INTRODUCTION

In recent years the swine industry has improved production efficiency related traits, such as growth rate, reduced back fat thickness, and feed efficiency, through selective breeding of superior pigs based on available phenotypic information. Recently, the consumer’s demand for improved pork quality has increased, but the improvement of pork quality traits has been difficult with breeding schemes using phenotypic information because genetic improvement of meat quality traits requires extensive and expensive measurements of traits at slaughter on relatives of animals considered for selection.

Early investigations to elucidate genetic variation of pork quality have discovered two major genes primarily involved in pale, soft, and exudative (PSE) meat condition (HAL) and cured-cooked ham yield (RN), respectively (Le Roy et al., 1990; Fujii et al., 1991). More recent developments of quantitative trait loci (QTL) studies have detected major chromosomal regions affecting various meat and eating quality traits in commercial pigs (Malek et al., 2001; Kim et al., 2005; Rohrer et al., 2005; Jin et al., 2006; van Wijk et al., 2006; Wimmers et al., 2006). According to these studies, pig chromosome 2 microsatellite markers are associated with several meat quality traits, such as marbling, lipid percent, drip loss, muscle pH, tenderness, meat color and muscle fiber diameter.

Many of the meat quality QTL were mapped to the intermediate region of SSC2 (SW2445-S0565). This identified chromosomal region spans about 100 cm, which contains four different human chromosomal fragments, HAS11, HSA19, HSA1 and HSA5 (Meyers et al., 2005). Previously, Jungerius and coworkers (2003) have identified over 300 single nucleotide polymorphisms (SNPs) on SSC2

ABSTRACT : Several studies have reported quantitative trait loci (QTL) for meat quality on porcine chromosome 2 (http://www.animalgenome.org/QTLdb/pig.html). For application of the molecular genetic information to the pig industry through marker-assisted selection, single nucleotide polymorphism (SNP) markers were analyzed by comparative re-sequencing of polymerase chain reaction (PCR) products of 13 candidate genes with DNA from commercial pig breeds such as Berkshire, Yorkshire, Landrace, Duroc and Korean Native pig. A total of 34 SNPs were identified in 15 PCR products producing an average of one SNP in every 253 bp. PCR restriction fragment length polymorphism (RFLP) assays were developed for 11 SNPs and used to investigate allele frequencies in five commercial pig breeds in Korea. Eight of the SNPs appear to be fixed in at least one of the five pig breeds, which indicates that different selection among pig breeds might be applied to these SNPs. Polymorphisms detected in the PTH, CSF2 and FOLR genes were chosen to genotype a Berkshire-Yorkshire pig breed reference family for linkage and association analyses. Using linkage analysis, PTH and CSF2 loci were mapped to pig chromosome 2, while FOLR was mapped to pig chromosome 9. Association analyses between SNPs in the PTH, CSF2 and FOLR suggested that the CSF2 MboII polymorphism was significantly associated with several pork quality traits in the Berkshire and Yorkshire crossed F2 pigs. Our current findings provide useful SNP marker information to fine map QTL regions on pig chromosome 2 and to clarify the relevance of SNP and quantitative traits in commercial pig populations. (Key Words : Pig, Quantitative Trait Loci, Pig Chromosome 2, Single Nucleotide Polymorphism, Meat Quality)
with a DNA panel of eight pigs which were one Meishan, one Pietrain, one Wild Boar and five Large Whites. These SNPs will certainly have a potential for fine mapping of the observed QTL region on pig chromosome 2. Therefore, the purpose of this study was to further characterize and implement the SNPs for identification of candidate genes associated with meat quality QTL on SSC2 in commercial pig breeds.

