Research Progress on the Surface of High-Nickel Nickel–Cobalt–Manganese Ternary Cathode Materials: A Mini Review

Liubin Song¹, Jinlian Du¹, Zhongliang Xiao*¹, Peng Jiang¹, Zhong Cao¹ and Huali Zhu²

¹ Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation, School of Chemistry and Food Engineering, Changsha University of Science and Technology, Changsha, China, ² School of Physics and Electronic Science, Changsha University of Science and Technology, Changsha, China

To address increasingly prominent energy problems, lithium-ion batteries have been widely developed. The high-nickel type nickel–cobalt–manganese (NCM) ternary cathode material has attracted attention because of its high energy density, but it has problems such as cation mixing. To address these issues, it is necessary to start from the surface and interface of the cathode material, explore the mechanism underlying the material’s structural change and the occurrence of side reactions, and propose corresponding optimization schemes. This article reviews the defects caused by cation mixing and energy bands in high-nickel NCM ternary cathode materials. This review discusses the reasons why the core-shell structure has become an optimized high-nickel ternary cathode material in recent years and the research progress of core-shell materials. The synthesis method of high-nickel NCM ternary cathode material is summarized. A good theoretical basis for future experimental exploration is provided.

Keywords: lithium ion battery, high nickel type, ternary cathode material, surface, core-shell

INTRODUCTION

As environmental issues have become a major concern, reducing the use of fossil fuels has become a key issue. Lithium-ion batteries are the most commonly used energy storage devices due to their high energy density and long cycle life (Wang et al., 2020f; Zhang et al., 2020). The new energy industry powered by lithium-ion batteries has been greatly developed (Pant and Dolker, 2017; Barcellona and Piegari, 2020; Mossali et al., 2020; Wang et al., 2020d). However, fierce competition in this industry has brought about higher requirements for lithium-ion batteries (Zubi et al., 2018). The nature of the electrode material is the fundamental factor affecting the performance of the battery. Analyzing and optimizing the electrode material is an important approach to solving the bottleneck of the lithium ion battery (Lipu et al., 2018; Zhang et al., 2018).

LiCoO₂ has good cycle stability in the cathode material of lithium batteries, but the actual capacity is low (Yang et al., 2018; Wang et al., 2020b). LiMn₂O₄ has excellent cycle performance but is prone to spinel phase degradation (Dai et al., 2012; Bhuvaneswari et al., 2019). LiMnO₂ has good cycle performance but low preparation efficiency (Zheng et al., 2016; Zhou et al., 2016). LiNiO₂ has high energy density but is prone to structural disorder (Liu et al., 2007; Deng et al., 2019). A
layered lithium nickel–cobalt–manganese (NCM) oxide LiNi$_x$Co$_{1/2}$Mn$_{1/2}$O$_2$ (LNCM) ternary cathode material with the combined advantages of LiCoO$_2$, LiNiO$_2$, and LiMnO$_2$ has been generated (Park and Choi, 2018). In LNCM, the valences of nickel, cobalt, and manganese cations are usually +2, +3, and +4, respectively (Kang et al., 2006; Lin et al., 2014). Among them, +4 valence Mn guarantees structural stability, whereas +3 valence Co regulates cationic disorder and reduces surface energy (Garcia et al., 2017). The redox couple energy of Ni$^{2+}$/Ni$^{3+}$ and Co$^{3+}$/Co$^{4+}$ can increase the battery’s capacity (Lee et al., 2014). According to the crystal field theory, Ni mostly exists in the form of +2 valence. The radius of Ni$^{2+}$ is close to the radius of Li$^+$. Cation mixing easily occurs in high-nickel type NCM ternary cathode materials. Ni$^{4+}$ has strong oxidizability; Li$_1$-xNi$_x$O$_2$ formed after delithiation has poor thermal stability; Ni$^{4+}$ easily reacts with organic electrolyte (Hong et al., 2012). The main lattice of the highly delithiated electrode surface releases oxygen, which reacts with the organic electrolyte (Abraham et al., 2002). The surface of the high-nickel material reacts with the external CO$_2$ and H$_2$O to form a lithium-containing compound (Liu et al., 2016; Gao et al., 2019).

This review starts with the surface and interface of the high-nickel NCM ternary cathode material. The causes of the defects in the material are analyzed. The core-shell structure that improves the performance of the high-nickel NCM ternary cathode material is explained. The methods of generating high-nickel-type NCM ternary cathode material are mentioned.

STUDY ON THE SURFACE AND INTERFACE STRUCTURE OF HIGH-NICKEL NICKEL–COBALT–MANGANESE TERNARY CATHODE MATERIALS

The stable electrode surface and interface structure are the key factors that determine the quality of the battery. Structural defects and side reactions on the surface of the high-nickel NCM ternary positive material affect the transfer of electrons and the deintercalation of lithium ions, thereby affecting the performance of the battery (Wang et al., 2020c). The changes in the chemical properties of lithium-ion batteries in terms of surface and structure need to be elucidated.

