The Type II Dirac Seesaw Portal to the mirror sector: Connecting neutrino masses and a solution to the strong CP problem

Maximilian Berbig

1Bethe Center for Theoretical Physics und Physikalisches Institut der Universität Bonn, Nussallee 12, 53115 Bonn, Germany
(Dated: December 20, 2022)

We present a version of the Type II Seesaw mechanism for parametrically small Dirac neutrino masses. Our model starts from an SU(2)_{L} \otimes SU(2)' \otimes U(1)_{X} gauge extension of the Standard Model involving a sector of mirror fermions. A bidoublet scalar with a very small vacuum expectation value connects the SM leptons with their mirror counterparts and we can identify the mirror neutrino with the right-handed neutrino. Similar to the conventional Type II Seesaw, our particle spectrum features singly- and doubly-charged scalars. The strong CP problem is solved by a discrete exchange symmetry between the two sectors that forces the contributions of quarks and mirror quarks to the strong CP phase to cancel each other. We discuss the low-energy phenomenology, comment on the cosmological implications of this scenario and indicate how to realize successful Dirac leptogenesis.

I. INTRODUCTION

The Type II Seesaw mechanism [1–5] offers an approach to parametrically small neutrino masses, that is somewhat orthogonal to Type I Seesaw schemes involving fermionic messengers [6–10]. For Majorana neutrino masses, one needs to incorporate a weak iso-triplet field with hypercharge −1. One finds that the vacuum expectation value (vev) \(v_{\Delta} \) of the super-heavy scalar triplet \(\Delta \) with mass \(\mu_{\Delta}^{2} \) is induced by the vev \(v \) of the Standard Model (SM)-like Higgs \(v_{\Delta} \simeq k v^{2} / \mu_{\Delta}^{2} \), where \(k \) is the dimensionful coupling for the term \(\kappa H \Delta H \). This occurs because after \(H \) gets a vev, the aforementioned term biases the triplet potential in one direction such that a non-trivial minimum can appear despite the fact that \(\mu_{\Delta}^{2} > 0 \). Since such a triplet breaks the custodial symmetry of the SM scalar potential, its vev is tightly constrained to lie below the GeV scale [11] by the observed ratio of the \(W^{\pm} \) and \(Z \) boson masses encoded in the \(\rho \)-parameter [12]. A typical feature of such scalar extensions for either tree- or loop-level Majorana neutrino masses [13–15] is the presence of double charged scalars whose production at colliders provides a smoking gun signature for these scenarios. As so far there is no compelling experimental or theoretical indication to consider only Majorana neutrinos, the field of Dirac model building has received renewed attention in the last years. It is possible to construct Dirac equivalents of all conventional Seesaw mechanisms [16, 17]. The usual approach for light Dirac neutrino masses is to start with a symmetry forbidding the tree-level mass term from the Standard Model (SM) Higgs doublet. Small neutrino masses at tree-level can then be realized by inducing a small vev for a new Higgs doublet [18–21]. In gauge extensions of the SM like the left-right symmetric model (LRSM) SU(2)_{L} \otimes SU(2)_{R} \otimes U(1)_{B-L} [22–26] or mirror-sector constructions [27, 28], the role of the doublet can be played by a bidoublet field [29–31], whereas in SU(3)_{C} \otimes SU(3)_{L} \otimes U(1)_{X} models [32] Higgs triplets of SU(3)_{L} are needed [33, 34]. In contrast to the Majorana case with its doubly-charged scalars, these scenarios feature only singly-charged ones, which are quite generic from a beyond the Standard Model (BSM) perspective. In this work we set out to close this gap by constructing a Dirac neutrino mass model with the same singly- and doubly-charged scalar spectrum as the original Type II Seesaw. The new scalar will also play an important role for leptogenesis. Our starting point is the original mirror fermion scenario of reference [35] that was designed to solve the strong CP problem with the help of a discrete exchange symmetry. In recent years it was shown [36, 37] that one does not need to copy the entire SU(2) \otimes U(1) structure of the SM, but that the gauge group of the form SU(2)_{L} \otimes SU(2)' \otimes U(1)_{X} similar to the LRSM is already enough. While the proposal [36, 37] used additional singlet fermions to form a Type I Seesaw, our approach is to include the following bidoublet scalar

\[
\Phi = \left(\phi_{1}^{0} \phi_{2}^{0} \phi_{2}^{-} \phi_{1}^{-} \right) \sim (1, 2, 2, -1)
\]

that couples to the SM and mirror leptons that are doublets under the two different SU(2) groups via the inter-

* berbig@physik.uni-bonn.de
The symmetry exchanges the SU(2) gauge fields with each other. For the gluon and the X boson the symmetry just acts on the spacetime arguments. Φ gets mapped to its own CP-conjugate. The transformation properties of all fields are summarized in table 1. Up to the inclusion of the bidoublet this setup corresponds to model C of [36]. We use the two-component spinor formalism of [38]1. U(1)X acts like hypercharge on all SU(2)L multiplets and SU(2)L ⊗ SU(2)L′ singlets. Compared to the usual LRSM the abelian charges of all mirror doublets have the opposite sign, which is why we cannot identify U(1)L with U(1)B−L. It is worth pointing out that an SU(2)L ⊗ SU(2)L′ bidoublet has exactly the same electric charge matrix as an SU(2)L triplet, so by charging it under U(1)L we obtain the desired electrically doubly charged component. The fermion sector (up to hermitian conjugates) is given by

\[L_q = Y_u q_H H^\dagger \tau + Y_d d_H H^\dagger \tau + Y_u' q_H' H^\dagger \tau' + Y_d' d_H' H^\dagger \tau', \]

\[L_L = Y_l l_L H^\dagger \tau. \]

The SM (mirror) quarks and charged leptons obtain their masses solely from the vev of H (H′). Non-observation of new colored fermion enforces a mirror scale of v′ ≳ 10^8 GeV [39, 41, 42]. As a consequence of the U(1)L charge assignment there is no coupling between SM and mirror leptons and no coupling of the bidoublet to any kind of quarks. We do not add electrically neutral singlet fermions. In the lepton sector there would in principle exist three portal operators. The first one is the aforementioned coupling to Φ displayed in (6) and the other two \(\lambda_{\nu} H \pi^\nu \) and \(\lambda'_{\nu} H' \pi^\nu \) would mix the electrically charged and \(B-L \) fermions. In this study we want to focus on the Type II Dirac Seesaw portal from Φ, which is why we assume a lepton-specific Z3 symmetry (see the table 1) under which \(l, \pi^\nu \) transform as \(\omega^2 \) and \(l', \pi^\nu \) as \(\omega \) with \(\omega \equiv e^{i\pi/3} \) that removes the terms \(\propto \lambda_{\nu}, \lambda'_{\nu} \). We can estimate the masses of the Dirac neutrinos from the vev (2) to be

\[m_{\nu} \approx 0.1 \text{ eV} \lesssim Y_\nu \left(\frac{\mu_\phi}{1 \text{ GeV}} \right)^2 \left(\frac{v'}{10^9 \text{ GeV}} \right)^2 \left(\frac{5 \times 10^{10} \text{ GeV}}{\mu_\phi} \right)^2. \]

To avoid large loop corrections to the bidoublet mass we will take \(|\kappa| \ll \mu_\phi \). We choose a small value for \(|\kappa| \) following the cosmological requirement for baryogenesis in equation (42) of section VII. Setting \(\kappa \to 0 \) enhances the

1 Arrows on fermion lines denote the chirality structure and not the flow of fermion number. A bar is part of the particle label and does not denote any kind of conjugation.
symmetry of the scalar potential [19, 43], since without the trilinear term in the potential (A3) we can rephrase each multiplet independently, which is why a small value for $|\kappa|$ is technically natural [44]. Owing to the fact that $v' \gg v$, for fixed μ_Φ we have to take a smaller $|\kappa|$ than for the Majorana Type II Seesaw in order to have a sufficiently light v_{Φ}. $|\kappa|$ could have a dynamical origin via the vev of an additional scalar [19, 45] and a small vev $\langle \phi_2 \rangle$ resulting in its induced small vev $\langle \phi_1 \rangle$ playing the role of κ. If we assume that SM and mirror fermions have the same global B-L charge spectrum, then the mixed anomalies with the non-abelian gauge groups cancel separately for each sector. In this picture we see that the combined appearance of the terms $Y_{\nu} H \Phi^\dagger H$ and $\kappa H \Phi H^\dagger$ violates B-L by two units (as in Type II Seesaw models), because H, H' are uncharged. The gauge symmetries and particle spectrum ensure that l, l' do not pick up any Majorana mass terms allowed by Δ(B-L) = 2, because they can only couple to each other via Φ, but never to themselves in the absence of scalar SU(2)$_L$ and SU(2)$_R$ triplets.

III. VACUUM STRUCTURE

The vev of the neutral component of H' breaks SU(2)$_L \otimes$ U(1)$_X \to U(1)_Y$ and the discrete symmetry (3), followed by the usual electroweak symmetry breaking induced by the vev of H. Φ contributes as a small perturbation to the spontaneous symmetry breaking (SSB) of all aforementioned symmetries due to its tiny vev. We expand the multiplets into their components and assign vevs as

$$H \to \begin{pmatrix} \sqrt{v} \\ 0 \end{pmatrix}, \quad H' \to \begin{pmatrix} \sqrt{v'} \\ 0 \end{pmatrix}, \quad \Phi \to \begin{pmatrix} \frac{\sqrt{\kappa}}{2} \\ \frac{\sqrt{\kappa}}{2} \end{pmatrix}.$$ (8)

There are two ways to generate the phenomenologically required hierarchy $v' \gg v$ between the mirror and SM Higgs vevs: The first approach [50] is to include soft breaking of the discrete symmetry in the scalar potential $\mu_1^2 |H|^2 + \mu_2^2 |H'|^2$ with $\mu_1^2 < \mu_2^2$. It was shown recently [51] that this soft breaking leads to two-loop contributions to the strong CP phase $\bar{\theta}$ (see section V) in the original universal Seesaw model by [50] regenerating the $\bar{\theta}$ angle that was cancelled at tree-level. As of now there exists no similar analysis on the impact of soft breaking for the class of mirror sector models we are employing, so to be conservative we do not use this scheme. A second mechanism was presented by [36] that relies on tuning the quartic couplings of the scalar potential in appendix A 1 and the details will be discussed in appendix A 2: If the mixed quartic coupling λ' in the potential

$$V \supset \lambda' H^\dagger H H'^\dagger H' + \kappa (H \Phi^\dagger H' + H'^\dagger \Phi H)$$ (9)

(see (A2) and (A3) for the full potential) is set to zero, the scalar potential develops an unbroken custodial SU(4) symmetry and one can view the lighter SM-like Higgs as the Goldstone-boson of this accidental symmetry. This idea is similar to the situation in the Twin-Higgs model [40], where asymmetric vacua with $v \neq v'$ also require explicit breaking of an accidental custodial SU(4) [52]. However in those models the equivalent of the exchange symmetry (3) is typically softly broken as well [52], whereas here the breaking is only spontaneous. The field H' has a mass $-\mu_\Phi^2 < 0$ and obtains the vev $v' \simeq \mu_H/\sqrt{\lambda_H}$. After integrating out H' one finds that the potential for H reads

$$\lambda' v'^2 H^\dagger H + \lambda' \left(1 + \frac{2\lambda'}{\lambda_H} \right) (H^\dagger H)^2$$ (10)

and for spontaneous symmetry breaking one requires $\lambda' < 0$. Further $|\lambda'| \ll 1$ is needed for the phenomenologically required hierarchy $v \ll v'$. The second term in the above is the self-coupling of H modified by the finite threshold correction from integrating out H' [53]. In [36] a real v needs a small $\lambda' < 0$ at the high scale $\mu = v'$, which is why in this construction, v' is identified with the electroweak instability scale

$$v' \simeq (10^9 - 10^{12}) \text{ GeV.}$$ (11)

