Communication

A DNA Replication Mechanism Can Explain Structural Variation at the Pigeon Recessive Red Locus

Jonathan Haddock and Eric T. Domyan *

Department of Biology, Utah Valley University, Orem, UT 84058, USA
* Correspondence: eric.domyan@uvu.edu; Tel.: +1-801-863-5422

Abstract: For species to adapt to their environment, evolution must act upon genetic variation that is present in the population. Elucidating the molecular mechanisms that give rise to this variation is thus of crucial importance for understanding how organisms evolve. In addition to variation caused by point mutations, structural variation (deletions, duplications, inversions, translocations) is also an important source of variety. Mechanisms involving recombination, transposition and retrotransposition, and replication have been proposed for generating structural variation, and each are capable of explaining certain rearrangements. In this study, we conduct a detailed analysis of two partially overlapping rearrangements (e1 and e2 allele) in domestic rock pigeon (Columba livia) which are both associated with the recessive red phenotype. We find that a replicative mechanism is best able to explain the complex architecture of the e1 allele, and is also compatible with the simpler architecture of the e2 allele as well.

Keywords: structural variation; DNA replication; FoSTeS/MMBIR

1. Introduction

Relatively little is known about the underlying mechanisms responsible for generating structural changes responsible for a great deal of both evolutionary- and medically-relevant variation. One prominent model is non-allelic homologous recombination (NAHR), which is when crossing over occurs between different genomic regions [1]. NAHR can be mediated by either low-copy repeats (LCRs) or repetitive elements (such as transposons) in the genome, which may cause chromosomes to mis-pair during meiotic synapse. A second model, non-homologous end joining (NHEJ), occurs when double-strand breaks occur in DNA and repair is initiated between the two broken ends [2]. Mobile DNA elements such as transposons and retrotransposons also generate structural variation by inserting DNA in novel locations or orientations [3,4].

A DNA replication-based mechanism, known as fork-stalling and template switching/microhomology-mediated break-induced replication (FoSTeS/MMBIR) is distinct from the others in that is capable of explaining certain complex rearrangements that non-replication based mechanisms cannot [5,6]. In this mechanism, an active replication fork can stall due to some DNA lesion, and switch templates using short (e.g., several-nucleotide) stretches of microhomology to re-initiate DNA replication. Depending on whether the new template strand is behind, ahead, or on the reverse complement of the original template strand, duplications, deletions, and inversions can all occur. Similar to NAHR, FoSTeS/MMBIR events can also be mediated by LCRs, as these repeats can generate secondary structures that predispose the replication machinery to errors. However, because multiple FoSTeS/MMBIR events may occur during a single replication cycle, this mechanism can provide a more parsimonious explanation of complex rearrangements than the previously mentioned models can.

Understandably so, the vast majority of research into naturally occurring structural variation are human studies [5–8] although several involve non-human models, including
recurrent Pitx1 enhancer deletions in sticklebacks [9,10], retrotransposon-mediated gene duplication in tomato [3], and transposition associated with a color polymorphism in cichlids [4]. Identifying additional instances of structural variation in free-living organisms, particularly those that alter the organisms’ phenotype, and determining what molecular mechanisms may have caused them will ultimately provide a greater understanding of genomic mechanisms of evolution in general.

Previously, we identified two partially overlapping deletions/rearrangements up-stream of Sox10 as the molecular identity of the classical recessive red locus in pigeon (e\(^1\) and e\(^2\) alleles) [11]. Both alleles contain a deletion of a melanocyte-specific enhancer that causes downregulation of Sox10, ultimately resulting in the production of red pheomelanin instead of black eumelanin [12]. The e\(^1\) allele consists of a 7 kb rearrangement containing several deletions interspersed with inversions and duplications, while the e\(^2\) allele consists of a simple 2.5 kb deletion. To better understand the mechanism that may have led to these rearrangements we performed detailed sequence analysis and find that FoSTeS/MBIR can explain the complex structural variation of the e\(^1\) allele and is also compatible with the e\(^2\) allele.

2. Materials and Methods

The Columba livia reference genome was generated from a bird homozygous for the e\(^1\) allele [11,13]. The rearrangement is located on scaffold 974 from 568,826 to 569,523 in Cliv_1.0, and on AKCR02000009.1 from 3,610,268 to 3,610,965 in Cliv_2.1 [14], though the complementary strands of this region are annotated between the two assemblies. The wild-type E\(^+\) and mutant e\(^2\) alleles are published as GenBank Accessions KJ023252 and KJ023253, respectively. Because the strands published in KJ023252 and KJ023253 are the same as the annotated strand in Cliv_1.0, that assembly is used as reference for these data.

