Longitudinal white-matter abnormalities in sports-related concussion
A diffusion MRI study

Yu-Chien Wu, MD, PhD, DABMP, Jaroslaw Harezlak, PhD, Nahla M. H. Elsaid, PhD, Zikai Lin, MS, Qiuting Wen, PhD, Sourajit M. Mustafi, PhD, Larry D. Riggen, MS, Kevin M. Koch, PhD, Andrew S. Nencka, PhD, Timothy B. Meier, PhD, Andrew R. Mayer, PhD, Yang Wang, MD, PhD, Christopher C. Giza, MD, John P. DiFlorio, MD, FACSM, Kevin M. Guskievicz, PhD, ATC, Jason P. Mihalik, PhD, CAT(C), ATC, Stephen M. LaConte, PhD, Stefan M. Duma, PhD, Steven P. Broglio, PhD, ATC, Andrew J. Saykin, PsyD, ABCN, Michael A. McCrea, PhD, ABPP, and Thomas W. McAllister, MD

Neurology® 2020;00:1-12. doi:10.1212/WNL.0000000000009930

Abstract

Objective
To study longitudinal recovery trajectories of white matter after sports-related concussion (SRC) by performing diffusion tensor imaging (DTI) on collegiate athletes who sustained SRC.

Methods
Collegiate athletes (n = 219, 82 concussed athletes, 68 contact-sport controls, and 69 non-contact-sport controls) were included from the Concussion Assessment, Research and Education Consortium. The participants completed clinical assessments and DTI at 4 time points: 24 to 48 hours after injury, asymptomatic state, 7 days after return-to-play, and 6 months after injury. Tract-based spatial statistics was used to investigate group differences in DTI metrics and to identify white-matter areas with persistent abnormalities. Generalized linear mixed models were used to study longitudinal changes and associations between outcome measures and DTI metrics. Cox proportional hazards model was used to study effects of white-matter abnormalities on recovery time.

Results
In the white matter of concussed athletes, DTI-derived mean diffusivity was significantly higher than in the controls at 24 to 48 hours after injury and beyond the point when the concussed athletes became asymptomatic. While the extent of affected white matter decreased over time, part of the corpus callosum had persistent group differences across all the time points. Furthermore, greater elevation of mean diffusivity at acute concussion was associated with worse clinical outcome measures (i.e., Brief Symptom Inventory scores and symptom severity scores) and prolonged recovery time. No significant differences in DTI metrics were observed between the contact-sport and non-contact-sport controls.

Conclusions
Changes in white matter were evident after SRC at 6 months after injury but were not observed in contact-sport exposure. Furthermore, the persistent white-matter abnormalities were associated with clinical outcomes and delayed recovery time.

From the Departments of Radiology and Imaging Sciences (Y.-C.W., N.M.H.E., Q.W., S.M.M., A.J.S.), Psychiatry (Z.L., T.W.M.), and Biostatistics (L.D.R.), Indiana University School of Medicine, Indianapolis; Department of Epidemiology and Biostatistics (J.H.), School of Public Health, Indiana University, Bloomington; Nanoscope Technology LLC (S.M.M.), Bedford, TX; Departments of Radiology (K.M.K., A.S.N., Y.W.) and Neurosurgery (T.B.M., M.A.M.), Medical College of Wisconsin, Milwaukee; The Mind Research Network (A.R.M.), Albuquerque, NM; Department of Neurosurgery (C.C.G.), David Geffen School of Medicine at the University of California Los Angeles; Division of Pediatric Neurology (C.C.G.), Mattel Children’s Hospital-UCLA; Departments of Family Medicine and Orthopedics (J.P.D.), Division of Sports Medicine, University of California Los Angeles; Primary Care Sports Medicine (J.P.D.), Hospital for Special Surgery, New York, NY; Matthew Gfeller Sport-Related Traumatic Brain Injury Research Center (K.M.G., J.P.M.), Department of Exercise and Sport Science, University of North Carolina, Chapel Hill; School of Biomedical Engineering and Sciences (S.M.L.), Wake Forest and Virginia Tech University, Virginia Tech Carilion Research Institute, Roanoke; School of Biomedical Engineering and Sciences (S.M.D.), Wake Forest and Virginia Tech University, Blacksburg; and NeuroTrauma Research Laboratory (S.P.B.), Michigan Concussion Center, University of Michigan, Ann Arbor.

Go to Neurology.org/N for full disclosures. Funding information and disclosures deemed relevant by the authors, if any, are provided at the end of the article.

The article processing charge was funded by NIH R01 AG053993.

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND), which permits downloading and sharing the work provided it is properly cited. The work cannot be changed in any way or used commercially without permission from the journal.

Copyright © 2020 The Author(s). Published by Wolters Kluwer Health, Inc. on behalf of the American Academy of Neurology.
Sports-related concussion (SRC) is a serious public health issue. According to estimates by the Centers for Disease Control, each year, 1.6 to 3.8 million concussions occur in sport- and recreation-related injuries among high school and collegiate athletes.1,2 While standardized assessment tools are useful in the clinical management of SRC,3 the natural history of SRC and the time course of pathophysiologic recovery remain unclear.4,5

Magnetic resonance imaging (MRI), a safe and noninvasive imaging technique, is especially suitable for detecting pathophysiologic changes after SRC and monitoring progression. While conventional clinical MRI methods have difficulty detecting changes in white matter after SRC, diffusion tensor imaging (DTI), a method for probing white-matter microarchitecture, has demonstrated adequate diagnostic sensitivity to acute changes of the brain after SRC.6 Similarly, we have previously shown that mean diffusivity (MD), a DTI metric describing averaged water diffusion in tissue, was higher in concussed athletes and associated with clinical symptoms at acute concussion.7

Historically, large prospective longitudinal studies on SRC have been difficult due to low incidence rates (<1 per 1,000 athlete exposures)5 and challenges in proper identification of concussion. There are only a few studies on longitudinal changes in DTI metrics after SRC.5,8–12 In the present study, we investigated longitudinal white-matter alterations using DTI and clinical data from a large national multicenter study, the Concussion Assessment, Research and Education (CARE) Consortium. We hypothesized that white-matter abnormalities as in elevated DTI-derived MD persist beyond the point when athletes became clinically asymptomatic (i.e., cleared to begin their return-to-play protocol) and that white-matter abnormalities would be associated with clinical outcomes and recovery time.

