Draft Genome Sequences of Four *Microcystis aeruginosa* Strains (NIES-3787, NIES-3804, NIES-3806, and NIES-3807) Isolated from Lake Kasumigaura, Japan

Haruyo Yamaguchi, Shigekatsu Suzuki, Masanobu Kawachi

Center for Environmental Biology and Ecosystem Studies, National Institute for Environmental Studies, Ibaraki, Japan

ABSTRACT *Microcystis aeruginosa* is a bloom-forming cyanobacterium found in freshwater environments. The draft genomes of the *M. aeruginosa* strains NIES-3787, NIES-3804, NIES-3806, and NIES-3807, which were isolated from Lake Kasumigaura, Japan, were sequenced. The genome sizes of NIES-3787, NIES-3804, NIES-3806, and NIES-3807 were 4,524,637, 4,522,701, 4,370,004, and 4,378,226 bp, respectively.

Cyanobacterial blooms occur widely in freshwater environments worldwide (1). *Microcystis aeruginosa* is the most well-known bloom-forming cyanobacterium, and it is distributed in eutrophic freshwater environments. The most serious problem associated with this species is the production of hepatotoxic cyanotoxins called microcystins (2, 3). *M. aeruginosa* isolates are genetically divided into at least 12 phylogenetic groups (groups A to K and X) based on multilocus phylogenetic analyses (2, 3). The strains in groups A and X, as well as some B strains, produce microcystins (3, 4). In the current study, we sequenced *M. aeruginosa* strains NIES-3787, NIES-3804, NIES-3806, and NIES-3807, isolated from Lake Kasumigaura, Japan.

Axenic cultures of *M. aeruginosa* NIES-3787, NIES-3804, NIES-3806, and NIES-3807 were obtained from the microbial culture collection of the National Institute for Environmental Studies (https://mcc.nies.go.jp/index.html). These strains were established by using a micropipette under an inverted microscope. The strains were cultured in 10 ml of *Microcystis aeruginosa* medium at 22°C under light at 25 μmol photons m⁻² s⁻¹ with a 12:12-h light/dark cycle. Genomic DNA was extracted from 10-ml cultures of these strains using Agencourt Chloropure (Beckman Coulter) following the manufacturer’s protocol. The resultant DNAs were fragmented to approximately 550 bp using an M220 ultrasonicator (Covaris). Genomic libraries of paired-end reads were constructed using a NEBNext Ultra II DNA library prep kit for Illumina (New England Biolabs). Next-generation sequencing was performed with the MiSeq platform (Illumina) using a 500-cycle MiSeq reagent kit version 2. The resultant paired-end reads for NIES-3787, NIES-3804, NIES-3806, and NIES-3807 were 151,461,029 bp, 643,439,906 bp, 395,828,445 bp, and 197,435,680 bp, respectively. The raw reads were trimmed using Trimmomatic version 0.38 (5), and then *de novo* assembly was performed using SPAdes version 3.11.1 (6) in Shovill version 1.0.4 (https://github.com/tseemann/shovill). Next, the assembled scaffolds were polished using Pilon version 1.22 (7). After the removal of short reads (<200 bp), functional annotation was performed using the DFAST legacy server (8) with Cyanobase (9) as a database. We used CheckM version 1.0.11 to estimate genome completeness (10). Default parameters were used for all software. Group identification analysis of each strain was carried out based on *ftsZ*, one of seven multilocus sequence typing loci (2, 3).

The genome assembly results are detailed in Table 1. As the result of group identification analysis, NIES-3787, NIES-3804, and NIES-3807 were identified as group G, and NIES-3804 was not assigned to any known group. These four strains did not possess...
TABLE 1 Characteristics and accession numbers of four *Microcystis aeruginosa* genomes

Strain name	Assembly size (bp)	No. of contigs	\(N_{50}\) (bp)	Genome completeness (%)	CheckM contamination (%)	GC content (%)	No. of coding sequences	Accession no. of whole-genome shotgun submissions	SRA accession no.	GenBank assembly accession no.
NIES-3787	4,378,226	214	73,037	99.89	0.66	43.0	4,126	BJCH01000001–BJCH01000214	DRR205020	GCA_009811815
NIES-3804	4,524,637	238	45,562	99.89	0.37	43.0	4,226	BJCI01000001–BJCI01000238	DRR205021	GCA_009811835
NIES-3806	4,522,702	235	67,327	99.89	0.37	43.0	4,180	BJCI01000001–BJCI01000235	DRR205022	GCA_009811855
NIES-3807	4,370,004	214	46,356	99.89	0.95	43.0	4,066	BJCK01000001–BJCK01000228	DRR205023	GCA_009811875
a microcystin biosynthetic gene cluster (11). However, some secondary metabolite
gene clusters, including aeruginosin (NIES-3787, NIES-3806, and NIES-3807) (12),
anabaenopeptin (NIES-3806) (13), microcyclamide (NIES-3804) (14), and micropeptin
(NIES-3787 and NIES-3806) (15), were predicted using antiSMASH version 5.0.0 (16).
Additional genomic information about M. aeruginosa would be useful for monitoring
algal blooms and managing freshwater ecosystems.

Data availability. The draft genomic sequences of *Microcystis aeruginosa* NIES-3787,
NIES-3804, NIES-3806, and NIES-3807 have been deposited in DDBJ/EMBL/GenBank
under the accession numbers BJCH01000001 to BJCH010000214, BJCI01000001 to
BJCI01000238, BJCI01000001 to BJCI01000235, and BJCK01000001 to BJCK01000228,
respectively. The raw genomic reads of the strains are available in DDBJ/EMBL/GenBank
under the accession numbers DRR205022, DRR205023, DRR205024, and DRR205025,
respectively.

