Protocol for a pilot randomised controlled trial evaluating feasibility and acceptability of cognitive remediation group therapy compared with mutual aid group therapy for people ageing with HIV-associated neurocognitive disorder (HAND) in Toronto, Canada

Andrew David Eaton,1 Sharon L Walmsley,2 Shelley L Craig,1 Sean B Rourke,3 Teresa Sota,3 John W McCullagh,4 Barbara A Fallon1

ABSTRACT

Introduction HIV-associated neurocognitive disorder (HAND) may affect 30%–50% of people ageing with HIV. HAND may increase stress and anxiety, and impede coping. Psychosocial group therapy may ameliorate HAND’s symptoms, yet the ideal intervention is unclear. This protocol outlines a pilot randomised controlled trial (RCT)—designed using community-based participatory research—to pilot cognitive remediation group therapy (CRGT) against an active comparator.

Methods and analysis This is a pilot, parallel design, two-arm RCT that will recruit participants diagnosed with the mild neurocognitive disorder form of HAND from a neurobehavioural research unit at a tertiary care hospital in Toronto, Canada. Eligibility criteria include age ≥40 years, known HIV status for 5+ years, English fluency, able to consent and able to attend 8 weeks of group therapy. Eligible participants will be randomised to one of two treatment arms, each consisting of eight-session group interventions delivered once weekly at 3 hours per session. Arm 1 (novel) is CRGT, combining mindfulness-based stress reduction with brain training activities. Arm 2 (active control) is mutual aid group therapy. The primary outcomes are feasibility, measured by proportions of recruitment and completion, and acceptability, determined by a satisfaction questionnaire. The secondary outcome is intervention fidelity, where content analysis will be used to assess facilitator session reports. A between-group analysis will be conducted on exploratory outcomes of stress, anxiety, coping and use of intervention activities that will be collected at three time points.

Ethics and dissemination Ethical approval was obtained from the Research Ethics Boards of St. Michael’s Hospital and the University of Toronto. Findings will be disseminated through peer-reviewed publications, conference presentations and community reporting. This study could provide insight into design (eg, recruitment, measures) and intervention considerations (eg, structure, content) for a larger trial to lessen the burden of cognitive decline among people ageing with HIV.

Trial registration number NCT03483740; Pre-results

Strengths and limitations of this study

- Patient and public involvement was prioritised in this protocol as people ageing with HIV co-designed the study, will deliver the interventions and will be involved in analysis and dissemination of results.
- There are a lack of proven interventions to address the stress and anxiety caused by HIV-associated neurocognitive disorder.
- Interventions for complex comorbidities need to be pilot tested to ensure feasibility and acceptability before conducting a large-scale trial.
- This protocol’s active design permits comparison between two distinct interventions, as evaluations of psychosocial trials are often limited by inactive controls.
- The key limitations of this protocol are a small target sample, lack of participant blinding, a single recruiting site, restriction to anglophones, lack of long-term follow-up, potential confounders (eg, stage of HIV, concurrent comorbidities, depression), requirement to know how to use a tablet and the internet for brain training activities, and the ability to commit to 8 weekly 3-hour group therapy sessions.

INTRODUCTION

Background and rationale

Cognitive impairment is a significant comorbidity for people ageing with HIV; 30%–50% may be affected to some degree.
by HIV-associated neurocognitive disorder (HAND).1–3
HAND is thought to result from structural damage to
fronto-striatal-thalamatory circuits in the brain (neural
pathways that mediate cognitive, motor and behavioural
functions); hence, there is no cure.3–8 HAND is diag-
nosed in three categories of graded severity based on
the Frascati criteria determined by the CNS HIV Antiretro-
viral Therapy Effects Research (CHARTER) cohort study
of people ageing with HIV and neurological challenges.5,4
The Frascati categories (with estimated prevalence from
CHARTER in parentheses) are (1) asymptomatic neurocog-
nitive impairment (ANI: 33%); (2) mild neurocognitive
disorder (MND: 12%–20%); and (c) HIV-associated
dementia (HAD: <2%–3%).4 These categorisations are
determined by neuropsychological testing of the degree
of abnormality in cognitive domains (eg, speed-of-
processing, executive functioning) and by level of impair-
ment to activities of daily living.4,5 Without effective HIV
medication, people living with HIV may rapidly pro-
gress through these stages, demonstrated by high rates of
the most severe form (HAD) prior to the introduction
of successful combination antiretroviral therapy (cART)
regimens.3,5 HAND may be a result of uncontrolled
HIV replication in the brain.1–3 The development and
widespread use of modern cART, and the trend towards
earlier treatment initiation, has reduced HAND’s severity
and its consequences; however, it remains a significantly
debilitating issue.3,9,10 It is seen more commonly and is
of particular concern, in AIDS survivors—people ageing
with HIV who were treated with incompletely suppress-
ive antiretroviral regimens and with medications that
had higher rates of mitochondrial toxicity, often late in
disease such as after an AIDS defining illness or when
the immune system was very weak.3–8 The shift in pres-
ence from severe to moderate HAND, and the higher
risk among AIDS survivors, may suggest that uncontrolled
replication of HIV in the brain is causative, and that there
is less opportunity for replication when effective treat-
ment is initiated early.3,5

