Abstract

Background: A number of studies have shown that peptidases and in particular cysteine peptidases constitute major pathogenicity factors in *Entamoeba histolytica*. Recent studies have suggested that a considerable number of genes coding for proteolytic enzymes are present within the *E. histolytica* genome and questions remain about the mode of expression of the various molecules.

Results: By homology search within the recently published amoeba genome, we identified a total of 86 *E. histolytica* genes coding for putative peptidases, including 46 recently described peptidase genes. In total these comprise (i) 50 cysteine peptidases of different families but most of which belong to the C1 papain superfamily, (ii) 22 different metallo peptidases from at least 11 different families, (iii) 10 serine peptidases belonging to 3 different families, and (iv) 4 aspartic peptidases of only one family. Using an oligonucleotide microarray, peptidase gene expression patterns of 7 different *E. histolytica* isolates as well as of heat stressed cells were analysed. A total of 21 out of 79 amoeba peptidase genes analysed were found to be significantly expressed under standard axenic culture conditions whereas the remaining are not expressed or at very low levels only. In heat-stressed cells the expression of 2 and 3 peptidase genes, respectively, were either decreased or increased. Only minor differences were observed between the various isolates investigated, despite the fact that these isolates were originated from asymptomatic individuals or from patients with various forms of amoebic diseases.

Conclusion: *Entamoeba histolytica* possesses a large number of genes coding for proteolytic enzymes. Under standard culture conditions or upon heat-stress only a relatively small number of these genes is significantly expressed and only very few variations become apparent between various clinical *E. histolytica* isolates, calling into question the importance of these enzymes in *E. histolytica* pathogenicity. Further studies are required to define the precise role of most of the proteolytic enzyme for amoeba cell biology but in particular for *E. histolytica* virulence.
Background
The faecal-oral spread protozoan parasite Entamoeba histolytica is an important human pathogen. Normally, this parasite resides and multiplies in the large bowel and can persist there for months and years causing only an asymptomatic luminal gut infection. However, occasionally E. histolytica penetrates the intestinal mucosa, which leads to ulcerative colitis or it disseminates to other organs, most commonly to the liver, where it induces abscess formation. Cysteine peptidases are considered to play a major role for the pathogenicity of E. histolytica as suggested by a large number of in vitro and in vivo studies [1-9]. Most convincing are results from infections of laboratory animals indicating that E. histolytica trophozoites that have reduced cysteine peptidase activity are greatly impaired in their ability to induce amoebic liver abscesses [8,9]. In addition, overexpression of cysteine peptidases led to an increase in cytopathic activity, measured by in vitro monolayer disruption, as well as to a significant increase in amoebic liver abscess formation in laboratory animals in comparison to matching controls [10]. Furthermore, the discovery that amoeba cysteine peptidases possess inter-leukin-1β converting enzyme activity suggests a novel mechanism of these enzymes in amoebic virulence [11].

Homology searches based on the conservation of active site regions revealed that the E. histolytica genome contains a multitude of at least 50 genes coding for cysteine peptidases (reviewed by Clark et al [12]). Of these, the majority is structurally related to the C1 papain superfamily, whereas a few others are more similar to family C2 (calpain-like cysteine proteinases), C19 (ubiquitinyl hydrolase), C48 (Ulp1 peptidase), C54 (autophagin), and C65 (otubain), respectively [12].

Phylogenetic analyses of the 37 C1-family members revealed that they represent 3 distinct clades (A, B, C), each consisting of 13, 11 and 13 members, respectively [12]. EhCP-A and EhCP-B family members are organised as classical pre-pro enzymes with an overall cathepsin L-like structure. They differ in length of the pro regions as well as of the catalytic domains and have specific sequence motifs within the N-terminal regions of the mature enzymes. In addition, most members of the EhCP-B contain hydrophobic stretches near or at the C-terminus [12,13]. The primary structure prediction of the 13 EhCP-C members indicated a hydrophobic region located 11 to 28 amino acid residues apart from the N-terminus, which is predicted to form a signal anchor. As there is no example of a structural related cysteine peptidase corresponding to the EhCP-C subfamily, any function of this group of molecules remains to be determined.

In addition, two genes encoding for putative cysteine peptidases of the family C2 (calpain-like proteases) were identified within the genome (EhCALP1 and EhCALP2). These molecules are involved in several cellular processes including signal transduction pathways, remodelling of the cytoskeleton and membranes and apoptosis [14].

Another 4 genes were identified coding for enzymes with homology to the peptidase family C54 also termed autopagins (EhAUTO1-4). The process of autophagy has initially been described in other eukaryotic cells as a rescue mechanism that is induced upon starvation or oxidative stress. It is a process by which cells digest parts of their own cytosolic material. This allows the recycling of molecules under conditions of nutritional limitation and remodelling of intracellular structure for cell differentiation [15-17].

Four other genes putatively encoding cysteine peptidases in E. histolytica show homology to members of the C19 and C65 families. These two groups of enzymes are known to be involved in ubiquitin degradation. In addition 3 genes with homology to Ulp1 peptidase (C48 family) were found. Ulp1 is a member of a family of peptidases that control the function of SUMO a small ubiquitin like modifier protein [18].

Only preliminary data are available for other peptidase family members in E. histolytica. So far, a collagenase [19], a high molecular weight proteinase [20], a serine-metallo proteinase [21], a tripeptidyl peptidase I [22] and a serine protease [23] have been reported.

In this study we have analysed the genome of E. histolytica for the presence of additional peptidases belonging to the aspartate, serine and metallo peptidase families. Furthermore, the expression profile of the amoeba genes for the various proteolytic enzymes was assessed in 7 different E. histolytica isolates as well as under heat stress conditions using an oligonucleotide-based microarray and quantitative real time PCR.

Results
Peptidase genes in E. histolytica
Homology search within the E. histolytica genome revealed a total of 86 genes coding for putative peptidases. These comprise 50 cysteine peptidases of various families, all of which belonging to clan CA. In addition, 4 aspartic, 10 serine and 22 metallo peptidase genes were identified (Figure 1, Table 1). Structural details of the various E. histolytica cysteine peptidases have been described recently [12].

Primary structure prediction of the other 3 groups of proteolytic enzymes are as follows:
Table 1: Peptidases of *Entamoeba histolytica*

