A review of ureteral injuries after external trauma

Bruno MT Pereira1*, Michael P Ogilvie1, Juan Carlos Gomez-Rodriguez1,2, Mark L Ryan1, Diego Peña2, Antonio C Marttos1, Louis R Pizano1, Mark G McKenney1

Abstract

Introduction: Ureteral trauma is rare, accounting for less than 1% of all urologic traumas. However, a missed ureteral injury can result in significant morbidity and mortality. The purpose of this article is to review the literature since 1961 with the primary objective to present the largest medical literature review, to date, regarding ureteral trauma. Several anatomic and physiologic considerations are paramount regarding ureteral injuries management.

Literature review: Eighty-one articles pertaining to traumatic ureteral injuries were reviewed. Data from these studies were compiled and analyzed. The majority of the study population was young males. The proximal ureter was the most frequently injured portion. Associated injuries were present in 90.4% of patients. Admission urinalysis demonstrated hematuria in only 44.4% patients. Intravenous ureterogram (IVU) failed to diagnose ureteral injuries either upon admission or in the operating room in 42.8% of cases. Ureteroureterostomy, with or without indwelling stent, was the surgical procedure of choice for both trauma surgeons and urologists (59%). Complications occurred in 36.2% of cases. The mortality rate was 17%.

Conclusion: The mechanism for ureteral injuries in adults is more commonly penetrating than blunt. The upper third of the ureter is more often injured than the middle and lower thirds. Associated injuries are frequently present. CT scan and retrograde pyelography accurately identify ureteral injuries when performed together. Ureteroureterostomy, with or without indwelling stent, is the surgical procedure of choice of both trauma surgeons and urologists alike. Delay in diagnosis is correlated with a poor prognosis.
surgical approaches to their treatment and proposes an updated management algorithm.

Anatomic and physiologic considerations

Ureteral injuries (UI) due to trauma are rare as the ureter is well protected in the retroperitoneum by the bony pelvis, psoas muscles and vertebrae [10,11]. The left ureteropelvic junction is posterior to the pancreas and ligament of Treitz. The inferior mesenteric artery and sigmoidal vessels cross in front of the left ureter at its inferior pole. On the right side, the ureter lies posterior to the duodenum and just lateral to the inferior vena cava, with the right colic and ileocolic vessels crossing in front. Due to this protection, injuries to the ureter are typically accompanied by significant collateral damage and management is dictated by the severity of associated injuries [10-13]. Anatomically, the ureter is 22 to 30 cm in length and is divided into three portions: the proximal ureter (upper) is the segment that extends from the ureteropelvic junction to the area where the ureter crosses the sacroiliac joint, the middle ureter courses over the bony pelvis and iliac vessels, and the pelvic or distal ureter (lower) extends from the iliac vessels to the bladder (Fig. 1). The terminal portion of the ureter may be subdivided further into the juxtavesical, intramural, and submucosal portions. The surgeon must pay special attention to the gonadal and iliac vessels, as they cross the ureter at the posterior and anterior levels respectively, descending into the pelvis.

The ureter’s blood supply comes from the ureteral artery, which runs longitudinally along the ureter and lacks collateral flow in 80% of patients. The upper third of the ureteral artery is supplied by the aorta and renal artery, while branches of the iliac, lumbar and vesicular arteries supply the middle and lower thirds of the ureter. In the abdomen the blood supply is medial, while in the pelvis the blood supply is lateral with the richest blood supply to the pelvic ureter. From a surgical standpoint, knowledge of the vascular supply to the ureter is crucial prior to any manipulation and subsequent repair. This tenuous blood supply must be considered when dealing with complex repairs of significant injuries and strict adherence to the principles of ureteral repair can prevent complications such as leak, renal injury and in some cases, death [14-17].

Histologically, the ureter consists of three distinct layers. The first is an inner mucosal layer of transitional epithelium covered by lamina propria. The inner layer produces mucosal secretions to protect itself from urine. The second or middle layer is muscular and consists of both longitudinal and circular layers of smooth muscle, which help propel urine forward by peristalsis. The outer (adventitial) layer consists of areolar connective tissue and contains nerves, blood vessels and lymphatic vessels.

No continuous lymph channels extend from the kidney to the bladder. Lymphatic drainage from the ureter drains to regional lymph nodes including the common iliac, external iliac and hypogastric lymph nodes.

