AN OPEN REVIEW OF OPENREVIEW: A CRITICAL ANALYSIS OF THE MACHINE LEARNING CONFERENCE REVIEW PROCESS

David Tran *
University of California, Berkeley
davidtran@berkeley.edu

Alex Valtchanov *
Princeton University
avv2@princeton.edu

Keshav Ganapathy *
Centennial High School
kganapathy23@gmail.com

Raymond Feng *
Harvard University
raymond_feng@college.harvard.edu

Eric Slud
University of Maryland, College Park
evs@math.umd.edu

Micah Goldblum
University of Maryland, College Park
goldblum@umd.edu

Tom Goldstein
University of Maryland, College Park
tomg@cs.umd.edu

ABSTRACT

Mainstream machine learning conferences have seen a dramatic increase in the number of participants, along with a growing range of perspectives, in recent years. Members of the machine learning community are likely to overhear allegations ranging from randomness of acceptance decisions to institutional bias. In this work, we critically analyze the review process through a comprehensive study of papers submitted to ICLR between 2017 and 2020. We quantify reproducibility/randomness in review scores and acceptance decisions, and examine whether scores correlate with paper impact. Our findings suggest strong institutional bias in accept/reject decisions, even after controlling for paper quality. Furthermore, we find evidence for a gender gap, with female authors receiving lower scores, lower acceptance rates, and fewer citations per paper than their male counterparts. We conclude our work with recommendations for future conference organizers.

1 INTRODUCTION

Over the last decade, mainstream machine learning conferences have been strained by a deluge of conference paper submissions. At ICLR, for example, the number of submissions has grown by an order of magnitude within the last 5 years alone. Furthermore, the influx of researchers from disparate fields has led to a diverse range of perspectives and opinions that often conflict when it comes to reviewing and accepting papers. This has created an environment where the legitimacy and randomness of the review process is a common topic of discussion. Do conference reviews consistently identify high quality work? Or has review degenerated into censorship?

In this paper, we put the review process under a microscope using publicly available data from across the web, in addition to hand-curated datasets. Our goals are to:

• Quantify reproducibility in the review process We employ statistical methods to disentangle sources of randomness in the review process. Using Monte-Carlo simulations, we

*Authors contributed equally.
quantify the level of outcome reproducibility. Simulations indicate that randomness is not effectively mitigated by recruiting more reviewers.

- **Measure whether high-impact papers score better** We see that review scores are only weakly correlated with citation impact.

- **Determine whether the process has gotten worse over time** We present empirical evidence that the level of reproducibility of decisions, correlation between reviewer scores and impact, and consensus among reviewers has decreased over time.

- **Identify institutional bias** We find strong evidence that area chair decisions are impacted by institutional name-brands. ACs are more likely to accept papers from prestigious institutions (even when controlling for reviewer scores), and papers from more recognizable authors are more likely to be accepted as well.

- **Present evidence for a gender gap in the review process** We find that women tend to receive lower scores than men, and have a lower acceptance rate overall (even after controlling for differences in the topic distribution for men and women).

2 Dataset Construction

We scraped data from multiple sources to enable analysis of many factors in the review process. OpenReview was a primary source of data, and we collected titles, abstracts, authors lists, emails, scores, and reviews for ICLR papers from 2017-2020. We also communicated with OpenReview maintainers to obtain information on withdrawn papers. Authors were associated with institutions using both author profiles from OpenReview and the open-source World University and Domains dataset. CS Rankings was chosen to rank academic institutions because it includes institutions from outside the US. The arXiv repository was scraped to find papers that first appeared in non-anonymous form before review. We were able to find 3196 of 5569 papers on arXiv, 1415 of them from 2020. Citation and impact measures were obtained from SemanticScholar. This includes citations for individual papers and individual authors, in addition to the publication counts of each author. SemanticScholar search results were screened for duplicate publications using an edit distance metric. The dataset was hand-curated to resolve a number of difficulties, including finding missing authors whose names appear differently in different venues, checking for duplicate author pages that might corrupt citation counts, and hand-checking for duplicate papers when titles/authors are similar.

To study gender disparities in the review process, we produced gender labels for first and last authors on papers in 2020. We assigned labels based on gendered pronouns appearing on personal webpages when possible, and on the use of canonically gendered names otherwise. This produced labels for 2527 out of 2560 papers. We acknowledge the inaccuracies and complexities inherent in labeling complex attributes like gender, and its imbrication with race. However we do not think these complexities should prevent the impact of gender on reviewer scores from being studied.

