Resonant bands, Aomoto complex and real 4-nets

Michele Torielli
Joint work with M. Yoshinaga (ArXiv: 1404.5014)
Department of Mathematics, Hokkaido University, JSPS
27 August 2014

Introduction
The resonant band is a useful notion for the computation of the nontrivial
monodromy eigenspaces of the Milnor fiber of a real line arrangement. We
develop the resonant band description for the cohomology of the Aomoto complex. As an application, we prove that real 4-nets do not exist.

Let us fix some notation:
- \(k \in \mathbb{Z}, k \geq 3; \)
- \(K \) a field (generally, \(\mathbb{R} \) or \(\mathbb{C} \) and \(\mathbb{KP}^2 \) the projective plane;
- \(\mathcal{A} = \{ R_0, \ldots, R_n \} \) a line arrangement in \(\mathbb{KP}^2; \)
- \(\mathcal{A} = \{ H_1, \ldots, H_n \} \) the affine line arrangement in \(\mathbb{K}^2 = \mathbb{KP}^2 \setminus R_0 \) obtained from \(\mathcal{A}; \)
- \(A_0^p(\mathcal{A}) \) the Orlik-Solomon algebra of \(\mathcal{A} \) over \(\mathbb{F}_2 \) generated by the symbols \(e_1, \ldots, e_n; \)
- For \(S \subset A, \) consider \(e(S) := \sum_{H \in S} e_H \in A_0^\ast(\mathcal{A}) \) and \(\eta_B := e(\mathcal{A}) = \sum_{i=1}^n e_i. \)

Definition (k-nets)
\(\mathcal{A} \) supports a \(k \)-net structure if and only if there exist a partition
\(\mathcal{A} = \mathcal{A}_1 \cup \cdots \cup \mathcal{A}_k \) and a finite set of points \(X \subset \mathbb{K}^2 \) such that
- For all \(i \neq j, \) if \(H \in \mathcal{A}_i \) and \(H' \in \mathcal{A}_j, \) then \(H \cap H' \neq \emptyset; \)
- For all \(p \in X \) and for all \(i = 1, \ldots, k, \) there exists a unique \(H \in \mathcal{A}_i \) such that \(p \in H. \)

Known facts
- If \(k \geq 5 \) there does not exist any \(k \)-net;
- There exist infinitely many \(3 \)-nets;
- The Hesse arrangement is the only known \(4 \)-net.

Theorem 2 (Papadima-Suciu)
Consider \(S \subset A. \) Then \(e(S) \wedge \eta_B = 0 \) if and only if \(\forall p \in \mathbb{K}^2 \) one of the following is satisfied:
- If \(|\mathcal{A}_p| \) is odd, then \(|\mathcal{A}_p| = |S_p|; \)
- If \(|\mathcal{A}_p| \) is even then \(\mathcal{A}_p := \{ H \in \mathcal{A} | p \in H \}; \)

Definitions
From now on we consider the case \(\mathbb{K} = \mathbb{R} \) and \(n = \text{odd}; \)
- The connected components of \(\mathbb{K}^2 \setminus \bigcup_{H \in A} H \) are called chambers. The set of all chambers is denoted by \(\text{ch}(\mathcal{A}); \)
- Given \(C_1, C_2 \in \text{ch}(\mathcal{A}), d(C_1, C_2) \) is the number of line that separate the chambers.
- A band is a region bounded by two consecutive parallel lines.
- Each band \(B \) has two unbounded chambers \(U(B) \) and \(U_2(B); \)
- A band \(B \) is called resonant if \(d(U(B), U_2(B)) \) is even. The set of all resonant bands is denoted by \(\text{RB}(\mathcal{A}); \)
- \(\nabla : \mathbb{F}_2[\text{RB}(\mathcal{A})] \rightarrow \mathbb{F}_2[\text{ch}(\mathcal{A})] \) defined by \([B] \rightarrow \sum_{C \in \text{ch}(\mathcal{A})} C \in \mathcal{B} d(U(B), C) \).

Theorem A (T.-Yoshinaga)
\(\text{Ker}(\nabla) \cong H^1(A_0^\ast(\mathcal{A}), \eta_B). \)

Proposition 1 (T.-Yoshinaga)
When \(|\mathcal{A}_p| = 4, \) then there are four cases:
- \(S_p = \emptyset; \)
- \(S_p = A_p; \)
- \(|S_p| = 2 \) and lines in \(S_p \) are adjacent.
- \(|S_p| = 2 \) and lines in \(S_p \) are separated by lines in \(A_p \setminus S_p. \)
Moreover, if \(e(S) \wedge \eta_B = 0, \) then (4) cannot happen.

Theorem B (T.-Yoshinaga)
There does not exist a real arrangement \(\mathcal{A} \) that supports a \(4 \)-net structure.

Proof
Suppose \(\mathcal{A} \) supports a \(4 \)-net structure with partition \(\mathcal{A} = \mathcal{A}_1 \cup \mathcal{A}_2 \cup \mathcal{A}_3 \cup \mathcal{A}_4. \) There exists a multiple point \(p \in \mathbb{K}^2 \) of \(\mathcal{A} \) with multiplicity \(4 \) such that \(p \) is the intersection point of \(4 \) lines \(H_i \in \mathcal{A}_i. \) The lines are ordered like:
\[
\frac{1}{2} \eta_B \leq 4
\]
We can now define \(S = \mathcal{A}_1 \cup \mathcal{A}_3. \) Then we have \(\eta_B \wedge e(S) = 0. \) By definition, \(S_p = \{ H_1, H_2 \} \) consists of two lines and separated by the other two lines \(H_3, H_4. \) Therefore (4) in the previous Proposition happens. This contradicts the statement of the last Proposition.

Bibliography
- P. Orlik, Peter; H. Terao, Arrangements of hyperplanes. Grundlehren der Mathematischen Wissenschaften, 300. Springer-Verlag, Berlin, 1992. xvi+325 pp.
- S. Papadima, A. Suciu, The spectral sequence of an equivariant chain complex and homology with local coefficients. Trans. A. M. S. 362 (2010), no. 5, 2685-2721.
- S. Papadima, A. Suciu, The Milnor fibration of a hyperplane arrangement: from modular resonance to algebraic monodromy. Preprint, arXiv:1401.0868
- M. Torielli, M. Yoshinaga, Resonant bands, Aomoto complex and real 4-nets. Preprint, arXiv:1404.5014
- M. Yoshinaga, Milnor fibers of real line arrangements. Journal of Singularities, 7 (2013), 220-237.
- M. Yoshinaga, Resonant bands and local system cohomology groups for real line arrangements. (arXiv:1301.1888) To appear in Vietnam Journal of Mathematics