Surface Structure and Evolution of High-Nickel Cathode Materials

The high-nickel NCM ternary cathode material has a NaFeO$_2$ structure; the space group is hexagonal R-3m; Li$^+$ is embedded in the layered structure of transition metal and oxygen atoms and inserted and extracted in the 2D gap (Li et al., 2014; Liu Y. et al., 2019). In high-nickel type LNCM cathode materials, Ni$^{2+}$ and Li$^+$ are prone to cation mixing (Yang et al., 2019b). Cation mixing shifts the hierarchical R-3m space group to the tightly packed spinel Fm-3m space group. This tight structure leads to shorter ion spacing and larger interactions, making Li$^+$ diffusion difficult (Zhang et al., 2017). Studies have suggested that structural changes occur on the surface of high nickel layered oxides (Li J. et al., 2020; Liu et al., 2020).

In layered NMC materials, Li$^{4+}$ jumping and migration barriers are very sensitive to local structures (Van der Ven and Ceder, 2001; Kang and Ceder, 2006). Based on this, the diffusion rate of Li$^{4+}$ in LiNi$_{0.8}$Mn$_{0.2}$Co$_{1/2}$O$_2$ (NMC811) is found to be the main reason for the structural change of the material. When the degree of lithiation deepens, the volume of a single positive electrode particle continues to shrink after delithiation. The lattice parameters change along with the material structure (Märker et al., 2019). Fu et al. (2014) found that with increasing number of lithium sources, the lattice parameters (a and c) and the thickness of the intercellular space decrease, and the Li$^{4+}$/Ni$^{2+}$ mixed arrangement causes structural changes. Wang et al. (2017) studied the LiNi$_{0.8}$Co$_{0.2}$Mn$_{0.2}$O$_2$ (NMC622) material and found that spinel skeleton defects and a sharp drop in lattice parameters cause lattice distortion. Moreover, the spinel structure causes the instability of the material surface and structure. Figure 1 shows the processing of high nickel NCM ternary cathode material, which is due to cation mixed discharge caused by structural changes (Wang et al., 2017). Many studies believe that heterogeneous ions can be inserted into the lattice through doping, thereby changing the bond energy and lattice parameters and suppressing the deterioration of the internal structure of the lattice (Binder et al., 2018; Yu et al., 2020).

Mechanism of Surface Redox of High-Nickel Nickel-Cobalt-Manganese Ternary Cathode Material

The thermal decomposition products of high-nickel LNCM cathode materials at high temperature may include the following: Li$_x$Mn$_2$O$_4$, LiNiO$_2$, (NiO)$_x$(MnO)$_{y}$, CoO, CoCO$_3$, LiF, and various oxides of manganese, nickel, and cobalt (Wang et al., 2020a). The electronic structure of the active element in the transition metal layer is a factor that directly affects the redox reaction. Co and Ni have a +3 valence, and the energy band is (t_{2g})(e_g)0, which is in a low spin state. The release of more than half of Li$^+$ ions from the layered LiCoO$_2$ will cause O$^{2-}$-2p electron loss. The top of the O$^{2-}$-2p band overlaps with the t$_{2g}$ band with Co$^{3+}$/Co$^{4+}$ redox activity, resulting in structural instability. The overlapping population of the e$_g$ band of Ni$^{3+}$/Ni$^{4+}$ and the top of O$^{2-}$-2p band is lower than that of the t$_{2g}$ band of Co$^{3+}$/Co$^{4+}$, indicating that the delocalization effect of Ni$^{3+}$/Ni$^{4+}$ is smaller, the structure is more stable, and the reversible performance is better (Hou et al., 2017). The e$_g$ band of Mn does not overlap with O$^{2-}$-2p, and the overlap of the t$_{2g}$ band and O$^{2-}$-2p is lower than that of Co$^{3+}$/Co$^{4+}$. Thus, the stability of Mn is higher. Julien et al. (2014) established a ternary LiNi$_x$Mn$_y$Co$_{3-x-y}$/Ni$_{1-x}$O$_2$ oxide with better stability on the basis of LiNiO$_2$ and LiCoO$_2$ oxide structures (Julien et al., 2014).

Many studies have hoped to influence the energy band through doping and thereby improve the material’s stability. Common doping approaches are as follows: anion doping: F$^-$ (Zhao et al., 2019), Cation doping: K$^+$ (Liu Z. et al., 2019), Al$^{3+}$ (Trease et al., 2016; Do et al., 2018), Zr$^{4+}$ (Sivaprakash and Majumder, 2009), Mg$^{2+}$ (Jin et al., 2019), Ti$^{4+}$ (Zhang et al., 2017).
et al., 2019), Co-doping: Mn⁴⁺-PO₄⁻ (Qiu et al., 2019), and Al³⁺-Mg²⁺ (Woo et al., 2009). However, the doping of foreign elements can cause structural collapse because of the doping ions’ inability to integrate into the layered structure.

Side Reaction of High Nickel Nickel-Cobalt-Manganese Ternary Cathode Material Interface Structure

High-nickel LNCM cathode materials are prone to side reactions at the interface with the electrolyte. Side reactions and the products of such reactions can affect battery performance. Usually, the decomposition of the electrolyte is as follows (Vanhee, 2020):

In general: \(\text{LiPF}_6 (s) \leftrightarrow \text{LiF}(s) + \text{PF}_5 (g) \) \hspace{1cm} (1)

In the presence of \(\text{H}_2\text{O} : \text{PF}_5 + \text{H}_2\text{O} \rightarrow \text{POF}_3 + 2\text{HF} \) \hspace{1cm} (2)

\[2\text{POF}_3 + 3\text{Li}_2\text{O} \rightarrow 6\text{LiF}↓ + \text{P}_2\text{O}_5↓ (\text{or } \text{Li}_x\text{POF}_y) \] \hspace{1cm} (3)

