How streamflow has changed across Australia since 1950’s: evidence from the network of Hydrologic Reference Stations

Sophie Xiaoyong Zhang¹, G.E. Amirthanathan¹, Mohammed Bari², Richard Laugesen³, Daehyok Shin¹, David Kent¹, Andrew MacDonald¹, Margot Turner¹, Narendra Kumar Tuteja³

[1]{Environment and Research Division, Bureau of Meteorology, Melbourne, Australia}
[2]{Bureau of Meteorology, Perth, Australia}
[3]{Bureau of Meteorology, Canberra, Australia}

Correspondence to: S. X. Zhang (sophie.zhang@bom.gov.au)

Abstract

Streamflow variability and trends in Australia were investigated for 222 high quality stream gauging stations having 30 years or more continuous unregulated streamflow records. Trend analysis identified seasonal, inter-annual and decadal variability, long-term monotonic trends, and step changes in streamflow. Trends were determined for annual total flow, baseflow, seasonal flows, daily maximum flow, and three quantiles of daily flow. A distinct pattern of spatial and temporal variation in streamflow was evident across different hydroclimatic regions in Australia. Most of the stations in south-eastern Australia spread across New South Wales and Victoria showed a significant decreasing trend in annual streamflow, while increasing trends were observed in the Northern Territory and the north-west of Western Australia. No trend was observed for stations in the central region of Australia. The findings from step change analysis demonstrated evidence of changes in hydrologic responses consistent with observed changes in climate over the past decades. For example, in the Murray-Darling Basin 51 out of 75 stations were identified with step changes of significant reduction in annual streamflow during the middle to late 1990s, when relatively dry years were recorded across the area. Overall, the Hydrologic Reference Stations (HRS) serve as ‘living gauges’ for streamflow monitoring and changes in long-term water availability inferred from observed datasets. A wealth of freely downloadable hydrologic data is provided
at the HRS web portal including annual, seasonal, monthly and daily streamflow data, as well as trend analysis products, and relevant site information.

Keywords: Hydrologic Reference Stations, streamflow variability, trends, step change, climate change, unregulated catchments, Australia

1 Introduction
Assessing changes and trends in streamflow observations can provide vital information for sustainable water resource management. The influence of diverse environmental factors and anthropogenic changes on hydrological behaviour makes the investigation into streamflow changes a challenging task. Trend detection is further complicated from intra-annual, inter-annual, decadal and inter-decadal variability in streamflow as well as from various influencing factors that can hardly been analysed separately (WWAP, 2012; Hennessy et al., 2007).

Extensive studies have been undertaken in different parts of the world to analyse long-term hydrologic trends, and to investigate the possible effect of long-term climate variability on hydrologic response (Stahl et al., 2010; Birsan et al., 2005; Lins and Slack, 2005; Milly et al., 2005; Burn and Elnur, 2002). Previous works on streamflow trends draw largely on national and continental analyses, especially for Europe and North America. Studies of streamflow variability include analysing trends across Europe (Stahl et al., 2010; Stahl et al., 2012), and at the national level. For example, Bormann et al. (2011) and Petrow and Merz (2009) analysed trends under flooding conditions on German rivers. Extensive literatures on hydrological trend studies have been reported for the UK: Hannaford and Buys (2012) demonstrated variability in seasonal flow regimes; Hannaford and Marsh (2006, 2008) analysed flow indicators at an annual resolution, and other studies focused on particular regions (Biggs and Atkinson, 2011; MacDonald et al., 2010; Dixon et al., 2006; Jones et al., 2006). A wide range of research on streamflow trends has been published in the USA (Kumar et al., 2009; Novotny and Stefan, 2007; McCabe and Wolock, 2002) and Canada (Bawden et al., 2014; Monk et al., 2011; Burn and Hag Elnur, 2002).

Few studies have been published for Australia to-date partly due to limited data records, researches and documentation covering all flow regimes. Rivers in some regions have
received close attention only recently. Australia is the driest inhabited continent with an average annual precipitation of 450 mm and the lowest river flow compared with other continents (Poff et al., 2006). Water is relatively scarce and is therefore a valuable resource across the country. Australian streams are characterized by low runoff, high inter-annual flow variability, and large magnitudes of variations between the maximum and minimum flows (Puckridge et al., 1998; Finlayson and McMahon, 1988). The wide variety of unique topographic features combined with variable climates and frequency in weather extremes result in diverse flow regimes. The recent rise in average temperature (Cleugh et al., 2011) and the risk of future climate variability have added new dimensions to the challenges already facing communities. Climate variability and its impact on the hydrologic cycle have necessitated a growing need in Australia to seek evidence of any emerging trends in river flows.

Chiew and McMahon (1993) examined the annual streamflow series of 30 unregulated Australian rivers to detect trends or changes in the means. They found that identified changes in the tested dataset were directly related to the inter-annual variability rather than changes in climate. The analysis of trends in Australian flood data by Ishak (2010) indicated that about 30% of the selected 491 stations show trends in annual maximum flood series data, with a downward trend in the southern part of Australia and an upward trend in the northern part. Several other studies investigated trends of selected streamflow statistics in a particular region, e.g. southwest Australia (Petrone et al., 2010; Durrant and Byleveld, 2009), southeast Australia or Victoria (Tran and Ng, 2009; Stewardson and Chiew, 2009). All these studies addressed the trend analysis of Australian rivers with a limited spatial or temporal coverage of flow data. A gap in the research remains mainly due to constraints in access to a dataset of catchments large enough to represent the diversity of flow regimes across Australia. Such a dataset would enable a comprehensive and systematic appraisal of changes and trends in observed river flow records.

The Australian national network of Hydrologic Reference Stations (HRS) was developed by the Bureau of Meteorology to address this major gap and to provide comprehensive analysis of long-term trends in water availability across the country (Turner et al., 2012; Zhang et al., 2014). The HRS website is a one-stop portal to access high-quality streamflow information for 222 well-maintained river gauges in near-natural catchments. An intention is that the
stations will serve as 'living gauges' that record and detect changes in hydrologic responses to
long-term climate variability and other factors.

