Heat Transfer of $\text{Ag-Al}_2\text{O}_3/\text{Water}$ Hybrid Nanofluid on a Stagnation Point Flow over a Stretching Sheet with Newtonian Heating

Muhammad Khairul Anuar Mohamed1,*, Huei Ruey Ong1, Hamzah Taha Alkasasbeh2 and Mohd Zuki Salleh3

1Faculty of Engineering Technology, DRB-HICOM University of Automotive Malaysia, Peramu Jaya Industrial Area, 26607 Pekan, Pahang, MALAYSIA
2Department of Mathematics, Faculty of Science, Ajloun National University, P.O. Box 43, Ajloun 26810, JORDAN
3Centre of Mathematical Sciences, Universiti Malaysia Pahang, 26300 UMP Kuantan, Pahang, MALAYSIA

Corresponding author email address*: khairul.anuar@dh.edu.my

Abstract. The present study investigated the flow and heat transfer at a stagnation point past a stretching sheet. The premium silver nanoparticles Ag and economic alumina nanoparticles Al$_2$O$_3$ suspended in water to form $\text{Ag-Al}_2\text{O}_3/\text{Water}$ hybrid nanofluid are numerically examined. The analysis started with transforming the mathematical model which is in non-linear partial differential equations to a more convenient form by similarity transformation approach before being solved numerically using the Runge-Kutta-Fehlberg (RKF45) method. The characteristics and effects of the stretching parameter, conjugate parameter and the nanoparticle volume fraction for Al$_2$O$_3$ and Ag on the variation of wall temperature, heat transfer coefficient and reduced skin friction coefficient are analyzed and discussed.

1. Introduction

Nanofluid is a fluid containing the engineered colloidal suspensions of ultrafine particles (nanoparticles) in which the diameter is smaller than 50 nanometer size in a base fluid [1]. Nanofluid is experimentally proven in enhancing the thermal conductivity, viscosity, thermal diffusivity and convective heat transfer compared to those base fluids like water and oil [2].

The metal nanoparticles and carbon nanomaterials performed better in heat transfer compared to oxide nanoparticles. Unfortunately, this type of nanomaterial is expensive and not practical in mass production. Therefore, the used of oxide nanoparticles is more realistic to the economy. The evolution study on nanofluid found that the incorporation of a small amount of metal nanoparticles and oxide nanoparticles suspended in a based-fluid can significantly improve the thermal properties. This type of fluid is called as hybrid nanofluid [3]. The hybrid nanofluid specifically provided higher effective thermal conductivity and heat transfer abilities compared to oxide nanofluid but low in production cost than metal nanofluid.

In considering the manufacturing process which involved the stretching sheet activity, the quality of the final product depends to a large extent on the stretching rate and the rate of heat transfer on
stretching sheet. The convection flow past a stretching sheet was first studied by Crane [4]. The investigations on the flow of a stretching sheet were then extended to the stagnation region with considering other types of fluids such as viscoelastic fluid, nanofluid, micropolar fluid, Jeffrey fluid, Casson fluid and ferrofluid [5, 6, 7, 8, 9, 10, 11, 12]. This topic becoming more attractive year by years with extending it with other external effects like the thermal radiation effect, the chemical reaction, the slip flow, the viscous dissipation, the suction/injection, the magnetohydrodynamic (MHD) field as well as the Newtonian heating boundary conditions[13, 14, 15, 16, 17, 18].

The experimental study regarding this topic is expensive and difficult to be realized hence provided limited findings and knowledge. Thus, the approach from a mathematical model is the alternative and relevant way to be considered. This approached is cheap, fast and provided the theoretical knowledge for the hybrid nanofluid therefore proposed an early idea about the fluid flow and heat transfer characteristics. Motivated from the above literature, the aim of this study is to investigate the fluid flow and heat characteristics of the premium silver Ag nanoparticles blend with economic Alumina Al2O3 in Ag-Al2O3/Water hybrid nanofluid on a stagnation point over a stretching sheet. A study on hybrid nanofluid on a stretching sheet combined with the Newtonian heating has never been done before, so the reported results in this study are new.

