Arabidopsis MORC proteins function in the efficient establishment of RNA directed DNA methylation

Yan Xue1,6, Zhenhui Zhong1,6, C. Jake Harris1,6, Javier Gallego-Bartolome2, Ming Wang1, Colette Picard1, Xueshi Cao1, Shan Hua1, Ivy Kwok1, Suhua Feng1,3, Yasaman Jami-Alahmadi4, Jihui Sha4, Jason Gardiner3, James Wohlschlegel4 & Steven E. Jacobsen1,3,5

The Microrchidia (MORC) family of ATPases are required for transposable element (TE) silencing and heterochromatin condensation in plants and animals, and C. elegans MORC-1 has been shown to topologically entrap and condense DNA. In Arabidopsis thaliana, mutation of MORCs has been shown to reactivate silent methylated genes and transposons and to decondense heterochromatic chromocenters, despite only minor changes in the maintenance of DNA methylation. Here we provide the first evidence localizing Arabidopsis MORC proteins to specific regions of chromatin and find that MORC4 and MORC7 are closely co-localized with sites of RNA-directed DNA methylation (RdDM). We further show that MORC7, when tethered to DNA by an artificial zinc finger, can facilitate the establishment of RdDM. Finally, we show that MORCs are required for the efficient RdDM mediated establishment of DNA methylation and silencing of a newly integrated FWA transgene, even though morc mutations have no effect on the maintenance of preexisting methylation at the endogenous FWA gene. We propose that MORCs function as a molecular tether in RdDM complexes to reinforce RdDM activity for methylation establishment. These findings have implications for MORC protein function in a variety of other eukaryotic organisms.
Epigenetic chromatin modifications are fundamental to genome integrity, gene regulation, and transposon (TE) silencing. DNA methylation is a particularly stable epigenetic modification1,2, which in plants occurs in three sequence contexts, CG, CHG, and CHH (where H represents T, C, or A, T, or C). Symmetric CG and CHG methylation are maintained by DNA METHYLTRANSFERASE1 (MET1) and CHROMOMETHYLASE3 (CMT3), respectively2,3, while asymmetric CHH methylation is mediated by CHROMOMETHYLASE 2 (CMT2) and DOMAINS REARRANGED METHYLTRANSFERASE1 and 2 (DRM1/2)4. The plant-specific RNA-directed DNA methylation (RdDM) pathway is required for both de novo and maintenance DNA methylation.

Canonical RdDM is composed of two major arms driven by either RNA Polymerase IV (Pol IV)7 or RNA Polymerase V (Pol V)8. The Pol IV arm of the RdDM pathway features the generation of 24-nt siRNAs. Pol IV is recruited through its accessory proteins including the CLASSY SNF2-related putative chromatin remodelers (CLSYs) and the H3K9 methylation binding protein SAWADEE HOMEODOMAIN HOMOLOG 1 (SHH1)9,10. Pol IV generates transcripts that are converted into double-stranded RNAs (dsRNAs) by RNA-DEPENDENT RNA POLYMERASE 2 (RDR2)11,12. These dsRNAs are further cleaved by DICER-LIKE 3 (DCL3) into 24-nt siRNAs13, and are subsequently loaded onto the effector proteins ARGONAUTE 4 (AGO4), AGO6, or AGO914.

The Pol V arm of the RdDM pathway constitutes the DNA methylation step. SUV(VAR)3-9 homologs SUVH2 and SUVH9 recognize preexisting DNA methylation and recruit the DDR complex15–17, consisting of DEFECTIVE IN MERISTEM SILENCING 3 (DMS3), DEFECTIVE IN RNA-DIRECTED DNA METHYLATION 1 (DRD1), and RNA-DIRECTED DNA METHYLATION 1 (RDM1)18. The DDR complex is required for the recruitment of Pol V, which generates non-coding scaffold RNAs that serve as a platform to recruit AGO4-siRNA effector complexes through sequence complementarity8,18. This effector complex in turn recruits DRM1/2 for de novo DNA methylation in all sequence contexts, leading to transcriptional gene silencing6,19.

Non-canonical RdDM pathways have also been described and are essential for the de novo methylation and silencing of newly integrated TEs and transgenes20–23. Pol II transcripts of TEs or other sequences can be processed by RDR6 and DCL2/4 to generate 21-22-nt siRNAs, which function primarily in post-transcriptional silencing but can occasionally trigger transcriptional silencing20 through the Pol V pathway, leading to the initial establishment of DNA methylation, after which canonical RdDM takes over to achieve full methylation and silencing of TEs.

Microrchidia (MORC) proteins are conserved GHKL (gyrase, HSP90, histidine kinase, MutL)-type ATPases involved in transcriptional gene silencing and chromatin compaction24–32. Mutations in MORC genes are associated with a number of human diseases, including Charcot-Marie-Tooth disease and cancer30,33. MORC proteins are required to repress TE expression in various organisms including human, mouse, C. elegans, and Arabidopsis29,31,34. In vitro studies recently showed that C. elegans MORC1 (ceMORC1) is able to topologically entrap and condense DNA (likely through encircling the DNA strands)37 and mutations of MORCs lead to visible chromatin decompaction in vivo in C. elegans and Arabidopsis31,34.

The Arabidopsis thaliana genome encodes six functionally redundant MORC proteins, MORC1, 2, 4, 5, 6, and 723. MORC6 forms stable heterodimers with either MORC1 or MORC228, whereas MORC4 and MORC7 are closely related and redundant proteins that form homodimers25,34. MORC5 is understudied because its expression is limited to pollen32. MORC6 mutations have been found in several independent forward genetic screens for factors involved in the maintenance of transcriptional gene silencing24,34,35. However, despite transcriptional upregulation of DNA methylated genes and transposons, Arabidopsis morc mutations show little effect on the maintenance of DNA methylation patterns. For instance, Moissiard et al. found no methylation changes in morc mutants either at the reactivated SDC transgene locus used for the mutant screen, or genome wide34. Lorkovic et al. found a moderate reduction of methylation in morc6 at the 35S promoter in their screen25 and Brabbs et al. also reported moderate methylation reduction in the transgene used in their screen, but no methylation changes at some other morc6 reactivated loci24. Similarly, Jing et al. identified morc6 as a methylation independent repressor in their genetic screen36. A genome wide analysis of methylation patterns in a morc hextuple mutant (morc1 morc2 morc4 morc5 morc6 morc7, hereafter termed hex) eliminating all functional MORC genes came to a similar conclusion, as only a few hundred loci showed DNA methylation losses whereas the majority of the genome showed no changes in methylation despite transcriptional reactivation at many loci25. Similar but weaker gene expression changes and methylation losses were observed in morc4 morc7 double mutants and morc6 single mutants, indicating functional redundancy of the different MORC genes in Arabidopsis. Together these studies all suggest a role for MORCs in gene silencing, acting at least in part downstream of DNA methylation, but the relationship between MORCs and the DNA methylation pathways remains unclear.

