On Quillen’s calculation of graded K-theory

Roozbeh Hazrat · Thomas Hüttemann

Received: 31 March 2011 / Accepted: 3 December 2012 / Published online: 8 January 2013
© Tbilisi Centre for Mathematical Sciences 2013

Abstract We adapt Quillen’s calculation of graded K-groups of \mathbb{Z}-graded rings with support in \mathbb{N} to graded K-theory, allowing gradings in a product $\mathbb{Z} \times G$ with G an arbitrary group. This in turn allows us to use induction and calculate graded K-theory of \mathbb{Z}^m-graded rings.

Keywords Graded ring · Graded K-theory

Mathematics Subject Classification (2000) 19D50

1 Introduction

Let G be a group, written additively, and let A be a G-graded ring. We denote the category of finitely generated G-graded projective right A-modules by $\mathcal{P}_G^G(A)$. This is an exact category with the usual notion of (split) short exact sequence, and we denote...
Theorem 1

Let \(G \) be a group, and let \(A \) be a \(\mathbb{Z} \)-graded ring. Then there is a group isomorphism \(K_i^G(\mathbb{Z}[G]) \). The group \(G \) acts on the category \(\mathbb{Z}[G] \) from the right via \((P, g) \mapsto P(g) \), where \(P(g)_h = P_{g+h} \). By functoriality of \(K \)-groups this equips \(K_i^G(A) \) with the structure of a right \(\mathbb{Z}[G] \)-module.

If \(A \) is strongly graded, i.e., if \(1 \in A_g A_{-g} \) for all \(g \in G \), then by Dade’s Theorem ([3, Theorem 3.1.1]) the functor \((-)_0 : \mathbb{Z}[G] \to \mathbb{Z} \times \mathbb{Z} \times \mathbb{Z} \times \mathbb{Z} \) so that it induces an equivalence of categories. This implies there is a group isomorphism \(K_i^G(A) \cong K_i(A_0) \), for \(i \geq 0 \).

The relation between graded \(K \)-groups and non-graded \(K \)-groups is not always apparent. For example consider the \(\mathbb{Z} \)-graded matrix ring \(A = \mathbb{M}_5(F)(0, 1, 2, 2, 3) \), where \(F \) is a field (see [3, §9.2] for details). Using graded Morita theory one can show that \(K_0(A_0) \cong \mathbb{Z} \times \mathbb{Z} \times \mathbb{Z} \times \mathbb{Z} \times \mathbb{Z} \times \mathbb{Z} \times \mathbb{Z} \). Note also that \(K_0(A) \cong \mathbb{Z} \).

For a \(\mathbb{Z} \)-graded ring \(A \) with support in \(\mathbb{N} \) the graded \(K \)-theory of \(A \) was determined by Quillen [4, Proposition, p. 107]: The functor \(P \mapsto P \otimes_{A_0} A \) induces an isomorphism of \(\mathbb{Z}[x, x^{-1}] \)-modules

\[
K_i(A_0) \otimes_{\mathbb{Z}[x, x^{-1}]} \mathbb{Z}[x, x^{-1}] \cong K_i^\mathbb{Z}(A).
\]

(1)

Contrary to other central theorems in the subject, such as fundamental theorem of \(K \)-theory (i.e., \(K_i(R[x, x^{-1}]) = K_i(R) \times K_{i-1}(R) \), for \(R \) a regular ring), one cannot use an easy induction on (1) to write a similar statement for “multi-variables” rings. For example, it appears that there is no obvious inductive approach to generalise (1) to \(\mathbb{Z}^m \times G \)-graded rings. However, by generalising Quillen’s argument to take gradings into account on both sides of the isomorphism, such a procedure becomes feasible.

We will prove the following statement:

Theorem 1 Let \(G \) be a group, and let \(A \) be a \(\mathbb{Z} \times G \)-graded ring with support in \(\mathbb{N} \times G \). Then there is a \(\mathbb{Z}[\mathbb{Z} \times G] \)-module isomorphism

\[
K_i^G(A_{(0,-)}) \otimes_{\mathbb{Z}[\mathbb{Z} \times G]} \mathbb{Z}[\mathbb{Z} \times G] \cong K_i^{\mathbb{Z} \times G}(A),
\]

where \(A_{(0,-)} = \bigoplus_{g \in G} A_{(0,g)} \).

