Northern Hemisphere UHECR data further supports CMBR photons with weak U(1) component

Daniel Piasecki
Tulane University, New Orleans, LA 70118

Abstract

I further test the theory that the Cosmic Background Radiation (CBR) is made of photons with a weak U(1) component. Tipler (2005) has previously argued that the consistency of the Standard Model (SM) with the Second Law of Thermodynamics requires the early universe CBR to be composed mainly of an SU(2) gauge field. The U(1) field would be suppressed. One of the consequences of this approach is that the Ultra High Energy Cosmic Rays (UHECR) would be able to propagate much further than conventionally accepted, as an SU(2) dominant CBR would be largely unable to couple with right handed fermions. I test if this novel theory solves the problem of UHECR origin by finding suitable candidates up to a redshift $z = 0.1$ within three degrees of the arrival direction. Utilizing the Fly’s Eye Northern Hemisphere UHECR data, I identified candidates with 80% success for the Northern Sky UHECR (98.7% if certain celestial objects which are likely to be Active Galactic Nuclei are absolutely identified as such). This is parsimonious with the CBR theory, which has other important implications for the Standard Model, early universe cosmology, and the origin of matter and anti-matter. This builds off of Tipler and Piasecki (2018), where we have reviewed UHECR data from the Southern Hemisphere to get a 86% success identification rate. We predict that the remaining UHECR not paired with a potential source will have sources identified upon closer telescopic investigations of these regions. Other recent experiments further suggest an SU(2) dominant composition of the CBR photons. The problem of UHECR origin may be solved.

Index Terms

Ultrahigh Energy Cosmic Rays (UHECR), Cosmic Background Radiation (CBR), AGN, Seyfert Galaxy, High Resolution Fly’s Eye (HiRes), Gauge Fields, Very Early Universe

I. INTRODUCTION AND THEORY

One of the greatest unsolved mysteries of current astrophysics is the existence of the Ultra High Energy Cosmic Rays (UHECR). The UHECR are interstellar cosmic rays which come with such high energy that they were thought to be impossible based on our current understanding of particle interaction with the Cosmic Background Radiation (CBR). We continue to observe their very existence, leading some to suggest the possibility of new physics.

A very intriguing theory has been proposed by Tipler (2005), which could explain this aberrant astrophysical phenomena using only known principles, without postulating novel entities at play. This idea is based on the well tested Standard Model (SM) of Particle Physics, Second Law of Thermodynamics, and Bekenstein Bound applied to cosmological scales (Bekenstein, 1989).

The SM reveals that electromagnetic radiation is not fundamental but composed of elementary gauge fields, namely the U(1) and SU(2) gauge fields. From basic principles, Tipler (2005) shows that one of the components of electromagnetism, the U(1) field, could not exist moments after the Big Bang singularity. Thus, the earliest universe could not start out with pure electromagnetism but only with the SU(2) gauge field. This would mean that the CBR photons that came shortly after were mainly composed of an SU(2) gauge field with a very weak or strongly suppressed U(1) field.

We should be able to observe the effects of a strongly SU(2) dominant CBR to this day (Tipler, 2005). Tipler (2005) argues that it is quite likely that the present day CBR would largely retain its SU(2) dominant structure, so the theory is testable inside the laboratory. One of the important properties of an SU(2) dominant CBR is that it does not couple with right handed fermions (such as right handed electrons and quarks). It is suspected that the UHECR could be high energy protons and Iron (Fe) Nuclei. Because the theorized SU(2) dominant CBR does not couple with right handed fermions, it can be shown that the Greisen-Zatsepin-Kuzmin (GZK) effect would not be as strong, and the UHECR could propagate from sources 150 times further away than traditionally accepted (Tipler, 2005). Note that this does not mean the GZK effect would be nonexistent, rather, that it would be not as prominent; and indeed, it was not seen immediately in scientific investigations. Because of the
Theorized SU(2) dominant CBR, it can also be shown that the Sunyaev-Zel’dovich (SZ) effect should also be a factor of two too low when measured (Tipler, 2005; Tipler and Piasecki, 2018).

Tipler is not the only researcher who theorizes about an SU(2) dominant CBR photon gas in order to solve cosmological problems. For example, Hofmann (2013) uses the idea of an SU(2) dominant CBR to explain the anomalous temperature anisotropies of the CBR at large angles. Hahn, Hofmann, and Kramer (2019) and Hofmann (2020) demonstrate various properties of an SU(2) dominant CBR cosmology, and how it fits current cosmological observations.

Whereas a traditional CBR has a mean-free path of 3 Mpc for UHECR protons (Longair 1994 p. 340), Tipler shows that an SU(2) dominant CBR would have a mean free path of 450 Mpc (approximate redshift z = 0.1). Since the fractional energy loss by pion creation is approximately 10%, this indicates UHECR protons might potentially be able to propagate from truly cosmic distances of up to 4.5 Gpc in this SU(2) cosmology (Tipler, 2005).

In this paper, I test how successful finding potential sources for the Northern Hemisphere UHECR is if the UHECR come from up to a distance of 450 Mpc (approximate redshift z = 0.1). I see if the theory is successful at identifying a significant number of possible celestial origin sources and compare it to traditional theories which assume the CBR photons have a strongly present U(1) component (i.e., a mean-free path of 3 Mpc). For the purposes of this study, I confine my analysis to finding potential sources from within the mean-free path distance. It is possible in the SU(2) CBR model for UHECR to come from distances much greater than z = 0.1, but for the sake of simplicity and demonstrating how well this theory can explain cosmological observations, I will assume a distance of z = 0.1 or less.

The data I will be analyzing comes from the Northern Hemisphere High Resolution (HiRes) Fly’s Eye Experiment. A separate paper analyzes Southern Hemisphere UHECR data available (Tipler and Piasecki, 2018), with impressive results (86% identification rate for redshift z ≤ 0.1 and within three degrees of the arrival direction). The HiRes data was collected from a project consisting of two telescope sites (sites I and II) that have been recording cosmic rays from 1999 to 2005 (Sokolsky, 2010). It consists of information about arrival direction, date and time, and measured energy for the UHECR. The analysis will be broken into two data sets based on the two telescope sites.