Methods

Study cohorts

The participants were recruited in a multisite study of the natural history of concussion conducted through the National Collegiate Athletic Association (NCAA)–Department of Defense (DoD) CARE Consortium Advanced Research Core (ARC).13 Study sites included in this analysis are the University of North Carolina (UNC), the University of California Los Angeles (UCLA), and Virginia Tech (VT). A total of 219 collegiate athletes who completed the CARE protocol by July 2018 were included in this study. There were 3 cohorts: 82 athletes diagnosed with concussion, 68 matched contact-sport controls, and 69 matched non–contact-sport controls. The concussed and contact-sport athletes were from the football, soccer, and lacrosse teams. The non–contact-sport controls were from the baseball, softball, basketball, track and field, and cross-country teams. Contact-sport and non–contact-sport controls were matched to concussed athletes on the variables of age, sex, education, and estimated premorbid level of verbal intellectual functioning (i.e., Wechsler Test of Adult Reading14). For contact-sport controls, additional matching variables included the number of prior concussions, types of sport, and position.

Standard protocol approvals, registrations, and patient consents

All participants provided informed consent approved by the Medical College of Wisconsin Institutional Review Board and the Human Research Protection Office. The Institutional Review Board protocol number is PRO23196.

Longitudinal study design

All participants received baseline clinical assessments when recruited into the CARE-ARC study. Concussed athletes received clinical assessments13 and multimodal MRI scans15 at 4 time points: (1) 24 to 48 hours after injury, (2) the point at which the concussed athletes became asymptomatic (cleared for return-to-play progression), (3) 7 days after unrestricted return to play, and (4) 6 months after injury. When the concussed athletes became asymptomatic, they started a stepwise exercise progression protocol of 5 rehabilitation stages that had to be completed before unrestricted return to play. The return-to-play progression protocol followed the recommendations outlined in the Berlin consensus statement.16 For simplicity, hereafter we label the 4 time points as time points 1, 2, 3, and 4. In addition to clinical assessments, the interval from injury to asymptomatic state (i.e., time to asymptomatic) and the interval from injury to unrestricted return to play (i.e., time to return to play) were used as indicators of recovery trajectory. The 2 matched control groups received the same clinical assessments and MRI scans at similar time intervals. All participants underwent MRI scans on the same day as clinical assessments.

Clinical assessments

Clinical assessments followed the CARE Consortium study protocol.13 The comprehensive battery of clinical outcome measures included the Standardized Assessment of Concussion17 to assess cognition, the Sports Concussion Assessment Tool4 to assess symptom and symptom severity, the Balance

Glossary

AD = axial diffusivity; ARC = Advanced Research Core; BESS = Balance Error Scoring System; BSI = Brief Symptom Inventory; CARE = Concussion Assessment, Research and Education; DoD = Department of Defense; DTI = diffusion tensor imaging; FA = fractional anisotropy; FSL = FMRIB Software Library; MD = mean diffusivity; NCAA = National Collegiate Athletic Association; RD = radial diffusivity; ROI = region-of-interest; SRC = sports-related concussion; TBSS = tract-based spatial statistical; UCLA = University of California Los Angeles; UNC = University of North Carolina; VT = Virginia Tech.
Error Scoring System (BESS)18 to assess postural stability, and the Brief Symptom Inventory (BSI)19 to assess psychological health. The BSI can be further divided into 3 subcategories: BSI-soma for somatic symptoms and BSI-anxiety and BSI-depression for evaluating affective symptoms. Thus, a total of 8 clinical measures were studied for longitudinal clinical recoveries, associations with white-matter abnormalities, and predictions of persistent postinjury white-matter changes.

Diffusion imaging protocol

Diffusion MRI was performed on the participants on Siemens MAGNETOM 3T Tim Trio (VT, UNC, and UCLA; Siemens, Munich, Germany) or 3T Prisma (UNC and UCLA) scanners across 3 ARC sites with a 12-channel (VT) or 32-channel (UNC and UCLA) receiver-only head coil. A single-shot echo planar imaging sequence with a twice-refocused spin echo was used. The diffusion-encoding scheme consisted of 30 directions at a b value of 1,000 s/mm\(^2\) and 8 b\(_0\) (b value = 0 s/mm\(^2\)). One of the b\(_0\) volumes was acquired with a reversed phase-encoding direction.

Care has been taken to ensure the quality and stability of the longitudinal diffusion MRI signal. Three quality assurance/quality control–related studies were performed before this study to ensure the MRI quality and to evaluate cross-site DTI signal stability. These studies included physical phantom scans, traveling human phantom scans, and analyses of non–contact-sport controls across sites.7,15-20 For physical phantom scans, each imaging site performs the phantom study periodically and before and after the scanner upgrade. For diffusion MRI, the phantom study used a Function Biomedical Informatics Research Network gel phantom to detect the geometric distortion, eddy current distortion, and k-space spike artifacts. For traveling human phantom scans, to evaluate cross-site reproducibility and reliability, 2 traveling human phantoms visited each site, where they received repeated scans for test-retest evaluation.15 In analyses of non–contact-sport controls, coefficients of variation of DTI metrics in non–contact-sport controls were evaluated.

