Oxygen vacancy formation and electronic reconstruction in strained LaNiO$_3$ and LaNiO$_3$/LaAlO$_3$ superlattices

Benjamin Geisler,* Simon Follmann, and Rossitza Pentcheva†
Department of Physics and Center for Nanointegration (CENIDE), Universität Duisburg-Essen, Lotharstr. 1, 47057 Duisburg, Germany
(Dated: June 23, 2022)

By using density functional theory calculations including a Coulomb repulsion term, we explore the formation of oxygen vacancies and their impact on the electronic and magnetic structure in strained bulk LaNiO$_3$ and (LaNiO$_3$)$_n$/(LaAlO$_3$)$_n$(001) superlattices. For bulk LaNiO$_3$, we find that epitaxial strain induces a substantial anisotropy in the oxygen vacancy formation energy. In particular, tensile strain promotes the selective reduction of apical oxygen, which may explain why the recently observed superconductivity of infinite-layer nickelates is limited to strained films. For (LaNiO$_3$)$_1$/(LaAlO$_3$)$_1$(001) superlattices, the simulations reveal that the NiO$_2$ layer is most prone to vacancy formation, whereas the AlO$_2$ layer exhibits generally the highest formation energies. The reduction is consistently endothermic, and a largely repulsive vacancy-vacancy interaction is identified as a function of the vacancy concentration. The released electrons are accommodated exclusively in the NiO$_2$ layer, reducing the vacancy formation energy in the AlO$_2$ layer by ~70% with respect to bulk LaAlO$_3$. By varying the vacancy concentration from 0% to 8.3% in the NiO$_2$ layer at tensile strain, we observe an unexpected transition from a localized site-disproportionated (0.5%) to a delocalized (2.1%) charge accommodation, a re-entrant site disproportionation leading to a metal-to-insulator transition despite a half-filled majority-spin Ni e_g manifold (4.2%), and finally a magnetic phase transition (8.3%). While a band gap of up to 0.5 eV opens at 4.2% for compressive strain, it is smaller for tensile strain or the system is metallic, which is in sharp contrast to the defect-free superlattice. The strong interplay of electronic reconstructions and structural modifications induced by oxygen vacancies in this system highlights the key role of an explicit supercell treatment beyond rigid-bands methods, and exemplifies the complex response to defects in artificial transition metal oxides.

INTRODUCTION

The recent observation of superconductivity in infinite-layer NdNiO$_2$ [1, 2], PrNiO$_2$ [3], and LaNiO$_2$ [4] films on SrTiO$_3$(001) (STO) has re-initiated considerable interest in rare-earth nickelates [5–22]. However, the physical mechanism behind this observation remained elusive so far. Specifically, it is unclear why superconductivity is absent in bulk samples [23, 24]. The role of the polar interface to the STO(001) substrate and a thereby induced electronic reconstruction towards a cuprate-like Fermi surface has been pointed out recently [14, 19, 22]. A central step in the reduction from the perovskite ABO_3 to the infinite-layer ABO_2 phase is the targeted deintercalation of apical oxygen ions. However, in rhombohedral bulk LaNiO$_3$ (LNO), all oxygen sites are symmetry-equivalent. This is also valid in good approximation for the orthorhombic compounds PrNiO$_3$ and NdNiO$_3$. A site-selective versus the expected statistical reduction may explain why superconductivity arises exclusively in film geometry.

The aspect of anisotropy brings another system back into focus: (LaNiO$_3$)$_n$/(LaAlO$_3$)$_n$(001) (LNO/LAO) superlattices (SLs), where the formation of a cuprate-like Fermi surface was proposed for a single layer of the correlated metal LNO confined in a SL with the band insulator LAO [25–27]. The single-band Fermi surface would arise as a result of a high orbital polarization of the formally singly occupied Ni e_g states, which could not be confirmed in later studies [28–30]. Instead, a site and bond disproportionation expressed in distinct magnetic moments and Ni-O bond lengths at adjacent Ni sites was found for (LNO)$_1$/(LAO)$_1$(001) [28, 31]. This bears similarities to bulk rare-earth nickelates, where site disproportionation has been considered as the origin of the metal-to-insulator transition (MIT) [32–35]. Related effects emerge in ultrathin nickelate films and heterostructures [36, 37] as well as in cobaltates [38, 39]. Moreover, LNO/LAO heterostructures [40–45] show considerable potential for thermolectric applications [46, 47], either by exploiting the emergence of a ~0.3 eV band gap in (LNO)$_1$/(LAO)$_1$(001) SLs strained to the lattice constant of STO [48] or by strain-tuning of orbital-selective transport resonances in (LNO)$_3$/(LAO)$_3$(001) SLs [49]. These aspects raise a question about the robustness of the electronic phase with respect to oxygen vacancies.

