RESEARCH ARTICLE

Effects of Nitrogen Addition on Nitrogen Resorption in Temperate Shrublands in Northern China

Jianhua Zhang¹,², He Li¹,², Haihua Shen¹, Yahan Chen¹, Jingyun Fang¹, Zhiyao Tang³*

¹ State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China, ² University of Chinese Academy of Sciences, Beijing, China, ³ Department of Ecology, College of Urban and Environmental Sciences, and Key Lab for Earth Surface Processes of the Ministry of Education, Peking University, Beijing, China

* zytang@urban.pku.edu.cn

Abstract

Nutrient resorption from senescing leaves is a key mechanism of nutrient conservation for plants. The nutrient resorption efficiency is highly dependent on leaf nutrient status, species identity and soil nutrient availability. Nitrogen is a limiting nutrient in most ecosystems, it is widely reported that nitrogen resorption efficiency (NRE) was highly dependent on the soil nitrogen availability and vary with N deposition. The effects of nitrogen deposition on NRE and nitrogen concentration in green and senescing leaves have been well established for forests and grasslands; in contrast, little is known on how plants in shrublands respond to nitrogen deposition across the world. In this study, we conducted a two-year nitrogen addition manipulation experiment to explore the responses of nitrogen concentration in green and senescing leaves, and NRE of seven dominant species, namely, *Vitex negundo*, *Wikstroemia chamaedaphne*, *Carex rigescens* and *Cleistogenes chinensis* from the *Vitex negundo* community, and *Spirea trilobata*, *Armeniaca sibirica*, *V. negundo*, *C. rigescens* and *Spodiopogon sibiricus* from the *Spirea trilobata* community, to nitrogen deposition in two typical shrub communities of Mt. Dongling in northern China. Results showed that NRE varied remarkably among different life forms, which was lowest in shrubs, highest in grasses, and intermediate in forbs, implying that shrubs may be most capable of obtaining nitrogen from soil, grasses may conserve more nitrogen by absorption from senescing leaves, whereas forbs may adopt both mechanisms to compete for limited nitrogen supply from the habitats. As the N addition rate increases, N concentration in senescing leaves ([N]ₜ) increased consistent from all species from both communities, that in green leaves ([N]ₕ) increased for all species from the *Vitex negundo* community, while no significant responses were found for all species from the *Spirea trilobata* community; NRE decreased for all species except *A. sibirica* from the *Vitex* community and *W. chamaedaphn* from the *Spirea* community. Given the substantial interspecific variations in nutrient concentration, resorption and the potentially changing community composition, and the increased soil nutrient availability due to fertilization may indirectly impact nutrient cycling in this region.
Introduction

Nutrient resorption from senescing leaves is an important mechanism for plants to conserve nutrient in infertile environments. As an important physiological process for nutrient retention in terrestrial plants, nutrient resorption reduces the nutrient loss in litter dropped on the floor and minimizes the dependence of plants on soil nutrient availability [1–3]; the nutrient resorption increases the residence time of nutrients within plants and enables a quick recycling of nutrients through plants and environments [4–7]. In addition, nutrient resorption from senescing plant tissues affects litter quality and litter decomposition, and consequently influences nutrient cycling [1,8]. It is widely reported that the percentage of nutrient absorbed during senescence, defined as nutrient resorption efficiency (NuRE), is highly dependent on leaf nutrient status at the global scale and varies remarkably among species and sites [7,9–12]. It has also been proposed that NuRE decreased with nutrient availability, and plants from low-nutrient habitats absorbed more nutrients from the senescing leaves [8,13–16].

As a limiting element in many ecosystems, approximately 50%, on average, of the leaf N is recycled via resorption, varying among plant functional groups and sites [3,4,12,17]. Previous studies have shown a decrease in nitrogen resorption efficiency (NRE) with increases in soil N availability [3,9,15,18], albeit non-significant relationship between NRE and soil N availability has also been reported in some other studies [4,5,19].