II. METHODS

In order to find suitable sources for the UHECR observed, we looked at Active Galactic Nuclei (AGN), Quasars (QSO), and Seyfert galaxies within z = 0.1. These astronomical bodies are believed to be energetic enough to accelerate protons, Iron (Fe) Nuclei, and other particles which are believed to make up the UHECR to the observed large energies (Sokolsky, 2010).

We confined our search within three degrees of the arrival direction, since the trajectories of the UHECR could be bent due to extra-galactic magnetic fields in space. To identify potential sources, I relied on the VizieR Catalog (VizieR) to search within three degrees of the arrival direction and chose the AGN, QSO, or Seyfert galaxy with redshift z less than 0.1. With much searching and sorting the data available, I compiled the data tables presented in Appendix I. The best sources (with smallest redshift, smallest offset angle, and correct astronomical type) were picked.

III. ANALYSIS AND DISCUSSION

There are a total of 378 UHECR observed by HiRes over 1999 to 2005. Of the 378, 5 could not be paired with potential sources, 8 were identified with Quasars, 109 were identified with AGN, 79 were identified with Seyfert 1, 91 were identified with Seyfert 2, 6 as a type of (unspecified) Seyfert, 9 as BL Lac Type (a type of AGN), and the remaining 71 were identified as likely AGN, but tentatively so. We can therefore definitely identify (378 - 5 - 71)/378 = 0.7998, or about 80%, as being sources for the UHECR within a redshift of z = 0.1 or less. The 5 unidentified UHECR, I believe, are either due to the incompleteness of the current VizieR catalog or might lie outside of our ideally imposed boundary of z = 0.1. The 71 tentatively identified AGN sources are only labeled ‘tentative’ since they appear in AGN and Quasar catalogs, but I was unable to independently cross reference and verify that they are truly AGN. They are very likely to be AGN, but with the absence of independent verification I decided to just label them ‘likely’ for the sake of clarity. If the likely AGN are indeed AGN, then a solid 98.7% UHECR sources can be identified for the HiRes data.

One way this study could be extended is to investigate the Northern Sky UHECR ‘Hotspot’ seen from the Telescope Array (TA) data (for example, see Kawata et al., 2019). I have attempted to locate the original TA data, but unfortunately after many attempts, I was unable. I hope that the original data will be placed online, in full, in the near future. It would be most interesting to investigate the TA ‘Hotspot’ in light of the theory described here.

If the CBR photons have a strong U(1) component, cosmic rays would propagate with a mean-free path of 3
Mpc. There are almost no celestial bodies within 3 Mpc that could produce all the UHECR we see. If we assume that the UHECR are arriving from beyond the mean-free path, say at a generous $z = 0.01$ (15 times greater), there is still no salvation for the traditional theory. If we confine ourselves to $z \leq 0.01$, we can see that only 49 of the 378 UHECR can be associated with AGN, QSO, and Seyfert galaxies from the tables present in Appendix I. This is a small 12.96%, highlighting the stark deficiency of standard theory. The difference between 12.96% and 80% (possibly up to 98.7%) cannot be stressed enough. Note with the 80% we have neglected to take into account that sources beyond $z = 0.1$ are allowed (up to cosmic distances). Since this analysis was conducted with this idealistic constraint, it is quite likely that all UHECR sources will be identified if cosmic distances are taken into consideration.

The 80% identification rate fits very well with the SU(2) dominant theory based in the SM of Particle Physics. In a separate article, Tipler and Piasecki (2018) have shown they can identify 86% of all Southern Hemisphere UHECR observed (as opposed to the standard 20% within $z = 0.01$). I predict the success percentages will be even higher as more observations are made in the appropriate regions. The rates of success are highly parsimonious with the SU(2) dominant CBR explanation for UHECR.

There are other lines of evidence that are converging, which suggest the SU(2) theory has serious merit. If the SU(2) idea is correct, Tipler (2005) predicted that the SZ effect should be too small by a factor of two. The surprising prediction has recently been corroborated. WMAP has observed that the SZ effect must be smaller than previously anticipated (Lieu et al., 2006; Diego and Patridge, 2010), and the PLANCK Collaboration has observed it being too small by a factor of two (PLANCK Collaboration, 2013).

Hofmann (2013) shows that an SU(2) dominant CBR can explain the observed breakdown of the statistical isotropy of the CBR. Modeling with the SU(2) dominant CBR can be shown to be consistent with local cosmological observations (Hahn, Hofmann, and Kramer, 2019). Consequences for the radiation and dark sectors of the cosmological model are explored (Hofmann, 2020).

Perhaps best of all, a recent direct measurement experiment has been conducted that attempts to measure the CBR to determine once and for all if the U(1) field is suppressed in CBR photons. A CBR photon with suppressed U(1) field would have not been detected in past experiments since it would have been likely absorbed by the detector and re-emitted as a photon with regular U(1) component (Tipler, 2005). Past observations of the CBR would have not noticed that the photons are SU(2) dominant. This, therefore, would require a very special set up to glean this particular, subtle property of the CBR photons. The recent results (publication pending) are all consistent with a U(1) suppressed present day CBR instead of the traditional theory.

These independent lines of evidence suggest that the structure of the CBR is radically different from what the consensus previously envisioned. This has important implications for a number of different areas, including the present ratios of matter to anti-matter, the creation of matter and anti-matter, dark energy and dark matter, CBR temperature anisotropy at large angles, among other important topics (see Tipler, 2005; Hofmann, 2013, 2020). The problem of UHECR origin might not be a problem at all given the high identification success rate in this paper for the Northern Hemisphere and for the Southern Hemisphere (as described in the accompanying paper).