Here we explore the formation of oxygen vacancies and their impact on the electronic and magnetic structure in strained bulk LNO and (LNO)$_3$/(LAO)$_3$(001) SLs by performing density functional theory calculations including a Coulomb repulsion term. The vacancies are treated explicitly via large supercells, which proves to be essential. First, we show for the bulk LNO reference system that epitaxial strain induces a substantial anisotropy in the oxygen vacancy formation energy. Tensile strain as exerted by STO(001) enhances the formation of apical vacancies by 25 meV per vacancy, which facilitates a targeted reduction to the infinite-layer phase and offers a possible explanation for the exclusive observation of superconductivity in strained infinite-layer nickelate films. We find that the electrons released by the vacancies are predominantly accommodated locally despite the overall metallic phase, irrespective of strain, resulting in the collapse of the adjacent Ni magnetic moments. Moreover, we identify bulk LNO at 4.2% vacancy concentration to be at the verge of a vacancy-induced MIT.
Subsequently, we investigate the formation of oxygen vacancies in the (LNO)$_1/(\text{LAO})_1$ system, particularly the layer and strain dependence of the reduction energies, and elucidate different accommodation mechanisms of the released electrons. Specifically, we probe the impact of oxygen vacancies on the site-disproportionated quantum phase, systematically varying their concentration between 0% and 8.3%. We find that oxygen vacancies form preferably in the NiO$_2$ layers, with a minimum formation energy of 2.0 eV. In contrast, the AlO$_2$ layers feature generally the highest formation energies up to 3.3 eV. The interaction between the vacancies is largely repulsive, particularly for compressive strain. The first-principles simulations unravel that the released electrons are accommodated exclusively in the NiO$_2$ layers. For a vacancy in an AlO$_2$ layer, charge transfer spatially separates the donor and the doped NiO$_2$ layers and reduces the formation energy by up to 70% with respect to bulk LAO. For a vacancy in a NiO$_2$ layer, the adjacent Ni magnetic moments are enhanced, at variance with bulk LNO. Site disproportionation proves to be robust for vacancy concentrations up to 0.5%, but is generally quenched for higher values. By tracking the evolution of the electronic structure with increasing vacancy concentration in a NiO$_2$ layer at tensile strain, we observe an unexpected transition from a localized (0.5%) to a delocalized (2.1%) charge accommodation, a MIT despite a half-filled majority-spin Ni e_g manifold (4.2%), and finally a magnetic phase transition (8.3%). The insulating phase at 4.2% features a band gap of up to ~ 0.5 eV at compressive strain and is due to (re-emerging) site disproportionation driven by quantum confinement, epitaxial strain, and vacancy-induced charge doping. At tensile strain, the band gap tends to be smaller or the system retains its metallic phase, which is in sharp contrast to the defect-free system. These effects vary distinctly from rigid-band shifts. This study exemplifies the complex impact of oxygen vacancies on the electronic phase in correlated artificial quantum materials [50, 51].

METHODOLOGY

We performed spin-polarized density functional theory (DFT) calculations [52] within the plane-wave and ultrasoft pseudopotential framework as implemented in Quantum Espresso [53, 54]. We used cutoff energies for the wave functions and density of 35 and 350 Ry, respectively, and the generalized gradient approximation for the exchange-correlation functional as parametrized by Perdew, Burke, and Ernzerhof (PBE) [55]. Static correlation effects were considered within DFT+U [56], employing $U = 4$ eV at the Ni sites, similar to previous work [28, 37, 48, 49, 57–59]. We model the (LNO)$_1/(\text{LAO})_1$ SLs with and without explicit oxygen vacancies (V_O) by using supercells of increasing size, simultaneously taking octahedral rotations fully into account: a 20-atom $\sqrt{2}a \times \sqrt{2}a \times 2c$ cell rotated by 45° around the pseudocubic c axis, a 40-atom $2a \times 2a \times 2c$ cell, an 80-atom $2a \times 2a \times 4c$ cell, and a 320-atom $4a \times 4a \times 4c$ cell. These cell sizes correspond to V_O concentrations of 8.3%, 4.2%, 2.1%, and 0.5%, respectively. The Brillouin zone was sampled by using $12 \times 12 \times 8$, $8 \times 8 \times 8$, $8 \times 8 \times 4$, and $4 \times 4 \times 4$ k-point grids [60], respectively, and 5 mRy smearing [61]. We considered the effect of epitaxial strain by setting the in-plane lattice parameter to $a_{\text{LAO}} = 3.79$ Å (compressive strain) or $a_{\text{STO}} = 3.905$ Å (tensile strain). The out-of-plane lattice parameter was set to literature values, $c = 3.93$ Å for a_{LAO} and $c = 3.83$ Å for a_{STO} [28, 31]. For strained LNO, we employed $c = 3.895$ Å for a_{LAO} and $c = 3.807$ Å for a_{STO} to ensure consistency with the literature [57]. In all cases, the atomic positions were carefully optimized until the residual forces on the ions were below 1 mRy/a.u. The formation energies of V_O under oxygen-rich conditions were subsequently calculated from the DFT total energies [62] via

$$E_{V_O}^f = E(\text{system with } V_O) - E(\text{ideal system}) + \frac{1}{2} E(O_2).$$

