Drinfeld Basis And a Nonclassical Free Boson Representation of
Twisted Quantum Affine Superalgebra \(U_q[osp(2|2)^{(2)}] \)

Wen-Li Yang \(^1\) and Yao-Zhong Zhang \(^2\)

\(^1\) Institute of Modern Physics, Northwest University, Xian 710069, China
\(^2\) Department of Mathematics, University of Queensland, Brisbane, Qld 4072, Australia

Abstract

We derive from the super RS algebra the Drinfeld basis of the twisted quantum
affine superalgebra \(U_q[osp(2|2)^{(2)}] \) by means of the Gauss decomposition technique.
We explicitly construct a nonclassical level-one representation of \(U_q[osp(2|2)^{(2)}] \) in
terms of two \(q \)-deformed free boson fields.

Keywords: Drinfeld basis, quantum affine superalgebras, free boson representation.

1 Introduction

The algebraic analysis method based on infinite dimensional non-abelian symmetries has
proved extremely successful in both formulating and solving lower dimensional integrable
systems \([1,2] \). The key elements of this method are infinite-dimensional highest weight
representations of quantum (super) algebras and vertex operators. Drinfeld bases of quantu-
mm (super) algebras are of great importance in constructing the infinite-dimensional rep-
resentations and vertex operators. The Drinfeld bases of quantum affine bosonic algebras
were given by Drinfeld \([3] \). For the case of quantum affine superalgebras, the Drinfeld
bases have been known only for \(U_q[gl(m|n)^{(1)}] \) \([4,5,6] \) and \(U_q[osp(1|2)^{(1)}] \) \([7,8] \). In this pa-
per, we derive the Drinfeld basis of the twisted quantum affine superalgebra \(U_q[osp(2|2)^{(2)}] \)
by using the super version of the Reshetikhin-Semenov-Tian-Shansky (RS) algebra \[\] the Gauss decomposition technique of Ding-Frenkel \[\]. Moreover, we explicitly construct a nonclassical level-one representation of \(U_q[osp(2|2)^{(2)}] \) by means of two \(q \)-deformed free boson fields.

2 Drinfeld Basis of \(U_q[osp(2|2)^{(2)}] \)

The symmetric Cartan matrix of the twisted affine superalgebra \(osp(2|2)^{(2)} \) is \((a_{ij}) \) with \(a_{11} = a_{22} = 1, \ a_{12} = a_{21} = -1 \). Twisted quantum affine superalgebra \(U_q[osp(2|2)^{(2)}] \) is a \(q \)-analogue of the universal enveloping algebra of \(osp(2|2)^{(2)} \) and is generated by the Chevalley generators \(\{E_i, F_i, K_i^{\pm 1} | i = 0, 1 \} \). The \(\mathbb{Z}_2 \)-grading of the Chevalley generators is \([E_i] = [F_i] = 1, \ [K_i] = 0, \ i = 0, 1 \). The defining relations are

\[
\begin{align*}
K_i K_j &= K_j K_i, \\
K_j E_i K_j^{-1} &= q^{a_{ij}} E_i, & K_j F_i K_j^{-1} &= q^{-a_{ij}} F_i, \\
\{E_i, F_j\} &= \delta_{ij} \frac{K_i - K_i^{-1}}{q - q^{-1}} \hspace{2cm} (2.1)
\end{align*}
\]

plus \(q \)-Serre relations which we omit. Here \(\{X, Y\} \equiv XY + YX \).