ACKNOWLEDGEMENTS

I would like to thank Angelica “Clover” Robichaud of the University of South Carolina for helping me remain motivated and on task throughout this research project. Portions of this project took long, tedious hours of compilation and sorting through various astronomical bodies. Our long conversations while I worked helped me remain focused and complete this in a timely manner! I am also grateful to her for helping me perform some preliminary data analysis using the programming language R. Thanks goes to Clover, Andrea Robichaud, a mutual friend, and the reviewers of this manuscript for pointing out enhancements, typos, and corrections. I would also like to thank Dr. Frank Tipler of Tulane University for his input and suggestions for this article.

REFERENCES

[1] Bekenstein, J. D. 1989. Is the Cosmological Singularity Thermodynamically Possible? Int. J. Theo. Phys. 28 967–981
[2] Diego J. M. and Partridge, B. 2010. The Sunyaev-Zeldovich Effect in Wilkinson Microwave Anisotropy Probe Data. Mon. Not. R. Astron. Soc. 402 1179–1194
[3] Hahn, S., Hofmann, R., and Kramer, D. 2019. SU(2) CMB and the cosmological model: angular power spectra Mon. Not. R. Astron. Soc. 482, 4290–4302. https://doi.org/10.1093/mnras/sty2981
[4] Hofmann, R. 2013. The fate of statistical isotropy Nature Phys 9, 686–689. https://doi.org/10.1038/nphys2793
[5] Hofmann, R. 2020. An SU(2) Gauge Principle for the Cosmic Microwave Background: Perspectives on the Dark Sector of the Cosmological Model Universe 6(9) 135. https://doi.org/10.3390/universe6090135
[6] Kawata, K., di Matteo, A., Fujiw, T., Ikeda, D., Ivanov, D., Jui, C.C.H. et al. 2019. Updated Results on the UHECR Hotspot Observed by the Telescope Array Experiment Proceedings of Science ICRC2019 310 https://doi.org/10.22323/1.358.0310
[7] Lieu, R., Jonathan P.D. Mittaz, and Shuang-Nan Zhang 2006 The Sunyaev-Zel’dovich Effect in a Sample of 31 Clusters — A Comparison Between the X-ray Predicted and WMAP Observed CMB Temperature Decrement Astrophysical Journal 648 176–181
[8] Longair, M.S. 1994. High Energy Astrophysics: Stars, the Galaxy, and the Interstellar Medium Vol. II. 2nd edition. Cambridge: Cambridge University Press.
I now give lists for all the 378 HiRes UHECR for which we have been able to identify Active Galactic Nuclei (AGN), Seyfert galaxies, or Quasars (QSO) as sources. Note that BL Lac Type are a type of AGN. In the Tables below, photometrically measured redshifts are designed by ‘0.1’ (with one significant digit) instead of values with three significant digits or more. AGN* are likely AGN, as they appear in the AGN and QSO catalogs, but I was unable to independently verify each identity.
TABLE I
HiRes UHECR YEAR 1999-2000 SITE 1

Date	Energy (EeV)	Source	Type	Redshift	Angle (Degrees)
12 01 1999	18.19	MCG -01.60.021	Linear AGN	0.023	1.82
12 01 1999	10.98	IAU 0252-003	Seyfert 2	0.029	1.24
01 06 2000	11.46	NPM1G+79.0012	Seyfert 2	0.056	2.62
01 09 2000	13.23	SWIFT J0444.0+2859	Seyfert 1	0.022	2.99
01 09 2000	15.46	IC 2758	Linear AGN	0.020	2.13
02 01 2000	11.92	MCG+08-15-056	Seyfert 1	0.041	1.05
02 02 2000	12.30	WISEA J050809.25+370215.5	AGN*	0.1	1.38
03 03 2000	12.81	1FGL J1419.7+7731	AGN	0.006	1.54
03 09 2000	15.86	Arp 102B	Seyfert 1	0.024	2.71
04 01 2000	48.15	NPM1G-07.0469	AGN*	0.053	2.94
04 05 2000	16.45	NGC 5664	AGN	0.015	1.81
05 03 2000	17.58	LQAC 271+026 001	QSO	0.063	1.01
09 03 2000	12.22	3C 84	Seyfert 2	0.018	2.10
10 02 2000	30.25	UM 85	Seyfert 2	0.041	1.27
12 01 2000	23.97	WISEA J194951.32+321106.9	AGN*	0.1	2.70
12 23 2000	53.64	LAMOST 79.886+43.19993	AGN*	0.080	2.99
12 25 2000	22.36	6dFGS g074228-045045	AGN*	0.063	2.19
12 30 2000	22.47	SDSS J164107.63+224924.8	QSO	0.077	1.48
12 31 2000	21.91	WISEA J054034.00-113558.1	AGN*	0.1	0.91

TABLE II
HiRes UHECR YEAR 2001 SITE 1

Date	Energy (EeV)	Source	Type	Redshift	Angle (Degrees)
01 26 2001	28.22	IAU 0507+074	Seyfert 2	0.019	1.75
01 29 2001	13.06	WISEA J045411.72+441056.5	AGN*	0.1	2.98
01 29 2001	22.23	UGC 6192	AGN	0.007	1.38
01 31 2001	10.14	NGC 3259	Seyfert 1	0.006	1.27
01 31 2001	16.77	NGC 3161	AGN	0.021	2.15
02 20 2001	26.44	NGC 4725	Seyfert 2	0.004	2.24
03 14 2001	17.76	IRAS 01118+8455	Seyfert 2	0.056	0.84
03 19 2001	62.31	PGC 123326	Seyfert 2	0.076	1.36
03 19 2001	19.51	IAU 1034+061	Seyfert 2	0.012	2.14
03 19 2001	13.26	UGC 106955E	Linear AGN	0.028	2.92
03 24 2001	42.79	MCG 2-26-023	Linear AGN	0.031	2.07
03 25 2001	37.45	SDSS J101246.24+101039.4	Seyfert 2	0.069	0.97
03 25 2001	18.62	NGC 4151	AGN	0.003	1.96
03 25 2001	14.95	UGC 6192	AGN	0.007	2.14
04 01 2001	13.93	NGC 5596	Seyfert 2	0.011	2.81
05 19 2001	11.96	NPM 1G-07.0450	AGN	0.072	2.38
05 19 2001	10.45	SDSS J164107.63+224924.8	Seyfert 2	0.034	2.41
05 20 2001	Source not identifiable		Source not identifiable		
TABLE III

