Regio- and Enantioselective Synthesis of 1,2-Diamine Derivatives by Copper-Catalyzed Hydroamination

The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters.

Citation	Ichikawa, Saki et al., "Regio- and Enantioselective Synthesis of 1,2-Diamine Derivatives by Copper-Catalyzed Hydroamination." Organic Letters 21, 11 (June 2019): p. 4370–4373 doi. 10.1021/acs.orglett.9b01592 ©2019 Authors
As Published	https://dx.doi.org/10.1021/ACS.ORGLETT.9B01592
Publisher	American Chemical Society (ACS)
Version	Author’s final manuscript
Citable link	https://hdl.handle.net/1721.1/126008
Terms of Use	Article is made available in accordance with the publisher’s policy and may be subject to US copyright law. Please refer to the publisher’s site for terms of use.

MIT Open Access Articles

Regio- and Enantioselective Synthesis of 1,2-Diamine Derivatives by Copper-Catalyzed Hydroamination

The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters.

Citation	Ichikawa, Saki et al., "Regio- and Enantioselective Synthesis of 1,2-Diamine Derivatives by Copper-Catalyzed Hydroamination." Organic Letters 21, 11 (June 2019): p. 4370–4373 doi. 10.1021/acs.orglett.9b01592 ©2019 Authors
As Published	https://dx.doi.org/10.1021/ACS.ORGLETT.9B01592
Publisher	American Chemical Society (ACS)
Version	Author’s final manuscript
Citable link	https://hdl.handle.net/1721.1/126008
Terms of Use	Article is made available in accordance with the publisher’s policy and may be subject to US copyright law. Please refer to the publisher’s site for terms of use.

MIT Open Access Articles

Regio- and Enantioselective Synthesis of 1,2-Diamine Derivatives by Copper-Catalyzed Hydroamination

The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters.

Citation	Ichikawa, Saki et al., "Regio- and Enantioselective Synthesis of 1,2-Diamine Derivatives by Copper-Catalyzed Hydroamination." Organic Letters 21, 11 (June 2019): p. 4370–4373 doi. 10.1021/acs.orglett.9b01592 ©2019 Authors
As Published	https://dx.doi.org/10.1021/ACS.ORGLETT.9B01592
Publisher	American Chemical Society (ACS)
Version	Author’s final manuscript
Citable link	https://hdl.handle.net/1721.1/126008
Terms of Use	Article is made available in accordance with the publisher’s policy and may be subject to US copyright law. Please refer to the publisher’s site for terms of use.

MIT Open Access Articles

Regio- and Enantioselective Synthesis of 1,2-Diamine Derivatives by Copper-Catalyzed Hydroamination

The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters.

Citation	Ichikawa, Saki et al., "Regio- and Enantioselective Synthesis of 1,2-Diamine Derivatives by Copper-Catalyzed Hydroamination." Organic Letters 21, 11 (June 2019): p. 4370–4373 doi. 10.1021/acs.orglett.9b01592 ©2019 Authors
As Published	https://dx.doi.org/10.1021/ACS.ORGLETT.9B01592
Publisher	American Chemical Society (ACS)
Version	Author’s final manuscript
Citable link	https://hdl.handle.net/1721.1/126008
Terms of Use	Article is made available in accordance with the publisher’s policy and may be subject to US copyright law. Please refer to the publisher’s site for terms of use.

MIT Open Access Articles

Regio- and Enantioselective Synthesis of 1,2-Diamine Derivatives by Copper-Catalyzed Hydroamination

The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters.

Citation	Ichikawa, Saki et al., "Regio- and Enantioselective Synthesis of 1,2-Diamine Derivatives by Copper-Catalyzed Hydroamination." Organic Letters 21, 11 (June 2019): p. 4370–4373 doi. 10.1021/acs.orglett.9b01592 ©2019 Authors
As Published	https://dx.doi.org/10.1021/ACS.ORGLETT.9B01592
Publisher	American Chemical Society (ACS)
Version	Author’s final manuscript
Citable link	https://hdl.handle.net/1721.1/126008
Terms of Use	Article is made available in accordance with the publisher’s policy and may be subject to US copyright law. Please refer to the publisher’s site for terms of use.