Image processing

We used the same diffusion image processing pipelines as that used in a previous study.7 All the raw and motion-corrected diffusion-weighted images were inspected by a single trained researcher (S.M.M.). Two datasets (UCLA_FB_2016 and UCLA_FB_2017) (of 721) that had severe motion artifacts beyond correction were excluded. Diffusion image processing included preprocessing followed by computation of DTI metrics. The diffusion-weighted images were first denoised with the local principal component analysis approach.21 Unlike conventional denoising methods by smoothing the image, the local principal component analysis denoising approach does not sacrifice the image spatial resolution. With a pair of reverse-phase-encoded b\(_0\) images as reference, the diffusion-weighted images were then corrected for motion, eddy current artifacts, and static-field geometric distortion with the eddy_openmp command provided in the FMRIB Software Library (FSL).22 The FSL eddy command detects outliers slice by slice with gaussian process predictions. After the image preprocessing, DTI metrics were computed voxel-wise with a linear fitting algorithm using the FSL dtifit command. Maps of DTI metrics were transformed to the standard Montreal Neurological Institute space with the use of Advanced Neuroimaging Tools nonlinear registration.23

Interpretation of DTI metrics

Four DTI metrics were included in this study (figure e-1, data available from Dryad, doi:10.5061/dryad.sn02v6x13): MD describing the speed of water movement (i.e., diffusion) in the brain tissue regardless of the directionality, radial diffusivity (RD) describing diffusion perpendicular to the axonal axis, axial diffusivity (AD) describing diffusion parallel to axons, and fractional anisotropy (FA) describing the variance among the eigenvalues of the diffusion tensor. An abnormal increase in MD may indicate destruction of the tissue microarchitectures such as axonal beading, cellular swelling, demyelination, or brain edema. An abnormal increase in AD indicates structural destruction perpendicular to the axons such as demyelination, while an abnormal increase in RD indicates structural destruction parallel to the axons such as destruction of cytoskeletons. An abnormal decrease in FA may indicate disorganization of axons or demyelination (table e-1, data available from Dryad).

Tract-based spatial statistical analyses

Tract-based statistical (TBSS) was used to test for between-group differences in the DTI metrics at each time point. In the standard Montreal Neurological Institute space, a common whole-brain white-matter skeleton was extracted with the FSL toolbox.24 Within the white-matter skeleton, nonparametric permutation-based statistics used in TBSS (i.e., the randomise command) was used for voxel-wise statistical analysis. A threshold-free cluster enhancement25 and 5,000 permutations26 were used in this study. White-matter voxels were deemed significant if \(p < 0.05\) after adjustment for multiple comparisons by controlling the family-wise error rate. The general regression models used in TBSS were adjusted for age, sex, site, scanner, and receiver-coil differences.

Region-of-interest analyses

Region-of-interest (ROI) analyses were used to study longitudinal changes in the DTI metrics across the time points and associations of the diffusion metrics with clinical outcomes. Each of the TBSS regression analyses produced white-matter voxels that had significant differences in the DTI metrics between study cohorts. These voxels were collected and intersected across time points to generate a white-matter ROI in which DTI metrics had persistent between-group differences from acute concussion to 6 months after injury. Means of the DTI metrics in the persistent white-matter ROI were computed for each participant to study (1) longitudinal white-matter changes, (2) correlations with outcome assessment scores at the same time points, (3) associations with outcome assessment at different time points using a prediction model.
Longitudinal changes in clinical assessments

For clinical outcome measures, differences were observed only between the concussed athletes and the controls (figure 1). No significant differences were observed between the 2 control groups (i.e., contact-sport and non-contact-sport controls). The between-group differences in clinical outcome measures were largest at acute concussion (time point 1), and most of them decreased to a nonsignificant level at time point 1.
each time point (in the concussed athletes (compared to the 2 control groups) at
The TBSS analyses demonstrated signi-
Longitudinal changes in DTI metrics
The TBSS analyses demonstrated significantly increased MD in the concussed athletes (compared to the 2 control groups) at each time point (p < 0.05 after controlling for family-wise error rate). White-matter voxels that had significant MD findings between the concussed athletes and contact-sport controls are shown in figure 2A. The extent of the significant between-group white-matter changes decreased over time from 4,834 voxels at time point 1 to 1,763 voxels at time point 4 (figure 2B). RD was also higher in the concussed athletes but reached significance only at acute concussion (time point 1). AD and FA did not differ between groups at any time points. Results (not shown) between the concussed athletes and non–contact-sport controls were similar. No between-group differences in DTI metrics were observed at each time point between the contact and noncontact control groups.

By intersecting the significant voxels across time points in figure 2A (i.e., concussed athletes vs contact controls), a white-matter area of 512 voxels was found to have persistently elevated MD in the concussed athletes (figure 3A). This white-matter area was located in the genu and body of the corpus callosum (based on the Johns Hopkins University white-matter atlas provided in FSL). In this region, MD in the concussed athletes was highest at acute concussion (≈40 mm²/s or 5% more compared to the controls) and decreased significantly between time points 1 and 2 (p < 0.05, asterisk in figure 3B). It reached

Table 1 Subject demographics and clinical measures at acute concussion (i.e., 24–48 hours after injury)