This paper presents a statistical analysis to detect changes or emerging trends across a range
of flow indicators, based on the daily flow data of 222 sites from the HRS network. The
objective of this study is to provide a nationwide assessment of the long-term trends in
observed streamflow data. Evaluation of past streamflow records and documenting recent
trends will be of benefit in anticipating potential changes in water availability and flood risks.
It is hoped that the findings from trend analysis presented in this paper will inform decision
makers on long-term water availability across different hydroclimatic regions, and be used for
water security planning within a risk assessment framework.

2 Site selection, data and methods

2.1 Hydrologic Reference Stations and data

The 222 Hydrologic Reference Stations (HRS) were selected from a preliminary list of
potential streamflow stations across Australia according to the HRS selection guideline (SKM
2010). These guidelines specified four criteria for identifying the high quality reference
stations, namely unregulated catchments with minimal land use change, a long period of
record (greater than 30 years) of high quality streamflow observations, spatial
representativeness of all hydro-climate regions, and the importance of site as assessed by
stakeholders. The station selection guidelines were then applied in four phases
(www.bom.gov.au/water/hrss/guidelines.shtml). The HRS network will be reviewed and
updated every two years to ensure that the high quality of the streamflow reference stations is
maintained.

Two features were considered in order to define the hydroclimatic regions in HRS: climatic
zones and Australia’s drainage divisions. The climatic zones were defined according to
climate classification of Australia based on a modified Koeppen classification system (Stern
et al., 2000). Australia has a wide range of climate zones, from the tropical regions of the
north, through the arid expanses of the interior, to the temperate regions of the south (ABS
2012). The Australian Hydrological Geospatial Fabric (Geofabric) Surface Catchments (BOM
2012) were used to delineate 12 topographically defined drainage divisions approximating the
drainage basins from the Geoscience Australia (2004) definition. The selection of HRS
stations aimed to maximise the geographical extent of the available records. As shown in

Figure 1, the final set of 222 hydrologic reference stations cover all climatic zones,
jurisdictions and most drainage divisions. Since most Australian rivers are located near the
coast, there is a high density of stations along the coast and sparsely distributed stations across
inland areas. One third of the HRS sites are in temperate climate zone, and the majority of the
rest are either in Tropical or Subtropical regions; only a few are located in other climate
zones. The distribution of Hydrologic Reference Stations across multiple hydroclimatic
regions provides data for a comprehensive investigation of long-term streamflow variability
across Australia.

The primary data used in this study were daily streamflow series of 222 gauging stations from
the HRS network. Table 1 lists the twelve drainage divisions and the number of stations in
each division. One third of the HRS stations are located within the Murray-Darling basin, half
of the rest are distributed along eastern coasts. This is the best compiled long-term quality
controlled data for Australia and the trends derived from this dataset constitute the first such
statement on long-term water availability across Australia.

The earliest record included in the data set is from 1950. Data prior to this has been excluded
due to the common existence of large gaps in the pre-1950 period. All stations included in the
HRS had a target of 5% or less missing data to meet the completeness criteria for high quality
streamflow records. Some stations were included with more than 5% missing data where they
excelled in other criteria such as stakeholder importance or spatial coverage. The periods of
data gaps were filled using a lumped rainfall-runoff model GR4J (Perrin et al. 2003), which
was found to perform well at most sites. The model was calibrated and forced with catchment
average rainfall and potential evapotranspiration from the Australian Water Availability
Project (AWAP) (Raupach et al., 2009).

The study examined sites with varying lengths of record depending on the data availability.
The daily flow data were aggregated into annual series based on a water year calculation. The
start month of the water year was defined as the month with the lowest monthly flow across
the available data period. In order to ensure the statistical validity of the trend analysis, all
stations had minimum 30 years of record, with an average time-series length of 45 years. The
longest record length was 62 years, 25% of the stations have 50 or more years of record.
Catchment sizes ranged from 4.5 to 232,846 km² with a mean size of 3108 km². The majority
(82%) of the stations had an upstream drainage area less than 1000 km2, and only three stations had a drainage area larger than 50,000 km2. The data and the long term series gathered in this study are the best compiled and quality assured data for HRS catchments. The analysis and trends derived from the HRS datasets constitute the first statement on long-term water availability across Australia.

2.2 Streamflow variables for trend analysis

Long-term climate variability can be reflected through trends in streamflow variables. To understand the importance of the components of the hydrologic regimes and their potential link to long-term climate variability, ten streamflow variables were chosen for statistical and trend analysis. Two variables related to fluctuation of annual flows were annual total flow (Q$_T$) and annual baseflow (Q$_{BF}$). Baseflow was separated from daily total streamflow using a digital filter based on theory developed by Lyne and Hollick (1979) and applied by Nathan and McMahon (1990).

Daily streamflow data were analysed to form a group of indicators of daily flow trends. They were daily maximum flow of each year (Q$_{Max}$), the 90th percentile (non-exceedance probability) daily flow of each year (Q$_{90}$), the 50th percentile daily flow of each year (Q$_{50}$), and the 10th percentile daily flow of each year (Q$_{10}$). The median daily flow Q$_{50}$ was used in the study instead of daily mean flow because the flow distribution is skewed and outliers are present.

Four seasonal total flow indicators were analysed to examine the seasonal trend patterns. These variables included summer flow Q$_{DJF}$ (December to February), autumn flow Q$_{MAM}$ (March to May), winter flow Q$_{JJA}$ (June to August), and spring flow Q$_{SON}$ (September to November).

The trend analysis was applied to the ten hydrologic indicators of streamflow data at each HRS station.

2.3 Trend and data statistical analysis

Changes in streamflow data can occur gradually or abruptly. Statistical significance testing is commonly used to assess the changes in hydrological datasets (Helsel and Hirsch, 2002; Monk et al., 2011; Hannaford and Buys, 2012). The Mann-Kendall (MK) trend test (Mann,
1945; Kendall, 1975) was adopted in this study to identify statistically significant monotonic increasing or decreasing trends (Petrone et al., 2010; Zhang et al., 2010; Miller and Piechota, 2008). In order to ensure the assumption of independence was met for the MK test, the non-parametric Median Crossing and Rank Difference tests (Kundzewicz and Robson, 2000) were applied to entire datasets. When either of the randomness tests indicated that the time series was not from a random process, the site was excluded from the MK trend assessment. As this study attempted to examine patterns in historical streamflow records, no further adjustments were made to account for the non-random structure of data.

