Two-weight inequalities for singular integral operators
satisfying a variant of Hörmander’s condition

Vagif S. Guliyev

(Communicated by Vakhtang Kokilashvili)

2000 Mathematics Subject Classification. 42B20.
Keywords and phrases. Weighted Lebesgue space, convolution operator,
two-weighted inequality, Hörmander’s condition.

Abstract. In this paper, we present some sufficient conditions for the
boundedness of convolution operators that their kernel satisfies a certain version
of Hörmander’s condition, in the weighted Lebesgue spaces $L_{p,\omega}(\mathbb{R}^n)$.

1. Introduction

Let \mathbb{R}^n be n-dimensional Euclidean space, $x = (x_1, \ldots, x_n)$, $\xi =
(\xi_1, \ldots, \xi_n)$ are vectors in \mathbb{R}^n, $x \cdot \xi = x_1\xi_1 + \ldots + x_n\xi_n$, $|x| = (x \cdot x)^{1/2}$,
$\mathbb{R}_0^n = \mathbb{R}^n \setminus \{0\}$.

Suppose that ω be a positive, measurable, and real function defined
in \mathbb{R}^n, i.e., is a weight function. By $L_{p,\omega}(\mathbb{R}^n)$ we denote the space of measurable functions $f(x)$ on \mathbb{R}^n with finite norm

$$
\|f\|_{L_{p,\omega}(\mathbb{R}^n)} = \left(\int_{\mathbb{R}^n} |f(x)|^p \omega(x)dx \right)^{1/p}, \quad 1 \leq p < \infty.
$$
For \(\omega = 1 \), we obtain the nonweighted space \(L^p \), i.e., \(L^p,1(\mathbb{R}^n) = L^p(\mathbb{R}^n) \).

We write \(f \in L^p_{loc}(\mathbb{R}^n) \), \(1 \leq p < \infty \), if \(f \) belongs to \(L^p(F) \) on any closed bounded set \(F \subset \mathbb{R}^n \).

Let \(K : \mathbb{R}_0^n \to \mathbb{R} \), \(K \in L^1_{loc}(\mathbb{R}_0^n) \), \(\mathbb{R}_0^n = \mathbb{R}^n \setminus \{0\} \), be a function satisfying the following conditions:

1) \(K(tx) \equiv K(tx_1, \ldots, tx_n) = t^{-n} K(x) \) for any \(t > 0 \), \(x \in \mathbb{R}_0^n \);
2) \(\int_{|x|=1} K(x) \, d\sigma(x) = 0 \);
3) \(\int_0^1 \frac{w(t)}{t} \, dt < \infty \), where \(w(t) = \sup_{|\xi|=|\eta| \leq t} |K(\xi) - K(\eta)| \) for \(|\xi| = |\eta| = 1 \).

Let \(f \in L^p(\mathbb{R}^n) \), \(1 < p < \infty \), and consider the following singular integral

(1)

\[Tf(x) = \text{p.v.} \int_{\mathbb{R}^n} K(x-y) f(y) \, dy = \lim_{\varepsilon \to 0} \int_{\{y \in \mathbb{R}^n : |x-y| > \varepsilon\}} K(x-y) f(y) \, dy. \]

In the following theorem Calderon and Zygmund [5] proved the boundedness of the operator \(T \).

Theorem 1. Suppose that the kernel \(K \) of the singular integral (1) satisfies conditions 1) – 3) and \(f \in L^p(\mathbb{R}^n) \), \(1 \leq p < \infty \). Then the singular integral exists for \(x \in \mathbb{R}^n \) almost everywhere and the following inequalities holds

\[
\|Tf\|_{L^p(\mathbb{R}^n)} \leq C_1 \|f\|_{L^p(\mathbb{R}^n)}, \quad 1 < p < \infty,
\]

\[
\int_{\{x \in \mathbb{R}^n : |Tf(x)| > \lambda\}} dx \leq \frac{C_2}{\lambda} \int_{\mathbb{R}^n} |f(x)| \, dx,
\]

where \(C_1, C_2 > 0 \) is independent of \(f \).

Hörmander [13] imposed a weaker constraint on the kernel of the singular integral (1), namely,

(2)

\[
\int_{\{x \in \mathbb{R}^n : |x| > 2|y|\}} |K(x-y) - K(x)| \, dx \leq C,
\]

where \(K \in L^1_{loc}(\mathbb{R}_0^n) \) and \(C > 0 \) is a constant independent of \(y \). By replacing condition 3) with condition (2), under conditions 1), 2) he proved Theorem 1 for singular integrals with kernels satisfying condition (2). This condition is related to condition 3), and under this condition, inequality (2) holds (see [19]).
On the other hand, singular integrals whose kernels do not satisfy Hörmander’s condition (2) are widely considered, for example oscillatory and some other singular integrals (see [20]).

Suppose that \(K \in L_2(\mathbb{R}^n) \) is a function, satisfying the following conditions:

(K1) \(\| \hat{K} \|_\infty \leq C; \)

(K2) \(|K(x)| \leq \frac{C}{|x|^n}; \)

(K3) There exist functions \(A_1, \ldots, A_m \in L^1_{\text{loc}}(\mathbb{R}^n) \), and the finite family \(\Phi = \{ \phi_1, \ldots, \phi_m \} \) of essentially bounded functions in \(\mathbb{R}^n \) such that \(|\det [\phi_j(y_i)]|^2 \in RH_{\infty}(R^{nm}), \ y_i \in \mathbb{R}^n, \ i, j = 1, \ldots, m; \)

(K4) For a fixed \(\gamma > 0 \) and for any \(|x| > 2|y| > 0, \)

\[
\left| K(x - y) - \sum_{i=1}^{m} A_i(x) \phi_i(y) \right| \leq C \frac{|y|^{\gamma}}{|x - y|^{n + \gamma}},
\]

where \(C > 0 \) is a constant and \(\hat{K}(\xi) = \int_{\mathbb{R}^n} e^{-i(x, \xi)} K(x) dx \) is the Fourier transform of the function \(K \). In general, the functions \(A_i, \phi_i, \ i = 1, \ldots, m \) defined in \(\mathbb{R}^n \) are complex-valued.

