The cost of closed terminals in the supply chain for a potential biorefinery in northern Sweden

Simon Berg and Dimitris Athanassiadis

Department of Forest Biomaterials and Technology, Swedish University of Agricultural Sciences, Umeå, Sweden

ABSTRACT
Establishment of biorefineries for processing forest biomass in the Nordic region is extremely costly due to the high investment, running, and procurement costs. Procurement costs could be reduced by allowing all actors to open access to all available terminals in an area (regardless of ownership) and allowing trucks with higher gross weight. These impacts of changes were evaluated for deliveries of logging residue and energy wood chips to a potential biorefinery, from two suppliers in northern Sweden. Open access to all terminals reduced the terminal-procurement costs by 2–6% and the terminal-to-biorefinery transportation costs by 7–9%. When 74 tonnes trucks were used instead of 60 tonnes, the terminal-to-biorefinery transportation costs were reduced by 4 and 3%, in the current situation and with open access to terminals, respectively. However, the largest effect of open access was that the fraction of short-distance transportation to terminals and train transportation from terminals increased significantly. This indicated that open access to terminals and relatively heavy trucks between terminals and the biorefinery are preferable from both environmental and economic perspectives. Furthermore, the estimated cost saving was adequate and should allow the deliverers to pay a reasonable fee for the use of terminal space.

Introduction
A decrease in the use of fossil fuels and fossil feedstocks and increased energy production and production of products from renewable sources are desired in order to mitigate the impact of climate changes resulting from human activity (European Commission 2011; Swedish Environmental Protection Agency 2012). These sources can include wind, solar, hydro, and biopower, as well as materials generated from biological feedstocks, as biomass from forests, agricultural, and aquatic systems. However, these developments rely on an adequate supply of input (biomass, wind, water, and sun), competitive production systems, and long-term solutions capable of competing with fossil energy and products (Giuliano et al. 2016). Northern Sweden represents a potential source for forest biomass (Fridh and Christiansen 2015; Athanassiadis and Nordfjell 2017), and plans for increasing the number of biorefineries in the region have been proposed (e.g. Lundin 2017). However, the high cost of the forest biomass procurement systems and lack of long-term regulations have limited investments in the region (Börjesson et al. 2017). Therefore, reducing costs and improving the efficiency of the supply chain are essential for transitioning to a bio-based economy.

The logistic chain of forest biomass is complex and there are many different options for transportation from the forest to end-users (Routa et al. 2013; Wolsfmayr and Rauch 2014). The forest biomass can be transported either directly to the end-user or via a terminal. Terminals are mainly used when reloading, processing, or storing of the biomass (before delivery to the end-user) are required (Asmoarp 2013; Kons 2015). Reloading is mainly required for long-distance transportation by train. Currently, processing consists mainly of biomass comminution, either for increased bulk density or for delivery to end-users that lack comminution capacity. Storage is needed during periods characterized by bad forest-road conditions, e.g. the spring-thaw period when forests are inaccessible. Weather-wise fluctuations in the feedstock demand of heat and power plants also lead to storage requirements.

Woody biomass assortments may be transported via various methods (Berglund and Larsson 2012; Iwarson-Wide and Palmer 2015). Energy wood can be transported with timber trucks from the forest as it is or comminuted at landings and transported as chips. Logging residues, can also be comminuted at the landing or transported loose in logging residue trucks. Comminution at landings can be conducted with a chipper that either directly loads trucks, or chips the material into piles. A self-loading chip truck can then load material from these piles or a wheel loader can load a chip truck from the piles. The comminution and transportation can also be performed by chipper trucks that both comminute and transport the material. Long-distance transportation from terminals is usually performed by trains or by trucks that have lightweight frames, in order to maximize the payload (Enström et al. 2013). Moreover, trucks with a relatively high gross weight have recently been employed for transportation (Zachrisson 2017). These trucks are currently utilized in...
transportation work (where allowable) between terminals and end-users, but can subsequently be used for forest-to-terminal transportation work, depending on the forest-road suitability.

The forest biomass procurement cost for different supply systems (current and theoretical) in the Nordic countries have been reported (e.g. Tahvanainen and Anttila 2011; Joelson et al. 2016; Laitila et al. 2016; Berg and Athanassiadis 2019). Athanassiadis and Nordfjell (2017) presented marginal procurement cost curves for logging residues and stumps in northern Sweden, based on costs from forests to terminals/end-users in the region. However, the effect of long-distance train transportation from the terminal to other regions remains unexplored.

Supplying biomass to potential biorefinery sites along the coast of northern Sweden remains a major challenge, because of long transportation distances and high costs. Furthermore, there are terminals with accessibility constraints, i.e. some terminals can be used by all actors in the area (open terminals) while others can only be used by the owner (closed terminals). This limits the access of some actors to the railroad network, leading to both increased cost and environmental impact. To evaluate this limitation the total cost and transportation work from forests to end-user should be estimated.

Aim

The aim of this study was to evaluate the procurement cost of forest biomass supply (by different potential suppliers) to a potential biorefinery when different terminal configurations are used, and to determine the effect of heavier trucks on the transportation costs.

Material and methods

The supply area considered in this study was located in northern Sweden, more specifically in Jämtland and the inland parts of the Norrbotten and Västerbotten regions (Figure 1). Two potential suppliers of forest biomass were identified in the area; the forest company Sveaskog (FCS) and a theoretical combination of private forest owners and small institutional owners (FOCO) consisting of physical persons, estates of deceased persons, municipalities, and the Swedish church (Table 1). FOCO is not a real present-day operator, but does resemble a forest owners association. A potential biorefinery was located at the coast in northern Sweden, i.e. in Örnsköldsvik (latitude 63.28899, longitude 18.71319). This biorefinery had a planned yearly forest biomass demand (dBio) of ~183,000 bone dry tonnes (BDt). Productive forest areas associated with FCS (55 areas) and FOCO (153 areas) were extracted from the Forest Ownership map of Sweden (Table 1 and Figure 1). Deliveries to terminals of logging residues (tLR) and energy wood (tEW) were assumed to be proportional to the size of the terminal, when less than demanded volume could be delivered (Tables 1 and 2).

