Spectral properties of Schrödinger-type operators and large-time behavior of the solutions to the corresponding wave equation

A. G. Ramm

1 Department of Mathematics
Kansas State University, Manhattan, KS 66506-2602, USA

Abstract. Let \(L \) be a linear, closed, densely defined in a Hilbert space operator, not necessarily selfadjoint.

Consider the corresponding wave equations

\[
\begin{align*}
(1) \quad \ddot{w} + Lw &= 0, \quad w(0) = 0, \quad \dot{w}(0) = f, \quad \dot{w} = \frac{dw}{dt} \quad f \in H. \\
(2) \quad \ddot{u} + Lu &= fe^{-ikt}, \quad u(0) = 0, \quad \dot{u}(0) = 0,
\end{align*}
\]

where \(k > 0 \) is a constant. Necessary and sufficient conditions are given for the operator \(L \) not to have eigenvalues in the half-plane \(\text{Re} z < 0 \) and not to have a positive eigenvalue at a given point \(k^2 d > 0 \). These conditions are given in terms of the large-time behavior of the solutions to problem (1) for generic \(f \).

Sufficient conditions are given for the validity of a version of the limiting amplitude principle for the operator \(L \).

A relation between the limiting amplitude principle and the limiting absorption principle is established.

Keywords and phrases: elliptic operators, wave equation, limiting amplitude principle, limiting absorption principle

Mathematics Subject Classification: 35P25, 35L90, 43A32

1. Introduction

Let \(L \) be a linear, densely defined, closed operator in a Hilbert space \(H \). Our results and techniques are valid in a Banach space also, but we wish to think about \(L \) as of a Schrödinger-type operator in a Hilbert space and, at times, think that \(L \) is selfadjoint. For a Schrödinger operator \(L = -\nabla^2 + q(x) \) the resolvent \((L - k^2)^{-1} \), \(\text{Im} k > 0 \), is an integral operator with a kernel \(G(x, y, k) \), its resolvent kernel. If \(q \) is a real-valued function, sufficiently rapidly decaying then \(L \) is selfadjoint, \(G(x, y, k) \) is analytic with respect to \(k \) in the half-plane \(\text{Im} k > 0 \), except, possibly, for a finitely many simple poles \(ik_j, k_j > 0 \), the

*Corresponding author. E-mail: ramm@math.ksu.edu

© EDP Sciences, 2012
A. G. Ramm

Spectral properties of Schrödinger-type operators

semiaxis $k \geq 0$ is filled with the points of absolutely continuous spectrum of L, and there exists a limit

$$\lim_{\epsilon \to 0} G(x, y, k + i\epsilon) = G(x, y, k)$$

for all $k > 0$.

Sufficient conditions for $k^2 = 0$ not to be an eigenvalue of L are found in papers [5], [6]. Spectral analysis of the Schrödinger operators is presented in many books (see, for example, [2] and [11]). In papers [3], [4], such an analysis was given in a class of domains with infinite boundaries apparently for the first time, see also [8]. In [7] an eigenfunctions expansion theorem was proved for non-selfadjoint Schrödinger operators with exponentially decaying complex-valued potential q. The operator L in this paper is not necessarily assumed to be selfadjoint.

In [1] the validity of the limiting amplitude principle for some class of selfadjoint operators L has been established.

This principle says that, as $t \to \infty$, the solution to problem

$$\ddot{u} + Lu = fe^{-ikt}, \quad u(0) = 0, \quad \dot{u}(0) = 0, \quad \dot{u} = \frac{du}{dt},$$

(1.1)

has the following asymptotics

$$u = e^{-ikt}v + o(1), \quad t \to \infty,$$

(1.2)

where k is a real number and $v \in H$ solves the equation

$$Lv - k^2v = f.$$

(1.3)

The v is called the limiting amplitude. It turns out that a more natural definition of the limiting amplitude is:

$$v = \lim_{t \to \infty} \frac{1}{t} \int_0^t u(s)e^{iks}ds,$$

(1.4)

if this limit exists and solves equation (1.3).

