Transcriptional Responses of *Bacillus cereus* towards Challenges with the Polysaccharide Chitosan

Hilde Mellegård¹, Ákos T. Kovács², Toril Lindbäck¹, Bjørn E. Christensen³, Oscar P. Kuipers², Per E. Granum³

1 Department of Food Safety and Infection Biology, Norwegian School of Veterinary Science, Oslo, Norway, 2 Molecular Genetics Group, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands, 3 NOBIPOL, Department of Biotechnology, Norwegian University of Science and Technology, Trondheim, Norway

**Abstract**

The antibacterial activity of the polysaccharide chitosan towards different bacterial species has been extensively documented. The response mechanisms of bacteria exposed to this biopolymer and the exact molecular mechanism of action, however, have hardly been investigated. This paper reports the transcriptome profiling using DNA microarrays of the type-strain of *Bacillus cereus* (ATCC 14579) exposed to subinhibitory concentrations of two water-soluble chitosan preparations with defined chemical characteristics (molecular weight and degree of acetylation (FA)). The expression of 104 genes was significantly altered upon chitosan A (weight average molecular weight (Mw) 36.0 kDa, Fa = 0.01) exposure and 55 genes when treated with chitosan B (Mw 28.4 kDa, Fa = 0.16). Several of these genes are involved in ion transport, especially potassium influx (BC0753-BC0756). Upregulation of a potassium transporting system coincides with previous studies showing a permeabilizing effect on bacterial cells of this polymer with subsequent loss of potassium. Quantitative PCR confirmed the upregulation of the BC0753 gene encoding the K⁺-transporting ATPase subunit A. A markerless gene replacement method was used to construct a mutant strain deficient of genes encoding an ATP-driven K⁺ transport system (Kdp) and the KdpD sensor protein. Growth of this mutant strain in potassium limiting conditions and under salt stress did not affect the growth pattern or growth yield compared to the wild-type strain. The necessity of the Kdp system for potassium acquisition in *B. cereus* is therefore questionable. Genes involved in the metabolism of arginine, proline and other cellular constituents, in addition to genes involved in the gluconeogenesis, were also significantly affected. BC2798 encoding a chitin binding protein was significantly downregulated due to chitosan exposure. This study provides insight into the response mechanisms of *B. cereus* to chitosan treatment and the significance of the Kdp system in potassium influx under challenging conditions.

**Introduction**

*Bacillus cereus* is a Gram positive sporeforming bacterium and the causative agent of two forms of foodborne illness: the diarrhoeal type, where enterotoxin is produced during intestinal vegetative growth [1–3], and the emetic syndrome, where preformed toxin is ingested [4,5]. Foodborne illness caused by *B. cereus* is likely to be underestimated, as the symptoms are often relatively mild and normally last for less than 24 h [6]. However, cases with fatal outcome have been reported [7–9]. Increasing consumer request for precooked and chilled food articles today presents a larger risk of *B. cereus* food poisoning, since these are products where the competing bacterial flora has been killed due to different treatment processes, which allow the surviving bacterial spores to grow to levels able to cause disease under favorable conditions [10].

Various food preservative techniques, such as heat treatment, temperature reduction and the addition of substances like nitrite, weak organic acids and bacteriocins to food articles, are employed to reduce the risk of foodborne illness. An increasing tendency among consumers to prefer products supplemented with naturally occurring rather than industrial additives [11], stimulates a search for novel preservatives of natural origin. The polysaccharide chitosan is biodegradable and possesses relatively low cytotoxicity towards mammalian cells [12–14] and exhibits potential applications in food preservation [15,16]. Inhibitory activity against spoilage yeast and bacteria, including pathogens like *B. cereus*, has been described [17–22].

Commercial production of chitosan is usually obtained by partial de-N-acetylation of chitin, the major structural component of the exoskeleton of crustaceans [23]. The degree of N-acetylation...
(F_A) and the molecular weight (MW) are chitosan characteristics shown to be important as determinants of antibacterial activity [22,24–26]. According to general acid-base theory, a majority of the amino groups of the glucosamine units of the biopolymer will be positively charged below the pK_a-value of chitosan, which is reported to be 6.2–7.0, depending on the chitosan applied and the test conditions [27–30]. This polycationic nature of chitosan enables it to bind to negatively charged surfaces, such as polymers, tissues, cells and DNA, through both electrostatic and non-electrostatic interactions [31–33], which is believed to constitute the basis of its antimicrobial activity. It is therefore essential that experiments involving chitosan are conducted at a pH below the pK_a. Permeabilization of Gram positive and Gram negative bacterial cells upon chitosan treatment with the subsequent release of intracellular compounds, such as K⁺ ions and nucleotides, are described by several authors [22,34–37]. Because of the osmotic gradient it is likely that cell water will follow in hyperosmotic environments, causing a reduction of cell membrane turgor and dehydration of the cells.

Transcriptional responses to chitosan exposure

In this study we have performed DNA microarray analysis to gain insight into the transcriptional responses of B. cereus 14579 exposed for 30 min to subinhibitory concentrations (50 μg/mL) of two chitosans differing in macromolecular characteristics (Table 1), which have been shown to be among the most active chitosan preparations included in earlier studies [22,40]. CyberT analysis showed a significantly altered expression of 104 genes upon chitosan A exposure and 55 genes when treated with chitosan B (Bayesian P ≤ 1.0 × 10⁻⁴, cut-off value ≥ 2). A complete list of genes significantly affected by chitosan A and B is presented in Tables S1 and S2, respectively, while in Tables 2, 3, 4, 5 significantly differentially expressed genes with cut-off value ≥3 are shown for the same chitosans. SMART searches [41] were performed to detect different protein domains of the annotated genes.

