FAST MAGNETIC TWISTER AND PLASMA PERTURBATIONS IN A THREE-DIMENSIONAL CORONAL ARCADE

K. Murawski1, A. K. Srivastava2, and Z. E. Musielak3,4

1 Group of Astrophysics, UMCS, ul. Radziszewskiego 10, 20-031 Lublin, Poland; kmur@kft.umcs.lublin.pl
2 Department of Physics, Indian Institute of Technology (Banaras Hindu University), Varanasi-221005, India; asrivastava.app@iitbhu.ac.in
3 Department of Physics, University of Texas at Arlington, Arlington, TX 76019, USA; zmusielak@uta.edu
4 Kiepenheuer-Institut für Sonnenphysik, Schöneckstr. 6, 79104 Freiburg, Germany; musielak@kis.uni-freiburg.de

Received 2013 October 11; accepted 2014 April 14; published 2014 May 16

ABSTRACT

We present results of three-dimensional (3D) numerical simulations of a fast magnetic twister excited above a foot-point of the potential solar coronal arcade that is embedded in the solar atmosphere with the initial VAL-IIIC temperature profile, which is smoothly extended into the solar corona. With the use of the FLASH code, we solve 3D ideal magnetohydrodynamic equations by specifying a twist in the azimuthal component of magnetic field in the solar chromosphere. The imposed perturbation generates torsional Alfvén waves as well as plasma swirls that reach the other foot-point of the arcade and partially reflect back from the transition region. The two vortex channels are evident in the generated twisted flux-tube with a fragmentation near its apex which results from the initial twist as well as from the morphology of the tube. The numerical results are compared to observational data of plasma motions in a solar prominence. The comparison shows that the numerical results and the data qualitatively agree even though the observed plasma motions occur over comparatively large spatio-temporal scales in the prominence.

Key words: Sun: atmosphere – Sun: corona – Sun: magnetic fields

Online-only material: animation, color figures

1. INTRODUCTION

Vortex and swirling plasma motions are ubiquitous in the solar atmosphere. At small spatio-temporal scales, the chromospheric swirling motions were discovered as super-tornadoes providing an alternative mechanism for channeling energy up to the inner solar corona (Wedemeyer-Böhm et al. 2012, 2013). Just after this novel observation, Su et al. (2012) reported the large-scale but slowly rotating coronal tornadoes. They studied the rotating vertical magnetic structures most likely driven by the underlying vortex flows in the photosphere which existed in a group with prominences. In the case of such large-scale and slowly rotating vortices in the photosphere (e.g., Bonet et al. 2008; Shelyag et al. 2011; Murawski et al. 2013a, 2013b and references therein). Moreover, different kinds of these vortex motions could be associated with the different eddies and waves depending on the localized plasma and magnetic conditions, as well as on the nature of the drivers/perturbations (Fedun et al. 2011; Murawski et al. 2013b). Therefore, it is important to understand the nature and generation of such swirling plasma motions in the different layers of the solar atmosphere, where various topologies of solar magnetic fields occur.

Large-scale solar tornadoes are mostly observed in association with the prominence legs (Su et al. 2012; Wedemeyer-Böhm et al. 2013), and are most likely related to the response of the photospheric vortices activated near the foot-points. These vortex flows exhibit spiral motions both upward and downward with speeds comparable to the values found for such tornado rotations in the form of prominence bars (Wedemeyer-Böhm et al. 2012, 2013; Su et al. 2012). However, they are long-lived (on timescales of 12–24 hr) but slow rotators. There is another kind of interesting twisting and then swirl of the plasma around the core prominence magnetic field that may have the same origin due to its rotation near the prominences’ foot-point, but it is entirely different when compared to long-lived slow tornadoes. We call this a fast magnetic twister and associate it with a coronal arcade. This paper is devoted to numerical studies of this phenomenon.

It must be pointed out that the fast magnetic twisters, which have life times on timescales of minutes, are seldomly observed in the solar atmosphere. Recently, Joshi et al. (2014) investigated...
a fast twisting prominence system in the context of its stability and reformation that is significant for space weather prediction. However, their aim was certainly not to understand the possible driver responsible for the evolution of a fast magnetic twister and plasma swirl in the filament system which was initially bipolar in nature. It should also be noted that Shelyag et al. (2013) studied solar photospheric vortices by using MHD simulations with non-gray radiative transport and a non-ideal equation of state. The main difference between these two studies is that only the former takes into account variation of the local velocity field on time. As a result, the photospheric vortices (tornado-like motions) do not exist, but torsional Alfvén waves are generated instead. We discuss this finding after we present the results of our numerical simulations.