The past several decades have witnessed a consistent increase of soil N availability as a result of N deposition caused by the direct fertilization and the increase in N mineralization and nitrification [20–22]. One can reasonably predict that the increasing soil N availability may decrease the NRE of plants. Indeed, such decreases of NRE with soil N availability have been extensively reported in forest and grassland ecosystems [3,18,23–26]. By contrast, little is known about the response of shrubs to N addition [27].

Compared to forests, the natural or semi-natural shrub communities are mostly distributed in nutrient poor sites and the plant growth is severely limited by soil nutrient availability [28,29]. Such nutrient-poor ecosystems are usually considered relatively vulnerable to environmental changes such as N deposition and climate change [20,30–32]. Increased N input to ecosystems may remarkably influence plant nutrient resorption in shrublands. Plants in these ecosystems strongly depend on internal nutrient cycling and are thought to have relatively high NuRE [3]. Thus, understanding responses of leaf nutrient resorption to increasing soil nutrient availability is crucial for exploring plant nutrient conservation strategies and nutrient cycling in the shrublands. In this study, we conducted a two-year nitrogen addition manipulation experiment to explore the responses of nitrogen concentration in green and senescing leaves, and NRE of dominant species to nitrogen deposition in two typical shrub communities of Mt. Dongling in northern China. We hypothesize that (1) nutrient additions decrease NRE and nitrogen resorption proficiency (NRP). As deep-rooted plants may mainly rely on acquiring N from soil rather than from senescing leaf to adapt to the nutrient-poor habitats [33], we further hypothesize that (2) shrubs (deep-rooted) may contain higher [N], (lower NRP) and lower NRE than perennial herbaceous plants (shallow-rooted).

Materials and Methods

Ethics Statement

Institute of Botany, Chinese Academy of Sciences has had a permit from local forestry authorities (Beijing forestry bureau, http://www.greenbeijing.gov.cn/) to conduct the experiments in each location. This research was carried out in compliance with the laws of People’s Republic of China. The field studies did not involve endangered or protected species.
Study site

The experiments were conducted in two typical shrubland communities, the *Vitex negundo* community (*Vitex* community hereafter) and the *Spirea trilobata* community (*Spirea* community hereafter), with general information shown in Table 1, on Mt. Dongling (39°48'–40°02'N in latitude, 115°24'–115°36'E in longitude, with a peak of 2303 m) in Beijing, northern China. The area is characterized by a temperate semi-humid climate with a mean annual temperature (MAT) of 6.3°C and a mean annual precipitation of 612 mm. From lowland to the summit, the vegetation changes from shrubland dominated by *V. negundo* and *S. trilobata* (400–1100 m), deciduous broad-leaved forest dominated by *Quercus liaotungensis* and coniferous forest dominated by *Pinus tabulaeformis* (1100–1700 m), to subalpine meadow (1700–2300 m) [34]. The study area has rarely been polluted, with the background N deposition of 15 kg N ha⁻¹ yr⁻¹ [35].

Community type	Elevation (m)	MAT (°C)	pH	STN (mg·g⁻¹)	STC (mg·g⁻¹)	STP (mg·g⁻¹)
Vitex negundo	791	8.2	8.7	2.52(0.33)	26.36(4.38)	0.50(0.05)
Spirea trilobata	1170	6.4	8.9	2.20(0.24)	34.71(5.49)	0.50(0.02)

STN = soil total N; STC = soil total C; STP = soil total P. Values of STN, STC, STP are expressed as mean with standard error (SE) in the parentheses of three samples.

* Values with the same letter in a column are not significantly different (Turkey multiple comparison test; p > 0.05).

doi:10.1371/journal.pone.0130434.t001

Experiment design

In each community, twelve 5×5 m² plots with approximately similar stand density were established based on a four treatments and three replicates random block design. The treatments included four levels of N addition: control (0 kg N ha⁻¹ yr⁻¹), low-N (20 kg N ha⁻¹ yr⁻¹), medium-N (50 kg N ha⁻¹ yr⁻¹) and high-N (100 kg N ha⁻¹ yr⁻¹). We used CO(NH₂)₂ for the N addition. Fertilizer additions were divided into five equal monthly doses (May–September) since May, 2012. In each month, the CO(NH₂)₂ was dissolved with two liters of water, and sprayed under the canopy using a backpack sprayer. The Control plots received two liters of water without N addition.

