.

72. Yu H, Luscombe NM, Lu HK, Zhu X, Xia Y, et al. (2004) Annotation transfer between genomes: Protein-protein interologs and protein-DNA regulons. Genome Res 14: 1107–1118.

73. Yamaguchi M, Fabian T, Sauter M, Blazeran RP, Schrader J, et al. (2000) Activation of CDK-activating kinase is dependent on interaction with H-type cyclins in plants. Plant J 24: 11–20.

74. Gaut BS, Doelker JE (1997) DNA sequence evidence for the segmental genome duplication origin of maize. Proc Natl Acad Sci U S A 94: 6809–6814.

75. Bennetzen JL, Coleman C, Liu R, Ma J, Ramakrishna W (2004) Consistent over-estimation of gene number in complex plant genomes. Curr Opin Plant Biol 7: 752–766.