ASPECTS OF GRAVITATIONAL CLUSTERING

T. PADMANABHAN

Inter-University centre for Astronomy and Astrophysics
Post Bag 4, Ganeshkhind,
Pune - 411 007

Abstract. Several issues related to the gravitational clustering of collisionless dark matter in an expanding universe is discussed. The discussion is pedagogical but the emphasis is on semianalytic methods and open questions — rather than on well established results.

1. Mathematical description of gravitational clustering

The gravitational clustering of a system of collisionless point particles in an expanding universe poses several challenging theoretical questions. Though the problem can be tackled in a ‘practical’ manner using high resolution numerical simulations, such an approach hides the physical principles which govern the behaviour of the system. To understand the physics, it is necessary that we attack the problem from several directions using analytic and semianalytic methods. These lectures will describe such attempts and will emphasise the semianalytic approach and outstanding issues, rather than more well established results. In the same spirit, I have concentrated on the study of dark matter and have not discussed the baryonic physics.

The standard paradigm for the description of the observed universe proceeds in two steps: We model the universe as made of a uniform smooth background with inhomogeneities like galaxies etc. superimposed on it. When the distribution of matter is averaged over very large scales (say, over 200 h^{-1}Mpc) the universe is expected to be described, reasonably accurately, by the Friedmann model. The problem then reduces to understanding the formation of small scale structures in this, specified Friedman background. If we now further assume that, at some time in the past, there were small deviations from homogeneity in the universe then these devia-
tions can grow due to gravitational instability over a period of time and, eventually, form galaxies, clusters etc.

The study of structure formation therefore reduces to the study of the growth of inhomogeneities in an otherwise smooth universe. This — in turn — can be divided into two parts: As long as these inhomogeneities are small, their growth can be studied by the linear perturbation around a background Friedmann universe. Once the deviations from the smooth universe become large, linear theory fails and we have to use other techniques to understand the nonlinear evolution. [More details regarding structure formation can be found e.g. in Padmanabhan, 1993; 1996]

It should be noted that this approach assumes the existence of small inhomogeneities at some initial time. To be considered complete, the cosmological model should also produce these initial inhomogeneities by some viable physical mechanism. We shall not discuss such mechanisms in these lectures and will merely postulate their existence. There is also a tacit assumption that averaging the matter density and solving the Einstein’s equations with the smooth density distribution, will lead to results comparable to those obtained by averaging the exact solution obtained with inhomogeneities. Since the latter is not known with any degree of confidence for a realistic universe there is no straightforward way of checking this assumption theoretically. [It is actually possible to provide counter examples to this conjecture in specific contexts; see Padmanabhan, 1987] If this assumption is wrong there could be an effective correction term to the source distribution on the right hand side of Einstein’s equation arising from the averaging of the energy density distribution. It is assumed that no such correction exists and the universe at large can be indeed described by a Friedmann model.

The above paradigm motivates us to study the growth of perturbations around the Friedmann model. Consider a perturbation of the metric \(g_{\alpha\beta}(x) \) and the stress-tensor \(T_{\alpha\beta} \) into the form \((g_{\alpha\beta} + \delta g_{\alpha\beta}) \) and \((T_{\alpha\beta} + \delta T_{\alpha\beta}) \), where the set \((g_{\alpha\beta}, T_{\alpha\beta}) \) corresponds to the smooth background universe, while the set \((\delta g_{\alpha\beta}, \delta T_{\alpha\beta}) \) denotes the perturbation. Assuming the latter to be ‘small’ in some suitable manner, we can linearize Einstein’s equations to obtain a second-order differential equation of the form

\[
\hat{L}(g_{\alpha\beta})\delta g_{\alpha\beta} = \delta T_{\alpha\beta}
\]

(1)

where \(\hat{L} \) is a linear differential operator depending on the background spacetime. Since this is a linear equation, it is convenient to expand the solution in terms of some appropriate mode functions. For the sake of simplicity, let us consider the spatially flat \((\Omega = 1) \) universe. The mode functions could then be taken as plane waves and by Fourier transforming the spatial variables we can obtain a set of separate equations \(\hat{L}(k)\delta g_{(k)} = \delta T_{(k)} \) for each
mode, labeled by a wave vector \(\mathbf{k} \). Here \(\hat{\mathcal{L}}_k \) is a linear second order differential operator in time. Solving this set of ordinary differential equations, with given initial conditions, we can determine the evolution of each mode separately. [Similar procedure, of course, works for the case with \(\Omega \neq 1 \). In this case, the mode functions will be more complicated than the plane waves; but, with a suitable choice of orthonormal functions, we can obtain a similar set of equations]. This solves the problem of linear gravitational clustering completely.

There is, however, one major conceptual difficulty in interpreting the results of this program. In general relativity, the form (and numerical value) of the metric coefficients \(g_{\alpha \beta} \) (or the stress-tensor components \(T_{\alpha \beta} \)) can be changed by a relabeling of coordinates \(x^\alpha \to x'^\alpha \). By such a trivial change we can make a small \(\delta T_{\alpha \beta} \) large or even generate a component which was originally absent. Thus the perturbations may grow at different rates or even decay when we relabel coordinates. It is necessary to tackle this ambiguity before we can meaningfully talk about the growth of inhomogeneities.

There are two different approaches to handling such difficulties in general relativity. The first method is to resolve the problem by force: We may choose a particular coordinate system and compute everything in that coordinate system. If the coordinate system is physically well motivated, then the quantities computed in that system can be interpreted easily; for example, we will treat \(\delta T^0_0 \) to be the perturbed mass (energy) density even though it is coordinate dependent. The difficulty with this method is that one cannot fix the gauge completely by simple physical arguments; the residual gauge ambiguities do create some problems.

The second approach is to construct quantities — linear combinations of various perturbed physical variables — which are scalars under coordinate transformations. [see eg. the contribution by Brandenberger to this volume and references cited therein] Einstein’s equations are then rewritten as equations for these gauge invariant quantities. This approach, of course, is manifestly gauge invariant from start to finish. However, it is more complicated than the first one; besides, the gauge invariant objects do not, in general, possess any simple physical interpretation. In these lectures, we shall be mainly concerned with the first approach.

Since the gauge ambiguity is a purely general relativistic effect, it is necessary to determine when such effects are significant. The effects due to the curvature of space-time will be important at length scales bigger than (or comparable to) the Hubble radius, defined as \(d_H(t) \equiv (\dot{a}/a)^{-1} \). Writing
the Friedmann equation as
\[\frac{\dot{a}^2}{a^2} = H_0^2 \left[\Omega_R \left(\frac{a_0}{a} \right)^4 + \Omega_{NR} \left(\frac{a_0}{a} \right)^3 + \Omega_V + (1 - \Omega) \right] \]
(2)

where \(\Omega_R, \Omega_{NR}, \Omega_V \) and \(\Omega \) represent the density parameters for relativistic matter (with \(p_R = (1/3)\rho_R; \rho_R \propto a^{-4} \)), non relativistic matter with \(p_{NR} = 0; \rho_{NR} \propto a^{-3} \)), cosmological constant \((p_V = -\rho_V; \rho_V = \text{constant}) \) and total energy density \((\Omega = \Omega_R + \Omega_{NR} + \Omega_V) \), respectively, it follows that
\[dH(z) = H_0^{-1} \left[\Omega_R(1 + z)^4 + \Omega_{NR}(1 + z)^3 + (1 - \Omega)(1 + z)^2 + \Omega_V \right]^{-1/2}. \]
(3)

This has the limiting forms
\[d_H(z) \cong \begin{cases} H_0^{-1}\Omega_R^{-1/2}(1 + z)^{-2} & (z \gg z_{eq}) \\ H_0^{-1}\Omega_{NR}^{-1/2}(1 + z)^{-3/2} & (z_{eq} \gg z \gg z_{curv}; \Omega_V = 0) \end{cases} \]
(4)
during radiation dominated and matter dominated epochs where
\[(1 + z_{eq}) \equiv \frac{\Omega_{NR}}{\Omega_R}; \quad (1 + z_{curv}) \equiv \frac{1}{\Omega_{NR}} - 1 \]
(5)

(The universe is radiation dominated for \(z \gg z_{eq} \) and makes the transition to matter dominated phase at \(z \approx z_{eq} \). It becomes ‘curvature dominated’ sometime in the past, for \(z \lesssim z_{curv} \), if \(\Omega_{NR} < 0.5 \). We have set \(\Omega_V = 0 \) for simplicity). The physical wave length \(\lambda_0 \), characterizing a perturbation of size \(\lambda_0 \) today, will evolve as \(\lambda(z) = \lambda_0(1 + z)^{-1/2} \). Since \(d_H \) increases faster with redshift, (as \((1 + z)^{-3/2} \) in matter dominated phase and as \((1 + z)^{-2} \) in the radiation dominated phase) \(\lambda(z) > d_H(z) \) at sufficiently large redshifts. For a given \(\lambda_0 \) we can assign a particular redshift \(z_{enter} \) at which \(\lambda(z_{enter}) = d_H(z_{enter}) \). For \(z > z_{enter} \), the proper wavelength is bigger than the Hubble radius and general relativistic effects are important; while for \(z < z_{enter} \) we have \(\lambda < d_H \) and one can ignore the effects of general relativity. It is conventional to say that the scale \(\lambda_0 \) “enters the Hubble radius” at the epoch \(z_{enter} \).

The exact relation between \(\lambda_0 \) and \(z_{enter} \) differs in the case of radiation dominated and matter dominated phases since \(d_H(z) \) has different scalings in these two cases. Using equation (4) it is easy to verify that: (i) A scale
\[\lambda_{eq} \cong \frac{H_0^{-1}}{\sqrt{2}} \left(\Omega_R^{1/2}/\Omega_{NR} \right) \cong 14\text{Mpc}(\Omega_{NR}h^2)^{-1} \]
(6)
enters the Hubble radius at $z = z_{\text{eq}}$. (ii) Scales with $\lambda > \lambda_{\text{eq}}$ enter the Hubble radius in the matter dominated epoch with

$$z_{\text{enter}} \simeq 900 \left(\frac{\Omega_{\text{NR}} h^2}{100 \text{ Mpc}} \right)^{-1} \left(\frac{\lambda_0}{100 \text{ Mpc}} \right)^{-2}. \tag{7}$$

(iii) Scales with $\lambda < \lambda_{\text{eq}}$ enter the Hubble radius in the radiation dominated epoch with

$$z_{\text{enter}} \simeq 4.55 \times 10^5 \left(\frac{\lambda_0}{1 \text{ Mpc}} \right)^{-1}. \tag{8}$$

One can characterize the wavelength λ_0 of the perturbation more meaningfully as follows: As the universe expands, the wavelength λ grows as $\lambda(t) = \lambda_0 [a(t)/a_0]$ and the density of non-relativistic matter decreases as $\rho(t) = \rho_0 [a_0/a(t)]^3$. Hence the mass of nonrelativistic matter, $M(\lambda_0)$ contained inside a sphere of radius $(\lambda/2)$ remains constant at:

$$M = \frac{4\pi}{3} \rho(t) \left[\frac{\lambda(t)}{2} \right]^3 = \frac{4\pi}{3} \rho_0 \left(\frac{\lambda_0}{2} \right)^3 = 1.45 \times 10^{11} M_\odot (\Omega_{\text{NR}} h^2) \left(\frac{\lambda_0}{1 \text{ Mpc}} \right)^3. \tag{9}$$

This relation shows that a comoving scale $\lambda_0 \approx 1 \text{ Mpc}$ contains a typical galaxy mass and $\lambda_0 \approx 10 \text{ Mpc}$ contains a typical cluster mass. From (8), we see that all these — astrophysically interesting — scales enter the Hubble radius in radiation dominated epoch.

This feature suggests the following strategy for studying the gravitational clustering. At $z \gg z_{\text{enter}}$ (for any given λ_0), the perturbations need to be studied using general relativistic, linear perturbation theory. For $z \ll z_{\text{enter}}$, general relativistic effects are ignorable and the problem of gravitational clustering can be studied using newtonian gravity in proper coordinates. Observations indicate that the perturbations are only of the order of $(10^{-4} - 10^{-5})$ at $z \simeq z_{\text{enter}}$ for all λ_0. Hence the nonlinear epochs of gravitational clustering occur only in the regime of newtonian gravity. In fact the only role of general relativity in this formalism is to evolve the initial perturbations upto $z \lesssim z_{\text{enter}}$, after which newtonian gravity can take over. Also note that, in the nonrelativistic regime ($z \lesssim z_{\text{enter}}; \lambda \lesssim d_H$), there exists a natural choice of coordinates in which newtonian gravity is applicable. Hence, all the physical quantities can be unambiguously defined in this context.

2. Linear growth in the general relativistic regime

Let us start by analysing the growth of the perturbations when the proper wavelength of the mode is larger than the Hubble radius. Since $\lambda \gg d_H$ we
cannot use newtonian perturbation theory. Nevertheless, it is easy to determine the evolution of the density perturbation by the following argument.

Consider a spherical region of radius $\lambda (\gg d_H)$, containing energy density $\rho_1 = \rho_b + \delta \rho$, embedded in a $k = 0$ Friedmann universe of density ρ_b. It follows from spherical symmetry that the inner region is not affected by the matter outside; hence the inner region evolves as a $k \neq 0$ Friedmann universe. Therefore, we can write, for the two regions:

$$H^2 = \frac{8\pi G}{3} \rho_b,$$
$$H^2 + \frac{k}{a^2} = \frac{8\pi G}{3} (\rho_b + \delta \rho).$$

(10)

The change of density from ρ_b to $\rho_b + \delta \rho$ is accommodated by adding a spatial curvature term (k/a^2). If this condition is to be maintained at all times, we must have

$$\frac{8\pi G}{3} \delta \rho = \frac{k}{a^2},$$

or

$$\frac{\delta \rho}{\rho_b} = \frac{3}{8\pi G (\rho_b a^2)}.$$
(11)
(12)

If $(\delta \rho/\rho_b)$ is small, $a(t)$ in the right hand side will only differ slightly from the expansion factor of the unperturbed universe. This allows one to determine how $(\delta \rho/\rho_b)$ scales with a for $\lambda > d_H$. Since $\rho_b \propto a^{-4}$ in the radiation dominated phase ($t < t_{eq}$) and $\rho_b \propto a^{-3}$ in the matter dominated phase ($t > t_{eq}$) we get

$$\left(\frac{\delta \rho}{\rho} \right) \propto \left\{ \begin{array}{ll} a^2 & \text{(for } t < t_{eq}) \\ a & \text{(for } t > t_{eq}) \end{array} \right.$$

(13)

Thus, the amplitude of the mode with $\lambda > d_H$ always grows; as a^2 in the radiation dominated phase and as a in the matter dominated phase. Since no microscopic processes can operate at scales bigger than d_H all components of density (dark matter, baryons, photons), grow in the same manner, as $\delta \propto (\rho_b a^2)^{-1}$ when $\lambda > d_H$.

A more formal way of obtaining this result is as follows: We first recall that there is an exact equation in general relativity connecting the geodesic acceleration \mathbf{g} with the density and pressure:

$$\nabla \cdot \mathbf{g} = -4\pi G (\rho + 3p)$$

(14)

Perturbing this equation, in a medium with the equation of state $p = w\rho$, we get

$$\nabla_r \cdot [\delta \mathbf{g}] = -4\pi G (\delta \rho + 3\delta p) = -4\pi G \rho_b (1 + 3w) \delta = a^{-1} \nabla_x \cdot [\delta \mathbf{g}]$$

(15)

where $\delta = (\delta \rho/\rho)$ is the density contrast. Let us produce a $\delta \mathbf{g}$ by introducing a perturbation of the proper coordinate $\mathbf{r} = a(t)\mathbf{x}$ to the form $\mathbf{r} + 1 = \mathbf{x}$. \"
\(a(t)x[1 + \epsilon]\) such that \(1 \cong a\epsilon\). The corresponding perturbed acceleration is given by \(\delta g = x[a\ddot{e} + 2\dot{a}\dot{e}]\). Taking the divergence of this \(\delta g\) with respect to \(x\) we get

\[
\nabla_x \cdot [\delta g] = 3[a\ddot{e} + 2\dot{a}\dot{e}] = -4\pi G\rho_b a(1 + 3w)\delta
\]

This perturbation also changes the proper volume by an amount

\[
(\delta V/V) = (3l/r) = 3\epsilon
\]

If we now consider a metric perturbation of the form \(g_{ik} \rightarrow g_{ik} + h_{ik}\), the proper volume changes due to the change in \(\sqrt{-g}\) by the amount

\[
(\delta V/V) = -(h/2)
\]

where \(h\) is the trace of \(h_{ik}\). Comparison of the expressions for \((\delta V/V)\) suggests that, as far as the dynamics is concerned, the equation satisfied by \(3\epsilon\) and that satisfied by \(-(h/2)\) will be identical. Substituting \(\epsilon = -(h/6)\) in equation (16), we get

\[
\ddot{h} + 2\frac{\dot{a}}{a}\dot{h} = 8\pi G\rho_b(1 + 3w)\delta
\]

(A more formal approach — using full machinery of general relativity — leads to the same equation.) We next note that \(\dot{\delta}\) and \(\dot{h}\) can be related through conservation of mass. From the equation \(d(\rho V) = -pdV\) we obtain

\[
\delta = \frac{\delta \rho}{\rho} = -(1 + w)\frac{\delta V}{V} = -3(1 + w)\epsilon
\]

giving

\[
\dot{\delta} = -3\dot{\epsilon}(1 + w) = +(1 + w)\frac{\dot{h}}{2}
\]

Combining (19) and (21) we find the equation satisfied by \(\delta\) to be

\[
\ddot{\delta} + 2\frac{\dot{a}}{a}\dot{\delta} = 4\pi G\rho_b(1 + w)(1 + 3w)\delta.
\]

This is the equation satisfied by the density contrast in a medium with equation of state \(p = wp\).

To solve this equation, we need the background solution which determines \(a(t)\) and \(\rho_b(t)\). When the background matter is described by the equation of state \(p = w\rho\), the background density evolves as \(\rho_b \propto a^{-3(1+w)}\). In that case, Friedmann equation (with \(\Omega = 1\)) leads to

\[
a(t) \propto t^{(2/3)(1+w)}; \quad \rho_b = \frac{1}{6\pi G(1 + w)^2 t^2}
\]
provided $w \neq -1$. When $w = -1$, $a(t) \propto \exp(\mu t)$ with a constant μ. We will consider $w \neq -1$ case first. Substituting the solution for $a(t)$ and $\rho_b(t)$ into (22) we get
\[
\ddot{\delta} + \frac{4}{3(1+w)} \frac{\dot{\delta}}{t} = \frac{2(1+3w)}{3(1+w)} \frac{\dot{\delta}}{t^2}.
\]
(24)
This equation is homogeneous in t and hence admits power law solutions. Using an ansatz $\delta \propto t^n$, and solving the quadratic equation for n, we find the two linearly independent solutions (δ_g, δ_d) to be
\[
\delta_g \propto t^n; \quad \delta_d \propto \frac{1}{t}; \quad n = \frac{2(1+3w)}{3(1+w)}.
\]
(25)
In the case of $w = -1$, $a(t) \propto \exp(\mu t)$ and the equation for δ reduces to
\[
\ddot{\delta} + 2\lambda \dot{\delta} = 0.
\]
(26)
This has the solution $\delta_g \propto \exp(-2\mu t) \propto a^{-2}$. All the above solutions can be expressed in a unified manner. By direct substitution it can be verified that δ_g in all the above cases can be expressed as
\[
\delta_g \propto \frac{1}{\rho_b a^2}.
\]
(27)
which is exactly the result obtained originally in (12). This allows us to evolve the perturbation from an initial epoch till $z = z_{\text{enter}}$, after which newtonian theory can take over.

3. Gravitational clustering in Newtonian theory

Once the mode enters the Hubble radius, dark matter perturbations can be treated by newtonian theory of gravitational clustering. Though $\delta_\lambda \ll 1$ at $z \ll z_{\text{enter}}$, we shall develop the full formalism of newtonian gravity at one go rather than do the linear perturbation theory separately.

In any region small compared to d_H one can set up an unambiguous coordinate system in which the proper coordinate of a particle $r(t) = a(t)x(t)$ satisfies the newtonian equation $\ddot{\mathbf{r}} = -\nabla_r \Phi$ where Φ is the gravitational potential. Expanding $\ddot{\mathbf{r}}$ and writing $\Phi = \Phi_{\text{FRW}} + \phi$ where Φ_{FRW} is due to the smooth component and ϕ is due to the perturbations, we get
\[
\ddot{a}x + 2\dot{a}\dot{x} + a\ddot{x} = -\nabla_r \Phi_{\text{FRW}} - \nabla_r \phi = -\nabla_r \Phi_{\text{FRW}} - a^{-1} \nabla_x \phi
\]
(28)
The first terms on both sides of the equation ($\ddot{a}x$ and $-\nabla_r \Phi_{\text{FRW}}$) should match since they refer to the global expansion of the background FRW universe. Equating them individually gives the results
\[
\ddot{x} + 2\frac{\dot{a}}{a} \dot{x} = -\frac{1}{a^2} \nabla_x \phi; \quad \Phi_{\text{FRW}} = -\frac{1}{2a^2} \ddot{r}^2 = -\frac{2\pi G}{3}(\rho + 3p)r^2
\]
(29)
where ϕ is generated by the perturbed, newtonian, mass density through
\[
\nabla^2 \phi = 4\pi G a^2 (\delta \rho) = 4\pi G \rho_b a^2 \delta. \tag{30}
\]
If $\mathbf{x}_i(t)$ is the trajectory of the $i-$th particle, then equations for newtonian gravitational clustering can be summarized as
\[
\dot{\mathbf{x}}_i + \frac{2a}{a} \mathbf{x}_i = -\frac{1}{a^2} \nabla \phi; \quad \nabla^2 \phi = 4\pi G a^2 \rho_b \delta \tag{31}
\]
where ρ_b is the smooth background density of matter. We stress that, in the non-relativistic limit, the perturbed potential ϕ satisfies the usual Poisson equation.