Remark 1. Any kernel satisfying condition (3) also satisfies the condition

\[
\int_{|x| > 2|y|} \left| K(x - y) - \sum_{i=1}^{m} A_i(x) \phi_i(y) \right| dx \leq C, \ |x| > 2|y|,
\]

Note that conditions (K1) – (K4) were imposed in [20] and condition (4) was studied in [10]. For example, for \(m = 1, A_1(x) = K(x), \phi_1(y) \equiv 1 \) condition (4) yields Hörmander’s condition (2). Note that, in this sense, condition (4) is a generalization of Hörmander’s condition (2).

There exist other conditions stronger than condition (2) (see [9, 21]). The function \(K(x) = (\sin x)/x \) satisfies conditions (K1) – (K4) and does not satisfy conditions 1), 2), and Hörmander’s condition (2) (see [3]).

Definition 1. [17] It is said that a locally integrable weight function \(\omega \) belongs to \(A_p(\mathbb{R}^n) \), where \(1 < p < \infty \), if

\[
\sup_B \left(|B|^{-1} \int_B \omega(x) dx \right) \left(|B|^{-1} \int_B \omega(x)^{1-p'} dx \right)^{p-1} < \infty,
\]

where the supremum is taken over all balls \(B \subset \mathbb{R}^n \) and \(p' = \frac{p}{p-1} \).
For \(p = 1 \), we say \(\omega \in A_1(\mathbb{R}^n) \), if
\[
\sup_B \left(|B|^{-1} \int_B \omega(x) dx \right) \operatorname{ess} \sup_B \frac{1}{\omega(x)} < \infty,
\]
or
\[
|B|^{-1} \int_B \omega(x) dx \leq C \omega(x) \text{ a.e. } x \in B
\]
for any balls \(B \subset \mathbb{R}^n \).

Suppose that the function \(K \) satisfies conditions \((K1) - (K4)\). For \(f \in L_p(\mathbb{R}^n), 1 \leq p < \infty \) define the following convolution operator generated by the kernel \(K \) as
\[
Af(x) = \int_{\mathbb{R}^n} K(x - y) f(y) dy.
\]

For the convolution operator (5), the following theorem holds.

Theorem 2. [20] Suppose that \(w \in A_p(\mathbb{R}^n), 1 \leq p < \infty \), and the kernel of the convolution operator (5) satisfies conditions \((K1) - (K4)\). Then the following inequalities holds:

\[
\|Af\|_{L_{p,w}(\mathbb{R}^n)} \leq C_3 \|f\|_{L_{p,w}(\mathbb{R}^n)}, 1 < p < \infty,
\]

\[
\int_{\{x \in \mathbb{R}^n : |Af(x)| > \lambda\}} \omega(x) dx \leq \frac{C_4}{\lambda} \int_{\mathbb{R}^n} |f(x)| \omega(x) dx,
\]

where \(C_3, C_4 > 0 \) is independent of \(f \).

Note that in the "nonweighted" case, when condition \((K2)\) is not imposed and condition (3) is replaced by condition (4), Theorem 2 was proved in [10].

Lemma 1. Suppose that \(1 \leq p \leq q \leq \infty \) and \(u(t) \) and \(v(t) \) are positive functions defined on \((0, \infty)\).

(i) For the validity of the inequality

\[
\left(\int_0^\infty u(t) \left| \int_0^t \varphi(\tau) d\tau \right|^q dt \right)^{1/q} \leq K_1 \left(\int_0^\infty |\varphi(t)|^p v(t) dt \right)^{1/p}
\]

with a constant \(K_1 \), not depending on \(\varphi \), it is necessary and sufficient that

\[
\sup_{t > 0} \left(\int_t^\infty u(\tau) d\tau \right)^{p/q} \left(\int_0^t v(\tau)^{1-p'} d\tau \right)^{p-1} < \infty.
\]
(ii) For the validity of the inequality
\[
\left(\int_0^\infty u(t) \left(\int_t^\infty \varphi(\tau)d\tau \right)^q d\tau \right)^{1/q} \leq K_2 \left(\int_0^\infty |\varphi(t)|^p v(t) dt \right)^{1/p}
\]
with a constant \(K_2\), not depending on \(\varphi\), it is necessary and sufficient that
\[
\sup_{t>0} \left(\int_0^t u(\tau)d\tau \right)^{p/q} \left(\int_\tau^\infty v(\tau)^{1-p'}d\tau \right)^{p-1} < \infty.
\]

Lemma 1 was established by Muckenhoupt [18] for \(1 \leq p = q \leq \infty\) and J.S. Bradley [4], V.M. Kokilashvili [14], V.G. Maz'ya [16] for \(p < q\).

