Students’ critical thinking skills comparison in discovery learning based on constructing concept mapping and mind mapping

I N Suardana¹*, I W Redhana² and N P M Yunithasari¹
¹Program Studi Pendidikan IPA, Universitas Pendidikan Ganesha, Jl. Udayana No. 11, Singaraja Bali 81116, Indonesia
²Program Studi Pendidikan Kimia, Universitas Pendidikan Ganesha, Jl. Udayana No. 11, Singaraja Bali 81116, Indonesia
³Corresponding author’s email: nyoman.suardana@undiksha.ac.id

Abstract. This research focused at analyzing the differences of students’ critical thinking skills who learned Basic Chemistry II via discovery learning based on constructing concept mapping and based on mind mapping. This quasi-experimental research used non-equivalent pre-test post-test control group design. The subject was students in Science Education Study Program, the Ganesha University of Education on 2nd semester, consists of 34 students who were divided equally into two groups (A and B). Class A and class B correspond to a group who learned Basic Chemistry II through discovery learning based on concept mapping and mind mapping construction, respectively. A test was conducted to examined students’ critical thinking skills. The results demonstrated that there is no significant differences in critical thinking skills of both groups. However, there are differences in their indicators i.e. interpretation, analysis, evaluation, inference, and explanation indicators.

1. Introduction
Critical thinking is one of the ability needed for human life [1-3]. It is an essential part of successful study for all learners [4]. Critical thinking as foundations of the essential learning outcomes which students should achieve across their school or college experience [5]. Critical thinking had its role in the applications or processes: (1) research, observation, and exploration; (2) problem invention, identification, and definition of a scientific issues; (3) problem solving, finding appropriate solutions for problems; (4) decision making; (5) obtaining information; (6) critique, critical questioning, and question formulation; (7) construction of reliable knowledge; (8) argumentation; defending ideas, discussion and debate; (9) evaluation, careful and rigorous testing; (10) rejecting, accepting hypothesis; (11) solving, clarifying discrepancies and concluding true statements; and (12) clarifying meaning [6]. Critical thinking consists of several skills, those are the ability to analyze arguments, to make inferences using inductive or deductive reasoning, to judge or to evaluate information, and to make decisions or to solve problems [7]. These skills can be created by observation, experience, reasoning, reflection, or communication, as a preference to belief and action [8, 9].

However, most of the human resources, especially the learners or students have low critical thinking skills. Senior high school students in Kediri, Indonesia have poor critical thinking skills. The average score of students’ critical thinking skills in aspects of: interpretation 46.03 (low category), analysis 60.20
Many factors can influence the low of students' critical thinking skills. One of them is the teaching and learning activity that facing a series of problems such as (1) asked sequential questions to students, (2) asked self-answered questions, (3) gave inadequate information, (4) gave ambiguous information, (5) did not ask for students' reasons, (6) less significant of the context, and (7) did not provide the new conceptions that guided the inquiry on the wider fields [16]. To improve students' critical thinking skills, many learning models have been proposed and implemented by many researchers. Many results of the learning models that can develop students’ critical thinking skills such as: (1) discovery learning model [17-22], (2) local culture-based 7E learning cycle model [23], (3) contextual teaching and learning model [18], and (4) RMS (reading, mind mapping, and sharing) model [24]. These models can be combined to other learning tools. Concept mapping as a road to think critically [25] can be combined to the discovery learning model. The students who use concept mapping can improve their critical thinking skills [26-30]. Problem-based learning model with mind mapping can improve students' critical thinking [31]. Differentiated science inquiry model combined with mind mapping can improve students' critical thinking better than differentiated science inquiry model, and conventional model [32].

Based on the description above, discovery learning is a models that can improve students' critical thinking skills. To support this model in improving students' critical thinking skills, the model is combined with concept mapping or mind mapping. This article analyses the differences of students’ critical thinking skills who learned through discovery learning based on constructing concept mapping and mind mapping.

