Remark on the ill-posedness for the multidimensional chemotaxis equations in critical Besov spaces

Jinlu Li1, Yanghai Yu2,*and Weipeng Zhu3

1 School of Mathematics and Computer Sciences, Gannan Normal University, Ganzhou 341000, China

2 School of Mathematics and Statistics, Anhui Normal University, Wuhu 241002, China

3 School of Mathematics and Big Data, Foshan University, Foshan, Guangdong 528000, China

June 7, 2022

Abstract: In this paper, we aim to solving the open question left in [Nie, Yuan: Nonlinear Anal 196 (2020); J. Math. Anal. Appl 505 (2022)] and Xiao, Fei: J. Math. Anal. Appl 514 (2022)]. We prove that a multidimensional chemotaxis system is ill-posedness in $\dot{B}_{2d,r}^{-\frac{3}{2}} \times (\dot{B}_{2d,r}^{-\frac{1}{2}})^d$ when $1 \leq r < d$ due to the lack of continuity of the solution.

Keywords: Multidimensional chemotaxis equations, Ill-posedness, Besov spaces

MSC (2010): 35G55; 35Q92; 92C17

1 Introduction

In this paper, we consider the multidimensional chemotaxis equations

\begin{equation}
\begin{aligned}
\partial_t u - \Delta u &= \text{div}(uv), \\
\partial_t v - \nabla u &= 0, \\
(u, v)(0, x) &= (u_0(x), v_0(x)),
\end{aligned}
\end{equation}

where $u(t, x)$ represents a scalar unknown function and $v(t, x)$ denotes a vector unknown function. This system is a limiting case of the mathematical model for describing chemotaxis, which was proposed by Keller and Segel [6] to represent the aggregation of certain type of bacteria from macroscopic perspective.

From the PDE’s point of view, it is crucial to know if an equation which models a physical phenomenon is well-posed in the Hadamard’s sense: existence, uniqueness, and continuous dependence of the solutions with respect to the initial data. In particular, the lack of continuous dependence would

\begin{flushright}
*E-mail: lijinlu@gnnu.edu.cn; yuyanghai214@sina.com(Corresponding author); mathzwp2010@163.com
\end{flushright}
cause incorrect solutions or non meaningful solutions. Indeed, this means that the corresponding equation is ill-posed. There is a huge literature on the studies of the well-posedness problem and long-time behaviors of solutions for system (1.1), for example [4, 7–10]. For more background of this model and related results, we refer to [12, 13]. Many results with regard to the ill-posedness have been obtained for some important nonlinear PDEs including the incompressible Navier–Stokes equations [2, 15, 17], the stationary Navier-Stokes equations [11, 14], the compressible Navier–Stokes equations [3, 5] and so on.

In this paper, we are mainly focused on ill-posedness of solutions to system (1.1) in some critical Besov spaces. Nie-Yuan [12] proved that (1.1) is well-posed in $\dot{B}^{d-2}_{p,1} (\mathbb{R}^d) \times \left(\dot{B}^{d-1}_{p,1} (\mathbb{R}^d) \right)^d$ when $1 \leq p < 2d$ and is ill-posed when $p > 2d$. Later on, for the critical case $p = 2d$, Nie-Yuan [13] further proved that (1.1) is ill-posed in $\dot{B}^{-\frac{1}{2}}_{2d,1} (\mathbb{R}^d) \times \left(\dot{B}^{-\frac{1}{2}}_{2d,1} (\mathbb{R}^d) \right)^d$ by fully exploiting nonlinear structure of the cross term. Subsequently, Xiao-Fei [16] proved the ill-posedness of (1.1) in $\dot{B}^{-\frac{1}{2}}_{2d,r} (\mathbb{R}^d) \times \left(\dot{B}^{-\frac{1}{2}}_{2d,r} (\mathbb{R}^d) \right)^d$ for $r > 2$ by a different framework which give a special initial data. Obviously, there are still gaps on the index r between Nie-Yuan and Xiao-Fei’s ill-posedness results. Precisely speaking, for the case $1 < r \leq 2$, it is still unknown whether (1.1) in $\dot{B}^{-\frac{1}{2}}_{2d,r} (\mathbb{R}^d) \times \left(\dot{B}^{-\frac{1}{2}}_{2d,r} (\mathbb{R}^d) \right)^d$ is well-posed or ill-posed. In this paper, we shall answer this question. Our main result now reads as follows:

1.1 Main Result

Theorem 1.1 Let $d \geq 2$ and $1 \leq r < d$. (1.1) is ill-posed in $\dot{B}^{-\frac{1}{2}}_{2d,r} (\mathbb{R}^d) \times \left(\dot{B}^{-\frac{1}{2}}_{2d,r} (\mathbb{R}^d) \right)^d$ in the following sense: There exists an initial data (u_0, v_0) satisfying

$$\lim_{n \to \infty} \left(\|u_0\|_{\dot{B}^{-\frac{1}{2}}_{2d,r}} + \|v_0\|_{\dot{B}^{-\frac{1}{2}}_{2d,r}} \right) = 0,$$

such that the corresponding solution (u, v) satisfies for some positive constants c and ε small enough

$$\|u(t_n, \cdot)\|_{\dot{B}^{-\frac{1}{2}}_{2d,r}} + \|v(t_n, \cdot)\|_{\dot{B}^{-\frac{1}{2}}_{2d,r}} \geq c \quad \text{with} \quad t_n = \varepsilon 2^{-2n}.$$

Remark 1.1 Theorem 1.1 demonstrates that if $d \geq 2$ and $1 \leq r < d$, there exists a sequence of initial data which converges to zero in $\dot{B}^{-\frac{1}{2}}_{2d,r} (\mathbb{R}^d) \times \left(\dot{B}^{-\frac{1}{2}}_{2d,r} (\mathbb{R}^d) \right)^d$ and yields a sequence of solutions to (1.1) which does not converge to zero in $\dot{B}^{-\frac{1}{2}}_{2d,r} (\mathbb{R}^d) \times \left(\dot{B}^{-\frac{1}{2}}_{2d,r} (\mathbb{R}^d) \right)^d$. In other words, (1.1) is ill-posed in $\dot{B}^{-\frac{1}{2}}_{2d,r} (\mathbb{R}^d) \times \left(\dot{B}^{-\frac{1}{2}}_{2d,r} (\mathbb{R}^d) \right)^d$ due to the discontinuity of the solution map at zero.

Remark 1.2 Theorem 1.1 enriches the ill-posedness theories of the system (1.1) although our discontinuity of the solution map in Theorem 1.1 is weaker than “Norm Inflation” of [12, 13, 16].

Remark 1.3 We should emphasize that the only question left is the well/ill-posedness of the system (1.1) in $\dot{B}^{-\frac{1}{2}}_{4,2} (\mathbb{R}^2) \times \left(\dot{B}^{-\frac{1}{2}}_{4,2} (\mathbb{R}^2) \right)^2$.