The non-parametric MK trend test was used to detect the direction and significance of the monotonic trend, and the trend line from a least squares regression (LSR) was used to approximately represent the magnitude of the trend. The trend magnitude was standardised [trend (mm/yr) / average annual flow (mm)] to make the change comparable across stations by dividing the regression slope coefficient by the average annual flow over the data period.

All data were subject to step change analysis to detect any abrupt changes during the record period. The distribution free CUSUM test (Chiew and Siriwardena, 2005) was applied to identify the year of change in streamflow series. The significant difference between the median of the streamflow series before and after the year of change was tested by Rank-Sum method (Zhang et al., 2010; Miller and Piechota, 2008; Chiew and Siriwardena, 2005). More information on the statistical tests used in this study can be found in Appendix A.

In addition to the trend analysis for the ten flow indicators, other statistical data analyses were included to gain a broad understanding of hydrologic regimes. Aggregated monthly and seasonal flow data were investigated for changes in flow patterns in different basins or regions. Daily event frequency analyses were used to examine the variations in daily streamflow magnitude, and daily flow duration curves were presented to examine changes in daily flow among decades.

3 Development of the HRS web portal

A web portal has been developed to house the network of Hydrologic Reference Stations and provide access to streamflow data, results of analysis, and associated site information. Figure 2 summarises the development process of the HRS network and website. Through a data quality assurance process following the guidelines and stakeholder consultations, the final list
of 222 streamflow gauging stations was established. A suite of software tools, "the HRS toolkit" was developed to undertake data aggregation, analysis, trend testing, visualisation and manipulation. The toolkit is capable of automatically converting the flow variables to monthly, seasonal and annual totals, and quantifying the step and/or linear changes in the selected streamflow variables. The toolkit also generated and processed graphical products, data, statistical summary tables and statistical metadata included in the web portal.

A snapshot of the HRS web portal is shown in Figure 3. The main page was designed with three parts. A series of links on the top provide the project information. Below this is the station selector, which facilitates searching for the site of interest by location. The third part is the product selector containing the core information sections of the website. Several tabs are offered for users to explore the web portal dependent on their needs and the level of information they require. The daily streamflow data, graphical products, statistics and trend analysis results are available for users to view and download. Information provided on the HRS web portal will assist in detecting long-term streamflow variability and changes at the 222 sites, and therefore supports water planning and decision-making. More information can be found at the website http://www.bom.gov.au/water hrs.

This web portal provides public access to high quality data and information. It has more than 15,000 graphic products for display. It is carefully designed for the public to have synthesised and easily understandable information on water availability trends across Australia. In order to ensure currency of this web site, streamflow data are updated and reviewed every two years.

4 Result and discussion

The study to detect long-term streamflow trends was performed on the 222 gauging stations included in the HRS network. This section presents an overview bar-plot of the Mann-Kendall test results for the selected ten hydrologic variables. Maps showing trend detection results and step change analysis for the annual total flow are presented as well as a table listing the stations with significant trends in annual total flow at 1% significance level ($p < 0.01$). In addition, variations in trend among daily flow indicators and seasonal flows are examined. Finally, regional patterns in long term trends, inter-annual and decadal variability are further investigated for two feature stations.
4.1 Overview

A stacked bar-plot is shown in Figure 4 that stratifies the stations by the trend across each streamflow variable. Overall, a consistent pattern is seen across the 10 streamflow variables – the majority of stations have either no trend or a non-random time-series; of the stations with a trend detected, the majority are decreasing.

A distinction was noted between patterns of trends in the different flow regimes. Moving through the flow variables from low, to median, to high, and onto maximum, an increasing number of stations were found with no trends. The overall number of stations with statistically significant trends was around the same across the median, high, and maximum variables but much lower for the low flow variable. Around one third of stations showed a decreasing trend in spring and a quarter of stations in summer and winter. A significant proportion of stations do show a decreasing trend across most variables. Summer had a large number of stations with no trend and 3 stations with an increasing trend. Due to non-randomness of streamflow variables, a number of stations are not amenable to trend analysis.

4.2 Spatial distribution of trends in annual total streamflow

Detecting the trend and non-stationarity in a hydrologic time series may help us to understand the possible links between hydrological processes and global environment changes. Many hydrological time series exhibit trend or non-stationarity in the mean or median. The long-term gradual change in rainfall-runoff transformations could be represented by linear trend. The abrupt changes in a hydrologic time series could be due to hydrologic non-stationarity.

4.2.1 Linear trend

Maps were generated showing the trend results for each variable across Australia. The trend analysis map of annual total streamflow (Q_T) displays the direction and significance of a trend (Figure 5) at different levels of significance: $p < 0.01$, $p < 0.05$ and $p < 0.1$. Although trends in Q_T vary across different hydro-climatic regions of the continent, a clear spatial pattern is evident from the map: about 35% of the stations showing decreasing trends are in the southern part of Australia and 4% increasing trends in the northern part, while there no significant trend visible in the central region of Australia. The general downward trends observed in southern Australia may have been affected by the dry period in the last decade in the south-eastern and south-western regions. Stations in the Murray-Darling Basin
demonstrated the strongest decreasing trends with 30 stations exhibiting high levels of significance at \(p < 0.05 \).

A set of 22 gauging stations were identified with trends in annual total streamflow at 0.01 significance levels, see Table 2. All sites showed consistent direction of change using MK test and LSR. None of those 22 gauges showed increasing trend. Trends in annual baseflow were found to be similar to the results of annual totals when a significant trend was detected. The number of stations showing significant declining trends in baseflow conditions was less than it was for annual total flow. However, some time-series of annual baseflow were non-random and therefore not available for further trend testing.