The ureter is a dynamic organ rather than a simple conduit through which urine flows. It conducts urine from the renal papillae to the ureteral orifices in the bladder irrespective of the spatial orientation of the body. However, when the urinary transport system is disturbed, gravity may influence directional flow [18]. Three major functions are attributed to the renal pelvis and ureters: absorption, dynamics, and tonus. Absorption is minimal and unaffected by repair of the ureter and its consequent function. The dynamics reflect the synchronous and progressive contractile movement of the ureter away from the ureteropelvic junction (UPJ) to the ureter-vesical orifice, produced by the intrinsic automaticity of the ureteral musculature [14,18]. Tonus of the ureter is the degree of contraction that the ureteral wall assumes for a given rate and volume of urinary output. Tonus initiates detrusor action at a certain volume, thus perpetrating the cyclical undulations. When a ureter is damaged by penetrating or blunt trauma, peristalsis beyond the injury ceases. Tonus is decreased in the ureter, proximal to the injury, due to stretching from the increased volume of urine in this segment. This increased volume of urine is the result of detrusor action being halted at the damaged (inert) segment of the ureter [19]. Thus, urine volume, diuresis and distention are the main modulators of peristalsis along with the sympathetic and parasympathetic nervous system; however, prostaglandins and tachykinins also play a role.

Wound Ballistics

Ballistics is the study of the motion of projectiles in flight and wound ballistics is the study of the motion of missiles within the body and their wounding capacity. The trauma surgeon must be knowledgeable in both ballistics and wound ballistics in order to better understand the mechanism of injury.

The ureter may be injured by penetrating (i.e. gunshot or stab wounds) or blunt trauma. The relative predominance of ureteral injury associated with gunshot wounds is reflected in the characteristics of the permanent cavity trajectory of the bullet and the missile blast injury (temporary cavity). The bullet can damage the ureter via direct transection or the blast injury caused by the missile may disrupt the intramural blood supply, resulting in ureteral necrosis. Fortunately, fewer than 3% of gunshot injuries involve the ureters [11].

The powerful stretch due to blast effect (temporary cavity) caused by low velocity missiles over the ureter and adjacent tissues may not be immediately apparent during laparotomy or by extravasation of contrast during imaging. However, the blast contusion can seriously
damage the small ureteral blood vessels producing thrombosis and ischemia, which eventually results in delayed necrosis and complications (i.e. urine leakage and ureteral fistula). Therefore, the surgeon must be aware that the integrity of the ureter may be in jeopardy for several days post-injury [7,16,20-25].

As the incidence of trauma has increased over the years, so too has the incidence of ureteral injury. Additionally, as the power of the weapons utilized increases, the characteristics of penetrating trauma continue to evolve. High velocity missile wounds are much more commonplace and are a challenging entity for trauma surgeons. Gunshot wounds are mainly low velocity and typically create only localized damage. In contrast, the significant kinetic energy of high velocity missiles result in extensive damage to the surrounding tissue creating temporary cavities in the order of 30 to 40 times larger than the size of the permanent cavity. This extremely high pressure can cause irreversible damage to adjacent tissues and it is imperative that the trauma surgeon be aware of these devastating effects [25,26].

Literature review

Methods

The following electronic databases were used to identify publications for this review: Bireme/Lilacs (Latin America and Caribbean Center on Health Science Information, Pan American Health Organization - Virtual Health Library), Cochrane Library (Injuries Group’s), Embase, Medline, Pubmed and Springer Link.

Key words used: “ureter”, “ureteral”, “traumatic”, “trauma”, and “injury”.

![Anatomic division of the ureter](image-url)
Eighty-one articles were initially identified. Publications were excluded if they did not mention data on demographics, type of trauma or clinical/surgical approach. Articles were also excluded if they were not written in English, Spanish or Portuguese. Overall, only four articles were excluded with the remaining articles compiled into Additional file 1 - Table S1.

The medical literature review table (Additional file 1 - Table S1) is organized by year of publication in descending order. Authors, study design, objectives, incidence (demographics, type of injury, ureter injured portion), admission diagnostics (urine analysis, IVU, CT scan, RPG, intraoperative diagnosis), surgical technique and complications (early and late) were compiled. Of note, missed injuries were considered a late complication.

Results

Literature search identified 77 retrospective reviews with a total of 1021 patients. All articles were classified as level of evidence (LOE) 3 or 4 (retrospective studies and case reports).

Of all compiled patients, 83.4% (± 28.5) were males and the average age was 23.2 years old (± 12.1), reflecting young male predominance in violent trauma.

