Complete readout of two-electron spin states in a double quantum dot

Martin Nurizzo,1 Baptiste Jadot,2 Pierre-André Mortemousque,2 Vivien Thiney,2 Emmanuel Chanrion,1 David Niegemann,1 Matthieu Dartiaillh,1 Arne Ludwig,3 Andreas D. Wieck,3 Christopher Bäuerle,1 Matias Urdampilleta,1 and Tristan Meunier1

1Univ. Grenoble Alpes, CNRS, Grenoble INP, Institut Néel, F-38000 Grenoble, France
2Univ. Grenoble Alpes, CEA, Leti, F-38000 Grenoble, France
3Lehrstuhl für Angewandte Festkörperphysik, Ruhr-Universität Bochum, Universitätsstraße 150, D-44780 Bochum, Germany

We propose and demonstrate complete spin state readout of a two-electron system in a double quantum dot probed by an electrometer. The protocol is based on repetitive single shot measurements using Pauli spin blockade and our ability to tune on fast timescales the detuning and the interdot tunnel coupling between the GHz and sub-Hz regime. A sequence of three distinct manipulations and measurements allows establishing if the spins are in S, T0, T+ or T− state. This work points at a procedure to reduce the overhead for spin readout, an important challenge for scaling up spin qubit platforms.

I. INTRODUCTION

Pauli principle plays a central role in the functioning of individual electron spin qubits in semiconductor quantum dot (QD) arrays [1–2]. For rapid and high-fidelity spin readout, it is required to convert the spin information into distinct charge configurations. To implement it, the basic building block is a tunnel coupled double quantum dot (DQD) system filled with an electron acting as a qubit and one as an ancilla and probed via a close-by electrometer or RF-gate reflectometry [3–4]. Obtaining the full spin information of the two-electron system in this simple unit cell requires nevertheless extra hardware such as QDs or electron reservoirs, that represents an important overhead for future scaling of the platform [5]. In this article, we propose and demonstrate a strategy to perform complete spin state readout of a two-electron system with a minimal footprint. It is based on the repetition of three simple shot measurements using Pauli spin blockade and our recent development in the control of the potential detuning (c) at the ns timescale and of the tunnel coupling (tc) between the GHz and the sub-Hz regime. It allows us to completely separate in the c, tc parameter space the two important processes of the readout: fast spin to charge conversion and the charge configuration readout in the sub-Hz interdot tunnel coupling regime where the system is unaffected by charge state relaxation. Doing so, the three basic measurement procedures and their repeatability are investigated: a high fidelity S-T readout (FPBS = 98.43%) preserving the initial spin state is demonstrated. Second, via precise navigation in the c, tc parameter space, we engineered and characterized an on-demand parity readout procedure relying on a selective relaxation hotspot of T0 to S and reached a fidelity of Fparity = 93.3%. We then study the selective transformation of T+ to S via an adiabatic passage through the avoided crossing and demonstrate a transformation fidelity of 79.9%. Finally, we characterize the complete readout procedure allowing to discriminate a S, T0, T+ and T− spin state by interleaving spin read-out and manipulations on the two same electrons. This complete readout procedure is implemented for three different initializations and in more complex spin manipulation sequences such as exchange controlled oscillations to test its validity.

II. FROZEN PAULI SPIN BLOCKADE, A HIGH FIDELITY REPEATABLE READOUT

In the paradigm of spin qubits stored in gate defined QDs, the readout fidelity via classic PSB scheme is limited by the relaxation at the measurement position [3–6–8]. To overcome this issue several methods have been developed to reduce the time needed to discriminate with a high fidelity the possible charge configurations mapping T and S spin states. Latching- and cascade-based mechanisms recently allowed an enhancement of the output signal of the spin to charge conversion mechanisms, improving the spin readout efficiency for an identical noise and integration time [9–11]. However, at the end of the readout procedure the initial spin state is destroyed due to the presence of an extra electron or its fast displacement in the array, meaning that the readout is not repeatable. To tackle this issue, we implemented an original method entitled frozen Pauli spin blockade (FPSB) which consists in performing the spin to charge conversion and the charge configuration readout at two different positions in the c and tc parameter space. The spin to charge mapping is obtained in the GHz tunnel coupling (tc) regime at the classic PSB position where charge transfer from (1,1) to (0,2) is allowed only for the S state. Once obtained, the charge dynamic is blocked by setting tc in the sub-Hz regime [12] to prevent any subsequent alteration of the obtained charge distribution, in particular due to spin relaxation.

To implement this readout we first characterized the DQD presented in Fig. 5 by performing a stability diagram with two electrons loaded in the system [12–13]. The stability diagram is performed as a function of the
The voltage gates B_2 and B_3 controlling respectively t_c and ε. The result is plotted in Fig. 1(a) where we observe two discontinuous charge degeneracy lines separating the three possible charge states of two electrons in a DQD $(2,0)$, $(1,1)$, $(0,2)$. Navigating along one of the charge degeneracy line we identify two possible regimes of the inter-dot tunnel coupling. The first one is the high tunnel coupling regime ($t_c \approx \text{GHz}$) obtained for $V_{B_2} > -0.68 \text{ V}$. In this regime electrons can be transferred from one dot to the other by varying V_{B_3}. For $V_{B_2} < -0.68 \text{ V}$, the charge degeneracy line is shifted to lower values of V_{B_3} indicating that the inter-dot tunnel rate is lower than the measurement sweep rate, in this case 250 mV s^{-1}.

FIG. 1. Frozen Pauli spin blockade measurement: protocol and fidelity.

