Human Activity Recognition Using Robust Adaptive Privileged Probabilistic Learning

Michalis Vrigkas, Evangelos Kazakos, Christophoros Nikou, and Ioannis A. Kakadiaris

Abstract—In this work, a novel method based on the learning using privileged information (LUPI) paradigm for recognizing complex human activities is proposed that handles missing information during testing. We present a supervised probabilistic approach that integrates LUPI into a hidden conditional random field (HCRF) model. The proposed model is called HCRF+ and may be trained using both maximum likelihood and maximum margin approaches. It employs a self-training technique for automatic estimation of the regularization parameters of the objective functions. Moreover, the method provides robustness to outliers (such as noise or missing data) by modeling the conditional distribution of the privileged information by a Student’s t-density function, which is naturally integrated into the HCRF+ framework. Different forms of privileged information were investigated. The proposed method was evaluated using four challenging publicly available datasets and the experimental results demonstrate its effectiveness with respect to the state-of-the-art in the LUPI framework using both hand-crafted features and features extracted from a convolutional neural network.

Index Terms—Hidden conditional random fields, learning using privileged information, human activity recognition

1 INTRODUCTION

Recent advances in computer vision such as video surveillance and human-machine interactions [1], [2] rely on machine learning techniques trained on large scale human annotated datasets. However, training data may not always be available during testing and learning using privileged information (LUPI) [3], [4] has been used to overcome this problem. The insight of privileged information is that one may have access to additional information about the training samples, which is not available during testing.

Consequently, classification models may often suffer from “structure imbalance” between training and testing data, which may be represented by the LUPI paradigm. The LUPI technique simulates a real-life learning condition, when a student learns from his/her teacher, where the latter provides the student with additional knowledge, comments, explanations, or rewards in class. Subsequently, the student should be able to face any problem related to what he/she has learned without the help of the teacher. Taking advantage of this learning model, the LUPI framework has also been used in several machine learning applications such as boosting [5] and clustering [6].

The problem of human activity understanding using privileged knowledge is on its own a very challenging task. Since privileged information is only available during training, one should combine both regular and privileged information into a unified classifier to predict the true class label. However, it is quite difficult to identify the most useful information to be used as privileged as the lack of informative data or the presence of misleading information may influence the performance of the model.

We address these issues by presenting a new probabilistic approach, based on hidden conditional random fields (HCRFs) [7], called HCRF+. The proposed method is able to learn human activities by exploiting additional information about the input data, that may reflect on natural or auxiliary properties about classes and members of the classes of the training data (Fig. 1) and it is used for training purposes only but not for predicting the true classes (where, in general, this information is missing).

In particular, the proposed HCRF+ method differentiates from previous approaches [8], which may also use the LUPI paradigm, by incorporating privileged information in a supervised probabilistic manner, which facilitates the training process by learning the conditional probability dis-

![Fig. 1: Robust learning using privileged information. Given a set of training examples and a set of additional information about the training samples (left), our system can successfully recognize the class label of the underlying activity without having access to the additional information during testing (right). We explore three different forms of privileged information (e.g., audio signals, human poses, and attributes) by modeling them with a Student’s t-distribution and incorporating them into the HCRF+ model.](image-url)
The proposed HCRF+ approach is divided into two main components: learning the model’s parameters and the automatic estimation of the regularization term during the learning process. The main contributions of our work can be summarized in the following points. A human activity recognition method is proposed, which exploits privileged information in a probabilistic manner by introducing a novel classification scheme based on HCRFs to deal with missing or incomplete data during testing. Both maximum likelihood and maximum margin approaches are incorporated into the proposed HCRF+ model. Moreover, a novel technique for adaptive estimation of the regularization term during the learning process is introduced by incorporating both privileged and regular data. Finally, contrary to previous methods, which may be sensitive to outlying data measurements, a robust framework for recognizing human activities is integrated by employing a Student’s t-distribution to attain robustness against outliers.

The remainder of the paper is organized as follows: in Section 2, a review of the related work is presented. Section 3 presents the proposed HCRF+ approach including the maximum likelihood and maximum margin approaches for learning the model’s parameters and the automatic estimation of the regularization terms. In Section 4, experimental results are reported, and a discussion about the performance of the proposed approach is offered in Section 5. Finally, conclusions are drawn in Section 6.

2 Related Work

A major family of methods relies on learning human activities by building visual models and assigning activity roles to people associated with an event [10], [11]. In recent years, there has been an increased focus on the combination of different kinds of modalities, such as visual and audio information, for activity classification [12], [13]. A shared representation of human poses and visual information has also been explored [14], [15]. However, the effectiveness of such methods is limited by tracking inaccuracies in human poses and complex backgrounds. To this end, Cherian et al. [16] explored several kinematic and part-occlusion constraints for decomposing human poses into separate limbs to localize the human body. Eweisi et al. [17] reduced the required amount of pose data using a fixed length vector of more informative motion features for each skeletal point.

Special focus has also been given in recognizing human activities from movies or TV shows by exploiting scene contexts to localize activities and understand human interactions [18], [19]. Ramanathan et al. [20] improved the recognition accuracy of such complex videos by relating textual descriptions and visual context to a unified framework. Guadarrama et al. [21] proposed an alternative to the previous approach that takes a video clip as input and generates short textual descriptions, which may correspond to an activity label that is unseen during training. However, natural video sequences may contain irrelevant scenes or scenes with multiple actions. Shao et al. [22] mixed appearance and motion features using multi-task deep learning for recognizing group activities in crowded scenes collected from the web. Marin-Jiménez et al. [23] used a bag of visual-audio words scheme along with late fusion for recognizing human interactions in TV shows. Even though their method performs well in recognizing human interaction, the lack of an intrinsic audio-visual relationship estimation limits the recognition problem.

Intermediate semantic features representation for recognizing unseen actions during training has been extensively studied [24], [25], [26]. These intermediate features are learned during training and enable parameter sharing between classes by capturing the correlations between frequently occurring low-level features [27].

Recent methods that exploited deep neural networks have demonstrated remarkable results in large-scale datasets [28], Donahue et al. [29] proposed a recurrent convolutional architecture, where long short-term memory (LSTM) networks [30] are connected to convolutional neural networks (CNNs) that can be jointly trained to simultaneously learn spatio-temporal dynamics. Wang et al. [31] presented a new video representation that employs CNNs to learn multi-scale convolutional feature maps and introduced the strategies of trajectory-constrained sampling and pooling to encode deep features into informative descriptors. Tran et al. [32] introduced a 3D ConvNet architecture that learns spatio-temporal features using 3D convolutions. A novel video representation, that can summarize a video into a single image by applying rank pooling on the raw image pixels, was proposed by Bilen et al. [33]. Feichtenhofer et al. [34] introduced a novel architecture for two stream ConvNets and studied different ways for spatio-temporal fusion of the ConvNet towers. Zhu et al. [35] argued that videos contain one or more key volumes that are discriminative and most volumes are irrelevant to the recognition process. To this end, they proposed a unified deep learning framework to simultaneously identify discriminative key volumes and train classifiers, while they discarded all irrelevant volumes.

The LUPI paradigm was first introduced by Vapnik and Vashist [3] as a new classification setting to model a real world learning process (i.e., teacher-student learning relationship) in a max-margin framework, called SVM+. Pechyony and Vapnik [36] formulated an algorithm for risk bound minimization with privileged information. Several variants of the original SVM+ have been proposed in the literature including SVM+ with L1 regularization [37] and multi-task SVM+ [38].

