Epigenetic Enhancer Marks and Transcription Factor Binding Influence Vκ Gene Rearrangement in Pre-B Cells and Pro-B Cells

Eden Kleiman 1, Salvatore Loguercio 2 and Ann J. Feeney 1*

1 Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, United States, 2 Molecular Experimental Medicine, The Scripps Research Institute, La Jolla, CA, United States

To date there has not been a study directly comparing relative Igκ rearrangement frequencies obtained from genomic DNA (gDNA) and cDNA and since each approach has potential biases, this is an important issue to clarify. Here we used deep sequencing to compare the unbiased gDNA and RNA Igκ repertoire from the same pre-B cell pool. We find that ~20% of Vκ genes have rearrangement frequencies ≥2-fold up or down in RNA vs. DNA libraries, including many members of the Vκ3, Vκ4, and Vκ6 families. Regression analysis indicates Ikaros and E2A binding are associated with strong promoters. Within the pre-B cell repertoire, we observed that individual Vκ genes rearranged at very different frequencies, and also displayed very different Jκ usage. Regression analysis revealed that the greatly unequal Vκ gene rearrangement frequencies are best predicted by epigenetic marks of enhancers. In particular, the levels of newly arising H3K4me1 peaks associated with many Vκ genes in pre-B cells are most predictive of rearrangement levels. Since H3K4me1 is associated with long range chromatin interactions which are created during locus contraction, our data provides mechanistic insight into unequal rearrangement levels. Comparison of Igκ rearrangements occurring in pro-B cells and pre-B cells from the same mice reveal a pro-B cell bias toward usage of Jκ-distal Vκ genes, particularly Vκ10-96 and Vκ1-135. Regression analysis indicates that PU.1 binding is the highest predictor of Vκ gene rearrangement frequency in pro-B cells. Lastly, the repertoires of iEx−/− pre-B cells reveal that iEx actively influences Vκ gene usage, particularly Vκ3 family genes, overlapping with a zone of iEx-regulated germline transcription. These represent new roles for iEx in addition to its critical function in promoting overall Igκ rearrangement. Together, this study provides insight into many aspects of Igκ repertoire formation.

Keywords: repertoire, enhancer, V(D)J recombination, pro-B cells, pre-B cells, immunoglobulin, Next Generation Sequencing

INTRODUCTION

The ability of the B-cell receptor to recognize virtually any pathogenic epitope relies on the random nature of Ig V(D)J rearrangement to generate a vast diverse repertoire. Combinatorial diversity through the joining of any V gene with any D or J gene is one of the main contributors to antibody diversity, along with junctional diversity. However, the contribution of combinatorial diversity is an overestimate since individual V genes exhibit great differences in rearrangement frequencies (1–4).
An unbiased method exists for interrogating the RNA repertoire using 5’ RACE PCR to generate a cDNA library with primers at the Cκ or Cμ exon and ligated adaptor (5, 6). Two labs have recently developed an unbiased method for assaying gDNA rearrangements (7–9). Both techniques have their respective advantages and limitations. Use of genomic DNA (gDNA) allows for an unbiased assessment of rearrangement frequencies because each cell only has two chromosomes from which rearrangements will be detected. In contrast, use of RNA examines the repertoire after transcription and could therefore be influenced by differential promoter strengths and post-transcriptional regulation. Also, RNA libraries predominantly assay productive rearrangements due to nonsense-mediated decay of many non-productive rearrangements (10), whereas amplification of gDNA will reveal all non-productive as well as productive rearrangements.

B cell rearrangement in the heavy chain locus and the light chain loci occur sequentially. Heavy chain rearrangements take place first at the pro-B cell stage. The first deep sequencing study of the complete pre-selection Igκ repertoire in C57BL/6 pro-B cells using 5’ RACE showed highly uneven Vκ gene usage across the locus (6). The Igκ locus spans >3 Mb of DNA and contains over 100 functional Vκ genes along with 4 functional Jκ genes (11). 5’ RACE was also used in the first deep sequencing of the Igκ repertoire in bone marrow (BM) B cells. As with the IgH repertoire, this study revealed highly uneven Vκ distribution (5). A recent study by Matheson et al. confirmed uneven Vκ rearrangement frequencies in pre-B cells when assayed from gDNA and they predicted certain transcription factor (TF) binding and epigenetic marks as potentially influencing Vκ gene rearrangement frequency (8).

To date there is no study that has directly and systematically compared repertoires obtained from gDNA and RNA, and since each has potential biases, this is an important issue to clarify. Therefore, in this study, we made libraries from gDNA and RNA from the same batches of sorted small pre-B cells and assessed differences. We found that many Vκ4 family gene members were underrepresented in the RNA repertoire libraries whereas several proximal Vκ3 and Vκ6 family members were overrepresented. Machine learning revealed Ikaros and E2A binding to Vκ gene promoter regions was highly predictive of greater representation in RNA-based libraries, implicating them in creating strong promoters. We found, similar to previous studies (5, 8, 9), that Vκ and Jκ gene usage were very uneven. Using classification analysis with 29 ChIP-seq features and 5 RNA-seq datasets, we show that the RIC score, Ikaros, and PU.1 binding at the RSS best predicted rearranging vs. non-rearranging Vκ genes. Within functional Vκ genes, the levels of newly arising H3K4me1 peaks associated with many Vκ genes in pre-B cells were most predictive of higher pre-B cell gDNA rearrangement levels. Since H3K4me1 is associated with long-range chromatin interactions, which are created during locus contraction, our data provides mechanistic insight into unequal rearrangement levels (12).

It is estimated that roughly 15% of pro-B cells harbor Igκ rearrangements, so we also determined which Vκ genes were the earliest to rearrange by sorting pro-B cells from the same mice as the pre-B cells (13). The pro-B cell repertoire showed an overall bias toward usage of Vk genes in the Jκ-distal half of the Igκ locus, especially Vκ1-135 and the Vκ10 family genes. Regression analysis showed that different factors regulate Vκ rearrangement in pre-B cells vs. pre-B cells. Lastly, we interrogated the potential role of the kappa intronic enhancer (iEκ) in individual Vκ gene usage in addition to its known role in promoting overall rearrangement levels (14, 15). We show that iEκ−/− pre-B cells display a drastic reduction in both rearrangement and germline transcription (GLT) of Vκ3 family genes. Our data reveals that iEκ diversifies the B cell repertoire by controlling individual Vκ gene rearrangements. Together, this study provides insight into many aspects of Igκ repertoire formation.

MATERIALS AND METHODS

Mice

C57BL/6 wild-type and mutant mice were maintained in our breeding colony in accordance with protocols approved by The Scripps Research Institute Institutional Animal Care and Use Committee. iEκ−/− mice were given to us by Dr. Yang Xu (UCSD) (15). Rag1−/− mice were purchased from The Jackson Laboratory (Bar Harbor, ME). We obtained human heavy chain (hIgH) transgenic mice (16) that were bred onto the Rag1−/− background from Dr. Cornelis Murre (UCSD). We generated iEκ−/− Rag1−/− hIgH transgenic mice by breeding iEκ−/− mice with Rag1−/− hIgH transgenic mice.

Cell Sorting

B6 and iEκ−/− bone marrow (BM) cells were collected from 6- to 7-wk old mice as described previously (6) with the humerus bone collected in addition to the femur, tibia and fibula. CD19+ BM B cells were isolated using anti-CD19-coated MACS beads (Miltenyi, Auburn CA).

Each sort used BM from a pool of 3–8 mice. CD19+ cells were sorted into pro-B and pre-B cells using a BD FACSria II at the Scripps Flow Cytometry Core Facility (San Diego, CA). Antibodies are listed in Dataset S1. Pro-B cells were gated as Live+, CD19+, IgM−, CD93high, CD2−, CD43+. Pre-B cells were gated as Live+, CD19+, IgM−, CD93high, CD2+, CD43+. Small pre-B cells were further separated by gating on cell size. Post-sort analysis confirmed purity of B cell fractions. The gating scheme is shown in Figure S1A.

gDNA and cDNA Library Preparation for Igκ Repertoire Deep Sequencing

Sorted cells were split into two fractions: one for genomic DNA (gDNA) extraction (DNeasy, Qiagen) and the other for RNA extraction (RNeasy Plus, Qiagen). gDNA libraries were prepared as recently described with several modifications (8) (Figure S1B). gDNA was sonicated to a range of 500–1,000 bp using a Bioruptor sonicator (Diagenode). We omitted the negative depletion step and used different Jκ primers in our protocol (Dataset S1).

Library barcoding was performed using NEBNext Multiplex Oligos for Illumina (E7600S).

