MicroRNA Changes in Firefighters

Kyoung Sook Jeong, PhD, Jin Zhou, PhD, Stephanie C. Griffin, PhD, Elizabeth T. Jacobs, PhD, Devi Dearmon-Moore, BA, Jing Zhai, MS, Sally R. Littau, MT(ASCP), John Gulotta, BS, Paul Moore, BS, Wayne F. Peate, MD, MPH, Crystal M. Richt, MB(ASCP)CM, and Jefferey L. Burgess, MD, MS, MPH

Objectives: Firefighters have elevated cancer incidence and mortality rates. MicroRNAs play prominent roles in carcinogenesis, but have not been previously evaluated in firefighters. Methods: Blood from 52 incumbent and 45 new recruit nonsmoking firefighters was analyzed for microRNA expression, and the results adjusted for age, obesity, ethnicity, and multiple comparisons. Results: Nine microRNAs were identified with at least a 1.5-fold significant difference between groups. All six microRNAs with decreased expression in incumbent firefighters have been reported to have tumor suppressor activity or are associated with cancer survival, and two of the three microRNAs with increased expression in incumbent firefighters have activities consistent with cancer promotion, with the remaining microRNA associated with neurological disease. Conclusion: Incumbent firefighters showed differential microRNA expression compared with new recruits, providing potential mechanisms for increased cancer risk in firefighters.

Keywords: firefighter, cancer, microRNA

Cancer is a leading cause of death among firefighters in the United States. In a recent large study, overall cancer incidence and mortality among firefighters were 9% and 14% higher than the general public, respectively, with increased mortality rates of 30% or more for mesothelioma and cancers of the esophagus, intestine, and rectum.1 In addition, elevated incidence and/or mortality have been reported in firefighters for cancers of the bladder, kidney, lung, prostate, skin (melanoma and non-melanoma), stomach, and testes, as well as leukemia, multiple myeloma, and non-Hodgkin lymphoma.1–7

Firefighters are occupationally exposed to carcinogens and other toxicants, including benzene, polycyclic aromatic hydrocarbons, formaldehyde, arsenic, 1–3 butadiene, cadmium, chromium compounds, asbestos, flame retardants, and particulates.5,8–12 Furthermore, most firefighters work prolonged shifts associated with sleep disruption, and shiftwork with circadian disruption has been classified as a probable human carcinogen (group 2A) by the International Agency for Research on Cancer (IARC).11,13

While exposure to carcinogens and elevated cancer risk have been well established for firefighters, there is limited information on the cellular mechanisms involved. Greater understanding of these mechanisms is critical to identify potentially reversible cellular changes before the development of cancer, and to help determine causation with regard to firefighter worker’s compensation claims. Based in part on the lack of data regarding mechanistic changes in firefighters leading to carcinogenesis, in 2010, the IARC classified occupational exposures to firefighters as only possibly carcinogenic to humans (group 2B), despite multiple epidemiologic studies demonstrating elevated cancer incidence rates in firefighters.11,13

Epigenetic changes, including histone modifications, DNA methylation, and microRNA (miRNA) mediated pathways, play prominent roles in carcinogenesis and cancer prevention, and have been associated with activation of oncogenes or inhibition of tumor suppressor genes.14,15 MiRNAs are small (18 to 22 nucleotide) noncoding RNAs involved in regulating cell cycle progression, apoptosis, and differentiation. Some miRNAs act as oncogenes by inducing oncogene expression or tumor-suppressor genes through regulation of DNA methylation and histone modification. These epigenetic changes serve as molecular biomarkers of environmental exposures and carcinogenesis.16–19

We hypothesized that occupational exposures in firefighters would lead to changes in miRNA expression associated with activation of cancer pathways and increased cancer risk. As a first step in testing this hypothesis, we designed this study to compare miRNAs in incumbent firefighters and new recruits.

METHODS
This study was part of larger firefighter cancer prevention study working in partnership with the Tucson Fire Department. All study protocols were approved by the University of Arizona Institutional Review Board (approval No. 1509137073). To identify epigenetic changes associated with occupational carcinogen exposure in firefighters, we recruited newly employed (new recruit) firefighters before occupational exposure to fire and smoke and incumbent firefighters. After receiving a detailed explanation of the study design and potential risks, all subjects provided written informed consent. We surveyed general characteristics using questionnaires to collect information regarding age, body weight, height, working duration as firefighters, and tobacco use. Body mass index (BMI) (kg/m²) was classified as normal (18.0 to 24.9), overweight (25.0 to 29.9), and obese (≥30) following World Health Organization (WHO) classifications.

