CONVERGENCE OF SEQUENCES OF SCHRÖDINGER MEANS

PER SJÖLIN AND JAN-OLOV STRÖMBERG

Abstract. We study convergence almost everywhere of sequences of Schrödinger means. We also replace sequences by uncountable sets.

1. Introduction

For $f \in L^2(\mathbb{R}^n), n \geq 1$ and $a > 0$ we set
$$\hat{f}(\xi) = \int_{\mathbb{R}^n} e^{-i\xi \cdot x} f(x) \, dx, \xi \in \mathbb{R}^n,$$
and
$$S_t f(x) = (2\pi)^{-n} \int_{\mathbb{R}^n} e^{i\xi \cdot x} e^{i t |\xi|^a} \hat{f}(\xi) \, d\xi, \quad x \in \mathbb{R}^n, t \geq 0.$$

For $a = 2$ and f belonging to the Schwartz class $\mathcal{S}(\mathbb{R}^n)$ we set $u(x,t) = S_t f(x)$. It then follows that $u(x,0) = f(x)$ and u satisfies the Schrödinger equation $i \partial u / \partial t = \Delta u$.

We introduce Sobolev spaces $H^s = H^s(\mathbb{R}^n)$ by setting
$$H^s = \{ f \in \mathcal{S}'; ||f||_{H^s} < \infty \}, s \in \mathbb{R},$$
where
$$||f||_{H^s} = \left(\int_{\mathbb{R}^n} (1 + |\xi|^2)^s |\hat{f}(\xi)|^2 \, d\xi \right)^{1/2}.$$

In the case $a = 2$ and $n = 1$ it is well-known (see Carleson [3] and Dahlberg and Kenig [5]) that
$$\lim_{t \to 0} S_t f(x) = f(x)$$
almost everywhere if $f \in H^{1/2}$. Also it is known that $H^{1/4}$ cannot be replaced by H^s if $s < 1/4$.

In the case $a = 2$ and $n > 2$ Sjölin [11] and Vega [13] proved independently that [11] holds almost everywhere if $f \in H^s(\mathbb{R}^n), s > 1/2$. This result was improved by Bourgain [1] who proved that $f \in H^s(\mathbb{R}^n), s > 1/2 - 1/4n$, is sufficient for convergence almost everywhere. On the other hand Bourgain [2] has proved that $s \geq n/2(n+1)$ is necessary for convergence for $a = 2$ and $n \geq 2$.

In the case $n = 2$ and $a = 2$, Du, Guth and Li [6] proved that the condition $s > 1/3$ is sufficient. Recently Du and Zhang [7] proved that the condition $s > n/2(n+1)$ is sufficient for $a = 2$ and $n \geq 3$.

In the case $a > 1, n = 1$, [11] holds almost everywhere if $f \in H^{1/4}$ and $H^{1/4}$ cannot be replaced by H^s if $s < 1/4$. In the case $a > 1, n = 2$, it is known that [11] holds almost everywhere if $f \in H^{1/2}$ and in the case $a > 1, n \geq 3$ convergence has been proved for

Mathematics Subject Classification (2010): 42B99.

Key Words and phrases: Schrödinger equation, convergence, Sobolev spaces
$f \in H_s$ with $s > 1/2$. For the results in the case $a > 1$ see Sjölin [11, 12] and Vega [16, 17].

If $f \in L^2(\mathbb{R}^n)$ then $S_tf \to f$ in L^2 as $t \to 0$. It follows that there exists a sequence $(t_k)_1^\infty$ satisfying

$$1 > t_1 > t_2 > t_3 > \cdots > 0 \quad \text{and} \quad \lim_{k \to \infty} t_k = 0. \tag{2}$$

such that

$$\lim_{k \to \infty} S_{t_k}f(x) = f(x) \tag{3}$$

almost everywhere.

In Sjölin [13] we studied the problem of deciding for which sequences $(t_k)_1^\infty$ one has (3) almost everywhere if $f \in H_s$ for $s > 0$. The following result was obtained in [13].

Theorem A Assume that $n \geq 1$ and $a > 1$ and $s > 0$. We assume that (2) holds and that

$$\sum_{k=1}^\infty t_k^{\frac{2s}{a}} < \infty \quad \text{and} \quad f \in H_s(\mathbb{R}^n).$$

Then

$$\lim_{k \to \infty} S_{t_k}f(x) = f(x)$$

for almost every $x \in \mathbb{R}^n$.

We shall here continue the study of conditions on sequences $(t_k)_1^\infty$ which imply that (3) holds almost everywhere. We shall also replace the set $\{t_k; k = 1, 2, 3, \ldots \}$ with sets E which are not countable, for instance the Cantor set. Our first theorem is an extension of Theorem A in which we replace the spaces H_s with Bessel potential spaces L_p^s.

We need some more notations. Let $1 < p \leq 2$ and $s > 0$. Set $k_s(\xi) = (1 + |\xi|^{-s})^{-1/2}$ for $\xi \in \mathbb{R}^n$.

Let the operator \mathcal{J}_s be defined by

$$\mathcal{J}_sf = 2^{-s/2}f$$

where \mathcal{F} denotes the Fourier transformation, i.e. $\mathcal{F}f = \hat{f}$. Then \mathcal{J}_s can be extended to a bounded operator on L_p, that is $k_s \in M_p$, where M_p denotes the space of Fourier multipliers on L_p (see Stein [14], p.132).

We introduce the Bessel potential space L^p_s by setting $L^p_s = \{\mathcal{J}_sg; g \in L_p\}$, $s > 0$.

We let I denote an interval defined in the following way. In the case $n = 1, s < a/2$, and in the case $n \geq 2$, we have $I = [p_0, 2[$, where $p_0 = 2/(1 + 2s/na)$.

In the remaining case $n = 1, s \geq a/2$, we have $I = (1, 2]$.

For $f \in L^p_s, p \in I$, and $a > 1$, and $0 < s < a$, we shall define S_tf so that

$$(S_tf)(\xi) = e^{it|\xi|^a} \hat{f}(\xi)$$

and then have the following theorem.

Theorem 1. Assume $a > 1$, $0 < s < a$, and $f \in L^p_s$. Let the sequence $(t_k)_1^\infty$ satisfy (4), and assume also that $\sum_{t=1}^\infty t_k^{\frac{ps}{a}} < \infty$. Then

$$\lim_{k \to \infty} S_{t_k}f(x) = f(x)$$

almost everywhere.
In the proof of Theorem 1 we shall use the following theorem on Fourier multipliers.

Theorem 2. Let \(a > 1, 0 < s < a, \) and assume also that \(0 < \delta < 1. \) Set

\[
m(\xi) = \frac{e^{i\delta|\xi|^a} - 1}{(1 + |\xi|^2)^{s/2}}, \quad \xi \in \mathbb{R}^n.
\]

Then \(m \in M_p \) and

\[
\|m\|_{M_p} \leq C_p \delta^{s/a} \quad \text{for} \quad p \in I,
\]

where \(C_p \) does not depend on \(\delta. \)

We remark that in Sjölin [13] we used Theorem 2 in the special case \(p = 2. \)

Now let the sequence \((t_k)\) satisfy \((2)\) and set

\[
A_j = \{t_k; 2^{-j-1} < t_k \leq 2^{-j}\} \quad \text{for} \quad j = 1, 2, 3, \ldots.
\]

Let \#\(A \) denote the number of elements in a set \(A. \) We have the following theorem.

Theorem 3. Assume that \(n \geq 1, a > 1, \) and \(0 < s \leq 1/2 \) and \(b \leq 2s/(a - s). \) Assume also that

\[
\#A_j \leq C 2^{bj} \quad \text{for} \quad j = 1, 2, 3, \ldots \quad (4)
\]

and that \(f \in H_s. \) Then

\[
\lim_{k \to \infty} S_{t_k} f(x) = f(x)
\]

almost everywhere.

Theorem 3 has the following two corollaries.

Corollary 1. Assume that \((t_k)\) satisfies \((2)\) and that \(n \geq 1, a > 1, 0 < s \leq 1/2, \) and that \(\sum_{i=1}^{\infty} t_i^\gamma < \infty, \) where \(\gamma = 2s/(a - s). \) If also \(f \in H_s \) then \((3)\) holds almost everywhere.

We remark that Corollary 1 gives an improvement of Theorem A.

Corollary 2. Assume that \((t_k)\) satisfies \((3)\), and that \(n \geq 1, a > 1, 1 < p < 2, r > 0, \) and

\[
s = \frac{n}{2} + r - \frac{n}{p}.
\]

If \(f \in L^p_\gamma \) and \(s > 1/2 \) then \((5)\), holds almost everywhere.

If \(0 < s \leq 1/2 \) set \(\gamma = 2s/(a - s). \) If also \(\sum_{i=1}^{\infty} t_i^\gamma < \infty, \) and \(f \in L^p_\gamma \) then \((5)\) holds almost everywhere.

