Modeling future potential distribution of Buff-bellied Hummingbird (*Amazilia yucatanensis*) under climate change: Species vs. subspecies

Antonio Acini Vásquez-Aguilar, Juan Francisco Ornelas, Flor Rodríguez-Gómez, and M. Cristina MacSwiney G.

Supplementary materials

Table S1. Bioclimatic variables used in MaxEnt for the modeling of current and future distribution of habitat suitability of *Amazilia yucatanensis* and subspecies.

Code	Description	Unit
BIO1	Annual Mean Temperature	Degree Celsius (°C)
BIO2	Mean Diurnal Range (Mean of monthly (max temp-min temp))	Degree Celsius (°C)
BIO3	Isothermality ((BIO2/BIO7)*100)	Percentage (%)
BIO4	Temperature Seasonality (standard deviation*100)	Percentage (%)
BIO5	Maximum Temperature of Warmest Month	Degree Celsius (°C)
BIO6	Min Temperature of Coldest Month	Degree Celsius (°C)
BIO7	Temperature Annual Range (BIO5-BIO6)	Degree Celsius (°C)
BIO8	Mean Temperature of Wettest Quarter	Degree Celsius (°C)
BIO9	Mean Temperature of Driest Quarter	Degree Celsius (°C)
BIO10	Mean Temperature of Warmest Quarter	Degree Celsius (°C)
BIO11	Mean Temperature of Coldest Quarter	Degree Celsius (°C)
BIO12	Annual Precipitation	Millimeter (mm)
BIO13	Precipitation of Wettest Month	Millimeter (mm)
BIO14	Precipitation of Driest Month (Coefficient of Variation)	Millimeter (mm)
BIO15	Precipitation Seasonality	Percentage (%)
BIO16	Precipitation of Wettest Quarter	Millimeter (mm)
BIO17	Precipitation of Driest Quarter	Millimeter (mm)
BIO18	Precipitation of Warmest quarter	Millimeter (mm)
BIO19	Precipitation of Coldest quarter	Millimeter (mm)
Table S2. Proportional contribution of climatic variables to each axis of the Principal Components Analysis (PCA) carried out by NicheA software. The variance explained by the first 10 axes is indicated.

	PC1	PC2	PC3	PC4	PC5	PC6	PC7	PC8	PC9	PC10
BIO1	0.336	0.031	0.407	-0.675	0.174	0.015	-0.152	-0.016	0.157	-0.428
BIO3	0.391	0.060	0.121	-0.314	-0.074	-0.002	-0.031	-0.011	-0.275	0.804
BIO4	0.285	0.323	-0.389	0.112	0.688	0.411	-0.013	-0.066	-0.028	-0.007
BIO7	-0.181	0.573	-0.098	-0.125	-0.040	-0.419	0.007	-0.659	0.024	0.004
BIO9	0.334	-0.293	-0.134	0.159	0.373	-0.772	0.021	0.114	0.091	0.008
BIO11	-0.175	0.579	-0.110	-0.148	-0.036	-0.219	-0.066	0.738	-0.012	0.000
BIO13	0.375	0.081	-0.235	0.200	-0.387	0.041	-0.700	-0.033	0.334	-0.023
BIO14	-0.389	-0.074	0.171	-0.075	0.308	0.050	-0.132	0.007	0.723	0.410
BIO15	-0.380	-0.139	0.137	-0.000	0.306	-0.072	-0.679	-0.036	-0.504	0.002
BIO17	0.196	0.328	0.723	0.567	0.085	-0.005	0.011	0.014	-0.005	-0.001
Table S3. Predicted increase or decrease (%) in the extent of suitable areas (km\(^2\)) for *Amazilia yucatanensis* and its subspecies under CCSM4 climate-change scenarios (RCPs) for the years 2050 and 2070.

