TETs Regulate Proepicardial Cell Migration through Extracellular Matrix Organization during Zebrafish Cardiogenesis

Yahui Lan1, Heng Pan2, Cheng Li3,4, Kelly M. Banks1, Jessica Sam1, Bo Ding5, Olivier Elemento2, Mary G. Goll3,6, and Todd Evans1,7,*

1Department of Surgery, Weill Cornell Medical College, New York, NY 10065, USA
2Department of Physiology and Biophysics, Englander Institute for Precision Medicine, Institute for Computational Biomedicine, Weill Cornell Medical College, New York, NY 10065, USA
3Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
4Program in Biochemistry and Structural Biology, Cell and Developmental Biology, and Molecular Biology, Weill Cornell Graduate School of Medical Sciences, Cornell University, New York, NY 10065, USA
5Bonasept, LLC, 7699 Palmilla Drive, Apt. 3312, San Diego, CA 92122, USA
6Present address: Department of Genetics, University of Georgia, Athens, GA 30602, USA
7Lead Contact

SUMMARY

Ten-eleven translocation (Tet) enzymes (Tet1/2/3) mediate 5-methylcytosine (5mC) hydroxylation, which can facilitate DNA demethylation and thereby impact gene expression. Studied mostly for how mutant isoforms impact cancer, the normal roles for Tet enzymes during organogenesis are largely unknown. By analyzing compound mutant zebrafish, we discovered a requirement for Tet2/3 activity in the embryonic heart for recruitment of epicardial progenitors, associated with development of the atrial-ventricular canal (AVC). Through a combination of methylation, hydroxymethylation, and transcript profiling, the genes encoding the activin A subunit Inhbaa (in endocardium) and Sox9b (in myocardium) were implicated as demethylation targets of Tet2/3 and critical for organization of AVC-localized extracellular matrix (ECM), facilitating migration of epicardial progenitors onto the developing heart tube. This study elucidates essential DNA demethylation modifications that govern gene expression changes during cardiac development.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

AUTHOR CONTRIBUTIONS
Y.L., M.G.G., and T.E. conceived the study and designed experiments. Y.L. performed most of the experiments. H.P., B.D., and O.E. performed computational and bioinformatics analyses. C.L. provided essential reagents prior to publication. K.M.B. and J.S. performed experiments. Y.L. and T.E. wrote the manuscript. All authors edited and approved of the final draft.

SUPPLEMENTAL INFORMATION
Supplemental Information includes seven figures and two tables and can be found with this article online at https://doi.org/10.1016/j.celrep.2018.12.076.

DECLARATION OF INTERESTS
The authors declare no competing interests.
with striking temporal and lineage specificities, highlighting complex interactions in multiple cell populations during development of the vertebrate heart.

Graphical Abstract

In Brief

Lan et al. show that zebrafish larvae mutant for tet2 and tet3 fail to demethylate genes encoding Inhbaa (in endocardium) and Sox9b (in myocardium), leading to defects in ECM needed to form valves and to recruit epicardial progenitors onto the heart tube.

INTRODUCTION

Epigenetics refers to heritable changes in gene expression without DNA sequence alteration. Epigenetic modifications, including histone phosphorylation and methylation and DNA methylation and demethylation, can alter DNA accessibility and chromatin structure, thereby regulating gene expression (Loscalzo and Handy, 2014). In vertebrates, DNA methylation at the 5 position of cytosine (5mC) is often associated with transcriptional repression and is one of the key epigenetic mechanisms used during normal development (Goll and Bestor, 2005); alteration in DNA methylation patterns has been implicated in various disease states (Robertson, 2005). The mechanisms that establish and maintain 5mC are well defined, including de novo methylation through DNA methyltransferase-3 (Dnmt3) family proteins and maintenance methylation by Dnmt1 (Hu et al., 2012; Feng et al., 2010; Sen et al., 2010). Blocking the action of maintenance methylation leads to passive loss of 5mC through dilution of marks in replicating cells. However, there is good evidence that methyl marks can be actively removed, even in the absence of DNA replication (Wu and Zhang, 2017).

Recent studies identified the ten-eleven translocation (TET) proteins TET1, TET2, and TET3 as a family of 2-oxoglutarate-and Fe(II)-dependent dioxygenases that alter the methylation status of DNA by converting 5mC to 5-hydroxymethylcytosine (5hmC) and
then 5-formylcytosine (5fC) and 5-carboxylcytosine (5caC), followed by replication-dependent dilution or thymine DNA glycosylase (TDG)-dependent base excision repair (He et al., 2011; Wu and Zhang, 2011; Pastor et al., 2013). Defects in this pathway are associated with multiple diseases, including cancer. Mutations in TET genes, most notably TET2, are associated with human hematopoietic malignancies (Ko et al., 2015; Madzo et al., 2014) and more recently are implicated in clonal hematopoiesis associated with risk for leukemia and cardiovascular disease (Solary et al., 2014; Turgeon et al., 2014). Animal and cell models have tested the impact of losing TET activity. Tet3 knockout mice die perinatally (Kohli and Zhang, 2013). Although Tet1 and Tet2 mutant mice are viable and fertile, half of Tet1−/−; Tet2−/− double null embryos exhibit midgestation abnormalities with perinatal lethality (Dawlaty et al., 2013). Both mouse and human embryonic stem cells (ESCs) carrying null mutations for all three Tet genes show impaired ability to differentiate and contribute poorly to teratomas or chimeras (Verma et al., 2018; Dawlaty et al., 2014). We (Li et al., 2015) and others (Seritrakul and Gross, 2017) reported overlapping requirements for tet2 and tet3 during zebrafish hematopoietic stem cell emergence and retinal neurogenesis, respectively. Less is known about specific requirements for TET genes during organogenesis and morphogenesis. DNA hydroxymethylation is associated with myocardial gene expression in maturation and hypertrophy (Kranzhöfer et al., 2016; Greco et al., 2016), suggesting that TET genes might be required during cardiogenesis.

The vertebrate heart forms from progenitor cells derived from multiple, distinct embryonic origins (Meilhac et al., 2004). The primitive heart tube forms from first-heart-field-derived mesoderm that generates myocardium associated with the underlying endocardium to form a beating heart tube. The atrial-ventricular canal (AVC) forms by repression of the muscle program to distinguish the primitive atrial and ventricular chambers and formation of cushions preceding valvulogenesis. Second heart field mesoderm adds to both the venous and arterial poles during formation of inflow and outflow tracts, respectively. Additional progenitors migrate to form an extracardiac rudiment called the proepicardium (PE) (comprising epicardial progenitors). Once the PE attaches to the heart, it undergoes morphogenesis to form an epithelial covering called epicardium, which is the source of cardiac pericytes and vascular smooth muscle cells and also acts as a sleeve, allowing ingrowth of the microvasculature (Chen et al., 2014; Dettman et al., 1998; Lindsey et al., 2014; Peralta et al., 2014; Poelmann et al., 1993; Ratajska et al., 2008; Red-Horse et al., 2010; Snarr et al., 2008). Here, we describe a combined requirement for Tet2 and Tet3 in facilitating zebrafish PE attachment. The results highlight exquisite spatial and temporal control of DNA methylation patterns underlying complex interactions of cell populations during cardiac morphogenesis.

RESULTS

Overlapping Requirement for Tet2 and Tet3 in PE Morphogenesis

Loss of any single tet1/2/3 gene is tolerated in zebrafish embryos and adults. By combining mutant alleles, we showed previously that Tet2 and Tet3 are the major 5mC dioxygenases in the zebra-fish embryo and that most hydroxymethylation is lost in the double mutant embryos, associated with developmental defects, including a failure to generate
hematopoietic stem cells, neural defects, and pericardial edema (Li et al., 2015), the latter of which indicates potential functions during cardiogenesis. Specification of cardiac progenitors and formation of a primitive heart tube was normal in tet2 and tet3 double homozygous mutant (tet2/3DM) larvae, assessed by expression patterns of gata4, nkx2.5, myh6, and myh7 using whole-mount in situ hybridization (WISH) (Figure S1A). RNA sequencing data at 28 h post-fertilization (hpf) indicated neural developmental defects in tet2/3DM larvae (Figure S1B). In contrast, an equivalent cardiac transcriptomic profile was found comparing tet2/3DM and wild-type or sibling larvae (Figure S1C), consistent with normal early heart development. Imaging of tet2/3DM larvae in the background of fluorescent reporter strains showed that endocardial marker kdr1 and myocardial marker myl7 were grossly normal during the first 2 days of development (Figures S2A-S2F). The mutant hearts beat and normal expression of klf2a (an immediate early responder to flow) suggest that blood flow is also grossly normal during the first 2 days of development (Li et al., 2015). This was confirmed by directly measuring heart rate, which did not differ significantly comparing sibling and mutant embryos (Figure S2G). Although expression of PE marker wt1 was also normal at 40 hpf, wt1 expression patterns were reduced and restricted at 54 hpf in tet2/3DM larvae compared to stage-matched sibling controls (Figure 1A), suggesting a defect in epicardial development.

To further evaluate epicardial development in tet2/3DM larvae, the mutant alleles were crossed onto the Tg(tcf21:NLS-EGFP) transgenic background, in which GFP is expressed in PE as well as epicardium (Figure 1B). Consistent with previous findings (Plavicki et al., 2014b), in sibling larvae, PE were observed near the heart at 46 hpf and found attaching to the heart around the atrioventricular (AV) junction at 52 hpf. By 72 hpf, in addition to the establishment of epicardial cells on the ventricle, a bridge can be seen between the AV junction and pericardium as a path for PE cells migrating onto the heart. Although PE could be found in the pericardial region at 46 hpf in tet2/3DM larvae, they failed to attach to or migrate onto the heart at 52 hpf or 72 hpf (Figure 1B), suggesting a PE morphogenesis defect in tet2/3DM larvae. To clarify whether this was a migration or proliferation defect, we quantified tcf21+ PE cell numbers and found a similar number of PE cells in sibling or tet2/3DM larvae at 48 hpf (Figure 1C). By 72 hpf, the total number of tcf21+ PE cells was not different comparing siblings and tet2/3DM larvae. However, in tet2/3DM larvae, the cells failed to migrate to the ventricle and accumulated in the pericardial region, indicated by increased numbers of tcf21+ cells on the yolk sac of tet2/3DM larvae (Figure 1C). Moreover, pH3 antibody staining suggested essentially no cell proliferation of tcf21+ PE cells at 48 hpf or 72 hpf (Figure S3). Therefore, in tet2/3DM larvae, there is normal specification and no impact on proliferation but rather a marked defect in migration during PE morphogenesis.

