Experimental and Numerical Study of Energy Dissipation Components of a New Metallic Damper Device

Dragan Zlatkov1 · Danilo Ristić2 · Andrija Zorić1 · Jelena Ristić3 · Biljana Mladenović1 · Žarko Petrović1 · Marina Trajković-Milenković1

Abstract

Purpose The novel metallic damper device for passive vibration control of structures, which is designed primarily for seismic protection of buildings, is described in this paper. It consists of the base plate, fixed into foundation, with two concentric cycles of vertical components and a middle steel activating plate anchored to the isolated structure. During an earthquake, the middle steel activating plate moves together with main structure causing bending of vertical components. Seismic energy is absorbed due to plastic deformation of the vertical components of the damper. The performance of various vertical components, the key elements of the novel damper is studied in this paper. The advantages of this type of damper reflect in its ability to adapt its own features depending on the intensity of the earthquake and that it has equivalent characteristics in every horizontal direction due to rotational symmetry.

Methods Sixteen experimental tests of the vertical components of the damper, were conducted to obtain their hysteretic behaviour. Numerical models using the finite element method and the Abaqus/Standard software were developed, validated and verified with experimentally obtained results.

Results The experimental results show significant energy absorption of the vertical components of the novel damper. Numerical models can be used in further research instead of expensive experimental tests.

Conclusions The vertical components of the novel damper possess extraordinary hysteretic performance. If the components of the energy dissipation device are properly designed for maximum displacements, the device is not expected to suffer heavy damage or total failure during earthquakes.

Keywords Metallic damper · Energy dissipation · Hysteretic behaviour · Experimental test · Finite element method · Cyclic load

✉️ Dragana Zlatkov
dragan.zlatkov@gaf.ni.ac.rs

Danilo Ristić
danilo@pluto.iziis.ukim.edu.mk

Andrija Zorić
andrija.zoric@gaf.ni.ac.rs

Jelena Ristić
jelena.ristic.ibu@gmail.com

Biljana Mladenović
biljana.mladenovic@gaf.ni.ac.rs

Žarko Petrović
zarko.petrovic@gaf.ni.ac.rs

Marina Trajković-Milenković
marina@gaf.ni.ac.rs

1 Faculty of Civil Engineering and Architecture, University of Niš, 18000 Niš, Serbia

2 Institute of Earthquake Engineering and Engineering Seismology (IZIIS), Skopje 1000, North Macedonia

3 Faculty of Engineering, Department of Civil Engineering, International Balkan University, Skopje 1000, North Macedonia
Introduction

The impacts of earthquakes are dominant in design of structures in seismic active areas. During the earthquakes, the damage of the structure can be caused, as well as the collapse of the structure. Human losses and huge material costs caused by earthquakes require permanent research in the field of seismic protection of the buildings in seismic active areas. The beginnings of the earthquake-resistant design of structures date from the early twentieth century. Movement of the ground in horizontal direction during the earthquake causes large deformation and damage of structures, therefore, the first ideas for the earthquake-resistant design of structures were related to the separation of the building from its foundation by a layer of sand and talc [1].

The contemporary systems of vibration control in buildings can be divided in passive, active, semi-active and hybrid systems [2, 3]. The passive systems of vibration control are popular because they do not require any source of external energy during operation. Within the passive systems for vibration control there are two groups of devices: seismic isolation devices and energy dissipation devices. The concept where the devices for passive vibration control were placed in foundations of buildings is recognized and widely accepted as a base isolation.

Different types of seismic isolation devices were developed and tested in the past, such as elastomeric bearings, lead-rubber bearings, combined bearings, sliding friction pendulum bearings etc. The main differences between these types of isolation devices are related to the used materials and the way they provide horizontal flexibility [4, 5]. Lately, experimental and analytical researches in the field of seismic isolators are directed towards improvement of the already mentioned types of seismic isolators and the removal of their flaws [6–9].

Systems for seismic isolation and energy absorption, besides implementation in building structures, are used for seismic protection of bridges, as well [10, 11]. Numerous experimental testing, numerical and analytical analysis are available in the literature and some latest can be found in [12–17].

Beside seismic vibration isolation, passive vibration systems have been improved to implement for control of low frequency micro-vibration of structures [18].

Seismic isolators usually do not possess the capacity of energy absorption, so application of the energy dissipation devices is necessary. Passive energy dissipation devices can be divided according to the method they dissipate energy in hysteretic devices, viscoelastic devices, re-centring devices, dynamic vibration absorbers etc. There are two groups of hysteretic devices, such as metallic dampers and friction dampers. Metallic dampers dissipate energy through inelastic deformation of material, while friction dampers dissipate energy through friction. The main advantages of metallic dampers are reflected in stable hysteretic behaviour, which rate is independent of loading rate. Constitutive models of metallic materials are well known and used in every day practice, so another advantage of these dampers is simple analytical prediction of the response and calculation of the amount of energy they can dissipate [19]. According to the geometry and the shape of deformation there are different groups of metallic dampers, such as torsional beam, flexural beam, cantilever plate, U-strip etc. Flexural beam dampers are usually constructed with rectangular or circular cantilever beams. These beams are dominantly subjected to bending deformation during earthquakes and they can be applied in the base isolation system due to their geometry. Detailed experimental testing of these metallic dampers proved that they have satisfactory hysteretic behaviour [20, 21]. Recent research in this field involved experimental testing of U-shaped dampers, analysing their reliability and seismic response of building models [22–24], as well as E-shaped dampers [25]. The scope of research covers experimental testing of hysteretic behaviour of dampers made of steel plates with different geometry [26, 27]. Also, pipe dampers were developed and tested [28–30]. Recently, a new type of metallic dampers called bar dampers, made of circular bars arranged in rectangular form between two plates, was proposed and experimentally tested. It is confirmed that this type of dampers possesses significant hysteretic behaviour [31, 32]. All mentioned metallic dampers were mainly used in the concept of the base isolation and in the region of column-beam joints. On the other hand, there are dampers which are used as bracings in the frame structures and the experimental and analytical research and upgrading of these types of dampers, as well as the response of the structure with dampers, are also a current topic of research [33–43]. Furthermore, there are investigations of the aluminium usage as a material for hysteretic devices [44, 45]. Also, algorithm for investigation of optimal location of metallic dampers to reduce seismic effects on the structure were proposed [46]. Continuous research in the field of metallic dampers has led to a huge number of papers dealing with various types of dampers, which have not been mentioned in this paper, and therefore readers are referred to the state-of-the-art paper [19].