Step change analysis was applied to all sites where the time series data was random to give comparable results of gradual and abrupt changes in annual total flows. Table 2 gives the Rank-Sum test results and lists the year of change for the 22 stations. Details of step changes across Australia will be discussed in the following section.
4.2.2 Step change

The Rank-Sum test was used to identify the presence of a step change in the median of two periods, with the distribution free CUSUM method providing the year of change. Values were reported for sites with Rank-Sum test at 0.1 significance levels or higher. Figure 6 shows the results of step change analysis, where colours indicate the year of change appearing in various decades, and upward arrows represent increased median values after the year of change and vice versa.

The step change map reveals a definite spatial pattern in the location of stations that exhibited a significant step change. As expected, the direction and significance of step-changes is consistent with the Mann-Kendall results for most stations. The identified years of step changes appear to show spatial groupings at different divisions. The majority of stations in southeast Australia were characterised with step changes in mid-1990s, when the millennium drought (BOM and CSIRO, 2014) started to dominate the weather in this region. Five stations in south-west West Australia had a key feature of 1975 step change, which might be partly due to the observed rainfall decline since the mid-1970s. It was also noted that most stations located on the south east coast of Queensland showed a significant step change in the 1980s.

The results from step change analysis imply that changes in streamflow and the consequent hydrologic response are driven by changes in climatic forcing such as rainfall over the period of record. Investigating this causative relationship and quantifying the relative impacts of variations in climate on streamflow predictions is left for future work.

4.3 Spatial distribution of trends in daily flows and seasonal flows

Trend analysis maps shown in Figure 7 decompose trends of daily flow for Q_{Max}, Q_{90}, Q_{50} and Q_{10}. In general, the identified trends were spatially consistent with the trend pattern in Q_{T}: with upward trends in the north-west and downward trends in the south-east, south-west and Tasmania. The Q_{50} and Q_{10} series are notable for the number stations with non-random time-series and therefore an invalid MK test result, this can be seen most dramatically in Figure 7d, and is due to the higher correlation of the time-series. This daily flow trend analysis indicated similar results to previous studies (Tran and Ng, 2009; Durrant and Byleveld, 2009) for the respective sites and flow statistics.
The analysis of maximum daily flow Q_{Max} could be considered as analysis of extreme flow as this series contains the maximum value for each year. The general pattern of trends in Q_{Max} was in accordance with the preliminary trend analysis results in Ishak (2010), which suggested that about 30% of selected stations showed trend in Q_{Max}, with downward trend in the southern part of Australia and upward trends in the northern part (Figure 7a).

The spatial distribution of trends in the seasonally disaggregated total flow series were investigated (Figure 8). The broad pattern from the analysis is a collection of downward trends generally in the south and upward trends in the north across the seasonal variables; summer (Q_{DJF}), autumn (Q_{MAM}), winter (Q_{JJA}), and spring (Q_{SON}). However, contrasting Figure 5 and Figure 8 suggest that the trends detected in the annual total flows series are predominantly a mixed result of increasing summer trends in northern Australia, and decreasing winter trends for southern Australia.

5. Discussion

A comprehensive statistical and trend analysis in long-term streamflow data was conducted for 222 unregulated river gauges from the HRS national network. Ten streamflow variables were examined to detect underlying changes or trend in streamflow and to identify spatial variations across Australia. Commonality and differences were found from this study when compared with previous streamflow trend studies across Australia. This could be expected given the different selection of flow statistics, gauge location, data length, employed techniques and methodology. For example, to examine the trends in south-west Western Australia (SWWA), Durrant and Byleveld (2009) has investigated 29 sites in the area using post-1975 data, whilst this paper considered the full record of data since 1950 and the full water year was used. Owing to the different data record periods used in trend analysis, seven stations in Durrant and Byleveld (2009) showed a possible increase, while in this study a homogenous spatial pattern of downward trends was revealed across the SWWA. Three stations in common were examined by both studies. The streamflow data of Yarragil Brook at Yarragil Formation (614044) was a non-random series, which was strongly biased by the 1975 step change. When only looking at the runoff of post-1975 period at this site, it revealed a very weak decreasing trend, which was similar to the result of Durrant and Byleveld (2009). Carey Brook at Staircase Road (608002) had similar time series data starting from the mid-1970s in both studies. A slight decreasing
linear trend and a 1997 step change at 0.05 significance level was identified in this study. No statistically significant trend was detected in Durrant and Byleveld (2009), which could be attributed to the limited record until 2008 and not considering the recent years of 2010, 2011 and 2012 that were relatively dry. The results were in agreement in both studies showing no strong decreasing trend for the Kent River at Styx Junction (604053). At this site the 1975 change was not predominant.

The results of this study have demonstrated the main characterisation of hydrological change of river flows across Australia since the 1950’s. Overall, most of the downward trends in Q_T appeared within or very close to the temperate climate zone, while upward trends were in the tropical region. The spatial pattern of trends matched the rainfall records maps that indicated rainfall deficiency in the south in the last decade comparing the historical records (Cleugh et al., 2011). Similar rainfall changes were also observed all over the continent as shown in the recent CSIRO sustainable yield study projects (CSIRO, 2013). Drought conditions persisted in the south-east and south-west of the continent from around 1996 to 2010 might be attributed to the detected change in streamflow. This could be the reason that most of the gauging stations in southern Australia and southeast of Queensland showed a significant decreasing trend in annual streamflow. It was also found that positive trends observed at many locations in northern Australia could be related to increased rainfall in this part of Australia during the last decade. Other changes such as within-year rainfall variation and increase in temperature may have played a role in affecting the hydrologic cycle.

Whilst it is a possible explanation, it is not explicit that climate change is the cause of significant trends in streamflow. There are many other factors that may affect streamflow, for example, natural catchment changes, climate variability, data artefacts and other influences. Site specific comparison of rainfall, PE, and temperature may help to improve the understanding of the underlying causes of trends in hydrological variables. Further investigation would be required to discover the potential causes of detected trends, which was beyond the scope of this study.

