Multiple sulfur isotope evidence for massive oceanic sulfate depletion in the aftermath of Snowball Earth

Pierre Sansjofre1,2,3, Pierre Cartigny1, Ricardo I.F. Trindade2, Afonso C.R. Nogueira4, Pierre Agrinier1 & Magali Ader1

The terminal Neoproterozoic Era (850–542 Ma) is characterized by the most pronounced positive sulfur isotope (34S/32S) excursions in Earth’s history, with strong variability and maximum values averaging δ^{34}S \sim +38‰. These excursions have been mostly interpreted in the framework of steady-state models, in which ocean sulfate concentrations do not fluctuate (that is, sulfate input equals sulfate output). Such models imply a large pyrite burial increase together with a dramatic fluctuation in the isotope composition of marine sulfate inputs, and/or a change in microbial sulfur metabolisms. Here, using multiple sulfur isotopes (33S/32S, 34S/32S and 36S/32S ratios) of carbonate-associated sulfate, we demonstrate that the steady-state assumption does not hold in the aftermath of the Marinoan Snowball Earth glaciation. The data attest instead to the most impressive event of oceanic sulfate drawdown in Earth’s history, driven by an increased pyrite burial, which may have contributed to the Neoproterozoic oxygenation of the oceans and atmosphere.
Sulfur represents one of the most important metabolic electron acceptors on the planet, and constraining its biogeochemical cycle is crucial for understanding the long-term redox evolution of the oceans and atmosphere. Classically, the sedimentary record of sulfur cycling is probed through the sulfur isotopic composition of sedimentary pyrite, δ^{34}S$_{pyr}$, and carbonate-associated sulfate (CAS), δ^{34}S$_{CAS}$ (where δ^{34}S = 34S/32S$_{sample}$/34S$_{Canyon Diablo Troilite} - 1$) of which may record fluctuations in past marine sulfate isotope composition. Variations in oceanic sulfate isotope composition (δ^{34}S$_{SO_4}$) are usually interpreted under steady-state assumptions, whereby the oceanic sulfate content (M_{SO_4}) remains constant:

$$\frac{d(M_{SO_4})}{dt} = F_{in} - F_{out} = 0$$

(F_{in} being the input flux related to weathering and F_{out} the output flux related to pyrite and evaporite burial. Long-term variations in δ^{34}S$_{SO_4}$ therefore depend on the fraction of sulfur buried as pyrite relative to evaporite (f_{pyr}, ranging from 0 to 1) as well as on the isotopic composition of sulfate delivered to the ocean (δ^{34}S$_{in}$), according to the conservative isotopic mass equation:

$$\delta^{34}S_{SO_4} = f_{pyr} \times \delta^{34}S_{pyr} + \delta^{34}S_{in}$$

where $\Delta\delta^{34}$S$_{SO_4-pyr} = \delta^{34}S_{SO_4} - \delta^{34}S_{pyr}$ is the difference between the average δ^{34}S$_{SO_4}$ of evaporites and/or CAS and the average δ^{34}S$_{pyr}$ of sedimentary pyrite at a given time. Considering a modern δ^{34}S$_{in}$ of +3‰, a $\Delta\delta^{34}$S$_{SO_4-pyr}$ of 40‰, and a modern seawater δ^{34}S$_{SO_4}$ of +21‰, the resulting present-day f_{pyr} is close to 0.45 (ref. 11).

In a steady-state framework (equation (2)) and assuming modern δ^{34}S$_{CAS}$ and $\Delta\delta^{34}$S$_{SO_4-pyr}$ values, the strong positive δ^{34}S$_{CAS}$ recorded in Neoproterozoic sediments would only hold for f_{pyr} values above unity which are therefore inconsistent. A concomitant increase of both f_{pyr} and $\Delta\delta^{34}$S$_{SO_4-pyr}$ for such excursions is thus necessary. Similarly, assuming that $\Delta\delta^{34}$S$_{SO_4-pyr}$ is constant, the high δ^{34}S$_{CAS}$ values (accompanied by high δ^{34}S$_{pyr}$) need to be accounted by a concomitant increase in both f_{pyr} and $\Delta\delta^{34}$S$_{SO_4}$. For example, the δ^{34}S$_{CAS}$ Positive Ara anomaly (~545 Ma) in Oman requires anomalously high f_{pyr} (0.9) and δ^{34}S$_{in}$ (15‰) values for which a geological driver remains to be identified. Others have instead observed an increase in δ^{34}S$_{CAS}$ values not accompanied by a change in δ^{34}S$_{pyr}$ values, resulting in a $\Delta\delta^{34}$S$_{SO_4-pyr}$ increase that may reflect the advent of sulfur disproportionation (SD) metabolism. An alternative possibility is that the steady-state model itself does not hold for the Neoproterozoic. This hypothesis has already been envisaged but has never really been tested so far because it increases further the number of unconstrained parameters compared with the steady-state model (for example, δ^{34}S$_{in}$ $\Delta\delta^{34}$S$_{SO_4-pyr}$ F_{out} M_{SO_4}).