Usually one is interested in the evolution of the density contrast $\delta(t, \mathbf{x})$ rather than in the trajectories. Since the density contrast can be expressed in terms of the trajectories of the particles, it should be possible to write down a differential equation for $\delta(t, \mathbf{x})$ based on the equations for the trajectories $\mathbf{x}_i(t)$ derived above. It is, however, somewhat easier to write down an equation for $\delta_k(t)$ which is the spatial fourier transform of $\delta(t, \mathbf{x})$. To do this, we begin with the fact that the density $\rho(\mathbf{x}, t)$ due to a set of point particles, each of mass m, is given by
\[
\rho(\mathbf{x}, t) = \frac{m}{a^3(t)} \sum_i \delta_D[\mathbf{x} - \mathbf{x}_T(t, q)] \tag{32}
\]
where $\mathbf{x}_i(t)$ is the trajectory of the ith particle. To verify the a^{-3} normalization, we can calculate the average of $\rho(\mathbf{x}, t)$ over a large volume V. We get
\[
\rho_b(t) \equiv \int \frac{d^3 x}{V} \rho(\mathbf{x}, t) = \frac{m}{a^3(t)} \left(\frac{N}{V} \right) = \frac{M}{a^3 V} = \frac{\rho_0}{a^3} \tag{33}
\]
where N is the total number of particles inside the volume V and $M = N m$ is the mass contributed by them. Clearly $\rho_b \propto a^{-3}$, as it should. The density contrast $\delta(\mathbf{x}, t)$ is related to $\rho(\mathbf{x}, t)$ by
\[
1 + \delta(\mathbf{x}, t) \equiv \frac{\rho(\mathbf{x}, t)}{\rho_b} = \frac{V}{N} \sum_i \delta_D[\mathbf{x} - \mathbf{x}_i(t)] = \int d^3 q \delta_D[\mathbf{x} - \mathbf{x}_T(t, q)]. \tag{34}
\]
In arriving at the last equality we have taken the continuum limit by replacing: (i) $\mathbf{x}_i(t)$ by $\mathbf{x}_T(t, q)$ where the initial position q of a particle labels it; and (ii) (V/N) by $d^3 q$ since both represent volume per particle. Fourier transforming both sides we get
\[
\delta_k(t) \equiv \int d^3 x e^{i \mathbf{k} \cdot \mathbf{x}} \delta(\mathbf{x}, t) = \int d^3 q \exp[-i \mathbf{k} \cdot \mathbf{x}_T(t, q)] - (2\pi)^3 \delta_D(\mathbf{k}) \tag{35}
\]
Differentiating this expression, and using the equation of motion (31) for the trajectories give, after straightforward algebra, the equation:

\[\ddot{\delta}_k + \frac{2}{a} \dot{\delta}_k = 4\pi G \rho_0 \delta_k + A_k - B_k \tag{36} \]

with

\[A_k = 4\pi G \rho_0 \int \frac{d^3 k'}{(2\pi)^3} \delta_{k'} \delta_{k-k'} \left[\frac{k.k'}{k'^2} \right] \tag{37} \]

\[B_k = \int d^3 q \left(k.\dot{x}_T \right)^2 \exp \left[-i k.\dot{x}_T(t,q) \right]. \tag{38} \]

This equation is exact but involves \(\dot{x}_T(t,q) \) on the right hand side and hence cannot be considered as closed. [see, eg. Peebles, 1980; the expression for \(A_k \) is usually given in symmetrised form in \(k' \) and \((k-k') \) in the literature].

The structure of (36) and (38) can be simplified if we use the perturbed gravitational potential (in Fourier space) \(\phi_k \) related to \(\delta_k \) by

\[\delta_k = -\frac{k^2 \phi_k}{4\pi G \rho_0 a^2} = -\frac{k^2 a}{4\pi G \rho_0} \phi_k = -\left(\frac{2}{3H_0^2} \right) k^2 a \phi_k \tag{39} \]

and write the integrand for \(A_k \) in the symmetrised form as

\[\delta_{k'} \delta_{k-k'} \left[\frac{k.k'}{k'^2} \right] = \frac{1}{2} \delta_{k'} \delta_{k-k'} \left[\frac{k.k'}{k'^2} + \frac{k.(k-k')}{|k-k'|^2} \right] \]

\[\quad = \frac{1}{2} \left(\frac{k'}{k'^2} \right) \left(\frac{\delta_{k-k'}}{|k-k'|^2} \right) \left[(k-k')^2 k.k' + k'^2 \left(k^2 - k.k' \right) \right] \]

\[\quad = \frac{1}{2} \left(\frac{2a}{3H_0^2} \right)^2 \phi_{k'} \phi_{k-k'} \left[k^2(k.k' + k'^2) - 2(k.k')^2 \right] \tag{40} \]

In terms of \(\phi_k \), equation (36) becomes, for a \(\Omega = 1 \) universe,

\[\ddot{\phi}_k + \frac{4}{a} \dot{\phi}_k = -\frac{1}{2a^2} \int \frac{d^3 k'}{(2\pi)^3} \phi_{k'} \phi_{k-k'} \left[k'.(k + k') - 2 \left(\frac{k.k'}{k} \right)^2 \right] \]

\[+ \left(\frac{3H_0^2}{2} \right) \int d^3 q \left(\frac{k.\dot{x}}{k} \right)^2 e^{i k.x} \tag{41} \]

where \(x = x_T(t,q) \). We shall see later how this helps one to understand power transfer in gravitational clustering.
If the density contrasts are small and linear perturbation theory is to be valid, we should be able to ignore the terms A_k and B_k in (36). Thus the linear perturbation theory in newtonian limit is governed by the equation

$$\ddot{\delta}_k + 2\frac{\dot{a}}{a} \dot{\delta}_k = 4\pi G \rho_b \delta_k$$

(42)

From the structure of equation (36) it is clear that we will obtain the linear equation if $A_k \ll 4\pi G \rho_b \delta_k$ and $B_k \ll 4\pi G \rho_b \delta_k$. A necessary condition for this $\delta_k \ll 1$ but this is not a sufficient condition — a fact often ignored or incorrectly treated in literature. For example, if $\delta_k \rightarrow 0$ for certain range of k at $t = t_0$ (but is nonzero elsewhere) then $A_k \gg 4\pi G \rho_b \delta_k$ and the growth of perturbations around k will be entirely determined by nonlinear effects. We will discuss this feature in detail later on. For the present, we shall assume that A_k and B_k are ignorable and study the resulting system.

4. Linear perturbations in the Newtonian limit

At $z \lesssim z_{\text{enter}}$, the perturbation can be treated as linear ($\rho \ll 1$) and newtonian ($\lambda \ll d_H$). In this case, the equations are

$$\ddot{\delta}_k + 2\frac{\dot{a}}{a} \dot{\delta}_k \cong 4\pi G \rho_{DM} \delta_k$$

(43)

$$\frac{\dot{a}^2}{a^2} + \frac{k}{a^2} = \frac{8\pi G}{3} (\rho_R + \rho_{DM} + \rho_V)$$

(44)

where ρ_{DM}, ρ_R, and ρ_V are defined in section 1. We will also assume that the dark matter is made of collisionless matter and is perturbed while the energy densities of radiation and cosmological constant are left unperturbed. Changing the variable from t to a, the perturbation equation becomes

$$2a^2 \left[\rho_R + \rho_{DM} + \rho_V - \frac{3k}{8\pi G a^2} \right] \frac{d^2\delta}{da^2}$$

$$+ a \left[2\rho_R + 3\rho_{DM} + 6\rho_V - 4 \left(\frac{3k}{8\pi G a^2} \right) \right] \frac{d\delta}{da} = 3\rho_{DM}\delta$$

(45)

Introducing the variable $\tau \equiv (a/a_0)^{-1}$ and by writing $\rho_i = \Omega_i \rho_c$ for the i^{th} species, and $k = -(8\pi G/3) \rho_c a_0^2 (1 - \Omega)$, we can recast the equation in the form

$$2\tau \left[\Omega_V \tau^4 + (1 - \Omega) \tau^2 + \Omega_{DM} \tau + \Omega_R \right] \delta''$$
where the prime denotes derivatives with respect to \(\tau \). This equation is in a form convenient for numerical integration from \(\tau = \tau_{\text{enter}} = (1 + z_{\text{enter}})^{-1} \) to \(\tau = 1 \).

The exact solution to (46) cannot be given in terms of elementary functions. It is, however, possible to obtain insight into the form of solution by considering different epochs separately.

Let us first consider the epoch \(1 \ll z \ll z_{\text{enter}} \) when we can take \(\Omega_V = 0, \Omega = 1 \), reducing (46) to

\[
2\tau (\Omega_{DM} \tau + \Omega_R) \delta'' + (3\Omega_{DM} \tau + 2\Omega_R) \delta' = 3\Omega_{DM} \delta'
\]

Dividing throughout by \(\Omega_R \) and changing the independent variable to

\[
x = \tau \left(\frac{\Omega_{DM}}{\Omega_R} \right) = \frac{a}{a_0 (\Omega_R/\Omega_{DM})} = \frac{a}{a_{eq}}
\]

we get

\[
2x(1 + x) \frac{d^2 \delta_{DM}}{dx^2} + (2 + 3x) \frac{d\delta_{DM}}{dx} = 3\delta_{DM}; \quad x = \frac{a}{a_{eq}}.
\]

One solution to this equation can be written down by inspection:

\[
\delta_{DM} = 1 + \frac{3}{2} x.
\]

In other words \(\delta_{DM} \approx \) constant for \(a \ll a_{eq} \) (no growth in the radiation dominated phase) and \(\delta_{DM} \propto a \) for \(a \gg a_{eq} \) (growth proportional to \(a \) in the matter dominated phase).

We now have to find the second solution. Given the first solution, the second solution \(\Delta \) can be found by the Wronskian condition \((Q'/Q) = -[(2 + 3x)/2x(1 + x)] \) where \(Q = \delta_{DM} \Delta' - \delta'_{DM} \Delta \). Writing the second solution as \(\Delta = f(x)\delta_{DM}(x) \) and substituting in this equation, we find

\[
\frac{f''}{f'} = -\frac{2\delta_{DM}'}{2 + 3x} \frac{2 + 3x}{2x(1 + x)^{3/2}},
\]

which can be integrated to give

\[
f = -\int \frac{dx}{x(1 + 3x/2)^{2}(1 + x)^{1/2}}.
\]

(52)
The integral is straightforward and the second solution is
\[
\Delta = f \delta_{DM} = \left(1 + \frac{3x}{2}\right) \ln \left[\frac{(1 + x)^{1/2} + 1}{(1 + x)^{1/2} - 1}\right] - 3(1 + x)^{1/2}.
\] (53)

Thus the general solution to the perturbation equation, for a mode which is inside the Hubble radius, is the linear superposition \(\delta = A\delta_{DM} + B\Delta\) with the asymptotic forms:
\[
\delta_{gen}(x) = A\delta_{DM}(x) + B\Delta(x) = \begin{cases}
A + B \ln(4/x) & (x \ll 1) \\
(3/2)Ax + (4/5)Bx^{-3/2} & (x \gg 1).
\end{cases}
\] (54)

This result shows that dark matter perturbations can grow only logarithmically during the epoch \(a_{enter} < a < a_{eq}\). During this phase the universe is dominated by radiation which is unperturbed. Hence the damping term due to expansion \((2\dot{a}/a)\delta\) in equation (42) dominates over the gravitational potential term on the right hand side and restricts the growth of perturbations. In the matter dominated phase with \(a \gg a_{eq}\), the perturbations grow as \(a\). This result, combined with that of section 2, shows that in the matter dominated phase all the modes (i.e., modes which are inside or outside the Hubble radius) grow in proportion to the expansion factor.

Combining the above result with that of section 2, we can determine the evolution of density perturbations in dark matter during all relevant epochs. The general solution after the mode has entered the Hubble radius is given by (54). The constants \(A\) and \(B\) in this solution have to be fixed by matching this solution to the growing solution, which was valid when the mode was bigger than the Hubble radius. Since the latter solution is given by \(\delta(x) = x^2\) in the radiation dominated phase, the matching conditions become
\[
x_{enter}^2 = [A\delta_{DM}(x) + B\Delta(x)]_{x = x_{enter}}
\]
\[
2x_{enter} = [A\delta'_{DM}(x) + B\Delta'(x)]_{x = x_{enter}}.
\] (55)

This determines the constants \(A\) and \(B\) in terms of \(x_{enter} = (a_{enter}/a_{eq})\) which, in turn, depends on the wavelength of the mode through \(a_{enter}\).

As an example, we consider a mode for which \(x_{enter} \ll 1\). The second solution has the asymptotic form \(\Delta(x) \simeq \ln(4/x)\) for \(x \ll 1\). Using this and matching the solution at \(x = x_{enter}\) we get the properly matched mode, inside the Hubble radius, to be
\[
\delta(x) = x_{enter}^2 \left[1 + 2 \ln \left(\frac{4}{x_{enter}}\right)\right] (1 + \frac{3x}{2}) - 2x_{enter}^2 \ln \left(\frac{4}{x}\right).
\] (56)
During the radiation dominated phase — that is, till $a \lesssim a_{\text{eq}}, x \lesssim 1$ — this mode can grow by a factor

$$\frac{\delta(x \simeq 1)}{\delta(x_{\text{enter}})} = \frac{1}{x_{\text{enter}}^2} \delta(x \simeq 1) \cong 5 \ln \left(\frac{1}{x_{\text{enter}}} \right)$$
$$= 5 \ln \left(\frac{a_{\text{eq}}}{a_{\text{enter}}} \right) = \frac{5}{2} \ln \left(\frac{t_{\text{eq}}}{t_{\text{enter}}} \right).$$

(57)

Since the time t_{enter} for a mode with wavelength λ is fixed by the condition $\lambda a_{\text{enter}} \propto \lambda t_{\text{enter}}^{1/2} \simeq d_H(t_{\text{enter}}) \propto t_{\text{enter}}$, it follows that $\lambda \propto t_{\text{enter}}^{1/2}$. Hence,

$$\frac{\delta_{\text{final}}}{\delta_{\text{enter}}} \cong 5 \ln \left(\frac{\lambda_{\text{eq}}}{\lambda} \right) \cong \frac{5}{3} \ln \left(\frac{M_{\text{eq}}}{M} \right)$$

(58)

for a mode with wavelength $\lambda \ll \lambda_{\text{eq}}$. [Here, M is the mass contained in a sphere of radius $(\lambda/2)$; see equation (9).] The growth in the radiation dominated phase, therefore, is logarithmic. Notice that the matching procedure has brought in an amplification factor which depends on the wavelength.

In the discussion above, we have assumed that $\Omega = 1$, which is a valid assumption in the early phases of the universe. However, during the later stages of evolution in a matter dominated phase, we have to take into account the actual value of Ω and solve equation (43). This can be done along the following lines.

Let $\rho(t)$ be a solution to the background Friedmann model dominated by pressureless dust. Consider now the function $\rho_1(t) \equiv \rho(t + \tau)$ where τ is some constant. Since the Friedmann equations contain t only through the derivative, $\rho_1(t)$ is also a valid solution. If we now take τ to be small, then $[\rho_1(t) - \rho(t)]$ will be a small perturbation to the density. The corresponding density contrast is

$$\delta(t) = \frac{\rho_1(t) - \rho(t)}{\rho(t)} = \frac{\rho(t + \tau) - \rho(t)}{\rho(t)} \cong \tau \frac{d \ln \rho}{dt} = -3\tau H(t)$$

(59)

where the last relation follows from the fact that $\rho \propto a^{-3}$ and $H(t) \equiv (\dot{a}/a)$. Since τ is a constant, it follows that $H(t)$ is a solution to the perturbation equation. [This curious fact, of course, can be verified directly: From the equations describing the Friedmann model, it follows that $\ddot{H} + H^2 = (-4\pi G\rho/3)$. Differentiating this relation and using $\dot{\rho} = -3H\rho$ we immediately get $\ddot{H} + 2H\dot{H} - 4\pi G\rho H = 0$. Thus H satisfies the same equation as δ.]

Since $\dot{H} = -H^2 - (4\pi G\rho/3)$, we know that $\dot{H} < 0$; that is, H is a decreasing function of time, and the solution $\delta = H \equiv \delta_d$ is a decaying
mode. The growing solution ($\delta \equiv \delta_g$) can be again found by using the fact that, for any two linearly independent solutions of the equation (42), the Wronskian ($\dot{\delta}_g \delta_d - \delta_d \dot{\delta}_g$) has a value a^{-2}. This implies that

$$\delta_g = \delta_d \int \frac{dt}{a^2 \delta_d^2} = H(t) \int \frac{dt}{a^2 H^2(t)}.$$ \hspace{1cm} (60)

Thus we see that the $H(t)$ of the background spacetime allows one to completely determine the evolution of density contrast.

It is more convenient to express this result in terms of the redshift z. For a universe with arbitrary Ω, we have the relations

$$a(z) = a_0 (1 + z)^{-1}, \quad H(z) = H_0 (1 + z)(1 + \Omega z)^{1/2}$$ \hspace{1cm} (61)

and

$$H_0 dt = -(1 + z)^{-2}(1 + \Omega z)^{-1/2} dz.$$ \hspace{1cm} (62)

Taking $\delta_d = H(z)$, we get

$$\delta_g = \delta_d(z) \int a^{-2} \delta_d^{-2}(z) \left(\frac{dt}{dz} \right) dz$$
$$= (a_0 H_0)^{-2}(1 + z)(1 + \Omega z)^{1/2} \int_z^{\infty} dx (1 + x)^{-2}(1 + \Omega x)^{-3/2}.$$ \hspace{1cm} (63)

This integral can be expressed in terms of elementary functions:

$$\delta_g = \frac{1 + 2\Omega + 3\Omega z}{(1 - \Omega)^2} - \frac{3 \Omega(1 + z)(1 + \Omega z)^{1/2}}{2 (1 - \Omega)^{5/2}} \ln \left[\frac{(1 + \Omega z)^{1/2} + (1 - \Omega)^{1/2}}{(1 + \Omega z)^{1/2} - (1 - \Omega)^{1/2}} \right].$$ \hspace{1cm} (64)

Thus $\delta_g(z)$ for an arbitrary Ω can be given in closed form. The solution in (64) is not normalized in any manner; normalization can be achieved by multiplying δ_g by some constant depending on the context.

For large z (i.e., early times), $\delta_g \propto z^{-1}$. This is to be expected because for large z, the curvature term can be ignored and the Friedmann universe can be approximated as a $\Omega = 1$ model. [The large z expansion of the logarithm in (64) has to be taken up to $O(z^{-5/2})$ to get the correct result; it is easier to obtain the asymptotic form directly from the integral in (63)].

For $\Omega \ll 1$, one can see that $\delta_g \simeq \text{constant}$ for $z \ll \Omega^{-1}$. This is the curvature dominated phase, in which the growth of perturbations is halted by rapid expansion.

We have thus obtained the complete evolutionary sequence for a perturbation in the linear theory, which is shown in figure 1. This result can be conveniently summarized in terms of a quantity called ‘transfer function’ which we shall now describe.
Figure 1. Schematic figure showing the growth of linear perturbations in dark matter. The perturbation grows as a^2 before entering the Hubble radius when relativistic theory is required. During the radiation dominated phase it grows only as $\ln a$ and during the matter dominated phase it grows as a. In case the universe become dominated by curvature or background energy density, the perturbations do not grow significantly after that epoch.

5. Transfer function

If $\delta(t, x) \ll 1$, then one can describe the evolution of $\delta(t, x)$ by linear perturbation theory, in which each mode $\delta_k(t)$ will evolve independently and we can write

$$\delta_k(t) = T_k(t, t_i)\delta_k(t_i)$$

where $T_k(t, t_i)$ depends only on the dynamics and not on the initial conditions. We shall now determine the form of $T_k(t, t_i)$.

Let $\delta_{\lambda}(t_i)$ denote the amplitude of the dark matter perturbation corresponding to some wavelength λ at the initial instant t_i. To each λ, we can associate a wavenumber $k \propto \lambda^{-1}$ and a mass $M \propto \lambda^3$; accordingly, we may label the perturbation as $\delta_M(t)$ or $\delta_k(t)$, as well, with the scalings $M \sim \lambda^3$, $k \sim \lambda^{-1}$. We are interested in the value of $\delta_{\lambda}(t)$ at some $t \geq t_{\text{dec}}$.

To begin with, consider the modes which enter the Hubble radius in the radiation dominated phase; their growth is suppressed in the radiation dominated phase by the rapid expansion of the universe; therefore, they do not grow significantly until $t = t_{\text{eq}}$, giving $\delta_{\lambda}(t_{\text{eq}}) = L\delta_{\lambda}(t_{\text{enter}})$ where $L \simeq 5 \ln(\lambda_{\text{eq}}/\lambda)$ is a logarithmic factor determined in (58). After matter
begins to dominate, the amplitude of these modes grows in proportion to the scale factor a. Thus,

$$\delta_M(t) = L\delta_M(t_{\text{enter}}) \left(\frac{a}{a_{eq}} \right) \quad (\text{for } M < M_{eq}).$$ \hfill (66)

Consider next the modes with $\lambda_{eq} < \lambda < \lambda_H$ where $\lambda_H \equiv H^{-1}(t)$ is the Hubble radius at the time t when we are studying the spectrum. These modes enter the Hubble radius in the matter dominated phase and grow proportional to a afterwards. So,

$$\delta_M(t) = \delta_M(t_{\text{enter}}) \left(\frac{a}{a_{enter}} \right) \quad (\text{for } M_{eq} < M < M_H)$$ \hfill (67)

which may be rewritten as

$$\delta_M(t) = \delta_M(t_{\text{enter}}) \left(\frac{a_{eq}}{a_{enter}} \right) \left(\frac{a}{a_{eq}} \right).$$ \hfill (68)

But notice that, since t_{enter} is fixed by the condition $\lambda a_{\text{enter}} \propto t_{\text{enter}} \propto \lambda t_{\text{enter}}^{2/3}$, we have $t_{\text{enter}} \propto \lambda^3$. Further $a_{eq}/a_{\text{enter}} = (t_{eq}/t_{\text{enter}})^{2/3}$, giving

$$\left(\frac{a_{eq}}{a_{\text{enter}}} \right) = \left(\frac{\lambda_{eq}}{\lambda} \right)^2 = \left(\frac{M_{eq}}{M} \right)^{2/3}. \hfill (69)$$

Substituting (69) in (68), we get

$$\delta_M(t) = \delta_M(t_{\text{enter}}) \left(\frac{\lambda_{eq}}{\lambda} \right)^2 \left(\frac{a}{a_{eq}} \right) = \delta_M(t_{\text{enter}}) \left(\frac{M_{eq}}{M} \right)^{2/3} \left(\frac{a}{a_{eq}} \right) \quad (\lambda > \lambda_H).$$ \hfill (70)

Comparing (70) and (66) we see that the mode which enters the Hubble radius after t_{eq} has its amplitude decreased by a factor $L^{-1}M^{-2/3}$, compared to its original value.

Finally, consider the modes with $\lambda > \lambda_H$ which are still outside the Hubble radius at t and will enter the Hubble radius at some future time $t_{\text{enter}} > t$. During the time interval (t, t_{enter}), they will grow by a factor (a_{enter}/a). Thus

$$\delta_\lambda(t_{\text{enter}}) = \delta_\lambda(t) \left(\frac{a_{\text{enter}}}{a} \right)$$ \hfill (71)

or

$$\delta_\lambda(t) = \delta_\lambda(t_{\text{enter}}) \left(\frac{a}{a_{\text{enter}}} \right) = \delta_M(t_{\text{enter}}) \left(\frac{M_{eq}}{M} \right)^{2/3} \left(\frac{a}{a_{eq}} \right) \quad (\lambda > \lambda_H).$$ \hfill (72)
[The last equality follows from the previous analysis]. Thus the behaviour of the modes is the same for the cases \(\lambda_{\text{eq}} < \lambda < \lambda_H\) and \(\lambda_H < \lambda\); i.e. for all wavelengths \(\lambda > \lambda_{\text{eq}}\). Combining all these pieces of information, we can state the final result as follows:

\[
\delta(\lambda, t) = \begin{cases}
L\delta(t_{\text{enter}})(a/a_{\text{eq}}) & (\lambda < \lambda_{\text{eq}}) \\
\delta(t_{\text{enter}})(a/a_{\text{eq}})(\lambda_{\text{eq}}/\lambda)^2 & (\lambda_{\text{eq}} < \lambda)
\end{cases}
\] (73)

or, equivalently

\[
\delta(M, t) = \begin{cases}
L\delta(t_{\text{enter}})(a/a_{\text{eq}}) & (M < M_{\text{eq}}) \\
\delta(t_{\text{enter}})(a/a_{\text{eq}})(M_{\text{eq}}/M)^{2/3} & (M_{\text{eq}} < M)
\end{cases}
\] (74)

Thus the amplitude at late times is completely fixed by the amplitude of the modes when they enter the Hubble radius.

