A COMPLETE CONVERGENCE THEOREM FOR WEIGHTED SUMS UNDER THE SUB–LINEAR EXPECTATIONS

FENGGXIANG FENG* AND HAIWU HUANG

(Communicated by X. Wang)

Abstract. In this article, we study a complete convergence theorem for weighted sums in sub-linear expectations space. We establish a complete convergence theorem for weighted sums under the optimal moment conditions in sub-linear expectations space. Our result extends and improves the corresponding result of Cai (Metrika, 68:323-331, 2008) in some extent.

1. Introduction and notation

In the classical probability theory, probability and expectation are both additive. But the uncertainty phenomenon can not be modeled using additive probabilities or additive expectations in many areas of applications. Non-additive probabilities and non-additive expectations are useful tools for studying uncertainties in statistics, measures of risk, superhedging in finance and non-linear stochastic calculus [1–7]. Peng [6–8] introduced the general framework of the sub-linear expectation in a general function space by relaxing the linear property of the classical expectation to the sub-additivity and positive homogeneity (cf. Definition 1.1 below). Under Peng’s sub-linear expectation framework, many limit theorems have been established recently, including the central limit theorem and weak law of large numbers [8–10], strong law of large numbers [11–15], the law of the iterated logarithm [16–17], Donsker’s invariance principle and Chung’s law of the iterated logarithm [18], the moment inequalities for the maximum partial sums and the Kolomogov strong law of large numbers [19], complete convergence theorems [20–22], self-normalized moderate deviation and law of the iterated logarithm [23], the asymptotic approximation of inverse moment [24], and so on. Because sub-linear expectation and capacity are not additive, the study of the limit theorems under sub-linear expectation becomes much more complex and challenging. Extending the limit theorems in the traditional probability space to the case of sub-linear expectation space is of great significance in the theory and application.

Complete convergence theorems are important limit theorems in probability theory. Many of related results have been obtained in the probability space. We refer the reader to [25–31]. Complete convergence for weighted sums are also important in sub-linear expectation space, which can be applied to nonparametric regression models [22].
Feng et al. [20] and Zhong and Wu [21] established complete convergence theorems in sub-linear expectations space. We will establish a complete convergence theorem for weighted sums under the optimal moment conditions in sub-linear expectations space. Our complete convergence theorem is different from them. We prove our result by using capacity inequality under sub-linear expectations, fully combining the properties of sub-linear expectations, skillfully using local Lipschitz function, truncating the random variables and weights, and so on.

We use the framework and notations of Peng [8]. Let \((\Omega, \mathcal{F})\) be a given measurable space and let \(\mathcal{H}\) be a linear space of real functions defined on \((\Omega, \mathcal{F})\) such that if \(X_1, \ldots, X_n \in \mathcal{H}\) then \(\varphi(X_1, \ldots, X_n) \in \mathcal{H}\) for each \(\varphi \in C_{1,Lip}(\mathbb{R}^n)\), where \(C_{1,Lip}(\mathbb{R}^n)\) denotes the linear space of (local Lipschitz) functions \(\varphi\) satisfying

\[
|\varphi(x) - \varphi(y)| \leq C(1 + |x|^m + |y|^m)|x - y|, \quad \forall x, y \in \mathbb{R}^n,
\]

for some \(C > 0, m \in \mathbb{N}\) depending on \(\varphi\). \(\mathcal{H}\) is considered as a space of “random variables”. If \(X\) is an element of \(\mathcal{H}\), then we denote \(X \in \mathcal{H}\).

Definition 1.1. A sub-linear expectation \(\widehat{E}\) on \(\mathcal{H}\) is a function \(\widehat{E} : \mathcal{H} \rightarrow \mathbb{R}\) satisfying the following properties: for all \(X, Y \in \mathcal{H}\), we have

(a) Monotonicity: If \(X \geq Y\) then \(\widehat{E}[X] \geq \widehat{E}[Y]\);

(b) Constant preserving: \(\widehat{E}[c] = c\);

(c) Sub-additivity: \(\widehat{E}[X + Y] \leq \widehat{E}[X] + \widehat{E}[Y]\) whenever \(\widehat{E}[X] + \widehat{E}[Y]\) is not of the form \(+\infty - \infty\) or \(-\infty + \infty\);

(d) Positive homogeneity: \(\widehat{E}[\lambda X] = \lambda \widehat{E}[X], \lambda > 0\).

Here \(\mathbb{R} = [-\infty, +\infty]\). The triple \((\Omega, \mathcal{H}, \widehat{E})\) is called a sub-linear expectation space.

Given a sub-linear expectation \(\widehat{E}\), let us denote the conjugate expectation \(\widehat{E}'\) of \(\widehat{E}\) by

\[
\widehat{E}'[X] := -\widehat{E}[-X], \quad \forall X \in \mathcal{H}.
\]

From the definition, we can easily get that \(\widehat{E}'[X] \leq \widehat{E}[X], \widehat{E}[X + c] = \widehat{E}[X] + c, \widehat{E}[X - Y] \geq \widehat{E}[X] - \widehat{E}[Y]\) and \(|\widehat{E}[X] - \widehat{E}[Y]| \leq \widehat{E}[|X - Y|].\) Further, if \(\widehat{E}[|X|]\) is finite, then \(\widehat{E}'[X]\) and \(\widehat{E}[X]\) are both finite.