Now let \(E \) denote a bounded set in \(\mathbb{R}. \) For \(r > 0 \) we let \(N_E(r) \) denote the minimal number \(N \) of intervals \(I_l, l = 1, 2, \ldots, N, \) of length \(r, \) such that \(E \subset \bigcup_1^N I_l. \)

For \(f \in \mathcal{S} \) we introduce the maximal function

\[
S^* f(x) = \sup_{t \in E} |S_t f(x)|, \quad x \in \mathbb{R}^n.
\]

We shall prove the following estimate.
Theorem 4. Assume $n \geq 1, a > 0$, and $s > 0$. If $f \in \mathcal{S}$ then one has
\[
\int |S^* f(x)|^2 dx \leq C \left(\sum_{m=0}^\infty N_E(2^{-m}) 2^{-2ms/a} \right) \|f\|_{H^s}^2.
\]

The following corollary follows directly

Corollary 3. Assume that $n \geq 1, a > 0, s > 0, f \in \mathcal{S}$, and
\[
\sum_{m=0}^\infty N_E(2^{-m}) 2^{-2ms/a} < \infty.
\] (5)

Then one has
\[
\left(\int |S^* f(x)|^2 dx \right)^{1/2} \leq C \|f\|_{H^s}.
\]

Now let $E = \{t_k, k = 1, 2, 3, \ldots \}$ where the sequence $(t_k)\infty$ satisfies (2). We define $S^* f$ as above so that
\[
S^* f(x) = \sup_k |S_{t_k} f(x)|, \quad f \in \mathcal{S}.
\]

We then have the following corollary.

Corollary 4. We let $n \geq 1, a > 0, s > 0$, and assume that
\[
\sum_{m=0}^\infty N_E(2^{-m}) 2^{-2ms/a} < \infty,
\]
and $f \in H^s$. Then (3) holds almost everywhere.

Now assume $0 < \kappa < 1$ and that let m_κ denote κ-dimensional Hausdorff measure on \mathbb{R} (see Mattila \[8\], p.55). Let $E \subset \mathbb{R}$ be a Borel set with Hausdorff dimension κ and $0 < m_\kappa(E) < \infty$. Assume also that $0 \in E$.

We shall use a precise definition of $S_t f(x)$ for $f \in L^2(\mathbb{R}^n)$ and $(x,t) \in \mathbb{R}^n \times E$. Let Q denote the unit cube $[-\frac{1}{2}, \frac{1}{2}]^n$ in \mathbb{R}^n. Set
\[
f_N(x,t) = (2\pi)^{-n} \int_{NQ} e^{i\xi \cdot x} e^{it|\xi|^a} \hat{f}(\xi) d\xi, \quad \text{for} \quad (x,t) \in \mathbb{R}^n \times E
\]
and $N = 1, 2, 3, \ldots$. It follows from well-known estimates (See Sjölin \[10\]) that there exists a set $F \subset \mathbb{R}^n \times E$ with $m \times m_\kappa((\mathbb{R}^n \times E) \setminus F) = 0$ such that
\[
\lim_{N \to \infty} f_N(x,t)
\]
exists for every $(x,t) \in F$. Here m denotes Lebesque measure. We set $S_t f(x)$ equal to this limit for $(x,t) \in F$ and $S_t f(x)$ will then be a measurable function on $\mathbb{R}^n \times E$ with respect to the measure $m \times m_\kappa$.

Then one has the following convergence result

Theorem 5. Let $n \geq 1, a > 0$, and assume that $s > 0$ and
\[
\sum_{m=0}^\infty N_E(2^{-m}) 2^{-2ms/a} < \infty
\] (6)
and $f \in H_s$. Then for almost every $x \in \mathbb{R}^n$ we can modify $S_t f(x)$ on a m_κ-nullset so that

$$\lim_{t \to 0} S_t f(x) = f(x).$$

Note that if $0 < a < 2s$ then (6) holds when E is the interval $[0, 1]$. Thus one of the consequences of the above results is the following well-known fact (see Cowling [4]).

Corollary 5. If $0 < a < 2s$ and $f \in H_s$ then (7) holds.

We also have

Corollary 6. In Theorem 3 the conditions $a > 1$ and $b \leq 2s/(a - s)$ can be replaced by the conditions $a \geq 2s$ and $1/b > (a - 2s)/2s$.

and

Corollary 7. Assume that $(t_k)\infty_{k=1}$ satisfies (3), and that $n \geq 1, a \geq 2s, 0 < s \leq 1/2$, and that $\sum_{k=1}^{\infty} t_k^{\gamma} < \infty$, where $1/\gamma > (a - 2s)/2s$. If also $f \in H_s$ then (3) holds almost everywhere.

We remark that Corollary 7 gives an improvement of Theorem A and Corollary 1.

We shall now study the case where E is a Cantor set. Assume $0 < \lambda < 1/2$. We set $I_{0,1} = [0, 1], I_{1,1} = [0, \lambda]$ and $I_{1,2} = [1 - \lambda, 1]$. Having defined $I_{k-1,1}, \ldots, I_{k-1,2^k-1}$, we define $I_{k,1}, \ldots, I_{k,2^k}$ by taking away from the middle of each interval $I_{k-1,j}$ an interval of length $(1 - 2\lambda)l(I_{k-1,j}) = (1 - 2\lambda)\lambda^{k-1}$, where $l(I)$ denotes the length of an interval I. We then define Cantor sets by setting

$$C(\lambda) = \bigcap_{k=0}^{\infty} \bigcup_{j=1}^{2^k} I_{k,j}.$$

It can be proved that $C(\lambda)$ has Hausdorff dimension

$$\kappa = \log 2 / \log(1/\lambda)$$

and that $m_\kappa(C(\lambda)) = 1$ (See [3], p. 60-62). We have the following result, where $S_t f(x)$ is defined as in Theorem 5 with $E = C(\lambda)$.

Theorem 6. Assume $n \geq 1, a > 0$, and $0 < \lambda < 1/2$. Also assume $s > a\kappa/2$ and $f \in H_s$. Then we can for almost every x modify $S_t f(x)$ on m_κ-nullset so that

$$\lim_{t \to 0} S_t f(x) = f(x).$$

Remark. In the proofs of Corollary 4 and Theorem 5 we first in the main part of the proof obtain a maximal estimate for smooth functions and then prove a convergence result for functions in H_s. In the passage from the maximal estimate for smooth functions to the convergence result we use an approach which was mentioned to one of the authors by P. Sjögren in a conversation, 2009.
In Section 2 we shall prove Theorems 1 and 2, and Section 3 contains the proof of Theorem 3. In section 4 we prove Theorem 4, and in Section 5 the proofs of Theorems 5 and 6 are given.

We shall finally construct a counter-example which gives the following theorem.

Theorem 7. Assume \(t_k = 1/(\log k) \) for \(k = 2, 3, 4, \ldots \), and set
\[
S^* f(x) = \sup_k |S_{t_k} f(x)|, \ x \in \mathbb{R}^n,
\]
for \(f \in L^2(\mathbb{R}^n) \). Then \(S^* \) is not a bounded operator on \(L^2(\mathbb{R}^n) \) in the case \(n = 1, a > 1 \), and also in the case \(n \geq 2, a = 2 \).

2. PROOFS OF THEOREMS 1 AND 2

For \(m \in L^\infty(\mathbb{R}^n) \) and \(1 < p < \infty \) we set
\[
T_m f = \mathcal{F}^{-1}(m\hat{f}), \quad f \in L^p \cup L^2.
\]
We say that \(m \) is a Fourier multiplier for \(L^p \) if \(T_m \) can be extended to a bounded operator on \(L^p \), and we let \(M_p \) denote the class of multipliers on \(L^p \). We set \(\|m\|_{M_p} \) equal to the norm of \(T_m \) as an operator on \(L^p \).

Now let \(1 < p \leq 2 \) and \(0 < s < a \). For \(f \in \mathcal{S} \) and with \(\hat{f}(\xi) = (1 + |\xi|^2)^{-s/2}\hat{g}(\xi) \) one obtains
\[
S_{tf}(x) = (\mathcal{F}^{-1}(\mu(\xi)\hat{g}(\xi))) (x) = T_\mu g(x),
\]
where
\[
\mu(\xi) = e^{i\xi |a|^s} \frac{1}{(1 + |\xi|^2)^{s/2}}.
\]
We shall prove that \(\mu \in M_p \) for \(p \in I \), where \(I \) is an interval defined in the introduction. We need some well-known results.

Lemma 1. Assume that \(m \in M_p \) for some \(p \) which \(1 < p < \infty \). Let \(b \) be a positive number and let \(k(\xi) = m(b\xi) \) for \(\xi \in \mathbb{R}^n \). Then \(k \in M_p \) and \(\|k\|_{M_p} = \|m\|_{M_p} \).

We shall also use the following multiplier theorem (see Stein ([14], p. 96).

