Profile of Students’ Physics Problem-Solving Skills and the Implementation of Inquiry (Free, Guided, and Structured) Learning in Senior High School

B K Prahani1*, E Susiawati1, U A Deta1, N A Lestari1, M Yantidewi1, M N R Jauhariyah1, M A Mahdiannur1, E Candrawati2, Misbah3, S Mahtari3, Suyidno3, J Siswanto4

1 Universitas Negeri Surabaya, Surabaya, Indonesia.
2 Universitas Bengkulu, Bengkulu, Indonesia.
3 Universitas Lambung Mangkurat, Banjarmasin, Indonesia.
4 Universitas PGRI Semarang, Semarang, Indonesia.

E-mail*: binarprahani@unesa.ac.id

Abstract. Learning in schools has a significant role in improving 21st-century skills, including problem-solving skills. The objective of this research to determine the profile of students’ physics problem-solving skills and the implementation of inquiry (free, guided, and structured) learning in senior high school. The study was conducted on 84 students of state senior high school. This type of research was conducted using Descriptive Research Design (DRD). Data collection methods using tests, questionnaire, and interviews. The instrument of research used are (1) instrument tests of physics problem-solving skills, (2) response questionnaire sheets, (3) student and teacher interview sheets. The data obtained were analysed qualitatively descriptive. The results of this study show that only a few students can work on the material using problem-solving strategies of ACCES: (1) Assessing the problem, (2) Create a drawing, (3) Conceptualize the strategy, (4) Execute the solution, and (5) Scrutinize the result, in solving dynamic electricity problems. Implementation of inquiry (free, guided, and structured) learning provided is not ideal so that it causes students to be less active so that problem-solving skills are lacking and no laboratory supports the learning process. Students are not introduced to the existence of a virtual laboratory (i.e. PhET) as a laboratory replacement. So, to improve students’ physics problem-solving skills required proper inquiry (free, guided, and structured) learning assisted by PhET.

1. Introduction
In the era of the industrial revolution 4.0, it requires students to have 21st-century skills, including scientific creativity, critical thinking skills, scientific collaboration, new literacy, and problem-solving skills [1-15]. Learning in schools also has a significant role in improving 21st-century skills, including problem-solving skills. The results showed that learning in schools aims to improve students’ problem-solving skills [16-18], including physics problem-solving skills. If physics problem-solving skills are
not taught at the school level, students will have problems, namely not being able to compete in the 21st century and the era of the industrial revolution 4.0 [1,5,10].

Physics problem solving is an individual cognitive process to achieve the goals and solutions of physics problems at hand [19-25]. Teodorescu et al. [24-25] formulated problem-solving vulnerability indicators abbreviated as GW-ACCES, which include (1) Assessing the problem, (2) Create a drawing, (3) Conceptualize the strategy, (4) Execute the solution, and (5) Scrutinize the result. This indicator of problem-solving skills that researchers have explored in Indonesia has never been applied. Therefore, this study will use indicators of problem-solving skills in the form of Teodorescu et al. [24-25].

Learning that can improve learning outcomes includes problem-solving skills, one of which is Inquiry Learning [26-43]. Inquiry has advantages in learning, namely: (1) There is an increase in the ability of memory and understanding of learning material by students because the knowledge or information they get is based on their authentic learning experience when they (students) find their answers to questions that they also have. apply yourself during the learning process; (2) The inquiry learning model improves students' problem-solving skills in new and different situations that they may encounter at other times (in the future); (3) Inquiry learning model helps teachers simultaneously increase student motivation; (4) Students in the inquiry learning model will learn how to organize themselves to learn; (5) The basic concepts of a learning material will be remembered and deposited well in the memory of students; (6) encouraging indirectly to students to cooperate, be objective, honest, confident, full of responsibility, and share tasks [26-43].