2.1 Topic Breakdown

To study how review statistics vary by subject, and control for topic distribution in the analysis below, we define a rough categorization of papers to common ML topics. To keep things simple and interpretable, we define a short list of hand curated keywords for each topic, and identify a paper with that topic if it contains at least one of the relevant keywords. The topics used were **theory**, **computer vision**, **natural language processing**, **adversarial ML**, **generative modelling**, **meta-learning**, **fairness**, **generalization**, **optimization**, **graphs**, **Bayesian methods**, and **Other**. In total, 1605 papers from 2020 fell into the above categories, and 772 out of 1605 papers fell into multiple categories.

1See Appendix A.1 for details on the keywords that we chose.
3 BENCHMARKING THE REVIEW PROCESS

We measure the quality of the review process by several metrics, including reproducibility and correlation between scores and paper impact. We also study how these key metrics have evolved over time, and provide suggestions on how to improve the review process.

3.1 REPRODUCIBILITY OF REVIEWS

The reproducibility of review outcomes has been a hot-button issue, and many researchers are concerned that reviews are highly random. This issue was brought to the forefront by the well-known “NIPS experiment” (Lawrence & Cortes, 2014), in which papers were reviewed by two different groups. This experiment yielded the observation that 43% of papers accepted to the conference would be accepted again if the conference review process were repeated. In this section, we conduct an analysis to quantify the randomness in the review process for papers submitted to ICLR from 2017 to 2020. Our analysis is post hoc, unlike the controlled experiment from NIPS 2014.

Monte-Carlo simulation To produce an interpretable metric of reproducibility that accounts for variation in both reviewers and area chairs, we use Monte-Carlo simulations to estimate the NIPS experiment metric: if an accepted paper were reviewed anew, would it be accepted a second time?

Our simulation samples from review scores from all 2560 papers submitted to ICLR in 2020. We simulate area chair randomness using a logistic regression model that predicts the AC’s accept/reject decision as a function of a paper’s mean reviewer score. This model is fit using 2020 paper data, and the goodness of fit of this model is explored in Appendix A.6.

To estimate reproducibility, we treat the empirical distribution of mean paper scores as if it were the true distribution of “endogenous” paper quality. We simulate a paper by (i) drawing a mean/endogenous score from this distribution. We then (ii) examine all 2020 papers with similar (within 1 unit) mean score, and compute the differences between the review scores and mean score for each such paper. We (iii) sample 3 of these differences at random, and add them to the endogenous score for the simulated paper to produce 3 simulated reviewer scores. We then (iv) use the simulated reviewer scores as inputs to the 2020 logistic regression model to predict whether the paper is accepted. Finally, we (v) generate a second set of reviewer scores using the same endogenous score, and use the logistic regression to see whether the paper is accepted a second time.

We run separate simulations for years 2017 through 2020. We observe a downward trend in reproducibility, with scores decreasing from 75% in 2017, to 70% in 2018 and 2019, to 66% in 2020.

2The NeurIPS conference was officially called NIPS prior to 2018.
Reproducibility scores by topic appear in Figure 10 of the Appendix. We observe that Computer Vision papers have the lowest reproducibility score with 59%, while Generalization papers have the highest score with 70%, followed by Theory papers with 68%.

Analysis of Variance A classical method for quantifying randomness in the review process is **analysis of variance** (ANOVA). In this very simple generative model, (i) each paper has an endogenous quality score that is sampled from a Gaussian distribution with learned mean/variance, and (ii) reviewer scores are sampled from a Gaussian distribution centered around the endogenous score, but with a learned variance. The ANOVA method generates unbiased estimates for the mean/variance parameters in the above model. An ANOVA using all of scores in 2020 finds that endogenous paper quality has a standard deviation of 2.95, while review scores have deviation 1.72. This can be interpreted to mean that the variation between reviewers is roughly 60% as large as the variation among papers. This does not account for the randomness of the area chair. Note the Gaussian model is a fairly rough approximation of the actual score distribution (ANOVA assumptions as discussed in Appendix A.2). Nonetheless, we report ANOVA results because this model is widely used and easily interpretable. Simulations in which papers and scores are drawn from an ANOVA model agree closely with simulations using empirical distributions (Appendix A.2).

3.2 **Should we have more reviewers per paper?**

A number of recent conferences have attempted to mitigate the perceived randomness of accept/reject decisions by increasing the number of reviewers per paper. Most notably, efforts were made at NeuRIPS 2020 to ensure that most papers received 5 reviews. Unfortunately, simulations suggest that increasing the number of reviewers is not particularly effective at mitigating randomness.

