Caesarean section in uninsured women in the USA: systematic review and meta-analysis

Ilir Hoxha, Medina Braha, Lamprini Syrogiannouli, David C Goodman, Peter Jüni

ABSTRACT

Objective The aim of this study is to assess the odds of caesarean section (CS) for uninsured women in the USA and understand the underlying mechanisms as well as consequences of lower use.

Study design Systematic review and meta-analysis.

Data sources PubMed, Embase, the Cochrane Library and CINAHL from the first year of records to April 2018.

Eligibility criteria We included studies that reported data to allow the calculation of ORs of CS of uninsured as compared with insured women.

Outcomes The prespecified primary outcome was the adjusted OR of deliveries by CS of uninsured women as compared with privately or publicly insured women. The prespecified secondary outcome was the crude OR of deliveries by CS of uninsured women as compared with insured women.

Results 12 articles describing 16 separate studies involving more than 8.8 million women were included in this study. We found: 0.70 times lower odds of CS in uninsured as compared with privately insured women (95% CI 0.63 to 0.78), with no relevant heterogeneity between studies ($\tau^2=0.01$); and 0.92 times lower odds for CS in uninsured as compared with publicly insured women (95% CI 0.80 to 1.07), with no relevant heterogeneity between studies ($\tau^2=0.02$). We found 0.70 times lower odds in uninsured as compared with privately and publicly insured women (95% CI 0.69 to 0.72).

Conclusions CSs are less likely to be performed in uninsured women as compared with insured women. While the higher rates for CS among privately insured women can be explained with financial incentives associated with private insurance, the lower odds among uninsured women draw attention at barriers to access for delivery care. In many regions, the rates for uninsured women are above, close or below the benchmarks for appropriate CS rates and could imply both, underuse and overuse.

INTRODUCTION

Introduction of clinical procedures in medical practice has saved and improved the lives of many people worldwide. But with time, these clinical procedures become subject to overuse or underuse.1

Overuse may result in unnecessary harm due to the side effects of the procedures or, in case of underuse, not receiving the care they need.1–3 These adverse effects occur due to differing health systems and other contextual factors.3 4 These factors include financial and non-financial barriers in accessing healthcare, present even in the most advanced economies of the world, such as the USA. Consequently, specific segments of the population may be underserved as healthcare systems are unable to address structural problems that leave patients without the care they need.1

Globally, caesarean section (CS) is an example of overuse and underuse of clinical procedures. Once introduced into clinical practice, it greatly improved maternal and newborn outcomes.5 Presently, many countries have long exceeded the 9%–16% or 10%–15% thresholds or 19% benchmark for CS out of total deliveries, argued to be the ideal rates of CS in terms of improving...
the health of women and newborns. CS rates average as high as 40.5% among countries in Latin America and the Caribbean region, 32.3% in Northern America, (32.2% in USA), while on the other extreme, it is as low as 7.3% in Africa, 1% in Nepal and Cambodia to 0.6% in Ethiopia and Niger. Variations are also observed within countries. For instance, in the USA, a recent study reported a range between 4% and 65% across health markets.

Insurance coverage is one of the health system factors known to influence the use of medical procedures, including CS. While private insurance, for example, seems to increase the odds of having a CS delivery, the lack of insurance appears to decrease it. Millions of people worldwide, as well as in the USA, are not covered by any insurance scheme and are exposed to the hazard of being underserved with clinical procedures, including perinatal services. The USA has a mixed health insurance system dominated by private insurance. The Federal Medicare program covers people over 64 years old and/or disabled, which accounts for about 16.7% of the population. State Medicaid programs cover children and parents from low-income families as well as partially caring for Medicare beneficiaries with low incomes and, in total, accounts for about 19.4% of the US population. Over half of US population is covered with voluntary employer-based private insurance. The remaining population is uninsured and can range from 2.5% (Massachusetts) to 16.6% (Texas) according to 2016 estimates. For decades, in the USA, there has been an ongoing debate for and against universal health coverage and related topics with limited but substantial progress towards more coverage through the Affordable Care Act. Nonetheless, millions of Americans remain uninsured for various reasons and are not able to access the healthcare they need. The aim of this study is to assess the odds of CS for uninsured women in the USA and understand the underlying mechanisms as well as consequences of lower use in the US context.

Figure 1 The flow diagram of review.
MATERIALS AND METHODS

Search strategy and data sources
Search words referring to CS, such as ‘caesarean section’, ‘caesarean delivery’, ‘caesarean’, were combined with words referring to factors contributing to variation and increase of CS rates, such as ‘insurance’, ‘social class’, ‘socioeconomic’ and words referring to the study design, such as ‘geographical variation’, ‘medical practice variation’ (online supplementary appendix 1). No publication date or language restrictions were applied. We searched PubMed, Embase, the Cochrane Library and CINAHL from the beginning of records to the end of April 2018, when we last updated our search. A manual search was applied on the reference lists of included studies and previous systematic reviews.

Study selection and outcomes
To be included in the analysis, studies had to report OR or data that enabled the calculation of OR of CS comparing uninsured against privately and/or publicly insured women. More specifically, we did not exclude studies based on any population characteristic. Studies had to report normal (vaginal) and CS deliveries with uninsured and privately and/or publicly insured comparisons. In an ideal situation, studies would report adjusted OR of uninsured as compared with privately and/or publicly insured women, but in cases, ORs were not calculated by the authors, we would extract data (rates and regression coefficients) and perform calculations that would allow for the derivation of OR. We did not exclude studies by type of study design, variables used for adjustment or any other study characteristic. Adjusted OR of deliveries by CS of uninsured women in comparison to uninsured women was the prespecified primary outcome. Crude OR of deliveries by CS of uninsured women in comparison to insured women was the prespecified secondary outcome.

Data extraction
Papers screening and independent data extraction was done by two researchers (IH and MB). Differences were resolved based on consensus. We extracted data on study population, study design, data sources, setting, type of CS analysed, statistical analysis and (primary and secondary) outcome measures (online supplementary appendix 2).

