Response of the leaf photosynthetic rate to available nitrogen in erect panicle-type rice (Oryza sativa L.) cultivar, Shennong265

Chihiro Urairia,†, Yu Tanakaa,†, Yoshihiro Hiroooka, Koki Homma, Zhengjin Xub and Tatsuhiko Shiraiwa

‡Graduate School of Agriculture, Kyoto University, Kyoto, Japan; bNorthern Japonica rice cultivation and Breeding Research Center, Shenyang Agricultural University, Shenyang, China

ABSTRACT

Increasing the yield of rice per unit area is important because of the demand from the growing human population in Asia. A group of varieties called erect panicle-type rice (EP) achieves very high yields under conditions of high nitrogen availability. Little is known, however, regarding the leaf photosynthetic capacity of EP, which may be one of the physiological causes of high yield. We analyzed the factors contributing to leaf photosynthetic rate (Pn) and leaf mesophyll anatomy of Nipponbare, Takanari, and Shennong265 (a EP type rice cultivar) varieties subjected to different nitrogen treatments. In the field experiment, Pn of Shennong265 was 33.8 μmol m−2 s−1 in the high-N treatment, and was higher than that of the other two cultivars because of its high leaf nitrogen content (LNC) and a large number of mesophyll cells between the small vascular bundles per unit length. In Takanari, the relatively high value of Pn (31.5 μmol m−2 s−1) was caused by the high stomatal conductance (gs; 72 mol m−2 s−1) in the high-N treatment. In the pot experiment, the ratio of Pn/Ci to LNC, which may reflect mesophyll conductance (gm), was 20–30% higher in Nipponbare than in Takanari or Shennong265 in the high N availability treatment. The photosynthetic performance of Shennong265 might be improved by introducing the greater ratio of Pn/Ci to LNC found in Nipponbare and greater stomatal conductance found in Takanari.

Introduction

Food shortage is a growing threat in light of continued population growth and increasing competition between food and energy for arable land. One of the most important cereal crops, rice (Oryza sativa L.), is widely cultivated, especially in Asian countries. It constitutes a major source of carbohydrates for more than half of the world’s population (http://www.fao.org/docrep/018/i3107e/i3107e03.pdf). A group of high-yielding japonica rice cultivars, characterized by an erect panicle (EP), and leaves are expected to feed the growing population and were released as commercial varieties in China. Recently, EP varieties were cultivated on 1.3 million ha throughout China (Song et al., 2013). According to the previous studies, EP varieties achieve very high yields under conditions of high nitrogen availability (Chen et al., 2007; Li, 2003; Zhang et al., 2002), and some genes related to the high yield of EP varieties have been detected (Huang et al., 2009; Wang et al., 2009; Zhu et al., 2009). Little is known, however, regarding the leaf photosynthetic capacity of EP, in spite of its importance in determining the yield of rice.

In general, leaf nitrogen content (LNC) and ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) content are factors that can potentially limit crop production and leaf photosynthesis (Makino et al., 1983; Sinclair & Horie, 1989). Besides, short and dark colored leaves have been observed in EP varieties (Lv & Cheng, 2010; Zhu et al., 2009), and these leaves may be related either to high LNC or to unique leaf anatomy. We hypothesized that leaves of EP cultivars have a greater leaf photosynthetic capacity under nitrogen-rich treatments and the capacity is sustained by unique mechanisms, which may include leaf morphology and mesophyll structure. To test this hypothesis, Shennong265 (a typical EP rice) was grown under different nitrogen fertilizer treatments, along with Nipponbare (a representative japonica rice) and Takanari (a high-yielding japonica–indica cross-variety). The response of Pn to the nitrogen treatments and its physiological or anatomical basis was examined for Nipponbare, Takanari, and Shennong265.