Here we report the first genome-wide localization of MORCs in A. thaliana and find they are primarily localized to RdDM sites. Remarkably, MORC localization to these sites was stably maintained even in the absence of a functional RdDM machinery. However, it was lost in met1 at sites that lost all DNA methylation, and redistributed to newly hypermethylated ectopic RdDM sites. We also found that ectopic recruitment of MORC7 to the FWA promoter was sufficient to cause de novo DNA methylation and transcriptional gene silencing, and this was dependent on functional RdDM. Surprisingly, despite no detectable loss of DNA methylation at the endogenous FWA locus in morc mutants, establishment of methylation on newly integrated FWA transgenes was greatly impaired in the absence of MORCs. This suggests that in addition to the role of MORCs acting downstream of DNA methylation, MORCs play a role in the efficient establishment of DNA methylation over newly integrated transgenes. We propose that MORCs act as chromatin tethers, loaded by the RdDM machinery, to facilitate the retention or re-recruitment of RdDM complexes at chromatin to promote efficient establishment of DNA methylation.

Results
MORC4 and MORC7 colocalize at RdDM sites. To determine the genomic localization of MORC proteins, we performed chromatin immunoprecipitation (ChIP)-seq with pMORC4::MORC4-3xFLAG (MORC4-FLAG) and pMORC7::MORC7-3xFLAG (MORC7-FLAG) expressed in the their corresponding mutant backgrounds as reported previously25,34. MORC4 and MORC7 largely co-localized genome wide (Fig. 1a, b, Supplementary Fig. 1a). We identified 3440 and 6119 clear peaks for MORC4 and MORC7, respectively (MACS2, q value < 0.01, fold enrichment >2) with 80% of MORC4 peaks overlapping with MORC7 peaks (Fig. 1a, b, Supplementary Fig. 1b). The remaining 20% of the MORC4 “specific” peaks were also enriched in MORC7 (Supplementary Fig. 1b), but the level of enrichment did not pass our stringent peak calling threshold. MORC7 displayed stronger peak intensity at the majority of shared target regions. This is consistent with our previous report that
MORC4 and MORC7 are close homologs that function largely redundantly to repress gene expression, with MORC7 playing a more dominant role. Therefore, the absence of MORC4 ChIP signal over some MORC7 regions likely reflects the lower expression level of MORC4 and the sensitivity of ChIP. Given the stronger genetic effect as well as ChIP signal of MORC7, we focused on MORC7 for our subsequent analyses.

MORC7 was localized to regions that display strong characteristics of RdDM, including high levels of CHH methylation (Fig. 1a, Supplementary Fig. 1c, right panel) and enrichment over TEs, including the edges of long TEs and the entire length of short TEs (Fig. 1c, d). To further characterize the relationship with RdDM, we compared the binding patterns of MORC7 with that of the essential RdDM component, NRPE1, and found that 80% of MORC7 peaks overlap with NRPE1 sites (Fig. 1e, Supplementary Fig. 1a). We defined these overlapping regions as MORC7-NRPE1 common peaks. Interestingly, about 20% of MORC7 peaks were devoid of NRPE1 and 40% of all NRPE1 peaks were devoid of MORC7. We define these two groups as MORC7-unique peaks and NRPE1-unique peaks, respectively (Fig. 1e, Supplementary Fig. 1d). MORC7-unique peaks are devoid of DNA methylation, more proximal to the transcriptional start sites of genes, and displayed higher levels of RNA Pol II signal compared to MORC7-NRPE1 common peaks (Supplementary Fig. 1c, e, f). The functional relevance of MORC7-unique peaks remains unclear.

To reveal the relationship between transcriptional repression and DNA methylation mediated by MORCs, we divided the
indicating that most of the upregulated regions in hex contain MORC7 binding sites within 1Kb (MORC7 bound), methylation in MORC7 bound regions, we observed mild loss of DNA direct MORC targets (Supplementary Fig. 1g). Over these 128 hex compared to
Interestingly, although loss of DNA methylation was much less in hex in
MORC6 has been reported to interact with DMS3 by in vitro co-
methylation in hex compared with nrpe1 (Supplementary Fig. 1h).

MORC7 is associated with other MORCs and with RdDM components. To determine whether MORC7 associates with RdDM components, we performed immunoprecipitation followed by mass spectrometry (IP-MS) of MORC7-FLAG. Interestingly, we detected MORC4, MORC6, and MORC1 peptides, indicating that these MORC proteins interact in vivo (Table 1). This was in contrast to our previous report that MORC4 and MORC7 formed mutually exclusive homodimers and that MORC6 exclusively interacted with either MORC1 or MORC225,28. This discrepancy likely reflects dramatic improvements in mass spectrometry sensitivity (Q-Executive instrument utilized in the previous study versus the Orbitrap Fusion Lumos used in the current study), and suggests that the interaction of MORC7 with MORC4, MORC6, and MORC1 may be weak or transient. In addition, we identified several RdDM components in the MORC7 IP-MS (Table 1). However, with the exception of DMS3, which was detected at higher abundance, relatively few peptides were detected for other RdDM components. This suggested that MORC7 interactions with RdDM components may be weak or transient. To test this, we adopted a crosslinked nuclear immunoprecipitation and mass spectrometry (CLNIP-MS) assay which stabilizes weak or transient interactions and captures proteins in close proximity in addition to directly interacting protein complexes. As a result, we observed a significant enrichment of both the MORCs and RdDM components (Table 1). Interestingly, without crosslinking, the MORC7 only pulled down components belonging to the Pol V arm of the RdDM pathway, and the CLNIP-MS consistently detected more peptides of Pol V arm components (Table 1). In addition, MORC6 has been reported to interact with DMS3 by in vitro co-immunoprecipitation35, and with SUVH9 and SWI3D by IP-MS and yeast two hybrid36,39. Together with our observation that MORC7 pulled down peptides of MORC1, 4, 6, and RdDM components in vivo, these data suggest that MORC proteins associate with the Pol V arm of the RdDM pathway, likely through the interaction with RdDM components, for instance, SUVH2/9 and DMS3.

MORC7 can be recruited by the RdDM machinery. Because MORC7 localized to RdDM sites and was associated with RdDM components, we next asked whether MORC7 can be recruited via the RdDM machinery. To test this, we utilized a fusion of DMS3 to an artificial zinc finger (ZF108) that was previously shown to target DMS3 to thousands of ectopic sites throughout the genome40. This leads to NRPE1 recruitment to these ectopic sites largely without triggering DNA methylation establishment15,40. Thus, if the RdDM machinery is sufficient to recruit MORC7, we expect MORC7 to also follow ZF108-DMS3 to these ectopic loci. We transformed UBQ10::ZF108-DMS3-3XHA into the MORC7-3XFLAG line and performed ChIP-seq for both ZF108-DMS3 and MORC7. We identified 548 ZF108-DMS3 ectopic sites with greater than fivelfold enrichment of MORC7 in plants expressing ZF108-DMS3 but displaying no MORC7 signal in control plants (Fig. 2a, b), indicating that MORC7 can be efficiently recruited by the RdDM machinery to many ectopic sites in the genome.