ANISOTROPIC OXYGEN VACANCY FORMATION IN LaNiO$_3$ INDUCED BY STRAIN

We first explore the effect of epitaxial strain on the V_O formation in bulk LNO, considering the exemplary case of

Figure 1. (a) Emergent anisotropy in the oxygen vacancy formation energies $E_{V_O}^f$ in bulk LNO for compressive (a_{LAO}) and tensile (a_{STO}) epitaxial strain, relative to the unstrained reference. (b) The spin density illustrates the accommodation of the released electrons by a collapse of the adjacent Ni magnetic moments, which occurs irrespective of strain. (c) Spin-resolved PDOS of defect-free LNO versus 4.2% V_O in LNO in the unstrained case. (d) In bulk LAO, 4.2% V_O give rise to a defect state in the band gap that corresponds to an electron accumulation at the V_O site, as illustrated by the charge density integrated between -1 eV and E_F. A comparable state can be identified in bulk LNO at ~ 3.6 eV [see panel (c)].
Oxygen vacancy formation energy (eV)

μ

Magnetic moment (μB)

STO

LAO

Oxygen vacancy concentration

Figure 2. Oxygen vacancy formation energies $E_{V_0}^{f}$ in different layers of (LNO)$_1$/(LAO)$_1$ (001) SLs at compressive (a_{LAO}, top) and tensile (a_{STO}, bottom) epitaxial strain as a function of the V_{O} concentration. For each case, local Ni1 and Ni2 magnetic moments, averaged over the respective checkerboard sublattices, indicate the persistence (black) or quenching (red) of site disproportionation that is characteristic of the ideal (i.e., defect-free) SL. Additionally, it is shown whether the system is metallic (M) or insulating (I). An overall increasing trend of the Ni magnetic moments with the V_{O} concentration can be observed. For 8.3% V_{O}, the system is either rendered AFM (V_{O} in AlO$_2$ or NiO$_2$ layer; energy marked by triangles) or exhibits one collapsing Ni magnetic moment (V_{O} in LaO layer).

OXYGEN VACANCY FORMATION IN STRAINED (LaNiO$_3$)$_1$/(LaAlO$_3$)$_1$ (001) SUPERLATTICES

In sharp contrast to bulk LNO, (LNO)$_1$/(LAO)$_1$ (001) SLs are intrinsically anisotropic and feature three inequivalent layers: AlO$_2$ and NiO$_2$ with basal oxygen ions, and LaO with apical oxygen ions. Figure 2 shows layer-, strain-, and concentration-resolved formation energies $E_{V_0}^{f}$ of oxygen vacancies in (LNO)$_1$/(LAO)$_1$ (001) SLs. As in bulk LNO, $E_{V_0}^{f}$ is always positive, i.e., V_{O} formation is consistently endothermic. In general, we find that the AlO$_2$ layer exhibits the highest $E_{V_0}^{f}$ (2.2-3.3 eV), whereas the NiO$_2$ layer bears the lowest $E_{V_0}^{f}$ (2.0-2.6 eV). The LaO layer, where the V_{O} are apical, features intermediate energies for higher V_{O} concentrations of 8.3% and 4.2% at a_{LAO} (3.0 and 2.5 eV, respectively). For more dilute V_{O} concentrations of 2.1% and 0.5%, the LaO energies exceed the AlO$_2$ values. Surprisingly, at a_{STO}, the energies required to create a vacancy in the LaO layer are rather similar to the NiO$_2$ values. This strain-induced reversal is reminiscent of the apical vs. basal V_{O} anisotropy in bulk LNO [Fig. 1(a)] and may have implications during the initial reduction phase.
The high formation energies in the AlO$_2$ layer can be related to bulk LAO, where $E_{fO}^I = 6.97$ eV at 4.2% (6.9 eV in Ref. [64]). In this material, a V$_O$ does not induce n-type doping, but gives rise to a defect state with mixed La 5d–O 2p–Al 3p character in the center of the wide band gap [Fig. 1(d)] that corresponds to a strong accumulation of excess charge at the V$_O$ site. If the vacancy is doubly ionized to V$_O^{++}$, E_{fO}^I reduces to ~ 3.5 eV [64], which constitutes a strong driving force for charge transfer. In the SLs, charge transfer to the NiO$_2$ layer prevents the occupation of this defect state, as we will see in the following. The corresponding state in bulk LNO can be identified at ~ 3.6 eV, as mentioned above [Fig. 1(c)]. Since it is empty, E_{fO}^I is much lower in bulk LNO (2.02 eV at 4.2% here; ~ 2.8 eV in Ref. [65]). The E_{fO}^I values for the ultrathin SLs are comparable to (LNO)$_3$/LAO$_1$ at low strain (~ 2.3 eV [49]) as well as to recently reported formation energies of complete apical V$_O$ layers, i.e., reduction energies from the perovskite to the infinite-layer phase, which amount to 2.8 (LaNiO$_3$), 2.7 (PrNiO$_3$), 2.7 (NdNiO$_3$), and 6.7 eV (LaAlO$_3$) [66].