\(U_q[osp(2|2)^{(2)}] \) is a \(\mathbb{Z}_2 \)-graded quasi-triangular Hopf algebra endowed with the coproduct \(\Delta \), counit \(\epsilon \) and antipode \(S \) given by

\[
\begin{align*}
\Delta(E_i) &= E_i \otimes 1 + K_i \otimes E_i, & \Delta(F_i) &= F_i \otimes K_i^{-1} + 1 \otimes F_i, \\
\Delta(K_i) &= K_i \otimes K_i, & \epsilon(E_i) &= \epsilon(F_i) = 0, & \epsilon(K_i) &= 1, \\
S(E_i) &= -K_i^{-1} E_i, & S(F_i) &= -F_i K_i, & S(K_i) &= K_i^{-1}, & i &= 0, 1. \hspace{2cm} (2.2)
\end{align*}
\]

The antipode \(S \) is a \(\mathbb{Z}_2 \)-graded algebra anti-homomorphism, i.e. for homogeneous elements \(a, b \in U_q[osp(2|2)^{(2)}] \), we have \(S(ab) = (-1)^{|a||b|}S(b)S(a) \).

We now give our definition of \(U_q[osp(2|2)^{(2)}] \) in terms of Drinfeld generators.

Definition 1 \(U_q[osp(2|2)^{(2)}] \) is an associative algebra with unit 1 and the Drinfeld generators: \(X^\pm(z) \) and \(\psi^\pm(z) \), a central element \(c \) and a nonzero complex parameter \(q \). \(\psi^\pm(z) \) are invertible. The gradings of the generators are: \([X^\pm(z)] = 1 \) and \([\psi^\pm(z)] = [c] = 0 \). The relations are given by

\[
\begin{align*}
\psi^\pm(z) \psi^\pm(w) &= \psi^\pm(w) \psi^\pm(z), \\
\psi^+(z) \psi^-(w) &= \frac{(z_+ q + w_-)(z_- + w_+ q)}{(z_+ + w_- q)(z_- q + w_+)} \psi^+(w) \psi^+(z), \\
\psi^\pm(z^{-1}) X^+(w) \psi^\pm(z) &= \frac{z_+ + w q}{z_+ q + w} X^+(w),
\end{align*}
\]
\[\psi^\pm(z)X^-(w)\psi^\pm(z)^{-1} = \frac{z^\pm + wz}{z^\pm q + w}X^-(w), \]
\[(z + wq^{\pm 1})X^\pm(z)X^\pm(w) + (zq^{\pm 1} + w)X^\pm(w)X^\pm(z) = 0, \]
\[\{X^+(z), X^-(w)\} = \frac{1}{(q - q^{-1})zw} \left[\delta\left(\frac{w}{z}q^r\right)\psi^+(w+) - \delta\left(\frac{w}{z}q^{-r}\right)\psi^-(z+) \right]. \quad (2.3) \]

Expand the currents in the form
\[X^\pm(z) = \sum_{n \in \mathbb{Z}} X^\pm_n z^{-n-1}, \]
\[\psi^\pm(z) = \sum_{n \in \mathbb{Z}} \psi^\pm_n z^{-n} = K^{\pm 1} \exp \left(\pm (q - q^{-1}) \sum_{n > 0} H_{\pm n} z^n \right). \quad (2.4) \]

In terms of modes \(\{H_n | n \in \mathbb{Z} - \{0\}, X^\pm_n | n \in \mathbb{Z} \} \) and \(K \), the defining relations of \(U_q[osp(2|2)^{(2)}] \) are given by

\[[K, H_n] = 0, \quad [KX^\pm_n, K^{-1}] = q^{\pm 1}X^\pm_n, \]
\[[H_n, H_m] = \delta_{n+m,0}(-1)^n \frac{[n]_q [nc]_q}{n}, \quad n \neq 0, \]
\[[H_n, X^\pm_m] = \frac{1}{n}(-1)^n \frac{[n]_q [\mp n]_q}{n} X^\pm_{n+m}, \quad n \neq 0, \]
\[X^\pm_{n+1} X^\pm_m + q^{\pm 1} X^\pm_{m+1} X^\pm_n + X^\pm_{n+1} X^\pm_{m+1} X^\pm_n + X^\pm_{m+1} X^\pm_n = 0, \]
\[\{X^+_n, X^-_m\} = \frac{1}{q - q^{-1}} \left(q^{\pm(n-m)} \psi^+_n \psi^-_{n+m} - q^{\mp(m-n)} \psi^-_n \psi^+_m \right). \quad (2.5) \]

Here and throughout \([i]_q = (q^i - q^{-i})/(q - q^{-1}) \).

