Confined cubic blue phases under shear

O Henrich1, K Stratford2, D Marenduzzo3, P V Coveney1 and M E Cates3

1 Centre for Computational Science, Department of Chemistry, University College London, London WC1H 0AJ, UK
2 Edinburgh Parallel Computing Centre, University of Edinburgh, The King’s Buildings, Edinburgh EH9 3JZ, UK
3 School of Physics and Astronomy, University of Edinburgh, The King’s Buildings, Edinburgh EH9 3JZ, UK

E-mail: o.henrich@ucl.ac.uk

Received 16 November 2011, in final form 14 February 2012
Published 27 June 2012
Online at stacks.iop.org/JPhysCM/24/284127

Abstract

We study the behaviour of confined cubic blue phases under shear flow via lattice Boltzmann simulations. We focus on the two experimentally observed phases, blue phase I and blue phase II. The disclination network of blue phase II continuously breaks and reforms under shear, leading to an oscillatory stress response in time. The oscillations are only regular for very thin samples. For thicker samples, the shear leads to a ‘stick–slip’ motion of part of the network along the vorticity direction. Blue phase I responds very differently: its defect network undergoes seemingly chaotic rearrangements under shear, irrespective of system size.

(Some figures may appear in colour only in the online journal)

1. Introduction

Cholesterics are liquid crystals in which the local nematic director field spontaneously twists in thermodynamic equilibrium [1]. The preferred configuration close to the isotropic boundary features twist around two perpendicular axes, as opposed to just one axis in the regular cholesteric state, and the corresponding deformation is denoted a ‘double-twist cylinder’. As it is topologically impossible to cover continuously 3D space with double-twist cylinders, defects arise. These organize into a variety of regular periodic lattices, giving rise to the so-called cubic blue phases (BPs) [2, 3]. There are two experimentally observed cubic blue phases, BPI and BPII (a third, BPIII, is thought to be amorphous [4]).

BPs have long been considered as purely of academic interest due to their very narrow range of stability. This view has changed since the creation of polymer-stabilised and temperature-stabilised BPs [5, 6], which has opened up the possibility of novel applications. During the last few years considerable progress has been achieved regarding the behaviour of BPs in confined geometries [7–9], under external fields [10–14] and in the presence of colloidal particles [15]. The kinetics of BP domain growth has been recently addressed in [16]. However, our understanding of their dynamical behaviour under flow remains very limited. The aim of this work is to address this issue by studying, for the first time, the response of confined BP samples to a shear flow.

Flow response in cholesterics is both strongly non-Newtonian and highly anisotropic. For example, if a cholesteric helix is subjected to a Poiseuille flow along the helical axis, small pressure differences drive flow mainly through ‘permeation’, first investigated by Helfrich [17]. In the permeation mode the liquid crystal flows while leaving the director field virtually unchanged, which leads to high dissipation and large viscosities. Marenduzzo \textit{et al} [18, 19] simulated shear and Poiseuille flow in cholesteric liquid crystals in the permeation mode and showed the importance of the boundary conditions in determining the apparent viscosity of the fluid. They also found that a strong secondary flow appears. Rey [20, 21] studied shear in cholesterics oriented with the helix along the vorticity axis and found that, at low Ericksen number, travelling twist waves appear which lead to the rotation of the cholesteric helix. At higher forcing, the helix uncoils and leaves a flow-induced nematic phase. Rey also studied cholesterics subjected to both steady flow and low frequency small-amplitude oscillatory shear for different helix orientations [22, 23]. He found that splay/bend/twist deformations were excited when the helix was aligned along the flow direction; splay/bend deformation occurred when the helix was aligned along the velocity gradient; but only twist...
deformations appeared when the helix was aligned along the vorticity axis.

Dupuis et al [24] performed the first numerical investigation of BP rheology in Poiseuille flow, starting from equilibrium structures of BPI and BPII and a periodic array of doubly twisted cylinders. Under small forcing, the network opposed the flow, giving rise to a significant increase in apparent viscosity. Upon increasing the forcing they found clear evidence of shear thinning. In the crossover region they predicted a novel oscillatory regime where the flow behaviour of BPI and BPII. In section 3 we describe results for BPI, which indicate fundamental differences in the dependence of the flow on the thickness of the sample and are presented in section 3.1 with particular focus on the investigation of BP rheology in Poiseuille flow, starting from equilibrium structures of BPI and BPII.

