Isolation, identification antimicrobial susceptibility and associated risk factors of Salmonella in semi-intensive poultry farms of Kafa zone, Southwest Ethiopia

Sultan Abda b,*, Tamirat Haile a, Mesele Abera b

a Mizan Regional Veterinary Laboratory Center, Mizan-aman, P.O.Box 254, Ethiopia
b Hawassa University Faculty of Veterinary Medicine, P.O. Box 05, Hawassa, Ethiopia

ARTICLE INFO

Keywords:
Antimicrobial susceptibility
Poultry
Salmonella
Semi-intensive farms
Ethiopia

ABSTRACT

Salmonellosis is one of the major causes of poultry disease. The study aimed to isolate, identify, determine susceptibility and associated risk factors of salmonella species in semi-intensive poultry farms of Kafa zone, southwest Ethiopia. A cross-sectional study was conducted on four purposively selected districts. Three farms were randomly selected per district and fecal samples were taken from a total of 302 chickens. Questionnaire was administered to farm owners and data was analyzed using STATA statistical software package. The overall prevalence of *Salmonella enterica* species in Kafa zone was 9.27% with Gimbo district 10.39%, Bita district 10.66%, Shishoende district 12% and Chena district 4%. Source of chickens, farm types and breed risk factors showed significant association (*P* < 0.05) with the disease prevalence. Having diarrhea and continuous farm systems significantly associated (*P* < 0.05). All isolates were 100% resistant to Oxytetracycline and Ampicillin. Among 28 isolated *Salmonella enterica* species, 92.85% (*n* = 26) of them were showed multidrug resistance while 2 (7.14%) of them showed extensively drug resistance. Half of multidrug-resistant isolates were resistant to 5–6 antimicrobials, while 7.14% of isolates showed resistance to 7 antimicrobials. This study shows prevalence of *Salmonella* and its association with the breed, farm type, source of chicken and presence of diarrhea. A high antimicrobial resistance observed shows presence of concerns due to the emergence of Antimicrobial Resistance (AMR) in the poultry farms. Therefore, awareness should be created to the farmers on measures to avoid the risk factors of poultry disease and the occurrence of antimicrobials resistance in poultry farms.

1. Introduction

Ethiopia has an estimated total population of 54,495,026 poultry; among them 90.85% indigenous, 4.39% exotic and 4.76% hybrid breeds (CSA, 2017). Currently semi-intensive chicken production system is widely expanding in urban, peri-urban and rural areas of Ethiopia. This production system is characterized as flock of 50–200 improved breeds per household kept in small nighttime house with laying nest, feeder, vaccine and feed supplements (Afras, 2018). More than half percent of households in Ethiopia hold a varying collection of poultry flock size (FAO, 2019) and it stimulated local economic development of peri-urban centers (Mutami, 2015).

However, chicken production is constrained by various factors, among which are low genetic potential of the indigenous breeds, high prevalence of infectious diseases and traditional feeding practice (Abda, Mamo, Worku G., 2015; Dinka, Chala, Dawo, Bekana & Leta., 2010). In village chicken as well as poultry farms, infectious diseases, like Salmonellosis, Newcastle disease, Fowl cholera, Infectious Bursal Disease, mark’s disease, fowl pox, and coccidiosis are remained to be responsible for morbidity and mortality (Habte et al., 2017).

Salmonellosis is a major cause of bacterial enteric illness in both humans and animals. *Salmonella* nomenclature is complex, and scientists use different systems to refer to and communicate about this genus (Brenner, Villar, Angulo, Tauxe & Swaminathan, 2000). The seven subgroups of genus *Salmonella* are subgroup I (enteric); subgroup II (salamae); subgroup IIa (arizonae); subgroup IIb (diarizonae); subgroup IV (houtenae); subgroup V (bongori); and subgroup VI (indica). Subgroup I contains most of the salmonellae organisms that are significant animal pathogens (Quinn, Carter, Markary & Carter, 1994).