At the time of sample selection for the current analyses, the study subjects consisted of 55 male recruits and 117 male incumbents who had completed baseline blood sampling. One recruit was excluded because of an inadequate blood draw. The 54 remaining recruits were then matched by race/ethnicity to 54 incumbents for sample processing, for a total of 108 subjects. One recruit sample was not adequate for miRNA analysis, and five subjects (four recruits and one incumbent) were later excluded for current smoking.
as well as another five (four recruits and one incumbent) subjects for not completing the smoking-related questions on the questionnaire, leaving 97 (45 recruits and 52 incumbents) subjects for miRNA data analysis.

Whole blood samples were collected in Tempus™ Blood RNA tubes (Applied Biosystems, Foster City, California). Immediately after collection, the tube was vigorously shaken for 10 seconds and aliquoted into two 5 mL cryogenic tubes (VWR International, Radnor, Pennsylvania, Cat. # 89094–820). All aliquots were stored at −20°C until transfer under Arizona Department of Transportation guidelines to the University of Arizona for storage at −80°C for subsequent processing by the University of Arizona Genetics Core (Arizona Research Laboratories).

An aliquot for each subject was thawed for 20 to 30 minutes on ice. RNA isolation was achieved using MagMAX™ for Stabi-

ized Blood Tubes RNA Isolation Kit (Life Technologies, Carlsbad, California, Catalog #4451893) following the manufacturer’s protocol. Purified total RNA qualities and quantities were measured with the NanoDrop 1000 Spectrophotometer (Thermo Fisher Scientific, Wilmington, Delaware) and a subset was additionally quality checked using the Advanced Analytical High Sensitivity RNA assay with the Fragment Analyzer Automated CE System (AATI, Ankeny, Iowa).

miRNA expression was measured using the nCounter® Human v3 miRNA expression panel (NanoString Technology Inc., Seattle, Washington) with 800 miRNAs from miRBase v21 as well as 5 housekeeping genes and 20 assay controls (six positive, eight negative, and six ligation controls). The panel includes greater than 95% of human miRBase reads (https://hdmzlive.nanostring.com/application/files/7014/8943/1030/LBL-10112-01_Human_miRNA.pdf). One hundred nanogram of the purified RNA was prepared by multiplexed annealing of specific tags to each target miRNA, followed by a ligation reaction, and enzymatic purification to remove the unligated tags. Five microfilters of the cleaned reaction was hybridized with the Human miRNA Code Set (Nanostring Technologies part #CSO-MIR3-12) at 65°C overnight. Purification and binding of the hybridized probes to the optical cartridge were performed on the nCounter Prep Station, and the cartridge scanned on the nCounter Digital Analyzer (NanoString Technologies, Inc., Seattle, Washington). Raw counts from each gene were normalized against background genes, and overall assay performance was assessed through evaluation of built-in positive controls.

For comparison of age and BMI between recruits and incumbents, the Chi-square test was used. The mean comparisons of age and BMI were done by the Student t test. To evaluate the correlation between age and working duration as a firefighter, Pearson correlation was used. These statistical analyses were performed using R (version 3.4.1). MiRNAs sites with mean counts that were less than 2 were filtered, leaving 821 genes for analysis. Filtered miRNAs raw counts were first transformed and quantile normalized by Voom package20 in preparation for linear modeling and then analyzed by the limma package.21 A linear model with Empirical Bayes estimator was adopted,22 with adjustment for age, ethnicity, and BMI. Probes were considered to be differentially expressed if the resulting P value was less than 0.05/m applying Bonferroni correction for multiple comparisons. The corresponding gene list was derived from the gene annotations associated with the probes.

Both K-means clustering and hierarchical clustering using the “factoextra” package in R 3.4.1 were used to discover miRNA clusters discriminating between the incumbent and new recruit groups. Both analyses were restricted to miRNAs differentially expressed between the two groups, adjusted for age, BMI, and ethnicity, with P values less than 0.05. The optimal cluster size was determined by minimizing within sum of squares in K-means clustering analysis. Hierarchical clustering was carried out based on complete linkage and Pearson correlation.

The miRNA enrichment analysis and annotation tool miEAA (https://ccb-compute2.cs.uni-saarland.de/mieaa_tool/),23 which relies on the GeneTrail framework (https://genetraill2.bioinf.uni-sb.de/),24 was employed to investigate downstream effects of the miRNA clusters. Effects of single miRNAs on pathways and organs were determined by miRWalk (http://zmf.umm.uni-heidelberg.de/apps/zmf/mirwalk2/holistic.html).25 The miRNA-disease association was evaluated using the Human microRNA Disease Database (HMDD v2.0, http://www.cuilab.cn/hmdd).26 Both miRWalk and HMDD are integrated in miEAA. Unless mentioned explicitly, all tools were used with standard parameters.