HAND symptoms include memory deficits, problem-
solving errors, difficulties in processing new infor-
mation, executive function impairment and poor
decision-making.3,4,8 This, in turn, leads to stress, anxiety,
social isolation, difficult coping and impacts daily activi-
ties (eg, medication adherence).11–13 HAND differs from
Alzheimer’s disease and other cognitive impairments in
numerous clinical areas.2 Perhaps the most distinguishing
characteristic is that people living with HIV are at similar
risk of mild HAND in their 40s and 50s as the general
population is at risk of mild dementia in their geriatric
years.10,11 With cognitive decline from normal ageing and
other syndromic factors (eg, intersecting HIV and ageing
comorbidities), HAND symptoms are amplified and fur-
ther impair the ageing HIV-infected adult’s ability to
cope.13 With the earlier age of impairment and syndemic
factors associated with HIV, HAND may be a condition
in need of specific psychosocial intervention distinct
from what is currently being tested in geriatric adults
with dementia.12,14 Yet despite exploratory research on
the unique challenges of HAND and a stated community
need,11,12,15–17 HAND intervention research in the era of
modern cART is limited and the optimal intervention is
unclear.13,14

Psychosocial factors (ie, social networks, mood) have
predicted the ability to cope with HAND symptoms among
people with varying levels of cognitive impairment and
among diverse demographics (ie, gender, age, education
and ethnicity),18 so interventions that improve psycho-
social factors may enhance coping with HAND symp-
toms. Mindfulness-based stress reduction (MBSR) group
therapy has decreased stress and anxiety, and improved
coping for people with dementia.19 Computerised brain
training activities (BTAs) have had similar benefit in
middle-aged and older adults with HAND, but partici-
pants have requested emotional support (such as MBSR)
to complement BTA.20 In the general population with
dementia, a systematic review synthesis found that these
group-based, multicomponent strategies improve global
cognitive functioning and activities of daily living to a
greater extent than a single-component therapy.21 Similar
evidence for people living with HIV is still emerging;
however, a recent scoping review found that combina-
tion approaches (ie, mindfulness, cognitive training tech-
niques and group therapy) to psychosocial interventions
may have better health outcomes for people living with
HIV than a single technique approach.22 People with the
emotional stability and practical coping strategies can
more successfully adapt to the challenges of ageing, such
as cognitive decline.23–25 Combination approaches that
facilitate emotional well-being (ie, MBSR) and practical
tasks to improve coping with cognitive impairments (ie,
BTA) may therefore be better suited to ameliorating the
effects of HAND for people ageing with HIV than a single
therapy approach.

Using community-based participatory research to
engage people ageing with HIV and HAND researchers,
this study will pilot cognitive remediation group therapy
(CRGT)—combining MBSR and BTA—in a pilot
randomised controlled trial (RCT) of feasibility and
acceptability. CRGT will be against an active control—
moral aid group therapy—chosen as an established
intervention in both the HIV26 and dementia27 fields
that mimics the form (ie, support group) of CRGT while
controlling for the inherent benefit (ie, social connec-
tion) of group therapy.28

Objectives

The primary objective of this pilot RCT is to test CRGT
for a sample of people ageing with HIV who have been
diagnosed with mild-to-moderate HAND (ie, MND), and
to compare feasibility and acceptability outcomes against
an active control of mutual aid group therapy. The
secondary objective is to assess implementation fidelity
of both trial arms. Exploratory objectives are to compare
stress, anxiety, coping and use of mindfulness and brain
training activities.
Trial design

This is a pilot, parallel group design RCT that will recruit people ageing with HIV (≥40 years old) who have been diagnosed with MND-HAND since 1 January 2016 from a neurobehavioural research unit in Toronto, Canada. The trial uses a refinement framework to assess, in a preliminary sense, whether therapy of this nature is feasible and acceptable to this population. The recruited sample (target n = 12–16) will be randomised to either 8 weekly 3-hour sessions of CRGT or 8 weekly 3-hour sessions of mutual aid group therapy.

