Submitted to: *Plant Physiology*
Research Area: Plants Interacting with Other Organisms

Running head: Herbivore elicitation and antagonism of defense

All correspondence should be sent to:

Dr. Eric A. Schmelz
Center of Medical, Agricultural, and Veterinary Entomology
USDA, Agricultural Research Service
Chemistry Research Unit
1600 Southwest 23rd Drive
Gainesville, Florida 32608

Phone: 352-374-5858
Fax: 352-374-5707
E-mail: eric.schmelz@usda.ars.gov
An amino acid substitution inhibits specialist herbivore production of an antagonist effector and recovers insect-induced plant defenses

Eric A. Schmelz*, Alisa Huffaker, Mark J. Carroll, Hans T. Alborn, Jared G. Ali and Peter E.A. Teal

Center of Medical, Agricultural, and Veterinary Entomology
USDA, Agricultural Research Service
Chemistry Research Unit
1600/1700 Southwest 23rd Drive
Gainesville, Florida 32608
(E.A.S., A.H., M. J. C., H.T.A, P.E.A.T.)

Department of Ecology and Evolutionary Biology
Cornell University
E425 Corson Hall
Ithaca, NY 14853
(J.G.A.)

Abbreviations: cATPC, chloroplastic ATP synthase γ-subunit; OS, oral secretion; ET, ethylene; JA, jasmonic acid; SA, salicylic acid; DMNT, (E)-4,8-dimethyl-1,3,7-nonatriene; FAW, fall armyworm; VBC, velvetbean caterpillar
This work was supported by the United States Department of Agriculture, Agricultural Research Service base funds directed to CRIS project number 6615-22430-002-00D.

M.J.C. present address: The Carl Hayden Bee Research Center, USDA, Agricultural Research Service, 2000 E. Allen Rd, Tucson, AZ, 85719

* Corresponding author; e-mail eric.schmelz@ars.usda.gov; fax 352-374-5707

The use of trade, firm, or corporation names in this publication (or page) is for the information and convenience of the reader. Such use does not constitute an official endorsement or approval by the United States Department of Agriculture or the Agricultural Research Service of any product or service to the exclusion of others that may be suitable.
Abstract

Plants respond to insect herbivory through the production of biochemicals that function as either direct defenses or indirect defenses via the attraction of natural enemies. While attack by closely related insect pests can result in distinctive levels of induced plant defenses, precise biochemical mechanisms responsible for differing responses remain largely unknown. Cowpea (*Vigna unguiculata*) responds to Fall armyworm (FAW; *Spodoptera frugiperda*) herbivory through the detection of fragments of ATP synthase γ-subunit (cATPC) proteins, termed inceptin-related peptides, present in larval oral secretions (OS). In contrast to generalists like FAW, OS of the legume specializing Velvetbean caterpillar (VBC; *Anticarsia gemmatalis*) does not elicit ethylene production and demonstrates significantly lower induced volatile emission in direct herbivory comparisons. Unlike all other Lepidoptera OS examined, which preferentially contain inceptin [Vu-In; ′ICDINGVCVDA′], VBC OS contains predominantly a C-terminal truncated peptide Vu-In-A ′ICDINGVCVD′. Vu-In-A is both inactive and functions as a potent naturally occurring antagonist of Vu-In induced responses. To block antagonist production, amino acid substitutions at the C-terminus were screened for differences in VBC gut proteolysis. A valine substituted peptide [Vu-InΔV; ′ICDINGVCVDV′] retaining full elicitor activity was found to accumulate in VBC-OS. Compared to the native polypeptide, VBC that previously ingested 500 pmols of the valine modified cATPC precursor elicited significantly stronger plant responses in herbivory assays. We demonstrate that a specialist herbivore minimizes the activation of defenses by converting an elicitor into an antagonist effector and identify an amino acid substitution that recovers these induced plant defenses to a level observed with generalist herbivores.
Excluding microorganisms, plants and insects constitute over 75 percent of the total species on earth (Hawksworth and Kalin-Arroyo, 1995). At a numerical species level, insect herbivores significantly outweigh plants and together display exquisitely complex ecological interactions (Price, 2002). Herbivorous insects are often broadly categorized as either generalists or specialists to denote feeding preferences on either a wide variety or select subset of plant species, respectively. It is widely envisioned that host plant defenses have less impact on specialists as compared to generalist herbivores. Comparatively, specialists often manipulate plants to their benefit and demonstrate improved tolerance of host-specific biochemicals. For example, sawfly larvae in the genus Pontania induce protective closed galls in numerous willow species (Salix) that result in dramatically reduced interior tissue defenses (Nyman and Julkunen-Tiitto, 2000). Swallowtail caterpillars, such as *Papilio polyxenes*, utilize plants in the family Apiaceae through efficient cytochrome P450 monooxygenase enzymes that directly detoxify dietary furanocoumarins (Cohen et al., 1992; Berenbaum, 2002). Cabbage white butterfly (*Pieris rapae*) larvae prevent toxic isothiocyanate formation through the action of a gut nitrile-specifier protein that redirects typical hydrolysis of glucosinolates to instead form nitriles that are excreted in the frass (Wittstock et al., 2004). Although specialists often exhibit greater tolerance to specific biochemicals than generalists, in many cases they are still negatively impacted by high levels of these plant defenses (Adler et al., 1995; Zalucki et al., 2001; Berenbaum, 2002; Agrawal and Kurashige, 2003).

A hallmark of herbivore-inducible plant defense is variability. One method to non-destructively measure this variation is through assessment of indirect defenses such as herbivore-induced volatile emissions that attract natural enemies of the offending pest. In some cases, different feeding habits such as leaf herbivory versus stem boring readily account for this variation; however, even similar patterns of leaf herbivory can result in different volatile emission patterns and parasitoid attraction (Turlings et al., 1998; De Moraes et al., 1998). Oral secretion (OS)-derived fatty acid amino acid conjugate (FAC) elicitors, such as N-(17-hydroxylinolenoyl)-L-glutamine and related analogs, promote plant recognition of Lepidopteran herbivores and trigger induced volatile emission in diverse plant species including maize (*Zea mays*), eggplant (*Solanum melongena*) and soybean (*Glycine max*) (Alborn et al., 1997; Schmelz et al., 2009). A combination of mechanical damage and FAC elicitors can constitute the initial stimuli leading to production of the defensive phytohormones jasmonic acid (JA) and ethylene (ET); however, elicitation can be phylogenetically idiosyncratic and even absent from closely related plants (Schmelz et al., 2009). In receptive plants, a potential for specificity comes from differences in the
biochemical content of herbivore OS. For example, in *Nicotiana attenuata*, herbivory and OS of the specialist *Manduca sexta* elicits greater production of JA and ET than comparable treatments with the generalist *Spodoptera exigua* (Diezel et al., 2009). These phytohormone differences are coincident with markedly different levels of FAC elicitors and also salivary-derived glucose oxidase (GOX) in the herbivore species.

As a salivary secretion, GOX is one of the few herbivore-derived effectors implicated in the suppression of inducible defenses, namely reduced nicotine accumulation in tobacco and improved growth of *H. zea* (Musser et al., 2002). The suppressive activity of GOX in *Nicotiana* species is in part through the formation of H₂O₂, elicitation of induced salicylic acid (SA) production and associated negative cross-talk interactions that attenuate induced JA and ET signaling (Diezel et al., 2009). Transcriptional evidence for similar SA-mediated suppression of JA signaling also exists in different feeding guilds. For example, in *Arabidopsis thaliana*, whitefly (*Bemisia tabaci*) feeding appears to repress accumulation JA-regulated defense transcripts such as *PDF1.2* (Zarate et al., 2007). Although the effector remains unknown, *B. tabaci* suppression of JA-regulated resistance is associated with strong up-regulation of the SA signaling pathway and associated gene transcript levels (Zarate et al., 2007). Regardless of diet breadth, herbivores cause responses in their hosts that are variable and more recently the paradigm of generalists and specialists herbivores inducing predictable plant responses has been challenged (Ali and Agrawal, 2012).

