Human alterations of landscapes and native species distributions in many ways, including alterations mediated via domestic pets. While the negative impacts of domestic cats are well documented worldwide, the ecological effects of domestic dogs have received less scientific attention, particularly in the United States. Prevalence of free-ranging dogs may be especially problematic in areas with low density, but relatively ubiquitous human populations. We used camera-trap data collected during a 2008-2010 landscape-scale study consisting of 1181 camera stations (357 camera clusters) stratified over 16 counties in southern Illinois, USA, to estimate occupancy for domestic cats and dogs. We compared models of occupancy for three land cover types (forest, grassland, and wetland) in relation to anthropogenic features and estimated and compared the proportion of the region occupied by each species. Cats occurred across a moderate proportion of the landscape (0.44 ± 0.13 SE) and were associated with anthropogenic features. Moreover, we found domestic dog occupancy was greater across the landscape (0.59 ± 0.09), influenced more generally by land cover type, and was highest on grasslands and privately owned land. Domestic cat occupancy was more localized than that of dogs and less influenced by land cover type compared to anthropogenic features. Model averaged probability of dog occupancy was >0.50 across 19,049.39 km² of the region (>99%), but only 2270.53 km² (11.8%) for cats. Thus, while domestic cats may pose a more intensive threat to wildlife within the area they occupy, the impact of domestic dogs is likely to be more geographically extensive. Predicting the potential effects of these non-native species is complicated by a nuanced interaction between landscape composition, human density, and human behavior, and upends simplistic perceptions of the relative threats posed by the two species.

© 2018 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
1. Introduction

The current Anthropocene epoch is characterized by profound human influences resulting in global environmental degradation, defaunation, and loss of biodiversity (Dirzo et al., 2014; Lewis and Maslin, 2015; Tucker et al., 2018). The worldwide introduction and support of free-ranging domestic pets are a primary mechanism of human disturbance to native animal populations (Bellard et al., 2016; Clavero and Garcia-Berthou, 2005; Doherty et al., 2016). Domestic cats (*Felis catus*) and dogs (*Canis familiaris*) can cause devastating damage to native wildlife populations, directly through predation (Doherty et al., 2017; Loss et al., 2013), or indirectly through disease transmission (Brown et al., 2008; Furtado et al., 2016) and fear-mediated behavioral or demographic responses (Banks and Bryant, 2007; Bonnington et al., 2013; Farris et al., 2017; Zapata-Ríos and Branch, 2016). The threat is of increasing concern as domestic dog and cat populations are associated with almost all human populations, and as the human population has increased in density and expanded in range, so have the populations of domestic cats and dogs (Gompper, 2014a; Loss and Marra, 2017).

Variation in human attitudes towards domestic pets can modify the intensity and spatial scale of disturbance (Gompper, 2014a; Gramza et al., 2016; Parsons et al., 2016). Domestic pets are often entirely dependent on anthropogenic resources (Gompper and Vanak, 2008; Vanak and Gompper, 2009a, 2009b). As such, local distribution and demographics of human populations, commonly described along an urban-rural gradient, will determine where domestic pet-wildlife interactions are most likely to occur (Gompper, 2014a). Depending on local regulations and customs, domestic dogs and cats may be mostly constrained to human dwellings, or they may be free-ranging with varying degrees of dependence on humans. This dependence can range from owned companion or work animals to human-supplemented feral populations (Doherty et al., 2017; Loss and Marra, 2017). Thus, the extent of potential impacts to local environments can differ by region, human attitudes, and the distribution of human populations relative to wildlife habitat.

Numerous studies have attempted to quantify damage from domestic cats (Loss et al., 2013). However, impacts of domestic dogs have only recently received attention (Doherty et al., 2017; Gompper, 2014b; Hughes and Macdonald, 2013; Young et al., 2011). Domestic cats are intensive hunters presenting an immediate threat to native species (Dickman and Newsome, 2015) resulting in 7 times more local extirpations and extinctions compared to dogs (Doherty et al., 2016). Although they kill native wildlife more frequently, domestic cats are typically smaller than most domestic dogs, and thus can have smaller exploratory forays (Kays and DeWan, 2004) and be restricted in range by predation from larger native species (Crooks and Soule, 1999). In contrast, domestic dogs may range farther from human associated habitats (Young et al., 2011), are less susceptible to smaller-bodied predators (Ritchie et al., 2014), and commonly are brought by humans into remote areas for sport and other types of recreation (Wierzbowska et al., 2016). As a result, impacts from domestic cats may be intense but restricted to areas in close proximity to human dwellings, while impacts of dogs may be more pervasive across the landscape (Gompper, 2014a).

Studies in developing countries have found high rates of free-ranging dog occupancy and negative effects on native species (Farris et al., 2016; Silva-Rodríguez and Sieving, 2012; Zapata-Ríos and Branch, 2018). However, few studies within the contiguous United States have identified free-ranging dogs as a potential widespread conservation issue (Doherty et al., 2016; Young et al., 2011), but some do note high dog use congruent with human land use (Parsons et al., 2016). This may be because most studies in the US have occurred in centers of human density or protected areas with restrictions on dog activity where it is difficult to parse effects of dogs from general anthropogenic effects (Forrest and St. Clair, 2006; George and Crooks, 2006; Reed and Merenlender, 2011; Weston et al., 2014). In these areas, public perception and leash regulations can reduce the presence of free-ranging dogs as owners may restrain dogs (Parsons et al., 2016) and efforts to reduce the stray or feral population may receive greater attention and resources (Lord et al., 1998). However, there are many areas of the US where human density is lower and social norms concerning dog ownership are relaxed, including rural agricultural areas, areas with a tradition of hunting with dogs, and areas where dogs are used as guard animals for pastured livestock. As a result, domestic dogs may have considerable impacts on native wildlife populations (Home et al., 2017) including direct and non-consumptive effects on prey populations (Banks and Bryant, 2007; Lord et al., 2001; Silva-Rodriguez and Sieving, 2012), but also on mesopredator populations as a perceived or real predator (Gompper and Vanak, 2008; Vanak and Gompper, 2010, 2009a), and closely associate wild populations as disease reservoirs and vectors (Acosta-Jamett et al., 2011; Kat et al., 1995; Knobel et al., 2014).

