Yeast Ist2 Recruits the Endoplasmic Reticulum to the Plasma Membrane and Creates a Ribosome-Free Membrane Microcompartment

Wendelin Wolf1,*, Annett Kilic1,*, Bianca Schrul2,3, Holger Lorenz1, Blanche Schwappach2,3, Matthias Seedorf1

1 Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), DKFZ-ZMBH-Allianz, Heidelberg, Germany, 2 Department of Biochemistry I, Universitätsmedizin Göttingen, Göttingen, Germany, 3 Max-Planck-Institut für biophysikalische Chemie, Göttingen, Germany

Abstract

The endoplasmic reticulum (ER) forms contacts with the plasma membrane. These contacts are known to function in non-vesicular lipid transport and signaling. Ist2 resides in specific domains of the ER in Saccharomyces cerevisiae where it binds phosphoinositide lipids at the cytosolic face of the plasma membrane. Here, we report that Ist2 recruits domains of the yeast ER to the plasma membrane. Ist2 determines the amount of cortical ER present and the distance between the ER and the plasma membrane. Deletion of IST2 resulted in an increased distance between ER and plasma membrane and allowed access of ribosomes to the space between the two membranes. Cells that overexpress Ist2 showed an association of the nucleus with the plasma membrane. The morphology of the ER and yeast growth were sensitive to the abundance of Ist2. Moreover, Ist2-dependent effects on cytosolic pH and genetic interactions link Ist2 to the activity of the H+ pump Pma1 in the plasma membrane during cellular adaptation to the growth phase of the culture. Consistently we found a partial colocalization of Ist2-containing cortical ER and Pma1-containing domains of the plasma membrane. Hence Ist2 may be critically positioned in domains that couple functions of the ER and the plasma membrane.

Introduction

In Saccharomyces cerevisiae large areas of the plasma membrane (PM) are covered with membranes of the endoplasmic reticulum (ER) [1,2,3,4]. In a recent electron tomography study these structures have been described as PM-associated ER [4]. Here, we use the term cortical ER to describe these membranes. The cortical ER consists of interconnected tubules and cisternae, which were found at an average distance of 33 nm from the PM [2,4].

How the yeast cortical ER is formed remains an open question. The polytopic membrane protein Ist2 is a candidate for a factor involved in this process because it specifically localizes to the cortical ER [5,6]. Based on sequence homology Ist2 belongs to the TMEM16 or anoctamin (ANO) protein family [7]. Mammalian ANO1 and ANO2 have been identified as Ca2+-activated Cl- channels [8,9,10]. ANO6 function has been implicated in Ca2+-dependent phospholipid scramblase activity [11]. In contrast to yeast Ist2 ANO1, ANO2, and ANO6 reside in the PM [8,9,10,11]. Yeast Ist2 interacts with specific PM lipids, which may contribute to the recruitment of ER to the PM. The interaction with phosphoinositide lipids requires the cortical sorting signal (CSS) at the extreme C terminus of Ist2 and leads to the accumulation of Ist2 in cortical ER domains of yeast and mammalian cells [5,6,12]. The induction of cortical ER in mammalian cells by Ist2 expression and localization to cortical ER [12,13] suggests that Ist2 is an integral part of this membrane. These recent insights argue against the model that Ist2 reaches the PM on a pathway bypassing the Golgi [14,15].

The PM is organized in domains that function in nutrient transport, signal transduction, and endo- and exocytosis [16,17,18,19,20]. In S. cerevisiae individual PM domains can be visualized by light microscopy. One of these domains, the membrane compartment of Can1 (MCC) contains the H+-arginine symporter Can1 and forms dot-like structures, which are 200–300 nm in diameter [21,22,23]. In electron microscopy (EM) these structures colocalize with furrow-like membrane invaginations, which are ~300 nm long [24]. Beside the defining member Can1, the MCC contains the uracil- and tryptophan/H+ symporters Fur4 and Tat2, and Nce102, as well as members of the Sur7 protein family [21,22,25,26]. Another domain, the membrane compartment of Pma1 (MCP) contains the H+-ATPase Pma1 and forms a large network-like structure [16]. Pma1 pumps H+ across the PM and thereby establishes an electrochemical gradient across the yeast PM, which drives the secondary-active uptake of nutrients, e.g. amino acids [27]. Whether and how the segregation of proteins into specific domains of the yeast PM contributes to their function remains unknown.

Here we investigated the function of Ist2 at the interface of ER and PM. We found that Ist2 recruits ER to the PM. This creates a...
riboosome-free microcompartment between the two membranes. We found evidence for an Ist2-dependent modulation of Pma1 activity under specific conditions. Consistent with this Ist2 partially colocalized with the MCP.

Results

The transition from stationary into logarithmic growth phase requires Ist2

We characterized the growth of yeast cells lacking the IST2 gene. This mutant grew similarly to the isogenic wild type strain (WT) and both cultures reached a similar maximal density at stationary growth phase (Fig. 1A). However, the initial growth of ist2Δ was impaired during the adaptation from stationary phase to logarithmic (log) phase (Fig. 1A inset, indicated by arrows). During log phase the growth rate of ist2Δ accelerated (doubling time 177±33 min) but remained slower than WT (114±5 min).

Comparing the growth of WT and ist2Δ, we saw a small but significant growth delay following dilution from a log culture (Fig. 1B, p<0.005). After dilution from late log-, transition-, and stationary phase cultures growth of ist2Δ cells was further delayed, when analyzed as growth compared to WT ten hours after dilution (54±10%, 47±14%, 48±15%, p<0.001). Genomic integration of the IST2 gene into the HIS3 locus of ist2Δ cells rescued this adaptation defect. Western blot analysis of yeast membranes revealed a 4.8±1.6-fold higher expression of integrated IST2 as in WT (Fig. 1C). Expression of Ist2 from CEN plasmids led to similar expression as in WT (Fig. 1C and Fig. S1B) but did not rescue (Fig. 1B and Fig. S1A). Hence complementation by IST2 outside the genomic locus requires substantially higher Ist2 protein levels than present in the WT strain. This may be a consequence of IST2 mRNA transport into the bud [14,28] and a local function of Ist2.

In order to analyze the phenotype of even stronger Ist2 overexpression we integrated the IST2 gene under control of the TEF1 promoter (pTEF1-IST2) into the his3Δ locus of WT cells. Analysis after serial dilution of membranes from pTEF1-IST2 revealed 25-fold higher expression as in WT (Fig. 1D). Compared to the isogenic WT the pTEF1-IST2 strain showed a delayed growth after dilution from a stationary culture (Fig. 1E). As seen for ist2Δ the growth of pTEF1-IST2 accelerated during log phase with a doubling time of 178±13 min (Fig. S1C). Taken together these data suggest that the amount of Ist2 protein is critical for the transition from stationary to log growth.

Ist2 recruits yeast cortical ER to the PM

Ist2 is a polytopic membrane protein that contains a lipid-binding domain that recognizes PI(4,5)P2 and other lipids at the...
cytosolic face of the PM [5,6]. Therefore, we hypothesized that Ist2 recruits ER to the PM. The lipid-binding domain is positioned at the C-terminal end of a ~350 amino acid residues long cytosolic domain, providing enough flexibility to bridge the typical distance of 15 to 50 nm between cortical ER and PM [4].

To test our hypothesis, we performed immuno-EM with chemically fixed cells and detected the localization of Ist2. In all cells we observed perinuclear ER structures surrounding the nucleus (Fig. 2, labeled as N). In addition, we saw ER tubules located more to the centre of the cell (ER) and cortical ER (cER), which is positioned close to the PM and the cell wall (CW). Immuno-staining of WT cells with 10 nm gold-labeled Ist2-specific antibodies occasionally led to detection of Ist2 at sites where ER and PM were opposed (Fig. 2B, inset). In pTEF1-IST2 cells, we observed a strong accumulation of gold particles at the cortical ER and the PM (Fig. 2C, inset), suggesting that Ist2 localizes to cortical ER associated with the PM. The deletion of IST2 led to an increased distance between ER and PM (Fig. 2A, D).