The majority of ureteral injuries (61.1% ± 45.7) were caused by a penetrating mechanism. Proximal ureteral injury occurred at a rate of 59.7% (± 37), while mid and distal injuries occurred 25.6% (± 30.4) and 20.8% (± 24.4) of the time, respectively.

Associated injuries were present in 90.4% (± 26.2) of patients, indicating that ureteral injuries often occurs as part of a myriad of problems associated with significant trauma. Small and/or large bowel injuries were most commonly involved in conjunction with ureteral trauma (96% ± 21.5).

When performed, admission urinalysis demonstrated hematuria in only 44.4% (± 36.3) of patients. Intravenous urography (IVU) failed to diagnose ureteral injuries either upon admission or in the operating room in 42.8% (± 38) of cases. However, when a CT scan and retrograde pyelogram were performed together they were able to accurately identify ureteral injuries - in an early or delayed setting, 88.3% (± 28.2) of the time. Intraoperative diagnoses were made in 62% (± 38.8) of cases.

Ureteroureterostomy, with or without indwelling stent, was the surgical procedure of choice of both trauma and urology surgeons (59% ± 34).

Complications occurred in 36.2% (± 34) of cases, including retroperitoneal abscesses, infected urinomas and fistulas; these were usually secondary to a delay in diagnosis. Missed ureteral injuries were reported in 38.2% (± 39.5) of the cases. The associated mortality rate of the study population was 17%, although the contribution from the ureteral injury is difficult to quantify.

Diagnosis and management

In diagnosing ureteral injuries from trauma, the most important factor is a high index of suspicion [27]. Typically there are no classic signs or symptoms for ureteral injuries, but should be suspected in all cases of penetrating abdominal injury and in cases of blunt deacceleration trauma, particularly in children in whom the kidney and renal pelvis can be torn from the ureter, secondary to their hyper-extensible vertebral column [10,11,28]. Although some authors advocate that hematuria is the hallmark of any GU lesion, it is present in only half (43%) of those with UI, indicating that hematuria is not a sensitive indicator of ureteral trauma [10,13,17,28-30]. Therefore, any patient that presents with gross hematuria, flank pain or ecchymosis should undergo more extensive investigation [16,20,28,29].

Unfortunately, there is no imaging modality best suited to diagnose acute ureteral injury. The use of ultrasound has gained widespread use in trauma but has proven unreliable in evaluating ureteral injuries, particularly because of their small caliber and retroperitoneal location. According to the European Association of Urology guidelines, computed tomography (CT) and an intra-operative single-shot intravenous pyelogram (IVP) are the most useful diagnostic tools, but some authors have argued against the reliability of single-shot IVP [10,11,17,30-34]. Complete IVP (which includes all excretory phases) has proven a reliable study in the stable trauma patient for diagnosing ureteral trauma but is often impractical given the precarious nature of most trauma victims [35-39]. Retrograde pyelography is believed to be the most accurate method of diagnosis but is not feasible in hemodynamically unstable patients. For the stable patient who can undergo a CT scan, delayed excretory phase images have the benefit of not only showing extravasation of contrast media from the ureteral injury, which may be subtle, but can also illustrate accompanying lesions, particularly involving the kidney [12,30,32,33]. In the delayed setting, a CT may also diagnose missed ureteral injuries (i.e. ascites, urinomas, hydronephrosis and contrast extravasation).

The American Association for the Surgery of Trauma (AAST) created a grading scale of ureteral injuries (UI) (Table 1) [40] and surgical management has been shown to be highly dependent on the AAST grade, site of the injury, associated injuries and whether the ureteral injury is diagnosed in the acute or delayed setting [10-13,17,19].

The primary objective of ureteral repair is preservation of renal function. Hence, the most important factor in the management of these injuries is to maintain drainage of urine from the kidney and to prevent the
formation of urinoma and abscess [19]. The algorithm for external ureteric trauma is shown in Fig 2[30]. Injuries identified in the early phase may be surgically repaired over a stent using fine absorbable sutures, assuming a tension free, healthy tissue anastomosis can be achieved. Large ureteric injuries present a significant problem, especially in the upper and mid zones, as they may require significant reconstruction [13,17,19,36,41-46]. Successful repair methods for acute ureteric injuries are based on certain principles: ureteric debridement and careful mobilization, spatulated, tension-free, water-tight anastomosis over a stent (5-0 absorbable suture under magnification), isolation of the ureteric repair from associated injuries and adequate drainage of the retroperitoneum [19,30,36,42,43].

