ON THE MODULI SPACE OF QUASI-HOMOGENEOUS FUNCTIONS

LEONARDO MEIRELES CÂMARA AND MARIA APARECIDA SOARES RUAS

Abstract. We relate the moduli space of analytic equivalent germs of reduced quasi-homogeneous functions at \((\mathbb{C}^2, 0)\) with their bi-Lipschitz equivalence classes. We show that any non-degenerate continuous family of (reduced) quasi-homogeneous functions with constant Henry-Parusiński invariant is analytically trivial. Further we show that there are only a finite number of distinct bi-Lipschitz classes among quasi-homogeneous functions with the same Henry-Parusiński invariant providing a maximum quota for this number.

1. Preliminaries

The main goal of this paper is to relate the moduli space of analytically equivalent germs of quasi-homogeneous functions with their bi-Lipschitz classes. In order to turn our statements more precise, and to give appropriate answers, we need to introduce some terminology.

We say that two function germs \(f, g \in \mathcal{O}_2\) are analytically equivalent if there is \(\Phi \in \text{Diff}(\mathbb{C}^2, 0)\) such that \(g = f \circ \Phi\). In this case, \(\Phi\) is said to be an analytic equivalence between \(f\) and \(g\). A germ of holomorphic function \(f\) is said to be quasi-homogeneous if it is analytically equivalent to a quasi-homogeneous polynomial. More precisely, if there is a local system of coordinates in which \(f\) can be written in the form \(f(x, y) = \sum_{a_i + b_j = d} a_{ij} x^i y^j\) where \(a, b, d \in \mathbb{N}\).

Recall that a germ of holomorphic function \(f \in \mathcal{O}_2\) is reduced if it has isolated singularity. Up to a permutation of the variables \(x\) and \(y\), any reduced quasi-homogeneous polynomial \(f\) with weights \((p, q)\) can be (uniquely) written in the form

\[
f(x, y) = x^m y^k \prod_{j=1}^{n} (y^p - \lambda_j x^q)
\]

where \(m, k \in \{0, 1\}, p, q \in \mathbb{Z}_+, p \leq q, \gcd(p, q) = 1,\) and \(\lambda_j \in \mathbb{C}^*\) are pairwise distinct. In particular \(C = f^{-1}(0)\) has \(n + m + k\) distinct branches. The triple \((p, q, n)\) is clearly an analytic invariant of the curve. In case \(m = 1\)

2010 Mathematics Subject Classification. Primary 32S05; Secondary 14J17.

Key words and phrases. bi-Lipschitz moduli, analytic moduli, quasi-homogeneous polynomials.
For $k = 0$, this polynomial is called \textit{commode} \((\text{AI}, \text{CS})\). Up to a local change of coordinates, the normal forms given by the sets I), II) and III) below determine a stratification of the moduli space of analytically equivalent germs of singular quasi-homogeneous functions (cf. \([\text{CS}, \text{K}]\)):

I) $k=0$ and $p=q=1$, i.e., \((1.1)\) reduces to $f(x, y) = x^m \prod_{j=1}^{n} (y - \lambda_j x)$,

II) $k=0$ and $1 = p < q$, i.e., \((1.1)\) reduces to $f(x, y) = x^m \prod_{j=1}^{n} (y - \lambda_j x^q)$,

III) $1 < p < q$, i.e., \((1.1)\) reduces to $f(x, y) = x^m y^k \prod_{j=1}^{n} (y^p - \lambda_j x^q)$.

Therefore, a reduced quasi-homogeneous function is said to be of type I, II, or III respectively in cases I), II), or III) above. Note that each λ_j is a root of the polynomial $Q_\lambda(t) = \prod_{j=1}^{n} (t - \lambda_j)$, uniquely determined by $f(x, y)$.

\textbf{Theorem 1.1} \([\text{CS}]\). The analytic moduli space of germs of reduced quasi-homogeneous functions is given respectively by

1) $\frac{\text{Symm}(\mathbb{P}^1_\mathbb{C}(n))}{\text{PSL}(2,\mathbb{C})}$ for function germs of type I;

2) $\mathbb{Z}_2 \times \frac{\text{Symm}(\mathbb{C}_\Delta(n))}{\text{Aff}(\mathbb{C})}$ for function germs of type II;

3) $\mathbb{Z}_2 \times \mathbb{Z}_2 \times \frac{\text{Symm}(\mathbb{C}_\ast(n))}{\text{GL}(1,\mathbb{C})}$ for function germs of type III,

where for $M = \mathbb{P}^1, \mathbb{C}, \mathbb{C}^\ast$, $\text{Symm}(M_\Delta(n))$ is the quotient space by the action of the symmetric group S_n on $M_\Delta(n) := \{(x_1, \cdots, x_n) \in M^n : x_i \neq x_j \text{ for all } i \neq j\}$ given by $(\sigma, x) \mapsto \sigma \cdot x = (x_{\sigma(1)}, \cdots, x_{\sigma(n)})$.

The analytic classification of the non-reduced case can be achieved by a similar reasoning \([\text{CS}]\).

Now let us turn to the bi-Lipschitz equivalence. Two function-germs $f, g \in \mathcal{O}_2$ are called \textit{bi-Lipschitz equivalent} if there exists a bi-Lipschitz map-germ $\phi: (\mathbb{C}^2, 0) \to (\mathbb{C}^2, 0)$ such that $f = g \circ \phi$.

In \([\text{HP}]\), Henry and Parusiński showed that the bi-Lipschitz equivalence of analytic function germs $f : (\mathbb{C}^2, 0) \to (\mathbb{C}, 0)$ admits continuous moduli. They introduce a new invariant based on the observation that a bi-Lipschitz homeomorphism does not move much the regions around the relative polar curves. For a single germ f defined at $(\mathbb{C}^2, 0)$, the invariant is given in terms of the leading coefficients of the asymptotic expansions of f along the branches of its generic polar curve.
Fernandes and Ruas in [FR2] study the strong bi-Lipschitz triviality: two function germs f and g are strongly bi-Lipschitz equivalent if they can be embedded in a bi-Lipschitz trivial family, whose triviality is given by integrating a Lipschitz vector field. They show that if two quasi-homogeneous (but not homogeneous) function-germs $(\mathbb{C}^2,0) \to (\mathbb{C},0)$ are strongly bi-Lipschitz equivalent then they are analytically equivalent. This result does not hold for families of homogeneous germs with isolated singularities and same degree since they are Lipschitz equivalent ([FR1]).

In some sense, for quasi-homogeneous (but not homogeneous) real function-germs in two variables the problem of bi-Lipschitz classification is quite close to the problem of analytic classification.

The moduli space of bi-Lipschitz equivalence is not completely understood yet, not even in the case of quasi-homogeneous function germs. This is the question we address in this paper. For quasi-homogeneous (but not homogeneous) polynomials in the plane, we ask whether Henry-Parusinski’s invariant characterizes completely their bi-Lipschitz class. In Theorems 4.1 and 4.4 we compare the moduli spaces of analytic and bi-Lipschitz equivalences. Finally, in Theorem 4.5 we prove that a bi-Lipschitz trivial family of quasi-homogeneous (but not homogeneous) function germs in the plane is analytically trivial.