2. Mathematical Formulation

Figure 1 illustrates a steady two-dimensional stagnation point flow over a stretching sheet immersed in hybrid nanofluid with ambient temperature, \(T_\infty \). Assuming that \(u \) and \(v \) are the velocity components along the \(x \) and \(y \) axes, respectively. Next, the stretching velocity \(u_s(x) = ax \) and the free stream velocity \(U_s = bx \) are assumed in linear forms where \(a \) and \(b \) are positive constants [19]. Further, the stretching sheet is subjected to a Newtonian heating boundary condition as proposed by Merkin [20]. The Navier-Stoke equations can be governed as follows:

\[
\begin{align*}
\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} &= 0, \\
\frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y} &= U \frac{dU_s}{dx} + \nu \frac{\partial^2 u}{\partial y^2}, \\
\frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y} &= \frac{\partial^2 T}{\partial y^2},
\end{align*}
\]

with boundary conditions

\[
\begin{align*}
u &= u_s, \quad v = 0, \quad \frac{\partial T}{\partial y} = -hT \quad \text{at} \quad y = 0, \\
u &\to U_s, \quad T \to T_\infty, \quad \text{as} \quad y \to \infty.
\end{align*}
\]

The hybrid nanofluid kinematic viscosity, dynamic viscosity and its density is denoted as \(\nu_{\text{hf}} \), \(\mu_{\text{hf}} \), and \(\rho_{\text{hf}} \), respectively. \(T \) is the temperature inside the boundary layer, \((\rho C_p)_\text{hf} \) is the heat capacity of hybrid nanofluid and \(k_{\text{hf}} \) is the thermal conductivity of hybrid nanofluid. Other properties related to base fluid and the nanoparticles are denoted with subscript , and \(s \) respectively as follows[3]:

2
nanofluid to form the hybrid nanofluid namely Ag/Al₂O₃. In this study, initially 0.06 vol. solid nanoparticle of Ag (ϕ₂ = 0.06) is added into water based-fluid to form Ag/Water nanofluid. Next, the 0.1 solid nanoparticle of Al₂O₃ (ϕ₁ = 0.1) is added into Ag/Water nanofluid to form the hybrid nanofluid namely Ag-Al₂O₃/Water. Noticed that the equations (1)-(3) are non-linear partial differential equations which consist many dependent and independent variables. It is also in dimensional forms which is difficult to solve directly. Therefore, the similarity transformation approach is applied:

\[
\eta = \left[\frac{y}{v_f} \right], \quad \psi = \left(b v \right)^{1/3} f \left(\eta \right), \quad \theta \left(\eta \right) = \frac{T - T_w}{T_{\infty}}.
\]

Equation (6) shows the similarity variables where \(\eta, \psi \) and \(\theta \) is a non-dimensional variable, stream function and temperature, respectively. The similarity variables (6) satisfy the continuity equation (1) by definition

\[
u = \frac{\partial \psi}{\partial y} \quad \text{and} \quad v = - \frac{\partial \psi}{\partial x}.
\]

Next, substitute the similarity variables equations (6) and (7) into governing equations (2) and (3) gives the following transformed ordinary differential equations:

\[
\frac{1}{1-\phi} \left[\left(1 - \phi \right) \left(1 - \phi + \phi \left(\rho C_p \right)_{1s} \right) + \phi \left(\rho C_p \right)_{s2} \right] \frac{\partial f}{\partial \eta}^{2} + \frac{f}{2} - \frac{\partial f}{\partial \eta}^{2} + 1 = 0
\]

\[
\frac{\partial \theta}{\partial \eta} + Pr \frac{\partial f}{\partial \eta} \theta' = 0.
\]
The boundary conditions becomes

\[f(0) = 0, \quad f'(0) = \varepsilon, \quad \theta'(0) = -\gamma (1 + \theta(0)), \]
\[f'(\eta) \to 1, \quad \theta(\eta) \to 0, \text{ as } \eta \to \infty. \]

(10)