MIT Open Access Articles

Regio- and Enantioselective Synthesis of 1,2-Diamine Derivatives by Copper-Catalyzed Hydroamination

The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters.

Citation	Ichikawa, Saki et al., "Regio- and Enantioselective Synthesis of 1,2-Diamine Derivatives by Copper-Catalyzed Hydroamination." Organic Letters 21, 11 (June 2019): p. 4370–4373 doi. 10.1021/acs.orglett.9b01592 ©2019 Authors
As Published	https://dx.doi.org/10.1021/ACS.ORGLETT.9B01592
Publisher	American Chemical Society (ACS)
Version	Author’s final manuscript
Citable link	https://hdl.handle.net/1721.1/126008
Terms of Use	Article is made available in accordance with the publisher’s policy and may be subject to US copyright law. Please refer to the publisher’s site for terms of use.
Regio- and Enantioselective Synthesis of 1,2-Diamine Derivatives by Copper-Catalyzed Hydroamination

Saki Ichikawa, Xi-Jie Dai, Stephen L. Buchwald*

Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139, United States

Abstract

A highly regio- and enantioselective synthesis of 1,2-diamine derivatives from γ-substituted allylic pivalamides using copper-catalyzed hydroamination is reported. The N-pivaloyl group is essential, both in facilitating the hydrocupration step and suppressing an unproductive β-elimination from the alkylcopper intermediate. This approach enables an efficient construction of chiral differentially protected vicinal diamines under mild conditions with broad functional group tolerance.

Graphical Abstract

Chiral 1,2-diamines are common structural elements in pharmaceuticals, natural products, and chiral ligands. Due to their prevalence, a number of methods have been developed for their preparation (Figure 1a), including the addition of amines to aziridines, nucleophilic addition to α-aminoimines, Mannich and nitro-Mannich reactions, and alkene diamination. Although many approaches exist, each is associated with significant practical limitations. For example, aziridine-opening processes and nucleophilic addition to α-aminoimines require substrates containing preinstalled stereocenters. In Mannich and nitro-Mannich reactions, an electron-withdrawing group is necessary for stabilizing the carbanion generated in situ. Finally, alkene diamination often only allows for the introduction of identical amine groups; the regioselective addition of two different amines remains difficult.
We sought to develop a complementary method that would (1) easily differentiate the two amine groups in the products and (2) tolerate a broad range of functional groups. To fulfill these requirements, the asymmetric hydroamination\(^9\) of alkenes is an attractive strategy. Recently, Hull, Schultz, and coworkers reported the Rh-catalyzed hydroamination of alkenes. This pioneering work represented the first enantioselective variant of vicinal diamine synthesis by a metal-catalyzed hydroamination (Figure 1b).\(^{10}\) Although this process tolerated a wide variety of amine nucleophiles, the alkene partner was limited to those bearing an unsubstituted allyl group. We considered whether our recent work on CuH-catalyzed asymmetric hydroamination\(^{11}\) could be extended to provide a complementary method for the synthesis of chiral 1,2-diamines from allylic amines (Figure 1c). We note that while we were preparing this manuscript, a related method for synthesis of 1,2-diamines via the CuH-catalyzed hydroamination of enamines was reported by Yu and Somfai.\(^{12}\)

