Supplementary Information for

“Photogeneration of Quinone Methide from Adamantylphenol in an Ultrafast Non-adiabatic Dehydration Reaction”

Mateo Forjan¹, Goran Zgrablić¹, Silvije Vdović¹, Marina Šekutor², Nikola Basarić², Piotr Kabacinski³, Maryam Nazari Haghighi Pashaki⁴, Hans-Martin Frey⁴, Andrea Cannizzo⁴, Giulio Cerullo³

¹ Institute of Physics, Bijenička cesta 46, 10 000 Zagreb, Croatia
² Department of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička cesta 54, 10 000 Zagreb, Croatia
³ IFN-CNR, Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, I-20133 Milano, Italy
⁴ Institute of Applied Physics, University of Bern, Sidlerstrasse 5, CH-3012 Bern, Switzerland

Contents

1. Deconvolution of rise time in transient absorption data ...2
 1.1 Results of transient absorption using THG of 120 fs at 800 nm as a pump pulse2
 1.2 Results of transient absorption using sub-20-fs UV NOPA pump pulse6
2. Intensity dependence of transient absorption spectra ...10
3. Absorption spectra and transient absorption spectra ..11
4. Laser flash photolysis measurements ..13
5. Fluorescence upconversion measurements ..15
 5.1 Instrument response function ...15
 5.2 Global analysis of FlUC data ...16
 5.3 FlUC of anisole molecule ...18
6. Time-correlated single photon counting (TC-SPC) measurements ..19
7. Computations ..21
1. Deconvolution of rise time in transient absorption data

1.1 Results of transient absorption using THG of 120 fs at 800 nm as a pump pulse

Since the results of transient absorption measurements didn't show significant dynamics in first few picoseconds after excitation with 267 nm, 120 fs pulses we performed fitting of several kinetic profiles (at 425, 500 and 600 nm) focusing on first 10 ps. For the model function we used two exponential functions convoluted with identical Gaussian function to account for instrument response function (IRF) of our transient absorption spectrometer. Time constant of the first exponential function (t1) having negative amplitude then represented deconvoluted rise time of kinetic profile at that particular wavelength. In order to reduce number of free parameters, time constant for the exponential decay was fixed at 1 ns. Where needed, we expanded this model to account for coherent artifacts that could not be removed from the data without significantly affecting measured kinetic profiles. Hence, we included in the model function additional Gaussian in Figure S1 to account for two-photon absorption (TPA) signal around zero delay time, and two Gaussians were added to account for cross phase modulation signal (XPM) superimposed on exponential rise (Figures S7 to S10). It is known that, it the case of broadband chirped probe pulse, XPM signal splits in two, where the transient optical density will exhibit a gain (ΔOD<0) followed by a loss (ΔOD>0), i.e., a dispersion shape for the first XPM signal, while at increased delay times second XPM-induced pump-probe signal is present, which is out of phase with the first one. In addition, loss and gain amplitudes in this case are not identical, and only the overall signal averages to zero. This prompted us to use two Gaussian functions with the position of the center of the peak and peak amplitude being free parameters for modelling XPM artifacts.

General model:

\[f(t) = A_1 e^{-\frac{(t - p - \sigma^2/2t_1)}{t_1}} \left(1 + \text{erf}\left(\frac{t - p - \frac{1}{2\sigma}}{\sqrt{2}\sigma}\right)\right) + A_2 e^{-\frac{(t - p - \frac{1}{2\cdot10^6})}{10^6}} \left(1 + \text{erf}\left(\frac{t - p - \frac{1}{10^6}}{\sqrt{2\sigma}}\right)\right) + A_3 e^{-\frac{t^2}{2\sigma^2}} \]

Coefficients (with 95% confidence bounds):

A1 = -0.0003891 (-0.004005, 0.003227) A2 = 0.0003032 (0.0003006, 0.0003058) A3 = 0.0006108 (0.0004117, 0.0008099) p = 175.3 (-2646, 2997) sigma = 365.9 (334.5, 397.4) t1 = 227.9 (-84.93, 540.6)

Goodness of fit:

SSE: 6.133e-08 R-square: 0.9942 Adjusted R-square: 0.994 RMSE: 2.071e-05
Figure S1

General model:

\[f(t) = A_1 e^{-\left(t - p - \frac{\sigma^2}{2t_1}\right)} \left[1 + \text{erf} \left(\frac{t - p - \sigma^2}{\sqrt{2}\sigma} \right) \right] + A_2 e^{-\left(t - p - \frac{1}{10^6}\right) \left[1 + \text{erf} \left(\frac{t - p - \frac{1}{10^6}}{\sqrt{2}\sigma} \right) \right]} + A_3 e^{-\left(t - p - \frac{\sigma^2}{2t_1}\right)} \]

Coefficients (with 95% confidence bounds):

- \(A_1 = -0.0003054 \) (-0.01061, 0.01)
- \(A_2 = 0.000407 \) (0.0004037, 0.0004102)
- \(p = -7.86 \) (-5054, 5038)
- \(\sigma = 555.8 \) (159.8, 951.9)
- \(t_1 = 211.4 \) (-358, 780.7)

Goodness of fit:

- SSE: 8.264e-08
- R-square: 0.9958
- Adjusted R-square: 0.9957
- RMSE: 2.396e-05
Figure S2

General model:

\[f(t) = A_1 e^{-\left(\frac{t-p-\frac{\sigma^2}{2\tau_1}}{\tau_1}\right)} \frac{1 + erf\left(\frac{t-p-\frac{1}{\sqrt{2}\sigma}}{\sqrt{2}\sigma}\right)}{1 + erf\left(\frac{t-p-\frac{1}{10^6}}{\sqrt{2}\sigma}\right)} + A_2 e^{-\left(\frac{t-p-\frac{\sigma^2}{2\cdot10^6}}{10^6}\right)} \frac{1 + erf\left(\frac{t-p-\frac{1}{10^6}}{\sqrt{2}\sigma}\right)}{1 + erf\left(\frac{t-p-\frac{1}{10^6}}{\sqrt{2}\sigma}\right)} + A_3 e^{-\left(\frac{t-p-\frac{\sigma^2}{2\tau_1}}{\tau_1}\right)} \]

Coefficients (with 95% confidence bounds):

\[
\begin{align*}
A_1 &= -0.0004303 \quad (-0.01574, 0.01488) \\
A_2 &= 0.000353 \quad (0.000349, 0.000357) \\
p &= -86.56 \quad (-1.016e+04, 9986) \\
sigma &= 553.4 \quad (-699.3, 1806) \\
t_1 &= 248 \quad (-409.5, 905.5)
\end{align*}
\]

Goodness of fit:

SSE: 6.651e-08 R-square: 0.9954 Adjusted R-square: 0.9953 RMSE: 2.18e-05

Figure S3
To evaluate slow decay of signal at longer wavelengths that we believe originates from solvated electrons we performed simple bi-exponential fitting for the entire range of time delay points (up to 1.1 ns) for kinetic profiles corresponding to 500, 550 and 600 nm.

General model:
\[f(t) = A_1 e^{b \cdot t} + A_2 e^{c \cdot t} \]

Coefficients (with 95% confidence bounds):
- \(A_1 = 0.001542 \) (0.00149, 0.001593)
- \(b = -2.866e-05 \) (-3.18e-05, -2.553e-05) – 35 ps
- \(A_2 = 0.002615 \) (0.002577, 0.002654)
- \(c = -6.328e-07 \) (-6.584e-07, -6.071e-07) – 1.5 ns

Goodness of fit:
- SSE: 1.287e-05
- R-square: 0.975
- Adjusted R-square: 0.9749
- RMSE: 0.000139

Figure S4

General model:
\[f(t) = A_1 e^{b \cdot t} + A_2 e^{c \cdot t} \]

Coefficients (with 95% confidence bounds):
- \(A_1 = 0.001125 \) (0.001071, 0.00118)
- \(b = -2.801e-05 \) (-3.247e-05, -2.355e-05) – 35 ps
- \(A_2 = 0.002108 \) (0.002067, 0.002149)
- \(c = -5.481e-07 \) (-5.809e-07, -5.153e-07) – 1.8 ns

Goodness of fit:
- SSE: 1.511e-05
- R-square: 0.9471
- Adjusted R-square: 0.9469
- RMSE: 0.0001504
General model:
\[f(t) = A_1 e^{bt} + A_2 e^{ct} \]

Coefficients (with 95% confidence bounds):
\[
\begin{align*}
A_1 &= 0.001514 \quad (0.001479, 0.001549) \\
b &= -3.506e-05 \quad (-3.748e-05, -3.264e-05) \quad – 28.5 \text{ ps} \\
A_2 &= 0.002624 \quad (0.002599, 0.002648) \\
c &= -6.594e-07 \quad (-6.764e-07, -6.425e-07) \quad – 1.5 \text{ ns}
\end{align*}
\]

Goodness of fit:
SSE: 6.179e-06 R-square: 0.9884 Adjusted R-square: 0.9883 RMSE: 9.505e-05
1.2 Results of transient absorption using sub-20-fs UV NOPA pump pulse

The same fitting procedure was used for extracting deconvoluted rise time of second set of measurements with better IRF due to the sub-20-fs UV pump pulse driving the photochemical reaction.

General model:

\[
f(t) = A_1 e^{-\frac{(t-p-\sigma^2/2t_1)^2}{t_1}} \left[1 + \text{erf} \left(\frac{t-p-\sigma^2/2t_1}{\sqrt{2}\sigma} \right) \right] + A_2 e^{-\frac{(t-p-1/10^6\sigma^2)^2}{10^6}} \left[1 + \text{erf} \left(\frac{t-p-\sigma^2/2\cdot10^6}{\sqrt{2}\sigma} \right) \right] + A_3 e^{-\frac{(t-r)^2}{2\sigma^2}} + A_4 e^{-\frac{(t-n)^2}{2\sigma^2}}
\]

Coefficients (with 95% confidence bounds):

A1	-0.001039 (-3.707, 3.705)	A2	0.001039 (0.0007483, 0.001329)
A3	0.001602 (0.0007051, 0.002499)	A4	-0.0007747 (-0.0009405, -0.000609)
n	-47.11 (-50.94, -43.28)	p	-7.918 (-2.797e+05, 2.797e+05)
r	-4.96 (-7.359, -2.562)	\sigma	21.59 (17.11, 26.07)
t1	78.4 (70.48, 86.33)		

Goodness of fit:

SSE: 7.801e-07 R-square: 0.9954 Adjusted R-square: 0.9953 RMSE: 5.689e-05

Figure S7

General model:

\[
f(t) = A_1 e^{-\frac{(t-p-\sigma^2/2t_1)^2}{t_1}} \left[1 + \text{erf} \left(\frac{t-p-\sigma^2/2t_1}{\sqrt{2}\sigma} \right) \right] + A_2 e^{-\frac{(t-p-1/10^6\sigma^2)^2}{10^6}} \left[1 + \text{erf} \left(\frac{t-p-\sigma^2/2\cdot10^6}{\sqrt{2}\sigma} \right) \right] + A_3 e^{-\frac{(t-r)^2}{2\sigma^2}} + A_4 e^{-\frac{(t-n)^2}{2\sigma^2}}
\]
Coefficients (with 95% confidence bounds):

\[A1 = -0.0009393 \text{ (}-0.05372, 0.05184\text{)} \quad A2 = 0.000975 \text{ (}0.0009683, 0.0009818\text{)} \]
\[A3 = -0.01123 \text{ (}-316.9, 316.9\text{)} \quad A4 = 0.01201 \text{ (}316.9, 316.9\text{)} \]
\[n = -13.97 \text{ (}-2.436\text{e}+04, 2.436\text{e}+04\text{)} \quad p = 19.84 \text{ (}-4415, 4455\text{)} \]
\[r = -15.79 \text{ (}-2.547\text{e}+04, 2.547\text{e}+04\text{)} \quad \sigma = 26.4 \text{ (}544.6, 597.4\text{)} \]
\[t1 = 82.4 \text{ (}68.44, 96.35\text{)} \]

Goodness of fit:

\[\text{SSE: } 1.273\text{e}-06 \quad \text{R-square: } 0.9914 \quad \text{Adjusted R-square: } 0.9911 \quad \text{RMSE: } 7.267\text{e}-05 \]