Harvesting potentials for logging residues (sLR) and energy wood (sEW) for FCS and FOCO areas were extracted from the SKA 15 study (Claesson et al. 2015). In SKA 15, estimations of forest development and forest fuel harvest potential were performed with the Heureka Regwise simulator (Wikstrom et al. 2011). The Heureka tool uses the sample plots (both permanent and temporary) of the Swedish national forest inventory obtained from 2008 to 2012 (Toet et al. 2007; Fridman et al. 2014; Anon. 2018). The estimations of FCS’s and FOCO’s supply potential were based on sample

![Figure 1](image-url). Overview of the studied region. Yellow areas, pink areas, green dots, blue dots, and the red dot represent FCS regions, FOCO regions, open terminals, closed terminals, and the biorefinery, respectively.
plots (denoted in the optimization equations as f) that had fallen on their respective estates.

The current study focused on logging residues (branches and tops) and energy wood (non-commercial pulpwood). The following assumptions were made: (i) logging residues were harvested in regeneration fellings (RF) i.e. in stands that were clear cut and in stands where seed trees were left standing (Table 1), (ii) energy wood was harvested in RF and thinnings, and accounted for 2% of the pulpwood, (Table 1) and (iii) energy wood chips and logging residue chips have different dry bulk densities (Table 3), whereas energy wood from RF and thinning have the same densities. All volumes and masses were converted to BDt (Table 3). After discussion with industrial partners it was assumed that, in average, 2% of the pulp wood volume gets degraded due to fungi and/or rotting and can be used as energy wood.

Transportation systems and costs

The procurement systems included in the study are presented in Table 4, and a schematic view is provided in Figure 2. The procurement systems are denoted as “Forest to terminal” and “terminal to biorefinery”.

Terminals

Eighteen forest biomass terminals were identified in the region (Figure 1 and Table 2). Eight of the terminals were identified as closed (i.e. affiliated neither with FCS nor with FOCO) and under normal conditions were neither used by FCS nor FOCO for transportation of biomass. Two scenarios were formulated: (i) an open-access scenario where FCS and FOCO were allowed to deliver logging residues and energy wood to both the open and the closed terminals and (ii) a restricted access scenario where biomass could only be delivered to the open terminals. In both scenarios, the biomass flow through the terminal was directly correlated to the area of the terminal. The annual flow through a terminal was assumed to be 0.17 BDt per m² and 0.357 BDt per m² (2.1 times greater) in the open access and restricted access scenarios, respectively. Therefore, in both scenarios, the total capacity of the terminals was slightly greater than 183,000 BDt (Table 2), that is just enough to cover the dBio.bio of the biorefinery.

Table 1. Characteristics of the two forest owners, FCS and FOCO, included in the study.

Thinning area (ha/year)	Regeneration felling area (ha/year)	Energy wood* (BDt/year)	Logging residues** (BDt/year)
FCS	5,341	8,664	600
FOCO	13,980	19,563	1,677

*corresponds to $\sum \text{EW}_f$ for the two suppliers, **corresponds to $\sum \text{LR}_f$ for the two suppliers.

Table 2. Characteristic of the terminals included in the study.

Terminal Status	Area (m²)a	Access to railroad	Biomass turnover (BDt)+	Distance to biorefinery (km)
T_1	Closed	145,000	Y	24,650
T_2	Closed	60,994	Y	10,369
T_3	Closed	88,983	Y	15,127
T_4	Closed	77,718	Y	13,212
T_5	Open	87,419	Y	14,861
T_6	Open	80,000	Y	13,600
T_7	Open	20,000	Y	3,400
T_8	Open	115,000	Y	19,550
T_9	Open	12,000	N	2,040
T_10	Open	40,000	N	6,800
T_11	Open	70,000	Y	11,900
T_12	Closed	48,139	Y	8,184
T_13	Closed	21,600	N	3,672
T_14	Open	4,500	N	765
T_15	Closed	43,000	N	7,310
T_16	Open	54,490	N	9,263
T_17	Open	30,000	N	5,100
T_18	Open	80,000	N	13,600
Sum		1,078,843		183,403

a50% of the terminal area is assumed to be occupied by terminal buildings, roads and railway lines. Y indicated yes, and N indicates no. + Corresponding to dLRT and dEWT for the two suppliers.

Table 3. Values used for conversion of input variables to bone dry mass in the study.

Moisture content	BDkg/m³/solid	kg/m³/solid	BDkg/m³/loose	kg/m³/loose	m³/top measured$-$/m³/solidd
Logging residues	50R	39R	790R	-	-
Logging residue chips	45R	-	-	170C	309R
Energy wood	50R	409C	819C	-	-
Energy wood chips	45A	176R	319R	-	-

- indicates no value. *indicates that the values were assumed. RChristiansen (2015). C indicates that the value is estimated based on pine 408 BDkg/m³/solid, spruce 382 BDkg/m³/solid and that birch was assumed to be 20% heavier than the spruce (458 BDkg/m³/solid) (Jonsson 1985), and the proportion of tree species was 48% pine, 33% spruce and 19% birch (Ringman 1995; Christiansen 2015). $^*Ringman (1996). *indicates that the value was calculated 170/395×409 to give the same relative difference in BDkg/m³/loose as in BDkg/m³/solid. *indicates that the value was calculated based on density and moisture content.
Table 4. Characteristics of the procurement systems included in the study.

