Cellular models for the evaluation of the antiobesity effect of selected phytochemicals from food and herbs

Yen-Chen Tung, Pei-Hsuan Hsieh, Min-Hsiung Pan, Chi-Tang Ho

Institute of Food Sciences and Technology, National Taiwan University, Taipei 106, Taiwan
Department of Food Science, Rutgers University, New Brunswick, NJ 08901, USA
Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 40402, Taiwan
Department of Health and Nutrition Biotechnology, Asia University, Taichung 41354, Taiwan

Abstract

Dietary phytochemicals from food and herbs have been studied for their health benefits for a long time. The incidence of obesity has seen an incredible increase worldwide. Although dieting, along with increased physical activity, seems an easy method in theory to manage obesity, it is hard to apply in real life. Obesity treatment drugs and surgery are not successful or targeted for everyone and can have significant side effects. This low rate of success is the major reason that the overweight as well as the pharmaceutical industry seek alternative methods, including phytochemicals. Therefore, more and more research has focused on the role of phytochemicals to alleviate lipid accumulation or enhance energy expenditure in adipocytes. This review discusses selected phytochemicals from food and herbs and their effects on adipogenesis, lipogenesis, lipolysis, oxidation of fatty acids, and browning in 3T3-L1 preadipocytes.

Copyright © 2016, Food and Drug Administration, Taiwan. Published by Elsevier Taiwan LLC. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Introduction

Obesity has become a critical health problem worldwide, and it is the major risk factors for dyslipidemia, cardiovascular disease, carcinogenesis, and type-2 diabetes [1]. Physical activity, diet modification, drugs, and surgery are common strategies to decrease the incidence of obesity. Although the United States Food and Drug Administration have approved obesity-treatment drugs such as orlistat and lorcaserin to fight obesity, the side effects and the low rate of success of obesity
2. Characteristics of adipose tissue

2.1. Adipose tissue

Adipose tissue contains several cell types, including endothelial cells, blood cells, fibroblasts, preadipocytes, macrophages, other immune cells, and mature adipocytes [11,12]. When adipocytes increase in large numbers, they become the main cell type and then form adipose tissue. There are two types of fat in the body: white adipose tissue (WAT) and brown adipose tissue (BAT). WAT is a fuel storage organ; it stores excess energy as TG by a lipogenesis process and uses TG during food deprivation by a lipolysis process. Excessive energy causes preadipocyte cells to become adipocytes (hyperplasia) and triacylglycerols (TG) to accumulate in mature adipocytes (hypertrophy) [7–9]. Moreover, the balance of fat accumulation is regulated by fat synthesis and fat breakdown through lipogenesis and lipolysis/fat oxidation pathways [10]. Many studies have investigated the role of dietary phytochemicals in the prevention and treatment of obesity and their effect on decreased energy intake or increased energy expenditures. In this review, we aim to provide an overview of the effect of dietary phytochemicals on regulated adipogenesis/lipogenesis, lipolysis/fatty acid (FA) oxidation, and thermogenesis in vitro and possible mechanisms.