The mechanism proposed for the CuH-catalyzed hydroamination process is shown in Figure 2.\(^{13–15}\) First, the allylic amine undergoes hydrocupration to form a chiral alkylcopper species, \(\text{II}\), which is then trapped by hydroxylamine benzoate, \(\text{IV}\), to generate the corresponding chiral amine product, \(\text{V}\), and copper(I) benzoate, \(\text{III}\). The active catalyst, \(\text{I}\), can be regenerated after \(\sigma\)-bond metathesis with a hydrosilane. A possible side reaction is the \(\beta\)-elimination of the amine group (i.e., NHPG) after hydrocupration (\(\text{II} \rightarrow \text{VI}\), Figure 2), a process that would compete with the desired C–N bond forming process (\(\text{II} \rightarrow \text{V}\)).\(^{16}\) \(\beta\)-Elimination would produce the terminal alkene, \(\text{VI}\), which could then undergo hydroamination to yield \(\text{VII}\) as a side product. In order to maximize the selectivity for the desired pathway (\(\text{II} + \text{IV} \rightarrow \text{III} + \text{V}\), Figure 2) over the undesired \(\beta\)-elimination (\(\text{II} \rightarrow \text{VI}\)), we examined reactions of a series of \(\gamma\)-substituted allylic amines,\(^{17}\) differing in the protecting group on the allylic amine nitrogen.

We began our investigation using \(N\)-protected derivatives of \((E)\)-hex-2-en-1-amine as the substrate (Scheme 1). In the presence of Cu(OAc)\(_2\)/(R)-DTBM-SEGPHOS/PPh\(_3\) (a mixture known as CuCatMix\(^{13a}\)), (MeO)\(_2\)MeSiH, and \(2\)a as the electrophilic amine source, the reactions of substrates bearing \(t\)-butoxycarbonyl (Boc, entry 1), tosyl (entry 2), and \(p\)-methoxy benzyl (PMB, entry 3) groups afforded neither the desired product \(3\) nor the side product \(4\). The low reactivity of these substrates is consistent with the previous experimental\(^{13, 14}\) and computational studies,\(^{15}\) showing that hydrocupration is typically challenging for internal alkenes. When the protecting group was switched to an acetyl group (Ac, entry 4), no desired product was seen, but the formation of moderate amount of side product \(4\) was observed (41%). This indicated that through the use of an appropriate \(N\)-protecting group, hydrocupration of the alkene could take place. Encouraged by this result, we investigated the use of related protecting groups including isobutyryl (entry 5) and pivaloyl (entry 6) groups. In the case of the \(N\)-pivaloyl\(^{18}\) substrate, we obtained the desired 1,2-diamine product in 82% yield with a high level of enantioselectivity (entry 6).

We next explored the substrate scope of this asymmetric hydroamination process (Scheme 2). Allylic amines bearing primary (\(3\)a), secondary (\(3\)b and \(3\)c), and tertiary alkyl substituents (\(3\)d) on the \(\gamma\)-carbon afforded the corresponding products in good to moderate yields with excellent levels of regio- and enantioselectivity. In addition, a benzothiazole-containing product (\(3\)e) could be prepared using this protocol. The relatively lower
regioisomeric ratio of 3e (3:1 rr), compared to the other examples, reflects more facile formation of the minor regioisomer during hydrocupration. This is possibly due to the coordination of the sp² nitrogen of the benzothiazole to L*CuH.

We also investigated the scope of the reaction with respect to the amine electrophile component (Scheme 3). Amine electrophiles bearing a variety of heterocycles, including pyrimidine (4b), carbazole (4c), pyridine (4d), and pyrazole (4e) were all compatible substrates. Other functional groups such as a thioether (4f) and an acetal (4g) were also accommodated under the reaction conditions.

To evaluate the scalability and practicality of this method, we performed a gram-scale reaction using (E)-N-(hex-2-en-1-yl)pivalamide (Scheme 4). We obtained 1.32 g of the desired vicinal diamine product with high levels of both regio- and enantioselectivity (64% yield, 10:1 rr, and 98:2 er).

