Molybdenum Cofactor and Sulfite Oxidase Deficiency

Jochen Reiss*
Institute of Human Genetics, University Medicine Göttingen, Germany

Abstract
A universal molybdenum-containing cofactor is necessary for the activity of all eukaryotic molybdoenzymes. In humans four such enzymes are known: Sulfite oxidase, xanthine oxidoreductase, aldehyde oxidase and a mitochondrial amidoxime reducing component. Of these, sulfite oxidase is the most important and clinically relevant one. Mutations in the genes MOCS1, MOCS2 or GPHN - all encoding cofactor biosynthesis proteins - lead to molybdenum cofactor deficiency type A, B or C, respectively. All three types plus mutations in the SUOX gene responsible for isolated sulfite oxidase deficiency lead to progressive neurological disease which untreated in most cases leads to death in early childhood. Currently, only for type A of the cofactor deficiency an experimental treatment is available.

Introduction
Isolated sulfite oxidase deficiency (MIM#606887) is an autosomal recessive inherited disease caused by mutations in the sulfite oxidase (SUOX) gene [1]. Sulfite oxidase is localized in the mitochondrial intermembrane space, where it catalyzes the oxidation of sulfite to sulfate as a homodimer. Lack of this enzyme activity results in elevated sulfite levels, which subsequently cause severe neurological symptoms including untreated seizures and progressive neurodegeneration. In the absence of effective treatment options, death typically occurs at an early stage although milder cases have been described.

More often a so called combined form of sulfite oxidase deficiency is found, which is caused by the absence of a molybdenum containing cofactor required for the activity of sulfite oxidase deficiency and additionally that of xanthine oxidoreductase, aldehyde oxidase and a mitochondrial amidoxime reducing component [2]. This combined form is also inherited autosomally recessively and caused by mutations in the genes MOCS1 (MIM#603707), MOCS2 (MIM#603708) or GPHN (MIM#603930). Clinically, this combined form of the disease is identical to the before described isolated form. However, the two forms can be distinguished biochemically by absence or presence of xanthine oxidoreductase activity. In the combined form, an increased level of xanthine and a reduced level of uric acid are found.

Apoenzymes of the Molybdenum Cofactor
Sulfite oxidase
A common cofactor for oxidoreductases was postulated as early as in 1964 and a few years later sulfite oxidase was added to the short list of mammalian enzymes containing molybdenum besides xanthine oxidase and aldehyde oxidase [3,4]. Indeed, all eukaryotic molybdoenzymes contain the molybdenum in the form of a molybdenum cofactor (MoCo). This cofactor contains a universal prosthetic group called molybdopterin, which binds and coordinates the catalytically active molybdenum within the holoenzyme [5]. For humans, sulfite oxidase (SUOX) is the most important MoCo-dependant enzyme. So far, 25 different mutations causing isolated SUOX deficiency have been described and are listed in Table 1. Recently, hyperekplexia has been described as an additional consequence of homozygous SUOX mutations [6].

Xanthine oxidoreductase
Classical xanthinuria (type I) is caused by mutations in the gene for xanthine oxidoreductase (XOR) and reflects an isolated XOR deficiency [7]. In MoCo deficiency, XOR deficiency is seen in combination with SUOX deficiency. Elevated xanthine and lowered uric acid concentrations in the urine are used to differentiate this combined form from the isolated SUOX deficiency. Rarely and only in cases of isolated XOR deficiency xanthine stones have been described as a cause of renal failure. Otherwise, isolated XOR deficiency often goes unnoticed. There is, however, a large body of evidence, that XOR has an additional and merely structural role during secretion of milk droplets in the lactating mammary gland [8-10].

Aldehyde oxidase
The MoCo-dependent human aldehyde oxidase (AOX1) has a broad substrate specificity partially overlapping with that of other enzymes, e.g. the above listed XOR. A number of polymorphisms in the AOX1 gene are known, which influence the catalytic activity, but no case of isolated AOX1 deficiency has been described. A heterozygous de novo mutation has been reported in a schizophrenia patient, but since no functional analysis was done, this could be a non-pathogenic variant [11].