The high-nickel type LNCM positive electrode easily reacts with the surrounding environment due to its high surface reactivity (Jung et al., 2018). LiF, Li₂CO₃, LiOH, and other impurities are easily deposited on the interface between the active high
nickel LNCM positive electrode and the electrolyte, thereby suppressing the diffusion of Li\(^+\) and reducing the electrochemical performance. To effectively prevent the side reaction between the electrode and the electrolyte, coating modification is proposed, such as coating metal oxides: Al\(_2\)O\(_3\) (Liao and Manthiram, 2015; Yan et al., 2016), ZrO\(_2\) (Yang et al., 2019a), MgO (Yoon et al., 2012), ZnO (Chang et al., 2010), lanthanide oxides: La\(_4\)NiLiO\(_8\) (Li et al., 2020), phosphate: AlPO\(_4\) (Zhao et al., 2017), Cu\(_3\)(PO\(_4\))\(_2\) (Zhao et al., 2016), fluoroide: AlF\(_3\) (Ding et al., 2017), transition metal oxide: Li$_2$ZrO$_3$ (Xu et al., 2016), multiple coating: Li$_2$TiO$_3$Li$_2$ZrO$_3$ (Li et al., 2020), and LiFePO$_4$Al$_2$O$_3$ (Setenì et al., 2017). The double modification method combines doping and coating, as follows: Sr doping–LaMnO$_3$ coating (Li et al., 2019), N doping–C coating (Nanthagopal et al., 2019), Zr doping–ZrO$_2$ coating (Wang et al., 2020), and Sn doping–Li$_2$SnO$_3$ coating (Zhu et al., 2020).

STUDY ON HIGH-NICKEL NICKEL–COBALT–MANGANESE TERNARY CATHODE MATERIALS WITH CORE-SHELL STRUCTURE

The high-nickel type NCM cathode material is a combination of three transition metal elements. This material does not solve the defects of any one element. Although element doping, surface coating, and double modification can improve defects, these solutions only involve the simple processing of the body material and do not fundamentally solve the problem. Sun et al. (2005) extended the concept of cladding to the core shell and proposed the concept of using the core shell material for lithium ion batteries. The high-nickel nickel–cobalt–manganese ternary cathode material with a core-shell structure has evolved from a common core-shell structure to a core-shell gradient structure, and finally, to a full gradient core-shell structure.

Simple Core-Shell Structure

In the high-nickel type NCM cathode material with a simple core-shell structure, a synergistic effect exists between the core and the shell. The core material has high specific capacity performance, and the shell material has structural and thermal stability. Sun et al. (2006b) used Li[Li$_{0.5}$Ni$_{0.13}$Mn$_{0.3}$]O$_2$ with high specific capacity as the core and Li[Li$_{0.5}$Ni$_{0.13}$Mn$_{0.3}$]O$_2$ with high structural stability as the shell. They obtained a simple core-shell Li[(Ni$_{0.8}$Co$_{0.2}$)$_{0.8}$(Ni$_{0.5}$Mn$_{0.5}$)$_{0.2}$]O$_2$ cathode material. Compared with the Li[Li$_{0.8}$Co$_{0.2}$]O$_2$ electrode, the capacity retention rate and thermal stability of the abovementioned synthesized cathode material are significantly improved. Shi et al. (2014) synthesized Li[(Ni$_{0.45}$Co$_{0.1}$Mn$_{0.45}$)$_{0.3}$]O$_2$ with (Ni$_{0.8}$ Co$_{0.1}$Mn$_{0.1}$)$_{0.7}$ as the core and (Ni$_{0.45}$Co$_{0.1}$Mn$_{0.45}$)$_{0.3}$ as the shell. The core-shell material cyclic performance and thermal stability showed significant improvement. Jun et al. (2017) used LiNiO$_2$ as the core and Li[Li$_{0.5}$Ni$_{0.13}$Mn$_{0.3}$]O$_2$ as the shell to obtain Li[Li$_{0.95}$Co$_{0.025}$Mn$_{0.025}$]O$_2$ core-shell material, which provided excellent discharge capacity while exhibiting excellent cyclic performance. The simple core-shell structure effectively improves the performance of the battery, but the composition of the core and shell materials in this structure is significantly different, thereby producing a large interface resistance and hindering Li$^+$ diffusion. The high-temperature calcination process easily causes metal ion diffusion, resulting in structural changes in the material.

