On relativization of the Sommerfeld-Gamow-Sakharov factor

A.B. Arbuzov1,2, T.V. Kopylova2

1BLTP, JINR, Dubna, Russia

2Dep. of higher mathematics, Dubna University, Dubna

From Φ to Ψ, Novosibirsk, 19-22 September 2011

September 19, 2011
Motivation

- The problem of *non-perturbative* corrections and their matching to perturbative ones . . .
- Relativistic two-particle problem . . .
- Increasing experimental precision in observation of different e^+e^- annihilation channels
- Radiative return method allows scrutinizing the threshold region
- Intriguing experimental results on threshold enhancement in $e^+e^- \rightarrow \Lambda\bar{\Lambda}$
- SGS-like factor in QCD?
- Permanent interest of community and discussions in literature
- How to treat the factor within general-purpose computer codes?
The SGS factor features (I)

It’s known for a long time that the re-scattering correction close to the threshold of a charged-particle-pair production is proportional to $|\Psi(0)|^2$ [A. Sommerfeld, *Atmobaun und Spektralinien* (1921); J. Schwinger, *Particles, Sources, and Fields*, Vol.3.]

G. Gamow found the corresponding factor for the Coulomb barrier in nuclear interactions (1928)

A. Sakharov considered just *Interaction of an electron and positron in pair production* (1948)

The Sommerfeld-Gamow-Sakharov (SGS) factor in the nonrelativistic approximation reads

$$T = \frac{\eta}{1 - e^{-\eta}}, \quad \eta = -Q_1 Q_2 \frac{2\pi \alpha}{v}$$

where v is the relative velocity (*by construction*) of the particles with charges $Q_{1,2}$.
The SGS factor features (II)
The SGS factor features (III)

Perturbative expansion in α

$$T \approx 1 + \frac{\pi \alpha}{v} + \frac{\pi^2 \alpha^2}{3v^2} + \mathcal{O}\left(\frac{\alpha^3}{v^3}\right)$$

but for $v \to 0$ it breaks down

For opposite charges at very small v the factor behaves as

$$T \bigg|_{Q_1 Q_2 = -1} \xrightarrow{v \to 0} \frac{2\pi \alpha}{v}$$

For equal charges at very small v the factor vanishes

$$T \bigg|_{Q_1 Q_2 = 1} \xrightarrow{v \to 0} 0$$
Ad hoc: $v \rightarrow 2\sqrt{1 - \frac{m^2}{E^2}} = 2\beta$
Approaches to relativization of SGS factor (I)

- **Ad hoc**: \(v \rightarrow 2\sqrt{1 - \frac{m^2}{E^2}} = 2\beta \)

- (Quasi)-relativistic quasi-potential equations

 It is possible to solve the two-particle problem with relativistic kinematics and interaction, but . . .
Approaches to relativization of SGS factor (I)

- **Ad hoc**: \(v \rightarrow 2\sqrt{1 - \frac{m^2}{E^2}} = 2\beta \)

- (Quasi)-relativistic quasi-potential equations
 It is possible to solve the two-particle problem with relativistic kinematics and interaction, but . . .

- Bethe-Salpeter equations (?)
Ad hoc: $\nu \rightarrow 2\sqrt{1 - \frac{m^2}{E^2}} = 2\beta$

(Quasi)-relativistic quasi-potential equations

It is possible to solve the two-particle problem with relativistic kinematics and interaction, but ...

Bethe-Salpeter equations (?)

Resummation of (ladder) Feynman diagrams
Approaches to relativization of SGS factor (I)

- **Ad hoc**: \(v \rightarrow 2\sqrt{1 - \frac{m^2}{E^2}} = 2\beta \)
- (Quasi)-relativistic quasi-potential equations

 It is possible to solve the two-particle problem with relativistic kinematics and interaction, but . . .

- Bethe-Salpeter equations (?)

