Alveolar recruitment maneuvers in acute lung injury/acute respiratory distress syndrome

Jose Chacko, Usha Rani

Abstract

Mechanical ventilation can worsen lung damage in acute lung injury and acute respiratory distress syndrome. The use of low tidal volumes is one of the strategies that has been shown to reduce lung injury and improve outcomes in this situation. However, low tidal volumes may lead to alveolar derecruitment and worsening of hypoxia. Recruitment maneuvers along with positive end-expiratory pressure may help to prevent derecruitment. Although recruitment maneuvers have been shown to improve oxygenation, improved clinical outcomes have not been demonstrated. The optimal recruitment strategy and the type of patients who might benefit are also unclear. This review summarizes the impact of recruitment maneuvers on lung mechanics and physiology, techniques of application, and the clinical situations in which they may be useful.

Key words: Acute lung injury, acute respiratory distress syndrome, recruitment maneuvers

Introduction

Injurious ventilation strategies can worsen lung damage in Acute Respiratory Distress Syndrome (ARDS).[1] During positive pressure ventilation, there are alveolar units in varying degrees of collapse adjacent to areas of fully open alveoli. When inflated, shear stresses develop between open and closed alveoli that may be injurious.[2] Cyclical opening and closure of alveolar units can also result in the generation of shear forces.[3] Both these mechanisms can cause endothelial and epithelial injury leading to loss of integrity of the alveolar capillary membrane, bacterial translocation from the lung, and cellular inflammatory damage.[4,5] Shear forces also lead to the activation of nuclear factor kappa B that results in the expression of cytokines, resulting in the initiation and propagation of multiorgan dysfunction syndrome.[6] There is strong evidence that low tidal volume ventilatory strategies improve survival.[7] However, the use of small tidal volumes can cause alveolar derecruitment and arterial hypoxemia. In the ARDSNet trial, patients randomized to the low tidal volume group had lower PO2 levels, possibly due to alveolar derecruitment.[7] Strategies to recruit closed lung units and prevent derecruitment might be beneficial in improving gas exchange as well as reduce the incidence of ventilator-induced lung injury.

Effects of recruitment maneuvers

Although ARDS is described as a diffuse disease process affecting both the lungs, CT scan based studies have revealed a nonuniform pattern of involvement.[8] There are regions within the lung that are collapsed or consolidated, mainly confined to the dependent areas, and other regions which are open and ventilate in a relatively normal fashion.[9] The considerably reduced portion of the lung that is amenable to ventilation has been referred to as the ‘baby lung’. [10] Injurious ventilatory strategies might aggravate damage to the
lung. High peak pressures and high tidal volumes have been shown to be associated with a significantly higher incidence of barotrauma. Mechanical ventilation using high tidal volumes also results in the release of inflammatory mediators such as interleukins 1 and 6, tumour necrosis factor alpha, etc, that may be attenuated by optimizing ventilator strategy. Ventilation with low tidal volumes below the lower inflexion point might also result in progression of lung injury. Thus, there needs to be a careful balance between strategies that use excessive pressures and volumes that might aggravate lung injury and the use of low tidal volume strategies that might lead to alveolar derecruitment and significant hypoxemia. It may be possible to open up or ‘recruit’ at least some of the collapsed areas by the use of continuous or repetitive application of increased levels of distending alveolar pressure, much higher than that recommended for the ventilation of patients with Acute Lung Injury (ALI). The applied pressure as well as the duration of its application is likely to determine the effectiveness of a Recruitment Maneuver (RM). The efficacy of an RM is likely to be directly related to the number of closed lung units. In other words, such maneuvers will be less effective if most of the lung units are already open. Thus, the potential for recruitment may be greater when lower Positive End-Expiratory Pressure (PEEP) levels are being used compared to higher PEEP levels. However, the potential for recruitment may also depend on the number of closed alveolar units and may be predictable using physiological variables including PaO2/FiO2 (P/F) ratio, PCO2 and compliance. It is important to understand that while PEEP can maintain recruitment, intermittent higher pressures would be required to initiate the process. After recruitment has been initiated, it may be possible to maintain it with lower pressures. In fact, alveolar to pleural pressure difference of more than 60 cm of H2O may be required to open collapsed lung units.