By a straightforward induction this now implies:

Corollary 2 For a \(\mathbb{Z}^m \times G \)-graded ring \(A \) with support in \(\mathbb{N}^m \times G \) there is a \(\mathbb{Z}[x_1, x_1^{-1}, x_2, x_2^{-1}, \ldots, x_m, x_m^{-1}] \)-module isomorphism

\[
K_i^G(A_{(0,-)}) \otimes_{\mathbb{Z}} \mathbb{Z}[x_1, x_1^{-1}, x_2, x_2^{-1}, \ldots, x_m, x_m^{-1}] \cong K_i^{\mathbb{Z}^m \times G}(A).
\]

For a trivial group \(G \) this is a direct generalisation of Quillen’s theorem to \(\mathbb{Z}^m \)-graded rings.

2 Swan’s theorem

As in Quillen’s calculation the proof of the Theorem is based on a version of Swan’s Theorem, modified to the present situation: it provides a correspondence between
isomorphism classes of \(\mathbb{Z} \times G \)-finitely generated graded projective \(A \)-modules and of \(G \)-finitely generated graded projective \(A_{(0, \cdot)} \)-modules.

Proposition 3 Let \(\Gamma \) be a (possibly non-abelian) group. Let \(A \) be a \(\Gamma \)-graded ring, \(A_0 \) a graded subring of \(A \) and \(\pi : A \to A_0 \) a graded ring homomorphism such that \(\pi|_{A_0} = 1 \). (In other words, \(A_0 \) is a retract of \(A \) in the category of \(\Gamma \)-graded rings.) We denote the kernel of \(\pi \) by \(A_+ \).

Suppose that for any finitely generated graded right \(A \)-module \(M \) the condition \(MA_+ = M \) implies \(M = 0 \). Then the natural functor

\[
S = - \otimes_{A_0} A : \mathcal{P}^\Gamma(A_0) \to \mathcal{P}^\Gamma(A)
\]

induces a bijective correspondence between the isomorphism classes of finitely generated graded projective \(A_0 \)-modules and of finitely generated graded projective \(A \)-modules. An inverse of the bijection is given by the functor

\[
T = - \otimes_A A_0 : \mathcal{P}^\Gamma(A) \to \mathcal{P}^\Gamma(A_0).
\]

There is a natural isomorphism \(T \circ S \cong \text{id} \), and for each \(P \in \mathcal{P}^\Gamma(A) \) a non-canonical isomorphism \(S \circ T(P) \cong P \). The latter is given by

\[
T(P) \otimes_{A_0} A_0 \to P, \quad x \otimes a \mapsto g(x) \cdot a,
\]

where \(g \) is an \(A_0 \)-linear section of the epimorphism \(P \to T(P) \).

Proof For any finitely generated graded projective \(A_0 \)-module \(Q \) we have a natural isomorphism \(T S(Q) \cong Q \) given by

\[
\nu_Q : T S(Q) = Q \otimes_{A_0} A \otimes_A A_0 \to Q, \quad q \otimes a \otimes a_0 \mapsto q \pi(a) a_0.
\]

We will show that for a graded projective \(A \)-module \(P \) there is a non-canonical graded isomorphism \(ST(P) \cong_{\text{gr}} P \). The lemma then follows.

Consider the natural graded \(A \)-module epimorphism

\[
f : P \to T(P) = P \otimes_A A_0, \quad p \mapsto p \otimes 1.
\]

Here \(T(P) \) is considered as an \(A \)-module via the map \(\pi \). Since \(T(P) \) is a graded projective \(A_0 \)-module, the map \(f \) has a graded \(A_0 \)-linear section \(g : T(P) \to P \). This section determines an \(A \)-linear graded map

\[
\psi : ST(P) = P \otimes_A A_0 \otimes A_0 \to P, \quad p \otimes a_0 \otimes a \mapsto g(p \otimes a_0) \cdot a,
\]

and we will show that \(\psi \) is an isomorphism. First note that the map

\[
T(f) : T(P) \to TT(P), \quad p \otimes a_0 \mapsto f(p) \otimes a_0 = p \otimes 1 \otimes a_0
\]

