Role of gender, age and BMI in prognosis of heart failure

Susanna Sciomer¹, Federica Moscucci¹, Elisabetta Salvioni², Giovanni Marchese³, Maurizio Bussotti³, Ugo Corrà⁴ and Massimo F Piepoli⁵,⁶

Abstract
The prognostic stratification of heart failure remains an urgent need for correct clinical management of the affected patients. In fact, due to the high mortality and morbidity rates, heart failure constantly requires an updated and careful management of all aspects that characterise the disease. In addition to the well-known clinical, laboratory and instrumental characteristics that affect the prognosis of heart failure, gender, age and body mass index have a different impact and deserve specific insights and clarifications. At this scope, the metabolic exercise cardiac kidney index score research group has produced several works in the past, trying to identify the role of these specific factors on the prognosis of heart failure. In particular, the different performances in the cardiopulmonary exercise test of specific categories of heart failure patients, such as women, elderly and obese or overweight individuals, have requested dedicated evaluations of metabolic exercise cardiac kidney index score power.

Keywords
Gender, age, BMI, chronic heart failure, metabolic exercise cardiac kidney index (MECKI) score

Peculiarities of heart failure in women
Cardiovascular disease (CVD) is the leading cause of mortality¹ and morbidity in Europe and worldwide. Every year, almost 50% of deaths in Europe are caused by CVD, 42% in men and 51% among women.¹ The misleading idea that women are protected lifelong against CVD is the cause of this disparity. Among CVDs, chronic heart failure (CHF) is one of the most significant causes of hospitalisation² and mortality in women.³ CHF in women has peculiar characteristics in the clinical presentation, response to treatment (pharmacological and electrical devices) and use of evidence-based recommendations, which create disparities between men and women.⁴

The risk stratification and prognostic evaluation of CHF in women is a challenge for clinicians. The actual prognostic scores are, in fact, lacking a specific sex-oriented assessment. The need for a more suitable prognostic instrument arises from the evidence that as women have specific cardiovascular risk factors⁵ and peculiar CVDs, the prognostic instruments must take into account the possible different impact of the single item on women’s prognosis.

Frequently, women have typical heart failure with preserved ejection fraction (HFpEF),³⁶ in fact, women have less ischaemic myocardial disease (more frequent in men and related to a reduced ejection fraction) and later in life symptom onset. In women, arterial
hypertension and diabetes are the most important cardiovascular risk factors associated with HFrEF, which affects small myocardial vessels and causes diastolic heart failure (HF).

Moreover, the impact of CHF on quality of life is more impairing and stronger in women than in men, probably due not only to the presence of CHF itself, but also to a higher degree of comorbidity related to older age.\(^7\)

In addition, women are at risk of specific CHF causes such as peripartum heart disease (gestation diabetes and hypertension, preterm delivery) and, in the case of breast cancer, chemotherapy and radiotherapy-induced cardiomyopathy, associated with the use of anthracyclines and human epidermal growth factor receptor 2 (HER2) monoclonal inhibitors and X-ray locoregional treatment.\(^5\,\,^5\)

Moreover, in randomised clinical trials women are often underrepresented,\(^4\) so clinicians frequently administer therapies the efficacy of which are not proved in real-life female patients, who are often older, with HFrEF, with different HF aetiology, with different pharmacokinetics, a better response to resynchronisation therapy,\(^8\) a higher incidence of complications after implantable cardioverter defibrillator (ICD) implantation\(^9\) and less orthotopic heart transplantation access.\(^10\) In addition, age at menopause should be considered an important piece of information to acquire, in order to understand better the correct timing of changes in the cardiovascular system due to the progressive reduction in oestrogens\(^11\) that are able to lead to microvessel damage and, ages later, to HFrEF.

Prognostic stratification plays a dramatic role in the clinical management and in the indication for orthotopic heart transplantation. In clinical practice the most used prognostic scores are the Seattle heart failure model (SHFM),\(^12\) the heart failure survival score (HFSS),\(^13\) the meta-analysis global group in chronic heart failure (MAGGIC)\(^14\) and the metabolic exercise cardiac kidney index (MECKI) score.\(^15\)

The HFSS and MECKI score include some cardiopulmonary exercise testing (CPET) parameters, in order better to analyse the patient’s functional status. Oxygen consumption (VO\(_2\)) and the ventilation/carbon dioxide production (VE/VCO\(_2\)) slope are important predictors of HF prognosis.\(^16\)

Some parameters used in these prognostic scores have important differences in women. For example, the ejection fraction is an important item in all these scores, but it could be a bias because women often have HFrEF, so with a better ejection fraction than men but a worse functional impairment and more severe symptoms. Moreover, the HFSS and MECKI score use peak oxygen uptake (MECKI score peak VO\(_2\)% predicted) from CPET (Table 1).

