Gene expression profile and molecular pathway datasets resulting from benzo(a)pyrene exposure in the liver and testis of adult tilapia

Reyna Cristina Colli-Dula, Xiefan Fang, David Moraga-Amador, Nacira Albornoz-Abud, Roberto Zamora-Bustillos, Ana Conesa, Omar Zapata-Perez, Diego Moreno, Emanuel Hernandez-Nunez

CONACYT, Mexico
Departamento de Recursos del Mar, Cinvestav Unidad Mérida, Mérida, Yucatán 97310, Mexico
Department of Pediatrics, University of Florida, Gainesville, FL 32610, USA
ICBR, University of Florida, Gainesville, FL 32610, USA
TecNM/Instituto Tecnológico de Conkal, Laboratorio de Genética Molecular, Conkal, Yucatán 97345, Mexico
Centro de Investigación Princepe Felipe, 46012 Valencia, Spain
Microbiology and Cell Science, Institute for Food and Agricultural Sciences, Genetics Institute, University of Florida, Gainesville, FL 32603, USA
Universidad Autónoma de Yucatán. Facultad de Ingeniería Ambiental, Mérida, Yucatán 97150, Mexico

ABSTRACT

Benzo(a)pyrene (BaP), the prototype of polycyclic aromatic hydrocarbons, is known to exhibit genotoxic and carcinogenic effects promoting molecular impacts. The dataset presented here is associated with the research article paper entitled “Transcriptome Analysis Reveals Novel Insights Into the Response of Low-dose Benzo(a)pyrene Exposure in Male Tilapia”. In this article, we presented a transcriptomic characterization of male tilapia exposure to BaP in the short term. This data provides an extended analysis of changes in the gene expression and identification of pathways in the liver and testis of male tilapia exposure to BaP. We used gene set enrichment analysis (GSEA) and sub-network enrichment analysis (SNEA) to identify gene networks and pathways.
associated with molecular adverse effects of BaP exposure. The
data indicates that target pathways related to promoting carcino-
genesis such as DNA repair and DNA replication were affected as
well as other crucial biological processes. Moreover, to determine
whether some of the key reported genes of DNA damage are
affected by BaP exposure, Quantitative PCR (qPCR) was performed.
Gene set categories and sub-networks are provided and the cor-
responding signature differences from BaP exposure are listed. The
information in these datasets may contribute to understanding the
potential carcinogenesis mechanism of action from low BaP
exposure.

© 2018 The Authors. Published by Elsevier Inc. This is an open
access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

Specifications table
Subject area
More specific subject area
Type of data
How data was acquired
Data format
Experimental factors
Experimental features
Data source location
Data accessibility
Related research article

Value of data

- The data explores the biological mechanism of action of BaP in the liver and testis of male tilapia by a high throughput transcriptomic approach (RNA-Sequencing).
- The data provides ample information of changes in gene expression, subnetworks and functional enrichment analysis associated with several biological processes after BaP treatment.
The molecular signature identified for BaP exposure is very useful to other researchers that may explore the mechanism of action of BaP in non-model organism such as tilapia.

- New gene sets associated with molecular adverse effects of BaP can be useful in understanding the role of BaP into the activation of apoptotic signals in tilapia.
- This data may contribute to understanding the BaP mechanisms associated with adverse effects in tilapia.

1. Data

These data sets provide information on the BaP molecular effects in tilapia testes and liver. Table 1 presents all the primer sets used for qPCR analysis. All primers used were previously validated as indicated in the $2^{-\Delta\Delta CT}$ method [2]. Of these genes evaluated, Cyp1b1, Ddit4, Gadd45b and Fasn showed significant changes in their levels of expression from BaP exposure ($p < 0.05$) (Table 5 in [1]). Table 2 presents a partial list of the characterization of gene expression profiling of RNA-data by BaP exposure. This data shows a larger number of altered genes in the liver related with adverse molecular effects on the cell cycle and with several other biological processes. Table 3 shows GO categories and Table 4 identifies gene networks altered by a low concentration of BaP in the liver and testis of male tilapia. All significantly altered genes are listed in Table SI as well as identified GO categories and subnetworks which are present.