We observe a strong increase of E_{fO}^I with the V$_O$ concentration (Fig. 2), indicative of a repulsive V$_O$–V$_O$ interaction. This increase is far more pronounced for compressive than for tensile strain; e.g., in the AlO$_2$ layer, E_{fO}^I (8.3%) – E_{fO}^I (0.5%) ≈ 1.1 eV (α_{LAO}) contrasts with ≈ 0.4 eV (α_{STO}). In the highly dilute limit of infinite V$_O$ separation, E_{fO}^I is higher for tensile than for compressive strain, irrespective of the layer. For vacancies in the NiO$_2$ layer, the repulsive trend is followed by a slight increase of E_{fO}^I while shifting from 2.1% to 0.5% V$_O$ concentration, indicative of an onset of attractive behavior.

EVILOVATION OF THE ELECTRONIC AND MAGNETIC PHASE IN (LaNiO$_3$)$_1$/(LaAlO$_3$)$_1$ (001) SUPERLATTICES

The defect-free reference system

Ideal (i.e., defect-free) (LNO)$_1$/LAO$_1$(001) SLs [Fig. 3(a)] exhibit a confinement-induced MIT driven by strain [28, 31]: being still metallic at α_{LAO}, a band gap of ~ 0.3 eV opens for tensile strain [Fig. 3(b)] due to a disproportionation at the Ni sites [Fig. 3(c)], expressed in a checkerboard-like variation of the Ni1/Ni2 magnetic moments, 0.56/1.36 μ_B (α_{LAO}) and 0.52/1.43 μ_B (α_{STO}), and accompanied by substantial breathing-mode structural distortions of the Ni octahedra, featuring Ni1/Ni2 volumes of 9.4/10.6 (α_{LAO}) and 9.7/11.2 \AA^3 (α_{STO}). We find ferromagnetic (FM) order to be 135 (α_{LAO}) and 133 meV/Ni (α_{STO}) more stable than G-type antiferromagnetic (AFM) order.

The states around E_F stem from the majority-spin Ni e_g manifold [Figs. 3(b) and (c)]. The valence band maximum exhibits predominantly O 2p and Ni2 3d character, which explains the higher Ni2 magnetic moment. In contrast, the conduction band minimum is formed by O 2p states that hybridize with Ni1 3d_{x^2}; at higher energies, Ni1 3d_{x^2} states can be observed [28].
Structural modifications induced by oxygen vacancies

Figure 3(d) shows how VO affect the crystal structure of (LNO)$_1$/(LAO)$_1$(001) SLs at α_{LAO} and α_{STO}, exemplarily displayed in the high-concentration limit (8.3%) to enhance the clarity. Depending on their location, the impact of VO varies considerably. Comparison with the defect-free structure reveals strong modifications beyond strain effects. Three major implications can be identified: (i) Adjacent octahedra are transformed into pyramids (not tetrahedra). For Ni, this lowers the energy of the $3d_{x^2}$ orbital (which aligns perpendicular to the pyramidal plane) relative to $3d_{z^2}$ (which lies in the pyramidal plane). (ii) We find substantial changes of the octahedral rotations, which affect the B-O bond lengths and the respective band widths. For instance, the basal Ni-O-Ni bond angles at α_{STO} are modified from 160° in the defect-free case to 137-148° for 8.3% VO in the NiO$_2$ layer (enhanced rotations), whereas the apical Al-O-Ni bond angles change from 150° to 160-166° (slightly reduced rotations) [bottom-right structure in Fig. 3(d)]. Further inspection of Fig. 3(d) reveals with respect to the ideal case: a reduction to θ^0 and enhanced ϵ^- rotations for VO in AlO$_2$; α^- rotations similar to the defect-free structure and a reduction to almost ϵ^0 for VO in LaO; and α^- rotations similar to the defect-free structure and enhanced ϵ^- rotations for VO in NiO$_2$. (iii) We observe elongations of the (intact) Ni octahedra, particularly Ni1, along the c direction. For instance, 8.3% VO in the AlO$_2$ layer increase the apical O-Ni1-O distance from 3.93 to 4.37 Å (α_{LAO}) and from 3.90 to 4.28 Å (α_{STO}). This correlates with an increased occupation of the Ni1 e_g states and the respective apical O $2p_z$ states, which constitute the conduction band in the defect-free case [Figs. 3(b), 3(c), and 4].