METHODS: PARTICIPANTS, INTERVENTIONS AND OUTCOMES

Study setting

Participants will be recruited from St. Michael’s Hospital’s Neurobehavioral Research Unit, a clinic dedicated to HAND assessment in downtown Toronto, Canada. This clinic uses Frascati criteria to assess cognitive impairment via neuropsychological testing conducted by two psychologists. The intervention arms will be at community-based organisations in downtown Toronto, Canada. The novel CRGT arm will be at the Centre for Mindfulness Studies, a facility that owns the necessary equipment for MBSR (eg, yoga mats). The control mutual aid arm will be at the AIDS Committee of Toronto (ACT), who have been offering mutual aid groups for people living with HIV for over 20 years.

Patient and public involvement

Community-based participatory research (CBPR) and implementation science guided an approach to engage people ageing with HIV and affected by HAND, alongside service providers and HAND researchers, as the protocol was being developed. First, an exploratory CBPR study surveyed (n = 108) and interviewed (n = 20) people ageing with HIV in Ontario; approximately one-eighth of participants had been diagnosed with HAND and the entirety of the sample self-identified recently reduced function and ability in more than one cognitive domain (eg, memory, speed-of-processing). The purpose of this initial study was to determine the direction for psychosocial interventions in HIV and cognition, with a focus on social work due to the profession’s history of effective engagement with people living with HIV. The initial study also sought to understand the impacts of peer service provision and peer research from people affected by HAND themselves. The results of this study suggested that a cognitive remediation intervention, combining emotional and practical coping skills training in a group setting, may help people living with HAND manage their symptoms and improve their well-being.

Second, the first author conducted key informant interviews with six HAND researchers from Canada, the USA, Spain and Australia. These discussions focused on design considerations for intervention research, an example of which is BTA. BTA, comprised of online and offline games and activities targeted for cognition, shows promise in helping people with cognitive impairment improve their function at specific tasks and activities (eg, remembering sequences, responding quickly) through repeated practise. BTA has predominantly been administered as an individual activity, such as software installed on a person’s home computer with clinic follow-up on progress. This may contribute to relatively low uptake of BTA as a promising intervention technique.

Third, the first and sixth authors held two focus groups in downtown Toronto: one with people ageing with HIV and concerned about HAND (n = 10) and one of social workers in the HIV field (n = 8). These consultations were conducted to finalise trial components, including intervention selection, appropriate questionnaires and a sensitive method of data collection. These activities supported CBPR’s aim of co-constructing new interventions with people most affected by the issue under study, and implementation science’s recommendation of preliminary consultation to improve the potential for scale up should the study determine promising results.

Eligibility criteria

Inclusion criteria: People who (1) are aged ≥40 years; (2) have a documented HAND diagnosis of MND; (3) were diagnosed with HIV ≥5 years ago; (4) provided consent to St. Michael’s Hospital to be contacted for future research studies; and (5) could feasibly attend 8 weeks of group therapy in downtown Toronto. Exclusion criteria: Participants who (1) have a documented HAND diagnosis of ANI or HAD; (2) have been hospitalised in the past month; (3) are unable to communicate in English; (4) are unable to use a tablet for BTA; or (5) are assessed by the research coordinator to be disruptive to a group therapy setting (eg, due to discriminatory remarks). Justification: MND is chosen instead of ANI or HAD due to the potential for unacceptably high false-positive error rates in ANI and the potential null effect from psychosocial interventions for people with HAD. As the two arms will address HAND and not HIV, a limit of ≥5 years since HIV diagnosis is set to mitigate the risk that some participants may want to discuss issues associated with a recent HIV diagnosis instead of issues associated with HAND. Forty years of age is chosen as the lower limit as it is approximately 1 SD below the mean of MND diagnosis in the CHARTER cohort and at the recruiting clinic. Therefore, 40 years of age may be an appropriate lower limit for a study of this nature so that participants can still bond over the shared experience of ageing with HIV while being inclusive of the age range of people most likely to be diagnosed with HAND. Other criteria were set in accordance with the study’s context. For example, recent hospitalisation could suggest poor health and could bar participation in an 8-week group. There are no eligibility criteria for viral load, other comorbidities, and alcohol and substance use.
Interventions

Both interventions consist of nine, 3-hour weekly sessions (an orientation session and eight group sessions) and will be at community-based organisations in downtown Toronto, Canada.