Here we use multiple sulfur isotopes (33S/32S, 34S/32S and 36S/32S ratios) of CAS and pyrite to investigate dynamic models for the Neoproterozoic sulfate reservoir evolution in the aftermath of the Marinoan glaciation. The results show that the steady-state assumption does not hold in the aftermath of the Marinoan Snowball Earth glaciation and attest to an impressive event of oceanic sulfate drawdown.

Results

Stratigraphy and age constraints. The studied sedimentary sequence corresponds to the Mirassol d’Oeste and Guia formations (Araras group, Central Brazil) and starts with a typical cap dolostone (~635 Ma, refs 15–17) directly overlying Marinoan glacial deposits. We focus primarily on CAS as its isotopic composition is generally considered to reflect a seawater signal, provided that diageneisis and recrystallization are limited. Samples were selected based on previous petrographic and geochemical results to avoid as much as possible diagenetic overprints.

Selected samples were then carefully washed to avoid contamination (Methods section). It has been shown that secondary pyrite oxidation to sulfate and atmospheric sulfur contamination may lead to lower δ^{34}S$_{CAS}$ values. The consistent isotopic pattern displayed by the generated data set (see below) suggests that contamination was not significant in our samples.

Three slightly overlapping sections were sampled in freshly exposed quarries (Terconi, Camil and Carmelo quarries) along a basinward profile, from the innershelf to the outershelf of the Araras carbonate platform. The base of the composite section (Fig. 1) corresponds to the post-Marinoan glaciation diamictite-dolostone contact that is globally dated at 635.5 Ma (refs 20,21). This is further constrained by Sr and C isotopes correlations and a Pb–Pb age of 627 ± 32 Myr (see Supplementary Information of ref. 22). The age of the top of the section is constrained by the

![Figure 1](https://example.com/figure1.png)

Figure 1 | Isotopic results of sedimentary carbonates of the Araras platform. Sulfur isotope composition of sulfate (δ^{34}S$_{CAS}$ and Δ^{32}S$_{CAS}$) and pyrite (δ^{34}S$_{pyr}$) of the Araras carbonates. Results are given in ‰ versus CTD. Terconi, Carmelo and Camil section are represented as a single composite stratigraphic log.
acritarch assemblage of the overlying Nobres Formation (Cavaspina acuminata, Chlorogloeopsis sp., Obruchevella sp., Ericiasphaera sp., Appendisphaera barbata, Tanarium irregulare, Tanarium conoideum and Micropyridium pisinum\(^{25}\)), which corresponds to the ECAP bizone of Grey (2005), ref. 24, that is, to an age interval of 570–580 Myr. This estimate is coherent with recently obtained detrital zircon and mica ages at 544 ± 7 Myr on the overlying Diamantino Formation\(^{25}\). We can therefore reasonably estimate a maximum depositional time (from 635 to 575 Ma) of 60 Myr for Mirassol do Oeste and Guia formations (300 m of sediments). Outcrop-based facies analysis, complemented by petrographic description of representative samples, reveals a transgressive systems tract, with the deepest part of the platform corresponding to a ramp depositional environment\(^{17}\).

Sulfur isotopes. We extracted sulfate from 16 micritic carbonate samples. Most CAS analyses (12 out of 16) were performed on samples from the Carmelo quarry, which contains the thickest post-glacial sedimentary sequence (Fig. 1). At the base of the section (that is, in the direct aftermath of glaciation), \(\delta^{34}\)SCAS is +14‰ (lower than that of the modern ocean, \(\sim +21\)‰) and increases steadily up to \(\sim +38\)‰, locally reaching +50.6‰ (n = 2, Fig. 1 and Supplementary Table 1). Our range of values is consistent with data reported for other Marinho post-glaciation deposits in Namibia\(^{6}\) and North China\(^{26}\).

