Measurements of neutron-induced light-charged particle emission reactions

Guohai Zhang1,*, Haoying Bai1, Haoyu Jiang1, Zengqi Cui1, Yi Lu1, Yiwei Hu1, Jinsixiang Chen1, Yu. M. Gedemonov2, M. V. Sedysheva2, G. Khukhchenkhu3, Ruirui Fan3,4,5,6, Wei Jiang5,6, Han Yi5,6, Jingyu Tang5,6, Liangzhou5,6, Changjuan Ning5,6, Qi An5,7, Jie Bao8, Yu Bao5,6, Ping Cao5,7, Haolei Chen5,7, Qiping Chen9, Yonghao Chen5,6, Yukai Chen5,6, Zhen Chen6,7, Changqing Feng4,7, Kejing Gao5,6, Minhao Gu5,6, Changcai Han10, Zijie Han9, Guozhu He8, Yongcheng He5,6, Yang Hong5,6,11, Hanxiong Huang8, Weiying Huang5,6, Xu Liu5,6, Xiaolu Ji5,6, Xuyang Ji4,12, Zhijie Jiang4,7, Hantao Jing5,6, Ling Kang5,6, Mingtao Kang5,6, Bo Li5,6, Chao Li5,7, Jiaven Li5,6, Lin Li5,6, Qiang Li5,6, Xiao Li5,6, Yang Li5,6, Rong Liu6, Shubin Liu7,5, Xingyan Liu9, Guangyuan Lan8, Qili Mu5,6, Binbin Qi5,7, Jie Ren5, Zhizhou Ren5, Xichao Ruan8, Zhaohui Song10, Yingpeng Song5,6, Hong Sun5,6, Kang Sun5,6,11, Xiaoyang Sun5,6,11, Zhihua Sun5,6,11, Zixin Tan5,6, Hongqing Tang8, Xinyi Tang5,7, Binbin Tian5,6, Lijiao Wang5,6,11, Pengcheng Wang5,6, Qi Wang5, Taofeng Wang13, Zhaohui Wang5,6, Jie Wen5, Zhongwei Wen5, Qinghiao Wu5,6, Xiaoguang Wu8, Xuan Wu5,6, Likan Xie5,6,12, Yiwei Yang9, Li Yu5,6, Tao Yu5,7, Yongji Yu5,6, Linhao Zhang5,6,11, Qiwei Zhang5,6, Xianpeng Zhang10, Yuliang Zhang5,6, Zhongyong Zhou4,7, Yubin Zhao5,6, Luping Zhou5,6,11, Zuying Zhou5,6, Danyang Zhu5,6,7, Kejun Zhu5,6,7, and Peng Zu5,6

1 State Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing 100871, China
2 Frank Laboratory of Neutron Physics, JINR, Dubna 141980, Russia
3 Nuclear Research Centre, National University of Mongolia, Ulaanbaatar, Mongolia
4 Satellite Laboratory of Particle Detection and Electronics
5 Joint Institute for Nuclear Research (JINR), Dubna, 141980, Russia
6 Peking University, Beijing, 100871, China
7 Joint Institute for Nuclear Research (JINR), Dubna, 141980, Russia
8 Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang 621900, China
9 Key Laboratory of Nuclear Data, China Institute of Atomic Energy, Beijing 102413, China
10 Northwest Institute of Nuclear Technology, Xi’an 710024, China
11 University of Chinese Academy of Sciences, Beijing 100049, China
12 Department of Engineering and Applied Physics, University of Science and Technology of China, Hefei 230026, China
13 Beihang University, Beijing 100083, China