RESULTS

All subjects were white, and a similar percentage of incumbent and new recruit firefighters were of Hispanic ethnicity (15.4% and 13.3%, respectively). The subjects’ mean age in years was significantly higher in incumbents (40.8 ± 8.7) than in recruits (28.8 ± 6.2) (P < 0.001) (Table 1). The incumbent firefighters and recruits had similar BMI distributions. None of the new recruit firefighters had any previous firefighting experience. For incumbents, the mean number of years serving as a firefighter was 14.1 ± 7.3 years, and number of years of service was significantly correlated with age (Pearson r = 0.818, P < 0.001). The 45 new recruits and 52 incumbent firefighters in our study did not significantly differ in terms of age, race, ethnicity, or BMI from the larger group of 89 new recruits and 352 incumbent firefighters, respectively, currently enrolled in the larger Tucson Fire Department cancer prevention study (data not shown).

Comparing incumbents to recruits and adjusting for multiple comparisons, nine miRNAs demonstrated statistically significant differences in expression at a level of at least 1.5-fold (Table 2). Among these, only two miRNAs differed significantly by age group and none by BMI group. Expression levels of all nine miRNAs remained significantly different between incumbents and recruits after adjusting for age, BMI, and ethnicity. Comparing within incumbent and recruit groups, there were no significant differences by age for these nine miRNAs (data not shown).

Three incumbent firefighters reported a previous diagnosis of non-melanoma skin cancer, while none of the new recruits reported this diagnosis. To address this difference, we performed a sensitivity analysis by excluding the three firefighters with skin cancer, and all nine miRNAs remained significant (data not shown). Although all firefighters in the study were current nonsmokers, significantly

Variables	New Recruits (n = 45)	Incumbents (n = 52)	P
Race/Ethnicity			
White, non-Hispanic	39 (86.7%)	44 (84.6%)	1.0
White, Hispanic	6 (13.3%)	8 (15.4%)	
Age, years			
<29	26 (57.8%)	4 (7.7%)	<0.001
30–39	14 (31.1%)	16 (30.8%)	
≥40	5 (11.1%)	32 (61.5%)	
Mean (standard deviation)	28.8 (6.21)	40.8 (8.70)	<0.001
BMI			
Normal	14 (31.1%)	10 (19.2%)	0.39
Overweight	24 (53.3%)	32 (61.5%)	
Obese	7 (15.6%)	10 (19.2%)	
Cluster analysis was based on 234 miRNAs differentially expressed between incumbent and new recruit firefighters. The optimal number of clusters for K-mean analysis was determined to be three, with centroids hsa-miR-525-3p (cluster 1), hsa-miR-52 (cluster 2), and hsa-miR-376b-3p (cluster 3) (Fig. 1). There were 103, 80, and 51 miRNAs in these three clusters, respectively. An enrichment analysis was performed to investigate whether the miRNA sets within the three clusters belonged to a pathway, gene ontology, organ, or other functional category, with FDR adjusted P value less than 0.05 (Table 3). MiRNAs in the first cluster were associated with stem cells and three pathways: inflammation mediated by chemokine and cytokine signaling; cytokine-cytokine receptor interaction; and cell adhesion molecules. MiRNAs in the second cluster were also associated with stem cells. The third cluster yielded miRNAs associated with carcinoma, Burkitt lymphoma, melanoma, and 10 targeted genes.

DISCUSSION

The study results supported our hypothesis that incumbent firefighters, compared with new recruits, would show differences in expression of miRNAs associated with cancers or cancer pathways. This adds to the scarce published literature on epigenetic effects in firefighters, to our knowledge limited to hypomethylation of dual specificity phosphatase 22 promoter, and suggests potential mechanisms for the association between firefighting and cancer.

Of the nine differentially expressed miRNAs identified in our study, all six (miR-548h-5p, miR-145-5p, miR-4516, miR-331-3p, miR-181a-5p, and miR-1260a) with decreased expression in incumbent firefighters have been reported to have tumor suppressor activity or are associated with cancer survival, and two (miR-374a-5p and miR-486-3p) of the three miRNAs with increased expression in incumbent firefighters have activities consistent with cancer promotion. The miR-548 family suppresses tumor cell growth and development by increasing apoptosis and regulating reactive oxygen species. MiR-4516 and miR-145-5p play a role in tumor suppression by controlling p53. MiR-331-3p acts as a tumor suppressor in colorectal and gastric cancer. Increased levels of miR-1260a are associated with survival in glioblastoma patients. MiR-374a-5p promotes cell proliferation, migration, and invasion in esophageal and gastric cancer, and is overexpressed in