We apply the above reproducibility model to review scores in ICLR 2020 while increasing the number of simulated reviews per paper, and we plot results in Figure 2. While reproducibility scores increase with more reviewers, gains are marginal; increasing the number of reviewers from 2 to 5 boosts reproducibility by just 3%. Note that as the number of reviewers goes to infinity, the reproducibility score never exceeds 75%. This limiting behavior occurs because area chairs, who make final accept/reject decisions, vary in their standards for accepting papers. This uncertainty is captured by a logistic regression model in our simulation. As more reviewers are added, the high level of disagreement among area chairs remains constant, while the standard error in mean scores falls slowly. The result is paltry gains in reproducibility.

Our study suggests that program chairs should avoid assigning large numbers of reviewers per paper as a tactic to improve the review process. Rather, it is likely most beneficial to use a small number of reviews per paper (which gives reviewers more time for each review), and add ad-hoc reviewers to selected papers in cases where first-round reviews are uninformative.
3.3 Correlation with Impact

Much of the conversation around the review process focuses on reproducibility and randomness. However, a perfectly reproducible process can still be quite bad if it reproduces, for example, high-impact and transformative papers. It is thought by some that the ML review process favors non-controversial papers with incremental theoretical results over papers with big new ideas.

In this section, we analyze whether reviewer scores correlate with paper impact. We measure impact using citation rate, calculated by dividing citation count by the number of days since the paper was first published online. Though average scores for papers are roughly normally distributed, the distribution of citation rates is highly right-skewed and heavy tailed, with some papers receiving thousands of citations and others receiving none. To mitigate this issue, we use Spearman’s rank correlation coefficient as a metric to measure the strength of the nonlinear relationship between average review score and citation rate.

We assign each paper a “citation rank” (the number of papers with lower citation rate) and “score rank” (the number of papers with lower mean reviewer score), then calculate Spearman’s rank correlation coefficient between citation rank and score rank for all submitted papers. At first glance, the Spearman correlation (0.46, \(p < 0.001 \)) seems to indicate a moderate relationship between scores and citation impact. However, we find that most of this trend is easily explained by the fact that higher scoring papers are accepted to the conference, and gain citations from the public exposure at ICLR. This trend is clearly seen in Figure 3 in which there is a sharp divide between the citation rates of accepted and rejected papers.

To remove the effect of conference exposure, we calculate Spearman coefficients separately on accepted posters and rejected/retracted papers, obtaining Spearman correlations of 0.17 and 0.22, respectively. While these small correlations are still statistically significant (\(p < 0.001 \)) due to the large number of papers being analyzed, the effects are quite small; an inspection of Figure 3 does not reveal any visible relationship between scores and citation rates within each paper category.

Spotlight papers had a Spearman correlation of 0.043 (\(p = 0.66, n = 107 \)), and oral papers had Spearman correlation -0.0064 (\(p = 0.97, n = 48 \)).

3.4 Should we discourage re-submission of papers?

It is likely that papers that appeared on the web long before the ICLR deadline were previously rejected from another conference. We find that papers that have been online for more than 3 months at the time of the ICLR submission date, in fact, have higher acceptance rates at ICLR as well as higher average scores. This fact is observed in each of the past 4 years (see Figure 4a). As these papers are likely to have been previously rejected, our findings suggest that resubmission should not be discouraged, as these papers are more likely to be accepted than fresh submissions.

4 Has the review process gotten “worse” over time?

Our dataset shows that reproducibility scores, correlations with impact, and reviewer agreement have all gone down over the years. Downward temporal trends were already seen in reproducibility scores. Spearman correlations between scores and citations decreased from 0.582 in 2017 to 0.471 in 2020. We also measure the “inter-rater reliability,” which is a well-studied statistical measure of the agreement between reviewers (Hallgren, 2012), using the Krippendorf alpha statistic (Krippendorf, 2011; De Swert, 2012). We observe that alpha decreases from 56% in 2017 to 39% in 2020. More details can be found in Appendix A.3.
It should be noted that ICLR changed the rating scale used by reviewers in 2020 and also decreased the paper acceptance rate. These factors may be responsible in part for the sharp fall-off in reproducibility in 2020. We address this issue by bumping 2020 reviewer scores up so that the acceptance rate matches 2019, and then re-running our simulations. After controlling for acceptance rate in this way, we still observe an almost identical falloff in 2020, indicating that the change in reproducibility is not explained by the decreasing acceptance rate alone.

5 Biases

We explore sources of bias in the review process, including institutional bias and bias toward reputable authors. We also discuss how gender correlates with outcomes.