Abstract. In the past two decades cooperating with Frank Laboratory of Neutron Physics (FLNP), Joint Institute for Nuclear Research (JINR) measurements of \((n, a)\) reaction cross sections for \(^4\)Li, \(^{10}\)B, \(^{25}\)Mg, \(^{39}\)K, \(^{40}\)Ca, \(^{54,56,57}\)Fe, \(^{98}\)Ni, \(^{94,96,98}\)Zr, \(^{88}\)Mo, \(^{141}\)Nd and \(^{151}\)Sm nuclei were performed in the MeV neutron energy region based on the 4.5 MV Van de Graaff accelerator at Peking University. In recent years, our measurements were extended in three aspects. Firstly, measurements were extended from two-body reactions to three-body reactions such as \(^{10}\)Be(n, \(2\alpha\)). Secondly, the neutron energy region was extended from below 8 MeV to 8 - 11 MeV by using the HI-13 tandem accelerator of China Institute of Atomic Energy (CIAE), with which cross sections of \(^{54,56}\)Fe(n, \(a\)) reactions were measured. Thirdly, based on the newly-built China Spallation Neutron Source (CSNS) Back-n WNS (White Neutron Source), differential and angle-integrated cross sections for \(^4\)Li(n, \(t\)) and \(^{10}\)Be(n, \(a\)) reactions were measured in the neutron energy region from 1 eV to 3 MeV.

1 Introduction

Neutron-induced light-charged-particle emission reactions \((n, lcp)\) reactions are important in nuclear engineering (such as the neutron standards, fusion reactors, and accelerator driven system) and basic research (such as the study of nuclear reaction mechanism, and the synthesis of isotopes in early universe). However, measurement data are scarce with large uncertainties (except for the results at thermal energies) because the measurements of these reactions are rather difficult. The main challenges for the measurement are as follows: a) the cross sections are often small, b) the intensity of the neutron sources are limited, c) highly enriched isotopic materials are needed, d) thicknesses of the samples are limited by the short ranges of the charged ejectiles, and e) the backgrounds are strong. By applying the techniques solving the problems above, we have been measuring the \((n, lcp)\) reactions for years based on different neutron sources.
Table 1. The measured (n, α) reactions based on the 4.5 MV Van de Graaff accelerator at Peking University.

Reaction	E_n (MeV)	Reference
6Li(n, t)	1.05, 1.54, 1.85, 2.25, 2.67, 3.67, 4.42	[1–4]
10B(n, α)	4.0, 5.0	[5, 6]
10B$(n, 2\alpha)(n, \alpha)$	4.0, 4.5, 5.0	[7, 8]
25Mg$(n, \alpha)(n, \alpha_0)$	4.0, 4.5, 5.0, 5.5, 6.0	[9]
39K40Ca(n, α)	4.5, 5.5, 6.5 / 5.0, 6.0	[10, 11]
40Ca$(n, \alpha_0)(n, \alpha_{12})$	4.0, 4.5, 5.0, 5.5, 6.0, 6.5	[12]
54Fe56Fe57Fe(n, α)	4.0, 4.5, 5.5, 6.5/ 5.5, 6.5/ 5.0, 5.5, 6.0, 6.5	[13, 14]
$^{54}, ^{56}$Fe(n, α)	5.5, 7.7	[15]
58Ni(n, α)	6.0, 7.0	[16]
63Cu(n, α)	5.0, 5.5, 6.0, 6.5	[14]
64Zn(n, α)	2.54, 4.00, 5.03, 5.50, 5.95	[17, 18]
67Zn$(n, \alpha)(n, \alpha_0)$	4.0, 5.0, 6.0	[19, 20]
95Mo(n, α)	4.0, 5.0, 6.0	[21]
143Nd(n, α)	4.0, 5.0, 6.0	[22]
147Sm(n, α)	5.0, 6.0	[22, 23]
149Sm(n, α)	4.5, 5.0, 5.5, 6.0, 6.5	[24, 25]

2 Two decades’ measurements based on the 4.5 MV Van de Graaff accelerator at Peking University

Cooperating with Frank Laboratory of Neutron Physics (FLNP), Joint Institute for Nuclear Research (JINR), and based on the 4.5 MV Van de Graaff accelerator at Peking University, we have measured a series of (n, α) reactions, including light, medium-mass and heavy nuclei. Twin gridded ionization chambers (GICs) were used as detectors for charged particles with a large solid angle (nearly 4π) and high efficiency (≈100%). NIM block electronics and home-made data acquisition system were employed. The neutron energy range was from 1.0 to 7.7 MeV.

Combining measurements with theoretical analysis, systematic results including angular differential cross sections and/or cross sections were obtained. Details of the reaction channels, the energy points and related publications are listed in Table 1.