	Concussed, mean (SD)	Contact control, mean (SD)	Noncontact, mean (SD)	ANOVA*	Tukey post-hoc t test	p Valueb	p Valuec	p Valued
Demographics at baseline, n	n = 82	n = 68	n = 69					
Age, y	18.87 (0.93)	18.82 (1.26)	19.20 (1.22)	0.10	—	—	—	—
Sex, M:F, n*	69:13	54:14	55:14	0.70	—	—	—	—
Education, y	12.52 (0.75)	12.66 (1.04)	13.09 (1.10)	<10⁻²⁻	0.67	<10⁻²⁻	0.03	
WTAR standard score	106.04 (13.98)	106.30 (13.96)	110.53 (9.49)	0.12	—	—	—	—
Years of participation in primary sports	10.28 (3.63)	10.62 (3.82)	11.18 (3.69)	0.34	—	—	—	—
Clinical assessments at acute concussionf	n = 68	n = 64	n = 63					
SAC	26.15 (2.59)	27.69 (2.06)	27.60 (1.85)	<10⁻⁴⁻	<10⁻⁴⁻	<10⁻³⁻	0.99	
SCAT								
Symptom score	10.70 (6.59)	2.36 (3.81)	2.16 (2.76)	<10⁻¹⁻	<10⁻²⁻	<10⁻²⁻	0.97	
Symptom severity score	26.09 (21.83)	3.47 (5.59)	3.19 (4.84)	<10⁻²⁻	<10⁻²⁻	<10⁻²⁻	0.99	
BESS score	16.11 (10.67)	10.41 (5.41)	12.11 (5.93)	<10⁻²⁻	—	<10⁻²⁻	0.01	0.30
BSI score	6.22 (7.29)	1.17 (2.29)	0.94 (1.90)	<10⁻¹⁻	<10⁻¹⁰	<10⁻¹⁰	0.87	
BSI-somatization score	2.72 (3.19)	0.38 (0.81)	0.27 (0.68)	<10⁻¹⁻	<10⁻¹³	<10⁻¹³	0.79	
BSI-anxiety score	1.61 (2.52)	0.36 (0.86)	0.40 (1.06)	<10⁻⁴⁻	<10⁻³	<10⁻³	0.99	
BSI-depression score	1.89 (2.76)	0.44 (1.42)	0.27 (1.02)	<10⁻⁷⁻	<10⁻⁶	<10⁻⁶	0.84	
Clinical recovery times, d								
Time to asymptomatic stateg	9.34 (6.60)	NA	NA	—	—	—	—	—
Time to unrestricted return to playh	16.23 (11.77)	NA	NA	—	—	—	—	—

Abbreviations: ANOVA = analysis of variance; BESS = Balance Error Scoring System; BSI = Brief Symptom Inventory; n = sample size; NA = not applicable; SAC = Standardized Assessment of Concussion; SCAT = Sport Concussion Assessment Tool; WTAR = Wechsler Test of Adult Reading.

* One-way ANOVA test was used for the continuous variables except sex.

* p Values for comparisons between the concussed athletes and contact-sport controls.

* p Values for comparisons between the concussed athletes and non–contact-sport controls.

* The χ² test was used for sex.

* Assessment scores were logarithmically transformed to adjust skewness.

* n = 65.

* n = 58.

* Significant, p < 0.05.

2 (figure 1). The only measures that had lasting effects at time point 2 were BSI total score and its subcategories BSI-somatization and BSI-depression. The clinical assessment scores did not differ between the 3 groups for time points 3 and 4.

Longitudinal changes in DTI metrics

The TBSS analyses demonstrated significantly increased MD in the concussed athletes (compared to the 2 control groups) at each time point (p < 0.05 after controlling for family-wise error rate). White-matter voxels that had significant MD findings between the concussed athletes and contact-sport controls are shown in figure 2A. The extent of the significant between-group white-matter changes decreased over time from 4,834 voxels at time point 1 to 1,763 voxels at time point 4 (figure 2B). RD was also higher in the concussed athletes but reached significance only at acute concussion (time point 1). AD and
a plateau at time point 2 and beyond, at which point no significant temporal differences were found (figure 3B). Similar results were shown for RD in figure 3C. In the persistently affected white matter, there were no significant temporal changes in the longitudinal trajectories of AD and FA (figure 3, D and E, respectively).

In the persistently affected white matter, both MD and RD were significantly higher in the concussed athletes than in the 2 control groups. The percentages of differences in MD between the concussed athletes and contact-sport controls were 5.6% at time point 1, 2.8% at time point 2, 1.8% at time point 3, and 1.8% at time point 4. The percentages were calculated by subtracting the mean MD of the contact-sport control group from the mean MD of the concussed group and then dividing by the mean MD of the contact-sport control group: \(\frac{MD_{\text{concussed}} - MD_{\text{contact-sport control}}}{MD_{\text{contact-sport control}}} \times 100\% \). Similarly, the percentages of differences in RD between the concussed athletes and contact-sport controls were 6.7% at time point 1, 4.0% at time point 2, 2.4% at time point 3, and 2.4% at time point 4.

Associations between the clinical outcome measures and DTI metrics

At the same time point

Within the concussed athletes, higher psychological symptoms (BSI total score and BSI-soma subscale) and concussion...
Generalized linear mixed models were used to test associations of clinical outcome measures at acute concussion (time point 1 as in subscript t_p1) with MD and RD at later time points 2, 3, and 4 (as in subscripts t_p2, t_p3, and t_p4). The model used MD and RD as response variables and the clinical outcome measures as predictors (i.e., independent variables). Primary clinical measures (SAC$_{t_p1}$, SCAT, BESS$_{t_p1}$, and BSI total score$_{t_p1}$) were tested in a single model that automatically adjusted for multiple comparisons across clinical measures and time points. The BSI subcategories were tested separately; thus, their p values were adjusted only within the subcategories and time points.

Symptom severity
Symptom severity scores at acute concussion were associated with higher MD and RD values in the persistently affected white matter at acute concussion ($p < 0.01$ and $r^2 > 0.49$, figure 4). There were no associations between the clinical assessment scores at time points 2, 3, and 4 and the respective DTI metrics at each time point.

