The effect of different light curing units on Vickers microhardness and degree of conversion of flowable resin composites

Swe Zin AUNG¹, Tomohiro TAKAGAKI¹, Masaomi IKEDA², Kosuke NOZAKI⁴, Michael F. BURROW⁶, Ahmed ABDOU¹, Toru NIKAIDO¹,² and Junji TAGAMI¹

¹ Cariology and Operative Dentistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo 113-8549, Japan
² Department of Operative Dentistry, Division of Oral Functional Sciences and Rehabilitation, School of Dentistry, Asahi University, 1851 Hozumi, Hozumi-cho, Gifu 501-0296, Japan.
³ Oral Prosthetic Engineering, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo 113-8549, Japan
⁴ Department of Biofunction Research, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda-Surugadai, Chiyoda, Tokyo 101-0062, Japan.
⁵ Faculty of Dentistry, The University of Hong Kong, Prince Philip Dental Hospital, 34 Hospital Rd, Sai Ying Pun, Hong Kong SAR, China
Corresponding author, Tomohiro TAKAGAKI; E-mail: takagaki@dent.asahi-u.ac.jp

This study aimed to assess the influence of different light curing units (LCUs) on the polymerization of various flowable resin composites. Three LCUs (Optilux 501, Elipar™ DeepCure-L LED and Bluephase®20i) and eight flowable resin composites: MI FIL Flow, Estelite Flow Quick, Estelite Universal Flow (medium), Estelite Universal Flow (super low), Beautifil Flow Plus, Clearfil Majesty ES Flow, Filtek Supreme Ultra flowable and TetricEvo Flow were tested. For Vickers microhardness (VHN) test and degree of conversion (DC), specimens were prepared and polymerized for 20 s. VHN test was performed at top surfaces (3 indentations) and DC for each specimen was measured using Fourier transform infrared (FT-IR) spectroscopy after 24 h dry storage in dark at 37°C. The data were analyzed with 2-way ANOVA and t-test with Bonferroni correction. DC and hardness values showed a relationship between materials and LCUs. The curing efficacy of LCU type may depend on the material composition.

Keywords: Light curing units, Flowable resin composites, Vickers microhardness, Degree of conversion, Polymerization efficacy

INTRODUCTION

Since flowable resin composite appeared during the 1990s, it was a valuable improvement for resin-based restorative dental materials⁴. Flowable resin composites represent low viscosity resin composites resulting of lower filler content 37–53% (volume) than conventional composites². These materials have lower viscosity and subsequently offer a higher flow to allow easier filling the cavity, better adaptation to cavity walls and greater elasticity compared with earlier available products⁹. The newly developed flowable resin composites are accepted higher wear resistance as compared to the conventional resin composites⁴ and enhanced mechanical properties leading to a wider range of applicability⁴,⁶. In an adhesive restorative procedure, adequate polymerization is essential for optimal physical, mechanical properties and clinical longevity of resin composites⁷.

The choice of light-curing units (LCUs) is essential for polymerizing these materials⁶. These light-activated materials can be cured with either quartz-tungsten-halogen (QTH) or light-emitting diode (LED) curing units. QTH units have been used for a long time, but they demonstrate a reduction in irradiance output over time caused by the degradation of the lamp and filter. LED lights exhibit less degradation, with a specific blue-emitting light that does not need a filter. However, single wavelength LED devices with a narrow wavelength spectrum is specific for the camphorquinone photoinitiator, whereas QTH and polywave LED curing units have a wide spectral range and output⁸.

Although significant enhancements in flowable composite materials have made, there is still the potential issue of inadequate degree of conversion (DC)⁵⁰ and poor mechanical properties due to inefficient polymerization which can cause reduced wear resistance, lack of color stability, monomer elution and early restoration failure⁴.⁵.