In the present paper, we perform three-dimensional (3D) numerical simulations of the evolution of a right-handed, clockwise twist and its responses in the form of torsional Alfvén and plasma perturbations in an initial potential field configuration of a magnetic flux-tube mimicking the observed prominence system. We call the magneto-plasma motions that evolved in our model “fast magnetic twisters.” Since 3D numerical simulations in a realistic atmosphere would be extremely computationally expensive to model the observed prominence flux-tube and its associated dynamics, we rescale the realistic very large spatio-temporal scales characteristic for the observational domain to a much smaller 3D numerical simulation domain. Nevertheless, our simulation results qualitatively match the observed magnetic field and plasma dynamics as we show in our comparison between the numerical results and some recent solar observations.

This paper is organized as follows. In Section 2, we present our numerical simulation model. We outline the results of our numerical simulations in the context of their physical significance in Section 3. In Section 4, we compare the numerical results with the relevant solar observational data. In the last section, we present a discussion and concluding remarks.

2. NUMERICAL MODEL AND RESULTS OF NUMERICAL SIMULATIONS

2.1. Governing Equations

We consider the following set of ideal MHD equations:

\[
\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf{V}) = 0, \quad (1)
\]

\[
\frac{\partial \mathbf{V}}{\partial t} + \rho (\mathbf{V} \cdot \nabla) \mathbf{V} = -\nabla p + \frac{1}{\mu} (\nabla \times \mathbf{B}) \times \mathbf{B} + \rho \mathbf{g}, \quad (2)
\]

\[
\frac{\partial p}{\partial t} + \nabla \cdot (p \mathbf{V}) = (1 - \gamma) \rho \nabla \cdot \mathbf{V}, \quad (3)
\]

\[
\frac{\partial \mathbf{B}}{\partial t} = \nabla \times (\mathbf{V} \times \mathbf{B}), \quad \nabla \cdot \mathbf{B} = 0, \quad (4)
\]

where \(\rho\) denotes mass density, \(\mathbf{V} = [V_x, V_y, V_z]\) is the flow velocity, \(\mathbf{B} = [B_x, B_y, B_z]\) is the magnetic field, \(p\) is the gas pressure, \(T\) is the temperature, \(\mu\) represents the magnetic permeability, \(\gamma = 5/3\) is the adiabatic index, \(\mathbf{g} = (0, -g, 0)\) is the gravitational acceleration with its magnitude \(g = 274 \text{ m s}^{-2}\) is the solar value, \(m\) denotes the mean particle mass that is specified by the mean molecular weight value of 0.6, and \(k_B\) is the Boltzmann’s constant.

Figure 1. Equilibrium profiles of temperature (top panel) and magnetic field (bottom panel). The 3D visualization of the simulation data is carried out using the VAPOR (Visualization and Analysis Platform) software package.

(A color version of this figure is available in the online journal.)

2.2. Equilibrium Configuration

We assume that the above set of MHD equations describes the solar atmosphere, which is initially in static equilibrium \((\mathbf{V}_0 = 0)\) with the pressure gradient balanced by the gravity force

\[
-\nabla p_e + e \mathbf{g} = 0, \quad (5)
\]

where \(e\) and \(p_e\) are the equilibrium mass density and gas pressure, respectively. Using the ideal gas law and the \(y\)-component of Equation (5), we obtain

\[
p_e(y) = p_0 \exp \left[-\int_{y_0}^{y} \frac{dy'}{\Lambda(y')} \right], \quad e(y) = \frac{p_e(y)}{g \Lambda(y)}, \quad (6)
\]

where

\[
\Lambda(y) = k_B T_e(y)/(mg) \quad (7)
\]

is the pressure scale-height, and \(p_0\) denotes the gas pressure at \(y = y_0\).