Concentration Gradient Core-Shell Structure

The concentration gradient core-shell structure is a new concept. It is proposed on the basis of a simple core-shell structure. A high-nickel type NCM ternary cathode material is composed of a shell material whose nickel concentration continuously decreases from the inside out. Liao et al. (2016) obtained the concentration gradient of the LiNi$_{0.76}$Co$_{0.1}$Mn$_{0.14}$O$_2$ cathode material from the double-shell [Ni$_{0.9}$Co$_{0.1}$]O$_2$[Ni$_{0.7}$Co$_{0.1}$Mn$_{0.2}$]O$_2$[Ni$_{0.5}$Co$_{0.1}$Mn$_{0.3}$]O$_{2}$ precursor’s sintering, which significantly improves the capacity retention rate. Song et al. (2015) synthesized a concentration gradient LiNi$_{0.5}$Co$_{0.2}$Mn$_{0.3}$O$_2$ material. Figure 2 shows the principle of sintering a concentration gradient positive electrode material from a double-shell precursor (Song et al., 2015). The concentration gradient of the CG-LiNi$_{0.7}$Co$_{0.15}$Mn$_{0.15}$O$_2$ cathode material is prepared from the multilayer precursor, which effectively reduces side reactions and rapid Li$^+$ kinetics (Hou et al., 2018). With the concentration gradient of the Li$_{1.1}$Ni$_{0.13}$Mn$_{0.54}$Co$_{0.13}$O$_2$ cathode material, the initial reversible capacity and capacity retention rate are improved (Ma et al., 2019). Liao and Manthiram (2015) used a concentration gradient [Ni$_{0.2}$Mn$_{0.8}$]O$_2$ to encapsulate a high nickel [Ni$_{0.8}$Co$_{0.2}$]O$_2$ core and coated Al$_2$O$_3$ on the surface of the shell to obtain a sample with better cyclic stability, rate performance, and thermal stability. The concentration gradient core-shell structure has a shell material with continuous concentration changes, which effectively reduces the interface resistance between the core and the shell and strengthens the synergistic effect between the core and the shell. However, the final surface of this structure still has a relatively high Ni content and a relatively low Mn content. When the high-temperature and high-voltage states are cycled for a long time at a high ratio, the electrochemical performance deteriorates.

Full Concentration Gradient Core-Shell Structure

The full concentration gradient core-shell material refers to the entire ternary precursor cathode material from the inside to the outside. The Ni ion content gradually decreases, and the Mn and Co ion contents increase continuously. The structure abandons the concept of having a clear core-shell interface and overcomes the problem of uneven coating of the shell layer or the large difference between the shell and core components. Ju et al. (2013) synthesized a full concentration gradient core-shell material from the center of the particle (Ni is 0.62–0.74 mol%; Co is 0.05 mol%) to the surface (Ni is 0.48–0.62 mol%; Co is 0.18 mol%). PFGC-Li[Li$_{0.59}$Co$_{0.16}$Mn$_{0.25}$]O$_2$ cathode material has a
maximum discharge capacity of 188 mAh·g⁻¹. The FCG cathode material that gradually changes from Li[Ni₀.₈₆Co₀.₀₇Mn₀.₀₇]O₂ at the center of the particle to Li[Ni₀.₆₇Co₀.₀₉Mn₀.₂₄]O₂ at the surface shows high capacity performance (Noh et al., 2014). Full concentration gradient core-shell material LiNi₀.₇Co₀.₁₀Mn₀.₂O₂ has higher cycle performance and high temperature stability and rate performance (Liang et al., 2015). The relative molar content of Ni in the full concentration gradient core-shell material LiNi₀.₈Co₀.₁Mn₀.₁O₂ cathode material gradually decreases from 84% to 76%, the relative molar content of Mn gradually increases, and the Co content shows a slow gradient variation. The capacity retention rate of this material after 100 cycles at 5C rate reaches 90% (Jiang et al., 2019).

METHOD FOR SYNTHESIZING HIGH-NICKEL NICKEL-COBALT-MANGANESE TERNARY CATHODE MATERIAL

Different synthesis methods will affect the microstructure and electrochemical performance of the prepared materials. At present, the methods for preparing the high-nickel nickel-cobalt-manganese ternary cathode material for lithium ion batteries mainly include the co-precipitation and high-temperature solid phase methods.

A material synthesized by the co-precipitation method has a small and uniform particle size and is typically used for coating the high-nickel NCM ternary cathode material and for the synthesis of the core-shell structure. For example, the following are prepared by co-precipitation method: LiNi₀.₈Mn₀.₂Co₀.₂O₂ (Ren et al., 2017), LiNi₀.₈Mn₀.₂Co₀.₁O@Li₃PO₄@PPy (Chen S. et al., 2017), Li[(Ni₀.₈Co₀.₁Mn₀.₁)₁−ₓ(Ni₀.₅Mn₀.₅)ₓ]O₂ (Sun et al., 2006a), LiNi₀.₈Co₀.₁Mn₀.₁O₂@s[Li-Mn-O] (Li et al., 2018), and LiNi₀.₈Co₀.₁Mn₀.₁O₂@active material core-shell material (Su et al., 2019). High temperature solid phase method is typically used for doping modification, as follows: Ca doping LiNi₀.₈(1−ₓ)Co₀.₁Mn₀.₁Ca₀.₈ₓO₂ (Chen M. et al., 2017), Mn doping LiNi₀.₈−ₓCo₀.₁−ₓMn₀.₈₊₂ₓO₂ (Cho et al., 2018), and Mo doping LiNi₀.₆Co₀.₂Mn₀.₂O₂ (Xue et al., 2018). Sol-gel, hydrothermal, and spray drying methods, as well as other preparation methods, are also available. Sol-gel method is used to prepare γ-Al₂O₃-coated NCM622 (Wu et al., 2019) and tungsten oxide-coated NCM-811 (Becker et al., 2019). LiNi₀.₇Co₀.₁₅Mn₀.₁₅O₂ is prepared by hydrothermal method (Tian et al., 2015). NCM811 is prepared by spray drying (Huang et al., 2019).

CONCLUSIONS

For high-nickel-type LNCM ternary cathode battery materials, improving energy density, cycle performance, and thermal stability are the focus of future research. The energy band and
structure from the material surface and interface need to be analyzed to come up with an improved optimization plan.

