Self-referral and associated factors among patients attending adult outpatient departments in Debre Tabor general hospital, North West Ethiopia

Tigist Misganaw Abere1*, Desta Debalkie Atnafu2 and Yaread Mulu2

Abstract

Background: Self-referral leads to diminished quality of health care service; increase resource depletion and poorer patient outcomes. However, a significant number of patients referred themselves to the higher health care facilities without having referral sheets globally including Ethiopia. Even though the problem is much exacerbated in Ethiopia, there is limited evidence regarding self-referral patients in Ethiopia in particular in the study area.

Objective: To assess the magnitude and associated factors of self-referral among patients at the adult outpatient department in Debre Tabor general hospital, North West Ethiopia.

Method: Institution-based cross-sectional study was conducted from March 11–April 9, 2020 among 693 patients who attended adult outpatient departments. A systematic sampling technique was employed. Structured and pretested interviewer-administered questionnaire was used for data collection. Data were coded, cleaned and entered into Epi Info version 7.1 and exported to SPSS version 23 for further analysis. Binary logistic regression analysis was employed. In bivariable analysis p-value, less than 0.25 was used to select candidate variables for multivariable analysis. P-values less than 0.05 and 95% confidence intervals were used to select significant variables on the outcome of interest.

Result: The proportion of self-referral was 443(63.9%) with 95% CI (60.5; 67.5). Formally educated, (AOR = 1.83; (95% CI: 1.12, 3.01)), enrolled to Community Based Health Insurance (AOR = 1.57; (95% CI: 1.03, 2.39)), poor knowledge about referral system (AOR = 2.07; 95% CI: (1.28, 3.39)), not and partially available medication in the nearby Primary Health Care facilities (AOR = 2.12; (95% CI: 1.82, 6.15)) & (AOR = 3.24; (95% CI: 1.75, 5.97)) respectively and history of visiting general hospital (AOR = 1.52; (95%CI: 1.03, 2.25)) were factors statistically associated with self-referral.

Conclusion and recommendation: The proportion of self-referral was low compared to the Ethiopian health sector transformation plan 2015/16–20. Socio-demographic and institutional factors were associated with self-referral. Therefore, regional health bureau better to work to fulfill the availability of medications in the primary health care facilities. In addition, Community Based Health Insurance (CBHI) agency should work to implement the law of out-of-pocket expenditure which states to pay 50% for self-referred patients who claim utilization of healthcare.

* Correspondence: tigistabere3@gmail.com
1 College of Medicine and Health Science, Bahir Dar University, Bahir Dar, Ethiopia

Full list of author information is available at the end of the article

© The Author(s). 2021 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.
Introduction

A referral system entails the interrelationship and coordination of patient care services from one health care facility to another. A referral is a process by which a health care worker transfers the responsibility of care temporarily or permanently to another health professional in response to their inability or limitation to provide the necessary care [1]. While self-referral is a situation when patients refer themselves to higher-level health care facilities other than the primary care facilities without having referral sheets [2].

An effective referral linkage is an integral component of a successful health care system for quality health service. Many developing countries have policies regarding the referral system while transforming referral policies into practice between primary health care (PHC) facilities and higher-level facilities is challenging. To strengthen referral system all levels of the health care delivery system need to be functioning appropriately. In developing countries, higher-level health care facilities were overcrowded with patients who could be treated in lower level facilities which is a common feature of a poorly functioning referral system [3–6].

Self-referral causes depletion of resources such as patients waiting long hours and wasting of highly trained medical workers’ time for minor cases. As a result, patients frequently referred to another hospital and die on the way. Moreover, due to the large patient load, human and physical resources are stretched to capacity, which results in hospitals compromising the care that they provide to patients [7].