For RNA, we developed a novel protocol for unbiased cDNA library preparation whereby first strand cDNA synthesis was performed using the Transcriptor High Fidelity cDNA
Synthesis Kit (Roche). This was followed by RNase H (NEB) treatment to eliminate RNA complexes as RNA:DNA duplexes. Remaining RNA was eliminated by treatment with RNase A/T1 (Life Technologies). Sample clean-up was performed using Nucleospin Gel and PCR clean-up kit (Machery-Nagel), using NTC buffer to bind ssDNA. Ligation was performed using a 5′ bridge adapter (17) but with an additional 6N added at the 3′ end of the adapter for bioinformatic sequence deduplication. Our cDNA library preparation has two major advantages over the standard technique used for cDNA library preparation for repertoire studies (SMARTer 5′ RACE kit—Clontech). One is that it allows incorporation of random nucleotides to the 3′ end of the oligos (in addition to the 6Ns used for stabilization on the top strand) used for bioinformatic deduplication. Deduplication is the only way to discern whether identical reads, with identical junctional sequences, originated from the same strand of RNA or are an artifact of PCR amplification. Second, the use of a high-fidelity reverse transcriptase enzyme allows for this protocol to be high-fidelity throughout, limiting the number of erroneous nucleotide additions.

After post-adapter ligation cleanup, library preparation was completed via successive PCRs incorporating the NEBNext kit for barcoding. Final library preps were paired-end 2 × 300 sequenced on an Illumina MiSeq System (San Diego, CA) at our Next Generation Sequencing Core. Oligonucleotide sequence and cycling conditions can be found in Dataset S1.

VJ Gene Analysis

Demultiplexed paired-end reads were adapter trimmed and quality filtered (Phred>20) using TrimGalore (max of 50 bases trimmed from 3′ end of read, if more bases trimmed from either read then both reads of the pair were thrown out). Paired-end reads were then merged using pandaseq using default settings. VJ gene calling was performed on merged reads using Abstar (https://github.com/briney/abstar) with a custom version of the minimal output setting, appending Vκ gene length in the output. In addition, a Vκ gene reference file was custom made for C57BL/6 (∗01 alleles) and each Vκ gene was cross-referenced to the mouse genome build mm9 on UCSC genome browser. Abstar output was processed with a custom R pipeline (https://github.com/salvatoreloguercio/RepSeqPipe) developed by S.L. which computed Vκ or Jκ gene usage statistics. The cutoff for Vκ gene assignment was a minimum read length of 150 bp and a minimum of 95% sequence identity. Reads passing this filter were then deduplicated based on the six random adapter nucleotides (gDNA and RNA) and in the case of gDNA, samples were additionally deduplicated based on the starting position of the Vκ gene read which are random due to shearing. Reads that contained the same start site (for gDNA) and random 6Ns were presumed to have originated from the same fragment and only counted once. For gDNA, reads needed further processing to deal with Jκ PCR primer cross-amplification in order to accurately re-assign Jκ gene calling. gDNA reads were re-assigned to their proper Jκ gene based on the junctional sequence upstream of each Jκ primer. This did not include the most Vκ proximal nucleotide of the Jκ exon to allow for potential Vκ/Jκ junctional loss. One pre-B cell gDNA library was prepped using a second set of Jκ PCR primers located further downstream of the original Jκ primers (closer to the biotin). Since these Jκ primers were further away from the Vκ/Jκ junction, we excluded the 6 most Vκ proximal nucleotides from the Jκ exon in Jκ gene identification.

Post-pipeline Adjustments

We noted that three pairs of Vκ genes were 100% identical at the 3′ most 150 bp of sequence; Vκ5-43 and Vκ5-45, Vκ8-16 and Vκ8-23-1, Vκ13-84 and Vκ13-85. These genes could only be discerned if the read was long enough to include the 5′ end of the gene. This meant that there were reads that passed our Vκ gene length threshold of 150 bp but were assigned to one of the pair arbitrarily. This was more of an issue for gDNA where not all fragments covered the entire gene whereas most RNA transcripts did cover the entire gene. For each of these pairs of Vκ genes, we isolated their reads and performed a search for a sequence string far upstream in the Vκ gene that would discern among the pair. The ratio of this string search was used to re-calculate among the total reads of those two genes within a given sample. More information on this can be found in Dataset S1. We used the corrected orientation for Vκ8-23-1 and corrected Vκ4-60 RSS site recently described (8). In addition, we classified four genes as non-pseudogenes as described by IMGT; Vκ8-18, Vκ1-35, Vκ14-126, and Vκ1-131. Processed read data for different samples is available in Dataset S2.

ChIP-Seq

ChIP-seq was performed as previously described (18). All ChIP-seq data have been deposited in the Gene Expression Omnibus database (Table S1) and uniformly processed following the procedure below.

SRA files obtained from GEO were converted to fastq files using SRA Tools 2.8.2 (fastq-dump –skip-technical –readids –dumpbase –split-files –clip). Preliminary quality control over raw sequence data was performed with FastQC 0.11 (19). Duplicate reads were removed before mapping, and TruSeq adapter sequences were removed with the HOMER trim tool (20). Experimental fastq tags were aligned to the mouse reference genome (mm9) using Bowtie 1.1.2 (alignment parameters: -a -v 2 -m 3 –best –strata) (21). Confident CTCF and Rad21 peaks were called using MACS (v1.4.2) (22), with a false discovery rate (FDR) ≤1% and the default P value (1E-5).

RNA-Seq

RNA-seq was performed as described in Kleiman et al. (18). After quality control as described above for ChIP-seq, raw data were aligned to the mouse reference genome (mm9) using TopHat 2.1.0 and Bowtie 2.2.6 (21, 23). Strand-specific wig files were obtained from alignment (bam) files with IGVTools 2.3.69 (igyttools count –strands read) (24).

Quantification of Chromatin and RNA Features

For ChIP-seq, alignment (bam) files were first converted to tag directories with HOMER CreateTagDirectory (20). The signal intensity of each chromatin feature for each region was computed with HOMER AnnotatePeaks, where each tag directory was
normalized by the total number of mapped tags such that each directory contained 10 million reads (annotatePeaks.pl mm9 -size given -noann -nogene) (20). For RNA-seq, signal intensity was calculated from the corresponding wig files (annotatePeaks.pl mm9 -size given -noann -nogene -wig). Additional downstream analysis and manipulation of the data, including annotation of peaks, motif finding and overlap analysis, were performed with HOMER 4.7 and R/Bioconductor (25). GEO accession numbers are listed in Table S1.

Classification and Regression Models
The dataset includes 162 observations (V\(\kappa\) genes). To assess feature importance in predicting V\(\kappa\) gene activity, and magnitude of rearrangement frequency for active genes, we adopted a two-step supervised learning strategy. We first trained a classifier to predict V\(\kappa\) gene activity, and then built regression models to predict: (1) recombination levels and (2) RNA/gDNA rearrangement ratios of active genes. Relative variable importance was then extracted from the validated classification and regression models. We used Random Forest (RF) for both classification and regression tasks since it handles well high dimensionality (high number of features relative to low number of observations available for training) and feature collinearity, and is robust to overfitting (26).

We divided the read data for each feature into four non-overlapping windows for each V\(\kappa\) gene: promoter window (500 bp upstream of the start of leader 1 plus leader and its intron); RSS window (V\(\kappa\) coding region plus 500 bp downstream); upstream window (2.5 kb upstream of the promoter window); downstream window (2.5 kb downstream of the RSS window). These four windows were computed for each of the 29 ChIP-seq features and 5 RNA-seq datasets (all GEO accessions available in Table S1), giving a total of 132 chromatin and RNA expression features. We also included two genetic features: the RIC score and the distance from the V\(\kappa\) gene to J\(\kappa\). Thus, a total of 134 features were considered as explanatory variables for both classification and regression tasks. Analysis targeting a pre-B cell response used both pre-B cell and pro-B cell features, whereas analysis of pro-B cell responses used pro-B cell features only.

For classification, we used binary recombination status (inactive/active) as a response variable with a threshold for active V\(\kappa\)J\(\kappa\)ALL genes of 15 reads per million reads yielding 125 active V\(\kappa\) genes (24 of which were pseudogenes) and 37 inactive V\(\kappa\) genes in pre-B cell gDNA. V\(\kappa\)J\(\kappa\)I active gene list was derived from the V\(\kappa\)J\(\kappa\)ALL gene list. For regression, the response variable used was the recombination frequency of 125 active V\(\kappa\) genes, defined as the sum of reads from all biological replicates divided by the total number of reads. The same analysis was performed on pro-B cell gDNA but in this case 1 read was the cut-off for active V\(\kappa\) genes due to the limited number of reads. Using this threshold, there were 108 active V\(\kappa\) genes, of which 13 were pseudogenes. For pre-B cell regression analysis on RNA/gDNA ratios, only the active functional V\(\kappa\) genes were considered.

Both classification and regression were performed with 10-fold cross validation, i.e., 10% of V\(\kappa\) genes were assigned to the test set each time, with every gene included in a test set exactly once. The number of trees generated for each fold was 5,000. For classification, the number of variables randomly sampled as candidates at each split (mtry) was optimized using the tuneRF routine from the R package caret; default parameters were used for the regression models. The average importance of each feature was recorded.

