A robust anonymous biometric-based authenticated key agreement scheme for multi-server environments

Hua Guo\(^1\)\(^\ast\), Pei Wang\(^1\),\(^2\)\(^\ast\), Xiyong Zhang\(^3\)\(^\ast\), Yuanfei Huang\(^2\), Fangchao Ma\(^4\)

\(^{1}\)Beijing Key Laboratory of Network Technology, Beihang University, Beijing 100191, China, \(^{2}\)National computer network and information security laboratory, National Computer network Emergency Response technical Team/Coordination Center, Beijing 100029, China, \(^{3}\)State Key Laboratory of Space-Ground Integrated Information Technology, Beijing 100020, China, \(^{4}\)Beijing information technology institute, Beijing 100094, China

\(^\ast\) These authors contributed equally to this work.

\(*\) 09384@buaa.edu.cn

Abstract

In order to improve the security in remote authentication systems, numerous biometric-based authentication schemes using smart cards have been proposed. Recently, Moon et al. presented an authentication scheme to remedy the flaws of Lu et al.’s scheme, and claimed that their improved protocol supports the required security properties. Unfortunately, we found that Moon et al.’s scheme still has weaknesses. In this paper, we show that Moon et al.’s scheme is vulnerable to insider attack, server spoofing attack, user impersonation attack and guessing attack. Furthermore, we propose a robust anonymous multi-server authentication scheme using public key encryption to remove the aforementioned problems. From the subsequent formal and informal security analysis, we demonstrate that our proposed scheme provides strong mutual authentication and satisfies the desirable security requirements. The functional and performance analysis shows that the improved scheme has the best secure functionality and is computational efficient.

1 Introduction

Nowadays security has becoming an urgent issue for the distributed networks. The remote user authentication scheme allows the transmission of secret data via public channels, thus is an important cryptographic tool for distributed networks. In 1981, Lamport [1] proposed the first password-based authentication scheme. After that, considerable amount of work on password-based authentication schemes have been put forward for different applications [2, 3]. However, passwords are vulnerable to be broken in a short time by using dictionary guessing attack. To solve this problem, smart cards with password-based authentication schemes [4–12] are introduced to enhance the security of user authentication. Unfortunately, there are still some problems when the smart card is stolen and the stored data is leaked [13–15].

The biometric keys, such as fingerprint and iris, are considered to be a unique identifier of a user, thus have many advantages. For example, the biometric keys cannot be forgotten
or lost, are difficult to copy or share, and are not easy to forge or guess. Additionally, one can carry biometric keys at anytime and from anywhere. With the security requirements of the distributed networks and the good security performance and advantages of the biological characteristic, biometrics authentication protocols come to be more crucial and widely deployed [16–36]. In 2002, Lee et al. [16] designed the first biometrics-based remote user authentication scheme. In 2004, Lin-Lai [17] demonstrated that Lee et al.’s scheme cannot resist impersonation attack and designed a protocol without verification table to fix the flaws of Lee et al.’s scheme. In 2007, Khang-Zhang [18] pointed out that Lin-Lai’s scheme is insecure against server spoofing attack and illustrated an improved scheme. Rhee [19] demonstrated that Khang-Zhang’s scheme is vulnerable to impersonation attack and offline password guessing attack. Later, Li-Wang [20] designed an efficient three-factor remote user authentication scheme which only uses symmetric cryptographic primitive and the hash operation. However, in 2011, Das [21] exhibited that Li-Wang’s scheme is insecure against man-in-the-middle attack and does not provide proper certification. Furthermore, he designed a new certification scheme based on biometric characteristics. In 2014, Li et al. [25] pointed out that Das et al.’s scheme is vulnerable to forgery attack and stolen smart card attack, and put forward a three-factor remote user authentication scheme. After that, Chaturvedi et al. [26] demonstrated that Li et al.’s scheme doesn’t resist known session specific temporary information attack and doesn’t protect user’s privacy. They also proposed a novel authentication and key agreement protocol to overcome the weaknesses of Li et al.’s scheme.

In 2014, Chuang-Chen [27] proposed an efficient lightweight three-factor authentication protocol for multi-server environment which requires only the hash operation. After that, Mishra et al. [28] showed that Chuang-Chen’s scheme is insecure against the denial-of-service attack, smart card stolen attack, server spoofing attack and impersonation attack. In addition, they proposed a new biometric-based multi-server authentication protocol so as to overcome the weaknesses of Chuang-Chen’s scheme. In 2015, Lu et al. [29] illustrated that Mishra et al.’s scheme is insecure against server spoofing attack and impersonation attack, and can not provide forward secrecy. They introduced two independent three-factor authentication schemes [29, 31] for multi-server architecture, and claimed that the improved scheme has strong security. Unfortunately, Moon et al. [30] showed that Lu et al.’s scheme [29] is vulnerable to outsider attack and user impersonation attack, and put forward an enhanced protocol which fixes the flaws of Lu et al.’s scheme.

Unfortunately, we found that Moon et al.’s biometric-based remote user authentication scheme still has some flaws. In this paper, we firstly showed that Moon et al.’s scheme is vulnerable to insider attack, server spoofing attack, user impersonation attack and guessing attack. Moreover, we exhibited that their scheme is not anonymous for the user. Then we proposed an improved authentication scheme for multi-server environment to fix their design flaws. After that, we show that our scheme is robust against all known attacks through the formal and informal security analysis. Finally we demonstrate that the improved scheme has the best secure functionality and is computational efficient.

The rest of the paper is organized as follows. In section 2, we introduce some preliminary knowledge. Section 3 briefly reviews Moon et al.’s biometric-based remote user authentication scheme. Section 4 shows the design flaws in Moon et al.’s scheme. In order to eliminate the shortcomings discussed in section 4, we propose an enhancement authentication protocol in section 5. Section 6 analyzes the security of the proposed scheme, and Section 7 compares the performance of the enhanced scheme with other related schemes. Finally, we conclude in section 8.
2 Preliminaries

This section elaborates the definitions of one-way hash function and BioHashing, and the security model.

2.1 Definition

One-way hash function. A one-way hash function $h : \{0, 1\}^* \rightarrow \{0, 1\}^n$ takes an arbitrary-length input $x \in \{0, 1\}^*$, and produces a fixed-length output $h(x) \in \{0, 1\}^n$, called the message digest. The hash function has the following attributes:

- Computationally, it is easy to compute $y = h(x)$ if x and $h(x)$ are specified.
- It is almost impossible through polynomial time t to know two inputs x_1 and x_2, such that $h(x_1) = h(x_2)$.

BioHashing. BioHashing technique [37] is designed to reduce the probability of denial of access while keeping the false acceptance performance. Inputing the biometric feature set and a seed which represents the "Hash key", BioHashing generates a vector of bits. More precisely, with the help of a uniform distributed pseudo-random numbers generated by giving a secret seed, the biometric vector data $x \in \mathbb{R}^n$ is reduced down to a bit vector $b \in \{0, 1\}^l$ with l the length of the bit string ($l \leq n$) through BioHashing.

2.2 Security model

In this paper, we adopt the security model proposed by Abdalla et al. [38] to prove the security of our protocol.

- Participants. An oracle π_S^t denotes an instance t of a party S, π_U^u denotes the instance u of U, and π_{RS}^v denotes the instance v of RS.

- Partnering. The partner of an instance π_U^u of U is the instance π_S^t of S and conversely. The partial transcript of all exchanged messages between U and S is unique, and is said as a session ID $sid_{U,S}$ for the present session in which π_U^u participates.

