A MEASURE-FREE APPROACH TO CONDITIONING

I.R. Goodman

Command & Control Department
Code 421
NAVAL OCEAN SYSTEMS CENTER
San Diego, California 92152

ABSTRACT

In an earlier paper, a new theory of measure-free "conditional" objects was presented. In this paper, emphasis is placed upon the motivation of the theory. The central part of this motivation is established through an example involving a knowledge-based system. In order to evaluate combination of evidence for this system, using observed data, auxiliary attribute and diagnosis variables, and inference rules connecting them, one must first choose an appropriate algebraic logic description pair (ALDP): a formal language or syntax followed by a compatible logic or semantic evaluation (or model). Three common choices for this highly non-unique choice - are briefly discussed, the logics being Classical Logic, Fuzzy Logic, and Probability Logic. In all three, the key operator representing implication for the inference rules is interpreted as the often-used disjunction of a negation (b\(\neg a\)) = (b\(\vee a\)), for any events a, b.

However another reasonable interpretation of the implication operator is through the familiar form of probabilistic conditioning. But, it can be shown - quite surprisingly - that the ALDP corresponding to Probability Logic cannot be used as a rigorous basis for this interpretation. To fill this gap, a new ALDP is constructed consisting of "conditional objects", extending ordinary Probability Logic, and compatible with the desired conditional probability interpretation of inference rules. It is shown also that this choice of ALDP leads to feasible computations for the combination of evidence evaluation in the example. In addition, a number of basic properties of conditional objects and the resulting Conditional Probability Logic are given, including a characterization property and a developed calculus of relations.

1. INTRODUCTION

This paper is complementary to a previous one [1] in which measure-free conditional objects are first introduced. In that paper, emphasis was placed upon a summary of the various mathematical properties that are derivable. In this paper, motivation for the use of conditional objects is underscored, followed by a brief overview of results. A more thorough presentation, together with all relevant proofs, can be found in [2].

The basic questions that are demanded of a new theory include:

- What use is it? Is it necessary?
- Does it solve an existing problem?
- Is it truly novel?
- Does it tie-in with past literature in the field?
- Is it mathematically sound and sufficiently rich to lead to further deeper results and applications?

It is the hope of this paper and accompanying work to provide positive answers to the above questions through the development of conditional object theory.

In a typical knowledge-based system, a collection of inference rules is present, each rule connecting potential observed data through auxiliary attributes to potential parameter estimates or diagnoses. Each rule also has, as a main connector, some form of implication. Thus, in evaluating such systems, it is critical that consistent and feasible interpretations and computations be made for these operators.

At present, there is no sound logic of conditional events, analogous to ordinary Probability Logic, in use. Thus no systematic approach exists for combination of evidence problems, when individual inference rules are interpreted through conditional probabilities. Indeed, D. Lewis [9] pointed out in 1976 that one could not identify implication with conditioning in the probability sense. That is, if

\[
(b\neg a) = (a|b) \in \mathbb{C},
\]

where \(\mathbb{C}\) is some fixed boolean algebra of events or propositions \(a, b, \ldots\), then formally applying a given probability measure \(p: \mathbb{C} \rightarrow [0, 1]\) to both sides yields

\[
p(b\neg a) = p((a|b)) = p(a|b) \cdot p(a-b)/p(b),
\]

provided that \(p(b) > 0\). But, if one makes the common identification (but by no means, the only possible)

\[
(b\neg a) = (b\rightarrow a) \equiv (b\neg a),
\]

then one can show, by use of elementary properties of conditional and unconditional probabilities, that

\[
p(b\rightarrow a) = p(a|b) + p(b') \cdot p(a'|b)
\]

\[
\geq p(a|b)
\]

\[
\geq p(a-b),
\]

with strict inequality holding in general. (In fact, it is rather easy to construct examples where \(p(b\rightarrow a)\) is close to unity while \(p(a|b)\) is close to zero.) Furthermore, Calabrese [10], [11] has shown that not only will \(\rightarrow\) not work in (1.2), but no boolean function of two arguments possibly representing implication, will satisfy (1.2).

Yet, often individuals assume the identification in (1.1) - at least tacitly - and manipulate and interchange conditional probabilities and implications, noting an easily-derivable calculus of relations for such implications. (See, e.g., Table 1.) In fact, Stalnaker's Thesis [8] carries out this identification; but see Lewis' criticism [9].
Thus, we must pose the basic question: Can we make sense of "conditional object" (a | b) compatible with conditional probability p(a | b)? Also, how do we compute (a | b)v(c | d) and in turn evaluate the expression p(a | b)v(c | d)? Lastly, can we use such entities in combination with evidence problems in conjunction with knowledge-based systems?

Another approach to avoiding the establishment of conditional objects, in effect, is to equate a given function and corresponding common antecedent conditional probabilities, make sense of "conditional object" (a | b) compatible difficulties conceptually as well as computationally in order to evaluate the entities in combination of evidence problems in conjunction with evidence problems in conjunction with knowledge-based systems.

Additional discussions concerning Lewis' "triviality result" concerning Stalnaker's Thesis can be found in [12],[13],[14].

The proposed remedy to the above problem involves an extension of coset theory as applied to boolean algebras, where the original boolean algebra of events \(\Omega \) is replaced by the union of all principal ideal quotient rings of \(\Omega \). The fundamental justification for this will be given below, followed by an example illustrating how conditional objects and Conditional Probability Logic can be directly utilized in a knowledge-based system. (See Section 2.)