The Chevalley generators are obtained by the formulae:
\[K_1 = K, \quad E_1 = X^+_0, \quad F_1 = X^-_0, \]
\[K_0 = q^c K^{-1}, \quad E_0 = X^-_1 K^{-1}, \quad F_0 = -K X^+_1. \quad (2.6) \]

In terms of the Chevalley generators, the Drinfeld generators can be built up recursively by
\[H_1 = q^c K^{-1} (X^+_0 X^-_1 + X^-_0 X^+_1), \]
\[H_{-1} = q^{-c} K (X^+_1 X^-_0 + X^-_1 X^+_0), \]
\[X^\pm_{n+1} = \mp q^{\pm c} [H_1, X^\pm_n], \quad X^\pm_{n-1} = \mp q^{\pm c} [H_{-1}, X^\pm_n], \quad n \geq 0 \quad (2.7) \]

plus the formulae for \(H_n, \ H_{-n} \ (n > 0) \) given as follows
\[H_{\pm n} = \pm \frac{1}{q - q^{-1}} \sum_{p_1 + 2p_2 + \cdots + np_n = n} \frac{(-1)^{\sum p_i - 1} \prod (\sum p_i - 1)!}{p_1! \cdots p_n!} (K^{\mp 1} \psi^\pm_{\pm})^{p_1} \cdots (K^{\mp 1} \psi^\pm_{\pm})^{p_n}, \quad (2.8) \]

where
\[\psi^\pm_{\pm n} = \pm (q - q^{-1}) q^{\mp c(n-2)} \{X^\pm_{\mp n+1}, X^\pm_{\pm 1}\}, \quad n > 0. \quad (2.9) \]
3 Derivation of Drinfeld Basis from Super RS Algebra

Let us recall the definition of the super RS algebra. Let \(R(z) \in \text{End}(V \otimes V) \), where \(V \) is a \(\mathbb{Z}_2 \)-graded vector space, be a R-matrix which satisfies the graded Yang-Baxter equation

\[
R_{12}(z)R_{13}(zw)R_{23}(w) = R_{23}(w)R_{13}(zw)R_{12}(z). \tag{3.10}
\]

We introduce \([5, 7]\)

Definition 2: The super RS algebra \(U(R) \) is generated by invertible L-operators \(L^\pm(z) \), which obey the relations

\[
R\left(\frac{z}{w}\right)L^\pm_1(z)L^\pm_2(w) = L^\pm_2(w)L^\pm_1(z)R\left(\frac{z}{w}\right),
\]

\[
R\left(\frac{z^\pm}{w^\mp}\right)L^\pm_1(z)L^-_2(w) = L^-_2(w)L^\pm_1(z)R\left(\frac{z^\mp}{w^\pm}\right), \tag{3.11}
\]

where \(L^\pm_1(z) = L^\pm(z) \otimes 1 \), \(L^\pm_2(z) = 1 \otimes L^\pm(z) \) and \(z^\pm = zq^\pm \). For the first formula of (3.11), the expansion direction of \(R(z/w) \) can be chosen in \(z/w \) or \(w/z \), but for the second formula, the expansion direction must only be in \(z/w \).

The multiplication rule for the tensor product is defined by

\[
(a \otimes b)(a' \otimes b') = (-1)^{[b][a']} (aa' \otimes bb'), \tag{3.12}
\]

for homogeneous elements \(a, b, a', b' \) of \(U_q[osp(2|2)\otimes 2] \).

In the following we apply the super RS algebra to derive the Drinfeld basis of \(U_q[osp(2|2)\otimes 2] \).