In what follows, we assume that the quasi-homogeneous polynomial f is miniregular in y in the sense that $x = 0$ is not a line in the tangent cone of the curve $(f = 0)$. Finally, we note that two reduced quasi-homogeneous function germs of the form (1.1) are bi-Lipschitz equivalent if and only if their corresponding commode parts ($k = m = 0$) are equivalent ([FR1]).

2. Polar curves and bi-Lipschitz invariants

Taking into account the remark in the last paragraph, it is enough to consider germs of commode quasi-homogeneous functions, i.e., germs of functions as in (1.1), with $k = m = 0$ and $1 \leq p < q$. Here we describe some bi-Lipschitz invariants of these polynomials.

The polynomial $Q_\lambda(t)$. Let

\begin{equation}
(2.1) \quad f_\lambda(x,y) = \prod_{j=1}^{n} (y^p - \lambda_j x^q),
\end{equation}

where $p, q \in \mathbb{Z}_+, 1 \leq p < q, \gcd(p,q) = 1,$ and $\lambda_j \in \mathbb{C}^*$. Let $\partial_y f_\lambda = 0$ be the polar curve with respect to the direction $(0 : 1) \in \mathbb{P}^1$.

Now let $t = y^p/x^q$, then $f_\lambda(x,y) = x^{pq}Q_\lambda(t)$, where $Q_\lambda(t) = \prod_{j=1}^{n} (t - \lambda_j)$. The following hold:
Proposition 2.1. a) \(f_\lambda(x, y) \) determines uniquely \(Q_\lambda(t) \). Reciprocally, for every pair of natural numbers \(1 \leq p < q, \gcd(p, q) = 1 \), \(Q_\lambda(t) \) determines a unique polynomial \(f_\lambda(x, y) \);

b) Let \(\kappa = (\kappa_1, \ldots, \kappa_{n-1}) \) be all the (non-necessarily distinct) critical points of \(Q_\lambda(t) \). Then \(Q_\lambda(t) = n \prod_{j=1}^{n-1} (t - \kappa_j) \) and

\[
\partial_y f_\lambda(x, y) = pny^{p-1} \prod_{j=1}^{n-1} (y^p - \kappa_j x^q);
\]

c) Moreover, with \(\kappa = (\kappa_1, \ldots, \kappa_{n-1}) \) one has:

\[
\sigma_\ell(\kappa) = \frac{n - \ell}{n} \sigma_\ell(\lambda), \ell = 0, \ldots, n-1,
\]

where \(\sigma_\ell \) is the elementary symmetric polynomial of degree \(\ell \).

Proof. Condition a) follows immediately from the equation \(f_\lambda(x, y) = x^{na} \cdot Q_\lambda(y^p/x^q) \). Now \(Q_\lambda(t) = \prod_{j=1}^{n} (t - \lambda_j) \) may also be written in terms of the elementary symmetric polynomials \(\sigma_j(\lambda) \) as \(Q_\lambda(t) = \sum_{j=0}^{n} (-1)^j \sigma_j(\lambda) t^{n-j} \), \(\sigma_0(\lambda) = 1 \). Notice that \(Q_\lambda(t) \) is a degree \(n - 1 \) polynomial in the variable \(t \), thus we can write \(Q_\lambda(t) = n \prod_{j=1}^{n-1} (t - \kappa_j) \). The conditions (b) and (c) follow immediately from this.

The Henry-Parusiński invariants. We keep the notation of Proposition 2.1 and order the \(\kappa_i \)'s so that the ones equal to zero appear on places \(r + 1, \ldots, n - 1 \). More precisely, the irreducible branches of the polar curve \(\partial_y f_\lambda(x, y) = 0 \) are given by \(y^p - \kappa_\ell x^q = 0 \), for \(\ell = 1, \ldots, r; \) if \(p > 1 \), one more branch is also given by \(y = 0 \). Their Puiseux parametrisations are given by, respectively, \(\gamma_\ell(s) = (s^p, \alpha_\ell s^q) \), where \(\alpha_\ell = \sqrt[n]{\kappa_\ell} \neq 0 \), and by \(\gamma_0(s) = (s, 0) \).

When \(f \) is as in (2.1), the tangent cone of \(f(x, y) = 0 \) contains only one singular line given by \(y = 0 \). Notice that when \(f \) is a reduced homogeneous polynomial then the tangent cone of \(f(x, y) = 0 \) contains no singular line.

Recall from [HP, p. 225] that the Henry-Parusiński invariants are obtained in the following way. For each polar arc \(\gamma \) tangent to a singular line of the tangent cone of \(f(x, y) = 0 \), we associate two numbers: \(h = h(\gamma) \in \mathbb{Q}_+ \) and \(c = c(\gamma) \in \mathbb{C}^* \) given by the expansions \(f(\gamma(s)) = cs^h + \ldots, \) \(c \neq 0 \). In particular, the Henry-Parusiński invariants are not defined for reduced homogeneous germs.

Since \(f \) is quasi-homogeneous, \(h \) is determined by the weights, so we can omit it in the definition of the invariants. The invariant of Henry-Parusiński of a quasi-homogeneous \(f \) is the set \(\text{Inv}(f) = \left\{ \frac{c_0, c_1, \ldots, c_p}{c^p} \right\} \) for germs of type III (i.e., \(p > 1 \) in (2.1)) and \(\text{Inv}(f) = \left\{ \frac{c_1, \ldots, c_p}{c^p} \right\} \) for germs of type II, (i.e. \(p = 1 \) in (2.1)), where \(c_j \) is the coefficient of the leading term of \(f(\gamma_j(s)) \). If \(p > 1 \),
two sets \(\{c_0, c_1, \ldots, c_r\} \) and \(\{c'_0, c'_1, \ldots, c'_r\} \) define the same Henry-Parusiński invariant if there exists \(\xi \in \mathbb{C}^* \) such that
\[
\{c'_0, c'_1, \ldots, c'_r\} = \{c_0\xi^{q_n}, c_1\xi^{p_qn}, \ldots, c_r\xi^{p_qn}\}.
\]
If \(p = 1 \), two sets \(\{c_1, c_2, \ldots, c_r\} \) and \(\{c'_1, c'_2, \ldots, c'_r\} \) define the same Henry-Parusiński invariant if there exists \(\xi \in \mathbb{C}^* \) such that
\[
\{c'_1, c'_2, \ldots, c'_r\} = \{c_1\xi^{q_n}, c_2\xi^{q_n}, \ldots, c_r\xi^{q_n}\}.
\]
We have \(f \circ \gamma_0(s) = (-1)^n \lambda_1 \cdots \lambda_n s^{nq} \) (i.e., if \(p > 1 \)) and \(f \circ \gamma_\ell(s) = \prod_{j=1}^n (\kappa_\ell - \lambda_j) s^{pqn} \). Thus we define
\[
\rho_0 := (-1)^n \lambda_1 \cdots \lambda_n \text{ and } \rho_\ell := \prod_{j=1}^n (\kappa_\ell - \lambda_j).
\]

Remark 2.2. Although the polar arcs are not necessarily reduced, as we shall see in the next paragraph, this is precisely what happens in the generic case.

