Estimation methods to extract complex permittivity from transmission coefficient in the terahertz band

Chuang Yang1,2,3,4 · Jian Wang1,2 · Cheng Yang1,2

Received: 23 January 2021 / Accepted: 16 June 2021 / Published online: 22 July 2021
© The Author(s) 2021

Abstract
In this paper, the characteristics of the transmission coefficient (S_{21}) measured in free-space at terahertz frequencies are analyzed. The analysis results are used to estimate the permittivity of the material under test, and the estimated permittivity is adopted as an initial-value for the iterative algorithm to extract the complex permittivity of the material from the S_{21}. The iterative extraction technique based on the estimation is efficient, while the iterative extraction technique without the estimation is inefficient. Various known materials in the literature are used to validate the technique in the terahertz band.

Keywords Complex permittivity · Terahertz · Free-space · Initial-guess

1 Introduction

Measurements of relative complex permittivity (\varepsilon_r) in the terahertz (THz) band are required for engineering designs of THz devices (e.g., lenses, waveguide, filters, etc.) (Hammler et al. 2016; Sahin et al. 2018a; Kazemipour et al. 2015; Yang et al. 2019; Güneşer 2019; Ali et al. 2017; Moradiani et al. 2020; Farmani et al. 2020). Free-space techniques have been widely used for dielectric characterization at THz frequencies, particularly since recent advances in THz components and instrumentation have made them more convenient and accurate (Zhang et al. 2017; Sahin et al. 2018b; Tosaka et al. 2015; Ghalichechian...
and Sertel 2015). The advances in the THz measurement can be summarized as two parts: (1) the gate-reflect-line (GRL) calibration technique and lens are used for the measurement system to improve the accuracy of the measurements (Zhang et al. 2017); (2) the environment of the calibration and the measurement is set to be clear to remove the impact of water vapor and O2 absorption lines (Sahin et al. 2018b), that also improve the accuracy of the measurements. However, the reflection coefficient \(S_{11} \) of the material under test (MUT) is still hard to be measured above 300 GHz (Kazemipour et al. 2015; Lamb 1996). Since only the transmission coefficient \(S_{21} \) can be used for the characterization above 300 GHz, the \(\varepsilon_r \) of the MUT needs to be extracted by the iterative algorithms.

But the iterative extraction techniques (e.g., Newtons method) restrict the application of the free-space transmission techniques, because the convergent values of the extracted \(\varepsilon_r \) vary with the initial guesses for the iterative extraction techniques (see Fig. 5 in Zhang et al. 2017). Some publications simply ignored the problem on multiple convergent values (see Hammler et al. 2016; Sahin et al. 2018b; Tosaka et al. 2015), some experimentally reported the phenomena of getting multiple results and proposed method to obtain a right initial value by using \(S_{11} \) and \(S_{21} \) (Yang et al. 2019; Zhang et al. 2017), though \(S_{11} \) is hard to be measured. While in Ghalichechian and Sertel (2015) technique without detailed analysis was proposed to estimate permittivity from \(S_{21} \) in Zhang et al. (2017). But the technique fails to work when the electrical length of the MUT is large. In addition, the empirical value at low frequency of the MUT was adopted as the initial value for the iterative techniques to extract the \(\varepsilon_r \) in the THz band (Ghalichechian and Sertel 2015). If there is a new material or the value of the \(\varepsilon_r \) of the MUT in the THz band is much different from the value at low frequencies (see Fig. 10 in Seiler and Plettemeier (2019)). The extracted value of the permittivity is incorrect if the estimated value is far away from the true value (Yang et al. 2019). How to get a right initial-guess for the iterative extraction techniques is still an open-question.

In this paper, the proper initial-value for the iterative extraction techniques is estimated by using the properties of the measured \(S_{21} \) in the THz band. The availability of the proposed technique is verified by various known materials (e.g. PMMA, PVC, Teflon, Glass, Crosslinked SUEX, etc.) in the THz-band.