2. Experimental design, materials and methods

Liver and testis samples were collected as were controls. Analysis of gene expression profile RNA-Seq was performed as is mentioned in [1]. Briefly, Tilapia RNA-Seq reads were trimmed, clean reads aligned to reference genome using Tophat [3,4]. Differential expression analysis was conducted using exact test with R package EdgeR ($p < 0.05$; fold change $> \pm 1.5$ were considered as significant). Elsevier PathwayStudioTM V9 (Elsevier, Inc., Rockville, MD, USA) operating with the ResNet 10.0 database was used to identify the biological mechanism that underlie the BaP effects. The gene set enrichment analysis (GSEA) and subnetwork enrichment analysis (SNEA) algorithms (applying the Mann–Whitney test with an alpha level of $p < 0.05$) [5–7]. Quantitative PCR (qPCR) was used to evaluate the transcriptomic changes of key genes such as Ddit4, Gadd45b and Igf2, Tet3 and Fasn involved in important functions, i.e, DNA damage, growth and development. The rpl8 gene was used as the internal reference normalizer gene.

Gene symbols	Description	Forward primer 5′ → 3′	Reverse primer 5′ → 3′	Amplicon size (bp)	Aligned temp (°C)
CYP1B1	Cytochrome P450, family 1, subfamily B, polypeptide 1	gggctacacgtaccacaaaga agcgctctgggtcaaagata	104	56	
GADD45	Growth arrest and DNA damage inducible beta	gggagcggggtgagtttcagctcgctctgggtcaaagata	84	58	
DDIT4	DNA-damage-inducible transcript 4	ttcctgggacgtcctggttg	99	58	
IGF2	Insulin-like growth factor 2	gccctctctgctctggttg	92	58	
TET3	Tet methylcytosine dioxygenase 3	aagggccctctggttg	80	58	
FASN	Fatty acid synthase	gacgacgctggcctacagc	79	58	
RPL8	Ribosomal Protein L8	ggtgctgagttgcaggtgcat	125	56	
Table 2
Partial list of the characterization of gene expression profiling of RNA-data. Identified transcripts are involved with electron transport/ATP synthesis, DNA methylation, growth and development, cell cycle machinery and apoptotic signals.

Characterization of gene expression profiling of tilapia RNA-seq data

HGNC symbol	Description	Liver	Testis
Electron transport/ATP synthesis			
ACLY	ATP citrate lyase a [Source:ZFIN;Acc:ZDB-GENE-031113-1]	-5.5	1.0
ATP6V1E1A	ATPase, H+ transporting, lysosomal, V1 subunit E1a [Source:ZFIN;Acc:ZDB-GENE-041212-51]	3.8	3.8
ATAD2	ATPase family, AAA domain containing 2 [Source:HGNC Symbol;Acc:HGNC:30123]	-4.1	0.7
ATAD2	ATPase family, AAA domain containing 2 [Source:ZFIN;Acc:ZDB-GENE-030131-7003]	-2.1	1.2
PSMD1	proteasome 26S subunit, non-ATPase 1 [Source:ZFIN;Acc:ZDB-GENE-040426-810]	-1.6	2.1
ABCE1	ATP-binding cassette, sub-family E (OABP), member 1 [Source:ZFIN;Acc:ZDB-GENE-040426-1995]	1.8	2.5
ABCA3	ATP-binding cassette, sub-family A (ABC1), member 3b [Source:ZFIN;Acc:ZDB-GENE-050517-2]	-1.7	1.1
CFTR	cystic fibrosis transmembrane conductance regulator (ATP-binding cassette sub-family C, member 7) [Source:ZFIN;Acc:ZDB-GENE-050517-20]	2.2	3.1
LIG1	ligase I, DNA, ATP-dependent [Source:ZFIN;Acc:ZDB-GENE-110404-2]	2.0	3.7
NKAIN1	Na+/K+ transporting ATPase interacting 1 [Source:ZFIN;Acc:ZDB-GENE-040426-1472]	2.1	4.1
TAP2	ATP-binding cassette, sub-family B (MDR/TAP), member 3 like 1 [Source:ZFIN;Acc:ZDB-GENE-030616-245]	-2.9	4.5
AGTPBP1	ATP/GTP binding protein 1 [Source:ZFIN;Acc:ZDB-GENE-081104-267]	-1.7	4.6
OPLAH	5-oxoprolinase (ATP-hydrolysing) [Source:ZFIN;Acc:ZDB-GENE-121214-293]	1.6	4.6
ATP6V1C1	ATPase, H+ transporting, lysosomal, V1 subunit C1b [Source:ZFIN;Acc:ZDB-GENE-041010-104]	-1.6	3.1
ATP5I	ATP synthase, H+ transporting, mitochondrial Fo complex, subunit Ea [Source:ZFIN;Acc:ZDB-GENE-070928-12]	-2	1.6
ATP7A	ATPase, Cu++ transporting, alpha polypeptide [Source:ZFIN;Acc:ZDB-GENE-060825-45]	-2.2	1.8
Solute carrier families			
SLC22A7	solute carrier family 22 member 7 [Source:HGNC Symbol;Acc:HGNC:10971]	5.6	2.0
SLC22A7	solute carrier family 22 member 7 [Source:HGNC Symbol;Acc:HGNC:10971]	5.6	2.2
SLC34A2	solute carrier organic anion transporter family, member 2A1 [Source:ZFIN;Acc:ZDB-GENE-060606-3]	2.4	1.5
DNA methylation			
METTL21A	methyltransferase like 21A [Source:ZFIN;Acc:ZDB-GENE-050320-145]	4.4	2.0
HNMT	histamine N-methyltransferase [Source:HGNC Symbol;Acc:HGNC:5028]	3.1	2.4
Table 2 (continued)
Characterization of gene expression profiling of tilapia RNA-seq data