Materials and methods

Plant materials and growing conditions

For the field experiment, Nipponbare, Takanari, and Shennong265 were grown in a paddy field at the experimental...
farm of the Graduate School of Agriculture, Kyoto University (35° 2′ N, 135° 47′ E; altitude 65 m above sea level). Seeds of each cultivar were sown on 7 May and transplanted on 6 June 2013 to the paddy field in alluvial loam soil classified as Haplaquept. The size of each plot was > 12 m², and hill spacing was 0.15 × 0.30 m (density: 22.2 hills m⁻¹) with one plant per hill. The randomized block design was established with two replications. For the low-nitrogen treatment, Eco-long (JCAM AGRI), a slow release fertilizer, was applied at rates of 3.00, 2.36, and 2.79 g m⁻¹ for N, P₂O₅, and K₂O, respectively. The same fertilizer was applied at rates of 12.00, 9.43, and 11.14 g m⁻¹ for N, P₂O₅, and K₂O, respectively, for the high-nitrogen treatment. Additionally, 5 g m⁻¹ of LP cote (JCAM AGRI), a coated nitrogen fertilizer, was applied to the high-nitrogen treatment group as a basal fertilizer (Table 1).

For the pot experiment, seeds of the same varieties were sown on 7 May and transplanted on 6 June 2013 into 3.8-L pots filled with soil from the field (alluvial loam soil) at a density of one plant per pot with five replicates. Ammonium sulfate (Sumitomo Chemical), monocalcium phosphate (Taki Chemical), and potassium chloride (Mitsubishi) were applied at rates of 0.5–0.5–0.5 g per pot (N–P₂O₅–K₂O) as the basal fertilizer, respectively. For standard N and high N treatments, additional N fertilizer (ammonium sulfate) for the standard N and high N treatments was applied every two weeks to total nitrogen supplies to 1.2, and 2.1 g, respectively (Table 1).

Table 1. The total amount of N fertilizer applied for the pot and field experiments.

	Pot experiment (g pot⁻¹)	Field experiment (g m⁻²)
Low-N	5	3
Standard-N	1.2	Not applicable
High-N	2.1	17

Measurement of leaf area index

In the field experiment, the aboveground parts of four plants per plot were harvested at the panicle initiation and heading stages. Shennong265, Takanari, and Nipponbare reached the panicle initiation stage on 9, 20, and 25 July 2013, respectively, and reached the heading stage on 1, 13, and 16 August 2013, respectively. Based on the number of tillers per plant, 3 samples were taken in total from 12 plants in each plot to balance the rice canopy. Green leaf blades were separated from the plant, and leaf area was measured with a portable leaf area meter (Li-3,080; Li-COR). The leaf area index (LAI) was calculated by dividing the measured leaf area by the planted area.

Quantitation of LNC

In both field and pot experiments, the leaves were collected after the measurement of \(P_n \), frozen immediately with liquid nitrogen, and stored at −80 °C until use. The area of each leaf was determined with the portable leaf area meter. After the measurement of area, leaves were oven-dried at 80 °C for a minimum of 72 h and weighed to determine dry weight. Leaf mass per area (LMA) was calculated from single-leaf area and dry weight. Nitrogen concentration was quantified by the indophenol method after Kjeldahl digestion (Kjeldahl, 1883). LNC was calculated by multiplying LMA by nitrogen concentration. For LNC and LMA, four samples per plot were collected and then the values were averaged.

Analysis of leaf mesophyll anatomy

Samples for microscopic observation were taken from the uppermost, fully expanded leaves of plants grown in the pots. Cross sections of leaf mesophyll with 5-μm and 10-μm thicknesses were cut on a sliding microtome (REM-710; Yamato Kohki) and stained with 1% toluidine blue. The samples were observed with a light microscope (BHS-323; Olympus) at 200 × magnification. The microscopic images were recorded using a digital camera. The number of mesophyll cells between the two small vascular bundles (CN) was counted. The length between the small vascular bundles (L) was measured, and the cell number per unit area was calculated by dividing CN by L. The leaf thickness at the small vascular bundles was measured. Mean mesophyll cell area was determined by dividing the area occupied...
by the mesophyll cells (the dotted line in Figure 1) by CN. Mesophyll cell occupancy was calculated as the ratio of the area enclosed by the dotted line to the area framed by the thick line (%; Figure 1). These anatomical characteristics were determined with Image J software (NIH).

