IMPROVED RESOLVENT ESTIMATES FOR CONSTANT-COEFFICIENT ELLIPTIC OPERATORS IN THREE DIMENSIONS

ROBERT SCHIPPA

Abstract. We prove new L^p-L^q-estimates for solutions to elliptic differential operators with constant coefficients in \mathbb{R}^3. We use the estimates for the decay of the Fourier transform of particular surfaces in \mathbb{R}^3 with vanishing Gaussian curvature due to Erdős–Salmhofer to derive new Fourier restriction–extension estimates. These allow for constructing distributional solutions in $L^q(\mathbb{R}^3)$ for L^p-data via limiting absorption by well-known means.

1. Introduction

The purpose of this note is to show new L^p-L^q-estimates for solutions to elliptic differential equations in \mathbb{R}^3. Let

$$p(\xi) = \sum_{|\alpha| \leq N} a_\alpha \xi^\alpha$$

be a multi-variate polynomial in \mathbb{R}^3 with real coefficients and suppose that $a_{\alpha} \neq 0$ for some $\alpha \in \mathbb{N}_0^3$ with $|\alpha| = N$. We consider partial differential operators

$$P(D) = p(-i\nabla_x) = \sum_{|\alpha| \leq N} a_{\alpha}(-i)^{|\alpha|} \partial^{\alpha}$$

such that for $u \in S'(\mathbb{R}^3)$ we have

$$\mathcal{F}(P(D)u)(\xi) = p(\xi)\hat{u}(\xi).$$

By ellipticity we mean that

$$p_N(\xi) = \sum_{|\alpha| = N} a_{\alpha} \xi^\alpha \neq 0$$

for $\xi \neq 0$. We assume $p_N(\xi) > 0$ for the sake of definiteness. In the following we prove existence of solutions $u \in L^q(\mathbb{R}^3)$ such that

$$P(D)u = f$$

for $f \in L^p(\mathbb{R}^3)$ in a certain range of p and q, which satisfy the estimate

$$\|u\|_{L^q(\mathbb{R}^3)} \lesssim \|f\|_{L^p(\mathbb{R}^3)}.$$
under a transversality assumption, which was described by Erdős–Salmhofer [6]. The idea of constructing solutions is to consider approximates

\[\hat{u}_\delta(\xi) = \frac{1}{(2\pi)^3} \int_{\mathbb{R}^3} \frac{e^{ix.\xi} \hat{f}(\xi)}{p(\xi) + i\delta} \, d\xi \]

for \(\delta \neq 0 \) and show uniform bounds

\[\|u_\delta\|_{L^q(\mathbb{R}^3)} \lesssim \|f\|_{L^p(\mathbb{R}^3)} \]

for fixed \(P(D) \).

Then we shall find distributional limits \(u \in L^q(\mathbb{R}^3) \), which satisfy

\[P(D)u = f \text{ in } \mathcal{S}'(\mathbb{R}^3) \]

and

\[\|u\|_{L^q(\mathbb{R}^3)} \lesssim \|f\|_{L^p(\mathbb{R}^3)}. \]

This is referred to as limiting absorption principle. We shall still assume that \(\nabla p(\xi) \neq 0 \) for \(\xi \in \Sigma_0 \).

This is a generic assumption for polynomials. In this case Sokhotsky’s formula yields for solutions as described above

\[u(x) = \frac{1}{(2\pi)^3} \int_{\mathbb{R}^3} \frac{e^{ix.\xi} \hat{f}(\xi)}{p(\xi) \pm i0} \, d\xi \]

\[= \mp \frac{i\pi}{(2\pi)^3} \int_{\mathbb{R}^3} e^{ix.\xi} \hat{f}(\xi) \delta_{\Sigma_0}(\xi) \, d\xi + \frac{1}{(2\pi)^3} \nu.p. \int_{\mathbb{R}^3} e^{ix.\xi} \hat{f}(\xi) \, d\xi. \]

This points out a close connection to Fourier restriction. The most basic \(L^p-L^q \)-results rely on the decay of the Fourier transform of the surface measure. This in turn is caused by the curvature of the surface.