Definition 1.2. (See[8]). (i) (Identical distribution) Let \(X_1\) and \(X_2\) be two \(n\)-dimensional random vectors defined respectively in sub-linear expectation spaces \((\Omega_1, \mathcal{H}_1, \widehat{E}_1)\) and \((\Omega_2, \mathcal{H}_2, \widehat{E}_2)\). They are called identically distributed, denoted by \(X_1 \overset{d}{=} X_2\), if \(\widehat{E}_1[\varphi(X_1)] = \widehat{E}_2[\varphi(X_2)], \quad \forall \varphi \in C_{1,Lip}(\mathbb{R}^n)\), whenever the sub-expectations are finite.

(ii) (Independence) In a sub-linear expectation space \((\Omega, \mathcal{H}, \widehat{E})\), a random vector \(Y = (Y_1, Y_2, \cdots, Y_n), Y_i \in \mathcal{H}\) is said to be independent to another random vector \(X = (X_1, X_2, \cdots, X_m), X_i \in \mathcal{H}\) under \(\widehat{E}\) if for each test function \(\varphi \in C_{1,Lip}(\mathbb{R}^m \times \mathbb{R}^n)\) we have \(\widehat{E}[\varphi(X, Y)] = \widehat{E}[\widehat{E}[\varphi(x, Y)]|X = x]\), whenever \(\widehat{E}(\varphi(x, Y)) < \infty\) for all \(x\) and \(\widehat{E}[|\varphi(x, Y)|] < \infty\).

(iii) (IID random variables) A sequence of random variables \(\{X_n; n \geq 1\}\) is said to be independent if \(X_{i+1}\) is independent to \((X_1, X_2, \cdots, X_i)\) for each \(i \geq 1\), and it is said to be identically distributed if \(X_i \overset{d}{=} X_1\), for each \(i \geq 1\).
We omit the definitions of extended independence and Negative dependence. For these definitions, please refer to [8, 32, 17]. In view of the definition of identically distribution, if \(\{X, X_n; n \geq 1\} \) is a sequence of identically distributed random variables in the sub-linear expectation space \((\Omega, \mathcal{H}, \hat{E})\), then \(\hat{E}[\phi(X_n)] = \hat{E}[\phi(X)], \forall \phi \in C_{l,Lip}(\mathbb{R}), n \geq 1 \). It can be showed that the independence implies the extended independence [32].

Next, we introduce the capacities corresponding to the sub-linear expectations. Let \(\mathcal{G} \subset \mathcal{F} \). A function \(V : \mathcal{G} \to [0, 1] \) is called a capacity if

\[
V(\phi) = 0, \ V(\Omega) = 1, \ \text{and} \ V(A) \leq V(B) \ \forall A \subset B, A, B \in \mathcal{G}.
\]

It is called to be sub-additive if \(V(A \cup B) \leq V(A) + V(B) \) for all \(A, B \in \mathcal{G} \) with \(A \cup B \in \mathcal{G} \).

Let \((\Omega, \mathcal{H}, \hat{E}) \) be a sub-linear space, and \(\hat{\mathcal{E}} \) be the conjugate expectation of \(\hat{E} \). We denote a pair \((\mathcal{V}, \mathcal{V}')\) of capacities by

\[
\mathcal{V}(A) := \inf\{\hat{E}[\xi] : I_A \leq \xi, \xi \in \mathcal{H}\}, \ \mathcal{V}'(A) := 1 - \mathcal{V}(A^c), \ \forall A \in \mathcal{F},
\]

where \(A^c \) is the complement set of \(A \). It is obvious that \(\mathcal{V} \) is sub-additive and

\[
\hat{E}[f] \leq \mathcal{V}(A) \leq \hat{E}[g], \ \hat{\mathcal{E}}[f] \leq \mathcal{V}'(A) \leq \hat{\mathcal{E}}[g], \ \text{if} \ f \leq I_A \leq g, f, g \in \mathcal{H}.
\] (1.1)

This implies Markov inequality: \(\forall X \in \mathcal{H}, \)

\[
\mathcal{V}(|X| \geq x) \leq \hat{E}[|X|^p]/x^p, \ \forall x > 0, p > 0
\]

from \(I(|X| \geq x) \leq |X|^p/x^p \in \mathcal{H} \). By Lemma 4.1 of [17], we have Hölder inequality: \(\forall X, Y \in \mathcal{H}, p, q > 1, \) satisfying \(p^{-1} + q^{-1} = 1, \)

\[
\hat{E}[|XY|] \leq (\hat{E}[|X|^p])^{\frac{1}{p}} (\hat{E}[|Y|^q])^{\frac{1}{q}}.
\]

Particularly, Jensen inequality:

\[
(\hat{E}[|X|^r])^{\frac{1}{r}} \leq (\hat{E}[|X|^s])^{\frac{1}{s}}, \ \text{for} \ 0 < r \leq s.
\]

We define the Choquet integrals/expectations \((C_V, C_{\mathcal{V}})\) by

\[
C_V[X] := \int_0^\infty V(X \geq x)dx + \int_0^0 (V(X \geq x) - 1)dx
\]

with \(V \) being replaced by \(\mathcal{V} \) and \(\mathcal{V}' \), respectively. If \(\lim_{c \to \infty} \hat{E}[|X| - c] = 0 \), then \(\hat{E}[|X|] \leq C_V[|X|] \). (see Lemma 4.5(iii) of [17])

Throughout this paper, \(C \) stands for a positive constant which may differ from one place to another. Let \(a_n \ll b_n \) denote that there exists a constant \(c > 0 \) such that \(a_n \leq c b_n \) for sufficiently large \(n \), \(I(.) \) denote an indicator function.
2. Main results

