Penta-Perfect Metamaterial Absorber for Microwave Applications

Khalid Saeed Lateef Al-badri1,2, Omar Fadhil Abdullah, Ahmed Ibrahim Turki1

1 Physics Department, Education college, University of Samarra, Samarra, Iraq.
2 Computer Centre, University of Samarra, Samarra, Iraq, saaedkhalid@gmail.com.

Abstract. This paper presents simulation very simple structure of multi band metamaterial absorber at the microwave frequency band. The unit cell of the proposed structure consists of two copper rings at different radius, loaded onto FR4 substrate with 2.5 mm thick in order to achieve perfect multi absorption bands. The asymmetrical ring structure generally makes it sensitive to electromagnetic (EM) waves polarization. But the Penta-Perfect Metamaterial Absorber PPMMA proposed structure is capable to absorbs electromagnetic wave at wide range of incident EM wave. The CST simulated result of proposed PPMMA structure shows that the five-band realizes perfect metamaterial absorber for normal incident electromagnetic waves of 91.3%, 99.3%, 93.7%, 98.2%, and 97.4% at 12.25 GHz, 12.9 GHz, 16.15 GHz, 16.78 GHz, and 18.44 GHz of absorbance value respectively.

1. Introduction

Negative refractive index materials based on periodic array of conducting elements today become known metamaterials medium. In last 20 years has been investigated and become highly hot topic due to their unusual and exotic properties not found in nature [1,2]. There are many applications in an assortment of engineering fields inherent from specials properties of metamaterial such as object cloaking [3], enhance antenna propagation patrons [3], sensor [4,5], power energy harvesting [6,7], lens imaging [8], solar cells [9] and thermal imaging [10], etc. Metamaterial based on Electromagnetic Absorbers (MEMA) are designed according to the principle of impedance matching with the free space impedance (ζ) at resonant frequency [4,5,11]. A perfect metamaterial absorber can be used to absorb the electromagnetic wave with zero electromagnetic reflection EMR and zero electromagnetic transmission EMT [12,13]. The effective medium structure based MEMA provide almost perfect absorption with ultrathin substrate thickness [14,15] and simple resonator design. Although absorbers based on metamaterial are made much smaller structures to provide almost total absorption of incident EM wave, many studies focused in single band absorber but in recent work presented multi band MMA because they are suffered from narrow absorption bandwidth [1,16,17]. In this work very simple structure are simulated just two rings. This structure can be absorbing electromagnetic wave at 5 bands at 12.25 GHz, 12.9 GHz, 16.15 GHz, 16.78 GHz, and 18.44 GHz with absorption level 91.3%, 99.3%, 93.7%, 98.2%, and 97.4% respectively.

2. Design

In this work very simple three layers’ metamaterial absorber structure. Figure.1 shows proposed designed resonator with its optimized dimensions. The parameters value is listed in to table 1. The top layer and bottom layers of absorber is metallic (copper) with thicknesses 35 μm and conductivity is 58 \times 106 S/m. the tow metallic layers separated from each other by FR4 substrate layer with permittivity 4.3, tangential losses is 0.02 and thickness is 2.5 mm.
The unit cell is simulated based on CST microwave studio EM simulator according to frequency solver simulation. The absorption is calculated according to S-parameter results which are carried out CST analyzed and equ.1.

\[A(\omega) = 1 - |S_{11}|^2 - |S_{21}|^2 \]

Where \(A(\omega) \) is absorbance, \(S_{11} \) reflectance and \(S_{21} \) transmittance. Because we used entire ground the equ 1. becomes as in equ.2.

\[A(\omega) = 1 - |S_{11}|^2 \]

The simulation setup is applied as shown in Figure.2. where \(k^* \) is propagation vector aligned to z-direction, electric field vector E aligned to y-direction and magnetic field vector H aligned to x-direction.

Parameter	Value (mm)
\(A \)	12.25
\(r1 \)	3.1
\(r2 \)	5.1
\(W \)	1
\(G \)	1
\(H \)	2.5

Table 1. Dimension value of proposed structure.
3. Results
The proposed metamaterial absorber shows simulated response according to applied electromagnetic which is normally incidence into it. Figure 3 presents five absorption bands at 12.25 GHz, 12.9 GHz, 16.15 GHz, 16.78 GHz, and 18.44 GHz with absorption level 91.3%, 99.3%, 93.7%, 98.2%, and 97.4% respectively.