In this paper, the new vertical multi-gap multi-level multidirectional seismic energy absorber is analysed (Fig. 1) for
the purpose of providing its application in seismic engineering practice. This concept of metallic hysteresis damper for passive seismic control is developed by the three authors within the frame of the innovation project Seismo-safe 2G3-GOSEB building system, which resulted in a registered patent [47].

The experimental testing of eight vertical components of that energy dissipation device, as the main parts, with a different size of the cross section, is presented in the paper. It is proved that vertical components possess significant hysteretic behaviour and can be used for seismic energy absorption. Numerical models of all eight vertical components using finite element method in software package Abaqus/Standard are developed, verified and validated with experimentally obtained results. The proposed numerical models can be used for further analyses of the energy dissipation device as a whole. In comparison with the similar devices applied so far, this one offers important advantages as it demonstrates a high level of success in proper reaction in all directions with maintaining its ability to adapt its own features depending on the intensity of the earthquake, providing safety upon the action of the moderate, strong until the strongest possible earthquakes.

Description of the New Energy Dissipation Device

The energy dissipation device consists of vertical elements which are fixed into a base plate. Vertical elements have circular cross section changeable along the height and they are located in two circles radially symmetric. The base plate is fixed into foundations. At the top of the vertical components of the device, there is a middle steel activating plate which is fixed by a hollow part to the upper steel plate anchored into upper isolated building. All elements of the energy dissipation device were made of steel S-15-30. Between middle steel activating plate and vertical components there are gaps (smaller gaps in the inner circle and larger gaps in the external circle of the vertical components).

During the earthquake, the middle steel activating plate, together with the upper isolated building, moves and creates a contact with the vertical components of the energy dissipation device. During the contact, the vertical components bend entering inelastic range of steel behaviour. By inelastic deformation of vertical components, the seismic energy is absorbed. Different gaps size between the middle steel
activating plate and inner vertical components and between the middle steel activating plate and external vertical components give the possibility of changing the stiffness of the energy dissipation device as a whole during the weak and strong earthquakes. During the weak earthquakes, when displacement of upper isolated structure is less than the gap between the middle steel activating plate and inner circle of the vertical components, the energy dissipation device is inactive. In the case of moderate earthquakes, the inner circle of vertical components will be activated to bend and provide adequate level of energy dissipation. Finally, during the most severe earthquake, both inner and external circle of vertical components go into inelastic deformations providing full seismic energy dissipation. Based on this, the new energy dissipation device has multi-level absorption potential. This is the first advantage of this device compared to the other dampers.

The second advantage of this energy dissipation device reflects in its multi-directional property. Namely, radial symmetric disposition of the vertical components provides the same physical and mechanical characteristics of device in all directions which is very important because it is not possible to predict the direction of earthquakes.

The third advantage of this device is a possibility to design the absorption device of desired mechanical characteristic because the vertical components may have different diameter of the circular cross section. The axonometry of proposed damper and geometry of base and middle steel activating plate are shown in Fig. 1a–c, while detailed description of vertical elements will be presented in the next chapter.

For seismic isolation of buildings, the energy dissipation device should be used in combination with seismic isolation devices (for example rubber bearings or friction pendulum systems). In order to prevent excessive displacements of the isolated structure, potential rocking of structure or the occurrence of unwanted torsional deformations of the structure, it is necessary to use displacement control devices. Preventing the unwanted displacements of the isolated structure ensures that the middle steel activating plate is in the designed position, whereby the operation of the energy dissipation device during the earthquake is as designed and expected. All three devices are mounted in seismic dilatation, which is a horizontal dilatation at the level of the foundation or above the rigid basement, which divides the structure into isolated superstructure and substructure (Fig. 1d). For the adequate functioning of the devices for base isolation of buildings, a rigid foundation structure should be designed, which would not have significant displacements or rotations during an earthquake. If large rotations of foundation would occur there would be a possibility of dislocation of the components of energy dissipation device, which would have undesirable impact on its functionality.

Experimental Testing of Model Prototypes of Vertical Components of Energy Dissipation Devices

Geometry of Vertical Energy Dissipation Components

Different geometrical parameters of vertical components were analysed to obtain the way it influences hysteretic behaviour of vertical components. The vertical components are made of a ductile metal in the form of a moderately steep cut cone. According to the diameter of the cone base \(d_b\), there have been adopted a total of four options from which there have arisen four types of energy dissipation components. For each type of energy dissipation components, there have been designed vertical elements in two alternative variants of cones, i.e., with different diameters of the top \(d_t\), whereas the diameter of the element at the base has been kept the same. The different types of energy dissipation (ED) components have been designated as follows:

- **Energy dissipation components Type – 1:**
 - Prototype model – 1: ED – T1 – E1 \((d_b/d_t=32.0/25.6 \text{ mm})\)
 - Prototype model – 2: ED – T1 – E2 \((d_b/d_t=32.0/19.2 \text{ mm})\)

- **Energy dissipation components Type – 2:**
 - Prototype model – 1: ED – T2 – E1 \((d_b/d_t=28.0/22.4 \text{ mm})\)
 - Prototype model – 2: ED – T2 – E2 \((d_b/d_t=28.0/16.0 \text{ mm})\)

- **Energy dissipation components Type – 3:**
 - Prototype model – 1: ED – T3 – E1 \((d_b/d_t=24.0/19.2 \text{ mm})\)
 - Prototype model – 2: ED – T3 – E2 \((d_b/d_t=24.0/14.4 \text{ mm})\)

- **Energy dissipation components Type – 4:**
 - Prototype model – 1: ED – T4 – E1 \((d_b/d_t=20.0/16.0 \text{ mm})\)
 - Prototype model – 2: ED – T4 – E2 \((d_b/d_t=20.0/12.0 \text{ mm})\)

All the vertical components have the same height of the cone body of \(h_1=190 \text{ mm}\) and end with an identical
cylinder with a diameter \(d = 24.0 \) mm with a constant length of \(h_1 = 60.0 \) mm. This gives eight different vertical components in total (Fig. 2). With the described adapted geometry of the vertical components, there have been provided equivalent conditions for fixation into the base metal plate, while through the standard cylinder at the top of the vertical elements, there have been provided equivalent conditions for excitation (contact and activation) of all the components that were tested.