Theorem 2.1. Let \(\{X, X_n; n \geq 1\} \) be a sequence of independent identically distributed random variables in the sub-linear expectation space \((\Omega, \mathcal{F}, \mathbb{E})\). Let \(1 < \alpha < 2 \) and \(\alpha < \gamma \). Set \(b_n = n^{1/\alpha} (\log n)^{1/\gamma} \). Assume that \(\{a_{ni}; 1 \leq i \leq n, n \geq 1\} \) is an array of real numbers satisfying

\[
\sum_{i=1}^{n} |a_{ni}|^\alpha = O(n). \tag{2.1}
\]

If \(\mathbb{E}[[X]|\gamma] < \infty \), \(\sum_{k=1}^{\infty} k^{\gamma} \mathbb{V}(k < |X| \leq k + 1) < \infty \) and \(\mathbb{E}[X] = \mathbb{E}^* [X] = 0 \), then for any \(\varepsilon > 0 \),

\[
\sum_{n=1}^{\infty} \frac{1}{n} \mathbb{V} \left(\left| \sum_{i=1}^{n} a_{ni}X_i \right| > \varepsilon b_n \right) < \infty. \tag{2.2}
\]

Conversely, if (2.2) holds for any positive array \(\{a_{ni}\} \) satisfying (2.1), then \(\mathbb{C}_V[[X]|\gamma] < \infty \).

Remark 2.1. In the classical probability space \(\sum_{k=1}^{\infty} k^{\gamma} \mathbb{V}(k < |X| \leq k + 1) < \infty \iff E[[X]|\gamma] < \infty \). We give the condition \(\sum_{k=1}^{\infty} k^{\gamma} \mathbb{V}(k < |X| \leq k + 1) < \infty \) in sub-linear expectation space is equality to the moment condition in the classical probability space. By \(\sum_{k=1}^{\infty} k^{\gamma} \mathbb{V}(k < |X| \leq k + 1) < \infty \), we have \(\mathbb{C}_V[[X]|\gamma] < \infty \). But \(\mathbb{C}_V[[X]|\gamma] < \infty \) dose not imply \(\sum_{k=1}^{\infty} k^{\gamma} \mathbb{V}(k < |X| \leq k + 1) < \infty \) in sub-linear expectation space.

Remark 2.2. Cai [34] obtained analogous result of (2.2) under much stronger moment condition \(E [\exp(|X| \gamma)] < \infty \) in the classical probability space. Theorem 2.1 is established under the optimal moment conditions. Our Theorem 2.1 extends and improves the corresponding result of Cai [34] in some extent.

3. Proofs of main results

In order to prove our results, we need the following lemmas.

Lemma 3.1. ([17]) Let \(\{X_n; n \geq 1\} \) be a sequence of negatively dependent random variables in \((\Omega, \mathcal{F}, \mathbb{E})\), with \(\mathbb{E}[X_n] \leq 0 \). Let \(S_n = \sum_{i=1}^{n} X_i \), \(B_n = \sum_{i=1}^{n} \mathbb{E}[X_i^2] \). Then for any \(q \geq 2 \), there exists a constant \(C_q \geq 1 \) such that for all \(x > 0 \) and \(0 < \delta \leq 1 \)

\[
\mathbb{V}(S_n \geq x) \leq C_q \delta^{-2q} \frac{\sum_{i=1}^{n} \mathbb{E}[|X_i|^q]}{x^q} + \exp \left(- \frac{x^2}{2B_n (1 + \delta)} \right).
\]

Remark 3.1. By the fact if \(Y \) is independent to \(X \), then \(Y \) is negatively dependent to \(X \) [19], obviously Lemma 3.1 holds for independent random variables sequence.

Lemma 3.2. Under the conditions of Theorem 2.1, we have

\[
I := \sum_{n=1}^{\infty} \frac{1}{n} \sum_{i=1}^{n} \mathbb{V}(|a_{ni}X| > b_n) < \infty.
\]
Proof. (i) When \(|a_{ni}| \leq 1\), we have

\[
I \leq \sum_{n=1}^{\infty} \frac{1}{n} \sum_{i=1}^{n} \mathbb{V}(|X| > b_n)
\]

\[
\leq \sum_{n=1}^{\infty} b_n^{-\gamma} \mathbb{E}[|X|]\]

\[
= \sum_{n=1}^{\infty} n^{-\gamma/\alpha} (\log n)^{-1} \mathbb{E}[|X|] < \infty.
\]

(ii) When \(|a_{ni}| > 1\), similar to the proof of Lemma 2.3 (replace \(P\) by \(\mathbb{V}\)) of [33], we have

\[
I \leq \sum_{k=1}^{\infty} k^{\gamma} \mathbb{V}(k < |X| \leq k + 1) + \sum_{n=1}^{\infty} \sum_{k=[n^{1/\alpha} (\log n)^{1/\gamma}]+1}^{\infty} \mathbb{V}(k < |X| \leq k + 1)
\]

\[
=: I_1 + I_2.
\]

By the condition of Theorem 2.1, we have \(I_1 < \infty\). Note that

\[
I_2 \leq C \sum_{k=1}^{\infty} k^{\alpha}/(\log k)^{\alpha/\gamma} \mathbb{V}(k < |X| \leq k + 1)
\]

\[
\leq C \sum_{k=1}^{\infty} k^{\alpha} \mathbb{V}(k < |X| \leq k + 1) < \sum_{k=1}^{\infty} k^{\gamma} \mathbb{V}(k < |X| \leq k + 1) < \infty.
\]

We complete the proof of Lemma 3.2. \(\square\)