5.1 Institutional Bias

Does ICLR give certain institutions preferential treatment? In this section, we see whether the rank of institution (as measured by CS Rankings) influences decisions. We focus on academic institutions because they fall within a widely known quantitative ranking system. We found that 85% of papers across all years (87% in 2020) had at least one academic author. In the event that a paper has authors from multiple institutions, we replicate the paper and assign a copy of it to each institution. Figure 11 in Appendix A.5 plots the average of all paper scores received by each institution, ordered by institution rank. We find no meaningful trend between institution rank and paper scores.

Area Chair Bias It is difficult to detect institutional bias in reviews because higher scores among more prestigious institutions could be explained by either bias or differences in paper quality. It is easier to study institutional bias at the AC level, as we can analyze the accept/reject decisions an AC makes while controlling for paper scores (which serves as a proxy for paper quality).

To study institutional bias at the AC level, we use a logistic regression model to predict paper acceptance as a function of (i) the average reviewer score, and (ii) an indicator variable for whether a paper came from one of the top 10 most highly ranked institutions.

We found that, even after controlling for reviewer scores, being a top ten institution leads to a boost in the likelihood of getting accepted. This boost is equivalent to a 0.15 point increase in the average reviewer score \((p = 0.028)\). Regression details can be found in Table 3 located in Appendix A.7.

Prestigious institutions are more likely than others to have famous researchers, and the acceptance bias could be attributed to the reputation of the researcher rather than the university. In Section 5.3 we control for last-author reputation and still find a significant effect for institution rank (Table 1).

We find that most of the institutional bias effect is explained by 3 universities: Carnegie Mellon, MIT, and Cornell. We repeat the same study, but instead of a top 10 indicator, we use a separate indicator for each top 10 school. Most institutions have large p-values, but CMU, MIT, and Cor-

\[^{3}\text{We compute this effect by taking the ratio of the indicator coefficient and the average reviewer score coefficient, which represents the relative impact on the likelihood of a paper being accepted.}\]
nells each have statistically significant boosts equating to 0.31, 0.31, and 0.58 points in the average reviewer score, respectively. See Tables 4 and 5 in Appendix A.7.

While 2020 area chairs came from a diverse range of universities, 26/115 of them had a Google or Deepmind affiliation, which lead us to investigate bias effects for large companies (Table 6, A.7). The 303 papers from Google/Deepmind have an insignificant boost (0.007 points, \(p = 0.932 \)) as did the 110 papers from Facebook (0.07 points, \(p = 0.630 \)). However, the 92 papers from Microsoft has a strong penalty (-0.50 points, \(p = 0.003 \)).

5.2 The arXiv effect

Is it better to post a paper on arXiv before the review process begins, or to stay anonymous? To explore the effects of arXiv, we introduce a new indicator variable that detects if a paper was posted online by a date one week after the ICLR submission deadline. We fit logistic regression models to predict paper acceptance as a function of (i) the average score given by the reviewers of a paper, and (ii) an indicator variable for papers that were visible on arXiv during the review process.

We fit models separately on 3 subsets of the 2020 papers: schools not in the top 10 (Table 8, A.7), top 10 schools excluding CMU/MIT/Cornell (Table 10, A.7), and papers from CMU, MIT, and Cornell (Table 9, A.7). We find that by having papers visible on arXiv during the review process, CMU, MIT, and Cornell as a group receive a boost of 0.67 points (\(p = 0.001 \)). Conversely, institutions not in the top 10 received a statistically insignificant boost (0.08 points, \(p = 0.235 \)), as did top 10 schools excluding CMU, MIT, and Cornell (0.05 points, \(p = 0.737 \)).

Overall, we found that papers appearing on arXiv tended to do better (after controlling for reviewer scores) across the board, including schools that did not make the top 50, in addition to Google, Facebook, and Microsoft. However, these latter effects are not statistically significant.

5.3 Reputation bias

Does the reputation of an author impact the review process? We quantify the reputation of an author by computing \(\log(\text{citations}/\text{papers}+1) \) for each author, where citations is the total citations for the author, and papers is their total number of papers (as indexed by Semantic Scholar). The raw ratio citations/papers has a highly skewed and heavy tailed distribution, and we find that the log transform of the ratio has a symmetric and nearly Gaussian distribution for last authors (see Figure 13, Appendix A.6).

We run a logistic regression predicting paper acceptance as a function of (i) the average reviewer score, (ii) the reputation index for the last author, and (iii) an indicator variable for whether a paper came from a top-ten institution. We include the third variable to validate the source of bias, because institution and author prestige may be correlated. Table 1 shows that last author reputation has a statistically significant positive impact on AC decisions. Taking into account the distribution of the last author reputation index (Figure 13 Appendix A.6), these coefficients indicate that a last author near the mean of the author reputation index will gain a boost equivalent to a 0.16 point increase in average reviewer score, while last authors at the top (2 standard deviations above the mean) receive a boost equivalent to a 0.29 point increase.

