In silico studies suggest T-cell cross-reactivity between SARS-CoV-2 and less dangerous coronaviruses

Marcin Pacholczyk (marcin.pacholczyk@polsl.pl)
Silesian University of Technology https://orcid.org/0000-0002-9741-2137

Piotr Rieske
Medical University of Lodz https://orcid.org/0000-0002-2970-0970

Short Report

Keywords: SARS-CoV-2, COVID-19, T cell cross-reactivity

DOI: https://doi.org/10.21203/rs.3.rs-73773/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
Abstract

So far, it is impossible to explain the diverse individual and population responses to SARS-CoV-2 infection. Many factors may be involved, including genetics, diet, vaccinations, the innate immune response, viral load, and other phenomena. Further, immune responses raised against pathogens other than SARS-CoV-2 (cross-reactivity) may also be involved. In this work, we analyzed the potential for T-cell cross-reactivity between less contagious coronaviruses (HCoV-OC43, HCoV-HKU1, HCoV-229E, and HCoV-NL63) and SARS-CoV-2. *In silico* research suggests that SARS-CoV-2 and less dangerous coronaviruses share identical peptides, which can be presented on MHC class I molecules. Those T-cells epitopes belong to several coronavirus proteins localized inside the viral envelope, including helicase, RNA polymerase, proofreading exoribonuclease, and 2'-O-methyltransferase. Our data suggest that a milder course of COVID-19, in some populations, may be related to the cross-reactivity of T cells.

Introduction

Over the course of the COVID-19 pandemic thus far, it has become clear that there are diverse individual and population responses to the SARS-CoV-2 virus that influence its pathogenicity. Many people who come into contact with COVID-19 patients, such as family members, never exhibit any symptoms, or only mild symptoms, of the disease, despite having no previous exposure to SARS-CoV-2. It is possible that this protection against SARS-CoV-2 may be based on selected and expanded T-cell populations that originated not after SARS-CoV-2 infection, but rather after infection with pathogens that contain antigens similar to those found in SARS-CoV-2. Indeed, recombinant vaccines are sometimes created using pathogens other than the one being targeted, and immunity against a pathogen does not have to result from exposure to that particular pathogen. Moreover, genes encoding viral antigens can be mutated to create vaccines with increased efficacy \(^1,2\). Recently published data identified cross-reactions between SARS-CoV-2 and HCoV-OC43, HCoV-229E, HCoV-NL63, and HCoV-HKV1 antigens \(^1,3\). Although studies show that the T lymphocyte response is very complex in comparison to the humoral response, bioinformatics models can be used to analyze T lymphocyte epitopes. With a large number of positive results, these models can be used to provide useful directions for future research.

Results

Available protein sequences for several common human coronaviruses and the novel SARS-CoV-2 were downloaded from the Swiss-Prot manually curated and annotated database.

Using *netCTL* 1.2 software \(^4\), we were able to predict over 500 cytotoxic T-lymphocyte (CTL) epitopes in the proteomes of each of the viruses for different MHC supertypes (A1, A2, A3, A24, A26, B7, B8, B27, B39, B44, B58, and B62). A relatively large number of these were common between SARS-CoV-2 and other human coronaviruses (see Tables 2-5 and complete data in Supplementary Table S2 online). All CTL epitopes common between SARS-CoV-2 and the other human CoVs were identified in replicase polyprotein 1ab. SARS-CoV-2 replicase polyprotein 1ab is post-translationally cleaved at multiple sites by
either 3CL-PRO or PL-PRO protease to form several accessory proteins (see Fig. 1). The CTL epitopes were only identified in the RNA polymerase, helicase, proofreading exoribonuclease, and 2′-O-methyltransferase regions of the protein. These four proteins were highly conserved among the analyzed human coronavirus species. Table 1 shows the percentage of identical positions in pairwise and multiple sequence alignments among the human coronaviruses.

Materials And Methods

Protein sequences

Sequences of human coronaviruses HCoV-OC43, HCoV-HKU1, HCoV-229E, HCoV-63NL, and SARS-CoV-2 proteins were downloaded from the Uniprot (Swiss-Prot) database. Complete list of sequences can be found in supplementary Table S1.