Proof of Theorem 2.1. We may assume that \(\sum_{i=1}^{n} |a_{ni}|^\alpha \leq n\). Since \(a_{ni} = a_{ni}^+ - a_{ni}^-\), we also assume that \(a_{ni} > 0\). We just need to prove

\[
\sum_{n=1}^{\infty} \frac{1}{n} \mathbb{V} \left(\sum_{i=1}^{n} a_{ni} X_i > \varepsilon b_n \right) < \infty \quad (3.1)
\]

because of considering \(\{-X_i; i \geq 1\}\) instead of \(\{X_i; i \geq 1\}\) in (3.1), we can obtain (2.2). For \(1 \leq i \leq n \) and \(n \geq 1\), let

\[
X_{ni}^{(1)} = -b_n (\log n)^{-\beta} I(a_{ni} X_i < -b_n (\log n)^{-\beta}) + a_{ni} X_i I(|a_{ni} X_i| \leq b_n (\log n)^{-\beta})
\]

\[
+ b_n (\log n)^{-\beta} I(a_{ni} X_i > b_n (\log n)^{-\beta}),
\]

\[
X_{ni}^{(2)} = (a_{ni} X_i - b_n (\log n)^{-\beta}) I(b_n (\log n)^{-\beta} < a_{ni} X_i \leq \varepsilon b_n / (4N)),
\]

\[
X_{ni}^{(3)} = (a_{ni} X_i + b_n (\log n)^{-\beta}) I(-\varepsilon b_n / (4N) \leq a_{ni} X_i < -b_n (\log n)^{-\beta}),
\]

\[
X_{ni}^{(4)} = (a_{ni} X_i - b_n (\log n)^{-\beta}) I(a_{ni} X_i > \varepsilon b_n / (4N)) + (a_{ni} X_i + b_n (\log n)^{-\beta}) I(a_{ni} X_i < -\varepsilon b_n / (4N)),
\]

\[
X_{ni}^{(5)} = (a_{ni} X_i + b_n (\log n)^{-\beta}) I(-\varepsilon b_n / (4N) \leq a_{ni} X_i < -b_n (\log n)^{-\beta}),
\]

\[
X_{ni}^{(6)} = (a_{ni} X_i - b_n (\log n)^{-\beta}) I(a_{ni} X_i < \varepsilon b_n / (4N)) + (a_{ni} X_i - b_n (\log n)^{-\beta}) I(a_{ni} X_i > \varepsilon b_n / (4N)),
\]