The isotope composition of pyrite was also analysed (n = 35, from Terconci, Carmelo and Camil sections). Pyrite is absent from the first 50 metres of the composite section. Above the base, its content varies between 0.01% and 3.06%. Scanning electron microprobe investigations show that pyrite is present as a mixture of frambooidal aggregates (that is, later-diagenetic) and euhedral crystals\(^{37}\) (that is, later-diagenetic). \(\delta^{34}\)Spyr increases upsection from −9.9 to + 26.2‰, with strong variations in the upper part of the section that are associated with lithological variations (Fig. 1). \(\delta^{34}\)Spyr and \(\delta^{34}\)SCAS are broadly correlated (\(R^2 = 0.79\)), yielding a mean \(\Delta^{34}\)SCAS-Pyr of 33.5 ± 5.3‰ (1σ).

Multiple sulfur isotopes. For the multiple sulfur isotopes analyses, \(\Delta^{34}\)SCAS (where \(\Delta^{34} = \delta^{34}S - \delta^{33}S - 10^{-3} \times ((\delta^{34}S/1,000 + 1)^{0.515} - 1)\), see ref. 27) increases from −0.01% at the base to + 0.10‰ at the top of the section (both ± 0.01‰, 2σ; Fig. 1). A clear positive correlation is observed between \(\Delta^{34}\)SCAS and \(\Delta^{36}\)SCAS with \(R^2 = 0.82\) (Fig. 2). \(\Delta^{36}\)SCAS (where \(\Delta^{36} = \delta^{36}S - 10^{-3} \times ((\delta^{36}S/1,000 + 1)^{0.82} - 1)\) varies between +0.09 and −0.46‰ (± 0.1‰, 2σ) and correlates negatively with both \(\delta^{34}\)SCAS and \(\Delta^{33}\)SCAS.

Discussion Deviations of \(\Delta^{33}\)SCAS and \(\Delta^{36}\)SCAS from zero together with correlations of \(\delta^{34}\)SCAS – \(\Delta^{33}\)SCAS (Fig. 2), \(\delta^{34}\)SCAS – \(\Delta^{36}\)SCAS and \(\Delta^{36}\)SCAS – \(\Delta^{33}\)SCAS are observed for the first time in Neoproterozoic sections and result from mass-conservation effects\(^{37}\). Our results can only be produced in a non-steady-state system where \(F_{in} \neq F_{out}\), the non-zero \(\Delta^{34}\)SCAS values being a consequence of the subtle interplay of sulfate input and removal from the ocean (Methods section). Sulfate input lowers the oceanic sulfate \(\Delta^{34}\)SCAS through mixing processes (Supplementary Fig. 1), whereas sulfate removal from the ocean by hydrothermal or biological activity, the latter including bacterial sulfate-reduction (BSR) coupled to pyrite burial, increases the \(\Delta^{35}\)SCAS of the residual oceanic sulfate (Supplementary Figs 2 and 3, ref. 27).

The analytical results and observed correlations can be quantitatively modelled by combining the dynamic equations of mass balance (equation (3)) and isotopic mass balance (for example, equation (4) for \(\delta^{34}S\) and \(\delta^{33}S\)), which govern seawater sulfate concentrations and its isotopic compositions:

\[
\frac{d(M_{SO4})}{dt} = F_{in} - F_{out} \tag{3}
\]

and

\[
\frac{d(\frac{34S}{32S}_{SO4}\cdot M_{so4})}{dt} = \frac{(34S}{32S}_{SO4})_{in} - \frac{34S}{32S}_{SO4} - \frac{34S_{sulfide-sulfate}}{F_{out}} \tag{4}
\]

where \(\delta^{34}\)sulfide-sulfate is the fractionation factor between sulfur buried as pyrite and sulfate buried as evaporite at the global scale, which is usually inferred from the average sedimentary \(\Delta^{34}\)SO4-pyr of equation (2), (ref. 10). Similar equations can be written for \(\delta^{33}S\) and \(\delta^{33}S\) isotope ratios. Because sulfur isotope fractionation factors \(\delta^{33}S\) and \(\delta^{33}S\) can be related to \(\delta^{34}S\) by the \(\beta\) and \(\beta\) exponents, respectively (for example, \(\beta = \ln(33S/32S), \ln(33S)\), ref. 27), these equations can all be written as a function of \(\delta^{34}S\). Here for \(\delta^{32}S\):

\[
\frac{d(\frac{33S}{32S}_{SO4}\cdot M_{so4})}{dt} = \frac{(33S}{32S}_{SO4})_{in} - \frac{33S}{32S}_{SO4} - \frac{34S_{sulfide-sulfate}}{F_{out}} \tag{5}
\]