Results

Photosynthetic capacity, LNC, and LAI in the field experiment

The value of P_n varied from 26.8 μmol m$^{-2}$ s$^{-1}$ for Nipponbare in the low-N treatment to 33.8 μmol m$^{-2}$ s$^{-1}$ for Shennong265 in the high-N treatment in the field experiment (Table 2). P_n of Shennong265 was the highest among the three cultivars under both N conditions. The value of g_s varied from .52 mol m$^{-2}$ s$^{-1}$ for Nipponbare in the low-N treatment to .72 mol m$^{-2}$ s$^{-1}$ for Takanari in the high-N treatment (Table 2). In both high and low-N treatments, the g_s of Takanari and Shennong265 was higher than Nipponbare. The P_n/C_i ratio varied from .088 μmol m$^{-2}$ s$^{-1}$/μmol mol$^{-1}$ for Nipponbare in the low-N treatment to .114 μmol m$^{-2}$ s$^{-1}$/μmol mol$^{-1}$ for Shennong265 in the high-N treatment (Table 2). In comparison with two other cultivars, Shennong265 exhibited high LNC values of 1.72 g m$^{-2}$ and 1.63 g m$^{-2}$ in the high-N and low-N treatments, respectively (Table 2). The effect of cultivars and N fertilizer levels on P_n, g_s, and P_n/C_i was significant ($p < .01$), whereas the interaction of these variables was not (Table 3). For the variation of LNC, the effect of cultivars and the interaction of cultivars and N fertilizer levels were significant ($p < .01$ and $p < .05$, respectively), whereas that of N fertilizer levels was not (Table 3). At the panicle initiation stage, LAI varied from .89 m2 m$^{-2}$ for Shennong265 in the low-N treatment to 6.00 m2 m$^{-2}$ for Nipponbare in the high-N treatment, respectively. At the heading stage, it varied from 1.84 m2 m$^{-2}$ for Shennong265 in the low-N treatment to 6.63 m2 m$^{-2}$ for Takanari in the high-N treatment, respectively (Figure 2). The LAI of Shennong265 was the lowest among the three cultivars under both N fertilizer levels. At panicle initiation stage, LAI of Shennong265 was only 36% and 30% against that of Nipponbare in low-N and high-N treatments, respectively. At heading stage, these values were 52% and 80%, respectively (Figure 2).

![Figure 1](image-url) The conceptual figure of mesophyll cell occupancy. Mesophyll cell occupancy was calculated as the ratio of the area enclosed by the dotted line to the area framed by the thick line (%). Tissues are bulliform cells (BF), small vascular bundle (SVB), epidermis (e), and mesophyll cells (M). The scale bar corresponds to 50 μm.

	P_n (μmol m$^{-2}$ s$^{-1}$)	g_s (mol m$^{-2}$ s$^{-1}$)	P_n/C_i (μmol m$^{-2}$ s$^{-1}$/μmol mol$^{-1}$)	LNC (g m$^{-2}$)
Nipponbare				
low	26.8 ± 1.8	c .52 ± .06	.088 ± .007	1.26 ± .09
high	29.8 ± 2.5	bc .58 ± .07	.099 ± .009	.86 ± .37
Takanari				
low	28.2 ± 1.4	c .59 ± .03	.091 ± .005	.64 ± .04
high	31.5 ± 1.6	ab .72 ± .04	.102 ± .006	.99 ± .13
Shennong265				
low	33.0 ± 1.7	a .62 ± .06	.111 ± .007	1.63 ± .06
high	33.8 ± 3.1	a .69 ± .07	.114 ± .011	1.72 ± .02

Table 2. The values of P_n, g_s, P_n/C_i at 380 mol m$^{-1}$ of reference CO$_2$ concentration, and LNC of Nipponbare, Takanari, and Shennong265 at different nitrogen fertilizer levels in the field experiment. Values are means ± SD for $n = 2$ (LNC) and $n = 8$ (P_n, g_s, and P_n/C_i). Values followed by the same letters indicate no significant difference among cultivars or N treatments at $p < .05$ (Tukey’s test).
Photosynthetic capacity, LNC, and leaf mesophyll anatomy in the pot experiment

The value of P_n ranged from 21.9 μmol m$^{-2}$ s$^{-1}$ for Nipponbare in the low-N treatment to 31.7 μmol m$^{-2}$ s$^{-1}$ for Shennong265 in the high-N treatment in the pot experiment (Figure 3). P_n of Shennong265 was the highest among the three genotypes in two of the three N treatments. The effect of N fertilizer levels was significant ($p < .01$), whereas that of cultivars and the interaction of these variables was not (Table 3). The g_s of Takanari was the highest across all nitrogen treatments (Figure 3). The ratio of P_n/C_i ranged from .075 μmol m$^{-2}$ s$^{-1}$/μmol mol$^{-1}$ for Nipponbare in the low-N availability treatment to .112 μmol m$^{-2}$ s$^{-1}$/μmol mol$^{-1}$ for Shennong265 in the high-N treatment (Figure 3). The P_n/C_i of Shennong265 in the high-N treatment was 11% higher than that of Takanari.