Contaminated soil, vegetation, water, and components of animal-
containing animal products, and the feces of infected individuals are the sources of infection (Scott, Kennedy & Chchengappa, 2013). Salmonella is primarily transmitted by the fecal-oral route, often through ingestion of contaminated feed and water for chicken (Dwight & Yuan, 1999). It is known to spread from one country to another or within the country via live animal trade as well as by humans due to food-borne infections (F & Wierup, 2006). Salmonella enterica is the third top cause of foodborne illnesses with 78 million worldwide annual morbidities and 59 thousand mortality (Havelaar et al., 2015). The distribution of the pathogenic strains Salmonella were also causing a considerable loss in poultry farms but, also it is the main concern of human beings due to the transmission of Salmonella to human beings through consumption of chicken origin foods, contact with infected chicken and products (Gantois et al., 2009).

As a result of the continuous use of some antibiotics for the treatment of Salmonella pathogens antibiotic resistance has been a common problem that blocks or limits the effective control of salmonellosis. (Schlundt, Toyofuku, Jansen & Herbst, 2004)

In Ethiopia, the prevalence of Salmonella serotypes affecting poultry industries varies. Some research reports showed as high as 15.12% (Abuma et al., 2017), while others reported 0.80% and 16.13% S. Gallinarum/ S. Pullorum serotypes in cloacal swab samples and post-mortem tissue samples respectively (Abul et al., 2017). Although the above pilot studies conducted on the prevalence of Salmonella conducted in modern/intensive poultry farms in different urban areas of Ethiopia, there is no published study on isolation, identification and antimicrobial susceptibility pattern of Salmonella in semi-intensive chicken farms in rural and peri-urban districts of Kafa zone. Therefore, this current study was aimed to isolate, identify Salmonella and to determine its antimicrobial susceptibility pattern of isolates from chickens as well as to determine the factors associated with the prevalence of the disease.

2. Methods

2.1. Study area and study population

The study was conducted in four selected districts namely Chenà, Bita, Gimbo and ShishoendeinKafa zone of South Nations Nationalities and Peoples Regional State of Ethiopia. Kafa is located in the Southwestern part of Ethiopia 470 Km from Addis Ababa. The total animal population of Kafa zone is cattle (3,243,380), sheep (1,821,415), goats (869,579), chicken (4,611,641), horse (317,418), mule (96,377), and donkey (28,782) (KZLR, 2019). The study population was exotic poultry breed found in semi-intensive farms of selected districts of Kafa zone. All age groups and both sex were included in the study without exclusion criteria.

2.2. Study design

A cross-sectional study was conducted from November 2019 to August 2020 in semi-intensive poultry farms found in selected districts to isolate, identify salmonella species and to determine its antimicrobial susceptibility pattern of isolates from chickens as well as to determine the factors associated with the prevalence of the disease. Districts were purposively according to the potential of poultry production/ availability of services, isolation of sick/dead chickens and use of antimicrobial drugs for therapeutic, or prophylactic purposes.

2.3. Sample size and sampling procedure

The sample size was calculated by using the formula given by Thrufield, (Thrusfild, 2005) by using 5% accepted level of precision and expected prevalence of 27% in Bonga poultry multiplication center (Abdi et al., 2017).

\[N = Z^2 \cdot \frac{p \cdot (1-p)}{d^2} = 1.96^2 \cdot \frac{0.27 \cdot (1-0.27)}{0.05^2} = 302.87 \]

Based on the above formula total of 302 chickens were sampled and equal numbers of chickens per district were allocated. The number of chickens selected per farm within the district was kept proportional to the chicken population of the farms. Cloacal swab samples were collected from randomly selected live chickens using sterile cotton swab pre-moistened in buffered peptone water (BPW) (HiMedia, India) in the ratio of one to nine (i.e. 1 g swab sample ratio 9 ml BPW) (OIE, 2012), keeping aseptic procedure according to the method described in ISO-6579 (2002). All collected samples were placed in icebox and transported to the Mizan Regional Veterinary Laboratory Center within 2–4 h after sampling.