Protein name	Clan, family, subfamily	Accession No.	Protein length	Active site residues	Remarks	Name, NCBI
Cysteine peptidases						
1 EhCP-A1	CA, C1, A	XP_650156 XM_645064	315	Q₁₁₂C₁₁₈H₂₅₅N₂₇₉	SP: 13, Pro: 80, TM: -	cysteine protease 1
2 EhCP-A2	CA, C1, A	XP_650642 XM_645550	315	Q₁₁₂C₁₁₈H₂₅₅N₂₇₉	SP: 13, Pro: 80, TM: -	cysteine proteinase 2
3 EhCP-A3	CA, C1, A	XP_653254 XM_648162	308	Q₁₁₂C₁₁₈H₂₅₅N₂₇₁	SP: 13, Pro: 79, TM: -	cysteine proteinase acp1
4 EhCP-A4	CA, C1, A	XP_656602 XM_651510	311	Q₁₁₂C₁₁₈H₂₅₅N₂₇₃	SP: 20, Pro: 73, TM: -	cysteine proteinase
5 EhCP-A5	CA, C1, A	XP_650937 XM_645845	318	Q₁₁₂C₁₁₈H₂₅₅N₂₇₃	SP: 20, Pro: 72, TM: -	cysteine proteinase
6 EhCP-A6	CA, C1, A	XP_657364 XM_652272	320	Q₁₁₂C₁₁₈H₂₅₅N₂₈₁	SP: 17, Pro: 79, TM: -	cysteine proteinase
7 EhCP-A7	CA, C1, A	XP_648996 XM_643904	315	Q₁₁₂C₁₁₈H₂₅₅N₂₇₉	SP: 13, Pro: 80, TM: -	cysteine protease 8
8 EhCP-A8	CA, C1, A	XP_657446 XM_652354	317	Q₁₁₂C₁₁₈H₂₅₅N₂₈₀	SP: 15, Pro: 82, TM: -	cysteine protease 9
9 EhCP-A9	CA, C1, A	XP_655675 XM_650583	297	Q₁₁₂C₁₁₈H₂₅₅N₂₈₀	SP: 17, Pro: 90, TM: -	cysteine protease 10
10 EhCP-A10	CA, C1, A	XP_651147 XM_646598	402	Q₁₁₂C₁₁₈H₂₅₅N₂₈₃	SP: 18, Pro: 148, TM: -	cysteine protease 17
11 EhCP-A11	CA, C1, A	XP_651690 XM_646598	324	Q₁₁₂C₁₁₈H₂₅₅N₂₈₇	SP: 17, Pro: 79, TM: -	cysteine protease 19
12 EhCP-A12	CA, C1, A	XP_653823 XM_648731	317	Q₁₁₂C₁₁₈H₂₅₅N₂₈₇	SP: 14, Pro: 83, TM: -	cysteine proteinase
13 EhCP-A13	CA, C1, A	not annotated	250 (IS)	Q₁₁₂C₁₃₀	SP: 18, Pro: 108	cysteine protease 7
14 EhCP-B1	CA, C1, A	XP_651581 XM_646489	426	Q₁₁₂C₁₃₀H₃₀₈N₃₂₈	SP: 15, Pro: 106, hydroph. C-term.	cysteine protease 11
15 EhCP-B2	CA, C1, A	AA003568	431	Q₁₁₂C₁₃₀H₃₀₈N₃₂₈	SP: 15, Pro: 106, GPI	cysteine protease 12-related
16 EhCP-B3	CA, C1, A	XP_656747 XM_651655	474	Q₁₁₂C₁₃₀H₃₀₈N₃₂₄	SP: 16, Pro: 107, TM: 444–466	cysteine protease 13
17 EhCP-B4	CA, C1, A	XP_648501 XM_643409	379	Q₁₁₂C₁₃₀H₃₀₂N₃₂₂	SP: 16, Pro: 105, TM: 355–377 or GPI	cysteine protease 14-related
18 EhCP-B5	CA, C1, A	XP_652671 XM_647579	434	Q₁₁₂C₁₃₀H₃₁₁N₃₂₆	SP: 12, Pro: 108, GPI	cysteine protease 15
19 EhCP-B6	CA, C1, A	XP_652465 XM_647373	300	Q₁₁₂C₁₃₀H₃₂₂N₃₂₂	SP: 14, Pro: 55, hydroph. C-term.	cysteine protease 16
20 EhCP-B7	CA, C1, A	XP_650400 XM_645308	650	Q₁₁₂C₁₃₀H₃₂₂N₃₃₃	SP: 18, Pro: 144, hydroph. C-term.	cysteine protease 17
21 EhCP-B8	CA, C1, A	XP_651049 XM_645957	473	Q₁₁₂C₁₃₀H₃₂₂N₃₂₀	SP: 15, Pro: 105, GPI	cysteine protease 18
22 EhCP-B9	CA, C1, A	XP_652993 XM_647901	446	Q₁₁₂C₁₃₀H₃₂₂N₃₄₀	SP: 19, Pro: 112, hydroph. C-term	cysteine protease
23 EhCP-B10	CA, C1, A	XP_648306 XM_643214	372 (IS)	Q₁₁₂C₁₃₀H₃₂₄N₂₆₄	hydroph. C-term.	cysteine protease
Table 1: Peptidases of Entamoeba histolytica (Continued)

24	EhCP-B1	CA, C1, A	XP	648013	XM	641921	133 (IS)	cysteine protease 11-related			
25	EhCP-C1	CA, C1, A	XP	654453	XM	649361	586	Q_{10}C_{24}H_{36}N_{45}	SA: 12–34		
26	EhCP-C2	CA, C1, A	XP	656632	XM	651540	567	Q_{20}C_{20}H_{30}N_{36}	SA: 27–49		
27	EhCP-C3	CA, C1, A	XP	655138	XM	650036	572	Q_{4}C_{10}H_{22}N_{37}	SA: 17–39		
28	EhCP-C4	CA, C1, A	XP	655800	XM	650708	502	Q_{2}C_{20}H_{30}N_{21}	SP: 15		
29	EhCP-C5	CA, C1, A	XP	654800	XM	649708	557	Q_{20}C_{20}H_{30}N_{37}	SA: 20–42		
30	EhCP-C6	CA, C1, A	XP	651553	XM	646461	557	Q_{20}C_{20}H_{30}N_{37}	SA: 14–36		
31	EhCP-C7	CA, C1, A	XP	657273	XM	652181	595	Q_{20}C_{20}H_{30}N_{37}	SA: 19–41		
32	EhCP-C8	CA, C1, A	XP	655479	XM	652181	627	Q_{8}C_{6}H_{9}N_{36}	SA: 29–51		
33	EhCP-C9	CA, C1, A	XP	655011	XM	649919	518	not identified	SA: 12–34		
34	EhCP-C10	CA, C1, A	XP	654829	XM	649737	530	Q_{8}C_{6}H_{9}N_{36}	SA: 15–37		
35	EhCP-C11	CA, C1, A	XP	648083	XM	642991	526	not identified	SA: 20–42		
36	EhCP-C12	CA, C1, A	XP	650829	XM	645737	473	not identified	SA: 26–48, TM: 449–471		
37	EhCP-C13	CA, C1, A	XP	656556	XM	651464	564	Q_{10}C_{20}H_{30}N_{30}	SA: 21–43		
38	EhCALP1	CA, C2	XP	649922	XM	644830	591	not identified	SP: -, TM: -		
39	EhCALP2	CA, C2	XP	657312	XM	652220	473	Q_{8}C_{6}H_{9}N_{36}	SP: -, TM: -		
40	EhUBHY	CA, C19	XP	657356	XM	652264	444	not identified	SP: -, TM: -		
41	EhUBP	CA, C19	XP	654028	XM	648936	352	N_{4}C_{6}H_{9}D_{34}	SP: -, TM: -		
42	EhUCH	CA, C19	XP	655880	XM	650788	386	N_{20}C_{10}H_{30}D_{26}	SP: -, TM: -		
43	EhUlp1-1	CA, C48	XP	650529	XM	645437	197	H_{48}D_{48}D_{48}C_{48}	SP: -, TM: -		
44	EhUlp1-2	CA, C48	XP	651052	XM	645960	538	H_{39}D_{48}C_{48}D_{48}	SP: -, TM: -		
45	EhUlp1-3	CA, C48	XP	657158	XM	652066	285	H_{17}D_{17}C_{17}C_{17}	SP: -, TM: -		
46	EhAUTO1	CA, C54	XP	651386	XM	646294	325	Y_{8}C_{19}D_{23}H_{33}	SP: -, TM: -		
47	EhAUTO2	CA, C54	XP	653798	XM	648706	364	Y_{9}C_{6}D_{28}H_{30}	SP: -, TM: -		
48	EhAUTO3	CA, C54	XP	652043	XM	646951	364	Y_{9}C_{6}D_{28}D_{28}	SP: -, TM: -		
49	EhAUTO4	CA, C54	XP	656724	XM	651632	348	Y_{9}C_{6}D_{28}D_{28}	SP: -, TM: -		
50	EhOTU	CA, C65	XP	654013	XM	648921	259	D_{105}C_{105}H_{212}	SP: -, TM: -		

