Finite groups whose commuting graphs are integral

Jutirekha Dutta and Rajat Kanti Nath

Department of Mathematical Sciences,
Tezpur University, Napaam-784028, Sonitpur, Assam, India.
Emails: jutirekhadutta@yahoo.com, rajatkantinath@yahoo.com

Abstract: A finite non-abelian group G is called commuting integral if the commuting graph of G is integral. In this paper, we show that a finite group is commuting integral if its central factor is isomorphic to $\mathbb{Z}_p \times \mathbb{Z}_p$ or D_{2m}, where p is any prime integer and D_{2m} is the dihedral group of order $2m$.

Mathematics Subject Classification: Primary: 05C25; Secondary: 05C50, 20D60.

Key words: Integral graph, Commuting graph, Spectrum of graph.

1 Introduction

Let G be a non-abelian group with center $Z(G)$. The commuting graph of G, denoted by Γ_G, is a simple undirected graph whose vertex set is $G \setminus Z(G)$, and two vertices x and y are adjacent if and only if $xy = yx$. In recent years, many mathematicians have considered commuting graph of different finite groups and studied various graph theoretic aspects (see [4, 6, 11, 12, 13, 14]). A finite non-abelian group G is called commuting integral if the commuting graph of G is integral. It is natural to ask which finite groups are commuting integral. In this paper, we compute the spectrum of the commuting graphs of finite groups whose central factors are isomorphic to $\mathbb{Z}_p \times \mathbb{Z}_p$, for any prime integer p, or D_{2m}, the dihedral group of order $2m$. Our computation reveals that those groups are commuting integral.

Recall that the spectrum of a graph \mathcal{G} denoted by $\text{Spec}(\mathcal{G})$ is the set $\{\lambda^{k_1}_1, \lambda^{k_2}_2, \ldots, \lambda^{k_n}_n\}$, where $\lambda_1, \lambda_2, \ldots, \lambda_n$ are the eigenvalues of the adjacency matrix of \mathcal{G} with multiplicities k_1, k_2, \ldots, k_n respectively. A graph \mathcal{G} is called integral if $\text{Spec}(\mathcal{G})$ contains only integers. It is well known that the complete graph K_n on n vertices is integral and $\text{Spec}(K_n) = \{(-1)^{n-1}, (n-1)^1\}$. Further, if $\mathcal{G} = K_{m_1} \sqcup K_{m_2} \sqcup \cdots \sqcup K_{m_l}$, where K_{m_i} are complete graphs on m_i vertices for $1 \leq i \leq l$, then

$$\text{Spec}(\mathcal{G}) = \{((-1)^{m_1-1}, (m_1-1)^1, (m_2-1)^1, \ldots, (m_l-1)^1\}.$$

The notion of integral graph was introduced by Harary and Schwenk [9] in the year 1974. Since then many mathematicians have considered integral graphs, see for example [2, 10, 15]. A very impressive survey on integral graphs can be found in [8].

*Corresponding author
Ahmadi et. al noted that integral graphs have some interest for designing the network topology of perfect state transfer networks, see [3] and the references there in.

For any element x of a group G, the set $C_G(x) = \{ y \in G : xy = yx \}$ is called the centralizer of x in G. Let $|\text{Cent}(G)| = |\{C_G(x) : x \in G\}|$, that is the number of distinct centralizers in G. A group G is called an n-centralizer group if $|\text{Cent}(G)| = n$. In [7], Belcastro and Sherman characterized finite n-centralizer groups for $n = 4, 5$. As a consequence of our results, we show that 4, 5-centralizer finite groups are commuting integral. Further, we show that a finite $(p + 2)$-centralizer p-group is commuting integral for any prime p.

2 Main results and consequences

We begin this section with the following theorem.