We assume that the equilibrium temperature profile \(T_e(y)\) of the solar atmosphere is given by the VAL-C (Vernazza et al. 1981) atmospheric model, which is smoothly extended into the solar corona (Figure 1, the top panel). Then with Equation (6), we obtain the corresponding gas pressure and mass density profiles (not shown). In this model, the temperature

\[
\frac{\partial \mathbf{B}}{\partial t} = \nabla \times (\mathbf{V} \times \mathbf{B}), \quad \nabla \cdot \mathbf{B} = 0, \quad (4)
\]
reaches 1 MK at coronal heights and saturates at this level. The atmosphere is structured so that the solar photosphere occupies the region $0 < y < 0.5$ Mm, the solar chromosphere is sandwiched between $y = 0.5$ Mm, and the transition region that is located at $y \simeq 2.7$ Mm. The temperature minimum is acquired at $y \simeq 0.9$ Mm (Figure 1, top).

As a result of Equation (5), a magnetic field must be force-free and the required condition is

$$(\nabla \times B_x) \times B_x = 0, \quad (8)$$

such that it satisfies the current free condition

$$\nabla \times B_x = 0, \quad (9)$$

and it is specified by the magnetic flux function, $A(x, y)$, defined by

$$B_x = \nabla \times (A\hat{z}), \quad (10)$$

where the subscript e corresponds to equilibrium quantities and \hat{z} is a unit vector along the z direction.

We set an arcade magnetic field by choosing

$$A(x, y) = \frac{b}{2} B_0 \ln[x^2 + (y - b)^2], \quad (11)$$

where B_0 is the magnetic field at the reference level and b is the vertical coordinate of the singularity. We set and hold fixed $b = -5$ Mm while B_0 is determined from the following condition:

$$c_A(x = 0, y = y_1) = 10 c_s(y = y_1), \quad (12)$$

where the Alfvén, c_A, and sound, c_s, speeds are given by

$$c_A(x, y) = \frac{B^2(x, y)}{\mu_0 e(y)}, \quad c_s(y) = \frac{\rho e(y)}{\mu_0 e(y)}, \quad (13)$$

and $y_1 = 10$ Mm is the reference level that we choose in the solar corona at $y = 10$ Mm. The corresponding magnetic field lines are displayed in Figure 1 (bottom panel).

2.3. Results of Numerical Simulation

We numerically solved the set of MHD Equations (1)–(4) using the FLASH code (Lee & Deane 2009; Lee 2013). This code implements a second-order unsplit Godunov solver with various slope limiters and Riemann solvers. We set the simulation box as $(-15, 15)$ Mm $\times (1.75, 19.75)$ Mm $\times (-3, 3)$ Mm. At the top, bottom, left- and right-hand sides of the numerical domain, we imposed the boundary conditions by fixing in time all plasma quantities to their equilibrium values, while along z we implemented open boundaries. Additionally, at the bottom boundary, a twist in the azimuthal component of magnetic field, B_θ, was specified using

$$B_\theta(x, y, t) = -A_B r_h \exp \left[-\frac{r_h^2 + (y - y_0)^2}{w^2} \right] \exp \left[\frac{t}{\tau} \right] - 1, \quad (14)$$

where $r_h^2 \equiv (x - x_0)^2 + (z - z_0)^2$, A_B is the amplitude of the pulse, (x_0, y_0, z_0) is its position, w denotes its width, and τ is a growing time of the implemented twist. We set and hold fixed $A_B = 0.05$ Tesla, $x_0 = -10$ Mm, $y_0 = 1.75$ Mm, $z_0 = 0$ Mm, $w = 0.3$ Mm, and $\tau = 100$ s. Therefore, the spatial scale of the numerical domain is 18 Mm in the vertical direction, 30 Mm in the horizontal x direction, and 6 Mm in the horizontal z direction.

In our simulations, we use an adaptive mesh refinement grid with a minimum (maximum) level of refinement set to 2 (5). The extent of the simulation box in the y direction ensures that we catch the essential physics occurring in the solar photosphere low corona domain, and minimize the effect of spurious signal reflections from the top boundary. As each block consists of $8 \times 8 \times 8$ identical numerical cells, we reach the effective finest spatial resolution of about 0.24 Mm, below the altitude $y = 3.25$ Mm. The initial system of blocks is shown in Figure 2.