Cognitive remediation group therapy (novel arm)

CRGT is a blend of two emerging interventions—MBSR and BTAs—that will be combined for the first time for people with HAND in this study. MBSR will comprise two-thirds of each weekly session and will be facilitated by a physician and a social worker using the MBSR manual that includes meditation, body scans, deep breathing and other exercises to relieve stress and regulate emotions.37 BTA will comprise the remaining one-third of each group session and will be facilitated by a peer ageing with HIV. Participants will have access to Samsung tablets and a 1-year license to BrainHQ training by PositScience. BrainHQ tailors training (ie, games) to participant’s deficit domains (eg, speed-of-processing, memory) via a screening exercise and then offers activities of increasing difficulty. If people practise for a minimum of 3 hours per week for 8 weeks, they may self-report a positive change in coping.33 As this may be the first time BTA is offered in a group setting, the peer facilitator will use a participatory approach by soliciting participants’ input on how to structure sessions (eg, individual practice, group discussion on training progress and challenges, or some combination).

Mutual aid group therapy (control arm)

Mutual aid groups consist of facilitated discussion of challenges and coping strategies associated with an illness or issue.28 Mutual aid groups may be the most recognisable form of group therapy, as Alcoholics Anonymous has popularised the model.38 These groups use the principle that people can help one another overcome their health and social challenges when trained facilitators—often social workers—help the group maintain respect, stay on topic and explicate connection and shared experience between participants.39 For this study, mutual aid will be facilitated by a social worker and a peer ageing with HIV. Refer to supplementary file 1 for the facilitators’ manual of this model.

Discontinuation criteria

Participants may cancel their participation at any time. Intervention arms will be discontinued if, due to cancellations, the total number of participants registered to an arm is three or less.

Protocol adherence strategies

The study sponsor has access to the participant database and will monitor the timeline of protocol procedures. Facilitators of each intervention arm will submit weekly session reports that will be checked to ensure that interventions are progressing as designed.

Concomitant care and interventions

Co-enrolment in another HAND or mindfulness treatment study is not permitted.

Outcomes

Outcomes and measures are listed in table 1. As a pilot study, feasibility and acceptability are primary outcomes to assess whether a larger trial could further test group therapy for people with HAND. Intervention fidelity (ie, how closely the facilitators adhere to each arm’s therapy model) is a secondary outcome to assess whether the interventions are delivered as planned. Exploratory outcomes of stress, anxiety, coping and use of brain training and mindfulness activities will also be assessed.

Participant timeline

The study started on 6 August 2018 and is expected to end by 31 December 2019. Refer to table 2 for the schedule of events. The timeline consists of three distinct periods: (1) screening, where eligibility will be confirmed, the research coordinator will obtain consent and participants will complete baseline questionnaires; (2) study, where intervention arms will be administered; (3) and follow-up, where participants complete questionnaires at the interventions’ conclusion and a 3-month follow-up.

Sample size

A sample size of 12–16 participants (6–8 in each study arm) has been selected as (1) 6–8 participants have been found to be an ideal size for 8 weeks of group therapy40; and (2) this number can provide preliminary insight into the feasibility and acceptability of the novel CRGT arm before initiating a larger study. Further, 12–16 participants are 30% to 40% of the sampling frame (n=40). So, if this pilot’s results prove promising, scale-up to a larger study with similar recruitment proportions would feasibly require a sample of 90–120 from approximately 300 potential participants.

Recruitment

A clinical psychologist from the recruiting site will attempt to contact all participants in the sampling frame (n=40) at their last known phone number and email. Three distinct contact attempts will be made for each individual. This contact will briefly explain the study and determine whether a participant elects to meet with the study coordinator to confirm eligibility and review the consent form.

METHODS: ASSIGNMENT OF INTERVENTIONS

Allocation

Concealed allocation will be used for this study. The first author will provide the study sponsor with unique identifiers of each enrolled participant. The sponsor will then randomise participants in a 1:1 fashion using blocks of size two to either the novel or control arm. Individual allocation results will then be communicated to each participant.
concerns. The limitations to this approach and mitigating strategies will be discussed in the results paper.