Improved utilization of host plants by any biotic attacker often involves a combination of detoxification and prevention of defense activation. The vast majority of mechanistic advances demonstrating suppression of inducible defenses have come from plant-pathogen research (Jones and Dangl, 2006; Zhou and Chai, 2008; Hogenhout et al., 2009). A well characterized component of plant basal immunity to pathogenic bacteria is recognition of microbe associated molecular patterns (MAMPs) such as the flagellin peptide fragment, termed flg22. The FLS2 receptor binds flg22 to initiate defense; however, successful pathogens such as *Agrobacterium tumefaciens* and pathovar variants of *Xanthomonas campestris pv campestris* exhibit altered sequences of flg22 that neither associate with FLS2 nor activate defense (Felix et al., 1999; Zipfel et al., 2004; Sun et al., 2006). To counter elicitation, pathogenic bacteria, such as *Pseudomonas syringae pv. tomato* DC3000 (*Pst* DC3000), inject into plant cells a broad array of multifunctional effector proteins via the type III secretion system that suppress activation of innate immunity (Jones and Dangl, 2006; Zhou and Chai, 2008). Moreover, *Pst* DC3000 also secretes the jasmonoyl-isoleucine phytohormone mimic coronatine as a small-molecule effector that
co-opts signaling by the E3 ubiquitin ligase COI1 and transcription factor JIN1/MYC2 to suppresses MAMP mediated resistance responses (Millet et al., 2010). In a conceptually useful scheme detailing the probable evolutionary interplay of resistance and disease susceptibility, plants are hypothesized to have first evolved MAMP recognition systems to trigger innate immune responses. Subsequently pathogens overcame recognition through effectors (virulence factors) that were able to suppress those immune responses (Bent and Mackey, 2007). Plant R-proteins then evolved to either directly recognize pathogen effectors (avirulence factors) or products of their activities on guarded plant proteins to promote defense activation and resistance. In contrast to pathogens, relatively little is known about the mechanisms Lepidopteran herbivores use to evade plant recognition and activation of defense responses (Bonaventure et al., 2011).

Cowpea (Vigna unguiculata) and common bean (Phaseolus vulgaris) recognize insect herbivory through the detection of trace amounts of cyclic disulfide-bridged inceptin-related peptides present in caterpillar OS, which are derived from proteolytic fragments of chloroplastic ATP synthase \(\gamma \)-subunit (cATPC) proteins (Schmelz et al., 2006; Schmelz et al., 2007). Inceptin-related peptides have thus far been described in the OS of Fall armyworms (FAW; Spodoptera frugiperda), which prefer grasses but are confirmed generalists known to feed on over 60 different diverse plant species including cowpea (Luginbill, 1928). To better understand the adaptations of a legume specialist, we examined the Velvetbean caterpillar (VBC; Anticarsia gemmatalis), a devastating defoliator of tropical soybean and other legumes, whose host range includes Vigna and Phaseolus species in the Americas (Buschman et al., 1977; Piubelli et al., 2005). Direct comparative assays of induced responses in cowpea to both natural herbivory and OS of both VBC and FAW revealed that VBC induced significantly lower plant defense responses. Compared to eight different Lepidoptera pest species examined, VBC demonstrate a unique preferential processing of inceptin-related peptides into a biologically inactive form, namelyVu-In\(^{A} \) (‘ICDINGVCVD’). Moreover, Vu-In\(^{A} \) functions as a naturally occurring antagonist of plant defense responses triggered by inceptin (Vu-In; ‘ICDINGVCVDA’). Sequential screening ofVu-In peptide libraries with substituted C-terminal amino acids revealed a single conservative amino acid change that reduces VBC proteolysis of active inceptin-related peptides and recovers induced plant defense responses to this pest.
RESULTS

Decreased Defense Activation by a Legume Specialist Herbivore. In cowpea, we previously established that FAW OS contains the elicitor Vu-In that drives the coordinated production of the defense-related phytohormones including jasmonic acid (JA), ethylene (ET) and salicylic acid (SA) as well as increases in emission and leaf pools of the predominant volatile (E)-4,8-dimethyl-1,3,7-nonatriene (DMNT) (Schmelz et al., 2006; Schmelz et al., 2007; Carroll et al., 2008). Volatile DMNT is detected by numerous parasitoid wasps and attracts natural enemies of herbivorous pests (Gouinguene et al., 2005; Kappers et al., 2005). Cowpea leaves experiencing a FAW feeding bout from larvae devoid of Vu-In, fail to elicit DMNT production (Schmelz et al., 2006). In a direct comparison to FAW OS, larval secretions from the legume specialist VBC elicited 8.8- and 2.2-fold lower levels of ET and DMNT, respectively, when applied to wounded cowpea leaves (Fig. 1A-B). DMNT leaf pools present at 4 h following VBC OS treatment were not significantly different from mechanical damage+H2O alone (Fig. 1B). Quantified changes in leaf tissue pools of DMNT are used as an estimate for differences in volatile emission at the local site of treatment and herbivore attack. To examine cowpea defense responses to actual herbivory, we performed both short-term assays, which allowed single feeding bouts, and long-term assays where plants were subjected to intensive sustained attack by either FAW or VBC. Analysis of cowpea leaf tissue surrounding short-term feeding sites which received equivalent damage (Fig. 1C) and long-term whole plant volatile emissions (Fig. 1D) both demonstrate that VBC herbivory results in significantly lower levels of DMNT compared to FAW herbivory. Thus, cowpea plants produce quantitatively different defense responses to defoliation by these generalist and specialist Lepidopteran herbivores.

Unlike Other Lepidoptera, VBC Predominantly Contain an Inactive Inceptin-related Peptide.

Large-scale purification of FAW OS previously revealed the presence of four inceptin-related peptides, consisting of predominantly Vu-In and lesser amounts of Vu-E+In [+EICDINGVCVDA], Vu-GE+In [+GEICDINGVCVDA], and Vu-In-A [+ICDINGVCVDA]. Unlike the three inceptin-related peptides with additional N-terminal amino acids, the C-terminal truncated Vu-In-A lacked ET, SA and DMNT inducing activity (Schmelz et al., 2007). Consistent with our previous findings, FAW accumulate mainly Vu-In and only low amounts of Vu-In-A when fed peptide precursors containing the inceptin core sequence (Fig. 2A). In contrast, VBC OS contains largely the inactive Vu-In-A and only low levels of active Vu-In.
(Fig. 2B). To examine if the VBC pattern of inceptin-related peptide processing in OS is unique, we compared VBC, FAW and seven additional Lepidopteran pests including Cabbage looper (*Trichoplusia ni*), Tobacco budworm (*Heliothis virescens*), Soybean looper (*Pseudoplusia includens*), Black cutworm (*Agrotis ipsilon*), Beet armyworm (*Spodoptera exigua*), European corn borer (*Ostrinia nubilalis*) and Corn earworm (*Helicoverpa zea*). After feeding on cATPC precursors containing the inceptin core sequence, only VBC exhibited significantly lower percentages (< 25%) of active OS peptides (sum of *Vu*-In, *Vu*-E+In, and *Vu*-GE+In) compared to the total of all four inceptin-related peptides (Fig. 2C). Compared to the three highest accumulators of active inceptin-related peptides (*S. exigua*, *O. nubilalis* and *H. zea*), *T.ni* larvae also exhibited a modest ability to accumulate *Vu*-In-A (Fig. 2C). While not a preferred host plant, in laboratory settings *T. ni* is able to complete multiple instars on plants responsive to inceptin such as *P. vulgaris* (Soo Hoo et al., 1984). Nonetheless, unlike the other 8 Lepidopteran pests tested, VBC exhibit preferential processing of inceptin into the predominate inactive OS peptide *Vu*-In-A.