Lemma 2. [15] Let \(u(t)\) and \(v(t)\) be positive functions on \((0, \infty)\).
(i) If the following condition is satisfied
\[
\sup_{t>0} \left(\int_t^\infty v(\tau)d\tau \right)^{p/q} \left(\int_\tau^\infty u(\tau) d\tau \right)^{p-1} < \infty,
\]
then the inequality
\[
\int_0^\infty v(t) \left(\int_0^t F(\tau)d\tau \right) dt \leq c \int_0^\infty u(t)|F(t)| dt
\]
holds, where the constant \(c > 0\) does not depend on \(F\).
(ii) If the following condition is satisfied
\[
\sup_{t>0} \left(\int_t^\infty v(\tau)d\tau \right)^{p/q} \left(\int_\tau^\infty u(\tau) d\tau \right)^{p-1} < \infty,
\]
then the inequality
\[
\int_0^\infty v(t) \left(\int_0^\infty F(\tau)d\tau \right) dt \leq c \int_0^\infty u(t)|F(t)| dt
\]
holds, where the constant \(c > 0\) does not depend on \(F\).

Lemma 3. [1, 6] Suppose that \(1 \leq p \leq q \leq \infty\) and \(u(x)\) and \(v(x)\) are positive functions defined on \(\mathbb{R}^n\).
(i) For the n-dimensional Hardy inequality
\[
\left(\int_{\mathbb{R}^n} \left(\int_{|y|<|x|/2} |f(y)| dy \right)^q \omega(x) dx \right)^{1/q} \leq C_5 \left(\int_{\mathbb{R}^n} |f(x)|^p v(x) dx \right)^{1/p}
\]
with a constant C_5, independent on f, to hold, it is necessary and sufficient that the following condition be satisfied:

$$\sup_{R>0} \left(\int_{|x|>2R} \omega(x) \, dx \right)^{1/q} \left(\int_{|x|<R} \omega^{1-p'}(x) \, dx \right)^{1/p'} < \infty.$$

(ii) For the n-dimensional (dual) Hardy inequality

$$\left(\int_{\mathbb{R}^n} \left(\int_{|y|>2|x|} |f(y)| \, dy \right)^q u(x) \, dx \right)^{1/q} \leq C_6 \left(\int_{\mathbb{R}^n} |f(x)|^p \omega(x) \, dx \right)^{1/p}$$

with a constant C_6, independent on f, to hold, it is necessary and sufficient that the following condition be satisfied:

$$\sup_{R>0} \left(\int_{|x|<R} u(x) \, dx \right)^{1/q} \left(\int_{|x|>2R} \omega^{1-p'}(x) \, dx \right)^{1/p'} < \infty.$$

Lemma 4. [8, 15] Suppose that $1 \leq p < \infty$, $\beta > 1$, $\varphi \in A_p(\mathbb{R}^n)$, and suppose that u, u_1 are positive increasing (decreasing) functions defined on $(0, \infty)$. Suppose that $\omega(x) = u(|x|)\varphi(x)$, $\omega_1(x) = u_1(|x|)\varphi(x)$ and the weighted pair $(\omega(x), \omega_1(x))$ satisfies the following condition:

(i) For $1 < p < \infty$, $A_p(\omega, \omega_1) < \infty$, where

$$A_p(\omega, \omega_1) := \sup_{r>0} \left(\int_{|x|>2r} \omega_1(x)|x|^{-np} \, dx \right) \left(\int_{|x|<r} \omega^{1-p'}(x) \, dx \right)^{p-1}$$

(ii) For $p = 1$, $A_1(\omega, \omega_1) < \infty$, where

$$A_1(\omega, \omega_1) := \sup_{r>0} \left(\int_{|x|>2r} \omega_1(x)|x|^{-n} \, dx \right) \text{ess sup} \frac{1}{\omega(x)}$$

(iii) For $1 < p < \infty$, $B_p(\omega, \omega_1) < \infty$, where

$$B_p(\omega, \omega_1) := \sup_{r>0} \left(\int_{|x|<r} \omega_1(x) \, dx \right) \left(\int_{|x|>2r} \omega^{1-p'}(x)|x|^{-np'} \, dx \right)^{p-1}$$

(iv) For $p = 1$, $B_1(\omega, \omega_1) < \infty$, where

$$B_1(\omega, \omega_1) := \sup_{r>0} \left(\int_{|x|<r} \omega_1(x) \, dx \right) \text{ess sup} \frac{1}{\omega(x)|x|^n}$$
Then there exists a positive constant C depending only on p, n such that, for any $t > 0$, the following inequality holds:

$$u_1(2t) \leq CA_p(\omega, \omega_1) u(t) \quad (u_1(t/2) \leq CB_p(\omega, \omega_1) u(t)).$$

In the case $\varphi = 1$ Lemma 4 was proved also in [11].

2. Main results

Theorem 3. Suppose that the kernel K of the convolution operator (5) satisfies the conditions $(K1) - (K4)$ and $\phi \in A_p(\mathbb{R}^n)$, $1 \leq p < \infty$. If $\omega(x) = u(x)\phi(x)$ and $\omega_1(x) = u_1(x)\phi(x)$ are weight functions on \mathbb{R}^n, satisfies the conditions

$$A_p(\omega, \omega_1) < \infty, \quad B_p(\omega, \omega_1) < \infty,$$

and there exist $b > 0$ such that

$$\sup_{|x|/4 < |y| \leq 4|x|} u_1(y) \leq b u(x) \quad \text{for a.e. } x \in \mathbb{R}^n. \tag{6}$$

Then there exists a $C_7 > 0$ such that, for any $f \in L_{p,\omega}(\mathbb{R}^n)$, $1 < p < \infty$ the following inequality holds

$$\int_{\mathbb{R}^n} |Af(x)|^p \omega_1(x) \, dx \leq C_7 \int_{\mathbb{R}^n} |f(x)|^p \omega(x) \, dx. \tag{7}$$

Moreover, the condition (6) can be replaced by the condition: there exist $b > 0$ such that

$$u_1(x)\left(\sup_{|x|/4 \leq |y| \leq |x|} \frac{1}{u(y)}\right) \leq b \quad \text{for a.e. } x \in \mathbb{R}^n.$$