(a) Stability diagram and frozen Pauli spin blockade measurement scheme. The voltage V_{B_2} controls mostly the tunnel coupling of the DQD while V_{B_3} controls ε. The tunnel coupling can be controlled from the sub-Hz to GHz regime in a few hundreds of mV applied to B_2 gate. (b) Sketch of the energy diagram of the relevant spin states of two electrons in a DQD. At the blue triangle the exchange energy in between the two spins is high enough to preserve the singlet state. At the red triangle the exchange energy is low compared to the magnetic field gradient and mixing of the initial S spin state occurs with the T_0. At the yellow circle, the S and T_+ states are degenerated and mixing occurs via the Overhauser magnetic field and spin orbit coupling. (c) Histogram of 50,000 single shot measurements with an integration time of $T_{\text{int}} = 1.5 \text{ ms}$. Following Connors et al. [8] we define a threshold (dashed line) to discriminate the $(1,1)$ and $(0,2)$ charge state minimizing the readout error. (d) Fidelity of the frozen PSB readout procedure as a function of the electrometer signal integration time. For $T_{\text{int}} < 0.5 \text{ ms}$, the spin readout error is limited by the charge readout error C_{error}. For longer integration times the spin readout error saturates and reaches $S_{\text{error}} = 0.43 \pm 0.05 \%$ and $T_{\text{error}} = 2.7 \pm 0.4 \%$. The uncertainty is represented by the shade around the solid line.

For the demonstration and calibration of the readout two initializations of S and T are necessary [10]. To do so, we used the high level of control over the tunnel coupling to initialize either a S state or a so called S-T_0 mixed state composed of 50 $\%$ S and 50 $\%$ T_0. We engineered and implemented the pulse sequence sketched on top of the stability diagram in Fig. 1(a). First, two electrons are loaded in the $(0,2)$ charge configuration and we wait 5 ms for the electrons to relax to S. From there, a 500 ns pulse to the blue or red triangle position initializes a S or $S-T_0$ mixed state respectively. As we can see in the energy diagram plotted in Fig. 1(b), at the blue triangle position t_c is large enough so that the ground state of the system remains $|S(1,1)\rangle$. On the contrary, at the red triangle the low inter-dot tunnel coupling and the random transverse magnetic field gradient allows spin mixing between the S and T_0 state resulting in a statistical mixture of 50 $\%$ S and 50 $\%$ T_0 [16]. Once the desired spin state is initialized the system is pulsed during 20 ns at the PSB position (white star in Fig. 1) to perform the spin to charge conversion. At this position, a S state is mapped to a $(0,2)$ and T_0, T_+, T_- are mapped to a $(1,1)$ charge state. The system is then pulsed to the white square, via a ns-pulse, where charge tunneling is no longer possible at the timescale of the experiment. At this position the signal of the electrometer ΔSET is integrated during a time T_{int}. We performed the measurement sequence for both initializations 50,000 times and plotted the histogram of the integrated electrometer signal in Fig. 1(c). We fit the histogram with a sum of two Gaussian distributions for the possible two charge states. As expected the singlet initialization yields almost for each measurement shots a $(0,2)$ output, while we observe an equipartition of $(1,1)$ and $(0,2)$ for the $S-T_0$ mixed state one. Through this experiment we demonstrate the feasibility of separating the spin to charge conversion process from the charge readout in the voltage gate space while still being able to perform a high fidelity spin readout.
We can now benchmark the readout procedure using the two deterministic initializations presented previously. In this readout two types of errors are possible, \(\text{\(T\text{\text{\text{_}}}_{\text{error}}\) the probability to measure (0,2) when the spins are in one of the triplet state and \(\text{\(S\text{\text{\text{_}}}_{\text{error}}\) the probability to measure (1,1) when the system is in singlet. To assess both of these errors we used the two initializations presented and the following equations:

\[
\begin{align*}
P_{(0,2)}^S &= 1 - S_{\text{error}} , \\
P_{(0,2)}^{\text{mixed}} &= 1 - \frac{S_{\text{error}} + T_{\text{error}}}{2} .
\end{align*}
\]

Where \(P_{(0,2)}^S \) and \(P_{(0,2)}^{\text{mixed}} \) are the probabilities to readout a (0,2) charge state when the system is initialized in \(S \) and \(S-T_0 \) mixed state respectively. Finally, the charge readout error \(C_{\text{error}} \) is defined by fitting the overlap of the two histograms in Fig. 1(c) [6]. The three types of errors are acquired for a variable \(\Delta t_{\text{SET}} \) integration time \(t_{\text{int}} \) and averaged over 50,000 measurement shots in Fig. 1(c). For low integration time \(t_{\text{int}} < 0.5\,\text{ms} \), the spin readout error is limited by the ability to discriminate (1,1) from (0,2) charge state. For longer integration time, the charge readout error keeps decreasing but the \(S_{\text{error}} \) and \(T_{\text{error}} \) saturates at respectively 0.43 \(\pm \) 0.05\% and 2.7 \(\pm \) 0.4\%. This method to assess the fidelity gives us a higher bound about the readout errors since the initialization errors cannot be properly distinguished from it. We explain the \(S_{\text{error}} \) value by considering the thermal population of the triplet state at the initialization position yielding an electronic temperature of \(T_d = 200\,\text{mK} \) close to previously measured temperatures in a similar configuration. By spending only 20\,\text{ns} at the PSB position most of the errors due to the \(T_1 \) relaxation are suppressed, and the spin readout error is not increasing for higher \(t_{\text{int}} \). We therefore attribute the residual error value mostly to the readout calibration (see Fig. 1(c)). In the end, the separation of the spin to charge conversion and the charge readout allows for a higher charge readout fidelity without any compromise on the spin to charge conversion fidelity [3,4].

III. \(T_0 \) SELECTIVE RELAXATION

Classically, a PSB measurement allows to discriminate a \(S \) state from \(T_0, T_+ \) and \(T_- \). However, it has been demonstrated that the relaxation of the \(T_0 \) state to \(S \) can be strongly enhanced via either spin orbit coupling or spin state mixing by setting the system at a particular position in the parameter space close to the PSB [7,19–21]. A spin readout performed in such conditions will give the same signal for a \(S \) and \(T_0 \) and is referred as a parity readout.