Quality assessment
We used Quality In Prognosis Studies (QUIPS) to assess the risk of bias across six study domains. Each study was evaluated independently by two researchers (IH and MB) and any differences among evaluators were discussed and resolved. A single rating was assigned for all studies. As specified in the QUIPS tool, a ‘high’, ‘moderate’ or ‘low’ rating was applied for individual domains and overall rating of a study. If a study was rated with a low risk of bias across all the six domains, it would receive an overall rating of low risk of bias. If one or more domains of a study were rated with a moderate risk of bias, it would receive an overall moderate risk of bias. If one or more domains of a study were rated with a high risk of bias, it would receive an overall high risk of bias.

Main analysis
Standard inverse-variance random-effects meta-analysis was used to combine the overall ORs. An OR lower than one implies a lower frequency of CS in uninsured than in insured women. We calculated \(\tau^2 \) to measure heterogeneity between studies. Prespecified cut-offs of \(\tau^2 \) of 0.04, 0.16 and 0.36 were used to represent low, moderate and high heterogeneity between studies. Subgroup analysis by study design, period of data collection, state, type of CS analysed, parity, inclusion of women with previous CS, pregnancy risk of included women and level of (QUIPS) risk of bias was performed to examine between-study heterogeneity and \(\chi^2 \) test was used to calculate p values for interaction among subgroups. Test for linear trend was performed in case of more than two ordered strata. All p values were two sided. STATA, release V.13, was used for analyses (StataCorp).

Additional analysis
We calculated CS rates among different insurance subgroups for the studies included in the analysis.

Patient involvement
No patients were involved in this study. We used data from published papers only.

RESULTS
We identified a total of 1837 records: 1123 from PubMed; 556 from Embase; 39 from the Cochrane Library, 119 from CINAHL and 28 from manual search (figure 1). We removed 240 duplicates. A total of 1597 records were screened for eligibility. We performed full-text examination on 177 records. We excluded 139 that did not report insurance status of women and 26 that were otherwise irrelevant (online supplementary appendix 3). Finally, 12 records describing 16 separate studies including more than 8.8 million women were included in the review and meta-analysis.

Characteristics of studies are presented in table 1 and online supplementary appendix 4–7. All studies were from the USA. Thirteen studies were cross-sectional and three were retrospective cohort studies. Population size of studies ranged from 9017 to 6 717 486 cases. Studies used data from years 1986 to 2011 and most studies used hospital records data (online supplementary appendix 4). Case exclusion criteria varied considerably (online supplementary appendix 5) as well as variables studies used for statistical adjustment (online supplementary appendix 6). Online supplementary appendix 7 reports evaluation of studies using QUIPS risk of bias tool. Four studies were classified with low risk of bias, two studies with moderate risk, and 10 studies with high risk of bias (online supplementary appendix 7).
Author	Year	State	Study design	No of cases	No of hospital units	Year of data collection	Population	Sampling	Type of CS analysed
Stafford^23	1990	California	Cross-sectional	461,066	Not reported	1986	Primipara and multipara; any risk	Consecutive	Any
Haas et al^15 A	1993	Massachusetts	Cross-sectional	57,257	Not reported	1984	Primipara and multipara; any risk	Consecutive	Any
Haas et al^15 B	1993	Massachusetts	Cross-sectional	64,346	Not reported	1987	Primipara and multipara; any risk	Consecutive	Any
Braveman et al^20	1995	California	Retrospective cohort	213,761	Unclear	1991	Primipara; no previous CS; any risk	Consecutive	Any
Burns et al^21	1995	Arizona	Cross-sectional	33,233	36	1989	Primipara and multipara; any risk	Consecutive	Any
Onion et al^20 A	1999	Maine	Cross-sectional	41,177	Not reported	1990–1992	Primipara; no previous CS; any risk	Consecutive	Any
Onion et al^20 B	1999	New Hampshire	Cross-sectional	41,401	Not reported	1990–1992	Primipara; no previous CS; any risk	Consecutive	Any
Onion et al^20 C	1999	Vermont	Cross-sectional	19,077	Not reported	1990–1992	Primipara; no previous CS; any risk	Consecutive	Any
Aron et al^211	2000	Ohio	Retrospective cohort	25,697	21	1993–1995	Primipara; no previous CS; any risk	Consecutive	Any
Grant^22 A	2005	All states	Cross-sectional	9,017	Not reported	1988	Primipara and multipara; any risk	Random	Any
Grant^22 B	2005	Florida	Cross-sectional	147,821	Not reported	1992	Primipara and multipara; any risk	Consecutive	Any
Coonrod et al^22	2008	Arizona	Cross-sectional	28,863	40	2005	Primipara; low risk	Consecutive	Any
Huesch^22	2011	New Jersey	Cross-sectional	182,108	Not reported	2004–2007	Primipara and multipara; no previous CS; low risk	Consecutive	Planned
Kozhimannil et al^103	2014	All states	Cross-sectional	6,717,486	Over 1000	2002–2009	Primipara and multipara; any risk	Random	Any
Huesch et al^23	2014	California	Cross-sectional	408,355	254	2010	Primipara and multipara; no previous CS; any risk	Consecutive	Planned
Sebastião et al^24	2016	Florida	Retrospective cohort	412,192	122	2004–2011	Primipara; no previous CS; low risk	Consecutive	Emergency

CS, caesarean section.
A Uninsured vs privately insured

Study	Year of publication	OR (95% CI)
Braverman et al.	1995	0.74 (0.69, 0.79)
Burns et al.	1995	0.67 (0.58, 0.78)
Onion et al. A	1999	0.82 (0.72, 0.93)
Onion et al. B	1999	0.78 (0.70, 0.86)
Onion et al. C	1999	0.61 (0.47, 0.80)
Aron et al.	2000	0.75 (0.51, 1.10)
Huesch	2011	0.51 (0.42, 0.61)
Overall (r² = 0.01)		0.70 (0.63, 0.78)

Lower rate of caesarean section if uninsured

Lower rate of caesarean section if insured

B Uninsured vs publicly insured

Study	Year of publication	OR (95% CI)
Onion et al. A	1999	0.88 (0.77, 1.01)
Onion et al. B	1999	0.98 (0.87, 1.11)
Onion et al. C	1999	0.67 (0.51, 0.88)
Huesch et al.	2014	1.07 (0.97, 1.18)
Overall (r² = 0.02)		0.92 (0.80, 1.07)

Lower rate of caesarean section if uninsured

Lower rate of caesarean section if insured

Uninsured vs publicly or privately insured

Study	Year of publication	OR (95% CI)
Kozhimannil et al.	2013	0.70 (0.69, 0.72)