Model	A. yucatanensis	A. y. yucatanensis	A. y. cerviniventris	A. y. chalconota				
	Km\(^2\)	%	Km\(^2\)	%	Km\(^2\)	%		
Current area	384,838	-	162,793	-	132,238	-		
RCP 2.6 2050	70,029	18.19	69,843	42.90	22,547	17.05	-43,321	-36.87
RCP 4.5 2050	61,350	15.94	70,150	43.09	19,103	14.44	-39,816	-33.88
RCP 6.0 2050	61,350	15.94	79,943	49.10	5,920	4.47	-30,584	-26.03
RCP 8.5 2050	80,346	20.87	53,376	32.78	8,108	6.13	-56,714	-48.27
RCP 2.6 2070	72,473	18.83	63,073	38.74	14,723	11.13	-44,036	-37.48
RCP 4.5 2070	39,686	10.31	70,791	43.48	-11,647	-8.80	-59,134	-50.33
RCP 6.0 2070	53,546	13.91	77,494	47.60	-8,941	-6.76	-76,951	-65.49
RCP 8.5 2070	50,145	13.03	-20,980	-12.88	-9,723	-7.35	-81,363	-69.25
Table S4. Predicted increase or decrease (%) in the extent of suitable areas (km²) for *Amazilia yucatanensis* and its subspecies under HadGEM2-ES climate-change scenarios (RCPs) for the years 2050 and 2070.

Model	*A. yucatanensis*	*A. y. yucatanensis*	*A. y. cerviniventris*	*A. y. chalconota*				
	Km²	%	Km²	%	Km²	%	Km²	%
Current area	384,838	-	162,793	-	132,238	-	117,488	-
RCP 2.6 2050	64,014	16.63	29,077	17.86	3,947	2.98	-66,314	-56.44
RCP 4.5 2050	47,992	12.47	28,586	17.55	-10,277	-7.77	-43,829	-37.30
RCP 6.0 2050	-5,929	-1.54	23,866	14.66	-927	-0.70	-68,599	-58.38
RCP 8.5 2050	103,869	26.99	-52,316	-32.13	8,108	6.13	-85,124	-72.45
RCP 2.6 2070	71,715	18.63	27,469	16.87	15,175	11.47	-51,773	-44.06
RCP 4.5 2070	132,757	34.49	3,890	2.38	80,691	61.02	-59,472	-50.61
RCP 6.0 2070	174,657	45.38	-45,507	-27.95	113,100	85.52	-58,687	-49.95
RCP 8.5 2070	194,735	50.60	-125,754	-77.24	125,685	95.04	-99,753	-84.90
Table S5. Predicted increase or decrease (%) in the extent of suitable areas (km²) for *Amazilia yucatanensis* and its subspecies under MIROC5 climate-change scenarios (RCPs) for the years 2050 and 2070.

Model	A. yucatanensis	A. y. yucatanensis	A. y. cerviniventris	A. y. chalconota				
	Km²	%	Km²	%	Km²	%	Km²	%
Current area	384,838	-	162,793	-	132,238	-	117,488	-
RCP 2.6 2050	73,380	19.06	48,920	30.05	25,841	19.54	-64,152	-54.60
RCP 4.5 2050	101,558	26.38	10,933	6.71	55,374	41.87	-90,909	-77.37
RCP 6.0 2050	111,481	28.96	-3,824	-2.34	63,504	48.02	-77,491	-65.95
RCP 8.5 2050	105,419	27.39	-9,270	-5.69	78,443	59.31	-87,408	-74.39
RCP 2.6 2070	174,206	45.26	45,725	28.08	87,369	66.06	-75,353	-64.13
RCP 4.5 2070	123,167	32.00	3,890	2.38	115,251	87.15	-99,985	-85.10
RCP 6.0 2070	108,276	28.13	-45,507	-27.94	66,974	50.64	-90,410	-76.95
RCP 8.5 2070	222,710	57.87	-88,535	-54.38	233,514	176.58	-94,205	-80.18
Table S6. Ecological niche comparisons for *Amazilia yucatanensis subspecies*. Niche overlap values are presented. The value of \(D \) ranges between 0, when two species have no overlap in the environmental space, and 1 when two species share the same environmental space.