However, let us first back up and consider how a typical combination of evidence problem can be perceived. Figure 1 illustrates the basic information processing flow from the inception of the problem to the decision process. This processing consists of five subdivisions in sequence:

1. Cognition: Initial processing of information.
2. Natural Language Formulation: Relevant to all narratives produced by human observers.
3. Primitive Symbolic Formulation of Information: Formation of well-defined formulas or strings of information, without refined constraints. Use of basic formal connects for: \(\cdot \), \(\lor \), \(\Rightarrow \), \(\neg \); implication, \(\exists \).
4. Full Formal Language: Use of all relevant syntax, constraints on connectors, such as associativity, commutativity, absorbing, distributivity, demorgan, etc.
5. Full Semantic Evaluations or Logic: Must be in model form, i.e., some type of homomorphism preserving basic structure of full formal language.

It is the choice of the last two subprocesses with which we are concerned here. We will call such a pair of subprocesses 4 and 5 in Figure 1 an algebraic logic description pair (ALDP). As given in Figure 1, let:

ALDP 1 = (boolean algebra \(\mathbb{B} \), Classical Logic (CL))
ALDP 2 = (modified boolean algebra \(\mathbb{B} \), Fuzzy Logic (FL))
ALDP 3 = (boolean algebra \(\mathbb{B} \), Probability Logic (PL)).

In all three ALDP's above, implication \(\alpha \) is interpreted as \(\Rightarrow \), where \(\alpha \Rightarrow \beta \) is \(\beta \), for all propositions \(\alpha, \beta \).

Theorem 1. Fuzzy Logic (FL) is a pseudo-complemented distribution lattice.

In the first three ALDP's, implication \(\alpha \) is interpreted as \(\Rightarrow \), where \(\alpha \Rightarrow \beta \) is \(\beta \), for all propositions \(\alpha, \beta \).

Table 1. ALDP 1: Calculus of Operations for Implication (1.3).

Given boolean algebra \(\mathbb{B} \), for all \(a, b, c, a_i, b_i \in \mathbb{B} \):

\[
\begin{align*}
(b \Rightarrow a) &= (b \cdot a) \\
(\neg a) &= a
\end{align*}
\]

Chaining:
\[
(c \Rightarrow a) = (c \Rightarrow b) \cdot (b \Rightarrow a)
\]

\[
(b \Rightarrow a) = (a \cdot (b \cdot a)) \lor (a \cdot b)
\]

Homomorphisms hold for \(b_i = -b_i = b \):

\[
\begin{align*}
\text{Homomorphisms for } b_i & = -b_i = b : \\
m &= m \\
(\neg a) &= (\neg b) \\
(b \Rightarrow a) &= (b \cdot a)
\end{align*}
\]

for all \(i \in \{1, \ldots, m\} \).

Table 1. ALDP 1: Calculus of Operations for Implication (1.3).
1. Given boolean algebra \(\mathbb{B} \) and semantic evaluation
\[
I : \mathbb{B} \rightarrow \{0,1\}, \quad I(0) = 0, \quad I(1) = 1, \quad (1.14)
\]
for all \(a, b \in \mathbb{B} \):
\[
\begin{align*}
I(a \lor b) & = \text{MAX}\{I(a), I(b)\}, \\
I(a \land b) & = \text{MIN}\{I(a), I(b)\}, \\
I(a^\prime) & = 1 - I(a), \\
I(a + b) & = I(a) \lor I(b), \\
I(a \Rightarrow b) & = \text{MAX}\{1 - I(a), I(b)\}.
\end{align*}
\] (1.15-1.19)

Table 2. ALDP 1: CL Evaluation for \(\mathbb{B} \).

2. For modified boolean algebra \(\mathbb{B}_0 \), for all \(a, b, c, a_1, b_1, i = 1, \ldots, m \):
\[
(b \Rightarrow a) = (b \Rightarrow a) \in \mathbb{B}_0, \quad (1.20)
\]
if \(a \leq b \), i.e., \(a = a \land b \), for middle equality to hold.
\[
(b \Rightarrow a) = a, \quad (1.21)
\]
chaining \((c \Rightarrow (a \lor b) \lor (b \Rightarrow a)) = (c \Rightarrow b) \Rightarrow (b \land c \Rightarrow a)\). \((1.22) \)
\[
(b \Rightarrow a)^i = a \land b \neq (b \Rightarrow a), \quad (1.23)
\]
\(m \) \(v \) \((b_i \Rightarrow a_i) = (b_i \Rightarrow a_i), \), \(v = 1 \)
\(m \) \(v \) \((b_i \Rightarrow a_i) = (b_i \Rightarrow a_i), \), \(v = 1 \)
\(m \) \(v \) \((b_i \Rightarrow a_i) = (b_i \Rightarrow a_i), \), \(v = 1 \)
In general, \((1.24) \)
\[
\begin{align*}
& m, \quad v = 1, \quad i = 1, \ldots, m. \\
& m, \quad v = 1, \quad i = 1, \ldots, m. \\
& m, \quad v = 1, \quad i = 1, \ldots, m.
\end{align*}
\] (1.25)

Homomorphisms hold for \(b_1 \cdots b_m \) :
\[
\begin{align*}
& m, \quad v = 1, \quad i = 1, \ldots, m. \\
& m, \quad v = 1, \quad i = 1, \ldots, m. \\
& m, \quad v = 1, \quad i = 1, \ldots, m.
\end{align*}
\] (1.26-1.28)

Table 3. ALDP 2: Calculus of Operations for Implication (1.3).