\(\delta^{33}S\) is typically close to 0.515 for abiotic processes and varies from 0.509 to 0.516 for microbial sulfate-reduction\(^{28,29}\). As illustrated by equations (4 and 5), the modelled \(\Delta^{34}S\)-\(\delta^{34}S\) trend of oceanic sulfate (blue line in Fig. 2) only depends on three parameters, namely \(F_{in}/F_{out}\) ratio, \(\beta\) and \(\delta^{34}S_{sulfide-sulfate}\) values. Most importantly, as opposed to previous approaches, in this model, \(\delta^{34}S_{sulfide-sulfate}\) is a free parameter that we can explore to determine the best-fit scenario, that is, it is not deduced from the \(\Delta^{34}\)SO4-pyr values. The model does not depend on strong temporal constraints; therefore no a priori assumption was made on the initial sulfate residence time. Equally, no attempt was made to fit the isotope trend in Fig. 1, which would require a well-constrained deposition rate. However, we emphasize that the observed increase in \(\delta^{34}\)SCAS-values (and also \(\Delta^{35}\)SCAS and \(\Delta^{34}\)Spyr) through time is consistent with our model.

To better address the origin of the \(\delta^{34}\)S-enriched signatures of oceanic sulfate, we investigated the variations in multiple sulfur isotope compositions for various combinations of...
We explored the space of solutions for different combinations of F_{in}/F_{out}, 3β – factor and 34β – sulfide–sulfate by calculating the F_{in}/F_{out}-ratio that best fits the $\Delta^{34}S\text{CAS} - \Delta^{33}S$ slope defined by our data for a given set of 34β and 33β values. For that, we used 51 values of 33β (from 0.511 to 0.516) and 231 values of 34β (expressed as 1,000ln(34β) from -17%o to -60%o). A total of 11,781 combinations of 33β, 34β and F_{in}/F_{out} values compatible with the observed $\Delta^{34}S\text{CAS} - \Delta^{33}S$ slope were produced (Fig. 3). We can restrict step by step the space of solution of our model using constraints available for $\Delta^{34}S\text{CAS}_{initial} - \Delta^{33}S\text{CAS}_{initial}$, which describes the range of 34βCAS variation during the excursion, and 36β, which is the exponent linking 34β and 36β-values ($36\beta = \ln(34\beta)/\ln(34\beta)$). Each step is described below and the successive restrictions of the space of solution are shown in the 1,000ln(34β) versus 33β-exponent diagram of Fig. 3a–c.

Valid combinations of 33β, 34β and F_{in}/F_{out} are restricted to the coloured, lower half–right of each panel of Fig. 3, which is delimited by curve #1. There are no viable solutions above curve #1 because the corresponding 33β and 34β-values would produce $\Delta^{33}S$ too close to zero compared with our data (Fig. 2). The first constraint used here is the $\Delta^{34}S\text{CAS}_{final} - \Delta^{34}S\text{CAS}_{initial}$ Parameter. Combinations of 33β, 34β compatible with our data for different $\Delta^{34}S\text{CAS}_{final} = \Delta^{34}S\text{CAS}_{initial}$ values are shown in Fig. 3a. Curve #2 delimitates the field below which the difference between $\Delta^{34}S\text{CAS}_{final}$ and $\Delta^{34}S\text{CAS}_{initial}$ values (+38%o and +12%o, respectively) is too low (that is, $\Delta^{34}S\text{CAS}_{final} - \Delta^{34}S\text{CAS}_{initial} < 26\%$) to account for the high 34βCAS-values measured in our section. Therefore, only results above curve #2 (that is, $\Delta^{34}S\text{CAS}_{final} - \Delta^{34}S\text{CAS}_{initial} > 26\%$) are valid. This further constrains the space of solution to between curves #1 and #2, with 33β-exponent <0.514 and 1,000ln(34β) $< -30\%$, as defined by the intercept between curves #1 and #2 (Fig. 3a).