The DC of resin composite is the amount of monomer converted to polymer. For the determination of the DC of dental resin composites, Fourier transforms infrared spectroscopy (FT-IR) and microhardness (MH) are frequently used. Infrared spectroscopy is used to determine the DC by the proportion of the remaining concentration of aliphatic C=C double bonds in a cured composite sample relative to the total number of C=C bonds in the uncured material². The hardness of a composite is the important property that enables it to resist plastic deformation, penetration, indentation, and scratching. The microhardness of dental composite materials is typically used to predict their resistance to abrasion when used for restoration in load-bearing areas¹³.

There were a few studies to analyze the interaction...
between newly developed flowable resin composites and different LCUs, which may impact the clinical performance of composite restorations14-17. This study aimed to evaluate the influence of different LCUs on the polymerization of various flowable resin composites. It was hypothesized that different LCUs have varying effects on the DC and microhardness of various flowable resin composites.

MATERIALS AND METHODS

Eight commercial flowable resin composites; MI FIL Flow (MIF; GC, Tokyo, Japan), Estelite Flow Quick (EFQ; Tokuyama Dental, Tokyo, Japan), Estelite Universal Flow (medium) (EUF-M; Tokuyama Dental), Estelite Universal Flow (super low) (EUF-S; Tokuyama Dental), Beautifil Flow Plus (BFP; Shofu, Kyoto, Japan), Clearfil Majesty ES Flow (CMF; Kuraray Noritake Dental, Tokyo, Japan), Filtek Supreme Ultra flowable (FSU; 3M ESPE, St. Paul, MN, USA), and Tetric Evo Flow (TEF; Ivoclar Vivadent, Schaan, Liechtenstein) were tested in this study. The detail information according to the manufacturers was shown in Table 1.

The LCUs used in this study were a conventional QTH lamp with standard mode (Optilux 501, Kerr, Orange, CA, USA), a monowave LED LCU (EliparTM DeepCure-L, 3M ESPE) and a polywave LED LCU with high mode (Bluephase®20i, Ivoclar Vivadent). The specifications of the three LCUs were shown in Table 2.

Analysis of LCU

The spectral radiant power output of each LCU was

Code	Composite	Chemical composition	Filler % by weight (volume)	Manufacture	Lot No.
MIF	MI FIL Flow (Nanohybrid flowable composite)	UDMA, TEGDMA,Bis-MEPP, Silicon dioxide, Strontium glass, photoinitiator	69% (50%)	GC, Tokyo, Japan	1605261
EFQ	Estelite Flow Quick (Supra-nano filled flowable composite)	Bis-MEPP, TEGDMAUDMA, Silica-zirconia filler, Silica-titania filler, Camphorquinone, Radical amplifying agent	71% (53%)	Tokuyama Dental, Tokyo, Japan	J062
EUF-M	Estelite Universal Flow (Medium low flow) (Supra-nano filled flowable composite)	Bis-GMA, Bis-MEPP, TEGDMA, UDMA, Spherical silica-zirconia filler, Camphorquinone, Radical amplifying agent	71% (57%)	Tokuyama Dental	008
EUF-S	Estelite Universal Flow (Super low flow) (Supra-nano filled flowable composite)	Bis-GMA, Bis-MEPP, TEGDMA, UDMA, Spherical silica-zirconia filler, Camphorquinone, Radical amplifying agent	70% (56%)	Tokuyama Dental	011047
BFP	Beautifil Flow Plus (F00) (Flowable hybrid composite)	Bis-GMA, TEGDMA, Fluoroboroaluminosilicate, S-PRG (surface pre-reacted glass), photoinitiator	67.3% (47%)	Shofu, Kyoto, Japan	051629
CMF	Clearfil Majesty ES Flow (Super low flow) (Nanohybrid flowable composite)	TEGDMA, Hydrophobic aromatic dimethacrylate, Silanated barium glass filler, Pre-polymerized organic filler	78% (59%)	Kuraray Noritake Dental, Tokyo, Japan	3E0023
FSU	Filtek Supreme Ultra Flow (Nanofilled flowable composite)	Bis-GMA, TEGDMA, Ytterbium trifluoride, Zirconia/silica Nanocluster, nanofiller	65% (46%)	3M ESPE, St. Paul, MN, USA	N749471
TEF	Tetric Evoflow (Nanohybrid flowable composite)	Bis-GMA, UDMA, DDDMA, Barium glass filler, Ytterbium trifluoride, Silicon dioxide, Mixed oxide and copolymer	58% (31%)	Ivoclar Vivadent, Schaan, Liechtenstein	V45960

