A NOTE ON SOME SYSTEMS OF GENERALIZED SYLVESTER EQUATIONS *

Jovana Nikolov Radenković

Faculty of Sciences and Mathematics, University of Niš, Serbia

Abstract. In this paper, we study two systems of generalized Sylvester operator equations. We derive necessary and sufficient conditions for the existence of a solution and provide the general form of a solution. We extend some recent results to more general settings.

Key words: Sylvester equations, generalized inverses, Matrix equations and identities

1. Introduction

Let H, K, F, G, L, M, N be complex Hilbert spaces and let $B(H, K)$ denote the set of all bounded linear operators from H to K. For a given $A \in B(H, K)$, the symbols $N(A)$ and $R(A)$ denote the null space and the range of operator A, respectively. The identity operator is always denoted by I. If $A \in B(H, K)$ has a closed range, then there exists unique operator $X \in B(K, H)$ satisfying the following equations

\begin{align*}
(1) \quad AXA &= A \\
(2) \quad XAX &= X \\
(3) \quad (AX)^* &= AX \\
(4) \quad (XA)^* &= XA.
\end{align*}

Such operator is called the Moore-Penrose inverse of an operator $A \in B(H, K)$ which is denoted by A^\dagger. If $X \in B(K, H)$ satisfies the equation (1), i.e. $AXA = A$, then X is an inner generalized inverse of A, and is usually denoted by A^\perp. For $A \in B(H, K)$ there exists a Moore-Penrose inverse, if and only if there exists its

Received February 10, 2021; accepted May 03, 2021
Communicated by Dragana Cvetković Ilić
Corresponding Author: Jovana Nikolov Radenković, Faculty of Sciences and Mathematics, University of Niš, Serbia | E-mail: jovana.nikolov@gmail.com
2010 Mathematics Subject Classification. Primary 15A09; Secondary 15A24
© 2021 BY UNIVERSITY OF NIŠ, SERBIA | CREATIVE COMMONS LICENSE: CC BY-NC-ND
*The author is supported by the Ministry of Education, Science and Technological Development, Republic of Serbia (451-03-9/2021-14/200124).
inner generalized inverse if and only if $\mathcal{R}(A)$ is closed. In this case, we say that A is regular. Furthermore, L_A and R_A stand for two projections $L_A = I - A^\dagger A$ and $R_A = I - AA^\dagger$, induced by A, respectively.

In this paper, we study two systems of generalized Sylvester operator equations

\begin{align}
(1.1) \quad & A_1 X_1 - X_2 B_1 = C_1, \quad A_2 X_3 - X_2 B_2 = C_2, \\
(1.2) \quad & A_1 X_1 - X_2 B_1 = C_1, \quad A_2 X_2 - X_3 B_2 = C_2,
\end{align}

where $A_1 \in \mathcal{B}(\mathcal{H}, \mathcal{K})$, $B_1 \in \mathcal{B}(\mathcal{F}, \mathcal{G})$, $C_1 \in \mathcal{B}(\mathcal{F}, \mathcal{K})$, $A_2 \in \mathcal{B}(\mathcal{M}, \mathcal{K})$, $B_2 \in \mathcal{B}(\mathcal{L}, \mathcal{G})$, $C_2 \in \mathcal{B}(\mathcal{L}, \mathcal{K})$, and $C_2 \in \mathcal{B}(\mathcal{G}, \mathcal{M})$.

Systems of such type of matrix equations have been considered by many authors [3, 4, 5, 6, 7]. In this paper, we extended recent results [7] on systems of quaternion matrix equations to infinite dimensional settings and provide much simpler proofs to existing conditions.

2. Main results

The following two lemmas play a key role in this paper:

Lemma 2.1. [1] Let $A \in \mathcal{B}(\mathcal{H}, \mathcal{K})$, $B \in \mathcal{B}(\mathcal{F}, \mathcal{G})$ and $C \in \mathcal{B}(\mathcal{F}, \mathcal{K})$ be such that $\mathcal{R}(A)$ and $\mathcal{R}(B)$ are closed. Then the operator equation

$$AXB = C$$

is consistent if and only if

$$AA^{-} CB^{-} B = C,$$

for some A^{-} and B^{-}, in which case the general solution is given by

$$X = A^{-} CB^{-} + Y - A^{-} AY BB^{-},$$

for arbitrary $Y \in \mathcal{B}(\mathcal{G}, \mathcal{H})$.