Gene Name	Incumbents vs Recruits	Age: ≥40 vs 21–39	BMI: Overweight and Obese vs Normal	Incumbents vs Recruits Adjusted for Age, BMI, and Ethnicity
hsa-miR-1260a	0.54	0.69	0.94	0.55
hsa-miR-548h-5p	0.55	0.82	0.84	0.59
hsa-miR-145-5p	0.57	0.75	0.93	0.44
hsa-miR-4516	0.59	0.75	0.96	0.56
hsa-miR-331-3p	0.59	0.72	0.87	0.60
hsa-miR-181a-5p	0.60	0.76	0.96	0.62
hsa-miR-5010-3p	1.56	1.25	1.12	1.59
hsa-miR-374a-5p	1.57	1.09	1.18	1.72
hsa-miR-486-3p	3.51	2.22	1.23	3.35

Significantly differentially expressed genes (after Bonferroni correction) are highlighted in bold font.

BMI, body mass index; CI, confidence interval; FC, fold change.
increased in children with asthma. In our study, only two miRNAs showed significant differences in expression by age group, and there were no significant differences in expression by BMI group. Furthermore, all nine miRNAs continued to show significant differences between overweight/obese subjects, but was increased in lung adenocarcinoma patients exposed to asbestos compared with nonexposed patients with adenocarcinoma.38 MiR-4516 expression was decreased in our incumbent firefighters, but was upregulated in a study of A549 cells exposed to PM\textsubscript{2.5} as well as the serum of persons living in a Chinese city with moderate air pollution.39 MiR-145-5p expression was decreased in our incumbent firefighters, but increased in service members with polychlorinated dibenzo(dioxin (PCDD) and polychlorinated dibenzo furan (PCDF) exposures from open air burn pits comparing pre- and post-deployment.40 However, to evaluate for dose–response relationships specific to firefighters, longitudinal studies including exposure assessment and measurement of miRNA changes are needed.

TABLE 3. MiRNA Enrichment Analysis Results for Three K-Mean Clusters

Cluster	Category	Subcategory	N	Observed miRNAs	P (FDR)
1	Organs	Stem Cells	8	miR-126-3p; miR-133b; miR-15a-5p; miR-195-5p; miR-29b-3p; miR-302a-3p; miR-302b-3p; miR-326	0.048
		Pathways	19	miR-126-3p; miR-135a-5p; miR-15a-5p; miR-193b-3p; miR-195-5p; miR-196b-5p; miR-218-5p; miR-22-3p; miR-29b-3p; miR-302a-3p; miR-302b-3p; miR-30e-3p; miR-320c; miR-326; miR-337-3p; miR-451a; miR-7-5p; miR-935; miR-96-5p	0.048
		Inflammation mediated by chemokine and cytokine signaling (P00031)		miR-126-3p; miR-133b; miR-15a-5p; miR-193b-3p; miR-195-5p; miR-196b-5p; miR-218-5p; miR-22-3p	0.048
		Cytokine–cytokine receptor interaction (hsa04060)	9	miR-126-3p; miR-133b; miR-15a-5p; miR-193b-3p; miR-195-5p; miR-22-3p; miR-29b-3p; miR-302b-3p; miR-7-5p	0.048
		Cell adhesion molecules (hsa04514)	6	miR-126-3p; miR-15a-5p; miR-193b-3p; miR-196b-5p; miR-218-5p; miR-29b-3p	0.048
2	Organs	Stem Cells	6	miR-137; miR-138-5p; miR-214-3p; miR-224-5p; miR-27a-3p; miR-302d-3p	0.021
3	Diseases	Burkitt lymphoma	2	let-7a-5p; let-7b-5p	0.033
		Carcinoma	19	let-7a-5p; let-7b-5p; let-7c-5p; miR-106b-5p; miR-1226-3p; miR-125a-5p; miR-141-3p; miR-145-5p; miR-151a-5p; miR-181a-5p; miR-181c-5p; miR-185-5p; miR-197-3p; miR-19a-3p; miR-19b-3p; miR-21-5p; miR-223-3p; miR-376b-3p; miR-93-5p	0.033
4	Diseases	Melanoma	2	let-7a-5p; let-7b-5p	0.033
		AIDa	3	let-7a-5p; let-7b-5p; let-7c-5p	0.019
		ANKRD17	3	let-7a-5p; let-7b-5p; let-7c-5p	0.019
		CCNB2	3	let-7a-5p; let-7b-5p; let-7c-5p	0.019
		CSNK2A1	3	let-7a-5p; let-7b-5p; let-7c-5p	0.019
		DHX9	3	let-7a-5p; let-7b-5p; let-7c-5p	0.019
		IP07	5	let-7a-5p; let-7b-5p; let-7c-5p; miR-106b-5p; miR-1226-3p	0.010
		LT4A4	3	let-7a-5p; let-7b-5p; let-7c-5p	0.019
		NME4	3	let-7a-5p; let-7b-5p; let-7c-5p	0.019
		PTGES2	3	let-7a-5p; let-7b-5p; let-7c-5p	0.019
		RPS24	3	let-7a-5p; let-7b-5p; let-7c-5p	0.019

