Preventive Effects of \textit{Lactobacillus} Mixture on Experimental \textit{E. coli} Urinary Tract Infection in Infant Rats

Jung Won Lee,1 Jee Hyun Lee,1 Sun Hee Sung,2 and Seung Joo Lee3

1Department of Pediatrics, Kangnam Sacred Heart Hospital, Hallym University, Seoul; Departments of 2Pathology and 3Pediatrics, Ewha Womans University School of Medicine, Seoul, Korea.

\textbf{Purpose:} Urinary tract infection (UTI) is an ascending infection of fecal uropathogens, urogenital lactobacilli are suggested to play a role in the prevention of UTI. This study was to investigate whether \textit{lactobacillus} mixture (LM) could prevent the experimental infantile UTI. \textbf{Materials and Methods:} The LM were composed of three \textit{lactobacillus} strains (\textit{L. gasseri}, \textit{L. rhamnosus}, and \textit{L. reuteri}). Mother rats were grouped as \textit{lactobacillus} (LB) group I (LB I, n=22), II (LB II, n=24) and control (n=20). LB I and LB II were fed with LM (1 mL/day) and control with phosphate-buffered saline (PBS) from late pregnancy through lactation. All newborn rats were breast-fed and their urine and stool were collected at the end of the 3rd week to compare \textit{lactobacillus} colony. Then, infant rats from LB II were treated with intravesical instillation of LM. Infant rats from LB I and control were instilled with PBS. Twenty-four hours later, experimental UTI was introduced by intravesical instillation of standard \textit{E. coli} strain. After 72 hours later, the infant rats were sacrificed for histologic examination. \textbf{Results:} Lactobacilli colonies in urine and stool were not statistically different among the three groups. The incidence of pyelonephritis in the LB II was 16.7% (4/24), LB I 72.7% (16/22) and control (n=20). LB I and LB II were fed with LM (1 mL/day) and control with phosphate-buffered saline (PBS) from late pregnancy through lactation. All newborn rats were breast-fed and their urine and stool were collected at the end of the 3rd week to compare \textit{lactobacillus} colony. Then, infant rats from LB II were treated with intravesical instillation of LM. Infant rats from LB I and control were instilled with PBS. Twenty-four hours later, experimental UTI was introduced by intravesical instillation of standard \textit{E. coli} strain. After 72 hours later, the infant rats were sacrificed for histologic examination. \textbf{Results:} Lactobacilli colonies in urine and stool were not statistically different among the three groups. The incidence of pyelonephritis in the LB II was 16.7% (4/24), LB I 72.7% (16/22) and control 75.0% (15/20) ($p=0.015$). The incidence of cystitis was not significantly different among the three groups. \textbf{Conclusion:} The intravesically instilled LM significantly prevented experimental pyelonephritis in infant rats, however, LM administered orally to the pregnant and lactating mother rats did not.

\textbf{Key Words:} Lactobacillus, intravesical instillation, cystitis, pyelonephritis

\section*{INTRODUCTION}

Urinary tract infection (UTI) is the most common bacterial infection in infants and has been documented as an ascending infection of the patient’s own fecal uropathogens, evidenced by genomic profiling study.1 Therefore, the role of \textit{lactobacillus}, the most dominant urogenital microflora, has been a focus in preventing UTI.2-3

Intraurethrally instilled \textit{lactobacillus} strains were proven to prevent experimental UTI in adult animal models,4,5 and clinical application of \textit{lactobacillus} suppositories showed beneficial effects in reducing the recurrence rate of UTI in adult women.6-9 However, the preventive effect of oral \textit{lactobacillus} probiotics against
UTI has not sufficiently been investigated in adults. In early infancy when the UTI incidence is extremely high, postnatal development of genitourinary lactobacilli is considered very important in preventing UTI. It was confirmed that some maternal lactobacilli are transferred to their infants during birth and through breast milk. Probiotic lactobacilli, administered to lactating mother rats, were also proven to be transferred to their infant guts and then to genitourinary tract. However, a question of whether this mother to infant transmission prevents infantile UTI has not been clarified.