Field sampling and analyses

In each plot, only the central area of 4.5 × 4.5 m² was used for leaf sampling. The sampling area was further divided into nine 1.5 × 1.5 m² subplots. We selected seven dominant perennial species, including four from the *Vitex* community (*V. negundo*, *W. chamaedaphne*, *Carex rigescens* and *Cleistogenes chinensis*), and five from the *Spirea* community (*S. trilobata*, *V. negundo*, *Carex rigescens*, *A. sibirica*, and *S. sibiricus*). These species included two grasses (*Cleistogenes chinensis*, *S. sibiricus*), one sedge (*Carex rigescens*) and four deciduous shrubs (*W. chamaedaphne*, *V. negundo*, *S. trilobata* and *A. sibirica*). Following Cornelissen et al. (2003) [36], we randomly selected and marked three healthy individuals for each woody species in each plot. We collected more than 30 fully expanded sun leaves during the growing season (early August) and collected freshly senesced leaves directly from the corresponding individuals in the falling season (October–November), while the same number of leaves for each of herbaceous species were randomly collected within each plot. At each site, we collected three soil samples at
0–20 cm depth in each plot. All soil samples were sieved through a 100-mesh sieve to determine soil inorganic N (SIN, NO3−-N and NH4+-N), total phosphorus (STP), total carbon (STC), total N (STN) concentrations and soil pH. Leaf samples were dried at 65°C for 24–48 h to constant weight and then were ground with a ball mill (NM200, Retsch, Haan, Germany).

Leaf [N], STN and STC were measured using a 2400 IICHNS/O Elemental Analyzer (Perkin-Elmer, USA), and STP was measured by a molybdate/ascorbic acid method after H2SO4-HClO4 digestion [37]. SIN was measured with a continuous flow spectrophotometer (FIAstar 5000; Foss Tecator, Denmark) using the fresh soil samples extracted with 50 ml of 2 M KCl [38]. The air-dried soil samples were extracted with distilled water without carbon dioxide (1:5 v/v) to measure the pH.

The data which forms the basis for the analysis can be found in S1 Dataset and S2 Dataset and S3 Dataset.

Calculation of N resorption efficiency (NRE)

NRE was defined as the percentage of N absorbed during senesce, and calculated as the ratio of difference in [N]g and senescent leaves [N]s to [N]g [39]:

\[
NRE = \left(\frac{[N]_g - [N]_s}{[N]_g} \right) \times 100\%
\]

(1)

In addition, the [N]s was also used as an indicator of NRP, as it represents the level to which nutrient is reduced during leaf senescence.

Statistical analysis

We first calculated the means of [N]g, [N]s and NRE for each species under different N treatments. The effects of treatment on leaf [N] and NRE were examined for each species individually based on one-way ANOVAs with LSD test [40]. Three-way ANOVA was used to test the main and interactive effects of N addition, species identity and community type on [N]g, [N]s and NRE. Statistical analysis was conducted by the SPSS version17.0 [40].