The purpose of the present paper is to contribute to the understanding of the flow behaviour of cholesteric blue phases by reporting results of the first supra-unit cell simulations. This paper is organized as follows. In section 2 we introduce the Beris–Edwards model for hydrodynamics of liquid crystals, which is a generalization of Ericksen’s and Leslie’s theory of nematodynamics [1]. In section 3 we describe the simulation methodology and the boundary conditions we applied. Results for a confined BPII in rectilinear shear flow are presented in section 3.1 with particular focus on the dependence of the flow on the thickness of the sample and thermodynamic state. In section 3.2 we show corresponding results for BPI, which indicate fundamental differences in the flow behaviour of BPI and BPII.

2. Model

Our approach is based on the well-established Beris–Edwards model for hydrodynamics of cholesteric liquid crystals [27], which describes the ordered state in terms of a traceless, symmetric tensor order parameter \(\mathbf{Q}(r) \). In the uniaxial approximation, the order parameter is given by \(Q_{ab} = q_{0} (n_{a} n_{b} - \frac{1}{3} \delta_{ab}) \) with \(n \) the director field and \(q_{0} \) the amplitude of nematic order. More generally, the largest eigenvalue of \(\mathbf{Q} \), \(0 \leq q_{r} \leq \frac{2}{3} \) characterizes the local degree of orientational order. The thermodynamic properties of the liquid crystal are determined by a free energy \(\mathcal{F} \), whose density \(f \) consists of a bulk contribution \(f_{b} \) and a gradient part \(f_{g} \), as follows:

\[
\begin{align*}
 f_{b} & = \frac{A_{0}}{K} \left(1 - \frac{\gamma}{3} \right) Q^{2} - \frac{A_{0} \gamma}{3} Q_{ab} Q_{b \gamma} Q_{\gamma \alpha} + \frac{A_{0} \gamma}{4} (Q_{ab}^{2})^{2}, \\
 f_{g} & = \frac{A_{0}}{K} (\xi_{ab} \partial_{r} Q_{b \gamma} + 2 q_{0} Q_{ab}^{2})^{2} + \frac{K}{2} (\delta_{ab} Q_{ab})^{2}.
\end{align*}
\]

The first term contains the bulk-free energy constant \(A_{0} \) and the inverse temperature \(\gamma \) which controls the magnitude of order. The second part quantifies the cost of elastic distortions, which are proportional to the elastic constant \(K \); we work for simplicity in the one-elastic-constant approximation. The wavevector \(q_{0} = 2\pi / p_{0} \), where \(p_{0} \) is the cholesteric pitch. The actual periodicity of the BP structure, \(p \), does not need to be equal to \(p_{0} \). The ‘redshift’ \(r = p / p_{0} \) is adjusted during the simulation by following a simple procedure similar to [28].

A particular thermodynamic state is specified by two dimensionless quantities: the effective temperature \(\tau \) and chirality \(\kappa \), which are given by

\[
 \kappa = \sqrt{\frac{108 \nu^{2} p_{0}^{2}}{A_{0} \gamma}}.
\]

The dynamical evolution of the order parameter is given by the equation

\[
 (\partial_{t} + u_{a} \partial_{a}) \mathbf{Q} - \mathbf{S}(\mathbf{W}, \mathbf{Q}) = \Gamma \mathbf{H}. \tag{2}
\]

The first term on the right-hand side of equation (2) is a material derivative, which describes the rate of change of a quantity moving along with the flow. The second term accounts for the rate of change due to local velocity gradients \(W_{ab} = \partial_{b} u_{a} \):

\[
 \mathbf{S}(\mathbf{W}, \mathbf{Q}) = (\xi \mathbf{A} + \Omega) \left(\mathbf{Q} + \frac{1}{3} \mathbf{I} \right) + \left(\mathbf{Q} + \frac{1}{3} \right) (\xi \mathbf{A} - \Omega) - 2\xi \left(\mathbf{Q} + \frac{1}{3} \right) \text{Tr} (\mathbf{QW}), \tag{3}
\]