Figure 3 shows a development of the initial magnetic field configuration of an initially potential arcade embedded in the corona whose foot-points were anchored in the photosphere. The magnetic field lines were initially parallel to each other without any twist present. We applied a twist in the B_θ component of the magnetic field (Equation (14)) above the photosphere. The figure displays the activation of a right-handed clockwise twist in the magnetic field near the chromosphere into the corona. The snapshots represent the following times: $t = 50$ s, $t = 75$ s, $t = 100$ s, $t = 125$ s shown from the top left to bottom right panels, respectively. Red, green, and blue arrows correspond to the x-, y-, and z-axes, respectively, and such notation is used in all 3D figures throughout this paper. It is clear that initially the azimuthal component of the magnetic field lines warps within the ambient potential field as per the right-handed twisting (top left). However, at the later times, the twisting scenario becomes more complex and it does not remain in the state of ideal right-handed circular twist. Instead, the depression from one side is seen in the chromospheric region that makes the evolution of the eight-shape complex twisting of the magnetic field lines near the foot-point of the flux-tube. On the contrary, the right-handed twist evolves more ideally in a circular manner at coronal heights, as shown in Figure 3 (top right and bottom left panels). The shearing of whole flux tube is also evident during the activation of the twist and its propagation higher into the corona (see the bottom right panel in Figure 3).

Figure 4 illustrates evolution of the magnetic field lines in the zoomed region that is located close to the implemented twist in B_θ. The initially parallel magnetic field lines change after applying a twist in the B_θ component of the magnetic field (see Equation (14)). This figure displays the evolution of a right-handed clockwise twist in the magnetic field of the flux rope from its chromospheric view point in the plane perpendicular to our line-of-sight (LOS). The snapshots, respectively, represent...
Figure 3. Activation of right-handed clockwise twist in the magnetic field of the flux rope in corona at $t = 50$ s (top left), $t = 75$ s (top right), $t = 100$ s (bottom left), and $t = 125$ s (bottom right). Red, green, and blue arrows correspond to the x-, y-, and z-axes, respectively.

(A color version of this figure is available in the online journal.)

The following times: $t = 50$ s (top left panel), $t = 75$ s (top right panel), $t = 100$ s (the bottom left panel), and $t = 125$ s (the bottom right panel). It is clear that at $t = 50$ s the twist is applied at the left foot-point and the magnetic field lines start bending from left to right (clockwise), which is the sign of right-handed positive twist (top left). Then, this twist grows in the coronal heights along the equilibrium initial magnetic field configuration (top right, bottom left, bottom right panels).

Figure 5 shows the temporal snapshots of streamlines in the velocity field. These streamlines are given by

$$\frac{dx}{V_x} = \frac{dy}{V_y} = \frac{dz}{V_z}.$$ \hspace{1cm} (15)

The figure displays the activation of a plasma swirling motion. The snapshots, respectively, represent the following times: $t = 50$ s, $t = 75$ s, $t = 100$ s, and $t = 125$ s, as shown from the top left to bottom right panels. The plasma starts swirling and also rising up in the twisted magnetic fields. At the time $t = 50$ s, the helical (right-handed) swirling motion is more evolved and it reached another foot-point at $t = 100$ s (top right panel). Indeed, these are fast perturbations moving inside the flux tube from the left foot-point to the right foot-point with a speed of about 500 km s$^{-1}$. The perturbations are the torsional Alfvén-wave-like fast perturbations triggered in the considered coronal arcade system. The plasma motion is very complex as it is seen in the evolution of two vortex channels in the presented snapshots. Moreover, the whole arcade system whips in the vertical direction, which may be the effect of kink instability seeded by twisted magnetic field lines. Finally, after the full activation of the twist, the arcade system possess torsional Alfvén-wave-like fast perturbations, two parallel vortex channels, and plasma swirling in them. We shall discuss their physical consequences in the next section.
Figure 4. Activation of right-handed clockwise twist in the magnetic field of the flux rope seen from near the photosphere at $t = 50$ s (top left), $t = 75$ s (top right), $t = 100$ s (bottom left), and $t = 125$ s (bottom right).

(A color version of this figure is available in the online journal.)