The generic polynomial in two variables. Let \(H^d_{p,q} \) be the set of commode monic and reduced quasi-homogeneous polynomials in two variables with relatively prime weights \((p,q), 1 \leq p < q\), and total degree \(d\). Then \(H^d_{p,q} \) is an affine space of dimension \(n \). From Proposition 2.1 there is an isomorphism \(H^d_{p,q} \cong P^n_1 \), where \(P^n_1 \) is the affine space of monic polynomials of degree \(n \), say \(Q_\sigma(t) = t^n + \sum_{j=1}^n (-1)^j \sigma_j t^{n-j} \). We write \(\psi : H^d_{p,q} \rightarrow P^n_1 \) and \(\pi : P^n_1 \rightarrow \mathbb{C}^n, \psi(f) = Q \) and \(\pi(Q) = \sigma := (\sigma_1, \ldots, \sigma_n) \).

The following result holds true:

Theorem 2.3. There is a Zariski open set \(Z \subset H^d_{p,q} \) such that for every \(f \in Z \) the following holds:

a) the polar curve \(\partial_y f_x = 0 \) has \(n-1 \) distinct roots;

b) For \(\ell \neq \ell', \rho_\ell \neq \rho_{\ell'}, 1 \leq \ell \leq n-1 \).

Proof. The family \(Q_\sigma := Q_\sigma(t) \) is the versal unfolding of \(Q_0(t) = t^n \). Therefore, as usual, we can define

1. \(B_L := \{ \sigma \in \mathbb{C}^n : \exists t_0 \in \mathbb{C} \text{ such that } Q'_\sigma(t_0) = Q''_\sigma(t_0) = 0 \} \);
2. \(B_G := \{ \sigma \in \mathbb{C}^n : \exists t_1, t_2 \in \mathbb{C} \text{ such that } Q'_\sigma(t_1) = Q'_\sigma(t_2) = 0 \text{ and } Q_\sigma(t_1) = Q_\sigma(t_2) \} \);

the local and semi-local subsets of the total bifurcation set \(B = B_L \cup B_G \) of \(Q_0 \). Since they are proper algebraic sets of \(\mathbb{C}^n \), we can take \(Z_0 = Z_L \cap Z_G \), where \(Z_L \) is the Zariski open set given by the complement \((\pi \circ \psi)^{-1}(B_L)\) and \(Z_G \) is the complement \((\pi \circ \psi)^{-1}(B_G)\). Polynomials in \(Z_L \) satisfy a) and those in \(Z_G \) satisfy b). Then \(Z_0 \) satisfies the required conditions. \(\Box \)
Remark 2.4. Notice that $B \subset \mathbb{C}^n$ has a stratification which induces a stratification in $(\pi \circ \psi)^{-1}(B)$.

3. Analytic moduli

The analytic classification of quasi-homogeneous function-germs at the origin of \mathbb{C}^2 was given in [K] and [CS] (cf. Theorem 1.1). We revisit the analytic classification from [CS] under the light of bi-Lipschitz invariants.

Let M be a manifold and $M_{\Delta}(n) := \{(x_1, \cdots, x_n) \in M^n : x_i \neq x_j \text{ for all } i \neq j\}$. Let S_n denote the group of n elements and consider its action on $M_{\Delta}(n)$ given by $(\sigma, \lambda) \mapsto \sigma \cdot \lambda = (\lambda_{\sigma(1)}, \cdots, \lambda_{\sigma(n)})$. The quotient space induced by this action is denoted by $\text{Symm}(M_{\Delta}(n))$. Now suppose a Lie group G acts on M and let G act on $M_{\Delta}(n)$ in the natural way $(g, \lambda) = (g \cdot \lambda_1, \cdots, g \cdot \lambda_n)$ for every $\lambda \in M_{\Delta}(n)$. Then the actions of G and S_n on $M_{\Delta}(n)$ commute. Thus we obtain a natural action of G on $\text{Symm}(M_{\Delta}(n))$. Given $\lambda \in M_{\Delta}(n)$, denote its equivalence class in $\text{Symm}(M_{\Delta}(n))/G$ by $[\lambda]$.

Here we present some useful distinct characterizations of the analytic moduli space of reduced quasi-homogeneous function-germs.

The moduli space $\mathcal{M}^0_{[n],1}$. Let $\mathcal{M}^0_{[n],1}$ denote the moduli space of analytically equivalent punctured Riemann spheres with one marked puncture and n unordered punctures, i.e., $\mathcal{M}^0_{[n],1} = \frac{\text{Symm}(\mathcal{C}_{\Delta}(n))}{\text{Aff}(\mathbb{C})}$. From Theorem 1.1 this coincides with the moduli space of quasi-homogeneous functions of type II.

Now we give a suitable description of the space $\mathcal{M}^0_{[n],1}$.

Let $\mathcal{W}^{n-1}_{0} := \{\lambda = (\lambda_1, \cdots, \lambda_n) \in \text{Symm}(\mathcal{C}_{\Delta}(n)) : \lambda_1 + \cdots + \lambda_n = 0\}$ and consider the natural action of \mathbb{C}^* on \mathbb{C}^n given by $(\lambda, z) \mapsto \lambda z = (\lambda z_1, \cdots, \lambda z_n)$. Clearly, this action induces an analogous action on \mathcal{W}^{n-1}_{0}. Their cosets induce the following isomorphism.

Lemma 3.1. The moduli space $\mathcal{M}^0_{[n],1}$ is isomorphic to $\mathcal{W}^{n-1}_{0}/\text{GL}(1, \mathbb{C})$.

Proof. First notice that each class $[\lambda] \in \frac{\text{Symm}(\mathcal{C}_{\Delta}(n))}{\text{Aff}(\mathbb{C})}$ has a representative $[\lambda_0] \in \mathcal{W}^{n-1}_{0}$, thus it is enough to show that $[\lambda] = [\lambda'] \in \frac{\text{Symm}(\mathcal{C}_{\Delta}(n))}{\text{Aff}(\mathbb{C})}$ if and only if $[\lambda_0] = [\lambda_0'] \in \frac{\mathcal{W}^{n-1}_{0}}{\text{GL}(1, \mathbb{C})}$. Let $\Phi : \text{Symm}(\mathcal{C}_{\Delta}(n)) \longrightarrow \mathcal{W}^{n-1}_{0}$ be the map given by $\lambda = (\lambda_1, \cdots, \lambda_n) \mapsto \lambda_0 := \lambda - \frac{\lambda_1 + \cdots + \lambda_n}{n}(1, \cdots, 1)$. Then a straightforward calculation shows that $\Phi(a\lambda + b) = a\Phi(\lambda)$, i.e., if $\lambda' = a\lambda + b$, then $\lambda'_0 = a\lambda_0$. Thus Φ induces a well defined map $\overline{\Phi} : \frac{\text{Symm}(\mathcal{C}_{\Delta}(n))}{\text{Aff}(\mathbb{C})} \longrightarrow \frac{\mathcal{W}^{n-1}_{0}}{\text{GL}(1, \mathbb{C})}$. This map is clearly surjective, thus it suffices to show that it is injective. Now let $\lambda, \lambda' \in \text{Symm}(\mathcal{C}_{\Delta}(n))$ be such that $\Phi(\lambda') = a\Phi(\lambda)$, this implies the existence of $b, b' \in \mathbb{C}$ such that $\lambda' - b'(1, \cdots, 1) = a(\lambda - b(1, \cdots, 1))$. The result then follows. □
Now consider the above defined actions of \mathbb{Z}_n on \mathbb{C}^m and $\text{Symm}(\mathbb{C}^m)$, and let $\mathbb{W}^n_0 \subset \mathbb{W}^{n-1}_0$ be given by $\mathbb{W}^{n-2}_{0,1} = \{ \lambda = (\lambda_1, \ldots, \lambda_n) \in \mathbb{W}^{n-1}_0 : \lambda_1 \cdots \lambda_n = 1 \}$, then we can reduce $\mathcal{M}^0_{[n],1}$ a bit further.

