Influence of hydrogenation on volume dependence of the Curie temperature and entropy change in La(Fe$_{0.86}$Si$_{0.14}$)$_{13}$

A Fujita1, S Fujieda2 and K Fukamichi2

1Department of Materials Science, Graduate School of Engineering, Tohoku University, Sendai 980-8579, Japan
2Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai 980-8577, Japan
afujita@material.tohoku.ac.jp

Abstract. To elucidate the influence of hydrogenation on the volume dependence of the Curie temperature T_C and the entropy change ΔS_m in La(Fe$_{0.86}$Si$_{0.14}$)$_{13}$, magnetic properties under hydrostatic pressure have been investigated. In the thermomagnetization curves of La(Fe$_{0.86}$Si$_{0.14}$)$_{13}$H$_{1.1}$, the first-order phase transition becomes clearer due to the decrease of volume, as observed before hydrogenation. By hydrogenation, the reduction of the pressure dependence of T_C by about 20% is caused by the magnetovolume contribution to the free energy. Meanwhile, the maximum value of ΔS_m is increased in magnitude from -9 to -18 J/kgK by applying pressure of 1 GPa. Accordingly, the decrease of volume is also effective to enhance ΔS_m after hydrogenation.

1. Introduction
The La(Fe$_{x}$Si$_{1-x}$)$_{13}$ compounds exhibit the itinerant-electron metamagnetic (IEM) transition above the Curie temperature T_C [1, 2], and large magnetocaloric effects (MCEs), such as the magnetic entropy change ΔS_m [3-5] and the adiabatic temperature change ΔT_{ad} [3, 4] are brought about by the IEM transition. In addition, T_C is increased by hydrogenation because of the increase of volume by interstitial hydrogen atoms and large MCEs are obtained around room temperature [4]. Accordingly, the present compounds are considered as one of the promising systems of magnetic refrigerants working around room temperature. In La(Fe$_{x}$Si$_{1-x}$)$_{13}$, the IEM transition becomes clear and MCEs become larger with increasing Fe concentration [2-4], while the hysteresis of the IEM transition, which causes loss of efficiency, is increased. Recently, we have demonstrated that the reduction of volume in $x = 0.86$ by applying hydrostatic pressure [2, 6, 7], or partial substitution of Ce [7, 8] or Pr [7, 9] makes the phase transition clearer due to the magnetovolume effect. As a result, the magnetic entropy change ΔS_m is enhanced to the same magnitude of that with $x = 0.88$, maintaining a small hysteresis associated with relatively low Fe concentrations [7-9]. The control of T_C by hydrogenation is necessary to obtain such advantageous features around room temperature. Meanwhile, it has been pointed out that the magnetovolume effect in $x = 0.88$ is reduced after hydrogenation [10]. Since the magnetovolume effect becomes smaller with decreasing x from 0.88 to 0.86 [2], the volume dependence of T_C and ΔS_m after hydrogenation is necessary to elucidate for La(Fe$_{0.86}$Si$_{0.14}$)$_{13}$. In the present study, the magnetization measurements by applying hydrostatic pressure for
La(Fe$_{0.86}$Si$_{0.14}$)$_{13}$H$_{1.1}$ having T_C close to room temperature are carried out and the volume dependence of T_C and ΔS_m has been discussed.

2. Experimental
The alloying of La(Fe$_{0.86}$Si$_{0.14}$)$_{13}$ was carried out by arc-melting in an Ar gas atmosphere. The homogenization of the specimens was made in an evacuated quartz tube at 1323 K for 10 days. The hydrogenation was made by annealing in H$_2$ atmosphere in a sealed chamber. The magnetization under hydrostatic pressure was measured with a superconducting quantum interference device (SQUID) magnetometer by settling a specimen into a Cu-Ti pressure clamp cell.

3. Results and discussion
Figure 1 shows the temperature T dependence of magnetization M for La(Fe$_{0.86}$Si$_{0.14}$)$_{13}$H$_{1.1}$ under various hydrostatic pressures P. In the inset, the pressure dependence of T_C for La(Fe$_{0.86}$Si$_{0.14}$)$_{13}$H$_y$ ($y = 1.1$) obtained from the M-T curve is plotted, together with the data before hydrogenation ($y = 0.0$) [2], for comparison. The magnetization around T_C in $P = 0.0$ GPa shows a continuous variation, although the decrement is much significant compared to the situation in the conventional second-order phase transition. With increasing P, T_C shifts to lower values and the discontinuous change of magnetization ΔM at T_C becomes significant. Similar change of M-T curve under hydrostatic pressure has been observed in La(Fe$_{0.86}$Si$_{0.14}$)$_{13}$ [6]. Therefore, the influence of the volume change on the phase transition characteristics is scarcely changed by hydrogenation.