The Ethiopian government has made remarkable progress to improve access to PHC units for all. According to the 2015 World Health Organization report, 1.6 billion dollars was financed for health care, of the total health expenditures, 14.69% goes to finance PHC. However, many patients attend a higher level of care for their initial visit that can be managed at a lower level without having a referral sheet [8–10]. As result, secondary level hospitals were congested and overburdened [2].

Studies conducted in Africa showed that the magnitude of self-referral was 27.7, 30.8 33.9, 60, 87 and 96.1% in Nairobi Kenya, Mozambique, Ghana, Nigeria, Sudan and Kirinyaga district Kenya respectively [11–16]. In addition, the studies done in South Africa showed that the magnitude of self-referral was 35, 36, 86.9 and 88.2% in KwaZulu Natal, ETHekwini District, Tubatse local Municipality and Western Cape province of respectively [17–20]. Similarly, studies done in Ethiopia the magnitude of self-referral in general and referral hospitals were 82 and 84.4% respectively [2, 21]. Additionally study conducted in Hosanna town, Hadiya Zone shows that 67% mothers bypassed their catchment public health centers [22].

Studies conducted in Sub Saharan Africa showed that respondents whose age is 40 years and below, sex of the respondents, income, educational level, distance, waiting time, availability of diagnostic test and medication, knowledge about the referral system and access to transportation were the factors that influence patient self-referral [11, 14, 15].

Similarly, studies conducted in Ethiopia showed that access to transportation, availability of laboratory service, availability of prescribed drugs and obtaining information about the referral system from health care worker at the nearby PHC facilities affected patient self-referral. However, the relationship between self-referral and community based health insurance (CBHI) were not assessed [2, 6, 21, 23].

There are limited findings with regards to self-referral in our country and the study area. Therefore, the aim of this study was to assess the magnitude and factors
associated with self-referral among patients at adult out-
patient departments in Debre Tabor General Hospital.

Methods

Study area

The study was conducted in Debre Tabor comprehen-
sive specialized hospital previously called Debre Tabor
general hospital before September 2020. It is located in
south Gondar zone which is 670 Km far from Addis
Ababa the capital city of Ethiopia. According to the
Federal democratic republic of Ethiopia central statistics
agency population projection of 2014–2017 reports, the
total population of the South Gondar Zone was 2,484,
929 of whom 1,257,323 are men and 1,227,606 women
[24]. There are 405-health posts, 96-health centers, eight
primary hospitals and one comprehensive specialized hospital. The total population served by this hospital is
2.3 million peoples. The hospital catchment area in-
cludes four town administrations and 14 districts [25].
An institution-based cross-sectional study design was
employed from March 11–April 9, 2020. All patients
who attended the adult outpatient department in Debre
Tabor General Hospital were our source population and
selected patients who attended the adult outpatient
department in Debre Tabor General Hospital were our
study populations. Patients whose age 15 and above who
visited adult outpatient departments during the study
period were included while those patients who are criti-
cally ill/ unable to respond were excluded.

Sample size and sampling procedure

The sample size was determined by using both single
population proportion formula and factor analysis while
we found better sample size on objective one; based on
the following assumptions, with Proportion of self-
referral patients =82% [2], margin of error (3%), 95% CI.
After adding 10% nonresponse rate, the final sample size
was 693.

To recruit each participant’s systematic sampling tech-
nique was employed by considering an average monthly
patient flow of the hospital 6302 patients per month.
The first participant was identified by lottery methods.
Finally, every patient with 9th interval was included in
the study until the final sample sizes were obtained.

Study variables

Dependent variable

Self-referral (Yes/No).

Independent variables Socio-demographic factors (Sex
of the respondent, age of the respondent, wealth index,
educational status, occupation, marital status and
residence), Individual factors (Knowledge about the re-
feral system, perceived severity of illness and perceived
treatment at the general hospital is better) and Institu-
tional factors (Distance, waiting time at PHC facilities,
availability of diagnostic and medication at the nearby
PHC facilities, access to transportation and obtaining in-
formation about referral system from health care workers).