RGE effects dominated by the top quark Yukawa then drive the Higgs self-coupling λ_H to its positive $O(0.1)$ value at low energies. Once we add a bidoublet in (9) and integrate it out we find that

$$\lambda'_\text{eff} \equiv \lambda' - \frac{\kappa^2}{\mu_\Phi^2}.$$ (12)

plays the role of λ'. The smallness and sign of this mixed quartic could be understood as the result of the threshold correction [53] from Φ, but since we actually have $\kappa^2/\mu_\Phi^2 \simeq m_\nu \kappa/(Y_\nu v' v) \ll 1$ the correction to λ' is completely negligible. As it turns out, the tree level potential is not enough for the correct vacuum structure and to induce $v \neq 0$ we actually need to include quantum corrections [37, 54, 55] from the one-loop Coleman-Weinberg potential [56]. This contribution, again dominated by the top quark, generates quartic scalar terms with a coupling $c_1 < 0$ (see section A 2 in the appendix for details). This results in a Higgs mass and self coupling of [54]

$$m_h \simeq \sqrt{-\left(\lambda'_\text{eff} - \frac{c_1}{2}\right) v'}, \quad \lambda_h(\mu = v') = \frac{c_1}{16} \lesssim 0.$$ (13)

A shortcoming of this approach is that one needs the fine-tuning $\lambda'_\text{eff} \simeq c_1/2$ of order $O(v^2/v^2)$ for the hierarchy $v' \gg v$ [36] ($\lambda'_\text{eff} < 0$ for a real v). In appendix A 3 a we demonstrate that the v_{Φ} in the Type II Seesaw regime does not spoil the desired vacuum structure. As far as naturalness is concerned, the small vev v_{Φ} in (2) is technically natural [44] and one may argue along the lines of [36, 40], that the hierarchy between v and v' does not lead
to a separate hierarchy problem besides the usual one. Of course here will be loop corrections from the heavy Φ, which could be cured by compositeness or supersymmetry at the bidoublet mass scale $\mu_{\Phi} > 10^{10}$ GeV. If we consider the vevs v_{\pm} to have phases β, then gauge transformations with the transformation parameters $\omega, \omega', \omega_X$ shift the phases to be ω' [57]

$$
\beta \rightarrow \beta + \frac{1}{2}(\omega - \omega_X), \quad \beta' \rightarrow \beta' + \frac{1}{2}(\omega' - \omega_X),
$$
(14)

$$
\beta_\Phi \rightarrow \beta_\Phi + \frac{1}{2}(\omega + \omega') - \omega_X.
$$
(15)

If we set β, β' locally to zero this induces the shift $\beta_\Phi \rightarrow \beta_\Phi - \beta - \beta'$ for the phase of v_Φ. The minimization conditions of the scalar potential enforce that

$$
0 = \frac{\partial V}{\partial \beta} = \frac{\partial V}{\partial \beta'} = \frac{\partial V}{\partial \beta_\Phi} = \frac{\kappa v v' v_\Phi}{\sqrt{\omega - \omega'}} \sin(\beta_\Phi - \beta - \beta'),
$$
(16)

which implies that the physical phase for the vev v_Φ is zero. In other words, there is no spontaneous CP violation [58] in this model. The exchange symmetry (3) only enforces $Y_\nu = Y_\nu'$, so the PMNS Dirac phase would come from this matrix if the charged lepton Yukawa Y_1 were purely real.

IV. SCALAR AND GAUGE BOSONS

The scalar spectrum consists of three CP even neutral scalars $h, h', h_\Phi = \sqrt{2} \text{Re}(\varphi_1^0)$ and one CP odd scalar $a_\Phi = \sqrt{2} \text{Im}(\varphi_1^0)$ with the masses

$$
m_h \simeq \sqrt{2\lambda_h} v, \quad m_{h'} \simeq \sqrt{2\lambda_{H'}} v',
$$
(17)

$$
m_{h_\Phi} \simeq m_{a_\Phi} \simeq m_{\varphi_3},
$$
(18)

where we used the low energy value $\lambda_h \approx 0.129$ for the self-coupling of the SM like Higgs, h, h' mix primarily with each other via their quartic interaction and the small mixing angle is approximately $1/2(1 + \lambda_{H'E}/\lambda_{H'H'})v/v'$. The dominant source of mixing between $h (h')$ and h_Φ comes from the trilinear term and is $\simeq \kappa v'v/\mu_{\Phi}$. The same expression holds for the mixing between the “would-be-Nambu-Goldstone-bosons” (NGB) of the $Z (Z')$ gauge bosons (see the end of this section) with a_Φ. Additionally there are two singly-charged scalars $\varphi_1^\pm, \varphi_2^\pm$ and one doubly-charged scalar φ_3^\pm present. Their approximately degenerate masses read

$$
m_{\varphi_1^\pm} \simeq m_{\varphi_2^\pm} \simeq m_{\varphi_3^\pm} \simeq \mu_{\Phi}.
$$
(19)

There is also mixing between $\varphi_1^\pm, \varphi_2^\pm$ and the “would-be-NGB” of the charged gauge bosons $W^\pm (W'^\pm)$ of the order of $\simeq \kappa v'v/\mu_{\Phi}^2$. When it comes to the charged gauge bosons we obtain

$$
m_W = \frac{g}{2} \sqrt{v^2 + v_\Phi^2}, \quad m_{W'} = \frac{g}{2} \sqrt{v^2 + v_\Phi^2}.
$$
(20)

There is no mass mixing between the charged gauge bosons at tree-level since Φ only has one vev [59]. Mixing could arise from loop diagrams involving the tree-level mixing between the electrically charged SM and mirror leptons in (6), which we have set to zero via another discrete symmetry. In the neutral gauge boson sector we find in addition to the massless photon that

$$
m_Z \approx \frac{g}{2} \sqrt{v^2 + v_\Phi^2}, \quad m_{Z'} \approx \frac{g}{2} \cos(\theta_W) v',
$$
(21)

where we employed the weak mixing angle defined in (22). It is evident that the bidoublet vev contributes with the same strength to m_W and m_Z, which means that the SM prediction for the electroweak ρ-parameter [12, 60] defined as $\rho \equiv m_W^2/(m_Z^2 \cos(\theta_W)^2)$ is unchanged. To understand why, note that after the SSB of $SU(2)' \otimes U(1)_X$ down to $U(1)_Y$, the multiplet Φ decomposes into two $SU(2)_L$ doublets $\Phi_1 \equiv (\varphi_0, \varphi_1^0)$ with $Y = -1/2$ and $\Phi_2 \equiv (\varphi_2^0, \varphi_3^0)^{-1}$ with $Y = -3/2$. Since only the neutral component of Φ_1 develops a vev the contribution of Φ to the SM gauge boson masses reduces to one in a Two-Higgs-doublet model. This is why at tree-level our model does not modify the ρ-parameter and it can not help to address the tentative tension in the W^\pm boson mass reported by the CDF collaboration [61]. Moreover, unlike for the electroweak triplet needed for the conventional Type II Seesaw, here the ρ-parameter does not force the small vev to be below the GeV-scale [11]. In principle, there could also be one-loop gauge boson self-energy diagrams with e.g. h_Φ and φ_1^\pm running in the loop [62]. The shift in the relevant electroweak precision observables [63, 64] will roughly depend on their mass splitting via $(m_{h_\Phi} - m_{\varphi_3})/\mu_{\Phi}$. However, since we assume all mass splittings to be small compared to the largest scale in the scalar potential μ_{Φ}^2 and since the contribution will essentially decouple for large bidoublet masses, our model can not help ameliorate the CDF tension [61]. When it comes to the mixing between the neutral gauge bosons the situation simplifies in the limit $v_\Phi \rightarrow 0$: There are only two mixing angles required. The electroweak mixing angle is defined via

$$
\frac{gX}{g} = \frac{\sin(\theta_W)}{\cos(2\theta_W)}
$$
(22)

3 The discrete exchange symmetry requires the $SU(2)' \otimes SU_L(2)$ couplings g', g to be equal at high scales and we neglect the differences in their RGE running here.

2 Note the slight abuse of notation for the passive gauge transformations.
and the angle between the physical Z, Z' [50] reads

$$\sin(\gamma) = \frac{\sin(\theta_W)^2 \sqrt{\cos(2\theta_W)}}{\cos(\theta_W)^4} \frac{v}{v'}^2. \quad (23)$$

Turning on v_{Φ} only leads to a sub-dominant modifications of the angle γ as long as $v_{\Phi} \ll v$.

V. STRONG CP PROBLEM

The physical CP violating parameter $\bar{\theta} = \theta_{\text{QCD}} + \theta_{\text{chir.}}$ is conventionally split into the contribution of the QCD theta-term and the part $\theta_{\text{chir.}} = \text{arg}(\det(M_u M_d))$ arising from the up- and down-type quark mass matrices M_u, M_d. Following from the fact that the topological vacuum selection parameter θ_{QCD} arises because of non-perturbative QCD dynamics and due to its origin as the coefficient of a non-vanishing surface term [65], one might argue that θ_{QCD} is unlike all other dimensionless parameters of the SM such as gauge or Yukawa couplings and more akin to a boundary condition. In the SM, the electroweak part $\theta_{\text{chir.}}$ only receives finite loop corrections at three-loop order and diverges at seven loops [66], which is fundamentally different from e.g. the hierarchy problem of the Higgs mass. In recent years, a new perspective on the strong CP problem has emerged [67, 68] that relies on a careful analysis of the boundary condition for the path integral and the infinite spacetime volume limit, suggesting that the strong CP violation disappears for the mathematically correct order of limits. In the present work we take the smallness of $\bar{\theta}$ at face value and follow the UV symmetry based BSM approach [35, 50, 69–72] to “explain” its tiny value. For recent work that directly ties the smallness of $\bar{\theta}$ to a different Dirac neutrino mass mechanism see [73].

A. Tree level

Owing to the fact that the discrete exchange symmetry defined in (3) imposes $\theta_{\text{QCD}} = 0$ we only need to care about the quark contribution. Following reference [36] there could exist a dimension six operator allowed by the discrete exchange symmetry in (3)

$$c_6 \Lambda_{\text{UV}}^{\bar{\theta}} \left(H^\dagger H - H'^\dagger H' \right) G_{\mu \nu} \tilde{G}^{\mu \nu} \quad (24)$$

that regenerates θ_{QCD} after the H' obtains a vev. This leads to the requirement of $v' < 10^{13}$ GeV for a cut-off scale of $\Lambda_{\text{UV}} \approx \Lambda_{\text{QCD}}$ and order one Wilson coefficient c_6, to stay within the observational bound of $\bar{\theta} < 10^{-10}$ [74–77]. For the given particle content this operator is not realized at the loop level. The mass matrix for either up-type or down-type quarks in the basis (q', \bar{q}) and (q, \bar{q}') with $q = u, d$, where we have suppressed generation indices, reads

$$M_q = \begin{pmatrix} 0 & Y_q' \bar{\nu} \\ Y_q \nu & 0 \end{pmatrix}. \quad (25)$$

Because the exchange symmetry (3) sets $Y_q' = Y_q^* [36]$

$$\text{arg}(\det(M_q)) = -\frac{v v'}{2} \text{arg}(\det(Y_q) \det(Y_q')) \quad (26)$$

vanishes, meaning that the SM and mirror sector phases cancel each other out [35]. Since neither Y_q' nor Y_q^* are required to be real, they source the CKM phase for the SM and mirror sector and one does not need a separate sector to do so unlike in the case for Nelson-Barr models [70, 71]. The presence of the bidoublet field does not change this picture as it does not couple to quarks. Reference [78] demonstrated that integrating out the heavy mirror quarks does not generate phases for the SM quark Yukawas via RGE effects.

