肝臓星細胞（ビタミン A 貯蔵細胞）の活性化に伴う
中間径フィラメントの発現量と局在の変化*

1秋田大学大学院医学系研究科細胞生物学講座、2秋田大学大学院医学系研究科小児外科学講座
3秋田大学医学部保健学科基礎看護学講座

目崎 喜弘1, 森井真也子2, 蛇口 琢2, 吉川 兄1, 山口 典子3,
三浦 光隆1, 今井 克幸1, 吉野 裕顯3, 妹尾 春樹1

Vitamins (Japan), 88 (5-6), 284-286 (2014)

Differential increases in the expression of intermediate filament proteins and concomitant morphological changes of transdifferentiating rat hepatic stellate cells observed in vitro

Yoshihiro Mezaki1, Mayako Morii2, Taku Hebiguchi2, Kiwamu Yoshikawa1, Noriko Yamaguchi2
Mitsutaka Miura1, Katsuyuki Imai1, Hiroaki Yoshino2, and Haruki Seno1

1Department of Cell Biology and Morphology, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita, Japan.
2Department of Pediatric Surgery, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita, Japan.
3Course of Nursing, Akita University School of Health Sciences, 1-1-1 Hondo, Akita, Japan.

[Acta Histochem Cytochem 46(5), 137-143 (2013)]

肝臓星細胞（ビタミン A 貯蔵細胞、伊東細胞）は肝実質細胞と類洞内皮細胞との間に存在し、大量のビタミン A を貯蔵している1)。四塩化炭素投与などの病的条件下で肝臓星細胞が活性化と呼ばれるプロセスを経てコラーゲン合成細胞である筋線維芽細胞様細胞に変化することが明らかになって以来、肝線維化治療や予防の標的細胞として注目を集めている3)。これまでに肝臓星細胞の静止期状態と活性化状態を規定する多くのマーカーが報告されてきた。その中でも中間径フィラメントはその種類と発現量が肝臓星細胞の活性化状態に応じて様々に変化することが知られている。中間径フィラメントとは直径10 nmの細胞骨格タンパク質であり、6 nmのアクチンフィラメントと25 nmの微小管の中間の直径を持つことからその名がつけられた3)。肝臓星細胞に発現している中間径フィラメントとしてこれまでにビメンチン、デスミン、グリア線維性酸性タンパク質、ネスチンの4種類が報告されている4)−7)。ビメンチン、デスミン、ネスチンは単離した肝臓星細胞で活性化に伴って発現が增加することから活性化肝臓星細胞のマーカーであり、グリア線維性酸性タンパク質は逆に発現が減少することから静止期肝臓星細胞のマーカーとされている7)。これらの知見の多くは単離した肝臓星細胞をポリスチレン培養皿で培養し in vitro で活性化させたものを調べることで得られたが、

*本論文は日本ビタミン学会第65回大会（2013.5.17-18 東京都）における発表内容について座長推薦、編集委員会よりの寄稿依頼によるものである。
本論文の抄録請求先：〒010-8543 秋田市本通1-1-1 秋田大学大学院医学系研究科細胞生物学講座 目崎喜弘
E-mail：mezaki@gipc.akita-u.ac.jp
生体の肝膵組織切片の免疫染色によると静止期肝膵星細胞にもデスミンが発現している。デスミン陽性肝膵星細胞の肝小葉内分布には領域差があり、門脈雫でその数が多く中心静脈雫では逆に少ないことが知られている。このように活化化の程度や周辺環境に応じて肝膵星細胞で発現する中間径フィラメントの種類と量が変化することの生理的意義はよく分かっていない。これまでに中間径フィラメントのロックアウトメカニズムを用いた解析から、デスミンの細胞骨格が正常に形成されるためにはビメンチンが必要であることが示唆されている。またデスミンは活性化肝膵星細胞の収縮能獲得に必要であり、それによって肝小葉内の微小循環の血流量を調節すると考えられている。

Wistar ラットより単離した肝膵星細胞をポリスチレン培養皿上で培養し自発的な活性化を誘導した。培養 2 日目から 7 日目かけて肝膵星細胞は扁平になり、ひとつの細胞が占める培養皿上の面積はおよそ 3 倍に増加した。ビメンチンとデスミンのタンパク質をウエスタンプローティングで定量したところ両タンパク質とも活性化されて発現量が増加した。このときデスミンタンパク質の増加に先立ってビメンチンタンパク質の増加が観察された（図 1）。活性化肝膵星細胞