Fouad et al. [39] proposed a combination of privileged
information and metric learning. The privileged information was used to change the metric of the input data and thus any classifier could be used. Wand and Ji [40] also proposed two different loss functions that exploit privileged information and can be used with any classifier. The first model encoded privileged information as an additional feature during training, while the second approach considered that privileged information can be represented as secondary labels. Wang et al. [41] incorporated privileged information in a latent max-margin model, where the additional knowledge was propagated through the latent nodes and the classification was performed from the regular data. Although this approach relaxes the strong assumptions of regular and privileged data relation for classification, it is limited by the slack variable estimation through SVM optimization. In this work, we address this problem by replacing the slack variables for the maximum margin violation and solve the unconstrained soft-margin SVM optimization problem.

Serra-Toro et al. [42] proved that successfully selecting information that can be treated as privileged is not a straightforward problem. The choice of different types of privileged information in the context of an object classification task implemented in a max-margin scheme was also discussed in [43]. Both regular and privileged features were considered of equivalent difficulty for recognizing the true class. Wang et al. [44] proposed a Bayesian network to learn the joint probability distribution of input features, output target, and privileged information. A combination of the LUPI paradigm and active learning has also been explored by Virgkas et al. [45] to model human activities in a semi-supervised scheme. Recently, the LUPI paradigm has been employed with applications on gender classification, facial expression recognition, and age estimation [46], [47], [48].

3 METHODOLOGY

Our method uses HCRFs, which are defined by a chained structured undirected graph $G = (V, E)$ (Fig. 2), as the probabilistic framework for modeling the behavior of a subject in a video. During training, a classifier and the mapping from observations to the label set are learned. In testing, a probe sequence is classified into its respective state using loopy belief propagation (LBP) [49].

3.1 HCRF+ Model Formulation

We consider a labeled data set with N video sequences consisting of triplets $D = \{(x_{i,j}, x^*_i, y_i)\}_{i=1}^N$, where $x_{i,j} \in \mathbb{R}^{M_x \times T}$ is an observation sequence of length T with $j = 1 \ldots T$. For example, $x_{i,j}$ might correspond to the j^{th} frame of the i^{th} video sequence. Furthermore, y_i corresponds to a class label defined in a finite label set Y. In the context of robust learning using a privileged information paradigm, additional information about the observations x_i is encoded in a feature vector $x_{i,j}^* \in \mathbb{R}^{M_x \times T}$. Such privileged information is provided only at the training step and it is not available during testing. Note that we do not make any assumption about the form of the privileged data.

In particular, $x_{i,j}^*$ does not necessarily share the same characteristics with the regular data, but is rather computed as a very different kind of information, which may contain verbal and/or non-verbal multimodal cues such as (i) visual features, (ii) semantic attributes, (iii) textual descriptions of the observations, (iv) image/video tags, (v) human poses, and (vi) audio cues. The goal of LUPI is to use the privileged information $x_{i,j}^*$ as a medium to construct a better classifier for solving practical problems than one would learn without it. In what follows, we omit indices i and j for simplicity.

The HCRF+ model is a member of the exponential family and the probability of the class label given an observation sequence is given by:

$$p(y|x, x^*; w) = \sum_h \exp \left(E(y, h|x, x^*; w) - A(w) \right),$$

where $w = [\theta, \omega]$ is a vector of model parameters, and $h = \{h_1, h_2, \ldots, h_T\}$, with $h_j \in \mathcal{H}$ being a set of latent variables. In particular, the number of latent variables may be different from the number of samples, as h_j may correspond to a substructure in an observation. Moreover, the features follow the structure of the graph, in which no feature may depend on more than two hidden states h_j and h_k [7]. This property not only captures the synchronization points between the different sets of information of the same state, but also models the compatibility between pairs of consecutive states. We assume that our model follows the first-order Markov chain structure (i.e., the current state affects the next state). Finally, $E(y, h|x; w)$ is a vector of sufficient statistics and $A(w)$ is the log-partition function ensuring normalization:

$$A(w) = \log \sum_{y} \sum_h \exp \left(E(y', h|x, x^*; w) \right).$$

Different sufficient statistics $E(y|x, x^*; w)$ in (1) define different distributions. In the general case, sufficient statistics consist of indicator functions for each possible configuration of unary and pairwise terms:

$$E(y, h|x, x^*; w) = \sum_{j \in V} \Phi(y, h_j, x_j, x_j^*; \theta) + \sum_{j, k \in E} \Psi(y, h_j, h_k; \omega),$$

where the parameters θ and ω are the unary and the pairwise weights, respectively, that need to be learned. Moreover, the potential functions correspond to the structure of the graphical model as illustrated in Fig. 2. For example, a unary potential does not depend on more than two hidden variables h_j and h_k, and a pairwise potential may depend
on \(h_j\) and \(h_k\), which means that there must be an edge \((j, k)\) in the graphical model.

The unary potential is expressed by:
\[
\Phi(y, h_j, x_j; \theta) = \sum_{\ell} \phi_{1, \ell}(y, h_j; \theta_{1, \ell}) + \phi_2(h_j, x_j; \theta_2) + \phi_3(h_j, x_j^*; \theta_3),
\]
and it can be seen as a state function, which consists of three different feature functions. The label feature function, which models the relationship between the label \(y\) and the hidden variables \(h_j\), is expressed by:
\[
\phi_{1, \ell}(y, h_j; \theta_{1, \ell}) = \sum_{\lambda \in \mathcal{Y}} \sum_{a \in \mathcal{A}} \theta_{1, \ell}(y = \lambda) \mathbb{I}(h_j = a),
\]
where \(\mathbb{I}(\cdot)\) is the indicator function, which is equal to 1, if its argument is true and 0 otherwise. The number of the label feature functions is \(|\mathcal{Y}| \times |\mathcal{A}|\). The observation feature function, which models the relationship between the hidden variables \(h_j\) and the observations \(x_j\), is defined by:
\[
\phi_2(h_j, x_j; \theta_2) = \sum_{a \in \mathcal{A}} \theta_2^a \mathbb{I}(h_j = a)x_j.
\]
The number of the observation feature functions is considered to be \(|\mathcal{Y}| \times |\mathcal{M}_b|\). Finally, the privileged feature function, which models the relationship between the hidden variables \(h_j\) and the privileged information \(x_j^*\), has \(|\mathcal{Y}| \times |\mathcal{M}_c|\) number of functions and is defined by:
\[
\phi_3(h_j, x_j^*; \theta_3) = \sum_{a \in \mathcal{A}} \theta_3^a \mathbb{I}(h_j = a)x_j^*.
\]
The pairwise potential is a transition function and represents the association between a pair of connected hidden states \(h_j\) and \(h_k\) and the label \(y\). It is expressed by:
\[
\Psi(y, h_j, h_k; \omega) = \sum_{\lambda \in \mathcal{Y}} \sum_{a, b \in \mathcal{A}} \omega_{\ell}(y = \lambda) \mathbb{I}(h_j = a) \mathbb{I}(h_k = b).
\]
The number of the transition functions is \(|\mathcal{Y}| \times |\mathcal{H}|^2\). HCRF+ keeps a transition matrix for each label.