Table 1: Author reputation and institution impact on acceptance. This logistic regression model has 93% accuracy on a hold-out set containing 30% of 2020 papers.

Variable	Coefficient	Std. Error	Z-score	p-value
mean reviewer score	2.4354	0.098	24.807	0.000
log(citations/papers+1)	0.1302	0.057	2.270	0.023
top ten school?	0.2969	0.165	1.802	0.072
constant	-13.6620	0.562	-24.313	0.000

5.4 Gender Bias

There is a well-known achievement gap between women and men in the sciences. Women in engineering disciplines tend to have their papers accepted to high impact venues, and yet receive fewer
citations (Ghiasi et al., 2015; Larivière et al., 2013; Larivière, 2014; Rossiter, 1993). These citation disparities exist among senior researchers at ICLR. Over their whole career, male last authors from 2020 have on average 44 citations per publication while women have 33. This gap in total citations can be attributed in part to differences in author seniority; the 2019 Taulbee survey reports that women are more severely under-represented among senior faculty (15.7%) than among junior faculty (23.9%) (Zweben & Bizot, 2020), and more senior faculty have had more time to accumulate citations. To remove the effect of time, we focus in on only 2020 ICLR papers, where male last authors received on average 4.73 citations to date compared to 4.16 citations among women. This disparity flips for first authors; male first authors received just 4.4 citations vs 6.2 among women.

We find that women are under-represented at ICLR relative to their representation in computer science as a whole. In 2019, women made up 23.2% of all computer science PhD students (Zweben & Bizot, 2020) in the US. However, only 10.6% of publications at ICLR 2020 have a female first author. While women make up 22.6% of CS faculty in the US, they make up only 9.7% of last authorships at ICLR. Despite this, women first authors have a 13.3% chance of publishing with a women last author, which suggests that junior women researchers either prefer to be supervised by women, or achieve higher productivity when supervised by women. Similar trends occur in the experimental sciences (Gaule & Piacentini, 2018; Pezzoni et al., 2016; Kato & Song, 2018). Among papers from top-10 schools, women make up 12.3% of first authors and 13.4% of last authors.

We observe a gender gap in the review process, with women first authors achieving a lower acceptance rate than men (23.5% vs 27.1%). This performance gap is reflected in individual reviewer scores, as depicted by histograms in Figure 5. Women on average score 0.16 points lower than their male peers. A Mann-Whitney U test generated a (two sided) p-value of 0.085. No significant differences were observed when scores were split by the gender of last author.

Figure 5: **Histogram of average scores by gender, first and last author**, ICLR 2020.

As noted in Section 1, there is a wide range of acceptance rates among the different research topics at ICLR. Among papers that fall into a labeled topic (excluding other), male and female first author papers are accepted with rates 27.6% and 22.1%, respectively. One may suspect that this disparity is explained by differences in the research topic distribution of men and women, as shown in Figure 6b. However, we find that differences in topic distribution are actually more favorable to women than men. If women kept their same topic distribution, but had the same per-topic acceptance rates as their male colleagues, we should expect women to achieve a rate of 27.8% among topic papers (slightly more than their male colleagues) – a number far greater than the 22.1% they actually achieve.

4A large gap in acceptance rates is not seen for last authors. See Table 12 in Appendix A.8.

5We use a non-parametric test due to the non-Gaussian and sometimes multi-modal distribution of paper scores.
We test for area chair bias with a regression predicting paper acceptance as a function of review scores and gender. We did not find evidence for AC bias (Figure 11, Appendix A.7).

6 CONCLUSION

We find the level of reproducibility at ICLR (66% in 2020) to be higher than we expect when considering the much lower acceptance rate (26.5%), which seemingly contradicts the notion that reviews are “random.” Nonetheless, many authors find large swings in reviews as they resubmit papers to different conferences and find it difficult to identify a home venue where their ideas feel respected. We speculate that the perceived randomness of conference reviews is the result of several factors. First, differences in paper matching and bidding systems used by different conferences can sway the population of reviewers that are recommended to bid on an article, resulting in a major source of inter-conference randomness that is not represented in the above intra-conference study. Second, the influx of researchers from disparate backgrounds means that the value system of a paper’s reviewers is often mismatched with that of its authors.

Finally, we interpret the empirical studies in this paper to suggest that acceptance rates at mainstream conferences are just too low. This is indicated by the prevalence of paper re-submission within the ML community, combined with the relatively high marks of re-submitted papers we observed here. When the number of papers with merit is greater than the number of papers that will be accepted, it is inevitable that decisions become highly subjective and that biases towards certain kinds of papers, topics, institution, and authors become endemic.