Vu-In-A is a Naturally-Occurring Antagonist of Inceptin-induced Responses. In plants, C-terminal amino acid deletions in synthetic peptide signals can result in the creation of competitive antagonists of binding and inhibitors elicitor-induced plant responses (Pearce et al., 1993; Meindl et al., 1998; Meindl et al., 2000). To examine if *Vu*-In-A functions as a naturally occurring antagonist in cowpea, leaves were wounded and first treated with either H$_2$O or *Vu*-In-A, and then subsequently retreated with *Vu*-In within 60 s. Prior treatment with 450 fmol leaf$^{-1}$ *Vu*-In-A completely suppressed the plant response to subsequent elicitation with an equal level of *Vu*-In (Fig. 3A). At 4.5 pmol leaf$^{-1}$, consecutive treatments with *Vu*-In-A and *Vu*-In resulted in ET responses identical to those of H$_2$O followed by 45 fmol leaf$^{-1}$ *Vu*-In. Thus in the presence of *Vu*-In-A, a 100-fold greater level of *Vu*-In was required to produce an equivalent plant response. This general pattern of antagonism occurred over a wide range of concentrations (Fig. 3A). To function as an antagonist of plant defense responses during herbivory, *Vu*-In-A must also exhibit this activity in a mixture of compounds applied simultaneously. In a second experiment, *Vu*-In treatments were held constant (1 pmol leaf$^{-1}$) and mixed with increasing amounts of *Vu*-In-A. At 33% *Vu*-In (of the total *Vu*-In + *Vu*-In-A) significant inhibition of elicitor-induced ET responses occurred with continually increasing inhibition as the proportion of *Vu*-In-A increased (Fig. 3B). To examine the linkage between *Vu*-In-A mediated antagonism of *Vu*-In induced ET responses and subsequent metabolic leaf pools, a similar experiment was repeated to include sampling at 4 h. When leaves were treated with a mixture of 1 pmol *Vu*-In and 4 pmol *Vu*-In-A, significant ET inhibition at 1 h
was again observed compared to an equivalent dose of \(Vu\)-In alone (Supplemental Fig. S1A). Significantly decreased pools of SA and DMNT at 4 h tracked this reduced ET production (Supplemental Fig. S1C, E). While averages trended lower, significant \(Vu\)-In\(^{-A}\) antagonism of \(Vu\)-In induced JA and CA pools were not detectable at 4 h (Supplemental Fig. S1B, D). As expected, individual \(Vu\)-In\(^{-A}\) treatments did not result in plant responses different from damage+H\(_2\)O alone in any metabolite measured (Supplemental Fig. S1A-E). Collectively, these results demonstrate that elevated ratios of \(Vu\)-In\(^{-A}\) in larval OS can mediate antagonized defense elicitation triggered by active inceptin-related peptides.

Biochemical Screen of Substituted Peptide Precursors Recovers Active Elicitors in VBC OS. Given that amino acid sequences influence protease susceptibility (Poreba and Drag, 2010), one strategy to minimize the production of antagonists and restore plant defense elicitation following VBC attack is to modify the inceptin C-terminal. Subtle sequence changes have the potential reduce VBC production of \(Vu\)-In\(^{-A}\) relative to active elicitors. Towards this goal, we examined if the C-terminal alanine of \(Vu\)-In can withstand amino acid changes and still retain elicitor activity. As a first step, a \(Vu\)-In\(^{-AX}\) substitution library was synthesized and assayed for induced ET production in cowpea leaves. With the exception of the basic amino acids, H, K, R (histidine, lysine, arginine) and P, W (proline, tryptophan), all other \(Vu\)-In C-terminal substitutions maintained significant elicitor activity (Fig. 4A). To estimate elicitor stability following larval ingestion, all active 11mer \(Vu\)-In\(^{-AX}\) C-terminal substituted peptides were then fed to VBC larvae and recollected from the OS. The \(Vu\)-In\(^{-AX}\) C-terminal substituted peptides D, N, Q, S, T, V and Y were recoverable from VBC OS at equal or greater levels relative to \(Vu\)-In\(^{-A}\), and thus predictably sufficient to maintain elicitation (Fig. 3B and 4B). Lepidopteran larvae generate inceptin-related peptides through both N- and C-terminal proteolysis of larger cATPC precursors. Given this complexity, we examined larval production of 6 substituted peptide candidates from their respective model 19mer-\(Vu\)-In\(^{-AX}\) precursors requiring amide bond cleavage for activation. Following ingestion by VBC and subsequent OS collection, the precursor 19mer-\(Vu\)-In\(^{-AV}\) \([^{+KGE]}ICDINGVCVDVAEDEF]\) displayed the highest recovery of an active peptide \(Vu\)-In\(^{-AV}\) \([^{+ICDINGVCVDV}^+]\) and a favorably low percentage of the \(Vu\)-In\(^{-A}\) antagonist (Fig. 4C). Induced ET bioassays in cowpea leaves confirmed that both the native 19mer-\(Vu\)-In and substituted 19mer-\(Vu\)-In\(^{-AV}\) precursors are inactive, and thus require insect activation (Fig. 4D). Using a combination of plant and insect assays, serial analyses of peptide substitution libraries
revealed a conservative amino acid change that retains elicitor activity and enables preferential accumulation in VBC OS.

A Single Amino Acid Substitution Recovers Plant Elicitation and Defense Following Attack by a Legume Specialist Herbivore. Ideally, a modified \(\text{Vu-In} \) analog would have either equivalent or greater activity than the native peptide signal. A detailed comparison of \(\text{Vu-In} \) and \(\text{Vu-In}^{AV} \) revealed identical ET inducing activities in cowpea leaves over a range of concentrations (Fig. 5A). Further analysis of plant metabolite levels 4 h later confirmed the equivalent activity of \(\text{Vu-In}^{AV} \) and \(\text{Vu-In} \) (Supplemental Fig. S1F-J). To quantitatively examine VBC peptide processing patterns, larvae were allowed to feed upon leaf discs containing 4.9 nmoles of either 19mer-\(\text{Vu-In} \) or 19mer-\(\text{Vu-In}^{AV} \). Subsequent collections of OS revealed 24±7 and 146 ±13 pmoles of total inceptin-related peptides, respectively. Thus, in addition to 6-fold greater concentrations of inceptin-related peptides, VBC that consumed the 19mer-\(\text{Vu-In}^{AV} \) contained a significantly higher percentage of active elicitors whereas the antagonist predominated in larvae that consumed the native 19mer-\(\text{Vu-In} \) (Fig. 5B). Importantly, as previously demonstrated (Fig. 3B), this low proportion (27%) of active inceptin peptides is sufficient to enable \(\text{Vu-In}^{A} \) antagonism of \(\text{Vu-In} \) elicitation. To examine how trace amounts of substituted inceptin precursors affect plant recognition during herbivory, we fed individual VBC larvae cowpea leaf discs containing either H\(_2\)O, 0.5 nmoles of the native 19mer-\(\text{Vu-In} \) or 0.5 nmoles of 19mer-\(\text{Vu-In}^{AV} \). VBC larvae were then placed on intact cowpea plants and allowed to feed for 20 min. Individual herbivore damage sites 4 h later revealed significant increases in JA, SA, cinnamic acid (CA) and DMNT in plants attacked by VBC that had consumed the modified 19mer-\(\text{Vu-In}^{AV} \) (Fig. 6A-D). Plants attacked by VBC larvae that consumed the additional native 19mer-\(\text{Vu-In} \) displayed defense-related metabolite levels statistically identical to those damaged by VBC from the H\(_2\)O leaf disc treatment (Fig. 6A-D).

To examine both reproducibility and importance of dose, this experiment was repeated by feeding VBC larvae 5-fold greater levels of the 19mer peptide precursors. At 2.5 nmoles of peptide, herbivory triggered 2.1-, 4.1-, 2.6- and 3.5-fold greater levels of JA, SA, CA and DMNT, respectively, when VBC larvae previously ingested the modified 19mer-\(\text{Vu-In}^{AV} \) compared to the native 19mer-\(\text{Vu-In} \) (Fig. 6E-H). Plant responses to larvae that previously consumed cowpea leaves plus H\(_2\)O or 19mer-\(\text{Vu-In} \) were not statistically different (Fig. 6E-H). On average, the 2.5 n mole dose of 19mer-\(\text{Vu-In}^{AV} \) resulted in larvae that elicited slightly higher plant responses than those previously ingesting 0.5 nmoles (Fig. 6A-H). Collectively, these results demonstrate that an alanine to valine substitution in the cATPC
polypeptide sequence is able to recover the elicitation of cowpea defense responses following VBC herbivory.