Under the Water Act (2007), the Australian Bureau of Meteorology has responsibility for compiling and disseminating comprehensive water information nation-wide. Hydrologic Reference Stations (HRS) is an initial step to build up the national river data network. The network of HRS, which the present study was based on, is the first operational website in Australia as a national river flow data repository. It provides an excellent foundation for water
planning and research – particularly in trend detection and the possibility to link to large scale atmospheric and climate variables. The information on the HRS website can be used as a test bed for model development, hydrological non-stationarity assessments and many other research interests.

6. Conclusions

This study investigated the streamflow variability and inferred trends in water availability for 222 gauging stations in Australia with long term and high quality streamflow records. The results present a systematic analysis of recent hydrological changes in greater spatial and temporal details than previously published for Australian rivers. Implications of the findings should aid decision making for water resources management, especially when considering the results in the context of climate variability.

The main findings of the study are:

- The spatial and temporal trends in observed streamflow varied across different hydro-climatic regions in Australia (Figure 2). In Northern Territory and north-west of Western Australia, there was an increasing trend in annual streamflow (Q_T) while there was no significant trend visible in the northern region of Queensland. However, in south-eastern Queensland there was a significant decreasing trend. Most of the gauging stations in New South Wales, Victoria and north-west Tasmania showed a significant decreasing trend in annual streamflow. In South Australia and South Tasmania, most of the stations showed no significant trend in annual streamflow.

- The temporal trends also varied between different components of streamflow – annual total, daily maximum (Q_{Max}), high, median and low flows (Q_{90}, Q_{50}, Q_{10}), baseflow (Q_{BF}) and seasonal totals (Q_{JJA}, Q_{SON}, Q_{DJF}, Q_{MAM}). Out of 222 stations, only 7 showed an increasing trend, 90 decreasing and 98 no trend in total annual streamflow. The annual daily maximum streamflow showed decreasing trends at 67 stations while the low flow and baseflow components showed decreasing trends at 18 and 73 stations respectively. Trends also varied between different seasonal totals and also across different hydro-climatic regions. Most of Northern Territory and central Australia showed increasing trend in summer (Q_{DJF}) flow while no stations were found with increasing trend for winter flow (Q_{JJA}) anywhere in Australia.
The analysis of step changes revealed definite regional patterns: stations in southeast Australia were characterised with step changes in the mid-1990s, while a key feature of a 1975 step change was identified for stations in south-west West Australia.

The web portal (http://www.bom.gov.au/water/hrs) displays all the graphical products, tables, and statistical test results of all 222 stations. It contains a comprehensive unique set of graphical products for linear trends and step change.

The streamflow trends evident from the statistical data analysis showed some parallels with climate variability patterns that the country experienced through recent decades. Long-term trends in water availability across different hydroclimatic regions of Australia reported in this study are derived purely from observations unlike other studies, they are not derived from models which can invariably be influenced by biases. The high quality streamflow data of HRS and the results from this analysis on streamflow variability provide critical information for water security planning and for prioritising water infrastructure investments across Australia.

Appendix A: Statistical tests

A1. Median Crossing Test

This method tests for randomness of a time series data. It is a non-parametric test. The n time series values \(X_1, X_2, X_3, \ldots X_n\) are replaced by ‘0’ if \(X_i < X_{\text{median}}\) and by ‘1’ if \(X_i > X_{\text{median}}\). If the time series data come from a random process, then the count ‘m’, which is the number of times 0 is followed by 1 or 1 is followed by 0, is approximately normally distributed with:

\[
\text{Mean: } \mu = \frac{(n-1)}{2}
\]

\[
\text{Standard deviation: } \sigma = \frac{(n-1)}{4}
\]

The z-statistic is therefore defined as:
A2. Rank Difference Test

This method also tests for randomness of a time series data. It is a non-parametric test. The n time series values (X₁, X₂, X₃… Xₙ) are replaced by their relative ranks starting from the lowest to the highest (R₁, R₂, R₃… Rₙ). The statistic ‘U’ is the sum of the absolute rank differences between successive ranks:

\[U = \sum_{i=2}^{n} |R_i - R_{i-1}| \]

For large n, U is normally distributed with:

Mean: \(\mu = \frac{(n + 1)(n - 1)}{3} \)

Standard deviation: \(\sigma = \frac{(n - 2)(n + 1)(4n - 7)}{90} \)

The z-statistic* is therefore defined as:

\[z = \frac{|U - \mu|}{\sigma^{0.5}} \]

A3. Mann-Kendall Test

This method tests whether there is a trend in the time series. It is a non-parametric rank-based test. The n time series values (X₁, X₂, X₃… Xₙ) are replaced by their relative ranks starting from the lowest to the highest (R₁, R₂, R₃… Rₙ).

The test statistic S is defined as:

\[S = \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \text{sgn}(R_i - R_j) \]

where \(\text{sgn}(y) = 1 \) for \(y > 0 \)

\(\text{sgn}(y) = 0 \) for \(y = 0 \)

\(\text{sgn}(y) = -1 \) for \(y < 0 \)

\(\text{sgn}() \) is the signum function.

If there is a trend in the time series (i.e the null hypothesis \(H_0 \) is true), then S is approximately normally distributed with:

Mean: \(\mu = 0 \)

Standard deviation: \(\sigma = \frac{n(n-1)(2n+5)}{18} \)

The z-statistic* is therefore:
A positive value of S indicates that there is an increasing trend and vice versa.

A4. Distribution Free CUSUM Test

This method tests whether the means in two parts of a record are different for an unknown time of change. It is a non-parametric test. Given a time series data \((X_1, X_2, X_3 \ldots X_n)\), the test statistic \(V_k\) is defined as:

\[
V_k = \sum_{i=1}^{k} \text{sgn}(X_i - \overline{X}_{\text{median}})
\]

where \(\text{sgn}(y) = 1\) for \(y > 0\), \(\text{sgn}(y) = 0\) for \(y = 0\), \(\text{sgn}(y) = -1\) for \(y < 0\), and \(\overline{X}_{\text{median}}\) is the median value of the \(X_i\) data set.

The time at which ‘\(\max |V_k|\)’ occurs is considered as the time of change. The distribution of \(V_k\) follows the Kolmogorov-Smirnov two-sample statistic \((\text{KS} = (2/n) \max |V_k|)\). A negative value of \(V_k\) indicates that the latter part of the record has a higher mean than the earlier part and vice versa.