Operational definitions

Self-referral self-referral is a situation when patients
refer themselves to higher-level health care facilities
(General Hospital) first before they visit primary health
care facilities.

Knowledge about the referral system eight questions
were used to measure the knowledge of patients with re-
gard to the referral system. If the patients answer more
than 75% of the knowledge question he/she was consid-
ered as having good knowledge, if the patients answer 45
to 75% he/she was considered as having fair knowledge
and if they answer less than 45% they were considered
as having poor knowledge [26].

Wealth index The socioeconomic status of each house-
hold was constructed using principal component analysis
(PCA) of household assets followed by stratification of
the households into wealth quintiles. The analysis was
done by aggregating the ownership of durable assets; ac-
cess to utilities and infrastructure; and housing charac-
teristics; ownership of land and ownership of livestock
variables into a single proxy variable of household
wealth. All asset variables were coded into binary vari-
ables. Asset variables with zero standard deviations were
excluded from the PCA as they did not contribute to the
analysis. The first component of the PCA was used to
construct the wealth quintiles. Based on the PCA
weights for each asset variable, an aggregated score was
calculated for each of the surveyed households, which
was grouped into quintiles with quintile 1 (Q1) repre-
senting the poor 33% of households in the sample and
quintile 3 (Q3) representing 33% of the better-off (rich).
The study subjects were thereafter grouped into quin-
tiles based on their household wealth [27–29].

Data collection tools and procedures

Structured and pretested interviewer-administered ques-
tionnaires were developed by reviewing different litera-
tures [12, 14, 15, 21, 30, 31]. First, the questionnaires
were prepared in English then translated into the local
language Amharic and translated back to English to
check the consistency. The questionnaire consists of
socio-demographic, individual and institutional factors.
Data were collected via interview before obtaining
service in the out-patient waiting area and training was
provided for both data collectors and supervisors. Three-degree holder Nurses was recruited for data collection and one master holder were assigned for supervising data collection along with the principal investigator.

Data quality control and assurance
The Amharic version of the questionnaires was used to collect the data. A retest was conducted among 70(10%) patients at Enjibara General Hospital before the study period to check the consistency of the questionnaire. Two days training was provided for data collectors and supervisors on the objective, the purpose, how to keep confidentiality, how to approach patients and how to take consent. The filled questionnaires were checked every day by the supervisor and every week by the principal investigator for completeness and consistency.

Data analysis and management
Data were coded, entered and cleaned in to Epi-Info version 7.1 and exported to SPSS version 23 for further analysis. Descriptive statistics (frequency, percentage, SD and mean) were employed to summarize the variables. Binary logistic regression analysis was employed to see the relationship between dependent and independent variables. Bivariable analysis was used to select the candidate variable for multivariable analysis at P value less than 0.25. Variance inflation factors (VIF) were used to check Multi-collinearity. P-values and confidence intervals were used to select significance variables on multivariable analysis and those variables whose P-value less than 0.05 were considered as statistically significant. Hosmer and Lemeshow test was used to check the model fitness.

Results
A total of 693 patients participated in this study with a response rate of 100%.

Socio-demographic characteristics of the respondents
Two hundred ninety four (42.4%) respondents were in the age groups of 35 and above years with the mean age and standard deviation of 34.3 ± 11.9 years. The majority of respondents (52.4%) were living in urban. Two hundred sixty nine (38.8%) respondents were not attended formal education while 98 (14.1%) respondents attained degree and above. Two hundred thirty two (33.5%) respondents were from the rich family wealth index. Two hundred sixty seven (38.5%) respondents have good knowledge about referral system Three hundred sixty (51.9%) respondents were not enrolled in CBHI (Table 1).