- Freshness. π_S^t or π_U^u is fresh, only if the session key SK is not leaked to A.

- Adversary. In the ROR model, A models the real attack via the following oracle queries. To breach the security of the authentication protocol, A is able to access the queries given below:
 - Execute(π', π): The Execute query helps A obtain the messages transmitted between two honest participants; this query models an eavesdropping attack.
 - Send($\pi'; x$): The Send query corresponds to an active attack. π' executes the protocol and responds with an outgoing message after receiving a message x from A.
 - Reveal(π'): The A executes Reveal query to reveal of session keys. If the session has been accepted, π' returns the session key SK as its response that is computed between π' and its partner, otherwise returns a null value.
 - CorruptSC(π'): It is about modeling smart card loss attack and outputs the information stored in SC_i.
 - Test(π'): At some point, the adversary A can make a Test query to an oracle Π'. Π' flips an unbiased coin b and responds with the real agreed session key SK if SK is established.
and fresh, if \(b = 1 \); otherwise it returns a random sample generated according to the distribution of the session key. Otherwise, it returns \(\perp \).

Semantic security of the session key. In an experiment, the adversary \(A \) is challenged to differentiate between an instance’s real session key \(SK \) and a random key. \(A \) can continue querying Test queries to either the server instance or the user instance. The outcome of Test query must be consistent with the random bit \(b \). Eventually, \(A \) terminates the game simulation and outputs a bit \(b' \) for \(b \). We say \(A \) wins if the adversary guesses the correct \(b \).

Let \(E \) denotes the event that \(A \) wins the game. Then, the advantage of \(A \) breaches the semantic security of our proposed authenticated key-agreement (AKE) protocol, say \(P \), is computed as

\[
\text{Adv}_{\text{ake}}^{(A,P)} = 2\text{pr}[E_0] - 1.
\]

We say that the protocol \(P \) is a secure multi-server authentication and key agreement protocol in the ROR sense if \(\text{Adv}_{\text{ake}}^{(A,P)} \) is negligible.

Random oracle. To prove the security of the proposed protocol, the one-way hash function \(h(\cdot) \) is treated as a random oracle (say Hash oracle), and is provided to the adversary \(A \) and every participant. The Hash oracle is simulated by a two-tuple \((u, v)\) table of binary strings. When a hash query \(h(u) \) is made, the Hash oracle returns \(v \) if \(u \) is found in the table; otherwise, it returns a uniformly random string \(v \) and stores the pair \((u, v)\) in the table.

3 Review of Moon et al.’s scheme

In this section, we briefly review Moon et al.’s scheme, which consists of four phases: registration phase, login phase, authentication phase and password change phase. Table 1 summarizes the notations used in this paper.

Table 1. Notations.

Notations	Description
\(U_i \)	An \(i^{th} \) user
\(AS \)	Application server
\(RS \)	Registration server
\(ID_i \)	Identity of \(U_i \)
\(PW_i \)	Password of \(U_i \)
\(SC \)	smart card
\(SID_j \)	Identity of \(AS \)
\(PSK \)	Secret keys chosen by \(RS \) for \(AS \)
\(E(\cdot), D(\cdot) \)	Encryption and decryption operations
\(P_{u}, P_{v} \)	Public and private keys of \(AS \)
\(n_{1}, n_{2} \)	Random numbers chosen by \(U_i \) and \(AS \)
\(H(\cdot) \)	A secure one-way hash function
\(H_{\text{bio}}(\cdot) \)	A bio-hash function
\(\oplus \)	An exclusive-OR operation
\(\| \)	The concatenation operation

Table 1 summarizes the notations used in this paper.

https://doi.org/10.1371/journal.pone.0187403.t001
Registration and authentication phases of Moon et al.’s scheme

User U_i	RC	Server S_i
Select ID_i, PW_i	Select y_i	Request
$PWD_i = h(PW_i \| H(BIO_i))$	$V_i = h(ID_i \| PWD_i)$	$\{ V_i, W_i, X_i, Y_i, h(\cdot), H(\cdot) \}$
$W_i = h(y_i \| PSK) \oplus ID_i$	$W_i = h(ID_i \| x)$	
$X_i = h(ID_i \| x)$	$Y_i = h(PSK) \oplus y_i$	
$\{ V_i, W_i, X_i, Y_i, h(\cdot), H(\cdot) \}$		

SmartCard

- **Input ID_i, PW_i, BIO_i**
- $PWD_i = h(PW_i \| H(BIO_i))$
- **Check $V_i = h(ID_i \| PWD_i)$**
- $K = h((W \| ID) \| SID_i)$
- **Generate** m_1
 - $M_1 = ID_i \oplus K$
 - $M_2 = n_1 \oplus K$
 - $M_3 = PWD_i \oplus K$
 - $Z_i = h(X_i \| n_1 \| PWD_i \| T_i)$
- **Check** $|T_i - T_1| \leq \Delta T$
 - $y_i = Y_i \oplus h(PSK)$
 - $K = h(h(y_i \| PSK) \| SID_i)$
 - $M_1 = M_i \oplus K$
 - $PW_i = M_i \oplus K$
 - $X_i = h(ID_i \| x)$
 - $Z_i = h(X_i \| n_1 \| PWD_i \| T_i)$
 - **Generate** n_2
 - $M_2 = n_2 \oplus h(n_i \| PWD_i \| X_i)$
 - $M_3 = h(ID_i \| n_2 \| K \| T_2)$
 - $SK_i = h(n_1 \| n_2 \| K \| T_2)$
- **Check** $|T_i - T_2| \leq \Delta T$
 - $M_2 = M_i \oplus h(n_i \| PWD_i \| X_i)$

Server S_i

- **Check** $|T_i - T_1| \leq \Delta T$
- $y_i = Y_i \oplus h(PSK)$
- $K = h(h(y_i \| PSK) \| SID_i)$
- $M_1 = M_i \oplus K$
- $PW_i = M_i \oplus K$
- $X_i = h(ID_i \| x)$
- $Z_i = h(X_i \| n_1 \| PWD_i \| T_i)$
- **Generate** n_2
 - $M_2 = n_2 \oplus h(n_i \| PWD_i \| X_i)$
 - $M_3 = h(ID_i \| n_2 \| K \| T_2)$
 - $SK_i = h(n_1 \| n_2 \| K \| T_2)$
- **Check** $|T_i - T_2| \leq \Delta T$
 - $M_2 = M_i \oplus h(n_i \| PWD_i \| X_i)$

1. Using the password and the biometrics, the smart card computes $PWD_i = h(PW_i \| H(BIO_i))$ and sends $< ID_i, PWD_i >$ to the registration server through a secure channel.

2. Upon receiving the message $< ID_i, PWD_i >$, the registration server computes $V_i = h(ID_i \| PWD_i), W_i = h(y_i \| PSK) \oplus ID_i, X_i = h(ID_i \| x), Y_i = y_i \oplus h(PSK)$. Then RS stores $< V_i, W_i, X_i, Y_i, h(\cdot), H(\cdot) >$ onto a smart card and sends the smart card to U_i.

Login phase

During the login phase, the user U_i inserts his smart card into the smart card reader, inputs his identity ID_i and password PW_i, and imprints biometric information BIO_i. Upon receiving an input, the smart card uses the following steps to perform a login session:

https://doi.org/10.1371/journal.pone.0187403.g001

Fig 1. Registration and authentication phases of Moon et al.’s scheme. Registration and authentication phases of Moon et al.’s scheme.
1. The smart card computes $PWD_i = h(PW_i || H(BIO_i))$ and verifies $V_i = h(ID_i || PWD_i)$. If succeeds, it executes the next step. Otherwise the session aborts.