In conclusion, we have developed a method for the copper-catalyzed hydroamination of γ-substituted allylic amines for the synthesis of enantioenriched 1,2-diamines. Two major challenges in this transformation were (1) slow hydrocupration of γ-substituted allylic amines and (2) unproductive β-elimination after the hydrocupration. By utilizing a pivaloyl protecting group for the allylic amine nitrogen, the asymmetric hydroamination proceeded with high levels of regio- and enantioselectivity. Various functional groups, including heterocycles, were well tolerated in this protocol. Finally, a gram-scale reaction was conducted to demonstrate the scalability and practicality of this method.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

ACKNOWLEDGMENT

Research reported in this publication was supported by the National Institutes of Health (R01-GM58160 and R35-GM122483). The authors further thank the NIH for a supplemental grant for a supercritical fluid chromatography instrument (SFC) under grant GM58160-17S1. The content of this publication is solely the responsibility of the authors and does not claim to represent the official views of the National Institutes of Health. S.I. thanks the Japan Student Services Organization (JASSO) for a graduate fellowship. X.-J.D. thanks the Canadian National Science and Engineering Research Council (NSERC) for a postdoctoral fellowship. We are grateful to Dr. Christine Nguyen (MIT), Dr. Scott McCann (MIT), Dr. Andy Thomas (MIT), and Richard Liu (MIT) for their advice on the preparation of this manuscript.

REFERENCES

(1). For selected reviews of the importance of chiral 1,2-diamines, see:(a) Lucet D; Le Gall T; Mioskowski C Angew. Chem., Int. Ed 1998, 37, 2580–2627.(b) Kizirian J-C Chem. Rev 2008, 108, 140–205. [PubMed: 18081351]

(2). (a) Cho Y-H; Zunic V; Senboku H; Olsen M; Lautens M J. Am. Chem. Soc 2006, 128, 6837–6846. [PubMed: 16719464] (b) Cho Y-H; Fayol A; Lautens M Tetrahedron: Asymmetry 2006, 17, 416–427. (c) Arai K; Lucarini S; Salter MM; Ohta K; Yamashita Y; Kobayashi S J. Am. Chem. Soc 2007, 129, 8103–8111. [PubMed: 17567008] (d) Yu R; Yamashita Y; Kobayashi S Adv. Synth. Catal 2009, 351, 147–152. (e) Wu B; Gallucci JC; Parquette JR; RajanBabu TV Chem. Sci 2014, 5, 1102–1117. (f) Chai Z; Yang P-J; Zhang H; Wang S; Yang G Angew. Chem., Int. Ed 2017, 56, 650–654. For representative examples of racemic aziridine opening followed by dynamic kinetic
resolution, see: (g) Trost BM; Fandrick DR; Brodmann T; Stiles DT Angew. Chem., Int. Ed 2007, 46, 6123–6125.

(3). For representative examples, see: (a) Bloch R Chem. Rev 1998, 98, 1407–1438. [PubMed: 11848938] (b) Manabe K; Oyamada H; Sugita K; Kobayashi S J. Org. Chem 1999, 64, 8054–8057. (c) Hirabayashi R; Ogawa C; Suguri M; Kobayashi S J. Am. Chem. Soc 2001, 123, 9493–9499. [PubMed: 11572669] (d) Merino P; Delso I; Mannucci V; Tejero T Tetrahedron Lett. 2006, 47, 3311–3314.

(4). For a review on asymmetric Mannich reactions with N-substituted nucleophiles, see: (a) Arrayaás RG; Carretero JC Chem. Soc. Rev 2009, 38, 1940–1948. [PubMed: 19551174] For representative examples of asymmetric Mannich reactions, see: (b) Kobayashi S; Yazaki R; Seki K; Yamashita Y Angew. Chem., Int. Ed 2008, 47, 5613–5615. (c) Hernández-Toribio J; Arrayaás RG; Carretero JC J. Am. Chem. Soc 2008, 130, 16150–16151. [PubMed: 19006300] (d) Kano T; Sakamoto R; Akakura M; Maruoka K J. Am. Chem. Soc 2012, 134, 7516–7520. [PubMed: 22486203] (e) Zhang W-Q; Cheng L-F; Yu J; Gong L-Z Angew. Chem., Int. Ed 2012, 51, 4085–4088. (f) Lin S; Kawato Y; Kumagai N; Shibasaki M Angew. Chem., Int. Ed 2015, 54, 5481–5484. (g) Kondo M; Nishi T; Hatanaka T; Funahashi Y; Nakamura S Angew. Chem., Int. Ed 2015, 54, 8198–8202. (h) Kano T; Kobayashi R; Maruoka K Angew. Chem., Int. Ed 2015, 54, 8471–8474. For representative examples of asymmetric vinylogous Mannich reactions, see: (i) Ranieri B; Curti C; Battistini L; Sartori A; Pinna L; Casiraghi G; Zanardi F J. Org. Chem 2011, 76, 10291–10298. [PubMed: 22059699] (j) Silverio DL; Fu P; Carswell EL; Snapper ML; Hoveyda AH Tetrahedron Lett. 2015, 56, 3489–3493. [PubMed: 28775388]