The weaknesses of inquiry learning include: (1) When teachers and students are not yet used to implementing inquiry learning models, they often cannot manage time properly. (2) The teacher tells the information that the student should look for will cause the inquiry learning model not to function properly. (3) Students who are not accustomed to implementing inquiry learning can deviate from their original goal. (4) Students often gather information that is irrelevant and not so important. (5) Can reduce students' motivation to learn when students cannot find and complete assignments. (6) If there are too many students in the class, the teacher may find it difficult to facilitate the learning process of all students. (7) When inquiry learning is always set in groups, there are usually some students who are less active in the group [26-43]. Inquiry learning is divided into (1) Structured Inquiry; (2) Guided Inquiry; and (3) Free Inquiry [41].

The problem that has arisen in the last few years is the inadequate inclusion in teaching physics [26-27,29-30,31,33-39,42-43]. Based on the results of literature studies [26-27,29-30,31,33-39,42-43], no research specifically addresses the profile of students' physics problem-solving skills and the implementation of inquiry (free, guided, and structured) learning in senior high school. Therefore, this study will focus on obtaining truthful information from the profile of students' physics problem-solving skills and the implementation of inquiry (free, guided, and structured) learning in senior high school, specifically in physics learning. The novelty of this research is to bridge the results of previous research and facts in 2020 to obtain findings and recommendations related to the profile of students' physics problem-solving skills and the implementation of inquiry (free, guided, and structured) learning in one of the State Senior High School of Indonesia. From the findings and recommendations, it can be used as empirical evidence and further research can be carried out to produce improvements in the quality of education, especially relevant physics learning related to improving physics problem-solving skills.

2. Method

This type of research was conducted using Descriptive Research Design (DRD), but it also did not test the hypothesis [44]. The results of this study were to obtain truthful information from the profile of students' physics problem-solving skills and the implementation of inquiry (free, guided, and structured) learning in senior high school, specifically in physics learning. This research was conducted in February 2020. The subjects of this study were 84 students of State Senior High School 1 Driyorejo, Gresik, Indonesia. The technique of taking is using purposive sampling. Data collection methods using interview techniques, technical tests, and interview techniques. To get the instrument data used are (1) Instrumental Physics Problem Solving Skills Test, (2) Response Questionnaire Sheet, (3) Student and Teacher Interview Sheets. The research instrument has been validated by two experts and has been
declared valid and reliable. Indicators of physics problem-solving skills test include (1) Assessing the problem, (2) Create a drawing, (3) Conceptualize the strategy, (4) Execute the solution, and (5) Scrutinize the result [24-25]. Data analysis using qualitative descriptive. Criteria for students' physics problem solving skills (S) by the criteria of: (1) $S > 2.33$ (High); (2) $2.33 \geq S \geq 1.33$ (Moderate); and (3) $S < 1.33$ (Low).

3. Results and Discussion
This section will present the results of the research which consists of three main parts, namely (1) the results of the test of physics problem-solving skills, (2) the response questionnaire, (3) the results of the student and teacher interviews. The results of physics problem-solving skills are presented in Table 1.

Table 1. Students' physics problem-solving skills.

Indicators of physics problem-solving skills	Average score of students' physics problem-solving skills	Category of physics problem-solving skills
Assessing the problem	0.74	Low
Create a drawing	1.99	Moderate
Conceptualize the strategy	1.47	Moderate
Execute the solution	1.73	Moderate
Scrutinize the result	0.60	Low
Average	1.31	Low

Table 1 explains that students' physics problem-solving skills are classified as low. Average score of students' physics problem-solving skills in 1.31 (Low). These results indicate that the physics problem-solving skills of high school students are still in the low category. The findings of this study reinforce that problem-solving skills must be trained at the high school level by design. This statement is reinforced by the results of research which states that if physics problem-solving skills are not taught at the school level, students will have problems, namely not being able to compete in the 21st century and the era of the industrial revolution 4.0 [1,5,10]. To strengthen the research data in Table 1, the researcher conducted a qualitative descriptive analysis based on the results of the students' physics problem-solving skills written test as presented in Table 2.

Table 2. The results of the written test of physics problem-solving skills by students.

