Effects of different moisture and temperature levels on Salmonella survival in poultry fat

Valentina Trinetta,1,†, Austin McDaniel,† Gabriela Magossi,† Umut Yucel,† and Cassandra Jones‡

†Food Science Institute, Kansas State University, 1530 Mid-Campus Drive North, Manhattan, KS 66506; and ‡Department of Animal Sciences and Industry, Kansas State University, 1424 Claflin Road, Manhattan, KS 66506

ABSTRACT: Fat products have historically thought to have too low water activity to harbor pathogens. However, it has been recently reported that high moisture levels in fats may lead to Salmonella presence and growth. Limited research on strategies to eliminate pathogens in these environments is available, and the mechanisms contributing to microbial presence and growth are not yet well understood. The purpose of this research was to evaluate the effects of moisture levels and storage temperatures on the growth and survival of Salmonella in poultry fat. Samples were stored for 7 d at 48°C or 76°C and remaining Salmonella was evaluated. When poultry fat was challenged with a wet high inoculum, more than a 4 log CFU/mL difference in Salmonella population was observed with 1% and 3% moisture levels at 48°C after 5 d (P < 0.05). No differences between moisture levels (P > 0.05) were observed when samples were tested with a wet low inoculum. Counts below detectable limits were observed after 24 h in samples challenged at 76°C, regardless of inoculum level. When poultry fat was stored at 48°C and inoculated with low levels of Salmonella spp., bacterial growth was influenced only by time (P < 0.05) and not affected (P > 0.05) by moisture level. However, when poultry fat was stored at 48°C and inoculated with high levels of Salmonella spp., bacterial decrease was easier (P < 0.05) in samples containing greater moisture. This research suggests that residual moisture in containers during transportation of poultry fat largely does not affect Salmonella spp. growth.

Key words: dry inoculum, moisture, poultry fat, Salmonella, temperature, wet inoculum

INTRODUCTION

Recycling animal coproducts into animal feed has been practiced for >45 yr as a means of converting animal waste tissue into stable, value-added materials primarily used by the animal feed and pet food industries. It is estimated that the rendering industry collects and safely processes approximately 25 million tons of animal by-products each year in the United States (Meeker and Meisinger, 2015). The ingredients produced from the rendering process range from livestock feed to fertilizer, pet food to pharmaceuticals and lard to lubricants, with the majority returned to the feed industry as high-energy fats and high-quality proteins ingredients. During the rendering process, heat is applied. The continuous cooking process used by rendering facilities has been reported to be a cycle of 40 to 90 min at 115.6 to 143.3°C (NRA, 2005). After the thermal step, fat is mechanically

© The Author(s) 2019. Published by Oxford University Press on behalf of the American Society of Animal Science. This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com

Transl. Anim. Sci. 2019.3:1369–1374
doi: 10.1093/tas/txz090
separated producing different fractions (nonfat solid and liquid fat) that are further processed. Continued improvements within the industry have implemented process control monitoring to ensure proven cook times and temperatures have been reached for inactivation of specific microorganisms deemed to be a food safety hazard (Meeker, 2006).

Although the rendering industry has an aggressive approach to animal food ingredient quality and safety by use of long cook times and high temperatures, cross-contamination with pathogenic microorganisms may still occur postprocessing. Cross-contamination after processing has been proposed as the primary factor for the presence of *Salmonella* spp. in final rendered products (Troutt et al., 2001; Denton et al., 2005; Kinley et al., 2010). A survey sponsored by the Fats and Proteins Research Foundation evaluated raw materials (animal waste tissues), crax (material from cooking/expelling process), and final rendered products for five human pathogenic bacteria, including *Salmonella* spp. (Troutt et al., 2001). The presence of *Salmonella* spp. was found in 84.5% of the raw ingredients sampled, 0% of crax samples, and 26.1% of final rendered products (Troutt et al., 2001). These results coincide with other research evaluating the presence of *Salmonella* spp. in final rendered products, including protein meals, meat and bone meals, feather meal, meat meal, and poultry meal (Denton et al., 2005; Sapkota et al., 2007; Franco, 2005; Kinley et al., 2010; Laban et al., 2014). Although the rendering process is effective at pathogen reduction as seen with 0% *Salmonella* spp. in crax (Troutt et al., 2001), it is a point-in-time mitigation technique with no residual activity. This is most problematic with animal fat, which is routinely applied to pet food after its thermal kill-step. As a result, the application of *Salmonella*-contaminated animal fat may lead to pet or human illness, even if good manufacturing practices are followed by renderers and pet food manufacturers.