Results

N addition rate, species identity and community type significantly affected the [N]g (P < 0.01) (Table 2). [N]g responded to N addition in different way between these two communities. In the Vitex community, [N]g increased with N addition rate for all species (Fig 1A); In the Spirea

Species	df	MS	F	p	df	MS	F	p	df	MS	F	p
N	3	48.1	7.5	<0.001	129.2	35.5	<0.001	1440.3	15.4	<0.001		
Sp	6	202.3	31.4	<0.001	100.3	27.6	<0.001	334.8	3.6	0.002		
Ct	1	74.8	11.6	0.001	8.0	2.2	0.140	44.9	0.5	0.489		
N×Sp	18	5.7	0.9	0.606	4.8	1.3	0.170	123.5	1.3	0.179		
N×Ct	3	3.2	0.5	0.680	1.5	0.4	0.740	84.0	0.9	0.443		
Sp×Ct	1	46.8	7.3	0.008	4.8	1.3	0.250	44.9	0.5	0.489		

N, N addition treatment; Sp, Species; Ct, Community type.
doi:10.1371/journal.pone.0130434.t002
community, \([N]_g\) also exhibited similar trends with N addition across all species, although not significant (Fig 1C).

Both N addition rate and species identity affected the \([N]_s\) of the seven species (\(P < 0.001\)) (Table 2). \([N]_s\) was highest in the shrubs and lowest in grasses, and it increased with the N addition rate for all species, except \(A. sibirica\) (Fig 1B and 1D).

ANOVA illustrated that N addition rate (\(P < 0.001\)), species identity (\(P = 0.002\)) and community type (\(P < 0.001\)) significantly affected NRE (Table 2). For all species except \(A. sibirica\) and \(W. chamaedaphne\), NRE decreased with N addition (Fig 2A and 2B).

\([N]_g\) increased with SIN for all species from the Vitex community and \(C. rigescens\) from the Spirea community (Fig 3A and 3D); \([N]_s\) increased with SIN for all species from the Vitex community and those from the Spirea community (Fig 3B and 3D). NRE decreased with SIN for \(C. chinensis\) from the Vitex community and \(S. trilobata\), \(V. negundo\), \(C. rigescens\) and \(S. sibiricus\) from the Spirea community (Fig 3C and 3F).

Discussion

Influence of nitrogen addition on the nitrogen resorption traits

Consistent with other experimental studies in grasslands [14,18] and forests [41], we found a decrease of NRE in response to N addition for all species except \(A. sibirica\) and \(W. chamaedaphne\) (Figs 1 and 2). Such a decrease in NRE is probably resulted from the increase of \([N]_g\) with increased N supply from the soil [9,42], implying that plants will absorb more N from soils and become less dependent on N resorbed from senescing leaves.
Some studies alleged that $[N]_s$ was more responsive to changes in soil N availability because it is not subject to temporal variation in $[N]_g$ and timing of sampling [5,9,16,25], and further proposed to use NRP as an indicator for potential of nutrient resorption [5,25,43]. In this study, we observed inconsistent response of $[N]_g$ and NRE, but a consistent increasing $[N]_s$ to soil N availability across species (Fig 3), suggesting that NRP (or $[N]_s$) can be applied to illustrate the status of nutrient resorption.

It has been widely acknowledged that NuRE may be determined by the relative cost the plants absorbing nutrient from the senescing leaves versus from soil, but not the absolute levels of soil nutrient [7,16]. In nutrient rich soils, the energy cost for plants to absorb nutrients from soils was lower than that from senescing leaves [16]. In our study, we found increased soil inorganic N (Fig 4), but decreased nitrogen resorption efficiency, with N addition rate, supporting the idea that N addition influence nitrogen resorption efficiency through soil nitrogen availability.

Species and life form dependent response of N resorption to N addition

Consistent with previous studies [3,4,24], we observed species-specific response of leaf chemistry to N addition, as NRE of two shrubs (A. sibirica and W. chamaedaphne) did not change with N addition (Fig 2). The species-specific response of N resorption traits to N addition was more apparent in $[N]_g$ as five species from the Spirea community did not show a consistent increase in $[N]_g$ with N addition (Fig 1). Such species-specific response can be confirmed by the significant effects of species and the interaction between species and nitrogen addition rate on $[N]_g$, $[N]_s$ and NRE detected by ANOVA (Table 2).