3.2 Maximum Likelihood Learning

In the training step the optimal parameters \(w^*\) are estimated by maximizing the following loss function:
\[
L(w) = \sum_{i=1}^{N} \frac{1}{\lambda_i} \log p(y_i | x_i, x_i^*; w) - \frac{1}{2\sigma^2} \|w\|^2. \tag{9}
\]
The first term is the log-likelihood of the posterior probability \(p(y | x, x^*; w)\) and quantifies how well the distribution in Eq. (1) defined by the parameter vector \(w\) matches the labels \(y_i\), while \(\lambda\) is a tuning parameter. It can be rewritten as:
\[
\log p(y_i | x_i, x_i^*; w) = \log \sum_{h} \exp(E(y, h | x_i, x_i^*; w)) - \log \sum_{y' \neq y, h} \exp(E(y', h | x_i, x_i^*; w)). \tag{10}
\]
The second term in Eq. (9) is a Gaussian prior with variance \(\sigma^2\) and works as a regularizer. The use of hidden variables makes the optimization of the loss function non-convex, thus, a global solution is not guaranteed and we can estimate \(w^*\) that are locally optimal. The loss function in Eq. (9) is optimized using a gradient-descent method such as the limited-memory BFGS (LBFGS) method [50].

3.3 Maximum Margin Learning

We can easily transform the optimization problem of the loss function defined in Eq. (9) into a max-margin problem by substituting the log of the summation over the hidden states and the labels in Eq. (10) with maximization [51]. The goal is to maximize the margin between the score of the correct label and the score of the other labels. To learn the parameters \(w^*\) we need to minimize a loss function of the form:
\[
L(w) = \sum_{i=1}^{N} \frac{1}{\lambda_i} \xi_i + \frac{1}{2\sigma^2} \|w\|^2 \tag{11}
\]
ts.t. \(\max_{y' \neq y, h} E(y', h | x_i, x_i^*; w) - \max_{h} E(y_i, h | x_i, x_i^*; w) \leq \xi_i - 1, \quad \xi_i \geq 0,\)
where parameter \(\lambda\) is a tuning parameter. Although we add slack variables \(\xi\) to max-margin optimization, they eventually vanish. We do not estimate the slacks, but we replace them with the Hinge loss error [52] that penalizes the loss when the constraints in Eq. (11) are violated:
\[
\ell_i(w) = \max(0, 1 + \max_{y' \neq y, h} E(y', h | x_i, x_i^*; w) - \max_{h} E(y_i, h | x_i, x_i^*; w)). \tag{12}
\]
The optimization problem in (11) is equivalent to the optimization of the following unconstrained problem:
\[
L(w) = \sum_{i=1}^{N} \frac{1}{\lambda_i} \ell_i(w) + \frac{1}{2\sigma^2} \|w\|^2. \tag{13}
\]
However, the quantity \(\max(0, \cdot)\) is not differentiable and thus, Eq. (11) is hard to solve. To overcome this problem we adopt the bundle method [53], which uses sub-gradient descent optimization algorithm.

3.4 Estimation of Regularization Parameters

Both maximum likelihood and max-margin loss functions introduce regularization parameters that control data fidelity and these regularization parameters in Eq. (9) and Eq. (13) may be obtained in closed form. Here, we examine the case of maximum likelihood optimization as the estimation of the regularization parameters for the max-margin optimization is equivalent. We can rewrite the loss function in Eq. (9) as the sum of individual smoothing functionals for each of the training samples \(N\):
\[
L(w) = \sum_{i=1}^{N} \{ \log p(y_i | x_i, x_i^*; w) - \alpha_i(w) \|w\|^2 \}, \tag{14}
\]
where \(\alpha_i(w) = \frac{\lambda_i}{2\sigma^2}\).

In general, the choice of the regularization parameter for the optimization of the loss function should be a function
of model parameters w. We consider a linear function $f(\cdot)$ between α_i and each term of the loss function:

$$\alpha_i(w) = f \left(\frac{1}{\gamma_i} \sum \|w\|^2 - \frac{1}{\gamma_i} \sum \|w\|^2 \right)$$

$$= \frac{1}{\gamma_i} \left(\log p(y_i|\mathbf{x}_i, \mathbf{x}_i^*; w) - \alpha_i(w) \|w\|^2 \right),$$

(15)

where γ is determined by the sufficient conditions for convergence. From Eq. (15), the regularization parameter α_i is computed as:

$$\alpha_i(w) = \frac{1}{\gamma_i} \log p(y_i|\mathbf{x}_i, \mathbf{x}_i^*; w) - \frac{\|w\|^2}{\gamma_i},$$

(16)

and therefore:

$$\frac{1}{\gamma_i} > \log p(y_i|\mathbf{x}_i, \mathbf{x}_i^*; w) - \alpha_i(w) \|w\|^2.$$

(17)

We assume that the privileged information is more informative for classifying human actions than the regular information. Note that, this is the intuition of using of privileged information as additional features for classification purposes and it may hold for most of the cases. Thus, the loss of classifying human actions directly form x should be greater or equal than classifying from both x and x^*:

$$\log p(y_i|\mathbf{x}_i; w) \geq \log p(y_i|\mathbf{x}_i, \mathbf{x}_i^*; w).$$

(18)

We can then relax the problem and consider that Eq. (17) is satisfied when $\frac{1}{\gamma_i} = \log p(y_i|\mathbf{x}_i; w)$. Thus, the regularization parameter α_i for the loss function is given by:

$$\alpha_i(w) = \frac{1}{\gamma_i} \log p(y_i|\mathbf{x}_i, \mathbf{x}_i^*; w) - \frac{\|w\|^2}{\gamma_i}.$$

(19)

The regularization parameter α_i may act as as the within-classification balance between data and model parameters. In each step of the optimization process, we adaptively update the regularization parameter α_i, providing robustness to the trade-off between the regularization terms.

Similarly, the regularization parameter α_i for the loss function for the max-margin optimization is given by:

$$\alpha_i(w) = \frac{1}{\gamma_i} \log p(y_i|\mathbf{x}_i, \mathbf{x}_i^*; w) - \frac{\|w\|^2}{\gamma_i},$$

(20)

where $\gamma_i(w)$ is the Hinge loss error for classifying directly from the regular data x:

$$\gamma_i(w) = \max(0, 1 + \frac{\|w\|^2}{\gamma_i} - \max_{y \neq y_i} E(y, \mathbf{h}|\mathbf{x}_i; w)) - \max_{y} E(y, \mathbf{h}|\mathbf{x}_i; w)).$$

(21)

3.5 Inference

Having computed the optimal parameters w^* in the training step, our goal is to estimate the optimal label configuration over the testing input, where the optimality is expressed in terms of a cost function. To this end, we maximize the posterior probability and marginalize over the latent variables h and the privileged information x^*:

$$y = \arg \max_y p(y|\mathbf{x}; w)$$

$$= \arg \max_y \sum_h \sum_{x^*} p(y, \mathbf{h}, \mathbf{x}^*|\mathbf{x}; w)$$

$$= \arg \max_y \sum_h \sum_{x^*} p(y, \mathbf{h}|\mathbf{x}, \mathbf{x}^*; w)p(\mathbf{x}^*|\mathbf{x}; w).$$

