“RETIREDE” PLANET HOSTS: NOT SO MASSIVE, MAYBE JUST PORTLY AFTER LUNCH

JAMES P. LLOYD
Department of Astronomy, Cornell University, Ithaca NY, USA
Received 2011 July 12; accepted 2011 August 4; published 2011 September 8

ABSTRACT

Studies of the planet abundance as a function of stellar mass have suggested a strong increase in the frequency of planet occurrence around stars more massive than 1.5 M_\odot, and that such stars are deficit in short-period planets. These planet searches have relied on giant stars for a sample of high mass stars, which are hostile to precision Doppler measurements due to rotation and activity while on the main sequence. This Letter considers the observed $v\sin i$ and observationally inferred mass for exoplanet hosting giants with the $v\sin i$ of distribution of field stars, which show discrepancies that can be explained by erroneous mass determinations of some exoplanet host stars. By comparison with an expected mass distribution constructed from integrating isochrones, it is shown that the exoplanet hosts are inconsistent with a population of massive stars. These stars are more likely to have originated from a main-sequence population of late F/early G dwarfs with mass 1.0–1.2 M_\odot, only slightly more massive than the typical FGK dwarfs with Doppler detected planets. The deficit of short-period planets is most likely explained by tidal capture. The planet abundance difference requires either a steeper increase in planet frequency with mass than previously thought or a high rate of false positives due to signals of stellar origin. The measurement of photospheric carbon isotope ratios is suggested as a method to discriminate whether this sample of giant stars is significantly more massive than the population of FGK dwarfs with Doppler detected planets.

Key words: planetary systems – stars: fundamental parameters – stars: rotation – stars: statistics

1. INTRODUCTION

The number of exoplanets has reached the point that statistical studies may provide clues to planet formation by revealing correlations such as the planet–metallicity correlation (Fischer & Valenti 2005). While planet formation is expected to be influenced by stellar mass, planet discoveries have been biased toward FGK dwarfs. Stars outside this range are the subject of intense interest, but M dwarfs are intrinsically faint and challenging for radial velocity (RV) surveys (Muirhead et al. 2011) and higher mass main-sequence stars have broad lines and activity that degrades RV precision (Lagrange et al. 2009).

Recent progress has been made studying “retired A stars” that are more amenable to Doppler RV, having evolved and developed slowly rotating cool atmospheres. This population has shown two distinct differences from the planets orbiting FGK dwarfs: an increased planet abundance and paucity of planets in short-period orbits (Johnson et al. 2007, 2010; Hekker et al. 2008; Bowler et al. 2010). The distribution of planets orbiting massive stars is central to predicting the yield of imaging surveys (Crepp & Johnson 2011; McBride et al. 2011; Beichman et al. 2010) which benefit from the conditions of youth, wide separation and massive planets that are most likely around massive stars.

2. ROTATIONAL EVOLUTION

Late stage accretion in the formation of stars is angular momentum limited, giving rise to ubiquitous rapid rotation of young stars. After dispersal of the protostellar disk, the evolution of stellar rotation includes at least two components. The star can lose angular momentum to a magnetized stellar wind, as is responsible for the spin-down of FGK stars. The lack of this mechanism in massive stars on the main sequence renders them difficult for radial velocity planet searches. Conservation of angular momentum dictates that the angular velocity decreases as a star expands due to evolution. If the star has planets, there is a third possibility: the transfer of angular momentum to or from the planets.

There are applicable theories to the tidal evolution of planetary systems, and theoretical work is investigating the question of tidal evolution and the deficit of short-period planets orbiting intermediate mass stars (Brown et al. 2011; Carlberg et al. 2011; Kunitomo et al. 2011; Madappatt et al. 2011; Matsumura et al. 2010). However, there is a large and long-standing uncertainty in the effective tidal dissipation parameters Q in both stars (Penev & Sasselov 2011) and planet (Goldreich & Nicholson 1977). In the case of evolving subgiant stars, the problem of estimating Q would seem acute, as the star is developing a convective envelope, and the torque occurs at the convective-radiative boundary (Goldreich & Nicholson 1989). Regardless of details, the evolution is a steep function of stellar radius: tidal evolution rate increases as R_{\ast}^{10} (Hansen 2010). Since the radius of a star increases by two orders of magnitude through the giant phase, it should be expected that regardless of tidal dissipation mechanisms, if tidal interaction with the star in any way shapes the planetary system evolution, it must impact the rotation of the star.