Figure S8

General model:

\[f(t) = A_1 e^{-\frac{(t-p)^2}{2t_1}} + \text{erf}\left(\frac{t-p-\frac{1}{t_1}}{\sqrt{2}\sigma}\right) + A_2 e^{-\frac{(t-p)^2}{10^6}} + \text{erf}\left(\frac{t-p-\frac{1}{10^6}}{\sqrt{2}\sigma}\right) + A_3 e^{-\frac{(t-r)^2}{2\sigma^2}} + A_4 e^{-\frac{(t-n)^2}{2\sigma^2}} \]

Coefficients (with 95% confidence bounds):

\[A1 = -0.0003732 \text{ (}-0.0004635, -0.000283\text{)} \quad A2 = 0.0008317 \text{ (}0.000826, 0.0008375\text{)} \]
\[A3 = -0.000227 \text{ (}-0.0003128, -0.0001413\text{)} \quad A4 = 0.0007324 \text{ (}0.0006103, 0.0008544\text{)} \]
\[n = 4.683 \text{ (}1.515, 7.851\text{)} \quad p = 39.37 \text{ (}31.42, 47.33\text{)} \]
\[r = -45.3 \text{ (}-54.89, -35.72\text{)} \quad \sigma = 21.36 \text{ (}17.14, 25.59\text{)} \]
\[t1 = 125.4 \text{ (}98.21, 152.6\text{)} \]

Goodness of fit:

\[\text{SSE: } 1.23\text{e}-06 \quad \text{R-square: } 0.9705 \quad \text{Adjusted R-square: } 0.9693 \quad \text{RMSE: } 7.727\text{e}-05 \]
Finally, in order to reduce the noise in kinetic profiles we integrated the signal in 400-500 nm wavelength range. By doing so we also obtained better contrast for coherent artifacts. The XPM superimposed on the initial rise of the time trace was accounted for by two Gaussian functions of opposite sign. It is reasonable to assume that TPA, being stronger at shorter wavelengths, also contributes to this artifact additionally changing the shape and ratio between positive and negative amplitudes of XPM. For negative delay times we also observe a weaker replica of the XPM artifact visible at time zero, shifted in time due to dispersion of the first cuvette window.

General model:

\[
f(t) = A_1 e^{-\left(\frac{t-p}{\sigma_1^2}\right)} + \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \left(1 + \text{erf}\left(\frac{t-p}{\sigma_1^2}\right)\right) dt
\]

Coefficients (with 95% confidence bounds):

Parameter	Value	Confidence Bounds
A1	-118.2	(-140.1, -96.41)
A2	199.8	(199.1, 200.6)
A3	-108.7	(-133, -84.33)
A4	314.7	(298.4, 331)
n	-2.628	(-4.677, -0.5791)
p	28.17	(18.37, 37.98)
r	-43.34	(-49.82, -36.86)
\(\sigma\)	23.98	(20.97, 26.98)
t1	110	(98.23, 121.8)

Goodness of fit:

SSE: 2.085e+04 R-square: 0.9966 Adjusted R-square: 0.9965 RMSE: 9.302
Figure S10

2. Intensity dependence of transient absorption spectra

In order to clarify the origin of the signal at longer wavelengths that we attributed to solvated electrons we measured excitation intensity dependence on the transient absorption spectra for both the sample and pure solvent at fixed delay of 10 ps that show quadratic dependence in the case of pure solvent as expected for two-photon ionization. Intensity dependence for sample is almost linear suggesting that it stems from free electrons resulting from radical cation formation which is one photon process as is shown in Figure 8. with only minor contribution of two-photon ionization of solvent molecules.

Figure S11 Excitation intensity dependence on the transient absorption spectra of adamantylphenol at fixed delay of 10 ps at 425 nm (left) and 600 nm (right) that show linear dependence.
Figure S12 Excitation intensity dependence on the transient absorption spectra in pure solvent at fixed delay of 10 ps at 425 nm (left) and 600 nm (right) that show quadratic dependence as expected for two-photon ionization.

3. Absorption spectra and transient absorption spectra

Figure S13 Absorption spectrum of 3 in CH$_3$CN-H$_2$O (1:1) (for the path of 1 mm), at concentration $c = 5.0 \times 10^{-3}$ M that was used for fs-TA experiment with 280 nm sub-20-fs pump pulses from SHG of NOPA.
Figure S14 fs-TA data using sub-20-fs UV NOPA pump pulse and WLC driven by the SH of Ti:sapphire together with spectral and kinetic profiles for the selected wavelengths. Only strong ground state bleach is observed below 285nm.
4. Laser flash photolysis measurements

Figure S15 Nanosecond decay of transient absorption at 400 nm for Ar-purged (left) and O₂-purged (right) CH₃CN-H₂O (1:1 v/v) solution of 3 (2.0 × 10⁻⁴ M). The energy of the laser pulse at 266 nm was set to 17 mJ/pulse. The bottom panels correspond to the weighted residuals between the measured value and the calculated according to the single exponential decay model.
Figure S16 Millisecond decay of transient absorption at 400 nm for Ar-purged (left) and O$_2$-purged (right) CH$_3$CN-H$_2$O (1:1 v/v) solution of 3 (2.0×10^{-4} M). The energy of the laser pulse at 266 nm was set to 17 mJ/pulse. The bottom panels correspond to the weighted residuals between the measured value and the calculated according to the single exponential decay model.
Figure S17 Decay of transient absorption at 420 nm for Ar-purged (left) and O$_2$-purged CH$_3$CN-H$_2$O (1:1 v/v) solution of 3 (2.0 × 10$^{-4}$ M). The energy of the laser pulse at 266 nm was set to 17 mJ/pulse. The bottom panels correspond to the weighted residuals between the measured value and the calculated according to the single exponential decay model.

5. Fluorescence upconversion measurements

5.1 Instrument response function

Instrument response function measurement was taken with identical experimental conditions prior to FLUC measurements of adamantylphenol.
5.2 Global analysis of FIUC data

The spectro-temporal signal can be described by three components: the first describes a rise of the signal in 0.46 ps, the second describe a decay of ca, 1/3 of the total signal. The last component is set to 2 ns (infinity in our spanned time window). The presence of the first component is necessary because the rise of the signal is much slower than the measured IRF (630 fs). If we carry out the global fit procedure with free IRF we can remove the 0.5 ps component but the IRF would be 1.2 ps (and the time zero would be accordingly shifted). It is noteworthy that the first component equalizes the sum of the other two components. This speaks for a signal, which is delayed by 0.5 ps and is not directly populated upon excitation.
Since FIUC measurements could not be performed at magic angle, it is possible to ascribe 22 ps decay to rotational anisotropy decay. Actually, 22 ps is too short for such processes (typically 100-200 ps in conventional solvents) but due to the limited scan range of 50 ps we cannot distinguish between 20 ps and 100 ps. In global analysis, the effect to change the time constant would be only to change the relative amplitude of the second and third DAS component (see Figure S19). To check this explanation, we carried out an analysis where we changed the second component in order to obtain a ratio 2:1 between the second and the third component. Indeed, a pure rotational anisotropy would induce a reduction by 2/3 of the initial signal with respect to the fully randomized one. The outcome of this analysis is shown in Figure S20. Under the 2:1 condition, the second time constant changed to 90 ps, which is compatible with a rotational diffusion process.
In order to verify both IRF and the presence of the 0.5 ps rise in the adamantylphenol signal we performed additional FLUC measurements using anisole as a reference system. Only the two long components were necessary for the fitting of data. Any attempts to add a rise component or to impose 1 ps IRF were rejected by the fitting. When the IRF parameter was set free the fitting procedure gives 0.79±0.08 ps.

5.3 FLUC of anisole molecule

Figure S20. Results of global analysis with imposed rotational anisotropy decay.

S18
Figure S21. Fluorescence intensity kinetics of anisole in acetonitrile used as a reference molecule. IRF is represented by KB parameter.

6. Time-correlated single photon counting (TC-SPC) measurements

Figure S22. Normalized excitation and emission spectra of 3 in CH$_3$CN-H$_2$O (1:1).
Figure S23. Decay of fluorescence of 3 in CH$_3$CN-H$_2$O (1:1) at 310 nm ($\lambda_{\text{exc}} = 280$ nm).

Figure S24. Time-resolved emission spectra ($\lambda_{\text{em}} = 280$ nm) of 3 in CH$_3$CN-H$_2$O (1:1).
7. Computations

a) [UV-VIS Spectrum Image]

b) [UV-VIS Spectrum Image]
Figure S25. Simulated spectra of $3(S_0)$ (a), $3'(S_0)$ (b) and $4(S_0)$ (c) computed at the PCM(water)/TD-ωB97XD/6-311++G(d,p) level of theory.

Table S1. Vertical excitation of singlet $3(S_0)$, $3'(S_0)$ and $4(S_0)$ computed at the PCM(water)/TD-ωB97XD/6-311++G(d,p) level of theory.

Excited State	1: Singlet-A	5.1087 eV 242.69 nm f=0.0686 $<S^2>=0.000$
65 -> 72	0.18262	
65 -> 73	-0.15138	
66 -> 67	0.16718	
66 -> 68	0.51394	
66 -> 69	-0.20974	
66 -> 70	0.10196	
66 -> 71	-0.18071	
66 -> 72	0.12491	

Excited State	2: Singlet-A	5.7839 eV 214.36 nm f=0.0363 $<S^2>=0.000$
65 -> 68	-0.283477	
65 -> 69	0.11648	
65 -> 71	0.10547	
66 -> 67	-0.12447	
66 -> 68	-0.11290	
66 -> 70	0.22629	
66 -> 72	0.40683	
66 -> 73	-0.28317	
66 -> 74	-0.10558	
66 -> 75	-0.12508	

Excited State	3: Singlet-A	6.1077 eV 203.00 nm f=0.0025 $<S^2>=0.000$
66 -> 67	0.44139	
66 -> 68	-0.21640	
66 -> 69	-0.32170	
66 -> 71	0.15996	
66 -> 73	-0.15506	
66 -> 79 0.10660
66 -> 80 -0.15515
66 -> 87 0.12105

Excited State 4: Singlet-A 6.5006 eV 190.73 nm f=0.6735 <S**2>=0.000
 65 -> 67 0.20094
 65 -> 68 0.38317
 65 -> 69 -0.18439
 65 -> 71 -0.14889
 65 -> 72 -0.17980
 65 -> 73 0.14288
 66 -> 68 0.16577
 66 -> 72 0.22198
 66 -> 73 -0.20566

Excited State 5: Singlet-A 6.5834 eV 188.33 nm f=0.2238 <S**2>=0.000
 65 -> 68 0.29816
 65 -> 70 0.22921
 65 -> 72 0.29211
 65 -> 73 -0.17491
 66 -> 68 -0.28954
 66 -> 69 -0.10111
 66 -> 70 0.15612
 66 -> 71 -0.12467
 66 -> 72 0.18275

Excited State 6: Singlet-A 6.6599 eV 186.17 nm f=0.1924 <S**2>=0.000
 65 -> 70 0.17454
 65 -> 72 0.24766
 65 -> 73 -0.16263
 66 -> 69 0.18771
 66 -> 70 -0.20373
 66 -> 71 0.33314
 66 -> 73 -0.25941
 66 -> 74 0.10692
 66 -> 77 0.11473

Excited State 7: Singlet-A 6.7638 eV 183.31 nm f=0.0199 <S**2>=0.000
 65 -> 67 -0.24540
 65 -> 68 0.17010
 65 -> 69 0.17996
 66 -> 69 -0.11654
 66 -> 70 0.24439
 66 -> 71 0.30911
 66 -> 74 0.21175
 66 -> 75 0.13174
 66 -> 77 -0.15307

Excited State 8: Singlet-A 6.8752 eV 180.33 nm f=0.0132 <S**2>=0.000
 65 -> 67 0.34962
 65 -> 68 -0.14467
 65 -> 69 -0.26185
 65 -> 80 -0.12008
 66 -> 70 0.27748
 66 -> 71 0.20187
 66 -> 77 -0.24350
Excited State 9: Singlet-A 6.9561 eV 178.24 nm f=0.0039 \(<S^2> = 0.000 \)

Transition	Energy Difference
65 -> 67	-0.11889
65 -> 68	0.12482
66 -> 67	0.14771
66 -> 69	0.31207
66 -> 70	0.18337
66 -> 71	-0.14322
66 -> 72	-0.20247
66 -> 73	-0.18267
66 -> 74	-0.23626
66 -> 77	-0.23886
66 -> 80	-0.15244