Techniques

Several methods have been employed to carry out RMs in the clinical setting as well as in experimental models [Table 1]. Rothen et al. showed that a sustained inflation maneuver of 40 cm of H2O for 7–8 seconds might re-expand all collapsed lung units as evident on CT scans of the chest and improve oxygenation in anesthetized subjects. In another study, three consecutive sighs of plateau pressure 45 cm of H2O were applied every minute for an hour. This resulted in an increase in the end-expiratory lung volume, reduction in the intrapulmonary shunt, and improvement in oxygenation. Lapinsky et al. applied a sustained inflation maneuver of 45 cm of H2O or the peak pressure at a tidal volume of 12 mls/kg, whichever was lower, for a period of 20 seconds. An improvement in oxygen saturation was noted in all patients; in 10 out of 14 patients, this was sustained for up to four hours. No significant adverse effects were noted. Lim et al. used an ‘extended sigh’ (e-sigh) as an RM. This involved gradually reducing tidal volumes from 8–2 mls/kg and increasing the PEEP from 10–25 cm of H2O in a stepwise manner, each step lasting 30 seconds. When a tidal volume of 2 mls/kg and a PEEP of 25 cm of H2O were reached, a Continuous Positive Airway Pressure (CPAP) level of 30 cm of H2O was applied for 30 seconds following which a reverse sequence was applied till the baseline settings were reached. The authors could demonstrate a statistically significant increase in PO2 and static compliance with this maneuver. RMs may also be practicable in spontaneously breathing patients. Patroniti et al. applied a CPAP of 20% higher than the peak pressure on pressure support ventilation for 3–5 seconds every minute, for at least an hour. The authors could demonstrate an improvement in oxygenation and lung compliance with this maneuver. Constantin et al. compared two different RMs - (a) CPAP of 40 cm of H2O for 40 seconds without tidal ventilation and (b) an e-sigh comprising of increasing the PEEP level to 10 cm above the lower inflexion point on the pressure–volume curve for a period of 15 minutes, on volume-controlled ventilation. Both maneuvers improved oxygenation at 5 and 60 minutes; there was no statistically significant difference in the degree of improvement. However, only the e-sigh was associated with an increase of recruited volume at 5 and 60 minutes. The systolic pressure dropped below 70 mm Hg during the CPAP maneuver on two occasions resulting in interruption of the RM while there was no significant blood pressure drop with the e-sigh. Other studies also suggest that RMs using a sustained high inflation pressure may cause hemodynamic compromise and hence may not be the preferred technique. Some level of sedation is usually required to carry out an RM, but muscle paralysis is not absolutely necessary. The patient should be monitored for hypotension and fall in oxygen saturation during the RM. It is also important to emphasize that an RM should be followed up with an appropriate PEEP level, set in a decremental fashion; otherwise derecruitment may occur.

Monitoring of the efficacy of recruitment maneuvers

As more alveoli get recruited, the end-expiratory lung volume increases and arterial oxygenation would also...
be expected to rise. A practical measure of alveolar recruitment would be to monitor arterial blood gases. Malbouisson et al. showed a significant correlation between PEEP-induced alveolar recruitment and improved arterial oxygenation when recruitment was assessed by the volume of gas entering nonaerated or poorly aerated areas of the lung as seen on CT scans.[25] Apart from the obvious improvement in gas exchange, the efficacy of RMs can be assessed from the upward shift of the static volume-pressure curve[26] as well as the chest wall and lung elastance. Responders to RMs have been associated with a lower chest wall and lung elastance.[27]

Who will benefit from recruitment maneuvers?