Mitochondrial amidoxime reducing component
In 2006 a fourth MoCo-dependant enzyme activity was described, which together with cytochrome b, and its corresponding reductase catalyzes the reduction of N-hydroxylated compounds such as amidoximes at the outer mitochondrial membrane [12]. Apparently, all mammals express two isoforms encoded by the genes MARC1 and MARC2, which are also referred to as MOSC1 and MOSC2 [13,14]. Functional polymorphisms have been described for MARC2, but none of the two genes has been held responsible for a specific disease to date.

Molybdenum Cofactor Biosynthesis Genes
MOCS1
The MOCS1 gene was the first human gene identified in the conserved pathway (Figure 1) leading from GTP to active MoCo [15].

*Corresponding author: Jochen Reiss, Institute of Human Genetics, University Medicine Göttingen, Germany, Tel: 495513912926; E-mail: mailto:jreiss@gwdg.de
Received August 04, 2016; Accepted August 31, 2016; Published August 09, 2016
Citation: Reiss J (2016) Molybdenum Cofactor and Sulfite Oxidase Deficiency. Metabolomics (Los Angel) 6: 184. doi: 10.4172/2153-0769.1000184
Copyright: © 2016 Reiss J, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Figure 1: Biosynthesis of the molybdenum cofactor. Involved proteins are depicted on the left and the corresponding inherited diseases on the right.
Two consecutive open reading frames (ORF) A and B are found on the full length cDNA, which correspond to different genes in bacteria and plants [2]. ORF A is expressed via this full length cDNA leading to the protein MOCS1A, which carries a double glycin at the C-terminus essential for its catalytic function. Alternative splicing involving exon 9 of a total of 10 exons omits this motif and the corresponding stop codon. This leads to a fusion protein MOCS1AB, which consists of a nearly complete A domain and an additional B domain encoded by the second ORF. Both MOCS1A and MOCS1AB are necessary for the formation of cyclic pyranopterin monophosphate (cPMP) formerly described as precursor Z, which is the first and a relatively stable intermediate of the MoCo pathway [16].

Approximately two thirds of all MoCo-deficient patients are homozygous or compound heterozygous for mutations in the MOCS1 gene. In Table 2 all mutations described as responsible for MoCo deficiency are summarized. The two mutations in the compound heterozygotes are always located in the same domain, which indirectly demonstrates intragenic complementation if different domains are affected [2]. Complementation can also be seen during cocultivation of fibroblasts derived from different patients [17]. Cells unable to further process cPMP accumulate and excrete this intermediate, which is taken up and transformed to active MoCo by other cells which have their block in the first step leading to cPMP. Accordingly, the patients originally were divided into type A with MOCS1 mutations and type B with mutations in any of the other MoCo biosynthesis genes. In a patient combining all criteria for MoCo deficiency with a pronounced neonatal hyperekplexia only one mutation in the MOCS1 gene was identified despite extensive sequence analysis of all genes in question [18]. Since the heterozygous parents of affected patients are known to be devoid of any disease typical symptoms, it can be speculated that here a second pathogenic mutation was located either deep in an intron (leading to the activation of a cryptic splice site) or in a promoter or regulator sequence adjunct to the gene.

MOCS2

Nearly all of the remaining cases, i.e., approximately one third of the patients, carry homozygous or compound heterozygous mutations in the MOCS2 gene [2]. MOCS2 also encodes two different proteins, but the corresponding ORFs overlap in exon 3 of a total of 7 exons with the downstream ORF being shifted by one nucleotide with regard to the upstream ORF. Here, alternative first exons (named exon 1a and exon 1b) fuse to exon 2 of the MOCS2 gene and thus lead to the two proteins MOCS2A and MOCS2B.