The PSB position is located close to the (1,1)/(0,2) charge transition, as we can see in the energy diagram in Fig. 2(a), in this region the \(|T_0(1,1)\rangle \) state is isolated from the other states energy-wise. At this position the relaxation of such state to \(|S(0,2)\rangle \) is close to a few tens of \(\mu\text{s} \) [7,8]. However, this relaxation process can be strongly enhanced by setting the system at the position in the \(\epsilon \) and \(t_e \) parameter space where the \(|T_0(1,1)\rangle \) and \(|S(1,1)\rangle \) states are nearly degenerated (see Fig. 1). At this position, indicated by the circular arrows in Fig. 2(a), spin mixing between the two states occurs in a few tens of \(\mu\text{s} \) via the Overhauser magnetic field gradient. The initial \(T_0 \) is therefore transformed in \(|S(1,1)\rangle \) state which rapidly relaxes to \(|S(0,2)\rangle \) via phonon emission [7,22].

We demonstrate this selective relaxation enhancement of the \(T_0 \) state by performing the following spin manipulation procedure. First, the spin state is initialized in a mixture of \(S-T_0 \) via the sequence presented in the previous section. The system is then pulsed to the parity readout position described previously during a variable \(T_{PR} \) and finally the \(S \) state probability is measured via the FPSB protocol. In Fig. 2(b), we plot the singlet probability \(P_S \) as a function of the time spent at the parity readout position. In the case of the unpolarized spin state initialization, we observe a rapid relaxation of the \(T \) portion of the signal to the \(S \) state with a characteristic rate of \(1/T_S = 300\,\text{ns} \). This fast relaxation is the
signature of a T_0 relaxation hotspot that can be used to perform a parity readout as described previously. To ensure the T_0 state selectivity of the relaxation hotspot, we repeat the same procedure for a $S-T_+$ mixture obtained via a 500 ns pulse at the $S-T_+$ avoided crossing (yellow circle in Fig. 1(a,b) and 2(c)). We observe in this case the conservation of the T proportion of the signal during the whole duration spend at the parity readout position. Indeed, the T_+ relaxation is not enhanced at this position and no relaxation is observed which demonstrates the selectivity of the relaxation hotspot.

IV. S-T$_+$ ADIABATIC TRANSFORMATION

Having presented the singlet and parity readout mechanisms, the last tool we need is selective and rapid conversion from T_+ to S. This is done using an adiabatic passage through the avoided crossing of the two spin states S. In order to perform such transformation, it is necessary to locate the avoided crossing in the voltage gate space by pulsing the tunnel coupling and observing the loss of S population due to mixing when S and T_+ are degenerated. The spin state is initialized in a S state at a large value of tunnel coupling in the $(1,1)$ charge region, from there the tunnel coupling is pulsed during 500 ns via a voltage pulse of amplitude V_{B2}. Finally, the spin state is read using a FPSB measurement sequence and we plot in Fig. 2(c) the singlet probability as a function of the pulse amplitude. A sharp drop of P_S is observed for $V_{B2} = -0.602$ V and corresponds to the system being pulsed to the $S-T_+$ avoided crossing. At this position state mixing occurs through either the spin-orbit coupling or the hyperfine interaction and a portion of the initial S state is transformed in T_+ [14][18][24]. In order to transfer a higher portion of the initial singlet population to T_+, we perform an adiabatic transformation of the spin state. The state transfer is characterized by performing a V_{B2} voltage ramp across the previously localized $S-T_+$ avoided crossing at a variable speed v_{ramp}. In Fig. 2(d), we plot the singlet probability as a function of $1/v_{\text{ramp}}$, as expected by the Landau-Zener formula the transformation rate follows an exponential decay and yields a state coupling close to 300 neV [25]. In the end, the transformation rate fidelity in the operating regime is close to 80 %. The transformation rate could be limited by different factors such as charge and magnetic noise or the digitalization of the AWG output which all reduce the adiabaticity of the pulse [26][27]. This operation being reversible, a T_+ state can be transformed selectively into S with the same transformation rate.

The results presented in the last two sections demonstrate our capability to perform on-demand selective transformation of a T_0, T_+ state into S via respectively, a relaxation hotspot and adiabatic passage through the avoided crossing. These two key features, associated with the FPSB procedure are at the core of the complete readout procedure that we will develop in the following section.

V. COMPLETE TWO-ELECTRON SPIN STATE READOUT

In addition to a higher readout fidelity, the capability to conserve the initial spin state at the measurement position allowed us to engineer a readout protocol maximizing the quantity of information extracted from the system. Indeed, a parity or PSB measurement yields only one bit of information despite having a system containing two qubits. In this section we develop a protocol entitled complete readout which allows us to discriminate between the four spin states S, T_0, T_+ and T_-. The measurement is based on the repeatable capability of the FPSB allowing us to perform a sequence of three distinct manipulations and measurements to determine the two-electron spin state.

In Fig. 3(b) we detail the complete readout procedure by plotting the typical signal of the local electrometer during the readout for the four possible spin states. The first step of the complete readout consists in a FPSB measurement performed as described in the first section. If the output is $(0,2)$ the shot is attributed to a S no matter what the output of the following measurement is. If the output is $(1,1)$ the state is one of the three triplet states and we have to consider the two following measurements. During the second step, we perform a parity readout to discriminate T_0 from T_+ and T_-. Again the charge configuration is read and a $(0,2)$ is associated to T_0 while $(1,1)$ is either a T_+ or a T_- state and the last measurement needs to be taken into account. To discriminate the last two spin states an adiabatic passage is performed through the $S-T_+$ avoided crossing. After this passage the spin state is read using a frozen PSB measurement and a $(0,2)$ output is attributed to T_+ since the transformation is selective. Finally, the $(1,1)$ output is attributed to T_-. The attribution of the 8 possible outcomes of the three-step measurement is presented in Table I.