RMs have been studied extensively in patients with ARDS. Amato et al., in their landmark paper, studied 53 patients with ARDS using a low tidal volume of 6mls/kg on one arm combined with RMs and compared this with a tidal volume of 12mls/kg on the other arm. They found a significant mortality reduction in the low tidal volume group - 38 vs 71%. [28] Grasso et al. showed that patients with early ARDS had greater potential for alveolar recruitment compared to patients who had late ARDS.[22] They found a positive correlation between chest wall elastance and the duration of mechanical ventilation, possibly due to pleural effusions that accumulated over time. It is also likely that with time, fibroproliferative changes set in making the lungs more difficult to recruit. Pelosi et al. showed higher end-expiratory lung volumes, greater improvement in PO₂, and lower venous admixture in extrapulmonary ARDS compared to pulmonary ARDS, suggesting greater potential for recruitment in the former condition.[29] In another study on patients with early ARDS, RMs in the form of sighs were carried out in the supine position and after turning prone. There was an improvement in PO₂ after RMs in both supine and prone positions; however, the end-expiratory lung volume increased only with RMs, not with proning per se.[30] The authors suggested that the prone position might make the lungs topographically more favorable for RMs. Loss of end-expiratory lung volumes and fall in oxygen saturation could be prevented by the use of an RM during endotracheal suctioning, especially if a closed suction system is used.[31] In the ARDS Net trial that compared high versus low PEEP in ARDS patients,
RMIs were used in the first 80 patients randomly assigned to the high PEEP arm using a CPAP of 35–40 cm of H2O for 30 seconds. However, this strategy was abandoned later on as the mean increase in arterial oxygenation was small and transient. This might lend further support to the theory that if maximal recruitment has already been achieved with high levels of PEEP, further applications of RMIs are unlikely to be of benefit. RMIs have also been shown to prevent derecruitment during anesthesia and in postoperative cardiac surgical patients on mechanical ventilation.

Gattinoni et al. studied 67 patients with ALI or ARDS using CT scans to assess recruitability. Whole lung CT scans were done at an inspiratory plateau pressure of 45 cm of H2O followed by PEEP levels of 5 and 15 cm of H2O. The extent of recruitable lung was highly variable, with a mean of 13 ± 11% of the total lung weight. Progressive increase of airway pressure resulted in an increase of hyperinflated and normally aerated lung. More recruitable lung correlated with a higher fraction of nonaerated lung tissue, a lower P/F ratio, lower compliance, higher PCO2, greater shunt fraction, and increased mortality. Physiological variables such as improved P/F ratio, compliance, and reduced PCO2 predicted recruitability with a sensitivity of 71% and specificity of 59%.

A recent large randomized controlled trial addressed the value of higher levels of PEEP and RMIs along with low tidal volume ventilation. The authors targeted tidal volumes of 6 mls/kg with an upper limit of plateau pressure of 30 cm of H2O. On the study arm, they used a higher level PEEP based on the FiO2 according to a set protocol along with RMIs using a sustained inflation of 40 cm of H2O for 40 seconds. There was no difference in mortality between the two groups; however, there were significantly lower rates of refractory hypoxemia, death with refractory hypoxemia, and the use of predefined rescue therapies in the study arm.

Possible harm from recruitment maneuvers

RMIs would seem to be generally well tolerated. However, systemic hypotension is often seen, especially when a sustained inflation pressure is used. A rise in intrathoracic pressure might increase the right ventricular afterload, compress the intrathoracic veins, and reduce the cardiac output. Besides, high intrapulmonary pressures can increase the right ventricular pressures leading to a shift of the interventricular septum towards the left ventricle. This can impair the left ventricular function and reduce cardiac output further. The lungs may also exert a compressive effect on the heart and impair cardiac compliance. RMIs may result in barotrauma, although the incidence is unknown. Bacterial translocation from the lung due to increased stretch during RMIs is a theoretical concern. However, Cakar et al., in a rat model, showed that a sustained inflation RM of 45 cm of H2O for 30 seconds at fifteen minute intervals did not result in bacterial translocation as evident on blood cultures. Bein et al., applied RMIs to 11 patients with traumatic and nontraumatic brain lesions and found a significant rise in the intracranial pressure.