B. Loop level

So far we have only worked at tree-level. Radiative corrections to the quark masses at one-loop level all turn out to be real valued. Two-loop diagrams with two W^\pm running in the loops have the correct complex couplings from the CKM matrix but the wrong chirality structure [66]. That leaves us with two options: Either we replace one of the W^\pm with the charged scalar ϕ_1, that couples to quarks via its mixing with the “would-be-NGB” of the W^\pm, and add a mass insertion for the right-chirality structure (see the left diagram in figure 2)

$$\theta^{(2)} \simeq \frac{\alpha}{\pi} \left(\frac{\kappa' \rho}{\mu_{\phi}} \right)^2 m_q^2 m_{\phi}^2 \frac{m_W^2}{m_{W'}^2 \mu_{\phi}^2}, \quad (27)$$

or we add a third loop with a neutral boson [66] depicted on the right in figure 2

$$\theta^{(3)} \simeq \left(\frac{\alpha}{\pi} \right)^3 \left(\frac{m_q^2}{m_W^2} \right)^3 \left(\frac{m_{\phi}^2}{m_{W'}^2} \right)^2 \left(\frac{m_{\phi}^2}{m_{W'}^2} \right)^3 (h'), \quad \left(\frac{m_{\phi}^2}{m_{W'}^2} \right)^3 (Z'), \quad \left(\frac{m_{\phi}^2}{m_{W'}^2} \right)^3 (h_{\phi}). \quad (28)$$

In the above estimates we have dropped order one and loop factors. m_{ϕ}^2 must be a combination of two different quark masses due to CKM unitarity and α denotes the fine-structure constant. All of the above contributions are negligibly small due to large BSM mediator masses and small mixing angles. For instance the factor $\kappa' \rho / \mu_{\phi}^2 \simeq m_n / (Y_n v) \simeq 10^{-12}$ for $Y_n = O(1)$ appearing for the bidoublet scalars is already sufficient to suppress the loop diagrams below the current experimental bounds of $\bar{\theta} < 10^{-10}$ [74–77] and the small ratio v' / v' achieves the same. Leptonic loops involving the Y_e coupling occur at
VI. LOW-ENERGY PHENOMENOLOGY

Tree-level exchange of \(\varphi^- \) leads to a BSM contribution to muon decay of [82]

\[
\Gamma (\mu^- \rightarrow e^- \nu' \nu'_j) \simeq \frac{1}{6144\pi^3} \frac{m_\mu^5}{\mu_\Phi^4} \sum_{i,j} \left| (Y_\nu)_{\mu i} (Y_\nu)_{\nu j}^* \right|^2 ,
\]

which modifies the Michel-parameters \((\rho, \delta, \xi)\) [83, 84] encoding the angular and energy distribution of the decay relative to the SM. Using the methods of [85] we find that \(\rho = \xi \delta = 3/4\delta = 3/16|g_S|^2 \) when compared to the SM where the number on the right hand side is one. In this context we have defined

\[
g_S \equiv \frac{\nu^2}{2\mu_\Phi^3} \sum_{i,j} (Y_\nu)_{\mu i} (Y_\nu)_{\nu j}^*,
\]

which is currently constrained to be smaller than 0.55 [86, 87] not imposing any stringent limits on our scenario with super-heavy scalars. Note that the previous bound was derived using left-chiral neutrinos scattering off charged leptons [87–91], whereas our decay involves the \(\nu' \) of opposite chirality, so we expect that the limit on \(g_S \) in our model would be even weaker due to additional neutrino mass insertions.

A. Dipole moments and lepton flavor violation

Loops involving \(\varphi_2^\pm \) generate a correction to the magnetic dipole moment of the muon depicted in the left diagram of figure 3 of

\[
\Delta a_\mu \simeq \frac{e}{96\pi} \left(\frac{m_\mu}{\mu_\Phi} \right)^2 \sum_{j=e,\mu,\tau} (Y_\nu)_{\mu j} (Y_\nu)_{\nu j}^*.\]

Here, there is no chiral enhancement inside the loop and the correct chirality structure is obtained from a mass insertion on the external legs (see figure 3), hence the dependence on \(m_\mu \). For masses of \(\mu_\Phi \simeq 10^{10} \text{GeV} \) (see (7)), the shift in the magnetic moment is of \(O(10^{-36}) \), which is far too small to explain the deviation of \(\Delta a_\mu = (251 \pm 59) \times 10^{-11} \) observed by the BNL [92] and FNAL [93] collaborations. We can reuse this result to estimate the full transition dipole form factor and find the partial width [94]

\[
\frac{\text{BR} (\mu \rightarrow e\gamma)}{8 \times 10^{-8}} \simeq \alpha \left(\frac{\nu}{\mu_\Phi} \right)^4 \sum_{j=e,\mu,\tau} \left| (Y_\nu)_{\mu j} (Y_\nu)_{\nu j}^* \right|^2 .
\]

Compared to the present experimental limit of \(\text{BR} (\mu \rightarrow e\gamma) < 4.2 \times 10^{-11} \) [95] set by the MEG collaboration and the future projection of \(6 \times 10^{-14} \) from MEG II [96], our scenario leads to branching ratios of \(O(10^{-40}) \) for the \(\mu_\Phi \) in (7) and is therefore not excluded. Since the bidoublet only connects leptons and mirror leptons, the process \(\mu^- \rightarrow e^- e^+ e^- \) occurs via a penguin diagram with the same dipole form factor as before so we can estimate \(\text{BR} (\mu^- \rightarrow e^- e^+ e^-) \simeq 7 \times 10^{-3} \) BR \((\mu \rightarrow e\gamma)\) [97], which is compatible with the current bound \(\text{BR} (\mu^- \rightarrow e^- e^+ e^-) < 10^{-12} \) from [98] and the projected sensitivity of \(O(10^{-15}) \) of the Mu3e experiment [99]. The analogous decays of \(\tau \) leptons are typically less constrained and also do not set any significant bounds on our scenario. Similarly we can estimate the neutrino magnetic moment, where there are two diagrams involving the coupling of \(\varphi_1^\pm (\varphi_2^\pm) \) to \(\nu (\nu') \) de-
The singly-charged scalars pictured on the right side of figure 3:

\[
\langle \mu \rangle_{ii} = \frac{\mu_B}{16\pi^2} \frac{m_e(m_e)_i}{\mu_B^2} \sum_{j=e,\mu,\tau} (Y_\nu)_{ij} (Y_\nu)_{ij}^* \quad (33)
\]

Both diagrams contribute with the same strength as \(\varphi^{+}_{1} \) and \(\varphi^{+}_{2} \) are mass degenerate, see (19). Here the factor of \(m_e \) does not arise from any chirality enhancement but rather from the definition of the Bohr magneton \(\mu_B \equiv e/(2m_e) \). Again we observe mass insertions on the external legs (see figure 3) for the right-chirality structure explaining the \(\langle \nu \rangle \) dependence. The most stringent limit on neutrino magnetic moments of \(\langle \nu \rangle < 6.3 \times 10^{-12} \mu_B \) comes from the XENONnT experiment [100] and our estimate for the aforementioned masses reads \(\mu_\nu \approx \mathcal{O}(10^{-36}) \mu_B \), far below the bound.

B. Collider bounds

The singly-charged scalars \(\varphi^{\pm}_{1,2} \) have to be heavier than \(\mathcal{O}(100 \text{ GeV}) \) to escape direct production at colliders [101–104]. If we were to turn on the couplings \(\propto \varphi \) between the charged SM and mirror leptons the \(\varphi^{\pm}_{2} \) could produce same-sign di-lepton signatures, similar to the canonical Type II Seesaw. Current collider searches [105] place a bound of \(m_{\varphi^{\pm}_{2}} > 800 \text{ GeV} \) and a future 100 TeV proton-proton collider could probe masses up to 4.5 TeV [106]. In this scenario, the exchange of the neutral \(h_{\Phi} \) can induce a contact interaction between the SM leptons, which evades the LEP bound [107] due to the large \(\mu_B \) and potentially small mixing between SM and mirror leptons. For the smallest allowed \(v' \approx 10^9 \text{ GeV} \), we find that the mirror electron (see the discussion above (34) in the next section) would have a mass of \(\approx 2 \text{ TeV} \), potentially accessible at colliders.

VII. COSMOLOGY

A. Reheating

In the early universe the discrete exchange symmetry in (3) is spontaneously broken by the vev of the heavy doublet \(B' \), leading to the presence of topological defects, which can overclose the universe if they are stable [108–110]. There exist basically two remedies for this conundrum: One may either include small bias terms [110, 111] in the scalar potential, explicitly breaking the discrete symmetry and thereby leading to domain wall decay. The explicit breaking might then manifest [51] as a contribution to \(\mathcal{B} \) at low energies similar to the soft breaking discussed in section III. Alternatively [112], if the domain walls are formed before or during the exponential expansion phase of cosmic inflation, they will be diluted by the expansion of spacetime. The second scenario requires that the symmetry is broken before or during inflation and does not get restored afterwards, which can be satisfied for a reheating temperature of \(T_{\text{RH}} < v' \) [113]. Since the discrete exchange symmetry relates the SM and mirror Yukawas, we expect a similar mass spectrum in the mirror sector up to factors of \(v' / v \) of course. This means that, as long as we turn of the lepton-mirror lepton mixing in (6) via the \(Z' \) symmetry in table I, the mirror electron \(e' \) is the lightest stable electrically charged particle of the mirror sector. To avoid the stringent bounds [114–117] on the number density of such charged thermal relics [118], we require the reheating temperature to be

\[
T_{\text{RH}} < m_{e'} \approx 2 \times 10^{-6} \cdot v', \quad (34)
\]

corresponding to \(T_{\text{RH}} < 2 \times (10^3 - 10^6) \text{ GeV} \) for \(v' = (10^9 - 10^{12}) \text{ GeV} \). Of course there are also mirror quarks, with the lightest quark having a mass of \(m_{u'} = m_u v'/v \approx 2 \times 10^{-5} v' \) one order of magnitude above (34). Reference [37] found that the mirror quark masses actually run faster compared to the mirror leptons owing to their color charge, leading to a situation where the lightest mirror quarks \(u', d' \) are almost mass degenerate with \(e' \) for \(v' \gg 10^{11} \text{ GeV} \). Consequently relic abundances of col-

![FIG. 3. One-loop Feynman diagrams contributing to the magnetic moments of the muon (left) and neutrinos (right). The photon line in the second diagram can be attached to the electrically charged mirror lepton inside the loop as well. For this diagram the mass insertion can also appear on the incoming line, so that we get a second set of diagrams with \(l, \varphi^{+}_{2} \) running in the loop.](image-url)
ored mirror fermions are also avoided by the previously determined reheating temperature. Reheating could either occur from the dynamics of the oscillating inflaton condensate or from a second unrelated epoch of intermediate matter domination [119]. Alternatively one might consider asymmetric reheating scenarios [120, 121], in which the SM and mirror sectors are reheated to different temperatures. This could happen if the particle responsible for reheating decays preferentially to the SM instead of the mirror sector. As a consequence of the large hierarchy between v and v', the mirror neutrinos never equilibrate with the SM plasma via gauge or Yukawa interactions and are only produced via freeze-in [122, 123].