2. Methods
The quasi-experimental method with non-equivalent pre-test post-test control group design was used in this study. The subject was students who programmed Basic Chemistry II in Science Education Study Program, the Ganesha University of Education on even semester in academic year 2018/2019. The subject consists of 34 students that were divided into two classes (class A and class B). Each class consists of 17 students. Class A as the experimental-1 group learned through discovery learning based on constructing concept mapping. Class B as the experimental-2 group learned through discovery learning based on constructing mind mapping. The students’ critical thinking skills was collected by a test that developed from the California critical thinking skills test indicators [33]. Prior to learning process, both of groups were given pre-test to obtain information of the students’ prior knowledge and the equality of them. The pre-test score was analyzed by the Mann Withney U-test with a 5% significance level. Data of students' critical thinking skills were analysed descriptively and inferentially, namely the independent sample t-test with 5 % significance level. The normality of data distribution was tested using the Kolmogorov-Smirnov Test. The homogeneity of variance data was tested using the Levene’s Test of Equality of Error Variances.

3. Result and Discussion
The learning was begun by giving the students pre-test to know their prior knowledge and the equality of both groups. The normality of students’ prior knowledge distribution in the experimental-1 and the experimental-2 groups were tested using the Kolmogorov-Smirnov Test. The variance homogeneity of them was tested using the Levene’s Test of Equality of Error Variances. The average pre-test score, the results of the normality and homogeneity test are shown in Table 1.

Table 1. The average pretest score, the results of normality and homogeneity test

Group	Average Pre-test Score	Normality Statistic	Normality Sig	Homogeneity Levene Statistic	Homogeneity Sig
1. Experimental-1	35.0	0.239	0.011	5.245	0.029
2. Experimental-2	33.1	0.103	0.200		

Table 2 shows the data on the students’ prior knowledge in the experimental-1 group are not normally distributed (sig normality < 0.05), but the data in the experimental-2 group are normally distributed (sig normality > 0.05). The data on the students’ prior knowledge is not homogeneous (sig homogeneity < 0.05). These data have not fulfilled the requirement to be analyzed using the independent sample t-test, but these data can be analyzed using the Mann-Whitney U-test.

Table 2. The result summary analysis using Mann-Whitney U-test

Prior Knowledge					
Mann-Whitney U	130.000				
Wilcoxon W	283.00				
Z	-0.500				
Asymp. Sig. (2-tailed)	0.617				
Exact Sig. [2*(1-tailed 1Sig.)]	0.634				

Table 2 shows the value of sig is 0.617 > 0.05, meaning that the prior knowledge of the students in the experimental-1 group is not remarkably different from the experimental-2 group so both groups had the similarity prior knowledge. The similarity prior knowledge does not influence toward the learning models in improving students’ critical thinking skills.

Table 3. The Distribution of students’ critical thinking skills

No	The score of Critical Thinking Skills	Experimental-1 Group	Experimental-2 Group
1	Sum of Samples (N)	17	17
2	Mean	56.7	54.1
3	Standard Deviation	11.9	11.4
4	Minimum	36.0	36.0
5	Maximum	76.0	72.0

Table 3 shows the mean (average) score of students’ critical thinking on the experimental-1 and experimental-2 groups is not so different. To test the significance of the difference of students' critical thinking between experimental-1 and experimental-2 groups, it was analyzed using independent sample t-test. Before doing the analysis, the normality data distribution and the homogeneity of variance data must be tested.

Table 4. The result summary of normality and homogeneity test

Group	Normality Statistic	Normality Sig	Homogeneity Levene Statistic	Homogeneity Sig
1. Experimental-1 Group	0.183	0.135	0.136	0.715
2. Experimental-2 Group	0.109	0.200		

Table 4 shows the data of the students’ critical thinking skills (CTS) on the experimental-1 and experimental-2 groups are normally distributed (sig normality > 0.05) and homogeneous (sig normality > 0.05).
homogeneity > 0.05). These data have fulfilled the requirement to be analyzed using the independent sample t-test.

Table 5. The result summary of analysis using the independent sample t-test

Description	Levene’s Test for Equality of Variances	t-test for Equality of Means	95% Confidence Interval of the Difference						
	F	Sig.	t	df	Sig. (2-tailed)	Mean Difference	Std. Error Difference	Lower	Upper
CTS									
Equal variances assumed	0.136	0.715	0.646	32	0.523	2.58824	4.00519	-5.57006	10.74653
Equal variances not assumed	0.646	31.936	0.523	2.58824	4.00519	-5.57071	10.74718		

Table 5 shows the value of sig is 0.523 > 0.05, meaning that the critical thinking skills of the students who learned through discovery learning based on constructing concept mapping is not significantly different from mind mapping.