MOCS2A is the small subunit and MOCS2B the large subunit of the heterodimeric molybdopterin synthase, which in turn dimerizes to form a heterotetramer [19]. As MOCS1A, MOCS2A carries a conserved double glycin at its C-terminus. Molybdopterin synthase introduces two sulfhydryl groups into cPMP, which finally will hold the catalytic metal ion in place. Due to these sulfur groups, molybdopterin as well as active MoCo are extremely unstable when exposed to oxygen [20]. Recently, molybdopterin synthase has been shown to take part in the regulation of RNA activated protein kinase (PKR) which in turn regulates apoptosis [21,22].

MOCS3

The small subunit of molybdopterin synthase (MOCS2A) must be sulfated by MOCS3, the gene product of the intronless MOCS3 gene. No disease-causing mutation responsible for MoCo deficiency or any other disease has been described within this gene (HGMD, 2016). With regard to MoCo biosynthesis one should clearly expect the phenotype

Nucleotide change	Predicted effect	Reference
c.182T>C	p.L61P	[48]
c.287dupC	Frame shift	[1]
c.520delG	Frame shift	[49]
c.571delC	Frame shift	[50]
c.571_574delTACGC	Frame shift	[1]
c.623C>A	p.A208D	[51]
c.650G>A	p.R217Q	[52]
c.734_737delTTC	Frame shift	[1]
c.772A>C	p.I258L	[1]
c.794C>A	p.A265D	[52]
c.803G>A	p.R269Q	[1]
c.1084G>A	p.G362S	[1]
c.1097G>A	p.R366H	[1]
c.1109C>A	p.S370Y	[51]
c.1126C>T	p.R376C	[1]
c.1136A>G	p.K379R	[1]
c.1187A>G	p.Q396R	[1]
c.1200C>G	p.Y400X	[1]
c.1234_1235delGT	Frame shift	[53]
c.1261C>T	p.Q421X	[1]
c.1313_1316delTAGA	Frame shift	[54]
c.1348T>C	p.W450R	[1]
c.1355G>A	p.G452D	[55]
c.1521_1524delTGT	Frame shift	[1]
c.1589G>A	p.G530D	[52]

Table 1: Mutations in the SUOX gene responsible for isolated sulfite oxidase deficiency as known in August 2016. The small subunit of molybdopterin synthase (MOCS2A) must be sulfated by MOCS3, the gene product of the intronless MOCS3 gene. No disease-causing mutation responsible for MoCo deficiency or any other disease has been described within this gene (HGMD, 2016). With regard to MoCo biosynthesis one should clearly expect the phenotype of a MoCo deficiency type B as the activity of molybdopterin synthase strictly depends on MOCS3 activity [23]. Since MOCS3 activity is also involved in RNA thiolation and thereby in global processes like nuclear transport, cytokinesis and cell cycle progression one might, however, also speculate on a possible embryonal lethality as a consequence of hitherto not described MOCS3 mutations [24].

GPHN

The protein gephyrin was originally described for its function in glycine receptor clustering [25]. Sequence homologies to bacterial, insect and plant genes suggested an additional role in the insertion of molybdenum into the cofactor [26,27]. This was confirmed by the phenotype of gephyrin-deficient knockout mice, which also suggested gephyrin mutations to be responsible for hyperekplexia [28]. In a MoCo-deficient patient with hyperreflexia a homozygous frame shift mutation in the GPHN gene was identified, which abolished protein translation after exon1 of a total of 27 exons [29]. This mutation abolishes the N-terminal “G domain” as well as the C-terminal “E domain” (being named after their homologous bacterial gene). In fibroblasts cultures derived from this patient, MoCo synthesis and activity could be restored by high concentrations of inorganic molybdate. Although this type C of MoCo deficiency appears to be curable by these means, transgenic mice carrying the plant homologue Cnx1 on a gephyrin-deficient background despite restored MoCo activity showed unchanged early lethality due to the absence of receptor clustering [30]. One MoCo-deficient patient with a homozygous point mutation in the E domain of gephyrin was also described [31]. In contrast to the above case, fibroblasts from the latter patient could not be restored by inorganic molybdate. The still active G domain here adenylates molybdopterin, while an inactive E domain prevents deadenylation and blocks non-enzymatic molybdenum insertion. Consequently, patients with...
isolated E domain mutations should be grouped in yet another type D of MoCo deficiency.

