Note

Effect of dietary carbohydrate levels on the growth of fingerlings of Carnatic carp
Barbodes carnaticus (Jerdon 1849)

B. GANGADHAR, N. SRIDHAR, H. UMALATHA AND S. S. GIRI*
Regional Research Centre of ICAR-Central Institute of Freshwater Aquaculture, Hesaraghatta Lake P.O. Bangalore- 560 089, Karnataka, India
*ICAR-Central Institute of Freshwater Aquaculture, Kausalyaganga, Bhubaneswar -751 002, Odisha, India
e-mail: gbarlaya@yahoo.co.in

ABSTRACT

Fingerlings of Barbodes carnaticus (average size: 9.25 ± 0.43 cm; 7.39 ± 1.18 g) were reared for 60 days in aerated plastic tubs (40 l) providing 5 iso-nitrogenous diets formulated to contain crude NFE (nitrogen free extract) levels ranging from 35 to 50% using pure ingredients. The fish were fed ad libitum and were allowed to feed for 6 h and thereafter the unconsumed feeds were siphoned out. The following day, faecal matter was collected, dried, pooled and stored for proximate analysis. Water from each tub was replaced (50%) with freshwater every day after faecal matter collection. Proximate composition of feed and faecal matter was analysed. Crude fiber was used as the reference marker for dry matter, protein and fat digestibility determination. The growth parameters increased (p<0.05) in Barbodes carnaticus upto dietary NFE levels of 43.72%, beyond which a decrease was noticed. The food conversion ratio (FCR) and protein efficiency ratio (PER) were the best with the diet containing 43.72% NFE. Proximate composition of fish carcass revealed the highest protein and fat contents in those fed the 43.72% NFE diet. Dry matter and NFE digestibility increased with increasing dietary NFE level upto 43.72%, whereas protein digestibility showed a decreasing trend. The study revealed a dietary NFE requirement of around 44% for the fingerlings of Barbodes carnaticus.

Keywords: Barbodes carnaticus, Carnatic carp, Carbohydrate, Digestibility

In aquaculture, feed accounts for almost 50% of the cost of production and the cost of protein source ingredients is much more than carbohydrate source (Kushwaha et al., 2012). Being a cheap source of food energy, carbohydrates effectively reduce feed cost, though they are not well utilised by all fish (Shiau, 1997). The nutritional value of carbohydrates varies among fish; warm water fish are able to utilise much higher levels of dietary carbohydrate than cold water and marine fish. No dietary requirement for carbohydrate has been demonstrated in fish; however, if carbohydrates are not provided in the diet, other nutrients such as protein and lipids are catabolised for energy and to provide metabolic intermediates for the synthesis of other biologically important compounds. Thus, it is important to provide appropriate level of carbohydrate in the diets of cultured fish (Wilson, 1994). Herbivorous and omnivorous fish such as grass carp (Ctenopharyngodon idella) and gibel carp (Carassius gibelio) have been reported to use higher carbohydrate levels (45%) for optimal growth and have the ability to utilise carbohydrate as an energy source (Tian et al., 2012). Protein sparing action of carbohydrate is well known in fishes (Habib et al., 1994; Wilson, 1994; Keshavanath et al., 2002; Stone, 2003; Krogdahl et al., 2005; Cheng et al., 2017).

Barbodes carnaticus (Jerdon 1849), commonly known as Carnatic carp is an endemic species of the Western Ghats of India. It serves as a food and game fish and feeds on leaves and seeds that fall into the water, as well as detritus. The species has been successfully bred and efforts are underway to induct the species into culture systems (Sridhar et al., 2013; Basavaraja et al., 2019). Introduction of a new species for culture requires information regarding its food, feeding habits and digestive physiology, which govern nutrient utilisation (Kushwaha et al., 2012). Evaluation of maximum tolerable concentration of dietary carbohydrate of cultured species is desirable since it is the cheapest energy source (Lee and Pham, 2011). No information is available on the optimum dietary carbohydrate requirement of Barbodes carnaticus. Hence, this study was undertaken using five isonitrogenous diets with varying nitrogen free extract (NFE) levels.