The mean arterial pressure dropped, thus reducing the cerebral perfusion pressure. The jugular venous oxygen saturation also fell significantly. There was only a modest improvement in arterial oxygen saturation. The authors recommended that RMIs should not be performed in brain-injured patients.

Summary

Recruitment maneuvers may prevent lung derecruitment and fall in oxygenation associated with low tidal volume ventilation strategies employed in ARDS. Patients who are already on optimal levels of PEEP are unlikely to benefit any further from RMIs. Extrapulmonary ARDS is more likely to respond to RMIs compared to pulmonary ARDS; consolidated lungs may not be recruitable. RMIs are more likely to be successful during the early stages of ARDS, compared to the later stages when fibroproliferative changes set in. Over-recruitment can result in alveolar overdistension and diversion of blood away from ventilated to nonventilated areas, thus increasing the intrapulmonary shunt. Thus, RMIs would always be a balancing act between opening of collapsed lung units and overdistending the already open units. Sustained inflation RMIs may constitute an extreme increase of afterload to the right ventricle and result in significant hemodynamic compromise; hence, these may be less preferable to maneuvers involving intermittent high pressure. However, the optimal technique of recruitment is unclear and may vary depending on individual clinical circumstances. Although RMIs have been clearly shown to improve gas exchange, there is no evidence that suggests improved morbidity or mortality. In fact, marginal improvements in gas exchange have not been shown to change clinical outcomes regardless of the strategy employed. On the other hand, the pursuit of better oxygenation using injurious ventilatory strategies is likely to cause harm. The primary role of RMIs may be as rescue therapy in refractory hypoxia in patients with severe ARDS; their routine use in acute lung injury and ARDS may not be associated with benefit.
References

1. Dreyfuss D, Soler P, Basset G, Saumon G. High inflation pressure pulmonary edema: Respective effects of high airway pressure, high tidal volume and positive end expiratory pressure. Am Rev Respir Dis 1988;137:1159-64.

2. Mead J, Takishima T, Leith D. Stress distribution in lungs: A model of pulmonary toxicity. J Appl Physiol 1970;28:596-608.

3. Muesedere JG, Mullen JD, Gan K, Slutsky AS. Tidal ventilation at low airway pressures can augment lung injury. Am J Respir Crit Care Med 1994;149:1327-34.

4. Tremblay L, Valenza F, Ribeiro SP, Li J, Slutsky AS. Injurious ventilatory strategies increase cytokines and e-fos mRNA expression in an isolated rat lung model. J Clin Invest 1997;99:944-52.

5. Ranieri VM, Suter PM, Tortorella C, De Tulio R, Dayer JM, Brienza A, et al. Effect of mechanical ventilation on inflammatory mediators in patients with acute respiratory distress syndrome: A randomized controlled trial. JAMA 1999;282:54-61.

6. Fan J, Ye RD, Malik AB. Transcriptional mechanisms of acute lung injury. Am J Physiol Lung Cell Mol Physiol 2001;281:L1037-50.

7. The Acute Respiratory Distress Syndrome Network: Ventilation with lower tidal volumes compared with traditional tidal volumes in acute respiratory distress syndrome. N Engl J Med 2000;342:1301-8.

8. Gattinoni L, Pesenti A, Avalli L, Rossi F, Bombino M. Pressure-volume curves of total respiratory system in acute respiratory failure: Computed tomographic scan study. Am Rev Respir Dis 1987;136:730-6.

9. Puybasset L, Chuel P, Gusman P, Grenier P, Preteux F, Ronzy JJ. Regional distribution of gas and tissue in acute respiratory distress syndrome: Consequences for lung morphology. CT Scan ARDS Study Group. Intensive Care Med 2000;26:857-69.