Theorem 2.1. Let G be a finite group such that $\frac{\mathbb{Z}}{Z(G)} \cong \mathbb{Z}_p \times \mathbb{Z}_p$, where p is a prime integer. Then

$$\text{Spec}(\Gamma_G) = \{(-1)^{(p^2-1)|Z(G)|-p-1}, ((p-1)|Z(G)|-1)^{p+1}\}.$$

Proof. Let $|Z(G)| = n$ then since $\frac{\mathbb{Z}}{Z(G)} \cong \mathbb{Z}_p \times \mathbb{Z}_p$ we have $\frac{\mathbb{Z}}{Z(G)} = \langle aZ(G), bZ(G) : a^p, b^2, aba^{-1}b^{-1} \in Z(G) \rangle$, where $a, b \in G$ with $ab \neq ba$. Then for any $z \in Z(G)$, we have

$$C_G(a) = C_G(a^i z) = Z(G) \cup aZ(G) \cup \ldots \cup a^{p-1}Z(G) \text{ for } 1 \leq i \leq p-1,$$

$$C_G(a^i b) = C_G(a^i b z) = Z(G) \cup a^i bZ(G) \cup \ldots \cup a^{(p-1)i}b^{p-1}Z(G) \text{ for } 1 \leq j \leq p.$$

These are the only centralizers of non-central elements of G. Also note that these centralizers are abelian subgroups of G. Therefore

$$\Gamma_G = K_{C_G(a) \setminus Z(G)} \sqcup \left(\bigsqcup_{j=1}^{p+1} K_{C_G(a^j b) \setminus Z(G)} \right).$$

Thus $\Gamma_G = K_{(p-1)n} \sqcup \left(\bigsqcup_{j=1}^{p+1} K_{(p-1)n} \right)$, since $|C_G(a)| = pn$ and $|C_G(a^i b)| = pn$ for $1 \leq j \leq p$ where as usual K_m denotes the complete graph with m vertices. That is, $\Gamma_G \cong \biguplus_{j=1}^{p+1} K_{(p-1)n}$. Hence the result follows. \qed

Above theorem shows that G is commuting integral if the central factor of G is isomorphic to $\mathbb{Z}_p \times \mathbb{Z}_p$ for any prime integer p. Some consequences of Theorem 2.1 are given below.

Corollary 2.2. Let G be a non-abelian group of order p^3, for any prime p, then

$$\text{Spec}(\Gamma_G) = \{(-1)^{p^3-2p-1}, (p^2 - p - 1)^{p+1}\}.$$

Hence, G is commuting integral.

Proof. Note that $|Z(G)| = p$ and $\frac{\mathbb{Z}}{Z(G)} \cong \mathbb{Z}_p \times \mathbb{Z}_p$. Hence the result follows from Theorem 2.1. \qed

Corollary 2.3. If G is a finite 4-centralizer group then G is commuting integral.
Let G be a finite group such that $\frac{G}{Z(G)} \cong \mathbb{Z}_2 \times \mathbb{Z}_2$. Therefore, by Theorem 2.4

$$\text{Spec}(\Gamma_G) = \{((-1)^3|Z(G)|^{-1}, (|Z(G)| - 1)^3 \}.$$

This shows that G is commuting integral. \square

Further, we have the following result.

Corollary 2.4. If G is a finite $(p + 2)$-centralizer p-group, for any prime p, then

$$\text{Spec}(\Gamma_G) = \{((-1)^3|Z(G)|^{-1}, (|Z(G)| - 1)^3 \}.$$

Hence, G is commuting integral.

Proof. If G is a finite $(p + 2)$-centralizer p-group then by Lemma 2.7 of [3] we have $\frac{G}{Z(G)} \cong \mathbb{Z}_p \times \mathbb{Z}_p$. Now the result follows from Theorem 2.4. \square

The following theorem shows that G is commuting integral if the central factor of G is isomorphic to the dihedral group $D_{2m} = \{a, b : a^m = b^2 = 1, bab^{-1} = a^{-1}\}$.