2
1.2 Main Idea

From (1.1)_{2}, one has

\[v(t, x) = v_0 + \int_0^t \nabla u \, dt. \]

(1.2)

By the Duhamel formula, we obtain from (1.1)_{1} that

\[u(t, x) = e^{t\Delta} u_0 + \int_0^t e^{(t-s)\Delta} \text{div} (uv) \, ds \]

\[= e^{t\Delta} u_0 + \int_0^t e^{(t-s)\Delta} \text{div} \left\{ U_1 \left(v_0 + \int_0^s \nabla U_1 \, dt \right) \right\} \, ds + \text{Remainder term}. \]

(1.3)

Then, we decompose \(u \) into three terms, namely, \(u = U_1 + U_2 + U_3 \). Thus

\[v(t, x) = v_0 + \int_0^t \nabla U_1 \, dt + \int_0^t \nabla U_2 \, dt + \int_0^t \nabla U_3 \, dt. \]

(1.4)

For the convenience of using regularity estimate of heat equations later, we deduce that \(U_i \) \((i = 1, 2, 3)\) solves the following three equations respectively,

\[\begin{cases}
\partial_t U_1 - \Delta U_1 = 0, \\
U_{1|t=0} = u_0,
\end{cases} \]

(1.5)

\[\begin{cases}
\partial_t U_2 - \Delta U_2 = \text{div}(U_1 V_1), \\
U_{2|t=0} = 0,
\end{cases} \]

(1.6)

and

\[\begin{cases}
\partial_t U_3 - \Delta U_3 = \text{div} F, \\
U_{3|t=0} = 0,
\end{cases} \]

(1.7)

where

\[F := U_3 V_3 + U_3 (V_2 + V_1) + V_3 (U_1 + U_2) + U_1 V_2 + U_2 (V_1 + V_2). \]

To make sure that \(U_2 \) leads to the discontinuity, we decompose it as

\[U_2 = \int_0^t e^{(t-s)\Delta} \text{div}(u_0 v_0) \, ds + \int_0^t e^{(t-s)\Delta} \text{div} ((U_1 - u_0) v_0) \, ds + \int_0^t e^{(t-s)\Delta} \text{div} \left\{ U_1 \left(\int_0^s \nabla U_1 \, dt \right) \right\} \, ds. \]

We try to extract the worst term \(U_{2,1} \). Our key argument is that, by constructing suitable initial data \((u_0, v_0)\), the other terms in \(U_2 \) can be absorbed by \(U_{2,1} \) and the terms \(U_1, U_3 \) can be small.
2 Littlewood-Paley analysis

Next, we will recall some facts about the Littlewood-Paley (L-P) decomposition, the homogeneous Besov spaces and their some useful properties.

Proposition 2.1 (L-P decomposition, See [1]) Let $\mathcal{B} := \{\xi \in \mathbb{R}^d : |\xi| \leq 4/3\}$ and $\mathcal{C} := \{\xi \in \mathbb{R}^d : 3/4 \leq |\xi| \leq 8/3\}$. Choose a radial, non-negative, smooth function $\chi : \mathbb{R}^d \mapsto [0,1]$ such that it is supported in \mathcal{B} and $\chi \equiv 1$ for $|\xi| \leq 3/4$. Setting $\varphi(\xi) := \chi(\xi/2) - \chi(\xi)$, then we deduce that φ is supported in \mathcal{C} and $\varphi(\xi) \equiv 1$ for $4/3 \leq |\xi| \leq 3/2$. In particular, it holds that $\varphi(\xi) \equiv 1$ for $4/3 \leq |\xi| \leq 3/2$ which will be used in the sequel.

For every $u \in S'(\mathbb{R}^d)$, the homogeneous dyadic blocks $\hat{\Lambda}_j$ is defined as follows

$$\hat{\Lambda}_j u = \varphi(2^{-j}D)u = \mathcal{F}^{-1}(\varphi(2^{-j})\mathcal{F}u) = 2^{dj} \int_{\mathbb{R}^d} \hat{\varphi}(2^j(x-y))u(y)dy, \ \forall j \in \mathbb{Z}.$$

In the homogeneous case, the following Littlewood-Paley decomposition makes sense

$$u = \sum_{j \in \mathbb{Z}} \hat{\Lambda}_j u \quad \text{for any } u \in \dot{S}_h'(\mathbb{R}^d),$$

where \dot{S}_h' is given by

$$\dot{S}_h' := \{u \in S'(\mathbb{R}^d) : \lim_{j \to -\infty} \|\varphi(2^{-j}D)u\|_{L^\infty} = 0\}.$$

We turn to the definition of the Besov Spaces and norms which will come into play in our paper.

Definition 2.1 ([1]) Let $s \in \mathbb{R}$ and $(p,r) \in [1,\infty]^2$. The homogeneous Besov space $\dot{B}^s_{p,r}(\mathbb{R}^d)$ consists of all tempered distribution f such that

$$\dot{B}^s_{p,r} = \{f \in \dot{S}_h'(\mathbb{R}^d) : \|f\|_{\dot{B}^s_{p,r}(\mathbb{R}^d)} < \infty\},$$

where

$$\|f\|_{\dot{B}^s_{p,r}(\mathbb{R}^d)} := \begin{cases} \left(\sum_{j \in \mathbb{Z}} 2^{sjr} \|\hat{\Lambda}_j f\|_{L^p(\mathbb{R}^d)}^r \right)^{1/q}, & \text{if } 1 \leq r < \infty, \\ \sup_{j \in \mathbb{Z}} 2^{sjr} \|\hat{\Lambda}_j f\|_{L^p(\mathbb{R}^d)}, & \text{if } r = \infty. \end{cases}$$

For $0 < T \leq \infty$, $s \in \mathbb{R}$ and $1 \leq p, r, \rho \leq \infty$, we set (with the usual convention if $r = \infty$)

$$\|f\|_{\dot{L}^p_T(\mathbb{R}^d)} := \left(\sum_{j \in \mathbb{Z}} 2^{jsr} \|\hat{\Lambda}_j f\|_{L^p(0,T;\mathbb{R}^d)}^r \right)^{1/s}.$$

The following Bernstein’s inequalities will be used in the sequel.
Lemma 2.1 (see [1]) Let \mathcal{B} be a Ball and \mathcal{C} be an annulus. There exist constants $C > 0$ such that for all $k \in \mathbb{N} \cup \{0\}$, any positive real number λ and any function $f \in L^p$ with $1 \leq p \leq q \leq \infty$, we have
\[
\text{supp} \hat{f} \subseteq \lambda \mathcal{B} \Rightarrow \|\nabla^k f\|_{L^q} \leq C^{k+1} \lambda^{k+\frac{d}{p}-\frac{d}{q}}\|f\|_{L^p},
\]
\[
\text{supp} \hat{f} \subseteq \lambda \mathcal{C} \Rightarrow C^{-k-1} \lambda^k \|f\|_{L^p} \leq \|\nabla^k f\|_{L^q} \leq C^{k+1} \lambda^k \|f\|_{L^p}.
\]
As a direct result of Bernstein’s inequalities, we have the following continuous embedding:

Lemma 2.2 (see [1]) Let $s \in \mathbb{R}$, $1 \leq p_1 \leq p_2 \leq \infty$ and $1 \leq r_1 \leq r_2 \leq \infty$. Then
\[
\dot{B}^s_{p_1,r_1}(\mathbb{R}^d) \hookrightarrow \dot{B}^s_{p_2,r_2}(\mathbb{R}^d) \quad \text{with} \quad t = s - \left(\frac{d}{p_1} - \frac{d}{p_2}\right).
\]