MORC7 maintenance at natural RdDM sites is independent of the RdDM machinery. Proper localization of RdDM components

ID	Protein	WT-1	WT-2	MORC7-1	MORC7-2	WT-1	WT-2	MORC7-1	MORC7-2
AT4G24970	MORC7	0	0	759	694	0	54	560	618
AT5G05780	MORC4	0	0	126	113	0	0	131	146
AT1G19100	MORC6	0	0	45	39	0	0	73	49
AT4G36290	MORC1	0	0	6	0	0	0	82	65
AT2G50030	NRPE1	0	0	3	2	30	10	81	114
AT3G49250	DMS3	5	4	43	41	0	0	91	77
AT4G13460	SUVH9	3	0	3	0	0	0	27	14
AT5G04290	SPT5L	0	0	2	1	0	0	74	74
AT3G48670	IDN2	0	0	6	6	0	0	102	78
AT1G21700	SWI3C	4	5	6	0	0	0	47	40
AT4G34430	SWI3D	0	0	3	5	0	0	39	37
AT5G14620	DRM2	0	0	0	0	0	0	11	0
AT2G16390	DRD1	0	0	0	0	0	0	27	26
AT2G33290	SUVH2	0	0	0	0	0	0	0	0
AT3G22680	RDM1	0	0	0	0	0	0	0	0
AT2G27040	AGO4	32	34	42	41	43	34	86	110
AT4G11330	RDR2	0	0	0	0	0	0	6	0
AT3G43920	DCL3	0	0	0	0	0	0	17	13
AT1G63020	NRPD1A	0	0	0	0	0	0	0	0
AT3G42670	CLSY1	0	0	0	0	0	0	0	0
AT1G15215	SHH1	0	0	0	0	0	0	0	0

Normalized spectral abundance factor value (NSAFe5) is indicated for each protein. Source data are provided as IP-MS Source Data files. Experiments were performed in two technical replicates.
depends on the presence of a functional RdDM pathway. For example, Pol V association with chromatin requires both the DDR complex and SUVH2/SUVH941, stability and localization of AGO4 are both disrupted in several RdDM mutants including dcl3 and rdr242, and Pol IV association with chromatin is reduced in the absence of SHH110. Since MORC7 was found to be associated with RdDM proteins, we asked whether MORC7 displays the same characteristics as other RdDM components and whether its chromatin localization is abolished in the absence of RdDM machinery. To test this, we crossed the MORC7-FLAG line into several RdDM mutant backgrounds, including dms3-4, nrpd1-4, nrpe1-11, nrpd1-4 nrpe1-11, and suvh2 suvh9, and performed MORC7 ChIP-seq in each mutant background. Unexpectedly, MORC7 localization was virtually unperturbed in all these RdDM mutants backgrounds (Fig. 2c–e)25. We also analyzed the previously reported 519 RdDM sites that display partial loss of DNA methylation in hex25, and found that MORC7 retention on chromatin was largely unperturbed (Supplementary Fig. 2a, b). Thus, MORC7’s stable localization to chromatin does not require the major RdDM components including DMS3 which is part of the DDR complex, Pol V, Pol IV, or the SUVH2/9 proteins that are required for localization of the Pol V arm components of RdDM15,41.

MORC7 retention on chromatin is dependent on DNA methylation or factor associated with DNA methylation. Although CHH methylation is eliminated in RdDM mutants at RdDM/MORC7 binding sites, CG and CHG methylation are largely retained43. We speculated that this remaining methylation, or another chromatin characteristic associated with methylation, might be sufficient to maintain MORC7. To test this, we performed MORC7 ChIP-seq in met1 which shows complete elimination of CG methylation genome-wide. Due to inter-dependencies of DNA methylation pathways4, complete loss of DNA methylation is also observed over many regions43. We observed a dramatic reduction of MORC7 ChIP signal throughout the genome in met1 (Fig. 3a). We examined the genome-wide

Fig. 2 MORC7 can be recruited by RdDM but its maintenance is independent of RdDM machinery. a Screenshot of a representative ectopic ZF-DMS3 locus displaying enrichment of MORC7 (RPKM sample/control). b Metaplot and heatmap showing enrichment of MORC7 ChIP-seq signals (right panels) over a subset of ZF-DMS3 ectopic sites (left panels (RPKM sample/control) (n = 548). c Screenshot of MORC7 ChIP-seq (RPKM sample/control) in RdDM mutants (top six tracks), NRPE ChIP-seq (gray track), and methylation level (bottom three tracks) at a representative locus. d Metaplot and heatmap showing MORC7 ChIP-seq (RPKM sample/control) in RdDM mutants (n = 6119). e Metaplot and heatmap showing MORC7 ChIP-seq (RPKM sample/control) in suvh2/9 over two generations (n = 6119).
correlation between changes in MORC7 occupancy and DNA methylation in met1 (met1/WT) and observed a clear positive correlation, indicating that regions that retained more DNA methylation in met1 also retained more MORC7 binding (Fig. 3b). Importantly, regions that lost DNA methylation completely in all sequence contexts in met1 also lost all MORC7 binding (Fig. 3c, d). Together, these data indicate that MORC7 localization depends on DNA methylation or a factor associated with DNA methylation. MORC7 is unlikely to be recruited by DNA methylation directly because it is not present at other methylated sites, for instance at gene bodies, that are only methylated at CG sequence contexts.

MORC7 is recruited to ectopic RdDM sites in met1. Interestingly, we observed ectopic gain of MORC7 over certain regions in met1. Some of these sites corresponded to reactivated TEs (Fig. 4a). Expression of TEs may trigger non-canonical RdDM through the Pol II-RDR6 pathway, leading to the synthesis of siRNAs and the establishment of RdDM42,44,45. We observed 903 ectopically gained MORC7 peaks in met1, and found that these peaks were also associated with hyper-methylation in both CHG and CHH sequence contexts in met1 (Fig. 4b), suggesting that these ectopic MORC7 peaks are likely a consequence of ectopic RdDM activity. For example, SUPERMAN is a well-characterized non-TE locus that becomes targeted by RdDM ectopically in met146. As expected, we observed an ectopic gain of MORC7 over the promoter of SUPERMAN along with non-CG hyper-methylation in met1 (Fig. 4a)47. Collectively, these observations further support our conclusion that MORC7 can be recruited by the RdDM machinery.