HiRes UHECR Year 2002 Site 1

Date	Energy (EeV)	Source	Type	Redshift	Angle (Degrees)
06 11 2002	05 05 2002	10.66	PGC 2772955	Seyfert 1	0.089 2.21
07 07 2002	13.75	WISEA J193016.76+085201.5	Seyfert 1	0.1 2.45	
07 12 2002	68.95	SWIFT J2117.5+5139	Blazar AGN	0.002 1.57	
08 14 2002	13.65	MCG+04-06-043	Seyfert 1	0.033 2.40	
10 09 2002	12.73	MKN 885	Seyfert 1	0.025 2.81	
10 12 2002	13.71	LQAC 309+032 001	AGN*	0.084 2.74	
11 04 2002	11.92	NGC 7479	Seyfert 2	0.007 1.53	
11 07 2002	27.45	SBS 0911+472	AGN	0.027 2.19	
12 04 2002	11.42	NGC 2776	AGN	0.009 1.45	
12 08 2002	10.98	UGC 12282	Seyfert 1	0.017 1.24	
12 30 2002	15.27	UGC 12138	Seyfert 1	0.025 2.66	

TABLE IV

HiRes UHECR Year 2003 Site 1

Date	Energy (EeV)	Source	Type	Redshift	Angle (Degrees)
01 01 2003	25.18	LQAC 092+007 001	AGN*	0.055 2.10	
01 04 2003	20.82	MARK 1055	AGN	0.036 2.51	
01 04 2003	28.43	NGC 71	Seyfert 2	0.022 2.54	
01 04 2003	15.02	UGC 6192	AGN	0.007 2.35	
01 07 2003	16.03	2MASX J08185772-2252364	Seyfert 1	0.035 1.85	
01 30 2003	10.91	MARK 1210	Seyfert 2	0.013 1.78	
02 01 2003	17.19	Source not identifiable			
02 06 2003	19.55	NGC 5879	AGN	0.003 1.18	
02 24 2003	22.29	WISEA J050809.25+370215.5	AGN*	0.1 2.10	
03 03 2003	11.81	WISEA J052026.82+333531.5	AGN*	0.1 0.35	
03 28 2003	15.07	IRAS F09182-0750	Seyfert 2	0.020 2.37	
03 29 2003	26.32	IAU 1034-273	Linear AGN	0.009 0.76	
04 02 2003	16.19	Ark 479	Seyfert 2	0.019 2.89	
04 26 2003	37.14	RX J2135.9+4728	Seyfert 1	0.025 2.56	
04 28 2003	10.86	MKN 403	Seyfert 2	0.024 2.81	
04 29 2003	26.17	IAU 1122+546	Seyfert 1	0.021 2.14	
05 25 2003	16.73	NGC 2655	Linear AGN	0.005 2.72	
05 26 2003	11.71	PGC 1548855	Seyfert 2	0.026 1.47	
05 26 2003	38.98	8C 0149+710	BL Lac Type	0.022 1.38	
05 27 2003	16.01	IAU 1344+038	Seyfert 2	0.023 1.97	
05 27 2003	49.34	NPM1G+08.0399	Seyfert 2	0.031 1.76	
06 25 2003	12.19	IRAS F17138-1017	AGN*	0.017 2.74	
07 27 2003	11.66	IGR J03334+3718	Seyfert 1	0.055 2.85	
08 25 2003	13.96	IC 1368	Seyfert 2	0.013 2.66	
08 30 2003	10.33	WISEA J193902.05+702930.3	AGN*	0.1 1.21	
09 28 2003	11.97	1ES 1927+654	Seyfert 1	0.017 2.96	
09 29 2003	36.02	IRAS 17596+4221	Seyfert 2	0.053 1.19	
10 19 2003	16.71	NGC 1266	AGN	0.007 1.62	
10 20 2003	15.42	3C 66.0B	Seyfert 1	0.021 2.75	
10 23 2003	21.41	IAU 2159-321	Seyfert 2	0.008 2.57	
10 24 2003	17.45	PGC 2513233	BL Lac Type	0.036 2.43	
10 25 2003	16.41	Zw 493.004	AGN	0.043 2.54	
10 27 2003	19.68	UGC 11630	Seyfert 2	0.012 2.30	
11 19 2003	68.06	SDSS J212002.03+241228.0	AGN*	0.087 2.62	
11 20 2003	10.05	UGC 524	Seyfert 1	0.036 2.81	
11 25 2003	11.55	4C 69.26	Seyfert 1	0.097 0.86	
12 01 2003	14.47	MARK 703	AGN	0.013 2.62	
12 02 2003	57.40	IRAS 06483-1955	Seyfert 1	0.026 2.63	
12 02 2003	36.19	NGC 4203	Linear AGN	0.004 0.86	
12 15 2003	16.42	NGC 2403	AGN	0.0004 2.78	
12 16 2003	29.94	NGC 1071	Seyfert 2	0.038 2.89	
12 18 2003	12.13	KUG 0312+013	Seyfert 2	0.023 0.96	
12 21 2003	30.78	MARK 341	AGN	0.017 2.99	
12 22 2003	11.68	PGC 2743419	Seyfert 1	0.025 1.63	
Date	Energy (EeV)	Source	Type	Redshift (z)	Angle (Degrees)
-----------	--------------	-------------------------------	------------	--------------	-----------------
02 18 2004	17.94	MCG 9-11-023	AGN	0.017	2.10
02 25 2004	22.12	NGC 3858	Seyfert 2	0.019	0.63
03 13 2004	11.44	IRAS 17080+1347	AGN	0.031	2.51
03 18 2004	19.68	SDSS J155224.87+041726.2	QSO	0.046	1.21
03 20 2004	11.03	NPM1G+08.0399	Seyfert 2	0.031	2.73
03 21 2004	15.72	NPM1G+41.0135	QSO	0.022	2.56
03 22 2004	14.27	IC 2226	Linear AGN	0.036	1.71
03 25 2004	31.56	Messier 061	Seyfert 2	0.005	1.19
04 12 2004	11.67	RGB J0153+712	BL Lac	0.022	0.66
04 14 2004	14.49	Zw 142.019	AGN	0.018	2.25
05 18 2004	41.42	UGC 3995	Seyfert 2	0.015	1.51
06 17 2004	17.62	2MASX J16375207+0016236	Seyfert 1	0.047	2.99
06 20 2004	15.13	Z 427-028	Seyfert 2	0.031	2.99
07 12 2004	10.51	IAU 1158+62	Linear AGN	0.005	2.83
07 26 2004	11.36	SDSS J201900.88+135204.9	AGN*	0.1	1.72
08 13 2004	17.12	KUG 2346+019A	AGN	0.031	2.63
08 20 2004	46.56	NGC7177	Linear AGN	0.004	2.65
08 22 2004	13.85	PGC 263296	Blazar AGN	0.050	2.80
09 09 2004	26.11	SDSS J171725.53+291107.9	AGN	0.029	1.13
09 11 2004	12.40	KUG 1021+675	Seyfert 2	0.039	1.71
09 14 2004	40.50	WISEA J162110.24-130409.9	BL Lac	0.1	1.07
09 15 2004	31.60	NPM1G+24.0470	Seyfert 1	0.039	1.19
09 15 2004	11.67	NVSS J17586-0303	QSO	0.088	1.89
09 15 2004	126.72	WISEA J063615.57-025247.4	AGN*	0.1	2.29
09 21 2004	27.80	2MASX J21362534+1233333	Linear AGN	0.084	2.93
09 21 2004	14.42	IRAS20351+2521	AGN*	0.034	2.81
10 09 2004	11.93	UGC 11700	Seyfert 2	0.017	0.78