Lemma 2.3 Let $s > 0$, $1 \leq p \leq \infty$ and $1 \leq \rho, \rho_1, \rho_2, \rho_3, \rho_4 \leq \infty$. Then
\[
\|fg\|_{L^p(B^s_{\rho})} \leq C\left(\|f\|_{L^p_t(B^s_{\rho})}\|g\|_{L^p_t(B^s_{\rho})} + \|g\|_{L^p_t(B^s_{\rho})}\|f\|_{L^p_t(B^s_{\rho})}\right),
\]
where
\[
\frac{1}{\rho} = \frac{1}{\rho_1} + \frac{1}{\rho_2} = \frac{1}{\rho_3} + \frac{1}{\rho_4}.
\]

Lemma 2.4 (See [12]) Let $1 \leq \rho, \rho_1, \rho_2 \leq \infty$ with $\frac{1}{\rho} = \frac{1}{\rho_1} + \frac{1}{\rho_2}$ and $1 \leq p < 2d$. Then, we have
\[
\|fg\|_{L^p_t(B^s_{\rho})} \leq C\|f\|_{L^p_t(B^s_{\rho})} \|g\|_{L^p_t(B^s_{\rho})}.
\]

Lemma 2.5 (See [12]) Let $1 \leq \rho, \rho_1, \rho_2 \leq \infty$ with $\frac{1}{\rho} = \frac{1}{\rho_1} + \frac{1}{\rho_2}$ and $d < p < 2d \leq q < \infty$ with $\frac{d}{p} + \frac{d}{q} > 1$. Then, we have
\[
\|fg\|_{L^q_t(B^s_{\rho})} \leq C\|f\|_{L^q_t(B^s_{\rho})} \|g\|_{L^q_t(B^s_{\rho})}.
\]

Finally, we recall the regularity estimates for the heat equations.

Lemma 2.6 (See [1]) Let $s \in \mathbb{R}$, $1 \leq p, r \leq \infty$ and $1 \leq q_1 \leq q_2 \leq \infty$. Assume that $u_0 \in \dot{B}^s_{p,r}$ and $f \in \dot{L}^{q_1}_{\tau}(\dot{B}^{s+\frac{d}{q_1}-2}_{p,r})$. Then the heat equations
\[
\begin{cases}
\partial_t u - \Delta u = f, \\
u(0, x) = u_0(x),
\end{cases}
\]
has a unique solution $u \in \dot{L}^{q_2}_{\tau}(\dot{B}^{s+\frac{d}{q_2}-2}_{p,r})$ satisfying for all $T > 0$
\[
\|u\|_{L^{q_2}_{\tau}(\dot{B}^{s+\frac{d}{q_2}-2}_{p,r})} \leq C\left(\|u_0\|_{\dot{B}^s_{p,r}} + \|f\|_{\dot{L}^{q_1}_{\tau}(\dot{B}^{s+\frac{d}{q_1}-2}_{p,r})}\right).
\]
3 Proof of Theorem 1.1

3.1 Construction of initial data

Letting \(n \gg 1 \), we write \(n \in 16\mathbb{N} = \{16, 32, 48, \cdots \} \) and \(\mathbb{N}(n) = \left\{ k \in 8\mathbb{N} : \frac{n}{4} \leq k \leq \frac{n}{2} \right\} \).

We define a scalar function \(\hat{\theta} \in C^\infty_0(\mathbb{R}) \) with values in \([0, 1]\) which satisfies

\[
\hat{\theta}(\xi) = \begin{cases} 1, & \text{if } |\xi| \leq \frac{1}{200d}, \\ 0, & \text{if } |\xi| \geq \frac{1}{100d}. \end{cases}
\]

Let

\[
\phi(x_1, x_2, \cdots, x_d) = \theta(x_1)\theta(x_2)\cdots\theta(x_d) \sin\left(\frac{17}{24}x_d\right).
\]

Motivated by the construction in [5, 11, 15], we define

\[
f_n = n^{-\frac{d}{2}} \sum_{k \in \mathbb{N}(n)} 2^k \phi(2^k(x - 2^{n+k}\vec{e})) \sin\left(\frac{17}{12}2^n x_1\right). \tag{3.8}
\]

It is straightforward to verify that

\[
\text{supp } \hat{f}_n(\xi) \subset \left\{ \xi \in \mathbb{R}^d : \frac{33}{24}2^n \leq |\xi| \leq \frac{35}{24}2^n \right\}. \tag{3.9}
\]

We construct initial data \((u_0, v_0)\) as follows

\[
u_0 = 2^{\frac{1}{2}n}f_n \quad \text{and} \quad v_0 = 2^{\frac{1}{2}n}f_n\vec{e} \quad \text{with} \quad \vec{e} = (1, 0, \cdots, 0). \tag{3.10}
\]

3.2 Estimation of initial data

Lemma 3.1 Let \(f_n \) be defined by (3.8). Then for \(p \in [1, 2d] \) and \(r \in [1, d) \) there holds

\[
\|f_n\|_{L^p} \leq Cn^{\frac{1}{p} - \frac{1}{2} + \frac{2n}{2p} - n}. \tag{3.11}
\]

In particular, by \(L^{3.5} = [L^2, L^4]_{(1/7, 6/7)} \), then (3.11) holds for \(d = 2 \) and \(p = 3.5 \).

Proof. The proof is postponed to A.1 in Section 4.

As a direct consequence of Lemma 3.1, we have

Proposition 3.1 Let \((u_0, v_0)\) be defined by (3.8). Then for \(p \in [1, 2d] \) and \(r \in [1, d) \) there holds

\[
\|u_0\|_{B^r_{p, r}} + 2^n\|v_0\|_{B^r_{p, r}} \leq C2^{n(r+\frac{d}{2})}\frac{n^{\frac{1}{2}p}}{n^{\frac{1}{2}p} + n^{\frac{1}{2}r}}. \tag{3.12}
\]

In particular, it holds that

\[
\|u_0\|_{B^{\frac{d}{2d}r}_{2d, r}} + \|v_0\|_{B^{\frac{d}{2d}r}_{2d, r}} \leq Cn^{\frac{1}{2} - \frac{d}{2}}. \tag{3.13}
\]
Proof. Notice that \(\hat{\Delta}_j f_n = \varphi(2^{-j} \cdot) \hat{f}_n \) for all \(j \in \mathbb{Z} \) and \(\varphi(2^{-j} \xi) \equiv 1 \) in \(\{ \xi \in \mathbb{R}^d : \frac{3}{2} 2^j \leq |\xi| \leq \frac{3}{2} 2^{j+1} \} \), then we have \(\hat{\Delta}_j f_n = 0 \) for \(j \neq n \), and thus,
\[
\hat{\Delta}_j (f_n) = \begin{cases} f_n, & \text{if } j = n, \\ 0, & \text{otherwise.} \end{cases}
\]
Using the definition of Besov space, (3.9) and Lemma 3.1 yields (3.12). This completes the proof of Proposition 3.1.

3.3 Ill-posedness

In this subsection, we divide the proof into three steps. From now on, we choose “certain time” as \(t_n = T = \varepsilon 2^{-2n} \).

Step 1: The upper bound estimation of \(\| U_1(T, \cdot) \|_{B^s_{2,1}(\mathbb{R}^d)} \).