Lemma 3.2. The moduli space $\mathcal{M}^0_{n,[1]}$ is isomorphic to $\mathbb{W}^{n-2}_{0,1}/\mathbb{Z}_n$.

Proof. Consider the map $\Psi : \mathbb{W}^n_0 \longrightarrow \mathbb{W}^{n-2}_{0,1}$ given by $\lambda = (\lambda_1, \ldots, \lambda_n) \mapsto \overline{\lambda} = \frac{1}{\lambda_1 \cdots \lambda_n} \lambda$. Similarly, it is enough to show that $[\lambda] = [\lambda'] \in \frac{\mathbb{W}^{n-1}_n}{\text{GL}(1, \mathbb{C})}$ if and only if $[\overline{\lambda}] = [\overline{\lambda}'] \in \frac{\mathbb{W}^{n-2}_{0,1}}{\mathbb{Z}_n}$. If $\lambda' = a\lambda$, then

$$\overline{\lambda'} = \frac{1}{\sqrt[\lambda_1 \cdots \lambda'_n]} \lambda' = \frac{a}{\omega^{-m} \cdot a} \frac{1}{\sqrt[\lambda_1 \cdots \lambda_n]} \lambda = \omega^m \cdot \overline{\lambda},$$

where $\omega = \exp(2\pi i/n)$. Thus Ψ induces a map $\overline{\Psi} : \frac{\mathbb{W}^{n-1}_n}{\text{GL}(1, \mathbb{C})} \longrightarrow \frac{\mathbb{W}^{n-2}_{0,1}}{\mathbb{Z}_n}$. Clearly, $\overline{\Psi}$ is surjective, thus it suffices to prove that it is injective. Now notice that $\overline{\lambda'} = \omega^k \overline{\lambda}$ implies

$$\frac{\sqrt[\lambda_1 \cdots \lambda'_n]}{\sqrt[\lambda_1 \cdots \lambda_n]} = \frac{\omega^k \lambda}{\overline{\lambda}}.$$

But this is equivalent to say that $\lambda' = a\lambda$ for some $a \in \mathbb{C}$. \hfill \Box

Now recall the natural action \mathbb{Z}_n on \mathbb{C}^m given by $\zeta^s \mapsto (\zeta^s \cdot \mu_1, \zeta^s \cdot \mu_2, \ldots, \zeta^s \cdot \mu_m)$ with $\zeta = \exp(2\pi i/n)$, whose orbit space is denoted by $\mathbb{C}^m/\mathbb{Z}_n$, then the previous lemma leads to the following isomorphism.

Lemma 3.3. The map $\Xi : \mathbb{W}^{n-2}_{0,1} \longrightarrow \mathbb{W}^{n-2}_{0,1}$ given by $\lambda = (\lambda_1, \ldots, \lambda_n) \mapsto \kappa = (\kappa_1, \ldots, \kappa_n)$, where $\sigma_\ell(\kappa) = \frac{n-\ell}{n} \sigma_\ell(\lambda)$ for all $\ell = 1, \ldots, n-1$, induces the following isomorphism:

$$\mathcal{M}^0_{[n],1} \cong \frac{\mathbb{W}^{n-2}_{0,1}}{\mathbb{Z}_n}. \quad (3.1)$$

Proof. Since $\frac{n-\ell}{n} \sigma_\ell(\kappa)$, $\ell = 1, \ldots, n-1$, are the coefficients of the monic polynomial $z^n + \frac{n}{n-1} \sigma_1(\kappa) z^{n-1} + \cdots + \frac{n}{n-(n-1)} \sigma_{n-1}(\kappa) z + 1$ having $\{\lambda_1, \ldots, \lambda_n\}$ as roots, then Ξ induces a bijective map $\Xi : \frac{\mathbb{W}^{n-2}_{0,1}}{\mathbb{Z}_n} \longrightarrow \frac{\mathbb{W}^{n-2}_{0,1}}{\mathbb{Z}_n}$. \hfill \Box

The moduli space $\mathcal{M}^0_{[n],2}$. Let $\mathcal{M}^0_{[n],2}$ denote the moduli space of analytically equivalent punctured Riemann spheres with two ordered punctures and n unordered punctures, i.e., $\mathcal{M}^0_{[n],2} = \frac{\text{Symm}(\mathbb{C}^n)}{\text{GL}(1, \mathbb{C})}$. From Theorem 1.1, this coincides with the moduli space of quasi-homogeneous functions of type III. Let us give a suitable description of $\mathcal{M}^0_{[n],2}$.

On the analytic variety $\mathbb{V}^{n-1} = \{ \lambda \in \mathbb{C}^n : \lambda_1 \cdots \lambda_n = 1 \}$, we may consider the (effective) action of \mathbb{Z}_n given by the multiplication by the n-th roots of unity, i.e., $\zeta^s \mapsto \zeta^s \cdot \lambda$ with $\zeta = \exp(2\pi i/n)$. Therefore, we have the following isomorphism.
Lemma 3.4. Let $\mathbb{V}^{n-1} = \{ \lambda \in \text{Symm} \mathbb{C}_\Delta^*(n) : \lambda_1 \cdots \lambda_n = 1 \}$, then

\[(3.2) \quad \mathcal{M}_{0,2}^0 \cong \frac{\mathbb{V}^{n-1}}{\mathbb{Z}_n}. \]

Proof. The map $\Psi : \text{Symm} \mathbb{C}_\Delta^*(n) \to \mathbb{V}^{n-1}$ given by $\lambda = (\lambda_1, \ldots, \lambda_n) \mapsto \overline{\lambda} = \frac{1}{\sqrt[n]{\lambda_1 \cdots \lambda_n}}$ induces a well defined map $\Psi : \frac{\text{Symm} \mathbb{C}_\Delta^*(n)}{\text{GL}(1, \mathbb{C})} \to \frac{\mathbb{V}^{n-1}}{\mathbb{Z}_n}$. In fact, $[\lambda'], [\lambda] \in \mathbb{V}^{n-1}$ are equivalent in $\text{Symm} \mathbb{C}_\Delta^*(n)$ if and only if $\alpha \in \mathbb{C}^*$ such that $\lambda' = \alpha \lambda$. Since $\lambda_1 \cdots \lambda_n = 1 = \lambda_1' \cdots \lambda_n'$, then $\alpha^n = 1$.