Bis-GMA, bisphenol A-glycidyl methacrylate; Bis-EMA, Bisphenol A polyethylene glycol diether dimethacrylate; Bis-MEPP, 2, 2’-bis (4-methacryloyloxy polyethoxyphenyl) propane; DDDMA, dekandioldimethacrylate; TEGDMA, Triethylene glycol dimethacrylate; UDMA, urethane dimethacrylate
measured by using a spectroradiometer (USR-45, Ushio, Tokyo, Japan). The wavelength region of each unit was analyzed from 350 to 550 nm at a scanning rate of 1 nm. The irradiance (mW/cm²) of each unit was calculated by integrating output over the spectral irradiance per wavelength. The intensity of each LCU was periodically monitored using a dental radiometer Bluephase Meter II (Ivoclar Vivadent) before the commencement of experimental work.

Vickers microhardness (VHN) testing

The composites were inserted into a circular Teflon mold (8 mm diameter and 2 mm thick) and covered with polyester strips on both sides (KerrHawe Striproll, Bioggio, Switzerland). A glass microscope slide was placed on the top surface to extrude excess material and ensure the mold was filled. The composite surface was irradiated over the center of the sample in contact with the top surface through the glass slide and the polyester strip. Eight specimens of each composite were cured with each LCU for 20 s. Specimens were stored dry in the dark at 37°C for 24 h, then the VHN was measured (HM-108, Mitutoyo, Kanagawa, Japan) at the top surface of each specimen (three indentations for each specimen), using a 0.49 N load for 15 s.

FT-IR spectroscopy

Eight specimens (2 mm diameter and 2 mm thick) were prepared from each resin composite using a silicone mold. The composite surface was covered with a Mylar strip and glass slide, then the light-curing device tip was placed in contact with the glass slide. Each specimen was polymerized for 20 s and stored dry in the dark at 37°C for 24 h. The infrared spectrum of an uncured specimen prepared from each resin composite using a silicone mold (three indentations for each specimen), using a 0.49 N load for 15 s.

C=C before and after curing, DC of resin composite was calculated by the following equation:

\[\text{DC}(\%) = 100 \times \left[1 - \left(\frac{R_{\text{cured}}}{R_{\text{uncured}}} \right) \right] \]

where R=peak at 1,634 cm⁻¹/peak at 1,608 cm⁻¹

Statistical analysis

VHN and DC data were analyzed using two-way ANOVA, followed by t-test with Bonferroni correction for pairwise comparison. Pearson correlation coefficient used to check the correlation between hardness and DC for each material. For correlation within each light-curing unit, Kendall tau correlation was used as the data showed non-parametric distribution. All statistical calculations were performed using the Statistical Package for the Social Sciences for Windows (SPSS 23, SPSS, Chicago, IL, USA) with α=0.05.

RESULTS

According to the spectroradiometer measurement, Fig. 1 shows the wavelength range of the Optilux 501 (QTH) has 390–510 nm, Elipar™ DeepCure-L (monowave) has 410–490 nm and Bluephase®20i (polywave) has 390–490 nm respectively. Figures 2 and 3 reveal the means and standard deviations of the VHN and the DC for the eight flowable composites after curing with the LCUs.

Two-way ANOVA performed on hardness and DC showed that these were influenced by both the light source (p≤0.001) and composite (p≤0.001). Hardness and DC were also affected by the interaction between light sources and composite (p≤0.001).

Among the eight materials, the highest VHN was obtained from EFQ regardless of the light source (p≤0.001). The lowest VHN was recorded for TEF (p≤0.001). Also, the results showed that when obtaining the VHN for each material, the monowave LCU had significantly higher VHN than QTH and polywave for EFQ, EUF-S, and FSU (p<0.05) while monowave had significantly lower VHN than QTH and polywave for CMF and TEF (p≤0.001). The polywave LCU showed significantly higher than the monowave and QTH LCU for CMF and TEF (p>0.05).