Proof. For $k \in \mathbb{Z}$ we define $E_k = \{x \in \mathbb{R}^n : 2^k < |x| \leq 2^{k+1}\}$, $E_{k,1} = \{x \in \mathbb{R}^n : |x| \leq 2^{k-1}\}$, $E_{k,2} = \{x \in \mathbb{R}^n : 2^{k-1} < |x| \leq 2^{k+1}\}$, $E_{k,3} = \{x \in \mathbb{R}^n : |x| > 2^{k+2}\}$. Then $E_{k,2} = E_{k-1} \cup E_k \cup E_{k+1}$ and the multiplicity of the covering $\{E_{k,2}\}_{k \in \mathbb{Z}}$ is equal to 3.
Let \(1 < p < \infty \). Given \(f \in L_{p, \omega}(\mathbb{R}^n) \), we write

\[
|Af(x)| = \sum_{k \in \mathbb{Z}} |Af(x)| \chi_{E_k}(x)
\leq \sum_{k \in \mathbb{Z}} |Af_{k,1}(x)| \chi_{E_k}(x) + \sum_{k \in \mathbb{Z}} |Af_{k,2}(x)| \chi_{E_k}(x)
+ \sum_{k \in \mathbb{Z}} |Af_{k,3}(x)| \chi_{E_k}(x)
\]

(8)

\[= A_1 f(x) + A_2 f(x) + A_3 f(x), \]

where \(\chi_{E_k} \) is the characteristic function of the set \(E_k \), \(f_{k,i} = f \chi_{E_k,i} \), \(i = 1, 2, 3 \).

First we shall estimate \(\|A_1 f\|_{L_{p, \omega}} \). Note that for \(x \in E_k, \ y \in E_{k,1} \) we have \(|y| \leq 2^{k-1} \leq |x|/2 \). Moreover, \(E_k \cap \text{supp} f_{k,1} = \emptyset \) and \(|x - y| \geq |x|/2 \). Hence by condition (K2)

\[
A_1 f(x) \leq C \sum_{k \in \mathbb{Z}} \left(\int_{\mathbb{R}^n} \frac{|f_{k,1}(y)|}{|x - y|^n} \, dy \right) \chi_{E_k}
\leq C \int_{|y| \leq |x|/2} |x - y|^{-n} |f(y)| \, dy \leq 2^n C |x|^{-n} \int_{|y| \leq |x|/2} |f(y)| \, dy
\]

for any \(x \in E_k \). Hence we have

\[
\int_{\mathbb{R}^n} |A_1 f(x)|^p \omega_1(x) \, dx \leq (2^n C)^p \int_{\mathbb{R}^n} \left(\int_{|y| < |x|/2} |f(y)| \, dy \right)^p |x|^{-np} \omega_1(x) \, dx.
\]

Since \(A_p(\omega, \omega_1) < \infty \), the Hardy inequality

\[
\int_{\mathbb{R}^n} \omega_1(x) |x|^{-np} \left(\int_{|y| < |x|/2} |f(y)| \, dy \right)^p \, dx \leq C_9 \int_{\mathbb{R}^n} |f(x)|^p \omega(x) \, dx
\]

holds and \(C_9 \leq c' A_p(\omega, \omega_1) \), where \(c' \) depends only on \(n \) and \(p \). In fact the condition \(A_p(\omega, \omega_1) < \infty \) is necessary and sufficient for the validity of this inequality (see [1], [6]). Hence, we obtain

(9)

\[
\int_{\mathbb{R}^n} |A_1 f(x)|^p \omega_1(x) \, dx \leq C_8 \int_{\mathbb{R}^n} |f(x)|^p \omega(x) \, dx.
\]

where \(C_9 \) is independent of \(f \).

Next we estimate \(\|A_3 f\|_{L_{p, \omega}} \). It is easy to verify, for \(x \in E_k, \ y \in E_{k,3} \) we have \(|y| > 2|x| \) and \(|x - y| \geq |y|/2 \). Since \(E_k \cap \text{supp} f_{k,3} = \emptyset \), for \(x \in E_k \)
by condition (K2) we obtain
\[A_3 f(x) \leq C \int_{|y|>2|x|} \frac{|f(y)|}{|x-y|^n} \, dy \leq 2^n C \int_{|y|>2|x|} |f(y)| |y|^{-n} \, dy. \]

Hence we have
\[\int_{\mathbb{R}^n} |A_3 f(x)|^p \omega_1(x) \, dx \leq (2^n C)^p \int_{\mathbb{R}^n} \left(\int_{|y|>2|x|} |f(y)| |y|^{-n} \, dy \right)^p \omega_1(x) \, dx. \]

Since \(B_p(\omega, \omega_1) < \infty \), the Hardy inequality
\[\int_{\mathbb{R}^n} \left(\int_{|y|>2|x|} |f(y)| |y|^{-n} \, dy \right)^p \omega_1(x) \, dx \leq C_6 \int_{\mathbb{R}^n} |f(x)|^p \omega_1(x) \, dx \]
holds and \(C_6 \leq c'' B_p(\omega, \omega_1) \), where \(c'' \) depends only on \(n \) and \(p \). In fact the condition \(B_p(\omega, \omega_1) < \infty \) is necessary and sufficient for the validity of this inequality (see [1], [6]). Hence, we obtain
\[\int_{\mathbb{R}^n} |A_3 f(x)|^p \omega_1(x) \, dx \leq C_9 \int_{\mathbb{R}^n} |f(x)|^p \omega_1(x) \, dx, \]
where \(C_9 \) is independent of \(f \).