3. Phytochemicals in lipid metabolism

3.1. Characteristics of adipogenesis/lipogenesis

Adipogenesis is a process by which fibroblast-like preadipocytes differentiate into mature adipocytes, which contain large internal fat droplets for lipid storage. The process can continue throughout the whole lifetime in most animals [11,27,28]. There are various stages of adipogenesis: mesenchymal precursors, committed preadipocytes, growth-arrested preadipocytes, mitotic clonal expansion, terminal differentiation, and mature adipocytes [28,29]. The process of adipogenesis involves a series of transcription factors, cell-cycle protein–regulated gene expression, and lipogenesis-related gene and enzyme activity [17,28,30]. The differentiation process is critically modulated through the coordinated regulation of transcription factors, especially cytokine-cytosine-adenosine-adenosine-thymidine (CCAAT)/enhancer binding protein (C/EBP) families (C/EBPα, C/EBPβ, and C/EBPγ), and peroxisome proliferator-activated receptor (PPAR) families (PPARα, PPARβ/δ, and PPARγ) [31]. C/EBP-α and PPAR-γ are both involved in growth arrest in the early stage of adipocyte differentiation. After growth arrest, preadipocytes need mitogenic and adipogenic signals for further differentiation stages. Therefore, mitotic clonal expansion (MCE), induced by hormonal stimulation, is an important process that allows growth-arrested preadipocytes to reenter into the cell cycle, and undergo several rounds of cell division during adipogenesis [28]. In the late process of adipocyte differentiation, de novo lipogenesis intensively increases in adipocytes [18]. Lipogenesis is a process involving FA and TG synthesis, and it can be affected by diet and hormones [10]. For example, carbohydrates stimulate lipogenesis in liver and adipose tissue,
and fasting changes plasma hormone concentration, thus affecting lipogenesis and lipolysis in the adipose tissue [32]. Sterol regulatory element binding proteins (SREBPs) are another transcription factor related to cellular lipogenesis, lipid homeostasis, and adipocyte differentiation [33,34]. SREBP-1 is a type of SREBP that can induce PPAR-γ expression and regulate lipid biosynthesis in adipocytes, and increase expression of lipogenic genes such as FAS and ACC [14,35,36]. Triacylglycerol metabolism-related enzymes such as stearoyl-CoA desaturase, glycerol-3-phosphate acyltransferase, glycerol-3-phosphate dehydrogenase, and glyceraldehyde-3-phosphate dehydrogenase increase dramatically during lipogenesis [37,38]. Therefore, dietary phytochemicals do have some effects on these stages of adipogenesis and could help treat obesity. Apigenin (4',5,7-trihydroxyflavone) is a flavonoid found in vegetables and fruits [39,40]. Administration of 50 μM apigenin decreased TG content via decreased mRNA and protein expression of PPARγ, FA binding protein 4 (FABP4), and stearoyl-CoA desaturase, through an increase in activated 5'-adenosine monophosphate-activated protein kinase (AMPK) [41]. Berberine is a major component from Cortis rhizoma and is an antibacterial drug in traditional Chinese medicine [42]. The results of a study showed that a 10μM berberine decreased TG content by inhibiting clonal expansion during 3T3-L1 adipocyte differentiation. Its possible anti-adipogenic mechanism may be reduced by the mRNA expression of PPARβ/δ, γ and C/EBPα at Day 5 and C/EBPβ at Day 1. Berberine also decreased the expression of PPARγ-targeted lipogenic genes such as FABP4, ACC, and FAS [43]. Another study showed that administration of 5 μg/mL berberine decreased TG content by increasing phosphorylated AMPK (pAMPK) and phosphorylated ACC (pACC) expression and decreasing FAS, adipocyte determination and differentiation dependent factor 1 (ADD1)/SREBP1c, PPARγ, C/EBPα, and FABP4 expression [44]. Capsaicin (8-methyl-N-vanillyl-trans-6-nonenamide) is a pungent source of the hot sensation in red pepper [45]. Capsaicin (50–250μM) decreased TG content by causing apoptosis in 3T3-L1 preadipocytes via affecting the mitochondrial membrane potential (ΔΨm); caspase-3, Bax, and Bak, and the cleavage of poly ADP-ribose polymerase protein expression increased and Bcl-2 protein expression decreased within 24 hours of administration. Capsaicin could decrease TG content via decreased PPARγ, C/EBPα, and leptin protein expression in mature 3T3-L1 adipocytes within 72 hours [46]. Another study showed that 3T3-L1 preadipocytes pretreated with 100μM capsaicin for 30 minutes and afterwards went through the differentiation process and decreased TG content via increased pAMPK and pACC protein expression during adipogenesis [47]. The polyphenolic flavonoid (-)-epigallocatechin-3-gallate (EGCG) is one of the catechins present in green tea [48]. Administration of 100μM EGCG decreased TG content via decreased protein expression of PPARγ1/2 and its target genes LXRα during the adipogenesis process [49]. In 2011, Chan et al showed that 10μM EGCG decreased TG content from 24 hours to 72 hours via increased expression of pAMPK and pACC within 24 hours [47]. Another study indicated that, after administering 100μM genistein only at 72 hours during the whole 8 day differentiation process, genistein decreased TG accumulation via blocking the DNA binding and transcriptional activity of CEBPb by increasing CEBP homologous protein expression, then subsequently decreasing CEBPα and PPARγ expression [52]. Resveratrol (3,5,4’-trihydroxystilbene),
is a natural phytochemical found in grape and red wine [53]. Twenty-five micromoles and 50μM of resveratrol significantly decreased TG content via decreased expression of PPARγ, C/EBPα, SREBP1, and FAS mRNA [54]. Another study investigated the activity of resveratrol (0.03μM, 0.1μM, 0.3μM, 1μM, 3μM, 10μM, 30μM, 100μM) in 3T3-L1 preadipocytes and mature adipocytes. The results of cell viability tests showed that the 30μM and 100μM resveratrol had lower cell survival in 3T3-L1 preadipocytes. Based on minimal cytotoxicity, 0.03μM, 0.1μM, 0.3μM, 1μM, 3μM, and 10μM resveratrol were studied. The 3μM and 10μM resveratrol decreased TG content via decreased PPARγ protein expressions in mature adipocytes [55]. Oxyresveratrol is a natural polyphenol and also an analogue of resveratrol occurring in mulberry (Morus alba L.) [56]. Administration of 100μM oxyresveratrol decreased TG content via decreased PPARγ during the late stage of differentiation and decreased C/EBPα expression during the early stage of differentiation. A concentration of 100μM oxyresveratrol also dose-dependently induced cell cycle arrest during the mitotic clonal proliferation stage of differentiation, via decreased cyclin A and cyclin-dependent kinase 2 expression at the S and G2/M phase and decreased cyclin D1 and cyclin-dependent kinase 4 expression at the G0/G1 phase [57]. Curcumin is a major polyphenol and one of the most active ingredients in the rhizome of the perennial herb turmeric (Curcuma longa), and it is a dietary spice in curry [58]. When differentiated cells were treated with 25μM curcumin for 48 hours, TG content decreased via blocked differentiation through C/EBPα and PPARγ, SREBP-1, and FAS expression. 25μM curcumin also inhibited phosphorylated mitogen-activated protein kinase, including extracellular signal-regulated kinases (ERK), JNK, and p38 expression during differentiation. A concentration of 25μM curcumin restored nuclear translocation of β-catenin [wingless-type MMTV integration site family signaling (Wnt) component] and decreased casin kinase 1α, glycogen synthase kinase 3β, and Axin expression to activate Wnt signaling. Curcumin also decreased FABP4 and increased Wnt10b, Fz2 (Wnt direct receptor), LRPS (Wnt coreceptor), c-Myc and cyclin D1 (Wnt targets) mRNA expression during differentiation [59]. Another study showed that 30μM curcumin decreased TG content via decreased C/EBPα, PPARγ, and C/EBPβ expression in the late stages of differentiation. Curcumin also inhibited the MCE process via delayed cell reentry into the S phase through decreased transcription factors, Krüppel-like factor 5, C/EBPα, and PPARγ during the early stage of adipocyte differentiation [60]. A similar study showed that 20μM curcumin slightly decreased PPARγ and C/EBPα within 24 hours of initial differentiation, but induced apoptosis via regulated caspase 3 and poly ADP-ribose polymerase within 20 hours after differentiation. It also arrested cells in the G1 phase via increased cyclin D and decreased cyclin A and inhibited targeted p27 proteolysis through reduced Skp2 and 26S proteasome activity to inhibit cell growth during differentiation within 20 hours [61]. Bisdemethoxycurcumin (BDMC) is one of the curcuminoinds in turmeric [62]. A 25μM BDMC decreased TG content more than curcumin and demethoxycurcumin via arresting cells at the G1 phase after differentiation at 18 hours and 24 hours. It affected the MCE process through decreased cyclin A and cyclin B and increased p21 expression. BDMC also decreased PPARγ and C/EBPα, phosphorylated extracellular signal–regulated kinases (ERK1/2), c-Jun amino-terminal kinases (JNK), and Akt expression during adipogenesis [63]. 18β-Glycyrrhetinic acid is a principal active ingredient from the herb licorice root [64]. Twenty micromoles of 18β-GA decreased TG content via decreased PPARγ and C/EBPα expression through decreased phosphorylated Akt expression [65]. Ginkgo biloba L. has been used as a medicinal herb in eastern and western medicine. Ginkgolide C is a flavone isolated from G. biloba leaves [66]. Administration of 100μM ginkgolide C decreased TG content via decreased PPARα, PPARγ, C/EBPα, C/EBPβ, and SREBP-1c expression and decreased FAS and FABP4 expression [67]. Celestrol is a triterpene from the vine Tripterygium wilfordii (Celastraceae), which has been used as traditional Chinese medicine for hundreds of years [68]. A concentration of 400μM of celestrol treated from Day 0 to Day 8 decreased most TG content via decreased PPARγ2, C/EBPα, and FABP4 expression [69] (Table 1).