Aging and obesity are major risk factors for cancer, and they are also associated with epigenetic changes.46–53 Specific to miRNAs, age, BMI, and sex are associated with miRNA expression.44 In our study, only two miRNAs showed significant differences in expression by age group, and there were no significant differences in miRNA expression by BMI group. Furthermore, all nine miRNAs continued to show significant differences between incumbents and new recruits following adjustment for age and BMI.

In addition to documented associations with cancer pathways, some of the miRNAs identified in our study have also been evaluated for relationships with exposures common to firefighters. In a study examining gaseous formaldehyde exposure and miRNA expression in human bronchial epithelial cells, miR-181a was one of the most significantly downregulated.55 MiR-181a-5p expression, decreased in incumbent firefighters in our study, was downregulated in Linc-Kit+ cells obtained from mice exposed to benzene.56 MiR-313-3p expression, decreased in incumbent firefighters in our study, was reduced following short-term PM\textsubscript{10} exposure in a population of overweight/obese subjects,77 but was increased in lung adenocarcinoma patients exposed to asbestos compared with nonexposed patients with adenocarcinoma.58 MiR-4516 expression was decreased in our incumbent firefighters, but was upregulated in a study of A549 cells exposed to PM\textsubscript{2.5} as well as the serum of persons living in a Chinese city with moderate air pollution.39 MiR-145-5p expression was decreased in our incumbent firefighters, but increased in service members with polychlorinated dibenzo(dioxin (PCDD) and polychlorinated dibenzo furan (PCDF) exposures from open air burn pits comparing pre- and post-deployment.40 However, to evaluate for dose–response relationships specific to firefighters, longitudinal studies including exposure assessment and measurement of miRNA changes are needed.

Cluster analysis comparing the incumbent firefighters to new recruits identified miRNA groupings associated with stem cells, inflammation, cytokine–cytokine receptor interactions, cell adhesion molecules, cancers, and a number of target genes. MiRNAs control stem cell self-renewal and differentiation,81 and through this role have been implicated in the etiology of a variety of cancers.82,83 For example, hsa-miR-302a-3p and hsa-miR-302b-3p, enriched in cluster 1, and hsa-miR-302d-3p, enriched in cluster 2, belong to the miR-302 family, which has important roles relative to stem cells.54 MiR-302 inhibits human pluripotent stem cell tumorigenicity by enhancing multiple G1 phase arrest pathways.84 Moreover, the miR-302 family functions to reprogram skin cancer cells into a stem cell-like pluripotent state.85 MiR-137, enriched in cluster 2, is downregulated in colon cancer stem cells compared with normal colon stem cells.67 MiR-124 and 137 also regulate the differentiation and proliferation of neural stem cells and glioblastoma-multiforme tumor cells.68 Beyond stem cells, all three pathways identified in cluster 1 were related to inflammation. Chronic inflammation has long been linked with cancers.69 Inflammation mediated by the chemokine and cytokine signaling pathway (P00031) includes chemokine-induced adhesion and migration of leukocytes70 and miRNAs differentially expressed in lung cancer.72,73 bladder cancer.74
MicroRNA Changes in Firefighters

REFERENCES

1. Daniels RD, Kabule TL, Yins JH, et al. Mortality and cancer incidence in a pooled cohort of U.S. firefighters from San Francisco, Chicago and Philadelphia (1950–2009). Occup Environ Med. 2014;71:388–397.

2. Ahn YS, Jeong KS, Kim KS. Cancer morbidity of professional emergency responders in Korea. Am J Ind Med. 2012;55:768–778.

3. Daniels RD, Bertke S, Dahm MM, et al. Exposure-response relationships for select cancer and non-cancer health outcomes in a cohort of U.S. firefighters from San Francisco, Chicago and Philadelphia (1950–2009). Occup Environ Med. 2015;72:699–706.

4. Glass DC, Picher S, Del Monaco A, et al. Mortality and cancer incidence in a cohort of male paid Australian firefighters. Occup Environ Med. 2016;73:761–771.

5. Ide CW. Cancer incidence and mortality in serving whole-time Scottish firefighters 1984–2005. Occup Med (Lond). 2014;64:421–427.

6. LeMasters GK, Genaidy AM, Succop P, et al. Cancer risk among firefighters: a review and meta-analysis of 32 studies. J Occup Environ Med. 2006;48:1189–1202.