In this approach, to determine \(\delta(x, t)\) or \(\delta(k)\) at time \(t\), we need to know its exact space dependence (or \(k\) dependence) at some initial instant \(t = t_i\) [eg. to determine \(\delta(t, x)\), we need to know \(\delta(t_i, x)\)]. Often, we are not interested in the exact form of \(\delta(t, x)\) but only in its “statistical properties” in the following sense: We may assume that, for sufficiently small \(t_i\), each fourier mode \(\delta_k(t_i)\) was a Gaussian random variable with

\[
\langle \delta_k(t_i)\delta_k^*(t_i) \rangle = (2\pi)^3 P(k, t_i) \delta_D(k - p) \] (75)

where \(P(k, t_i)\) is the power spectrum of \(\delta(t_i, x)\) and \(< \cdots >\) denotes an ensemble average. Then,

\[
\langle \delta_k(t)\delta_k^*(t) \rangle = T_k(t, t_i)T_k^*(t, t_i)\langle \delta_k(t_i)\delta_k^*(t_i) \rangle = (2\pi)^3 |T_k(t, t_i)|^2 P(k, t_i) \delta_D(k - p) \] (76)

and the statistical nature of \(\delta_k\) is preserved by evolution with the power spectrum evolving as

\[
P(k, t) = |T_k(t, t_i)|^2 P(k, t_i). \] (77)

It should be stressed that as far as linear evolution of perturbations are concerned the statistics of the perturbations is maintained. For any random field one can define a power spectrum and study its evolution along the lines described below. In case of a gaussian random field with zero mean the power spectrum contains the complete information; in other cases the power spectrum will only provide partial information. This is the key difference between gaussian and other statistics. Some theories of structure formation describing the origin of initial perturbations predict the statistics of the
perturbations to be gaussian. Since this seems to be fairly natural we shall confine to this case in our discussion.

A closely related quantity to the power spectrum is the two point correlation function, defined as

$$\xi_\delta(x) = \langle \delta(x + y)\delta(y) \rangle = \int \frac{d^3k}{(2\pi)^3} \frac{d^3p}{(2\pi)^3} \langle \delta_k \delta_p^* \rangle e^{ik(x+y)} e^{-ip \cdot y}$$ \hspace{1cm} (78)

where $$\langle \cdots \rangle$$ is the ensemble average. Using

$$\langle \delta_k \delta_p^* \rangle = (2\pi)^3 P(k) \delta_D(k-p)$$ \hspace{1cm} (79)

we get

$$\xi_\delta(x) = \int \frac{d^3k}{(2\pi)^3} P(k) e^{ik \cdot x}$$ \hspace{1cm} (80)

That is, the correlation function is the Fourier transform of the power spectrum.

Our analysis can be used to determine the growth of $$P(k)$$ or $$\xi(x)$$ as well. In practice, a more relevant quantity characterizing the density inhomogeneity is $$\Delta^2_k \equiv (k^3 P(k)/2\pi^2)$$ where $$P(k) = |\delta_k|^2$$ is the power spectrum. Physically, $$\Delta^2_k$$ represents the power in each logarithmic interval of $$k$$. From (73) we find that quantity behaves as

$$\Delta^2_k = \begin{cases} L^2(k) \Delta^2_k(t_{\text{enter}})(a/a_{\text{eq}})^2 & \text{(for } k_{\text{eq}} < k) \\ \Delta^2_k(t_{\text{enter}})(a/a_{\text{eq}})^2(k/k_{\text{eq}})^4 & \text{(for } k < k_{\text{eq}}). \end{cases}$$ \hspace{1cm} (81)

Let us next determine $$\Delta^2_k(t_{\text{enter}})$$ if the initial power spectrum, when the mode was much larger than the Hubble radius, was a power law with $$\Delta^2_k \propto k^{n+3}$$. This mode was growing as $$a^2$$ while it was bigger than the Hubble radius (in the radiation dominated phase). Hence $$\Delta^2_k(t_{\text{enter}}) \propto a_{\text{enter}}^4 k^{n+3}$$. In the radiation dominated phase, we can relate $$a_{\text{enter}}$$ to $$\lambda$$ by noting that $$\lambda a_{\text{enter}} \propto t_{\text{enter}} \propto a_{\text{enter}}^2$$; so $$\lambda \propto a_{\text{enter}} \propto k^{-1}$$. Therefore,

$$\Delta^2_k(t_{\text{enter}}) \propto a_{\text{enter}}^4 k^{n+3} \propto k^{n-1}.$$ \hspace{1cm} (82)

Using this in (81) we find that

$$\Delta^2_k = \begin{cases} L^2(k) k^{n-1}(a/a_{\text{eq}})^2 & \text{(for } k_{\text{eq}} < k) \\ k^{n+3}(a/a_{\text{eq}})^2 & \text{(for } k < k_{\text{eq}}). \end{cases}$$ \hspace{1cm} (83)

This is the shape of the power spectrum for $$a > a_{\text{eq}}$$. It retains its initial primordial shape ($$\Delta^2_k \propto k^{n+3}$$) at very large scales ($$k < k_{\text{eq}}$$ or $$\lambda > \lambda_{\text{eq}}$$). At smaller scales, its amplitude is essentially reduced by four powers of $$k$$ (from $$k^{n+3}$$ to $$k^{n-1}$$). This arises because the small wavelength modes enter
the Hubble radius earlier on and their growth is suppressed more severely during the phase $a_{\text{enter}} < a < a_{eq}$.

Note that the index $n = 1$ is special. In this case, $\Delta^2_k(t_{\text{enter}})$ is independent of k and all the scales enter the Hubble radius with the same amplitude. The above analysis suggests that if $n = 1$, then all scales in the range $k_{eq} < k$ will have nearly the same power except for the weak, logarithmic dependence through $L^2(k)$. Small scales will have slightly more power than the large scales due to this factor.

There is another — completely different — reason because of which $n = 1$ spectrum is special. If $P(k) \propto k^n$, the power spectrum for gravitational potential $P_\phi(k) \propto (P(k)/k^4)$ varies as $P_\phi(k) \propto k^{n-4}$. The power per logarithmic band in the gravitational potential varies as $\Delta^2_\phi \equiv (k^3P_\phi(k)/2\pi^2) \propto k^{n-1}$. For $n = 1$, this is independent of k and each logarithmic interval in k space contributes the same amount of power to the gravitational potential. Hence any fundamental physical process which is scale invariant will generate a spectrum with $n = 1$. Thus observational verification of the index to $n = 1$ only verifies the fact that the fundamental process which led to the primordial fluctuations is scale invariant.

Finally, we mention a few other related measures of inhomogeneity. Given a variable $\delta(x)$ we can smooth it over some scale by using window functions $W(x)$ of suitable radius and shape (We have suppressed the t dependence in the notation, writing $\delta(x,t)$ as $\delta(x)$). Let the smoothed function be

$$\delta_W(x) = \int \delta(x + y)W(y)d^3y.$$ \hspace{1cm} (84)

Fourier transforming $\delta_W(x)$, we find that

$$\delta_W(x) = \int \frac{d^3k}{(2\pi)^3} \delta_k W^*_k e^{ik\cdot x} \equiv \int \frac{d^3k}{(2\pi)^3} Q_k.$$ \hspace{1cm} (85)

If δ_k is a Gaussian random variable, then Q_k is also a Gaussian random variable. Clearly $\delta_W(x)$ — which is obtained by adding several Gaussian random variables Q_k — is also a Gaussian random variable. Therefore, to find the probability distribution of $\delta_W(x)$ we only need to know the mean and variance of $\delta_W(x)$. These are,

$$\langle \delta_W(x) \rangle = \int \frac{d^3k}{(2\pi)^3} \langle \delta_k \rangle W^*_k e^{ik\cdot x} = 0$$

$$\langle \delta^2_W(x) \rangle = \int \frac{d^3k}{(2\pi)^3} P(k)|W_k|^2 \equiv \mu^2.$$ \hspace{1cm} (86)

Hence the probability of δ_W to have a value q at any location is given by

$$P(q) = \frac{1}{(2\pi \mu^2)^{1/2}} \exp \left(-\frac{q^2}{2\mu^2} \right).$$ \hspace{1cm} (87)
Note that this is independent of x, as expected.

A more interesting construct will be based on the following question: What is the probability that the value of δ_W at two points x_1 and x_2 are q_1 and q_2? Once we choose (x_1, x_2) the $\delta_W(x_1), \delta_W(x_2)$ are correlated Gaussians with $\langle \delta_W(x_1) \delta_W(x_2) \rangle = \xi_R(r)$ where $r = x_1 - x_2$. The simultaneous probability distribution for $\delta_W(x_1) = q_1$ and $\delta_W(x_2) = q_2$ for two correlated Gaussians is given by:

$$P[q_1, q_2] = \frac{1}{2\pi\mu^2} \left(\frac{1}{1 - A^2} \right)^{1/2} \exp -Q[q_1, q_2]$$ \hspace{1cm} (88)

where

$$Q[q_1, q_2] = \frac{1}{2} \left(\frac{1}{1 - A^2} \right) \frac{1}{\mu^2} \left[q_1^2 + q_2^2 - 2Aq_1q_2 \right] ;$$ \hspace{1cm} (89)

with $A \equiv [\xi_R(r)/\mu]$. (This is easily verified by computing $\langle q_1 \rangle, \langle q_2 \rangle$ and $\langle q_1 q_2 \rangle$ explicitly.) We can now ask: What is the probability that both q_1 and q_2 are high density peaks? Such a question is particularly relevant since we may expect high density regions to be the locations of galaxy formation in the universe (see e.g. Kaiser, 1985). Then the correlation function of the galaxies will be the correlation between the high density peaks of the underlying gaussian random field. This is easily computed to be

$$P_2[q_1 > \nu\mu, q_2 > \nu\mu] = \int_{\nu\mu}^{\infty} dq_1 \int_{\nu\mu}^{\infty} dq_2 \, P[q_1, q_2] \equiv P_1^2(q > \nu\mu) \left[1 + \xi_\nu(r) \right]$$ \hspace{1cm} (90)

where $\xi_\nu(r)$ denotes the correlation function for regions with density which is ν times higher than the variance of the field. Explicit computation now gives

$$P_2 \propto \int_{\nu}^{\infty} dt_1 \int_{\nu}^{\infty} dt_2 \exp \left\{ -\frac{1}{2} \frac{1}{1 - A^2} \left(t_1^2 + t_2^2 - 2At_1t_2 \right) \right\}$$ \hspace{1cm} (91)

This result can be expressed in terms of error function. An interesting special case in which this expression can be approximated occurs when $A \ll 1$ and $\nu \gg 1$ though $A\nu^2$ is arbitrary. Then we get

$$P_2 \approx \frac{1}{2\pi} e^{-\nu^2} \exp \left(A\nu^2 \right) \approx P_1^2(q > \nu\mu) \exp \left(A\nu^2 \right)$$ \hspace{1cm} (92)

so that

$$\xi_\nu(r) = \exp \left(A\nu^2 \right) - 1 = \exp \left[\frac{\nu^2}{\mu^2} \xi_R(r) \right] - 1$$ \hspace{1cm} (93)
In other words, the correlation function of high density peaks of a gaussian random field can be significantly higher than the correlation function of the underlying field. If we further assume that $A \ll 1, \nu \gg 1$ and $A\nu^2 \ll 1$, then

$$\xi_\nu(r) \cong \nu^2 \frac{\xi_R(r)}{\xi_R(0)} = \left(\frac{\nu}{\mu}\right)^2 \xi_R(r)$$

(94)

In this limit $\xi_\nu(r) \propto \xi_R(r)$ with the correlation increasing as ν^2.

A simple example of the window function arises in the following context. Consider the mass contained within a sphere of radius R centered at some point x in the universe. As we change x, keeping R constant, the mass enclosed by the sphere will vary randomly around a mean value $M_0 = (4\pi/3)\rho_B R^3$ where ρ_B is the matter density of the background universe. The mean square fluctuation in this mass $\langle (\delta M/M)^2 \rangle_R$ is a good measure of the inhomogeneities present in the universe at the scale R. In this case, the window function is $W(y) = 1$ for $|y| \leq R$ and zero otherwise. The variance in (86) becomes:

$$\sigma_{sph}^2(R) = \langle \delta_W^2 \rangle = \int \frac{d^3k}{(2\pi)^3} P(k) W_{sph}(k)$$

$$= \frac{3}{2\pi^2} \int_0^\infty dk \frac{k^3 P(k)}{2\pi^2} \left\{ \frac{3}{k^3 R^3} \left(\frac{\sin kr - kr \cos kr}{k^2} \right) \right\}^2$$

(95)

This will be a useful statistic in many contexts.

Another quantity which we will use extensively in latter sections is the average value of the correlation function within a sphere of radius r, defined to be

$$\bar{\xi} = \frac{3}{r^3} \int_0^r \xi(x) x^2 dx$$

(96)

Using

$$\xi(x) \equiv \int \frac{d^3k}{(2\pi)^3} P(k) e^{i\mathbf{k} \cdot \mathbf{x}} = \int_0^\infty \frac{dk}{k} \left(\frac{k^3 P(k)}{2\pi^2} \right) \left(\frac{\sin kx}{kx} \right)$$

(97)

and (96) we find that

$$\bar{\xi}(r) = \frac{3}{r^3} \int_0^\infty \frac{dk}{k^2} \left(\frac{k^3 P(k)}{2\pi^2} \right) \int_0^r dx \left(x \sin kx \right)$$

$$= \frac{3}{2\pi^2 r^3} \int_0^\infty \frac{dk}{k} P(k) \left[\sin kr - kr \cos kr \right].$$
A simple computation relates $\sigma_{\text{sph}}^2(R)$ to $\xi(x)$ and $\bar{\xi}(x)$. We can show that

$$\sigma_{\text{sph}}^2(R) = \frac{3}{R^3} \int_0^{2R} x^2 dx \xi(x) \left(1 - \frac{x}{2R}\right)^2 \left(1 + \frac{x}{4R}\right).$$

(99)

and

$$\sigma_{\text{sph}}^2(R) = \frac{3}{2} \int_0^{2R} \frac{dx}{(2R)} \bar{\xi}(x) \left(\frac{x}{R}\right)^3 \left[1 - \left(\frac{x}{2R}\right)^2\right].$$

(100)

Note that σ_{sph}^2 at R is determined entirely by $\xi(x)$ (or $\bar{\xi}(x)$) in the range $0 \leq x \leq 2R$. (For a derivation, see Padmanabhan, 1996)

The Gaussian nature of δ_k cannot be maintained if the evolution couples the modes for different values of k. Equation (36), which describes the evolution of $\delta_k(t)$, shows that the modes do mix with each other as time goes on. Thus, in general, Gaussian nature of δ_k’s cannot be maintained in the nonlinear epochs.

6. Zeldovich approximation

We shall next consider the evolution of perturbations in the nonlinear epochs. This is an intrinsically complex problem and the only exact procedure for studying it involves setting up large scale numerical simulations. Unfortunately numerical simulations tend to obscure the basic physics contained in the equations and essentially acts as a ‘black box’. Hence it is worthwhile to analyse the nonlinear regime using some simple analytic approximations in order to obtain insights into the problem. In sections 6 to 8 and in section 11 we shall describe a series of such approximations with increasing degree of complexity. The first one — called Zeldovich approximation — is fairly simple and leads to an idea of the kind of structures which generically form in the universe. This approximation, however, is not of much use for more detailed work. The second and third approximations described in sections 7 and 8 are more powerful and allow the modeling of the universe based on the evolution of the initially over dense region. Finally we discuss in section 11 a fairly sophisticated approach involving nonlinear scaling relations which are present in the dynamics of gravitational clustering. In between the discussion of these approximations, we also describe some useful procedures which can be adopted to answer questions that are directly relevant to structure formation in sections 9 and 10.

A useful insight into the nature of linear perturbation theory (as well as nonlinear clustering) can be obtained by examining the nature of particle trajectories which lead to the growth of the density contrast $\delta_L(a) \propto a$. To
determine the particle trajectories corresponding to the linear limit, let us start by writing the trajectories in the form
\[x_T(a, q) = q + L(a, q) \]
(101)

where \(q \) is the Lagrangian coordinate (indicating the original position of the particle) and \(L(a, q) \) is the displacement. The corresponding Fourier transform of the density contrast is given by the general expression
\[\delta(a, k) = \int d^3q e^{-i\mathbf{k} \cdot \mathbf{q} - i\mathbf{k} \cdot \mathbf{L}(a, q)} - (2\pi)^3 \delta_{\text{Dirac}}[\mathbf{k}] \]
(102)

In the linear regime, we expect the particles to have moved very little and hence we can expand the integrand in the above equation in a Taylor series in \((\mathbf{k} \cdot \mathbf{L})\). This gives, to the lowest order,
\[\delta(a, k) \approx -\int d^3q e^{-i\mathbf{k} \cdot \mathbf{q}} (i\mathbf{k} \cdot \mathbf{L}(a, q)) = -\int d^3q e^{-i\mathbf{k} \cdot \mathbf{q}} (\nabla \psi \cdot \mathbf{L}) \]
(103)

showing that \(\delta(a, k) \) is Fourier transform of \(-\nabla \psi \mathbf{L}(a, q)\). This allows us to identify \(\nabla \cdot \mathbf{L}(a, q) \) with the original density contrast in real space \(-\delta(a, q)\). Using the Poisson equation (for a \(\Omega = 1 \), which is assumed for simplicity) we can write \(\delta(a, q) \) as a divergence; that is
\[\nabla \cdot \mathbf{L}(a, q) = -\delta(a, q) = -\frac{2}{3} H_0^{-2} a \nabla \cdot (\nabla \phi) \]
(104)

which, in turn shows that a consistent set of displacements that will lead to \(\delta(a) \propto a \) is given by
\[\mathbf{L}(a, q) = - (\nabla \psi) a \equiv a \mathbf{u}(q); \quad \psi \equiv (2/3) H_0^{-2} \phi \]
(105)

The trajectories in this limit are, therefore, linear in \(a \):
\[x_T(a, q) = q + a \mathbf{u}(q) \]
(106)

An useful approximation to describe the quasilinear stages of clustering is obtained by using the trajectory in (106) as an ansatz valid even at quasilinear epochs. In this approximation, called Zeldovich approximation, the proper Eulerian position \(\mathbf{r} \) of a particle is related to its Lagrangian position \(\mathbf{q} \) by
\[\mathbf{r}(t) = a(t) x(t) = a(t)[\mathbf{q} + a(t) \mathbf{u}(q)] \]
(107)

where \(x(t) \) is the comoving Eulerian coordinate. This relation in (106) gives the comoving position (\(x \)) and proper position (\(r \)) of a particle at time \(t \), given that at some time in the past it had the comoving position \(q \). If
the initial, unperturbed, density is $\bar{\rho}$ (which is independent of \mathbf{q}), then the conservation of mass implies that the perturbed density will be

$$\rho(\mathbf{r},t)d^3\mathbf{r} = \bar{\rho}d^3\mathbf{q}.$$ \hfill (108)

Therefore

$$\rho(\mathbf{r},t) = \bar{\rho} \left[\det \left(\frac{\partial q_i}{\partial r_j} \right) \right]^{-1} = \frac{\bar{\rho}/a^3}{\det(\partial x_j/\partial q_i)} = \frac{\rho_b(t)}{\det(\delta_{ij} + a(t)(\partial u_j/\partial q_i))}$$ \hfill (109)

where we have set $\rho_b(t) = [\bar{\rho}/a^3(t)]$. Since $\mathbf{u}(\mathbf{q})$ is a gradient of a scalar function, the Jacobian in the denominator of (109) is the determinant of a real symmetric matrix. This matrix can be diagonalized at every point \mathbf{q}, to yield a set of eigenvalues and principal axes as a function of \mathbf{q}. If the eigenvalues of $(\partial u_j/\partial q_i)$ are $[-\lambda_1(\mathbf{q}), -\lambda_2(\mathbf{q}), -\lambda_3(\mathbf{q})]$ then the perturbed density is given by

$$\rho(\mathbf{r},t) = \rho_b(t) \frac{(1 - a(t)\lambda_1(\mathbf{q}))(1 - a(t)\lambda_2(\mathbf{q}))(1 - a(t)\lambda_3(\mathbf{q}))}{(1 - a(t)\lambda_1(\mathbf{q}))(1 - a(t)\lambda_2(\mathbf{q}))(1 - a(t)\lambda_3(\mathbf{q}))}$$ \hfill (110)

where \mathbf{q} can be expressed as a function of \mathbf{r} by solving (107). This expression describes the effect of deformation of an infinitesimal, cubic al, volume (with the faces of the cube determined by the eigenvectors corresponding to λ_n) and the consequent change in the density. A positive λ denotes collapse and negative λ signals expansion.

In a overdense region, the density will become infinite if one of the terms in brackets in the denominator of (110) becomes zero. In the generic case, these eigenvalues will be different from each other; so that we can take, say, $\lambda_1 \geq \lambda_2 \geq \lambda_3$. At any particular value of \mathbf{q} the density will diverge for the first time when $(1 - a(t)\lambda_1) = 0$; at this instant the material contained in a cube in the \mathbf{q} space gets compressed to a sheet in the \mathbf{r} space, along the principal axis corresponding to λ_1. Thus sheetlike structures, or ‘pancakes’, will be the first nonlinear structures to form when gravitational instability amplifies density perturbations.

The trajectories in Zeldovich approximation, given by (106) can be used in (41) to provide a closed integral equation for ϕ_k. In this case,

$$\mathbf{x}_T(\mathbf{q},a) = \mathbf{q} + a \nabla \psi; \quad \dot{\mathbf{x}}_T = \left(\frac{2a}{3t} \right) \nabla \psi; \quad \psi = \frac{2}{3H_0^2} \varphi$$ \hfill (111)

and, to the same order of accuracy, B_k in (38) becomes:

$$\int d^3\mathbf{q} (\mathbf{k} \cdot \dot{\mathbf{x}}_T)^2 e^{-i\mathbf{k} \cdot (\mathbf{q} + \mathbf{L})} \approx \int d^3\mathbf{q} (\mathbf{k} \cdot \dot{\mathbf{x}}_T)^2 e^{-i\mathbf{k} \cdot \mathbf{q}}$$ \hfill (112)
Substituting these expressions in (41) we find that the gravitational potential is described by the closed integral equation:

$$
\ddot{\phi}_k + \frac{4}{a} \dot{\phi}_k = -\frac{1}{3a^2} \int \frac{d^3p}{(2\pi)^3} \phi_{k+p} \phi_{k-p} G(k,p) G(k,p)
$$

$$
G(k,p) = \frac{7}{8} k^2 + \frac{3}{2} p^2 - 5 \left(\frac{k \cdot p}{k} \right)^2
$$

(113)

This equation provides a powerful method for analysing non linear clustering since estimating \((A_k - B_k)\) by Zeldovich approximation has a very large domain of applicability (Padmanabhan, 1998).