Aspartic peptidase

51	EhAsP22-1	AD, A22, A	XP	654079	XM	648987	340	D_{24}D_{223}	SP:24 or TM: 7–26 + 7 × TM		
52	EhAsP22-2	AD, A22, A	XP	652820	XM	647728	316	D_{15}D_{209}	SP: 19 or TM: 2–19 + 8 × TM		
53	EhAsP22-3	AD, A22, A	XP	657563	XM	652471	320	D_{15}D_{205}	SA:7–29 + 8 xTM		
54	EhAsP22-4	AD, A22, A	XP	653696	XM	648604	396	D_{34}D_{218}	SP: -, 7 × TM		

Serine peptidase

55	EhSP9-1	SC, S9, C	XP	655265	XM	650173	653	S_{14}D_{0}H_{27}	SP: 15, TM: -		
56	EhSP9-2	SC, S9, C	XP	655222	XM	650130	665	S_{14}D_{0}H_{27}	SP: 15, TM: -		

Calpain-like cysteine protease

Calpain family cysteine protease

Calpain family cysteine protease

Ubiquitin-specific protease

Ubiquitin carboxyl-terminal hydrolase

Ulp1 protease

Ulp1 protease

Ulp1 protease

Peptidase

Peptidase

Peptidase

Hypothetical protein

OTU-like cysteine protease

Aspartic protease

Signal peptide peptidase

Signal peptide peptidase

Presenilin 1-related peptidase

Dipeptidyl-peptidase

Dipeptidyl-peptidase
No.	Protein ID	Source	BLAST Accession	Gene Accession	MOLs	Signal Peptidase	Transmembrane Peptidase	Function
57	EhSP9-3	SC, S9, C	XP_656380 XM_651288	656	S21D359H422	SP: -, TM: -	prolyl oligopeptidase	
58	EhSP9-4	SC, S9, C	XP_649111 XM_644019	669	not identified	SP: 16, TM: -	dipeptidyl-peptidase	
59	EhSP9-5	SC, S9	XP_655676 XM_650584	102 (IS)	SP: -, TM: -	prolyl oligopeptidase family		
60	EhSP26-1	SF, S26, B	XP_653142 XM_648050	189	S36H106	SP: -, TM: 34–56, 163–185	signal peptidase (signalase)	
61	EhSP26-2	SF, S26	XP_651791 XM_646699	121	not identified	SP: -, TM: -	microsomal signal peptidase	
62	EhSP28-1	SC, S28	XP_656762 XM_651670	457	S165D364H421	SP: 15, TM: -	serine peptidase	
63	EhSP28-2	SC, S28	XP_648991 XM_643899	480	S165D418H444	SP: 15, TM: -	serine peptidase	
64	EhSP28-3	SC, S28	XP_652089 XM_646997	466	S165D404H431	SP: -, TM: -	serine peptidase	

Metallo peptidases

No.	Protein ID	Source	BLAST Accession	Gene Accession	MOLs	Signal Peptidase	Transmembrane Peptidase	Function
65	EhMP1-1	MA, M1	XP_652558 XM_647466	827	H255E268H292E318	SP: -, TM: -	aminopeptidase	
66	EhMP3-1	MA, M3	XP_649877 XM_644785	675	H62E364H425E495	SP: -, TM: -	oligopeptidase A	
67	EhMP3-2	MA, M3	XP_649600 XM_644508	710	H62E495H502E537	SP: -, TM: -	oligopeptidase A	
68	EhMP8-1	MA, M8	XP_655394 XM_650302	643	H206E327H370H481	SP: 18, TM: 605–627	leishmaniolysin-related peptidase	
69	EhMP8-2	MA, M8	XP_652632 XM_647540	662	H206E327H370H481	SP: 98–120	leishmaniolysin-related peptidase	
70	EhMP48-1	MA, M48, A	XP_648770 XM_643678	416	H255E268H292E318	SA: 4–21 + 6 × TM	CAAX prenyl protease	
71	EhMP16-1	ME, M16, C	XP_654849 XM_649757	970	H359E372H413E458	SP: -, TM: -	zinc-dependent peptidase, euptirylisin	
72	EhMP24-1	MG, M24, A	XP_651539 XM_646447	409	H165D197H242E294	SP: -, TM: -	methionine aminopeptidase	
73	EhMP24-2	MG, M24, B	XP_657085 XM_651993	471	H434D370H359H560E441	SP: -, TM: -	Xaa-Pro dipeptidase	
74	EhMP24-3	MG, M24, B	XP_654211 XM_649119	563	H434D370H359H560E441	SP: -, TM: -	aminopeptidase	
75	EhMP24-4	MG, M24, B	XP_650646 XM_645554	559	H434D370H359H560E441	SP: -, TM: -	aminopeptidase	
76	EhMP24-5	MG, M24, B	XP_649980 XM_644888	589	H434D370H359H560E441	SP: -, TM: -	aminopeptidase	
77	EhMP24-6	MG, M24, B	XP_653331 XM_648239	371	H434D370H359H560E441	SP: -, TM: -	aminopeptidase	
78	EhMP18-1	MH, M18	XP_656618 XM_651526	435	H39D232E259S259D317H402	SP: -, TM: -	aminopeptidase	
79	EhMP18-2	MH, M18	XP_650466 XM_645374	431	H39D232E259S259D317H402	SP: -, TM: -	aspartyl aminopeptidase	
80	EhMP20-1	MH, M20, B	XP_656428 XM_651336	379	H75D133E183D183H153	SP: -, TM: -	peptidase T	
81	EhMP20-2	MH, M20, B	XP_650152 XM_645060	401	H75D133E183D183H153	SP: -, TM: -	peptidase T	
82	EhMP20-3	MH, M20, C	XP_656545 XM_651453	516	H75D133E183D183H153	SP: -, TM: -	aminocacyl-histidine dipeptidase	
83	EhMP20-4	MH, M20, C	XP_655616 XM_650524	505	H75D133E183D183H153	SP: -, TM: -	aminocacyl-histidine dipeptidase	
84	EhMP22-1	MK, M22	XP_652292 XM_647200	335	unknown	SP: -, TM: -	glycoprotein endopeptidase	
85	EhMP49-1	M, M49	XP_654273 XM_649181	645	H413E343E417	SP: -, TM: -	dipeptidyl-peptidase III	
86	EhU48-1	U, U48	XP_656466 XM_651374	216	H251E273H278E353	SA: 4–26 + 6 × TM	CAAX prenyl protease	
Aspartic peptidases
The 4 aspartic peptidases (EhAsP22-1 to EhAsP22-4) share 30 to 40% sequence identity and are homologous to intramembrane-cleaving peptidases (clan AD, family A22). All of them have the specific active site residues TyrAsp and GlyLeuGlyAsp and contain 7 or 8 transmembrane domains but only EhAsP22-1 and EhAsP22-2 have recognizable signal peptides, whereas EhAsP22-3 contains a predicted signal anchor motif. EhAsP22-1, -2 and -3 have significant homology to signal peptide peptidases of various organisms including *Trypanosoma cruzi* and *Arabidopsis thaliana* and in addition, EhAsP22-1 and EhAsP22-3 contain the signal peptide peptidase-specific motif GlnProAlaLeuLeuTyr [24,25]. The primary structure of EhAsp22-4 revealed highest identity (35–40%) to putative presenilins of various organisms including *Dictyostelium discoideum*, *Arabidopsis thaliana* and *Homo sapiens*, but a signal peptide or signal anchor is absent.