Finally, we estimate \(\|A_2 f\|_{L^p,\omega_1} \). From the \(L^p,\phi(\mathbb{R}^n) \) boundedness of \(T \) and condition (6) we have
\[\int_{\mathbb{R}^n} |A_2 f(x)|^p \omega_1(x) \, dx = \int_{\mathbb{R}^n} \left(\sum_{k \in \mathbb{Z}} |A f_k,2(x) \chi_{E_k}(x) \right)^p \omega_1(x) \, dx \]
\[= \int_{\mathbb{R}^n} \left(\sum_{k \in \mathbb{Z}} |A f_k,2(x) \chi_{E_k}(x) \right)^p \omega_1(x) \, dx \]
\[= \sum_{k \in \mathbb{Z}} \int_{E_k} |A f_k,2(x)\chi_{E_k}(x)|^p \omega_1(x) \, dx \]
\[\leq \sum_{k \in \mathbb{Z}} \sup_{x \in E_k} u_1(x) \int_{\mathbb{R}^n} |A f_k,2(x)|^p \omega_1(x) \, dx \]
\[\leq \|A\|^p_p \sum_{k \in \mathbb{Z}} \sup_{x \in E_k} u_1(x) \int_{\mathbb{R}^n} |f_k,2(x)|^p \omega_1(x) \, dx \]
\[= \|A\|^p_p \sum_{k \in \mathbb{Z}} \sup_{y \in E_k} u_1(y) \int_{E_k,2} |f(x)|^p \omega_1(x) \, dx, \]
where $\|A\|_\phi = \|A\|_{L^p,\phi}$. Since $2^{k-1} < |x| \leq 2^{k+2}$, we have by condition (a)

$$\sup_{y \in E_k} u_1(y) = \sup_{2^{k-1} < |y| \leq 2^{k+2}} u_1(y) \leq \sup_{|x|/4 < |y| \leq 4|x|} u_1(y) \leq b u(x)$$

for almost all $x \in E_{k,2}$. Therefore we get

$$\int_{\mathbb{R}^n} |A_2 f(x)|^p \omega_1(x) dx \leq \|A\|^p_{p,\phi} b \sum_{k \in Z} \int_{E_{k,2}} |f(x)|^p u(x) \phi(x) dx$$

(11)

$$\leq C_{10} \int_{\mathbb{R}^n} |f(x)|^p \omega(x) dx$$

since the multiplicity of covering $\{E_{k,2}\}_{k \in Z}$ is equal to 3, where $C_{10} = 3\|A\|^p_{p,\phi}$.

Inequalities (8), (9), (10), (11) imply (7) which completes the proof. □

Analogously proved the following theorem.

Theorem 4. Suppose that the kernel K of the convolution operator (5) satisfies the conditions (K1) – (K4), and $\omega(x) = u(x)\phi(x)$, $\omega_1(x) = u_1(x)\phi(x)$ are weight functions on \mathbb{R}^n, $\phi \in A_1(\mathbb{R}^n)$. If the weighted pair $(\omega(x), \omega_1(x))$ satisfies condition (6) and

$$\mathcal{A}_1(\omega, \omega_1) \equiv \sup_{r > 0} \left(\int_{|x| > 2r} \omega_1(x)|x|^{-n} dx \right) \text{ess sup } \frac{1}{\omega(x)} < \infty,$$

$$\mathcal{B}_1(\omega, \omega_1) \equiv \sup_{r > 0} \left(\int_{|x| < r} \omega_1(x) dx \right) \text{ess sup } \frac{1}{\omega(x)|x|^n} < \infty,$$

Then there exists a $C_{11} > 0$ such that, for any $f \in L^1(\mathbb{R}^n)$, the following inequality holds

$$\int_{\{x \in \mathbb{R}^n : |A_1 f(x)| > \lambda\}} \omega_1(x) dx \leq \frac{C_{11}}{\lambda} \int_{\mathbb{R}^n} |f(x)| \omega(x) dx.$$

(12)

Theorem 5. Suppose that the kernel K of the convolution operator (5) satisfies the conditions (K1) – (K4), and $\varphi \in A_1(\mathbb{R}^n)$. Let u and u_1 be positive increasing functions on $(0, \infty)$, such that the weights functions $\omega(x) = u(|x|)\varphi(x)$ and $\omega_1(x) = u_1(|x|)\varphi(x)$ satisfy the condition

$$\mathcal{A}_1(\omega, \omega_1) < \infty$$

Then inequality (12) is valid.
Proof. Suppose that $f \in L_{1, \omega}(\mathbb{R}^n)$. Let u_1 are positive increasing functions on $(0, \infty)$ and $A_1(\omega, \omega_1) < \infty$.

Without loss of generality we can suppose that u_1 may be represented by

$$u_1(t) = u_1(0+) + \int_0^t \psi(\tau) d\tau,$$

where $u_1(0+) = \lim_{t \to 0} u_1(t)$ and $u_1(t) \geq 0$ on $(0, \infty)$. In fact there exists a sequence of increasing absolutely continuous functions ϖ_n such that $\varpi_n(t) \leq \omega_1(t)$ and $\lim_{n \to \infty} \varpi_n(t) = \omega_1(t)$ for any $t \in (0, \infty)$ (see [2, 11, 7, 8, 12] for details).