Lower rate of caesarean section if uninsured

Lower rate of caesarean section if insured

Figure 2 Adjusted ORs of caesarean section.
Figure 2 presents meta-analyses for primary outcome measure, that is, adjusted ORs of CS in uninsured women as compared with privately or publicly insured. Since there was a positive interaction between uninsured versus privately insured group and uninsured versus publicly insured group (p=0.016), we performed meta-analyses for each group separately. In the meta-analysis comparing uninsured with privately insured women, including seven studies in 556 454 women, we found that the odds of CS were 0.70 times lower in uninsured as compared with privately insured women (95% CI 0.63 to 0.78), with no relevant heterogeneity between studies (τ²=0.01). In meta-analysis comparing uninsured with publicly insured women, including four studies in 510 010 women, we found that the odds of CS were 0.92 times lower in uninsured as compared with publicly insured women (95% CI 0.85 to 1.01), with no relevant heterogeneity between studies (τ²=0.02). An additional study in 6 717 486 women, which did not distinguish between privately and publicly insured women,215 reported that the odds of CS were 0.70 times lower in uninsured as compared with insured women (95% CI 0.69 to 0.72).

Figure 3 presents results of subgroup analyses of adjusted ORs in uninsured versus privately insured women (Figure 3A) and in uninsured versus publicly insured women (Figure 3B). In the analysis of uninsured versus privately insured women, estimates varied for subgroups state (p for interaction<0.001), type of CS (p for interaction<0.001), parity (p for interaction=0.07), and pregnancy risk (p for interaction<0.001). There was no positive trend in the period of data collection subgroup. In the lower panel, which presents subgroup analyses of adjusted ORs in uninsured versus publicly insured women, estimates varied for subgroups period of data collection (p for interaction=0.03), state (p for interaction=0.004), type of CS (p for interaction=0.03), parity (p for interaction=0.03) and QUIPS risk of bias (p for interaction=0.03).

In figure 4, we present meta-analyses for crude ORs of CS in uninsured as compared with privately or publicly insured women as secondary outcome. In the meta-analysis comparing uninsured with privately insured women, including 11 studies in 2 010 483 women, we found that the odds of CS were 0.71 times lower in uninsured as compared with privately insured women (95% CI 0.66 to 0.76), with no relevant heterogeneity between studies (τ²=0.18). In the meta-analysis comparing uninsured with publicly insured women, including 11 studies in 2 010 483 women, we found that the odds of CS were 0.93 times lower in uninsured as compared with publicly insured women (95% CI 0.85 to 1.01), with no relevant heterogeneity between studies (τ²=0.017).

Table 2 presents rates of CS among groups with different insurance status for individual studies. Six studies found CS rates for uninsured women below the 19% benchmark. One study found CS rates below the 10% benchmark. The rates of other studies range from 19.3% to 23.0%, close to 19% benchmark.

DISCUSSION

Our systematic review and meta-analyses estimated that the overall odds of receiving a CS are on average 0.70 times lower for uninsured women as compared with privately insured women (95% CI 0.63 to 0.78), 0.92 times lower for uninsured women as compared with publicly insured women (95% CI 0.80 to 1.07) and 0.70 times lower for uninsured women as compared with privately and publicly insured women (95% CI 0.69 to 0.72). The lower odds were noticed across all subgroups of studies in subgroup analyses as well as in crude analyses.

Context

To our knowledge, this is the first meta-analysis that examines CS rates of uninsured women compared with insured women. Two recently published meta-analyses by our group reported the association of CS with for-profit status of hospitals and type of insurance.17 216 Investigating the association of for-profit versus non-profit status of hospital with the odds of CS, we found that the odds of CS were 1.41 higher in for-profit hospitals as compared with non-profit hospitals (95% CI 1.24 to 1.60).216 The findings were consistent in subgroup analyses.216 Investigating the association of CS with private insurance, we found that the odds of CS were 1.13 times higher for privately insured women compared with women covered with public insurance (95% CI 1.07 to 1.18).17 Again, the increased risk was observed across all subgroups.217

Strengths and limitations

The major strengths of our meta-analysis include an extensive literature search, screening and data extraction performed in duplicate, review and analysis of study characteristics as well as thorough quality assessment of included studies. In addition, all studies are from one country, that is, the USA, and this limits the effect of contextual factors. A major limitation is the variation across studies, in terms of the study populations characteristics (ie, parity, inclusion of women with previous CS, risk for CS), type of data used, types of CS analysed and adjusting variables used in statistical analyses. The results of this study are driven by the largest study which contains over two-thirds of the population included in this review. Only 5 out of 16 studies included in the review report data after year 2000. It should also be taken into consideration, that despite similar features, the uninsured are a diverse group of US citizens.26 27 We considered but could not make use of the Robson criteria to classify studies and analyse CS rates among the studies reviewed. Only 2 out of 16 studies could be classified using the Robson criteria.26 214 While a population-level CS rate of less than 9%, 10% or 19% suggests underuse, we cannot determine the mix of under, over and appropriate use in a specific population.

Mechanism

There are several possible explanations why uninsured women have lower odds of CS when compared with

Hoxha I, et al. BMJ Open 2019;9:e025356. doi:10.1136/bmjopen-2018-025356
A Uninsured vs privately insured

Categories	Number of studies	OR (95% CI)	P²	P for interaction
Overall	7	0.70 (0.63, 0.78)	0.01	
Study design				
Cross sectional	5	0.68 (0.58, 0.80)	0.03	0.33
Retrospective cohort	2	0.74 (0.69, 0.79)	<0.001	
Period of data collection				
Up to 1985	1	0.67 (0.58, 0.78)	-	<0.001
1990 to 2000	3	0.76 (0.72, 0.80)	<0.001	
2001 and later	1	0.73 (0.42, 1.26)	-	
State				
Arizona	1	0.67 (0.58, 0.78)	-	<0.001
California	1	0.74 (0.66, 0.84)	-	
Ohio	1	0.75 (0.51, 1.10)	-	
Maine	1	0.85 (0.72, 0.99)	-	
New Hampshire	1	0.78 (0.70, 0.86)	-	
New Jersey	1	0.75 (0.42, 1.36)	-	
Vermont	1	0.61 (0.47, 0.80)	-	
Type of casuense section				
Any	6	0.75 (0.70, 0.79)	0.002	<0.001
Planned	1	0.51 (0.42, 0.61)	-	
Parity				
Primiparous and multiparous	2	0.59 (0.43, 0.77)	0.03	0.07
Primiparous only	3	0.76 (0.72, 0.80)	0.001	
Inclusion of woman with previous cesarean section	1	0.67 (0.58, 0.78)	-	0.58
No	6	0.71 (0.63, 0.80)	0.03	
Pregnancy risk				
Any (risk)	4	0.75 (0.70, 0.79)	0.002	<0.001
Low (risk)	1	0.51 (0.42, 0.61)	-	
QUIPS risk of bias				
Low	2	0.60 (0.41, 0.87)	0.05	0.37
Moderate	2	0.72 (0.66, 0.79)	0.002	
High	3	0.77 (0.66, 0.86)	0.001	

Figure 3 Subgroup analyses for adjusted estimates. *P for trend. QUIPS, Quality In Prognosis Studies.

