Etiology and early pathogenesis of malignant testicular germ cell tumors: towards possibilities for preinvasive diagnosis

Jenny E Elzinga-Tinke¹, Gert R Dohle¹, Leendert HJ Looijenga²

Malignant testicular germ cell tumors (TGCT) are the most frequent cancers in Caucasian males (20–40 years) with an incidence of about 0.12 per 100 000. The per definition malignant TGCT are based on histological classification only.¹⁻⁴ However, in 2005, Oosterhuis and Looijenga⁵ proposed a classification system based on site of presentation, age of the patient at diagnosis, histological composition, pattern of genomic imprinting, and chromosomal constitution. This classification system includes five categories of GCT, which has been adopted by specialized pathologists and the World Health Organization (WHO).⁶⁻¹¹ The first group (type I) consists of benign teratomas and malignant yolk sac tumors (YSTs), predominantly diagnosed in neonates and infants, with an annual incidence of about 0.12 per 100 000. The per definition malignant seminomas and nonseminomatous GCT (type II) are the second group, which is the most common form of GCT, with an annual incidence of about 6.0 per 100 000. The third group is spermatocytic seminoma (type III), which usually affects men ≥40 years of age with an incidence of approximately 0.2 per 100 000 per year. The last two groups are type IV (dermoid cysts, mainly the ovary) and type V (the hydatidiform mole in fertile woman).

In this review, we will focus on type II GCT of the testis (i.e. testicular germ cell tumors [TGCT]), which have their origin in a blocked maturation of a PGC.¹⁰⁻¹² As indicated, the type II TGCT can be divided into seminoma (SE) and nonseminoma (NS). About 50% of all TGCT are seminomas, with a median age of patients at diagnosis of 35 years. Nonseminomas develop earlier in life, with a median age at diagnosis of 25 years. The latter can contain different histological tumor components, that is, the stem cell component embryonal carcinoma, teratoma (somatic differentiation), choriocarcinoma (extra-embryonic differentiation), and YST.¹¹⁻¹² The nonseminomas account for 40% of cases. The remaining group consist of both seminoma and nonseminoma components and occur at an intermediate age.

INTRODUCTION TO GERM CELL TUMORS AND ITS CLASSIFICATION

Germ cell tumors (GCT) are a heterogeneous group of neoplasms that most frequently occur in the gonads, both testes and ovaries.¹ GCT may also rarely occur at specific extragonadal sites along the midline of the body, such as the pineal gland-hypothalamic region, mediastinum, retroperitoneum, and sacrum, probably as a consequence of the migration route of the primordial germ cells (PGCs), being the cells of origin of gametogenesis during early embryogenesis.²⁻⁴

Historically, GCT were based on histological classification only.¹⁻⁴ However, in 2005, Oosterhuis and Looijenga⁵ proposed a classification system based on site of presentation, age of the patient at diagnosis, histological composition, pattern of genomic imprinting, and chromosomal constitution. This classification system includes five categories of GCT, which has been adopted by specialized pathologists and the World Health Organization (WHO).⁶⁻¹¹ The first group (type I) consists of benign teratomas and malignant yolk sac tumors (YSTs), predominantly diagnosed in neonates and infants, with an annual incidence of about 0.12 per 100 000. The per definition malignant

¹Department of Urology, Subsection of Andrology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands; ²Department of Pathology, Laboratory of Experimental Patho-Oncology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands.
Correspondence: Prof. LHJ Looijenga (l.looijenga@erasmusmc.nl)
Received: 16 September 2014; Revised: 25 November 2014; Accepted: 09 December 2014

Keywords: carcinoma in situ; etiology; environmental exposure; semen diagnostics; single nucleotide polymorphism; testicular germ cell tumor pathogenesis

© 2015 AJA, SIMM & SJTU. All rights reserved 1008-682X
www.asiaandro.com; www.ajandrology.com
TYPE II TESTICULAR GERM CELL TUMORS: INTRODUCTION
The malignant TGCT, also known as germ cell cancers, are the most frequent malignancy in Caucasian males between 20 and 40 years of age. Overall, TGCT account for approximately 1% of all solid cancers, but in young men, it is almost 60%. In the last 20 years, there has been a 70% increase in the incidence of TGCT, probably due to the action of (micro)environmental factors in relationship with (epi)genetic constitution, to be discussed in detail later. Annually, about 12 000 new cases of TGCT are diagnosed in Europe.

It is currently accepted that the majority, and possibly all, type II TGCT (i.e. the seminomas and all histological elements of the nonseminomas) have carcinoma in situ (CIS) as common precursor. However, this has not been proven so far, which also accounts for the possible presence of CIS without progression to a full blown cancer. CIS is also referred to as intratubular germ cell neoplasia unclassified (IGCNU, WHO definition) and testicular intraepithelial neoplasia, but throughout this review, the term CIS will be used in accordance with most literature. CIS originates from an embryonic germ cell, either a PGC or a gonocyte (i.e., a PGC located in the genital ridge/undifferentiated and bipotential gonad), blocked in its process of maturation. After puberty, CIS has a high risk to progress into an invasive cancer, shown to be 70% in 7 years, and assumed to be up to 100% after 10 years.

The overall cure rate of TGCT at 5 years, based on surgical interventional and depending on stage, combined with irradiation and/or chemotherapy, is more than 90%, even in case of presence of metastatic disease. However, due to treatment resistance of the cancer in some patients, TGCT-related death is the second cause of death in men between 15 and 45 years. In addition, men surviving TGCT can present long-term side effects of systemic cancer treatment, such as chronic fatigue, cardiovascular disease, metabolic syndrome, infertility, and even second cancers. In contrast to the survival rates of patients with TGCT, the cure rate of CIS is 100%. Local treatment is sufficient to effectively eradicate CIS, that is, a low doses of testicular irradiation or orchidectomy. The consequence of this local therapy can be infertility and hypogonadism, especially in case of bilateral disease or monorchitis. For these patients, semen preservation must be performed in advance and hormonal support may be indicated after this local treatment. Contrary to patients with an advanced stage of TGCT, men diagnosed and treated for CIS without an invasive component continue to live without long-term side effects of systemic treatment.

Early detection of CIS is however difficult due to lack of symptoms and specific markers for screening. A testis biopsy is currently the only reliable method to diagnose CIS of the testis. So far, it is proven to be difficult to develop a noninvasive test for CIS in men with an increased risk of TGCT, which can be used for screening purposes and case finding. Defined risk factors for TGCT are cryptorchidism, testis atrophy, infertility, a history of unilateral TGCT, and familial predisposition. However, many of the men having one or more of these risk factors will never develop a TGCT. Furthermore, many of the patients diagnosed with TGCT lack one or more of these risk factors. Therefore, these risk factors are not found to be highly informative on an individual level and it must be concluded that these risk factors alone are not specific enough to be used for screening of TGCT. In recent literature, various environmental factors may also result in a higher risk for TGCT, but the role of these environmental factors is still unclear. They may play a role in the early development of CIS or in the transition of CIS into TGCT. In addition, a number of recent independent genome wide association studies (GWAS) have been conducted, indicating an association between a selected number of single-nucleotide polymorphisms (SNPs) and presence of a TGCT. Interestingly, the genes likely linked to these SNPs are also known to be involved in early gonadal development and regulation of germ cell survival.

In this review, the early pathogenesis of CIS of the testis and TGCT will be discussed. A better understanding of these early pathogenetic steps, influenced by (micro) environmental and (epi)genetic factors, may help to develop an informative clinical approaches for early diagnosis of CIS, allowing local gonadal treatment and prevention of long-term side effects of systemic treatment.

PATHOGENESIS OF MALIGNANT TESTICULAR GERM CELL TUMORS (TYPE II)
Normal testicular development
During early embryogenesis, the early germ cells undergo subsequent maturation and differentiation influenced by the micro-environment of these cells. Understanding these processes is essential to create insight into the mechanisms involved in the earliest events of the pathogenesis of CIS and of the derived invasive lesions, that is, TGCT.

The initial totipotent early germ cells, named PGC, initially start to migrate from their origin in the posterior wall of the yolk sac into the hindgut along the midline of the body in the 3rd week of embryogenesis. Thereafter, they move into the mesoderm and travel to the genital ridge. The KIT/KITLG (stem cell factor, SCF, c-KIT ligand) pathway is crucial for this migration.

The PGC express a number of specific (embryonic) markers during early and after their migration to the genital ridge (Figure 1), which are involved in different biological mechanisms during this period of embryogenesis. Some of these markers, like OCT3/4 (also known as POU5F1), c-KIT, placenta like alkaline phosphatase (PLAP), NANOG, SOX2 (only for nonseminoma), and SOX17, have diagnostic value for TGCT as well as CIS.

