Mechanized Analysis of Anselm’s
Modal Ontological Argument

John Rushby

Computer Science Laboratory, SRI International, Menlo Park CA 94025 USA
Rushby@csl.sri.com

Abstract. We use a mechanized verification system, PVS, to examine the argument from Anselm’s Proslogion Chapter III, the so-called “Modal Ontological Argument.” We consider several published formalizations for the argument and show they are all essentially similar. Furthermore, we show that the argument is trivial once the modal axioms are taken into account. This work is an illustration of computational philosophy and, in addition, shows how these methods can help detect and rectify errors in modal reasoning.

0 Preamble

This is a minor update with better typesetting and some small addenda plus a new (June 2024) postscript to a paper published in the International Journal for Philosophy of Religion, vol. 89, pp. 135–152, April 2021 (online publication 4 August 2020).

1 Introduction

The Ontological Argument is a proof of the existence of God presented by St. Anselm of Canterbury in his Proslogion (Anselm 1078). It has been studied and debated by philosophers and theologians ever since.

The Ontological Argument has traditionally been identified with Chapter II of the Proslogion, but in the middle years of the last century philosophers noted that Chapter III presents an argument that could be interpreted as an alternative proof for God’s existence. This discovery is generally attributed to Malcolm (1960) although Hartshorne had made similar observations earlier. (Hartshorne (1965, Part 1, Section 8) gives some of the history, and also Smith (2014, Introduction).) The discovery was that the argument of Chapter III can be seen as an independent, self-contained proof; previously, and for many commentators still today (Campbell 2018, 2019) (Sobel 2003, p. 82), Chapter III is seen as a continuation of the argument of Chapter II.

We reproduce an English translation of Chapter III in Figure 1. Its argument, which is found in its second paragraph and highlighted in italics, is couched in terms of beings whose existence is necessary (i.e., “that which cannot be conceived not to exist”) and has come to be known as Anselm’s Modal Argument, since qualifiers such as “necessary” (with dual “possible”) indicate modes of truth. Philosophers since Aristotle have attempted to construct specialized logics for reasoning about these but modern modal logics were developed only in the 20th century (Cresswell and Hughes 1996).
God cannot be conceived not to exist. God is that, than which nothing greater can be conceived. That which can be conceived not to exist is not God.
And it assuredly exists so truly, that it cannot be conceived not to exist. For, it is possible to conceive of a being which cannot be conceived not to exist; and this is greater than one which can be conceived not to exist. Hence, if that, than which nothing greater can be conceived, can be conceived not to exist, it is not that, than which nothing greater can be conceived. But this is an irreconcilable contradiction. There is, then, so truly a being than which nothing greater can be conceived to exist, that it cannot even be conceived not to exist; and this being you are, O Lord, our God.

So truly, therefore, do you exist, O Lord, my God, that you can not be conceived not to exist; and rightly. For, if a mind could conceive of a being better than you, the creature would rise above the Creator; and this is most absurd. And, indeed, whatever else there is, except you alone, can be conceived not to exist. To you alone, therefore, it belongs to exist more truly than all other beings, and hence in a higher degree than all others. For, whatever else exists does not exist so truly, and hence in a less degree it belongs to it to exist. Why, then, has the fool said in his heart, there is no God (Psalms xiv. 1), since it is so evident, to a rational mind, that you do exist in the highest degree of all? Why, except that he is dull and a fool?

Addendum to the published paper (8 June 2023).

The published paper provides no description of the path from Anselm’s informal presentation of the argument in Figure 1 to the formal versions considered later.

The first step in doing this is to introduce $g$ as an abbreviation for (the existence of) “that than which nothing greater can be conceived” and to use $\Diamond$ to mean “it is conceivable that.” Then the sentence “Hence, if that, than which nothing greater can be conceived, can be conceived not to exist, it is not that, than which nothing greater can be conceived” can be read as $\Diamond \neg g \supset \neg g$, and the contrapositive of this is $g \supset \neg \Diamond \neg g$ (see first footnote for notation).

At this point we need to decide how to interpret $\Diamond$ formally and our choice is to treat it as the “possibly” qualifier of Alethic modal logic. Then $\neg \Diamond \neg$ becomes the “necessary” qualifier $\Box$ and the formal rendition becomes

$$g \supset \Box g.$$ 

This has become known as “Anselm’s Principle” and, in modern language, its justification might be that if a greatest being exists, then its existence could not be contingent (i.e., chance), because we can then conceive of a greater being (i.e., one whose existence is necessary). Hence if a greatest being exists, then its existence must be necessary.

Next, it seems implicit that the existence of $g$ is conceivable, and this is rendered as

$$\Diamond g.$$ 

We now have the two premises of the argument, and its completion requires rules for reasoning about the modal qualifiers $\Diamond$ and $\Box$. When sound treatments for modal logics started to be developed (in the last century), it became apparent that additional
axioms were needed to describe properties of the modal qualifiers, and that different axioms were required according to the different interpretations of the qualifiers (e.g., knowledge vs. belief). Formalizations of the ontological argument use an Alethic logic (one in which the qualifiers are interpreted as “possibly” and “necessary” or, to be more faithful to Anselm “it is conceivable that” and “it is inconceivable that not”) and suitable auxiliary axioms are those known as T, B, and 5, which are described in Section 2. 

End of Addendum

In this paper, I subject several published formalized variants of Anselm’s Modal Argument to mechanized analysis in the PVS Verification system; specifically, I consider versions by Eder and Ramharter (2015, Section 4.1), Kane (1984), Malcolm (1960) as reported by Hartshorne (1961), Adams (1971) as reported by Matthews (2005), and Hartshorne (1962, pp. 50–51). This work is an elementary example of Computational Philosophy (Grim and Singer 2020), that is, application of mechanized computation and reasoning to philosophical topics.

There are several other applications of automated reasoning to ontological arguments, including first and higher-order treatments of Anselm’s traditional argument (Oppenheimer and Zalta 2011; Rushby 2013, 2020), modal treatments of that argument (Rushby 2019), and Gödel’s modal argument (Benzmüller and Woltzenlogel-Paleo 2014). These other applications use moderately advanced logical constructions, such as definite descriptions (Oppenheimer and Zalta 2011; Rushby 2013), higher order logic (Rushby 2020), and first order modal logic (Benzmüller and Woltzenlogel-Paleo 2014; Rushby 2019), whose mechanized support is fairly intricate and prone to errors (Garbacz 2012).

In contrast, Anselm’s modal argument requires only propositional modal logic. However, this is mechanized by embedding it in the classical logic of a verification system, which requires some care. Nonetheless, these are among the simplest examples of Computational Philosophy and can serve as an introduction to the field. I will show, however, that despite its simplicity, this exercise delivers useful and novel results of both a positive and negative kind—the latter being to expose a lamentable error in a paper published in this very journal.

The structure of the paper is as follows. Section 2 provides a short introduction to the embedding of propositional modal logic in PVS, which is the system that provides the mechanization used here; the five variants of the Argument are presented and analyzed in Section 3; Section 4 discusses the value of this exercise and some related analyses, and Section 5 provides conclusions.

2 Propositional Modal Logic in PVS

Modal logics allow reasoning about various modes of truth: for example, what it means for something to be necessarily true, or to know that something is true as opposed to merely believing it.