HGNC symbol	Description	Liver	Testis		
	Fold change	p-value	Fold change	p-value	
HMGCS1	3-hydroxy-3-methylglutaryl-CoA synthase 1 (soluble) [Source:ZFIN;Acc:ZDB-GENE-040426-1042]	2.8	1.0E–02	1.1	NS
TRMT11	tRNA methyltransferase 11 homolog (S. cerevisiae) [Source:ZFIN;Acc:ZDB-GENE-040426-953]	2.6	2.8–02	−1	NS
METTL18	methyltransferase like 18 [Source:HGNC Symbol;Acc:HGNC:28793]	2.6	1.3E–02	−1.2	NS
TET3	tetratetrahydrofolate reductase 3 [Source:ZFIN;Acc:ZDB-GENE-060526-109]	−2.1	1.6E–02	−1.2	NS
METTL5	methyltransferase like 5 [Source:ZFIN;Acc:ZDB-GENE-041010-21]	−2.4	7.4E–03	1	NS
DPY30	dpy-30 histone methyltransferase complex regulatory subunit [Source:ZFIN;Acc:ZDB-GENE-040718-136]	−2.5	2.1E–03	−1.1	NS
TRMT44	tRNA methyltransferase 44 homolog (S. cerevisiae) [Source:ZFIN;Acc:ZDB-GENE-041010-189]	−3	8.2E–03	−1.2	NS

Growth and development

HGNC symbol	Description	Liver	Testis		
IGFBP3	insulin-like growth factor binding protein 3 [Source:ZFIN;Acc:ZDB-GENE-040412-1]	4.9	1.9E–02	−1.4	NS
RXFP4	relaxin/insulin like family peptide receptor 4 [Source:HGNC Symbol;Acc:HGNC:14666]	2.7	3.1E–02	−1	NS
IGF2	insulin-like growth factor 2 [Source:RefSeq peptide;Acc:NP_001266572]	2.5	1.8E–02	1.1	NS
IGFBP7	insulin-like growth factor binding protein 7 [Source:ZFIN;Acc:ZDB-GENE-040426-2423]	1.8	3.0E–02	1	NS
IGF2R	insulin-like growth factor 2 receptor [Source:ZFIN;Acc:ZDB-GENE-041014-300]	−1.8	2.7E–02	−1.1	NS
THR6	thyroid hormone receptor beta [Source:ZFIN;Acc:ZDB-GENE-990415-268]	−2	2.5E–03	−	NS
THR5P	thyroid hormone responsive [Source:ZFIN;Acc:ZDB-GENE-081022-19]	−4.8	1.3E–03	−	NS

