ADPCPM WITH NONLINEAR PREDICTION
Marcos Faúndez-Zanuy*, Oscar Oliva-Suarez**
*Escola Universitària Politècnica de Mataró
**Signal Theory & Communications Department (UPC)
Avda. Puig i Cadafalch 101-111, E-08303 Mataró (BARCELONA)
tel:+34 3 757 44 04 fax:+34 3 757 05 24
e-mail: faundez@eupmt.es http://www.eupmt.es/veu

ABSTRACT

Many speech coders are based on linear prediction coding (LPC), nevertheless with LPC is not possible to model the nonlinearities present in the speech signal. Because of this there is a growing interest for nonlinear techniques. In this paper we discuss ADPCM schemes with a nonlinear predictor based on neural nets, which yields an increase of 1-2.5dB in the SEGSNR over classical methods. This paper will discuss the block-adaptive and sample-adaptive predictions.

1. INTRODUCTION

Mumolo et al. ([1]) proposed an ADPCM with nonlinear prediction based on Volterra Series, which has the problem of unstability. In [2] we studied a nonlinear prediction model based on neural nets because they achieve higher prediction gains than Volterra (even with a smaller number of coefficients) and are always stable (see [3]). In [4] we proposed an ADPCM scheme with nonlinear prediction (the same model studied in [2]) and a novel hybrid ADPCM-Backward scheme which combines linear and nonlinear prediction (see fig. 1) in order to achieve always the greatest prediction gain. Although the averaged SNR is greater for the nonlinear predictor than for the linear predictor, in several frames the LPC outperforms the NLPC. In [4] we also include an exhaustive study about the training parameter set for having a good generalization capability (and thus robustness over parameter quantization and/or input signals' perturbations). Our final results are between 1 and 2.5 dB over the classical LPC-10 for the range between 2 and 5 quantization bits, while Mumolo is 1dB over LPC-10 for 3 and 4 quantization bits. (We achieve higher gains and wider bit rates).

In [5] the ADPCM forward with NLPC scheme that was proposed obtained similar performance than the LPC one but with one bit less in the quantizer. Thus, for instance the 40Kbps ADPCM-forward LPC is equivalent (similar SEGSNR) than the ADPCM-forward NLPC at 32Kbps. This implies that for the same bit rate, the NLP outperforms the LPC with 2.5 to 3 dB in SEGSNR (except for a quantizer of only 2 bits) for a wide range of frame length. Unfortunately, this improvement is reduced in the backward configuration, due to the different conditions between training and testing (in the backward configuration the neural net (NN) weights are computed over a different frame than the frame they are used for prediction, so the increase in SEGSNR of the NLPC over the LPC is reduced to 2 dB). In order to increase the performance of the backward configuration, we propose to optimize the frame length and to compute the NN weights more frequently. In the limit, if one new neural net is computed for each sample of the signal to encode, we obtain a sample adaptive ADPCM with nonlinear prediction scheme.

In this paper we study the influence of the frame length in the system performance, with the main objective of proposing a sample adaptive ADPCM-Backward Nonlinear prediction speech coder.

2. ADPCM WITH NONLINEAR PREDICTOR SCHEME

In order to compare the nonlinear speech prediction system, ADPCM waveform coder is used. The nonlinear predictor is compared against the traditional LPC one, with the following characteristics:

System overview
Predictor coefficients updating

! The coefficients are updated once time every frame.
! To avoid the transmission of the predictor coefficients an ADPCM backward (ADPCMB) configuration is adopted. That is, the coefficients of the predictor are computed over the decoded previous frame, because it is already available at the receiver and it can compute the same coefficient values without any additional information. The obtained results with a forward unquantized predictor coefficients (ADPCMF) are also provided for comparison purposes.
! The nonlinear analysis consists on a multilayer perceptron with 10 input neurons, 2 hidden neurons and 1 output neuron. The network is trained with the Levenberg-Marquardt algorithm.
! The linear prediction analysis of each frame consists on an all-pole filter, 10 coefficients

![Fig. 1 ADPCM-B hybrid coder. LP: linear predictor, NLP: nonlinear predictor, SW: switch](image-url)
obtained with the autocorrelation method (LPC-10) and 25 order filter (LPC-25).

Residual prediction error quantization

- The prediction error has been quantized with 2 to 5 bits. (bit rate from 16Kbps to 40Kbps).
- The quantizer step is adapted with multiplier factors, obtained from [6]. \(\Delta_{max} \) and \(\Delta_{min} \) are set empirically.

Database

- The results have been obtained with the following database: 8 speakers (4 males & 4 females) sampled at 8Khz and quantized at 12 bits/sample.

Additional details about the predictor and the database were reported in [2].

Adpcm Backward- Hybrid Waveform Coder

In [4] we proposed an ADPCM-Backward hybrid waveform coder with a linear/non linear switched predictor in order to choose always the best predictor and to increase the SEGSNR of the decoded signal. For each frame the outputs of the linear and nonlinear predictor are computed simultaneously with the coefficients computed from the previous encoded frame. Then a logical decision is made that chooses the output with smaller prediction error. This implies an overhead of 1 bit per sample, the scheme is sample adaptive, instead of block-adaptive. Obviously, if the length of the computing window is 1 sample, the scheme is sample adaptive, instead of block-adaptive.

3.1 Efficient initialization algorithm

- a) We define a training window, which defines the number of samples used for computing the LPC and NLPC coefficients.
- b) We define the actualization rate of the coefficients, which is equivalent to a computing window, defining the number of samples for which the same predictor coefficients are used. Obviously, if the length of the computing window is 1 sample, the scheme is sample adaptive, instead of block-adaptive.