To quantify the amount of cortical ER in the three different strains, we defined ER membranes in proximity to the PM within distances of either 30, 100 or 200 nm. For each cell, we measured the total PM length in a section as well as the length of PM with underlying cortical ER within the defined threshold as schematically illustrated in Fig. 2G.

Finally, we calculated the percentage of PM that associates with cortical ER in each cell. This quantification revealed that in WT cells 40% of the PM is covered with cortical ER within 30 nm distance from the PM. Overexpression of Ist2 led to increased association of ER with the PM such as 91% of the PM had an underlying cortical ER (Fig. 2H). Indeed, the cortical ER covered most parts of the PM except invaginations (Fig. 2C, inset). In both cases these values did not differ after quantifying ER membranes

Figure 2. Ist2 recruits yeast ER to the PM. (A–F) Yeast cells expressing different amounts of Ist2 (ist2Δ in A and D, WT in B and E, and pTEF1-IST2 in C and F) were grown to log phase in YPD medium. (A–C) Cells were chemically fixed and ultrathin cryo-sections of gelatine-embedded cells were subjected to immuno-gold labelling using anti-Ist2 antibodies and protein A-10 nm gold. Lower panels show higher magnification of the indicated areas. Please note that cross sections in A–C are shown at different magnification. The average size of ist2Δ, WT and pTEF1-IST2 cells is similar, as revealed by light microscopy (data not shown). (D–F) Cells were high pressure frozen, freeze substituted and Epon embedded. Ribosome-studded ER is indicated by black arrowheads. (D) Ribosomes on the PM face of the cortical ER in ist2Δ are indicated by white arrowheads. Organelles and membranes are labelled (PM, plasma membrane; CW, cell wall; ER, endoplasmic reticulum; cER, cortical ER; N, nucleus; LD, lipid droplet). White bars correspond to 500 nm and black bars to 200 nm. (G) Cartoon illustrating the morphology of ER. For quantification PM and ER were traced in electron micrographs of representative cells after chemical fixation. The relative amount of PM associated with cortical ER within a defined distance (dotted line) was analyzed. (H) Quantification of PM fraction associated with cortical ER within a distance of 30 nm (white), 100 nm (grey), and 200 nm (black) in the indicated strains. Values represent the mean of independent images (ist2Δ: n = 12; WT: n = 10; pTEF1-IST2: n = 9). Error bars indicate the s.d.

doi:10.1371/journal.pone.0039703.g002
within 100 or 200 nm distance from the PM demonstrating that cortical ER associated within a distance of 30 nm with the PM.

In ist2Δ cells the amount of PM-associated cortical ER is substantially reduced. Compared to 40% in WT cells only 8% of PM is covered with cortical ER when quantified within a distance of 30 nm (Fig. 2H). Quantifying ER membranes within increasing distances to the PM from 30 nm to 100 nm and 200 nm revealed that in ist2Δ some cortical ER can be found at larger distances from the PM. In comparison to WT and pTEF1-IST2 cells in which the amount of cortical ER stays constant within all defined distances, this increase demonstrates that cortical ER is less close associated with the PM in ist2Δ cells.

As an independent method for the quantification of PM-associated ER, we employed fluorescence light microscopy and measured the length of the PM with cortical ER staining in cross sections. For this purpose, we expressed three types of GFP-tagged ER proteins: a soluble luminal protein (GFP-HDEL), an integral membrane protein (Sec63-GFP), and a tail-anchored protein (GFP-Ubc6). We found that overexpression of Ist2 in pTEF1-IST2 cells led to an increased amount of PM with associated cortical ER (Fig. S2A); in agreement with the EM data. In ist2Δ and WT cells, however, we observed no difference in the association of the cortical ER with the PM. This is consistent with previous results [6], showing that deletion of IST2 did not lead to a reduction of cortical ER staining within the resolution of standard light microscopy. This difference could be explained by the accumulation of peripheral ER at a distance to the PM that is not resolved by light microscopy, where the maximal resolution limit is 200 nm. Indeed, using 200 nm as a threshold to quantify cortical ER membranes within increasing distances, this increase demonstrates that cortical ER is less close associated with the PM in ist2Δ cells.

Increased ER-PM contact formation by overexpression of Ist2 traps the nucleus at the PM

In cells overexpressing Ist2, we often observed an association of the nuclei with the cell periphery (Fig. 3A–C). The nuclear envelope was associated with the PM over a distance of more than 1 μm. This tight association of perinuclear ER and PM resulted in deformation of the nucleus. Cortical ER that emigrated from the perinuclear ER became associated with the PM (Fig. 3B, indicated by arrowheads). Immuno-gold labeling with Ist2 antibodies showed staining at regions where the nuclear envelope aligns with the PM but not at other regions of the nuclear envelope. This suggests that Ist2 specifically localizes to ER domains that are in close proximity to the PM (Fig. 3C).

In order to quantify this effect of Ist2 overexpression, we analyzed the nuclear morphology in ist2Δ, WT and pTEF1-IST2 cells expressing GFP-HDEL, Sec63-GFP, GFP-Ubc6, or GFP-Sec63 by confocal laser scanning (CLS) microscopy. Cells were divided in three classes with (1) the nucleus in the centre without any contact to the periphery, (2) the nucleus in contact with the periphery, and (3) a deformed nucleus in contact with the periphery (Fig. 3D). Examples for the localization of the individual ER proteins in all classes are shown in figure S2C. Overexpression of Ist2 caused the accumulation of deformed nuclei at the cell periphery in the majority of cells (class 3), and nuclei of almost all remaining cells also showed contacts to the periphery (class 2). In contrast, fewer contacts between the nuclei and the periphery were detected in WT and ist2Δ cells.

Next, we asked whether Ist2 contributes to the inheritance of ER into daughter cells and coexpressed Sec63-GFP and Yop1-mCherry in ist2Δ, WT and pTEF1-IST2 cells. Sec63 is an integral membrane protein involved in posttranslational protein translocation. Yop1 is a member of the reticulon protein family and insertion of its hairpin-like hydrophobic region into the cytosolic face of ER induces membrane curvature [29]. The expression of Yop1-GFP was decreased in ist2Δ but the protein remained peripherally localized (Fig. 3E and F). Overexpression of Ist2 led to accumulation of Yop1-GFP in large cortical structures resembling cisternae but did not change the expression level. A comparison of the fluorescence ratios between daughter and mother cells revealed an accumulation of Yop1-mCherry in small daughter cells, whereas Sec63-GFP was equally distributed (Fig. S3A and B). This indicates a sequential inheritance of specific ER domains into daughter cells [4]. The deletion of IST2 had no effect, whereas overexpression of Ist2 had only a small effect on the inheritance of ER into small daughters (Fig. S3A). As described above, overexpression of Ist2 caused an accumulation of Sec63-containing perinuclear ER at the cell periphery (Fig. S3D). In summary, these data suggest that proper ER morphology and position of the nucleus are sensitive to the abundance of Ist2 whereas inheritance of ER into daughter cells is not affected.