We take \(R(z/w) \) to be the R-matrix associated to the 3-dimensional representation \(V \) of \(U_q[osp(2|2)\otimes 2] \). Let \(v_1, v_2, v_3 \) be the basis vectors of \(V \) with the \(\mathbb{Z}_2 \)-grading \([v_1] = [v_3] = 0 \) and \([v_2] = 1 \). It can be shown that the R-matrix has the following form:

\[
R\left(\frac{z}{w}\right) = \begin{pmatrix}
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & a & 0 & b & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & d & 0 & c & 0 & r & 0 & 0 & 0 \\
0 & f & 0 & a & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & g & 0 & e & 0 & c & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & a & 0 & b & 0 \\
0 & 0 & s & 0 & g & 0 & d & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & f & 0 & a & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1
\end{pmatrix}. \tag{3.13}
\]
where
\[
\begin{align*}
 a &= \frac{q(z - w)}{zq^2 - w}, & b &= \frac{w(q^2 - 1)}{zq^2 - w}, & c &= -\frac{q^{1/2}w(q^2 - 1)(z - w)}{(zq^2 - w)(zq + w)}, \\
 d &= \frac{q(z - w)(z + qw)}{(zq^2 - w)(zq + w)}, & e &= a - \frac{zw(q^2 - 1)(q + 1)}{(zq^2 - w)(zq + w)}, \\
 f &= \frac{z(q^2 - 1)}{zq^2 - w}, & g &= -\frac{q^{1/2}z(q^2 - 1)(z - w)}{(zq^2 - w)(zq + w)}, \\
 r &= \frac{w^2(q - 1)(q + 1)^2}{(zq^2 - w)(zq + w)}, & s &= \frac{z^2(q - 1)(q + 1)^2}{(zq^2 - w)(zq + w)}.
\end{align*}
\]

As in the non-super case \([10]\), \(L^\pm(z)\) allow the unique Gauss decomposition
\[
L^\pm(z) = \begin{pmatrix}
1 & 0 & 0 \\
0 & k_1^\pm(z) & 0 \\
0 & 0 & k_3^\pm(z)
\end{pmatrix}
\begin{pmatrix}
1 & f_{1,3}^\pm(z) \\
f_1^\pm(z) & f_2^\pm(z) \\
0 & 0 & 1
\end{pmatrix},
\]
where \(e_{i,j}^\pm(z), f_{i,j}^\pm(z)\), and \(k_i^\pm(z)\) \((i > j)\) are elements in the super RS algebra and \(k_i^\pm(z)\) are invertible; and \(e_i^\pm(z) \equiv e_{i,i+1}^\pm(z), f_i^\pm(z) \equiv f_{i,i+1}^\pm(z)\). Let us define
\[
X_i^+(z) = f_i^+(z) - f_i^-(z), \\
X_i^-(z) = e_i^+(z) - e_i^-(z).
\]