2. The smart card generates a random number n_1 and computes $K = h((W_i \oplus ID_i) || SID_i)$, $M_1 = ID_i \oplus K$, $M_2 = n_1 \oplus K$, $M_3 = PWD_i \oplus K$, $Z_i = h(X_i || n_1 || PWD_i || T_i)$.

3. The smart card transmits the login request message $< Y_i, Z_i, M_1, M_2, M_3, T_i >$ to the server S_j through a public channel, where T_i is the current timestamp.

3.3 Authentication phase

After receiving the authentication request $< Y_i, Z_i, M_1, M_2, M_3, T_i >$ from the user U_i, the server S_j executes the following steps to authenticate each other.

1. The server S_j firstly checks whether $|T_2 - T_i| < \Delta T$, then uses its pre-shared key PSK and achieves $y_j = Y_i \oplus h(PSK)$. The server also retrieves $K = h(y_j || PSK) || SID_i)$, $n_1 = M_2 \oplus K$, $ID_i = M_1 \oplus K$, $PWD_i = M_3 \oplus K$, $X_i = h(ID_i || x)$ and verifies $Z_i = h(X_i || n_1 || PWD_i || T_i)$. If they are not equal, S_j rejects the login request and terminates the session. Otherwise, the server generates a random number n_2 and computes $M_4 = n_2 \oplus h(n_1 || PWD_i || X_i)$, $M_5 = h(ID_i || n_1 || n_2 || K || T_s)$, $SK_j = h(n_1 || n_2 || K || T_s)$ and then responds with the message $< M_4, M_5, T_2 >$ to the smart card (user U_i) over a public channel.

2. Upon receiving the message $< M_4, M_5, T_2 >$ and checking the freshness of T_2, the smart card retrieves the value $n_2 = M_4 \oplus h(n_1 || PWD_i || X_i)$. Then it verifies $M_5 = h(ID_i || n_1 || n_2 || K || T_s)$. If the verification holds, it computes the session key $SK_j = h(n_1 || n_2 || K || X_i)$, which would be shared between U_i and S_j. Finally, the smart card computes $M_6 = h(SK_j || ID_i || n_2 || T_3)$ and sends the message $< M_6, T_3 >$ to S_j via a public channel.

3. Upon receiving the message $< M_6, T_3 >$, S_j checks the freshness of T_3 and verifies $h(SK_j || ID_i || n_2 || T_3) = M_6$. If the equation holds, the server ensures the identity of U_i. Otherwise, the server aborts the session.

3.4 Password updating

In this phase, U_i can change his password any time when he wants. In order to change password, the user performs the following steps:

1. U_i inserts his smart card into the smart card reader and then inputs ID_i and PW_i and biometrics BIO_i.

2. The smart card computes $PWD_i = h(PW_i || H(BIO_i))$, then checks if $V_i = h(ID_i || PWD_i)$ is the same as the stored V_i. If they are the same, SC accepts U_i to enter a new password PW_{new}.

3. SC computes $PWD_{\text{new}} = h(PW_{\text{new}} || H(BIO_i))$ and $V_{\text{new}} = h(ID_i || PWD_{\text{new}})$, and replaces V_i with V_{new}.

4 Security analysis of Moon et al.’s scheme

Although Moon et al. claimed that their scheme satisfies the required security requirements, we found that their scheme still has some weakness, i.e., fail to resist the insider attack, server spoofing attack, guessing attack and impersonation attack. Moreover, their scheme is not anonymous for users.
4.1 Lack of user anonymity

User anonymity means that the adversary cannot obtain or track the identity of the user according to the message transmitted via the public channel, which is an important property to protect the privacy of users. In Moon et al.'s scheme, during authentication phase, \(U_i \) sends \(< Y_i, Z_i, M_1, M_2, M_3, T_1 > \) as authentication request message to \(S_i \). Note that all the information transmitted in public channel can be intercepted by the adversary. The parameter \(M_1 = K \oplus ID_i \) where \(K = h((W_i \oplus ID_i)||SID_i) \) in the message \(< Y_i, Z_i, M_1, M_2, M_3, T_1 > \), is unique and static for each user during all logins to the same server. Thus anyone has ability to track the activities of a legal user, if he captures the value of \(M_1 \).

4.2 Insider attack

Insider attack means that an insider can get the sensitive credentials from the information stored in \(RS \). In Moon et al.'s scheme, during user registration phase, \(U_i \) submits his identity \(ID_i \) and \(PWD_i \) to \(RS \). In order to prevent duplicate user registration, \(RS \) has to store the user’s \(ID_i \). If an adversary obtains the list of \(ID_i \), it would cause great devastation. The adversary can impersonate himself as \(U_i \) as described in the following user impersonation attack.

4.3 Server spoofing attack

In Moon et al.’s protocol, \(RS \) shares the same secret information \((x, PSK)\) with all the application servers. The compromised sever can impersonate another legitimate server to deceive any legal user. Now we show the reason why Moon et al.’s scheme cannot withstand this kind of server spoofing attack.

1. When \(U_i \) submits his login request message \(< Y_i, Z_i, M_1, M_2, M_3, T_1 > \) to \(S_j \), the legal but malicious server \(S_k \) can intercept this message and compute \(y_i = Y_i \oplus h(PSK), K = h(y_i||PSK)||SID_i) \), \(n_1 = M_2 \oplus K, ID_i = M_1 \oplus K, PWD_i = M_3 \oplus K, X_i = h(ID_i||x) \) and to check \(Z_i = h(X_i||n_1||PWD_i||T_1) \).

2. \(S_k \) generates a random number \(n_2 \) and computes \(M_4 = n_2 \oplus h(n_1||PWD_i||X_i), M_5 = h(ID_i||n_2||K||T_2) \), then sends \(< M_4, M_5, T_2 > \) to \(U_i \).

3. \(U_i \) computes \(n_2 = M_4 \oplus h(n_1||PWD_i||X_i), M_5 = h(ID_i||n_2||K||T_2) \) and compares it with \(M_5 \). It is obvious that the values are the same, thus \(U_i \) responds with the message \(M_6 = h(SK_{i|j}||ID_i||n_1||T_3) \).

4. \(U_i \) computes the session key \(SK_{i|j} = h(n_1||n_2||K||T_2) \) and believes that he is communicating with \(S_j \).

Therefore, a legal but malicious server \(S_k \) can masquerade as another server \(S_i \) to fool any legal user and Moon et al.’s scheme is vulnerable to server spoofing attack.

4.4 Guessing attack

Moon et al.'s scheme is vulnerable to identity guessing attack, which is a critical concern in their scheme. If the adversary can extract the secret value \(W_i \) from the legal user’s smart card by some means and get the value of \(M_1 \) from public channel, the adversary can easily find out \(ID_i \) by performing the guessing attack, in which each guess \(ID_i \) can be verified as the following steps.

1. The adversary chooses \(ID_{i'} \) and computes \(K = h((W_i \oplus ID_{i'})||SID_i) \).
2. The adversary verifies the correctness of \(ID_{i'} \) by checking \(M_i? = ID_{i'} \oplus K \).

Therefore, the server can be misappropriated by the adversary.
3. The adversary repeats the above steps until a correct ID'_j is found.

