A Note on G-intersecting Families

Tom Bohman∗ Ryan R. Martin†

Department of Mathematical Sciences
Carnegie Mellon University
Pittsburgh, PA 15213

Abstract

Consider a graph G and a k-uniform hypergraph H on common vertex set $[n]$. We say that H is G-intersecting if for every pair of edges in $X, Y ∈ H$ there are vertices $x ∈ X$ and $y ∈ Y$ such that $x = y$ or x and y are joined by an edge in G. This notion was introduced by Bohman, Frieze, Ruszinkó and Thoma who proved a natural generalization of the Erdős-Ko-Rado Theorem for G-intersecting k-uniform hypergraphs for G sparse and $k = O(n^{1/4})$. In this note, we extend this result to $k = O(√n)$.

1 Introduction

A hypergraph is said to be intersecting if every pair of edges has a nonempty intersection. The well-known theorem of Erdős, Ko and Rado \[2, 3\] details the extremal k-uniform intersecting hypergraph on n vertices.

Theorem 1 (Erdős-Ko-Rado). Let $k ≤ n/2$ and H be a k-uniform, intersecting hypergraph on vertex set $[n]$. We have $|H| ≤ \binom{n-1}{k-1}$. Furthermore, $|H| = \binom{n-1}{k-1}$ if and only if there exists $v ∈ [n]$ such that $H = \{e ∈ \binom{n}{k} : v ∈ e\}$.

Of course, for $k > n/2$ the hypergraph consisting of all k-sets is intersecting. So, extremal k-intersecting hypergraphs come in one of two forms, depending on the value of k.

Bohman, Frieze, Ruszinkó and Thoma [1] introduced a generalization of the notion of an intersecting hypergraph. Let G be a graph on a vertex set $[n]$ and H be a hypergraph, also on vertex set $[n]$. We say H is G-intersecting if for any $e, f ∈ H$, we have $e ∩ f ≠ ∅$ or there are vertices v, w with $v ∈ e, w ∈ f$ and $v ∼_G w$. We are interested in the size and structure of maximum G-intersecting hypergraphs; in particular, we investigate

$$N(G, k) = \max \left\{|H| : H ⊆ \binom{[n]}{k} \text{ and } H \text{ is } G\text{-intersecting}\right\}.$$
Clearly, Erdős-Ko-Rado gives the value of $N(E_n, k)$ where E_n is the empty graph on vertex set $[n]$. For a discussion of $N(G, k)$ for some other specific graphs see [1].

In this note we restrict our attention to sparse graphs: those graphs for which n is large and the maximum degree of G, $\Delta(G)$, is a constant in n. What form can a maximum G-intersecting family take? If K is a maximum clique in G then a candidate for a maximum G-intersecting family is

$$\mathcal{H}_K := \left\{ X \in \binom{[n]}{k} : X \cap K \neq \emptyset \right\}.$$

Note that such a hypergraph can be viewed as a natural generalization of the maximum intersecting hypergraphs given by Erdős-Ko-Rado. However, for many graphs and maximum cliques K one can add hyperedges to \mathcal{H}_K to obtain a larger G-intersecting hypergraph.

Consider, for example, C_n, the cycle on vertex set $[n]$ (i.e. the graph on $[n]$ in which u and v are adjacent iff $u - v \in \{1, n - 1\}$ mod n). The set $\{2, 3\}$ is a maximum clique in C_n and the set

$$\mathcal{H}_{\{2,3\}} \cup \left\{ X \in \binom{[n]}{k} : \{1, 4\} \subseteq X \right\}$$

is G intersecting. Bohman, Frieze, Ruszinkó and Thoma showed that

$$N(C_n, k) = \binom{n}{k} - \binom{n - 2}{k} + \binom{n - 4}{k - 2}$$

(i.e. the hypergraph given in (1) is maximum) for k less than a certain constant times $n^{1/4}$. In fact, they showed that for arbitrary sparse graphs and k small, $N(G, k)$ is given by a hypergraph that consists of \mathcal{H}_K for some clique K together with a number of ‘extra’ hyperedges that cover the clique K in G (see Theorem 1 of [1]). In this note we extend this result to larger values of k.

Theorem 2. Let G be a graph on n vertices with maximum degree Δ and clique number ω. There exists a constant C (depending only on Δ and ω) such that if \mathcal{H} is a G-intersecting k-uniform hypergraph and $k < C n^{1/2}$ then

$$|\mathcal{H}| \leq \binom{n}{k} - \binom{n - \omega}{k} + \binom{\omega(\Delta - \omega + 1)}{2} \binom{n - \omega - 2}{k - 2}.$$

Furthermore, if \mathcal{H} is a G-intersecting family of maximum cardinality then there exists a maximum clique K in G such that \mathcal{H} contains all k-sets that intersect K.

An immediate corollary of this Theorem is that (2) holds for $k < C \sqrt{n}$.