For ALDP 2, for FL evaluation over \(\mathbb{B}_0 \), where
\(\text{now"poss} \) indicates Zadeh's possibility or membership function
\(I = \text{poss}: \mathbb{B}_0 \rightarrow [0,1], \quad I(0) = 0, I(1) = 1. \) \((1.29) \)
replacing (1.14), see Table 2 for all evaluations.

For ALDP 3, formal language is same (\(\mathbb{B} \) boolean)
as for ALDP 1; thus see Table 1, for calculus of operations for implication.

For ALDP 3, the semantic evaluation becomes the standard probability type as given in Table 4:

Given boolean algebra \(\mathbb{B} \) and semantic evaluation
\[
I : \mathbb{B} \rightarrow [0,1], \quad I(0) = 0, \quad I(1) = 1. \quad (1.30)
\]
For any finitely additive probability measure \(p \), for all \(a, b, a_1 \in \mathbb{B}, i = 1, \ldots, m \):
\[
p(\text{a} \lor \text{b}) = p(\text{a}) + p(\text{b}) - p(\text{a} \land \text{b}), \quad (1.31)
\]
\[
p(v \land a) = \sum_{i=1}^{m} I(\text{a}_i) I(\text{a}_i \land \text{m}), \quad (1.32)
\]
\[
p(a') = 1 - p(a), \quad (1.33)
\]
\[
p(b \Rightarrow a) = p(b') + p(a \land b). \quad (1.34)
\]

Table 4. ALDP 3: PL Evaluation for \(\mathbb{B} \).

2. AN EXAMPLE

With all the preliminaries out of the way, consider next a simple medical diagnosis system as illustrated in Figure 2 (next page). The basic implementation scheme in combining evidence is given below, all corresponding in Figure 1 to information processing, up to and including Stage 3, Primitive Symbolizations, prior to choice of ALDP, making up the last two stages (4,5):

1. Choose data event variable set \(G \) from attribute variables. Observe symptoms \(y \in \text{dom}(G) \).

2. Form \(I_y \), the set of all inference rules \(\psi \)
where in either antecedent and/or consequent some variables in \(G \) appear. I, can also be considered the potential "firing" class of inference rules, if CL and ALDP 1 were chosen.

3. Form
\[
\mathbb{R}(G[y], \mathbb{A}_y[W_1], \mathbb{E}_y[W_2]) = \{y \in \psi \langle \mathbb{I}_y \rangle \},
\]
the conjunction of all data with relevant inference rules, where \(\mathbb{R} \) denote \(\mathbb{E} \) as the set of all diagnoses variables \(\theta \in \mathbb{I}_y \); \(\mathbb{A}_y \) the set of all attribute variables in \(I_y \) and \(\mathbb{W}_y \), \(\mathbb{W}_2 \) represents the domain \(\text{variables} \), with \(\mathbb{W}_2 \) corresponding to \(\text{\theta} \).

4. Compute
\[
(y \Rightarrow \text{e}_y[W_2]) \Rightarrow v (f(G[y], \mathbb{A}_y[W_1], \mathbb{E}_y[W_2])), \quad (2.2)
\]
the full "integrated-out" form representing the posterior relation between symptoms and diagnoses.

Next, as a particularization, suppose now that in terms of the above scheme attribute \(b_1 \) is selected and \((106', \text{REDISH})\) is observed. Thus, using Figure 2:
\[
\begin{align*}
& f(G[y], \mathbb{A}_y[W_1], \mathbb{E}_y[W_2]) = y \Rightarrow \text{e}_y[W_2] \quad \mathbb{W}_y \in \text{dom}(A_y), \\
& G = \{b_1\} ; \quad y = \langle (106', \text{REDISH}) \rangle; \\
& I_y = \{(y \Rightarrow \text{a}_1), \langle y \lor \text{b}_2 \rangle, \langle \text{b}_2 \rangle, \langle \text{a}_1 \rangle \}; \\
& \mathbb{A}_y = \{\text{a}_1, \text{a}_2, \text{a}_3, \text{b}_2\}; \quad \text{e}_y = \{\text{e}_1\}; \\
& \mathbb{W}_y = \{\text{b}_1\}; \quad \text{w}_1 = \{1, 2, 3\}; \quad \text{w}_2 = \{4\}; \\
& f(G[y], \mathbb{A}_y[W_1], \mathbb{E}_y[W_2]) = y \Rightarrow \text{e}_y(y); \\
& \mathbb{W}_y \in \text{dom}(A_y). \quad (2.3)
\end{align*}
\]

The final step in the evaluation of the medical diagnosis is to choose an ALDP and apply this to (2.2) to obtain the semantic evaluation of the relation between symptoms and diagnoses. Consider, then this evaluation for the particular case given above in (2.3) for ALDP's 1,2,3.

For the formal language for ALDP 1 and 3, \(\mathbb{B} \) boolean, using either Table 1 or basic properties of boolean algebras, one readily obtains
\[
f(G[y], \mathbb{A}_y[W_1], \mathbb{E}_y[W_2]) = \langle (n \Rightarrow \text{e}_y), \lnot (n \Rightarrow \text{e}_y) \rangle = \langle (\mathbb{W}_y) \rangle , \quad (2.4)
\]
where
\[
\begin{align*}
& n \Rightarrow \text{a}_1 \lor \text{a}_2 \lor \text{a}_3 \Rightarrow \text{e}_1, \quad (2.5)
\end{align*}
\]
Thus,
\[
(y \Rightarrow \text{e}_y[t_1]) = \langle (\text{b}_1[y]), \text{e}_y[t_1] \rangle. \quad (2.6)
\]
volving conditioning interpreted as implication is given in Section 3. Then applying these results directly to (2.9) yields first (using (2.7)), after simplifying:

\[f(x_1, y_1 | a_q(x_2) = b_2(x_2), (n_0, q_0(x_2), y_1, a_0(x_2)) = b_0(x_2)) \]

which is compatible with (2.19).