3 Recent developments

3.1 Measurement of the three-body reaction

Based on the 4.5 MV Van de Graaff accelerator at Peking University, measurement of cross sections of the three-body reaction 10B$(n, 2\alpha)$ was performed [7, 8]. A thin-backing 10B sample was prepared, and the 10B atom number in the sample was measured relative to the 6Li atom number in the standard 6LiF sample using thermal-neutron-induced reactions of 10B and 6Li. Digital data acquisition system based on waveform digitizers and LABVIEW software were developed. As forward as well as backward signals of grids and anodes of the twin GIC were recorded. Methods of anode-grid and forward-backward coincidences were used to select the valid events. Cross sections of the three-body reaction 10B$(n, 2\alpha)$, as well as the two-body reaction 10B$(n, \alpha)^7$Li were measured simultaneously at 4.0, 4.5 and 5.0 MeV [7, 8].

3.2 Measurements based on the HI-13 tandem accelerator at CIAE

In addition to the measurements of the $^{56, 54}$Fe$(n, \alpha)^{53, 51}$Cr cross sections at the Van de Graaff accelerator at Peking University, neutron energy range was extended to 8 - 11 MeV based on the HI-13 tandem accelerator of China Institute of Atomic Energy (CIAE). Using deuterium gas target and d-d reaction as the neutron source, cross sections of the $^{56, 54}$Fe$(n, \alpha)^{53, 51}$Cr reactions were measured at 8.5, 9.5 and 10.5 MeV [15] in which region the measurement results are scarce with big discrepancies among different experiments and evaluations. Since the neutron source was not mono-energetic in this region, the neutron energy spectra were measured using an EJ309 detector by unfolding the measured pulse height spectra [26]. The interference of the low energy neutrons was corrected. A shoulder structure was observed near 10 MeV in both excitation functions of the $^{56, 54}$Fe$(n, \alpha)^{53, 51}$Cr reactions [15] and was analyzed.

3.3 Measurements based on CSNS Back-n WNS

China Spallation Neutron Source (CSNS) is the first pulsed spallation neutron source in China and it was put to service in March, 2018. An associated white neutron source (WNS) exploiting the back-streaming neutrons (Back-n) was built for nuclear data measurement [27]. 6Li$(n, t)^4$He and 10B$(n, \alpha)^7$Li reactions were selected as the first and the second (n, lcp) reactions to be measured. Measurements were performed at the Endstation 1 (ES#1) along the Back-n beam line. The proton beam power during measurements was ~ 20 kW. The repetition frequency of the proton beam was 25 Hz (double-bunch mode).

Enriched double 6LiF and double 10B samples 50 mm in diameter were prepared. The detector system used for the measurement was the Light charged Particle Detector Array (LPDA), which mainly consisted of 15 silicon detectors (2.0 × 2.5 cm2, with detection angles ranging from 19.2° to 160.8°) in a vacuum chamber. Based on the CSNS
Two decades' measurements based on or cross sections were obtained. Details of the systematic results including angular differentials for the \(^6\)Li\((n, t)^6\)He and \(^{10}\)B\((n, \alpha)^3\)Li reactions were measured. The beam durations for measurements of the \(^6\)Li\((n, t)^6\)He and \(^{10}\)B\((n, \alpha)^3\)Li reactions were 196 h and 357 h, respectively.

Measurement data are under analysis and preliminary results are obtained. For the \(^6\)Li\((n, t)^6\)He reaction, differential cross sections at 80 neutron energies were measured from 1 eV to 3 MeV (selected preliminary results are presented in Fig.1). For the \(^{10}\)B\((n, \alpha)^3\)Li reaction, differential cross sections at 67 neutron energies were measured between 1 eV and 2.0 MeV (selected preliminary results are presented in Fig.3). For the \(^{10}\)B\((n, \alpha)^3\)Li and \(^{10}\)B\((n, \alpha)^3\)Li reactions, differential cross sections were measured at 59 neutron energies between 1 eV and 1 MeV (selected preliminary results are presented in Figs.5 and 7, respectively). Moreover, angle-integrated cross sections for the reactions above are also obtained through integration. Preliminary data of the present cross sections for the \(^6\)Li\((n, t)^6\)He, \(^{10}\)B\((n, \alpha)^3\)Li, \(^{10}\)B\((n, \alpha)^3\)Li and \(^{10}\)B\((n, \alpha)^3\)Li reactions compared with those of other measurements and evaluations are shown in Figs.2, 4, 6 and 8, respectively. Present data are subject to further corrections.