DISCUSSION

The identity and activity of herbivore-associated elicitors of plant defenses have been intensively studied over the past decade (Howe and Jander, 2008). In some cases, insects may avoid the production of active elicitors by feeding on tissues lacking essential precursors while in other situations individual herbivore elicitors within a class can vary greatly between conspecific larvae without significantly influencing defense activation (De Moraes and Mescher, 2004; Roda et al., 2004). While the outcome of pathogen and insect attack relies significantly upon their capacity for host plant utilization, the documentation of herbivore effectors that suppress elicitation is quite limited. A few examples come from aphids that consume phloem for many hours once a sieve element feeding site has been established. In broad bean (Vicia faba), secreted salivary proteins from the aphid Megoura viciae suppress sieve element occlusion, which typically occurs through the formation of dispersed forisomes (i.e. expanded proteinaceous inclusions), triggered in response to damage and increased local Ca\(^{2+}\) levels (Will et al., 2007). These salivary-derived Ca\(^{2+}\)-binding proteins also promote dispersed forisomes to convert back into their original compact structure thereby recovering the flow of phloem sap and enabling successful feeding. Similarly, a specific salivary protein of unknown function, designated as C002, has been demonstrated to be absolutely required for pea aphid (Acyrthosiphon pisum) feeding and survival (Mutti et al., 2008). Biochemical mechanisms lepidopteran larvae utilize to suppress plant responses during herbivory are less clear but can also involve salivary proteins. H. zea herbivory on tobacco (N. tabacum) results secretion of the enzyme GOX onto the leaf surface and suppresses induced nicotine accumulation in tobacco (Musser et al., 2002). In cowpea, we currently demonstrate a new mechanism of suppression where legume specialist larvae exhibit the targeted removal of functional OS elicitors in part by converting the active signal into an antagonist of defense elicitation (Fig. 7).

It is unclear if generalist and specialist herbivores consistently differ in their OS elicitors. The transcriptional response of N. attenuata to attack from two generalist herbivores, namely H. virescens and S. exigua, was more similar too each other than that of the specialist M. sexta. This difference was linked to OS-derived FACs (Voelckel and Baldwin, 2004). OS contents of the two generalists are virtually identical whereas M. sexta lacks volicitin and predominately harbors fatty acid–glutamic acid conjugates (Pohnert et al., 1999; Alborn et al., 2003). FACs from M. sexta also have a role in
suppressing induced nicotine accumulation in tobacco, yet remain elicitors for indirect defense responses (Kahl et al., 2000). Unlike a number of Solanaceous plants, defense responses in cowpea are not elicited by FACs (Schmelz et al., 2009). Instead variation within inceptin-related peptides from herbivore OS mediates the activation or suppression of elicitor-induced defenses. The current evidence for specialist antagonism of elicitor-induced plant defenses is further supported by the lack of preferential \(\text{Vu-In}^\text{A} \) processing in all generalist species examined (Fig. 2C). A future survey of legume specialist Lepidoptera that include Vigna and Phaseolus as frequent host plants would reveal the breadth and scope of this mechanism in nature.

The theoretical existence of a naturally occurring peptide signal that functions as an antagonist to elicitor-induced plant responses dates back nearly two decades. In 1991, discovery of the 18 amino acid endogenous peptide from tomato foliage, termed systemin, marked the first bioactive peptide signal found in plants (Pearce et al., 1991). Shortly thereafter, structure-function studies with truncated peptides revealed that the successive removal of C-terminal amino acids inactivated the signal and resulted in peptides that blocked the subsequent binding and activity of native full-length systemin (Pearce et al., 1993; Meindl et al., 1998). Related studies with the bacterial peptide elicitor flg22 also found that C-terminal truncations resulted in competitive antagonist peptides and led to the ‘address-message’ concept that peptide signal N- and C-terminals are important for receptor binding and activation, respectively (Meindl et al., 2000). With both systemin and flg22, numerous C-terminal amino acid deletions in synthetic peptides are required to achieve strong competitive antagonism. In the current study, a single C-terminal amino acid loss resulting in \(\text{Vu-In}^\text{A} \) promotes antagonism of elicitation when present at 66% or more of the total inceptin-related peptides. While comparative phylogenetic studies are consistent with the existence of specific plant receptors for insect-derived elicitors, the precise mechanism of \(\text{Vu-In} \) mediated defense activation remains unknown (Schmelz et al., 2009). We identify \(\text{Vu-In}^\text{A} \) as truncated elicitor derivative that antagonizes inceptin-induced responses including ET, SA and DMNT; however, the action of \(\text{Vu-In}^\text{A} \) as a competitive antagonist at the receptor level remains hypothetical and subject to future empirical examination (Fig. 7).

In contrast with plant-pathogen interactions, receptor-ligand pairs have yet to be identified to regulate plant resistance to insect attack. For aphid resistance, receptors including the \(\text{Mi-1.2} \) gene in tomato and \(\text{Vat} \) genes in melon protect against specific biotypes of Macrosiphum euphorbiae and Aphis gossypii, respectively (Rossi et al., 1998; Boissot et al., 2010). Currently, aphid associated ligands that bind these receptors are unknown. A common long-term threat in crop breeding is the eventual shift in
predominant insect biotypes that favor those able to overcome plant resistance genes. For example, in 1997 a virulent isolate *M. euphorbiae* that performs well on tomato plants harboring the *Mi-1.2* gene was identified in California and currently appears to predominate in the US (Goggin et al., 2001). Of relevance to insect biotypes that overcome plant resistance, we demonstrate that VBC posses a biochemical adaption that minimizes the activation of plant defenses while feeding. The infrequency of predominant *Vu*-In C-terminal processing in other Lepidoptera species examined is likely due to the high level of protease resistance associated with cyclized peptides (Horton et al., 2002). While the precise mode of cleavage has not been described, VBC larvae may produce a specific gut carboxypeptidase that is capable of cleaving the C-terminal alanine from the largely cyclic *Vu*-In. Thus far trypsin-like proteases have been predominantly described; however, the gut tissues of *A. gemmatalis* larvae also harbor bacteria potentially capable of further proteolysis (Oliveira et al., 2005; Visotto et al., 2009).

In pathology terms, the presence of *Vu*-In in FAW OS is analogous to an ‘avirulence factor’ given its ability to trigger rapid plant defense responses in cowpea. Conversely, *Vu*-In\(^{AV}\) in VBC OS functions as a ‘virulence factor’ by suppressing elicitation and subsequent induced defenses triggered by trace amounts of *Vu*-In. Unfortunately, these designations are accurate only in the context of each individual system examined given that virulence and avirulence factors often possess opposite activities in related plant species. Divergent activities of previously designated virulence and avirulence factors result in both confusion and conceptually restrictive usage. The term ‘effector’ is now favored and broadly encompasses biochemicals that either positively or negatively modify plant defense signaling and expression (Hogenhout et al., 2009). The discovery of elicitor antagonist activity of *Vu*-In\(^{AV}\) compels us to view inceptin-related peptides not simply as a class of elicitors but more widely as herbivore-associated effectors capable of multiple activities.

In cowpea, we demonstrate that a conservative amino acid change in the cATPC precursor for *Vu*-In can block production of an elicitor antagonist and recover elicitor-induced responses following VBC attack (Fig. 7). Curiously, potential mutations that convert precursors of *Vu*-In to *Vu*-In\(^{\Delta V}\) may be subject to additional constraints. In an earlier analysis of the coding region of chloroplastic *atpC* spanning *Vu*-In we observed perfect conservation of the C-terminal alanine in every plant species investigated (Schmelz et al., 2006). This might be due to interactions with the inhibitory \(\epsilon\)-subunit that in part mediates chloroplastic ATP synthase activity (Hightower and McCarty, 1996). Thus in legumes that respond to inceptin-related peptides, the transgenic manipulation of plants to improve defense responses
to VBC attack may require the embedding of this modified sequence into proteins other than cATPC. An ultimate goal is to impart inceptin-mediated responses to crops that do not currently recognize the elicitor. While this approach has numerous daunting requirements, including the discovery of any putative inceptin receptor(s), successful examples of interfamily resistance transfer exist for bacterial-mediated MAMP triggered immunity (Lacombe et al., 2010). Encouragingly, the majority of Lepidoptera species examined accumulate inceptin-related peptides (Fig. 2C). Thus, while the utility of this perception system hinges partly on elicitor production, active signals already exist in a diversity of pests. Select legume specialists largely avoid inceptin-mediated defenses in cowpea; yet, an amino acid substitution, representing the addition of two methyl groups, can recover elicitor-induced responses. Clearly, little things mean a lot. The detailed biochemical knowledge of both herbivore-associated effectors and respective plant receptors will be remain essential for the directed improvement crop resistance.
MATERIALS AND METHODS

Plant and Insect Materials. FAW larvae were obtained from Dr. R. Meagher (USDA-ARS-CMAVE, Gainesville, FL) and reared on a pinto bean based diet (Schmelz et al., 2006). Preliminary trials with VBC larvae utilized wild caught individuals from outbreak areas on the surrounding margins of peanut fields (Williston, FL) and these results were readily replicated using commercially obtained insects. All experiments utilized VBC, *T. ni*, *H. virescens*, *P. includens*, *A. ipsilon*, *S. exigua*, *O. nubilalis* and *H. zeae* obtained on from Benzon Research Inc (Carlisle, PA). Cowpea (*Vigna unguiculata* var. California Blackeye #5; The Wax Company, Amory MS) were germinated in MetroMix® 200 (Sun Gro Horticulture Distribution, Inc) supplemented with 14-14-14 Osmocote (Scotts Miracle-Gro). All plants were maintained in a greenhouse with a 12 h photoperiod, minimum of 300 μmol·m⁻²·s⁻¹ of photosynthetically active radiation supplied by supplemental lighting, 70% relative humidity and temperature cycle of 24ºC/28ºC (night/day).