where \(\text{Tr} \) denotes the tensorial trace, while \(\mathbf{A} = (\mathbf{W} + \mathbf{W}^{T}) / 2 \) and \(\Omega = (\mathbf{W} - \mathbf{W}^{T}) / 2 \) are the symmetric and antisymmetric part of the velocity gradient, respectively. \(\xi \) is a constant depending on the molecular details of the liquid crystal. Flow alignment occurs if \(\xi \cos 2\theta = (3q_{0}^{2}/2 + q_{r}^{2}) \) has a real solution, where \(\theta \) is the Leslie angle: we select this case by setting \(\xi = 0.7 \) in our simulations. \(\mathbf{H} \) is the molecular field, which is a functional derivative of \(\mathcal{F} \) that preserves the tracelessness of \(\mathbf{Q} \):

\[
 \mathbf{H} = - \frac{\delta \mathcal{F}}{\delta \mathbf{Q}} + \frac{1}{3} \text{Tr} \left(\frac{\delta \mathcal{F}}{\delta \mathbf{Q}} \right). \tag{4}
\]

The rotational diffusion constant \(\Gamma \) in equation (2) is proportional to the inverse of the rotational viscosity \(\gamma_{1} = 2a_{1}^{2} / \Gamma \) [1].

The time evolution of the fluid density and velocity are respectively governed by the continuity equation \(\partial_{a} \rho = -\partial_{a} (\rho u_{a}) \) and the following Navier–Stokes equation:

\[
 \partial_{a} u_{a} + \rho \partial_{a} \partial_{b} u_{a} = \partial_{b} \Pi_{ab} + \eta \partial_{a} \left(\partial_{b} u_{b} + \partial_{b} u_{a} \right) + \left(1 + 3 \frac{\partial P_{0}}{\partial \rho} \right) \partial_{b} u_{a} \delta_{ab}, \tag{5}
\]

The final term in equation (5) arises from the Chapman–Enskog expansion of the LB equations [29]. At low flow rates the fluid can be considered as incompressible, so that the last term on the right-hand side of equation (5) remains small. \(\eta \) is an isotropic background viscosity which is set to \(\eta = 0.8333 \) in LBU. The pressure tensor is explicitly

\[
 \Pi_{ab} = P_{0} \delta_{ab} - \xi H_{\alpha \gamma} (Q_{\gamma \beta} + \frac{1}{2} \delta_{\beta \gamma} P_{0}),
\]

\[
 - \xi (Q_{\gamma \beta} + \frac{1}{2} \delta_{\gamma \beta} P_{0}^{\gamma} \delta_{\gamma \beta}) H_{\gamma \beta} + 2\xi (Q_{\gamma \beta} + \frac{1}{2} \delta_{\gamma \beta} P_{0}^{\gamma} \delta_{\gamma \beta}) Q_{\gamma \eta} H_{\gamma \eta},
\]

\[
 - \partial_{a} Q_{\gamma \beta} \frac{\delta \mathcal{F}}{\delta \partial_{b} Q_{\gamma \beta}} + Q_{\gamma \beta} H_{\gamma \beta} - H_{\gamma \beta} Q_{\gamma \beta}. \tag{6}
\]
In the isotropic state $Q \equiv 0$ and equation (6) is reduced to the scalar pressure which, in a system at rest, is constant to a very good approximation.

The system of coupled partial differential equations (2) and (5) is solved by means of a hybrid scheme [30]. This uses a lattice Boltzmann algorithm with a predictor-corrector scheme for the continuity equation and equation (5), and a finite difference scheme for the equation of motion of the tensor order parameter equation (2). More details on the algorithm can be found in [29, 31].

3. Methodology and results

We present results from simulations of confined cubic blue phases in steady shear flow. Our system consists of $n_x \times n_y \times n_z = 4 \times 4 \times 4$ unit cells in the x and z directions (flow and vorticity directions, respectively) and a varying number n_y of unit cells in the y direction (which is the flow gradient direction in our geometry). As is common in BP simulation studies [4, 16], we initialized our simulations with analytical solutions that minimize the free energy functional equation (1) in the high chirality limit and equilibrated these (for 3000 LB timesteps) with periodic boundary conditions prior to starting the shear. During the equilibration run the optimal redshift r was recalculated at every timestep.

Shear flow was then started by applying shear boundary conditions to the LB distribution functions as in [31]. For Q, the equilibrated order parameter was advected on the top and bottom boundary, according to the imposed wall velocities. Periodic boundary conditions were retained along the flow and vorticity direction. This set-up is similar to the one Dupuis et al used to simulate Poiseuille flow [24]. The pinning of the defect network at the boundaries may be realized in practice by impurities or surface defects. During shear flow the unit cell size was kept fixed and a constant redshift equal to the value at the end of the equilibration protocol was assumed.