MATERIALS AND METHODS

Animals

The sequencing DNA panel for SNP detection consisted of two individuals from each of five commercial breeds in Korea, such as Berkshire, Duroc, Large White, Landrace, and Korean Native Pig (KNP). The Berkshire×Yorkshire population developed at Iowa State University was used to localize the SNP and study phenotypic association of the population developed at Iowa State University was used to localize the SNP and study phenotypic association of the pig breeds which included Duroc, Landrace, Large White, Berkshire and Korean Native pig. All restriction enzymes were supplied by New England BioLabs (Ipswich, MA, USA) and restriction digestions were performed according to manufacturer’s recommendations. Digested PCR products were analyzed on 2.5-4% agarose gels and each fragment length polymorphisms (RFLPs) using the NEBcutter program (http://tools.neb.com/NEBcutter2/index.php). Genotyping of the putative RFLPs was performed on individual DNA samples from five different pig breeds which included Duroc, Landrace, Large White, Berkshire and Korean Native pig. All restriction enzymes were supplied by New England BioLabs (Ipswich, MA, USA) and restriction digestions were performed according to manufacturer’s recommendations. Digested PCR products were analyzed on 2.5-4% agarose gels and each allele was scored manually. The restriction enzymes and polymorphic fragment sizes used for SNP genotyping were given in Table 1.

Sequencing, polymorphism identification and genotyping

A total of 15 PCR products were sequenced with both forward and reverse amplification primers at Genotech Co. (Daejeon, Korea). Sequencher software (Gene Codes, version 4.6, Ann Arbor, MI) was used to assemble the sequences and to identify DNA polymorphisms. Polymorphic sites were analyzed for putative restriction fragment length polymorphisms (RFLPs) using the NEBcutter program (http://tools.neb.com/NEBcutter2/index.php). Genotyping of the putative RFLPs was performed on individual DNA samples from five different pig breeds which included Duroc, Landrace, Large White, Berkshire and Korean Native pig. All restriction enzymes were supplied by New England BioLabs (Ipswich, MA, USA) and restriction digestions were performed according to manufacturer’s recommendations. Digested PCR products were analyzed on 2.5-4% agarose gels and each allele was scored manually. The restriction enzymes and polymorphic fragment sizes used for SNP genotyping were given in Table 2.

Statistical analysis

The SNPs of three candidate genes (PTH, CSF2, FOLR1) were chosen to linkage map on pig chromosomes with Berkshire×Yorkshire (B×Y) family (Malek et al., 2001) using the CRIMAP (version 2.4) mapping program (Green et al., 1999). Associations between the SNPs of the three candidate genes and meat quality traits in the B×Y F2

Table 1. PCR primers and conditions used for amplification and sequencing

Gene	STS name*	Accession no*	Forward (5’→3’)	Reverse (5’→3’)	Annealing Temp.	Product size
FTH	FTHsts1	BV079397	ACCAGAAGAGACCTGTGAGTG	TGGCTCTCGTCCTAGAGCC	56	311
CSF2	CSF2sts1	BV079385	CAGCATGTGGATGCCAGTCTG	GTTCCTCGTGTCTGAGAGC	56	974
FOLR1	FOLR1sts1	BV012577	AGAGCTGTTGCTCCGTCCTG	TTGAGGAGGGCTGTTGTTT	58	356
P006C12sts1	BV079398	TGAGTACTGGTTAGGACGAC	CGTGGCTCTTTAGGACTGAGG	56	506	
P006D12sts1	BV079401	CCAAGATACAAAGATTCAGGACG	TGCAGTCTTGGTGACGAC	56	393	
BDNF	BDNFsts1	BV079400	ATATCAGGTGCCACTCAAGTC	GACCTACTGTTGAGTAGC	56	612
LDHA	LDHAssts2	BV012579	TTTTCACTGCTTGGGCTCAACAAGA	AGCTGAGATGGTGCTGCTG	56	517
RPS13	RPS13sts1	BV079399	TCTCTTTCTAATGCTGAGT	ATTAAGGACAGCATATAGGTC	45	799
ADM	ADMsts2	BV079374	AATGGAGACCGAGAGCTGCG	TTTCTACTCGCATATCAACC	56	646
CAT	CATsts1	BV079378	TGCCTCTGAACAAAACCGTG	TTCAAAAGACCCCCAAGCAT	58	458
WT1	WT1sts1	BV079371	TAAACATTTCTCTCGTCCTG	GCTCTGCCCCTTGATTATTTT	60	425
FSHB	FSHBsts2	BV079389	GCCAGCTTCGTCATCAACTT	GACTCTACCTTGGGGTGGA	58	1,101
MYOD1	MYOD1sts3	BV012581	GTGACTCTACAGACGATCCA	ATATGTTGGCGTGTTGAC	60	599
IL4	IL4sts1	BV079417	GATCTTCCCACCCCTTGTCTGCT	GCCAGAAGAAGCGTGTCAC	56	434
ADRB2	ADRB2sts1	BV079375	CAAGAAGACGGCTGCTGAC	TAGAAGAAGGGCCAGACG	62	455