- Resummation of (ladder) Feynman diagrams

- Extrapolation of (one-loop) perturbative calculations
Conditions on a relativized factor:

- Non-relativistic limit (must have)
Approaches to relativization of SGS factor (II)

Conditions on a relativized factor:

- **Non-relativistic limit** (must have)
- **Ultra-relativistic limit** \(s \gg m_i^2 \iff v \to 1 \) (desirable)
Conditions on a relativized factor:

- Non-relativistic limit (must have)
- Ultra-relativistic limit \(s \gg m_i^2 \iff v \to 1 \) (desirable)
- Heavy-mass limit \(m_1 \ll m_2 \) (very important)
Approaches to relativization of SGS factor (II)

Conditions on a relativized factor:

- Non-relativistic limit (must have)
- Ultra-relativistic limit $s \gg m_i^2 \iff v \to 1$ (desirable)
- Heavy-mass limit $m_1 \ll m_2$ (very important)
- Matching with perturbative calculations (?)
There are many results in the literature on (quasi)relativistic two-particle eqs. Just look at $|\Psi(0)|^2$. Questions to these approaches always remain, but we can play there and understand the SGS factor better. In particular, in [A.A., Nuovo Cim.'1994] the case of scalar particles with arbitrary masses was evaluated

$$\frac{1}{i} \left(\frac{\partial}{\partial t_1} + \frac{\partial}{\partial t_2} \right) \psi = \left(\sqrt{\vec{p}_1^2 + m_1^2} + \sqrt{\vec{p}_2^2 + m_2^2} \right) \psi$$

Use equal velocity reference frame: $\vec{p}_2 = -\vec{p}_1$ $m_2/m_1 \Leftrightarrow \vec{v}_1 = -\vec{v}_2$.

Minimal substitution $p_i^{\mu} \to p_i^{\mu} - eA_i^{\mu}$ gives

$$\left[\frac{1}{\rho} \frac{\partial^2}{\partial \rho^2} \rho + 1 - \frac{2\alpha}{\nu \rho} - \frac{l(l+1)}{\rho^2} + \frac{\alpha^2}{4\rho^2} (-1 + \vec{u}^2) \right] R_l(\rho) = 0$$
For pure Coulomb interaction \((A^0)\) we get

\[
v_C = 2\sqrt{s - 4m^2} = 2\beta
\]

Taking into account \(\vec{A}\) leads to the relativistic relative velocity

\[
v = \sqrt{\frac{[s - (m_1 - m_2)^2][s - (m_1 + m_2)^2]}{s - m_1^2 - m_2^2}}
\]

The same result for \(|\Psi(0)|^2\) was obtained also by I.T. Todorov [PRD’1971], H.W. Crater et al. [Ann.Phys.(NY)’1983, PRD’1992]

Obviously the limiting cases \(m_1 \ll m_2, m_1 \gg m_2\) where we have exact solutions of the Klein-Gordon (and Dirac) equations are reproduced
Jin-Hee Yoon and Cheuk-Yin Wong, “Relativistic modification of the Gamow factor” [PRC’2000, JPG’2005]:

\[T(v) \rightarrow K(v) = T(v) \cdot \kappa(v) \]

where \(\kappa \) depends on the type of particles etc.

O.P. Solovtsova and Yu.D. Chernichenko, “Threshold resummation S-factor in QCD: the case of unequal masses”, [Yad.Fiz.’2010]
V.N. Baier and V.S. Fadin, [ZhETF’1969] have shown that resummation of ladder-type Feynman diagrams for e^+e^- pair production leads to the factor in the form:

\[T_{\text{resum.}} = \frac{\pi \alpha / \beta}{1 - e^{-\pi \alpha / \beta}} = T(2\beta) \]

Omitting diagrams with crossed photon lines corresponds to keeping only the **Coulomb interactions**. In this case we have an agreement with the quasi-potential picture.

Resummation of non-ladder diagrams is difficult . . .
The SGS factor has a non-perturbative nature. But its expansion in α/ν for $\alpha \ll \nu \ll 1$ makes sense.

What goes on there in direct perturbative calculations?

Let’s look at $O(\alpha)$ FSR corrections to $e^+e^- \to \mu^+\mu^-$ with exact muon mass dependence, see e.g. A.A., D.Bardin, A.Leike [MPLA’1992], A.A. et al. [JHEP’2007]

The expansion in β starts from $\pi\alpha/\beta$ which has the correct non-relativistic limit, i.e. it agrees with the SGS factor expansion.

What is the source of the Coulomb singularity in perturbative calculation?