As a direct consequence of Proposition 3.1, one has
\[
\| U_1(t_n) \|_{B^s_{2,1}(\mathbb{R}^d)} \leq \| U_1 \|_{L^2_t(B^s_{2,1})} \leq C \| u_0 \|_{B^s_{2,1}} \leq C n^{\frac{3}{4} - \frac{d}{2}}. \tag{3.13}
\]

Step 2: The lower bound estimation of \(\| U_2(T, \cdot) \|_{B^s_{2,1}(\mathbb{R}^d)} \).

In view of \(V_1 = v_0 + \int_0^t \nabla U_1 \, d\tau \), we decompose \(U_2 \) as \(U_2 = U_{2,1} + U_{2,2} \), where \(U_{2,1} \) and \(U_{2,2} \) satisfy respectively
\[
\begin{align*}
\frac{\partial}{\partial t} U_{2,1} - \Delta U_{2,1} &= \text{div}(u_0 v_0) = 2^{2n} \partial_{x_1} (f_n^2), \\
U_{2,1}|_{t=0} &= 0.
\end{align*}
\tag{3.14}
\]
and
\[
\begin{align*}
\frac{\partial}{\partial t} U_{2,2} - \Delta U_{2,2} &= \text{div} \left(U_1 \int_0^t \nabla U_1 \, d\tau \right) + \text{div}((U_1 - u_0) v_0), \\
U_{2,2}|_{t=0} &= 0.
\end{align*}
\tag{3.15}
\]
Using Lemma 2.6 and noticing that \(U_1 - u_0 = \int_0^t \Delta U_1 \, d\tau \) yields
\[
\| U_{2,2} \|_{L^2_t(B^s_{2,1}(\mathbb{R}^d))} \leq \| U_{2,2} \|_{L^2_t(B^s_{2,1}(\mathbb{R}^d))} \leq C n^{\frac{3}{4} - \frac{d}{2}} \| U_{2,2} \|_{L^2_t(B^s_{2,1}(\mathbb{R}^d))} \leq C n^{\frac{3}{4} - \frac{d}{2}} \| U_{2,2} \|_{L^2_t(B^s_{2,1}(\mathbb{R}^d))} \leq CT n^{\frac{3}{4} - \frac{d}{2}} \left(\| V_1 \|_{L^2_t(B^s_{2,1}(\mathbb{R}^d))} + \| \Delta U_1 \|_{L^2_t(B^s_{2,1}(\mathbb{R}^d))} \right) \leq C T^2 n^{\frac{3}{4} - \frac{d}{2}} \left(2^n \| u_0 \|_{L^\infty_t(L^{2d})}^2 + 2^{2n} \| u_0 \|_{L^\infty_t(L^{2d})} \| v_0 \|_{L^\infty_t(L^{2d})} \right) \leq C \varepsilon^2.
\]
Taking advantage of the Duhamel formula, then we have from (3.14)
\[
U_{2,1} = 2^{2n} \int_0^t e^{(t-\tau)\Delta} \partial_{x_1} (f_n^2) \, d\tau.
\]
Direct computations gives that for $\ell \in \mathbb{N}(n)$

$$
\Delta_t U_{2,1} = 2^n \int_0^N \mathcal{F}^{-1} \left(\varphi_\ell(\xi) e^{-|\ell_\alpha| |\xi|^2} \mathcal{F}(\partial_{\xi_1}(f_n^2)) \right) \, d\tau \\
= 2^n \mathcal{F}^{-1} \left(\varphi_\ell(\xi) \frac{1 - e^{-|\ell_\alpha| |\xi|^2}}{|\xi|^2} \mathcal{F}(\partial_{\xi_1}(f_n^2)) \right) \\
= \varepsilon \left(\Delta_t(\partial_{\xi_1}(f_n^2)) + \sum_{k \geq 1} \frac{t_n}{(k + 1)!} \frac{t_n^k}{(k_1 + 1)!} \Delta_t(\partial_{\xi_1} \Delta^k(f_n^2)) \right),
$$

where we have used Taylor’s formula

$$
\frac{1 - e^{-|\ell_\alpha| |\xi|^2}}{|\xi|^2} = t_n + t_n \sum_{k \geq 1} \frac{t_n^k}{(k + 1)!} (-|\xi|^2)^k.
$$

By Bernstein’s inequality, we deduce that

$$
\left\| \sum_{k \geq 1} \frac{t_n^k}{(k + 1)!} \Delta_t(\partial_{\xi_1} \Delta^k(f_n^2)) \right\|_{L^{2d}} \leq C \sum_{k \geq 1} \frac{t_n^k}{(k + 1)!} \left\| \Delta_t(\partial_{\xi_1} \Delta^k(f_n^2)) \right\|_{L^{2d}} \\
\leq C \sum_{k \geq 1} \frac{\varepsilon^{k}}{(k + 1)!} \left\| \Delta_t \partial_{\xi_1}(f_n^2) \right\|_{L^{2d}} \\
\leq C \varepsilon \left\| \Delta_t \partial_{\xi_1}(f_n^2) \right\|_{L^{2d}}.
$$

By the inverse triangle inequality, we have

$$
\left\| U_{2,1}(t, \cdot) \right\|_{L^2_{\beta_2, n}^{2,\ell}(\mathbb{R}^d)} \geq \varepsilon(1 - C\varepsilon) \sum_{\ell \in \mathbb{N}(n)} 2^{-\frac{d+\ell}{2}} \left\| \Delta_t \partial_{\xi_1}(f_n^2) \right\|_{L^{2d}(\mathbb{R}^d)}.
$$

For $k \in \mathbb{N}(n)$, we decompose the term $n^\ell f_n^{2}$ as

$$
n^\ell f_n^{2} = \sum_{k \in \mathbb{N}(n)} 2^k \phi^2 \left(2^k (x - 2^{2n+\ell} \varphi) \right) \sin^2 \left(\frac{17}{12} 2^n x_1 \right) \\
+ \sum_{k \not\in \mathbb{N}(n)} 2^k 2^\ell \phi \left(2^k (x - 2^{2n+\ell} \varphi) \right) \phi \left(2^\ell (x - 2^{2n+\ell} \varphi) \right) \sin^2 \left(\frac{17}{12} 2^n x_1 \right) =: \mathbf{H}
$$

using the simple fact $\sin^2 \alpha = (1 - \cos 2\alpha)/2$ and noticing that (for more details see A.2 in the Appendix)

$$
\Delta_t \mathbf{H} = 0 \quad \text{for} \quad \ell \in \mathbb{N}(n),
$$

then we have

$$
n^\ell \Delta_t f_n^{2} = \frac{1}{2} \Delta_t \left(2^\ell \phi^2 (2^\ell (x - 2^{2n+\ell} \varphi)) \right) + \frac{1}{2} \Delta_t \left(\sum_{k \in \mathbb{N}(n), k \not\in \ell} 2^k \phi^2 (2^k (x - 2^{2n+k} \varphi)) \right),
$$

where we have used Taylor’s formula

$$
\frac{1 - e^{-|\ell_\alpha| |\xi|^2}}{|\xi|^2} = t_n + t_n \sum_{k \geq 1} \frac{t_n^k}{(k + 1)!} (-|\xi|^2)^k.
$$
which in turn gives
\[n^\frac{1}{2} \partial_{x_i} \Delta f_n^2 = 2^{2\ell-1} [h](2^\ell(x - 2^{2n+\ell} \vartheta)) + \frac{1}{2} \partial_{x_i} \Delta \left(\sum_{k \in \mathbb{N}(n), k \neq \ell} 2^k \theta^2(2^k(x - 2^{2n+k} \vartheta)) \right) = K_1 + K_2, \]
where
\[h(x) = -\theta(x_1) \theta'(x_1) \theta(x_2) \theta^2(x_3) \cdots \theta^2(x_{d-1}) \theta^2(x_d) \cos \left(\frac{17}{12} x_d \right). \]