To validate that the phenotype was caused by loss of Tet function and specifically DNA demethylation, we attempted to rescue PE migration in tet2/3DM larvae by forced TET expression or by inhibiting DNA methylation. Embryos derived from tet2−/−tet3+/− intercrosses were injected with in vitro transcribed mRNA encoding human TET2 at the one-cell stage or cultured in the presence of the DNA methyltransferase inhibitor 5-aza-2′-deoxycytidin (5-aza) from 24 hpf. The number of tcf21+ epicardial cells associated with the developing ventricle was subsequently examined in tet2/3DM larvae by confocal imaging at 4 dpf. Either strategy partially rescued the PE migration and morphogenesis defect in
tet2/3^{DM} larvae (Figure 1D). Moreover, injection of mRNA encoding a catalytically dead version of TET2 failed to rescue PE migration, directly implicating a critical function for tet2 and tet3 in regulating PE migration through DNA demethylation.

Tet2 and Tet3 Regulate PE Migration by Modulating Myocardial Function

An in vitro epicardial migration assay was performed to test whether the PE migration defect in tet2/3^{DM} larvae is cell autonomous or non-cell autonomous for epicardium (Figure 2A). In the assay, donor hearts were isolated from embryos transgenic for the Tg(tcf21:DsRed) epicardial cell reporter at 72 hpf, and recipient hearts were isolated from embryos transgenic for the Tg(myl7:EGFP) myocardial reporter at 48 hpf, before epicardial cells had migrated onto the myocardium. After a week of co-culture, epicardial cells from wild-type donor hearts could be observed covering wild-type recipient hearts (Figure 2B). However, epicardial cells from wild-type donor hearts failed to migrate onto tet2/3^{DM} recipient hearts (Figure 2C), demonstrating a non-cell autonomous role for Tet2/3 in epicardial cell migration. Because the recipient experiment could not be performed due to a lack of epicardium in tet2/3^{DM} hearts, a cell-autonomous role for Tet2/3 could not be evaluated. Overall, our data suggest that myocardial Tet2/3 is required for promoting PE migration during cardiac development.

Deficiency of Tet Activity Leads to Hypermethylation and Deregulation of Developmental Genes during Cardiogenesis

Because tet2 and tet3 appear to regulate epicardium at least in part through a non-cell-autonomous fashion, we sought to identify potential factors responsible for these effects, utilizing both methylomic and transcriptomic analyses. The developing tet2/3^{DM} larvae are largely depleted of 5hmC (Li et al., 2015), so it was important to first map the normal distribution of 5hmC sites. For this purpose, 5hMe-bead-integrated click-seq (5hMe-BIC-seq) was performed using genomic DNA from wild-type 48 hpf hearts. We identified 145,501 5hmC-occupied peaks and defined the distribution of these peaks in the zebrafish genome in four regions: promoters (2 kb upstream and downstream of transcription start sites); active enhancers (peaks overlapped with H3K4me1 and H3K27ac peaks, but not overlapped with promoters or exons); poised enhancers (peaks overlapped with H3K4me1 peaks only, but not overlapped with H3K27ac peaks, promoters, or exons); and other regions. The majority (over 60%) of 5hmC-associated regions were found in active enhancers, with another 5% mapping to transcriptional regulatory regions, including promoters and poised enhancers (Figure 3A), which is consistent with previous mouse and zebrafish data (Bogdanović et al., 2016; Hon et al., 2014).

To determine the impact of Tet enzyme loss and 5hmC depletion on DNA methylation, hearts from wild-type or tet2/3^{DM} larvae were isolated at 48 hpf and ERRBS (enhanced reduced representation bisulfite sequencing) was performed to compare their 5mC profiles. In tet2/3^{DM} heart tissue, a total of 10,494 differentially methylated regions were found with increased methylation (hyper-differentially methylated regions [DMRs]), and much fewer, only 829, showed decreased methylation (hypo-DMRs; Figure 3B), which is consistent with a function for Tet enzymes in DNA demethylation. Hyper-DMRs in the mutant hearts showed a distribution pattern similar to 5hmC in the wild-type embryos, specifically...
enriched in active enhancers and other regulatory regions (Figure 3A). Moreover, most hyper-DMRs in mutants co-localized with 5hmC peaks in wild-type (Figure 3C), demonstrating the close association of 5hmC during DNA demethylation. Gene pathway analysis of these hyper-DMR-associated genes showed a significant enrichment for developmental signaling pathways, including Notch, Wnt, transforming growth factor β (TGF-β), and bone morphogenetic protein (BMP) pathways (Figure 3D). Notably, these pathways are all highly associated with cardiac development (Azhar et al., 2003; Wang et al., 2013), suggesting that Tet2/3-mediated DNA demethylation regulates important signaling functions during cardiogenesis.

To investigate the transcriptional consequences of these methylation changes, RNA sequencing (RNA-seq) was also performed using isolated wild-type and tet2/3 DM hearts at 48 hpf. In the tet2/3 DM hearts, 129 genes were downregulated and 160 genes were upregulated (Figure 3E). For a select subset of top differentially expressed genes, qPCR analysis confirmed cardiac transcriptional alterations in tet2/3 DM hearts, compared with sibling or wild-type hearts. Interestingly, these differences were not found in samples generated from whole embryos, demonstrating the requirement to isolate heart tissue to reveal cardiac-specific gene regulation changes (Figure S4A). Gene Ontology (GO) analysis suggested that downregulated genes in tet2/3 DM mutant hearts are involved in heart morphogenesis, vasculature development, cell motility and junction, and muscle differentiation (Figure S4B), further confirming the cardiac developmental defect in tet2/3 DM larvae. Gene pathway analysis also categorized pathways that were highly downregulated in tet2/3 DM hearts, including tumor necrosis factor alpha (TNF-α), TGF-β, Notch, and Wnt/beta-catenin signaling pathways (Figure 3F), which highly overlapped with hyper-DMR-related pathways. Taken together, these data link Tet-dependent demethylation with the proper activation of genes critical for cardiac development.

AVC Development Is Disrupted in tet2/3 DM Larvae Temporally Associated with PE Migration Defect

Both methylomic and transcriptomic analysis identified several pathways that were highly deregulated in 48 hpf tet2/3 DM hearts, including the Wnt/beta-catenin and TGF-β signaling pathways. Previous studies suggested tight regulation of the Wnt and TGF-β pathways is required for atrioventricular canal (AVC) development at this developmental stage (Azhar et al., 2003; Piven and Winata, 2017). Gene set enrichment analysis from RNA sequencing also showed disruption of epithelial-to-mesenchymal transition (EMT), extracellular matrix (ECM) organization, and collagen formation in tet2/3 DM hearts (Figure S4C), all of which are critical processes during AVC development (Moro et al., 2012; Todorovic et al., 2011; Wang et al., 2013). Proper patterning of the AVC is critical for several diverse processes within the developing heart, including cushion and AV valve formation and delay of the electrical impulse between the atria and ventricles (Peal et al., 2011; Wang et al., 2013). The AVC is also the first location where PE cells attach to the heart (Figure 1B), implying its potential function coordinating PE migration. Therefore, we evaluated AVC development in tet2/3 DM larvae.
During AVC development, endocardial-based Notch-Wnt signaling induces a myocardial Bmp-Tbx pathway, which then activates the expression of downstream ECM-related genes, such as has2, to initiate EMT as the first step toward heart valve formation (Shirai et al., 2009; Wang et al., 2013). Using transgenic biosensor reporter strains, we evaluated Notch and Wnt activity in tet2/3DM larvae and observed comparable Notch activity in both sibling and tet2/3DM endocardium (Figure S4D). We also observed specific Wnt activity in the AVC endocardium in 2 dpf sibling hearts, which is in agreement with previous work (Moro et al., 2012; Wang et al., 2013). However, this Wnt activity signal was strikingly lost in tet2/3DM hearts (Figure 4A). By WISH, transcript levels of Wnt downstream genes, including bmp4, tbx2b, and has2 (Ahuja et al., 2016; Camenisch et al., 2002; Singh et al., 2012; Verhoeven et al., 2011), were also reduced in the hearts of tet2/3DM larvae (Figures 4B and S4E), suggesting a quite early EMT defect in tet2/3DM larvae. As a result, the AV valve is absent in 4 dpf tet2/3DM larvae (Figure 4C). Moreover, conditional inhibition of the Wnt pathway using a small-molecule compound inhibitor of Wnt response-1 (IWR-1) led to AVC disruption and a PE morphogenesis defect, which phenocopied tet2/3DM larvae (Figure 4D), also suggesting a close association of proper AVC patterning and epicardial development.

Hypermethylation and Deregulation of inhbaa and sox9b Are Associated with AVC Development and PE Migration Defects in tet2/3DM Larvae

In order to identify candidate genes targeted by Tet2/3 to regulate AVC development, we filtered data from RNA-seq, 5hMe-BIC-seq, and ERRBS to identify genomic regions associated with genes that are hydroxymethylated in wild-type hearts but hypermethylated, and significantly downregulated, in tet2/3DM hearts (Table S1). This identified potential Tet target genes inhbaa and sox9b, both of which are associated in the literature with regulating AVC development. Inhbaa is the monomeric subunit of activin A, a secreted ligand that signals through a serine-threonine kinase complex consisting of type I receptor ActBIB (Alk4) and type II receptor ActRIIA or ActRIIB (DiMuccio et al., 2005; JaŹwińska et al., 2007; Shi and Massagué, 2003; Sun et al., 2006). In murine studies, transcripts for Inhba and its receptors were detected in AVC endocardium at embryonic day 9.5 (E9.5) and E10.5, induced by the Notch pathway leading to activation of the nitric oxide (NO) pathway to promote EMT (Chang et al., 2011). After EMT occurs in the AVC endocardium, mesenchymal cells invade and populate ECM to separate the endocardium and myocardium; these progenitors undergo further proliferation to eventually form heart valves (Person et al., 2005; de Vlaming et al., 2012). In mice, Sox9 is a BMP target required for mesenchymal cell expansion and ECM organization (Garside et al., 2015; Lincoln et al., 2007). In zebrafish studies, sox9b was detected in myocardium and required for epicardium as well as valve formation (Hofsteen et al., 2013; Plavicki et al., 2014a).