Theorem B: Assume that \(m \) is a bounded function on \(\mathbb{R}^n \setminus \{0\} \) and that
\[
|D^\alpha m(\xi)| \leq C_\alpha |\xi|^{-|\alpha|}
\]
for \(\xi \neq 0 \) and \(|\alpha| \leq k \), where \(k \) is an integer and \(k > n/2 \). Then \(m \in M_p \) for \(1 < p < \infty \).

We shall also need the following result (see Miyachi [9], p 283)

Theorem C: Assume \(\psi \in C^\infty(\mathbb{R}^n) \) and that \(\psi \) vanishes in a neighbourhood of the origin and is equal to 1 outside a compact set. Set
\[
m_{a,s}(\xi) = \psi(\xi)|\xi|^{-s}e^{i|\xi|^a}, \quad \xi \in \mathbb{R}^n,
\]
where \(a > 1 \) and \(0 < s < a \). Then \(m_{a,s} \in M_p \) if \(1 < p < \infty \) and \(|1/p - 1/2| \leq s/na \).

Remark. In Miyachi's formulation of this result the function \(\psi \) is replaced by a function \(\psi_1 \) with the properties that \(\psi_1 \in C^\infty, 0 \leq \psi_1 \leq 1, \psi_1(\xi) = 0 \) for \(|\xi| \leq 1 \), and \(\psi_1(\xi) = 1 \) for \(|\xi| \geq 2 \). However, the two formulations are equivalent since the function
$(\psi - \psi_1)|\xi|^{-s} e^{i|\xi|a}$ belongs to C_0^∞.

It follows from Theorem C that $m_{a,s} \in M_p$ if $p \in I$.

We shall then give the proof of the above statement about the function μ.

Lemma 2. Assume $a > 1$ and $0 < s < a$ and also $t > 0$. Set

$$\mu(\xi) = e^{it|\xi|^a} (1 + |\xi|^2)^{-s/2}, \quad \xi \in \mathbb{R}^n.$$

Then $\mu \in M_p$ for $p \in I$.

Proof of Lemma 2. We first take ψ as in Theorem C and also set $\varphi = 1 - \psi$. One then has

$$\mu(\xi) = \varphi(\xi) e^{it|\xi|^a} (1 + |\xi|^2)^{-s/2} + \psi(\xi) e^{it|\xi|^a} (1 + |\xi|^2)^{-s/2} = \mu_1(\xi) + \mu_2(\xi).$$

We write $\mu_2 = \mu_3\mu_4$, where

$$\mu_3(\xi) = \psi(\xi) \frac{e^{it|\xi|^a}}{|\xi|^s}$$

and

$$\mu_4(\xi) = \frac{|\xi|^s}{(1 + |\xi|^2)^{s/2}}.$$

We have

$$\mu_3(t^{-1/a} \eta) = \psi(t^{-1/a} \eta) \frac{e^{i|\eta|^a}}{|t^{-1/a} \eta|^s} = \psi(t^{-1/a} \eta) e^{i|\eta|^a} \frac{e^{i|\eta|^a}}{|\eta|^s}.$$

We let $p \in I$ and it then follows from the Remark after Theorem C that $\mu_3 \in M_p$. Also $\mu_4 \in M_p$ since $I \subset (1, \infty)$ (see Stein [14], p. 133). Finally

$$\mu_1(\xi) = \psi(\xi) \frac{e^{it|\xi|^a}}{(1 + |\xi|^2)^{s/2}}$$

and it is easy to see that μ_1 satisfies the conditions in Theorem B. We conclude that $\mu_1 \in M_p$ and thus also $\mu \in M_p$.

□

For $f \in L_p, p \in I$, and $a > 1$, and $0 < s < a$, we define $S_{t}f$ by setting $S_{t}f = T_{\mu}g$. It is then easy to see that

$$(S_{t}f)^{*}(\xi) = e^{it|\xi|^a} \hat{f}(\xi).$$

Observe that according to the Hausdorff-Young theorem $\hat{f} \in L^q$ where $1/p + 1/q = 1$.

We shall then give the proof of Theorem 2. We shall write $A \lesssim B$ if there is a constant K such that $A \leq KB$.

Proof of Theorem 2. We set $C = \delta^{-1/a}$ and then have $C^{-s} = \delta^{s/a}$. It follows that

$$m(C\xi) = \frac{e^{i|\xi|^a} - 1}{(1 + C^2|\xi|^2)^{s/2}} = m_1(\xi) + m_2(\xi) - m_3(\xi),$$

where

$$m_1(\xi) = \varphi(\xi) \frac{e^{i|\xi|^a} - 1}{(1 + C^2|\xi|^2)^{s/2}}.$$
\[m_2(\xi) = \psi(\xi) \frac{e^{i|\xi|^a}}{(1 + C^2|\xi|^2)^{s/2}} \]

and

\[m_3(\xi) = \psi(\xi) \frac{1}{(1 + C^2|\xi|^2)^{s/2}}. \]

Here \(\varphi \) and \(\psi \) are defined as in the proof of Lemma 2, and we may assume that \(\varphi \) and \(\psi \) are radial functions.

We have

\[m_2(\xi) = m_4(\xi) m_5(\xi), \]

where

\[m_4(\xi) = \psi(\xi) \frac{e^{i|\xi|^a}}{(C^2|\xi|^2)^{s/2}} = \delta^{s/a} \psi(\xi) \frac{e^{i|\xi|^a}}{|\xi|^s} \]

and

\[m_5(\xi) = \frac{(C^2|\xi|^2)^{s/2}}{(1 + C^2|\xi|^2)^{s/2}}. \]

It follows from Theorem C that \(m_4 \in M_p \) and \(\|m\|_{M_p} \lesssim \delta^{s/a} \) for \(p \in I \). Also \(m_5 \) has the same multiplier norm as the function \(|\xi|^s(1 + |\xi|^2)^{-s/2} \). We conclude that \(\|m_2\|_{M_p} \lesssim \delta^{s/a} \) for \(p \in I \).

We want to show that

\[|D^\alpha m_1(\xi)| \lesssim C^{-s} |\xi|^{-|\alpha|} \text{ for } \xi \in \mathbb{R}^n \setminus \{0\} \]

for all multi-index \(\alpha = (\alpha_1, \ldots, \alpha_n) \), where \(\alpha_i \) are non-negative integers. Invoking Theorem B we conclude that

\[\|m_1\|_{M_p} \lesssim C^{-s} = \delta^{s/a} \]

for \(1 < p < \infty \).

First we set

\[m_{10}(x) = \varphi_0(x) \frac{e^{ix^a/2} - 1}{(1 + C^2x)^{s/2}}, \]

where we define \(\varphi_0 \) by taking \(\varphi_0(x) = \varphi(\xi) \) if \(x = |\xi|^2 \) and we then have \(m_1(\xi) = m_{10}(|\xi|^2) \).

We get for \(x > 0 \)

\[D^j \frac{1}{(1 + C^2x)^{s/2}} = \frac{C_j C^{2j}}{(1 + C^2x)^{s/2+2j}}. \]

Hence we have

\[|D^j \frac{1}{(1 + C^2x)^{s/2}}| \lesssim x^{-j} C^{-s} x^{-s/2}. \] (7)

on support of \(\varphi_0 \). One also has \(|e^{ix^a/2} - 1| \lesssim x^{a/2} \) and \(D^j(e^{ix^a/2} - 1) \) are linear combinations of functions \(e^{ix^a/2} x^{ka/2-j} \) for \(j \geq 1 \), where \(k \) is an integer \(1 \leq k \leq j \). Hence

\[|D^j(e^{ix^a/2} - 1)| \lesssim x^{a/2-j}, \quad j = 0, 1, 2, \ldots, \] (8)
for \(x \in \text{supp} \varphi \).

A combination of (7) and (8) then gives

\[
|D_j m_{10}(x)| \lesssim x^{-j} C^{-s} x^{a/2 - s/2}
\]

Let \(\alpha \) and \(\beta \) denote \(n \)-dimensional multi-index. By induction over \(j = 0, 1, 2, \ldots \), and \(|\alpha| = j \) we can write \(D^\alpha m_1(\xi) \) as a finite linear combination of functions of the form

\[
D^k m_{10}(|\xi|^2) \xi^\beta
\]

with \(j/2 \leq k \leq j \) and \(|\beta| = 2k - j \). We conclude that

\[
|D^\alpha m_1(\xi)| \lesssim \max_{|\alpha|/2 \leq k \leq |\alpha|} |\xi|^{-2k} C^{-s} |\xi|^{a-s} |\xi|^{2k-j} = C^{-s} |\xi|^{-|\alpha|} \lesssim \delta^{s/a} |\xi|^{-|\alpha|}.
\]

It remains to study \(m_3 \). Define \(m_{30}(x) \) analogously to the definition of \(m_{10}(x) \) on \(\text{supp} \varphi_0 \), such that

\[
m_{30}(x) = \psi_0(x) \frac{1}{(1 + C^2 x)^{s/2}}
\]

and invoking (7)

\[
|D^j (1 + C^2 x)^{-s/2}| \lesssim C^{-s} x^{-j}
\]
on \(\text{supp} \psi_0 \). Also \(|D^j \psi_0(x)| \lesssim x^{-j} \) on \(\text{supp} \psi_0 \).