In the general case, the training samples x and x^* may be considered to be jointly Gaussian, thus the conditional distribution $p(x^*|y; w)$ is also a Gaussian distribution. In the case of continuous features, the continuous space of features is quantized to a large number of discrete values to approximate the true value of the marginalization of Eq. (22). However, to efficiently cope with outlying measurements about the training data, we consider that the training samples x and x^* jointly follow a Student’s t-distribution. Therefore, the conditional distribution $p(x^*|y; w)$ is also a Student’s t-distribution $\text{St}(\mathbf{x}, \mathbf{y}; \mu^*, \Sigma^*, \nu^*)$, where \mathbf{x} forms the first $M_\mathbf{x}$ components of (\mathbf{x}, \mathbf{y}), \mathbf{y} comprises the remaining $M - M_\mathbf{x}$ components, μ^* is the mean vector, Σ^* is the covariance matrix and $\nu^* \in [0, \infty)$ corresponds to the degrees of freedom of the distribution [54]. Note that by letting the degrees of freedom ν^* go to infinity, we can recover the Gaussian distribution with the same parameters. If the data contain outliers, the degrees of freedom parameter ν^* is weak and the mean and covariance of the data are appropriately weighted in order not to take into account the outliers. More details on how the parameters of the conditional Student’s t-distribution $p(x^*|y; w)$ are estimated can be found in Appendix A.

Although both distributions $p(y, \mathbf{h}|\mathbf{x}, \mathbf{x}^*; w)$ and $p(x^*|y; w)$ belong to the exponential family, the graph in Fig. 2 is cyclic, and therefore an exact solution to Eq. (22) is generally intractable. For this reason, approximate inference is employed for estimation of the marginal probability by applying the LBP algorithm [49].

4 Experimental Results

We evaluated our method on four challenging publicly available datasets. Three different types of privileged information were used: audio signal, human pose, and semantic attribute annotation.

We propose four variants of our approach, called *Maximum Likelihood LUPI Hidden Conditional Random Field (ml-HCRF+), Adaptive Maximum Likelihood LUPI Hidden Conditional Random Field (aml-HCRF+), Maximum Margin LUPI Hidden Conditional Random Field (mm-HCRF+), and Adaptive Maximum Margin LUPI Hidden Conditional Random Field (amm-HCRF+)*, depending on which learning method we apply (i.e., maximum likelihood or max-margin) and whether we automatically estimate the regularization parameters of the corresponding loss function or not.

4.1 Datasets

Parliament [55]: This dataset is a collection of 228 video sequences, depicting political speeches in the Greek parliament, at a resolution of 320×240 pixels at 25 fps. The video sequences were manually labeled with one of three behavioral labels: friendly, aggressive, or neutral.

TV human interaction (TVHI) [18]: This dataset consists of 300 video sequences collected from over 20 different TV shows. The video clips contain four kinds of interactions: hand shakes, high fives, hugs, and kisses, equally split into 50 video sequences each, while the remaining 100 video clips do not contain any of the aforementioned interactions.

SBU Kinect Interaction (SBU) [15]: This dataset contains approximately 300 video sequences depicting two-person interactions.
interactions captured by a Microsoft Kinect sensor. The dataset contains eight different classes including approaching, departing, pushing, kicking, punching, exchanging objects, hugging, and shaking hands, which are performed by seven different persons. It also contains three-dimensional coordinates of 15 joints for each person at each frame.

Unstructured social activity attribute (USAA) [26]: The USAA dataset includes eight different semantic class videos of social occasions such as birthday party, graduation party, music performance, non-music performance, parade, wedding ceremony, wedding dance, and wedding reception. It contains around 100 videos per class for training and testing. Each video is annotated with 69 attributes, which can be divided into five broad classes: actions, objects, scenes, sounds, and camera movement.

4.2 Implementation Details

Feature selection: For the evaluation of our method, we used spatio-temporal interest points (STIP) [56] as our base video representation. First, we extracted local space-time features at a rate of 25 fps using a 72-dimensional vector of HoG and 90-dimensional vector of HoF feature descriptors [57] for each STIP, which captures the human motion between frames. These features were selected because they can capture salient visual motion patterns in an efficient and compact way. In addition, for the TVHI dataset, we also used the provided annotations, which are related to the locations of the persons in each video clip, including the head orientations of each subject in the clips, the pair of subjects who interact with each other, and the corresponding labels. For our experiments on Parliament and TVHI datasets, we used audio features as privileged information. More, specifically, we employed the mel-frequency cepstral coefficients (MFCC) [58] features and their first and second order derivatives. The audio signal was sampled at 16 KHz and processed over 10 ms using a Hamming window with 25% overlap. The audio feature vector consisted of a collection of 13 MFCC coefficients along with the first and second derivatives forming a 39 dimensional audio feature vector.

Furthermore, for the SBU dataset, we used the poses provided by the dataset as privileged information. In particular, along with the positions of the locations of the joints for each person in each frame, we used six more features such as joint distance, joint motion, plane, normal plane, velocity, and normal velocity as described by Yun et al. [15]. As a basic representation of the video data, we used the STIP features.

Finally, we used the USAA dataset and the provided attribute annotation as privileged information to characterize each class not with an individual label, but with a feature vector of semantic attributes. As a representation of the video data, we used the provided low-level features, which correspond to SIFT [59], STIP, and MFCC features. Table 1 summarizes all forms of features used either as regular or privileged for each dataset in our algorithm during training and testing.

Model selection: The proposed model was trained by varying the number of hidden states from 3 to 20, with a maximum of 400 iterations for the termination of the LBFGS optimization method. The L_2 regularization scale term σ for the non-adaptive methods was set to 10^k, with $k \in \{-3, \ldots, 3\}$. The evaluation of our method was performed using 5-fold cross validation to split the datasets into training and test sets, and the average results over all the examined configurations are reported.

4.3 Multimodal Feature Fusion

One drawback of combining features of different modalities is the different probability distribution that each modality may have. Thus, instead of directly combining multimodal features together one may employ canonical correlation analysis (CCA) [60] to exploit the correlation between the different modalities by projecting them onto a common subspace so that the correlation between the input vectors is maximized in the projected space. In this paper, we followed a different approach. Our model is able to learn the relationship between the input data and the privileged features. To this end, we jointly calibrate the different modalities by learning a multiple output linear regression model [61]. Let $\mathbf{x} \in \mathbb{R}^{M \times d}$ be the input raw data and $\mathbf{x}^* \in \mathbb{R}^{M \times p}$ be the set of privileged features. Our goal is to find a set of weights $\mathbf{\gamma} \in \mathbb{R}^{d \times p}$, which relates the privileged features to the regular features by minimizing a distance function across the input samples and their attributes:

$$
\arg \min_{\gamma} \| \mathbf{x} \mathbf{\gamma} - \mathbf{x}^* \|^2 + \eta \| \mathbf{\gamma} \|^2 , \quad (23)
$$

where $\| \mathbf{\gamma} \|^2$ is a regularization term and η controls the degree of the regularization, which was chosen to give the best solution by using cross validation with $\eta \in [10^{-2}, 1]$. Following a constrained least squares (CLS) optimization problem and minimizing $\| \mathbf{\gamma} \|^2$ subject to $\mathbf{x} \mathbf{\gamma} = \mathbf{x}^*$, Eq. (23) has a closed form solution $\mathbf{\gamma} = (\mathbf{x}^T \mathbf{x} + \eta \mathbf{I})^{-1} \mathbf{x}^T \mathbf{x}^*$, where \mathbf{I} is the identity matrix. Note that the minimization of Eq. (23) is fast since it needs to be solved only once during training. Finally, we obtain the prediction f of the privileged features by multiplying the regular features with the learned weights $f = \mathbf{x} \cdot \mathbf{\gamma}$. The main steps of the proposed method are summarized in Algorithm 1.