From these data, the values of dT_C/dP are evaluated to be -77 for $y = 0.0$ and -68 K/GPa for $y = 1.1$, exhibiting that the magnitude of dT_C/dP is slightly reduced after hydrogenation. It has been reported that the magnitude of dT_C/dP for La(Fe$_{0.88}$Si$_{0.12}$)$_{13}$H$_y$ becomes smaller from -89 to -59 K/GPa with increasing y from 0.0 to 1.2 [10]. A decrease of dT_C/dP in magnitude of about 30% by hydrogenation has also been observed in La(Fe$_{0.89}$Si$_{0.11}$)$_{13}$H$_{1.64}$ melt-spun ribbon specimen [11]. Compared to these reported results, the reduction rate of dT_C/dP by hydrogenation for La(Fe$_{0.86}$Si$_{0.14}$)$_{13}$ is relatively small. One may notice that the change of compressibility κ by hydrogenation would cause the reduction of dT_C/dP even though the volume dependence of T_C is unchanged. However, it is expected that the change of κ by hydrogenation is not so drastically different between $x = 0.88$ and 0.86, and hence the change of volume dependence of T_C against the Fe concentration is essential. According to the theory of the IEM transition based on the Landau expansion including the influence of spin fluctuations and magnetovolume effect, the pressure dependence of T_C around P-0 for the second-order transition is given by equation (1) and for the first-order transition by equation (2) [12].

$$
\frac{d^2 \xi(T_C)}{dP} = -\frac{3}{\sqrt{35}} \frac{\kappa C_{\xi}}{|\theta|} \left(5 \frac{ac}{b^2} \right)^{-1/2}
$$

and
$$\frac{d \xi(T_c)^2}{d P} = - \frac{6 \kappa C_m}{\sqrt{7} |b|} \left(\frac{ac}{b^2} - \frac{5}{28} \right)^{-1/2}$$

where C_m and $\xi(T)^2$ are the magnetovolume coupling coefficient and the mean square amplitude of spin fluctuations. The parameters a, b and c are the coefficient of the Landau expansion of the free energy $F(M)$ as a function of magnetization M given as [12]

$$F(M) = \frac{1}{2} A(T) M^2 + \frac{1}{4} B(T) M^4 + \frac{1}{6} C(T) M^6$$

with

$$A(T) = a + \frac{5}{3} b \xi(T)^2 + \frac{35}{9} c \xi(T)^4 + 2 \kappa C_m P,$$

$$B(T) = b + \frac{14}{3} c \xi(T)^2, \quad C(T) = c$$

Note that the coefficients $A(T)$ and $B(T)$ are modified by the magnetovolume coupling [13], although such contributions are neglected for simplicity [12]. The second- and first-order transition at T_c take place in the range $ac/b^2<5/28$ and $5/28<ac/b^2<3/16$, respectively. From the comparison of phase diagram obtained by equation (3) and experimental data [2], the increase of the Fe concentration qualitatively corresponds to the increase of ac/b^2. In this viewpoint, the variation of dT_c/dP against x in the concentration range for the second-order phase transition [14] has been confirmed to be consistent with equation (1). On the other hand, the magnitude of dT_c/dP monotonically increases with increasing x and shows a saturation around $x = 0.89$ [14] unlike with the expected variation from equations (1) and (2) in which the magnitude of dT_c/dP becomes maximum around the boundary between the first- and second-order transition [12,13]. Such discrepancy is explained from the neglected P dependence of $d\xi(T_c)/dP$ in equation (2) for finite values of P [12], and also the concentration dependence of the proportional coefficient between $\xi(T)$ and T. What has to be mentioned is that the coefficient $A(T)$ contains the $2\kappa C_m P$ term. Since κP corresponds to the volume change - $\omega (\Delta V/V)$, therefore, the volume expansion caused by hydrogenation gives the negative contribution $-2C_m \omega$ to $A(T)$. This contribution is equivalent to the change given by the decrease of ac/b^2. In other words, the hydrogenation brings about the change of dT_c/dP just like a shift to the lower Fe concentration region. Before hydrogenation, the magnitude of dT_c/dP shows a maximum and the concentration dependence becomes steep around $x = 0.89$ [14]. On the other hand, the variation of dT_c/dP in $x \leq 0.86$ becomes moderate. Accordingly, the change of volume dependence of T_c for La(Fe$_{0.86}$Si$_{0.14}$)$_{13}$ after hydrogenation is much smaller than that for the higher value of x.