It is also possible to determine the power spectrum corresponding to these trajectories using our general formula:

$$
P(k,a) = |\delta(k,a)|^2 = \int d^3q d^3q' e^{-ik(q-q')} \langle e^{-ik[L(a,q)-L(a,q')]}/2 \rangle
$$

(114)

The ensemble averaging can be performed using the general result for gaussian random fields:

$$
\langle e^{ik \cdot V} \rangle = \exp \left(-k_i k_j \sigma^{ij}(V) / 2 \right)
$$

(115)

where \(\sigma^{ij}\) is the covariance matrix for the components \(V^a\) of a gaussian random field. This quantity can be expressed in terms of the power spectrum \(P_L(k)\) in the linear theory and a straightforward analysis gives (see, for e.g., Taylor and Hamilton, 1996)

$$
P(k,a) = \int_0^\infty 2\pi q^2 dq \int_{-1}^{+1} d\mu e^{ikq\mu} \exp -k^2 \left[F(q) + \mu^2 q F'(q) \right]
$$

(116)

where

$$
F(q) = \frac{a^2}{2\pi^2} \int_0^\infty dk P_L(k) \frac{j_1(kq)}{kq}
$$

(117)

The integrals, unfortunately, needs to be evaluated numerically except in the case of \(n = -2\). In this case, we get

$$
\Delta^2(k,a) \equiv \frac{k^3 P}{2\pi^2} = \frac{16}{\pi} \frac{a^2 k}{1 + (2a^2 k)^2} \left[1 + \frac{3\pi}{4} \frac{a^2 k}{1 + (2a^2 k)^2} \right]^{1/2}
$$

(118)

which shows that \(\Delta^2 \propto a^2\) for small \(a\) but decays as \(a^{-2}\) at late times due to the dispersion of particles. Clearly, Zeldovich approximation breaks down beyond a particular epoch and is of limited validity.
7. Spherical approximation

In the nonlinear regime — when \(\delta \gtrsim 1 \) — it is not possible to solve equation (36) exactly. Some progress, however, can be made if we assume that the trajectories are homogeneous; i.e. \(\mathbf{x}(t, \mathbf{q}) = f(t)\mathbf{q} \) where \(f(t) \) is to be determined. In this case, the density contrast is

\[
\delta_k(t) = \int d^3\mathbf{q} e^{-i f(t) \mathbf{k} \cdot \mathbf{q}} - (2\pi)^3 \delta_D(\mathbf{k})
\]

where we have defined \(\delta(t) \equiv [f^{-3}(t) - 1] \) as the amplitude of the density contrast for the \(k = 0 \) mode. It is now straightforward to compute \(A \) and \(B \) in (36). We have

\[
A = 4\pi G \rho_b \delta^2(t) [(2\pi)^3 \delta_D(\mathbf{k})]
\]

and

\[
B = \int d^3\mathbf{q} (k^a q_a)^2 \dot{f}^2 e^{-i f(k q^a)} = -\dot{f}^2 \frac{\partial^2}{\partial f^2} [(2\pi)^3 \delta_D(f \mathbf{k})]
\]

so that the equation (36) becomes

\[
\ddot{\delta} + 2 \frac{\dot{a}}{a} \dot{\delta} = 4\pi G \rho_b (1 + \delta) \delta + \frac{4}{3} \frac{\dot{\delta}^2}{(1 + \delta)^2}
\]

(This particular approach to spherical collapse model, which does not require fluid equations is due to Padmanabhan 1998.) To understand what this equation means, let us consider, at some initial epoch \(t_i \), a spherical region of the universe which has a slight constant overdensity compared to the background. As the universe expands, the overdense region will expand more slowly compared to the background, will reach a maximum radius, contract and virialize to form a bound nonlinear system. Such a model is called “spherical top-hat”. For this spherical region of radius \(R(t) \) containing dustlike matter of mass \(M \) in addition to other forms of energy densities, the density contrast for dust will be given by:

\[
1 + \delta = \frac{\rho}{\rho_b} = \frac{3M}{4\pi R^3(t)} \frac{1}{\rho_b(t)} = \frac{2GM}{\Omega_m H_0^2 a_0^3} \left[\frac{a(t)}{R(t)} \right]^3 \equiv \mu \frac{a^3}{R^3}.
\]

[Note that, with this definition \(f \propto (R/a) \).] Using this in (122) we can to obtain an equation for \(R(t) \) from the equation for \(\delta \); straight forward analysis gives

\[
\ddot{R} = -\frac{GM}{R^2} - \frac{4\pi G}{3} (\rho + 3p)_{\text{rest}} R.
\]
This equation could have been written down “by inspection” using the relations
\[\dot{R} = -\nabla \phi_{\text{tot}}; \quad \phi_{\text{tot}} = \phi_{\text{FRW}} + \delta \phi = -\frac{\ddot{a}}{2a} R^2 - G\delta M/R. \] (125)

Note that this equation is valid for perturbed “dust-like” matter in any background spacetime with density \(\rho_{\text{rest}} \) and pressure \(p_{\text{rest}} \) contributed by the rest of the matter. Our homogeneous trajectories \(x(q, t) = f(t)q \) actually describe the spherical top hat model.

This model is particularly simple for the \(\Omega = 1 \), matter dominated universe, in which \(\rho_{\text{rest}} = p_{\text{rest}} = 0 \) and we have to solve the equation
\[\frac{d^2 R}{dt^2} = -\frac{GM}{R^2}. \] (126)

This can be done by standard techniques and the final results for the evolution of a spherical overdense region can be summarized by the following relations:
\[R(t) = \frac{R_i}{2\delta_i} (1 - \cos \theta) = \frac{3x}{10\delta_0} (1 - \cos \theta), \] (127)
\[t = \frac{3t_i}{4\delta_i^{3/2}} (\theta - \sin \theta) = \left(\frac{3}{5} \right)^{3/2} \frac{3t_0}{4\delta_0^{3/2}} (\theta - \sin \theta), \] (128)
\[\rho(t) = \rho_b(t) \frac{9(\theta - \sin \theta)^2}{2(1 - \cos \theta)^3}. \] (129)

The density can be expressed in terms of the redshift by using the relation \((t/t_i)^{2/3} = (1 + z_i)(1 + z)^{-1}\). This gives
\[(1 + z) = \left(\frac{4}{3} \right)^{2/3} \frac{\delta_i(1 + z_i)}{(\theta - \sin \theta)^2/3} = \left(\frac{5}{3} \right) \left(\frac{4}{3} \right)^{2/3} \frac{\delta_0}{(\theta - \sin \theta)^2/3}; \] (130)
\[\delta = \frac{9}{2} \frac{(\theta - \sin \theta)^2}{(1 - \cos \theta)^3} - 1. \] (131)

Given an initial density contrast \(\delta_i \) at redshift \(z_i \), these equations define (implicitly) the function \(\delta(z) \) for \(z > z_i \). Equation (130) defines \(\theta \) in terms of \(z \) (implicitly); equation (131) gives the density contrast at that \(\theta(z) \).

For comparison, note that linear evolution gives the density contrast \(\delta_L \) where
\[\delta_L = \frac{\bar{\rho}_L}{\rho_b} - 1 = 3 \frac{\delta_i(1 + z_i)}{5} \frac{1}{1 + z} = \frac{3}{5} \left(\frac{3}{4} \right)^{2/3} (\theta - \sin \theta)^{2/3}. \] (132)

We can estimate the accuracy of the linear theory by comparing \(\delta(z) \) and \(\delta_L(z) \). To begin with, for \(z \gg 1 \), we have \(\theta \ll 1 \) and we get \(\delta(z) \simeq \)
\(\delta_L(z) \). When \(\theta = (\pi/2) \), \(\delta_L = (3/5)(3/4)^{2/3}(\pi/2 - 1)^{2/3} = 0.341 \) while \(\delta = (9/2)(\pi/2 - 1)^2 - 1 = 0.466 \); thus the actual density contrast is about 40 percent higher. When \(\theta = (2\pi/3) \), \(\delta_L = 0.568 \) and \(\delta = 1.01 \simeq 1 \). If we interpret \(\delta = 1 \) as the transition point to nonlinearity, then such a transition occurs at \(\theta = (2\pi/3) \), \(\delta_L \simeq 0.57 \).

The spherical region reaches the maximum radius of expansion at \(\theta = \pi \). From our equations, we find that the redshift \(z_m \), the proper radius of the shell \(r_m \) and the average density contrast \(\delta_m \) at ‘turn-around’ are:

\[
(1 + z_m) = \frac{\delta_i(1 + z_i)}{\pi^{2/3}(3/4)^{2/3}} = 0.57(1 + z_i)\delta_i
\]

\[
= \frac{5}{3} \frac{\delta_0}{(3\pi/4)^{2/3}} \approx \frac{\delta_0}{1.062}
\]

\[
r_m = \frac{3x}{5\delta_0} \left(\frac{\rho}{\rho_b} \right)_m = 1 + \sigma_m = \frac{9\pi^2}{16} \approx 5.6.
\]

(133)

The first equation gives the redshift at turn-around for a region, parametrized by the (hypothetical) linear density contrast \(\delta_0 \) extrapolated to the present epoch. If, for example, \(\delta_i \simeq 10^{-3} \) at \(z_i \simeq 10^{4} \), such a perturbation would have turned around at \((1 + z_m) \simeq 5.7 \) or when \(z_m \simeq 4.7 \). The second equation gives the maximum radius reached by the perturbation. The third equation shows that the region under consideration is nearly six times denser than the background universe, at turn-around. This corresponds to a density contrast of \(\delta_m \approx 4.6 \) which is definitely in the nonlinear regime. The linear evolution gives \(\delta_L = 1.063 \) at \(\theta = \pi \).

After the spherical overdense region turns around it will continue to contract. Equation (129) suggests that at \(\theta = 2\pi \) all the mass will collapse to a point. However, long before this happens, the approximation that matter is distributed in spherical shells and that random velocities of the particles are small, (implicit in the assumption of homogeneous trajectories \(x = f(t)(q) \) will break down. The collisionless (dark matter) component will relax to a configuration with radius \(r_{\text{vir}} \), velocity dispersion \(v \) and density \(p_{\text{coll}} \). After virialization of the collapsed shell, the potential energy \(U \) and the kinetic energy \(K \) will be related by \(|U| = 2K \) so that the total energy \(E = U + K = -K \). At \(t = t_m \) all the energy was in the form of potential energy. For a spherically symmetric system with constant density, \(E \approx -3GM^2/5r_m \). The ‘virial velocity’ \(v \) and the ‘virial radius’ \(r_{\text{vir}} \) for the collapsing mass can be estimated by the equations:

\[
K \equiv \frac{Mv^2}{2} = -E = \frac{3GM^2}{5r_m}; \quad |U| = \frac{3GM^2}{5r_{\text{vir}}} = 2K = Mv^2.
\]

(134)
We get:

\[v = \left(\frac{6GM}{5r_m} \right)^{1/2}; \quad r_{\text{vir}} = r_m/2. \]

(135)

The time taken for the fluctuation to reach virial equilibrium, \(t_{\text{coll}} \), is essentially the time corresponding to \(\theta = 2\pi \). From equation (130), we find that the redshift at collapse, \(z_{\text{coll}} \), is

\[(1+z_{\text{coll}}) = \frac{\delta_i(1+z_i)}{(2\pi)^{2/3}(3/4)^{2/3}} = 0.36\delta_i(1+z_i) = 0.63(1+z_m) = \frac{\delta_0}{1.686}. \]

(136)

The density of the collapsed object can also be determined fairly easily. Since \(r_{\text{vir}} = (r_m/2) \), the mean density of the collapsed object is \(\rho_{\text{coll}} = 8\rho_m \) where \(\rho_m \) is the density of the object at turn-around.

We have, \(\rho_m \cong 5.6\rho_b(t_m) \) and \(\rho_b(t_m) = (1+z_m)^3 (1+z_{\text{coll}})^{-3}\rho_b(t_{\text{coll}}) \).

Combining these relations, we get

\[\rho_{\text{coll}} \cong 2^3\rho_m \cong 44.8\rho_b(t_m) \cong 170\rho_b(t_{\text{coll}}) \cong 170\rho_0(1+z_{\text{coll}})^3 \]

(137)

where \(\rho_0 \) is the present cosmological density. This result determines \(\rho_{\text{coll}} \) in terms of the redshift of formation of a bound object. Once the system has virialized, its density and size does not change. Since \(\rho_b \propto a^{-3} \), the density contrast \(\delta \) increases as \(a^3 \) for \(t > t_{\text{coll}} \).

This approach can be easily generalised to describe the situation in which the initial density profile is given by \(\rho(r_i) \). Given an initial density profile \(\rho_i(r) \), we can calculate the mass \(M(r_i) \) and energy \(E(r_i) \) of each shell labelled by the initial radius \(r_i \). In spherically symmetric evolution, \(M \) and \(E \) are conserved and each shell will be described by equation (126). Assuming that the average density contrast \(\bar{\delta}_i(r_i) \) decreases with \(r_i \), the shells will never cross during the evolution. Each shell will evolve in accordance with the equations (127), (128) with \(\delta_i \) replaced by the mean initial density contrast \(\bar{\delta}_i(r_i) \) characterising the shell of initial radius \(r_i \). Equation (129) gives the mean density inside each of the shells from which the density profile can be computed at any given instant.

A simple example for this case corresponds to a scale invariant situation in which \(E(M) \) is a power law. If the energy of a shell containing mass \(M \) is taken to be

\[E(M) = E_0 \left(\frac{M}{M_0} \right)^{2/3-\epsilon} \]

(138)

then the turn-around radius and turn-around time are given by

\[r_m(M) = -\frac{GM}{E(M)} = -\frac{GM_0}{E_0} \left(\frac{M}{M_0} \right)^{\frac{1}{2}+\epsilon} \]

(139)
To avoid shell crossing, we must have $\epsilon > 0$ so that outer shells with more mass turn around at later times. In such a scenario, the inner shells expand, turn around, collapse and virialize first and the virialization proceeds progressively to outer shells. We shall assume that each virialized shell settles down to a final radius which is a fixed fraction of the maximum radius. Then the density in the virialized part will scale as (M/r^3) where M is the mass contained inside a shell whose turn-around radius is r. Using (139) to relate the turn-around radius and mass, we find that

$$
\rho(r) \propto M(r_m = r) \propto r^{3/(1+3\epsilon)} r^{-3} \propto r^{-9/1+3\epsilon}\frac{M}{M_0}^{3\epsilon/2}.
$$

Two special cases of this scaling relation are worth mentioning: (i) If the energy of each shell is dominated by a central mass m located at the origin, then $E \propto Gm/r \propto M^{-1/3}$. In that case, $\epsilon = 1$ and the density profile of virialized region falls as $r^{-9/4}$. The situation corresponds to an accretion on to a massive object (ii) If $\epsilon = 2/3$ then the binding energy E is the same for all shells. Then we get $\rho \propto r^{-2}$ which corresponds to an isothermal sphere.

The spherical model can be easily generalised for the set of trajectories with $x^a(t,q) = f^{ab}(t)q_b$ (Padmanabhan 1998) In this case, it is convenient to decompose the derivative of the velocity $\partial_a u_b = \dot{f}_{ab}$ into shear σ_{ab}, rotation Ω^c and expansion θ by writing

$$
\dot{f}_{ab} = \sigma_{ab} + \epsilon_{abc}\Omega^c + \frac{1}{3}\delta_{ab}\theta.
$$

where σ_{ab} is the symmetric traceless part of f_{ab}; the $\epsilon_{abc}\Omega^c$ is the antisymmetric part and $(1/3)\delta_{ab}\theta$ is the trace. In this case, (122) gets generalised to:

$$
\ddot{\delta} + 2\frac{\dot{a}}{a}\dot{\delta} = 4\pi G\rho_b(1+\delta)\delta + \frac{4}{3}(1+\delta)\frac{\dot{\sigma}^2}{(1+\delta)} + \dot{a}^2(1+\delta)(\sigma^2 - 2\Omega^2)
$$

where $\sigma^2 \equiv \sigma^{ab}\sigma_{ab}$ and $\Omega^2 \equiv \Omega^i\Omega_i$. From the last term on the right hand side we see that shear contributes positively to $\ddot{\delta}$ while rotation Ω^2 contributes negatively. Thus shear helps growth of inhomogeneities while rotation works against it. To see this explicitly, we again introduce a function $R(t)$ by the definition

$$
1 + \delta = \frac{9GMt^2}{2R^3} \equiv \mu \frac{a^3}{R^3}
$$
where M and μ are constants. Using this relation between δ and $R(t)$, equation (143) can be converted into the following equation for $R(t)$

$$\ddot{R} = -\frac{GM}{R^2} - \frac{1}{3} a^2 \left(\sigma^2 - 2\Omega^2 \right) R$$

(145)

where the first term represents the gravitational attraction due to the mass inside a sphere of radius R and the second gives the effect of the shear and angular momentum. We shall now see how an improved spherical collapse model can be constructed with this term.

8. Improved spherical collapse model

In the spherical collapse model (SCM, for short) each spherical shell expands at a progressively slower rate against the self-gravity of the system, reaches a maximum radius and then collapses under its own gravity, with a steadily increasing density contrast. The maximum radius, $R_{\text{max}} = R_i/\delta_i$, achieved by the shell, occurs at a density contrast $\delta = (9\pi^2/16) - 1 \approx 4.6$, which is in the “quasi-linear” regime. In the case of a perfectly spherical system, there exists no mechanism to halt the infall, which proceeds inexorably towards a singularity, with all the mass of the system collapsing to a single point. Thus, the fate of the shell is to collapse to zero radius at $\theta = 2\pi$ with an infinite density contrast; this is, of course, physically unacceptable.

In real systems, however, the implicit assumptions that (i) matter is distributed in spherical shells and (ii) the non-radial components of the velocities of the particles are small, will break down long before infinite densities are reached. Instead, we expect the collisionless dark matter to reach virial equilibrium. After virialization, $|U| = 2K$, where U and K are, respectively, the potential and kinetic energies; the virial radius can be easily computed to be half the maximum radius reached by the system.

The virialization argument is clearly physically well-motivated for real systems. However, as mentioned earlier, there exists no mechanism in the standard SCM to bring about this virialization; hence, one has to introduce by hand the assumption that, as the shell collapses and reaches a particular radius, say $R_{\text{max}}/2$, the collapse is halted and the shell remains at this radius thereafter. This arbitrary introduction of virialization is clearly one of the major drawbacks of the standard SCM and takes away its predictive power in the later stages of evolution. We shall now see how the retention of the angular momentum term in equation (145) can serve to stabilize the collapse of the system, thereby allowing us to model the evolution towards $r_{\text{vir}} = R_{\text{max}}/2$ smoothly. (Engineer et al, 1998)

At this point, it is important to note a somewhat subtle aspect of our generalisation. The original equations are clearly Eulerian in nature: i.e.
the time derivatives give the temporal variation of the quantities at a fixed point in space. However, the time derivatives in equation (143), for the density contrast δ, are of a different kind. Here, the observer is moving with the fluid element and hence, in this, Lagrangian case, the variation in density contrast seen by the observer has, along with the intrinsic time variation, a component which arises as a consequence of his being at different locations in space at different instants of time. When the δ equation is converted into an equation for the function $R(t)$, the Lagrangian picture is retained; in SCM, we can interpret $R(t)$ as the radius of a spherical shell, co-moving with the observer. The mass M within each shell remains constant in the absence of shell crossing and the entire formalism is well defined. The physical identification of R is, however, not so clear in the case where the shear and rotation terms are retained, as these terms break the spherical symmetry of the system. We will nevertheless continue to think of R as the “effective shell radius“ in this situation, defined by equation (144) governing its evolution. Of course, there is no such ambiguity in the mathematical definition of R in this formalism. This is equivalent to taking R^3 as proportional to the volume of a region defined by the location of a set of mass points.

We now return to equation (143), and recast the equation into a form more suitable for analysis. Using logarithmic variables, $D_{SC} \equiv \ln (1 + \delta)$ and $\alpha \equiv \ln a$, equation (143) can be written in the form (the subscript ‘SC’ stands for ‘Spherical Collapse’)

$$\frac{d^2 D_{SC}}{d\alpha^2} - \frac{1}{3} \left(\frac{dD_{SC}}{d\alpha} \right)^2 + \frac{1}{2} \frac{dD_{SC}}{d\alpha} = \frac{3}{2} \left[\exp(D_{SC}) - 1 \right] + a^2(\sigma^2 - 2\Omega^2)$$

(146)

where α takes the role of time coordinate. It is also convenient to introduce the quantity, S, defined by

$$S \equiv a^2(\sigma^2 - 2\Omega^2)$$

(147)

which we shall hereafter call the “virialization term”. The consequences of the retention of the virialization term are easy to describe qualitatively. We expect the evolution of an initially spherical shell to proceed along the lines of the standard SCM in the initial stages, when any deviations from spherical symmetry, present in the initial conditions, are small. However, once the maximum radius is reached and the shell recollapses, these small deviations are amplified by a positive feedback mechanism. To understand this, we note that all particles in a given spherical shell are equivalent due to the spherical symmetry of the system. This implies that the motion of any
particle, in a specific shell, can be considered representative of the motion of the shell as a whole. Hence, the behaviour of the shell radius can be understood by an analysis of the motion of a single particle. The equation of motion of a particle in an expanding universe can be written as

$$\ddot{X}_i + 2\frac{\dot{a}}{a}\dot{X}_i = -\frac{\nabla \phi}{a^2}$$

(148)

where $a(t)$ is the expansion factor of the locally overdense “universe”. The \dot{X}_i term acts as a damping force when it is positive; i.e. while the background is expanding. However, when the overdense region reaches the point of maximum expansion and turns around, this term becomes negative, acting like a negative damping term, thereby amplifying any deviations from spherical symmetry which might have been initially present. Non-radial components of velocities build up, leading to a randomization of velocities which finally results in a virialised structure, with the mean relative velocity between any two particles balanced by the Hubble flow. It must be kept in mind, however, that the introduction of the virialization term changes the behaviour of the solution in a global sense and it is not strictly correct to say that this term starts to play a role only after recollapse, with the evolution proceeding along the lines of the standard SCM until then. It is nevertheless reasonable to expect that, at early times when the term is small, the system will evolve as standard SCM to reach a maximum radius, but will fall back smoothly to a constant size later on.