Indicators of Physics Problem-Solving Skills	Results of the Written Test of Physics Problem Solving Skills by Students
A – Assess the problem (Identify the principles of the problem needed to solve the problem)	A-assess the problem (Identify the principles of the problem needed to solve the problem); find kWh all usage in 1 month
C – Create a drawing (Translate words in the form of pictures or drawings that have instructions in solving problems)	C-Create a drawing (Translate words in the form of pictures or drawings that have instructions in solving problems)
C – Conceptualize the strategy (outlines the steps that will be used in solving the problem)	C-Conceptualize the strategy (outlines the steps that will be used in solving the problem)
E – Execute the solution (Apply the formula to solve the problem)	E-Execute the solution (Apply the formula to solve the problem):
Based on Figure 1 - Figure 5 shows that students are still not familiar with ACCES-based physics problem-solving. These results show evidence that physics problem-solving skills are very important to be trained immediately. The results showed that problem-solving skills are the main things in learning [45]. To strengthen the data on the results of the physics problem-solving skills test, the students' responses are presented in Table 2.

Table 3. Students’ responses.

Question	Ever	Never
Have physics problem-solving skills been trained by the teacher?	83	1
Have you ever applied physics problem-solving skills in physics?	84	0
Have you ever done experiments on "Dynamic Electricity"?	5	79
Have you ever experimented with a PhET virtual lab?	1	83

Based on Table 2, it shows that in general, physics problem-solving skills have been trained by design by the teacher. Besides, all students agreed that physics problem-solving skills were very important. However, the fact is that physics problem-solving skills are still low. It is a finding that there is a need for innovative learning models that are specifically developed and applied to improve physics problem-solving skills. It is strengthened by the results of research that various problems can be solved by the existence of these problem-solving skills [46-48] to get the best solution for the existing problems [49]. More deeply, an interesting fact has been found that most students have never experimented. Besides, many students have never used a virtual lab like PhET. Whereas the use of PhET can support visualized and interactive experiments [50].

The results of interviews with teachers and students at State Senior High School 1 Driyorejo include: (1) Students and teachers agree that physics problem-solving skills are very important in the learning process; (2) Teachers and students have often been involved in learning to improve physics problem-solving skills, but the test results show the fact that students' physics problem-solving skills are still low; (3) The teacher has also used guided and structured inquiry learning, but not for free inquiry. This is because free inquiry is still not applicable to students; (4) The syntax of the inquiry (structured, guided, and free) learning model used by the teacher is not standard, but has been modified according to the teacher's wishes; (5) Students have never been taught to use PhET, even though students want to use interactive media including PhET. However, this is in contrast to interviews with teachers who stated that students did not want to use PhET; (5) According to the students, in general, the teacher never invited students to intensively do inquiry activities (structured, guided, and free) in the laboratory, because in reality, the laboratory was not optimal; (6) According to the teacher, the implementation of inquiry learning is still very difficult to apply because there are so many materials in the curriculum and it will be time-consuming if inquiry-based learning is often used.

Based on the results of interviews with students and teachers, researchers formulated the profile of the implementation of inquiry (structured, guided, and free) in physics learning as follows: (1) the implementation of inquiry (structured, guided, and free) in physics learning has not been maximized to improve solving skills physics problems in high school. (2) The use of virtual labs to support inquiry learning in the form of PhET has also not been maximized. (3) Inquiry learning cannot be maximized if
students and teachers are not supported by real and virtual laboratories. This finding is reinforced by the results of research which found that learning physics has not been integrated with the development of science and technology and is dominated by teacher-centred learning [51].

4. Conclusion
In this study, it can be concluded that the profile of students 'physics problem-solving skills and the implementation of inquiry (free, guided, and structured) learning in senior high school as following: (1) students' physics problem-solving skills based on ACCES at State Senior High School 1 Driyorejo is still low; (2) indicators of physics problem-solving skills based on ACCES are still in the low category; (3) the implementation of inquiry (structured, guided, and free) in physics learning has not been maximally implemented to improve physics problem-solving skills in high schools; (4) The use of virtual labs to support inquiry learning in the form of PhET has not been maximized; (5) Inquiry learning cannot be maximized if students and teachers are not supported by real and virtual laboratories. This research implies that it can be used as an empirical basis that learning the implementation of inquiry (structured, guided, and free) in physics learning needs to be supported by both real and virtual laboratories. The limitation of this study is that it still uses 84 samples and state senior high school 1 Driyorejo, Gresik, Indonesia. Further research can be carried out to (1) increase the number of samples, the number of schools, and types of schools (public and private); (2) researching with a characterization of gender; (3) there is a need for improvement of physics problem-solving skills based on inquiry (structured, guided, and free) learning model with PhET.