In tet2/3DM larval hearts, both WISH and qPCR showed a clear reduction of inhbaa transcripts, which can be rescued by injection of human TET2mRNA (Figures 5A and S5A). Because of widespread expression outside of the heart, this loss of inhbaa expression is not seen if whole embryos are analyzed; thus, the TET-dependent regulation is heart specific (Figures S5B and S5C). The ERRBS data, validated by gene-specific bisulfite sequencing, identified a hypermethylated region in the promoter of inhbaa in tet2/3DM hearts, within a broad peak of 5hmC marks that are present in wild-type hearts (Figure 5B).
Notably, compared with whole heart, the levels of methylation as measured by bisulfite sequencing is further reduced in samples derived from dissected AVC regions, yet this region remains highly methylated in similarly dissected samples derived from tet2/3DM hearts (Figure 5B). This AVC-specific methylation pattern is consistent with AVC-enriched transcript expression, suggesting that Tet-dependent DNA demethylation is restricted for this gene largely to AVC endocardium. Similarly, sox9b transcripts were also strikingly reduced in the heart, associated with promoter hypermethylation (Figures 5A and 5C), features that were not noted using whole-embryo samples, again indicating cardiac specificity (Figures S5B and S5C). Expression levels for sox9b could also be rescued by injection of human TET2 mRNA (Figure 5A).

To confirm that deregulation of inhbaa impacts AVC development as well as PE migration, the small molecule SB431542 was used to block receptor function, or alternatively, 1-(2-[trifluoro-methyl]phenyl)imidazole (TRIM) was used to block the downstream nitric oxide synthase (NOS) inducer. Both treatments caused AVC defects (Figures S6A–S6D) as well as a PE migration defect (Figure S6G). Injection of inhbaa mRNA rescued expression of AVC-restricted markers has2 and bmp4 (Figure 5D) and partially restored PE migration (Figure 5E). Moreover, TRIM treatment also inhibited Wnt activity in AVC endocardium (Figures S6E and S6F), suggesting that inhbaa and NOS function upstream of the Wnt pathway during AVC development. Considering that Inhba is regulated by the Notch pathway and our analysis showed no defect for Notch signaling in endocardium of tet2/3DM larvae, the data implicate inhbaa as a mediator between Notch and Wnt pathways, which is critical for EMT during AVC development. The role of sox9b was next tested. Consistent with previous sox9b knockdown studies (Hofsteen et al., 2013; Lincoln et al., 2007), epicardial morphogenesis was inhibited in sox9b morphant larvae (Figure S6G). Injection of sox9b mRNA was sufficient to rescue has2 but failed to rescue bmp4 (Figure 5D), indicating that sox9b functions downstream of bmp4 but upstream of has2. Sox9b mRNA injection also partially restored epicardium in tet2/3DM larvae (Figure 5E). Notably, the extent of epicardial rescue in tet2/3DM larvae was modestly enhanced with combined injection of inhbaa and sox9b mRNA (Figure 5E), suggesting that Tet2/3 regulates targets that cooperate to facilitate PE recruitment and epicardial development.

Tet2/3-Dependent AVC ECM Organization Is Critical for PE Attachment to the Heart

In tet2/3DM larvae, both inhbaa and sox9b mRNA rescued expression of the ECM-related gene has2, which encodes the enzyme required to synthesize ECM constituent hyaluronic acid. Production of hyaluronan is important for the induction of epicardial cell differentiation and invasion in vitro (Craig et al., 2010). Studies in chick embryos also demonstrated that an ECM bridge guides PE cell migration to the myocardium (Nahirney et al., 2003), and we observed features consistent with this process in wild-type zebrafish larvae, lacking in tet2/3DM larvae (Figure 1B). These data suggest ECM may play important functions during PE cell migration. Another key AVC-associated ECM constituent protein gene, vcana (Hatano et al., 2012), was also strikingly deregulated in tet2/3DM larvae (Figure 6A), consistent with RNA sequencing data showing defects of ECM organization and collagen formation in tet2/3DM hearts (Figure S4C).
To test directly whether loss of ECM components could account for the PE migration defects observed in tet2/3^{DM} larvae, has2 mRNA was reintroduced into tet2/3^{DM} larvae. Injection of has2 mRNA into tet2/3^{DM} embryos increased significantly the number of epicardial cells that migrate onto the heart of tet2/3^{DM} larvae (Figures 6B and 6C). Although has2 transcript levels were strikingly decreased in tet2/3^{DM} hearts, and there were robust 5hmC peaks in the gene body as well as promoter of the has2 gene in wild-type hearts, we observed no difference in methylation status at these regions comparing genomic DNA isolated from tet2/3^{DM} and wild-type hearts (Figure S7). These observations indicate that has2 is regulated indirectly by Tet2/3 through ihhaa and sox9b as a downstream component of Tet-dependent PE morphogenesis.

Finally, we tested directly whether the ECM defect during AVC development is responsible for the PE migration defect by injecting the ECM protein collagen into the pericardial region of tet2/3^{DM} larvae at 2 dpf. Strikingly, when tet2/3^{DM} larvae were injected with 20 nL of a 0.5 mg/mL collagen solution, PE cells migrated onto the heart tube (Figures 6B and 6C), strongly supporting a non-cell-autonomous effect, specifically through TET-dependent ECM organization at the AVC. Siblings were not affected by this treatment. When a high concentration (8 mg/mL) of collagen solution was injected to the pericardial region, collagen aggregates were formed. Under these conditions, in sibling larvae, the PE cells migrated to the heart as well as attached to the collagen aggregate. In tet2/3^{DM} larvae, PE cells were attracted to migrate to the collagen aggregate at the expense of attaching to the heart tube (Figure 6B). Taken together, these results uncover a requirement for Tet2/3 in AVC and epicardial development and identify ihhaa and sox9b as likely direct targets of Tet2/3 regulation during AVC-associated ECM organization, which then facilitates PE recruitment and attachment to the heart (Figure 6D).

DISCUSSION

During cardiogenesis, epigenetic mechanisms, including DNA methylation and demethylation, histone modification, and long-range chromatin organization, undergo dynamic changes to orchestrate lineage-and temporal-specific changes in gene expression (Backs and Olson, 2006; Hang et al., 2010; Kou et al., 2010; Vallaster et al., 2012), and epigenetic regulatory defects contribute to progression of cardiac diseases (Mano, 2008). However, specific functions and requirements for TET enzymes to regulate DNA demethylation in this context were not known. We found a primary defect in tet2/3^{DM} embryos for the attachment to the heart, and subsequent migration to cover the heart, of epicardial progenitors, through defects in PE cell-extrinsic signaling pathways. The results are consistent with recent reports showing cell-non-autonomous functions for Tet enzymes in zebrafish retinal cell differentiation, mouse gastrulation, and for defining the relative balance of neuroectoderm and mesoderm derivatives (Dai et al., 2016; Li et al., 2016; Seritrakul and Gross, 2017). These studies suggest a general function for Tet enzymes during embryonic development to regulate important cell-extrinsic signaling pathways and coordinate cell interactions during organ development.

We found that failed recruitment of PE cells to the heart is associated with defective AVC development. Previous loss-of-function studies identified several pathways in the heart,
including BMP signaling emanating from the AVC myocardium, that are necessary for recruitment of PE cells (Hatcher et al., 2004; Ishii et al., 2010; Liu and Stainier, 2010; Yang et al., 1995). In our zebrafish model, Tet-dependent expression of activin-A is required to activate a downstream bmp4 pathway to coordinate the attachment of PE cells to an AVC-associated region of the heart. We also identified sox9b, a transcription factor regulating valve precursor cell proliferation and differentiation, as another Tet target gene. Both genes affect ECM scaffold formation. Injection of has2 mRNA at the one-cell stage or direct injection of collagen into the pericardial region at 2 dpf can efficiently rescue epicardial cell migration onto the heart in tet2/3DM larvae. Collagen injection experiments directly demonstrated the important function of ECM organization during PE recruitment to the heart. During cardiac development, ECM provides a bridge linking the AV canal and pericardial wall to help guide PE cell migration to the myocardium. Our data therefore indicate that AVC-specific, ECM-related genes, such as has2 and vcana, are not only critical for AV valve formation within the AV cushions but also appear required for ECM bridge generation in the pericardial cavity.

Because similar numbers of PE cells can be detected in the tet2/3DM larvae, and PE cells undergo little if any detectable proliferation at 48 or 72 hpf, Tet2/3 appears to be dispensable for early PE specification and proliferation. However, other cell-autonomous requirements in epicardial cells after they migrate to the heart cannot be ruled out. Because Tet2/3 function is required for EMT during cardiac AVC development and also for endothelial-to-hematopoietic transition (EHT) during hematopoietic stem cell emergence (Li et al., 2015), we speculate that Tet activity becomes progressively more important as specified PE cells become further differentiated and normally undergo EMT (Kalluri and Weinberg, 2009; Kovacic et al., 2012; Krainock et al., 2016). This may represent a common functional requirement for Tet activities in epithelial cells undergoing mesenchymal-like transitions and is likely relevant to the impact of deregulated Tet activity in cancer. Further studies using conditional epicardial lineage-specific knockout of tet2/3 are needed to clarify the function of Tet during later stages of epicardium-derived cell development.

Consistent with recent studies that identified distal regulatory elements as targets of 5mC remodeling in zebrafish embryogenesis and mouse stem cells (Bogdanović et al., 2016; Hon et al., 2014; Lee et al., 2015), depletion of Tet2/3 causes hypermethylation mainly at normally active enhancers. One study in murine ESCs found that knockdown of Tet1 results in loss of promoter oxidation, and depletion of Tet2 causes loss of 5hmC at gene bodies (Huang et al., 2014). We cannot rule out the possibility that biased enhancer hypermethylation is due to Tet1 activity in tet2/3DM larvae. However, in contrast to mouse stem cells, Tet1 expression is low during zebrafish embryogenesis (Ge et al., 2014) and hyper-DMRs are still enriched at enhancers in tet1/2/3knockdown larvae (Bogdanović et al., 2016). These data suggest that Tet1 plays a marginal role during zebrafish development. In promoters, CpG islands may be protected against ectopic DNA methylation by additional mechanisms, including exclusion of de novo DNMTs and polycomb-associated proteins (Boulard et al., 2015; Noh et al., 2015; Ooi et al., 2007; Rasmussen and Helin, 2016). In contrast, distal regulatory regions, such as enhancers, are more vulnerable to DNMT activity upon loss of Tet activity. Regardless, in the present study, we did identify functional hyper-DMRs in promoter regions (such as for inhbaa and sox9b). In summary, our study reveals
Tet2/3-mediated epigenetic modifications that regulate cardiogenesis and uncovers molecular pathways in AVC-dependent PE cell recruitment. It also highlights signaling interactions between distinct heart derivatives, including proepicardium, myocardium, and endocardium.