Equation (143) is actually valid for any fluid system and the virialization term, S, is, in general, a function of a and x, since the derivatives in equation (143) are total time derivatives, which, for an expanding Universe, contain partial derivatives with respect to both x and t separately. Even in the case of displacements with $x^a = f^{ab}(t)q_b$, the one equation (143) cannot uniquely determine all the components of $f^{ab}(t)$. Handling this equation exactly will take us back to the full non-linear equations and, of course, no progress can be made. Instead, we will make the ansatz that the virialization term depends on t and x only through $\delta(t,x)$:

$$S(a,x) \equiv S(\delta(a,x)) \equiv S(D_{SC})$$

(149)

In other words, S is a function of the density contrast alone. This ansatz seems well motivated because the density contrast, δ, can be used to characterize the SCM at any point in its evolution and one might expect the virialization term to be a function only of the system’s state, at least to the lowest order. Further, the results obtained with this assumption appear to be sensible and may be treated as a test of the ansatz in its own framework. To proceed further systematically, we define a function h_{SC} by the relation
\[
\frac{dD_{\text{SC}}}{da} = 3h_{\text{SC}}
\]
(150)

For consistency, we shall assume the \textit{ansatz} \(h_{\text{SC}}(a, x) \equiv h_{\text{SC}}[\delta(a, x)] \). The definition of \(h_{\text{SC}} \) allows us to write equation (146) as

\[
\frac{dh_{\text{SC}}}{da} = h_{\text{SC}}^2 - \frac{h_{\text{SC}}}{2} + \frac{1}{2} [\exp(D_{\text{SC}}) - 1] + \frac{S(D_{\text{SC}})}{3}
\]
(151)

Dividing (151) by (150), we obtain the following equation for the function \(h_{\text{SC}}(D_{\text{SC}}) \)

\[
\frac{dh_{\text{SC}}}{dD_{\text{SC}}} = \frac{h_{\text{SC}}}{3} - \frac{1}{6} + \frac{1}{6h_{\text{SC}}} [\exp(D_{\text{SC}}) - 1] + \frac{S(D_{\text{SC}})}{9h_{\text{SC}}}
\]
(152)

If we know the form of either \(h_{\text{SC}}(D_{\text{SC}}) \) or \(S(D_{\text{SC}}) \), this equation allows us to determine the other. Then, using equation (150), one can determine \(D_{\text{SC}} \).

Thus, our modification of the standard SCM essentially involves providing the form of \(S_{\text{SC}}(D_{\text{SC}}) \) or \(h_{\text{SC}}(D_{\text{SC}}) \). We shall now discuss several features of such a modelling in order to arrive at a suitable form.

The behaviour of \(h_{\text{SC}}(D_{\text{SC}}) \) can be qualitatively understood from our knowledge of the behaviour of \(\delta \) with time. In the linear regime \((\delta \ll 1)\), we know that \(\delta \) grows linearly with \(a \); hence \(h_{\text{SC}} \) increases with \(D_{\text{SC}} \). At the extreme non-linear end \((\delta \gg 1)\), the system “virializes”, \textit{i.e.} the proper radius and the density of the system become constant. On the other hand, the density \(\rho_b \), of the background, falls like \(t^{-2} \) (or \(a^{-3} \)) in a flat, dust-dominated universe. The density contrast is defined by \(\delta = (\rho/\rho_b - 1) \simeq \rho/\rho_b \) (for \(\delta \gg 1 \)) and hence

\[
\delta \propto t^2 \propto a^3
\]
(153)

in the non-linear limit. Equation (150) then implies that \(h_{\text{SC}}(\delta) \) tends to unity for \(\delta \gg 1 \). Thus, we expect that \(h_{\text{SC}}(D_{\text{SC}}) \) will start with a value far less than unity, grow, reach a maximum a little greater than one and then smoothly fall back to unity. [A more general situation discussed in the literature corresponds to \(h \to \text{constant} \) as \(\delta \to \infty \), though the asymptotic value of \(h \) is not necessarily unity. Our discussion can be generalised to this case.]

This behaviour of the \(h_{\text{SC}} \) function can be given another useful interpretation whenever the density contrast has a monotonically decreasing relationship with the scale, \(x \), with small \(x \) implying large \(\delta \) and vice-versa. Then, if we use a local power law approximation \(\delta \propto x^{-n} \) for \(\delta \gg 1 \) with some \(n > 0 \), we have \(D_{\text{SC}} \propto \ln(x^{-1}) \) and

\[
h_{\text{SC}} \propto \frac{dD_{\text{SC}}}{da} \propto -\frac{d\ln(x)}{a} \propto \frac{\dot{a}}{a} \propto \frac{\dot{v}}{a \dot{x}}
\]
(154)
where $v \equiv a \dot{x}$ denotes the mean relative velocity. Thus, h_{SC} is proportional to the ratio of the relative peculiar velocity to the Hubble velocity. We know that this ratio is small in the linear regime (where the Hubble flow is dominant) and later increases, reaches a maximum and finally falls back to unity with the formation of a stable structure; this is another argument leading to the same qualitative behaviour of the h_{SC} function.

Note that, in standard SCM (for which $S = 0$), equation (152) reduces to

$$3h_{SC} \frac{dh_{SC}}{dD_{SC}} = h_{SC}^2 - \frac{h_{SC}}{2} + \frac{\delta}{2}$$

(155)

The presence of the linear term in δ on the RHS of the above equation causes h_{SC} to increase with δ, with $h_{SC} \propto \delta^{1/2}$ for $\delta \gg 1$. If virialization is imposed as an ad hoc condition, then h_{SC} should fall back to unity discontinuously — which is clearly unphysical; the form of $S(\delta)$ must hence be chosen so as to ensure a smooth transition in $h_{SC}(\delta)$ from one regime to another. [As an aside, we remark that $S(\delta)$ can be reinterpreted to include the lowest order contributions arising from shell crossing, multi-streaming, etc., besides the shear and angular momentum terms, i.e. it contains all effects leading to virialization of the system; see S. Engineer, et al, 1998]

We will now derive an approximate functional form for the virialization function from physically well-motivated arguments. If the virialization term is retained in equation (145), we have

$$\frac{d^2 R}{dt^2} = -\frac{GM}{R^2} - \frac{H^2 R}{3} S$$

(156)

where $H = \dot{a}/a$. Let us first consider the late time behaviour of the system. When virialization occurs, it seems reasonable to assume that $\dot{R} \to$ constant and $R \to 0$. This implies that, for large density contrasts,

$$S \approx -3GM \frac{t^2}{R^3 H^2} \quad (\delta \gg 1)$$

(157)

Using $H = \dot{a}/a = (2/3t)$, and equation (144)

$$S \approx -\frac{27GMt^2}{4R^3} = -\frac{3}{2}(1 + \delta) \approx -\frac{3}{2}\delta \quad (\delta \gg 1)$$

(158)

Thus, the “virialization” term tends to a value of $(-3\delta/2)$ in the non-linear regime, when stable structures have formed. This asymptotic form for $S(\delta)$ is, however, insufficient to model its behaviour over the larger range of density contrast (especially the quasi-linear regime) which is of interest to us. Since $S(\delta)$ tends to the above asymptotic form at late times, the residual part, i.e. the part that remains after the asymptotic value has
been subtracted away, can be expanded in a Taylor series in \(1/\delta\) without any loss of generality. Retaining the first two terms of expansion, we write the complete virialization term as

\[
S(\delta) = -\frac{3}{2}(1 + \delta) - \frac{A}{\delta} + \frac{B}{\delta^2} + \mathcal{O}(\delta^{-3})
\]

Replacing for \(S(\delta)\) in equation (146), we obtain, for \(\delta \gg 1\)

\[
3h\delta \frac{d\delta}{d\delta} - h^2 \delta + \frac{h}{2} \delta^2 = -\frac{A}{\delta} + \frac{B}{\delta^2}
\]

It can be easily demonstrated that the first order term in the Taylor series is alone insufficient to model the turnaround behaviour of the \(h\) function. We will hence include the next higher order term and use the form in equation (159) for the virialization term. The signs are chosen for future convenience, since it will turn out that both \(A\) and \(B\) are greater than zero. In fact, for sufficiently large \(\delta\), the evolution depends only on the combination \(q \equiv (B/A^2)\). Equation (156) can be now written as

\[
\ddot{R} = -\frac{GM}{R^2} - \frac{4R}{27t^2} \left[-\frac{27GMt^2}{4R^3} - \frac{A}{\delta} + \frac{B}{\delta^2} \right]
\]

Using \(\delta = 9GMt^2/2R^3\) and \(B \equiv qA^2\) we may express equation (161) completely in terms of \(R\) and \(t\). We now rescale \(R\) and \(t\) in the form \(R = r_{vir} y(x)\) and \(t = \beta x\), where \(r_{vir}\) is the final virialised radius \([i.e. R \rightarrow r_{vir}\ for \ t \rightarrow \infty]\), and \(\beta^2 = (8/3^5)(A/GM)r_{vir}^3\), to obtain the following equation for \(y(x)\)

\[
y'' = \frac{y^4}{x^4} - \frac{27}{4} q \frac{y^7}{x^6}
\]

We can integrate this equation to find a form for \(y_q(x)\) (where \(y_q(x)\) is the function \(y(x)\) for a specific value of \(q\)) using the physically motivated boundary conditions \(y = 1\) and \(y' = 0\) as \(x \to \infty\), which is simply an expression of the fact that the system reaches the virial radius \(r_{vir}\) and remains at that radius asymptotically. The results of numerical integration of this equation for a range of \(q\) values are shown in figure (2). As expected on physical grounds, the function has a maximum and gracefully decreases to unity for large values of \(x\) [the behaviour of \(y(x)\) near \(x = 0\) is irrelevant since the original equation is valid only for \(\delta \geq 1\), at least]. For a given value of \(q\), it is possible to find the value \(x_c\) at which the function reaches its maximum, as well as the ratio \(y_{\max} = R_{\max}/r_{\max}\). The time, \(t_{\max}\), at which the system will reach the maximum radius is related to \(x_c\) by the relation \(t_{\max} = \beta x_c = t_0(1 + z_{\max})^{-3/2}\), where \(t_0 = 2/(3H_0)\) is the present age of the universe and \(z_{\max}\) is the redshift at which the system turns
The figure shows the function $y_q(x)$ for some values of q. The x axis has scaled time, x and the y axis is the scaled radius y.

Figure (3) shows the variation of x_c and $y_{max} \equiv (R_{max}/r_{vir})$ for different values of q. The entire evolution of the system in the modified spherical collapse model (MSCM) can be expressed in terms of

$$R(t) = r_{vir} \ y_q(t/\beta)$$

(163)

where $\beta = (t_0/x_c)(1 + z_{max})^{-3/2}$.

In SCM, the conventional value used for (r_{vir}/R_{max}) is $(1/2)$, which is obtained by enforcing the virial condition that $|U| = 2K$, where U is the gravitational potential energy and K is the kinetic energy. It must be kept in mind, however, that the ratio (r_{vir}/R_{max}) is not really constrained to be precisely $(1/2)$ since the actual value will depend on the final density profile and the precise definitions used for these radii. While we expect it to be around 0.5, some amount of variation, say between 0.25 and 0.75, cannot be ruled out theoretically.

Figure (3) shows the parameter (R_{max}/r_{vir}), plotted as a function of $q = B/A^2$ (dashed line), obtained by numerical integration of equation (156) with the ansatz (159). The solid line gives the dependence of x_c (or equivalently t_{max}) on the value of q. It can be seen that one can obtain a suitable value for the (r_{vir}/R_{max}) ratio by choosing a suitable value for q and vice versa.
Figure 3. The figure shows the parameters \((R_{max}/r_{vir})\) (broken line) and \(x_c\) (solid line) as a function of \(q = B/A^2\). This clearly demonstrates that the single parameter description of the virialization term is constrained by the value that is chosen for the ratio \(r_{vir}/R_{max}\).

Using equation (150) and the definition \(\delta \propto t^2/R^3\), we obtain

\[
h_{SC}(x) = 1 - \frac{3}{2} \frac{x \, dy}{y \, dx}\]

which gives the form of \(h_{SC}(x)\) for a given value of \(q\); this, in turn, determines the function \(y_q(x)\). Since \(\delta\) can be expressed in terms of \(x\), \(y\) and \(x_c\) as \(\delta = (9\pi^2/2x_c^2)x^2/y^3\), this allows us to implicitly obtain a form for \(h_{SC}(\delta)\), determined only by the value of \(q\).

It is possible to determine the best-fit value for \(q\) by comparing these results with simulations. This is best done by comparing the form of \(h_{nc}(x)\). Such an analysis gives \(q \approx 0.02\). (see S. Engineer, et al., 1998) Figure (4) shows the plot of scaled radius \(y_q(x)\) vs \(x\), obtained by integrating equation(162), with \(q = 0.02\). The figure also shows an accurate fit (dashed line) to this solution of the form

\[
y_q(x) = \frac{x + ax^3 + bx^5}{1 + cx^3 + dx^5}\]

with \(a = -3.6\), \(b = 53\) and \(c = -12\). This fit, along with values for \(r_{vir}\) and \(z_{max}\), completely specifies our model through equation (163). It can be
observed that \((r_{\text{vir}}/R_{\text{max}})\) is approximately 0.65. It is interesting to note that the value obtained for the \((r_{\text{vir}}/R_{\text{max}})\) ratio is not very widely off the usual value of 0.5 used in the standard spherical collapse model, in spite of the fact that no constraint was imposed on this value, ab initio, in arriving at this result. Finally, figure (5) compares the non-linear density contrast in the modified SCM (dashed line) with that in the standard SCM (solid line), by plotting both against the linearly extrapolated density contrast, \(\delta_L\). It can be seen (for a given system with the same \(z_{\text{max}}\) and \(r_{\text{vir}}\)) that, at the epoch where the standard SCM model has a singular behaviour (\(\delta_L \sim 1.686\)), our model has a smooth behaviour with \(\delta \approx 110\) (the value is not very sensitive to the exact value of \(q\)). This is not widely off from the value usually obtained from the ad hoc procedure applied in the standard spherical collapse model. In a way, this explains the unreasonable effectiveness of standard SCM in the study of non-linear clustering. Figure (5) also shows a comparison between the standard SCM and the MSCM in terms of \(\delta\) values in the MSCM at two important epochs, indicated by vertical arrows. (i) When \(R = R_{\text{max}}/2\) in the SCM, i.e. the epoch at which the SCM virializes, \(\delta(\text{MSCM}) \sim 83\). (ii) When the SCM hits the singularity, \((\delta_L \sim 1.6865), \delta(\text{MSCM}) \sim 110\).
9. Mass functions and abundances

The description developed so far can also be used to address an important question: What fraction of the matter in the universe has formed bound structures at any given epoch and what is the distribution in mass of these bound structures? We shall now describe a simple approach which answers these questions. (Press and Schechter, 1974)

Gravitationally bound objects in the universe, like galaxies, span a large dynamic range in mass. Let \(f(M) dM \) be the number density of bound objects in the mass range \((M, M + dM)\) [usually called the “mass function”] and let \(F(M) \) be the number density of objects with masses greater than \(M \). Since the formation of gravitationally bound objects is an inherently nonlinear process, it might seem that the linear theory cannot be used to determine \(F(M) \). This, however, is not entirely true. In any one realization of the linear density field \(\delta_R(\mathbf{x}) \), filtered using a window function of scale \(R \), there will be regions with high density [i.e. regions with \(\delta_R > \delta_c \) where \(\delta_c \) is some critical value slightly greater than unity, say]. It seems reasonable to assume that such regions will eventually condense out as bound objects. Though the dynamics of that region will be nonlinear, the process of condensation is unlikely to change the mass contained in that region significantly. Therefore, if we can estimate the mean number of regions with
\(\delta_R > \delta_c \) in a Gaussian random field, we will be able to determine \(F(M) \).

One way of achieving this is as follows: Let us consider a density field \(\delta_R(\mathbf{x}) \) smoothed by a window function \(W_R \) of scale radius \(R \). As a first approximation, we may assume that the region with \(\delta(R,t) > \delta_c \) (when smoothed on the scale \(R \) at time \(t_i \)) will form a gravitationally bound object with mass \(M \propto \rho R^3 \) by the time \(t \). The precise form of the \(M-R \) relation depends on the window function used; for a step function \(M = \left(\frac{4\pi}{3} \right) \rho R^3 \), while for a Gaussian \(M = \left(\frac{2\pi}{3} \right)^{3/2} \rho R^3 \). Here \(\delta_c \) is a critical value for the density contrast which has to be supplied by theory. For example, \(\delta_c \approx 1.68 \) in spherical collapse model. Since \(\delta \propto t^{2/3} \) for a \(\Omega = 1 \) universe, the probability for the region to form a bound structure at \(t \) is the same as the probability \(\delta > \delta_c(t_i/t)^{2/3} \) at some early epoch \(t_i \). This probability can be easily estimated since at sufficiently early epochs, the system is described by a gaussian random field. Hence fraction of bound objects with mass greater than \(M \) will be

\[
F(M) = \int_{\delta_c(t_i,t)}^{\delta} P(\delta,R,t_i) d\delta = \frac{1}{\sqrt{2\pi}} \left(\frac{\delta_c(t_i,t)}{\sigma(R,t_i)} \right) \int_{\delta_c}^{\delta} \exp \left(-\frac{\delta^2}{2\sigma^2(R,t_i)} \right) d\delta
\]

where \(\text{erfc}(x) \) is the complementary error function. The mass function \(f(M) \) is just \((\partial F/\partial M) \); the (comoving) number density \(N(M,t) \) can be found by dividing this expression by \((M/\rho) \). Carrying out these operations we get

\[
N(M,t)dM = -\left(\frac{\bar{\rho}}{M} \right) \left(\frac{1}{2\pi} \right)^{1/2} \left(\frac{\delta_c}{\sigma} \right) \left(\frac{1}{\sigma dM} \right) \exp \left(-\frac{\delta_c^2}{2\sigma^2} \right) dM. \quad (167)
\]

Given the power spectrum \(|\delta_k|^2 \) and a window function \(W_R \) one can explicitly compute the right hand side of this expression.

There is, however, one fundamental difficulty with the equation (166). The integral of \(f(M) \) over all \(M \) should give unity; but it is easy to see that, for the expression in (166),

\[
\int_{0}^{\infty} f(M)dM = \int_{0}^{\infty} dF = \frac{1}{2}. \quad (168)
\]

This arises because we have not taken into account the underdense regions correctly. To see the origin of this difficulty more clearly, consider the interpretation of (166). If a point in space has \(\delta > \delta_c \) when filtered at scale \(R \), then that point should correspond to a system with mass greater than \(M(R) \); this is taken care of correctly by equation (166). However, consider those points which have \(\delta < \delta_c \) under this filtering. There is a non-zero
probability that such a point will have $\delta > \delta_c$ when the density field is filtered with a radius $R_1 > R$. Therefore, to be consistent with the interpretation in (166), such points should also correspond to a region with mass greater than M. But (166) ignores these points completely and thus underestimates $F(M)$ [by a factor $(1/2)$]. To correct this, we shall ‘renormalise’ the result by multiplying it by a factor 2. Then

$$dF(M) = \sqrt{\frac{2}{\pi}} \frac{\delta_c}{\sigma_2} \left(-\frac{\partial \sigma}{\partial M} \right) \exp \left(-\frac{\delta^2_c}{2\sigma^2} \right) dM,$$

(169)

or

$$N(M)dM = -\frac{\sigma}{M} \left(\frac{2}{\pi} \right)^{1/2} \frac{\delta_c}{\sigma^2} \left(\frac{\partial \sigma}{\partial M} \right) \exp \left(-\frac{\delta^2_c}{2\sigma^2} \right) dM,$$

(170)

The quantity σ here refers to the linearly extrapolated density σ_L; the subscript L is omitted to simplify notation. The corresponding result for $F(M)$ is also larger by factor two:

$$F(M,z) = \text{erfc} \left[\frac{\delta_c}{\sqrt{2\sigma_L(M,z)}} \right] = \text{erfc} \left[\frac{\delta_c(1+z)}{\sqrt{2\sigma_0(M)}} \right],$$

(171)

where $\sigma_0(M)$ is the linearly extrapolated density contrast today and we have used the fact $\sigma_L(M,z) \propto (1+z)^{-1}$. Note that, by definition, $F(M,z)$ gives the Ω contributed by the collapsed objects with mass larger than M at redshift z; equation (171) shows that this can be calculated given only the linearly extrapolated $\sigma_0(M)$. The top panel of figure (6) gives $\Omega(M)$ as a function of $\sigma_0(M)$ for different z, and the observed abundance of different structures in the universe. The six different curves from top to bottom are for $z = 0, 1, 2, 3, 4, 5$. The dashed line on the $z = 0$ curve gives the observed abundance of clusters; the trapezoidal region between $z = 2$ and $z = 3$ is based on abundance of damped lyman alpha systems; the line between $z = 2$ and $z = 4$ is a lower bound on quasar abundance.

As an example, let us consider the abundance of Abell clusters. Let the mass of Abell clusters to be $M = 5 \times 10^{14} \alpha M_\odot$ where α quantifies our uncertainty in the observation. Similarly, we take the abundance to be $A = 4 \times 10^{-6} \beta h^3 \text{Mpc}^{-3}$ with β quantifying the corresponding uncertainty. The contribution of the Abell clusters to the density of the universe is

$$F = \Omega_{\text{clus}} = \frac{MA}{\rho_c} \approx 8\alpha\beta \times 10^{-3}.$$

(172)

Assuming that $\alpha\beta$ varies between 0.1 to 3, say, we get

$$\Omega_{\text{clus}} \approx \left(8 \times 10^{-4} - 2.4 \times 10^{-2} \right).$$

(173)
Figure 6. (a) The Ω contributed by collapsed objects with mass greater than \(M \) plotted against \(\sigma(M) \) at different values of \(z \). The curves are for \(z = 0,1,2,3,4 \) and \(5 \), from top to bottom. The constraint arising from cluster abundance at \(z = 0 \), quasar abundance at \(z = 2 - 4 \) and the abundance of damped Lyman-\(\alpha \) systems at \(z = 2 - 3 \) are marked. (b) The \(M - \sigma \) relation in a class of CDM-like models; [We shall concentrate on the top curve for \(z = 0 \), for the purpose of this example.] The fractional abundance given in (173), at \(z = 0 \), requires a \(\sigma \approx (0.5 - 0.78) \) at the cluster scales. All we need to determine now is whether a particular model has this range of \(\sigma \) for cluster scales. Since this mass corresponds to a scale of about \(8h^{-1}\text{Mpc} \), we conclude that the linearly extrapolated density contrast must be in the range \(\sigma_L = (0.5 - 0.8) \) at \(R = 8h^{-1}\text{Mpc} \). This can act as a strong constraint on structure formation models. [The lower panel of figure (6) translates the bounds to a specific CDM model, parametrised by a shape parameter. This illustrates how any specific model can be compared with the bound in (171); for more details, see Padmanabhan, 1996 and references cited therein.]

10. Scaling laws

Before describing more sophisticated analytic approximations to gravitational clustering we shall briefly address some simple scaling laws which can be obtained from our knowledge of linear evolution. These scaling laws are sufficiently powerful to allow reasonable predictions regarding the growth of structures in the universe and hence are useful for quick diagnostics of
a given model. We shall confine our attention to the scaling relations for a power-law spectrum for which $|\delta_k|^2 \propto k^n$, and $\sigma_M^2(R) \propto R^{-(n+3)} \propto M^{-(n+3)/3}$. Let us begin by asking what restrictions can be put on the index n.