3.2. Characteristics of lipolysis/FA oxidation

Breakdown of TG in adipocytes and the release of glycerol and FAs are important for the regulation of energy homeostasis [70]. Lipolysis is a catabolic pathway that mainly happens in adipose tissue to provide energy to peripheral tissues when needed [71]. The process of lipolysis involves the hydrolysis of TGs, which results in the release of FA and glycerol into blood. Various lipases have been discovered to be active during TG hydrolysis. Adipose triacylglycerol lipase (ATGL) is involved in the process of TG hydrolysis into diacylglycerols (DG) and the release of one FA. Subsequently, monoacylglycerol lipase hydrolyzes DGs to monoglycerides and releases one FA, or alternatively the DGs are completely hydrolyzed by hormone-sensitive lipase (HSL), releasing two FAs and one glycerol [72, 73]. FAs are degraded in the mitochondria and peroxisome through the process of β-oxidation. The long chain FAs are converted to acyl CoA in the cytosol, which needs carnitine acyltransferase-1 or carnitine palmitoyltransferase-1 (CPT1) to convert it to acylcarnitine to enter the mitochondria [74, 75]. A treatment of 10μM capsaicin to full differentiated 3T3-L1 adipocytes for 24 hours showed an increased release of glycerol via increased HSL and CPT1α [76]. EGCG (10μM) in full differentiated 3T3-L1 adipocytes for 24 hours showed an increase in the release of glycerol into the medium via increased HSL expression [77]. Administration of 10μM/L and 20μM/L concentrations of curcumin decreased lipid accumulation by increasing palmitic acid oxidation, CPT1 expression, and decreasing glycerol-3-phosphate acyl transferase-1 expression, but did not affect PPARγ and C/EBPα levels [78]. 18β-Glycyrrhetinic acid increased the release of glycerol via increased HSL, ATGL, and perilipin expression in mature 3T3-L1 preadipocytes [65]. Both 30μM and 100μM ginkgolide C increased ATGL and HSL mRNA expression via enhanced Sirt1 and AMPK activation in mature 3T3-L1 adipocytes [67] (Table 2).

3.3. Characteristics of browning

As mentioned above, WAT and BAT are two major adipose tissues that regulate energy balance [82]. In BAT, thermogenesis is activated by characteristics such as uncoupling protein
Phytochemical	Regulation	Reference
Apigenin (4',5,7-trihydroxyflavone)	† TG content	[41]
	† PPARγ, FABP4, SCD	
	† Activation of AMPK	
Berberine	† TG content	[43]
	† PPARγ, β, δ, C/EBPs	
	† FABP4, ACC, FAS	
	† TG content	[44]
	† PPARγ, C/EBPs, ADD/SREBP-1c	
	† FABP4, FAS	
	† pAMPK, pACC	
Capsaicin (8-methyl-N-vanillyl-trans-6-nonenamide)	† TG content	[46]
	† Mitochondria membrane potential (ΔΨm)	
	† Caspase 3, Bax, Bak, the cleavage of PARP	
	† Bcl-2	
	† PPARγ, C/EBPs	
	† TG content	[47]
	† pAMPK, pACC	
(−)-Epigallocatechin gallate	† TG content	[49]
	† PPARγ1/2, LXRα	
	† TG content	[50]
	† PPARγ, C/EBPs	
	† An arrest of cell cycle at G2/M phase	[51]
	† TG content	
	† PPARγ, C/EBPs	
	† FABP4, FAS	
	† β-catenin, cyclin D1	
Genistein	† TG content	[47]
	† pAMPK, pACC	
	† TG content	
	† C/EBPs via † CHOP	[52]
	† PPARγ, C/EBPs	
Resveratrol (3,5,4'-trihydroxystilbene)	† TG content	[54]
	† PPARγ, C/EBPs	
	† SREBP-1, FAS	[55]
	† TG content	
	† PPARγ	
Oxyresveratrol	† TG content	[57]
	† PPARγ, C/EBPs	
	† Cyclin A, CDK2, cyclin D1, CDK4	
Curcumin	† TG content	[59]
	† PPARγ, C/EBPs	
	† SREBP-1, FAS	
	† Phosphorylation of MAPK (ERK, JNK, and p38)	
	† Translocation of β-catenin	
	† CK1α, GSK-3β, Axin, FABP4	
	† Wnt110b, Fz2, LRPS, c-Myc, cyclin D1	
	† TG content	[60]
	† PPARγ, C/EBPs, β	
	† KLF5	[61]
	† TG content	
	† PPARγ, C/EBPs	
	† Caspase 3, PARP	
	† Cyclin D	
	† Cyclin A	
	† Inhibition of p27 proteolysis by † Skp2, 26S proteasome activity	[63]
Bisdemethoxycurcumin	† TG content	
	† Cyclin A, B	
	† p21	
	† PPARγ, C/EBPs	
	† Phosphorylated ERK1/2, JNK, Akt	
18β-Glycyrrhetinic acid	† TG content	[65]
	† PPARγ, C/EBPs	
	† Phosphorylated Akt	
(UCP1) through lipolysis [15, 83, 84]. More and more researchers have found an active BAT in adult human WAT, also called browning of WAT [85, 86]. This kind of brown adipocyte is called inducible brown adipocyte (beige, brown-in-white or brite) adipocyte [87, 88]. Beige cells have some characteristics such as UCP1 being expressed with thermogenic ability, high mitochondrial content and the expression of brown fat-specific genes including UCP1, Cidea, and encoding PPAR-γ coactivator 1-α (PGC-1α) in WAT [89–91]. Although brown adipocytes and beige adipocytes express UCP1, brown adipocytes always have high levels of UCP1 and other thermogenic genes are under basal control [92]. In beige cells, the