10. Gattinoni L, Pesenti A. The concept of “baby lung.” Intensive Care Med 2005;31:776-784.

11. Gammon RB, Shin MS, Buehhalter SE. Pulmonary barotrauma in patients with acute respiratory distress syndrome undergoing pressure support ventilation. Critical Care 2003;5:R7.

12. Ranieri VM, Suter PM, Tortorella C, De Tulio R, Dayer JM, Brienza A, et al. Effect of mechanical ventilation on inflammatory mediators in patients with acute respiratory distress syndrome: A randomized controlled trial. JAMA 1999;282:54-61.

13. Kloot TE, Blanch L, Melynne Youngblood A, Weinert C, Adams AB, Gammon RB, Shin MS, Buchalter SE. Pulmonary barotrauma in patients with acute respiratory distress syndrome undergoing pressure support ventilation. Critical Care 2003;5:R7.

14. Tremblay L, Valenza F, Ribeiro SP, Li J, Slutsky AS. Injurious ventilatory strategies increase cytokines and e-fos mRNA expression in an isolated rat lung model. J Clin Invest 1997;99:944-52.

15. Ranieri VM, Suter PM, Tortorella C, De Tulio R, Dayer JM, Brienza A, et al. Effect of mechanical ventilation on inflammatory mediators in patients with acute respiratory distress syndrome: A randomized controlled trial. JAMA 1999;282:54-61.

16. Fan J, Ye RD, Malik AB. Transcriptional mechanisms of acute lung injury. Am J Physiol Lung Cell Mol Physiol 2001;281:L1037-50.

17. The Acute Respiratory Distress Syndrome Network: Ventilation with lower tidal volumes compared with traditional tidal volumes in acute respiratory distress syndrome. N Engl J Med 2000;342:1301-8.

18. Gattinoni L, Pesenti A, Avalli L, Rossi F, Bombino M. Pressure-volume curves of total respiratory system in acute respiratory failure: Computed tomographic scan study. Am Rev Respir Dis 1987;136:730-6.

19. Puybasset L, Chuel P, Gusman P, Grenier P, Preteux F, Ronzy JJ. Regional distribution of gas and tissue in acute respiratory distress syndrome: Consequences for lung morphology. CT Scan ARDS Study Group. Intensive Care Med 2000;26:857-69.

20. Gattinoni L, Pesenti A, Avalli L, Rossi F, Bombino M. Pressure-volume curves of total respiratory system in acute respiratory failure: Computed tomographic scan study. Am Rev Respir Dis 1987;136:730-6.

21. Constantin JM, Jabber S, Fatier E, Copat-Constantin S, Verny-Pie M, Jung B, et al. Respiratory effects of different recruitment maneuvers in acute respiratory distress syndrome. Crit Care 2008;12:R50.

22. Grasso S, Maseia L, Del Tasso M, Malacarne P, Giunta F, Brochard L, Slutsky AS, et al. Effects of recruiting maneuvers in patients with acute respiratory distress syndrome ventilated with protective ventilation strategy. Anesthesiology 2002;96:795-802.

23. Lim SC, Adams AB, Simonsson DA, Dries DJ, Broeard AF, Hotchkiss JR, et al. Transient hemodynamic effects of recruitment maneuvers in three experimental models of acute lung injury. Crit Care Med 2004;32:2778-84.

24. Rimensberger PC, Cox PN, Fredova H, Bryan JC. The open lung during small tidal volume ventilation: Concepts of recruitment and “optimal” positive end-expiratory pressure. Crit Care Med 1999;27:1946-52.

25. Malboissieu LM, Muller JC, Constantin JM, Lu Q, Puybasset L, Ronzy JJ, et al. Computed tomography assessment of positive end-expiratory pressure-induced alveolar recruitment in patients with acute respiratory distress syndrome. Am J Respir Crit Care Med 2001;163:1444-50.