10 12 2004	12.17	KUG 0239+013	AGN	0.010	2.86
10 13 2004	11.78	SWIFT J2010.7+4801	Seyfert 2	0.025	2.94
10 13 2004	12.95	LAMOST 81.464+55.07420	AGN*	0.036	1.61
10 13 2004	52.33	IRAS 04361-1430	Seyfert 2	0.035	2.26
10 14 2004	16.36	IRAS 19370-0131	AGN	0.019	1.87
10 15 2004	19.84	3C 390.3	Seyfert 1	0.056	2.56
10 15 2004	50.17	IC 164	Linear AGN	0.017	2.88
11 14 2004	11.60	WISEA J225013.81+685548.8	AGN*	0.1	1.62
11 20 2004	19.66	NGC 5033	Seyfert 1	0.003	2.99
12 11 2004	17.57	PGC 3095715	Seyfert 1	0.018	2.29
12 12 2004	21.47	LQAC 087+041 001	AGN*	0.045	2.87
12 15 2004	39.85	ESO 548-G81	Seyfert 1	0.014	2.90
12 16 2004	21.52	LAMOST 92.706+33.93306	AGN*	0.009	0.73
12 16 2004	10.69	IRAS 04061+1522	Seyfert 1	0.045	0.31
12 18 2004	10.69	SDSS J053156.04-062935.8	AGN*	0.1	0.94
12 18 2004	10.81	LQAC 059+042 001	AGN	0.066	1.08
12 19 2004	15.13	MARK 477	Seyfert 2	0.038	0.65
Date	Energy	Source	Type	Redshift	Angle
----------	--------	---------------------------------	----------	----------	-------
01 02 2005	11.60	Source not identifiable	AGN*	0.064	2.22
01 02 2005	22.87	PGC 1036549	AGN	0.1	0.90
01 07 2005	18.34	WISEA J022109.52+625357.2	QSO	0.096	2.62
01 07 2005	19.35	IRAS 043589+5922	Seyfert 2	0.021	1.47
01 13 2005	16.83	UGC 6125	Seyfert 1	0.025	1.50
01 16 2005	10.36	NGC 3822	Seyfert 2	0.021	2.66
02 05 2005	11.42	RXS J05361+8223	AGN	0.051	2.26
02 09 2005	10.04	MKN 993	Seyfert 1	0.015	2.07
03 05 2005	44.39	MARK 348	Seyfert 2	0.014	2.33
03 05 2005	12.23	IC 907	Seyfert 2	0.015	1.52
03 07 2005	13.46	PGC 3095749	Seyfert 1	0.066	2.54
03 08 2005	10.36	MCG 10-18-021	Linear AGN	0.044	1.79
03 08 2005	16.13	NGC 3855	Linear AGN	0.031	1.93
03 09 2005	19.53	MCG 12-15-013	AGN	0.025	2.45
03 11 2005	10.06	KUG 1618+402	Seyfert 1	0.028	2.01
03 12 2005	13.58	NGC 6423	Seyfert 1	0.024	1.82
03 31 2005	13.92	LCRS B110045.0-063806	Seyfert 1	0.025	2.56
04 01 2005	21.14	NPM1G+81.0074	AGN	0.041	2.22
04 01 2005	71.49	NGC 4968	Seyfert 2	0.010	2.36
04 07 2005	11.74	SWIFT J1933.9+3258	QSO	0.056	2.15
05 09 2005	19.08	WISEA J200121.33+141536.9	AGN*	0.1	2.51
05 13 2005	10.26	MCG 4-39-017	Seyfert 2	0.031	2.16
05 29 2005	13.18	IGR J040450+7530	Seyfert 1	0.095	1.78
07 08 2005	27.96	WISEA J190954.06+202129.0	AGN*	0.1	2.35
08 05 2005	24.70	IRAS 21497-0824	Seyfert 2	0.035	1.58
08 05 2005	14.80	RX J18393+6544	QSO	0.082	0.56
08 31 2005	10.32	IAU 1637+826	Seyfert 2	0.024	1.11
09 01 2005	10.38	WISEA J183813.45+260039.7	AGN*	0.1	1.61
09 01 2005	21.26	4C +47.63	AGN*	0.045	1.73
09 02 2005	11.65	1RXS J050258.5+225949	Seyfert 1	0.057	0.98
09 02 2005	15.76	MKN 279	Seyfert 1	0.031	2.41
10 09 2005	34.61	NGC 2824	AGN	0.009	1.86
10 24 2005	14.56	IAU 2904+042	Seyfert 1	0.042	2.49
10 25 2005	68.48	Z 229-015	Seyfert 1	0.028	1.21
10 26 2005	10.86	IAU 2359+030	Seyfert 1	0.026	1.01
10 31 2005	10.84	IC 2227	Seyfert 2	0.032	2.98
11 02 2005	17.57	IAU 0446-064	Seyfert 2	0.015	0.98
11 04 2005	10.77	PGC 1137099	Linear AGN	0.053	2.28
11 04 2005	11.18	IGR J03334+3718	Seyfert 1	0.055	0.93
11 05 2005	14.55	IRAS 04154+1755	Seyfert 2	0.056	2.42
11 10 2005	13.08	NGC 3735	Seyfert 2	0.009	2.51
Date	Energy EeV	Source	Type	Redshift z	Angle Degrees
-----------	------------	----------------------	------------	------------	---------------
12 11 1999	11.20	NGC 787	Linear AGN	0.016	2.97
01 04 2000	14.40	UGC 3179	AGN	0.028	0.38
01 15 2000	36.32	PGC 1535850	Linear AGN	0.029	0.52
01 30 2000	12.63	SDSS J104243.85+314121.8	AGN	0.035	2.41
02 02 2000	16.05	Source not identifiable			
02 06 2000	40.84	WISEA J062944.64+133201.5	AGN*	0.1	1.20
02 06 2000	30.28	NGC 2624	Linear AGN	0.014	1.15
02 29 2000	18.35	IC 907	Seyfert 2	0.015	1.55
03 06 2000	15.58	PGC 2790281	Seyfert 1	0.081	0.72
03 06 2000	24.92	GB6 J0601+5315	BL Lac Type	0.052	2.58
03 29 2000	12.33	MCG 6-31-092	Linear AGN	0.043	2.18
03 31 2000	14.51	NGC 2787	Linear AGN	0.002	2.04
04 04 2000	16.74	TEX 0554+534	BL Lac Type	0.036	2.06
04 06 2000	17.05	IGR J20187+4041	AGN	0.014	2.89
04 09 2000	53.34	UGC 5771	Linear AGN	0.025	1.81
05 03 2000	40.79	IGR J21277+5656	Seyfert 1	0.015	1.79
09 04 2000	38.05	WISEA J211823.95+230802.5	AGN*	0.1	0.23
10 05 2000	12.91	PGC 983528	AGN	0.074	2.92
10 07 2000	10.12	PGC 3095729	Seyfert 1	0.058	2.46
11 24 2000	28.03	SDSS J231840.62+180204.9	AGN	0.088	2.18
11 29 2000	12.53	WISEA J210023.13+343521.5	AGN*	0.1	1.49
12 01 2000	14.47	PGC 3095730	Seyfert 1	0.033	1.28
12 02 2000	11.94	IRAS05129+5128	AGN*	0.028	1.94
12 05 2000	19.49	NGC 3735	Seyfert 2	0.009	2.19
12 21 2000	29.69	WISEA J040521.96+321900.6	AGN*	0.1	2.39
12 23 2000	48.59	NGC 2841	Linear AGN	0.002	1.95