By the definition of the super RS algebra and the Gauss decomposition formula \((3.15)\), and after tedious calculations parallel to those of the \(U_q[osp(1|2)^{(1)}]\) case, we arrive at
\[
\begin{align*}
 k_i^\pm(z)k_j^\pm(w) &= k_j^\pm(w)k_i^\pm(z), & i, j &= 1, 2, 3, \\
 k_i^\pm(z)k_j^\mp(w) &= k_j^\mp(w)k_i^\pm(z), \\
 k_i^\pm(z)k_j^\pm(w) &= k_j^\pm(w)k_i^\pm(z), \\
 \frac{z_\mp - w_\mp}{z_\mp q^2 - w_\mp}k_i^\pm(z)k_j^\mp(w) &= \frac{z_\mp - w_\mp}{z_\mp q^2 - w_\mp}k_j^\pm(w)k_i^\pm(z), \\
 \frac{(z_\mp - w_\mp)(z_\mp + w_\mp)}{(z_\mp q^2 - w_\mp)(z_\mp q + w_\mp)}k_i^\pm(z)k_j^\mp(w)^{-1} &= \frac{(z_\mp - w_\mp)(z_\mp + w_\mp)}{(z_\mp q^2 - w_\mp)(z_\mp q + w_\mp)}k_j^\pm(w)^{-1}k_i^\pm(z), \\
 \frac{(z_\mp - w_\mp q^2)(z_\mp q + w_\mp)}{(z_\mp q^2 - w_\mp)(z_\mp + w_\mp)}k_i^\pm(z)k_j^\mp(w) &= \frac{(z_\mp - w_\mp q^2)(z_\mp q + w_\mp)}{(z_\mp q^2 - w_\mp)(z_\mp + w_\mp)}k_j^\pm(w)k_i^\pm(z), \\
 \frac{z_\mp - w_\mp}{z_\mp q^2 - w_\mp}k_i^\pm(z)^{-1}k_j^\mp(w)^{-1} &= \frac{z_\mp - w_\mp}{z_\mp q^2 - w_\mp}k_j^\pm(w)^{-1}k_i^\pm(z)^{-1}, \\
 k_i^\pm(z)X_j^-\mp(w) &= \frac{z_\mp q^2 - w}{q(z_\pm - w)}X_j^-\mp(w), \\
 k_i^\pm(z)^{-1}X_j^+\mp(w) &= \frac{z_\mp q^2 - w}{q(z_\pm - w)}X_j^+\mp(w),
\end{align*}
\]
\[k_2^\pm(z)X_1^-(w)k_2^\pm(z)^{-1} = \frac{(z_\pm q^2 - w)(z_\pm + wq)}{q(z_\pm - w)(z_\pm q + w)} X_1^-(w), \]
\[k_2^\pm(z)^{-1}X_1^+(w)k_2^\pm(z) = \frac{(z_\pm q^2 - w)(z_\pm + wq)}{q(z_\pm - w)(z_\pm q + w)} X_1^+(w), \]
\[k_3^\pm(z)X_1^-(w)k_3^\pm(z)^{-1} = \frac{z_\pm + wq}{z_\pm q + w} X_1^-(w), \]
\[k_3^\pm(z)^{-1}X_1^+(w)k_3^\pm(z) = \frac{z_\pm q + w}{z_\pm q + w} X_1^+(w), \]
\[k_4^\pm(z)X_2^-(w)k_4^\pm(z)^{-1} = \frac{z_\pm q + w}{z_\pm q + w} X_2^-(w), \]
\[k_4^\pm(z)^{-1}X_2^+(w)k_4^\pm(z) = \frac{z_\pm q + w}{z_\pm - w} X_2^+(w), \]
\[k_5^\pm(z)X_2^-(w)k_5^\pm(z)^{-1} = \frac{z_\pm q + w}{z_\pm q + w} X_2^-(w), \]
\[k_5^\pm(z)^{-1}X_2^+(w)k_5^\pm(z) = \frac{z_\pm q + w}{z_\pm q + w} X_2^+(w), \]
\[(z - wq^2)X_1^+(z)X_2^+(w) + q(z - w)X_2^+(w)X_1^+(z) = 0, \]
\[q(z - w)X_1^-(z)X_2^-(w) + (z - wq^2)X_2^-(w)X_1^-(z) = 0, \]
\[(z + wq^{\pm 1})X_1^+(z)X_2^+(w) + (zq^{\pm 1} + w)X_1^+(w)X_1^+(z) = 0, \]
\[(z + wq^{\pm 1})X_2^+(z)X_2^+(w) + (zq^{\pm 1} + w)X_2^+(w)X_2^+(z) = 0, \]

\[
\{X_1^-(w), X_1^+(z)\} = (q - q^{-1}) \left[-\delta \left(\frac{z}{w} q^{-1} \right) k_2^+(z_+) k_1^+(z_+)^{-1} \right. \\
+ \delta \left(\frac{z}{w} q^{-1} \right) k_2^-(w_+) k_1^-(w_+)^{-1} \right],
\\
\{X_2^-(w), X_2^+(z)\} = (q - q^{-1}) \left[\delta \left(\frac{z}{w} q^{-1} \right) k_3^+(z_+) k_2^+(z_+)^{-1} \right. \\
- \delta \left(\frac{z}{w} q^{-1} \right) k_3^-(w_+) k_2^-(w_+)^{-1} \right],
\\
\{X_2^-(w), X_1^+(z)\} = (q - q^{-1}) q^{1/2} \left[-\delta \left(\frac{z}{w} q^{-1} \right) k_3^+(z_+) k_1^+(z_+)^{-1} \right. \\
+ \delta \left(\frac{z}{w} q^{-1} \right) k_3^-(w_+) k_2^-(w_+)^{-1} \right],
\\
\{X_1^-(w), X_2^+(z)\} = (q - q^{-1}) q^{1/2} \left[\delta \left(\frac{z}{w} q^{-1} \right) k_3^-(w_+) k_1^+(z_+)^{-1} \right. \\
- \delta \left(\frac{z}{w} q^{-1} \right) k_3^-(w_+) k_2^-(w_+)^{-1} \right],
\]