The modal qualifier □ and its dual ◇ (defined as ¬□¬)1 are used to indicate expressions that should be interpreted modally. All modal logics share the same basic structure but they employ different sets of axioms and make other adjustments according to the

1 We use ¬ for negation, ∧ for conjunction, ∨ for disjunction and ⊃ for material implication.
mode attributed to the qualifiers. For example, in an Alethic modal logic, where □ is interpreted as necessity, we will expect the formula □P ⊃ P to hold: if something is necessarily true, then it should be true. But we would not expect this formula to hold in a Doxastic logic, where □ is interpreted as belief. Instead, we might expect □P ⊃ ◊P to hold: if I believe P is true, then I cannot also believe it to be false (reading ◊P as ¬□¬P). There is a collection of formulas such as these that have standard names (the two above are called T and D, respectively) and that are used in various combinations to axiomatize different modal logics. Some of the common ones are listed below.

\[ K: \quad □(P ⊃ Q) ⊃ (□P ⊃ □Q) \] [this formula is true in all modal logics],

\[ T: \quad □P ⊃ P, \]

\[ D: \quad □P ⊃ ◊P, \]

\[ B: \quad P ⊃ □□P, \]

\[ 4: \quad □P ⊃ □□P, \]

\[ 5: \quad ◊P ⊃ □◊P. \]

The semantics of modal logics are interpreted relative to a set of possible worlds, so that □P means true in all worlds and ◊P means true in some world. To represent different interpretations for the modalities, we impose an accessibility relation on possible worlds and refine the statements above to true in all accessible and some accessible worlds, respectively.

There is a relationship between the standard modal axioms and properties of the accessibility relation. For example, T and D, mentioned above, correspond to accessibility relations that are reflexive and serial, respectively. The modal ontological argument is expressed in Alethic modal logic, and such logics have accessibility relations that are equivalence relations. This corresponds to the combination of modal axioms T (reflexive) and either 4 (transitive) plus B (symmetric), or 5 (Euclidean).\(^2\)

We will undertake our examination of the modal ontological argument using the PVS Verification System. Verification systems are tools from computer science that are generally used for exploration and verification of software or hardware designs and algorithms; they comprise a specification language, which is essentially a rich logic, and a collection of powerful deductive engines (e.g., satisfiability solvers for combinations of theories, model checkers, and automated and interactive theorem provers). In particular, PVS has a specification language based on higher-order logic and its proof automation is guided interactively. It is generally applied to analysis and verification of computational systems and has more than 4,000 citations. We do not describe PVS in detail here but we do try to provide enough information to make this presentation self contained; see PVS (constantly updated) for the PVS system description and Rushby (2013, 2018, 2019, 2020) for previous applications to the (traditional, Prosligion Chapter II) Ontological Argument.

There is a standard translation from modal logic to classical first- or higher-order logic (Wikipedia retrieved 2019) and we use this to provide a shallow embedding into the dependently-typed higher-order classical logic of PVS in a way that preserves much of its proof automation. The embedding is described in tutorial detail elsewhere\(^2\)

\(^2\)The modal logic with no accessibility relation has the same theorems as one whose accessibility relation is an equivalence.
The core of the embedding is shown in Figure 2; the basic idea is that modal expressions are “lifted” so that they become functions on worlds. The function \( \text{val}(x)(w) \) provides the valuation for propositional constant \( x \) in world \( w \), and \( \sim, \&, \lor, \Rightarrow \) provide the “lifted” versions of negation, conjunction, disjunction, and material implication, respectively. We then define the modalities as described above, and define modal validity as truth in all worlds.

When we write a modal formula such as \( <> P \Rightarrow P \) in PVS, we really intend its classical embedding, \( \text{valid}(<> P \Rightarrow P) \), and this is taken care of automatically using the PVS CONVERSIONs (see Rushby (2017)) specified at the bottom of the theory, and in some of the theories that appear later.
3 Reconstructions of the Modal Ontological Argument

We will examine five reconstructions of Anselm’s modal argument. As we will discover, they are all variants of the same rather trivial deduction.

3.1 The Version by Eder and Ramharter

I will begin with the version of Eder and Ramharter (2015, Section 4.1). They attribute this to Hartshorne (1962, pp. 49–51) but my reading of Hartshorne’s version is somewhat different and I will examine that later.3

The argument is presented in an Alethic modal logic: that is, one where the modalities express necessity (\(\Box\)) and possibility (\(\Diamond\)), respectively.

**Definition:** \(g\) is an abbreviation for “there exists a being than which there is none greater” (i.e., God).

**Premise ER1:** \(g \supset \Box g\) (i.e., if God exists, then he exists necessarily).

Eder and Ramharter refer to ER1 as *Anselm’s Principle* and state that a more precise reading (i.e., a better match to Anselm’s language) is “if God exists, then his nonexistence is inconceivable” (i.e., reading \(\Box g\) as \(\neg \Diamond \neg g\)).

**Premise ER2:** \(\Diamond g\) (i.e., God’s existence is possible).

**Conclusion ERC:** \(g\) (i.e., God exists in a classical sense).

Before we proceed to examine the logic of this formulation, we note that it is abstracted quite significantly from Anselm’s natural language description as given (in English translation) in the second paragraph of Figure 1. Anselm speaks of beings that can be “conceived” to exist, and also has a relation of “greater” among beings. Eder and Ramharter’s paper is largely concerned with what it means for a logical formulation to be a good reconstruction of an informal argument and they note that this formulation fails several of their criteria. We will return to some of these points in Section 4.

Eder and Ramharter’s formulas ER1, ER2, and ERC are all rendered straightforwardly into PVS as shown in Figure 3. The imported theory `simple_pml` provides the shallow embedding of propositional modal logic shown in the previous section, plus some additional theories including the standard modal axioms.

3.1.1 Automated Proof. The formula ERC_tmp states the basic conclusion, which we attempt to prove using the following PVS proof commands.

```pvs
(lemma "ER1") (lemma "ER2")
(grind :if-match nil)
(inst?)
(grind :polarity? t)
```

3 Hartshorne uses the arrow \(\rightarrow\) to mean strict implication, so his version of (Hartshorne 1962, pp. 49–51) is that examined in Section 3.5. In the published paper, I stated “elsewhere, Hartshorne (1965, p. 97) does state ‘Anselm’s Principle’ in the form used by Eder and Ramharter.” This is incorrect, however, and I am grateful to Diego Murcia for pointing out that Hartshorne uses strict implication in that version, too.
These install the two premises, then invoke the standard automated proof command grind with instantiation of variables disabled (this just unwinds the embedding of modal logic); next we perform heuristic instantiation on one of the premises, and finally use grind again, with variable instantiation instructed to pay attention to the polarity of variables.

This delivers the following proof sequent.

```
[-1]  access(w!1, v!1)
[-2]  val(g)(v!1)
     |-------
[1]   access(v!1, w!1)
[2]   val(g)(w!1)
```

The interpretation of a PVS sequent is that the conjunction of formulas above the |------- turnstile line should entail the disjunction of those below. Terms such as w!1 are Skolem constants, access is the accessibility relation on possible worlds, and val is the valuation function for propositional constants, so val(g)(v!1) is the valuation of g in world v!1. Here, we see that the proof would be completed if line -1 implied line 1: that is, if the accessibility relation were symmetric.

Thus, we recognize that the conclusion to the argument should be modified to mention symmetry, and this explains the final form for ERC shown in Figure 3, which is proved by the same proof steps as above.
Alternatively, we could cite the standard modal axiom B (i.e., $P \supset \Box \Box P$), which characterizes symmetric accessibility relations, as an additional premise. In this case, ERC.tmp is proved by the following commands. Notice that the instantiation into $B$ is not trivial (observe the negation).

\begin{verbatim}
(lemma "ER1") (lemma "ER2")
(lemma "B") (inst -1 "-val(g)")
(grind :if-match nil)
(inst? -2)
(grind :polarity? t)
\end{verbatim}

As can be inferred from the PVS sequent shown on a previous page, these proofs operate directly on the possible world semantics of modal logic: essentially they expand the definitions given in Figure 2 and then perform quantificational reasoning over the possible worlds. This is automated effectively and efficiently by the standard proof mechanization of PVS and the intermediate proof states, displayed as sequents, are fairly easy to interpret.\footnote{Greater automation is possible using modern SMT solvers (Ge and de Moura 2009) but that can be less helpful when, as here, a proof fails and we want to understand why.} However, it does not reproduce the style of semi-formal proofs that typically accompany journal presentations. Accordingly, we now illustrate how PVS can be used to examine those kinds of proofs.