B. Dark Radiation

Since the present setup only doubles the SU(2) gauge group of the SM, without introducing a second U(1), there is no dark photon. Thus the associated problem of large amounts of dark radiation from mirror neutrinos and a dark photon, that typically plaques mirror sector models [120], is absent. For $2 \rightarrow 2$ scattering producing ν' from the SM, h_{Φ} exchange is completely negligible due to its large mass. Z exchange via $Z \rightarrow Z'$ mixing (see (23)) leads to

$$\Delta N_{\text{eff}}(\Omega(10^{-11})) \approx \left(\frac{10^9 \text{GeV}}{v'}\right)^4 \left(\frac{\text{T}_{\text{RH}}}{1 \text{MeV}}\right)^3 (\text{T}_{\text{RH}} \lesssim v),$$

$$(\text{T}_{\text{RH}} \gg v),$$

and we find that out-of-equilibrium Z decays to two ν' would give $\Delta N_{\text{eff}} \approx 10^{-15} \left(\frac{10^9 \text{GeV}}{v'}\right)^4$. These yields are at least two orders of magnitude smaller than the contribution $\Delta N_{\text{eff}} \approx 7.5 \times 10^{-12}$ from out-of-equilibrium Higgs decays [123], provided that $\text{T}_{\text{RH}} \gtrsim m_h$, and Higgs mediated scattering leads to $\Delta N_{\text{eff}} < 10^{-10}$.

C. Leptogenesis from decays

Seesaw mechanisms are often invoked to realize baryogenesis via the leptogenesis mechanism [124]. For the standard out-of-equilibrium decay scenario it has long been known that scalar triplet leptogenesis [125] requires at least two triplets or insertions of heavy neutrinos to generate the required CP violation. Otherwise there would be no imaginary part in the interference term between the tree-level decay and its one-loop self-energy and vertex corrections. This conclusion also holds for Dirac See-saw models [29, 126] and we could consider the channel $\Phi \rightarrow Hl'$, which also requires $\Phi \rightarrow HH'$ for the asymmetry generation via self-energy graphs [126, 127] for at least two different bidoublets. The tree level decay widths of each bidoublet read (with suppressed generation indices)

$$\Gamma(\Phi \rightarrow ll') = \frac{V^2}{8\pi}\mu_{\Phi}, \quad \Gamma(\Phi \rightarrow HH') = \frac{\kappa^2}{32\pi\mu_{\Phi}}.$$

We emphasize that the low reheating temperature in (34) is in tension with the high scale $> \mathcal{O}(10^{10} \text{GeV})$ bidoubllet mass, which is why non-thermal leptogenesis [127] would be required. As an example we consider reheating via perturbative decays of an inflaton with mass $m_I > 2\mu_{\Phi}$, decaying to both SM particles and bidoublets. The inflaton’s total decay width Γ_I is related to the reheating temperature via $\text{T}_{\text{RH}} \sim \sqrt{\Gamma_I m_I}$. One finds that the baryon asymmetry normalized to entropy at the end of reheating would be given by [128]

$$\frac{n_B}{s} \approx -\frac{42}{79} \varepsilon \frac{\text{BR}_I}{m_I} T_{\text{RH}}.$$

(37)

Here $\text{BR}_I < 1$ denotes the branching ratio of inflaton decays to bidoublets and ε is the previously mentioned CP violating decay parameter depending on the mass spectrum of the different bidoublet generations [29]. As for all Dirac leptogenesis scenarios [129], equal and opposite asymmetries in l and l' are produced. If the SU(2)' sphalerons are fast during or after the asymmetry generation, then the asymmetry in l' will be transferred into a mirror baryon asymmetry, which will be equal and opposite to the baryon asymmetry produced via SU(2)_L sphalerons from the l asymmetry. Since there is no direct interaction coupling baryons to mirror baryons, the respective asymmetries will not equilibrate to zero and remain separately conserved. For a hierarchical bidoublet spectrum with the lightest mass μ_{Φ} one finds that the CP violating decay parameter reads [29, 125]

$$\varepsilon < \frac{v}{v'} \frac{\text{BR}_{l, l'}}{8\pi} \frac{r}{m_{\nu} \mu_{\Phi}} \frac{\text{BR}_n}{v' v'^*},$$

(38)

where $r \equiv \mu_{\Phi}/\mu_{\Phi}^{(2)} < 1$ is the ratio of the lightest and next heavier bidoublet masses, $\text{BR}_{l, l'}$ are the branching ratios for both decay modes in (36) and m_{ν} is the heaviest active neutrino mass. A typical value for equal branching fractions and $\mu_{\Phi} = 10 v$ is $\varepsilon \approx 10^{-13}$, which is smaller than for the Type II Seesaw result [125] due to the additional v/v' suppression. For a hierarchical bidoublet spectrum we find

$$\frac{n_B}{s} \gtrsim < 10^{-23} \left(\frac{\text{BR}_I}{1}\right) \left(\frac{m_{\nu}}{0.1 \text{eV}}\right) \left(\frac{2\mu_{\Phi} r}{m_{l}}\right) \left(\frac{T_{\text{RH}}}{10^{-6} \text{GeV}}\right)$$

(39)

being far too small to explain the observed value of $n_B/s \approx 8 \times 10^{-11}$ [130]. Therefore we have to invoke a resonant enhancement of the self-energy diagrams [131– 137] via assuming that μ_{Φ} and the next heavier mass $\mu_{\Phi}^{(2)}$ are nearly degenerate $|\mu_{\Phi}^{(2)} - \mu_{\Phi}| \ll \mu_{\Phi}$ (~ 1). This scenario enhances the previous estimate for ε by a factor of [136, 137]

$$\frac{\rho}{\rho^2 + \delta^2} \gg 1, \quad \text{with} \quad \rho \equiv 1 - r^2, \quad \delta \equiv \frac{\Gamma_{\text{tot}}}{\mu_{\Phi}}.$$

(40)

The above expression is regulated by the total decay width of the bidoublet Γ_{tot}, which is the sum of the rates
in (36). We assume both bidoublets to have comparable decay rates. A sizeable enhancement requires \(\rho \sim 5 < 1 \) and hence \(|V_{\nu \ell}|^2 / (4|\mu_\ell|^2) \ll 8\pi \). The decay width to Higgses is automatically small for \(\kappa \ll \mu_\ell \), but we may have to make \(Y_\nu \) small by hand, which would require a larger \(v_\Phi \) for this scenario to fit \(m_\nu \). Note that this small \(\Gamma_{\text{tot.}} \ll \mu_\ell \) does not necessarily force \(\varepsilon \) to be small, as this parameter depends only on the branching ratios \(\text{BR}_{\ell \nu} \text{BR}_{H} = \Gamma(\Phi \to l' \nu) \Gamma(\Phi \to HH') / \Gamma^2_{\text{tot.}} \leq 1/4 \) and not on the absolute widths. Of course we can not make the decay width arbitrarily small, or else the decay will take place after inflationary reheating during an epoch where the bidoublets dominate the energy density of the universe. In this regime (37) still holds with the replacement \(T_{\text{RH}} / m_\ell \to T_{\text{dec.}} / \mu_\ell \) [138], where \(T_{\text{dec.}} \) is the reheating temperature after the second matter dominated epoch. The enhancement factor of \(\varepsilon \) is bounded from above by the perturbativity requirement \(\varepsilon \ll 1 \) assumed in the derivation of the Boltzmann equations, where one linearizes in the chemical potentials [130, 139]. The precise value of \(\varepsilon \) depends on the details of the active neutrino mass spectrum such as almost degenerate masses [140], which is why we use \(\varepsilon \) as a free parameter. Employing the kinematic condition \(m_\ell^2 > 2 \mu_\ell^2 \) and (34) to eliminate \(T_{\text{RH}} / m_\ell \) in (37) lets us determine that there is indeed a parameter range reproducing the observed baryon asymmetry

\[
\left| \frac{R_B}{s} \right|^{\text{rec.}} < 10^{-10} \left(\frac{\varepsilon}{0.05} \right) \left(\frac{\text{BR}_{l \nu}}{5\%} \right) \left(\frac{50}{\mu_\ell / v'} \right). \tag{41}
\]

To obtain this result we had to set \(\varepsilon \) close to its perturbative limit, which implies highly degenerate bidoublets with \(|\mu_\ell^2 - \mu_\ell|^2 / \mu_\ell^2 \approx 10^{-12} \). We further had to assume only a small hierarchy between \(v' \) and \(\mu_\ell \) to accommodate the inflaton decaying mostly to other SM particles implying \(\text{BR}_{l \nu} \ll 1 \).

D. Inflationary Affleck-Dine Leptogenesis

Alternatively, the coherent rotation in field space of a complex scalar field with lepton number during inflation facilitates leptogenesis via the Affleck-Dine mechanism [141]. In this picture, the Sakharov conditions [142] are realized via the initial phase of the scalar field providing C and CP violation and deviations from thermal equilibrium appear in the form of a large field amplitude during cosmic inflation. The last ingredient is baryon number violation, that arises from lepton number violation at the end of inflation and order one factors the lepton asymmetry at the end of inflation turns out to be [143, 144]

\[
\frac{\lambda_5}{M_{\text{Pl.}}} \left(H^T H' \pm H'^T H \right) \left(H^T H \pm H'^T H' \right), \tag{44}
\]

which conserves the discrete exchange symmetry if both signs are the same. The origin of this operator will be elucidated in appendix B. If we have opposite signs in both brackets, the operator violates the discrete exchange symmetry explicitly and we might be able to use it as a bias term to remove the domain walls. In the following we stick to the symmetry-conserving case and use plus signs following [143, 144] so that the dimension five term is \(\propto \cos(\phi) \). Up to mixing angles between the scalars during inflation and order one factors the lepton asymmetry at the end of inflation turns out to be [143, 144]

\[
\rho_{\text{end}}^3 \propto -2 \lambda_5 \sin(\phi_0) \frac{\sin(\phi_0)}{\sqrt{3\lambda}}, \tag{45}
\]

where the factor of two takes the B-L charge of \(\Phi \) into account, \(\lambda \) is the effective quartic self-coupling of the inflaton, \(\rho_{\text{end}} \approx O(M_{\text{Pl.}}) \) the field value of the inflaton at the end of inflation and \(\phi_0 \) is the initial phase of \(\rho_{\text{end}} e^{i\phi} \). Taking into account the redshifting of the lepton asymmetry during reheating and the sphaleron redistribution coefficient, one finds that the baryon to photon ratio today can be explained for \(\lambda_5 \sin(\phi_0) / \sqrt{3\lambda} \approx O(10^{-18}) \) [143, 144].
Evidently, small values of λ_5 and ϕ_0 are needed which also suppress isocurvature fluctuations [143, 144] and a small λ_5 is necessary anyway to not spoil inflation from the non-minimal coupling. We assume a thermalized bidoublet after reheating. In order to efficiently transmit the asymmetry from the bidoublet to the leptons we have to require that the decay width $\Gamma(\Phi \rightarrow HH')$ is larger than the decay width to scalars $\Gamma(\Phi \rightarrow \ell\ell)$ leading to

$$\mu_\Phi < 10^{21} \text{ GeV} \left(\frac{v'}{10^9 \text{ GeV}} \right) \left(\frac{0.1 \text{ eV}}{m_\nu} \right).$$

Moreover the interaction $\Phi \leftrightarrow HH'$ should be out of equilibrium and we estimate that $\Gamma(\Phi \rightarrow HH')|_{T=\mu_\Phi} \simeq \Gamma(\Phi \rightarrow HH')|_{T=\mu_\Phi}$ is slower than the Hubble rate $H(T)$ at $T = \mu_\Phi$ as long as

$$v_\Phi < 10 \text{ MeV} \left(\frac{v'}{10^9 \text{ GeV}} \right) \sqrt{\frac{5 \times 10^{10} \text{ GeV}}{\mu_\Phi}}. (47)$$

Of course we also need to ensure that the process $\ell\ell' \leftrightarrow HH'$ via off-shell Φ does not thermalize, which sets a weaker bound compared to (46)

$$\mu_\Phi < 10^{25} \text{ GeV} \left(\frac{v'}{10^9 \text{ GeV}} \right)^2 \left(\frac{0.1 \text{ eV}}{m_\nu} \right)^2. (48)$$

Let us note that the cosmological history in [143, 144] has an inflationary reheating temperature of $O(10^{14} \text{ GeV})$, which is in conflict with the requirement (34) for the absence of charged mirror leptons and quarks. That means we either need an additional mechanism to suppress reheating the mirror sector via asymmetric reheating [120, 121] or simply a different scenario, where Φ is not the inflaton and its large initial field value has a different origin during inflation [147, 148]. That way we can sequester the asymmetric reheating from the Affleck-Dine dynamics. Before we close, we would like to mention that there exists no obvious dark matter candidate in this model: The neutral component of Φ can decay to neutrinos or gauge bosons and will in general not be long-lived enough due its large mass. The heavy H', Z' are also not long-lived enough as they couple to all fermions (via mixing). Stable mirror quarks could form electrically neutral dark mesons after the QCD phase transition [149], however here we assume that the mirror sector is never populated to begin with or heavily diluted (see (34)). Therefore dark matter has to come from a separate dark sector.