7. Pukkala E, Marttinen JI, Weiderpass E, et al. Cancer incidence among firefighters: 45 years of follow-up in five Nordic countries. Occup Environ Med. 2014;71:399–404.

8. Bastos MN. Registry-based case-control study of cancer in California firefighters. Am J Ind Med. 2007;50:339–344.

9. Bolstad-Johnson DM, Burgess JL, Crutchfield CD, et al. Characterization of firefighter exposures during fire overhaul. Am Ind Hyg Assoc J. 2000;61:633–641.

10. Driscoll TR, Carey RN, Peters S, et al. The Australian work environment study: prevalence of occupational exposure to formaldehyde. Ann Occup Hyg. 2016;60:112–138.

11. IARC (International Agency for Research on Cancer). Painting, firefighting, and shiftwork. IARC Monogr Eval Carcinog Risk Hum. 2010;91:1386–1394.

12. Shaw SD, Berger ML, Harris JH, et al. Persistent organic pollutants including polychlorinated and polybrominated dibenzo-p-dioxins and dibenzofurans in firefighters from Northern California. Chemosphere. 2013;91:1386–1394.

13. Straiß K, Baar R, Grosse Y, et al. Carcinogenicity of shift work, painting, and firefighting. Lancet Oncol. 2007;8:1065e6.

14. Biseswas S, Rao CM. Epigenetics in cancer: fundamentals and beyond. Pharmacol Ther. 2017;173:118–134.

15. Link A, Balaguer F, Goel A. Cancer chemoprevention by dietary polyphenols: promising role for epigenetics. Biochem Pharmacol. 2010;80:1711–1729.

16. Chamberlain RM, Jones PA. Epigenetics and microRNAs. Pediatr Res. 2007;61:24R–30R.

17. Jones PA, Baylin SB. The fundamental role of epigenetic events in cancer. Nat Rev Genet. 2002;3:415–428.

18. Jones PA, Baylin SB. The epigenomics of cancer. Cell. 2007;128:683–692.

19. Rozek LS, Dolinoy DC, Sartor MA, Omenn GS. Epigenetics: relevance and implications for public health. Ann Rev Public Health. 2014;35:105–122.

20. Law CW, Chen Y, Shi W, Smyth GK. voom: precision weights unlock linear model analysis tools for RNA-seq read counts. Genome Biol. 2014;15:R29.

21. Ritchie ME, Phipson B, Wu D, et al. Limma powers differential expression analyses for RNA-seq data. Ann Appl Stat. 2014;8:135–162.

22. Smyth GK. Linear models and empirical bayes methods for assessing differential expression in microarray experiments. Stat Appl Genet Mol Biol. 2004;3:Article3.

23. Zhan C, Yan L, Wang L, et al. Identification of reference miRNAs in human cancers by TCGA miRNA-seq data. Bioinformatics. 2014;30:375–378.

24. Kim P, Cheng F, Zhao J, Zhao Z. ccmGDB: a database for cancer cell metabolism. Nucleic Acids Res. 2016;44:D959–D968.

25. Dweep H, Sticht C, Pandey P, Grett N. MiRWalk–database: prediction of possible miRNA binding sites by “walking” the genes of three genomes. J Biomed Inform. 2011;44:839–847.

26. Li Y, Qiu C, Tu J, et al. HMDD v2.0: a database for experimentally supported miRNA-target interaction. Nucleic Acids Res. 2012;40:D267–D272.

27. Hu B, Ying X, Wang J, et al. Identification of tumor-suppressive human-specific microRNA within the FHIT tumor-suppressor gene. Cancer Res. 2014;74:2283–2294.

28. Chowdhuri S, Saini N, hsa-miR-4516 mediated downregulation of STAT3/CDK6/UBE2N plays a role in PUVA induced apoptosis in keratinocytes. J Cell Physiol. 2014;229:1630–1638.

29. Ozen M, Karatas OF, Gulluoglu S, et al. Overexpression of miR-145-5p inhibits proliferation of prostate cancer cells and reduces SOX2 expression. Cancer Invest. 2015;33:251–258.

30. Samulini Erdem J, Skaug V, Bakke P, et al. Mutations in TP53 increase the prevalence of occupational exposure to formaldehyde. Ann Occup Hyg. 2012;56:2469–24704.

31. Epis MR, Giles KM, Barker A, et al. miR-331-3p regulates ERBB-2 expression and androgen receptor signaling in prostate cancer. J Biol Chem. 2009;284:24696–24704.

