SATAKE DIAGRAMS
AND
REAL STRUCTURES ON SPHERICAL VARIETIES

DMITRI AKHIEZER

Abstract. With each antiholomorphic involution σ of a connected complex semisimple Lie group G we associate an automorphism ϵ_σ of its Dynkin diagram. The definition of ϵ_σ is given in terms of the Satake diagram of σ. Let $H \subset G$ be a self-normalizing spherical subgroup. If $\epsilon_\sigma = \text{id}$ then we prove the uniqueness and existence of a σ-equivariant real structure on G/H and on the wonderful completion of G/H.

1. Introduction and statement of results

In this paper, we consider real structures on complex manifolds acted on by complex Lie groups. A real structure on a complex manifold X is an antiholomorphic involutive diffeomorphism $\mu : X \to X$. Suppose a complex Lie group G acts holomorphically on X and let $\sigma : G \to G$ be an involutive antiholomorphic automorphism of G as a real Lie group. A real structure $\mu : X \to X$ is said to be σ-equivariant if μ satisfies $\mu(g \cdot x) = \sigma(g) \cdot \mu(x)$ for all $g \in G, x \in X$. We start with homogeneous manifolds of arbitrary complex Lie groups. In Section 2 we prove that a σ-equivariant real structure on $X = G/H$ exists and is unique if H is self-normalizing and $\sigma(H)$ and H are conjugate by an inner automorphism of G. The conjugacy of H and $\sigma(H)$ is also necessary for the existence of a σ-equivariant real structure.

Assume G is connected and semisimple and denote by \mathfrak{g} the Lie algebra of G. In Section 3 with any antiholomorphic involution $\sigma : G \to G$ we associate an automorphism class $\epsilon = \epsilon_\sigma \in \text{Aut}(\mathfrak{g})/\text{Int}(\mathfrak{g})$ acting on the Dynkin diagram in the following way. We choose a Cartan subalgebra of the real form $\mathfrak{g}_0 \subset \mathfrak{g}$ and the root ordering as in the classical paper of I. Satake [13]. Let Π_\circ (resp. Π_\bullet) be the set of compact (resp. non-compact) simple roots, $\kappa : \Pi_\circ \to \Pi_\circ$ the involutory self-map associated with σ. Denote by W_\bullet the subgroup of the Weyl group W generated by simple reflections s_α, where $\alpha \in \Pi_\bullet$, and let w_\bullet be the
element of maximal length in W. Then $\epsilon(\alpha) = -w_\alpha(\alpha)$ for $\alpha \in \Pi$, and $\epsilon(\alpha) = \kappa(\alpha)$ for $\alpha \in \Pi_v$. On the Satake diagram, ϵ interchanges the white circles connected by two-pointed arrows and permutes the black ones as the outer automorphism of order 2 for compact algebras $A_n(n \geq 2)$, $D_n(n \text{ odd})$, E_6, and identically otherwise.

Let $B \subset G$ be a Borel subgroup. Then σ acts on the character group $\mathcal{X}(B)$ in a natural way. Namely, $\sigma(B) = cBc^{-1}$ for some $c \in G$ and, given $\lambda \in \mathcal{X}(B)$, the character

$$B \ni b \mapsto \lambda^c \sigma(b) := \lambda(c^{-1}\sigma(b)c)$$

is in fact independent of c. In Section 4, we show that the arising action coincides with the one given by ϵ_σ.

In Section 5, we consider equivariant real structures on homogeneous spherical spaces. It turns out that, under some natural conditions on a spherical subgroup $H \subset G$, the homogeneous space G/H possesses a σ-equivariant real structure. More precisely, we have the following result.

Theorem 1.1. Assume $\epsilon_\sigma = \text{id}$. Then any spherical subgroup $H \subset G$ is conjugate to $\sigma(H)$ by an inner automorphism of G, i.e., $\sigma(H) = aHa^{-1}$ for some $a \in G$. The map

$$\mu_0 : G/H \to G/H, \quad \mu_0(g \cdot H) := \sigma(g) \cdot a \cdot H,$$

is correctly defined, antiholomorphic and σ-equivariant. Moreover, if the subgroup H is self-normalizing then: (i) μ_0 is involutive, hence a σ-equivariant real structure on G/H; (ii) such a structure is unique.

In Section 6, we prove a similar theorem for wonderful varieties. Wonderful varieties were introduced by D.Luna [9], and we recall their definition in Section 6. Wonderful varieties can be viewed as equivariant completions of spherical varieties with certain properties. If such a completion exists, it is unique. Furthermore, if H is a self-normalizing spherical subgroup of a semisimple group G then, by a result of F.Knop [7], G/H has a wonderful completion.

Theorem 1.2. Let H be a self-normalizing spherical subgroup of G and let X be the wonderful completion of G/H. If $\epsilon_\sigma = \text{id}$ then there exists one and only one σ-equivariant real structure $\mu : X \to X$.

Remark. Assume that σ defines a split form of G. Then it is easily seen that $\epsilon_\sigma = \text{id}$. In the split case Theorems 1.1 and 1.2 are joint results with S.Cupit-Foutou [3]. In this case, the σ-equivariant real structure on a wonderful variety X is called **canonical**. Assume in addition that X is strict, i.e. all stabilizers (and not just the principal
one) are self-normalizing, and equip X with its canonical real structure. Then \[3\] contains an estimate of the number of orbits of the connected component G_0^σ on the real part of X.