If \(K \neq 0 \), the estimate

\[|\hat{\mu}_S(\xi)| = | \int_S e^{ix.\xi} \, dx | \lesssim \langle \xi \rangle^{-1} \]

is classical (cf. [14, 16]). Corresponding \(L^p-L^q \)-estimates for solutions were proved in [15].

In this note we consider vanishing total curvature under additional transversality assumptions. For constructing solutions as laid out above, we also have to consider level sets \(\Sigma_a = \{ p(\xi) = a \} \) for \(|a| \leq \delta_0 \).

We recall the assumptions in Erdős–Salmhofer:

Let \(I \) be a compact interval and let \(D = \exp^{-1}(I) \). Suppose that \(\Sigma_a \) is a two-dimensional submanifold for each \(a \in I \). Let \(f \in C_0^\infty(D) \) and define

\[\hat{\mu}_a(\xi) = \int_{\Sigma_a} e^{ix.\xi} \, d\sigma_a(\xi) \]

the Fourier transform of the surface carried measure \(f \, d\sigma_a \).

Let \(C_0 = \text{diam}(D) \), \(C_1 = \|p\|_{C^1(D)} \). The following assumptions have to be met:

Assumption 1:

\[C_2 = \min_{\xi \in D} |\nabla p(\xi)| > 0, \]

which means that \((\Sigma_a)_{a \in I} \) is a regular foliation of \(D \).

Let \(K : D \to \mathbb{R} \) be the Gaussian curvature of the foliation, i.e., for \(\xi \in \Sigma_a \subseteq D \), \(K(\xi) \) denotes the curvature of \(\Sigma_a \) at \(\xi \).

The crucial assumption is that the vanishing set of the Gaussian curvature is a submanifold, which intersects \((\Sigma_a)_{a \in I} \) transversally:

Assumption 2: Let \(C = \{ \xi \in D : K(\xi) = 0 \} \). Then

\[C_3 = \min_{\xi \in D} (|\nabla p(\xi) \times \nabla K(\xi)| : \xi \in C) > 0. \]
With ∇K non-vanishing on C, it is a two-dimensional submanifold by the regular value theorem. Since p and K are smooth, we find that

$$\Gamma_a = C \cap \Sigma_a$$

is a finite union of disjoint regular curves on Σ_a for each $a \in I$.

Let

$$\xi \mapsto w(\xi) = \frac{\nabla p(\xi) \times \nabla K(\xi)}{|\nabla p(\xi) \times \nabla K(\xi)|}$$

be the unit vectorfield tangent to Γ_a. Denote the normal map $\nu : D \to S^2$ by

$$\nu(\xi) = \frac{\nabla p(\xi)}{|\nabla p(\xi)|}.$$

Recall that the Gaussian curvature is given by the Jacobian of the normal map restricted to each surface, $\nu : \Sigma_a \to S^2$: $K(\xi) = \det \nu(\xi)$. We further require the following regularity assumption on the Gauss map.

Assumption 3: The number of preimages of $\nu : \Sigma_a \to S^2$ is finite, i.e.,

$$C_4 = \sup_{a \in I} \sup_{\omega \in S^2} \text{card}\{p \in \Sigma_a : \nu(p) = \omega\} < \infty.$$

On the curves Γ_a, exactly one of the principal curvatures vanish. We define a (local) unit vectorfield $Z \in T\Sigma_a$ along Γ_a in the tangent plane of Σ_a. Z can be extended to a neighbourhood of Γ_a as the direction of the principal curvature that is small and vanishes on Γ_a. We assume that Z is transversal to Γ_a. Weaker, non-uniform decay estimates were proved in $[6]$ also in the presence of tangential points. To ensure uniform decay, we assume the following:

Assumption 4: The set of tangential points

$$\mathcal{T}_a = \{\xi \in \Gamma_a : Z(\xi) \times w(\xi) = 0\},$$

is empty.