Excited State 10: Singlet-A 7.0514 eV 175.83 nm f=0.1781 \(<S^2> = 0.000 \)

Transition	Energy Difference
61 -> 67	0.13613
61 -> 68	0.28181
61 -> 69	-0.13513
64 -> 67	0.22713
64 -> 68	0.42523
64 -> 69	-0.18396
64 -> 71	-0.13788

Excited State 11: Singlet-A 7.2542 eV 170.91 nm f=0.0037 \(<S^2> = 0.000 \)

Transition	Energy Difference
66 -> 67	0.25364
66 -> 69	0.10128
66 -> 74	-0.12555
66 -> 75	0.27907
66 -> 76	-0.27006
66 -> 77	0.10211
66 -> 78	0.10481
66 -> 80	0.30641
66 -> 85	-0.13211
66 -> 87	-0.13786
66 -> 91	-0.10806

Excited State 12: Singlet-A 7.3271 eV 169.21 nm f=0.0214 \(<S^2> = 0.000 \)

Transition	Energy Difference
61 -> 70	-0.13078
64 -> 67	0.16672
64 -> 68	-0.14207
64 -> 70	-0.11157
65 -> 67	0.11754
65 -> 68	0.10175
65 -> 69	0.23738
65 -> 70	-0.23529
65 -> 73	-0.23757
65 -> 75	-0.10061
66 -> 74	0.14129
66 -> 76	0.13957
66 -> 79	-0.11357

Excited State 13: Singlet-A 7.4212 eV 167.07 nm f=0.0204 \(<S^2> = 0.000 \)

Transition	Energy Difference
61 -> 72	-0.11630
64 -> 70	-0.13696
64 -> 72	-0.16005
65 -> 68 0.13340
65 -> 71 0.26197
65 -> 74 0.12814
66 -> 71 0.15442
66 -> 73 0.16426
66 -> 74 -0.25409
66 -> 75 -0.15151
66 -> 78 0.21682
66 -> 79 0.17787

Excited State 14: Singlet-A
Energy: 7.4573 eV, Wavelength: 166.26 nm, f=0.0259, $<S^2>=0.000$
61 -> 72 0.19530
61 -> 73 -0.14194
63 -> 67 -0.13802
63 -> 68 -0.13154
64 -> 70 0.17230
64 -> 72 0.29671
64 -> 73 -0.19253
65 -> 69 0.10227
65 -> 70 -0.10079
65 -> 73 -0.15364
66 -> 73 0.10313
66 -> 74 -0.10137
66 -> 75 -0.11640
66 -> 78 0.12806

63 -> 67 0.19835
63 -> 68 0.11297
64 -> 67 -0.17400
65 -> 67 -0.10996
65 -> 68 0.12119
65 -> 70 -0.10651
65 -> 71 0.34525
65 -> 73 -0.11673
65 -> 74 0.14850
66 -> 73 -0.11564
66 -> 74 0.14847
66 -> 75 0.13261
66 -> 78 -0.15470

Excited State 17: Singlet-A
Energy: 7.5808 eV, Wavelength: 163.55 nm, f=0.0039, $<S^2>=0.000$
63 -> 68 -0.15469
65 -> 70 0.12542
65 -> 71 0.23223
Transition	Value
65 -> 73	0.11150
65 -> 74	0.13387
66 -> 67	0.21320
66 -> 69	0.14707
66 -> 72	0.13206
66 -> 74	0.11239
66 -> 76	0.28533
66 -> 78	0.12865
66 -> 79	-0.16330

Excited State 18: Singlet-A 7.6011 eV 163.11 nm f=0.0029 <S**2>=0.000

Transition	Value
61 -> 67	0.12001
63 -> 67	0.23519
63 -> 69	0.15306
64 -> 67	-0.15972
65 -> 67	-0.10886
65 -> 69	-0.13605
65 -> 70	-0.19323
65 -> 71	-0.18505
65 -> 72	0.14640
65 -> 77	0.20131
66 -> 76	0.16363
66 -> 78	0.13182

Excited State 19: Singlet-A 7.6282 eV 162.53 nm f=0.0040 <S**2>=0.000

Transition	Value
62 -> 67	0.39720
62 -> 68	0.12847
62 -> 69	0.10331
63 -> 67	-0.21446
63 -> 69	-0.16449
65 -> 69	-0.12222
65 -> 72	0.18490
65 -> 73	0.11608
65 -> 77	0.12134
65 -> 80	0.10649

Excited State 20: Singlet-A 7.6470 eV 162.13 nm f=0.0092 <S**2>=0.000

Transition	Value
3'(S0)	

Excited State 1: Singlet-A 5.0995 eV 243.13 nm f=0.0675 <S**2>=0.000

Transition	Value					
65 -> 73	0.15256					
65 -> 74	0.19317					
Energy Difference	Excited State	Singlet-A	Excitation Energy	Wavelength	oscillator strength	S^2
-------------------	--------------	-----------	-------------------	-------------	--------------------	-------
66 -> 67	2	-0.25325	5.8683 eV	211.28 nm	0.0087	0.000
66 -> 68		0.57219				
65 -> 67		-0.19263				
65 -> 68		0.41669				
66 -> 67		-0.10915				
66 -> 71		0.16072				
66 -> 72		-0.20314				
66 -> 73		-0.27565				
66 -> 74		-0.31541				
66 -> 67	3	0.43542	6.1549 eV	201.44 nm	0.0016	0.000
66 -> 68		0.20061				
66 -> 69		0.30906				
66 -> 70		0.19323				
66 -> 74		-0.13420				
66 -> 78		0.12510				
66 -> 80		-0.16780				
66 -> 67	4	-0.24549	6.4801 eV	191.33 nm	0.6394	0.000
65 -> 68		0.41119				
65 -> 74		-0.11444				
66 -> 72		0.16839				
66 -> 73		0.24171				
66 -> 74		0.28727				
66 -> 75		-0.11811				
66 -> 68	5	-0.13360	6.5857 eV	188.26 nm	0.1956	0.000
65 -> 68		-0.20975				
65 -> 71		0.19997				
65 -> 72		-0.17328				
65 -> 73		-0.20600				
65 -> 74		-0.20426				
66 -> 68		0.21143				
66 -> 69		0.27955				
66 -> 70		-0.18008				
66 -> 72		-0.15911				
66 -> 68	6	-0.21562	6.6969 eV	185.14 nm	0.2546	0.000
65 -> 73		-0.21331				
65 -> 74		0.10707				
66 -> 69		-0.27985				
Reaction	Energy					
------------	---------					
65 -> 67	0.33259					
65 -> 68	0.19870					
65 -> 69	0.29945					
65 -> 70	-0.19803					
65 -> 71	0.12017					
65 -> 72	-0.14156					
65 -> 73	0.11899					
65 -> 74	-0.17858					
65 -> 75	-0.15733					
65 -> 76	0.12946					
65 -> 77	-0.25705					
65 -> 78	-0.11232					

Excited State 7: Singlet-A 6.7772 eV 182.94 nm f=0.0783 <S**2>=0.000

Reaction	Energy
66 -> 70	0.32346
66 -> 71	-0.23824
66 -> 72	0.33259
66 -> 73	-0.29945
66 -> 74	-0.19803
66 -> 75	0.12017
66 -> 76	-0.14156
66 -> 77	0.11899
66 -> 78	-0.15733
66 -> 79	0.12946
66 -> 80	-0.25705
66 -> 81	-0.11232

Excited State 8: Singlet-A 6.9186 eV 179.20 nm f=0.0100 <S**2>=0.000

Reaction	Energy
67 -> 68	0.18919
67 -> 69	0.17178
68 -> 69	0.17018
68 -> 70	0.42500
68 -> 71	-0.13662
68 -> 72	0.18313
68 -> 73	-0.11608
68 -> 74	0.12946
68 -> 75	-0.25705
68 -> 76	-0.11232

Excited State 9: Singlet-A 7.0260 eV 176.46 nm f=0.0658 <S**2>=0.000

Reaction	Energy
61 -> 62	0.14314
61 -> 63	0.16102
62 -> 63	0.11650
62 -> 64	-0.13885
63 -> 64	-0.21718
63 -> 65	0.25631
64 -> 65	0.10259
64 -> 66	-0.15235
64 -> 67	-0.18836
64 -> 68	0.18379
65 -> 66	-0.18836
65 -> 67	0.18379
65 -> 68	-0.16181
66 -> 67	-0.14700
66 -> 68	-0.11670
66 -> 69	-0.10231

Excited State 10: Singlet-A 7.0320 eV 176.31 nm f=0.0750 <S**2>=0.000

Reaction	Energy
61 -> 62	0.17920
61 -> 63	-0.14882
62 -> 63	-0.20441
Transition	Energy
------------	---------
64 -> 68	0.25637
66 -> 69	0.20776
66 -> 70	0.20345
66 -> 72	-0.23590
66 -> 73	0.12123
66 -> 77	0.18222
66 -> 80	0.10465

Excited State 11: Singlet-A 7.2366 eV 171.33 nm f=0.0133 <S**2>=0.000

Transition	Energy
55 -> 68	-0.15961
60 -> 67	-0.11513
60 -> 68	0.24107
61 -> 67	0.11821
61 -> 68	-0.16330
63 -> 67	-0.20257
63 -> 68	0.25887
64 -> 67	-0.18815
64 -> 68	0.33184
66 -> 75	0.11665

Excited State 12: Singlet-A 7.2514 eV 170.98 nm f=0.0092 <S**2>=0.000

Transition	Energy
64 -> 68	-0.20236
65 -> 69	0.22270
65 -> 71	0.14561
65 -> 72	-0.13443
65 -> 74	0.12322
66 -> 67	-0.14993
66 -> 68	-0.11292
66 -> 73	0.15888
66 -> 75	0.26415
66 -> 80	-0.21744

Excited State 13: Singlet-A 7.2601 eV 170.77 nm f=0.0232 <S**2>=0.000

Transition	Energy
60 -> 68	-0.10687
61 -> 68	0.16187
63 -> 68	-0.19973
64 -> 67	0.10825
65 -> 69	-0.15887
65 -> 71	-0.15147
65 -> 72	0.10331
65 -> 74	-0.11254
66 -> 67	-0.11265
66 -> 73	0.16742
66 -> 75	0.31529
66 -> 80	-0.21649

Excited State 14: Singlet-A 7.4108 eV 167.30 nm f=0.0098 <S**2>=0.000

Transition	Energy						
65 -> 69	-0.12106						
Transition	Change		Transition	Change		Transition	Change
------------	--------	---	------------	--------	---	------------	--------
65 -> 70	0.47320		66 -> 70	0.14386		66 -> 74	0.28301
65 -> 73	0.17172		66 -> 74	-0.11268		66 -> 76	0.14252
65 -> 74	-0.17618		66 -> 79	0.11319		66 -> 79	0.26173
Excited State 15: Singlet-A 7.5333 eV 164.58 nm f=0.0031 <S**2>=0.000			Excited State 16: Singlet-A 7.5719 eV 163.74 nm f=0.0068 <S**2>=0.000			Excited State 17: Singlet-A 7.5772 eV 163.63 nm f=0.0092 <S**2>=0.000	
State	Transition	E (eV)	λ (nm)	f	<S^2>		
---------	------------	--------	--------	----	-------		
66 -> 74	0.10169						
66 -> 76	-0.12977						
61 -> 71	0.10592						
63 -> 67	0.46116						
63 -> 68	0.17404						
63 -> 69	-0.20926						
64 -> 67	0.10499						
65 -> 72	0.14774						
66 -> 75	-0.12665						
Excited State 18: Singlet-A	7.6276 eV 162.55 nm	f=0.0131 <S^2>=0.000					

State	Transition	E (eV)	λ (nm)	f	<S^2>
61 -> 71	0.10592				
63 -> 67	0.46116				
63 -> 68	0.17404				
63 -> 69	-0.20926				
64 -> 67	0.10499				
65 -> 72	0.14774				
66 -> 75	-0.12665				
Excited State 19: Singlet-A	7.6772 eV 161.50 nm	f=0.0009 <S^2>=0.000			