* The STS name, accession number and primer information used in the Table 1 is reported by Jungerius et al. (2002).
Do et al. (2008) Asian-Aust. J. Anim. Sci. 21(2):155-160

population were performed using SAS mixed model procedure (SAS procedure MIXED; SAS institute, Gary, NC, USA) with a model that included sex, slaughter date and marker genotype as fixed effects and dam as a random effect.

RESULTS

PCR amplification, sequencing and SNP detection

A total of 15 primer sets for 13 candidate genes successfully amplified a single band, and used for subsequent sequencing of the amplicons. Ten animals from five different commercial pig breeds representing Duroc, Large White, Landrace, Berkshire and Korean Native pigs were sequenced for the 15 primer sets. A total of 34 SNPs were detected in the 13 primer sets (Table 3). A total of 11 SNPs were used to determine allelic frequencies of SNP among commercial pig populations using RFLP methods. Jungerius et al. (2003) detected 62 SNPs from the 15 amplicons of eight animals made of one Meishan, one

| Table 2. PCR primers and restriction enzymes used for SNP genotyping. |
|-----------------------------|-----------------------------|-----------------------------|-----------------------------|
Gene	Primer sequences (5’→3’)	Fragment size (bp)	T_a (°C)	Restriction enzyme	Size (bp) of the allelic polymorphism
CAT	TGCCCTCGAAGAACAAAGCTG	458	56	Msc I	458,353
PTH-1	ACCAGGAAGAGATCGTGAGTG	311	56	Apk 1	218,136
PTH-2*	ACCAGGAAGAGATCGTGAGTG	201	56	Tsp509	201,108
WT1-a	TTAACATCCCTCTGCTGCTG	425	60	Hpy188 I	137,74
WT1-b	GCCCTGCCCTGTTTATTTT	425	60	AcI	425,251
MYOD1	GGGCTACGACGCTCCCA	599	60	Dde I	599,340
IL4	GATCCCCACCTGTTTCTGCTG	434	56	Alu I	308,194
FOLR1-1	CCAAGATAAGAAGATGGACAGCC	393	58	Dde I	161,126
FOLR1-2*	GATGGCTTTAGGACTGAGG	273	56	Dde I	273,155
CSF2-1	CAGCATGTTGGTATGGCACCATC	974	56	Hha I	870,588
CSF2-2*	GCTGATGGTGAGTGAGGAA	362	56	Mbo II	362,276

* The three SNPs were genotyped in the ISU Berkshire-Yorkshire cross F2 animals for linkage and association analyses.