Why is this definition more natural than (1.2)? There are good reasons for this. One of the reasons is: if (1.2) and (1.3) hold, then the limit (1.4) exists and solves equation (1.3). The other reason is: the limit (1.4) may exist and solve equation (1.3) although the limit (1.2) does not exist.

Example. If $u = e^{ikt}v + e^{ik_1t}v_1$, then the limit (1.2) does not exist, while the limit (1.4) does exist and is equal to v.

To describe our assumptions and results, some preparation is needed.

Consider the problem

$$\ddot{w} + Lw = 0, \quad w(0) = 0, \quad \dot{w}(0) = f.$$

(1.5)

Assuming that $\|u(t)\| \leq ce^{at}$, where $c > 0$ stands throughout the paper for various generic constants, and $a \geq 0$ is a constant, one can define the Laplace transform of $u(t)$,

$$U := U(p) := \int_0^\infty e^{-pt}u(t)dt, \quad \sigma > a,$$

where $p = \sigma + i\tau$, $\text{Re}p = \sigma$.

Let us take the Laplace transform of (1.1) and of (1.5) to get

$$LLU + p^2U = \frac{f}{p + ik},$$

(1.6)

and

$$LW + p^2W = f,$$

(1.7)
where
\[W = W(p) = \int_0^\infty w(t)e^{-pt}dt. \]

We also denote \(W(p) := \hat{w}(t). \)

The complex plane \(p \) is related to the complex plane \(k \) by the formula
\[p = -ik, \quad k = k_1 + ik_2, \quad k_2 \geq 0, \quad \sigma = k_2 \geq 0. \]

(1.8)

We assume throughout that \(f \) is generic in the following sense:

If \(I \) is the identity operator and a point \(p \) is a pole of the kernel of the operator \((L + p^2I)^{-1}f = W\).

If \(k^2 \) is an eigenvalue of \(L \) and \(\Re k^2 < 0 \), then \(\Im k > 0 \), where \(k = |k|e^{i\arg k^2}, p = -ik, \) so \(\sigma = \Re p > 0. \)

Let \(k > 0 \) and assume that \(-k^2 < 0 \) is an eigenvalue of \(L \). Then \(ik \) is a pole of the resolvent kernel \(G(x, y, k) \), and \(p = -i(ik) = k \) is a pole of the kernel of the operator \((L + p^2I)^{-1}. \) If \(k^2 > 0 \) is an eigenvalue of \(L \), then \(p = -ik \) is a pole of the operator \((L + p^2I)^{-1}. \)

The following known facts from the theory of Laplace transform will be used.

Proposition 1.1. An analytic in the half-plane \(\sigma > \sigma_0 \geq 0 \) function \(F(p) \) is the Laplace transform of a function \(f(t) \), such that \(f(t) = 0 \) for \(t < 0 \) and
\[\int_0^\infty |f(t)|^2e^{-2\sigma t}dt < \infty \]

if and only if
\[\sup_{\sigma > \sigma_0} \int_{-\infty}^\infty |F(\sigma + i\tau)|^2d\tau < \infty. \]

(1.10)

Proposition 1.2. If \(F(p) = \overline{f(t)} \), then
\[\frac{F(p)}{p} = \int_0^t f(s)ds. \]

(1.11)

Let us now formulate the main Assumptions A and B standing throughout this paper.

Assumption A. For a generic \(f \) the \(W(p) = (L + p^2)^{-1}f \) is analytic in the half-plane \(\sigma > 0 \), except, possibly, at a finitely many simple poles at the points \(-ik_j, \ 1 \leq j \leq J, \ k_j \) are real numbers, and at the points \(\kappa_m, \Re \kappa_m > 0, \)

\[W(p) = \sum_{j=1}^J \frac{v_j}{p + ik_j} + W_1(p) + \sum_{m=1}^M \frac{b_m}{p - \kappa_m}, \]

where \(v_j \) and \(b_m \) are some elements of \(H, \ W_1(p) \) is an analytic function in the half-plane \(\Re p = \sigma > 0, \)
continuous up to the imaginary axis \(\sigma = 0, \) and satisfying the following estimate
\[||W_1(p)|| \leq \frac{c}{1 + |p|^{\gamma}}, \quad \gamma > \frac{1}{2}. \]