Table 1 – (continued)

Phytochemical	Regulation	Reference
Ginkgolide C	↓ TG content ↓ PPARα, γ, C/EBPβ, β, SREBP-1c ↓ FAS, FABP4	[67]
Celastrol	↓ TG content ↓ PPARγ2, C/EBPβ ↓ FAS, FABP4	[69]

ACC = acetyl-Co A carboxylase; AMPK = 5′-adenosine monophosphate-activated protein kinase; BDMC = bisdemethoxycurcumin; CDK = cyclin-dependent kinase; CHOP = CEBP homologous protein; C/EBP = CCAAT/enhancer binding protein; ERK = extracellular signal-regulated kinases; FABP = fatty acid binding protein 4; FAS = fatty acid synthase; JNK = c-Jun amino-terminal kinases; KLF5 = Krüppel-like factor 5; LXR = liver X receptor; MAPK = mitogen-activated protein kinase; PPAR = peroxisome proliferator-activated receptor; SCD = stearoyl-CoA desaturase; TG = triacylglycerols.

Table 2 – The effect of phytochemicals in lipolysis/fatty acid oxidation and browning.

Phytochemical	Regulation	Reference
Capsaicin (8-methyl-N-vanillyl-trans-6-nonenamide) (+)-Epigallocatechin gallate	↑ Glycerol ↑ HSL, CPT-1-α, UCP2 ↑ Glycerol ↑ HSL	[76]
Curcumin	↓ TG content ↓ Palmitic acid oxidation ↑ CPT1, GPAT-1 ↑ pAMPK, pACC ↑ White adipocyte become beige cell via ↑ PGC-1α, PPARγ, UCP1, RDM16, C/EBPβ, Tmem26, Cidea, Fgf21, Cited1 ↑ TG content ↑ Fat oxidation via ↑ CPT1, cytochrome C ↑ Lipolysis via ↑ HSL ↓ Fatty acid synthesis via ↑ pACC, pAMPK/AMPK	[78]
18β-Glycyrrhetinic acid	↑ Glycerol ↑ HSL, ATGL ↑ Glycerol ↑ HSL, ATGL ↑ Activation of Sirt1, AMPK ↑ White adipocyte become beige cell via ↑ PGC-1α, PPARγ, UCP1 ↓ TG content ↓ C/EBPβ ↑ HSL, perilipin, ↑ CPT1, acyl-coenzyme A oxidase 1, ↑ pAMPK, pACC	[79]
Ginkgolide C	↑ Glycerol ↑ HSL, ATGL ↑ Glycerol ↑ HSL, ATGL ↑ Activation of Sirt1, AMPK ↑ White adipocyte become beige cell via ↑ PGC-1α, PPARγ, UCP1 ↓ TG content ↓ C/EBPβ ↑ HSL, perilipin, ↑ CPT1, acyl-coenzyme A oxidase 1, ↑ pAMPK, pACC	[67]
Chrysin (5,7-dihydroxyflavone)	↑ Glycerol ↑ HSL, ATGL ↑ Glycerol ↑ HSL, ATGL ↑ Activation of Sirt1, AMPK ↑ White adipocyte become beige cell via ↑ PGC-1α, PPARγ, UCP1 ↓ TG content ↓ C/EBPβ ↑ HSL, perilipin, ↑ CPT1, acyl-coenzyme A oxidase 1, ↑ pAMPK, pACC	[80]
Thymol (5-methyl-2-isopropylphenol)	↑ White adipocyte become beige cell via ↑ PGC-1α, PPARγ, UCP1 ↓ Lipogenesis via ↑ pAMPK/AMPK, pACC ↑ Mitochondria biogenesis via ↑ Tfm1, Nrf1, UCP1, PRDM16 ↓ C/EBPβ ↓ HSL, CPT1, perilipin, ACO	[81]