Figure 3. Absorption characteristic.
For more description the high absorbance a surface current distribution is calculated at the five-resonance frequency as presented in Figure. 4. The resonance type at 12.25 GHz, 16.15 GHz, 16.78 GHz, and 18.44 GHz is electric dipole but the resonance type at 12.9 GHz is electric coupling between two rings.

Figure 4. Surface current distribution (a) at 12.25 GHz, (b) at 12.9 GHz, (c) at 16.15 GHz, (d) at 16.78 GHz, and (e) at 18.44 GHz.

Figure 5. Simulated absorption for a different h thickness.
Similarly, in order to study the parametric effect Figure 5 present the effect of substrate thicknesses in absorption response. The results show perfect absorption at 2.5 mm thicknesses and the absorption shift when h increases or decreases. Figure 6 study the parametric effect of unit cell size in absorption characteristic. The results show the perfect absorption effected by unit cell dimension change.

![Figure 6. Simulated absorption for the different value of a](image)

Figure 6. Simulated absorption for the different value of a

![Figure 7. Simulated absorption for a different TE polarization incident waves.](image)

Figure 7 and Figure 8 show the simulated result of EM absorbance spectrum of the PPMMA structure for TE and TM polarization incident waves respectively. For TE mode the absorption level almost higher than 50% for incident angle less than 60°. Meanwhile the absorbance at three resonant frequencies are shifted. For TM mode the absorption level better than TE mode for incident angle less than 60°.
The proposed absorber can therefore be said to have given good results compared with other multi band perfect metamaterial absorbers reported in the literature, as summarized in Table 2. This structure is a good solution for multi absorption applications.

References	No. layers	No. resonator/unit cell	Absorption level	No. absorption bands
[18]	3	4	>90	2
[19]	3	1	>90	2
[20]	3	1	>90	3
[21]	3	4	>90	3
[22]	3	1	>90	4
[23]	3	4	>90	4
[24]	4	2	>90	5
[25]	10	4	>90	5

Proposed structure 3 >90 5

4. Conclusion
The present work shows multi band perfect metamaterial absorber. This work shows satisfactory results due to multi microwave absorption band and perfect absorption.

5. References
[1] N. I. Landy, S. Sajuigbe, J. J. Mock, D. R. Smith and W. J. Padilla 2008 “Perfect metamaterial absorber,” Phys. Rev. Lett, 100(20), 207402
[2] D.R. Smith, W.J. Padilla, D.C. Vier, S.C. Nemat-Nasser and S. Schultz 2000 Composite medium with simultaneously negative permeability and permittivity. Phys. Rev. Lett. 84(18), 4184–4187
[3] K. Alici, E. Ozbay 2007 Radiation properties of split ring resonator and monopole composites. Phys. Stat. Sol. B 244(4), 1192–1196
[4] K. S. Al-Badri, A. Cinar, U. Kose, O. Ertan, and E. Ekmekci 2017 “Monochromatic Tuning of Absorption Strength Based on Angle-Dependent Closed-Ring Resonator-Type Metamaterial Absorber,” IEEE Antennas and Wireless Propagation Letters, 16, 1060-1063

[5] K. S. L. Al-Badri, and E. Ekmekçi 2016 “A Numerical Study with Various Intersecting Twin Structures on Tuning the Absorption Spectra in S-Band,” URSI-TÜRKİYE’2016 VIII. Bilimsel Kongresi, 1-3 Eylül ODTÜ, Ankara

[6] F. Dincer 2015 “Electromagnetic energy harvesting application based on tunable perfect metamaterial absorber,” Journal of Electromagnetic Waves and Applications, 29(18), 2444-2453

[7] O. T. Gunduz, and C. Sabah 2016 “Polarization angle independent perfect multiband metamaterial absorber and energy harvesting application,” Journal of Computational Electronics, 15(1), 228-238