Table 1 Outcomes and measures

Outcomes	Measures	Description
Feasibility	Participant recruitment and retention	Proportion of eligible participants who agree to participate, complete the pretest, attend the first group session, complete the full group series and complete the study
	Chart abstraction of participant demographics	The sampling frame’s demographics (ie, age, gender, ethnicity, length of time living with HIV, length of HAND diagnosis) will be described in terms of those who agree and decline to participate
Acceptability	Helping characteristics of self-help and support groups measure61	22-item Likert measure where higher scores indicate greater group satisfaction, administered in sessions four and eight of each arm
	Reasons for withdrawal (if applicable)	If participants withdraw from the study, they will be asked if they consent to having the reason for withdrawal described
Intervention fidelity	Facilitators’ session reports	Facilitators will submit weekly session reports that will include checklists of therapy components and open-ended questions about group activities, dynamics and challenges
Stress	HIV/AIDS Stress Scale52	29-item Likert measure where higher scores indicate greater HIV-related stress
Anxiety	Anxiety in Cognitive Impairment and Dementia Scale53	26-item dyadic measure where higher scores indicate greater cognition-related anxiety
Coping	Coping Self-Efficacy Scale of Health Problems54	10-item Likert measure where higher scores indicate greater coping with health problems
Use of mindfulness strategies	Five Facet Mindfulness Questionnaire—Short Form55	24-item Likert measure where higher scores indicate greater use of mindfulness strategies
Use of brain training activities	Novel arm—PositScience progress reports	The brain training software provided to participants in the novel arm tracks their activity. For the control arm, participants will self-report use of brain training activities

Blinding

Facilitators of the study arms will be blind to outcome assessments; otherwise, this study is not blinded. Blinding participants to psychosocial trials is difficult, as participants are actively involved in their therapy.41 Blinding of this nature often requires deception, which raises ethical concerns.42 The limitations to this approach and mitigating strategies will be discussed in the results paper.

METHODS: DATA COLLECTION, MANAGEMENT AND ANALYSIS

Data collection methods

Demographics will be abstracted from participant charts at the recruiting site. A research coordinator will collect self-reported data for exploratory outcomes from participants at three times (baseline, postintervention and 3-month follow-up). Further, the coordinator will collect acceptability data via a questionnaire at the midpoint and endpoint of the interventions. Group facilitators will write structured session reports to be submitted weekly following each group session. Refer to supplementary file 2 for consent and data collection forms.

Participant retention plans

To promote participant retention in group sessions, the study coordinator will send weekly reminders to participants. To promote completion of questionnaires, three distinct contact attempts will be made to schedule study visits. If a participant withdraws from the study, the coordinator will ask for permission to report the reason for withdrawal.

Data management

All data collected will be labelled with a unique identifier for each participant. The study coordinator will enter data into REDCap (Research Electronic Data Capture), a browser-based database; these data will be verified by the principal investigator.

Analysis

The stakeholders (people ageing with HIV, service providers and researchers) who provided initial consultation to study design will reconvene to collectively analyse the de-identified results, to inform the design of a larger study of group therapy for people ageing with HIV who are experiencing cognitive challenges. For intervention fidelity, content analysis will be performed by two independent coders familiar with the models of group therapy.43 With a small target sample, analysis of the exploratory outcomes will be limited. With a Kenward-Roger adjustment for small sample size (ie, scaling F by factor λ and determining denominator df for an approximate expectation and variance of a F_{λ} distribution)44 to the covariance matrix, a between-group treatment effect may...
be detected while minimising false-positive error risk in these exploratory outcomes.45

SAFETY CONSIDERATIONS

Group therapy poses risk of psychological and social distress when participants feel uncomfortable discussing sensitive concerns and when they believe their confidentiality may be jeopardised. To mitigate these potential risks, the nature of a group setting and the limits of confidentiality will be discussed with participants at the consent stage. Facilitators will also meet with participants individually in an orientation meeting prior to the group’s commencement to discuss norms and guidelines for group behaviour. Additionally, participants may withdraw their participation at any time, without any impact on their current standard of care. Further services and resources will be provided to participants who withdraw. Conducting the intervention arms at community-based sites that currently offer other types of support services to people living with HIV (such as counselling) may provide an opportunity for participants to access additional supports if necessary.