All these eight originally designed vertical energy dissipation components were experimentally tested for the purpose of defining their real hysteretic behaviour under the effect of horizontal cyclic loads with increasing displacement amplitudes. This provides very well-organized comparative analysis of the influence of geometrical parameters on the hysteretic behaviour of vertical components of the new metallic damper. Therefore, the results should be useful for the future practical application and design of new metallic damper with desired characteristics.

Selection of Suitable Properties of Implemented Material

For the manufacturing of the experimental model prototypes of the energy dissipation components, there has been selected a corresponding metal S-15-30 with the pronounced ductility and ability not to experience failure under a large number of iterated cyclic loads with large amplitudes of displacement. These properties of the selected material are expected to be proved by the experimental tests.

In the mechanical manufacturing of all the experimental prototype models, metal elements with hexagonal cross-section have been used. With such selection, conditions for elaboration of a hexagonal segment necessary for the fixation of the element to the base by screwing are created. In addition, the selected profile has been used as suitable for the manufacturing of all the remaining segments of the corresponding prototype models in accordance with their designed geometrical properties (Fig. 2).

The prototypes of vertical components of energy dissipation device are shown in Fig. 3.

Experimental Testing of Produced Model Prototypes of Vertical Components of Energy Dissipation Device

Within the frames of the experimental testing of the produced model prototypes of energy dissipation devices, an ample experimental program consisting of a total of 16 nonlinear experimental tests was realized since each individual component was tested twice as follows:

- Test-1, or the so-called original test, to obtain the hysteretic response under the initial conditions;
- Test-2, or the so-called repeated test, to get an insight into the hysteretic response of the model that has already been tested.

For the successful realization of the specific experimental program within the frames of these investigations, a specific experimental platform was created. The experimental platform was created of two global segments: rigid base structure to which the base cross-sections of the experimental model were fixed and a mobile lateral structure connected to a horizontal actuator applied for simulation of cyclic loads through simulated cyclic displacements with increasing amplitudes.

The initial position of the prototype and the characteristic deformed configuration under the applied considerable horizontal displacement are shown in Fig. 4.

Experimental Results Obtained for Tested Model Prototypes of Energy Dissipation Components

In the course of the experiments, in addition to acquisition by certain control channels, there were also successfully recorded measured values of the horizontal deformation at the top \(L_x \) as well as the corresponding values of the applied horizontal force \(F_x \).

By consistent processing of the obtained experimental data, hysteretic relationships were plotted for the original and repeated tests of all eight experimental models.

The recorded hysteretic relationships for the original tests of all eight tested vertical components of seismic energy dissipation device are shown in Figs. 5a, 6a, 7a, 8a, 9a, 10a, 11a and 12a. The recorded hysteretic relationships for the repeated tests of the same tested vertical components of the seismic energy dissipation device are presented in Figs. 5b, 6b, 7b, 8b, 9b, 10b, 11b and 12b.

From the presented experimental results in graphic form, i.e., in the form of the nonlinear hysteretic relationships for the original and the repeated tests of each experimental model prototype of energy dissipation devices, it can be concluded that there is a lot of similarity. It is worth to mention that the repeated tests were performed after the original tests, without the relaxation of hydraulic jack of the actuator, therefore the initial conditions for the repeated tests were zero displacement and non-zero force. Thus, the obtained hysteresis diagrams for the repeated tests should be shifted along force axis to annul residual force. Taking this into account, it can be concluded that hysteretic behaviour of all tested prototypes is stable and symmetric. In the Table 1, mean values of absolute values of maximal force in both directions for the original and repeated tests are shown. This way, it is proved that the designed innovative energy dissipation components
Fig. 2 Model prototypes of vertical components of energy dissipation device constructed for experimental testing (measures in mm): a ED-T1-E1; b ED-T1-E2; c ED-T2-E1; d ED-T2-E2; e ED-T3-E1; f ED-T3-E2; g ED-T4-E1; h ED-T4-E2
Fig. 3 Model prototypes of vertical components of energy dissipation device constructed for experimental testing; *a* ED-T1-E1 to ED-T4-E1; *b* ED-T1-E2 to ED-T4-E2

Fig. 4 View of experimental test set-up for testing of model prototypes of energy dissipation components under the simulated reversed cyclic loads with the increasing displacement amplitudes

Fig. 5 Recorded hysteretic model response under the simulated reversed cyclic loads for specimen ED-T1-E1; *a* Original test; *b* Repeated test
Fig. 6 Recorded hysteretic model response under the simulated reversed cyclic loads for specimen ED-T1-E2; a Original test; b Repeated test

Fig. 7 Recorded hysteretic model response under the simulated reversed cyclic loads for specimen ED-T2-E1; a Original test; b Repeated test

Fig. 8 Recorded hysteretic model response under the simulated reversed cyclic loads for specimen ED-T2-E2; a Original test; b Repeated test
possess extraordinary nonlinear performances and do not suffer considerable degradation of performance and damage during the repeated tests.

From the general presentation of the obtained experimental results given above, it is clear that the presented experimental research confirmed the advanced features of the proposed energy dissipation devices for real practical applications.