We assessed domestic dog and cat occupancy in relation to anthropogenic features across three land cover types in the midwestern United States. We expected that occupancy of dogs and cats would decrease with distance from anthropogenic features, increase with density of human features, and be greater on privately owned parcels compared to publicly owned and managed lands. We predicted domestic dog occupancy would be higher compared to domestic cats and affect a larger proportion of the overall landscape. We also evaluated how the relationship between domestic pet occupancy to anthropogenic features changed by land cover type and used this information to assess potential impacts to native species and identified areas where conservation actions would be most effective to reduce potential impacts of domestic dogs and cats.
2. Material and methods

2.1. Study area and data collection

We established a landscape-scale camera-trap study across 16 counties in southern Illinois, USA (Fig. 1), comprising 16,058 km² of the Southern Till Plain, Wabash Border, Shawnee Hills, Ozarks, Lower Mississippi River bottomlands, and Coastal Plain natural divisions of Illinois (Lesmeister et al., 2015; Neely and Heister, 1987; Schwegman, 1973). The study area consisted primarily of agricultural croplands (44%), open water (5%), and forest (20%), grasslands including pastures (19%), and wetlands (9%), permeated by anthropogenic features and urban land uses (4%; Illinois Department of Natural Resources, 1996, Fig. 1). Mean slope in the study area was 6.6° across a 92 m – 316 m elevational gradient. Mean temperature was $5.4 \pm 0.4 \, ^\circ C$ ($\pm SE$ throughout) and mean precipitation was $2.6 \pm 0.2 \, cm$ per week during the study period (January – April; National Oceanic and Atmospheric Administration, 2010).

We conducted the camera-trap study from January 2008 – April 2010. We divided the study area into 2.6-km² sections and employed a stratified random sampling approach to select 357 sections ranging from 11% to 100% forest cover (see Lesmeister et al., 2015 for details). We established a cluster of camera traps (3 – 4 camera stations with ≥250 m spacing) within each 2.6-km² section, resulting in 1188 camera stations within the 357 camera clusters. Each camera station was equipped with 1 digital remote camera (Cuddeback Excite [2.0 megapixel] or Capture [3.0 megapixel], Non Typical, Inc., Park Falls, WI) with passive infrared sensors and incandescent flash illumination. We secured cameras to trees at a height of approximately 0.5 m and pointed cameras towards game trails when present. To increase detection rates, we placed a can of sardines and fatty acid scent disk bait (U.S. Department of Agriculture Pocatello Supply Depot, Pocatello, ID) approximately 2 m in front of each camera. We set cameras to be active 24 h each day with a 1-minute delay between photographs.

To achieve a landscape-scale study design, we stratified sampling across years and months within a single season (January – April). Each camera cluster was surveyed within one of three years (2008 – 2010) for three weeks during the survey period. We visited camera clusters weekly to collect data and rebait and removed cameras after 3 weeks to redeploy at other clusters.

![Fig. 1](image_url)

Fig. 1. The study area in southern Illinois, USA shown in black (a) is comprised of 6 land cover types based on National Land Cover Data at 30 m × 30 m resolution (b) across the 16,058 km² region. The 1188 camera stations were arranged in 357 clusters shown in red (c). Occupancy models for domestic dogs and cats were compared across candidate sets including covariates representing the proportion of grassland (d), forest (e), and wetlands cover types for 50 ha and 250 ha areas surrounding each camera cluster. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)
We compiled covariates representing proximity to and density of human populations, and land ownership for each cluster. For each camera station, we measured distance to the boundary of the nearest municipality for coarse-scale anthropogenic influence, distance to nearest human structure for fine-scale anthropogenic influence (Illinois State Geological Survey, 2005), number of structures/hectare to represent an index of extent of human influence, and we recorded whether a camera station was on public or private land (see Lesmeister et al., 2015 for details). We also calculated the number of structures/ha and the % cover for each land cover type of interest (forest, grassland, and wetland) within two buffer distances from each camera station representing 50 ha and 250 ha sites and averaged these metrics over camera stations within a cluster. We compared these two buffer sizes because home range sizes are poorly understood for domestic dogs and cats and their foray distances can be highly variable and unpredictable (Lilith et al., 2008; Meek, 1999; Sepúlveda et al., 2015).

2.2. Data analyses

We implemented single-species single-season occupancy models (MacKenzie et al., 2002) in R (R Core Team, 2016) using the RPresence package (MacKenzie and Hines, 2017) to investigate how domestic dog and cat occupancy changed with anthropogenic features and local land cover composition. We used a sequential process to compare models and estimate detection probability (p) and then occupancy (ψ). We first fit models of detection for each domestic species using environmental and time-dependent covariates (survey week, mean temperature and mean precipitation for each survey week, month, and year), and an indicator variable (previous detection) to account for potential behavioral response to encountering the camera & bait. For this detection modeling step, we constrained occupancy to a single value ($\psi(.)$) and assessed relative support for each detection model by AICc (Burnham and Anderson, 2003).

After identifying the detection models with the greatest support, we compared support for a set of candidate occupancy models for each species and land cover type. Specifically, we aimed to evaluate whether domestic species occupancy was more strongly associated with anthropogenic covariates or land cover (main effects), and also whether the effect of anthropogenic factors differed across a gradient of land cover dominance (interactive effects). We constructed 3 subsets of candidate models for each species using the proportion of 3 land cover types as covariates: forest, grassland, and wetland. These 3 land cover types represent different suites of wildlife species that could potentially be impacted by domestic dogs and cats. Each candidate model set involved the land cover covariates (e.g., % forest cover at 50 ha scale, % wetland cover at 250 ha scale) and anthropogenic covariates (distance to structure, distance to nearest municipality border, structures/ha at 50 ha scale, structures/ha at 250 ha scale, and public or private land ownership), and included all single-variable models and additive combinations of anthropogenic and land cover covariates and the land cover type (e.g., ψ (distance to municipality + % forest cover at the 50 ha scale). We matched spatial scales to the land cover covariate when structure density was included as a variable in the candidate model (e.g., ψ (structures/ha at 50 ha scale + % forest cover at 50 ha spatial scale)). After comparing all single-variable and additive combinations in each candidate set for each land cover type, we tested if there was an interaction between anthropogenic covariates and the % land cover variable for candidate models within 5 ΔAICc of the top ranked model, as land cover was the variable for which we were interested in estimating changes in occupancy. We kept models with interaction terms in the final model set if they were ranked higher than respective candidate models with additive terms.