**Addendum** to the published paper (3 June 2024).

It is worth noting the relationship between Anselm’s Principle as expressed in the premise ER1 and the rule of \textit{necessitation} in modal logic, generally named N:

\[ N: \text{if } P \text{ is valid, so is } \Box P. \]

This is actually a metatheorem, true in all modal logics; it says that if $P$ is just plain true (i.e., without reference to a possible world), then it is true in all possible worlds.

Depending on the syntactic conventions available, N can be written to look very similar to ER1. For example, in PVS, N (instantiated for g) can be written

\[ N: \text{Lemma } g \text{ implies } \Box g \]

However, if we expand the \textit{CONVERSION}s applied in this lemma (using the PVS function \textit{prettyprint-expanded}), we see that it is

\[ N: \text{Lemma } \text{valid}(g) \text{ implies } \text{valid}(\Box g) \]

whereas doing the same for ER1 delivers the following.

\[ \text{ER1: Axiom } \text{valid}(g \Rightarrow \Box g) \]

The crucial difference in modal scope (and hence quantification) is now quite evident. N says that if $g$ is true in every world, then it must be true in every world that is accessible from a given world. This is obviously true (and provable). Whereas ER1 says
that if $P$ is true in a given world, it must also be true in every world that is accessible from that world. This is a strong claim, plausible for God, but not in general.

This topic highlights another one worth noting, namely, that the deduction theorem is not valid in modal logic. That is to say, the following (which would allow ER1 to be derived from $N$) is not provable (its converse is, however).

| PVS fragment |
| --- |
| nondeduction: CLAIM (valid(P) IMPLIES valid(Q)) IMPLIES valid(P => Q) |

Related to this is the observation that it is often necessary to be very careful about which parts of a sentence are to be interpreted modally, and which are conventional propositional logic. In Section 4 we will see errors due to this issue.

**End of Addendum**

### 3.1.2 Reconstructing a Manual Proof

Eder and Ramharter (2015, Section 4.2) provide a typical semi-formal manual proof that is presented below in a slightly reorganized form.

**Step 1:** Applying Modal Axiom 5 to $\neg g$ and interpreting $\Diamond$ as $\neg \Box \neg$ we obtain $\neg \Box g \supset \Box \neg \neg g$; standard propositional logic then gives $\Box g \lor \Box \neg g$.

**Step 2:** By contrapositing Anselm’s principle ER1 (i.e., $\neg \Box g \supset \neg g$) and instantiating Modal Axiom K with $P = \neg \Box g$ and $Q = \neg g$ we arrive at $\Box \neg g \supset \Box \neg g$.

**Step 3:** The previous steps combine to give $\Box g \lor \Box \neg g$ which can be rewritten as $\Box g \lor \neg \Diamond \neg g$ and then simplified to $\Box g \lor \neg g$.

**Conclusion:** The previous step combined with God’s possibility ER2 allows us to conclude $\Box g$ from which Modal Axiom T allows us to infer $g$.

We can reproduce this level of reasoning in PVS by stating the conclusion of each step as a lemma as shown below.

| PVS text |
| --- |
| step1: LEMMA $\Box g \lor \neg \Box g$ |
| step2: LEMMA $\Box \neg g \supset \Box \neg g$ |
| step3: LEMMA $\Box g \lor \neg g$ |

We then invite PVS to prove each of the lemmas and the conclusion ERC.tmp without expanding the modal qualifiers. Here is the beginning of the proof for step1.

| PVS proof steps |
| --- |
| (lemma "five") (inst - "\neg g") |
| (grind :if-match nil :exclude ("=>" "\Box") :rewrites "dexpand") |
| (inst?) |

The :exclude construct prevents expansion of the modal qualifiers, but note that dexpand will automatically rewrite $\Diamond$ as $\neg \Box \neg$. This brings us to the following sequent, which represents the instantiation of Modal Axiom 5 (the formula above the turnstile
line) and allows us to see how this will discharge the conclusion to step 1 (the two formulas below the line). That final step is accomplished by the proof command (grind). Note that the Skolem constant on worlds $w!1$ comes from the definition of validity for modal constructs as true in all worlds.

\[
\begin{array}{l}
[-1] \text{ NOT } (\Box \neg \neg \text{val}(g))(w!1) \text{ IMPLIES } (\Box \neg \neg \text{val}(g))(w!1) \\
\hline
[1] (\Box \text{val}(g))(w!1) \\
[2] (\Box \neg \Box \text{val}(g))(w!1)
\end{array}
\]

Preference for one or the other style of mechanically assisted proof depends on the purpose of the exercise. If it is to examine validity and soundness of a particular argument (i.e., selection of premises), then I think the automated approach is preferable: it is generally fast and simple. But if the purpose is to examine a specific proof (i.e., chain of inferences) then a mechanically assisted reconstruction will be the necessary choice. I will examine some specific proofs in Section 4 but will favor automated verification for the remainder of this section.

Returning to the automated verification of Section 3.1.1, PVS assures us that this specification of the argument is valid, so we should now consider whether the premises and assumptions are reasonable and sound.

### 3.1.3 Analysis and Interpretation.

We focus first on the assumption of a symmetric accessibility relation or, alternatively, the standard axiom B.

The argument makes sense only in an Alethic logic, that is one where $\Box$ and $\Diamond$ are interpreted as necessary and possibly, respectively, and Alethic modal logics are characterized by having accessibility relations that are equivalence relations. Hence, the assumption of symmetry in ERC presents no difficulty. Dually, Alethic logics are also characterized by the standard axioms T, 4, and 5—a combination that is generally referred to as S5\(^5\)—from which B can be derived as a theorem. We conclude that the assumption of symmetry or modal axiom B is uncontroversial, provided one accepts that the Alethic logic needed here is correctly characterized by S5—which few would dispute. If in doubt, Ladstätter (2012) provides a clear description of logical, metaphysical, and physical notions of necessity, and explains why logical necessity is required here, and why S5 is the right formalization.

We note that the manual proof of Section 3.1.2 used Modal Axioms 5, K, and T instead of B. However, K is true of all modal logics, and 5 and T are included in S5, and therefore this combination is acceptable in an Alethic logic.

Next, we consider the premise ER1. This seems, and is generally considered to be, a reasonable premise for a truly perfect or greatest being, such as God: if such a being existed, it would surely not do so merely contingently. Notice that this premise is specific to the constant $g$ with the interpretation used here: the generalization $P \supset \Box P$, where $P$

\(^5\) The modal formula K is often mentioned, too, and the logic is then sometimes referred to as KT45; however, K is a theorem, true in all modal logics (alternatively, it can be seen to characterize what is a modal logic), so its mention is redundant; furthermore, T and 5 imply 4, so mention of 4 is also redundant.
is a metavariable ranging over all propositional constants is not a plausible premise, nor is the instance where $g$ is interpreted as a perfect island, as in Gaunilo’s (circa 1079) refutation.

The premise ER2 is discussed at length in some philosophical papers (e.g., Hartshorne 1961). One concern is that the concept of a perfect or greatest being must be non self-contradictory (otherwise it could not possibly exist), and this is not straightforward as there are properties of a perfect being that seem to conflict (e.g., omnibenevolence and perfect justice). Another concern is that non self-contradiction may be insufficient to ensure the possibility of existence. However, as we are concerned with logic and mechanization, we accept ER2 as otherwise the proof cannot proceed.