Acknowledgment
The authors would like to express appreciation for the support for Universitas Negeri Surabaya and State Senior High School 1 Driyorejo to support this collaborative research. Especially our beloved students are Muslimah Cindikia, Selonita Oldi Devanti, and Siti Maesaroh for the great support to collect data.

References
[1] Jatmiko B, Widodo W, Martini, Budiyanto M, Wicaksono I, and Pandiangan P 2016 Effectiveness of the INQF-based learning on a general physics for improving student’s learning outcomes J. Balt. Sci. Educ. 15 441-451.
[2] Laal M, and Ghodsi M S, 2012 Benefits of collaborative learning. Procedia Soc. Behav. Sci. 31 486-490.
[3] Mulnix J W 2012 Thinking critically about critical thinking. Educ. Philos. Theory 44 464-479.
[4] Mundilarto and Ismoyo H 2017. Effect of problem-based learning on improvement physics achievement and critical thinking of senior high school student. J. Balt. Sci. Educ. 16 761-780.
[5] Pandiangan P, Sanjaya M G I, and Jatmiko B 2017 The validity and effectiveness of physics independent learning model to improve physics problem solving and self-directed learning skills of students in open and distance education systems. J. Balt. Sci. Educ. 16 651-665.
[6] Pollastri R A, Epstein D L, Heath H G, and Ablon S J 2013 The collaborative problem solving approach: Outcomes across Settings. Perspectives 21 188-199.
[7] Prayogi S, Yuanita L, and Wasis 2018 Critical inquiry based learning: A model of learning to promote critical thinking among prospective teachers of physics. J. Turkish Sci. Educ. 15 43-56.
[8] Raj H, and Saxena D R 2016 Scientific creativity: A review of researches. Eur. Acad. Res. 4 1122-1138.
[9] Siew N M, and Mapeala R 2016 The effects of problem-based learning with thinking maps on fifth graders’ science critical thinking. J. Balt. Sci. Educ. 15 602-616.
[10] Siswanto J, Susantini E, and Jatmiko B 2018 Practicability and effectiveness of the IBMR teaching model to improve physics problem solving skills. J. Balt. Sci. Educ. 17 381-394.
[11] Susantini E, Lisdiana L, Isnawati, Al Haq A T, and Trimulyono G 2017 Designing easy DNA extraction: Teaching creativity through laboratory practice. Biochem. Mol. Biol. Educ. 45 216-225.
[12] Suyidno, Dewantara D, Nur M, and Yuanita L 2017 Maximize student’s scientific process skill within creatively product designing: Creative responsibility based learning. Adv. Soc. Sci. Educ. Human. Res. 100 98-103.

[13] Turiman P, Omar J, Daud A M, and Osman K 2012 Fostering the 21st century skills through scientific literacy and science process skills. Procedia-Soc. Behav. Sci. 59 110-116.

[14] Wicaksono I, Wasis, and Madlazim 2017 The effectiveness of virtual science teaching model (VS-TM) to improve student’s scientific creativity and concept mastery on senior high school physics subject J. Balt. Sci. Educ. 16 549-561.

[15] Zulkarnaen, Supardi Z A I, and Jatniko B 2017 Feasibility of creative exploration, creative elaboration, creative modeling, practice scientific creativity, discussion, reflection (C3PDR) teaching model to improve students’ scientific creativity of junior high school J. Balt. Sci. Educ. 16 1020-1034.

[16] Firdiyani R V, Supeno S, and Maryani M, 2019 Pengaruh LKS kolaboratif pada model pembelajaran berbasis masalah terhadap keterampilan pemecahan masalah fisika siswa SMA Berkala Ilmiah Pendidik. Fis. 7 71–81.

[17] Gok T 2015 An investigation of student’s performance after peer instruction with stepwise problem-solving strategies. Int. J. Sci. Math. Educ. 13 561–582.