Various alternative splicing involves several facultative exon “cassettes” and leads to at least 11 different GPHN transcripts, which are believed to be more or less tissue-specific [32]. Further work along this line suggests that these isoforms reflect different gephyrin populations either involved in MoCo biosynthesis or fulfilling structural tasks in synapse receptor clustering [33]. In the brain of epilepsy patients without genomic GPHN mutations irregular splicing of GPHN RNA has been observed, which impairs G domain-dependent oligomerization and has a dominant-negative effect by interacting with normally spliced gephyrin [34]. Since the same isoforms could be “environmentally” induced in cell cultures by cellular stress such as alkalosis, it is believed that seizure activity could be responsible for this observation. Interestingly, heterozygous gross deletions held responsible for autism, schizophrenia and seizures show a common overlap in the same region [35].

MOCS

Before its incorporation into XOR or AOX1, the MoCo has to be sulfurated by an enzyme called MoCo Sulfurase (MOCOS alias MCSU) [7]. Mutations in the corresponding gene abolish XOR and AOX1 activity resulting in xanthinuria (MOCOS alias MCSU) [7]. Mutations in the corresponding gene MOCOS abolish XOR and AOX1 activity resulting in xanthinuria type II, which can be distinguished from type I by presence or absence of the ability to convert allopurinol to oxipurinol [36]. Hitherto, five xanthinuria patients with MOCOS mutations have been described [7,37]. Due to a reduced expression level of MOCOS in olfactory stem cells of patients with autism spectrum disorders (ASD), the gene was also brought in context with neurodevelopment and neurotransmission [38].

Animal Models and Experimental Therapies

Murine disease models have been created by targeted gene disruption for Gphn and Mocs1 deficiency [28,29]. Homozygous Gephyrin-deficient mice do not survive their first day of life and the comparison with Mocs1/mice illustrates that this is caused by the loss of receptor clustering rather than the disturbance of MoCo biosynthesis. Mocs1-deficient mice die within 14 days after birth and since they reflect the biochemical situation in most of the patients they have repeatedly been used for therapeutic studies.

The feasibility of a biochemical substitution therapy for MoCo deficiency type A using cPMP was demonstrated in these mice and later successfully transferred to human patients [39,40].

AAV-mediated gene therapy of these animals also proved to be very successful in that a single injection of recombinant virus rescued the phenotype for years [41,42]. By now, a large body of evidence has accumulated that AAV applications can increase the feasibility of a biochemical substitution therapy for MoCo deficiency type A using cPMP was demonstrated in these mice and later successfully transferred to human patients [39,40].

AAV-mediated gene therapy of these animals also proved to be very successful in that a single injection of recombinant virus rescued the phenotype for years [41,42]. By now, a large body of evidence has accumulated that AAV applications can increase the feasibility of a biochemical substitution therapy for MoCo deficiency type A using cPMP was demonstrated in these mice and later successfully transferred to human patients [39,40]. AAV-mediated gene therapy of these animals also proved to be very successful in that a single injection of recombinant virus rescued the phenotype for years [41,42]. By now, a large body of evidence has accumulated that AAV applications can increase the feasibility of a biochemical substitution therapy for MoCo deficiency type A using cPMP was demonstrated in these mice and later successfully transferred to human patients [39,40].
Recently, a murine model for MoCo deficiency type B was described, which essentially reflects the phenotype of type A deficient mice, but apparently has a slightly accelerated mortality [44]. Since type B patients do not prosper from cPMP substitution and subsequent metabolites such as molybdopterin or MoCo itself are highly instable, the gene therapy approach described above could be reemployed and explored further using these animals.

Clinical Studies

The first intravenous cPMP substitution of a type A MoCo-deficient patient with MOCS1 mutations convincingly showed a normalization of all biochemical parameters [45]. Although a reversal of already apparent neurological damage could not be expected, further neurodegeneration was stopped. In a subsequent study cPMP treatment of a type A patient was started 4 h after birth, which resulted in a complete suppression and even reversal of symptoms typical for MoCo deficiency [46]. A prospective cohort study with a total of 16 patients confirmed that cPMP substitution is most effective in type A patients if started before onset of symptoms, but is ineffective in type B patients with pathogenic MOCS2 mutations [47].