The overall argument seems fairly satisfying: we have one premise about a hypothesized God’s necessary existence, another about his possible existence, and we are able to conclude his actual existence, which is something of a surprise and therefore satisfying.

However, we have the background assumption of a symmetric accessibility relation or the modal axiom B and, in the presence of this assumption, the premise ER1 reduces to $\diamond g \supset g$. This is stated in its general form as $\text{ER}_{\text{triv}}$ in Figure 3; its proof is simply $(\text{grind :polarity? t})$. But now the argument is exposed as trivial:

$$\diamond g \supset g, \diamond g, \text{ hence } g.$$

We will examine several variants on this argument; mostly they adjust the first premise, sometimes also the conclusion (using $\square g$ rather than simply $g$), and sometimes they assume modal axioms other than B. But in all cases, we will see that the argument reduces to the same trivial form.

Addendum to the published paper (16 August 2020). If $M$ is the modal assumption, $P_1$ and $P_2$ the premises and $C$ the conclusion, then in classical logic the overall deduction has the form $M \land P_1 \land P_2 \vdash C$ and from this it follows that $M \supset (P_1 \supset (P_2 \supset C))$. $\text{ER}_{\text{triv}}$ is just a modal instance of this inevitable relationship. The reason I label it trivial is because it is expressed so directly in the premises and conclusion employed.

End of Addendum
3.2 The Version by Kane

Kane (1984) presents a version of the argument that uses a slightly more complex formulation of the first premise. The interpretation of \( g \), the second premise, and the conclusion are the same as in Eder and Ramharter’s version from the previous section.

Premise K1: \( \Box(g \supset \Box g) \).
Kane reads this as “Necessarily, if a perfect being exists, then necessarily a perfect being exists.” He states that Hartshorne and others assume that it follows from a principle he names \( N \) (not to be confused with the rule of necessitation): “By definition, anything which is perfect is such that, if it exists, it exists necessarily,” where “the first \( \Box \) in K1 corresponds to the ‘by definition’ of \( N \)” (Kane 1984, page 337).

Premise K2: \( \Diamond g \) (i.e., God’s existence is possible).
Conclusion KC: \( g \) (i.e., God exists in a classical sense).

The heart of the PVS specification for this version is shown below.

| Kane’s version in PVS |
|----------------------|
| **K1:** LEMMA \( \Box(g \Rightarrow \Box g) \) |
| **K_triv:** LEMMA symmetric?(access) IMPLIES \( \Box(P \Rightarrow \Box P) \) IMPLIES (\( \leftrightarrow \) P \( \Rightarrow \) P) |
| **K2:** AXIOM \( \leftrightarrow g \) |
| **KC:** THEOREM symmetric?(access) \( \Rightarrow g \) |

We label the PVS rendition of K1 as a LEMMA rather than an AXIOM because it can be proved from ER1; the proof is simply (grind :polarity? t). Again, proof of the conclusion requires modal axiom B or, equivalently, a symmetric accessibility relation. Given that K1 is entailed by ER1, it is unsurprising that it also reduces to \( \Diamond g \supset g \), which is stated as K_triv in the PVS specification. Thus, at bottom, this version is based on the same trivial reasoning as the previous one.

Kane devotes considerable space to discussing the acceptability of modal axiom B. But, as explained in the previous section, B is a theorem of S5, which is the standard formalization for the Alethic logic that is needed to provide the desired interpretations for \( \Box \) and \( \Diamond \), so Kane’s agonizing seems otiose.

3.3 The Version of Malcolm as Reported by Hartshorne

Hartshorne (1961) presents a version of the argument that he attributes to Malcolm (1960). This has the same premises as Eder and Ramharter’s version, but the conclusion is \( \Box g \) rather than simply \( g \). Furthermore, rather than modal Axiom B, this version uses the modal Axiom 5, which is \( \Diamond P \supset \Box \Diamond P \). Axiom 5 corresponds to a Euclidean accessibility relation\(^6\) and is assumed in an Alethic logic.

\(^6\) A relation \( R \) is Euclidean if \( \forall u, v, w : R(u,v) \land R(u,w) \supset R(v,w) \).
The core of the formal specification in PVS is shown below,

| M1: AXIOM g => □g |
|-------------------|
| M_triv: LEMMA Euclidean?(access) IMPLIES (P => □P) IMPLIES (<>P => □P) |
| M2: AXIOM <>g |
| MC: THEOREM Euclidean?(access) => □g |
| MC_alt: THEOREM symmetric?(access) => □g |

PVS easily proves the conclusion MC, but it also proves the lemma M_triv and so again the reasoning is too trivial to claim our interest.

The conclusion can also be proved assuming modal axiom B or, alternatively, a symmetric accessibility relation, as stated in MC_alt: we first use the method of Eder and Ramharter’s version to establish g, then a second application of the premise M1 delivers □g.

3.4 The Version of Adams as Reported by Matthews

Adams (1971) derives a modal argument, not from Proslogion Chapter III, but from Anselm’s reply (circ. 1079, Chapter I, paragraph 6) to Gaunilo (circ. 1079). Despite its different origin, this argument is the same as Kane’s. However, Matthews (2005), who reports Adam’s version, gives the conclusion as □g. I will use this latter version as it completes the set of permutations on the first premise and conclusion.

This version of the argument in PVS is shown below.

| A1: LEMMA □(g => □g) |
|----------------------|
| A_triv: LEMMA        |
| Euclidean?(access) IMPLIES □(P => □P) IMPLIES (<>P => □P) |
| A2: AXIOM <>g |
| AC: THEOREM Euclidean?(access) => □g |
| AC_alt: THEOREM symmetric?(access) => □g |

As we expect, based on the other variants we have examined, this version can be proved assuming either a symmetric or Euclidean accessibility relation (i.e., standard axioms B or 5, respectively). And with a Euclidean accessibility relation, the lemma A_triv reveals that Premise A1 reduces to ◊g ⊃ □g so the conclusion follows trivially from Premise A2.
3.5 The Version by Hartshorne

Hartshorne (1962, pp. 50–51) presented the first formal reconstruction of the modal argument. This uses a different and more complex formulation of the first premise than the others we have examined. The interpretation of \( g \), the second premise, and the conclusion are the same as in the versions of Eder and Ramharter, and Kane.

Premise H1: \( g \to \Box g \), where \( \to \) denotes strict implication.
Premise H2: \( \Diamond g \) (i.e., God’s existence is possible).
Conclusion HC: \( g \) (i.e., God exists in a classical sense).

We say that \( P \) strictly implies \( Q \) if it is not possible for \( P \) to be true and \( Q \) false: that is, in an Alethic logic

\[
P \to Q \overset{\text{def}}{=} \neg (P \land \neg Q).
\]

It is a theorem that strict implication is the same as necessary material implication:

\[
P \to Q = \Box (P \supset Q).
\]

This equality is a theorem of all modal logics (i.e., it requires no axioms) but it carries the intended interpretation only in Alethic logics. Thus, premise H1 is equivalent to Kane’s premise K1 of Section 3.2 and the rest of the argument is also the same as Kane’s. It follows that the conclusion requires the assumption of a symmetric accessibility relation or, equivalently, modal axiom B, and that under this assumption the premise H1 reduces to \( \Diamond g \supset g \) and the argument is thereby seen to be trivial.