Serine peptidases
Of the 10 *E. histolytica* genes coding for putative serine peptidases, 5 are predicted to belong to clan SC, family S9 (Figure 1, Table 1), with the active site residues Ser, Asp, His. According to the amino acid residues adjacent to the active site Ser (GGXYGG), EhSP9-1, -2, and -3 can be grouped into subfamily C. The sequences of EhSP9-1 and EhSP9-2 are identical except for a 12 amino acid insertion present in EhSP9-2. In contrast, EhSP9-3, -4 or -5 share only 20% sequence identity with EhSP9-1 or EhSP9-2. The active site residues of EhSP9-4 are not conserved and for EhSP9-5 only a partial sequence of 102 amino acid residues is available. Thus, a reliable assignment of these two
enzymes to a specific S9 subfamily is not possible. Signal peptides were identified only for EhSP9-1, EhSP9-3 and EhSP9-4, respectively.

Another 3 enzymes were classified into clan SC but represent most likely members of family S28 of serine peptidases (EhSP28-1, -2, -3), which are also known as lysosomal Pro-Xaa carboxypeptidases. All 3 molecules have a predicted signal peptide and are of similar size comprising between 457 and 480 amino acid residues. EhSP28-1 (EhSp1) and EhSP28-2 (EhSp2) have been previously characterized [23]. Both are highly similar as they share 89% sequence identity, but only 35% to EhSP28-3.

Two other serine peptidases (EhSP26-1 and EhSP26-2) have homology to members of the signal peptidase family S26B (clan SF) containing the catalytic dyad Ser and His. EhSP26-1 has a calculated molecular mass of approximately 20 kDa and contains 2 hydrophobic regions located near the N- and C-terminus, respectively. Sequence similarity to other members of this family is approximately 45%. In contrast, EhSP26-2 shares only 20% sequence identity with members of the S26 family. Moreover, it does not contain predicted transmembrane regions and the active site is not conserved.

Metallo peptidases

A considerable number of 22 *E. histolytica* genes are predicted to encode putative metallo peptidases. These are relatively diverse and can be attributed to 7 different clans and 11 different families (Figure 1, Table 1). Six of the enzymes group into clan MA, with the characteristic zinc binding-motif consisting of two histidine residues encompassing the sequence HEXXH. One member is assigned to family M1 (EhMP1-1) and two others to family M3 (EhMP3-1, EhMP3-2). The latter are known as Glu-zincins with the third Zn-binding site being a glutamate residue.

Another two clan MA members (EhMP8-1, EhMP8-2) are homologous to metzincins, which are characterized by a C-terminal His residue being a third zinc-binding site. The two enzymes share 34% sequence identity and both contain a predicted C-terminal transmembrane region but only EhMP8-1 has a signal sequence.

A further clan MA member belongs to family M48 (EhMP48-1) and contains a predicted signal anchor and 6 additional transmembrane domains. The structure of EhMP48-1 is homologous to ste24, an endopeptidase from yeast. Like the yeast enzyme, the amoeba molecule contains the conserved HEXXH zinc-binding motif, located between the fourth and the fifth transmembrane domain.

Another putative metallo peptidase was assigned to clan ME, family M16C containing the characteristic zinc-binding motif HIXXH. Members of this family are falcilysin from *Plasmodium falciparum*, eupitrilysin from *Homo sapiens* and CYM1 peptidase from *Saccharomyces cerevisiae*.

A group of 6 enzymes (EhMP24-1 to EhMP24-6) was predicted to constitute metallo peptidases of clan MG, family 24, which usually represent cytosolic exopeptidases that require co-catalytic ions such as cobalt or manganese. Another 6 peptidases were identified, with homology to metallo peptidases of clan MH. Of these, 2 constitute most likely aspartyl aminopeptidases belonging to family M18 (EhMP18-1, EhMP18-2). They share 40% identity and approximately 35% with members of this family from other organisms. The other 4 amoeba enzymes of clan MH were attributed to family 20 (EhMP20-1 to EhMP20-4). In general, enzymes of this family hydrolyse the late products of protein degradation to complete the conversion of proteins into free amino acids.

The deduced amino acid sequence of a further amoeba gene revealed homology to clan MK, family 22 of metallo peptidases. The only enzyme belonging to this family known so far is the O-sialoglycoprotein endopeptidase from *Pasteurella haemolytica*. At present, the nature of the active site resides is unknown [26]. Like the amoeba homologue, the bacterial peptidase does not possess a signal peptide.

In addition, one *E. histolytica* enzyme was identified belonging to family M49, clan M. The mammalian homologues are cytosolic dipeptidyl peptidases, which sequentially release N-terminal dipeptides [27]. Moreover, an enzyme designated EhU48-1 were annotated, which is similar to EhMP48-1. Like EhMP48-1, it contains a signal anchor sequence and six transmembrane domains. Nevertheless, homology search grouped this peptidase into the U48 family. However, the specificities of the two families are overlapping but not identical [28,29].

Peptidase gene expression of various E. histolytica isolate under standard axenic culture conditions

To allow detailed expression analyses of the various *E. histolytica* peptidase genes, a small microarray was designed. This array contains 86 specific oligonucleotides representing 4 different *E. histolytica* houkeeping genes, 3 peptidase-inhibitor genes as well as 79 of the 86 identified peptidase genes. Genes coding for the serine peptidase EhSP9-4 or for the cysteine peptidases EhCP-A7, EhUBP, EhUCH, EhUlp-1, EhUlp-2 and EhUlp-3, respectively, were not included because it was either not possible to design a specific oligonucleotide or they were identified after the array was already spotted. In a first attempt, labelled cDNA from the widely used laboratory strain
HM-1:IMSS was hybridized to the array (Figure 2). The results from multiple experiments using RNA preparations from cells grown under standard axenic culture conditions were highly reproducible and indicated that only 3 peptidase genes were expressed at high levels (mean spot intensity >8000), all of them encoding cysteine proteinases (EhCP-A1, EhCP-A2, EhCP-A5). A set of 17 peptidase genes revealed intermediate expression levels (mean spot intensity 800 to 3000). This group comprised the genes for the cysteine peptidases EhCP-A6, -A10, -A11, -B2, -C4 and EhCALP1, the aspartic peptidase EhAsP22-1, the serine peptidase EhSP9-2 and the metallo peptidases EhMP1-1, 16-1, 18-1, 20-3, 20-4, 24-1, 24-2, 24-6 and 48-1, respectively. All other peptidase genes were expressed at levels below the detection limit of Northern blots (mean spot intensity <700). The reliability of the results obtained by array hybridization was confirmed by qRT-PCR using a set of 22 pairs of primers amplifying cDNAs of the 3 highly expressed genes as well as a representative number of the intermediate or low expressed peptidase genes (Table 2).