Dataset	Features (dimension)	Regular	Privileged
Parliament	STIP (162)		✓
	MFCCs (39)		✓
TVHI	STIP (162)	✓	✓
	Head orientations (2)	✓	✓
	MFCC (39)		✓
SBU	STIP (162)	✓	✓
	Pose (15)		✓
USAA	SIFT (128)	✓	✓
	MFCC (39)	✓	✓
	Semantic attributes (69)		✓
Algorithm 1: Robust privileged probabilistic learning

Input: Training sets \mathcal{X} and \mathcal{X}', training labels \mathcal{Y}
1 Perform feature extraction from both \mathcal{X} and \mathcal{X}'
2 Employ Eq. (23) and project \mathcal{X} and \mathcal{X}' onto a common space
3 Initialize parameters w randomly
4 for $i \in \{1, \ldots, N\}$ do
5 /*Maximum likelihood or max-margin learning*/
6 Estimate the regularization parameter α_i using Eqs. (19) or (20)
7 $w^* \leftarrow$ Train HCRF+ on triplets $(\mathcal{X}_i, \mathcal{X}'_i, \mathcal{Y}_i)$
8 end
Output: Estimated models’ parameters w^*

Fig. 3: Comparison of the recognition accuracy of the four different variants of the proposed method and standard HCRF model with respect to the number of hidden states for (a) the Parliament [55], (b) the TVHI [18], (c) the SBU [15], and (d) the USAA [26] datasets. The text in parentheses in the legend of each figure corresponds to the type of information used both for training and testing.

4.4 Evaluation of Privileged Information

The classification accuracy with respect to the number of hidden states is depicted in Fig. 3. We may observe that all four variants have a similar behavior as the number of hidden states increases. It is clear that when privileged information is used, in the vast majority of the cases (38 out of 45 cases) all variants of HCRF+ perform better than the standard HCRF model. In Fig. 3, the HCRF+ variants and the standard HCRF model suffer from large fluctuations as the number of hidden states increases. This is because the number of hidden states plays a crucial role in the recognition process. Many hidden states may lead to model overfitting, while few hidden states may cause underfitting. This would be resolved by the estimation of the optimal number of hidden states during learning, but this is not straightforward for this model. We may also observe that the performance of each modality alone is kept significantly lower for all configurations of hidden states, which reinforces the fact that privileged information may help to construct better classification models.

The resulting confusion matrices of the best performing variant are depicted in Fig. 4. It is worth mentioning that for both the Parliament and the TVHI datasets the classification errors between different classes are relatively small. The SBU dataset has relatively small classification errors, as only a few classes are confused with each other (e.g., the class hugging versus the class hand shaking), while four out of the eight classes were perfectly recognized. It is interesting to observe that for the USAA dataset the different classes may be strongly confused. For example, the class wedding ceremony is confused with the class graduation party and the class wedding reception is confused with the class non-music performance. This is because the different classes may share the same attribute representation as different videos may have been captured under similar conditions.

The behavior of the proposed adaptive model as a function of the regularization parameters and the number of hidden states is depicted in Fig. 5. To be consistent to the non-adaptive methods, the real-valued regularization parameters were quantized from the continuous to the discrete space with $\alpha(w) = 10^k$, $k \in \{-2, \ldots, 2\}$ and the results were averaged. We may observe that the behavior of the recognition accuracy is smooth for the different values of $\alpha(w)$ and the number of hidden states, which indicates that the automatic estimation of $\alpha(w)$ is robust.

4.5 Comparisons using Hand-Crafted Features

In this section, we compare the results of our method with several state-of-the-art methods. In particular, to show the benefit of using robust privileged information, we compared our method both with state-of-the-art methods with and without incorporating the LUPI paradigm. Also, to demonstrate the efficacy of the robust privileged information to the problem of human activity recognition, we compared it with ordinary SVM and HCRF, as if they could access both the regular and the privileged information at test time. This means that we do not differentiate between regular and
privileged information, but use both forms of information as regular to infer the underlying class label instead. Moreover, to complete the study, we also trained an HCRF model that uses only the regular and only the privileged information for training and testing. To distinguish between the different types of information that the HCRF model may use, we specifically report the type of feature in parentheses after the HCRF caption. Furthermore, for the SVM+ and SVM we consider a one-versus-one decomposition of multi-class classification scheme and average the results for every possible configuration. Finally, the optimal parameters for the SVM and SVM+ were selected using cross validation.

A comparison of the proposed approach with state-of-the-art methods on the Parliament dataset are depicted in Table 2. The ml-HCRF+ method has highest recognition accuracy (97.6%) among the other variants of the proposed model, while it achieves the same accuracy with the standard HCRF model. Although the adaptive HCRF+ approaches may perform worse than the non-adaptive variants, they can still achieve better results than the majority of the state-of-the-art methods. One reason for this, is that the estimation of the regularization parameters for the adaptive variants depends on the input features. Features that belong to the background may influence the estimation of the regularization parameters as they may serve as background noise.

It is also worth mentioning that our method is able to increase the recognition accuracy by nearly 38% with respect to the methods of Wang and Ji [40] and the method of Sharmanska et al. [43], which also incorporate the LUPI paradigm. This significantly high increase in recognition accuracy indicates the strength of the proposed method. Moreover, the performance of the proposed approach is higher approximately by 19% than the SVM+ model and 25% than the standard SVM approach. The Parliament dataset contains large intra-class variabilities. For example, the interaction between an arm lift and the raise in the voice may not exclusively be combined together as some features may act as outliers and affect the classification accuracy.

The classification results on the TVHI dataset are demonstrated in Table 3. For this dataset, we significantly managed to increase the classification accuracy by approximately 10%, with respect to the LUPI-based SVM+ and Wang and Ji [40] approaches, as our approach achieves very high recognition accuracy (84.9%). The improvement of our method compared to the method of Sharmanska et al. [43] and the methods that do not use privileged information was even higher.

The classification accuracies for the SBU dataset are presented in Table 4. The ml-HCRF+ approach achieved the highest accuracy (85.4%), where the improvement over
TABLE 3: Comparison of the classification accuracies (%) on TVHI the dataset [18]. Results highlighted with light purple indicate statistically significant improvement using paired t-test.