ZF108-MORC7 represses FWA expression through RdDM. FWA is normally methylated and silenced48,49. However, the fwa-4 epiallele that has stably lost DNA methylation is highly transcribed, leading to a heritable late flowering phenotype. We previously found that targeting MORC6 or MORC1 to FWA in an fwa-4 background using ZF108 was able to trigger RdDM-dependent de novo DNA methylation and silencing of FWA40. To test whether MORC7 can also silence FWA, we fused ZF108 to MORC7 and transformed the fusion protein into fwa-4. Indeed, we observed an early flowering phenotype in T1 plants carrying UBQ10::ZF108-MORC7 indicating transcriptional silencing of FWA. We examined three early flowering T1 plants and confirmed partial repression of FWA by RT-qPCR and an increase in
Furthermore, we followed three T1 lines to the T2 generation and ZF108-MORC7 expressing T1 lines (Supplementary Fig. 3b, c) to detect significant repression of FWA, and a higher level of DNA methylation over the FWA promoter (Fig. 5c).

To test whether MORC7 is able to repress gene expression in the absence of RdDM, we transformed ZF108-MORC7 into nrpe1 introgressed into the fwa-1 background (fwa-1 nrpe1-1)⁴⁰. We did not observe early flowering plants in the T1 generation and failed to detect significant repression of FWA in five independent ZF108-MORC7 expressing T1 lines (Supplementary Fig. 3b, c). Furthermore, we followed three T1 lines to the T2 generation and confirmed that FWA expression was not repressed (Supplementary Fig. 3d). These results show that MORC7-mediated repression of FWA expression is dependent on RdDM, which is similar to the reported behavior of ZF108-MORC6⁴⁰.

Efficient transgene silencing is impaired in morc mutants.

Because MORCs are able to repress FWA gene expression through the recruitment of RdDM, and RdDM is responsible for the establishment of DNA methylation, we asked whether MORCs may be required for the establishment of DNA methylation. To test this, we transformed plants with an FWA transgene into WT and morc7 lines. We observed early flowering plants in the T1 generation and failed to detect significant repression of FWA in independent ZF108-MORC7 expressing T1 lines (Supplementary Fig. 3b, c). Furthermore, we followed three T1 lines to the T2 generation and confirmed that FWA expression was not repressed (Supplementary Fig. 3d). These results show that MORC7-mediated repression of FWA expression is dependent on RdDM, which is similar to the reported behavior of ZF108-MORC6⁴⁰.

In the T1 generation, we observed 59% (22/37) late flowering plants in hex, compared to 88% (29/33) and 3% (1/32) in the nrpe1 and wild-type controls, respectively (Fig. 6a). As expected, late flowering phenotype was associated with FWA transgene overexpression as well as reduced DNA methylation establishment over the FWA promoter (Fig. 6b, c). This indicates that the efficiency of FWA transgene silencing through RdDM is greatly reduced in hex.

To determine if FWA transgene silencing might be established in subsequent generations, we followed four late flowering T1 hex transgene plants to the T2 generation. Two out of the four T2 lines converted to mostly early/medium flowering (T2-2, T2-3) while the other two remained medium/late flowering (T2-1, T2-4) (Fig. 6d). We chose one late flowering plant from each T2 line and one early flowering plant from T2-2 and observed a clear association between the flowering time and the expression and methylation status, with late flowering plants displaying lower levels of DNA methylation and higher levels of FWA expression (Fig. 6e, f). Therefore, although efficient establishment of transgene silencing is strongly impaired in the hex, stochastic intergenerational silencing still occurs within the population.

We also asked whether the stochastic silencing of some lines but not others might be due to the location of the transgene within the genome. To test this, we chose three late flowering plants from the hex T2-1 population, which carries the FWA transgene at a single insertion site as indicated by a 3:1 segregation (hygromycin resistant:sensitive ratio in the T2 was 67:21) and followed these plants to the T3 generation. We observed early flowering in one T3 line (T3-3), while the other two (T3-1 and T3-2) remained mostly late flowering (Fig. 6g). Since all three have the same insertion, the stochastic silencing is likely a property of the hex mutant background, rather than a reflection of the transgene location within the genome. We also performed methylation and expression analysis on one early and three late flowering plants from each of the T3 lines, and consistently found that late flowering plants displayed a lower level of DNA methylation and higher level of FWA expression (Fig. 6h, i). These results show that FWA methylation and silencing failed to establish efficiently in hex in the T3 generation. In contrast to hex, the strong RdDM mutant, nrpe1, showed late flowering T1 plants that remained late throughout all generations tested (Fig. 6a, d, g), displaying no stochastic silencing.

To examine the establishment of DNA methylation specifically over the transgene in more detail, we performed bisulfite PCR (BS PCR) over two regions of the FWA promoter with the same T2 and T3 plants used for McrBC. The FWA transgene used for these experiments carries single nucleotide polymorphisms which
allowed us to distinguish endogenous- and transgene-derived reads. In the CG context, most transgene-derived reads were fully unmethylated in nrpe1, while few fully unmethylated reads were detected in wild type (Supplementary Fig. 4a), demonstrating that the transgene was efficiently silenced in wild type but not in nrpe1 as expected. hex plants displayed intermediate levels of unmethylated transgene-derived reads, with late flowering hex plants having more fully CG-unmethylated reads than early flowering hex in both T2 and T3 (Supplementary Fig. 4a, upper panels). We also detected more fully CHH-unmethylated reads in all hex lines over the transgene compared to the endogenous locus, consistent with hex inhibiting RdDM (Supplementary Fig. 4a lower panels, 4b). We did not analyze CHG methylation given the paucity of CHG sites at FWA. We also found that maintenance of preexisting DNA methylation over the endogenous FWA promoter was completely unaffected in hex, whereas RdDM mutants such as nrpe1 and suvh2 suvh9 lost most non-CG methylation as expected (Supplementary Figs. 4 and 5). Thus MORCs are required for efficient RdDM-mediated establishment of DNA methylation of newly integrated FWA transgenes, even though maintenance of preexisting DNA methylation at the same FWA sequences at the endogenous gene is completely unaffected in the hex mutant.