4.5 User impersonation attack

In a remote user communication scheme, anyone should be considered as a legal user if a user has valid authentication credentials or could be capable of constructing an effective authentication request message. In Moon et al.’s protocol, an adversary can impersonate a valid user as described below.

1. As enlightened in insider attack and guessing attack mentioned above, an adversary obtains U_i’s personal identifiable information ID_i. He also extracts the secret values W_i and X_i from the legal user’s smart card by some means.

2. The adversary intercepts a valid login request message $<Y_i, Z_i, M_1, M_2, M_3, T_1>$ which is sent from ID_i via the public channel, then the adversary computes $K = ID_i \oplus M_1$, $PWD_i = K \oplus M_3$, chooses random number n_1, and calculates $M_{1m} = ID_i \oplus K$, $M_{2m} = n_1 \oplus K$, $M_{3m} = PWD_i \oplus K$, $Z_m = h(X_i||n_1||PWD_i||T'_1)$. Now, the malicious adversary sends the forged login request message $<Y_i, Z_m, M_{1m}, M_{2m}, M_{3m}, T'_1>$ to S_j by masquerading as legal user U_i.

3. After the authentication of the login request message, the server S_j generates a random number n_2, computes $M_{4m} = n_2 \oplus h(n_1||PWD_i||X_i)$, $M_{5m} = h(ID_i||n_1||n_2||K||T_2)$ and responds with the message $<M_{4m}, M_{5m}, T_2>$ to the adversary who is masquerading as U_i.

4. The masquerading adversary verifies the correctness of M_{4m} with the values of n_1 and K. Then the masquerading user U_i computes $n_2 = M_{4m} \oplus h(n_1||PWD_i||X_i)$, $SK_{ij} = h(n_1||n_2||K||T_2)$, $M_{5m} = h(SK_{ij}||ID_i||n_2||T_3)$, and sends the message $<M_{5m}, T_3>$ back to the server S_j.

5. The server S_j computes $M_{6m} = h(SK_{ij}||ID_i||n_2||T_3)$ and verifies it with the received value of M_{5m}. It is obvious that they are equal, so the sever authenticates successfully the legitimacy of the user U_i and the login request message information is accepted.

6. After mutual authentication, the server S_j and the malicious adversary who masquerades as the user U_i agree on the common session key as $SK_{ij} = h(n_1||n_2||K||X_i)$.

5 Our proposed scheme

In this section, we propose an improved remote user authentication scheme to fix the drawbacks in Moon et al.’s scheme. Our proposed protocol consists of four phases: registration, login, mutual authentication with key-agreement and password change. Fig 2 describes our proposed scheme.

5.1 Registration phase

When the remote user authentication scheme starts, the user U_i and the server S_j need to perform the following steps to register with the registration server (RS).

5.1.1 Server registration. To register with the system, a server S_j submits its identity SID_j and his public key Pub_j which can be obtained by all the users. Then S_j sends his identity SID_j and his public key Pub_j to RS. Upon reception, RS shares the secret key PSK with S_j and publishes S_j’s public key Pub_j.

5.1.2 User registration.

1. User U_i freely selects his identity ID_i which uniquely identifies the user’s identity, password PW_i and scans his biometrics BIO_i. Then U_i computes $IDB_i = h(ID_i || H(BIO_i))$, $PWD_i = h(PW_i || H(BIO_i))$ and sends $<h(ID_i), IDB_i, PWD_i>$ to RS on a secure channel.

2. Upon reception, RS computes $V_i = h(h(ID_i))||PWD_i)$, $W_i = h(h(ID_i))||PSK || IDB_i$ and stores $<V_i, W_i, h(\cdot), H(\cdot)>$ in the smart card SC.

3. RS sends SC to U_i over a secure channel.

Fig 2. Registration and authentication phases of our scheme. Registration and authentication phases of our scheme.

https://doi.org/10.1371/journal.pone.0187403.g002
5.2 Login phase

1. U sends the login request by inserting smart card (SC), and inputting ID, PW_i and BIO_i.
2. SC computes $PWD_i = h(PW_i || H(BIO_i))$ and then checks whether the condition $V_i^1 = h(h(ID_i || PWD_i))$. If the result is negative, the login session can be aborted. Otherwise, SC generates a random number n_1 and computes $K = h(W_i \oplus IDB_i \oplus h(ID_i || n_1))$.

$M_1 = E_{n_1}(ID_i || n_1), Z_i = h(n_1 || ID_i || K || T_i)$ and sends $< M_1, Z_i, T_i >$ to the server S as the login request message.

5.3 Authentication phase

1. On getting login message, S checks freshness of T_1, S computes $(ID_i || n_1) = E_{h(ID_i)}(M_1)$, $K = h(h(h(ID_i || PWD_i) \oplus h(ID_i || n_1))$ and verifies if $Z_i = h(n_1 || ID_i || K || T_i)$. If they are same, S authenticates U. Otherwise the session is terminated.
2. S further generates a random number n_2, and computes $M_2 = n_2 \oplus K, M_3 = h(ID_i || n_1 || n_2 || K || T_2), SK_{ij} = h(n_1 || n_2 || K || ID_i)$. S sends $< M_2, M_3, T_2 >$ to SC.
3. On checking the freshness of T_2, SC computes $n_2 = M_2 \oplus K$ and verifies the condition $M_3 = h(ID_i || n_1 || n_2 || K || T_2)$. If the condition holds, U authenticates S. Otherwise the process is terminated. Then, SC computes $SK_{ij} = h(n_1 || n_2 || K || ID_i)$ and $M_4 = h(SK_{ij} || ID_i || n_2 || T_3)$, then sends $< M_4, T_3 >$ to S_r.
4. S_r checks the freshness of T_3, S_r verifies $M_4 = h(SK_{ij} || ID_i || n_2 || T_3)$ and reconfirms the authenticity of U. Now, U and S_r share with the computed session key $SK_{ij} = h(n_1 || n_2 || K || ID_i)$ for further communication.

5.4 Password changing phase

This procedure is invoked whenever a user (U) wants to update his password with a new password PWD_i^*, without through a private channel or communicating with RS.

1. U inserts smart card SC and inputs ID, PW_i and BIO_i.
2. SC computes $PWD_i^* = h(PW_i^* || H(BIO_i))$ and then verifies the condition $V_i^2 = h(ID_i || PWD_i^*)$.
 If the condition doesn’t hold, the request can be dropped.
3. U chooses a new password PW_i^* and then computes $PWD_i^* = h(PW_i^* || H(BIO_i^*))$.
 Thus the smart card finally contains the parameters $< V_i^*, W_i, h(\cdot), H(\cdot) >$.

6 Security analysis of the proposed scheme

In this section, we use Burrows-Abadi-Needham logic (BAN-logic) [39] to verify the completeness of our scheme, then we prove the security of the scheme through formal and informal analysis.

6.1 Verifying the proposed scheme with BAN logic

The BAN logic introduced by Burrows et al. is a formal method of analyzing the security features of the information exchange protocol. It helps determine whether the exchanged information is credible, whether it can prevent eavesdropping or both. In this paper, we use BAN...
logic to prove that a user and a server share a session key after successfully running the protocol. We first introduce the BAN logic notations used in this paper in Table 2.