Therefore, we evaluated whether lactobacilli orally administered to pregnant and lactating mother rats could prevent experimental UTI of their infant rats, and compared the effects with those of intravesically instilled lactobacilli to infant rats.

MATERIALS AND METHODS

Materials

Lactobacillus mixture

For this study, we selected three lactobacillus strains (L. gasseri, L. rhamnosus, L. reuteri), which were isolated from the healthy infant feces and mixed. For optimal dosage, the lactobacillus mixture (LM) was incubated in the DeMan-Rogosa-Sharpe (MRS) agar medium to make six different dosages [10^6-10^11 colony forming unit (CFU)/mL], which were tested for the antimicrobial activities against standard E. coli strain (ATCC No. 25922, Seattle, WA, USA). We selected the dosage 10^9 CFU/mL, whose antimicrobial activity was maximal (Fig. 1).

The experimental infant rats

Forty-eight breast-fed Sprague Dawley infant rats (Seoul, Korea), whose mother rats were fed the LM (1 mL/day) via gavage tube from late pregnancy through lactation, were evenly allocated to the lactobacillus (LB) I (n=24) or II group (n=24). The control group included 20 infant rats, whose mother rats were given phosphate-buffer solution (PBS, 1 mL). All infant rats were breast-fed for 3 weeks, when the same LM (1 mL) was intravesically instilled to infant rats of the LB II group and PBS to those of the LB I and the control group. The study protocol was approved by the ethical committee of the hospital.

Urine and stool culture for lactobacillus

At age 3 weeks of infant rats, urines and stools were collected. Fecal specimens were placed to a 50 mL test tube together with sterile saline and shaken for 1 minute. For lactobacillus culture, urines and diluted fecal supernatants (200 µL) were inoculated into lactobacillus-selective MRS agar (Oxoid, Basingstroke, UK) and incubated anaerobically at 37°C for 48 hours. Lactobacillus was confirmed by Gram-positive white, smooth bacillus, and colonies (CFU/mL) were counted.

Intravesical instillation of the lactobacillus mixture

After completion of stool and urine collection, the same LM (1 mL), given to the mother rats, was instilled into the bladder of infant rats of the LB II group using a 16-gauge silicone catheter after ketamine anesthesia. PBS (1 mL) was instilled into LB I and the control group.

Induction of experimental E. coli UTI

Twenty-four hours after intravesical instillation of the LM or PBS, 1 mL of standard E. coli strain (10^7 CFU/mL) was instilled into the bladder of infant rats to induce experimental E. coli UTI through a 16-gauge silicone catheter after ketamine anesthesia.

Histopathological examination

Seventy-two hours after intravesical instillation of E. coli, the infant rats were sacrificed for histopathologic examination. Both kidneys and bladder were extracted and fixed for

Fig. 1. Inhibitory zone (diameter, mm) at different dosage of lactobacillus mixture against standard E. coli (ATCC 25922). The optimal dosage (CFU/mL) for maximal inhibition was determined as 1×10^9 CFU/mL.
Preventive Effects of *Lactobacillus* Mixture

Yonsei Med J http://www.eymj.org Volume 54 Number 2 March 2013

24 hours in 10% buffered formalin solution. The kidney was embedded in paraffin, sectioned 3 μm in thickness using a rotatory microtome, and Hematoxylin-Eosin staining and Masson-Trichrome staining were performed. According to the histopathological changes, cystitis and pyelonephritis were diagnosed and the incidence was compared. For semiquantitative evaluation, the severity of inflammation in cystitis and pyelonephritis was scored. The cystitis score ranged from 0 to 3 (0 point without inflammatory cells, 1 point with a few inflammatory cells in the submucosa, 2 points with more than 5 focal inflammatory cells in the submucosa, and 3 points with diffuse inflammatory cells in the submucosa). The pyelonephritis score ranged from 0 to 4 (0 point without inflammation, 1 point with occasional inflammation in the pelvic mucosa, 2 points with continuous inflammation along the pelvic mucosa, 3 points with focal inflammation from the pelvic mucosa to the renal medulla, and 4 points with diffuse inflammation to the renal medulla).