Although low water activity ingredients, such as animal fat, were once thought impossible to harbor *Salmonella* spp., it is now scientifically acknowledged that small quantities of water in these ingredients may lead to contamination. It has been recently reported that high moisture levels in fats may lead to *Salmonella* and other pathogens presence and growth (Denton et al., 2005). Outbreaks involving low-moisture, high-fat foods, such as chocolate and peanut butter, reported low infectious doses of 10 to 100 *Salmonella enterica* cells, which is considerably lower than the estimated 10⁶ cfu/g required to cause illness in a healthy individual (Blaser and Newman, 1982; Kapperud et al., 1993). Most rendered animal fats have definable levels of Moisture, Insolubles, and Unsaponifiables (MIU). If moisture levels rise, such as increased residual water from wet cleaning of tankers or trucks, it is plausible for *Salmonella* spp. to not only grow but thrive during transport. Microorganisms can quickly adapt to new environmental conditions and maintain viability in low-moisture foods (Gwyther et al., 2011). Therefore, the prevention of contamination is key, and control of factors influencing growth is important to understand. Limited research on strategies to eliminate pathogens in these environments is available: the mechanisms contributing to microbial presence and growth are not yet well understood. Therefore, the purpose of this research was to evaluate the effects of moisture levels and storage temperatures on the growth and survival of *Salmonella* in poultry fat overtime.

MATERIALS AND METHODS

Humane slaughter practices were followed, according to the USDA guidelines.

Samples

Poultry fat samples were obtained from a local supplier (Manhattan, KS) and tested for fat composition (average ~86.4%). Samples were stored at room temperature until the day of the experiments.

Microorganisms

Salmonella enterica Thompson (ATCC 13311), *Salmonella enterica* Newport (ATCC 6962), and *Salmonella enterica* Infantis (ATCC 51741) were selected for this study, because their association with recent pet food recalls. Cultures were grown overnight in 10-mL tryptic soy broth (BD Difco, Sparks, MD) at 37°C and sub-cultured once before cocktail preparation. A low and high inoculum (~10⁶ and ~10⁷ CFU/mL initial cocktail concentration) were prepared for each wet and dry inoculation procedure as explained below.

Wet Inoculation Procedure of Poultry Fat

Samples were wet inoculated using a modified method from Blessington, Theofel, and Harris (2013). Briefly, overnight *Salmonella* cultures were centrifuged for 10 min at 4000 rpm and room temperature. After centrifugation supernatants were discarded. To obtain a low concentration inoculum, pellets were resuspended in 10 mL 0.1% peptone.
water (BD Difco, Sparks, MD) and from each microbial solution a 1:9 aliquot was transferred into a new tube of fresh 0.1% peptone water. Absorbance at 600 nm was measured and appropriate dilution were made to reach 0.3 value. Solutions were mixed in equal amounts to obtain a cocktail final concentration of ~10^6 CFU/mL. Pellets were instead combined with fat to obtain ~10^8 CFU/mL. Alternatively, fat was divided into four different beakers of 100 g each and to obtained different moisture level, as described before. Samples were stored for 7 d at 48°C and 76°C. Salmonella population was evaluated daily. Ten grams of samples were preenriched in 90 mL of 1% Tween 80 Buffered Peptone (BD Difco, Sparks, MD) at 35 ± 2°C for 24 ± 2 h, enriched in both Rappaport-Vassiliadis (BD Difco, Sparks, MD) broth at 42°C for 24 h. Serial dilutions were then performed on Xylose Lysine Deoxycholate Agar (BD Difco, Sparks, MD).

Weibull Survival Kinetics Determination

OriginPro Lab Software (version 8) was used to determine the parameters of Weibull model based on van Boekel (2002):

\[
\log S(t) = -\frac{1}{2.303} \left(\frac{t}{\alpha} \right)^{\beta},
\]

where the parameters \(\alpha\) and \(\beta\) represent a characteristic time and curve shape, respectively. The goodness of the fit of the model was assessed using regression coefficients and least square errors. This model was applied only for samples challenged with the highest inoculum levels at 48°C, since at 76°C the count are below detectable limits after 24 h.