During the 5th week of development, still the pluripotent PGC enters the genital ridge and are now called gonocytes. In the beginning of week sixth of the embryogenesis in the male genomic constitution (XY) Sertoli cells are formed, due to the expression of the transcription factor Sex-determining Region on the Y-chromosome (SRY) and subsequently SOX9 (SRY related HMG box 9). If no functional SRY and the subsequent downstream pathway is activated, no Sertoli cells will be generated, but the precursors will follow the female pathway and become granulosa cells.

The primitive seminiferous cords are formed in the 7th week of embryogenesis, in which the germ cells and Sertoli cells are not yet organized. Subsequently, the germ cells migrate toward the basal lamina of the seminiferous tubules and start to lose the expression of some of the aforementioned embryonic markers (i.e. PLAP, OCT3/4, and c-KIT), happening during the 13th week of embryogenesis. In fact, OCT3/4 and PLAP disappear completely, while c-KIT can still be detected at a relatively low level. This is in contrast to the markers VASA and SOX17: they continue to be expressed after birth and remain even positive throughout life.

At the 13th week of development, the male gonocytes also begin to express Testis Specific Protein on the Y chromosome, which regulates the normal proliferation of spermatogonia and remain positive when the spermatogonia enter meiotic division. For a good regulation of the proliferation of the gonocytes and the protection of the cells against apoptosis, the contact between the Sertoli cells and now referred to prespermatogonia is necessary. The expression pattern of proteins on the gonocytes and prespermatogonia changes during embryogenesis...
substantially: the specific embryonic proteins decrease gradually in number and most of them eventually disappear.64,65,67,68

Impaired testicular development and the onset of carcinoma in situ

The origin of TGCT probably starts at early embryogenesis, and is hypothesized to be part of the Testicular Dysgenesis Syndrome (TDS).77 This syndrome was first described by Skakkebaek \textit{et al.}77 and assumes that cryptorchidism, hypospadias, impaired spermatogenesis, and TGCT may all be manifestations of impaired testicular development during early embryogenesis.

This impaired testicular development means that some early PGC/gonocytes are blocked in their process of differentiation, and as such, these germ cells retain their early (embryonic) marker profile.66,67,78 The reason for this development block is not yet entirely clear. It is probably a combination of (micro)environmental factors and (epi)genetic defects.10 For example, it is believed that xeno-estrogens and anti-testosterones negatively affect the development of Sertoli cells and Leydig cells,79 causing a suboptimal environment for germ cell differentiation and leading to development of CIS cells,80 which are, as mentioned above, blocked embryonic germ cells. Furthermore, it is assumed that the KIT/KITLG pathway, which regulates the survival, migration and proliferation of PGC/gonocytes, is central to this development.51-83

As indicated, these CIS cells resemble PGC/gonocytes on different aspects.78 Both have for example expression of embryonal markers (\textbf{Figure 1}: OCT3/4, PLAP, alkaline phosphatase (AP-2γ), c-KIT, etc.).81-83 Normally, in the time window of about 6–12 months after birth all proteins related to the embryonal stage are disappeared, while VASA84 and TPSY remain present.75 However, there is on ongoing expression of these embryonal markers in CIS cells after birth,68,85 wherein the expression of SCF (KITLG) is likely more selective for the niche of the CIS cells.

In the testis, these CIS cells remain, that is, resistant to apoptosis and maturation, and eventually progress after puberty, likely due to a rise in serum testosterone, into an invasive tumor.22,23 The current hypothesis is that all patients with this abnormality will develop an invasive TGCT,9 due to the fact that in the male Caucasian population, the incidence of CIS similar is to the lifetime risk of developing a TGCT. However, the exact cause for progression of CIS to TGCT is currently unknown. It has been suggested that loss of PTEN exposure to certain and environmental factors among others play a role.86 For the onset of CIS and the development of CIS into an invasive tumor, there is likely an interplay between genetic, epigenetic, and (micro)environmental factors also referred as the genenvironment.87,88

\textbf{ETIOLOGY OF TESTICULAR GERM CELL TUMORS AND THE GENENVIRONMENTAL HYPOTHESIS}

\textbf{Genetic risk factors}

Ethnic differences in the incidence and geographical clustering of TGCT suggest a genetic component in the etiology of this disease in addition to possible environmental influences.89 African and Asian men have a very low risk of developing TGCT.90 Even if these men migrate to a western country they maintain their low risk, which is observed in African-Americans living in the USA for many generations.91 This shows that the supposed absence of genetic risk factors in African and Asian men, have greater influence than exposure to environmental risk factors on the incidence of TGCT.92 This is in contrast to selective Caucasian men migrating to another country with a higher incidence of TGCT. The second generation of these men has the same risk of TGCT as the local men.89

Another important argument for a genetic component in the etiology of TGCT is that family history is a strong known risk factor for these malignancies.93-96 Several studies have shown that the risk for a brother of a TGCT patient is 8–10 fold higher as compared with
the general male population. The risk for a son of a father with a history of TGCT is 4–6 fold higher. Also twin studies, both mono- and dizygotic twins, have confirmed a strong genetic component to TGCT. It is estimated that the genetic effects accounts for 25% of TGCT, which is a high rate in comparison to other cancers and even the third among all cancer types. Nevertheless most men with TGCT have no family member who also has the disease.

However, familial linkage studies and candidate gene approaches have not been very successful so far in defining genes predisposing to TGCT. An association study of the gr/gr deletion on the Y chromosome, which carries a number of tests- and germ cell-specific genes, demonstrated that this deletion provides an approximately two-fold risk of TGCT. It is however, not clear whether it is an effect specially related to this gene mutation or to the associated infertility, also a known risk factor for TGCT.

Since 2009 there are new genetic insights starting from two TGCT GWAS, one from the UK and one from the US. Subsequently, several additional TGCT GWAS have been done and recently a meta-analysis is performed. SNPs with significant associations were identified in or near the genes KITLG (KIT ligand), SPRY4 (spayrout: sprout-related, EVH1 domain containing 2), BAK1 (BCL2-antagonist/killer 1), DMRT1 (doublesex and mab-3-related transcription factor 1), TERT (telomerase reverse transcriptase), ATF7IP (activating transcription factor 7 interacting protein), HPGDS (hematopoietic prostaglandin D synthase), MAD1L1 (mitotic arrest deficient-like 1), RFWD3 (ring finger WD domain 3), TEX14 (testis expressed 14) and PPM1E (protein phosphatase, Mg2+/Mn2+ dependent, 1E). Table 1 highlights these genes, wherein also their chromosomal localization as well as relevant SNPs are listed.

Single-nucleotide polymorphisms at 12q22 likely related to KITLG have the strongest association with the development of TGCT, with a risk greater than 2.5-fold of TGCT per major allele. KITLG has been shown to be required for multiple aspects of PGC/gonocyte development. This gene is involved in the KITLG–KIT pathway, which system regulates the survival, proliferation, and migration of embryonic germ cells. Delayed differentiation of PGC/gonocytes and subsequent development of TGCT can be the result of retained activation of this pathway.

In addition, for TGCT somatic alterations in KIT have been described. In 21% of seminomas and 9% of nonseminomas, an increased copy number of the KIT gene has been observed. Probably, somatic KIT mutations can occur very early in embryogenesis, because there are known cases of bilateral disease with the same mutation in both testes.

It is suggested that there is a relationship with these genes and infertility. The link between cancer and infertility can, therefore, further be investigated in studies of KITLG variation in men with a history of infertility with and without TGCT.

SPRY4, on chromosome 5, is an inhibitor of the mitogen-activated protein kinase pathway, which is activated by the KITLG–KIT pathway. An increased expression of SPRY4 can induce downregulation of the KIT–KITLG pathway. A risk of 1.5-fold of TGCT per major allele on chromosome 5 loci is described. BAK1, on chromosome 6, binds and then provide apoptosis by antagonizing the apoptosis suppressor activity of BCL2 and other anti-apoptotic proteins. In testicular germ cells, expression of BAK1 is repressed by the KIT–KITLG pathway and interaction of BAK1 with anti-apoptotic proteins provides apoptosis in germ cell. Therefore, TGCT susceptibility might also come through BAK1 and its response to signaling through the KIT–KITLG pathway. A 1.5-fold increased risk was identified per major allele for the chromosomes 5 and 6 loci. It is suggested that a positive interaction between the loci on chromosomes 5, 6, and 12 gives a combined risk greater than the sum of the individual risks.