Prediction across time points

The clinical assessment scores at acute concussion were also associated with MD and RD in the persistent white matter at later time points (table 2). The associations were strengthened over time with no significant findings at time point 2 ($p > 0.16$, table 2), some marginal significances at time point 3 ($0.05 < p < 0.1$), and significant findings at time point 4 ($p < 0.05$). In particular, the best clinical outcome predictor for long-term white-matter changes was BSI-soma subscale ($p = 0.04$, table 2, last column) in which higher scores were associated with lower MD. Multiple comparisons were adjusted across clinical measures and time points, but not MD and RD. The primary clinical measures (i.e., Standardized Assessment of Concussion, Sports Concussion Assessment Tool, BESS, and BSI total score) were included and tested in a single model that automatically adjusted for multiple comparisons among the clinical measures and time points (i.e., 5×3). Because of strong correlations between the BSI total score and its subcategories, the subcategories (i.e., BSI-soma, BSI-anxiety, and BSI-depression) were tested separately; thus, their p values were adjusted only within the subcategories and time points (i.e., 3×3).

Effects of the DTI metrics on recovery time

Among the DTI metrics, MD and RD at the acute time point were significantly associated with recovery time (hazard ratio $p < 0.05$). As MD increased, the Kaplan-Meier curves for recovery time shifted to the right (figure 5). In particular, as MD increased from 660 to 780 mm2/s, the time required for 50% of the concussed athletes to reach asymptomatic state increased from 3 to 12 days (figure 5A). Under extreme conditions, e.g., MD >780 mm2/s, the model extrapolated a chance of at least 7% that the concussed athletes will never achieve asymptomatic state (figure 5A). Similar results were obtained for time to return to play, as MD increased from 660 to 780 mm2/s, the interval from injury to unrestricted return to play for 50% of the concussed athletes increased from 8 to 17 days (figure 5B).

Discussion

In this study, we demonstrated that white-matter differences persist beyond the point when the concussed athletes were cleared to return to play (time point 3). While clinical assessment scores in the concussed athletes recovered to a level similar to that of the controls at the asymptomatic state (time point 2) by design, the white matter of the concussed athletes had elevated MD at the asymptomatic point and out to 6 months after injury. The extent of affected white matter, however, decreased over time, suggesting partial recovery or at least restoration of the white-matter microstructure. Nevertheless, we observed a small, but statistically significant, white-matter area in the corpus callosum, where MD was persistently higher in the concussed athletes across all the time points.

Table 2 Effects of acute clinical assessment scores on later white-matter changes measured by MD and RD

Clinical assessments	MD$_{t_p2}$	RD$_{t_p2}$	MD$_{t_p3}$	RD$_{t_p3}$	MD$_{t_p4}$	RD$_{t_p4}$
SAC$_{t_p1}$	0.16	0.28	0.85	0.23	0.97	0.78
SCAT						
Symptom score$_{t_p1}$	0.78	0.39	0.09a (+)	0.32	0.87	0.36
Symptom severity$_{t_p1}$	0.82	0.64	0.27	0.98	0.71	0.19
BESS$_{t_p1}$	0.66	0.24	0.07a (+)	0.52	0.07a (+)	0.63
BSI total score$_{t_p1}$	0.28	0.21	0.39	0.49	0.92	0.71
BSI-somatization$_{t_p1}$	0.48	0.69	0.60	0.10	0.04a (-)	0.95
BSI-anxiety$_{t_p1}$	0.42	0.86	0.15	0.40	0.29	0.84
BSI-depression$_{t_p1}$	0.75	0.88	0.54	0.09a (-)	0.56	0.92

Abbreviations: BESS = Balance Error Scoring System; BSI = Brief Symptom Inventory; DTI = diffusion tensor imaging; MD = mean diffusivity; RD = radial diffusivity; SAC = Standard Assessment of Concussion; SCAT = Sports Concussion Assessment Tool; $-$ = negative association; $+$ = positive association. Generalized linear mixed models were used to test associations of clinical outcome measures at acute concussion (time point 1 as in subscript t_p1) with MD and RD at later time points 2, 3, and 4 (as in subscripts t_p2, t_p3, and t_p4). The model used MD and RD as response variables and the clinical outcome measures as predictors (i.e., independent variables). Primary clinical measures (SAC$_{t_p1}$, SCAT, BESS$_{t_p1}$, and BSI total score$_{t_p1}$) were tested in a single model that automatically adjusted for multiple comparisons across clinical measures and time points. The BSI subcategories were tested separately; thus, their p values were adjusted only within the subcategories and time points.

a Marginal significance with $0.05 < p < 0.1$.

b Significance with $p < 0.05$.

The location of the persistently affected white matter (genu and body of the corpus callosum) is consistent with previous publications on acute and chronic SRC.\(^8\)–\(^{10,28,29}\) The corpus callosum contains long-range fibers connecting the left and right hemispheres of the brain. It is unclear whether the physical and biological properties of long fibers make them vulnerable\(^{30}\)–\(^{32}\) or their anatomic locations (near the center of mass) make them susceptible to biomechanical forces.\(^{33}–^{35}\) Combining finite element analysis, white-matter tractography, and fiber streamline properties may provide further insights.

Our results were consistent with previous studies of modest sample sizes (n < 30)\(^8\)–\(^{12}\) that changes in white matter measured by DTI were detectable even when clinical assessments returned to normal levels. Among these longitudinal studies, the direction of changes in DTI metrics, however, is not consistent.\(^5\)\(^,\)\(^8\)\(^–^{12}\) Higher MDs were reported in widespread white-matter areas of concussed female athletes (n = 10) at long-term time points (>7 months).\(^8\) On the other hand, decreased MD was reported in the corticospinal tract of concussed athletes (n = 16)\(^9\) and widespread white-matter areas of high school football players (n = 17) at 6 months after injury.\(^10\)\(^,\)\(^16\) The remaining studies with no significant findings in MD also reported inconsistent results in FA and RD.\(^11\)\(^,\)\(^12\) While DTI metrics are quantitative measures, the discrepancy between studies may stem from differences between studied populations, limited sample sizes, unknown previous exposure/concussion history, differences in DTI acquisition techniques, or image data processing pipelines.