32. Epis MR, Giles KM, Kalinowski FC, et al. Regulation of expression of deoxypyruvase hydroxylase (DOHH), the enzyme that catalyzes the activation of eIF5A, by miR-331-3p and miR-642-5p in prostate cancer cells. J Biol Chem. 2012;287:35251–35259.
34. Zhao D, Sui Y, Zheng X. MiR-331-3p inhibits proliferation and promotes apoptosis by targeting HER2 through the PI3K/Akt and ERK1/2 pathways in colorectal cancer. Oncol Rep. 2016;35:1075–1082.

35. Ma Z, Qui X, Wang D, et al. MiR-181a-5p inhibits cell proliferation and migration by targeting Kras in non-small cell lung cancer A549 cells. Acta Biochim Biophys Sin. 2015;47:630–638.

36. Herman A, Gruden K, Blejsek A, et al. Analysis of glioblastoma patients’ plasma revealed the presence of microRNAs with a prognostic impact on survival and those of viral origin. PLoS One. 2015;10:e0125791.

37. Wang Y, Xin H, Han Z, et al. MicroRNA-374a promotes esophageal cancer cell proliferation via Axin2 suppression. Oncol Rep. 2015;34:1988–1994.

38. Xu X, Wang W, Su N, et al. MiR-374a promotes cell proliferation, migration and invasion by targeting SRC1N1 in gastric cancer. FEBS Lett. 2015;589:407–413.

39. Slattery ML, Herrick JS, Mullany LE, et al. An evaluation and replication of miRNAs with disease stage and colorectal cancer–specific mortality. Int J Cancer. 2015;137:428–438.

40. Mosakhani N, Sarhadi VK, Borze I, et al. MicroRNA profiling differentiates colorectal cancer according to KRAS status. Genes Chromosomes Cancer. 2015;54:359–370.

41. Leiding J, Backer C, Deutscher S, et al. A blood based 12-miRNA signature of Alzheimer disease patients. Genome Biol. 2013;14:R78.

42. Buroker NE, Ning XH, Zhou QN, et al. Circulating miRNAs from dried blood spots are associated with high altitude sickness. J Med Diagn Meth. 2013;12:100125.

43. Wei T, Folkerksen L, Ehrenberg E, Giacinti C, et al. MicroRNA expression patterns of prognostic relevance. Nature. 2017;545:436–444.

44. Almen MS, Nilsson EK, Jacobsson JA, et al. MicroRNA expression profile in hematopoietic progenitor cells in C57BL/6 mice. Cell Tissue Res. 2011;345:561–578.

45. Almen MS, Nilsson EK, Jacobsson JA, et al. Genome-wide analysis reveals DNA methylation markers that vary with both age and obesity. Gene. 2014;548:61–67.

46. Almen MS, Jacobsson JA, Moschonis G, et al. Genome wide analysis reveals associations of a FTO gene variant with epigenetic changes. Genomics. 2012;99:132–137.

47. WHO. Obesity: Preventing and Managing the Global Epidemic. Report of a WHO Consultation. Geneva, WHO; 2000.

48. Ameling S, Kaczorowski T, Chilikut R, et al. Associations of circulating plasma microRNAs with age, body mass index and sex in a population-based study. BMC Med Genomics. 2015;8:61.

49. Rager JE, Smeester L, Jaspers I, et al. Epigenetic changes induced by air pollution on human lung cells. Environ Health Perspect. 2011;119:494–500.

50. Wei H, Zhang J, Tan K, Sun R, Yin L, Lu P. Benzene-induced aberrant miRNA expression profile in hematopoietic progenitor cells in C57BL/6 mice. Int J Mol Sci. 2015;16:27005–27013.

51. Pergol L, Cantone L, Favero C, et al. Extracellular vesicle-packaged miRNA release after short-term exposure to particulate matter is associated with increased coagulation. Particle Fibre Toxicol. 2017;14:32.

52. Nymark P, Gulez M, Borze I, et al. Integrative analysis of microRNA, mRNA and acetyl-CoA data reveals asbestosis- and histology-related changes in lung cancer. Genome Med. 2016;8:157.

53. Li X, Lv Y, Hao J, et al. Role of microRNA-4516 involved autophagy associated with exposure to fine particulate matter. Oncotarget. 2016;7:45385–45397.

54. Woeller CF, Thatcher TH, Van Twisk D, et al. MicroRNAs as novel biomarkers of deployment status and exposure to polychlorinated dibenzo-p-dioxins/dibenzo furans. J Occup Environ Med. 2016;58:S89–S96.

55. Fuchs E, Chen T. A matter of life and death: self-renewal in stem cells. EMBO Rep. 2013;14:39–48.

56. Tay Y, Zhang J, Thomson AM, et al. MicroRNAs to Nanog, Oct4 and Sox2 coding regions modulate embryonic stem cell differentiation. Nature. 2008;455:1124–1128.