Date	Energy EeV	Source	Type	Redshift z	Angle Degrees
01 26 2001	19.15	IRAS 08054+6824	Seyfert 2	0.041	2.71
01 26 2001	12.79	NGC 3561B	Linear AGN	0.028	2.18
01 29 2001	26.00	IAU 1043+140	Seyfert 1	0.010	1.85
02 18 2001	105.71	NPM1G+23.0202	Seyfert 1	0.021	0.28
02 26 2001	24.29	UGC 8621	Seyfert 2	0.020	2.97
03 20 2001	16.87	WISEA J042036.35+112641.8	AGN*	0.1	0.59
03 23 2001	17.43	IAU 1353+407	Linear AGN	0.009	2.49
04 25 2001	10.42	NGC 6434	Seyfert 1	0.008	2.19
05 19 2001	18.33	IRAS F16399-0937	Linear AGN	0.027	2.67
05 22 2001	17.90	PGC 1143766	Seyfert 2	0.049	0.93
05 23 2001	21.00	NVSS J18564-2346	AGN	0.057	2.68
05 23 2001	10.58	MARK 1361	Seyfert 2	0.023	2.67
07 18 2001	12.57	MKN 357	Seyfert 1	0.053	0.56
07 18 2001	13.99	IGR J02504+5443	Seyfert 2	0.015	1.34
07 21 2001	24.02	Source not identifiable			
07 27 2001	13.94	MKN 359	Seyfert 1	0.017	3.00
09 02 2001	10.70	IES 1927+654	Seyfert 1	0.017	1.04
09 05 2001	19.49	NGC 1218	Seyfert 1	0.029	2.35
09 22 2001	25.10	UGC 10713	AGN	0.004	2.98
Table IX