ACC = acetyl-Co A carboxylase; ACO = acyl-coenzyme A oxidase; AMPK = 5′-adenosine monophosphate-activated protein kinase; ATGL = adipose triacylglycerol lipase; CPT = carnitine palmitoyltransferase; C/EBP = CCAAT/enhancer binding protein; GPAT-1: glycerol-3-phosphate acyl transferase-1; PGC = peroxisome proliferator-activated receptor-γ coactivator; PPAR = peroxisome proliferator-activated receptor; PRDM = PRD1-BF-1-RIZ1 homologous domain containing protein; TG = triacylglycerols; UCP = uncoupling protein 1.
Figure 2 – The possible antiobesity mechanism of phytochemicals in 3T3-L1. 18β-GA = 18β-glycyrrhetinic acid; ACC = acetyl-CoA carboxylase; AKT = protein kinase B; AMPK = 5′-adenosine monophosphate-activated protein kinase; ATGL = adipose triacylglycerol lipase; BDMC = bisdemethoxycurcumin; CDK = cyclin-dependent kinase; C/EBP = CCAAT/enhancer binding protein; CK1 = casein kinase 1; CPT-1 = carnitine palmitoyltransferase-1; DG = diacylglycerols; EGC = (-)-epigallocatechin-3-gallate; ERK = extracellular signal-regulated kinases; FABP4 = fatty acid binding protein 4; FAS = fatty acid synthase; GSK-3β = glycogen synthase kinase 3β; HSL = hormone-sensitive lipase; JNK = c-Jun amino-terminal kinases; MG = monoacylglycerols; MGL = monoacylglycerol lipase; MUFA = monounsaturated fatty acid; PARP = poly ADP-ribose polymerase; SCD = stearoyl-CoA desaturase; SFA = saturated fatty acid; SREBPs = sterol regulatory element binding proteins; TG = triacylglycerol; WNT = wingless-type MMTV integration site family.
expression of these thermogenic genes responds to activators such as agonists of the β-adrenergic receptor or PPARγ or enriched markers such as Cd137, Tbx1, Tmem26, Cited1, and Shox2. C/EBPβ, PRDM16, and PGC-1α are important transcriptional factors in beige cells [93–100]. Therefore, browning, meaning to stimulate the development of beige adipocytes in WAT, could be another strategy to fight obesity. To date, scientists have used a browning medium containing insulin, 3-isobutyl-1-methylxanthine, dexamethasone, triiodothyronine, and rosiglitazone to differentiate 3T3-L1 cells to beige adipocytes [101–103]. Chrysin (5,7-dihydroxyflavone) is a flavonoid found in honeycombs and mushrooms. The addition of 50μM chrysin increased key brown fat markers PGC-1α, PPARγ, and UCP-1 mRNA and protein expression in browning 3T3-L1 adipocytes for 72 hours, and showed that chrysin converts white adipocytes to beige adipocytes. Chrysin decreased TG content in brown-like 3T3-L1 adipocytes. It also affected adipogenesis by decreasing C/EBPα expression and increasing HSL, perilipin, CPT1, and acyl-coenzyme A oxidase 1 enhanced lipolysis as well as increasing pAMPK/AMPK and pACC/ACC expression ratios to alleviate lipogenesis [80]. Administration of 20μM curcumin increased brown fat markers PGC-1α, PPARγ, UCP1 PRDM16 C/EBPβ, Tmem26, Cidea, and Fgf21β expression in browning 3T3-L1 adipocytes and showed that curcumin converts white adipocytes to beige adipocytes. Treatment with 20μM curcumin in brown-like adipocytes decreased TG content by increasing mitochondrial CPT1 and cytochrome C protein levels to increase fat oxidation. Moreover, curcumin increased HSL expression to enhance lipolysis and increased pACC and pAMPK ratio to suppress FA synthesis [79]. Thymol (5-methyl-2-isopropylphenol) is a monoterpenic phenolic ingredient of essential oil from thyme species. Addition of 20μM thymol significantly increased expression of the brown fat marker Fgc-1α, Prdm16, and UCP1 genes, and protein expression showed that thymol converts white adipocytes to beige adipocytes via activated β3-AR, PKA, and p38/mitogen-activated protein kinase expression. Thymol treatment decreased TG content of brown-like 3T3-L1 adipocytes by increasing expression of pAMPK/AMPK and pACC to alleviate lipogenesis and increasing Tfam, Nrf1, PGC-1α, UCP1, and PRDM16 expression-induced mitochondrial biogenesis. It also decreased C/EBPα and LPL expression and increased HSL, perilipin, CPT1, and acyl-coenzyme A oxidase expression to enhance lipolysis during the browning process [81] (Table 2).

4. Conclusion

Dietary phytochemicals from food and herbs have been used as natural therapies for a long time. Obesity is a disease that results from energy imbalance, and it has become an epidemic in modern society over the past decades. Due to side effects and the low success rate of obesity treatment drugs, study of the role of phytochemicals in treating obesity has become more and more important for developing new drugs. More and more scientists focus on the effects of phytochemicals on WAT, especially the process of adipogenesis and lipogenesis, to alleviate the effects of excessive energy on expanding adipose tissue. By contrast, scientists have also investigated the role of phytochemicals on energy expenditure on WAT such as lipolysis and FA oxidation. Moreover, scientists have recently found that beige cells are a kind of brown adipocytes in WAT that showed similar thermogenesis as in BAT. Some phytochemicals do have the ability to convert white adipocytes to beige cells to enhance energy expenditure (Figure 7). Although the safety of phytochemicals and their roles in regulating energy balance remain, further investigation and more and more scientific evidences have proved the antiobesity effectiveness and efficacy of phytochemicals and their potential to be developed as medicines in fighting obesity.

Conflicts of interest

There are no conflicts of interest.

REFERENCES

[1] WHO. Global health risks: mortality and burden of disease attributable to selected major risks. World Health Organization; 2009.
[2] Torres-Fuentes C, Schellekens H, Dinan TG, Cryan JF. A natural solution for obesity: Bioactives for the prevention and treatment of weight gain. A review. Nutr Neurosci 2015;18:49–65.
[3] Lee KH. Current developments in the discovery and design of new drug candidates from plant natural product leads. J Nat Prod 2004;67:273–83.
[4] Cragg GM, Newman DJ. Natural products: a continuing source of novel drug leads. Biochim Biophys Acta 2013;1830:3670–95.
[5] Moerman DE. Medicinal plants of native America. Ann Arbor: Museum of Anthropology, University of Michigan; 1986.
[6] Santos Ana Paula, Rogero Marcelo M, Bastos Deborah HM. Edible plants, their secondary metabolites and antiobesogenic potential. Recent Pat Food Nutr Agric 2010;2:195–212.
[7] Unger RH. Minireview: weapons of lean body mass destruction: the role of ectopic lipids in the metabolic syndrome. Endocrinology 2003;144:5159–65.
[8] Dizdar O, Alyamaç E. Obesity: an endocrine tumor? Med Hypotheses 2004;63:790–2.
[9] Ka SO, Kim KA, Kwon KB, Park JW, Park BH. Silibinin attenuates adipogenesis in 3T3-L1 preadipocytes through a potential upregulation of the insig pathway. Int J Mol Med 2009;23:633.
[10] Kersten S. Mechanisms of nutritional and hormonal regulation of lipogenesis. EMBO Rep 2001;2:282–6.
[11] Sarjeant K, Stephens JM. Adipogenesis. Cold Spring Harb Perspect Biol 2004;63:790–2.
[12] Aung A, Roy PE, Bukowiecki IJ. Regression of white adipose tissue in diabetic rats. Am J Physiol 1989;257:E547–53.
[13] Ali AT, Hochfeld WE, Myburgh R, Pepper MS. Adipocyte and adipogenesis. Eur J Cell Biol 2013;92:229–36.
[14] Symonds ME, editor. Adipose tissue biology. New York: Springer-Verlag; 2011.
[15] Cannon B, Nedergaard J. Brown adipose tissue: function and physiological significance. Physiol Rev 2004;84:277–359.
[16] Farmer SR. Molecular determinants of brown adipocyte formation and function. Genes Dev 2008;22:1269–75.
[17] Armani A, Mammi C, Marzolla V, Calanchini M, Antelmi A, Rosano G, Fabbri A, Caprio M. Cellular models for understanding adipogenesis, adipose dysfunction, and obesity. J Cell Biochem 2010;110:564–72.