Method	Overall	Hand Shake	High Five	Hug	Kiss
SVM without privileged information					
HCRF (visual+audio)	81.3 ± 0.7	87.5	96.3	87.5	93.8
HCRF (visual) [7]	60.9 ± 1.3	56.3	25.0	87.5	75.0
HCRF (audio) [7]	35.9 ± 1.5	12.5	12.5	43.8	75.0
Wang and Schmid [11]	76.1 ± 0.4	76.2	74.0	74.8	74.6
SVM [62]	75.9 ± 0.6	74.6	76.3	75.8	76.3

Methods with privileged information					
SVM+ [3]	75.0 ± 0.2	74.6	76.3	72.8	76.2
Wang and Ji [40]	74.8 ± 0.2	74.6	76.3	72.2	76.3
Wang et al. [41]	84.4 ± 1.1	90.8	81.2	75.1	87.5
Sharmanska et al. [43]	63.2 ± 0.1	78.3	54.8	74.3	53.5
ml-HCRF+	84.9 ± 0.4	97.2	81.3	72.9	87.5
aml-HCRF+	83.6 ± 1.1	90.8	81.3	71.8	87.5
mm-HCRF+	81.6 ± 0.6	90.8	81.3	72.5	87.5
amm-HCRF+	82.9 ± 0.8	90.8	81.3	68.8	87.5

the standard HCRF model is nearly 4%. Comparing our method to methods that do not use privileged information, we increased the classification accuracy in all cases. An interesting observation of the non-privileged HCRF (visual) and HCRF (pose) methods arises. Despite the fact that for some classes these methods were able to perfectly recognize the underlying activity, they completely failed to recognize some of the classes as the rate of false positives may reach 100%. Considerably high improvements are also reported when comparing our methods with state-of-the-art methods that employ privileged information.

The classification results for the USAA dataset are summarized in Table 5. The combination of both raw data and attribute representation of human activities significantly outperformed the SVM+ baseline and the method of Wang and Ji [40] by increasing the classification accuracy by approximately 11% for the amm-HCRF+ model. An improvement of 3% with respect to the methods of Sharmanska et al. [43] and Wang et al. [41] was also achieved. Furthermore, the adaptive variants of the proposed method perform better than their non-adaptive counterparts for this dataset. Automatic estimation of the regularization parameters provides more flexibility to the model as it allows the model to adjust its behavior according to the training data.

4.6 Comparisons using Deep Learning Features

In our experiments, we used CNNs for both end-to-end classification and feature extraction. We employed the pre-trained model of Tran et al. [32], which is a 3D ConvNet (Fig. 6). We selected this model because it was trained on a very large dataset (Sports 1M [63]), which provides good features for the activity recognition task, especially in our case where the size of the training data is small, making deep learning models prone to overfitting.

Because both the Parliament and SBU datasets, are fairly small datasets, only a few parameters had to be trained to avoid overfitting. Particularly, we replaced the fully-connected layers of the pre-trained model with a new fully-connected layer of size 1,024 and trained the additional layer coupled with a softmax layer on top of it. For the TVHI dataset, we fine-tuned the last group of convolutional layers, while for the USAA dataset, we fine-tuned the last two groups. Each group has two convolutional layers, while we added a new fully-connected layer of size 256 for the TVHI and 1,024 for the USAA datasets, respectively. For the optimization process, we used mini-batch stochastic gradient descent (SGD) with momentum. The size of the mini-batch was set to 16 and we used a constant momentum of 0.9. For both the Parliament and SBU datasets, the learning rate was initialized to 0.01 and it was decayed by a factor of 0.1, while the total number of training epochs was 1,000. For the TVHI and USAA datasets, we used a constant learning rate of 10^{-4} and the total number of training epochs was 500 and 250, respectively. For all datasets, we added a dropout layer after the new fully-connected layer with probability 0.5. Also, we performed data augmentation on each batch online and 16 consecutive frames were randomly selected for each video. These frames were randomly cropped, resulting in frames of size 112×112 and then flipped with probability 0.5. For the classification task, we used the centered 112×112 crop on the frames of each video sequence. Then, for each video, we extracted 10 random clips of 16 frames and averaged their predictions. Finally, to avoid overfitting, we used early stopping and extracted CNN features from the newly added fully-connected layer.

In addition, we compared the proposed HCRF+ method with the LSTM networks [30], since it has been proven that they provide good performance in several sequential classification tasks such as image description and activity recognition [29]. Although a promising methodology is to train a CNN stacked with an LSTM layer on top [29] for end-to-end feature extraction and sequential classification, our limited size datasets prevented us on training such a model due to overfitting. To address this issue, we trained an LSTM layer with a softmax layer on top, on the features extracted from the pretrained CNN model. Specifically, we added a dropout layer on the LSTM’s hidden units and an L_2 regularization on the softmax units. For estimating the hyperparameters, we performed a grid search with 5-fold cross validation to optimize the learning rate, the number of hidden units, the dropout rate and the weight decay factor of the L_2 regularizer. We trained the LSTM model for 100 epochs using the Adam optimizer [64] with early stopping.

The comparison of the proposed approach with state-of-the-art methods using the CNN features is summarized in Table 6. The improvement of accuracy with respect to the hand-crafted feature classification for all datasets (Tables 2 to 5), indicates that CNNs may efficiently extract informative features without any need to hand-design them. It is also worth noting that privileged information works in favor of the classification task in all cases. The ml-HCRF+ variant achieves the highest results among all other methods for the Parliament, TVHI, and SBU datasets, while for the USAA dataset, the amm-HCRF+ variant achieves the highest recognition accuracy (96.4%). Moreover, the improvement in accuracy of the proposed model with respect to the end-to-end CNN classification for the Parliament, TVHI, and USAA datasets, was approximately 15%, 33%, and 29%, respectively. This improvement can be explained by the fact that the CNN model uses a linear classifier in the softmax layer, while the proposed approach is a more
TABLE 4: Comparison of the classification accuracies (%) on the SBU dataset [15]. Results highlighted with light purple indicate statistically significant improvement using paired t-test.

Method	Overall	Approach	Depart	Kick	Push	Shake Hands	Hug	Exchange Objects	Punch
Methods without privileged information									
HCRF (visual+pose) [7]	81.4 ± 0.8	100.0	33.3	100.0	66.7	66.7	75.0	100.0	83.3
HCRF (visual) [7]	69.8 ± 1.1	100.0	100.0	100.0	66.7	100.0	0.0	100.0	0.0
HCRF (pose) [7]	62.5 ± 1.3	100.0	0.0	100.0	100.0	0.0	0.0	100.0	100.0
Wang and Schmid [11]	79.6 ± 0.4	76.2	74.6	78.6	78.9	81.4	79.2	84.3	83.5
SVM [62]	79.4 ± 0.4	74.9	67.2	68.7	76.9	100.0	59.4	89.4	100.0

| **Methods with privileged information** |
|--|---------|----------|--------|------|------|-------------|-----|------------------|-------|
| SVM+ [3] | 79.4 ± 0.3 | 76.4 | 72.6 | 73.2 | 91.5 | 70.2 | 73.2 | 81.4 | 100.0 |
| Wang and Ji [40] | 62.4 ± 0.3 | 79.5 | 61.4 | 59.2 | 60.0 | 59.7 | 60.5 | 56.4 | 62.6 |
| Wang et al. [41] | 83.7 ± 1.6 | 100.0 | 66.7 | 75.0 | 66.7 | 66.7 | 75.5 | 100.0 | 100.0 |
| Sharmanska et al. [43] | 56.3 ± 0.2 | 51.6 | 79.2 | 40.9 | 60.0 | 74.1 | 39.9 | 43.6 | 61.2 |
| ml-HCRF+ [60] | **85.4 ± 0.4** | 100.0 | 83.3 | 100.0 | 100.0 | 66.7 | 33.3 | 100.0 | 100.0 |
| aml-HCRF+ | 79.8 ± 1.3 | 100.0 | 100.0 | 75.0 | 77.8 | 100.0 | 50.0 | 66.7 | 66.7 |
| mm-HCRF+ | 83.7 ± 0.5 | 100.0 | 75.0 | 100.0 | 100.0 | 66.7 | 25.0 | 100.0 | 100.0 |
| amm-HCRF+ | 82.8 ± 1.3 | 100.0 | 66.7 | 83.4 | 66.7 | 66.7 | 75.0 | 100.0 | 100.0 |

TABLE 5: Comparison of the classification accuracies (%) on the USAA dataset [26]. Results highlighted with light purple indicate statistically significant improvement using paired t-test.