We conclude that

\[
|D^j m_{30}(x)| \lesssim C^{-s} x^{-j}
\]

and arguing as above we obtain

\[
|D^\alpha m_3(\xi)| \lesssim \max_{|\alpha|/2 \leq k \leq |\alpha|} |\xi|^{-2k} C^{-s} |\xi|^{2k-j} = C^{-s} |\xi|^{-|\alpha|} \lesssim \delta^{s/a} |\xi|^{-|\alpha|}
\]

for \(\xi \in \text{supp} m_3 \) and \(j = 0, 1, 2, \ldots \). Invoking Theorem B we conclude that \(\|m_3\|_{M_p} \lesssim \delta^{s/a} \) for \(1 < p < \infty \). This completes the proof of Theorem 2 \(\Box \).

We shall finally give the proof of Theorem 1.

Proof of Theorem 1. We set

\[
\mu_0(\xi) = \frac{e^{it_\xi |\xi|^a}}{(1 + |\xi|^2)^{s/2}}
\]

\[
m(\xi) = \frac{e^{it_\xi |\xi|^a} - 1}{(1 + |\xi|^2)^{s/2}}
\]

and also have

\[
k_s(\xi) = (1 + |\xi|^2)^{-s/2}.
\]

It follows that

\[
T_{\mu_0} g - \mathcal{J}_s g = T_m g
\]

for \(g \in \mathcal{S} \).

We have \(f \in L^p \) where \(p \in I \) and it follows that \(f = \mathcal{J}_s g \) for some \(g \in L^p \). We choose a sequence \((g_j)\) such that \(g_j \in \mathcal{S} \) and \(g_j \to g \) in \(L^p \) as \(j \to \infty \).

One then has

\[
T_{\mu_0} g_j - \mathcal{J}_s g_j = T_m g_j
\]
for every \(j \). Letting \(j \) tend to \(\infty \) we obtain
\[
T_{\mu_0} g - \mathcal{J} s g = T_m g
\]
since the three operators \(T_{\mu_0}, \mathcal{J} s \) and \(T_m \) are all bounded on \(L^p \). It follows that
\[
S_{t_k} f - f = T_m g.
\]
Here we have used Lemma 2 and Theorem 2.

We now set \(h_k = S_{t_k} f - f \) and hence \(h_k = T_m g \). It follows from Theorem 2 that
\[
\|h_k\|_p \lesssim t_k^{s/a} \|g\|_p
\]
and we conclude that
\[
\infty \sum_{k=1} \int |h_k|^p dx \leq \left(\sum_{k=1}^\infty t_k^{ps/a} \right) \int |g|^p dx < \infty.
\]
Applying the theorem on monotone convergence on then obtain
\[
\int \left(\sum_{1}^\infty |h_k|^p \right) dx < \infty
\]
and hence \(\sum_1^\infty |h_k|^p \) is convergent almost everywhere. It follows that \(\lim_{k \to \infty} |h_k| = 0 \) almost everywhere and we conclude that
\[
\lim_{k \to \infty} S_{t_k} f(x) = f(x)
\]
almost everywhere. This completes the proof of Theorem 1. \(\square \)

3. Proof of Theorem 3 and its corollaries

We first give the proof of Theorem 3.

Proof of Theorem 3. We may assume \(b = 2s/(a-s) \). Fix \(j \). By adding points to \(A_j \) we can get an increasing sequence \((v_k)_{k=0}^N \) and \(\tilde{A}_j = \{v_k; k = 0, \ldots, N\} \) such that \(v_0 = 0, v_N = 2^{-j}, \# \tilde{A}_j \leq C 2^b j \), and \(v_k - v_{k-1} \leq C 2^{-j} 2^{-bj} \).

We split the operator \(S_{v_k} \) into a low frequency part and a high frequency part
\[
S_{v_k} f(x) = S_{v_k, \text{low}, j} f(x) + S_{v_k, \text{high}, j} f(x)
\]
where
\[
S_{k, \text{low}, j} f(x) = (2\pi)^{-n} \int_{\mathbb{R}^n} e^{i\xi x} e^{iv_k |\xi|^a} \chi_{E_j} \hat{f}(\xi) d\xi,
\]
and
\[
S_{k, \text{high}, j} f(x) = (2\pi)^{-n} \int_{\mathbb{R}^n} e^{i\xi x} e^{iv_k |\xi|^a} \chi_{E_j} \hat{f}(\xi) d\xi,
\]
with \(E_j = \{\xi \in \mathbb{R}^n; |\xi| \leq 2^{b_1 j}\} \) and \(b_1 = b/2s \).

We shall prove that
\[
\sum_{j} 2^{bj} \sum_{v_k \in \tilde{A}_j \atop k > 0} \|S_{k, \text{low}, j} f - S_{k-1, \text{low}, j} f\|_2^2 \leq C \|f\|_{H^s}^2 \quad (9)
\]
and
\[\sum_{j} \sum_{v_k \in A_j} \|S_{k, \text{high}, j} f\|_2^2 \leq C \|f\|_{H_s}^2. \] (10)

We first assume that (9) and (10) hold. Using the Schwarz inequality we then have
\[\sup_{v_k \in A_j} |S_{k, \text{low}, j} f(x) - f(x)|^2 \leq \left(|S_{0, \text{high}, j} f(x)| + \sum_{v_k \in A_j} \sum_{k > 0} |S_{k, \text{low}, j} f(x) - S_{k-1, \text{low}, j} f(x)| \right)^2 \]
\[\leq 2 |S_{0, \text{high}, j} f(x)|^2 + C_{\text{low}}^2 \sum_{v_k \in A_j} \sum_{k > 0} |S_{k, \text{low}, j} f(x) - S_{k-1, \text{low}, j} f(x)|^2 \]

and invoking (9) and (10)
\[\sum_{j} \sup_{v_k \in A_j} |S_{k, \text{low}, j} f(x) - f(x)|^2 \leq 2 \sum_{j} |S_{0, \text{high}, j} f(x)|^2 + C \sum_{j} 2^{bj} \sum_{v_k \in A_j} \sum_{k > 0} |S_{k, \text{low}, j} f(x) - S_{k-1, \text{low}, j} f(x)|^2 \]

and
\[\int \sum_{j} \sup_{v_k \in A_j} |S_{k, \text{low}, j} f(x) - f(x)|^2 \, dx \leq C \|f\|_{H_s}^2. \] (11)

Using (10) we also obtain
\[\int \sum_{j} \sup_{v_k \in A_j} |S_{k, \text{high}, j} f(x)|^2 \, dx \]
\[\leq \int \sum_{j} \sup_{v_k \in A_j} |S_{k, \text{low}, j} f(x)|^2 \, dx \leq C \|f\|_{H_s}^2. \] (12)

The theorem follows from (11) and (12).

We shall now prove (9) an first observe that
\[S_{k, \text{low}, j} f(x) - S_{k-1, \text{low}, j} f(x) = (2\pi)^{-n} \int_{\mathbb{R}^n} \left(e^{i\xi \cdot x} - e^{i\xi \cdot (x-\hat{f}(\xi))} \right) \chi_{E_j} \hat{f}(\xi) \, d\xi, \]

Applying Plancherel's theorem we obtain
\[\|S_{k, \text{low}, j} f - S_{k-1, \text{low}, j} f\|_2^2 = C \int_{E_j} \left| e^{i\xi \cdot \hat{f}(\xi)} - e^{i\xi \cdot \hat{f}(\xi)} \right|^2 \, d\xi \]
\[\leq C \int_{E_j} \left| \sum_{v_k \in A_j} |e^{i\xi \cdot \hat{f}(\xi)} - e^{i\xi \cdot \hat{f}(\xi)}|^2 \, d\xi \leq C 2^{-2j} 2^{-2bj} \int_{E_j} |\xi|^{2a} |\hat{f}(\xi)|^2 \, d\xi. \]

and
\[\sum_{j} 2^{bj} \sum_{v_k \in A_j} \|S_{k, \text{low}, j} f - S_{k-1, \text{low}, j} f\|_2^2 \]
\[\leq C \sum_{j} 2^{-2j} \left(2^{-bj} \sum_{v_k \in A_j} 1 \int_{E_j} |\xi|^{2a} |\hat{f}(\xi)|^2 \, d\xi \right) \]
\[\leq C \int \left(\sum_{2^{b_1 j} \geq |\xi|} 2^{-2j} \right) |\xi|^{2a} |\hat{f}(\xi)|^2 \, d\xi. \]

The inequality \(2^{b_1 j} \geq |\xi| \) implies \(2^j \geq |\xi|^{1/b_1} \) and thus we get
\[\sum_{2^{b_1 j} \geq |\xi|} 2^{-2j} \leq C |\xi|^{-2/b_1}. \]
Hence the left hand side of (9) is majorized by
\[C \int |\xi|^{2n-2|b|} |\hat{f}(\xi)|^2 \, d\xi. \]

We have \(b = 2s/(a-s) \) and \(b_1 = 1/(a-s) \) and \(2a - 2/b_1 = 2a - 2(a-s) = 2s \) and the inequality (9) follows.

