Wissenschaftlichen Publikationen mit Link-Liste

Studien:

Future IOL Technologies, December 2020

https://www.aaojournal.org/article/S0161-6420(20)31202-1/fulltext

Intraocular Pressure Telemetry for Managing Glaucoma During the COVID-19 Pandemic, December 2020

https://www.ophthalmologyglaucoma.org/article/S2589-4196(20)30326-4/abstract

Influence of electromagnetic radiation emitted by daily-use electronic devices on the Eyemate® system in-vitro: a feasibility study; September 2020

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7461327/

Use of a novel telemetric sensor to study interactions of intraocular pressure and ganglion-cell function in glaucoma; July 2020

https://bjo.bmj.com/content/early/2020/07/29/bjophthalmol-2020-316136.full

Short-Term and Long-Term Variability of Intraocular Pressure Measured with an Intraocular Telemetry Sensor in Patients with Glaucoma, July 2020

https://www.sciencedirect.com/science/article/abs/pii/S0161642020306783

Using sensors to estimate intraocular pressure: a review of intraocular pressure telemetry in clinical practice; July 2020

https://doi.org/10.1080/17469899.2019.1681264
Weekly and seasonal changes of intraocular pressure measured with an implanted intraocular telemetry sensor; June 2020

https://bjo.bmj.com/content/early/2020/06/04/bjophthalmol-2020-315970

Device profile of the EYEMATE-IO™ system for intraocular pressure monitoring: overview of its safety and efficacy; April 2020

https://www.tandfonline.com/doi/abs/10.1080/17434440.2020.1761788?journalCode=ierd20

The Value of Intraocular Pressure Telemetry in Monitoring the Therapeutic Effect of Glaucoma Medications; März 2020

https://journals.lww.com/glaucomajournal/Citation/2020/06000/The_Value_of_Intraocular_Pressure_Telemetry_in.17.aspx

Influence of electromagnetic radiation emitted by daily-use electronic devices on the Eyemate® system; Nov. 2019

https://www.researchgate.net/publication/337410943_Influence_of_electromagnetic_radiation_emitted_by_daily-use_electronic_devices_on_the_Eyemate_R_system

Telemetric measurement of intraocular pressure via an implantable pressure sensor – twelve-month results from the ARGOS-02 trial; 23.09.2019

https://www.sciencedirect.com/science/article/pii/S0002939419304696

Telemetric Intraocular Pressure Monitoring after Boston Keratoprosthesis surgery with the Eyemate-IO Sensor: Dynamics in the first year; 22.02.2019 / Sept. 2018

https://www.ajo.com/article/S0002-9394(19)30084-4/fulltext

https://www.ncbi.nlm.nih.gov/pubmed/30849343

Miniaturization in Glaucoma Monitoring and Treatment: A Review of New Technologies That Require a Minimal Surgical Approach; 06.02.2019

https://www.ncbi.nlm.nih.gov/pubmed/30725339
Automated, Noncontact Intraocular Pressure Home Monitoring after Implantation of a Novel Telemetric Intraocular Pressure Sensor in Patients with Glaucoma: A Feasibility Study; 06.12.2018
https://www.ncbi.nlm.nih.gov/pubmed/30627553

Potential Savings from Visit Reduction of Continuous Intraocular Pressure Monitoring; 12.2018
https://www.ncbi.nlm.nih.gov/pubmed/30473600

Implantation and testing of a novel episcleral pressure transducer: A new approach to telemetric intraocular pressure monitoring; 01/2018 und 07.02.2018
https://www.ncbi.nlm.nih.gov/pubmed/29066280
https://www.sciencedirect.com/science/article/pii/S0014483516303335

Long-term follow-up after implantation of a telemetric intraocular pressure sensor in patients with glaucoma: a safety report; 17.11.2017
https://www.ncbi.nlm.nih.gov/pubmed/29136327

Investigation of a novel implantable suprachoroidal pressure transducer for telemetric intraocular pressure monitoring; 02.06.2017
https://www.sciencedirect.com/science/article/pii/S001448351630207X

Selbsttonometrie mit einem telemetrischen, intraokularen Drucksensor bei Patienten mit Glaukom / Self-tonometry with a Telemetric Intraocular Pressure Sensor in Patients With Glaucoma; 24.08.2015
https://www.ncbi.nlm.nih.gov/pubmed/26609675

Implantation of a novel telemetric intraocular pressure sensor in patients with glaucoma (ARGOS study): 1-year results; 02.2015
https://www.ncbi.nlm.nih.gov/pubmed/25613949
An implantable intraocular pressure transducer: initial safety outcomes; 26.06.2014
https://www.ncbi.nlm.nih.gov/pubmed/24970583

An overview of home tonometry and telemetry for intraocular pressure monitoring in humans; 21.06.2014
https://www.ncbi.nlm.nih.gov/pubmed/24888380

Reliable intraocular pressure measurement using automated radio-wave telemetry: 07.01.2014
https://www.ncbi.nlm.nih.gov/pubmed/24531415

Intraocular pressure measurement by radio wave telemetry; 21.08.2011
https://www.ncbi.nlm.nih.gov/pubmed/22039243

Aktuelle Poster:

Influence of physiological Parameters on IOP during physical activity - a Pilot study with the EYEMATE-IO™; 07.06.2019
https://implandata.com/DE/WGC_2019_Choritz_final.pdf

Correlation between blood pressure, intraocular pressure and intracranial pressure – a pilot study; 07.06.2019
https://implandata.com/DE/Vincenzo_WGC-Melbourne-March_2019_poster%20(003)AE.pdf

Telemetric Intraocular Pressure Monitoring after Boston Keratoprosthesis surgery with the Eyemate-IO Sensor: Dynamics in the first year; 07.06.2019
https://implandata.com/DE/PosterARVO2019_ARGOS_Ed.pdf
Effect of gaze direction and lid squeezing on intraocular pressure in glaucoma patients using a novel implantable intraocular sensor; 07.06.2019

https://implandata.com/DE/JvdB_WGC_v1.4.pdf