Let us introduce the set \(B_\ell \) defined by
\[B_\ell \equiv \{ x : |2^\ell(x - 2^{2n+\ell} \vartheta)| \leq 1 \}, \]
then by change of variables, we have
\[\|K_1\|_{L^2(B_\ell)} = 2^{2\ell-1} \left\| [h](2^\ell(x - 2^{2n+\ell} \vartheta)) \right\|_{L^2(B_\ell)} = 2^{\frac{3}{2}\ell-1} \|h(y)\|_{L^2(B_\ell)} = \sqrt{2} 2^{\frac{3}{2} \ell}, \]
Combining the estimate whose proof is relegated to A.3 in Section 4
\[\|K_2\|_{L^2(B_\ell)} \leq C 2^{-\ell}, \tag{3.19} \]
thus for \(\ell \in \mathbb{N}(n) \)
\[\left\| \Delta_{x_i} (f_n^2) \right\|_{L^2(B_\ell)} \geq n^{-\frac{1}{2}} \left(\|K_1\|_{L^2(B_\ell)} - \|K_2\|_{L^2(B_\ell)} \right) \geq n^{-\frac{1}{2}} (\sqrt{2} 2^{\frac{3}{2} \ell} - C 2^{-\ell}) \geq cn^{-\frac{1}{2}} 2^{\frac{3}{2} \ell}. \tag{3.20} \]
Inserting (3.20) into (3.16), we conclude that
\[\left\| U_2(t_n, \cdot) \right\|_{B_{2/3}^d(3^\ell(n))} \geq \varepsilon (c - C \varepsilon). \]

Step 3: The upper bound estimation of \(\|U_3(T, \cdot)\|_{B_{2/3}^d}. \)

We choose the index \((d, p_0, q_0)\) to satisfy that \(q_0 = 2d \) and
\[p_0 = \begin{cases} 3.5, & d = 2, \\ 2d - 1, & d \geq 3. \end{cases} \]
Obviously, it holds that
\[1 \leq r < d < p_0 < 2d = q_0 \quad \text{and} \quad \frac{3d}{2p_0} - 1 < 0. \tag{3.21} \]
For the sake of convenience, we denote
\[X_T = \left\| U_3(t, \cdot) \right\|_{L^\infty_t(B_{p_0}^{d/2})} + \left\| U_3(t, \cdot) \right\|_{L^1_t(B_{p_0}^d)} \quad \text{and} \quad Y_T = \left\| V_3(t, \cdot) \right\|_{L^\infty_t(B_{p_0}^{d/2})} \quad \text{and} \quad Y_T \leq C \left\| U_3(t, \cdot) \right\|_{L^1_t(B_{p_0}^d)}. \]
Obviously,
\[Y_T \leq C \left\| U_3(t, \cdot) \right\|_{L^1_t(B_{p_0}^d)} \leq C X_T. \]
Utilizing Lemma 2.6, we have
\[
X_T \leq C\|U_3 V_3 + U_3(V_1 + V_2) + V_3(U_1 + U_2) + U_1 V_2 + U_2(V_1 + V_2)\|_{L_T^1(B_{p_0,1}^{d\frac{d-1}{2}})}.
\]
(3.22)

Utilizing Lemma 2.4, one has
\[
\|U_3 V_3\|_{L_T^1(B_{p_0,1}^{d\frac{d-1}{2}})} \leq C\|U_3\|_{L_T^1(B_{p_0,1}^{d\frac{d-1}{2}})} \|V_3\|_{L_T^1(B_{p_0,1}^{d\frac{d-1}{2}})} \leq C X_T^2,
\]
(3.23)
\[
\|U_2(V_1 + V_2)\|_{L_T^1(B_{p_0,1}^{d\frac{d-1}{2}})} \leq C T\|U_2\|_{L_T^1(B_{p_0,1}^{d\frac{d-1}{2}})} \|V_1, V_2\|_{L_T^1(B_{p_0,1}^{d\frac{d-1}{2}})}.
\]
(3.24)
\[
\|U_1 V_2\|_{L_T^1(B_{p_0,1}^{d\frac{d-1}{2}})} \leq C T\|U_1\|_{L_T^1(B_{p_0,1}^{d\frac{d-1}{2}})} \|V_2\|_{L_T^1(B_{p_0,1}^{d\frac{d-1}{2}})}.
\]
(3.25)

Utilizing Lemma 2.5, one has
\[
\|U_3(V_1 + V_2)\|_{L_T^1(B_{p_0,1}^{d\frac{d-1}{2}})} \leq C\|U_3\|_{L_T^1(B_{p_0,1}^{d\frac{d-1}{2}})} \|V_1 + V_2\|_{L_T^1(B_{p_0,1}^{d\frac{d-1}{2}})}
\leq C T^\frac{1}{2}\|U_3\|_{L_T^1(B_{p_0,1}^{d\frac{d-1}{2}})} \|V_1, V_2\|_{L_T^{\infty}(B_{p_0,1}^{d\frac{d-1}{2}})}.
\]
\[
\leq C T^\frac{1}{2}\|U_3\|_{L_T^{\infty}(B_{p_0,1}^{d\frac{d-2}{2}})} \|U_3\|_{L_T(B_{p_0,1}^{d\frac{d-1}{2}})} \|V_1, V_2\|_{L_T^1(B_{p_0,1}^{d\frac{d-1}{2}})}.
\]
\[
\leq C T^\frac{1}{2} X_T\|V_1, V_2\|_{L_T^1(B_{p_0,1}^{d\frac{d-1}{2}})}.
\]
(3.26)
\[
\|V_3(U_1 + U_2)\|_{L_T^1(B_{p_0,1}^{d\frac{d-1}{2}})} \leq C\|V_3\|_{L_T^1(B_{p_0,1}^{d\frac{d-1}{2}})} \|U_1 + U_2\|_{L_T^1(B_{p_0,1}^{d\frac{d-1}{2}})} \leq C T X_T\|U_1, U_2\|_{L_T^1(B_{p_0,1}^{d\frac{d-1}{2}})}.
\]
(3.27)

Inserting (3.23)-(3.27) into (3.22) yields
\[
X_T \leq C X_T^2 + C T X_T\|U_1, U_2\|_{L_T^1(B_{p_0,1}^{d\frac{d-1}{2}})} + C T^\frac{1}{2} X_T\|V_1, V_2\|_{L_T^1(B_{p_0,1}^{d\frac{d-1}{2}})}
\leq C T\|U_2\|_{L_T^1(B_{p_0,1}^{d\frac{d-1}{2}})} \|V_1, V_2\|_{L_T^{\infty}(B_{p_0,1}^{d\frac{d-1}{2}})} + C T\|U_1\|_{L_T^1(B_{p_0,1}^{d\frac{d-1}{2}})} \|V_2\|_{L_T^{\infty}(B_{p_0,1}^{d\frac{d-1}{2}})}.
\]
(3.28)