HiRes UHECR Year 2002 Site 2

Date	Energy EeV	Source	Type	Redshift z	Angle Degrees
06 06 2002	14.14	MKN 417	Seyfert 2	0.033	2.21
07 08 2002	22.74	IC 1368	Seyfert 2	0.013	0.64
07 11 2002	13.52	IRAS F20550+1655	AGN*	0.036	0.61
07 12 2002	17.79	MKN 291	Seyfert 1	0.035	2.64
07 13 2002	13.71	NPM1G+44.0256	Seyfert 1	0.055	1.99
08 09 2002	18.44	SDSS J21167+1102	AGN	0.081	2.60
09 09 2002	19.32	IAU 1701+315	Linear AGN	0.034	2.45
09 13 2002	11.73	WISEA J201919.03+192452.3	AGN*	0.1	1.17
09 14 2002	11.22	IAU 2325+085	Seyfert 2	0.030	2.95
10 09 2002	11.42	Mrk 6	Seyfert 1	0.019	1.20
10 12 2002	54.84	WISEA J194254.05+165249.4	AGN*	0.1	1.20
10 14 2002	13.37	IAU 0645+744	Seyfert 1	0.0185	2.91
11 03 2002	16.32	PGC 3081156	AGN	0.039	1.40
11 12 2002	10.07	IRAS F00506+7248	AGN*	0.016	1.19
12 03 2002	10.74	WISEA J064047.67+180334.0	AGN*	0.1	1.24
Date	Energy	Source	Type	Redshift	Angle
------------	--------	---------------------------------	------------	----------	-------
01 04 2003	12.61	WISEA J021053.92+623557.2	AGN*	0.1	1.31
01 05 2003	14.89	WISEA J000019.48+621524.1	AGN*	0.1	1.20
01 05 2003	18.85	NGC 3147	Seyfert 2	0.01	2.95
01 06 2003	62.84	RX J03140+2445	Seyfert 2	0.056	1.43
01 29 2003	11.77	PGC 1596882	Seyfert 2	0.030	1.26
02 01 2003	31.76	UGC 3752	Seyfert 2	0.016	2.10
02 01 2003	111.09	NGC 5940	Seyfert 1	0.004	0.96
02 03 2003	20.23	IAU 1219+047	Seyfert 2	0.005	1.56
02 03 2003	12.45	NGC 1961	Linear AGN	0.012	1.78
02 03 2003	52.16	IAU 0931+103	Linear AGN	0.011	1.92
02 23 2003	10.59	IAU 1426+276	Seyfert	0.014	2.36
03 25 2003	13.32	UGC 10774	Linear AGN	0.030	1.71
03 30 2003	26.98	MARK 287	AGN	0.038	2.35
03 30 2003	25.71	SDSS J094328.73+524811.4	Seyfert 1	0.047	1.28
03 30 2003	10.10	PGC 1388003	Linear AGN	0.022	2.09
03 30 2003	16.87	2MASX J18262393+3251300	Seyfert 2	0.022	1.39
03 31 2003	38.23	NGC 3392	AGN	0.011	1.81
05 25 2003	34.05	NVSS J19551-0338	AGN	0.056	2.11
05 26 2003	12.53	PGC 1414609	Seyfert 2	0.050	1.19
05 26 2003	15.44	LQAC 253-007 001	AGN*	0.069	1.98
06 02 2003	34.70	WISEA J202433.08+283456.1	AGN*	0.1	1.18
06 02 2003	11.85	MCG +09-13-070	AGN	0.033	1.27
08 26 2003	20.59	LQAC 060+034 001	AGN*	0.078	1.13
08 31 2003	17.20	MKN 509	Seyfert 1	0.036	2.49
09 01 2003	14.33	3C 449.0	AGN	0.017	2.46
09 22 2003	34.03	WISEA J230022.97+531500.9	AGN*	0.1	0.47
09 22 2003	10.93	MCG +09-13-070	AGN	0.019	2.58
09 23 2003	19.87	SWIFT J02163+5128	Seyfert 2	0.029	1.78
09 26 2003	11.30	NPM1G+48-0362	Seyfert 1	0.054	2.26
09 28 2003	46.35	PGC 2790281	Seyfert 1	0.081	2.92
09 29 2003	11.80	LQAC 311+057 004	AGN*	0.038	0.37
10 01 2003	12.11	RXS J22197+2120	BL Lac Type	0.020	1.34
10 22 2003	11.79	SWIFT J0053.4+4540	Seyfert 1	0.047	2.75
10 23 2003	11.20	LEDA 67084	Seyfert 1	0.025	2.45
10 23 2003	12.81	UGC 3157	Seyfert 2	0.015	2.45
10 27 2003	16.24	IRAS 00065+1411	Seyfert 2	0.040	2.68
10 28 2003	31.87	WISEA J039090.83+100785.6	AGN*	0.1	0.45
10 28 2003	50.33	IRAS05129+5128	AGN*	0.028	2.79
10 29 2003	12.15	NVSS J20045-0014	AGN	0.085	0.80
10 29 2003	10.08	NGC 2782	Seyfert 2	0.008	2.49
11 19 2003	11.73	NGC 3079	Seyfert 2	0.004	1.35
11 20 2003	13.35	WISEA J030925.21+710719.0	AGN*	0.1	2.51
11 20 2003	14.64	IGR J2504+5443	Seyfert 2	0.015	1.51
11 21 2003	12.34	IRAS 01118+8455	Seyfert 2	0.056	2.45
11 25 2003	14.26	WISEA J001833.69+552151.0	AGN*	0.1	2.61
11 28 2003	11.49	WISEA J225818.05+451634.7	AGN*	0.1	1.58
Date	Energy (EeV)	Source	Type	Redshift (z)	Angle (Degrees)
---------	--------------	-------------------------	-------------	--------------	-----------------
02 14 2004	48.69	IRAS05442+1732	AGN*	0.018	2.34
02 15 2004	22.31	MKN 1	Seyfert 2	0.016	1.50
02 15 2004	58.93	NGC 3032	AGN	0.005	2.14
02 15 2004	14.67	NGC 777	Seyfert 2	0.017	1.72
02 15 2004	16.06	ZW VII 31	AGN*	0.054	2.01