Results

Characterization of chitosans

Calculated characteristics of the chitosans obtained by size-exclusion chromatography with on-line multi-angle laser light scattering (SEC-MALLS), in addition to F_A of the chitosans, are given in Table 1. Note that in the following we will refer to the two different chitosans by names A or B from this table. Details on SEC behavior of some chitosans with acetylation of 0.16 are given in Mellegård et al. [22]. Chitosan with F_A = 0.01 showed a similar SEC trend as for the F_A = 0.16 chitosans (data not shown). Chitosans are inherently polydisperse in MW, a feature that also persists through the random degradation by nitric acid. Hence, the polydispersity index, defined as M_w/M_n, is typically close to 2.

| Table 1. Characteristics of the chitosan samples included in the study.|
|-----------------|-----------------|-----------------|-----------------|-----------------|
| Chitosan        | M_w (kDa)       | M_n (kDa)       | M_w/M_n         | ΔP_w (calculated)| F_A             |
| A               | 36.0            | 18.0            | 2.0             | 81              | 0.01            |
| B               | 28.4            | 17.0            | 1.7             | 85              | 0.16            |

Abbreviations: M_w, weight-average molecular weight; M_n, number-average molecular weight; ΔP_w, number-average degree of polymerization; F_A, degree of acetylation.

References

[22,24–26,34,35,39,40,42]
Table 2. Summary of upregulated genes (Bayesian P≤1.0 × 10⁻⁴, cut-off value ≥3) in B. cereus 14579 upon 50 μg/mL chitosan A treatment.

| locus tag | Expression ratioa | Significance (p-value)b | annotationc | featuredomain |
|-----------|-------------------|------------------------|-------------|---------------|
| **Upregulated** | | | | |
| BC3719 | 8.7 | 10⁻⁷ | 1-phosphofructokinase | phosphomethylpyrimidine kinase domain |
| BC0755 | 6.8 | 10⁻⁴ | potassium-transporting ATPase subunit C | SS, TMS(1) |
| BC1043 | 6.7 | 10⁻⁴ | peptidylprolyl isomerase | SS, rotamase domain |
| BC2609 | 5.9 | 10⁻⁴ | cytochrome P450 | p450 domain |
| BC3720 | 5.8 | 10⁻⁴ | DeoR family transcriptional regulator | HTH |
| BC4016 | 5.7 | 10⁻⁶ | cyclodextrin transport ATP-binding protein | AAA, transport-associated OB domain |
| BC3718 | 5.1 | 10⁻⁵ | PTS system, fructose-specific II ABC component | phosphotransferase system domains |
| BC0753 | 5.1 | 10⁻⁴ | potassium-transporting ATPase subunit A | TMS(10) |
| BC2603 | 4.4 | 10⁻⁴ | hypothetical protein | SS, TMS(5) |
| BC4366 | 4.3 | 10⁻⁴ | cystathionine beta-lyase |
| BC4015 | 4.1 | 10⁻¹ | oligo-1,6-glucosidase | amylase domain |
| BC0754 | 3.7 | 10⁻⁵ | potassium-transporting ATPase subunit B | TMS(3), AAA, hydrolase |
| BC4062 | 3.7 | 10⁻⁵ | hypothetical protein | SS, CD |
| BC3515 | 3.6 | 10⁻⁴ | glycosyltransferase |
| BC4761 | 3.6 | 10⁻⁴ | methionine adenosyltransferase | S-adenosylmethionine synthetase domains |
| BC5448 | 3.6 | 10⁻⁴ | UDP-glucose 4-epimerase | epimerase |
| BC3466 | 3.5 | 10⁻¹ | ferrichrome-binding protein | SS, PPD |
| BC1461 | 3.5 | 10⁻⁵ | DNA integration/recombination/inversion protein | integrase domain |
| BC4242 | 3.5 | 10⁻⁵ | H⁺/Na⁺-glutamate symporter protein | SS, Na⁺:dicarboxylate symporter domain |
| BC4802 | 3.4 | 10⁻⁵ | hypothetical protein | SS |
| BC5387 | 3.4 | 10⁻⁴ | phosphotransacetylase |
| BC0413 | 3.4 | 10⁻⁵ | exo-α-1,4-glucosidase | amylase domain |
| BC5380 | 3.3 | 10⁻⁴ | ferrichrome-binding protein | SS, PPD |
| BC3423 | 3.3 | 10⁻⁵ | ArsR family transcriptional regulator | HTH |
| BC1528 | 3.2 | 10⁻¹ | hypothetical protein | TMS(4), peptidase |
| BC3523 | 3.1 | 10⁻¹ | hemolysin II | leukocidin domain |
| BC2969 | 3.0 | 10⁻⁴ | hypothetical protein | monooxygenase domain |

aThe ratio of gene expression is shown. Ratio: expression in chitosan treated samples over that in untreated samples.
bBayesian p value.
cPutative function of protein as annotated in the B. cereus ATCC14579 genome sequence.
dDomains detected using SMART search (http://smart.embl-heidelberg.de/) [40]. SS, signal sequence; TMS(n), transmembrane segment (n is the number of such domain); CD, conserved domain of unknown function; PPD, periplasmic domain; HTH, helix turn helix; FtsX, FtsX like permease family; AAA, ATPase domain.
doi:10.1371/journal.pone.0024304.t002

The expression of the BC0753 gene was followed using quantitative real time RT-PCR (qPCR) to validate our microarray results and verify whether upregulation of BC0753 is specific to chitosan treatment. qPCR showed 7.3±1.6 and 20.2±0.5 folds upregulation of BC0753 in samples treated with chitosan A and B, respectively. The expression level of BC0753 was not significantly changed in B. cereus 14579 samples treated with the bacteriocin nisin (1.1±0.1), slightly upregulated in the presence of the bacteriocin bacitracin (2.2±0.5) and downregulated in the presence of enterocin AS-48 (0.3±0.05).