The highest DC was obtained from BFP (p<0.05) and the lowest from EQF (p<0.05) regardless of LCU used. The results showed there were no statistically significant differences among LCUs for material MIF, EUF-M, EUF-S, and FSU (p>0.05) except for CMF and TEF. For CMF and TEF, the monowave LCU produced significantly lower DC than the QTH and polywave.

Table 2 Characteristics of light curing units used

Light Curing Units	Optilux 501	Elipar™ DeepCure-L	Bluephase®20i
Type	Halogen	Monowave LED	Polywave LED
Light intensity (mW/cm²)	600	1,200	1,200
Wavelength (nm)	390–520	430–490	390–510
Curing time (s)	20	20	20

Fig. 1 Spectral output of LCUs.

![Spectral output of LCUs](image)

Horizontal bars show no significant difference between LCUs ($p > 0.05$) and the same lower-case letters indicate no statistical difference among materials ($p > 0.05$).

Fig. 2 VHN of the materials tested.

![VHN of the materials tested](image)

Horizontal bars show no significant difference between LCUs ($p > 0.05$) and the same lower-case letters indicate no statistical difference among materials ($p > 0.05$).

Fig. 3 DC of the materials tested.

![DC of the materials tested](image)

Horizontal bars show no significant difference between LCUs ($p > 0.05$) and the same lower-case letters indicate no statistical difference among materials ($p > 0.05$).
For the pooled data, the Pearson correlation coefficient \((r)\) showed the negative correlation between hardness and DC for each LCU as follow; Halogen; \(r=-0.415, p \leq 0.001\), Monowave; \(r=-0.221, p=0.01\) and Polywave; \(r=-0.336, p \leq 0.001\) (Fig. 4). Kendall tau correlation coefficient \((r_\tau)\) showed the significant correlation between hardness and DC resulted for CMF \((r_\tau=0.924, p \leq 0.001)\), EFQ \((r_\tau=0.44, p=0.032)\), and TEF \((r_\tau=0.890, p \leq 0.001)\) and other composites showed an insignificant correlation between hardness and DC (Fig. 5).

DISCUSSION

This study used VHN to evaluate the curing performance of various LCU units on resin composites with different compositions. Two millimeters thick specimen and A2 shade were chosen to ensure a uniform polymerization and to limit the impacts of shade on the light polymerization.
In this study, significant differences were noted in the VHN and DC mean values among tested flowable resin composites, three nanohybrid, three supra-nanofilled, one nanofilled and one hybrid flowable resin composites with a different composition. Adding nanosized fillers to flowable composites increases the viscosity because of filler surface area and also matrix-filler interaction or between filler particles; also, it improves the mechanical and flowable characteristics. Marovic et al., analyzed the hardness of nanofilled composites and proposed that these fillers can achieve a higher hardness as well as good polishability. Additionally, nanofillers can accomplish more close contact with the matrix resin than microfillers. According to the outcomes regardless of LCUs, EFQ indicated a significantly higher hardness compared with all other materials evaluated because it contains supra-nano spherical fillers resulting in superior matrix filler interaction. Generally, the higher the filler content of a resin composite, the higher the surface microhardness. TEF showed significantly lower hardness value than other materials because of its lower filler content. Although CMF showed highest filler content nanohybrid composite among material used in this study, it could not achieve higher hardness value than EFQ because it contained prepolymerized resin fillers, also included in EUF-M, EUF-S and FSU. Filler content did not seem, by all accounts, to be the main affecting parameter. Most manufacturers added prepolymerized filled resin particles to increase filler loading. Prepolymerized fillers never achieve as high hardness value as the composite without prepolymerized particles. It was additionally suggested that different factors, for example, monomer type and ratio, filler shape and size, the degree of polymer cross-linking, and photoinitiators appear to affect surface hardness. This could explain the different hardness values assessed among the materials used in this study.