VIII. CONCLUSION

We have presented a high scale Dirac neutrino mass model in the Type II Seesaw spirit, that has the same scalar spectrum of neutral, singly- and doubly-charged scalars as the original Majorana Type II Seesaw. This idea was implemented by introducing a bidoublet scalar in a mirror sector model with the gauge group $SU(2)_L \otimes SU(2)' \otimes U(1)_X$, where we identify the mirror neutrinos as the Dirac partners of the SM neutrinos. It was shown that the bidoublet is compatible with the discrete symmetry based solution to the strong CP problem, which was the motivation behind the mirror sector to begin with. The super-heavy bidoublet does not lead to any observable signatures for collider or other terrestrial experiments. However it might have played a role in the early universe as the source of the matter-antimatter asymmetry via either the non-thermal decay scenario or Affleck-Dine Dirac leptogenesis.

ACKNOWLEDGMENTS

We are grateful to Andreas Trautner and Alessandro Valenti for many useful comments including, but not limited to, subtle aspects of discrete symmetries as well as to Saurabh Nagia for valuable feedback on earlier iterations of this manuscript. This work benefited from the use of PackageX [150, 151] and we sincerely hope that this tool and its codebase will live on in one way or another.

Appendix A: Scalar Sector

1. Scalar Potential

The most general scalar potential satisfying the discrete exchange symmetry of [36, 37] defined in (3) reads:

$$V_\Phi = \mu_\Phi^2 \text{Tr} (\Phi^\dagger \Phi) + \lambda_5 \text{Tr} (\Phi^\dagger \Phi)^2 (A1)$$

$$V_H = -\mu_H^2 (H^\dagger H + H'^\dagger H') + \lambda_H (H^\dagger H + H'^\dagger H')^2 + \kappa H^\dagger H' H'^\dagger H' (A2)$$

$$V_{H_{\Phi}} = \kappa (H\Phi^\dagger H' + H'^\dagger \Phi H) + \lambda_{H_{\Phi}} (H\Phi^\dagger \Phi H^\dagger + H'^\dagger \Phi \Phi H') + \alpha_{H_{\Phi}} (H^\dagger H + H'^\dagger H') \text{Tr} (\Phi^\dagger \Phi) (A3)$$
FIG. 4. Plot of the contributions to the scalar potential without a bidoublet (left) and with a bidoublet (right). For the sake of visibility and illustration we chose $v_H = 10^{10}$ GeV, $v_\Phi = 1$ GeV, $c_1 = -10^{-2}$ and $\kappa = -6 \times 10^{15}$ GeV, which do not correspond to phenomenologically viable parameters. On the left hand side we fixed $\lambda'/c_1 = 0.66$ and we varied this combination of parameters on the right hand side. Note that we scaled the vertical axis differently in both plots. Realistic parameters would lead to minima at $|\phi| \simeq 10^{-7} - 10^{-10}$ and in practise the phenomenologically required small value of $|\kappa|$, e.g. $|\kappa| < 10$ GeV from (42) in the main text, only has a negligible impact on the value of ϕ.

The scalar sector involving only H, H' in (A2) has an approximate, global SU(4) custodial symmetry so that we can embed the doublets in its fundamental representation

$$\mathcal{H} \equiv \begin{pmatrix} H \\ H' \end{pmatrix}. \quad \text{(A4)}$$

Using this parameterization it is evident, that the terms $\propto \lambda', \kappa$ in (A2) and (A3) explicitly violate the custodial SU(4) symmetry. We take $\mu^2_\Phi \gg \mu^2_H > 0$. All couplings are real as a consequence of the discrete exchange symmetry (3) and because Φ has an abelian charge under $U(1)_X$. If the bidoublet was uncharged, the potential would depend on both Φ and $\tilde{\Phi} \equiv -\sigma^2 \Phi$ leading to explicit CP-violation via terms like

$$\alpha H^\dagger H \left[\Phi^\dagger \Phi + H'^\dagger H' \left(\tilde{\Phi} \tilde{\Phi}^\dagger \right) \right] + \text{h.c.} \quad \text{(A5)}$$

with a complex coupling α_{H,Φ^2}. For the charged bidoublet case loop diagrams do not regenerate the explicit CP-violating scalar couplings unlike the case of the minimal LRSM [152].

2. Minimization of the scalar potential: Original Higgs-Parity model

Here we explore the minima of the scalar potential in the electrically neutral directions. For the other directions see the next section A 4. We begin our discussion of the minimization of the scalar potential in (A1)-(A3) by introducing the notation

$$v_H \equiv \sqrt{v^2 + v'^2}, \quad \sin(\phi) \equiv \frac{v}{v_H}, \quad \cos(\phi) \equiv \frac{v'}{v_H}. \quad \text{(A6)}$$

The phenomenologically required vacuum structure is $v' \neq 0 \gg v \neq 0$. This together with $v \neq v'$ implies that $\phi \in (0, \frac{\pi}{2})$. For the observed value of $v = 246$ GeV and the required $v' \simeq (10^9 - 10^{12})$ GeV (see (11)) we have $0 < \phi \simeq 10^{-7} - 10^{-10} \ll 1$ and $v_H \simeq v'$. First we will summarize the results of [36, 37] for the scalar potential involving only H and H', before discussing the impact of the bidoublet. The vacuum potential reads

$$V_H = \frac{v_H^4}{32} \left(-16\mu_H^2 + v_H^2 (8\lambda_H + \lambda'(1 - \cos(4\phi))) \right) \quad \text{(A7)}$$

and the minimization conditions are found to be

$$\frac{\partial V_H}{\partial v_H} = \frac{v_H^4}{8} \left(-8\mu_H^2 + v_H^2 (8\lambda_H + \lambda'(1 - \cos(4\phi))) \right), \quad \text{and} \quad \frac{\partial V_H}{\partial \phi} = \frac{v_H^4}{8} \lambda' \sin(4\phi). \quad \text{(A8)}$$
The second condition has the solutions $\phi = (0, \pi/2, \pi/4)$ corresponding to $(v = 0, v' = 0, v = v')$, where in the first (second) case we have $v' \neq 0 (v \neq 0)$. This essentially happens, because the potential for ϕ has periodicity of $\pi/2$ and a reflection symmetry [54] owing to the Higgs-parity defined in (3). While the custodial-symmetry-breaking and Higgs Parity conserving interaction $\lambda' H^4 H + H^2 H'$ allows us to find an asymmetric vacuum with $v = 0$ and $v' \neq 0$, it does not suffice in order to also break the electroweak gauge symmetry. To realize $v \neq 0$ we need a separate source of custodial symmetry violation, that slightly tilts the potential even further. Yukawa and gauge interactions break the custodial symmetry explicitly and these effects are communicated to the scalar potential via quantum corrections encoded in the one-loop Coleman-Weinberg potential [56]

$$V_1 = c_1 \left((H^4 H)^2 \cos(\phi) \right)$$

The negative contribution from the top quark Yukawa is the dominant one, which is why $c_1 < 0$. If we plug in the values of the Yukawa and gauge couplings around the weak scale as an estimate we find $|c_1| < 10^{-2}$. In terms of the parameterization (A6) this potential reads for a renormalization scale of $\mu = v_H$ [54]

$$V_1 = c_1 v_H^4 \left(\cos(\phi) \cos(\phi) \right)$$

When solving for ϕ one has two solutions: Either $\sin(\phi) = 0$, which implies the solutions $\phi = (0, \pi/2, \pi/4)$ for the unwanted set of either partially unbroken or symmetric vacua. Else, the second factor in (A13) has to be zero itself for a solution with non-zero $\phi \ll 1$. We can solve this equation to find the required ϕ' for a minimum, that can accommodate the input parameter ϕ

$$\phi' = \frac{c_1}{60} (125 - 60 \log(4) - 8 \cos(\phi)) \phi \lesssim 0.56 c_1,$$

and substitute this into the first minimization condition to obtain

$$v_H = \frac{\mu_H}{\sqrt{\lambda_H + \frac{c_1}{16} \left(\frac{41}{16} \cos(\phi) + \cos(8\phi) \right)}} \phi \lesssim 1 \frac{4\sqrt{10} \mu_H}{160 \lambda_H + c_1 (41 - 40 \log(2))} \lesssim 0.56 c_1,$$

The lightness of m_h with respect to the high scale $v_H \approx v'$ is related to the tuning $\phi' \approx |c_1|/2 \lesssim 0.5$ in (A10), which manifests the previously mentioned partial cancellation. If $\phi'\approx 0.5$ and 0.81, the unwanted values with $\phi = (0, \pi/4)$ are actually maxima of the scalar potential, as can be seen from its second derivative [54]. The sign of ϕ' is in general undefined and the solution to (A13) reads

$$\phi = \frac{1}{4} \arccos \left(\frac{5}{8} \left(25 - 24 \log(2) - 12 \frac{\phi'}{c_1} \right) \right),$$

which is a consequence of the reflection symmetry of the potential. Since a physically sound vev must satisfy $v > 0$, we have to impose $\phi > 0$. We illustrate the previously discussed partial cancellation between the tree level potential V_H and the Coleman-Weinberg terms V_1 on the left side of figure 4. One can see that there are two symmetric non-zero minima with $|\phi| < \pi/4$. On the right hand side of the aforementioned figure we plotted the potential for different choices of $\phi'\approx 0.5$, and one can clearly observe that the non-zero values of $|\phi| < \pi/4$ require $\phi'\approx 0.5$. For the plots we used unrealistic parameters for the sake of being able to see the minima of ϕ between 0 and $\pm \pi/4$. Realistic parameters would lead to minima at $|\phi| \approx 10^{-7} - 10^{-10}$.

$$\phi = \frac{1}{4} \arccos \left(\frac{5}{8} \left(25 - 24 \log(2) - 12 \frac{\phi'}{c_1} \right) \right),$$
3. Minimization of the scalar potential: Inclusion of the bidoublet

