Auraptenol attenuates vincristine-induced mechanical hyperalgesia through serotonin 5-HT$_{1A}$ receptors

Yunfei Wang 1, Shu-e Cao 1, Jianmin Tian 1, Guozhe Liu 1, Xiaoran Zhang 1 & Pingfa Li 2

1Department of Anesthesiology, First Affiliated Hospital, Xinxiang Medical University, Weihui, Henan, China 453100, 2Department of Medical Laboratory Science, Xinxiang Medical University, Weihui, Henan, China 453100.

Common chemotherapeutic agents such as vincristine often cause neuropathic pain during cancer treatment in patients. Such neuropathic pain is refractory to common analgesics and represents a challenging clinical issue. Angelicae dahuricae radix is an old traditional Chinese medicine with demonstrated analgesic efficacy in humans. However, the active component(s) that attribute to the analgesic action have not been identified. This work described the anti-hyperalgesic effect of one coumarin component, auraptenol, in a mouse model of chemotherapeutic agent vincristine-induced neuropathic pain. We reported that auraptenol dose-dependently reverted the mechanical hyperalgesia in mice within the dose range of 0.05–0.8 mg/kg. In addition, the anti-hyperalgesic effect of auraptenol was significantly blocked by a selective serotonin 5-HT$_{1A}$ receptor antagonist WAY100635 (1 mg/kg). Within the dose range studied, auraptenol did not significantly alter the general locomotor activity in mice. Taken together, this study for the first time identified an active component from the herbal medicine angelicae dahuricae radix that possesses robust analgesic efficacy in mice. These data support further studies to assess the potential of auraptenol as a novel analgesic for the management of neuropathic pain.
and further pharmacological studies are needed to identify the active coumarin component underlying the antinociceptive actions of angelicae dahuricae radix.

In this study, we described the potent antinociceptive effects of one of the coumarin components of angelicae dahuricae radix, auraptenol (8-(2-hydroxy-3-methylbut-3-en-1-yl)-7-methoxy-2H-chromen-2-one, Fig. 1), in a mice model of vincristine-induced neuropathic pain. We also found that a selective serotonin 5-HT1A receptor antagonist, WAY100635, significantly antagonized the antinociceptive effect of auraptenol, suggesting that the observed antinociceptive effect of auraptenol was partially mediated by 5-HT1A receptors.

Results

Daily vincristine treatment (0.5 mg/kg) for 5 days led to marked mechanical hyperalgesia in mice as measured by von Frey filament (Fig. 2). Paired t-test revealed that vincristine treatment produced a significant decrease in the paw withdrawal threshold (t (7) = 12.56, P < 0.0001). In addition, repeated test every 10 min over a period of 100 min did not alter the hyperalgesic condition, which remained significantly lower than the baseline measurement prior to vincristine treatment (Fig. 3). Two-way ANOVA revealed a significant main effect of vincristine treatment (F [1, 63] = 87.28, P < 0.0001). Post hoc analysis found that throughout all the time points the paw withdrawal threshold was significantly lower after vincristine treatment (P < 0.05). Auraptenol dose-dependently increased the paw withdrawal threshold in mice (Fig. 3). A smaller dose of auraptenol (0.05 mg/kg) did not significantly elevate the paw withdrawal threshold. Two-way ANOVA revealed no significant main effect of auraptenol treatment (F [1, 63] = 0.72, P > 0.05). A larger dose of auraptenol (0.2 mg/kg) markedly and significantly increased the paw withdrawal threshold. Two-way ANOVA revealed significant main effect of auraptenol treatment (F [1, 63] = 24.36, P < 0.0001). Multiple comparison analysis found that the paw withdrawal threshold was significantly increased throughout the 20–80 min time period. When the dose of auraptenol was further increased to 0.8 mg/kg, the paw withdrawal threshold was significantly increased throughout the pre-vincristine treatment level (Fig. 3). Two-way ANOVA revealed significant main effects of WAY100635 treatment (F [9, 126] = 47.52, P < 0.0001) and time (F [9, 126] = 22.15, P < 0.0001). Post hoc analysis found that the anti-hyperalgesic effect of auraptenol was significantly decreased across the 10–90 min time period.

In order to understand the receptor mechanism underlying the anti-hyperalgesic actions of auraptenol, a dose of the selective serotonin 5-HT1A receptor antagonist WAY-100635 was studied in combination with 0.8 mg/kg auraptenol (Fig. 4). WAY100635 significantly attenuated the anti-hyperalgesic effects of auraptenol. Two-way ANOVA revealed that there were significant main effects of WAY100635 treatment (F [9, 126] = 464.8, P < 0.0001) and time (F [9, 126] = 22.15, P < 0.0001). Post hoc analysis found that the anti-hyperalgesic effect of auraptenol was significantly decreased across the 10–90 min time period.