Layer-resolved accommodation of 4.2% oxygen vacancies

These structural modifications, which are in part localized at the VO site, give rise to a rich variety of accommodation mechanisms of the two electrons released by each VO. We illustrate these mechanisms in the following, using 4.2% VO in a SL at α_{LAO} as example. Since the local magnetic moments turn out to be a highly sensitive indicator for changes in the valence state, we use spin density differences in Figs. 4 and 5,

$$ (n_{\text{SL with VO}}^+ - n_{\text{SL with VO}}^-) - (n_{\text{Ideal}}^+ - n_{\text{Ideal}}^-) $$

to spatially trace changes in the electronic reconstruction with respect to the defect-free case. Figure 4 shows that the electrons are accommodated exclusively in the NiO$_2$ layers, irrespective of the VO location. If the VO is located in an AlO$_2$ layer, the octahedral structure of the NiO$_2$ layers is preserved [Fig. 3(d)]. The broken Al octahedra give rise to sharp defect states at \sim 2.5 eV [Fig. 4(b)] reminiscent of VO in bulk LAO [Fig. 1(d)], whose charge is transferred to Ni1 $3d_{z^2}$ orbitals pointing in apical direction, as visible in the spin density difference plots [Fig. 4(b)]. Thus, the donor and the doped layer are spatially separated. If the VO is located in a LaO layer [Fig. 4(c)], the adjacent Al and Ni octahedra are transformed into pyramids, lowering the energy of the respective Ni $3d_{z^2}$ orbital (still pointing in apical direction), similar to the infinite-layer rare-earth nickelates [5, 9, 14, 19]. If the VO is located in a NiO$_2$ layer [Fig. 4(d)], the two adjacent Ni octahedra are transformed into pyramids. At these sites, the $3d_{z^2}$ orbitals are oriented in the basal plane, as it can be clearly observed at the Ni1 site. This orbital reconstruction induces a yellow-blue signature (increase in the basal plane, decrease in the apical direction) in the spin density difference also at the Ni2 site. Simultaneously, the oxygen ion that connects the Ni pyramid apexes gets strongly spin-polarized (0.3 μ_B), indicative of the covalent nature of the bond [see also Fig. 3(c)].
would suggest metallic behavior instead as the unoccupied Ni effect cannot be anticipated from a rigid-band picture, which bulk LNO showed tendencies towards a vacancy-driven MIT, \cite{[67]}. This strain dependence is in sharp contrast to the physics of the ideal SL. Overall, each system at 4.2\% \textit{V} \textsubscript{O} retains the site-disproportionated phase. Thus, we conclude that the MIT arises due to site disproportionation as a concerted effect of quantum confinement, epitaxial strain, and charge doping by the oxygen vacancies.

Evolution of the electronic structure between 0\% and 8.3\% oxygen vacancy concentration

Motivated by this observation, we now explore in more detail how the electronic structure of (LNO)\textsubscript{(001)} SLs evolves with increasing \textit{V} \textsubscript{O} concentration. We focus on tensile strain (\textit{\alpha}_{TSTO}) and a vacancy in a NiO\textsubscript{2} layer, which are most prone to \textit{V} \textsubscript{O} formation, as we discussed above (Fig. 2). The ideal system exhibits a band gap of \sim 0.3 eV, and the conduction band minimum is formed by majority-spin Ni1 3d\textsubscript{z^2−}\textit{O} 2p hybrid states [Figs. 3(b) and 5(a)]. In a rigid-band picture, introducing 0.5\% \textit{V} \textsubscript{O} would lead to a slight occupation of these states, delocalized across all Ni1 sites. Instead, we observe that the accommodation is localized in a single NiO\textsubscript{2} layer (the supercell contains two repeats in vertical direction) and clearly does not affect all Ni sites there, but just within narrow stripes that extend in \textit{a} and \textit{b} direction from the \textit{V} \textsubscript{O} [Fig. 5(b)]. The blue features at some of the Ni2 sites in the spin density differences indicate either orbital reconstructions [in the pyramids at the \textit{V} \textsubscript{O} site, similar to Fig. 4(d)] or local alleviations of the site disproportionation (resulting in \sim 1 \mu\textsubscript{B} at the involved Ni sites) that arise even at intact octahedra and are promoted by slight, longer-range structural deformations due to the \textit{V} \textsubscript{O}. The second, defect-free NiO\textsubscript{2} layer retains an identical site disproportionation and Ni magnetic moments as the ideal SL, \sim 0.5/1.4 \mu\textsubscript{B}, and thereby induces no signatures in the spin density difference plots. The system is metallic in the \textit{V} \textsubscript{O} layer and, apart from local effects, the overall site disproportionation is preserved, as corroborated by the substantial difference in Ni1 versus Ni2 PDOS in Fig. 5(b). For 0.5\% \textit{V} \textsubscript{O} in a LaO or AlO\textsubscript{2} layer, the accommodation is maximally confined, involving only the occupation of two adjacent Ni1 3d\textsubscript{z^2} orbitals [similar to Figs. 4(b) and (c)] and rendering an insulating site-disproportionated phase (see Supplemental Material).