Partial overlap of Ist2 with membrane proteins of the cortical ER

Since Ist2 is involved in the recruitment of ER to the PM, we investigated its localization within the cortical ER and compared it to the localization of other ER proteins. Variations in the distance between cortical ER and PM have been reported [4]. Cortical ER domains with Ist2 may represent specific sites in close contact to the PM. Genomic integration of GFP-Ist2 or mCherry-Ist2 in ist2Δ rescued the delayed transition from stationary into log phase, indicating that GFP- and mCherry-Ist2 proteins are functional (Fig. S4A). The surface views of mCherry-Ist2 showed localization in interconnected patch-like structures (Fig. 4). This network surrounded distinct areas free of Ist2 and other ER proteins. Such localization is typical for proteins in the cortical ER [30]. The mCherry-Ist2 signals (magenta in merged images in Fig. 4) partially overlapped with the artificial luminal ER marker GFP-HDEL, with the tail-anchored protein GFP-Ubc6, with Sec63-GFP, and with Yop1-GFP (green in merged images). The
Pearson’s coefficient for colocalization ranged from 0.616±0.075 to 0.728±0.069 (Fig. S4B). Colocalization of dsRed-HDEL with Sec63-GFP and GFP-Ubc6 revealed a better overlap (Pearson’s coefficient of 0.949±0.035 and 0.95±0.037; Fig. S4B, E and G), suggesting a partial segregation of Ist2 into subdomains of the cortical ER. However, the segregation of membrane proteins in the cortical ER was not specific for Ist2. The colocalization of Yop1-mCherry with GFP-HDEL was similar to mCherry-Ist2 with GFP-HDEL (Pearson’s coefficient of 0.786±0.07 and 0.616±0.075; Fig. S4B, C and D). Colocalization of Sec63-GFP and GFP-Ubc6 with Yop1-mCherry showed Pearson’s coefficients of 0.716±0.125 and 0.797±0.084 (Fig. S4B, F and H).

Association of Ist2 with domains of the PM

The impaired adaptation of ist2Δ cells, when diluted from cultures with an OD600>2.0 (Fig. 1A–C) may result from a
The yeast PM consists of two main compartments, namely the MCP and the MCC [16,22,25]. To test whether Ist2 colocalizes with proteins of the MCP we employed total internal reflection fluorescence (TIRF) and CLS microscopy. We replaced the \textit{PMA1} gene with \textit{PMA1-mCherry} in \textit{ist2Δ} cells with \textit{GFP-IST2} integrated into the \textit{his3Δ1} locus. TIRF microscopy and a surface view of CLS microscopy confirmed the network-like localization of GFP-Ist2 (Fig. 5A–D). The merged signals (white) showed a partial overlap of GFP-Ist2 (green) with Pma1-mCherry (magenta) (Fig. 5A, B, merge). A Pearson’s coefficient of 0.896 (n = 19) in TIRF microscopy is consistent with partial colocalization of Ist2 and Pma1. Equatorial views (Fig. 5A, B, fifth panel) also revealed a partial overlap of both signals in the periphery while internalized Pma1-mCherry localized to vacuoles. However, certain areas containing GFP-Ist2 were clearly separated from Pma1-mCherry.

Partial colocalization of Ist2 and Pma1 was also illustrated by intensity profiles of GFP-Ist2 and Pma1-mCherry signals (Fig. 5A, B, fourth panel, indicated by white lines in third panel).

We used Sur7-mCherry in order to test whether the GFP-Ist2 network overlaps with dot-like MCC structures. In TIRF microscopy Sur7-mCherry localized in dots with a size of 1 or 2 × 2 pixels (Fig. 5C). With the given resolution of the camera, where pixel sizes correspond to 160 nm, this fits well to the reported dimension of a Sur7 domain when analyzed by light microscopy [21,22]. A similar distribution of Sur7-mCherry was observed in surface views of CLS microscopy (Fig. 5D and Fig. S5A–D). Consistent with previous reports the dot-like Sur7-mCherry domains were segregated from

Figure 5. Partial colocalization of Ist2 and Pma1 in network-like structures. Cells were grown in complete HC media and imaged by TIRF (A, C and E) and CLS (B, D and F) microscopy. The third panel shows the merge image of the first and second panel with an intensity profile of the indicated cross section in the fourth panel. (A, C and E) Merged view of equatorial sections in epifluorescence mode (panel 5) and corresponding DIC images of the TIRF images (panel 6). (B, D and F) Merged view of equatorial sections and phase contrast images are shown in the fifth and sixth panels. (A and B) The \textit{PMA1} gene was replaced by \textit{PMA1-mCherry} in \textit{ist2Δ} cells with \textit{GFP-IST2} integrated into the \textit{his3Δ1} locus. The localization of GFP-Ist2 (green in the merged image) and Pma1-mCherry (magenta in the merged image) was analyzed. (C and D) The \textit{SUR7} gene was replaced by \textit{SUR7-mCherry} in \textit{ist2Δ} cells with \textit{GFP-IST2} integrated into the \textit{his3Δ1} locus. The localization of GFP-Ist2 (green in the merged image) and Sur7-mCherry (magenta in the merged image) was analyzed. (E and F) \textit{PMA1} and \textit{SUR7} were replaced by \textit{PMA1-GFP} and \textit{SUR7-mCherry} in WT cells and the localization of Pma1-GFP (green in the merged image) and Sur7-mCherry (magenta in the merged image) was analyzed. doi:10.1371/journal.pone.0039703.g005
the Pma1-GFP network (Fig. 5E, F). Most of the Sur7-mCherry domains were adjacent to or separated from the network-like GFP-Ist2 structures (Fig. 5C, D, merged images and intensity profiles). Since GFP-Ist2 signal covered 52% of the cell surface (Fig. S3E), one would expect that half of the Sur7 domains overlap with Ist2 if the distribution is random. However, only 18% of single Sur7-mCherry domains were colocalized (Fig. 6H), suggesting a non-random distribution. This is consistent with a random distribution of MCC in areas devoid of cortical ER [20].

Next, we analyzed if the proportion of the ER that colocalized with Pma1 and Sur7 changes in ist2Δ and pTEF1-IST2 cells. As expected in cells overexpressing Ist2, we observed a proliferation of Sec63-GFP containing cortical ER (Fig. 6C and F). In these cells the cortical ER covered 79% of the cell surface, compared to 37 and 59% in ist2Δ and WT cells, respectively (Fig. S5E). Changes in Ist2 expression had only minor effects on the number of MCC domains (Fig. 6G). In WT and ist2Δ most of the Sur7-mCherry domains were adjacent to or separated from the network-like Sec63-GFP structures, as previously seen for Ist2 in WT (Fig. 6D–F, H). In ist2Δ the colocalization of Sur7-mCherry and Sec63-GFP decreased, whereas it increased in pTEF1-IST2 (Fig. 6H). Moreover, overexpression of Ist2 led to reduced segregation of Sur7-mCherry and Sec63-GFP. In ist2Δ and pTEF1-IST2 strains the number of colocalized Sur7-mCherry domains was smaller than expected from the surface area covered with Sec63-GFP (Fig. 6H and S5E). This suggests that the distribution of Sur7 domains and cortical ER is not random. Most of the Sur7 domains are separated from or adjacent to the cortical ER and this specific distribution does not require Ist2.

Ist2 is required for rapid glucose-induced Pma1 activation

If Ist2 functions at ER-PM contact sites, it is possible that such function influences metabolic processes at the PM. Pma1-mediated pumping of H\(^+\) across the PM is such a candidate process. It controls the cytosolic pH and is involved in the acidification of the growth medium. The activity of Pma1 consumes at least 20% of the cellular ATP and is subject to strict regulation by extracellular glucose [31,32,33].