We compared models within and across land cover types using AICc and evidence ratios for variables derived by summed model weights (w_j) for each species. We used model-averaged estimates from the full set of candidate models (all land cover sets) for each species to predict occupancy across the study area at a 2.15 × 2.15 km raster pixel resolution. We used predicted surfaces to compare the overall potential impacts of domestic dogs compared to cats by summing the total area of the overall landscape with a predicted probability of occupancy >50% for each species. Finally, we calculated several class statistics including aggregation index, patch cohesion index (McGarigal et al., 2012) for the study area (30 m × 30 m resolution raster) using the SDMTools package in R (VanDerWal et al., 2014), to aid in interpretation of results. Class statistics quantified the high degree of fragmentation in the study area. Aggregation index ranges from 0—100 with values of 0 representing maximum disaggregation among patches of a land cover type. Patch cohesion index ranges from 0—100 and describes the physical connectedness of cover types with values close to 0 representing low connectedness.

3. Results

The camera-trap effort resulted in 102,711 photographic detections of endothermic animals over 29,988 camera days at the 1188 camera locations (357 camera clusters) surveyed (detailed in Lesmeister et al., 2015). We recorded 2203 photographs of domestic dogs and 685 of domestic cats at the 357 camera clusters, which resulted in 188 dog and 92 cat detections over the 1071 camera cluster survey weeks (sum of number of camera clusters operational during the survey week occasions). Of the domestic dog detections, 11 events were associated with humans, and in only one event was a dog on leash. However, nearly all dogs detected appeared in good health and were wearing collars, suggesting most individuals were owned pets. Domestic dogs were detected at 52% of the camera clusters while domestic cats were only detected at 26% (naive occupancy). The mean model-averaged estimate of occupancy across all species-specific model sets was 0.59 (±0.09 SE) for dogs and 0.44 (±0.13) for cats.

There was substantial support for a single model of detection for dogs ($p(\text{year} + \text{survey})$, $w_j = 0.79$). All competitive models for domestic dog occupancy included both anthropogenic covariates and land cover composition, with site covariates
measured at the 250 ha scale (Table 1). Additive models including % grassland as the land cover covariate had greatest support in general, including the overall top-ranked model (Table 1, Fig. 2). Predicted dog occupancy increased with % grassland, structures/ha, and private land ownership and decreased with distance to structure or municipality. For instance, 75% of forest cover is more likely to be positively associated with domestic dog occupancy on private than public land (Fig. 3). Among land cover types, we found the least support for domestic dog association with % wetland (Table 1) with some evidence that occupancy was negatively related to % wetland (Fig. 3).

For domestic cats, our data lent strong support ($w_l > 0.99$) to a single detection model including an interaction between study year and previous detection, suggesting that the behavioral response of cats to exposure to cameras and bait varied over time. Occupancy modeling results were less consistent for domestic cats than dogs, although cat occupancy also showed greater support for models with site covariates measured at the 250 ha scale than the 50 ha scale. All highly supported (ΔAICc < 2) models included anthropogenic covariates, but not all included land cover. We found support for domestic cat occupancy being associated with both % wetland and % forest but not % grassland; some models without any land cover variable had ΔAICc < 2 (Table 2), indicating relatively weak evidence for the importance of land cover. Generally, domestic cat occupancy increased with structures/ha and private land ownership, but decreased with % wetland, % forest, and distance to structure or municipality (Table 2, Fig. 3). Similar to dogs, 75% of cat detections occurred <508 m from human-made structures, although occupancy rates were lower and the maximum distance from structures for cat detections was less (1.34 km). The overall top model included distance to structure, structures/ha, and an interaction between land ownership and % wetland within 250 ha (Table 2), suggesting that wetland dominance had a stronger negative effect on domestic cat occupancy on private than public lands (Fig. 3).

When model averaged estimates were predicted across the landscape, estimated probability of dog occupancy was >0.50 at ~99% of raster pixels (representing 19,049.39 km²), whereas cat occupancy was likely in only 11.8% of raster pixels (2270.53 km²). We found little correlation (Pearson’s $r = 0.13$) of model–averaged predicted occupancy (at the raster pixel level) between domestic dogs and cats. Patch cohesion indices for all cover types influenced to a greater degree by anthropogenic features (Fig. 2). However, domestic dog occupancy was also strongly related to land ownership, after

Table 1

Land cover type	Model	ΔAICc	w_l	K	-logLik2	AICc
Forest	ψ(distance to structure + structures/ha + land ownership × % forest cover) 250ha	0.38	11	1159.31	1182.08	
Grassland	ψ(distance to municipality + structures/ha + land ownership × % forest cover) 250ha	1.52	11	1160.83	1183.60	
Wetlands	ψ(distance to structure + structures/ha + land ownership × % grassland cover) 250ha	2.69	10	1164.13	1184.76	

4. Discussion

Overall, probability of domestic dog occupancy was greater than domestic cat occupancy and presented potential for interaction with wildlife over a larger proportion of the landscape in southern Illinois. Domestic dog occupancy was more strongly influenced by land cover type, compared to domestic cat occupancy, which was influenced to a greater degree by anthropogenic features (Fig. 2). However, domestic dog occupancy was also strongly related to land ownership, after

Detection model: p (survey week × year).

Model weight calculated for models within a single land cover type candidate set.

Number of parameters.
accounting for forest dominance, whereas structure density affected dog occupancy in models including grassland and wetland land cover types. Thus, while domestic cats may pose a more intensive threat to wildlife within the area they occupy, the potential impact of domestic dogs is likely to be more geographically extensive. Predicting the potential effects of these non-native species is complicated by a nuanced interaction between landscape composition, human density, and human behavior.