Code for collecting all data used in this work and performing statistical tests can be found at: https://github.com/keshavganapathy/An-Open-Review-of-OpenReview

REFERENCES

Knut De Swert. Calculating inter-coder reliability in media content analysis using Krippendorff’s alpha. Center for Politics and Communication, pp. 1–15, 2012.

Patrick Gaule and Mario Piacentini. An advisor like me? Advisor gender and post-graduate careers in science. Research Policy, 47(4):805–813, 2018.

Gita Ghiasi, Vincent Larivi`ere, and Cassidy R Sugimoto. On the compliance of women engineers with a gendered scientific system. PloS one, 10(12):e0145931, 2015.

Kevin A Hallgren. Computing inter-rater reliability for observational data: an overview and tutorial. Tutorials in quantitative methods for psychology, 8(1):23, 2012.

Takao Kato and Yang Song. An advisor like me: Does gender matter? IZA Institute of Labor Economics Discussion Paper Series, Jun 2018.

Klaus Krippendorff. Computing Krippendorff’s alpha-reliability. Computing, 1:25–2011, 2011.
Vincent Larivière. Women and science: The first global data validate inequality. *Acfas Magazine*, 2014.

Vincent Larivièrè, Chaoqun Ni, Yves Gingras, Blaise Cronin, and Cassidy R Sugimoto. Bibliometrics: Global gender disparities in science. *Nature News*, 504(7479):211, 2013.

Neil Lawrence and Corinna Cortes. The NIPS Experiment. *inverseprobability.com*, 2014.

Michele Pezzoni, Jacques Mairesse, Paula Stephan, and Julia Lane. Gender and the publication output of graduate students: A case study. *PLoS One*, 11(1):e0145146, 2016.

Margaret W Rossiter. The Matthew Matilda effect in science. *Social studies of science*, 23(2): 325–341, 1993.

Stuart Zweben and Betsy Bizot. *The 2019 Taulbee Survey*, volume 1. Computing Research Association, 2020.
A APPENDIX

Additional experimental details and results are included below.

A.1 BREAKDOWN OF PAPERS BY TOPIC

We identify a paper with a topic if it contains at least one of the relevant keywords. The topics [and keywords] used were theory [theorem, prove, proof, theory, bound], computer vision [computer vision, object detection, segmentation, pose estimation, optical character recognition, structure from motion, facial recognition, face recognition], natural language processing [natural language processing, nlp, named-entity, machine translation, language model, word embeddings, part-of-speech, natural language], adversarial ML [adversarial attack, poison, backdoor, adversarial example, adversarially robust, adversarial training, certified robust, certifiably robust], generative modelling [generative adversarial network, gan, vae, variational autoencoder], meta-learning [few-shot, meta learning, transfer learning, zero-shot], fairness [gender, racial, racist, biased, unfair, demographic, ethnic], generalization [generalization], optimization [optimization theory, convergence rate, convex optimization, rate of convergence, global convergence, local convergence, stationary point], graphs [graph], Bayesian methods [bayesian], and Other which includes the papers that do not fall into any of the above categories.
A.2 ANOVA METHOD

Here we show histograms of mean scores over all papers, and we plot the variance of individual reviewer scores as a function of paper quality. We observe that the distribution of paper scores has overall Gaussian structure, however this structure is impacted by the fact that certain mean scores can be achieved using a large number of individual score combinations, while others cannot, resulting in some spiked behavior. We also find that the homogeneity assumptions of ANOVA (i.e., the reviewer variance remains the same for all papers) is not well satisfied for all conference years. For this reason, we do not want to rely heavily on ANOVA for our reliability analysis, and we were motivated to construct the Monte Carlo simulation model. Interestingly, repeatability simulations using our ANOVA model yield results in close agreement with the Monte Carlo model.

Figure 7: Histogram for average scores of all papers. This plot demonstrates that the average scores in each year follows a roughly Gaussian distribution. In some years there are particular scores that appear to be chosen relatively infrequently, causing multi-modal behavior. This is what inspired us to use a Monte-Carlo simulation in addition to the ANOVA results. Interestingly, our Monte-Carlo simulations produce similar results regardless of whether we sample the empirical score distribution, or the Gaussian approximation from ANOVA.
Figure 8: **Bar plot for average standard deviation within each score range.** This plot demonstrates that the standard deviations are roughly equal across different ranges in 2017, 2018 and 2019. However, we observe that the standard deviations from score ranges between 3 and 6 are higher than the rest in 2020. Note that in 2018 and 2019, there are no papers that have an average score greater than 9.