Theorem 2.5. Let G be a finite group such that $\frac{G}{Z(G)} \cong D_{2m}$, for $m \geq 2$. Then

$$\text{Spec}(\Gamma_G) = \{((-1)^{(2m-1)|Z(G)|-m-1}, (|Z(G)| - 1)^m, ((m - 1)|Z(G)| - 1)^3 \}.$$

Proof. Since $\frac{G}{Z(G)} \cong D_{2m}$ we have $\frac{G}{Z(G)} = \langle xZ(G), yZ(G) : x^2, y^m, xyx^{-1}y \in Z(G) \rangle$, where $x, y \in G$ with $xy \neq yx$. It is not difficult to see that for any $z \in Z(G)$,

$$C_G(y) = C_G(y'z) = Z(G) \cup yZ(G) \cup \cdots \cup y^{m-1}Z(G), 1 \leq i \leq m - 1$$

and

$$C_G(xy^j) = C_G(xy^jz) = Z(G) \cup xy^jZ(G), 1 \leq j \leq m$$

are the only centralizers of non-central elements of G. Also note that these centralizers are abelian subgroups of G. Therefore

$$\Gamma_G = K_{\{C_G(y) : Z(G) \cup \cdots \cup y^{m-1}Z(G)\} \cup \bigcup_{j=1}^{m} K_{\{C_G(xy^j) : Z(G) \cup \cdots \cup y^{m-1}Z(G)\}}.$$

Thus $\Gamma_G = K_{(m-1)n} \cup \bigcup_{j=1}^{m} K_n$, since $|C_G(y)| = mn$ and $|C_G(xy^j)| = 2n$ for $1 \leq j \leq m$, where $|Z(G)| = n$. Hence the result follows. \square

Corollary 2.6. If G is a finite 5-centralizer group then G is commuting integral.

Proof. If G is a finite 5-centralizer group then by Theorem 4 of [2] we have $\frac{G}{Z(G)} \cong \mathbb{Z}_3 \times \mathbb{Z}_3$ or D_6. Now, if $\frac{G}{Z(G)} \cong \mathbb{Z}_3 \times \mathbb{Z}_3$ then by Theorem 2.4 we have

$$\text{Spec}(\Gamma_G) = \{((-1)^8|Z(G)|^{-4}, (2|Z(G)| - 1)^4 \}.$$

Again, if $\frac{G}{Z(G)} \cong D_6$ then by Theorem 2.4 we have

$$\text{Spec}(\Gamma_G) = \{((-1)^5|Z(G)|^{-4}, (|Z(G)| - 1)^3, (2|Z(G)| - 1)^4 \}.$$

In both the cases Γ_G is integral. Hence G is commuting integral. \square
We also have the following result.

Corollary 2.7. Let G be a finite non-abelian group and \{x_1, x_2, \ldots, x_r\} be a set of pairwise non-commuting elements of G having maximal size. Then G is commuting integral if $r = 3, 4$.

Proof. By Lemma 2.4 of [1], we have that G is a 4-centralizer or a 5-centralizer group according as $r = 3$ or 4. Hence the result follows from Corollary 2.3 and Corollary 2.6.

We now compute the spectrum of the commuting graphs of some well-known groups, using Theorem 2.5.

Proposition 2.8. Let $M_{2mn} = \langle a, b : a^m = b^{2n} = 1, bab^{-1} = a^{-1} \rangle$ be a metacyclic group, where $m > 2$. Then

$$\text{Spec}(\Gamma_{M_{2mn}}) = \begin{cases} \{(-1)^{2mn-m-n-1}, (n-1)^{m}, (mn-n-1)^{1}\} & \text{if } m \text{ is odd} \\ \{(-1)^{2mn-2n-3}, (2n-1)^{3}, (mn-2n-1)^{1}\} & \text{if } m \text{ is even} \end{cases}$$

Proof. Observe that $Z(M_{2mn}) = \langle b^{2} \rangle$ or $\langle a \rangle \cup \langle b^{2} \rangle$ according as m is odd or even. Also, it is easy to see that $M_{2mn} Z(M_{2mn}) \cong D_{2m}$ or D_{m} according as m is odd or even. Hence, the result follows from Theorem 2.5.