Women have better survival and prognosis, despite a comparatively lower peak VO\(_2\); this raises doubt about the accuracy of risk assessment by CPET in women. Accordingly, Corrà et al. checked whether the predictive role of well-known CPET risk indexes; that is, peak VO\(_2\) and ventilatory response (VE/VCO\(_2\) slope), are sex independent and if sex-related characteristics that impact outcome in HF should be considered as associations that may confound the effect of sex on survival.\(^17\) The low peak VO\(_2\) and female association with a better outcome in HF might be counterfeit; the female prognostic advantage is lost when sex-specific differences are correctly taken into account with propensity score matching. So, with propensity score matching, female sex was not prognostically informative, but the VE/VCO\(_2\) slope was, suggesting that for an effective and efficient HF model, adjustment must be made for sex-related characteristics.\(^17\)

In addition, the MECKI score research group\(^18\) has recently produced a specific paper in which the authors tried to ameliorate the predictive role of the VE/VCO\(_2\) slope for gender and even the age of patients. In fact, they have produced VE/VCO\(_2\) slope prediction equations based on a large population of healthy subjects, then applying formulas to the MECKI score database. As result, the authors observed that VE/VCO\(_2\), as a percentage of predicted value, resulted in stronger prognostic prediction in HF patients, but with a power similar to that observed using absolute VE/VCO\(_2\) values. However, in patients with severe HF (with low peak VO\(_2\)), data reported as percentages of predicted value have a stronger prognostic capacity.

Accurate diagnosis, appropriate risk management and monitoring are key in the prevention and treatment of CVD; however, the assessment tools used must also be useful or at least assessed for utility in both sexes. In other words, going forward, we need to evaluate sex-specific reference intervals or cut-offs for laboratory tests used to assess CVD to help close the diagnostic gap between men and women.

Impact of ageing on CHF prognosis and risk stratification

The aetiology of the decompensation does not present substantial differences between young and elderly patients; in the latter group, however, the disease is often multifactorial and frequently presents comorbidities that could alter, and also confuse, the clinical picture and the evaluation of the patient.

The CHF in this group of patients represents the convergence of multiple factors: (a) age-induced
changes in the cardiovascular system; (b) lifelong life-
style habits; (c) the increased survival of people with
conditions such as diabetes and high blood pressure,
which predispose to decompensation; (d) the increase
in the prevalence of the same heart diseases such as, for
example, ischaemic heart disease, valve disease, hyper-
tensive heart disease; (e) comorbidities (atrial fibrilla-
tion, renal dysfunction, chronic obstructive pulmonary
disease, peripheral vascular disease and orthopaedic
disorders).19

Therefore, the prognostic stratification of these
patients can represent a challenge and the models avail-
able are not always of any benefit to the clinician to
support the decision.

Anyway, the MECKI score was increased in older
patients, but its prognostic value was maintained inde-
pendently of patient age, with a similar predictive
power across age groups. Indeed, this aspect could be
due to the presence of the modification of diet in renal
disease (MDRD) equation in the calculation of the
patient’s renal function, which is correct for the
patient’s age and sex; so the MECKI score can be
applied to a broad range of patients with chronic HF.19

During CPET, reduced stroke volume and chrono-
tropic incompetence led to suboptimal exercise perfor-
mance in elderly patients, with a peak VO2 less than 14
mL/min/kg. In this population, characterised by more
events, the use of the VE/VCO2 slope as a percentage of
predicted value significantly increased its prognostic
power, and it allowed the correct reclassification of
6.6% of cases, as recently described by the MECKI
score research group.18 Thus, it is very desirable that
the VE/VCO2 slope should be reported as a percentage
of predicted value at least in this category of HF patients.

The MECKI score increased according to age and
also maintained its prognostic value in older patients.19

The greater deconditioning, typical of older patients,
is the possible cause of these data.

Role of body mass index in prognosis
of HF

The relationship between obesity and CVDs, among
which is HF, is widely recognised.20

Overweight and obesity are diagnosed by a body
Mass index (BMI) of 25 kg/m² or higher and a BMI
of 30 kg/m² or higher, respectively. However, BMI
should be considered as a size of heaviness rather
than of body composition, so that an increased BMI
is not necessarily equivalent to an increased fat mass as
happens for athletes. This can explain why the lack of
accuracy of the BMI in predicting prognosis has been
observed in some extreme conditions of chronic dis-
eases, as in sarcopenic obesity, a combined increase
of fat mass and muscle loss related to poor outcomes,
and in obesity with a preserved muscle mass, which on
the contrary exhibits a better prognosis.