Note also that the calculus of operations for conditional objects (again, see Section 3) is analogous to those for ALDP's 1, 2, 3, using (1.3) for implication, by inspection of Tables 1 and 3. Now further, that these ALDP's are not quite homomorphisms for fixed common antecedents, due to problems with negation and/or disjoint union (+), see (1.11)-(1.13) (1.26)-(1.28). But in effect, conditional probability forms hold which are natural counterparts of homomorphic relations.*\[\text{**} v \in \mathbb{N} \]

\[p(a \cup b) = p(a \cup b) \]

Indeed, the following result shows that we remove the particular probability measure \(p \) in (2.18) and (2.19), prior to any evaluation, the resulting entities - conditional objects - are uniquely determined.

Theorem 2.1 Characterization of Conditional Objects

Given a boolean algebra \(\mathfrak{B} \) (or equivalently, \(\mathfrak{B} \)) when considering + and \(\cdot \), there is a unique space \(\mathcal{V} \) of smallest possible classes of elements - according to subset partial ordering - denoted as conditional objects \(\mathfrak{B} \), \(\mathfrak{C} \), \(\mathfrak{D}, \ldots \) for all \(\mathfrak{A}, \mathfrak{B}, \mathfrak{C}, \ldots \in \mathfrak{B} \), such that the measure-free counterparts \(\mathfrak{B} \) (see (3.16) and (3.27)) and (2.19) hold. For the latter, we substitute \((a \cdot b) = (a \cdot b) \) for all \(a, b \in \mathcal{V} \).

Moreover, the conditional objects constituting \(\mathfrak{B} \) coincides with all possible principal ideal cosets of \(\mathfrak{R} \) on \(\mathfrak{B} \), where explicitly, for all \(a, b \in \mathfrak{B} \):

\[(a \cdot b) = a \cdot b \]

The principal ideal coset generated by \(a \) with residue \(a \) (or, equivalently, \(a \cdot b \)).

Proof:

Use first the basic homomorphism theorem characterizing quotient rings, then apply equivalence class property of cosets. See [2] for details.

With the rigorous basis for conditional objects justified above, define ALDP 4 as the pair \((B, p)\), where \(p: \mathcal{V} \to [0, 1] \) is extended to \(p: \mathcal{V} \to [0, 1] \) via (1.2) or (4.23). Note also the immediate relation from (2.21):

\[(a \cdot b) = (a \cdot b) \]

In addition, since for all \(a, b \in \mathfrak{B} \),

\[(a \cdot b) \in \mathfrak{B} \]

then \(\mathfrak{B} \) extends \(\mathfrak{B} \) (although \(a \cdot b \in \mathfrak{B} \)).

In the approach taken here, all results involving conditional objects are derived from first principles. In this vein, define all operations among con-
ditional objects as the natural class or component-wise extension of the corresponding operations among the elements. Thus for example, for \(a, b, c, d \in \mathbb{N} \),

\[
\begin{align*}
(a\cdot b) + (c\cdot d) &= (a\cdot b) + (c\cdot d), \\
(a\cdot b) + (c\cdot d) &= (a\cdot b) + (c\cdot d),
\end{align*}
\]

(2.25)

also a subset of \(\mathbb{N} \) as are \(\{a\cdot b\} \) and \(\{c\cdot d\} \). From this, it follows immediately that conditioning as defined here is essentially the functional inverse of one-sided conjunction, i.e., the following hold for all \(a, b, c, d \in \mathbb{N} \):

\[
\begin{align*}
(a\cdot b) + (c\cdot d) &= (a\cdot b) + (c\cdot d), \\
(a\cdot b) + (c\cdot d) &= (a\cdot b) + (c\cdot d),
\end{align*}
\]

(2.26)

Hailperin [15] considered conditional objects, extending some of Boole's original ideas, but avoided combining these entities when antecedents differ through use of universal algebra and partially-ordered operators. Domotor [16], following the direction of "qualitative probability theory and preference orderings, developed a rather cumbersome indirect approach, not realizing the rich structure of conditional objects as the natural class or component-wise extension> of the corresponding operations among the elements. Much work remains in tying in these concepts to other definitions for operators upon them, in contradistinction to the first principles approach taken here.

3. Basic Properties of Conditional Objects

Theorem 3.1

The boolean operations \(+, \cdot, \cdot, (\cdot) \) are all well-defined over \(\mathbb{N} \) as the natural class extensions of the ordinary counterparts over \(\mathbb{N} \). Indeed;

\[
\begin{align*}
(a\cdot b)' &= (a\cdot b) = (a\cdot b), \\
(a\cdot b) + (c\cdot d) &= (a\cdot c) + (b\cdot d),
\end{align*}
\]

(3.1)

for any \(a, b, c, d \in \mathbb{N} \).

Now suppose that \(n \) is regular with \(a, b, c, d \in \mathbb{N} \). Thus for all \(a, b, c, d \in \mathbb{N} \):

\[
\begin{align*}
(a\cdot b) + (c\cdot d) &= (a\cdot b) + (c\cdot d), \\
(a\cdot b) + (c\cdot d) &= (a\cdot b) + (c\cdot d),
\end{align*}
\]

(3.2)

Finally, replacing \(b \) by \(b' \) and \(d \) by \(d' \) in (3.1), and putting together (3.11), (3.20), and using the property again of regular rings that sums of principal ideals are principal ideals also as computed in (3.1a),

\[
\begin{align*}
(n\cdot b' + a) + (n\cdot d' + c) &= n\cdot(b'vd') + (a+c), \\
(n\cdot b' + a) + (n\cdot d' + c) &= n\cdot(b'vd') + (a+c),
\end{align*}
\]

(3.10a)

by De Morgan's relation valid for regular rings and the property of regular rings whereby sums of principal ideals are principal ideals computable as above. Thus using (2.20) and (2.21), (3.2) holds.