By definition, \(\Pr = \frac{k_f}{\nu_f} \) is a Prandtl number which will be set as 6.2 in calculation with respect to water-based fluid, \(\varepsilon = \frac{a}{b} \) (\(\varepsilon > 0 \)) is a stretching parameter and \(\gamma = h \left(\frac{b}{\nu_f} \right)^{1/2} \) is a conjugate parameter. The physical quantities interested are the wall temperature \(\theta(0) \), the heat transfer rate \(-\theta'(0) \) and the skin friction coefficient \(C_f \) which given by

\[C_f = \frac{\tau_w}{\nu_f}, \]

with the surface shear stress \(\tau = \mu \left(\frac{\partial \theta}{\partial y} \right) \). The skin friction coefficient \(C_f \) can be reduced

\[C_f \Re_f^{1/2} = \frac{f''(0)}{(1 - \phi)^{2.5} (1 - \phi)^{1.5}}, \]

(12)

where \(\Re_x = \frac{U_x x}{\nu_f} \) is the Reynolds number.

3. Results and Discussion

The system of ordinary differential equations (8) and (9) with boundary conditions (10) were solved numerically using the Runge-Kutta-Fehlberg (RKF45) technique. The numerical results obtained for the wall temperature \(\theta(0) \), the heat transfer rate \(-\theta'(0) \) and the reduced skin friction coefficient \(C_f \Re_f^{1/2} \) for a various values of stretching parameter \(\varepsilon \), conjugate parameter \(\gamma \) and the nanoparticle volume fraction for alumina \(Al_2O_3 \) \((\phi_1) \) and silver \(Ag \) \((\phi_2) \). For computing purposes, the boundary layer thickness from 4 to 12 is considered to provide the accurate numerical results for \(Ag/\text{Water} \) nanofluid and \(Ag-Al_2O_3/\text{Water} \) hybrid nanofluid. The values of thermophysical properties of water and nanoparticles consider are tabulated in Table 1.

In order to validate the numerical results obtained, the comparison has been made. Table 2 shows the comparison values of \(C_f \Re_f^{1/2} \) with previous results by Bachok et al. [5] and Yacob et al. [6]. It is found that the numerical results are in good agreement.

Physical Properties	Water \((f)\)	\(Al_2O_3(\phi_1)\)	\(Ag(\phi_2)\)
\(\rho(\text{kg/m}^3)\)	997	3970	10500
\(C_p(\text{J/kg·K})\)	4179	765	235
\(k(\text{W/m·K})\)	0.613	40	429
Table 2. Comparison values of $C_{Re}^{1/2}$ for some values of ε and ϕ for $Al_2O_3/ Water$ nanofluid.

ε	ϕ_1	Bachok et al. [5]	Yacob et al. [6]	Present
0	0.1	1.6019	1.6019	1.602081
0.2	2.0584	2.0584	2.058376	
0.5	0.1	0.9271	-	0.927121
0.2	1.1912	-	1.191179	

Figure 2. Variation of $\theta(0)$ with various values of ε when $Pr = 6.2$ and $\gamma = 1$.

Figure 3. Variation of $C_{Re}^{1/2}$ with various values of ε when $Pr = 6.2$ and $\gamma = 1$.

Figure 4. Variation of $\theta(0)$ with various values of γ when $Pr = 6.2$ and $\varepsilon = 1$.

Figure 5. Variation of $-\theta'(0)$ with various values of γ when $Pr = 6.2$ and $\varepsilon = 1$.