In order to determine the extend of inter-strain variation in the expression of peptidase genes, HM-1:IMSS was compared with 6 different E. histolytica isolates all of them cultivated under axenic conditions. These isolates originated from different parts of the world and were obtained from patients with different forms of amoebic disease or in at least one case from an asymptomatic E. histolytica car-

Gene accession	Gene name	Microarray data	Real time PCR data		
		Signal intensity (pixel)	relative expression	relative expression	
High expression		actin	33512	1	1
	XM_645064	ehcp-a1	17691	0.528	0.853
	XM_645530	ehcp-a2	32474	0.969	0.853
	XM_645845	ehcp-a5	8628	0.257	0.368
Intermediate		ehasp22-1	2156	0.064	0.020
	XM_652272	ehcp-a6	802	0.024	0.026
	XM_650130	ehsp 9-2	974	0.029	0.035
	XM_651453	ehmp20-3	2838	0.085	0.360
	XM_650504				
	XM_647071				
	XM_651374	ehmp48-1	895	0.027	0.020
Low		ehcp-a3	549	0.016	0.000
	XM_651510	ehcp-a4	414	0.012	0.013
	XM_652354	ehcp-a5	519	0.015	0.010
	XM_647728	ehsp 22-2	458	0.014	0.000
	XM_652471	ehsp 22-3	450	0.013	0.010
	XM_648604	ehsp 22-4	516	0.015	0.000
	XM_651670	ehsp28-1	380	0.011	0.010
	XM_646997	ehsp 28-4	525	0.016	0.020
	XM_650302	ehmp8-1	542	0.016	0.015
	XM_647540	ehmp8-2	686	0.020	0.010
	XM_649181	ehmp49-1	406	0.012	0.023
	XM_647901	ehcp-b9	144	0.004	0.000
	XM_651336	ehmp20-1	282	0.008	0.000
	XM_643899	ehsp 28-2	230	0.007	0.009

Gene expression profile of selected peptidases in E. histolytica isolate HM-1:IMSS. For microarray analysis nine independent experiments were performed. The signal intensity is indicated in pixel. For real time PCR analysis all primer sets were run in duplicates. Two biological replicates were investigated. The expression of actin as normalizer was set to 1. The relative expression of the peptidases were related to actin.
rier. Pairwise comparison of the various isolates with HM-1:IMSS revealed only minor differences in the expression of the various peptidase genes (Table 3). Three isolates including the one from an asymptomatic carrier showed no differences and two isolates differed only in the expression of one gene. In isolate HK-9, expression of the gene for cysteine peptidase EhCP-A5 was decreased by 2.3 fold and in isolate DRP expression of the gene for the metallo peptidase EhM48-1 was increased by 5.2 fold. The only exception was isolate EGG, which revealed differences in expression for 4 peptidase genes. This isolate was obtained from a patient who simultaneously developed amoebic colitis and liver abscess. Compared to HM-1:IMSS isolate EEG showed decreased expression of the genes for the cysteine peptidase EhCP-A1 as well as for the metallo peptidase EhMP20-3 by about 2 fold, and an increase in the expression of the genes for serine peptidase EhSP9-2 and for the metallo peptidase EhMP20-1 by about 2.8 and 8.6 fold, respectively.

Peptidase gene expression in response to heat stress

Previous studies have suggested that the level of expression of a number of cysteine peptidase genes is sensitive to heat shock [30,31]. To further characterize the influence of heat stress on the expression pattern of the various *E. histolytica* peptidase genes, amoeba were cultured at 42°C for 4 hours and compared with amoebae cultivated under standard culture conditions at 36°C. The results indicated that only 5 of the 79 peptidase genes investigated were differentially expressed upon heat shock. The amount of RNA for the highly expressed genes *ehcp-a1* and *ehcp-a2* was found to be decreased by about 6 and 4 fold, respectively, whereas the expression of *ehcp-a5*, *ehcp-a6* or *ehmp8-2* was increased by approximately 2 fold (Table 4). Similar results were obtained by qRT-PCR. However, there were no significant differences in expression for the remaining 74 peptidase genes.

Discussion

In an attempt to annotate all *E. histolytica* peptidase genes, a total of 86 putative or known proteolytic enzymes were identified within the *E. histolytica* genome. Such a great number of peptidase genes is not unusual for protozoans. So far, 110 annotated peptidases were found for *Plasmodium falciparum* and 70 for *Giardia lamblia*. Entamoeba, *Plasmodium* and *Giardia* contain aspartic peptidases of the A22 family. In addition, *P. falciparum* contains genes belonging to the A1 family known as plasmepsins. Of the various cysteine peptidases, the autophagin-like as well as the OTU-like enzymes are only present in *E. histolytica*. On the other hand, several cysteine peptidase families found in *P. falciparum*, such as C2, C12, C13, C14, C44 and C56...
have no counterpart in *Entamoeba*. Regarding the serine and metallo peptidases no striking differences between the families of *Entamoeba, Plasmodium* and *Giardia* became obvious, except 10 additional peptidase families, that are peculiar for *P. falciparum*. The leishmanolysin-like peptidases of the M8 family are specific for *E. histolytica* and absent in *P. falciparum* and *G. lamblia*, respectively.

Since only a fraction of the 86 putative amoeba peptidases have been biochemically and functionally characterized so far, the function and localization of most of the molecules can only be predicted from the deduced primary structure.

All four aspartic peptidases identified within the *Entamoeba histolytica* genome may belong to intramembrane-cleaving proteases, which usually perform downstream functions such as cell signalling, regulation and intercellular communications [32]. So far, three families of peptidases are known to promote intramembrane cleavage. These are metallo peptidases represented by the human site-2 protease [33], serine peptidases represented by *Drosophila melanogaster* rhomboid-1 [34], and aspartic proteases including human presenilins [35], as well as signal peptide peptidases [24]. Within the *Entamoeba* genome, homologous to only the presenilins and signal peptide peptidases have been found.

One of the amoebic aspartic peptidases (EhAsp22-4) shows highest identity to presenilins. So far, the physiological function of presenilins is not fully understood. Presenilin is one of the subunits that form a multiprotein complex called gamma-secretase [36]. Homologues are found in various organisms of different origin such as *Caenorhabditis elegans, Drosophila melanogaster*, and even plants [37,38]. It has been shown that mutations within this protein are associated with Alzheimer’s disease [36]. However, homologues to other subunits of this complex, such as nicastrin have not been identified within the *Entamoeba* genome. EhAsp22-4 contains seven putative transmembrane domains. Interestingly, the active site residues were found within one predicted outside loop of the protein. This is different to the other known presenilins [39].

The 11 identified serine peptidases can be grouped into 3 families. The two amoeba serine peptidases characterized so far, belong to family S28, previously designated EhSP1 and EhSP2 and now renamed EhSP28-1 and EhSP28-2 [23]. Biochemical analysis revealed that these peptidases prefer the substrate Suc-AAF-AMC. This enzymatic feature...
is identical to that of the *E. histolytica* tripeptidyl serine peptidase purified by Flockenhaus and colleagues [22]. Unfortunately, no sequence of the purified tripeptidyl peptidase is available. In addition to these two described serine peptidases, one more serine peptidase gene belonging to family S28 has been identified. Microarray analysis indicated that EhSP28-1, EhSP28-2 and EhSP28-3 are not expressed or expressed at a very low level, which is in contrast to the results of Barrios-Ceballos and colleagues [23]. They postulated that the identified peptidase activity corresponds to EhSP28-2 and that this protein is associated with the trophozoite membrane. Using bioinformatic tools, no hydrophobic stretches or transmembrane domains could be deduced within EhSP28-2. Due to these controversial results, the amoeba serine peptidases require further investigation.

The function of the two S26 family serine peptidases identified within *E. histolytica* is unknown. Peptidases of this family are usually membrane proteins and their function is the processing of newly synthesised secretory proteins. They remove the hydrophobic, N-terminal signal peptides as the proteins are translocated across membranes [40].

Four genes belong to the S9 family (homologous to dipeptidyl-peptidases). One peptidase (SP9-2) shows the highest expression of all serine peptidases analysed in this study. However, the function of these enzymes in *E. histolytica* remains to be determined.

It is likely that some of the *E. histolytica* serine peptidases might play a role during the encystation process as it was shown for *E. invadens*, the in vitro model organism for end and encystation [41]. Unfortunately, the serine peptidases involved in the *E. invadens* encystations processes have not been identified so far.

