Tumors develop when infiltrating immune cells contribute growth stimuli, and cancer cells are selected to survive within such a cytotoxic microenvironment. One possible immune-escape mechanism is the upregulation of PI-9 (Serpin B9) within cancer cells. This serine proteinase inhibitor selectively inactivates apoptosis-inducing granzyme B (GrB) from cytotoxic granules of innate immune cells. We demonstrate that most classical Hodgkin lymphoma (cHL)-derived cell lines express PI-9, which protects them against the GrB attack and thereby renders them resistant against GrB-based immunotherapeutics. To circumvent this disadvantage, we developed PI-9-insensitive human GrB mutants as fusion proteins to target the Hodgkin-selective receptor CD30. In contrast to the wild-type GrB, a R201K point-mutated GrB construct most efficiently killed PI-9-positive and -negative cHL cells. This was tested in vitro and also in vivo whereby a novel optical imaging-based tumor model with HL cell line L428 was applied. Therefore, this variant, as part of the next generation immunotherapeutics, also named cytolytic fusion proteins showing reduced immunogenicity, is a promising molecule for targeted therapy of patients with relapsing malignancies, such as HL, and possibly other PI-9-positive malignancies, such as breast or lung carcinoma.

INTRODUCTION

A major problem of conventional cancer therapy is its lack of specificity. Thus, more specific approaches are now under investigation to exclusively kill abnormal cells. One of the strategies comprises the development of immunotoxins, which consist of a cell-binding moiety and a cell death-inducing agent. As plant- or bacteria-derived toxins can cause severe side effects, the generation of less immunogenic compounds is essential. This led to the fourth generation of immunotoxins, first so coined by Mathew and Verma,1 which include humanization of both the cell-binding ligand as well as the pro-apoptotic enzyme. Owing to the high effectiveness and importance of granymes during the immune response of humans, these serine proteases are promising candidates for the development of antitumor immunotherapies. The best studied and the most promising one is granzyme B (GrB),2-8 an effector molecule stored in the granules of cytotoxic immune cells to kill transformed tumor or virus-infected cells.9,10 However, its antitumoral efficacy is limited by irreversible inhibition by PI-9. PI-9 is co-expressed in the cytosol of cytotoxic immune cells to avoid autotoxicity in case of granule leakage of misdirected GrB. Several tumors have also been described to express PI-9, such as breast cancer,11 metastasizing melanoma,12 lung cancer13 and prostate cancer,14 and also classical Hodgkin lymphoma (cHL) is a typical example for this phenomena.15 It has been shown that PI-9 expression is heterogeneous within the tumor cell population. As a very high number of positive tumor cells predict unfavorable clinical outcome, these might be positively selected upon immune surveillance.12,16 Killing these treatment-resistant cells may therefore strongly increase the therapeutic success and possibly lifespan. Therefore, we recently generated a variety of GrB mutants, which showed a reduced PI-9-inhibitor binding in the first experimental studies.17 Here, we introduce a novel GrB-based antitumor approach targeting the cHL receptor CD30. As animal model for HL, only L540cy cells are established so far. In addition, based on the recently suggested optical-imaging technique,18 we here describe a novel tumor model with the cHL cell line L428. Subsequently, we were able to compare the cytotoxic efficacy of cytolytic fusion proteins (CFPs) using four different GrB point mutations17,19 in the PI-9-binding site of GrB not only in vitro but also in vivo. In this study, the R201K GrB mutant demonstrated the best antitumor efficacy against both PI-9-positive and -negative tumor cells.