Lemma 2.2. [2] Let E, F, G, D, N, M be Banach spaces. Let $A_1 \in \mathcal{B}(F, E)$, $A_2 \in \mathcal{B}(F, N)$, $B_1 \in \mathcal{B}(D, G)$, $B_2 \in \mathcal{B}(M, G)$ and

$$T := (I_G - B_1 B_1^{-}) B_2 \quad \text{and} \quad S := A_2 (I_F - A_1^{-} A_1)$$

be all regular. Moreover, let $A_1 A_1^{-} C_1 B_1^{-} B_1 = C_1$ and $A_2 A_2^{-} C_2 B_2^{-} B_2 = C_2$. Then the equations

$$A_1 XB_1 = C_1 \quad \text{and} \quad A_2 XB_2 = C_2$$

have a common solution if and only if

$$(I_N - SS^{-}) C_2 (I_M - T^{-} T) = (I_N - SS^{-}) A_2 A_1^{-} C_1 B_1^{-} B_2 (I_M - T^{-} T).$$
In this case, the general common solution is given by
\[X = (A_1^+ C_1 - (I_F - A_1^+ A_1)S^-(A_2A_1^+ C_1 - W))B_1^-(I_G - B_2T^-(I_G - B_1B_1^-)) + ((I_F - (I_F - A_1^+ A_1)S^- A_2)A_1^+ V + (I_F - A_1^+ A_1)S^- C_2)T^-(I_G - B_1B_1^-) + Z - (A_1^- A_1 + (I_F - A_1^+ A_1)S^+ S)Z(B_1B_1^- + TT^-(I_G - B_1B_1^-)), \]

where
\[V = C_1B_1^- B_2(I_M - T^{-T}) + A_1A_1^- (I_N - SS^-)C_2T^{-T} + A_1A_1^- QT^{-T} - A_1A_2^- (I_N - SS^-)A_2A_1^- QT^{-T}, \]
\[W = (I_N - SS^-)A_2A_1^- C_1 + SS^- C_2(I_M - T^{-T})B_2 B_1 + SS^- PB_1^- B_1 - SS^- PB_1^- B_2(I_M - T^{-T}) B_2 B_1, \]
in which \(P, Q, Z \) are arbitrary elements of \(\mathcal{B}(D, N), \mathcal{B}(M, E) \) and \(\mathcal{B}(G, F) \), respectively.

Note that in the preceding lemmas, in the solvability conditions and formulas for general solutions, arbitrary inner generalized inverses can be replaced by the Moore-Penrose inverse. For example, in Lemma 2.1, if
\[AA^- CB^- B = C \]
holds for some \(A^- \) and \(B^- \), then
\[AA^\dagger CB^\dagger B = AA^\dagger (AA^- CB^- B)B^\dagger B = AA^- CB^- B = C. \]

Conversely, if
\[AA^\dagger CB^\dagger B = C \]
holds, then for arbitrary \(A^- \) and \(B^- \) it follows
\[AA^- CB^- B = AA^- (AA^\dagger CB^\dagger B)B^- B = AA^\dagger CB^\dagger B = C. \]

So, for \(A^- \) and \(B^- \) in the solvability conditions and formulas for general solutions, we can choose exactly \(A^\dagger \) and \(B^\dagger \), respectively.