2. Equivariant real structures

A real structure on a complex manifold X is an antiholomorphic involutive diffeomorphism $\mu : X \to X$. The set of fixed points X^μ of μ is called the real part of X with respect to μ. If $X^\mu \neq \emptyset$ then X^μ is a closed real submanifold in X and

$$\dim_\mathbb{R}(X^\mu) = \dim_\mathbb{C}(X).$$

Suppose a complex Lie group G acts holomorphically on X and let $\sigma : G \to G$ be an involutive antiholomorphic automorphism of G as a real Lie group. The fixed point subgroup G^σ is a real form of G. A real structure $\mu : X \to X$ is said to be σ-equivariant if

$$\mu(gx) = \sigma(g) \cdot \mu(x) \quad \text{for all } g \in G, x \in X.$$

For such a structure the set X^μ is stable under G^σ. We are interested in equivariant real structures on homogeneous manifolds and on their equivariant embeddings.

Theorem 2.1. Let G be a complex Lie group, let $\sigma : G \to G$ be an antiholomorphic involution, and let $H \subset G$ be a closed complex Lie subgroup. If there exists a σ-equivariant real structure on $X = G/H$ then $\sigma(H)$ and H are conjugate by an inner automorphism of G. Conversely, if $\sigma(H)$ and H are conjugate and H is self-normalizing then a σ-equivariant real structure on X exists and is unique.

Proof. Suppose first that $\mu : X \to X$ is a σ-equivariant real structure. Let $x_0 = e \cdot H$ be the base point and let $\mu(x_0) = g_0 \cdot H$. For $h \in H$ one has

$$\mu(x_0) = \mu(hx_0) = \sigma(h) \cdot \mu(x_0),$$

showing that $\sigma(H) \subset g_0 H g_0^{-1}$. To prove the opposite inclusion, observe that $g_0 \cdot \mu(x_0) = \mu(x_0)$ is equivalent to $\mu(\sigma(g_0) \cdot x_0) = \mu(x_0)$. This implies $\sigma(g_0) \cdot x_0 = x_0$, so that $\sigma(g_0) \in H$ and $g_0 \in \sigma(H)$, hence $g_0 H g_0^{-1} \subset \sigma(H)$.

To prove the converse, assume that H is self-normalizing and

$$g_0 H g_0^{-1} = \sigma(H)$$

for some $g_0 \in G$. Let r_{g_0} be the right shift $g \mapsto g g_0$. We have a map $\mu : X \to X$, correctly defined by $\mu(g \cdot H) = \sigma(g) g_0 \cdot H$. The
commutative diagram

\[
\begin{array}{ccc}
G & \xrightarrow{\sigma} & G \\
\downarrow & & \downarrow \\
X = G/H & \xrightarrow{\mu} & X = G/H
\end{array}
\]

where the vertical arrows denote the canonical projection \(g \mapsto g \cdot H \), shows that the map \(\mu \) is antiholomorphic. It is also clear that \(\mu \) is a \(\sigma \)-equivariant map, i.e., \(\mu(gx) = \sigma(g) \cdot \mu(x) \) for all \(g \in G \). Therefore \(\mu^2 \) is an automorphism of the homogeneous space \(X \), i.e., \(\mu^2 \) is a biholomorphic self-map of \(X \) commuting with the \(G \)-action. Since \(H \) is self-normalizing, we see that \(\mu^2 = \text{id} \). Thus \(\mu \) is a \(\sigma \)-equivariant real structure on \(X \). If \(\mu' \) is another such structure then \(\mu \cdot \mu' \) is again an automorphism of \(X = G/H \), so \(\mu \cdot \mu' = \text{id} \) and \(\mu' = \mu \). □

Example. Let \(B \) be a Borel subgroup of a semisimple complex Lie group \(G \) and let \(X = G/B \) be the flag manifold of \(G \). It follows from Theorem 2.1 that a \(\sigma \)-equivariant real structure \(\mu : X \to X \) exists for any \(\sigma : G \to G \). One has \(X^\mu \neq \emptyset \) if and only if the minimal parabolic subgroup of \(G \) is solvable or, equivalently, if the real form has no compact roots.

3. Automorphism \(\epsilon_\sigma \)

Let \(\mathfrak{g} \) be a complex semisimple Lie algebra, \(\mathfrak{g}_0 \) a real form of \(\mathfrak{g} \), and \(\sigma : \mathfrak{g} \to \mathfrak{g} \) the corresponding antilinear involution. In this section we define the automorphism \(\epsilon_\sigma \) of the Dynkin diagram of \(\mathfrak{g} \), cf. [1, 2] and [11], §9. We start by recalling the notions of compact and non-compact roots, see e.g. [12], Ch. 5.

Let \(\mathfrak{g}_0 = \mathfrak{t} + \mathfrak{p} \) be a Cartan decomposition. The corresponding Cartan involution extends to \(\mathfrak{g} = \mathfrak{g}_0 + i \cdot \mathfrak{g}_0 \) as an automorphism \(\theta \) of the complex Lie algebra \(\mathfrak{g} \). Clearly, \(\theta^2 = \text{id} \) and \(\sigma \cdot \theta = \theta \cdot \sigma \). Pick a maximal abelian subspace \(\mathfrak{a} \subset \mathfrak{p} \) and denote by \(\mathfrak{m} \) its centralizer in \(\mathfrak{t} \). Let \(\mathfrak{h}^+ \) be a maximal abelian subalgebra in \(\mathfrak{m} \). Then \(\mathfrak{h} = \mathfrak{h}^+ + \mathfrak{a} \) is a maximal abelian subalgebra in \(\mathfrak{g}_0 \) and any such subalgebra containing \(\mathfrak{a} \) is of that form. The Cartan subalgebra \(\mathfrak{t} = \mathfrak{h} + i \cdot \mathfrak{h} \subset \mathfrak{g} \) is stable under \(\theta \) and \(\sigma \). On the dual space \(\mathfrak{t}^* \), we have the dual linear transformation \(\theta^\mathfrak{t} \) and the dual antilinear transformation \(\sigma^\mathfrak{t} \):

\[
\theta^\mathfrak{t}(\gamma)(A) = \gamma(\theta A), \quad \sigma^\mathfrak{t}(\gamma)(A) = \overline{\gamma(\sigma A)} \quad (\gamma \in \mathfrak{t}^*, A \in \mathfrak{t}).
\]