Approximately 700 bp proximal to the rearrangement of the e\(^1\) allele, Cliv_1.0 has a gap. Using DNA samples from two birds homozygous for each allele as template, we PCR-amplified across the gap using primers (5′-GCATGGTGACCTTTGACCTT-3′ and 5′-GGGGAAAAATGCTCGTGTAA-3′) and Sanger-sequenced the PCR products. After filling in the gap with the results of the Sanger read, we used RepeatMasker v. 4.1.2 with default parameters [15] to identify repetitive elements in each allele and BLASTZ v. 1.0 [16] to individually align each of the mutant alleles to the wild-type allele.

3. Results

Because of the close proximity of a gap in the reference genome to the location of the recessive red mutations, we Sanger-sequenced across this gap, and found that the sequence was identical among all three alleles (Figures S1–S4). RepeatMasker identified some sequence showing similarity to a SINE/MIR element, but this sequence was identical across all three alleles and did not occur at any of the rearrangement breakpoints (Figures S1–S4). No other putative transposon or retrotransposon sequence was identified in the analyzed regions.

After aligning the alleles using BLASTZ, we found that the e\(^1\) allele is a complex rearrangement consisting of, in sequence; a 3.6 kb deletion, a ~400 bp inversion (Inversion 1), a 2 kb deletion, two inversions of ~200 and 70 bp (Inversions 2 and 3, respectively), and an ~800 bp deletion which spans the mcs7 melanocyte enhancer [17] (Figures 1a, S1 and S2). The three inverted segments have maintained their original proximo-distal order relative to their original location in the E\(^+\) allele. Inversions 2 and 3 also share a 56 bp duplication. The only sequence unique to e\(^1\) relative to E\(^+\) are insertions of “TC” at either end of the rearrangement.
Figure 1. Structure of the recessive red alleles. (a) Illustration of the \(E^+ \) (top) and \(e^1 \) (bottom) alleles in relation to one another. DNA in the same orientation in green. Deleted DNA as thin black line. TC insertions in grey font. Inversion 1 in yellow, Inversion 2 in red, and Inversion 3 in blue. DNA duplicated in Inversions 2 and 3 in purple. Sequence of microhomologies at the inversion junctions shown. (b) Illustration of the \(E^+ \) (top) and \(e^2 \) (bottom) alleles in relation to one another. DNA in same orientation in both alleles in green. Deleted DNA as thin black line. Proximal deletion breakpoint is in a run of 90 purines (R), the junction of the deletion forms a microhomology as shown. (c-f) Putative replicative mechanism to explain formation of \(e^1 \) allele. As replication fork (black) proceeds left-to-right, a lesion in the template strand (break in green line) may cause DNA polymerase to disengage from leading strand template and invade the lagging strand template. FoSTeS event 1 would cause Inversion 1 in yellow. As the replication fork proceeds distally, subsequent disengagement and re-engagement with the lagging strand template would produce Inversion 2 (red, d) and 3 (blue, e), before re-engagement with the original template (green, f) eventually occurs.

While the beginning and end of the rearrangement in the \(e^1 \) allele contain dinucleotide insertions, the junctions of the inversions within the rearrangement contain microhomologies characteristic of FoSTeS/MMBIR events. A microhomology of “CA” is present at the junction of Inversion 1 and Inversion 2, and a microhomology of “CTGA” is present at the junction of Inversion 2 and Inversion 3 (Figure 1a, Figure S2).

The \(e^2 \) allele, in contrast, is a single ~2.8 kb deletion which also spans the mcs7 melanocyte enhancer (Figure 1b, Figures S3 and S4). The proximal end of the deletion is located within a 90-nucleotide repetitive region made up entirely of purines (A/G). This allele contains an “AG” microhomology at the junction of the deletion, also consistent with FoSTeS/MMBIR.
4. Discussion

An important avenue of research to elucidate how organisms evolve is to understand the molecular mechanisms that generate genetic diversity; including both point mutations and larger structural rearrangements. In this study we describe the molecular structure of two alleles in domestic rock pigeon that cause a change in plumage color. We find that for both alleles, the FoSTeS/MMBIR model can offer a potential explanation for their formation. For the \(e^1 \) allele, the entire rearrangement could have occurred during a single round of replication that had 4 FoSTeS events (Figure 1c–f). The structure of the rearrangement suggests that a lesion may have caused the polymerase of the leading strand of one replication fork to disengage and invade the lagging strand of either the same or another replication fork (Figure 1c). As the replication fork proceeded distally, multiple rounds of synthesis, disengaging, and re-invasion of the lagging strand template could have generated the three inversions in the observed orientation. The duplication contained in Inversion 2 and 3 could have been caused if DNA polymerase had used the same section of template DNA to synthesize the 5' end of Inversion 2 (Figure 1d) and the 3' end of Inversion 3 (Figure 1e) as the replication fork proceeded distally. Finally, DNA polymerase may have disengaged the lagging strand and re-engaged the original leading strand template, 7.5 kb distal to where it first disengaged (Figure 1f). The mechanism causing the insertion of “TC” at either end of the rearrangement is unclear, but could be due to strand breakage and repair.