Healthy fingerlings of Barbodes carnaticus (n=150) of average initial length 9.25±0.43 cm and weight 7.39±1.18 g, procured from the culture ponds of the Regional Research Centre of ICAR-Central Institute of Freshwater Aquaculture (ICAR-CIFA), Hesaraghatta, Bangalore, were distributed randomly into 15 aerated plastic tubs (40 l) at 10 nos. per tub. They were maintained providing control feed for a week.
Five diets were formulated to contain crude carbohydrate levels ranging from 35 to 50% using pure ingredients viz., casein, gelatine, dextrin, carboxymethyl cellulose, cellulose and agar (Table 1). The ingredients were thoroughly mixed in the desired proportions in a mechanical mixer with hot water to obtain a dough to which cod liver oil and vitamin mixtures were added after cooling. The dough was pelleted using a hand palletiser fitted with a 1 mm die and the extruded noodles were sun dried to less than 10% moisture. The sun dried feeds were manually broken into small pieces and stored at room temperature (26±2°C) in separate airtight containers till further use.

The fish were fed ad libitum and were allowed to feed for 6 h and the unconsumed feed was siphoned out at the end of the feeding period. On the following day, faecal matter was collected from each tub by filtering the water with a fine meshed nylon cloth (15 µm), dried, pooled and stored for proximate analysis. About 50% of water from each tub was replaced with freshwater every day after faecal matter collection. This feeding and faecal matter collection was conducted for a period of 60 days. Proximate composition of feed and faecal matter was analysed (AOAC, 1995). Nitrogen free extract (NFE) was calculated based on the ‘difference method’ (Hastings, 1976). Crude fiber was used as the reference marker (Kronveit et al., 2014) for dry matter, protein and fat digestibility determination (Maynard and Loosli, 1972). The energy value of feed was obtained by multiplying protein, lipid and carbohydrate contents by factors 22.6, 38.9 and 17.2 respectively (Mayes, 1990) and expressed in kJ g⁻¹.

Water quality parameters (pH, temperature, dissolved oxygen and total alkalinity) were analysed at fortnightly intervals following standard methods (APHA, 1992). The samples were collected between 09.00 and 10.00 hrs.

At the end of the experiment, the length and weight of the fishes were measured. The weight gained by the fingerlings, food conversion ratio (FCR) and protein efficiency ratio (PER) were calculated for each diet. Data was analysed using one-way ANOVA. A significance level of 95% was considered to indicate statistical differences (p<0.05). When significant difference was noticed, Duncan’s multiple range test was applied for further analysis (Duncan, 1955). Results are presented as mean±standard deviation.

The water quality parameters monitored over the experimental duration ranged as follows: Temperature: 24.7 to 25.6°C, pH: 7.28 to 8.10, dissolved oxygen: 5.67 to 7.86 ppm, total alkalinity: 323.84 to 334.88 ppm.

The growth parameters and PER were higher (p<0.05) in fish fed Diet 3, compared to other diets. FCR was lower (p<0.05) with Diets 2 and 3 (Table 2). No mortality of fish was observed in any of the tubs during the experiment.

Proximate composition of fish carcass revealed highest moisture and lowest crude fat (p<0.05) contents in those fed Diet 1, diets with higher carbohydrate levels recording lower moisture and higher crude fat values. Crude protein content showed an increasing trend upto Diet 3, decreasing thereafter (Table 3). The ash content was higher (p<0.05) in fish receiving high carbohydrate diets.

The digestibility of dry matter and NFE showed an increasing trend upto Diet 3 (p<0.05) (Fig. 1). Protein digestibility showed a decreasing trend with increasing dietary carbohydrate level. Fat digestibility showed no difference (p>0.05) among the diets, except Diet 5, which recorded the lowest (p<0.05) value.

Feeding habit of the fish and the source of carbohydrate affect its dietary requirement. Herbivorous fish can metabolise carbohydrates better than carnivorous species (Cowey and Sargent, 1979; Shimeno et al., 1979). Carps are known to utilise high levels of carbohydrate (Satoh, 1991). Manjappa et al. (2009) reported 6.88% higher net weight gain of catla fed a diet containing 46% NFE compared to that with 33% NFE. Good growth and feed utilisation in common carp fed a diet containing upto 52.66% carbohydrate was also recorded by Keshavanath et al. (2002). Habib et al. (1994) reported that a 30% carbohydrate level was well suited for silver barb, Puntius (=Barbonymus) gonionotus. Results of the present study indicated that weight gain increased (p<0.05) in B. carnaticus upto 56.70% with dietary NFE levels of 43.72%, beyond which a decrease was noticed. Growth retardation and reduced feed efficiency were reported in Indian major carps fed carbohydrate beyond optimum level of 35% (Murthy, 2003).