Let \(\Delta \) be the set of roots of \((\mathfrak{g}, \mathfrak{t}) \) and let \(\Sigma \) be the sets of roots of \(\mathfrak{g} \) with respect to \(\mathfrak{a} \otimes \mathbb{C} = \mathfrak{a} + i \cdot \mathfrak{a} \). Put \(\mathfrak{t}_\mathbb{R} = i \cdot \mathfrak{h}^+ + \mathfrak{a} \). This is a maximal real subspace of \(\mathfrak{t} \) on which all roots take real values. Choose a basis \(v_1, \ldots, v_r, v_{r+1}, \ldots, v_l \) in \(\mathfrak{t}_\mathbb{R} \) such that \(v_1, \ldots, v_r \) form a basis of \(\mathfrak{a} \) and introduce the lexicographic ordering in the dual real vector
spaces \(t_{\mathbb{R}}^* \) and \(a^* \). Then \(\Delta \subset t_{\mathbb{R}}^* \), \(\Sigma \subset a^* \), and \(\varrho(\Delta \cup \{0\}) = \Sigma \cup \{0\} \) under the restriction map \(\varrho : t_{\mathbb{R}}^* \to a^* \). Let \(\Delta^\pm, \Sigma^\pm \) be the sets of positive and negative roots with respect to the chosen orderings, \(\Pi \subset \Delta^+, \Theta \subset \Sigma^+ \) the bases, \(\Delta_\bullet = \{ \alpha \in \Delta \mid \varrho(\alpha) = 0 \} \), \(\Delta_o = \Delta \setminus \Delta_\bullet \).

The roots from \(\Delta_\bullet \) and \(\Delta_o \) are called compact and non-compact roots, respectively. Let \(\Delta^\pm_\bullet, \Sigma^\pm_\bullet \) be the sets of positive and negative roots with respect to the chosen orderings, \(\Pi_\bullet \subset \Delta^+_\bullet \), \(\Theta_\bullet \subset \Sigma^+_\bullet \) the bases, \(\Delta^\bullet = \{ \alpha \in \Delta \mid \varrho(\alpha) = 0 \} \), \(\Delta_o = \Pi \cap \Delta_\bullet \) and \(\Pi_o = \Pi \cap \Delta_o \). One shows that \(\Delta_\bullet \) is a root system with basis \(\Pi_\bullet \). Also, \(\varrho(\Delta^\pm_o) = \Sigma^\pm_\bullet, \theta^T(\Delta^\pm_o) = \Delta^\mp_o \) and \(\varrho(\Pi_o) = \Theta_\bullet \). Furthermore, one has an involutory self-map \(\omega : \Pi_o \to \Pi_o \), defined by

\[
\theta^T(\alpha) = -\omega(\alpha) - \sum_{\gamma \in \Pi_\bullet} c_{\alpha \gamma} \gamma,
\]

where \(c_{\alpha \gamma} \) are non-negative integers. The Satake diagram is the Dynkin diagram on which the simple roots from \(\Pi_\bullet \) are denoted by black circles, the simple roots from \(\Pi_o \) by white circles, and two white circles are connected by a two-pointed arrow if and only if they correspond to the roots \(\alpha \) and \(\omega(\alpha) \neq \alpha \).

Let \(W \) be the Weyl group of \(g \) with respect to \(t \) considered as a linear group on \(t^* \). The subgroup of \(W \) generated by the reflections \(s_\alpha \) with \(\alpha \in \Pi_\bullet \) is denoted by \(W_\bullet \). The element of maximal length in \(W_\bullet \) with respect to these generators is denoted by \(w_\bullet \). Note that \(-w_\bullet(\alpha) \in \Pi_\bullet \) if \(\alpha \in \Pi_\bullet \). Let \(\iota : g \to g \) be an inner automorphism such that \(\iota(t) = t \), acting as \(w_\bullet \) on \(t^* \). Since \(w_\bullet^2 = \text{id} \), we have

\[
(i^{\pm}t)^T = w_\bullet.
\]

Proposition 3.1. The self-map of \(\Pi \), defined by

\[
\epsilon_{\sigma}(\alpha) = \begin{cases}
-w_\bullet(\alpha) & \text{if } \alpha \in \Pi_\bullet, \\
\omega(\alpha) & \text{if } \alpha \in \Pi_o,
\end{cases}
\]

is an automorphism of the Dynkin diagram.