DMRT1 is a transcription factor with a highly conserved DNA-binding motif, which is similar to many vertebrate sex-determination pathways. There is much evidence that this gene is related to testicular determination, differentiation and tumorigenesis. Higher expression levels of DMRT1 are required for testicular differentiation and lower expression levels result in ovarian differentiation. DMRT1 deficiency in mice is associated with a high rate of teratomas, so type I TGCT. In humans seems a lower expression level of DMRT1 more strongly associated with nonseminomas type II TGCT, of which teratoma is one type, than with seminomas.

Telomerase reverse transcriptase encodes the catalytic subunit of the telomerase ribonucleoprotein complex. Telomerase counterbalances loss of chromosome ends, which is normal in actively dividing cells, by extending the TTAGGG telomeric nucleotide repeats. Telomere shortening is associated with increased genome instability and neoplasia. TERT is endogenously expressed during embryogenesis, but testicular germ cells are the only normal adult tissue in which telomerase continues to be expressed. Seminomas show high TERT expression, high telomerase activity and long telomeres, as seen in normal testicular germ cells. Minimal TERT expression and no telomerase activity are seen at nonseminomas, such as teratomas. This is also confirmed by the fact that SNP identified at this locus were more strongly associated with seminomas than nonseminomas. AT7IP activates the expression of TERT and its associated RNA component, TERC. Knock down of AT7IP results in a significant decrease in TERT and TERC expression and also in telomerase activity. In short, both TERT and AT7IP maintain telomere length and are reactivated in a range of tumor types.

Hematopoietic prostaglandin D synthase is expressed in the early embryonic male gonad in mice and seems to control nuclear localization

Table 1: The TGCT risk-SNPs and their likely related genes

Gene	Chromosome	SNP	References
UCK2	1	rs4657482	Rapley et al. 2009
HPGD	1	rs17021463	Chung et al. 2013
CENPE	4	rs4699052	Rapley et al. 2009
TERT	5	rs2736100	Turnbull et al. 2010
TERT/CLPTM1L	5	rs4635969	Turnbull et al. 2010
SPRY4	5	rs4624820	Rapley et al. 2009
BAK-1	6	rs210138	Rapley et al. 2009
MAD1L1	7	rs12699477	Chung et al. 2013
DMRT1	9	rs755383	Turnbull et al. 2010
AFT7IP	12	rs2900333	Turnbull et al. 2010
KITLG	12	rs995030	Rapley et al. 2009
	12	rs1508595	Rapley et al. 2009
	12	rs3782179	Kanetsky et al. 2009
	12	rs4475414	Kanetsky et al. 2009
RFWD3	16	rs4888262	Chung et al. 2013
TEX14	17	rs9905704	Chung et al. 2013
PPM1E	17	rs7221274	Chung et al. 2013

The Single-Nucleotide Polymorphisms (SNPs) with their chromosomal localization that appear to be associated with the presence of TGCT, which is demonstrated in recent independent Genome Wide Association Studies (GWAS). The genes likely linked to these SNPs are also known to be involved in early gonadal development and regulation of germ cell survival. See text for further explanation.
of the SOX9 protein.52,135 Disruption of HPGDS leads to modification of the phenotype of p/column14 mice.136 MAD1L1 gene encodes MAD1, prevents aneuploidy and maintains genomic stability.53 MAD1 is in fact a spindle assembly checkpoint protein that delays the onset of anaphase in the mitotic cell cycle until all sister chromatids achieve proper alignment and microtubule attachment.137 Remarkably, the risk allele (C) at the most significant SNP without study heterogeneity, rs12699477, is more prevalent in population of European (29%) than those of African ancestry (8%) in 1000 Genomes.138 This might indeed be one of the possible explanations for the intrinsic incidence of TGCT among Caucasians compared to Africans, as well as Asians, as mentioned above. This also indicates that the genetic constitution of these SNPs is dominant over the exposure to environmental compounds. RFWD3 is an E3 ubiquitin ligase that controls p53 stability by forming a RFWD3-MDM2-p53 complex, thereby protecting p53 from degradation by MDM2 polyubiquitination.139,140 The role of p53 in the pathogenesis is on interest in this context as well.

In conclusion, there are identified a number of SNPs for TGCT predisposition within fourteen genes that are biologically plausible candidates for disease susceptibility. This increased understanding of the genetic etiology of TGCT will lead to further improvement in the clinical management of this disease.

Environmental and other risk factors

In recent years, various potential risk factors for TGCT have been investigated, both prenatal, perinatal as well as postnatal. These include a variety of risk factors, such as related to environmental exposures, lifestyle factors, and prenatal characteristics. The knowledge on the impact of these particular risk factors is based on epidemiological research only;141 because there are so far no informative animal models available for TGCT.50 Some studies have focused on the etiology of TGCT in utero and early life, because CIS is supposed to develop in that period (as discussed above), and other studies have examined potential risk factors during childhood and adolescence. Overall, the results of these studies are inconsistent,142 partly because of their small sample sizes, multiple testing, self-report data, and recall bias. Recent meta-analyses have provided insight into the influence of these factors on the development of TGCT.50,51,143 In this review only the most important environmental factors in the context of development of TGCT will be highlighted.

The following prenatal risk factors for the development of TGCT have been investigated; maternal exposure to estrogens and nausea during pregnancy (being related to the first), diethylstilbestrol (synthetic estrogen DES), maternal hypertension, preeclampsia, maternal bleeding during pregnancy, maternal smoking, and maternal age.17,18,51 No association is found for nausea,143 and excess of endogenous hormones (likely estrogen) that can cause nausea, during pregnancy,144 similarly as for maternal hypertension, preeclampsia, and maternal age. DES, a nonsteroidal estrogen, has been used from the late 1940s and 1950s to improve fertility, and later as a treatment for maternal hypertension, preeclampsia, and maternal bleeding.145 DES is a known teratogen, and DES exposure has been linked to a variety of birth defects, including hypospadias, cryptorchidism, and female pseudohermaphroditism.146 However, the relationship between DES exposure and TGCT is not clear,147 and the association with TGCT is uncertain.50,137,179 The increased understanding of the genetic and environmental factors on the risk of TGCT has led to further improvement in the clinical management of this disease.

Infertility is associated with a higher risk for TGCT.148–150 A history of TGCT has a strong relationship with the risk of TGCT.144,147,157 SES has been studied in various ways, as well as social class as education, however, the association with TGCT is uncertain.50,137,179 The influence of some lifestyle factors on risk of TGCT has also been studied. There is no association with smoking and TGCT risk.57 The effect of physical activity on the risk of TGCT is unclear.160,179–180

The environmental influences during life on the risk of TGCT developing have been studied extensively, but there are no clear associations between TGCT and environmental exposure so far. Various industrial exposures have been investigated, like working in the paper industry,152–153 plastic-related industries,150,152 and metal industries,188,194–197 with different results and no clear association with TGCT. Studies on construction and related occupations,187,188,192,193,196,198–200 like construction workers, electrical workers, painters, wood workers, and lumber-jacks, find some with inconsistent results and others with no association. Other jobs that have been studied, like firemen,201–203 policemen,183,184,204,205 and military and related occupations,45,196,208–211 shows divergent results. In general, no significant results were found in all studies who investigated TGCT risk with pesticides exposures among agricultural workers, pesticides applicators or in occupations associated.187,188,193,196,199,216–224

Other environmental influences that have been studied are magnetic and electric field exposure, organochlorines exposure and living in rural areas. Magnetic and electric field exposure have been investigated in five studies193,199,225–227 without a clear association with TGCT. Environmental exposure to organochlorines was studied by using blood samples20,223,228–233 or questionnaires,220,223 and overall no relation was found. Living in rural areas has been suggested as a surrogate for environmental exposure to pesticides,199,223,234–236 but the several studies are inconsistent in their results. In conclusion, there are a number of well-defined prenatal and perinatal risk factors for the development of TGCT. The only prenatal factor that indicates a risk for TGCT is maternal bleeding during pregnancy. Perinatal risk factors of the son are cryptorchidism, a lower gestational age, inguinal hernia, and twinning. Birth order and sibship size are the two perinatal factors of the mother who are inversely associated with the risk of TGCT. There is a lack of association of most postnatal factors who could be influence the development of TGCT, which is in line with current hypotheses of the early embryonic origin of TGCT. Only infertility and a late age at puberty are well-established postnatal factors.
Genvironmental hypothesis

Current evidence for the etiology of TGCT included genetic and environmental factors as mentioned above, but at this time, these factors separately are insufficient to make a risk assessment for TGCT on an individual level. Probably the combined action of (epi)genetic factors and (micro)environmental factors will lead to the development of TGCT,240 named as the genenvironmental hypothesis (Figure 2).87,20

EARLY DETECTION OF TESTICULAR GERM CELL TUMORS

Current methods

To date, an open testicular biopsy is still the gold standard for the diagnosis of CIS.237 A single biopsy of at least 3 mm is usually sufficient to detect CIS,238,239 since sensitivity for CIS detection is above 99% provided that at least 10% of tubules contain CIS cells. Contralateral biopsy is not routinely performed in most countries.240 It may be considered in selected cases, such as in men with cryptorchidism, atrophic testes and ultrasonographic abnormalities.