High-nickel type NCM ternary cathode materials easily phase change and release oxygen due to the high nickel content. Traditional modification does not essentially solve the structural problems. The core-shell structure promotes the development of high-nickel NCM ternary cathode materials. The high-nickel NCM ternary material with core-shell structure is usually composed of a high-nickel core and a high-manganese shell, which effectively inhibit phase transition and improve cycle performance and thermal stability. The high energy density of the cathode material is ensured. In the core-shell interface of the simple core-shell, the transition metal components cause structural mismatch due to mutations. The final surface of the concentration gradient core-shell still has high Ni content and low Mn content. Under high-strength electrochemical conditions, the structure remains unstable. The full concentration gradient core-shell structure abandons the traditional core-shell boundaries and effectively solves the abovementioned problems. Summarizing the method of synthesizing high-nickel NCM ternary cathode material guides the experiment. In future research, the application of first principles to build a model of synthetic materials for performance calculation can broaden the research ideas and save time and cost.

AUTHOR CONTRIBUTIONS

LS and JD wrote the manuscript. ZX, PJ, ZC, and HZ helped to revise the manuscript. All authors contributed to the article and approved the submitted version.

FUNDING

This work was financially supported by the National Natural Science Foundation of China (Nos. 21501015, 51604042, 31527803, and 21545010).

REFERENCES

Abraham, D. P., Twsteen, R. D., Balasubramanian, M., Petrov, I., McBreen, J., and Amine, K. (2002). Surface changes on LiNi0.8Co0.2O2 particles during testing of high-power lithium-ion cells. Electrochem. Commun. 4, 620–625. doi: 10.1016/S1388-2481(02)00388-0

Barcellona, S., and Piegari, L. (2020). Effect of current on cycle aging of lithium ion batteries. J. Energy Storage 29:101310. doi: 10.1016/j.est.2020.101310

Becker, D., Börner, M., Nölle, R., Diehl, M., Klein, S., Rodehorst, U. C., et al. (2017). Facile Mn surface doping of Ni-rich layered cathode materials by tungsten oxide coating for improved electrochemical performance in lithium ion batteries. ACS Appl. Mater. Interfaces 11, 18404–18414. doi: 10.1021/acsami.7b02889

Binder, J., Culver, S. P., Pinedo, R., Weber, D. A., Friedrich, M., Gries, K., et al. (2018). Investigation of fluorine and nitrogen as anionic dopants in nickel-rich cathode materials for lithium-ion batteries. ACS Appl. Mater. Interfaces 10, 44452–44462. doi: 10.1021/acsami.8b16049

Chang, W., Choi, J.-W., Im, J.-C., and Lee, J. K. (2010). Effects of ZnO coating on electrochemical performance and thermal stability of LiCoO2 as cathode material for lithium-ion batteries. J. Power Sources 195, 320–326. doi: 10.1016/j.jpowsour.2009.06.104

Chen, M., Zhao, E., Chen, D., Wu, M., Han, S., Huang, Q., et al. (2017). Decreasing Li/Co disorder and improving the electrochemical performances of Ni-rich LiNi0.8Co0.2Mn0.05O2 by Ca doping. Inorg. Chem. 56, 8355–8362. doi: 10.1021/acs.inorgchem.7b01035

Chen, S., He, T., Su, Y., Lu, Y., Bao, L., Chen, L., et al. (2017). Ni-rich LiNi0.8Co0.2Mn0.05O2 oxide coated by dual-conductive layers as high performance cathode material for lithium-ion batteries. ACS Appl. Mater. Interfaces 9, 29732–29743. doi: 10.1021/acsami.7b08006

Cho, W., Lim, Y. J., Lee, S.-M., Kim, J. H., Song, J. H., Yu, J.-S., et al. (2018). Facile Mn surface doping of Ni-rich layered cathode materials for lithium ion batteries. ACS Appl. Mater. Interfaces 10, 38915–38921. doi: 10.1021/acsami.8b13766

Dai, Y., Cai, L., and White, R. E. (2012). Capacity fade model for spinel LiMn0.4O4 electrode. J. Electrochem. Soc. 160, A182–A190. doi: 10.1149/2.06302jes

Deng, T., Fan, X., Cao, L., Chen, J., Hou, S., Ji, X., et al. (2019). Designing in-situ formed interphases enables highly reversible cobalt-free LiNiO2 cathode for Li-ion and Li-metal batteries. Joule 3, 2550–2564. doi: 10.1016/j.joule.2019.08.004

Ding, J., Lu, Z., Wu, M., Liu, C., Ji, H., and Yang, G. (2017). Preparation and performance characterization of AlF3 as interface stabilizer coated Li1.24Ni0.12Co0.8Mn0.04O2 cathode for lithium-ion batteries. Appl. Surf. Sci. 406, 21–29. doi: 10.1016/j.apsusc.2017.02.115

Do, S. J., Santhoshkumar, P., Kang, S. H., Prasanna, K., Jo, Y. N., and Lee, C. W. (2018). Al-doped Li[Ni0.78Co0.18Mn0.04]O2 for high performance of lithium ion batteries. Ceram. Int. 45, 6972–6977. doi: 10.1016/j.ceramint.2018.12.196

Fu, C., Li, G., Luo, D., Li, Q., Fan, J., and Li, L. (2014). Nickel-rich layered microspheres cathodes: lithium/nickel disordering and electrochemical performance. ACS Appl. Mater. Interfaces 6, 15822–15831. doi: 10.1021/am5030726