Fig. 9 Recorded hysteretic model response under the simulated reversed cyclic loads for specimen ED-T3-E1; a Original test; b Repeated test

Fig. 10 Recorded hysteretic model response under the simulated reversed cyclic loads for specimen ED-T3-E2; a Original test; b Repeated test

Fig. 11 Recorded hysteretic model response under the simulated reversed cyclic loads for specimen ED-T4-E1; a Original test; b Repeated test
Numerical models of vertical components using the finite element method and the Abaqus/Standard software were developed. The detailed procedure of modelling is presented in this chapter. The main goal of the numerical analysis is to calibrate the finite element model of all types of vertical components of energy dissipation device. Numerical results are compared with the experimentally obtained results to validate and verify the proposed models. They can be used in the further research of the proposed damper instead of expensive experimental tests.
Geometry and Material Modelling

Geometry of the numerical models was created according to the physical models of the prototypes of vertical components of the energy dissipation device (Fig. 2). The threads for mounting and fixing the energy dissipation devices into experimental platform were not modelled because stress concentration in the thread’s region was not the subject of this analysis. Geometry of all models of the energy dissipation devices are shown in Fig. 13.

Cyclic displacements, that prototype is exposed to during the experiment, were applied by the mobile lateral structure connected to a horizontal actuator. The mobile lateral structure consists of two parts: flexible element and fixed element. Geometry of the mobile lateral structure of the test equipment is shown in Fig. 14a, b. The whole mobile lateral structure was not modelled because its stress–strain analysis was not the subject of this paper. One part of the mobile lateral structure in the region of contact with the prototype was modelled (Fig. 14c), and real behaviour in concordance with the experimental equipment was modelled with the suitable boundary conditions.

Energy dissipation devices were made of steel S-15-30. Module of elasticity of steel material is $E = 190$ GPa and Poisson’s ratio is $\nu = 0.30$ and with these parameters linear elastic behaviour of the material is described in numerical model. Yield stress of steel is $f_y = 430$ MPa, ultimate stress is $f_u = 745$ MPa and ultimate elongation is 16%. In the numerical analysis nonlinear behaviour of the material is modelled adopting bilinear kinematic hardening model with yield stress $f_y = 430$ MPa and tangent modulus $E_t = 6600$ MPa. Besides material nonlinearity, numerical analysis includes geometrical nonlinearity as well.

Boundary Conditions, Load and Contacts

At the surface of the part of vertical component that is fixed in experimental platform, displacement in three orthogonal directions were fixed and these boundary conditions represent clamping of the prototype. Lateral cyclic displacement in x direction was subjected in the middle point of the two-parallel surface of the mobile structure, while the displacement in two other directions was fixed (Fig. 15). With these boundary conditions, the rotation of mobile lateral structure was allowed which is in accordance with the experimental set up. Magnitude of lateral displacement is adopted according to the experiment as much as possible (Fig. 16) taking into account that there were uncertainties and deviations during the experimental testing of the vertical components.
Interaction between the mobile lateral structure and energy dissipation device was modelled with a standard surface to surface contact. This type of contact transfers forces normal to the contact surfaces and the friction between two surfaces was analysed introducing friction coefficient 0.40. Two pairs of contact surfaces were defined on the appropriate sides with the concordance with the direction of the applied displacement through the analysis steps (Fig. 17). Pair of contact surfaces presented in the Fig. 17a is defined in the analysis steps where the displacement of mobile lateral structure is in positive x direction. The other pair of surfaces will not get in contact during the displacement in positive x direction which is the reason why contact surfaces are not defined on this side of the vertical components in those steps. Alternatively, in the analysis steps where the displacement of mobile lateral structure is in negative x direction adequate contact surfaces were defined (Fig. 17b). This way, by properly defining contact surfaces, the computational time is reduced compared to the case of defining contact surfaces all over the cylinder of the vertical components and mobile lateral structure.

Finite Element Mesh

The models of all types of vertical components of energy dissipation device were meshed with solid finite elements. Convergence of mesh was done on the model ED-T1-E1 and model ED-T4-E2 to obtain the optimal element type and mesh density. The number of the finite elements, i.e., the number of nodes, the application of the linear and quadratic shape functions, as well as the type of the integration to obtain the finite element stiffness matrix was varied in the mesh convergence analysis. As a subject of the comparative analysis, the force–displacement relation was adopted, as well as elastic and post-yield stiffness. The models were subjected to gradually increasing displacement of the mobile lateral structure. The results were also compared to the experimentally obtained values. All results are systematized in Fig. 18. In all analysed cases finite element mesh of the mobile lateral structure were the same, and only number of elements i.e., number of nodes of vertical component of energy dissipation device varied. Number of nodes/elements shown in Fig. 18 refer to mesh of vertical component. It can be concluded that the solid elements with 8 nodes and linear functions show much more stiff behaviour, especially in the case ED-T4-E2. With dominant bending deformation when solid elements with linear functions are applied, a large shear stiffness can occur, which is not realistic. This phenomenon is known as “shear locking”. This can be prevented by increasing the number of finite elements, using solid elements with 20 nodes and quadratic functions or using reduced integration [48, 49]. All these types of finite elements were used with different mesh size, while the results differ in less than 5% (Fig. 18). For the further analysis, a model with solid 8 nodes elements with linear shape functions and reduced integration, which consists of 4404 elements and 5020 nodes in case ED-T1-E1 and 4476 elements and 5140 nodes in case ED-T4-E2, has been chosen because it is more favourable, considering the calculation time and the required computer resources. Density of the finite element mesh in other types of vertical components of energy dissipation device was the same, but the number of nodes differs slightly because of the small changes in geometry. Finite element mesh of all analysed cases is shown in Fig. 19.

![Mesh convergence – force–displacement relation](image1)

Fig. 18 Mesh convergence – force–displacement relation; a ED-T1-E1; b ED-T4-E2
Results and discussion

A nonlinear static analysis was performed with the displacement applied incrementally, where each analysis step was divided into 100–10,000 increments. Selected output data were displacements and forces (X-direction in numerical model). The force–displacement relationship was obtained and compared with the experimental results for all analysed cases of the energy dissipation components (Fig. 20). Experimentally and numerically obtained elastic and post-yield stiffnesses are compared as well. It can be concluded that the numerical results agree well with the experimental results analysing forward loading passes. Slightly deviation can be seen in backward loading passes, which is partly a consequence of the robustness and less sensitiveness of experimental equipment and residual forces in hydraulic jack of the actuator. Further research on this deviation should be done, but in general satisfactory numerical results were obtained in concordance to the experimental results. The proposed FEM model is verified and validated and can be used in further research instead of expensive experimental tests.