The degree of polymerization of dental resin composites is fundamentally affected by the nature and the quantity of individual monomers in their composition. The primary monomer used in commercial dental composites is bisphenol A-glycidyl methacrylate (Bis-GMA), which is likewise present in all materials tried in this investigation except for MIF, EFQ, and CMF. Bis-GMA has a high viscosity that can produce a more rapid hardening and production of stronger and stiffer resins. On the other hand, the low mobility of Bis-GMA enable it to accomplish a high DC. Consequently, Bis-GMA must be mixed with diluent monomers of low viscosity, such as triethylene glycol dimethacrylate (TEGDMA), urethane dimethacrylate (UDMA) or bisphenol A polyethylene glycol diether dimethacrylate (Bis-EMA) so as to achieve acceptable levels of polymerization. It was reported that the ultimate DC of different monomer systems increases in the following order: Bis-GMA<Bis-EMA<UDMA<TEGDMA. Despite LCUs, this study evaluated that the highest DC was obtained for BFP while the lowest DC was for EFQ. When Bis-GMA is mixed with the low viscosity monomer, TEGDMA, a synergistic effect on the rate of polymerization and DC has been observed. This could explain the significantly higher DC of BFP than that of other materials since it might rely upon the diluted ratio of low viscosity monomer. Moreover, the inclusion of different parameters, such as the types of monomer and their proportions, and filler morphology and distribution may vary greatly among materials. The absence of data provided by manufacturers concerning the accurate proportions of the various monomers makes clarification of the present outcomes difficult.

It is generally accepted that the greater DC is associated with the higher hardness. The previous studies have proven a positive correlation between the hardness and DC within the same material. Regarding the LCUs, this study showed there was a significantly strong correlation between the DC and the hardness, distinctly seen in CMF and TEF respectively. On the contrary, other studies have found no correlation between DC and hardness for several materials. In the present study, there was a negative correlation between the DC and hardness comparing all materials with each LCU, which concurred with other investigation. Ferracane and other studies revealed that the hardness value cannot be used to compare the DC among various materials because the results greatly depend on the composition of the material. Additionally, it ought to be emphasized that filler characteristics may impact on the hardness, and monomer type and proportions may affect the DC while comparing different materials.

Apart from the characteristics of filler and matrix, the light source has been shown to influence the degree of polymerization of resin composites. The spectral emission profiles of QTH, monowave and polywave LED LCUs are distinctly different. For instance, QTH lights deliver a broad spectrum of blue light ranging from 390 to 510 nm. The monowave LED-LCUs have a single peak of 470 nm that is perfect for the absorption spectrum of camphorquinone (CQ), which is the common photoinitiator of resin composites. The polywave LED LCU emits light with at least two different wavelength ranges. They produce both a shorter violet wavelength and a longer blue wavelength. Violet light is used to activate other photoinitiators such as PPD (1-phenyl-1, 2-propanedione) and Lucirin TPO (monoaclyphosphine oxide) or Iciverin, that are sensitive to light within the range of 350–420 nm wavelength.

The wavelength emitted by LCU should match the absorption spectrum or absorption peak of the photoinitiator in that composite. The polymerization of light-cured resin relies on the quantity of light as well as on its quality such as wavelength and output. In this study, the spectral radiant power of each LCU is shown in Fig. 1. The Optilux 501 produced a light output over a range of wavelengths between 390 and 520 nm, while the DeepCure-L showed a single wavelength peak from 430–490 nm, and the Bluephase20i had two-wavelength peak emissions at 390 and 510 nm that corresponded to the LED chips used in this unit. In our study, the result showed there were no significant differences for VHN and DC among LCUs in same materials, despite the
different radiant exposure (12 J/cm² for QTH and 24 J/cm² for 2 LED LCUs, respectively). This likely occurred because sufficient radiant exposure was delivered within the absorbed wavelength range from LCUs to cure resin composite.