[18] Gregoire FM, Smae CM, Sui HS. Understanding adipocyte differentiation. Physiol Rev 1998;78:783–809.

[19] Ntambi JM, Young-Choel K. Adipocyte differentiation and gene expression. J Nutr 2000;130:3122S–5S.

[20] Green H, Meuth M. An established pre-adipose cell line and its differentiation in culture. Cell 1974;3:127–33.

[21] Poulois SP, Dodson MV, Hausman GJ. Cell line models for differentiation: preadipocytes and adipocytes. Exp Biol Med (Maywood) 2010;235:1185–93.

[22] Green H, Kehinde O. An established preadipose cell line and its differentiation in culture II. Factors affecting the adipose conversion. Cell 1975;5:19–27.

[23] Kuri-Harcuch W, Green H. Increasing activity of enzymes on pathway of triacylglycerol synthesis during adipose conversion of 3T3 cells. J Biol Chem 1977;252:2158–60.

[24] Cornelius P, MacDougald OA, Lane MD. Regulation of adipocyte development. Annu Rev Nutr 1994;14:99–129.

[25] Rubin CS, Hirsch A, Fung C, Rosen OM. Development of hormone receptors and hormonal responsiveness in vitro. Insulin receptors and insulin sensitivity in the preadipocyte and adipocyte forms of 3T3-L1 cells. J Biol Chem 1978;253:750–8.

[26] Smith PJ, Wise L, Berkowitz R, Wan C, Rubin C. Insulin-like growth factor-I is an essential regulator of the differentiation of 3T3-L1 adipocytes. J Biol Chem 1988;263:9402–8.

[27] Rosen ED, Spiegelman BM. Molecular regulation of adipogenesis. Annu Rev Cell Dev Biol 2000;16:145–71.

[28] Lefterova MI, Lazar MA. New developments in adipogenesis. Trends Endocrinol Metab 2009;20:107–14.

[29] Moldes M, Zuo Y, Morrison RF, Silva D, Bae-Hang Park BH, Liu J, Farmer SR. Peroxisome proliferator-activated receptor γ suppresses Wnt/β-catenin signalling during adipogenesis. Biochem J 2003;376:607–13.

[30] Trayhurn P. Endocrine and signalling role of adipose tissue: new perspectives on fat. Acta Physiol Scand 2005;184:285–93.

[31] Cowherd RM, Lyle RE, McGhee Jr RE. Molecular regulation of adipocyte differentiation. Semin Cell Dev Biol 1999;10:3–10.

[32] Kersten S, Seydoux J, Peters JM, Gonzalez FJ, Desvergne B, Wahli W. Peroxisome proliferator-activated receptor γ mediates the adaptive response to fasting. J Clin Invest 1999;103:1489–98.

[33] Horton JD, Shimomura I, Ikemoto S, Bashmakov Y, Hammer RE. Overexpression of sterol regulatory element-binding protein-1a in mouse adipose tissue produces adipocyte hypertrophy, increased fatty acid secretion, and fatty liver. J Biol Chem 2003;278:36652–60.

[34] Brown MS, Goldstein JL. The SREBP pathway: regulation of cholesterol metabolism by proteolysis of a membrane-bound transcription factor. Cell 1997;89:331–40.

[35] Kim JB, Spiegelman BM. ADR1/SREBP1 promotes adipocyte differentiation and gene expression linked to fatty acid metabolism. Genes Dev 1996;10:1096–107.

[36] Mackall J, Student A, Polakis SE, Lane M. Induction of lipogenesis during differentiation in a “preadipocyte” cell line. J Biol Chem 1976;251:6462–4.

[37] Paulauskas JD, Sul H. Cloning and expression of mouse fatty acid synthase and other specific mRNAs. Developmental and hormonal regulation in 3T3-L1 cells. J Biol Chem 1988;263:7049–54.

[38] Spiegelman B, Frank M, Green H. Molecular cloning of mRNA from 3T3 adipocytes. Regulation of mRNA content for glycerophosphate dehydrogenase and other differentiation-dependent proteins during adipocyte development. J Biol Chem 1983;258:10083–9.

[39] Birt DF, Hendrich S, Wang W. Dietary agents in cancer prevention: flavonoids and isoflavonoids. Pharmacol Ther 2001;90:157–77.

[40] Shukla S, Gupta S. Molecular targets for apigenin-induced cell cycle arrest and apoptosis in prostate cancer cell xenograft. Mol Cancer Ther 2006;5:943–52.

[41] Ohm M, Fujimori K. Antidiopogenic effect of dietary apigenin through activation of AMPK in 3T3-L1 cells. J Agric Food Chem 2011;59:13346–52.

[42] Kong W, Wei J, Abidi P, Lin M, Inaba S, Li C, Wang Y, Wang Z, Si S, Pan H, Wang S, Wu J, Wang Y, Li Z, Liu J, Jiang JD. Berberine is a novel cholesterol-lowering drug working through a unique mechanism distinct from statins. Nat Med 2004;10:1344–51.

[43] Huang C, Zhang Y, Gong Z, Sheng X, Li Z, Zhang W, Qin Y. Berberine inhibits 3T3-L1 adipocyte differentiation through the PPARγ pathway. Biochem Biophys Res Commun 2006;348:571–8.

[44] Lee YS, Kim WS, Kim KH, Yoon MJ, Cho HJ, Shen Y, Ye JM, Lee CH, Oh WK, Kim CT, Hohnen-Sehrens C, Cosby A, Kraegen EW, James DE, Kim JB. Berberine, a natural plant product, activates AMP-activated protein kinase with beneficial metabolic effects in diabetic and insulin-resistant states. Diabetes 2006;55:2256–64.

[45] Cordell GA, Araujo OE. Capecitabine: identification, nomenclature, and pharmacotherapy. Ann Pharmacother 1993;27:330–6.

[46] Hsu CL, Yen GC. Effects of capecitabine on induction of apoptosis and inhibition of adipogenesis in 3T3-L1 cells. J Agric Food Chem 2007;55:1730–6.