To obtain the influence of the steepness of the cone to the stress–strain relation in the vertical components of energy dissipation device, von Mises stress and plastic strains were analysed and based on that yield strength of all analysed vertical components of energy dissipation device were defined. Very important parameter for energy absorption is an area of hysteresis loop as a measure of the dissipated energy. For all analysed types of the vertical components of energy dissipation device (from ED-T1-E1 to ED-T4-E2) area of hysteresis loop was measured both for experimentally obtained results and numerical results in last loading – unloading loop. Results are shown in Table 2, as well as the difference between experimentally and numerically obtained results.

It can be concluded that numerical models give slightly higher values of absorbed energy than the experimentally obtained values. In most cases the difference between experiment and FEM results is less than 10%, except in the cases ED-T3-E2 and ED-T4-E1 where difference is less than 12%, which can be accepted as a correct agreement of numerical and experimental results.

Important parameter to evaluate performance of a metallic damper is cumulative dissipated energy vs cumulative displacement curve [50] and these curves are shown in Fig. 21 for all analysed vertical components of the proposed metallic damper. Moreover, comparative analysis of numerical and experimental results is present. Cumulative dissipated energy curves indicate that vertical components have significant damping, which is directly proportional to the diameters of the cone body of vertical components. Also, the dissipated energy monotonically increases as a function of the accumulative displacement. Comparing the results one can conclude that there is a reasonable agreement of the numerical and experimental results, taking into account that differences are less than 10%.

Other crucial parameters used to rate hysteretic dampers are effective stiffness (\(K_{\text{eff}}\)) and effective viscous damping ratio (\(\beta_{\text{eff}}\)) which is directly proportional to the total dissipated energy in each cycle i.e., an area of hysteresis loop.
Fig. 20 Force–displacement (hysteretic) diagrams—comparison of numerically and experimentally obtained results: a) ED-T1-E1; b) ED-T1-E2; c) ED-T2-E1; d) ED-T2-E2; e) ED-T3-E1; f) ED-T3-E2; g) ED-T4-E1; h) ED-T4-E2
Those parameters can be obtained for each cycle as:

\[
K_{\text{eff}} = \frac{|F_{\text{max}}| + |F_{\text{min}}|}{|D_{\text{max}}| + |D_{\text{min}}|},
\]

(1)

\[
\beta_{\text{eff}} = \frac{2E_{\text{loop}}}{\pi K_{\text{eff}}(|D_{\text{max}}| + |D_{\text{min}}|)^2},
\]

(2)

where \(F_{\text{max}}\) and \(F_{\text{min}}\) are maximal restoring forces and \(D_{\text{max}}\) and \(D_{\text{min}}\) maximal displacements in forward and backward loading passes of each loading cycle.

The effective stiffness and viscose damping ratio as a function of cumulative displacement for all analysed vertical components are shown in Figs. 22 and 23, respectively, for experimental as well as numerical results. It can be concluded that numerical analysis gives slightly lower effective stiffness and higher effective viscose damping ratio. The trends for both parameters are similar for the numerical and experimental results and reasonable agreement between the results can be noticed.

To define idealized force–displacement curve there is a need to define elastic stiffness \(K_e\), post-yield stiffness \(K_y\) and yield strength \(F_y\) (Fig. 24). Based on the data processing of the experimental and numerical results in forward

Table 2 Area of hysteresis loops in last loading–unloading cycle as measure of absorbed energy

Energy dissipation component	Absorbed energy		
	Experiment [kNmm, J]	Numerical (FEM) [kNmm, J]	Difference [%]
ED-T1-E1	1659.35	1798.54	8.39
ED-T1-E2	1336.09	1457.30	9.07
ED-T2-E1	1162.20	1170.49	0.71
ED-T2-E2	910.81	885.79	2.75
ED-T3-E1	693.45	710.18	2.41
ED-T3-E2	499.34	558.37	11.82
ED-T4-E1	341.49	377.23	10.47
ED-T4-E2	320.86	309.23	3.62
loading passes the elastic stiffness and post-yield stiffness, for all analysed prototypes of vertical components of the energy dissipation device, are systematized in Table 3. It can be concluded that the elastic stiffness is proportional to the diameter of the cone base and top which is the expected result. Comparing the results of the post-yield stiffness, it can be concluded that in the case of the same diameter in the cone base and for a different diameter at the cone top (for example cases ED-T1-E1 and ED-T1-E2) larger post-yield stiffness is in the case of the larger diameter of the cone top. When comparing the post-yield stiffness of the models ED-T1-E2 and ED-T2-E1, for example, it can be seen that the post-yield stiffness is about the same, or even greater in the case of ED-T2-E1 which have a smaller diameter of the cone base compared to ED-T1-E2. This is the consequence of the different steepness of the cone in compared cases, which

Table 3 Elastic and post-yield stiffness of vertical components – comparative analysis of experimental and numerical results

Energy dissipation device	Elastic stiffness Ke	Post-yield stiffness Ky				
	Experiment [kN/mm]	Numerical (FEM) [kN/mm]	Difference [%]	Experiment [kN/mm]	Numerical (FEM) [kN/mm]	Difference [%]
ED-T1-E1	1.9882	1.9844	0.19	0.1096	0.1036	5.79
ED-T1-E2	1.4353	1.4372	0.13	0.0606	0.0619	2.15
ED-T2-E1	1.2224	1.1832	3.31	0.0655	0.0634	3.31
ED-T2-E2	0.8131	0.7987	1.80	0.0362	0.0342	5.85
ED-T3-E1	0.6623	0.6498	1.92	0.0383	0.0364	5.22
ED-T3-E2	0.4493	0.4646	3.41	0.0218	0.0221	1.38
ED-T4-E1	0.3081	0.3174	3.02	0.0242	0.0234	3.42
ED-T4-E2	0.2189	0.2267	3.56	0.0120	0.0119	1.09

Fig. 25 Stress–strain distribution ED-T1-E1: a plastic strain, force 6.91 kN; b von Mises stress, force 6.91 kN; c plastic strain, force 15.59 kN; d von Mises stress, force 15.59 kN
leads to different development of the plasticized zone across the cone body of the vertical components. This phenomenon will be explained in the following text where stress–strain analysis is discussed.