Table 2: **Standard deviations from ANOVA model.** Summary for standard deviation between all average scores and standard deviation for review scores within a paper.

Year	Std. Between	Std. Within
2017	2.3334	1.0307
2018	2.1080	1.1947
2019	2.1038	1.1036
2020	2.9595	1.7209
A.3 Krippendorf alpha statistic

Krippendorff’s alpha is a general statistical measure of agreement among raters, observers, or coders of data, designed to indicate their reliability. The advantage of this statistic is that it supports ordinal ratings, handles missing data, and is applicable to any number of raters, each assigning ratings to any other unit of analysis. As a result, the Krippendorff’s alpha is an appropriate choice for our dataset given that there are many reviewers in the conference, each reviewer in the conference usually rates several papers, and no reviewer rates all papers. However, since the Krippendorff alpha requires access to all papers that each reviewer scores, and due to the anonymous nature of the review process, we proceed to calculate the Krippendorff’s alpha using 2 different schemes:

1. Assume the total number of reviewers in the conference is equal to the total number of reviews given to all papers. In other words, all review scores are given by different reviewers.

2. Assume there are only 3 reviewers, where the i^{th} reviewer gives the i^{th} score to all papers.

Regardless of which approach is chosen, we observe the same Krippendorff’s alpha (within 1%) and a downward trend in agreement between reviewers. In particular, we observe an alpha of 56% in 2017, 42% in 2018, 47% in 2019, and 39% in 2020 where 100% indicates perfect agreement and 0% indicates absence of agreement.
A.4 Reproducibility level by topic

Figure 10: **Reproducibility level by topic**, ICLR 2020.

A.5 Correlations between institution rank and paper scores

Figure 11: **Institution rank vs average score for the top 100 institutions.** For each institution and each paper decision type, all reviewer scores were averaged to generate a data point. Shaded areas represent 95% confidence intervals.
Figure 12: **Logistic Regression Assumptions Checking.** We use a Hosmer-Lemeshow plot to check the assumption for our logistic regression model. The null hypothesis is that there is no difference between observed deciles and those predicted by the logistic model. If the values are the same, we have a model that fits perfectly. This graph compares the observed number of accepted papers and expected number of accepted papers across multiple groups.
Figure 13: **Histogram for last author reputation index.** This plot demonstrates that the transformation $\log(\text{citations/publication} + 1)$ achieves a roughly Gaussian distribution with a mean of 2.95 and a standard deviation of 1.28. Last authors were taken from the 2020 conference only.

A.7 **Additional Logistic Regression Summaries**

Table 3: **Top 10 institutions’ impact on acceptance, together.** ICLR 2020. Summary of the Logistic Regression predicting paper acceptance as a function of mean reviewer score and a top 10 indicator. The accuracy of the classifier was 92% on a hold-out set containing 30% of 2020 papers

Variable	Coefficient	Std. Error	Z-score	p-value
mean reviewer score	2.4350	0.097	25.118	0.000
top ten school?	0.3536	0.161	2.194	0.028
constant	-13.2707	0.526	-25.212	0.000

Table 4: **Top 10 institutions’ impact on acceptance, separate.** ICLR 2020. Logistic regression summary for predicting paper acceptance. The top 10 institution ranks each have their own indicator variable. Statistically significant effects are in bold. The accuracy of the classifier was 92% on a hold-out set containing 30% of 2020 papers

Variable	Coefficient	Std. Error	Z-score	p-value
mean reviewer score	2.4600	0.099	24.949	0.000
Carnegie Mellon	0.7510	0.363	2.071	0.038
MIT	0.7498	0.357	2.100	0.036
U. Illinois, Urbana-Champaign	0.6698	0.535	1.252	0.211
Stanford	-0.0312	0.371	-0.084	0.933
U.C. Berkeley	0.2299	0.337	0.681	0.496
U. Washington	-0.8189	0.684	-1.198	0.231
Cornell	1.4267	0.607	2.350	0.019
Tsinghua U. & U. Michigan (tied)	-0.0118	0.369	-0.032	0.974
ETH Zurich	0.0608	0.640	0.095	0.924
constant	-13.4048	0.535	-25.038	0.000
Table 5: **Institution & last author reputation impact on acceptance, CMU, MIT, and Cornell, ICLR 2020.** Logistic regression predicting paper acceptance as a function of mean reviewer score, a last author reputation index, and 3 institution indicators. The accuracy of the classifier was 90% on a hold-out set containing 30% of 2020 papers.