Model Accuracy
For the classification model, performance was assessed by accuracy, i.e., the percentage of correct predictions across all 10 test sets. Performance of the regression model was assessed by the root mean squared error (RMSE) for the predicted recombination frequencies vs. the observed values across all 10 test sets.

For feature selection, we considered the 20 most important variables from the initial classification or regression models and used Recursive Features Elimination (RFE) (rfe in the R package caret) to train RF models for all possible combinations of the respective 20 features. Cross-validated (10-fold) prediction performance of models with sequentially reduced number of predictors (ranked by variable importance) was then used to suggest significant predictors. The models were evaluated using the performance metrics described above. All analyses were performed using the R packages randomForest (27), caret (28), and mlbench. Plots were generated with the R packages ggplot2, gtools, ggpubr and Prism graph software (La Jolla, CA).

Data Availability
Publicly available and Feeney lab generated genome-wide ChIP-seq and RNA-seq datasets analyzed in this study are available in the GEO repository. GEO accession numbers are listed in Table S1. GEO accession numbers for gDNA and RNA V\(\kappa\)J\(\kappa\)-seq datasets generated in this study are also listed in Table S1.

Rearrangement and GLT qPCR
Pre-B cell gDNA from B6 wild-type and iEx\(^{-/-}\) mice was used for TaqMan qPCR to assay for rearrangements. Primer and probe sequences are listed in Dataset S1. TaqMan Master Mix II (#4440041) was purchased from Applied Biosystems (Foster City, CA). J\(\kappa\)1 and Eq. ZEN probes were purchased from IDT (San Diego, CA). To assay GLT, pre-B cell RNA from B6 Rag\(^{-/-}\) hIgH Tg and iEx\(^{-/-}\) Rag\(^{-/-}\) hIgH Tg (7–14 weeks of age) were used for SYBR Green qPCR. GLT primer sequences are listed in Dataset S1. SYBR Green 2x master mix (#21203) was purchased from Biotool (Houston, TX).

Statistics
Statistical analysis on bar graphs was done using Prism software.

RESULTS
V\(\kappa\)J\(\kappa\) Repertoire Reveals Unequal J\(\kappa\) and V\(\kappa\) Usage
We performed Ig\(\kappa\) light chain sequencing on 3 pre-B cell gDNA replicates using a modification of VDJ-seq (7, 8) with a strict gating scheme that excluded any IgM\(^{low}\) immature B cells (Figures S1A–C). Repertoires from the 3 gDNA preparations were 99% identical (Figure S2A). Pooling the reads from all 3
replicates, we were able to detect 133 Vk genes with at least one read, 32 of which were classified pseudogenes by IMGT. Dataset S2 summarizes read statistics for all samples, as well as the total number of reads for each Vk gene. The average ratio of non-productive to productive from the 3 gDNA replicates was 67:33 (Figure S3A), at the expected two-thirds non-productive frequency. The nomenclature that we use is that of IMGT in which the first number is the Vk family and the number after the dash is its position within the locus, with Vk genes numbered consecutively from 3-1, the most jk-proximal Vk gene, to 2-137, the most jk-distal Vk gene. A map of the V, J, and C genes can be seen on the IMGT website (http://www.imgt.org/IMGTrepertoire/LocusGenes/#B).

We observed that individual Vk genes had very different Jk usage, as observed before (5, 8), so we separated the gDNA repertoire data into the four groups (Jk1, Jk2, Jk4, and Jk5) (Figure 1A). The Jk1 repertoire was the most divergent from the other Jk repertoires whereas Jk4 and Jk5 were 97% identical. Jk2 displayed higher similarity to Jk4 and Jk5 (91–94%) than to Jk1. Figure 1B shows that biased Jk usage occurs throughout the Igk locus. Many genes displayed preferential Jk1 gene usage, with the extreme being Vk15-102 at 100%. Conversely, the frequently rearranging gene Vk17-121 gene only rearranged to Jk1 3% of the time. Jk1 rearrangements are considered to represent the first rearrangements in most cases although primary rearrangements can probably be made to downstream Jk genes (29). This is supported by the finding that RAG-mediated breaks at Jk1 are observed at earlier times in pre-B cell differentiation than at Jk4 and Jk5 RSS sites, and thus Jk4 and Jk5 are usually associated with secondary rearrangements either in the case of a non-productive primary rearrangement or due to an autoreactive B cell receptor (29, 30). Examination of the Jk1 repertoire (hereafter referred to as Vk/Jk1) allows investigation of most of the initial kappa rearrangements with the caveat that some Jk1 rearrangements may have arisen on the second allele. Over half of the Vk genes are in the opposite orientation from the Jk-Ck gene cluster. This means that some Igk rearrangements will result in deletion of the intervening DNA while other rearrangements lead to inversion and thus retention of intervening Vks for possible future use (31). Intervening gDNA from deletional rearrangements is retained in the cell as circular DNA and if created in pre-B cells, is PCR amplifiable since pre-B cells do not proliferate during rearrangement (32, 33). Secondary inversional rearrangements also retain previous Vk/Jk rearrangements in the Igk locus itself. Primary Jk1 rearrangements would be lost if a cell dies after multiple unsuccessful rearrangements, if excision circle DNA created in pre-B cells was diluted through pre-BCR-mediated proliferation, or if a productive and functional BCR rapidly entered the immature B cell compartment. Since we observe that 8 genes rearrange to Jk1 0–3% of the time but rearrange to other Jk genes in both pro-B and pre-B cells, this indicates that a few Vk genes most likely make initial rearrangements to downstream Jk genes (Dataset S2). Thus, examination of all Vk gene usage (hereafter referred to as VkJkALL) as we do here allows one to examine overall rearrangement frequencies much more accurately.

One potential caveat of using VkJkALL is that different Jk gene repertoires could be disproportionately represented based on possible Jk primer biases that exist in the VDJ-seq protocol. However, we think our VkJkALL data lacks primer bias and is thus representative of the actual total rearrangements because different sets of Jk PCR primers that we used yielded similar Jk percentages, with Jk1 accounting for over ∼40% of gDNA rearrangements while the other Jk genes contributed ∼20% each (Figures S2D, S3B). We cannot exclude the possibility that a Jk bias may have been introduced with the common set of Jk biotinylated primers that we used. However, the recent VJ repertoire study using VDJ-seq employed different biotinylated and PCR primers, and still revealed a similar breakdown in Jk usage (>35% Jk1) albeit with slightly more Jk2 representation relative to our data (8).

The repertoire data obtained from these gDNA libraries reveal highly uneven Vk gene usage when examining individual Jk gene repertoires, VkJkALL repertoires as well as within respective Vk gene families (Figure 1C, Figures S4A,B). Genes that are underrepresented in VkJk1 relative to VkJkALL are shown in Figure 1D. Uneven Jk usage does not show any bias for Vk genes that rearrange frequently or infrequently (Figure 1E). Jk1 rearrangements were also more biased to deletional rearrangements than rearrangements using the other Jk genes (Figure S3C).

We compared VkJkALL frequencies to the RSS quality score (RIC score). The RIC score is derived from an algorithm that predicts RSS site sequence quality based on the heptamer, spacer and nonamer (34). Consistent with prior studies of heavy chain and VxJk light chain repertoire studies, our data also suggests the RIC score is the most important individual factor in predicting whether a V gene is active or inactive as determined by RF classification analysis (6–8). This is reasonable since a V gene cannot rearrange without a reasonable RSS. However, when only Vk genes whose rearrangement accounts for a minimum of 0.01% of the repertoire were analyzed, linear regression analysis shows only a modest correlation (R = 0.33–0.41) between the RIC score and rearrangement frequencies (Figures S4C,D).