Under the above assumptions, Erdős–Salmhofer [6, Theorem 2.1] proved the following dispersive estimate for the Fourier transform of the surface measure μ_a:

$$|\hat{\mu}_a(\xi)| \leq C|\xi|^{-\frac{d}{2}}$$

with $C = C(C_0, \ldots, C_4, \|f\|_{C^2(D)})$. This morally corresponds to a decay from $\frac{d}{2}$ principal curvatures bounded from below in modulus and thus improves the previous result for one non-vanishing principal curvature (cf. [15, Theorem 1.3]). In this article we record its consequence for solutions to elliptic differential operators. Allowing for tangential points covers generic surfaces in \mathbb{R}^3 as pointed out in [6]. However, the decay proved in [6] is not uniform in this case anymore. It might be possible to show the same results for a broader class via the estimates due to Ikromov–Müller [9].

In the first step, we derive a Fourier restriction–extension theorem for surfaces Σ_a by following along the lines of the preceding work [15]. We prove strong bounds

$$\|\int_{\mathbb{R}^3} e^{i\xi \cdot \xi} \delta_{\Sigma_a}(\xi) \beta(\xi) \hat{f}(\xi) d\xi\|_{L^q(\mathbb{R}^3)} \lesssim \|f\|_{L^p(\mathbb{R}^3)}$$

within a pentagonal region. Here $\beta \in C_c^\infty$ localizes to a suitable neighbourhood of $\{K = 0\}$ in $\{\Sigma_a\}_{a \in [-\delta_0, \delta_0]}$. Away from $\{K = 0\}$, [15, Theorem 1.3] provides better estimates for $d = 3$, $k = 2$. On part of the boundary of the pentagonal region, we show weak bounds

$$\|\int_{\mathbb{R}^3} e^{i\xi \cdot \xi} \delta_{\Sigma_a}(\xi) \beta(\xi) \hat{f}(\xi) d\xi\|_{L^{q,\infty}(\mathbb{R}^3)} \lesssim \|f\|_{L^p(\mathbb{R}^3)}$$

and

$$\|\int_{\mathbb{R}^3} e^{i\xi \cdot \xi} \delta_{\Sigma_a}(\xi) \beta(\xi) \hat{f}(\xi) d\xi\|_{L^3(\mathbb{R}^3)} \lesssim \|f\|_{L^{p^{-1}}(\mathbb{R}^3)}.$$
and lastly, restricted weak bounds

\[\| \int_{\mathbb{R}^3} e^{i x \cdot \xi} \delta_{\Sigma_0}(\xi) \beta(\xi) \hat{f}(\xi) d\xi \|_{L^{p',\infty}((\mathbb{R}^3)^*)} \lesssim \|f\|_{L^p((\mathbb{R}^3)^*)} \]

at its inner endpoints. We refer to Figure 2 for a diagram. For \(X, Y \in [0, 1]^2 \) we write \([X, Y] = \{Z: \exists \lambda \in [0, 1]: Z = \lambda X + (1 - \lambda)Y\}\) and correspondingly \((X, Y), (X, Y), \) etc.

Proposition 1.1. Let \(p: \mathbb{R}^3 \to \mathbb{R} \) be an elliptic polynomial with \(\delta_0 > 0 \) such that for \(\Sigma_0 = \{p(\xi) = a\}, -\delta_0 \leq a \leq \delta_0 \) Assumptions 1-4 are satisfied in a neighbourhood of \(K = 0 \) in \(\Sigma_0 \). Then, we find \(\| \| \) to hold for \((p, \frac{1}{p}) \in [0, 1]^2 \) provided that

\[\frac{1}{p} > \frac{7}{10}, \quad \frac{1}{q} < \frac{3}{10}, \quad \frac{1}{p} - \frac{1}{q} \geq \frac{4}{7}. \]

Let

\[B = \left(\frac{7}{10}, \frac{9}{70} \right), \quad C = \left(\frac{7}{10}, 0 \right), \quad B' = \left(\frac{61}{70}, \frac{3}{10} \right), \quad C' = \left(1, \frac{3}{10} \right); \]

Furthermore, we find \(\| \) to hold for \((1/p, 1/q) \in (B', C']\), \(\| \) for \((1/p, 1/q) \in (B, C]\), and \(\| \) for \((1/p, 1/q) \in \{B, B'\} \).