Procurement system	Truck type	Gross weight (tonnes)	Comment
From forest to terminal			
PSA	Logging residue	60	Logging residues were transported uncomminuted and comminuted at terminals. The trucks were equipped with cranes for loading and unloading.
PSF^{4,6}	Chip	60	Transportation of logging residue chips. The trucks were assumed to be directly loaded by a chipper at the landing.
PSF⁶	Chipper	60	Logging residues were chipped at the landing by the chipper truck before transportation to terminal.
PSDF	Timber	60	Transportation of energy wood from regeneration fellings. Trucks were equipped with cranes for loading at the landing. Unloading was done with separate loaders at the terminal. Energy wood was then comminuted at the terminal.
	Timber	60	Transportation of energy wood from thinnings. Trucks were equipped with cranes for loading at the landing. Unloading was done with separate loaders at the terminal. Energy wood was then comminuted at the terminal.
From terminal to the biorefinery			
PSC^{4,6}	Chip	60	Logging residue chips were transported to biorefinery
PSC^{4,6}	Chip	60	Energy wood chips were transported to biorefinery
PSC^{4,6}	Chip	74	Logging residue chips were transported to biorefinery
PSC^{4,6}	Chip	74	Energy wood chips were transported to biorefinery
PSC^{4,6}	Train		Energy wood chips were transported to biorefinery
PSC^{4,6}	Train		Energy wood chips were transported to biorefinery
*Trucks were unloaded by tipping the chips in the ground at terminal or the biorefinery. *Chip bins were assumed to be loaded by a wheel loader at the terminal. *A forklift was assumed to unload the chip bins at biorefinery. *A wheel loader was assumed to push the tipped material in to a stack. *Train wagons had a gross weight limit of 61.2 tonnes and a volume limit of 138 m³ loose (Enström and Winberg 2009).			

\[
\begin{align*}
\text{min} T_{CEW} & = \sum_{f=1}^{90} \sum_{t=1}^{18} \text{CEW}_t \times t_{EW_t} \\
\text{min} T_{CLR} & = \sum_{f=1}^{90} \sum_{t=1}^{18} \text{CLR}_t \times t_{LR_t} \\
\text{min} T_{LR} & = \sum_{f=1}^{90} \sum_{t=1}^{18} \text{LR}_t \times t_{LR_t} \\
\text{min} T_{FOCO} & = \sum_{f=1}^{90} \sum_{t=1}^{18} \text{FOCO}_t \times t_{FOCO_t} \\
\text{min} T_{FSC} & = \sum_{f=1}^{90} \sum_{t=1}^{18} \text{FSC}_t \times t_{FSC_t} \\
\end{align*}
\]

Costs

The Woodflow UX tool (Creative Optimization Sweden AB, Halmstad, Sweden) was used to optimize the routes from the forest to the terminals by minimizing the transportation cost (TC). The objective functions to be minimized were the
Figure 2. Schematic view of the transportation system from the forest to the biorefinery (LR: logging residues, LRC: logging residue chips, EW: energy wood, and EWC: energy wood chips).

where CLR is the procurement cost for logging residues, CEW is the procurement cost for energy wood, F...F = index for forests with available product, T...T = index for terminals, dLR is the demand of logging residues and dEW is the demand of energy wood.

The tool could choose the least expensive option among procurement systems PS_A, PS_B, and PS_C for delivery of logging residues, and between PS_DRF and PS_DTE for delivery of energy wood. The procurement costs (CLR and CEW) depended on procurement system and on transport distances for the different procurement systems and were used as input data for the Woodflow tool. These procurement costs were calculated by first calculating the transportation cost from forest to terminal and then add fixed cost for the purchase of biomass, harvesting, forwarding, comminution and unloading at the terminal (Table 5). The transportation costs were calculated in the excel application FLIS (von Hofsten et al. 2005) and were based on fixed time and costs for different work elements, and variable distance-dependent costs (Tables 6 and 7).

The terminal-to-biorefinery transportation cost was calculated based on fixed distances from the terminal to the biorefinery for procurement systems PS_60L, PS_60E, PS_74L, PS_74E, and fixed costs and times for different work elements, and variable costs depending on the transportation distance (Tables 6 and 7). The transportation cost for PS_TL and PS_TE was based on the function reported by Tahvanainen and Anttila (2011). All transportation costs from terminals to biorefinery included the cost for loading and unloading. The cost for loading PSTL and PSTE was set to 13 and 12 SEK/BDt, respectively (Tahvanainen and Anttila 2011). The cost for unloading PSTL and PSTE was set to 8 and 7 SEK/BDt, respectively (Tahvanainen and Anttila 2011). The cost for unloading and loading PS_60L and PS_74L was assumed to be equal to that of PSTL. Moreover, the cost for unloading and loading PS_60E and PS_74E was assumed to be equal to that of PS_TE. Where necessary, currencies were converted from Euro (€) to Swedish crowns (SEK), using a conversion rate of 9.94 SEK=1€.

Calculation of transportation work
The transportation work was calculated both from forests to terminals and from terminals to the biorefinery as tonnekm, i.e. the amount of BDt transported multiplied by the transportation distance. These calculations were based on the amount of biomass that was delivered to each individual terminal from each individual supply point, the transportation distance between the individual terminals and forests, and the fixed terminal-to-biorefinery transportation distance.

Results
Cost functions
PS_A, PS_C, and PS_B were the most cost-effective procurement systems for short (<23 km), medium (23–50 km), and long (>50 km) transportation distances (Tables 8 and Figure 3), respectively. PS_DRF was the most cost-effective procurement system for energy wood.

PS_TL and PS_TE were the most cost-effective options for long-distance transportation from the terminal to the biorefinery (Table 8 and Figure 3) while PS_74L and PS_74E were less costly for distances below 55 and 50 km, respectively. For distances lower than 45 km, PS_60L and PS_60E were less costly than trains. However, transportation was always more cost effective for 74 tonnes trucks than for 60 tonnes trucks (1–67 SEK/BDt). Similarly, the transportation of energy wood chips was always less costly than the transportation of logging residue chips. This difference was marginal for truck transportation (<1 SEK/BDt), and more significant for train transportation (3–10 SEK/BDt).