A total of 22 genes were identified encoding metallo peptidases, which are predicted to belong to 11 different families. The members of two of the identified metallo peptidase families contain transmembrane domains. These are the leishmanolysin-like peptidases and the CAAX prenyl peptidases. EhMP8-1 and EhMP8-2 are homologous to leishmanolysin found in kinetoplastids. Leishmanolysin occurs mainly as a heavily-glycosylated protein that is attached to the outer membrane of *Leishmania* promastigotes by a glycosylphosphatidylinositol anchor. It has been demonstrated that leishmanolysin plays a role in resistance of promastigotes to complement-mediated lysis and in receptor-mediated uptake of the parasite by phagocytic host cells [42]. There are other eukaryotes, including *Caenorhabditis elegans*, *Drosophila melanogaster* and *Homo sapiens* that have homologues of this protein. Nevertheless, highest degree of sequence similarity to the classical leishmanolysin is found for the enzymes of *E. histolytica* and *Dictyostelium discoideum*. However, the proteins of these two organisms have not been characterised so far.

Interestingly, under standard axenic culture conditions only a relatively small number of peptidase genes is significantly expressed. The results are in agreement with a recent study by Ehrenkaufer et al., in which the expression pattern of 38 of the 50 different cysteine peptidase genes were analysed in the standard laboratory *E. histolytica* isolate HM-1:IMSS [43]. However, in contrast to the results presented here, Ehrenkaufer et al., found differences in the expression of a considerable number of peptidase genes when recent clinical isolates were compared with strain HM-1:IMSS. The discrepancy between the two studies is most likely due to differences in the culture media used. In the study presented here, all *E. histolytica* isolates were grown under axenic conditions in a monophasic medium, whereas Ehrenkaufer et al. cultured their recent clinical isolates xenically using a diphasic medium and compared the results with HM-1:IMSS grown under axenic condition in a monophasic medium. As proteolytic enzymes are considered to be involved in nutrition uptake and digestion, differences in the composition of the culture medium and in particular the presence of microorganisms should considerably influence expression of peptidase genes in Entamoeba.

Table 4: Genes differentially expressed in *E. histolytica* HM-1:IMSS isolate under heat shock.

Gene accession	Gene name	Change of signal intensity 36°C → 42°C (pixel)	Fold change	p-value
XM_645845	EhCP-A5	14.000 → 32.000	2.3 × increase	<0.0001
XM_652272	EhCP-A6	1.050 → 2.200	2.1 × increase	<0.0001
XM_647540	EhMP8-2	680 → 1.500	2.2 × increase	<0.0001
XM_645064	EhCP-A1	25.000 → 4.000	6.3 × decrease	<0.0001
XM_645350	EhCP-A2	45.000 → 11.000	4.1 × decrease	<0.0001

Only those genes are listed that show a differential expression pattern during heat shock. The gene accession number, gene name, signal intensity, fold change and p-value are shown. All transcripts are statistically significant, having a p-value < 0.001.
However, questions remain about possible functions of all the different peptidases present in *E. histolytica*. At least some of them may be involved in encystation- or exysta-
tion processes, as described for *E. invadens* or for a cathe-
psin C like peptidase of *G. lamblia*, which is involved in
processing of cyst-wall specific proteins [44]. Aggressive
and invading *Entamoeba* trophozoites should be endowed
with adequate mechanisms that ensure their protection
against host defence strategies. In this study, the tropho-
zoites were exposed to a temporary heat stress, which
partly mimics the situation during tissue invasion. Heat
stressed amoebae revealed downregulation of the genes
for EhCP-A1 and EhCP-A2 and elevated expression of the
genes for EhCP-A5, EhCP-A6 and EhMP8-2, respectively,
which is in accordance with a recent report by Weber and
colleagues [31]. As EhCP-A6 and EhMP8-2 are expressed
at very low levels during in vitro cultivation, these enzymes
are obviously not essential for parasite growth at least
at standard culture conditions. It has been postulated that
the upregulation of the gene for EhCP-A6 during heat
stress is due to its potential role in the degradation of
damaged proteins [31]. Recently, in few other studies, reg-
ulation of peptidase expression in response to various
conditions has been described. In HM-1:IMSS clone L6,
which is deficient in virulence, phagocytosis as well as
cysteine peptidase activity, expression of the genes for
EhCP-A1, EhCP-A2 and EhCP-A5 was significantly
decreased [45]. In contrast, during intestinal colonisation
expression of the genes for EhCP-A1, EhCP-A4 and EhCP-
A6 was found to be increased [46]. This further highlights
the importance of peptidases for *E. histolytica* pathogenic-
ity.

Conclusion

Under standard culture conditions only a relatively small
number of at least 86 identified peptidase genes is
expressed and only very few variations become apparent
between various clinical *E. histolytica* isolates. Neverthe-
less, here and in few other studies, it was shown that the
peptidase expression can be regulated in response to vari-
ous conditions. Therefore, further studies are necessary to
understand the role of all or at least most of the peptidases
in the biochemistry and especially for the virulence of *E.
histolytica*.

Methods

E. histolytica isolates and parasite culture

Seven *E. histolytica* isolates were used in this study. Strain
HM-1:IMSS was isolated in 1967 from a patient with
amoebic dysentery, strain NIH:200 was isolated in 1949
from a patient with colitis, strain HK-9 was isolated from
a patient with amoebic dysentery (year unknown), strain
DRP was isolated in 1985 from a patient with an amoeb-
oma, strain EGG was isolated in 1988 from a patient
with colitis and amoebic liver abscess, strain 452 was iso-
lated in 1983 from an asymptomatic carrier. Origin of
strain 32 is unknown. HM-1:IMSS, NIH:200 and HK-9 are
standard laboratory strains obtained from the American
Type Culture Collection. They were original isolated in
Mexico, India and Korea respectively. All other strains
were isolated in Brasil and kindly provided by Prof. E. F.
Silva, University of Minas Gerais, Belo Horizonte, Brasil.
Different genotypes of the *E. histolytica* strains were con-
firmed by PCR-based genotyping based on variation in
the numbers of short tandem repeats that are linked to *E.
histolytica* tRNAs [47]. Trophozoites of the various isolates
were cultured axenically in TYI-S-33 medium supple-
mented with 10% adult bovine serum [48]. Cells were
harvested by chilling on ice and subsequent centrifuga-
tion at 430 × g at 4 °C for 5 min. The resulting pellet was
washed twice with phosphate-buffered saline (6.7 mM
NaHPO₄, 3.3 mM NaH₂PO₄ 140 mM NaCl, pH7.2). For
heat shock experiments incubation temperature of cul-
tures was shifted from 36°C to 42°C for 4 hours.

Identification of peptidase homologous of *E. histolytica*

Conserved domains of cysteine-, serine-, metallo-, or
aspartic-peptidases were used for homology search [49]
against the *E. histolytica* genome as provided by The Sanger
Centre and The Institute of Genomic Research [50-52].
With the help of MEROPS [53] the identified enzymes
were grouped into the corresponding peptidase clans and
families.

Microarray design

For microarray experiments a 60-base oligonucleotide
array was designed containing probes for 79 of the 86
identified putative peptidase genes. The various oligonu-
cleotides contain similar GC-contents of 35.5% and an
average T_m of 71.6 °C, with a standard deviation of 1.17
(range 66–74 °C). The oligonucleotides were designed
and synthesized by Eurogentec. Each oligonucleotide was
printed in quadruplicate on glass slides (Advalytix Epoxy
AD100) in a concentration of 50 μM of total RNA was used. Two biological
replicates including dye swap experiments were per-
formed. The reverse transcription of RNA into cDNA was
performed according to the Atlas Superscript Fluorescent
Labeling Kit (TaKaRa) followed by indirect labelling.