Synthetic Peptides. Incepin-related sequences *Vu*-GE+In, *Vu*-E+In, *Vu*-In and *Vu*-In⁴ were synthesized and purified (> 95%) at the Protein Core Chemistry Facility (University of Florida, Gainesville, FL) as previously described (Schmelz et al., 2006; 2007). C-terminal substituted *Vu*-In 11mer analogs were synthesized using the PEPscreen® Peptides (Sigma-Genosys) service with an 85% average purity. *Vu*-In⁴ and specific substituted 19mers (⁺KGEICDINGVCVDXAEDF⁻) utilized in this work were synthesized and received at > 95% purity (Sigma-Genosys).

Cowpea Leaf Bioassays and Plant Metabolite Analysis. All experiments used 14-18 day old plants containing 2 fully expanded pairs of trifoliate leaves. For ET induction assays, the adaxial sides of new fully expanded leaves were superficially scratched with a razor in 3 areas, removing approximately 5% of the total waxy cuticle. The damage sites (2 cm² each) included the central leaf tip spanning both sides of the midrib and 2 mid-basal sections on opposite sides of the mid-rib. Test solutions in 5 μl H₂O were immediately applied and dispersed over the damage sites. For ET quantification, leaves remained on the intact plants for 1h, were then excised, sealed in 13-ml tubes and analyzed via GC headspace sampling as previously described (Schmelz et al., 2006). To quantify leaf tissue pools of DMNT, JA SA, and CA a 4 cm² section of leaf surrounding the treated site was weighed (50 to 100 mg), frozen in liquid N₂, processed and analyzed by gas chromatography isobutane-chemical ionization mass spectrometry as
described elsewhere (Schmelz et al., 2004; Schmelz et al., 2006). Collection and quantification, of leaf volatile emission from intact plants followed established protocols (Carroll et al., 2008).

Individual Insect Feeding Studies. 6th instar VBC and FAW larvae were allowed to feed for 12 h on cowpea leaves and then individually isolated in polystyrene 12-well Cell Culture Plates (BD Falcon™) for 1 h in the absence of plant tissue. The larvae were carefully transferred onto the leaf canopies of tightly spaced cowpea plants and allowed to feed for 20 min. At this time, all larvae were removed from plants and only insect damage sites with comparable leaf area consumed (typically 50 mm²), were selected for analysis (n=6). To ensure maximal uniformity of feeding time and surplus of larval wound sites with equivalent leaf area removed, each of these trials utilized groups of 48 insects on 16 plants for each insect species or treatment comparison. To control elicitor content of larval OS, VBC in 12-well plates were allowed to consume a 65 mm² cowpea leaf disc containing the native and substituted 19mer cATPC peptides. Within 30 min of consumption, larvae where placed on leaves as described above.

Quantification of Inceptin-related Peptides in Insect OS. Chemical verification and quantification of inceptin-related peptides from insect OS utilized HPLC-MS as previously described (Schmelz et al., 2006). An isotopically-labeled [¹³C and ¹⁵N valine; *ICDING-V*-CVDA*) Vu-In analog was used as an internal standard (ISTD) for quantification. Aliquots of crude OS, typically 50-100 μl derived from a pool of 12 larvae, were sequentially spiked with 100 ng of the ISTD peptide, 5 μl HCl, vortexed, and centrifuged 12000 x g for 5 min. The aqueous phase was mixed with an equal volume of EtOH, stored at –70ºC for 30 min, and centrifuged 12000 x g for 2 min. Samples were diluted to 5% EtOH, loaded on 100 mg RP-C18 SPE columns, washed with 2 ml of H₂O, and eluted with 9:1 CH₃CN:H₂O. Samples were then concentrated to dryness under vacuum, brought up in 50 μl 5:95 CH₃CN:H₂O containing 10mM NH₄COOH. Using an HPLC system comprised of a P4000 pump, an AS3000 autosampler, and a UV6000LP detector (Thermo Separation Products, San Jose, CA), 10μL injections of OS samples were onto a YMC ODS-AQ RP-C18 (250 x 4.6 mm, S-5 μm, 20 nm; Waters Corp, Milford, MA) analytical column heated to 60 C°, using flow rate of 1 ml min⁻¹, with mobile phases A and B containing 95:5 H₂O:CH₃CN and 9:1 CH₃CN:H₂O, respectively, as well as 10mM NH₄COOH buffer. Post column eluant was split, allowing 0.1 ml min⁻¹ to enter the ion source for positive ion mass spectrometry (MS) using a LCQ Deca XPMax ion trap (Thermo Electron Corp, San Jose, CA) as previously described (Schmelz et al., 2006). Chemical verification was based on comparing retention times and MS² daughter...
ion spectra mass spectra of synthetic standards against natural products. Quantification was based on extracting \([M+H]^+\) ions from full scan spectra using the following common ion-analyte pairs 1125.5 (ISTD), 1048.5 \((Vu-In^-A)\), 1119.5 \((Vu-In)\), 1248.5 \((Vu-E^+In)\), 1305.5 \((Vu-GE^+In)\), 1147.5 \((Vu-In^AV)\), 1276.5 \((Vu-E^+In^AV)\), and 1333.5 \((Vu-GE^+In^AV)\). A complete list of all amino acid substituted peptides used in this study and analyzed for in insect OS via HPLC-MS is given (Table S1).

Lepidoptera Species Comparison. The OS was collected and pooled from groups of 6 larvae (n=4) for inceptin quantification. Early 6\(^{th}\) instar larvae (n ≥ 48) were removed from diet and isolated for 1 h prior to feeding on leaf discs (65 mm\(^2\)) containing 4.5 nmoles of 19mer-Vu-In. OS was collected and frozen immediately after the larvae consumed at least 50\% of the treated leaf disk and required between 30-120 min depending on the species. With the exception of *A. epsilon*, *O. nubilalis*, and *T. ni*, which utilized either maize (*Zea mays*) or bok choy (*Brassica rapa*) leaves, all other species were fed cowpea leaves. Resulting levels of the four inceptin-related peptides *Vu-In^-A*, *Vu-In*, *Vu-E^+In*, *Vu-GE^+In* were then quantified by LC/MS as described.

Determination of *Vu-In^-A* Inceptin Antagonist Activity. Four paired groups of cowpea leaves (n=4, 32 total) were wounded and treated with either 5 \(\mu\)l H\(_2\)O or *Vu-In^-A* at 0.0045, 0.045, 0.45, and 4.50 pmol leaf\(^-1\). One min later, both leaves in each paired group were treated with a secondary application of *Vu-In* at either 0.0045, 0.045, 0.45, and 4.50 pmol leaf\(^-1\). To access simultaneous application of *Vu-In^-A* and *Vu-In*, all peptide treated leaves (n=4) received 10 \(\mu\)l of H\(_2\)O containing 1 pmol *Vu-In* in the presence of either 0, 1, 2, 4, 8, or 16 pmol of *Vu-In^-A*. A damage plus H\(_2\)O only control group was included. All leaves were excised after 1 h and analyzed for ET production. To examine *Vu-In^-A* antagonism of *Vu-In* activity in the context of leaf metabolites at 4h, a subset of these treatments was re-examined. Cowpea leaves (n=4, 48 total) were wounded and treated with either 5 \(\mu\)l H\(_2\)O or 1 pmol *Vu-In*, *Vu-In + Vu-In^-A* (1:1, 1 pmol leaf\(^-1\) for each peptide), *Vu-In + Vu-In^-A* (1:4 ; 1 and 4 pmol, respectively), or 1 pmol *Vu-In^-A* alone. To address the similarity of *Vu-In^AV* activity to *Vu-In*, leaves were also treated with 1 pmol *Vu-In^AV*. For each of the 6 treatments, one set of leaves (24) was analyzed at 1 h for ET confirmation and the other set (24) at 4 h for JA, SA, CA and DMNT pools.