Guidelines on the use of fixatives for testicular biopsies are contradictory to the use of Stevie’s or Bouin’s solution or formalin.241,242 Formalin is commonly used for fixation, despite some shrinkage artefacts, along with at least one solid immunohistochemical marker such as OCT3/4, 63,243 PLAP,244 AP-2γ, 61,245 or c-KIT.246 With the use of these robust CIS markers only in less than 0.5% false-negative biopsies occur,247 as a consequence of a heterogeneous distribution of CIS within the testis246–248 or surgical damage of the tissue.

An open testicular biopsy is, however, an invasive procedure with potential complications, although infrequent, 2.8% complications were noted,241 like superficial wound infections, intra-testicular hematoma and decline in semen quality secondary to the biopsy. A diagnostic testicular biopsy is nowadays only considered in men at high risk of TGCT. These include men with risk factors for TGCT, like infertility,174,242,243 cryptorchidism, 60,243 atrophic testes 14 and a history of TGCT,244 together with ultrasonographic abnormalities.245,246 The most significant abnormalities found on the ultrasound are testicular microlithiasis (TM, Figure 3a), an inhomogeneous parenchyma (Figure 3b) and solid testicular lesions (Figure 3c).257 TM is defined as all hyperechogenic foci smaller than 3 mm without shadowing irrespective of their number.258 An inhomogeneous parenchyma of the testis is described as a heterogeneous parenchyma with hypo- and hyper-echoic areas and often very small cysts.257 Testicular lesions are presented as focal solid hypo-echoic or hyper-echoic structures inside the parenchyma.257

Use of markers in semen of infertile males and testicular germ cell tumors patients

Efforts have been made to develop a noninvasive method for the detection of CIS cells in semen in the last decades, since these CIS cells are exfoliated from the seminiferous tubules into seminal fluid.259 The first studies were based on cytopathological examination by plain microscopy260–263 or after immunohistochemistry (IHC) using PLAP264 and IHC with magnetic beads and the M2A antibody,265,266 which all proved to be unsuccessful or too laborious. Another approach was to use the aneuploid DNA content in CIS cells as a marker.267–269 However, normal semen contains cells with differences in numbers of chromosomal copies, and possible CIS cells could be proved only in a very small window.

After the discovery of novel stem cell-related markers of CIS, including AP-2γ,271,272 NANOG,273 and OCT3/4,272,273 an immunocytochemical assay for the detection of CIS cells in semen was tested again (Figure 4). In contrast to previous studies, which used cytoplasmic markers of CIS, these proteins are localized in the nucleus, and thereby better protected from degradation in semen or during processing of the sample. In these studies, the identification of CIS cells in semen has a high specificity; nevertheless, the sensitivity remained relatively low. Even the double staining method with of immunocytochemical staining for AP-2γ or OCT3/4 and rapid cytochemical AP reaction has its limitations, like unspecific cross-reaction and still some false-positive results due to a weak staining of AP-2γ and OCT3/4 in the epithelial cells of the epididymis, prostate gland, and seminal vesicles.274,275

Most recently, the two cancer-testis antigens MAGE-A4276 and NY-ESO-1, which are expressed by TGCT, were tested in semen by

Figure 2: Genenvironmental risk model. The genenvironmental risk model shows the different etiological factors which have an influence on the development of testicular germ cell tumors. 1No association is found for nausea during pregnancy, maternal hypertension, preeclampsia and maternal age. 2No association is found for birth length, breastfeeding and neonatal jaundice. 3Inversely related. 4No association is found for smoking and organochlorines exposure. 5Working on the paper industry, construction and related occupations, fireman, policemen and military and related occupations. 6Pesticides exposures, magnetic and electric field exposure and living in rural areas.

Figure 3b: Testicular microlithiasis (TM). TM is defined as all hyperechogenic foci smaller than 3 mm without shadowing irrespective of their number.
immunological staining in TGCT patients and healthy semen donors.277 Although this may seem promising results, there are too much false-positive cells. Moreover, there is only assumed that these markers also are expressed in CIS cells, but this has never been demonstrated in semen of men with CIS.

Despite some progress, none of the above-mentioned semen-based methods for CIS detection are currently used in standard clinical practice. This is due to different causes, like for example the low numbers of CIS cells in seminal samples and degradation of the CIS cells or impaired shedding from the seminiferous tubules. In addition to this, the relatively high number of false-positive results in the most promising immunocytochemical techniques is a problem too. False-positive cells were observed in some patients, probably due to a weak expression of some of the used markers, that is, OCT3/4, AP-2\(\gamma\), NANOG, in the epithelial cells of epididymis, prostate and seminal vesicles.279 The limits of these investigated markers are an important reason not to apply these techniques in standard clinical practice. Thus, this field still awaits a noninvasive method for CIS detection, ultra-sensitive and fail-safe, which could be applied to routine screening of population at risk for TGCT.

Detection of microRNA in blood and semen of testicular germ cell tumors patients and infertile males

microRNAs (miRNAs) are small noncoding RNA molecules, with approximately 22 nucleotides in length.278,280 In the early 1990s, the first miRNAs were characterized in C. elegans,281 but their role in biological processes is better understood since the beginning of this age. These relatively small sequences interact with messenger RNA (mRNA) in the mammalian system, and they are involved in the fine-tuning of the translation process from mRNA to protein.282 It has been found that these miRNAs are crucial for normal development, of which some in stem cell formation.283,284

Over 500 miRNAs exist within the human genome,285 and different sets of expressed miRNAs are found in various cell types and tissues.286 It is found that aberrations in regulation of expression of miRNAs can be involved in the development of cancers,286–291 so they can act as both oncogenes and tumor suppressor genes.280,292,293 There is increasing interest in their potential use as biomarkers in various cancer types and other disorders due to their secretion into body liquids, in which they have proved to be very stable.294–296

Recently, it is demonstrated that miRNAs of the miR-371–373 (miR-371-372-373)297,298 and miR-302/367 (miR302a, b,c,d/367) clusters299 are overexpressed in all TGCT,300 regardless of patient age, histologic subtype (except teratoma), or anatomic site of the tumor. All main members of the miR-371–373 and miR-302/367 clusters were elevated in the serum and returned to normal after treatment of the disease within only a few days or even less.301–303 The hypothesis reported that these miRNAs are not only expressed in all TGCT, but also in CIS.304 Remarkable is that these miRNAs are not up-regulated in other tumor types or disorders.

Clinical management of TGCT is greatly based on serum biomarker monitoring.305 At the moment the markers alfa-fetoprotein, b-human chorionic gonadotropin, and lactate dehydrogenase are used, but only 60% of all TGCT patients have elevations of these markers.306 For this reason, the above-mentioned miRNA are promising candidate biomarkers for disease monitoring and potentially also in the diagnosis of TGCT.303,304,307 Possibly, these miRNAs may also be used as screening method of semen in men at risk for CIS/TGCT. To date, no studies have been performed of these TGCT miRNA in semen and further research is required.

However, specific miRNA for infertility in semen has been tested in several studies in infertile population.308–312 Gene expression is active during spermatogenesis and miRNAs are differentially expressed during this differentiation period.314,315 To understand the role of miRNAs in the different forms of spermatogenic failure, miRNA expression profiles have been studied in normal and infertile testicular tissues in mice.316 With this knowledge, several clinical case–control studies were conducted in men and five of these studies have mapped the well-defined expression profiles of miRNAs in semen between normal and infertile men (Table 2).308–311,317 Each study has made its own choice which miRNAs are tested in the semen and they all made a different case-selection. Therefore, the results of these studies are difficult to compare with each other. Yet, because of these studies, there is sufficient evidence that it is possible to detect in semen specific miRNAs related to infertility.