In PVS, this is written as follows, where we use \( |> \) for strict implication (Rushby 2017).

|\( > (P, Q) \) | pmformulas = \( \neg \Diamond (P \land \neg Q) \) [Hartshorne’s version in PVS]
|---|---
|H1: AXIOM | \( g |> \Box g \)
|H_triv: LEMMA | symmetric?(access) IMPLIES \( P |> \Box P \) IMPLIES \( \Diamond P \Rightarrow P \)
|H2: AXIOM | \( \Diamond g \)
|HC: THEOREM | symmetric?(access) \Rightarrow g

The conclusion HC can be proved by the following PVS commands, whose length is due to weak quantifier reasoning in PVS.

(lemma "H1") (lemma "H2")
(grind :if-match nil)
(inst?) (skosimp) (inst?)
(grind :polarity? t)

Similarly, H_triv is proved as follows.

(grind :if-match nil) (inst? -2) (grind :polarity? t)
We know from Section 3.4 that Adams’ version is the same as Kane’s with the conclusion changed to $\Box g$ and the modal assumption changed to a Euclidean accessibility relation or, equivalently, modal axiom 5. Since Hartshorne’s version is equivalent to Kane’s we can perform the same transformations here to yield the following variant.

$$\text{H_triv_alt: LEMMA}
\text{Euclidean?(access) IMPLIES (P |> \Box P) IMPLIES (\& P \Rightarrow \Box P)}$$

$$\text{HC_alt: THEOREM Euclidean?(access) IMPLIES \Box g}$$

These are proved in the same way as the originals.

Addendum to the published paper (29 July 2021). Harold Thimbleby remarked that it is a pity that PVS imposes an ASCII rendition and does not reproduce mathematical notation. I thank Harold for prompting me to report that, in fact, recent versions of PVS do support extended character sets with mathematical symbols, and all versions of PVS are able to typeset specifications in LATEX. A LATEX-printed version of Hartshorne’s version is shown below.

$$P \Rightarrow Q: \text{pmlformulas } \overset{\text{def}}{=} \neg \diamond (P \land \neg Q)$$

$$\text{H1: AXIOM } g \Rightarrow \Box g$$

$$\text{H1_triv: LEMMA symmetric?(access) } \Rightarrow (P \Rightarrow \Box P) \Rightarrow (\Box P \Rightarrow P)$$

$$\text{H2: AXIOM } \Box g$$

$$\text{HC: THEOREM symmetric?(access) } \Rightarrow g$$

Exactly how PVS ASCII text is rendered in LATEX is controlled by a “substitutions” file pvs-tex.sub. A comprehensive substitution file is provided with PVS but it can be augmented by the user. The rendition above was generated using the following substitutions file as augmentation. The first column in this file identifies the ASCII source to be substituted, the second identifies the kind of PVS object it is (see the PVS documentation), the third gives the size of the substitution in ems, and the final column gives the desired LATEX substitution.

| PVS LATEX substitution file |
|----------------------------|
| $|$ | 2 3 | {#1 \strictif #2} |
| $|$ | id 1 | \strictif |
| H1 | id 2 | \pvsid{H1} |
| H1_triv | id 3 | \pvsid{H1\_triv} |
| H2 | id 2 | \pvsid{H2} |
| IMPLIES | id 3 | \supset |
| = | key 2 | \defn |
| " | id 1 | \sim |
| " | id 1 | \neg |
| $|$ | id 1 | \supset |
| & | id 1 | \wedge |
It might be considered that these substitutions are too aggressive because they do not distinguish connectives to be interpreted modally from those that are propositional. Removing the last three lines from the substitution file above (where the third-last line overrides the fourth-last), restores this distinction and generates the following rendition.

\[
P \rightarrow Q:\ \text{pmlformulas} \overset{\text{def}}{=} \neg \Diamond (P \land \neg Q)
\]

\[
\text{H1: AXIOM} \quad g \Rightarrow \Box g
\]

\[
\text{H1_triv: LEMMA} \quad \text{symmetric?(access)} \supset (P \rightarrow \Box P) \supset (\Diamond P \Rightarrow P)
\]

\[
\text{H2: AXIOM} \quad \Diamond g
\]

\[
\text{HC: THEOREM} \quad \text{symmetric?(access)} \Rightarrow g
\]

End of Addendum

4 The Utility of These Methods

In my view, the utility of the methods illustrated here, and of computational philosophy more generally, is not so much that they enable verification of hard logical problems (those abound in logic and mathematics, not so much in philosophy) but that they enable rapid and error-free exploration of multiple formulations of the same or similar problems. This allows discovery of equivalences and subtle differences, not to mention checking of validity and discovery of economical and persuasive formulations.

In the case of the five specific formulations of the Modal Ontological Argument examined in Section 3, we found that all of them are variations on a simple pattern. Their authors and subsequent commentators did not seem to recognize this similarity, nor some of the differences within it. Hartshorne’s (1962) formulation uses strict implication whereas his earlier (1961) treatment of Malcolm’s (1960) original exposition does not. Eder and Ramharter (2015, Section 4.1) state that they follow Hartshorne’s (1962) formulation, but then use material rather than strict implication. Kane (1984) states that his formulation is from Hartshorne (1962) but “readers of that work and subsequent journal literature on the modal OA may not recognize the adaptation.” He attributes it to an unpublished simplification due to C. Anthony Anderson (Kane 1984, p. 339). Adams (1971) treatment is derived not from the Proslogion, but from Anselm’s reply to Gaunilo.

Despite the apparent differences in their original presentations, all of the reconstructions have a first premise that asserts, in one way or another, that if a perfect or greatest being (i.e., God) exists, then he exists necessarily (i.e., \(g \supset \Box g\), \(\Diamond (g \supset \Box g)\), or \(g \supset \Box \Diamond g\)); a second premise that asserts his existence is possible (i.e., \(\Diamond g\)); and a conclusion that he exists or necessarily exists (i.e., \(g\) or \(\Box g\)).

Proof that the conclusion follows from the premises requires certain properties of the modal logic concerned; these can be expressed either by citing one of the standard modal axioms (i.e., B or 5) or the corresponding property of the accessibility relation on possible worlds (i.e., symmetric or Euclidean, respectively). The argument requires an Alethic logic (one where the modalities express necessity and possibility) and these
have accessibility relations that are equivalence relations or, alternatively, assume modal axioms T and 5, and have B as a theorem; consequently, there can be no objection to the modal properties required in the proofs.

In addition to verifying the different formulations of the argument, we showed that in each case, the modal axiom that was assumed is sufficient to prove that the first premise entails a formula that states that the second premise directly entails the conclusion, that is:

$$\text{Modal axiom } \supset (\text{Premise 1 } \supset (\text{Premise 2 } \supset \text{Conclusion})).$$

Thus, the reasoning is essentially trivial.

Mechanization is needed in this kind of examination for the same reasons that automated calculation is used in other branches of engineering and science: it is simply too tedious and too error-prone to conduct repetitive analyses by hand. Some may concede this for hard problems but dismiss it for the Modal Ontological Argument: one reviewer wrote “the results of the analysis have been common knowledge in the field for at least the past forty years (at least among those with even minimal competence in propositional modal logic).” I would respectfully disagree that these results have been common knowledge (see the second paragraph of this section) and would also be cautious about widespread reliability, if not competence, in modal logic. To quote Lewis (1970, p. 175):

“Philosophy abounds in troublesome modal arguments—endlessly debated, perennially plausible, perennially suspect. The standards of validity for modal reasoning have long been unclear; they become clear only when we provide a semantic analysis of modal logic by reference to possible worlds…”

For illustration, this journal published a paper by Jacquette (1997) in which he criticizes Hartshorne’s (1962) formulation of the Modal Ontological Argument. Jacquette presents a semi-formal 10-line proof that he attributes to Hartshorne and finds it defective on several grounds. Most damagingly, he claims there is a

“logical difficulty in a key assumption of the proof that renders the entire inference unsound. Proposition (5), which Hartshorne says follows from (1) as a modal form of modus tollens, is clearly false.”