Some authors oppose the use of indwelling stents in the setting of ureteral trauma, citing such potential problems as obstruction, stricture formation, inflammation from the foreign body, stent migration and patient discomfort, however, this is not supported by the current surgical literature [36,47]. Other authors have argued that the benefits of the ureteral stent in the management of this injury far outweigh the potential risks and advocate use of a stent, especially in the setting of high-velocity gunshot wounds [12,37,38,41,48-51]. The pertinent reconstructive options, based on location are presented in table 2 (Figs 3, 4, 5, 6).

Failure of prompt diagnosis can lead to several complications including renal failure, sepsis and death. More common complications include the formation of urinomas, periureteral abscess, fistulas and strictures. However, these complications are readily preventable and can occur less than 5% of the time with proper stenting and/or placement of a nephrostomy tube [10,17,43]. Surgical repair is typically recommended for delayed complications such as fistulas and strictures.

Table 1 AAST Classification for Ureteral Injuries (adapted)

Grade	Description of Injury
I	Hematoma only
II	Laceration < 50% of circumference
III	Laceration > 50% of circumference
IV	Complete tear < 2 cm of devascularization
V	Complete tear > 2 cm of devascularization

Figure 2 Ureteral trauma algorithm
The early diagnosis of ureteral injury is extremely important and directly related to the patient’s prognosis [8,24,25,30,41,52-62]. In the articles reviewed, late diagnoses including missed injuries were correlated with higher rates of morbidity and mortality.

Other factors that might confound the diagnosis of ureteral trauma are: pre-existing renal pathology, associated injuries, acute and chronic renal failure, arteriovenous fistula and renovascular hypertension [45].

Special Considerations

In the event of a complete loss of the ureter, the various surgical options have been well documented; these include an appendiceal interposition (children - delayed), an ileal segment interposition (delayed), or autotransplantation [63-69].

The vermiform appendix has been used as a conduit in some cases (adults or children) and is another surgical option for complete ureteric loss in the non-acute trauma setting. The appendix is similar to the ureter in caliber and mucosal surface area. Additionally, there is no significant absorption of sodium chloride or urea and hence electrolyte disturbances are not seen (as has been described with ileal interposition grafts). The reported disadvantages of using the appendix are stenosis, anastomotic dehiscence, fistula formation and inadequate length, which may exclude its use in significant ureteral loss. Anastomotic breakdown is reported to have a higher incidence in isoperistaltic interposition. Antiperistaltic interposition is therefore recommended to theoretically reduce torsion of the mesoappendix and thus prevent further vascular compromise [63-69].

An ileal interposition, much like the appendiceal interposition, is not performed in the acute setting due to the need for bowel preparation. Despite reported success rates of up to 81%, several authors condemn this approach for its high complication rate [29,30,61,70-75]. Reported complications include urosepsis, vesicoileal reflux, obstruction, excess mucus formation resulting in obstruction secondary to the formation of mucus plugs,

Table 2 Pertinent reconstructive options, based on location

Location	Options
Upper third	Uretero-ureterostomy (Fig. 3)
	Ureteropyelostomy
Middle third	Uretero-ureterostomy
	Transuretero-ureterostomy (Fig. 4)
	Anterior wall bladder flap (Boari) (Fig. 5)
Lower third	Ureteroneocystostomy (direct reimplantation)
	Ureteroneocystostomy (psaas hitch) (Fig. 6)

The vermiform appendix has been used as a conduit in some cases (adults or children) and is another surgical option for complete ureteric loss in the non-acute trauma setting. The appendix is similar to the ureter in caliber and mucosal surface area. Additionally, there is no significant absorption of sodium chloride or urea and hence electrolyte disturbances are not seen (as has been described with ileal interposition grafts). The reported disadvantages of using the appendix are stenosis, anastomotic dehiscence, fistula formation and inadequate length, which may exclude its use in significant ureteral loss. Anastomotic breakdown is reported to have a higher incidence in isoperistaltic interposition. Antiperistaltic interposition is therefore recommended to theoretically reduce torsion of the mesoappendix and thus prevent further vascular compromise [63-69].

An ileal interposition, much like the appendiceal interposition, is not performed in the acute setting due to the need for bowel preparation. Despite reported success rates of up to 81%, several authors condemn this approach for its high complication rate [29,30,61,70-75]. Reported complications include urosepsis, vesicoileal reflux, obstruction, excess mucus formation resulting in obstruction secondary to the formation of mucus plugs,
urolithiasis and electrolyte disturbances, most commonly in the form of metabolic acidosis [70-75].