Theorem 2.1. Let \(A_1 \in \mathcal{B}(H, K), B_1 \in \mathcal{B}(F, G), C_1 \in \mathcal{B}(F, K), A_2 \in \mathcal{B}(M, K), B_2 \in \mathcal{B}(L, G), C_2 \in \mathcal{B}(L, K) \) be such that \(A_1, A_2, B_1, B_2, S \) and \(T \) are all regular. Put
\[T = (I - B_1B_1^\dagger)B_2, \quad S = (I - A_2A_2^\dagger)A_1A_1^\dagger, \]
\[C = (I - A_2A_2^\dagger)(C_2 - (I - A_1A_1^\dagger)C_1B_1^\dagger B_2)(I - T^\dagger T). \]

The following statements are equivalent:
(i) The system (1.1) is consistent;
where

\[\text{Proof.} \ (i) \Rightarrow (ii): \text{Since the system (1.1) is consistent, there exists } X_2 \in \mathcal{B}(G,K) \text{ such that equations} \]

\[A_1X_1 - X_2B_1 = C_1 \]
\[A_2X_2 - X_2B_2 = C_2 \]

are solvable for \(X_1 \) and \(X_3 \), respectively. According to Lemma 2.1 equation

\[A_1X_1 - X_2B_1 = C_1 \]

is solvable for \(X_1 \) if and only if

\[(I - A_1A_1^\dagger)(C_1 + X_2B_2) = 0, \]

and equation

\[A_2X_3 - X_2B_2 = C_2 \]
is solvable for X_2 if and only if

$$(I - A_2A_1^T)(C_2 + X_2B_2) = 0.$$

(2.2)

So, from (2.1) and (2.2) it follows that equations

$$(I - A_1A_1^T)X_2B_1 = -(I - A_1A_1^T)C_1,$$

(2.3)

$$(I - A_2A_2^T)X_2B_2 = -(I - A_2A_2^T)C_2$$

have a common solution. From Lemma 2.1 and Lemma 2.2 system (2.3) is consistent if and only if

$$(I - A_1A_1^T)C_1(I - B_1^TB_1) = 0,$$

$$(I - A_2A_2^T)C_2(I - B_2^TB_2) = 0,$$

$$(I - SS^\dagger)C = 0.$$

(ii) \Rightarrow (i): If (ii) holds, then by Lemma 2.2 it follows that system (2.3) is consistent. Let $X_2 \in \mathcal{B}(G, K)$ be the solution to the system (2.3) and let $X_1 = A_1^T(X_2B_1 + C_1)$ and $X_3 = A_2^T(X_2B_2 + C_2)$. Then it is easy to see that such X_1, X_2 and X_3 satisfy (1.1).

(ii) \Rightarrow (iii): Suppose that

$$(I - A_1A_1^T)C_1(I - B_1^TB_1) = 0,$$

(2.4)

$$(I - A_2A_2^T)C_2(I - B_2^TB_2) = 0$$

(2.5)

and

$$(I - SS^\dagger)C = 0$$

(2.6)

hold. From (2.6) we get

$$C(I - (B_2L_T)^\dagger (B_2L_T)) = C(I - (B_2(I - T^\dagger T))^\dagger (B_2(I - T^\dagger T)))$$

$$= (I - A_2A_2^T)C_2(I - T^\dagger T)(I - (B_2(I - T^\dagger T))^\dagger (B_2(I - T^\dagger T)))$$

$$-(I - A_2A_2^T)(I - A_1A_1^T)C_2B_2(I - T^\dagger T)(I - (B_2(I - T^\dagger T))^\dagger (B_2(I - T^\dagger T)))$$

$$= (I - A_2A_2^T)C_2(I - T^\dagger T)(I - (B_2(I - T^\dagger T))^\dagger (B_2(I - T^\dagger T)))$$

$$= (I - A_2A_2^T)C_2B_2(I - T^\dagger T)(I - (B_2(I - T^\dagger T))^\dagger (B_2(I - T^\dagger T)))$$

$$= 0.$$

(iii) \Rightarrow (ii): Suppose that

$$(I - A_1A_1^T)C_1(I - B_1^TB_1) = 0,$$

(2.7)
\[(2.8) \quad C(I - (B_2(I - T^T))\diff(B_2(I - T^T))) = 0 \]

and

\[(2.9) \quad (I - SS^\dagger)C = 0 \]

hold. From (2.8) we get

\[
\begin{align*}
R_A^2C_2(I - T\dagger T)(I - (B_2(I - T^T))\diff(B_2(I - T^T))) &= R_A^2R_A^1C_1B_1^\dagger B_2(I - T^T)L_{B_2}(I - T\dagger T) \\
&= 0.
\end{align*}
\]