| Table 3. Comparison of SNPs between two independent studies |
|----------------------------------|-----------------------------|-----------------------------|-----------------------------|
Gene	STS name	Accession no.	Product size (bp)	No. of SNPs in Jungerius et al.	Site of SNPs in this study
PTH	PTHsts1	BV079397	311	5	4: 111(C/T), 229(A/G), 246(A/G), 249(C/T)
PTH	PTHsts1	BV079397	974	10	7: 103(C/T), 104(A/G), 152(A/G), 192(A/G), 459(G/T)*, 650(C/G), 691(C/T)
FOLR1	FOLR1sts1	BV012577	356	2	2: 75(C/T)*, 256(A/G)
FOLR1	FOLR1sts1	BV079398	506	18	1: 209-212(ATA)*, 219(G/T)
FOLR1	FOLR1sts1	BV079401	393	8	5: 26(C/T)*, 31(A/G), 39(A/G)*, 69(A/C), 313(C/T)
BDNF	BDNFsts1	BV079397	612	5	0
LDHA	LDHAsts2	BV012579	517	1	1: 471(A/G)
RPS13	RPS13sts1	BV079399	799	1	1: 115(T)**, 487(A/C), 768(A)**
ADM	ADMsts2	BV079374	646	4	3: 157(A/G), 452(A/G) , 522–553(TG)**, 562(A/T)*
CAT	CATsts1	BV079378	458	1	2: 243(A/G)*, 356(A/G)
WT1	WT1sts1	BV079371	425	2	3: 64(A/G), 237(C/T), 252(C/T)*
FSHB	FSHBsts2	BV079389	1,101	5	2: 335(A/G), 447(A/G), 518(G)**
MYOD1	MYOD1sts3	BV012581	599	2	2: 343(A/C), 345(G/T)*
IL4	IL4sts1	BV079417	434	1	1: 321(C/T)
ADRB2	ADRB2sts1	BV079375	455	0	0

Total 8,586 bp 62 SNPs 34 SNPs

* New SNPs. ** Different nucleotide with public sequences.
Pietrain, one Wild Boar and five Large White pigs, while 34 SNPs were found from the five pig breeds used in this study (Table 3).

Allelic variation of SNP in pigs

A total of 11 SNPs were genotyped in five different commercial pig breeds and a summary of the frequencies is presented in Table 4. Only three SNPs were polymorphic in all five pig breeds. In Berkshire pigs, five SNPs out of 11 SNPs were fixed although the number of tested animals is relatively small. Six out of 11 SNPs were monomorphic in Duroc pigs, and two of the monomorphic SNPs were common ones between Berkshire and Duroc pigs. It is interesting to note that alternative alleles in PTH SNPs were also fixed between Berkshire and Duroc pigs. In Yorkshire pigs, three SNPs were fixed, but only one SNP was fixed in Landrace pigs. Korean Native pigs had a similar pattern of SNP genotypes to that of the animals from Berkshire breed, which had similar allelic frequencies between the Korean Native pigs and Berkshire breeds tested.

Linkage mapping and association with pork quality

Three candidate genes (PTH, CSF2 and FORL1) were chosen as anchor loci to determine the precise linkage with QTL on SSC2, and their SNPs were genotyped at a three-generation Berkshire × Yorkshire reference family (Malek et al., 2001). Two- and multi-point linkage analyses of the PTH and CSF2 loci mapped both PTH and CSF2 to SSC2 as follow; SW2445-10.7 cM-LXRA-13.1 cM-SW1686-12.1 cM-PTH-1.9 cM-RETN-7.3 cM-SW766-2.3 cM-CAST-14.5 cM-SW1408-3.4 cM-SW2157-10.3 cM-CSF2-7.8 cM-S0565. Association analyses of PTH and CSF2 genotypes revealed that significant effects of a PTH polymorphism on cholesterol content (p<0.02) and 24-h loin Minolta L value (p<0.05), and a significant CSF2 genotypic effects on fiber type II ratio (p<0.02) and several closely significant effects on cholesterol content (p = 0.07), lumbar backfat (p = 0.12), average daily gain to weaning (p = 0.075), 48-h loin Minolta L value (p = 0.089) (Table 5). Linkage analyses mapped the FORL1 to SSC9 with the following map order: SWR68-3.4 cM-FORL1-11.5 cM-SW21-18.6 cM-S0024.

Table 4. Allele 1* frequencies of SNPs on pig chromosome2 in the five pig breeds

Gene	Berkshire (N = 10)	Duroc (N = 10)	Landrace (N = 10)	Yorkshire (N = 10)	KNP (N = 10)
CAT	0	0.25	0.16	0.25	0
PTH-1	1	0	0.2	0.13	0.67
PTH-2	0	1	0.8	0.87	0.33
WTI-a	0.33	0	0.6	0.13	0.5
WTI-b	0	0	0.17	0	0
MYO1	0.49	0.5	0.46	0.57	0.5
IL4	0.2	0.16	0.3	0.4	0.1
FOLR-1	0	0	0.16	0	0.35
FOLR-2	0.42	1	0.95	1	1
CSF2-1	0.05	0.21	0.28	0.25	0
CSF2-2	0.25	0.25	0.63	0.65	0.14

* Uncut fragment.