Comparison of Repertoires Obtained From Paired Sets of gDNA and RNA

In order to uncover any biases that might be present when comparing repertoire data from gDNA vs. RNA, we compared gDNA libraries described above to RNA repertoire libraries made from the same batches of sorted pre-B cells (Figure S1). The 3 libraries made from RNA were ∼88% similar (Figures S2B,E). We directly compared RNA and gDNA from the same sorted cells. We first compared the frequency of usage of each Vk gene in libraries made with gDNA and RNA (Figure 2A) using VkJkALL sequences to assess the total repertoire, although data using VkJk1 was similar (Figure S5). The rearrangement frequencies derived from pre-B cell gDNA and RNA are unequal. To more effectively visualize potential biases, we calculated the ratios between the two for functional Vk genes that had reads in both repertoires. These ratios reveal that ∼80% of functional Vk genes had RNA/gDNA or gDNA/RNA ratios that were on
Figure 1 | Variation in Vk-Jκ repertoires. (A) Scatterplot matrix showing correlation between Vk-Jκ1, Vk-Jκ2, Vk-Jκ4, and Vk-Jκ5 repertoires. Lower left panels depict scatterplot matrices. Upper right panels depict absolute correlation. The font size of the correlation value is proportional to the correlation. (B) Percentage of Jκ gene usage for each Vk gene arranged vertically from Jκ-proximal (bottom) to Jκ-distal (top) genomic location. (C) Vk gene rearrangement frequency arranged from Jκ-proximal (bottom) to Jκ-distal (top) with every other bar labeled on the left y-axis. Right side bars display Vk-JκALL gene frequencies, left side bars display Vk-Jκ1 gene frequencies. Black bars depict deletional rearrangements, red bars depict inversional rearrangements. Genes with 0% rearrangement frequency in Vk-JκALL are excluded. Dotted vertical lines mark 1, 2, and 5% rearrangement frequency. (D) Rearrangement frequency ratios of Vk-Jκ1/Vk-JκALL (left side) and the reciprocal Vk-JκALL/Vk-Jκ1 ratios (right side). Vk gene names listed are those that are >10-fold higher in Vk-JκALL vs. Vk-Jκ1. All genes which had a Vk-JκALL frequency ≥0.05% in all 3 replicates are included. Vk-Jκ4-63Jκ1 was assigned a frequency equivalent to 1 read in order to calculate a ratio. (E) Jκ gene percent usage arranged in descending order of rearrangement frequency. The most highly rearranged genes are on top and the least frequently rearranged genes are at the bottom. Color coding as described in (B). For (A–E), data is derived from 3 independent pre-B cell gDNA biological replicates. For (B,E), only Vk genes which had at least 5 reads in each of the 3 gDNA biological replicates are included. SEM error bars plotted for (C,D).
average no more than 2-fold higher for either gDNA or RNA repertoires (Figure 2B, Figure S5C). This suggests that these Vk gene promoters are of similar strength. Figure 2C depicts only the ~20% functional Vk genes (21 genes, pseudogenes have been removed) with ≥2-fold ratio of gDNA/RNA frequency or vice versa, with all replicates having ≥1.5-fold difference. We observe ≥2-fold RNA/gDNA frequency ratios (i.e., higher representation in RNA repertoire) for many proximal Vk3 and Vk6 family member genes and ≥2-fold gDNA/RNA frequency ratios (i.e., higher in the gDNA repertoires) for several Vk4 family genes as well as 3 genes from other Vk families; Vk18-36, Vk5-37, and Vk20-101-2. We also observed a few Jκ-distal Vk genes displaying an increased RNA/gDNA frequency ratio: Vk17-127 and Vk9-129. In summary, many proximal Vk3 and Vk6 family members plus few distal Vk genes are overrepresented in the RNA-based libraries, while many central Vk4 family members are underrepresented (Figures S6A,B). We hypothesize that many Vk4 family members harbor weak promoters whereas many Vk3 and Vk6 family members have relatively strong promoters. We observed the greatest disparity between gDNA and RNA Vk gene rearrangements among IMGT classified pseudogenes, as would be expected (Figures S6C,D) since transcripts from pseudogenes with premature stop codons are subjected to increased RNA surveillance mechanisms (10), and indeed many are very reduced in the RNA repertoires. However, a few pseudogenes are well transcribed and rearrange frequently, such as Vk4-77, which despite having a stop codon, has a gDNA/RNA ratio of ~2.9 and represents 1.93% of the VkjKALL gDNA repertoire (Figure S6D). Thus, individual Vk pseudogenes display varying degrees of representation in the RNA repertoire.

Enhancer Epigenetic Markings Predict Rearrangement Frequency

To be able to better predict which factors influence individual Vk gene rearrangement frequencies, we analyzed 29 ChIP-seq features from our own data and from publically available datasets from both pro-B and pre-B cells for epigenetic marks, TFs, chromatin modifiers and RAG1 binding, as well as transcription from 5 RNA-seq from pro-B cells and pre-B cells, and also RIC scores. First, we quantified individual ChIP-seq and RNA-seq signal intensities in 4 windows around and including each Vk gene (Figure S7A, Materials and Methods). We performed the analysis on the gDNA repertoire data since it lacks potential promoter biases.

We first performed a classification analysis using Random Forest (RF) to examine which factors can predict whether a Vk gene rearranges (active) or does not rearrange (inactive). We considered a Vk gene active if it rearranged at least 15 times per million rearrangements within the gDNA VkjKALL repertoire. Our findings reveal that RIC score was most predictive of active vs. non-active genes, which is expected since genes with poor RSS are unlikely to rearrange efficiently. After RIC score, Ikaros binding within the RSS and promoter window and PU.1 binding in the RSS window were most predictive of the potential for active Vk gene rearrangement (Figure 3A).

We next performed RF regression analysis to determine variable importance (VI) on only active pre-B cell genes within the gDNA VkjKALL repertoire to assess which factors influence individual Vk rearrangement frequency levels. The epigenetic enhancer mark H3K4me1 in pre-B cells was most predictive of Vk gene rearrangement levels, particularly at the 800 bp window but also at upstream and promoter regions (Figure 3B). The levels of H3K4me1 are observed to dramatically increase at the pre-B cell stage over many Vk genes. Figure 3C displays pro-B and pre-B cell H3K4me1 ChIP-seq data for the entire Igk locus as well as a blow up of a representative Jκ-distal region. Linear regression analysis comparing H3K4me1 signal intensity within the RSS window and pre-B cell VkjKALL gDNA rearrangement frequency reveals a strong correlation with a Pearson correlation R value of 0.49 (Figure 3D). PU.1, considered a pioneering TF that initiates chromatin remodeling and subsequent H3K4me1 deposition (20), was the second highest predictor of rearrangement frequency. In addition, the active enhancer mark H3K27ac (35) and enhancer associated Ikaros and Pax5 scored high (36, 37). RAG1 binding at the RSS also scored high in the VkjKALL repertoire and was the highest predictive factor in influencing VkjK1 rearrangement levels (Figure 3B, Figure S7B). Unlike the Igh locus where it was found that proximal Vι1 gene rearrangement levels correlated with proximity to architectural factors CTCF and the cohesin complex member Rad21 (6), our regression models do not indicate either as predictive of rearrangement levels. Further, minimum distance calculations of CTCF and Rad21 show that almost all Vk genes are positioned at a significant distance from bound CTCF/Rad21 (Figure S7D). Overall, our data indicates that epigenetic marks of enhancers, especially H3K4me1 and TFs associated with enhancers, predict both active rearrangement status and influence individual Vk gene rearrangement frequency.

We also performed regression analysis using pre-B cell RNA/gDNA ratios from VkjKALL rearrangement frequencies of IMGT classified functional Vk genes to identify factors that may be responsible for elevated or decreased RNA representation relative to gDNA. Ikaros was the top factor, followed by EBF and E2A, all binding at the promoter window (Figure 3E). Promoter window signal intensity values for Ikaros, EBF, and E2A were 3.1- to 6.7-fold increased for the overexpressed Vk3 and Vk6 family genes vs. the underrepresented Vk4 family genes. Values for all other Vk families combined were intermediate for Ikaros and E2A binding, although EBF binding was similar for Vkx3/6 and the other non-Vk4 families (data not shown). This data suggests binding of these 3 TFs at individual Vk gene promoters is predictive of higher representation in RNA-based libraries relative to gDNA-based libraries.

In order to identify a minimum subset of features that together best predict active vs. inactive Vk genes, active Vk rearrangement frequencies or RNA overrepresentation, we performed a feature selection, using Recursive Feature Elimination (RFE) analysis, using all possible combinations of the 20 most important features from the initial RF classification and regression models. It is
important to note that while this analysis does not necessarily mean that these features are the most important individually (compared to VI barplots), it suggests that together they are able to explain the largest proportion of the variability in the data. Ikaros and PU.1 binding at the RSS along with the RIC score were among the 4 factors that when used together are the most predictive for pre-B cell active vs. inactive Vκ genes (Figure S7E). For determining which factors together could best predict the level of rearrangement of individual active Vκ genes, H3K4me1 and PU.1 at the RSS were among the top three factors (Figure S7F). Lastly, Ikaros, EBF, and E2A at the promoter were among the top 6 factors that could most accurately predict high RNA/gDNA ratios (Figure S7G). Feature selection analysis has identified a few variables that when considered together are able to predict active Vκ rearrangement levels and promoter strengths with an accuracy comparable to the full model. The features identified are consistent with the VI data extracted from the initial RF models (Figures 3A,B,E).