We also studied the anti-hyperalgesic actions of daily repeated auraptenol treatment (Fig. 5). Daily treatment with 0.8 mg/kg auraptenol, a dose that completely reversed mechanical hyperalgesia, maintained its anti-hyperalgesic effect and no significant antinociceptive tolerance was observed. Two-way ANOVA revealed a significant main effect of auraptenol treatment (F [1, 7] = 464.8, P < 0.0001), but no significant main effects of time or interaction were found. Post hoc analysis found that the paw withdrawal threshold after 0.8 mg/kg auraptenol treatment was significantly higher as compared to the daily pre-drug treatment baseline. In addition, the

![Figure 1](image1.png) **Figure 1** | Chemical structure of auraptenol.

![Figure 2](image2.png) **Figure 2** | Paw withdrawal thresholds before and after 5 days of daily 0.5 mg/kg vincristine treatment in mice (n = 8 per group). ***P < 0.001 as compared to pre-vincristine measurements.

![Figure 3](image3.png) **Figure 3** | Anti-hyperalgesic effect of auraptenol in mice (n = 8 per group). * P < 0.05 as compared to corresponding post-CV baseline data. VC, vincristine.
anti-hyperalgesic effect among the 7 daily treatments was not significantly different.

The potential effect of auraptenol on the general locomotor activity in naïve mice was examined with different doses of auraptenol (Fig. 6). It was found that auraptenol did not significantly alter the locomotor activity in mice across a dose range of 0.05–0.8 mg/kg. One-way ANOVA found no significant difference (F [3, 31] = 0.21, P > 0.05).

Discussion
In this study, we reported that an active component from the plant Angelica dahurica radix, auraptenol, produced robust anti-hyperalgesic effect in a mouse model of chemotherapy-induced neuropathic pain. We also reported that the anti-hyperalgesic effect was at least partially mediated by 5-HT1A receptors and the effect was not due to general behavioral impairment. Although Angelica dahurica radix was used for the treatment of various diseases in traditional Chinese medicine, this is the first study that identified the antinociceptive active component that may explain the pain relieving effect of this plant and this important herbal medicine. In addition, these results encourage continued effort to better understand auraptenol, which may well serve as a potential novel analgesic for the control of chronic neuropathic pain.

Many microtubule-targeting cancer chemotherapeutic agents including vincristine are widely recognized to cause peripheral and cranial neuropathy. In an effort to better understand this form of neuropathy and develop novel treatment for its management, several animal models of chemotherapeutic agent-induced neuropathy was developed. Rodents treated with chemotherapeutic agents typically develop thermal and mechanical hyperalgesia. In consistency with the literature, we found that mice treated with 0.5 mg/kg daily for 5 days developed a reliable mechanical hyperalgesia as measured by von Frey filament test. Repeated measures within a short period of time (100 min) did not significantly change the test results, which offers an opportunity to determine the duration of actions of the study drug. We found that auraptenol produced a very robust effect in decreasing mechanical hyperalgesia. This effect was both dose-dependent and time-dependent and at larger doses it completely reversed the mechanical hyperalgesia. Although Angelica dahurica radix was used in folk medicine for centuries, and modern pharmacological studies confirmed its analgesic actions, the active components have not yet been identified. This study clearly demonstrated that one major coumarin component from Angelica dahurica radix, auraptenol, has very robust antinociceptive effect in a mouse model of chronic neuropathic pain, marking the first effort to decipher the phytochemical substrates of Angelica dahurica radix-induced analgesia. More importantly, repeated treatment with auraptenol did not show evidence of tolerance development. Considering the long-term therapeutic need to treat neuropathic pain, this lack of tolerance development is significant and clearly puts auraptenol in an advantageous position as a potential analgesic.

Serotonergic (5-HTergic) system is critically involved in pain modulation. Indeed, the serotonin-norepinephrine reuptake inhibitor duloxetine has been approved to treat several chronic pain conditions including peripheral neuropathy and fibromyalgia. In addition, 5-HT1A receptor agonists demonstrate robust antinociceptive effect in animal models of chronic neuropathic pain. This study found that a selective 5-HT1A receptor antagonist, WAY-100635, significantly blocked the anti-hyperalgesic effect of auraptenol, suggesting that the anti-hyperalgesic action of auraptenol is primarily mediated by 5-HT1A receptors. This dose of WAY-100635 (1 mg/kg) has been shown to significantly block 5-HT1A receptors in other studies.

In summary, this study for the first time identified an active component of Angelica dahurica radix, auraptenol, which may be responsible for the analgesic actions of Angelica dahurica radix. In a mouse model of chemotherapeutic agent-induced neuropathic pain, auraptenol demonstrated excellent analgesic activity with no apparent adverse effects. Although more studies are needed to examine the
generality of these findings and to better understand the potential toxicology of this compound, the current data do suggest that auraptenuol could be a potential novel analgesic for pain management.