On the one hand, using Lemma 3.1, we have
\[
\|V_1\|_{L_T^1(B_{p_0,1}^{d\frac{d-1}{2}})} \leq C\|V_1\|_{L_T^1(B_{p_0,1}^{d\frac{d-1}{2}})} + \|v_0\|_{L_T^1(B_{p_0,1}^{d\frac{d-1}{2}})} \leq C 2^{\|\nabla v_0\|_{L_T^1(B_{p_0,1}^{d\frac{d-1}{2}})}} n\frac{1}{p_0} - \frac{1}{2},
\]
and for \(q_0 = 2d\)
\[
\|U_1\|_{L_T^1(B_{p_0,1}^{d\frac{d-1}{2}})} \leq C\|U_1\|_{L_T^1(B_{p_0,1}^{d\frac{d-1}{2}})} \leq C T\|U_1\|_{L_T^1(B_{p_0,1}^{d\frac{d-1}{2}})} + \|v_0\|_{L_T^1(B_{p_0,1}^{d\frac{d-1}{2}})} \leq C 2^{\|\nabla v_0\|_{L_T^1(B_{p_0,1}^{d\frac{d-1}{2}})}} n\frac{1}{p_0} - \frac{1}{2}.
\]

\[
\|U_1\|_{L_T^1(B_{p_0,1}^{d\frac{d-1}{2}})} \leq C T\|U_0\|_{L_T^1(B_{p_0,1}^{d\frac{d-1}{2}})} \leq C N\frac{1}{p_0} - \frac{1}{2},
\]
\[
\|V_1\|_{L_T^1(B_{p_0,1}^{d\frac{d-1}{2}})} \leq C T\|U_1\|_{L_T^1(B_{p_0,1}^{d\frac{d-1}{2}})} + \|v_0\|_{L_T^1(B_{p_0,1}^{d\frac{d-1}{2}})} \leq C T\|U_1\|_{L_T^1(B_{p_0,1}^{d\frac{d-1}{2}})} + T\|v_0\|_{L_T^1(B_{p_0,1}^{d\frac{d-1}{2}})} \leq C N\frac{1}{p_0} - \frac{1}{2}.
\]
On the other hand, by the product law (Lemma 2.3) and the fact $e^{t\Delta} : L^\infty \to L^\infty$, we have

\[T\|U_2\|_{L_T^p(B_{p,0}^{\frac{d}{2}})} + \|V_2\|_{L_T^p(B_{p,0}^{\frac{d}{2}+1})} \leq CT\|U_2\|_{L_T^p(B_{p,0}^{\frac{d}{2}})} + CT^2\|U_1V_1\|_{L_T^p(B_{p,0}^{\frac{d}{2}+1})} \]

\[\leq CT^2(\|U_1\|_{L_T^p(L^\infty)}\|V_1\|_{L_T^p(B_{p,0}^{\frac{d}{2}+1})} + \|V_1\|_{L_T^p(L^\infty)}\|U_1\|_{L_T^p(B_{p,0}^{\frac{d}{2}+1})}) \]

\[\leq C2^{n(\frac{d-2}{8}+\overline{\beta})}n^{\frac{1}{70} - \frac{1}{2}}, \]

where we have used the estimates

\[\|U_1\|_{L_T^p(L^\infty)} \leq C\|u_0\|_{L^\infty} \leq C2^{\frac{d}{2}}2^{\frac{d}{n}}n^{-\frac{1}{2}} \leq C2^{\frac{d}{2}}n^{-\frac{1}{2}}, \]

\[\|V_1\|_{L_T^p(L^\infty)} \leq C(\|v_0\|_{L^\infty} + T\|\nabla u_0\|_{L^\infty}) \leq C(2^{\frac{d}{n}}2^{\frac{d}{2}} + 2^{-2n}2^{\frac{d}{2}}2^{\frac{d}{2}}n^{-\frac{1}{2}}) \leq C2^{\frac{d}{2}}n^{-\frac{1}{2}}, \]

\[\|V_1\|_{L_T^p(B_{p,0}^{\frac{d}{2}+1})} \leq C(\|v_0\|_{B_{p,0}^{\frac{d}{2}+1}} + T\|u_0\|_{B_{p,0}^{\frac{d}{2}+1}}) \leq C2^{n(\frac{d}{70} + \frac{d}{8})}2^{\frac{d}{4}}n^{\frac{1}{70} - \frac{1}{2}}. \]

Similarly,

\[T\|U_2\|_{L_T^p(B_{p,0}^{\frac{d}{2}})} + T^{\frac{d}{2}}\|V_2\|_{L_T^p(B_{p,0}^{\frac{d}{2}+1})} \leq T\|U_2\|_{L_T^p(B_{p,0}^{\frac{d}{2}})} + T^{\frac{d}{2}}\|U_2\|_{L_T^p(B_{p,0}^{\frac{d}{2}+1})} \leq C2^{-\frac{d}{2}}n^{\frac{1}{70} - \frac{1}{2}}, \]

Then, we have

\[CTX_T\|U_1, U_2\|_{L_T^p(B_{p,0}^{\frac{d}{2}})} + CT^{\frac{d}{2}}X_T\|V_1, V_2\|_{L_T^p(B_{p,0}^{\frac{d}{2}+1})} \leq CN^{\frac{1}{2m} - \frac{1}{2}}X_T, \]

\[CT\|U_2\|_{L_T^p(B_{p,0}^{\frac{d}{2}})}\|V_1, V_2\|_{L_T^p(B_{p,0}^{\frac{d}{2}+1})} + CT\|U_1\|_{L_T^p(B_{p,0}^{\frac{d}{2}})}\|V_2\|_{L_T^p(B_{p,0}^{\frac{d}{2}+1})} \leq C2^{n(\frac{d}{70} - 1)}n^{\frac{1}{70}}. \]

Putting the above inequalities together with (3.28) yields

\[X_T \leq CX_T^2 + CN^{\frac{1}{2m} - \frac{1}{2}}X_T + C2^{n(\frac{d}{70} - 1)}n^{\frac{1}{70}}. \]

By using the continuity argument and condition (3.21), we can take n large enough such that for $T = \varepsilon 2^{-2n}$

\[X_T \leq C2^{n(\frac{d}{70} - 1)}n^{\frac{1}{70}}. \]

Then, by the embedding $B_{p,0}^{\frac{d}{2}}(\mathbb{R}^d) \hookrightarrow B_{2d,r}^{\frac{d}{2}}(\mathbb{R}^d)$, we have

\[\|U_3(T, \cdot)\|_{B_{2d,r}^{\frac{d}{2}}} \leq CX_T \leq C2^{n(\frac{d}{70} - 1)}n^{\frac{1}{70}}. \]

Combining Step1-Step3, we obtain that for large n enough and ε small enough

\[\|u_0\|_{B_{2d,r}^{\frac{d}{2}}} + \|v_0\|_{B_{2d,r}^{\frac{d}{2}}} \leq CN^{\frac{1}{2m} - \frac{1}{2}} \to 0, \quad n \to \infty \]

and

\[\|u\|_{B_{2d,r}^{\frac{d}{2}}} \geq \|U_3\|_{B_{2d,r}(\Omega(n))} - \|U_1\|_{B_{2d,r}^{\frac{d}{2}}} - \|U_2\|_{B_{2d,r}^{\frac{d}{2}}} \]

\[\geq C\varepsilon - C2^{n(\frac{d}{70} - 1)}n^{\frac{1}{70}} - CN^{\frac{1}{2m} - \frac{1}{2}} \]

\[\geq \varepsilon_0. \]

Thus, we have completed the proof of Theorem 1.1.
4 Appendix

For the sake of convenience, here we present more details in the computations.