STAR★METHODS

CONTACT FOR REAGENTS AND RESOURCE SHARING

Further information and requests for reagents should be directed to and will be fulfilled by Todd Evans (tre2003@med.cornell.edu).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

All procedures were approved by the WCMC IACUC—Zebrafish: We used 1–4 days post fertilization larval zebrafish for this study, bred on AB background. Embryos were raised at 28.5°C and morphologically staged as described (Kimmel et al., 1995); No statistical methods were used to predetermine sample size, and animal selection was not randomized or blinded.

Previously described zebrafish lines were used as follows:: tet2^{mk17/mk17}, tet3^{mk18/mk18} double mutant (tet2/3^{DM}) (Li et al., 2015) for tet2/3 loss of function studies, Tg(myl7:EGFP) (Huang et al., 2003) for myocardium labeling, Tg(tcf21:NLS-EGFP) and Tg (tcf21:DsRed2)(Kikuchi et al., 2011) for epicardium labeling, Tg(7xTCF-Xla.Siam:GFP)ia4 (Moro et al., 2012) for Wnt pathway activity labeling, Tg(kdrl:EGFP-NLS) (Zygmunt et al., 2011) for endothelium labeling, Tg(p1:EGFP) (Parsons et al., 2009) for Notch pathway activity labeling. Embryos selected for experiments were typically less than 4dpf, a stage at which sex cannot be readily determined and is unlikely to influence the biological processes under study.

METHOD DETAILS

RNA Synthesis and Microinjection—The human TET2 vector used for mRNA production has been previously described (Li et al., 2015). Briefly, the human TET2 ORF corresponding to GenBank: NM_001127208 was amplified from cDNA made from SH-SY5Y neuroblastoma cells. Following sub-cloning, the TET2 ORF was introduced into the pEF1/V5-His vector (Invitrogen) to allow for in vitro transcription. Mutant TET2 (H1382Y, D1384A) was generated using the QuikChange Lightning Site-Directed Mutagenesis Kit (Agilent). The inhbaa, sox9b and has2 ORF were PCR amplified from a 2 dpf zebrafish embryo cDNA library and cloned into the pCS2+ vector. Sequences of all clones were confirmed by conventional DNA sequencing. PCR primers used are listed in Table S1. Capped RNA was synthesized using mMESSAGE mMACHINE (Invitrogen) with Sp6 polymerase. For each experimental condition, mRNA was injected into at least 100 embryos derived from tet2^{mk17/mk17}, tet3^{mk18/+} intercrosses.

Whole-mount in situ hybridization (WISH)—Zebrafish embryos at the desired stages were fixed in 4% paraformaldehyde (PFA). Whole-mount RNA in situ hybridization (WISH)
was performed using standard methods (Jowett, 1999). For \textit{inhb}aa heart \textit{in situ}, embryonic hearts were micro-dissected at 2 dpf and processed with a standard WISH protocol. For \textit{inhb}aa and \textit{has}2 probe generation, the same vectors used for RNA synthesis were linearized by EcoRI (\textit{inhb}aa) or BamHI (\textit{has}2). The riboprobe was synthesized with T7 RNA polymerase. Additional probes were prepared as described previously: \textit{nkh}2.5, \textit{amhc, vmhc} (Reiter et al., 1999); \textit{gata}4 (Heicklen-Klein and Evans, 2004); \textit{wt}1 (Serluca, 2008); \textit{bmp}4 and \textit{tbx}2b (Chi et al., 2008); \textit{vcana} (Patra et al., 2011), \textit{sox}9b (Yan et al., 2005).

Immunohistochemistry—Whole-mount immunohistochemistry was performed using standard methods (Li et al., 2012). Anti-pH3 primary antibody (Santa Cruz) was used at 1:3000 dilution. Anti-GFP primary antibody (Invitrogen) was used at 1:1000 dilution. Alexa Fluor 555-conjugated anti-rabbit and Alexa Fluor 488-conjugated anti-mouse secondary antibodies (Invitrogen) were used at 1:2000 dilution.

Morpholino and small molecule treatment of embryonic zebrafish—Splice-blocking MO (5′ TGC AGT AAT TTA CCG GAG TGT TCT C 3′) for \textit{sox}9b was as described (Yan et al., 2005) and injected into one cell stage embryos. For chemical treatment, wild-type or \textit{tet}2/3 \textit{DM} embryos were manually dechorionated with forceps at 24 hpf and exposed to 5-aza (75 μM, Sigma), IWR-1(10 μM, Enzo Life Sciences), TRIM (2 μM, Sigma), or SB431542 (100 μM, Stemgent) from 24 hpf to identical stages for analysis in a solution of E3 medium (5.0 mM NaCl, 0.17 mM KCl, 0.33 mM CaCl, 0.33 mM MgSO4).

Tissue explant culture—Hearts from \textit{myl}7:EGFP and \textit{tcf}21:DsRed2 larvae were isolated at 48 hpf and 72 hpf, respectively, as previously described (Burns and MacRae, 2006). Briefly, approximately 100 embryos were anesthetized, washed three times with embryo disruption medium (EDM) [Leibovitz’s L-15 Medium (Fisher) containing 10% fetal bovine serum (Sigma), ice-cold at every step] and resuspended in 1.25 mL EDM. The microfuge tube, a 19-gauge needle and a 6-mL syringe were secured to a ring stand. Approximately 1 mL EDM containing embryos was drawn into the needle and syringe and immediately expelled back into the microfuge tube 30 times at a rate of 1 s per syringe motion. Isolated hearts were isolated under a fluorescence microscope. Hearts were mixed in a 1:1 ratio and placed in culture plates coated with low melting agarose. Heart cultures were incubated at 28°C in tissue culture media containing Leibovitz’s L-15 (Fisher) with 10% fetal bovine serum (Sigma) and 4x penicillin/streptomycin (Invitrogen). Cultures were monitored daily and media was refreshed every other day. On day 7, heart clusters were removed and imaged by confocal microscopy.

Collagen injection—For low concentration (0.5mg/ml) collagen injection, Corning Collagen I, High Concentration, Rat Tail (Fisher, 8mg/ml) was diluted in tissue culture medium. 20nl of diluted collagen was microinjected into the pericardial region of 2 dpf larvae. For high concentration collagen injection, 10nl of 8mg/ml collagen was directly microinjected into the pericardial region of 2 dpf larvae to generate a collagen aggregate.

Image acquisition and analysis—WISH preparations were mounted in glycerol and imaged using a Nikon SMZ1500 microscope with an Insight Firewire 2 digital camera and...
SPOT advanced imaging software. Transgenic embryos, embryonic hearts and cultured heart clusters were mounted in low melting agarose and imaged using the Zeiss LSM510 or LSM800 confocal microscope with Zen software. Images were analyzed in ImageJ and Adobe Photoshop. Epicardial cell number was counted manually at 4 dpf using the Zeiss LSM510 confocal microscope. 4% tricaine (Sigma) was added immediately before counting to stop heart beating. At least 10 embryos were counted for each biological replicate.

RNA isolation and quantitative RT-PCR—Whole embryo and dissected heart total RNA was isolated with the RNeasy Mini kit (QIAGEN) or RNeasy Micro kit (QIAGEN). At least 5 fish or 40 dissected hearts were used for each biological replicate. RNA was reverse transcribed with the Superscript III First-Strand Synthesis System (Invitrogen). The qPCR analysis was performed on a LightCycler 480 II (Roche) using LightCycler 480 Sybr Green master mix (Roche). Primer sequences are provided in Table S1. Relative gene expression was determined as described (Holtzinger et al., 2010).

RNA sequencing—For RNA sequencing, whole embryo (n = 3) or dissected heart (n = 2) total RNA from wild-type, sibling or tet2/3DM embryos were isolated as described above. For dissected heart, 1 ng total RNA was used to prepare amplified double-stranded cDNA using the Ovation RNA-Seq System V2 (Nugen). Amplified cDNA was purified using a QIAquick PCR purification kit (QIAGEN) and 200 ng of amplified cDNA was fragmented in a final volume of 50 ul using S220 Focused-ultrasonicator (Covaris) to obtain 150 bp DNA fragment size (peak incident power: 175W, duty factor: 10%, cycles per burst: 200, time: 280 s). Fragmented DNA samples and whole embryo RNA samples were used to prepare libraries with the TruSeq RNA Library Prep Kit v2 (Illumina) and submitted to WCMC Genomics Resources Core Facility for sequencing. RNA-seq data were aligned to the GRCz10 reference genome. RNA seq alignment, differential gene expression analysis, orthology to human genes and GSEA were performed as described (Anelli et al., 2017). Differentially expressed genes were defined by log2 fold change greater than 2 or less than −2 and an adjusted p value < 0.05.

ERRBS

For ERRBS, genomic DNA was isolated from wild-type and tet2/3DM dissected hearts using DNeasy Blood & Tissue Kits (QIAGEN). At least 40 hearts were collected for each biological group. Genomic DNA was submitted to the Weill Cornell Medical College Epigenomics core for ERRBS. The WCMC Computational Genomics core facility supported alignment and methylation extraction for ERRBS data as described (Akalin et al., 2012). DMRs were defined as regions containing at least five differentially methylated CpGs (DMCs; false discovery rate = 20%; chi-square test) and whole methylation was more than 10%. DMR calling was performed with RRBSseqer with default parameters (Pan et al., 2015). Peak annotation was performed with R-3.3.2. Histone datasets were obtained from GSE32483 (Bogdanovic et al., 2012).