MD of DTI describes an ensemble water diffusion within an imaging voxel, which is of great complexity at the microscopic level and could consist of various tissue compartments. Thus, MD is sensitive to several pathophysiologic factors, including axonal swelling, extracellular edema, a breakdown of cytoskeleton, demyelination, or decreased viscosity in plasma or extracellular matrix. Increased MD has been observed in different disease mechanisms such as axonal wallerian degeneration,\(^36\) multiple sclerosis,\(^37\) vasogenic edema,\(^38\) tumor-infiltrated edema,\(^39\) autism,\(^40\) aging,\(^41\) and dysmyelination.\(^12\) Despite only a 5.6% higher mean value of MD for the concussed individuals, the significant associations of MD with clinical outcomes and recovery time suggest that such a change in MD is clinically meaningful.

Although RD was not statistically significant in the TBSS whole-brain analyses except at time point 1, the average RD in the persistent white matter (defined by persistently elevated MD) was significantly higher across all time points in the concussed athletes in the post-hoc Student t test. Inferring from previous animal studies in which RD was associated with myelin integrity,\(^42\)\(^,\)\(^43\) we suggest that the underlying pathophysiology changes after SRC may involve myelin deterioration. This observation is supported by a prospective cohort study in collegiate hockey players using myelin water fraction MRI in which transient myelin disruption was detected after SRC.\(^45\)

In the persistently affected white matter, if the concussed athletes had higher MD or RD at acute concussion, they tended to have worse symptom severity and psychological symptoms. This result is consistent with the previous publication of modest sample size focusing on acute concussion.\(^7\) Higher MD and RD at acute concussion were also associated with longer recovery time. Given the minimal previous studies of the impact of white-matter abnormalities on recovery time, the present results may be of particular importance for future considerations regarding SRC management.

Although no associations were observed between the clinical assessments and DTI metrics other than acute concussion, the
clinical outcome measures acutely after concussion were associated with chronic white-matter changes. This across-time-point prediction has not been studied or reported before in the literature. Here, we found that the prediction power of the acute clinical measures was enhanced along the course of SRC; the associations progressed from not significant at the asymptomatic state to marginally significant at 7 days after return to play to significant at 6 months after injury. The direction of prediction had mixed results: worse performance on BSI-soma was associated with later low MD, but worse concussion symptom (i.e., high symptom score) and postural stability (i.e., high BESS score) seemed to be associated with later high MD.

BSI-soma and BSI-depression values in the concussed individuals were higher than in controls at the second time point, asymptomatic. In the CARE project and postinjury management, the asymptomatic time point indicates the time when the concussed athletes are cleared to start a graduated stepwise rehabilitation, called the return-to-play progression program. The decision about this time point is made by team physicians and medical staff and is based on the SRC assessment battery, clinical evaluations, and neuropsychological tests. While BSI measures are part of the CARE research protocol, they are not commonly used by clinicians in determining an athlete’s recovery of postconcussion symptoms and deficits. Thus, some of the concussed athletes may still have higher scores than controls at this time point.

Exposure to contact sports and head impacts has been associated with chronic traumatic encephalopathy, a neurodegenerative condition that does not yet have validated antemortem diagnostic criteria. In this study, we did not find significant exposure effects on the white-matter microstructures measured by DTI in a group of athletes with acute and chronic exposure to contact sports. The 2 control groups (i.e., contact-sport controls and non–contact-sport controls) had similar DTI metrics over time, except there was a trend of elevated AD in the contact-sport controls from the ROI analyses. A recent study suggested that younger age of exposure in participants with chronic traumatic encephalopathy was associated with earlier neurobehavioral symptom onset. Thus, future research effort will focus on effects of age at first exposure to contact sport on DTI metrics and interaction.

Figure 3 Longitudinal changes of the DTI metrics in the persistently affected white matter

(A) Maps of the persistently affected white matter. Yellow voxels were selected by intersecting the significant voxels across time points in figure 2A. Dark red voxels are background enhancement for illustration purposes. (B) Longitudinal changes of mean diffusivity (MD) in the persistent white matter for the concussed athletes (red), contact-sport controls (green), and non–contact-sport controls (blue) across the 4 time points. (C) Longitudinal changes in radial diffusivity (RD). (D) Longitudinal changes in axial diffusivity (AD). (E) Longitudinal changes in fractional anisotropy (FA). Means (circle markers) and 95% confidence intervals (error bars) of the means were plotted. *Significant differences ($p < 0.05$) in the diffusion tensor imaging (DTI) metrics between the time points within a group.
effects of exposure on associations between the DTI metrics and neurobehavioral outcomes.

Similar to many longitudinal studies, despite our best efforts, there were intermittent missing data across time points. Nevertheless, the missing data (assuming missing at random) were addressed by the generalized linear mixed models that adjusted missingness automatically. Classic DTI may also limit the study with a gaussian distribution model that makes the interpretation of specific underlying microstructural mechanisms challenging. Furthermore, the directionality of DTI in the white matter was not fully evaluated in this study. Structural connectivity and network analyses may address higher-order questions such as intrinsic characteristics of the topology and communicability of network nodes.

Figure 4 Regression analyses between the DTI metrics and clinical outcome measures within concussed athletes

Each red dot denotes 1 individual’s clinical assessment scores and means of diffusion tensor imaging (DTI) measurements in the persistently affected white matter (figure 3A). The r^2 denotes the coefficient of determination, and p denotes the significance of the regression coefficients. Only significant associations ($p < 0.05$) are presented. (A) Brief Symptom Inventory (BSI) total score vs mean diffusivity (MD). BSI total score was logarithmically transformed to eliminate left skewness in the original distribution. (B) Subcategory BSI-somatization vs MD. (C) Symptom severity score in the Sports Concussion Assessment Tool (SCAT) vs MD. (D) BSI total vs radial diffusivity (RD). (E) BSI-somatization vs RD. (F) SCAT symptom severity vs RD.