2 Theory and technique

A schematic of a MUT with thickness of \(t \) is shown in Fig. 1. The MUT is measured in free-space. According to the analytical multilayer transmission model, transmission through a dielectric slab with thickness \(t \) can be expressed as Farmani et al. (2020)

\[
S_{21} = \frac{4\sqrt{\varepsilon_r}e^{-j\beta_0\sqrt{\varepsilon_r \varepsilon_0}t}}{(1 + \sqrt{\varepsilon_r})^2 - (1 - \sqrt{\varepsilon_r})^2e^{-j2\omega\sqrt{\mu_0\varepsilon_0}\varepsilon_r t}}
\]

where \(\varepsilon_r = \varepsilon'_r - j\varepsilon''_r \) is the relative complex permittivity of the MUT, \(\omega \) is the angular frequency, and \(t \) is outside of the square.

If the thickness of the MUT is larger than one or more wavelengths, the \(S_{21} \) changes periodically with the frequency (Hammler et al. 2016). In the THz band, the wavelengths of the electromagnetic waves are short that the thickness of the MUT can be longer than one or more wavelengths. In this work, we estimate the permittivity of the MUT from the \(S_{21} \) by using the special properties.
2.1 Method 1: using properties of S_{21}

For low-loss materials, when the thickness of the MUT is an integer multiple of half-wavelength ($\lambda/2$) inside the MUT, there is a sharp peak in the measured $|S_{21}|$ due to Fabry CPerot effects (Ghalichechian and Sertel 2015). When there are two peaks in the measured $|S_{21}|$ and the MUT is non-dispersive or weakly dispersive between the two peak frequencies, the phase constants at the two frequencies can be derived as

$$\beta_1 = n\pi/t$$ \hspace{1cm} (2)

$$\beta_2 = (n+1)\pi/t$$ \hspace{1cm} (3)

where n is a positive integer.

As $(\alpha + j\beta)^2 = -\omega^2\mu_0\varepsilon_0(\varepsilon'_r - j\varepsilon''_r)$ and loss constant α is approximately equal to zero for low-loss materials, we can derive

$$\beta^2 \approx \omega^2\mu_0\varepsilon_0\varepsilon'_r$$ \hspace{1cm} (4)

Combining Eqs. (2)–(4), the permittivity between the two peak frequencies of the MUT can be estimated as

$$\varepsilon'_r \approx \left(\frac{1}{2t\sqrt{\varepsilon_0\mu_0\Delta f_1}}\right)^2$$ \hspace{1cm} (5)

where Δf_1 is the difference between the two peak frequencies.

2.2 Method 2: using properties of S_{21}

The method 1 is efficient when there are two or more peaks in the $|S_{21}|$. However, the peaks are not obvious when the MUT is thick as shown in Sahin et al. (2019). Because, the loss increases with the thickness, the resonance decreases with the loss. The difference between the peak and regular values is small. Therefore, we cannot use Eq. (5) for ε'_r estimation when the MUT is thick.
For the thick MUT, there are more frequencies where \(t \) is an integer multiple of wavelength inside the MUT. For the MUT with low loss tangent, the Eq. (1) can be approximately expressed as

\[
S_{21} \approx \frac{4\sqrt{\varepsilon'_t}e^{-j\alpha_0\sqrt{\mu_0\varepsilon_0}\sqrt{\varepsilon'_t}}}{(1 + \sqrt{\varepsilon'_t})^2 - (1 - \sqrt{\varepsilon'_t})^2}e^{-j2\alpha_0\sqrt{\mu_0\varepsilon_0}\sqrt{\varepsilon'_t}}
\] (6)

As seen in Eq. (6), the \(\angle S_{21} \) is approximately \(180^\circ \) when the thickness of the MUT is an integer multiple of wavelength inside the MUT. We processed the two \(|S_{21}| \) at two frequencies where \(\angle S_{21} \) are equal \(180^\circ \), the permittivity of the MUT can be estimated as

\[
\varepsilon'_t \approx \left(\frac{1}{t\sqrt{\varepsilon_0\mu_0}\Delta f_2} \right)^2
\] (7)

where \(\Delta f_2 \) is the difference between the two frequencies.

2.3 Application procedures of the two methods

The application procedures of the proposed methods are shown as follows:

Step 1: choose the method according to the characteristics of the \(S_{21} \). If the number of the peaks in the \(|S_{21}| \) is more than the number of the frequencies where the values of \(\angle S_{21} \) are equal to \(180^\circ \), the method 1 is chosen. Otherwise, the method 2 is chosen.