Discussion

In this study we show that Arabidopsis MORC7 is localized to sites of RdDM, and likely associates with the Pol V arm of the RdDM pathway. Tethering of MORC7 to the unmethylated FWA locus with an artificial zinc finger was sufficient to recruit RdDM, methylation, and silencing to FWA. Conversely, tethering DMS3 to ectopic sites in the genome using an artificial ZF was sufficient to recruit MORC7. Furthermore, MORC7 was recruited to ectopic RdDM sites in met1. Together, these data suggest a mutual interaction and recruitment between MORC7 and RdDM. Finally, we found that a morc hextuple mutant is defective in the
Fig. 6 Transgene silencing is impaired in morc mutants. a Flowering time of T1 plants in wild-type, nrpe1-11, and morc hex backgrounds as indicated by the leaf number. The green dots represent the four late flowering plants propagated to the T2 generation. b qRT-PCR of FWA expression of four independent T1 plants in hex background (crimson) relative to that in nrpe1 background (gray). Error bars represent the mean ± s.d. of 3 technical replicates. c McrBC analysis of the FWA promoter of the same representative T1 plants displayed in b. Error bars represent the mean ± s.d. of 3 technical replicates. E represents early flowering and L represents late flowering. d Flowering time of T2 plants in wild-type, nrpe1-11, and the progenitor lines of the four late flowering T1 hex plants as indicated by the leaf number. The green dots in line T2-1 represent three late flowering T2 plants propagated to their T3 generation. e qRT-PCR of FWA expression level of one representative early and three late flowering plants in T2 progenitor lines in hex background, relative to that in nrpe1 background. Leaf number of the corresponding plant is indicated. E early flowering, M intermediate flowering, L late flowering. Error bars represent the mean ± s.d. of 3 technical replicates. f McrBC analysis of the FWA promoter of the same T2 progenitor lines displayed in e. Error bars represent the mean ± s.d. of 3 technical replicates. E early flowering, M intermediate flowering, L late flowering. g Flowering time of T3 plants in wild-type, nrpe1-11, and the progenitor lines of the three late flowering T2-1 morc hex line as indicated by the leaf number. E early flowering, M intermediate flowering, L late flowering. h qRT-PCR of FWA expression level of one early flowering and three representative late flowering plants in T3 progenitors derived from T2-1. Leaf number of the corresponding plant is indicated. Error bars represent the mean ± s.d. of 3 technical replicates. E early flowering, M intermediate flowering, L late flowering. i McrBC analysis of the FWA promoter of the same representative T3 plants displayed in h. Error bars represent the mean ± s.d. of 3 technical replicates. E early flowering, M intermediate flowering, L late flowering. Source data underlying Fig. 6 are provided as a Source Data file.
establishment of RdDM-mediated DNA methylation and silencing of a newly introduced FWA transgene, suggesting that MORCs facilitate the efficiency of RdDM activity during this process.

The MORC gene family in Arabidopsis consists of six potentially active genes, and several pieces of evidence suggest that the other MORCs have similar properties as we have observed here for MORC7. First, MORC4 was found to co-localize with MORC7 over RdDM sites. Second, our IP-MS and crosslink IP-MS show interactions between MORC7 and MORC4, MORC1 and MORC6, suggesting they likely function together. Third, consistent with our IP-MS data showing MORC7 association with Pol V arm RdDM components, MORC6 was previously shown to interact with two Pol V arm components, DMS3 and SUVH19,35,39. Fourth, similar to ZF108-MORC7, ZF108-MORC1 and ZF108-MORC6 were previously shown to recruit RdDM to the FWA locus50, consistent with an interaction between MORC complex and the RdDM machinery. Finally, comparison of hex to morc4 morc7 and morc6 showed genetic redundancy between these family members.

Given their association with RdDM components and their localization to RdDM sites, the MORCs are clearly acting in some capacity as RdDM factors. However, relative to known RdDM factors, the MORCs have unique genetic properties, in that they show strongly impaired efficiency of DNA methylation and silencing of transgenes, yet show very little effect on the maintenance of preexisting methylation at RdDM sites. All RdDM mutants that have been studied to date, including very weak mutants such as fgl1 fgl2,.supv2, and drrn3 show significant losses of methylation at the majority of RdDM sites52. However, an analysis of the morc hex mutant showed only a very small number of sites with any loss of methylation. Notably, although the morc hex tuple mutant shows greatly impaired DNA methylation establishment of FWA sequences when new transgenes are introduced into plants, the morc hex tuple has no defect in the maintenance of preexisting methylation of similar sequences at the endogenous FWA gene, while all other known RdDM mutants do (Supplementary Fig. 5). Another interesting difference is that while other RdDM components studied dissociate from chromatin in the absence of a functional RdDM machinery (e.g., Pol V dissociates from chromatin in the absence of the DDR complex, Pol IV is lost in the absence of SHH1, and AGO4 is lost in the absence of DCL3 or RDR2), MORC7 maintenance on chromatin was not disrupted in RdDM mutants.

Given their association with RdDM components and their localization to RdDM sites, the MORCs are clearly acting in some capacity as RdDM factors. However, relative to known RdDM factors, the MORCs have unique genetic properties, in that they show strongly impaired efficiency of DNA methylation and silencing of transgenes, yet show very little effect on the maintenance of preexisting methylation at RdDM sites. All RdDM mutants that have been studied to date, including very weak mutants such as fgl1 fgl2, supv2, and drrn3 show significant losses of methylation at the majority of RdDM sites52. However, an analysis of the morc hex mutant showed only a very small number of sites with any loss of methylation. Notably, although the morc hex tuple mutant shows greatly impaired DNA methylation establishment of FWA sequences when new transgenes are introduced into plants, the morc hex tuple has no defect in the maintenance of preexisting methylation of similar sequences at the endogenous FWA gene, while all other known RdDM mutants do (Supplementary Fig. 5). Another interesting difference is that while other RdDM components studied dissociate from chromatin in the absence of a functional RdDM machinery (e.g., Pol V dissociates from chromatin in the absence of the DDR complex, Pol IV is lost in the absence of SHH1, and AGO4 is lost in the absence of DCL3 or RDR2), MORC7 maintenance on chromatin was not disrupted in RdDM mutants.

To account for these unique properties, we suggest a model (Fig. 7a) in which MORCs are loaded onto sites of RdDM via interaction with RdDM components, after which they stay stably associated with these sites. One possible mechanism is that the Arabidopsis MORC proteins may be able to topologically entrap the chromatin at these sites by clamping around the DNA, similar to what has been shown for C. elegans MORC-127. In this way, MORCs may serve as “tethers”, or a memory component, to facilitate the continuous recruitment of RdDM complexes back to sites after their initial targeting by RdDM. This tethering process may be mainly important during the early stages of the establishment of RdDM, which would explain why MORCs are required for efficient establishment of methylation at FWA, but not for maintenance of preexisting methylation at these same sequences. After initial establishment of methylation, and in the presence of strong maintenance of DNA methylation activity, MORCs may no longer be required for continued RdDM recruitment because of factors such SUVH2 and SUVH9 which bind to methylated DNA to continually recruit Pol V, and SHH1 which binds to H3K9 methylation to recruit Pol IV9,10,15.