**RNA isolation, microarray hybridization, sample labelling,
and visualization**

Total amoeba RNA was isolated using TRIZOL reagent
(InVitrogen) according to standard protocols. For micro-
array analysis 5 μg of total RNA was used. Two biological
replicates including dye swap experiments were per-
formed. The reverse transcription of RNA into cDNA was
performed according to the Atlas Superscript Fluorescent
Labeling Kit (TaKaRa) followed by indirect labelling.
The cDNA labelling was performed with the Cy3- and Cy5-monoreactive dyes (Amersham). In a typical oligonucleotide microarray the cDNA was labelled with Cy3, while the experimental second cDNA was labelled with Cy5 (and vice versa for dye swap experiment). Prehybridization and hybridization was performed using standard protocols.

Microarray data analysis

Each array was scanned at 550 nm (Cy3) and at 650 nm (Cy5) at a resolution of 5 μm. Calculation and output of the data was done using ScanArray software, version 3.0 (PerkinElmer). For calculation, the mean signal intensity (pixel) minus local background (pixel) of each spot was used. Flagged spots were eliminated. Two methods for normalizing the data were applied. i) normalization among the totality of genes and ii) normalization among housekeeping genes. For the first normalization method, the signal intensities of each spot of the experiment as well as of each spot of the control were totalised. The sum of the experiment over the sum of the control gives the normalization factor. In order to normalise the control, the signal intensity of each spot of the control was divided by this normalization factor. For housekeeping normalization, the calculation was performed in the same manner as described above but on the basis of the housekeeping gene spot intensities of the control. Spots with a signal intensity (pixel) = 300 were excluded from data analysing. Genes with a ratio of more than 2 and less than 0.5 were considered as differentially expressed.

Quantitative RT-PCR

In order to validate the results obtained by microarray analyses, quantitative RT-PCR (qRT-PCR) was performed by random sampling. Sense and antisense primers were designed to amplify approximately 100 base pairs [see Additional file 2]. These primers were designed independently from the oligonucleotides used on the microarray. Thus, they represent different regions of the same gene. cDNA synthesis was carried out with SuperScriptIII Reverse Transcriptase (Invitrogen). In a final volume of 20 μl, 1 μg of RNase-free DNase-treated total RNA was mixed with 5× First-Strand buffer, 500 μM dNTPs, 500 nM OdT-T71 (5'-GAG AGA GGA TCC AAG TAC TAA TAC GAC TCA CTA TAG GGA GATG). 2 mM DTT, 40 U RNaseOut (Invitrogen) and SuperScriptIII (200 U/μl). Incubation was performed for 1 h at 42°C. Quantitative amplification was performed in a Rotor-Gene (Corbett) using RealMasterMix (Eppendorf) SYBR Green kit. 1 μl of the synthesized cDNA was mixed with 2.5× RealMasterMix/20 × SYBR, 5 pmol/μl of the respective sense-primer and antisense-primer to a final volume of 20 μl. Amplification conditions were as follows: 35 cycles at 95°C for 15 s, 58°C for 20 s and 68°C for 20 s and an adjacent melting step (42°C–95°C). Two biological replicates were analysed in triplicate. Relative quantification was carried out with the use of the delta delta ct method provided by the Rotor-Gene software [54] and *E. histolytica* actin gene RNA as normalizer.

Authors’ contributions

IB and ET conceived the study. IB coordinated the study and performed the data analysis together with MT. IB and ET drafted the manuscript. MT, LB, MAG, MF, and HI carried out the laboratory component. MT helped to draft the manuscript. All authors read and approved the final manuscript.

Additional material

Additional File 1

List of oligonucleotides used for the microarray design. The table shows a list of all oligonucleotides present of the microarray used. Click here for file

http://www.biomedcentral.com/content/supplementary/1471-2164-8-170-S1.doc

Additional File 2

List of oligonucleotides used for RT-PCR. The table shows a list of all oligonucleotides used for RT-PCR. Click here for file

http://www.biomedcentral.com/content/supplementary/1471-2164-8-170-S2.doc

Acknowledgements

This work was supported by the German Science Foundation (DFG) (BR1744/7-1), the German Academic Exchange Service (DAAD) (D/04/40412) and the Evangelische Studienstiftung, Villigst. It includes part of the doctoral thesis of MT.

References

1. Gadasi H, Kessler E: Correlation of virulence and collagenolytic activity in *Entamoeba histolytica*. Infect Immun 1983, 39:528-531.
2. Lushbaugh WB, Hofbauer AF, Pittman FE: *Entamoeba histolytica*: purification of cathepsin B. Exp Parasitol 1985, 59:328-336.
3. Luaces AL, Barrett AJ: Affinity purification and biochemical characterization of histolysin, the major cysteine proteinase of *Entamoeba histolytica*. Biochem J 1988, 250:903-909.
4. Reed SL, Keene WE, McKerrow JH: Thiol proteinase expression and pathogenicity of *Entamoeba histolytica*. Clin Microbiol 1989, 27:2772-2777.
5. Schulte W, Scholze H: Action of the major protease from *Entamoeba histolytica* on proteins of the extracellular matrix. J Protozool 1989, 36:538-543.
6. Keene WE, Hidalgo ME, Orozco E, McKerrow JH: *Entamoeba histolytica*: correlation of the cytopathic effect of virulent trophozoites with secretion of a cysteine proteinase. Exp Parasitol 1990, 71:199-206.
7. Li E, Yang WG, Zhang T, Stanley SL Jr: Interaction of laminin with *Entamoeba histolytica* cysteine proteinases and its effect on amebic pathogenesis. Infect Immun 1995, 63:4150-4153.
8. Stanley SL Jr, Zhang T, Rubin D, Li E: Role of the *Entamoeba histolytica* cysteine proteinase in amebic liver abscess formation in severe combined immunodeficient mice. Infect Immun 1995, 63:1587-1590.
9. Ankri S, Stolarsky T, Bracha R, Padilla-Vaca F, Mirelman D: Antisense inhibition of expression of cysteine proteinases
affects *Entamoeba histolytica*-induced formation of liver abscess in hamsters. *Infect Immun* 1999, 67:421-422.

21. Tilack M, New H, Lotter M, Mirenio D, Tannich E, Bruchhaus I: Increased expression of the major cysteine proteinases by stable episomal transfection underlines the important role of EhCPS for the pathogenicity of *Entamoeba histolytica*. *Mol Biochem Parasitol* 2006, 149:58-64.

22. Zhang Z, Wang L, Seydel KB, Li A, Mirelman D, Stanley SL Jr: *Entamoeba histolytica* cysteine proteinases with inter-leukin-1 beta converting enzyme (ICE) activity cause intestinal inflammation and tissue damage in amoebiosis. *Mol Biochem Parasitol* 2006, 152:54-62.

23. Clark GC, Alsamir UCMB, Hofer M, Saito-Makano Y, Ali V, Marion S, Weber C, Mukherjee C, Bruchhaus I, Tannich E, Leppe M, Schirneicz-Ponten T, Foster PG, Samuelson J, Nozaki T, Hirt RP, Embley TM, Gilchrist MR, Naqvi S, Bhattacharya S, Lohia A, Guillon N, Duchene M, Nozaki T, Hall N: Structure and content of the *Entamoeba histolytica* genome. *Advances in Parasitology* 2007 in press.

24. Bruchhaus I, Loffus BJ, Hall N, Tannich E: The intestinal protozoan parasite *Entamoeba histolytica* contains 20 protozoan cysteine proteinases, of which only a small subset is expressed during in vitro cultivation. *Eukaryot Cell* 2003, 2:501-509.

25. Goll DE, Thompson VF, Li H, Wei H, Cong J: *The calpain pathways*. *Physiol Rev* 2003, 83:781-801.

26. Kirschke T, Ichimura Y, Okada H, Kabeya Y, Mizushima N, Yoshi Mori T, Okada M, Singh U, Nozaki T, Mann BJ, Petri WA Jr: Complementation cloning of S2P, a gene encoding a putative metalloproteinase required for intramembrane cleavage of SREBPs. *Mol Cell Biol* 2001, 107:173-182.