2.4. Laboratory isolation and identification

2.4.1. Non-selective and selective enrichments of samples

The pre-enriched BPW samples were incubated at 37 °C for 18–24 h. Then 100 μl mixtures was transferred to 10 ml Rappaport-Vassiliadis (HiMedia, India) medium and incubated at higher temperature 41.5 °C for 18–24 h, to provide Salmonella with an advantage over most competitive organisms. Additionally, 1 ml of the pre-enrichment broth was transferred into a tube containing 10 ml of Muller-Kauffman tetrathionate broth (HiMedia, India) and were incubated at 37 °C for 24 h (ISO-6579, 2002).

2.4.2. Isolation of salmonella

After 24 h of selective enrichment a loopful of cultures from both was streaked onto selective media Xylose Lysine Deoxycholate (XLD) agar (HiMedia, India) and Brilliant Green (BG) agar, modified (HiMedia, India) and incubated at 37 °C for 24–72 h. Plates were observed just after 24 h of incubation and Gram staining was conducted and Salmonella suspected colonies were maintained on Tripticase Soy agar (Oxoid) at 4 °C temperature for further characterization.

Table 1

Districts	Farms	Number of examined	Total population of poultry	Positive (%)
Gimbo	Farm 1	30	291	0 (0)
	Farm 2	25	238	5 (20)
	Farm 3	22	107	3 (13.63)
Bita	Farm 4	15	115	0 (0)
	Farm 5	22	402	6 (18.75)
	Farm 6	28	340	2 (7.14)
Shishoende	Farm 7	26	311	3 (11.53)
	Farm 8	24	225	4 (16.66)
	Farm 9	25	276	2 (8)
Chenà	Farm 20	20	244	0 (0)
	10			
	Farm 28	400	1 (3.57)	
	Farm 11	27	350	2 (7.40)
	Farm 12	27		
Total		302	28 (9.27)	
variables were compared using the Pearson chi-square (\(\chi^2\)) test for the association of all possible risk factors to the prevalence of the disease. In all cases \(P < 0.05\) was taken as a statistically significant association with the occurrence of disease while \(P > 0.05\) was considered statistically not significant. The strength of association of the disease occurrence with risk factors was analyzed using multivariable logistic regression with \(P < 0.05\) was considered as a significant association.

2.5. Antimicrobial sensitivity test

The antimicrobial susceptibility testing of the isolates was performed with Kirby-Bauer disk diffusion method according to Clinical and Laboratory Standards Institute of USA (CLSI, 2018) and Kirby-Bauer Disk Diffusion Susceptibility Test Protocol (Jan, 2016) on Mueller Hinton agar medium (HiMedia, India). Totally 14 antimicrobial discs with a known concentration of antimicrobials were used. The name, code and disk content is indicated in Table 5. The diameters of clear zone of inhibition produced bacterial colonies were measured to the nearest millimeter using a digital caliper and compared with standards and interpreted as resistant, intermediate, or susceptible according to published zone size interpretive chart (CLSI, 2018).

2.6. Data management and analysis

Data was collected in data collection sheet, entered into a database designed using Microsoft Excel spreadsheet and analyzed using STATA statistical software package (version 13). Proportions for categorical data were compared using the Pearson chi-square (\(\chi^2\)) test for the association of all possible risk factors.

3. Results

3.1. Prevalence and risk factors of salmonella species

The overall prevalence of *Salmonella enterica* species in the Kafa zone was 9.27% (\(n = 28\)). The highest 20% prevalence was found in Farm 2 while, the lowest 0% prevalence was in three farms (farm 1, 4 and 10)

Risk factors	Number of examined	Positive (%)	Chi-square (\(\chi^2\))	P-value
Districts				
Gimbo	77	8 (10.39)	3.4294	0.330
Bita	75	8 (10.66)		
Shishoende	75	9 (12)		
Chena	75	3 (4)		
Age				
<1 months	52	4 (7.69)	0.7822	0.676
1-2 months	183	16 (8.74)		
Above 2 months	67	8 (11.94)		
Source of chickens				
Gubire	255	20 (7.84)		
Bishoftu	47	8 (17.02)	3.9742	0.046
Health status				
Normal	278	8 (17.02)	3.9742	0.046
Diarrheic	24	6 (25)	0.0078	0.929
Purpose of production				
Dual	236	21 (8.89)	0.1788	0.672
Layers	66	7 (10.6)		
Farm types				
All in-all out	177	11 (6.21)	4.7503	0.029
Continuous	125	17 (13.6)		
Source of chickens				
Commercially formulated	190	18 (9.47)	0.0249	0.875
Locally formulated	112	10 (8.92)		
Table 3
Odds ratio of statistically significant risk factors in logistic regression.