The influence of the cone body steepness on the stress–strain state of the vertical components will be analysed based on the distribution of plastic strains. Figure 25a and b show the plastic strains and von Mises stresses at the moment corresponding to the beginning of the plasticization of the steel material of the model ED-T1-E1, where the corresponding force is 6.91 kN. Figure 25c and d show the plastic strains and von Mises stresses in the same model, but at the maximal analysed force of 15.59 kN. It is concluded that the fibres in the nut zone are plasticized first, where von Mises stresses at that time are approximately equal to the yield stress of the steel material. With a further force increase, the plasticized zone expands towards the free end of the vertical component of the energy dissipation device, where the von Mises stress at the maximal analysed force is about 710 MPa, which is slightly less than the ultimate capacity of the steel material. Figure 26 shows the distribution of plastic strains at the beginning of plasticization of the steel material and at the maximal analysed force in the vertical component for the rest of the analysed models (ED-T1-E2 to ED-T4-E2). Comparing the alternative variants of the cone (E1 and E2) of all analysed models (ED-T1 to ED-T4), it is noticed that when the cone is steeper (E2) the plasticization of the steel material occurs at the cross section along the body of the vertical component of the energy dissipation device, while in the case of milder cones (E1) the fibres in the nut zone are plasticized first. Based on the forces that lead to plasticization of steel material and maximal analysed forces at equivalent displacements of the vertical components, it can be concluded that with a decrease in the diameter of the cone base and top there is a decrease in the plasticization force and bearing capacity of the vertical component. In the idealized model of the force–displacement dependence of the vertical component (Fig. 24), the force leading to the plasticization of the steel material (Figs. 25 and 26) can be adopted as yield strength. Finally, all parameters for defining idealized force–displacement relationship of all analysed prototypes of vertical components were defined.

Conclusions

The paper presents a new metallic damper for passive vibration control of structures called vertical multi-gap multi-level multi-directional seismic energy absorber. The proposed device absorbs energy through plastic deformation of the material which vertical components are made of. Experimental testing of eight different vertical components of the energy dissipation device was conducted. The tests consist of the original test and the repeated test done for all eight prototypes. The aim of the original test was to determine hysteretic behaviour of the prototypes and the aim of the repeated test was to get an insight into the hysteretic response of the model that has already suffered plastic deformation. Numerical models using the finite element method and the software Abaqus/Standard were developed in accordance with the physical characteristics of the prototypes and the procedure of modelling was explained in detail. The numerical results show good agreement with the experimentally obtained results. Based on all of the above, general conclusions can be summarized:

1. The vertical components of proposed innovative seismic energy dissipation device are expected to possess extraordinary performance since the hysteretic diagrams are very wide, stable and have significant area which represents dissipated energy.

2. With the repeated experimental tests, it is confirmed that the vertical components of seismic energy dissipation device neither experience degradation of the characteristics of the resisting force, nor the damage.

3. If the components of the energy dissipation device are successfully designed for maximum displacements, the device is not expected to suffer heavy damage or total failure during repeated earthquakes.

4. The proposed numerical finite element model is validated and verified. The numerical results are in a good correlation with the experimentally obtained results from the aspect of dissipated energy (area of cyclic loop) and elastic and post-yield stiffness. The proposed numerical model can be used in the analysis of the vertical component of the energy dissipation device with the variation of its geometry and mechanical characteristics of the material. The numerical model can also replace expensive experimental tests for the research of the energy dissipation devices.

5. The rate of the diameter change of cone body of the vertical components of the energy dissipation device affects the distribution of the plastic strains. Namely, in the case of the steeper cone (larger rate of diameter change) the plasticization of steel begins in the cross section along the body of the vertical component, while in the case of the milder cone (smaller rate of diameter change) the plasticization of steel begins in the zone of the nut.

This paper is the beginning of the research of the performance of a new metallic damper. Taking into account that novel metallic damper possesses rotational symmetry, it is expected to have the same performance in all horizontal directions. Moreover, the middle steel activating plate...
Fig. 26 Plastic strain distribution: a ED-T1-E2, force 6.07 kN and 11.92 kN; b ED-T2-E1, force 4.74 kN and 10.10 kN; c ED-T2-E2, force 3.85 kN and 7.29 kN; d ED-T3-E1, force 2.96 kN and 6.14 kN; e ED-T3-E2, force 2.59 kN and 4.74 kN; f ED-T4-E1, force 1.74 kN and 3.41 kN; g ED-T4-E2, force 1.47 kN and 2.66 kN
simultaneously transfers a displacement from upper isolated structure to all vertical components along one vertical tangent of the upper cylinder of the vertical components. Based on that it is expected that the hysteretic performance of the novel metallic damper is proportional to the hysteretic performances of the vertical components and their number. Our focus in further research will be on determination of the hysteretic behaviour of the whole assembly of the metallic damper and to prove the expected results previously mentioned. In this regard, the principles of the herein presented numerical model will be used for numerical investigation of the whole assembly of the metallic damper. The main goal will be to prove that with the proper choice of the geometrical characteristics of the vertical components, the metallic damper can be designed with characteristics appropriate for the expected earthquake.

Acknowledgements The experimental part of this research was funded by The Innovation Fund of the Republic of Serbia, grant ID 476.

Author Contributions Conceptualization, DZ, DR and JR; methodology, DZ, DR and JR; software, AZ and MT-M; validation, AZ and MT-M; formal analysis, AZ, MT-M and ŽP; investigation, DZ, DR and JR; resources, BM and AZ; data curation, DZ, DR and BM; writing—original draft preparation, AZ; writing—review and editing, BM, ŽP and JR; visualization, BM and AZ; supervision, DZ; project administration, BM. All authors have read and agreed to the published version of the manuscript.

Funding The experimental part of this research was funded by The Innovation Fund of the Republic of Serbia, grant ID 476.

Availability of Data and Material The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

Code Availability Not applicable.

Declarations

Conflict of Interest On behalf of all authors, the corresponding author states that there is no conflict of interest.