MHC epitope prediction

Predictions of cytotoxic T-lymphocyte (CTL) epitopes were obtained using netCTL 1.2 software, which is an implementation of an integrative prediction algorithm and includes predictions of proteasomal cleavage, TAP transport efficiency, and MHC class I affinity. The predictions are currently limited to MHC supertypes A1, A2, A3, A24, A26, B7, B8, B27, B39, B44, B58, and B62.

Sequence alignment

Pairwise and multiple sequence alignments were calculated with Clustal Omega using default parameters – Gonnet transition matrix, gap opening penalty 6 bits, and extension 1 bit.

Discussion

Four common human coronaviruses, HCoV-OC43, HCoV-229E, HCoV-NL63, and HCoV-HKV1, circulate among the global population, but are comparatively less dangerous than SAR-CoV-2. We hypothesized that a cross-response of cytotoxic cells, selected during an immune response to these common viruses, may play an auxiliary role during elimination of SARS-CoV-2. Unfortunately, T-lymphocyte responses are much more difficult to study in vitro than B-lymphocyte responses. To this end, and because of the importance of T-cells during viral infections, we focused on the T-cell response. We tested the above hypothesis using in silico models. We assumed that the MHC I peptides were properly selected during our in silico studies. Next, we performed a search for identical, or nearly identical, peptides presented by MHC I molecules during infection with the four common human coronaviruses and SARS-CoV-2. Our in silico analysis suggests that T lymphocytes selected during infection with the mild coronaviruses exhibit cross-reactivity with SARS-CoV-2, as they share antigenic peptides with SARS-CoV-2 peptides. Indeed, several SARS-CoV-2 proteins share peptides/epitopes with HCoV-HKU1, HCoV-OC43, HCoV-229E, and HCoV-NL63, including epitopes from helicase, RNA polymerase, proofreading exoribonuclease, and 2′-O-methyltransferase. Importantly, these molecules are not virion surface proteins and are not optimal
targets for antibodies. We are aware of the many limitations in the use of *in silico* testing to predict which peptides are recognized/presented after infection. However, the number of common peptides identified in this study was relatively large, and the common epitopes were found in all four mild coronaviruses. Therefore, it cannot be ruled out that T-cell cross-reactivity may offer some protection against SARS-CoV-2 for people who have been infected with other, less dangerous coronaviruses; a similar conclusion was recently published. Therefore, we suggest that the T-lymphocytes selected and expanded during infection with SARS-CoV-2, as well as cross-reactive T-lymphocytes propagated during mild coronavirus infections, can support the immune response to SARS-CoV-2.

Abbreviations

Abbreviation	Description
CTL	Cytotoxic T-lymphocyte
MHC	Major Histocompatibility Complex
NSP	Non-structural protein
PL-PRO	Papain-like proteinase
3CL-PRO	3C-like proteinase
HCoV	Human coronavirus

Declarations

Author contributions

MP carried out presented analyses and interpreted the results. PR conceived and supervised the study. MP and PR wrote the main manuscript text and MP prepared figure and tables. Both authors reviewed the manuscript.

Competing interests

The authors declare no competing interests.

References

1. Clark, T. G. & Cassidy-Hanley, D. Recombinant subunit vaccines: potentials and constraints. *Dev. Biol. (Basel)*. **121**, 153–163 (2005).
2. Doria-Rose, N. A. & Joyce, M. G. Strategies to guide the antibody affinity maturation process. *Current Opinion in Virology* **11**, 137–147 (2015).
3. Parren, P. W. & Burton, D. R. The antiviral activity of antibodies in vitro and in vivo. *Adv. Immunol.* **77**, 195–262 (2001).
4. Larsen, M. V. et al. Large-scale validation of methods for cytotoxic T-lymphocyte epitope prediction. *BMC Bioinformatics* **8**, (2007).

5. Söding, J. Protein homology detection by HMM–HMM comparison. *Bioinformatics* **21**, 951–960 (2004).

6. Chen, B. et al. Overview of lethal human coronaviruses. *Signal Transduct. Target. Ther.* **5**, 89 (2020).

7. Welters, M. J. P. et al. Multiple CD4 and CD8 T-cell activation parameters predict vaccine efficacy in vivo mediated by individual DC-activating agonists. *Vaccine* **25**, 1379–1389 (2007).