The Vickers Hardness recorded for EFQ, EUF-S, and FSU after the monowave LED LCU curing were significantly higher than those for the QTH and polywave LCUs with these two LCUs not being significantly different from each other. This was because the narrow range of light wavelength emitted by the monowave makes more effective than polywave and QTH in EFQ, EUF-S, and FSU, which contained mainly CQ photoinitiator. Additionally, it might be expected that monowave emitted blue light only and more light energy was delivered in the 460 nm region to the CQ from the monowave LED LCU. However, in CMF and TEF, the monowave LED LCU was significantly lower VHN and DC than polywave and QTH. It has been mentioned that the effectiveness of the type of the LCUs on the polymerization may depend on the photoinitiator type. Therefore, the higher energy output of LED units would not improve the polymerization of resin composite, if the emitted light is not absorbed by the photoinitiator. In these materials, the polywave LCU have preferable curing effectiveness over the QTH and monowave. Price et al., demonstrated that such broad-spectrum LED units could polymerize 2-mm thick specimen of some resins to a more extent degree than the monowave LED; despite the fact that the two units were delivered similar irradiance value. Previous studies have additionally reported improved properties when resin composite with these alternative photoinitiators is photoactivated with broad-spectrum lights. Therefore, these polywave LED LCUs are used to initiate a wider range of photoinitiators. Concerning impact of LCU type used in this study, the polywave LCU would be advised superior performance than QTH LCU. However, the different positions of each of the light emitters along the same LCU tip could influence the homogeneity of the light yield through the light guide tip.

Our study revealed that the monowave LED LCU could not polymerize for some materials because the light output did not coordinate the spectral sensitivity of the photoinitiators present in these resins. However, the concentration of CQ and the presence of any other photoinitiators in the composition are unknown. Additionally, the photoinitiator composition of RBCs should well describe in the manufacturer-supplied material information sheets, so clinicians can best match the output of light with the spectral needs of a given restorative material.

The present investigation had a few limitations. The type and amount of photoinitiators incorporated in flowable resin composites used in this study could not identify. The manufacturers’ information did not specify the kind of photoinitiator used in the materials. Subsequently, further studies are necessary to decide the performance of different LCUs and other mechanical properties of flowable resin composites.

CONCLUSION

Within the scope of this study, the following conclusions were drawn: The adequacy of polymerization was demonstrated to be dependent not just on the type of LCU in addition on the composition of resin composite. Regardless of the energy delivered by LCUs, there was no significant differences among LCUs in same material when the wavelength of these lights coincides within the absorption spectrum of photoinitiators. The monowave LED LCU has poor performance on hardness and DC in CMF and TEF, regardless of whether light-cured composite receives sufficient energy but not a proper wavelength. The polywave LED unit can cure all flowable resin composite, despite the type of photoinitiator contained in their compositions.

CONFLICTS OF INTEREST

The authors declared any conflict of interest related to this study.

ACKNOWLEDGMENTS

This work was supported by the JPSP Grant-in-Aid for Scientific Research (C) 17K11701.

REFERENCES

1) Rada RE. The versatility of flowable composites. Dent Today 1998; 17: 78-83.
2) Baroudi K, Rodrigues JC. Flowable resin composites: a systematic review and clinical considerations. J Clin Diagn Res 2015; 9: 18-24.
3) Payne JH. The marginal seal of Class II restorations: flowable composite resin compared to injectable glass ionomer. J Clin Pediatr Dent 1999; 23: 123-130.
4) Imai A, Takamizawa T, Sugimura R, Tsujimoto A, Ishii R, Kawazu M, et al. Interrelation among the handling, mechanical, and wear properties of the newly developed flowable resin composites. J Mech Behav Biomed Mater 2019; 89: 72-80.
5) Irie M, Tjandrawinata R, Litha E, Yamashiro T, Suzuki K. Flexural performance of flowable versus conventional light-cured composite resins in a long-term in vitro study. Dent Mater J 2008; 27: 300-309.
6) Sumino N, Tsubota K, Takamizawa T, Shiratsuki K, Miyazaki M, Latta MA. Comparison of the wear and flexural characteristics of flowable resin composites for posterior lesions. Acta Odontol Scand 2013; 71: 820-827.
7) Jafarzadeh TS, Erfan M, Behroozibakhsh M, Fatemi M, Masaeli R, Rezaei Y, et al. Evaluation of polymerization efficacy in composite resins via FT-IR spectroscopy and Vickers microhardness test. J Dent Res Dent Clin Dent Prospects 2015; 9: 226-232.
8) Esmaeili B, Safarcrehti H, Vaezi A. Hardness evaluation of composite resins cured with QTH and LED. J Dent Res Dent Clin Dent Prospects 2014; 8: 40-44.
9) Catelan A, Mainardi Mdo C, Soares GP, de Lima AF, Ambrosano GM, Lima DA, et al. Effect of light curing protocol on the degree of conversion of composites. Acta Odontol Scand 2014; 72: 898-902.
10) Tarle Z, Meniga A, Knezević A, Sutalo J, Ristić M, Pichler
G. Composite conversion and temperature rise using a conventional, plasma arc, and an experimental blue LED curing unit. J Oral Rehabil 2002; 29: 662-667.