B Uninsured vs publicly insured

Categories	Number of studies	OR (95% CI)	P²	P for interaction
Overall	4	0.92 (0.80, 1.07)	0.02	
Study design				
Cross sectional	4	0.92 (0.80, 1.07)	0.02	
Period of data collection				
1990 to 2000	3	0.87 (0.73, 1.03)	0.01	0.03
2001 and later	1	1.07 (0.97, 1.18)	-	
State				
California	1	1.07 (0.97, 1.18)	-	0.004
Maine	1	0.88 (0.77, 1.01)	-	
New Hampshire	1	0.98 (0.87, 1.11)	-	
Vermont	1	0.67 (0.24, 1.88)	-	
Type of casuense section				
Any	3	0.87 (0.73, 1.03)	0.01	0.03
Planned	1	1.07 (0.97, 1.18)	-	
Parity				
Primiparous and multiparous	1	1.07 (0.97, 1.18)	-	0.003
Primiparous only	3	0.87 (0.73, 1.08)	0.04	
Inclusion of woman with previous cesarean section	4	0.92 (0.80, 1.07)	-	0.02
No				
Pregnancy risk				
Any (risk)	4	0.92 (0.80, 1.07)	0.02	
QUIPS risk of bias				
Low	1	1.07 (0.97, 1.18)	-	0.003
High	3	0.87 (0.73, 1.03)	0.01	

Figure 3 Subgroup analyses for adjusted estimates. *P for trend. QUIPS, Quality In Prognosis Studies.
Figure 4 Crude ORs of caesarean section.
insured women. One likely factor is that financial incentives are stronger with private insurance than in the publicly insured or uninsured.17 18 These incentives result from higher payment for CS by private insurers, reimbursement arrangements that encourage more expensive procedures as means to increase profits, as well as providers’ (hospitals and individual physicians) responses to these incentives.17 70 216 The responses to incentives by hospitals exist in the form of patient scheduling policies that direct privately insured patients to profit inclined physicians.20 216 It is also a known that physicians who have a higher share of privately insured patients will tend to overuse CS.21 22 216 They do so as they perceive patients to have a higher social class, that is, able to pay higher fees or fear malpractice liability.18 111 208 216

Additional reasons are likely reflected in the comparison between uninsured and publicly insured women. A first set of reasons are related to deliberate or forced decisions of uninsured women to keep out-of-pocket payments low.18 The uninsured patients are more likely to seek less expensive care when they face the need for healthcare services.18 In the case of giving birth, this would lead to a greater preference for vaginal delivery. A second set of reasons may be discrimination of providers towards uninsured women. Providers prefer profitable, privately insured patients, a preference commonly referred to as ‘cream skimming’.21 22 216 217

Table 2 Caesarean section (CS) rates among groups with different insurance status

Author	Year	State	Year of data collection	CS rate of privately insured (%)	CS rate of publicly insured (%)	CS rate of uninsured (%)
Stafford20	1990	California	1986	26.8	22.1	19.3
Haas et al15 A	1993	Massachusetts	1984	23.0	19.4	17.2
Haas et al15 B	1993	Massachusetts	1987	25.9	20.8	22.4
Braveman et al20	1995	California	1991	27.1	21.2	23.0
Burns et al21	1995	Arizona	1989	n/a	n/a	n/a
Onion et al210 A*	1999	Maine	1990–1992	15.9	14.9	13.4
Onion et al210 B*	1999	New Hampshire	1990–1992	16.1	13.2	13.0
Onion et al210 C*	1999	Vermont	1990–1992	14.5	13.5	9.4
Aron et al211	2000	Ohio	1993–1995	17.0	14.2	10.7
Grant22 A	2005	All states	1988	27.0	23.7	17.1
Grant22 B	2005	Florida	1992	30.0	21.6	20.7
Coonrod et al62	2008	Arizona	2005	26.0	19.0	20.0
Huesch212	2011	New Jersey	2004–2007	26.7	22.5	20.3
Kozhimannil et al103	2014	All states	2002–2009	n/a	n/a	n/a
Huesch et al213	2014	California	2010	13.9	10.7	13.0
Sebastião et al214	2016	Florida	2004–2011	25.2	22.8	19.7

*The rates are adjusted as compared with the rates from other studies which are crude rates. Dark grey, CS rates below 10% benchmark. Light grey, CS rates below 19% benchmark. n/a, not applicable.

Implications for uninsured women
Most studies included in our meta-analysis, including the most recent studies from California215 and Florida,214 show that rates for CS among uninsured women are below or close to the 10% and 19% benchmarks.6–8 Even in instances where the average state rates are slightly above the 19% benchmark, some hospitals service areas are likely to have CS rates lower than 19% or even 9% for uninsured women because of the well established within state variation in CS rates.5 111 Uninsured women in these areas are highly likely to be underserved with CS during delivery. Uninsured patients generally have higher unmet needs than insured patients due to access barriers.23–25 28 218–222 Such barriers encourage inappropriate health seeking behaviours among uninsured.23–25 32 220–225 Consequently, uninsured populations face higher health risks and have worse healthcare outcomes.23–25 28 218–222

The uninsured also face financial burdens which result from out-of-pocket payments that are more severe/extensive than copayments or premiums that are paid by people that are publicly or privately insured. The uninsured are known to pay higher prices for services as compared with other payers for the same care,27 228 spend a high portion of income to cover medical expenses24 (although they spend less on their health compared with patients who have insurance),26 are frequently charged for full price
for healthcare services,24 228 often do not benefit from discounts from providers24 27 and face severe financial difficulties.23 24 Uninsured manage to pay only part of the costs for their care.26 The remaining costs are uncompensated costs23 26 229 230 and most of such costs are covered by the local, state or federal government,26 229 eventually resulting in tax increases.26

Implications for research and policy-making

Future studies should examine the association of a lack of insurance in pregnant women across healthcare markets with varying CS rates and assess if delivery outcomes were correspondingly worse, in the effort to investigate the presence of underuse of CS.