A5. Rank-Sum Test

This method tests whether the medians in two different periods are different. It is a nonparametric test. The time series data is ranked to compute the test statistic. In the case of ties the average of ranks are used. The statistic \(S\) is the sum of ranks of the observations in the smaller group. The theoretical mean and standard deviation of \(S\) under \(H_0\) for the entire sample is given as:

\[
\text{Mean: } \mu = \frac{n(N+1)}{2}
\]

\[
\text{Standard deviation: } \sigma = \left[\frac{nm(N+1)}{12}\right]^{0.5}
\]

where \(n\) and \(m\) are the number of observations in the smaller and larger groups respectively. The standardised form of the test statistic, \(Z^*\) is computed as:

\[
Z = \frac{(S - 0.5 - \mu)}{\sigma} \quad \text{if } S > \mu
\]

\[
Z = 0 \quad \text{if } S = \mu
\]

\[
Z = \frac{|S + 0.5 - \mu|}{\sigma} \quad \text{if } S < \mu
\]

\(Z\) is approximately normally distributed.
Acknowledgements

The primary streamflow data for this study were provided by the national and state water agencies. The Hydrologic Reference Stations website was developed in consultation with University of Melbourne, CSIRO Land and Water, Department of the Environment (DOE) and about 70 other stakeholders. Special thanks go to Emeritus Professor Tom McMahon for his contribution to the HRS technical review. We also gratefully acknowledge the input from AMDISS team, Water Data, and Geofabric teams of the Bureau of Meteorology.

References

Australian Bureau of Statistics (ABS): Year Book Australia 2012, http://www.abs.gov.au/ausstats (Date 07/08/2013), 2012.

Bawden, A.J., Linton, H.C., Burn, D.H., and Prowse, T.D.: A spatiotemporal analysis of hydrological trends and variability in the Athabasca River region, Canada. J. Hydrol. 509, 333–342. 2014.

Biggs, E.M., and Atkinson, P.M.: A characterisation of climate variability and trends in hydrological extremes in the Severn Uplands. Int. J. Climatol. 31, 1634–1652. 2011.

Birsan, M.V., Molnar, P., Burlando, P., and Pfaundler, M.: Streamflow trends in Switzerland. J. Hydrol. 314 (1–4), 312–329. 2005.

BOM (Bureau of Meteorology), Geospatial Data Unit: Australian Hydrological Geospatial Fabric (Geofabric) Product Guide, Version 2.0, p87. 2012.

BOM (Bureau of Meteorology), CSIRO: State of the Climate 2014. The third report on Australia’s climate by BOM and CSIRO. http://www.bom.gov.au/state-of-the-climate/. 2014.

Bormann, H., Pinter, N., and Elfert, S.: Hydrological signatures of flood trends on German rivers: flood frequencies, flood heights and specific stages. J. Hydrol. 404, 50–66. 2011.

Burn, D.H., and Hag Elnur, M.A.: Detection of hydrologic trends and variability. J. Hydrol. 255, 107–122. 2002.

Chiew, F.H.S., and McMahon, T.A.: Detection of trend or change in annual flow of Australian rivers, Int. J. Climatol. 13 (6), 643–653. 1993.
Chiew, F. H. S., and Siriwardena, L.: TREND – trend/change detection software, CRC for Catchment Hydrology (www.toolkit.net.au/trend). 2005.

Cleugh, H., Smith, M.S., Battaglia, M., and Graham P. (eds): Climate change: science and solutions for Australia. CSIRO PUBLISHING, Australia, p155. 2011.

CSIRO: Reports to the Australian Government from the CSIRO Sustainable Yields Project. CSIRO, Australia. http://www.csiro.au/Organisation-Structure/Flagships/Water-for-a-Healthy-Country-Flagship/Sustainable-Yields-Projects.aspx. 2013.

Dixon, H., Lawler, D.M., and Shamseldin, A.Y.: Streamflow trends in western Britain. Geophys. Res. Lett. 33, L19406. 2006.

Durrant, J., and Byleveld S.: Streamflow trends in south-west Western Australia. Surface water hydrology series - Report no. HY32, Department of Water, Government of Western Australia, p79. 2009.

Finlayson, B.L., and McMahon, T.A.: Australia v. the world: a comparative analysis of streamflow characteristics. In Fluvial Geomorphology of Australia. Warner RF (ed). Geoscience Australia: Australia's River Basins 1997: Product User Guide. National Mapping Division, Geoscience Australia: Canberra. 2004.

Hannaford, J., and Buys, G.: Trends in seasonal river flow regimes in the UK. J. Hydrol. 475, 158–174. 2012.

Hannaford, J., and Marsh, T.: An assessment of trends in UK runoff and low flows using a network of undisturbed catchments. Int. J. Climatol. 26, 1237–1253. 2006.

Hannaford, J., and Marsh, T.J.: High-flow and flood trends in a network of undisturbed catchments in the UK. Int. J. Climatol. 28, 1325–1338. 2008.

Hennessy, K., Fitzharris, B., Bates, B.C., Harvey, N., Howden, S.M., Hughes, L., Salinger, J., and Warrick, R.: Australia and New Zealand. Climate Change 2007: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, M.L. Parry, O.F. Canziani, J.P. Palutikof, P.J. van der Linden and C.E. Hanson, Eds., Cambridge University Press, Cambridge, UK, 507-540. 2007.
Helsel, D.R., and Hirsch, R.M.: Statistical methods in water resources, USGS-TWRI Book 4, Chapter A3. U.S. Geological Survey, U.S. 2002.

Ishak, E.H., Rahman, A., Westra, S., Sharma, A., and Kuczera, G.: ‘Preliminary analysis of trends in Australian flood data’, World Environmental and Water Resources Congress 2010: Challenges of Change (Providence, RI 16-20 May, 2010), 115-124. 2010.

Jones, P.D., Lister, D.H., Wilby, R.L., and Kostopoulou, E.: Extended river flow reconstructions for England and Wales, 1865–2002. Int. J. Climatol. 26, 219–231. 2006.