Step 2: determine the dispersion characteristics of the MUT. If all \(\Delta f_1 \) (or \(\Delta f_2 \)) are approximate for the MUT, the MUT is non-dispersive over the entire measured frequency range. Otherwise, the MUT is dispersive over the entire measured frequency range.

Step 3.1: for the MUT which is non-dispersive over the entire measured frequency range, the average value of the \(\Delta f_1 \) (or \(\Delta f_2 \)) is used for the permittivity estimation.

Step 3.2: for the MUT which is dispersive over the entire measured frequency range, the value of the \(\Delta f_1 \) (or \(\Delta f_2 \)) is used for the permittivity estimation between the two adjacent frequencies. We can see that \(\Delta f \) would be used for different frequency band. If the materials whose permittivity change dramatically with frequency are measured, we should make them thick enough, that the permittivity between the \(\Delta f \) changes a little. Then the proposed can be efficient.

Step 4: Newtons method with the estimated initial value (permittivity) is performed.

3 Examples and discussion

3.1 The non- or weak dispersive samples in the literature

To validate the proposed technique, the \(|S_{21}| \) in the figures of Hammler et al. (2016), Kazemipour et al. (2015), Sahin et al. (2018b) and Bourreau et al. (2006) are used for determining the \(\Delta f \). We obtained the peak frequencies of the \(|S_{21}| \) and processed the frequencies by Eq. (4). In theoretical, the values of the \(|S_{21}| \) and the \(|S_{21}| \) are equal to each other. The permittivity calculated by Eq. (5) agrees well with the extracted values in the literature as show in Table 1. The error between the calculated values and the values in the
| Material | Equipment | Measured $|S_{21}|$ | Frequency (GHz) | ε'_r | Estimated error (%) | Source |
|------------|-----------|----------|----------------|-----------------|------------------|----------------------|
| HR-Si | VNA | From Hammler et al. (2016) | 925 | 11.57 | – | Hammler et al. (2016) |
| | | | 750–1100 | 11.61 | 0.36 | This work |
| PMMA | VNA | From Kazemipour et al. (2015) | 300 | 2.595 | – | Kazemipour et al. (2015) |
| | | | 220–325 | 2.46 | 5.20 | This work |
| PVC | VNA | From Seiler and Plettemeier (2019) | 75–110 | 2.932 | – | Seiler and Plettemeier (2019) |
| | | | 75–110 | 2.892 | 1.36 | This work |
| Uncured | TDS | From Moradiani et al. (2020) | 90–2000 | 2.91–3.08 | – | Moradiani et al. (2020) |
| SUEX | | | 90–2000 | 2.93 | 0.67–4.87 | This work |
literature ranges from 0.36 to 5.20%. However, the phase angles of the S_{21} are not presented in Kazemipour et al. (2015), Sahin et al. (2018b) and Bourreau et al. (2006). We cannot determine the ε_r over the entire measured frequency range by using the Newtons method.

In this work, we used the extracted in Kazemipour et al. (2015) and Sahin et al. (2018b) to simulate the S_{21} in the THz band. The ε_r of the materials are put into Eq. (1). The simulation method is shown in Seiler and Plettemeier (2019). The simulated S-parameters are calculated using the values of ε_r (Bourreau et al. 2006). That is reasonable, because the measured and simulated S_{21} in free-space at THz frequencies are almost the same (see Fig. 6 in Bourreau et al. (2006)). In our previous work, S-parameters simulated in the THz band have been further proved for validating extraction techniques (Yang et al. 2019).

Since the measurable frequency range is different when using a vector network analyzer (VNA) and by TDS (time-domain spectroscopy) (Tosaka et al. 2015), PMMA, PVC, Teflon, Plexiglas (a kind of Glass) with various thicknesses were simulated between 260 and 400 GHz (VNA measurement THz band) and the Crosslinked SUEX with various thicknesses were simulated between 100 and 2000 GHz (TDS measurement THz band). As shown in Fig. 2, the S_{21} of the PMMA is presented as an example to show that S_{21} can be analyzed by the methods in Sect. 2.