where
\[
\delta(z) = \sum_{l \in \mathbb{Z}} z^l
\]
(3.17)
is a formal delta function which enjoys the following properties:

\[
\delta \left(\frac{z}{w} \right) = \delta \left(\frac{w}{z} \right), \quad \delta \left(\frac{z}{w} \right) f(z) = \delta \left(\frac{z}{w} \right) f(w). \tag{3.19}
\]

Defining the algebraic homomorphism

\[
X^\pm(z) = z(q - q^{-1}) \left[X_1^\pm(z) + X_2^\pm(-zq^{-1}) \right],
\]

\[
\psi^-(z) = (1 + q^{-\frac{1}{2}} - q^{\frac{1}{2}}) \phi_1(z) - \phi_2(-zq^{-1}),
\]

\[
\psi^+(z) = \psi_1(z) - (1 + q^{\frac{1}{2}} - q^{-\frac{1}{2}}) \psi_2(-zq^{-1}), \tag{3.20}
\]

where \(\phi_i(z) = k_{i+1}(z)k_i(z)^{-1}\), \(\psi_i(z) = k_{i+1}(z)k_i(z)^{-1}\), \(i = 1, 2\), then we obtain from (3.17), the current commutation relations (2.3).

\[4\] Level Zero Representation

We consider the evaluation representation \(V_x\) of \(U_q[osp(2|2)^{(2)}]\), where \(V\) is the 3-dimensional graded vector space with basis vectors \(v_1, v_2\) and \(v_3\). Let \(e_{ij}\) be the \(3 \times 3\) matrix satisfying \(e_{ij} v_k = \delta_{jk} v_i\). In the homogeneous gradation, the Chevalley generators of \(U_q[osp(2|2)^{(2)}]\) are represented on \(V_x\) by

\[
E_1 = e_{12} - e_{23}, \quad F_1 = e_{21} + e_{32}, \quad K_1 = q^{e_{11}-e_{33}},
\]

\[
E_0 = xq^{-1}(-e_{21} + e_{32}), \quad F_0 = x^{-1}q(e_{12} + e_{23}), \quad K_0 = q^{-e_{11}+e_{33}}. \tag{4.21}
\]

Let \(V_x^{*S}\) denote the dual module of \(V_x\), defined by \(\pi_V^*(a) = \pi_V(S(a))^st\). On \(V_x^{*S}\), the Chevalley generators are given by

\[
E_1 = -(q^{-1}e_{21} + e_{32}), \quad F_1 = qe_{12} - e_{23}, \quad K_1 = q^{-e_{11}+e_{33}},
\]

\[
E_0 = -xq^{-1}(e_{12} + q^{-1}e_{23}), \quad F_0 = x^{-1}q(-e_{21} + qe_{32}), \quad K_0 = q^{e_{11}-e_{33}}. \tag{4.22}
\]

The following proposition can be proved by induction.