Characterization of growth of the BC0753-BC0756 deletion mutant under different conditions

As the BC0753-BC0755 genes were significantly upregulated in response to treatment with both chitosan A and B, in addition to the BC0756 gene in response to chitosan B, the genes BC753-BC0756 (encoding proteins involved in K⁺ uptake) were deleted from the chromosome of B. cereus 14579 as described in the Materials and Methods section. Growth curves recorded as optical density at 600 nm (OD₆₀₀) measurements in Iso-Sensitest Broth (Iso-SB) with 100 mM 4-Morpholineethanesulfonic acid (MES) pH 6.0 at 37°C for 9 h did not differ noticeably between the wild-type and the mutant strain (data not shown) and yielded 5×10⁸–2×10⁹ CFU/mL at the end of the experiments for both strains. According to Epstein [44], the need for K⁺ under physiological growth conditions is rather low and the full capacity of the transport system is therefore not fully acknowledged under such conditions, which may also have implications for our results.

Growth in a modified Spizizen’s minimal medium (SMM) [45], with sodium salts replacing the potassium salts and a supplementation of 1.0 mg/mL arginine and trace elements, in addition to...
different concentrations of KCl (0, 1, 2 or 3 mM), were compared for the B. cereus 14579 wild-type strain and kdp mutant strain. No major differences in growth yield were observed, as both strains gave 10^7 CFU/mL after 18 h at 37°C in the minimal medium where no KCl was added and 10^7–10^8 CFU/mL where the medium was supplemented with 1–3 mM KCl.

The effect of salt stress on growth of B. cereus 14579 was assessed for the wild-type and the mutant strain. Both strains displayed little growth reduction when challenged with 0.25 M NaCl in Iso-SB 100 mM MES at pH 6.0. Increasing concentrations of NaCl up to 1.0 M decreased the growth rate in a concentration-dependent manner, reflected as OD_{600} measurements, but there were no observable differences in growth pattern between the two test strains. Representative recordings of growth of the test strains in 0, 0.25, 0.5 and 1.0 M NaCl are shown in Figure 2.

### Chitosan susceptibility assay

The minimum inhibitory concentrations (MIC) of chitosan A and B towards B. cereus 14579 wild-type and the mutant strain lacking kdp genes are given in Table 6 and did not differ significantly (Student's t-test). The corresponding minimum bactericidal concentrations (MBC) of the two chitosans towards the mutant strain were slightly higher compared to the wild-type, but did not differ more than one twofold dilution unit.

### Discussion

In this study, we have provided insight into the response mechanisms of B. cereus challenged with subinhibitory chitosan concentrations. Based on the results from DNA microarray experiments, where genes encoding a potassium influx system

---

**Table 3. Summary of downregulated genes (Bayesian P<1.0×10^{-4}, cut-off value ≥3) in B. cereus 14579 upon 50 µg/mL chitosan A treatment.**

| Locus tag | Expression ratio | Significance (p-value) | annotation | feature |
|-----------|------------------|-----------------------|------------|---------|
| BC2134    | 0.3              | 10^{-4}               | bifunctional uroporphyrinogen-III methylase domain |
| BC0744    | 0.3              | 10^{-1}               | hydroxymethylpyrimidine transport system permease protein SS, TMS(6) |
| BC4927    | 0.3              | 10^{-3}               | cell surface protein TMS(2) |
| BC3855    | 0.3              | 10^{-4}               | putative alkaline-shock protein |
| BC2121    | 0.3              | 10^{-1}               | respiratory nitrate reductase γ chain nitrate reductase domain |
| BC3223    | 0.3              | 10^{-6}               | ABC transporter permease protein SS, FtsX |
| BC0492    | 0.3              | 10^{-1}               | pyruvate formate-lyase activating enzyme radical SAM domain |
| BC0402    | 0.3              | 10^{-1}               | cystine-binding protein SS, bacterial periplasmic substrate-binding proteins |
| BC3651    | 0.3              | 10^{-6}               | urocanate hydratase urocanase |
| BC0403    | 0.3              | 10^{-1}               | glutamine transport ATP-binding protein glnQ AAA |
| BC2778    | 0.3              | 10^{-4}               | acetoin dehydrogenase E1 component β-subunit transketolase |
| BC0404    | 0.3              | 10^{-3}               | methyl-accepting chemotaxis protein SS, TMS(2), histidine kinases/adenylyl cyclases/methyl binding proteins/ phosphatases domain |
| BC2132    | 0.3              | 10^{-4}               | precorrin-2 dehydrogenase |
| BC4793    | 0.3              | 10^{-1}               | cytochrome d ubiquinol oxidase, subunit II cytochrome oxidase domain |
| BC2798    | 0.2              | 10^{-4}               | chitin binding protein chitin binding domain, carbohydrate-binding domain |
| BC2133    | 0.2              | 10^{-6}               | CbiX protein CbiX domains |
| BC2136    | 0.2              | 10^{-6}               | nitrite reductase [NAD(P)H] large subunit oxidoreductase, ferredoxin domain |
| BC0503    | 0.2              | 10^{-5}               | hypothetical protein SS, CD, TMS(2) |
| BC2779    | 0.2              | 10^{-4}               | acetoin dehydrogenase E1 component α-subunit dehydrogenase |
| BC0412    | 0.2              | 10^{-1}               | FAD-dependent oxidase FAD-binding domain |
| BC3650    | 0.2              | 10^{-4}               | imidazolonepropionase amidohydrolase |
| BC2776    | 0.2              | 10^{-7}               | dihydrilloapamide dehydrogenase oxidoreductasedomain |
| BC2777    | 0.2              | 10^{-7}               | branched-chain alpha-keto acid dehydrogenase subunit E2 biotin attachment domain, dehydrogenase domain |
| BC0406    | 0.1              | 10^{-6}               | arginine deiminase aminidotransferase |
| BC0407    | 0.1              | 10^{-7}               | ornithine carbamoyltransferase carbamoyl-P binding domain; Asp/Orn binding domain |
| BC0409    | 0.1              | 10^{-7}               | ornithine carbamoyltransferase carbamoyl-P binding domain; Asp/Orn binding domain |
| BC2992    | <0.1             | 10^{-9}               | ribosomal-protein-alanine acetyltransferase acetyltransferase |
| BC0408    | <0.1             | 10^{-8}               | arginine/ornithine antiporter permease; TMS(1) |