8. Melief, C. J. M. & Van Der Burg, S. H. Immunotherapy of established (pre)malignant disease by synthetic long peptide vaccines. *Nature Reviews Cancer* **8**, 351–360 (2008).

9. Purcell, A. W., McCluskey, J. & Rossjohn, J. More than one reason to rethink the use of peptides in vaccine design. *Nature Reviews Drug Discovery* **6**, 404–414 (2007).

10. Grifoni, A. et al. Targets of T Cell Responses to SARS-CoV-2 Coronavirus in Humans with COVID-19 Disease and Unexposed Individuals. *Cell* **181**, 1489-1501.e15 (2020).

Tables

Table 1 Percent of identical positions in pairwise and multiple sequence alignments of SARS-CoV-2 and other human coronavirus protein sequences.

SARS-CoV-2 protein	HCoV-OC43	HCoV-HKU1	HCoV-229E	HCoV-NL63	Multiple
RNA polymerase	65.9	66.8	58.5	58.5	45.3
Helicase	67.4	65.1	59.1	60.1	47.8
Proofreading exoribonuclease	57.2	57.6	51.6	52.4	37.7
2′-O-methyltransferase	65.9	63.2	56.5	57.8	43.5

Table 2 Predicted CTL epitopes shared by SARS-CoV-2 and HCoV-229E.
HCoV-229E	MHC supertype	CTL epitope	SARS-CoV-2 protein
A1		TTAYANSVF	RNA polymerase
		GSEYDYVIF	Helicase
A2		SLAIDAYPL	RNA polymerase
		AIMTRCLAV	Proofreading exoribonuclease
A24		TTAYANSVF	RNA polymerase
		AYANSVFNI	
A26		TTAYANSVF	RNA polymerase
B27		NRFNVAITR	Helicase
B39		HEFCSQHTM	RNA polymerase
		SLAIDAYPL	
		GVAPGTAVL	2'-O-methyltransferase
B44		HEFCSQHTM	RNA polymerase
B58		TTAYANSVF	RNA polymerase
B62		TTAYANSVF	RNA polymerase
		SLAIDAYPL	
		GVAPGTAVL	2'-O-methyltransferase
B7		LPYPDPSRI	RNA polymerase
		IPARARVEC	Helicase
		GVAPGTAVL	2'-O-methyltransferase

Table 3 Predicted CTL epitopes shared by SARS-CoV-2 and HCoV-HKU1.
HCoV-HKU1	MHC supertype	CTL epitope	SARS-CoV-2 protein
A1	FVDGVPFVV	RNA polymerase	
	FVSLAIDAY		
A2	FVDGVPFVV	RNA polymerase	
	RLANECAQV		
	SVFNICQAV		
	RILGAGCFV		
	SLAIDAYPL		
A24	LYYQNNVFM	RNA polymerase	
	YYQNNVFMS		
	EFCSQHTML		
	PYPDPSRIL		
	VYIGDPAQL	Helicase	
	KYTEQLCQYL	2′-O-methyltransferase	
	SWNADLYKL		
A26	FVSLAIDAY	RNA polymerase	
A3	NLYKAISAK	RNA polymerase	
	CSQHTMLVK		
	ALVYDNKLK	Helicase	
B27	NRARTVAGV	RNA polymerase	
	ARTVAGVSI		
	SRLGAGCF		
	NRFNVAITR	Helicase	
B39	FVDGVPFVV	RNA polymerase	
	HEFCSQHTM		
	SLAIDAYPL		
	SLYVNKHAF	Proofreading exoribonuclease	
B44	HEFCSQHTM	RNA polymerase	
	IERFVSLAI		
B58	SLYVNKHAF	Proofreading exoribonuclease	
Table 4 Predicted CTL epitopes shared by SARS-CoV-2 and HCoV-NL63.