Figure 3b represents the range of F_{in}/F_{out}-ratios compatible with our model. It illustrates the calculated F_{in}/F_{out}-ratios that fit the observed $\Delta^{34}S\text{CAS}$ versus $\Delta^{33}S$ slope for each pair of 33β and 34β. The white curve #3 highlights steady-state conditions, where $F_{in} = F_{out}$. This figure clearly shows that for the field defined by curves #1 and #2, F_{in}/F_{out}-ratios are always below unity ($F_{in} < F_{out}$), pointing to a decrease in oceanic sulfate concentration through time. This demonstrates that whatever the input parameters, the observed trends between $\Delta^{34}S\text{CAS}$ versus $\Delta^{33}S$ cannot be reproduced in a steady-state model (Supplementary Fig. 4). Taken together, Fig. 3a and Fig. 3b constrain the solution space to $F_{in} < F_{out}$ and $33\beta < 0.514$ (between curves #1 and #2). Another interesting outcome of the model is that 36β-values are distinct from those expected for sulfate-reduction to hydrogen sulfide under thermodynamic equilibrium (green curve in Fig. 3a), a result consistent with previous studies.

The space of solution can be further restricted taking into account the fact that 36β must also fit the observed $\Delta^{33}S$ versus $\Delta^{33}S$ correlation (Fig. 4a). Figure 3c represents the combinations of 33β and 34β compatible with our data for different 36β-values. Our space of solutions (between curves #1 and #2) is compared with 34β sulfide–sulfate data and their respective 33β and 36β exponents estimated from batch culture experiments for the two main sulfur metabolisms, namely SD and BSR (refs 28,29). Our space of solutions intersects only the field delimited by the BSR data set while SD data (red dots in Fig. 3c) plot outside. This allows us to assume that BSR is the main mechanism leading to sulfate drawdown and to further restrict our space of solutions to its intersection with the BSR cultures data set. It is worth noting, however, that available data from culture experiments are still limited and present significant variability. In Fig. 5, all available 34β sulfide–sulfate, 33β and 36β-values for culture experiments28,29,34–37 are plotted together with our modelled values.
Although available data most clearly relate to BSR, one cannot rule out that part of the signal may reflect a mixed signature between SD and BSR organisms (Fig. 5).

The final space of solutions in Fig. 3 is represented by a grey polygon which corresponds to the following combination of values: $34a_{sulfide-sulfate} = 0.960 \pm 0.005$, $33b = 0.5125 \pm 0.0005$ and $F_{in}/F_{out} = 0.30 \pm 0.25$. The high sensitivity of the model allow to have precise values for the best-fit scenario, indeed slight modifications of each modelled parameter ($34a_{sulfide-sulfate}$, $33b$ and F_{in}/F_{out}) shows significant effects on the $\Delta 34S_{CAS}$ versus $D 33SCAS$ slope (Fig. 4b).

This multi-isotopic approach allows us, using the best-fit values deduced above for $33b$, $34a$ and F_{in}/F_{out} in equations (4 and 5), to quantify the contraction of the sulfate reservoir responsible for the observed increase in both $\Delta 34S_{CAS}$ and $D 33SCAS$ (blue line in Fig. 2). For the strong increase in $\Delta 34S$-value from +12‰ at the base of the section to +38‰ at the top, the model indicates that water column sulfate concentrations decreased dramatically by nearly 50%. In other words, at the end of deposition of the Guia Formation, sulfate concentration would be only half its initial value (Fig. 1). A single extreme $\Delta 34S_{CAS}$ value of +50‰ is observed in a typical event bed at the top of the section.
characterized by hummocky cross stratification. Given its sedimentary characteristics, it is unclear whether this single extreme value should be considered; if representative, it would indicate a 60% decrease compared with the sulfate concentration observed at the base of the Araras composite section. The high $\delta^{34}S$ values reported in post-Marinoan glacial deposits from Namibia and North China can also be accounted for by a drawdown of oceanic sulfate in a dynamic non steady-state sulfur cycle, without invoking the extreme modifications in both f_{pyr} and $\delta^{34}S_{\text{CAS}}$ needed in a steady-state model approach.