Variable	Coefficient	Std. Error	Z-score	p-value
mean reviewer score	2.4511	0.099	24.718	0.000
log(citations/paper + 1)	0.1306	0.057	2.285	0.022
Carnegie Mellon (rank 1)	0.6730	0.368	1.829	0.067
MIT (rank 2)	0.6783	0.358	1.895	0.058
Cornell (rank 7)	1.3482	0.611	2.207	0.027
constant	-13.7425	0.567	-24.238	0.000

Table 6: **Institution impact on acceptance, Google, Facebook, and Microsoft, ICLR 2020.** Logistic regression predicting paper acceptance as a function of mean reviewer score and 3 institution indicators. The accuracy of the classifier was 91% on a hold-out set containing 30% of 2020 papers.

Variable	Coefficient	Std. Error	Z-score	p-value
mean reviewer score	2.3515	0.075	31.557	0.000
google	-0.0177	0.209	-0.085	0.932
facebook	0.1745	0.362	0.482	0.630
microsoft	-1.1837	0.402	-2.948	0.003
constant	-12.7907	0.402	-31.843	0.000

Table 7: **Visibility on arXiv during the review period, top 10 institutions at ICLR 2020.** Logistic regression predicting paper acceptance as a function of mean reviewer score and an indicator demarcating if the paper was on arXiv up to one week after the submission date. The accuracy of the classifier was 93% on a hold-out set containing 30% of 2020 papers.

Variable	Coefficient	Std. Error	Z-score	p-value
mean reviewer score	2.3904	0.190	12.551	0.000
visible on arXiv?	0.6599	0.288	2.294	0.022
constant	-12.9311	1.014	-12.754	0.000

Table 8: **Visibility on arXiv during the review period, institutions not in the top 10 at ICLR 2020.** Logistic regression predicting paper acceptance as a function of mean reviewer score and an indicator demarcating if the paper was on arXiv up to one week after the submission date. The accuracy of the classifier was 92% on a hold-out set containing 30% of 2020 papers.

Variable	Coefficient	Std. Error	Z-score	p-value
mean reviewer score	2.4309	0.112	21.650	0.000
visible on arXiv?	0.2033	0.171	1.187	0.235
constant	-13.3262	0.610	-21.859	0.000
Table 9: Visibility on arXiv during the review period, CMU, MIT, and Cornell at ICLR 2020. Logistic regression predicting paper acceptance as a function of mean reviewer score and an indicator demarcating if the paper was on arXiv up to one week after the submission date. The accuracy of the classifier was 94% on a hold-out set containing 30% of 2020 papers.

Variable	Coefficient	Std. Error	Z-score	p-value
mean reviewer score	2.7144	0.372	7.295	0.000
visible on arXiv?	1.8285	0.551	3.317	0.001
constant	-14.4988	1.967	-7.372	0.000

Table 10: Visibility on arXiv during the review period, top 10 institutions excluding CMU, MIT, and Cornell at ICLR 2020. Logistic regression predicting paper acceptance as a function of mean reviewer score and an indicator demarcating if the paper was on arXiv up to one week after the submission date. The accuracy of the classifier was 91% on a hold-out set containing 30% of 2020 papers.

Variable	Coefficient	Std. Error	Z-score	p-value
mean reviewer score	2.3874	0.239	9.987	0.000
visible on arXiv?	0.1203	0.358	0.336	0.737
constant	-12.9840	1.276	-10.175	0.000

Table 11: Gender impact on acceptance, ICLR 2020. Logistic regression predicting paper acceptance as a function of mean paper reviewer score and a gender indicator variable for both the first and last author. The accuracy of the classifier was 93% on a hold-out set containing 30% of 2020 papers. The results were inconclusive. Papers with last authors that were unlabelled were excluded.

Variable	Coefficient	Std. Error	Z-score	p-value
mean reviewer score	2.3956	0.109	21.877	0.000
gender indicator, first author	-0.1045	0.266	-0.392	0.695
constant	-13.0241	0.633	-20.590	0.000
mean reviewer score	2.3813	0.107	22.349	0.000
gender indicator, last author	-0.0520	0.272	0.191	0.849
constant	-13.0441	0.627	-20.800	0.000

A.8 Additional Statistics on Gender

Table 12: Summary of gender statistics. Some percents do not add up to 100%; we were unable to label 5.6% of first authors and 2.5% of last authors.

Statistic	First Author	Last Author		
	Male	Female	Male	Female
Percent of Papers	83.75%	10.63%	87.81%	9.65%
Percent of Accepted Papers	84.43%	9.32%	88.50%	9.46%
Acceptance Rate	27.05%	23.53%	27.05%	26.32%
Average Reviewer Score	4.21	4.06	4.20	4.18