Subspecies	A. y. yucatanensis	A. y. cerviniventris	A. y. chalconota
A. y. yucatanensis	1	0.186	0.021
A. y. cerviniventris	-	1	0.227
A. y. chalconota	-	-	1
Figure S1. Calibration area used to model the potential distribution of *Amazilia yucatanensis* and their subspecies. (A) Calibration area used to model current area. Presence points (Black dots), belong to *A. yucatanensis* (see figure 1). (B) Area used to project models to the future.
Figure S2. Response curve of *Amazilia yucatanensis* to bioclimatic variables obtained carrying out a MaxEnt current model. Mean value = red line; Standard deviation = blue line.
Figure S3. Response curve of *Amazilia yucatanensis yucatanensis* to bioclimatic variables obtained carrying out a MaxEnt current model. Mean value = red line; Standard deviation = blue line.
Figure S4. Response curve of *Amazilia yucatanensis cerviniventris* to bioclimatic variables obtained carrying out a MaxEnt current model. Mean value = red line; Standard deviation = blue line.
Figure S5. Response curve of *Amazilia yucatanensis chalconota* to bioclimatic variables obtained carrying out a MaxEnt current model. Mean value = red line; Standard deviation = blue line.
Figure S6. Predicted distribution of *Amazilia yucatanensis* under four climate changes scenarios and three GCMs (glacier blue), CCSM4 (yellow), HadGEM2-ES (dark blue) and MIROC (sky blue).
Figure S7. Predicted distribution of *Amazilia y. yucatanensis* under four climate changes scenarios and three GCMs (glacier blue), CCSM4 (yellow), HadGEM2-ES (dark blue) and MIROC (sky blue).
Figure S8. Predicted distribution of *Amazilia y. cerviniventris* under four climate changes scenarios and three GCMs (glacier blue), CCSM4 (yellow), HadGEM2-ES (dark blue) and MIROC (sky blue).
Figure S9. Predicted distribution of *Amazilia y. chalconota* under four climate changes scenarios and three GCMs (glacier blue), CCSM4 (yellow), HadGEM2-ES (dark blue) and MIROC (sky blue).
Figure S10. Predicted distribution of *Amazilia yucatanensis* under four climate changes scenarios and three Global Circulation Models.
Figure S11. Predicted distribution of *Amazilia y. yucatanensis* under four climate change scenarios and three Global Circulation Models.
Figure S12. Predicted distribution of *Amazilia y. cerviniventris* under four climate changes scenarios and three Global Circulation Models.
Figure S13. Predicted distribution of *Amazilia y. chalconota* under four climate changes scenarios and three Global Circulation Models.
Figure S14. Multivariate environmental similarity surfaces (MESS) analysis for GCMs of *Amazilia yucatanensis*. MESS analysis measures climate similarity to training range when projecting a model. Negative values indicate low similarity and therefore high climate novelty, while positive values indicate a high similarity and low novelty. Red indicates high dissimilarity and blue show the environmental similarity between variables in the calibration area and the transfer area. In regions with dissimilarity, one or more variables have values not present in the calibration area, so in these regions the prediction should be taken with caution.
Figure S15. Multivariate environmental similarity surfaces (MESS) analysis for GCMs of *Amazilia yucatanensis*. MESS analysis measures climate similarity to training range when projecting a model. Negative values indicate low similarity and therefore high climate novelty, while positive values indicate a high similarity and low novelty. Red indicates high dissimilarity and blue show the environmental similarity between variables in the calibration area and the transfer area. In regions with dissimilarity, one or more variables have values not present in the calibration area, so in these regions the prediction should be taken with caution.
Figure S16. Multivariate environmental similarity surfaces (MESS) analysis for GCMs of *Amazilia y. cerviniventris*. MESS analysis measures climate similarity to training range when projecting a model. Negative values indicate low similarity and therefore high climate novelty, while positive values indicate a high similarity and low novelty. Red indicates high dissimilarity and blue show the environmental similarity between variables in the calibration area and the transfer area. In regions with dissimilarity, one or more variables have values not present in the calibration area, so in these regions the prediction should be taken with caution.
Figure S17. Multivariate environmental similarity surfaces (MESS) analysis for GCMs of *Amazilia y. chalconota*. MESS analysis measures climate similarity to training range when projecting a model. Negative values indicate low similarity and therefore high climate novelty, while positive values indicate a high similarity and low novelty. Red indicates high dissimilarity and blue show the environmental similarity between variables in the calibration area and the transfer area. In regions with dissimilarity, one or more variables have values not present in the calibration area, so in these regions the prediction should be taken with caution.