\[
X_{ni}^{(7)} = (a_{ni} X_i + b_n (\log n)^{-\beta}) I(a_{ni} X_i > \varepsilon b_n / (4N)) + (a_{ni} X_i + b_n (\log n)^{-\beta}) I(a_{ni} X_i < \varepsilon b_n / (4N)).
\]
where $0 < \beta < 1/\gamma$ and N is large enough. Then $a_{ni}X_i = X_{ni}^{(1)} + X_{ni}^{(2)} + X_{ni}^{(3)} + X_{ni}^{(4)}$ and
\{X_{ni}^{(1)}, 1 \leq i \leq n, n \geq 1\} is a sequence of independent random variables. It follows that
\[
\sum_{n=1}^{\infty} \frac{1}{n} \mathbb{P} \left(\sum_{i=1}^{n} a_{ni}X_i > \varepsilon b_n \right) \\
\leq \sum_{n=1}^{\infty} \frac{1}{n} \mathbb{P} \left(\sum_{i=1}^{n} X_{ni}^{(1)} > \varepsilon b_n/4 \right) + \sum_{n=1}^{\infty} \frac{1}{n} \mathbb{P} \left(\sum_{i=1}^{n} X_{ni}^{(2)} > \varepsilon b_n/4 \right) \\
+ \sum_{n=1}^{\infty} \frac{1}{n} \mathbb{P} \left(\sum_{i=1}^{n} X_{ni}^{(3)} > \varepsilon b_n/4 \right) + \sum_{n=1}^{\infty} \frac{1}{n} \mathbb{P} \left(\sum_{i=1}^{n} X_{ni}^{(4)} > \varepsilon b_n/4 \right)
: = J_1 + J_2 + J_3 + J_4.
\]
In order to prove $J_1 < \infty$, we first show that
\[
\frac{1}{b_n} \left| \sum_{i=1}^{n} \hat{E}[X_{ni}^{(1)}] \right| \to 0, \ n \to \infty. \tag{3.2}
\]
For $0 < \mu < 1$, let $g(x) \in C_{Lip}(\mathbb{R})$, $0 \leq g(x) \leq 1$ for all x, $g(x) = 1$ if $|x| \leq \mu$, $g(x) = 0$ if $|x| > \mu$ and $g(x)$ is non-increasing function when $x > 0$. Then
\[
I(|x| \leq \mu) \leq g(x) \leq I(|x| \leq 1), \ I(|x| > 1) \leq 1 - g(x) \leq I(|x| > \mu). \tag{3.3}
\]
In view of $\hat{E}[X_i] = 0$, we have that
\[
b_n^{-1} \left| \sum_{i=1}^{n} \hat{E}[X_{ni}^{(1)}] \right| \leq b_n^{-1} \sum_{i=1}^{n} |\hat{E}[X_{ni}^{(1)}]| \\
= b_n^{-1} \sum_{i=1}^{n} |\hat{E}[a_{ni}X_i] - \hat{E}[X_{ni}^{(1)}]| \\
\leq b_n^{-1} \sum_{i=1}^{n} \hat{E}[|a_{ni}X_i - X_{ni}^{(1)}|] \\
= b_n^{-1} \sum_{i=1}^{n} \hat{E}[|(a_{ni}X_i - b_n(\log n)^{-\beta})I(a_{ni}X_i < -b_n(\log n)^{-\beta}) \\
+ (a_{ni}X_i - b_n(\log n)^{-\beta})I(a_{ni}X_i > b_n(\log n)^{-\beta})|] \\
\leq 2b_n^{-1} \sum_{i=1}^{n} |a_{ni}|\hat{E}[|X|] \left(1 - g \left(\frac{a_{ni}(\log n)^{\beta}X}{b_n} \right) \right) \\
\leq 2b_n^{-\alpha} (\log n)^{\beta(\alpha-1)} \sum_{i=1}^{n} |a_{ni}|^{\alpha} \hat{E}[|X|]^{\alpha} \left(1 - g \left(\frac{a_{ni}(\log n)^{\beta}X}{b_n} \right) \right) \\
= C \hat{E}[|X|^{\alpha}](\log n)^{\beta(\alpha-1)-\alpha/\gamma} \to 0
\]
as $n \to \infty$, since $0 < \beta < 1/\gamma$ and $\mathbb{E}|X|^{\alpha} \leq (\mathbb{E}||X||)^{\alpha/\gamma} < \infty$. In order to prove that $J_1 < \infty$, it is enough to show that
\[
J'_1 := \sum_{n=1}^{\infty} \frac{1}{n} \mathbb{V} \left(\sum_{i=1}^{n} (X_{ni}^{(1)} - \mathbb{E}[X_{ni}^{(1)}]) > \varepsilon b_n/8 \right) < \infty. \tag{3.4}
\]
Note that for any $m > 0$, by C_r inequality and (3.3), we have
\[
|X_{ni}^{(1)}|^m \leq |a_{ni}|^m |X_i|^m I(|a_{ni}X_i| \leq b_n (\log n)^{-\beta}) + b_n^m (\log n)^{-m\beta} I(|a_{ni}X_i| > b_n (\log n)^{-\beta})
\]
\[
\leq |a_{ni}|^m |X_i|^m g \left(\frac{\mu a_{ni} (\log n)^{-\beta} X_i}{b_n} \right) + b_n^m (\log n)^{-m\beta} \left(1 - g \left(\frac{a_{ni} (\log n)^{-\beta} X_i}{b_n} \right) \right),
\]
thus
\[
\mathbb{E}||X_{ni}^{(1)}||^m \leq |a_{ni}|^m \mathbb{E}\left| X_i \right|^m g \left(\frac{\mu a_{ni} (\log n)^{-\beta} X_i}{b_n} \right) \tag{3.5}
\]
\[+ b_n^m (\log n)^{-m\beta} \mathbb{V}(\mathbb{E}||X_{ni}^{(1)}||^m > \mu b_n (\log n)^{-\beta}). \]
We will prove $J'_1 < \infty$ in two cases (\(\gamma < 2\) and $\gamma \geq 2$). When $\alpha < \gamma < 2$, by Markov’s inequality, Lemma 3.1 and (3.5), we have
\[
J'_1 \leq C \sum_{n=1}^{\infty} n^{-1} b_n^{-2} \sum_{i=1}^{n} \mathbb{E}[X_{ni}^{(1)}]^2 + C \sum_{n=1}^{\infty} n^{-1} \exp \left(- \frac{Cb_n^2}{\sum_{i=1}^{n} \mathbb{E}[X_{ni}^{(1)}]^2} \right)
\]
\[
\leq C \sum_{n=1}^{\infty} n^{-1} b_n^{-2} \sum_{i=1}^{n} \mathbb{E}[X_{ni}^{(1)}]^2 + C \sum_{n=1}^{\infty} n^{-1} \exp \left(- \frac{Cb_n^2}{\sum_{i=1}^{n} \mathbb{E}[X_{ni}^{(1)}]^2} \right)
\]
\[
\leq C \sum_{n=1}^{\infty} n^{-1} b_n^{-2} \sum_{i=1}^{n} \mathbb{E}[X_{ni}^{(1)}]^2 \left[a_{ni}^2 \mathbb{E}\left| X_i \right|^2 g \left(\frac{\mu a_{ni} (\log n)^{-\beta} X_i}{b_n} \right) \right]
\]
\[+ b_n^2 (\log n)^{-2\beta} \mathbb{V}(\mathbb{E}||X_{ni}^{(1)}||^m > \mu b_n (\log n)^{-\beta}) \]
\[+ C \sum_{n=1}^{\infty} n^{-1} \exp \left(- \frac{Cb_n^2}{\sum_{i=1}^{n} \mathbb{E}[X_{ni}^{(1)}]^2} \right)
\]
\[\leq C \sum_{n=1}^{\infty} n^{-1} b_n^{-2} \sum_{i=1}^{n} |a_{ni}|^\gamma \mathbb{E}|X_i|^\gamma (b_n (\log n)^{-\beta})^{2-\gamma}
\]
\[+ C \sum_{n=1}^{\infty} n^{-1} b_n^{-2} b_n^2 (\log n)^{-2\beta} (b_n (\log n)^{-\beta})^{-\gamma} \sum_{i=1}^{n} |a_{ni}|^\gamma \mathbb{E}|X_i|^\gamma
\]
\[+ C \sum_{n=1}^{\infty} n^{-1} \exp \left(- \frac{Cb_n^2}{\sum_{i=1}^{n} \mathbb{E}[X_{ni}^{(1)}]^2} \right)
\]
\[\leq C \sum_{n=1}^{\infty} n^{-1} b_n^{-2} (b_n (\log n)^{-\beta})^{2-\gamma} \sum_{i=1}^{n} |a_{ni}|^\gamma \mathbb{E}|X_i|^\gamma
\]
\[
+ C \sum_{n=1}^{\infty} n^{-1} \exp \left(- \frac{C b_n^2}{(b_n (\log n)^{-\beta})^{2-\gamma} \sum_{i=1}^{n} |a_{ni}| \gamma \hat{E} |X|^\gamma} \right)
\]
\[
= C \sum_{n=1}^{\infty} n^{-1} (\log n)^{-\beta (2-\gamma)} (b_n)^{-\gamma} \left(\sum_{i=1}^{n} |a_{ni}| \alpha \gamma / \alpha \hat{E} |X|^\gamma \right)
\]
\[
+ C \sum_{n=1}^{\infty} n^{-1} \exp \left(- \frac{C b_n^2}{(b_n (\log n)^{-\beta})^{2-\gamma} \sum_{i=1}^{n} |a_{ni}| \gamma \hat{E} |X|^\gamma} \right)
\]
\[
\leq C \sum_{n=1}^{\infty} \frac{1}{n} (\log n)^{-\beta (2-\gamma)} + C \sum_{n=1}^{\infty} n^{-1} \exp \left(- C (\log n)^{1+\beta (2-\gamma)} \right)
\]
\[
< \infty.
\]