In order to analyze the effect of Ist2 on Pma1 activity, we measured the alkalinization of the cytosol in response to Pma1 activation by glucose (Fig. 7A). Dynamic changes of the cytosolic pH in living cells expressing the pH-sensitive GFP derivate ratiometric pHluorin were measured in a plate reader [34]. In response to glucose starvation the cytosolic pH (pHc) decreased to 6.77 and 6.71 in WT and pTEF1-IST2 (Fig. 7B). This pHc decrease was more pronounced in ist2Δ (pH 6.63). The pHc of the PMA1 hypomorph pma1-007 was 6.08, consistent with a reduced amount of Pma1 in these cells [35]. Except for pma1-007 addition of glucose (Fig. 7B, indicated with an arrow) resulted in rapid decrease of pHc, most likely, a consequence of H\(^+\) production by glycolysis (see cartoon Fig. 7A). About one min after glucose addition the cytosol was alkalinized to a constant pHc of 7.1–7.2 within five min (Fig. 7B). Alkalinization depends on glucose-mediated activation of Pma1. Addition of galactose to glucose-starved cells did not stimulate Pma1 activity (Fig. S6A). Importantly, the amount of Ist2 expression influenced this rate of pHc change. Deletion of IST2 led to significantly slower
alkalinization of the cytosol as compared to WT (p<0.05), whereas overexpression of IST2 resulted in a slightly but not significantly faster alkalinization (quantification in Fig. 7C). The amount of Pma1 did not change significantly in cells with different amounts of Ist2, whereas pma1-007 showed decreased Pma1 expression (Fig. S6B, and [35]). Thus, Ist2 influences H$^+$ pumping in response to glucose.

The activity of Pma1 is under strict control. Growth at acidic pH requires strong activation of Pma1 [35]. Cells with reduced Pma1 expression display a growth defect at pH 3.0, as seen for pma1-007 (Fig. 7D). Down-regulation of Pma1 activity also results in a reduced uptake of toxic cations [36,37]. Consequently, pma1-007 grows better than WT in the presence of a toxic concentration of the cation hygromycin B [38,39]. Deletion of IST2 led to impaired growth in media containing hygromycin B, but had no effect on growth at pH 3.0 (Fig. 7D) indicating that Pma1 function is intact. In order to further test whether Ist2 function is required under growth conditions where Pma1 activity is regulated, we combined ist2A with the deletion of YCK1 and tested growth on hygromycin B and at low pH. Yck1 is a PM-bound casein kinase I that down-regulates Pma1 activity in response to glucose starvation [40,41]. The double mutant showed an enhanced growth defect on hygromycin B, whereas growth on YPD and on YPD pH 3.0 was similar to WT (Fig. 7D). This synthetic growth defect was specific, as the deletion of the positive Pma1 regulator Hrk1 kinase [42] had no effect (Fig. 7D). The observed negative genetic interaction between IST2 and YCK1 is consistent with the hypothesis that presence of Ist2 influences Pma1 activity.

Another study reported a negative genetic interaction between IST2 and BTN1 or BTN2 double mutants at high NaCl concentration [43]. Btn1 is the yeast orthologue of human CLN3, which is involved in neuronal ceroid lipofuscinosis characterized by an accumulation of storage material in lysosomes [44]. Btn2, which is up-regulated in BTN1 mutants, functions as a SNARE and retromer-interacting protein that is involved in the recycling of cargo proteins from late endosomes to the Golgi [45]. In order to clarify this aspect of Ist2 function, we analyzed the growth of ist2A, btn1A and btn2A single and double mutants at 1 M NaCl concentration. Only the single btn2A mutant showed a slight growth defect on YPD plates with 1 M NaCl, whereas all other mutants grew at least as well as the WT (Fig. S6C). This was independent of LYS2 and MET15 genotypes in BY4741 and BY4742 strains. Our results contradict the previously reported growth defect of ist2A/ btn1A and ist2A/btn2A double mutants on high salt [43].

The putative mammalian Ist2 orthologues ANO1 and ANO6 function as a Ca$^{2+}$-activated Cl$^-$ channel or are involved in phospholipid scramblase activity, respectively [8,9,10,11]. Therefore, we tested whether changes in Ca$^{2+}$ homeostasis or signaling had an influence on the growth of IST2 mutants. The Ca$^{2+}$ ATPase Pmr1 pumps Ca$^{2+}$ from the cytosol into ER and Golgi and its deletion results in increased cytosolic Ca$^{2+}$ concentration [46]. Double deletion of PMR1 and IST2 led to a salt-dependent growth defect at acidic pH (Fig. S6D). In order to interfere with Ca$^{2+}$ signaling, we deleted CNB1, the regulatory subunit of the Ca$^{2+}$/calmodulin-regulated type 2B protein phosphatase calcineurin [47]. This deletion resulted in a salt- and alkaline pH-dependent growth defect but additional deletion of IST2 did not change this phenotype (Fig. S6D). Hence by employing growth assays we were not able to uncover interplay between IST2 function and Ca$^{2+}$ signaling.

Figure 7. Ist2 contributes to the regulation of Pma1 activity. (A) Cartoon illustrating glucose-induced H$^+$ pumping by Pma1. (B) Kinetic measurement of cytosolic pH in ist2A, WT, pTEF1-IST2, and pma1-007 strains. Cells were starved for glucose for 1 hour in synthetic media. At the indicated time, marked with an arrow, 2% glucose was added. (C) Quantification of the rate of H$^+$ pumping shown as APh/min. (D) Five-fold serial dilutions of the indicated strains on plates with YPD, YPD adjusted to pH of 3.0, and YPD+100 μg/ml hygromycin B. (E) Growth of ist2 and ist2D expressing ANO1, ANO1<CS5 or mCherry-ist2Δ-477 during the first 10 hours after dilution from pre-cultures with an OD$_{600}$ of 2.0–2.5 (late log), 2.5–3.0 (transition), and ~3.0 (stationary). Growth of the corresponding WT was set to 100%. In (C) and (E) error bars depict s.d., non-significant differences are indicated as n.s., and triple asterisks show significance (p<0.001).

doi:10.1371/journal.pone.0039703.g007
Finally, we tested whether the expression of human ANO1 under control of the IST2 untranslated regions rescues the delayed growth observed for ist2Δ after dilution from pre-cultures with \(OD_{600}>2.0\). Although we failed to detect the expression of ANO1 in yeast by western blotting using ANO1-specific antibody (Fig. S6E), we could observe a partial rescue (Fig. 7E). An activity at very low expression levels would be consistent with the function of Ist2 and ANO1 as ion channels. A few copies of these proteins would be able to affect the ion composition of a small volume such as the membrane-enclosed cytosol between the PM and the cortical ER. When ist2Δ cells were grown to an \(OD_{600}<3.0\) (Fig. 7E, late log and transition), the integration of ANO1 rescued the delayed adaptation to log phase growth. These cells reached 111±20% and 110±21% of the WT growth, respectively (Fig. 7E, \(p<0.05\)). Under these conditions ist2Δ reached 50±2% and 44±7%, respectively. After dilution from stationary pre-cultures with an \(OD_{600}>3.0\) this rescue was not observed. The addition of the CSS from Ist2 to ANO1 did not improve its ability to rescue (Fig. 7E). Expression of a N-terminally mCherry-tagged, truncated version of Ist2, lacking the N-terminal domain and TMDs 1-6 (amino acids 1–477 are deleted; mCherry-Ist2Δ1–477 in Fig. 7E), in the cortical ER (Fig. S6F) partially rescued the ist2Δ phenotype (Fig. 7E). This suggests that the Ist2 function comprises both recruitment of ER to the PM and a function as ion channel.

Taken together, our findings suggest a role of Ist2 in the recruitment of ER to the PM and in the functional coupling of ion transport processes between these membranes.

Discussion

We found that the membrane protein Ist2 recruits ER to the PM. Ist2 activity in the cortical ER modulates glucose-induced \(H^+\) pumping across the PM. Since Ist2 is required for rapid growth after dilution from pre-cultures with an \(OD_{600}>2.0\), Ist2-mediated coupling of ER and PM may be involved in the adaptation of cells to changing growth conditions.