| Salmonella positive | Odds Ratio | Std. Err. | z | P>|z| | [95% Conf. Interval] |
|---------------------|------------|-----------|--------|------|---------------------|
| Health status (Diarrheic) | 4.360533 | 2.418561 | 2.66 | 0.008 | 1.470355 | 12.93174 |
| Farm types (Continuous) | 3.63791 | 2.017634 | 2.33 | 0.020 | 1.226772 | 10.78797 |

Table 4
Categorized risk factors for the prevalence in farms level.

Risk factors	Categories	Number of farms observed	Number of positive farms (%)	Number of isolates (%)	Chi-square (χ²)	P-value
House type	Litter	12	9 (75)	28 (100)	0.58524	0.4444
	Well/stream	12	9 (75)	28 (100)	0.58524	0.4444
Previous diarrhea occurrence history	Whitish diarrhea + other signs	2	2 (100)	5 (17.85)	8.4444	0.077
	Bloody diarrhea + other signs	5	5 (100)	16 (57.14)	0.1512	0.7000
	Yellowish diarrhea + other signs	1	0 (0)	0 (0)	0.0000	1.0000
	Mixed + other signs	1	1 (100)	5 (17.85)	0.0000	1.0000
	No signs	3	1 (33.33)	2 (7.14)	0.0000	1.0000
Drugs used to treat sick chickens	Ampromlium only	2	1 (50)	5 (17.85)	1.7143	0.1923
	Oxytetracycline only	2	2 (100)	6 (21.42)	0.1512	0.7000
	Both drugs (Ampromlium and Oxytetracycline)	7	5 (71.42)	15 (53.57)	0.1512	0.7000
	No drugs	1	1 (100)	2 (7.14)	0.1512	0.7000
The response of diseased chickens for treatment	Good	4	1 (25)	5 (17.85)	8.0000	0.005
	Poor	8	8 (100)	23 (82.14)	0.1512	0.7000

antimicrobials (i.e. between susceptible and intermediate pattern (Table 5). And, the rest antimicrobials showed different percentages of susceptibility, intermediate and resistance patterns.

Among 28 isolated *Salmonella enterica* species, 92.85% (n = 26) of them were showed multidrug resistance while 7.14% (n = 2) of them showed extensively drug resistance (Supplementary Table 1). 50% of multidrug-resistant isolates were resistant to 5–6 antimicrobials, while 7.14% of isolates showed maximum resistance pattern to 7 antimicrobials. The highest antimicrobial resistance pattern 35.71% (n = 10) was shown for five antimicrobials pattern categories next to four categories 28.57% (n = 8) and the least was for two, three and seven with 7.14% (n = 2) antimicrobials pattern category (Supplementary Table 2). The antimicrobial susceptibility result for each isolate was recorded in Supplementary Table 3.

4. Discussion

The overall prevalence of *Salmonella enterica* species in Kafa zone was 9.27%. This finding is greater than previous reports (Bayu, Asrade, Kebede, Sisay & Bayu, 2013; Eguale, 2018; Taddese et al., 2019) whom reported 2.98%, 4.7% and 4.69% in Jimma, central Ethiopia and Addis Ababa respectively. The reason for higher prevalence in the present study could be difference in the source of the breeding stock as well as difference in the farm biosecurity. However, it is lower than that of (Abunna et al., 2017; Alabchew & Mekonnen, 2013; Langata, Maingi, Musonye, Kiiru & Nyamache, 2019; Makaya, Matope & Pfukenyi, 2012; Rezaul et al., 2017) who reported 15.12%, 41.9%, 10%, 12% and 32% in Modjo (Ethiopia), Jimma (Ethiopia), Zimbabwe, Kenya and Dhaka (Bangladesh) respectively. The poultry production system may also play role in the distribution of pathogens, by shedding of the pathogen to the environment. Besides, direct transmission of the bacteria from humans as well as the difference in contamination levels of poultry feeds may be the factor for the prevalence of salmonella species.