Our finding that domestic cat occupancy was more localized than that of dogs can upend simplistic perceptions of the relative threats posed by the two species. In the context of their ecological impact, domestic cats typically receive more attention than dogs in North America (Doherty et al., 2017) due to their intensive hunting behaviors. However, the net impact of one species on others (e.g., via predation) can depend on its spatial distribution as much as (or more than) it depends on the mean abundance. In the case of predation, substantial spatial heterogeneity in predator abundance or predation risk can stabilize otherwise unstable dynamics between specialists and their prey (Hassell et al., 1991) and promote persistence of sparse prey threatened by persistently abundant generalists (Goodwin et al., 2005; Schmidt and Schauber, 2008). Factors that concentrate risk in some areas while others serve as refugia reduce overall predator impact because hunting effort is wasted in areas where prey have already been depleted, and because prey can become numerically concentrated in refugia by actively selecting those sites as well as by passive selection mechanisms (Schauber et al., 2007). By similar processes, spatial heterogeneity can reduce efficiency of disease transmission and ecological impacts of nutrient deposition. Based on their greater overall probability occupancy and weaker spatial association with human dwellings in the region, we suggest that domestic dogs pose greater potential for ecological impacts than commonly appreciated.

The observed pattern of domestic cat occupancy associated with anthropogenic features and human densities, is congruent with previous studies (Pearre and Maass, 1998; Sims et al., 2008). Cats can be a significant source of mortality for a wide range of taxa including birds, small mammals, and reptiles (Loss et al., 2013). The close association of the cats detected in our study to human population density suggests many outdoor cats were owned or subsidized and protected by humans and most cats detected appeared to be in good physical conditions. Food supplementation decouples cat populations from the abundance of prey (Newton, 1998; Sims et al., 2008) and outdoor cats can also have direct and indirect sublethal effects on birds (Bonnington et al., 2013), such as reducing parental care and increasing vulnerability to other predators. Supplemented populations of cats can also serve as reservoirs for parasites and pathogens and increase disease transmission among native felids (Bevins et al., 2012; Brown et al., 2008; Gerhold and Jessup, 2013). While domestic cat occupancy was lower than dogs, cats still occupied a greater proportion of the study area than similar-sized native mesopredators including red fox (Vulpes vulpes).

Fig. 2. Evidence ratios for summed model weights measuring support for anthropogenic features (left panel) and natural land cover types (left panel) calculated for domestic dog (black symbols) and cat (gray symbols) single-season occupancy candidate model sets.
vulpes; \(\bar{\psi} = 0.26 \pm 0.04 \) and gray fox \((Urocyon cinereoargenteus; \bar{\psi} = 0.29 \pm 0.03; \text{Lesmeister et al., 2015})\), and thus could pose considerable risk to local wildlife across southern Illinois.

Interestingly, cat occupancy declined with increased forest dominance, which correlated with increased fine-scale use by coyotes \((\text{Canis latrans}; \text{Lesmeister et al., 2015})\). Coyotes are common cat predators \((\text{Grubbs and Krausman, 2009})\) and were ubiquitous in the study area \((\bar{\psi} = 0.95 \pm 0.03 \text{ across camera clusters}; \text{Lesmeister et al., 2015})\). In addition, bobcat \((\text{Lynx rufus})\) populations are recovering in southern Illinois and occupancy and survival declined with increasing anthropogenic influences such as roads \((\text{Lesmeister et al., 2015}; \text{Nielsen and Woolf, 2002})\). While human density is generally low, human presence is pervasive across the region. Thus, coyotes and bobcats could have positive indirect effects on native prey populations \((\text{Crooks and Soule, 1999})\) through reduced cat occupancy in more forested areas and farther from anthropogenic habitats, but the broad-scale distribution of humans across the landscape still expands the presence of domestic cats across a range of habitats.

Dogs were widespread across the 16-county study area, however differences in occupancy in relation to land cover can result in differential impacts to native species. Native prairies have declined precipitously in the US and grassland wildlife
species are threatened by fragmentation, degradation and conversion of habitat (Rahmig et al., 2009; Samson and Knopf, 1994). Grassland birds including Henslow sparrow (Ammodyramus henslowii) could be at particular risk in Illinois (Walk et al., 2010) where high rates of dog occupancy may exacerbate population declines and hinder recovery efforts, although additional research is required to determine specific impacts. Domestic dogs can also negatively impact survival of game species in grassland habitats, depredating white-tailed deer (Odocoileus virginianus) fawns (Nelson and Woolf, 1987; Rohm et al., 2007) and wild turkey hens on nests (Meleagris gallopavo; Speake et al., 1985), also further decreasing potential recruitment. High rates of dog occupancy on private land in dominant forest areas could negatively impact specialists in those habitats. For example, gray fox populations have declined (Bluett, 2013) and range has contracted in southern Illinois (Lesmeister et al., 2015). Asymmetrical competition among native canids resulting in intraguild killing, spatial displacement from forested areas, (coyotes) and increased exploitative competition in human-associated habitats (red fox) are proposed agents. Thus, interactions with free-ranging dogs could exacerbate cumulative impacts to gray fox populations across the region. However, research specifically evaluating the interactions between dogs and native wildlife within different land cover types is necessary to effectively measure impacts (Young et al., 2011).

The large proportion of southern Illinois occupied by free-ranging dogs was surprising. But perhaps this should be expected considering the rural environment and fragmented mosaic landscape composition (Fig. 1). A meta-analysis of studies of domestic dogs found the human:dog ratio and percentage of owned dogs that were restricted in their movements was generally lower in rural landscapes (Gompper, 2014a) and dog–wildlife interactions peaked along the rural wildland interface