Table 5. Association of 3 candidate genes (PTH, CSF2 and FOLR1) genotypes and phenotypic traits from Berkshire×Yorkshire cross F2 pigs

Gene	Trait	11	12	22	p-value
PTH	Cholesterol (mg/100 g)	57.99 (1.03)	59.83 (0.7)	57.14 (0.9)	0.019
	24-h loin Minolta L value	21.02 (0.71)	20.27 (0.54)	21.68 (0.64)	0.04
CSF2	Average back fat (cm)	3.33 (0.07)	3.19 (0.08)	3.34 (0.13)	0.1
	Cholesterol (mg/100 g)	57.96 (0.6)	59.16 (0.74)	61.36 (1.51)	0.07
	Lumber back fat (cm)	3.62 (0.08)	3.46 (0.09)	3.57 (0.15)	0.12
	Average daily gain to weaning (kg/day)	0.236 (0.008)	0.249 (0.009)	0.218 (0.15)	0.07
	Fiber type II ratio	1.027 (0.064)	1.085 (0.081)	1.591 (0.181)	0.01
FOLR1	48-h loin Minolta L value	22.10 (0.24)	21.96 (0.3)	20.56 (0.66)	0.09
	Chewiness score (1-10)	2.34 (0.12)	2.63 (0.11)	2.31 (0.19)	0.07
	Flavor score (1-10)	3.00 (0.22)	2.77 (0.18)	3.55 (0.33)	0.1
	Carcass weight (kg)	87.47 (0.32)	87.07 (0.26)	86.02 (0.49)	0.04
	Drip loss (%)	5.78 (0.19)	5.69 (0.16)	5.10 (0.28)	0.11
	24-h Semimembranosus Hunter L values	41.26 (0.39)	41.83 (0.33)	42.70 (.59)	0.11
	24-h Semimembranosus Minolta L values	17.13 (0.35)	17.58 (0.29)	18.38 (0.52)	0.11

1 Significance levels: a, b 0.05; c, d 0.01; e, f 0.005.

2 Detailed information on these traits is reported in Malek et al. (2001).
Closely significant fixed effects were found between FOLR1 genotype and meat quality traits, but significant phenotypic variation were found between FOLR1 genotypes on several meat quality traits (Table 5).

DISCUSSION

SNP markers have high potential for detailed haplotype analyses and applications in association studies to identify the underlying genes responsible for the observed QTL effects. In this study, we report re-identification of SNPs on pig chromosome 2, SNP allelic frequencies between commercial breeds, and meat quality association of SNP alleles.

In total, 15 primers pair amplicons were sequenced for SNP identification from Jungerius et al. (2003). In the total contig length of 8,586 bp, 34 polymorphic positions were identified in our study, while Jungerius et al. (2003) found 62 SNPs. The SNP density difference between the two data sets was largely due to three STSs (BV079398, BV079400 and BV079389). In Jungerius et al. (2003), BV079398 (FOLR1), BV079400 and (BDNF) STSs contained 18 and 5 SNPs respectively, but we found only one SNP in the BV079398 STS and no SNP in BV079400 STSs (Table 3). This result revealed that the number of SNP might be variable among the pig breeds in comparison, and sequence data sources used for SNP identification.

Knowing allelic distribution of SNPs is important for commercial application of these polymorphisms. Although a small sample size was used in this study, it was possible to determine to some extent that the pattern of SNPs differed for each population. Of 11 SNPs tested for allelic distribution, 9 SNPs were fixed in at least one commercial population. Based on the information available in this study, it was suggested that between Duroc and Berkshire pigs might be sharing a higher genomic similarity than Yorkshire or Landrace pigs on pig chromosome 2. However, in case of Yorkshire and Landrace pigs on pig chromosome 2, SNP allelic frequencies between commercial breeds, and meat quality association of SNP alleles.