Before hydrogenation, the reduction of volume by the partial substitution of Ce results in the enhancement of ΔS_m [7-9]. To verify such a volume dependence of ΔS_m after hydrogenation, the isothermal magnetizations around T_c are measured at various temperatures around T_c in various values of P, and ΔS_m is evaluated by applying the Maxwell relation. Figure 2 shows the temperature dependence of ΔS_m of La(Fe$_{0.86}$Si$_{0.14}$)$_{13}$H$_{1.1}$ in a magnetic field change of 2 T under the selected values of P. The maximum value ΔS_m^{max} is increased with increasing pressure and ΔS_m^{max} in $P = 1.0$ GPa is almost twice as that in ambient pressure. The increase of ΔS_m^{max} by a factor of two in La(Fe$_{0.86}$Si$_{0.14}$)$_{13}$H$_{1.64}$ has also been reported [11]. Recently, the pressure dependence of ΔS_m of La(Fe$_{0.86}$Si$_{0.14}$)$_{13}$ has been calculated theoretically by the mean-field model based on the 3d band theory, however, the monotonic increase of ΔS_m^{max} against P is not realized [15, 16]. The discrepancy is considered to come from the treatment of magnetic excitations such as spin fluctuations in finite temperatures. We should notice that the influence of magnetic excitations to the total entropy is evaded by unnatural treatments of the phonon entropy in these mean-field calculations. From the isothermal magnetizations, the temperature dependence of critical field of the IEM transition, dBC/dT, is evaluated to be 0.23~0.24 T/K and shows a slight pressure dependence. From the Clausius-
Clapeyron relation, the entropy change connected with the latent heat is evaluated as the product of dBc/dT and the magnetization change ΔM at T_C. Since ΔM is prosily increased by P as seen form figure 1, the observed increase of ΔS_m^{max} against P is quite expected. As mentioned in Introduction, the partial substitution of Ce or Pr in La(Fe$_{0.86}$Si$_{0.14}$)$_{13}$ brings about a volume reduction, resulting in an enhancement of ΔS_m^{max} with keeping a small hysteresis of the IEM transition[8, 9]. The enhancement of ΔS_m^{max} by P after hydrogenation means that the partial substitution is advantageous to utilize them as magnetic refrigerants working around room temperature.

In summary, the volume dependence of the Curie temperature T_C and the magnetic entropy change ΔS_m has been investigated for La(Fe$_{0.86}$Si$_{0.14}$)$_{13}$H$_{1.1}$. In thermomagnetization measurements under pressure, the first-order phase transition becomes clearer with decreasing volume, while the pressure dependence dT_C/dP is slightly reduced after hydrogenation. The reduction of volume dependence of T_C is explained by the magnetovolume effect associated with the volume expansion caused by hydrogenation. It is elucidated that the maximal magnetic entropy change ΔS_m^{max} is enhanced by a reduction of volume in a similar way as observed before hydrogenation. These results certify that the magnetocaloric effects as well as hysteresis are effectively controlled by the volume change due to the partial substitution together with the increase of T_C up to around room temperature by hydrogenation.

Acknowledgements
This work was partly supported by the Elements Science and Technology Project of MEXT, and by a Grant-in-Aid for Scientific Research (B), No. 20360289 from JSPS.

References
[1] Fujita A, Akamatsu Y and Fukamichi K 1999 J. Appl. Phys. 85 4756.
[2] Fujita A, Fujieda S, Fukamichi K, Mitamura H and Goto T 2002 Phys. Rev. B 65 014410.
[3] Fujieda S, Fujita A and Fukamichi K 2002 Appl. Phys. Lett. 81 1276.
[4] Fujita A, Fujieda S, Hasegawa Y and Fukamichi K 2003 Phys. Rev. B 67 104416.
[5] Hu FX, Shen BG , Sun JR, Cheng ZH, Rao GH and Zhang XX 2001 Appl. Phys. Lett. 78 3675.
[6] Fujita A, Fukamichi K, Yamada M and Goto T 2003 J. Appl. Phys. 93 7263.
[7] Fujita A, Fujieda S and Fukamichi K 2009 IEEE Trans. Magn. 45 2620.
[8] Fujieda S, Fujita A and Fukamichi K 2005 IEEE Trans. Magn. 41 2787.
[9] Fujieda S, Fujita A and Fukamichi K 2007 J. Magn. Magn. Mater. 310 e1004.
[10] Fujieda S, Fujita A and Fukamichi K 2009 Mater. Trans. 50 483.
[11] Lyubina J, Nenkov K, Schultz L and Gutfleisch O 2008 Phys. Rev. Lett. 101 177203.
[12] Yamada H and Terao K 1994 J. Phys.: Condens. Matter 6 10805.
[13] Yamada H, Fukamichi K and Goto T 2001 Phys.Rev. B 65 024413.
[14] Fujita A, Fukamichi K and Goto T 2006 Mater. Trans. 47 478.
[15] de Medeiros LG and de Oliveira NA 2006 J. Alloys Compd. 424 41.
[16] de Medeiros LG, de Oliveira NA and Troper A 2008 J. Appl. Phys. 103 113909.