![Figure 2](image2.png) **Figure 2.** Preliminary results of present cross sections for the \(^6\)Li\((n, t)^6\)He reaction compared with those of other measurements and evaluations.

![Figure 3](image3.png) **Figure 3.** Selected preliminary results of differential cross sections for the \(^{10}\)B\((n, \alpha)^3\)Li reaction.
Figure 4. Preliminary results of present cross sections for the 10B(n,α)7Li reaction compared with those of other measurements and evaluations.

(a) $E_n = 1.00 \times 10^{-6}$ MeV
(b) $E_n = 0.002$ MeV
(c) $E_n = 0.20$ MeV
(d) $E_n = 0.60$ MeV
(e) $E_n = 0.90$ MeV

Figure 5. Selected preliminary results of differential cross sections for the 10B(n,α)7Li reaction.

Figure 6. Preliminary results of present cross sections for the 10B(n,α)7Li reaction compared with those of other measurements and evaluations.

(a) $E_n = 1.00 \times 10^{-6}$ MeV
(b) $E_n = 0.002$ MeV
(c) $E_n = 0.20$ MeV
(d) $E_n = 0.60$ MeV
(e) $E_n = 0.90$ MeV

Figure 7. Selected preliminary results of differential cross sections for the 10B(n,α)7Li reaction.
4 Conclusion and outlook

For more than 20 years, we have been engaged in the measurements of the (n, lcp) reactions based on the 4.5 MV Van de Graaﬀ accelerator at Peking University. In recent years, we extended our measurements based on the HI-13 tandem accelerator of CIAE and on CSNS. A series of measurements have been performed and systematical results obtained. Further measurements are planned, such as the 58,60,61Ni(n, α) reactions and the n-p and n-d scattering reactions.

References

[1] G. Zhang et al., Nucl Sci Eng 134, 312-316(2000)
[2] G. Zhang et al., Nucl Sci Eng 143, 86-89(2003)
[3] G. Zhang et al., Nucl Sci Eng 153, 41-45(2006)
[4] G. Zhang et al., Nucl Inst Meth A 566, 615-621(2006)
[5] G. Zhang et al., Appl Rad Isot 66, 1427-1430(2008)
[6] G. Zhang et al., Chin Phys Lett 28, 082801(2011)
[7] Z. Wang et al., Phys Rec C 96, 044621(2017)
[8] Z. Wang et al., Phys Rec C 96, 044620(2017)
[9] Yu. M. Gledenov et al., Phys Rec C 98, 034605(2018)
[10] X. Zhang et al., Phys Rec C 61, 054607(2000)
[11] X. Zhang et al., Nucl Sci Eng 134, 89-96(2000)
[12] J. Han et al., Eur Phys J A 51, 12(2015)
[13] Z. Wang et al., Phys Rev C 92, 044601(2015)
[14] Yu. M. Gledenov et al., Phys Rev C 89, 064607(2014)
[15] H. Bai et al., Phys Rev C 99, 024619(2019)
[16] J. Fan et al., INDC(CPR)-034/L 13, 1-9(1995)
[17] G. Zhang et al., Nucl Sci Eng 156, 115-119(2007)
[18] G. Zhang et al., Nucl Sci Eng 160, 123-128(2008)
[19] G. Zhang et al., Phys Rev C 82, 054619(2010)
[20] G. Zhang et al., Eur Phys J A 43, 1-4(2010)
[21] G. Zhang et al., Appl Rad Isot 68, 180-183(2010)
[22] Yu. M. Gledenov et al., Phys Rev C 80, 044602(2009)
[23] G. Zhang et al., Appl Rad Isot 67, 46-49(2009)
[24] Yu. M. Gledenov et al., Phys Rev C 82, 014601(2010)
[25] G. Zhang et al., Phys Rev Lett 107, 252502(2011)
[26] H. Bai et al., Nucl Inst Meth A 886, 109-118(2018)
[27] Y. Chen et al., Eur Phys J A 55, 115(2019)