ETHICS AND DISSEMINATION

The study sponsor will monitor the trial and audit the data at their discretion. Consent forms and data will be stored separately on secure, encrypted servers for 7 years following study completion. The study protocol and
consent form have been approved by the Research Ethics Boards of St. Michael’s Hospital (No. 17-334) and the University of Toronto (No. 35860). The trial was registered on clinicaltrials.gov (No. NCT03483740) before recruitment commenced. Protocol amendments, if applicable, will be communicated to the study sponsor, ethics boards and registry prior to implementation. Outputs from this study will include journal publications, conference presentations and community reporting. Outputs will not identify participants.

DISCUSSION

This pilot RCT may provide preliminary insight into how the novel CRGT as a combination intervention (ie, MBSR, BTA and group therapy) compares with the mutual aid standard of group therapy that comprises the active control. The community-based approach may also provide insight into how patient and public involvement can inform the design and analysis of psychosocial intervention trials, with implications for other social researchers seeking to design rigorous and community-informed intervention studies of a similar nature.

CRGT may offer participants practical and emotional coping strategies alongside the inherent social connection benefit that participants can receive from the mutual aid control. This will build on existing research showing that combination approaches are preferable to people living with HIV22 and people with dementia, while addressing the gap in psychosocial interventions for people with HAND. This refinement pilot trial will provide insight into the feasibility and acceptability of CRGT and a study of this nature, to inform the development of a larger study. A pilot is needed, given HAND’s complexity and the lack of existing interventions for this condition, to preliminarily assess these interventions before a larger trial is designed. Based on other psychosocial intervention pilot trials, a sample of 12–16 completing the study with positive acceptability results and strong intervention fidelity could potentially justify upscaling this pilot into a full-scale trial.

There has been little research conducted that provides people living with HAND the opportunity to interact with one another in a confidential group setting. It is possible that this group experience could be helpful for people living with HAND, as exploratory research has identified a dual stigma associated with the condition. The dual stigma is people feel that they cannot speak about HAND to their HIV-positive community due to dementia stigma, nor could they discuss it with HIV-negative friends and service providers who are familiar with cognitive impairment due to HIV stigma. Such community-building and shared support around the stress and uncertainty of ageing with HIV may ameliorate the damaging effects of stigma.

REFERENCES

1. Greene M, Covinsky KE, Valcour V, et al. Geriatric syndromes in older HIV-infected adults. J Acquir Immune Defic Syndr 2015;69:161–7.
2. Grant I, Franklin DR, Deutsch R, et al. Asymptomatic HIV-associated neurocognitive impairment increases risk for symptomatic decline. Neurology 2014;82:2055–62.
3. Heaton RK, Clifford DB, Franklin DR, et al. HIV-associated neurocognitive disorders persist in the era of potent antiretroviral therapy: charter study. Neurology 2010;75:2087–96.
4. Antinori A, Arendt G, Becker JT, et al. Updated research nosology for HIV-associated neurocognitive disorders. Neurology 2007;69:1789–99.
5. Antinori A, Arendt G, Grant I, et al. Assessment, diagnosis, and treatment of HIV-associated neurocognitive disorder: a consensus report of the mind exchange program. Clin Infect Dis 2013;56:1004–17.
6. Clifford DB, Ances BM. HIV-associated neurocognitive disorder (HAND). Lancet Infect Dis 2013;13:976–86.
7. Milanini B, Valcour V. Differentiating HIV-associated neurocognitive disorders from Alzheimer’s disease: an emerging issue in geriatric NeuroHIV. Curr HIV AIDS Rep 2017;14:129–32.
8. Spudich S, HIV and neurocognitive dysfunction. Curr HIV AIDS Rep 2013;10:235–43.
9. Bhaskaran K, Mussini C, Antinori A, et al. Changes in the incidence and predictors of human immunodeficiency virus-associated dementia in the era of highly active antiretroviral therapy. Ann Neurol 2008;63:213–21.
10. d’Arminio Monforte A, Cinque P, Mocroft A, et al. Changing incidence and predictors of human immunodeficiency virus-associated dementia in the era of highly active antiretroviral therapy. Ann Neurol 2008;63:213–21.
11. Hopcroft L, Bester L, Clement D, et al. “My body’s a 50 year-old but my brain is definitely an 85 year-old”: exploring the experiences of men ageing with HIV-associated neurocognitive challenges. J Int AIDS Soc 2013;16:18506.
12. Eaton AD, Craig SL, Wallace R. The intersecting cognitive and aging needs of HIV-positive older adults: implications for social work practice. Soc Work Health Care 2017;56:733–47.
advocacy aimed at eliminating health disparities. Am J Pub Health 2010;100:2094–102.