Statistical Analysis

Each experiment was conducted in triplicate. All the data collected were converted in log CFU/g and used to generate inactivation curves of Salmonella. Means and standard deviations were compared using Minitab and Excel (Microsoft Corp., Redmond, WA).

RESULTS

Figure 1 reports the data obtained when poultry fat was challenged with a high and low level of Salmonella wet inoculum. Wet inoculation wanted to mimic cross-contamination from moisture during transportation and storage. A 4 log CFU/mL difference in Salmonella population was observed with 1% and 3% moisture levels at 48°C after 5 d (\(P < 0.05; \) Figure 1A). The death rates were 4.8 and 17.3 d\(^{-1}\), respectively. Salmonella population in samples with 0.5% moisture slowly decreased overtime and reached 2 log CFU/g at the end of the experiment (after 7 d). The control samples (no addition of water) remained constant throughout the course of the experiment. No significant difference in pathogen count was observed. When a

Translate basic science to industry innovation
A low wet inoculum was used for the challenge study, a progressive decline in *Salmonella* population was observed in all samples, including the control (Figure 1B). No statistical difference was observed between moisture levels (P > 0.05).

A dry inoculation method was used instead to replicate cross-contamination from insoluble fractions and samples were again challenged with different moisture levels. Figure 2 reports *Salmonella* remaining population in poultry fat samples challenged at 48°C with a high-dry inoculum level. After 4 d counts below detectable limits were recorded when samples contained 1% and 3% moisture levels when compared with the control (P < 0.05). The death rates were 10.5 and 8.7 d⁻¹, respectively. Similar results were observed with a high wet inoculum: moisture levels of 1% and 3% have an effect (P < 0.05) in reducing *Salmonella* population when samples are treated at 48°C. Nevertheless, when fat samples were challenged with a low level of *Salmonella* dry inoculum, counts were below detectable limits after 24 h. Since an enrichment procedure was followed, the author believes that the dry conditions of the inoculum could have caused too harsh of conditions for *Salmonella* to adapt to the thermal treatment of 48°C; therefore, no survivals were reported.

For the counts reported when samples were challenged at 76°C, no variations were observed between moisture levels and/or inoculum type since all counts were below detectable limits after 24 h. At these conditions only, the temperature had a significant effect (P < 0.05) on *Salmonella* inactivation, and no differences among the other factors were observed.

The Weibull model was fit to explain observations and the effect of water content on survival kinetics for samples challenged with the highest inoculum levels. The model parameters β (shape parameter) and α (hazard rate or scale parameter) are given in Table 1. When the heat resistance of cells increases, the survival kinetics show a concave upward shape ($\beta < 1$), whereas a concave downward survival curve ($\beta > 1$) indicates the heat resistance of cells decreases with heating time (van Boekel, 2002). The strong correlation between the model parameters α and β is also a good indication of the reliability of the analysis and performance of the model.

DISCUSSION

Overall, a significant and rapid decrease in *Salmonella* population was observed as a function of increased temperature. Regardless of moisture level, inoculum level, or contamination level, holding poultry fat at 76°C resulted in minimal detectable *Salmonella* spp. after 24 h. When poultry fat was stored at 48°C and inoculated with low levels of *Salmonella* spp., bacterial decrease was influenced only by time and not affected by moisture level. However, when poultry fat was stored at 48°C and inoculated with high levels of *Salmonella* spp., bacterial decrease was easier in samples containing greater moisture. Our findings differ from...
CONCLUSION

In summary, Salmonella harborage and growth in poultry fat can be affected by a multitude of factors, including moisture level, contamination level, temperature, and time. The present research suggests that residual moisture in containers during transportation of poultry fat largely does not affect Salmonella spp. growth. If contaminated with a high level of Salmonella spp. (10^8 cfu/mL) and held at a low temperature (48°C), moisture may influence the thermal death due to differences in water activity and water mobility kinetics.

ACKNOWLEDGMENTS

We wish to thank the Fats and Protein Research Foundation for the funding support and the USDA National Institute of Food and Agriculture Hatch/Multi-state project 1014385.