Next, using (3.10b), (3.1) holds since applying the natural class extension to ('), assuming \(n \) boolean here,

\[
\begin{align*}
(a\cdot b)' &= (a\cdot b)' = (a\cdot b)' + (a\cdot b)' = (a\cdot b)' + (a\cdot b)' = (a\cdot b)',
\end{align*}
\]

(3.10b)

Note that for all \(a, b, c, d \in \mathbb{N} \), any commutative ring with unity, again using natural class extension

\[
\begin{align*}
(n\cdot b + a) + (n\cdot d + c) &= K(a,b,c,d) + a + b, \\
(n\cdot b + a) + (n\cdot d + c) &= K(a,b,c,d) + a + b,
\end{align*}
\]

(3.11)

where

\[
\begin{align*}
K(a,b,c,d) &= (x\cdot y\cdot b\cdot d + y\cdot a\cdot c + x\cdot b\cdot c) | x, y \in \mathbb{N},
\end{align*}
\]

(3.12)

Also let analogously, again using natural class extension

\[
\begin{align*}
K_0(a,b,c,d) &= n\cdot b + d + n\cdot a + d + n\cdot b\cdot c.
\end{align*}
\]

(3.13)

It follows that letting \(x=0 \) and then \(y=0 \) in (3.12), and using similar manipulations that

\[
\begin{align*}
K(a,b,c,d) &= K_0(a,b,c,d).
\end{align*}
\]

(3.14)

Lemma 1.

For all \(a, b, c, d \in \mathbb{N} \), commutative ring with unity, \((a,b,c,d) \) is an ideal iff \(K(a,b,c,d) = K_0(a,b,c,d) \).

iff \(a\cdot b\cdot d \in K(a,b,c,d) \).

Note now that \(n \) is regular with \(a, b, c, d \in \mathbb{N} \).

Let \(z \in \mathbb{N} \) be arbitrary and define

\[
\begin{align*}
x_i &= \lambda_d^d, y_i = \lambda_d^d, x_0 = 1 - a\cdot \lambda_b, y_0 = z\cdot c\cdot \lambda_d + a\cdot \lambda_c\cdot \lambda_d.
\end{align*}
\]

(3.15)

Then substituting (3.15), (3.16) into (3.12) yields

\[
\begin{align*}
x_i \cdot y_i + y_i \cdot a - d + x_i \cdot b - c = b\cdot d - (x_0 \cdot y_0 + a\cdot \lambda_b\cdot y_0 + c\cdot \lambda_d^d) = b\cdot d - (x_0 + a\cdot \lambda_b\cdot y_0 + c\cdot \lambda_d^d) = b\cdot d - (1\cdot z) = b\cdot d - z.
\end{align*}
\]

(3.16)

which in turn validates the last statement in Lemma 1 and hence by Lemma 1,

\[
K(a,b,c,d) = K_0(a,b,c,d).
\]

Finally, replacing \(b \) by \(b' \) and \(d \) by \(d' \) in (3.11), and putting together (3.11), (3.20), and using the property again of regular rings that sums of principal ideals are principal ideals also as computed in (3.1a),

\[
\begin{align*}
(n\cdot a) + (n\cdot d' + c) &= n\cdot a + n\cdot d' + n\cdot b\cdot c + a + c,
\end{align*}
\]

(3.21)

which is the same as (3.4), using (2.30), (2.31).

Assuming again that \(n \) is boolean, since demorgan's relations have natural class extensions to \(\mathbb{N} \), one can use (3.1) as

\[
\begin{align*}
(a\cdot b) + (c\cdot d) &= (a\cdot b') + (c\cdot d'), \\
(a\cdot b) + (c\cdot d) &= (a\cdot b') + (c\cdot d'),
\end{align*}
\]

(3.10)

where

\[
\begin{align*}
(a\cdot b) + (c\cdot d) &= (a\cdot b') + (c\cdot d'), \\
(a\cdot b) + (c\cdot d) &= (a\cdot b') + (c\cdot d'),
\end{align*}
\]

(3.10a)

by De Morgan's relation valid for regular rings and the property of regular rings whereby sums of principal ideals are principal ideals computable as above. Thus using (2.20) and (2.21), (3.2) holds.
where it should be remarked that in (3.23) and (3.24), on the right hand sides the collections of ideals to the left of avc and a-c are also ideals. Proofs of all of the above results together with other related investigations can be found in [2].

Theorem 3.1 specializes, when antecedents are the same, to the formal counterparts of well-used properties of conditional probabilities where the conditioning is upon the same event:

Corollary 3.1

For all $a, b, c \in \Omega$, assumed boolean,
\[
(a\circ b) \vee (c\circ b) = (a\circ b) + (a \cdot b) + (c \cdot b),
\]
\[
(a\circ b) \cdot (c\circ b) = (a\circ b) \cdot (c \cdot b),
\]
\[
(a\circ b) = (a \cdot b) = (b \cdot a),
\]
\[
(a\circ b) = (a \cdot b).
\]

It should be noted that there is a basic compatibility between Corollary 3.1 and the natural homomorphism $11/b \rightarrow 11/b'$, where for any $x \in \Omega$, $nat_b(x) = \langle x/b \rangle = x + \alpha
\hat{b}'$, (3.25)

where all basic properties of Ω are brought down to the fixed quotient ring $11/b$ defined through the usual coset operations.