Surprisingly, if the \textit{V} \textsubscript{O} concentration is increased to 2.1\%, both NiO\textsubscript{2} layers are affected, including the defect-free one [Fig. 5(c)]. We find that the two electrons released by the \textit{V} \textsubscript{O} are distributed across the entire SL. Hence, a localization-delocalization transition of the accommodation is observed as the \textit{V} \textsubscript{O} concentration is increased from 0.5\% to 2.1\%. The system is metallic and site disproportionation is completely quenched, which can bee seen from the perfectly equal Ni1...
and Ni2 PDOS in Fig. 5(c). The spin density difference of the defect-free NiO$_2$ layer illustrates with particular clarity that the alleviated site disproportionation is expressed by a slight reduction of the Ni2 3d$_{x^2-y^2}$ occupation (blue) and a concomitant increase of the Ni1 3d$_{x^2-y^2}$ occupation (yellow), rendering \(~\sim\) 1.2 \(\mu_B\) at all Ni sites. This mechanism is equivalent to the local effects arising in the intact octahedra at 0.5\% \(V_{O}\) concentration discussed above [Fig. 5(b)]. We again observe a substantial magnetic moment at the oxygen ion (\(~\sim\) 0.3 \(\mu_B\)) at the pyramid apex.

Raising the \(V_{O}\) concentration to 4.2\% re-establishes site disproportionation, and a small band gap of \(~\sim\) 0.1 eV opens at \(E_F\), as mentioned above, despite the delocalized charges [Fig. 5(d)].

Finally, for 8.3\%, the majority-spin Ni \(e_g\) bands are completely filled and the system becomes insulating. In this situation, site disproportionation is no longer favorable. (Note that the defect-free SL at \(\alpha_{\text{STO}}\) is insulating exclusively due to site disproportionation.) Moreover, we found that FM order is destabilized, and the system undergoes yet another transition to an insulating AFM phase with Ni1 and Ni2 magnetic moments of \(\sim\) 1.5 \(\mu_B\) and highly localized occupied and empty Ni \(e_g\) states (PDOS peaks at \(~\sim\) 0.5, 1.3, and 2.4 eV) [Fig. 5(e)]. The antiparallel Ni2 magnetic moment is expressed in the strong blue feature in the spin density difference. (Conventional spin density plots for 8.3\% \(V_{O}\) concentration are provided in the Supplemental Material.) We conclude that the electronic reconstruction in this system is constantly modified while increasing the \(V_{O}\) concentration from 0\% to 8.3\%, consecutively driving a localization-delocalization transition (2.1\%), a MIT despite a delocalized charge accommodation in a half-filled majority-spin Ni \(e_g\) manifold (4.2\%), and finally also a magnetic phase transition (8.3\%).

Intriguingly, the localization-delocalization transition at 2.1\% is observed irrespective of the \(V_{O}\) location and strain (see Supplemental Material). The insulating phase at 4.2\% [Figs. 4 and 5(d)] emerges for almost all combinations of \(V_{O}\) location and strain, as discussed above, with the exception of a \(V_{O}\) in the AlO$_2$ layer. Similarly, the magnetic phase transition at 8.3\% \(V_{O}\) concentration towards AFM order with Ni magnetic moments of \(\sim\) 1.5 \(\mu_B\) occurs not only for a \(V_{O}\) in the NiO$_2$ layer, but also for a \(V_{O}\) in the AlO$_2$ layer, irrespective of epitaxial strain. The corresponding formation energies are marked by blue triangles in Fig. 2. Interestingly, for a \(V_{O}\) in the LaO layer, we observe a different modification of the magnetic state, as detailed in Fig. 6: Near the \(V_{O}\), the 3d$_{x^2-y^2}$ orbital is lowered in energy due to the modified crystal field and doubly occupied (similar to infinite-layer rare-earth nickelates), leaving the 3d$_{x^2-y^2}$ orbital empty and leading to an almost vanishing magnetic moment (\(~\sim\) 0.2 \(\mu_B\)), whereas in the intact octahedron Hund’s rule is followed and the 3d$_{x^2}$ and 3d$_{x^2-y^2}$ orbitals are each singly occupied by majority-spin electrons (\(~\sim\) 1.55 \(\mu_B\)). This mechanism bears analogies to bulk LNO discussed above (Fig. 1), but arises in (LNO)$_1/(\text{LAO})_1$(001) SLs exclusively for the highest explored vacancy concentration (see Supplemental Material for the full data).