The direction of angular momentum transfer depends on whether the planet orbits inside or outside of corotation. In the case of a star rotating faster than the orbital period, the angular momentum must transfer to the planet until the star rotates synchronously with the planet’s orbit. Tidal evolution can only decrease the semimajor axis if the star can absorb the angular momentum. Planets are, as the relic of the angular momentum supported protostellar disk, typically the largest reservoir of angular momentum (only 4% of the angular momentum of the solar system resides in the Sun). If the tidal evolution ends with the planet merging with the star then the angular momentum must all be deposited in the star.
In the case of the intermediate mass stars, there are two situations that might show clear observational evidence for tidal evolution. Since intermediate mass stars are born with near-breakup rotation and lose little of it on the main sequence, the first interaction between the evolving star and planet would be for star to deposit most of its angular momentum in the planet. If a star accretes a planet, in the absence of the transfer of angular momentum to a third body or loss through a wind, the angular momentum of that planet will substantially increase the total angular momentum of the star. Since intermediate mass stars retain a large fraction their initial angular momentum through the main sequence, a subgiant that showed angular momentum larger than the breakup angular momentum of the zero-age main-sequence star from which that subgiant evolved would be a compelling case for a star that has absorbed a planet. Motivated by these considerations, this Letter begins by investigating the observed rotation of evolved stars with planets.

3. ROTATION OF PLANET HOST STARS

I have examined the rotation (as determined by $v \sin i$) of evolved planet host stars with log $g < 4$ from the Exoplanet Orbit Database (Wright et al. 2011). A comparison sample of field stars with similar mass and log g can be constructed from the catalog of Hipparcos-determined physical parameters of Allende Prieto & Lambert (1999) and the radial velocity catalog of Glebocki & Gacinski (2005).

A subsample in this comparison of planet hosts with masses between 1.6 and 2.0 M_\odot (shown in the lower panel of Figure 1) shows some discrepancies with comparison field stars. Three planet hosts are more slowly rotating than comparison stars, and the planet hosts occupy a range of log g that is sparsely populated. Seven of the eleven planet hosts with $1.6 < M/M_\odot < 2.0$ have $3.0 < \log g < 3.5$, but only seven slowly rotating stars with $1.6 < M/M_\odot < 2.0$ and $3.0 < \log g < 3.5$ are within the 100 pc volume of the Allende Prieto & Lambert (1999) catalog.

3.1. Host Star Masses

The discrepancy for two stars in Figure 1, HD 190228 and HD 154857, can be attributed directly to erroneous masses. These mass identifications come from analysis of SPOCS catalog spectra (Valenti & Fischer 2005) with a Bayesian fit of atmospheric parameters to stellar evolution model grids (Takeda et al. 2007). In both cases, the mass likelihood function has two peaks and Takeda et al. (2007) report secondary masses. In the case of HD 190228 the adopted mass is $1.821 \pm 0.042 M_\odot$ with an alternate mass of $1.119 M_\odot$ assigned 20% probability. In the case of HD154857, the adopted mass is $1.718^{+0.030}_{-0.022} M_\odot$ and alternate mass $1.161 M_\odot$ assigned 59% probability. There are alternate masses reported in the literature for HD 190228: 0.83 M_\odot, 1.20 $\pm 0.05 M_\odot$, 0.96–1.51 M_\odot (Perrier et al. 2003; Allende Prieto & Lambert 1999; Valenti & Fischer 2005) and HD 154857: 1.17 $\pm 0.05 M_\odot$, 1.35 $\pm 0.12 M_\odot$, 0.98–1.62 M_\odot (McCarthy et al. 2004; Allende Prieto & Lambert 1999; Valenti & Fischer 2005). High masses for these stars are inconsistent with their luminosity (see Figure 3). The rotational discrepancy is therefore explained by incorrect mass determination alone. With lower mass these stars are consistent with slowly rotating solar-type stars.