Prevalence of *Salmonella enterica* species in white Leghorn breeds 17.02% was found to be higher than Sasso breeds 7.84% with a statistically significant difference (P < 0.05). A similar report was reported in Abunna et al. (Abunna et al., 2017) with the highest infection rate 25% for white Leghorn than bovans and ISA browns. In this study, only exotic poultry breeds were incorporated and thus comparison was done between two exotic breeds. In fact, comparing local breeds with exotic it is clear that local breeds are more adapted to their environment, more resistant to disease than exotic breeds (FAO, 2019). The factor for variation in infection in both breeds in this study might be related to the genetic variation to disease resistance, variation in the farm

Table 5
Antimicrobial susceptibility test pattern.

Antimicrobial disks	Disk codes	Disk potency (%))	Number of susceptible isolates (%)	Number of intermediate isolates (%)	Number of resistance isolates (%)
Amoxyclav (Amoxicillin /Clavulanic acid)	AMC	30 µg	13(46.42%)	10(35.71%)	5(17.85%)
Streptomycin	STR	10 µg	4(14.28%)	15(53.57%)	9(32.14%)
Oxytetracycline	OX	30 µg	0(0%)	0(0%)	28(100%)
Ampicillin	AMP	2 µg	0(0%)	0(0%)	28(100%)
Gentamicin	GEN	10 µg	27(96.42%)	1(3.57%)	0(0%)
Kanamycin	K	5 µg	0(0%)	8(28.57%)	20(71.42%)
Neomycin	N	30 µg	18(64.28%)	9(32.14%)	1(3.57%)
Chloramphenicol	CHL	30 µg	9(32.14%)	18(64.28%)	1(3.57%)
Cefotaxime	CTX	30 µg	28(100%)	0(0%)	0(0%)
Ceftriazone	CRO	30 µg	26(92.85%)	2(7.14%)	0(0%)
Sulphamethoxazole/trimethoprim	SXT	25 µg	11(39.28%)	14(48.28%)	4(13.42%)
Ciprofloxacin	CIP	5 µg	5(17.85%)	14(50%)	9(32.14%)
Norfloxacin	NOR	10 µg	22(78.57%)	6(21.42%)	0(0%)
Nalidixic acid	NA	30 µg	5(17.85%)	7(25%)	16(57.14%)
management system, duration of time that they spent in the farm.

Prevalence in the case of a source of chickens revealed that Gubire 7.84% and Bishoftu 17.02% with a statistically significant difference ($P < 0.05$). Chickens of day-old age brought from different commercial (intensive) poultry farms where their parent’s adapted good biosecurity, disease control and prevention practices regularly. But in the semi-intensive farming system, the change in the management, biosecurity and disease control practices are very different. Such conditions might increase the disease prevalence in the poultry farming system. The infected bird, such as carriers, not only spread the infection to their own generation but also succeeding generations, through egg transmission (Shivaprasad, 2006; Wray & Davies, 1999). On top of this, there was no chickens vaccinated against Salmonella in all farms and also, no data obtained about the vaccination history of ancestor chickens in commercial farms.