1. **BAN logical postulates**

1. **Message-meaning rule:**
 \[P \models X \] P believes the statement X is true
 \[P \vdash X \] P sees X
 \[P \models \neg X \] P once said that X or has sent a message containing X
 \[P \Rightarrow X \] P has control over X
 \[X \] X is fresh
 \[P \vdash K \land Q \] P and Q can communicate using the shared key K, only P, Q or a trusted third party know K
 \[(X)_K \] The formula X is hashed by K
 \[(X)_K \] The formula X is encrypted by K
 \[K - S_j \] K is the public key of P, only P know the corresponding secret key K⁻¹

2. **Establishment of security goals**

 g1: \[S_j \models U_i \models S_j \]
 \[S_j \models U_i \vdash S_j \]
 \[S_j \models U_i \models S_j \]
 \[S_j \models U_i \vdash S_j \]
 \[S_j \models U_i \models S_j \]

3. **Initiative premises**

 p1. \[U_i \models \#n_1 \]
 p2. \[U_i \models S_j \models \#n_2 \]
 p3. \[S_j \models \#n_1 \]
 p4. \[S_j \models \#n_2 \]
 p5. \[S_j \models U_i \vdash S_j \]
 p6. \[U_i \models U_i \models S_j \]
 p7. \[U_i \models ID_i \]
 p8. \[S_j \models U_i \models ID_i \]

Table 2. BAN logic notations.

Notations	Description
\[P \models X \]	P believes the statement X is true
\[P \vdash X \]	P sees X
\[P \models \neg X \]	P once said that X or has sent a message containing X
\[P \Rightarrow X \]	P has control over X
\[X \]	X is fresh
\[P \vdash K \land Q \]	P and Q can communicate using the shared key K, only P, Q or a trusted third party know K
\[(X)_K \]	The formula X is hashed by K
\[(X)_K \]	The formula X is encrypted by K
\[K - S_j \]	K is the public key of P, only P know the corresponding secret key K⁻¹

https://doi.org/10.1371/journal.pone.0187403.t002
the model of RSA-based password authentication.

We use provable security to prove the security of our scheme. The security proof is based on the random oracle.

4. Scheme analysis

\(S_j \equiv U_i \Rightarrow U_i \rightarrow S_j; \) \(S_j \equiv U_i \Rightarrow U_i \rightarrow S_j. \)

4. Scheme analysis

\(a_9. S_j \not\equiv \{n_1, ID_i\}_{pub} \)

Since \(Pr_k \) can get the value of \(ID_i \) and \(n_1 \). One can get the value of \(K \) unless he has the true \(Pri_i \) and \(PSK \) at the same time.

\(a_1. S_j \not\equiv (n_1, ID_o, T_1)_K, T_1 \)

We employ Message-meaning rule according to \(p_5 \) and \(a_1 \) to drive:

\(a_2. S_j \equiv U_i \Rightarrow (n_1, ID_o, T_1) \)

According to \(a_2 \) and \(p_5 \), we apply the Freshness-conjunction rule and Nonce-verification rule to get the following information:

\(a_3. S_j \equiv U_i \equiv (n_1, ID_o, T_1) \)

According to \(a_3 \) and \(p_6 \), we employ Jurisdiction rule and belief rule to obtain:

\(a_4. S_j \equiv ID_i \)

According to \(a_4 \) and \(S_j \not\equiv (U_i \rightarrow S_j, n_2, T_3)_K, T_3 \), we employ Message-meaning rule to obtain:

\(a_5. S_j \equiv U_i \Rightarrow (U_i \rightarrow S_j, n_2, T_3) \)

Finally, we employ The belief rule to obtain:

\(g_1. S_j \equiv U_i \Rightarrow U_i \rightarrow S_j. \)

According to \(g_1 \) and \(p_8 \), we utilize Jurisdiction rule to obtain:

\(g_2. S_j \equiv U_i \rightarrow S_j. \)

According to \(p_8 \) and \(U_i \not\equiv (ID_o, n_1, n_2, T_2)_K \), we employ Message-meaning rule to obtain:

\(a_6. U_i \equiv S_j \Rightarrow (ID_o, n_1, n_2, T_2) \)

According to \(a_6 \) and \(p_1 \) we apply Nonce-verification rule and Freshness-conjunction rule to derive:

\(a_7. U_i \equiv S_j \Rightarrow (ID_o, n_1, n_2, T_2) \)

According to \(a_7 \) and \(p_3, p_4, p_6 \) and \(SK_{ij} = h(n_1 \| n_2 \| K) \), we apply Freshness-conjunction rule and Nonce-verification rule to derive:

\(g_3. U_i \equiv S_j \Rightarrow U_i \rightarrow S_j. \)

According to \(g_3 \) and \(p_{10} \) we utilize Jurisdiction rule to obtain:

\(g_4. U_i \equiv U_i \rightarrow S_j. \)

6.2 Formal analysis

We use provable security to prove the security of our scheme. The security proof is based on the model of RSA-based password authentication.

Theorem 1. Let \(A \) be an adversary that run in polynomial time \(t \) against our protocol \(P \) in the random oracle, \(D \) be a uniformly distributed password dictionary and \(l \) denotes the
number of bits in the biometric key BIO_n, $|\text{Hash}|$ and $|D|$ denotes the range space of hash function and the size of D, respectively. If an attacker A makes q_h Hash queries, q_{send} Send queries, then, the advantage of A of breaking the SK-security of P is $Adv_P^{abl} \leq \frac{q_h^2}{|\text{Hash}|} + \frac{q_{send}}{2^{|D|}} + 2Adv_{RSA}^{PSK}(t)$, where $Adv_{RSA}^{PSK}(t)$ is the advantage that an adversary A solves the problem about the factor decomposed of great number.

Proof. The proof is finished by executing a sequence of hybrid games G_r. For each game G_r, let E_i denote the event that the adversary succeeds in guessing the bit b in game G_r.

Game G_0: This game corresponds to the real attack in the random oracle model. Thus, we can write

$$Adv_P^{abl} = |2\text{pr}[E_0] - 1|$$ \hfill (1)

Game G_1: By querying \text{\textsc{Execute}} oracle, this game simulates A’s eavesdropping attack. After that, the adversary queries \text{\textsc{Test}} oracle, and decides whether the outcome of the \text{\textsc{Test}} oracle is the real session key SK or a random number, where SK_i is computed from $SK_i = h(n_i||n_2||K||ID_i)$. Note that PSK and IDB_i are secret to S and U_i. The adversary has no knowledge about PSK, IDB_i and ID_n thus eavesdropping of message can not increase the chance of winning for the adversary in G_1. So we have

$$\text{pr}[E_0] = \text{pr}[E_1]$$ \hfill (2)

Game G_2: The difference between G_2 and G_1 is that we add the simulations of the \text{\textsc{Send}} and the \text{\textsc{Hash}} oracles. G_2 models an active attack where A tries to decide a participant into accepting a forged message. A can make several \text{\textsc{Hash}} queries to find the collisions. Note that the messages $\{M_1, Z_0, T_1\}$ and $\{M_2, M_3, T_2\}$ are associated with timestamp T_1, T_2, random numbers n_1 and n_2, and ID_i of U_n, hence there is no collision when querying the \text{\textsc{Send}} oracle. According to the birthday paradox, we have

$$|\text{pr}[E_2] - \text{pr}[E_1]| = \frac{q_h^2}{2^{|\text{Hash}|}}$$ \hfill (3)