The Earliest Igκ Rearrangements Made in Pro-B Cells Are More Jκ-Distal Biased

Although most Igκ rearrangements occur at the pre-B cell stage, an estimated 15% of CD43+ pro-B cells undergo early Igκ rearrangement (13). To examine whether early first pro-B Igκ...
rearrangements differed from that of the full Igκ repertoire generated in pre-B cells, we twice sorted both cell types from the same pool of mice and prepared gDNA and RNA libraries from each (Figure S1A). We first analyzed pro-B cell RNA repertoires (Figure S2F) which had many more reads than pro-B cell gDNA libraries. Pro-B cells had increased Jκ1 usage relative to pre-B cells, so we focused our analysis on the VκJκ1 repertoire (Figure 4A, Figure S3B) although similar trends were observed in VκJκALL. Vκ10-96 was the most frequently rearranging gene in the pro-B cell RNA repertoire, roughly 3 times higher than its representation in the pre-B cell RNA repertoire (Figure 4B, Figure S8A). In fact, the 4 Vκ genes from 19–93 through to 10–96 represented ~25% of the entire pro-B cell VκJκ1 RNA repertoire vs. ~12.5% in pre-B cells.

Comparing the pro-B/pre-B Vκ RNA ratios, we observe about 17 Vκ genes that are ≥2-fold in rearrangement frequencies between pro-B and pre-B cells (Figure 4C, Figure S8B). To examine if there was any general bias between the pro-B/pre-B RNA ratios, we categorized Vκ RNA frequency as belonging to the Jκ-proximal half or Jκ-distal half of the Igκ locus using the genomic distance between the most Jκ-proximal Vκ gene (Vκ3-1) to the most Jκ-distal Vκ gene (Vκ2-137) to calculate...
135 rearrangements are more predominant in pro-B cell gDNA bias, we focused on V\(\kappa\) pro-B cell V\(\kappa\) with V\(\kappa\) observed in the pro-B cell RNA repertoire. Because of this J\(\kappa\) V\(\kappa\) locus. V\(\kappa\) the division between the proximal and distal halves of the locus. V\(\kappa\) 19-93 through V\(\kappa\)10-96 accounted for a large part of the J\(\kappa\)1 rearrangements, but data was similar to the J\(\kappa\)1 skewing observed in the pro-B cell RNA repertoire. Because of this J\(\kappa\)1 bias, we focused on V\(\kappa\)J\(\kappa\)1 rearrangements, but data was similar with V\(\kappa\)J\(\kappa\)ALL analysis. Similar to the RNA repertoire analysis, V\(\kappa\)19-93 through V\(\kappa\)10-96 accounted for a large part of the pro-B cell V\(\kappa\)J\(\kappa\)1 gDNA repertoire (~17.5%). However, V\(\kappa\)1-135 rearrangements are more predominant in pro-B cell gDNA and accounted for ~10% of V\(\kappa\)J\(\kappa\)1 rearrangements (Figure 5B, Figure S8D), representing a 1.6-fold increase compared to pre-B cells. gDNA rearrangement frequency ratios indicate Ig\(\kappa\) distal half V\(\kappa\) rearrangements are much more pronounced in pro-B cells (Figure 5C, Figure S8E), up 15% compared to pre-B cells (Figure 5D, Figure S8F). Thus, pro-B cell rearrangements are biased to the distal half of the Ig\(\kappa\) locus.

We also compared matched pro-B cell gDNA and RNA repertoires and found that similar to pre-B cells, many V\(\kappa\)4 family gene members were underrepresented and V\(\kappa\)6-15 was overrepresented in the RNA repertoire (many V\(\kappa\)3/6 family genes were filtered out due to low read numbers) (Figures S9A,D). Ratio analysis reveals similar trends as observed in pre-B cells (Figures S9B,C, E,F). Thus, promoter strength differences appear to be consistent through early B cell development.

PU.1 Binding at the Promoter Predicts Pro-B Cell V\(\kappa\) Relative Rearrangement Frequencies

We performed the same RF analysis as with pre-B cells. Classification analysis on pro-B cell gDNA repertoire data revealed that just as in pre-B cells, RIC score followed by PU.1 binding in the RSS window was most predictive of
FIGURE 5 | Pro-B cell gDNA rearrangements are biased to the Jκ-distal half of the kappa locus. (A) Pie chart indicating average percent Jκ gene usage in pro-B cells, from 2 biological replicates. (B) VκJκ gDNA repertoire frequencies of pro-B (left) and pre-B cells (right) arranged from Jκ-distal (top) to Jκ-proximal (bottom). Dotted vertical lines represent 1 and 2% rearrangement frequencies. Only Vκ genes comprising at least 0.5% of total rearrangements in both pro-B replicates were included. (C) VκJκ ratios of pro-B/pre-B (left) and the reciprocal pre-B/pro-B ratio (right) arranged vertically as in (B). Dotted vertical lines represent 1 (no difference) and 2-fold changes in relative gDNA rearrangement. (D) Comparison of pro-B and pre-B cell VκJκ1 rearrangements in the Jκ-distal half vs. Jκ-proximal half of the kappa locus as in 4D. Error bars represent SEM. **p < 0.01.

FIGURE 6 | PU.1 predicts active Vκ genes and rearrangement frequency in pro-B cells. (A) VI for each chromatin and RNA feature in a RF classification model for pro-B cell gDNA VκJκ ALL active/inactive genes. Vκ genes were categorized as active if they contained at least 1 read. Shown are the top ten features with significant VI. (B) VI for each chromatin and RNA feature in a RF regression model for rearrangement frequency in pro-B cell gDNA VκJκ ALL active genes. Shown are features with significant VI. For (A,B), chromatin or RNA feature is listed below bar. All features used in RF are from pro-B cells.

active vs. non-active Vκ genes (Figure 6A). However, unlike pre-B cells, regression analysis shows PU.1 binding at the promoter is by far the biggest predictor of rearrangement levels among active Vκ genes in pro-B cells (Figure 6B, Figure S7C).

Also, enhancer marks are not as predictive of pro-B cell Vκ rearrangement frequency although H3K4me2 followed PU.1 in relative importance. Feature selection analysis was performed as with the pre-B cell data set. PU.1 at the RSS window was among the top features that when considered together were most able to accurately predict both active Vκ genes (vs. inactive Vκ genes) and also Vκ rearrangement frequency levels (Figures S7H, I), consistent with our VI analysis (Figure 6). Overall, 3–9 factors together could reasonably predict pro-B cell active Vκ genes (vs. inactive Vκ genes) and active Vκ rearrangement frequency levels, respectively.

iEx Regulates Individual Vκ Gene Usage
iEx is very important, but not absolutely required for Igκ chain rearrangement (15). However, whether iEx can influence individual Vκ gene usage has not been examined previously. We therefore performed gDNA repertoire analysis from sorted pre-B cells from iEx−/− mice from 2 biological replicates, which were 87% similar (Figure S2G). We observed that iEx−/− pre-B cells had a dramatic increase in the relative frequency of Jκ1 gene usage, at over 63% compared to 41% for WT pre-B cells (Figure 7A, Figure S3B). For this reason, we focused our analysis on the VκJκ1 repertoire but VκJκ ALL data was similar. Strikingly, we find iEx−/− pre-B cells have a dramatically reduced representation of Vκ3 family proximal genes (Vκ3-1 to Vκ3-9) relative to WT (Figure 7B, Figure S10A). At Vκ3-10, both pre-B cell strains approach parity. At Vκ3-12, iEx−/− pre-B cells are >3-fold higher in rearrangement than WT cells. Other
genes scattered throughout the locus were also altered. Vκ genes 6-20, 6-29, 13-82, and 1-133 represented a higher percentage of the repertoire in iEκ−/− pre-B cells. Conversely, Vκ genes 6-17, 4-70, and 11-125 were diminished in iEκ−/− frequency. These differences are more easily observed when displaying the ratio of WT to iEκ−/− frequencies or vice versa (Figure 7C, Figure S10B). This data provides evidence that iEκ is able to regulate not only overall levels of rearrangement but is able to regulate individual Vκ usage.

To confirm the dramatic discrepancy in Jκ-proximal Vκ3 family gene rearrangements between WT and iEκ−/− pre-B cells, we assayed sorted pre-B cell gDNA using TaqMan qPCR with a Jκ1 reverse primer and Jκ1 probe. In addition to normalizing data for DNA loading (Eμi), the data were also normalized to the total level of rearranged Vκ genes (using a degenerate Vκ primer) since overall levels of kappa rearrangement are far lower in iEκ−/− pre-B cells relative to WT pre-B cells (15). We quantified a 6.5-fold decrease in iEκ−/− pre-B cell rearrangement relative to WT pre-B cells using the degenerate Vκ primer with the Jκ1 reverse primer and probe (data not shown). However, this is likely an underestimate since downstream Jκ usage in WT pre-B cells accounts for a bigger proportion of total rearrangements relative to iEκ−/− pre-B cells. By normalizing Vκ gene usage to the total level of Vκ rearrangements, we are interrogating how the frequency of a given Vκ gene changes within the pool of rearrangements that do occur. We examined the Vκ3-2 gene due to its elevated Jκ1 rearrangement frequency (∼2.5%) in WT pre-B cells. In contrast to WT, no detectable Vκ3-2 rearrangement was found in iEκ−/− pre-B cells (Figure 7D). Vκ19-93, a highly rearranged gene whose relative frequency is similar in WT and iEκ−/− pre-B cells, is shown to be proportionately unchanged upon iEκ deletion. We conclude that iEκ directly regulates the rearrangement of the most Jκ-proximal Vκ3 family genes.