RESULTS

Lactobacillus colonization status in stools and urines of infant rats

The numbers of *lactobacillus* CFUs in the stools of infant rats were $3.5 \times 10^8 \pm 6.6 \times 10^7$ CFU/mL in the LB I group, $4.1 \times 10^8 \pm 2.5 \times 10^8$ CFU/mL in the LB II group, and $1.7 \times 10^7 \pm 7.3 \times 10^6$ CFU/mL in the control group ($p>0.05$). The numbers of *lactobacillus* CFUs in the urines of infant rats were 2930 ± 314.4 CFU/mL in the LB I group, 5892 ± 370.5 CFU/mL in the LB II group, and 1658 ± 361.1 CFU/mL in the control group ($p>0.05$) (Fig. 2).

The incidence of experimental UTI

The incidence of cystitis was 95.5% (21/22) in the LB I group, 87.5% (21/24) in the LB II group, and 100% (20/20) in the control group ($p>0.05$). The incidence of pyelonephritis was 72.7% (16/22) in the LB I group, 16.7% (4/24) *p=0.015* vs. control in the LB II group, and 75.0% (15/20) in the control group ($p>0.05$). The incidence of pyelonephritis between LB I, II and control groups. For the comparison of the number of *lactobacillus* and *E. coli* CFU/mL after experimental *E. coli* UTI, Wilcoxon signed rank test was used. p value less than 0.05 was determined to be statistically significant.

Table 1. Incidence of Experimental *E. coli* Urinary Tract Infection in Infant Rats

UTI	Lactobacillus I (n=22)	Lactobacillus II (n=24)	Control (n=20)
Cystitis	21 (95.5%)	21 (87.5%)	20 (100%)
Pyelonephritis	16 (72.7%)	4 (16.7%) *	15 (75.0%)
Total	21 (95.5%)	21 (87.5%)	20 (100%)

UTI, urinary tract infection.
* *p=0.015* vs. control.

Fig. 2. Stool and urine *lactobacillus* colonization in *lactobacillus* I, II and control group.
Lactobacillus Control

infection (cystitis score 1.25±0.98) was lower than those of the LB I group (1.5±0.78) and control group (1.8±1.06) (p>0.05) (Fig. 3). The pyelonephritis score of the LB II group (0.33±0.68) was significantly lower than those of the LB I group (1.31±1.21) and control group (1.95±1.72) (p=0.006) (Fig. 3).

The semiquantitative inflammatory score of cystitis and pyelonephritis

The cystitis score of the LB II group (1.25±0.98) was lower than those of the LB I group (1.5±0.78) and control group (1.8±1.06) (p>0.05) (Fig. 3). The pyelonephritis score of the LB II group (0.33±0.68) was significantly lower than those of the LB I group (1.31±1.21) and control group (1.95±1.72) (p=0.006) (Fig. 3).

DISCUSSION

In preventing infantile UTI, postnatal development of genital urinary lactobacilli is considered very important. Indeed, lactobacilli in the maternal vagina are the first source of lactobacilli of newborn infants. While passing through the birth canal, maternal vaginal lactobacilli are transferred to the sterile neonate’s gut for the first time. Lactobacilli in breast milk are the second important source of infant’s gut lactobacilli. Approximately 6 days after birth, the number of CFU/mL of lactobacillus in the feces of breast-fed infants was 1000 times more than that of enterobacteriae, but 10 times less in the feces of bottle-fed infants. Probiotic lactobacilli, supplied during pregnant and lactating period, were proved to colonize the infant’s gut. These vertically transmitted lactobacilli are transferred from gut to genital urinary tract.

Many earlier studies demonstrated that the number of urogenital lactobacilli is significantly decreased in infants with UTI as well as in woman with urethritis and recurrent UTI. Antimicrobial activities of lactobacillus strains against uropathogens have been studied in many in vitro tests. Lactobacillus strains impede the adherence of uropathogens by secreting biosurfactants, compete with uropathogens in the binding site on vaginal epithelial cells, and inhibit the growth of uropathogens by secreting hydrogen peroxide, lactate, bacteriocin, and other antimicrobial molecules. They also enhance the local immunity of the intestinal mucosa, and improve the innate immunity and cell-mediated immunity by activating monocytes.