We have

$$\int_{\{x \in \mathbb{R}^n : |Af(x)| > \lambda\}} \omega_1(x) dx = u_1(0+) \int_{\{x \in \mathbb{R}^n : |Af(x)| > \lambda\}} \phi(x) dx + \int_{\{x \in \mathbb{R}^n : |Af(x)| > \lambda\}} \left(\int_0^{|x|} \psi(\tau) d\tau \right) \phi(x) dx = J_1 + J_2.$$

If $u_1(0+) = 0$, then $J_1 = 0$. If $u_1(0+) \neq 0$ by the weak L_1 boundedness of A, $\phi \in A_1(\mathbb{R}^n)$ thanks to Lemma 4

$$J_1 \leq \frac{1}{\lambda} |A_\phi| u_1(0+) \int_{\mathbb{R}^n} |f(x)| \phi(x) dx \leq \frac{1}{\lambda} |A_\phi| \int_{\mathbb{R}^n} |f(x)| u_1(|x|) \phi(x) dx \leq \frac{b}{\lambda} |A_\phi| \int_{\mathbb{R}^n} |f(x)| \omega(x) dx.$$

After changing the order of integration in J_2 we have

$$J_2 = \int_0^\infty \psi(t) \left(\int_{|x| > t} \chi \{x : |Af(x)| > \lambda\} \phi(x) dx \right) dt \leq \int_0^\infty \psi(t) \left(\int_{|x| > t} \chi \{x : |A(f \chi_{|y| > t/2})(x)| > \lambda\} \phi(x) dx
+ \int_{|x| > t} \chi \{x : |A(f \chi_{|y| \leq t/2})(x)| > \lambda\} \phi(x) dx \right) dt = J_{21} + J_{22}.$$
Using the weak L_1 boundedness of A and Lemma 4 we have

$$J_{21} \leq \frac{\|A\|}{\lambda} \int_0^\infty \psi(t) \left(\int_{|y| > t/2} |f(y)| |\phi(y)dy| \right) dt$$

$$= \frac{\|A\|}{\lambda} \int_{\mathbb{R}^n} |f(y)| \left(\int_0^{2|y|} \psi(t) dt \right) \phi(y) dy$$

$$\leq \frac{\|A\|}{\lambda} \int_{\mathbb{R}^n} |f(y)| u_1(2|y|) \phi(y) dy$$

$$\leq b \frac{\|A\|}{\lambda} \int_{\mathbb{R}^n} |f(y)| \omega(y) dy.$$

Let us estimate J_{22}. For $|x| > t$ and $|y| \leq t/2$ we have $|x|/2 \leq |x-y| \leq 3|x|/2$, and so

$$J_{22} \leq c_4 \int_0^\infty \psi(t) \left(\int_{|x| > t} \chi \left\{ y : \int_{|y| \leq t/2} |f(y)| |x-y|^{-n} dy > \lambda \right\} \phi(x) dx \right) dt$$

$$\leq c_5 \int_0^\infty \psi(t) \left(\int_{|y| \leq t/2} |f(y)| |y|^{-n} dy > \lambda \right) \left(\int_{|x| > t} \phi(x) |x|^{-n} dx \right) dt$$

$$= \frac{c_6}{\lambda} \int_0^\infty \psi(t) \left(\int_{|y| \leq t/2} |f(y)| |y|^{-n} dy \right) \left(\int_{|x| \leq t/2} |f(y)| dy \right) dt.$$

The Hardy inequality

$$\int_0^\infty \psi(t) \left(\int_{|y| \leq t/2} |f(y)| dy \right) dt \leq C \int_{\mathbb{R}^n} |f(y)| \omega(|y|) dy$$

for $p = 1$ is characterized by the condition $C \leq c' A'_1$ (see [4], [14]), where

$$A'_1 = \sup_{r > 0} \left(\int_{2r}^\infty \left(\int_{|x| > t} \phi(x) |x|^{-n} dx \right) \psi(t) dt \right) \text{ess sup}_{|x| < r} \frac{1}{\omega(x)}$$

$$= \sup_{r > 0} \left(\int_{|x| > 2r} \phi(x) |x|^{-n} \left(\int_{|x|} \psi(t) dt \right) dx \right) \text{ess sup}_{|x| < r} \frac{1}{\omega(x)}$$

$$\leq \sup_{r > 0} \left(\int_{|x| > 2r} \phi(x) |x|^{-n} u_1(|x|) dx \right) \text{ess sup}_{|x| < r} \frac{1}{\omega(x)}$$

$$= \sup_{r > 0} \left(\int_{|x| > 2r} \omega_1(|x|) |x|^{-n} dx \right) \text{ess sup}_{|x| < r} \frac{1}{\omega(x)} = A_1(\omega, \omega_1) < \infty.$$
Hence, applying the Hardy inequality, we obtain
\[J_{22} \leq \frac{C_{12}}{\lambda} \int_{\mathbb{R}^n} |f(x)|\omega(|x|)dx. \]

Combining the estimates of \(J_1 \) and \(J_2 \), we get (12) for \(\omega_1(t) = \omega_1(0+) + \int_0^t \psi(\tau)d\tau \). By Fatou’s theorem on passing to the limit under the Lebesgue integral sign, this implies (12). The theorem is proved. \(\square \)

Analogously proved the following theorem.

Theorem 6. Suppose that \(1 < p < \infty \), the kernel \(K \) of the convolution operator (5) satisfies the conditions (K1) – (K4) and \(\varphi \in A_p(\mathbb{R}^n) \). Let \(u, u_1 \) are positive increasing functions on \((0, \infty)\), \(\omega(x) = u(|x|)\varphi(x) \), \(\omega_1(x) = u_1(|x|)\varphi(x) \) and \(A_p(\omega, \omega_1) < \infty \). Then inequality (7) is valid.