In Fig. 3(b),(c),(d), the complete readout procedure is implemented for three different initializations to test its validity. The first one consists in waiting for the relaxation to the S ground state during 5 ms in $(0,2)$ charge region. We obtain $99.7 \pm 0.1 \%$ S population in agreement with the PSB readout fidelity obtained previously. To test the ability of the complete readout to discriminate T_0 state efficiently, we initialize a $S-T_0$ mixed state and again apply the readout procedure to it. The result is shown in Fig. 3(b), we observed an excess of S and T_0 close to the expected values. For T_0, we obtained 45 % probability instead of 50 % this discrepancy is attributed to the limited fidelity of the parity readout (see Appendix D). Finally, we initialized a $79.9 \pm 0.4 \%$ population of T_+ via an adiabatic ramp through the anticrossing as presented in the previous section. The result of the readout procedure is plotted in Fig. 3(c) and we indeed observed
FIG. 3. **Complete readout procedure and description of the three-step measurement.** (a) Typical measured current across the SET during the three different steps of the readout for the four possible spin states. Blue shaded areas correspond to a pulse to the PSB position, the green shaded one is when the system is at charge readout position. The PSB, parity and $S-T_+$ shaded area are artificially extended in the chronogram and the SET traces are slightly offset for clarity. The white area corresponds to the time needed for the system to stabilize for readout after a manipulation. (b),(c),(d) Output of the complete readout procedure for singlet state, $S-T_0$ mixed state and T_+ initialization. The inset corresponds to the expected result for an errorless complete readout procedure.
an excess of T_+ state indicating again the validity of the readout for this state. In this situation, the readout is mainly limited by the transformation rate of a S into a T_+ and vice versa. Due to this limited transformation rate 19% of the T_+ population is mislabelled as T_- resulting in 0.13 probability to observe this state.

The repetitive measurements performed on the three different initialized populations allows us to evaluate the fidelity of each stage of the complete readout procedure. Indeed, by taking into account only the first charge measurement in Table I for the S and mixed S-T_0 initializations, we can conduct the same calculations to obtain the S-T discrimination fidelity in the complete readout procedure $F_{\text{PSB}} = 98.7 \pm 1.1\%$. Now looking at the second measurement, corresponding to the parity readout we have $F_{\text{comp}} = 93.3 \pm 1.1\%$ (calculations are detailed in Appendix D). The last measurement and precisely the proportion of $(2,0)$ charge states transformed into $(1,1)$ during the last stage of the complete readout procedure allows us to determine the T_+ readout fidelity $F_{\text{comp}}^{\text{T+}} = 87 \pm 1\%$ limited by the S-T_+ transformation rate $\tau = 79.9 \pm 0.4\%$.

We finally performed classic spin manipulations to ensure the possibility of the complete readout procedure to be inserted in more complex pulse sequence. In Fig. 4(a), we performed a simple pulse on the inter-dot tunnel coupling and observed through the scope of the complete readout procedure the evolution of a S state. For $V_{B2} > -0.61$ V, t_c is large enough for the S to remain the ground state, it is therefore conserved during the pulse duration and we observe a high probability of S. Lowering slightly more the tunnel coupling we observe a sharp drop in the S probability associated to an increase in the T_+ one, as explained previously at this position the two spin states are degenerated and mixing occurs. The complete readout procedure confirms the observation made in Fig. 4(c). For even lower values of t_c, the S and T_0 probabilities both reach 50%, this ensures the observation made at the beginning of the article about the S-T_0 mixing region. In this regime we observe an excess of the T_+ population ($2.8 \pm 0.6\%$) associated to the passage through the S-T_+ avoided crossing being slightly adiabatic.

In Fig. 4(d), we performed exchange controlled SWAP gate at the symmetric operation point to have a strong enhancement of the coherence time [14, 28, 29]. Observing such basic operation through the scope of the complete readout procedure is of major interest to study state leakage. Indeed, this whole procedure is error-prone due to the high level of control needed over the shape of the pulses. As we can see in Fig. 4(c), the S-T_+ crossing and the exchange pulse needs to be performed non-adiabatically while the basis transformation from S-T_0 to $\ket{\uparrow\downarrow}$ and $\ket{\downarrow\uparrow}$ must be adiabatic which is experimentally

Initialization	Readout output	S	Mixed S-T_0	Ramp S-T_+	
$	S\rangle$	$(2,0)/(2,0)/(2,0)$	0.24	0.09	0.03
	$(2,0)/(2,0)/(1,1)$	0.76	0.4	0.14	
	$(2,0)/(1,1)/(2,0)$	< 0.01	< 0.01	0.02	
	$(2,0)/(1,1)/(1,1)$	< 0.01	< 0.01	< 0.01	
$	T_0\rangle$	$(1,1)/(2,0)/(2,0)$	< 0.01	0.08	0.02
	$(1,1)/(2,0)/(1,1)$	< 0.01	0.37	0.05	
$	T_+\rangle$	$(1,1)/(1,1)/(2,0)$	< 0.01	0.04	0.6
$	T_-\rangle$	$(1,1)/(1,1)/(1,1)$	< 0.01	0.027	0.13

Table I. Outcome probability of all the measurements possible for the three initialization tested. For each initialization the measurement procedure is repeated 10,000 times. All the charge readout output are associated to one of the four spin state. The highlighted outputs are the one to be maximized if the complete readout procedure was errorless.
tally challenging. As expected the S and T_0 probabilities are oscillating out of phase while the T_+ and T_- ones are remaining low thanks to an efficient non-adiabatic pulse. However, the oscillations amplitude, even for low exchange coupling, does not exceed 60%, the complete readout procedure indicates us that the main limitation comes from the adiabatic transformation performed from the S/T_0 basis to $|\uparrow\downarrow\rangle/|\downarrow\uparrow\rangle$ and vice versa. Indeed, a non-adiabatic pulse of the initial S state in the low tunnel coupling regime would result in state mixing process as described in the beginning of this work, which reduces the overall amplitude of the oscillations amplitude. This level of understanding of the error source is unlocked by the capability to discern the four spin states. Indeed, in the same situation a simple PSB readout would have been insufficient to determine the cause of the limited oscillations amplitude by yielding the same signal for a T_+ and T_0 state.