The accessibility hypothesis postulates that germline transcription (GLT) correlates with accessibility for rearrangement (38). We hypothesized that the dramatic decrease in Vκ3 family proximal rearrangements observed in iEκ−/− pre-B cells might be linked to decreased local transcription. We examined the transcriptional influence of
iEκ deletion using Rag1 deficient, heavy chain transgenic mice which resemble pre-B cells but contain a germline Igκ locus configuration (16). These mice were crossed with iEκ/−/− mice to assess Vκ GLT in the absence of this enhancer. As can be seen in Figure 7E, iEκ absence results in a dramatic loss of GLT in the most Jκ-proximal Vκ region relative to WT pre-B cells. This transcriptionally deficient region contains the Vκ3 family genes that did not rearrange in iEκ/−/− pre-B cells. Thus, iEκ controls rearrangement and GLT of the proximal Vκ genes.

DISCUSSION

Our study is the first to directly compare Vκ gene rearrangement frequencies from both gDNA and RNA from paired samples of pro-B and pre-B cells. Our data shows that ~20% of functionally classified Vκ genes have ≥2-fold apparent differences in the frequency of rearrangements when comparing data obtained from gDNA vs. RNA repertoires in pre-B cells. We also show that individual Vκ genes display extremely varied Jκ gene usage, consistent with previous data (8). Additionally, to our knowledge, our study is the first to perform deep sequencing of the Igκ repertoire in WT pro-B cells and in iEκ/−/− pre-B cells, where we show that iEκ is critical for the rearrangement of Jκ-proximal Vκ3 family genes and that pro-B cell rearrangements are more biased to the distal half of the Igκ locus.

A previous study of B220+ BM B cells (primarily assaying pre-B cells and immature B cells) using 5′ RACE PCR revealed 7 genes that were highly represented among all Vκ genes, each ranging from 5 to 7% of the total repertoire (5). Our pre-B cell RNA dataset detected 130 genes with at least one read with 11 genes appearing at a frequency of 2% to just under 7%. Six of the seven top genes from the previous study were among our highest frequency gene list. Comparison of the two studies reveals that Vκ genes 9-120, 19-93, 6-23, 6-17, and 6-15 all increased ≥2-fold in frequency in that study compared to our repertoire data, perhaps being upregulated in the differentiation step between pre-B and immature B-cells. The other recent Igκ repertoire study examined gDNA rearrangements at the pre-B cell stage and this study also found unequal Vκ and Jκ gene usage (8). However, that study only analyzed VκJκ1 repertoire, whereas we analyzed the entire repertoire since we found that some Vκ genes rarely if ever rearrange to Jκ1.

We reasoned that direct comparison of gDNA and RNA repertoires would reveal any biases that might arise from differential promoter strengths of individual Vκ genes. We show that 80% of functional pre-B Vκ gDNA/RNA or RNA/gDNA frequency ratios are within 2-fold of each other. This suggests that most Vκ gene promoters share similar strengths. However, several Vκ3/6 family gene members as well as 2 Jκ-distal genes Vκ17-127 and Vκ9-129 had ≥2-fold higher representation in RNA repertoire. Conversely, many Vκ4 family members as well as Vκ20-101-2 were ≥2-fold lower in their RNA repertoire. Using regression analysis, we show that Ikaros, EBF and E2A binding to the promoter region predict high RNA representation and are thus likely drivers of strong Vκ promoters. Also, Vκ4 family gene members display greater genomic distance between the octamer and the TATA box compared to other Vκ family members (11). Increasing genomic distance between the octamer and TATA box has been shown to reduce transcriptional output using β-globin constructs (39). VκH promoter strength and TF complex formation in vitro decreases when increasing the distance between the octamer and another promoter motif called the heptamer (40). The increased distance between octamer and TATA box may explain why Vκ4 family gene members have lower RNA levels per rearranged gene. However, despite the fact that Vκ gene family promoters have different apparent arrangements of cis-regulatory elements, most appear to have similar promoter strengths or are brought to the same transcriptional capacity by the 3′ enhancer (3′Eκ) and Ed, which have been shown to be the primary regulators of the level of rearranged VκJκ transcription for most Vκ genes (14, 41–43). Relatively equal transcription of rearranged Vκ genes has implications for central tolerance since altered BCR levels or BCR signal intensity can profoundly impact central tolerance (44, 45).

We used machine learning RF analysis combined with a much larger ChIP-seq and RNA-seq database than any previous studies to reveal factors predictive of active vs. inactive Vκ genes (RF classification) and also individual Vκ gene rearrangement frequencies (RF regression analysis). Datasets were derived from both pre-B cells and pro-B cells since Igκ locus contraction, and to a minor extent rearrangement, occur at the pre-B cell stage (13, 46, 47). After RIC score, PU.1 binding (RSS window) and Ikaros (RSS and promoter windows) were identified as the highest predictors of active vs. inactive Vκ genes. Although PU.1 RSS binding was also identified as a high mark in a previous Igκ RF classification analysis (8), that study did not examine pre-B cell Ikaros binding. Regression analysis showed that the levels of the enhancer mark H3K4me1 in pre-B cells were most predictive of active Vκ gene rearrangement levels while RAG-1 binding within the RSS window predicted VκJK1 pre-B cell rearrangement levels. This is the first report to show that H3K4me1 in pre-B cells, and active enhancer mark H3K27ac to a lesser extent, is the most predictive of individual Vκ gene rearrangement levels in pre-B cells. We also show that the extent of H3K4me1 greatly increases in pre-B cells compared to pro-B cells, particularly near Vκ genes. The presence of H3K4me1 levels at enhancers has been shown to correlate with long-range chromatin contacts (12). Thus, the degree of H3K4me1 at individual Vκ genes may facilitate long-range interactions responsible for locus contraction, and for rearrangement of that particular Vκ gene, providing a mechanistic explanation for higher rearrangement frequencies.

This is also the first report, to our knowledge, to identify PU.1 as a crucial regulator of Igκ rearrangement at the pro-B cell stage. This is consistent with a recent report showing that PU.1 regulates Igκ transcription and rearrangement in a pro-B cell line mainly by binding in close proximity to Vκ gene transcriptional start sites (48). Previous reports comparing pro-B cell ChIP-seq data sets with Igκ gene rearrangement frequencies highlight that Vκ rearrangements are regulated in a distinct manner from VκH rearrangements. We previously
demonstrated that proximity of CTCF and Rad21 was critical for proximal V\textsubscript{H} gene rearrangements, while distal V\textsubscript{H} gene rearrangement levels were predicted by high active histone marks (especially H3K4me2/3) (6). A more recent report identified Pax5 and IRF4 binding at the RSS as predictive of distal V\textsubscript{H} gene rearrangement frequency (7). Unlike the Igh locus, neither CTCF or Rad21 binding appear to correlate with individual V\textsubscript{K} gene rearrangement frequency which is not unexpected since CTCF bound sites are not close to V\textsubscript{K} genes (Figure S7D) (49). Overall, our data reveal different mechanisms controlling rearrangement at the Igh vs. the Ig\textsubscript{K} locus as well as differential control of V\textsubscript{K} gene rearrangement in the pro-B cell stage vs. pre-B cell stage.

We observed higher J\textsubscript{K}1 usage in pro-B cells which we hypothesized was a result of these cells not having had as much time as pre-B cells to undergo additional rearrangements to downstream J\textsubscript{K} genes. We also observed that pro-B cells have a distinct bias for rearrangement to V\textsubscript{K} genes in the distal half of the kappa locus largely due to V\textsubscript{K}10-96 and V\textsubscript{K}1-135. A potential reason for this bias is that there is a higher proportion of long-range interactions between the J\textsubscript{K}/iE\textsubscript{K} region and the J\textsubscript{K}-distal half of the Ig\textsubscript{K} locus vs. the J\textsubscript{K}-proximal half in pro-B cells, as assayed by 4C (E.M. Barajas-Mora, EK, AJF, manuscript submitted). This hypothesis would be consistent with the link between long-range interactions and rearrangement frequency (46).