11) Ozturk B, Cobanoglu N, Cetin AR, Gunduz B. Conversion degrees of resin composites using different light sources. Eur J Dent 2013; 7: 102-109.

12) Marovic D, Panduric V, Tarlo Z, Ristic M, Sariri K, Demoli N, et al. Degree of conversion and microhardness of dental composite resin materials. J Mol Struct 2013; 1044: 299-302.

13) Mayworm CD, Camargo SS Jr, Bastian FL. Influence of artificial saliva on abrasive wear and microhardness of dental composites filled with nanoparticles. J Dent 2008; 36: 703-710.

14) Sampaio CS, Atria PJ, Rueggeberg FA, Yamaguchi S, Giannini M, Coelho PG, et al. Effect of blue and violet light on polymerization shrinkage vectors of a CQ/TPO-containing composite. Dent Mater 2017; 33: 796-804.

15) Santini A, Miletic V, Swift MD, Bradley M. Degree of conversion and microhardness of TPO-containing resin-based composites cured by polymerwave and monowave LED units. J Dent 2012; 40: 577-584.

16) Shimokawa C, Sullivan B, Turbino ML, Soares CJ, Price RB. Influence of emission spectrum and irradiance on light curing of resin-based. Oper Dent 2017; 42: 537-547.

17) Price RB, Labrie D, Rueggeberg FA, Sullivan B, Kostylev I, Fahey J. Correlation between the beam profile from a curing light and the microhardness of four resins. Dent Mater 2014; 30: 1345-1357.

18) Ilić N, Hickel R, Watts DC. Spatial and cure-time distribution of dynamic-mechanical properties of a dimethacrylate nano-composite. Dent Mater 2009; 25: 411-418.

19) Beun S, Bailly C, Devaux J, Leloup G. Rheological properties of flowable composite materials and pit and fissure sealants. Dent Mater 2008; 24: 548-555.

20) Czasch P, Ilić N. In vitro comparison of mechanical properties and degree of cure of a self-adhesive and four flowable composite materials. J Adhes Dent 2013; 15: 229-236.

21) Jäger S, Balthazard R, Dahoun A, Mortier E. Filler content, surface microhardness, and rheological properties of various flowable resin composites. Oper Dent 2016; 41: 655-665.

22) Blackham JT, Vandewalle KS, Lien W. Properties of hybrid resin composite systems containing prepolymerized filler particles. Oper Dent 2009; 34: 697-702.

23) Leprince J, Palin WM, Mullier T, Devaux J, Vreven J, Leloup G. Investigating filler morphology and mechanical properties of new low-shrinkage resin composite types. J Oral Rehabil 2010; 37: 364-376.

24) Hahnel S, Dowling AH, El-Safty S, Fleming GJ. The influence of monomeric resin and filler characteristics on the performance of experimental resin-based composites (RBCs) derived from a commercial formulation. Dent Mater 2012; 28: 416-423.

25) Moharar E, Elsayad I, Ibrahim M, El-Badrawy W. Effect of LED light-curing on the relative hardness of tooth-colored restorative materials. Oper Dent 2009; 34: 65-71.

26) Ferracane JL. Resin composite-state of the art. Dent Mater 2011; 27: 29-38.