Of course, a maximum G-intersecting hypergraph will not be of the form ‘\mathcal{H}_K together with some extra hyperedges’ if k is too large. Even for sparse graphs, when k is large enough, there are hypergraphs that consist of nearly all of $\binom{[n]}{k}$ that are G-intersecting. In particular, Bohman, Frieze, Ruszinkó and Thoma showed that if G is a sparse graph with
minimum degree \(\delta \), \(c \) is a constant such that \(c - (1 - c)^{\delta+1} > 0 \) and \(k > cn \), then the size of the largest \(G \)-intersecting, \(k \)-uniform hypergraph is at least \((1 - e^{-\Omega(n)})(\binom{n}{k}) \) (see Theorem 7 of [1]). In some sense, this generalizes the trivial observation that \(\binom{n}{k} \) is intersecting for \(k > n/2 \).

There is a considerable gap between the values of \(k \) for which we have established these two types of behavior for maximum \(G \)-intersecting families. For example, for \(C_n \) we have \(k < C \sqrt{n} \) while we have \(N(C_n, k) > (1 - o(1))\binom{n}{k} \) for \(k \) greater than roughly \(.32n \). What happens for other values of \(k \)? Are there other forms that a maximum \(G \)-intersecting family can take? Bohman, Frieze, Ruszinkó and Thoma conjecture that this is not the case, at least for the cycle.

Conjecture 1. There exists a constant \(c \) such that for any fixed \(\epsilon > 0 \)

\[
 k \leq (c - \epsilon)n \Rightarrow N(C_n, k) = \binom{n}{k} - \binom{n - 2}{k} + \binom{n - 4}{k - 2}
\]

\[
 k \geq (c + \epsilon)n \Rightarrow N(C_n, k) = (1 - o(1))\binom{n}{k}
\]

The remainder of this note consists of the proof of Theorem 2.

2 Utilizing \(\tau \)

Let \(H \) be a hypergraph and \(G \) be a graph on vertex set \([n]\). For \(X \subseteq [n] \), we define

\[
 N(X) := \{ v \in V(G) : v \sim_G w \text{ for some } w \in X \} \cup X.
\]

For \(x \in [n] \) we write \(N(x) \) for \(N(\{x\}) \). We will define the hypergraph \(F \) by setting \(f \in F \) if and only if \(f = N(h) \) for some \(h \in H \). Note that if \(H \) is \(G \)-intersecting, then

\[
 h \in H, f \in F \Rightarrow h \cap f \neq \emptyset. \quad (3)
\]

The quantity \(\tau(F) \) is the cover number of \(F \).

The proof of Theorem 2 follows immediately from Lemma 1 which deals with the case where \(\tau(F) \geq 2 \) and Lemma 2 which deals with the case where \(\tau(F) = 1 \).

Lemma 1. Let \(G \) be a graph on \(n \) vertices with maximum degree \(\Delta \) and clique number \(\omega \), both constants. If \(k < \sqrt{\frac{\omega n}{2(\Delta+1)^2}} \), \(H \) is a \(k \)-uniform, \(G \)-intersecting hypergraph on \(n \) vertices and \(n \) is sufficiently large, then \(\tau(F) = 1 \) or

\[
 |H| < \binom{n}{k} - \binom{n - \omega}{k}. \quad (4)
\]
Proof.

Suppose, by way of contradiction, that $\tau = \tau(\mathcal{F}) \geq 2$ and (4) does not hold. For $v \in [n]$ set $\mathcal{H}_v = \{ f \in \mathcal{F} : u \in f \}$, and for $Y \subseteq [n]$ set $\mathcal{H}_Y = \{ f \in \mathcal{F} : Y \subseteq f \}$. Let \mathcal{F}_u and \mathcal{F}_Y be defined analogously.

We first use $\tau > 1$ to get an upper bound $|H_u|$ for an arbitrary $u \in [n]$. First note that, since $\tau > 1$, there exists $X_1 \in \mathcal{F}$ such that $u \notin X_1$. It follows from (3) that each $f \in \mathcal{F}_u$ must intersect X_1. In other words, we have

$$\mathcal{F}_u = \bigcup_{u_1 \in X_1} \mathcal{F}_{\{u, u_1\}}.$$

This observation can be iterated: if $i < \tau$ and $Y = \{ u = u_0, u_1, \ldots, u_{i-1} \}$ then there exists $X_i \in \mathcal{F}$ such that $X_i \cap Y = \emptyset$, and we have

$$\mathcal{F}_Y = \bigcup_{u_i \in X_i} \mathcal{F}_{Y \cup \{u_i\}}.$$

Since $|f| \leq (\Delta + 1)k$ for all $f \in \mathcal{F}$, it follows that we have

$$|\mathcal{H}_u| \leq ((\Delta + 1)k)^{\tau-1} \binom{n-\tau}{k-\tau}. \quad (5)$$