Procurement optimization
The total procurement costs of logging residue to terminals were 153.5 and 130 MSEK for FSC and FOCO, respectively, in the restricted access scenario. These costs were reduced by 5.5% (145 MSEK) and 2.3% (127 MSEK), respectively, in the open-access scenario. In the restricted access and open...
Table 6. Input variables to calculate the transportation cost (SEK/BDt) in the FLIS excel application (von Hofsten et al. 2005) for logging residues transported with logging residue trucks (PSA), logging residue chips transported with chip trucks (PSB) or chipper trucks (PSC), and energy wood from regeneration fellings (PSDRF) or thinnings (PSDT) transported with timber trucks depending on the distance between landings and terminals (km). Input variables to calculate cost for 60 tonnes gross weight trucks transporting logging residue chips (PS60L) or energy wood chips (PS60E), and 74 tonnes gross weight trucks transporting logging residue chips (PS74L) or energy wood chips (PS74E) depending on the distance between the terminals and the biorefinery.

Procurement system	To terminal	To biorefinery				
	PSA	PSB	PSC	PSDRF/PSDT	PS60L/PS60E	PS74L/PS74E
Constant	584.59	633.59	597.69	587.01	767.98	40.531
km	2.8134	1.5475	2.2237	1.713	1.713	1.3546

- indicates no value. AAsmoarp et al. (2015). BL Berglund and Larsson (2012). EEnström and von Hofsten (2015). EJP elliasson and Picchi (2010). F Friberg and Hansson (2012). JOelsson et al. (2016). JGJohansson et al. (2014). JHJohansson and von Hofsten (2017). LLindström (2014). LLaitila et al. (2016) (two shift). LJJ Laitila (2008). MMagnusson (2011) (including crane). NNäslund (2006). NNilsson (2015). RRanta (2002) varies with transportation distance. Spånberg (2016). Trolin (2013). *indicates that the value is assumed to have the same relative difference as other trucks. +indicates that the value is assumed increase or decrease relative to truck weight. ** indicates that the value is assumed to be the same as for another truck. ** indicates that the value is assumed to increase or decrease relative to truck weight. ** for calculation details see Table 7.

Table 7. Calculation of yearly salary costs for truck drivers.

Value
Base salary (SEK/hour)
Pensions- & vacation addition (%)
Social charge (%)
Workdays (no/year)
Work hours (h/day)
Unsocial hours pay (hour/day)
Unsocial hours pay (hour/shift)
Σ driver cost (SEK/year)

Based on data from Widman (2015) access scenarios, the total procurement costs of energy wood to the terminal were: 470 kSEK (FSC), 1,298 kSEK (FOCO), and 3.2% lower, i.e. 455 kSEK (FSC) and 1,256 kSEK (FOCO), respectively.

The total amount of logging residues transported from FCS and FOCO regions varied with the scenario (Tables 9 and 10). Approximately 175,000 BDt and ∼183,000 BDt of logging residues were delivered by FCS and FOCO, respectively, in both scenarios. However, the amount of energy wood transported was the same for both the restricted access and open access scenarios.

Table 8. Procurement cost functions (SEK/BDt) depending on the distance between landings and terminals (km) for logging residues transported with logging residue trucks (PSA), logging residue chips transported with chip trucks (PSB) or chipper trucks (PSC), and energy wood from regeneration fellings (PS60L) or thinnings (PS60E) transported with timber trucks. Calculated transportation cost functions depending on the distance between the terminals and the biorefinery (km) for 60 tonnes (gross weight) trucks transporting logging residue chips (PS60L) or energy wood chips (PS60E), and 74 tonnes (gross weight) trucks transporting logging residue chips (PS74L) or energy wood chips (PS74E), and trains transporting logging residue chips (PS74T) or energy wood chips (PS74E) depending on the distance between the terminals and the biorefinery.
Consider the delivery of logging residues to the terminal. FCS and FOCO required 27,631,425 tonnekm and 9,341,333 tonnekm, respectively, in the restricted access scenario, but respective values of only 22,019,337 tonnekm (20.3% decrease) and 7,830,094 tonnekm (16.2% decrease) in the open-access scenario. Similar trends were observed for energy wood deliveries to the terminal. FCS and FOCO required 51,081 tonnekm and 132,516 tonnekm, respectively, in the restricted access scenario, but only 42,428 tonnekm (16.9% lower) and 108,574 tonnekm (18.1% lower) in the open-access scenario. Furthermore, the open-access scenario resulted in a shift in the procurement system used for delivery of the logging residue to the terminal (Tables 9 and 10). The deliveries with PS_B decreased for FCS and FOCO in the open-access scenario, while the deliveries with PS_A and PS_C increased. This shift was more significant for FOCO (than for FCS) where the volume transported with PS_B decreased by 37%, and the volume transported with PS_A and PS_C increased by 137% and 58%, respectively. The corresponding values for FCS were a 10% decrease, and a 42% and 34% increase, respectively.

Transportation from the terminal to the biorefinery
Train transportation was always chosen when the terminal had a railroad connection, even when the transportation distance was substantially longer with train than with truck (Table 2). The total cost for transportation from terminals to the biorefinery was higher for FOCO than for FCS, due to different delivery volumes (Table 11). However, the cost per BDt from terminals to the biorefinery was the same for both suppliers.

Compared with the open-access scenario, the restricted access scenario was associated with higher costs for both FCS and FOCO (Table 11). The total transportation cost for FCS chip deliveries to the biorefinery from terminals when terminals without railroad access was assumed to use PS_60L, PS_74L, PS_60E, and PS_74E was reduced by 9.0%, 7.7%, 9.5%, and 8.2%, respectively, in the open-access scenario. The corresponding values for FOCO were 8.9%, 7.6%, 9.5, and 8.2%.

The use of 60 or 74 tonnes gross weight trucks for terminals without railroad access lead to that the cost for logging residue chips from FCS and FOCO was reduced by 4.26% when PS_74L (rather than PS_60L) was used in the restricted access scenario (Table 11). A 2.94% decrease was realized for the open-access scenario. The cost of energy wood chip deliveries decreased by 4.33% and 2.88% in the restricted and open access scenarios, respectively, when PS_74E (rather than PS_60E) was used, for both FCS and FOCO.