Institutional factors
Five hundred two (72.4%) respondents replayed that the health center is the closest health facility to their place of residence. Four hundred fifty two (70.8%) respondents received information about the referral system from health care providers. Four hundred sixty seven (67.4%) respondents have access to transportation. Four hundred

| Table 1 Socio-demographic characteristics of the participants in Debre Tabor general hospital, 2020 (n = 693) |
Variables	Frequency (%)
Age of the respondents	
15 to 24	156 (22.5)
25 to 34	243 (35.1)
35 & above	294 (42.4)
Sex of the respondents	
Female	350 (50.5)
Male	343 (49.5)
Marital status	
Single	206 (29.7)
Married	426 (61.5)
Widowed	38 (5.5)
Divorced	23 (3.3)
Educational status	
No formal education	269 (38.8)
Primary	90 (13.0)
Secondary	115 (16.6)
College diploma	121 (17.5)
Degree & above	98 (14.1)
Occupation	
Governmental employee	99 (14.3)
Merchant	124 (17.9)
Farmer	223 (32.2)
Student	120 (17.3)
Others	127 (18.3)
Wealth Index	
Poor	232 (33.5)
Middle	229 (33.0)
Rich	232 (33.5)
Knowledge	
Poor	202 (29.2)
Fair	224 (32.3)
Good	267 (38.5)
Enrollment to CBHI	
Yes	333 (48.1)
No	360 (51.9)

Others = Daily laborers, NGO, Brokers, Drivers, Unemployed, house wife, and Tailor
thirteen (59.5%) of the respondents have used a car as a means of transportation (Table 2).

Magnitude of self-referral
The magnitude of self-referral in this study was 443 (63.9%) with 95% CI (60.5; 67.5). The main reasons for self-referral were expected to get better treatment at the general hospital 63.1%, not expected to get laboratory investigation 58.7 and 49.9% not expected to get medication at the nearby PHC facilities.

Factors associated with patients self-referral
In bivariable analysis educational status, place of residence, wealth index, history of visiting the general hospital, enrollment to CBHI, knowledge about referral system, distance to the health facilities, accessibility of transport, availability of medication at the nearby PHC facilities, waiting times at PHC facilities were found be candidate variable for multivariable analysis at p-value less than 0.25. On multivariable analysis educational status, history of visiting general hospital, Enrollment to CBHI, knowledge about referral system and availability of medication at nearby PHC facilities were statistically significant at p-value less than 0.05.

The odds of self-referral among patients who attend formal education was 1.83 times (AOR 1.83; (95% CI; 1.12, 3.01)) higher compared to those who did not have formally educated. The odds of self-referral among patients who were enrolled in CBHI was 1.57 times (AOR 1.57; (95% CI; 1.03, 2.39)) higher as compared to those who were not enrolled to CBHI. The odds of self-referral among patients who have poor knowledge about the referral system was 2.07 times (AOR 2.07; 95% CI (1.28, 3.39)) higher compared to those patients who have good knowledge (Table 3).

The odds of self-referral among patients who replied that medication is not available at all and some medication is available at the nearby primary health care facilities were 2.12 (AOR 2.12; (95% CI; 1.82, 6.15)) and 3.24 (AOR 3.24; (95% CI; 1.75, 5.97) times greater compared to those who have got all the medication at nearby PHC facilities respectively. The odds of self-referral among patients who had a history of visiting General hospital was 1.52 times (AOR, 1.52; (95%CI; 1.03, 2.25) higher compared to those who did not visit (Table 3).

Discussion
The magnitude of self-referral in the study area was 63.9% with 95% CI (60.5; 67.5). This finding was consistent with a study conducted in Hadya Zone Ethiopia which shows that 67% [22] of the patients were self-referral. However, the proportions of self-referral in this study was lower compared with studies conducted in western Ethiopia 84% [21] and 82% [2]. This difference might be attributed to the intervention that the Ethiopian HSTP focus to improve the accessibility and quality of PHC facilities since 2016 [8]. Moreover, the finding of this study was higher than a study conducted in South Africa which was 35% [18] of patients in the outpatient department were self-referred. This may be due to in south Africa different family health service specialists assigned at PHC service to provide comprehensive specialty care to the community [32] while in Ethiopia specialty care is only delivered at higher health care facilities which are beyond the PHC level [8]. The Ethiopian government may take this lesson and should diversify healthcare services provided at the primary healthcare level in order to avoid unnecessary referrals.