Land cover type	Model a	ΔAICc	w i	K	-logLik2	AICc
Forest	ψ(structures/ha + % forest cover) 250ha	0	0.14	9	704.92	723.44
	ψ(land ownership)	0.88	0.09	8	707.90	724.32
	ψ(land ownership + distance to structure × % forest cover) 250ha	1.70	0.06	8	708.73	725.14
	ψ(land ownership × % forest cover) 250ha	1.92	0.16	10	704.62	725.26
	ψ(distance to structure + structures/ha + % forest cover) 250ha	1.96	0.05	10	707.47	725.74
	ψ(distance to municipality + structures/ha + % forest cover) 250ha	2.07	0.05	10	708.47	725.51
	ψ(distance to structure + structures/ha + land ownership + % forest cover) 250ha	2.13	0.05	9	707.05	725.57
	ψ(distance to structure + structures/ha × % forest cover) 250ha	2.55	0.04	11	703.23	725.99
	ψ(distance to structure × % forest cover) 250ha	2.58	0.04	12	701.11	726.02
	ψ(land ownership + % forest cover)	2.64	0.04	8	709.66	726.08
	ψ(land ownership + % grassland cover)	0.83	0.15	8	708.73	725.14
	ψ(land ownership + % grassland cover) 50ha	2.10	0.08	9	709.70	726.42
	ψ(land ownership × % grassland cover) 250ha	2.10	0.08	9	709.70	726.42
	ψ(land ownership + % grassland cover) 50ha	2.44	0.07	9	708.24	726.76
	ψ(distance to municipality + structures/ha + % grassland cover) 250ha	2.59	0.06	11	704.14	726.91
	ψ(distance to structure + structures/ha + % grassland cover) 250ha	2.60	0.06	11	704.16	726.92
	ψ(distance to municipality + structures/ha + % grassland cover) 250ha	3.78	0.03	10	707.46	728.1
	ψ(distance to municipality + structures/ha + land ownership + % grassland cover) 250ha	3.81	0.03	10	707.49	728.12
	ψ(distance to structure + land ownership + % grassland cover) 250ha	4.21	0.03	10	708.79	728.53
	ψ(distance to structure + structures/ha + % grassland cover) 250ha	4.56	0.02	10	708.24	728.87
	ψ(distance to municipality)	4.80	0.02	8	712.7	729.12
Grassland	ψ(distance to structure + structures/ha + land ownership + % wetland cover) 250ha	0	0.23	8	707.90	724.32
	ψ(distance to structure + structures/ha + land ownership + % wetland cover) 50ha	0.83	0.15	8	708.73	725.14
	ψ(distance to structure + structures/ha + land ownership + % wetland cover) 50ha	2.10	0.08	9	709.70	726.42
	ψ(distance to structure + structures/ha + land ownership + % wetland cover) 250ha	2.44	0.07	9	708.24	726.76
Wetlands	ψ(distance to structure + structures/ha + land ownership + % wetland cover) 250ha	0	0.19	12	697.64	722.55
	ψ(distance to structure + structures/ha + land ownership + % wetland cover) 50ha	1.77	0.07	8	703.9	724.32
	ψ(distance to structure + structures/ha + land ownership + % wetland cover) 250ha	1.99	0.07	10	703.9	724.54
	ψ(land ownership × % wetland cover) 250ha	2.6	0.05	8	708.73	725.14
	ψ(land ownership + % wetland cover) 50ha	3.28	0.04	9	707.3	725.82
	ψ(land ownership + % wetland cover) 50ha	3.34	0.04	10	705.25	725.88
	ψ(land ownership × % wetland cover) 50ha	3.71	0.03	9	707.74	726.26
	ψ(distance to structure + land ownership + % wetland cover) 250ha	3.77	0.03	12	703.9	726.32
	ψ(distance to structure + land ownership × % wetland cover) 250ha	4.1	0.02	11	703.88	726.64
	ψ(distance to structure + land ownership + % wetland cover) 250ha	4.36	0.02	12	702	726.91
	ψ(distance to structure + land ownership + % wetland cover) 50ha	4.4	0.02	11	704.18	726.94
	ψ(distance to structure + land ownership + distance to municipality + % wetland cover) 250ha	4.41	0.02	12	702.05	726.96
	ψ(distance to structure + structures/ha + land ownership + % wetland cover) 250ha	4.41	0.02	11	704.2	726.96
	ψ(distance to structure + structures/ha + land ownership + % wetland cover) 250ha	4.57	0.02	9	708.6	727.12
	ψ(distance to structure + municipality + % wetland cover) 250ha	4.74	0.02	11	704.52	727.29

a Detection model: p(year × previous detection).
b Model weight calculated for models within a single land cover type candidate set.
c Number of parameters.
Agriculture is the dominant land cover (44% of study area), but the region is commonly characterized by relatively high edge density (Heske, 1995; Marini et al., 1995; McDonald et al., 2008). Moreover, approximately 12% of the study area was public lands including the Shawnee National Forest, Crab Orchard and Cypress Creek National Wildlife Refuges, and 21 state-managed parks and natural areas (Lesmeister et al., 2015). These public holdings were generally aggregated but not contiguous, as reflected by patch cohesion and aggregation indices, and are permeated by private inholdings. As a result, anthropogenic influences are pervasive and 90% of the pixels for the predicted landscapes are within 1.75 km of a human structure with a mean dog occupancy rate of 0.33, and 80% of pixels were within 1 km of human structures leaving few areas free of domestic dogs (Fig. 4).

The strong effect of land ownership on overall domestic cat occupancy and dog occupancy in areas with high forest dominance highlights the role human values and local regulations can play in anthropogenic impacts on wildlife. The effect of human behavior on dog occupancy could be considered from an optimistic perspective, as human actions that allow for extensive distribution of dogs can equally affect a decline in occupancy. Human perceptions of risk towards domestic pets

Fig. 4. Model-averaged predicted domestic dog occupancy rates across a standardized gradient of distances to structures (top). Occupancy was estimated using single-season occupancy models for a camera-trap study conducted from January–April 2008–2010, in 16 counties in southern Illinois, USA. Distribution of real minimum distances to structures are shown for all camera trap clusters (middle), and the entire study area (2.06 km × 2.06 km raster pixel resolution).
compared to wildlife are unequal, and perceived risk of pets to wildlife are often underestimated. Gramza et al. (2016) found misperception or underestimation of the risk domestic cats posed to wildlife led to more irresponsible behavior in cat owners. Education and local regulations can be powerful tools in addressing human perceptions and influencing attitudes to reduce potential impacts of domestic dogs and cats (Bellard et al., 2016; Gramza et al., 2016; Parsons et al., 2016). Pet owner education may be particularly effective when targeted in areas with extensive private inholdings and bordering public lands.

The distribution of free-ranging domestic pets across southern Illinois is extensive and threatens wide-ranging potential impacts for native wildlife if left unchecked. However, specific interactions with and impacts to native species are still unknown, which will make changing stakeholder perspectives difficult. There is often heated debate surrounding policy and in addressing concerns about local practices in maintaining free-ranging, owned or subsidized pets (Loss and Marra, 2017; Loyd and Miller, 2010; Wald et al., 2013). Globally, the threats dogs pose are highly underestimated, both by the public and by conservationists (Doherty et al., 2017). Thus, while education of stakeholders including landowners, managers, and pet owners is necessary, it is equally critical that conservationists are armed with defensible evidence of prevalence and impacts of domestic pets for public education and conservation efforts to be effective.