VI. CONCLUSION

In this work, we demonstrated a high fidelity spin readout procedure based on PSB by separating in the voltage gate space the spin to charge conversion position from the charge readout. To do so, we performed the charge conversion via ns AWG pulse orders of magnitude faster than the typical relaxation time observed in the GaAs/AlGaAs qubit platform. The resulting charge configuration was read at fixed and optimized position where the tunnel coupling was sub-Hz to prevent any charge variation of the DQD during the electrometer signal acquisition and therefore errors during the readout due to triplet state relaxation. This novel readout protocol allowed a clear improvement of the readout fidelity and opened the door to more complex readout procedures thanks to its repeatability. Indeed, we were able to interleave a parity readout based on a selective relaxation hotspot of T_0 to S and an adiabatic transformation of T_+ to S in between three sequential FPSB readout to perform a complete state discrimination of the two-electron spin states (S, T_0, T_+ and T_-). We confronted the complete readout procedure to various spin initializations to assess its validity and finally implemented it after inducing spin dynamics thanks to the exchange energy control via the interdot tunnel coupling.

In this version of the readout protocol the measurement speed is highly limited by the charge readout step performed using DC measurements of the SET current. Indeed, all the spin manipulation presented including the relaxation process requires at maximum a pulse length of 5µs. This limitation could be easily lifted by implementing an RF-SET type of readout allowing to discriminate charge states of a DQD in a few hundreds of ns [4]. Moreover, to improve the overall fidelity of the complete readout each individual spin manipulation needs to be carefully calibrated and optimized. For the parity readout to reach fidelity closer to the one of the PSB, a deeper understanding of the pulse adiabaticity and state relaxation is required but beyond the scope of this work (see Appendix C). Following this, the limited S-T_+ transformation rate is also one of the biggest source of errors in the readout procedure. However, the engineering of large and controlled spin-orbit interaction via electric or magnetic control has been demonstrated in various spin qubit platforms and could be a solution to increase the transformation rate [27].

ACKNOWLEDGEMENTS

The authors declare no competing interests.

We acknowledge technical support from the Pole groups of the Institut Néel, and in particular the NANOFACT team who helped with the sample realization, as well as T. Crozes, E. Eyraud, D. Lepoittevin, C. Hoarau and C. Guttin. This work is supported by the ERC QUCUBE. A.L. and A.D.W. acknowledge gratefully support of DFG-TRR160 and DFH/UFA CDFA-05-06, DFG project 383065199, and BMBF QR.X Project 16KISQ009.

Appendix A: Sample and experimental setup

FIG. 5. Electron micrograph of a sample similar to the one measured. The three QDs (lower dashed circles) are probed via a local electrometer (top dashed circle). The green gates mainly control the dot-dot and dot-reservoir tunnel rates. The red gates are biased with negative voltages to prevent leakage between the gates. Four electron reservoirs are located at the white crossed squares and are used to either load electrons in the QD array for the bottom ones or apply a bias through the SET for the top ones.

Our device (presented in Fig. 5) was fabricated using a Si-doped AlGaAs/GaAs heterostructure grown by molecular beam epitaxy, with a two-dimensional electron gas 100 nm below the crystal surface which has a carrier mobility of 9×10^5 cm2/V·s and an electron density of 2.7×10^{11} cm$^{-2}$. Quantum dots are defined and controlled by the application of negative voltages on Ti/Au Schottky gates deposited on top of the heterostructure.
The device is composed of a linear triple QD array, tuned to form a DQD at the positions indicated by the dashed circles L and M. The grayed part of the array is unused in this article and electron tunneling to this section is prevented by applying negative enough voltages to the gates. In this configuration V_{B1}, V_{B2} and V_{B3} are used to control the reservoir-QD tunnel coupling, the L-M interdot tunnel coupling and the M QD chemical potential. The charge configuration can be read out by the top quantum dot tuned to be a sensitive local electrometer and biased with 100 μV. The resulting current Δi_{SET} is measured using a current-to-voltage converter with a typical bandwidth of 10 kHz.

The gates and ohmic contacts are micro-bonded to a homemade PCB providing DC and RF lines with cutoff frequencies of respectively 100 MHz and 10 GHz. It is thermally anchored to the mixing chamber of a dry dilution refrigerator with a base temperature of 10 mK. A homemade DAC ensures fast changes of both chemical potentials and tunnel couplings with voltage pulse rise times approaching 100 ns and refreshed every 6 μs. A Tektronix 5014C AWG with a typical channel voltage rise time (20% - 80%) of 0.9 ns is used to change the V_{B2} and V_{B3} gate voltages at the nanosecond timescale. These fast gates are connected to -17 dB attenuated RF lines and the signal is added to the DAC signal through a homemade bias-tee with a cut-off frequency of 1 kHz. The sum of the two signals is computed by assuming that 1 V applied on the gate corresponds to 0.1 V on the gate.

A magnetic field of 500 mT is applied parallel to the top quantum dot tuned to be a sensitive local electrometer and biased with 100 μV. The charge configuration can be read out by the top quantum dot tuned to be a sensitive local electrometer and biased with 100 μV. The resulting current Δi_{SET} is measured using a current-to-voltage converter with a typical bandwidth of 10 kHz.