Note that

\[
\begin{align*}
(I - T\dagger T)B_2 &= (I - (I - B_1B_1^\dagger)B_2)\diffB_2(I - B_2^\dagger B_2) \\
&= I - B_2^\dagger B_2 \\
&= L_{B_2},
\end{align*}
\]

so from (2.11) and (2.10) we get

\[
\begin{align*}
R_A^2C_2L_{B_2} &= R_A^2C_2(I - T\dagger T)L_{B_2} \\
&= R_A^2C_2(I - T\dagger T)(B_2(I - T^T))\diffB_2(I - T\dagger T)L_{B_2} \\
&= R_A^2C_2(I - T\dagger T)(B_2(I - T^T))\diff(I - T\dagger R_{B_1})B_2L_{B_2} \\
&= 0.
\end{align*}
\]

Suppose that system (1.1) is consistent.

Since $X_2 \in \mathcal{B}(G, K)$ is a solution to (1.1) if and only if it satisfies (2.3), its general form, according to Lemma 2.2, is given by

\[
X_2 = (-R_{A_1}C_1 + S\dagger(R_{A_1}C_1 + W))B_1^\dagger(I - B_2T) + ((I - S\dagger)R_{A_2}V - S\dagger C_2)T \dagger + Z - (I - A_1A_1^\dagger + S\dagger S)Z(B_1B_1^\dagger + TT^\dagger),
\]

where Z is an arbitrary element of $\mathcal{B}(G, K)$, and

\[
V = -R_{A_1}C_1B_1^\dagger B_2L_T - R_{A_1}R_{A_2}R_SC_2T^\dagger T \\
+ R_{A_1}Q^\dagger T - R_{A_1}R_{A_2}R_SC_2R_{A_1}Q^\dagger T
\]

and

\[
W = -R_SR_{A_2}R_{A_1}C_1 - SS^\dagger C_2L_TB_2^\dagger B_1 \\
+ SS^\dagger PB_1^\dagger B_1 - SS^\dagger PB_2^\dagger B_2L_TB_1^\dagger B_1,
\]
where P and Q are arbitrary elements of $B(F, K)$ and $B(G, K)$.

From the first equation in (1.1) we have
\[A_1X_1 = X_2B_1 + C_1, \]
so, by Lemma 2.1 we get
\[X_1 = A_1^T(X_2B_1 + C_1) + L_{A_1}R, \]
\[= A_1^T\bigl((R_{A_1}C_1 + W)B_1^\dagger B_1 + A_1^T S^T S Z B_1 - A_1^T S^T S Z B_1 + A_1^T C_1 + L_{A_1} R, \]
where R is an arbitrary element of $B(F, H)$.

From the second equation in (1.1) we have
\[A_2X_3 = X_2B_2 + C_2, \]
so, by Lemma 2.1 we get
\[X_3 = A_2^T(X_2B_2 + C_2) + L_{A_2}Y, \]
\[= A_2^T(-R_{A_2}C_2 - S^T(R_{A_2}C_1 + W))B_2^\dagger B_2 L_T \]
\[+ A_2^T((I - S^\dagger)R_{A_2}V + S^T C_2)T^\dagger B_2 \]
\[+ A_2^T Z B_2 - A_2^T(I - A_2^\dagger) + S^T S Z (B_1 B_1^\dagger B_2 + T) + A_2^T C_2 + L_{A_2} Y, \]
where Y is an arbitrary element of $B(L, K)$. □

Theorem 2.2. Let $A_1 \in B(H, K)$, $B_1 \in B(M, L)$, $C_1 \in B(M, K)$, $A_2 \in B(K, N)$, $B_2 \in B(L, G)$, $C_2 \in B(L, N)$ be such that A_1, A_2, B_1, B_2, S and T are all regular.