The model also provides fundamental constraints on the lower limit of marine sulfate concentration during the Neoproterozoic. For sulfate concentrations below 1 mM, the sulfur isotope fractionation associated with BSRR decreases, reaching 0% below 200 μM (ref. 38) or lower. The results showing $\delta^{34}S$ sulfide-sulfate close to 0.960 ($\Delta^{34}S = -40\%$) without significant changes throughout the sequence, suggests that sulfate concentrations remained well above 200 μM even by the end of the sulfate reservoir drawdown. The fractionation factor would otherwise have decreased significantly. This constrains the lower limit of marine sulfate concentration in the immediate aftermath of the glaciation to well above 400 mM. These estimates are consistent with the work of Kah et al., who constrained the upper limits of Neoproterozoic marine sulfate concentrations to between 7 and 10 mM using a completely independent approach.

The post-glacial marine environment recorded in the Snowball aftermath deposits is thought to be characterized by an enhanced delivery of phosphate and bioavailable iron. The resulting planktonic bloom suggested by Elie et al. accompanying the Snowball deglaciation may have increased the organic matter flux to the sediment exhausting its dissolved O$_2$ content and enhancing anaerobic respiration of organic matter. We thus suggest here that post-glacial conditions were adequate for anaerobic sulfate-reduction metabolism triggering significant sulfate removal from the water column. If widespread, such a sulfate drawdown by BSRR and pyrite burial would have important consequences for other biogeochemical cycles including the global oxygen budget during the end of the Neoproterozoic Era.

Pyrite burial plays a key role in the long-term sources of atmospheric O$_2$ and its transient production on geological timescales (present-day value 10$^{-17}$ mol O$_2$ per year). The resulting O$_2$ production by BSRR activity (Fig. 6). We conclude, therefore, that in the aftermath of the Marinoan glaciation enhanced BSRR and pyrite burial represents a viable mechanism contributing to the Neoproterozoic oxygenation event of the ocean-atmosphere system.

Methods

Sample preparation. Five to 100 g of carbonate samples (with carbonate contents typically >70 wt% of the total rock) were powdered, leached of soluble sulfates in a 5% NaCl solution, followed by four rinses in deionized (DI) water. This step was repeated three times, then the powder was dissolved in 4 N HCl (12 h). The acidified samples were filtered, on a 0.45-μm nitrocellulose paper and an excess of 250 g l$^{-1}$ of BaCl$_2$ was added to the filtrate to precipitate BaSO$_4$.

Multiple sulfur analyses. The samples were prepared and analysed for their multiple sulfur isotope compositions at the Stable Isotope Laboratory of the Institut de Physique du Globe de Paris. The barium sulfate was subsequently reacted with Thode reagent in a helium atmosphere extraction line. The released H$_2$S was converted to silver sulfide (Ag$_2$S) by reaction with a silver nitrate solution and silver iodide was fluorinated to produce SF$_6$. The $\delta^{34}S$ values are presented in the standard delta notation against V-CDT with an analytical reproducibility of $\leq 0.1\%$. We report these values against an assumed $\Delta^{34}S$ and $\Delta^{36}S$ for Vienna Caribou Diablo (V-CDT) that yields $\delta^{34}S$, $\Delta^{34}S$ and $\Delta^{36}S$ values for IAEA S-2 ($n = 23$) of 5.224%, 0.030 and -0.203%, respectively. Based on duplicate and triplicate analyses, uncertainties of $\Delta^{34}S$ and $\Delta^{36}S$ values by the SF$_6$ technique are estimated at 0.01 and 0.2% in 2σ, respectively.

Model and concepts associated with non-zero $\Delta^{33}S$ and $\Delta^{36}S$. The plot of $\Delta^{33}S/\Delta^{34}S$ and $\Delta^{36}S/\Delta^{34}S$ fractions displays a slight curvature expressed by:

$$\Delta^{33}S_{\text{CAS}} = \left(\frac{\Delta^{36}S_{\text{CAS}}}{\Delta^{34}S_{\text{CAS}}}\right)^{\beta}$$

(6)

The β-exponent is not arbitrary and can be deduced from the high-temperature approximation of the reduced partition function, from the mass (in atomic mass unit) of the considered isotopes, for example, ref. 52. Thus, for $\Delta^{33}S/\Delta^{34}S$ and $\Delta^{36}S/\Delta^{34}S$
fractionation $\delta^{33}S$ corresponds to:

$$\delta^{33}S = \frac{R_{\text{sample}} - R_{\text{std}}}{R_{\text{std}}} \times 10^3$$

(7)

Exception made of a few molecules showing little relevance in the present study 27,53, and discussion in ref. 54, equilibrium isotope fractionation at any temperature show δ-values close to the high-temperature approximation 27,53.