As shown in Table 2, we estimated the ε'_r of these materials by using Eqs. (5) and (7). The estimated values approximate to the true values. It is found that the equations may not be applicable simultaneously in some cases. For example, the ε'_r of the 8 mm PMMA needs to be estimated by Eq. (5) as the peaks are not obvious for the $|S_{21}|$ of the PMMA, and the ε'_r of the 2 mm PVC needs to be estimated by Eq. (5) as the thickness of the PVC is less than a wavelength. Thus, the two proposed methods for ε'_r estimation should be used simultaneously. After estimation, the estimated ε'_r is adopted as the initial-value for the Newtons method. The tolerance of the algorithm is set to be 10^{-7} according to Zhang et al. (2017). For each frequency, it takes about 0.14 second to converge using the initial value estimated by the proposed.

The extracted values of the Teflon, PVC, glass and crosslinked SUEX agree well with the true values as shown in Figs. 3 and 4. That further validates the proposed methods.

3.2 The dispersive sample in the literature

Those samples in the Part A have minimal variation in ε_r from low to high frequencies. To further show the excellent performance of the proposed, a dispersive sample

Fig. 2 S_{21} of three PMMA samples with different thickness
Benzocyclobutene (BCB) with thickness of 2 mm is used for validation. The ε'_r is obtained from Seiler and Plettemeier (2019). The permittivity of the BCB is about 5.5 at 0.5 GHz, and is about 2.6 in the THz band as shown in Fig. 5. The permittivity of the BCB at low frequency is twice than that at the terahertz frequency.

As shown in Fig. 6, the extracted ε'_r of the BCB is wrong when using the permittivity at 4, 4.5 and 5 GHz as the initial values which are far away from the true values. And the values of the ε'_r extracted by the proposed method agree well with the true values.

Table 2 Estimated initial values (ε'_r) for the iterative algorithm

Material	Thickness (mm)	Frequency (GHz)	Method 1 (F-P resonance)	Method 2($\angle S_{21} = 180^\circ$)	
		Δf_1 (GHz)	Estimated value	Δf_2 (GHz)	Estimated value
PMMA	4	23.04	2.6491	46.4	2.6127
	8	–	–	23.2	2.6127
	12	–	–	15.46	2.6141
Glass	2	29.45	6.4812	59.45	6.3661
	4	–	–	29.67	6.3898
	6	–	–	19.8	6.3769
PVC	2	45.75	2.6874	–	–
	4	29.12	2.9267	44.85	2.7964
	8	–	–	22.38	2.8076
Teflon	2	51.7	2.1045	–	–
	8	12.93	2.1028	25.88	2.0996
	16	6.47	2.0995	12.93	2.1028
Crosslinked	0.15	100–2000	617.5	2.6226	1247
	SUEX	0.45	205.25	2.6375	410.75
	1	–	–	185.89	2.6046

Fig. 3 Extracted complex permittivity of 16 mm Teflon, 8 mm PVC and 6 mm glass samples
Fig. 4 Extracted complex permittivity of 1 mm crosslinked SUEX

Fig. 5 Permittivity of BCB [obtained from Fig. 10 in Seiler and Plettemeier (2019)]

Fig. 6 Extracted complex permittivity of 2 mm BCB with different initial values from 220 to 330 GHz
4 Conclusions

In this work, a technique is proposed to estimate the permittivity of the MUT from the measured S_{21}. The estimated permittivity is a correct initial-value for the iterative technique which extracts the ε_r from the S_{21}. Since only the S_{21} can be efficiently measured in the THz band, the proposed is important for material characterization at THz frequencies. The proposed technique is efficient when the measured $|S_{21}|$ have peak values at multiple frequencies or the measured values of the $\angle S_{21}$ are equal to 180° at multiple frequencies.