The finding of this study showed that patients who attend formal education were more likely to self-
referred to general hospitals compared to those who did not attend formal education. The finding of this study was consistent with study conducted in India [31]. This might be due to educated patients were perceived their illness to be unpredictable with worse outcomes [33] because of this they need more specialized care. In addition, education is one of the means to increase ones household income and they are more capable to spend money on the medical expenses [34]. And when people are educated they would know that better healthcare can be received in higher level health facilities.

This study identified patients who enrolled in CBHI were more likely to be self-referral compared to their counterparts. There is limited finding with the relationship between CBHI and self-referral. The reason for this might be patients who enrolled in CBHI cover low out-of-pocket payments for medical expenses hence they prefer high level and specialized health care service [35]. Thus, facilities should prohibit services for peoples with self-referrals who treated free of charges due CBHI claim right, Similarly CBHI agency should devise mechanisms of halting such unnecessary referrals.

The findings of this study showed that patients who have poor knowledge about the referral system were more likely to be self-referred compared to those patients who have good knowledge about the referral system. This finding was consistent with studies conducted in Nigeria [14] and Iran [36]. This might be due to knowledge is one of means to increases the understandings of the patients about the general service provision of the facilities and the chains of lower to higher health care facilities. Moreover, they are more likely to understand the existing referral system [37].

Table 3 Factor associated with self-referral among patients who attend Debre Tabor general hospital OPDs, 2020

Variable	Self-referral	COR (95% CI)	AOR (95% CI)	
	Yes	No		
Educational status				
No formally educated	131	138	1	1
Formally educated	312	112	2.94(2.13,4.05)	1.83(1.12, 3.01)*
Residence				
Urban	273	90	2.86(2.07, 3.94)	1.19(0.62, 2.31)
Rural	170	160	1	1
Enrollment to CBHI				
Yes	275	85	3.18(2.29,4.39)	1.57(1.03,2.39)*
No	168	165	1	1
Knowledge about referral system				
Poor	152	50	2.41(1.62, 3.59)	2.07(1.28, 3.39)*
Fair	142	82	1.37(0.95, 1.97)	1.24(0.93, 2.24)
Good	149	118	1	1
Wealth Index				
Poor	116	116	1	1
Middle	153	76	2.01(1.38, 2.93)	0.81(0.39, 1.66)
Rich	174	58	3.00(2.03, 4.45)	1.18(0.69, 2.02)
Distance				
< One hour	215	158	1	1
1 to 2 h	44	23	1.41(0.82, 2.42)	1.09(0.67, 1.76)
2 and more hour	184	69	1.96(1.39, 2.77)	1.43(0.73, 2.84)
Availability of medication (n = 551)				
All available	28	50	1	1
Some available	174	90	3.45(2.04,5.85)	3.24(1.75, 5.97)*
None available	123	86	2.55(1.49,4.38)	2.12(1.82, 6.15)*
Visiting General hospital previously				
Yes	251	110	1.66(1.22,2.27)	1.52(1.03, 2.25)*
No	192	140	1	1
Patients who visit General hospital previously were more likely to be self-referred themselves compared to those who did not visit the service previously. This finding was consistent with a study conducted in Ghana [13]. The possible reason for this is they are more familiar with the provision of the services at the general hospital.

This study identified availability of medication at PHC facilities was associated with patient’s self-referral. The finding of this study was in line with studies conducted in Ethiopia [2, 21] and South Africa [20]. This might be due to patients were more prefer to use facilities with available resources. Availability of health care resources in the facilities more attract the health care service users [38]. This implies that fulfilling the availability of medications at the lower health care facilities was reducing patient’s self-referral.