In the second step we foliate a neighbourhood \(U \) of \(\Sigma_0 \) with level sets of \(p \) to show bounds

\[\|A_\delta f\|_{L^p} \lesssim \|f\|_{L^p((\mathbb{R}^3)^*)} \]

independent of \(\delta \). Here, \(p, q \) are as in Proposition 1.1, and \(|p(\xi)| \leq \delta_0 \) for \(\xi \in \text{supp}(\beta_1) \) with \(\Sigma_0 \subseteq \text{supp}(\beta_1) \). Away from the singular set, estimates for

\[B_\delta f(x) = \int_{\mathbb{R}^3} \frac{e^{i x \cdot \xi} \beta_1(\xi)}{p(\xi) + i \delta} \hat{f}(\xi) d\xi \]

with \(\beta_1 + \beta_2 \equiv 1 \) follow from Young’s inequality and properties of the Bessel potential. The estimate of \(\|B_\delta\|_{L^p \to L^q} \) depends on the order of the elliptic operator. The method of proof is well-known and detailed in [15]; see also [12] and references therein. We shall be brief. It turns out that one can follow along the lines of [15] very closely, substituting \(k = \frac{1}{2} \) non-vanishing principal curvatures. We prove the following:

Theorem 1.2. Let \(p: \mathbb{R}^3 \to \mathbb{R} \) be an elliptic polynomial of degree \(N \geq 2 \). Let \(1 < p_1, p_2, q < \infty \) and \(f \in L^{p_1}(\mathbb{R}^3) \cap L^{p_2}(\mathbb{R}^3) \). Suppose that there is \(\delta_0 > 0 \) such that Assumptions 1-4 are satisfied for \((\Sigma_0)_{a \in [-\delta_0, \delta_0]} \). Then, there is \(u \in L^q(\mathbb{R}^3) \) satisfying

\[P(D)u = f \]

in the distributional sense and the estimate

\[\|u\|_{L^q(\mathbb{R}^3)} \lesssim \|f\|_{L^{p_1} \cap L^{p_2}(\mathbb{R}^3)} \]

holds true provided that

\[\frac{1}{p_1} > \frac{7}{10}, \quad \frac{1}{q} < \frac{3}{10}, \quad \frac{1}{p_1} - \frac{1}{q} \geq \frac{4}{7} \]

and for \(N \leq 3 \)

\[0 \leq \frac{1}{p_2} - \frac{1}{q} \leq \frac{N}{3}, \quad \left(\frac{1}{p_2}, \frac{1}{q} \right) \notin \begin{cases} \{0, \frac{2}{3}\}, \left(\frac{4}{3}, 1 \right) \right) & \text{for } N = 2, \\ \{0, 1\} \right) & \text{for } N = 3. \end{cases} \]
The purpose of this section is to prove Proposition [11]. We shall follow the argument of [15, Section 4]. In the first step, we localize to a small neighbourhood of the vanishing set \{K = 0\}, which by assumptions is a two-dimensional manifold in \(D\). In the complementary set, by compactness, we can apply [15, Theorem 1.3], which gives uniform \(L^p-L^q\)-estimates in a broader range. Thus, it is enough to suppose that Assumptions 1-4 are valid in a neighbourhood of \{K = 0\}. The proof follows [15, Section 4] closely. In the first step, by finite decomposition and rotations, we change to parametric representation of \(\Sigma = \{(\xi', \psi(\xi')) : \xi' \in B(0, c)\}\). We show bounds \(T : L^p(\mathbb{R}^3) \to L^q(\mathbb{R}^3)\) for
\[
Tf(x) = \int_{\mathbb{R}^3} \delta(\xi_3 - \psi(\xi')) e^{ix \cdot \xi} \chi(\xi') \hat{f}(\xi) d\xi.
\]
The following decay estimate, which is (5), is central.
\[
\left\| \int e^{i(x \cdot \xi' + x_3 \psi(\xi'))} \beta(\xi') d\xi' \right\| \lesssim (1 + |x_3|)^{-\frac{2}{3}}.
\]
Applying the \(TT^*\) argument (cf. [17, 7, 11]), we find the following Strichartz estimate:
\[
\left\| \int e^{i(x \cdot \xi' + x_3 \psi(\xi'))} \beta(\xi') \hat{f}(\xi') d\xi' \right\|_{L^q_t L^p_x(\mathbb{R}^3)} \lesssim \|f\|_{L^\infty_t L^2_x(B(0, c))}.
\]
We recall the following lemma to decompose the delta distribution:

Lemma 2.1 ([11, Lemma 2.1]). There is a smooth function \(\phi\) satisfying \(\text{supp}(\phi) \subseteq \{t : |t| \sim 1\}\) such that for all \(f \in \mathcal{S}(\mathbb{R}^3)\),
\[
\langle \delta(\xi_3 - \psi(\xi')), f \rangle = \sum_{j \in \mathbb{Z}} \sum_{j \in \mathbb{Z}} 2^j \int_{\mathbb{R}^3} \phi(2^j(\xi_3 - \psi(\xi'))) \chi(\xi') f(\xi) d\xi.
\]
By this, we can write
\[
Tf(x) = \sum_{j \in \mathbb{Z}} \sum_{j \in \mathbb{Z}} 2^j \int_{\mathbb{R}^3} \phi(2^j(\xi_3 - \psi(\xi'))) e^{ix \cdot \xi} \chi(\xi') \hat{f}(\xi) d\xi := \sum_{j \in \mathbb{Z}} 2^j T_{2^{-j}} f.
\]
As pointed out in [11], the contribution of \(j \leq 0\) is easier to estimate.

The contribution of \(j \geq 0\), i.e., close to the singularity, is estimated by Strichartz and kernel estimates:

Lemma 2.2 (cf. [15, Lemma 4.3]). Let \(q \geq \frac{14}{3}\). Then, we find the following estimate to hold:
\[
\|T_{2^{-j}} f\|_{L^q_x(\mathbb{R}^3)} \lesssim 2^{-j} \|f\|_{L^2_x(\mathbb{R}^3)}.
\]
This estimate does not admit summation. For this purpose, we interpolate with the kernel estimate:

Lemma 2.3 (cf. [15, Lemma 4.4]). Let
\[
K_\delta(x) = \int_{\mathbb{R}^3} e^{ix \cdot \xi} \beta(\xi') \phi\left(\frac{\xi_3 - \psi(\xi')}{\delta}\right) d\xi.
\]
Then \(K_\delta\) is supported in \(\{(x', x_3) : |x_3| \sim \delta^{-1}\}\), and we find the following estimates to hold:
\[
|K_\delta(x)| \lesssim_N \delta^N (1 + \delta|x|)^{-N}, \text{ if } |x'| \geq c|x_3|,
\]
\[
|K_\delta(x)| \lesssim \delta^2 \text{, if } |x'| \leq c|x_3|.
\]

The last ingredient to show (restricted) weak endpoint estimates is Bourgain’s summation argument (cf. [12] and [13, Lemma 2.3] for an elementary proof):
Figure 1. Pentagonal region, within which strong L^p-L^q-Fourier restriction extension estimates hold.

