Evaluation of Novel Platelet Polymorphisms in Stroke.
Dichotomic Effect of rs5443 in GNB3

Constantino Martínez,a Ana Isabel Antón,a Agustina Bernal,a María Luisa Lozano,a Francisca Ferrer-Marin,a Javier Corral,a Juan Antonio Iniesta,b Vicente Vicente,a José Riveraa*

*aCentro Regional de Hemodonación, University of Murcia, IMIB-Arrixaca, Murcia, Spain
bDepartment of Neurology, Hospital Universitario Reina Sofía, Murcia, Spain

Dear Editor,

Our group recently characterized two single-nucleotide polymorphisms (SNPs), rs4366150 and rs1787566, on the genes encoding lysophosphatidic acid receptor-1 (LPARI) and myosin VB (MYOSB), respectively, which are associated with platelet reactivity, in a cohort of 286 healthy children.1 Furthermore, the recently identified SNPs rs5443 (on the gene encoding guanine nucleotide binding protein 3, GNB3) and rs3737224 (on the gene encoding platelet endothelial aggregation receptor 1, PEAR1)2,3 may also be considered as potential new genetic factors implicated in platelet function. However, the role of these SNPs in thrombosis or hemorrhage disorders has either not been addressed, or is still controversial.

For this purpose, the presence of the four SNPs was determined in consecutive patients who survived an IS and in patients who suffered from an intracranial hemorrhage [subarachnoid hemorrhage (SAH) and intracerebral hemorrhage (ICH)].

For this study by segregating by gender. The results showed that while in women the T allele of rs5443 was not associated with IS (p=0.713), there was a statistically significant, almost three-fold increase in the risk of developing IS among men without
Table 1. Clinical features and prevalence of selected risk factors in case-control study

	Controls (n=111)	IS (n=118)	p*	OR (95% CI)	SAH (n=102)	p*	OR (95% CI)	ICH (n=164)	p*	OR (95% CI)
Age [year]										
Range	18-87	32-97		-	19-90	-	25-99	-		
Mean±SD	48.6±19.6	73.3±12.3	<0.001	59.6±12.6 <0.001	-	69.6±4.7	<0.001	-		
Male sex (%)	54(±12.6)	46±12.6	0.012	39±0.012	66±0.012	66	0.0059			
Risk factors (%)										
Current/former smoker										
Hypertension	21±68	42±0.025	0.0001	42±0.0001	67±0.001	67	0.001			
Dyslipidemia	12±37	37±<0.001	-	65.2±0.012	65.2±0.012	32	0.593			
Diabetes mellitus	9.5±45.7	-	0.012	-	-	-		-		
PEAR1 rs3737224, n (%)	138(22.7)	28(23.7)	0.814	27(26.5) 0.409	-	39(23.8)	0.778			
LPAR1 rs4366150, n (%)	387(45.3)	77(65.3)	0.876	74(72.5) 0.115	-	104(63.4)	0.797			
MYO5B rs1787566, n (%)	194(32.1)	31(26.3)	0.215	28(27.1) 0.385	-	49(29.9)	0.593			
GNB3 rs5443, n (%)	342(60.0)	77(65.3)	0.087	48(47.1) 0.071	-	95(57.9)	0.781			
Total subjects	342(60.0)	77(65.3)	0.087	48(47.1) 0.071	-	95(57.9)	0.781			

Data are mean±SD values or the percentage of individuals. Current/former smoker: the subject had ever smoked >10 cigarettes per day. Hypertension: blood pressure ≥140 mm Hg systolic or 90 mm Hg diastolic on repeated observations over 3 months, or if the subject was receiving chronic antihypertensive therapy. Dyslipidemia: total serum cholesterol level of >5.72 mmol/L (220 mg/dL).

*Statistical analysis was performed vs. controls. t-test or χ² were used to evaluate statistical differences between groups. Significance was accepted when p<0.05 (two-sided). †AG+GG genotypes, ‡CT+TT genotypes. ¶Multivariate analysis (hypertension, age, and sex included). ‡Multivariate analysis (diabetes mellitus, hypertension, and age included). DM: diabetes mellitus; ICH: intracerebral hemorrhage; IS: ischemic stroke; N/A: not available; SAH: subarachnoid hemorrhage.

Acknowledgements
This work was funded by Instituto de Salud Carlos III/FEDER (PI10/02594), RIC RD12/0042/0050 (ISCIII and FEDER).

REFERENCES
1. Guerrero JA, Rivera J, Quiroga T, Martínez-Perez A, Antón AI, Martínez C, et al. Novel loci involved in platelet function and platelet count identified by a genome-wide study performed in children. Hae-matologica 2011;96:1335-1343.
2. Kuniicki TJ, Williams SA, Nugent DJ. Genetic variants that affect platelet function. Curr Opin Hematol 2012;19:371-379.
3. Jones CI, Bray S, Garner SF, Stephen J, de Bono B, Argengent WG, et al. A functional genomics approach reveals novel quantitative trait loci associated with platelet signaling pathways. Blood 2009;114:1405-1416.
4. Corral J, Iniesta JA, González-Consejero R, Villalón M, Vicente V. Polymorphisms of clotting factors modify the risk for primary intracranial hemorrhage. Blood 2001;97:2979-2982.
5. Roy-O’Reilly M, McCullogh LD. Sex differences in stroke: the contribution of coagulation. Exp Neurol 2014;259;16-27.