State	Transition	E (eV)	λ (nm)	f	<S^2>
61 -> 67	0.31727				
62 -> 67	0.10158				
62 -> 69	-0.12550				
63 -> 67	-0.11758				
64 -> 67	0.11730				
65 -> 72	0.14499				
66 -> 75	-0.23226				
66 -> 78	0.24790				
Excited State 20: Singlet-A	7.7080 eV 160.85 nm	f=0.0139 <S^2>=0.000			

State	Transition	E (eV)	λ (nm)	f	<S^2>
57 -> 62	-0.10971				
60 -> 62	0.66874				
60 -> 69	-0.10595				
61 -> 62	-0.10442				
Excited State 1: Singlet-A	3.2613 eV 380.17 nm	f=0.0020 <S^2>=0.000			

State	Transition	E (eV)	λ (nm)	f	<S^2>
57 -> 62	-0.10971				
60 -> 62	0.66874				
60 -> 69	-0.10595				
61 -> 62	-0.10442				
Excited State 2: Singlet-A	3.3676 eV 368.17 nm	f=0.2359 <S^2>=0.000			

State	Transition	E (eV)	λ (nm)	f	<S^2>
56 -> 62	0.15489				
59 -> 62	0.66611				
Excited State 3: Singlet-A	4.8271 eV 256.85 nm	f=0.3394 <S^2>=0.000			

State	Transition	E (eV)	λ (nm)	f	<S^2>
56 -> 62	0.15489				
59 -> 62	0.66611				
Excited State 4: Singlet-A	5.2575 eV 235.82 nm	f=0.0224 <S^2>=0.000			
Transition	Energy	Wavelength	Oscillator Strength	Dipole Moment	Quadratic Overlap
------------	--------	-------------	---------------------	--------------	-------------------
55 -> 62	0.24020				
57 -> 62	0.32750				
58 -> 62	0.53123				
Excited State 5: Singlet-A	5.4225 eV	228.65 nm	0.0206	0.000	
51 -> 62	-0.12394				
57 -> 62	0.51068				
58 -> 62	-0.38197				
60 -> 62	0.12934				
60 -> 75	0.11319				
Excited State 6: Singlet-A	5.8104 eV	213.38 nm	0.0811	0.000	
60 -> 69	-0.10156				
61 -> 65	0.11988				
61 -> 66	-0.16479				
61 -> 69	0.52261				
61 -> 70	-0.25378				
61 -> 71	-0.15760				
61 -> 72	0.15804				
Excited State 7: Singlet-A	5.9596 eV	208.04 nm	0.0014	0.000	
61 -> 63	0.48527				
61 -> 64	-0.36774				
61 -> 67	0.12908				
61 -> 69	-0.12808				
61 -> 76	0.52261				
61 -> 83	-0.13561				
Excited State 8: Singlet-A	5.9707 eV	207.65 nm	0.0021	0.000	
50 -> 62	-0.10411				
56 -> 62	0.61023				
59 -> 62	-0.14914				
60 -> 69	0.12243				
61 -> 75	0.16080				
Excited State 9: Singlet-A	6.0694 eV	204.28 nm	0.0059	0.000	
50 -> 62	-0.18077				
56 -> 62	-0.15554				
57 -> 62	-0.15774				
60 -> 62	0.10106				
60 -> 66	-0.11297				
60 -> 69	0.44769				
60 -> 70	-0.19398				
60 -> 71	-0.15360				
60 -> 72	0.15213				
61 -> 69	0.12146				
Excited State 10: Singlet-A	6.3117 eV	196.44 nm	0.0898	0.000	
48 -> 62	0.14601				
52 -> 62	-0.19078				
55 -> 62	0.37015				
56 -> 62	0.11571				
57 -> 62	-0.13399				
58 -> 62	-0.11187				
60 -> 69	-0.11986				
61 -> 75	-0.34282				
61 -> 76	0.10433				
Excited State	Singlet-A	E (eV)	λ (nm)	f	\(<S^2> \)
--------------	-----------	-------	-------	---	-------------
11:	6.3361	195.68	0.1254	0.000	
48 -> 62	0.12844				
52 -> 62	0.19441				
55 -> 62	0.42813				
56 -> 62	-0.15968				
57 -> 62	-0.10203				
58 -> 62	-0.13537				
61 -> 65	-0.11486				
61 -> 75	0.31378				
12:	6.5464	189.39	0.0168	0.000	
52 -> 62	0.11912				
53 -> 62	-0.34185				
61 -> 64	0.11707				
61 -> 65	0.42694				
61 -> 66	0.15668				
61 -> 68	-0.24281				
13:	6.5664	188.82	0.0210	0.000	
52 -> 62	0.12283				
53 -> 62	0.54445				
54 -> 62	-0.15483				
61 -> 65	0.27291				
61 -> 66	0.10059				
61 -> 68	-0.13274				
14:	6.6321	186.95	0.0059	0.000	
52 -> 62	0.21588				
59 -> 63	-0.10968				
61 -> 63	0.18125				
61 -> 64	0.39381				
61 -> 65	-0.18252				
61 -> 67	0.35056				
61 -> 76	-0.13161				
15:	6.7175	184.57	0.1327	0.000	
48 -> 62	0.12530				
49 -> 62	-0.10176				
50 -> 62	0.49735				
51 -> 62	0.15506				
52 -> 62	0.24300				
60 -> 63	0.10024				
60 -> 65	0.10055				
60 -> 69	0.13337				
61 -> 75	-0.12867				
16:	6.7323	184.16	0.0240	0.000	
50 -> 62	-0.11276				
60 -> 63	0.38374				
60 -> 64	-0.12947				
60 -> 65	0.29853				
60 -> 66	0.13797				
60 -> 67	0.20315				
60 -> 68	-0.18130				
60 -> 74	0.15167				
60 -> 75	-0.11365				
Transition	Energy	Wavelength	Intensity	Spin Quantum	Multiplicity
------------	--------	-------------	-----------	--------------	--------------
60 -> 82	0.10826				

Excited State 17: Singlet-A

Transition	Energy	Wavelength	Intensity	Spin Quantum	Multiplicity
51 -> 62	0.19809				
52 -> 62	-0.13778				
61 -> 65	0.12179				
61 -> 66	-0.32045				
61 -> 71	0.37277				
61 -> 72	-0.10643				
61 -> 75	0.18705				
61 -> 82	-0.14416				

Excited State 18: Singlet-A

Transition	Energy	Wavelength	Intensity	Spin Quantum	Multiplicity
51 -> 62	0.23961				
52 -> 62	-0.30597				
53 -> 62	0.11174				
54 -> 62	0.33444				
61 -> 66	0.22523				
61 -> 71	-0.21236				
61 -> 72	0.10585				
61 -> 75	0.12622				

Excited State 19: Singlet-A

Transition	Energy	Wavelength	Intensity	Spin Quantum	Multiplicity
50 -> 62	-0.10572				
51 -> 62	-0.16944				
52 -> 62	0.20051				
53 -> 62	0.15656				
54 -> 62	0.56134				
61 -> 75	-0.10428				

Excited State 20: Singlet-A

Transition	Energy	Wavelength	Intensity	Spin Quantum	Multiplicity
48 -> 62	0.11683				
50 -> 62	-0.29686				
51 -> 62	0.33407				
52 -> 62	0.25193				
57 -> 62	0.14211				
60 -> 75	-0.26983				
60 -> 76	0.10816				
61 -> 75	-0.11101				
Figure S26. Simulated spectra of $3(S_1)$ (a), $3'(S_1)$ (b) and $4(S_1)$ (c) computed at the PCM(water)/TD-ωB97XD/6-311++G(d,p) level of theory.

Table S2. Vertical excitation of singlet $3(S_1)$, $3'(S_1)$ and $4(S_1)$ computed at the PCM(water)/TD-ωB97XD/6-311++G(d,p) level of theory.

Excited State	Singlet- A	E_{exc} (eV)	λ (nm)	f	$<S^2>$
1: $3(S_1)$	4.3469	285.23	0.0998	0.000	
65 -> 67	-0.11363				
65 -> 73	0.10934				
66 -> 67	0.65474				
2: $3'(S_1)$	5.2463	236.33	0.0264	0.000	
65 -> 67	0.46561				
66 -> 67	0.16994				
66 -> 70	-0.17408				
66 -> 72	-0.20237				
66 -> 73	-0.31205				
66 -> 74	-0.15276				
66 -> 75	0.15631				
3: $4(S_1)$	5.7634	215.12	0.0048	0.000	
66 -> 68	0.47585				
66 -> 69	-0.37595				
66 -> 71	-0.14595				
66 -> 80	-0.15398				
66 -> 87	-0.12117				
4: $4(S_1)$	5.8863	210.63	0.4484	0.000	
65 -> 67	0.46580				
66 -> 70	0.16736				
66 -> 72	0.18975				
66 -> 73	0.34171				
66 -> 74	0.13735				
66 -> 75	-0.14492				
66 -> 77 -0.12596

Excited State 5: Singlet-A 6.2675 eV 197.82 nm f=0.0426 <S**2>=0.000

65 -> 70 0.12932
65 -> 72 0.12555
65 -> 73 0.19766
66 -> 67 -0.12152
66 -> 69 -0.20436
66 -> 71 0.41057
66 -> 72 0.18798
66 -> 73 -0.17547
66 -> 74 0.15208

Excited State 6: Singlet-A 6.4080 eV 193.48 nm f=0.0561 <S**2>=0.000

61 -> 67 0.14385
64 -> 67 -0.20472
65 -> 68 -0.14395
65 -> 69 0.11143
65 -> 70 0.11491
65 -> 72 0.12360
65 -> 73 0.15590
65 -> 74 0.11443
66 -> 68 -0.12157
66 -> 70 0.32943
66 -> 71 -0.24352
66 -> 74 -0.26581
66 -> 77 0.11834

Excited State 7: Singlet-A 6.4175 eV 193.20 nm f=0.1377 <S**2>=0.000

64 -> 67 0.14356
65 -> 70 -0.14660
65 -> 72 -0.15875
65 -> 73 -0.26765
65 -> 74 -0.10182
65 -> 75 0.12752
66 -> 69 -0.11631
66 -> 70 0.36989
66 -> 71 0.10414
66 -> 72 0.10341
66 -> 77 0.24330
66 -> 84 0.12723

Excited State 8: Singlet-A 6.5970 eV 187.94 nm f=0.1235 <S**2>=0.000

61 -> 67 -0.12471
64 -> 67 0.17092
65 -> 70 0.12128
65 -> 72 0.11821
65 -> 73 0.17285
66 -> 68 0.14016
66 -> 69 0.30049
66 -> 70 0.15689
66 -> 72 -0.28251
66 -> 76 0.10776
66 -> 77 0.21842
66 -> 80 -0.15287

S37
Excited State 9: Singlet-A 6.6004 eV 187.84 nm f=0.1897 <S**2>=0.000

Excited State 10: Singlet-A 6.7710 eV 183.11 nm f=0.0207 <S**2>=0.000

Excited State 11: Singlet-A 6.9437 eV 178.56 nm f=0.0086 <S**2>=0.000

Excited State 12: Singlet-A 7.0235 eV 176.53 nm f=0.0140 <S**2>=0.000

Excited State 13: Singlet-A 7.0472 eV 175.93 nm f=0.0450 <S**2>=0.000

Excited State 14: Singlet-A 7.1004 eV 174.62 nm f=0.0057 <S**2>=0.000
Transition	Energy Difference
66 -> 71	-0.15415
66 -> 72	0.17782
66 -> 73	-0.13888
66 -> 75	-0.13660
66 -> 76	0.31129
66 -> 78	0.22880
66 -> 79	-0.12806
66 -> 87	0.14480

Excited State 15: Singlet-A 7.2155 eV 171.83 nm f=0.0017 <S**2>=0.000
Transition	Energy Difference
66 -> 71	-0.20008
66 -> 74	0.22419
66 -> 75	0.38263
66 -> 76	0.19638
66 -> 78	0.16542
66 -> 79	0.12165
66 -> 81	0.24879

Excited State 16: Singlet-A 7.3037 eV 169.75 nm f=0.0169 <S**2>=0.000
Transition	Energy Difference
65 -> 69	-0.16215
65 -> 70	0.30400
65 -> 71	0.15029
65 -> 72	0.17054
65 -> 73	-0.17442
65 -> 77	0.17437
66 -> 68	0.20215
66 -> 69	0.13135
66 -> 72	0.13251
66 -> 74	-0.13651
66 -> 79	-0.13793