Ist2 is an integral membrane protein, the vast majority of which localizes to the cortical ER [5,6]. Localization of Ist2 to specific cortical ER domains is supported by a strong but not complete overlap with other ER proteins at the cell periphery. Yop1 is concentrated at edges of cortical ER in regions with high membrane curvature [30]. Like Ist2 it showed only partial overlap with other ER proteins. However, Ist2 and Yop1 did not localize to identical domains, suggesting an accumulation in distinct subdomains of the cortical ER. As an integral component of the ER membrane, Ist2 tightly connects peripheral ER structures with the PM. This may be achieved by direct binding of Ist2 to phosphoinositide lipids at the cytosolic face of the PM or by the recruitment of other factors that are involved in the association of ER and PM. The abundance of Ist2 determines the amount of cortical ER that is associated with the PM and sets the distance between cortical ER and the PM. Ist2 may function locally, since its mRNA is transported as ribonuclear particle to the bud tip and expression in the bud depends on mRNA transport [14,28]. This may explain why the function of Ist2 depends critically on the abundance, when Ist2 is expressed outside the native genomic locus. Since cortical ER structures less closely associated with the PM remain in ist2Δ cells, factors other than Ist2 must contribute to the formation of cortical ER. Strong overexpression of Ist2 resulted in the proliferation of cortical ER covering the PM almost completely. This overexpression of Ist2 mRNA may saturate mRNA transport and lead to accumulation of Ist2 at the perinuclear ER and to alignment of the nucleus with the PM. Deletion of Ist2 did not result in defects of ER inheritance into daughter cells. However, binding of newly synthesized Ist2 to PM lipids may transform inherited ER in the daughter cell into cortical ER that is closely associated with the PM. Such conversion of ribosome-covered ER into cortical ER, with ribosomes restricted to the cytosolic face, is supported by recent electron tomography experiments [4].

Deletion of IST2 reduced the amount of cortical ER and increased the distance between ER and PM, so that ribosomes gain access to the space between ER and PM. In WT the space between cortical ER and PM lacks ribosomes. A similar ribosome-free space has been described for thin cortical ER in HeLa cells expressing STIM1 protein [48]. Therefore, this space may represent a specific microenvironment with a yet unknown protein and ion composition that is functionally separated from the surrounding cytosol [4].

Ion depletion effects in a small membrane-enclosed space have been discussed and investigated for the synaptic cleft found in the mammalian nervous system. Indeed, extensive activation of neurotransmitter-receptors in the postsynaptic membrane can deplete extracellular calcium ions in the cleft [49]. This is of conceptual interest because (depending on the synapse studied) the dimensions of the cleft between a pre- and a postsynaptic membrane can be comparable to the dimensions of the Ist2-dependent space between cortical ER and PM described here.

Consistent with the idea of a functional coupling between ER and PM in tightly apposed domains we found that loss of IST2 led to increased acidification of the cytosol under glucose-starvation and to slower alkalinization in response to glucose stimulation. A function of Ist2 as an ion channel could influence cytosolic pH (\(pH_c\)), which may control \(pH\)-sensitive kinases modulating Pma1 activity [41]. Ist2-dependent association of ER with the PM may contribute either directly or indirectly to glucose-induced activation of Pma1 in glucose-starved cells. A regulatory role of Ist2 in the control of Pma1 activity is supported by a negative genetic interaction between ist2A and yck1A double mutants under conditions that require low Pma1 activity. Yck1 is one of two PM-bound casein kinases I in yeast that phosphorylate and down-regulate Pma1 under glucose starvation [41]. Whereas the measurement of \(pH_c\) revealed a stimulatory function of Ist2 on Pma1 activity, the genetic analysis suggested an inhibitory function. These contradictory findings may be explained by differences in Pma1 activation by glucose [33]. In contrast to the measurements of \(pH_c\), where glucose-starved cells were exposed to glucose, the growth of double mutants was analyzed in constant presence of glucose. Analysis of growth at \(pH 3\) clearly shows that Pma1 function is generally intact in ist2Δ cells.

How can Ist2 influence the rate of \(H^+\) pumping under different environmental challenges? The association of Ist2 containing ER with Pma1 containing domains of the PM may create a specific cytosolic microcompartment with a small volume. In this microcompartment transport processes across the ER membrane and the buffering capacity of both membranes may become relevant to local \(pH\) and hence secondary active transport processes. In mammalian cells the primary ion gradients across the PM are established by the Na,K-ATPase and a direct coupling here.

How can Ist2 influence the rate of \(H^+\) pumping under different environmental challenges? The association of Ist2 containing ER with Pma1 containing domains of the PM may create a specific cytosolic microcompartment with a small volume. In this microcompartment transport processes across the ER membrane and the buffering capacity of both membranes may become relevant to local \(pH\) and hence secondary active transport processes. In mammalian cells the primary ion gradients across the PM are established by the Na,K-ATPase and a direct coupling here.
and the expression of truncated Ist2, lacking the first six TMDs, led to a partial rescue of the ist2A phenotype. This suggests that Ist2 has two different functions: One as channel and another one in the recruitment of cortical ER to the PM. Since ANO1 functions as a channel a flux of anions through Ist2 in either direction across the ER membrane is possible. Further insights into the subcellular distribution of chloride [51] and putative chloride gradients across yeast intracellular membranes are required to tackle the integration of ion transport processes across the ER membrane.

A flux of anions out of the cytosolic microcompartment between cortical ER and PM may explain the growth delay of yeast strains, media and plasmids

Materials and Methods

Yeast strains, media and plasmids

All experiments were performed in BY4741/42 strain background [53]. The IST2 gene was replaced by a natNT2 resistance gene in BY4742 using a PCR-based tagging method resulting in MSY399 [54]. Similarly, the genes PMA1, SUR7 and YOP1 were tagged by chromosomal integration of PCR amplified cassettes coding for either GFP or mCherry [54]. For constitutive overexpression of IST2 we integrated BsiWI digested pMS623 into the HIS3D1 locus of BY4742 resulting in MSY453. Isogenic WT (MSY474) and IST2 deletion mutant (MSY483) were generated by integration of BsiWI digested pRS305 [53] into BY4742 and MSY399, respectively. Deletion of IST2 (MSY399) was combined with bni1A, bni2A, pnu1A, cni1A, ykl1A, and hkl1A from the BY4741 deletion library by standard genetics [36]. As pma1-007 hypomorph we used the YGL007w strain from the BY4741 deletion library. The preparations of synthetic HC media and yeast transformation were carried out as described [15]. The pH of YPD plates was adjusted with 50 mM 2-(N-morpholino)ethanesulfonic acid (MES) and KOH and HCl. Plasmid constructions are described in table S1.

TIRF microscopy

Yeast cells expressing fluorescent protein tagged proteins were grown overnight at 25°C in HC media to mid log phase and immobilized on cover glasses with Concanavalin A (Sigma, Steinheim, Germany; lot # 080M76380V). Cover glasses were incubated with Concanavalin A for 1 min, dried for 1 min, and washed twice with water. 0.2 OD600 yeast culture was placed on coated cover glasses for 15 to 30 min, washed once with the respective media and mounted on glass slides with a thin layer of medium. For imaging an Olympus IX81 CellTirf microscope equipped with a 100×1.4 numerical aperture (NA) oil objective lens (Olympus) and an ImagEM (C9100-13) camera (Hamamatsu) driven by Olympus xcellence software was used. GFP and mCherry fluorescence were excited with a 50 mW 488 nm diode laser (Olympus) and a 100 mW 561 nm diode laser (Cobolt, Solna, Sweden), respectively. Emission light was filtered using a multiband filter set for the appropriate wavelengths (AHF, Tubingen, Germany). Bright field images were acquired using DIC optics. Image processing was performed using ImageJ (http://rsb.info.nih.gov/ij/).