We compile these results together with the formation energies in Fig. 2 to obtain an integrated perspective at the relative stability of the different phases correlated with their electronic and magnetic properties. By comparing the local Ni1 and Ni2 magnetic moments, averaged over the respective sites of the bipartite lattice, it is shown that various combinations of metallic versus insulating and site-disproportionated versus non-disproportionated phases arise in the SLs depending on the \(V_{O}\) concentration, their location, and the epitaxial strain. Specifically, the site-disproportionation mechanism is robust up to a \(V_{O}\) concentration of 0.5\%, and re-emerges for higher \(V_{O}\) concentrations. Overall, an increase of the averaged Ni magnetic moments with the \(V_{O}\) concentration can be observed, which is consistent with the increasing occupation of the Ni \(e_g\) states, ultimately one additional electron per Ni ion at 8.3\%. The lower noninteger Ni magnetic moments of 1.5-1.6 \(\mu_B\) (formally 2 \(\mu_B\)) in this case reflect the covalency in the Ni-O bond, i.e., the strong O 2p involvement with a finite magnetic moment at the oxygen sites [Figs. 3(c), 4, and 5].

SUMMARY

We investigated the formation of oxygen vacancies and their impact on the electronic and magnetic structure in strained bulk LaNiO$_3$ and \((\text{LaNiO}_3)_1/(\text{LaAlO}_3)_1$(001) superlattices by performing comprehensive first-principles simula-
tions including a Coulomb repulsion term.

For bulk LaNiO$_3$, epitaxial strain induces a substantial anisotropy in the oxygen vacancy formation energy. Tensile strain as exerted by a SrTiO$_3$(001) substrate enhances the preference for apical vacancy formation by 25 meV per vacancy, which would lead to a targeted reduction to the infinite-layer phase and offers a possible explanation for the exclusive observation of nickelate superconductivity in strained films. We found that the electrons released by the vacancies are predominantly accommodated locally despite the overall metallic phase, resulting in the collapse of the adjacent Ni magnetic moments. This mechanism is observed irrespective of strain. Moreover, we identified bulk LaNiO$_3$ at 4.2% vacancy concentration to be at the verge of a vacancy-induced MIT.

Subsequently, we explored the layer and strain dependence of the reduction energies in (LaNiO$_3$)$_n$/(LaAlO$_3$)$_n$ superlattices and elucidated different accommodation mechanisms of the released electrons, systematically varying the vacancy concentration between 0% and 8.3%. The density functional theory simulations unraveled that oxygen vacancies form preferably in the NiO$_2$ layers, irrespective of strain and the vacancy concentration. In contrast, the AlO$_2$ layers exhibit generally the highest formation energies. The reduction is consistently endothermic in an oxygen-rich atmosphere, and the interaction between the vacancies is largely repulsive, particularly for compressive strain. We found that the released electrons are accommodated exclusively in the NiO$_2$ layers. For a vacancy in an AlO$_2$ layer, this implies a spatial separation of the donor and the doped NiO$_2$ layers and reduces the formation energy by up to 70% with respect to bulk LaAlO$_3$. For a vacancy in a NiO$_2$ layer, the adjacent Ni magnetic moments do not collapse as in bulk LaNiO$_3$; instead, Hund’s rule is followed, leading to enhanced moments accompanied by a rotation of the respective $3d_{x^2-y^2}$ orbitals into the basal plane. The characteristic site disproportionation is robust for vacancy concentrations up to 0.5%, but generally quenched for higher values. Detailed analysis of the concentration dependence for the representative case of vacancies in a NiO$_2$ layer at tensile strain revealed an unexpected transition from a localized (0.5%) to a delocalized (2.1%) charge accommodation, a metal-to-insulator transition despite a half-filled majority-spin Ni e_g manifold (4.2%), and finally also a magnetic phase transition (8.3%). The insulating phase at 4.2% exhibits a band gap of up to \sim 0.5 eV at compressive strain and is due to (re-emerging) site disproportionation, which results from the interplay of quantum confinement, epitaxial strain, and vacancy-induced charge doping. At tensile strain, the band gap is smaller or the system is metallic, which is in sharp contrast to the defect-free system. This study exemplifies the rich physics of electronic reconstruction induced by oxygen vacancies in transition-metal oxide heterostructures that can be captured exclusively by an explicit supercell treatment, which points to the limitations of rigid-band approaches and opens paths for engineering correlated quantum matter.