Figure 2 shows the variation of the wall temperature $\theta(0)$ for various values of the stretching parameter ε. It is found that the wall temperature is decreasing with the increase of ε same as reported by Mohamed et al. [19]. In considering the effect of the nanoparticles on fluid, from Figure 2, the temperature raised when 0.06 vol. of silver Ag nanoparticles is added up into water-based fluid. The temperature then drastically increases with the adding of Al_2O_3 nanoparticles into $Ag/ Water$ to form the $Ag – Al_2O_3 / Water$ hybrid nanofluid. The effects of hybrid nanoparticles are more
significant at a small ratio of stretching velocity over free stream velocity. As stretching velocity domination ($\varepsilon > 1$), the differences goes negligible. The variation of the reduced skin friction coefficient $C_f \sqrt{Re}$ for various values of ε are illustrates in Figure 3. Generally, the skin friction is positive from $0 \leq \varepsilon < 1$ then turn negatives as $\varepsilon > 1$ due to the changes in velocity direction as stated in boundary conditions (4). As $\varepsilon = 1$, the values of $C_f \sqrt{Re}$ approaches 0. This is realistic as the fluid flow at the ambient is equal to a fluid flow at a stretching sheet thus produce zero velocity gradient which reflects to $C_f \sqrt{Re}$. Next, it is suggested that the presence of nanoparticles has increase the fluid friction with surface. This is confirmed as $Ag-Al_2O_3/Water$ hybrid nanofluid with 0.06 vol. Ag and 0.1 vol. Al_2O_3 nanoparticles has the highest $C_f \sqrt{Re}$ than 0.06 vol. $Ag/Water$ nanofluid and water-based fluid.

Lastly, Figures 4 and 5 show the variation of the wall temperature $\theta(0)$ and the heat transfer $-\theta'(0)$ coefficient for various values of the conjugate parameter γ, respectively. From Figures 4 and 5, it is observed that the values of $\theta(0)$ and $-\theta'(0)$ are increase as the values of γ increases. Logically, the pattern of variation between $\theta(0)$ and $-\theta'(0)$ are same due to the heat transfer rate from the bounding surface with a finite heat capacity is proportional to the local surface temperature [20]. Further, from both Figures 4 and 5, the $Ag/Water$ nanofluid ($\phi_1 = 0, 0.01 < \phi_2 < 0.06$) produced higher $\theta(0)$ and $-\theta(0)$ than the water-based fluid. This physical quantities then raised drastically with $Ag-Al_2O_3/Water$ hybrid nanofluid ($\phi_1 = 0.1, 0.01 < \phi_2 < 0.06$). The effects of nanoparticles are more significant as γ increases. From numerical computation, the increase in γ gave no effect on the $C_f \sqrt{Re}$.

4. Conclusion
In this paper, the stagnation point flow of a $Ag-Al_2O_3/Water$ hybrid nanofluid on a stretching sheet with Newtonian heating was numerically studied. It was shown how the stretching parameter ε, conjugate parameter γ and the nanoparticle volume fraction for Al_2O_3 and Ag (ϕ_1, ϕ_2) affect the wall temperature, the heat transfer coefficient and the skin friction coefficient. It is found that the wall temperature and the heat transfer coefficient decrease as a stretching parameter increases while the conjugate parameter does the contrary. Next, it is observed that both quantities increase drastically when Al_2O_3 is added into $Ag/Water$ nanofluid. From the numerical calculation, it is suggested that the effects of hybrid nanoparticles are more significant at a lower stretching parameter and a higher conjugate parameter values. Lastly, the increase of nanoparticle volume fraction has increased the fluid friction with the surface.

Acknowledgments
Authors gratefully acknowledge the financial and facilities support from the Malaysia Ministry of Education (FRGS/1/2019/STG06/DHUAM/02/1) and DRB-HICOM University of Automotive Malaysia.