Proposition 1: The Drinfeld generators are represented on \(V_x\) by

\[
H_m = -x^m \left[\frac{m}{m} q^m \left(-(-1)^m q^m e_{11} + (1 - (-1)^m q^m) e_{22} + e_{33} \right) \right],
\]

\[
X_m^+ = -x^m \left(-(-1)^m q^m e_{12} + q^{-m} e_{23} \right), \quad X_m^- = x^m \left(-(-1)^m q^m e_{21} + q^{-m} e_{32} \right), \quad K = q^{e_{11}-e_{33}}, \tag{4.23}
\]

and on \(V_x^{*S}\) by

\[
H_m = -(1)^m x^m \left[\frac{m}{m} q^{-m} \left(e_{11} + (1 - (-1)^m q^{-m}) e_{22} - (1)^m q^{-m} e_{33} \right) \right],
\]

\[
X_m^+ = -(1)^m x^m q^{-m} \left(q^{-m-1} e_{21} + (-1)^m e_{32} \right), \quad X_m^- = (1)^m x^m q^{-m} \left(q^{-m+1} e_{12} - (-1)^m e_{23} \right), \quad K = q^{-e_{11}+e_{33}}. \tag{4.24}
\]
5 Nonclassical Free Boson Realization at Level One

We use the notation similar to that of \cite{11, 12, 13}. Let us introduce two sets of bosonic oscillators \(\{a_n, c_n, Q_a, Q_c | n \in \mathbb{Z} \} \) which satisfy the commutation relations

\[
[a_n, a_m] = \delta_{n+m,0} (-1)^n \frac{[n]_q^2}{n}, \quad [a_0, Q_a] = 1,
\]

\[
[c_n, c_m] = \delta_{n+m,0} \frac{[n]_q^2}{n}, \quad [c_0, Q_c] = 1.
\]

The remaining commutation relations are zero. Introduce the \(q \)-deformed free boson fields

\[
a(z; \kappa) = Q_a + a_0 \ln z - \sum_{n \neq 0} \frac{a_n}{[n]_q} q^{[n]_q} z^{-n},
\]

\[
c(z) = Q_c + c_0 \ln z - \sum_{n \neq 0} \frac{c_n}{[n]_q} z^{-n}
\]

and set

\[
a_\pm(z) = \pm (q - q^{-1}) \sum_{n > 0} a_\pm n z^{\mp n} \pm a_0 \ln q.
\]

Then

Theorem 1: The Drinfeld generators of \(U_q[osp(2|2)^{(2)}] \) at level one have the following nonclassical realization by the free boson fields

\[
\psi^\pm(z) = e^{a_\pm(z)}:
\]

\[
X^\pm(z) = e^{a(z; \mp \frac{i}{2})} Y^\pm(z): F^\pm,
\]

where \(F^+ = q^{1/2} + q^{-1/2}, \quad F^- = 1/(q - q^{-1}) \) and

\[
Y^+(z) = e^{c(q^{1/2}z)} + e^{-c(-q^{-1/2}z)},
\]

\[
Y^-(z) = e^{c(-q^{1/2}z)} + e^{-c(q^{-1/2}z)}.
\]

This free boson realization is nonclassical in the sense that \(X^-(z) \) defined by (5.28) does not have classical or \(q \to 1 \) limit.

Proof. We prove this theorem by checking that the bosonized currents (5.28) satisfy the defining relations (2.3) of \(U_q[osp(2|2)^{(2)}] \) with \(c = 1 \). It is easily seen that the first two relations in (2.3) are true by construction. The third and fourth ones follow from the definition of \(X^\pm(z) \) and the commutativity between \(a_n \) and \(c_n \). So we only need to check the last two relations in (2.3).