[18] Thersia V, Arifiuddin M, and Misbah M 2019 Meningkatkan kemampuan pemecahan masalah melalui pendekatan somatis audiotori visual intelektual (SAVI) dengan model pengajaran langsung Berkala Ilmiah Pendidik. Fis. 7

[19] Docktor J L, and Mestre P J 2014 Synthesis of discipline-based education research in physics. Phys. Rev. Spec. Top. - Phys. Educ. Res. 10 020119.

[20] Docktor J L, Mestre J P, and Ross B H 2012 Impact of a short intervention on novices’ categorization criteria Phys. Rev. Spec. Top. - Phys. Educ. Res. 8 020102.

[21] Docktor L J, Strand E N, Mestre P J, and Ross H B 2015 Conceptual problem solving in high school physics. Phys. Rev. Phys. Educ. Res. 11 020106.

[22] Fakcharoenphol W, Morpew W J, and Mestre P J 2015 Judgments of physics problem difficulty among experts and novices. Phys. Rev. Spec. Top. - Phys. Educ. Res. 11 020128

[23] Ibrahim B, and Robelo S 2013 Role of mental representations in problem solving students’ approaches to nondirected tasks Phys. Rev. Spec. Top. - Phys. Educ. Res. 9 020106

[24] Teodorescu E R, Bennhold C, Feldman G, and Medsker L 2013 Curricular reforms that improve students’ attitudes and problem-solving performance Eur. J. Phys. Educ. 5 15-44.

[25] Teodorescu E R, Bennhold C, Feldman G, and Medsker, L 2014 New approach to analyzing physics problems: A taxonomy of introductory physics problems. Phys. Rev. Spec. Top. - Phys. Educ. Res. 9 010103.

[26] Affifah R, Masjukur K, and Sutarman 2014 Pengaruh pembelajaran guided inquiry berbantuan PhET (GIBP) terhadap kemampuan berpikir tingkat tinggi dan tanggung jawab siswa kelas xi ipa pada materi teori kinetik gas J. Pendidik. Fisika Univ. Negeri Malang 2 4-6.

[27] Maretasari E, Subali B, and Hartono 2012 Penerapan model pembelajaran inkuiri terbimbing berbais laboratorium untuk meningkatkan hasil belajar dan sikap ilmiah siswa. Unnes Phys. Educ. J. 1 28-31.

[28] Markawi N 2013 Pengaruh keterampilan proses sains, penalaran, dan pemecahan masalah terhadap hasil belajar fisika J. Formatif 3 11–25.

[29] Nurfauziah S. 2016 Pengaruh model pembelajaran inkuiri terbimbing terhadap hasil belajar. J. Pendidik. Fisika 4 10-1.

[30] Nurmani L, Doyan A, Verawati N I N S P 2016 Pengaruh model pembelajaran inkuiri terbimbing terhadap hasil belajar fisika peserta didik J. Peneliti. Pendidik. IPA 4 23-28.

[31] Partono L N R K 2015 Pengaruh model pembelajaran inkuiri terbimbing terhadap hasil belajar fisika siswa kelas VIII SMP Negeri 4 Metro semester genap tahun pelajaran 2013/2014 J. Pendidik. Fisika 3 65-72.

[32] Pratiwi K F, Wijayati, F N, Mahatmanti, W, and Marsudi. 2019 Pengaruh model pembelajaran inkuiri terbimbing berbasis penilaian autentik terhadap hasil belajar siswa. J. Inovasi Pendidik. Kimia, 13 2337-2348.
[33] Putri D A, Jamal, M A, and Misbah. 2016 Meningkatkan kemampuan pemecahan masalah siswa melalui model pengajaran langsung pada pembelajaran Fisika di Kelas X MS 4 SMA Negeri 2 Banjarmasin Berkala Ilmiah Pendidik. Fis. 4 248-261.

[34] Saparini, Wiyono K, and Ismet 2018 Pengembangan lembar kerja mahasiswa berbasis inkuiri untuk melaksanakan praktikum secara virtual laboratory Berkala Ilmiah Pendidik. Fis. 6 1-17.