Table 9. Volume, average transportation distance (Avg.distance), cost, and transportation work (Transport) in the restricted access scenario for logging residues transported with logging residue trucks (PS_A); logging residue chips transported with chip trucks (PS_B) or chipper trucks (PS_C); and energy wood from regeneration fellings (PS_DRF) or thinning (PS_DTF) transported with timber trucks

	FOCO	FCS
Volume (BDt)	7,785	3,581
Avg.distance (km)	11.1	21.0
Cost (SEK/BDt)	614	621
Transport (k BDt km)	86	75

Table 10. Volume, average transportation distance (Avg.distance), cost, and transportation work (Transport) in the open access scenario for logging residues transported with logging residue trucks (PS_A); logging residue chips transported with chip trucks (PS_B) or chipper trucks (PS_C); and energy wood from regeneration fellings (PS_DRF) or thinning (PS_DTF) transported with timber trucks

	FOCO	FCS
Volume (BDt)	18,456	5,077
Avg.distance (km)	13.5	16.3
Cost (SEK/BDt)	621	629
Transport (k BDt km)	250	83
Table 11. Description of procurement system from terminals to the biorefinery for logging residue (LRC) and energy wood (EWC) chips in the open access (Open) and restricted access (Rest) scenario.

Description of procurement system from terminals to the biorefinery for logging residue (LRC) and energy wood (EWC) chips in the open access (Open) and restricted access (Rest) scenario.	FOCO	EWC	FOCO	EWC
Delivered volume (BDt)	183,407	183,284	1,677	1,677
Delivered volume by truck (BDt)	48,551	78,893	444	722
Delivered volume by train (BDt)	134,856	104,391	1,233	955
Transportation work by truck (k BDt km)	10,163	16,524	93	151
Transportation work by train (k BDt km)	41,166	33,376	376	305
Total cost with 60 tonnes trucks (kSEK)	43,116	47,346	385	426
Total cost with 74 tonnes trucks (kSEK)	41,875	45,328	374	407

Table 12. Total estimated procurement cost from forests to the biorefinery in the open access (Open) and restricted access (Rest) scenario. Transportation from terminals without railroad access to the biorefinery was assumed to be done with 60 tonnes or 74 tonnes gross weight trucks transporting logging residues (PS60L and PS74L, respectively) and energy wood (PS60E and PS74E, respectively).

Description of procurement system from terminals to the biorefinery for logging residue (LRC) and energy wood (EWC) chips in the open access (Open) and restricted access (Rest) scenario.	PS60L	PS74L	PS60E	PS74E
MSEK/BDt	177.3	170.1	198.8	186.2
SEK/BDt	968	957	1,134	1,062
MSEK/BDt km	1,724	1,641	622	593
SEK/BDt km	1,028	979	1,039	1,055
MSEK	1,705	1,630	616	589
SEK	1,017	972	1,028	983

The transportation work required for transportation from terminals to the biorefinery differed between the scenarios. For FCS and FOCO, the transportation work for logging residue chips in the open-access scenario with (i) trucks decreased by 38.4% and 38.5%, respectively, and (ii) train increased by 29.1% and 29.2%, respectively, compared to the restricted access scenario. For both FCS and FOCO in the open-access scenarios, the transportation work with trucks for energy wood chip deliveries decreased by 38.5%, compared to the restricted access scenario. The transportation work with trains, in contrast, increased by 29.0% and 29.1%, respectively.

Total cost

The overall procurement cost was lower for FOCO than for FCS in both scenarios regardless of if the transportation from terminals without railroad access to the biorefinery was made with 60 or 74 tonne gross weight trucks (Table 12). The cost per BDt in the restricted access scenario for FOCO chip deliveries to the biorefinery from the forest was 14.7, 14.7, 1.1, and 1.1% lower than for FSC when terminals without railroad access used PS60L, PS74L, PS60E, and PS74E, respectively. The corresponding values in the open-access scenario were 12.6%, 12.7%, 1.0, and 1.1%.

Discussion

The procurement cost per BDt for logging residue deliveries from forest to terminals were higher for FCS than for FOCO. This resulted from the fact that FCS was unable to fulfill the delivery requirements to the biorefinery, even when all available volume was delivered (Tables 1 and 2). Therefore, deliveries from forests located far away from the terminals were necessary, resulting in a relatively high forest-to-terminal procurement cost. A similar trend was observed, albeit with a smaller difference, for the energy wood deliveries where delivery of all available volume was required for both FCS and FOCO. These differences indicated that the location of the forest influences the forest-to-terminal transportation cost (Table 1 and Figure 1). Moreover, FOCO, having a greater harvestable area than FCS, constituted a more favorably located share of the forest. For FOCO, the average transportation distance to terminal from the forest increased for PS60L and PS74L in the open-access scenario, while it decreased for PS60E and PS74E (Tables 9 and 10). For FCS, the average transportation distance to terminal from the forest increased for PS60L in the open-access scenario, while it decreased for PS60E and PS74E. While the volume delivered by PS60L and PS74E increased, and the volume delivered by PS60E decreased for both suppliers. These changes further imply that there are differences in the location and the amount of the forest for the two suppliers, and that FOCO have a more favorable situation. These differences also lead to that the cost reduction associated with the open access scenario was larger for FCS than for FOCO, as the introduction of new terminals reduced the transportation distance more for FCS than for FOCO. Compared with the cost, the forest-to-terminal transportation work (BDt×km) was affected by the same factors and exhibited similar characteristics. The transportation work by FCS was approximately three-fold that of FOCO in the restricted access scenario for logging residues, and ~2.8 times larger in the open access scenario (Tables 9 and 10). These results indicated that FOCO is the preferred main supplier and that the open access scenario is preferable (to the restricted access scenario) from both an economical and environmental perspective.

