Melting of Quasi-Two-Dimensional Charge Stripes in $\text{La}_{1\frac{2}{3}}\text{Sr}_{\frac{1}{3}}\text{NiO}_4$

S.-H. Lee1 and S-W. Cheong2

1University of Maryland, College Park, MD 20742 and National Institute of Standards and Technology, Gaithersburg, MD 20899

2Bell Laboratories, Lucent Technologies, Murray Hill, NJ 07974

Abstract

Commensurability effects for nickelates have been studied by the first neutron experiments on $\text{La}_{1\frac{2}{3}}\text{Sr}_{\frac{1}{3}}\text{NiO}_4$. Upon cooling, this system undergoes three successive phase transitions associated with quasi-two-dimensional (2D) commensurate charge and spin stripe ordering in the NiO_2 planes. The two lower temperature phases (denoted as phase II and III) are stripe lattice states with quasi-long-range in-plane charge correlation. When the lattice of 2D charge stripes melts, it goes through an intermediate glass state (phase I) before becoming a disordered liquid state. This glass state shows short-range charge order without spin order, and may be called a “stripe glass” which resembles the hexatic/nematic state in 2D melting.

PACS numbers: 71.45.Lr, 64.70.Kb, 71.38.+i, 74.72.Dn
Charge and spin ordering in real space have attracted much attention due to their role in cuprate superconductivity [1,2]. Recent neutron scattering experiments have shown that the real-space segregation of holes and spins in a stripe form is associated with the anomalous suppression of superconductivity in the La$_2$CuO$_4$ family compounds with $\sim \frac{1}{8}$ doping [4]. These findings lead to the speculation that the inelastic peaks explored earlier in superconducting cuprates [3] are due to dynamic fluctuation of these stripes. Such charge and spin stripes were first observed in the isostructural system, La$_{2-x}$Sr$_x$NiO$_4+\delta$, by electron diffraction [6] and by neutron scattering measurements [7]. Mechanisms such as a Fermi-surface nesting [1], frustrated phase separation [2] and polaron ordering [6] have been suggested to be responsible for the formation of stripes. One of the issues is whether such order is charge and/or spin driven. Experimental results reported so far are conflicting. The simultaneous incommensurate peaks due to charge and spin orders were found in La$_2$NiO$_{4.125}$ [7]. On the other hand, in La$_{1.775}$Sr$_{0.225}$NiO$_4$ the incommensurate charge peaks occur at significantly higher temperature than the spin peak, even though the in-plane charge order shows a shorter correlation length than the spin order in the compound [8].

Commensurability has significant effects for charge and spin ordering because of commensurate lock-in effect [3]. For example, suppression of superconductivity in La$_{2-x}$Ba$_x$CuO$_4$ is found when static charge and spin ordering occurs for $x=\frac{1}{8}$ [4]. La$_{2-x}$Sr$_x$NiO$_4$ compounds exhibit distinct anomalies at $x=\frac{1}{3}$ and $\frac{1}{2}$ [6,7,10,11]. So far, structural correlations for La$_{2-x}$Sr$_2$NiO$_4$ with $x=\frac{1}{3}$ and $\frac{1}{2}$ have been investigated only by electron diffraction on polycrystalline specimens. Such data are difficult to analyze quantitatively and lack information on magnetic correlations. Because of increasing difficulty in the crystal growth of La$_{2-x}$Sr$_2$NiO$_4$ with increasing Sr concentration for $x > 0.225$, neutron scattering for the optimal dopings which probes both structural and magnetic correlations was not previously possible. We have succeeded in growing large crystals with $x = \frac{1}{3}$ which have enabled us to extract detailed information about the order parameter and correlation lengths for this important composition. Our results “consistently” show charge order as the driving force behind the phase transitions in this compound.
We have, furthermore, discovered the intriguing 2D-melting-like transitions in this commensurate $\frac{1}{3}$ composition. The lattice of the 3D Fe$^{2+}$/Fe$^{3+}$ ordering in Fe$_3$O$_4$ melts at $T \approx 125$K in a first-order fashion, accompanied by a hysteretic discontinuity in the resistivity $^{[12]}$. Recently, it has been found that there exists a strongly first order melting transition of the charge-ordered state of the 3D perovskite Pr$_{1/2}$Sr$_{1/2}$MnO$_3$ $^{[13]}$. In contrast with the first-order nature of 3D melting, transitions in 2D melting can be continuous. An interesting aspect of 2D melting is the presence of an intermediate glass state (the so-called hexatic/nematic state) between the crystalline solid and liquid phases $^{[14]}$. We discovered that the melting of quasi 2D charge stripes in La$_{1-\varepsilon}$Sr$_{\varepsilon}$NiO$_4$ resembles the solid-hexatic/nematic-liquid transition in 2D melting.