(1.13)

Assumption B. There exists the limit
\[\lim_{\sigma \to 0} ||W_1(\sigma - ik) - W_1(-ik)|| = 0 \]

(1.14)

for all real numbers \(k. \)
Theorem 1.3. Let the Assumption A hold. Then a necessary and sufficient condition for the operator L to have no eigenvalues in the half-plane $\Re k^2 < 0$ is the validity of the estimate

$$\left\| \int_0^t w(s) ds \right\| = O(e^{\epsilon t}), \quad t \to \infty,$$ \hspace{1cm} (1.15)

for an arbitrary small $\epsilon > 0$.

A necessary and sufficient condition for the operator L not to have any positive eigenvalues $k^2 > 0$ is the validity of the estimate

$$\left| \frac{1}{t} \int_0^t e^{iks} w(s) ds \right| = o(1), \quad t \to \infty, \quad \forall k \in \mathbb{R}. \hspace{1cm} (1.16)$$

A point $ik_0 > 0, k_0 > 0$, is not a pole of the resolvent kernel of the operator $(L - k^2 - i0)^{-1}$ if and only if estimate (1.16) holds with $k = k_0 > 0$.

Remark. If condition (1.16) holds for $k = 0$, then \(\left| \int_0^t w(s) ds \right| = o(t)\), so condition (1.15) holds, and the operator L has no eigenvalues in the half-plane $\Re k^2 < 0$.

Theorem 1.4. Let the Assumptions A and B hold. Suppose that estimates (1.14) and (1.15) hold. Then the limiting amplitude principle (1.4) holds for every $k \in \mathbb{R}, k \neq k_j, 1 \leq j \leq J$.

In section 2, proofs are given.

2. Proofs

2.1. Proof of Theorem 1.3

From the Assumption A and Proposition 1.1, it follows that $W(p)$ is a Laplace transform of a function $w(t)$ such that

$$w(t) = \sum_{j=1}^J v_j e^{-ik_j t} + \sum_{m=1}^M b_m e^{\kappa_m t} + w_1(t), \hspace{1cm} (2.1)$$

where

$$w_1(t) = \frac{1}{2\pi i} \int_{c_0 - i\infty}^{c_0 + i\infty} e^{pt} W_1(p) dp, \hspace{1cm} (2.2)$$

and the integral in (2.2) converges in L^2-sense due to the assumption (1.13). It is clear from formula (2.1) that all $b_m = 0$ if and only if estimate (1.15) holds with $0 < \epsilon < \min_{1 \leq m \leq M} \Re \kappa_m$. This proves the first conclusion of Theorem 1.3.

Let us calculate the expression on the left side of formula (1.16) and show that this expression is $o(1)$ unless $k = k_j$ for some $1 \leq j \leq J$. In this calculation it is assumed that L does not have any eigenvalues in the half-plane $\Re k^2 < 0$, in other words, that all $b_m = 0$. Otherwise the expression on the left of formula (1.16) tends to infinity as $t \to \infty$ at an exponential rate.

If all $b_m = 0$ in (2.1), then

$$\sum_{j=1}^J \frac{1}{t} \int_0^t e^{i(k-k_j)t} dt + \frac{1}{t} \int_0^t w_1(t)e^{ikt} dt := I_1 + I_2. \hspace{1cm} (2.3)$$

If k and k_j are real numbers, then

$$\lim_{t \to \infty} \frac{1}{t} \int_0^t e^{i(k-k_j)t} dt = \begin{cases} 1, & k = k_j, \\ 0, & k \neq k_j. \end{cases} \hspace{1cm} (2.4)$$
Thus, \(I_1 = 0 \) if and only if \(k \) does not coincide with any of \(k_j, 1 \leq j \leq J \).