Ethical Approval All parts of this research and manuscript are done in accordance with the rules of good scientific practice.

Consent to Participate Not applicable.

Consent for Publication Not applicable.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Kelly JM (1986) Aseismic base isolation: review and bibliography. Soil Dyn Earth Eng 5(4):202–216. https://doi.org/10.1016/0267-7261(86)90006-0
2. Spencer BF Jr, Nagarajaiah S (2003) State of the art of structural control. J Struct Eng 129(7):845–856. https://doi.org/10.1061/(ASCE)0733-9445(2003)129:7(845)
3. Saaed TE, Nikolaoupolous G, Jonasson JE, Hedlund H (2015) A state-of-the-art of structural control systems. J Vib Control 21(5):919–937. https://doi.org/10.1177/107754631478294
4. Chopra AK (1995) Dynamics of structures: theory and applications to earthquake engineering, 1st edn. Prentice-Hall Inc., New Jersey
5. Naim F, Kelly JM (1999) Design of seismic isolated structures: from theory to practice, 1st edn. Jhon Wiley & Sons Inc., New York
6. Iemura H, Taghikhany T, Jain SK (2007) Optimum design of resilient sliding isolation system for seismic protection of equipments. Bull Earthq Eng 5(1):85–103. https://doi.org/10.1007/s10518-006-9010-5
7. Falborski T, Jankowski R (2017) Experimental study on effectiveness of a prototype seismic isolation system made of polymeric bearings. Appl Sci 7(8):1–18. https://doi.org/10.3390/app7080008
8. Barrera-Vargas CA, Diaz IM, Soria JM, Garcia-Palacios JH (2020) Enhancing friction pendulum isolation systems using passive and semi-active dampers. Appl Sci 10(16):1–23. https://doi.org/10.3390/app10165621
9. Kang BS, Li L, Ku TW (2009) Dynamic response characteristics of seismic isolation systems for building structures. J Mech Sci Technol 23(8):2179–2192. https://doi.org/10.1007/s12206-009-0437-x
10. Agrawal AK, Amjadian M (2015) Seismic component devices. In: Pipinato A (ed) Innovative bridge design handbook: construction, rehabilitation and maintenance. Elsevier, Holland, pp 331–553
11. Javanmardi A, Ghaedi K, Huang F, Hanif MU, Tabrizikahou A (2021) Application of structural control systems for the cables of cable-stayed bridges: state-of-the-art and state-of-the-practice. Arch Comput Methods Eng. https://doi.org/10.1007/s11831-021-09632-4
12. Ristik J, Hristovski V, Ristic D (2014) Seismic protection of bridges with application of new system for seismic response modification. In: Proceeding of the 2nd European Conference on Earthquake Engineering and Seismology. Istanbul, Turkey, pp 3470–3477
13. Ristic J, Misin M, Ristic D, Guri Z, Pllana N (2018) Seismic upgrading of isolated bridges with SF-ED devices: shaking table tests on large-scale model. Gradracin 70(6):463–485. https://doi.org/10.14256/JCE.2147.2017
14. Misin M, Ristic J, Ristic D, Guri Z, Pllana N (2019) Seismic upgrading of isolated bridges with SF-ED devices: analytical study validated by shaking table testing. Gradracin 71(4):255–272. https://doi.org/10.14256/JCE.2274.2017
15. Misin M, Ristic J, Guri Z, Ristic D, Pllana N (2021) Upgrading seismically isolated bridges with space-flange energy-dissipation devices. PI Civil Eng 174(8):655–669. https://doi.org/10.1680/jstbu.18.00231
16. Ristic J, Brucic Z, Ristic D, Folic R, Boskovic M (2021) Upgrading of isolated bridges with space-bar energy-dissipation devices: shaking table test. Adv Struct Eng 24(13):2948–2965. https://doi.org/10.1177/1360232221103918

17. Roy BK, Chakraborty S, Mishra SK (2016) Seismic vibration control of bridges with excessive isolator displacement. Earthq Struct 10(6):1451–1465. https://doi.org/10.1029/16f0182016.10.1451

18. Zhang F, Xu M, Shao S, Xie S (2020) A new high-static-low-dynamic stiffness vibration isolator based on magnetic negative stiffness mechanism employing variable reluctance stress. J Sound Vib 476:115322. https://doi.org/10.1016/j.jsv.2020.115322

19. Javanmardi A, Ibrahim Z, Ghaderi K, Ghadam HB, Hanif MU (2020) State-of-the-art review of metallic dampers: testing, development and implementation. Arch Comput Methods Eng 27(2):455–478. https://doi.org/10.1007/s11831-019-09329-9

20. Skinner RI, Kelly JM, Heine AJ (1974) Hysteretic dampers for earthquake-resistant structures. Earthq Eng Struct Dyn 3(3):287–296. https://doi.org/10.1002/eq.2490030307

21. Kelly JM, Skinner RI, Bucke KE (1980) Experimental testing of an energy-absorbing base isolation system, report no. NSF/RA-800297. Earthquake Engineering Research Center, University of California, Berkeley, Richmond Field Station, California, USA

22. Ene D, Kishiki S, Yamada S, Jiao Y, Konishi Y, Terashima M, Kawamura N (2016) Experimental study on the bidirectional inelastic deformation capacity of U-shaped steel dampers for seismic isolated buildings. Earthq Eng Struct Dyn 45(2):173–192. https://doi.org/10.1002/eqe.2621

23. Ene D, Yamada S, Jiao Y, Kishiki S, Konishi Y (2017) Reliability of U-shaped steel dampers used in base-isolated structures subject to biaxial excitation. Earthq Eng Struct Dyn 46(4):621–639. https://doi.org/10.1002/eqe.2806

24. Oh SH, Song SH, Lee SH, Kim HJ (2012) Seismic response of base-isolating systems with U-shaped hysteretic dampers. Int J Steel Struct 12(2):285–298. https://doi.org/10.1007/s13296-012-0121-0

25. Kim DK, Dargush GF, Hu JW (2013) Cyclic damage model for E-shaped dampers in the seismic isolation system. J Mech Sci Technol 27(8):2275–2281. https://doi.org/10.1007/s12206-013-0610-0