Figure 6 displays the mass density maps in $X-Z$ plane at the following times: $t = 50$ s (top left panel), $t = 75$ s (top right panel), $t = 100$ s (bottom left panel), and $t = 125$ s (bottom right panel). The evolution of the shock front along the magnetic field lines and the complex plasma motions are evident in these snapshots. Again, the plasma motion is very complex because it is associated with the two vortex systems and their plasma swirling. The twisted magnetic field lines squeeze the chromospheric plasma and push it upward (top left panel). Some plasma becomes detached as shown in the top right panel. However, the plasma finally spreads over the curved interfaces. This overall dynamical scenario is associated with the evolution of the fast magnetic twister and the plasma perturbations in the large-scale magnetic structure.

3. PHYSICAL INTERPRETATION

The results of our numerical simulations clearly show the presence of shearing, complex evolution, and fragmentation of the twist as well as the generation of two sets of vortex channels, and the excitation of the fast torsional Alfvén-wave-like perturbations in both channels (Figures 3–6). The possible underlying physical scenarios are discussed below.

It is seen that some shearing occurs in the whole body of the evolved twisted magnetic flux-tube up to the corona (cf. Figure 4). The underlying physics reveals that the shearing motions are generated by the competing actions of the Lorentz force and the gravity. Thus, these two forces are responsible for driving the two counter-rotating twisters. As the cross section of these twisters expands due to the stratification in the solar atmosphere, the mass density (or a gas pressure) stratification of the plasma causes the upper parts of the twister to expand while the lower part remains constricted in the solar chromosphere, which results in the shearing, as evident in our numerical results. Such shearing of the loops was first reported by Manchester (2003) and Manchester et al. (2004).

Depending on the initial degree of twist, portions of the magnetic flux-tube shed vortex pairs, and the magnetic flux is...
Figure 5. Streamlines at $t = 50$ s (top left), $t = 75$ s (top right), $t = 100$ s (bottom left), and $t = 125$ s (bottom-right).

(A color version of this figure is available in the online journal.)

Figure 6. Mass density maps in X–Y plane (for $z = 0$) at times $t = 50$ s, $t = 75$ s, $t = 100$ s, and $t = 125$ s. The evolution of shock front along the flux-rope field lines and the complex plasma motions are evident.

(A color version of this figure is available in the online journal.)
redistributed in the tube cross section in such a way that much of the flux is located away from the tube’s central axis. This phenomenon is known as the fragmentation of the tube and it was previously recognized in the emerging bipolar flux-tubes from the sub-photospheric layers in the outer solar atmosphere with some twists (e.g., Abbett et al. 2000; Srivastava et al. 2010). However, the first numerical evidence for the generation of such fragmentation is clearly given by the results of our 3D simulations of the activation of twist in the coronal arcade. The rising bipolar magnetic flux tubes from the solar convection zone up to the photosphere can undergo the fragmentation if their initial twist is less than a critical twist and the curvature of the apex is small (Abbett et al. 2000). Our numerical simulations do support this already established physical picture.

Another interesting phenomenon seen in our 3D numerical simulations is that the velocity streamlines over the two vortex pairs reach the other foot-point of the magnetic flux-tube with an average speed of about 400–500 km s\(^{-1}\), which is associated with the fast moving (with the Alfvén speed) perturbation. This is the most likely evolution of torsional Alfvén perturbations generated during the twisting of the magnetic field lines and associated with the swirl/vortex motions.

The recent work by Shelyag et al. (2013) shows that the solar photospheric vortices do not exist because the perturbations used by these authors produce torsional Alfvén waves instead. This is an interesting result, which is related to vortices in the intergranular cells that occur on smaller spatial and temporal scales than those considered in this paper. In our case, the large-scale magnetic system does show both the vortex channels as well as torsional Alfvén waves.

4. Qualitative Match of the Numerical Results with the Observations

We now describe observational data obtained for a solar prominence and make comparisons between the data and our numerical results. Since there is a significant difference in spatio-temporal scales between the observed prominence and the numerically simulated fast magnetic twister in an arcade, the comparison can only be qualitative. Nevertheless, a qualitative agreement between the data and theory can be seen.