Theorem 7. Suppose that the kernel \(K \) of the convolution operator (5) satisfies the conditions (K1) – (K4) and \(\varphi \in A_1(\mathbb{R}^n) \). Let \(u \) and \(u_1 \) are positive decreasing functions on \((0, \infty)\), such that the weights functions \(\omega(x) = u(|x|)\varphi(x) \) and \(\omega_1(x) = u_1(|x|)\varphi(x) \) satisfy the condition
\[B_1(\omega, \omega_1) < \infty \]
Then inequality (12) is valid.

Proof. Without loss of generality we can suppose that \(\omega_1 \) may be represented by
\[\omega_1(t) = \omega_1(+\infty) + \int_{t}^{+\infty} \psi(\tau)d\tau, \]
where \(\omega_1(+\infty) = \lim_{t \to +\infty} \omega_1(t) \) and \(\omega_1(t) \geq 0 \) on \((0, \infty)\). In fact there exists a sequence of decreasing absolutely continuous functions \(\omega_n \) such that \(\omega_n(t) \leq \omega_1(t) \) and \(\lim_{n \to \infty} \omega_n(t) = \omega_1(t) \) for any \(t \in (0, \infty) \) (see [2, 11, 7, 8, 12] for details).

We have
\[
\int_{\{x \in \mathbb{R}^n: |Af(x)| > \lambda\}} \omega_1(x)dx = u_1(+\infty) \int_{\{x \in \mathbb{R}^n: |Af(x)| > \lambda\}} \phi(x)dx \\
+ \int_{\{x \in \mathbb{R}^n: |Af(x)| > \lambda\}} \left(\int_{|x|}^{+\infty} \psi(\tau)d\tau \right) \phi(x)dx \\
= I_1 + I_2.
\]
If \(u_1(+\infty) = 0 \), then \(I_1 = 0 \). If \(u_1(+\infty) \neq 0 \), by the weak \(L_1 \)
boundedness of \(A, \phi \in A_1(\mathbb{R}^n) \) thanks to Lemma 4

\[
J_1 \leq \frac{1}{\lambda} \| A \| \| u_1(+) \| \int_{\mathbb{R}^n} |f(x)| \phi(x) dx \\
\leq \frac{1}{\lambda} \| A \| \int_{\mathbb{R}^n} |f(x)| u_1(|x|) \phi(x) dx \\
\leq \frac{b}{\lambda} \| A \| \int_{\mathbb{R}^n} |f(x)| \omega(|x|) dx.
\]

After changing the order of integration in \(J_2 \) we have

\[
J_2 = \int_0^\infty \psi(t) \left(\int_{\{|x| < t\}} \chi \{ x : |Af(x)| > \lambda \} \phi(x) dx \right) dt \\
\leq \int_0^\infty \psi(t) \left(\int_{\{|x| < 2t\}} \chi \{ x : |Af(\chi_{\{|y| > t/2\}}(x))| > \lambda \} \phi(x) dx \\
+ \int_{\{|x| < t\}} \chi \{ x : |Af(\chi_{\{|y| \leq 2t\}}(x))| > \lambda \} \phi(x) dx \right) dt \\
= I_{21} + I_{22}.
\]

Using the weak \(L_1 \) boundedness of \(A \) and Lemma 4 we obtain

\[
I_{21} \leq \| A \| \int_0^\infty \psi(t) \left(\int_{\{|x| < 2t\}} |f(x)| \phi(x) dx \right) dt \\
= \| A \| \int_{\mathbb{R}^n} |f(x)| \phi(x) \left(\int_{\{|x|/2\}}^\infty \psi(t) dt \right) dx \\
\leq \| A \| \int_{\mathbb{R}^n} |f(x)| u_1(|x|/2) \phi(x) dx \\
\leq b \| A \| \int_{\mathbb{R}^n} |f(x)| u(|x|) \phi(x) dx \\
= b \| A \| \int_{\mathbb{R}^n} |f(x)| \omega(x) dx.
\]
Let us estimate J_{22}. For $|x| < t$ and $|y| \geq 2t$ we have $|y|/2 \leq |x - y| \leq 3|y|/2$, and so

$$I_{22} \leq c_8 \int_0^\infty \psi(t) \left(\int_{|x| < t} \chi \left\{ y : \int_{|y| \geq 2t} |f(y)| |x - y|^{-n} dy > \lambda \right\} \phi(x) dx \right) dt$$

$$\leq c_9 \int_0^\infty \psi(t) \left(\int_{|x| < t} \phi(x) dx \right) \left(\int_{|y| \geq 2t} |f(y)| |y|^{-n} dy \right) dt$$

$$\leq \frac{c_9}{\lambda} \int_0^\infty \psi(t) \left(\int_{|x| < t} \phi(x) dx \right) \left(\int_{|y| \geq 2t} |f(y)| |y|^{-n} dy \right) dt.$$

The Hardy inequality

$$\int_0^\infty \psi(t) \left(\int_{|y| \geq 2t} |y|^{-n} |f(y)| dy \right) dt \leq C \int_{\mathbb{R}^n} |f(y)| \omega(|y|) dy$$

for $p = 1$ is characterized by the condition $C \leq c' B'_1$ (see [4], [14]), where

$$B'_1 = \sup_{r > 0} \left(\int_0^r \left(\int_{|x| < t} \phi(x) dx \right) \psi(t) dt \right) \ess \sup_{|x| > 2r} \frac{1}{\omega(x)}$$

$$= \sup_{r > 0} \left(\int_{|x| < r} \phi(x) \left(\int_{|x| < r} \psi(t) dt \right) dx \right) \ess \sup_{|x| > 2r} \frac{1}{\omega(x)}$$

$$\leq \sup_{r > 0} \left(\int_{|x| < r} \phi(r) \omega_1(|x|) dx \right) \ess \sup_{|x| > 2r} \frac{1}{\omega(x)}$$

$$= \sup_{r > 0} \left(\int_{|x| < r} \omega_1(|x|) dx \right) \ess \sup_{|x| > 2r} \frac{1}{\omega(x)} < \infty.$$

Condition (c') of the theorem guarantees that $B' \leq \mathcal{B} < \infty$. Hence, applying the Hardy inequality, we obtain

$$I_{22} \leq \frac{C_{13}}{\lambda} \int_{\mathbb{R}^n} |f(x)| \omega(|x|) dx.$$

Combining the estimates of I_1 and I_2, we get (12) for $\omega_1(t) = \omega_1(+\infty) + \int_t^\infty \psi(t) dt$. By Fatou’s theorem on passing to the limit under the Lebesgue integral sign, this implies (12). The theorem is proved. \hfill \Box

Analogously proved the following theorem.