[47] Hwang JT, Park JJ, Shin JJ, Lee YK, Lee SK, Baik HW, Ha J, Park OJ. Genistein, EGCG, and capecitabine inhibit adipocyte differentiation process via activating AMP-activated protein kinase. Biochem Biophys Res Commun 2005;338:694–9.

[48] Naef R, Jaquier A, Velluz A, Maurer B. New constituents related to 3-methyl-2, 4-nanonenedione identified in green tea. J Agric Food Chem 2006;54:9201–5.

[49] Moon HS, Chung CS, Lee HG, Kim TG, Choi YJ, Cho CS. Inhibitory effect of (-)-epigallocatechin-3-gallate on lipid accumulation of 3T3-L1 cells. Obesity (Silver Spring) 2007;15:2571–82.

[50] Chan CY, Wei L, Castro-Muñoz E, Koo WL. (-)-Epigallocatechin-3-gallate blocks 3T3-L1 adipose conversion by inhibition of cell proliferation and suppression of adipocyte phenotype expression. Life Sci 2011;89:779–85.

[51] Lee H, Bae S, Yoon Y. The anti-adipogenic effects of (-) epigallocatechin gallate are dependent on the WNT/β-catenin pathway. J Nutr Biochem 2013;24:1232–40.

[52] Harmon AW, Patel YM. Genistein inhibits CCAAT/enhancer-binding protein β (C/EBPβ) activity and 3T3-L1 adipogenesis by increasing C/EBP homologous protein expression. Biochem J 2002;367:203–8.

[53] Huang JP, Huang SS, Deng JY, Chang CC, Lin KY, Peng KY, Day YJ, Hung LM. Resveratrol exerts anti-obesity effects in high-fat diet obese mice and displays differential dosage effects on cytotoxicity, differentiation, and lipolysis in 3T3-L1 cells. Endocr J 2016;63:169–78.
[56] Li H, Cheng KW, Cho C-H, He Z, Wang M. Oxyresveratrol as an antibrowning agent for cloudy apple juices and fresh-cut apples. J Agric Food Chem 2007;55:2604–10.

[57] Tan HY, Iris M, Li ET, Wang M. Inhibitory effects of oxyresveratrol and cyanomalicin on adipogenesis of 3T3-L1 cells. J Funct Foods 2015;15:207–16.

[58] Ammon HP, Wahl MA. Pharmacology of Curcuma longa. Planta Med 1991;57:1–7.

[59] Ahn J, Lee H, Kim S, Ha T. Curcumin-induced suppression of adipogenic differentiation is accompanied by activation of Wnt/beta-catenin signaling. Am J Physiol Cell Physiol 2010;298:C1510–6.

[60] Kim CY, Le TT, Chen C, Cheng JX, Kim KH. Curcumin inhibits adipocyte differentiation through modulation of mitotic clonal expansion. J Nutr Biochem 2011;22:910–20.

[61] Ferguson BS, Nam H, Morrison RF. Curcumin inhibits 3T3-L1 preadipocyte proliferation by mechanisms involving post-transcriptional p27 regulation. Biochem Biophys Rep 2016;5:16–21.

[62] Gordon ON, Luis PB, Ashley RE, Osheroff N, Schneider C. Oxidative transformation of demethoxy- and bisdemethoxycurcumin: products, mechanism of formation, and poisoning of human topoisomerase IIa. Chem Res Toxicol 2015;28:98–96.

[63] Lai CS, Chen YY, Lee PS, Kalyanam N, Ho CT, Liou WS, Moon MH, Jeong JK, Lee YJ, Seol JW, Ahn DC, Kim IS, Yeh KY, Shou SS, Lin YX, Chen CC, Chiang CY, Yeh CY, Liou CJ, Lai XY, Chen YL, Wang CL, Wei C-H, Huang WC.

[64] Armanini D, Nacamulli D, Francini-Pesenti F, Battagin G, Lai CS, Chen YY, Lee PS, Kalyanam N, Ho CT, Liou WS, Moon MH, Jeong JK, Lee YJ, Seol JW, Ahn DC, Kim IS, Yeh KY, Shou SS, Lin YX, Chen CC, Chiang CY, Yeh CY, Liou CJ, Lai XY, Chen YL, Wang CL, Wei C-H, Huang WC.

[65] Moon HS. Cascade regulation of PPAR pathway. J Biol Chem 2001;276:45456–74.

[66] Saponaro C, Gaggini M, Carli F, Gastaldelli A. The subtle balance between lipolysis and lipogenesis: a critical point in metabolic homeostasis. Nutrients 2015;7:9459–74.

[67] Greenberg AS, Shen W-J, Muliro K, Patel S, Souza SC, Roth RA, Kraemer FB. Stimulation of lipolysis and hormone-sensitive lipase via the extracellular signal-regulated kinase pathway. J Biol Chem 2001;276:45456–61.

[68] Horton M, Scrimgeour P. Rawn. Principles of biochemistry. 4th ed. Toronto: Prentice Hall; 2006.

[69] Rupasinghe HV, Sekhon-Looi S, Mantso T, Panayiotidis MI. Phytochemicals in regulating fatty acid β-oxidation: potential underlying mechanisms and their involvement in obesity and weight loss. Pharmacol Ther 2016;165:153–63.

[70] Lee MS, Kim CT, Kim IH, Kim Y. Effects of capsaicin on lipid catabolism in 3T3-L1 adipocytes. Phytother Res 2011;25:935–9.

[71] Lee MS, Kim CT, Kim IH, Kim Y. Inhibitory effects of green tea catechin on the lipid accumulation in 3T3-L1 adipocytes. Phytother Res 2009;23:1088–91.

[72] Ejas A, Wu D, Kwan P, Meydani M. Curcumin inhibits adipogenesis in 3T3-L1 adipocytes and angiogenesis in obesity in C57/B6 mice. J Nutr 2009;139:1919–25.

[73] Lone J, Choi JH, Kim SW, Yun JW. Curcumin induces brown fat-like phenotype in 3T3-L1 and primary white adipocytes. J Nutr Biochem 2016;27:193–202.

[74] Choi JH, Yun JW. Chrysine induces brown fat-like phenotype and enhances lipid metabolism in 3T3-L1 adipocytes. J Nutr Biochem 2016;32:1902–10.