In parallel, policy options that could lead to improvements of insurance coverage for delivering women should be assessed in terms of their ability to address healthcare outcomes while keeping overall costs at minimum. In the past, states have adopted different strategies to covering uninsured people.24 25 39 231 While there are many known benefits to insurance coverage, other important policy aspects should be considered. At a time of rising healthcare costs,24 25 235 the regulation of financial incentives is crucial. A revision of payment policies should be pursued17 24 216 to align financial incentives with proper health outcomes.17 24 216 Reimbursement policies that would pay the same amount for CS and vaginal delivery is one option.216 236

CONCLUSION

CSs are less likely to be performed in uninsured women as compared with insured women. The lower odds are consistent in all subgroups and in crude analyses. While the higher rates for CS among privately insured women can be explained with financial incentives associated with private insurance, the lower odds among uninsured women draw attention at barriers to access for delivery care. In many regions, the rates for uninsured women are above, close or below the benchmarks for appropriate CS rates and imply both, underuse and overuse. Therefore, efforts to assess the delivery outcomes as well as policy options that could improve insurance coverage for women giving birth are important.

Author affiliations

1 Institute of Social and Preventive Medicine, University of Bern, Bern, Switzerland
2 Department of Community & Family Medicine, Geisel School of Medicine at Dartmouth Hanover, New Hampshire, USA
3 Heimerer College, Prishtina, Kosovo
4 International Business College Mitrovica, Mitrovica, Kosovo
5 Institute of Primary Health Care, University of Bern, Bern, Switzerland
6 The Dartmouth Institute for Health Policy and Clinical Practice, Lebanon, USA
7 Applied Health Research Centre (AHRC), Li Ka Shing Knowledge Institute of St. Michael's Hospital, Department of Medicine, and Institute of Health Policy, Management and Evaluation, University of Toronto, Toronto, Canada

Acknowledgements We thank Doris Kopp and Beatrice Minder for their valuable help during development of the search strategy, Arjana Shala for her help with literature search and Hossein Meyer-Troeltsch and Rand Engel for their support with editing.

Contributors IH, DCG and PJ conceived and designed the study. IH and MB performed the data extraction and preparation. IH and LS analysed the data. IH, MB and LS drafted the paper, which was critically reviewed and approved by all authors.

Funding The authors have not declared a specific grant for this research from any funding agency in the public, commercial or not-for-profit sectors.

Competing interests None declared.

Patient consent for publication Not required.

Provenance and peer review Not commissioned; externally peer reviewed.

Data sharing statement No additional unpublished data are available from the study.

Open access This is an open access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited, appropriate credit is given, any changes made indicated, and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/.

REFERENCES

1. Saini V, Brownlee S, Elshaug AG, et al. Addressing overuse and underuse around the world. The Lancet 2017;390:105–7.
2. Benwick DM. Avoiding overuse—the next quality frontier. The Lancet 2017;390:102–4.
3. Wennberg JE. Tracking medicine: a researcher’s quest to understand health care. 1st Edition. Oxford: Oxford University Press, 2011.
4. Poma PA. Effects of obstetrician characteristics on cesarean delivery rates: A community hospital experience. Am J Obstet Gynecol 1999;180:1364–72.
5. Hoxha I, Busato A, Luta X, et al. Medical Practice Variations in Reproductive, Obstetric, and Gynecological Care: In. Medical Practice Variations. Boston, MA: Springer US, 2016:141–60.
6. Molina G, Weiser TG, Lipitz SR, et al. Relationship between cesarean delivery rate and maternal and neonatal mortality. JAMA 2015;314:2263–70.
7. Betran AP, Tortoni MR, Zhang JJ, et al. WHO Statement on caesarean section rates. BJOG 2016;123:867–70.
8. Appropriate technology for birth. Lancet 1985;2:436–7.
9. Betran AP, Tortoni MR, Zhang J, et al. What is the optimal rate of caesarean section at population level? A systematic review of ecologic studies. Reprod Health 2015;12:57.
10. Betran AP, Ye J, Moller AB, et al. The increasing trend in caesarean section rates: Global, regional and national estimates: 1990-2014. PLoS One 2016;11:e0148343.
11. OECD. Health at a Glance 2017: OECD Indicators: OECD Publishing, 2017.
12. Betrán AP, Merletti M, Lauer JA, et al. Rates of caesarean section: analysis of global, regional and national estimates. Paediatr Perinat Epidemiol 2007;21:98–113.
13. Boatin AA, Schlotheuber A, Betran AP, et al. Within country inequalities in caesarean section rates: observational study of 72 low and middle income countries. BMJ 2018;360:k55.
14. Little SE, Orav EJ, Robinson JN, et al. The relationship between variations in cesarean delivery and regional and public health care use in the United States. Am J Obstet Gynecol 2016;214:735.e1–735.e8.
15. Haas S, Acker D, Donahue C, et al. Variation in hysterectomy rates across small geographic areas of Massachusetts. Am J Obstet Gynecol 1993;169:150–4.
16. Jacoby VL, Vittinghoff E, Nakagawa S, et al. Factors associated with undergoing bilateral salpingo-oophorectomy at the time of hysterectomy for benign conditions. Obstet Gynecol 2009;113:1259–67.
17. Hoxha I, Syrogiannoul I, Braha M, et al. Caesarean sections and private insurance: systematic review and meta-analysis. BMJ Open 2017;7:e016600.
18. Keefer EB, Brodie M. Economic incentives in the choice between vaginal delivery and cesarean section. Milbank Q 1993;71:365–404.
19. Haas JS, Udvarhelyi S, Epstein AM. The effect of health coverage for uninsured pregnant women on maternal health and the use of cesarean section. JAMA 1993;270:61.
20. Stafford RS. Cesarean section use and source of payment: an analysis of California hospital discharge abstracts. Am J Public Health 1990;80:313–5.
Burns LR, Geller SE, Wholey DR. The effect of physician factors on the cesarean section decision. *Med Care* 1995;33:365–82.