Next we introduce the couplings to the bidoublet

\[V_\Phi = \frac{v_\Phi^2}{2} \left(\mu_\Phi^2 + \frac{\lambda_\Phi}{2} v_\Phi^2 \right), \quad V_{H\Phi} = v_\Phi v_H^2 \left(\frac{v_\Phi}{4} (\alpha_{H\Phi} + \lambda_{H\Phi}) + \frac{\kappa}{2\sqrt{2}} \sin(2\phi) \right), \tag{A18} \]

where we see that only the trilinear term \(\alpha \kappa \) depends on \(\phi \) and thus violates the custodial symmetry. Furthermore, since this term is \(\sin(2\phi) \) the scalar potential for \(\phi \) no longer has the periodicity \(\pi/2 \). The modified minimization conditions read

\[
\begin{align*}
\frac{\partial V}{\partial v_H} &= \frac{1}{480} (60v_H (-8\mu_H^2 + v_H^2 (8\lambda_H + \lambda')) - v_H^3 (5\cos(4\phi) (12\lambda' + c_1 (24\log(2) - 25)) - 2c_1 \cos(8\phi))) \tag{A19} \\
&\quad + \frac{v_\Phi v_H}{2} \left(v_\Phi (\alpha_{H\Phi} + \lambda_{H\Phi}) + \sqrt{2}\kappa \sin(2\phi) \right), \\
\frac{\partial V}{\partial v_\Phi} &= v_\Phi (\mu_\Phi^2 + \lambda_\Phi v_\Phi^2 + (\alpha_{H\Phi} + \lambda_{H\Phi}) v_H^2) + \frac{v_H^2}{2\sqrt{2}} \kappa \sin(2\phi), \\
\frac{\partial V}{\partial \phi} &= v_H^4 \left(60\lambda' + 8c_1 \cos(4\phi) + 5c_1 (24\log(2) - 25) + 12\sqrt{2} \frac{v_\Phi \kappa}{v_H^2} \frac{1}{\sin(2\phi)} \right) \sin(4\phi). \tag{A20} \\
\end{align*}
\]

The required \(\lambda' \) for values of \(\phi \neq (0, \pi/2, \pi/4) \) that minimize the potential in the \(\phi \)-direction is found to be

\[\lambda' = \frac{c_1}{60} (125 - 60 \log(4) - 8 \cos(4\phi)) - 2\sqrt{2} \frac{v_\Phi \kappa}{v_H^2} \frac{1}{\sin(2\phi)} \phi \lesssim 0.56 \tag{A21} \]

Note that the trilinear term \(v_\Phi \kappa v_H^2 \sin(2\phi) \) in (A18) breaks the reflection symmetry and biases the vacuum in the direction \(\phi > 0 \) (\(\phi < 0 \)) for \(\kappa < 0 \) (\(\kappa > 0 \)) (analogous to the sign of \(v_\Phi \) for a Type II Seesaw). However in practise this contribution is suppressed as \(v_\Phi \kappa v_H^2 \sin(2\phi) \) compared to \(V_H + V_1 \), so that we would need to take large (and phenomenologically excluded) values of \(\kappa \) to select a sign for \(\phi \). This was illustrated on the right side of figure 4 and one sees the deeper minimum \(\phi > 0 \) for the unrealistically large \(\kappa = -6 \times 10^{15} \text{ GeV} \neq 0 \) in red. The next paragraphs explain, why we can not make \(|\kappa| \) arbitrarily large and phenomenologically we need a small value of \(|\kappa| < 10 \text{ GeV} \) (see (42) in the main text) anyway. We find that \(v_H \) is determined to be

\[
v_H = 4 \sqrt{\frac{30\mu_H^2 - 15v_\Phi (\alpha_{H\Phi} + \lambda_{H\Phi}) + \sqrt{2}\kappa \sin(2\phi)}{\sqrt{60(8\lambda_H + \lambda') - 2c_1 \cos(8\phi) - 5\cos(4\phi) (12\lambda' + c_1 (24\log(2) - 25))}}}. \tag{A23} \]

If the first term \(30\mu_H^2 \) dominates over the contribution \(v_\Phi^2, v_\Phi \kappa \), the previously determined minimum in (A15) is still valid. Once the contribution \(v_\Phi^2, v_\Phi \kappa \) takes over, a deeper minimum starts to appear and the vev \(v_H \) is actually induced by \(v_\Phi \) (instead of the other way around for a Type II Seesaw). To study the implications of \(v_\Phi \) on \(\phi, v_H \) requires finding, which value of \(v_\Phi \) solves (A20). If we were to switch off all bidoublet couplings to the other scalars and set \(\mu_\Phi^2 < 0 \), we expect \(v_\Phi = |\mu_\Phi|/\sqrt{|\lambda_\Phi|} \) as usual. Generally speaking this relation will be modified by the vevs of the other Higgses as well, because the trilinear coupling \(\kappa \) and the full solution to (A20) can only be found numerically. In the following we either fix \(v_\Phi \) via the Type II Seesaw scheme used in the main text, or use it as a free parameter in order to find the conditions for unwanted symmetric or deeper minima.

\[a. \ Induced \ bidoublet \ vev \ a \ la \ Type \ II \ Seesaw \]

Here we take the vev \(v_\Phi \) to be induced by \(v_H \). This means, we assume \(\mu_\Phi^2 > 0 \) and furthermore, that \(\mu_\Phi^2 \gg \lambda_\Phi v_\Phi^2 + (\alpha_{H\Phi} + \lambda_{H\Phi}) v_H^2 \), so that (A20) is approximately solved by

\[
v_\Phi \approx -\frac{\kappa v_H^2}{2\sqrt{2}\mu_\Phi} \sin(2\phi) = -\frac{\kappa v}{\sqrt{2}\mu_\Phi}. \tag{A24} \]

In the limit \(|\kappa| \ll v_H \ll \mu_\Phi \) this vev will essentially be the smallest scale in the potential. The value of \(\lambda' \) required for a given \(\phi \) in (A22) then reads

\[\lambda'_{\text{eff}} \equiv \lambda' - \frac{\kappa^2}{\mu_\Phi^2} \approx \frac{c_1}{60} (125 - 60 \log(4) - 8 \cos(4\phi)) \phi \lesssim 0.56 \tag{A25} \]
We see, that integrating out the super-heavy bidoublet just shifts the coupling λ' via a threshold correction, as was mentioned above of (12) in the main text. Since we expect $|\kappa| \ll \mu_\Phi$ by many orders of magnitude (see (7) and the discussion below), it is safe to take $\lambda_{\text{eff}}' \simeq \lambda'$ and the previously determined minimum for ϕ in (A14) is still valid. In order to avoid deeper minima than v_H in (A15) we have to require that the numerator in (A23) satisfies

$$2\mu_H^2 \gg v_\phi \left(v_\phi (\alpha_{H\Phi} + \lambda_{H\Phi}) + \sqrt{2}\kappa \sin(2\phi) \right) \simeq \frac{\kappa^2 v_H^2}{2\mu_\Phi^2} \sin(2\phi)^2,$$

where we used $\mu_\Phi^2 \gg (\alpha_{H\Phi} + \lambda_{H\Phi}) v_H^2$ in the last step. Expanding for small ϕ and setting $v_H \simeq \mu_H/\sqrt{\lambda_H}$ turns this into

$$\lambda_H \gg \phi^2 \frac{\kappa^2}{\mu_\Phi^2}.$$

(A27)

Since we assume $\lambda_H = \mathcal{O}(1)$ and again stress that $\phi, |\kappa|/\mu_\Phi \ll 1$, we do not need to worry about deeper minima for v_H with the super-light v_ϕ we consider in (A24).

b. General bidoublet vev

As discussed earlier, it is in general not possible, to obtain a full analytic expression for v_ϕ. This is why, we take it as a free parameter and in the following make no assumption about its relative size compared to v_H, μ_Φ and κ. Inspecting (A22) reveals, that the $1/\sin(2\phi)$ factor can become large for the required small $\phi \ll 1$ and if it is not cancelled by $v_\phi \kappa/v_H^2$, it might happen, that this term becomes larger than the perturbative limit for λ' of 4π. We therefore require that

$$\left| 0.56 c_1 - \frac{\sqrt{2} v_\phi \kappa}{\phi} \frac{1}{v_H} \right| < 4\pi,$$

where the absolute value takes into account the in general undetermined sign of κ and the fact that $c_1 < 0$. Assuming the bidoublet contribution is larger than the Coleman-Weinberg piece $\propto c_1$, one finds that this condition implies

$$v_\phi |\kappa| < 2\sqrt{2\pi} v v'.$$

(A29)

In other words, if we make $v_\phi |\kappa|$ larger than the input parameters $v v'$, then the corrections from the bidoublet vev will spoil the partial cancellation between the λ' and the Coleman-Weinberg terms $\propto c_1$ responsible for the correct asymmetric vacuum $v \neq 0 \ll v'$. The $\sin(2\phi)$ term coming from the coupling to the bidoublet in (A18) is responsible for this effect, since the aforementioned partial cancellation involves the $\cos(4\phi)$ terms. This is in agreement with the findings of [36], who arrived at the conclusion, that the vev of an additional bidoublet can not contribute significantly to electroweak symmetry breaking. Consequently we are forced to have a small $v_\phi |\kappa|$. Avoiding a deeper minimum from (A23) than the v_H in (A15) requires

$$\mu_H^2 \gg \frac{1}{2\sqrt{2}} v_\phi \kappa \sin(2\phi),$$

(A30)

where we assumed that $\alpha_{H\Phi} + \lambda_{H\Phi}$ is negligible so that we can focus on κ. This bound can be re-expressed as

$$v_\phi |\kappa| \ll \frac{\lambda_H}{\sqrt{2}} \frac{v^3}{v}.$$

(A31)

We find that this constraint is weaker than (A29) for $v \ll v'$, meaning that taking $v_\phi |\kappa|$ to be large will first destroy the misalignment of vacua (leading to $v = v'$ or $v = 0$) before it leads to deeper minima in v'. The smallness of the induced v_ϕ in the Type II Seesaw of (A24) automatically avoids these problems in the limit $|\kappa| \ll \mu_\Phi$.

4. Sufficient conditions for vacuum stability

For vacuum stability at large field values only the quartic terms are important. Following reference [153] we define

$$r^2 \equiv H^\dagger H + H'^\dagger H' + \text{Tr} \left(\Phi^\dagger \Phi \right), \quad r^2 \cos(\gamma) \equiv H^\dagger H + H'^\dagger H', \quad r^2 \sin(\gamma) \equiv \text{Tr} \left(\Phi^\dagger \Phi \right),$$

(A32)

$$x \equiv \frac{H^\dagger H H'^\dagger H'}{(H^\dagger H + H'^\dagger H')^2}, \quad y \equiv \frac{H \Phi^\dagger \Phi H^\dagger H + H' \Phi \Phi^\dagger H'}{(H^\dagger H + H'^\dagger H') \text{Tr} \left(\Phi \Phi^\dagger \right)}.$$

(A33)
One can show that
\[0 \leq x \leq \frac{1}{2}, \quad 0 \leq y \leq 1. \] (A34)

Using this parameterization we employ the co-positivity criteria of [154] to find
\[\lambda_\Phi > 0, \quad \lambda_H + x \lambda' > 0, \quad \alpha H \Phi + y \lambda H \Phi + 2 \sqrt{\lambda_\Phi (\lambda_H + x \lambda')} > 0. \] (A35)

Note that \(x, y \) may not be independent parameters [155], however we will ignore this complication for our first estimate. This is the reason why we only find the sufficient but not the necessary criteria for vacuum stability. A more refined analysis along the lines of [155–157] is required to treat the general case. Our preliminary investigation did not find deeper electric charge-breaking minima compared to the charge-conserving ones in (8), which can occur for models with trilinear scalar couplings [158], and we do not expect them due to the smallness of the trilinear coupling \(\kappa \) (see the previous paragraph and the discussion below (7)). A full numerical analysis is beyond the scope of this work.