Cell cycle machinery

HGNC symbol	Description	Liver	Testis		
CADM1	cell adhesion molecule 1a [Source:ZFIN;Acc:ZDB-GENE-080505-2]	8.2	1.3E–04	−1.3	NS
CEP152	centrosomal protein 152 [Source:ZFIN;Acc:ZDB-GENE-111005-1]	4.8	4.2E–04	1.2	NS
CEP57	centrosomal protein 57 [Source:HGNC Symbol;Acc:HGNC:30794]	2.9	2.6E–03	1.1	NS
CEP135	centrosomal protein 135 [Source:ZFIN;Acc:ZDB-GENE-041210-325]	2.3	3.4E–02	−1.1	NS
TACSTD2	epithelial cell adhesion molecule [Source:ZFIN;Acc:ZDB-GENE-040426-2209]	2.3	1.0E–03	1.2	NS
NCAM1	neural cell adhesion molecule 1a [Source:ZFIN;Acc:ZDB-GENE-990415-31]	−2.4	4.2E–02	−1.5	NS
CEBP4	centromere protein W [Source:ZFIN;Acc:ZDB-GENE-100922-200]	−3.9	4.4E–02	1.1	NS
CHL1	cell adhesion molecule L1-like b [Source:ZFIN;Acc:ZDB-GENE-091105-1]	−4.3	1.4E–03	1.1	NS
CENPF	centromere protein F [Source:ZFIN;Acc:ZDB-GENE-041111-205]	−5.6	7.0E–04	1.3	NS
NDC80	NDC80 kinetochore complex component [Source:ZFIN;Acc:ZDB-GENE-030131-904]	−5.9	3.0E–03	−1.0	NS
GOS2	G0/G1 Switch 2, Putative Lymphocyte G0/G1 Switch Gene	−8.2	7.5E–11	−4.34	1.6E–14