However, if they analyze more detail in each indicator of critical thinking skills, there are differences in their indicators. The indicators of critical thinking skills are interpretation, analysis, evaluation, inference, and explanation. T

![Figure 1](image1.png)

Figure 1. The comparison of average score students’ critical thinking skills for each indicator on experimental-1 and experimental-2 groups

Figure 1 shows the skills in aspects of interpretation, analysis, evaluation, and explanation that students learned through discovery learning based on constructing concept mapping better than mind mapping. However, the skills in aspect of inference that students learned through discovery learning based on constructing mind mapping better than concept mapping.

In learning, the students in both groups learned using discovery learning model. Syntax of this learning model is (1) stimulation, (2) problem statement, (3) data collecting, (4) data processing, (5) verification, and (6) generalization [34]. In the experimental-1 group, the learning began with giving the students assignment to construct concept mapping, but in the experimental-2 group, the students constructed mind mapping. In constructing concept mapping, the students must find out the concepts of the subject and think of their arrangement. These activities train the students to: (1) interpret, analyze, evaluate, concept and non-concept when the read references; (2) do the inference of arrangement hierarchical concepts; and (3) explain conception every concept below the concept mapping. All of these activities constitute critical thinking skills. Many researchers found that constructing concept mapping
could increase students’ critical thinking skills [26-30]. Contrary, in constructing mind mapping by the students in the experimental-2 group, they arrange the concepts or themes freely according to their understanding. In constructing mind mapping, the students train to formulate, interpreting, analyzing concepts or themes and doing inference the relationship among concept or themes. Constructing mind mapping could improve critical thinking skills [31, 32]. The improving of students’ critical thinking skills are still low since the students ability in constructing concept mapping and mind mapping not optimal yet. The could not explain their concept mapping and mind mapping clearly.

4. Conclusion
It can be summarized that is not significant differences in students’ critical thinking skills that learning through discovery learning based on constructing concept mapping and mind mapping with the average score are 56.7 and 54.1 respectively. However, there are variations in students’ critical thinking skills in each indicator. Critical thinking skills in indicators of interpretation, analysis, evaluation, and explanation that students learned through discovery learning based on constructing concept mapping better than mind mapping. Critical thinking skills in indicator of inference that students learned through discovery learning based on constructing mind mapping better than concept mapping.

5. References
[1] Ahuna K H, Tinnesz C G and Kiener M 2014 A new era of critical thinking in professional programs Transformative Dialogues: Teaching & Learning Journal 7 3 1-9
[2] Gibby C A 2013 critical thinking skills in adult learners Arecls 10 147-176
[3] Page D and Mukherjee A 2014 Using negotiation exercises to promote critical thinking skills InDevelopments in Business Simulation and Experiential Learning: Proceedings of the Annual ABSEL conference 33
[4] Open University Walton Hall 2008 Thinking Critically Londen: Thanet Press
[5] Suhartoyo E 2017 The Importance of Critical Thinking Competence: An Investigation of Students’ Writing Experiences Proceedings International Seminar on Language, Education, and Culture. Faculty of Letters, Universitas Negeri Malang 34-42
[6] Santos L F 2017 The role of critical thinking in science education Online Submission 8 20 160-173
[7] Lai E R 2011 Critical Thinking: A Literature Review Pearson’s Research Report
[8] Scriven M and Paul R 1996 Defining Critical Thinking: A Draft Statement for the National Council for Excellence in Critical Thinking Available on http://www. criticalthinking. org. University/univlibrary/library. Nlck
[9] Živković S A 2016 model of critical thinking as an important attribute for success in the 21st century Procedia-Social and Behavioral Sciences 232 102-108
[10] Elisanti E, Sajidan S and Prayitno B A 2017 The profile of critical thinking skill students in XI grade of senior high school 1st Annual International Conference on Mathematics, Science, and Education (ICoMSE 2017) Atlantis Press.
[11] Utami B, Saputro S, Ashadi A, Masykuri M, Probosari R M and Sutanto A 2018 Students’ critical thinking skills profile: Constructing best strategy in teaching chemistry JPTE: International Journal of Pedagogy and Teacher Education 2 63
[12] Suardana I N dan Selamat IN 2012 Analisis Keterampilan Berpikir Kritis Siswa SMA di Kabupaten Buleleng Prosiding Seminar Nasional MIPA
[13] Redhana I W, Sudria I B, Suardana I N, Suja I W and Haryani S 2019 Students’ Satisfaction Index on Chemistry Learning Process Jurnal Pendidikan IPA Indonesia 8 1 101-109
[14] Amin A M, Corebima A D, Zubaidah S and Mahanal S 2017 The critical thinking skills profile of preservice biology teachers in Animal Physiology 3rd International Conference on Education and Training (ICET 2017) Atlantis Press
[15] Serin O 2013 The Critical Thinking Skills of Teacher Candidates Turkish Republic of Northern Cyprus Sampkin Eurasian Journal of Educational Research 53 231-248
[16] Redhana I W, Sudria I B, Suardana I N, Suja I W and Handayani N K 2018 Identification of chemistry teaching problems of a prospective teacher: A case study on chemistry teaching Journal of Physics: Conference Series 1040 1 012022