Let us prove that
\[
\lim_{t \to \infty} \frac{1}{t} \int_0^t w_1(t) e^{ikt} dt = 0.
\]
(2.5)

By proposition (1.2) and the Mellin inversion formula, one has
\[
I := \frac{1}{t} \int_0^t w_1(t) e^{ikt} dt = \frac{1}{2\pi i} \int_{\sigma-i\infty}^{\sigma+i\infty} W_1(p-ik) \frac{e^{pt}}{pt} dp,
\]
(2.6)

where \(\text{Re} \sigma > 0 \) can be chosen arbitrarily small.

Let \(pt = q \), take \(\sigma = \frac{1}{t} \), write \(q = 1 + is \), and \(\text{write the integral on the right side of (2.6)} \) as:
\[
I = \frac{1}{2\pi i} \int_{1-i\infty}^{1+i\infty} W_1(q) e^{q} \frac{e^{qy}}{qy} dq.
\]
(2.7)

If one uses estimate (1.13) and formula \(|q| = (1 + s^2)^{1/2} \), then one obtains the following inequality
\[
||I|| \leq \frac{1}{2\pi t} \int_{-\infty}^{\infty} 1 \frac{ed\sigma}{(1 + s^2)^{1/2} (1 + [1/s^2] - ik)^\gamma} = c \frac{1}{2\pi t^{1-\gamma}} \int_{-\infty}^{\infty} 1 \frac{ds}{(1 + s^2)^{1/2} (t^\gamma + [1 + (s-kt)^2]^{\gamma/2})}.
\]
(2.8)

Let \(s = ty \). Then the integral on the right side of (2.8) can be written as
\[
\frac{e^{ct}}{2\pi t^{1-\gamma}} \int_{-\infty}^{\infty} \frac{dy}{(1 + t^2y^2)^{1/2} (t^\gamma + t^2(y-k)^2)^{\gamma/2}} \leq \frac{c}{2\pi} \int_{-\infty}^{\infty} \frac{dy}{(1 + t^2y^2)^{1/2} (1 + [t^{-2} + (y-k)^2])^{\gamma/2}} \rightarrow 0, \text{ as } t \to \infty,
\]
(2.9)

and the convergence of the last integral to zero is uniform with respect to \(k \in \mathbb{R} \).

Thus
\[
\lim_{t \to \infty} ||I|| = 0.
\]
(2.10)

From (2.3) - (2.5) the last two conclusions of Theorem 1.3 follow. Theorem 1.3 is proved.

\(\square\)

2.2. Proof of Theorem 1.4

Using Proposition 1.2, equation (1.6), and the Mellin formula, one gets
\[
\frac{1}{t} \int_0^t u(t)e^{ikt} dt = \frac{1}{2\pi i} \int_{\sigma-i\infty}^{\sigma+i\infty} U(p-ik) \frac{e^{pt}}{p} dp,
\]
(2.11)

where, according to (1.6),
\[
U(p-ik) = \frac{W(p-ik)}{p}.
\]
(2.12)

Let \(\sigma = \frac{1}{t} \) and \(pt = q \). Then
\[
\frac{1}{t} \int_0^t u(t)e^{ikt} dt = \frac{1}{2\pi i} \int_{1-i\infty}^{1+i\infty} W \left(\frac{q}{t} - ik \right) \frac{e^{qy}}{qy} dq.
\]
(2.13)

Estimate (1.15) and Theorem 1.3 imply that all \(b_m = 0 \) in formula (2.1). Therefore, using formula (2.1) with \(b_m = 0 \), one gets
\[
W = \sum_{j=1}^{J} \frac{1}{p + ik_j} + \mathcal{W}.
\]

and
\[\mathcal{W}\left(\frac{q}{l} - ik\right) = \mathcal{W}_1\left(\frac{q}{l} - ik\right) + \sum_{j=1}^{J} u_j \left(\frac{1}{l} - i(k - k_j) \right). \] (2.14)