Conclusion

Isolated SUOX deficiency and the three known types of combined MoCo deficiency all result in seizures refractory to common treatment regimens and elevated sulfite levels in the urine. Therefore, urinary sulfite measurement by dipstick analysis is strongly recommended in all unsolved cases of neonatal persistent seizures. Additionally, lowered uric acid is an indicator for the combined MoCo deficiency and a test of this parameter is often included in routine metabolic screening. Additionally, it might be worthwhile to think about the inclusion of the above described genes in genetic screens—especially in the light of this parameter is often included in routine metabolic screening. This would also result in an accelerated pinpointing of the exact type of the disease, which to date is of ever cheaper whole genome analysis. This would also result in the above described genes in genetic screens—especially in the light of this parameter is often included in routine metabolic screening.

References

1. Johnson JL, Coyne KE, Garrett RM, Zabot MT, Dorche C, et al. (2002) Isolated sulfite oxidase deficiency: identification of 12 novel SUOX mutations in 10 patients. Hum Mutat 20: 74.
2. Reiss J, Hahnweid R (2011) Molybdenum cofactor deficiency: Mutations in GPHN, MOCS1, and MOCS2. Hum Mutat 32: 10-18.
3. Pateman JA, Cove DJ, Rever BM, Roberts DB (1964) A Common Co-Factor for Nitrate Reductase and Xanthine Dehydrogenase Which Also Regulates the Synthesis of Nitrate Reductase. Nature 201: 3223-3235.
4. Cohen HJ, Fridovich I, Rajagopalan KV (1971) Hepatic sulfite oxidase. A functional role for molybdenum. J Biol Chem 246: 374-382.
5. Schwarz G, Mendel RR, Ribbe MW (2009) Molybdenum cofactor enzymes and pathways. Nature 460: 839-847.
6. Holder JL Jr, Agadi S, Reese W, Rehder C, Quach MM (2014) Infantile spasms and pathways. Nature 460: 839-847.
7. Ichida K, Amaya Y, Okamoto K, Nishino T (2012) Mutations associated with xanthine oxidoreductase and xanthine oxidoreductase associated with isolated sulfite oxidase deficiency. JAMA Neurology 71: 782-784.
8. Vorbach C, Scriven A, Caeperchi MR (2002) The housekeeping gene xanthine oxidoreductase is necessary for milk fat droplet enveloping and secretion: gene sharing in the lactating mammary gland. Genes Dev 16: 3232-3235.
9. Jeong J, Lisinski I, Kadegowda AK, Shin H, Wooding FB, et al. (2013) A test of current models for the mechanism of milk-lipid droplet secretion. Traffic 14: 974-985.
10. McManaman JL, Bain DL (2002) Structural and conformational analysis of the oxidase to dehydrogenase conversion of xanthine oxidoreductase. J Biol Chem 277: 21261-21268.
11. Fromer M, Pocklington AJ, Kavanagh DH, Williams HJ, Deyer S, et al. (2014) De novo mutations in schizophrenia implicate synaptic networks. Nature 506: 179-84.
12. Havermeyer A, Bittner F, Wollers S, Mendel R, Kunze T (2006) Identification of the missing component in the mitochondrial amidoxime converting system as a novel molybdenum enzyme. J Biol Chem 281: 34796-34802.
13. Ott G, Reichmann D, Boerger C, Cascorbi I, Bittner F, et al. (2014) Functional characterization of protein variants encoded by nonsynonymous single nucleotide polymorphisms in MARC1 and MARC2 in healthy Caucasians. Drug Metab Dispos 42: 718-725.
14. Pflitzko B, Ott G, Reichmann D, Henderson CJ, Wolf CR, et al. (2013) The involvement of mitochondrial amidoxime reducing components 1 and 2 and mitochondrial cytochrome b5 in N-reductive metabolism in human cells. J Biol Chem 288: 20228-20237.