A large boule of single-crystalline La$_{1-\varepsilon}$Sr$_{\varepsilon}$NiO$_4$ (~ 7 mm diameter and ~ 80 mm long) was grown using the floating zone method with a URN-2-ZM optical furnace. The seed crystal and the polycrystalline feed rod were rotated at ~ 30 rpm in opposite directions, and both with molten zone were moved downward at the speed of ~ 5 mm/hour. The top of the boule (8 mm long with a weight of 3.5 g) was cut for neutron scattering measurements and was annealed at 1000°C for 100 hours with flowing O$_2$ gas. The sample mosaic spread was 0.7°. The neutron scattering experiments were performed on a thermal neutron triple axis spectrometer, BT2, and a cold neutron triple axis spectrometer, SPINS, at the NIST reactor. Fixed incident and final neutron energies were selected to be 14.8meV for measurements on BT2 and 5meV on SPINS using pyrolytic graphite (PG) for the monochromator and analyzer. We use the tetragonal notation to index diffraction features throughout this paper. All measurements were done in the (hhl) zone of reciprocal space.

For La$_{2-x}$Sr$_x$NiO$_{4+\delta}$ with excess hole concentration $\epsilon = x + 2\delta$, charge order and spin order are characterized by wave vectors $(\epsilon, \epsilon, 1)$ and $(\frac{1}{2} + \frac{\epsilon}{2}, \frac{1}{2} + \frac{\epsilon}{2}, 0)$, respectively $^{[8,9]}$. The spin wave vector $\frac{\epsilon}{2}$ from the antiferromagnetic reciprocal point, $(\frac{1}{2}, \frac{1}{2}, 0)$, being half of ϵ of charge modulation is the signature of charge stripes as magnetic antiphase domain walls $^{[8,10]}$. We consistently found $\epsilon=0.333(2)$ for La$_{1-\varepsilon}$Sr$_{\varepsilon}$NiO$_4$, as shown in Fig. 1 and 4(a). ϵ was not dependent on temperature (T) (see Fig. 4(a)). This contrasts with the
considerable temperature dependence of ϵ when $\epsilon < \frac{1}{3}$ and indicates the stability of the $\epsilon=\frac{1}{3}$ modulation. Fig. 1 shows ($\frac{1}{3}, \frac{1}{3}, l$) scans at various temperatures. Even integer weak l peaks are purely magnetic because they were not detected by electron diffraction. For odd integer l, charge-order scattering is dominant. The superlattice peaks have long tails along l, indicating the quasi-two-dimensionality of structural and spin correlations. Finite repulsive Coulomb interaction will favor a stacking of charge stripe layers in such a way as to minimize the Coulomb interaction. Such a stripe pattern consistent with the superlattice peaks is illustrated at the upper right corner. Notice that all charge stripes in all layers are centered between Ni and O atoms.