MATERIALS AND METHODS

Protein preparation

The pMS plasmid encoding EGeb-H22(scFv)20 was used to construct EGeb-Ki4(scFv) by replacing the coding sequence for the single chain variable fragment H22(scFv) by K4(scFv). Mutations were inserted with specific primers via site-directed mutagenesis by overlap extension.17 The construct (Figure 1a) includes an enterokinase site, enabling the activation of GrB21 and an IgG leader sequence for secretory expression.22 Secretory mammalian expression in HEK293T cells and purification via affinity
chromatography of EGb-Ki4(scFv) and its mutants were done as described previously.5

Cell lines
The chL cell lines L540cy, L428 (DSMZ, ACC 197), L1236 (DSMZ, ACC 530), the AML cell line HL60 (DSMZ, ACC-3) and the Human Embryonic Kidney cell line HEK293T (ATCC, CRL-11268) were cultivated in RPMI 1640 plus Gluta-MAX-I, including 10% (v/v) fetal calf serum, 100 U/ml penicillin and 100 μg/ml streptomycin at 37 °C, and 5% CO2. Altogether, 106 cells, as indicated, were fixed, permeabilized and stained with antihuman PI-9 (clone 7D8) and GAM-PO or GAM-FITC (Sigma-Aldrich, Taufkirchen, Germany), and compared by non-linear-regression determinations in GraphPad Prism 4.0, La Jolla, CA, USA.

Serum stability
A total of 70 ng/ml purified protein was incubated with 50% murine serum at 37 °C for different time periods between 0 and 48 h. Remaining protein binding activity was measured via flow cytometric analysis as described elsewhere,24 here with 400-fold dilution of 7.5 μl of the mixture.

Internalization determination
Ki4(scFv)-SNAP protein was produced by secretory expression of HEK293T cells as described above for Gb-Ki4(scFv), and coupled to Alexa-Fluor-BG-647 according to the manufacturer’s instructions (NEB). In order to verify internalization, 4 × 106 cells were incubated at 4 or 37 °C, respectively, for 2 h with 1 μg Ki4(scFv)-SNAP-BG-647 in 300 μl PBS or only in PBS as negative control. After washing of the cells, antigen-dependent internalization was detected by confocal laser-scanning microscopy (TCS SP5).

Detection of endogenous PI-9 and GrB-PI-9 complex
Cells were lysed with PBS containing 1% Triton X-100. Endogenous PI-9 was detected by western blot or flow cytometry using the antibodies anti-human PI-9 (clone 7D8, Santa Cruz Biotechnology, Santa Cruz, CA, USA) and GAM-PO or GAM-FITC (Sigma-Aldrich, Taufkirchen, Germany), respectively. Signal detection on western blots was done by
results and discussion
GrB is one of the most potent and well-established effector molecules having the highest potential for targeted antitumor therapy due to the human origin of its enzymatic activity. This minimizes unwanted immune reactions in patients related to CFPs. Their potential has been shown in tumor cell lines that are resistant against cytotoxic drugs. However, its efficacy is diminished by the endogenous inhibitor PI-9 that can be expressed by tumors as escape mechanism. This expression correlates with unfavorable prognosis for the patients, so that a specific killing of those cells could be beneficial and the development of PI-9-resistant GrB-based CFPs could meet this demand. On the down side, such alterations may introduce novel sequences with potential antigenicity.

We fused GrB to the CD30 targeting murine Ki4(scFv), which is the anti-CD30 single chain of choice, due to its property of not binding the shed CD30 receptor.26 This is important as it has been reported that CD30 ectodomain shedding occurs at high incidences,27 which could lead to an off-target capturing of the CFP. We selected chL and used the receptor CD30 as target in a proof-of-principle model because it has already been successfully used in CFP-based approaches, for example, by Brentuximab–Vedotin28 or KI4(scFv)-ETA.21 The mammalian expression of our constructs that results in natural glycosylation patterns of GrB was successful. To obtain the enzymatically active protein Gb-Ki4(scFv), EGB-Ki4(scFv) had to be activated by enterokinase. The purified protein before and after enterokinase digestion is shown in Figure 1b. Proteolytic activity was verified via colorimetric substrate assay, whereby no differences between the kinetics of wild-type Gb-Ki4(scFv) versus its mutant GbR201K-Ki4(scFv) were observed (Figure 2). The comparative enzymatic activities of all the generated mutants have been published earlier and indicate no significant difference between the mutants and the wild type described here.17