While it is not surprising that individual mass determinations may be erroneous, the question of the reliability of the masses is key to interpreting rotational discrepancies. Comparison of the 25 evolved stars ($\log g > 4$) in common between the Exoplanet Orbit Database and Allende Prieto & Lambert (1999) is shown in Figure 2. These masses all rest in some way on placing observed properties on a model stellar evolution grid. This is straightforward for main-sequence stars, but increasingly problematic for evolved stars due to crossing of evolutionary tracks (see Figure 3). With accurate determinations of composition and gravity from spectral analysis, the degeneracies can be broken. However, the risk of erroneous mass estimates is substantial. The determination of log g by pressure broadening of the wings of the MgB triplet lines is less well determined for the low gravity (low density) regime of evolved stars, so the spectroscopic log g determinations may include additional systematic errors not accounted for in catalogs such as Valenti & Fischer (2005). For all stars shown in Figure 1, it is possible to drastically change the mass determination with modest changes to the methods or uncertainties, even assuming there are no systematic uncertainties in the underlying stellar evolution models.

While in general, stellar evolution codes have been refined to the point of high accuracy, there are regions of parameter space with known discrepancies. At the base of the red giant branch (RGB) for near solar mass stars, there are discrepancies as large as 0.5 dex in log L and 100 K in T_{eff} with changes in equation of state or mixing length parameter from 1.6 to 1.9 (Cassisi 2005). There are discrepancies between different stellar evolution models as large as 0.3 dex in luminosity and 0.01 dex in log T_{eff} with changes in the treatment of equation of state and
the models can be called into question (Cassisi 2010).\footnote{A statistical comparison of the mass distribution of evolved exoplanet host stars and the mass distribution expected from stellar evolution shown in Figure 4 is striking. The lack of massive stars in the expected mass distribution is primarily because stars more massive than 1.4 M_\odot ascend the giant branch more rapidly than less massive stars because the contraction of the hotter core is not slowed by degeneracy pressure. While it is possible that a dramatic enhancement of the planet frequency above 1.5 M_\odot accounts for the difference, it is much more likely that the mass inferences are incorrect, and the exoplanet hosts are in fact of lower mass. In the absence of reliable masses, it is not possible to conclude anything concerning rotation state, but the reliability of the masses alone becomes the key question.}

Applicability of mixing length theory to stars that are not quasi-stationary and undergoing the development of shells decreases. Extrapolation of the solar-calibrated mixing length to convection zones at the base of the RGB may not be accurate, and lower gravity convection may introduce additional errors. Robinson et al. (2004) found that differences between mixing length theory and three-dimensional simulations increase as surface gravity decreases. Applicability of mixing length theory to stars that are not quasi-stationary and undergoing the development of shells with superadiabatic convection is an area where the accuracy of the models can be called into question (Cassisi 2010).

The position of the RGB is dictated by the Hayashi line. For $T_{\mathrm{eff}} < 5000$ K, the dominant opacity is H^-. Since the H^- opacity is proportional to the abundance of electrons from easily ionizable metals, changes in metallicity will change the opacity and move the Hayashi line. A reduction of the metallicity in of 1.0 dex shifts the Hayashi line by 0.05 dex in log T_{eff}, which changes the mass for a given L, T_{eff} by a factor of two. A change in the mixing length parameter l_{α}/H_P from 1.5 to 1.0 will introduce an equivalent shift (Henyey et al. 1965). Changes in the α-process abundance will similarly move the position of the RGB (Kim et al. 2002).

The disagreement between the $\log g$ distributions of the 1.6–2.0 M_\odot samples in Figure 1, although suggestive that the host mass determinations may be erroneous, is not definitive. There are, however, aspects of stellar evolution that are very robust. While the specific tracks change with parameters that are not well known, the rate a star evolves through the H-R diagram is very insensitive.

3.2. Mass Distribution

A statistical comparison of the mass distribution of evolved exoplanet host stars with the distribution of masses inferred from the rate at which stars evolve through the same region of the H-R diagram is a robust test of the mass determination of the sample. The expected mass distribution function for a region of the observational H-R diagram can be constructed by integrating isochrones, weighted by an initial mass function (IMF), metallicity distribution, and star formation history. Figure 4 shows such a mass distribution function, obtained by accumulating a synthetic mass distribution from the Yonsei-Yale isochrones weighted by the time stars of all masses spend in the region shaded in Figure 3, for a Salpeter IMF $dN/dM \propto M^{-2.35}$ (Salpeter 1955), uniform star formation history over 12 Gyr and Gaussian distribution of metallicity with mean $[\text{Fe}/\text{H}] = 0.19$ (Nordström et al. 2004). The comparison between the mass distribution of evolved exoplanet host stars and the mass distribution expected from stellar evolution shown in Figure 4 is striking. The lack of massive stars in the expected mass distribution is primarily because stars more massive than 1.4 M_\odot ascend the giant branch more rapidly than less massive stars because the contraction of the hotter core is not slowed by degeneracy pressure. While it is possible that a dramatic enhancement of the planet frequency above 1.5 M_\odot accounts for the difference, it is much more likely that the mass inferences are incorrect, and the exoplanet hosts are in fact of lower mass. In the absence of reliable masses, it is not possible to conclude anything concerning rotation state, but the reliability of the masses alone becomes the key question.