See Table 2 for explanatory footnotes.

doi:10.1371/journal.pone.0024304.t003
Potassium is the dominant monovalent cation in bacterial cells and has important functions as an osmotic solute, enzyme activator, internal pH regulator and a second messenger, the latter by enhancing accumulation of compatible solutes, such as trehalose, proline, glycine and betaine. Therefore, the intracellular K⁺ concentration is tightly regulated [44,46,47]. Potassium transport is well documented in the Gram negative bacteria. There are at least three major K⁺ influx transport systems described in E. coli [44,48], but there is limited information on this subject in Gram positives. Two of these systems are constitutively expressed [Trk and Kup] and maintain K⁺ influx transport at high rate, low affinity K⁺ concentration [44]. However, a more recent study showed that KdpD was hypothesized to react to low cell turgor (tension across the cell envelope), influenced by the intracellular K⁺ concentration [44].

Concerning other major bacterial K⁺ regulating systems, the high rate, low affinity K⁺ influx complex Trk is regarded as very

| locus tag  | Expression ratio | Significance (p-value) | annotation | feature |
|------------|------------------|------------------------|------------|---------|
| BC0753     | 7.5              | 10⁻⁴                   |Potassium-transporting ATPase A chain|TMS(10) |
| BC0754     | 6.9              | 10⁻⁷                   |Potassium-transporting ATPase B chain|TMS(3), AAA, hydrolase |
| BC0755     | 6.4              | 10⁻⁴                   |Potassium-transporting ATPase C chain|SS, TMS(1) |
| BC0814     | 4.3              | 10⁻¹                   |ABC transporter permease protein|TMS(1), FtsX |
| BC1739     | 3.5              | 10⁻⁴                   |H⁺/Na⁺-glutamate symport protein|TMS(9) |
| BC1461     | 3.3              | 10⁻³                   |DNA integration/recombination/inversion protein|integrase |
| BC4813     | 3.3              | 10⁻¹                   |hypothetical protein| |
| BC0756     | 3.3              | 10⁻⁴                   |sensor protein (KdpD)|universal stress protein domain |
| BC3738     | 3.2              | 10⁻¹                   |Iron(III) dicitrate-binding protein|SS, PPD |
| BC1612     | 3.1              | 10⁻⁶                   |Na⁺/H⁺ antiporter NapA (inosine-dependent germination)|TMS(11) |
| BC3093     | 3.1              | 10⁻⁴                   |aspartate ammonia-lyase|lyase, fumarase |
| BC5448     | 3.0              | 10⁻⁴                   |UDP-glucose 4-epimerase|epimerase |
| BC0816     | 3.0              | 10⁻¹                   |periplasmic component of efflux system|SS, superfamily of outer membrane efflux proteins |

(See Table 2 for explanatory footnotes.
doi:10.1371/journal.pone.0024304.t004)

Concerning other major bacterial K⁺ regulating systems, the high rate, low affinity K⁺ influx complex Trk is regarded as very

| locus tag  | Expression ratio | Significance (p-value) | annotation | feature |
|------------|------------------|------------------------|------------|---------|
| BC2798     | 0.2              | 10⁻³                   |chitin binding protein|chitin binding domain, carbohydrate-binding domain |

(See Table 2 for explanatory footnotes.
doi:10.1371/journal.pone.0024304.t005)
Figure 1. FIVA analysis of differentially regulated genes in B. cereus 14579 cells exposed to chitosan. Graphical representation of the over-represented categories in the transcriptome analysis of chitosan A (above) and chitosan B (below) treated B. cereus cultures using FIVA software [41]. The size of each cluster is displayed next to the cluster name. Numbers in each rectangle represent absolute values of occurrences. The significance of occurrences is visualized in a colour gradient which is displayed at the bottom of the figure. The description of each category is placed at the right. Multiple testing correction results are visualized using five different symbols to distinguish between the individual corrections. The number of symbols placed in each rectangle corresponds to the number of multiple testing corrections after which the annotation is found significant. doi:10.1371/journal.pone.0024304.g001
common in prokaryotes, as similar systems to Trk in *E. coli* has been found in most organisms where this have been studied, including the rather small genome (1.8 Mbp) of *H. influenzae* [49,54]. Together with the Kdp complex, the Trk system is denoted as a mediator in potassium influx when *E. coli* cells are exposed to salt stress [49]. Another potassium transporting complex, Kup, is reported not to be involved in the adaptation process of *E. coli* cells to osmotic challenges [55]. However, the
The Kup system is of physiological importance in K⁺ uptake by *E. coli*, as partial deletion of the *kdp* encoding gene led to lower K⁺ uptake in a study by Schleyer and Bakker [56].

Studies on potassium specific uptake systems in the Gram positive model organism *Bacillus subtilis* are limited, and potassium acquisition in *B. cereus* is even less characterized. In *B. subtilis*, a homologue to one of the Trk subunits in *E. coli* is described and shown to be involved in K⁺ uptake, but the amino acid identity is rather low [57]. A tetracycline-metal/H⁺ antiporter with additional monovalent cation/H⁺ activity showing a net K⁺ uptake (TetA(L)) is described to possess a physiological K⁺ uptake in *B. subtilis*, as TetA(L) deletion strains displayed reduced growth in low K⁺ media [58]. Subsequent studies have also revealed the existence of another K⁺ transporting system in *B. subtilis*. Holtmann et al. (2003) [59] described two novel major potassium uptake system present in *B. subtilis*, named KtrAB and KtrCD, which are homologues to KtrA and KtrB in *V. alginolyticus*. Homologues to KtrA and KtrB have been described for several bacterial species [60], including *B. cereus* E33L and *B. cereus* Q1, where KtrA is annotated as a Trk family potassium uptake protein [61,62].