One has \(\mathcal{W} = \frac{n_l}{p^{\frac{1}{2}}} \). Therefore
\[\lim_{t \to \infty} \frac{1}{2\pi i} \int_{1-i\infty}^{1+i\infty} e^{\frac{q}{l} \frac{1}{q^2}} dq = 1, \]
and
\[\lim_{t \to \infty} \frac{1}{2\pi i} \int_{1-i\infty}^{1+i\infty} e^{\frac{q}{l} \frac{1}{q^2}} dq = \begin{cases} \frac{i v_j}{l(k - k_j)}, & k \neq k_j, \\ \frac{1}{\infty}, & k = k_j. \end{cases} \] (2.15)

Furthermore,
\[\lim_{t \to \infty} \frac{1}{2\pi i} \int_{1-i\infty}^{1+i\infty} \mathcal{W}_1\left(\frac{q}{l} - ik\right) e^{\frac{q}{l} \frac{1}{q^2}} dq = \mathcal{W}_1(-ik), \] (2.16)
as follows from assumption (1.14) and the Lebesgue’s dominated convergence theorem if one passes to the limit \(t \to \infty \) under the sign of the integral (2.16). Let us check that this \(v \) solves equation (1.3). This would conclude the proof of Theorem 1.4. We need a lemma.

Lemma 1. If \(h \in L_{loc}(0, \infty) \) and the limit \(\lim_{t \to \infty} t^{-1} \int_0^t h(s)ds \) exists, then the limit \(\lim_{p \to 0} p \int_0^\infty e^{-pt} h(t)dt \) exists, and
\[\lim_{t \to \infty} t^{-1} \int_0^t h(s)ds = \lim_{p \to 0} p \int_0^\infty e^{-pt} h(t)dt. \] (2.17)

Proof of Lemma 1. One has
\[p \int_0^\infty e^{-pt} h(t)dt = pe^{-pt} \int_0^t h(s)ds|_0^\infty + p^2 \int_0^\infty te^{-pt} t^{-1} \int_0^t h(s)ds dt. \]
For any \(p > 0 \) one has
\[pe^{-pt} \int_0^t h(s)ds|_0^\infty = 0. \]
Let \(q = pt \) and denote \(H(t) := t^{-1} \int_0^t h(s)ds, J := \lim_{t \to \infty} H(t) \). Then
\[\lim_{p \to 0} p^2 \int_0^\infty te^{-pt} t^{-1} \int_0^t h(s)ds dt = \lim_{p \to 0} \int_0^\infty qe^{-q} H(q(pq)^{-1}) dq. \]
Passing in the last integral to the limit \(p \to 0 \) one obtains (2.17). Lemma 1 is proved.

Using equation (2.17), one writes \(v = \lim_{p \to 0} pU(p - ik) \), where \(U \) solves equation (1.6). Thus,
\[LU(p - ik) + (p - ik)^2 U(p - ik) = p^{-1} f. \]
Multiplying both sides of this equation by \(p \) and passing to the limit \(p \to 0 \), one obtains equation (1.8).

In the passage to the limit under the sign of the unbounded operator \(L \) the assumption that \(L \) is closed was used.

Thus, the conclusion of Theorem 1.4 follows. \(\square \)

If the limit (1.14) exists at a point \(p = i\tau \) then one says that the limiting absorption principle holds for the operator \(L \) at the point \(k = -p = i(-ik) = k, k > 0 \).

Thus, Assumption B means that the limiting absorption principle holds for \(L \) at the point \(k > 0 \), that is, \(\lim_{\varepsilon \to 0} (L - k^2 - i\varepsilon)^{-1} f \) exists.
3. Applications

Let $L = -\nabla^2 + q(x)$, where $q(x)$ is a real-valued function, $|q(x)| \leq c(1 + |x|)^{-2-\epsilon}, \epsilon > 0, x \in \mathbb{R}^3$. Then L is selfadjoint on the domain $H^2(\mathbb{R}^3)$. Its resolvent $(L - k^2 - i0)^{-1}$ satisfies Assumptions A and B if one keeps in mind the following.