In Fig. 1, the relative ratios of the peak intensities vary in different T regimes. This led us into detailed measurements of those superlattice peak intensities as a function of T, which revealed surprising indications of successive phase transitions. Fig. 2 summarizes the results (in (a), (b), and (c)) along with a bulk susceptibility measurement, $d(\chi T)/dT$ (in (d)). The onset of the superlattice peaks - especially the ($\frac{1}{3}, \frac{1}{3}, 5$) reflection - at ~ 240K, shown in Fig. 2 (a), signals the development of the localization of the holes on a time scale, $\tau > 2\hbar/\Delta E \sim 5$ ps set by the energy resolution of the instrument. Upon cooling, however, they develop not as an ordinary phase transition, but with an unusually slow rate followed by a fast enhancement at ~ 200K. As T decreases further down to 10K, the peaks continue to grow. At T lower than 40K, the ($\frac{1}{3}, \frac{1}{3}, 1$) peak decreases. The existence of the three T regions below 239K is clearer in the plot of the ratio of the ($\frac{1}{3}, \frac{1}{3}, 1$) peak intensity to the ($\frac{1}{3}, \frac{1}{3}, 5$) one as depicted in Fig. 2(b). These three distinct phases are denoted as phase I, II, III with decreasing T order. Fig. 2 (c) shows the T-dependence of the pure spin contribution to the ($\frac{1}{3}, \frac{1}{3}, 0$) peak. The contribution of the long tail of the ($\frac{1}{3}, \frac{1}{3}, 1$) charge peak to the ($\frac{1}{3}, \frac{1}{3}, 0$) peak was assumed to be same as that at ($\frac{1}{3}, \frac{1}{3}, 0.3$) and subtracted. The non-zero intensity below ~ 190K demonstrates that the spin ordering occurs in phase II and III, but not in phase I (190K<$T<$239K). Anomalies in $d(\chi T)/dT$, shown in Fig. 1 (d), establish that the charge/spin correlations in the three phases are static on a time scale more than a few seconds. No thermal hysteresis was observed in any of the measurements suggesting
the phase transitions are continuous.

Interesting aspects of the three phases were discovered in elastic Q-scans along the (hh0) and (00l) directions. The (hh0) scan investigates longitudinal correlation of translational ordering of stripes along the perpendicular direction to the stripes in the NiO$_2$ plane. Fig. 3 (a) shows representative in-plane (hh1) scans, which probe in-plane structural correlations due to charge order. Note that the peak is resolution limited in phase II and III but in phase I it is significantly broader than the q-resolution. Thus, the in-plane charge correlation is much shorter in phase I than in phase II and III where the correlation is quasi-long-range. In contrast, the out-of-plane scans shown in Fig. 3(b) are much broader than the q-resolution for all phases. Quantitative values of those correlation lengths were obtained by fitting each data to a Lorentzian convoluted with the instrumental resolution function. The fits are drawn as solid lines in Fig. 3, and ξ, in-plane charge (ξ_a^C) and spin (ξ_a^S) correlation lengths, and out-of-plane charge (ξ_c^C) and spin (ξ_c^S) correlation lengths are plotted in Fig. 4. For all $T<239K$, ξ_c^C and ξ_c^S are shorter than 2.5c, indicating that the quasi-two dimensionality of both charge and spin correlations remains intact in all three phases. A dramatic difference between the low-T phases (II and III) and the higher T phase (I) is manifested in the in-plane charge correlation. As illustrated in Fig. 4 (b), the in-plane charge correlation is quasi-long-range in phase II and III ($\xi_a^C \sim 350\text{Å}$), which is consistent with the previous electron diffraction result \[B\]. However, in phase I, ξ_a^C drastically shortens to $\sim 80\text{Å}$, which is about 5 times the characteristic wavelength of charge modulation (16.23Å). There seems to be only subtle differences between phase II and III, both of which exhibit quasi-long-range in-plane charge correlation. The transition is probably a subtle change of structural distortion associated with the hole lattice. ξ_a^C is about three times longer than ξ_a^S, indicating that charge ordering is the driving force in this compound and spin ordering is a parasitic effect. Phase I shows short-range charge order in the absence of spin order, which is drastically different from the other two phases. This intermediate glassy state with short-range charge stripe correlation in between solid states (phase II and III) and a liquid state (a disordered high-T state) may be called a “stripe glass”.

5
As in $d(\chi T)/dT$, specific heat (C) exhibits a distinct anomaly at the liquid-glass transition at 239K and a small kink at the glass-solid transition at 190K \cite{11}, which resembles that seen in a liquid crystal \cite{19}. This indicates that the majority of excess holes localizes into domain walls below 239K even though the longitudinal correlation of the holes remains short-range. As a result, the entropy removed through the glass-solid transition at 190K is reduced, together with the anomaly. Preliminary inelastic neutron scattering measurements \cite{18} show that low energy charge/spin fluctuations below 3meV are strongest at \sim200K at which the correlations become quasi long-range. Specific heat is sensitive to fluctuations with characteristic energy of order $k_B T$. Hence, the distinct specific heat anomaly and the weakness of neutron scattering cross section below 3 meV at 239K (\sim 20meV) imply that the characteristic energy of charge fluctuations in the stripe glass state is much higher than 3 meV.