02 15 2004	37.73	ESO 442-G20	AGN	0.055	1.86
02 16 2004	12.72	3C 66.0B	Seyfert 1	0.021	2.88
02 25 2004	38.61	NGC 5899	Seyfert 2	0.008	2.70
02 25 2004	11.44	LCRS B114409.4-032545	AGN	0.049	2.33
03 15 2004	10.84	NGC 3177	AGN	0.004	2.99
03 17 2004	23.98	WISEA J070444.29-111804.5	AGN*	0.1	0.44
03 17 2004	18.81	WAS 96	AGN	0.034	2.20
03 17 2004	15.29	ESO 576-G77	Linear AGN	0.018	2.89
03 18 2004	20.51	IAU 1548-037	Seyfert 2	0.030	2.73
03 20 2004	29.25	MKN 73	Seyfert 1	0.030	2.76
04 13 2004	11.70	SDSS J134632.14+642325.1	Seyfert 2	0.024	1.58
04 13 2004	26.94	RN 73	Seyfert 1	0.049	0.96
04 20 2004	22.10	MCG+09-13-070	AGN	0.019	2.62
04 23 2004	12.48	IAU 1615+061	Seyfert 1	0.038	2.79
05 17 2004	17.59	SDSS J204224.74+14455.3	AGN*	0.1	1.51
06 13 2004	12.62	WISEA J194254.05+165249.4	AGN*	0.1	1.80
06 14 2004	31.13	NGC 4939	Seyfert 2	0.010	1.67
06 17 2004	11.82	IRAS F17138-1017	AGN	0.017	2.50
06 17 2004	13.08	WISEA J180316.39+044327.4	AGN*	0.1	1.03
06 20 2004	40.19	NGC 3738	AGN	0.001	1.02
07 12 2004	15.33	6dFGS g1607026-204304	AGN*	0.006	1.84
07 18 2004	13.66	RXS J22197+2120	BL Lac Type	0.020	2.88
07 24 2004	26.40	MKN 1	Seyfert 2	0.016	1.86
08 12 2004	17.51	MKN 845	Seyfert 1	0.046	2.35
09 09 2004	14.16	KUG 2346+019A	AGN	0.031	2.78
09 14 2004	28.90	5BZG J2346+4024	BL Lac Type	0.084	1.38
09 14 2004	71.07	SDSS J041921.18+255304.6	Seyfert 2	0.065	2.76
09 16 2004	19.59	WISEA J192602.16+251357.6	AGN*	0.1	2.58
10 07 2004	28.06	NGC 237	AGN	0.014	1.77
10 13 2004	12.28	MCG -01-60-021	Linear AGN	0.023	0.40
11 06 2004	17.55	IRAS 01118+8455	Seyfert 2	0.056	2.96
12 03 2004	11.82	NGC 926	AGN	0.021	1.87
12 11 2004	17.05	NGC 3497	Linear AGN	0.012	1.45
12 15 2004	23.31	NGC 2638	Linear AGN	0.013	1.45
12 15 2004	39.25	WISEA J064622.49-120847.4	AGN*	0.1	2.26
12 16 2004	24.24	IAU 0851+589	Seyfert 2	0.003	2.01
12 16 2004	45.54	IRAS 01118+8455	Seyfert 2	0.056	2.46
12 19 2004	14.92	AKN 202	Seyfert 1	0.028	2.80
12 19 2004	27.00	IRAS 06273+6858	AGN	0.065	2.93
12 19 2004	13.65	NPM1G-18.0376	AGN	0.065	2.07
Date	Energy EeV	Source	Type	Redshift	Angle Degrees
--------	------------	---------------------------------	----------	----------	---------------
01 07 2005	13.87	NGC 1050	Seyfert 2	0.013	2.57
01 08 2005	23.56	IRAS05442+1732	AGN*	0.019	2.55
01 09 2005	24.12	NGC 3035	Seyfert 1	0.015	1.82
02 02 2005	15.11	UGC 8107	Linear AGN	0.028	1.87
02 04 2005	16.18	UGC 5771	Linear AGN	0.025	1.82
02 09 2005	16.47	IC 632	Seyfert 2	0.019	0.63
02 13 2005	38.30	B3 0920+416	AGN	0.028	1.83
03 05 2005	13.53	IGR J02504+5443	Seyfert 2	0.015	1.79
03 06 2005	15.59	IA U 1426+276	Seyfert	0.014	2.58
03 07 2005	22.81	MCG 8-30-048	Linear AGN	0.0175	2.21
03 07 2005	16.79	NGC 4102	Linear AGN	0.003	1.54
03 12 2005	36.10	MRK 635	Linear AGN	0.024	0.56
03 31 2005	28.66	WISEA J235607.51+794402.0	AGN	0.1	1.07
04 02 2005	12.55	MCG -04.27.011	AGN	0.027	1.72
04 07 2005	37.66	MCG -02.26.039	Seyfert 1	0.026	2.92
07 06 2005	10.07	WISEA J231003.43+565415.6	AGN*	0.1	1.55
07 07 2005	33.95	NGC 5377	AGN	0.006	2.93
07 12 2005	17.80	MCG +13-08-056	Seyfert 2	0.037	2.78
08 31 2005	14.76	4C 69.26	Seyfert 1	0.097	0.75
09 09 2005	20.96	LEDA 67084	Seyfert 1	0.025	2.18
09 26 2005	17.28	IA U 1534+380	Seyfert 1	0.030	1.29
09 26 2005	28.59	IRAS F17544+4347	AGN	0.073	1.56
09 27 2005	13.39	NGC 6786	Seyfert 2	0.025	2.01
09 29 2005	15.83	NGC 237	AGN	0.014	2.88
10 05 2005	18.78	WISEA J225818.06+451634.7	AGN*	0.1	0.80
10 06 2005	37.41	IRAS07251-0248	AGN*	0.086	1.33
10 27 2005	10.44	WISEA J063511.45+265706.8	AGN*	0.1	2.73
10 29 2005	11.93	MK 585	AGN	0.021	1.41
11 01 2005	11.15	LQAC 319+073 001	AGN*	0.048	1.80
11 03 2005	26.61	IA U 2329+286	AGN	0.019	1.09
11 06 2005	10.77	PGC 1272062	Seyfert 1	0.081	1.79