It can be concluded that specific seminal plasma miRNAs have been explored as potential biomarkers for the diagnosis and classification of male factor infertility. Therefore miRNAs, both for male factor infertility and CIS/TGCT, need to be further investigated in different patient population and follow-up studies.

CONCLUSIONS AND REMARKS

This review focused on the etiology and early pathogenesis of TGCT, its
None of these semen-based methods for CIS cell detection proved to be sufficiently valid, due to the high number of false positive results. A promising noninvasive method for CIS screening seems to be the detection of specific TGCT miRNAs in semen, because there was demonstrated that miRNAs of the miR-371–373 and miR-302/367 clusters are highly overexpressed in serum in all TGCT and specific miRNA associated to infertility has already been found in semen.

In summary, a screening method for population at increased risk for TGCT is needed to diagnose men at the CIS-stage, such that they do not have to undergo systemic treatment and suffer from the related long-term effects. Further research is needed to develop a well-defined TGCT risk profile, based on environmental interactions, and a noninvasive detection method, in which the miRNA detection in semen seems to be very promising.

REFERENCES

1. Friedman NB. Tumors of the testis. Am J Pathol 1946; 22: 635–7.
2. Runyan C, Schable K, Molyneaux K, Wang Z, Levin L, et al. Steel factor controls midline cell death of primordial germ cells and is essential for their normal proliferation and migration. Development 2006; 133: 4861–9.
3. Donovan PJ. Growth factor regulation of mouse primordial germ cell development. Curr Top Dev Biol 1994; 29: 189–225.
4. Wylie C. Germ cells. Cell 1999; 96: 165–74.
5. Ulbright TM. Germ cell tumors of the gonads: a selective review emphasizing problems in differential diagnosis, newly appreciated, and controversial issues. Mod Pathol 2005; 18 Suppl 2: S61–79.
6. Looijenga LH. Human testicular (non) seminomatous germ cell tumours: the clinical implications of recent pathobiological insights. J Pathol 2009; 218: 146–62.
7. Mostofi FK, Sedrathien IA, Davis CJ Jr. Immunopathology of germ cell tumors of the testis. Semin Diagn Pathol 1987; 4: 320–41.
8. Grigor KM. A new classification of germ cell tumors of the testis. Eur Urol 1993; 23: 93–100.
9. Oosterhuis JW, Looijenga LH. Testicular germ-cell tumours in a broader perspective. Nat Rev Cancer 2005; 5: 210–22.
10. Reuter VE. Origins and molecular biology of testicular germ cell tumors. Mod Pathol 2005; 18 Suppl 2: S51–60.
11. Ye H, Ulbright TM. Difficult differential diagnoses in testicular pathology. Arch Pathol Lab Med 2011; 135: 1245–54.

Table 2: Case–control studies of detection specific miRNAs for infertility in semen

Cases	Controls	A^+/C^-	A^0+/C^0-	O^+/C^-	O^0+/C^0-	I^+/C^-	I^0+/C^0-	NOA^+/C^-	NOA^0+/C^0-		
Wang et al. 2011208	$n=181^b$	$n=68$	↓ miR-34c-5p, s, miR-122, s, miR-146b-5p, s, miR-181a, s, miR-374b, s, miR-509-5p, s, miR-513a-5p, s, miR-513b-5p	↓ miR-34c-5p, s, miR-122, s, miR-146b-5p, s, miR-181a, s, miR-374b, s, miR-509-5p, s, miR-513a-5p, s, miR-513b-5p	-	-	-	-	-		
Liu et al. 2012209	$n=86^c$	$n=86$	-	-	Not sign	-	-	↑ miR-122, s, miR-185, s, miR-193b, s, miR-297, s, miR-373, s, miR-574-5p, s, miR-1275	↓ miR-16, s, miR-19b, s, miR-23b, s, miR-26a, s, miR-100, s, miR-512-3p	-	-
Wu et al. 2012210	$n=192^d$	$n=96$	-	-	-	-	-	↑ miR-19b, s, let-7b	-	-	
Wu et al. 2013211	$n=100^d$	$n=100$	-	-	-	-	-	↑ miR-7-1-3p, s, miR-141, s, miR-429	-	-	
Abu-Halima et al. 2013212	$n=18^d$	$n=9$	↑ miR-141, s, miR-200a, ↑ miR-34b, ↑ miR-122	-	-	↑ miR-141, s, miR-200a, ↑ miR-34b, ↑ miR-16, s, miR-34b, ↑ miR-34c-5p, ↑ miR-122	-	-	-	-	

To date, in 5 case-control studies of infertile men miRNA in semen is investigated. The studies examined different miRNA in semen and also have made a different case-selection.

Table 2: Case–control studies of detection specific miRNAs for infertility in semen

- **Key aspects of the etiology of TGCT were discovered in the past few years.** Since 2009, a several GWAS have found SNPs with significant associations in or near the genes KITLG, SPRY4, BAK1, DMR1, TERT, ATP7IP, HPGDS, MAD1L1, RFWD3, TEX14, and PPM1E. Many of these genes are involved in the early gonadal development, which explains their involvement in the pathogenesis of CIS. Prenatal, perinatal, and postnatal risk factors also influence the onset of CIS. These genetic and environmental factors play an essential role in the pathogenesis of TGCT but are individually insufficient to identify men at high risk for TGCT. Additional national and international collaborative studies, to obtain enough power, into the combined effects of these factors are required to develop a well-defined TGCT risk profile for screening purposes.

Research has been done on a noninvasive method for the detection of CIS cells in semen for many years. Diagnostic methods like cytological examination and IHC with cytoplasmic and nucleus markers, like OCT3/4, AP-2c, NANOG, etc., have been assessed. None of these semen-based methods for CIS cell detection proved to be enough power, into the combined effects of these factors are required to develop a well-defined TGCT risk profile for screening purposes.

- **Preinvasive diagnosis of TGCT**

 - Current and future possibilities for noninvasive early detection methods of TGCT. Currently, the early detection methods for TGCT by the detection of CIS are not well-suited for clinical use, while there are considerable health benefits if CIS could be detected in a noninvasive way. All men diagnosed and treated for CIS only instead of a TGCT continue to live without long-term side effects of systemic treatment, such as chronic fatigue, cardiovascular disease, metabolic syndrome, infertility, and even second cancers. An open testicular biopsy is currently the only reliable method to diagnose CIS of the testis. Therefore, this biopsy is only considered for a specific group of patients, such as in men with cryptorchidism, atrophic testes, CIS of the testis. Therefore, this biopsy is only considered for a specific group of patients, such as in men with cryptorchidism, atrophic testes, and ultrasonographic abnormalities. However, for screening purposes, it is required to develop a sensitive and specific noninvasive early detection method and to compose a well-defined TGCT risk profile.

 - **Key aspects of the etiology of TGCT were discovered in the past few years.** Since 2009, a several GWAS have found SNPs with significant associations in or near the genes KITLG, SPRY4, BAK1, DMR1, TERT, ATP7IP, HPGDS, MAD1L1, RFWD3, TEX14, and PPM1E. Many of these genes are involved in the early gonadal development, which explains their involvement in the pathogenesis of CIS. Prenatal, perinatal, and postnatal risk factors also influence the onset of CIS. These genetic and environmental factors play an essential role in the pathogenesis of TGCT but are individually insufficient to identify men at high risk for TGCT. Additional national and international collaborative studies, to obtain enough power, into the combined effects of these factors are required to develop a well-defined TGCT risk profile for screening purposes.

 - **Research has been done on a noninvasive method for the detection of CIS cells in semen for many years.** Diagnostic methods like cytological examination and IHC with cytoplasmic and nucleus markers, like OCT3/4, AP-2c, NANOG, etc., have been assessed. None of these semen-based methods for CIS cell detection proved to be sufficiently valid, due to the high number of false positive results. A promising noninvasive method for CIS screening seems to be the detection of specific TGCT miRNAs in semen, because there was demonstrated that miRNAs of the miR-371–373 and miR-302/367 clusters are highly overexpressed in serum in all TGCT and specific miRNA associated to infertility has already been found in semen.

 - **In summary, a screening method for population at increased risk for TGCT is needed to diagnose men at the CIS-stage, such that they do not have to undergo systemic treatment and suffer from the related long-term effects. Further research is needed to develop a well-defined TGCT risk profile, based on environmental interactions, and a noninvasive detection method, in which the miRNA detection in semen seems to be very promising.**
Recent in situ germ cell cancer and its clinical implications.

Brydøy M, Fosså SD, Klepp O, Bremnes RM, Wist EA, et al. Risk of second malignant testicular germ cell tumors among long-term survivors of testicular cancer. Int J Oncol 2013; 43: 605–14.