26. Teruna DR, Majid TA, Budiono B (2015) Experimental study of hysteretic steel damper for energy dissipation capacity. Adv Civ Eng 2015:1–12. https://doi.org/10.1155/2015/631726

27. Li HN, Li G (2007) Experimental study of structure with “dual function” metallic dampers. Eng Struct 29(8):1917–1928. https://doi.org/10.1016/j.engstruct.2006.10.007

28. Maleki S, Bagheri S (2010) Pipe damper, Part I: experimental and analytical study. J Constr Steel Res 66(8–9):1088–1095. https://doi.org/10.1016/j.jcsr.2010.03.010

29. Maleki S, Bagheri S (2010) Pipe damper, Part II: application to bridges. J Constr Steel Res 66(8–9):1096–1106. https://doi.org/10.1016/j.jcsr.2010.03.011

30. Javanmardi A, Ibrahim Z, Ghaderi K, Khatibi H (2017) Numerical analysis of vertical pipe damper. Proc. of the 39th IABSE Symposium – Engineering the Future, Vancouver, Canada, pp 2974–2980

31. Ghaderi K, Ibrahim Z, Javanmardi A, Rupakhetty R (2021) Experimental study of a new pipe damper device for vibration control of structures subjected to earthquake loads. J Earthq Eng 25(2):300–318. https://doi.org/10.1080/13632469.2018.1515796

32. Ghaderi K, Ibrahim Z, Javanmardi A (2018) A new metallic bar damper devices for seismic energy dissipation of civil structures. IOP Conference Series: Materials Science and Engineering, vol 431, p 122009. https://doi.org/10.1088/1757-899X/431/12/122009

33. Zhang R, Wang C, Pan C, Shen H, Ge Q, Zhang L (2018) Simplified design of elastoplastic structures with metallic yielding dampers based on the concept of uniform damping ratio. Eng Struct 176:734–745. https://doi.org/10.1016/j.engstruct.2018.09.009

34. Papadopoulos PK, Mitsopoulou EN (2008) Examination of new device of steel anti-seismic element for the purpose of strengthening of reinforced concrete building structures. In: Proceeding of the 14th World Conference on Earthquake Engineering, Beijing, China

35. Papadopoulos P, Titirli M, Papadopoulos A (2014) A new seismic energy absorption device through simultaneously yield and friction used for the protection of structures. In: Proceeding of the 2nd European Conference on Earthquake Engineering and Seismology, Istanbul, Turkey

36. Gonzales-Sanz G, Escolano-Margarit D, Benavent-Climent A (2020) A new stainless-steel tube-in-tube damper for seismic protection of structures. Appl Sci 10(4):1–22. https://doi.org/10.3390/app10041410

37. Aghlara R, Tahir MM (2018) A passive metallic damper with replaceable steel bar components for earthquake protection of structures. Eng Struct 159:185–197. https://doi.org/10.1016/j.engstruct.2017.12.049

38. Basu D, Reddy PRM (2016) A new metallic damper for seismic resilience: analytical feasibility study. Structures 7:165–183. https://doi.org/10.1016/j.istruct.2016.06.011

39. Kim HG, Yoshitomi S, Tsuji M, Takekaki I (2012) New three-layer-type hysteretic damper system and its damping capacity. Earthq Struct 3(6):821–838. https://doi.org/10.1029/2012ej026821

40. Guo W, Ma C, Yu Y, Bu D, Zeng C (2020) Performance and optimum design of replaceable steel strips in an innovative metallic damper. Eng Struct 205:110118. https://doi.org/10.1016/j.engstruct.2019.110118

41. Hu JW, Lee J, Seo J (2014) Performance-based optimal design of self-centering friction damping brace systems between capability and energy dissipation. J Mech Sci Technol 28(8):3129–3136. https://doi.org/10.1007/s12206-014-0721-2

42. Sabouri-Ghomsi S, Payandehjoo B (2017) Analytical and experimental studies of the seismic performance of drawer bracing system (DBS). Int J Civ Eng 15:1087–1096. https://doi.org/10.1007/s40999-017-0240-5

43. Eitedali S, Rakshani H (2018) Optimum design of tuned mass dampers using multi-objective cuckoo search for building under seismic excitation. Alex Eng J 57(4):3205–3218. https://doi.org/10.1016/j.ijmecsci.2020.04.078

44. Tanaka T, Makii K, Ueda H, Kushibe A, Kohuzu M, Higashi K (2003) Study on practical application of a new seismic damper using a Zn-Al alloy with a nanocrystalline microstructure. Int J Mech Sci 45(10):1599–1612. https://doi.org/10.1016/j.ijmecsci.2003.12.001

45. Yadav D, Sahoo DR (2021) Validation of hysteretic behavior and prediction of energy dissipation potential of aluminium shear yielding devices. Int J Mech Sci 194:106204. https://doi.org/10.1016/j.ijmecsci.2020.106204

46. Manchalwar A, Bakre SV (2019) Optimization of metallic damper location for seismic response control. J Vib Eng Technol 7(3):261–275. https://doi.org/10.1007/s42417-019-00110-7

47. Ristic D, Ristic J, Zlatkov D (2015) Adaptivam sistem za seizmičku zaštitu objekata zgrada od dejstva jakih zemljotresa putem kon-struktivno obozbene globalne optimizacije seizmo-energetskog balansa. Serbian Patent number P-2015/0423

48. Zienkiewicz OC, Taylor RL, Zhu JZ (2005) The finite element method: basis and fundamentals, 6th edn. Elsevier, Holland

49. Abaqus: Theory manual, Hibbitt, Karlsson & Sorensen, Incorpo-rate Providence, R.I., 2011

50. Amiri HA, Najafabadi EP, Estekanchi HE (2018) Experimental and analytical study of Block Slit Damper. J Constr Steel Res 141:167–178. https://doi.org/10.1016/j.jcsr.2017.11.006
51. Avestaeifar P, Khezrzadeh H (2021) Experimental and numerical assessment of Piston Hybrid Frictional Metallic Damper (PHFMD). Eng Struct 243:112669. https://doi.org/10.1016/j.engstruct.2021.112669

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.