Many long-range chromatin interactions are primarily mediated through CTCF (50, 51). CTCF binds to two cis-regulatory elements in the VJ intervening sequence that play important roles in Ig\textsubscript{K} rearrangement. These two elements, Cer (contracting element for recombination) and Sis (silencer in the intervening sequence), have overlapping but distinct functions at the kappa locus (52–55). Deletion of each element separately reveals that they mediate J\textsubscript{K}-distal V\textsubscript{K} rearrangement. However, only Cer is responsible for regulating locus contraction and its absence has a much more profound effect on repertoire composition. In addition to these two elements, CTCF binds to \~65 CTCF binding sites throughout the V\textsubscript{K} portion of the Ig\textsubscript{K} locus in pre-B cells. However, CTCF binding to the Ig\textsubscript{K} locus at the pro-B cell stage is much more restricted occurring mostly in the J\textsubscript{K}-distal half of the locus (49, 56), possibly partially explaining the preponderance of long-range interactions to the distal half of the locus in pro-B cells.

The highest observed pro-B cell CTCF and cohesin ChIP-seq peak occurs between the V\textsubscript{K}10-95 and V\textsubscript{K}10-96 genes. CTCF-mediated looping occurs predominantly when two CTCF sites are in convergent orientation (facing each other) as opposed to tandem orientation (both facing the same direction) (57, 58). The two CTCF sites in the Cer element both are oriented toward the V\textsubscript{K} genes, while the CTCF peak downstream of V\textsubscript{K}10-96 faces toward Cer. Preliminary 4C data from the viewpoint of this CTCF site shows a prominent interaction with the Cer element at the pro-B cell stage (E.M. Barajas-Mora, EK, AJF, unpublished data). Because Cer regulates J\textsubscript{K}-distal V\textsubscript{K} gene usage (52), we hypothesize that a major contributing factor to elevated V\textsubscript{K}10 family member gene rearrangements in pro-B cells, especially V\textsubscript{K}10-96 but also V\textsubscript{K}19-93, V\textsubscript{K}10-94, and V\textsubscript{K}10-95 is the long-range interactions between this CTCF site and Cer that predominate over other Ig\textsubscript{K} locus interactions.

Another prominent pro-B cell J\textsubscript{K}-distal CTCF site is found near V\textsubscript{K}2-137 (49, 56). This CTCF is significant because it is relatively close (54 kb) to the V\textsubscript{K}1-135 gene which represents \~10% of all pro-B cell gDNA rearrangements. Even though individual V\textsubscript{K} gene proximity to CTCF does not predict rearrangement frequency, CTCF-mediated long-range interactions are likely in part responsible for the pro-B cell bias toward J\textsubscript{K}-distal V\textsubscript{K} genes, consistent with data showing that conditional early B cell deletion of CTCF leads to increased usage of proximal V\textsubscript{K} genes (59).

Lastly, we show that iE\textsubscript{K} regulates usage of V\textsubscript{K} genes that lie within a region of iE\textsubscript{K}-controlled GLT. The most J\textsubscript{K}-proximal V\textsubscript{K} genes within this transcriptionally deficient area in iE\textsubscript{K}−/− pre-B cells barely rearranged. However, we note that not all genes within this transcriptional sphere of iE\textsubscript{K} influence are deficient in rearrangement. Genes at the J\textsubscript{K}-distal end of this enhancer-controlled transcriptional region did not display noticeable rearrangement defects (e.g., V\textsubscript{K}6-15) indicating a lack of strict correlation between GLT levels and rearrangement. Work from our lab using Cer-deleted Abelson-MuLV-transformed pro-B cell lines further indicates that the level of V\textsubscript{K}3 family gene rearrangement is not dependent on the level of GLT occurring over the gene body (60). Because strong iE\textsubscript{K} to V\textsubscript{K}3 region interactions occur in pro-B cells (46) (E.M. Barajas-Mora, EK, AJF, manuscript submitted), a likely explanation of our data then is that the V\textsubscript{K}3 family genes that do not rearrange in the absence of iE\textsubscript{K} are dependent on this enhancer for long-range contacts to drive rearrangement. However, compensatory long-range interactions in the absence of iE\textsubscript{K} may occur and could explain altered rearrangement of other V\textsubscript{K} genes in both the proximal and distal half of the Ig\textsubscript{K} locus (e.g., V\textsubscript{K}6-29, V\textsubscript{K}4-70, V\textsubscript{K}11-125, and V\textsubscript{K}1-133). Both iE\textsubscript{K} and the 3′E\textsubscript{K} enhancers have been shown to make long-range interactions throughout the Ig\textsubscript{K} locus in pre-B cells (46, 61). Additionally, both enhancers have partially redundant roles in kappa rearrangement, although iE\textsubscript{K} is more important. Combined loss of both enhancers abrogates Ig\textsubscript{K} rearrangement entirely (14). If 3′E\textsubscript{K} were to exhibit altered bias in long-range interactions relative to iE\textsubscript{K}, then V\textsubscript{K} gene rearrangement might be altered in the absence of iE\textsubscript{K}. Another notable observation in the iE\textsubscript{K}−/− pre-B cells was the sizeable increase in J\textsubscript{K}1 usage compared to wild-type, \~63 vs. \~41%, respectively. J\textsubscript{K}1 rearrangements in iE\textsubscript{K}−/− are even more predominant than WT pro-B cells, in which J\textsubscript{K}1 represented 50% of all rearrangements. This suggests that iE\textsubscript{K}−/− pre-B cell rearrangements begin late enough in pro-B cell differentiation that only the most primary rearrangements take place, which are mostly J\textsubscript{K}1.

In summary, we have analyzed the unbiased gDNA and RNA repertoire of pro-B and pre-B cells and show that differences do occur in V\textsubscript{K} gene usage between the two libraries of a given cell type. These differences are likely tied to promoter strengths and appear consistent throughout B cell development. The overall distribution of V\textsubscript{K} gene
rearrangements shifts toward Jκ-proximal Vκ gene usage during the course of BM B cell differentiation. Importantly, enhancer marks, especially H3K4me1, have the highest correlation with unequal Vκ utilization in pre-B cells, while PU.1 shows the highest correlation with early Vκ gene rearrangement in pro-B cells.

ETHICS STATEMENT

This study was carried out under approval of our protocol by The Scripps Research Institute’s IACUC.

AUTHOR CONTRIBUTIONS

EK and AF designed experiments, analyzed data, and wrote the manuscript. EK performed all experiments. SL performed the bioinformatic analyses.