[75] Choi JH, Kim SW, Yu B, Yun JW. Monoterpene phenolic compound thymol promotes browning of 3T3-L1 adipocytes. Eur J Nutr 2016. http://dx.doi.org/10.1007/s00394-016-1273-2.

[76] Rosen ED, Spiegelman BM. What we talk about when we talk about fat. Cell 2014;156:20–44.

[77] Lazar MA. How now, brown fat? Science 2008;321:1048–9.

[78] Parray HA, Yun JW. Cannabidiol promotes browning in 3T3-L1 adipocytes. Mol Cell Biochem 2016;416:131–9.

[79] Cypess AM, Lehman S, Williams G, Tal I, Rodman D, Goldfine AB, Kuo FC, Palmer EL, Tseng YH, Doris A, Kolodyn GM, Kahn R. Identification and importance of brown adipose tissue in adult humans. N Engl J Med 2009;360:1509–17.

[80] Virtanen KA, Lidell ME, Orava J, Heglin M, Westergren R, Niemi T, Taittonen M, Laine J, Savisto NJ, Enerbäck S, Nuuttila P. Functional brown adipose tissue in healthy adults. N Engl J Med 2009;360:1518–25.

[81] Klingenspor M, Herzog S, Pfeifer A. Brown fat develops a unique mitochondrial uncoupler: a historical perspective. Front Endocrinol (Lausanne) 2011;2:85.

[82] Vitali A, Muraoni I, Zingaretti MC, Frontini A, Ricquier D, Puigserver P, Wu Z, Graves R, Wright M, Graves R, Wright M, Puigserver P. A cold-inducible coactivator of nuclear hormone receptors linked to adaptive thermogenesis. Cell 1998;92:829–39.

[83] Bonet ML, Oliver P, Palou A. Pharmacological and nutritional agents promoting browning of white adipose tissue. Biochim Biophys Acta 2013;1831:969–85.

[84] Petrovic N, Walden TB, Shabalina IG, Timmons JA, Spiegelman BM. A cold-inducible coactivator of nuclear hormone receptors linked to adaptive thermogenesis. Cell 1998;92:829–39.

[85] Cypess AM, Lehman S, Williams G, Tal I, Rodman D, Goldfine AB, Kuo FC, Palmer EL, Tseng YH, Doris A, Kolodyn GM, Kahn R. Identification and importance of brown adipose tissue in adult humans. N Engl J Med 2009;360:1509–17.

[86] Virtanen KA, Lidell ME, Orava J, Heglin M, Westergren R, Niemi T, Taittonen M, Laine J, Savisto NJ, Enerbäck S, Nuuttila P. Functional brown adipose tissue in healthy adults. N Engl J Med 2009;360:1518–25.

[87] Klingenspor M, Herzog S, Pfeifer A. Brown fat develops a unique mitochondrial uncoupler: a historical perspective. Front Endocrinol (Lausanne) 2011;2:85.

[88] Vitali A, Muraoni I, Zingaretti MC, Frontini A, Ricquier D, Puigserver P, Wu Z, Graves R, Wright M, Spiegelman BM. A cold-inducible coactivator of nuclear hormone receptors linked to adaptive thermogenesis. Cell 1998;92:829–39.

[89] Bonet ML, Oliver P, Palou A. Pharmacological and nutritional agents promoting browning of white adipose tissue. Biochim Biophys Acta 2013;1831:969–85.
Spiegelman BM. PRDM16 controls a brown fat/skeletal muscle switch. Nature 2008;454:961–7.

[95] Seale P, Kajimura S, Yang W, Chin S, Rohas LM, Uldry M, Tavernier G, Langin D, Spiegelman BM. Transcriptional control of brown fat determination by PRDM16. Cell Metab 2007;6:38–54.

[96] Hondares E, Rosell M, Díaz-Delfín J, Olmos Y, Monsalve M, Iglesias R, Villarroya F, Giralt M. Peroxisome proliferator-activated receptor α (PPARα) induces PPARγ coactivator 1α (PGC-1α) gene expression and contributes to thermogenic activation of brown fat involvement of PRDM16. J Biol Chem 2011;286:43112–22.

[97] Kajimura S, Seale P, Kubota K, Lunsford E, Frangioni JV, Gygi SP, Spiegelman BM. Initiation of myoblast to brown fat switch by a PRDM16–C/EBP-β transcriptional complex. Nature 2009;460:1154–8.

[98] Wu J, Boström P, Sparks LM, Ye L, Choi JH, Giang AH, Khandekar M, Virtanen KA, Nuutila P, Schaart G, Huang K, Tu H, van Marken Lichtenbelt WD, Hoeks J, Enerbäck S, Schrauwen P, Spiegelman BM. Beige adipocytes are a distinct type of thermogenic fat cell in mouse and human. Cell 2012;150:366–76.

[99] Sharp LZ, Shinoda K, Ohno H, Scheel DW, Tomoda E, Ruiz L, Hu H, Wang L, Pavlova Z, Gilsanz V, Kajimura S. Human BAT possesses molecular signatures that resemble beige/brite cells. PLoS One 2012;7:e49452.

[100] Lidell ME, Betz MJ, Leinhard OD, Heglind M, Elander L, Slawik M, Mussack T, Nilsson D, Romu T, Nuutila P, Virtanen KA, Beuschlein F, Persson A, Borga M, Enerbäck S. Evidence for two types of brown adipose tissue in humans. Nat Med 2013;19:631–4.

[101] Martinez de Mena R, Scanlan TS, Obregon MJ. The T3 receptor β1 isoform regulates UCP1 and D2 deiodinase in rat brown adipocytes. Endocrinology 2010;151:5074–83.

[102] Ohno H, Shinoda K, Spiegelman BM, Kajimura S. PPARγ agonists induce a white-to-brown fat conversion through stabilization of PRDM16 protein. Cell Metab 2012;15:395–404.

[103] Asano H, Kanamori Y, Higurashi S, Nara T, Kato K, Matsui T, Funaba M. Induction of beige-like adipocytes in 3T3-L1 cells. J Vet Med Sci 2014;76:57–64.