Previous experimental studies on the nutrient resorption in forests focus mainly on the dominant tree species [26], hardly compared the difference in responses of nutrient resorption of species from different layers. Therefore, knowledge on nutrient conservation strategies of different life forms in very limited. Thus, in this study, we compared the NRE of shrubs, grasses and forbs of shrublands. We found highest NRE in grasses but lowest in shrubs (Fig 2), implying that the grasses conserve N via resorption from senescing leaves rather than via absorption N in green leaves, while shrubs prefer to uptake N rather than resorb N via senescing leaves. The results were different from Yuan et al. (2005) [44] (NRE: herbs > shrubs > trees > graminoids) and Jiang et al. (2012) [31] (NRE: sedges > grasses), but consistent with Lü et al. (2011)
Fig 3. Changes of N concentration in green ([N]_g), senescing leaves ([N]_s) and nitrogen resorption efficiency (NRE) with soil inorganic N in the *Vitex negundo* (left, a, b and c) and *Spirea trilobata* (right, d, e and f) communities. The solid lines indicate significant linear regression at p< 0.05.

doi:10.1371/journal.pone.0130434.g003
We further observed different responses of NRE to soil inorganic N among life forms, with the herbaceous plants (grasses and forbs) being more sensitive than shrubs to soil inorganic N (Fig 3), which might be partly explained by the fact that herbaceous species are more efficient in N resorption than other life-forms [3]. Shallow-rooted plants in the shrubland ecosystems, such as perennial grasses, may highly depend on internal nutrient cycling and are considered to contain relatively high NRE [3,16] to fulfill the nutrient requirement for high leaf area index, and fast growth and tissue uptake [46]. On the contrary, the deep rooted shrubs may adapt to the inferitile habitat through uptaking nutrient from the soil [33].

\(\text{NG} \) reflects the ability of plant species to acquire N on one hand, and the ability to conserve and utilize N on the other hand, with low \(\text{NG} \) being considered an efficient mechanism for N utilization and conservation [9,39,47]. Based on these arguments, we proposed that shrubs are most capable of acquiring N, whereas grasses conserve more N by absorbing less N in leaves, while forbs adopt both methods in their competition for limited N supply from their habitats.

Implications for ecosystem N cycling

\([\text{N}]_s \) increased, while NRE decreased, with N addition for the nearly all species, indicating that communities in N-poor habitats may resorb more N from the senescing leaves and are more N-resorption dependent. The increasing \([\text{N}]_s \), with N addition indicated higher litter N contents in the communities, and therefore increased the amount of N returned to the soil via leaf litter production [25,41]. Moreover, leaf litter decomposition is mainly controlled by N concentration in the litter [48,49], with N-high litter being more easily decomposed [11,49], thus N addition may lead to more rapid N returns to soils. It has been reported that increased N availability can affect N cycling via shifts in species composition of vegetation [23,50,51]. Our study implies that species-specific responses of leaf nutrient resorption to N addition may largely affect plant-mediated nutrient cycling, and then ecosystem structure and functioning in the shrublands.
Conclusions
In summary, nitrogen resorption efficiency differed remarkably among life-forms in the temperate shrublands of Mt. Dongling in northern China. It was highest in grasses but lowest in shrubs. These results indicated that shrubs may be most capable of acquiring nitrogen from soil, and grasses may conserve more nitrogen by absorption from senescing leaves, while the forbs may adopt both mechanisms, in their competition for limited nitrogen supply from the habitats. Two-year nitrogen addition increased the nitrogen concentration in the senescing leaves but decreased nitrogen resorption efficiency in the temperate shrublands of Mt. Dongling in northern China. Nitrogen concentration in green leaves exhibited species specific response to nitrogen addition. The species-specific responses of leaf nutrient resorption to nitrogen addition can largely affect plant-mediated nutrient cycling in this region.