35 Turner S, D’Lima D, Hudson E, et al. Evidence use in decision-making on introducing innovations: a systematic scoping review with stakeholder feedback. Implement Sci 2017;12:1–12.

36 Gisslen M, Price RW, Nilsson S. The definition of HIV-associated neurocognitive disorders: are we overestimating the real prevalence? BMC Infect Dis 2011;11:356.

37 Kabat-Zinn J, Blacker M, Herbette G, et al. Mindfulness-based stress reduction (MBSR) auth.9867-0803.pdf. 2017. Available: https://www.umassmed.edu/globalassets/center-for-mindfulness/documents/mbr-curriculum-guide-2017.pdf

38 Kelch BP. 12 steps for best practices in referral to mutual help groups. J Groups Addict Recover 2014;9:222–36.

39 Sweeney P, Caudhary S, Boyce M, et al. The contribution of self-help/mutual aid groups to mental well-being. Health Soc Care Community 2013;21:391–401.

40 Stewart L, Usher A, Allenby K. A review of optimal group size and modularisation or continuous entry format for program delivery. [Research report on the Internet. Ottawa: Research Branch of the Correctional Service of Canada, 2009. http://www.csc-ssc.gc.ca/ 005/008/092/005008-0215-01-eng.pdf

41 Berger D. Double-blinded and bias in medication and cognitive-behavioral trials for major depressive disorder. F1000 Research, 2015:4.

42 Borton I, Guettit L, Estellat C, et al. Reporting methods of blinding in randomized trials assessing nonpharmacological treatments. PLoS Med 2007;4:e61–380.

43 French SD, Green SE, Francis JJ, et al. Evaluation of the fidelity of an interactive face-to-face educational intervention to improve general practitioner management of back pain. BMJ Open 2015;5:e007886.

44 Arnau J, Bono R, Vallejo G. Analyzing Small Samples of Repeated Measures Data with the Mixed-Model Adjusted F Test. Commun Stat Simul Comput 2019;48:93–104.

45 Skene SS, Kenward MG. The analysis of very small samples of repeated measurements I: an adjusted sandwich estimator. Stat Med 2010;29:2855–57.

46 Eaton AD, Chan Carusone S, Craig SL, et al. The ART of convergent validity and acceptability of a pilot peer intervention to help transition complex HIV-positive people from hospital to community. BMJ Open 2019;9:e026674.

47 Kazak AE, Simms S, Alderfer MA, et al. Feasibility and preliminary outcomes from a pilot study of a brief psychological intervention for families of children newly diagnosed with cancer. J Pediatr Psychol 2005;30:644–55.

48 Ledderer L, la Cour K, Mogensen O, et al. Feasibility of a psychosocial rehabilitation intervention to enhance the involvement of relatives in cancer rehabilitation: pilot study for a randomized controlled trial. Patient 2013;6:201–12.

49 Stangl AL, Lloyd JK, Brady LM, et al. A systematic review of interventions to reduce HIV-related stigma and discrimination from 2002 to 2013: how far have we come? J Int AIDS Soc 2013;16:18734.

50 Furlotte C, Schwartz K. Mental health experiences of older adults living with HIV: uncertainty, stigma, and approaches to resilience. Can J Aging 2017;36:125–40.

51 Schiff M, Bargal D. Helping characteristics of self-help and support groups: Their contribution to participants’ subjective well-being. Small Group Res 2000;31:275–304.

52 Packenham KJ, Rinaldis M. HIV/AIDS stress scale. Psych & Health 2002;17:203–19.

53 Gerolimatos LA, Giliberti CM, Gregg JJ, et al. Development and preliminary evaluation of the anxiety in cognitive impairment and dementia (ACID) scales. Int Psychogeriatrics 2015;27:1825–38.

54 Gandy-Crego M, Clemente M, Gómez-Cantorna C, et al. Self-efficacy and health: the SEH scale. Am J Health Behav 2016;40:389–95.

55 Bohmleijer E, ten Klooster PM, Flederus M, et al. Psychometric properties of the five facet mindfulness questionnaire in depressed adults and development of a short form. Assessment 2011;18:308–20.