[8] N. Fang, H. Lee, C. Sun and X. Zhang 2005 Sub-diffraction-limited optical imaging with a silver superlens. Science 308(5721), 534–537

[9] J. Hao, J. Wang, X. Liu, W.J. Padilla, L. Zhou and M. Qiu 2010 High performance optical absorber based on a plasmonic metamaterial. Appl. Phys. Lett. 96(25), 251104

[10] X. Liu, T. Tyler, T. Starr, A.F. Starr, N.M. Jokrest and W.J. Padilla 2011 Taming the blackbody with infrared metamaterials as selective thermal emitters. Phys. Rev. Lett. 107(4), 045901

[11] Che Seman, F. and R. Cahill 2012 “Frequency selective surfaces based planar microwave absorbers,” PIERS Proceedings, 906—909, Kuala Lumpur, Malaysia, Mar. 27—30

[12] Bian, B. R., Liu, S. B., Zhang, H. F., Li, B. X. and Ma, B. 2013 A New Triple-band Polarization-insensitive Wide-angle Microwave Metamaterial Absorber. In PIERS Proceedings

[13] Fernández Álvarez, H., de Cos Gómez, M. E. and Las-Heras, F. 2015 A thin c-band polarization and incidence angle-insensitive metamaterial perfect absorber. Materials, 8(4), 1666-1681.

[14] Yu, Z., Liu, S., Fang, C., Huang, X. and Yang, H. 2015 Design, simulation, and fabrication of single-/dual-/triple band metamaterial absorber. Physica Scripta, 90(6), 065501

[15] Guo-Dong, W., Ming-Hai, L., Xi-Wei, H., Ling-Hua, K., Li-Li, C., & Zhao-Quan, C. 2013 Multi-band microwave metamaterial absorber based on coplanar Jerusalem crosses. Chinese Physics B, 23(1), 017802

[16] Tao, H., Bingham, C. M., Pilon, D., Fan, K., Strikwerda, A. C., Shrekenhamer, D., and Averitt, R. D. 2010 A dual band terahertz metamaterial absorber. Journal of physics D: Applied physics, 43(22), 225102.

[17] Al-Badri, K. S. L. 2018 Very High Q-Factor Based On G-Shaped Resonator Type Metamaterial Absorber. Ibn AL-Haitham Journal For Pure and Applied Science, 160-167.

[18] Sun, C., Dong, Z., Si, J., and Deng, X. 2017 Independently tunable dual-band plasmonically induced transparency based on hybrid metal-graphene metamaterials at mid-infrared frequencies. Optics Express, 25(2), 1242-1250

[19] Tao, H., Bingham, C. M., Pilon, D., Fan, K., Strikwerda, A. C., Shrekenhamer, D., and Averitt, R. D. 2010. A dual band terahertz metamaterial absorber. Journal of physics D: Applied physics, 43(22), 225102.

[20] Cheng, Y. Z., Cheng, Z. Z., Mao, X. S. and Gong, R. Z. 2017. Ultra-thin multi-band polarization-insensitive microwave metamaterial absorber based on multiple-order responses using a single resonator structure. Materials, 10(11), 1241

[21] Chen, J., Hu, Z., Wang, S., Huang, X. and Liu, M. 2016 A triple-band, polarization-and incident angle-independent microwave metamaterial absorber with interference theory. The European Physical Journal B, 89(1), 14

[22] Agarwal, M., Behera, A. K., and Meshram, M. K. 2016. Wide-angle quad-band polarisation-insensitive metamaterial absorber. Electronics Letters, 52(5), 340-342
[23] Zheng, D., Cheng, Y., Cheng, D., Nie, Y. and Gong, R. Z. 2013 Four-band polarization-insensitive metamaterial absorber based on flower-shaped structures. *Progress In Electromagnetics Research*, 142, 221-229.

[24] Meng, T., Hu, D. and Zhu, Q. 2018 Design of a five-band terahertz perfect metamaterial absorber using two resonators. *Optics Communications*, 415, 151-155.

[25] Dayal, G. and Ramakrishna, S. A. 2013 Design of multi-band metamaterial perfect absorbers with stacked metal–dielectric disks. *Journal of Optics*, 15(5), 055106