Cyclin

HGNC symbol	Description	Liver	Testis			
CDK5	cyclin dependent kinase like 5 [Source:HGNC Symbol;Acc:HGNC:11411]	2.6	8.0E–03	1.20	NS	
CCNG1	cyclin G1 [Source:ZFIN;Acc:ZDB-GENE-020322-1]	2.2	3.8E–03	−1.00	NS	
NUCKS1	nuclear casein kinase and cyclin-dependent kinase substrate 1a [Source:ZFIN;Acc:ZDB-GENE-040912-175]	2.0	9.9E–03	1.16	NS	
MRRF	mitochondrial ribosome recycling factor [Source:ZFIN;Acc:ZDB-GENE-040704-12]	2.0	2.4E–02	−1.25	NS	
Gene Name	Description	Abundance	p-value	Fold Change	p-value	Significance
----------------------------	--	-----------	-----------	-------------	-----------	--------------
CDK6	cyclin-dependent kinase 6 [Source:ZFIN;Acc:ZDB-GENE-060503-786]	1.9	2.0E-02	1.17	NS	
CCNI	cyclin I [Source:ZFIN;Acc:ZDB-GENE-040426-2898]	1.7	3.0E-02	-1.15	NS	
CCNT2	cyclin T2b [Source:ZFIN;Acc:ZDB-GENE-030131-183]	1.6	4.1E-02	1.01	NS	
CCNG2	cyclin G2 [Source:ZFIN;Acc:ZDB-GENE-021016-1]	-2.1	1.6E-02	-1.28	NS	
CCNB2	cyclin B2 [Source:ZFIN;Acc:ZDB-GENE-030426-12]	-2.1	1.3E-02	-1.07	NS	
CNNM1	cyclin and CBS domain divalent metal cation transport mediator 1	-2.2	9.8E-03	1.05	NS	
CDK1	cyclin-dependent kinase 1 [Source:ZFIN;Acc:ZDB-GENE-010320-1]	3.2	9.3E-03	1.16	NS	
CCNB3	cyclin B3 [Source:ZFIN;Acc:ZDB-GENE-060929-684]	1.29	4.5E-04	-1.04	NS	
Mitotic spindle dynamics						
MZT2B	mitotic spindle organizing protein 2B [Source:ZFIN;Acc:ZDB-GENE-040801-87]	2.3	3.4E-02	-1.2	NS	
CDK2	cyclin-dependent kinase 2 [Source:ZFIN;Acc:ZDB-GENE-040426-2741]	-2.4	4.8E-02	1.11	NS	
NUSAP1	nucleolar and spindle associated protein 1 [Source:ZFIN;Acc:ZDB-GENE-030827-5]	-3.5	3.4E-03	-1.1	NS	
BUB1	BUB1 mitotic checkpoint serine/threonine kinase [Source:ZFIN;Acc:ZDB-GENE-081104-75]	-4.5	6.1E-03	-1.0	NS	
PLK1	polo-like kinase 1 [Drosophila] [Source:ZFIN;Acc:ZDB-GENE-021115-7]	-8.1	3.8E-04	-1.0	NS	
Apoptotic signals						
VWA11	von Willebrand factor A domain containing 11 [Source:ZFIN;Acc:ZDB-GENE-141211-58]	44.3	1.0E-08	5	1.4E-02	
ID4	inhibitor of DNA binding 4 [Source:ZFIN;Acc:ZDB-GENE-051113-208]	2.2	1.2E-03	-2.2	NS	
TBRG4	transforming growth factor beta regulator 4 [Source:ZFIN;Acc:ZDB-GENE-091020-8]	1.9	4.4E-02	1.2	NS	
TIGAR	tp53-induced glycolysis and apoptosis regulator a [Source:ZFIN;Acc:ZDB-GENE-060312-25]	1.6	3.2E-02	-1.4	NS	
RABGAP1	RAB GTase activating protein 1 [Source:HGNC Symbol;Acc:HGNC:17155]	-1.7	2.9E-02	-1.1	NS	
RAB6C	RAB6A, member RAS oncogene family [Source:ZFIN;Acc:ZDB-GENE-040426-2849]	-1.8	1.7E-02	1.1	NS	
RAB4B-EGLN2	RAB4B, member RAS oncogene family [Source:HGNC Symbol;Acc:HGNC:9782]	-2.4	4.2E-02	1.4	NS	
DDIT3	DNA-damage-inducible transcript 3 [Source:ZFIN;Acc:ZDB-GENE-070410-90]	-2.4	9.7E-03	-1.1	NS	
RASGEF1B	RasGEF domain family member 1B [Source:HGNC Symbol;Acc:HGNC:24881]	-3.2	1.9E-03	-2.2	NS	
RASLI1A	RAS-like, family 11, member A [Source:ZFIN;Acc:ZDB-GENE-050417-384]	-4.5	2.0E-04	-1.5	NS	
RAB29	RAB29, member RAS oncogene family [Source:HGNC Symbol;Acc:HGNC:9798]	-5.1	5.0E-03	-1.1	NS	
DDIT4L	DNA damage inducible transcript 4 like [Source:HGNC Symbol;Acc:HGNC:30555]	-9.3	2.0E-04	-1.2	NS	
Others						
KRT4	keratin 4 [Source:ZFIN;Acc:ZDB-GENE-000607-83]	7.1	2.1E-02	6	1.79E-02	
ASTL	six-cysteine containing astatin protease 1 [Source:ZFIN;Acc:ZDB-GENE-070621-1]	6.1	8.3E-08	4.7	3.61E-04	
RNY5K2P275	RNY5K2P275 (RNA, 75K Small Nuclear Pseudogene 275) is a Pseudogene	6.1	1.3E-02	-2.3	2.78E-02	
BPIFC	BPI Fold Containing Family C	4.6	1.0E-02	3.5	4.06E-02	
ITI1H	inter-alpha-trypsin inhibitor heavy chain 1 [Source:ZFIN;Acc:ZDB-GENE-130530-650]	4	7.2E-06	2	3.16E-02	
PENK	proenkephalin a [Source:ZFIN;Acc:ZDB-GENE-030729-31]	3.1	2.2E-02	-4.4	2.81E-02	
PGLYRP2	peptidoglycan recognition protein 2 [Source:HGNC Symbol;Acc:HGNC:30013]	2.8	1.6E-03	4.6	1.74E-02	
DIO2	Iodothyronine Deiodinase 2	2.8	0.003	1.2	NS	
LECT2	leukocyte cell derived chemotaxin 2 [Source:HGNC Symbol;Acc:HGNC:6550]	2.5	7.00E-04	16.6	2.20E-06	
APOA1	apolipoprotein A-la [Source:ZFIN;Acc:ZDB-GENE-990415-14]	1.7	3.40E-02	4.7	4.18E-03	
APOAI	apolipoprotein A [Source:HGNC Symbol;Acc:HGNC:616]	1.7	2.80E-02	3.7	1.53E-02	
NCOA7	Nuclear Receptor Coactivator 7	-10.2	4.60E-15	-2.7	4.00E-02	
Table 3
Representative list of GO terms significantly affected in the liver and testis of male tilapia exposed to BaP. Determined by Gene Set Enrichment Analysis (GSEA; \(p < 0.05 \), fold change \(\geq 10\% \)).