57. Hatfield S, Rusholla-Baker H. microRNA and stem cell function. Cell Tissue Res. 2008;331:57–66.

58. Kuppusamy KT, Sperber H, Rushola-Baker H. MicroRNA regulation and role in stem cell maintenance, cardiac differentiation and hypertrophy. Curr Mol Med. 2013;13:757–764.

59. Lin SL, Chang DC, Ying SY, Leu D, Wu DT. MicroRNA miR-320 inhibits the tumorigenicity of human pluripotent stem cells by coordinate suppression of the CD2 and CD4/6 cell cycle pathways. Cancer Res. 2010;70:9473–9482.

60. Lin SL, Chang DC, Chang-Lin S, et al. MiR-302 reprograms human skin cancer cells into a pluripotent ES-cell-like state. RNA. 2008;14:2115–2124.

61. Sakaguchi M, Hisamori S, Oshima N, et al. miR-137 regulates the tumorigenicity of colon cancer stem cells through the inhibition of DCLK1. Gastroenterology. 2015;149:354–362.

62. Silber J, Lim DA, Pietruch C, et al. MiR-124 and miR-137 inhibit proliferation of glioblastoma multiforme cells and induce differentiation of brain tumor stem cells. BMC Med. 2008;6:14.

63. Mantovani A, Allavena P, Sica A, Balkwill F. Cancer-related inflammation. Nat Rev Cancer. 2008;8:539–550.

64. Vicente-Manzanares M, Sancho D, Yanez-Mo M, Sanchez-Madrid F. The leukocyte cytoskeleton in cell migration and immune interactions. Int Rev Cytol. 2002:216:233–289.

65. PANTHER. Inflammation Mediated by Chemokine and Cytokine Signaling Pathway. 2017. Available at: http://www.pantherdb.org/pathway/pathDetail.do?csAccession=P00031. Accessed November 08, 2017.

66. Vosa U, Vodere T, Kolde R, et al. Meta-analysis of microRNA expression in lung cancer. J Pathol. 2013;231:2884–2893.

67. Donnem T, Fenton CG, Lorvik K, et al. MicroRNA signatures in tumor tissue related to angiogenesis in non-small cell lung cancer. PLoS One. 2012;7:e29671.

68. Ren R, Tyryshkin K, Graham CH, et al. Comprehensive immune transcriptomic analysis in bladder cancer reveals subtype specific immune gene expression patterns of prognostic relevance. Oncotarget. 2017;8:70982–71001.

69. Lowe R, Overhoff MG, Ramagopalan SV, et al. The senescent methylome and its relationship with cancer, ageing and germline genetic variation in humans. Genome Biol. 2015;16:194.

70. Genome. KEGG Pathway: hsa04060. 2017. Available at: http://www.genome.jp/kegg-bin/www_bget?hsa04060. Accessed November 08, 2017.

71. PANTHER. Inflammation Mediated by Chemokine and Cytokine Signaling Pathway. 2017. Available at: http://www.pantherdb.org/pathway/pathDetail.do?csAccession=P00031. Accessed November 08, 2017.

72. Heaney ML, Golde DW. Soluble receptors in human disease. J Leukoc Biol. 1998;64:135–146.

73. Dranoff G. Cytokines in cancer pathogenesis and cancer therapy. Nat Rev Cancer. 2004;4:11–22.

74. Genome. KEGG Cell Adhesion Molecules: hsa04514. 2017. Available at: http://www.genome.jp/kegg-bin/show_pathway?hsa04514. Accessed November 08, 2017.

75. Montoya MC, Sancho D, Vicente-Manzanares M, Sanchez-Madrid F. Cell adhesion and polarity during immune interactions. Immunol Rev. 2002;186:88–92.

76. Elangbam CS, Qualis Jr CW, Dahlgren RR. Cell adhesion molecules-update. Vet Pathol. 1997:34:61–73.

77. Takamizawa J, Konishi H, Yanagisawa K, et al. Reduced expression of the let-7 microRNAs in human lung cancers in association with shortened postoperative survival. Cancer Res. 2004;64:3753–3756.

78. Gao W, Yu Y, Cao H, et al. Deregulated expression of miR-21, miR-143 and miR-181a in non small cell lung cancer is related to clinicopathologic characteristics of patient prognosis. Biomed Pharmacother. 2010:64:399–408.

79. Li Y, Tan W, Neo TW, et al. Role of the miR-106b-25 microRNA cluster in hepatocellular carcinoma. Cancer Sci. 2009;100:1234–1242.

80. Kolbert CP, Feddersen RM, Rakhshan F, et al. Multi-platform analysis of microRNA expression measurements in RNA from fresh frozen and FFPE tissues. PLoS One. 2013;8:e52517.