B. carnaticus, showed 31.93% decrease in FCR and 86.11% increase in PER upto diet containing 43.72% NFE. Jauncey (1982) and Erfanullah and Jafri (1998) observed a negative relationship of food conversion and positive relationship of PER with dietary carbohydrate level. Keshavanath et al. (2002), however, reported no significant difference in FCR but observed increasing PER in common carp fed diets containing NFE levels between 33.35 to 52.66%. Increase in PER values in the present study along with dietary carbohydrate levels upto 43.72% indicates the beneficial effect of carbohydrate inclusion as a non-protein energy source in the diet of B. carnaticus.

Manjappa et al. (2009) reported 2.99% decrease in carcass protein content in catla with increase in dietary carbohydrate levels from 33.89 to 46.06%. However, Keshavanath et al. (2002) recorded no significant difference
Effect of dietary carbohydrate on growth of *Barbodes carnaticus*

Table 1. Ingredient proportion (%) and proximate composition (%) of experimental feeds.

Ingredients used	Diet 1	Diet 2	Diet 3	Diet 4	Diet 5
Casein	33.36	33.36	33.36	33.36	33.36
Gelatin	6.64	6.64	6.64	6.64	6.64
Dextrin	10	16	23	28	34
Cod liver oil	8	8	8	8	8
Carboxymethyl cellulose	12	12	12	12	12
Agar	2.5	2.5	2.5	2.5	2.5
Vitamin mineral mix	4.5	4.5	4.5	4.5	4.5
Cellulose	25	19	12	7	1

Proximate composition (%)

	Diet 1	Diet 2	Diet 3	Diet 4	Diet 5
Moisture	1.04±0.03	1.62±0.10	1.31±0.35	1.0±0.02	1.67±0.07
Crude protein	35.77±0.11	35.59±0.67	36.14±0.52	34.53±1.03	34.06±0.82
Fat	7.66±0.02	7.30±0.08	7.10±0.04	7.56±0.23	7.07±0.07
Ash	6.13±0.06	6.18±0.02	6.29±0.06	6.98±0.03	6.05±0.03
Crude fiber	11.95±0.23	8.19±0.01	3.42±0.09	2.50±0.03	0.41±0.03
NFE	35.51±0.31	39.11±0.92	43.72±0.61	47.43±0.94	50.71±0.90
Gross energy (kJ g⁻¹)	17.17	17.60	18.44	18.91	19.16

Table 2. Growth parameters (Mean±SD) of *B. carnaticus*.

Growth parameters	Diet 1	Diet 2	Diet 3	Diet 4	Diet 5
Initial weight (g)	7.57±0.10	7.59±0.18	7.48±0.12	7.59±0.15	7.57±0.06
Final weight (g)	9.51±0.29	9.96±0.14	10.52±0.08	9.38±0.13	9.12±0.14
Weight gain (g)	1.94±0.33	2.37±0.32	3.04±0.20	1.79±0.20	1.55±0.18
Specific growth rate (%)	0.38±0.06	0.45±0.06	0.57±0.04	0.35±0.04	0.31±0.03
Food conversion ratio	3.47±0.64	3.00±0.38	2.63±0.17	4.54±0.48	5.27±0.61
Protein efficiency ratio	0.36±0.06	0.47±0.15	0.67±0.04	0.42±0.10	0.54±0.14

Values with different superscripts in a row are significantly different (p<0.05)
Table 3. Carcass composition (% on wet weight basis) of B. carnaticus.

Feeds	Moisture	Crude protein	Fat	Ash	NFE
Diet 1	74.86±0.32	18.38±0.21	3.30±0.03	3.36±0.04	0.10
Diet 2	73.29±0.57	19.24±0.28	4.03±0.01	3.22±0.08	0.12
Diet 3	72.72±0.24	19.31±0.27	4.08±0.11	3.66±0.08	0.23
Diet 4	73.44±0.36	18.25±0.12	3.82±0.03	3.96±0.07	0.53
Diet 5	73.86±0.42	17.36±0.24	3.81±0.02	3.84±0.05	1.13

Values with different superscripts in a column are significantly different (p<0.05)

in carcass protein content in common carp fed increased dietary carbohydrate levels. On the other hand, our study revealed 5.06% increase in protein and 23.64% increase in carcass fat content with carbohydrate levels up to 43.72%, showing a decreasing trend thereafter. Anderson et al. (1984), Wee and Ng (1986) and Keshavanath et al. (2002) also reported high carcass fat in fish fed with high carbohydrate levels.