[17] Fatma Z, Hasanuddin S, Andalia N and Zulfajri M 2019 Progress in Students’ Critical Thinking Skills and Motivation based on the Implementation of Discovery Learning modified with Think Pair Share Learning Model International Research Journal for Quality in Education 6 1 14-19

[18] Al Hakim M F, Sariyatun S and Sudiyanto S 2018 Constructing Student’s Critical Thinking Skill Through Discovery Learning Model and Contextual Teaching and Learning Model as Solution of Problems in Learning History International Journal of Multicultural and Multireligious Understanding 5 4 175-183

[19] Triono A and Santoso S A 2018 The Effect Of Discovery Learning Model On Critical Thinking Ability In Thematic International Conference Education, Culture and Technology 11 95-98

[20] Wartono W, Hudha M N and Batlolona J R 2018 How Are The Physics Critical Thinking Skills of The Students Taught by Using Inquiry-Discovery Through Empirical and Theoretical Overview Journal of Mathematics, Science and Technology Education 14 2 691-697

[21] Martaida T, Bukit N and Ginting E M 2017 The Effect of Discovery Learning Model on Student's Critical Thinking and Cognitive Ability in Junior High School IOSR Journal of Research and Method in Education 7 6 1-8

[22] Noer S H 2017 Guided discovery model: An alternative to enhance students’ critical thinking skills and critical thinking dispositions Jurnal Riset Pendidikan Matematika 5 1 108-115

[23] Suardana I N, Redhana I W, Sudiatmika A A and Selamat I N 2018 Students’ Critical Thinking Skills in Chemistry Learning Using Local Culture-Based 7E Learning Cycle Model International Journal of Instruction 11 1 399-412

[24] Muhlisin A, Susilo H, Amin M, Rohman F 2016 Improving critical thinking skills of college students through RMS model for learning basic concepts in science Asia-Pacific Forum on Science Learning and Teaching 17 1

[25] Cyr S K and All A C 2009 Concept mapping: A road to critical thinking Journal for Nurses in Professional Development 25 2 70-74

[26] Nguyen A, Blackmon D and Cook L 2015 Concept Mapping to Improve Critical Thinking in Nurses: A Pilot Study American Research Journal of Nursing 1 4 35-40

[27] Osman K and Wahidin M 2013 Concept Mapping in Chemistry Lessons: Tools for Inculcating Thinking Skills in Chemistry Learning Journal of Baltic Science Education 12 5 666-681

[28] Nirmala T and Shakuntala B S 2011 Concept Mapping – An Effective Tool to Promote Critical Thinking Skills Among Nurses Nitte University Journal of Health Science 1 4 21-26

[29] Hines M L 2010 Concept Mapping as A Method to Promote Critical Thinking of nursing Students in The Clinical Setting Thesis Bali State University Indiana

[30] Widowati A, Hastuti P W and Wibowo W S 2017 Improvement of student’s critical thinking skills through problem based learning with mind map Jurnal Biologi Edukasi 9 1 6-15

[31] Mohamed A A, Garas A F and Elsawi K A 2017 Effect of Concept Mapping on Critical Thinking Skills of Baccalaureate Nursing Students International Journal of Research in Applied, Natural and Social Sciences 5 11 59-76

[32] Fuad N M, Zubaidah S, Mahanal S and Suarsini E 2017 Improving Junior High Schools’ Critical Thinking Skills Based on Test Three Different Models of Learning International Journal of Instruction 10 1 101-116

[33] CCST 2013 California critical thinking skills test: Test Manual California: California Academic Press, San Jose, CA

[34] Direktorat Pembinaan SMA, Dirjen Dikdasmen, Kemendikbud 2017 Model Pengembangan RPP