Grant D. Explaining source of payment differences in U.S. cesarean rates: why do privately insured mothers receive more cesareans than mothers who are not privately insured? *Health Care Manage Sci* 2005;8:5–17.

Eltorai AE, Eltorai MI. The risk of expanding the uninsured in America: problems and possible solutions. *BMJ* 2007;334:346–8.

Ayanian JZ, Weissman JS, Schneider EC, et al. Determinants of cesarean section in Louisiana: geographical differences. *Paediatr Perinat Epidemiol* 2008;22:136–44.

Carayol M, Zeiltin J, Roman H, et al. Non-clinical determinants of planned cesarean delivery in cases of term breech presentation in France. *Acta Obstet Gynecol Scand* 2007;86:1071–8.

Carlisle DM, Leake BD, Brook RH, et al. The effect of race and ethnicity on the use of selected health care procedures: a comparison of south central Los Angeles and the remainder of Los Angeles county. *J Health Care Poor Underserved* 1996;7:308–22.

Chen C, Zheng Z, Jiang P, et al. Effect of the new maternity insurance scheme on medical expenditures for cesarean delivery in Wuxi, China: a retrospective pre/post-reform case study. *Front Med* 2016;10:473–80.

Chen CS, Liu TC, Chen B, et al. The failure of financial incentive? The seemingly inexorable rise of cesarean section. *Soc Sci Med* 2014;101:47–51.

Clark SL, Belfort MA, Hankins GD, et al. Variation in the rates of operative delivery in the United States. *Am J Obstet Gynecol* 2007;196:526.e1–526.e34.

Sommers BD, Blendon RJ, Orav EJ, et al. Association of the affordable care act medical expansion with access to and quality of care for surgical conditions. *JAMA Intern Med* 2016;176:1501–6.

Bauchner H. Health care in the united states: a right or a privilege. *JAMA* 2017;317:29.

Loehrer AP, Chang DC, Scott JW, et al. Association of the affordable care act medical expansion with access to and quality of care for surgical conditions. *JAMA* 2015;313:e157598.

Holmacher JL, Townsend K, Sveavey C, et al. Association of expanded medical coverage with hospital length of stay after injury. *JAMA Surg* 2017;152:960–6.

Davis MM, Gebremariam A, Ayanian JZ. Changes in insurance coverage among commercially insured nonelderly adults after medical expansion in michigan. *JAMA* 2016;315:2617–8.

Emanuel EJ. How well is the affordable care act doing?: reasons for optimism. *JAMA* 2016;315:1331–2.

Long SK, Bart L, Karpman M, et al. Sustained gains in coverage, access, and affordability under the ACA: A 2017 Update. *Health Aff* 2017;36:1656–62.

Sommers BD, Mayblone B, Blendon RJ, et al. Three-year impacts of the affordable care act: Improved medical care and health among low-income adults. *Health Aff* 2017;36:1119–28.

Decker SL, Lipton BJ. Most newly insured people in 2014 were covered by Medicaid. *Health Aff* 2016;37:274–83.

Graves JA, Nkpay SS. The changing dynamics of us health insurance and implications for the future of the affordable care act. *Health Aff* 2017;36:297–305.

Hayden JA, van der Windt DA, Cartwright JL, et al. Assessing Bias in Studies of Prognostic Factors. *Ann Intern Med* 2013;158:280–6.

DerSimonian R, Laird N. Meta-analysis in clinical trials. *Control Clin Trials* 1986;7:177–88.

da Costa BR, Jüni P. Systematic reviews and meta-analyses in the field of randomized trials: principles and pitfalls. *Eur Heart J* 2014;35:3336–45.

Adhikari Dahal K, Premji S, Patel AB, et al. Variation in maternal co-morbidities and obstetric interventions across area-level socio-economic status: A cross-sectional study. *Paediatr Perinat Epidemiol* 2017;31:274–83.

Armstrong CE, Martinez-Alvarez M, Singh NS, et al. Subnational variation for care at birth in Tanzania: is this explained by place, people, money or drugs? *BMC Public Health* 2016;16 Suppl 2:S2:795.

Baillit JL, Landon MB, Thom E, et al. The MFMU cesarean registry: impact of time of day on cesarean complications. *Am J Obstet Gynecol* 2006;195:1132–7.

Bannister-Tyrrell M, Patterson JA, Ford JB, et al. Variation in hospital cesarean section rates for preterm births. *Aust N Z J Obstet Gynaecol* 2015;55:350–6.

Blais R. Variations in surgical rates in Quebec: does access to teaching hospitals make a difference?. *CMAJ* 1993;148:1729–36.

Brown HS. Lawsuit activity, defensive medicine, and small area variation: the case of Cesarean sections revisited. *Health Econ Policy Law* 2007;2:285–96.

Butcher AH, Fos PJ, Zuniga M, et al. Racial variations in cesarean section rates: an analysis of Medicaid data in Louisiana. *J Public Health Manage Pract* 1997;3:41–8.

Cáceres J, Arboleda J, Declerco E, et al. Hospital differences in cesarean deliveries in Massachusetts (US) 2004–2006: the case against case-mix artifact. *PLoS One* 2013;8:e57817.
76. Gonzalez-Perez GJ, Vega-Lopez MG, Cabrera-Pivalar C, et al. Cesarean sections in Mexico: are there too many?. *Health Policy Plan* 2001;16:62–7.

77. Goyert GL, Bottoms SF, Treadwell MC, et al. The physician factor in cesarean birth. *N Engl J Med* 1989;320:705–9.

78. Gregory KD, Korst LM, Platt LD. Variation in elective primary cesarean delivery by patient and hospital factors. *Am J Obstet Gynecol* 2001;184:1521–34.

79. Gross MM, Mattern M, Berlage S, et al. Interinstitutional variations in mode of birth after a previous cesarean section: a cross-sectional study in six German hospitals. *J Perinat Med* 2015;43:177–84.

80. Grytten J, Monkerud L, Sørensen R. Adoption of diagnostic technology and variation in cesarean section rates: a test of the practice style hypothesis in Norway. *Health Policy Res* 2012;47:2169–89.