Supporting Information
S1 Dataset. Leaf nitrogen concentration under different fertilization treatments in the Vitex negundo community. (CSV)
S2 Dataset. Leaf nitrogen concentration under different fertilization treatments in the Spiraea trilobata community. (CSV)
S3 Dataset. Soil properties under different fertilization treatments in the Vitex negundo and Spiraea trilobata communities. (CSV)

Acknowledgments
We are grateful to Xianming Zhang and Hui Yao for their assistance in transporting water and pick-up service and in the field work, respectively. Thanks also are due to Zhengbing Yan and Peng Li for their valuable suggestions on earlier versions of this manuscript.

Author Contributions
Conceived and designed the experiments: JYF ZYT. Performed the experiments: JHZ. Analyzed the data: JHZ. Contributed reagents/materials/analysis tools: YHC HL HS. Wrote the paper: JHZ ZYT.

References
1. Aerts R, Chapin F III. The mineral nutrition of wild plants revisited: a re-evaluation of processes and patterns. Adv Ecol Res. 1999; 30: 1–67.
2. Yan Z, Kim N, Han W, Guo Y, Han T, Du E, et al. Effects of nitrogen and phosphorus supply on growth rate, leaf stoichiometry, and nutrient resorption of Arabidopsis thaliana. Plant Soil. 2015; 388: 147–155.
3. Yuan Z, Chen HY. Global-scale patterns of nutrient resorption associated with latitude, temperature and precipitation. Global Ecol Biogeogr. 2008; 18: 11–18. doi: 10.1111/j.1365-2699.2008.01493.x PMID: 19457209
4. Aerts R. Nutrient resorption from senescing leaves of perennials: are there general patterns? J Ecol. 1996; 84: 597–608.
5. Killingbeck KT. Nutrients in senesced leaves: keys to the search for potential resorption and resorption proficiency. Ecology. 1996; 77: 1716–1727.
6. Lang SI, Aerts R, Logtestijn RS, Schweikert W, Klahn T, Quested HM, et al. Mapping nutrient resorption efficiencies of subarctic cryptogams and seed plants onto the Tree of Life. Ecol Evol. 2014; 4: 2217–2227. doi: 10.1002/ece3.1079 PMID: 25360262

7. Tang L, Han W, Chen Y, Fang J. Resorption proficiency and efficiency of leaf nutrients in woody plants in eastern China. J Plant Ecol. 2013; 6: 408–417.

8. Kozovits A, Bustamante M, Garofalo C, Bucci S, Franco A, Goldstein G, et al. Nutrient resorption and patterns of litter production and decomposition in a Neotropical Savanna. Func Ecol. 2007; 21: 1034–1043.

9. Kobe RK, Lępczyk CA, Iyer M. Resorption efficiency decreases with increasing green leaf nutrients in a global dataset. Ecology. 2005; 86: 2780–2792.

10. Mayor JR, Wright SJ, Turner BL. Species-specific responses of foliar nutrients to long-term nitrogen and phosphorus additions in a lowland tropical forest. J Ecol. 2014; 102: 36–44.

11. Quested HM, Cornelissen JHC, Callaghan TV, Aerts R, Trosien F, Riemann P. Decomposition of subarctic plants with differing nitrogen economies: a functional role for hemiparasites. Ecology. 2003; 84: 3209–3221.

12. Vergutz L, Manzoni S, Porporato A, Novais RF, Jackson RB. Global resorption efficiencies and concentrations of carbon and nutrients in leaves of terrestrial plants. Ecol Monogr. 2012; 82: 205–220.

13. Côté B, Fyles JW, Djälvind H. Increasing N and P resorption efficiency and proficiency in northern deciduous hardwoods with decreasing foliar N and P concentrations. Ann Forest Sci. 2002; 59: 275–281.

14. Lü XT, Reed S, Yu Q, He NP, Wang ZW, Han XG. Convergent responses of nitrogen and phosphorus resorption to nitrogen inputs in a semiarid grassland. Global Change Biol. 2013; 19: 2775–2784.

15. Norris MD, Reich PB. Modest enhancement of nitrogen conservation via retranslocation in response to gradients in N supply and leaf N status. Plant Soil. 2009; 316: 193–204.