Figure 2. The values of LAI for Nipponbare, Takanari, and Shennong265 at different nitrogen fertilizer levels in the field experiment at panicle initiation stage and at heading stage. The error bars indicate the SD for $n = 2$. Columns with the same letters are not significantly different at $p < .05$ (Tukey’s test).

Figure 3. The values of P_n, g_s, and P_n/C_i of Nipponbare, Takanari, and Shennong265 at different nitrogen fertilizer levels at 380 mol mol$^{-1}$ of reference CO_2 concentration in the pot experiment. Vertical bars represent the SD for $n = 5$. Columns with the same letters are not significantly different at $p < .05$ (Tukey’s test).

Table 3. F values and significance of cultivar (C), nitrogen fertilizer level (N), and their interactions (C × N) to P_n, g_s, P_n/C_i, LNC, and P_n/C_i/LNC for the three cultivars in the field and pot experiments. A two-way analysis of variance (ANOVA) was conducted.

	F value	Probability	F value	Probability
P_n Cultivar (C)	28.6	<.01	2.3	NS
Nitrogen fertilizer level (N)	14.4	<.01	21.7	<.01
C × N	1.4	NS	1.5	NS
g_s Cultivar (C)	18.6	<.01	5.0	<.05
Nitrogen fertilizer level (N)	28.0	<.01	3.3	<.05
C × N	1.5	NS	.6	NS
P_n/C_i Cultivar (C)	32.1	<.01	3.1	NS
Nitrogen fertilizer level (N)	12.2	<.01	25.3	<.01
C × N	1.4	NS	2.1	NS
LNC Cultivar (C)	28.0	<.01	-	-
Nitrogen fertilizer level (N)	.0	NS	-	-
C × N	5.2	<.05	-	-
P_n/C_i/LNC Cultivar (C)	110.8	<.01	8.5	<.01
Nitrogen fertilizer level (N)	.8	NS	58.3	<.01
C × N	72.1	<.01	2.8	<.05

Notes. The total number of data points of field experiment except for LNC was 48 ($n = 48$), that of LNC was 12 ($n = 12$), and that of pot experiment was 45 ($n = 45$). NS indicates non-significance.
Although the effect of cultivars on CN/L was not significant, the effects of N fertilizer levels and their interactions on CN/L were significant \((p < .05; \text{Table 4}). \)

Discussion

In the present study, we found that Shennong265 had higher \(P_n \) than Takanari and Nipponbare under various N availabilities. The \(P_n \) value of \(C_3 \) plants is limited by either the capacity of RuBP carboxylation or that of RuBP regeneration, and the limitation varies with \(CO_2 \) concentration.
Sufficient varietal differences in LNC in rice cultivars even important parameters on photosynthesis (Evans, 1989; correlated with leaf Rubisco content, and one of the most V2006). Rubisco concentration is closely related to cmax, (Table 4). There are also apparent characteristics in the increase of the biomass production.

or greater planting densely, high photosynthetic capac- of dry matter production. By applying more N fertilizer LAI of Shennong265 should be a disadvantage in terms expansion. Since LAI is one of the most important factors in agricultural studies (Soltani & Galeshi, 2002), the low LAI of Shennong265 is much lower than in non-EP, regardless the nitrogen availability at both panicle initiation stage and heading stage (Figure 2). Thus, Shennong265 seems to have a tendency to distribute more N to leaf mesophyll structure rather than to LAI expansion. Since LAI is one of the most important factors in agricultural studies (Soltani & Galeshi, 2002), the low LAI of Shennong265 should be a disadvantage in terms of dry matter production. By applying more N fertilizer or greater planting densely, high photosynthetic capacity Shennong265 is expected to contribute to the further increase of the biomass production.