In contrast to the \(e^1 \) allele, the \(e^2 \) allele is a simple deletion, but the presence of the 5' deletion breakpoint within a 90-nucleotide long stretch of purines and the “AG” microhomology at the deletion junction is also compatible with the FoSTeS/MMBIR model. To generate the \(e^2 \) allele, DNA polymerase may have slipped off of the template strand and re-engaged with the same strand approximately 2700 nucleotides later, using a two-nucleotide span of microhomology to reinitiate synthesis.

The unique breakpoints of each recessive red allele indicate that each rearrangement occurred independently; furthermore, a deletion that spans this same region is also found in chicken [18]. This raises the question as to whether this region of the avian genome is particularly prone to rearrangements or whether these rearrangements were simply more likely to be identified and artificially selected due to their effect on feather color. The presence of LCRs can create complex genome architecture that may make FoSTeS/MMBIR events more likely [7]. In addition, certain regions of the genome may contain DNA fragility that increase the likelihood of breakage and repair [10]. An important area of future research will be to determine whether these or other features exist in this region of the avian genome that could predispose it to rearrangements.

5. Conclusions

Mutation provides the raw material for evolution by natural selection; therefore understanding mutational mechanisms is crucial for understanding how organisms adapt to their environment. Given that copy number variation likely contributes more to genetic variability on a per-nucleotide level than SNPs and small indels combined [19], understanding the mechanisms leading to copy number variation is of crucial importance. For the recessive red locus in pigeons, we find that the FoSTeS/MMBIR model provides a plausible mechanism to explain the observed rearrangements and provides support for the idea that replicative events can contribute to phenotypic variation in diverse organisms. As additional cases of structural variation in free-living organisms are identified, it will be important to determine the possible mechanisms generating them as well.

Supplementary Materials: The following supporting information can be downloaded at: https://www.mdpi.com/article/10.3390/biom12101509/s1, Figure S1: \(E^+ \) allele annotated relative to \(e^1 \) allele; Figure S2: \(e^1 \) allele annotated relative to \(E^+ \) allele; Figure S3: \(E^+ \) allele annotated relative to \(e^2 \) allele; Figure S4: \(e^2 \) allele annotated relative to \(E^+ \) allele.
Author Contributions: Conceptualization, J.H. and E.T.D.; methodology, E.T.D.; investigation, J.H. and E.T.D.; resources, E.T.D.; writing—original draft preparation, E.T.D.; writing—review and editing, J.H. and E.T.D.; project administration, E.T.D.; funding acquisition, E.T.D. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by National Institutes of Health, grant number 1R15GM132858-01.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The wild-type E^+ and mutant e^+ alleles are published as GenBank Accessions KJ023252 and KJ023253, respectively.

Acknowledgments: We would like to thank the members of the Domyan Lab for their thoughtful comments and suggestions.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or in the decision to publish the results.