Game G_3: In this game, G_3 simulates the CorruptSC oracle which models the smart card lost attack. Since the chosen password has low entropy, A may try online dictionary attack with the information obtained from the smart card. In addition, A may try to obtain biometrics key B_i from information collected from the smart card SC_i. Our protocol P uses BioHash, which extracts at most l nearly random bits, therefore the probability of guessing biometric key $B_i \in \{0, 1\}^l$ by A is approximated as $\frac{1}{2^l}$. If the number of wrong password inputs is limited by the system, probabilities can be estimated as follows:

$$|\text{pr}[E_3] - \text{pr}[E_2]| \leq \frac{q_{send}}{2^l|D|}$$ \hfill (4)

Game G_4: This game models an attack wherein A has to compute the real session key $SK_{ij} = h(n_i||n_2||K||ID_j)$ using K, ID_j from the eavesdropping messages $\{M_1, Z_0, T_1\}$ and $\{M_2, M_3, T_2\}$. A can not compute $K = h((W_i \oplus IDB) \oplus h(ID_j||n_1))$ and $(ID_j||n_1) = E_{pn_i}(M_i)$ as ID_n, Pri_j and IDB_i are unknown. A also needs to derive n_1 and n_2 from M_1 and M_2, respectively. We then have

$$|\text{pr}[E_4] - \text{pr}[E_3]| \leq Adv_{RSA}^{PSK}(t)$$ \hfill (5)
Additionally, since all session keys are random and independent and no information about the value of \(c \) is revealed to \(A \), Then,

\[
p_{r}[E_i] = \frac{1}{2}
\]

From Eqs (1)–(6), the following result is obtained:

\[
Adv_{atk}^A \leq \frac{q_{fs}}{|Hash|} + \frac{q_{send}}{2^{t-1} |D|} + 2Adv_{R^{atk}}^A(t)
\]

6.3 Informal security analysis

This subsection describes the security analysis of our scheme. To evaluate the security of the improved scheme, we assume that the adversary might access the smart card of legal user and extract the information stored in the smart card and intercept information transmitted over the public channel.

6.3.1 Mutual authentication

After receiving the login request information from \(U_i \), \(S_j \) checks if \(Z_i = h(n_i) || ID_i || K || T_i \) holds or not. The adversary who masquerades as the legal user cannot forge \(Z_i \) without knowing \(ID_i \) and the biometrics \(BIO_i \) of \(U_i \). Likewise, upon receiving the message \(M_2 \), \(U_i \) checks \(M_2 = h(ID_i) || n_i || |K|| T_i \), where \(K = h(h(ID_i)) || PSK \oplus h(ID_i) || n_i \), which requires the computation of \(U_i \)’s identity \(ID_o \), the random number \(n_1 \) and \(PSK \).

Only the server who has the private key \(Pri_j \) can compute \(ID_i \) and \(n_1 \) so as to get the value of \(K \). Hence only legal user can share the session key with corresponding server. Therefore, our proposed scheme can provide proper mutual authentication.

6.3.2 Anonymity

In the proposed scheme, the login request message \(< M_{1i}, Z_{ni}, T_{1i}>\) is dynamic for every login and does not disclose any information about \(U_o \) since it is associated with random number \(n_1 \). The identity is protected by the encrypted message \(M_i = E_{pub}(ID_i || n_i) \) using \(Pub_j \). The adversary cannot obtain \(ID_i \) without having the knowledge of \(Pri_i \). In addition, the unauthorized server cannot decrypt the user’s authentication message successfully since it does not own the private key \(Pri_j \). As a result, the user’s real identity cannot be retrieved. Thus our protocol can achieve the anonymity property of users as well as protect the privacy of users.

6.3.3 Off-line password guessing attack

An adversary may try to guess the password \(PW_i \) from the extracted smart card stored parameters \(<V_o, W_o, h(\cdot), H(\cdot)>\). The stored parameter contains the password \(PW_i \) in the form \(V_i = h(h(ID_i) || PW_i) \) where \(PW_i = h(h(PW_i) || H(BIO_i)) \). An adversary attempts to verify the condition \(V_i = h(h(ID_i) || PW_i || H(BIO_i)) \) while constantly guessing \(PW \). The adversary needs the value of \(ID_i \) and \(BIO_i \) of \(U_i \) in order to achieve the password guessing attack. However, the value of \(BIO_i \) is nowhere stored and an adversary cannot get the value of \(ID_i \) without knowing the private key \(Pri_i \). As a result, the adversary cannot guess the correct password \(PW_i \). Therefore, our proposed improved protocol can withstand this kind of attack.

6.3.4 Insider attack

In our proposed protocol, \(U_i \) does not send his \(ID_o \), password \(PW_i \) or his biometrics \(BIO_i \) in plain text during user registration phase. \(U_i \) submits only \(h(ID_i), IDBi \) and \(PWBi \) to \(RS \) instead of original credentials, where \(PWBi = h(PW_i || H(BIO_i)), IDBi = h(ID_i) || H(BIO_i) \). Hence, an insider cannot obtain the original sensitive information of any user. On the other hand, the authentication of entities is being done by verifying message like \(Z_i = h(n_i) || ID_i || K || T_i \) in which \(ID_i \) is necessary. Moreover, \(RS \) doesn’t participate in the authentication process. Therefore, the proposed protocol attains resistance to insider attack.

6.3.5 Stolen smart card attack

The adversary can extract the information \(<V_o, W_o, h(\cdot), H(\cdot)>\) stored in the smart card by means of power analysis. Assume a legal user’s smart card is
stolen by an adversary and the stored information \(< V_i, W_i, h(\cdot), H(\cdot) > \) on it are extracted. Then, the adversary may try to get ID_i, PW_i, BIO_i from the extracted information. However, adversary cannot obtain any valuable information from these values, where \(V_i = h(h(ID_i)||PWD_i) \) and \(W_i = h(ID_i)||PSK \oplus ID_B \), since all the important parameters such as ID_i and PW_i are protected by a one-way hash function. The adversary cannot obtain any login information using the smart card stored parameters \(V_i \) and \(W_i \). At the same time guessing the real identity ID_i and password PW_i is impractical. Therefore, the proposed protocol is secure against smart card stolen attack.

6.3.6 Replay attack. If an adversary has intercepted all the communication message \(< M_1, Z_n, T_1 > \) and \(< M_2, M_3, T_2 > \), he tries to replay them to U_i or S_j to masquerade as a legal user. However, once the message is replayed, the server can immediately detect the attack and reject the request due to the apply of timestamp. Hence, our scheme is secure against replay attack.

6.4 No verification table

In the proposed scheme, the registration server and application servers do not store the password and the biometrics database of the user. Therefore, even if an adversary steals the information stored in RS, he still cannot get ID_i, PW_i, BIO_i or other valid information of users. S_j does not store the password or the biometrics table of users as well. Therefore, even if an adversary steals the database from RS, he still cannot obtain user’s sensitive information of users.

6.4.1 User masquerade attack. Assume an adversary steals a smart card from a legal user and wants to get service by perpetrating user impersonation attack. If an adversary forges messages so as to impersonate as U_i, he needs to build a login request message \(< M_1, Z_n, T_1 > \) firstly, where \(M_1 = E_{pub_i}(ID || n_1), Z_n = h(n_1||ID||[K]|T_1) \). Conversely, the adversary cannot compute the messages \(M_1 \) and \(Z_n \) without user’s private information ID_i and \(H(BIO_i) \). At the same time, the adversary has to go through login phase before sending login request information. During login phase, SC computes \(PWD_i = h(PW_i||H(BIO_i)) \) and then verifies if \(V_i = h(ID_i||PWD_i) \) is correct. Unless the adversary enters the correct credentials, the process will be terminated. Therefore, the adversary certainly requires ID_i, PW_i and BIO_i for any further computations. However, the probability of obtaining correct ID_i, PW_i and BIO_i is negligible.