This work was supported by the German Research Foundation (Deutsche Forschungsgemeinschaft, DFG) within the SFB/TRR 80 (Projektnummer 107745057), Projects No. G3 and No. G8. Computing time was granted by the Center for Computational Sciences and Simulation of the University of Duisburg-Essen (DFG Grants No. INST 20876/209-1 FUGG and No. INST 20876/243-1 FUGG).

ACKNOWLEDGMENTS

* benjamin.geisler@uni-due.de
rossitza.pentcheva@uni-due.de

[1] D. Li, K. Lee, B. Y. Wang, M. Osada, S. Crossley, H. R. Lee, Y. Cui, Y. Hikita, and H. Y. Hwang, Nature 572, 624 (2019).
[2] D. Li, B. Y. Wang, K. Lee, S. P. Harvey, M. Osada, B. H. Goode, L. F. Kourkoutis, and H. Y. Hwang, Phys. Rev. Lett. 125, 027001 (2020).
[3] M. Osada, B. Y. Wang, B. H. Goode, K. Lee, H. Yoon, K. Sakuma, D. Li, M. Miura, L. F. Kourkoutis, and H. Y. Hwang, Nano Lett. 20, 5735 (2020).
[4] M. Osada, B. Y. Wang, B. H. Goode, S. P. Harvey, K. Lee, D. Li, L. F. Kourkoutis, and H. Y. Hwang, Adv. Mater. 33, 2104083 (2021).
[5] Y. Nomura, M. Hirayama, T. Tadano, Y. Yoshimoto, K. Nakamura, and R. Arita, Phys. Rev. B 100, 205138 (2019).
[6] P. Jiang, L. Si, Z. Liao, and Z. Zhong, Phys. Rev. B 100, 201106 (2019).
[7] H. Sakakibara, H. Usui, K. Suzuki, T. Kotani, H. Aoki, and K. Kuroki, Phys. Rev. Lett. 125, 077003 (2020).
[8] M. Jiang, M. Berciu, and G. A. Sawatzky, Phys. Rev. Lett. 124, 207004 (2020).
[9] A. S. Botana and M. R. Norman, Phys. Rev. X 10, 011024 (2020).
[10] F. Lechermann, Phys. Rev. B 101, 081110 (2020).
[11] X. Wu, D. Di Sante, T. Schwemmer, W. Hanke, H. Y. Hwang, S. Raghu, and R. Thomale, Phys. Rev. B 101, 060504 (2020).
[12] M. Hirayama, T. Tadano, Y. Nomura, and R. Arita, Phys. Rev. B 101, 075107 (2020).
[13] M. Kitatani, L. Si, O. Janson, R. Arita, Z. Zhong, and K. Held, npj Quantum Materials 5, 59 (2020).
[14] B. Geisler and R. Pentcheva, Phys. Rev. B 102, 020502(R) (2020).
[15] M.-Y. Choi, K.-W. Lee, and W. E. Pickett, Phys. Rev. B 101, 020503 (2020).
[16] L. Si, W. Xiao, J. Kaufmann, J. M. Tomczak, Y. Lu, Z. Zhong, and K. Held, Phys. Rev. Lett. 124, 166402 (2020).
[17] Y. Wang, C.-J. Kang, H. Miao, and G. Kotliar, Phys. Rev. B 102, 161118 (2020).
[18] Q. Gu, Y. Li, S. Wan, H. Li, W. Guo, H. Yang, Q. Li, X. Zhu, X. Pan, Y. Nie, and H.-H. Wen, Nat. Commun. 11, 6027 (2020).
[19] B. Geisler and R. Pentcheva, Phys. Rev. Research 3, 013261 (2021).
[20] R. A. Ortiz, H. Menke, F. Misják, D. T. Mantadakis, K. Fürsich, E. Schierle, G. Logvenov, U. Kaiser, B. Keimer, P. Hansmann, and E. Benckiser, Phys. Rev. B 104, 165137 (2021).
[21] H. Lu, M. Rossi, A. Nag, M. Osada, D. F. Li, K. Lee, B. Y. Wang, M. García-Fernandez, S. Agrestini, Z. X. Shen, E. M. Been, B. Moritz, T. P. Devereaux, J. Zaanen, H. Y. Hwang, K.-J. Zhou, and W. S. Lee, Science 373, 213 (2021).