Methods

Animals. Male C57BL/6 mice weighing 16–22 g (Weitong Lihua, Beijing, China) were acclimated to the temperature, humidity and lighting (12 h light/dark cycle, lights on at 7:00 AM) controlled vivarium and housed in groups of four for at least one week before behavioral studies began. The animals had free access to dietary food and water except during the test sessions. All animal experimental protocols were approved by the Institutional Animal Care and Use Committee, Xinxing Medical University. Animals were maintained in accordance with the Guide for the Care and Use of Laboratory Animals (8th edition, Institute of Laboratory Animal Resources, National Academy of Sciences, Washington DC). All efforts were made to minimize animal suffering and to reduce the number of animals used.

Drugs. Vincristine sulphate injection was purchased from Haimen Pharmaceutical Co. (Zhejiang, China). Auraptenuol (8-2-hydroxy-3-methylbut-3-en-1-yl)-7-methoxy-2H-chromene-2-one, Fig. 1) was purchased from Shanghai Lei Yun Shang Pharmaceutical Co. (<95% purity, Shanghai, China). WAY100635 was purchased from Sigma-Aldrich (St. Louis, MO, USA). Auraptenuol was suspended in 5% DMSO. WAY100635 was dissolved in 0.9% saline. All injections were given intraperitoneally in a volume of 1 ml/100 g of body weight. Vincristine was administered at a dose of 0.5 mg/kg daily for 5 days to establish vincristine-induced neuropathy.

Mechanical allodynia measurement. Mechanical allodynia was assessed prior to and after 5 days of vincristine treatment daily using Von Frey filaments of varying forces (0.07–4.0 g) applied to the mid-plantar surface of the right hind paw, with each application held until curved for 6 s using the ‘up-down’ method. Mice were placed in individual Plexiglas compartments atop of a wire grid floor suspended 30 cm above the laboratory bench top and acclimated to the environment for 30 min prior to each test session. For the force test studies, baseline von Frey filament measurement was immediately followed by an injection of auraptenuol, and then the paw withdrawal threshold was measured every 10 min until the drug effect dissipated to a point that the paw withdrawal threshold was not significantly different from the pre-drug data. In studies that test the effect of the antagonist WAY100635, drug was administered 5 min prior to auraptenuol treatment and a time course measurement was followed. For repeated treatment studies, mice were measured daily before drug treatment and 40 min after drug treatment for 7 days.

Locomotor activity test. The locomotor activity of naive mice treated with vincristine or auraptenuol was measured automatically with a Small Animal Locomotion Recording Apparatus (Shandong Academy of Medical Sciences, China), which consisted of six acrylic boxes and in each box there was one pyroelectric infrared sensor 4 cm above the floor. The sensor could detect the movements of the mice through infrared radiation. The apparatus recorded only gross movements of the mice, whereas small movements such as gnawing or grooming could not be differentiated and recorded.

Data analyses. For the mechanical hyperalgesia test prior to and 5 days after vincristine treatment, data were analyzed using an ANOVA test. For the antinociceptive studies, data were presented as paw withdrawal latency (grams) plotted as a function of time (min or days), respectively. Data were analyzed by two-way repeated measures analysis of variance (ANOVA) time x auraptenuol treatment or time x vincristine treatment followed by a post hoc Bonferroni test. For the locomotion tests, data were analyzed with one-way ANOVA followed by post hoc Bonferroni test.

Additional information

Competing financial interests: The authors declare no competing financial interests.

How to cite this article: Wang, Y.F. et al. Auraptenuol attenuates vincristine-induced mechanical hyperalgesia through serotonin 5-HT[1A] receptors. Sci. Rep. 3, 3377; DOI:10.1038/srep03377 (2013).
Retraction Note: Auraptenol attenuates vincristine-induced mechanical hyperalgesia through serotonin 5-HT₁A receptors

Yunfei Wang¹, Shu-e Cao¹, Jianmin Tian¹, Guozhe Liu¹, Xiaoran Zhang¹ & Pingfa Li²

Retraction of: Scientific Reports https://doi.org/10.1038/srep03377, published online 29 November 2013

The editors are retracting this Article because the figures and the majority of the text are identical to those of another paper¹. These issues undermine confidence in the validity of the study and the conclusions cannot be considered reliable.

The authors could not be reached.

References
1. Guo, Z.-G. et al. Gastrodin attenuates vincristine-induced mechanical hyperalgesia through serotonin 5-HT1A receptors. Bangladesh Journal of Pharmacology 8, 414–419 (2013).

© The Publisher 2019

¹Department of Anesthesiology, First Affiliated Hospital, Xinxiang Medical University, Weihui, Henan, 453100, China. ²Department of Medical Laboratory Science, Xinxiang Medical University, Weihui, Henan, 453100, China. Correspondence and requests for materials should be addressed to P.L. (email: lipingfa67@gmail.com)