6.4.2 Server impersonation attack. Unlike Moon et al.’s protocol, the server \(S_j \) not only keeps unique long-term key PSK, but also contains the key pair \(< Pub_j, Pri_j > \). Note that the key pair of each server is distinctive, and \(Pri_j \) is known to only server \(S_j \). Consider a scenario where an adversary captures \(< M_1, Z_n, T_1 > \) and tries to impersonate valid server by responding with message \(< M_2, M_3, T_2 > \). The values of ID_i, K and n_1 are prerequisite. However, adversary cannot yield either of the values without having the knowledge of \(Pri_j \). Though, the adversary cannot get the right values of ID_i, K and n_1, if the adversary forges the message \(< M_2, M_3, T_2 > \). Upon receiving the response message \(< M_2, M_3, T_2 > \), U_i can identify it as a malicious attempt due to the non-equivalence of message \(M_2' \neq M_2 \). Thus, our proposed protocol is secure against server impersonation attack.

6.4.3 Forward secrecy. In our improved protocol, the session key is \(SK_j = h(n_1||[n_2][K][ID_i]) \), and the values of the long term private key of the servers vary from server to server and are not shared with any registered U_i. Assume that the adversary has obtained the long term key PSK, he still cannot compute a valid session key without the secret parameters ID_i and n_1, which are protected by Pub_i and are decryptable only with Pri_i. Moreover, the parameters n_1 and n_2 are random for each session. Therefore, the session key is considered to be safe even though the long term private key of the server is compromised.
7 Functional and performance analysis

In this section, we compare our proposed scheme with the other related schemes in terms of functionality, including Chuang et al.’s scheme, Mishra et al.’s scheme and Lu et al.’s scheme.

7.1 Functional analysis

We perform a comparative analysis of previous schemes, which is illustrated in Table 3. From the table, we can find that the proposed scheme is more secure and provides more functionality requirements than the other related schemes. Moreover, the proposed scheme achieves all resistance requirements.

7.2 Performance analysis

Now we compare the computational costs and execution time between the proposed scheme and the other related schemes. For the evaluation of the computational costs, let T_h, T_{Re}, T_{Rd}, T_{sym} and T_{epm} refer to the execution time of one-way hash, RSA encryption, RSA decryption, symmetric key encryption/decryption operation and complexity of executing an elliptic curve point multiplication operation. According to Kilinc et al.’s [40] estimation, the average running time of T_h is about 0.0023ms, T_{Re} is 3.8500ms, T_{Rd} is 0.1925ms, T_{sym} is 0.1303ms and T_{epm} is 2.229ms. Table 4 illustrates the comparative performance of our improved scheme and previously proposed schemes.

Scheme	Login	Authentication	Total	Time (ms)
Chuang et al.’s [27]	$4T_h$	$13T_h$	$17T_h$	0.0391
Mishra et al.’s [28]	$4T_h$	$11T_h$	$15T_h$	0.0345
Lu et al.’s [29]	$6T_h$	$12T_h$	$18T_h$	0.0414
Moon et al.’s [30]	$5T_h$	$13T_h$	$18T_h$	0.0441
Lu et al.’s [31]	$4T_h + 3T_{Re}$	$14T_h + 3T_{Rd}$	$18T_h + 3T_{Re} + 3T_{Rd}$	12.1689
Mishra’s [32]	$6T_h + 2T_{apm}$	$10T_h + 1T_{apm}$	$16T_h + 3T_{apm}$	6.7148
Chaudhry’s [33]	$2T_h + 3T_{apm}$	$6T_h + 5T_{apm}$	$8T_h + 8T_{apm}$	17.8504
Jiang’s [34]	$3T_h + 1T_{apm} + T_{sym}$	$6T_h + 3T_{apm} + 3T_{sym}$	$9T_h + 6T_{apm} + 4T_{sym}$	13.9159
our scheme	$7T_h + 1T_{Re}$	$11T_h + 1T_{Rd}$	$18T_h + T_{Re} + T_{Rd}$	4.0866

https://doi.org/10.1371/journal.pone.0187403.t004
The time consumption of our proposed scheme and of the other related schemes is listed in Table 4. The results shows that the proposed scheme is the most computationally inexpensive one among those schemes based on public key cryptography [31–34]. Note that although our proposed scheme costs more time than rest of the schemes [27–30], it is more secure than these schemes. To sum up, only the proposed scheme provides both the computation efficiency to accomplish mutual authentication and key agreement, and the basic security properties against the known threats. The rest of schemes either are vulnerable to various attacks [27–31], or need more time than our scheme [31–34].

8 Conclusion
In this paper, we firstly analyzed the security of Moon et al’s scheme, and demonstrated that their scheme is vulnerable to the known internal attack, guess attack and impersonation attack. Moreover, their scheme is found not anonymous for the user. To withstand these drawbacks, we proposed an improved biometric-based authentication scheme for multi-server environment and proved that the improved scheme provides secure authentication through the formal security analysis using Burrows-Abadi-Needham logic (BAN-logic) and random oracle model. Moreover, we have shown that our scheme is robust against all known attacks through the informal security analysis. The functional and performance analysis shows that the improved scheme has the best secure functionality and is computational efficient.

Author Contributions
Conceptualization: Hua Guo, Xiyong Zhang.
Formal analysis: Hua Guo.
Funding acquisition: Hua Guo.
Investigation: Pei Wang, Xiyong Zhang, Yuanfei Huang, Fangchao Ma.
Methodology: Pei Wang.
Resources: Yuanfei Huang, Fangchao Ma.
Supervision: Xiyong Zhang.
Writing – original draft: Pei Wang.
Writing – review & editing: Hua Guo.

References
1. Lamport L. Password authentication with insecure communication[J]. Communications of the Acm, 1981, 24(24):770–772. https://doi.org/10.1145/358790.358797
2. Harn L. Huang D, Laih C S. Password authentication using public-key cryptography[J]. Computers & Mathematics with Applications, 1989, 18(12):1001–1017. https://doi.org/10.1016/0898-1221(89)90028-X
3. Shieh S P, Yang W H, Sun H M. An authentication protocol without trusted third party[J]. IEEE Communications Letters, 1997, 1(3):87–89. https://doi.org/10.1109/4234.585805
4. Sun H M. An efficient remote use authentication scheme using smart cards[J]. IEEE Transactions on Consumer Electronics, 2000, 46(4):958–961. https://doi.org/10.1109/30.920446
5. Chien H Y, Jan J K, Tseng Y M. An Efficient and Practical Solution to Remote Authentication: Smart Card[J]. Computers & Security, 2002, 21(4):372–375. https://doi.org/10.1016/S0167-4048(02)00415-7
6. Das M L, Saxena A, Gulati V P. A dynamic ID-based remote user authentication scheme[J]. IEEE Transactions on Consumer Electronics, 2004, 50(2):629–631. https://doi.org/10.1109/TCE.2004.1309441
7. Islam S H. Design and analysis of an improved smartcard-based remote user password authentication scheme[J]. International Journal of Communication Systems, 2014, 29(11):n/a–n/a.