is an isomorphism (consider \(T(P) \) as an \(A \)-module via \(\pi \) here). In fact the inverse is given by the isomorphism \(TT(P) = P \otimes_A A_0 \otimes A_0 \to P \otimes_A A_0 \) which
maps $p \otimes a_0 \otimes b_0$ to $p \otimes (a_0 b_0)$. Tracing the definitions now shows that both composites

$$TST(P) \xrightarrow{T(\psi)} T(P) \xrightarrow{T(f)} TT(P)$$

map $p \otimes a_0 \otimes a \otimes b_0 \in P \otimes_A A_0 \otimes_A A_0 \otimes A_0 = TST(P)$ to the element $f(g(p \otimes a_0) \cdot a) \otimes b_0 = p \otimes (a_0 \pi(a) b_0) \otimes 1 \in TT(P)$. This implies that $T(\psi) = \nu_{T(P)}$, which is an isomorphism.

The exact sequence

$$0 \to \ker \psi \to ST(P) \xrightarrow{\psi} P \to \coker \psi \to 0 \quad (4)$$

gives rise, upon application of the right exact functor T, to an exact sequence

$$TST(P) \xrightarrow{T(\psi)} T(P) \to T(\coker \psi) \to 0.$$

Since $T(\psi)$ is an isomorphism we have $T(\coker \psi) = \coker T(\psi) = 0$. Since $\coker \psi$ is finitely generated by (4) this implies $\ker \psi = 0$ (note that $T(M) = M / MA_+$ for every finitely generated module M). In other words, ψ is surjective and (4) becomes the short exact sequence $0 \to \ker \psi \to ST(P) \xrightarrow{\psi} P \to \ker \psi = 0$. This latter sequence splits since P is projective; this immediately implies that $\ker \psi$ is finitely generated, and since $T(\psi)$ is injective we also have $T(\ker \psi) = \ker T(\psi) = 0$. The hypotheses guarantee $\ker \psi = 0$ now so that ψ is injective as well as surjective, and thus is an isomorphism as claimed.

3 A lemma on graded K-theory

Lemma 4 Let G and Γ be groups, and let A be a G-graded ring. Then, considering A as a $\Gamma \times G$-graded ring in a trivial way where necessary, the functorial assignment $(M, \gamma) \mapsto M(\gamma, 0)$ induces a $\mathbb{Z}[\Gamma \times G]$-module isomorphism

$$K_i^{\Gamma \times G}(A) \cong K_i^{G}(A) \otimes_{\mathbb{Z}[G]} \mathbb{Z}[\Gamma \times G].$$

Proof Let $P = \bigoplus_{(\gamma, g) \in \Gamma \times G} P_{(\gamma, g)}$ be a $\Gamma \times G$-finitely generated graded projective A-module. Since the support of A is $G = 1 \times G$, there is a unique decomposition $P = \bigoplus_{\gamma \in \Gamma} P_{\gamma}$, where the $P_{\gamma} = \bigoplus_{g \in G} P_{(\gamma, g)}$ are finitely generated G-graded projective A-modules. This gives a natural isomorphism of categories

$$\Psi : \mathcal{P}_{g}^{\Gamma \times G}(A) \xrightarrow{\cong} \bigoplus_{\gamma \in \Gamma} \mathcal{P}_{g}^{G}(A).$$

The natural right action of $\Gamma \times G$ on these categories is described as follows: for a given module $P \in \mathcal{P}_{g}^{\Gamma \times G}(A)$ as above and elements $(\gamma, g) \in \Gamma \times G$ we have

\[\Psi : \mathcal{P}_{g}^{\Gamma \times G}(A) \xrightarrow{\cong} \bigoplus_{\gamma \in \Gamma} \mathcal{P}_{g}^{G}(A). \]
On Quillen’s calculation of graded K-theory

so that $\Psi(P(\gamma, g)) = \Psi(P)(\gamma, g)$. Since K-groups respect direct sums we thus have a chain of $\mathbb{Z}[(\Gamma \times G)]$-linear isomorphisms

$$K_i^{\Gamma \times G}(A) = K_i(\mathcal{P}_{gr}^{\Gamma \times G}(A)) \cong K_i \left(\bigoplus_{\gamma \in \Gamma} \mathcal{P}_{gr}^G(A) \right) = \bigoplus_{\gamma \in \Gamma} K_i^G(A) \cong K_i^G(A) \otimes_{\mathbb{Z}[\Gamma]} \mathbb{Z}[\Gamma \times G].$$