Autotransplantation involves relocating the ipsilateral kidney to the pelvis; the renal artery and vein are then anastomosed to the iliac vessels and the healthy ureter or renal pelvis is anastomosed to the bladder. Autotransplantation is less desirable than use of the appendiceal or ileal conduit for massive ureteral loss due to its complex nature.

Fibrin sealant is being applied more often in various surgical fields, including urology. It has proven to be safe in trauma and to reinforce ureteral anastomosis [76-79]. Fibrin glue has not been shown to have adverse effects in rabbit models [80].

Conclusion

Ureteral injuries (UI) due to trauma are unusual. However, failure to take this type of injury into consideration can have dire consequences, as complications from missed injuries are a cause of severe morbidity and mortality. This is the largest review of the literature regarding traumatic ureteral injuries and from this several things are evident. First, penetrating injuries are more common than blunt ureteral injuries in adults. Second, the upper third of the
ureter is more often injured than the middle and lower third. Third, associated injuries are frequently present. Fourth, CT scan and retrograde pyelography accurately identify ureteral injuries when performed in concert. Fifth, ureteroureterostomy, with or without indwelling stent, is the surgical procedure of choice of both trauma surgeons and urologists alike. Sixth and lastly, delay in diagnosis is associated with a worse prognosis.

Acknowledgements
We appreciate the comments and suggestions of Dr. Kenneth Proctor, PhD. We are especially in debt to him and his unique way of conducting research. We also appreciate the kind gesture of Dr. Steven Brandes, MD, for granting permission to use and adapt part of his previously published data.

Author details
1 DeWitt Daughtry Family Department of Surgery, Leonard M. Miller School of Medicine, University of Miami/Jackson Memorial Hospital, Ryder Trauma Center, Miami, FL, USA. 2 Universidad Militar Nueva Granada, Hospital Militar Central, Servicio de Cirurgia General, Bogotá, DC, Colombia.

Additional file 1: Ureteral Injuries Medical Literature Review. The medical literature review table is organized by year of publication in descending order (2008-1961). Authors, study design, objectives, incidence (demographics, type of injury, ureter injured portion), admission diagnostics (urine analysis, IVU, CT scan, RPG, intraoperative diagnosis), surgical technique and complications (early and late) were compiled [7-9,11,13,16,19-21,25,27-29,32-36,39,42,48,49,51-53,55-59,61,62,64, 67,69,81-119].

Click here for file [http://www.biomedcentral.com/content/supplementary/1757-7241-18-6-S1.DOCX]

Figure 5 Boari flap
Competing interests
The authors declare that they have no competing interests.