When \(\gamma \geq 2\), taking \(p > \gamma\), by Lemma 3.1, we have

\[
J_1' \leq C \sum_{n=1}^{\infty} n^{-1} b_n^{-p} \sum_{i=1}^{n} \hat{E} [|X_{ni}^{(1)} - \hat{E} |X_{ni}^{(1)}|^p] \]
\[
+ C \sum_{n=1}^{\infty} n^{-1} \exp \left(- \frac{C b_n^2}{\sum_{i=1}^{n} \hat{E} |X_{ni}^{(1)}|^2} \right)
\]
\[
\leq C \sum_{n=1}^{\infty} n^{-1} b_n^{-p} \sum_{i=1}^{n} \hat{E} [|X_{ni}^{(1)}|^p] + C \sum_{n=1}^{\infty} n^{-1} \exp \left(- \frac{C b_n^2}{\sum_{i=1}^{n} \hat{E} |X_{ni}^{(1)}|^2} \right)
\]
\[
:= J_{11}' + J_{12}'.
\]

From the prove of (3.6), we have \(J_{12}' < \infty\). By (3.5), we have that

\[
J_{11}' \leq C \sum_{n=1}^{\infty} n^{-1} b_n^{-p} \sum_{i=1}^{n} \left(\hat{E} \left[|a_{ni}|^p |X|^p g \left(\frac{\mu a_{ni} (\log n)^{\beta} X_i}{b_n} \right) \right] \right)
\]
\[
+ b_n^p (\log n)^{-p \beta} \mathbb{P}(|a_{ni} X_i| > \mu b_n (\log n)^{-\beta})
\]
\[
\leq C \sum_{n=1}^{\infty} n^{-1} b_n^{-p} (b_n (\log n)^{-\beta})^{p-\gamma} \sum_{i=1}^{n} |a_{ni}| \gamma \hat{E} |X|^\gamma
\]
\[
\leq C \sum_{n=1}^{\infty} n^{-1} (\log n)^{-\beta (p-\gamma)} (b_n)^{-\gamma} \left(\sum_{i=1}^{n} |a_{ni}| \gamma / \alpha \hat{E} |X|^\gamma \right)
\]
\[
\leq C \sum_{n=1}^{\infty} n^{-1} (\log n)^{-\beta (p-\gamma)-1} < \infty.
\]

Hence, we have proved \(J_1 < \infty\).

Now we prove \(J_2 < \infty\). We should note that the identical distribution is defined under \(\hat{E}\), not under \(\mathbb{V}\) (see Definition 2.2 of [17]). \(X_i\) identical distribution implies \(\mathbb{E}[f(X_i)] = \mathbb{E}[f(X_1)]\) for \(f(.) \in C_{l, lip}(\mathbb{R})\), but does not imply \(\mathbb{V}(f(X_i) \in A) = \mathbb{V}(f(X_1) \in A)\). Therefore, in the calculation of \(\mathbb{V}(f(X_i) \in A)\), we need to convert \(\mathbb{V}\) to
\(\hat{\mathbf{E}} \). As to \(J_2 \), by the definition of \(X_{ni}^{(2)} \), the definition of independent, (3.3) and Markov inequality we have