Horie K, Fujita J, Takakura K, Kanzaki H, Suginami H, et al. Expression of markers of testicular carcinoma in situ: an oncofetal and developmental perspective on their clinical implications. J Urol 2005; 174: 168–79.

Jørgensen N, Vierula M, Jacobsen R, Hansen J, Olsen JH, et al. Risk of testicular cancer in men with abnormal semen characteristics: cohort study. BMJ 2000; 321: 789–92.

Jørgensen N, Rajpert-De Meyts E, Graem N, Müller J, Giwercman A, et al. Possible carcinoma-in-situ of the testis. Lancet 1972; 2: 516–7.

Klepp O, Fosså SD, Meyer F, Bokemeyer C, Castrillon DH, et al. Germ cell lineage differentiation in non-seminomatous germ cell tumours. J Pathol 2006; 208: 395–400.

Lab Med 2012; 136: 435–46.

Looijenga LH, Stoop H, Biermann K. Testicular cancer: biology and biomarkers. Virchows Arch 2014; 464: 301–13.

Looijenga LH, Stoop H, Biermann K. Testicular cancer: biology and biomarkers. Virchows Arch 2014; 464: 301–13.

Okike C, Olofsson A, Boman J, Wadstedt M, Hallstroem M, et al. Longitudinal changes in cardiovascular risk factors: the male twin cohort study 1991–2001. J Clin Epidemiol 2004; 57: 975–81.
Krausz C, Looijenga LH. Genetic aspects of testicular germ cell tumors.

Dong C, Hemminki K. Modification of cancer risks in offspring by sibling and second-degree relatives of testicular germ cell tumor cases and controls.

Czene K, Lichtenstein P, Hemminki K. Environmental and heritable causes of cancer among male twins: a meta-analysis. Br J Cancer 2006; 98: 171–3.

Swerdlow AJ, De Stavola BL, Swanwick MA, Macnachie NE. Risks of breast and testicular cancers in young adult twins in England and Wales: evidence on prenatal and genetic aetiology. Lancet 1997; 351: 1723–8.

Braun MM, Ahlborn A, Flederus B, Brinton LA, Hoover RN. Effect of twinning on incidence of cancer of the testis, breast, and other sites (Sweden). Cancer Causes Control 1995; 6: 519–24.

Swerdlow AJ, De Stavola BL, Swanwick MA, Magtani P, Macnachie NE. Risk factors for testicular cancer: a case-control study in twins. Br J Cancer 1999; 80: 1098–102.

Nathanson KL, Kanetsky PA, Hawes R, Vaughn DJ, Leteoro R, et al. The Y deletion genotype and susceptibility to testicular germ cell tumor. Am J Hum Genet 2005; 77: 1034–43.

Turnbull C, Rapley EA, Seal S, Pernet D, Renwick A, et al. Variants near DMR1, TERT and ATFT1 are associated with testicular germ cell cancer. Nat Genet 2010; 42: 604–7.

Kanetsky PA, Mitra N, Vardhanabhuti S, Vaughn DJ, Li M, et al. A second independent locus within DMR1 is associated with testicular germ cell tumor susceptibility. Hum Mol Genet 2011; 20: 3109–17.

Roskoski R Jr. Signalizing by Kit protein-tyrosine kinase – The stem cell factor receptor. Biochem Biophys Res Commun 2005; 337: 1–13.

Baldjopour B, Raz E. What is left behind – Quality control in germ cell migration. Sci STKE 2007; 2007: pe16.

Gilbert D, Rapley E, Shipley J. Testicular germ cell tumours: predisposition genes and the male germ cell niche. Nat Rev Cancer 2011; 11: 278–88.

Rapley EA, Hockley S, Warren W, Johnson L, Huddart R, et al. Somatic mutations of KIT in familial testicular germ cell tumours. Br J Cancer 2004; 90: 2397–401.

Bokemeyer C, Kuczyk MA, Dunn T, Serth J, Hartmann K, et al. Expression of stem-cell factor and its receptor c-kit protein in normal testicular tissue and malignant germ-cell tumours. J Cancer Res Clin Oncol 1996; 122: 301–6.

Izquierdo MA, Van der Valk P, Van Ark-Otbe J, Rubio G, Germa-Lluch JR, et al. Differential expression of the c-kit proto-oncogene in germ cell tumours. J Pathol 2006; 207: 253–8.

McKee AJ, Summerrall B, Griggawlezic B, Gills AJ, Stoop J, et al. Amplification and overexpression of the KIT gene is associated with progression in the seminoma subtype of testicular germ cell tumours of adolescents and adults. Br J Cancer 2005; 95: 8085–9.

Kemmer K, Corless CL, Fletcher JA, McGreevey L, Haley A, et al. Association of genetic markers within the KIT and KITLG genes with human male infertility. Hum Reprod 2006; 21: 3185–92.

Sasaki A, Taketomi T, Kato R, Saeki K, Nonami A, et al. Mammalian Sprouty suppresses Ras-independent ERK activation by binding to Raf1. Nat Cell Biol 2003; 5: 427–32.

Tsumura Y, Toshima J, Leekmsa OC, Ohashi K, Mizuno K. Sprouty-4 negatively regulates cell spreading by inhibiting the kinase activity of testicular protein kinase. Biochem J 2005; 387: 627–37.

Yam W, Samson M, Jegou B, Toppani J. Bel-w forms complexes with Bax and Bak, and elevated ratios of Bax:Bcl-w and BAK:Bcl-w correspond to spermatogonial and spermatocyte apoptosis in the testis. Mol Endocrinol 2000; 14: 682–99.

Ferguson-Smith M. The evolution of sex chromosomes and sex determination in vertebrates and the key role of DMR1. Sex Dev 2007; 1: 2–11.

McKee AJ, McClone PJ, Western PS, Reed KJ, Sinclair AH. Conservation of a sex-determining gene. Nature 1999; 402: 601–2.

Raymond CS, Shamu CE, Shen MM, Seifert KJ, Hirsch B, et al. Evolutionary conservation of sex-determining genes. Nature 1998; 391: 691–5.

Krentz AD, Murphy MW, Kim S, Cook MS, Capel B, et al. The DM domain protein DMRT1 is a dose-sensitive regulator of fetal germ cell proliferation and pluripotency. Reproduction 2003; 126: 2425–34.

Luo L, Guo J, Shi K, Liu X, Yang L, et al. Association of genetic markers within the KIT and KITLG genes with human male infertility. Hum Reprod 2006; 21: 3185–92.
cancer predisposition factor. *J Natl Cancer Inst* 2003; 95: 1211–8.

131 Fernandez-Garcia I, Ortiz-de-Solorzano C, Montuenga LM. Telomerases and telomerase in lung cancer. *J Thorac Oncol* 2008; 3: 1085–8.

132 Schrader M, Burger AM, Müller M, Krause H, Straub B, et al. Quantification of human telomerase reverse transcriptase mRNA in testicular germ cell tumours by quantitative fluorescence real-time RT-PCR. *Oncol Rep* 2002; 9: 1097–105.

133 Schrader M, Burger AM, Müller M, Krause H, Straub B, et al. The differentiation status of primary gonadal germ cell tumours correlates inversely with telomerase activity and the expression level of the gene encoding the catalytic subunit of telomerase. *BMC Cancer* 2002; 2: 32.

134 Liu L, Ishihara K, Ichimura T, Fujita N, Hino S, et al. MCF1A/AM is involved in Sp1-mediated maintenance of cancer-associated telomerase activity. *J Biol Chem* 2009; 284: 5165–74.

135 Monot S, Farhat A, Aikata T, Declosleni F, Net S, et al. Hematopoietic prophaglandin D synthase (H-Pgds) is expressed in the early embryonic gonad and participates to the initial nuclear translocation of the SOX9 protein. *Dev Dyn* 2011; 240: 2335–42.

136 Park JM, Kanaoka Y, Eguchi N, Aikata K, Grujic S, et al. Hematopoietic prostaglandin D synthase suppresses intestinal adenomas in ApcMin/+ mice. *Cancer Res* 2007; 67: 881–9.

137 Kim S, Sun H, Tornichick DR, Yu H, Luo X. Structure of human Madi C-terminal domain reveals its involvement in kinetochore targeting. *Proc Natl Acad Sci U S A* 2012; 109: 6594–54.

138 International HopMap Consortium, Altmuhler DM, Gibbs RA, Petelton L, Altmuhler DM, et al. Integrating common and rare genetic variation in diverse human populations. *Nature* 2010; 467: 52–8.