The parity readout presented in this work relies on a selective relaxation hotspot of T_0 to S, yielding the same signal for both spin states at the end of the measurement. The calibration of such hotspot in the voltage gate space is therefore a necessary step to implement the readout. To do so, we performed the procedure described in Fig. 7(a), where we fully characterized in the ϵ and t_c parameter space the relaxation of the S and T_0 state.

The procedure starts by initializing the spin state in the $|S(1,1)\rangle$ state at a large value of t_c, from there it is pulsed during 500 ns at the red triangle position in Fig. 1(a) to initialize a $|S(1,1)\rangle$-$|T_0(1,1)\rangle$ mixed state. The system is then pulsed to the coordinates $(V_{B2}^{PR},V_{B3}^{PR})$ during 5 μs to let the spin state evolve. Finally, a FPSB procedure is performed as described in Sec. II and we plot the S state probability P_S in Fig. 7(b) as a function of the pulse coordinates. We observe lobes of high and low values of P_S alternating as the potential detuning of the DQD increases.

To explain this behavior, we plot in Fig. 7(c) the energy diagram of the relevant states as a function of ϵ. As mentioned earlier, the system is initialized at position I in the energy diagram (S-T_0 mixed state), from there it is set at a certain value of detuning at the ns timescale. At this value of t_{c1}, we expect the pulse to be non-adiabatic regarding the $(1,1)/(0,2)$ charge transition, therefore the $|S(1,1)\rangle$ and $|T_0(1,1)\rangle$ states are conserved. From there, different outcomes are possible depending on the detun-
follow a ϵ^{-2} dependence [7, 30] and should therefore be negligible compared to the $|T_0(1,1)\rangle$ to $|T_0(0,2)\rangle$ relaxation at this position. The low P_S lobe around position B arises from the following dynamic: the $|S(1,1)\rangle$ state is transformed into $|T_0(1,1)\rangle$ via spin mixing which finally rapidly relaxes to $|T_0(0,2)\rangle$. The succession of high and low probability lobes is finally repeated for higher detuning and involves excited charge states of the DQD system. For instance at position C, mixing between $|S(1,1)\rangle$ and $|T_0(1,1)\rangle$ is again possible and relaxation to $|S_1(0,2)\rangle$ state (S state involving an electron on the first excited level of the QD) is the dominant one yielding at the end of the procedure a high P_S value. The position retained at the end of the calibration is the one yielding the highest singlet return probability in a 5 µs here point C in Fig. 7(b).

Appendix D: Parity and T_+ readout fidelity

To assess the fidelity of the parity readout, we define the errors S_{error}^p, T_{error}^p, the probability to measure an even state when the system is initialized in S and T_0 respectively. Similarly, T_{error}^p and T_{error}^{-} are the probabilities to measure an odd state when the system is in the T_+ and T_- states. To compute each contribution in the infidelity of the parity readout we have the ability to initialize a S state, a mixed $S-T_0$ state and a statistical mixture composed of r of T_+ and $1-r$ of S where r is the transformation rate of the adiabatic ramp presented in the main text. We finally relate the measurement errors to the outcome through the following equations:

\[
P_{\text{odd}}^S = 1 - S_{\text{error}}^p, \quad (D1)
\]

\[
P_{\text{odd}}^{\text{mixed}} = 1 - S_{\text{error}}^p + T_{\text{error}}^p, \quad (D2)
\]

\[
P_{\text{odd}}^{\text{ramp}} = (1-r)(1-S_{\text{error}}^p) + r T_{\text{error}}^+. \quad (D3)
\]

Where P_{odd}^S and $P_{\text{odd}}^{\text{mixed}}$ is the odd spin state probability when the system is initialized in respectively S, $S-T_0$ and $S-T_+$. We define S_{error}^p, T_{error}^p, T_{error}^+ and T_{error}^- as the readout infidelity for a S, T_0, T_+ and T_- state. The three populations of odd state are obtained by summing the probabilities to obtain a (0,2) charge state measurement during the parity stage in the complete readout protocol. Doing so, allows us to evaluate the fidelity of the parity readout embedded in the complete procedure. The $S-T_+$ transformation rate $r = 79.9 \pm 0.4$ % is obtained by summing the probability to obtain a (1,1) readout at the first measurement in the complete readout procedure when the system is initialized via the adiabatic ramp. In this case we are assuming that the adiabatic ramp does not create any spin state different from S and T_+ and therefore any (1,1) measurement at the $S-T$ readout stage is obligatorily a T_+.

Solving the system of equations by using the data presented in Table 4 we obtain $S_{\text{error}}^p = 0.4 \pm 0.1$ %,
$T^p_{\text{error}} = 13.2 \pm 1.9\%$ and $T^\text{comp}_{\text{error}} = 6.5 \pm 0.6\%$. Unfortunately, here we have no way to evaluate T^p_{error} since we cannot initialize it, but its dynamics should be close to the one of the T_0 state and therefore have an equivalent error rate. We define the overall parity readout fidelity embedded in the complete readout as $F^\text{comp}_{\text{parity}} = 1 - (S^p_{\text{error}} + T^p_{0,\text{error}} + T^p_{\text{error}} + T^{p,\text{error}})/4 = 93.3 \pm 1.1\%$. The infidelity difference between the S and T_0 state is attributed to an uncontrolled relaxation of the $|T_0(1,1)\rangle$ state to $|T_0(0,2)\rangle$ before the mixing process transforms it to $|S(1,1)\rangle$ at the parity readout position (see Fig. 7). For $T^{p,\text{error}}$, such a high value could be explained by initialization errors that we cannot distinguish from the measurements ones in our experiment. Indeed, an undesired creation of T_0 state during the initialization of $S-T_+\rangle$ via the adiabatic ramp would reduce the overall fidelity of the $T_+\rangle$ state during the parity readout since it cannot be distinguished from a $T_0\rangle$ during the first stage of the complete readout procedure.