Limitation and strength
This study might be prone to recall bias due to some of the variables assesses the respondents’ previous experiences this may lead us the false results. To minimize these patients were asked the recent visiting experience of the facility.

Conclusion
This study shows that the proportion of self-referral in Debre Tabor general hospital was lower compare to the Ethiopian health sector transformation plan 2015/16–20 which stated that all individuals passed through primary health care services. Educational status, knowledge about referral system, availability of medication in the nearby PHC facilities, enrollment in CBHI and history of visiting general hospital were factors significantly associated with self-referral. Community-Based Health Insurance (CBHI) agency should work to implement the law of out-of-pocket expenditure which states to pay 50% for self-referred patients who claim utilization of healthcare.

Abbreviations
AOR: Adjusted Odds Ratio; CBHI: Community Based Health Insurance; CI: Confidence Interval; COR: Crude Odds Ratio; FMOH: Federal Ministry of Health; HSTP: Health Sector Transformation Plan; OPD: Out Patient Department; PCA: Principal Component Analysis; PHC: Primary Health Care

Acknowledgments
First, our appreciation goes to Bahir Dar University, College of Medicine and Health Science, We would like to also thank Debre Tabor general hospital for giving me the necessary information for this study. Finally, we are also grateful to the supervisors and data collectors who have committed themselves throughout the study period and to all participants who were a volunteer to participate in the study.

Authors’ contributions
TMA performs the development of the manuscript, develops the survey questioners, develops an interview guide; and collects the data, supervised the data collection, and analysis of the data. DD and YM support the methodology part of the study and analysis of the data. All authors read and approved the final manuscript.

Funding
No fund received for this research.

Availability of data and materials
The dataset/raw data used and/or analyzed during the current study available from the corresponding author on reasonable request.

Declarations
Ethics approval and consent to participate
Ethical clearance was obtained from Bahir Dar University College of Medicine and Health Science ethical review board. All methods were performed in accordance with the relevant guideline and regulations with the reference numbers 0095/2020. Permission letter was received from the college of medicine and health science research and development office and Debre Tabor General Hospital. Informed consent was obtained from all patients and written informed consent was obtained from a parent and/or legal guardian if patients are under 18-years old. In addition, information was provided for the participant with regards to the purpose, the benefit, risk, the right of withdrawal at any stages of data collection and how could we maintain the confidentiality of the data.

Consent for publication
Not applicable.

Competing interests
The authors declare that there is no conflict of interest with regard to the publication.

Author details
1 College of Medicine and Health Science, Bahir Dar University, Bahir Dar, Ethiopia. 2 Department of Health System & Health Economics, Bahir Dar University College of Medicine and Health Science, School of Public Health, Bahir Dar, Ethiopia.