An RdDM tethering model could also explain the effects of morc mutations on maintenance DNA methylation at a small subset of sites. A previous analysis of the morc hex tuple mutant identified 519 sites, representing around 5% of RdDM sites, showing losses of methylation25. These “fragile sites” display a loss of DNA methylation as well as transcriptional activation in the absence of MORCs, as well as in RdDM mutants25. These fragile sites were shown to possess lower levels of symmetrical CG and CHG sequences compared to the genome average and thus are likely to show weakened CG and CHG maintenance DNA methylation25. We suggest that these sites may be fragile to the loss of MORCs because of transcriptional reactivation in the morc mutants, leading to a need for continued recruitment of RdDM to these sites in the face of weaker than average reinforcing maintenance of DNA methylation at symmetrical sites. MORC tethering to these sites may provide the needed boost in RdDM recruitment to maintain methylation and silencing.

Our findings on the biology of the Arabidopsis MORCs could have implications for the study of MORCs in other organisms. For instance mouse MORC1 is required for de novo DNA methylation and silencing of evolutionarily young and expressed TEs that are more recalcitrant to de novo methylation over the course of epigenetic reprogramming in primordial germ cells29. A MORC tethering model could nicely explain the continued recruitment of silencing complexes to these TEs during the establishment process. Similarly, human MORC2 is recruited by the HUSH complex to H3K9me3 marked heterochromatin and loss of MORC2 results in a decrease in H3K9me3 levels and transcriptional activation at a subset of HUSH loci30. Here again, MORC2 could act as a chromatin tether to promote the retention of the HUSH complex at its targets. Thus while MORCs in

Fig. 7 Working model of MORC proteins. A working model of MORC proteins in plant: MORC proteins are localized to RdDM sites through direct interaction with RdDM components. Upon recruitment, MORCs topologically entrap chromatin through dimerization and clamp around DNA to continuously reinforce the recruitment of RdDM complexes to their site of action and thereby, facilitate the efficiency and activity of the RdDM machinery.
Methods

Plant materials and growth conditions. All plants in this study are grown at standard greenhouse conditions (22–25 °C, 16 h light/8 h dark). The following plant materials were used in this study: MORC7-FLAG in morc-7 (SALK_051729), background25, MORC8-FLAG in morc-8 background26, morc hex transgenic of morc-1-2 (SALK_893_B06) morc-2-1 (SALK_072774C) morc-5-1 (GK-249F09) morc5-1 (SALK_049050C) morc6-3 (GABI 599806) and morc7-1 (SALK_05172925, npd1-4 (SALK_083051), suhd2 suhd9 (SALK_079574, SALK_048033), npd1-11 (SALK_029919), dms3-4 (SALK_125019C), met1-3 (CS13694), fwa-4, fwa-1(EMS) retrogressed into fwa-1.

Plasmid construction

ZF-DMS3:3xHA. Modified pDT1H plasmid containing UBQ10 and C-terminal modified 3xHA was linearized by Atl digestion. ZF108 was fused to the N-terminus of DMS3 (cDNA) through overlapping PCR and subsequently ligated into linearized modified pDT1H with In-Fusion cloning system (Takara). Cloning primers are listed in Supplementary Table 1.

ZF-3xFLAG-MORC7. Entry vector containing cDNA of MORC7 was introduced into modified pMDC123 with pUBQ10:ZF8x3xFLAG through LR clonase (Invitrogen).

All plants in this study were grown under long day conditions (16 h light/8 h dark). Transgenic plants were generated by Agrobacterium-mediated transformation through floral dipping. T1 transgenic plants were selected with hygromycin B on ½ MS agar medium or sprayed with Basta in soil.

Transformation through

transgenic

method. Transgenic plants were generated by Agrobacterium (Invitrogen). NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-24553-3 | www.nature.com/naturecommunications

Methods

Plant materials and growth conditions. All plants in this study are grown at standard greenhouse conditions (22–25 °C, 16 h light/8 h dark). The following plant materials were used in this study: MORC7-FLAG in morc-7 (SALK_051729), background25, MORC8-FLAG in morc-8 background26, morc hex transgenic of morc-1-2 (SALK_893_B06) morc-2-1 (SALK_072774C) morc-5-1 (GK-249F09) morc5-1 (SALK_049050C) morc6-3 (GABI 599806) and morc7-1 (SALK_05172925, npd1-4 (SALK_083051), suhd2 suhd9 (SALK_079574, SALK_048033), npd1-11 (SALK_029919), dms3-4 (SALK_125019C), met1-3 (CS13694), fwa-4, fwa-1(EMS) retrogressed into fwa-1.

Plasmid construction

ZF-DMS3:3xHA. Modified pDT1H plasmid containing UBQ10 and C-terminal modified 3xHA was linearized by Atl digestion. ZF108 was fused to the N-terminus of DMS3 (cDNA) through overlapping PCR and subsequently ligated into linearized modified pDT1H with In-Fusion cloning system (Takara). Cloning primers are listed in Supplementary Table 1.

Whole genome bisulfite sequencing. DNA from floral tissues were extracted with cetyl trimethylammonium bromide (CTAB)-based method. RNA was removed with PureLink RNase A (Invitrogen). A total of 300 ng of DNA was sheared to 200 bp with a Covaris S2 (Covaris). Libraries were prepared with the Epitect Bisulfite Conversion kit (QIAGEN) and the Ovation Ultralow Methyl-seq kit (NuGen) following the manufacturer’s instructions.

RNA-seq. Floral tissues from three-week-old seedlings were used for RNA extraction with Zymo Direct-zol RNA MiniPrep kit (Zymo Research) and then reverse transcribed into cDNA with Superscript III First Strand Synthesis Supermix (Invitrogen). qPCR was performed with iQ SYBR Green Supermix (Bio-Rad). Transcripts were normalized to the house keeping gene ISOPENTENYL PYR-OHOPHOSPHATE DIMETHYLALLYL PYR-OHOPHOSPHATE ISOMERASE 2 (IPPI). qPCR primers are listed in Supplementary Table 1.

Plasmid construction

ZF-DMS3:3xHA. Modified pDT1H plasmid containing UBQ10 and C-terminal modified 3xHA was linearized by Atl digestion. ZF108 was fused to the N-terminus of DMS3 (cDNA) through overlapping PCR and subsequently ligated into linearized modified pDT1H with In-Fusion cloning system (Takara). Cloning primers are listed in Supplementary Table 1.
method comprised of a full MS1 scan (Resolution = 120,000) followed by sequential MS2 scans (Resolution = 15,000) to utilize the remainder of the 3 second cycle time. Data analysis including peptide and protein identification was performed using MS2 spectra were searched using the ProLuCID algorithm against Arabidopsis reference proteome followed by filtering of peptide-to-spectrum matches (PSMs) by DTASelect using a decoy database-estimated false discovery rate of <1%.