The transportation cost per BDt for logging residues and energy wood from terminals to the biorefinery was the same for both FCS and FOCO. However, the transportation cost associated with the open-access scenario was lower than that corresponding for the restricted access scenario. Similarly, for both scenarios, the transportation costs between terminals and the biorefinery were lower for trucks with a gross weight of 74 tonnes than for trucks with a gross weight of 60 tonnes. These results are consistent with those reported by Laitila et al. (2016) who found that
The total cost per BDt from the forest to the biorefinery was higher than the cost reported by Athanassiadis and Nordfjell (2017). However, the cost in the present study included long-distance transportation to one biorefinery at the coast, and the costs are therefore probably comparable. In the present study, landowners using the forest biomass for owner-operated industries were excluded. Landowners with a major possession close to the mountains were also excluded, as harvesting of logging residues in those regions is questionable. An interesting aspect for further investigation would be to allow deliveries from additional landowners and a mix of different landowners, thereby probably yielding further reductions in the transportation cost and work. This combination was neglected in the present study, as the aim was to investigate the potential of open access terminals for FCS and FOCO in the forest biomass supply chain. Quite small volumes of energy wood were considered in the present study. Transportation of this wood only would be too expensive due to the small volumes on each landing. Therefore, in practice, the energy wood would probably be transported with the normal pulpwod or timber to industries or terminals and then separated. The amount of energy wood was assumed to be 2% of the pulpwod volume. This estimation is probably valid for RF and late thinnings, in current market conditions. However, the value could be significantly higher in early thinnings, where the energy wood harvest can be more profitable than the pulp wood harvest (Iwarson-Wide 2011; Routa et al. 2013; Karttunen et al. 2016). Depending on the minimum requirements for pulpwod, energy wood may represent a significant share of early thinning. Other market conditions with relative higher price on energy wood compared to pulp wood could also increase the amount of energy wood. Hence, procurement-cost estimations for this wood are warranted. Regardless of the limitations it is clear that the open-access scenario reduces the procurement cost and transportation work from forests to terminals.

The cost functions for the biomass are based on a literature survey about Nordic conditions and, therefore, uncertainties regarding the transport conditions at an individual terminal are always encountered. This uncertainty may be significant if some terminals are characterized by conditions that deviate considerably from the average, e.g. old machines with a relatively long unloading time. However, in the present study, these differences are expected to have only a modest impact on the results regarding the preferred scenario and supplier. Nevertheless, the potential differences in the transportation system, suppliers, and terminal machines associated with different terminals could be considered in future studies.

The cost function constructed in the present study is largely consistent with that reported by Eliasson (2015), where PS_A, PS_C, and PS_B were the most cost-effective options for short, medium, and long transportation distances (Table 8), respectively. However, scale effects (e.g. size of logging sites), which are important for PS_B as it is most suited for mid-sized and large landings, have been neglected in our study (Asmoarp 2013). This could influence the results on individual landings, thereby rendering PS_C preferable for small landings on longer transportation distances. The cost function for the train transportation used in the present study was mainly based on relatively long transportation distances and, hence, the cost for short distances may be dubious. However, the results concur with those of previous studies, i.e. (i) truck transportation is the preferred option for short transportation distances, (ii) an increase in the truck weight has only a marginal effect on whether the train is the preferred option, and (iii) the train is the preferred option for long transportation distances (Lööf 2015).

Direct transportation to the biorefinery was not investigated as the closest forest was located relatively far from the biorefinery (Figure 1). Furthermore, Tahvanainen and Aantila (2011) found that at 135–165 km, train transportation becomes more profitable than at other options. An estimate based on the cost function presented in this paper (Table 8) revealed that an initial 20 km "backward" transport to a terminal and a subsequent 150 km train transport to the biorefinery would be more profitable than a direct 130 km transport. However, from a cost perspective, 74 tonnes trucks require far longer distances before reloading at a terminal would be profitable. This finding indicated that, for reduced transportation costs, terminals without railroad connections are interesting. However, connection-free terminals may still be useful for supply security reasons, and if the biorefinery lacks communication ability (Kanzian et al. 2009; Rauch and Gronalt 2010). From an economical point of view, transporting biomass directly from some forest to the biorefinery could be better than the investigate transportation via terminal. This may be considered in future studies, while this topic was neglected in the present study as the aim was to compare the open access and the restricted access scenarios.

The current market price for forest chips at the biorefinery is ∼199 SEK/MWh (Swedish Energy Agency 2020), which translates to a price of ∼1,061 SEK/BDt (Ringman 1996). Therefore, most deliveries from FCS will be profitable, whereas all from FOCO could be profitable.
However, other costs that were neglected in the present study must be added to the cost of the biomass before profitability can be assessed. The rental cost of the terminal, which is difficult to access in the current market, must be added. Administrative costs and risk margins must also be included (these costs can vary significantly between different companies and were therefore excluded from the present study).

Despite the limitations of the study, the results clearly revealed that the open access scenario was better than the restricted access scenario. However, conditions where all terminals are open are difficult to achieve. The openness depends mainly on the difficulty associated with determining the amount the terminal guest should pay the terminal owner. Moreover, some companies could view terminals as a strategic advantage, and therefore competitor use of the terminal (even for a fee) is undesired. Therefore, steering and regulations may be required for achieving this openness, which is difficult to implement for terminals that were built by private companies. However, this openness could be implemented for new terminals when the companies apply for a building permit.

Conclusions

The total forest-to-terminal procurement cost associated with the open access scenario was 2–6% lower than that of the restricted access scenario. In the open-access scenario, there was a clear shift towards relatively short transportation distances with increasing use of PS₁ and PS₂ (rather than PS₀). This shift resulted in a 16–20% decrease in the transportation work required for delivering the biomass to a terminal. The terminal-to-bioenergy transportation cost associated with the open-access scenario was 7–9% lower than that corresponding to the restricted access scenario. The transportation cost could, in both scenarios, be reduced by using 74 tonnes trucks (rather than 60 tonnes trucks). However, the largest impact was that a large part of the transportation work was shifted from truck to train in the open-access scenario (in contrast to the restricted access scenario).