8. Song R. Advanced smart card based password authentication protocol[J]. 2010, 32(5-6):321–325.

9. Mishra D, Chaturvedi A, Mukhopadhyay S. Design of a lightweight two-factor authentication scheme with smart card revocation[J]. Journal of Information Security & Applications, 2015, 23(C):44–53. https://doi.org/10.1016/j.jisa.2015.06.001

10. Srinivas J, Mukhopadhyay S, Mishra D. A Self-Verifiable Password Based Authentication Scheme for Multi-Server Architecture Using Smart Card[J]. Wireless Personal Communications, 2017:1–25.

11. Maitra T, Islam S H, Amin R, Giri D, Khan M K, Kumar N. An enhanced multiserver authentication protocol using password and smart card: cryptanalysis and design[J]. Security & Communication Networks, 2016, 9(17):4615–4638. https://doi.org/10.1002/sec.1653

12. Amin R, Islam SH, Khan MK, Karati A, Giri D, Kumari S. A Two-factor RSA-based Robust Authentication System for Multi-Server Environments[J]. Security and Communication Networks. 2017, 13(1):74–84.

13. Messerges T S, Dabbish E, Sloan R H. Examining smart-card security under the threat of power analysis attacks[J]. IEEE Transactions on Computers, 2002, 51(5):541–552. https://doi.org/10.1109/TC.2002.1004593

14. Kocher P C, Jaffe J, Jun B. Differential Power Analysis[C] // International Cryptology Conference on Advances in Cryptology. Springer-Verlag, 1999:388-397.

15. Wang D, Wang P. Offline Dictionary Attack on Password Authentication Schemes Using Smart Cards[M]// Information Security. Springer International Publishing, 2015:1212-1217.

16. Lee J K, Ryu S R, Yoo K Y. Fingerprint-based remote user authentication scheme using smart cards[J]. Electronics Letters, 2002, 38(12):554–555.

17. Lin C H, Lai Y Y. A flexible biometrics remote user authentication scheme[J]. Computer Standards & Interfaces, 2004, 27(1):19–23. https://doi.org/10.1016/j.csi.2004.03.003

18. Khan M K, Zhang J. Improving the Security of ‘A Flexible Biometrics Remote User Authentication Scheme’[J]. Computer Standards & Interfaces, 2007, 29(1):82–85. https://doi.org/10.1016/j.csi.2006.01.002

19. Rhee H S, Kwon J O, Lee D H. A remote user authentication scheme without using smart cards[J]. Computer Standards & Interfaces, 2009, 31(1):6–13.

20. Li C T, Hwang M S. An efficient biometrics-based remote user authentication scheme using smart cards [J]. Journal of Network & Computer Applications, 2010, 33(1):1–5. https://doi.org/10.1016/j.jnca.2009.08.001

21. Das A K. Analysis and improvement on an efficient biometric-based remote user authentication scheme using smart cards[J]. Iet Information Security, 2011, 5(3):145–151.

22. Li X, Niu J W, Ma J, Wang WD, Liu CL. Cryptanalysis and improvement of a biometrics-based remote user authentication scheme using smart cards. Journal of Network and Computer Applications, 34(1), 73-79[J]. Journal of Network & Computer Applications, 2011, 34(1):73–79. https://doi.org/10.1016/j.jnca.2010.09.003

23. Li X, Niu J, Kumari S, Wu F, Wu F, Khan M K, et al. A Novel Chaotic Maps-Based User Authentication and Key Agreement Protocol for Multi-server Environments with Provable Security[J]. Wireless Personal Communications, 2016, 89(2):569–597. https://doi.org/10.1007/s11277-016-3293-x

24. Kumari S, Das A K, Li X, Wu F, Khan M K, Jiang Q, et al. A provably secure biometrics-based authenticated key agreement scheme for multi-server environments[J]. Multimedia Tools & Applications, 2017:1–31.

25. Li X, Niu J, Wang Z, Chen C. Applying biometrics to design three-factor remote user authentication scheme with key agreement[J]. Security & Communication Networks, 2014, 7(10):1488–1497.

26. Chaturvedi A, Mishra D, Jangirala S, Mukhopadhyay S. A privacy preserving biometric-based three-factor remote user authenticated key agreement scheme[J]. Journal of Information Security & Applications, 2016.

27. Chuang M C, Chen M C. An anonymous multi-server authenticated key agreement scheme based on trust computing using smart cards and biometrics[J]. Expert Systems with Applications, 2014, 41(4):1411–1418. https://doi.org/10.1016/j.eswa.2013.08.040

28. Mishra D, Das A K, Mukhopadhyay S. A secure user anonymity-preserving biometric-based multi-server authenticated key agreement scheme using smart cards[J]. Expert Systems with Applications, 2014, 41(18):8129–8143. https://doi.org/10.1016/j.eswa.2014.07.004

29. Lu Y, Li L, Yang X, Yang Y. Robust Biometrics Based Authentication and Key Agreement Scheme for Multi-Server Environments Using Smart Cards[J]. Plos One, 2015, 10(5):e0126323 https://doi.org/10.1371/journal.pone.0126323 PMID: 25978373
30. Moon J, Choi Y, Jung J, Won D. An Improvement of Robust Biometrics-Based Authentication and Key Agreement Scheme for Multi-Server Environments Using Smart Cards.[J]. Plos One, 2015, 10(12): e0145263. https://doi.org/10.1371/journal.pone.0145263 PMID: 26709702

31. Lu Y, Li L, Peng H, Yang W. A biometrics and smart cards-based authentication scheme for multi-server environments[J]. Security & Communication Networks, 2015, 8(17):3219–3228. https://doi.org/10.1002/sec.1246

32. Mishra D. Design and Analysis of a Provably Secure Multi-server Authentication Scheme[J]. Wireless Personal Communications, 2016, 86(3):1–25. https://doi.org/10.1007/s11277-015-2975-0

33. Chaudhry S A. A secure biometric based multi-server authentication scheme for social multimedia networks[M]. Kluwer Academic Publishers, 2016.

34. Jiang Q, Khan M K, Lu X, Ma J, He D. A privacy preserving three-factor authentication protocol for e-Health clouds[J]. Journal of Supercomputing, 2016, 72(10):3826–3849. https://doi.org/10.1007/s11227-015-1610-x

35. Li X, Niu J, Kumari S, Wu F, Choo KK R. A robust biometrics based three-factor authentication scheme for Global Mobility Networks in smart city[J]. Future Generation Computer Systems, 2017.

36. Li X, Ibrahim M H, Kumari S, Sangaiah A K, Gupta V, Choo KK R. Anonymous mutual authentication and key agreement scheme for wearable sensors in wireless body area networks[J]. Computer Networks, 2017. https://doi.org/10.1016/j.comnet.2017.03.013

37. Jin A T B, Ling D N C, Goh A. Biohashing: two factor authentication featuring fingerprint data and tokenised random number[J]. Pattern Recognition, 2004, 37(11):2245–2255. https://doi.org/10.1016/j.patcog.2004.04.011

38. Abdalla M, Fouque P A, Pointcheval D. Password-Based authenticated key exchange in the three-party setting[C]// International Workshop on Public Key Cryptography. Springer Berlin Heidelberg, 2005:65-84.

39. Burrows M, Abadi M, Needham R. A logic of authentication[J]. Proceedings of the Royal Society A Mathematical Physical & Engineering Sciences, 1990, 8(5):18–36.

40. Kilinc H H, Yanik T. A Survey of SIP Authentication and Key Agreement Schemes[J]. IEEE Communications Surveys & Tutorials, 2014, 16(2):1005–1023. https://doi.org/10.1109/SURV.2013.091513.00050