Since all boolean functions over Ω can be expressed as simple canonical functions of e.g., $v, \cdot, \cup \{\}$, it follows that the same is true of their natural class extensions and a simple argument thus shows that if $f: \Omega^+ \Omega$ is any n-ary boolean function, then the natural extension of to $f: \Omega^+ \Omega$ is well-defined.

Returning to the partial order s defined over Ω (boolean, although extendible to regular rings), where $a \succeq b$ iff $a = a \cdot b$ iff $b = a \cdot b$ (3.29)

and where \leq possesses all the usual lattice properties, it is basic to inquire if the natural class extension of \leq from Ω to Ω preserves these properties.

Theorem 3.2

Let Ω be boolean. Then define for any $a, b, c \in \Omega$
\[
(a \circ b) \leq (c \circ d) \iff (a \circ b) = (a \circ b) \cdot (c \circ d).
\]

Then it follows that
\[
(a \circ b) \leq (c \circ d) \iff (c \circ d) = (a \circ b) \vee (c \circ d)
\]
iff $a \cdot b \leq c \cdot d$ and $c \cdot d \leq a \cdot b$.

In addition, among the lattice-like properties enjoyed by the legitimate partial order \leq over Ω (since it can be shown to be anti-symmetric, reflexive, and transitive) are, letting $A = (a \circ b)$, $C = (c \circ d)$, $E = (e \circ f)$, $G = (g \circ h) \in \Omega$:
\[
A \leq C \iff A \subseteq C \subseteq E \iff A \leq C \leq E \iff A \leq E \leq A;
\]
if $A \leq C$, then $C = C'$;
\[
if \ A \leq C \land E \leq G, then A \leq E \leq C \land E \leq G. (3.32)
\]

Proofs:
The proofs in some cases are rather long, such as

for the bottom of (3.31). Again see [2] for detail.

From this point on, most proofs will be omitted and the interested reader is referred to [2].

In conjunction with the various properties displayed so far, Ω possesses a number of interesting algebraic properties summarized in the next theorem.

Theorem 3.3

Assuming as usual here that Ω is a boolean ring, Ω in general is not a ring due to the failure of additive inverses (-) to hold. However Ω is commutative and associative relative to $+$, \cdot, has additive identity 0 the same as in Ω and multiplicative unity 1 the same as in Ω. Also, \vee and \cdot are mutually distributive over Ω; Ω (like Ω) is idempotent, demorgan relative to \vee, $(\cdot)'$, and \vee and \cdot are mutually absorbing over Ω; finally, $(\cdot)'$ is involutive over Ω.

Other properties of conditional objects contributing to the development of a calculus of relations are presented below.

Theorem 3.4

Let for all $a, b, c, d \in \Omega$, boolean,
\[
(a \circ b) = (0 \circ 0) = 0 ,
\]
\[
(a \circ b) = (0 \circ 0) = a + b ; \quad (3.34)
\]
\[
(a \circ b) = (0 \circ 0) = a + b ; \quad (3.35)
\]
\[
(a \circ b) = (0 \circ 0) = a \cdot b ; \quad (3.36)
\]
\[
(a \circ b) = (0 \circ 0) = a \cdot b ; \quad (3.37)
\]
\[
(a \circ b) = (0 \circ 0) = a \cdot b ; \quad (3.38)
\]
\[
(a \circ b) = (0 \circ 0) ; \quad (3.39)
\]
\[
(a \circ b) = (0 \circ 0) ; \quad (3.40)
\]
\[
(a \circ b) = (0 \circ 0) ; \quad (3.41)
\]
\[
(a \circ b) = (0 \circ 0) \cdot (0 \circ 0) \cdot (0 \circ 0) ; \quad (3.42)
\]
\[
(a \circ b) = (0 \circ 0) \cdot (0 \circ 0) \cdot (0 \circ 0) ; \quad (3.43)
\]
\[
(a \circ b) = (0 \circ 0) \cdot (0 \circ 0) \cdot (0 \circ 0) ; \quad (3.44)
\]

then for any $j, j=1, \ldots, m$, the following forms of Bayes' Theorem hold:
\[
(a \circ b) = (a \circ b) \cdot (b \circ a) ; \quad (3.45)
\]
\[
(a \circ b) = (b \circ a) ; \quad (3.46)
\]
\[
(b \circ a) = (b \circ a) \cdot (b \circ a) ; \quad (3.47)
\]
\[
(b \circ a) = (b \circ a) ; \quad (3.48)
\]

The next results tie in conditioning as defined here with classical implications.

Theorem 3.5

For all $a, b \in \Omega$ boolean
\[
(a \circ b) = (b \circ a) . \quad (3.49)
\]

The smallest element of $(a \circ b)$ relative to \leq is $a \cdot b$, while the largest element is $(b \circ a)$, thus
\[
(a \circ b) \leq (a \circ b) \leq b \cdot a. \quad (3.50)
\]

Also,
(b + a) = (a + b)v (a + b) = (a + b)v (a + b)\v (a + b), \quad (3.51)
(a + b) = (b + a)\v (b + a) = (b + a)v (b + a)\v (b + a), \quad (3.52)
(b + a') = (b + a')\v (b + a') = (b + a')v (b + a')\v (b + a'), \quad (3.53)
(a + b) = (a + b)\v (a + b) = (a + b)v (a + b)\v (a + b), \quad (3.54)
(a + b) = (a + b)\v (a + b) = (a + b)v (a + b)\v (a + b), \quad (3.55)
yielding as the smallest element of (a + b)\v (a + b) being a + b and the largest being a + b, analogous to (3.50).