Mohapatra et al. (2003) employed six different levels of carbohydrate in the diets of rohu fry and observed best carbohydrate digestibility with the diet containing 51.7% carbohydrate. In the present study, NFE digestibility increased with increasing carbohydrate level up to 43.72%. Species specific differences exist as far as digestibility of nutrients is concerned. Protein digestibility showed a decreasing trend, illustrating that energy need of B. carnaticus is met by carbohydrates, as is the case with protein. The results of this study indicated a carbohydrate requirement of around 44% for B. carnaticus fingerlings.

Acknowledgements

The authors are grateful to the Director, ICAR-CIFA, Bhubaneswar for the infrastructure facilities provided.

References

Anderson, J., Jackson, A. J., Matty, A. J. and Capper, B. S. 1984. Effects of dietary carbohydrate and fiber on tilapia, Oreochromis niloticus (Linn.) Aquaculture, 37:303. https://doi.org/10.1016/0044-8486(84)90296-5.

AOAC 1995. Official methods of analysis, 16th edn. Association of Official Analytical Chemists, Washington DC, USA.

APHA 1992. Standard methods for examination of the water and waste water, 18th edn. American Public Health Association, Washington, DC, USA.

Basavarajna, N., Lun, K. P. B., Katare, M. B. and Pinder, A.C. 2019. Hormone induced spawning and embryogenesis of Caupery carp Barbodes carnaticus (Jordan 1849): Implications on commercial culture and conservation. Indian J. Exp. Biol., 57(2): 86-95.

Cheng, Z., Li, J., Zhang, B., Fang, Z., Sun, J., Bai, D., Sun, J. and Qiao, X. 2017. Verification of protein sparing by feeding carbohydrate to common carp Cyprinus carpio. Chin. J. Oceanol. Limnol., 35(2):251-257. http://dx.doi.org/10.1007/s00343-016-5332-6.

Cowey, C. B. and Sargent, J. R.1979. Nutrition. In: Hoar, W. S., Randall, D. J. and Brett, J. R. (Eds.), Fish physiology, vol. 8. Academic Press, New York, USA, p. 1-69.

Duncan, D. B.1955. Multiple range and multiple F test. Biometrics, 11:1-42.

Erfanullah and Jafri, A. K. 1998. Growth response, feed utilisation and nutrient retention in Catla catla (Ham.) fry fed varying levels of dietary carbohydrate. Asian Fish. Sci., 11: 223-230.

Habib, M. A. B., Hasan, M. R. and Akand, A. M. 1994. Dietary carbohydrate utilization by silver barb Puntius goniomotus. In: De Silva, S. S. (Ed.), Asian Fisheries Society Special Publication. Asian Fisheries Society, Manila, Philippines, p. 57.

Hastings, W. H. 1976. Fish nutrition and fish feed manufacture, FAO Fisheries Report No. 188. FAO Technical Conference on Aquaculture, 26 May to 2 June 1976, Kyoto, Japan, p. 13.

Jauncey, A. 1982. The effect of varying dietary protein level on the growth, food conversion, protein utilization and body composition of juvenile tilapias (Sarotherodon mossambicus). Aquaculture, 27: 43-54. https://doi.org/10.1016/0044-8486(82)90108-9.

Keshavanath, K., Manjappa, K. and Gangadhar, B. 2002. Evaluation of carbohydrate rich diets through common carp culture in manured tanks. Aquac. Nutr., 8: 169-174. https://doi.org/10.1046/j.1365-2095.2002.00202.x.

Krogdahl, A., Hemre, G. I. and Mommsen, T. P. 2005. Carbohydrates in fish nutrition: digestion and absorption in post-larval stages. Aquac. Nutr., 11:103-122. https://doi.org/10.1111/j.1365-2095.2004.00327.x.

Krontveit, R. I., Bendiksen, E. A. and Aunsmo, A. 2014. Field monitoring of feed digestibility in Atlantic salmon farming using crude fiber as an inert marker. Aquaculture, 426-427: 249-255.