Similarly, we compute the $T_+\rangle$ readout fidelity using the following equations:

\begin{align}
S^{T}_{T^+} &= S^p_{\text{error}}, \\
F^\text{ramp}_{T^+} &= r(1 - T^T_{T^+,\text{error}}) + (1 - r)S^T_{\text{error}}.
\end{align}

Where $P^S_{T^+}$ and $P^\text{ramp}_{T^+}$ are the probabilities to measure a $T_+\rangle$ state in the complete readout procedure when the system is initialized in a S and $S-T_+$ respectively. We define S^T_{error}, $T^T_{T^+,\text{error}}$ the T_+ readout infidelity when the system is initialized in a S and T_+ state respectively. Solving the system we obtain $S^T_{\text{error}} = 1 \pm 1 \times 10^{-3}\%$ and $T^T_{T^+,\text{error}} = 25 \pm 1\%$ mainly limited by the transformation rate of the S to the T_+ state. In this set of experiment we do not have access to the infidelity when the system is initialized in the T_0 and T_- state. We finally define the fidelity of the T_+ measurement as $F^\text{comp} = 1 - (S^p_{\text{error}} + T^{p,\text{error}})/2 = 87 \pm 1\%$.

[1] J. M. Boter, J. P. Dehollain, J. P. G. van Dijk, Y. Xu, T. Hengsens, R. Versluis, H. W. L. Naus, J. S. Clarke, M. Veldhorst, F. Sebastiano, and L. M. K. Vandersypen. The spider-web array—a sparse spin qubit array, arXiv:2110.00189 [cond-mat, physics:quant-ph] (2021).
[2] S. G. J. Philips, M. T. Madzik, S. V. Amitonov, S. L. de Snoo, M. Russ, N. Kalhor, C. Volk, W. I. L. Lawrie, D. Brousse, L. Tryputen, B. P. Wuetz, A. Sammak, M. Veldhorst, G. Scappucci, and L. M. K. Vandersypen, Universal control of a six-qubit quantum processor in silicon, arXiv (2022), arXiv:2202.00922.
[3] M. Urdampilleta, D. J. Niegemann, E. Channion, B. Jadot, C. Spence, P.-A. Mortemousque, C. Bäuerle, L. Hutin, B. Bertrand, S. Barraud, R. Maurand, M. Sanquer, X. Jehl, S. De Franceschi, M. Vinet, and T. Meunier, Gate-based high fidelity spin readout in a CMOS device, Nature Nanotechnology 14, 737 (2019).
[4] A. C. Betz, R. Wacquez, M. Vinet, X. Jehl, A. L. Saravia, M. Sanquer, A. J. Ferguson, and M. F. Gonzalez-Zalba, Dispersively Detected Pauli Spin-Blockade in a Silicon Nanowire Field-Effect Transistor, Nano Letters 15, 4622 (2015).
[5] K. C. Nowack, M. Shafiei, M. Laforest, G. E. D. K. Prawiroatmodjo, L. R. Schreiber, C. Reichl, W. Wegscheider, and L. M. K. Vandersypen, Single-Shot Correlations and Two-Qubit Gate of Solid-State Spins, Science 333, 1269 (2011).
[6] E. J. Connors, J. Nelson, and J. M. Nichol, Rapid High-Fidelity Spin-State Readout in Si / Si - Ge Quantum Dots via rf Reflectometry, Physical Review Applied 13, 024019 (2020).
[7] C. Barthel, J. Medford, H. Bluhm, A. Yacoby, C. M. Marcus, M. P. Hanson, and A. C. Gossard, Rapid Single-Shot Measurement of a Singlet-Triplet Qubit, Physical Review Letters 103, 160503 (2009), arXiv:0902.0227.
[8] P. Harvey-Collard, B. D’Amour, M. Rudolph, N. T. Jacobson, J. Dominguez, G. A. Ten Eyck, J. R. Wendt, T. Plym, M. P. Lilly, W. A. Coish, M. Pioro-Ladrière, and M. S. Carroll, High-Fidelity Single-Shot Readout for a Spin Qubit via an Enhanced Latching Mechanism, Physical Review X 8, 021046 (2018).
[9] C. J. van Diepen, T.-K. Hsiao, U. Mukhopadhyay, C. Reichl, W. Wegscheider, and L. M. K. Vandersypen, Electron cascade for distant spin readout, Nature Communications 12, 77 (2021).
[10] T. Nakajima, M. R. Delbecq, T. Otsuka, P. Stano, S. Amaha, J. Yoneda, A. Noiri, K. Kawasaki, K. Takeda, G. Allison, A. Ludwig, A. D. Wieck, D. Loss, and S. Tarucha, Robust Single-Shot Spin Measurement with 99.5% Fidelity in a Quantum Dot Array, Physical Review Letters 119, 017701 (2017), arXiv:1701.03622.
[11] M. Nurizzo, B. Jadot, P.-A. Mortemousque, V. Thiney, E. Channion, M. Dartiailh, A. Ludwig, A. D. Wieck, C. Bäuerle, M. Urdampilleta, and T. Meunier, Controlled quantum dot array segmentation via highly tunable interdot tunnel coupling, Applied Physics Letters 121, 084001 (2022).
[12] P.-A. Mortemousque, E. Channion, B. Jadot, H. Flentjte, A. Ludwig, A. D. Wieck, M. Urdampilleta, C. Bäuerle, and T. Meunier, Coherent control of individual electron spins in a two-dimensional quantum dot array, Nature Nanotechnology 16, 296 (2021).
[13] B. Bertrand, H. Flentjte, S. Takada, M. Yamamoto, S. Tarucha, A. Ludwig, A. D. Wieck, C. Bäuerle, and T. Meunier, Quantum Manipulation of Two-Electron Spin States in Isolated Double Quantum Dots, Physical Review Letters 115, 096801 (2015).
Oxide-Semiconductor Quantum Dots, Nano Letters \textbf{19}, 8653 (2019).