Apparently healthy chickens infected with Salmonella less than clinically sick (diarrheic) chickens with the prevalence of 7.91% and 25% respectively. Positivity of chickens with the diarrheic sign was related with Salmonella infection ($P < 0.05$). The prevalence Salmonella positive chickens with and without a diarrheic sign indicate that several Salmonella carrier chickens exist in the farm. Previously sick but recovered chickens may still continue to shed the microorganisms and animals with chronic salmonellosis infection may also shed the microorganism (Radke, McFall & Radostits, 2002). As table eggs and poultry meat can transmit to humans, it poses a risk factor for public health (Hugas & Beloelj, 2014). Carrier chickens may get sick if body resistance is lowered by environmental stress or inter-current infection. The study showed that it was 4.3 times more likely to recover Salmonella in diarrheic chickens than apparently healthy chickens ($P < 0.05$). Chickens are frequently colonized with Salmonella by horizontal and vertical transmission at the primary production level without detectable symptoms (Barrow, Jones, Smith & Wigley, 2012; Cosby et al., 2015).

Farm types of all-in all-out and continuous were revealed 6.21% and 13.6% respectively with a significant difference among the farm type ($P < 0.05$). Salmonella has been reported to survive in poultry houses for at least 53 weeks in dust and up to 26 months in thin layers of litter, dried feces and feed (Davies & Breslin, 2003) following depopulation of a flock. As it was stated in Habte et al., (Habte et al., 2017), Wray and Davies (Wray & Davies, 1999) all-in all-out management styles allow simultaneous depopulation of facilities between flocks and allow time for periodic clean-up and disinfection to break the cycle of disease. In contrast with Habte et al., (Habte et al., 2017); Wray and Davies (Wray & Davies, 1999) report, the prevalence of Salmonellosis in all-in all-out management types in the present study was less than that of the continuous management system. This indicates that sanitation and disinfection of houses during all-in all-out time were poor to break the cycle of the pathogen in all-in all-out management styles. Continuous types of farms are 3.6 times more likelihood of being positive for Salmonella than all-in all-out types of farms ($P < 0.05$).

Depending on the previous history of diarrheal occurrence in the farm Salmonella positivity was revealed, in farms where the whitish, bloody and mixed type of diarrhea was seen. And, 57.14% ($n = 16$) of isolates were isolated from farms were the bloody type of diarrhea showed. Different journal articles reported that abnormal feces color (white, green, yellow) poultry infected with salmonellosis. While farms showed yellowish diarrhea were found to be negative for salmonellosis. This indicating that yellowish-colored diarrheal clinical signs are probably not related to the salmonellosis infection but, maybe due to other infections. In contrast, the report of Nazir et al. (Nazir et al., 2012) stated that watery yellow diarrhea was characteristic signs for acute Salmonellosis cases.

All Salmonella isolates were found to have developed resistance to Oxytetracycline and ampicillin antimicrobials. This result was in agreement with Abdi et al., (Abdi et al., 2017) resistance report to ampicillin, and Tesema et al., (Tesema, Bedu, Ejo & Hiko., 2017) report to tetracycline. Sannat et al., (Sannat et al., 2017) reported that Salmonella Gallinarum isolates were resistant to Chloramphenicol, Ampicillin, Ceftazidime, Cefoxime, Cefepime, Azithromycin, Nalidixin, Tetracycline, Oxytetracycline and streptomycin. Since resistance to older antibiotics (e.g. Ampicillin, Chloramphenicol and Trimethoprim-Sulfamethoxazole) has been increasing for many years, recommended treatment options for salmonellosis included fluoroquinolones (Ciprofloxacin) and extended-spectrum cephalosporins (Chen, Wang, Su & Chiu, 2013; Parry & Threlfall, 2008). The problem is probably associated with the indiscriminate use of antimicrobial agents in feed to enhance growth promotion and prevent disease outbreaks that may serve as a selective pressure for killing the sensitive strains and may ultimately replace the drug sensitive microorganisms to be eliminated and favor the wide spread of drug resistance strains in the animals and humans (Muhammad, A, Hassan & Momena., 2009). Among the 9(75%) poultry farms using Oxytetracycline antibiotics for treatment of poultry disease and 7(58.33%) of them were positive for Salmonella and 82.14% of Salmonella isolates was recovered from them. Furthermore, however, the excess/overuse or underdose of antimicrobials can generate genomic selective pressures to enable microbes to adapt and acquire resistance (Assefa & Girma, 2019). Due to the limited access and relatively high price drugs, the reports of the prevalence of antimicrobial-resistant Salmonella to relatively low-priced and regularly available antibiotics are alarming for a low-income society.