15. Reiss J, Cohen N, Dorche C, Mandel H, Mendel RR, et al. (1998) Mutations in a polycistronic nuclear gene associated with molybdenum cofactor deficiency. Nat Genet 20: 51-53.
16. Rajagopalan KV, Johnson JL (1992) The pterin molybdenum cofactors. J Biol Chem 267: 10199-10202.
17. Johnson JL, Wuebbers MM, Mandell R, Shih VE (1989) Molybdenum cofactor biosynthesis in humans. Identification of two complementation groups of cofactor-deficient patients and preliminary characterization of a diffusible molybdenyltransferase precursor. J Clin Invest 83: 897-903.
18. Macaya A, Bruno L, Fernandez-Castillo N, Arranz JA, Ginjab HA, et al. (2005) Molybdenum cofactor deficiency presenting as neonatal hyperkaleplaxia: a clinical, biochemical and genetic study. Neuropediatrics 36: 389-394.
19. Leimkuhler S, Freuer A, Arauco J, Rajagopalan KV, Mendel RR (2003) Mechanistic studies of human molybdenum cofactor synthesis reaction and characterization of mutants identified in group B patients of molybdenum cofactor. J Biol Chem 278: 26127-26134.
20. Johnson JL, Hainline BE, Rajagopalan KV, Arison BH (1984) The pterin component of the molybdenum cofactor. Structural characterization of two fluorescent derivatives. J Biol Chem 259: 5414-5422.
21. Vaughn LS, Sneb B, Patel RC (2014) Inhibition of PKR protects against tunicamycin-induced apoptosis in neuroblastoma cells. Gene 536: 90-96.
22. Suganuma T, Swanson SK, Florens L, Washburn MP, Workman JL (2016) Moco biosynthesis and the ATAC acetyltransferase engage translation initiation via inhibiting latent PKR activity. J Mol Cell Biol 8: 44-50.
23. Matthes A, Rajagopalan KV, Mendel RR, Leimkuhler S (2004) Evidence for the physiological role of a rhodanese-like protein for the biosynthesis of the molybdenum cofactor in humans. Proc Natl Acad Sci U S A 101: 5946-5951.
24. Chowdhury MM, Dosche C, Lohmannsroben HG, Leimkuhler S (2012) Dual role of the molybdenum cofactor biosynthesis protein MOCS3 in RNA thiolation and molybdenum cofactor biosynthesis in humans. J Biol Chem 287: 17297-17307.
25. Kirsch J, Wolters I, Triller A, Betz H (1993) Gephyrin antisense oligonucleotides prevent glycine receptor clustering in spinal neurons. Nature 366: 745-748.
26. Kamdar KP, Shelton ME, Finnerty V (1994) The Drosophila molybdenum cofactor gene cinnamon is homologous to three Escherichia coli cofactor proteins and to the rat protein gephyrin. Genetics 137: 791-801.
27. Stallmeyer B, Nerlich A, Schiemann J, Brinkmann H, Mendel RR (1996) Molybdenum cofactor biosynthesis: the Arabidopsis thaliana GDN cxn1 encodes a multifunctional two-domain protein homologous to a mammalian neuroprotein, the insect protein Cinnamon and three Escherichia coli proteins. Plant J 8: 751-62.
28. Feng G, Tintrup H, Kirsch J, Nichol MC, Kuhse J, et al. (1998) Dual requirement for gephyrin in glycine receptor clustering and molybdoenzyme activity. Science 282: 1321-1324.
29. Reiss J, Gross-Hardt S, Christensen E, Schmidt P, Mendel RR (2001) A mutation in the gene for the neurotransmitter receptor-clustering protein gephyrin causes a novel form of molybdenum cofactor deficiency. Am J Hum Genet 68: 208-213.
30. Grosskreutz Y, Betz H, Kneussel M (2003) Rescue of molybdenum cofactor...
biosynthesis in geophen-deficient mice by a Cnx1 transgene. Biochem Biophys Res Commun 30: 450-455.