\[
\mathbb{V} \left(\sum_{i=1}^{n} X_{ni}^{(2)} > \varepsilon b_n / 4 \right) \\
\leq \mathbb{V} \left(\text{there exist at least} \ N \ \text{indices} \ i \ \text{such that} \ a_{ni} X_i > b_n (\log n)^{-\beta} \right) \\
\leq \sum_{1 \leq i_1 < i_2 < \ldots < i_N \leq n} \mathbb{V} \left(a_{ni_1} X_{i_1} > b_n (\log n)^{-\beta}, \ldots, a_{ni_N} X_{i_N} > b_n (\log n)^{-\beta} \right) \\
\leq \sum_{1 \leq i_1 < i_2 < \ldots < i_N \leq n} \hat{\mathbf{E}} \left[\left(1 - g \left(\frac{a_{ni_1} \log n)^{\beta} X_{i_1}}{b_n} \right) \right) \ldots \left(1 - g \left(\frac{a_{ni_N} \log n)^{\beta} X_{i_N}}{b_n} \right) \right] \\
= \sum_{1 \leq i_1 < i_2 < \ldots < i_N \leq n} \hat{\mathbf{E}} \left[1 - g \left(\frac{a_{ni_1} \log n)^{\beta} X_{i_1}}{b_n} \right) \right] \ldots \hat{\mathbf{E}} \left[1 - g \left(\frac{a_{ni_N} \log n)^{\beta} X_{i_N}}{b_n} \right) \right] \\
\leq \sum_{1 \leq i_1 < i_2 < \ldots < i_N \leq n} \mathbb{V} (a_{ni_1} X_{i_1} > \mu b_n (\log n)^{-\beta}) \ldots \mathbb{V} (a_{ni_N} X_{i_N} > \mu b_n (\log n)^{-\beta}) \\
\leq \left(\sum_{i=1}^{n} \mathbb{V} (a_{ni} X_i > \mu b_n (\log n)^{-\beta}) \right)^N \\
\leq C \left(\hat{\mathbf{E}} |X|^{\gamma} b_n^{-\gamma} (\log n)^{\beta \gamma} \sum_{i=1}^{n} |a_{ni}|^{\gamma} \right)^N \\
\leq C \left(\hat{\mathbf{E}} |X|^{\gamma} \right)^N (\log n)^{-1+\beta \gamma N},
\]

which implies that \(J_2 < \infty \) for large enough \(N \) such that \((1 - \beta \gamma) N > 1 \). Similarly, we can have \(J_3 < \infty \). By Lemma 3.2, we can have

\[
J_4 \leq \sum_{n=1}^{\infty} \frac{1}{n} \sum_{i=1}^{n} \mathbb{V} (|a_{ni} X_i| > \varepsilon b_n / 4) < \infty.
\]

Therefore (2.2) holds.

Conversely, suppose that (2.2) holds for any array \(\{a_{ni}\} \) satisfying (2.1). For each \(n \geq 1 \), we take \(a_{n1} = n^{1/\alpha} \) and \(a_{ni} = 0 \) for \(2 \leq i \leq n \). Then \(\{a_{ni}\} \) obviously satisfies (2.1). By the assumption, we get that for any \(\varepsilon > 0 \),

\[
\infty > \sum_{n=1}^{\infty} \frac{1}{n} \mathbb{V} \left(|X_1| > \varepsilon (\log n)^{1/\gamma} \right) \\
= \sum_{k=0}^{\infty} \sum_{n=2^k}^{2^{k+1}-1} \frac{1}{n} \mathbb{V} \left(|X_1| > \varepsilon (\log n)^{1/\gamma} \right) \\
\geq \sum_{k=0}^{\infty} \sum_{n=2^k}^{2^{k+1}-1} \frac{1}{2^{k+1}} \mathbb{V} \left(|X_1| > \varepsilon (\log 2^{k+1})^{1/\gamma} \right)
\]
\[
= \sum_{k=0}^{\infty} 2^k \frac{1}{2^{k+1}} V \left(|X_1| > \frac{\varepsilon((k+1) \log 2)^{1/\gamma}}{2} \right)
\]
\[
\geq \sum_{k=0}^{\infty} \frac{1}{2} V(|X_1| > Ck^{1/\gamma}).
\]

Note that for any \(c > 0 \)
\[
C_V[|X_1|^\gamma/c] = \int_0^\infty V(|X_1|^\gamma \geq cx)dx < \infty \iff \sum_{n=1}^{\infty} V(|X_1|^\gamma \geq cn) < \infty.
\]

Hence, we have \(C_V[|X_1|^\gamma] < \infty \). We complete the proof of Theorem 2.1. \(\square \)

Availability of data and material. All of the availability of data and material about this article are in the article. There aren’t other data and material about this article.

Competing interests. The authors declare that they have no competing interests.

Authors’ contributions. Fengxiang Feng conceived of the study and drafted, complete the manuscript. Haiwu Huang participated in the discussion of the manuscript. Fengxiang Feng and Haiwu Huang read and approved the final manuscript.

Acknowledgements. We would like to thank the editors and anonymous reviewers for their careful reading and detailed comments, which have led to significant improvements of our paper.

Funding. Fengxiang Feng’s research work is supported by the National Natural Science Foundation of China (11961015), Natural Science Foundation of Guangxi (2019GXNSFAA245031 and 2018GXNSFBA281019) and supported by Foundation of Guilin University of Technology (GUTQDJJ2004044).

Haiwu Huang’s research work is supported by the Scientific Research Fund of Hunan Provincial Education Department (18C0660), the National Statistical Science Research Project of China (2018LY05) and the State Scholarship Fund of China Scholarship Council (No. 201908430242).

REFERENCES

[1] L. Denis, C. Martini, *A theoretical framework for the pricing of contingent claims in the presence of model uncertainty*, Ann. Appl. Probab. 2006, 16 (2), 827–852.

[2] I. Gilboa, *Expected utility theory with purely subjective non-additive probabilities*, J. Math. Econom. 1987, 16, 65–68.

[3] M. Marinacci, *Limit laws for non-additive probabilities and their frequentist interpretation*, J. Econom. Theory. 1999, 84, 145–195.

[4] S. Peng, *BSDE and related g-expectation*, Pitman. Res. Notes. Math. Ser. 1997, 364, 141–159.

[5] S. Peng, *Monotonic limit theorem of BSDE and nonlinear decomposition theorem of Doob-Meyer type*, Probab. Theory Related Fields 1999, 113, 473–499.