Proof. We must find an automorphism \(\phi : g \to g \) preserving \(t \) and \(\Pi \), which acts on \(\Pi \) as \(\epsilon_{\sigma} \). Let \(\eta \) be the Weyl involution of \(g \) acting as \(-\text{id} \) on \(t \) and let \(\phi = \eta \cdot \theta \cdot \iota \). Then \(\phi \) acts on \(\Delta \) by

\[
\alpha \mapsto -w_\bullet(\theta^T(\alpha)).
\]

If \(\alpha \in \Pi_\bullet \) then \(\theta^T(\alpha) = \alpha \), and so \(\phi \) sends \(\alpha \) to \(-w_\bullet(\alpha) = \epsilon_{\sigma}(\alpha) \). Now, if \(\alpha \in \Pi_o \) then

\[
-w_\bullet(\theta^T(\alpha)) = w_\bullet(\omega(\alpha)) + \sum_{\gamma \in \Pi_\bullet} c_{\alpha \gamma} w_\bullet(\gamma)
\]

by the definition of \(\omega \). The simple reflections in the decomposition of \(w_\bullet \) correspond to the elements of \(\Pi_\bullet \). Applying these reflections to
Proposition 3.2. \(\omega(\alpha) \in \Pi_o \) one by one, we see that the right hand side is the sum of \(\omega(\alpha) \) and a linear combination of elements of \(\Pi_* \), whose coefficients must be nonnegative. Therefore \(-w_*(\theta^T(\Pi)) \subset \Delta^+ \). Since \(-w_* \cdot \theta^T \) arises from \(\phi \), this is an automorphism of \(\Delta \). Thus \(-w_*(\theta^T(\Pi)) \) is a base of \(\Delta \), hence \(-w_*(\theta^T(\Pi)) = \Pi \). In particular, \(-w_*(\theta^T(\alpha)) \in \Pi \), and so we obtain \(-w_*(\theta^T(\alpha)) = \omega(\alpha) = \epsilon_\sigma(\alpha) \). □

Proposition 3.3. Extend \(\epsilon_\sigma \) to a linear map of \(t^* \) and denote the extension again by \(\epsilon_\sigma \). Then \(w_* \) and \(\theta^T \) commute and

\[
\epsilon_\sigma = -w_* \theta^T = -\theta^T w_* .
\]

Proof. We already proved that \(\epsilon_\sigma \) equals \(-w_* \theta^T \) on \(\Pi \), so it suffices to show that \(\epsilon_\sigma \) also equals \(-\theta^T w_* \) on \(\Pi \). For \(\alpha \in \Pi_* \) we have \(-w_*(\alpha) \in \Pi_* \) and \(\theta^T \alpha = -\alpha \). Thus \(w_* \theta^T \alpha = -w_* \alpha = \theta^T w_* \alpha \). For \(\alpha \in \Pi_o \) we have

\[
w_*(\alpha) = \alpha + \sum_{\gamma \in \Pi_*} d_{\alpha \gamma} \gamma, \quad d_{\alpha \gamma} \geq 0 ,
\]

by the definition of \(w_* \). Applying \(\theta^T \) we get

\[
\theta^T w_*(\alpha) = \theta^T(\alpha) + \sum_{\gamma \in \Pi_*} d_{\alpha \gamma} \gamma = -\omega(\alpha) - \sum_{\gamma \in \Pi_*} (c_{\alpha \gamma} - d_{\alpha \gamma}) \gamma ,
\]

hence \(-\theta^T w_*(\alpha) \in \Delta^+ \). But \(-\theta^T w_* \) is an automorphism of \(\Delta \). Namely, define an automorphism \(\phi' : g \to g \) by \(\phi' = \eta \cdot \iota \cdot \theta \). Then \(\phi'(t) = t \) and the dual to \(\phi'|_t \) is \(-\theta^T w_* \). Therefore \(-\theta^T w_*(\Pi) = \Pi \), so that \(c_{\alpha \gamma} = d_{\alpha \gamma} \) and \(-\theta^T w_*(\alpha) = \omega(\alpha) = \epsilon_\sigma(\alpha) \). □

Remark. If \(g \) is a complex simple Lie algebra considered as a real one, then the Dynkin diagram of its complexification is disconnected and has two isomorphic connected components. Furthermore, \(\Pi_* = \emptyset \) and \(\omega : \Pi_o \to \Pi_o \) maps each component of the Satake diagram onto the other one. In particular, \(\epsilon_\sigma \neq \text{id} \). If \(g \) is simple and has no complex structure, then it is easy to find the maps \(\epsilon_\sigma \) for all Satake diagrams, see [11], Table 5. Let \(l \) be the rank of \(g \). It turns out that \(\epsilon_\sigma = \text{id} \) for \(\sigma \) defining \(\mathfrak{sl}_{l+1}(\mathbb{R}) \), \(\mathfrak{sl}_m(\mathbb{H}) \), \(l = 2m - 1 \), \(\mathfrak{so}_{p,q} \), \(p + q = 2l \), \(l \equiv p(\text{mod} 2) \), \(\mathfrak{u}_l^*(\mathbb{H}) \), \(l = 2m \), \(\text{E}7, \text{E}8 \) or any real form of \(\text{B}_l, \text{C}_l \), \(\text{F}_4 \) and \(\text{G}_2 \). For the remaining real forms \(\epsilon_\sigma \neq \text{id} \).
4. Action of σ on $\mathcal{X}(B)$

Let G be a complex semisimple Lie group, $B \subset G$ a Borel subgroup, and $T \subset B$ a maximal torus. The Lie algebras are denoted by the corresponding German letters. We want to apply the results of the previous section to the automorphisms of \mathfrak{g} which lift to G. Suppose σ is an antiholomorphic involutive automorphism of G and denote again by σ the corresponding antilinear involution of \mathfrak{g}. The automorphisms η, θ and ι lift to G and the liftings are denoted by the same letters. Recall that ϵ_σ is originally defined by its action on Π as an automorphism class in $\text{Aut}(\mathfrak{g})/\text{Int}(\mathfrak{g})$. The linear map induced by ϵ_σ on t^* is denoted again by ϵ_σ. The automorphism $\phi : \mathfrak{g} \to \mathfrak{g}$, $\phi = \eta \cdot \theta \cdot \iota$, leaves t stable and acts on t^* as ϵ_σ, see Propositions 3.1 and 3.2. Since σ and ϕ are globally defined, we may consider their actions on the character groups of T or B.