To prove (10) we first observe that Plancherel’s theorem implies
\[\|S_{k, \text{high}} f\|_2^2 \leq C \int_{|\xi| \geq 2^{b_1}j} |\hat{f}(\xi)|^2 \, d\xi, \]
and hence
\[\sum_j \sum_{k \in \mathcal{A}_j} \|S_{k, \text{high}} f\|_2^2 \leq \sum_j 2^{b_1} 2^{j-|b_1|} \int_{|\xi| > 2^{j-1}} |\hat{f}(\xi)|^2 \, d\xi = C \int_{|\xi| > 2^{j-1}} |\hat{f}(\xi)|^2 \, d\xi. \]

Since \(b = 2s/(a-s) \) and \(b_1 = 1/(a-s) \) we obtain \(b/b_1 = 2s \) and (10) follows. Thus the proof of Theorem 3 is complete. \(\square \)

We shall then prove the two corollaries to Theorem 3.

Proof of Corollary 1. Since \(\sum_j t_k^{1} \) is convergent we obtain
\[\left(\# \{ k; t_k > 2^{-j-1} \} \right)^2 2^{(-j-1)\gamma} \leq \sum_{t_k > 2^{-j-1}} t_k^\gamma \leq C \]
an \(\# A_j \leq C 2^{j\gamma} \) for \(j = 1, 2, 3, \ldots \). Since \(\gamma = 2s/(a-s) \) the corollary follows from Theorem 3. \(\square \)

Proof of Corollary 2. Assume that \(f \in L^p_r \), where \(1 < p < 2 \), and \(r > 0 \). Also let \(s = n/2 + r - n/p \). Then there exists \(g \in L^p \) such that \(f = \mathcal{F}_r(g) = \mathcal{F}_s(\mathcal{F}_{r-s} g) \) and we have
\[\frac{1}{2} = \frac{1}{p} - \frac{r-s}{n}. \]
It follows from the Hardy-Littlewood-Sobolev theorem that \(\mathcal{F}_{r-s} g \in L^2 \) and hence \(f \in H_s \) (see Stein [14], p. 119). The corollary then follows from Theorem 3. \(\square \)

4. Proofs of Theorem 4 and its corollaries

In Sections 4 and 5 we assume \(n \geq 1 \) and \(a > 0 \). We remark that (11) holds almost everywhere if \(f \in H_s \) and \(n = 1, 0 < a < 1 \), and \(s > a/4 \) or \(n \geq 1, a = 1 \) and \(s > 1/2 \) (see Walther [18],[19]).

Before proving Theorem 4 we need some preliminary estimates. We set \(B(x_0; r) = \{ x; |x-x_0| \leq r \} \). Using the estimate
\[|e^{it|\xi|^a} - e^{iu|\xi|^a}| \leq |t-u| |\xi|^a \]
and with \(A \geq 1 \) and supp \(\hat{f} \subset B(0; A) \) we obtain by Schwarz inequality
\[\|S_uf - S_u f\|_\infty \leq \int_{|\xi| \leq A} |t-u| |\xi|^a |\hat{f}(\xi)| \, d\xi \leq |t-u| \left(\int_{|\xi| \leq A} |\xi|^{2a} \, d\xi \right)^{1/2} \left(\int |\hat{f}(\xi)|^2 \, d\xi \right)^{1/2} \leq C |t-u| \left(\int_0^A r^{2a+n-1} \, dr \right)^{1/2} \|f\|_2 \leq C |t-u| A^{a+n/2} \|f\|_2 \]
(13)
Now assume \(T = \{ t_j; j = 0, 1, 2, \ldots, N \} \) where \(t_j \in \mathbb{R} \) and \(t_{j-1} < t_j \). We shall prove that if \(\text{supp} \hat{f} \subset B(0; A) \) then

\[
\int \max_{t, u \in T} |S_t f(x) - S_u f(x)|^2 \, dx \leq C \max_{t, u \in T} |t - u|^2 A^{2a} ||f||^2_2. \tag{14}
\]

Using the Schwarz inequality we obtain

\[
\max_{t, u \in T} |S_t f(x) - S_u f(x)| \leq \sum_{i=1}^N |S_{t_i} f(x) - S_{t_{i-1}} f(x)|
\]

\[
\leq \sum_{i=1}^N |t_i - t_{i-1}|^{-1/2} |S_{t_i} f(x) - S_{t_{i-1}} f(x)| |t_i - t_{i-1}|^{1/2}
\]

\[
\leq \left(\sum_{i=1}^N |t_i - t_{i-1}|^{-1} |S_{t_i} f(x) - S_{t_{i-1}} f(x)|^2 \right)^{1/2} \left(\sum_{i=1}^N |t_i - t_{i-1}| \right)^{1/2}
\]

where the last sum equals \(\max_{t, u \in T} |t - u| \), and the Plancherel theorem gives

\[
\int \max_{t, u \in T} |S_t f(x) - S_u f(x)|^2 \, dx \leq (\max_{t, u \in T} |t - u|) \sum_{i=1}^N |t_i - t_{i-1}|^{-1} \int |S_{t_i} f(x) - S_{t_{i-1}} f(x)|^2 \, dx
\]

\[
\leq (\max_{t, u \in T} |t - u|)^2 \sum_{i=1}^N |t_i - t_{i-1}| |t_i - t_{i-1}|^2 |\xi|^{2a} |f(\xi)|^2 \, d\xi
\]

\[
\leq (\max_{t, u \in T} |t - u|)^2 \int |\xi|^{2a} |f(\xi)|^2 \, d\xi \leq C \max_{t, u \in T} |t - u|^2 A^{2a} ||f||^2_2.
\]

Hence (14) is proved.

We shall then prove the following lemma

Lemma 3. Let \(I \) denote an interval of length \(r \). Then

\[
\int \sup_{t, u \in I} |S_t f(x) - S_u f(x)|^2 \, dx \leq Cr^2 A^{2a} ||f||^2_2 \tag{15}
\]

if \(f \in L^2(\mathbb{R}^n) \) and \(\text{supp} \hat{f} \subset B(0; A) \).

Proof of Lemma 3. Assume \(I = [b, b + r] \) and let \(N \) be a positive integer. Set \(t_i = b + ir/N, i = 0, 1, 2, \ldots, N \), and \(T = \{ t_i; i = 0, 1, 2, \ldots, N \} \). We have

\[
S_t f(x) - S_u f(x) = S_{t_i} f(x) - S_{t_j} f(x) + S_{t_j} f(x) - S_u f(x) - (S_u f(x) - S_{t_j} f(x)),
\]

where we choose \(t_i \) close to \(t \) and \(t_j \) close to \(u \). Invoking (14) we obtain

\[
|S_t f(x) - S_{t_i} f(x)| \leq C |t - t_i| A^{a+n/2} ||f||_2 \leq C r \frac{r}{N} A^{a+n/2} ||f||_2 = C_f \frac{r}{N},
\]

and

\[
|S_u f(x) - S_{t_j} f(x)| \leq C |u - t_j| A^{a+n/2} ||f||_2 \leq C r \frac{r}{N} A^{a+n/2} ||f||_2 = C_f \frac{r}{N},
\]

where \(C_f \) depends on \(f \). It follows that

\[
|S_t f(x) - S_u f(x)| \leq \max_{i, j} |S_{t_i} f(x) - S_{t_j} f(x)| + C_f \frac{r}{N}.
\]

Setting \(F_N(x) = \max_{i, j} |S_{t_i} f(x) - S_{t_j} f(x)| \) we obtain

\[
|S_t f(x) - S_u f(x)| \leq F_N(x) + C_f \frac{r}{N}.
\]

Letting \(N \to \infty \) we obtain

\[
|S_t f(x) - S_u f(x)| \leq \lim_{N \to \infty} F_N(x).
\]
An application of Fatou’s lemma and the inequality (14) then gives
\[
\int \sup_{t,u \in I} |S_t f(x) - S_u f(x)|^2 \, dx \leq \int \lim_{N \to \infty} F_N(x)^2 \, dx \\
\leq \lim_{N \to \infty} \int F_N(x)^2 \, dx \leq C r^2 A^{2a} \|f\|_2^2
\]
and the lemma follows. □

Let \(I \) and \(f \) have the properties in the above lemma. Then
\[
\int \sup_{t \in I} |S_t f(x) - f(x)|^2 \, dx \leq C (r^2 A^{2a} + 1) \|f\|_2^2. \tag{16}
\]
To prove (16) we take \(u_0 \in I \) and observe that
\[
\sup_{t \in I} |S_t f(x) - f(x)| \leq \sup_{t \in I} |S_t f(x) - S_{u_0} f(x)| + |S_{u_0} f(x)| + |f(x)|
\]
and (16) follows from Lemma 3 and Plancherel theorem.