\square

4 Proof of Theorem 1

Let A be a $\mathbb{Z} \times G$-graded ring with support in $\mathbb{N} \times G$. That is, A comes equipped with a decomposition

$$A = \bigoplus_{\omega \in \mathbb{N}} A_{(\omega, -)} \quad \text{where} \quad A_{(\omega, -)} = \bigoplus_{g \in G} A_{(\omega, g)}.$$

The ring A has a $\mathbb{Z} \times G$-graded subring $A_{(0, -)}$ (with trivial grading in \mathbb{Z}-direction). The projection map $A \to A_{(0, -)}$ is a $\mathbb{Z} \times G$-graded ring homomorphism; its kernel is denoted A_+. Explicitly, A_+ is the two-sided ideal

$$A_+ = \bigoplus_{\omega > 0} A_{(\omega, -)}.$$

We identify the quotient ring A/A_+ with the subring $A_{(0, -)}$ via the projection.

4.1 Functors

If P is a finitely generated graded projective A-module, then $P \otimes_A A_{(0, -)}$ is a finitely generated $\mathbb{Z} \times G$-graded projective $A_{(0, -)}$-module. Similarly, if Q is a finitely generated graded projective $A_{(0, -)}$-module then $Q \otimes_{A_{(0, -)}} A$ is a $\mathbb{Z} \times G$-finitely generated graded projective A-module. We can thus define functors

$$T = - \otimes_A A_{(0, -)} : \mathcal{P}_{gr}^{\mathbb{Z} \times G}(A) \longrightarrow \mathcal{P}_{gr}^{\mathbb{Z} \times G}(A_{(0, -)})$$

and

$$S = - \otimes_{A_{(0, -)}} A : \mathcal{P}_{gr}^{\mathbb{Z} \times G}(A_{(0, -)}) \longrightarrow \mathcal{P}_{gr}^{\mathbb{Z} \times G}(A).$$

Since $T(P) = P/PA_+$ we see that the support of $T(P)$ is contained in the support of P.

Observe now that if M is a finitely generated $\mathbb{Z} \times G$-graded A-module and $MA_+ = M$ then $M = 0$; for if $M \neq 0$ there is a minimal $\omega \in \mathbb{Z}$ such that $M_{(\omega, -)} \neq 0$, but $(MA_+)(\omega, -) = 0$. It follows from Proposition 3 that for each graded finitely generated
projective A-module P there is a non-canonical isomorphism $P \cong T(P) \otimes_{A(0,-)} A$ as in (2) which respects the $\mathbb{Z} \times G$-grading. Explicitly, for a given $(\omega, g) \in \mathbb{Z} \times G$ we have an isomorphism of abelian groups

$$P_{(\omega,g)} \cong \bigoplus_{(k,h)} T(P)_{(k,h)} \otimes A(-k+\omega,-h+g); \quad (5)$$

the tensor product $T(P)_{(k,h)} \otimes A(-k+\omega,-h+g)$ denotes, by convention, the abelian subgroup of $T(P) \otimes_{A(0,-)} A$ generated by primitive tensors of the form $x \otimes y$ with homogeneous elements $x \in T(P)$ of degree (k, h) and $y \in A$ of degree $(-k + \omega, -h + g)$.

4.2 Filtration

For a $\mathbb{Z} \times G$-graded A-module P write $P = \bigoplus_{\omega \in \mathbb{Z}} P_{(\omega,-)}$, where $P_{(\omega,-)} = \bigoplus_{g \in G} P_{(\omega,g)}$. For $\lambda \in \mathbb{Z}$ let $F^\lambda P$ denote the A-submodule of P generated by the elements of $\bigcup_{\omega \leq \lambda} P_{(\omega,-)}$; this is $\mathbb{Z} \times G$-graded again. As an explicit example, we have

$$F^\lambda A(\omega, g) = \begin{cases} A(\omega, g) & \text{if } \lambda \geq -\omega, \\ 0 & \text{else.} \end{cases}$$

Suppose that P is a finitely generated graded projective A-module. Since the support of A is contained in $\mathbb{N} \times G$ there exists $n \in \mathbb{Z}$ such that $F^{-n} P = 0$ and $F^n P = P$. Write $\mathcal{P}gr_{\mathbb{Z} \times G}^n (A)$ for the full subcategory of $\mathcal{P}gr_{\mathbb{Z} \times G} (A)$ spanned by those modules P which satisfy $F^{-n} P = 0$ and $F^n P = P$. Then $\mathcal{P}gr_{\mathbb{Z} \times G} (A)$ is the filtered union of the $\mathcal{P}gr_{\mathbb{Z} \times G}^n (A)$.