Namely, since $\sigma(B)$ is also a Borel subgroup, we have $\sigma(B) = cBc^{-1}$ for some $c \in G$. The action of σ on the character group $\mathcal{X}(B)$, given by

$$\lambda \mapsto \lambda^\sigma, \quad \lambda^\sigma(b) = \overline{\lambda(c^{-1}\sigma(b)c)} \quad (b \in B),$$

is correctly defined. For, if $d \in G$ is another element such that $\sigma(B) = dBd^{-1}$ then $d^{-1}c \in B$, hence $\lambda(d^{-1}\sigma(b)d) = \lambda(d^{-1}c)\lambda(c^{-1}\sigma(b)c)c(d^{-1}d) = \lambda(c^{-1}\sigma(b)c)$.

Also, we have the right action of the automorphism group $\text{Aut}(G)$ on $\mathcal{X}(B)$, defined in the same way. Namely, for an automorphism $\varphi : G \to G$ we put

$$\lambda^\varphi(b) = \lambda(c^{-1}\varphi(b)c) \quad (b \in B),$$

where c is chosen so that $\varphi(B) = cBc^{-1}$.

For two Borel subgroups B_1, B_2 the character groups are canonically isomorphic. Moreover, if $\lambda_1 \in \mathcal{X}(B_1)$ corresponds to $\lambda_2 \in \mathcal{X}(B_2)$ under the canonical isomorphism then λ_1^σ corresponds to λ_2^σ and λ_1^φ corresponds to λ_2^φ.

Clearly, $\lambda^\varphi = \lambda$ for $\varphi \in \text{Int}(G)$, so we obtain the action of $\text{Aut}(G)/\text{Int}(G)$ on $\mathcal{X}(B)$. In particular, we write $\epsilon_\sigma(\lambda)$ instead of λ^σ.

Lemma 4.1. For any $\lambda \in \mathcal{X}(B)$ one has

$$\lambda^\sigma = \epsilon_\sigma(\lambda).$$

Proof. Choose t and $b = b^+$ as in Section 3. Then $\sigma(B) = \iota(B)$ by Proposition 3.3. Let $d\lambda$ be the differential of a character λ at the neutral point of T. Since $\lambda^\sigma(t) = \overline{\lambda(\iota^{-1}\sigma(t))}$ for $t \in T$, we have $d\lambda^\sigma = \sigma^Tw_\bullet d\lambda$.
On the other hand, $\epsilon_\sigma(\lambda) = \lambda^\phi$, where $\phi = \eta \cdot \theta \cdot \iota$. In the course of the proof of Proposition 3.1 we have shown that ϕ preserves b^+. Thus

$$\epsilon_\sigma(\lambda)(t) = \lambda(\eta \theta(t)) = \lambda(\theta(t))^{-1} \quad (t \in T),$$

hence $d\epsilon_\sigma(\lambda) = -w \cdot \theta^T d\lambda = -\theta^T w \cdot d\lambda$ by Proposition 3.2. Since $\theta^T = -\sigma^T$ on t^*_R, it follows that $d\epsilon_\sigma(\lambda) = d\lambda^\sigma$.

Remark. The automorphism class ϵ_σ has the following meaning for the representation theory, see [2]. Let V be an irreducible G-module with highest weight λ. Denote by V^* the complex dual to the space of antilinear functionals on V. Then G acts on V^* in a natural way, the action being antiholomorphic. This action combined with σ is then holomorphic, the corresponding G-module is irreducible and has highest weight $\epsilon_\sigma(\lambda)$.

5. **Spherical homogeneous spaces**

Let $X = G/H$ be a spherical homogeneous space. We fix a Borel subgroup $B \subset G$ and recall the definitions of Luna-Vust invariants of X, see [10].

For $\chi \in \mathcal{X}(B)$ let $(B)C(X)_\chi \subset C(X)$ be the subspace of rational B-eigenfunctions of weight χ, i.e.,

$$(B)C(X)_\chi = \{ f \in C(X) \mid f(b^{-1}x) = \chi(b)f(x) \quad (b \in B, x \in X) \}.$$

Since X has an open B-orbit, this subspace is either trivial or one-dimensional. In the latter case we choose a non-zero function $f_\chi \in (B)C(X)_\chi$. The weight lattice $\Lambda(X)$ is the set of B-weights in $C(X)$, i.e.,

$$\Lambda(X) = \{ \chi \in \mathcal{X}(B) \mid (B)C(X)_\chi \neq \{0\} \}.$$

Let $\mathcal{V}(X)$ denote the set of G-invariant discrete \mathbb{Q}-valued valuations of $C(X)$. The mapping

$$\mathcal{V}(X) \to \text{Hom}(\Lambda(X), \mathbb{Q}), \quad v \mapsto \{ \chi \mapsto v(f_\chi) \}$$

is injective, see [10, 7], and so we regard $\mathcal{V}(X)$ as a subset of $\text{Hom}(\Lambda(X), \mathbb{Q})$. It is known that $\mathcal{V}(X)$ is a simplicial cone, see [5, 4].