The short-range translational ordering and the specific heat behavior are reminiscent of the 2D glass in 2D melting. Missing in this connection is the orientational order parameter. The 2D glass in 2D melting is characterized by short-range positional order and quasi-long-range orientational order, and has been tested for various real systems such as liquid crystals \cite{19}, vortex states of layered cuprate superconductors \cite{20}, and doped charge-density-wave compounds \cite{21}. The nematic phase in the liquid crystal has the strongest similarity with the stripe glass in the sense that both of them have two-fold symmetry \cite{22}. The orientational order parameter in such systems is an average orientation of stripes/molecules. The difference is, however, that the stripes can have various lengths, whereas molecules in nematic phase have the same length. One might think that the orientational order parameter for the stripes can be measured by transverse scans. However, when the stripes are of various lengths even though they are aligned along a common axis, the broadening of transverse scan peaks due to short stripes overshadows the characteristic width due to the orientational order and makes it nearly impossible to extract orientational order parameter from the scans. Nonetheless, the 2D nature of charge order in La$_{1/3}$Sr$_{1/3}$NiO$_4$ and the presence of an intermediate state with short-range ordering show the strong similarity of the stripe glass
with the 2D glass state. It remains in question as to whether or not such an intermediate
glass state in La$_{2-x}$Sr$_x$NiO$_4$ system exists only when $x=\frac{1}{3}$. More experimental studies on
$x>\frac{1}{3}$ compounds, especially for $x=\frac{1}{2}$ where bulk measurements show distinct anomalies,
as well as theoretical studies, are needed to understand the commensurability effect in the system.

The impurity potential of Sr ions may play an important role in the melting transition
of the charge stripes. Sr ions are distributed randomly on the La sites in the La-O layers
and can provide pinning potentials for the charge ordering with stripe modulation. These
point-defect-like Sr ions can be pinning centers for the translational ordering of the charge
stripes, but are naturally inefficient in pinning the orientational ordering of charge stripes.
This pinning effect of Sr dopants may be responsible for a stripe glass at intermediate
temperatures, $190K < T < 239K$, where the mechanism for producing stripe phase does not
dominate the impurity potential and thermal fluctuations. In that phase, most of the holes
localize to form strings (possibly maintaining orientational ordering), but the lengths of
the strings are short. Upon further cooling, these short strings of holes line up straight to
form ordered stripes. Due to the frozen defects, there would be defect regions where two
stripes merge into one stripe to form a “double-fork” stripe defect. Such defects would create
topological spin frustration, while only producing a small local perturbation of the charge
stripe order. This type of stripe defects may be responsible for the shorter correlation of
spin than that of charge in the phases II and III.

In summary, La$_{2-x}$Sr$_x$NiO$_4$ exhibits, at $x=\frac{1}{3}$, unique behaviors which are typical for
melting in two dimensions. Among three successive transitions upon cooling, the first two
transitions are the continuous transitions of the liquid-glass-solid states of quasi-2D hole
ordering. We also presented “consistent” evidences, namely order parameter and correlation
length measurements, showing that charge ordering is the driving force in this material.

We have benefitted greatly from discussions with P.A. Anderson, C.L. Broholm, C.H.
Chen, B.I. Halperin, Y. Ijiri, P. Littlewood, and O. Zachar. Work at SPINS is based upon ac-
tivities supported by the National Science Foundation under Agreement No. DMR-9423101.
REFERENCES

[1] J. Zaanen et al., Phys. Rev. B 40, 7391 (1989); M. Inui et al., Phys. Rev. B 44, 4415 (1991).

[2] V.J. Emery et al., Physica 209C, 597 (1993); M.I. Salkola et al., Phys. Rev. Lett. 77, 155 (1996).

[3] O. Zachar et al, cond-mat/9702055 (1997).

[4] J.M. Tranquada et al., Nature 375, 561 (1995).

[5] S-W. Cheong et al., Phys. Rev. Lett. 67, 1791 (1991).

[6] C.H. Chen, S-W. Cheong and A.S. Cooper, Phys. Rev. Lett. 71, 2461 (1993).

[7] J.M. Tranquada et al., Phys. Rev. Lett. 73, 1003 (1994).