Excited State 17: Singlet-A 7.3705 eV 168.22 nm f=0.0193 <S**2>=0.000
Transition	Energy Difference
62 -> 67	0.11427
65 -> 70	-0.22265
65 -> 71	0.42409
65 -> 74	0.27313
66 -> 74	0.11382

Excited State 18: Singlet-A 7.3923 eV 167.72 nm f=0.0112 <S**2>=0.000
Transition	Energy Difference
64 -> 68	-0.12555
65 -> 68	-0.13176
65 -> 69	-0.15819
65 -> 71	-0.10978
66 -> 68	-0.13009
66 -> 69	-0.20535
66 -> 70	-0.20280
66 -> 73	0.17696
66 -> 75	-0.14423
66 -> 77	0.17420
66 -> 84	0.26785
66 -> 87	0.16371
66 -> 89	0.13925

Excited State 19: Singlet-A 7.4310 eV 166.85 nm f=0.0042 <S**2>=0.000
Transition	Energy Difference				
62 -> 67	0.55922				
63 -> 67	-0.30032				
Excited State	20: Singlet-A	7.4654 eV	166.08 nm	f=0.0253	<S**2>=0.000
--------------	---------------	------------	-----------	---------	--------------
57 -> 67	-0.15761	0.25564			
60 -> 67	-0.17293				
61 -> 67		0.12236			
63 -> 67	0.20288				
63 -> 68	0.10298				
64 -> 67	0.16226				
64 -> 70	0.12340				
64 -> 72	0.13218				
64 -> 73	0.12650				
65 -> 69	0.17793				
65 -> 71	-0.12829				
65 -> 72	-0.15242				
65 -> 73	0.10293				

| 3'(S₁) |
|--------------|---------------|------------|-----------|---------|--------------|
| Excited State 1: Singlet-A | 3.7412 eV | 331.40 nm | f=0.0819 | <S**2>=0.000 |
| 65 -> 67 | 0.11014 | | | | |
| 66 -> 67 | 0.68106 | | | | |

Excited State 2: Singlet-A	4.6040 eV	269.30 nm	f=0.0321	<S**2>=0.000	
65 -> 67	0.56725				
66 -> 67	-0.13870				
66 -> 70	0.15196				
66 -> 72	-0.28243				
66 -> 73	0.12449				

Excited State 3: Singlet-A	5.3692 eV	230.92 nm	f=0.2437	<S**2>=0.000	
65 -> 67	0.37328				
66 -> 70	-0.25080				
66 -> 71	0.14030				
66 -> 72	0.43911				
66 -> 73	-0.16359				

Excited State 4: Singlet-A	5.6775 eV	218.38 nm	f=0.0393	<S**2>=0.000	
66 -> 68	0.48051				
66 -> 69	0.21811				
66 -> 71	0.27541				
66 -> 72	-0.12093				
66 -> 73	0.11966				
66 -> 77	0.17748				
66 -> 80	0.10231				
66 -> 88	0.10301				

Excited State 5: Singlet-A	5.8059 eV	213.55 nm	f=0.0125	<S**2>=0.000	
61 -> 67	0.21109				
64 -> 67	0.63802				

Excited State 6: Singlet-A	6.0982 eV	203.31 nm	f=0.0321	<S**2>=0.000	
60 -> 67	-0.13307				
63 -> 67	0.18506				
Transition	Energy Difference
65 -> 70	-0.12143
65 -> 72	0.20124
65 -> 73	-0.10246
66 -> 68	0.15706
66 -> 69	0.36070
66 -> 71	-0.26549
66 -> 72	0.20124
66 -> 73	-0.10246
66 -> 74	-0.12278
66 -> 75	0.10893
66 -> 77	-0.10484

Excited State 7: Singlet-A
- Energy: 6.1670 eV
- Wavelength: 201.04 nm
- Oscillator Strength: 0.0358
- <S^2>: 0.000

Transition	Energy Difference
60 -> 67	-0.26696
61 -> 67	-0.16186
62 -> 67	-0.15570
63 -> 67	0.42936
65 -> 70	0.12385
65 -> 71	0.11257
66 -> 69	-0.19055
66 -> 71	0.22150

Excited State 8: Singlet-A
- Energy: 6.2994 eV
- Wavelength: 196.82 nm
- Oscillator Strength: 0.0401
- <S^2>: 0.000

Transition	Energy Difference
65 -> 70	0.12385
65 -> 71	-0.24075
65 -> 73	0.10344
66 -> 70	0.49776
66 -> 71	0.10848
66 -> 73	-0.19579
66 -> 75	-0.12318

Excited State 9: Singlet-A
- Energy: 6.3456 eV
- Wavelength: 195.39 nm
- Oscillator Strength: 0.2732
- <S^2>: 0.000

Transition	Energy Difference
65 -> 70	0.13797
65 -> 71	0.36066
65 -> 73	-0.15484
66 -> 70	0.16028
66 -> 71	0.20755
66 -> 72	0.12480
66 -> 73	-0.11107

Excited State 10: Singlet-A
- Energy: 6.5740 eV
- Wavelength: 188.60 nm
- Oscillator Strength: 0.0201
- <S^2>: 0.000

Transition	Energy Difference
66 -> 68	0.30228
66 -> 69	-0.27865
66 -> 70	0.10359
66 -> 71	-0.19299
66 -> 72	0.12831
66 -> 73	0.24538
Excited State 11: Singlet-A 6.6881 eV 185.38 nm f=0.0064 <S**2>=0.000
 62 -> 67 0.14607
 65 -> 68 0.40685
 65 -> 69 0.24738
 65 -> 71 0.13061
 65 -> 72 -0.10338
 65 -> 77 0.10362
 66 -> 70 -0.11575
 66 -> 71 -0.10106
 66 -> 73 0.16537
 66 -> 74 -0.14119
 66 -> 75 -0.15116

Excited State 12: Singlet-A 6.7483 eV 183.73 nm f=0.0042 <S**2>=0.000
 63 -> 67 0.62910
 66 -> 67 0.17944

Excited State 13: Singlet-A 6.8130 eV 181.98 nm f=0.0282 <S**2>=0.000
 61 -> 67 -0.10012
 63 -> 67 -0.12369
 65 -> 68 0.12509
 65 -> 69 0.12284
 65 -> 70 0.12369
 66 -> 68 0.12233
 66 -> 69 -0.13626
 66 -> 74 0.34329
 66 -> 75 0.19682
 66 -> 76 0.25206
 66 -> 77 -0.18646
 66 -> 79 -0.17092

Excited State 14: Singlet-A 6.8574 eV 180.80 nm f=0.0109 <S**2>=0.000
 55 -> 67 -0.11540
 60 -> 67 0.17397
 61 -> 67 0.46889
 63 -> 67 0.32212
 64 -> 67 -0.11274
 65 -> 68 0.13605
 65 -> 69 0.13693

Excited State 15: Singlet-A 6.9119 eV 179.38 nm f=0.0011 <S**2>=0.000
 65 -> 68 -0.13985
 65 -> 69 -0.19176
 66 -> 73 0.20453
Transition	E
66 -> 74	0.10833
66 -> 75	-0.21682
66 -> 76	0.40416
66 -> 77	0.11735
66 -> 78	0.17223

Excited State 16: Singlet-A 6.9305 eV 178.90 nm f=0.0004 <S**2>=0.000

Transition	E
66 -> 71	-0.16976
66 -> 72	0.18127
66 -> 73	0.10820
66 -> 74	0.14913
66 -> 75	0.27533
66 -> 76	-0.17369
66 -> 77	0.11647
66 -> 80	0.29154
66 -> 82	-0.13630
66 -> 84	0.14874
66 -> 86	-0.22583

Excited State 17: Singlet-A 7.0404 eV 176.10 nm f=0.0045 <S**2>=0.000

Transition	E
54 -> 67	-0.27715
55 -> 67	-0.11471
57 -> 67	0.31587
58 -> 67	-0.13712
60 -> 67	0.27667
61 -> 67	-0.30157
63 -> 67	0.11875
64 -> 67	0.19074

Excited State 18: Singlet-A 7.1215 eV 174.10 nm f=0.0161 <S**2>=0.000

Transition	E
65 -> 71	0.21683
65 -> 77	0.10122
66 -> 70	-0.13827
66 -> 71	-0.21970
66 -> 73	-0.21152
66 -> 74	0.26985
66 -> 75	-0.20493
66 -> 76	-0.17266
66 -> 81	0.20995
66 -> 90	-0.13606

Excited State 19: Singlet-A 7.1697 eV 172.93 nm f=0.0264 <S**2>=0.000

Transition	E
64 -> 68	0.10086
65 -> 69	0.17893
65 -> 70	0.28654
65 -> 71	-0.15964
65 -> 73	-0.23539
65 -> 77	-0.13935

Transition	E	
66 -> 84	0.14874	
66 -> 86	-0.22583	
66 -> 74	0.17223	
66 -> 75	0.11647	
66 -> 77	0.11647	
66 -> 80	0.29154	
66 -> 82	-0.13630	
66 -> 84	0.14874	
66 -> 86	-0.22583	
	66 -> 68	-0.13585
---	---------	----------
	66 -> 69	0.13084
	66 -> 72	0.12834
	66 -> 75	-0.20559
	66 -> 81	0.10804
Excited State 20:	Singlet-A	7.2095 eV, 171.97 nm, f=0.0042, $<S^2>=0.000$
	64 -> 68	-0.13806
	65 -> 69	-0.13252
	66 -> 68	0.14455
	66 -> 69	-0.18201
	66 -> 73	0.28508
	66 -> 74	0.19676
	66 -> 75	0.13469
	66 -> 76	-0.14642
	66 -> 77	0.12400
	66 -> 83	0.14642
	66 -> 84	0.21489
	66 -> 86	0.11057
	66 -> 88	-0.12447

| 4(S_1) |
|---|---|
| Excited State 1: | Singlet-A, 2.3459 eV, 528.52 nm, f=0.1661, $<S^2>=0.000$ |
| | 60 -> 62 | -0.18621 |
| | 61 -> 62 | 0.68148 |
| Excited State 2: | Singlet-A, 2.8766 eV, 431.00 nm, f=0.0361, $<S^2>=0.000$ |
| | 60 -> 62 | 0.66908 |
| | 61 -> 62 | 0.19065 |
| Excited State 3: | Singlet-A, 4.0877 eV, 303.31 nm, f=0.2274, $<S^2>=0.000$ |
| | 59 -> 62 | 0.68505 |
| Excited State 4: | Singlet-A, 4.7746 eV, 259.67 nm, f=0.0189, $<S^2>=0.000$ |
| | 51 -> 62 | 0.14423 |
| | 58 -> 62 | 0.67036 |
| Excited State 5: | Singlet-A, 4.8437 eV, 255.97 nm, f=0.0408, $<S^2>=0.000$ |
| | 52 -> 62 | 0.13798 |
| | 56 -> 62 | -0.41228 |
| | 57 -> 62 | 0.49752 |
| Excited State 6: | Singlet-A, 5.1966 eV, 238.59 nm, f=0.0160, $<S^2>=0.000$ |
| | 57 -> 62 | -0.14340 |
| | 61 -> 66 | 0.27143 |
| | 61 -> 69 | 0.57178 |
| | 61 -> 72 | -0.15498 |
| Excited State 7: | Singlet-A, 5.3029 eV, 233.80 nm, f=0.0189, $<S^2>=0.000$ |
| | 56 -> 62 | 0.52475 |
| | 57 -> 62 | 0.39313 |
| | 61 -> 69 | 0.14111 |
| Excited State 8: | Singlet-A, 5.4339 eV, 228.17 nm, f=0.0003, $<S^2>=0.000$ |
| | 61 -> 63 | 0.47905 |
| | 61 -> 64 | 0.36519 |
| | 61 -> 65 | 0.14576 |
Transition	Energy Difference
61 -> 67	0.14216
61 -> 76	0.13001
61 -> 83	0.17026
Excited State 9: Singlet-A	5.5804 eV 222.18 nm f=0.1500 $<S^2>=0.000$
55 -> 62	-0.31583
56 -> 62	-0.12602
61 -> 70	-0.14320
61 -> 72	0.22840
61 -> 73	0.47730
50 -> 62	-0.15939
51 -> 62	0.23323
52 -> 62	0.17753
53 -> 62	-0.12804
54 -> 62	-0.14978
57 -> 62	-0.11632
60 -> 66	0.14800
60 -> 69	0.39545
60 -> 70	-0.11521
60 -> 73	0.26464
Excited State 10: Singlet-A	5.7708 eV 214.85 nm f=0.0035 $<S^2>=0.000$
50 -> 62	-0.15939
51 -> 62	0.23323
52 -> 62	0.17753
53 -> 62	-0.12804
54 -> 62	-0.14978
57 -> 62	-0.11632
60 -> 66	0.14800
60 -> 69	0.39545
60 -> 70	-0.11521
60 -> 73	0.26464
Excited State 11: Singlet-A	5.9045 eV 209.98 nm f=0.0173 $<S^2>=0.000$
53 -> 62	0.35652
54 -> 62	0.50182
55 -> 62	-0.18985
60 -> 69	0.16870
60 -> 73	0.10076
Excited State 12: Singlet-A	6.0113 eV 206.25 nm f=0.0061 $<S^2>=0.000$
52 -> 62	-0.20073
61 -> 64	-0.24083
61 -> 65	0.44618
61 -> 66	0.18417
61 -> 67	0.13141
61 -> 68	-0.27645
Excited State 13: Singlet-A	6.0123 eV 206.22 nm f=0.0276 $<S^2>=0.000$
50 -> 62	-0.10822
52 -> 62	0.55875
57 -> 62	-0.10837
60 -> 69	-0.20184
61 -> 65	0.16749
61 -> 68	-0.10806
Excited State 14: Singlet-A	6.1127 eV 202.83 nm f=0.2500 $<S^2>=0.000$
54 -> 62	0.16439
55 -> 62	0.44749
61 -> 63	0.11166
61 -> 64	-0.21586
61 -> 65	-0.13353
61 -> 67	0.23774
61 -> 68	0.11114
61 -> 72	0.18228
61 -> 73	0.13056
Excited State 15: Singlet-A	6.1382 eV 201.99 nm f=0.1912 $<S^2>=0.000$
Transition	Energy
------------	--------
51 -> 62	-0.22118
52 -> 62	0.10061
55 -> 62	0.28296
61 -> 63	-0.14966
61 -> 64	0.27928
61 -> 65	0.16527
61 -> 67	-0.26724
61 -> 70	-0.12944
61 -> 73	0.17849
61 -> 76	-0.10539