As before, it is enough to show that $[\lambda] = [\lambda] \in \frac{\text{Symm} \mathbb{C}_\Delta^*(n)}{\text{GL}(1, \mathbb{C})}$ if and only if $[\lambda] = [\lambda] \in \frac{\mathbb{V}^{n-1}}{\mathbb{Z}_n}$. Since Ψ is clearly surjective, we only have to prove that it is injective. In fact, suppose $[\lambda] = [\lambda] \in \frac{\mathbb{V}^{n-1}}{\mathbb{Z}_n}$, then

\[\frac{1}{\sqrt[n]{\lambda_1 \cdots \lambda_n}} \lambda' = \overline{\lambda} = \alpha \overline{\lambda} \frac{1}{\sqrt[n]{\lambda_1 \cdots \lambda_n}} \lambda, \quad \alpha^n = 1. \]

Therefore, $\lambda' = a \lambda$ for some $a \in \mathbb{C}$. \square

4. **Analytic moduli and bi-Lipschitz invariants**

In this section, we establish the relationship between the analytic moduli space and the Henry-Parusiński invariant.

4.1. **Type II commode functions.** From (2.3) and (2.5), we obtain the correspondence

\[\kappa = (\kappa_1, \ldots, \kappa_{n-1}) \to \rho = (\rho_1, \ldots, \rho_{n-1}), \]

where ρ_j is given by $\rho_j = \prod_{j=1}^{n-1} (\kappa_j - \lambda_j)$. This correspondence is represented by the system of equations

\[(4.1) \quad \begin{cases} (\kappa_1)^n + \sum_{\ell=1}^{n-1} (-1)^{\ell} \frac{\sigma_{\ell}(\rho)}{n-\ell} \kappa_1^{n-\ell} + (-1)^n \mu_n = \rho_1, \\ \vdots \\ (\kappa_{n-1})^n + \sum_{\ell=1}^{n-1} (-1)^{\ell} \frac{\sigma_{\ell}(\rho)}{n-\ell} \kappa_{n-1}^{n-\ell} + (-1)^n \mu_n = \rho_{n-1}, \end{cases} \]

where $\mu_n = 1$, and defines a map $\Upsilon : \mathbb{C}^{n-1} \to \mathbb{C}^{n-1}, \kappa_j \mapsto \rho_j, j = 1, \ldots, n-1$. It follows from Lemma 3.3 that in order to compare the analytic invariants and the Henry-Parusiński invariants it suffices to consider the restriction of Υ to the hyperplane $\mathbb{W}_0^{n-2} = \{ (\kappa_1, \cdots, \kappa_{n-1}) \in \mathbb{C}^{n-1} : \kappa_1 + \cdots + \kappa_{n-1} = 0 \}$. Notice that \mathbb{W}_0^{n-2} is a manifold admitting a system of coordinates given by $\overline{\rho} = (\kappa_1, \cdots, \kappa_{n-2})$. In particular, the last equation of (4.1) determines immediately ρ_{n-1} in terms of these $n - 2$ parameters. Therefore, $\text{Im}(\Upsilon)$ may be considered as (an algebraic) graph over \mathbb{C}^{n-2} with coordinates given by $\overline{\rho} = (\rho_1, \cdots, \rho_{n-2})$.

Denote the restriction of Υ to \mathbb{W}_0^{n-2} by $\Upsilon_{II} := \Upsilon|_{\mathbb{W}_0^{n-2}}$, then in the above systems of coordinates $\Upsilon_{II} = (\Upsilon_{II,1}, \cdots, \Upsilon_{II,n-2})$ is given by
ON THE MODULI SPACE OF QUASI-HOMOGENEOUS FUNCTIONS

(4.2) \[
\begin{cases}
\Upsilon_{II,1}(\kappa) = (\kappa_1)^n + \sum_{\ell=1}^{n-1}(-1)^{\ell} \frac{n}{n-\ell} \sigma_{\ell}(\kappa)(\kappa_1)^{n-\ell} + (-1)^n, \\
\Upsilon_{II,\kappa-2}(\kappa) = (\kappa_{n-2})^n + \sum_{\ell=1}^{n-1}(-1)^{\ell} \frac{n}{n-\ell} \sigma_{\ell}(\kappa)(\kappa_{n-2})^{n-\ell} + (-1)^n.
\end{cases}
\]

Let $\mathcal{HP}_{II} := \text{Im}(\Upsilon|_{W_0^{n-2}})$, then to each $\rho \in \mathcal{HP}_{II}$ there corresponds a unique class of the Henry-Parusinski invariant of a type II function germ. Besides, since W_0^{n-2} is an affine space of dimension $n - 2$, each generic point in the image of Υ admits n^{n-2} points in its pre-image (Bezout’s theorem).

From (4.1) and Lemma 3.3, Υ induces a map between the corresponding moduli spaces, say $\Upsilon_{II} : \mathcal{M}_{[n,1]}^0 \rightarrow \mathcal{HP}_{II}$. In this case, each point $\rho \in \mathcal{HP}_{II}$ admits precisely n^{n-3} points in its pre-image (counting multiplicities) with respect to Υ_{II}.

For any $\rho = (\rho_1, \cdots, \rho_{n-2}) \in \mathbb{C}^{n-2}$, we say that $\Upsilon_{II}^{-1}(\rho)$ is a degenerate fiber of Υ_{II} if $\rho_j = 0$ for some $j \in \{1, \cdots, n-2\}$ or else if the fiber has a multiple root; otherwise, we say that $\Upsilon_{II}^{-1}(\rho)$ is a non-degenerate fiber. We have

Theorem 4.1. For type II functions in H_{pq}^d, the analytic moduli space with fixed Henry-Parusinski invariant is determined by the equivalence classes in W_0^{n-2} of the non-degenerate fibers of $\Upsilon_{II} : W_0^{n-2} \rightarrow \mathcal{HP}_{II}$. More precisely, for each $\rho \in \text{Im}(\Upsilon_{II})$ there exist $\#\Upsilon_{II}^{-1}(\rho) \leq n^{n-3}$ analytic types of function-germs with the same Henry-Parusinski invariant ρ. The equality holds for generic polynomials in $\mathcal{Z} \subset H_{pq}^d$.

Proof. From the description of the space $\mathcal{M}_{[n,1]}^0$ (cf. (3.1)) and from (2.4) and (2.5), the map $\Upsilon_{II} : W_0^{n-2} \rightarrow \mathbb{C}^{n-2}$ induces a surjective map $\Upsilon_{II} : \mathcal{M}_{[n,1]}^0 \rightarrow \mathcal{HP}_{II}$. In other words, the correspondence between the Henry-Parusinski invariant and the analytic invariants is determined by the orbits of the action of \mathbb{Z}_n on the fibers over $\text{Im} \Upsilon_{II}$ of the homogeneous map $\Upsilon_{II} : W_0^{n-2} \rightarrow \mathbb{C}^{n-2}$, given by $\Upsilon_{II}(\kappa) = (\Upsilon_{II,1}(\kappa), \cdots, \Upsilon_{II,n-2}(\kappa))$, where

(4.3) \[\Upsilon_{II,j}(\kappa) := (\kappa_j)^n + \sum_{\ell=1}^{n-1}(-1)^{\ell} \frac{n}{n-\ell} \sigma_{\ell}(\kappa)(\kappa_j)^{n-\ell} + (-1)^n, \quad j = 1, \ldots, n-2.\]

Finally, Bezout’s theorem and the action of \mathbb{Z}_n on the fibers over $\text{Im} \Upsilon_{II}$ lead to the desired result \[\square\]

Let us see some examples. Since for $n = 2$ there is trivially just one analytic class (due to classical complex analysis arguments), then we shall only consider $n \geq 3$.