The integrand defining σ^2 in (95) behaves as $k^2|\delta_k|^2$ near $k = 0$. [Note that $W_k \simeq 1$ for small k in any window function]. Hence the finiteness of σ^2 will require the condition $n > -3$. The behaviour of the integrand for large values of k depends on the window function W_k. If we take the window function to be a Gaussian, then the convergence is ensured for all n. This might suggest that n can be made as large as one wants; that is, we can keep the power at small k (i.e., large wavelengths) to be as small as we desire. This result, however, is not quite true for the following reason: As the system evolves, small scale nonlinearities will develop in the system which can actually affect the large scales. If the large scales have too little power intrinsically (i.e. if n is large), then the long wavelength power will soon be dominated by the “tail” of the short wavelength power arising from the nonlinear clustering. This occurs because, in equation (36), the nonlinear terms A_k and B_k can dominate over $4\pi G \rho_b \delta_k$ at long wavelengths (as $k \to 0$). Thus there will be an effective upper bound on n.

The actual value of this upper-bound depends, to some extent, on the details of the small scale physics. It is, however, possible to argue that the natural value for this bound is $n = 4$. The argument runs as follows: Let us suppose that a large number of particles, each of mass m, are distributed carefully in space in such a way that there is very little power at large wavelengths. [That is, $|\delta_k|^2 \propto k^n$ with $n \gg 4$ for small k]. As time goes on, the particles influence each other gravitationally and will start clustering. The density $\rho(x, t)$ due to the particles in some region will be

$$\rho(x, t) = \sum_i m \delta[x - x_i(t)], \quad (174)$$

where $x_i(t)$ is the position of the i-th particle at time t and the summation is over all the particles in some specified region. The density contrast in the Fourier space will be

$$\delta_k(t) = \frac{1}{N} \sum_i (\exp[i k \cdot x_i(t)] - 1) \quad (175)$$

where N is the total number of particles in the region. For small enough $|k|$, we can expand the right hand side in a Taylor series obtaining

$$\delta_k(t) = ik \cdot \left\{ \frac{1}{N} \sum_i x_i(t) \right\} - \frac{k^2}{2} \left\{ \frac{1}{N} \sum_i x_i^2(t) \right\} + \cdots \quad (176)$$
If the motion of the particles is such that the centre-of-mass of each of the subregions under consideration do not change, then \(\sum x_i \) will vanish; under this (reasonable) condition, \(\delta \mathbf{r}(t) \propto k^2 \) for small \(k \). Note that this result follows, essentially, from the three assumptions: small-scale graininess of the system, conservation of mass and conservation of momentum. This will lead to a long wavelength tail with \(|\delta \phi|^2 \propto k^4 \) which corresponds to \(n = 4 \). The corresponding power spectrum for gravitational potential \(P_\phi(k) \propto k^{-4}|\delta \phi|^2 \) is a constant. Thus, for all practical purposes, \(-3 < n < 4\). The value \(n = 4 \) corresponds to \(\sigma_M^2(R) \propto R^{-7} \propto M^{-7/3} \). For comparison, note that purely Poisson fluctuations will correspond to \(\left(\delta M/M \right)^2 \propto \left(1/M \right) \); i.e. \(\sigma_M^2(R) \propto M^{-1} \propto R^{-3} \) with an index of \(n = 0 \).

A more formal way of obtaining the \(k^4 \) tail is to solve equation (113) for long wavelengths; i.e. near \(k = 0 \) (Padmanabhan, 1998). Writing \(\phi_k = \phi_k^{(1)} + \phi_k^{(2)} + \ldots \) where \(\phi_k^{(1)} = \phi_k^{(L)} \) is the time independent gravitational potential in the linear theory and \(\phi_k^{(2)} \) is the next order correction, we get from (113), the equation

\[
\ddot{\phi}_k^{(2)} + 4 \frac{\dot{a}}{a} \dot{\phi}_k^{(2)} \simeq -\frac{1}{3a^2} \int \frac{d^3 \mathbf{p}}{(2\pi)^3} \phi_L^{(k+p, k-p)} G(\mathbf{k}, \mathbf{p})
\]

Writing \(\phi_k^{(2)} = aC_k \) one can determine \(C_k \) from the above equation. Plugging it back, we find the lowest order correction to be,

\[
\phi_k^{(2)} \simeq -\frac{2a}{21H_0^2} \int \frac{d^3 \mathbf{p}}{(2\pi)^3} \phi_L^{(k+p, k-p)} G(\mathbf{k}, \mathbf{p})
\]

Near \(k \simeq 0 \), we have

\[
\phi_k^{(2)} \simeq -\frac{2a}{21H_0^2} \int \frac{d^3 \mathbf{p}}{(2\pi)^3} |\phi_L^{(\mathbf{p})}|^2 \left[\frac{7}{8} k^2 + \frac{3}{2} p^2 - \frac{5(k \cdot p)^2}{k^2} \right]
= \frac{a}{126\pi^2 H_0^2} \int_0^\infty dpp^4 |\phi_L^{(\mathbf{p})}|^2
\]

which is independent of \(k \) to the lowest order. Correspondingly the power spectrum for density \(P_\delta(k) \propto k^4P_\phi(k) \propto k^4 \) in this order.

The generation of long wavelength \(k^4 \) tail is easily seen in simulations if one starts with a power spectrum that is sharply peaked in \(|k| \). Figure 7 shows the results of such a simulation (see Bagla and Padmanabhan, 1997) in which the y-axis is \([\Delta(k)/a(t)] \). In linear theory \(\Delta \propto a \) and this quantity should not change. The curves labelled by \(a = 0.12 \) to \(a = 20.0 \) shows the effects of nonlinear evolution, especially the development of \(k^4 \) tail.
Figure 7. The transfer of power to long wavelengths forming a k^4 tail is illustrated using simulation results. Power is injected in the form of a narrow peak at $L = 8$ and the growth of power over and above the linear growth is shown in the figure. Note that the y-axis is Δ/a so that there will be no change of shape under linear evolution with $\Delta \propto a$. As time goes on a k^4 tail is generated which itself evolves according to a nonlinear scaling relation discussed later on.

Some more properties of the power spectra with different values of n can be obtained if the nonlinear effects are taken into account. We know that, in the matter-dominated phase, linear perturbations grow as $\delta_k(t) \propto a(t) \propto t^{2/3}$. Hence $\sigma_M^2(R) \propto t^{4/3} R^{-(3+n)}$. We may assume that the perturbations at some scale R becomes nonlinear when $\sigma_M(R) \simeq 1$. It follows that the time t_R at which a scale R becomes nonlinear, satisfies the relation

$$t_R \propto R^{3(n+3)/4} \propto M^{(n+3)/4}. \quad (180)$$

For $n > -3$, the timescale t_R is an increasing function of M; small scales become nonlinear at earlier times. The proper size L of the region which becomes nonlinear is

$$L \propto R a(t_R) \propto R(t_R)^{2/3} \propto R^{(5+n)/2} \propto M^{(5+n)/6}. \quad (181)$$

Further, the objects which are formed at $t = t_R$ will have density ρ of the order of the background density $\bar{\rho}$ of the universe at t_R. Since $\bar{\rho} \propto t^{-2}$, we get

$$\rho \propto t_R^{-2} \propto R^{-3(3+n)/2} \propto M^{-(3+n)/2}. \quad (182)$$
Combining (181) and (182) we get $\rho \propto L^{-\beta}$ with
\[
\beta = \frac{3(3+n)}{(5+n)}.
\] (183)

In the nonlinear case, one may interpret the correlation function ξ as
\[
\xi(L) \propto \rho(L);
\] this would imply $\xi(x) \propto x^{-\beta}$. (We shall see later that such a behaviour is to be expected on more general grounds.) The gravitational potential due to these bodies is
\[
\phi \simeq G\rho(L)L^2 \propto L^{(1-n)/(5+n)} \propto M^{(1-n)/6}.
\] (184)

The same scaling, of course, can be obtained from $\phi \propto (M/L)$. This result shows that the binding energy of the structures increases with M for $n < 1$. In that case, the substructures will be rapidly erased as larger and larger structures become nonlinear. For $n = 1$, the gravitational potential is independent of the scale, and $\rho \propto L^{-2}$.

11. Nonlinear scaling relations

Given an initial density contrast, one can trivially obtain the density contrast at any later epoch in the linear theory. If there is a procedure for relating the nonlinear density contrast and linear density contrast (even approximately) then one can make considerable progress in understanding nonlinear clustering. It is actually possible to make one such ansatz along the following lines.

Let $v_{rel}(a,x)$ denote the relative pair velocities of particles separated by a distance x, at an epoch a, averaged over the entire universe. This relative velocity is a measure of gravitational clustering at the scale x at the epoch a. Let $h(a,x) \equiv -[v_{rel}(a,x)/\dot{a}x]$ denote the ratio between the relative pair velocity and the Hubble velocity at the same scale. In the extreme nonlinear limit ($\bar{\xi} \gg 1$), bound structures do not expand with Hubble flow. To maintain a stable structure, the relative pair velocity $v_{rel}(a,x)$ of particles separated by x should balance the Hubble velocity $Hr = \dot{a}x$; hence, $v_{rel} = -\dot{a}x$ or $h(a,x) \approx 1$.

The behaviour of $h(a,x)$ for $\bar{\xi} \ll 1$ is more complicated and can be derived as follows: Let the peculiar velocity field be $v(x)$ [we shall suppress the a dependence since we will be working at constant a]. The mean relative velocity at a separation $r = (x - y)$ is given by
\[
v_{rel}(r) \equiv \langle [v(x) - v(y)] [1 + \delta(x)][1 + \delta(y)] \rangle \\
\approx \langle [v(x) - v(y)] \delta(x) \rangle + \langle [v(x) - v(y)] \delta(y) \rangle
\] (185)

to lowest order, since δ^2 term is higher order and $\langle v(x) - v(y) \rangle = 0$. Denoting $(v(x) - v(y))$ by v_{xy} and writing $x = y + r$, the radial component
of relative velocity is
\[\mathbf{v}_{xy} \cdot \mathbf{r} = \int \mathbf{v}(\mathbf{k}) \cdot \mathbf{r} \left[e^{i\mathbf{k} \cdot (\mathbf{r} + \mathbf{y})} - e^{i\mathbf{k} \cdot \mathbf{y}} \right] \frac{d^3 \mathbf{k}}{(2\pi)^3} \]
(186)
where \(\mathbf{v}(\mathbf{k}) \) is the Fourier transform of \(\mathbf{v}(\mathbf{x}) \). This quantity is related to \(\delta_\mathbf{k} \) by
\[\mathbf{v}(\mathbf{k}) = iHa \left(\frac{\delta_\mathbf{k}}{k^2} \right) \mathbf{k}. \]
(187)
(This equation is same as \(\mathbf{u} = -\nabla \psi \), used in (105), expressed in Fourier space). Using this in (186) and writing \(\delta(\mathbf{x}), \delta(\mathbf{y}) \) in Fourier space, we find that
\[\mathbf{v}_{xy} \cdot \mathbf{r} \left[\delta(\mathbf{x}) + \delta(\mathbf{y}) \right] = iHa \int \frac{d^3 \mathbf{k}}{(2\pi)^3} \int \frac{d^3 \mathbf{p}}{(2\pi)^3} \left(\frac{\mathbf{k} \cdot \mathbf{r}}{k^2} \right) \delta_\mathbf{k} \delta_\mathbf{p} e^{i(\mathbf{k} - \mathbf{p}) \cdot \mathbf{r}} \left[e^{i\mathbf{k} \cdot \mathbf{r}} - 1 \right] \left[e^{-i\mathbf{p} \cdot \mathbf{r}} + 1 \right]. \]
(188)
We average this expression using \(\langle \delta_\mathbf{k} \delta_\mathbf{p}^* \rangle = \frac{(2\pi)^3}{2} \delta_D(\mathbf{k} - \mathbf{p}) P(k) \), to obtain
\[r \mathbf{v}_{rel} \cdot \mathbf{r} \equiv \langle \mathbf{v}_{xy} \cdot \mathbf{r} [\delta(\mathbf{x}) + \delta(\mathbf{y})] \rangle = iHa \int \frac{d^3 \mathbf{k}}{(2\pi)^3} \frac{P(k)}{k^2} (\mathbf{k} \cdot \mathbf{r}) \left[e^{i\mathbf{k} \cdot \mathbf{r}} - e^{-i\mathbf{k} \cdot \mathbf{r}} \right] = -2Ha \int \frac{d^3 \mathbf{k}}{(2\pi)^3} \frac{P(k)}{k^2} (\mathbf{k} \cdot \mathbf{r}) \sin(k \cdot \mathbf{r}). \]
(189)
From the symmetries in the problem, it is clear that \(\mathbf{v}_{rel}(\mathbf{r}) \) is in the direction of \(\mathbf{r} \). So \(\mathbf{v}_{rel} \cdot \mathbf{r} = v_{rel} r \). The angular integrations are straightforward and give
\[r v_{rel} = \langle \mathbf{v}_{xy} \cdot \mathbf{r} [\delta(\mathbf{x}) + \delta(\mathbf{y})] \rangle = \frac{Ha}{r^2} \int_0^\infty \frac{dk}{k} P(k) [kr \cos kr - \sin kr]. \]
(190)
Using the expression (98) for \(\bar{\xi}(r) \) this can be written as
\[r v_{rel}(r) = -\frac{2}{3} \left(Hr \right)^2 \bar{\xi}. \]
(191)
Dividing by \(r \) and noting that \(H_{r prop} = Har \), we get
\[h = -\frac{v_{rel}(r)}{H_{r prop}} = -\frac{v_{rel}(r)}{aHar} = \frac{2}{3} \bar{\xi}. \]
(192)
We get the important result that \(h(a, x) \) depends on \((a, x)\) only through \(\bar{\xi}(a, x) \) in the linear limit, while \(h \approx -1 \) is the nonlinear limit. This suggests the ansatz that \(h \) depends on \(a \) and \(x \) only through some measure of the density contrast at the epoch \(a \) at the scale \(x \). As a measure of the density contrast we shall use \(\bar{\xi}(a, x) \) itself since the result in (192) clearly singles it out. In other words, we assume that \(h(a, x) = h[\bar{\xi}(a, x)] \). We shall now obtain an equation connecting \(h \) and \(\bar{\xi} \). By solving this equation, one can relate \(\bar{\xi} \) and \(\bar{\xi}_L \). (Nityananda and Padmanabhan, 1994). The mean number of neighbours within a distance \(x \) of any given particle is

\[
N(x, t) = (na^3) \int_0^x 4\pi y^2 dy [1 + \xi(y, t)]
\]

(193)

when \(n \) is the comoving number density. Hence the conservation law for pairs implies

\[
\frac{\partial \bar{\xi}}{\partial t} + \frac{1}{ax^2} \frac{\partial}{\partial x} [x^2(1 + \bar{\xi})v] = 0
\]

(194)

where \(v(t, x) \) denotes the mean relative velocity of pairs at separation \(x \) and epoch \(t \) (We have dropped the subscript ‘rel’ for simplicity). Using

\[
(1 + \xi) = \frac{1}{3x^2} \frac{\partial}{\partial x} [x^3(1 + \bar{\xi})]
\]

(195)

in (194), we get

\[
\frac{1}{3x^2} \frac{\partial}{\partial x} [x^3 \frac{\partial}{\partial t}(1 + \bar{\xi})] = -\frac{1}{ax^2} \frac{\partial}{\partial x} \left[\frac{v}{3} \frac{\partial}{\partial x} [x^2(1 + \bar{\xi})] \right].
\]

(196)

Integrating, we find:

\[
x^3 \frac{\partial}{\partial t} (1 + \bar{\xi}) = -\frac{v}{a} \frac{\partial}{\partial x} [x^3(1 + \bar{\xi})].
\]

(197)

[The integration would allow the addition of an arbitrary function of \(t \) on the right hand side. We have set this function to zero so as to reproduce the correct limiting behaviour]. It is now convenient to change the variables from \(t \) to \(a \), thereby getting an equation for \(\bar{\xi} \):

\[
a \frac{\partial}{\partial a} [1 + \bar{\xi}(a, x)] = \left(\frac{v}{-\dot{a}x} \right) \frac{1}{x^2} \frac{\partial}{\partial x} [x^3(1 + \bar{\xi}(a, x))]
\]

(198)

or, defining \(h(a, x) = -(v/\dot{a}x) \)

\[
\left(\frac{\partial}{\partial \ln a} - h \frac{\partial}{\partial \ln x} \right) (1 + \bar{\xi}) = 3h (1 + \bar{\xi})
\]

(199)
This equation shows that the behavior of $\xi(a, x)$ is essentially decided by h, the dimensionless ratio between the mean relative velocity v and the Hubble velocity $\dot{a}x = (\dot{a}/a)x_{\text{prop}}$, both evaluated at scale x. We shall now assume that

$$h(x, a) = h[\xi(x, a)].$$ \hfill(200)$$

This assumption, of course, is consistent with the extreme linear limit $h = (2/3)\bar{\xi}$ and the extreme nonlinear limit $h = 1$. When $h(x, a) = h[\xi(x, a)]$, it is possible to find a solution to (200) which reduces to the form $\xi \propto a^2$ for $\bar{\xi} \ll 1$ as follows: Let $A = \ln a$, $X = \ln x$ and $D(X, A) = (1 + \xi)$. We define curves ("characteristics") in the X, A, D space which satisfy

$$\frac{dX}{dA} = -h[D[X, A]]$$ \hfill(201)$$

i.e., the tangent to the curve at any point (X, A, D) is constrained by the value of h at that point. Along this curve, the left hand side of (199) is a total derivative allowing us to write it as

$$\left(\frac{\partial D}{\partial A} - h(D)\frac{\partial D}{\partial X}\right) = \left(\frac{\partial D}{\partial A} + \frac{\partial D}{\partial X} \frac{dX}{dA}\right) \equiv \left.\frac{dD}{dA}\right| = 3hD.$$ \hfill(202)$$

This determines the variation of D along the curve. Integrating

$$\exp\left(\frac{1}{3} \int \frac{dD}{Dh(D)}\right) = \exp(A + c) \propto a.$$ \hfill(203)$$

Squaring and determining the constant from the initial conditions at a_0, in the linear regime

$$\exp\left(\frac{2}{3} \int \frac{\xi(x)}{\bar{\xi}(a_0, l)} \frac{d\bar{\xi}}{\bar{\xi}(1 + \bar{\xi})}\right) = \frac{a^2}{a_0^2} = \frac{\bar{\xi}_L(a, l)}{\bar{\xi}_L(a_0, l)}.$$ \hfill(204)$$

We now need to relate the scales x and l. Equation (201) can be written, using equation (202) as

$$\frac{dX}{dA} = -h = \frac{1}{3D} \frac{dD}{dA}$$ \hfill(205)$$

giving

$$3X + \ln D = \ln[x^3(1 + \bar{\xi})] = \text{constant}.$$ \hfill(206)$$

Using the initial condition in the linear regime,

$$x^3(1 + \bar{\xi}) = l^3.$$ \hfill(207)$$
This shows that $\tilde{\xi}_L$ should be evaluated at $l = x(1 + \tilde{\xi})^{1/3}$. It can be checked directly that (207) and (204) satisfy (199). The final result can, therefore, be summarized by the equation (equivalent to (204) and (207))

$$
\tilde{\xi}_L(a, l) = \exp \left(\frac{2}{3} \int \frac{\xi(a, x)}{h(\mu)(1 + \mu)} \right); \quad l = x(1 + \tilde{\xi}(a, x))^{1/3}. \tag{208}
$$

Given the function $h(\tilde{\xi})$, this relates $\tilde{\xi}_L$ and $\tilde{\xi}$ or — equivalently — gives the mapping $\tilde{\xi}(a, x) = U[\tilde{\xi}_L(a, l)]$ between the nonlinear and linear correlation functions evaluated at different scales x and l. The lower limit of the integral is chosen to give $\ln \tilde{\xi}$ for small values of ξ on the linear regime. It may be mentioned that the equation (205) and its integral (207) are independent of the ansatz $h(a, x) = h[\tilde{\xi}(a, x)]$.

The following points need to be stressed regarding this result: (i) Among all statistical indicators, it is only $\tilde{\xi}$ which obeys a nonlinear scaling relation (NSR) of the form $\tilde{\xi}_{NL}(a, x) = U[\tilde{\xi}_L(a, l)]$. Attempts to write similar relations for ξ or $P(k)$ have no fundamental justification. (ii) The nonlocality of the relation represents the transfer of power in gravitational clustering and cannot be ignored — or approximated by a local relation between $\tilde{\xi}_{NL}(a, x)$ and $\tilde{\xi}_L(a, x)$.

Given the form of $h(\tilde{\xi})$, equation (208) determines the relation $\tilde{\xi} = U[\tilde{\xi}_L]$. It is, however, easier to determine the form of U, directly along the following lines (Padmanabhan, 1996a): In the linear regime ($\tilde{\xi} \ll 1, \tilde{\xi}_L \ll 1$) we clearly have $U(\tilde{\xi}_L) \simeq \tilde{\xi}_L$. To determine its form in the quasilinear regime, consider a region surrounding a density peak in the linear stage, around which we expect the clustering to take place. From the definition of $\tilde{\xi}$ it follows that the density profile around this peak can be described by

$$
\rho(x) \approx \rho_{bg}[1 + \xi(x)] \tag{209}
$$

Hence the initial mean density contrast scales with the initial shell radius l as $\tilde{\delta}(l) \propto \tilde{\xi}_L(l)$ in the initial epoch, when linear theory is valid. This shell will expand to a maximum radius of $x_{\text{max}} \propto l/\tilde{\delta}(l) \propto l/\tilde{\xi}_L(l)$. In scale-invariant, radial collapse, models each shell may be approximated as contributing with an effective scale which is proportional to x_{max}. Taking the final effective radius x as proportional to x_{max}, the final mean correlation function will be

$$
\tilde{\xi}_{QL}(x) \propto \rho \propto \frac{M}{x^3} \propto \frac{l^3}{(l^3/\tilde{\xi}_L(l))^3} \propto \tilde{\xi}_L(l)^3 \tag{210}
$$

That is, the final correlation function in the quasilinear regime, $\tilde{\xi}_{QL}$, at x is the cube of initial correlation function at l where $l^3 \propto x^3 \tilde{\xi}_L^3 \propto x^3 \tilde{\xi}_{QL}(x)$.

\[52\]
T. PADMANABHAN
Note that we did not assume that the initial power spectrum is a power law to get this result. In case the initial power spectrum is a power law, with \(\xi_L \propto x^{-(n+3)} \), then we immediately find that

\[
\tilde{\xi}_{QL} \propto x^{-3(n+3)/(n+4)} \tag{211}
\]

If the correlation function in linear theory has the power law form \(\xi_L \propto x^{-\alpha} \) then the process described above changes the index from \(\alpha \) to \(3\alpha/(1+\alpha) \). We shall comment more about this aspect later. For the power law case, the same result can be obtained by more explicit means. For example, in power law models the energy of spherical shell with mean density \(\bar{\delta} \) will scale with its radius as \(E \propto G\delta M(x_i)/x_i \propto G\delta x_i^2 \propto x_i^{2-b} \). Since \(M \propto x_i^3 \), it follows that the maximum radius reached by the shell scales as \(x_{\text{max}} \propto (M/E) \propto x_i^{1+b} \). Taking the effective radius as \(x = x_{\text{eff}} \propto x_i^{1+b} \), the final density scales as

\[
\rho \propto \frac{M}{x^3} \propto \frac{x_i^3}{x_i^{(1+b)}} \propto x_i^{-3b} \propto x^{-3b/(1+b)} \tag{212}
\]

In this quasilinear regime, \(\bar{\xi} \) will scale like the density and we get \(\tilde{\xi}_{QL} \propto x^{-3b/(1+b)} \). The index \(b \) can be related to \(n \) by assuming the the evolution starts at a moment when linear theory is valid. Since the gravitational potential energy [or the kinetic energy] scales as \(E \propto x_i^{-(n+1)} \) in the linear theory, it follows that \(b = n + 3 \). This leads to the correlation function in the quasilinear regime, given by (211).