(5). For representative examples of asymmetric nitro-Mannich reactions, see: (a) Yamada K.-i.; Harwood SJ; Gröger H; Shibasaki M Angew. Chem., Int. Ed 1999, 38, 3504–3506. (b) Yamada K.-i.; Moll G; Shibasaki M Synlett 2001, 980–982. (c) Knudsen KR; Risgaard T; Nishiwaki N; Gothelf KV; Jørgensen KA J. Am. Chem. Soc 2001, 123, 5843–5844. [PubMed: 11403635] (d) Nugent BM; Yoder RA; Johnston JN J. Am. Chem. Soc 2004, 126, 3418–3419. [PubMed: 15025457] (e) Yoon TP; Jacobsen EN Angew. Chem., Int. Ed 2005, 44, 466–468. (f) Singh A; Yoder RA; Shen B; Johnston JN J. Am. Chem. Soc 2007, 129, 3466–3467. [PubMed: 17341075] (g) Trost BM; Lupton DW Org. Lett 2007, 9, 2023–2026. [PubMed: 17439228] (h) Singh A; Johnston JN J. Am. Chem. Soc 2008, 130, 5866–5867. [PubMed: 18410096] (i) Uruguchi D; Kosimoto K; Ooi T J. Am. Chem. Soc 2008, 130, 10878–10879. [PubMed: 18646755] (j) Davis TA; Wilt JC; Johnston JN J. Am. Chem. Soc 2010, 132, 2880–2882. [PubMed: 20151644] (k) Handa S; Gnanadesikan V; Matsunaga S; Shibasaki M J. Am. Chem. Soc 2010, 132, 4925–4934. [PubMed: 20218689] (l) Sprague DJ; Singh A; Johnston JN Chem. Sci 2018, 9, 2336–2339. [PubMed: 29719706]

(6). For a review on asymmetric alkene diamination, see: (a) Zhu Y; Cornwall RG; Du H; Zhao B; Shi Y Acc. Chem. Res 2014, 47, 3665–3678. [PubMed: 25402963] For representative examples of asymmetric intermolecular reactions, see: (b) Du H; Yuan W; Zhao B; Shi Y J. Am. Chem. Soc 2007, 129, 11688–11689. [PubMed: 17803307] (c) Du H; Zhao B; Shi Y J. Am. Chem. Soc 2008, 130, 8590–8591. [PubMed: 18549207] (d) Cornwall RG; Zhao B; Shi Y Org. Lett 2013, 15, 796–799. [PubMed: 23362985] (e) Munizzi K; Barreiro L; Romero RM; Martínez C J. Am. Chem. Soc 2017, 139, 4354–4357. [PubMed: 28277652] For representative examples of asymmetric intramolecular (ring-forming) reactions, see: (f) Sequeira FC; Turnpenny BW; Chemler SR Angew. Chem., Int. Ed 2010, 49, 6365–6368. (g) Ingalls EL; Sibbald PA; Kaminsky W; Michael FE J. Am. Chem. Soc 2013, 135, 8854–8856. [PubMed: 23734771] (h) Turnpenny BW; Chemler SR Chem. Sci 2014, 5, 1786–1793. [PubMed: 24932404] (i) Mizar P; Laverny A; El-Sherbini M; Farid U; Brown M; Maldedy F; Wirth T Chem. Eur. J 2014, 20, 9910–9913. [PubMed: 25042733] (j) Fu S; Yang H; Li G; Deng Y; Jiang H; Zeng W Org. Lett 2015, 17, 1018–1021. [PubMed: 25668749] (k) Wang F-L; Dong X-Y; Lin J-S; Zeng Y; Jiao G-Y; Gu Q-S; Guo X-Q; Ma C-L; Liu Y-X Chem. 2017, 3, 979–990.