Confocal laser scanning microscopy and image analysis

Confocal imaging was performed with a Zeiss LSM 780 microscope using a 100×1.40 NA Plan-Apochromat oil objective lens (Zeiss) and pinhole settings of 1 airy unit. GFP fluorescence was excited with the 488 nm line of the argon laser and mCherry fluorescence was excited with a 561 nm diode-pump solid-state laser. Image processing and analysis was performed using ImageJ. For area measurements, the images were analyzed by performing the following protocol. First, a mean filter of the 3×3 pixel neighborhood (‘smooth’) was applied to reduce pixel outlier intensities and shot noise. Second, the images were background subtracted by using identical subtraction parameters (i.e. minus 30% of maximal pixel intensity values) for all images. Third, the areas of the different image channels were measured by intensity thresholding against a background set to intensity value zero. Regions-of-interest (ROI) were applied, representing the individual cell sizes, in order to measure areas and percentages of areas per whole cell size, respectively. For colocalization analysis, the set of plugins from the Wright Cell Imaging Facility for ImageJ (www.uhnresearch.ca/wcif) was applied. In short, the background-subtracted two-channel images were analyzed for colocalization at ratio settings of 20% and thresholds of zero for both channels. Areas fulfilling these colocalisation criteria were then measured against the corresponding Sur7 areas in order to determine the degree of colocalization. Only Sur7 domains with a maximal diameter of 300 nm that were clearly separated from neighboring domains were analyzed. The degree of colocalization was grouped and labeled as full colocalization at 81–100% of signal overlap, 21–80% as adjacent and 0–20% as separated.

Epifluorescence microscopy

Epifluorescence microscopy was performed with an Olympus xcellence IX81 microscope system using a 100×/1.45 NA Plan-Apochromat oil objective lens (Olympus) and a GFP/mCherry sbx ET filter set (AHF, Tubingen, Germany). As fluorescence light source the illumination system MT20 (Olympus) with a 150 W Xe arc burner was used. In order to colocalize Ist2 and ER proteins in the cortical ER, we acquired images of cell surfaces in focus. The
Pearsont’s coefficient was determined using the JACoP plugin [57] in ImageJ.

Transmission Electron Microscopy
For immuno-EM yeast cells were grown to mid log phase in YPD medium at 30°C, concentrated by filtration and chemically fixed according to [58]. In detail, concentrated cells were mixed with double-concentrated fixative (4% (v/v) paraformaldehyde, 0.4% (v/v) glutaraldehyde in 0.1 M PHEM buffer (20 mM PIPES, 50 mM HEPES, pH 6.9, 20 mM EGTA, 4 mM MgCl₂) and incubated at room temperature for 30 min. Then, cells were pelleted, resuspended in standard fixative (2% (v/v) paraformaldehyde, 0.2% (v/v) glutaraldehyde in 0.1 M PHEM buffer) and incubated at 4°C overnight. Fixed cells were washed 3 times in PHEM buffer and incubated in 1% (w/v) periodic acid in PHEM buffer for 1 hour at 4°C and again washed 3 times. Cells were then embedded in 12% (w/v) gelatine in PHEM buffer, cut into small blocks, infused with 2.3 M sucrose in 0.1 M PHEM buffer at 4°C overnight, mounted on metal pins and frozen in liquid nitrogen. Ultrathin cryo-sections (75 nm) were cut using a cryo-ultramicrotome (Ultracut UCT, Leica) and a diamond knife (Diatome) at −110°C and placed on formvar-coated nickel grids. For immuno-labeling, sections were incubated with polyclonal rabbit Ist2 anti-serum [59] for 20 min, followed by incubation with protein A–10 nm gold (CMC, Utrecht) for 20 min. Sections were contrasted with 0.4% (w/v) uranyl acetate in 2 M methanol-cellulose for 10 min on ice and embedded in the same solution.

For Epon embedding, cells were grown as described above, rapidly filtered and vitrified using an EM HPM100 (Leica) high-pressure freezer. Fixed cells were further processed by freeze substitution in a Leica EM AFS, i.e. incubated in 0.5% glutaraldehyde, 1% H₂O in acetone at −90°C for 70 hours, followed by incubation in 0.5% glutaraldehyde, 0.1% uranyl acetate, 5% H₂O in acetone for 7 hours. Temperature was raised to −20°C (+5°C/hour), kept constant for 18 hours, and further raised to 4°C (+10°C/hour). Samples were washed 3 times with acetone, twice with propylene oxide and metal HPF planchets were removed. Samples were first infiltrated with 50% Epon resin in propylene oxide for 1 hour at room temperature, then with 100% Epon for an additional hour, and with fresh Epon resin overnight. After replacement with fresh resin, samples were incubated for 30 hours at 60°C. 70 nm ultrathin sections were cut with an ultramicrotome (Ultracut UCT, Leica) and contrasted with lead citrate.

All sections were examined with a Philips CM120 transmission electron microscope and micrographs were acquired with a CCD camera (Megaview III, Olympus Soft Imaging Systems). Image processing was performed using iTEM software (Olympus Soft Imaging Systems).

Figure S1 Log growth of pTEF1-Ist2 is similar to WT. (A–B) ist2A cells were transformed with HIS1 or URA3 CEN plasmids encoding IST2 resulting in strains ist2A+IST2 (CEN-HIS3) and ist2A+IST2 (CEN-URA3). (A) Growth of ist2A+IST2 (CEN-HIS3) and ist2A+IST2 (CEN-URA3) relative to WT (set to 100%) after 10 hours. Cultures were diluted to OD₆₀₀ 0.05 from pre-cultures with an OD₆₀₀ 1.0–2.0 (log), OD₆₀₀ 2.0–2.5 (late log), OD₆₀₀ 2.5–3.0 (transition), and OD₆₀₀>3.0 (stationary). Error bars depict s.d., non-significant differences are indicated as n.s. (B) Membranes prepared from 5 OD₆₀₀ of WT cells transformed with an empty plasmid (pRS303), and ist2A+IST2 (CEN-HIS3), and ist2A+IST2 (CEN-URA3) were separated. Ist2 and Sec61 were detected with specific antibodies. (C) Stationary cultures (OD₆₀₀>3.0) were diluted to 0.05 OD₆₀₀ and grown at 25°C in HC complete medium for 30 hours. Growth curves are plotted with linear x-axis (time [h]) and logarithmic ordinate (OD₆₀₀). (TIF)

Supporting Information

Generation of yeast membranes and Western blotting
For fractionation, yeast cells were disrupted in lysis buffer (50 mM Hpes-KOH pH 7.6, 50 mM potassium acetate, 5 mM magnesium acetate, 1 mM EDTA, 1 mM DTT, 0.1 mM PMSF, Complete Protease Inhibitor (Roche)) and pelleted at 25000 g [59]. Membrane fractions were resuspended in HU-buffer (8 M urea, 5% (w/v) SDS, 200 mM Tris–HCl, pH 6.8, 1 mM EDTA, 0.05% (w/v) bromphenol blue, 4% (v/v) β-mercaptoethanol), incubated for 10 min at 50°C and separated by 7.5% SDS–PAGE followed by Western blotting using Ist2-1 (2:25000), Sec61-1 (1:7500 [59,60]), GFP-1 (1:20,000, rabbit serum, gift from Dirk Gorlich, Max-Planck-Institute for Biophysical Chemistry, Göttingen, Germany), Pma1-1 (1:10,000, rabbit serum, provided by Ramón Serrano, Universidad Politécnica de Valencia, Valencia, Spain) or ANO1-specific antibodies. The ANO1-specific antibodies were raised in a rabbit against KLKOQSPPDHECVKRRQRYEVDY and CRYKDYREPPWSENK peptides. Detection and quantification of protein bands from Western blots was done using the LAS-1000 system (Fujifilm) followed by image processing using Adobe Photoshop and ImageJ software.

pH measurements
Cytosolic pH was measured using pH-sensitive GFP [phiLin, [34]] expressed under the control of the TEF1 promoter from a CEY plasmid (pMS388). Fluorescence intensities at excitation wavelengths of 390 and 480 nm were measured at a constant emission wavelength of 520 nm in a FLUOstar Omega plate reader (BMG). Calibration of fluorescence with pH was carried out with 0.1% digitonin permeabilized cells in HC media buffered with 50 mM 3-(N-morpholino)propanesulfonic acid to 6.0, 6.5, 7.0, and 7.5.