On 2013 August 4 during 11:20–12:20 UT there was an interesting plasma motion seen near the disk-center in the southeast quadrant of the Sun. An almost bipolar core filament was lying quiescently, and suddenly some twisting and brightening occurred at its left foot-point; the nature of this twist was right-handed and clockwise (see Figure 7 and the associated animation). The figure and animation clearly show plasma swirls clockwise from left to right, and fine structured motions of the plasma reached at another foot-point of the filament flux-rope.
system in almost 1800 s with the average speed of \(\sim 400 \text{ km s}^{-1}\). It should be noted that an almost semi-circular flux-rope system has the length \(\sim 700 \text{ Mm}\) while the width near its apex was almost 70 Mm (e.g., 11:49 UT snapshot) in the projection. The average speed of the moving perturbations from the left to right foot-point is indeed a fast speed. The plasma motions show some fragmentation of the path (see the 11:49 UT snapshot) and they convert into a very complex interaction between the two fragmented branches; as a result of this interaction, a shallow apex is created with an apparent dip (see the 11:59 UT snapshot). The opposite plasma motions are also evident in the remaining time span up to some extent, while the main right-handed vortex or swirl motions still continue for the next 30 minutes (see the animation with Figure 7).

Since we view the plasma motions in a filament plane that is almost perpendicular to the LOS, we compare the results of our numerical simulations (see Figure 3) to the observations (see Figure 7 and the associated animation). As already mentioned above, the comparison can only be qualitative because of the differences in scales between the numerical results and the data; our simulation domain must be re-scaled by a factor of 24 in the flux-tube length, by 10 in the width (or spread of perturbations) near the apex, and by 10 in the timescale in order to match the data. The comparison shows that the numerical results qualitatively match the observed magnetic field and plasma dynamics of the filament. For example, let us compare the 11:29 UT image in Figure 7 to the top left snapshots of Figures 3 and 4. Then, the activation of magnetic twists (black filament threads in Figure 7 and twists in the magnetic field lines (magenta colors) in Figure 3) can clearly be seen. An initiation of the bright plasma swirl/vortex motions (the bright right-handed turning of the plasma envelope, as shown in Figure 7, and vortex in the magnetic field lines (magenta colors) in Figure 3) also match each other.

At the later times, the magnetic twists as well as the vortex motion of the plasma are evident both in the numerical simulations as well as in the observations. The fragmentation can be seen near the apex of the prominence fine structured plasma motions, where the formation of the two vortex channels in the numerical domain (see Figure 7, bottom right and Figure 5, bottom) takes place. Now, the process of the formation of the fragmented two vortex channels becomes evident in our numerical simulations (shape of eight in Figures 4 and 5) than in the observations. This is because the real twist in the observational regime may differ from that considered in our model. Moreover, as stated above, the fragmentation of the vortex/swirls of the plasma along the two channels can also be seen in Figure 7. It must be noted that both the observed and simulated vortex channels are associated with fast speeds, which are the signatures of the evolution of the torsional Alfvén wave perturbations moving through these channels in a large-scale prominence-like bipolar magnetic structure. We referred to the observed and simulated phenomena as the fast magnetic twisters and associated with the torsional perturbations and fast vortex motions.

5. DISCUSSION AND CONCLUDING REMARKS

We investigated numerically physical implications of the activation of the magnetic twists in a potential coronal magnetic flux tube embedded in the solar atmosphere with a realistic temperature distribution. Our numerical results reveal the evolution of right-handed magnetic twists, double vortex channels, fragmentation, and fast propagating perturbations, all evident in our coronal arcade model in which variable twists in the azimuthal component of the magnetic field were initially imposed. The result is a fast magnetic twister whose existence is reported here for the first time.

The initial perturbations imposed in our coronal arcade model generate torsional Alfvén waves as well as plasma swirls that reach the other foot-point of the arcade and partially reflect back from the transition region. The two vortex channels are evident in the generated twisted flux-tube with a fragmentation near its apex that results from the initial twist as well as from the morphology of the tube. This highly depends upon the initial magnetic field configuration, plasma properties, and nature of perturbations, which all determine how the vortices, associated waves and plasma motions are formed.

There were some previous studies of vortex motions at various spatio-temporal scales (e.g., Bonet et al. 2008; Shelyag et al. 2011; However, none of them identified the fast magnetic twister. Moreover, Shelyag et al. (2013) reported no vortices (tornado-like motions) in their numerical simulations but only torsional Alfvén waves. We see both fast magnetic twisters and torsional Alfvén waves. The difference between their approach and ours is in temporal scales; in their approach, the temporal scales are much shorter than in ours. Based on our results, we conclude that a tornado needs a long lasting twist in order to be sustained for timescales of the order of 12 hr or longer.