Through earlier studies we have demonstrated the permeabilizing effect of chitosan B (Table 1) on *B. cereus* 14579 cells, reflected as a leakage of intracellular potassium [22], and the same membrane perturbing effect of chitosan has also been observed by other workers with different bacterial species [34–37]. Our transcriptomic data revealed significant upregulation of *kdp* genes in *B. cereus* 14579 (BC0753-BC0756) in response to chitosan treatment, which further strengthens these results and thereby the prevailing theory on mode of action of chitosan. In this study, a mutant absent of BC0753-BC0756 encoding the sensor protein KdpD (encoding subunits of the Kdp system, named BC0753 and BC0756, were determined to be approximately 1.5 fold higher in chitosan treated cells compared to untreated cells. However, significant upregulation of genes encoding the KdpB subunit and the sensor and regulatory system KdpD/KdpE was not detected. These findings were not discussed in the paper (threshold value of significantly differentially expressed genes displayed in the main body of the paper was set to ≥2.0). The expression profiles of *B. cereus* 14579 upon treatment with chitosan A and B showing significant and more than 3.7 fold upregulation of the genes encoding the Kdp system, do not coincide with published profiles of other bacterial inhibitors, such as disinfectants, bacteriocins (AS-48) or acidulants. Ceragioli et al. [64] compared transcriptomic analysis of *B. cereus* 14579 subjected to the disinfectants benzalkonium chloride (BC), sodium hypochlorite, hydrogen peroxide and peracetic acid. The data revealed general and oxidative stress responses upon treatment with all test substances, in addition to disinfectant specific responses. As for chitosan, BC is thought to act as a bacterial membrane-active agent leading to leakage of intracellular material. Genes involved in fatty acid metabolism were upregulated upon BC exposure in the mentioned study, and no significantly altered expression of genes involved in the Kdp complex was detected with any of the four test agents. Upon treatment with enterocin AS-48, which is a cyclic peptide produced by *Enterococcus faecalis*, genes encoding membrane associated or periplasmic proteins were upregulated in the *type-strain* of *B. cereus*, while genes involved in arginine and ornithine catabolism were significantly downregulated [65]. The cytoplasmic membrane is also described as the prime target for AS-48, but this bacteriocin acts through opening up pores and disturbing the proton motive force, like cationic antibacterial peptides in general [66], instead of membrane permeabilization. Also, the gene expression pattern of acid-stressed *B. cereus* strains, including the *type-strain*, exposed to different acidulants (hydrochloric acid, lactic acid and acetic acid) [67,68], did not coincide with our microarray results on chitosan treatment. However, in the former study by Mols and co-workers [68], the gene encoding the Kdp ATPase A chain (BC0753) was significantly upregulated upon treatment with HCl pH 5.5 at growth suppressing conditions. The expression of BC0756 encoding the sensor protein KdpD was also upregulated due to non-lethal exposure to acetic acid in the same study. However, the significance of these findings to potassium acquisition is probably minor, as expression of other kdp genes or other genes related to potassium influx were not significantly altered. Finally, no altered expression of genes involved in potassium transport was described in different bacteria subjected to low-temperature stress, weak acid stress or low pH challenges, as reviewed by Beales [69].

In our study, chitosan treated *B. cereus* 14579 cells showed upregulation of genes encoding membrane proteins, whose expression was also found to be significantly altered in AS-48 or nisin treated cells of the same bacterium. Examples are the BC1612 (Na⁺/H⁺ antiporter) and BC4742 (permease) that were
significantly upregulated in the presence of chitosan A and chitosan B (this study), AS-48 [65] and nisin (AT Kovacs and OP Kuipers, unpublished observations). However, the most upregulated operons in the two latter studies (i.e. the BC4206-BC4207 and the BC1453-BC1439 operons in the presence of AS-48 and nisin, respectively) were not affected by chitosan A or chitosan B.

Downregulation of a chitin-binding protein (BC2790) following exposure to both chitosan A and B might be a response to elevated levels of extracellular chitosan, which in structure only differs from chitin in fewer acetyl groups at the C-2 positions of the glucosamine units. Chitin-binding proteins are examples of carbohydrate-binding modules (CBM) that are present in many microorganisms utilizing chitin as a nutrient source. B. subtilis is among the species described to degrade shrimp shell waste, which contain chitin [70]. The function of CBMs is believed to be recognition and binding to chitin and thereby a synergistically action with chitinases to enhance the accessibility of the insoluble biopolymer chitin [71,72]. In our study, however, expression of BC2790 was suppressed, not increased, as might be expected with increased substrate availability. In pathogenic bacteria, the CBMs have also recently been shown to be virulence factors involved in host tissue recognition [73–75].

The significance of our microarray data on chitin-binding protein is therefore not obvious.

In this study, we have provided further insight into bacterial response mechanisms to the biopolymer chitosan, and our findings coincide with the most feasible mode of action of chitosan, namely membrane permeabilization. The chitosans included were defined in their macromolecular properties, and in future experiments involving gene regulation upon exposure to this biopolymer, MW and F A should be stated to elucidate if macromolecular characteristics are decisive of the bacterial response mechanisms. Also, the results obtained in this study should be compared with transcriptional responses to chitosan of various bacterial species possessing the Kdp system and also the Gram positive model organism B. subtilis, not containing any kdp genes, to see if potassium depletion caused by chitosan will activate transcription of genes involved in K+ transport.