Method	Overall	Birthday	Graduation	Music	Non-music	Parade	Ceremony	Dance	Reception
Methods without privileged information									
HCRF (visual+attributes) [7]	54.0 ± 0.8	79.8	59.6	48.5	68.3	61.5	4.4	69.8	21.2
HCRF (visual) [7]	55.5 ± 0.9	74.8	50.5	76.4	50.5	79.1	4.3	80.2	19.2
HCRF (attributes) [7]	37.4 ± 1.0	22.2	41.4	63.7	47.5	35.2	14.1	56.3	0.0
Wang and Schmid [11]	55.6 ± 0.1	52.8	55.3	57.1	58.3	60.2	49.7	59.6	40.1
SVM [62]	47.4 ± 0.1	47.5	47.9	49.4	45.7	48.7	38.2	36.5	45.9

| **Methods with privileged information** |
|---------------------------------------|---------|----------|------------|-------|-----------|--------|----------|-------|-----------|
| SVM+ [3] | 48.5 ± 0.1 | 52.7 | 49.9 | 53.3 | 50.9 | 51.6 | 48.7 | 41.1 | 32.5 |
| Wang and Ji [40] | 48.5 ± 0.2 | 32.9 | 44.6 | 52.7 | 48.9 | 52.0 | 49.4 | 54.7 | 53.0 |
| Wang et al. [41] | 55.3 ± 0.9 | 59.6 | 68.7 | 58.4 | 67.3 | 74.7 | 17.4 | 75.0 | 15.4 |
| Sharmanska et al. [43] | 56.3 ± 0.2 | 56.9 | 47.8 | 62.0 | 62.6 | 67.1 | 51.8 | 57.5 | 44.4 |
| ml-HCRF+ [60] | 58.1 ± 1.4 | 78.8 | 59.6 | 74.3 | 60.4 | 70.3 | 11.3 | 87.5 | 23.5 |
| aml-HCRF+ | 57.5 ± 1.4 | 78.8 | 57.6 | 78.2 | 70.3 | 67.0 | 3.3 | 78.1 | 23.1 |
| mm-HCRF+ | 56.8 ± 0.6 | 79.8 | 63.6 | 79.2 | 59.4 | 54.9 | 14.6 | 85.4 | 17.5 |
| amm-HCRF+ | **59.4 ± 0.7** | 78.8 | 61.6 | 77.2 | 69.3 | 69.2 | 18.3 | 79.2 | 21.2 |

sophisticated model that can efficiently handle sequential data in a more principled way. Also, the improvement in performance, brought by the LSTM compared to the end-to-end classification with the CNN, validates the ability of LSTMs to capture long-term dependencies in human activities as LSTMs have memory of previous activity states and can better model their complex dynamics. Nonetheless, the proposed model outperforms the LSTM, for all datasets, a fact that supports our main hypothesis that the LUPI paradigm may be beneficial for human activity recognition.

The corresponding confusion matrices of the proposed method for all datasets, using the CNN-based features, are depicted in Fig. 7. The combination of privileged information with the feature representation learned from the CNN model resulted in very small inter- and intra-class classification errors for all datasets.

5 DISCUSSION

Our method is able to robustly use privileged information in a more efficient way than the SVM+ and the other LUPI-based methods, by exploiting the hidden dynamics between the video clips and the privileged information. We may also observe that the proposed method outperforms all methods that do not incorporate privileged information during learning. Since the combination of multimodal data falls natural to the human perception of understanding complex activities, the incorporation of such information constitutes a strong attribute for discriminating between different classes, rather than learning each modality separately.

Statistical significance: In order to provide a statistical evidence of the recognition accuracy, we computed the p-values of the obtained results with respect to the compared methods. Results highlighted with light purple in Tables 2 - 6 indicate statistically significant improvement (p-values...
were less than the significance level of 0.05) over the second best method using paired t-test.

Computational complexity: The proposed method uses the same sufficient statistics as HCRF and the computational complexity is similar to HCRF. The complexity of our method is determined by the complexity of the corresponding inference problem and is quadratic to the number of hidden states.

5.1 Why is Privileged Information Important?

Selecting which features can act as privileged information is not an easy task. The performance of LUPI-based classifiers relies on the delicate relationship between the regular and the privileged information. Also, privileged information is costly or difficult to obtain with respect to producing additional regular training examples [42]. In general, when privileged information alone is used as regular it may not be sufficient for the correct classification of an action into its respective category, since finding proper privileged information is not always a straightforward process.

The scope of our approach is not to achieve the best results possible but to investigate to what extent privileged information can be beneficial under the same evaluation protocol. The main strength of the proposed method is that it achieves good classification results, when the LUPI framework is incorporated with the standard HCRF model.

In the era of deep learning, significant progress has been made in learning good representations of the data and a deep learning based technique is the way to go. However, in cases where datasets are small in size, which is true in our case, and the distribution of the data is completely different from the data that the existing pre-trained models were trained on, then privileged information can be very helpful. Nonetheless, one may fine-tune the deep neural model and extract meaningful feature representations. This enhances our choice to use deep features with the proposed HCRF+ model as the experimental results indicate significant improvement when these features are used. Thus, the answer to the question “is privileged information necessary?” is affirmative. For example, in many medical applications, where annotated data are difficult or expensive to obtain and pre-trained deep learning models are still not available, privileged information is the best solution to go.
6 Conclusion

In this paper, we addressed the problem of human activity categorization in a supervised framework and proposed a novel probabilistic classification model based on robust learning using a privileged information paradigm, called HCRF+. Our model is robust using Student’s t-distributions to model the conditional distribution of the privileged information. We proposed two variants for training in the LUPI framework. The first variant uses maximum likelihood and the second uses maximum margin learning.

Using auxiliary information about the input data, we were able to produce better classification results than the standard HCRF [7] approach. We evaluated the performance of our method on four publicly available datasets and tested various forms of privileged information. The experimental results indicated that robust privileged information along with the regular input data for training the model ameliorates the recognition performance. We demonstrated improved results with respect to the state-of-the-art LUPI framework especially when CNN features are employed.

According to our results, the proposed method and its variants achieved notably higher performance than the majority of the compared classification schemes. We were able to flexibly understand multimodal human activities with high accuracy, when not the same amount of information is available during testing. By automatically estimating the regularization parameters during learning, we managed to achieve high recognition accuracy with less effort than standard cross-validation based classification schemes.