Kendall, M.G.: Rank Correlation Measures. Charles Griffin, London. 1975.

Kumar, S., Merwade, V., Kam, J., and Thurner, K.: Streamflow trends in Indiana: Effects of long term persistence, precipitation and subsurface drains. J. Hydrol. 374, 171–183. 2009.

Kundzewicz, Z.W., and Robson, A.: Detecting Trend and Other Changes in Hydrological Data. World Climate Program - Water, WMO/UNESCO, WCDMP-45, WMO/TD 1013, Geneva, 157pp. 2000.

Lins, H.F., and Slack, J.R.: Seasonal and regional characteristics of US streamflow trends in the United States from 1940 to 1999. Physical Geography 26 (6), 489–501. 2005.

Lyne, V., and Hollick, M.: Stochastic time-variable rainfall-runoff modelling. Institute of Engineers Australia National Conference. Publ. 79/10, 89-93. 1979.

Mann, H.B.: Non-parametric tests against trend. Econometrica 13, 245–259. 1945.

McCabe, G.J., and Wolock, D.M.: A step increase in streamflow in the conterminous United States. Geophys. Res. Lett. 29 (24), 2185. doi:10.1029/2002GL0159999. 2002.

Macdonald, N., Phillips, I.D., and Mayle, G.: Spatial and temporal variability of flood seasonality in Wales. Hydrol. Process. 24, 1806–1820. 2010.

Miller, W.P., and Piechota, T.C.: Regional analysis of trend and step changes observed in hydroclimate variables around the Colorado River basin. J. Hydrometeor. 9, 1020 – 1034. 2008.

Milly, P.C.D., Dunne, K.A., and Vecchia, A.V.: Global pattern of trends in streamflow and water availability in a changing climate. Nature 438 (7066), 347–350. 2005.
Monk, W.A., Peters, D.L., Curry, A., and Baird, D.J.: Quantifying trends in indicator hydroecological variables for regime-based groups of Canadian rivers. Hydrol. Process. 25, 3086–3100. 2011.

Nathan, R.J., and McMahon, T.A.: Evaluation of automated techniques for base flow and recession analyses. Water Resour. Res. Vol 26, Number 7, 1465-1473. 1990.

Novotny, E.V., and Stefan, H.G.: Stream flow in Minnesota: indicator of climate change. J. Hydrol. 334 (3–4), 319–333. 2007.

Perrin, C., Michel, C., and Andreassian, V.: Improvement of a parsimonious model for streamflow simulation. J. Hydrol. 279, 275–289. 2003.

Petrone, K.C., Hughes, J.D., Van Niel, T.G., and Silberstein, R.P.: Streamflow decline in Southwestern Australia, 1950-2008. Geophys. Res. Lett. 37, L11401. 2010.

Petrow, T., and Merz, B.: Trends in flood magnitude, frequency and seasonality in Germany in the period 1951–2002. J. Hydrol. 371, 129–141. 2009.

Poff, N.L., Olden, J.D., Pepin, D.M., and Bledsoe, B.P.: Placing global stream flow variability in geographic and geomorphic contexts. River Res. Appl. 22: 149–166. 2006.

Puckridge, J.T., Sheldon, F., Walker, K.F., and Boulton, A.J.: Flow variability and the ecology of large rivers. Mar. Freshwater Res. 49, 55-72. 1998.

Raupach, M.R., Briggs, P.R., Haverd, V., King, E.A., Paget, M., and Trudinger, C.M.: Australian Water Availability Project (AWAP): CSIRO Marine and Atmospheric Research Component: Final Report for Phase 3. CAWCR Technical Report No. 013, 67pp. 2009.

SKM: Developing guidelines for the selection of streamflow gauging stations. Final Report, August 2010, Prepared for the Climate and Water Division, Bureau of Meteorology, 76pp. 2010.

Stahl, K., Hisdal, H., Hannaford, J., Tallaksen, L.M., van Lanen, H.A.J., Sauquet, E., Demuth, S., Fendekova, M., and Jódar, J.: Streamflow trends in Europe: evidence from a dataset of near-natural catchments. Hydrol. Earth Syst. Sci. 14, 2367–2382. 2010.

Stahl, K., Tallaksen, L.M., Hannaford, J., and van Lanen, H.A.J.: Filling the white space on maps of European runoff trends: estimates from a multi-model ensemble. Hydrol. Earth Syst. Sci. 16, 2035–2047. 2012.
Stern, H., Hoedt, G., and Ernst, J.: Objective classification of Australian climates, Aust. Met. Mag. 49, 87-96. 2000.

Stewardson, M.J., and Chiew, F.: A comparison of recent trends in gauged streamflows with climate change predictions in south east Australia, 18th World IMACS / MODSIM Congress, Cairns, Australia 13-17 July 2009 (Abstract only). 2009.

Tran, H., and Ng, A.: Statistical trend analysis of river streamflows in Victoria, in Proceedings of H2009: 32nd Hydrology and Water Resources Symposium, Canberra, Australia, 30 November to 3 December 2009, 1019-1027. 2009.

Turner, M., Bari, M., Amirthanathan, G., and Ahmad, Z.: Australian network of hydrologic reference stations - advances in design, development and implementation, Proceedings of Hydrology and Water Resources Symposium 2012: 1555-1564. 2012.

Water Act 2007. Department of Environment, Commonwealth of Australia. Start date 03/Mar/2008. http://www.comlaw.gov.au/Series/C2007A00137. 2007.

WWAP (World Water Assessment Programme): The United Nations World Water Development Report 4: Managing Water under Uncertainty and Risk. Paris. UNESCO. 2012.

Zhang, S.X., Bari, M., Amirthanathan, G., Kent, D., MacDonald, A., and Shin, D.: Hydrologic Reference Stations to Monitor Climate-Driven Streamflow Variability and Trends. In: Hydrology and Water Resources Symposium 2014. Barton, ACT: Engineers Australia, 2014: 1048-1055. 2014.