The set of all B-stable prime divisors in X is denoted by $\mathcal{D}(X)$. This is a finite set. To any $D \in \mathcal{D}(X)$ we assign $\omega_D \in \text{Hom}(\Lambda(X), \mathbb{Q})$. Namely, $\omega_D(\chi) = \text{ord}_D f_\chi$, the order of f_χ along D. We also write G_D for the stabilizer of D. The Luna-Vust invariants of X are given by the triple $\Lambda(X), \mathcal{V}(X), \mathcal{D}(X)$. The homogeneous space X is completely determined by these combinatorial invariants. More precisely, one has the following theorem of I. Losev [8].
Theorem 5.1. Let $X_1 = G/H_1, X_2 = G/H_2$ be two spherical homogeneous spaces. Assume that $\Lambda(X_1) = \Lambda(X_2), \mathcal{V}(X_1) = \mathcal{V}(X_2)$. Assume further there is a bijection $j : \mathcal{D}(X_1) \to \mathcal{D}(X_2)$, such that $\omega_D = \omega_{j(D)}, G_D = G_{j(D)}$. Then H_1 and H_2 are conjugate by an inner automorphism of G.

We now return to equivariant real structures. Let σ be an antiholomorphic involution of a semisimple complex algebraic group. Given a spherical subgroup $H \subset G$, observe that $\sigma(H)$ is also a spherical subgroup of G. Put $X_1 = G/H, X_2 = G/\sigma(H)$, and denote again by σ the antiholomorphic map

$$X_1 \to X_2, g \cdot H \mapsto \sigma(g) \cdot \sigma(H).$$

Since the conjugate coordinate functions of $\sigma : G \to G$ are regular, we have $\sigma^* \cdot \mathbb{C}(X_2) = \overline{\mathbb{C}(X_1)}$. Choose and fix $c \in G$ in such a way that $\sigma(B) = cBc^{-1}$.

Proposition 5.2. $\epsilon_{\sigma}(\Lambda(X_1)) = \Lambda(X_2)$.

Proof. For $f \in \mathbb{C}(X_2)$ define a rational function on X_1 by

$$f'(x) = \overline{f(\sigma(cx))}.$$

Note that for $b \in B$ one has $b' := \sigma(cbc^{-1}) \in B$. Furthermore, since $b_0 := \sigma(c)c \in B$, we have

$$\chi^\sigma(b) = \overline{\chi(c^{-1}\sigma(b)c)} = \overline{\chi(b_0^{-1}\sigma(c)\sigma(b)\sigma(c)^{-1}b_0)} = \overline{\chi(b')}.$$

Now take $f = f_\chi$. Then we obtain

$$f'(b^{-1}x) = \overline{f(\sigma(cbc^{-1})x)} = \overline{f(\sigma(b^{-1})\sigma(cx))} = \overline{\chi(b')}f'(x),$$

showing that f' is a B-eigenfunction of weight χ^σ on X_1. Since the transform $f \mapsto f'$ is invertible and $\chi^\sigma = \epsilon_{\sigma}(\chi)$ by Lemma 4.1 it follows that $\Lambda(X_2) = \epsilon_{\sigma}(\Lambda(X_1))$. \hfill \Box

Proposition 5.3. Extend ϵ_{σ} by duality to $\text{Hom}(\mathcal{X}(B), \mathbb{Q})$. Then $\epsilon_{\sigma}(\mathcal{V}(X_1)) = \mathcal{V}(X_2)$.

Proof. The map

$$\mathbb{C}(X_2) \ni f \mapsto \overline{f \circ \sigma} \in \mathbb{C}(X_1)$$

is a field isomorphism which is σ-equivariant in the obvious sense, namely,

$$(g \cdot f) \circ \sigma = \sigma(g) \cdot (f \circ \sigma) \quad (g \in G).$$

Therefore, for $v \in \mathcal{V}(X_1)$ the valuation of $\mathbb{C}(X_2)$ defined by $v'(f) = v(\overline{f \circ \sigma})$ is also G-invariant, i.e., $v' \in \mathcal{V}(X_2)$. Furthermore, since the function f', defined in Proposition 5.2, is in the G-orbit of $\overline{f \circ \sigma}$, we
have $v'(f) = v(f')$. Now take $f = f_X$. Then f' is a B-eigenfunction with weight $\epsilon_\sigma(\chi)$. Therefore $\epsilon_\sigma(v) = v'$.

For a B-invariant divisor D on X_1 its image $\sigma(D)$ is a $\sigma(B)$-invariant divisor on X_2. Obviously, the map

$$j : \mathcal{D}(X_1) \to \mathcal{D}(X_2), \ j(D) := \sigma(c \cdot D),$$

is a bijection.

Proposition 5.4. For any $D \in \mathcal{D}(X_1)$ one has $\omega_{j(D)} = \epsilon_\sigma(\omega_D)$. The stabilizers of D and $j(D)$ are parabolic subgroups containing B and satisfying

$$\sigma(G_{j(D)}) = cG_Dc^{-1}.$$

Their roots systems are obtained from each other by ϵ_σ.

Proof. Let $f \in \mathbb{C}(X_2)$ and let $f' \in \mathbb{C}(X_1)$ be the function defined in Proposition 5.2. Then

$$\text{ord}_{j(D)} f = \text{ord}_D f'.$$

Applying this to $f = f_X$ we obtain $\omega_{j(D)} = \epsilon_\sigma(\omega_D)$. The definition of j implies readily that $\sigma(G_{j(D)}) = cG_Dc^{-1}$, and the last assertion follows from Lemma 4.1. □

Combining Propositions 5.2, 5.3, and 5.4, we get the following corollary.

Corollary 5.5. If ϵ_σ leaves stable $\Lambda(X_1), \mathcal{V}(X_1)$ and, for any $D \in \mathcal{D}(X_1)$, one has $\epsilon_\sigma(\omega_D) = \omega_D$ and $\sigma(G_D) = cG_Dc^{-1}$ then H and $\sigma(H)$ are conjugate by an inner automorphism, i.e., $\sigma(H) = aHa^{-1}$, where $a \in G$. The map $g \cdot H \mapsto \sigma(g)\alpha \cdot H$ is correctly defined, antiholomorphic and σ-equivariant. Moreover, if the subgroup H is self-normalizing then this map is a σ-equivariant real structure on X_1 and such a structure is unique.