References
1. CDC: FastStats Atlanta. Centers for Disease Control and Prevention 2006.
2. WHO: World Health Statistics 2009 Geneva. World Health Organization 2009.
3. WHO: The top 10 causes of death Geneva. World Health Organization 2009.
4. Poland A: On rupture of the ureter. Guy’s Hospital Reports 1869, 14(85):189-190.
5. Morris H: Hunterian Lectures - Operations on the ureter. British Medical Journal 1868, 1:873-879.
6. Morris HC: Surgical Diseases of the Kidney Philadelphia: Lea Brothers & Co 1 1904.
7. Kirchner KF, Jr, Rharny RK, Freeborn WA: Bilateral ureteral injury secondary to single, low velocity gunshot wound. Urology 1981, 18(3):282-3.
8. Presti JC, Jr, Carroll PR, McAninch JW: Ureteral and renal pelvic injuries from external trauma: diagnosis and management. J Trauma 1989, 29(3):370-4.
9. Žufal R: Traumatic avulsion of the upper ureter. J Urol 1961, 85:246-8.
10. Lynch TH, Martinez-Pineiro L, Plas E, Serafentinides E, Turkien L, Santucci RA, Hohenfellner M: EAU guidelines on urological trauma. Eur Urol 2005, 47(1):1-15.
11. Best CD, Petrone P, Buscarini M, Demitay S, Kuncr E, Kimbrell B, Asensio JA: Traumatic ureteral injuries: a single institution experience validating the American Association for the Surgery of Trauma-Organ Injury Scale grading scale. J Urol 2005, 173(4):1202-5.
12. Sinivasan RN, Akbar SA, Jath S, Howells GA: Genitourinary trauma: a pictorial essay. Emerg Radiol 2009, 16(1):21-33.
13. Palmer LS, Rosenbaum RR, Genthbaum MD, Kreutzer ER: Penetrating ureteral trauma at an urban trauma center: 10-year experience. Urology 1999, 54(1):34-6.
14. Narath P: The hydromechanics of calyx renalis. J Urol 1940, 43:145-176.
15. Weiss RM: Ureteral function. Urology 1978, 12(2):114-33.
16. Cass AS: Ureteral contusion and delayed necrosis from gunshot injury. Urology 1978, 12(2):195-6.
17. Tezval H, Tezval M, von Klot C, Herrmann TR, Dressing K, Jonas U, Burchardt M: Urinary tract injuries in patients with multiple trauma. World J Urol 2007, 25(2):177-84.
18. Narath P: The physiology of the renal pelvis. Urology Edited by: Anonymous Philadelphia: WB Saunders 1954, 61-108.
19. Pumphrey JD, Jolin RH, Lich R Jr: Missile wounds of the ureter. J Trauma 1962, 2:289-95.
20. Cass AS: Ureteral contusion with gunshot wounds. J Trauma 1984, 24(1):59-60.
21. McDonald WB, McLeod DG: Low-velocity gunshot injury to ureter. Urology 1978, 11(2):173-4.
22. Selkowitz SM: Penetrating high-velocity genitourinary injuries. Part I. Statistics mechanisms, and renal wounds. Urology 1977, 9(4):371-6.
23. Selkowitz SM: Penetrating high-velocity genitourinary injuries. Part II: Ureteral, lower tract, and genital wounds. Urology 1977, 9(5):493-9.
24. Rohner JT: Delayed ureteral fistula from high velocity missiles: report of 3 cases. J Urol 1971, 105(1):63-4.
25. Stutzman RE: Ballistics and the management of ureteral injuries from high velocity missiles. J Urol 1971, 118(6):947-9.
26. Borden Institute (U.S.): Emergency war surgery: 3rd U.S. revision Washington DC: Office of the Surgeon General U.S. Army, Borden Institute, Walter Reed Army Medical Center 2004.
27. Evans RA, Smith MJ: Violent injuries to the upper ureter. J Trauma 1976, 16(7):558-61.
28. Konkin L, Brock JW: Isolated ureteral injury caused by blunt trauma. Urology 1996, 47(1):111-3.
29. Reznichek RC, Brosman SA, Rhodes DB: Ureteral avulsion from blunt trauma. J Urol 1973, 109(3):812-6.
30. Brandes S, Coburn M, Amminkas N, McAninch J: Diagnosis and management of ureteric injury: an evidence-based analysis. BJU Int 2004, 94(3):277-89.
31. Obenauer S, Plothe KD, Ringert RH, Heuser M: Imaging of genitourinary trauma. Scand J Urol Nephrol 2006, 40(5):416-22.
32. Mulligan JM, Cagiannos I, Collins JP, Millward SF: Ureteropelvic junction disruption secondary to blunt trauma: excretory phase imaging (delayed films) should help prevent a missed diagnosis. J Urol 1998, 159(1):67-70.
33. Beckly DE, Waters EA: Avulsion of the pelvic-ureteric junction—a rare consequence of non-penetrating trauma. Br J Radiol 1972, 45(534):423-6.
34. Perez-Brayfield MR, Keane TE, Krishnan A, Lafontaine P, Feliciano DV, Clarke HS: Gunshot wounds to the ureter: a 40-year experience at Grady Memorial Hospital. J Urol 2001, 166(1):119-21.
35. Bright TC, Peters PC: Ureteral injuries due to external violence: 10 years’ experience with 59 cases. J Trauma 1977, 17(8):816-20.
36. Carlton EC Jr, Scott RJ, Guthrie AG: The initial management of ureteral injuries: a report of 78 cases. J Urol 1971, 105(3):335-40.
66. Fernandez Fernandez A, Soria Ruiz S, Gomez Martinez I, Gil Fabra J, Martinez Castellanos F, Otero Mauricio G: Blunt traumatic rupture of the high right ureter, repaired with appendix interposition. Urol Int 1994, 53(2):97-8.

67. Esteve-Costra J: Autotransplantation of the vermiform appendix for ureteral substitution. J Pediatr Surg 1999, 34(10):1521-3.

Richter F, Stock JA, Hanna MK: The appendix as right ureteral substitute in children. J Urol 2000, 163(6):2018-22.

Soler RK, Filmer RB, Reitelman C: Traumatic disruption of the ureteropelvic junction managed by ileal interposition. J Urol 1991, 146(2):392-5.