16. Wright I, Westoby M. Nutrient concentration, resorption and lifespan: leaf traits of Australian sclerophyll species. Func Ecol. 2003; 17: 10–19.

17. Han W, Tang L, Chen Y, Fang J. Relationship between the Relative Limitation and Resorption Efficiency of Nitrogen vs Phosphorus in Woody Plants. PLoS ONE. 2013; 8: e83366. doi: 10.1371/journal.pone.0083366 PMID: 24376694

18. Huang J, Yu H, Wang B, Li L, Xiao G, Yuan Z. Nutrient resorption based on different estimations of five perennial herbaceous species from the grassland in inner Mongolia, China. J Arid Environ. 2012; 76: 1–8.

19. Soudzilovskaia NA, Onipchenko VG, Cornelissen JH, Aerts R. Effects of fertilisation and irrigation on ‘foliar afterlife’in alpine tundra. J Veg Sci. 2007; 18: 755–766.

20. Bobbink R, Hicks K, Galloway J, Spranger T, Alkemade R, Ashmore M, et al. Global assessment of nitrogen deposition effects on terrestrial plant diversity: a synthesis. Ecol Appl. 2010; 20: 30–59. PMID: 20349829

21. Sirulnik AG, Allen EB, Meixner T, Fenn ME, Allen MF. Changes in N cycling and microbial N with elevated N in exotic annual grasslands of southern California. Appl Soil Ecol. 2007; 36: 1–9.

22. Voorlitis GL, Zorba G, Pasquini SC, Mustard R. Chronic nitrogen deposition enhances nitrogen mineralization potential of semiarid shrubland soils. Soil Sci Soc Am J. 2007; 71: 836–842.

23. Li L, Zeng D, Mao R, Yu Z. Nitrogen and phosphorus resorption of Artemisia scoparia, Chenopodium acuminatum, Cannabis sativa, and Phragmites communis under nitrogen and phosphorus additions in a semiarid grassland, China. Plant Soil Environ. 2012; 58: 446–451.

24. Lü XT, Han XG. Nutrient resorption responses to water and nitrogen amendment in semi-arid grassland of Inner Mongolia, China. Plant Soil. 2010; 327: 481–491.

25. Van Heerwaarden L, Toel S, Aerts R. Nitrogen and phosphorus resorption efficiency and proficiency in six sub-arctic bog species after 4 years of nitrogen fertilization. J Ecol. 2003; 91: 1060–1070.

26. Xia J, Wan S. Global response patterns of terrestrial plant species to nitrogen addition. New Phytol. 2008; 179: 428–439. doi: 10.1111/j.1469-8137.2008.02488.x PMID: 19086179

27. Wang M, Murphy MT, Moore TR. Nutrient resorption of two evergreen shrubs in response to long-term fertilization in a bog. Oecologia. 2014; 174: 365–377. PMID: 24078082

28. Gorissen A, Tietema A, Joosten NN, Estiarte M, Penuelas J, Sowerby A, et al. Climate change affects carbon allocation to the soil in shrublands. Ecosystems. 2004; 7: 650–661.

29. Wessel WW, Tietema A, Beier C, Emmett BA, Peñuelas J, Nielsen TR. A qualitative ecosystem assessment for different shrublands in western Europe under impact of climate change. Ecosystems. 2004; 7: 662–671.
30. Bobbink R, Hornung M, Roelofs JG. The effects of air-borne nitrogen pollutants on species diversity in natural and semi-natural European vegetation. J Ecol. 1998; 86: 717–738.

31. Jiang C, Yu G, Li Y, Cao G, Yang Z, Sheng W, et al. Nutrient resorption of coexistence species in alpine meadow of the Qinghai-Tibetan Plateau explains plant adaptation to nutrient-poor environment. Ecol Eng. 2012; 44: 1–9.

32. Ostertag R. Foliar nitrogen and phosphorus accumulation responses after fertilization: an example from nutrient-limited Hawaiian forests. Plant Soil. 2010; 334: 85–98.