References
[1] Taylor R, Coulombe S, Otanicar T, Phelan P, Gunawan A, Wei L, Rosengarten G, Prasher R and Tyagi H 2013 Small particles, big impacts: A review of the diverse applications of nanofluids Journal of Applied Physics 113 1 pp 011301
[2] Kakae S and Pramuanjaroenki A 2009 Review of convective heat transfer enhancement with nanofluids International Journal of Heat and Mass Transfer 52 13–14 pp 3187-3196
[3] Devi S S U and Devi S P A 2017 Heat transfer enhancement of Cu - Al2O3/water hybrid nanofluid flow over a stretching sheet Journal of the Nigerian Mathematical Society 36 2 pp 419-433
[4] Crane L J 1970 Flow Past a Stretching Plate Zeitschrift für Angewandte Mathematik und Physik. 21 pp 645-647
[5] Bachok N, Ishak A and Pop I 2011 Stagnation point flow over a stretching/shrinking sheet in a nanofluid Nanoscale Res. Lett. 6 pp
[6] Yacob N A, Ishak A and Pop I 2011 Falkner–Skan problem for a static or moving wedge in nanofluids International Journal of Thermal Sciences 50 2 pp 133-139
[7] Hayat T, Imtiaz M and Alsaedi A 2015 Magnetohydrodynamic stagnation point flow of a Jeffrey nanofluid with Newtonian heating Journal of Aerospace Engineering 29 3 pp 04015063
[8] Noor N F M, Haq R U, Nadeem S and Hashim I 2015 Mixed convection stagnation flow of a micropolar nanofluid along a vertically stretching surface with slip effects Meccanica 50 8 pp 2007-2022
[9] Hamid R A, Nazar R and Pop I 2016 The non-alignment stagnation-point flow towards a permeable stretching/shrinking sheet in a nanofluid using Buongiorno’s model: a revised model Zeitschrift für Naturforschung A 71 1 pp 81-89
[10] Alkasasbeh H T, Abu-Ghurra S and Alzgool H A 2019 Similarity solution of Heat Transfer for the Upper-Convected Maxwell Casson Fluid over a Stretching/Shrinking Sheet with Thermal Radiation JP Journal of Heat and Mass Transfer 16 1 pp 1-17
[11] Ishak N, Hussanan A, Mohamed M K A, Rosli N and Salleh M Z 2019 Heat and mass transfer flow of a viscoelastic nanofluid over a stretching/shrinking sheet with slip condition AIP Conference Proceedings 2059 1 pp 020011
[12] Yasin S H M, Mohamed M K A, Ismail Z, Widodo B and Salleh M Z 2019 Numerical Solution on MHD Stagnation Point Flow in Ferrofluid with Newtonian Heating and Thermal Radiation Effect CFD Letters 11 2 pp 21-31
[13] Chamkha A J, EL-Kabeir S M M and Rashad A M 2015 Unsteady coupled heat and mass transfer by mixed convection flow of a micropolar fluid near the stagnation point on a vertical surface in the presence of radiation and chemical reaction Progress in Computational Fluid Dynamics, an International Journal 15 3 pp 186-196
[14] Hashim H, Mohamed M K A, Hussanan A, Ishak N, Sarif N M and Salleh M Z 2015. The effects of slip conditions and viscous dissipation on the stagnation point flow over a stretching sheet. AIP Proceedings of The 2nd Innovation and Analytics Conference & Exhibition.
[15] Hsiao K-L 2016 Stagnation electrical MHD nanofluid mixed convection with slip boundary on a stretching sheet Applied Thermal Engineering 98 pp 850-861
[16] Mabood F, Shateyi S, Rashidi M M, Momoniat E and Freidoonimehr N 2016 MHD stagnation point flow heat and mass transfer of nanofluids in porous medium with radiation, viscous dissipation and chemical reaction Advanced Powder Technology 27 2 pp 742-749
[17] Ramanaiah G V, Babu M S and Lavanya M 2016 MHD Mixed Convection Stagnation-Point Flow Of A Power-Law Nanofluid Towards A Stretching Surface In The Presence Of Viscous Dissipation And Suction/Injection Imperial Journal of Interdisciplinary Research 2 4 pp 56-74
[18] Mohamed M K A, Ismail N A, Hashim N, Shah N M and Salleh M Z 2019 MHD Slip Flow and Heat Transfer on Stagnation Point of a Magnetite (Fe3O4) Ferrofluid towards a Stretching Sheet with Newtonian Heating CFD Letters 11 1 pp 17-27
[19] Mohamed M K A, Salleh M Z, Nazar R and Ishak A 2012 Stagnation Point Flow over a Stretching Sheet with Newtonian Heating Sains Malaysiana 41 11 pp 1467-1473
[20] Merkin J H 1994 Natural-convection boundary-layer flow on a vertical surface with Newtonian heating International Journal of Heat and Fluid Flow 15 5 pp 392-398