Screening Activity and Stability of Substituted Inceptins in VBC OS. With the exception of Cys, which would have complicated peptide cyclization, a C-terminal substituted peptide of *Vu-In* library was
first analyzed by LC/MS for purity, normalized for concentration and tested at 10 pmole leaf⁻¹ for E-inducing activity in cowpea. *Vu*-In C-terminal substituted peptides with activity similar to *Vu*-In were then fed to 14 groups of 12 VBC larvae (20 μg leaf⁻¹ disk) and OS was collected 6 h later and pooled for HPLC-MS analysis. To examine VBC proteolytic processing of precursors into inceptin-related peptides, 6 of the more promising *Vu*-In⁺⁶ C-terminal substituted peptides (X= D, N, Q, S, V, Y) were synthesized as 19mers (‘KGEICDINGVCVDXAEDEF’). Similarly, the substituted 19mers were fed to 6 groups of 12 VBC larvae (20 μg leaf⁻¹ disk) and within 1 h of consumption the OS was collected and pooled for HPLC-MS analysis.

Data Analysis. Analyses of variance (ANOVAs) were performed on quantified inceptin-related peptides, phytohormones, leaf tissue metabolites, and volatile emission of DMNT. Significant treatment effects were investigated when the main effects of the ANOVAs were significant (*P* < 0.05). Where appropriate, Tukey tests were used to correct for multiple comparisons between control and treatment groups. Before statistical analysis, all non-percentage data was subjected to square root transformation to compensate for elevated variation associated with larger mean values. The analysis was accomplished with JMP 4.0 statistical discovery software (SAS Institute, Cary, NC).

ACKNOWLEDGEMENTS

We thank J. Meredith, M. Legaspi, R. Harrison, B. Forguson (all at the Center for Medical, Agricultural, and Veterinary Entomology at the United States Department of Agriculture) for greenhouse and technical assistance. We thank A.Y. Chung (University of Florida, Gainesville, FL) for peptide synthesis, R.L. Meagher for encouragement in using of *A. gemmatalis* as an alternative model herbivore, S.S. Walse, S. Christensen and two anonymous reviewers for improving the manuscript.

FIGURE LEGENDS

Figure 1. The legume specialist VBC elicits weaker defense responses than the generalist FAW on cowpea leaves. Average (*n* = 4, +SEM) A, ET production at 1 h and B, DMNT tissue pools 4 h after cowpea leaves were treated as undamaged controls (Con) or damaged and treated with either 5 μls of H₂O (Dam), VBC OS or FAW OS. C, Average (*n* = 7, +SEM) cowpea leaf tissue pools of DMNT 4 h after a single feeding bout by VBC and FAW larvae. D, Average (*n* = 4, +SEM) whole plant cowpea
volatile emission of DMNT during the continuous herbivore feeding damage by 8 early 6th instar VBC and FAW larvae. Different letters (a–c) represent significant differences (All ANOVA P values were < 0.007. Tukey test corrections for multiple comparisons: P < 0.05.)

Figure 2. In contrast with other Lepidopteran pests, VBC OS contains predominantly the inactive inceptin Vu-In-A. HPLC-MS selected [M+H]+ m/z ion trace of inceptin related peptides Vu-In (1119.5) and Vu-In–A (1048.5) in (A) FAW OS and (B) VBC OS following ingestion of the 19mer-Vu-In peptide precursor [*KGEICDINGVCVDAXAEDEF*]. C, Average (n = 4, +SEM) percent active inceptins [(Active=Vu–GE+In + Vu–E+In + Vu–In)/ (Total=Vu–GE+In + Vu–E+In + Vu–In + Vu–In–A)] quantified by HPLC-MS in the larval OS of 8 different Lepidopteran species following ingestion of ≤ 4.5 nmoles of 19mer-Vu-In. Different letters (a–c) represent significant differences (ANOVA P value < 0.0001. Tukey test correction for multiple comparisons: P < 0.05).

Figure 3. Vu-In-A is a natural competitive antagonist of inceptin elicitation. A, Average (n = 4, ±SEM) ET production in damaged cowpea leaves treated first with either H2O (solid line) or Vu-In-A (dashed line) followed by a subsequent treatment 1 min later with Vu-In. Treatments involving both Vu-In-A and Vu-In utilized equivalent paired doses separated by time. B, Average (n = 4, ±SEM) ET production in damaged cowpea leaves treated simultaneously with a fixed amount of Vu-In (1 pmol leaf⁻¹) and increasing levels of Vu-In-A in the mixture. Vu-In ranged from 100 to 5.8 % and included a H2O control (0%). Different letters (a–d) represent significant differences (All ANOVA P values were < 0.0001. Tukey test corrections for multiple comparisons: P < 0.05).

Figure 4. cATPC amino acid substitutions alter inceptin activity and processing in VBC OS. A, Average (n=3, +SEM) ET production in damaged cowpea leaves treated with 5 μls of H2O containing 10 pmoles of C-terminal substituted peptides Vu-InΔX [*ICDINGVCVDAX*]. Capital letters (D through Y) denote the amino acid analogs of Vu-In. B, 11mer-Vu-InΔX peptides recovered from VBC OS (ng 100 μl⁻¹) after ingestion of active C-terminal substituted 11mers Vu-InΔX and (C) 19mer-Vu-InΔX analogs [*KGEICDINGVCVDAXAEDEF*]. Black and white bars represent C-terminal substituted 11mer Vu-InΔX analogs and Vu-In–A, respectively. D, Average (n = 4, +SEM) ET production in undamaged cowpea leaves (Con) or those damaged and treated with either 5 μls of H2O, Vu-In, 19mer-Vu-In or 19mer-Vu-InΔV all at 10 pmol leaf⁻¹. Asterisks (*) represent peptides with ET production significantly lower than
Vu-In (i.e. C-terminal =A). Different letters (a–c) represent significant differences (All ANOVA P values were < 0.0001. Tukey test correction for multiple comparisons: P < 0.05).

Figure 5. An inceptin alanine to valine C-terminal substitution maintains activity and enables the predominant accumulation of active elicitors in VBC OS. A, Dose response of average (n = 4, ±SEM) ET production in damaged cowpea leaves treated with either Vu-In or Vu-InΔV. (B) Average (n = 4, +SEM) percent active inceptins recovered from VBC OS after larvae were fed 4.9 nmoles of either 19mer-Vu-In or 19mer-Vu-InΔV. Different letters (a–b) represent significant differences (t-test, P value < 0.001).

Figure 6. An alanine to valine substitution in cATPC polypeptides recovers induced plant defenses during VBC herbivory. Average (n = 6, +SEM) concentrations of (A) JA, (B) SA, (C) cinnamic acid (CA) and (D) DMNT, 4 h after cowpea leaves experienced a single feeding bout from VBC larvae which had previously ingested cowpea leaf discs containing either H2O, 0.5 nmoles of 19mer-Vu-In (A) or 19mer-Vu-InΔV (V). Similarly, average (n = 6, +SEM) concentrations of (E) JA, (F) SA, (G) CA and (H) DMNT in a repeated experiment using 2.5 nmoles of 19mer-Vu-In (A) or 19mer-Vu-InΔV (V). Within plots, different letters (a–b) represent significant differences. (All ANOVA P values were < 0.015. Tukey test corrections for multiple comparisons: P < 0.05).

Figure 7. Simplified proposed model for generalist activation, specialist suppression, and engineered recovery of inceptin-elicited plant defenses in cowpea. (1A) Fall armyworm (FAW; *Spodoptera frugiperda*) and Velvetbean caterpillar (VBC; *Anticarsia gemmatalis*) larvae consume cowpea leaves and produce the predominant cATPC digestive fragments Vu-In and Vu-InΔA, respectively. (1B) VBC larvae that consume precursor proteins containing an altered cATPCΔV motif produce the active modified inceptin Vu-InΔV. (2) Plants indirectly perceive larval attack when Vu-In and Vu-InΔV peptides re-contact the wounded leaf surface and bind a putative receptor. VBC that contain Vu-InΔA at levels ≥ 66% of the total inceptin-related peptides mediate antagonism of Vu-In activity. As a preliminary hypothesis, Vu-InΔA antagonism potentially occurs at the receptor-ligand level through competition. (3) Dependent upon the proportions of inceptin-related peptides present, multiple signaling pathways can be elicited including the phytohormones jasmonic acid (JA), ethylene (ET), and salicylic acid (SA) or antagonized (ET & SA). (4) Insect OS elicitors drive quantitatively different levels of induced
biochemical defenses such as DMNT that can provide reliable cues to facilitate the attraction of natural enemies.