Gao, H., Cai, J., Xu, G.-L., Li, L., Ren, Y., and Meng, X. (2019). Surface modification for suppressing interfacial parasitic reactions of nickel-rich lithium-ion cathode. Chem. Mater. 31, 2723–2730. doi: 10.1021/acs.chemmater.8b04200

Garcia, J. C., Barreño, J., Yan, L., Chen, G., Hauser, A., Croy, J. R., et al. (2017). Surface structure, morphology, and stability of Li(Ni0.8Mn0.2O2)2 cathode material. J. Phys. Chem. 121, 8290–8299. doi: 10.1021/acs.jpcc.7b00896

Hong, J., Lim, H.-D., Lee, M., Kim, S.-W., Kim, H., and Oh, S.-T. (2012). Critical role of oxygen evolved from layered Li-excess metal oxides in lithium rechargeable batteries. Chem. Mater. 24, 2692–2697. doi: 10.1021/cm3005634

Hou, P., Li, F., Sun, Y., Li, H., Xu, X., and Zhai, T. (2018). Multishell precursors facilitated synthesis of concentration-gradient nickel-rich cathodes for long-life and high-rate lithium-ion batteries. ACS Appl. Mater. Interfaces 10, 24508–24515. doi: 10.1021/acsami.8b06286

Hou, P., Yin, J., Ding, M., Huang, J., and Xu, X. (2017). Surface/interface structure and chemistry of high-energy nickel-rich layered oxide cathodes: advances and perspectives. Small 13:1701802. doi: 10.1002/smll.201701802

Huang, B., Liu, D., Zhang, L., Qian, K., Zhou, K., Cai, X., et al. (2019). An efficient synthetic method to prepare high-performance Ni-rich LiNi0.8Co0.18Mn0.04O2 for lithium-ion batteries. ACS Appl. Energy Mater. 2, 7403–7411. doi: 10.1021/acsaem.9b00141

Jiang, Y., Liu, Z., Zhang, Y., Hu, H., Teng, X., Wang, D., et al. (2019). Full-gradient structured LiNi0.8Co0.18Mn0.04O2 cathode material with improved rate and cycle performance for lithium ion batteries. Electrochim. Acta 309, 74–85. doi: 10.1016/j.electacta.2019.04.058

Jin, Y., Xu, Y., Ren, F., and Ren, P. (2019). Mg-doped Li1.133Li0.064Co0.18Mn0.567O2 in Li site as high-performance cathode material for Li-ion batteries. Solid State Ionics 336, 87–94. doi: 10.1016/j.ssi.2019.03.020

Ju, J.-W., Lee, E.-J., Yoon, C. S., Myung, S.-T., and Sun, Y.-K. (2013). Optimization of layered cathode material with full concentration gradient for lithium-ion batteries. J. Phys. Chem. C 118, 175–182. doi: 10.1021/jp4097887

Julien, C., Mauger, A., Zaghib, K., and Groult, H. (2014). Comparative issues of cathode materials for Li-ion batteries. Inorganics 2, 132–154. doi: 10.3390/inorganics20100132
Jun, D.-W., Yoon, C. S., Kim, U.-H., and Sun, Y.-K. (2017). High-energy density core–shell structured Li[Ni_{0.8}Co_{0.15}Mn_{0.05}]O_{2} cathode for lithium-ion batteries. Chem. Mater. 29, 3048–3052. doi: 10.1021/acs.chemmater.7b01425

Jung, R., Morasch, R., Karayaylah, P., Phillips, K., Maglia, F., Stinner, C., et al. (2018). Effect of ambient storage on the degradation of Ni-Rich positive electrode materials (NMC811) for Li-ion batteries. J. Electrochem. Soc. 165, A132–A141. doi: 10.1149/2.04018jess

Kang, K., and Ceder, G. (2006). Factors that affect Li mobility in layered transition metal oxides. Phys. Rev. B 74, 094105. doi: 10.1103/PhysRevB.74.094105

Kang, K., Meng, Y. S., Breger, J., Grey, C. P., and Ceder, G. (2006). Electrodes with high power and high capacity for rechargeable lithium batteries. Science 311, 977–980. doi: 10.1126/science.1122152

Lee, W. J., Prasanna, K., Jo, Y. N., Kim, K. J., Kim, H. S., and Lee, C. W. (2014). Design strategies for high-performance batteries. J. Power Sources 272, 922–928. doi: 10.1016/j.jpowsour.2014.08.050

Lipu, M. S. H., Hannan, M. A., Hussain, A., Hoque, M. M., Ker, P., Liao, J.-Y., Oh, S.-M., and Manthiram, A. (2016). Synthesis of spherical nano- to microscale core–shell particles with high voltage electrochemical properties for lithium-ion batteries. J. Alloys Compd. 674, 447–454. doi: 10.1016/j.jallcom.2016.03.060

Liu, Y., Tang, L., Wei, H., Zhang, X., He, Z., Li, Y., et al. (2019). Enhancement on structural stability of Ni-rich cathode materials by in-situ fabricating dual-modified layer for lithium-ion batteries. Nano Energy 65:104034. doi: 10.1016/j.nanoen.2019.10.0403