[35] Sayyadi M, Hidayat A, and Muhardjito 2016 Pengaruh strategi pembelajaran inkuiri terbimbing dan terhadap kemampuan pemecahan masalah fisika pada materi suhu dan kalor dilihat dari kemampuan awal siswa J. Inspirasi Pendidik. Univ. Kanjuran Malang 6 866-874.

[36] Simbolon D H, and Sahyar 2015 Pengaruh model pembelajaran inkuiri terbimbing berbasis eksperimen riil dan laboratorium virtual terhadap hasil belajar fisika siswa J. Pendidikan, dan Kebudayaan, 21 300-315.

[37] Sipangkar Y, Juliani R, and Siregar, A. 2018 Pengaruh model pembelajaran inkuiri terbimbing terhadap hasil belajar dan aktivitas siswa J. Pendidik. Fisika 7 103-109.

[38] Amijaya L S, Ramdani, A, and Merta I W 2018 Pengaruh model pembelajaran inkuiri terbimbing terhadap hasil belajar dan kemampuan berpikir kritis peserta didik J. Pijar MIPA 13 94-99.

[39] Hardianti T, and Kuswanto, H. 2017 The difference between the level of inquiry: Process Skill Improvement at senior high school in Indonesia. Int. J. Instruct. 10 119–130.

[40] Wahyuni, R, Hikmawati, and Taufik M 2016 Pengaruh model pembelajaran inkuiri terbimbing dengan metode eksperimen terhadap hasil belajar fisika siswa kelas XI IPA SMAN 2 Mataram tahun pelajaran 2016/2017 J. Pendidik. Fis. dan Teknologi, 2 164-169.

[41] Wenning C J 2011 The Levels of Inquiry Model of Science Teaching. J. Phys. Teacher Educ. Online, 6(2), 8–16.

[42] Yazid M M, and Suprapt N 2018 Penerapan model pembelajaran inkuiri terbimbing untuk melatihkan kemampuan berpikir kritis siswa J. Inovasi Pendidik. Fis. 7 246–250.

[43] Zani R, Adlim, and Safitri R 2018 Penerapan model pembelajaran inkuiri terbimbing pada materi fluida statis untuk meningkatkan hasil belajar dan keterampilan proses sains siswa Jurnal IPA dan Pembelajaran IPA 2 56-63.

[44] Fraenkel J R, Wallen N E, and Hyun H H 2012 How to design and evaluate research in education (8th ed.) (New York: McGraw-Hill)

[45] Bogard T, Liu M, and Chiang Y V 2013 Thresholds of knowledge development in complex problem solving: A multiple-case study of advanced learner’s cognitive processes Educ. Tech. Res. Dev. 61 465–503.

[46] Sagala N L, Rahmatsyah R, and Simanjuntak, M P 2017 The influence of the problem-based learning model on the scientific process skill and problem-solving ability of the student J. Res. Method Educ. 7 1–9.

[47] Salam A, Miriam S, & Misbah M 2017 Pembelajaran fisika berbasis learner autonomy dengan metode pemecahan masalah pada topik pelombang J. Sains dan Pendidik. Fis. 13 231–237.

[48] Markawi N 2013 Pengaruh keterampilan proses sains, penalanan, dan pemecahan masalah terhadap hasil belajar fisika J. Formatif 3 11-25.

[49] Ceberiol M, Almudi J S, and Franco A 2016 Design and application of interactive simulations in problem-solving in university-level physics education J. Sci. Educ. Tech. 25 590–609.

[50] Syaifulloh R B, and Jamtiko B. 2014 Penerapan pembelajaran dengan model guided discovery dengan lab virtual PhET untuk meningkatkan hasil belajar siswa kelas XI di SMAN 1 Tuban pada pokok bahasan teori kinetik gas. J. Inovasi Pendidik. Fis. 3 174–179.

[51] Fathiah F, Kaniawati I, and Utari S 2015 Analisis didaktik pembelajaran yang dapat meningkatkan korelasi antara pemahaman konsep dan kemampuan pemecahan masalah siswa SMA pada materi fluida dinamis J. Penelit. Pengembangan Pendidik. Fis. 1 111–138.