If \(\Omega = 1 \) and the initial spectrum is a power law, then there is no intrinsic scale in the problem. It follows that the evolution has to be self similar and \(\bar{\xi} \) can only depend on the combination \(q = xa^{-2/(n+3)} \). This allows to determine the \(a \) dependence of \(\tilde{\xi}_{QL} \) by substituting \(q \) for \(x \) in (211). We find

\[
\tilde{\xi}_{QL}(a, x) \propto a^{6/(n+4)} x^{-3(n+3)/(n+4)} \tag{213}
\]

We know that, in the linear regime, \(\bar{\xi} = \tilde{\xi}_L \propto a^2 \). Equation (213) shows that, in the quasilinear regime, \(\bar{\xi} = \tilde{\xi}_{QL} \propto a^{6/(n+4)} \). Spectra with \(n < -1 \) grow faster than \(a^2 \), spectra with \(n > -1 \) grow slower than \(a^2 \) and \(n = -1 \) spectrum grows as \(a^2 \). Direct algebra shows that

\[
\tilde{\xi}_{QL}(a, x) \propto (\tilde{\xi}_L(a, l))^3 \tag{214}
\]

reconfirming the local dependence in \(a \) and nonlocal dependence in spatial coordinate. This result has no trace of original assumptions [spherical evolution, scale-invariant spectrum] left in it and hence once would strongly suspect that it will have far general validity.
Let us now proceed to the fully nonlinear regime. If we ignore the effect of mergers, then it seems reasonable that virialised systems should maintain their densities and sizes in proper coordinates, i.e. the clustering should be “stable”. This would require the correlation function to have the form \(\bar{\xi}_{NL}(a, x) = a^3 F(ax) \). [The factor \(a^3 \) arising from the decrease in background density]. From our previous analysis we expect this to be a function of \(\bar{\xi}_L(a, l) \) where \(l^3 \approx x^3 \bar{\xi}_{NL}(a, x) \). Let us write this relation as

\[
\bar{\xi}_{NL}(a, x) = a^3 F(ax) = U[\bar{\xi}_L(a, l)]
\]

(215)

where \(U[z] \) is an unknown function of its argument which needs to be determined. Since linear correlation function evolves as \(a^2 \) we know that we can write \(\bar{\xi}_L(a, l) = a^2 Q[l^3] \) where \(Q \) is some known function of its argument. [We are using \(l^3 \) rather than \(l \) in defining this function just for future convenience of notation]. In our case \(l^3 = x^3 \bar{\xi}_{NL}(a, x) = (ax)^3 F(ax) = r^3 F(r) \) where we have changed variables from \((a, x) \) to \((a, r) \) with \(r = ax \). Equation (215) now reads

\[
a^3 F(r) = U[\bar{\xi}_L(a, l)] = U[a^2 Q[l^3]] = U[a^2 Q[r^3 F(r)]]
\]

(216)

Consider this relation as a function of \(a \) at constant \(r \). Clearly we need to satisfy \(U[c_1 a^2] = c_2 a^3 \) where \(c_1 \) and \(c_2 \) are constants. Hence we must have

\[
U[z] \propto z^{3/2}.
\]

(217)

Thus in the extreme nonlinear end we should have

\[
\bar{\xi}_{NL}(a, x) \propto [\bar{\xi}_L(a, l)]^{3/2}
\]

(218)

[Another way deriving this result is to note that if \(\bar{\xi} = a^3 F(ax) \), then \(h = 1 \). Integrating (208) with appropriate boundary condition leads to (218).] Once again we did not need to invoke the assumption that the spectrum is a power law. If it is a power law, then we get,

\[
\bar{\xi}_{NL}(a, x) \propto a^{(3-\gamma)} x^{-\gamma}; \quad \gamma = \frac{3(n+3)}{(n+5)}
\]

(219)

This result is based on the assumption of “stable clustering” and was originally derived by Peebles (Peebles, 1980). It can be directly verified that the right hand side of this equation can be expressed in terms of \(q \) alone, as we would have expected.

Putting all our results together, we find that the nonlinear mean correlation function can be expressed in terms of the linear mean correlation function by the relation:

\[
\bar{\xi}(a, x) = \begin{cases}
\bar{\xi}_L(a, l) & \text{(for } \bar{\xi}_L < 1, \bar{\xi} < 1) \\
\bar{\xi}_L(a, l)^3 & \text{(for } 1 < \bar{\xi}_L < 5.85, 1 < \bar{\xi} < 200) \\
14.14\bar{\xi}_L(a, l)^{3/2} & \text{(for } 5.85 < \bar{\xi}_L, 200 < \bar{\xi})
\end{cases}
\]

(220)
The numerical coefficients have been determined by continuity arguments. We have assumed the linear result to be valid up to $\xi = 1$ and the virialisation to occur at $\xi \approx 200$ which is result arising from the spherical model. The exact values of the numerical coefficients can be obtained only from simulations.

The true test of such a model, of course, is N-body simulations and remarkably enough, simulations are very well represented by relations of the above form. The simulation data for CDM, for example, is well fitted by (Padmanabhan et al., 1996):

$$\tilde{\xi}(a, x) = \begin{cases}
\xi_L(a, l) & (\text{for } \xi_L < 1.2, \tilde{\xi} < 1.2) \\
\xi_L(a, l)^{3/2} & (\text{for } 1 < \xi_L < 5, 1 < \tilde{\xi} < 125) \\
11.7\xi_L(a, l)^{3/2} & (\text{for } 5 < \xi_L, 125 < \tilde{\xi})
\end{cases} \quad (221)$$

which is fairly close to the theoretical prediction. [The fact that numerical simulations show a correlation between $\xi(a, x)$ and $\xi_L(a, l)$ was originally pointed out by Hamilton et al., (1991) who, however, tried to give a multiparameter fit to the data. This fit has somewhat obscured the simple physical interpretation of the result though has the virtue of being accurate for numerical work.]

A comparison of (220) and (221) shows that the physical processes which operate at different scales are well represented by our model. In other words, the processes descibed in the quasilinear and nonlinear regimes for an individual lump still models the average behaviour of the universe in a statistical sense. It must be emphasized that the key point is the “flow of information” from l to x which is an exact result. Only when the results of the specific model are recast in terms of suitably chosen variables, we get a relation which is of general validity. It would have been, for example, incorrect to use spherical model to obtain relation between linear and nonlinear densities at the same location or to model the function h.

It may be noted that to obtain the result in the nonlinear regime, we needed to invoke the assumption of stable clustering which has not been deduced from any fundamental considerations. In case mergers of structures are important, one would consider this assumption to be suspect (see Padmanabhan et al., 1996). We can, however, generalise the above argument in the following manner: If the virialised systems have reached stationarity in the statistical sense, the function h — which is the ratio between two velocities — should reach some constant value. In that case, one can integrate (208) and obtain the result $\tilde{\xi}_{NL} = a^{3h} F(a^{h} x)$ where h now denotes the asymptotic value. A similar argument will now show that

$$\tilde{\xi}_{NL}(a, x) \propto [\tilde{\xi}_L(a, l)]^{3h/2} \quad (222)$$
in the general case. For the power law spectra, one would get

\[\bar{\xi}(a,x) \propto a^{(3-\gamma)h}x^{-\gamma}; \quad \gamma = \frac{3h(n+3)}{2+h(n+3)} \quad (223) \]

Simulations are not accurate enough to fix the value of \(h \); in particular, the asymptotic value of \(h \) could depend on \(n \) within the accuracy of the simulations. It may be possible to determine this dependence by modelling mergers in some simplified form.

If \(h = 1 \) asymptotically, the correlation function in the extreme nonlinear end depends on the linear index \(n \). One may feel that physics at highly nonlinear end should be independent of the linear spectral index \(n \). This will be the case if the asymptotic value of \(h \) satisfies the scaling

\[h = \frac{3c}{n+3} \quad (224) \]

in the nonlinear end with some constant \(c \). Only high resolution numerical simulations can test this conjecture that \(h(n+3) = \text{constant} \).

It is possible to obtain similar relations between \(\xi(a,x) \) and \(\xi_L(a,l) \) in two dimensions as well by repeating the above analysis (see Padmanabhan, 1997). In 2-D the scaling relations turn out to be

\[\bar{\xi}(a,x) \propto \begin{cases} \bar{\xi}_L(a,l) & \text{(Linear)} \\ \bar{\xi}_L(a,l)^2 & \text{(Quasi-linear)} \\ \bar{\xi}_L(a,l)^{h/2} & \text{(Nonlinear)} \end{cases} \quad (225) \]

where \(h \) again denotes the asymptotic value. For power law spectrum the nonlinear correction function will \(\bar{\xi}_{NL}(a,x) = a^{2-\gamma}x^{-\gamma} \) with \(\gamma = 2(n+2)/(n+4) \).

If we generalize the concept of stable clustering to mean constancy of \(h \) in the nonlinear epoch, then the correlation function will behave as \(\bar{\xi}_{NL}(a,x) = a^{2h}F(a^h x) \). In this case, if the spectrum is a power law then the nonlinear and linear indices are related to

\[\gamma = \frac{2h(n+2)}{2+h(n+2)} \quad (226) \]

All the features discussed in the case of 3 dimensions are present here as well. For example, if the asymptotic value of \(h \) scales with \(n \) such that \(h(n+2) = \text{constant} \) then the nonlinear index will be independent of the linear index. Figure (8) shows the results of numerical simulation in 2D, which suggests that \(h = 3/2 \) asymptotically (Bagla et al., 1998) We shall now consider some applications and further generalisations of these nonlinear scaling relations.
The ideas presented here can be generalised in two obvious directions (see Munshi and Padmanabhan, 1997): (i) By considering peaks of different heights, drawn from an initial gaussian random field, and averaging over the probability distribution one can obtain a more precise NSR. (ii) By using a generalised ansatz for higher order correlation functions, one can attempt to compute the S_N parameters in the quasilinear and nonlinear regimes. We shall briefly comment on the results of these two generalisations.

(i) The basic idea behind the model used to obtain the NSR can be described as follows: Consider the evolution of density perturbations starting from an initial configuration, which is taken to be a realisation of a Gaussian random field with variance σ. A region with initial density contrast δ_i will expand to a maximum radius $x_f = x_i/\delta_i$ and will contribute to the two-point correlation function an amount proportional to $(x_i/x_f)^3 = \delta_i^3$. The initial density contrast within a randomly placed sphere of radius x_i will be $\nu \sigma(x_i)$ with a probability proportional to $\exp(-\nu^2/2)$. On the other hand, the initial density contrast within a sphere of radius x_i, centered around a peak in the density field will be proportional to the two-point correlation function and will be $\nu^2 \xi(x_i)$ with a probability proportional to $\exp(-\nu^2/2)$. It follows that the contribution from a typical region will scale as $\xi \propto \xi_i^{3/2}$ while that from higher peaks will scale as $\xi \propto \xi_i^3$. In the quasilinear phase, most dominant contribution arises from high peaks and we find the scaling to be $\xi_{QL} \propto \xi_i^{3}$. The non-linear, virialized, regime is dominated by contri-
bution from several typical initial regions and has the scaling \(\tilde{\xi}_{NL} \propto \tilde{\xi}^{3/2} \).
This was essentially the result obtained above, except that we took \(\nu = 1 \).
To take into account the statistical fluctuations of the initial Gaussian field we can average over different \(\nu \) with a Gaussian probability distribution.

Such an analysis leads to the following result. The relationship between \(\tilde{\xi}(a, x) \) and \(\tilde{\xi}_L(a, l) \) becomes

\[
\tilde{\xi}(a, x) = A \left[\tilde{\xi}_L(a, l) \right]^{3h/2} ; A = \left(\frac{2}{\lambda} \right)^{3h/2} \left[\frac{\Gamma \left(\frac{\alpha + 1}{2} \right)}{2\sqrt{\pi}} \right]^{3h/\alpha} \tag{227}
\]

where

\[
\alpha = \frac{6h}{2 + h(n + 3)} \tag{228}
\]

and \(\lambda \approx 0.5 \) is the ratio between the final virialized radius and the radius at turn-around. In our model, \(h = 2 \) in the quasi-linear regime, and \(h = 1 \) in the non-linear regime. However, the above result holds for any other value of \(h \). Equation (227) shows that the scaling relations (220) acquire coefficients which depend on the spectral index \(n \) when we average over peaks of different heights. (Mo et al., 1995; Munshi and Padmanabhan, 1997).

(ii) In attempting to generalize our results to higher order correlation functions, it is important to keep the following aspect in mind. The \(N \)th order correlation function will involve \(N - 1 \) different length scales. To make progress, one needs to assume that, although there are different length scales present in reduced \(n \)-point correlation function, all of them have to be roughly of the same order to give a significant contribution. If the correlation functions are described by a single scale, then a natural generalisation will be

\[
\tilde{\xi}_N \approx \langle x_i^{3(N-1)} \rangle / x^{3(N-1)} \tag{229}
\]

Given such an ansatz for the \(N \) point correlation function, one can compute the \(S_N \) coefficients defined by the relation \(S_N \equiv \xi_N / \tilde{\xi}_2^{N-1} \) in a straightforward manner. We find that

\[
S_N = (4\pi)^{(N-2)/2} \frac{\Gamma \left(\frac{\alpha(N-1)+1}{2} \right)}{\left[\Gamma \left(\frac{\alpha+1}{2} \right) \right]^{N-1}} \tag{230}
\]

where \(\alpha \) is defined in equation (228). Given the function \(h(\tilde{\xi}) \), this equation allows one to compute (approximately) the value of \(S_N \) parameters in the quasi-linear and non-linear regimes. In our model \(h = 2 \) in the quasi-linear regime and \(h = 1 \) in the non-linear regime. The numerical values of \(S_N \) computed for different power spectra agrees reasonably well with simulation results. (For more details, see Munshi and Padmanabhan, 1997.)
12. NSR and halo profiles

Now that we have a NSR giving $\bar{\xi}(a,x)$ in terms of $\bar{\xi}_L(a,l)$ we can ask the question: How does the gravitational clustering proceed at highly nonlinear scales or, equivalently, at any given scale at large a?

To begin with, it is easy to see that we must have $v = -\dot{a}x$ or $h = 1$ for sufficiently large $\bar{\xi}(a,x)$ if we assume that the evolution gets frozen in proper coordinates at highly nonlinear scales. Integrating equation (208) with $h = 1$, we get $\xi(a,x) = a^3 F(ax)$; this is the phenomenon we called "stable clustering". There are two points which need to be emphasised about stable clustering:

(1) At present, there exists some evidence from simulations (see Padmanabhan et al., 1996) that stable clustering does not occur in a $\Omega = 1$ model. In a formal sense, numerical simulations cannot disprove [or even prove, strictly speaking] the occurrence of stable clustering, because of the finite dynamic range of any simulation.

(2). Theoretically speaking, the “naturalness” of stable clustering is often overstated. The usual argument is based on the assumption that at very small scales — corresponding to high nonlinearities — the structures are “expected to be” frozen at the proper coordinates. However, this argument does not take into account the fact that mergers are not negligible at any scale in an $\Omega = 1$ universe. In fact, stable clustering is more likely to be valid in models with $\Omega < 1$ — a claim which seems to be again supported by simulations (see Padmanabhan et al., 1996).

If stable clustering is valid, then the late time behaviour of $\bar{\xi}(a,x)$ cannot be independent of initial conditions. In other words the two requirements: (i) validity of stable clustering at highly nonlinear scales and (ii) the independence of late time behaviour from initial conditions, are mutually exclusive. This is most easily seen for initial power spectra which are scale-free. If $P_n(k) \propto k^n$ so that $\bar{\xi}_L(a,x) \propto a^2 x^{-(n+3)}$, then it is easy to show that $\bar{\xi}(a,x)$ at nonlinear scales will vary as

$$\bar{\xi}(a,x) \propto a^{6n+5} x^{-3(n+3)}; \quad (\xi \gg 200)$$

if stable clustering is true. Clearly, the power law index in the nonlinear regime “remembers” the initial index. The same result holds for more general initial conditions.

What does this result imply for the profiles of individual halos? To answer this question, let us start with the simple assumption that the density field $\rho(a,x)$ at late stages can be expressed as a superposition of several halos, each with some density profile; that is, we take

$$\rho(a,x) = \sum_i f(x - x_i, a)$$

(232)
where the i-th halo is centered at x_i and contributes an amount $f(x - x_i, a)$ at the location x_i [We can easily generalise this equation to the situation in which there are halos with different properties, like core radius, mass etc by summing over the number density of objects with particular properties; we shall not bother to do this. At the other extreme, the exact description merely corresponds to taking the f’s to be Dirac delta functions. Hence there is no loss of generality in (232)]. The power spectrum for the density contrast, $\delta(a, x) = (\rho/\rho_0 - 1)$, corresponding to the $\rho(a, x)$ in (232) can be expressed as

$$P(k, a) \propto \left(a^3 |f(k, a)| \right)^2 \left| \sum_i \exp -ik \cdot x_i(a) \right|^2 \quad (233)$$

$$\propto \left(a^3 |f(k, a)| \right)^2 P_{\text{cent}}(k, a) \quad (234)$$

where $P_{\text{cent}}(k, a)$ denotes the power spectrum of the distribution of centers of the halos.

If stable clustering is valid, then the density profiles of halos are frozen in proper coordinates and we will have $f(x - x_i, a) = f(a(x - x_i))$; hence the fourier transform will have the form $f(k, a) = a^{-3} f(k/a)$. On the other hand, the power spectrum at scales which participate in stable clustering must satisfy $P(k, a) = P(k/a)$ [This is merely the requirement $\bar{\xi}(a, x) = a^3 F(ax)$ re-expressed in fourier space]. From equation (234) it follows that we must have $P_{\text{cent}}(k, a) = P_{\text{cent}}(k/a)$. We can however take $P_{\text{cent}} = \text{constant}$ at sufficiently small scales. This is because we must necessarily have $P_{\text{cent}} \approx \text{constant}$, (by definition) for length scales smaller than typical halo size, when we are essentially probing the interior of a single halo at sufficiently small scales. We can relate the halo profile to the correlation function using (234). In particular, if the halo profile is a power law with $f \propto r^{-\epsilon}$, it follows that the $\bar{\xi}(a, x)$ scales as $x^{-\gamma}$ [see also McClelland and Silk, 1977] where

$$\gamma = 2\epsilon - 3 \quad (235)$$

Now if the correlation function scales as $x^{[-3(n+3)/(n+5)]}$, then we see that the halo density profiles should be related to the initial power law index through the relation

$$\epsilon = \frac{3(n + 4)}{n + 5} \quad (236)$$

So clearly, the halos of highly virialised systems still “remember” the initial power spectrum.

Alternatively, without taking the help of the stable clustering hypothesis, one can try to “reason out” the profiles of the individual halos and use it to obtain the scaling relation for correlation functions. One of the
favourite arguments used by cosmologists to obtain such a “reasonable”
halo profile is based on spherical, scale invariant, collapse. It turns out that
one can provide a series of arguments, based on spherical collapse, to show
that — under certain circumstances — the density profiles at the nonlinear
end scale as \(x^{-3(n+3)/(n+5)} \). The simplest variant of this argument runs as
follows: If we start with an initial density profile which is \(r^{-\alpha} \), then scale
invariant spherical collapse will lead to a profile which goes as \(r^{-\beta} \) with
\(\beta = 3\alpha/(1 + \alpha) \) [see eg., Padmanabhan, 1996a]. Taking the initial slope as
\(\alpha = (n+3)/2 \) will immediately give \(\beta = 3(n+3)/(n+5) \). [Our definition of
the stable clustering in the last section is based on the scaling of the corre-
lation function and gave the slope of \(-3(n+3)/(n+5) \) for the correlation
function. The spherical collapse gives the same slope for halo profiles.] In
this case, when the halos have the slope of \(\epsilon = 3(n+3)/(n+5) \), then the
correlation function should have slope

\[
\gamma = \frac{3(n+1)}{n+5}
\]

(237)

Once again, the final state “remembers” the initial index \(n \).

Is this conclusion true? Unfortunately, simulations do not have suffi-
cient dynamic range to provide a clear answer but there are some claims
that the halo profiles are “universal” and independent of initial conditions.
The theoretical arguments given above are also far from rigorous (in spite
of the popularity they seem to enjoy!). The argument for correlation func-
tion to scale as \(-3(n+3)/(n+5) \) is based on the assumption of \(h = 1 \)
asymptotically, which may not be true. The argument, leading to density
profiles scaling as \(x^{-3(n+3)/(n+5)} \), is based on scale invariant spherical col-
apse which does not do justice to nonradial motions. Just to illustrate the
situations in which one may obtain final configurations which are indepen-
dent of initial index \(n \), we shall discuss two possibilities:

(i) As a first example we will try to see when the slope of the correlation
function is universal and obtain the slope of halos in the nonlinear limit
using our relation (235). Such a situation can develop if we assume that \(h \)
reaches a constant value asymptotically which is not necessarily unity. In
that case, we get \(\bar{\xi}(a,x) = a^{3h}F[a^h x] \) where \(h \) now denotes the constant
asymptotic value of of the function. For an initial spectrum which is scale-
free power law with index \(n \), this result translates to

\[
\bar{\xi}(a,x) \propto a^{\frac{3h}{2}} x^{-\gamma}
\]

(238)

where \(\gamma \) is given by

\[
\gamma = \frac{3h(n+3)}{2 + h(n+3)}
\]

(239)
We now notice that one can obtain a γ which is independent of initial power law index provided h satisfies the condition $h(n+3) = c$, a constant. In this case, the nonlinear correlation function will be given by

$$\epsilon = 3 \left(\frac{c+1}{c+2} \right)$$

(240)

Note that we are now demanding the asymptotic value of h to explicitly depend on the initial conditions though the spatial dependence of $\bar{\xi}(a,x)$ does not. In other words, the velocity distribution — which is related to h — still “remembers” the initial conditions. This is indirectly reflected in the fact that the growth of $\xi(a,x)$ — represented by $a^{6c/((2+c)(n+3))}$ — does depend on the index n.

We emphasize the fact that the velocity distribution remembers the initial condition because it is usual (in published literature) to ignore the memory in velocity and concentrate entirely on the correlation function. It is not clear to us [or we suppose to anyone else] whether it is possible to come up with a clustering scenario in which no physical feature remembers the initial conditions. This could probably occur when virialisation has run its full course but even then it is not clear whether the particles which evaporate from a given potential well (and form a uniform hot component) will forget all the initial conditions.