Zhang, Z., Dehoff, A.D., and Pody, R.D.: New approach to identify trend pattern of stream flows. Journal of Hydrologic Engineering, 15, (3), 244 – 248. 2010.
Table 1: Metadata of the drainage divisions and selected Hydrologic Reference Stations

Division map code	Drainage division names	Mean annual rainfall (mm) (1976-2005)*	Mean elevation (m)	Number of HRS stations	Water year start month	Smallest catchment area (km2)	Largest catchment area (km2)
I	Northeast Coast	764	173	42	October	6.6	7486.7
II	Southeast Coast	599	323	44	March	4.5	4660.0
III	Tasmanian	1519	199	12	February	18.3	775.3
IV	Murray-Darling	479	260	75	March	26.3	35238.9
V	South Australia Gulf	344	269	5	February	5.3	187.4
VI	Southwest Coast	329	365	13	March	14.1	1786.0
VII	Indian Ocean	369	162	0	(No data)	(No data)	(No data)
VIII	Timor Sea	520	339	13	Septembe(r	65.4	47651.5
IX	Gulf of Carpentaria	674	293	13	October	170.0	43476.2
X	Lake Eyre	429	312	5	October	434.9	232846.3
XI	North Western Plateau	456	359	0	(No data)	(No data)	(No data)
XII	South Western Plateau	321	297	0	(No data)	(No data)	(No data)

* Calculation was based on rainfall data from BOM climate website http://www.bom.gov.au/.
Table 2: Results of trend analysis for stations showing MK trend test at 0.01 significance level in annual total streamflow

Div	State	Basin	Station ID	Site name	Area (km²)	Data time series	Ave. annual flow (GL·yr)	BF index	Trend	Step change		
						Start year	End year		MK	LSR	year	
II	VIC	Snowy River	222206	Buchan River at Buchan	850	1951	2014	140.0	0.45**	--	+	1976
	VIC	Mitchell-Thomson Rivers	223202	Tambo River at Swifts Creek	899	1951	2014	77.1	0.46**	--	+	1978
	VIC	Wonnang River	231213	Leardberg River at Sardine Creek	152	1959	2014	25.9	0.34**	--	+	1996
	VIC	Hopkins River	236213	Mount Lalla Creek at Menz Park	448	1974	2014	13.6	0.18**	--	+	1996
	VIC	Glenelg River	238208	Jimmy Creek at Jimmy Creek	23	1951	2014	3.4	0.47**	--	+	1996
	SA	Millicent Coast	A2390510	Mosquito Creek at Struan	1530	1971	2014	21.7	0.23**	--	+	1992
	SA	Millicent Coast	A2390522	Stony Creek at Wee Wisce Range	485	1973	2014	4.8	0.55**	--	+	1990
III	TAS	Smithton-Rennie Coast	314213	Black River at South Forest	318	1968	2014	194.1	0.38*	--	+	1992
IV	NSW	Upper Murray	401099	Maragle Creek at Maragle	217	1951	2014	35.9	0.47**	--	+	1996
	NSW	Kiwa River	402217	Flagg Creek at Myrtleford Road Bridge	26	1970	2010	4.0	0.42**	--	+	1996
	VIC	Goulburn	405238	Mollison Creek at Pyalong	164	1972	2014	19.5	0.29*	--	+	1996
	VIC	Goulburn	405248	Major Creek at Graytown	288	1971	2014	13.2	0.10**	--	+	1996
	VIC	Goulburn	405251	Blankeek Creek at Ancona	122	1973	2014	14.8	0.45**	--	+	1996
	VIC	Campaspe River	406214	Axe Creek at Longlea	237	1972	2014	13.4	0.18**	--	+	1996
	VIC	Loddon River	407214	Cresswick Creek at Clunes	300	1971	2014	24.0	0.32**	--	+	1996
	VIC	Loddon River	407230	Joyce Creek at Statheha	156	1973	2014	9.2	0.17*	--	+	1996
	NSW	Lachlan	412028	Abercrombie River at Abercrombie	2631	1951	2014	277.0	0.30*	--	+	1978
	NSW	Lachlan	412066	Abercrombie River at Hadley No 2	1650	1960	2014	169.8	0.29*	--	+	1978
	VIC	Aven	415226	Richardson River at Camp Plains	125	1971	2014	3.7	0.04**	--	+	1996
	VIC	Wimmera	415237	Consobella Creek at Sarwell	244	1976	2014	9.1	0.12**	--	+	1996
	WA	Murray River (WA)	616065	Harvey River at Dingo Road	148	1970	2014	29.7	0.59**	--	+	1993
	WA	Swan Coast	616065	Canning River at Glen Eagle	537	1953	2014	18.9	0.36**	--	+	1975

* Significant at p < 0.05
** Significant at p < 0.01
* Baseflow series non-random
** Baseflow no trend
↓ decrease trend
↑ increase trend
Figure 1: Location of the 222 high quality streamflow reference stations, the climatic regions and Australia drainage divisions (Geofabric Surface Hydrology Catchments, Geofabric V2.1, BOM 2012)
Figure 2: Framework of developing Hydrologic Reference Stations
Figure 3: Snapshot of the HRS web portal
Figure 4: Stacked bar-plot summarizing the MK trend test results for the 222 HRS stations, with data labels showing the number of stations in each category (Q_T: annual total flow, Q_BF: annual baseflow, Qmax: daily maximum flow, Q90: 90th percentile daily flow, Q50: 50th percentile daily flow, Q10: 10th percentile daily flow, Q_DJF: summer flow, Q_MAM: autumn flow, Q_JJA: winter flow, Q_SON: spring flow)
Figure 5: Spatial variation in trend results of annual total flow, decrease trends were shown in significance levels at 0.01, 0.05, and 0.1
Figure 6: Variations of step change in annual total flow for stations showing significant increase or decrease trend.
Figure 7: Maps showing trends of daily flow in various magnitude categories a) maximum daily flow Q_{Max}; b) Q_{90} daily flow; c) Q_{50} daily flow; d) Q_{10} daily flow at 10% significant level ($p<0.1$)
Figure 8: Maps showing trends of seasonal flow in a) Summer; b) Autumn; c) Winter; d) Spring