Tissue	Gene set category	Name	Median fold change	\(p\)-value
Liver	Biological process	mitosis	-2.8	1.9E – 04
		cell cycle	-2.5	2.7E – 04
		triglyceride biosynthetic process	-3.0	7.9E – 04
		long-chain fatty-acyl-CoA biosynthetic process	-3.2	8.2E – 04
		mitotic cytokinesis	-6.6	1.1E – 03
		cell-cell signaling	2.9	1.1E – 03
		G2-M transition of mitotic cell cycle	-2.4	1.3E – 03
		cytokinesis	-5.8	1.7E – 03
		cellular response to calcium ion	-3.3	2.5E – 03
		cellular response to organic substance	-3.9	3.3E – 03
		synaptic transmission	-2.0	4.5E – 03
		peptidyl-serine phosphorylation	-2.6	4.7E – 03
		mitotic cell cycle	-2.4	7.3E – 03
		activation of MAPK activity	-2.1	7.7E – 03
		cell division	-2.4	1.1E – 02
		lipid homeostasis	-5.0	1.3E – 02
		exocytosis	-3.4	1.4E – 02
		mitotic spindle assembly checkpoint	-4.5	1.5E – 02
		response to ethanol	-2.3	1.8E – 02
		cellular response to glucose stimulus	-2.0	2.0E – 02
		negative regulation of signal transduction	2.1	2.0E – 02
		DNA metabolic process	-4.2	2.0E – 02
		fatty acid biosynthetic process	-2.7	2.1E – 02
		microtubule-based movement	-3.2	2.4E – 02
		cytokine-mediated signaling pathway	-2.2	2.4E – 02
		epidermis development	2.1	2.4E – 02
		positive regulation of MAPK cascade	2.5	2.5E – 02
		sterol biosynthetic process	3.1	2.5E – 02
		cellular lipid metabolic process	-2.5	2.7E – 02
		positive regulation of JUN kinase activity	-3.9	3.0E – 02
		apoptotic process	-2.1	3.1E – 02
		cell surface receptor signaling pathway	1.8	3.2E – 02
		response to testosterone	-2.5	3.2E – 02
		lipid catabolic process	-3.2	3.2E – 02
		actin cytoskeleton reorganization	-2.2	3.3E – 02
		meiotic nuclear division	-3.4	3.9E – 02
		positive regulation of gene expression	-2.1	3.9E – 02
		immune system process	-1.7	4.4E – 02
		biosynthetic process	2.9	4.6E – 02
	Cellular component	spindle pole	-5.2	4.4E – 05
		chromosome, centromeric region	-3.5	1.8E – 04
		kinetochore	-4.5	3.5E – 04
		proteinaceous extracellular matrix	-2.1	1.8E – 03
		condensed chromosome kinetochore	-4.5	2.1E – 03
		spindle	-2.8	2.8E – 03
		chromosome	-2.4	3.3E – 03
		spindle microtubule	-3.5	4.3E – 03
		external side of plasma membrane	-1.9	4.5E – 03
		extracellular region	-1.6	9.1E – 03
		anchored component of membrane	-2.6	1.8E – 02
		axon	-2.4	2.6E – 02
		cell-cell junction	-1.7	2.7E – 02
		cytoskeleton	-2.1	2.8E – 02
		kinesin complex	-4.6	2.9E – 02
		microtubule	-2.4	2.9E – 02
		cell	-2.2	3.3E – 02
		microtubule organizing center	-2.0	4.0E – 02
	Molecular function	iron ion binding	-2.3	1.1E – 03
		protein C-terminus binding	-2.7	1.1E – 03
Tissue	Gene set category	Name	Median fold change	p-value
--------	-------------------	------	--------------------	---------
	microtubule binding	-2.7	3.2E–03	
	heme binding	-1.9	4.2E–03	
	protein heterodimerization activity	-2.4	5.8E–03	
	protein serine-threonine kinase activity	-2.1	7.7E–03	
	hormone activity	2.5	9.0E–03	
	oxidoreductase activity, acting on paired donors, with incorporation or reduction of molecular oxygen	2.5	9.6E–03	
	growth factor activity	2.5	1.2E–02	
	drug binding	-3.3	1.2E–02	
	metallopeptidase activity	-1.9	1.6E–02	
	microtubule motor activity	-3.2	1.8E–02	
	protein homodimerization activity	-2.2	2.8E–02	
	calmodulin binding	-2.4	4.3E–02	
	structural constituent of cytoskeleton	-2.7	4.7E–02	
	carbohydrate binding	-2.0	4.8E–02	
	sequence-specific DNA binding RNA polymerase II transcription factor activity	-2.4	4.9E–02	
Testis	Biological process	regulation of proteolysis	9.3	9.4E–06
	proteolysis	10.0	7.1E–05	
	leukotriene biosynthetic process	15.5	5.1E–04	
	negative regulation of endopeptidase activity	9.3	9.6E–04	
	hemostasis	10.3	2.3E–03	
	oxygen transport	-7.5	5.9E–03	
	protein heterooligomerization	-7.5	5.9E–03	
	wound healing	7.5	7.3E–03	
	fibrinolysis	6.0	1.6E–02	
	cobalamin metabolic process	11.1	1.8E–02	
	cellular protein metabolic process	8.6	3.0E–02	
	response to calcium ion	5.5	3.7E–02	
	inflammatory response	3.6	4.1E–02	
	response to peptide hormone	9.3	4.4E–02	
	response to cytokine	9.3	4.8E–02	
	Cellular component	extracellular space	5.0	2.7E–06
	extracellular region	3.3	6.7E–05	
	keratin filament	6.0	1.8E–04	
	intermediate filament	6.0	3.7E–04	
	hemoglobin complex	-7.5	4.1E–04	
	Golgi lumen	-4.2	1.5E–03	
	anchored component of external side of plasma membrane	15.5	5.6E–03	
	secretory granule	8.6	2.7E–02	
	platelet alpha granule	9.3	3.1E–02	