図 1 活性化しつつある肝膵星細胞における中間径フィラメントの発現量の変化
（A）単離した肝膵星細胞を 3 から 7 日間ポリスチレン培養皿上で培養したのち 10 μg の RIPA buffer 可溶化タンパク質を調製し、ウェスタンプローティングによりビメンチンタンパク質とデスミンタンパク質を検出した。パネルの左側に分子量マーカーの泳動位置を示す。（B）異なるラット個体由来の肝膵星細胞を用いて実験を繰り返し、培養 3 日目から 7 日目かけてのビメンチンタンパク質とデスミンタンパク質の発現量を定量した。横軸は 7 日目のタンパク質の発現量を 1 とした相対的な発現量を示す。7 日目のタンパク質の量と比較して有意な差があったものに * を付した。

図 2 活性化肝膵星細胞における中間径フィラメントとビタミン A 脂質滴の局在
単離した肝膵星細胞をポリスチレン培養皿上で培養することで活性化させ、抗デスミン抗体と抗ビメンチン抗体で染色した。ビタミン A 脂質滴は BODIPY 色素で染色した。
中間径フィラメントは核や細胞小器官の細胞内での位置を決める足場として機能することが知られているものである。BODIPY色素で染色したところ周囲部と細胞辺縁部の中間領域に円周を描くように局在していた（図2）。この領域は細胞内のビタミンA脂質滴をBODIPY色素で染色したところ周囲部と細胞辺縁部の中間領域に円周を描くように局在していた（図2）。この領域は細胞内でのビタミンA脂質滴の割合が増加しデスミッターンパク質の割合が増加する場所に相当する。中間径フィラメントの構成成分の変動がビタミンA脂質滴の細胞内局在を決めているのかもしれない。

文献

1) Wake K (1971) "Sternzellen" in the liver: perisinusoidal cells with special reference to storage of vitamin A. *Am J Anat* 132, 429-462
2) Senoo H, Hata R, Nagai Y, Wake K (1984) Stellate cells (vitamin A-storing cells) are the primary site of collagen synthesis in non-parenchymal cells in the liver. *Biomed Res* 5, 451-458
3) Ishikawa H, Bischoff R, Holtzer H (1968) Mitosis and intermediate-sized filaments in developing skeletal muscle. *J Cell Biol* 38, 538-555
4) de Leeuw AM, McCarthy SP, Geerts A, Knock DL (1984) Purified rat liver fat-storing cells in culture divide and contain collagen. *Hepatology* 4, 392-403
5) Yokoi Y, Namihisa T, Kuroda H, Komatsu I, Miyazaki A, Watanabe S, Usui K (1984) Immunocytochemical detection of desmin in fat-storing cells (Ito cells). *Hepatology* 4, 709-714
6) Gard AL, White FD, Dutton GR (1985) Extra-neural glial fibrillary acidic protein (GFAP) immunoreactivity in perisinusoidal stellate cells of rat liver. *J Neuroimmunol* 8, 359-375
7) Niki T, Pekny M, Hellemans K, Blaser PD, Berg KV, Vaeyens F, Quartier E, Schuit F, Geerts A (1999) Class VI intermediate filament protein nestin is induced during activation of rat hepatic stellate cells. *Hepatology* 29, 520-527
8) Wake K, Sato T (1993) Intralobular heterogeneity of perisinusoidal stellate cells in porcine liver. *Cell Tissue Res* 273, 227-237
9) Ballardini G, Groff P, Badiati de Giorgi L, Schuppan D, Bianchi FB (1994) Ito cell heterogeneity: desmin-negative Ito cells in normal rat liver. *Hepatology* 19, 440-446
10) Geerts A, Eliasson C, Niki T, Wielant A, Vaeyens F, Pekny M (2001) Formation of normal desmin intermediate filaments in mouse hepatic stellate cells requires vimentin. *Hepatology* 33, 177-188
11) Kawada N, Klein H, Decker K (1992) Eicosanoid-mediated contractility of hepatic stellate cells. *Biochem J* 285, 367-371
12) Godsland IM, Hobbs RP, Green KJ (2008) Intermediate filament assembly: dynamics to disease. *Trends Cell Biol* 18, 28-37

（平成25.12.27 受付）