What appears in the further expansion over β?
A. Hoang [PRD’1997]: one-loop contributions to moduli squared electric and magnetic form factors above the threshold:

\[
\left(\frac{\alpha}{\pi} \right) g^{(1)}_e(s) \xrightarrow{\beta \to 0} \frac{\alpha\pi}{2\beta} - 4\frac{\alpha}{\pi} + \frac{\alpha\pi\beta}{2} - \frac{4\alpha}{3\pi} \left[\ln \frac{m^2}{\lambda^2} + \frac{2}{3} \right] \beta^2 + O(\beta^3)
\]

\[
\left(\frac{\alpha}{\pi} \right) g^{(1)}_m(s) \xrightarrow{\beta \to 0} \frac{\alpha\pi}{2\beta} - 4\frac{\alpha}{\pi} + \frac{\alpha\pi\beta}{2} - \frac{\alpha}{3\pi} \left[4 \ln \frac{m^2}{\lambda^2} - \frac{1}{3} \right] \beta^2 + O(\beta^3)
\]

The first and the third terms agree with the expansion of the SGS factor if \(v = 2\beta/(1 + \beta^2) \) i.e. the true relativistic relative velocity.

The second term comes from short distance (\(\sim 1/m \)) interactions. Factorization then gives

\[
T(v) \cdot \left(1 - 4\frac{\alpha}{\pi} \right)
\]

N.B. The picture is reproduced with the \(O(\alpha^2) \) form factors [R.Barbieri, J.A.Mignaco, E.Remiddi, Nuovo Cim.’1972]
After adding contributions of soft and hard photons the picture persists: nontrivial additional terms start to appear in $\mathcal{O}(\beta^3)$.

The source of the singularity is the scalar triangular loop diagram:

$$
\delta \sigma^{1-\text{loop}} = \sigma^{\text{Born}} \frac{\alpha}{2\pi} (s - m_1^2 - m_2^2) \cdot C_0(m_1^2, m_2^2, s, m_1^2, m_2^2, m_1^2, m_2^2)
$$

The pre-factor $(s - m_1^2 - m_2^2)$ and $C_0(\ldots)$ are universal for spinor, scalar and vector particles and for all partial waves involved in σ^{Born}.

Direct calculations of C_0 for arbitrary masses gives an agreement to the expansion of the SGS factor with the proper relative relativistic velocity

$$
\nu = \frac{\sqrt{[s - (m_1 - m_2)^2][s - (m_1 + m_2)^2]}}{s - m_1^2 - m_2^2}
$$
Matching with perturbative calculations

We should **match** perturbative and non-perturbative results:

\[
\sigma^{\text{Corr.}} = \sigma^{\text{Born}} \left(T(\nu) - \frac{\pi \alpha}{\nu} - \frac{\pi^2 \alpha^2}{3 \nu^2} - \ldots \right) \\
+ \Delta \sigma^{1-\text{loop}} + \Delta \sigma^{2-\text{loop}} + \ldots
\]

For a cross check the matching should be always verified **analytically** by looking at the threshold behavior of the perturbative corrections.
In the case of production of unstable particles, e.g. $t\bar{t}$ or W^+W^- one can not rely upon bound state effect ($|\Psi(0)|^2$) (multiple photon exchange) since the lifetime is comparable with the b.s. formation time, see e.g. V.S. Fadin and V.A. Khoze [Yad.Fiz.’1988], V.S. Fadin, V.A. Khoze and T. Sjostrand [Z.Phys.C’1990]

Nevertheless, direct perturbative calculations show the presence of the Coulomb singularity. See e.g. $z, \gamma^* \rightarrow W^+W^-$ in [D.Y.Bardin, W.Beenakker, A.Denner, PLB’1993].

N.B. Authors of this paper got

$$\beta = \sqrt{\frac{s - (m_1 + m_2)^2}{s - (m_1 - m_2)^2}}$$

But if we restore the factor being omitted there

$$\frac{s}{2(s - m_1^2 - m_2^2)} \approx 1$$

we get exactly the relativistic relative velocity (one half)
Relativization of the SGS factor is not unique
Outlook

- Relativization of the SGS factor is not unique
- Using just the relativistic relative velocity in the standard formula looks preferable
Outlook

- Relativization of the SGS factor is not unique
- Using just the relativistic relative velocity in the standard formula looks preferable
- The factor is generalized for non-equal-mass case
Relativization of the SGS factor is not unique

Using just the relativistic relative velocity in the standard formula looks preferable

The factor is generalized for non-equal-mass case

Numerically the effects for large v are subtle
Outlook

- Relativization of the SGS factor is not unique
- Using just the relativistic relative velocity in the standard formula looks preferable
- The factor is generalized for non-equal-mass case
- Numerically the effects for large v are subtle
- SGS factor is the same for different partial waves and spins
Relativization of the SGS factor is not unique

Using just the relativistic relative velocity in the standard formula looks preferable

The factor is generalized for non-equal-mass case

Numerically the effects for large v are subtle

SGS factor is the same for different partial waves and spins

Matching with perturbative calculations should be taken into account