Let $P \in \mathcal{P}gr_{\mathbb{Z} \times G} (A)$; we want to identify $F^\lambda P$. By definition, the A-module $F^\lambda P$ is generated by the elements of $P_{(\omega,g)}$ for $\omega \leq \lambda$, with $P_{(\omega,g)}$ having been identified in (5). We remark that the direct summands in (5) indexed by $\kappa > \omega$ are trivial as A has support in $\mathbb{N} \times G$. On the other hand, for $\omega \geq \kappa$ a given primitive tensor $x \otimes y \in P_{(\omega,g)}$ with $x \in T(P)_{(k,h)}$ and $y \in A(-k+\omega,-h+g)$ can always be re-written, using the right A-module structure of $T(P) \otimes_{A(0,-)} A$, as

$$x \otimes y = (x \otimes 1) \cdot y \quad \text{where } x \otimes 1 \in T(P)_{(k,h)} \otimes A(0,0) \subseteq P_{(k,h)}.$$

That is, the A-module $F^\lambda P$ is generated by those summands of (5) with $\kappa = \omega \leq \lambda$. We claim now that $F^\lambda P$ is isomorphic to

$$M^{(\lambda)} = \bigoplus_{\kappa \leq \lambda} T(P)_{(k,-)} \otimes_{A(0,-)} A(-\kappa, 0), \quad (6)$$
considering $T(P)_{(k,-)}$ as a $\mathbb{Z} \times G$-graded $A_{(0,-)}$-module with support in $[0] \times G$. The homogeneous components of $M^{(k)}$ are given by

$$M^{(k)}_{(\omega,g)} = \bigoplus_{\kappa \leq k} \bigoplus_{h \in G} T(P)_{(\kappa,h)} \otimes A(-\kappa,0)_{(\omega,h+g)}.$$

Now elements of the form $x \otimes 1 \in T(P)_{(\kappa,h)} \otimes A(-\kappa,0)_{(\kappa,-h+h)} \subseteq M^{(k)}_{(\kappa,h)}$ clearly form a set of A-module generators for $M^{(k)}$ so that, by the argument given above, $F^k P$ and $M^{(k)}$ have the same generators in the same degrees. The claim follows. The module $F^k P$ is finitely generated (viz., by those generators of P that have \mathbb{Z}-degree at most λ). Since $T(P)$ is a finitely generated projective $A_{(0,-)}$-module so is its summand $T(P)_{(k,-)}$; consequently, $P \mapsto F^k P$ is an endofunctor of \mathbb{G}_q. It is exact as can be deduced from the (non-canonical) isomorphism in (6), using exactness of tensor products.

4.3 Filtration quotients

From the isomorphism $F^k P \cong M^{(k)}$, cf. (6), we obtain an isomorphism

$$(F^{k+1} P/F^k P \cong T(P)_{(k,-)} \otimes_{A_{(0,-)}} A(-k,0); \ (7))$$

in particular, $F^{k+1} P/F^k P \in \mathbb{G}_q\otimes_{\mathbb{G}_q}(A)$. The isomorphism (7) depends on the isomorphism (6), and thus ultimately on (2). The latter depends on a choice of a section g of $P \rightarrow T(P)$. Given another section g_0, the difference $g - g_0$ has image in $\ker(P \rightarrow T(P)) = PA_+$. Since A_+ consists of elements of positive \mathbb{Z}-degree only, this implies that the isomorphism $F^{k+1} P \cong M^{(k+1)}$ does not depend on g up to elements in $F^k P$; in other words, the quotient $F^{k+1} P/F^k P$ is independent of the choice of g. Thus the isomorphism (7) is, in fact, a natural isomorphism of functors.