Consequently, BMI is an inaccurate measure of the
extent of obesity as it provides no information on fat
distribution, which is noteworthy information in car-
diovascular risk.

In order to overcome this inaccuracy of the BMI,
some authors proposed the use of the body surface area
(BSA) as a better index of metabolic mass unbiased by
pathological adipose mass in CHF. BSA was assessed
in the HF long-term registry of the Heart Failure
Association of the European Society of Cardiology.21

In CHF patients of both genders total and cardiovas-
cular mortality, but not HF hospitalisations were
inversely correlated with BSA levels.

The close correlation between HF and obesity
observed in the Framingham Heart Study was charac-
terised by an increased risk of disease in men and
women by 5% and 7%, respectively, for a continuous
increase in BMI by 1 kg/m².22

The span of morbid obesity is also closely related to
the prevalence of HF so that after 20 years it accounts
for 70% and after 30 years for 90% of the patients. The
prevalence of obesity is different in the various forms of
HF: it is present in 85% of patients affected by
HFpEF, but in less than 50% of those with heart fail-
ure with reduced ejection fraction (HFrEF).23

Hormones and proinflammatory cytokines with
well-known cardiodepressant properties (interleukin
(IL) 1b, tumour necrosis factor x, and IL-18) produced
by the adipose tissue have been supposed to play a role in
the relationship between HFrEF and obesity.24

Conversely, the relationship between HFrEF and
obesity is unclear due to the influence of numerous
confounding factors.

Table 1. Main characteristics of MECKI score registry population according to the enrolment steps.

	n	Age (years)	Men (n)	%	VO2/kg (ml/min/kg)	Events (n)	%	Cardiovascular deaths (n)	%	Follow-up
2019	7004	61	5740	82	14.8±4.8	1899	27	1419	20	1421 (627–2713)
2012	2716	60	2285	84	14.4±4.4	598	22	618	23	1040 (513–1811)

MECKI: metabolic exercise cardiac kidney index; VO2: oxygen consumption.
Obesity may lead to HF fundamentally through haemodynamic changes linked to the activation of the renin–angiotensin–aldosterone system, increased activity of both the sympathetic nervous system and the mineralocorticoid receptor expression, production of inflammatory cytokines and acute-phase proteins.24

However, if there is no doubt about a cause–effect link between obesity and the development of HF, on the other hand in the case of an already developed HF, indeed excess weight and obesity are strangely associated with a favourable prognosis so that the findings of numerous meta-analyses have shown evidence of the phenomenon of the obesity paradox.25

So as to say that obesity could have a protective effect on HF patients. However, the obesity paradox was not confirmed in HF patients with a relatively preserved functional capacity, defined by a peak VO2 of 14 ml/kg/min or higher.26

A more prominent role of functional capacity, rather than BMI, in defining HF prognosis emerged in some studies so that patients with an impaired but relatively higher peak VO2 and a higher degree of lean mass showed a better clinical trajectory, regardless of BMI.26

The survival paradox of BMI also vanishes in diabetes patients with HF, nevertheless both obesity and diabetes are prevalent in patients with HF.27

The obesity paradox is not alone in the HF field. The spectrum of ‘reverse epidemiology’ is unlimited in HF: higher levels of blood pressure and cholesterol are also related to a better prognosis.

In addition, obesity together with low haemoglobin are potent contributors to impaired peak exercise oxygen uptake during CPET, as previously demonstrated,28 suggesting the importance of considering these features together when interpreting peak exercise oxygen uptake and underlying exercise limitations.

A comprehensive methodological approach in the intriguing scientific debate about the equivocal role of BMI in the prognosis of HF has recently been pursued through the elaborated analysis of the large database from the MECKI score research group.29

The entire study population (4623 patients) was divided into four groups according to BMI: less than 25 kg/m2; 25–30, over 30 to 35 or less and greater than 35 kg/m2; but the 220 patients of the last group were excluded from the data analysis, reducing the study cohort to 4623 cases. These groups presented with different clinical characteristics; in particular, the highest BMI group patients were younger, with a greater use of beta-blockers, higher value of LVEF, peak VO2, VE/VCO2 slope, renal function and haemoglobin level. The study population was also divided into three subgroups according to predicted peak VO2 (<50, 50–80 and >80%).

Total and cardiovascular mortality (urgent cardiac transplant included) occurred in 28.6% and 17.4%, respectively, of the entire study population.