33. Ren JY, Yuan ZY, Wang HY, Wen ZJ. Nitrogen resorption of three life-forms (trees, shrubs and grasses) in the semi-arid region of North China. Acta Bot Boreal-Occident Sin. 2005; 25: 497–502.

34. Liu X, Wang G, Li J, Wang Q. Nitrogen isotope composition characteristics of modern plants and their variations along an altitudinal gradient in Dongling Mountain in Beijing. Sci China Ser D. 2010; 53: 128–140.

35. Du E, Zhou Z, Li P, Hu X, Ma Y, Wang W, et al. NEECF: a project of nutrient enrichment experiments in China’s forests. J Plant Ecol. 2013; 6: 428–435.

36. Cornelissen JHC, Lavorel S, Garnier E, Díaz S, Buchmann N, Gurvich DE, et al. A handbook of protocols for standardised and easy measurement of plant functional traits worldwide. Aust J Bot. 2003; 51: 335–380.

37. John MK. Colorimetric determination of phosphorus in soil and plant materials with ascorbic acid. Soil Sci. 1970; 109: 214–220.

38. Bao SD. Soil and agricultural chemistry analysis. Beijing: China Agriculture Press; 2000.

39. Huang JY, Zhu XG, Yuan ZY, Song SH, Li X, Li LH. Changes in nitrogen resorption traits of six temperate grassland species along a multi-level N addition gradient. Plant Soil. 2008; 306: 149–158.

40. Norusis MJ. SPSS17.0: Guide to data analysis. New Jersey: Prentice Hall Press; 2009.

41. Li X, Zheng X, Han S, Zheng J, Li T. Effects of nitrogen additions on nitrogen resorption and use efficiencies and foliar litterfall of six tree species in a mixed birch and poplar forest, northeastern China. Can J Forest Res. 2010; 40: 2256–2261.

42. van de Weg M, Shaver G, Salmon V. Contrasting effects of long term versus short-term nitrogen addition on photosynthesis and respiration in the Arctic. Plant Ecol. 2013; 214: 1273–1286.

43. Richardson SJ, Peltzer DA, Allen RB, McGlone MS. Resorption proficiency along a chronosequence: responses among communities and within species. Ecology. 2005; 86: 20–25.

44. Yuan ZY, Li LH, Han XG, Huang JH, Jiang GM, Wan SQ, et al. Nitrogen resorption from senescing leaves in 28 plant species in a semi-arid region of northern China. J Arid Environ. 2005; 63: 191–202.

45. Lu XT, Cui Q, Wang QB, Han XG. Nutrient resorption response to fire and nitrogen addition in a semi-arid grassland. Ecol Eng. 2011; 37: 534–538.

46. Reich PB, Walters MB, Ellsworth DS. Leaf life-span in relation to leaf, plant, and stand characteristics among diverse ecosystems. Ecol Monogr. 1992; 62: 365–392.

47. Carrera AL, Sain CL, Bertiller MB. Patterns of nitrogen conservation in shrubs and grasses in the Patagonian Monte, Argentina. Plant Soil. 2000; 224: 185–193.

48. Knorr M, Frey S, Curtis P. Nitrogen additions and litter decomposition: a meta-analysis. Ecology. 2005; 86: 3252–3257.

49. Li LJ, Zeng DH, Yu ZY, Fan ZP, Yang D, Liu YX. Impact of litter quality and soil nutrient availability on leaf decomposition rate in a semi-arid grassland of Northeast China. J Arid Environ. 2011; 75: 787–792.

50. Cornelissen JHC, Thompson K. Functional leaf attributes predict litter decomposition rate in herbaceous plants. New Phytol. 1997; 135: 109–114.

51. Zeng DH, Li LJ, Fahey TJ, Yu Z, Fan ZP, Chen FS. Effects of nitrogen addition on vegetation and ecosystem carbon in a semi-arid grassland. Biogeochemistry. 2010; 98: 185–193.