Application of (Genetic – Tabu Search) Algorithms for Subsequent Lease Schedule

V Kinasya
Magister Sistem Informasi, Universitas Komputer Indonesia, Indonesia
kinasyavisa@gmail.com

Abstract. Submission of information relating to college scheduling in college is very important and is usually done on a semester by the academic section. One of these universities is Universitas Komputer Indonesia (Unikom) which became object of case study. In determining the scheduling of many aspects that must be considered include the components of the course, lecturer, class, space, and time. All of these components are considered so that the schedule of lectures that will be formed does not happen clashing with each other. In addition, scheduling problems will be more complex if there are many additional terms or constraints. In this study aims to be able to make lecture class scheduling replacement with a combination of genetic algorithms and tabu search. The first step is done by separating the hard and soft constraints that exist in the lecture problem, and then the best individual search is done by crossover or cross-breeding process to produce new individual and perform the process of mutation or exchange of individual position in order to produce the best fitness value of the previous individual. The advantage of using a tabu search algorithm allows for the absence of duplicate individual processes. Therefore, the combination of these two algorithms is capable of producing good scheduling and the clashing rate of a schedule can be handled.

1. Introduction
Scheduling [1-5] is a difficult issue with many aspects to be aware of. Aspects in determining scheduling include aspects of lecturer, class, space, and time. With a combination of genetic algorithms and tabu search can help solve the problem of scheduling. In this case, a combination of genetic algorithms and tabu search can make replacement schedules with different times and rooms for a limited time [6]. The replacement time in this case is 1 week from the schedule to be replaced. However, in this case, the lecturer's replacement scheduling is not replaced by a different lecturer.

Many studies have reported how difficult it is to make scheduling as it has been widely studied as in university [5, 7], machine scheduling [1, 6, 8, 9], or other scheduling [2-4, 8, 10-15]. Difficulty in scheduling [8] is when plotting the allocation of several subjects into a set of timeslots and lecturers with the existing restrictions. In addition, the solutions obtained may not be satisfactory in some aspects. The impact of making a manual lecture is when the prerequisites change, then the entire work becomes unusable. For example [10] Sonawane and Ragha show that the scheduling problem included in the combinatorial optimization problem [10, 11] is solved by finding the optimal solution for each instance.

In this study aims to be able to make lecture class scheduling replacement with a combination of genetic algorithms and tabu search.
2. Experimental method
Chromosome models [9] are applied to analyze based on the aspects that exist on the scheduling. Then the chromosome models are compared with the literature, such as [10] and [11]. In summary as in the previous literature and the metaheuristics [14] present in the genetic algorithm are used for the selection of each aspect to be related to the constraints of the scheduling requirements. While the metaheuristics [12] that exist on the tabu search algorithm is used when each individual swap the best individuals. The results of computation with both genetic algorithms and tabu search illustrate that the resulting chromosome will become the replacement scheduling that is by using the best individual approach that has been selected [10, 11].

3. Results and discussion
3.1. Research flow
Here is the presentation of this research design (See Figure 1):

![Diagram](image)

Figure 1. Research flow.

Figure 1 is a flow chart of genetic algorithms and tabu search. Starts with the initialization of the population based on the size or number of individuals that have been determined. Individual formation is determined according to random lecture time, random lecture days, random lecture rooms, and lecturers according to the class they are taught. Then checking based on fitness values based on hard constraints and soft constraints that have been determined as the initial limitation of scheduling. Then the best individual selection resulting from the process of comparison between individuals based on soft constraints that successfully met. If the selected chromosome [7] is not suitable then crossover and
mutation to determine the new individual. To save on searching for new individuals, the search tab algorithm serves to store the results of the best individual before so there is no duplicate search [6] between individuals. Thus, the best individuals produced from the two algorithms are produced.

3.2. Research model
Scheduling schedules at the Universitas Komputer Indonesia include several components, including lecturer modules, student modules, and module lecture rooms. In the case of scheduling it also uses data relating to the scheduling system of lectures from the academic year 2015/2016 even semester on the Communication Studies program at the Universitas Komputer Indonesia. Here table 1 is the data entity used: (See Table 1).

Table 1. Research data.
Number Of Lecturers Teaching
Courses
Lecture Session
Days Of Scheduling

3.3. Genetic algorithm and tabu search algorithm implementation
Each of the best individual chromosomes can be defined in terms of the mxn matrix [10], where m is the number of days scheduled and n is the number of time slots available. With the number of available slots is 14 time range. The time slot starts at 07.00 WIB until 17.30 WIB. With the provision of 1 time slot of about 45 minutes. Here table 2 is a representation of the chromosome results that exist: (see Table 2).