Lemma 2.4. Let $\varepsilon_1, \varepsilon_2 > 0$, $1 \leq p_1, p_2 \leq \infty$, $1 \leq q_1, q_2 < \infty$. For every $j \in \mathbb{Z}$ let T_j be a linear operator, which satisfies

$$
\|T_j(f)\|_{q_1} \leq M_1 2^{\varepsilon_1 j} \|f\|_{p_1},
$$

$$
\|T_j(f)\|_{q_2} \leq M_2 2^{\varepsilon_2 j} \|f\|_{p_2}.
$$

Then, for θ, q and p_1 defined by

$$
\theta = \frac{\varepsilon_1}{\varepsilon_2}, \quad \frac{1}{q_1} = \frac{\theta}{q_2} + \frac{1}{q_2} \quad \text{and} \quad \frac{1}{p_1} = \frac{\theta}{p_2} + \frac{1}{p_2},
$$

the following hold:

$$
\left\| \sum_j T_j(f) \right\|_{q, \infty} \leq C M_1^\theta M_2^{1-\theta} \|f\|_{p, 1},
$$

(13)

$$
\left\| \sum_j T_j(f) \right\|_q \leq C M_1^\theta M_2^{1-\theta} \|f\|_{p, 1} \quad \text{if} \quad q_1 = q_2 = q,
$$

(14)

$$
\left\| \sum_j T_j(f) \right\|_{q, \infty} \leq C M_1^\theta M_2^{1-\theta} \|f\|_{p} \quad \text{if} \quad p_1 = p_2.
$$

(15)

We interpolate the bounds

$$
2^j \|T_2^{-j} f\|_{L^q(R^3)} \lesssim 2^j \|f\|_{L^2(R^3), \quad \frac{14}{3} \leq q \leq \infty},
$$

and

$$
2^j \|T_2^{-j} f\|_{L^\infty(R^3)} \lesssim 2^{-\frac{1}{j}} \|f\|_{L^1(R^3)}
$$

as above together with duality to find restricted weak endpoint bounds

$$
\|T f\|_{L^{q, \infty}(R^3)} \lesssim \|f\|_{L^{p, 1}(R^3)}
$$

for $(1/p, 1/q) \in \{B, B'\}$, weak bounds

$$
\|T f\|_{L^q} \lesssim \|f\|_{L^p}, \quad \|T f\|_{L^\infty} \lesssim \|f\|_{L^p, 1}
$$

for $(1/p, 1/q) \in (B', C')$, respectively, $(1/p, 1/q) \in (B, C]$, and strong bounds in the interior of the pentagon $\text{conv}(A, B, C, C', B')$ with $A = (1, 0)$,

$$
B = \left(\frac{7}{10}, \frac{9}{70}\right), \quad C = \left(\frac{7}{10}, 0\right), \quad B' = \left(\frac{61}{70}, \frac{3}{10}\right), \quad C' = \left(1, \frac{3}{10}\right).
$$
Real interpolation of the weak bounds at B and B' gives strong bounds on (B, B'). This finishes the proof of Proposition 1.1. \hfill \Box

3. L^p-L^q-estimates for solutions to elliptic differential operators

In this section we prove Theorem 1.2 relying on Proposition 1.1. The argument parallels [15, Section 5.2] very closely, to avoid repetition we shall be brief. Let A_3 and B_3 be as in (10) and (11). We start with the more difficult estimate of A_3. We show boundedness of $A_3: L^p(\mathbb{R}^3) \to L^q(\mathbb{R}^3)$ independently of δ with p, q as in Proposition 1.1. For this it is enough to show restricted weak type bounds

$$
\|A_3\|_{L^{q_0, \infty}} \lesssim \|f\|_{L^{p_0, 1}}
$$

for $(1/p_0, 1/q_0) = (61/70, 3/10)$ and the bounds

$$
\|A_3f\|_{L^q} \lesssim \|f\|_{L^p}\n$$

for $(1/p, 1/q) \in ((61/70, 3/10), (1, 3/10)]$ as strong bounds for A_3 with p, q as in Proposition 1.1 are recovered by interpolation and duality. As $\nabla p(\xi) \neq 0$ for $\xi \in \text{supp}(\beta_1)$ by construction, we can change to generalized polar coordinates. Let $\xi = (p, q)$, where p and q are complementary coordinates. Write