Excited State 16: Singlet-A
- Energy: 6.1486 eV
- Wavelength: 201.65 nm
- Oscillator Strength: 0.0051
- Extinction Coefficient: 0.000

Transition	Energy
48 -> 62	-0.11183
51 -> 62	0.52817
54 -> 62	0.10506
58 -> 62	-0.11743
60 -> 69	-0.18880
61 -> 64	0.14988
61 -> 67	-0.15403

Excited State 17: Singlet-A
- Energy: 6.2347 eV
- Wavelength: 198.86 nm
- Oscillator Strength: 0.0033
- Extinction Coefficient: 0.000

Transition	Energy
53 -> 62	0.57193
54 -> 62	-0.38602

Excited State 18: Singlet-A
- Energy: 6.2767 eV
- Wavelength: 197.53 nm
- Oscillator Strength: 0.0319
- Extinction Coefficient: 0.000

Transition	Energy
61 -> 65	-0.10372
61 -> 66	0.41365
61 -> 69	-0.10218
61 -> 71	0.17161
61 -> 72	0.36576
61 -> 73	-0.20471
61 -> 80	0.15270
61 -> 82	-0.10904

Excited State 19: Singlet-A
- Energy: 6.3842 eV
- Wavelength: 194.21 nm
- Oscillator Strength: 0.0356
- Extinction Coefficient: 0.000

Transition	Energy
60 -> 65	0.11075
60 -> 66	-0.11895
60 -> 69	-0.27219
60 -> 72	0.31547
60 -> 73	0.45674

Excited State 20: Singlet-A
- Energy: 6.5064 eV
- Wavelength: 190.56 nm
- Oscillator Strength: 0.0051
- Extinction Coefficient: 0.000

Transition	Energy
50 -> 62	0.57666
52 -> 62	0.10920
60 -> 63	-0.15351
60 -> 65	-0.14740
Figure S27. Simulated spectra of (a) 3rc(S₀) and (b) 3′rc(S₀) radical cation computed at the PCM(water)/TD-ωB97XD/6-311++G(d,p) level of theory.

Table S3. Vertical excitation of singlet 3rc(S₀) and 3′rc(S₀) radical cation computed at the PCM(water)/TD-ωB97XD/6-311++G(d,p) level of theory.

Excited State	Energy (eV)	f	Ω²	λ (nm)	¥
3rc(S₁)					
59B → 66B	-0.15457				
61B → 66B	0.11944				
62B → 66B	0.77524				
63B → 66B	0.20536				
64B → 66B	0.16174				
65B → 66B	-0.51803				
Excited State 2: 2.049 Å 2.6073 eV 475.53 nm f=0.0043 <S**2>=0.800
54B -> 66B -0.16827
56B -> 66B 0.22734
61B -> 66B 0.66706
62B -> 66B 0.27386
64B -> 66B -0.20340
65B -> 66B 0.54240

Excited State 3: 2.046 Å 3.0481 eV 406.76 nm f=0.0098 <S**2>=0.796
59B -> 66B 0.35213
62B -> 66B -0.15439
63B -> 66B 0.65081
64B -> 66B 0.58119
65B -> 66B 0.12863

Excited State 4: 2.042 Å 3.3568 eV 369.35 nm f=0.0004 <S**2>=0.793
55B -> 66B 0.17292
61B -> 66B 0.17387
63B -> 66B -0.63809
64B -> 66B 0.69643

Excited State 5: 2.081 Å 3.4391 eV 360.52 nm f=0.0159 <S**2>=0.833
62A -> 68A -0.10679
66A -> 67A 0.13291
50B -> 66B -0.11636
55B -> 66B 0.39005
56B -> 66B -0.29338
59B -> 66B 0.12802
61B -> 66B 0.52952
62B -> 66B -0.32440
64B -> 66B -0.17803
65B -> 66B -0.46640

Excited State 6: 2.131 Å 3.5818 eV 346.15 nm f=0.0308 <S**2>=0.885
62A -> 68A 0.16429
63A -> 67A -0.12385
66A -> 67A -0.18677
66A -> 68A -0.10662
53B -> 66B 0.10487
55B -> 66B -0.37466
56B -> 66B 0.53430
57B -> 66B 0.16803
59B -> 66B -0.12228
61B -> 66B 0.24285
62B -> 66B -0.34918
62B -> 67B -0.11541
64B -> 66B 0.10463
65B -> 66B -0.38238

Excited State 7: 2.072 Å 3.9117 eV 316.96 nm f=0.0025 <S**2>=0.823
48B -> 66B 0.14317
49B -> 66B 0.13649
50B -> 66B 0.23466
51B -> 66B -0.14343
53B -> 66B 0.21999
54B -> 66B 0.62193
Transition	Energy (eV)	Wavelength (nm)	f	\langle S^2 \rangle
56B -> 66B	0.10362			
58B -> 66B	-0.16168			
59B -> 66B	0.50713			
61B -> 66B	0.17831			
62B -> 66B	0.10544			
63B -> 66B	-0.21946			
64B -> 66B	-0.14012			
50B -> 66B	-0.18931			
53B -> 66B	-0.38536			
54B -> 66B	-0.17680			
55B -> 66B	-0.13869			
56B -> 66B	0.12573			
57B -> 66B	-0.16561			
58B -> 66B	0.57773			
59B -> 66B	0.49795			
61B -> 66B	-0.10623			
62B -> 66B	0.14692			
63B -> 66B	-0.17057			
59A -> 68A	-0.10646			
61A -> 68A	-0.10297			
62A -> 68A	0.43649			
63A -> 67A	0.20615			
63A -> 68A	0.13339			
65A -> 68A	-0.14689			
66A -> 67A	0.52827			
58B -> 66B	0.40475			
62B -> 67B	-0.29432			
62B -> 68B	0.10327			
65B -> 67B	0.17668			
62A -> 68A	-0.19120			
66A -> 67A	-0.23618			
50B -> 66B	0.15732			
53B -> 66B	0.24720			
54B -> 66B	0.37184			
56B -> 66B	-0.14143			
57B -> 66B	0.11316			
58B -> 66B	0.65050			
59B -> 66B	-0.30466			
62B -> 67B	0.12239			
65B -> 66B	0.12153			
60B -> 66B	0.97732			
61B -> 66B	-0.11019			
46B -> 66B	0.15237			
48B -> 66B	-0.49192			
49B -> 66B	-0.21740			
54B -> 66B	-0.10092			
57B -> 66B 0.69885
59B -> 66B 0.32923

Excited State 13: 2.099-A 5.0035 eV 247.79 nm f=0.0057 <S**2>=0.851
66A -> 67A 0.13182
45B -> 66B -0.12784
46B -> 66B 0.20940
47B -> 66B 0.37042
48B -> 66B 0.65446
52B -> 66B -0.11522
53B -> 66B 0.15524
54B -> 66B -0.13360
55B -> 66B 0.11876
56B -> 66B 0.14783
57B -> 66B 0.36188
61B -> 66B -0.15275

Excited State 14: 2.471-A 5.1126 eV 242.51 nm f=0.0032 <S**2>=1.276
59A -> 67A 0.11047
62A -> 67A -0.53612
63A -> 67A -0.21843
63A -> 68A 0.26775
65A -> 67A 0.23229
65A -> 68A -0.14195
66A -> 68A 0.63073
46B -> 66B -0.10668
57B -> 66B 0.11779

Excited State 15: 2.145-A 5.1379 eV 241.31 nm f=0.0077 <S**2>=0.900
62A -> 67A -0.19297
66A -> 68A 0.10228
42B -> 66B -0.17897
45B -> 66B -0.12779
46B -> 66B 0.50161
47B -> 66B 0.20705
48B -> 66B -0.16430
49B -> 66B -0.18811
51B -> 66B 0.10966
52B -> 66B -0.12757
53B -> 66B 0.42344
54B -> 66B -0.11721
55B -> 66B -0.20756
57B -> 66B -0.42510
59B -> 66B 0.12921

Excited State 16: 2.916-A 5.2953 eV 234.14 nm f=0.0735 <S**2>=1.876
62A -> 67A -0.35163
62A -> 68A -0.29781
63A -> 68A -0.24917
65A -> 68A 0.20239
66A -> 67A 0.46677
66A -> 68A -0.28987
55B -> 66B -0.19426
57B -> 66B 0.11132
62B -> 68B -0.38066
Transition	Value
65B -> 68B	0.23116
62A -> 67A	0.27060
63A -> 67A	0.25988
63A -> 68A	0.14453
65A -> 67A	-0.20114
66A -> 67A	0.35312
66A -> 68A	0.40979
43B -> 66B	0.10326
48B -> 66B	-0.14884
54B -> 66B	0.13013
55B -> 66B	-0.32511
56B -> 66B	0.19865
62B -> 67B	0.35054
65B -> 67B	-0.21507

Excited State 17: 2.557-A 5.4042 eV 229.42 nm f=0.1478 <S**2>=1.385

Transition	Value
66A -> 67A	0.13507
43B -> 66B	-0.16258
48B -> 66B	-0.20047
50B -> 66B	-0.13973
51B -> 66B	0.11153
54B -> 66B	0.16481
55B -> 66B	0.55417
56B -> 66B	0.61455
57B -> 66B	-0.13966
61B -> 66B	-0.18492
64B -> 66B	-0.12045

Excited State 18: 2.106-A 5.4678 eV 226.75 nm f=0.0024 <S**2>=0.859

Transition	Value
66A -> 67A	0.13507
43B -> 66B	0.26294
42B -> 66B	0.24036
45B -> 66B	0.33961
46B -> 66B	-0.28339
50B -> 66B	0.27153
51B -> 66B	-0.10625
52B -> 66B	0.30699
53B -> 66B	0.43632
54B -> 66B	-0.36982
59B -> 66B	0.14373
62B -> 67B	0.14822
65B -> 67B	-0.11373

Excited State 19: 2.151-A 5.9710 eV 207.64 nm f=0.0018 <S**2>=0.906

Transition	Value
41B -> 66B	0.26294
42B -> 66B	0.24036
45B -> 66B	0.33961
46B -> 66B	-0.28339
50B -> 66B	0.27153
51B -> 66B	-0.10625
52B -> 66B	0.30699
53B -> 66B	0.43632
54B -> 66B	-0.36982
59B -> 66B	0.14373
62B -> 67B	0.14822
65B -> 67B	-0.11373