On the other hand, by the definition of τ, there exists $v \in [n]$ for which

$$\frac{1}{\tau} \left[\binom{n}{k} - \binom{n - \omega(G)}{k} \right] \leq |\mathcal{F}_v|.$$

It follows that there exists $u \in [n]$ such that

$$\frac{1}{\tau(\Delta + 1)} \left[\binom{n}{k} - \binom{n - \omega(G)}{k} \right] \leq |\mathcal{H}_u|.$$

Applying (5) to this vertex we have

$$\binom{n}{k} - \binom{n - \omega(G)}{k} \leq \tau(\Delta + 1)^{\tau-1} \binom{n-\tau}{k-\tau}.$$

In order to show that this is a contradiction, we first note that $\tau(\Delta + 1)^{\tau-1} \binom{n-\tau}{k-\tau}$ is a function that is decreasing in τ. Indeed, for $\tau \geq 2$ we have

$$\frac{n - \tau}{k-\tau} \geq \frac{n - 2}{k-2} \geq \frac{3}{2}(\Delta + 1)k \geq \frac{\tau + 1}{\tau}(\Delta + 1)k$$

(note that the condition $k < \sqrt{\frac{\omega}{2(\Delta + 1)^2}}$ is used in the second inequality). It follows that we have

$$\binom{n}{k} - \binom{n - \omega(G)}{k} \leq 2(\Delta + 1)^2 k \binom{n-2}{k-2},$$

...
which is not true if $k < \sqrt{\frac{n\omega(G)}{2(\Delta+1)^2}}$ and n is large enough.

\[\square \]

Lemma 2. Let G be a graph on $[n]$ with maximum degree Δ, a constant. If \mathcal{H} is a k-uniform, G-intersecting hypergraph on $[n]$, $k \leq \sqrt{\frac{n}{\Delta(\Delta+1)}}$, $\tau(\mathcal{F}) = 1$, n is sufficiently large and \mathcal{H} is of maximum size, then there exists a maximum-sized clique K in G such that \mathcal{H} contains every k-set that intersects K.

Proof. Let us suppose \mathcal{H} is of maximum size and let u be a cover for \mathcal{F}, the hypergraph defined above.

For $v \in [n]$, let \mathcal{H}_v denote the members of \mathcal{H} that contain v. Since \mathcal{H} is assumed to be extremal, we may assume that $|\mathcal{H}_u| = \binom{n-1}{k-1}$. Let K be the set of $v \in [n]$ such that $|\mathcal{H}_v| = \binom{n-1}{k-1}$. If $n > (\Delta + 2)k$ then K must be a clique in G; otherwise, we could find two sets that are not G-intersecting in \mathcal{H}.

We now show that the clique K is maximal. Assume for the sake of contradiction that v is adjacent to every element of K but $v \notin K$ (i.e. $|\mathcal{H}_v| < \binom{n-1}{k-1}$). There exists $h \in \mathcal{H}$ that h contains no member of $N(u)$. It follows from (3) that we have

$$|\mathcal{H}_v| < (\Delta + 1)k \binom{n-2}{k-2}.$$

Since this bounds holds for all vertices in $N(u) \setminus K$, if we have

$$\Delta(\Delta + 1)k \binom{n-2}{k-2} < \binom{n-|K|-1}{k-1}$$

then the number of k-sets that contain v but do not intersect K outnumber those edges in \mathcal{H} that contain no member of K. In other words, if (6) holds then we get a contradiction to the maximality of \mathcal{H}. However, (6) holds for n sufficiently large (here we use $k < \sqrt{\frac{n}{\Delta(\Delta+1)}}$).

It remains to show that K is a maximum clique. Since K is maximal, it must be that any member of \mathcal{H} that does not contain a member of K must contain at least 2 members of $N(K) \setminus K$. If

$$\binom{n}{k} - \binom{n-|K|}{k} + \binom{|K|(\Delta - |K| + 1)}{2} \binom{n-|K|-2}{k-2} < \binom{n}{k} - \binom{n-|K|-1}{k}$$

and there is some clique of size $|K| + 1$, then \mathcal{H} cannot be maximum-sized. But (7) holds for $k = o(n)$. So the maximum-sized G intersecting family must contain all members of $\bigcup_{v \in K} \mathcal{F}_v$ for some K with $|K| = \omega(G)$. \[\square \]
References

[1] T. Bohman, A. Frieze, M. Ruszinkó, L. Thoma, G-intersecting Families, Combinatorics, Probability and Computing 10, 376-384.

[2] M. Deza, P. Frankl, Erdős-Ko-Rado theorem – 22 years later, SIAM J. Alg. Disc. Meth. 4 (1983) 419-431.

[3] P. Erdős, C. Ko, R. Rado, Intersection theorems for systems of finite sets, Quart. J. Math. Oxford Ser. 2 12 (1961), 313-320.