B62	FQTVKPGNF	RNA polymerase
	VLYYQNNVF	
	FVSLAIDAY	
	SLAIDAYPL	
	LYLGGMSYY	Helicase
	SLYVNHAF	Proofreading exoribonuclease
B7	SAKNRARTV	RNA polymerase
	LPYPDPSRI	
	VCRFDTRVL	Proofreading exoribonuclease
B8	SAKNRARTV	RNA polymerase
	VLYQNNVF	
	IERFVLAI	
	RLKLFAAET	Helicase
	SLYVNHAF	Proofreading exoribonuclease
Table 5 Predicted CTL epitopes shared by SARS-CoV-2 and HCoV-OC43.

HCoV-NL63	MHC supertype	CTL epitope	SARS-CoV-2 protein	
A1	SSQGSEYDY	Helicase		
A2	SLAIDAYPL	RNA polymerase		
A24	LYYQNNVFMS	RNA polymerase		
	YYQNNVFM	RNA polymerase		
	PYPDPSRIL	2′-O-methyltransferase		
A26	YLRKHFSMM	RNA polymerase		
B27	LRKHFSSMIL	RNA polymerase		
	NRFNVAITR	Helicase		
B39	RKFHSMMIL	RNA polymerase		
	HEFCSQHTM	Proofreading exonucleolyase		
	SLAIDAYPL	RNA polymerase		
	SLYVNKHAF	Proofreading exonucleolyase		
B44	HEFCSQHTM	RNA polymerase		
B58	SLYVNKHAF	Proofreading exonucleolyase		
B62	YLRKHFSMM	RNA polymerase		
	SLAIDAYPL	Helicase		
	SSQGSEYDY	RNA polymerase		
	SLYVNKHAF	Proofreading exonucleolyase		
B7	YLRKHFSMM	RNA polymerase		
	LPYPDPSRI	Helicase		
B8	YLRKHFSMM	RNA polymerase		
	SLYVNKHAF	Proofreading exonucleolyase		
HCoV-OC43	**MHC supertype**	**CTL epitope**	**SARS-CoV-2 protein**	
-----------	-----------------	-----------------	----------------------	
A1	FVDGVPFVV	RNA polymerase		
	FVSLAIDAY			
	IVDTVSAVLV	Helicase		
A2	FVDGVPFVV	RNA polymerase		
	RLANECAQV			
	SVFNICQAV			
	RILGAGCFV			
	SLAIDAYPL			
	IVDTVSAVLV	Helicase		
	AIMTRCLAV	Proofreading exoribonuclease		
A24	LYYQNNVFM	RNA polymerase		
	YYQNNVFMS			
	EFCSQHTML			
	VYIGDPAQL	Helicase		
	KYTQLCQYL	2'-O-methyltransferase		
A26	FVSLAIDAY	RNA polymerase		
	EIVDTVSAVL	Helicase		
A3	NLKYAISAK	RNA polymerase		
	CSQHTMLVK			
	ALGGSVAIK	2'-O-methyltransferase		
B27	NRARTVAGV	RNA polymerase		
	ARTVAGVISI			
	SRILGAGCF			
	NRFNVAITR	Helicase		
B39	FVDGVPFVV	RNA polymerase		
	HEFCSQHTM			
	SLAIDAYPL			
	EIVDTVSAVL	Helicase		
-----	-----	--------------------------	----------------------	----------------------
		SLYVNKHAF	Proofreading exoribonuclease	
B44		HEFCSQHTM	RNA polymerase	
		IERFVSLAI		
B58		SLYVNKHAF	Proofreading exoribonuclease	
B62		FQTVKPGNF	RNA polymerase	
		VLYYQNNVF		
		FVSLAIDAY		
		LYLGGMSYY	Helicase	
		SLYVNKHAF	Proofreading exoribonuclease	
B7		SAKNRARTV	RNA polymerase	
		VCRFDTRVL	Proofreading exoribonuclease	
		VPLKSATCI		
B8		SAKNRARTV	RNA polymerase	
		VLYYQNNVF		
		IERFVSLAI		
		RLKLFAAET	Helicase	
		SLYVNKHAF	Proofreading exoribonuclease	

Figures
Figure 1

SARS-CoV-2 replicase polyprotein 1ab is post-translationally cleaved into several accessory proteins by PL-PRO and 3CL-PRO

Supplementary Files

This is a list of supplementary files associated with this preprint. Click to download.

- SupplementaryTables.pdf