27) Abed YA, Sabry HA, Alrobeigy NA. Degree of conversion and surface hardness of bulk-fill composite versus incremental-fill composite. Tanta Dent J 2015; 12: 71-80.

28) Sideridou I, Tserki V, Papanastratou G. Effect of chemical structure on the degree of conversion in light-cured dimethacrylate-based dental resins. Biomaterials 2002; 23: 1819-1829.

29) Turassi CP, Ferracane JL, Vogel K. Filler features and their effects on wear and degree of conversion of particulate dental resin composites. Biomaterials 2005; 26: 4932-4937.

30) Manhart J, Kunzelmann KH, Chen HY, Hickel R. Mechanical properties of new composite restorative materials. J Biomed Mater Res 2000; 53: 553-361.

31) Rode KM, Kawano Y, Turbino ML. Evaluation of curing light distance on resin composite microhardness and polymerization. Oper Dent 2007; 32: 571-578.

32) Tassery H, de Donato P, Barrès O, Déjou J. In vitro assessment of polymerization procedures in class II restorations: Sealing, FTIR, and micro-hardness evaluations. J Adhes Dent 2001; 3: 247-255.

33) Da Silva EM, Poskus LT, Guimarães JG, de Araújo Lima Barcellos A, Fellows CE. Influence of light polymerization modes on the degree of conversion and crosslink density of dental composites. J Mater Sci Mater Med 2008; 19: 1027-1032.

34) Mandikos MN, Mc Givney, Davis E, Bush PJ, Carter JM. A comparison of the wear resistance and hardness of indirect restorative resins. J Prosthet Dent 2001; 85: 386-395.

35) Da Silva EM, Almeida GS, Poskus LT, Guimarães JG. Relationship between the degree of conversion, solubility and salivary sorption of a hybrid and a nanofilled resin composite. J Appl Oral Sci 2008; 16: 161-166.

36) DeWald JP, Ferracane JL. A comparison of four modes of evaluating depth of cure of light-activated composites. J Dent Res 1987; 66: 727-730.

37) Santos GB, Medeiros IS, Fellows CE, Muench A, Braga RR. Composite depth of cure obtained with QTH and LED units assessed by microhardness and micro-Raman spectroscopy. Oper Dent 2007; 32: 79-83.

38) César PF, Miranda Jr WG, Braga RR. Influence of shade and storage time on flexural strength, flexural modulus, and hardness of composites used for indirect restorations. J Prosthet Dent 2001; 86: 289-296.

39) Ferracane JL. Correlation between hardness and degree of conversion during the setting reaction of unfilled dental restorative resins. Dent Mater 1985; 1: 11-14.

40) Neves AD, Discacciati JA, Orêfice RL, Jansen WC. Correlation between degree of conversion, microhardness and inorganic content in composites Pesqui Odontol Bras 2002; 16: 349-354.

41) Rahiotis C, Kakaboura A, Loutikis M, Vougiouklakis G. Curing efficiency of various types of light-curing units. Eur J Oral Sci 2004; 112: 89-94.

42) Jandt KD, Mills RW. A brief history of LED photopolymerization. Dent Mater 2013; 29: 605-617.

43) Rueggeberg FA. State-of-the-art: dental photocuring — a review. Dent Mater 2011; 27: 39-52.

44) Price RB, Felix CA, Andreou P. Third-generation LED curing light: effect on Knoop microhardness. Compend Contin Educ Dent 2006; 27: 490-496.

45) Leprince JG, Palin WM, Hadis MA, Devaux J, Leloup G. Progress in dimethacrylate-based dental composite technology and curing efficiency. Dent Mater 2013; 29: 139-156.

46) Miletic V, Santini A. Micro-Raman spectroscopic analysis of the degree of conversion of composite resins containing different initiators cured by polywave or monowave LED units. J Dent 2012; 40: 106-113.

47) Neumann MG, Schmitt CC, Ferreira GC, Corrêa IC. The initiating radical yields and the efficiency of polymerization for various dental photoinitiators excited by different light curing units. Dent Mater 2006; 22: 576-584.