![Figure 2. Physical parameters of the 25 evolved stars (log g > 4) in common between the Exoplanet Orbit Database (EOD) and Allende Prieto & Lambert (1999, hereafter AP99). Gravity (upper panel) determined by the differing methods agrees reasonably well, with half of within 1 σ and all but one within 2 σ. Masses (lower panel) disagree, with the spectroscopic EOD masses being larger than the AP99 photometric masses.](image)

![Figure 3. Observational Hertzsprung–Russell diagram ($B-V$ color vs. absolute V magnitude) of host stars with planets as of 2011 May. Stars identified as >1.5 M_\odot and <1.5 M_\odot are shown as filled circles and open circles, respectively. The dotted line outlines the parameter space (0.5 < M_V < 3.5; 0.5 < $B-V$ < 1.0) of the sample of 159 evolved stars defined by Johnson et al. (2006). Shaded is the region bounded by 0.0 < M_V < 2.8; 0.85 < $B-V$ < 1.05, inside of which 28 (of 35 total) planet hosts with mass >1.5 M_\odot and only 3 with mass <1.5 M_\odot reside. The properties of this subsample and region are further described in Figure 4 and Section 3.2. In red, green, and blue are evolutionary tracks derived from Yonsei-Yale isochrones (Yi et al. 2003) for 1.2, 1.5, and 1.8 M_\odot. Line style indicates steps of metallicity from [Fe/H] = −0.4 to [Fe/H] = 0.2.](image)
4. DISCUSSION

If K giant stars hosting planets are not different in mass from the FGK dwarf stars hosting planets, then an alternate explanation for the differences in planet frequency and period distribution is needed.

A lack of short-period planets is readily accounted for by tidal capture. Villaver & Livio (2009) show 1 M_{Jup} planets inside 3 AU and 2.1 AU are tidally captured during the RGB by stars of mass 1 M_\odot and 2 M_\odot, respectively. That the lower mass (counterintuitively) captures planets to a larger radius is a result of the slower evolution of the lower mass star. This accretion should show signatures in the angular momentum of the planet hosts, but since the angular momentum evolution of a star changes drastically with mass, more reliable masses are needed to perform that test.

The increased planet frequency is more difficult to explain. Tidal evolution could concentrate planets in a detectable range of periods, where they would not be detectable in dwarfs. An age–metallicity relation would bias the giants to be metal-poor, consistent with the distribution found by Pasquini et al. (2007), leading to the expectation that a K giant population should be planet-poor on the basis of the planet–metallicity correlation. The giant branch can be expected to be enhanced in metal-rich stars, since these stars evolve more slowly (see Figure 5). It is possible that the giant metallicities are systematically in error, however, difficult to contrive to enhance the planet abundance by the observed factor of at least two between the FGK dwarf sample and giant sample, and do not account for the abrupt jump at 1.5 M_\odot in Figure 4. The least speculative interpretation is that the increase in planet abundance is due to a substantial contamination in the K giant planet sample from non-planetary signals due to stellar variability. Line bisector analyses have not shown evidence of stellar origin for these signals, although it is possible for bisector variations to be too small to be detected, yet still account for the radial velocity signal (e.g., Reffert et al. 2006).

Definitive tests of stellar mass for the K giant planet hosts and methods to confirm the planets are needed. In the case of stars that reside in binary systems, it is possible to determine dynamical masses, but systems that are in a configuration to do so are rare. Asteroseismology can accurately determine the physical parameters of stars, with space-quality photometry. Kallinger et al. (2010) determined the masses of 1000 giants with Kepler and found a similar mass distribution to the synthetic mass distribution in Figure 4.