Bioinformatic analysis

ChIP-seq and analysis. ChIP-seq reads were mapped to Arabidopsis genome (TAIR10) with Bowtie2 (v2.1.0)54, allowing only uniquely mapped reads with perfect matches. Duplicated reads were removed with Samtools (v1.9)55. Peaks were called using MACS2 (v2.1.1)56. To increase sequencing depth, three independent ChIPs of MORC7 in wild-type and two independent MORC7 ChIPs in RdDM mutants were pooled for peak calling.

Whole Genome Bisulphite Sequencing (BS-seq) and analysis. BS-seq reads were mapped to TAIR10 reference genome by bowmap (v2.90) with allowing 2 mismatches and 1 best hit (v = 2 - w = 1)57. Reads with three or more consecutively methylated CHH sites were considered as non-converted reads and removed from the analyses. DNA methylation levels were calculated by $\#C/ (\#C + \#T)$. Differential Methylation Regions (DMRs) were called by methdiff function with every 100 bp bin for where the difference in CG, CHG, and CHH methylation is at least 0.4, 0.2, and 0.1, respectively.

met1 RNA seq analysis. met1 RNA seq data were downloaded from NCBI Gene Expression Omnibus (GEO) as accession GSE9358459. Cleaned short reads were aligned to reference genome TAIR10 by Bowtie2 (v2.1.0)55, and expression abundance was calculated by RSEM (v1.3.1) with default parameter59.

Bisulphite PCR analysis. only reads with sequences matching primers used for bisulphite PCR were used for analysis. Primer sequences were trimmed off reads and reads were aligned to a `genome` consisting of the target amplicons (both wild-type and transgenic sequences with polymorphisms) using bismark59. Fully unmethylated reads were extracted and quantified for each amplicon using a custom script (available upon request).

Reporting summary. Further information on research design is available in the Nature Research Reporting Summary linked to this article.

Data availability

Data supporting the findings of this work are available within the paper and its Supplementary Information files. The datasets generated and analyzed during the current study are available from the corresponding author upon request. All high-throughput sequencing data generated in this study is accessible at NCBI’s Gene Expression Omnibus (GEO) via GEO Series accession number GSE160285. The mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium via the PRIDE partner repository with the dataset identifier PXD026674. Source data underlying Figs. 5 and 6 are provided as a Source Data file. Source data are provided with this paper. Source data are provided with this paper.

Code availability

All custom scripts are available from the corresponding author upon request.