Benson MC, Ring KS, Olsson CA: Ureteral reconstruction and bypass: experience with ileal interposition, the Boari flap-psoas hitch and renal autotransplantation. J Urol 1990, 143(1):20-3.

Bowes RJ, Fritzschke P, Skinner DG, Kaufman JJ, Belt E, Smith RB, Goodwin WE: Replacement of the ureter by small intestine: clinical application and results of the ileal ureter in 89 patients. J Urol 1979, 121(6):728-31.

Kochkar W, Tripapich W, Kostichavat S: Ileal interposition for the treatment of a long gap ureteral loss. J Med Assoc Thai 2000, 83(1):37-41.

Handy JD: High ureteral injuries. Management by autotransplantation of the kidney. JAMA 1963, 184:97-101.

Gil-Vernet JM: Descent of the right renal vein. J Urol 1978, 120(6):668-70.

Bode B, Novick AC, Rose M, Straffon RA: Long-term results with renal autotransplantation for ureteral replacement. J Urol 1986, 136(6):1187-9.

Kram HB, Orcampo HP, Yamaguchi MP, Nathan RC, Shoemaker WC: Fibrin glue in renal and ureteral trauma. Urology 1989, 33(2):215-8.

Kram HB, Reuben BL, Fleming AW, Shoemaker WC: Use of fibrin glue in hepatic trauma. J Urol 1988, 138(8):1195-201.

Shekariz B, Stoller ML: The use of fibrin sealant in urology. J Urol 2002, 167(3):1218-25.

Detweiler MB, Detweiler JG, Fenton J: Sutureless and reduced suture anastomosis of hollow vessels with fibrin glue: a review. J Invest Surg 1995, 8(3):245-50.

Kumar U, Dickerson A, Sakamoto K, Albala DM, Turk TM: Effects of fibrin glue on injured rabbit ureter. J Endourol 2001, 15(2):205-7.

Fraga GP, Borges GM, Mantovani M, Ferrreira U, Laurito TL, Neto RN Jr: Penetrating ureteral trauma. Int Braz J Urol 2007, 33(2):142-9, discussion 149-50.

Madhok BM, Duttaroy DD, Desai R, Yeluri S: Ureteric injury caused by a penetrating arrow. J Trauma 2007, 63(1):E17-8.

Kunkle DA, Kansas BT, Pathak A, Goldberg AJ, Mydlo JH: Delayed diagnosis of traumatic ureteral injuries. J Urol 2006, 176(6 Pt 1):2503-7.

Akay AF, Girgin S, Akay H, Sahin H, Bircan MK: Gunshot injuries to the ureter: one centre's 15-year experience. Acta Chir Belg 2006, 106(5):572-7.

Carver BS, Bozeman CB, Venable DD: Ureteral injury due to penetrating trauma. South Med J 2004, 97(5):462-4.

Elliot SP, McNamnich JW: Ureteral injuries from external violence: the 25-year experience at San Francisco General Hospital. J Urol 2003, 170(4 Pt 1):121-3.

Hudolin T, Hudolin J: Surgical management of urogenital injuries at a war hospital in Bosnia-Hercegovina, 1992 to 1995. J Urol 2008, 179(4):1357-9.

Pearlstein DP, Brandt M, Intocaso JH, Shah M, Martin T, Sulkowski RJ: Penetrating trauma causing partial disruption of a duplicated ureter: case report. J Trauma 2001, 50(4):755-8.

Kennedy F, Sharif S, Hamerstead H, Martin J: Gunshot wound to a duplicate ureter: successful treatment with ureteroureterostomy. J Urol 2000, 163(1):149-51.

Powell MA, Nicholas JM, Davis JW: Blunt ureteropelvic junction disruption. J Trauma 1999, 47(1):186-8.

Medina D, Lavery R, Ross SE, Livingston DH: Ureteral trauma: preoperative studies neither predict injury nor prevent missed injuries. J Am Coll Surg 1998, 186(6):641-4.

Tucak A, Petroz Z, Kuvezdic H: War injuries of the ureter. Mil Med 1997, 162(5):344-5.

Marekovic Z, Derevic D, Kheni I, Kastelan Z: Urogenital war injuries. Mil Med 1997, 162(5):346-8.

Velmahos GC, Degiannis E, Wells M, Souter I: The management of urinary tract injuries after high right ureter, repaired with appendix interposition. J Urol Int 1994, 53(2):97-8.
96. Brandes SB, Chelsky MJ, Buckman RF, Hanno PM: Ureteral injuries from penetrating trauma. *J Trauma* 1994, 36(6):766-9.