Seemingly, the obesity paradox was confirmed as the highest mortality rate occurred not only in the lowest BMI group (<25 kg/m2; P<0.001) but also separately in the minority group of underweight patients (BMI <18.5). However, the novel solution of the obesity paradox raised from the two multivariable Cox proportional hazard models applied for assessing the independent prognostic magnitude of BMI: the first one adjusted for class of VO2 as a percentage of predicted value, and the second one for peak VO2 as an absolute value, age, gender and LVEF. At univariable analysis, both BMI and peak VO2 (both as absolute values and predicted values) were associated with prognosis. But Cox analysis showed that BMI class adjusted for peak VO2% of the predicted value or by age, gender, LVEF and absolute peak VO2 missed its prognostic capacity in terms of total or cardiovascular death.

A second analysis took into consideration the patients of the three BMI groups matched according to age, gender, LVEF and peak VO2 (absolute value or percentage of the predicted value); no significant difference in prognosis was observed for both total and cardiovascular death in the 628 triplets of matched subjects.

The study of the MECKI score research group downsizes the veracity of the obesity paradox, explaining it as a result of a series of confounding factors including the underlying bias for which the most obese subjects are excluded from performing functional tests.29

In conclusion, the findings of the MECKI score database analysis strengthen the superior prognostic power of enhanced functional capacity and the relevance of physical conditioning on BMI.

Conclusions

The lesson learnt from the MECKI score database analysis is clear: women, elderly and obese patients constitute heterogeneous categories, deserving a specific approach and evaluation. Nevertheless, the MECKI score maintains its prognostic power even in these subgroups of patients, working on the percentage of predicted CPET values (peak VO2, VE/VCO2 slope).

In fact, analysis conducted on these specific categories has highlighted how they can benefit from a dedicated assessment for a correct stratification of the death risk or urgent transplant request.

Even with ‘worse’ CPET performances, women have a better survival. The elderly, due to the frequent state of deconditioning and muscle hypotrophy, cannot
frequently reach thresholds. The reduced lean mass in the elderly, however, is an additional frailty element, which therefore negatively impacts the prognosis.

Moreover, the MECKI score has been demonstrated to be capable of overcoming the ‘obesity paradox’, confirming its superior prognostic power.

In conclusion, the MECKI score confirms its power and suitability even in these specific subgroups.

Author contribution

SS, FM, ES, GM, MB, UC and MFP contributed to the conception or design of the work. All authors contributed to the acquisition, analysis, or interpretation of data for the work and they drafted the manuscript. All authors critically revised the manuscript and gave final approval and agree to be accountable for all aspects of the work ensuring integrity and accuracy.

Declaration of conflicting interests

The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Funding

The author(s) received no financial support for the research, authorship, and/or publication of this article.

References

1. Townsend N, Wilson L, Bhatnagar P, et al. Cardiovascular disease in Europe: epidemiological update 2016. *Eur Heart J* 2016; 14: 1–14.

2. Klein L, Grau-Sepulveda MV, Bonow RO, et al. Quality of care and outcomes in women hospitalized for heart failure *Circ Heart Fail* 2011; 4: 589–598.

3. Scardovi AB, Petruzzzi M, Rosano A, et al. Heart failure phenotype in women. *G Ital Cardiol (Rome)* 2012; 13: 6S–11S.

4. Croussillat DR and Ibrahim NE. Sex differences in the management of advanced heart failure. *Curr Treat Options Cardiovasc Med* 2018; 20: 88.

5. Garcia M, Mulvagh SL, Bairey Merz CN, et al. Cardiovascular disease in women: clinical perspectives. *Circ Res* 2016; 118: 1273–1293.

6. Galvao M, Kalman J, DeMarco T, et al. Gender differences in in-hospital management and outcomes in patients with decompensated heart failure: analysis from the Acute Decompensated Heart Failure National Registry (ADHERE) *J Cardiac Fail* 2006; 12: 100–107.

7. Passino C, Aimo A, Emdin M, et al. Quality of life and outcome in heart failure with preserved ejection fraction: when sex matters. *Int J Cardiol* 2018; 267: 141–142.

8. Providência R, Marjion E, Lambiase PD, et al. Primary prevention implantable cardioverter defibrillator (ICD) therapy in women – data from a multicenter French registry. *J Am Heart Assoc* 2016; 5: e002756.

9. Han Z, Chen Z, Lan R, et al. Sex-specific mortality differences in heart failure patients with ischemia receiving cardiac resynchronization therapy. *PLoS One* 2017; 12: e0180513.