Example 4.2. Suppose \(n = 3 \), then \(\kappa = (\kappa_1, \kappa_2) \) and \(\mu_j = \sigma_j(\lambda) \). Since \(\kappa \in \mathbb{W}_0^{n-2} \), then \(\Upsilon_{II} \) is given by
\[
\begin{align*}
(\kappa_1)^3 + (-1)^2 \frac{3}{3-2} \sigma_2(\kappa)\kappa_1 &= \rho_1 - (-1)^3, \\
(\kappa_2)^3 + (-1)^2 \frac{3}{3-2} \sigma_2(\kappa)\kappa_2 &= \rho_2 - (-1)^3.
\end{align*}
\]
Since \(\kappa_2 = -\kappa_1 \), then we have
\[
\begin{align*}
-2(\kappa_1)^3 &= (\kappa_1)^3 + 3(\kappa_1\kappa_2)\kappa_1 = \rho_1 + 1 \\
-2(\kappa_2)^3 &= (\kappa_2)^3 + 3(\kappa_1\kappa_2)\kappa_2 = \rho_2 + 1
\end{align*}
\]
\(\Leftrightarrow \)
\[
\begin{align*}
(\kappa_1)^3 &= -\frac{1+\rho_1}{2}, \\
(\kappa_2)^3 &= -\frac{\rho_2+1}{2}.
\end{align*}
\]
In particular, \(\rho_2 = -\rho_1 - 2 \). If we let \(\alpha = -\sqrt[3]{\frac{1+\rho_1}{2}} \) be one of the cubic roots of \(\frac{1+\rho_1}{2} \) and \(\omega = \exp(\frac{2\pi i}{3}) \), then
\[
\begin{align*}
\kappa_1 &= -\omega^s \alpha, \\
\kappa_2 &= \omega^s \alpha, \quad s = 0, 1, 2
\end{align*}
\]
Therefore, there is just \(3^{3-2} = 1 \) analytic class corresponding to the same Henry-Parusiński invariant \(\rho = (\rho_1, -2 - \rho_1) \), where \(\rho_1 \in \text{Im} \Upsilon_{II} \).

Example 4.3. For \(n = 4 \), the system \((\text{II})\) assumes the form
\[
\begin{align*}
(\kappa_1)^4 + \frac{4}{4-2} \sigma_2(\kappa)(\kappa_1)^{4-2} - \frac{1}{4-3} \sigma_3(\kappa)(\kappa_1)^{4-3} &= \rho_1 - (-1)^4, \\
(\kappa_2)^4 + \frac{4}{4-2} \sigma_2(\kappa)(\kappa_2)^{4-2} - \frac{1}{4-3} \sigma_3(\kappa)(\kappa_2)^{4-3} &= \rho_2 - (-1)^4, \\
(\kappa_3)^4 + \frac{4}{4-2} \sigma_2(\kappa)(\kappa_3)^{4-2} - \frac{1}{4-3} \sigma_3(\kappa)(\kappa_3)^{4-3} &= \rho_3 - (-1)^4.
\end{align*}
\]
or equivalently
\[
\begin{align*}
(\kappa_1)^4 + 2(\kappa_1\kappa_2 + \kappa_1\kappa_3 + \kappa_2\kappa_3)(\kappa_1)^2 - 4\kappa_1\kappa_2\kappa_3(\kappa_1) &= \rho_1 - 1, \\
(\kappa_2)^4 + 2(\kappa_1\kappa_2 + \kappa_1\kappa_3 + \kappa_2\kappa_3)(\kappa_2)^2 - 4\kappa_1\kappa_2\kappa_3(\kappa_2) &= \rho_2 - 1, \\
(\kappa_3)^4 + 2(\kappa_1\kappa_2 + \kappa_1\kappa_3 + \kappa_2\kappa_3)(\kappa_3)^2 - 4\kappa_1\kappa_2\kappa_3(\kappa_3) &= \rho_3 - 1.
\end{align*}
\]
In other words
\[
\begin{align*}
(\kappa_1)^2[(\kappa_1)^2 + 2(\kappa_1\kappa_2 + \kappa_1\kappa_3 - \kappa_2\kappa_3)] &= \rho_1 - 1, \\
(\kappa_2)^2[(\kappa_2)^2 + 2(\kappa_1\kappa_2 - \kappa_1\kappa_3 + \kappa_2\kappa_3)] &= \rho_2 - 1, \\
(\kappa_3)^2[(\kappa_3)^2 + 2(-\kappa_1\kappa_2 + \kappa_1\kappa_3 + \kappa_2\kappa_3)] &= \rho_3 - 1.
\end{align*}
\]
Assuming that \(\kappa_3 = -(\kappa_1 + \kappa_2) \), then we have
\[
\begin{align*}
(\kappa_1)^2[2(\kappa_2)^2 + 2\kappa_1\kappa_2 - (\kappa_1)^2] &= \rho_1 - 1, \\
(\kappa_2)^2[2(\kappa_1)^2 + 2\kappa_1\kappa_2 - (\kappa_2)^2] &= \rho_2 - 1, \\
(\kappa_1 + \kappa_2)^2[3(\kappa_1)^2 + 4\kappa_1\kappa_2 + 3\kappa_2^2] &= \rho_3 - 1.
\end{align*}
\]
For fixed \((\rho_1, \rho_2) \in \text{Im}(\Upsilon_{II}) \) the classical Bezout’s theorem says that there are precisely \(4^2 = 16 \) solutions for the above system. Further, the last one tells us which value \(\rho_3 \) must have in order that \(\rho = (\rho_1, \rho_2, \rho_3) \) be the associated Henri-Parusiński invariant. Considering the symmetries, this information tells us that there are \(4^{4-3} = \frac{16}{4} \) distinct analytic types of quasi-homogeneous functions with the Henry-Parusiński invariant \(\rho \).
4.2. Type III commode functions. From \((2.3)\) and \((2.5)\), we obtain the correspondence

\[
κ = (κ_1, \ldots, κ_{n-1}) \rightarrow ρ = (ρ_1, \ldots, ρ_{n-1}),
\]

where \(ρ_0 = (-1)^nλ_1 \cdots λ_n\) and \(ρ_ℓ = \prod_{j=1}^n(κ_ℓ - λ_j)\) for \(ℓ > 0\). This correspondence is represented by the map \(Υ_{III} : \mathbb{C}^{n-1} \rightarrow \mathbb{C}^{n-1}, \kappa \mapsto c = (c_1, \ldots, c_{n-1})\), given by

\[
\begin{align*}
(k_1)^n + \sum_{ℓ=1}^{n-1}(-1)^{n-1-ℓ} \frac{n-ℓ}{n-ℓ} σ_ℓ(k_1)(κ_1)^{n-ℓ} + (-1)^n &= (-1)^nc_1, \\
&\vdots \\
(k_{n-1})^n + \sum_{ℓ=1}^{n-1}(-1)^{n-1-ℓ} \frac{n-ℓ}{n-ℓ} σ_ℓ(k_1)(κ_{n-1})^{n-ℓ} + (-1)^n &= (-1)^nc_{n-1},
\end{align*}
\]

where

\[
λ_1 \cdots λ_n = 1 \quad \text{and} \quad c_ℓ := \frac{ρ_ℓ}{ρ_0} = \frac{(κ_ℓ - λ_1) \cdots (κ_ℓ - λ_n)}{(-1)^nλ_1 \cdots λ_n} \neq 0.
\]

From Lemma 3.4, each \(c = (c_1, \ldots, c_{n-1}) \in \mathcal{HP}_{III} = \text{Im}(Υ_{III})\) corresponds to only one Henry-Parusiński invariant and thus induce a map from the analytic moduli space to the Henry-Parusiński invariant, say \(Υ_{III} : M^0_{[n],2} \rightarrow \mathcal{HP}_{III}\).