Excited State 20: 2.207-A 6.1384 eV 201.98 nm f=0.0023 <S**2>=0.967

Transition	Value			
61A -> 67A	0.10155			
40B -> 66B	-0.29064			
43B -> 66B	0.47438			
44B -> 66B	-0.34797			
45B -> 66B	0.21840			
46B -> 66B	-0.20010			
50B -> 66B	-0.30662			
51B -> 66B	0.12750			
52B -> 66B	-0.40828			
53B -> 66B	0.24077			
Transition	E (eV)	λ (nm)	f	S^2
------------	---------	--------	----	-----
62B -> 67B	-0.11735			

3'SC(S1)

Excited State	E (eV)	λ (nm)	f	S^2
1: 2.037 Å	1.2612	983.04	0.0048	0.788
61B -> 66B	-0.37552			
62B -> 66B	-0.59218			
63B -> 66B	-0.27225			
65B -> 66B	0.62854			
2: 2.053 Å	2.5370	488.70	0.0033	0.804
53B -> 66B	-0.10949			
56B -> 66B	0.14036			
60B -> 66B	0.17586			
61B -> 66B	0.69199			
64B -> 66B	0.12450			
65B -> 66B	0.51300			
3: 2.045 Å	2.6908	460.78	0.0034	0.795
53B -> 66B	-0.16022			
54B -> 66B	0.13841			
60B -> 66B	0.28493			
61B -> 66B	-0.20303			
62B -> 66B	-0.28924			
63B -> 66B	0.17091			
64B -> 66B	0.78941			
65B -> 66B	-0.23405			
4: 2.061 Å	3.1589	392.50	0.0139	0.812
54B -> 66B	0.11661			
55B -> 66B	0.12316			
56B -> 66B	-0.34145			
61B -> 66B	-0.27441			
62B -> 66B	-0.11823			
63B -> 66B	0.79912			
64B -> 66B	-0.27371			
5: 2.042 Å	3.2857	377.35	0.0014	0.793
51B -> 66B	-0.10045			
57B -> 66B	-0.10179			
60B -> 66B	-0.11972			
61B -> 66B	-0.33874			
62B -> 66B	0.67159			
64B -> 66B	0.35438			
65B -> 66B	0.49016			
6: 2.185 Å	3.4940	354.85	0.0426	0.943
61A -> 68A	0.14687			
62A -> 68A	0.18217			
63A -> 67A	-0.17879			
Transition	Energy			
-------------	---------			
66A -> 67A	-0.13059			
66A -> 68A	-0.11756			
49B -> 66B	0.11168			
54B -> 66B	-0.40072			
55B -> 66B	-0.44605			
56B -> 66B	0.47550			
57B -> 66B	0.21343			
61B -> 67B	-0.25605			
61B -> 67B	0.10751			
63B -> 66B	0.31725			

Excited State 7: 2.046 Å 3.8489 eV 322.12 nm f=0.0001 <$S^2> = 0.797$

Transition	Energy
49B -> 66B	-0.13763
50B -> 66B	0.20956
51B -> 66B	0.23093
53B -> 66B	-0.34263
54B -> 66B	0.27182
55B -> 66B	-0.18459
57B -> 66B	-0.23932
58B -> 66B	0.13503
59B -> 66B	-0.14284
60B -> 66B	0.57512
61B -> 66B	-0.16551
62B -> 66B	0.23817
64B -> 66B	-0.33481

Excited State 8: 2.051 Å 4.1493 eV 298.81 nm f=0.0003 <$S^2> = 0.802$

Transition	Energy
49B -> 66B	0.10160
50B -> 66B	-0.20862
51B -> 66B	-0.22644
53B -> 66B	0.57192
54B -> 66B	-0.12918
56B -> 66B	-0.12663
57B -> 66B	0.15116
58B -> 66B	0.23685
59B -> 66B	0.12809
60B -> 66B	0.62274

Excited State 9: 2.068 Å 4.2589 eV 291.12 nm f=0.0004 <$S^2> = 0.819$

Transition	Energy				
48B -> 66B	-0.14441				
49B -> 66B	0.11507				
51B -> 66B	0.20374				
53B -> 66B	-0.12608				
55B -> 66B	0.16445				
57B -> 66B	0.22916				
58B -> 66B	0.85351				
60B -> 66B	-0.20701				
Excited State	10: 2.048 Å	4.4003 eV	281.76 nm	f=0.0007	<S**2>=0.799
---------------	-------------	----------	-----------	----------	--------------
47B -> 66B	0.14612				
48B -> 66B	-0.33461				
49B -> 66B	0.36365				
51B -> 66B	0.30559				
54B -> 66B	0.10859				
55B -> 66B	0.15705				
57B -> 66B	0.51448				
58B -> 66B	-0.32004				
59B -> 66B	-0.40031				
60B -> 66B	0.15133				
65B -> 66B	0.10725				

Excited State	11: 2.990 Å	4.4385 eV	279.34 nm	f=0.0081	<S**2>=1.985
61A -> 68A	0.28855				
62A -> 68A	0.43726				
63A -> 67A	0.33434				
63A -> 68A	0.20722				
64A -> 67A	-0.19752				
66A -> 67A	0.36980				
66A -> 68A	-0.20514				
58B -> 66B	0.12781				
59B -> 66B	-0.18199				
61B -> 67B	0.20988				
62B -> 67B	0.27637				
63B -> 67B	0.12681				
65B -> 67B	-0.26481				

Excited State	12: 2.088 Å	4.4654 eV	277.65 nm	f=0.0005	<S**2>=0.840
47B -> 66B	0.12215				
48B -> 66B	-0.18226				
50B -> 66B	0.15428				
51B -> 66B	0.17031				
57B -> 66B	0.17200				
58B -> 66B	-0.19185				
59B -> 66B	0.85732				

Excited State	13: 2.068 Å	5.0359 eV	246.20 nm	f=0.0014	<S**2>=0.820
42B -> 66B	-0.15138				
47B -> 66B	-0.33117				
48B -> 66B	0.27144				
49B -> 66B	-0.37077				
51B -> 66B	-0.22820				
53B -> 66B	-0.26749				
54B -> 66B	0.17086				
57B -> 66B	0.65111				

Excited State	14: 2.873 Å	5.1203 eV	242.14 nm	f=0.0042	<S**2>=1.814
Transition	Value				
------------	-----------				
61A -> 67A	0.33881				
62A -> 67A	0.58344				
63A -> 67A	0.25217				
63A -> 68A	-0.31264				
64A -> 68A	0.19241				
66A -> 67A	-0.33498				
66A -> 68A	-0.38109				
62B -> 68B	-0.12323				
65B -> 68B	0.11993				

Excited State 15: 2.083 A 5.1302 eV 241.67 nm f=0.0011 <S**2>=0.835

Transition	Value
41B -> 66B	0.10736
42B -> 66B	-0.10400
43B -> 66B	0.22578
45B -> 66B	0.37641
46B -> 66B	0.50323
47B -> 66B	0.43739
50B -> 66B	0.22278
51B -> 66B	-0.27983
52B -> 66B	-0.20159
54B -> 66B	0.28220
55B -> 66B	-0.11613

Excited State 16: 2.331 A 5.2868 eV 234.52 nm f=0.0623 <S**2>=1.108

Transition	Value
61A -> 67A	0.10377
62A -> 67A	0.17429
63A -> 68A	0.35061
64A -> 68A	-0.19009
66A -> 67A	-0.16018
66A -> 68A	0.34215
42B -> 66B	-0.10244
45B -> 66B	-0.12381
53B -> 66B	0.25275
54B -> 66B	0.37815
55B -> 66B	0.15153
56B -> 66B	0.45129
61B -> 66B	-0.11162
61B -> 68B	-0.14105
62B -> 68B	-0.18825
65B -> 68B	0.17834

Excited State 17: 2.385 A 5.3379 eV 232.27 nm f=0.0240 <S**2>=1.172

Transition	Value
62A -> 67A	-0.13218
62A -> 68A	-0.14702
63A -> 67A	0.11709
63A -> 68A	-0.36842
64A -> 67A	-0.10574
Transition	Energy
--------------	----------
64A -> 68A	0.18340
66A -> 67A	0.31320
66A -> 68A	-0.28368
53B -> 66B	0.18014
54B -> 66B	0.28481
55B -> 66B	0.12030
56B -> 66B	0.50002
61B -> 68B	0.13707
62B -> 68B	0.19720
65B -> 68B	-0.19895

Excited State 18: 2.409-A
5.4462 eV 227.65 nm f=0.1498 <S**2>=1.201

Transition	Energy
62A -> 67A	0.18839
63A -> 67A	0.47459
63A -> 68A	0.10622
64A -> 67A	-0.23160
66A -> 67A	0.38035
66A -> 68A	0.22436
42B -> 66B	0.14048
45B -> 66B	0.15333
54B -> 66B	-0.32742
55B -> 66B	-0.14789
56B -> 66B	0.18286
61B -> 67B	-0.16202
62B -> 67B	-0.23994
63B -> 67B	-0.12210
65B -> 67B	0.25340

Excited State 19: 2.069-A
5.6420 eV 219.75 nm f=0.0043 <S**2>=0.820

Transition	Energy
45B -> 66B	0.25819
49B -> 66B	-0.12940
51B -> 66B	-0.12361
53B -> 66B	-0.25253
54B -> 66B	-0.34425
55B -> 66B	0.72058
56B -> 66B	0.26557
60B -> 66B	0.17286

Excited State 20: 2.126-A
5.9459 eV 208.52 nm f=0.0003 <S**2>=0.880

Transition	Energy
40B -> 66B	0.19836
41B -> 66B	-0.30164
42B -> 66B	0.19691
43B -> 66B	0.48693
44B -> 66B	0.19552
49B -> 66B	-0.42957
50B -> 66B	0.23779
51B -> 66B	0.31633
Table S4. Electronic energies, zero-point vibrational energies, enthalpies and Gibbs energies of 3, $3'$, TS, and 4 in hartree computed at the PCM(water)/(TD-)ωB97XD/6-311++G(d,p) level of theory.

compound	E	ZPVE	H	G
$3(S_0)$	-772.200043	0.336145	-771.849724	-771.902342
$3(S_1)$	-772.024240	0.330859	-771.678357	-771.732814
$3'(S_0)$	-772.188675	0.335160	-771.838757	-771.892762
$3'(S_1)$	-772.013289	0.329769	-771.668068	-771.723800
$\text{TS}(S_0)$	-772.151188	0.332666	-771.804330	-771.857011
$\text{TS}(S_1)$ s.p.	-772.034317	n.a.	n.a.	n.a.
$4(S_0)$	-695.722207	0.306650	-695.402073	-695.454941
$4(S_1)$	-695.620555	0.303339	-695.303578	-695.356520

Table S5. Conical intersection optimization scan for $4(S_0)$ formation in hartree computed at the (TD-)ωB97X/6-311++G(d,p) level of theory using ORCA 4.2.0.

Item	Geometry convergence	Tolerance	Converged
Energy change	0.0125993207	0.0000050000	NO
E diff. (CI)	0.0053210067	0.0001000000	NO 3.3 kcal mol$^{-1}$
RMS gradient	0.0069959798	0.0001000000	NO
MAX gradient	0.0535645244	0.0003000000	NO
RMS step	0.0188608384	0.0020000000	NO
MAX step	0.2071330471	0.0040000000	NO
Max(Bonds)	0.0478	Max(Angles)	3.30
Max(Dihed)	11.87	Max(Improp)	0.00
Table S6. Geometries of 3, 3', TS, and 4 in Cartesian coordinates in Å computed at the PCM(water)/(TD-B)87XD/6-311++G(d,p) level of theory.