Appendix A

Conditional Distribution of the Privileged Information

Recall that \(x \in \mathbb{R}^{M \times T} \) is an observation sequence of length \(T \) and \(x^* \in \mathbb{R}^{M^* \times T} \) corresponds to the privileged information of the same length. We partition the original set \((x^*, x) \in \mathbb{R}^{M \times T} \) into two disjoint subsets, where \(x^* \) forms the first \(M^* \), components of \((x^*, x)^T \in \mathbb{R}^{M \times T} \) and \(x \) comprises the remaining \(M - M^* \) components. If the joint distribution \(p(x, x^*; w) \) follows a Student’s t-law, with mean vector \(\mu = (\mu_{x^*}, \mu_x)^T \), a real, positive definite, and symmetric \(M \times M \) covariance matrix \(\Sigma = \left(\begin{array}{c|c} \Sigma_{x^*x^*} & \Sigma_{x^*x} \\ \hline \Sigma_{xx^*} & \Sigma_{xx} \end{array} \right) \) and \(\nu \in [0, \infty) \) corresponds to the degrees of freedom of the distribution [53], then the conditional distribution \(p(x|x^*; w) \) is also a Student’s t-distribution:

\[
p(x^*|x; w) = \mathcal{S}(x^*; \mu^*, \Sigma^*, \nu^*) = \frac{\Gamma \left((\nu^* + M) / 2 \right) |\Sigma_{x^*x^*}|^{1/2}}{\left(\pi \nu^* \right)^{M^* / 2} \Gamma \left((\nu^* + M) / 2 \right) |\Sigma^*|^{1/2}} \times \left[1 + \frac{x^T \Sigma_{x^*x^*}^{-1} x^*}{\nu^* + M^*} \right]^{(\nu^* + M^*) / 2} \times \left[1 + \frac{x^T \Sigma_{xx}^{-1} x}{\nu^* + M} \right]^{(\nu^* + M) / 2},
\]

The mean \(\mu^* \), the covariance matrix \(\Sigma^* \) and the degrees of freedom \(\nu^* \) of the conditional distribution \(p(x^*|x; w) \), are computed by the respective parts of \(\mu \) and \(\Sigma \):

\[
\mu^* = \mu_{x^*} - \Sigma_{x^*x^*}^{-1} (x - \mu_x), \quad \Sigma^* = \nu^* + (x - \mu_x)^T \Sigma_{x^*x}^{-1} (x - \mu_x)
\]

\[
\nu^* = \nu_x + M_x^*, \quad \nu^* + M^* = \nu_x + M_x^* + M - M^*,
\]

The parameters \((\mu, \Sigma, \nu)\) of the joint Student’s t-distribution \(p(x^*, x; w) \), which are defined by the corresponding partition of the vector \((x^*, x)^T\), are estimated using the expectation-maximization (EM) algorithm [54]. Then, the parameters of the conditional distribution \(p(x^*|x; w) \) are computed using Eq. (25)-(27).

It is worth noting that by letting the degrees of freedom \(\nu^* \) go to infinity, we can recover the Gaussian distribution and the degrees of freedom parameter \(\nu^* \) are weak and the mean and covariance of the data are appropriately weighted in order not to take into account the outliers.

Acknowledgments

This work has been funded in part by the UH Hugh Roy and Lillie Craner Cullen Endowment Fund and the European Commission (H2020-MSCA-IF-2014), under grant agreement No 656094. All statements of fact, opinion or conclusions contained herein are those of the authors and should not be construed as representing the official views or policies of the sponsors.

References

[1] I. Cohen, F. G. Cozman, N. Sebe, M. C. Cirelo, and T. S. Huang, “Semisupervised learning of classifiers: theory, algorithms, and their application to human-computer interaction,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 26, no. 12, pp. 1553–1566, December 2004.

[2] A. W. M. Smeulders, D. M. Chu, R. Cucchiara, S. Calderara, A. Dehghan, and M. Shah, “Visual tracking: an experimental survey,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 36, no. 7, pp. 1–1, 2014.

[3] V. Vapnik and A. Vashist, “A new learning paradigm: Learning using privileged information,” Neural Networks, vol. 22, no. 5–6, pp. 544–557, 2009.

[4] D. Lopez-Paz, L. Bottou, B. Schölkopf, and V. Vapnik, “Unifying distillation and privileged information,” in Proc. 5th International Conference on Learning Representations, San Juan, Puerto Rico, May 2–4 2016.

[5] J. Chen, X. Liu, and S. Lyu, “Boosting with side information,” in Proc. Asian Conference on Computer Vision, ser. Lecture Notes in Computer Science, vol. 7724, Daejeon, Korea, 2012.

[6] J. Feyeris and U. Ackel. “Privileged information for data clustering,” Information Sciences, vol. 194, no. 0, pp. 4–23, 2012.

[7] A. Quattoni, S. Wang, L. F. Morency, M. Collins, and T. Darrell, “Hidden conditional random fields,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 29, no. 10, pp. 1848–1852, 2007.

[8] M. Vrigkas, E. Kazakos, C. Nikou, and I. A. Kakadiaris, “Inferring human activities using robust privileged probabilistic learning,” arXiv preprint arXiv:1708.09825, 2017.

[9] D. Peel and G. J. McLachlan, “Robust mixture modelling using the t distribution,” Statistics and Computing, vol. 10, pp. 339–348, 2000.

[10] V. Ramanathan, B. Yao, and L. Fei-Fei, “Social role discovery in human events,” in Proc. IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Portland, OR, June 2013.
[52] T. Hastie, S. Rosset, R. Tibshirani, and J. Zhu, “The entire regularization path for the support vector machine,” Journal of Machine Learning Research, vol. 5, pp. 1391–1415, December 2004.

[53] C. H. Teo, A. J. Smola, S. V. N. Vishwanathan, and Q. V. Le, “A scalable modular convex solver for regularized risk minimization,” in Proc. ACM International Conference on Knowledge Discovery and Data Mining, San Jose, CA, August 2007.

[54] S. Kotz and S. Nadarajah, Multivariate t distributions and their applications. Cambridge, New York, Madrid: Cambridge University Press, 2004.

[55] M. Vrigkas, C. Nikou, and I. A. Kakadiaris, “Classifying behavioral attributes using conditional random fields,” in Proc. 8th Hellenic Conference on Artificial Intelligence, ser. Lecture Notes in Computer Science, vol. 8445, Ioannina, Greece, May 2014.

[56] I. Laptev, “On space-time interest points,” International Journal of Computer Vision, vol. 64, no. 2-3, pp. 107–123, September 2005.

[57] A. Klüser, M. Marszalek, and C. Schmid, “A spatio-temporal descriptor based on 3D-gradients,” in Proc. British Machine Vision Conference, University of Leeds, Leeds, UK, September 2008.

[58] L. Rabiner and B. H. Juang, Fundamentals of Speech Recognition. Upper Saddle River, NJ: Prentice-Hall, 1993.

[59] D. G. Lowe, “Distinctive image features from scale-invariant keypoints,” International Journal on Computer Vision, vol. 60, no. 2, pp. 91–110, Nov. 2004.

[60] D. R. Hardoon, S. R. Szedmak, and J. R. Shawe-Taylor, “Canonical correlation analysis: an overview with application to learning methods,” Neural Computation, vol. 16, no. 12, pp. 2639–2664, Dec. 2004.

[61] M. Palatucci, D. Pomerleau, G. E. Hinton, and T. M. Mitchell, “Zero-shot learning with semantic output codes,” in Proc. Advances in Neural Information Processing Systems, Vancouver, British Columbia, Canada, December 2009.

[62] C. M. Bishop, Pattern Recognition and Machine Learning. Springer, 2006.

[63] A. Karpathy, G. Toderici, S. Shetty, T. Leung, R. Sukthankar, and L. Fei-Fei, “Large-scale video classification with convolutional neural networks,” in Proc. IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Columbus, OH, June 2014.

[64] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” CoRR, vol. abs/1412.6980, 2014.