31. Reiss J, Lenz U, Aquaviva-Bourdain C, Joriot-Chekaf S, Mention-Mulliez K, et al. (2011) A GPR111 point mutation leading to molybdenum cofactor deficiency. Clin Genet 80: 598-599.

32. Rees MI, Harvey K, Ward H, White JH, Evans L, et al. (2003) Isomorph heterogenity of the human gene (GPHN), binding domains to the glycine receptor, and mutation analysis in hyperkplexia. J Biol Chem 278: 24688-24696.

33. Smolinsky B, Eichler SA, Buchmeier S, Meier JC, Schwarz G (2008) Splice-specific functions of geophen in molybdenum cofactor biosynthesis. J Biol Chem 283: 17370-17379.

34. Forstera B, Belaidi AA, Juttrner R, Bernert C, Tsokos M, et al. (2010) Irregular RNA splicing disease by spino-geophen in the corru amonias of patients with epilepsy. Brain 133: 3778-3794.

35. Lionel AC, Vaags AK, Sato D, Gazzellone MJ, Mitchell EB, et al. (2013) Rare exonic deletions implicate the synaptic organizer Geophen (GPHN) in risk for autism, schizophrenia and seizures. Hum Mol Genet 22: 2055-2066.

36. Reiter S, Simmonds HA, Zolnner N, Braun SL, Knedel M (1990) Demonstration of a combined deficiency of xanthine oxidase and aldehyde oxidase in xanthinuric patients not forming opioids. Clin Chim Acta 177: 221-234.

37. Zhou Y, Zhang X, Ding R, Li Z, Hong Q, et al. (2015) Using Next-Generation Sequencing to Identify a Mutation in Human MCSU that is Responsible for Type II Xanthinuria. Cell Physiol Biochem 35: 2412-2421.

38. Feron F, Gepner B, Lacassagne E, Stephan D, Mesnage B, et al. (2002) Olfactory stem cells reveal MOCOS as a new player in autism spectrum disorders. Mol Psychiatry.

39. Lee HJ, Adham IM, Schwarz G, Kneussel M, Sass JO, et al. (2002) Molybdenum cofactor-deficient mice resemble the phenotype of human patients. Hum Mol Genet 11: 3309-3317.

40. Schwarz G, Santamaria-Araujo JA, Wolf S, Lee HJ, Adham IM, et al. (2004) Rescue of lethal molybdenum cofactor deficiency by a biosynthetic precursor from Escherichia coli. Hum Mol Genet 13: 1249-1255.

41. Kugler S, Hahnnewald R, Garrido M, Reiss J (2007) Long-term rescue of a lethal inherited disease by adeno-associated virus-mediated gene transfer in a mouse model of molybdenum cofactor deficiency. Am J Hum Genet 80: 291-297.

42. Hahnnewald R, Wegner W, Reiss J (2009) AAV-mediated gene therapy for metabolic diseases: dosage and reaplication studies in the molybdenum cofactor deficiency model. Genet Vaccines Ther 7: 9.

43. Chandler RJ, LaFave MC, Vanshney GK, Trivedi NS, Carrillo-Carrasco N, et al. (2015) Vector design influences hepatic genotoxicity after adeno-associated virus gene therapy. J Clin Invest 125: 870-880.

44. Jakubczka-Smorag J, Santamaria-Araujo JA, Metz I, Kumar A, Hakouh S, et al. (2016) Mouse model for molybdenum cofactor deficiency type B recapitulates the phenotype observed in molybdenum cofactor deficient patients. Hum Genet.

45. Veldman A, Santamaria-Araujo JA, Solazzi S, Pilt J, Gianello R, et al. (2010) Successful treatment of molybdenum cofactor deficiency type A with cPMP. Pediatrics 125: e1249-e1254.

46. Hiltzer MM, Bos AF, Bergman KA, Veldman A, Schwarz G, et al. (2012) Favorable outcome in a newborn with a molybdenum cofactor type A deficiency treated with cPMP. Pediatrics 130: e1005-e1010.