The preventive effects of intravesically instilled lactobacilli against UTI have been proven in adult animal models with different strains and different dosages. When L. casei GR1 (5×10⁶ CFU/mL), isolated from healthy adult women, was intravesically instilled to adult rats and was then swabbed twice weekly for 21 days onto the introitus before challenge with an uropathogen suspension (E. coli, K. pneumoniae, P. aeruginosa), experimental UTI was prevented in 84% of the animals. L. casei shirotia strain (1×10⁶ CFU/day), when administered intrareurally to a mouse 24 hours prior to the induction of experimental E. coli, dramatically inhibited E. coli growth and inflammatory responses in the urinary tract. Furthermore, intraurethral instillation of the indigenous L. murinus strain (1×10⁶ CFU/mL) also significantly prevented Proteus mirabilis ascending UTI in a mouse model.

In the present study, intravesically instilled lactobacilli to infant rats showed the significant preventive effect against experimental pyelonephritis, whereas orally administered lactobacilli to pregnant and lactating mother rats did not prevent the infection of their infant rats. This might be due to insufficient increase of lactobacillus colonization in their stools and urines. Further studies are necessary to find ideal lactobacillus strains and an optimal oral dosage that are compatible with preventive effect of intravesically instilled lactobacillus.

REFERENCES

1. Usein CR, Damian M, Tatu-Chiţoiu D, Căpuşă C, Făgăraş R, Mircescu G. Comparison of genomic profiles of Escherichia coli isolates from urinary tract infections. Roum Arch Microbiol Immunol 2003;62:137-54.
2. Redondo-Lopez V, Cook RL, Sobel JD. Emerging role of lactobacilli...
14. Rinne M, Kalliomaki M, Arvilommi H, Salminen S, Isolauri E. Effect of probiotics and breastfeeding on the bifidobacterium and lactobacillus/enterococcus microbiota and humoral immune responses. J Pediatr 2005;147:186-91.

15. Hall MA, Cole CB, Smith SL, Fuller R, Rolles CJ. Factors influencing the presence of faecal lactobacilli in early infancy. Arch Dis Child 1990;65:185-8.

16. Sanz Y. Gut microbiota and probiotics in maternal and infant health. Am J Clin Nutr 2011;94(6 Suppl):2000S-5S.

17. Morelli L, Zomenenschain D, Del Piano M, Cognein P. Utilization of the intestinal tract as a delivery system for urogenital probiotics. J Clin Gastroenterol 2004;38(6 Suppl):S107-10.

18. Lee JW, Shim YH, Lee SJ. Lactobacillus colonization status in infants with urinary tract infection. Pediatr Nephrol 2009;24:135-9.

19. Bruce AW, Chadwick P, Hassan A, VanCott GF. Recurrent urethritis in women. Can Med Assoc J 1973;108:973-6.

20. Marrie TJ, Swantee CA, Hartlen M. Aerobic and anaerobic urethral flora of healthy females in various physiological age groups and of females with urinary tract infections. J Clin Microbiol 1980;11:654-9.

21. Gupta K, Stapleton AE, Hooton TM, Roberts PL, Fennell CL, Stamm WE. Inverse association of H2O2-producing lactobacilli and vaginal Escherichia coli colonization in women with recurrent urinary tract infections. J Infect Dis 1998;178:446-50.

22. Kirjavainen PV, Pautler S, Baroja ML, Anukam K, Crowley K, Carter K, et al. Abnormal immunological profile and vaginal microbiota in women prone to urinary tract infections. Clin Vaccine Immunol 2009;16:29-36.

23. Velraeds MM, van der Mei HC, Reid G, Busscher HJ. Inhibition of initial adhesion of uropathogenic Enterococcus faecalis by biosurfactants from Lactobacillus isolates. Appl Environ Microbiol 1996;62:1958-63.

24. Zárate G, Nader-Macias ME. Influence of probiotic vaginal lactobacilli on in vitro adhesion of urogenital pathogens to vaginal epithelial cells. Lett Appl Microbiol 2006;43:174-80.

25. Matsuzaki T, Chin J. Modulating immune responses with probiotic bacteria. Immunol Cell Biol 2000;78:67-73.