Previously, uncoupling protein 2 and 3 (UCP2 and 3) were mapped candidate genes, LXRA, RETN and CAST respectively. One CAST haplotype was significantly associated with lower Instron force, cooking loss and higher juiciness (Ciobanu et al., 2004), a RETN allele was significantly associated with more marbling, total lipids, firmness, WHC and loin pH (Otieno et al., 2005), and LXRA allele was significantly associated with loin eye area and total lipid (Yu et al., 2006). However, some of these effects were not detected in other commercial pig populations probably due to differences in linkage disequilibrium across pig populations.

From our results, there were several significant phenotypic differences between individual genotypes (Table 5). The 12 genotype of PTH polymorphism was associated with more cholesterol content and darker meat color. While the 12 genotypes of CSF2 polymorphism was associated with lower back fat and higher growth rate to weaning, the 22 CSF2 genotypes was associated with more type IIA fiber and darker meat color. Fiber type II ratio is the ratio of density of the myosin IIA to the density of the myosin IIB within muscle fiber composition. Muscle fiber type composition contribute to variation in eating quality of meat, but its direct effect is not clear because meat quality is associated with other components such as sarcoplasmic proteins, muscle enzymes, intramuscular fat, and connective tissues. However, more fiber type IIA are red, and increasing the proportion of IIB fiber increased the rate and extent of post mortem pH decline, leading to a higher cooking loss (Larzul et al., 1997). The favorable association of CSF2 allele 2 with meat quality was not surprising, given the fact that the allele 2 is at a high frequency in Berkshire breed (Table 4). Therefore our results might be useful for the further fine mapping of the QTL region on SSC2.

Sato et al. (2003) found both intramuscular fat and muscle moisture QTL on SSC9 where the FOLR1 is closely assigned. In addition, the 22 genotype of FOLR1 polymorphism was associated with more flavor and less drip loss in meat, but lighter meat color (Table 5). Previously, uncoupling protein 2 and 3 (UCP2 and 3) were mapped at the same regions on SSC9 and considered as candidate genes for the intramuscular fat QTL (Werner et al., 1999).

In conclusion, comparative re-sequencing of 15 PCR products has identified 34 SNP markers which might be important for commercial pork production in Korea. More work is necessary with more genes and animals to utilize the DNA marker information on SSC2 for superior pork production, and the identified SNPs from this study would be a primary step identifying individual pigs with high pork quality as well as determining origin of the pig breed in commercial populations.

ACKNOWLEDGEMENT

This work was supported by a research program of National Livestock Research Institute and a grant from...
BioGreen 21 program of Korea Rural Administration (Grant no. 20050401034804). Funding provided by the Iowa State University College of Agriculture and the Iowa Agriculture Home Economics Experiment Station and Hatch and State of Iowa funding is also appreciated.

REFERENCES

Ciobanu, D. C., J. W. Bastiaansen, S. M. Lonergan, H. Thomsen, J. C. Dekkers, G. S. Plastow and M. F. Rothschild. 2004. New alleles in calpastatin gene are associated with meat quality traits in pigs. J. Anim. Sci. 82(10):2829-2839.

Fujii, J., K. Otsu, F. Zorzato, S. de Leon, V. K. Khanna, J. E. Weiler, P. J. O'Brien and D. H. MacLennan. 1991. Identification of a mutation in porcine ryanodine receptor associated with malignant hyperthermia. Sci. 253:448-451.

Goodwin, R. and S. Burroughs. 1995. Genetic evaluation terminal line program results. National Prok Producers Council, Des Moines, Iowa.

Jin, H. J., B. Y. Park, J. C. Park, I. H. Hwang, S. S. Lee, S. H. Yeon, C. D. Kim, C. Y. Cho, Y. K. Kim, K. S. Min, S. T. Feng, Z. D. Li, C. K. Park and C. I. Kim. 2006. The effects of stress related genes on carcass traits and meat quality in pigs. Asian-Aust. J. Anim. Sci. 19(2):280-285.