Proof. The conjugacy of H and $\sigma(H)$ results from Theorem 5.1. The remaining assertions follow from Theorem 2.1. □

Proof of Theorem 1.1 It suffices to apply the above corollary in the case $\epsilon_\sigma = \text{id}$. □

Proposition 5.6. If $\epsilon_\sigma = \text{id}$, then any $v \in \mathcal{V}(G/H)$ is μ_0-invariant, i.e., for a non-zero rational function $f \in \mathbb{C}(G/H)$ one has $v(f \circ \mu_0) = v(f)$.

Proof. Consider f as a right H-invariant function on G and put $f^a(g) = f(ga)$ ($g \in G$). Then f^a is right aHa^{-1}-invariant. Since $\sigma(H) = aHa^{-1}$, we can view f^a as a rational function on $X_2 = G/\sigma(H)$. Recall that we have the map $\sigma : X_1 \to X_2$. The definition of $\mu_0 : X_1 \to X_1$ implies $f \circ \mu_0 = f^a \circ \sigma$. It suffices to prove the equality $v(f \circ \mu_0) = v(f)$.
on B-eigenfunctions. Now, if f is such a function then f^a is also a B-eigenfunction with the same weight. In the proof of Proposition 5.3 for a given $v \in \mathcal{V}(X_1)$ we defined $v' \in \mathcal{V}(X_2)$ and proved that $\epsilon_\sigma(v) = v'$. In our setting $v = v'$, and so we obtain $v(f) = v'(f^a) = v(f^a \circ \sigma) = v(f \circ \mu_0)$.

\begin{proof}

Example. Up to an automorphism of $X = \mathbb{C}P^d$, there are two real structures $\mu_1, \mu_2 : X \to X$ for d odd and one real structure $\mu_1 : X \to X$ for d even. In homogeneous coordinates

$$\mu_1(z_0 : z_1 : \ldots : z_d) = (\overline{z_0} : \overline{z_1} : \ldots : \overline{z_d})$$

and

$$\mu_2(z_0 : z_1 : \ldots : z_d) = (-\overline{z_1} : \overline{z_0} : \ldots : -\overline{z_d} : \overline{z_d-1}), \ d = 2l - 1.$$

One has $X^{\mu_1} = \mathbb{R}P^d$ and $X^{\mu_2} = \emptyset$. Let s_l be the block $(2l \times 2l)$-matrix with l diagonal blocks

$$
\begin{pmatrix}
0 & -1 \\
1 & 0
\end{pmatrix}.
$$

For $g \in G = \text{SL}(d + 1, \mathbb{C})$ put

$$\sigma_1(g) = \overline{g} \quad \text{and} \quad \sigma_2(g) = -s_l \overline{g} s_l \quad \text{if} \quad d + 1 = 2l.$$

Then $G^{\sigma_1} = \text{SL}(d + 1, \mathbb{R})$ (the split real form) and $G^{\sigma_2} = \text{SL}(l, \mathbb{H})$, where $d + 1 = 2l$. One checks easily that μ_1 is σ_1-equivariant and μ_2 is σ_2-equivariant. Note that a real structure can be σ-equivariant only for one involution σ. Therefore X has no σ-equivariant real structure if σ defines a pseudo-unitary group $\text{SU}(p, q)$, $p + q = d + 1$.

6. Wonderful embeddings

A complete non-singular algebraic G-variety X of a semisimple group G is called wonderful if X admits an open G-orbit whose complement is a finite union of smooth prime divisors X_1, \ldots, X_r with normal crossings and the closures of G-orbits on X are precisely the partial intersections of these divisors. The notion of a wonderful variety was introduced by D.Luna [9], who also proved that wonderful varieties are spherical. The total number of G-orbits on X is 2^r. The number r coincides with the rank of X as a spherical variety. Moreover, if a spherical homogeneous space G/H has a wonderful embedding then such an embedding is unique up to a G-isomorphism.

Theorem 6.1. Let G be a complex semisimple algebraic group, $H \subset G$ a spherical subgroup, and $\sigma : G \to G$ an antiholomorphic involution. Assume that G/H admits a wonderful embedding $G/H \hookrightarrow X$. If there exists a σ-equivariant real structure on G/H then it extends to a σ-equivariant real structure on X.

Proof. This follows from the uniqueness of wonderful embedding. Namely, let \(\varepsilon : G/H \to X \) be the given wonderful embedding. Take the complex conjugate \(\overline{X} \) of \(X \) and let \(\overline{\varepsilon} : G/H \to \overline{X} \) be the corresponding antiholomorphic map. We identify \(\overline{X} \) with \(X \) as topological spaces and endow \(\overline{X} \) with the action \((g, x) \mapsto \sigma(g) \cdot x\), which is regular. Now, take a \(\sigma \)-equivariant real structure \(\mu \) on \(G/H \) and consider the map \(\overline{\varepsilon} \circ \mu : G/H \to \overline{X} \). This is again a wonderful embedding of \(G/H \). Since two wonderful embeddings are \(G \)-isomorphic, there is a \(G \)-isomorphism \(\nu : X \to \overline{X} \) such that \(\nu \circ \varepsilon = \overline{\varepsilon} \circ \mu \). The map \(\nu \) defines a required \(\sigma \)-equivariant real structure on \(X \). □

Proof of Theorem 1.2. Let \(G/H \hookrightarrow X \) be the wonderful completion. The existence and uniqueness of a \(\sigma \)-equivariant real structure \(\mu_0 \) on \(G/H \) follows from Theorem 1.1. By Theorem 6.1 this real structure extends to \(X \), the extension being obviously unique. □

As an application of our previous results we have the following property of the \(\sigma \)-equivariant real structure \(\mu \).