### Materials and Methods

#### Bacterial strain and culture conditions

*B. cereus* ATCC 14579 (the type-strain) was obtained from the American Type Culture Collection and is an enterotoxin-producing strain.

#### Preparation of chitosans

Chitosans with F A = 0.01 and 0.16 were obtained from FMC NovaMatrix (Sandvika, Norway). The samples were converted into water-soluble hydrochloride salts (chitosan-HCl) and partially depolymerized to obtain different DP ranges (DP = degree of polymerization = number of sugar residues per chain) as described elsewhere [76,77]. Reduction of the degraded samples with NaBH4 was performed (reduction of terminal 2.5-dehydro-D-mannose), and average DP values were determined on basis of SEC-MALLS analysis, as previously described in Christensen et al. [78]. Data were processed and number and weight average molecular weights (Mn and Mw, respectively) obtained as reported before [22].

Stock solutions of depolymerized chitosans of 4 mg/mL were prepared in Milli-Q grade water at 4°C overnight and adjusted to pH 4.0-4.5 before filtering (0.45 μm), aliquotation and storage at -20°C. An overview of the chitosans included in this study is found in Table 1.

#### Microarray experiments

Exponentially growing cultures of the test strain inoculated from an overnight culture were grown in Iso-Sensitest Broth (Iso-SB) (Oxoid, Hampshire, England) containing 100 mM 4-Morpholine-5-methanesulfonic acid (MES) (Sigma-Aldrich, St. Louis, MO) at pH 6 and 37°C, 225 rpm, to an optical density 2.5–3.0 at 600 nm (OD600) as measured with a Genesys 20 spectrophotometer (Thermo Fisher Scientific, Wilmington, USA). A total of three independent biological replicates were included for both chitosan A and B. The average coefficient of variance values between the replicates were 53.3% and 32.6% for chitosan A and B, respectively. The maximum concentration of chitosan A or B not inhibiting growth, 50 μg/mL (final concentration), was added and cells harvested after 30 min by centrifugation (10,397 g, 1 min, RT). The pellets were immediately frozen in liquid nitrogen and stored at -80°C. RNA extraction was performed with the Macaloid/Roche protocol [79] with one additional step of phenol-chloroform washing. RNA concentration and purity was assessed using NanoDrop ND-1000 Spectrophotometer (Thermo Fisher Scientific). RNA samples were reverse transcribed into cDNA using the Superscript III reverse transcriptase kit (Invitrogen, Carlsbad, USA) and labelled with Cy3 or Cy5 monoreactive dye (GE Healthcare, Amersham, The Netherlands). Labelled and purified DNA samples (Nucleospin Extract II, Bioké, Leiden, The Netherlands) were hybridized in Ambion Sidlechy #1 buffer (Ambion Europe Ltd) at 49°C for 18–20 h to DNA-microarrays containing amplicons of 5200 annotated genes from the genome of *B. cereus* 14579, where each open reading frame is represented by duplicates spots. The arrays were constructed as described elsewhere [80]. Slide spotting, slide treatment after spotting and slide quality control were done as before [81]. After hybridization, slides were washed for 5 min in 2x SSC with 0.5% SDS, 2 times 5 min in 1x SSC with 0.25% SDS, 5 min in 1x SSC 0.1% SDS, dried by centrifugation (2 min, 2000 × g) and scanned in GenePix 4200AL or GenePix 4000B Microarray Scanners (Axon Instruments, CA, US). Fluorescent signals were quantified using ArrayPro 4.5 (Media Cybernetics Inc., Silver Spring, MD, US) and further processed and normalized with MicroPrep [82]. CyberT [83] was used to perform statistical analysis. Genes with a Bayes P-value of ≤1.0 × 10^-4 and ≥ twofold differentially expressed compared to the control, were considered significantly affected. Microarray data are MIAME compliant and the raw data have been deposited in a MIAME compliant Gene Expression Omnibus database (GSE29024), as detailed on the MGED Society website http://www.mged.org/Workgroups/MIAME/miame.html.

#### Quantitative PCR

Nisin (0.5 μg/mL), bacitracin (25 μg/mL) and AS-48 (0.5 μg/mL) treated *B. cereus* 14579 samples were obtained as described earlier [65], while chitosan (50 μg/mL) challenged *B. cereus* samples were prepared as described above. At least 3 independent samples were included in the qPCR experiments. Following RNA purification (see above), samples were treated with RNase-free DNase I (Fermentas, St. Leon-Rot, Germany) for 60 min at 37°C in DNaseCl buffer (10 mM Tris-HCl [pH 7.5], 2.5 mM MgCl2, 0.1 mM CaCl2). Samples were purified with the Roche RNA Isolation Kit. Reverse transcription was performed with 30 pmol random nonamers on 4 μg of total RNA using RevertAid™ H Minus M-MuLV Reverse Transcriptase (Fermentas). Quantification of cDNA was performed on a CFX96 Real-Time PCR System (BioRad, Hercules, CA) using Maxima SYBR Green qPCR Master Mix (Fermentas). The following primer sets were included in the experiments (Table 7): primer set 4 (BC0753) and...
primer set 5 (rpod4 gene of B. cereus). The amount of BC0753 cDNA was normalized to the level of rpoD cDNA using the 2^−ΔΔCt method [84].

**Construction of a B. cereus 14579 kdp deletion mutant**

A Kdp ATPase/KdpD negative mutant was constructed by replacing the BC0753-BC0756 genes with the sequence AT-GACGCGTTTAAAATAGAGCCGACCTTTTTTGGCTCCCAGAAACAAAGCCAAA using the markerless gene replacement method of Janes and Sibitz [85] with modifications. All PCRs were performed in an Eppendorf Mastercycler and DyNAzyme II DNA polymerase and dNTP Mix from Finnzymes (Finland) were used according to the instructions by the manufacturer. PCRs were performed using 95°C for 1 min, 30 cycles of 1 min at 95°C, 52°C for 1 min and 72°C for 1 min, before finally 72°C for 1 min, in an Eppendorf Mastercycler ep gradient S (Eppendorf AG, Hamburg, Germany). PCR products were analyzed by 1.0% agarose gel electrophoresis.