Liu, Z., Zhang, Z., Liu, Y., Li, L., and Fu, S. (2019). Facile and scalable fabrication of K⁺-doped Li[Ni_{0.8}Co_{0.15}Mn_{0.05}]O_{2} cathode with ultra high capacity and enhanced cycling stability for lithium-ion batteries. Solid State Ionics 332, 47–54. doi: 10.1016/j.ssi.2018.12.021

Ma, F., Wu, Y., Wei, G., Qiu, S., Qu, J., and Qi, T. (2019). Comparative study of simple and concentration gradient shell coatings with Li[Ni_{0.8}Co_{0.15}Mn_{0.05}]O_{2} for lithium-ion batteries. Solid State Ionics 341:115034. doi: 10.1016/j.ssi.2019.11.003

Marker, K., Reeves, P. J., Xu, C., Griffith, K. J., and Grey, C. P. (2019). Evolution of structure and lithium dynamics in Li[Ni_{0.8}Mn_{0.13}Co_{0.05}]O_{2} cathodes during electrochemical cycling. Chem. Mater. 31, 2455–2544. doi: 10.1021/acs.chemmater.9b00140

Mossali, E., Picones, N., Gentilini, L., Rodriguez, O., Pérez, J. M., and Collledani, M. (2020). Lithium-ion batteries towards circular economy: a literature review of opportunities and issues of recycling treatments. J. Environ. Manag. 264:110500. doi: 10.1016/j.jenvman.2020.110500

Nanthagopal, M., Santhoshkumar, P., Shaji, N., Praveen, S., Kang, H. S., and Senthil, C. (2019). Nitrogen-doped carbon-coated Li[Ni_{0.8}Co_{0.15}Mn_{0.05}]O_{2} cathode material for enhanced lithium-ion storage. Appl. Surf. Sci. 492, 871–878. doi: 10.1016/j.apsusc.2019.06.242

Noh, H.-J., Myung, S.-T., Lee, Y. J., and Sun, Y.-K. (2014). High-energy layered oxide cathodes with thin shells for improved surface stability. Chem. Mater. 26, 5973–5979. doi: 10.1021/cm502774u

Pant, D., and Dolker, T. (2017). Green and facile method for the recovery of spent lithium nickel manganese cobalt oxide (NMC) based lithium ion batteries. Waste Manag. 60, 689–695. doi: 10.1016/j.wasman.2016.09.039

Park, K., and Choi, B. (2018). Requirement of high lithium content in Ni-rich layered oxide material for Li ion batteries. J. Alloys Compd. 766, 470–476. doi: 10.1016/j.jallcom.2018.06.135

Qiu, L., Xiang, W., Tian, W., Xu, C.-L., Li, Y.-C., and Wu, Z.-G. (2019). Polyanion and cation co-doping stabilized Ni-rich Ni–Co–Al material as cathode with enhanced electrochemical performance for Li-ion battery. Nano Energy 63:103818. doi: 10.1016/j.nanoen.2019.06.014

Ren, D., Shen, Y., Yang, Y., Shen, L., Levin, B. D. A., Yu, Y., et al. (2017). Systematic optimization of battery materials: key parameter optimization for the scalable synthesis of uniform, high-energy, and high stability Li[Ni_{0.8}Mn_{0.13}Co_{0.05}]O_{2} cathode material for lithium-ion batteries. ACS Appl. Mater. Interfaces 9, 35811–35819. doi: 10.1021/acsami.7b01535

Seteni, B., Rapulenyane, N., Ngila, J. C., Mpelane, S., and Luo, H. (2017). Coating effect of LiFePO_{4} and Al_{2}O_{3} on Li_{2}Mn_{2}O_{4}Ni_{0.15}Co_{0.15}O_{2} cathode surface for lithium ion batteries. J. Power Sources 353, 210–220. doi: 10.1016/j.jpowsour.2017.04.008

Shi, H., Wang, X., Hou, P., Zhou, E., Guo, J., Zhang, J., et al. (2014). Core-shell structured Li[Ni_{0.8}Co_{0.15}Mn_{0.05}]O_{2} cathode material for high-energy lithium-ion batteries. J. Alloys Compd. 587, 710–716. doi: 10.1016/j.jallcom.2013.10.226

Sivaprakash, S., and Majumder, S. B. (2009). Understanding the role of Zr⁺⁺ cation in improving the cyclability of Li[Ni_{0.8}Co_{0.15}Zr_{0.05}]O_{2} cathodes for Li-ion rechargeable batteries. J. Alloys Compd. 479, 561–568. doi: 10.1016/j.jallcom.2008.12.129

Song, D., Hou, P., Wang, X., Shi, X., and Zhang, L. (2015). Understanding the origin of enhanced performances in core–shell and concentration-gradient layered oxide cathode materials. ACS Appl. Mater. Interfaces 7, 12864–12872. doi: 10.1021/acsami.5b02373

Su, Y., Chen, G., Chen, L., Lu, Y., Zhang, Q., Lv, Z., et al. (2019). High-rate structure-gradient Ni-rich cathode material for lithium-ion batteries. ACS Appl. Mater. Interfaces 11, 36697–36704. doi: 10.1021/acsami.9b12113

Sun, Y.-K., Myung, S.-T., Kim, M.-H., Prakash, J., and Amine, K. (2005). Synthesis and characterization of Li[Ni_{0.8}Co_{0.15}Mn_{0.05}]O_{2} cathode with the microscale core–shell structure as the positive electrode material for lithium batteries. J. Am. Chem. Soc. 127, 13411–13418. doi: 10.1021/ja051675g

Sun, Y.-K., Myung, S.-T., Park, B.-C., and Amine, K. (2006a). Synthesis of spherical nano- to microscale core-shell particles...
Li[(Ni_{0.6}Co_{0.4}Mn_{0.1})_{1−x}(Ni_{0.5}Mn_{0.5})_{x}]O_2 and their applications to lithium batteries.