$$
A_3f(x) = \int e^{ix \cdot \xi} \beta_1(\xi) \hat{f}(\xi) d\xi = \int dp dq e^{ix \cdot \xi} \beta(\xi(p, q))h(p, q)\hat{f}(\xi(p, q)),
$$

where h denotes the Jacobian. We can suppose that $|\partial^\alpha h| \lesssim 1$ choosing $\text{supp}(\beta)$ small enough. The expression is estimated as in [15, Subsection 5.2] by suitable decompositions in Fourier space and crucially depending on the Fourier restriction estimates for Proposition 1.1 see [12] for $p(\xi) = |\xi|^\alpha$. We write

$$
\frac{1}{p(\xi) + i\delta} = \frac{p(\xi)}{p^2(\xi) + \delta^2} - i\frac{\delta}{p^2(\xi) + \delta^2} = R(\xi) - i\mathcal{J}(\xi).
$$

As in [15], $\mathcal{J}(D)$ is estimated by Minkowski’s inequality and Fourier restriction–extension estimates, in the present context from Proposition 1.1. The only difference in the estimate of $R(D)$ is that [15, Lemma 5.1] is applied for $k = \frac{3}{2}$ according to the dispersive estimate [3]. For details we refer to [15, Section 4]. This finishes the proof of the estimate for A_3.

For the estimate of B_3, we carry out a further decomposition in Fourier space: By ellipticity, there is $R \geq 1$ such that

$$
|p(\xi)| \gtrsim |\xi|^N
$$

provided that $|\xi| \gtrsim R$. Let $\beta_2(\xi) = \beta_{21}(\xi) + \beta_{22}(\xi)$ with $\beta_{21}, \beta_{22} \in C^\infty$ and $\beta_{22}(\xi) = 0$ for $|\xi| \leq R$, $\beta_{22}(\xi) = 1$ for $|\xi| \geq 2R$. We can estimate

$$
\|B_3(\beta_{21}(D)f)\|_{L^q} \lesssim \|f\|_{L^p}
$$

for any $1 \leq p \leq q \leq \infty$ by Young’s inequality uniform in δ. This gives no additional assumptions on p and q. We estimate the contribution of β_{22} by properties of the Bessel kernel (cf. [5, Theorem 30])

$$
\|B_3(\beta_{22}(D)f)\|_{L^q(\mathbb{R}^3)} \lesssim \|\beta_{22}(D)f\|_{L^p(\mathbb{R}^3)}
$$

for $1 \leq p, q \leq \infty$ and $0 \leq \frac{1}{p} - \frac{1}{q} \leq \frac{N}{2}$ with the endpoints excluded for $N \leq 3$. For $N \geq 4$ this estimate holds true for $1 \leq p \leq q \leq \infty$. This corresponds to the second assumption on p and q in Theorem 1.2.

Lastly, we give the standard argument for constructing solutions: For $\delta > 0$, consider the approximate solutions $u_\delta \in L^q(\mathbb{R}^3)$

$$
\hat{u}_\delta(\xi) = \frac{\hat{f}(\xi)}{p(\xi) + i\delta}.
$$

By the above, we have uniform bounds

$$
\|u_\delta\|_{L^q(\mathbb{R}^3)} \lesssim \|f\|_{L^{p_1}(\mathbb{R}^3) \cap L^{p_2}(\mathbb{R}^3)}.
$$
By the Banach–Alaoglu–Bourbaki theorem, we find a weak limit $u_\delta \to u$, which satisfies the same bound. We observe that

$$P(D)u_\delta = f - i\frac{\delta}{P(D) + i\delta}f.$$

Since

$$\|\frac{\delta}{P(D) + i\delta}f\|_{L^q} \lesssim \|f\|_{L^p_1 \cap L^p_2},$$

we find that $P(D)u_\delta \to f$ in $L^q(\mathbb{R}^3)$. Since $P(D)u_\delta \to P(D)u$ in $S'(\mathbb{R}^3)$, this shows that

$$P(D)u = f$$

in $S'(\mathbb{R}^3)$. The proof is complete. \qed

Acknowledgements

Funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) Project-ID 258734477 – SFB 1173. I would like to thank Rainer Mandel for discussions on related topics and Jean–Claude Cuenin for pointing out an error in a previous version.