Also, note the pairwise comparisons between b + a and (a + b) : (See also Table 1, Section 1.)

(a + b) = (a + b)\v (a + b) = (a + b)v (a + b), \quad (3.56)
(1 + b) = (b + b) = (b + b)\v (b + b) = (b + b)v (b + b), \quad (3.57)
(0 + b) = (b + b) = (b + b)\v (b + b) = (b + b)v (b + b), \quad (3.58)
(a + b) = (a + b)\v (a + b) = (a + b)v (a + b), \quad (3.59)

Also, for all a, b, c, d \in \mathbb{N} boolean, define

f(\{d\}((a + b)\v (c + d)) \quad \text{as defined in the previous sections. Thus for any a, b, c, d \in \mathbb{N} boolean, define}

((a + b)\v (c + d)) = \{ (a + b)\v (c + d) \} \quad (4.1)

Some basic properties and an explicit solution are given next.

Theorem 4.1

For all a, b, c, d \in \mathbb{N} boolean:

(a + b)\v (c + d) = (a + b)\v (c + d) \quad (4.2)

and

((a + b)\v (c + d)) = (a + b)\v (c + d) \quad (4.3)

Without loss of generality, using (2.20), (3.31), and (4.2), assume from now on, unless otherwise stated:

a = b, c = d, (a + b) = (c + d) \quad (4.4)

Then explicitly

((a + b)\v (c + d)) = (a + b)\v (c + d) \quad (4.5)

where for all tss \in \mathbb{N},

f(a,b,c,d) = (a + b)\v (c + d) \quad (4.6)

resulting in

b = (a + b)\v (c + d) \quad (4.7)

Finally, this section is concluded with a result which is not only interesting in its own right as a generalization of the classic result concerning the disjointness or identity of cosets having the same antecedent, but which is useful in further analysis of conditional objects.

Theorem 3.6

For any a, b, c, d \in \mathbb{N} boolean and denoting n below for the ordinary class intersection,

(a + b)\w (c + d) = \begin{cases} 0 & \text{iff } a + c \notin (0 + b) \w (0 + d) \\ (c + d) & \text{iff } a + c \in (0 + b) \w (0 + d) \end{cases} \quad (3.71)

where

x = p + a = q + c ; a + c = q + p \quad (3.72)

for some p \in (0 + b) and q \in (0 + d) .

From the above it follows that

(a + b) \w (c + d) = \begin{cases} (a + b) & \text{iff } d \leq b \text{ and } a \in (c + d) \end{cases} \quad (3.73)

4. ADDITIONAL PROPERTIES OF CONDITIONAL OBJECTS

In the last section, a basic calculus of operations was presented for conditional objects. In this section, certain selected topics involving conditioning are briefly considered.

First, define higher order conditional objects through natural class extensions of conditional objects as defined in the previous sections. Thus for any a, b, c, d \in \mathbb{N} boolean, define

((a + b)\v (c + d)) = f(\{d\}((a + b)\v (c + d))) \quad (4.1)

Unfortunately, unlike the single conditional case (see (2.22)), second level conditional objects pose a problem with respect to both uniqueness of representations relative to their antecedents and the closure of boolean operations. Surprisingly, only three parameter values - out of four possible a priori - are required to specify such forms uniquely. The representation is characterized in the following theorem:

Theorem 4.2

For all a, b, c, d, e \in \mathbb{N} boolean satisfying (4.4)

(a replaced by a, etc.) and b, c replaced as in (4.7), (4.8), respectively (with b replaced by b, etc.), i = 1, 2 :

((a + b)\v (c + d)) = ((a + b)\v (c + d)) iff (a + b) = (a + b), (4.9)

and

((a + b)\v (c + d)) = ((a + b)\v (c + d)) iff (a + b) = (a + b), (4.10)

for any fixed w \in \mathbb{N}.

276
One reasonable way to treat the difficulties arising from the necessary introduction of iterated conditional forms is to determine if there is some mapping from these higher levels down to the single level which can be used to identify the former with the latter.

As a candidate for the above, suppose we consider the class reduction operator $\mathcal{U}: P(P(A)) \rightarrow P(A)$, where for all $A \in P(P(A))$,

$$\mathcal{U}(A) \triangleq \mathcal{U} A = \{x | x \in A \in A \} \subseteq A. \quad (14.14)$$

Theorem 4.3

Let \mathcal{U} be a boolean and denote, analogous to \mathcal{P} being the class of all (single) conditional objects formed from A, \mathcal{U} as the class of all (double) conditional objects formed from \mathcal{U}, noting that $\mathcal{U} \subseteq \mathcal{P} \subseteq \mathcal{P}$. Then:

- If \mathcal{U} is a surjective homomorphism relative to all boolean operations extended in a natural way on \mathcal{U}.

Furthermore, the specific relation defining \mathcal{U} can be determined to be, for all $a,b,c,d \in \mathcal{U}$ satisfying (4.4),

$$\mathcal{U}((ab)(cd)) = (ab\cdot c\cdot d). \quad (14.15)$$

In particular,

- $\mathcal{U}(ab) = (ab)$,
- $\mathcal{U}(ab) = (ab)$,
- $\mathcal{U}(ab) = (ab)$,
- $\mathcal{U}(ab) = (ab)$.