Chen, Jie Hong, J.M., Xu, R., Amine, K., Xiao, J., et al. (2018). Bifunctional nano-ZrO_2 modification of LiNi_{0.9}Co_{0.1}O_2 cathode enabling high-energy density lithium ion batteries. J. Power Sources 343:226978.

Yang, X., Tang, Y., Zhang, G., Wu, J., Zheng, J., et al. (2019a). Tailoring structure of Ni-rich layered cathode enable robust calendar life and ultrahigh rate capability for lithium-ion batteries. Electrochim. Acta 320:134587. doi: 10.1016/j.electacta.2019.134587

Yoon, W.-S., Nam, K.-W., Jang, D., Chong, K. Y., Hanson, J., Chen, J.-M., et al. (2012). Structural study of the coating effect on the thermal stability of charged MgO-coated LiNi_{0.9}Co_{0.1}O_2 cathodes investigated by in situ XRD. J. Power Sources 217, 128–134. doi: 10.1016/j.jpowsour.2012.05.028

Yu, Y., Tang, Z., Zhong, J., Liu, Y., Li, J., Wang, X., et al. (2020). A simple dual-ion doping method to stabilize Li-rich materials and suppress voltage decay. ACS Appl. Mater. Interfaces, 12, 13996–14004. doi: 10.1021/acsami.0c09044

Zhang, D., Liu, Y., Wu, L., Feng, L., Jin, S., and Zhang, R. (2019). Effect of Ti ion doping on electrochemical performance of Ni-rich LiNi_{0.6}Co_{0.4}Mn_{0.1}O_2 cathode material. Electrochem. Acta. 328:135086. doi: 10.1016/j.electacta.2019.135086

Zhang, Q., Wang, D., Yang, B., Cui, X., and Li, X. (2020). Electrochemical model of lithium-ion battery for wide frequency range applications. Electrochim. Acta. 343:136094. doi: 10.1016/j.epjj.2020.136094

Zhang, X., Chen, Z., Schwarz, B., Sigel, F., Ehrenberg, H., An, K., et al. (2017). Kinetic characteristics up to 4.8 V of layered LiNi_{0.2}Co_{0.8}Mn_{0.3}O_2 cathode materials for high voltage lithium-ion batteries. Electrochem. Acta. 217, 152–161. doi: 10.1016/j.electacta.2017.01.014

Zhang, X.-Q., Zhao, C.-Z., Huang, J.-Q., and Zhang, Q. (2018). Recent advances in energy chemical engineering of next-generation lithium batteries. Engineering 4, 831–847. doi: 10.1016/j.eng.2018.10.008

Zhao, R., Li, J., Huang, J., Zeng, R., Zhang, J., Chen, H., et al. (2017). Improving the Ni-rich LiNi_{0.9}Co_{0.1}Mn_{0.3}O_2 cathode properties at high operating voltage by double coating layer of Al_2O_3 and AlPO_4. J. Alloys Compd. 724, 1109–1116. doi: 10.1016/j.jallcom.2017.05.331

Zhao, W., Zhong, G., McDonald, M. J., Gong, Z., Liu, R., Bai, J., et al. (2016). Cu_3(PO_4)_2/C composite as a high-capacity cathode material for rechargeable Na-ion batteries. Nano Energy 27, 420–429. doi: 10.1016/j.nanoen.2016.07.011

Zhao, Z. Y., Huang, B., Wang, M., Yang, X. W., Gu, Y. J., et al. (2019). Facile synthesis of fluorescent doped single crystal Ni-rich cathode material for lithium-ion batteries. Solid State Ionics 342:115065. doi: 10.1016/j.ssi.2019.115065

Zheng, Y., Hao, X., Niu, J., and Pan, B. (2016). Layered o-LiMnO_2 prepared for lithium ion batteries by mechanical alloying. Mater. Lett. 163, 98–101. doi: 10.1016/j.matlet.2015.10.042

Zhou, H., Li, Y., Zhang, J., Kang, W., and Yu, D. Y. W. (2016). Low-temperature direct synthesis of layered m-LiMnO_2 for lithium-ion battery applications. J. Alloys Compd. 659, 248–254. doi: 10.1016/j.jallcom.2015.11.038

Zhu, H., Shen, R., Tang, Y., Yan, X., Liu, J., and Song, L. (2020). Sn-doping and LiSnO_2 nano-coating layer co-modified LiNi_{0.9}Co_{0.1}Mn_{0.3}O_2 with improved cycle stability at 4.6 V cut-off voltage. Nanomaterials 10:10868. doi: 10.3390/nano10050868

Zubi, G., Dufo-López, R., Carvalho, M., and Pasaoglu, G. (2018). The lithium-ion battery: state of the art and future perspectives. Renew. Sust. Energy Rev. 89, 292–308. doi: 10.1016/j.rser.2018.03.002

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2020 Song, Du, Xiao, Jiang, Cao and Zhu. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.