47. Schwahn BC, Van Sproonsen FJ, Belaidi AA, Bowhay S, Christodoulou J, et al. (2015) Efficacy and safety of cytic pyanopterin monophosphate substitution in severe molybdenum cofactor deficiency type A: a prospective cohort study. Lancet 386: 1955-1963.

48. Rocha S, Ferreira AC, Dias AI, Vieira JP, Sequeira S (2014) Sulfite oxidase deficiency – an unusual late and mild presentation. Brain Dev 36: 176-179.

49. Seidahmed MA, Alyamani EA, Rashid MS, Saadalath AA, Abdelbasit OB, et al. (2005) Total truncation of the molybdopterin/dimerization domains of SUOX protein in an Arab family with isolated sulfite oxidase deficiency. Am J Med Genet A 136: 205-209.

50. Rupnar CA, Gillette J, Gordon BA, Ramsay DA, Johnson JL, et al. (1996) Isolated sulfite oxidase deficiency. Neopediaetrics 27: 299-304.

51. Edwards MC, Johnson JL, Marriage B, Graf TN, Coyne KE, et al. (1999) Isolated sulfite oxidase deficiency: review of two cases in one family. Ophthalmology 106: 1957-1961.

52. Kisker C, Schindelin H, Pacheco A, Wehbi WA, Garrett RM, et al. (1997) Molecular basis of sulfite oxidase deficiency from the structure of sulfite oxidase. Cell 91: 973-983.

53. Salih MA, Bosley TM, Alorainy IA, Sabry MA, Rashed MS, et al. (2013) Preimplantation genetic diagnosis in isolated sulfite oxidase deficiency. Can J Neurol Sci 40: 109-112.

54. Tan WH, Eichler FS, Hoda S, Lee MS, Baris H, et al. (2005) Isolated sulfite oxidase deficiency: a case report with a novel mutation and review of the literature. Pediatrics 116: 757-766.

55. Chen LW, Tsai YS, Huang CC (2014) Prenatal multilucystic encephalopathy in isolated sulfite oxidase deficiency with a novel mutation. Pediatr Neurol 51: 181-182.

56. Reiss J, Christensen E, Kurleman G, Zabot MT, Dorche C (1998) Genomic structure and mutational spectrum of the bisistric MOC51 gene defective in molybdenum cofactor deficiency type A. Human Genet 103: 639-644.

57. Leinkuhler S, Charcosset M, Latour P, Dorche C, Kleppe S, et al. (2005) Ten novel mutations in the molybdenum cofactor genes MOC51 and MOC52 in severe molybdenum cofactor deficiency: review of 12 cases (MOC51 and review). Eur J Paediatr Neurol 17: 1-6.

58. Reiss J, Johnson JL (2003) Mutations in the molybdenum cofactor biosynthetic genes MOC51, MOC52, and GPHN. Hum Mutat 21: 569-576.

59. Arenas M, Fairbanks LD, Vijayakumar K, Carr L, Escuero E (2009) An unusual genetic variant in the MOC51 gene leads to complete missplicing of an alternatively spliced exon in a patient with molybdenum cofactor deficiency. J Inherit Metab Dis 32: 580-589.

60. Hahnnewald R, Leinkuhler S, Vilaseca A, Aquaviva-Bourdain C, Lenz U, et al. (2006) A novel MOC52 mutation reveals coordinated expression of the small and large subunit of molybdopterin synthase. Mol Gen Metab 89: 210-213.

61. Reiss J, Dorche C, Staalbmeyer B, Mendel RR, Cohen N (1999) Human molybdopterin synthase gene: genomic structure and mutations in molybdenum cofactor deficiency type B. Am J Hum Genet 64: 706-711.

62. Johnson JL, Coyne KE, Rajagopalan KV, Van Hove JL, Mackay M, et al. (2001) Molybdopterin synthase mutations in a mild case of molybdenum cofactor deficiency. Am J Med Genet 104: 169-173.

63. Per H, Gumus H, Ichida K, Caglayan O, Kumandas S (2007) Molybdenum cofactor deficiency: clinical features in a Turkish patient. Brain Dev 29: 365-368.