81. Helfand M, Zimmer-Gembeck MJ. Practice variation and the risk of cesarean delivery by patient and hospital factors. *BMC Health Serv Res* 2015;15:1546–56.

82. Heffner LJ, Elkin E, Fretts RC. Impact of labor induction, gestational age, and maternal age on cesarean delivery rates. *Obstet Gynecol* 2010;115:1201–8.

83. Hanley GE, Janssen PA, Greyson D. Regional variation in the cesarean delivery and assisted vaginal delivery rates. *Obstet Gynecol* 2010;115:1201–8.

84. Haraldsdottir S, Gudmundsson S, Bjarnadottir RI, et al. Maternal geographic residence, local health service supply and birth outcomes. *Acta Obstet Gynecol Scand* 2015;94:156–64.

85. Heffner LJ, Elkin E, Fretts RC. Impact of labor induction, gestational age, and maternal age on cesarean delivery rates. *Obstet Gynecol* 2003;102:287–93.

86. Heffner LJ, Elkin E, Fretts RC. Impact of labor induction, gestational age, and maternal age on cesarean delivery rates. *Obstet Gynecol* 2003;102:287–93.

87. Henkel M, Zimmer-Gembeck MJ. Practice variation and the risk of low birth weight in a public prenatal care program. *Med Care* 1997;35:16–31.

88. Hueston WJ, Lewis-Stevenson S. Provider distribution and variation in cesarean section rates: case-mix, staffing levels and organisational factors of hospital facilities. *J Perinat Med* 2010;38:201–9.

89. Hsu KH, Liao PJ, Hwang CJ. Factors affecting Taiwanese women’s choice of cesarean section. *Obstet Gynecol* 2010;115:1201–8.

90. Hwang CJ, Liao PJ, Hsu KH. The impact of payment system operated by the voluntarily participating providers on the cesarean section rates in Korea. *Health Policy* 2007;81:300–8.

91. Hueston WJ, Lewis-Stevenson S. Provider distribution and variation in cesarean section rates. *Med Care* 2005;43:237–45.

92. Hueston WJ, Lewis-Stevenson S. Provider distribution and variation in cesarean section rates. *Med Care* 2005;43:237–45.

93. Hoxha I, et al. Regional variation in surgical procedure cesarean section rates in Chile: qualitative and quantitative study. *BMJ* 2019;9:e023566.

94. Hoxha I, et al. Regional variation in surgical procedure cesarean section rates in Chile: qualitative and quantitative study. *BMJ* 2019;9:e023566.
131. Naiditch M, Levy G, Chale JJ, et al. Cesarean sections in France: impact of organizational factors on different utilization rates. J Gynecol Obstet Biol Reprod 1997;26:484–95.

132. Newton ER, Higgins CS. Factors associated with hospital-specific cesarean birth rates. J Reprod Med 1989;34:407–11.

133. Nicholson WK, Witter F, Powe NR. Effect of hospital setting and volume on clinical outcomes in women with gestational and type 2 diabetes mellitus. J Womens Health 2009;18:1567–76.

134. Nigam A. The effects of institutional change on geographic variation and health services use in the U.S.A. Soc Sci Med 2012;74:323–31.

135. Nilsen C, Østbye T, Dalvete AK, et al. Trends in and socio-demographic factors associated with cesarean section as a section at a Tanzanian referral hospital, 2000 to 2013. Int J Equity Health 2014;13:87.

136. Gleske DM, Glandon GL, Giacomelli GJ, et al. The cesarean birth rate: influence of hospital teaching status. Health Serv Res 1991;26:325–37.

137. Ono T, Matsuda Y, Sasaki K, et al. Effect of hospital setting and health services use in the U.S.A. Soc Sci Med 2012;74:323–31.

138. Paranjpye S, Frost C, Thomas J. How much variation in CS rates can be explained by case mix differences? BJOG: An International Journal of Obstetrics & Gynaecology 2005;112:658–66.

139. Parazzini F, Cipriani S, Buffoni G, et al. Mode of delivery and level of neonatal care in Lombardy: a descriptive analysis according to volume of care. Ital J Pediatr 2015;41:24.

140. Placek PJ, Taffel SM. Trends in cesarean section rates for the United States, 1970–78. Public Health Rep 1980;95:540–8.

141. Rabilloud M, Ecochard R, Guilhaume A, et al. Study of the variations of the cesarean section rate in the Rhône-Alpes region (France), effect of women and maternity service characteristics. Eur J Obstet Gynecol Reprod Biol 1998:78:11–17.

142. Rafi'man S, Cunha AJ, Castrro MC. Factors associated with high rates of cesarean section in Brazil between 1991 and 2006. Acta Paediatr 2014;103:e295–e99.

143. Rattner D. [On the hypothesis of cesarean birth rate stabilization in southeastern, Brazil]. Rev Saude Publica 1996;30:19–33.

144. Ravindran J. Rising cesarean section rates in public hospitals in Malaysia 2004 to 2006. Int J Equity Health 2010:9:1–5.

145. Renzi C, Sorge C, Fusco D, et al. Factors associated with cesarean section in Italy: an examination of national data 1980–1985. Int J Epidemiol 1991;20:712–6.

146. Snyder CC, Wolfe KB, Loftin RW, et al. The influence of hospital type on induction of labor and mode of delivery. Am J Obstet Gynecol 2011;205:346.e1–346.e4.

147. Souza JP, Betran AP, Dumont A, et al. A global reference for maternal mortality: J Reprod Med 2006:51:159–71.

148. Souchu G, Padmadas SS, Fengmin Z, et al. Delivery settings and cesarean section rates in China. Bull World Health Organ 2007;85:755–62.

149. Taddei CH, Wu LP, Liu JT, et al. Delayed parenthood and the risk of cesarean delivery—is paternal age an independent risk factor? Birth 2006;33:18–26.

150. Tang S, Li X, Wu Z. Rising cesarean delivery rate in primiparous women in urban China: evidence from three nationwide household health surveys. Am J Obstet Gynecol 2008;198:1287–237.

151. Tracy SK, Sullivan E, Dahlen H, et al. General obstetricists: Does size matter? A population-based study of birth in lower volume maternity hospitals for low risk women. BJOG: An International Journal of Obstetrics & Gynaecology 2006;113:88–96.