4.4 K-theory

We are now in a position to perform the K-theoretical calculations. First define the exact functor

$$\Theta_q : \mathbb{G}_q\otimes_{\mathbb{G}_q}(A_{(0,-)}) \longrightarrow \mathbb{G}_q\otimes_{\mathbb{G}_q}(A)$$

$$P = \bigoplus_{\omega} P_{(\omega,-)} \mapsto \bigoplus_{\omega} P_{(\omega,-)} \otimes_{A_{(0,-)}} A(-\omega,0);$$

here $\mathbb{G}_q\otimes_{\mathbb{G}_q}(A_{(0,-)})$ denotes the full subcategory of $\mathbb{G}_q\otimes_{\mathbb{G}_q}(A_{(0,-)})$ spanned by modules with support in $[-q,q] \times G$, and $P_{(\omega,-)}$ on the right is considered as a $\mathbb{Z} \times G$-graded $A_{(0,-)}$-module with support in $[0] \times G$.

Springer
Next define the exact functor
\[\Psi_q : \mathcal{P}_{gr}^{\mathbb{Z} \times G}(A) \rightarrow \mathcal{P}_{gr}^{\mathbb{Z} \times G}(A_{(0,-)}) \]
\[P \mapsto \bigoplus_{\omega \in \mathbb{Z}} T(P)_{(\omega,-)} ; \]

here \(T(P)_{(\omega,-)} \) is considered as an \(A_{(0,-)} \)-module with support in \(\{\omega\} \times G \).

Now \(\Psi_q \circ \Theta_q \cong \text{id} \); indeed, the composition sends the summand \(P_{(\omega,-)} \) of \(P \) to the \(\kappa \)-indexed direct sum of
\[T(P_{(\omega,-)} \otimes A_{(0,-)} A(-\omega,0))_{(\kappa,-)} \cong \begin{cases} P_{(\omega,-)} & \text{if } \kappa = \omega , \\ 0 & \text{else.} \end{cases} \]

In particular, \(\Psi_q \circ \Theta_q \) induces the identity on \(K \)-groups. — As for the other composition, we have
\[\Theta_q \circ \Psi_q(P) = \bigoplus_{\omega} T(P)_{(\omega,-)} \otimes A_{(0,-)} A(-\omega,0) = \bigoplus_{j=-q}^{q-1} F_{j+1} P / F_j P . \]

Since \(F^q = \text{id} \), additivity for characteristic filtrations [4, p. 107, Corollary 2] implies that \(\Theta_q \circ \Psi_q \) induces the identity on \(K \)-groups.

For any \(P \in \mathcal{P}_{gr}^{\mathbb{Z} \times G}(A_{(0,-)}) \) we have
\[(P \otimes A_{(0,-)} A(-\omega,0))(0, g) = P(0, g) \otimes A_{(0,-)} A(-\omega,0) , \]
by direct calculation. Hence the functor \(\Theta_q \) induces a \(\mathbb{Z}[G] \)-linear isomorphism on \(K \)-groups. Since \(K \)-groups are compatible with direct limits, letting \(q \rightarrow \infty \) yields a \(\mathbb{Z}[G] \)-linear isomorphism \(K_i^{\mathbb{Z} \times G}(A_{(0,-)}) \cong K_i^{\mathbb{Z} \times G}(A) \) and thus, by Lemma 4, a \(\mathbb{Z}[\mathbb{Z} \times G] \)-module isomorphism
\[K_i^G(A_{(0,-)}) \otimes \mathbb{Z}[G] \mathbb{Z}[\mathbb{Z} \times G] \cong K_i^{\mathbb{Z} \times G}(A) . \]

References
1. Bass, H.: Algebraic \(K \)-theory. W. A. Benjamin, Inc., New York (1968)
2. Bass, H., Heller, A., Swan, R.: The Whitehead group of a polynomial extension. Publ. Math. IHES 22, 61–79 (1964)
3. Năstăsescu, C., Van Oystaeyen, F.: Methods of graded rings, Lecture Notes in Mathematics, 1836. Springer, Berlin (2004)
4. Quillen, D.: Higher algebraic \(K \)-theory. I. Algebraic \(K \)-theory, I: higher \(K \)-theories. In: Proc. Conf., Battelle Memorial Inst., Seattle, Wash., 1972, Lecture Notes in Math., vol. 341, pp. 85–147. Springer, Berlin (1973)
5. Swan, R.: Algebraic \(K \)-theory, Lecture Notes in Mathematics, No. 76, Springer, Berlin (1968)