(7). For representative examples of asymmetric nucleophilic addition into imine derivatives, see: (a) Uruguchi D; Kinoshita N; Kizu T; Ooi T J. Am. Chem. Soc 2015, 137, 13768–13771. [PubMed: 26456298] (b) Izumi S; Kobayashi Y; Takemoto Y Org. Lett 2016, 18, 696–699. [PubMed: 26859161] (c) Dumoulin A; Bernadat G; Masson G J. Org. Chem 2017, 82, 1775–1789. [PubMed: 28092703] For a representative example of asymmetric reductive couplings with imines, see: (d) Shao X; Li K; Malcolmson SJ J. Am. Chem. Soc 2018, 140, 7083–7087.
For representative examples of other methods to access chiral 1,2-diamines, see:
(e) Ooi T; Sakai D; Takeuchi M; Tayama E; Maruoka K Angew. Chem., Int. Ed 2003, 42, 5868–5870.
(f) Kitagawa O; Yotsumoto K; Kohriyama M; Dobashi Y; Taguchi T Org. Lett 2004, 6, 3605–3607. [PubMed: 15387559]
(g) Mwenda ET; Nguyen HN Org. Lett 2017, 19, 4814–4817. [PubMed: 28876951]
(h) Perrotta D; Wang M-M; Waser J Angew. Chem., Int. Ed 2018, 57, 5120–5123.

(8) For a representative example of asymmetric intermolecular diaminations where the two amine groups may be differentiated, see:
Simmons B; Walji AM; MacMillan DWC Angew. Chem., Int. Ed 2009, 48, 4349–4353.

(9) For representative examples of organocatalyzed traditional hydroamination, see:
(a) MacDonald MJ; Hesp CR; Schipper DJ; Pesant M; Beauchemin AM Chem. Eur. J 2013, 19, 2597–2601. [PubMed: 23307591]
(b) MacDonald MJ; Schipper DJ; Ng PJ; Moran J; Beauchemin AM J. Am. Chem. Soc 2011, 133, 20100–20103. [PubMed: 22098595]
(c) Vanable EP; Kennemur JL; Joyce LA; Ruck RT; Schultz DM; Hull KL J. Am. Chem. Soc 2019, 141, 739–742. [PubMed: 30614700]

(10) For a minireview on the CuH-catalyzed asymmetric hydroamination, see:
(a) Pirnot MT; Wang Y-M; Buchwald SL Angew. Chem., Int. Ed 2016, 55, 48–57. For other representative examples, see:
(b) Zhu S, Niljianskul N, Buchwald SL Nat. Chem. 2016, 8, 144–150. [PubMed: 26791897]
(c) Wang H; Yang JC; Buchwald SL J. Am. Chem. Soc 2017, 139, 8428–8431. [PubMed: 28594548]
(d) Guo S; Yang JC; Buchwald SL J. Am. Chem. Soc 2018, 140, 15976–15984. [PubMed: 30371077]
(e) Ichikawa S; Zhu S; Buchwald SL Angew. Chem., Int. Ed 2018, 57, 8714–8718. [PubMed: 30371077]
(f) Dai X-J; Engl OD; León T; Buchwald SL Angew. Chem., Int. Ed 2019, 58, 3407–3411.