The proposition Jacquette refers to as (1) is Anselm’s Principle $g \supset \square g$ and (5) is $\square \neg g \supset \square \neg g$ which, contrary to Jacquette, is a perfectly valid deduction from (1), as can be verified by adding it to any of the PVS analyses presented in Section 3 and using similar proof steps.

Jacquette attributes what he considers Hartshorne’s error to his use of a “modal form of modus tollens” that Jacquette writes as $(\alpha \rightarrow \beta) \rightarrow (\square \neg \beta \rightarrow \square \neg \alpha)$ and states “is not generally true.” He presents a counterexample in which $\alpha$ is “snow is red” and $\beta$ is “$2+2=5$.” This single formula highlights a couple of interesting pitfalls in semi-formal use of modal logic. First of all, Hartshorne uses strict implication, which we write as $\rightarrow$ to distinguish it from the $\supset$ of material implication. Jacquette makes no mention of this and it is not clear whether his $\rightarrow$ is intended to represent strict or material implication.
Second, it is often necessary to be careful about which parts of a sentence are to be interpreted modally, and which are conventional propositional logic. Specifically, a correct statement of modal modus tollens is expressed in PVS as follows (i.e., two modal sentences connected propositionally),

| tollens: LEMMA (P => Q) IMPLIES (□¬Q => □¬P) |
|---|

whereas the following (i.e., a single modal sentence) is invalid.

| tollens_bad: CLAIM (P => Q) => (□¬Q => □¬P) |
|---|

Jacquette seems to be using the invalid form, but we cannot be sure because his notation lacks the necessary distinctions. The key difference is that the correct form quantifies possible worlds separately for each side of the implication, whereas the invalid form requires the whole sentence to be true in the same worlds. This is similar to the reason that the deduction theorem is generally invalid in modal logic.

These errors in Jacquette’s analysis are easily detected using truly formal and mechanically checked specifications. Furthermore, we or Jacquette could easily satisfy ourselves that even if we have qualms about Hartshorne’s proof (i.e., selection of inference steps), his formulation of the argument (i.e., selection of premises and conclusion) is valid.

Although Jacquette’s charge of invalidity for Hartshorne’s formulation of the argument is mistaken, he raises other points that have merit. In particular, he observes that Anselm’s presentation has the form of a reductio ad absurdum whereas Hartshorne’s (and we might add, all others we have considered) does not. He also notes that Anselm uses the notion of “greater than” (i.e., an ordering) on beings and that he uses “conceivable” as a modality that seems different than the “possible” of alethic logic. These points are all abstracted away in conventional formalizations of the argument. Accordingly, Jacquette (1997, Section 4) uses ideas that he attributes to Priest (2002) to construct a formalization of the argument that remedies these deficiencies. His treatment begins as follows.

1. [Definition of $g$: $g = \delta x : \neg\exists y : \Diamond (y > x)$.

   Here, $\delta$ is “indifferently a definite or indefinite descriptor” (i.e., “the” or “an”) and I have substituted $\Diamond$ for Jacquette’s $\tau$, which he intends as “an intensional modality” (since no semantics are given, this shift to a more familiar notation has no impact).

   An informal reading is that God is some being than which no greater is conceivable. The construction $\neg\exists y : \Diamond (y > x)$ is also used in formalizations using first order modal logic for the traditional, Prosligion Chapter II, Ontological Argument (Eder and Ramharter 2015, Section 4.2). These modal formalizations of the traditional argument have been mechanized in PVS (Rushby 2019, Section 3.1), as has a version in classical first-order logic that uses definite descriptions (Rushby 2013), where indefinite descriptions or choice functions, and Hilbert’s $\varepsilon$, are also discussed.

   We might wonder whether the given construction is equivalent to $\neg\Diamond \exists y : (y > x)$ (i.e., interchange the modality and quantifier) and the answer is: it depends on whether we have constant or varying domains and, if varying, whether they are nonincreasing or
The next interesting line in Jacquette’s treatment is the following.

3. [Conceivable greatness:] \( \forall x : (\neg E!x \supset \exists y : \Diamond (y > x)) \).

Here, \( E!x \) is a predicate indicating the “real existence” of \( x \).

Jacquette uses the definition 1 and premise 3 in a *reductio* proof that establishes \( E!g \): that is, the real existence of God.

Now, we could attempt to verify his proof in PVS (in fact, I have done this) but I am reluctant, this late in the paper, to extend description of the PVS embedding of modal logic from propositional to first order and to provide a fully formal presentation, so I will make my point using Jacquette’s informal notation, but the following derives from experience applying first order modal reasoning in PVS to formal verification of the Proslogion Chapter II argument, where the methods are fully described (Rushby 2019).

First, Jacquette does not indicate whether \( g \) and \( E!x \) are to be interpreted flexibly (i.e., dependent on the world) or rigidly (i.e., independent of it). I assume a rigid interpretation. Then, nowhere in Jacquette’s proof is the construction \( \exists y : \Diamond (y > x) \) opened up to reveal either \( y \) or the \( > \) relation. Thus, we can replace the whole thing by an uninterpreted function \( F(x) \). Then 1 and 3 above become the following “primed” variants;

1′: \( g = \delta x : \neg F(x) \),
3′: \( \forall x : \neg E!x \supset F(x) \),

and we can replace 3′ by its contrapositive

3″: \( \forall x : \neg F(x) \supset E!x \).

But now the deduction is revealed as trivial: we have \( \neg F(g) \) from 1′ and instantiate 3″ to give \( \neg F(g) \supset E!g \) and the conclusion \( E!g \) is immediate. Furthermore, the proof has lost all trace of modal reasoning. Jacquette’s goal was to make explicit more of Anselm’s reasoning, but he ends up trivializing it.

Although his execution is defective, we can agree with Jacquette’s motivation that a faithful reconstruction of Anselm’s argument should represent his language explicitly. A reviewer for this paper makes the same point and suggests that PVS could be used systematically to explore different renditions for “conceive,” “nothing greater” etc. I am sympathetic to this but suspect that the defective renditions would exhibit triviality in the style of Jacquette’s example rather than invalidity, and this is more difficult to detect automatically. I hope others may wish to explore some of the alternatives and that verification tools such as PVS will assist their endeavors.

5 Conclusion

We have examined several reconstructions of the modal ontological argument from Anselm’s Proslogion Chapter III and his reply to Gaunilo. When fully formalized, all of the reconstructions have a very similar form, and are proved in the same way.

The proofs require certain properties of the modal logic employed, and these can be specified either by citing one of the standard modal axioms (i.e., B or 5), or the
corresponding property of the accessibility relation on possible worlds (i.e., symmetric or Euclidean, respectively). The argument requires an Alethic logic (one where the modalities express necessity and possibility) and these have accessibility relations that are equivalence relations or, alternatively, assume modal axioms T and 5, and have B as a theorem; consequently, there can be no objection to the modal properties required in the proofs.

We expressed the various reconstructions in PVS and mechanically verified their validity. We also showed that in each case, the modal axiom that was assumed is sufficient to prove that the first premise entails a formula that states that the second premise directly entails the conclusion, that is:

$$\text{Modal axiom } \supset (\text{Premise 1 } \supset (\text{Premise 2 } \supset \text{Conclusion})).$$

Thus, the reasoning is essentially trivial and standard readings of the modal ontological argument should not retain our interest.

We also showed how mechanically assisted formalization and analysis could expose flawed treatments, including one published in this journal, and also vacuous formalizations that present the appearance of Anselm’s argument but are logically trivial.