From a cost and transportation perspective, FOCO was the preferred main supplier for the bioenergy refinery considered in the present study. Therefore, in the ideal situation, FOCO would serve as the main deliverer of biomass, all terminals are open, and 74 tonnes trucks are allowed on all roads that connect a terminal (without a railroad connection) to a bioenergy refinery.

Acknowledgements

The study was financed by the Botnia-Atlantica program through the BioHub project and by the research platform Bio4Energy.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Funding

The study was funded by the Botnia-Atlantica program through the BioHub project.

ORCID

Simon Berg [http://orcid.org/0000-0002-6033-8615

References

Anon. 2018. Fältinstruktion 2018 RIS-Riksinventeringen av skog [Field Instructions 2018 IRS- National inventory of forest]. Umeå: Swedish University of Agricultural Sciences, Department of Forest Resource Management and Swedish University of Agricultural Sciences, Swedish Forest Soil Inventory.

Asmoaap V. 2013. Terminalstrategier för skogsbränsle på Södra Skogsenergi [Terminal strategies for wood chips at Södra Skogsenergi]. Umeå: Sveriges lantbruksuniversitet, Institutionen för skoglig resurshushållning. Arbetsrapport. 399.

Asmoaap V, Jonsson R, Funck J. 2015. Fokusvecko-Bränsleuppföljning för ett 74 tons flisfordon inom projektet ETT-Flis [Focus weeks 2015 - Fuel consumption follow-up for a 74 tonne chip truck within the project ET-Flis]. Uppsala: Skogforsk. Arbetsrapport. 890.

Athanassiadis D, Nordfjell T. 2017. Regional GIS-based evaluation of the potential and supply costs of forest biomass in Sweden. Front Agr Sci Eng. 4(4):493–501.

Berg S, Athanassiadis D. 2019. Opportunity cost of several methods for determining forest biomass terminal locations in northern Sweden. Int J For Eng. 31(1):37–50.

Berglund M, Larsson J. 2012. En jämförande kostnadsanalys av maskinsystem för upparbetning och transport av GROT [A comparative cost analysis of machine systems for chipping and transport of logging residues]. Umeå: Sveriges lantbruksuniversitet, Institutionen för skoglig resurshushållning. Arbetsrapport. 336.

Børjesson P, Hansson J, Berndes G. 2017. Future demand for forest-based biomass energy in Sweden. For Ecol Manag. 383:17–26.

Brunberg T. 2006. 2005 – stormens år. Uppsala: Skogforsk. Resultat. 2016 (11):1–2. (2005 – the year of the storm).

Brunberg T. 2010. Skogsbränsle: metodor, sortiment och kostnader 2009. Uppsala: Skogforsk. Resultat. 2010(12):1–2. [Forest fuels: methods, assortments and costs 2009].

Brunberg T. 2015. Skogsbränsle - trender över 5 år. In: Iwarson-Wide M, Palmer CH, editors. Skogsenergi -en källa till hållbar framtid. Uppsala: Skogforsk; p. 36–37. [Forest fuels - a 5-year trend overview].

Christiansen L, editor. 2015. Procurement costs for logging residues. In: Thorsén Å, Eliasson L, Picchi G. 2010. Huggbilar med lastväxlare och containrar [Cipper trucks with container system]. Uppsala: Skogforsk; Arbetsrapport. 715.

Claesson S, Duvemo K, Lundström A, Wikberg P-E. 2015. Skogliga konsekvensanalys 2015 – SKA 15 [Forest consequence analysis 2015 - SKA 15]. Jönköping: Skogsstyrelsen. Rapport. 10.

Eliasson L. 2015. Procurement costs for logging residues. In: Thorsén Å, Björkveden R, Eliasson L, editor. Efficient forest fuel supply systems-Composite report from a four year R&D programme 2007–2010. Uppsala: Skogforsk; p. 24–28.

European Commission. 2011. A Roadmap for moving to a competitive low carbon economy in 2050. COM(2011) 112 final.

Friberg G, Hansson J. 2012. Kostnadsanalys för flis med terminalhantering på Basamyran [Cost calculation for wood chips with terminal handling
Näslund M. 2006. Vägtransport av lätt och buntad grot [Road transport of light and baled chippings]. Sveriges lantbruksuniversitet, Institutionen för skoglig resurseffektivitet. Meddelande. 3.

Fridth M, Christiansen L. 2015. Rundvikt, -och skogsrutens balanser för år 2013 – SKA 15 [Roundwood and forest fuel balances for year 2013 – SKA 15]. Jönköping: Skogsstyrelsens.

Fridman J, Holm S, Nilsson M, Nilsson P, Ringvall AH, Ståhl G. 2014. Adapting national forest inventories to changing requirements – the case of the Swedish National Forest Inventory at the turn of the 20th century. Silva Fenn. 48(3):1–29.

Giuliano A, Poletto M, Barletta D. 2016. Process optimization of a multi-product biorefinery: the effect of biomass seasonality. Chem Eng Res Des. 107:236–252.

Iwarson-Wide M. 2011. Var går gränsen? Massaved och/eller energiuttag i källgrogen [Where is the breakpoint? Extraction of pulp wood and/or energy wood in thinning of small-dimension stands]. Uppsala: Skogsforsk. Resultat. 9.

Iwarson-Wide M, Palmer CH, editors. 2015. Skogensenergi - en källa till hållbara framtid [Forest energy - a source to a sustainable future]. Uppsala: Skogsforsk. Arbetsrapport. 850.

Jonsson Y. 1985. Teknik för tillvaratagande av stubbved. Uppsala:

Kanzian C, Holzleitner F, Stampfer K, Ashton S. 2009. Regional energy wood assortments - De \n
Kons K. 2015. Forest biomass terminal properties and activities. Umeå:

Kotzev B. 2019. Swedish Energy Agency. 2020. Statistikdatabas [Statistical database].