[8] J.M. Tranquada et al., unpublished (1996).

[9] S.M. Hayden et al., Phys. Rev. Lett. 68, 1061 (1992).

[10] S-W. Cheong et al., Phys. Rev. B 49, 7088 (1994).

[11] A.P. Ramirez et al., Phys. Rev. Lett. 76, 447 (1996); R. Burriel et al., unpublished, (1997).

[12] E.J.W. Verwey et al., Physica 8, 979 (1941).

[13] Y. Tomioka et al., Phys. Rev. Lett. 74, 5108 (1996).

[14] J.M. Kosterlitz and D.J. Thouless, J. Phys. C 6, 118 (1973), B.I. Halperin and D.R. Nelson, Phys. Rev. Lett. 41, 121 (1978).

[15] J. Zaanen et al., Phys. Rev. B 50, 7222 (1994).

[16] The odd l peaks are magnetic as well as structural. However, considering the relative weakness of purely magnetic even l peaks and the different behavior of the odd l peaks
in order parameter measurements and in correlation lengths from those of the even l
peaks, we conclude that charge-order scattering is dominant in the odd l
peaks.

[17] The possibility of an anisotropic distribution of holes around Ni ions was discussed
in Ref. [15]. Here we assumed that each plane has the same stripe pattern. If this
assumption is weakened, a pattern in which stripes in layers alternate between Ni- and
O-centered positions is also possible.

[18] S.-H. Lee et al., unpublished, (1997).

[19] C.C. Huang et al., Adv. Phys. 42, 343 (1993).

[20] D.G. Grier et al., Phys. Rev. Lett. 66, 2270 (1991).

[21] H. Dai et al., Phys. Rev. Lett. 69, 1576 (1992).

[22] P.G. de Gennes and J. Prost, The Physics of Liquid Crystals, 1993, Clarendon Press,
Oxford.
FIGURES

FIG. 1. Neutron diffraction data along \((1/3,1/3,l)\) at a series of temperatures. Data were taken on BT2 with collimations of 60'-40'-40'-80'. Energy resolution was 1.4(1)meV. Typical error was 5% of the intensity. Backgrounds were determined by the measurement at 300K and were subtracted. At the upper right corner is a stripe pattern for \(\epsilon = 1/3\) drawn. Filled and open circles indicate Ni sites in one NiO\(_2\) plane and in an adjacent plane, respectively. Square lines, solid and dotted, are the square lattices of Ni atoms. Diagonal lines, solid and dotted, indicate positions of charge stripes in each plane.

FIG. 2. Elastic neutron scattering intensities of several superlattice peaks and bulk susceptibility data. The energy resolution for the neutron scattering measurements on SPINS was 0.28(2)meV with collimations of open-40'-40'-open. (a) Temperature dependences of the superlattice peak intensities at \(Q=(1/3,1/3,1)\), \((1/3,1/3,3)\), and \((1/3,1/3,5)\). The data are in arbitrary units. (b) Ratio of the \((1/3,1/3,1)\) peak intensity to \((1/3,1/3,5)\) peak. (c) Temperature dependence of the magnetic superlattice peak intensity. Units are the same as those in (a). (d) \(d(\chi \cdot T)/dT\) in emu/mole. The line is a guide to the eye.

FIG. 3. (a) Representative elastic \((hh1)\) scans for phase I (220K), phase II (60K) and phase III (10K). (b) Representative elastic \((l,1/3,l)\) scans in each phase taken from Fig 3. Solid lines in (a) and (b) are explained in the text. Q-resolutions are drawn as bars.

FIG. 4. \(\epsilon\) and correlation lengths versus temperature. T-dependence of (a) \(\epsilon\) obtained from optimal peak positions of \((1/3,1/3,1)\) peaks, (b) in-plane correlation lengths, \(\xi_{C}^{\text{C}}\) (charge) and \(\xi_{S}^{\text{S}}\) (spin), obtained by fitting \((1/3 + h,1/3 + h,1)\) and \((1/3 + h,1/3 + h,0)\) scans, respectively, and (c) out-of-plane correlation lengths, \(\xi_{C}^{\text{C}}\) (charge) and \(\xi_{S}^{\text{S}}\) (spin), obtained by fitting \((1/3,1/3,1 + l)\) and \((1/3,1/3,2 + l)\) scans.