Table 2. Chromosom representation.
Time Slot

1
...
n

Each representation is defined by the name of the lecturer, the room, the course code. In 1 slot will produce some individuals, because the available space is 12. So with the selection process [7, 9] from the best individuals will produce some results. The results of the best individuals will certainly be stored into the tabu list [13, 15], so that the best individual results that have been selected are not lost and no duplication in the individual search process.

3.4. Comparison of result with previous research
The alternate course scheduling can give results if the problem is used by only one algorithm [1-3], then the results of its performance is not as good as when using a combination of two genetic algorithms and tabu search [10, 11]. Both of these algorithms support each other in the individual search process of crossover [7, 9] and mutation [7, 9]. Therefore, since the algorithm used is a combination of genetic algorithm and tabu search, it can schedule substitute lectures in quiet weeks as much as possible with
the accomplishment of all aspects [10] involved with the constraints of both soft constraints and hard constraints that have been determined.

4. Conclusion
Genetic algorithms and tabu search are able to provide optimal solutions with completed combinatorial problems. The applications of these two functions can be used to create different applications with different times and the same time. Lecture scheduling is usually done in the first semester, but at this stage lecture scheduling is done with the existing problems. The applications of these two functions can be used to create different applications with what is in the genetic algorithm. That in itself, while the tabu search algorithm also has a list of tabus that fit as the best individuals the result of a settlement with no data missing or duplicate.

References
[1] Sels, Velonique, Vanhoucke, Mario 2013 “Genetic Algorithms For Single Machine Scheduling Problems: A Trade-Off Between Intensification And Diversification,” International Journal of Evolution Equations 8 (2) 187-215.
[2] Abdeyazdan M 2012 “Tasks Merging Technique For Optimization Of Scheduling,” Proceedings Of The International Conference on Parallel And Distributed 1-6.
[3] Kia H and Ghodsypour S H 2017 “New Scheduling Rules For A Dynamic Flexible Flow Line Problem With Sequence-Dependent Setup Times,” Journal of Engineering International 13 (3) 297-306.
[4] Gen M and Lin L 2014 “Multiobjective Evolutionary Algorithm For Manufacturing Scheduling Problems: State-Of-The- Art Survey,” Journal of Intelligent Manufacturing 25 (5) 849-866.
[5] Mahmood T and Farid M S 2012 “Multi-Agent Task Scheduling In University Environment,” IAES International Jornal Of Artificial Intelligence 1(4) 193.
[6] Bozejko W, Wodecki M and Rajba P 2017 “Stable Scheduling Of Single Machine With Probabilistic Parameters,” Bulletin Of The Polish Academy Of Sciences 65 (2) 219-231.
[7] Lakshmi R, Vivekanadhan K and Brinha R 2012 “A New Biological Operator in Genetic Algorithm for Class Scheduling with Unordered Sub Sequence Exchange Crossover,” Journal of Computer Applications (0975 8887) 60(12) 681-693.
[8] Jin F and Shiji S 2009 “A simulated annealing algorithm for single machine scheduling problems with family setups,” Computers & Operations Research Newyork 36(7) 2133.
[9] Valente J and Concalves J 2008 “A genetic algorithm approach for the single machine scheduling with linear earliness and quadratic tardiness penalties,” FEP Working Paper.
[10] Sonawane, A Ms Premlata and Raghla L 2014 “Hybrid Genetic Algorithm and Tabu Search Algorithm to Solve Class Time Table Scheduling Problem,” International Journal of Research Studies in Computer Science and Engineering (IJRSCSE) 1(4) 19-26.
[11] Meeran S and Morsher M S 2012 “A Hybrid Genetic Tabu Search Algorithm For Solving Job Shop Scheduling Problems: A Case Study,” Journal of Intelligent Manufacturing 23(4) 1063-1078.
[12] Kunadilok J 2007 “Heuristics for Scheduling Reentrant Flexible Job Shops With Sequence-Dependent Setup Times And Limited Buffer Capacitis,” ProQuest Dissertation Publishing 231.
[13] Geyik F and Hakki C I 2004 “The Strategis And Parameters Of Tabu Search For Job-Shop Scheduling,” Journal Of Intelligent Manufacturing, suppl. Intelligent Manufacturing Systems: Vision For The Future 15(4) 439-448.
[14] Fernandes S 2008 “Optimised Search Heuristics: Combining Metaheuristic And Exact Method To Solve Scheduling Problems,” ProQuest Dissertations Publishing 183.
[15] Ceschia S, Gaspero L D and Schaefer A 2011 “Tabu Search Techniques For The Heterogeneous Vehicle Routing Problem With Time Windows And Carrier-Dependent Costs,” Journal of Scheduling 14 601-615.