As before, let \(c \in \mathcal{HP}_{III}\), then we say that \(Υ_{III}^{-1}(c)\) is a degenerate fiber of \(Υ_{III}\) if \(c_j = 0\) for some \(j \in \{1, \ldots, n\}\) or else if the fiber has a multiply root; otherwise we shall say that \(Υ_{III}^{-1}(c)\) is a non-degenerate fiber.

Theorem 4.4. For type III functions in \(\mathcal{H}_{pq}^d\), the analytic moduli space with fixed Henry-Parusiński invariant is determined by the images in \(\mathcal{Y}_{III}^{-1}\) of non-degenerate fibers of \(Υ_{III} : \mathcal{V}^{n-1} \rightarrow \mathbb{C}^{n-1}\). More precisely, for each \(c \in \mathcal{HP}_{III}\) there exist \(\#[Υ_{III}^{-1}(c)] \leq n^{n-2}\) analytic types of function-germs with the same Henry-Parusiński invariant \(c\). The equality holds for generic polynomials in \(Z \subset \mathcal{H}_{pq}^d\).

Proof. From the description of the space \(M^0_{[n],2}\) (cf. (3.2)) and also from \((2.3)\) and \((2.5)\), the correspondence between the Henry-Parusiński invariant and the analytic invariants is determined by the orbits of the action of \(\mathbb{Z}_n\) on the fibers over \(\mathcal{HP}_{III}\) of the map \(Υ_{III} : \mathbb{C}^{n-1} \rightarrow \mathbb{C}^{n-1}\) given in coordinates by \(Υ_{III}(κ) = (Υ_1(κ), \ldots, Υ_{n-1}(κ))\), where

\[
(4.4) \quad Υ_j(κ) := (κ_j)^n + \sum_{ℓ=1}^{n-1}(-1)^{n-ℓ} \frac{n-ℓ}{n-ℓ} σ_ℓ(κ)(κ_j)^{n-ℓ}.
\]

□

As a consequence of the above theorems, we are able to generalize the main result in [FR2] as follows.
Theorem 4.5. Let \(f_t \) be a continuous family of germs of quasi-homogeneous (and not homogeneous) functions with isolated singularity and constant Henry-Parusiński invariant then \(f_t \) is analytically trivial.

Proof. First recall from \([FR2]\) that it suffices to consider the commode quasi-homogeneous case. Let \(H_{p,q}^d \) denote the set of commode quasi-homogeneous polynomials with weights \((p, q)\) and quasi-homogeneous degree \(d\). Let \([H_{p,q}^d]\) denote the set of analytic conjugacy classes in \(H_{p,q}^d\) and \(\pi : H_{p,q}^d \longrightarrow [H_{p,q}^d]\) the natural projection, then we have the commutative diagram

\[
\begin{array}{c}
H_{p,q}^d \xrightarrow{\pi} \Upsilon \rightarrow \mathcal{H}P \\
[0, 1] \xrightarrow{f_t} [H_{p,q}^d] \xrightarrow{\Upsilon} \mathcal{H}P
\end{array}
\]

where \(\Upsilon\) is the map in the statement of Theorems 4.1 and 4.4 and \(\mathcal{H}P\) the space of Henry-Parusiński invariants. Suppose that \(f_t\) is a continuous family with constant Henry-Parusiński invariant \(\rho\). Then \(\pi \circ f_t\) is a continuous family of analytic classes contained in \([\Upsilon]^{-1}(\rho)\). Since \([\Upsilon]\) is a ramified covering, then \([\Upsilon]^{-1}(\rho)\) is discrete and the result follows. \(\square\)

5. Examples

Now let us study some examples.

Example 5.1. Suppose \(n = 2\), then \(\kappa = \kappa_1\) and \(\mu_1 = \sigma_1(\lambda) = \frac{2}{\kappa_1^2}\sigma_1(\kappa) = 2\kappa_1\). Thus

\[
(\kappa_1)^2 + (-1)^1(2\kappa_1)(\kappa_1)^{2-1} = c_1 - 1 \iff (\kappa_1)^2 = 1 - c_1.
\]

Equivalently,

\[
\kappa_1 = \pm \sqrt{1 - c_1}.
\]

Since the square roots of unity are given by \(\pm 1\), then the equivalence (3.2) ensures that both points correspond to just one analytic class \([\lambda]\).

Example 5.2. Suppose \(n = 3\), then \(\kappa = (\kappa_1, \kappa_2)\) and \(\mu_j = \sigma_j(\lambda)\). Hence

\[
\begin{cases}
(\kappa_1)^3 + (-1)^1\frac{3}{3-1}\sigma_1(\kappa)(\kappa_1)^2 + (-1)^2\frac{3}{3-2}\sigma_2(\kappa)\kappa_1 = c_1 - 1, \\
(\kappa_2)^3 + (-1)^1\frac{3}{3-1}\sigma_1(\kappa)(\kappa_2)^2 + (-1)^2\frac{3}{3-2}\sigma_2(\kappa)\kappa_2 = c_2 - 1,
\end{cases}
\]

or equivalently

\[
\begin{cases}
(\kappa_1)^3 - \frac{3}{3-1}(\kappa_1 + \kappa_2)(\kappa_1)^2 + 3(\kappa_1\kappa_2)\kappa_1 = c_1 - 1, \\
(\kappa_2)^3 - \frac{3}{3-2}(\kappa_1 + \kappa_2)(\kappa_2)^2 + 3(\kappa_1\kappa_2)\kappa_2 = c_2 - 1.
\end{cases}
\]