Received: 7 April 2021; Accepted: 21 June 2021; Published online: 13 July 2021

References

1. Lister, R. et al. Highly integrated single-base resolution maps of the epigenome in Arabidopsis. Cell 133, 523–536 (2008).
2. Du, J. M., Johnson, L. M., Jacobsen, S. E. & Patel, D. J. DNA methylation pathways and their crosstalk with histone methylation. Nat. Rev. Mol. Cell Biol. 16, 519–532 (2015).
3. Law, J. A. & Jacobsen, S. E. Establishing, maintaining and modifying DNA methylation patterns in plants and animals. Nat. Rev. Genet. 11, 204–220 (2010).
4. Kinkel, M. W. et al. Arabidopsis MET1 cytosine methyltransferase mutants. Genetics 163, 1109–1122 (2003).
5. Lindroth, A. M. et al. Requirement of CHROMOMETHYLASE3 for maintenance of CpG methylation. Science 292, 2077–2080 (2001).
6. Zhong, X. et al. Molecular mechanism of action of plant DRM de novo DNA methyltransferases. Cell 157, 1050–1060 (2014).
7. Herr, A. J., Jensen, M. B., Dalmay, T. & Baulcombe, D. C. RNA polymerase IV directs silencing of endogenous DNA. Science 308, 118–120 (2005).
8. Wierzbicki, A. T., Haag, J. R. & Pikaard, C. S. Noncoding transcription by RNA polymerase Pol IV/Pol V mediates transcriptional silencing of overlapping and adjacent genes. Cell 135, 653–648 (2008).
9. Zhou, M., Palanca, A. M. S. & Law, J. A. locus-specific control of the de novo DNA methylation pathway in Arabidopsis by the CLASSY family. Nat. Genet. 50, 865–873 (2018).
10. Law, J. A. et al. Polymere IV occupancy at RNA-directed DNA methylation sites requires SHH1. Nature 498, 385–389 (2013).
11. Kuo, H. Y., Jacobsen, E. E., Long, Y. C., Chen, X. & Zhai, J. Characteristics and processing of Pol IV-dependent transcripts in Arabidopsis. J. Genet. Genomics 44, 3–4 (2017).
12. Singh, J., Mishra, V., Wang, F., Huang, H. Y. & Pikaard, C. S. Reaction mechanisms of Pol IV, RDR2, and DCL3 drive RNA channeling in the siRNA-directed DNA methylation pathway. Mol. Cell 75, 576–589 e575 (2019).
13. Henderson, I. R. et al. Dissecting Arabidopsis Thaliana Dicer function in small RNA processing, gene silencing and DNA methylation patterning. Nat. Genet. 38, 721–726 (2006).
14. Haverbeck, E. R. et al. The Arabidopsis RNA-directed DNA methylation argonates functionally diverge based on their expression and interaction with target loci. Plant Cell 22, 321–334 (2010).
15. Johnson, L. M. et al. SRA- and IKT-domain-containing proteins link RNA polymerase V occupancy to DNA methylation. Nature 507, 124–128 (2014).
16. Johnson, L. M., Law, J. A., Khattar, A., Henderson, I. R. & Jacobsen, S. E. SRA-domain proteins required for DRM2-mediated de novo DNA methylation. PLoS Genet. 4, e1000280 (2008).
17. Liu, Z. W. et al. The SET domain proteins SUIV2H and SUIV9 are required for Pol V occupancy at RNA-directed DNA methylation loci. PLoS Genetics 10, e1003948 (2014).
18. Wongpalee, S. P. et al. CryoEM structures of Arabidopsis DDR complexes involved in RNA-directed DNA methylation. Nat. Commun. 10, 3916 (2019).
19. Bohmdorfer, G. et al. RNA-directed DNA methylation requires stepwise binding of silencing factors to long non-coding RNA. Plant J. 79, 181–191 (2014).
20. Cuenda-Gil, D. & Slotkin, R. K. Non-canonical RNA-directed DNA methylation. Nat. Plants 2, 16136 (2016).
21. Fultz, D. & Slotkin, R. K. Exogenous transposable elements circumvent identity-based silencing, permitting the dissection of expression-dependent silencing. Plant Cell 29, 360–376 (2017).
22. Nuthikattu, S. et al. The initiation of epigenetic silencing of active transposable elements is triggered by RDR6 and 21–22 nucleotide small interfering RNAs. Plant Physiol. 162, 116–131 (2013).
23. Erdmann, R. M. & Picard, C. L. RNA-directed DNA Methylation. PLoS Genet. 16, e1009034 (2020).
24. Brabbs, T. R. et al. The stochastic silencing phenotype of Arabidopsis morc6 mutants reveals a role in efficient RNA-directed DNA methylation. Plant J. 83, 836–846 (2013).
25. Harris, C. J. et al. Arabidopsis AIMORC4 and AIMORC7 form nuclear bodies and repress a large number of protein-coding genes. PLoS Genet. 12, e1005998 (2016).
26. Iyer, L. M., Abhimani, S. & Aravind, L. Mutl. homologs in restriction-modification systems and the origin of eukaryotic MORC ATPases. Biol. Direct 3, 8 (2008).
27. Kim, H. et al. The gene-silencing protein MORC-1 topologically entraps DNA and forms multimeric assemblies to cause DNA compaction. Mol. Cell 75, 700–710 e706 (2019).
28. Moissiad, G. et al. Transcriptional gene silencing by Arabidopsis microchridia homologues involves the formation of heteromers. Proc. Natl Acad. Sci. USA 111, 7474–7479 (2014).
29. Pastor, W. A. et al. MORC1 represses transposable elements in the mouse male germline. Nat. Commun. 5, 5795 (2014).
30. Tchasovnikarova, I. A. et al. Hyperactivation of HUSH complex function by Marrot-March-Tooth disease mutation in MORC2. Nat. Genet. 49, 1035–1044 (2017).
31. Weiser, N. E. et al. MORC-1 integrates nuclear RNAI and transcriptional chromatin repositioning to promote germline immortality. Dev. Cell 41, 408–425 e407 (2017).
32. Schmid, M. et al. A gene expression map of Arabidopsis thaliana development. Nat. Genet. 37, 501–506 (2005).
33. Andrews, F. H. et al. Multivalent chromatin engagement and interdomain crosstalk regulate MORC3 ATPase. Cell Rep. 16, 3193–3207 (2016).
34. Moissiad, G. et al. MORC family ATPases required for heterochromatin condensation and gene silencing. Science 336, 1448–1451 (2012).
35. Tamas, Z., Naumann, U., Matzke, A. & Matzke, M. Involvement of a GHKL ATPase in RNA-directed DNA methylation in Arabidopsis thaliana. Curr. Biol. 22, 932–938 (2012).
36. Jing, Y. et al. SUVH2 and SUVH9 couple two essential steps for transcriptional gene silencing in Arabidopsis. Mol. Plant 9, 1156–1167 (2016).
37. Liu, W. et al. RNA-directed DNA methylation involves co-transcriptional small-RNA-guided slicing of polymerase V transcripts in Arabidopsis. Nat. Plants 4, 181–188 (2018).
38. Fang, X. et al. Arabidopsis FLL2 promotes liquid-liquid phase separation of polyadenylation complexes. Nature 565, 265–269 (2019).
39. Liu, Z. W. et al. The C-terminal domain of Vps15 SUVH2 and SUVH9 are required for Pol V occupancy at RNA-directed DNA methylation loci. Proc. Natl Acad. Sci. USA 110, 10688–10693 (2013).
40. Zhang, Y. et al. Model-based analysis of ChIP-Seq (MACS). Bioinformatics 23, 2870–2872 (2007).
41. Jacobsen, S. E. & Meyerowitz, E. M. Hypermethylated Arabidopsis cryptochrome 2. Proc. Natl Acad. Sci. USA 104, 10820–10825 (2007).
42. Li, C. F. et al. ARGONAUTE4 contains nuclear processing center colocalized with Cajal bodies in Arabidopsis thaliana. Cell 126, 93–106 (2006).
43. Stroud, H., Greenberg, M. V., Feng, S., Bernatavichute, Y. V. & Jacobsen, S. E. Comprehensive analysis of silencing mutants reveals complex regulation of the Arabidopsis methylome. Cell 152, 352–364 (2013).
44. Gallego-Bartolome, J. et al. Co-targeting RNA Polymerses IV and V promotes efficient de novo DNA methylation in Arabidopsis. Cell 176, 1068–1082 e1019 (2019).
45. Mei, C. et al. DDR complex facilitates global association of RNA polymerase V to promoters and evolutionarily young transposons. Nat. Struct. Mol. Biol. 19, 870–875 (2012).
46. Jacobson, S. E. & Meyerowitz, E. M. Hypermethylated SUPERMAN epigenetic alleles in Arabidopsis. Science 277, 1180–1183 (1997).
47. Oberlin, S., Sarazin, A., Chevalier, C., Voinnet, O. & Marí-Ordóñez, A. A genome-wide transcriptome and translatome analysis of Arabidopsis transposons identifies a unique and conserved genome expression strategy for Ty1/Copia retroelements. Genome Res. 27, 1549–1562 (2017).
48. Stroud, H., Greenberg, M. V., Feng, S., Bernatavichute, Y. V. & Jacobsen, S. E. Two-step recruitment of RNA-directed DNA methylation to tandem repeats. PLoS Biol. 4, e363 (2006).
49. Zhang, Y. et al. Model-based analysis of ChIP-seq (MACS). Genome Biol. 9, R137 (2008).
50. Li, Y. & Liu, W. BSMAF: whole genome bisulfite sequence MAPping program. BMC Bioinformatics 10, 232 (2009).
51. Oberlin, S., Sarazin, A., Chevalier, C., Voinnet, O. & Mari-Ordóñez, A. A genome-wide transcriptome and translatome analysis of Arabidopsis transposons identifies a unique and conserved genome expression strategy for Ty1/Copia retroelements. Genome Res. 27, 1549–1562 (2017).
52. Stroud, H., Greenberg, M. V., Feng, S., Bernatavichute, Y. V. & Jacobsen, S. E. Comprehensive analysis of silencing mutants reveals complex regulation of the Arabidopsis methylome. Cell 152, 352–364 (2013).
53. Greenberg, M. V. et al. Identifying genes required for de novo DNA methylation in Arabidopsis. Epigenetics 6, 344–354 (2011).
54. Groth, M. et al. SNF2 chromatin remodeler-family proteins FRG1 and -2 are required for RNA-directed DNA methylation. Proc. Natl Acad. Sci. USA 111, 17666–17671 (2014).
55. Liu, Q. et al. Molecular basis for blue-light-dependent phosphorylation of Arabidopsis cryptochrome 2. Nat. Commun. 8, 15234 (2017).
56. Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012).
57. Li, H. et al. The sequence alignment/map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).
58. Zhang, Y. et al. Model-based analysis of ChIP-Seq (MACS), Genome Biol. 9, R137 (2008).
59. Xi, Y. & Li, W. BSMAF: whole genome bisulfite sequence MAPping program. BMC Bioinformatics 10, 232 (2009).