A.1 Proof of Lemma 3.1. We assume that \(p \in \mathbb{Z}^+ \) without loss of generality. Since \(\phi \) is a Schwartz function, we have

\[
|\phi(x)| \leq C(1 + |x|)^{-M}, \quad M \geq 100. \tag{4.1}
\]

It is easy to show that

\[
\|f_n\|_{L^p} \leq n^{-\frac{d}{p}} \sum_{\ell_1, \ell_2, \ldots, \ell_p \in \mathbb{N}(n)} \frac{2^{\frac{Q}{p}(\ell_1 + \ell_2 + \cdots + \ell_p)}}{(1 + 2^{\ell_1}|x - 2^{2n+\ell_1}e|)^M \cdots (1 + 2^{\ell_p}|x - 2^{2n+\ell_p}e|)^M} \, dx
\]

\[
\leq n^{-\frac{d}{p}} \sum_{\ell \in \mathbb{N}(n)} \int_{\mathbb{R}^d} \frac{2^{\frac{Q}{p}\ell}}{(1 + 2^\ell|x - 2^{2n+\ell}e|)^{pM}} \, dx
\]

\[
+ n^{-\frac{d}{p}} \sum_{(\ell_1, \ell_2, \ldots, \ell_p) \in \Lambda} \int_{\mathbb{R}^d} \frac{2^{\frac{Q}{p}(\ell_1 + \ell_2 + \cdots + \ell_p)}}{(1 + 2^{\ell_1}|x - 2^{2n+\ell_1}e|)^M \cdots (1 + 2^{\ell_p}|x - 2^{2n+\ell_p}e|)^M} \, dx
\]

\[
\equiv n^{-\frac{d}{p}} I_1 + n^{-\frac{d}{p}} I_2, \tag{4.2}
\]

where the set \(\Lambda \) is defined by

\[
\Lambda = \{ (\ell_1, \ldots, \ell_p) \in \mathbb{N}^p(n) \mid \exists 1 \leq k \leq p \text{ s.t. } \ell_k \neq \ell_1 \}.
\]

For the term \(I_1 \), by direct computations, one has

\[
I_1 = \sum_{\ell \in \mathbb{N}(n)} 2^{\frac{Q}{p}\ell - d\ell} \int_{\mathbb{R}^d} \frac{1}{(1 + |x|)^{pM}} \, dx \leq C n^{2^{\frac{Q}{p}d} n}. \tag{4.3}
\]

For the term \(I_2 \), we assume that \(\ell_1 < \ell_2 \) without loss of generality, then \(\ell_2 - \ell_1 \geq 4 \).

\[
\int_{\mathbb{R}^d} \frac{1}{(1 + 2^{\ell_1}|x - 2^{2n+\ell_1}e|)^M (1 + 2^{\ell_2}|x - 2^{2n+\ell_2}e|)^M} \, dx
\]

\[
= \left(\int_{A_{\ell_1}} + \int_{\mathbb{R}^d \setminus A_{\ell_1}} \right) \frac{1}{(1 + 2^{\ell_1}|x - 2^{2n+\ell_1}e|)^M (1 + 2^{\ell_2}|x - 2^{2n+\ell_2}e|)^M} \, dx,
\]

where we defined the set \(A_{\ell_1} \) by

\[
A_{\ell_1} := \{ x : |x - 2^{2n+\ell_1}e| \leq 2^n \}.
\]

Thus

\[
\int_{A_{\ell_1}} \frac{1}{(1 + 2^{\ell_1}|x - 2^{2n+\ell_1}e|)^M (1 + 2^{\ell_2}|x - 2^{2n+\ell_2}e|)^M} \, dx
\]

\[
\leq C (2^{\ell_1} 2^{2n})^{-M} \int_{A_{\ell_1}} \frac{1}{(1 + 2^{\ell_2}|x - 2^{2n+\ell_2}e|)^M} \, dx
\]

\[
\leq C (2^{\ell_1} 2^{2n})^{-M} 2^{-df_2}. \tag{4.4}
\]
It is easy to deduce that for \(x \in A_{\ell_1} \)
\[
2^{\ell_2} \| x - 2^{2n+\ell_2} \| \geq 2^{\ell_2} \| 2^{2n+\ell_2} - 2^{2n+\ell_1} \| - 2^{\ell_2} 2^n \geq 2^{\ell_2} 2^n.
\]

Similarly,
\[
\int_{A_{\ell_1}} \frac{1}{(1 + 2^{\ell_1} |x - 2^{2n+\ell_1}|)^M (1 + 2^{\ell_2} |x - 2^{2n+\ell_2}|)^M} dx
\leq (2^{\ell_2} 2^n)^{-M} \int_{A_{\ell_1}} \frac{1}{(1 + 2^{\ell_1} |x - 2^{2n+\ell_1}|)^M} dx
\leq C (2^{\ell_2} 2^n)^{-M} 2^{-d\ell_1}.
\]

We infer from (4.4) and (4.5) that
\[
I_2 \leq C 2^{-M n} \sum_{(\ell_1, \ell_2, \ldots, \ell_p) \in A} (2^{-M \ell_1} 2^{-d\ell_2} + 2^{-M \ell_2} 2^{-d\ell_1}) 2^{\frac{1}{2} (\ell_1 + \ell_2 + \ldots + \ell_p)} \leq C 2^{-M n}.
\]

Inserting (4.3) and (4.6) into (4.2), we have for large enough \(n \)
\[
\| f_n \|_{L^p} \leq C n^{\frac{1}{p} - \frac{1}{2} + \frac{2}{2\pi d^2 n}}.
\]

This completes the proof of Lemma 3.1.

A.2 Proof of (3.18). Notice that
\[
H = \sum_{k \in \mathbb{N}(n), k \neq \ell} 2^{\frac{d}{2}} 2^{\frac{d}{2}} \Phi_{k,j}(x) \sin^2 \left(\frac{17}{12} 2^n x_1 \right) \quad \text{with} \quad \Phi_{k,j}(x) := \phi(2^k(x - 2^{2n+k} \hat{e})) \phi(2^j(x - 2^{2n+j} \hat{e})),
\]
and the definition of \(\phi \), we deduce that for \(j < k \)
\[
\text{supp } \Phi_{k,j} \subset \left\{ \xi \in \mathbb{R}^d : \frac{33}{48} 2^k \leq |\xi| \leq \frac{35}{48} 2^k \right\},
\]
\[
\Rightarrow \quad \text{supp } \Phi_{k,j} \cos \left(\frac{17}{12} 2^{n+1} \hat{e} \cdot x \right) \subset \left\{ \xi \in \mathbb{R}^d : \frac{33}{24} 2^{n+1} \leq |\xi| \leq \frac{35}{24} 2^{n+1} \right\}.
\]

Then, for \(j < k \), (3.18) holds. Similarly, (3.18) also holds for \(j > k \). Thus, we finish the proof of (3.18).