Received: 26 January 2021 Accepted: 16 June 2021

References
1. Federal Democratic Republic of Ethiopia Ministry of Health. Guideline for implementation of a patient referral system. 2010.
2. Abdi W, Salgado WB, Nebeb GT. Magnitude and determinants of self-referral of patients at a general hospital Western Ethiopia. Sci J Clin Med. 2015;4(5):86–92. https://doi.org/10.11648/sjcm.20150405.12.
3. Kamau KJ, Osuga BO, Nzugua S. Challenges facing implementation of referral system for quality health care services in Kambu county, Kenya. Health Syst Policy Res. 2017;4(1):1–8.
4. Besancenot D, Sirven N, Vranceanu R. A model of hospital congestion in developing countries; 2018.
5. Pittalis C, Brugha R, Gajewski J. Surgical referral systems in low-and middle-income countries: A review of the evidence. PLoS One. 2019;14(9).
6. Gyedu A, Baah EG, Boakye G, Ohene-Yeloah M, Otupiri E, Stewart BT. Quality of referrals for elective surgery at a tertiary care hospital in a developing country: an opportunity for improving timely access to and cost-effectiveness of surgical care. Int J Surg. 2015;15:74–8. https://doi.org/10.1016/j.ijsu.2015.01.033.
7. Albutt K, Yorlets RR, Punchak M, Kayima P, Namanya DB, Anderson GA, et al. You pray to your god: a qualitative analysis of challenges in the provision of safe, timely, and affordable surgical care in Uganda. PLoS One. 2018;13(4): e0195986. https://doi.org/10.1371/journal.pone.0195986.
8. Health Sector Transformation Plan/HSTP/ 2015/16–20. 2015.
9. World Health Organization. Primary health care systems (primasys): case study from Lebanon: abridged version. World Health Organization; 2017.
10. Abraham G, Linnander E, Mohammed H, Fetene N, Bradley-E A. Patient-centered understanding of the referral system in ethiopian primary health care units. PLoS One. 2015;10(10):e0139024. https://doi.org/10.1371/journal.pone.0139024.
11. Wambui MF. Determinants of self-directed referral amongst patients seeking health services at Kenyatta National Hospital, Nairobi, Kenya. Kenya: Kenyatta University; 2013.
12. Yao J, Agapianlian V. Bypassing health facilities in rural Mozambique: spatial, institutional, and individual determinants. BMC Health Serv Res. 2018;18(1):1006. https://doi.org/10.1186/s12913-018-3834-4.

13. Yaffe A, Whiteside L, Ongur T, Carter P, Donkor P, Rominski S, et al. Bypassing proximal health care facilities for acute care: a survey of patients in a Ghanaian accident and emergency Centre. Tropical Med Int Health. 2012;17(6):775–81. https://doi.org/10.1111/j.1365-3156.2012.02984.x.

14. Okoli H, Obembe T, Osungbade K, Adeniji F, Adewole D. Self-referral patterns among federal civil servants in Oyo state, South-Western Nigeria. Pan Afr Med J. 2017;26. https://doi.org/10.11604/pamj.2017.26.105.11483.

15. Ahmed ME, Mahdi TE, Ahmed NU. Bypassing primary health care facilities for common childhood illnesses in Sharg-Alneel locality in Khartoum state, Sudan 2015. Science. 2017;5(2):27–87.

16. Kanjora JN. Factors contributing to patients bypassing the 2nd and 3rd levels of primary health care facilities in Kirinyaga districts. Kenya: Kenyatta University Institutional Repository; 2014.

17. Becker J, Dell A, Jenkins L, Sayed R. Reasons why patients with primary health care problems access a secondary hospital emergency Centre. S Afr Med J. 2012;102(10):800–1. https://doi.org/10.7196/SAMJ.6059.

18. Rajman A, Mahomed O. Prevalence and determinants of self-directed referrals amongst patients at hospitals in eThekwini district, KwaZulu-Natal 2015. S Afr Fam Pract. 2019;61(2):53–9. https://doi.org/10.1080/20786190.2019.1582213.

19. Majoro SM. Factors contributing to self-referrals of antenatal women for delivery at Dilkong Hospital, grater Tubatse local municipality; 2015.

20. Pillay I, Mahomed DH. Prevalence and determinants of self referrals to a District-Regional Hospital in KwaZulu Natal, South Africa: a cross sectional study. Pan Afr Med J. 2019;33(4).

21. Geta ET, Belete YS, Yesuf EA. Determinants of Self-referral among Outpatients at Referral Hospitals in East Wollega, Western Ethiopia. BioRxiv. 2019;540476.

22. Elsso M. Assessment of the magnitude of bypassing public health center delivery service and associated factors among postnatal women in Nigist Eleni Memorial Hospital,Hossana town, Hadiya Zone,South Ethiopia; 2016.

23. Ghebreyesus TA, Fore H, Birtanov Y, Jakab Z. Primary health care for the 21st century, universal health coverage, and the sustainable development goals. Lancet. 2018;392(10156):1371–2. https://doi.org/10.1016/S0140-6736(18)32556-X.