26. Richard JC, Maggiori SM, Janson B, Mancebo J, Lemaire F, Brochard L. Influence of tidal volume on alveolar recruitment: Respective role of PEEP and a recruitment maneuver. Am J Respir Crit Care Med 2001;163:1609-13.

27. Grasso S, Maseia L, Del Tasso M, Malacarne P, Giunta F, Brochard L, et al. Effects of recruiting maneuvers in patients with acute respiratory distress syndrome ventilated with protective ventilatory strategy. Anesthesiology 2002;96:795-802.

28. Anato MB, Barbas CS, Medeiros DM, Magaldi RB, Schettino GP, Lorenzi-Filho G, et al. Effect of protective ventilation strategy in the acute respiratory distress syndrome. N Engl J Med 1998;338:347-54.

29. Pelosi P, Cadringher P, Bottino N, Panigada M, Carriero F, Riva E, et al. Sigh in acute respiratory distress syndrome. Am J Respir Crit Care Med 1999;159:872-80.

30. Pelosi P, Bottino N, Chiumello D, Caironi P, Panigada M, Gamboroni C, et al. Sigh in supine and prone position during acute respiratory distress syndrome. Am J Respir Crit Care Med 2003;167:521-7.

31. Maggiori SM, Leblouhe F, Piget J, Tulio S, Deye N, Durmeyer X, et al. Prevention of endotracheal suctioning-induced alveolar derecruitment in acute lung injury. Am J Respir Crit Care Med 2003;167:1215-24.

32. Brouwer Bt, Lankou PN, MacIntyre N, Matthay MA, Morris A, Anukiewicz M, et al. National heart, lung, and blood institute ARDS Clinical Trials Network: Higher versus lower positive end-expiratory pressures in patients with the acute respiratory distress syndrome. N Engl J Med 2004;351:327-36.

33. Takeuchi M, Inamaka H, Tachibana K, Ogino H, Ando M, Nishimura M. Recruitment maneuver and high positive end-expiratory pressure improve hypoxemia in patients after pulmonary thromboendarterectomy for chronic pulmonary thromboembolism. Crit Care Med 2005;33:2010-4.

34. Dyhr T, Laursen N, Larsson A. Effects of lung recruitment maneuver and positive end-expiratory pressure on lung volume, respiratory mechanics and alveolar gas mixing in patients ventilated after cardiac surgery. Acta Anesthesiol Scand 2002;46:717-25.

35. Meade MO, Cook DJ, Guyatt GH, Slutsky AS, Arabi YM, Cooper DJ, et al. Ventilation strategy using low tidal volumes, recruitment maneuvers, and high positive end-expiratory pressure for acute lung injury and acute respiratory distress syndrome: A randomized controlled trial. JAMA 2008;299:637-45.

36. Lloyd TC Jr. Respiratory-system compliance as seen from the cardiac catheterization laboratory. J Appl Physiol 1970;28:596-608.

37. Luchetti A, Villagra A, Lopez-Aguilar J, Blanch L. Inflammatory mediators and positive end-expiratory pressure in patients with acute respiratory distress syndrome. Crit Care Med 2003;31:1776-8.

38. Piacentini E, Villagra A, Lopez-Aguilar J, Blanch L. Clinical review: Effects of recruiting manoeuvres in acute lung injury. Crit Care 2004;8:115-21.
40. Cakar N, Akinci O, Tugrul S, Ozcan PE, Esen F, Eraksoy H, et al. Recruitment maneuver: Does it promote bacterial translocation? Crit Care Med 2002;30:2103-6.

41. Bein T, Kuhr LP, Bele S, Ploner F, Keyl C, Taeger K. Lung recruitment maneuver in patients with cerebral injury: Effects on intracranial pressure and cerebral metabolism. Intensive Care Med 2002;28:554-8.

Source of Support: Nil, Conflict of Interest: None declared.