In the current study, 92.85% ($n = 26$) of the isolate were showed multidrug resistance. This could be due to improper use of antibiotics without veterinary prescription. Similar results were reported (Abunna et al., 2017; Mthembu, Zishiri & El Zowalaty, 2019). As described in an experimental study (Kohanski, DePristo & Collins, 2010), sub-lethal bactericidal antibiotic therapy (underdosing) induces a heterologous increase in resistance for a range of other antibiotics. Those resisted antimicrobials drugs should be not used for treatment drugs in the farms. As a limitation to this study; serotyping was not done to identifying isolates into serotype level. Furthermore, detection of the resistant gene from antimicrobial-resistant isolates was not done due to a lack of diagnostic kits.

5. Conclusion

The present study showed that the prevalence of Salmonella has a significant association with the breed, farm type and source of chicken. The finding showed concerns about the emergence of AMR, especially a multi-drug resistance pattern. Based on the present finding we recommend that awareness creation for poultry breeders on the importance of good poultry management, disease prevention/control. Chicks should be obtained from Salmonella-free breeding flocks. The use of chemical disinfectants, regular hand washing, and wearing personal protective should be routinely practiced. Drug choice should be applied to clear resistant pathogen from the farms. To avoid the spreading of antimicrobial resisting Salmonella pathogen in the farm’s selection of effective drugs should be needed during treatment, of sick chickens.

Funding

This work was partially supported by the Mizan Regional Veterinary Laboratory Center of South Nations Nationalities and Peoples Regional State and Faculty of Veterinary Medicine of Hawassa University, Ethiopia.

Availability of data and materials

The data supporting the findings are presented in the manuscript. The corresponding author can also be reached for any data inquiry.

Ethics approval and consent to participate

The study was approved by the research proposal review committee.
of the faculty of veterinary medicine, Hawassa University. Written informed consent was obtained for both questionnaires interview and sample collection to keep the confidentiality of specific poultry farm/ farms at the time of sample collection. All methods were carried out in accordance with relevant guidelines and regulations.

Consent for publication

Not applicable.

Informed consent information sheet

Purpose of the Study: The study aim at isolating, identifying and determining the antimicrobial susceptibility pattern of Salmonella from chickens thereby to determine the factors associated with the prevalence of the disease.

Description of the Research: Farm owners will be asked for short questionnaire survey to gather information about the current poultry farm management status and risk factors associated with the disease. Fecal samples will be collected from selected chicken in the farm for laboratory isolation and identification of the bacteria.

Potential Risks and Benefit: The study will be conducted through interviews and you are being asked for a little of your time about your farm. The fecal sample collection procedure has no risk. The finding of this research help you to know the current status of the disease and drug resistance pattern as you can get feedback recommendations that benefits the farmer.

Rights of the participant: Participating and not participating is the full right and participants can stop from participation in the study at any time. And also the participant can skip question which does not want to respond. Participants can ask any questions which is not clear for understanding.

Confidentiality: Any information you tell us will not be disclosed to third party. Farm name will not be specified. Result from the laboratory test will be kept confidential and you can be informed of the results upon its completion.

Address of the field investigator:

● Tamirat Haile: Mizan Regional Veterinary Laboratory Center, Mizan-aman, P.O.Box 254, Ethiopia, Cell phone: +25,120,110,182, e-mail: tamevet55@gmail.com

Farm owners consent form

In undersigning this document, I am giving my consent to participate in the study entitled as ‘Isolation, identification and antimicrobial susceptibility of Salmonella in semi-intensive poultry farms of Kafa zone, Southwest Ethiopia’ I have been informed that the purpose of this study is to assess the prevalence, antimicrobial sensitivity and risk factor associated with Salmonella in semi-intensive poultry farms. I have understood that participation in this study is entirely voluntarily. I have been told that my answers to the questions will not be given to anyone else and no reports of this study ever specify me and my farm. I have also been informed that my participation or non-participation or my refusal to answer questions will have no effect on me. I understood that participation in this study does not involve risks. I understood that the principal investigators are the contact person if I have questions about the study or about my rights as a study participant. I voluntarily agree to participate in this research.