Our numerical results were compared to the observational data of plasma motions in a solar prominence, whose rare observation showed the evidence for the existence of a fast twister. Interestingly enough, the general properties of this twister are similar to those seen in our numerical simulations. However, we could only show that our numerical results and data agreed only qualitatively because significant differences in the spatio-temporal scales between the observations and our numerical simulations prevented us from making a more direct comparison. In the future, more observations are needed to establish the validity of our coronal arcade model at various spatio-temporal scales and to examine if the double vortex system, plasma swirling, and fast torsional perturbations all exist in a single prominence system before its eruption.

The authors are indebted to an anonymous referee whose valuable comments and suggestions allowed us to significantly improve the paper. This work was supported by NSF under the grant AGS 1246074 (K.M. and Z.E.M.). A.K.S. acknowledges a support during his stay at UMCS in Lublin, Poland, when a significant portion of this work was done. He also thanks Dr. N.C. Joshi for providing the observational data, and Shobhna for patient encouragements. Z.E.M. acknowledges the support of this work by the Alexander von Humboldt Foundation, and by University of Texas at Arlington through its Faculty Development Program. We also acknowledge the use of the SDO/AIA observations for this study, with the data provided courtesy of NASA/SDO, LMSAL, and the AIA, EVE, and HMI science teams. The FLASH code used in our numerical simulations was developed by the DOE-supported ASC/Alliance Center for Astrophysical Thermonuclear Flashes at the University of Chicago. A.K.S. (and the co-authors) dedicate this work to one of the pioneering plasma physicists, Prof. P.K. Shukla (July 7, 1950–January 26, 2013), Ruhr-University Bochum (RUB), Germany, who had a doctoral degree at the Department of Applied Physics, ITBHU, Varanasi, India in 1972, where he completed his doctoral research in 2006.
REFERENCES

Abbett, W. P., Fisher, G. H., & Fan, Y. 2000, ApJ, 540, 548
Bonet, J. A., Márquez, I., Sánchez Almeida, J., Cabello, I., & Domingo, V. 2008, ApJL, 687, L131
Fedun, V., Shelyag, S., Verth, G., & Erdélyi, R. 2011, An. Geo., 29, 1029
Joshi, N. C., Srivastava, A. K., Filippov, B., et al. 2014, ApJ, 787, 11
Lee, D. 2013, JCoPh, 243, 269
Lee, D., & Deane, A. E. 2009, CoPh, 228, 952
Manchester, W. 2003, JGRA, 108, 1162
Manchester, W., IV, Gombosi, T., DeZeeuw, D., & Fan, Y. 2004, ApJ, 610, 588
Murawski, K., Ballai, I., Srivastava, A. K., & Lee, D. 2013a, MNRAS, 436, 1268
Murawski, K., Srivastava, A. K., McLaughlin, J. A., & Oliver, R. 2013b, SoPh, 283, 383
Panasenco, O., Martin, S. F., & Velli, M. 2014, SoPh, 289, 603
Panesar, N. K., Innes, D. E., Tiwari, S. K., & Low, B. C. 2013, A&A, 549, A105
Shelyag, S., Cally, P. S., Reid, A., & Mathioudakis, M. 2013, ApJL, 776, L4
Shelyag, S., Keys, P., Mathioudakis, M., & Keenan, F. P. 2011, A&A, 526, A5
Shukla, P. K. 2013, JGRA, 118, 1
Srivastava, A. K., Zaqarashvili, T. V., Kumar, P., & Khodachenko, M. L. 2010, ApJ, 715, 292
Su, Y., Wang, T., Veronig, A., Temmer, M., & Gan, W. 2012, ApJL, 756, L41
Vernazza, J. E., Avrett, E. H., & Loeser, R. 1981, ApJS, 45, 635
Wedemeyer-Böhm, S., Scullion, E., Rouppe van der Voort, L., Bosnjak, A., & Antolin, P. 2013, ApJ, 774, 123
Wedemeyer-Böhm, S., Scullion, E., Steiner, O., et al. 2012, Natur, 486, 505
Yan, X. L., Pan, G. M., Liu, J. H., et al. 2013, AJ, 145, 153

Yan, X. L., Pan, G. M., Liu, J. H., et al. 2013, AJ, 145, 153