The upstream and downstream regions of the BC0753-BC0756 genes were amplified by PCR using genomic DNA from *B. cereus* 14579 and primer sets 1 and 2 (Table 7), respectively. The reverse primer of primer set 1 and forward primer of set 2 were modified to contain MluI restriction sites. Amplicons were cloned into pCR 2.1-TOPO (Invitrogen) and further transformed into *E. coli* One Shot TOP10 (Invitrogen). The downstream region (kdp down) was digested from the vector using MluI and XbaI and ligated into the MluI and XbaI sites of the pCR 2.1-TOPO containing the upstream region (kdp up). The complete construct (kdp up and kdp down) was excised from pCR 2.1-TOPO using EcoRI and ligated into the corresponding restriction site of the thermosensitive shuttle vector pMAD [86] containing an additional I-SceI site. The pMADΔkdp vector was introduced by electroporation into *B. cereus* 14579 electrocompetent cells, which were made essentially according to Mahillon et al. [87], but with the following modifications. The cultures were grown in BHI at 37°C, the centrifugation steps were carried out at room temperature and resuspension of the pellets after washing was done in 40% polyethylene glycol (PEG) 6000 (Merck, Darmstadt, Germany). Electroporation was performed in electroporation cuvettes (cat. no. 165–2006, Bio-Rad Laboratories, Hercules, CA) at 2.2 kV, 4 mS, with an Eppendorf Electroporator apparatus (Eppendorf AG), and the cells were recovered in Luria-Bertoni broth (Oxoid) at 37°C, 150 rpm, for a minimum of 4 h. Integration of the vector plasmid (pMADΔkdp) into the chromosome by recombination events (via homologous sequences) was performed as described by Arnaud et al. (2004) [86], and pBKJ293 containing the gene for the I-SceI enzyme was then introduced by electroporation, resulting in a double-stranded DNA break with subsequent repairing by homologous recombination and eventually the desired genetic replacement [85]. The deletion of the four genes was verified by PCR amplifications using oligonucleotides located upstream and downstream from the *kdp* operon (primer set 5, Table 7) on chromosomal DNA purified from clones. DNA sequencing was performed to confirm the construction of the *kdp* deletion mutant (Source BioScience Lifesciences, UK), and the sequence has been deposited in GenBank under accession number JN199502.

**Growth of B. cereus 14579 wild-type and kdp mutant strain in standard medium and under potassium limiting conditions**

To compare growth of the *B. cereus* wild-type and mutant strain, these were grown in Iso-SB 100 mM MES at pH 6.0 for 9 h at 37°C, 160 rpm, inoculated from overnight cultures in the same medium, and plated onto blood agar plates to determine the growth yields. OD_{600} measurements were also performed in a Shimadzu UV-160A spectrophotometer (Shimadzu Corporation) to obtain growth curves for comparison. The potassium content of the growth medium supplemented with MES buffer was checked by the Central Laboratory at the Norwegian School of Veterinary Science (Oslo, Norway) using an ion selective electrode (Advia®1650, Siemens Medical Solutions Diagnostics) and determined to be 2.6 mM.

Growth of the two test strains in a modified Spizizen’s minimal medium (SMM) [45] where no potassium was added, supplemented with 1.0 mg/mL arginine and a solution of trace elements [88], were compared. The potassium phosphates in SMM were replaced with equimolar amounts of the sodium salts. Final concentrations of 0, 1, 2 or 3 mM KCl were added to the medium. Overnight cultures of *B. cereus* 14579 (wild-type) and the *kdp* deletion strain were washed thrice in Spizizen’s minimal salts [45] (potassium salts exchanged with sodium salts) and resuspended in the same salt solution after the final wash. Approximately 10^5 CFU/mL of the test strains were added to SMM supplemented with arginine and trace elements and the cultures were incubated at 37°C, 160 rpm, for 18 h. Growth yields were determined by plating aliquots on blood agar plates at the end of the experiments, which were performed a minimum of three times. The presence of possible contaminating potassium in modified SMM supplemented with arginine and trace elements was not measured, but this is reported to be a maximum of 0.005% for the sodium salts and MgSO4·7H2O, according to the manufacturer (Merck, Darmstadt, Germany), which should not constitute more than 7 μM K⁺ altogether. This is below 20 μM K⁺, which was reported to be the contaminating amount of this ion in a minimal medium also containing sodium phosphates and applied in a study on K⁺ transport in *E. coli* cells [89]. The other

| Primer set number | Sequence (5' to 3') | Reverse |
|-------------------|---------------------|---------|
| 1                 | CGGATGCGGAGTCGAGAAGAG | GCTTTGCTACTAAAATAAACGCGTATTTTAT |
| 2                 | GGTACGAAACGGCTTAAATAAGGACGGACCTTTTTTGG | CTCCAGAAAGAAAAACGAATA |
| 3                 | AAGGCGGATGCTTCTAAACCA | GTCGAATGGGATGATTTCA |
| 4                 | CAGGATATGTTAGGGATGATGG | GCAATAGGAAGAAAACACTCTCTG |
| 5                 | CGTGGATATGGTACTACTTTGG | TCTTACTACGCCCTCAACTG |

*Primer-incorporated MluI restriction sites are underlined.

**Table 7. Primers used in this study.**
chimicylcs included in our mimimal medium (modified SMM and trace elements) are not declared to contain any contaminating K².