Supplemental Figure S1. Vu-In\(^\Delta V\) antagonism of inceptin-induced ET at 1 h parallels subsequent observed patterns for SA and DMNT at 4 h. Average (n = 4, +SEM) (A), ET production after 1 h and concentrations of (B) JA, (C) SA, (D) CA and (E) DMNT, 4 h after damaged cowpea leaves were treated with either H\(_2\)O (Dam), Vu-In or Vu-In\(^\Delta V\) (1 pmol leaf\(^{-1}\)). Treatments labeled as ratios consisted of peptide mixtures containing 1 pmol Vu-In with either 1 (1:1) or 4 pmol Vu-In\(^\Delta V\) (1:4). For all metabolites measured, Vu-In\(^\Delta V\) matches natural Vu-In activity. Average (n = 4, +SEM) (F), ET production after 1 h and concentrations of (G) JA, (H) SA, (I) CA and (J) DMNT, 4 h after damaged cowpea leaves were treated with Vu-In\(^\Delta V\) (1 pmol leaf\(^{-1}\)). Within each metabolite, different letters (a– c) represent significant differences (All ANOVA P values were < 0.0005. Tukey test corrections for multiple comparisons: P < 0.05).

Supplemental Table S1. Native and modified inceptin-related peptides used for ethylene bioassays, larval feeding studies and HPLC-MS based quantification.

LITERATURE CITED

Adler LS, Schmitt J, Bowers MD (1995) Genetic variation in defensive chemistry in *Plantago lanceolata* (Plantaginaceae) and its effect on the specialist herbivore *Junonia coenia* (Nymphalidae). *Oecologia* 101: 75-85

Agrawal AA, Kurashige NS (2003) A role for isothiocyanates in plant resistance against the specialist herbivore *Pieris rapae*. *J Chem Ecol* 29: 1403-1415

Alborn HT, Brennan MM, Tumlinson JH (2003) Differential activity and degradation of plant volatile elicitors in regurgitant of tobacco hornworm (*Manduca sexta*) larvae. *J Chem Ecol* 29: 1357-1372

Alborn HT, Turlings TCJ, Jones TH, Stenhagen G, Loughrin JH, Tumlinson JH (1997) An elicitor of plant volatiles from beet armyworm oral secretion. *Science* 276: 945-949

Ali JG, Agrawal AA (2012) Specialist versus generalist insect herbivores and plant defense. *Trends Plant Sci* 17: 293-302

Bent AF, Mackey D (2007) Elicitors, effectors, and R genes: The new paradigm and a lifetime supply of questions. *Ann Rev Phytopath* 45: 399-436
Berenbaum MR (2002) Postgenomic chemical ecology: From genetic code to ecological interactions. J Chem Ecol 28: 873-896
Boissot N, Thomas S, Sauvion N, Marchal C, Pavis C, Dogimont C (2010) Mapping and validation of QTLs for resistance to aphids and whiteflies in melon. Theor Appl Gen 121: 9-20
Bonaventure G, VanDoorn A, Baldwin IT (2011) Herbivore-associated elicitors: FAC signaling and metabolism. Trend Plant Sci 16: 299-309
Buschman LL, Whitcomb WH, Neal TM, Mays DL (1977) Winter survival and hosts of Velvetbean caterpillar in Florida. Florida Ent 60: 267-273
Carroll MJ, Schmelz EA, Teal PEA (2008) The attraction of Spodoptera frugiperda neonates to cowpea seedlings is mediated by volatiles induced by conspecific herbivory and the elicitor inceptin. J Chem Ecol 34: 291-300
Cohen MB, Schuler MA, Berenbaum MR (1992) A host-inducible cytochrome P450 from a host-specific caterpillar molecular cloning and evolution. Proc Natl Acad Sci USA 89: 10920-10924
De Moraes CM, Lewis WJ, Pare PW, Alborn HT, Tumlinson JH (1998) Herbivore-infested plants selectively attract parasitoids. Nature 393: 570-573
De Moraes CM, Mescher MC (2004) Biochemical crypsis in the avoidance of natural enemies by an insect herbivore. Proc Natl Acad Sci USA 101: 8993-8997
Diezel C, von Dahl CC, Gaquerel E, Baldwin IT (2009) Different Lepidopteran elicitors account for cross-talk in herbivory-induced phytohormone signaling. Plant Physiol 150: 1576-1586
Felix G, Duran JD, Volko S, Boller T (1999) Plants have a sensitive perception system for the most conserved domain of bacterial flagellin. Plant J 18: 265-276
Goggin FL, Williamson VM, Ullman DE (2001) Variability in the response of Macrosiphum euphorbiae and Myzus persicae (Hemiptera: Aphididae) to the tomato resistance gene Mi. Environ Ent 30: 101-106
Gouinguene S, Pickett JA, Wadhams LJ, Birkett MA, Turlings TCJ (2005) Antennal electrophysiological responses of three parasitic wasps to caterpillar-induced volatiles from maize (Zea mays mays), cotton (Gossypium herbaceum), and cowpea (Vigna unguiculata). J Chem Ecol 31: 1023-1038
Hawksworth DL Kalin-Arroyo MT (1995) Magnitude and distribution of biodiversity. In ed. VH Heywood, RT Watson, eds, Global Biodiversity Assessment, United Nations Environment Program and Cambridge University Press, Cambridge, UK, pp 107-191.
Hightower KE, McCarty RE (1996) Proteolytic cleavage within a regulatory region of the gamma subunit of chloroplast coupling factor 1. Biochemistry 35: 4846-4851
Hogenhout SA, Van der Hoorn RAL, Terauchi R, Kamoun S (2009) Emerging concepts in effector biology of plant-associated organisms. MPMI 22: 115-122
Horton DA, Bourne GT, Smythe ML (2002) Exploring privileged structures: the combinatorial synthesis of cyclic peptides. Mol Divers 5: 289-304
Howe GA, Jander G (2008) Plant immunity to insect herbivores. Ann Rev Plant Bio 59: 41-66
Jones JDG, Dangl JL (2006) The plant immune system. Nature 444: 323-329
Kahl J, Siemens DH, Aerts RJ, Gabler R, Kuhnemann F, Preston CA, Baldwin IT (2000) Herbivore-induced ethylene suppresses a direct defense but not a putative indirect defense against an adapted herbivore. Planta 210: 336-342
Kappers IF, Aharoni A, van Herpen T, Luckerhoff LLP, Dicke M, Bouwmeester HJ (2005) Genetic engineering of terpenoid metabolism attracts, bodyguards to Arabidopsis. Science 309: 2070-2072
Lacombe S, Rougon-Cardoso A, Sherwood E, Peeters N, Dahlbeck D, van Esse HP, Smoker M, Rallapalli G, Thomma BPHJ, Staskawicz B, Jones JDG and Zipfel C (2010) Inter-family transfer of a plant pattern recognition receptor confers broad-spectrum bacterial resistance. Nature Biotechnology, 4:365-369.

Luginbill P (1928) The Fall armyworm. USDA Technical Bulletin 34. 91 pp.