4.1. Possible Tests

4.1.1. Transits

The large size of giant stars is advantageous for confirmation of planets by transits because of the increase in transit probability a^3/a. Kane et al. (2010) note the high likelihood of transits of ι Dra and HD 122430. Since a is inferred from Kepler’s law $a^3 P^2$, the transit probability (for a stellar radius determined independently of stellar mass) is proportional to $M^{-1/3}$, so
revising the stellar masses down increases transit probability. A key test case would be the six-day-period planet orbiting HD 102956, which has $R_*/a = 0.27$, even for an assumed mass of 1.7 M_\odot. Unfortunately, the large stellar radius dilutes transit depth making these challenging observations, but transits in limb-brightened emission lines are promising (Schlawin et al. 2010). Radii can be accurately measured by interferometry (van Belle & von Braun 2009; Baines et al. 2010), which combined with stellar density determined from the transit light curve (Seager & Mollén-Ornelas 2003) provides a model independent mass.

4.1.2. Isotopes Ratios

It would be highly desirable to determine stellar masses of planet-hosting K giants in a robust and uniform manner. A possible approach is the measurement of atmospheric carbon isotope ratios. As a star evolves into a giant, the development of a thick convective envelope brings products of nuclear burning to the surface, changing the photospheric abundance of elements that participate in the nuclear burning such as 3He, 13C, 14N, 17O, and 18O. The equilibrium isotope ratios of the CNO elements are sensitive to the temperature of the CNO cycle, so these isotope ratios are sensitive to the stellar mass. Although the mixing processes are not well known for very evolved giants, the 12C/13C ratio through the first dredge-up (FDU) is well understood and theory and observations are in agreement (Charbonnel 1994). The 12C/13C ratio drops to a range of 30–20 in FDU giants of 1–2 M_\odot, with weak dependance on metallicity and very little dependance on mixing length parameter (Charbonnel 1994). Figure 5 shows the photospheric 12C/13C calculated with the MESA stellar evolution code (Paxton et al. 2011) for post-FDU giants as a function of mass and metallicity. The 17O/18O ratio is potentially a sensitive diagnostic, but the reaction rates are less well known and the observations less well in accord with theory (Stoezos & Herwig 2003).

The 12C/13C ratio can be used to place a star convincingly as a Hertzsprung Gap star, since the FDU occurs at the base of the RGB and the 12C/13C remains near the primordial (solar value of 80; Ayres et al. 2006) until the star joins the RGB. Most of the K giant planet hosts have a luminosity above the FDU, but HD 192699 ($M = 1.7 \pm 0.12 M_\odot$, $T_{\text{eff}} = 5220 \pm 44$ K, $L = 1.04 L_\odot$, $[\text{Fe/}H] = -0.15 \pm 0.04$) could be before or after FDU within the mass uncertainty.

This research has made use of the Exoplanet Orbit Database at http://exoplanets.org and NASA's ADS Bibliographic Services. This work has primarily supported by the National Science Foundation under grant No. AST-0905932. I thank Lars Bildsten, Kevin Covey, Dan Fabrycky, Mike Ireland, Adam Kraus, Jeff Valenti, and Jason Wright for discussions, and Bill Paxton for help with the MESA evolutionary code.