Lindström J. 2014. Analys av potentiellt kostnadbesparing vid införande av ST-kran [Analysis of the potential cost savings when implementing ST-crane]. Sveriges lantbruksuniversitet: Umeå. Institutionen för Skogens biomaterial och teknologi. Arbetsrapport. 16.

Löf M. 2015. En systemanalys av tyngre lastbilars påverkan på timmerbilar [An analysis on the effects of heavier vehicles impact on railway transportation]. Uppsala: Sveriges lantbruksuniversitet. Institutionen för skogens producer. Examensarbete. 161.

Lundin K. 2017. Svenskt fälts lockar kineser [Swedish wood chips attracts the chinese]. Di; [accessed 2007 Apr 23]. http://www.die.se/nyheter/svenskt-fells-lockar-kineser?utm_campaign=unspecifed&utm_content=unspecificed&utm_medium=email&utm_source=apis-anp-3.

Magnusson A. 2011. Ekonomisk värdering av användandet av underbett av timmer [An economic evaluation of truck-mounted scrapers for road maintenance]. Sveriges lantbruksuniversitet: Umeå. Institutionen för skoglig resurseffektivitet. Arbetsrapport. 338.

Nilsson M. 2015. Kostnads effektiv skogsbränslehantering-Hur ska vi hantera skogsbränslet för bästa ekonomiska resultat? [Cost-effective wood-fuel handling—How shall we handle wood-fuel for best economic result?]. Växjö: Linneuniversitetet, Institutionen för Skogs och träteknik.

Ranta T. 2002. Loggning residues from regeneration fellings for biofuel production – a GIS-based availability and cost supply analysis. Lappeenranta University of Technology. Finland. Lappeenranta: Lappeenranta University of Technology. Acta Universitatis Lappeenraetneasia. 128.

Rauh P, Gronell M. 2010. The terminal location problem in the forest fuels supply network. Int J For Eng. 21(2):32–40.

Ringman M. 1996. Trädbränslesortiment- Definitioner och egenskaper [Wood fuel assortments - Definitions and Properties]. Uppsala: Swedish university of Agricultural Sciences, Department of forest products. Rapport. 250.

Routa J, Asikainen A, Björheden R, Laitila J, Röser D. 2013. Forest energy procurement: state of the art in Finland and Sweden. Wiley Interdiscip Rev: Energy Environ. 2(6):602–613.

Sonnell J. 2006. Operation Gudrun - Erfarenheter och förslag till förbättringar [Operation Gudrun - Experiences and suggestions for improvement]. Uppsala: Skogsforsk. Arbetsrapport. 617.

Spånberg K. 2016. Logistikstudie Av Ett Filisystem Med 74 tons Filisepage [Study of the logistics for a communication system with a 74-ton truck chip]. Skinskatteberg: Sveriges lantbruksuniversitet, Skogsvetenskapliga fakulteten, Skogsstarmäshallanen. Examensarbete. 13.

Swedish Energy Agency. 2020. Statistikdatabas [Statistical database].

Swedish Transport Administration. 2019a. BK4 Vägar region mitt [BK4 roads in region mitt]. Swedish Transport Administration. [accessed 2019 Oct 26] https://www.trafikverket.se/globalassets/bilder-gemensamma/bk4-kartor/regionkartor-bk4/bk4_vagar_region_mitt_20190701.pdf.

Swedish Transport Administration. 2019b. BK4 Vägar region nord [BK4 roads in region nord]. Swedish Transport Administration. [accessed 2019 Oct 26] https://www.trafikverket.se/globalassets/bilder-gemensamma/bk4-kartor/regionkartor-bk4/bk4-vagar-region-nord.pdf.

Svanhainen T, Anttila P. 2011. Supply chain cost analysis of long-distance transportation of energy wood in Finland. Biomass Bioenergy. 35 (8):3360–3375.

Toet H, Fridman J, Holm S. 2007. Precisionen i Rikskostnadsstyringens skattning 1998-2002 [Precision in Swedish national forest inventory estimations 1998–2002]. Umeå: Swedish University of Agricultural Sciences, Department of Forest Resource Management. Examensarbete. 2013(5).

Trolin H. 2013. En jämförande studie av fem lastbilsmontaderade fishuggar [A time study of five truck-mounted wood chippers]. Skinskateberg: Sveriges. lantbruksuniversitet, Skogsvetenskapliga fakulteten, Skogsstarmäshallanen.

von Hofsten H, Lundström H, Nörden B, Thor M. 2005. System för uttag av skogsbränsle - analyser av sju slutavverkningsprocess och fyra galrings-systemin [System for extraction of forest fuels - analysis of seven final harvesting systems and four thinning systems]. Uppsala: Skogsforsk. Arbetsrapport. 597.

Widman J. 2015. Kostnadsanalys av transportarbete vid ändrade arbetstider och skiftformer för åkerier som levererar virke till Bravikens Pappersbruks och Sävagärskost [Cost-analysis of changing working hours and shifts of trucking companies that supplies timber to Braviken paper mill and sawmill]. Umeå: Sveriges lantbruksuniversitet, Institutionen för Skogens Biomaterial och Teknologi. Arbetsrapport. 14.
Wikstrom P, Edenius L, Elfving B, Eriksson LO, Lamas T, Sonesson J, Ohman K, Wallerman J, Waller C, Klinteback F. 2011. The Heureka forestry decision support system: an overview. Mathematical and Computational Forestry and Natural Resources Sciences. 3(2):87–94.

Wolfsmayr UJ, Rauch P. 2014. The primary forest fuel supply chain: a literature review. Biomass Bioenergy. 60:203–221.

Zachrisson M. 2017. 74 tons lastbilar för jobb och klimat [74 tonnes trucks for employment and climate]. Stockholm: Government Office of Sweden.