24. Central Statistical Agency of Ethiopia. Population projection of Ethiopia for all regions at wereda level from 2014-2017. Addis Ababa; 2013.

25. Oluwatosin O. Knowledge and utilization of referral system among health care workers in selected primary health care centres in Oyo state, Nigeria. J Community Med Prim Health Care. 2019;31(1):67–75.

26. Beerek G, Von Pressentin KB, Mash R. Evaluating the performance of south African primary care: a cross-sectional descriptive survey. S Afr Fam Pract. 2019;61(3):109–16. https://doi.org/10.1080/20786190.2019.1596666.

27. Asnani MR, Barton-Gooden A, Grindley M, Knight-Madden J. Disease knowledge, illness perceptions, and quality of life in adolescents with sickle cell disease: Is there a link? Glob Pediatr Health. 2017;4:233794x17739194.

28. Strutton O, Garcia-Domench C, Gasparini L. Could an increase in education raise income inequality? evidence for Latin America. Latin Am J Econ. 2014;51(1):31–39. https://doi.org/10.7764/laje.51.1.1.

29. Collins D, Saya U, Kunda T. The impact of community-based health insurance on access to care and equity in Rwanda. Medford: Management Sciences for Health; 2016.

30. Tappis H, Koblinsky M, Doocy S, Warren N, Peters DH. Bypassing primary health care facilities for childbirth in the context of the JSY cash transfer program to promote institutional birth: a cross-sectional study from Madhya Pradesh, India. PLoS One. 2018;13(1):e0189364. https://doi.org/10.1371/journal.pone.0189364.

31. Sabde Y, Chaturvedi S, Randive B, Sidney K, Salazar M, De Costa A, et al. Bypassing health facilities for childbirth in the context of the JSY cash transfer program to promote institutional birth: a cross-sectional study from Madhya Pradesh, India. PLoS One. 2018;13(1):e0189364. https://doi.org/10.1371/journal.pone.0189364.

32. Sabo Y, Chaturvedi S, Randive B, Sidney K, Salazar M, De Costa A, et al. Bypassing health facilities for childbirth in the context of the JSY cash transfer program to promote institutional birth: a cross-sectional study from Madhya Pradesh, India. PLoS One. 2018;13(1):e0189364. https://doi.org/10.1371/journal.pone.0189364.

33. Asnani MR, Barton-Gooden A, Grindley M, Knight-Madden J. Disease knowledge, illness perceptions, and quality of life in adolescents with sickle cell disease: Is there a link? Glob Pediatr Health. 2017;4:233794x17739194.

34. Strutton O, Garcia-Domench C, Gasparini L. Could an increase in education raise income inequality? evidence for Latin America. Latin Am J Econ. 2014;51(1):31–39. https://doi.org/10.7764/laje.51.1.1.

35. Collins D, Saya U, Kunda T. The impact of community-based health insurance on access to care and equity in Rwanda. Medford: Management Sciences for Health; 2016.

36. Eskandari M, Abbaspazadeh A, Bozhani F. Barriers of referral system to health care provision in rural societies in Iran. J Caring Sci. 2013;3(3):229–36. https://doi.org/10.5681/jcs.2013.028.

37. Oluseye O, Kehinde D, Akingbade O, Ogunlade O, Onyebigbo O, Oluwatosin O. Knowledge and utilization of referral system among health care workers in selected primary health care centres in Oyo state, Nigeria. J Community Med Prim Health Care. 2019;31(1):67–75.

38. Lamarche PA, Pineault R, Gauthier J, Hamel M, Haggerty J. Availability of healthcare resources, positive ratings of the care experience and extent of service use: an unexpected relationship. Healthc Policy. 2011;6(3):46–56. https://doi.org/10.12927/hcpol.2011.22178.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.