CHL represents a typical disease for the application of CFPs, as despite of high cure rates, 15–30% of the CHL patients relapse after conventional therapy, and this is associated with poor prognosis. This treatment resistance can be due to tumor-escape mechanisms like induction of PI-9 or downregulation of the CD30 receptor. During an initial apoptosis assay, we observed a limited effect of wild-type Gb Ki4(scFv) on L428 cell line, whereas successful induction of cell death was seen on L540cy cells (Figure 1c). As marked differences in CD30 receptor expression were observed (Figure 3c) and to assure that cytotoxic differences were not due to subsequent diminished internalization, we tested internalization of KI4(scFv)-SNAP-BG-647 as described earlier.25 Thereby, we observed complete internalization after 2 h at 37 °C (Figure 3d), so that the described effect could be excluded. Only External binding was observed after incubation at 4 °C, excluding unspecific internalization. After lysing the cells following treatment with Gb-Ki4(scFv) analysis by western blot with a GrB-specific antibody, we observed an additional high-running band within the probe derived from Gb-Ki4(scFv)-treated L428 cells, which was absent in the one of L540cy (Figure 1f). As shown before, this could be interpreted as the SDS-stable complex between PI-9 and Gb-Ki4(scFv).29 At the same time and in spite of the non-specifically detected band at the same expected height of Gb-Ki4(scFv) within the buffer control, we could thereby verify the successful internalization of the CFP. Additionally, via western blot and flow cytometric analysis, we demonstrated that the HL cell lines differ in their PI-9 expression. Therefore, the T-typed L540cy lacked PI-9, whereas the B-typed cells, L1236 and L428, showed a strong expression (Figures 1d and e). These findings are in accordance with an earlier study showing that 10% of all tested HL patients (n = 57) expressed the inhibitor.17 In addition, this expression was also found upon Epstein–Barr virus infection, which is a major cause of B-type HL.26 and was recently even directly linked to Epstein–Barr virus-positive cases of HL.31

Results and discussion

Figure 2. Enzymatic activity of Gb-Ki4(scFv) and its mutant GbR201K-Ki4(scFv) determined via a colorimetric assay based on the synthetic GrB substrate Ac-IETD-pNA. Absorbance at 405 nm was monitored in a 2-min interval for 60 min at 37 °C. Activities for both constructs were the same.
As mentioned earlier, PI-9-insensitive GrB candidates were generated and published previously, their applicability and efficacy on cells in vitro and in vivo, however, remained to be established.17 Here, the three most promising candidates: R28K, R201A and R201K and an additional one previously described in literature, K27A,19 were compared with the wild-type protein for binding activity and affinity to target cells and serum stability of the protein. Results are shown for the best mutant R201K. As exemplary shown for cell line L428 in Figures 3a and b, both wild type and mutant specifically bind to the target cells and do not exhibit unspecific binding to a CD30-negative cell line, HL60. The affinity constants K_d were 3.6 nM on L540cy and 1.5 nM on L428 for Gb-Ki4(scFv), and 5.7 nM and 1.9 nM for GbR201K-Ki4(scFv), respectively. Additionally, their serum stability was compared to the stability in buffer (Figures 3e–g). A sufficient stability for at least 10 h in serum could be confirmed for both constructs. Next, we tested the cytotoxic activity of the mutants in comparison to the wild-type CFP on the PI-9-negative cell line L540cy. The observed IC50 values were all in the same range between 1.7 and 5.1 nM (Figure 4a). To confirm apoptosis induction, we performed an annexin V assay depicted in Figure 4b, with normalized data converted to viability. From the data, it could be concluded that the point mutations did not alter stability, binding affinity or cytotoxicity towards PI-9-negative cells of Gb-Ki4(scFv).