[6] S. Peng, *G-expectation, G-Brownian motion and related stochastic calculus of Ito type*, In: Proceedings of the 2005 Abel Symposium, Berlin-Heidelberg: Springer, 2006, 541–567.
[7] S. Peng, Multi-dimensional G-Brownian motion and related stochastic calculus under G-expectation, Stochastic Process Appl. 2008, 118 (12), 2223–2253.

[8] S. Peng, A new central limit theorem under sublinear expectations, 2008, ArXiv:0803.2656v1 [math.PR].

[9] S. Peng, Nonlinear Expectations and Stochastic Calculus under Uncertainty, 2010, ArXiv:1002.4546 [math.PR].

[10] S. Peng, Law of large numbers and central limit theorem under nonlinear expectations, 2007, ArXiv:math.PR/0702358v1 [math.PR].

[11] Z. J. Chen, Strong laws of large numbers for sub-linear expectations, Sci. China Math. 2016, 59 (5), 945–954.

[12] C. Hu, A strong law of large numbers for sub-linear expectation under a general moment condition, Statist. Probab. Lett. 2016, 119, 248–258.

[13] Y. Q. Chen, A. Y. Chen, W. N. G. Kai, The strong law of large numbers for extended negatively dependent random variables, J. Appl. Prob. 2010, 47, 908–922.

[14] Q. Y. Wu, Y. Y. Jiang, Strong law of large numbers and Chover’s law of the iterated logarithm under sub-linear expectations, J. Math. Anal. Appl. 2018, 460, 252–270.

[15] X. F. Tang, X. J. Wang, Y. Wu, Exponential inequalities under sub-linear expectations with applications to strong laws of large numbers, Filomat, 2019, 33 (10), 2951–2961.

[16] Z. J. Chen, F. Hu, A law of the iterated logarithm for sublinear expectations, J. Financ Eng. 2014, 1, 1–15.

[17] L. X. Zhang, Exponential inequalities under sub-linear expectations with applications to laws of the iterated logarithm, Sci. China Math. 2016, 59 (12), 2503–2526.

[18] L. X. Zhang, Donsker’s invariance principle under the sub-linear expectation with an application to Chung’s law of the iterated logarithm, Communications in Math. Stat. 2015, 3, 187–214.

[19] L. X. Zhang, Rosenthal’s inequalities for independent and negatively dependent random variables under sub-linear expectations with applications, Sci. China Math. 2016, 59 (4), 751–768.

[20] F. X. Feng, D. C. Wang, Q. Y. Wu, Complete convergence for weighted sums of negatively dependent random variables under the sub-linear expectations, Communications in Statistics-Theory and Methods 2019, 48 (6), 1351–1366.

[21] H. Y. Zhong, Q. Y. Wu, Complete convergence and complete moment convergence for weighted sums of extended negatively dependent random variables under sub-linear expectation, J. Inequal. Appl. 261 (2017), doi:10.1186/s13660-017-1538-1.

[22] M. M. Xi, Y. Wu, X. J. Wang, Complete convergence for arrays of rowwise END random variables and its statistical applications under sub-linear expectations, Journal of the Korean Statistical Society, 2019, 48 (3), 412–425.

[23] L. X. Zhang, Self-normalized moderate deviation and laws of the iterated logarithm under G-expectation, Commun. Math. Stat. 2016, 4, 229–263.

[24] Y. Wu, X. J. Wang, L. X. Zhang, On the asymptotic approximation of inverse moment under sub-linear expectations, Journal of Mathematical Analysis and Applications, 2018, 468 (1), 182–196.

[25] L. Baum, M. Katz, Convergence rates in the law of large numbers, Trans. Amer. Math. Soc., 1965, 120 (1), 108–123.

[26] M. Peligrad, A. Gut, Almost sure results for a class of dependent random variables, J. Theoret. Probab. 1999, 12, 87–104.

[27] X. J. Wang, X. Deng, L. L. Zheng, S. H. Hu, Complete convergence for arrays of rowwise negatively superadditive dependent random variables and its applications, Statistics: A Journal of Theoretical and Applied Statistics, 2014, 48 (4), 834–850.

[28] Q. Y. Wu, Complete convergence for negatively dependent sequences of random variables, Journal of Inequalities and Applications, vol. 2010, Article ID 507293, 10 pages.

[29] H. W. Huang, D. C. Wang, Q. Y. Wu, Q. X. Zhang, A note on the complete convergence for sequences of pairwise NQD random variables, J. Inequal. Appl. 2011, 92 doi:10.1186/1029-242X-2011-92.

[30] P. Y. Chen, S. H. Sung, Complete convergence and strong laws of large numbers for weighted sums of negatively orthonormal dependent random variables, Acta Math. Hungar. 2016, 148 (1): 83–95.

[31] X. J. Wang, A. T. Shen, Z. Y. Chen, S. H. Hu, Complete convergence for weighted sums of NSD random variables and its application in the EV regression model, TEST, 2015, 24 (1): 166–184.
[32] L. X. Zhang, Strong limit theorems for extended independent and extended negatively dependent random variables under non-linear expectations, 2016, arXiv preprint arXiv:1608.00710.

[33] S. H. Sung, On the strong convergence for weighted sums of random variables, Stat Papers. 2011, 52, 447–454.

[34] G. H. Cai, Strong laws for weighted sums of NA random variables, Metrika. 2008, 68, 323–331.

(Received August 10, 2019)

Fengxiang Feng
College of Science
Guilin University of Technology
Guilin, Guangxi 541004, P. R. China
e-mail: fengfengxiang2013@163.com

Haiwu Huang
College of Mathematics and Statistics
Hengyang Normal University
Hengyang 421002, P. R. China
e-mail: haiwuhuang@126.com