Theorem 6.2. We keep the notations and assumptions of Theorem 1.2. Then all \(G \)-orbits on \(X \) are \(\mu \)-stable.

Proof. It suffices to show that all divisors \(X_i \) are \(\mu \)-stable. Each \(X_i \) defines a \(G \)-invariant valuation of the field \(\mathbb{C}(X) = \mathbb{C}(G/H) \). By Proposition 5.6 such a valuation is \(\mu \)-invariant. Since the divisor is uniquely determined by its valuation, it follows that \(X_i \) are \(\mu \)-stable. □

Corollary 6.3. Keeping the above notations and assumptions, suppose that \(\mu \) has a fixed point in the closed \(G \)-orbit \(X_1 \cap \ldots \cap X_r \subset X \). Then \(\mu \) has a fixed point in any \(G \)-orbit. In particular, the number of \(G^A \)-orbits in \(X^\mu \) is greater than or equal to \(2^r \).

Proof. The closure of any \(G \)-orbit in \(X \) is of the form \(Y = X_{i_1} \cap \ldots \cap X_{i_k} \). We know that \(Y \) is \(\mu \)-stable and has a non-trivial intersection with \(X^\mu \). Since the real dimension of \(X^\mu \cap Y \) equals the complex dimension of \(Y \), the set \(X^\mu \) must intersect the open \(G \)-orbit in \(Y \). □

The condition \(\epsilon_\sigma = \text{id} \) is essential.

Example. The adjoint representation of \(\text{SL}(2, \mathbb{C}) \) gives rise to a two-orbit action on the projective plane. The closed orbit is the quadric \(C \subset \mathbb{CP}^2 \) arising from the nilpotent cone in the Lie algebra \(\mathfrak{sl}(2, \mathbb{C}) \). Let \(G = \text{SL}(2, \mathbb{C}) \times \text{SL}(2, \mathbb{C}) \) and \(\sigma(g_1, g_2) = (\bar{g_2}, \bar{g_1}) \), where \(g_1, g_2 \in \text{SL}(2, \mathbb{C}) \). Note that \(G^A = \text{SL}(2, \mathbb{C}) \) considered as a real group and \(\epsilon_\sigma \neq \text{id} \). Let \(X = \mathbb{CP}^2 \times \mathbb{CP}^2 \) with each simple factor of \(G \) acting on the corresponding factor of \(X \) in the way described above. Then \(X \) is a wonderful variety of rank 2. The divisors \(X_1, X_2 \) from the definition of
a wonderful variety are $\mathbb{CP}^2 \times Q$ and $Q \times \mathbb{CP}^2$. The σ-equivariant real structure μ on X is given by $\mu(z_1, z_2) = (\bar{z}_2, \bar{z}_1)$, $z_1, z_2 \in \mathbb{CP}^2$. The G-stable hypersurfaces X_1, X_2 are interchanged by μ and not μ-stable.

REFERENCES

[1] D.N.Akhiezer, *On the orbits of real forms of complex reductive groups on spherical homogeneous spaces*, in: Voprosy Teorii Grupp i Homologicheskoi Algebry, Yaroslavl State Univ., Yaroslavl, 2003, pp. 4–18 (Russian).

[2] D.N.Akhiezer, *Real forms of complex reductive groups acting on quasiaffine varieties*, Amer. Math. Soc. Transl. (2), Vol. 213 (2005), pp. 1–13.

[3] D.Akhiezer, S.Cupit-Foutou, *On the canonical real structure on wonderful varieties*, arXiv: 1202.6607, to appear in Crelle journal.

[4] M.Brion, *Variétés sphériques*, Notes de la session de la S.M.F. ”Opérations hamiltoniennes et opérations de groupes algébriques”, Grenoble, 1997, pp. 1–60.

[5] M.Brion, F.Pauer, Valuations des espaces homogènes sphériques, Comment. Math. Helvetici, Vol. 62 (1987), pp. 265–285.

[6] F.Knop, *The Luna-Vust theory of spherical embeddings*. pp. 225 - 249 in: Proceedings of the Hyderabad conference on algebraic groups, Hyderabad, India Dec., 1991.

[7] F.Knop, *Automorphisms, root systems, and compactifications of homogeneous varieties*, J. Amer. Math. Soc., Vol. 9 (1996), pp.153–174.

[8] I.Losev, *Uniqueness property for spherical homogeneous spaces*, Duke Math.J., Vol.147 (2009), 2, pp. 315–343.

[9] D.Luna, *Toute variété magnifique est sphérique*, Transform. Groups, Vol.1 (1996), 3, pp. 249–258.

[10] D.Luna, T.Vust, *Plongements d’espaces homogènes*, Comment. Math. Helvetici, Vol. 58 (1983), 186–245.

[11] A.L.Onishchik, *Lectures on real semisimple Lie algebras and their representations*, ESI Lectures in Mathematics and Physics, EMS 2004.

[12] A.L.Onishchik, E.B.Vinberg, *Lie groups and algebraic groups*, Springer-Verlag, Berlin-Heidelberg-New York, 1990.

[13] I.Satake, *On representations and compactifications of symmetric Riemannian spaces*, Ann. of Math., Vol.71, No.1 (1960), 77–110

Dmitri Akhiezer
INSTITUTE FOR INFORMATION TRANSMISSION PROBLEMS
19 B.KARETNY per.,127994 Moscow, Russia
E-mail address: akhiezer@iitp.ru