5hMe BIC-seq—Genomic DNA was isolated from wild-type (n = 2) dissected hearts using DNeasy Blood & Tissue Kits (QIAGEN). At least 40 hearts were collected for each
biological group. Genomic DNA was submitted to the Weill Cornell Medical College Epigenomics core for 5hMe-Bead-Integrated Click-seq (5hMe BIC-seq) as described below:

250 ng of genomic DNA were sonicated in a Covaris S220 instrument (Covaris, Woburn, MA) to obtain mean fragment sizes of 250bp (Peak Incident Power 175, Duty Factor 10%, Cycles per Burst 200, 150secs) and DNA was end-repaired and A-tailed using New England Biolabs enzymes (Ipswich, MA). 10ng of this DNA was used as Input control by adding TruSeq barcoded adapters. The rest of the sample was used to selectively label 5-hydroxymethylcytosine with azido-modified-glucose (UDP-6-N3_Glucose, P19-11019, Proactive Molecular Research, Alachua, FL) in the presence of β-glucosyltransferase (New England Biolabs, Ipswich, MA) by a 16 hr incubation at 37C. Biotin was added through Click chemistry with Dibenzocyclooctyne-PEG4-biotin (BP-22295, Broad-Pharm, San Diego, CA), and the biotinylated-gluco-modified DNA was isolated by affinity capture with streptavidin magnetic beads (Dynabeads ® MyOneStreptavidin, ThermoFisher/ LifeTechnologies, Waltham, MA). After ligation of TruSeq barcode adapters the 5hmC-enriched sample was PCR amplified using 12 cycles with Turbo Pfu Cx Polymerase (Agilent, Santa Clara, CA). To control the labeling and enrichment of 5hmC-containing DNA, a parallel reaction containing sheared E. coli DNA spiked in with the 5-hydroxymethylcytosine APC-spike control (cat # 55008) obtained from Active Motif (Carlsbad, CA) was performed. Input and 5hmC-enriched libraries were clustered on a paired end read flow cell and sequenced for 50 cycles on an Illumina HiSeq 2500 to obtain about 30M reads per libraries. Primary processing of sequencing images was done using Illumina Real Time Analysis software (RTA) as suggested by Illumina. CASAVA 1.8.2 software was used to perform image capture, base calling and demultiplexing. Reads passing Illumina’s purity filter were adaptor trimmed and aligned to the genome using the BWA aligner.

ChIP-seq data were aligned to the danRer7 reference genomes using bwa-0.7.12 with default parameters by the WCMC Computational Genomics core facility (Li and Durbin, 2009). Peak calling and analysis of read density in peak regions were performed by macs14 1.4.2 with default parameters (Zhang et al., 2008).

5mC and 5hmC quantification—Bisulfite sequencing was performed using the EZ DNA Methylation-Direct kit (Zymo Research). Embryonic hearts at 48 hpf were dissected (n = 4 per condition). Converted DNA was amplified using Taq DNA Polymerase (NEB) and bisulfite-specific primer pairs (listed in Table S1). PCR amplicons were sub-cloned using the TOPO TA Cloning kit (Invitrogen) for sequencing. At least 8 clones were sequenced for each condition. Sequencing traces were analyzed using Lasergene (DNASTAR).

QUANTIFICATION AND STATISTICAL ANALYSIS

The Student unpaired 2-tailed t test was used for statistical analysis. We performed Shapiro-Wilk normality tests and all samples passed the test; therefore, we could justify using parametric tests (t test). Data are presented as mean ± SD derived from at least three independent biological replicates. Statistical analysis was performed using Excel and Prism 7. The significance is indicated as *p < 0.05, **p < 0.01, ***p < 0.001, ns indicates not significant.
DATA AND SOFTWARE AVAILABILITY

The accession number for all the sequencing data reported in this paper is NCBI GEO: GSE121991.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

ACKNOWLEDGMENTS

The authors thank the WCMC Optical Microscopy Core for imaging support; WCMC Epigenomics Core and Genomics Resources Core for performing ERRBS, ShmC ChIP-seq, and RNA sequencing; Hual-Jen Tsai for providing the Tg(my17:EGFP) transgenic line; Kenneth D. Poss for providing Tg(tc21::NLG-EGFP) and Tg(tc21::DsRed2) transgenic lines; James F. Amatruda for providing the Tg(7fTCF-Xla.Siam:GFP)transgenic line; and Jesus Torres Vazquez for providing the Tg(kdrl:EGFP-NLS) transgenic line. These studies were supported by a grant from the NHLBI (R35 HL135778 to T.E.) and from the Tri-Institutional Stem Cell Initiative (2014-010 to M.G.G. and T.E.). Y.L. is supported by a Tri-Institutional Starr Stem Cell Scholars Fellowship.

REFERENCES

Ahuja S, Dogra D, Stainier DYR, and Reischauer S (2016). Id4 functions downstream of Bmp signaling to restrict TCF function in endocardial cells during atrioventricular valve development. Dev. Biol. 472, 71–82.

Akalin A, Garrett-Bakelman FE, Kormaksson M, Busuttil J, Zhang L, Khrebtukova I, Milne TA, Huang Y, Biswas D, Hess JL, et al. (2012). Base-pair resolution DNA methylation sequencing reveals profoundly divergent epigenetic landscapes in acute myeloid leukemia. PLoS Genet. 8, e1002781. [PubMed: 22737091]

Anelli V, Villefranc JA, Chhangawala S, Martinez-McFaline R, Riva E, Nguyen A, Verma A, Bareja R, Chen Z, Scognamiglio T, et al. (2017). Oncogenic BRAF disrupts thyroid morphogenesis and function via twist expression. eLife 6, e20728. [PubMed: 28350298]

Azhar M, Schultz, Jel J, Grupp I, Dorn GW, 2nd, Meneton P, Molin DG, Gittenberger-de Groot AC, and Doetschman T (2003). Transforming growth factor beta in cardiovascular development and function. Cytokine Growth Factor Rev. 14, 391–407. [PubMed: 12948523]

Backs J, and Olson EN (2006). Control of cardiac growth by histone acetylation/deacetylation. Circ. Res. 98, 15–24. [PubMed: 16397154]

Bogdanovic O, Fernandez-Miñán A, Tena JJ, de la Calle-Mustienes E, Hidalgo C, van Kruysbergen I, van Heeringen SJ, Veenstra GJ, and Gómez-Skarmeta JL (2012). Dynamics of enhancer chromatin signatures mark the transition from pluripotency to cell specification during embryogenesis. Genome Res. 22, 2043–2053. [PubMed: 22593555]

Boulaud M, Edwards JR, and Bestor TH (2015). FBXL10 protects polycomb-bound genes from hypermethylation. Nat. Genet. 47, 479–485. [PubMed: 25848754]

Burns CG, and MacRae CA (2006). Purification of hearts from zebrafish embryos. Biotechniques 40, 274–278, 276, 278 passim. [PubMed: 16568816]

Camenisch TD, Schroeder JA, Bradley J, Klewer SE, and McDonald JA (2002). Heart-valve mesenchyme formation is dependent on hyaluronan-augmented activation of ErbB2-ErbB3 receptors. Nat. Med. 8, 850–855. [PubMed: 12134143]

Chang AC, Fu Y, Gardise VC, Niessen K, Chang L, Fuller M, Setiadi A, Smrz J, Kyle A, Minchinton A, et al. (2011). Notch initiates the endothelial-to-mesenchymal transition in the atrioventricular canal through autocrine activation of soluble guanylyl cyclase. Dev. Cell 27, 288–300.
Chen HI, Sharma B, Akerberg BN, Numi HJ, Kivelä R, Saharinen P, Aghajanian H, McKay AS, Bogard PE, Chang AH, et al. (2014). The sinus venosus contributes to coronary vasculature through VEGFC-stimulated angiogenesis. Development 141, 4500–4512. [PubMed: 25377552]
Chi NC, Shaw RM, De Val S, Kang G, Jan LY, Black BL, and Stainier DY (2008). Foxn4 directly regulates tbx2b expression and atrioventricular canal formation. Genes Dev. 22, 734–739. [PubMed: 18347092]
Craig EA, Austin AF, Vaillancourt RR, Barnett JV, and Camenisch TD (2010). TGFβ2-mediated production of hyaluronan is important for the induction of epicardial cell differentiation and invasion. Exp. Cell Res. 316, 3397–3405. [PubMed: 20633555]
Dai HQ, Wang BA, Yang L, Chen JJ, Zhu GC, Sun ML, Ge H, Wang R, Chapman DL, Tang F, et al. (2016). TET-mediated DNA demethylation controls gastrulation by regulating Lefty-Nodal signalling. Nature 538, 528–532. [PubMed: 27760115]
Dawlaty MM, Breiling A, Le T, Raddatz G, Barrasa MI, Cheng AW, Gao Q, Powell BE, Li Z, Xu M, et al. (2013). Combined deficiency of Tet1 and Tet2 causes epigenetic abnormalities but is compatible with postnatal development. Dev. Cell 24, 310–323. [PubMed: 23352810]
Dawlaty MM, Breiling A, Le T, Barrasa MI, Raddatz G, Gao Q, Powell BE, Cheng AW, Faull KF, Lyko F, and Jaenisch R (2014). Loss of Tet enzymes compromises proper differentiation of embryonic stem cells. Dev. Cell 29, 102–111. [PubMed: 24735881]
de Vlaming A, Sauls K, Hajdu Z, Visconti RP, Mehesz AN, Levine RA, Slugaenhaupt SA, Hagèè A, Chester AH, Markwald RR, and Norris RA (2012). Atrioventricular valve development: new perspectives on an old theme. Differentiation 84, 103–116. [PubMed: 22579502]
Dettman RW, Denetclaw W, Jr., Ordahl CP, and Bristow J (1998). Common epicardial origin of coronary vascular smooth muscle, perivascular fibroblasts, and intermyocardial fibroblasts in the avian heart. Dev. Biol. 193, 169–181. [PubMed: 9473322]
DiMuccio T, Mukai ST, Clelland E, Kohli G, Cuartero M, Wu T, and Peng C (2005). Cloning of a second form of activin-betaA cDNA and regulation of activin-betaA subunits and activin type II receptor mRNA expression by gonadotropin in the zebrafish ovary. Gen. Comp. Endocrinol. 143, 287–299. [PubMed: 15925369]
Feng S, Jacobsen SE, and Reik W (2010). Epigenetic reprogramming in plant and animal development. Science 330, 622–627. [PubMed: 21030646]
Garside VC, Cullum R, Alder O, Lu DY, Vander Werff R, Bilenky M, Zhao Y, Jones SJ, Marra MA, Underhill TM, and Hoodless PA (2015). SOX9 modulates the expression of key transcription factors required for heart valve development. Development 142, 4340–4350. [PubMed: 26525672]
Ge L, Zhang RF, Wan F, Guo DY, Wang P, Xiang LX, and Shao JZ (2014). TET2 plays an essential role in erythropoiesis by regulating lineage-specific genes via DNA oxidative demethylation in a zebrafish model. Mol. Cell. Biol. 34, 989–1002. [PubMed: 24396069]
Goll MG, and Bestor TH (2005). Eukaryotic cytosine methyltransferases. Annu. Rev. Biochem. 74, 481–514. [PubMed: 15952895]
Greco CM, Kunderfranco P, Rubino M, Larcher V, Carullo P, Anselmo A, Kurz K, Carell T, Angius A, Latronico MV, et al. (2016). DNA hydroxymethylation controls cardiomyocyte gene expression in development and hypertrophy. Nat. Commun. 7, 12418. [PubMed: 27489048]
Hang CT, Yang J, Han P, Cheng HL, Shang C, Ashley E, Zhou B, and Chang CP (2010). Chromatin regulation by Brg1 underlies heart muscle development and disease. Nature 466, 62–67. [PubMed: 20596014]
Hatano S, Kimata K, Hiraiwa N, Kusakabe M, Isogai Z, Adachi E, Shinomura T, and Watanabe H (2012). Versican/PG-M is essential for ventricular septal formation subsequent to cardiac atrioventricular cushion development. Glycobiology 22, 1268–1277. [PubMed: 22629047]
Hatcher CJ, Diman NY, Kim MS, Pennisi D, Song Y, Goldstein MM, Mikawa T, and Basson CT (2004). A role for Tbx5 in proepicardial cell migration during cardiogenesis. Physiol. Genomics 18, 129–140. [PubMed: 15138308]
He YF, Li BZ, Li Z, Liu P, Wang Y, Tang Q, Ding J, Jia Y, Chen Z, Li L, et al. (2011). Tet-mediated formation of 5-carboxylcytosine and its excision by TDG in mammalian DNA. Science 333, 1303–1307. [PubMed: 21817016]
Heicklen-Klein A, and Evans T (2004). T-box binding sites are required for activity of a cardiac GATA-4 enhancer. Dev. Biol. 267, 490–504. [PubMed: 15013808]