The total number of unit cells in our simulations of both BPI and BPII was $n_x \times n_y \times n_z = 4 \times [1, 2, 3, 4] \times 4$. A resolution of 32 lattice Boltzmann units (LBU) per pitch length (16 per unit cell) was used for BPII, and 64 LBU per pitch length (32 per unit cell) used for BPI. This provided enough spatial resolution to track even complex rearrangements of the disclination networks in each case. The timestep and lattice spacing in LBU corresponds roughly to ~ 1 ns and ~ 10 nm in SI units. The LBU of stress is equal to about 10^8 Pa. More details about the conversion from LBU to SI units can be found in [4, 16].

3.1. Blue phase II

We first report the results for BPII. Figure 1 shows the disclination network in steady shear flow for different numbers of unit cells between the walls. (We prefer the perspective along the flow direction because the network topology is clearer.) Temperature and chirality are $\tau = -0.5$ and $\kappa = 2$, respectively, and for these parameters BPII is the equilibrium phase. The velocity of the walls has been adapted so that the same shear rate $\dot{\gamma} = 7.8125 \times 10^{-5}$ is achieved for all gap sizes. Shear rates four times larger and smaller were also applied and produced very similar results, apart from the flow velocities which scale up accordingly. For all gap sizes we observe an affine transformation in the gradient-flow plane that leads to a break-up of the network at strains of about half a unit cell size. Shortly after the break-up the network reforms further downstream, resulting in a periodic, regular structure that is very close to the equilibrium BPII disclination network. Similar oscillations have been previously reported for BPs in Poiseuille flow, with a gap of one unit cell size [24].

It is interesting to compare the results for different gap sizes. For $n_y = 1$ we observe that the BPII network is slightly deformed with respect to the quiescent state, but always reforms at the same position. For $n_y > 1$, the BPII network
Figure 2. BPII in shear flow for different thermodynamic parameters. The snapshots show the evolution of the network with the flow direction into/out of the page. The reference state (blue, $\tau = -0.5, \kappa = 2$), a high temperature state (red, $\tau = 0.5, \kappa = 2$) and a low chirality state (green, $\tau = -0.5, \kappa = 1$) are shown; BPII is metastable in the later two parameter sets. The strain rate is $\dot{\gamma} = 7.8125 \times 10^{-5}$ LBU in all three cases. The pictures show a central cubic section consisting of eight unit cells cut from a larger simulation with $n_g = 4$.

Figure 3. BPII: ensemble-averaged shear stress ($\langle \tau_{xy} \rangle$) versus time in the reference state ($\tau = -0.5, \kappa = 2$) for gaps ranging from one to four unit cells.

distorts more under the same shear rate, suggesting that the structure within the sample is strongly affected by the anchoring at the boundaries. Interestingly, when the sample is thicker than one unit cell, a movement of the network in the positive vorticity direction arises which is not observed for $n_g = 1$. This network motion does not proceed at a constant speed, but rather proceeds in a ‘stick–slip’ fashion: elastic stresses first slowly build up and are then quickly released as the network ‘slips’ along the vorticity direction. Changing from a left-handed to a right-handed helix inverts the direction of motion of the network. Hence the ‘stick–slip’ motion is related to the chiral nature of the helix. This phenomenon may bear some similarity to the travelling wave motion in cholesterics sheared along the vorticity direction below a critical Ericksen number $[20, 21]$.

The speed of the network migration in the vorticity direction depends on the thermodynamic state of the blue phase. A comparison between the state from figure 1 with a ‘high temperature’ state at $\tau = 0.5, \kappa = 2$ and a ‘low chirality state’ at $\tau = -0.5, \kappa = 1$ is shown in figure 2. Note that in both these states BPII is a metastable phase. Figure 2 shows a sequence of initially overlapping disclination networks which separate during the course of the simulation. The network moves fastest in the high temperature state, is slower in the reference state and slower still in the low chirality state.

The total network displacement along the vorticity direction is more than a unit cell in 10^5 timesteps for the high temperature state. Typical average and maximum values of the scalar order parameter are $\bar{q}_s = 0.338, q_{s,\text{max}} = 0.383$ (low chirality state), $\bar{q}_s = 0.206, q_{s,\text{max}} = 0.320$ (high temperature state) and $\bar{q}_s = 0.304, q_{s,\text{max}} = 0.408$ (reference state, in figure 1). The average scalar order parameter of the low chirality state is about 10% higher than that of the reference state. The relative difference between the mean and the maximum value is about a factor of 2.5 smaller. We propose that the speed of network migration is different because permeation, which should be required for the stick–slip motion, may occur more easily in states with less order (high temperature state) and gentler spatial variation (low chirality state). Furthermore, the uneven stick–slip nature of the network motion is possibly due to the anchoring at the boundaries which prevents network displacements at the wall.