REFERENCES

1. Williams GS, Martinez A, Montalbano A, Tang A, Mauhar A, Ogwaro KM, et al. Unequal Vκ gene rearrangement frequency within the large Vκ7183 gene family is not due to RSS variation, and mapping of the genes shows a bias of rearrangement based on chromosomal location. J Immunol. (2001) 167:257–63. doi: 10.4049/jimmunol.167.1.257
2. Feeney AJ, Atkinson MJ, Cowan MJ, Escuro G, Lugo G. A defective Vλ2 allele in Navajos which may play a role in increased susceptibility to Haemophilus influenzae type b disease. J Clin Invest. (1996) 97:2277–82. doi: 10.1172/JCI18669
3. Feeney AJ, Lugo G, Escuro G. Human cord blood K repertoire. J Immunol. (1997) 158:3761–8.
4. Love VA, Lugo G, Merz D, Feeney AJ. Individual promoters vary in strength, but the frequency of rearrangement of those Vκ1 genes does not correlate with promoter strength nor enhancer independence. Mol Immunol. (2000) 37:39–39. doi: 10.1016/S0161-5890(00)00223-7
5. Aoki-Ota M, Torkamani A, Ota T, Nemazee D. skewed primary Igkappa repertoire and V-J joining in C57BL/6 mice: implications for recombination accessibility and receptor editing. J Immunol. (2012) 188:2305–15. doi: 10.4049/jimmunol.1103484
6. Choi NM, Loguecrsio S, Verma-Gaur J, Degner SC, Torkamani A, Su AI, et al. Deep sequencing of the murine Igk repertoire reveals complex regulation of nonrandom Vγ gene rearrangement frequencies. J Immunol. (2013) 191:2393–402. doi: 10.4049/jimmunol.1301279
7. Bolland DJ, Koohy H, Wood AL, Matheson LS, Krueger F, Stubbington MJ, et al. Two mutually exclusive local chromatin states drive efficient V(D)J recombination. Cell Rep. (2016) 15:2475–87. doi: 10.1016/j.celrep.2016.05.020
8. Matheson LS, Bolland DJ, Chovanec P, Krueger F, Andrews S, Koohy H, et al. Local chromatin features including PU.1 and Ikaros binding and H3K4 methylation shape the repertoire of immunoglobulin kappa genes chosen for V(D)J recombination. Front Immunol. (2017) 8:1550. doi: 10.3389/fimmu.2017.01550
9. Lin SG, Ba Z, Du Z, Zhang Y, Hu J, Alt FW. Highly sensitive and unbiased approach for elucidating antibody repertoires. Proc Natl Acad Sci USA. (2016) 113:7846–51. doi: 10.1073/pnas.1608491113
10. Chemin G, Tinguey A, Sirac C, Lechouane F, Duchez S, Cognie M, et al. Multiple RNA surveillance mechanisms cooperate to reduce the amount of nonfunctional IgKappa transcripts. J Immunol. (2010) 184:5009–17. doi: 10.4049/jimmunol.0902949
11. Brekke KM, Garrard WT. Assembly and analysis of the mouse immunoglobulin kappa gene sequence. Immunogenetics (2004) 56:490–505. doi: 10.1007/s00251-004-0659-0
12. Yan J, Chen SA, Local A, Liu T, Qiu Y, Dorighi KM, et al. Histone H3 lysine 4 monomethylation modulates long-range chromatin interactions at enhancers. Cell Res. (2018) 28:204–20. doi: 10.1038/cr.2018.18
13. Novobrantseva TI, Martin VM, Pelanda R, Muller W, Rajewsky K, Ehlich A. Rearrangement and expression of immunoglobulin light chain genes can precede heavy chain expression during normal B cell development in mice. J Exp Med. (1999) 189:75–88. doi: 10.1084/jem.189.1.75
14. Inlay M, Alt FW, Baltimore D, Xu Y. Essential roles of the kappa light chain intronic enhancer and 3’ enhancer in kappa rearrangement and demethylation. Nat Immunol. (2002) 3:463–8. doi: 10.1038/nio790
15. Xu Y, Davidson L, Alt FW, Baltimore D. deletion of the Igk light chain intronic enhancer/matrix attachment region impairs but does not abolish VκJκ rearrangement. Immunity (1996) 4:377–85. doi: 10.1016/S0170-7161(00)80251-4
16. Nussenzweig MC, Shaw AC, Sinn E, Danner DB, Holmes KL, Morse HC III, et al. Allelic exclusion in transgenic mice that express the membrane form of immunoglobulin mu. Science (1987) 236:816–9. doi: 10.1126/science.31 07126
17. Hu J, Meyers RM, Dong J, Panchakshari RA, Alt FW, Frock RL. Detecting DNA double-stranded breaks in mammalian genomes by linear amplification-mediated high-throughput genome-wide translocation sequencing. Nat Protoc. (2016) 11:853–71. doi: 10.1038/nprot.2016.043
18. Kleiman E, Jia H, Loguecrsio S, Su AI, Feeney AJ, YY1 plays an essential role at all stages of B-cell differentiation. Proc Natl Acad Sci USA. (2016) 113:E3911–20. doi: 10.1073/pnas.1519271113
19. Andrews S. FastQC: A Quality Control Tool for High Throughput Sequence Data. (2017). Available online at: http://www.bioinformatics.babraham.ac.uk/ projects/fastqc
20. Heinz S, Benner C, Spann N, Bertolino E, Lin YC, Laslo P, et al. Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. Mol Cell (2010) 38:576–89. doi: 10.1016/j.molcel.2010.05.004
21. Langmead B, Trapnell C, Pop M, Salzberg SL. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. (2009) 10:R25. doi: 10.1186/gb-2009-10-3-r25
22. Zhang Y, Liu T, Meyer CA, Eckbhoue J, Johnson DS, Bernstein BE, et al. Model-based analysis of ChIP-Seq (MACS). Genome Biol. (2008) 9:R137. doi: 10.1186/gb-2008-9-9-r137
23. Kim D, Pertea G, Trapnell C, Pimentel H, Kelley R, Salzberg SL. TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol. (2013) 14:R36. doi: 10.1186/gb-2013-14-1-r36
24. Thorvaldsdottir H, Robinson JT, Mesirov JP. Integrative Genomics Viewer (IGV): high-performance genomics data visualization and exploration. Brief Bioinform. (2013) 14:178–92. doi: 10.1093/bib/bbs017

FUNDING

This work was supported by NIH grants R56 AI119092, R03 AI115486, R21AI137867, and R21 AI113033 to AF.

ACKNOWLEDGMENTS

The authors thank Bryan Briney and Jordan Willis (Scripps Department of Immunology and Microbiology Science) for their help in customizing Abstar. We also thank Jessica Ledesma and Steven Head of the Scripps Sequencing Core.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fimmu.2018.02074/full#supplementary-material
25. Gentleman RC, Carey VJ, Bates DM, Bolstad B, Dettling M, Dudoit S, et al. Bioconductor: open software development for computational biology and bioinformatics. Genome Biol. (2004) 5:R80. doi: 10.1186/gb-2004-5-10-r80

26. Boulesteix AL, Janitza S, Kruppa J, König IR. Overview of random forest methodology and practical guidance with emphasis on computational biology and bioinformatics. Wiley Interdiscip Rev Data Mining Knowl Disc. (2012) 2:493–507. doi: 10.1002/widm.1072

27. Liaw A, Wiener M. Classification and regression by random forest. J Stat Softw. (2002) 6:1–18.

28. Kuhn M. Building predictive models in R using the caret package. J Stat Softw. (2008) 28:1–26. doi: 10.18637/jss.v028.i05

29. Schwickert TA, Tagoh H, Gultekin S, Dakic A, Axelsson E, Minnich M, et al. The DNA-binding protein CTCF limits proximal Ig loci subnuclear location. Genes Dev. (2011) 25:374–84. doi: 10.1101/gad.299391

30. Xiang Y, Zhou X, Hewitt SL, Skok JA, Garrard WT. A major deletion in the mouse Igkappa locus that specifies repertoire and Ig loci subnuclear location. J Immunol. (2011) 186:5356–66. doi: 10.4049/jimmunol.1003794

31. Liu ZM, George-Raizen JB, Li S, Meyers KC, Chang MY, Garrard WT. Chromatin structural analyses of the mouse Igkappa locus reveal new hypersensitive sites specifying a transcriptional silencer and enhancer. J Biol Chem. (2002) 277:32640–9. doi: 10.1074/jbc.M204065200

32. Darnell SC, Wong TP, Jankevicius G, Feeney AJ. Cutting edge: developmental stage-specific recruitment of cohesin to CTCF sites throughout the mouse Igkappa locus that specifies repertoire and Ig loci subnuclear location. J Immunol. (2014) 183:3746–54. doi: 10.4049/jimmunol.1401574

33. Xiang Y, Zhou X, Hewitt SL, Skok JA, Garrard WT. A multifunctional element in the mouse Igkappa locus that specifies repertoire and Ig loci subnuclear location. J Immunol. (2011) 186:5356–66. doi: 10.4049/jimmunol.1003794

34. Lin YC, Jhunjhunwala S, Benner C, Heinz S, Welinder E, Mannsor R, et al. A global network of transcription factors, involving E2A, EBF1 and Foxo1, orchestrates B cell fate. Nat Immunol. (2011) 15:283–93. doi: 10.1038/ni.2828

35. Xi L, Mucenski M, Samelson E, Hoffman D, Jung Y, Chen X, et al. Nuclear positioning rather than contraction controls ordered rearrangements of immunoglobulin loci. PLoS Biol. (2014) 12:e1001791. doi: 10.1371/journal.pbio.1001791

36. Wang X, Chen Y, Xue K, Li F, Zhang J, Zhao Y, et al. Nuclear positioning rather than contraction controls ordered rearrangements of immunoglobulin loci. Nucleic Acids Res. (2016) 44:175–86. doi: 10.1093/nar/gkw298

37. Kleiman E, Xu J, Feeney AJ, Cutting edge: developmental stage-specific recruitment of cohesin to CTCF sites throughout the mouse Igkappa locus that specifies repertoire and Ig loci subnuclear location. J Immunol. (2011) 186:5356–66. doi: 10.4049/jimmunol.1003794

38. Rao SS, Huntley MH, Durand NC, Stamenova EK, Bochkov ID, Robinson JT, et al. A 3D map of the human genome at kilobase resolution reveals principles of chromosome conformation. Cell (2014) 159:1665–80. doi: 10.1016/j.cell.2014.11.021

39. Ribeiro de Almeida C, Stadhouders R, de Bruijn MJ, Bergen IM, Thonguea S, Lenhard B, et al. The DNA-binding protein CTCF limits proximal vkappa recombination and restricts kappa enhancer interactions to the immunoglobulin kappa light chain locus. Immunity (2011) 35:501–13. doi: 10.1016/j.immuni.2011.07.014

40. Kleiman E, Xu J, Feeney AJ, Cutting edge: developmental stage-specific recruitment of cohesin to CTCF sites throughout the mouse Igkappa locus that specifies repertoire and Ig loci subnuclear location. J Immunol. (2011) 186:5356–66. doi: 10.4049/jimmunol.1003794

41. Lin YC, Jhunjhunwala S, Benner C, Heinz S, Welinder E, Mannsor R, et al. A global network of transcription factors, involving E2A, EBF1 and Foxo1, that orchestrates B cell fate. Nat Immunol. (2011) 11:635–43. doi: 10.1038/ni.1891

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest. Copyright © 2018 Kleiman, Loguercio and Feeney. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.