ACKNOWLEDGMENTS

We thank Nobuyoshi Nakajima (National Institute for Environmental Studies) for
genome sequencing.

This work was partially supported by the National BioResource Project for Algae
under grant number 17km0210116j0001, which was funded by the Japan Agency for
Medical Research and Development (AMED).

REFERENCES

1. Carmichael WW. 1996. Toxic *Microcystis* and the environment, p 1–11. In
Watanabe MF, Harada K, Carmichael WW, Fujiki H (ed), Toxic *Microcystis*. CRC
Press, Boca Raton, FL.
2. Tanabe Y, Kasai F, Watanabe MM. 2007. Multilocus sequence typing (MLST) reveals high genetic diversity and clonal population structure of the toxic cyanobacterium *Microcystis aeruginosa*. Microbiology 153: 3695–3703. https://doi.org/10.1099/mic.0.2007/010645-0.
3. Tanabe Y, Hodoki Y, Sano T, Tada K, Watanabe MM. 2018. Adaptation of the freshwater bloom-forming cyanobacterium *Microcystis aeruginosa* to brackish water is driven by recent horizontal transfer of sucrose genes. Front Microbiol 9:1150. https://doi.org/10.3389/fmicb.2018.01150.
4. Tanabe Y, Watanabe MM. 2011. Local expansion of a panmictic lineage of water bloom-forming cyanobacterium *Microcystis aeruginosa*. PLoS One 6:e17085. https://doi.org/10.1371/journal.pone.0017085.
5. Bolger AM, Lohse M, Usadel B. 2014. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30:2114–2120. https://doi.org/10.1093/bioinformatics/btu170.
6. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, Lesin VM, Nikolenko SI, Pham S, Prijibelski AD, Pyshkin AV, Sirotkin AV, Vyahhi N, Tesler G, Alekseyev MA, Pevzner PA. 2012. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 19:455–477. https://doi.org/10.1089/cmb.2012.0021.
7. Walker BJ, Abeel T, Shea T, Priest M, Abouelil A, Sakhkoum S, Cuomo CA, Zeng Q, Wortman J, Young SK, Earl AM. 2014. Pilon: an integrated tool for comprehensive microbial variant detection and genome assembly improvement. PLoS One 9:e912963. https://doi.org/10.1371/journal.pone.00912963.
8. Tanizawa Y, Fujisawa T, Nakamura Y. 2018. DFAST: a flexible prokaryotic genome annotation pipeline for faster genome publication. Bioinformatics 34:1037–1039. https://doi.org/10.1093/bioinformatics/btx175.
9. Fujisawa T, Narikawa R, Maeda S, Watanabe S, Kanesaki Y, Kobayashi K, Nomata J, Hanaoka M, Watanabe M, Ehira S, Suzuki E, Awai K, Nakamura Y. 2017. CyanoBase: a large-scale update on its 20th anniversary. Nucleic Acids Res 45:D551–D554. https://doi.org/10.1093/nar/gkw1131.
10. Parks DH, Imhoff M, Skennerton CT, Hugenholtz P, Tyson GW. 2015. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res 25:1043–1055. https://doi.org/10.1101/gr.186072.114.
11. Tillott D, Dittmann E, Erhard M, Döhren H, Börner T, Neillan BA. 2000. Structural organization of microcystin biosynthesis in *Microcystis aeruginosa* PCC7806: an integrated peptide–polyketide synthetase system. Chem Biol 7:753–764. https://doi.org/10.1016/S1074-5521(00)00022-1.
12. Ishida K, Welker M, Christiansen G, Cadel-Six S, Bouchier C, Dittmann E, Hertweck C, De Marsac NT. 2009. Plasticity and evolution of microcystin biosynthesis in cyanobacteria. Appl Environ Microbiol 75:2017–2026. https://doi.org/10.1128/AEM.02258-08.
13. Harada KI, Fuji K, Shimada T, Suzuki M, Sano H, Adachi K, Carmichael WW. 2005. Two cyclic peptides, anabaenopeptins, a third group of bioactive compounds from the cyanobacterium *Anabaena flos-aquae* NRC-525–17. Tetrahedron Lett 36:1511–1514. http://doi.org/10.1016/0040-4039(95)00737-L.
14. Ishida K, Nakagawa H, Murakami M. 2000. Microcyclamide, a cytotoxic cyclic hexapeptide from the cyanobacterium *Microcystis aeruginosa*. J Nat Prod 63:1315–1317. https://doi.org/10.1021/np000159p.
15. Nishizawa T, Ueda A, Nakano T, Nishizawa A, Miura T, Asayama M, Fujii K, Harada KI, Shirai M. 2011. Characterization of the locus of genes encoding enzymes producing heptadepsipeptide micropeptin in the unicellular cyanobacterium *Microcystis*. J Biochem 149:475–485. https://doi.org/10.1016/j.jbmc.2010.05.010.
16. Blin K, Shaw S, Steinke K, Villebro R, Ziemert N, Lee SY, Medema MH, Weber T. 2019. antiSMASH 5.0: updates to the secondary metabolite genome mining pipeline. Nucleic Acids Res 47:W81–W87. https://doi.org/10.1093/nar/gkz210.