Figure 3 shows the spatially averaged shear stress $\langle \Pi_{xy} \rangle$ versus time, in the reference state and for different gap sizes. For gaps accommodating only one unit cell a regular periodic pattern emerges shortly after a transient start-up phase. Every cycle is related to a break-up and reformation of the network. The time average in the steady state is about $\Pi_{xy} \simeq 5.62 \times 10^{-3}$ in LBU and yields an apparent viscosity $\eta_{\text{app}} = (1 + \Pi_{xy}/\eta \dot{\gamma}) \simeq 1.86$ LBU. This is significantly higher than our baseline Newtonian viscosity $\eta = 0.8333$. When the gap contains $n_g \geq 2$ unit cells, the average stress shows less regular oscillations, and fluctuates around a mean value which is about 10–15% smaller, roughly $\eta_{\text{app}} = 1.65$ for $n_g = 4$. The fact that the average stress stabilizes for $n_g \geq 2$ indicates that bulk flow behaviour is already reached for those thicknesses, but not in the single unit cell case. Different shear rates lead to similar generic features.

3.2. Blue phase I

We now compare and contrast the results obtained for BPII with those pertaining to the rheology of BPI. In equilibrium,
the topology of the disclination network in BPI is very different from that of BPII. The main difference is the presence in BPII of junction points where four disclination lines of topological charge $-1/2$ meet; no such junctions occur in BPI. We give representative results for BPI at $\tau = -0.5$ and $\kappa = 1$, where it is the equilibrium phase. Figure 4 shows the disclination network at timestep $t = 4 \times 10^5$ for different gap sizes, with the viewing direction again chosen along the flow direction. For clarity we only show $n_x \times n_y \times n_z = 1 \times \{1, 2, 3, 4\} \times 2$ unit cells.

In contrast to BPII, the disclination network of BPI changes significantly under a shear flow, and typical snapshots in figure 4 bear no relation to the equilibrium BPI configuration. Furthermore, there is no sign of the ‘stick–slip’ motion of the defects observed in BPII. While no regular cubic structure emerges under flow, it is interesting to note that the network develops a periodic modulation along the vorticity direction (horizontal in figure 4). This periodicity arises for all gap sizes. Whether this feature is a consequence of frustration caused by the anchoring at the boundaries, or is a prelude to a slow ordering of the network under flow, we cannot yet tell.

The ensemble averages of the shear stress Π_{xy} for different gap sizes is shown in figure 5 and gives more evidence of the chaotic nature of the flow of BPI. The magnitude of the average shear stress is comparable to that seen in BPII; the fall in amplitude of the oscillations with increasing gap size is also similar.

4. Conclusions

In conclusion, we have presented the first supra-unit cell simulations of confined cubic blue phases in simple shear flow. The rheological behaviour of BPI and BPII was found to be strikingly different.

Our simulations show that the disclination network of BPII continuously breaks and reforms while the network undergoes an affine deformation under shear. This process leads to an oscillatory shear stress in time, although the oscillations are only regular for gap sizes of a single unit cell across the flow gradient direction, where anchoring affects the physics of the system greatly, in agreement with recent simulations of quiescent BP networks [7–9]. For larger gap sizes (two and more unit cells) a ‘stick–slip’ motion of the network arises along the vorticity direction. The associated network migration is not directly linked to mass flow, and is therefore somewhat akin to permeation flow in cholesterics. The average speed of this network migration depends on the thermodynamic parameters and appears to be higher for higher temperature and lower chirality.
In contrast to BPII, BPI shows no regular breakup and relinking of the unit cells and its disclination network undergoes chaotic rearrangements under shear. This behaviour was found for all gap sizes, and may be linked to the strongly different topology in the equilibrium disclination patterns of BPI and BPII. We will address the rheology of BPI in more detail in an upcoming publication [32].

We hope that our results will stimulate further experimental work on the rheology of blue phases, similar to those reported, for example, in [33] but targeted to micron-sized samples, which would provide a direct test of our simulations.