We shall then prove the following lemma

Lemma 4. Let \(f \) have the same properties as in Lemma 3. Assume \(r > 0 \) and set \(I_l = [t_l - r/2, t_l + r/2], l = 1, 2, \ldots, N \). Assume that \(E \) is a set and \(E \subseteq \bigcup_{l=1}^{N} I_l \). Then
\[
\int \sup_{t \in E} |S_t f(x) - f(x)|^2 \, dx \leq C N (r^2 A^{2a} + 1) \|f\|_2^2. \tag{17}
\]

Proof of Lemma 4. The lemma follows from the inequality (16) and the inequality
\[
\sup_{t \in E} |S_t f(x) - f(x)|^2 \leq \sum_{l=1}^{N} \sup_{t \in I_l} |S_t f(x) - f(x)|^2
\]
Now assume \(f \in \mathcal{F} \) and write
\[
f = \sum_{k=0}^{\infty} \hat{f}_k,
\]
where \(\hat{f}_0 \) is supported in \(B(0; 1) \) and \(\hat{f}_k \) has support in \(\{\xi; 2^{k-1} \leq |\xi| \leq 2^k\} \) for \(k = 1, 2, 3, \ldots \). We shall prove the following lemma

Lemma 5. Let \(f \in \mathcal{F} \) and \(s > 0 \) and and let \(E \) be a bounded set in \(\mathbb{R} \). Then
\[
\int \sup_{t \in E} |S_t f(x) - f(x)|^2 \, dx \leq C \|f\|_{H^s}^2 \left(\sum_{k=0}^{\infty} N_E(2^{-ks}) 2^{-2ks} \right),
\]
where \(N_E(r) \) for \(r > 0 \) denotes the minimal number \(N \) of intervals \(I_l, l = 1, 2, \ldots, N, \) of length \(r \) such that \(E \subseteq \bigcup_{l=1}^{N} I_l \).

Proof of Lemma 5. With real numbers \(g_k > 0, k = 0, 1, 2, \ldots, \) we have
\[
\sup_{t \in E} |S_t f(x) - f(x)| \leq \sum_{k=0}^{\infty} \sup_{t \in E} |S_t f_k(x) - f_k(x)|
\]
\[
= \sum_{k=0}^{\infty} g_k^{-1/2} \sup_{t \in E} |S_t f_k(x) - f_k(x)| g_k^{1/2}
\]
\[
\leq (\sum_{k=0}^{\infty} g_k)^{1/2} \sup_{t \in E} |S_t f_k(x) - f_k(x)|^{1/2} (\sum_{k=0}^{\infty} g_k)^{1/2}
\]
\[
\leq C \|f\|_{H^s} \left(\sum_{k=0}^{\infty} N_E(2^{-ks}) 2^{-2ks} \right),
\]
and invoking Lemma 4 with \(r = 2^{-ka} \) and \(A = 2^k \) we obtain
\[
\int \sup_{t \in E} |S_t f(x) - f(x)|^2 \, dx \leq \left(\sum_{k=0}^{\infty} g_k \right) \left(\sum_{k=0}^{\infty} g_k^{-1} C N_E(2^{-ka})(2^{-2ak}2^{2ak} + 1) \|f_k\|_2^2 \right)
\]
Choosing \(g_k = N_E(2^{-ka})2^{-2ks} \) one obtains
\[
\int \sup_{t \in E} |S_t f(x) - f(x)|^2 \, dx \leq C \left(\sum_{k=0}^{\infty} g_k \right) \left(\sum_{k=0}^{\infty} 2^{2ks} \|f_k\|_2^2 \right)
\]
and the proof of the lemma is complete. \(\square \)

We shall prove Theorem 4.

Proof of Theorem 4. Let \(m \) take the values 0, 1, 2, \ldots. If
\[
2^{-m-1} < 2^{-ka} \leq 2^{-m}
\]
for some integer \(k \geq 0 \) then
\[
N_E(2^{-ka}) \leq C N_E(2^{-m})
\]
and since \(a > 0 \) there is for any fixed \(m \) only a bounded number of values of \(k \) for which (18) holds. It follows that
\[
N_E(2^{-ka})2^{-2ks} \leq C N_E(2^{-m})2^{-2ms/a}.
\]
Combining this inequality with the estimate
\[
\sup_{t \in E} |S_t f(x)| \leq \sup_{t \in E} |S_t f(x) - f(x)| + |f(x)|
\]
one obtains the theorem from Lemma 5. \(\square \)

Corollary 3 follows directly from Theorem 4 and we shall then prove Corollary 4.

Proof of Corollary 4. Set \(E_0 = E \cup \{0\} \) and
\[
S_0^* f(x) = \sup_{E_0} |S_t f(x)|, \; x \in \mathbb{R}^n.
\]
It then follows from Corollary 3 that for \(f \in \mathcal{S} \) one has
\[
\|S_0^* f\|_2 \leq C \|f\|_{H_s}.
\]
It follows that for every cube \(I \) in \(\mathbb{R}^n \) one has
\[
\int_I S_0^* f(x) \, dx \leq C \|f\|_{H_s}, \; f \in \mathcal{S}.
\]
Now fix \(f \in H_s \) and a cube \(I \). Then there exists a sequence \((f_j) \) such that \(f_j \in C_0^\infty \) and
\[
\|f_j - f\|_{H_s} < 2^{-j}, \; j = 1, 2, 3, \ldots.
\]
One then has \(\|f_j - f_{j+1}\|_{H_s} < 2 \cdot 2^{-j} \) and
\[
\int_I \sup_{t \in E_0} |S_t f_j(x) - S_t f_{j+1}(x)| \, dx \leq C 2^{-j}.
\]
Hence

\[\sum_{i} \sup_{t \in E_0} |S_t f_j(x) - S_t f_{j+1}(x)| < \infty \] \hspace{1cm} (19)

for almost every \(x \in I \).

Then choose \(x \) so that (19) holds. It follow that \(S_t f_j(x) \to u_x(t) \), as \(j \to \infty \), uniformly in \(t \in E_0 \), where \(u_x \) is a continuous function on \(E_0 \).

It is also clear that \(S_t f_j \to S_t f \) in \(L^2 \) as \(j \to \infty \), for every \(t \in E_0 \). Since \(E_0 \) is countable we can find a subsequence \((f_{j_i})_i^\infty \) such that for almost every \(x \in E \) \(S_t f_{j_i} \to S_t f(x) \) for all \(t \in E_0 \).

It follows that for almost every \(x \in I \) one has \(S_t f(x) = u_x(t) \) for all \(t \in E_0 \). Since

\[\lim_{t \to 0 \atop t \in E} u_x(t) = u_x(0) \]

almost everywhere one also has

\[\lim_{t \to 0 \atop t \in E} S_t f(x) = f(x) \]

for almost every \(x \in I \). Since \(I \) is arbitrary it follows that (3) holds almost everywhere in \(\mathbb{R}^n \). \(\square \)

5. Proofs of Theorems 5 and 6 and Corollaries 6 and 7

We shall first give the proof of Theorem 5.

Proof of Theorem 5. It follows from Corollary 3 that

\[\| S^* f \|_2 \leq C \| f \|_{H_\kappa}, \quad f \in J, \]

where

\[S^* f(x) = \sup_{t \in E} |S_t f(x)|, \quad x \in \mathbb{R}^n, f \in J. \]

Now take \(f \in H_\kappa \).

Let \(I \) denote a cube in \(\mathbb{R}^n \). It follows that

\[\int_I S^* f(x) \, dx \leq C_I \| f \|_{H_\kappa} \quad \text{for} \quad f \in C^\infty_0. \]

We choose a sequence \((f_j)_j^\infty \) such that \(f_j \in C^\infty_0 \) and

\[\| f_j - f \|_{H_\kappa} < 2^{-j}, \quad j = 1, 2, 3, \ldots. \]

One then has \(\| f_j - f_{j+1} \|_{H_\kappa} < C 2^{-j} \) and

\[\int_I \sup_{t \in E} |S_t f_j(x) - S_t f_{j+1}(x)| \, dx \leq C 2^{-j}. \]

It follows that

\[\sum_{j=1}^\infty \sup_{t \in E} |S_t f_j(x) - S_t f_{j+1}(x)| < \infty \]

for almost every \(x \in I \). Now choose \(x \) such that the above inequality holds. We conclude that \(S_t f_j(x) \to u_x(t) \), as \(j \to \infty \), uniformly in \(t \in E \), where \(u_x \) is a continuous function on \(E \).