10. Morris AA, Cole RT, Laskar SR, et al. Improved outcomes for women on the heart transplant wait list in the modern era. *J Cardiac Fail* 2015; 21: 555–560.

11. Sciomer S, De Carlo C, Moscucci F, et al. Age at menopause: a fundamental data of interest to acquire in female patients’ anamnesis. *Int J Cardiol* 2016; 215: 358–359.

12. Levy WC, Mozaffarian D, Linker DT, et al. The Seattle Heart Failure Model: prediction of survival in heart failure. *Circulation* 2006; 113: 1424–1433.

13. Lund LH, Aaronson KD and Mancini DM. Validation of peak exercise oxygen consumption and the Heart Failure Survival Score for serial risk stratification in advanced heart failure. *Am J Cardiol* 2005; 95: 734–741.

14. Sartipy U, Dahlström U, Edner M, et al. Predicting survival in heart failure: validation of the MAGGIC heart failure risk score in 51,043 patients from the Swedish heart failure registry. *Eur J Heart Fail* 2014; 16: 173–179.

15. Agostoni P, Corrà U, Cattadori G, et al.; MECKI Score Research Group. Metabolic exercise test data combined with cardiac and kidney indexes, the MECKI score: a multiparametric approach to heart failure prognosis. *Int J Cardiol* 2013; 167: 2710–2718.

16. Arena R, Myers J, Aslam SS, et al. Peak VO2 and VE/ VCO2 slope in patients with heart failure: a prognostic comparison. *Am Heart J* 2004; 147: 354–360.

17. Corrà U, Agostoni P, Giordano A, et al.; MECKI Score Research Group. Sex profile and risk assessment with cardiopulmonary exercise testing in heart failure: propensity score matching for sex selection bias. *Can J Cardiol* 2016; 32: 754–759.

18. Salvioni E, Corrà U, Piepoli M, et al.; MECKI score research group. Gender and age normalization and ventilation efficiency during exercise in heart failure with reduced ejection fraction. *ESC Heart Fail* 2020; 7: 371–380.

19. Carubelli V, Metra M, Corrà U, et al.; MECKI score research group. Exercise performance is a prognostic indicator in elderly patients with chronic heart failure – application of metabolic exercise cardiac kidney indexes score *Circ J* 2015; 79: 2608–2615.

20. Lavie CJ, Milani RV and Ventura HO. Obesity and cardiovascular disease: risk factor, paradox, and impact of weight loss. *J Am Coll Cardiol* 2009; 53: 1925–1932.

21. Zafir B, Salman N, Crespo-Leiro MG, et al. Body surface area as a prognostic marker in chronic heart failure patients: results from the Heart Failure Registry of the Heart Failure Association of the European Society of Cardiology [published correction appears in Eur J Heart Fail. 2017 Mar;19(3):437]. *Eur J Heart Fail* 2016; 18: 859–868.

22. Kenchaiah S, Evans JC, Levy D, et al. Obesity and the risk of heart failure. *N Engl J Med* 2002; 347: 305–313.

23. Kenchaiah S, Pocock SJ, Wang D, et al. Body mass index and prognosis in patients with chronic heart failure:
insights from the Candesartan in Heart failure: Assessment of Reduction in Mortality and morbidity (CHARM) program. Circulation 2007; 116: 627–636.

24. Ebong IA, Goff DC Jr, Rodriguez CJ, et al. Mechanisms of heart failure in obesity. Obes Res Clin Pract 2014; 8: e540–e548. DOI: 10.1016/j.orcp.2013.12.005

25. Horwich TB, Fonarow GC, Hamilton MA, et al. The relationship between obesity and mortality in patients with heart failure. J Am Coll Cardiol 2001; 38: 789–795.

26. Clark AL, Fonarow GC and Horwich TB. Impact of cardiorespiratory fitness on the obesity paradox in patients with systolic heart failure. Am J Cardiol 2015; 115: 209–213.

27. Zamora E, Lupón J, Enjuanes C, et al. No benefit from the obesity paradox for diabetic patients with heart failure. Eur J Heart Fail 2016; 18: 851–858.

28. Van Iterson EH, Kim CH, Uithoven K, et al. Obesity and hemoglobin content impact peak oxygen uptake in human heart failure. Eur J Prev Cardiol 2018; 25: 1937–1946.

29. Piepoli MF, Corrâ U, Veglia F, et al.; MECKI Score Research Group. Exercise tolerance can explain the obesity paradox in patients with systolic heart failure: data from the MECKI Score Research Group. Eur J Heart Fail 2016; 18: 545–553.