(11) For a conceptually related process (β-alkoxide elimination with the alkoxide group at β-position of the allylic alcohol in CuH-catalyzed hydroamination), see:
Zhu S, Niljianskul N, Buchwald SL Nat. Chem, 2016, 8, 144–150. [PubMed: 26791897]

(16) For a conceptually related process (β-alkoxide elimination with the alkoxide group at β-position of the allylic alcohol in CuH-catalyzed hydroamination), see:
Zhu S, Niljianskul N, Buchwald SL, Nat. Chem, 2016, 8, 144–150. [PubMed: 26791897]

(17) Regioselectivity of hydrocupration was controlled by the presence of a proximal allylic amine group, providing the desired regioisomer. For a conceptually related process, see:
(a) reference 11b.(b) reference 11c.(c) Xi Y; Butcher TW; Zhang J; Hartwig JF Angew. Chem., Int. Ed 2016, 55, 776–780.
(d) Xi Y; Hartwig JF J. Am. Chem. Soc 2016, 138, 6703–6706. [PubMed: 27167490]

(18) For representative examples of methods to cleave the pivaloyl groups, see:
(a) Toyokuni T; Dean B; Cai S; Boivin D; Hakomori S; Singhal AK J. Am. Chem. Soc 1994, 116, 395–396.
(b) Cui JJ; Araldi G-L; Reiner JE; Reddy KM; Kemp SJ; Ho JZ; Siev DV; Mamedova L; Gibson TS; Gaudette JA; Minami NK; Anderson SM; Bradbury AE; Nolan TG; Semple E Bioorg. Med. Chem. Lett 2002, 12, 2925–2930. [PubMed: 12270176]
(c) Bax BD; Chan PF; Eggleston DS; Fosberry A; Mamedova L; Gibson TS; Gaudette JA; Minami NK; Anderson SM; Bradbury AE; Nolan TG; Semple E Bioorg. Med. Chem. Lett 2002, 12, 2925–2930. [PubMed: 12270176]
(c) Xi Y; Butcher TW; Zhang J; Hartwig JF Angew. Chem., Int. Ed 2016, 55, 776–780.
(d) Xi Y; Hartwig JF J. Am. Chem. Soc 2016, 138, 6703–6706. [PubMed: 27167490]

For representative examples of methods to cleave the pivaloyl groups, see:
(a) Toyokuni T; Dean B; Cai S; Boivin D; Hakomori S; Singhal AK J. Am. Chem. Soc 1994, 116, 395–396.
(b) Cui JJ; Araldi G-L; Reiner JE; Reddy KM; Kemp SJ; Ho JZ; Siev DV; Mamedova L; Gibson TS; Gaudette JA; Minami NK; Anderson SM; Bradbury AE; Nolan TG; Semple E Bioorg. Med. Chem. Lett 2002, 12, 2925–2930. [PubMed: 12270176]
(c) Bax BD; Chan PF; Eggleston DS; Fosberry A; Mamedova L; Gibson TS; Gaudette JA; Minami NK; Anderson SM; Bradbury AE; Nolan TG; Semple E Bioorg. Med. Chem. Lett 2002, 12, 2925–2930. [PubMed: 12270176]
(c) Xi Y; Butcher TW; Zhang J; Hartwig JF Angew. Chem., Int. Ed 2016, 55, 776–780. (d) Xi Y; Hartwig JF J. Am. Chem. Soc 2016, 138, 6703–6706. [PubMed: 27167490]
(a) Synthetic methods to access chiral 1,2-diamines

Asymmetric aziridine opening

\[
\begin{align*}
R^1 & \quad R^2 \\
\text{R}^3 & \quad \text{R}_2\text{NH}
\end{align*}
\]

Mannich & nitro-Mannich

\[
\begin{align*}
\text{R}^1 & \quad \text{PG} \\
\text{R}^2 & \quad \text{CO}_2\text{R} \quad \text{or} \\
\text{NO}_2 & \quad \text{R}^2
\end{align*}
\]

Nucleophilic addition into \(\alpha \)-aminoimines

\[
\begin{align*}
\text{R}^3 & \quad \text{R}_2^4 \\
\text{R}_1^1 & \quad \text{PG} \quad + \\
\text{R}^2 & \quad \text{R}^2
\end{align*}
\]