Based on the initial studies indicating a decreased apoptotic effect of Gb-Ki4(scFv) due to the expression of endogenous PI-9 (Figures 1c and f), we compared the in vitro antitumor efficacy of the four GrB mutants in PI-9-positive cells (Figures 4c). The most effective one, R201K, reduced the viability in both PI-9-positive (L428, L1236) and PI-9-negative (L540cy) cell lines, resulting in
Moreover, the PI-9-positive, CD30-expressing L428 on the other hand induced by all constructs used (compare Figures 4b and c, respectively) can be explained by the activation of caspase 3/7 by the mutated construct GbR201K-Ki4(scFv) in PI-9+ cells only. A similar pattern could further verify our results by a statistically significant increase of caspase 3/7 activity (Figure 4d), an indicator of apoptosis induction, within the PI-9-positive cells after incubation with GbR201K-Ki4(scFv), in contrast to the treatment with Gb-Ki4(scFv), which only produced the expected background signal. The wild-type and the already published mutant K27A were effective in PI-9-negative cells only.

In vivo studies for cHL have so far been strongly restricted, as the only cell line that sufficiently grows in mice is L540cy. The only cell line that sufficiently grows in mice is L540 or L540cy. The wild-type did not induce cell death at all (data not shown). We therefore, only the mutant was used to confirm its effectiveness in vivo. Here, the tumor size reduction was statistically significant compared with both wild type (P < 0.05) and control (P < 0.005), whereas the difference between the determined relative tumor size for the wild-type treated and the control group were not statistically significant (Figure 5b).

No difference in cytotoxic activity between Gb-Ki4(scFv) and its mutant R201K was detected on PI-9-negative cells in vivo. Treatment with GbR201K-Ki4(scFv) triggered an arrest of tumor growth, whereas tumors in mice receiving non-binding GbR201K-H22(scFv) increased to over 100% of the original size (mm²) (P < 0.001, Figure 6b).

Therefore, in contrast to the GbR wild type, our newly developed mutant GbR201K-Ki4(scFv) was able to kill both PI-9-positive and -negative tumor cells in vitro as well as in vivo.

62% viability in L1236, 70% in L428 and 40% in L540cy compared with the untreated control (P < 0.001). The strong differences in apoptosis between the L540cy on one hand, and the L1236 and L428 on the other hand induced by all constructs used (compare Figures 4b and c, respectively) can be explained by the published, lower overall sensitivity for apoptosis induction by the latter two. Moreover, the PI-9-positive, CD30-expressing chronic myeloid leukemia cell line, K562, showed a differential background signal. The wild-type and the already published mutant GbR201K-Ki4(scFv) were compared. GbR201K-Ki4(scFv) variants in 2 parallel cell cultures per dilution) showing strong dose-dependent effects of Gb-Ki4(scFv) and its mutants on P19− L540cy. IC50 values are listed for all constructs. (b and c) Toxic effect of 11 nm Gb-Ki4(scFv) variants in 2 × 10⁵ L540cy cells (b; PI-9−) and L1236 and L428 (c; PI-9−) after 48 h of cultivation at 37°C. (b) Apoptotic cells were determined via normalized annexin V-GFP flow cytometric analysis and converted to viability. The statistical significance between treated and untreated samples was P < 0.005. (c) Viability was determined by XTT metabolization. Standard deviations are shown for three–five independent experiments. All statistical significances were determined via two-tailed t-test: (*) for P < 0.05 and (**) for P < 0.001. (d) Successful activation of caspase 3/7 by the mutated construct GbR201K-Ki4(scFv) in PI-9− L428 and L1236 was demonstrated via a preluminescent caspase 3/7-DEVD-aminoluciferine substrate. Data are shown as normalized to the background signal of Gb-Ki4(scFv).
Staining of tissue sections cut from both L540cy and L428 tumors after excision confirmed the continued expression of CD30 after treatment with the Ki4(scFv)-derived constructs (Figures 5c and 6c). This excludes the reduction of CD30 by the tumor as mechanism to escape treatment. In addition, we confirmed CD30 receptor expression by the tumor cells in vivo. This was done using optical in vivo imaging, as described previously. We injected Ki4(scFv)-SNAP-BG-747 into L540cy tumor-bearing mice, resulting in localization of the signal in the tumor only (Figure 6d).