We finally note that the anchoring we have chosen does not lead to a conflict with the bulk ordering of blue phases. In liquid crystal cells, it is customary to treat the surface so as to favour normal or planar anchoring of the director field at the boundary. When used in very thin samples, these boundary conditions lead to the formation of new disclination networks whose rheology it would be interesting to investigate [7, 8, 34].

Acknowledgments

We acknowledge support by EPSRC grant nos. EP/E045316 and EP/E030173, the MAPPER EU-FP7 project (grant no. RI-261507) and computing time on HECToR. MEC holds a Royal Society Research Professorship.

References

[1] de Gennes P G and Prost J 1993 The Physics of Liquid Crystals 2nd edn (Oxford: Clarendon)
[2] Shtrikman S, Grebel H and Hornreich R M 1984 Phys. Rev. A 30 3264
[3] Wright D C and Mermin N D 1989 Rev. Mod. Phys. 61 385
[4] Henrich O, Stratford K, Marenduzzo D and Cates M E 2011 Phys. Rev. Lett. 106 1077801
[5] Kikuchi H, Yokota M, Hisakado Y, Yang H and Kajiyama T 2002 Nature Mater. 1 64–8
[6] Coles H J and Pivnenko M N 2005 Nature 436 997–1000
[7] Fukuda J and Zumer S 2010 Phys. Rev. Lett. 104 017801
[8] Fukuda J and Zumer S 2010 Liq. Cryst. 37 875–85
[9] Ravnik M, Alexander G P, Yeomans J M and Zumer S 2011 Soft Matter 7 10144–50
[10] Alexander G P and Marenduzzo D 2008 Europhys. Lett. 81 66004
[11] Fukuda J, Yoneya M and Yokoyama H 2009 Phys. Rev. E 80 031706
[12] Henrich O, Marenduzzo D, Stratford K and Cates M E 2010 Phys. Rev. E 81 031706
[13] Castles F, Morris S M, Terentjev E M and Coles H J 2010 Phys. Rev. Lett. 104 157801
[14] Tiribocchi A, Gonnella G, Marenduzzo D and Orlandini E 2011 Soft Matter 7 3295
[15] Ravnik M, Alexander G P, Yeomans J M and Zumer S 2011 Proc. Natl Acad. Sci. USA 108 5185–92
[16] Henrich O, Stratford K, Marenduzzo D and Cates M E 2010 Proc. Natl Acad. Sci. USA 107 13212–5
[17] Helfrich W 1969 Phys. Rev. Lett. 23 387
[18] Marenduzzo D, Orlandini E and Yeomans J M 2004 Phys. Rev. Lett. 92 183011
[19] Marenduzzo D, Orlandini E and Yeomans J M 2006 J. Chem. Phys. 124 204906
[20] Rey A D 1996 Phys. Rev. E 53 4198–201
[21] Rey A D 1996 J. Non-Newton. Fluid Mech. 64 207–27
[22] Rey A D 2000 J. Rheol. 44 855
[23] Rey A D 2002 J. Rheol. 46 225
[24] Dupuis A, Marenduzzo D, Orlandini E and Yeomans J M 2005 Phys. Rev. Lett. 95 097801
[25] Zapolotcky M, Ramos L, Lubensky T C and Weitz D A 1999 Science 283 209
[26] Ramos L, Zapolotcky M, Lubensky T C and Weitz D A 2002 Phys. Rev. E 66 031711
[27] Beris A N and Edwards B J 1994 Thermodynamics of Flowing Systems (Oxford: Oxford University Press)
[28] Alexander G P and Yeomans J M 2006 Phys. Rev. E 74 061706
[29] Denniston C, Orlandini E and Yeomans J M 2001 Phys. Rev. E 63 056702
[30] Marenduzzo D, Orlandini E, Cates M E and Yeomans J M 2007 Phys. Rev. E 76 031921
[31] Denniston C, Marenduzzo D, Orlandini E and Yeomans J M 2004 Phil. Trans. R. Soc. A. 362 1745
[32] Henrich O, Stratford K, Marenduzzo D, Coveney P V and Cates M E 2012 Rheology of cubic blue phases, in preparation
[33] Negita K 1998 Liq. Cryst. 24 243–6
[34] Tiribocchi A, Gonnella G, Marenduzzo D, Orlandini E and Salvadore F 2011 Phys. Rev. Lett. 107 237803