Figure 5 Dependence of recovery time on MD

(A) Effect of mean diffusivity (MD) on the survival curves for time to asymptomatic state. (B) Effect of MD on Kaplan-Meier curves for time to unrestricted return to play. Line colors denote different levels of MD with a unit of 10^{-6} mm2/s. Survival curves to estimate the time to event were modeled with a Cox proportional hazards model with MD as a risk factor.
the system. In addition, history of concussion was not included but will be incorporated into future research.

In this prospective study, we demonstrated that SRC has effects on white matter beyond the point when concussed athletes become asymptomatic. There was evidence of normalization, but some area of the white matter had persistent abnormalities up to 6 months after injury. The acute white-matter abnormalities were associated with acute postinjury clinical outcomes and prolonged recovery time.

Acknowledgment
This publication was made possible, in part, by support from the Grand Alliance CARE Consortium, funded, in part by the NCAA and the DoD. The US Army Medical Research Acquisition Activity, 820 Chandler Street, Fort Detrick, MD 21702-5014, is the awarding and administering acquisition office. This work was supported by the Office of the Assistant Secretary of Defense for Health Affairs through the Psychological Health and Traumatic Brain Injury Program under award W81XWH-14-2-0151. Opinions, interpretations, conclusions and recommendations are those of the author and are not necessarily endorsed by the DoD (DHP funds). The authors thank Jody Harland and Janetta Matesan (Indiana University); Ashley Rettmann (University of Michigan); Melissa Koschnitzke (Medical College of Wisconsin); Michael Jarrett, Vibeke Brinck, and Bianca Byrne (Quesgen); Christy Collins, Melissa Niceley Baker, and Sara Dalton (Datalys Center for Sports Injury Research and Prevention); and the research and medical staff at each of the participating sites. We are grateful for the participation of the student athletes without whom this research would not be possible.

Study funding
This publication was made possible, in part, by support from the Grand Alliance CARE Consortium, funded, in part by the NCAA and the DoD under award W81XWH-14-2-0151. Other funding support includes NIH grant R21 NS075791 to Y.C.W. and T.W.M., R01 AG053993 to Y.C.W., and P30 AG010133 and R01 AG019771 to A.J.S.

Disclosure
The authors report no disclosures relevant to the manuscript. Go to Neurology.org/N for full disclosures.

Publication history
Received by *Neurology* March 11, 2019. Accepted in final form February 7, 2020.

Appendix

Name	Location	Contribution
J. Harezlak, PhD	Indiana University	Study concept and design, statistical analyses, interpretation of data, and critical revision of the manuscript for important intellectual content
S.M. Mustafi, PhD	Indiana University School of Medicine	Data analyses, statistical analyses, and manuscript preparation
N.M.H. Elsaid, MS	Indiana University School of Medicine	Data analyses and interpretation of data
Z. Lin, PhD	Indiana University School of Medicine	Statistical analyses and manuscript preparation
Q. Wen, PhD	Indiana University School of Medicine	Statistical analyses, interpretation of data, and manuscript preparation
L.D. Riggen, MS	Indiana University School of Medicine	Data analyses
K.M. Koch, PhD	Medical College of Wisconsin	Study concept and design, data acquisition, and critical revision of the manuscript for important intellectual content
A.S. Nencka, PhD	Medical College of Wisconsin	Data acquisition and critical revision of the manuscript for important intellectual content
T.B. Meier, PhD	Medical College of Wisconsin	Study concept, interpretation of data, and critical revision of the manuscript for important intellectual content
A.R. Mayer, PhD	The Mind Research Network	Study concept, interpretation of data, and critical revision of the manuscript for important intellectual content
Y. Wang, MD, PhD	Medical College of Wisconsin	Critical revision of the manuscript for important intellectual content
C.C. Giza, MD	University of California Los Angeles	Data acquisition and critical revision of the manuscript for important intellectual content
J.P. DiFiori, MD, FACSM	University of California Los Angeles	Data acquisition and critical revision of the manuscript for important intellectual content
K.M. Guskiewicz, PhD, ATC	University of North Carolina	Data acquisition and critical revision of the manuscript for important intellectual content
J.P. Mihalik, PhD, CAT(C), ATC	University of North Carolina	Data acquisition and critical revision of the manuscript for important intellectual content
S.M. LaConite, PhD	Virginia Tech	Data acquisition and critical revision of the manuscript for important intellectual content
S.M. Duma, PhD	Virginia Tech	Data acquisition and critical revision of the manuscript for important intellectual content
S.P. Broglio, PhD, ATC	University of Michigan	Study concept and design, interpretation of data, and critical revision of the manuscript for important intellectual content

Continued
Appendix (continued)

Name	Location	Contribution
A.J. Saykin, PsyD, ABCN	Indiana University School of Medicine	Study concept and design, interpretation of data, and critical revision of the manuscript for important intellectual content
M. McCrea, PhD, ABPP	Medical College of Wisconsin	Study concept and design, interpretation of data, and critical revision of the manuscript for important intellectual content
T.W. McAllister, MD	Indiana University School of Medicine	Study concept and design, interpretation of data, and critical revision of the manuscript for important intellectual content