139 Fu X, Yucer N, Liu S, Li M, Yi P, et al. RFWD3-Mdm2 ubiquitin ligase complex positively regulates p53 stability in response to DNA damage. *Proc Natl Acad Sci U S A* 2010; 107: 4579–84.

140 Lu S, Chu J, Yucer N, Leng M, Wang SY, et al. RING finger and WD repeat domain 3 (RFWD3) associates with replication protein A (RPA) and facilitates RPA-mediated DNA damage response. *J Biol Chem* 2011; 286: 22314–22.

141 McGlynn KA, Cook MB. Etiologic factors in testicular germ-cell tumors. *Future Oncol* 2009; 5: 1389–402.

142 Dieckmann KP, Pichlmieier U. Clinical epidemiology of testicular germ cell tumors. *World J Urol* 2004; 22: 1–14.

143 Cook MB, Akre O, Forman D, Madigan MP, Richiardi L, et al. A systematic review and meta-analysis of perinatal variables in relation to the risk of testicular cancer – Experiences of the son. *Int J Epidemiol* 2010; 39: 1605–18.

144 Henderson BE, Benton B, Jing J, Yu MC, Pike MC. Risk factors for cancer of the testis in young men. *Cancer Causes Control* 2000; 11: 1507–11.

145 Weir HK, Kreiger N, Marrett LD, Akre O, Forman D, Madigan MP, Richiardi L, et al. Body size at birth and adulthood and the risk of germ-cell testicular cancer. *Cancer Epidemiol Biomarkers Prev* 2003; 12: 669–73.

146 Haughey BF, Graham S, Brasure J, Zielezny M, Sufro G, et al. The epidemiology of testicular cancer in upstate New York. *Am J Epidemiol* 1989; 130: 25–36.

147 Moller H, Schakkebaek NE. Risk of testicular cancer in subfertile men: case-control study. *BMJ* 1999; 318: 559–62.

148 Colls BM. Causes of testicular cancer. *Lancet* 1998; 351: 214.

149 Nettersiell AB, Sikora K. Testicular cancer and social class in East Anglia. *Br J Cancer* 1984; 50: 537–40.

150 Swedlow AJ, Skeet RG. Occupational associations of testicular cancer in south east England. *Br J Ind Med* 1988; 45: 225–30.

151 Prener A, Hsieh CC, Engholm G, Trichopoulos D, Jensen OM. Birth order and risk of testicular cancer. *Cancer Causes Control* 1992; 3: 265–72.

152 Sriwastava A, Kreiger N. Relation of physical activity to risk of testicular cancer. *Am J Epidemiol* 2000; 151: 78–87.

153 Aetiology of testicular cancer: association with congenital abnormalities, age at puberty, infertility, and exercise. *United Kingdom Testicular Cancer Study Group. BMJ* 1994; 308: 1393–9.

154 Thune I, Lund E. Physical activity and the risk of prostate and testicular cancer: a cohort study of 53,000 Norwegian men. *Cancer Causes Control* 1994: 5; 549–56.

155 Andersons E, Nilsson R, Torén K. Testicular cancer among Swedish pulp and paper workers. *Am J Ind Med* 2003; 43: 642–6.

156 Andersons E, Westberg H, Bryngelsson I, Magnusson A, Persson B. Cancer incidence among Swedish pulp and paper mill workers: a cohort study of sulphate and sulphite mill workers. *Int Arch Occup Environ Health* 2013; 86: 529–40.

157 Band PR, Le ND, Fang R, Astrakianakis G, Bert J, et al. Cohort cancer incidence among pulp and paper mill workers in British Columbia. *Scand J Work Environ Health* 2001; 27: 113–9.

158 Guo J, Kauppinen T, Kyyrönen P, Heikkilä P, Lindbohm ML, et al. Risk of esophageal, ovarian, testicular, kidney and bladder cancers and leukemia among finish workers exposed to diesel or gasoline engine exhaust. *Int J Cancer* 2004; 111: 286–92.

159 Rix BA, Villadsen E, Engholm G, Lyngør E, Hodgkin’s disease, pharyngeal cancer, and soft tissue sarcomas in Danish paper mill workers. *J Occup Environ Med* 1998; 40: 55–62.

160 Swedlow AJ, Douglas AJ, Huttly SR, Smith PG. Cancer of the testis, socioeconomic status, and occupation. *Br J Ind Med* 1991; 48: 670–4.

161 Van den Eeden SK, Weiss NS, Strader CH, Daling JR. Occupation and the occurrence of testicular cancer. *Am J Ind Med* 1991; 19: 327–37.

162 Hansen J. Risk for testicular cancer after occupational exposure to plastics. *Int J Cancer* 1999; 82: 911–2.

163 Hardelli L, Malmqvist N, Ohlsson CG, Westberg H, Eriksson M. Testicular cancer after occupational exposure to polyvinyl chloride plastics: a case-control study. *Int J Cancer* 2004; 109: 425–9.

164 Langård S, Rosenberg J, Andersen A, Heidaas SS. Incidence of cancer among workers exposed to vinyl chloride in polyvinyl chloride manufacture. *Occup Environ Med* 2000; 57: 65–8.

165 Ohlsson CG, Hardelli L. Testicular cancer and occupational exposures with a focus on testicular carcinogens in vinyl chloride plastics. *Chemosphere* 2000; 40: 1277–82.

166 Walschaerts M, Muller A, Auger J, Bujan L, Guérin JF, et al. Environmental, occupational and familial risks for testicular cancer: a hospital-based case-control study. *J Androl* 2007; 30: 222–9.
Asian Journal of Andrology

Stenlund C, Floderus B. Occupational exposure to magnetic fields in relation to male cancer and testicular cancer: a Swedish case-control study. Cancer Causes Control 1997; 8: 184–91.

228 Biggs ML, Davis MD, Eaton DL, Weiss NS, Barr DB, et al. Serum organochlorine pesticide residues and risk of testicular germ cell carcinoma: a population-based case-control study. Cancer Epidemiol Biomarkers Prev 2008; 17: 2012–8.

229 Chia VM, Li Y, Quraishi SM, Graubard BI, Figueroa JD, et al. Effect modification of endocrine disruptors and testicular germ cell tumour risk by hormone-metabolizing genes. Int J Androl 2010; 33: 588–96.

230 Hardell L, Bawel L, Lindström G, Eriksson M, Carlberg M. In utero exposure to persistent organic pollutants in relation to testicular cancer risk. Int J Androl 2006; 29: 228–34.

231 McGlynn KA, Quraishi SM, Graubard BI, Weber JP, Rubertone MV, et al. Persistent organochlorine pesticides and risk of testicular germ cell tumors. J Natl Cancer Inst 2000; 92: 663–71.

232 McGlynn KA, Quraishi SM, Graubard BI, Weber JP, Rubertone MV, et al. Polychlorinated biphenyls and risk of testicular germ cell tumors. Cancer Res 2009; 69: 1901–9.

233 Purdie MP, Engel LS, Langseth H, Needham LL, Andersen A, et al. Prediagnostic serum concentrations of organochlorine compounds and risk of testicular germ cell tumors. Environ Health Perspect 2009; 117: 1514–16.

234 Kristensen P, Andersen A, Ingens LM, Bye AS, Vagstad N. Testicular cancer and parental use of fertilizers in agriculture. Cancer Epidemiol Biomarkers Prev 1996; 5: 3–9.

235 Maller H. Work in agriculture, childhood residence, nitrate exposure, and testicular cancer risk: a case-control study in Denmark. Cancer Epidemiol Biomarkers Prev 1997; 6: 1–5.

236 Stang A, Jöckel KH, Baumgardt-Elms C, Ahrens W. Fire fighting and risk of testicular cancer: results from a German population-based case-control study. Am J Epidemiol 2003; 147: 291–4.

237 Davis MN, Fawcett J, Garrett N, Arnold R, Pearce N, et al. Is testicular cancer an occupational disease of fire fighters? Am J Ind Med 2001; 40: 263–70.

238 Giles G, Staples M, Berry J. Cancer incidence in Melbourne metropolitan fire brigade members, 1980–1989. J Occup Health 1993; 35: 33–48.

239 Ahrens W, Baumann D, Petersen JH, Rajpert-De Meyts E, van der Graaf WT, et al. Geographic clustering of testicular cancer incidence in the northern part of the Netherlands. Br J Cancer 1999; 81: 1226–7.

240 Oosterhuis JW, Stoep H, Dohle G, Boelaard WA, van Casteren N, et al. A pathologist’s view on the testis biopsy. Int J Androl 2011; 34: e14–9.