Meindl T, Boller T, Felix G (1998) The plant wound hormone systemin binds with the N-terminal part to its receptor but needs the C-terminal part to activate it. Plant Cell 10: 1561-1570

Meindl T, Boller T, Felix G (2000) The bacterial elicitor flagellin activates its receptor in tomato cells according to the address-message concept. Plant Cell 12: 1783-1794

Millet YA, Danna CH, Clay NK, Songnuan W, Simon MD, Werck-Reichhart D, Ausubel FM (2010) Innate immune responses activated in Arabidopsis roots by Microbe-Associated Molecular Patterns. Plant Cell 22: 973-990

Musser RO, Hum-Musser SM, Eichenseer H, Peiffer M, Ervin G, Murphy JB, Felton GW (2002) Herbivory: Caterpillar saliva beats plant defences - A new weapon emerges in the evolutionary arms race between plants and herbivores. Nature 416: 599-600

Mutti NS, Louis J, Pappan LK, Pappan K, Begum K, Chen MS, Park Y, Dittmer N, Marshall J, Reese JC, Reeck GR (2008) A protein from the salivary glands of the pea aphid, Acrithosiphon pismum, is essential in feeding on a host plant. Proc Natl Acad Sci USA 105: 9965-9969

Nyman T, Julkunen-Tiitto R (2000) Manipulation of the phenolic chemistry of willows by gall-inducing sawflies. Proc Natl Acad Sci USA 97: 13184-13187

Oliveira MGA, De Simone SG, Xavier LP, Guedes RNC (2005) Partial purification and characterization of digestive trypsin-like proteases from the velvet bean caterpillar, Anticarsia gemmatalis. Comp Biochem Physiol B-Biochem Mol Biol 140: 369-380

Pearce G, Johnson S, Ryan CA (1993) Structure-activity of deleted and substituted systemin, an 18-amino acid polypeptide inducer of plant defensive genes. J Biol Chem 268: 212-216

Pearce G, Strydom D, Johnson S, Ryan CA (1991) A polypeptide from tomato leaves induces wound-inducible proteinase-inhibitor proteins. Science 253: 895-898

Piubelli GC, Hoffmann-Campo CB, Moscardi F, Miyakubo SH, De Oliveira MCN (2005) Are chemical compounds important for soybean resistance to Anticarsia gemmatalis? J Chem Ecol 31: 1509-1525

Pohnert G, Jung V, Haukioja E, Lempa K, Boland W (1999) New fatty acid amides from regurgitant of lepidopteran (Noctuidae, Geometridae) caterpillars. Tetrahedron 55: 11275-11280

Poreba M, Drag M (2010) Current strategies for probing substrate specificity of proteases. Curr Med Chem 17:3968-3995

Price PW (2002) Resource-driven terrestrial interaction webs. Ecol Res 17: 241-247

Roda A, Halitschke R, Steppuhn A, Baldwin IT (2004) Individual variability in herbivore-specific elicitors from the plant's perspective. Mol Ecol 13: 2421-2433

Rossi M, Goggin FL, Milligan SB, Kaloshian I, Ullman DE, Williamson VM (1998) The nematode resistance gene Mi of tomato confers resistance against the potato aphid. Proc Natl Acad Sci USA 95: 9750-9754

Schmelz EA, Carroll MJ, LeCler S, Phipps SM, Meredith J, Chourey PS, Alborn HT, Teal PEA (2006) Fragments of ATP synthase mediate plant perception of insect attack. Proc Natl Acad Sci USA 103: 8894-8899

Schmelz EA, Engelberth J, Alborn HT, Tumlinson JH, Teal PEA (2009) Phytohormone-based activity mapping of insect herbivore-produced elicitors. Proc Natl Acad Sci USA 106: 653-657
Schmelz EA, Engelberth J, Tumlinson JH, Block A, Alborn HT (2004) The use of vapor phase extraction in metabolic profiling of phytohormones and other metabolites. Plant J 39: 790-808

Schmelz EA, LeClere S, Carroll MJ, Alborn HT, Teal PEA (2007) Cowpea chloroplastic ATP synthase is the source of multiple plant defense elicitors during insect herbivory. Plant Physiol 144: 793-805

Soo Hoo CR, Coudriet DL, Vail PV (1984) Trichoplusia ni (Lepidoptera: Noctuidae) larval development on wild and cultivated plants. Environ Ent 13: 843-846

Sun WX, Dunning FM, Pfund C, Weingarten R, Bent AF (2006) Within-species flagellin polymorphism in Xanthomonas campestris pv campestris and its impact on elicitation of Arabidopsis FLAGELLIN SENSING2-dependent defenses. Plant Cell 18: 764-779

Turlings TCJ, Bernasconi M, Bertossa R, Bigler F, Caloz G, Dorn S (1998) The induction of volatile emissions in maize by three herbivore species with different feeding habits: possible consequences for their natural enemies. Biol Control 11: 122-129

Visotto LE, Oliveira MGA, Ribon AOB, Mares-Guia TR, Guedes RNC (2009) Characterization and identification of proteolytic bacteria from the gut of the velvetbean caterpillar (Lepidoptera: Noctuidae). Environ Ento 38: 1078-1085

Voelckel C, Baldwin IT (2004) Generalist and specialist lepidopteran larvae elicit different transcriptional responses in Nicotiana attenuata, which correlate with larval FAC profiles. Ecol Lett 7: 770-775

Will T, Tjallingii WF, Thonnessen A, van Bel AJE (2007) Molecular sabotage of plant defense by aphid saliva. Proc Natl Acad Sci USA 104: 10536-10541

Wittstock U, Agerbirk N, Stauber EJ, Olsen CE, Hippler M, Mitchell-Olds T, Gershenson J, Vogel H (2004) Successful herbivore attack due to metabolic diversion of a plant chemical defense. Proc Natl Acad Sci USA 101: 4859-4864

Zalucki MP, Brower LP, Alonso A (2001) Detrimental effects of latex and cardiac glycosides on survival and growth of first-instar monarch butterfly larvae Danaus plexippus feeding on the sandhill milkweed Asclepias humistrata. Ecol Ento 26: 212-224

Zarate SI, Kempema LA, Walling LL (2007) Silverleaf whitefly induces salicylic acid defenses and suppresses effectual jasmonic acid defenses. Plant Physiol 143: 866-875

Zhou JM, Chai J (2008) Plant pathogenic bacterial type III effectors subdue host responses. Curr Opin Microbiol 11: 179-185

Zipfel C, Robatzek S, Navarro L, Oakeley EJ, Jones JDG, Felix G, Boller T (2004) Bacterial disease resistance in Arabidopsis through flagellin perception. Nature 428: 764-767
Fig. 1

A

ET (nl g\(^{-1}\) hr\(^{-1}\))

	Con	Dam	VBC oral secretion	FAW
	a	b	c	

B

DMNT (μg g\(^{-1}\) FW)

	Con	Dam	VBC oral secretion	FAW
	a	b	c	

C

DMNT (μg g\(^{-1}\) FW)

	VBC	FAW
	a	b

D

	VBC	FAW
	a	b
Lepidoptera species

- Anticarsia gemmatalis
- Trichoplusia ni
- Heliothis virescens
- Pseudoplusia includens
- Spodoptera frugiperda
- Agrotis ipsilon
- Spodoptera exigua
- Ostrinia nubilalis
- Helicoverpa zea

Percent Active Inceptins (of total inceptin-related peptides)

Percent Active Inceptins	A	B
Relative Abundance (m/z)		
Time (min)	7	8
Vu-In		
Vu-In-A		
100		
80		
60		
40		
20		
0		

Fig. 2
Fig. 3

A. Inceptin-related peptides (fmol leaf\(^{-1}\)) vs. ET (nl g\(^{-1}\) hr\(^{-1}\)).

B. Percent \(Vu-In\) (of total \(Vu-In + Vu-In^-A\)) vs. Percent \(Vu-In\).

Legend:
- a, b, c, d indicate statistically significant differences.
Fig. 4

A) C-terminal substituted 11mer-\textit{Vu-}\textit{In}^{AX}

B) Substituted 11mer-\textit{Vu-}\textit{In}^{AX} provided to VBC

C) Substituted 19mer-\textit{Vu-}\textit{In}^{AX} provided to VBC

D) ET (nl g^{-1} hr^{-1})

Amino acid substitutions (1-letter code)

VBC OS peptides recovered (ng 100 μl^{-1})

Fig. 4

A) C-terminal substituted 11mer-\textit{Vu-}\textit{In}^{AX}

B) Substituted 11mer-\textit{Vu-}\textit{In}^{AX} provided to VBC

C) Substituted 19mer-\textit{Vu-}\textit{In}^{AX} provided to VBC

D) ET (nl g^{-1} hr^{-1})

Amino acid substitutions (1-letter code)

VBC OS peptides recovered (ng 100 μl^{-1})
Fig. 5

A

![Graph showing ET (nl g⁻¹ hr⁻¹) vs. peptides (fmol leaf⁻¹)]

- **Vu-In**
- **Vu-In³⁴⁷**

B

![Bar graph showing % Active Inceptins in VBC OS](Vu-In³⁴⁷)

- **A**
- **V**

19mer precursor
Previous VBC leaf disc diet treatments (nmoles 19mer-VU-1n-ΔX)

Fig. 6