Campbell (2018, 2019) provides an alternative reading in which Chapter III of the Proslogion does not stand alone but continues the argument of Chapter II. Campbell interprets Anselm differently than the scholars considered here and constructs a different translation into English. Formal analysis of his and related readings will require separate treatment.

This paper is the fifth in a series where I apply mechanized verification to analysis of formal reconstructions of Anselm’s Ontological arguments. In the first (Rushby 2013), I examined a formalization by Oppenheimer and Zalta (2011) for the traditional Proslogion II argument that uses definite descriptions. I showed that this formalization is very close to circular (i.e., begs the question) in an informal sense. In the second (Rushby 2018), I gave formal definitions for question begging in formal proofs and I showed that all the examined reconstructions of the Proslogion II argument in classical (i.e., first- and higher-order) logic were guilty of begging the question. In a revision and extension to that paper (Rushby 2020), I additionally showed that all these reconstructions entail variants that apply no interpretation to “something than which there is no greater” and are therefore vacuous and vulnerable to Gaunilo’s (circa 1079) refutation, and I argued that the basic reconstructions inherit these charges. In the fourth (Rushby 2019), I extended these analyses to reconstructions of the Proslogion II argument in quantified modal logic and found they suffer the same defects. In the present paper, we have examined reconstructions of the Proslogion III argument in propositional modal logic and found it to be trivial once the assumed modal axiom is taken into account.

Mechanization is necessary for these analyses because they require detailed scrutiny of small variations in premises and assumptions. This is tedious and error-prone to do by hand, but fast, simple, and even enjoyable to accomplish with mechanized assistance. I hope these exercises may encourage others to apply modern formal verification tools to examination of other suitable philosophical and theological topics.

---

7 This relationship is inevitable in a deduction with only two premises. What is surprising, and the reason I label it trivial, is how directly it is expressed by the premises employed.
Acknowledgements. The challenging comments of a reviewer helped me improve the paper. I am also grateful to my colleagues Stéphane Graham-Lengrand and N. Shankar for discussions on modal logic and its automation. This work was funded by SRI International and by my retirement plan.

References

Adams RM (1971) The logical structure of Anselm’s arguments. The Philosophical Review 80(1):28–54

Anselm S (1078) Proslogion. Internet Medieval Sourcebook, Fordham University (in English, the original is in Latin)

Anselm S (circa 1079) Apologetic in reply to Gaunilo. Internet Medieval Sourcebook, Fordham University (in English, the original is in Latin)

Benzmüller C, Woltzenlogel-Paleo B (2014) Automating Gödel’s ontological proof of God’s existence with higher-order automated theorem provers. In: ECAI 2014: 21st European Conference on Artificial Intelligence, Prague, Czech Republic, pp 93–98

Campbell R (2018) Rethinking Anselm’s Arguments: A Vindication of his Proof of the Existence of God. Brill, Leiden, The Netherlands

Campbell R (2019) That Anselm’s God exists and Gaunilo’s Island does not. In: Considering Religions, Rights and Bioethics: For Max Charlesworth, Sophia Studies in Cross-Cultural Philosophy of Traditions and Cultures, vol 30, Springer, pp 115–137

Cresswell MJ, Hughes GE (1996) A New Introduction to Modal Logic. Routledge

Eder G, Ramharter E (2015) Formal reconstructions of St. Anselm’s Ontological Argument. Synthese 192(9):2795–2825

Garbacz P (2012) Prover9’s simplifications explained away. Australasian Journal of Philosophy 90(3):585–592

Gaunilo, a Monk of Marmoutier (circa 1079) In behalf of the fool. Internet Medieval Sourcebook, Fordham University (in English, the original is in Latin)

Ge Y, de Moura L (2009) Complete instantiation for quantified formulas in satisfiability modulo theories. In: Computer-Aided Verification, CAV ’09, Springer, Grenoble, France, pp 306–320

Grim P, Singer D (2020) Computational philosophy. In: Zalta EN (ed) The Stanford Encyclopedia of Philosophy, spring 2020 edn, Metaphysics Research Lab, Stanford University

Hartshorne C (1961) The logic of the Ontological Argument. The Journal of Philosophy 58(17):471–473

Hartshorne C (1962) The Logic of Perfection. Open Court, La Salle, IL

Hartshorne C (1965) Anselm’s Discovery: A Re-examination of the Ontological Argument for God’s Existence. Open Court, La Salle, IL

Jacquette D (1997) Conceivability, intensionality, and the logic of Anselm’s modal argument for the existence of God. International Journal for Philosophy of Religion 42:163–173

Kane R (1984) The modal Ontological Argument. Mind 93(371):336–350

Ladstaetter K (2012) On Tracy Lupher’s “A Logical Choice: The Role of Modal Logics in the Modal Ontological Argument”. Southwest Philosophy Review 28(2):101–106

Lewis D (1970) Anselm and actuality. Nous 4(2):175–188
Malcolm N (1960) Anselm’s Ontological Arguments. The Philosophical Review 69(1):41–62
Matthews GB (2005) The Ontological Argument. In: Mann WE (ed) The Blackwell Guide to the
Philosophy of Religion, Blackwell Publishing, pp 81–102
Oppenheimer PE, Zalta EN (2011) A computationally-discovered simplification of the Ontologi-
cal Argument. Australasian Journal of Philosophy 89(2):333–349
Priest G (2002) Beyond the Limits of Thought. Oxford University Press
PVS (constantly updated) PVS home page. http://pvs.csl.sri.com/
Rushby J (2013) The Ontological Argument in PVS. In: Shilov N (ed) Fun With Formal Methods,
St Petersburg, Russia, workshop in association with CAV’13
Rushby J (2017) PVS embeddings of propositional and quantified modal logic. Tech. rep., Com-
puter Science Laboratory, SRI International, Menlo Park, CA,
Rushby J (2018) A mechanically assisted examination of begging the question in Anselm’s On-
tological Argument. Journal of Applied Logics—IFCoLog Journal of Logics and their App-
lications 5(7):1473–1497
Rushby J (2019) Mechanized analysis of modal reconstructions of Anselm’s traditional Onto-
logical Argument. Tech. rep., Computer Science Laboratory, SRI International, Menlo Park,
CA
Rushby J (2020) A mechanically assisted examination of vacuity and question begging in
Anselm’s Ontological Argument. In: Silvestre R, Gocke P, Beziau JY, Bilimoria P (eds) Be-
yond Faith and Rationality: Essays on Logic, Religion and Philosophy, Springer, to appear
Smith AD (2014) Anselm’s Other Argument. Harvard University Press, Cambridge, MA
Sobel JH (2003) Logic and Theism: Arguments for and Against Beliefs in God. Cambridge, MA
Wikipedia (retrieved 2019) Standard Translation (of modal logic into first-order logic). https://
en.wikipedia.org/wiki/Standard_translation
Postscript

This paper was published in its original form in April 2021; at almost the same time, Andrzej Biłat published a paper on related topics (Biłat 2021). His purpose was to identify some alternative premises that can formalize the Modal Ontological Argument using fewer (or no) modal axioms. His alternative premises replace those traditionally used to formalize Anselm’s Principle (recall Section 3.1) and, because they require fewer modal axioms, he considers the arguments corresponding to his alternative premises to be simpler than others, including those presented here in Section 3.

Much of his paper is concerned with defining and demonstrating “relevance” of the various premises and I have nothing to add to that discussion. I do, however, wish to note that his alternative premises can be derived by applying the discarded modal axioms to a standard (e.g., Kane’s) formalization of Anselm’s Principle. Thus, the alternative premises support a proof with fewer modal axioms simply because the discarded modal axioms are already “built in” to the alternative premises: those premises are, in effect, lemmas that are proved using the discarded axioms. Furthermore, the alternative premises are far less plausible than the standard ones and they trivialize the argument.