In other words,

\[
\begin{cases}
-\frac{1}{2}(\kappa_1)^3 + \frac{3}{2}\kappa_2(\kappa_1)^2 = c_1 - 1, \\
-\frac{1}{2}(\kappa_2)^3 + \frac{3}{2}\kappa_1(\kappa_2)^2 = c_2 - 1.
\end{cases}
\]
Multiplying the first equation by \(-2\) and summing it to the second one multiplied by 2, we have
\[
(k_1 - k_2)^3 = 2(c_2 - c_1).
\]
Let \(\alpha\) be a cubic root of \(2(c_2 - c_1)\) and \(\omega = \exp(2\pi i/3)\), then the cubic roots of \(2(c_2 - c_1)\) are of the form \(\omega\alpha, \omega^2\alpha, \omega^3\alpha = \alpha\). Hence \(k_1 - k_2 = \omega^s\alpha\), \(s = 0, 1, 2\). Back to the system of equations, we have
\[
2(1 - c_1) = (k_1)^3 - 3(k_1)^2k_2 = (k_1)^2(k_1 - 3k_2) = (k_1)^2[3(k_1 - k_2) - 2k_1]
\]
\[
= (k_1)^2[3\omega^s\alpha - 2k_1] = -2(k_1)^3 + 3\omega^s\alpha(k_1)^2;
\]
i.e.,
\[
(5.1) \quad (k_1)^3 - \frac{3\alpha\omega^s}{2}(k_1)^2 + (1 - c_1) = 0.
\]
In order to be more specific, let us pick \(c_1 := -1/3\) and \(c_2 := 1129/729\). Then
\[
\alpha = \sqrt[3]{2(c_2 + 1/3)} = \sqrt[3]{2 \cdot \frac{1129 + 3}{3^5}} = \sqrt[3]{2 \cdot \frac{1372}{3^5}} = \sqrt[3]{\frac{143}{9^3}} = \frac{14}{9}.
\]
In this case, equations (5.1) assume the form
\[
(k_1)^3 - \frac{7\omega^s}{3}(k_1)^2 + \frac{4}{3} = 0.
\]
Then for \(s = 0\) the possible values of \(k_1\) are given by the solutions of the cubic equation \(z^3 - \frac{7}{3}z^2 + \frac{4}{3} = 0\), which are \(\{2, 1, -2/3\}\). Since \(\kappa = (k_1, k_2) = (k_1, k_1 - \omega^s\alpha)\), then
\[
(s = 0) : \kappa = \begin{cases}
(2, 2 - 14/9) = (2, 4/9); \\
(1, 1 - 14/9) = (1, -5/9); \\
(-2/3, -2/3 - 14/9) = (-2/3, -20/9).
\end{cases}
\]
For each \(s = 1, 2\), the solutions are of the form
\[
(s = 1) : \kappa = \begin{cases}
\left(\frac{2e^{\frac{4\pi i}{3}} + \frac{4}{9}e^{\frac{4\pi i}{3}}}{9}, \frac{-5}{9}e^{\frac{4\pi i}{3}}\right) \\
\left(\frac{2}{3}e^{\frac{2\pi i}{3}}, \frac{-5}{9}e^{\frac{2\pi i}{3}}\right).
\end{cases}
\]
\[
(s = 2) : \kappa = \begin{cases}
\left(\frac{2e^{\frac{4\pi i}{3}} + \frac{4}{9}e^{\frac{4\pi i}{3}}}{9}, \frac{4}{9}e^{\frac{4\pi i}{3}}\right) \\
\left(\frac{-5}{9}e^{\frac{4\pi i}{3}}, \frac{-20}{9}e^{\frac{4\pi i}{3}}\right).
\end{cases}
\]
In order to be more precise, let us write down the explicit expressions of the functions. First recall from (2.2) that
\[
f(x, y) = y^{3p} - \frac{3}{2}(k_1 + k_2)y^{2p}x^q + 3k_1k_2y^{p}x^{2q} - x^{3q}.
\]
Thus for each value of \(\kappa\) we have the following quasi-homogeneous functions in three distinct analytic classes
\[
\kappa = \begin{cases}
(2, 4/9) \quad \Rightarrow \quad f^1(x, y) = y^{3p} - \frac{33}{9}y^{2p}x^q + \frac{24}{9}y^{p}x^{2q} - x^{3q}; \\
(1, -5/9) \quad \Rightarrow \quad f^2(x, y) = y^{3p} - \frac{18}{9}y^{2p}x^q - \frac{15}{9}y^{p}x^{2q} - x^{3q}; \\
(-2/3, -20/9) \quad \Rightarrow \quad f^3(x, y) = y^{3p} + \frac{39}{9}y^{2p}x^q + \frac{40}{9}y^{p}x^{2q} - x^{3q}.
\end{cases}
\]
whose polars are given by

$$
\kappa = \begin{cases}
(2, 4/9) & \Rightarrow \partial_y f^1(x, y) = 3py^{p-1}(y^{2p} - \frac{22}{9}y^{p+q} + \frac{8}{9}x^{2q}), \\
(1, -5/9) & \Rightarrow \partial_y f^2(x, y) = 3py^{p-1}(y^{2p} - \frac{1}{3}y^{p+q} - \frac{2}{9}x^{2q}), \\
(-2/3, -20/9) & \Rightarrow \partial_y f^3(x, y) = 3py^{p-1}(y^{2p} + \frac{26}{9}y^{p+q} + \frac{40}{27}x^{2q}).
\end{cases}
$$

From (2.2) and (2.5), we have \(\rho_0 = 1 \) and

$$
\rho_j = (\kappa_j - \lambda_1)(\kappa_j - \lambda_2)(\kappa_j - \lambda_3) = \kappa_j^3 - \sigma_1(\lambda)\kappa_j^2 + \sigma_2(\lambda)\kappa_j - 1.
$$

Thus

$$
\kappa = \begin{cases}
(2, 4/9) & \Rightarrow \begin{cases}
\rho_1 = \kappa_3^3 - \frac{32}{9}\kappa_1^2 + \frac{24}{9}\kappa_1 - 1 = -21/9, \\
\rho_2 = \kappa_3^3 - \frac{32}{9}\kappa_2^2 + \frac{24}{9}\kappa_2 - 1 = -329/729, \\
\rho_3 = \kappa_3^3 - \frac{32}{9}\kappa_3^2 - \frac{14}{9}\kappa_3 - 1 = -21/9, \\
\rho_4 = \kappa_3^3 - \frac{32}{9}\kappa_4^2 - \frac{14}{9}\kappa_4 - 1 = -329/729, \\
\rho_5 = \kappa_3^3 + \frac{40}{9}\kappa_1^2 + \frac{40}{9}\kappa_1 - 1 = -21/9, \\
\rho_6 = \kappa_3^3 + \frac{40}{9}\kappa_2^2 + \frac{40}{9}\kappa_2 - 1 = -329/729.
\end{cases}
\end{cases}
$$

Therefore, \(f^1, f^2 \) and \(f^3 \) have the same Henry-Parusiński invariant but represent three distinct analytic classes.

References

[Ar] V. I. Arnold, Chapitres supplémentaires de la théorie des équations différentielles ordinaires. Editions Mir, Moscou 1980.

[CS] L. Câmara and B. Scárdua, A comprehensive approach to the moduli space of quasi-homogeneous singularities. (English summary) Singularities and foliations. geometry, topology and applications, 459–487, Springer Proc. Math. Stat., 222, Springer, Cham, 2018.

[FR1] A. Fernandes and M.A.S. Ruas, Bilipschitz determinacy of quasihomogeneous germs. Glasgow Math. J. 46 (2004), 77–82.

[FR2] A. Fernandes and M.A.S. Ruas, Rigidity of bi-Lipschitz equivalence of weighted homogeneous function-germs in the plane, Proc. Amer. Math. Soc. 141 (2013), 1125–1133.

[HP] J.-P. Henry and A. Parusiński, Existence of moduli for bilipschitz equivalence of analytic functions, Comp. Math. 136 (2003), 217–235.

[K] C. Kang, Analytic types of plane curve singularities defined by weighted homogeneous polynomials, Trans. Amer. Math. Soc. 352, 9, (2000), 3995–4006.

[Sa] K. Saito, Quasihomogen isoliere Singularitäten von Hyperflächen, Invent. Math. 14(1971), 123–142.