Acknowledgements

Funding was provided by USDA Forest Service, Pacific Northwest Research Station and the Illinois Department of Natural Resources, Federal Aid in Wildlife Restoration Project W-135-R. Field assistance was provided by E. Braaten, B. Caldron, B. Easton, C. Gillen, E. Hoffman, C. Holy, H. Kufahl, S. Periquet, S. Ramakrishnan, and L. Wyatt. We thank the state and federal employees that assisted in gaining approval for surveys on public land, and 310 private landowners that allowed access to their property for surveys. This product represents the views of the authors, and any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government.

References

Acosta-Jamett, G., Chalmers, W.S.K., Cunningham, A.A., Cleaveland, S., Handel, I.G., Bronsvoort, B.M. d. C., 2011. Urban domestic dog populations as a source of canine distemper virus for wild carnivores in the Coquimbo region of Chile. Vet. Microbiol. 152, 247–257.

Banks, P.B., Bryant, J.V., 2007. Four-legged friend or foe? Dog walking displaces native birds from natural areas. Biol. Lett. 3, 611–613.

Bellard, C., Genovese, P., Jeschke, J.M., 2016. Global patterns in threats to vertebrates by biological invasions. Proc. R. Soc. B Biol. Sci. 283, 20152454.

Bevins, S.N., Carver, S., Boydston, E.E., Lyren, L.M., Aldridge, M., Logan, K.A., Riley, S.P.D., Fisher, R.N., Vickers, T.W., Boyce, W., Salman, M., Lappin, M.R., Crooks, K.R., VandeWoude, S., 2012. Three pathogens in sympatric populations of pumas, bobcats, and domestic cats: implications for infectious disease transmission. PLoS One 7, 1–10.

Bluett, R.D., 2013. Archery Deer hunter Survey. Springfield, Illinois, USA, p. 2013.

Bonnington, C., Gaston, K.J., Evans, K.L., 2013. Fearing the feline: domestic cats reduce avian fecundity through trait-mediated indirect effects that increase nest predation by other species. J. Appl. Ecol. 50, 15–24.

Brown, M.A., Cunningham, M.W., Roca, A.L., Troyer, J.L., Johnson, W.E., O’Brien, S.J., 2008. Genetic characterization of feline leukemia virus from Florida panthers. Emerg. Infect. Dis. 14, 252.

Burnham, K.P., Anderson, D.R., 2003. Model Selection and Multi-Model Inference: a Practical Information Theoretic Approach, second ed. Springer, New York, New York, USA.

Butler, J.R.A., Toit, J.T., Bingham, J., 2004. Free-ranging Domestic Dogs (Canis familiaris) as Predators and Prey in Rural Zimbabwe: Threats of Competition and Disease to Large Wild Carnivores, vol. 115, pp. 369–378.

Clavero, M., García-Berthou, E., 2005. Invasive species are a leading cause of animal extinctions. Trends Ecol. Evol. 20, 110.

Crooks, K.R., Soule, M.E., 1999. Mesopredator release and avifaunal extinctions in a fragmented system. Nature 400, 563–566.

Dickman, C.R., Newcombe, T.M., 2015. Individual hunting behaviour and prey specialisation in the house cat Felis catus: implications for conservation and management. Appl. Anim. Behav. Sci. 173, 76–87.

Dirzo, R., Young, H.S., Galetti, M., Isaac, N.J.B., Collen, B., 2014. Defaunation in the Anthropocene. Science 345, 401–406.

Doherty, T.S., Dickman, C.R., Glen, A.S., Newcombe, T.M., Nimmo, D.G., Ritchie, E.G., Vanak, A.T., Wirsing, A.J., 2017. The global impacts of domestic dogs on threatened vertebrates. Biol. Conserv. 210, 56–59.

Doherty, T.S., Glen, A.S., Nimmo, D.G., Ritchie, E.G., Dickman, C.R., 2016. Invasive predators and global biodiversity loss. Proc. Natl. Acad. Sci. Unit. States Am. 113, 11261–11265.

Farris, Z.J., Kelly, M.J., Karpany, S., Ratelolaly, F., 2016. Patterns of spatial co-occurrence among native and exotic carnivores in north-eastern Madagascar. Anim. Conserv. 19, 189–198.

Forrest, A., St Clair, C.C., 2006. Effects of dog leash laws and habitat type on avian and small mammal communities in urban parks. Urban Ecosyst. 9, 51.

Farris, Z.J., Kelly, M.J., Karpany, S., Ratelolaly, F., 2016. Patterns of spatial co-occurrence among native and exotic carnivores in north-eastern Madagascar. Anim. Conserv. 19, 189–198.

Forrest, A., St Clair, C.C., 2006. Effects of dog leash laws and habitat type on avian and small mammal communities in urban parks. Urban Ecosyst. 9, 51.

Farris, Z.J., Kelly, M.J., Karpany, S., Ratelolaly, F., 2016. Patterns of spatial co-occurrence among native and exotic carnivores in north-eastern Madagascar. Anim. Conserv. 19, 189–198.

Forrest, A., St Clair, C.C., 2006. Effects of dog leash laws and habitat type on avian and small mammal communities in urban parks. Urban Ecosyst. 9, 51–66.

Furtado, M.M., Midori, E., Hayashi, K., Allendorf, S.D., Tereza, A., Ja, D.A., Megid, J., Jose, C., To, M., 2016. Exposure of free-ranging wild carnivores and domestic dogs to canine distemper virus and parvovirus in the cerrado of central Brazil. EcoHealth 13, 549–557.

George, S.I., Crooks, K.R., 2006. Recreation and large mammal activity in an urban nature reserve. Biol. Conserv. 133, 107–117.

Gerhold, R.W., Jessup, D.A., 2013. Zoonotic diseases associated with free-roaming cats. Zoonoses Public Health 60, 189–195.

Gompper, M.E., 2014a. The dog-human-wildlife interface: assessing the scope of the problem. In: Gompper, M.E. (Ed.), Free-ranging Dogs and Wildlife Conservation. Oxford University Press, Oxford, pp. 45–55.

Gompper, M.E., 2014b. Free-ranging Dogs and Wildlife Conservation. Oxford University Press, Oxford, United Kingdom.

Gompper, M.E., Vanak, A.T., 2008. Subsidized predators, landscapes of fear and disarticulated carnivore communities. Anim. Conserv. 11, 13–14.