27. Wolfe MS, Xia W, Otsazewski BL, Diehl TS, Kimberly WT, Selkoe DJ: Two transmembrane aspartates in presenilin-1 required for presenilin endoproteolysis and gamma-secretase activity. *Nature* 1999, 398:513-517.

28. Vetrivel KS, Zhang YW, Xu H, Thinakaran G: Pathological and physiological functions of presenilins. *Mol Neurodegener* 2006, 1:2.

29. Smialowska A, Baumeister R: Presenilin function in *Caenorhabditis elegans*. *Neurodegener Dis* 2006, 3:227-232.

30. Mahoney MB, Parks AL, Ruddy DA, Tiong SY, Esselh H, Phan AC, Pham Doan P, Winter CM, Chatterjee R, Humby K, Fisher WY, L’Archeveque L, Mapa FA, Woo W, Ellis MC, Curtis D: Presenilin-based genetic screens in *Drosophila melanogaster* identify novel notch pathway modifiers. *Genetics* 2006, 172:2309-2324.

31. Sako T, Nyborg AC, Iwata N, Diehl TS, Saiko TC, Golde TE, Wolfe MS: Signal peptide peptidase: biochemical properties and modulation by nonsteroidal anti-inflammatory drugs. *Biochemistry* 2006, 45:8549-8556.

32. Carlos JL, Paetzel M, Brubaker G, Karla A, Ashwell CM, Lively MO, Cao G, Bullinger P, Dalbey RE: The role of the membrane-spanning domain of type I signal peptides in substrate cleavage site selection. *J Biol Chem* 2000, 275:38813-38822.

33. Riahi Y, Ankri S: Involvement of serine proteinases during encystation of *Entamoeba invadens*. *Arch Microbiol* 2000, 173:367-375.

34. Weihofen A, Birns K, Lemberg MK, Ashwell CM, Hall N, Metz J: Identification of signal peptide peptidase, a presenilin-type aspartic protease. *Science* 2002, 296:2215-2218.

35. Poonuling EP, Hong M, Nyborg A, Baker M, Jansen K, Golde TE: Identification of a novel family of presenilin homologues. *Hum Mol Genet* 2002, 11:i037-1044.

36. Jiang P, Mellors A: O-Sialylglycoprotein endopeptidase. In Handbook of Proteolytic Enzymes 2nd edition. Edited by: Barrett AJ, Rawlings ND, Woessner JF. Elsevier, London; 2004:977-980.

37. Chen JM, Barrett AJ: Dipetidyl-peptidase III. In Handbook of Proteolytic Enzymes 2nd edition. Edited by: Barrett AJ, Rawlings ND, Woessner JF. Elsevier, London; 2004:809-812.

38. Donle EC, Timmon LE, Donle EC, Weng DH, Poitier CD: Studies with recombinant Saccharomyces cerevisiae CaaX prenyl protease Rce1p. *Biochemistry* 2000, 39:4096-4104.

39. Trueblood CE, Boyartchuk VL, Piccoliou EA, Rozema D, Poitier CD, Rine J: Two CaaX proteases, Mrp1 and Rce1p, have overlapping but distinct substrate specificities. *Mol Cell Bio* 2000, 20:4381-92.

40. MacFarlane RC, Shah PH, Singh U: Transcriptional profiling of *Entamoeba histolytica* trophozoites. *Int J Parasitol* 2005, 35:533-542.

41. Weber C, Guignon G, Bouchier C, Frangeul L, Moreira S, Sismeiro O, Guyeote C, Mirelman D, Coppey JJ, Guillon N: Stress by heat shock induces massive down regulation of genes and allows differential allelic expression of the *Gal/GalNac* lectin in *Entamoeba histolytica*. *Eukaryot Cell* 2006, 5:871-875.

42. Friedmann E, Lemberg MK, Weihofen A, Dev KK, Dengler U, Rovelli G, Martoglio B: Consensus analysis of signal peptide peptidase and homologous human aspartic proteases reveals opposite topology of catalytic domains compared with presenilins. *J Biol Chem* 2004, 279:50790-5078.

43. Rawson RB, Zelenksy NG, Nijhawan D, Ye J, Sakai J, Hasan MT, Chinnery FT, Brown MS: Complementation cloning of S2P, a gene encoding a putative metalloproteinase required for intramembrane cleavage of SREBPs. *Mol Cell* 1997, 1:47-57.

44. Urban S, Lee JR, Freeman M: Drosophila rhomboid-I defines a family of putative intramembrane serine proteases. *Cell* 2001, 107:173-182.

45. Hirota KK, Que X, Melendez-Lopez SG, Debnath A, Myers S, Heidt PK, Fisher WY, L’Archeveque L, Mapa FA, Woot W, Ellis MC, Curtis D: Presenilin-based genetic screens in *Drosophila melanogaster* identify novel notch pathway modifiers. *Genetics* 2006, 172:2309-2324.

46. Sako T, Nyborg AC, Iwata N, Diehl TS, Saiko TC, Golde TE, Wolfe MS: Signal peptide peptidase: biochemical properties and modulation by nonsteroidal anti-inflammatory drugs. *Biochemistry* 2006, 45:8549-8556.

47. Carlos JL, Paetzel M, Brubaker G, Karla A, Ashwell CM, Lively MO, Cao G, Bullinger P, Dalbey RE: The role of the membrane-spanning domain of type I signal peptides in substrate cleavage site selection. *J Biol Chem* 2000, 275:38813-38822.

48. Riahi Y, Ankri S: Involvement of serine proteinases during encystation of *Entamoeba invadens*. *Arch Microbiol* 2000, 173:367-375.

49. Hirata KK, Que X, Melendez-Lopez SG, Debnath A, Myers S, Herrmann DS, Orozco E, Bhattacharya A, McKay JW, Reed SL: A phagocytosis mutant of *Entamoeba histolytica* is less virulent due to deficient protease expression and release. *Exparasitol* 2006, 115:192-199.

50. Gilchrist CA, Houpt E, Trapaidez N, Fei Z, Crasta O, Asgharpour A, Evans C, Martino-Catt S, Baba DJ, Stroup S, Hamano S, Ehrenkauer G, Oikawa M, Singh U, Nozaki T, Mann BJ, Petri WA Jr: Impact of intestinal colonization and invasion on the *Entamoeba histolytica* transcriptome. *Mol Biochem Parasitol* 2006, 147:163-176.

51. Ali IK, Zaki M, Clark CG: Use of PCR amplification of RNA gene-linked short tandem repeats for genotyping *Entamoeba histolytica*. *J Clin Microbiol* 2005, 43:5843-5847.

52. John MS, Harlow DR, Cunnick CC: A new medium for axenic cultivation of *Entamoeba histolytica* and other *Entamoeba* species. *Trans R Soc Trop Med Hyg* 1978, 72:341-342.

53. Blast [http://www.ncbi.nlm.nih.gov/BLAST/]

54. Welcome Trust Sanger Institute, Entamoeba Whole Genome Shotgun [http://www.sanger.ac.uk/Projects/E_histolytica/]

55. *Entamoeba histolytica* GeneDB [http://www.genedb.org/entamoeba/histolytica/]

56. *Entamoeba histolytica* (page number not for citation purposes)
52. TIGR Database, *Entamoeba histolytica* Genome Project [http://www.tigr.org/tdb/e2k1/eha1/]

53. MEROPS, the peptide database [http://merops.sanger.ac.uk/]

54. Livak KJ, Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)). *Methods* 2001, 25:402-408.