Funding Information This research was funded by the National Natural Science Foundation of China, Grant Number 62031008.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Ali, F., Mehdi, M., Sheikh, M.H.: Tunable resonant Goos–Hänchen and Imbert–Fedorov shifts in total reflection of terahertz beams from graphene plasmonic metasurfaces. J. Opt. Soc. Am. B 34, 1097–1106 (2017). https://doi.org/10.1364/JOSAB.34.001097

Bourreau, D., Peden, A., Maguer, S.L.: A quasi-optical free-space measurement setup without time-domain gating for material characterization in the W-band. IEEE Trans. Instrum. Meas. 55, 2022–2028 (2006). https://doi.org/10.1109/TIM.2006.884283

Farmani, H., Farmani, A.: Graphene sensing nanostructure for exact graphene layers identification at terahertz frequency. Physica E: Low-dimensional Systems and Nanostructures 124, 1–5 (2020). https://doi.org/10.1016/j.physe.2020.114375

Ghalichechian, N., Sertel, K.: Permittivity and loss characterization of SU-8 films for mmW and terahertz applications. IEEE Antennas Wireless Propag. Lett. 14, 723–726 (2015). https://doi.org/10.1109/LAWP.2014.2380813

Güneşer, M.T.: Artificial intelligence solution to extract the dielectric properties of materials at sub-THz frequencies IET Sci. Meas. Technol. 13, 523–528 (2019). https://doi.org/10.1049/iet-smt.2018.5356

Hammler, J., Andrew, J.G., Claudio, B.: Free-space permittivity measurement at terahertz frequencies with a vector network analyzer. IEEE Trans. THz Sci. Technol. 6, 817–823 (2016). https://doi.org/10.1109/TTHZ.2016.2609204

Kazemipour, A., Hudlička, M., Yee, S., Salhi, M., Kleine-Ostmann, T., Schrader, T.: Design and calibration of a compact quasi-optical system for material characterization in millimeter/submillimeter wave domain. IEEE Trans. Instrum. Meas. 64, 1438–1445 (2015). https://doi.org/10.1109/TIM.2014.2376115

Lamb, W.J.: Miscellaneous data on materials for millimetre and submillimetre optics. Int. J. Infrared Millimeter Waves 17, 1997–2034 (1996). https://doi.org/10.1007/BF02069487

Moradiani, F., Farmani, A., Yavarian, M., Mir, A., Behzadfar, F.: A multimode graphene plasmonic perfect absorber at terahertz frequencies. Phys. E Low-Dimens. Syst. Nanostruct. 122, 1–7 (2020). https://doi.org/10.1016/j.physe.2020.114159

Sahin, S., Nahar, N.K., Sertel, K.: Thin-film SUEX as an anti-reflection coating for mmW and THz applications. IEEE Trans. THz Sci. Technol. 9, 417–421 (2018). https://doi.org/10.1109/TTHZ.2019.2915672

Sahin, S., Nahar, N.K., Sertel, K.: Permittivity and loss characterization of SUEX epoxy films for mmW and THz applications. IEEE Trans. THz Sci. Technol. 8, 397–402 (2018). https://doi.org/10.1109/TTHZ.2018.2840518
Sahin, S., Nahar, N.K., Sertel, K.: Dielectric properties of low-loss polymers for mmW and THz applications. J. Infrared Millim. THz Wave 40, 557–573 (2019). https://doi.org/10.1007/s10762-019-00584-2

Seiler, P., Plettemeier, D.: A method for substrate permittivity and dielectric loss characterization up to sub-terahertz frequencies. IEEE Trans. Microw. Theory Techn. 64, 1640–1651 (2019). https://doi.org/10.1109/TMTT.2019.2897102

Tosaka, T., Fujii, K., Fukunaga, K., Kasamatsu, A.: Development of complex relative permittivity measurement system based on free-space in 220–330-GHz range. IEEE Trans. THz Sci. Technol. 5, 102–109 (2015). https://doi.org/10.1109/TTHZ.2014.2362013

Yang, C., Ma, K., Ma, J.-G.: A noniterative and efficient technique to extract complex permittivity of low-loss dielectric materials at terahertz frequencies. IEEE Antennas Wirel. Propag. Lett. 18, 1971–1975 (2019). https://doi.org/10.1109/LAWP.2019.2935170

Zhang, X., Chang, T., Cui, H.-L., Sun, Z., Yang, C.: A free-space measurement technique of terahertz dielectric properties. J. Infrared Millim. THz Waves 38(3), 356–365 (2017). https://doi.org/10.1007/s10762-016-0341-2

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.