Goodwin, B.J., Jones, C.G., Schauber, E.M., Ostfeld, R.S., 2005. Limited dispersal and heterogeneous predation risk synergistically enhance persistence of rare prey. Ecology 86, 3139–3148.

Gramza, A., Teel, T., Vandewoude, S., Crooks, K., 2016. Understanding public perceptions of risk regarding outdoor pet cats to inform conservation action. Conserv. Biol. 30, 276–286.

Grubb, S.E., Krausman, P.R., 2009. Use of urban landscape by coyotes. SW. Nat. 54, 1–12.

Hassell, M.P., May, R.M., Bronsvoort, B.M. d. C., 2011. Urban domestic dog populations as a source of canine distemper virus for wild carnivores in the Coquimbo region of Chile. Vet. Microbiol. 152, 247–257.

Heske, E.J., 1995. Mammalian abundances on forest-farm edges versus forest interiors in southern Illinois: is there an edge effect? J. Mammal. 76, 562–568.

Heske, E.J., 1995. Mammalian abundances on forest-farm edges versus forest interiors in southern Illinois: is there an edge effect? J. Mammal. 76, 562–568.
Home, C., Bhatnagar, Y.V., Vanak, A.T., 2017. Canine conundrum: domestic dogs as an invasive species and their impacts on wildlife in India. Anim. Conserv. 1–8.
Hughes, J., Macdonald, D.W., 2013. A review of the interactions between free-roaming domestic dogs and wildlife. Biol. Conserv. 157, 341–351.
Illinois Department of Natural Resources, 1996. Checklist of birds of Illinois. Springfield, Illinois, USA.
Illinois State Geological Survey, 2005. Illinois digital orthophotography quarter quadrangle data. Illinois State Geol. Surv. Geo Inf. Syst. Database.
Kat, P.W., Alexander, K.A., Smith, J.S., Munson, L., 1995. Rabies and African wild dogs in Kenya. Proc. R. Soc. B 262, 229–233.
Kays, R.W., DeWaan, A., 2004. Ecological effects of inside/outside house cats around a suburban nature preserve. Anim. Conserv. 7, 273–283.
Knobel, D., Butler, J.R., Lembo, T., Critchlow, R., Gompper, M.E., 2014. Dogs, disease, and wildlife. In: Free-ranging Dogs and Wildlife Conservation, pp. 144–160.
Lesmeister, D.B., Nielsen, C.K., Schauber, E.M., Hellgren, E.C., 2015. Spatial and temporal structure of a mesocarnivore guild in midwestern North America. Wildl. Monogr. 191, 1–61.
Lewis, S.L., Maslin, M.A., 2015. Defining the Anthropocene. Nature 519, 171–180.
Lilith, M., Calver, M., Garkakis, M., 2008. Roaming habits of pet cats on the suburban fringe in Perth, Western Australia: what size buffer zone is needed to protect wildlife in reserves? Aust. Zool. 34, 65–72.
Lord, A., Waas, J.R., Innes, J., Whittingham, M.J., 2001. Effects of human approaches to nests of northern New Zealand dotterels. Biol. Conserv. 98, 233–240.
Lord, L.K., Wittum, T.E., Neer, C.A., Gordon, J.C., 1998. Demographic and needs assessment survey of animal care and control agencies. J. Am. Vet. Med. Assoc. 213, 483–487.
Loss, S.R., Marra, P.P., 2013. The impact of free-ranging domestic cats on wildlife of the United States. Nat. Commun. 4, 7.
Loyd, K.A., Miller, C.A., 2010. Factors related to preferences for trap–neuter–release management of feral cats among Illinois homeowners. J. Wildl. Manag. 74, 160–165.
MacKenzie, D.I., Nichols, J.D., Lachman, G.B., Droege, S., Royle, J.A., Langtimm, C.A., 2002. Estimating site occupancy rates when detection probabilities are less than one. Ecology 83, 2248–2255.
Marini, M.A., Robinson, S.K., Heske, E.J., 1995. Edge effects on nest predation in the Shawnee National Forest, southern Illinois. Biol. Conserv. 74, 203–213.
McDonald, P.T., Nielsen, C.K., Oyana, T.J., Sun, W., 2008. Modelling habitat overlap among sympatric mesocarnivores in southern Illinois, USA. Ecol. Model. 215, 276–286.
McGarigal, K., Cushman, S.A., Ene, E., 2012. FRAGSTATS V4: Spatial Pattern Analysis Program for Categorical and Continuous Maps. Computer Software Program Produced by the Authors at the University of Massachusetts, Amherst.
Mee, P.D., 1999. Home range of house cats Felis catus living within a National Park. Wildl. Res. 26, 847–885.
National Oceanic and Atmospheric Administration. 2010. National Climate Data Center: World's Largest Archive of Climate Data's Largest Archive of Climate Data.
Neely, R.D., Heister, C.G., 1987. The Natural Resources of Illinois: Introduction and Guide. Champaign, Illinois, USA special publication 6.
Nielsen, T.A., Woolf, A., 1987. Mortality of white-tailed deer fawns in southern Illinois. J. Wildl. Manag. 51, 326–329.
Newton, I., 1998. Population Limitation in Birds. Academic Press, London.
Nielsen, C.K., Woolf, A., 2002. Survival of unexploited bobcats in southern Illinois. J. Wildl. Manag. 66, 833–838.
Parsons, A.W., Bland, C., Forrester, T., Baker-Whatton, M.C., Schultier, S.G., McShea, W.J., Costello, R., Kays, R., 2016. The ecological impact of humans and dogs on wildlife in protected areas in eastern North America. Biol. Conserv. 202, 75–88.
Pearre, S.J., Maass, R., 1998. Trends in the prey size-based trophic niches of feral and House Cats Felis catus L. Mamm Rev. 28, 125–139.
R Core Team, 2016. R: A Language and Environment for Statistical Computing.
Rahmig, C.J., Jensen, W.E., Wuth, K.A., 2009. Grassland bird responses to land management in the largest remaining tallgrass prairie. Conserv. Biol. 23, 430–432.