Osmotic upshift assay

Since the Kdp system is described to be important for coping with osmotic challenges and severe potassium limitations in E. coli [49], we decided to subject the kdp mutant strain and the wild-type strain to elevated concentrations of NaCl in an osmotic upshock assay. The two test strains grown in Iso-SB 100 mM MES at growth at 37°C, 50 rpm, were recorded as OD₆₀₀ measurements (Shimadzu UV-160A) for 3 h after the addition of osmolytes. In B. subtilis subjected to osmotic upshift through addition of NaCl, the intracellular potassium level is described to increase to high values within the first hour [90]. The experiments were repeated at least three times.

MIC and MBC determinations

B. cereus 14579 (wild-type) and the kdp mutant were included in a susceptibility assay with chitosan A and B (Table 1). Serial twofold dilutions of stock solutions of 4 mg/mL of the chitosans were prepared in MQ water in sterile 96-well flat-bottom microtiter plates (Becton Dickinson, France). Fresh cultures inoculated from overnight cultures of the test strains were grown in Iso-SB containing 100 mM MES at pH 6 and 37°C to an OD₆₀₀ of 2.0–6.0.

Table S1 Summary of transcriptional changes (Bayesian P<1.0×10⁻⁴, cut-off value ≥2) in B. cereus 14579 upon 50 μg/mL chitosan A treatment.

Table S2 Summary of transcriptional changes (Bayesian P<1.0×10⁻⁴, cut-off value ≥2) in B. cereus 14579 upon 50 μg/mL chitosan B treatment.

Author Contributions

Conceived and designed the experiments: HM ATK OPG PEG TL. Performed the experiments: HM ATK. Analyzed the data: HM ATK BEC TL. Contributed reagents/materials/analysis tools: HM ATK PEG BEC. Wrote the paper: HM ATK OPG PEG BEC TL.
35. Raafat D, von Bargen K, Haas A, Sahil HG (2008) Insights into the mode of action of chitosan as an antibacterial compound. Appl Environ Microbiol 74: 7455.
36. Helander IM, Nordlund-Lassila EL, Alvarénien R, Räsänen J, Roller S (2001) Chitosan disrupts the barrier properties of the outer membrane of Gram-negative bacteria. Int J Food Microbiol 71: 235–244.
37. Liu H, Du Y, Wang X, Sun L (2004) Chitosan kills bacteria through cell membrane damage. Int J Food Microbiol 95: 147–155.
38. Fernandes JC, Esté P, Gomes AM, Pintado ME, Malcata FX (2009) Study of the antibacterial effects of chitosans on Bacillus cereus (and its spores) by atomic force microscopy imaging and nanoindentation. Ultramicroscopy 109:855–860.
39. Rabea El Badawy MET, Stevens CV, Smagghe G, Steurbaut W (2003) Chitosan as antimicrobial agent: applications and mode of action. Bioresources 4: 1457–1465.
40. Meißner I, From C, Christiansen BE, Gram UN (2011) Inhibition of Bacillus cereus spore outgrowth and multiplication by chitosan. Int J Food Microbiol. DOI 10.1016/j.jfoodmicro.2011.06.013.
41. Letunic I, Copley RR, Pils B, Schultz J, et al. (2006) SMART 5: domains in the context of genomes and networks. Nucleic Acids Res 34: D226–D230. 10.1093/nar/gkj079.
42. Blom EJ, Bomans DWJ, van Hijn SAFT, Breitling R, Tijssen L, et al. (2007) FJIVA: Functional Information Viewer and Analyzer extracting biological knowledge from transcriptome data of prokaryotes. Bioinformatics 23: 1161–1163.
43. Ballal A, Basu A, Apte SK (2007) The Kdp-ATPase system and its regulation. J Biosci 32: 559–568.
44. Epstein W (2003) The roles and regulation of potassium in bacteria. Prog Nucleic Acid Res Mol Biol 75: 293–320.
45. Spizizen J (1958) Transformation of biochemically deficient strains of Bacillus subtilis by deoxyribonucleate. Proc Natl Acad Sci USA 44: 1072–1078.
46. Booth IR (1985) Regulation of cytoplasmic pH in bacteria. Microbiol Rev 49: 559–578.
47. Epstein W (1986) Osmoregulation by potassium-transport in Escherichia coli. In: Skjåk-Bræk G, Anthonsen T, Sandford P, eds. Chitin and chitosan. London: Elsevier Applied Science. pp 443–466.
48. Altendorf K, Gassel M, Puppe W, Sandford P, et al. (2011) Chitosan as an antimicrobial compound: applications and mode of action. Bioresources 33: 171–183.
49. Stumpe S, Schlosser A, Schleyer M, Bakker EP (1996) K+ uptake systems in Bacillus subtilis: the KdpD/KdpE system. J Bacteriol 178: 6925–6931.
50. Blom EJ, Bomans DW, van Hijn SAFT, Breitling R, Tijssen L, et al. (2007) FJIVA: Functional Information Viewer and Analyzer extracting biological knowledge from transcriptome data of prokaryotes. Bioinformatics 23: 1161–1163.
51. Ballal A, Basu A, Apte SK (2007) The Kdp-ATPase system and its regulation. J Biosci 32: 559–568.
52. Epstein W (2003) The roles and regulation of potassium in bacteria. Prog Nucleic Acid Res Mol Biol 75: 293–320.
53. Epstein W (2003) The roles and regulation of potassium in bacteria. Prog Nucleic Acid Res Mol Biol 75: 293–320.
54. Epstein W (2003) The roles and regulation of potassium in bacteria. Prog Nucleic Acid Res Mol Biol 75: 293–320.
55. Epstein W (2003) The roles and regulation of potassium in bacteria. Prog Nucleic Acid Res Mol Biol 75: 293–320.
56. Epstein W (2003) The roles and regulation of potassium in bacteria. Prog Nucleic Acid Res Mol Biol 75: 293–320.
57. Epstein W (2003) The roles and regulation of potassium in bacteria. Prog Nucleic Acid Res Mol Biol 75: 293–320.