References

1. Langlois JA, Rutland-Brown W, Wald MM. The epidemiology and impact of traumatic brain injury: a brief overview. J Head Trauma Rehabil 2006;21:375–378.
2. Daneshvar DH, Nowinski CJ, McKee AC, Cantu RC. The epidemiology of sport-related concussion. Clin Sports Med 2011;30:1–17, vii.
3. McCrea M, Guskiewicz KM, Marshall SW, et al. Acute effects and recovery time following concussion in collegiate football players: the NCAA Concussion Study. JAMA 2003;290:2556–2561.
4. McCrory P, Meeuwisse W, Dvorak J, et al. Consensus statement on concussion in sport: the 5th International Conference on Concussion in Sport held in Berlin, October 2010. Br J Sports Med 2012;45:238–245.
5. Kamins J, Bigler E, Covassius T, et al. What is the physiological time to recovery after concussion? A systematic review. Br J Sports Med 2017;51:935–940.
6. Gardner A, Kay-Lambkin F, Stawell P, et al. A systematic review of diffusion tensor imaging findings in sports-related concussion. J Neurotrauma 2012;29:2521–2538.
7. Mustafi SM, Harezlak J, Koch KM, et al. Acute white-matter abnormalities in sports-related concussion: a diffusion tensor imaging study from the NCAA-Dod CARE Consortium. Presented at the International Society of Magnetic Resonance in Medicine (ISMRM) 27th Annual Meeting. May 11–16, 2019; Montreal.
8. Mustafi SM, Harezlak J, Gonti J, Flashman LA, McAllister TW, Wu YC. Effects of track length on white matter alterations in mild traumatic brain injury. In: International Society of Magnetic Resonance in Medicine (ISMRM) 26th Annual Meeting, June 16–21, 2018; Paris.
9. Beckwith JG, Zhao W, Ji S, et al. Estimated brain tissue response following impacts associated with and without diagnosed concussion. Ann Biomed Eng 2018;46:819–830.
10. Bigler ED. Neuropsychology and clinical neuroscience of persistent post-concussive syndrome. J Int Neuropsychol Soc 2008;14:1–22.
11. Bayly PV, Cohen TS, Leister EP, Ajo D, Leuthardt EC, Genin GM. Deformation of the human brain induced by mild acceleration. J Neurotrauma 2005;22:845–856.
12. Viano DC, Casron IR, Pellman EJ, Zhang L, King AL, Yang KH. Concussion in professional football: brain responses by finite element analysis; part 9: Neurosurgery 2005;57:891–916.
13. Pierpalo C, Barnett A, Pajevic S, et al. Water diffusion changes in wallerian degeneration and their dependence on white matter architecture. Neuroimage 2001;13:1174–1188.
14. Roccia MA, Sonkin M, Copetti M, et al. Diffusion tensor magnetic resonance imaging in very early onset pediatric multiple sclerosis. Mult Scler 2016;22:620–627.
15. Kinoshita M, Goto T, Oikata Y, et al. Diffusion tensor-based tumor infiltration index cannot discriminate vasogenic edema from tumor-infiltrated edema. J Neurooncol 2010;96:409–415.
16. Field FS, Alexander AL, Wu YC, Haan KM, Witwer B, Badie B. Diffusion tensor eigenvector directional color imaging patterns in the evaluation of cerebral white matter tracts altered by tumor. J Magn Reson Imaging 2004;20:555–562.
17. Lee JE, Bigler ED, Alexander AL, et al. Diffusion tensor imaging of white matter in the superior temporal gyrus and temporal stem in autism. Neurosci Lett 2007;424:127–132.
18. Wessely LT, Walford KB, Dale AM, et al. Life-span changes of the human brain white matter: diffusion tensor imaging (DTI) and volumetry. Cereb Cortex 2010;20:2055–2068.
19. Wu YC, Field FS, Duncan ID, et al. High b-value and diffusion tensor imaging in a canine model of demyelination and brain maturation. Neuroimage 2011;58:829–837.
20. Song SK, Yoshino J, Le TQ, et al. Demyelination increases radial diffusivity in corpus callosum of mouse brain. Neuroimage 2005;26:132–140.
21. Klawitter JR, Schmidt RE, Trinkaus K, et al. Radial diffusivity predicts demyelination in ex vivo multiple sclerosis spinal cords. Neuroimage 2011;55:1454–1460.
22. Wright AD, Jarrett M, Vavasour I, et al. Myelin water fraction is transiently reduced after a single mild traumatic brain injury: a prospective cohort study in collegiate hockey players. PLoS One 2016;11:e0152015.
23. McKee AC, Stern RA, Nowinski CJ, et al. The spectrum of disease in chronic traumatic encephalopathy. Brain 2013;136:63–64.
24. Levin B, Bhardwaj A. Chronic traumatic encephalopathy: a critical appraisal. Neurology Care 2014;20:334–344.
25. Allocco ML, Mez J, Tripodi Y, et al. Age of first exposure to tackle football and chronic traumatic encephalopathy. Ann Neurol 2018;83:886–901.
26. Ibrahim JG, Molenberghs G. Missing data methods in longitudinal studies: a review. Test (Madr) 2009;18:1–43.
27. Sporns O, Betzel RF. Modular brain networks. Annu Rev Psychol 2016;67:613–640.
Longitudinal white-matter abnormalities in sports-related concussion: A diffusion MRI study
Yu-Chien Wu, Jaroslaw Harezlak, Nahla M. H. Elsaid, et al.
Neurology published online July 8, 2020
DOI 10.1212/WNL.0000000000009930

This information is current as of July 8, 2020

Updated Information & Services
including high resolution figures, can be found at:
http://n.neurology.org/content/early/2020/07/08/WNL.0000000000009930.full

Citations
This article has been cited by 1 HighWire-hosted articles:
http://n.neurology.org/content/early/2020/07/08/WNL.0000000000009930.full#otherarticles

Subspecialty Collections
This article, along with others on similar topics, appears in the following collection(s):
Brain trauma
http://n.neurology.org/cgi/collection/brain_trauma
MRI
http://n.neurology.org/cgi/collection/mri
Neuropsychological assessment
http://n.neurology.org/cgi/collection/neuropsychological_assessment

Permissions & Licensing
Information about reproducing this article in parts (figures, tables) or in its entirety can be found online at:
http://www.neurology.org/about/about_the_journal#permissions

Reprints
Information about ordering reprints can be found online:
http://n.neurology.org/subscribers/advertise