As an example of the power of such a — seemingly simple — analysis note the following: Since $c \geq 0$, it follows that $\epsilon > (3/2)$; invariant profiles with shallower indices (for e.g with $\epsilon = 1$) are not consistent with the evolution described above.

(ii) For our second example, we shall make an ansatz for the halo profile and use it to determine the correlation function. We assume, based on small scale dynamics, that the density profiles of individual halos should resemble that of isothermal spheres, with $\epsilon = 2$, irrespective of initial conditions. Converting this halo profile to correlation function in the nonlinear regime is straightforward and is based on equation (235): If $\epsilon = 2$, we must have $\gamma = 2\epsilon - 3 = 1$ at small scales; that is $\xi(a,x) \propto x^{-1}$ at the nonlinear regime. Note that this corresponds to the index at the nonlinear end, for which the growth rate is a^2 — same as in linear theory. We shall say more about such ‘critical’ indices later. [This a^2 growth however, is possible for initial power law spectra, only if $\epsilon = 2$, i.e $h(n+3) = 1$ at very nonlinear scales. Testing the conjecture that $h(n+3)$ is a constant is probably a little easier than looking for invariant profiles in the simulations but the results are still uncertain].

The corresponding analysis for the intermediate regime, with $1 \lesssim \bar{\xi}(a,x) \lesssim 200$, is more involved. This is clearly seen in equation (234) which shows that the power spectrum [and hence the correlation function] depends both on
the Fourier transform of the halo profiles as well as the power spectrum of the distribution of halo centres. In general, both quantities will evolve with time and we cannot ignore the effect of $P_{\text{cent}}(k, a)$ and relate $P(k, a)$ to $f(k, a)$. The density profile around a local maxima will scale approximately as $\rho \propto \xi$ while the density profile around a randomly chosen point will scale as $\rho \propto \xi^{1/2}$. [The relation $\gamma = 2\epsilon - 3$ expresses the latter scaling of $\xi \propto \rho^2$.] There is, however, reason to believe that the intermediate regime (with $1 \lesssim \xi \lesssim 200$) is dominated by the collapse of high peaks (see Padmanabhan, 1996a). In that case, we expect the correlation function and the density profile to have the same slope in the intermediate regime with $\tilde{\xi}(a, x) \propto (1/x^2)$. Remarkably enough, this corresponds to the ‘critical’ index $n_c = -1$ for the intermediate regime for which the growth is proportional to a^2.

We thus see that if: (i) the individual halos are isothermal spheres with $(1/x^2)$ profile and (ii) if $\xi \propto \rho$ in the intermediate regime and $\xi \propto \rho^2$ in the nonlinear regime, we end up with a correlation function which grows as a^2 at all scales. Such an evolution, of course, preserves the shape and is a good candidate for the late stage evolution of the clustering.

While the above arguments are suggestive, they are far from conclusive. It is, however, clear from the above analysis and it is not easy to provide unique theoretical reasoning regarding the shapes of the halos. The situation gets more complicated if we include the fact that all halos will not all have the same mass, core radius etc and we have to modify our equations by integrating over the abundance of halos with a given value of mass, core radius etc. This brings in more ambiguities and depending on the assumptions we make for each of these components [e.g., abundance for halos of a particular mass could be based on Press-Schecter formalism], and the final results have no real significance. It is, therefore, better [and probably easier] to attack the question based on the evolution equation for the correlation function rather than from “physical” arguments for density profiles.

13. Power transfer and critical indices

Given a model for the evolution of the power spectra in the quasilinear and nonlinear regimes, one could generalise the questions raised in the last section and explore whether evolution of gravitational clustering possesses any universal characteristics. For example one could ask whether a complicated initial power spectrum will be driven to any particular form of power spectrum in the late stages of the evolution. This is a somewhat more general issue than, say, the invariance of halo profile.

One suspects that such a possibility might arise because of the following
reason: We saw in the section 11 that [in the quasilinear regime] spectra with \(n < -1 \) grow faster than \(a^2 \) while spectra with \(n > -1 \) grow slower than \(a^2 \). This feature could drive the spectral index to \(n = n_c \approx -1 \) in the quasilinear regime irrespective of the initial index. Similarly, the index in the nonlinear regime could be driven to \(n \approx -2 \) during the late time evolution. So the spectral indices \(-1\) and \(-2\) are some kind of “fixed points” in the quasilinear and nonlinear regimes. Speculating along these lines, we would expect the gravitational clustering to lead to a “universal” profile which scales as \(x^{-1} \) at the nonlinear end changing over to \(x^{-2} \) in the quasilinear regime.

This effect can be understood better by studying the “effective” index for the power spectra at different stages of the evolution (see Bagla and Padmanabhan, 1997). To do this most effectively, let us define a local index for rate of clustering by

\[
n_a(a, x) \equiv \frac{\partial \ln \bar{\xi}(a, x)}{\partial \ln a} \quad (241)
\]

which measures how fast \(\bar{\xi}(a, x) \) is growing. When \(\bar{\xi}(a, x) \ll 1 \), then \(n_a = 2 \) irrespective of the spatial variation of \(\xi(a, x) \) and the evolution preserves the shape of \(\bar{\xi}(a, x) \). However, as clustering develops, the growth rate will depend on the spatial variation of \(\bar{\xi}(a, x) \). Defining the effective spatial slope by

\[
-[n_x(a, x) + 3] \equiv \frac{\partial \ln \bar{\xi}(a, x)}{\partial \ln x} \quad (242)
\]

one can rewrite the equation (199) as

\[
n_a = h \left(\frac{3}{\bar{\xi}(a, x)} - n_x \right) \quad (243)
\]

At any given scale of nonlinearity, decided by \(\bar{\xi}(a, x) \), there exists a critical spatial slope \(n_c \) such that \(n_a > 2 \) for \(n_x < n_c \) [implying rate of growth is faster than predicted by linear theory] and \(n_a < 2 \) for \(n_x > n_c \) [with the rate of growth being slower than predicted by linear theory]. The critical index \(n_c \) is fixed by setting \(n_a = 2 \) in equation (243) at any instant. This requirement is established from the physically motivated desire to have a form of the two point correlation function that remains invariant under time evolution. Since the linear end of the two point correlation function scales as \(a^2 \), the required invariance of form constrains the index \(n_a \) to be 2 at all scales. The fact that \(n_a > 2 \) for \(n_x < n_c \) and \(n_a < 2 \) for \(n_x > n_c \) will tend to “straighten out” correlation functions towards the critical slope. [We are assuming that \(\bar{\xi}(a, x) \) has a slope that is decreasing with scale, which is true for any physically interesting case]. From the NSR it is easy to see that in the range \(1 \lesssim \bar{\xi} \lesssim 200 \), the critical index is \(n_c \approx -1 \) and
for $200 \lesssim \xi$, the critical index is $n_c \approx -2$. This clearly suggests that the local effect of evolution is to drive the correlation function to have a shape with $(1/x)$ behaviour at nonlinear regime and $(1/x^2)$ in the intermediate regime. Such a correlation function will have $n_a \approx 2$ and hence will grow at a rate close to a^2.

The three panels of figure (9) illustrate features related to the existence of fixed points in a clearer manner. In the top panel we have plotted index of growth $n_a \equiv (\partial \ln \xi(a, x)/\partial \ln a)_x$ as a function of ξ in the quasilinear regime obtained from the best fit for NSR based on simulations. Curves correspond to an input spectrum with index $n = -2, -1, 1$. The dashed horizontal line at $n_a = 2$ represents the linear growth rate. An index above this dashed horizontal line will represent a rate of growth faster than linear growth rate and the one below will represent a rate which is slower than the linear rate. It is clear that – in the quasilinear regime – the curve for $n = -1$ closely follows the linear growth while $n = -2$ grows faster and $n = 1$ grows slower; so the critical index is $n_c \approx -1$.

The second panel of figure 9 shows the effective index n_a as a function of the index n of the original linear spectrum at different levels of nonlinearity labelled by $\bar{\xi} = 1, 5, 10, 50, 100$. We see that in the quasilinear regime, $n_a > 2$ for $n < -1$ and $n_a < 2$ for $n > -1$.

The lower panel of figure 9 shows the slope $n_x = -3 - (\partial \ln \xi/\partial \ln x)_a$ of ξ for different power law spectra. It is clear that n_x crowds around $n_c \approx -1$ in the quasilinear regime. If perturbations grow by gravitational instability, starting from an epoch at which $\bar{\xi}_{\text{initial}} \ll 1$ at all scales, then equation (243) with $n_a > 0$ requires, that n_x, at any epoch, must satisfy the inequality

$$n_x \leq (3/\bar{\xi}).$$

(244)

This bounding curve is shown by a dotted line in the figure. This powerful inequality shows that regions of strong nonlinearity [with $\bar{\xi} \gg 1$] should have effective index which is close to or less than zero. The index $n_c = -1$ corresponds to the isothermal profile with $\xi(a, x) = a^{2}x^{-2}$ and has two interesting features to recommend it as a candidate for fixed point:

(i) For $n = -1$ spectra each logarithmic scale contributes the same amount of correlation potential energy. If the regime is modelled by scale invariant radial flows, then the kinetic energy will scale in the same way. It is conceivable that flow of power leads to such an equipartition state as a fixed point though it is difficult prove such a result in any generality.

(ii) It was shown earlier that scale invariant spherical collapse will change the density profile x^{-b} with an index b to another profile with index $3b/(1 + b)$. Such a mapping has a nontrivial fixed point for $b = 2$ corresponding to the isothermal profile and an index of power spectrum $n = -1$ (see Padmanabhan, 1996a).
Figure 9. The top panel shows exponent of rate of growth of density fluctuations as a function of amplitude. We have plotted the rate of growth for three scale invariant spectra $n = -2, -1, 1$. The dashed horizontal line indicates the exponent for linear growth. For the range $1 < \delta < 100$, the $n = -1$ spectrum grows as in linear theory; $n < -1$ grows faster and $n > -1$ grows slower. The second panel shows exponent of rate of growth as a function of linear index of the power spectrum for different values of $\bar{\xi}$ (1, 5, 10, 50, 100). These are represented by thick, dashed, dot-dashed, dotted and the dot-dot-dashed lines respectively. It is clear that spectra with $n_{\text{lin}} < -1$ grow faster than the rate of growth in linear regime and $n_{\text{lin}} > -1$ grow slower. The lower panel shows the evolution of index $n_x = -3 - (\partial \ln \xi / \partial \ln x)_a$ with ξ. Indices vary from $n = -2.5$ to $n = 4.0$ in steps of 0.5. The tendency for n_x to crowd around $n_c = -1$ is apparent in the quasilinear regime. The dashed curve is a bounding curve for the index $(n_c < 3/\bar{\xi})$ if perturbations grow via gravitational instability.
These considerations also allow us to predict the nature of power transfer in gravitational clustering. Suppose that, initially, the power spectrum was sharply peaked at some scale \(k_0 = 2\pi/L_0 \) and has a small width \(\Delta k \). When the peak amplitude of the spectrum is far less than unity, the evolution will be described by linear theory and there will be no flow of power to other scales. But once the peak approaches a value close to unity, power will be generated at other scales due to nonlinear couplings even though the amplitude of perturbations in these scales are less than unity. Mathematically, this can be understood from the evolution equation (36) for the density contrast — written in Fourier space — as:

\[
\ddot{\delta}_k + 2\frac{\dot{a}}{a}\dot{\delta}_k = 4\pi G\bar{\rho}\delta_k + Q_k
\]

where \(\delta_k(t) \) is the Fourier transform of the density contrast, \(\bar{\rho} \) is the background density and \(Q_k \equiv A_k - B_k \) is a nonlocal, nonlinear function which couples the mode \(k \) to all other modes \(k' \). Coupling between different modes is significant in two cases. The obvious case is one with \(\delta_k \geq 1 \). A more interesting possibility arises for modes with no initial power [or exponentially small power]. In this case nonlinear coupling provides the only driving terms, represented by \(Q_k \) in equation (245). These generate power at the scale \(k \) through mode-coupling, provided power exists at some other scale. Note that the growth of power at the scale \(k \) will now be governed purely by nonlinear effects even though \(\delta_k \ll 1 \).

Physically, this arises along the following lines: If the initial spectrum is sharply peaked at some scale \(L_0 \), first structures to form are voids with a typical diameter \(L_0 \). Formation and fragmentation of sheets bounding the voids lead to generation of power at scales \(L < L_0 \). First bound structures will then form at the mass scale corresponding to \(L_0 \). In such a model, \(\xi_{\text{lin}} \) at \(L < L_0 \) is nearly constant with an effective index of \(n \approx -3 \). Assuming we can use equation (220) with the local index in this case, we expect the power to grow very rapidly as compared to the linear rate of \(a^2 \). [The rate of growth is \(a^6 \) for \(n = -3 \) and \(a^4 \) for \(n = -2.5 \).] Different rate of growth for regions with different local index will lead to steepening of the power spectrum and an eventual slowing down of the rate of growth. In this process, which is the dominant one, the power transfer is mostly from large scales to small scales. [There is also a generation of the \(k^4 \) tail at large scales which we have discussed earlier.]

From our previous discussion, we would have expected such an evolution to lead to a “universal” power spectrum with some critical index \(n_c \approx -1 \) for which the rate of growth is that of linear theory - viz., \(a^2 \). In fact, the same results should hold even when there exists small scale power; recent numerical simulations dramatically confirm this prediction and show that
Figure 10. The transfer of power in gravitational clustering

Figure 11. The growth of gravitational clustering towards a universal power spectrum $P(k) \propto k^{-1}$.
- in the quasilinear regime, with $1 < \delta < 100$ - power spectrum indeed has a universal slope (see figures 10, 11; for more details, see Bagla and Padmanabhan, 1997).

The initial power spectrum for figure 10 was a Gaussian peaked at the scale $k_0 = 2\pi/L_0$; $L_0 = 24$ and having a spread $\Delta k = 2\pi/128$. The amplitude of the peak was chosen so that $\Delta_{\text{lin}}(k_0 = 2\pi/L_0, a = 0.25) = 1$, where $\Delta^2(k) = k^3P(k)/(2\pi^2)$ and $P(k)$ is the power spectrum. Needless to say, the simulation starts while the peak of the Gaussian is in the linear regime ($\Delta(k_0) \ll 1$). The y-axis is $\Delta(k)/a$, the power per logarithmic scale divided by the linear growth factor. This is plotted as a function of scale $L = 2\pi/k$ for different values of scale factor $a(t)$ and the curves are labeled by the value of a. As we have divided the power spectrum by its linear rate of growth, the change of shape of the spectrum occurs strictly because of non-linear mode coupling. It is clear from this figure that power at small scales grows rapidly and saturates to growth rate close to the linear rate [shown by crowding of curves] at later epochs. The effective index for the power spectrum approaches $n = -1$ within the accuracy of the simulations. Thus this figure clearly demonstrates the general features we expected from our understanding of scaling relations.

Figure 11 compares power spectra of three different models at a late epoch. Model I was described in the last para; Model II had initial power concentrated in two narrow windows in k-space. In addition to power around $L_0 = 24$ as in model I, we added power at $k_1 = 2\pi/L_1$; $L_1 = 8$ using a Gaussian with same width as that used in model I. Amplitude at L_1 was chosen five times higher than that at $L_0 = 24$, thus $\Delta_{\text{lin}}(k_1, a = 0.05) = 1$. Model III was similar to model II, with the small scale peak shifted to $k_1 = 2\pi/L_1$; $L_1 = 12$. The amplitude of the small scale peak was the same as in Model II. At this epoch $\Delta_{\text{lin}}(k_0) = 4.5$ and it is clear from this figure that the power spectra of these models are very similar to one another.

There is another way of looking at this feature which is probably more useful. We recall that, in the study of finite gravitating systems made of point particles and interacting via newtonian gravity, isothermal spheres play an important role. They can be shown to be the local maxima of entropy [see Padmanabhan, 1990] and hence dynamical evolution drives the system towards an $(1/x^2)$ profile. Since one expects similar considerations to hold at small scales, during the late stages of evolution of the universe, we may hope that isothermal spheres with $(1/x^2)$ profile may still play a role in the late stages of evolution of clustering in an expanding background. However, while converting the profile to correlation, we have to take note of the issues discussed earlier. In the intermediate regime, dominated by scale invariant radial collapse, the density will scale as the correlation function and we will have $\xi \propto (1/x^2)$. On the other hand, in the nonlinear end, we
have the relation $\gamma = 2\epsilon - 3$ which gives $\bar{\xi} \propto (1/x)$ for $\epsilon = 2$. Thus, if isothermal spheres are the generic contributors, then we expect the correlation function to vary as $(1/x)$ and nonlinear scales, steepening to $(1/x^2)$ at intermediate scales. Further, since isothermal spheres are local maxima of entropy, a configuration like this should remain undistorted for a long duration. This argument suggests that a $\bar{\xi}$ which goes as $(1/x)$ at small scales and $(1/x^2)$ at intermediate scales is likely to be a candidate for a pseudo-linear profile— that is configuration which grows approximately as a^2 at all scales.

To go from the scalings in two limits to an actual profile, we can use some fitting function. By making the fitting function sufficiently complicated, we can make the pseudo-linear profile more exact. The simplest interpolation between the two limits is given by (Padmanabhan and Engineer, 1998)

$$
\bar{\xi}(a, x) = \left(\frac{Ba}{2} \left(\sqrt{1 + \frac{L}{x}} - 1\right)\right)^2
$$

with L, B being constants. This approximate profile works reasonably well for the optimum value is $B = 38.6$. If we evolve this pseudo linear profile form $a^2 = 1$ to $a^2 \approx 1000$ using the NSR, and plot $[\bar{\xi}(a, x)/a^2]$ against x then the curves virtually fall on top of each other within about 10 per cent (see Padmanabhan and Engineer, 1998) This overlap of the curves show that the profile does grow approximately as a^2.

Finally, we will discuss a different way of thinking about pseudolinear profiles which may be useful. In studying the evolution of the density contrast $\delta(a, x)$, it is conventional to expand in in term of the plane wave modes as

$$
\delta(a, x) = \sum_k \delta(a, k) \exp(ik \cdot x)
$$

In that case, the exact equation governing the evolution of $\delta(a, k)$ is given by

$$
\frac{d^2 \delta_k}{da^2} + \frac{3}{2a} \frac{d \delta_k}{da} - \frac{3}{2a^2} \delta_k = \mathcal{A}
$$

where \mathcal{A} denotes the terms responsible for the nonlinear coupling between different modes. The expansion in equation (247) is, of course, motivated by the fact that in the linear regime we can ignore \mathcal{A} and each of the modes evolve independently. For the same reason, this expansion is not of much value in the highly nonlinear regime.

This prompts one to ask the question: Is it possible to choose some other set of basis functions $Q(\alpha, x)$, instead of $\exp ik \cdot x$, and expand $\delta(a, x)$ in the form

$$
\delta(a, x) = \sum_{\alpha} \delta_{\alpha}(a) Q(\alpha, x)
$$
so that the nonlinear effects are minimised? Here α stands for a set of parameters describing the basis functions. This question is extremely difficult to answer, partly because it is ill-posed. To make any progress, we have to first give meaning to the concept of “minimising the effects of nonlinearity”. One possible approach we would like to suggest is the following: We know that when $\delta(a, x) \ll 1$, then $\delta(a, x) \propto a F(x)$ for any arbitrary $F(x)$; that is all power spectra grow as a^2 in the linear regime. In the intermediate and nonlinear regimes, no such general statement can be made. But it is conceivable that there exists certain special power spectra for which $P(k, a)$ grows (at least approximately) as a^2 even in the nonlinear regime. For such a spectrum, the left hand side of (248) vanishes (approximately); hence the right hand side should also vanish. Clearly, such power spectra are affected least by nonlinear effects. Instead of looking for such a special $P(k, a)$ we can, equivalently look for a particular form of $\bar{\xi}(a, x)$ which evolves as closely to the linear theory as possible. Such correlation functions and corresponding power spectra [which are the pseudo-linear profiles] must be capable of capturing most of the essence of nonlinear dynamics. In this sense, we can think of our pseudo-linear profiles as the basic building blocks of the nonlinear universe. The fact that the correlation function is closely related to isothermal spheres, indicates a connection between local gravitational dynamics and large scale gravitational clustering.

14. Conclusion

I tried to highlight in these lectures several aspects of gravitational clustering which — I think — are important for understanding the basic physics. Some of the discussion points to obvious interrelationships with other branches of theoretical physics. For example, we saw that the power injected at any given scale cascades to other scales leading to a (nearly) universal power spectrum. This is reminiscent of the fluid turbulence in which Kolmogorov spectrum arises as a (nearly) universal choice. Similarly, the existence of certain configurations, which are least disturbed by the evolution [the “pseudo-linear profiles”, discussed in section 13] suggests similarities with the study of eddies in fluid mechanics, which possess a life of their own. Finally, the integral equation coupling the modes (113) promises to be an effective tool for analysing this problem. We are still far from having understood the dynamics of this system from first principles and I hope these lectures serve the purpose of stimulating interest in this fascinating problem.

Acknowledgement

I thank Professor Reza Mansouri for the excellent hospitality during my visit to Iran in connection with this conference.
References

1. Bagla, J.S. and T. Padmanabhan (1997) *MNRAS*, 286, 1023.
2. Bagla, J.S., S. Engineer and T. Padmanabhan (1998) *Ap.J.*, 495, 25-28.
3. Engineer, S., N. Kanekar and T. Padmanabhan (1998) astro-ph 9812452; *MNRAS* (in press)
4. Hamilton A.J.S., Kumar P., Lu E. and Mathews A., (1991), ApJ, 374, L1
5. Kaiser, N (1985) *Ap.J.*, 285, L9
6. McClelland J. and Silk, J., 1977, ApJ, 217, 331
7. Mo H.J.,Jain B. and White S.M.,(1995), *MNRAS*,276,L25
8. Munshi, D., Padmanabhan, T., (1997) *MNRAS*, 290, 193.
9. Nityananda, R. & Padmanabhan, T., (1994), MNRAS, 271, 976
10. Padmanabhan, T. (1987), *Gen. Rel. Grav.*, 19, 927
11. Padmanabhan T., (1990), Physics Reports,188,285
12. Padmanabhan, T. (1993), *Structure formation in the universe*, (Cambridge University Press, UK)
13. Padmanabhan, T.,(1996), Cosmology and Astrophysics through Problems, Cambridge University Press
14. Padmanabhan, T., 1996a, MNRAS, 278, L29
15. Padmanabhan, T., (1997), in Gravitation and Cosmology, proceedings of the ICGC-95 conference, eds. S. V. Dhurandhar & T. Padmanabhan, (Kluwer Academic Publishers, Dordrecht), 37
16. Padmanabhan, T., (1998) unpublished
17. Padmanabhan T., Cen R., Ostriker J.P., Summers F.J., (1996) *Ap. J*, 466, 604.
18. Padmanabhan, T. & Engineer, S.E., (1998), ApJ, 493, 509
19. Peebles, P.J.E., , (1980), “The Large-Scale Structure of the Universe” (Princeton: Princeton University Press)
20. Press, W. H. & Schechter, P., (1974), ApJ, 187, 425
21. Taylor, A.N. and A.J.S. Hamilton (1996) *MNRAS*, 282, 767