Let $G(x, y, k)$ be the resolvent kernel of L, that is, the kernel of the operator $(L - k^2 - i0)^{-1}$,

$$LG(x, y, k) = -\delta(x - y) \text{ in } \mathbb{R}^3,$$

$G \in L^2(\mathbb{R}^3)$ for $k > 0$. If $f \in L^2(\mathbb{R}^3)$ is compactly supported, then for $k > 0$ the function

$$v(x) := (L - k^2 - i0)^{-1} f = \int_{\mathbb{R}^3} G(x, y, k) f(y) dy$$

does not necessarily belong to $L^2(\mathbb{R}^3)$.

For example, if $q(x) = 0$, then $G(x, y, k) = \frac{e^{ik|x-y|}}{4\pi|x-y|^2}$, and the function

$$v(x, k) = \int_{|y| \leq 1} g(x, y, k) dy = O \left(\frac{1}{|x|} \right) \quad (3.1)$$

does not belong to $L^2(\mathbb{R}^3)$ (except for those $k > 0$ for which $x(k) = 0$ in the region $|y| \geq 1$. These numbers $k > 0$ are the zeros of the Fourier transform of the characteristic function of the ball $|y| \leq 1$, see [1], Chapter 11.

By this reason the abstract results of theorem (1.3) and (1.4) can be used in applications if one defines some subspace of H, for example, a subspace of functions with compact support, denote by P, a projection operator on this subspace, and replaces W and W_1 by PW and PW_1 in equations (1.12) and (1.14).

For example, the function (3.1) one replaces by $\eta(x)v(x, k)$, where $\eta(x)$ is a characteristic function of a compact subset of \mathbb{R}^3.

The analytic properties of $\eta(x)v(x, k)$ and of $v(x, k)$ as functions of k are the same. A similar suggestion is used in [1].

With the above in mind, one knows (for example, from [2] or [11]) that Assumptions A and B hold for $L = -\nabla^2 + q(x)$.

Consequently, the conclusions of Theorems 1.3 and 1.4 hold.

In addition, the assumptions

$$|q(x)| \leq c(1 + |x|)^{-2-\epsilon}, \epsilon > 0, \text{ Im } q = 0,$$

imply that L does not have positive eigenvalues, so all $v_j = 0$, and zero is not an eigenvalue of $L \geq 0$ if $\epsilon > 0$ (see [3], [4]).

A new method for estimating of large time behavior of solutions to abstract evolution problems is developed in [4], where some applications of this method are given.

References

[1] D. Eidus. The limiting amplitude principle. Russ. Math. Surveys, 24, (1969), 51–94
[2] D. Pearson. Quantum scattering and spectral theory. Acad. Press, London, 1988.
[3] A.G. Ramm. Spectral properties of the Schrödinger operator in some domains with infinite boundaries. Doklady Acad. Sci. USSR, 152, (1963) 282-285.
[4] A.G. Ramm. Spectral properties of the Schrödinger operator in some infinite domains. Mat. Sborn., 66, (1965), 321-343.
[5] A.G. Ramm. Sufficient conditions for zero not to be an eigenvalue of the Schrödinger operator. J. Math. Phys., 28, (1987), 1341–1343.
[6] A.G. Ramm. Conditions for zero not to be an eigenvalue of the Schrödinger operator. J. Math. Phys., 29, (1988), 1431–1432.
[7] A.G. Ramm. Eigenfunction expansion for nonselfadjoint Schrödinger operator. Doklady Acad. Sci. USSR, 191, (1970), 50-53.
[8] A.G. Ramm. Scattering by obstacles. D.Reidel, Dordrecht, 1986.
[9] A.G. Ramm. Stability of solutions to some evolution problems. Chaotic Modeling and Simulation (CMSIM), 1, (2011), 17-27.
[10] A.G. Ramm. Inverse problems. Springer, New York, 2005.
[11] M. Schechter. Operator methods in quantum mechanics. North Holland, New York, 1981.