Table 4
Partial list of subnetworks significantly affected in the liver and testis of male tilapia exposed to BaP (p < 0.05, fold change \(\geq 10\% \)).

Tissue	Gene set seed	Median fold change	p-value
Liver	kinetochore assembly	-3.2	2.5E–04
	telophase	-3.8	5.4E–04
	microtubule cytoskeleton assembly	-2.2	8.3E–04
	anaphase	-3.1	9.7E–04
	mitotic spindle positioning	-3.2	1.4E–03
	meiosis	-2.2	2.1E–03
	mitotic nuclear membrane assembly/ disassembly	-3.2	2.3E–03
Tissue	Gene set seed	Median fold change	p-value
--------	---------------	-------------------	---------
microtubule/kinetochore interaction	−5.6	2.6E−03	
mitotic checkpoint	−3.2	3.0E−03	
mitotic spindle checkpoint	−3.2	3.2E−03	
nuclear division	−3.2	4.7E−03	
mitotic spindle assembly	−4.2	8.3E−03	
meiosis II	−4.5	8.8E−03	
fatty acid oxidation	−2.3	9.1E−03	
nuclear fragmentation	−2.3	9.7E−03	
sister chromatid cohesion	−3.2	1.0E−02	
chromosome condensation	−2.4	1.1E−02	
mitotic spindle orientation	2.4	1.1E−02	
spindle assembly	−2.7	1.4E−02	
Schwann cell migration	−3.2	1.5E−02	
DNA replication during S phase	−3.9	1.7E−02	
mitotic prometaphase	−3.2	1.7E−02	
mesenchymal stem cell differentiation	−1.9	1.8E−02	
synapase maturation	−2.4	2.0E−02	
monocyte differentiation	−2.5	2.0E−02	
mitotic sister chromatid segregation	−3.2	2.6E−02	
mitotic metaphase plate congression	−3.2	2.7E−02	
chromosome segregation	−2.8	2.8E−02	
regulation of action potential	1.7	2.9E−02	
adipogenesis	−2.2	3.0E−02	
nerve sprouting	−2.4	3.0E−02	
interphase	−2.4	3.0E−02	
microtubule bundling	−2.8	3.1E−02	
cellular extravasation	−3.1	3.1E−02	
lipid oxidation	−3.0	3.5E−02	
blood-retinal barrier	−2.0	3.7E−02	
Glycogen degradation	−2.2	3.8E−02	
Testis	blood clotting	5.5	5.2E−04
neutrophil chemotaxis	5.5	7.3E−04	
fibrinolysis	5.6	9.1E−04	
blood vessel permeability	3.7	1.2E−03	
myoblast proliferation	7.5	1.4E−03	
muscle fiber development	5.8	4.4E−03	
blood clot lysis	5.8	5.6E−03	
T-cell homeostasis	−2.3	5.7E−03	
neutrophil recruitment	3.6	7.6E−03	
degranulation	3.9	7.9E−03	
fibroblast proliferation	3.3	8.2E−03	
neutrophil adhesion	3.1	8.7E−03	
autolysis	7.5	1.1E−02	
zymogen activation	5.6	1.1E−02	
complement activation	5.0	1.2E−02	
hemolysis	3.0	1.5E−02	
chondrocyte proliferation	2.9	1.6E−02	
neutrophil extravasation	5.6	1.9E−02	
skin changes	7.5	1.9E−02	
blood coagulation, intrinsic pathway	5.8	2.0E−02	
cellular extravasation	3.6	2.1E−02	
hepatic regeneration	3.7	2.3E−02	
myoblast fusion	3.2	2.3E−02	
neutrophil migration	3.3	2.7E−02	
bacterial load	4.7	2.8E−02	
antigen expression	4.5	3.1E−02	
positive chemotaxis	3.6	3.2E−02	
superoxide anion generation	3.3	3.3E−02	
neutrophil activation	3.6	3.4E−02	
immune cell chemotaxis	3.6	3.5E−02	
Acknowledgements