The value of Pn/Ci/LNC totally decreased as N fertilizer level increased (Figure 4), and it is suggested that the photosynthetic capacity was approaching to the saturation under the high N availability. There was varietal difference in the ratio of Pn/Ci to LNC among three cultivars (Table 3), and that of Shennong265 was likely to be lower compared with other cultivars (Figure 4). The value of Pn/Ci to LNC can be influenced by gm (mesophyll conductance), Rubisco activity, or the ratio of leaf Rubisco content to LNC (Makino et al., 1984a, 1984b). In this in vivo study, all of these are the possible interpretations to explain the variation of Pn/Ci/LNC. Especially, the observed difference in the mesophyll structure suggests the significance of gm (Adachi et al., 2013). The value of gm has recently been rec- ognized as one of the most important determinants of Pn, especially in C4 plants (Makino, 2011; Terashima et al., 2011; Warren, 2008). Furthermore, two backcrossed inbred lines derived from Takanari and Koshihikari (an elite japonica variety) have extremely high Pn, well-developed lobes of mesophyll cells, and a greater gm than Takanari (Adachi et al., 2013). Photosynthetic performance of Shennong265 might be further improved if it is combined with the better ratio of Pn/Ci to LNC seen in the other varieties examined in this study.

Greater LNC has been linked to high gs on several crop species (Yamori et al., 2011), and the value of gs of indica varieties was larger than that of japonica varieties (Maruyama & Tajima, 1990). The high Pn of Takanari, a high-yielding japonica–indica cross-variety, was due to high gs (Taylaran et al., 2011). The value of gs in Takanari was also much higher than that of Nipponbare or Shennong265, even under low-N treatment in the present study (Figure 3). Conversely, the value of gs was lower in Shennong265. These findings suggest that Pn of Shennong265 is also possible to be improved by combing with high gs derived from Takanari.

In conclusion, Shennong265 showed high leaf photosynthetic rate under various nitrogen availabilities. It was even higher than that of Takanari under some conditions. This phenotype was achieved by greater LNC and Pn/Ci, which may partly be explained by the mesophyll structure including the mesophyll cell number. Leaf photosynthetic capacity in Shennong265 could be further improved by introducing the greater stomatal conductance or higher Pn/Ci/LNC during future breeding.

Disclosure statement

No potential conflict of interest was reported by the authors.

References

Adachi, S., Nakae, T., Uchida, M., Soda, K., Takai, T., Oi, T., … Hirasawa, T. (2013). The mesophyll anatomy enhancing CO2 diffusion is a key trait for improving rice photosynthesis. *Journal of Experimental Botany*, 64, 1061–1072.

Chen, W., Xu, Z., Zhang, L., Zhang, W., & Ma, D. 2007. Theories and practices of breeding japonica rice for super high yield. *Scientia Agricultura Sinica*, 40, 869–874**.
Evans, J. R. (1989). Photosynthesis and nitrogen relationships in leaves of C₃ plants. *Oecologia*, 78, 9–19.

Farquhar, G. D., von Caemmerer, S., & Berry, J. A. (1980). A biochemical model of photosynthetic CO₂ assimilation in leaves of C₃ species. *Planta*, 149, 78–90.

Hikosaka, K., Ishikawa, K., Borjigidai, A., Muller, O., & Onoda, Y. (2006). Temperature acclimation of photosynthesis: mechanisms involved in the changes in temperature dependence of photosynthetic rate. *Journal of Experimental Botany*, 57, 291–302.

Hirasawa, T., Ozawa, S., Taylaran, R. D., & Ookawa, T. (2010). Varietal differences in photosynthetic rates in rice plants, with special reference to the nitrogen content of leaves. *Plant Production Science*, 13, 53–57.

Huang, X., Qian, Q., Liu, Z., Sun, H., He, S., Luo, D., … Xu, Z. (2009). Natural variation at the DEP1 locus enhances grain yield in rice. *Nature Genetics*, 41, 494–497.

Jiang, S., Zhang, X., Wang, J., Chen, W., & Xu, Z. (2010). Fine mapping of the quantitative trait locus qFLL9 controlling flag leaf length in rice. *Euphytica*, 176, 341–347.

Kanemura, T., Homma, K., Ohsumi, A., Shiraiwa, T., & Horie, T. (2007). Evaluation of genotypic variation in leaf photosynthetic rate and its associated factors by using rice diversity research set of germplasm. *Photosynthesis Research*, 94, 23–30.