97. Wazzan W, Azoury B, Hernady K, Khaili RB: Missile injury of upper ureter treated by delayed renal autotransplantation and ureteropyelostomy. *Urology* 1993, 42(6):725-8.

98. Boone TB, Gilling PJ, Huisman DA: Ureteropelvic junction disruption following blunt abdominal trauma. *J Urol* 1993, 150(1):33-6.

99. Campbell WE Jr, Filderman PS, Jacobs SC: Ureteral injury due to blunt and penetrating trauma. *Urology* 1992, 40(3):216-20.

100. Cofer BR, Kaufman PN, Nussbaum MS, Cirulli C: Penetrating injury of a duplicated ureter: case report. *J Trauma* 1991, 31(1):140-2.

101. Guerriero W, Harrison C: Ureteral injury due to external violence: 49 cases over 5 years. *World J Urol* 1990, 7(4):214-217.

102. Franco I, Eshghi M, Schutte H, Park T, Fernandez R, Choudhury M, Addonizio JC: Value of proximal diversion and ureteral stenting in management of penetrating ureteral trauma. *Urology* 1988, 32(2):99-102.

103. Boone TB, Gilling PJ, Huisman DA: Ureteral injuries from penetrating trauma. *Urology* 1987, 30(1):140-2.

104. Grizic AM, Marszalek WW: Pathogenesis and management of ureteric injuries. *S Afr Med J* 1985, 68(11):811-4.

105. Cass AS: Blunt renal pelvic and ureteral injury in multiple-injured patients. *Urology* 1983, 22(3):268-70.

106. Drago JR, Wisnia LG, Palmer JM, Link DP: Bilateral ureteropelvic junction avulsion after blunt abdominal trauma. *Urology* 1981, 17(2):169-71.

107. Laberge I, Homsy YL, Dadour G, Beland G: Avulsion of ureter by blunt trauma. *Urology* 1979, 13(2):172-8.

108. Heath AD, May A: Bilateral avulsion of the upper ureters. *Br J Urol* 1975, 47(4):386.

109. Johnson JM, Chemov M, Cloud DT, Linkner LM, Dorman GW, Trump DS: Bilateral ureteral avulsion. *J Pediatr Surg* 1972, 7(6):723.

110. Del Villar RG, Ireland GW, Cass AS: Ureteral injury owing to external trauma. *J Urol* 1972, 107(1):29-30.

111. Slater RB, Kirkpatrick JR: A case of closed injury of the upper ureter. *Br J Urol* 1971, 43(5):597-7.

112. Halverstadt DB, Fraley EE: Avulsion of the upper ureter secondary to blunt trauma. *Br J Urol* 1967, 39(5):508-93.

113. Arbitowtiz R, Price SE, MM, Barnhouse DH, Johnson SH: Isolated ureteral injury secondary to transperitoneal stab wound. *J Trauma* 1976, 16(2):164-8.

114. Heath AD, May A: Bilateral avulsion of the upper ureters. *Br J Urol* 1975, 47(4):386.

115. Johnson JM, Chemov M, Cloud DT, Linkner LM, Dorman GW, Trump DS: Bilateral ureteral avulsion. *J Pediatr Surg* 1972, 7(6):723.

116. Del Villar HG, Ireland GW, Cass AS: Ureteral injury owing to external trauma. *J Urol* 1972, 107(1):29-30.

117. Slater RB, Kirkpatrick JR: A case of closed injury of the upper ureter. *Br J Urol* 1971, 43(5):597-7.

118. Halverstadt DB, Fraley EE: Avulsion of the upper ureter secondary to blunt trauma. *Br J Urol* 1967, 39(5):508-93.

119. Arbitowtiz R, Price SE, MM, Barnhouse DH, Johnson SH: Isolated ureteral injury secondary to transperitoneal stab wound. *J Trauma* 1976, 16(2):164-8.

Cite this article as: Pereira et al.: A review of ureteral injuries after external trauma. *Scandinavian Journal of Trauma, Resuscitation and Emergency Medicine* 2010 18:6.

Submit your next manuscript to BioMed Central and take full advantage of:

- Convenient online submission
- Thorough peer review
- No space constraints or color figure charges
- Immediate publication on acceptance
- Inclusion in PubMed, CAS, Scopus and Google Scholar
- Research which is freely available for redistribution

Submit your manuscript at www.biomedcentral.com/submit