Put
\[T = (I - B_1 B_2^\dagger)(I - B_1^\dagger B_2), \quad S = A_2 A_1 A_1^\dagger, \]
\[C = (I - (A_2 A_1)(A_2 A_1)^\dagger)C_2 + A_2(I - A_2 A_1^\dagger)C_1 B_1^\dagger (I - B_1^\dagger B_2). \]

The following statements are equivalent:

(i) The system (1.2) is consistent;

(ii) $R_{A_1} C_1 L B_1 = 0$, $R_{A_2} C_2 L B_2 = 0$, $C L T = 0$;

(iii) $R_{A_1} C_1 L B_1 = 0$, $(I - R_{A_2} A_1 A_2(R_{A_2} A_1 A_2)\dagger)C = 0$, $C L T = 0$.

In this case, the general solution to the system (1.2) is given by
\[X_1 = A_1^T S^T A_2 R_{A_1} C_1 + A_1^T S^T W B_1^\dagger B_1 + A_1^T(I - S^\dagger) V B_1 \]
\[+ A_1^T Z B_1 - A_1^T S^T S Z B_1 + A_1^T C_1 + R_{A_1} R, \]
\[X_2 = (-R_{A_1} C_1 + S^T(A_2 R_{A_1} C_1 + W)) B_2^\dagger(I - T^\dagger) \]
\[+ ((I - S^\dagger A_2) R_{A_2} V + S^T C_2 L B_2) T^\dagger \]
\[+ Z - (R_{A_1} + S^T S Z (B_1 B_1^\dagger B_2 + T T^\dagger), \]
\[X_3 = A_2 \left(-R_A C_1 + S^\dagger (A_2 R_A C_1 + W)\right) B_1^\dagger (I - T^\dagger) B_2^\dagger + A_2 \left((I - S^\dagger A_2) R_A V + S^\dagger C_2 L_{B_2} \right) T^\dagger B_2^\dagger + A_2 Z B_2^\dagger - A_2 (R_A + S^\dagger S) Z (B_1 B_2^\dagger + T T^\dagger) B_2^\dagger - C_2 B_2^\dagger + Y R_{B_2}, \]

where
\[V = -R_A C_1 B_1^\dagger L_{B_2} L_T + R_A QT_T - R_A A_1^\dagger R_S A_2 R_A QT_T \]
and
\[W = -R_S A_2 R_A C_1 + S S^\dagger C_2 L_{B_2} B_1 + S S^\dagger P B_1^\dagger B_1 - S S^\dagger P B_1^\dagger L_{B_2} B_1 \]

with \(P, Q, Z \) and \(Y \) arbitrary elements of \(B(F, K), B(N, K), B(G, K), \) and \(B(N, M), \) respectively.