Hofsteen P, Plavicki J, Johnson SD, Peterson RE, and Heideman W (2013). Sox9b is required for epicardium formation and plays a role in TCDD-induced heart malformation in zebrafish. Mol. Pharmacol. 84, 353–360. [PubMed: 23775563]

Holtzinger A, Rosenfeld GE, and Evans T (2010). Gata4 directs development of cardiac-inducing endoderm from ES cells. Dev. Biol. 337, 63–73. [PubMed: 19850025]

Hon GC, Song CX, Du T, Jin F, Selvaraj S, Lee AY, Yen CA, Ye Z, Mao SQ, Wang BA, et al. (2014). 5mC oxidation by Tet2 modulates enhancer activity and timing of transcriptome reprogramming during differentiation. Mol. Cell 56, 286–297. [PubMed: 25263596]

Hu N, Strobl-Mazzulla P, Sautk-Spengler T, and Bronner ME (2012). DNA methyltransferase3A as a molecular switch mediating the neural tube-to-neural crest fate transition. Genes Dev. 26, 2380–2385. [PubMed: 23124063]

Huang CJ, Tu CT, Hsiao CD, Hsieh FJ, and Tsai HJ (2003). Germ-line transmission of a myocardium-specific GFP transgene reveals critical regulatory elements in the cardiac myosin light chain 2 promoter of zebrafish. Dev. Dyn. 228, 30–40. [PubMed: 12950077]

Huang Y, Chavez L, Chang X, Wang X, Pastor WA, Kang J, Zepeda-Martínez JA, Pape UJ, Jacobsen SE, Peters B, and Rao A (2014). Distinct roles of the methylcytosine oxidases Tet1 and Tet2 in mouse embryonic stem cells. Proc. Natl. Acad. Sci. USA 111, 1361–1366. [PubMed: 24474761]

Ishii Y, Garriock RJ, Navetta AM, Coughlin LE, and Mikawa T (2010). BMP signals promote proepicardial protrusion necessary for recruitment of coronary vessel and epicardial progenitors to the heart. Dev. Cell 19, 307–316. [PubMed: 20708592]

Jazwinski A, Badakov R, and Keating MT (2007). Activin-betaA signaling is required for zebrafish fin regeneration. Curr. Biol. 17, 1390–1395. [PubMed: 17683938]

Jowett T (1999). Analysis of protein and gene expression. Methods Cell Biol. 59, 63–85. [PubMed: 9891356]

Kalluri R, and Weinberg RA (2009). The basics of epithelial-mesenchymal transition. J. Clin. Invest. 119, 1420–1428. [PubMed: 19487818]

Kikuchi K, Gupta V, Wang J, Holdway JE, Wills AA, Fang Y, and Poss KD (2011). tcf21 + epicardial cells adopt non-myocardial fates during zebrafish heart development and regeneration. Development 138, 2895–2902. [PubMed: 21653610]

Kimmel CB, Ballard WW, Kimmel SR, Ullmann B, and Schilling TF (1995). Stages of embryonic development of the zebrafish. Dev. Dyn. 203, 253–310. [PubMed: 8589427]

Ko M, An J, Pastor WA, Korolov SB, Rajewsky K, and Rao A (2015). TET proteins and 5-methylcytosine oxidation in hematological cancers. Immunol. Rev. 263, 6–21. [PubMed: 25510268]

Kohli RM, and Zhang Y (2013). TET enzymes, TDG and the dynamics of DNA demethylation. Nature 502, 472–479. [PubMed: 24153300]

Kou CY, Lau SL, Au KW, Leung PY, Chim SS, Fung KP, Waye MM, and Tsui SK (2010). Epigenetic regulation of neonatal cardiomyocytes differentiation. Biochem. Biophys. Res. Commun. 400, 278–283. [PubMed: 20759899]

Kovacic JC, Mercader N, Torres M, Boehm M, and Fuster V (2012). Epithelial-to-mesenchymal and endothelial-to-mesenchymal transition: from cardiovascular development to disease. Circulation 125, 1795–1808. [PubMed: 22492947]

Krainock M, Toutz O, Danopoulos S, Beckham A, Warburton D, and Kim R (2016). Epicardial epithelial-to-mesenchymal transition in heart development and disease. J. Clin. Med. 5, 27.

Kranzhöfer DK, Gilsbach R, Grütting BA, Backofen R, Nürenberg TG, and Hein L (2016). 5′-hydroxymethylcytosine precedes loss of CpG methylation in enhancers and genes undergoing activation in cardiomyocyte maturation. PLoS ONE 11, e0166575. [PubMed: 27851806]

Lee HJ, Lowndon RF, Maricque B, Zhang B, Stevens M, Li D, Johnson SL, and Wang T (2015). Developmental enhancers revealed by extensive DNA methylome maps of zebrafish early embryos. Nat. Commun. 6, 6315. [PubMed: 25697895]

Li H, and Durbin R (2009). Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25, 1754–1760. [PubMed: 19451168]
Li X, Lan Y, Xu J, Zhang W, and Wen Z (2012). SUMO1-activating enzyme subunit 1 is essential for the survival of hematopoietic stem/progenitor cells in zebrafish. Development 139, 4321–329. [PubMed: 23132242]

Li C, Lan Y, Schwartz-Orbach L, Korol E, Tahilian M, Evans T, and Goll MG (2015). Overlapping requirements for Tet2 and Tet3 in normal development and hematopoietic stem cell emergence. Cell Rep. 12, 1133–1143. [PubMed: 26257178]

Li X, Yue X, Pastor WA, Lin L, Georges R, Chavez L, Evans SM, and Rao A (2016). Tet proteins influence the balance between neuroectodermal and mesodermal fate choice by inhibiting Wnt signaling. Proc. Natl. Acad. Sci. USA 113, E8267–E8276. [PubMed: 27930333]

Lincoln J, Kist R, Scherer G, and Yutzey KE (2007). Sox9 is required for precursor cell expansion and extracellular matrix organization during mouse heart valve development. Dev. Biol. 305, 120–132. [PubMed: 17350610]

Lindsey SE, Butcher JT, and Yalcin HC (2014). Mechanical regulation of cardiac development. Front. Physiol. 5, 318. [PubMed: 25191277]

Liu J, and Stainier DY (2010). Tbx5 and Bmp signaling are essential for proepicardial specification in zebrafish. Circ. Res. 106, 1818–1828. [PubMed: 20413782]

Loscalzo J, and Handy DE (2014). Epigenetic modifications: basic mechanisms and role in cardiovascular disease (2013 Grover Conference series). Pulm. Circ. 4, 169–174. [PubMed: 25006435]

Madzo J, Liu H, Rodriguez A, Vasanthakumar A, Sundaravel S, Caces DBD, Looney TJ, Zhang L, Lepore JB, Macrae T, et al. (2014). Hydroxymethylation at gene regulatory regions directs stem/early progenitor cell commitment during erythropoiesis. Cell Rep. 6, 231–244. [PubMed: 24373966]

Mano H (2008). Epigenetic abnormalities in cardiac hypertrophy and heart failure. Environ. Health Prev. Med. 13, 25–29. [PubMed: 19568876]

Meilhac SM, Esner M, Kelly RG, Nicolas JF, and Buckingham ME (2004). The clonal origin of myocardial cells in different regions of the embryonic mouse heart. Dev. Cell 6, 685–698. [PubMed: 15130493]

Moro E, Ozhan-Kizil G, Mongera A, Beis D, Wierzbicki C, Young RM, Bournele D, Domenichini A, Valdivia LE, Lum L, et al. (2012). In vivo Wnt signaling tracing through a transgenic biosensor fish reveals novel activity domains. Dev. Biol. 366, 327–340. [PubMed: 22546689]

Nahirney PC, Mikawa T, and Fischman DA (2003). Evidence for an extra-cellular matrixbridge guiding proepicardial cell migration to the myocardium of chick embryos. Dev. Dyn. 227, 511–523. [PubMed: 12889060]

Noh K-M, Wang H, Kim HR, Wenderski W, Fang F, Li CH, Dewell S, Hughes SH, Melnick AM, Patel DJ, et al. (2015). Engineering of a histone-recognition domain in Dnmt3a alters the epigenetic landscape and phenotypic features of mouse ESCs. Mol. Cell 59, 89–103. [PubMed: 26073541]