On the other hand \(S_t f_j \to S_t f \) in \(L^2(\mathbb{R}^n \times E; m \times m_x) \) as \(j \to \infty \). Hence there is a subsequence \((f_{j_i})_i^\infty \) such that \(S_t f_{j_i}(x) \to S_t f(x) \) almost everywhere in \(\mathbb{R}^n \times E \) with
CONVERGENCE OF SEQUENCES OF SCHRÖDINGER MEANS

It follows that for almost every \(x \in I \) one has \(S_t f(x) = u_x(t) \) for almost all \(t \in E \) with respect to \(m \times \kappa \). We have

\[
\lim_{t \to 0} u_x(t) = f(x)
\]

for almost every \(x \in I \) and it follows that for almost every \(x \in I \) we can modify \(S_t f(x) \) on a \(m \times \kappa \)-nullset so that

\[
\lim_{t \to 0} S_t f(x) = f(x).
\]

This completes the proof of Theorem 5.

For the proof of Corollary 6 we need the following lemma

Lemma 6. Let \(A_j \) be defined as in Theorem 3 satisfying

\[
\# A_j \leq C 2^{bj} \quad \text{for } j = 0, 1, 2, \ldots
\]

for some \(b > 0 \). Let \(E = \bigcup_{j=1}^{\infty} A_j \) and \(N_E \) be as above then

\[
N_E(2^{-m}) \leq C 2^{bm/(b+1)}
\]

Proof of Lemma 6. Fix a \(k \). We have

\[
\# \left(\bigcup_{j=1}^{k} A_j \right) \leq C \sum_{j=1}^{k} 2^{bj} \leq C 2^{bk}
\]

and \(\bigcup_{j=k+1}^{\infty} A_j \subset \{ t; 0 \leq t \leq 2^{-(k-1)} \} \), which can be covered by \(2^{m-k+1} \) intervals of length \(2^{-m} \). Thus

\[
N_E(2^{-m}) \leq 2^{m-k+1} + C 2^{bk}
\]

Choose \(k \) such that \(k \leq (m+1)/(b+1) < k + 1 \) We get \(2^{b+1} \cdot 2^{(b+1)k} > 2^{m+1} \) and \(2^{bk} \leq C 2^{mb/(b+1)} \). We conclude that

\[
N_E(2^{-m}) \leq C 2^{bk} \leq C 2^{bm/(b+1)}.
\]

This ends the proof of the Lemma 6.

We can now prove Corollary 6 by using Lemma 6 and Corollary 4

Proof of Corollary 6. With \(1/b > (a-2s)/2s \) as in Corollary 6 we get

\[
b/(b+1) = \frac{1}{1 + 1/b} < 1 \left(1 + \frac{a-2s}{2s} \right) = 2s/a,
\]

and we get

\[
\sum_{l} N_E(2^{-m}) 2^{-2ms/a} \leq C \sum_{l} 2^{bm/(b+1)} 2^{-2ms/a} \leq C \sum_{l} 2^{m(b/(b+1)-2s/a)} < \infty
\]

since \(b/(b+1) - 2s/a < 0 \).

By Corollary 4 the Corollary 6 will follow.

The Corollary 7 will now follow by similar arguments as in the proof Corollary 1. Finally we shall give the proof of Theorem 6.
Proof of Theorem 6. We shall use Theorem 5 with
\[\kappa = \log 2/(\log 1/\lambda). \]
For \(k = 0, 1, 2, 3, \ldots, C(\lambda) \) can be covered by \(2^k \) intervals of length \(\lambda^k \).
Let \(m \) be a positive integer. Choose \(k \) such that \(\lambda^{k+1} < 2^{-m} \leq \lambda^k \). It follows that \(N_2(2^{-m}) \leq 2^{k+1} \) and that
\[(1/\lambda)^k \leq 2^m \]
and
\[k \leq m \frac{\log 2}{\log(1/\lambda)} = \kappa m. \]
Hence
\[\sum_{m=1}^{\infty} N_2(2^{-m})2^{-2sm/a} \leq C \sum_{m=1}^{\infty} 2^{sm}2^{-2sm/a} < \infty, \]
if \(\kappa - 2s/a < 0 \), i.e. \(s > \kappa/2 \). Theorem 6 follows from an application of Theorem 5. \(\square \)

6. PROOF OF THEOREM 7

We first assume \(n = 1 \) and \(a > 1 \). We choose a function \(\varphi \in C_0^\infty(\mathbb{R}) \) with the property that \(\varphi(\xi) = 1 \) for \(|\xi| = a^{-1/(a-1)} \) and also \(\varphi \geq 0 \). We also assume that there exists a constant \(A > 1 \) such that \(\text{supp} \varphi \subset \{ \xi \in \mathbb{R}; 1/A \leq |\xi| \leq A \} \). We then define a function \(f_\nu \) by setting \(\hat{f}_\nu(\xi) = \varphi(2^{-\nu} \xi) \) where \(\nu = 1, 2, 3, \ldots \). One then has
\[\| f_\nu \|_2 = c\| \hat{f}_\nu \|_2 = c \left(\int |\varphi(2^{-\nu} \xi)|^2 \, d\xi \right)^{1/2} = c \left(\int |\varphi(\eta)|^2 \, d\eta \right)^{1/2} = c 2^{\nu/2}, \]
where \(c \) denotes positive constants. Setting \(\eta = 2^{-\nu} \xi \) we also obtain
\[S_t f_\nu(x) = c \int e^{ix\eta} e^{it|\xi|^a} \varphi(2^{-\nu} \xi) \, d\xi = c 2^{\nu} \int e^{i2^{\nu} \eta \xi} e^{it2^{\nu}|\eta|^a} \varphi(\eta) \, d\eta = c 2^{\nu} \int e^{iF(\xi)} \varphi(\xi) \, d\xi, \]
where \(F(\xi) = t2^{\nu}|\xi|^a + 2^\nu x\xi \).
We then assume \(C 2^{-\nu} \leq x \leq 1 \) where \(C \) denotes a large positive constant. It is clear that \(F = G + H \), where
\[G(\xi) = 2^\nu x|\xi|^a + 2^\nu x\xi \]
and
\[H(\xi) = t2^{\nu}|\xi|^a - 2^\nu x|\xi|^a. \]
We shall first study the integral
\[\int e^{iG(\xi)} \varphi(\xi) \, d\xi = \int e^{i2^{\nu} xK(\xi)} \varphi(\xi) \, d\xi, \]
where \(K(\xi) = |\xi|^a + \xi \) for \(\xi \in \mathbb{R} \).
For \(\xi > 0 \) we have \(K'(\xi) = a|\xi|^{a-1} + 1 \) and for \(\xi < 0 \) one has \(K'(\xi) = 1 - a|\xi|^{a-1} \). It follows that \(K'(\xi) = 0 \) for \(\xi = -a^{-1/(a-1)} \). Also \(K''(\xi) \neq 0 \) for \(\xi \in \text{supp} \varphi \). We now apply the method of stationary phase (see Stein [15], p. 334). One obtains
\[\left| \int e^{iG(\xi)} \varphi(\xi) \, d\xi \right| \lesssim (2^\nu x)^{-1/2} = 2^{-\nu/2} x^{-1/2}. \]
Hence
\[
\left| \int e^{iF} \varphi \, d\xi \right| = \left| \int e^{i(G+H)} \varphi \, d\xi \right| = \left| \int e^{iG} \varphi \, d\xi + \int (e^{iG+H} - e^{iG}) \varphi \, d\xi \right|
\geq 2^{-\nu/2} x^{-1/2} - O \left(\int |e^{iH} - 1| \varphi \, d\xi \right) \geq 2^{-\nu/2} x^{-1/2} - O \left(\int |H| \varphi \, d\xi \right),
\]
and we need an estimate of \(H \). One obtains
\[
\|H(\xi)\| = \|t^{2\alpha} - 2^\nu x\| \|\xi\|^\alpha \lesssim |t^{2\alpha} - 2^\nu x|
\]
on supp \(\varphi \). We then choose \(k \) such that
\[
t_{k+1} < \frac{2^\nu x}{2\alpha} \leq t_k
\]
where we assume that \(\nu \) is large. It follows that
\[
t_k \leq \frac{2^{2\nu} x}{2\alpha} \leq \frac{2^\nu}{2\alpha} = 2 \cdot 2^{\nu(1-\alpha)}
\]
and hence
\[
\log k \geq \frac{1}{2} \cdot 2^{\nu(a-1)} \geq 2^{\nu \epsilon}
\]
where \(\epsilon > 0 \). It is then easy to see that
\[
k \geq e^{2^{\nu \epsilon}}
\]
and
\[
t_k - t_{k+1} \leq \frac{1}{k} \leq e^{-2^{\nu \epsilon}}
\]
which implies that
\[
\left| t_k - \frac{2^\nu x}{2\alpha} \right| \leq t_k - t_{k+1} \leq e^{-2^{\nu \epsilon}}
\]
We conclude that
\[
|t_k 2^{\nu a} - 2^\nu x| \leq 2^{\nu a} e^{-2^{\nu \epsilon}} e^{-100 \nu}
\]
for \(\nu \) large.
Setting \(t = t_k \), invoking the inequality (20), and using the fact that \(x \leq 1 \), one obtains
\[
\left| \int e^{iF} \varphi \, d\xi \right| \geq 2^{-v/2} x^{-1/2} - O \left(e^{-100 \nu} \right) \geq 2^{-v/2} x^{-1/2}.
\]
It follows that
\[
\int |S^* f(x)|^2 \, dx \geq \int_{C_{2^{-v}}}^{1} \frac{2^\nu 1}{x} \, dx \geq 2^\nu \nu
\]
for \(\nu \) large.
We have \(\|f_{\nu}\|_2 = C^{2^{\nu/2}} \) and we have proved that \(\|S^* f_{\nu}\|_2 \gtrsim 2^{\nu/2} \nu^{1/2} \) and it follows that \(S^* \) is not a bounded operator on \(L^2(\mathbb{R}) \).