Kushwaha, J. P., Sridhar, N., Umalatha, V., Hemaprasanth, K. P., Raghunath, M. R. and Ek Nath, A. E. 2012. Partial purification and characterization of amylases from the digestive tract of the Indian medium carp Labeo fimbriatus (Bloch, 1797). Isr. J. Aquac. Bamidgeh, 64: 686.

Lee, S. M. and Pham, M. A.2011. Effects of carbohydrate and water temperature on nutrient and energy digestibility of
Effect of dietary carbohydrate on growth of Barbodes carnaticus juvenile and grower rockfish, Sebastes schlegeli. Asian-Aust. J. Anim. Sci., 24:1615-1622.

Manjappa, K., Keshavanath, P. and Gangadhar, B. 2009. Performance of Cuta catla (Ham.) fingerlings fed with carbohydrate rich diets in manured tanks. Asian Fish. Sci., 22: 971-984.

Mayes, P. A. 1990. Nutrition. In: Murray, R. K., Graner, D. K., Mayes, P. A. and Rodwell, V. W. (Eds.), Harper’s Biochemistry, 22nd edn. Prentice Hall International Inc., New Jersey, USA, 571 pp.

Maynard, L. A. and Loosli, J. K. 1972. Animal nutrition. 6th edn. McGraw-Hill, New York, USA.

Mohapatra, M., Sahu, N. P. and Chaudhari, A. 2003. Utilization of gelatinized carbohydrate in diets of Labeo rohita fry. Aquac. Nutr., 9: 189-196. https://doi.org/10.1046/j.1365-2095.2003.00243.x.

Murthy, H. S. 2003. Nutrient requirements of Indian major carp. Glob. Aquac. Adv., April 2013, p. 58-59.

Sato, S. 1991. Common carp, Cyprinus carpio. In: Wilson, R. P. (Ed), Handbook of nutrient requirements of finfish. CRC Press Boca Raton, USA, p. 69.

Shiau, S. Y. 1997. Utilization of carbohydrates in warm water fish with particular reference to tilapia, Oreochromis niloticus x O. aureus. Aquaculture, 151(1-4): 79-96. https://doi.org/10.1016/S0044-8486(96)01491-3.

Shimeno, S., Hosakawa, H. and Takeda, M.1979. The importance of carbohydrate in the diet of a carnivorous fish. In: Halver, J. E. and Tiews, K. (Eds.), Proceedings of a World Symposium on finfish nutrition and fish food technology, vol. I. 20-23 June 1978. Hamburg, Berlin, Germany, p. 127.

Sridhar, N., Gangadhar, B., Raghunath, M. R., Hemaprasanth, K. P., Raghavendra, C. H. and Jayasankar, P. 2013. Induced breeding of the peninsular carps Puntius carnaticus and P. pulchellus. In: Book of Abstracts, International Symposium on Greening Fisheries: Towards Green Technologies in Fisheries, 21-23 May, 2013, ICAR-Central Institute of Fisheries Technology, Kochi, p. 18.

Stone, D. A. J. 2003. Dietary carbohydrate utilization by fish. Rev. Fish. Sci.,11(3): 337-369. https://doi.org/10.1080/10641260390260884.

Tian, L. X., Liu, Y. J., Yang, H. J., Liang, G. Y. and Niu, J. 2012. Effects of different dietary wheat starch levels on growth, feed efficiency and digestibility in grass carp (Ctenopharyngodon idella). Aquac. Int., 20(2): 283-293.

Wen, K. L. 1992. Aquaculture nutrition research in Australia. In: Allan, G. L. and Dal, L. W. (Eds.), Proceedings of the Aquaculture Nutrition Workshop, Salamander Bay, 15-17 April, 1991. NSW Fisheries Brackishwater Fish Culture Research Station. Salamander Bay, New South Wales, Australia, p. 243-244.

Wen, K. L. and Ng, L. T. 1986. Use of cassava as an energy source in a pelleted feed for the tilapia (Oreochromis niloticus L.). Aquac. Res., 17(2): 129-138. https://doi.org/10.1111/j.1365-2109.1986.tb00094.x.

Wilson, R. P. 1994. Utilization of dietary carbohydrate by fish. Aquaculture, 124: 67-80. https://doi.org/10.1016/0044-8486(94)90363-8.

Date of Receipt : 07.03.2019
Date of Acceptance : 19.09.2019