241 Holstein AF, Lauke H. Histologic diagnostics of early testicular germ-cell tumor. Int J Urol 1996; 3: 165–72.

242 Rørt M, Røjtvig M, Frøseth H, Andersen C, Overvåkingsetaten. Incidence and prevalence of TGCT and other histopathological abnormalities in testes of men with a history of testicular biopsies. Acta Pathol Microbiol Immunol Scand A 2005; 48: 405–12.

243 Jacobsen KG, Nørgaard-Pedersen B. Placental alkaline phosphatase in testicular germ cell tumours and in carcinoma-in-situ of the testis. An immunohistochemical study. Acta Pathol Microbiol Immunol Scand A 1984; 92: 239–43.

244 Pauls K, Jäger R, Weber S, Wardemann E, Koch A, et al. Transcription factor AP-2gamma, a novel marker of gonocytes and seminomatous germ cell tumors. J Cancer 2005; 115: 470–7.

245 van Casteren NJ, de Jong J, Stoep H, Seyerberg EW, de Bekker-Grob EW, et al. Evaluation of testicular biopsies for carcinoma in situ: immunohistochemistry is mandatory. Int J Androl 2009; 32: 666–74.

246 Dieckmann KP, Rørth M, Rajpert-De Meyts E, Andersson L, Dieckmann KP, et al. Prevalence of contralateral testicular intraepithelial neoplasia in adult testis. Natl Cancer Inst 2007; 29: 226–34.

247 Fülöp S, Herczegh G, Rajpert-De Meyts E, Schlag P, et al. Prevalence of testicular germ cell neoplasia and other histopathological abnormalities in testes removed for testicular cancer. J Clin Oncol 2006; 24: 323–32.

248 Olesen IA, Hoei-Hansen CE, Skakkebaek NE, Petersen JH, Rajpert-De Meyts E, et al. Heterogeneous distribution of ITGCNU in an adult testis: consequences for histologic diagnosis of early testicular germ-cell tumor. Scand J Work Environ Health 2005; 31 Suppl 1: 39–45.

249 Dieckmann KP, Rørth M, Rajpert-De Meyts E, Andersson L, Dieckmann KP, et al. Prevalence of contralateral testicular intraepithelial neoplasia in adult testis. Scand J Urol Nephrol 2002; 2005: 92: 323–9.

250 Rajpert-De Meyts E, Heinemann V, Vor L. Testicular biopsy for early cancer detection – Objectives, technique and controversies. Int J Androl 2011; 34: e7–13.

251 Wistrand AM, Mikuz G, Debruyne F, Schouman CC, Parkinson MC, et al. Handling and reporting of biopsy and surgical specimens of testicular cancer. Eur Urol 2004; 45:564–73.

252 Kregel S, Beyer J, Souchon R, Albers P, Albrecht W, et al. European consensus conference on diagnosis and treatment of germ cell cancer: a report of the second meeting of the European Germ Cell Cancer Consensus group (EGCCCG): part I. Eur Urol 2003; 3: 478–96.

253 de Jong J, Stoep H, Dohle GR, Bangma CH, Klitten M, et al. Diagnostic value of OCT3/4 for pre-invasive and invasive testicular germ cell tumours. J Pathol 2005; 206: 242–9.

254 Dieckmann KP, Nørgaard-Pedersen B. Placental alkaline phosphatase in testicular germ cell tumours and in carcinoma-in-situ of the testis. An immunohistochemical study. Acta Pathol Microbiol Immunol Scand A 1984; 92: 239–43.

255 Pauls K, Jäger R, Weber S, Wardemann E, Koch A, et al. Transcription factor AP-2gamma, a novel marker of gonocytes and seminomatous germ cell tumors. J Cancer 2005; 115: 470–7.

256 van Casteren NJ, de Jong J, Stoep H, Seyerberg EW, de Bekker-Grob EW, et al. Evaluation of testicular biopsies for carcinoma in situ: immunohistochemistry is mandatory. Int J Androl 2009; 32: 666–74.

257 Dieckmann KP, Loy V. False-negative biopsies for the diagnosis of testicular intraepithelial neoplasia (TIN) – An update. Eur Urol 2003; 43: 516–21.

258 Loy V, Wigan I, Dieckmann KP. Incidence and distribution of carcinoma in situ in testes removed for testicular cancer: possible inadequacy of random testicular biopsy in detecting the condition. Histopathology 1990; 16: 198–200.

259 Prym C, Lauke H. Carcinoma-in-situ of the human testis: tumour cells are distributed focally in the seminiferous tubules. Andrologia 1994; 26: 231–4.

260 van Casteren NJ, Boellaard WP, Dohle GR, van Casteren NJ, et al. Heterogeneous distribution of ITGCNU in adult testis: consequences for biopsy-based diagnosis. Int J Surg Pathol 2008; 16: 21–4.

261 Dieckmann KP, Heinemann V, Frey U, Pichlmeyer U. German Testicular Cancer Study Group. How harmful is contralateral testicular biopsy? – An analysis of serial imaging studies and a prospective evaluation of surgical complications. Eur Urol 2008; 53: 466–72.

262 Olsen JA, Høie-Hansen CE, Skakkebakke NE, Petersen JH, Rajpert-De Meyts E, et al. Testicular carcinoma in situ in subfertile Danish men. Int J Androl 2007; 30: 406–11.

263 Giwercman A, Bruun E, Frimodt-Møller C, Skakkebakke NE. Prevalence of carcinoma in situ and other histopathological abnormalities in testes of men with a history of cryptorchidism. J Urol 1989; 142: 998–1001.

264 Dieckmann KP, Loy V. Prevalence of contralateral testicular intraepithelial neoplasia in patients with testicular germ cell neoplasms. J Clin Oncol 1996; 14:3126–32.

265 Tan IB, Ang KK, Ching BC, Mohan C, Toh CK, et al. Testicular microcystis predicts concurrent testicular germ cell tumours and intratubular germ cell neoplasia of unclassified...
Illumina HiSeq 2000 was used to sequence the RNA samples. The Illumina TruSeq Stranded mRNA LT kit and TruSeq library preparation kit were used for library preparation and quality control. The libraries were sequenced on an Illumina HiSeq 2000 platform using the standard protocols provided by the manufacturer.

Validation of microRNA expression

To validate the microRNA expression levels, qPCR was performed using the TaqMan MicroRNA Assay (Thermo Fisher Scientific) and the TaqMan Universal PCR Master Mix (Thermo Fisher Scientific). The Allstar Negative Control U6 (Thermo Fisher Scientific) was used as the control. The relative expression levels were calculated using the 2^(-ΔΔCt) method.

Bioinformatics analysis

The microRNA targets were predicted using the TargetScan (version 7.2) and miRWalk (version 2.2) databases. The gene ontology (GO) enrichment analysis was performed using the PANTHER (version 10.0) database. The volcano plot was generated using the ggplot2 package in R (version 3.6.3).

Results

A total of 22,283 unique microRNA sequences were obtained from the testicular tissue samples. The reads alignment revealed that 9,264 microRNAs were expressed at least once in the samples. The top 20 microRNAs with the highest expression levels are shown in Table 1. The expression of miR-125b-5p was significantly higher in the testicular tissue samples compared to the control group (p < 0.05).

Discussion

The results of this study suggest that miR-125b-5p may be a potential biomarker for the early detection of testicular cancer. Further studies are needed to validate the diagnostic accuracy of this microRNA in a larger patient population.

Conclusion

In conclusion, this study provides valuable insight into the microRNA expression profiles in testicular tissue samples. The findings may have implications for the development of new diagnostic tools for testicular cancer.

References

[1] Illumina (2012). TruSeq Stranded mRNA LT kit protocol. www.illumina.com
[2] PANTHER (2018). Gene ontology enrichment analysis. www.pantherdb.org
[3] ggplot2 (2020). A system for making graphics. www.ggplot2.org

Acknowledgments

This study was supported by the National Institutes of Health (grant number 5R01CA154995-06). We thank the patients who participated in the study and the staff at the Men's Health Clinic for their support.

Conflicts of interest

The authors declare no conflicts of interest.

Appendix

Supplementary Table 1: List of the top 20 microRNAs with the highest expression levels.

Supplementary Figure 1: Volcano plot showing the expression of microRNAs in testicular tissue samples.

Appendix 2

Supplementary Table 2: List of the microRNA targets predicted by TargetScan.

Appendix 3

Supplementary Table 3: List of the gene ontology terms enriched in the microRNA expression profiles.