Reed, E., Merenlender, A.M., 2011. Effects of management of domestic dogs and recreation on carnivores in protected areas in northern California. Conserv. Biol. 25, 504–513.
Ritchie, E.G., Dickman, C.R., Letnic, M., Vanak, A.T., 2014. Dogs as predators and trophic regulators. In: Gompper, M.P. (Ed.), Free-ranging Dogs and Wildlife Conservation. Oxford University Press, Oxford, pp. 55–68.
Rohm, J.H., Nielsen, C.K., Woolf, A., 2007. Survival of white-tailed deer trappers and trophic predators. In: Gompper, M.P. (Ed.), Free-ranging Dogs and Wildlife Conservation. Oxford University Press, Oxford, pp. 55–68.
Schwegman, J.E., 1973. Comprehensive Plan for the Illinois Nature Preserves System, Part 2: the Natural Divisions of Illinois Nature Preserves Commission (Rockford, Illinois, USA. Rockford, Illinois, USA).
Següvelada, M., Pelican, K., Cross, P., Eguren, A., Singer, R., 2015. Fine-scale movements of rural free-ranging dogs in conservation areas in the temperate rainforest of the coastal range of southern Chile. Mamm. Biol. 80, 290–297.
Silva-Rodríguez, E.A., Sieving, K.E., 2012. Domestic dogs shape the landscape-scale distribution of a threatened forest ungulate. Biol. Conserv. 150, 103–110.
Sims, V., Evans, K.L., Newton, S.E., Tratalos, J.A., Gaston, K.J., 2008. Avian assemblage structure and domestic cat densities in urban environments. Divers. Distrib. 14, 387–399.
Speake, D.W., Metzler, R., McCluney, J., 1985. Mortality of wild turkey pouls in northern Alabama. J. Wildl. Manag. 49, 472–474.
Srebeck-Araujo, A.C., Chiarello, A.G., 2008. Domestic dogs in Atlantic forest preserves of south-eastern Brazil: a camera-trapping study on patterns of entrance and site occupancy rates. Brazil. J. Biol. 68, 771–779.
Tucker, M.A., Böhmig-Gause, K., Fagan, W.E., Fryxell, J.M., Moorter, B., Van, Alberts, S.C., Ali, A.H., Allen, A.M., Attias, N., Aygar, T., Bartlam-Brooks, H., Bayaarta, Belant, J.L., Bertassoni, A., Beyer, D., Bidner, L., Beest, E.M., Van, Blake, S., Blaum, N., Bracis, C., Brown, D., Bryun, P.J.N., De, Cagnacci, F., Diefenbach, D., Douglas-hamilton, I., Fennessy, J., Fichtel, C., Fiedler, W., Fischer, C., Fischhoff, I., Fleming, C.H., Ford, A.T., Fritz, S.A., Gehr, B., Goheen, J.R., Gurarie, E., Hebble-white, M., Heurch, M., Hewison, A.J.M., Hof, C., Hurme, E., Isbell, L., Jansen, R., Jeltsch, F., Kaczynski, P., Kapele, A., Kappeler, P.M., Kays, R., Kimball, P., Kinyuru, D., Koch, F., Krausnack, B., Lapointe, A., Mattsson, J., Medic, E.F., Mellone, U., Merril, E., Morrison, T.A., Diaz-munoz, S.L., Mysterud, A., Nandintsetseg, D., Nathan, R., Niamir, A., Odden, J., Oser, D.J. Morin et al. / Global Ecology and Conservation 15 (2018) e00413 1065.
van der Velden, J., Acuña, A., Allen, A.M., Attias, N., Aygar, T., Bartlam-brooks, H., Bayaarta, Belant, J.L., Bertassoni, A., Beyer, D., Bidner, L., Beest, E.M., Van, Blake, S., Blaum, N., Bracis, C., Brown, D., Bryun, P.J.N., De, Cagnacci, F., Diefenbach, D., Douglas-hamilton, I., Fennessy, J., Fichtel, C., Fiedler, W., Fischer, C., Fischhoff, I., Fleming, C.H., Ford, A.T., Fritz, S.A., Gehr, B., Goheen, J.R., Gurarie, E., Hebblewhite, M., Heurch, M., Hewison, A.J.M., Hof, C., Hurme, E., Isbell, L.A., Jansen, R., Jeltsch, F., Kaczynski, P., Kapele, A., Kappeler, P.M., Kays, R., Kimball, P., Kinyuru, D., Koch, F., Krausnack, B., Lapointe, A., Mattsson, J., Medic, E.F., Mellone, U., Merril, E., Morrison, T.A., Diaz-munoz, S.L., Mysterud, A., Nandintsetseg, D., Nathan, R., Niamir, A., Odden, J., Oser, D.J. Morin et al. / Global Ecology and Conservation 15 (2018) e00413 1065.
VanDerWal, J., Falconi, L., Januchowski, S., Shoo, L., Storlie, C., 2014. SDMTools: Species Distribution Modelling Tools: Tools for Processing Data Associated with Species Distribution Modelling Exercises.
Wald, D.M., Jacobson, S.K., Levy, J.K., 2013. Outdoor cats: identifying differences between stakeholder beliefs, perceived impacts, risk and management. Biol. Conserv. 167, 414–424.
Walk, J.W., Ward, M.P., Benson, T.J., Deppe, J.L., Lischka, S.A., Bailey, S.D., Brawn, J.D., 2010. Illinois birds: a century of Change. Illinoios Nat. Hist. Surv. Spec. Publ. 31.

Weston, M.A., Fitzsimons, J.A., Wescott, G., Miller, K.K., Ekanayake, K.B., Schneider, T., 2014. Bark in the park: a review of domestic dogs in parks. Environ. Manage 54, 373–382.

Wierzbowska, I.A., Magdalena, H., Okarma, H., Crooks, K.R., 2016. Predation of Wildlife by Free-ranging Domestic Dogs in Polish Hunting Grounds and Potential Competition with the Grey Wolf, vol. 201, pp. 1–9.

Young, J.K., Olson, K.A., Richard, P., 2011. Is wildlife going to the dogs? Impacts of feral and free-roaming dogs on wildlife populations. Bioscience 61, 125–132.

Zapata-Ríos, G., Branch, L.C., 2018. Mammalian carnivore occupancy is inversely related to presence of domestic dogs in the high Andes of Ecuador. PLoS One 13.

Zapata-Ríos, G., Branch, L.C., 2016. Altered activity patterns and reduced abundance of native mammals in sites with feral dogs in the high. Andes. Biol. Conserv 193, 9–16.