Also, the following restrictions of \mathcal{U} are surjective isomorphisms relative to all boolean operations extended in a natural way:

1. $\mathcal{U}(ab) = (ab)$,
2. $\mathcal{U}(ab) = (ab)$,
3. $\mathcal{U}(ab) = (ab)$,
4. $\mathcal{U}(ab) = (ab)$.

Thus, in a natural way, one can identify all higher order conditional objects with single conditional ones.

Finally, we conclude this paper with some results involving conditional objects and conditional probabilities directly.

Recall that conditional probabilities can be considered a homomorphic evaluation of the form $p(a|b) = \{a | a \in B\}$, as well as (3.1) and (3.25)-3.27. Again, see Theorem 2.1. Also, conditional probabilities can be identified, with the introduction of conditional objects, as the extension of probability measure $p: [0,1] \rightarrow \mathbb{R}$, i.e., if $p(a) \leq p(c)$, then

$$\mathcal{U}(ab) = \mathcal{U}(ab) = \mathcal{U}(ab) = \mathcal{U}(ab). \quad (4.23)$$

In particular, this shows that (3.50) implies, as a check, (1.4). Other inequalities can be similarly established through using the formal counterparts. One can also define measure-free independence of conditional objects (a,b) and (c,d) to occur when they are p-independent, i.e.,

$$p(ab\cdot cd) = p(ab) \cdot p(cd). \quad (4.24)$$

for all possible probability measures $p: [0,1]$. One simple example of such a measure-free pair is $(a,b), (b,c)$, using (2.26)(left side). This can be extended to certain other pairs and to multiple conditional forms as the factors in (3.48). See [11, Section 5.] Also sequential updating of information can be very elegantly described through the use of conditional objects rather than only through conditional probabilities (11, Section 5).

Lastly, we consider briefly random conditional objects and how they relate to conditional probabilities. Beginning with probability space (M,A,p) and X,Y.

$$V : \mathbb{R} \rightarrow X \cdot r.v. W : \mathbb{R} \rightarrow \mathbb{R} \cdot r.v. V = W, X = W, Y = W, Z = \mathbb{R} \in \mathbb{R} \cdot$$

respectively, where for all $a,b \in A$,

$$V(a) = W(a) = W(b) = W(b) = V(a) = W(b) = W(b). \quad (4.25)$$

Then the random conditional object $(W|V)$ is defined by,

$$V(a) = W(a) = W(b) = W(b) = V(a) = W(b) = W(b). \quad (4.26)$$

with inverse mapping $(W|V)$, yielding for any $c \in \mathbb{R}$,

$$V^{-1}(c,d) = V^{-1}(c,d) = V^{-1}(c,d) = V^{-1}(c,d). \quad (4.27)$$

Thus, $(W|V)$ induces "conditional event probability space" $(\mathbb{R}^{+},\mathbb{R}^{+},\mathbb{R})$, where $P(W|V) = P(W|V) = P(W|V) = P(W|V)$. (4.28)

By using an optimal approximation technique, arithmetic operations over conditional objects can also be determined, in turn yielding expectations of random conditional objects, defined in the natural way. Thus, e.g.,

$$E((W|V)) = (E(W|V)) \cdot (4.29)$$

where $E(\cdot)$ is ordinary expectation. (See [1], Section 5)

5. REFERENCES

1. Goodman, I.R., Nguyen, H.T., "Conditional objects and the modeling of uncertainties", in Fuzzy Computing, M.M. Gupta et al., eds., North-Holland Co., 1987.
2. Goodman, I.R., Nguyen, H.T., An Algebraic Theory of Conditioning with Applications to Uncertainty Modeling (monograph to appear).
3. Goodman, I.R., Nguyen, H.T., Uncertainty Models for Knowledge-Based Systems, North-Holland Co., 1985.
4. Rescher, N., Many-Valued Logic, McGraw-Hill Co., 1969.
5. Dubois, D., Prade, H., Fuzzy Sets and Systems, Academic Press, New York, 1980.
6. Mendelson, E., Boolean Algebra and Switching Circuits, Schaum Outline Series, McGraw-Hill Co., New York, 1970.
7. Lukasiewicz, W., "General approach to nonmonotonic logics", Proc. 8 Int. Conf. A.I., 1983, 352-354.
8. Stalnaker, R.C., "Probability and conditionals", Philos. of Science, 37, 1970, 64-80.
9. Lewis, D., "Probabilities of conditionals and conditional probabilities", Phil. Rev., 86(1), July, 1976, 297-315.
10. Calabrese, P., "The probability that p implies q", Preliminary Report, Calif. State College; abstract in Amer. Math. Soc. Notices, 22(3), April, 1975, A430-431.
11. Calabrese, P., "An algebraic synthesis of the foundations of logic and probability", submitted to Info. Science (1987).
12. Rehder, W., "Conditions for probabilities of conditionals to be conditional probabilities", Synthese, 85, 1982, 439-443.
13. Appiah, A., Assertion and Conditionals, Cambridge University Press, Cambridge, England, 1985.
14. Nute, D., Topics in Conditional Logic, D. Reidel Co. Dordrecht, Holland, 1980.
15. Halperin, T., Boolean Logic and Probability, North-Holland Press, New York, 1975.
16. Domotor, Z., Probabilistic Relational Structures and Their Applications, Technical Report No. 14, Psychology Series Institute for Mathematical Studies in Social Sciences, Stanford University, Stanford, Calif., May 14, 1969.
17. Goodearl, K.R., Von Neumann Regular Rings, Pitman Publishers, London, 1979.