Proof. \((i) \Rightarrow (ii): \) Since the system (1.1) is consistent, there exists \(X_2 \in B(G, K) \) such that equations
\[A_1 X_1 - X_2 B_1 = C_1 \]
\[A_2 X_2 - X_3 B_2 = C_2 \]
are solvable for \(X_1 \) and \(X_3, \) respectively. According to Lemma 2.1 equation
\[(2.12) \]
\[A_1 X_1 - X_2 B_1 = C_1 \]
is solvable for \(X_1 \) if and only if
\[(2.13) \]
\[(I - A_1 A_1^\dagger) (C_1 + X_2 B_2) = 0 \]
and equation
\[(2.14) \]
\[A_2 X_2 - X_3 B_2 = C_2 \]
is solvable for \(X_3 \) if and only if
\[(2.15) \]
\[(A_2 X_2 - C_2) (I - B_2^\dagger B_2) = 0. \]
So, from (2.13) and (2.15) it follows that equations
\[(2.16) \]
\[(I - A_1 A_1^\dagger) X_2 B_1 = -(I - A_1 A_1^\dagger) C_1, \]
\[A_2 X_2 (I - B_2^\dagger B_2) = C_2 (I - B_2^\dagger B_2) \]
have a common solution. From Lemma 2.1 and Lemma 2.2 system (2.16) is consistent if and only if
\[(I - A_1 A_1^\dagger) C_1 (I - B_1^\dagger B_1) = 0, \]
\[(I - A_2 A_2^\dagger) C_2 (I - B_2^\dagger B_2) = 0, \]
\[C' (I - T T^\dagger) = 0, \]
where
\[C' = (I - SS^T)(C_2 + A_2(I - A_1A_1^T)C_1B_1^T)(I - B_2^TB_2). \]
Note that condition
\begin{equation}
C'(I - T^\dagger T) = 0
\end{equation}
is equivalent to
\begin{equation}
C(I - T^\dagger T) = 0,
\end{equation}
since (2.17) implies
\begin{align*}
C(I - T^\dagger T) &= R_A A_1 A_2 (C_2 + A_2(I - A_1A_1^T)C_1B_1^T)L_{B_1}L_T \\
&= R_A A_1 SS^\dagger (C_2 + A_2(I - A_1A_1^T)C_1B_1^T)L_{B_1}L_T \\
&= R_A A_1 A_2 A_1 A_2^S S^\dagger (C_2 + A_2(I - A_1A_1^T)C_1B_1^T)L_{B_1}L_T \\
&= 0,
\end{align*}
and (2.18) implies
\begin{align*}
C'(I - T^\dagger T) &= R_S (C_2 + A_2(I - A_1A_1^T)C_1B_1^T)L_{B_1}L_T \\
&= R_S (A_2 A_1)(A_2 A_1)^\dagger (C_2 + A_2(I - A_1A_1^T)C_1B_1^T)L_{B_1}L_T \\
&= (I - (A_2 A_1 A_1^\dagger) (A_2 A_1 A_1^\dagger)^\dagger (A_2 A_1)(A_2 A_1)^\dagger (C_2 + A_2(I - A_1A_1^T)C_1B_1^T)L_{B_1}L_T \\
&= 0.
\end{align*}
I follows that
\begin{align*}
(I - A_1A_1^T)C_1(I - B_1^TB_1) &= 0, \\
(I - A_2A_2^T)C_2(I - B_2^TB_2) &= 0, \\
C(I - T^\dagger T) &= 0.
\end{align*}

(ii) ⇒ (i): If (ii) holds, then by Lemma 2.2 it follows that system (2.16) is consistent. Let \(X_2 \in B(G, K) \) be the solution to the system (2.16) and let \(X_1 = A_1^T(X_2B_1 + C_1) \) and \(X_3 = (A_2X_2 - C_2)B_2^T \). Then it is easy to see that such \(X_1, X_2 \) and \(X_3 \) satisfy (1.2).

(ii) ⇒ (iii): Suppose that
\begin{align*}
(I - A_1A_1^T)C_1(I - B_1^TB_1) &= 0, \\
(I - A_2A_2^T)C_2(I - B_2^TB_2) &= 0
\end{align*}
and

\[(2.21) \quad C(I - T^\dagger T) = 0.\]

From (2.20) we obtain

\[
(I - R_{A_2}A_1A_2(R_{A_2}A_1A_2)^\dagger)C \\
= (I - R_{A_2}A_2(R_{A_2}A_1A_2)^\dagger)R_{A_2}A_1(C_2 + A_2(I - A_1A_1^\dagger)C_1B_1)B_{B_2} \\
= (I - R_{A_2}A_2(R_{A_2}A_1A_2)^\dagger)R_{A_2}A_1C_2B_{B_2} \\
+ (I - R_{A_2}A_2(R_{A_2}A_1A_2)^\dagger)R_{A_2}A_1A_2(I - A_1A_1^\dagger)C_1B_1^\dagger L_{B_2} \\
= (I - R_{A_2}A_2(R_{A_2}A_1A_2)^\dagger)R_{A_2}A_1A_2A_2^\dagger C_2B_{B_2} \\
= 0.
\]

\((ii) \Rightarrow (iii):\) Suppose that

\[(2.22) \quad (I - A_1A_1^\dagger)C_1(I - B_1^\dagger B_1) = 0,\]

\[(2.23) \quad (I - R_{A_2}A_2A_2(R_{A_2}A_1A_2)^\dagger)C = 0\]

and

\[(2.24) \quad C(I - T^\dagger T) = 0.\]