We would like to thank Dr. Nancy Denslow (University of Florida) for the use of Pathways Studio Elsevier software and Gerson Canul-Marin (CINVESTAV-MERIDA) for his assistance with qPCR assays. This research is part of Catedras CONACYT, a biotechnology of marine organisms project.

Transparency document. Supporting information

Transparency data associated with this article can be found in the online version at http://dx.doi.org/10.1016/j.dib.2018.08.206.

Appendix A. Supporting information

Supplementary data associated with this article can be found in the online version at http://dx.doi.org/10.1016/j.dib.2018.08.206.

References

[1] R.C. Colli-dula, et al., Transcriptome analysis reveals novel insights into the response of low-dose benzo(a)pyrene exposure in male tilapia, Aquat. Toxicol. 201 (15) (2018) 162–173 (ISSN 0166-445X) Disponível em: (https://www.sciencedirect.com/science/article/pii/S0166445X18303503).
[2] K.J. Livak, T.D. Schmittgen, Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method, Methods 25 (4) (2001) 402–408 (ISSN 1046-2023) Disponível em: (http://www.sciencedirect.com/science/article/pii/S1046202301912629).
[3] C. Trapnell, et al., Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks, Nat. Protoc. 7 (3) (2012) 562–578 (ISSN 1750-2799).
[4] C. Trapnell, L. Pachter, S.L. Salzberg, TopHat: discovering splice junctions with RNA-seq, Bioinformatics 25 (9) (2009) 1105–1111 (ISSN 1367-4803).
[5] E. Kotelnikova, et al., Novel approach to meta-analysis of microarray datasets reveals muscle remodeling-related drug targets and biomarkers in Duchenne muscular dystrophy, PLoS Comput. Biol. 8 (2) (2012) e1002365 (ISSN 1553-734x).
[6] A. Sivachenko, A. Kalinin, A. Yuryev, Pathway analysis for design of promiscuous drugs and selective drug mixtures, Curr. Drug Discov. Technol. 3 (4) (2006) 269–277 (ISSN 1570-1638).
[7] A. Subramanian, et al., Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles, Proc. Natl. Acad. Sci. USA 102 (43) (2005) 15545–15550, Disponível em: (http://www.pnas.org/content/102/43/15545.abstract).

Table 4 (continued)

Tissue	Gene set seed	Median fold change	p-value
hepatocyte apoptosis	5.8	3.7E−02	
dendritic cell differentiation	3.3	3.8E−02	
tissue invasion	5.0	3.8E−02	
muscle fiber contraction	3.0	3.9E−02	
myoblast differentiation	5.8	4.3E−02	
epidermal cell differentiation	6.0	4.4E−02	
innate immune response	3.3	4.4E−02	
leukocyte recruitment	3.1	4.7E−02	