152. Tucker J, McVicar A, Pitchforth E, et al. Maternity care models in a remote and rural network: assessing clinical appropriateness and outcome indicators. Qual Saf Health Care 2010;19:83–9.

153. Tussing AD, Wojtowycz MA. Health maintenance organizations, independent practice associations, and cesarean section rates. Health Serv Res 1994;29:75–93.

154. Vadnais MA, Hacker MR, Shah NT, et al. Quality improvement initiatives lead to reduction in nulliparous term singleton vertex cesarean delivery rate. Jt Comm J Qual Patient Saf 2017;43:53–61.

155. Vanikan E, Schoorel EM, van Kuijk SM, et al. Practice variation of vaginal birth after cesarean section and the influence of risk factors at patient level: a retrospective cohort study. Acta Obstet Gynecol Scand 2017;96:158–65.

156. Vayda E, Barnsley JM, Mindell WR, et al. Five-year study of surgical rates in Ontario’s counties. Can Med Assoc J 1984;131:111–5.

157. Vecino-Ortiz AI, Bohay D, Castano-Yepes RA. Pihiv multilevel analysis to measure hospital variation: The case of cesarean delivery. Value in Health 2011;14:A113.

158. Wang X, Hellerstein S, Hou L, et al. Cesarean deliveries in China. BMC Pregnancy Childbirth 2017;17:54.

159. Woolbright LA. Why is the cesarean delivery rate so high in Alabama? An examination of risk factors, 1991-1993. Birth 1996;22:20–5.

160. Xirasagar S, Lin HC. Cost convergence between public and for-profit hospitals under prospective payment and high competition in Taiwan. Health Serv Rev 2004;39:2101–16.

161. Xirasagar S, Lin HC. Maternal request CS—role of hospital teaching status and for-profit ownership. Eur J Obstet Gynecol Reprod Biol 2007;12:27–34.

162. Xirasagar S, Lin HC, Liu TC. Do group practices have lower cesarean rates than solo practice obstetric clinics? Evidence from Taiwan. Health Policy Plan 2006;21:319–25.

163. Yang HJ, Kao FY, Chou YJ, et al. Do nurses have worse pregnancy outcomes than non-nurses? Birth 2014;41:262–7.

164. Hong YC, Linn GC. Financial incentives and use of Cesarean delivery: Taiwan birth data 2003 to 2007. Am J Manag Care 2012;18:x35–41.

165. Zdeb MS, Therriault GD, Logrillo VM. Cesarean section rates in upstate New York, 1989;34:407–11.

166. Zeng X, Vayda E, Chen L, et al. The influence of hospital teaching status and for-profit ownership. Eur J Obstet Gynecol Reprod Biol 2007;12:27–34.

167. Zeng X, Vayda E, Chen L, et al. The influence of hospital teaching status and for-profit ownership. Eur J Obstet Gynecol Reprod Biol 2007;12:27–34.

168. Zeng X, Vayda E, Chen L, et al. The influence of hospital teaching status and for-profit ownership. Eur J Obstet Gynecol Reprod Biol 2007;12:27–34.

169. Zhang S, Cardarelli K, Shim R, et al. Factors influencing rising cesarean section rates in China between 1998 and 2006. Bull World Health Organ 2012;90:20–9.

170. Xirasagar S, Lin HC. Cost convergence between public and for-profit hospitals under prospective payment and high competition in Taiwan. Health Serv Rev 2004;39:2101–16.

171. Xirasagar S, Lin HC. Maternal request CS—role of hospital teaching status and for-profit ownership. Eur J Obstet Gynecol Reprod Biol 2007;12:27–34.

172. Xirasagar S, Lin HC, Liu TC. Do group practices have lower cesarean rates than solo practice obstetric clinics? Evidence from Taiwan. Health Policy Plan 2006;21:319–25.

173. Yang HJ, Kao FY, Chou YJ, et al. Do nurses have worse pregnancy outcomes than non-nurses? Birth 2014;41:262–7.

174. Hong YC, Linn GC. Financial incentives and use of Cesarean delivery: Taiwan birth data 2003 to 2007. Am J Manag Care 2012;18:x35–41.

175. Zdeb MS, Therriault GD, Logrillo VM. Cesarean section rates in upstate New York, 1989;34:407–11.
Hoxha I, et al. BMJ Open 2019;9:e025356. doi:10.1136/bmjopen-2018-025356

185. Cheng Y, Carpenter A, Main E. 794: Large hospital-level variation in cesarean delivery rates during induction of labor. *Am J Obstet Gynecol* 2015;212:S384.

186. Cisse CT, Faye EO, de Bernis L, et al. [Cesarean sections in Senegal: coverage of needs and quality of services]. *Sante* 1998;8:569–77.

187. Cressie N. Regional mapping of incidence rates using spatial Bayesian models. *Med Care* 1993;31(S Suppl):Y560–Y565.

188. da Silva AA, Bettióh Barbier MI, et al. Infant mortality and low birth weight in cities of Northeastern and Southeastern Brazil. *Rev Saude Publica* 2003;37:693–8.

189. Danishevski K, Mcke M, SassI F, et al. The decision to perform Cesarean section in Russia. *Int J Qual Health Care* 2008;20:88–94.

190. Dimitrov A. Pro and con the trend to an increasing frequency of Cesarean births. *Clin Exp Med* 2013;8:CD006794.

191. Edmonds JK, Hawkins SS, Cohen BB. Variation in Birth After Cesarean by Maternal Race and Detailed Ethnicity. *Matern Child Health J* 2016;20:1114–23.

192. Emmett CL, Montgomery AA, Murphy DJ. DIAMOND Study Group. *Am J Public Health* 1999;15:108–12.

193. Emnett CL, Montgomery AA, Murphy DJ. *JAMA* 1993;270:61–4.

194. Haupt BJ. Deliveries in short-stay hospitals: United States, 1980. *Nurs Times* 1980;74:231–19.

195. Hoftmeyr GJ, Kulier R, West HM. Cochrane Pregnancy and Childbirth Group. External cephalic version for breech presentation at term. *Cochrane Database Syst Rev* 2015;91.

196. Kennare R. Why is the caesarean section rate rising?. *Hautz* 2008;8:119–21.

197. Krivenko CA, Chodroff C. The analysis of clinical outcomes: getting adjusted cesarean delivery rates according to race and health insurance. *Med Care* 2000;38:35–44.