We write

\[
Z^\pm(z) = e^{\pm a(z; \mp \frac{i}{2})}:
\]
We obtain the operator products

\[Z^\pm (z) Z^\pm (w) = (z + q^\mp w) : Z^\pm (z) Z^\pm (w) : , \]
\[Z^\pm (z) Z^-(w) = (z + w)^{-1} : Z^+(z) Z^-(w) : . \]
\[Y^\pm (z) Y^\pm (w) = \pm q^{1/2}(z - w) : e^{c(\pm q^{1/2} z)} e^{c(\pm q^{1/2} w)} : \mp q^{-1/2}(z - w) : e^{-c(\mp q^{-1/2} z)} e^{-c(\mp q^{-1/2} w)} : , \]
\[Y^+(z) Y^-(w) = q^{1/2}(z + w) : e^{c(q^{1/2} z)} e^{c(q^{-1/2} w)} : -q^{-1/2}(z + w) : e^{-c(q^{-1/2} z)} e^{c(q^{1/2} w)} : + \frac{q^{-1/2}}{z - q^{-1} w} : e^{c(q^{1/2} z)} e^{c(q^{-1/2} w)} : - \frac{q^{1/2}}{z - q w} : e^{-c(q^{-1/2} z)} e^{c(q^{1/2} w)} : . \]

Then the second last relation in (2.3) is easily seen to be true, and as to the last relation we have

\[\{ X^+(z), X^-(w) \} = \frac{q^{1/2} - q^{-1/2}}{q - q^{-1}} : Z^+(z) Z^-(w) : \]
\[= \left[\frac{q^{-1/2}}{(z + w)(z - q^{-1} w)} + \frac{q^{1/2}}{(w + z)(w - q z)} \right] : e^{c(q^{1/2} z)} e^{-c(q^{-1/2} w)} : \]
\[= \frac{1}{(q - q^{-1}) z w} : Z^+(z) Z^-(w) : \]
\[\left[\delta \left(- \frac{w}{z} \right) - \delta \left(\frac{w}{z} q^{-1} \right) \right] : e^{c(q^{1/2} z)} e^{-c(q^{-1/2} w)} : \]
\[= \frac{1}{(q - q^{-1}) z w} \left[\delta \left(\frac{w}{z} q \right) - \delta \left(\frac{w}{z} q^{-1} \right) \right] : Z^+(z) Z^-(w) : \]
\[= \frac{1}{(q - q^{-1}) z w} \left[\delta \left(\frac{w}{z} q \right) \psi^+(w q^{1/2}) - \delta \left(\frac{w}{z} q^{-1} \right) \psi^-(w q^{-1/2}) \right] . \] \hspace{1cm} (5.31)

This completes the proof.

Acknowledgement

Y.-Z.Z would like to thank Australia Research Council IREX programme for an Asia-Pacific Link Award and Institute of Modern Physics of Northwest University for hospitality. The financial support from Australian Research Council large, small and QEII fellowship grants is also gratefully acknowledged.

References
[1] C. Itzykson, H. Saleur, J.-B. Zuber, eds: *Conformal invariance and applications to statistical mechanics*, World Scientific, Singapore, 1988.

[2] M. Jimbo, T. Miwa, *Alegbraic Analysis of Solvable Lattice Models*, CBMS Regional Conference Series in Mathematics, **Vol.85**, AMS, 1994.

[3] V.G. Drinfeld, Sov. Math. Dokl. **36** (1988) 212.

[4] H.Yamane, e-print [q-alg/9603015](http://arxiv.org/abs/q-alg/9603015).

[5] Y.-Z. Zhang, J. Phys. **A30** (1997) 8325; Phys. Lett. **A234** (1997) 20.

[6] J.-F. Cai, S.K. Wang, K. Wu, W.-Z. Zhao, J. Phys. **A31** (1998) 1989.

[7] M.D. Gould, Y.-Z. Zhang, Lett. Math. Phys. **44** (1998) 291.

[8] J. Ding, e-print [math.QA/9905086](http://arxiv.org/abs/math.QA/9905086).

[9] N.Yu. Reshetikhin, M.A. Semenov-Tian-Shansky, Lett. Math. Phys. **19** (1990) 133.

[10] J. Ding, I.B. Frenkel, Commun. Math. Phys. **155** (1993) 277.

[11] H. Awata, S. Odake, J. Shiraishi, Commun. Math. Phys. **162** (1994) 61.

[12] K. Kimura, J. Shiraishi, J. Uchiyama, Commun. Math. Phys. **188** (1997) 367.

[13] Y.-Z. Zhang, e-print [math.QA/9812084](http://arxiv.org/abs/math.QA/9812084).