Figure 5. Results of mouse experiments with L428-induced tumors. (a) Treatment schedule indicating intravenous (i.v.) injection of L428 cells, protein injection and days of measurement. (b) Relative tumor size after treatment with fusion proteins, as indicated. Tumor size was estimated by imaging with the Cri Maestro System. The mutant GbR201K-Ki4(scFv) caused a decelerated tumor growth as compared with the unspecific control GbR201-H22(scFv) (**) and to the wild-type Gb-Ki4(scFv) (*). The difference between Gb-Ki4(scFv) and GbR201K-H22(scFv) was not significant (ns). (c) Confocal microscopy of Ki4(scFv)-SNAP-BG-Vista-Green (i) stained tissue sections of control-treated L428 tumors, Kat2 signal from transfected cells is visible in red (ii) and the overlay of an enlarged image.

Figure 6. Results of mouse experiments with L540cy-induced tumors. (a) Treatment schedule indicating i.v. injection of cells, protein injection and days of measurement. (b) Relative tumor size is shown at time points as indicated upon treatment with mutant GbR201K-Ki4(scFv) versus control GbR201K-H22(scFv). The difference between the curves was determined to be statistically significant with \(P < 0.001 \) (***). (c) Confocal microscopy of Ki4(scFv)-SNAP-BG-Vista-Green-stained tissue sections of control-treated L540cy tumors. (d) Receptor depending targeting of L540cy with Ki4(scFv)-SNAP-BG-747 in vivo after 6 h. Protein was applied i.v. into L540cy-bearing mice. Measurement was taken with deep-red filter set (730–950 nm) (i) background signal, (ii) image with fluorescence signal (yellow, Ki4(scFv)-SNAP-BG-747).
In conclusion, we here for the first time in a proof-of-principle model demonstrate that residual therapy-resistant cancer cells can be killed when the resistance is due to PI-9 expression as escape mechanism. This was accomplished by a targeted immunotherapeutic approach comprising our novel Grb B201K variant, which kills these resistant, PI-9-positive cells in addition to PI-9-negative tumor cells. This finding is not just beneficial for HL treatment, but can also bear clinical relevance for the treatment of other hematological disorders, or solid tumors that potentially express PI-9 or selected PI-9-positive cells under immune surveillance or tumor therapy. As PI-9 expression correlates with an unfavorable clinical outcome, our targeted treatment approach using the here-described mutant GrBs may lead to specific elimination of these resistant cells, resulting in an improved therapeutic effect.

CONFLICT OF INTEREST
The authors declare no conflict of interest.

ACKNOWLEDGEMENTS
We gratefully acknowledge the excellent technical assistance of Anh-Tuan Pham during mouse experiments and of Sarah Kirchhoff during generation of mutants.

AUTHORSHIP CONTRIBUTIONS
SS, HPH and TT wrote the paper; SS and TT conceived, executed and analyzed the experiments. TT, MH and GH-T participated in planning and executing the animal experiments. RF and SB provided critical intellectual input and contributed to writing the manuscript.