Alkene diamination

\[
\begin{align*}
\text{R}^1 & \quad \text{R}^2 \\
\text{R}^2 & \quad \text{R}_2\text{NH}
\end{align*}
\]

(b) Traditional hydroamination for the synthesis of chiral 1,2-diamines (Hull)

\[
\begin{align*}
\text{R}^1 & \quad \text{NH} \\
\text{R} & \quad \text{R}^3 \quad \text{R}^4
\end{align*}
\]

cat. [Rh]

cat. chiral ligand

\[
\begin{align*}
\text{R}^3 & \quad \text{R}_4^4 \\
\text{Me} & \quad \text{R}^2
\end{align*}
\]

(c) This work: CuH-catalyzed asymmetric hydroamination

\[
\begin{align*}
\text{R}^1 & \quad \text{R}^2 \quad \text{Piv} \quad + \\
\text{R}^3 & \quad \text{S}_2^2 \quad \text{N}_2^2 \quad \text{OR}
\end{align*}
\]

cat. L\text{*CuH}

\[
\begin{align*}
\text{R}^1 & \quad \text{R}^2 \quad \text{Piv} \quad + \\
\text{R}^3 & \quad \text{R}_2^2 \quad \text{Piv}
\end{align*}
\]

Figure 1.

Strategies for the Asymmetric Synthesis of 1,2-Diamine Derivatives.
Figure 2.
Possible Catalytic Cycle and Unproductive \(\beta \)-Elimination. \(R^1 \) = alkyl groups.
Scheme 1.
Protecting Group Screening to Facilitate Hydrocupration and Suppress β-Elimination.[a, b, c]
[a] Reaction conditions: 0.1 mmol 1 (1.0 equiv), 2a (1.2 equiv), (R)-CuCatMix* (Cu(OAc)$_2$/(R)-DTBM-SEGPHOS/PPh$_3$ = 1/1.1/1.1, 5.0 mol % [Cu]), (MeO)$_2$MeSiH (4.0 equiv) in THF (0.4 M) at 40 °C; see the Supporting Information for details. [b] The yield was determined by 1H NMR spectroscopy of the crude reaction mixture, using 1,1,2,2-tetrachloroethane as an internal standard. [c] The enantiomeric ratio was determined by chiral SFC analysis on commercial chiral columns.
Scheme 2.
Scope of γ-Substituted Allylic Amines$^{[a, b, c]}$

[a] Reaction conditions: 0.5 mmol $1a$–$1e$ (1.0 equiv), $2a$ (1.2 equiv), (R)-CuCatMix* $(\text{Cu(OAc)}_2/(R)$-DTBM-SEGPHOS/PPh$_3 = 1/1.1/1.1$, 5.0 mol % [Cu]), (MeO)$_2$MeSiH (4.0 equiv) in THF (0.4 M) at $40 \degree C$; see the Supporting Information for details.

[b] The regioisomeric ratio of $3a$ was determined by GC analysis of the crude reaction mixture, using n-dodecane as an internal standard. The regioisomeric ratios of $3b$–$3e$ were determined by 1H NMR spectroscopy of the crude reaction mixture, using 1,1,2,2-tetrachloroethane as an internal standard.

[c] 10 mol % of (R)-CuCatMix* was used.
Scheme 3. Scope of Amine Electrophiles.[a, b, c]

[a] Reaction conditions: 0.5 mmol 1 (1.0 equiv), 2b–2g (1.2 equiv), (R)-CuCatMix* (5.0 mol %) ((R)-DTBM-SEGPHOS/Ph3P = 1/1.1/1.1, 5.0 mol % [Cu]), (MeO)2MeSiH (4.0 equiv) in THF (1.25 mL, 0.4 M) at 40 °C; see the Supporting Information for details. [b] The regioisomeric ratio was determined by 1H NMR spectroscopy of the crude mixture, using 1,1,2,2-tetrachloroethane as an internal standard. [c] 10 mol % of (R)-CuCatMix* was used.
Scheme 4.
Gram-Scale Reaction.