References

[1] Jean Bourgain. Estimations de certaines fonctions maximales. *C. R. Acad. Sci. Paris Sér. I Math.*, 301(10):499–502, 1985.
[2] Anthony Carbery, Andreas Seeger, Stephen Wainger, and James Wright. Classes of singular integral operators along variable lines. *J. Geom. Anal.*, 9(4):583–605, 1999.
[3] Jean-Baptiste Casteras and Juraj Földes. Existence of traveling waves for a fourth order Schrödinger equation with mixed dispersion in the Helmholtz regime. arXiv e-prints, page arXiv:2103.11440 March 2021.
[4] Yonggeun Cho, Youngcheol Kim, Sanghyuk Lee, and Yongsun Shim. Sharp L^p-L^q estimates for Bochner-Riesz operators of negative index in \mathbb{R}^n, $n \geq 3$. *J. Funct. Anal.*, 218(1):150–167, 2005.
[5] Lucrezia Cossetti and Rainer Mandel. A limiting absorption principle for Helmholtz systems and time-harmonic isotropic Maxwell’s equations. arXiv e-prints, page arXiv:2009.05087 September 2020.
[6] László Erdős and Manfred Salmhofer. Decay of the Fourier transform of surfaces with vanishing curvature. *Math. Z.*, 257(2):261–294, 2007.
[7] J. Ginibre and G. Velo. On a class of nonlinear Schrödinger equations. I. The Cauchy problem, general case. *J. Functional Analysis*, 32(1):1–32, 1979.
[8] Susana Gutiérrez. Non trivial L^q solutions to the Ginzburg-Landau equation. *Math. Ann.*, 328(1-2):1–25, 2004.
[9] Isroil A. Ikonomov and Detlef Müller. Uniform estimates for the Fourier transform of surface carried measures in \mathbb{R}^3 and an application to Fourier restriction. *J. Fourier Anal. Appl.*, 17(6):1292–1332, 2011.
[10] Eunhee Jeong, Yehyun Kwon, and Sanghyuk Lee. Uniform Sobolev inequalities for second order non-elliptic differential operators. *Adv. Math.*, 302:323–350, 2016.
[11] Markus Keel and Terence Tao. Endpoint Strichartz estimates. *Amer. J. Math.*, 120(5):955–980, 1998.
[12] Yehyun Kwon and Sanghyuk Lee. Sharp resolvent estimates outside of the uniform boundedness range. *Comm. Math. Phys.*, 374(3):1417–1467, 2020.
[13] Sanghyuk Lee. Some sharp bounds for the cone multiplier of negative order in \mathbb{R}^3. *Bull. London Math. Soc.*, 35(3):373–390, 2003.
[14] Walter Littman. Fourier transforms of surface-carried measures and differentiability of surface averages. *Bull. Amer. Math. Soc.*, 69:766–770, 1963.
[15] Rainer Mandel and Robert Schippa. Time-harmonic solutions for Maxwell’s equations in anisotropic media and Bochner-Riesz estimates for non-elliptic surfaces. arXiv preprint.
[16] Elias M. Stein. *Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals*, volume 43 of *Princeton Mathematical Series*. Princeton University Press, Princeton, NJ, 1993. With the assistance of Timothy S. Murphy, Monographs in Harmonic Analysis, III.
[17] Peter A. Tomas. A restriction theorem for the Fourier transform. *Bull. Amer. Math. Soc.*, 81:477–478, 1975.