Kjeldahl, J. Z. (1883). A new method for the determination of nitrogen in organic matter. *Analytical Chemistry*, 22, 366–382.

Li, Z. (2003). High yield cultivating technique of super rice Shennong-265. *China Academic Journal Electronic Publishing House*, 1, 15–16**.

Lv, X., & Cheng, W. (2010). Effect of different nitrogen application on rice morphological characteristics and the nitrification-denitrification physiological characteristics. *China Academic Journal Electronic Publishing House*, 38, 43–46**.

Makino, A. (2011). Photosynthesis, grain yield, and nitrogen utilization in rice and wheat. *Plant Physiology*, 155, 125–129.

Makino, A., Mae, T., & Ohira, K. (1983). Photosynthesis and ribulose-1,5-bisphosphate carboxylase in rice leaves: Changes in photosynthesis and enzymes involved in carbon assimilation from leaf development through senescence. *Plant Physiology*, 73, 1002–1007.

Makino, A., Mae, T., & Ohira, K. (1984a). Changes in photosynthetic capacity in rice leaves from emergence through senescence. Analysis from ribulose-1,5-bisphosphate carboxylase and leaf conductance. *Plant Cell Physiology*, 25, 511–521.

Makino, A., Mae, T., & Ohira, K. (1984b). Relation between nitrogen and ribulose-1,5-bisphosphate carboxylase in rice leaves from emergence through senescence. *Plant Cell Physiology*, 25, 429–437.

Makino, A., Sakashita, H., Hidejma, J., Mae, T., Ojima, K., & Osmond, B. (1992). Distinctive responses of ribulose-1,5-bisphosphate carboxylase and carbonic anhydrase in wheat leaves to nitrogen nutrition and their possible relationships to CO₂-transfer resistance. *Plant Physiology*, 100, 1737–1743.

Maruyama, S., & Tajima, K. (1990). Leaf conductance in japonica and indica rice varieties. I. Size, frequency, and aperture of stomata. *Japanese journal of crop science*, 59, 801–808.

Sinclair, T. R., & Horie, T. (1989). Leaf nitrogen, photosynthesis, and crop radiation use efficiency: A review. *Crop Science*, 29, 90–98.

Soltani, A., & Galeshi, S. (2002). Importance of rapid canopy closure for wheat production in a temperate sub-humid environment: Experimentation and simulation. *Field Crops Research*, 77, 17–30.

Song, G., Xu, Z., & Yang, H. (2013). Effects of N rates on N uptake and yield in erect panicle rice. *Science Research*, 4, 499–508.

Takai, T., Adachi, S., Taguchi-Shiobara, F., Sanoh-Arai, Y., Iwasawa, N., Yoshinaga, S., … Yamamoto, T. (2013). A natural variant of NAL1, selected in high-yield rice breeding programs, pleiotropically increases photosynthesis rate. *Science Reports*, 3, 2149.

Taylaran, R. D., Adachi, S., Ookawa, T., Usuda, H., & Hirasawa, T. (2011). Hydraulic conductance as well as nitrogen accumulation plays a role in the higher rate of leaf photosynthesis of the most productive variety of rice in Japan. *Journal of Experimental Botany*, 62, 4067–4077.

Terashima, I., Hanba, Y. T., Tholen, D., & Niinemets, U. (2011). Leaf Functional anatomy in relation to photosynthesis. *Plant Physiology*, 155, 108–116.

Warren, C. R. (2008). Stand aside stomata, another actor deserves centre stage: The forgotten role of the internal conductance to CO₂ transfer. *Journal of Experimental Botany*, 59, 1475–1487.

Yamori, W., Nagai, T., & Makino, A. (2011). The rate-limiting step for CO₂ assimilation at different temperatures is influenced by the leaf nitrogen content in several C₃ crop species. *Plant, Cell & Environment*, 34, 764–777.

Zhang, W., Xu, Z., & Chen, W. 2002. The research progress on erect panicle type of rice. *Journal of Shenyang Agricultural University*, 12, 471–475**.

Zhu, K., Tang, W., Yan, C., Chi, Z., Yu, H., Chen, J., … Cheng, Z. (2009). Erect panicle2 encodes a novel protein that regulates panicle erectness in indica rice. *Genetics*, 184, 343–350.

*In Japanese with English abstract.

**In Chinese with English abstract.