References
1. Stankiewicz, P.; Lupski, J.R. Genome Architecture, Rearrangements and Genomic Disorders. *Trends Genet.* 2002, 18, 74–82. [CrossRef]
2. Shaw, C.J.; Lupski, J.R. Implications of Human Genome Architecture for Rearrangement-Based Disorders: The Genomic Basis of Disease. *Hum. Mol. Genet.* 2004, 13, R57–R64. [CrossRef] [PubMed]
3. Xiao, H.; Jiang, N.; Schaffner, E.; Stockinger, E.J.; van der Knaap, E. A Retrotransposon-Mediated Gene Duplication Underlies Morphological Variation of Tomato Fruit. *Science* 2008, 319, 1527–1530. [CrossRef] [PubMed]
4. Kratochwil, C.F.; Kautt, A.F.; Nater, A.; Härer, A.; Liang, Y.; Henning, F.; Meyer, A. An Intronic Transposon Insertion Associates with a Trans-Species Color Polymorphism in Midas Cichlid Fishes. *Nat. Commun.* 2022, 13, 296. [CrossRef] [PubMed]
5. Hastings, P.J.; Ira, G.; Lupski, J.R. A Microhomology-Mediated Break-Induced Replication Model for the Origin of Human Copy Number Variation. *PLoS Genet.* 2009, 5, e1000327. [CrossRef] [PubMed]
6. Zhang, F.; Khajavi, M.; Connolly, A.M.; Towne, C.F.; Batish, S.D.; Lupski, J.R. The DNA Replication FoSTeS/MMBIR Mechanism Can Generate Genomic, Genic and Exonic Complex Rearrangements in Humans. *Nat. Genet.* 2009, 41, 849–853. [CrossRef] [PubMed]
7. Lee, J.A.; Carvalho, C.M.B.; Lupski, J.R. A DNA Replication Mechanism for Generating Nonrecurrent Rearrangements Associated with Genomic Disorders. *Cell* 2007, 131, 1235–1247. [CrossRef] [PubMed]
8. Liu, P.; Carvalho, C.M.; Hastings, P.; Lupski, J.R. Mechanisms for Recurrent and Complex Human Genomic Rearrangements. *Curr. Opin. Genet. Dev.* 2012, 22, 211–220. [CrossRef] [PubMed]
9. Chan, Y.F.; Marks, M.E.; Jones, F.C.; Villarreal, G., Jr.; Shapiro, M.D.; Brady, S.D.; Southwick, A.M.; Absher, D.M.; Grimwood, J.; Schmutz, J.; et al. Adaptive Evolution of Pelvic Reduction in Sticklebacks by Recurrent Deletion of a Pitx1 Enhancer. *Science* 2010, 327, 302–305. [CrossRef] [PubMed]
10. Xie, K.T.; Wang, G.; Thompson, A.C.; Wucherpfennig, J.I.; Reimchen, T.E.; MacColl, A.D.C.; Schluter, D.; Bell, M.A.; Vasquez, K.M.; Kingsley, D.M. DNA Fragility in the Parallel Evolution of Pelvic Reduction in Stickleback Fish. *Science* 2019, 363, 81. [CrossRef] [PubMed]
11. Domyan, E.T.; Guernsey, M.W.; Kronenberg, Z.; Krishnan, S.; Boissy, R.E.; Vickrey, A.I.; Rodgers, C.; Cassidy, P.; Leachman, S.A.; Fondon, J.W., 3rd; et al. Epistatic and Combinatorial Effects of Pigmentary Gene Mutations in the Domestic Pigeon. *Curr. Biol.* 2014, 24, 459–464. [CrossRef] [PubMed]
12. Domyan, E.T.; Hardy, J.; Wright, T.; Frazer, C.; Daniels, J.; Kirkpatrick, J.; Kirkpatrick, J.; Wakamatsu, K.; Hill, J.T. SOX10 Regulates Multiple Genes to Direct Eumelanin versus Pheomelanin Production in Domestic Rock Pigeon. *Pigment Cell Melanoma Res.* 2019, 32, 634–642. [CrossRef] [PubMed]
13. Shapiro, M.D.; Kronenberg, Z.; Li, C.; Domyan, E.T.; Pan, H.; Campbell, M.; Tan, H.; Huff, C.D.; Hu, H.; Vickrey, A.I.; et al. Genomic Diversity and Evolution of the Head Crest in the Pigeon Rock. *Science* 2013, 339, 1063–1067. [CrossRef] [PubMed]
14. Holt, C.; Campbell, M.; Keays, D.A.; Edelman, N.; Kapusta, A.; Maclary, E.; Domyan, E.T.; Suh, A.; Warren, W.C.; Yandell, M.; et al. Improved Genome Assembly and Annotation for the Rock Pigeon (Columba Livia). *G3 GenesGenomesGenetics* 2018, 8, 1391. [CrossRef] [PubMed]
15. Smit, A.; Hubley, R.; Green, P. *RepeatMasker Open-4.0*; 2013. Available online: http://www.repeatmasker.org (accessed on 14 October 2022).
16. Schwartz, S.; Kent, W.J.; Smit, A.; Zhang, Z.; Baertsch, R.; Hardison, R.C.; Haussler, D.; Miller, W. Human–Mouse Alignments with BLASTZ. *Genome Res.* 2003, 13, 103–107. [CrossRef] [PubMed]
17. Antonellis, A.; Huynh, J.L.; Lee-Lin, S.Q.; Vinton, R.M.; Renaud, G.; Loftus, S.K.; Elliot, G.; Wolfsberg, T.G.; Green, E.D.; McCallion, A.S.; et al. Identification of Neural Crest and Glial Enhancers at the Mouse Sox10 Locus through Transgenesis in Zebrafish. *PLoS Genet.* 2008, 4, e1000174. [CrossRef] [PubMed]

18. Gunnarsson, U.; Kerje, S.; Bed’hom, B.; Sahlqvist, A.S.; Ekwall, O.; Tixier-Boichard, M.; Kampe, O.; Andersson, L. The Dark Brown Plumage Color in Chickens Is Caused by an 8.3-Kb Deletion Upstream of SOX10. *Pigment Cell Melanoma Res.* 2011, 24, 268–274. [CrossRef] [PubMed]

19. Shaikh, T.H. Copy Number Variation Disorders. *Curr. Genet. Med. Rep.* 2017, 5, 183–190. [CrossRef] [PubMed]