Theorem 8. Suppose that $1 < p < \infty$, the kernel K of the convolution operator (5) satisfies the conditions (K1)–(K4) and $\varphi \in A_p(\mathbb{R}^n)$. Suppose
that u, u_1 are positive decreasing functions on $(0, \infty)$, $\omega(x) = u(|x|)\varphi(x)$, $\omega_1(x) = u_1(|x|)\varphi(x)$ and $B_p(\omega, \omega_1) < \infty$. Then inequality (7) is valid.

Remark 2. Note that for the case in which $u = u_1 = 1$, Theorem 3 was proved in [20] by using different methods. Further, in the case $1 < p < \infty$ Theorems 6 and 8 was proved in [3].

Acknowledgements. The author is partially supported by the grant of the Azerbaijan-U. S. Bilateral Grants Program II (project ANSF Award / 16071) and by TUBITAK (2221 visiting scientists fellowship programme, no. 220.01-619-48891. The author would like to express his thanks to Prof. V.M. Kokilashvili for many helpful discussions about this subject.

References

[1] E. Adams, *On weighted norm inequalities for the Riesz transforms of functions with vanishing moments*, Studia Math., 78 (1984), 107–153.

[2] I.A. Aliev and A.D. Gadjiev, *Weighted estimates of multidimensional singulars generated by the generalized shift operator*, English, translated into Russian Acad. Sci. Sb. Math., 77 (1994), 37–55.

[3] R.A. Bandaliyev, *Two-weight inequalities for convolution operators in Lebesgue space*. Mathematical Notes, 80 (2006), 3–10.

[4] J.S. Bradley, *The Hardy’s inequalities with mixed norms*, Canad. Math. Bull., 21 (1978), 405–408.

[5] A.P. Calderon, A. Zygmund, *On the existence of certain singular integrals*, Acta. Math., 88 (1952), 85–139.

[6] D. Edmunds, P. Gurka and L. Pick, *Compactness of Hardy-type integral operators in weighted Banach function spaces*, Studia Math., 109 (1994), 73–90.

[7] D. Edmunds and V. Kokilashvili, *Two-weight inequalities for singular integrals*, Canad. Math. Bull., 38 (1995), 119–125.

[8] D. Edmunds, V. Kokilashvili, and A. Meskhi, *Bounded and Compact Integral Operators*, Kluwer, Dordrecht, Boston, London, 2002.

[9] J. Garcia-Cuerva and J.L. Rubio de Francia, *Weighted Norm Inequalities and Related Topics*, North- Holland Math. Studies 116, Amsterdam, 1985.

[10] D.J. Grubb and C.N. Moore, *A variant of Hörmander condition for singular integrals*, Colloq. Math., 73 (1997), 165–172.
[11] V.S. Guliyev, *Two-weighted inequalities for integral operators in L_p-spaces, and applications*, Trudy Math. Inst. Steklov, 204 (1993), 113–136. English trans. in Proc. Steklov Inst. Math., 204 (1994), 97–116.

[12] E.G. Guseinov, *Singular integrals in spaces of functions that are summable with a monotone weight*, (Russian) Mat. Sb. (N.S.) 132(174) (1987), 28–44, 142; translation in Math. USSR-Sb. 60 (1988), 29–46.

[13] L. Hörmander, *Estimates for translation invariant operators in L_p spaces*, Acta. Math., 104 (1960), 93–140.

[14] V.M. Kokilashvili, *On Hardy’s inequalities in weighted spaces*, (Russian) Bull. Acad. Sci. Georgian SSR, 96 (1979), 37–40.

[15] V.M. Kokilashvili and A. Meskhi, *Two-weight inequalities for singular integrals defined on homogeneous groups*, Proc. A. Razmadze Math.Inst., 112 (1997), 57–90.

[16] V.G. Maz’ya, *Einbettingssatze fur Sobolewsche Raume I*, Leipzig, Teubner, 1979.

[17] B. Muckenhoupt, *Weighted norm inequalities for Hardy maximal functions*, Trans. Amer. Math. Soc., 165 (1972), 207–226.

[18] B. Muckenhoupt, *Hardy’s inequality with weights*, Studia Math., 44 (1972), 31–38.

[19] E.M. Stein, *Singular Integrals and Differentiability Properties of Functions*, Princeton Univ. Press, Princeton, NJ, 1970.

[20] R. Trujillo-Gonzalez, *Weighted norm inequalities for singular integrals operators satisfying a variant of Hörmander condition*, Comment. Math. Univ. Carolin., 44 (2003), 137–152.

[21] D.K. Watson, *Weighted estimates for singular integrals via Fourier transform estimates*, Duke Math. J., 60 (1990), 389–399.

Department of Mathematical Analysis
Baku State University
Institute of Mathematics and Mechanics, Baku
Azerbaijan
(E-mail: vagif@guliyev.com)

(Received : January 2008)
Submit your manuscripts at http://www.hindawi.com