Using δ notation one can write:

$$\ln \left(\frac{\delta^{33}S_{\text{sample}}}{1000} + 1 \right) = \delta \ln \left(\frac{\delta^{33}S_{\text{std}}}{1000} + 1 \right)$$

(8)

A mixing between two isotopically different pools (A and B) will fall along a mixing line (equations (9); ref. 55) that deviates from the theoretical equilibrium curve:

$$\delta_{\text{mix}} = X \left(\delta_{A} \right) + (1-X) \left(\delta_{B} \right)$$

(9)

where δ denotes the fraction of A. In other words, two sulfur reservoirs at isotope equilibrium will lie on the same fractionation line, with the same $\Delta^{33}S$. In contrast, mixing will be expressed along a secondary fractionation line with negative $\Delta^{33}S$. The resulting $\Delta^{33}S$-anomaly is maximum for 50% mixing being approximately -0.05% for two pools differing by 40% in $\Delta^{33}S$.

Given that the mixing of two pools leads to negative $\Delta^{33}S$, the formation of two sulfur pools at isotope equilibrium will move them along a secondary fractionation line above that of the starting composition. These effects can be enhanced by Rayleigh distillation (that is, open system fractionation) and can be demonstrated starting from the well-known equation:56:

$$\left(\frac{\delta_{A}}{1000} + 1 \right) / \left(\frac{\delta_{A,0}}{1000} + 1 \right) = f^{(n-1)}$$

(10)

With δ_{A} the isotopic composition of the residual component of A and $\delta_{A,0}$ being the starting isotope composition, f is the residual sulfate concentration in our case, and x is the isotopic fractionation corresponding to the given system studied (bacterial sulfate-reduction in our study).

Data availability. All results that support the findings of this study are available in Supplementary Table 1.

References

1. Kump, L. R. & Garrels, R. M. Modeling atmospheric O2 in the global sedimentary redox cycle. *An. J. Sci.* 284, 363–366 (1986).

2. Berner, R. A., Beerling, D. J., Dudley, R., Robinson, J. M. & Waldman, Jr R. A. Phanerozoic atmospheric oxygen. *Annu. Rev. Earth Planet. Sci.* 31, 105–134 (2003).

3. Garrels, R. M. & Lerman, A. Coupling of the sedimentary sulfur and carbon cycles: an improved model. *Am. J. Sci.* 284, 989–1007 (1984).

4. Hooijer, W. T., Maynard, J. B. & Grukkhan, K. M. Evolution of the Global Biogeochemical Sulphur Cycle 21–56 (Wiley, 1989).

5. Kampschulte, A. & Strauss, H. The sulfur isotopic evolution of Phanerozoic evolution. *Science* 93–96 (2011).

6. Hurtgen, M. T., Halverson, G. P., Arthur, M. A. & Hoffman, P. F. Sulfur cycling and global stratification and mixing of a post-glacial Neoproterozoic ocean: evidence for carbon and sulfur isotopes in a cap dolostone from northwest China. *Earth Planet. Sci. Lett.* 265, 209–228 (2008).

7. Sansjofre, P. et al. A carbon isotope challenge to the snowball Earth. *Nature* 497, 83–96 (2011).

8. Hidalgo, R. L. Vida após as glaciações globais neoproterozoicos: um estudo microsiluriano de capas carbonáticas dos Crazons do São Francisco e Amazônico. PhD thesis, 195 (Sao Paulo University, 2007).

9. Grey, K. Ediacaran palynology of Australia. Association of Australasian Palaeontologists. *Geological Survey of Western Australia, Canberra, memoir 1* 53, 405 (2005).

10. Kampschulte, A. & Strauss, H. The sulfur isotopic evolution of Phanerozoic evolution. *Science* 608, 916–920 (2004).

11. Strauss, H., Banerjee, D. M. & Kumar, V. The sulphur isotopic composition of Neoproterozoic to early Cambrian seawater – evidence from the cyclic Hanseran evaporates, NW India. *Chem. Geol.* 175, 27–48 (2001).