A.3 Proof of (3.19). Noting the fact that for \(100d < N \in \mathbb{Z}^+ \)
\[
|\tilde{\varphi}(x)| \leq C (1 + |x|)^{-N},
\]
then we have
\[
\| K_2 \|_{L^2(B_{r})} \leq \sum_{k \in \mathbb{N}(n), k \neq \ell} 2^{\frac{d}{2}} 2^{\ell} \left\| \int_{\mathbb{R}^d} \tilde{\varphi}(2^k(x - y)) \phi^2(2^k(y - 2^{2n+k} \hat{e})) dy \right\|_{L^2(B_{r})}
\leq \sum_{k \in \mathbb{N}(n), k \neq \ell} 2^{\frac{d}{2}} 2^{\ell} \left\| \int_{\mathbb{R}^d} \left(1 + 2^k |x - y| \right)^{-N} \left(1 + 2^k |y - 2^{2n+k} \hat{e}| \right)^{-2N} dy \right\|_{L^2(B_{r})}.
\]
Dividing the integral region in terms of y into the following two parts to estimate:

$$\mathbb{R}^d = \{y : |y - 2^{\ell+2n} \varepsilon_\ell| \leq 2^n\} \cup \{y : |y - 2^{\ell+2n} \varepsilon_\ell| \geq 2^n\} = A_1 \cup A_2,$$

For $x \in B_\ell$ and $y \in A_1$, we conclude that

$$|y - 2^{k+2n} \varepsilon_\ell| = |(y - 2^{\ell+2n} \varepsilon_\ell) + (2^{k+2n} \varepsilon_\ell - 2^{k+2n} \varepsilon_\ell)| \geq 2^{\ell+2n} - 2^{k+2n} \varepsilon_\ell| - |y - 2^{\ell+2n} \varepsilon_\ell| \geq 2^n.$$

For $x \in B_\ell$ and $y \in A_2$, it is easy to check that

$$|x - y| \geq |y - 2^{\ell+2n} \varepsilon_\ell| - |x - 2^{\ell+2n} \varepsilon_\ell| \geq 2^n - 2^{-\ell} \geq 2^{n-1}.$$

Then, we have

$$\left\| \int_{\mathbb{R}^d} \left(1 + 2^\ell |x - y| \right)^{-N} \left(1 + 2^k |y - 2^{n+k} \varepsilon_\ell| \right)^{-2N} dy \right\|_{L^{2d}(B_\ell)} \leq C 2^{-2(k+2n)N} \left\| \int_{A_1} \left(1 + 2^\ell |x - y| \right)^{-N} dy \right\|_{L^{2d}(B_\ell)} + C 2^{-(\ell+2n)N} \left\| \int_{A_2} \left(1 + 2^k |y - 2^{n+k} \varepsilon_\ell| \right)^{-2N} dy \right\|_{L^{2d}(B_\ell)} \leq C \left(2^{-2d\ell} 2^{-2(k+2n)N} + 2^{-(\ell+2n)N} 2^{-2d\ell} \right) 2^{-\frac{\ell}{n}}.$$

Plugging the above into (4.7) yields

$$\|K_2\|_{L^{2d}(B_\ell)} \leq C \sum_{k \in \mathbb{N}(n), k \neq \ell} 2^{k+\ell} 2^{d\ell} \left(2^{-2d\ell} 2^{-2(k+2n)N} + 2^{-(\ell+2n)N} 2^{-2d\ell} \right) 2^{-\frac{\ell}{n}} \leq C 2^{-n}.$$

Acknowledgments

J. Li is supported by the National Natural Science Foundation of China (11801090 and 12161004) and Jiangxi Provincial Natural Science Foundation (20212BAB211004). Y. Yu is supported by the National Natural Science Foundation of China (12101011) and Natural Science Foundation of Anhui Province (1908085QA05). W. Zhu is supported by the Guangdong Basic and Applied Basic Research Foundation (2021A1515111018).

Conflict of interest

The authors declare that they have no conflict of interest.

References

[1] H. Bahouri, J.-Y. Chemin, R. Danchin, Fourier analysis and nonlinear partial differential equations, Grundlehren der Mathematischen Wissenschaften, 343, Springer-Verlag, Berlin, Heidelberg, 2011.
[2] J. Bourgain, N. Pavlović, Ill-posedness of the Navier–Stokes equations in a critical space in 3D, J. Funct. Anal., 255 (2008) 2233–2247.

[3] Q. Chen, C. Miao, Z. Zhang, On the ill-posedness of the compressible Navier–Stokes equations in the critical Besov spaces, Rev. Mat. Iberoam. 31 (4) (2015) 1375–1402.

[4] C. Hao, Global well-posedness for a multidimensional chemotaxis model in critical Besov spaces, Z. Angew. Math. Phys. 63 (5) (2012) 825–834.

[5] T. Iwabuchi, T. Ogawa, Ill-posedness for the compressible Navier-Stokes equations under the barotropic condition in the limmiting Besov spaces. J. Math. Soc. Jpn. (2021) doi: 10.2969/jmsj/81598159

[6] E.F. Keller, L.A. Segel, Initiation of slime mold aggregation viewed as an instability, J. Theoret. Biol. 26 (3) (1970) 399–415.

[7] D. Li, T. Li, K. Zhao, On a hyperbolic-parabolic system modeling chemotaxis, Math. Models Methods Appl. Sci. 21 (8) (2011) 1631–1650.

[8] T. Li, R. Pan, K. Zhao, Global dynamics of a hyperbolic-parabolic model arising from chemotaxis, SIAM J. Appl. Math. 72 (1) (2012) 417–443.

[9] T. Li, Z.A. Wang, Nonlinear stability of traveling waves to a hyperbolic-parabolic system modeling chemotaxis, SIAM J. Appl. Math. 70 (5) (2009) 1522–1541.

[10] T. Li, Z.A. Wang, Nonlinear stability of large amplitude viscous shock waves of a generalized hyperbolic-parabolic system arising in chemotaxis, Math. Models Methods Appl. Sci. 20 (11) (2010) 1967–1998.

[11] J. Li, Y. Yu, W. Zhu, Ill-posedness for the stationary Navier-Stokes equations in critical Besov spaces, arXiv:2204.08295v3.

[12] Y. Nie, J. Yuan, Well-posedness and ill-posedness of a multidimensional chemotaxis system in the critical Besov spaces, Nonlinear Anal. 196 (2020) 111782.

[13] Y. Nie, J. Yuan, Ill-posedness issue for a multidimensional hyperbolic-parabolic model of chemotaxis in critical Besov spaces $\dot{B}^{-\frac{1}{2}}_{2d,1} \times (\dot{B}^{-\frac{1}{2}}_{2d,1})^d$, J. Math. Anal. Appl. 505 (2) (2022).

[14] H. Tsurumi, Well-posedness and ill-posedness problems of the stationary Navier-Stokes equations in scaling invariant Besov spaces, Arch. Ration. Mech. Anal. 234:2 (2019) 911-923.

[15] B. Wang, Ill-posedness for the Navier-Stokes equations in critical Besov spaces $\dot{B}^{-1}_{\infty,q}$, Adv. Math. 268 (2015) 350-372.

[16] W. Xiao, X. Fei, Ill-posedness of a multidimensional chemotaxis system in the critical Besov spaces, J. Math. Anal. Appl. 514 (2022) 126302.

[17] T. Yoneda, Ill-posedness of the 3D-Navier-Stokes equations in a generalized Besov space near BMO^{-1}, J. Funct. Anal. 258 (2010) 3376-3387.