Figure S2 Overexpression of Ist2 led to an increase of cortical ER. (A) Quantification of the length of the PM with underlying cortical ER containing GFP-HDEL, Sec63-GFP or GFP-Ub6. The ER proteins GFP-HDEL, Sec63-GFP, and GFP-Ub6 were localized in ist2A, WT, and pTEF1-Ist2 cells using epifluorescence microscopy. The intensities of the peripheral signals of equatorial sections were quantified. Areas with more than 70% of the average peripheral signal intensity were classified as PM with an underlying cortical ER. For comparison the quantification of cortical ER by EM from figure 2H is shown as black bars. (B) Examples of ist2A, WT, pTEF1-Ist2 strains expressing GFP-Ub6. Intensity profiles of peripheral staining as indicated by arrows in left panels are plotted in right panels. The percentage of PM with and without an underlying cortical ER is shown as cER and PM, respectively. (C) Representative z-stack CLS images of ist2A and pTEF1-Ist2 cells. All cells express the PM-marker Pma1-mCherry (in magenta) and coexpress either GFP-HDEL, Sec63-GFP, or GFP-Ub6 or GFP-Sec2 [all shown in green]. The scale bar corresponds to 2 μm. (TIF)

Figure S3 Inheritance of cortical ER into the growing bud is independent of Ist2. (A) Quantification of fluorescence ratios between daughter and mother cells in ist2A (white), WT (black) and pTEF1-Ist2 (grey) cells expressing both Yop1-mCherry and Sec63-GFP. Daughter cells were classified as small (S; <0.4 daughter perimeter/mother perimeter), medium (M; 0.4–
0.6) and large (L; >0.6). (B–D) Representative z-stack CLS images (pinhole settings of 2 air units) of ist2A, WT and pTEF1-IST2 cells with small (S), medium (M) and large (L) daughters expressing both Yop1-mCherry (left panels; magenta in merge panels) and Sec63-GFP (middle panels; green in merge panels). (E) Immunoblot analysis of 5.0 OD600 membranes from ist2A, WT, and pTEF1-IST2 cells. Yop1-GFP (upper panel) and Sec61 (lower panel) were detected by GFP and Sec61 specific antibodies. Quantifications are shown as mean ± s.d. (n = 4).

(TIF)

Figure S4 Membrane proteins localize in distinct domains of the cortical ER. (A) GFP-Ist2 and mCherry-Ist2 rescue the growth phenotype of ist2A. WT (black), ist2A (grey) and ist2A cells with either genomically integrated GFP-IST2 (green) or mCherry-IST2 (red) were diluted to 0.05 OD600 from stationary pre-s.d. (n = 4). (B) Table showing Pearson’s coefficients of colocalization by microscopy. Intensity profiles of the indicated regions (white in green in merge and profiles) analyzed by epifluorescence microscopy. (C and D; green in merge and profiles), Sec63-GFP (E and F; green in merge and profiles) and GFP-HDEL (C, E and G; magenta in merge and profiles) or Yop1-GFP (upper panel) and Sec61 (lower panel) were detected by GFP and Sec61 specific antibodies. Quantifications are shown as mean ± s.d. (n > 9). (C) Genetic interaction between ist2A and mutants lacking genes involved in Ca2+ homeostasis and signaling. Growth of serial dilutions of the indicated strains on plates with YPD and YDP+1 M NaCl. (D) Genetic interaction between ist2A and mutants lacking genes involved in Ca2+ homeostasis and signaling. Growth of five-fold serial dilutions of the indicated strains on plates with YPD and YDP+300 mM NaCl with an adjusted pH of 5.0 or 7.5. (E) Transformation of ist2A cells with plasmids encoding ANO1 did not result in the detection of ANO1 protein. Immunoblot analysis of 5 OD600 membranes from ist2A cells or ist2A cells transformed with an ANO1-encoding plasmid and lysate from HEK293 cells or HEK293 cells transfected with a GFP-ANO1-encoding plasmid. ANO1 protein and Sec61 were detected with ANO1-, GFP- and Sec61-specific antibodies. (F) Z-stack CLS images of ist2A transformed with a N-terminally mCherry-tagged truncated version of Ist2, lacking the N-terminal domain and TMDs 1–6 (amino acids 1–476 are deleted) in surface (left panel) and equatorial (middle panel) and phase contrast (PC; right panel) views are shown. (TIF)

Table S1 Plasmids used in this study.

(DOC)

Acknowledgments

We are grateful to B. Morgan and T. Dick for help with the pH measurements and T. Levine for plasmids. We thank K. Meese for experimental support and D. Riedel, D. Wenzel and G. Heim from the EM facility at the MPIBpc for their technical advice, P. Eggensperger and B. Morgan for comments on the manuscript and D. Dobberstein for his generous support.

Author Contributions

Conceived and designed the experiments: WW AK B. Schrul B. Schwappach MS. Performed the experiments: WW AK B. Schrul. Analyzed the data: WW AK B. Schrul HL. Wrote the paper: WW AK B. Schrul HL B. Schwappach MS.

References

1. Prinz WA, Grezyl I, Veenhuis M, Kahana JA, Silver PA, et al. (2000) Mutants affecting the structure of the cortical endoplasmic reticulum in Saccharomyces cerevisiae. J Cell Biol 150: 461–474.

2. Pichler H, Gaigg B, Hrastnik C, Achleitner G, Kohlwein SD, et al. (2001) A subfraction of the yeast endoplasmic reticulum associates with the plasma membrane lipids and is required for the transport of Ist2 to the yeast cortical ER. J Cell Sci 114: 2351–2361.

3. Schuck S, Prinz WA, Thorn KS, Voss C, Walter P (2009) Membrane expansion alleviates endoplasmic reticulum stress independently of the unfolded protein response. J Cell Biol 187: 525–536.

4. Caputo A, Caci E, Ferrera L, Pedemonte N, Barsanti C, et al. (2008) TMEM16A confers receptor-activated calcium-dependent chloride conductance. Nature 453: 1210–1215.

5. Caputo A, Caputo C, Ferrera L, Pedemonte N, Barsanti C, et al. (2006) TMEM16A is a membrane protein associated with calcium-dependent chloride channel activity. Science 322: 590–594.

6. Suzuki J, Umeda M, Sims PJ, Nagata S (2010) Calcium-dependent phospholipid scrambling by TMEM16F. Nature 466: 334–335.

7. Erkan E, Momburg F, Engel U, Temmernik K, Nickel W, et al. (2009) A conserved, lipid-mediated sorting mechanism of yeast Ist2 and mammalian STIM proteins to the peripheral ER. Traffic 10: 1802–1818.

8. Schroeder BC, Cheng T, Jan YN, Jan LY (2000) Expression cloning of TMEM16A as a calcium-activated chloride channel subunit. Cell 134: 1039–1029.

9. Yang YD, Cho H, Koo JY, Tak MH, Cho Y, et al. (2008) TMEM16A confers receptor-activated calcium-dependent chloride conductance. Nature 453: 1210–1215.

10. Caci E, Caci A, Ferrera L, Pedemonte N, Barsanti C, et al. (2006) TMEM16A, a membrane protein associated with calcium-dependent chloride channel activity. Science 322: 590–594.

11. Caputo A, Caci E, Ferrera L, Pedemonte N, Barsanti C, et al. (2008) TMEM16A, a membrane protein associated with calcium-dependent chloride channel activity. Science 322: 590–594.
16. Malinsky J, Opekarova M, Tanner W (2010) The lateral compartmentation of the yeast plasma membrane. Yeast 27: 473–478.