REFERENCES

Allende Prieto, C., & Lambert, D. L. 1999, A&A, 352, 555
Ayres, T. R., Plymate, C., & Keller, C. U. 2006, ApJS, 165, 618
Baines, E. K., Dollinger, M. P., Casuso, F., et al. 2010, ApJ, 710, 1365
Beichman, C. A., Krist, J., Trauger, J. T., et al. 2010, PASP, 122, 162
Bowler, B. P., Johnson, J. A., Marcy, G. W., et al. 2010, ApJ, 709, 396
Brown, D. J. A., Collier Cameron, A., Hall, C., Hebb, L., & Smalley, B. 2011, MNRAS, 415, 605
Carlberg, J. K., Majewski, S. R., Arras, P., et al. 2011, in AIP Conf. Proc. 1331, Planetary Systems Beyond the Main Sequence, ed. Sch. Suh, H. Drechsel, & U. Heber (Melville, NY: AIP), 33
Cassisi, S. 2005, arXiv:astro-ph/0506161
Cassisi, S. 2010, in IAU Symp. 262, Stellar Populations, ed. G. Bruzual & S. Charlot (Cambridge: Cambridge Univ. Press), 13
Charbonnel, C. 1994, A&A, 282, 811
Crepp, J. R., & Johnson, J. A. 2011, ApJ, 733, 126
Eggleton, P. P., Dearborn, D. S. P., & Lattanzio, J. C. 2008, ApJ, 677, 581
Fischer, D. A., & Valenti, J. 2005, ApJ, 622, 1102
Glebocki, R., & Gnacinski, P. 2005, VizieR Online Data Catalog, 3244, 0
Goldreich, P., & Nicholson, P. D. 1977, Icarus, 30, 301
Goldreich, P., & Nicholson, P. D. 1989, ApJ, 342, 1079
Hansen, B. M. S. 2010, ApJ, 723, 285
Hekker, S., Snellen, I. A. G., Aerts, C., et al. 2008, A&A, 480, 215
Henley, L., Vardy, M. S., & Bodenheimer, P. 1965, ApJ, 142, 841
Johnson, J. A., Aller, K. M., Howard, A. W., & Crepp, J. R. 2010, PASP, 122, 905
Johnson, J. A., Fischer, D. A., Marcy, G. W., et al. 2007, ApJ, 665, 785
Johnson, J. A., Marcy, G. W., Fischer, D. A., et al. 2006, ApJ, 652, 1724
Kallinger, T., Mosser, B., Heber, S., et al. 2010, A&A, 522, A1
Kane, S. R., Reffert, S., Henry, G. W., et al. 2010, ApJ, 720, 1644
Kim, Y., Demarque, P., Yi, S. K., & Alexander, D. R. 2002, ApJS, 143, 499
Kunitomo, M., Ikomia, M., Sato, B., Matsuta, Y., & Ida, S. 2011, in AIP Conf. Proc. 1331, Planetary Systems Beyond the Main Sequence, ed. Sch. Suh, H. Drechsel, & U. Heber (Melville, NY: AIP), 314
Lagrange, A.-M., Desert, M., Galland, F., Udry, S., & Mayor, M. 2009, A&A, 495, 335
Madappatt, N., De Marco, O., Nordhaus, J., & Wardle, M. 2011, in AIP Conf. Proc. 1331, Planetary Systems Beyond the Main Sequence, ed. Sch. Suh, H. Drechsel, & U. Heber (Melville, NY: AIP), 319
Matsumura, S., Peale, S. J., & Rasio, F. A. 2010, ApJ, 725, 1995
McBrady, J., Graham, J. R., Macintosh, B., et al. 2011, PASP, 123, 692
McCarthy, C., Butler, R. P., Tinney, C. G., et al. 2004, ApJ, 617, 575
Muirhead, P. S., Edelstein, J., Erskine, D. J., et al. 2011, PASP, 123, 709
Norström, B., Mayor, M., Andersen, J., et al. 2004, A&A, 418, 989
Pasquini, L., Dollinger, M. P., Weiss, A., et al. 2007, A&A, 473, 979
Paxton, B., Bildsten, L., Dotter, A., et al. 2011, ApJS, 192, 3
Penoy, K., & Sasselov, D. 2011, ApJ, 731, 67
Perrier, C., Sivan, J.-P., Naef, D., et al. 2003, A&A, 410, 1039
Reffert, S., Quirrenbach, A., Mitchell, D. S., et al. 2006, ApJ, 652, 661
Robinson, F. J., Demarque, P., Li, L. H., et al. 2004, MNRAS, 347, 1208
Salutaris, M., Cassisi, S., & Weiss, A. 2002, PASP, 114, 375
Salpeter, E. E. 1955, ApJ, 121, 161
Schlawin, E., Agol, E., Walkowicz, L. M., Covey, K., & Lloyd, J. P. 2010, ApJ, 722, L75
Seager, S., & Mollén-Ornelas, G. 2003, ApJ, 585, 1038
Stoezos, J. A., & Herwig, F. 2003, MNRAS, 340, 763
Takeda, G., Ford, E. B., Sills, A., et al. 2007, ApJS, 168, 297
Valenti, J. A., & Fischer, D. A. 2005, ApJS, 159, 141
van Belle, G. T., & von Braun, K. 2009, ApJ, 694, 1085
Villaver, E., & Livio, M. 2009, ApJ, 705, L81
Wright, J. T., Fakhouri, O., Marcy, G. W., et al. 2011, PASP, 123, 412
Yi, S. K., Kim, Y.-C., & Demarque, P. 2003, ApJS, 144, 259