12. Fike, D. A. & Grotzinger, J. P. A paired sulfate-pristine d34S approach to understanding the evolution of the Ediacaran-Cambrian sulfur cycle. *Geochim. Cosmochim. Acta* 72, 2636–2648 (2008).

13. Strauss, H. Geologic evolution from isotope proxy signals - sulfur. *Chem. Geol.* 161, 89–101 (1999).

14. Shields-Zhou, G. & Och, I. The case for a Neoproterozoic Oxygenation Event: geochemical evidence and biological consequences. *Geol. Soc. Am. B.* 4–11 (2011).

15. Kampschulte, A. & Strauss, H. $\Delta^{33}S$ and $\Delta^{34}S$ records of Paleozoic seawater sulfate based on the analysis of carbonate associated sulphate. *Earth Planet. Sci. Lett.* 399, 44–51 (2014).

16. Nogueira, A. C. R., Riccomini, C., Sial, A. N., Moura, C. A. V. & Fairclough, T. R. Soft-sediment deformation at the base of the Neoproterozoic Puga cap carbonate (southwestern Amazon craton, Brazil). Confirmation of rapid icehouse to greenhouse transition in snowball Earth. *Geology* 31, 613–616 (2003).

17. Sansjofre, P. et al. Paleoenvironmental reconstruction of the Ediacaran Araras platform (Western Brazil) from the sedimentary and trace metals record. *Precambrian. Res.* 241, 185–202 (2014).

18. Gill, B. C., Lyons, T. W. & Frank, T. D. Behavior of carbonate-associated sulfate during meteoric diagenesis and implications for the sulfur isotope paleo proxy. *Geochim. Cosmochim. Acta* 72, 4699–4711 (2008).

19. Peng, Y. et al. Widespread contamination of carbonate-associated sulfate by present-day secondary atmospheric sulfates: evidence from triple oxygen isotopes. *Geology* 42, 815–818 (2014).

20. Condon, D. et al. U-Pb ages from the neoproterozoic Douhsantau Formation, Central Asia. *Science* 308, 95–98 (2005).

21. Hoffmann, K. H., Condon, D. J., Bowring, S. A. & Crowley, J. L. U-Pb zircon date from the Neoproterozoic Ghaub Formation, Namibia: constraints on Marianian ocean. *Geology* 32, 817–820 (2004).

22. Sansjofre, P. et al. A carbon isotope challenge to the snowball Earth. *Nature* 478, 93–96 (2011).
Acknowledgements

We are extremely grateful to Stefan Lalonde for scientific discussion and English edition. We thank David Johnston and James Farquhar for their data compilation. Research was supported by a French MRT doctoral fellowship and a SETSI grant to P.S., two INSU (SYSTER) grants to M.A. R.I.F.T. and A.C.R.N. were supported by the INCT-Geociam programme, and by FAPESP and CNPq grants (grant 2005/53521-1, São Paulo Research Foundation (FAPESP)). This work was supported by a grant from Agence Nationale de la Recherche (ANR eLIFE2) by the Labex UnivEarthls programme of Sorbonne Paris Cité (ANR-10-LABX-0023 and ANR-11-IDEX-0005-02) and the Labex Mer (ANR-10-LABX-0019). This is Institut de Physique du Globe de Paris contribution number 3749.

Author contributions

P.C., M.A., R.I.F. and P.S. conceived the work. P.S., A.C.R.N., R.I.F.T. and M.A. did the sampling. P.S. carried out sulfur isotopic analyses. P.C., P.S. and P.A. performed the sulfur isotope modelling. P.S., P.C., R.I.F.T. and M.A. wrote the paper and most of the Supplementary Information. All authors discussed the interpretation of the results and contributed to the manuscript.

Additional information

Supplementary Information accompanies this paper at http://www.nature.com/naturecommunications

Competing financial interests: The authors declare no conflict of interests.

Reprints and permission information is available online at http://npg.nature.com/reprintsandpermissions/

How to cite this article: Sansjofre, P. et al. Multiple sulfur isotope evidence for massive oceanic sulfate depletion in the aftermath of Snowball Earth. Nat. Commun. 7:12192 doi: 10.1038/ncomms12192 (2016).

This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

© The Author(s) 2016