Declaration of Competing Interest

The authors declare that they have no competing interests.

Acknowledgments

The authors extend gratitude to Mizan Regional Veterinary Laboratory Center for providing all logistics and budget needed for this research work as well as to Hawassa University Faculty of Veterinary Medicine for the provision of academic guidance and materials used to write this manuscript. The authors are also thankful to the poultry farm owners and other study participants.

Supplementary materials

Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.vas.2021.100206.

References

Abda, S., Mamo, G., Worku, A., & G, A. (2015). Preliminary study on avian tuberculosis and associated risks in domestic chickens at Shashemene district. Ethiopia. Journal of Biology and Medical Sciences, 3, 13–23.

Abdi, R. D., Mengist, F., Beyi, A. F., Beyene, T., Waktrole, H., Mammo, B., Ayana, D., & Abunna, F. (2017). Determination of the sources and antimicrobial resistance patterns of Salmonella isolated from the poultry industry in Southern Ethiopia. BMC Infectious Diseases, 17, 352.

Abunna, F., Bedasa, M., Beyene, T., Ayana, D., Mambo, B., & Doguma, R. (2017). Salmonella: Isolation and antimicrobial susceptibility tests on isolates collected from poultry farms in and around Modjo, Central Oromia, Ethiopia. Journal of Animal and Poultry Sciences, 5, 21–30.

Afrin, A. (2018). Review on chicken production in Ethiopia with emphasis on meat production. Munich: GRIN Verlag. https://www.grin.com/document/385849.

Ableachew, K., & Mekonnen, A. (2013). A survey on Salmonella infection among chicken flocks in Jimma town, Ethiopia. African Journal of Microbiology Research, 7, 1239–1245.

Assefa, A., & Girma, M. (2019). Prevalence and antimicrobial susceptibility patterns of Salmonella and Shigella isolates among chicken owners aged below five years with diarrhea attending Robe General Hospital and Goba Referral Hospital, South East Ethiopia. Tropical Disease, Travel Medicine and Vaccines, 5, 19.

Barrow, P. A., Jones, M. A., Smith, A. L., & Wigley, P. (2012). The long view: Salmonella and antimicrobial resistance in broilers: A review. Applied Poultry Research, 24, 408–426.

CSA (2017). Cental Statistics Authority: Agricultural sample survey 2016/2017. Volume II, report on livestock and livestock characteristics (private peasant holdings). Addis Ababa.

CSI (2018). Clinical and Standards Laboratory Institutes (CSSL): Performance standards for antimicrobial susceptibility testing, M100S, (28 edition). Wayne, PA, USA.

Cosby, D. E., Cox, N. A., Harrison, M. A., Wilson, J. L., Buhr, R. J., & Cray, P. J. F. (2015). Salmonella and antimicrobial resistance in broilers: A review. Journal of Applied Poultry Research, 24, 408–426.

CSLI (2018). Clinical and Standards Laboratory Institutes (CSSL): Performance standards for antimicrobial susceptibility testing, M100S, (28 edition)., Wayne, PA, USA.

Dinka, H., Chaha, R., Dawo, F., Bekana, E., & Leta, S. (2010). Major constraints and health management of village poultry production in Rift Valley of Oromia, Ethiopia. Agricultural-Eurasian Journal of Agriculture and Environmental Science, 9, 529–533.

Dwight, C. H., & Yuan, C. Z. (1999). Veterinary microbiology (1st edition, p. 75). London, UK: Blackwell Science, Ltd.

Dukar, D. (2018). Non-typhoidal Salmonella serovars in poultry farms in central Ethiopia: Prevalence and antimicrobial resistance. BMC Veterinary Research, 14, 217.

Egudu, T. (2018). Non-typhoidal Salmonella enteritidis phase type 4 in the environment and arthropod vectors on an empty free-range chicken farm. International Livestock Research Institute (ILRI) manual 25. Nairobi, Kenya: ILRI.