We shall then study the case \(n \geq 2 \) and \(a = 2 \). We let \(\varphi \in C_0^\infty(\mathbb{R}) \) be the same function as in the case \(n = 1 \). Also let \(\psi \in C_0^\infty(\mathbb{R}^{n-1}) \) and assume that \(\|\psi\|_2 > 0 \).
For \(x \in \mathbb{R}^n \) we write \(x = (x_1, x') \), where \(x' = (x_2, x_2, \ldots, x_n) \). We define \(f_{\nu} \) by setting \(\hat{f}_{\nu}(\xi) = \varphi(2^{-\nu} \xi_1) \psi(\xi') \) for \(v = 1, 2, 3, \ldots \).
It is then easy to see that \(\|f_\nu\|_2 = c 2^{\nu/2} \) for some constant \(c \).
We also have
\[
S_t f_\nu(x) = c \int_{\mathbb{R}^{n-1}} e^{i(\xi x_1 + \xi' x')} e^{i(t/2) |\xi|} |\varphi(2^{-\nu} \xi_1)| \psi(\xi') \, d\xi_1 d\xi',
\]
where \(c \) denotes a constant. Setting \(\eta_1 = 2^{-\nu} \xi_1 \) we obtain
\[
S_t f_\nu(x) = c 2^\nu \left(\int_{\mathbb{R}} e^{i(t/2) \eta_1^2 + 2^\nu \eta_1 x_1} \varphi(\eta_1) \, d\eta_1 \right) \left(\int_{\mathbb{R}^{n-1}} e^{i(\xi' x' + t/2) |\xi'|} \psi(\xi') \, d\xi' \right).
\]

We then choose \(t_k \) as an approximation for \(2^\nu \) as in the one-dimensional case and set \(t(x_1) = t_k \). It follows that
\[
S_t f_\nu(x) = c 2^\nu I(x_1) J(x_1, x')
\]
where
\[
I(x_1) = \int_{\mathbb{R}} e^{i(t/2) \eta_1^2 + 2^\nu \eta_1 x_1} \varphi(\eta_1) \, d\eta_1
\]
and
\[
J(x_1, x') = \int_{\mathbb{R}^{n-1}} e^{i(\xi' x' + t/2) |\xi'|} \psi(\xi') \, d\xi'.
\]

Above we proved that \(|I(x_1)| \gtrsim 2^{-\nu/2} x_1^{-1/2} \) for \(C 2^{-\nu} \leq x_1 \leq 1 \). We also have
\[
S^* f_\nu(x) \gtrsim 2^\nu \|I(x_1)\| |J(x_1, x')|.
\]
It follows that
\[
\int_{\mathbb{R}^{n-1}} (S^* f_\nu(x))^2 \, dx' \gtrsim 2^{2\nu} \|I(x_1)\|^2 \int_{\mathbb{R}^{n-1}} |J(x_1, x')|^2 \, dx',
\]
and invoking Plancherel’s theorem we obtain
\[
\int_{\mathbb{R}^{n-1}} (S^* f_\nu(x))^2 \, dx' \gtrsim 2^{2\nu} \|I(x_1)\|^2 \int_{\mathbb{R}^{n-1}} |\psi(\xi')|^2 \, d\xi' = c 2^{2\nu} \|I(x_1)\|^2 \gtrsim 2^{2\nu} 2^{-\nu} x_1^{-1} = 2^\nu x_1^{-1}
\]
for \(C 2^{-\nu} \leq x_1 \leq 1 \).

We conclude that
\[
\int \int_{\mathbb{R}^{n-1}} (S^* f_\nu(x))^2 \, dx_1 dx' \gtrsim 2^\nu \int_{C 2^{-\nu}} 1/x_1 \, dx_1 \gtrsim 2^\nu
\]
and
\[
\|S^* f_\nu\|_2 \gtrsim 2^{\nu/2} \nu^{1/2}.
\]
Since \(\|f_\nu\|_2 = c 2^{\nu/2} \) it follows that \(S^* \) is not a bounded operator on \(L^2(\mathbb{R}^n) \).
REFERENCES

[1] Bourgain, J., *On the Schrödinger maximal function in higher dimensions*. Proc. Steklov Inst. Math., 280, 46-60 (2013).

[2] Bourgain, J., *A note on the Schrödinger maximal function*. J. Anal. Math. 130, 393-396 (2016).

[3] Carleson, L., *Some analytical problems related to statistical mechanics*. Euclidean Harmonic Analysis, Lecture Notes in Mathematics, vol 779, pp. 5-45. Springer, Berlin (1979).

[4] Cowling, M.G., *Pointwise behavior of solutions to Schrödinger equations*. Harmonic analysis, Lecture Notes in Mathematics vol 992, pp. 83-90, Springer Berlin (1983).

[5] Dahlberg, B.E.J., and Kenig, C.E., *A note on the almost everywhere behaviour of solutions to the Schrödinger equation*. Harmonic Analysis, Lecture Notes in Mathematics, vol 908, pp. 205-209, Springer, Berlin (1981).

[6] Du, X., Guth, L., and Li, X., *A sharp Schrödinger maximal estimate in \(\mathbb{R}^2 \)*. Ann. Math. 186, 607-640 (2017).

[7] Du, X. and Zhang, R., *Sharp \(L^2 \) estimate of Schrödinger maximal function in higher dimensions*. arXiv: 1805.02775v2.

[8] Mattila, P., *Geometry of Sets and Measures in Euclidean Spaces*. Fractals and rectifiability, Cambridge Univ. Press, 1995.

[9] Miyachi A., *On some singular Fourier multipliers*. J. of the Faculty of Science, University of Tokyo sec. I.A., Vol 28 No.2, 267-315 (1981).

[10] Sjölin, P., *Convergence almost everywhere of certain singular integrals and multiple Fourier series*. Arkiv för matematik 9, 66-90 (1971).

[11] Sjölin, P., *Regularity of solutions to the Schrödinger equation*. Duke Math. J. 55, 699-715 (1987).

[12] Sjölin, P., *Nonlocalization of operators of Schrödinger type*. Ann. Acad. Sci. Fenn. Math. 38, 141-147 (2013).

[13] Sjölin, P., *Two theorems on convergence of Schrödinger means*. To appear in J. of Fourier Analysis and Applications.

[14] Stein, E., *Singular integrals and differentiability properties of functions*. Princeton University Press, 1970.

[15] Stein, E., *Harmonic analysis. Real-variable methods, orthogonality, and oscillatory integrals*. Princeton Univ. Press, 1993.

[16] Vega, L., *Schrödinger equations: pointwise convergence to the initial data*. Proc. Amer. Math. Soc. 102, 874-878 (1988).

[17] Vega, L., *El multiplicador de Schrödinger, la Funcion Maximal y los Operadores des Restricciones*. Departamento de Matematicas, Univ. Auto´noma de Madrid, Madrid 1988.

[18] Walter, B., *Maximal estimates for oscillatory integrals with concave phase*. Harmonic analysis and Operator theory(Caracas 1994), 485-495, Contemp. Math., 189, Amer. Math. Soc., Providence, R.I., 1995.

[19] Walter, B., *Some \(L^p(\mathbb{L}^\infty) \) - and \(L^2(\mathbb{L}^2) \) - estimates for oscillatory Fourier transforms*. Analysis of Divergence (Orono, ME, 1997), 213-231, Appl. Numer. Harmon. Anal., Birkhäuser Boston, Boston, MA, 1998.

Department of Mathematics, KTH Royal Institute of Technology, Stockholm, Sweden
E-mail addresses: persj@kth.se, jostromb@kth.se