	3(S0)	3(S0)	3(S0)	3(S0)
6	-2.619962000	0.936194000	-1.541115000	
6	-3.353689000	0.334400000	-0.337393000	
6	-2.334823000	-0.236073000	0.655523000	
6	-1.516082000	-1.334427000	-0.035649000	
6	-0.751072000	-0.720567000	-1.229701000	
6	-1.773569000	-0.143109000	-2.223765000	
6	-1.693317000	2.055895000	-1.060384000	
6	-1.397629000	0.885734000	1.125734000	
6	0.163352000	0.373857000	-0.713762000	
6	-0.642371000	1.494680000	-0.082754000	
6	1.912303000	3.418723000	-3.133119000	
6	1.536491000	0.057559000	-0.380632000	
6	1.913592000	-1.306688000	-0.226545000	
6	3.115048000	-1.698651000	0.338602000	
6	4.036883000	-0.742457000	0.761624000	
6	3.756777000	0.599562000	0.535724000	
6	2.578311000	0.996823000	-0.076826000	
8	2.483042000	2.346581000	-0.349619000	
6	-3.350930000	1.336829000	-2.255212000	
1	-3.965027000	1.102304000	0.153733000	
1	-4.037066000	-0.455346000	-0.672651000	
1	-2.860140000	-0.659268000	1.519704000	
1	-2.176972000	2.137610000	-0.390416000	
1	-0.808706000	-1.780962000	0.673152000	
1	-1.784730000	-1.497579000	-1.741647000	
1	-1.252007000	0.273367000	-3.092330000	
1	-2.418925000	-0.951197000	-2.591704000	
1	-1.208020000	2.517524000	-1.913648000	
1	-2.278430000	2.835661000	-0.553734000	
1	-1.975161000	1.674408000	1.629974000	
1	-0.673805000	0.500594000	1.852362000	
1	-0.002241000	2.286133000	0.287064000	
1	1.993128000	4.223809000	-3.631316000	
1	1.194741000	-2.075513000	-0.488370000	
1	3.324261000	-2.756808000	0.471251000	
1	4.971934000	-1.035870000	1.225745000	
1	4.477713000	1.370579000	0.786131000	
1	2.311124000	2.516069000	-1.254736000	

Table S6. Geometries of 3, 3', TS, and 4 in Cartesian coordinates in Å computed at the PCM(water)/(TD-B)87XD/6-311++G(d,p) level of theory.
	2.088489000	1.522285000	-0.522893000
6	1.028666000	-0.405984000	-1.727214000
6	0.069685000	0.387018000	0.480485000
6	0.757903000	0.820101000	-0.842180000
6	-0.016505000	1.592541000	1.283490000
6	-1.374823000	-0.075507000	0.258922000
6	-1.838865000	-1.358724000	0.549549000
6	-3.147810000	-1.750260000	0.289752000
6	-4.038234000	-0.840218000	-0.265522000
6	-3.628625000	0.463683000	-0.503528000
6	-2.323232000	0.853939000	-0.217648000
6	-2.022904000	2.168633000	-0.401904000
1	3.957199000	1.064875000	0.466001000
1	3.797850000	-0.305363000	-1.618444000
1	4.002266000	-1.339285000	-0.201507000
1	2.194939000	-2.225945000	-1.666078000
1	2.022506000	-2.498181000	0.827124000
1	0.459251000	-2.431816000	0.033633000
1	0.538474000	-0.971804000	2.104950000
1	2.175821000	0.916763000	2.181477000
1	2.992784000	-0.637491000	2.029832000
1	1.910463000	2.416208000	0.077956000
1	2.551410000	1.844142000	-1.462453000
1	1.453802000	-0.066140000	-2.677415000
1	0.091591000	-0.923438000	-1.959861000
1	0.104372000	1.509327000	-1.380653000
1	-0.400140000	1.359358000	2.134106000
1	-1.171496000	-2.081135000	0.997505000
1	-3.464233000	-2.760375000	0.521781000
1	-5.058469000	-1.133029000	-0.487063000
1	-4.317989000	1.207592000	-0.886624000
1	-1.249373000	2.366306000	0.152326000

3(S2)
6
0.3031351000
6
3.197768000
6
1.832315000
6
1.266796000
6
1.072070000
6
2.446659000
6
2.075554000
6
0.853040000
6
0.101144000
6
0.700093000
8
0.089431000
6
-1.328180000
6
-1.856390000
6
-3.053520000
6
-3.839939000
6
-3.532314000
6
-2.314264000

8
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

$3'(S_0)$

6	-3.09559	0.271846	-0.373440	
6	-3.217436	0.321386	-1.036577	
6	-1.81576	0.597791	-1.597765	
6	-1.076848	1.587822	-0.688163	
6	-0.936867	0.980263	0.722257	
6	-2.346478	0.708043	1.280278	
6	-2.295917	-1.576253	0.314937	
6	-1.012342	-0.707969	-1.654335	
6	-0.104697	0.333936	0.679499	
6	-0.890362	-1.305473	-0.244378	
8	-0.094450	-0.942274	1.979397	
6	1.374977	-0.209047	0.230977	
6	2.041567	-1.417171	-0.038649	
6	3.369047	-1.490398	-0.418378	
6	4.108627	-0.319567	-0.537332	
6	3.505626	0.885984	-0.243281	
6	2.165380	0.952374	0.157600	
8	1.761965	2.220268	0.455157	
1	-4.091838	-0.463424	0.783601	
1	-3.752141	-0.375180	-1.692238	
1	-3.797430	1.250795	-1.005510	
1	-1.896110	1.024093	2.602074	
1	-1.631687	2.529172	-0.617893	
1	-0.104054	1.821738	-1.128869	
1	-0.485650	1.685930	1.432745	
1	-2.275378	0.308261	2.294084	
1	-2.883377	1.660972	1.338364	
1	-2.226189	2.024500	1.308665	
---	------	------	------	
	-2.796900000	-2.299726000	-0.337902000	
	-1.513622000	-1.431607000	-2.305627000	
	-0.020308000	-0.523063000	-2.079236000	
	-0.361740000	-2.257220000	-0.296960000	
	0.479483000	0.423272000	2.547857000	
	1.493653000	-2.344170000	0.066612000	
	3.821616000	-2.457451000	0.616806000	
	5.148687000	-0.345629000	-0.842103000	
	4.058246000	1.816861000	-0.300506000	
	0.859421000	2.227630000	0.776595000	
	-3.039237000	-0.139118000	0.074436000	
	-2.882258000	0.158536000	-1.423278000	
	-1.391258000	0.291498000	1.764789000	
	-0.777232000	1.432622000	-0.945380000	
	-0.918984000	1.132095000	0.556707000	
	-2.413916000	0.997700000	0.893941000	
	-2.316224000	-1.449936000	0.411494000	
	-0.661195000	-1.013601000	-1.418194000	
	-0.177975000	-0.181253000	0.921335000	
	-0.822592000	-1.317999000	0.078121000	
	-0.430266000	-0.538070000	2.298084000	
	1.332950000	-0.137672000	0.738170000	
	2.075892000	-1.360340000	0.750827000	
	3.009723000	-1.585276000	-0.256645000	
	3.443834000	-0.548750000	-1.132933000	
	3.074007000	0.762866000	-0.830050000	
	2.102090000	0.967467000	0.158031000	
	2.034873000	2.198260000	0.679542000	
	-4.101083000	-0.228327000	0.324589000	
	-3.332106000	-0.647071000	-2.015047000	
	-3.408379000	1.085069000	-1.680643000	
	-1.273018000	0.506628000	-2.831303000	
	-1.283402000	2.378315000	-1.168079000	
	0.270939000	1.565300000	-1.234236000	
	-0.519132000	1.964278000	1.146970000	
	-2.540352000	0.807080000	1.962292000	
	-2.912962000	1.946015000	0.665689000	
	-2.448713000	-1.696562000	1.467300000	
	-2.739293000	-2.273591000	-0.175004000	
	-1.076876000	-1.843587000	-1.999820000	
	0.399656000	-0.933427000	-1.679124000	
	-0.306951000	-2.249683000	0.324268000	
	0.157289000	0.000753000	2.836621000	
	1.774575000	-2.178109000	1.395931000	
	3.409000000	-2.587098000	-0.390086000	
	4.185589000	-0.754991000	-1.893773000	
	3.645391000	1.613705000	-1.188053000	
	1.437221000	2.187292000	1.439752000	
---	---	---	---	---
6	-2.967272000	0.602205000	-0.258292000	
6	-3.360304000	-0.626338000	0.573406000	
6	-2.096892000	-1.415280000	0.942843000	
6	-1.387047000	-1.873018000	-0.334266000	
6	-0.959896000	-0.628733000	-1.167231000	
6	-2.235042000	0.156288000	-1.530734000	
6	-2.038921000	1.496688000	0.570132000	
6	-1.137767000	-0.530206000	1.746991000	
6	-0.038992000	0.187396000	-0.295698000	
6	-0.753884000	0.731645000	0.922377000	
8	0.121074000	1.939582000	-1.297437000	
6	1.373459000	-0.118308000	0.497865000	
6	1.888673000	-1.354742000	0.249331000	
6	3.196322000	-1.715217000	0.621677000	
6	4.044349000	-0.813546000	-0.334266000	
6	3.605452000	0.433940000	1.746991000	
6	2.747697000	0.863430000	0.922377000	
8	1.914793000	2.085659000	0.497865000	
1	-3.863923000	1.163319000	-0.536604000	
1	-3.885788000	-0.311355000	1.481405000	
1	-4.043060000	-1.265873000	1.538310000	
1	-2.366449000	-2.922460000	1.538310000	
1	-2.054734000	-2.473950000	0.956576000	
1	-0.526036000	-2.494435000	-0.807860000	
1	-0.441935000	-0.947039000	-2.073658000	
1	-1.982011000	0.224929000	2.146992000	
1	-2.877311000	-0.499388000	-2.127175000	
6	-0.026857000	-0.107877000	-0.058586000	
6	0.765211000	1.131425000	0.278660000	
6	2.581119000	-0.313743000	1.278099000	
6	3.494395000	0.019868000	0.088506000	
6	2.643828000	0.286424000	-1.163014000	
6	1.803307000	-0.951270000	1.485415000	
6	0.881141000	-1.293869000	-0.289651000	
6	1.747080000	-1.557395000	0.958918000	
6	1.623294000	0.851554000	1.533545000	
6	1.698357000	1.464797000	-0.506546000	
6	-0.026857000	-0.107877000	-0.058586000	
6	0.765211000	1.131425000	0.278660000	
6	-1.396181000	-0.169954000	-0.133585000	
6	-2.082209000	-1.451941000	0.229508000	
6	-3.415710000	-1.576570000	-0.067960000	
6	-4.221741000	-0.414934000	0.198980000	
6	-3.677988000	0.819858000	0.234060000	
6	-2.262446000	1.045484000	-0.045975000	
8	-1.855445000	2.194721000	-0.239630000	
1	3.187464000	-0.496954000	2.170111000	
1	4.102465000	0.901065000	0.320917000	
1	4.183555000	-0.811117000	-0.098317000	
1	3.295624000	0.516357000	-2.011128000	
1	2.446177000	-1.816766000	-1.680588000	
1	1.201070000	-0.782681000	-2.383961000	
1	0.325851000	-2.195625000	-0.533430000	
1	1.107543000	-1.817593000	1.808642000	
1	2.393662000	-2.418268000	0.759399000	
1	0.973759000	0.631339000	2.387288000	
1	2.179399000	1.763551000	1.775123000	
1	2.264895000	2.369229000	-0.661287000	
1	1.105110000	1.681478000	-1.800783000	
1	0.103348000	1.969173000	0.463374000	
1	-1.503233000	-2.348169000	-0.392562000	
1	-3.885498000	-2.551137000	-0.116213000	
1	-5.287016000	-0.541854000	0.363397000	
1	-4.281809000	1.704103000	0.404166000	

4(S1)
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
8
1
1
1
1
1
1
1
1 0.975241000 -2.339898000 0.948637000
1 2.300398000 -2.541747000 -0.203804000
1 0.883729000 -0.258452000 2.435504000
1 2.156599000 0.962895000 2.318021000
1 2.366554000 2.415626000 0.294228000
1 1.236273000 2.261212000 -1.055839000
1 0.106985000 1.713658000 1.106639000
1 -1.416497000 -2.290577000 0.067608000
1 -3.856151000 -2.560087000 -0.000416000
1 -5.338644000 -0.561519000 0.000101000
1 -4.323422000 1.709139000 -0.074671000

1 K. Ekvall, P. van der Meulen, C. Dholland, L.-E. Berg, S. Pommeret, R. Naskrecki, J.-C. Mialocq, *J. Appl. Phys.* 2000, **87**, 2340-2352.