17. Simons K, Toone M (2000) Lipid rafts and signal transduction. Nat Rev Mol Cell Biol 1: 31–39.

18. Walther TC, Beckner JH, Aguilar PS, Bernales S, Pantoja C, et al. (2006) Eicosanoids mark static sites of endocytosis. Nature 439: 996–1003.

19. Brach T, Specht T, Kaksen M (2011) Reassessment of the role of plasma membrane domains in the regulation of vesicular traffic in yeast. J Cell Sci 124: 3201–3217.

20. Stradalova V, Blazikova M, Grossmann G, Opekarova M, Tanner W, et al. (2012) Distribution of cortical endoplasmic reticulum determines positioning of endocytic events in yeast plasma membrane. PLoS One 7: e53132.

21. Young ME, Karpova TS, Brugger B, Moschenross DM, Wang GK, et al. (2002) The Surv family defines novel cortical domains in Saccharomyces cerevisiae, affects sphingolipid metabolism, and is involved in sporulation. Mol Cell Biol 22: 927–934.

22. Malinsky K, Malinsky J, Opekarova M, Tanner W (2003) Visualization of protein compartmentation within the plasma membrane of living yeast cells. Mol Cell Biol 14: 4427–4436.

23. Malinsky K, Malinsky J, Opekarova M, Tanner W (2004) Distribution of Can1p into stable domains reflects lateral protein segregation within the plasma membrane of living S. cerevisiae cells. J Cell Sci 117: 6031–6041.

24. Stradalova V, Stahlchmidt W, Grossmann G, Blazikova M, Rachel R, et al. (2009) Furrow-like invaginations of the yeast plasma membrane correspond to membrane compartment of Can1. J Cell Sci 122: 2897–2894.

25. Grossmann G, Opekarova M, Malinsky J, Weig-Meckl I, Tanner W (2007) Membrane potential governs lateral segregation of plasma membrane proteins and lipids in yeast. Embo J 26: 1–8.

26. Grossmann G, Malinsky J, Stahlchmidt W, Lohi M, Weig-Meckl I, et al. (2008) Plasma membrane microdomains regulate turnover of transport proteins in yeast. J Cell Biol 183: 1075–1083.

27. Artur J, Ramos J, Sychrova H (2010) Alkaline metal cation transport and homostasis in yeast. Microbiol Mol Biol Rev 74: 95–120.

28. Takizawa PA, DeRisi JL, Wilhelm JE, Vale RD (2000) Plasma membrane compartmentalization in yeast by messenger RNA transport and a septin diffusion barrier. Science 290: 341–344.

29. Voeltz GK, Prinz WA, Shihata Y, Rist JM, Rapoport TA (2006) A class of membrane proteins shaping the tubular endoplasmic reticulum. Cell 124: 573–586.

30. Shihata Y, Shemos T, Prinz WA, Palazzo AF, Kozlov MM, et al. (2010) Mechanisms determining the morphology of the peripheral ER. Cell 143: 774–788.

31. Serrano R (1985) In vivo glucose activation of the yeast plasma membrane ATPase. FEBS Lett 156: 11–14.

32. Moroson P, Skayman CW, Golfeau A (2000) Mutagenic study of the structure, function and biogenesis of the yeast plasma membrane H^+-ATPase. Biochim Biophys Acta 1469: 153–157.

33. Portillo F (2000) Regulation of plasma membrane H^+-ATPase in fungi and plants. Biochim Biophys Acta 1469: 31–42.

34. Braun NA, Morgan B, Dicke TP, Schwappach B (2010) The yeast CLC protein counteracts vesicular acidification during iron starvation. J Cell Sci 123: 2342–2350.

35. Porat Z, Wender N, Erez O, Kahana C (2005) Mechanism of polyamine transport in yeast. J Biol Chem 272: 26145–26152.

36. McCusker JH, Peflin DS, Haber JE (1987) Pleiotropic plasma membrane ATPase mutations of Saccharomyces cerevisiae. Mol Cell Biol 7: 4092–4098.

37. Peflin DS, Brown CL, Haber JE (1988) Membrane potential defect in hygromycin B-resistant pma1 mutants of Saccharomyces cerevisiae. J Biol Chem 263: 18118–18122.

38. Kolabor J, Kuipa J, Bajot M, Gofeau A (1988) Characterization of a proteinase kinase from yeast plasma membrane. J Biol Chem 263: 10613–10619.

39. Estrada E, Agostinis P, Vanhaecke JR, Gorijs J, Jerseleve W, et al. (1996) Phosphorylation of yeast plasma membrane H^+-ATPase by casein kinase I. J Biol Chem 271: 32064–32072.

40. Grossena A, de La Fuente N, Forment J, Serrano R, Porillo F (2000) Regulation of yeast H^+-ATPase by protein kinases belonging to a family dedicated to activation of plasma membrane transporters. Mol Cell Biol 20: 7654–7661.

41. Kim Y, Chatapotpathy S, Locke S, Pearce DA (2005) Interaction among Bni1p, Bni2p, and Ist2p reveals potential interplay among the vacuole, amino acid levels, and ion homestasis in the yeast Saccharomyces cerevisiae. Eukaryot Cell 4: 281–288.

42. Gerty AL, Pearce DA (2011) Interactions of the proteins of neuronal ceroid lipofuscinosis: clues to function. Cell Mol Life Sci 68: 453–474.

43. Kama R, Robinson M, Gerst JE (2007) Bni2, a Hook1 ortholog and batten disease-related protein, mediates late endosome-Golgi protein sorting in yeast. Mol Cell Biol 27: 605–621.

44. Rudolph HK, Ansebi A, Fink GR, Buckless CM, Dorman TE, et al. (1989) The yeast secretory pathway is perturbed by mutations in PMR1, a member of a Ca^2+ ATPase family. Cell 58: 133–145.

45. Cisneros SM, Thoerner J (1992) Regulatory subunit (CNB1 gene product) of yeast Ca^2+/calmodulin-dependent phosphoprotein phosphatase is required for adaptation to pheromone. Mol Cell Biol 12: 3469–3469.

46. Orci L, Ravazzola M, Le Coadic M, Shen WW, Demaurex N, et al. (2009) From the Cover: STIM1-induced precortical and cortical subdomains of the endoplasmic reticulum. Proc Natl Acad Sci U S A 106: 19358–19362.

47. Borst JG, Saakman B (1999) Depletion of calcium in the synaptic cleft of a calyx-type synapse in the rat brainstem. J Physiol 521 Pt 1: 125–133.

48. Zbarre R, Poronnik P, Koch G (1986) Na^+-dependent amino acid transport is a major factor determining the rate of (Na^+K^+)-ATPase mediated cation transport in intact HeLa cells. J Cell Physiol 129: 85–93.

49. Jennings ML, Cai J (2000) Chloride homestasis in Saccharomyces cerevisiae: high affinity influx, V-ATPase-dependent sequestration, and identification of a candidate Cl^- sensor. J Gen Physiol 131: 379–391.

50. Young BP, Shin JJ, Oriq E, Chao JT, Li SC, et al. (2010) Phosphatidylinositol is a pH biosensor that links membrane biogenesis to metabolism. Science 329: 1015–1018.

51. Brachmann CB, Davies A, Cost GJ, Caputo E, Li J, et al. (1998) Designer deletion strains from Saccharomyces cerevisiae S288C: a useful set of strains and plasmids for PCR-mediated gene disruption and other applications. Yeast 14: 115–132.

52. Janke C, Magiera MM, Rathfelder N, Taxis G, Reber S, et al. (2004) A versatile toolbox for PCR-based tagging of yeast genes: new fluorescent proteins, more markers and promoter substitution cassettes. Yeast 21: 947–962.

53. Sikorski RS, Hieter P (1989) A system of shuttle vectors and yeast host strains derived from Saccharomyces cerevisiae in a Microtubule-dependent Manner. J Biol Chem 276: 15905–15912.