REFERENCES
1 Mathew M, Verma RS. Humanized immunotoxins: a new generation of immunotoxins for targeted cancer therapy. Cancer Sci 2009; 100: 1359–1365.
2 Kanatani I, Lin X, Yuan X, Manorek G, Shang X, Cheung LH et al. Targeting granzyme B to tumor cells using a yoked human chorionic gonadotropin. Cancer Chemother Pharmacol 2011; 68: 979–990.
3 Kurschus FC, Fellows E, Stegmann E, Jenne DE. Granzyme B delivery via perforin is restricted by size, but not by heparan sulfate-dependent endocytosis. Proc Natl Acad Sci USA 2008; 105: 13799–13804.
4 Kurschus FC, Jenne DE. Delivery and therapeutic potential of human granzyme B. Immunol Rev 2010; 235: 159–171.
5 Liu Y, Cheung LH, Hittelman WN, Rosenblum MG. Targeted delivery of human pro-apoptotic enzymes to tumor cells: in vitro studies describing a novel class of recombinant highly cytotoxic agents. Mol Cancer Ther 2003; 2: 1341–1350.
6 Stahnke B, Thepen T, Stocker M, Rosinke R, Jost E, Fischer R et al. Granzyme B-H222(scFv), a human immunotoxin targeting CD64 in acute myeloid leukemia of monocytic subtypes. Mol Cancer Ther 2008; 7: 2924–2932.
7 Zhang L, Zhao J, Wang T, Yu CJ, Jia LT, Duan YY et al. HER2-targeting recombinant protein with truncated pseudomodern exotoxin A translocation domain efficiently kills breast cancer cells. Cancer Biol Ther 2008; 7: 1226–1231.
8 Zhao J, Zhang LH, Jia LT, Zhang L, Xu YM, Wang Z et al. Secreted antibody/granzyme B fusion protein stimulates selective killing of HER2-overexpressing tumor cells. J Biol Chem 2004; 279: 21343–21348.
9 Andrade F, Casciola-Rosen LA, Rosen A. Granzyme B-induced cell death. Acta Haematol 2004; 111: 28–41.
10 Veuquely K, Motyka B, Goping IS, Shostak J, Sawchuk T, Bleackley RC. Granule-mediated killing by granzyme B and perforin requires a mannose 6-phosphate receptor and is augmented by cell surface heparan sulfate. Mol Biol Cell 2006; 17: 623–633.
11 Jiang X, Ellison SJ, Alarid ET, Shapiro DJ. Interplay between the levels of estrogen and estrogen receptor controls the level of the granzyme inhibitor, proteinase inhibitor 9 and susceptibility to immune surveillance by natural killer cells. Oncogene 2007; 26: 4106–4114.
12 van Houdt IS, Oudejans JJ, van den Eertwegh AJ, Baars A, Vos W, Bleackley RA et al. Expression of the apoptosis inhibitor proteinase inhibitor 9 predicts clinical outcome in vaccinated patients with stage III and IV melanoma. Clin Cancer Res 2005; 11: 6400–6407.
13 Soriano C, Mukaro V, Hodge G, Ahern J, Holmes M, Jersmann H et al. Increased proteinase inhibitor-9 (PI-9) and reduced granzyme B in lung cancer: mechanism for immune evasion? Lung Cancer 2012; 77: 38–45.
14 Ray M, Hostetter DR, Loeb CR, Simko J, Craik CS. Inhibition of Granzyme B by PI-9 protects prostate cancer cells from apoptosis. Prostate 2012; 72: 846–855.
15 Bladergroen BA, Meijer CJ, ten Berge RL, Hack CE, Muijs JJ, Dukers DF et al. Expression of the granzyme B inhibitor, protease inhibitor 9, by tumor cells in patients with non-Hodgkin and Hodgkin lymphoma: a novel protective mechanism for tumor cells to circumvent the immune system? Blood 2002; 99: 232–237.
16 ten Berge RL, Meijer CJ, Dukers DF, Kummer JA, Bladergroen BA, Vos W et al. Expression levels of apoptosis-related proteins predict clinical outcome in anal-plastic large cell lymphoma. Blood 2002; 99: 4540–4546.
17 Losasso V, Schiffer S, Barth S, Carlon P. Design of human granzyme B variants resistant to serpin B9. Proteins 2012; 80: 2514–2522.
18 Pardo A, Stocker M, Kampmeier F, Melmer G, Fischer R, Thelen T et al. In vivo imaging of immunotoxin treatment using Katsukia-transfected A431 cells in a murine xenograft tumour model. Cancer Immunol Immunother 2012; 61: 1617–1626.