Ooi SK, Qiu C, Bernstein E, Li K, Jia D, Yang Z, Erdjument-Bromage H, Tempst P, Lin SP, Allis CD, et al. (2007). DNMT3L connects unmethylated lysine 4 of histone H3 to de novo methylation of DNA. Nature 448, 714–717. [PubMed: 17687327]

Pan H, Jiang Y, Boi M, Tabbò F, Redmond D, Nie K, Ladetto M, Chiappella A, Cerchietti L, Shaknovich R, et al. (2015). Epigenomic evolution in diffuse large B-cell lymphomas. Nat. Commun. 6, 6921. [PubMed: 25891015]

Parsons MJ, Pisharath H, Yusuff S, Moore JC, Siekmann AF, Lawson N, and Leach SD (2009). Notch-responsive cells initiate the secondary transition in larval zebrafish pancreas. Mech. Dev. 126, 898–912. [PubMed: 19595765]

Pastor WA, Aravind L, and Rao A (2013). TETonic shift: biological roles of TET proteins in DNA demethylation and transcription. Nat. Rev. Mol. Cell Biol. 14, 341–356. [PubMed: 23698584]

Patra C, Diehl F, Ferrazzi F, van Amerongen MJ, Novoyatleva T, Schaefer L, Mühlfeld C, Jungblut B, and Engel FB (2011). Nephronectin regulates atrioventricular canal differentiation via Bmp4-Has2 signaling in zebrafish. Development 138, 4499–4509. [PubMed: 21937601]

Peal DS, Lynch SN, and Milan DJ (2011). Patterning and development of the atrioventricular canal in zebrafish. J. Cardiovasc. Transl. Res. 4, 720–726. [PubMed: 21948390]
Peralta M, González-Rosa JM, Marques IJ, and Mercader N (2014). The epicardium in the embryonic and adult zebrafish. J. Dev. Biol. 2, 101–116. [PubMed: 24926432]

Person AD, Kiewer SE, and Runyan RB (2005). Cell biology of cardiac cushion development. Int. Rev. Cytol. 243, 287–335. [PubMed: 15797462]

Piven OO, and Winata CL (2017). The canonical way to make a heart: β-catenin and plakoglobin in heart development and remodeling. Exp. Biol. Med. (Maywood) 242, 1735–1745. [PubMed: 28920469]

Plavicki JS, Baker TR, Burns FR, Xiong KM, Gooding AJ, Hofsteen P, Peterson RE, and Heideman W (2014a). Construction and characterization of a sox9b transgenic reporter line. Int. J. Dev. Biol. 58, 693–699. [PubMed: 25896205]

Plavicki JS, Hofsteen P, Yue MS, Lanham KA, Peterson RE, and Heideman W (2014b). Multiple modes of proepicardial cell migration require heartbeat. BMC Dev. Biol. 14, 18. [PubMed: 24885804]

Poelmann RE, Gittenberger-de Groot AC, Mentink MM, Bökenkamp R, and Hogers B (1993). Development of the cardiac coronary vascular endothelium, studied with antiendothelial antibodies, in chicken-quaill chimeras. Circ. Res. 73, 559–568. [PubMed: 8348697]

Rasmussen KD, and Helin K (2016). Role of TET enzymes in DNA methylation, development, and cancer. Genes Dev. 30, 733–750. [PubMed: 27036965]

Ratajska A, Czarnowska E, and Ciszek B (2008). Embryonic development of the proepicardium and coronary vessels. Int. J. Dev. Biol. 52, 229–236. [PubMed: 18311713]

Red-Horse K, Ueno H, Weissman IL, and Krasnow MA (2010). Coronary arteries form by developmental reprogramming of venous cells. Nature 464, 549–553. [PubMed: 20336138]

Reiter JF, Alexander J, Rodaway A, Yelon D, Patient R, Holder N, and Stainier DY (1999). Gata5 is required for the development of the heart and endoderm in zebrafish. Genes Dev. 13, 2983–2995. [PubMed: 10580005]

Robertson KD (2005). DNA methylation and human disease. Nat. Rev. Genet. 6, 597–610. [PubMed: 16136652]

Sen GL, Reuter JA, Webster DE, Zhu L, and Khavari PA (2010). DNMT1 maintains progenitor function in self-renewing somatic tissue. Nature 463, 563–567. [PubMed: 20081831]

Seritrakul P, and Gross JM (2017). Tet-mediated DNA hydroxymethylation regulates retinal neurogenesis by modulating cell-extrinsic signaling pathways. PLoS Genet. 13, e1006987. [PubMed: 28926578]

Serluca FC (2008). Development of the proepicardial organ in the zebrafish. Dev. Biol. 315, 18–27. [PubMed: 18206866]

Shi Y, and Massague J (2003). Mechanisms of TGF-β signaling from cell membrane to the nucleus. Cell 113, 685–700. [PubMed: 12809600]

Shirai M, Imanaka-Yoshida K, Schneider MD, Schwartz RJ, and Morisaki T (2009). T-box 2, a mediator of Bmp-Smad signaling, induced hyaluronan synthase 2 and Tgfbeta2 expression and endocardial cushion formation. Proc. Natl. Acad. Sci. USA 106, 18604–18609. [PubMed: 19846762]

Singh R, Hoogas WM, Barnett P, Grieskamp T, Rana MS, Buermans H, Farin HF, Petry M, Heallen T, Martin JF, et al. (2012). Tbx2 and Tbx3 induce atrioventricular myocardial development and endocardial cushion formation. Cell. Mol. Life Sci. 69, 1377–1389. [PubMed: 22130515]

Snarr BS, Kern CB, and Wessels A (2008). Origin and fate of cardiac mesenchyme. Dev. Dyn. 237, 2804–2819. [PubMed: 18816864]

Solary E, Bernard OA, Tefferi A, Fuks F, and Vainchenker W (2014). The ten-eleven translocation-2 (TET2) gene in hematopoiesis and hematopoietic diseases. Leukemia 28, 485–496. [PubMed: 24220273]

Sun Z, Jin P, Tian T, Gu Y, Chen YG, and Meng A (2006). Activation and roles of ALK4/ALK7-mediated maternal TGFbeta signals in zebrafish embryo. Biochem. Biophys. Res. Commun. 345, 694–703. [PubMed: 16696945]

Todorovic V, Finnegan E, Freyer L, Zilberberg L, Ota M, and Rifkin DB (2011). Long form of latent TGF-β binding protein 1 (Ltpb1L) regulates cardiac valve development. Dev. Dyn. 240, 176–187. [PubMed: 21181942]

Cell Rep. Author manuscript; available in PMC 2019 February 07.
Turgeon PJ, Sukumar AN, and Marsden PA (2014). Epigenetics of cardiovascular disease - a new “beat” in coronary artery disease. Med. Epigenet. 2, 37–52. [PubMed: 25408699]

Vallaster M, Vallaster CD, and Wu SM (2012). Epigenetic mechanisms in cardiac development and disease. Acta Biochim. Biophys. Sin. (Shanghai) 44, 92–102. [PubMed: 22194017]

Verhoeven MC, Haase C, Christoffels VM, Weidinger G, and Bakkers J (2011). Wnt signaling regulates atrioventricular canal formation upstream of BMP and Tbx2. Birth Defects Res. A Clin. Mol. Teratol. 91, 435–440. [PubMed: 21567896]

Verma N, Pan H, Doré LC, Shukla A, Li QV, Pelham-Webb B, Teijeiro V, González F, Krivtsov A, Chang CJ, et al. (2018). TET proteins safeguard bivalent promoters from de novo methylation in human embryonic stem cells. Nat. Genet. 50, 83–95. [PubMed: 29203910]

Wang Y, Wu B, Chamberlain AA, Lui W, Koirala P, Susztak K, Klein D, Taylor V, and Zhou B (2013). Endocardial to myocardial notch-wnt-bmp axis regulates early heart valve development. PLoS ONE 8, e60244. [PubMed: 23560082]

Wu H, and Zhang Y (2011). Mechanisms and functions of Tet protein-mediated 5-methylcytosine oxidation. Genes Dev. 25, 2436–2452. [PubMed: 22156206]

Wu X, and Zhang Y (2017). TET-mediated active DNA demethylation: mechanism, function and beyond. Nat. Rev. Genet. 18, 517–534. [PubMed: 28555658]

Yan YL, Willoughby J, Liu D, Crump JG, Wilson C, Miller CT, Singer A, Kimmel C, Westerfield M, and Postlethwait JH (2005). A pair of Sox: distinct and overlapping functions of zebrafish sox9 co-orthologs in craniofacial and pectoral fin development. Development 132, 1069–1083. [PubMed: 15689370]

Yang JT, Rayburn H, and Hynes RO (1995). Cell adhesion events mediated by alpha 4 integrins are essential in placental and cardiac development. Development 121, 549–560. [PubMed: 7539359]

Zhang Y, Liu T, Meyer CA, Eeckhoute J, Johnson DS, Bernstein BE, Nusbaum C, Myers RM, Brown M, Li W, and Liu XS (2008). Model-based analysis of ChIP-seq (MACS). Genome Biol. 9, R137. [PubMed: 18798982]

Zygmunt T, Gay CM, Blondelle J, Singh MK, Flaherty KM, Means PC, Herwig L, Krudewig A, Belting H-G, Affolter M, et al. (2011). Semaphorin-PlexinD1 signaling limits angiogenic potential via the VEGF decoy receptor sFlt1. Dev. Cell 21, 301–314. [PubMed: 21802375]
Highlights

• Zebrafish larvae lacking Tet2 and Tet3 fail in AVC and epicardium development

• Inhbaa (in endocardium) and Sox9b (in myocardium) are targets of Tet2/3 demethylation

• These genes help coordinate ECM needed by epicardial progenitors
Figure 1. tet2 and tet3 Have Overlapping Functions in PE Recruitment to the Heart
(A) WISH for PE marker *wt1* at 40 hpf and 54 hpf. Arrows indicate PE cells with *wt1* transcripts.
(B) Lateral view of hearts showing GFP-labeled PE and epicardium in 46-hpf, 52-hpf, and 72-hpf larvae carrying the Tg(tcf21:NLS-EGFP) transgene. White arrow indicates the extracellular matrix bridge between AVC and the pericardial wall.
(C) Ventral view of hearts showing GFP-labeled PE and epicardium in 48-hpf and 72-hpf sibling or tet2/3DM larvae carrying the Tg(tcf21:NLS-EGFP) transgene. White arrows indicate *tcf21*+ PE and epicardial cells located on the heart. Yellow arrows indicate *tcf21*+ PE and epicardial cells located on the yolk sac. Graph indicates the total number of PE and...
epicardial cells in 48-hpf or 72-hpf sibling and tet2/3^{DM} larvae and the number of PE and epicardial cells located on heart or yolk sac at 72-hpf sibling and tet2/3^{DM} larvae.