From (2.23) we get

\[
(I - A_2A_2^\dagger)C_2(I - B_2^\dagger B_2) \\
= (I - A_2A_2^\dagger)C \\
= (I - A_2A_2^\dagger)R_{A_2}A_2A_2(R_{A_2}A_1A_2)^\dagger C \\
= 0.
\]

Suppose that system (1.2) is consistent. Since \(X_2 \in \mathcal{B}(G, K)\) is a solution to (1.2) if and only if it is solution to (2.16), its general form, according to Lemma 2.2, is given by

\[
X_2 = (-R_{A_2}C_1 + S^\dagger(A_2R_{A_1}C_1 + W))B_1^\dagger(I - T^\dagger) \\
+ (S^\dagger A_2R_{A_1}V + S^\dagger C_2B_{B_2})T^\dagger \\
+ Z - (R_{A_1} + S^\dagger S)Z(B_1B_1^\dagger + TT^\dagger),
\]

where

\[
V = -R_{A_2}C_1B_1^\dagger B_{B_2}L_T + R_{A_2}QT^\dagger T - R_{A_2}A_2^\dagger R_{S_2}A_2R_{A_2}QT^\dagger T
\]

and

\[
W = -R_{S_2}A_2R_{A_2}C_1 + SS^\dagger C_2B_{B_2}B_1 + SS^\dagger P_{B_1}B_1 - SS^\dagger P_{B_1}B_{B_2}B_1
\]
with \(P, Q, Z \) arbitrary elements of \(\mathcal{B}(F, \mathcal{M}), \mathcal{B}(G, \mathcal{K}) \) and \(\mathcal{B}(G, \mathcal{K}) \), respectively.

From the first equation in (1.2) we have

\[
A_1X_1 = X_2B_1 + C_1,
\]

so, by Lemma 2.1 we get

\[
X_1 = A_1^\dagger(X_2B_1 + C_1) + L_{A_1}R,
\]

where \(R \) is an arbitrary element of \(\mathcal{B}(F, \mathcal{H}) \).

From the second equation in (1.2) we have

\[
X_3B_2 = A_2X_2 - C_2,
\]

so, by Lemma 2.1 we get

\[
X_3 = (A_2X_2 - C_2)B_2^\dagger + YR_{B_2}
\]

\[
= A_2 (-R_{A_1}C_1 + S^\dagger(A_2R_{A_1}C_1 + W)) B_1^\dagger(I - T^\dagger)B_2^\dagger
\]

\[
+ A_2 ((I - S^\dagger A_2)R_{A_1}V + S^\dagger C_2L_{B_2}) T^\dagger B_2^\dagger
\]

\[
+ A_2ZB_2^\dagger - A_2(R_{A_1} + S^\dagger S)Z(B_1B_1^\dagger + TT^\dagger)B_2^\dagger - C_2B_2^\dagger + YR_{B_2},
\]

where \(Y \) is an arbitrary element of \(\mathcal{B}(N, \mathcal{M}) \).

REFERENCES

1. A. Ben-Israel, T. N. E. Greville, *Generalized Inverse: Theory and Applications*, 2nd Edition, Springer, New York, 2003.
2. A. Dajic, *Common solutions of linear equations in ring, with applications*, Electron. J. Linear Algebra, 30 (2015), 66–79.
3. S.G. Lee, Q.P. Vu, *Simultaneous solutions of matrix equations and simultaneous equivalence of matrices*, Linear Algebra Appl., 437 (2012), 2325–2339.
4. Y. H. Liu, *Ranks of solutions of the linear matrix equation AX + YB = C*. Comput. Math. Appl., 52 (2006), 861–872.
5. Q.W. Wang, Z.H. He, *Solvability conditions and general solution for the mixed Sylvester equations*, Automatica, 49 (2013), 2713–2719.
6. Z.H. He, Q.W. Wang, *A pair of mixed generalized Sylvester matrix equations*, Journal of Shanghai University (Natural Science), 20 (2014), 138–156.
7. Z.-H. He, Q.-W. Wang, Y. Zhang, *A system of quaternary coupled Sylvester-type real quaternion matrix equations*, Automatica, 87 (2018), 25–31.