Before getting into details of the specific premises, I would like to challenge the motivation for seeking fewer or “simpler” modal axioms. In order for formalizations of the Modal Ontological Argument to carry the intended interpretation, the modal qualifiers must represent “necessary” and “possible,” which means we need an Alethic Logic, and it is generally accepted that these correspond to logics with Modal Axioms 5 and T (i.e., S5), which have B as a theorem. Given that these modal axioms are part of the required logical infrastructure, I see no harm in using them freely.

Biłat starts with the premises $\Diamond g$ and $\neg \Diamond g \lor \Box g$, which he names (1) and (2) respectively and from which he derives the conclusion $g$ using Modal Axiom T.\footnote{Biłat uses M for $\Diamond$ and L for $\Box$.} We note that (2) is equivalent to $\Diamond g \supset \Box g$ and so $\Box g$ follows immediately from (1) and then Modal Axiom T reduces this to $g$.

Biłat observes that the argument using (2) is simpler than those using traditional forms of Anselm’s Principle such as $\Box (g \supset \Box g)$ (as in Kane’s treatment), which he names (3), because it requires fewer or simpler modal axioms (i.e., T as opposed to 5 or B)\footnote{And would require none if we accepted $\Box g$ as the conclusion.}.

This postscript was motivated by the observation that this is a somewhat contrived result because (2) is a lemma that follows from applying Modal Axiom 5 to (3). We demonstrated this (for Hartshorne’s version of Anselm’s Principle) in lemma $H_{\text{triv,alt}}$ in Section 3.5. We provide a more focused demonstration in the PVS theory shown in Figure 4.

Here, axioms B1, B2, and B3 correspond to Biłat’s (1), (2), and (3), respectively. B2triv proves that B2 follows from B3, given a Euclidean access relation (which corresponds to Modal Axiom 5), and BC2 proves the conclusion $g$ from B1 and B2, given a reflexive access relation (which corresponds to Modal Axiom T). The PVS proofs are essentially similar to those shown in Section 3.

Biłat next introduces the formula $\neg g \supset \neg \Diamond g$, which he names (4), and remarks that this can be used to prove the conclusion $g$ with no modal axioms. Again this is hardly...
Bilat: THEORY
BEGIN
IMPORTING modal_axioms

g: pvars
B1: AXIOM <> g
B2: AXIOM ∼ <> g \/ 2
B3: AXIOM □ (g ⇒ □ g) % Kane’s version of Anselm’s Principle
B2triv: LEMMA B3 AND Euclidean?(access) IMPLIES B2
BC2: THEOREM B1 AND B2 AND reflexive?(access) IMPLIES g
B4: AXIOM ∼ g ⇒ ~ <> g
B4triv: LEMMA B2 AND reflexive?(access) IMPLIES B4
BC4: THEOREM B1 AND B4 IMPLIES g
END Bilat

Fig. 4: Biłat’s Alternative Premises in PVS

surprising as (4) is equivalent to (its contrapositive) ◇ g ⊃ g and the conclusion g then follows immediately from (1). The PVS theorem BC4 confirms this.

Since it uses no modal axioms, Bilat claims that the argument with (4) is simpler than that with (2). Again, we assert this is contrived because (4) is the result of applying Modal Axiom T (which is equivalent to a reflexive access relation) to (2), as stated and proved in the PVS formula B4triv.10

We noted in Section 5 that the overall form of the modal argument is

Modal Axioms ⊃ (Premise 1 ⊃ (Premise 2 ⊃ Conclusion))

or equivalently

(Modal Axioms ∧ Premise 1) ⊃ (Premise 2 ⊃ Conclusion),

where Modal Axioms may be a conjunction of axioms.

10 Alternatively, it is also the result of applying Modal Axiom B (symmetry of the access relation) to (3) as demonstrated in PVS LEMMA K_triv in Section 3.2. Biłat himself notes this (Bilat 2021, Metatheorem 7(ii)). He also states that (4) is directly entailed by (2) (Bilat 2021, Metatheorem 7(i)), but this is incorrect: it requires Modal Axiom T.
Clearly, we can nominate some fewer or otherwise “simpler” Modal Axioms’ (which may be empty) by discarding or replacing some of the Modal Axioms and can then invent a Premise 1’ such that

\[(\text{Modal Axioms} \land \text{Premise } 1) \supset (\text{Modal Axioms’} \land \text{Premise } 1’)\]

and

\[(\text{Modal Axioms’} \land \text{Premise } 1’) \supset (\text{Premise } 2 \supset \text{Conclusion}).\]

and then claim that the second argument is simpler than the first because it uses fewer or simpler modal axioms.

Similarly, we may also be able to invent Premise 1” such that

\[(\text{Modal Axioms} \land \text{Premise } 1) \supset \text{Premise } 1”\]

and

\[\text{Premise } 1” \supset (\text{Premise } 2 \supset \text{Conclusion})\]

and can declare that this argument is yet simpler than the first as it requires no modal axioms at all. But in each case, the new premise is simply the result of applying the previous modal axioms to the previous premise, so the new premise “builds in” the discarded modal axioms: they are not independent premises but lemmas.

Furthermore, the alternative premises reduce the argument to triviality. The standard formulations of Anselm’s Principle, such as \(g \supset \Box g\), \(\Box(g \supset \Box g)\), or \(g \supset \Box g\) quite plausibly express the intuition that if God exists, then his existence cannot be contingent (i.e., chance) but must be necessary. Given any one of these, it then requires (1) plus modal axioms T and 5 or B to deduce his actual existence. As already noted, the argument requires an Alethic logic (i.e., one where the modalities express necessity and possibility) and it is generally accepted that this requires modal axioms T and 5 (i.e., S5), from which B follows as a theorem (equivalently the access relation must be an equivalence).

Because a deductive proof does not generate new information, the conclusion must be “hidden” in the premises (Eder and Ramharter 2015, Section 1.2(5)) and here it is hidden in the combination of Anselm’s Principle and the modal axioms. But all of these are well motivated, so the argument is quite satisfying. In contrast (2), particularly when written \(\Diamond g \supset \Box g\), is not persuasive as a premise and it reduces the argument to triviality. Similarly (4), particularly when written \(\Diamond g \supset g\), is unpersuasive and also trivializes the argument.

Biłat himself eventually rejects (4), but defends (2) and claims that the standard version (i.e., (3) with Modal Axioms B or 5 and T) is “philosophically inferior” to (2) with Modal Axiom T.

Before concluding, we should note that Biłat also mentions a premise, which he attributes to Oppy (1996), that we will call (5): \(\Diamond \Box g\). This premise is able to discharge the conclusion \(g\) using Modal Axiom B but without using (1). However, it is entailed by the conjunction of Premises (1) and (3), so it can be considered a lemma, having those two premises “built in.” Unlike the other alternative premises, this one does not trivialize the argument (since it still requires Modal Axiom B), and seems no less plausible as a premise than (1).
We conclude that Bilat’s alternative premises that simplify the Modal Ontological Argument by using fewer modal axioms than those that employ a traditional formulation of Anselm’s Principle, such as (3), are the result of applying the discarded modal axioms to (3) and therefore covertly build in those axioms (i.e., they are not independent premises but lemmas, proved using the discarded modal axioms). Furthermore, the alternative premises are unpersuasive as premises, and they trivialize the argument.

Additional References

Andrzej Biłat. The correctness and relevance of the modal ontological argument. *Synthese*, 199 (1):2727–2743, 2021. https://doi.org/10.1007/s11229-020-02908-5.

Graham Oppy. *Ontological Arguments and Belief in God*. Cambridge University Press, 1996.