(D) The PE migration defect is partially rescued by TET2 mRNA injection or 5-aza treatment. GFP-labeled PE and epicardium in 4-dpf sibling, tet2/3^{DM}, and tet2/3^{DM} injected with wild-type hTET2 mRNA, mutant hTET2 mRNA, or tet2/3^{DM} exposed to 75 μM 5-aza larvae carrying the Tg(tcf21:NLS-EGFP) transgene. Graph indicating the number of epicardial cells located on the heart at 4 dpf is shown. Scale bars: (A) 50 μm; (B–D) 100 μm. **p < 0.01; ***p < 0.001; ns indicates not significant. Data are presented as mean ± SD derived from at least three independent biological replicates.
Figure 2. Epicardial Cells from Donor Hearts Do Not Migrate onto tet2/3^{DM} Recipient Hearts

(A) Schematic of epicardial cell migration assay. Wild-type tcf21:DsRed donor hearts (isolated at 72 hpf) were co-cultured with either wild-type or tet2/3^{DM} myl7:GFP recipient hearts (isolated at 48 hpf) for one week and then confocal images taken.

(B) Confocal images showed epicardial cells from wild-type donor heart can migrate onto wild-type recipient hearts. In 30 pairs of co-cultured hearts, 6 of recipient hearts were observed having epicardial cells migrated from donor hearts.

(C) Confocal images showed epicardial cells from wild-type donor heart failed to migrate onto tet2/3^{DM} recipient hearts. In 60 pairs of co-cultured hearts, none of the recipient hearts were observed having epicardial cells from donor hearts.

Scale bar: 50 μm.
Figure 3. Hypermethylation and Deregulation of Cardiac Developmental Genes in tet2/3DM Larvae

(A) Enrichment of various regulatory regions in 5hmC peak and hyper-DMR by 5hmC chromatin immunoprecipitation (ChIP)-sequencing and ERRBS.

(B) Total number of hyper-and hypo-DMR (tet2/3DM heart versus wild-type heart) by ERRBS.

(C) Overlapping locations between hyper-DMRs and 5hmC peaks.

(D) Pathway enrichment analysis for genes associated with hyper-DMR.

(E) Scatterplot of RNA sequencing data illustrating transcriptional changes in 48-hpf tet2/3DM heart as compared to wild-type heart.

(F) Pathway enrichment analysis for downregulated genes in 48-hpf tet2/3DM heart as compared to wild-type heart by RNA sequencing.
Figure 4. AVC Development Shows Disruption in tet2/3DM Larvae

(A) GFP-labeled AVC endocardium represents Wnt activity in sibling heart, but not tet2/3DM heart. Hearts were dissected from 48-hpf larvae carrying the Tg(7xTCF-Xla.Siam:GFP) transgene. White arrows indicate AVC endocardial cells with Wnt activity.

(B) WISH for AVC markers bmp4 and has2 at 48 hpf.

(C) GFP-labeled endocardium represents AV valve formation in 4-dpf sibling, but not tet2/3DM larvae carrying the Tg(kdrl:EGFP) transgene. White arrows indicate the AV valve. Bottom left images show higher magnification views of AV valve regions.

(D) WISH for AVC marker bmp4 in 48 hpf and confocal imaging for GFP-labeled PE and epicardium in 72-hpf control and IWR-1-treated larvae. Scale bars: 50 μm.
Figure 5. Tet2/3-Dependent Aberrant Promoter Hypermethylation and Deregulation of *inhbaa* and *sox9b* Leads to AVC and PE Migration Defects

(A) RT-PCR analysis of *inhbaa* and *sox9b* transcripts in 48-hpf embryonic heart.

(B) DNA methylation status of *inhbaa* in 48-hpf isolated heart or isolated AVC. Diagram indicates *inhbaa* locus and the associated regulatory regions. Gray box represents 5hmC peak. Black box represents the coding sequence. White box represents hyper-DMR identified by ERRBS. Profiles of 5mC + 5hmC in hyper-DMR region were validated by bisulfite sequencing. n = 4 per condition.

(C) DNA methylation status of *sox9b* in 48 hpf isolated heart. Diagram indicates *sox9b* locus and the associated regulatory regions. Gray box represents 5hmC peak. Black box represents the coding sequence. White box represents hyper-DMR. Profiles of 5mC + 5hmC in hyper-DMR region were validated by bisulfite sequencing. n = 4 per condition.

(D) WISH for AVC markers *bmp4* and *has2* at 48-hpf sibling, tet2/3^DM_, and tet2/3^DM_ injected with *inhbaa* mRNA or *sox9b* mRNA larvae. Scale bar: 50 μm.

(E) Number of epicardial cells on the heart of 4-dpf sibling, tet2/3^DM_, and tet2/3^DM_ injected with *inhbaa* mRNA, *sox9b* mRNA, or *sox9b* combined with *inhbaa* mRNA larvae carrying...
the Tg(tcf21::NLS-EGFP) transgene. Data are presented as the mean ± SD. The significance is indicated as *p < 0.05; **p < 0.01; ***p < 0.001; ns indicates not significant.
Figure 6. Tet2/3 Regulate PE Migration through Extracellular Matrix Organization

(A) WISH for ECM constituent gene *vcana* at 48 hpf. Black arrows indicate AVC-specific expression of *vcana* in sibling, but not *tet2/3* DM heart.

(B) GFP-labeled PE and epicardium in 4-dpf larvae carrying the Tg(tcf21:NLS-EGFP) transgene. Sibling, *tet2/3DM*, and *tet2/3DM* injected with has2 mRNA and *tet2/3DM* injected with low concentration (0.5 mg/mL) collagen larvae were shown in lateral views. Sibling and *tet2/3DM* injected with high concentration (8 mg/mL) collagen larvae were shown in ventral views to represent collagen aggregate and heart clearly. The heart is outlined with white dashed line. The collagen aggregate is outlined with red dashed line.

(C) Number of epicardial cells on the heart of 4-dpf sibling, *tet2/3DM*, and *tet2/3DM* injected with sox9b mRNA or *tet2/3DM* injected with low concentration (0.5 mg/mL) collagen larvae carrying the Tg(tcf21:NLS-EGFP) transgene. Numbers data are presented as the mean ± SD derived from 3 independent biological replicates.

(D) Working model shows Tet2/3-dependent demethylation regulates the expression of *inhbaa* and *sox9b*, which subsequently regulate AVC ECM organization and PE migration. Scale bars: 50 μm. The significance is indicated as *p < 0.05; **p < 0.01; ***p < 0.001.
KEY RESOURCES TABLE

REAGENT or RESOURCE	SOURCE	IDENTIFIER
Antibodies		
p-Histone H3 Antibody (Ser 10)	Santa Cruz	Cat# sc-8656-R; RRID: AB_653256
GFP Monoclonal Antibody (3E6)	Invitrogen	Cat# A-11120; RRID: AB_221568
Bacterial and Virus Strains		
One Shot TOP10 Chemically Competent E. coli	Invitrogen	Cat# C404006
Chemicals, Peptides, and Recombinant Proteins		
5-Aza-2-deoxycytidine	Sigma	A3656-5MG
IWR-1	Enzo Life Sciences	BML-WN103-0005
TRIM(1-[2-(Trifluoromethyl)phenyl]imidazole)	Sigma	T7313-100MG
SB431542	Stemgent	04-0010-10
Coming Collagen I	Fisher	354249
Critical Commercial Assays		
mMESSAGE mMACHINE	Invitrogen	AM1340
RNasey Mini kit	QIAGEN	74106
RNasey Micro kit	QIAGEN	74004
LightCycler 480 Sybr Green master mix	Roche	04-887-352-001
Ovation RNA-Seq System V2	Nugen	N/A
TruSeq RNA Library Prep Kit v2	Illumina	RS-122-2001
DNeasy Blood & Tissue Kits	QIAGEN	69506
EZ DNA Methylation-Direct kit	Zymo Research	D5021
Deposited Data	This paper	GSE121991
Histone datasets	Bogdanovic et al., 2012	GSE32483
Zebrafish GRCz10 reference genome	Genome Reference Consortium	https://www.ncbi.nlm.nih.gov/assembly/GCF_000002035.5/
Zebrafish danRer7 reference genomes	Wellcome Trust Sanger Institute	https://www.ncbi.nlm.nih.gov/assembly/GCF_000002035.4/
Experimental Models: zebrafish Strains		
tet<sup>2α/l7αl17, tet^{α4/18/α4l18 double-mutant te2/pDM}	Li et al., 2015	N/A
Tg(α17:EGFP)	Huang et al., 2003	N/A
Tg(tcf21:NLs-EGFP)	Kikuchi et al., 2011	N/A
Tg(tcf21:DsRed2)	Kikuchi et al., 2011	N/A
Tg(7αTCF-Xla.Siam:GFP)^{mut}	Moro et al., 2012	N/A
Tg(kdrl:EGFP-NLS)	Zygmun et al., 2011	N/A
Tg(tp1:EGFP)	Parsons et al., 2009	N/A
Oligonucleotides		
Splice-blocking MO (5’ TGC AGT AAT TTA CCG GAG TGT TCT C 3’) for sox9b	Yan et al., 2005	N/A
PCR primer sequences, see Table S1	This paper	N/A
Recombinant DNA		
REAGENT or RESOURCE	SOURCE	IDENTIFIER
---------------------	--------	------------
Plasmid: pEF1/V5-His-hTET2	Li et al., 2015	N/A
Plasmid: pEF1/V5-His-mutant hTET2	Li et al., 2015	N/A
Plasmid: pCS2+-inhbaa	This paper	N/A
Plasmid: pCS2+-sox9b	This paper	N/A
Plasmid: pCS2+-has2	This paper	N/A
Software and Algorithms		
SPOT advanced imaging software	SPOT Imaging	N/A
Zen software	ZEISS	N/A
macs14 1.4.2	Shirley Liu lab	http://liulab.dfci.harvard.edu/MACS/00README.html
Lasergene	DNASTAR	N/A
Prism 7	GraDhDad	N/A