The results of the ADPCM forward (with unquantized predictor coefficients) are also provided such us reference of the backward configuration. For the nonlinear predictor it is more significative (nearly 3dB), but the SEGSNR is better than LPC-10 except for \(Nq=2 \) bits. Also, the variance of the SEGSNR is greater than for the linear predictor, because in the stationary portions of speech the neural net works satisfactorily well, and for the unvoiced parts the net generalizes poorly. For this reason, a hybrid predictor is proposed in [4]. Also from the figures of [4] and [5] that show the evolution of the SEGSNR as function of the frame length, it can be seen that if the frame length is reduced under 50 samples, the SEGSNR falls drastically. Therefore, we propose the following procedure for obtaining and efficient sample adaptive scheme:

a) We define a training window, which defines the number of samples used for computing the LPC and NLPC coefficients.

\[
\begin{align*}
\text{METHOD} & \quad \text{Segsnr std} & \quad \text{Segsnr std} & \quad \text{Segsnr std} & \quad \text{Segsnr std} \\
\text{ADPCMBLPC10} & \quad 14.35 & 5.8 & 21.38 & 6.4 & 26.75 & 6.9 & 31.53 & 7.1 \\
\text{ADPCMBLPC25} & \quad 15.65 & 5.6 & 21.46 & 6.4 & 26.26 & 6.9 & 30.79 & 7.2 \\
\text{ADPCMFMLP} & \quad 15.5 & 7.4 & 24.12 & 7.5 & 29.35 & 7.6 & 34.14 & 8.4 \\
\text{ADPCMBLPC10} & \quad 14.92 & 5.1 & 20.59 & 5.9 & 25.38 & 6.6 & 30.02 & 7.1 \\
\text{ADPCMBLPC25} & \quad 14.88 & 5.1 & 20.95 & 5.5 & 25.2 & 6.6 & 30.1 & 6.2 \\
\text{ADPCMBMLP} & \quad 14.35 & 5.9 & 21.48 & 7.5 & 26.76 & 7.6 & 31.5 & 8.4 \\
\text{ADPCMB-HYBRID} & \quad 16.1 & 4.8 & 22.38 & 5.8 & 27.51 & 5.1 & 32.53 & 6.4 \\
\end{align*}
\]

3.1 Efficient initialization algorithm

- Obviously this scheme requires a high number of computations, so we must propose first an efficient algorithm for training the neural nets with a reduced complexity.

In the original training algorithm [4] a multistart algorithm is used, which consists on computing several random initializations (experimentally fixed in [4] to 4). And 6 epochs for initialization (fixed in [4]). I must be taken into account that the increase in the computational burden is limited because of the good convergence speed of the Levenberg-
3.2 Sample adaptive ADPCM-Backward NLPC scheme

With the main goal of propose a sample adaptive scheme, the influence of two parameters is studied:

a) The training window.

b) The computing window.

Figures 5, 6 and 7 let us to explain the main conclusions:

Although the behaviour of these figures does not show a clear tendency, it seems that if the computing window is short, the performance of the system degrades. Also, the computational complexity is increased, because 4 neural nets are trained for each sample of the speech signal, and this is computational expensive.

Although we don’t understand very well the degradation in SEGSNR for small computing windows, be believe that it is due to a problem with the quantization step adaptation: the predictor is changed too frequently, giving different error levels from the previous predictor, and the quantizer is unable to track this changes, so really there is a bad step adaptation. Keep in mind that the multiplying factors obtained from [6] were computed in different conditions than the conditions of this experiment, so it is not assured that it works properly unless it would be recalculated under more realistic conditions.

Another relevant fact is that in the linear case, the block adaptive solution can achieve much better prediction (see...
[7, pp.229]) than a sample adaptation with gradient methods (LMS or LMA) for a high order all-pole filter. For this reason, the LPC sample adaptive scheme is not included.

4. COMPARISON WITH PREVIOUSLY PUBLISHED WORK

The unique work that we have found that deals with ADPCM with nonlinear prediction is the one proposed by Mumolo et al. [3]. It has problems of unstability, which were overcome with a switched linear/nonlinear predictor. Our novel nonlinear scheme has been always stable in our experiments.

The results of our novel scheme show an increase of 1 to 2.5 dB over classical LPC-10 for quantizer ranges from 2 to 5 bits, while the work of Mumolo [3] is 1 dB over classical LPC for quantizer ranges from 3 to 4 bits and also with and hybrid predictor.

The improvement can be increased if the frame length is decreased to an appropriate value, at the cost of more computational complexity.

ACKNOWLEDGEMENTS

This work has been supported by the CICYT TIC97-1001-C02-02

REFERENCES

[1] E. Mumolo, A. Carini & D. Francescato “ADPCM with nonlinear predictors”. EUSIPCO-94, pp.387-390.

[2] M. Faúndez, E. Monte & F. Vallverdú “A comparative study between linear and nonlinear speech prediction”. Biological & artificial computation: from neuroscience to technology. IWANN-97. pp.1154-1163. September 1997

[3] J. Thyssen, H. Nielsen y S.D. Hansen “Non-linear short-term prediction in speech coding”. ICASSP-94, pp.I-185 a I-188.

[4] M. Faúndez-Zanuy, F. Vallverdú, E. Monte “Nonlinear prediction with neural nets in adpcm”. ICASSP’98, Seattle (USA). SP11-3

[5] M. Faúndez-Zanuy, F. Vallverdú, E. Monte “Efficient nonlinear prediction in ADPCM”.

[6] N.S. Jayant & P. Noll, “Digital coding of waveforms: principles & applications”. Ed. Prentice Hall 1984

[7] J. H. Chen “Low delay Coding in Speech” in Speech coding and synthesis, W.B. Kleijn & K.K. Paliwal editors. Ed. Elsevier 1995.