LITERATURE CITED

Blaser, M. J., and L. S. Newman. 1982. A review of human salmonellosis: I. Infective dose. Rev. Infect. Dis. 4:1096–1106.

Blessington, T., C. G. Theofel, and L. J. Harris. 2013. A dry-inoculation method for nut kernels. Food Microbiol. 33:292–297. doi:10.1016/j.fm.2012.09.009

van Boekel, M. A. J. 2002. On the use of the Weibull model to describe thermal inactivation of microbial vegetative cells. Int. J. Food Microbiol. 74:139–159. doi:10.1016/S0168-1605(01)00742-5

CDC (Centers for Disease Control, Prevention). 2017. Foodborne Outbreak Online Database (FOOD). Available from http://www.cdc.gov/foodborneoutbreaks/. Accessed August 2017.

Denton, J. H., C. N. Coon, J. E. Pettigrew, and C. M. Parsons. 2005. Historical and scientific perspectives of same species feeding of animal by-products. J. Appl. Poult. Res. 14:352–361. doi:10.1093/japr/14.2.352

Enache, E., A. Kataoka, D. G. Black, C. D. Napier, R. Podolak, and M. M. Hayman. 2015. Development of a dry inoculation method for thermal challenge studies in low-moisture foods by using talc as a carrier for salmonella and a surrogate (Enterococcus faecium). J. Food Prot. 78:1106–1112. doi:10.4315/0362-028X.JFP-14-396

Franco, D. A. 2005. A survey of salmonella serovars and most probable numbers in rendered-animal-protein meals: inferences for animal and human health. J. Environ. Health 67:18–22. doi:10.1016/j.bbabap.2011.06.005

Gwyther, C. L., A. P. Williams, P. N. Golyshin, G. Edwards-Jones, and D. L. Jones. 2011. The environmental and biosecurity characteristics of livestock carcass disposal methods: a review. Waste Manag. 31:767–778. doi:10.1016/j.wasman.2010.12.005

Kapperud, G., E. Skjerve, L. Vik, K. Hauge, A. Lysaker, I. Aalmen, S. M. Ostroff, and M. Potter. 1993. Epidemiological investigation of risk factors for campylobacter colonization in norwegian broiler flocks. Epidemiol. Infect. 111:245–255. doi:10.1017/s0950268800056958

Kiel, R.C. 2018. Location of Salmonella in poultry fat intended for use in pet food and the influence of fat’s physical characteristics on Salmonella prevalence and growth. J. Food. Prot. 81(8):1364–1372. doi:10.4315/0362-028X.JFP-17-344
Translate basic science to industry innovation

Kinley, B., J. Rieck, P. Dawson, and X. Jiang. 2010. Analysis of salmonella and enterococci isolated from rendered animal products. Can. J. Microbiol. 56:65–73. doi:10.1139/w09-108

Laban, S. E., G. Z. Moustafa, W. Anwer, and E. M. Badaway. 2014. Microbial load of poultry by-products following rendering process. Global Vet. 12(6): 756–759. doi:10.5829/idosi.gv.2014.12.06.83248

Meeker, D. L., and C. R. Hamilton. 2006. An overview of the rendering industry. In: D. L. Meeker, editor, Essential rendering: all about the animal byproducts industry. Arlington, VA: Kirby Lithographic Company Inc. p. 1–17.

Meeker, D. L., and J. L. Meisinger. 2015. Companion Animals Symposium: rendered ingredients significantly influence sustainability, quality, and safety of pet food. J. Anim. Sci. 93:835–847. doi:10.2527/jas.2014-8524

National Renderers Association Inc. 2005. The rendering process. Available from http://nationalrenderers.org/about/process. Accessed 12 November 2017.

Sapkota, A. R., L. Y. Lefferts, S. McKenzie, and P. Walker. 2007. What do we feed to food-production animals? A review of animal feed ingredients and their potential impacts on human health. Environ. Health Perspect. 115:663–670. doi:10.1289/ehp.9760

Troutt, H. F., J. C. Galland, B. I. Osburn, R. L. Brewer, R. K. Braun, J. A. Schmitz, P. Sears, A. B. Childers, E. Richey, E. Mather, et al. 2001. Prevalence of salmonella spp in cull (market) dairy cows at slaughter. J. Am. Vet. Med. Assoc. 219:1212–1215. doi:10.2460/javma.2001.219.1212