Appendix B: Origin of the dimension five operator for Affleck-Dine leptogenesis

The discrete exchange symmetry conserving effective operator in (44) (same signs in each bracket) can be realized by including a real singlet either even (\(\sigma \)) or odd (\(\sigma \)) under the symmetry (3). This adds the following terms to the scalar potential
\[\begin{align*}
\lambda_\Phi \sigma^2 + \lambda_\sigma \sigma^3 + \lambda_\sigma \sigma^4, \\
V_{\text{int.}} &= \kappa \sigma (H^\dagger H \pm H'^\dagger H') + \lambda_{\sigma H} \Phi \sigma \big(\Phi H^\dagger \mp H'^\dagger \Phi H \big) \\
&\quad + \lambda_{\sigma \sigma} \sigma^2 (H^\dagger H \pm H'^\dagger H') + \lambda_{\sigma \sigma} \sigma^2 \text{Tr}(\Phi^\dagger \Phi),
\end{align*} \]

where the +(-) sign applies to the even (odd) case and furthermore the term \(\lambda_\sigma \sigma^3 \) is absent for odd \(\sigma \). Note that all of the above couplings are real. If we assume the \(\sigma \) mass is the largest in the potential, we find after integrating it out, that the effective coupling in (44) is given by
\[\frac{\lambda_5}{M_{\text{Pl}}} \approx \frac{\lambda_{\sigma H \Phi \Phi^*} \kappa_\sigma}{|\mu_\sigma|^2}. \] (B4)

In order for this operator to be present during the inflationary stage, where the inflaton can approach Planck scale field values, we have to impose \(|\mu_\sigma| \approx \mathcal{O}(M_{\text{Pl}}). A vev for \sigma is not required to generate the right operator. For completeness let us consider the implications of a vev for the real \(\sigma \):

- **even case:** Since the scalar \(\sigma \) is even, the discrete exchange symmetry remains unbroken and \(v_\sigma \) simply shifts \(\mu_\Phi^2 \rightarrow \mu_\Phi^2 + \lambda_\sigma \sigma v_\sigma^2, -\mu_\Phi^2 \rightarrow -\mu_\Phi^2 + \kappa_\sigma v_\sigma + \lambda_{\sigma H} v_\sigma^2 \) as well as \(\kappa \rightarrow \kappa + \lambda_{\sigma H} v_\sigma \). Since we expect \(v_\sigma \) to be very large we require small couplings in order to not shift the scales too much.

- **odd case:** In this scenario \(\sigma \) is a pseudo-scalar that spontaneously breaks the discrete exchange symmetry and leads to different mass terms \(-\mu_\Phi^2 \pm \kappa_\sigma v_\sigma \) for \(H, H' \) effectively realizing the softly-broken parity scenario of [50] for \(v' \gg v \) mentioned in section IIII. On top of that when it comes to CP the minimum of the scalar potential will be different from (16) and we find spontaneous CP violation with an angle for \(v_\Phi \) of
\[\beta_\Phi - \beta - \beta' = \arctan \left(\frac{\lambda_{\sigma H H^*} v_\sigma}{\sqrt{2} \kappa} \right). \] (B5)

This phase is negligible for the solution to the strong CP problem in section V, because the field \(\Phi \) has no direct couplings to quarks and leptonic insertions occur only at very large and thus heavily suppressed loop orders. In the symmetry-odd case there could arise a dimension five operator similar to (24) [113]
\[\frac{c^d_{\text{UV}}}{\Lambda_{\text{UV}}} \sigma G_{\mu\nu} \tilde{G}^{\mu\nu}, \] (B6)

or a correction to the quark Yukawas in (4) of the form [113]
\[\frac{c^q_{\text{UV}}}{\Lambda_{\text{UV}}} i \sigma (Y_u q H^\dagger \bar{\pi} + Y_d q H'^\dagger \bar{\pi'}) + \frac{c^d_{\text{UV}}}{\Lambda_{\text{UV}}} i \sigma (Y_d q H \bar{d} + Y_u q' H' \bar{d'}) + \text{h.c.}, \] (B7)

which for a Planck-scale cut-off \(\Lambda_{\text{UV}} \) need to satisfy \(c^q_{\text{UV}} v_\sigma < 10^9 \text{ GeV} \) [113] in order to comply with the experimental bound of \(\tilde{\theta} < 10^{-10} \) [74–77].
The effective operator in (44) with different signs in each bracket, violating the discrete exchange symmetry, could arise from non-perturbative quantum gravitational effects, which are expected [159–161] to explicitly break all global symmetries that are not residual symmetries of gauge symmetries.
Y. Kuno and Y. Okada, “Muon decay and physics beyond the standard model,” Phys. Lett. B 302 (1993) 351–355.

M. Carena, D. Liu, J. Liu, N. R. Shah, C. E. M. Wagner, and X.-P. Wang, “ν solution to the strong CP problem,” Phys. Rev. D 100 no. 9, (2019) 094018, arXiv:1904.05360 [hep-ph].

V. Baluni, “CP-nonconserving effects in quantum chromodynamics,” Phys. Rev. D 19 (Apr, 1979) 2227–2230. https://link.aps.org/doi/10.1103/PhysRevD.19.2227.

C. Bouchiat and L. Michel, “Theory of K. S. Babu, P. S. B. Dev, S. Jana, and A. Thapa, “Non-Standard Interactions in Radiative Neutrino Mass Models,” JHEP 03 (2020) 006, arXiv:1907.09498 [hep-ph].

C. A. Baker et al., “An Improved experimental limit on the electric dipole moment of the neutron,” Phys. Rev. Lett. 97 (2006) 131801, arXiv:hep-ex/0602020.

B. Graner, Y. Chen, E. G. Lindahl, and B. R. Heckel, “Reduced Limit on the Permanent Electric Dipole Moment of 199Hg,” Phys. Rev. Lett. 116 no. 16, (Apr., 2016) 161601, arXiv:1601.04339.

J. Kawamura, S. Okawa, Y. Omura, and Y. Tang, “WIMP dark matter in the parity solution to the strong CP problem,” JHEP 04 (2019) 162, arXiv:1812.07004 [hep-ph].

S. K. Lamoreaux and R. Golub, “Experimental searches for the neutron electric dipole moment,” J. Phys. G 36 (2009) 104002.

C. A. Baker et al., “The search for the neutron electric dipole moment at the Paul Scherrer Institute,” Phys. Procedia 17 (2011) 159–167.

nEDM Collaboration, E. P. Tsentalovich, “The nEDM experiment at the SNS,” Phys. Part. Nucl. 45 (2014) 249–250.

K. S. Babu, P. S. B. Dev, S. Jana, and A. Thapa, “Non-Standard Interactions in Radiative Neutrino Mass Models,” JHEP 03 (2020) 006, arXiv:1907.09498 [hep-ph].

L. Michel, “Interaction between four half spin particles and the decay of the μ meson,” Proc. Phys. Soc. A 63 (1950) 514–531.

C. Bouchiat and L. Michel, “Theory of μ-meson decay with the hypothesis of nonconservation of parity,” Phys. Rev. 106 (Apr, 1957) 170–172. https://link.aps.org/doi/10.1103/PhysRev.106.170.

Y. Kuno and Y. Okada, “Muon decay and physics beyond the standard model,” Rev. Mod. Phys. 73 (2001) 151–202, arXiv:hep-ph/9909265.

S. Mishra, K. Bachmann, R. Blair, C. Foudas, B. King, W. Leffam, W. Leung, E. Oltman, P. Quintas, S. Rabinowitz, F. Scibilia, B. Seligman, M. Shevitz, W. Smith, F. Merritt, M. Oreglia, B. Schumm, R. Bernstein, F. Borcherding, H. Fisk, M. Lamm, W. Marsh, K. Merritt, H. Schellman, D. Yovanovitch, A. Bodek, H. Budd, P. de Barbaro, and W. Sakumoto, “Inverse muon decay, νμ + e− → μ− + νe, at the fernihal tevatron,” Physics Letters B 252 no. 1, (1990) 170–176.

CHARM-II Collaboration, P. Vilain et al., “Precision measurement of electroweak parameters from the scattering of muon-neutrinos on electrons,” Phys. Lett. B 335 (1994) 246–252.

CHARM-II Collaboration, P. Vilain et al., “Measurement of differential cross-sections for muon-neutrino electron scattering,” Phys. Lett. B 302 (1993) 351–355.

TEXONO Collaboration, M. Deniz et al., “Measurement of Nu(e)-bar-→ Electron Scattering Cross-Section with a CsI(Tl) Scintillating Crystal Array at the Kuo-Sheng Nuclear Power Reactor,” Phys. Rev. D 81 (2010) 072001, arXiv:0911.1597 [hep-ex].

A. G. Beda, V. B. Brudanin, V. G. Egorov, D. V. Medvedev, M. V. Shirchenko, and T. Vylot, “GEMMA experiment: Three years of the search for the neutrino magnetic moment,” Phys. Part. Nucl. Lett. 7 (2010) 406–409, arXiv:0905.1926 [hep-ex].

A. G. Beda, V. B. Brudanin, V. G. Egorov, D. V. Medvedev, V. S. Poposov, M. V. Shirchenko, and A. S. Starostin, “Upper limit on the neutrino magnetic moment from three years of data from the GEMMA spectrometer,” arXiv:1005.2736 [hep-ex].

Muon g-2 Collaboration, G. W. Bennett et al., “Final Report of the Muon E821 Anomalous Magnetic Moment Measurement at BNL,” Phys. Rev. D 73 (2006) 072003, arXiv:hep-ex/0602035.

Muon g-2 Collaboration, B. Abi et al., “Measurement of the Positive Muon Anomalous Magnetic Moment to 0.46 ppm,” Phys. Rev. Lett. 126 no. 14, (2021) 151801, arXiv:2104.03281 [hep-ex].

L. Lavoura, “General formulae for f(1) → f(2) gamma,” Eur. Phys. J. C 29 (2003) 191–195, arXiv:hep-ph/0302221.

MEG Collaboration, A. M. Baldini et al., “Search for the lepton flavour violating decay μ⁺ → e⁺γ with the full dataset of the MEG experiment,” Eur. Phys. J. C 76 no. 8, (2016) 434, arXiv:1605.05081 [hep-ex].

MEG II Collaboration, A. M. Baldini et al., “The design of the MEG II experiment,” Eur. Phys. J. C 78 no. 5, (2018) 380, arXiv:1801.04688 [physics.ins-det].

J. Hisano and D. Nomura, “Solar and atmospheric neutrino oscillations and lepton flavor violation in supersymmetric models with the right-handed neutrinos,” Phys. Rev. D 59 (1999) 116005, arXiv:hep-ph/9810479.

U. Bellgardt, G. Otter, R. Eichler, L. Felawka, C. Niebuhr, H. Walter, W. Bertl, N. Lordong, J. Martino, S. Egli, R. Engfer, C. Grab, M. Grossmann-Handschin, E. Hermes, N. Kraus, F. Fuheim, H. Pruys, A. Van Der Schaaf, and D. Vermeulen, “Search for the decay μ⁺ → e⁺e⁺e−,” Nuclear Physics B 299 no. 1, (1988) 1–6.

Mu3e Collaboration, A.-K. Perrevoort, “The Rare and Forbidden: Testing Physics Beyond the Standard Model with Mu3e,” SciPost Phys. Proc. 1 (2019) 052, arXiv:1812.00741 [hep-ex].