Jungerius, B. J., A. P. Rattink, R. P. Crooijmans, J. J. van der Poel, B. A. van Oost, M. F. te Pas and M. A. Groenen. 2003. Development of a single nucleotide polymorphism map of porcine chromosome 2. Anim. Genet. 34(6):429-437.

Kim, J. J., M. F. Rothschild, J. Beever, S. Rodriguez-Zas and J. C. Dekkers. 2005. Joint analysis of two breed cross populations in pigs to improve detection and characterization of quantitative trait loci. J. Anim. Sci. 83(6):1229-1240.

Kim, T. H., K. S. Kim, B. H. Choi, D. H. Yoon, G. W. Jang, K. T. Lee, H. Y. Chung, H. Y. Lee, H. S. Park and J. W. Lee. 2005. Genetic structure of pig breeds from Korea and China using microsatellite loci analysis. J. Anim. Sci. 83(10):2255-2263.

Larzul, C., L. Lefaucheur, P. Ecolan, J. Gogue, A. Talampt, P. Sellier, P. Le Roy and G. Monin. 1997. Phenotypic and genetic parameters for Longissimus muscle fiber characteristics in relation to growth, carcass, and meat quality traits in Large White pigs. J. Anim. Sci. 75:3126-3137.

Le Roy, P., J. Naveau, J. M. Elsen and P. Sellier. 1990. Evidence for a new major gene influencing meat quality in pigs. Genet. Res. 55(1):33-40.

Malek, M., J. C. Dekkers, H. K. Lee, T. J. Baas, K. Prusa, E. Huff-Lonergan and M. F. Rothschild. 2001. A molecular genome scan analysis to identify chromosomal regions influencing economic traits in the pig. II. Meat and muscle composition. Mamm. Genome. 12(8):637-645.

Meyers, S. N., M. B. Rogatcheva, D. M. Larkin, M. Yerle, D. Milan, R. J. Hawken, L. B. Schook and J. E. Beever. 2005. Piggy-BACing the human genome II. A high-resolution, physically anchored, comparative map of the porcine autosomes. Genomics 86(6):739-752.

Otieno, C. J., J. Bastiaansen, A. M. Ramos and M. F. Rothschild. 2005. Mapping and association studies of diabetes related genes in the pig. Anim. Genet. 36(1):36-42.

Rohrer, G. A., R. M. Thallman, S. Shackelford, T. Wheeler and M. Kooijmaria. 2006. A genome scan for loci affecting pork quality in a Duroc-Landrace F population. Anim. Genet. 37(1):17-27.

Sato, S., Y. Oyamada, K. Atsuji, T. Nade, S. Sato, E. Kobayashi, T. Mitsuhashi, K. Nirasawa, A. Komatsuda, Y. Saito, S. Terai, T. Hayashi and Y. Sugimoto. 2003. Quantitative trait loci analysis for growth and carcass traits in a Meishan×Duroc F2 resource population. J. Anim. Sci. 81(12):2938-2949.

Werner, P., S. Neuenschwander and G. Stranzinger. 1999. Characterization of the porcine uncoupling proteins 2 and 3 (UCP2 and UCP3) and their localization to chromosome 9 p by somatic cell hybrids. Anim. Genet. 30(3):221-224.

van Wijk, H. J., B. Dibbits, E. E. Baron, A. D. Brings, B. Harlizius, M. A. Groenen, E. E. Knol and H. Bovenhuis. 2006. Identification of quantitative trait loci for carcass composition and pork quality traits in a commercial finishing cross. J. Anim. Sci. 84(4):789-799.

Wimmers, K., I. Fiedler, T. Hardge, E. Murani, K. Schellander and S. Ponsuksili. 2006. QTL for microstructural and biophysical muscle properties and body composition in pigs. BMC Genet. 9:7-15.

Yu, M., B. Geiger, N. Deeb and M. F. Rothschild. 2006. Liver X receptor alpha and beta genes have the potential role on loin lean and fat content in pigs. J. Anim. Breed Genet. 123(2):81-88.