The above Proposition 2.8 also gives the spectrum of the commuting graph of the dihedral group D_{2m}, where $m > 2$, as given below:

$$\text{Spec}(\Gamma_{D_{2m}}) = \begin{cases} \{(-1)^{m-2}, 0^{m}, (m-2)^{1}\} & \text{if } m \text{ is odd} \\ \{(-1)^{3m-3}, 1^{3}, (m-3)^{1}\} & \text{if } m \text{ is even} \end{cases}$$

Proposition 2.9. The spectrum of the commuting graph of the dihedral group or the generalized quaternion group $Q_{4m} = \langle a, b : a^{2m} = 1, b^2 = a^m, bab^{-1} = a^{-1} \rangle$, where $m \geq 2$, is given by

$$\text{Spec}(\Gamma_{Q_{4m}}) = \{(-1)^{3m-3}, 1^{m}, (2m-3)^{1}\}.$$

Proof. The result follows from Theorem 2.8 noting that $Z(Q_{4m}) = \{1, a^{m}\}$ and $Q_{4m} Z(Q_{4m}) \cong D_{2m}$.

Proposition 2.10. Consider the group $U_{6n} = \{a, b : a^{2n} = b^{3} = 1, a^{-1} ba = b^{-1} \}$. Then $\text{Spec}(\Gamma_{U_{6n}}) = \{(-1)^{3n-4}, (n-1)^{3}, (2n-1)^{1}\}$.

Proof. Note that $Z(U_{6n}) = \langle a^{3} \rangle$ and $U_{6n} Z(U_{6n}) \cong D_{6}$. Hence the result follows from Theorem 2.8.

We conclude the paper by noting that the groups M_{2mn}, D_{2m}, Q_{4m} and U_{6n} are commuting integral.
References

[1] A. Abdollahi, S. M. Jafarain and A. M. Hassanabadi, Groups with specific number of centralizers, *Houston J. Math.* **33** (2007), no. 1, 43–57.

[2] A. Abdollahi and E. Vatandoost, Which Cayley graphs are integral, *Electron. J. Combin.* **16**(2009), no. 1, R122, 17 pp.

[3] Omran Ahmadi, Noga Alon, Ian F. Blake and Igor E. Shparlinski, Graphs with integral spectrum, *Linear Algebra Appl.* **430** (2009), no. 1, 547–552.

[4] S. Akbari, A. Mohammadian, H. Radjavi and P. Raja, On the diameters of commuting graphs, *Linear Algebra Appl.* **418** (2006), 161–176.

[5] A. R. Ashrafi, On finite groups with a given number of centralizers, *Algebra Colloq.* **7**(2000), no. 2, 139–146.

[6] C. Bates, D. Bundy, S. Hart and P. Rowley, A Note on Commuting Graphs for Symmetric Groups, *Electronic J. Combin.* **16** (2009), 1–13.

[7] S. M. Belcastro and G. J. Sherman, Counting centralizers in finite groups, *Math. Magazine*, **67** (1994), no. 5, 366–374.

[8] K. Balińska, D. Cvetković, Z. Radosavljević, S. Simić and D. Stevanović, A survey on integral graphs, *Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat.* **13** (2003), 42–65.

[9] F. Harary and A. J. Schwenk, Which graphs have integral spectra?, Graphs and Combinatorics, Lect. Notes Math., Vol 406, Springer-Verlag, Berlin, 1974, 45–51.

[10] G. Indulal and A. Vijayakumar, Some new integral graphs, *Appl. Anal. Discrete Math.* **1** (2007), 420–426.

[11] A. Iranmanesh and A. Jafarzadeh, Characterization of finite groups by their commuting graph, *Acta Mathematica Academiae Paedagogicae Nyiregyhaziensis* **23**(2007), no. 1, 7–13.

[12] A. Iranmanesh and A. Jafarzadeh, On the commuting graph associated with the symmetric and alternating groups, *J. Algebra Appl.* **7** (2008), no. 1, 129–146.

[13] G. L. Morgan and C. W. Parker, The diameter of the commuting graph of a finite group with trivial center, *J. Algebra* **393** (2013), no. 1, 41–59.

[14] C. Parker, The commuting graph of a soluble group, *Bull. London Math. Soc.*, **45** (2013), no. 4, 839–848.

[15] L. Wang, X. Li and C. Hoede, Two classes of integral regular graphs, *Ars Combin.* **76** (2005), 303–319.