19 Sun J, Whisstock JC, Harriott P, Walker B, Novak A, Thompson PE et al. Importance of the P4’ residue in human granzyme B inhibitors and substrates revealed by scanning mutagenesis of the proteinase inhibitor 9 reactive center loop. J Biol Chem 2001; 276: 15177–15184.
20 Stocker M, Pardo A, Hetzl C, Reutelingsperger C, Fischer R, Barth S. Eukaryotic expression and secretion of EGFP-labeled annexin AS, Protein Expr Purif 2008; 58: 325–331.
21 Barth S, Huhn M, Matthey B, Tawadros S, Schnell R, Schinkothe et al. Ki-4(scFv)-ETA’, a new recombinant anti-CD30 immunotoxin with highly specific cytototoxic activity against disseminated Hodgkin tumors in SCID mice. Blood 2000; 95: 3909–3914.
22 Edwards KM, Davis JE, Browne KA, Sutton VR, Trapani JA. Anti-viral strategies of cytototoxic T lymphocytes are manifested through a variety of granule-bound pathways of apoptosis induction. Immunol Cell Biol 1999; 77: 76–89.
23 von Kalle C, Wolf J, Becker A, Sacka M, Munck M, Engert A et al. Growth of Hodgkin cell lines in severely combined immunodeficient mice. Int J Cancer 1992; 52: 887–891.
24 Hetzel C, Bachran C, Fischer R, Fuchs H, Barth S, Stocker M. Small cleavable adapters enhance the specific cytotoxicity of a humanized immunotoxin directed against CD64-positive cells. J Immunother 2008; 31: 370–376.
25 Kampmeier F, Niesen J, Koers A, Ribbert M, Brecht A, Fischer R et al. Rapid optical imaging of EGF receptor expression with a single-chain antibody SNAP-tag fusion protein. Eur J Nucl Med Mol Imaging 2010; 37: 1926–1934.
26 Klimka A, Matthey B, Roovers RC, Barth S, Arends JW, Engert A et al. Human anti-CD30 recombinant antibodies by guided phage antibody selection using cell plating. Br J Cancer 2000; 83: 252–260.
27 Hansen HP, Recke A, Reincke U, Von Trexlow B, Borbach P, Von Strandmann EP et al. The ectodomain shedding of CD30 is specifically regulated by peptide motifs in its cysteine-rich domains 2 and 5. FASEB J 2004; 18: 893–895.
28 Yones A, Bartlett NL, Leonard JP, Lynch CM, Sievers EL et al. Brentuximab vedotin (SGN-35) for relapsed CD30-positive lymphomas. N Engl J Med 2010; 363: 1812–1821.
29 Mahruhi S, Kisiel W, Craik CS. Granzyme M is a regulatory protease that inactivates proteinase inhibitor 9, an endogenous inhibitor of granzyme B. J Biol Chem 2004; 279: 54275–54282.
30 Classen CF, Bird PI, Debatin KM. Modulation of the granzyme B inhibitor proteinase inhibitor 9 (PI-9) by activation of lymphocytes and monocytes in vitro and by Epstein-Barr virus and bacterial infection. Clin Exp Immunol 2006; 143: 534–542.
31 Tiacci E, Doring C, Brune V, van Noesel CJ, Klapper W, Mechtcherishev G et al. Analysis of primary Hodgkin and Reed-Sternberg cells to capture the molecular and cellular pathogenesis of classical Hodgkin lymphoma. Blood 2012; 120: 4609–4620.
32 Gruss HJ, Boiani N, Williams DE, Armitage RJ, Smith CA, Goodwin RG. Pleiotropic effects of the CD30 ligand on CD30-expressing cells and lymphoma cell lines. Blood 1994; 83: 2045–2056.
33 Krapfmann D, Emmerich F, Kordes U, Scharschmidt E, Dorken B, Scheidereit C. Molecular mechanisms of constitutive NF-kappaB/Rel activation in Hodgkin-Sternberg cells. Oncogene 1999; 18: 943–953.
34 Godal R, Keilholz U, Uharek L, Letsch A, Asemussen AM, Busse A et al. Lymphomas are sensitive to perforin-dependent cytototoxic pathways despite expression of PI-9 and overexpression of bcl-2. Blood 2006; 107: 3205–3211.

Efficacy of PI-9-resistant granzyme B mutants
S Schiffer et al

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/3.0/