XENON Collaboration, E. Aprile et al., “Search for New Physics in Electronic Recoil Data from XENON1t,” arXiv:2207.11330 [hep-ex].

ALEPH Collaboration, A. Heister et al., “Search for scalar leptons in e+ e- collisions at center-of-mass energies up to 200-GeV,” Phys. Lett. B 526 (2002) 206–220, arXiv:hep-ex/0112011.

OPAL Collaboration, G. Abbiendi et al., “Search for
anomalous production of dilepton events with missing transverse momentum in e+ e− collisions at s**(1/2) = 183–Gev to 209–Gev," Eur. Phys. J. C 32 (2004) 453–473, arXiv:hep-ex/0309014.

[103] L3 Collaboration, P. Achard et al., “Search for scalar leptons and scalar quarks at LEP,” Phys. Lett. B 580 (2004) 37–49, arXiv:hep-ex/0310007.

[104] DELPHI Collaboration, J. Abdallah et al., “Searches for supersymmetric particles in e+ e− collisions up to 208–Gev and interpretation of the results within the MSSM,” Eur. Phys. J. C 31 (2003) 421–479, arXiv:hep-ex/0311019.

[105] ATLAS Collaboration, M. Aaboud et al., “Search for doubly charged Higgs boson production in multi-lepton final states with the ATLAS detector using proton–proton collisions at √s = 13 TeV,” Eur. Phys. J. C 78 no. 3, (2018) 199, arXiv:1710.09748 [hep-ex].

[106] Y. Du, A. Dunbrack, M. J. Ramsey-Musolf, and J.-H. Yu, “Type-II Seesaw Scalar Triplet Model at a 100 TeV pp Collider: Discovery and Higgs Portal Coupling Determination,” JHEP 01 (2019) 101, arXiv:1810.09450 [hep-ph].

[107] LEP, ALEPH, DELPHI, L3, OPAL, LEP Electroweak Working Group, SLD Electroweak Group, SLD Heavy Flavor Group Collaboration, t. S. Electroweak, “A Combination of preliminary electroweak measurements and constraints on the standard model,” arXiv:hep-ex/0312023.

[108] T. W. B. Kibble, “Topology of cosmic domains and strings,” Journal of Physics A: Mathematical and General 9 no. 8, (Aug, 1976) 1387–1398. https://doi.org/10.1088/0305-4470/9/8/029.

[109] Y. B. Zel’dovich, I. Y. Kobzarev, and L. B. Okun’, “Cosmological consequences of a spontaneous breakdown of a discrete symmetry,” Soviet Journal of Experimental and Theoretical Physics 40 (July, 1975) 1.

[110] P. Sikivie, “Axions, domain walls, and the early universe,” Phys. Rev. Lett. 48 (Apr, 1982) 1156–1159. https://link.aps.org/doi/10.1103/PhysRevLett.48.1156.

[111] G. B. Gelmini, M. Gleiser, and E. W. Kolb, “Cosmology of biased discrete symmetry breaking,” Phys. Rev. D 39 (Mar, 1989) 1558–1566. https://link.aps.org/doi/10.1103/PhysRevD.39.1558.

[112] A. H. Guth, “The Inflationary Universe: A Possible Solution to the Horizon and Flatness Problems,” Phys. Rev. D 23 (1981) 347–356.

[113] R. T. D’Agnolo and A. Hook, “Finding the Strong CP problem at the LHC,” Phys. Lett. B 762 (2016) 421–425, arXiv:1507.00336 [hep-ph].

[114] T. Yamagata, Y. Takamori, and H. Utsunomiya, “Search for anomalously heavy hydrogen in deep sea water at 4000–m,” Phys. Rev. D 47 (1993) 1231–1234.

[115] P. Verkerk, G. Grynberg, B. Pichard, M. Spiro, S. Zylberajch, M. E. Goldberg, and P. Fayet, “Search for superheavy hydrogen in sea water,” Phys. Rev. Lett. 68 (Feb, 1992) 1116–1119. https://link.aps.org/doi/10.1103/PhysRevLett.68.1116.

[116] T. K. Hemmick, D. Elmore, T. Gentile, P. W. Kubik, S. L. Olsen, D. Cianfa, D. Nitz, H. Kagan, P. Haas, P. F. Smith, B. B. Mcnester, and J. Bigeleisen, “Search for low-z nuclei containing massive stable particles,” Phys. Rev. D 41 (Apr, 1990) 2074–2080. https://link.aps.org/doi/10.1103/PhysRevD.41.2074.

[117] E. B. Norman, S. B. Gazes, and D. A. Bennett, “Searches for Supermassive X- Particles in Iron,” Phys. Rev. Lett. 58 (1987) 1403–1406.

[118] C. F. Berger, L. Covi, S. Kraml, and F. Palorini, “The Number density of a charged relic,” JCAP 10 (2008) 005, arXiv:0807.0211 [hep-ph].

[119] R. J. Scherrer and M. S. Turner, “Decaying Particles Do Not Heat Up the Universe,” Phys. Rev. D 31 (1985) 681.

[120] N. Craig, S. Koren, and T. Trott, “Cosmological Signals of a Mirror Twin Higgs,” JHEP 05 (2017) 038, arXiv:1611.07977 [hep-ph].

[121] Z. Chacko, N. Craig, P. J. Fox, and R. Harnik, “Cosmology in Mirror Twin Higgs and Neutrino Masses,” JHEP 07 (2017) 023, arXiv:1611.07975 [hep-ph].

[122] X. Luo, W. Rodejohann, and X.-J. Xu, “Dirac neutrinos and N

\text{eff}{

_\text{he}}

,” JCAP 06 (2020) 058, arXiv:2005.01629 [hep-ph].

[123] X. Luo, W. Rodejohann, and X.-J. Xu, “Dirac neutrinos and N

\text{eff}{

_\text{he}}

 Part II. The freeze-in case,” JCAP 03 (2021) 082, arXiv:2011.13059 [hep-ph].

[124] M. Fukugita and T. Yanagida, “Baryogenesis without grand unification,” Physics Letters B 174 no. 1, (1986) 45–47.

[125] T. Hambye, M. Raidal, and A. Strumia, “Efficiency and maximal CP-asymmetry of scalar triplet leptogenesis,” Phys. Lett. B 632 (2006) 667–674, arXiv:hep-ph/0510008.

[126] P.-H. Gu and H.-J. He, “Neutrino Mass and Baryon Asymmetry from Dirac Seesaw,” JCAP 12 (2006) 010, arXiv:hep-ph/0610275.

[127] G. Lazarides and Q. Shafi, “Origin of matter in the inflationary cosmology,” Phys. Lett. B 258 (1991) 305–309.

[128] T. Asaka, H. B. Nielsen, and Y. Takahashi, “Nonthermal leptogenesis from the heavier Majorana neutrinos,” Nucl. Phys. B 647 (2002) 252–274, arXiv:hep-ph/0207023.

[129] K. Dick, M. Lindner, M. Ratz, and D. Wright, “Leptogenesis with Dirac neutrinos,” Phys. Rev. Lett. 84 (2000) 4039–4042, arXiv:hep-ph/9907562.

[130] S. Davidson, E. Nardi, and Y. Nir, “Leptogenesis,” Phys. Rept. 466 (2008) 105–177, arXiv:0802.2962 [hep-ph].

[131] J. Liu and G. Segre, “Reexamination of generation of baryon and lepton number asymmetries by heavy particle decay,” Phys. Rev. D 48 (1993) 4609–4612, arXiv:hep-ph/9304241.

[132] M. Flanz, E. A. Paschos, and U. Sarkar, “Baryogenesis from a lepton asymmetric universe,” Phys. Lett. B 345 (1995) 248–252, arXiv:hep-ph/9411366. [Erratum: Phys.Lett.B 384, 487–487 (1996). Erratum: Phys.Lett.B 382, 447–447 (1996)].

[133] M. Flanz, E. A. Paschos, U. Sarkar, and J. Weiss, “Baryogenesis through mixing of heavy Majorana neutrinos,” Phys. Lett. B 389 (1996) 693–699, arXiv:hep-ph/9607310.

[134] L. Covi, E. Roulet, and F. Vissani, “CP violating decays in leptogenesis scenarios,” Phys. Lett. B 384 (1996) 169–174, arXiv:hep-ph/9605319.

[135] A. Pilaftsis, “Resonant CP violation induced by...
particle mixing in transition amplitudes," *Nucl. Phys. B* **504** (1997) 61–107, arXiv:hep-ph/9702393.

[136] A. Pilaftsis, “Heavy Majorana neutrinos and baryogenesis,” *Int. J. Mod. Phys. A* **14** (1999) 1811–1858, arXiv:hep-ph/9812256.

[137] A. Pilaftsis and T. E. J. Underwood, “Resonant leptogenesis,” *Nucl. Phys. B* **692** (2004) 303–345, arXiv:hep-ph/0309342.

[138] G. F. Giudice, M. Peloso, A. Riotto, and I. Tkachev, “Production of massive fermions at preheating and leptogenesis,” *JHEP* **08** (1999) 014, arXiv:hep-ph/9905242.

[139] G. F. Giudice, A. Notari, M. Raidal, A. Riotto, and A. Strumia, “Towards a complete theory of thermal leptogenesis in the SM and MSSM,” *Nucl. Phys. B* **692** (2004) 303–345, arXiv:hep-ph/0309342.

[140] I. Affleck and M. Dine, “A new mechanism for baryogenesis,” *Nuclear Physics B* **249** no. 2, (1985) 361–380.

[141] A. D. Sakharov, “Violation ofCPin variance, casymmetry, and baryon asymmetry of the universe,” *Soviet Physics Uspekhi* **34** no. 5, (May, 1991) 392–393. https://doi.org/10.1070/pu1991v034n05abeh002497.

[142] N. D. Barrie, C. Han, and H. Murayama, “Type II Seesaw leptogenesis from Higgs inflation,” *Phys. Rev. Lett.* **128** no. 14, (2022) 141801, arXiv:2106.03381 [hep-ph].

[143] F. Bezrukov and M. Shaposhnikov, “Higgs inflation at the critical point,” *Phys. Lett. B* **734** (2014) 249–254, arXiv:1403.6078 [hep-ph].

[144] A. Starobinsky, “A new type of isotropic cosmological models without singularity,” *Physics Letters B* **91** no. 1, (1980) 99–102.

[145] M. Dine, L. Randall, and S. D. Thomas, “Supersymmetry breaking in the early universe.” *Phys. Rev. Lett.* **75** (1995) 398–401, arXiv:hep-ph/9503303.

[146] R. T. Co, L. J. Hall, K. Harigaya, K. A. Olive, and S. Verner, “Axion Kinetic Misalignment and Parametric Resonance from Inflation,” *JCAP* **08** (2020) 036, arXiv:2004.00629 [hep-ph].

[147] J. Kang, M. A. Luty, and S. Nasri, “The Relic abundance of long-lived heavy colored particles,” *JHEP* **09** (2008) 086, arXiv:hep-ph/0611322.

[148] H. H. Patel, “Package-X: A Mathematica package for the analytic calculation of one-loop integrals,” *Comput. Phys. Commun.* **197** (2015) 276–290, arXiv:1503.01469 [hep-ph].

[149] H. H. Patel, “Package-X 2.0: A Mathematica package for the analytic calculation of one-loop integrals,” *Comput. Phys. Commun.* **218** (2017) 66–70, arXiv:1612.00009 [hep-ph].

[150] R. Kuchimanchi, “Leptonic CP problem in left-right symmetric model,” *Phys. Rev. D* **91** no. 7, (2015) 071901, arXiv:1408.6392 [hep-ph].