[16] B. Jadot, P.-A. Mortemousque, E. Chanrion, V. Thiney, A. Ludwig, A. D. Wieck, M. Urdampilleta, C. Bäuerle, and T. Meunier, Distant spin entanglement via fast and coherent electron shuttling, Nature Nanotechnology \textbf{16}, 570 (2021).

[17] I. A. Merkulov, A. L. Efros, and M. Rosen, Electron spin relaxation by nuclei in semiconductor quantum dots, Physical Review B \textbf{65}, 205309 (2002) arXiv:cond-mat/0202271.

[18] J. R. Petta, A. C. Johnson, J. M. Taylor, E. A. Laird, A. Yacoby, M. D. Lukin, C. M. Marcus, M. P. Hanson, and A. C. Gossard, Coherent Manipulation of Coupled Electron Spins in Semiconductor Quantum Dots, Science \textbf{309}, 2180 (2005).

[19] A. E. Seedhouse, T. Tanttu, R. C. Leon, R. Zhao, K. Y. Tan, B. Hensen, F. E. Hudson, K. M. Itoh, J. Yoneda, C. H. Yang, A. Morello, A. Laucht, S. N. Coppersmith, A. Saraiva, and A. S. Dzurak, Pauli Blockade in Silicon Quantum Dots with Spin-Orbit Control, PRX Quantum \textbf{2}, 010303 (2021).

[20] C. H. Yang, R. C. Leon, J. C. C. Hwang, A. Saraiva, T. Tanttu, W. Huang, J. Camirand Lemyre, K. W. Chan, K. Y. Tan, F. E. Hudson, K. M. Itoh, A. Morello, M. Pioro-Ladrière, A. Laucht, and A. S. Dzurak, Operation of a silicon quantum processor unit cell above one kelvin, Nature \textbf{580}, 350 (2020).

[21] D. J. Niegemann, V. El-Homsy, B. Jadot, M. Nurizzo, B. Cardoso-Paz, E. Chanrion, M. Dartiailh, B. Klemt, V. Thiney, C. Bäuerle, P.-A. Mortemousque, B. Bertrand, H. Niebojewski, M. Vinet, F. Balestra, T. Meunier, and M. Urdampilleta, Parity and singlet-triplet high fidelity readout in a silicon double quantum dot at 0.5 K (2022), arXiv:2207.10523 [cond-mat].

[22] T. Meunier, I. T. Vink, L. H. W. van Beveren, K.-J. Tielrooij, R. Hanson, F. H. L. Koppens, H. P. Tranitz, W. Wegscheider, L. P. Kouwenhoven, and L. M. K. Vandersypen, Experimental signature of phonon-mediated spin relaxation, Physical Review Letters \textbf{98}, 126601 (2007) arXiv:cond-mat/0609726.

[23] J. R. Petta, H. Lu, and A. C. Gossard, A Coherent Beam Splitter for Electronic Spin States, Science \textbf{327}, 669 (2010).

[24] M. A. Fogarty, K. W. Chan, B. Hensen, W. Huang, T. Tanttu, C. H. Yang, A. Laucht, M. Veldhorst, F. E. Hudson, K. M. Itoh, D. Culcer, T. D. Ladd, A. Morello, and A. S. Dzurak, Integrated silicon qubit platform with single-spin addressability, exchange control and single-shot singlet-triplet readout, Nature Communications \textbf{9}, 4370 (2018).

[25] C. Zener and R. H. Fowler, Non-adiabatic crossing of energy levels, Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character \textbf{137}, 696 (1932).

[26] Z. Qi, X. Wu, D. R. Ward, J. R. Prance, D. Kim, J. K. Gamble, R. T. Mohr, Z. Shi, D. E. Savage, M. G. Lagally, M. A. Eriksson, M. Friesen, S. N. Coppersmith, and M. G. Vavilov, Effects of charge noise on a pulsegated singlet-triplet S - T - qubit, Physical Review B \textbf{96}, 115305 (2017).

[27] J. M. Nichol, S. P. Harvey, M. D. Shulman, A. Pal, V. Umansky, E. I. Rashba, B. I. Halperin, and A. Yacoby, Quenching of dynamic nuclear polarization by spin–orbit coupling in GaAs quantum dots, Nature Communications \textbf{6}, 7082 (2015).

[28] F. Martins, F. K. Malinowski, P. D. Nissen, E. Barnes, S. Fallahi, G. C. Gardner, M. J. Manfra, C. M. Marcus, and F. Kuemmeth, Noise suppression using symmetric exchange gates in spin qubits, Physical Review Letters \textbf{116}, 116801 (2016) arXiv:1511.07336.

[29] M. D. Reed, B. M. Maune, R. W. Andrews, M. G. Borselli, K. Eng, M. P. Jura, A. A. Kiselev, T. D. Ladd, S. T. Merkel, I. Milosavljevic, E. J. Pritchett, M. T. Rakher, R. S. Ross, A. E. Schmitz, A. Smith, J. A. Wright, M. F. Gyure, and A. T. Hunter, Reduced Sensitivity to Charge Noise in Semiconductor Spin Qubits via Symmetric Operation, Physical Review Letters \textbf{116}, 110402 (2016).

[30] T. Fujisawa, T. H. Oosterkamp, W. G. van der Wiel, B. W. Broer, R. Aguado, S. Tarucha, and L. P. Kouwenhoven, Spontaneous Emission Spectrum in Double Quantum Dot Devices, Science \textbf{282}, 932 (1998).