Identification of Broad-Spectrum Beta-lactamase CTX-M-2, CTX-M-8, and Ampc-dependent CMY Genes in Shigella sonnei Isolated from Pediatric Diarrhea Specimens by Multiplex-PCR and Antibiotic Resistance Pattern Determination

Mona Konkori¹, Kumarss Amini¹*

1. Department of Microbiology, Saveh Branch, Islamic Azad University, Saveh, Iran

ABSTRACT

Background: Shigella species are one of the most common causes of bacillary dysentery and sometimes death especially in children and immune-compromised individuals. The diversity of disease-causing species and the emergence of drug resistance make it difficult to select the appropriate antibiotic to treat shigellosis. One of the important causes of resistance in Shigella isolates is the presence of genes encoding broad-spectrum beta-lactamase enzymes. The aim of this study was to determine the frequency of Shigella sonnei strains producing CTX-M-2, CTX-M-8, and CMY beta-lactamase genes by Multiplex PCR and to investigate their association with antibiotic resistance in S. sonnei strains.

Materials & Methods: This descriptive cross-sectional study was conducted in a period of 6 months from the beginning of June to the end of October 2016. A total of 200 diarrhea specimens were collected from the patients with suspected shigellosis from the Children’s Medical Center (Tehran). The antibiotic susceptibility testing was performed using disk diffusion method on Müller-Hinton agar in accordance with CLSI instructions. After DNA extraction, the presence of CTX-M-2, CTX-M-8, and Ampc-dependent CMY genes was determined by Multiplex-PCR using specific primers.

Results: From all the samples, 60 (30%) S. sonnei strains were obtained using standard microbiological and biochemical tests. Majority of the strains were resistant to erythromycin (26 strains, 43.3%) and cefepime (24 strains, 40%). The molecular test results showed that 40 (66.6%) and 33 (55%) of the strains carried the CTX-M-8 and CMY genes, respectively (P<0.05). The CTX-M-2 gene was not detected in any of the samples.

Conclusion: The results indicate a high frequency of CMY gene among Shigella sonnei isolates and higher resistance of these strains was found against erythromycin and cefepime. Therefore, careful medical care and proper and timely use of appropriate antibiotics to prevent the spread of resistant isolates seems inevitable.

Keywords: Broad-spectrum beta-lactamase, Disk diffusion, Multiplex-PCR, Shigella sonnei

Received: 2017/08/27; Accepted: 2020/08/04; Published Online: 2020/09/26

Use your device to scan and read the article online

Download citation: BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks

Send citation to: Mendeley | Zotero | RefWorks
Introduction

Shigella species are members of the Enterobacteriaceae family with four groups: group A (Shigella dysenteriae), group B (Shigella flexneri), group C (Shigella boydii) and group D (Shigella sonnei) (1). The infectious dose of Shigella is less than 200 bacilli; therefore, shigellosis can spread rapidly among communities with low health standards (2). Bacterial dysentery (Bacillary dysentery or shigellosis) is considered as one of the most important acute gastrointestinal diseases, especially in children and immune-compromised patients which cause high number of fatalities in addition to economic losses and social problems (3). Anorexia, fever, intestinal inflammation, bloody-purulent stools, abdominal pain, tenesmus, and feeling of incomplete bowel emptying with anal pain are the symptoms of this disease (4). It is estimated that 165 million cases of bacillary dysentery and 1.1 million deaths occur annually worldwide, about 60% of which are in children younger than five years old (5).

The appropriate and timely antibiotic treatment shortens the course of the disease and reduces its complications and prevents the transmission of the disease to the healthy people. Today, due to the widespread use of antibiotics, Shigella species have become resistant to many antibiotics, including the third generation of cephalosporins. This issue has made the treatment of this disease difficult (6). The most important problem in the treatment of people with shigellosis is the development of multi-drug resistance (MDR) (7). Production of the beta-lactamase enzymes is the main reason for the gram-negative bacteria resistance to beta-lactams (8). These enzymes destroy the amide ring of beta-lactams. Beta-lactamase enzymes are divided into four groups A to D based on the amino acid sequences. Broad-spectrum beta-lactamase enzymes (ESBLs) are from class A beta-lactamas that hydrolyze broad-spectrum cephalosporins with a side chain of Oximino, causing bacterial resistance to penicillins, the first, second and third generations of cephalosporins and aztreonam. They are inhibited by beta-lactamase inhibitors such as clavulanic acid (9).

The CTX-M beta-lactamase genes were first reported in 1989 from Japan and spread to the other parts of the world since then (10). Today, these beta-lactamase enzymes are divided into five groups: CTX-M1 was reported from Germany in 1989 (11), CTX-M-2 was reported from Japan in 1986, CTX-M-8 was reported from Brazil in 1996 (12), CTX-M-9 was reported from Spain in 1994, and the CTX-M-25 was reported from Canada in 2000 (10). These beta-lactamase genes have little association with the TEM and SHV beta-lactamase members, and instead there is a high similarity between the chromosomal enzymes Amp-C, especially KLU-1 and KLU2, and the CTX-M enzymes. There are theories based on the derivation of these enzymes from one species (13).

Broad-spectrum beta-lactamase-producing bacteria are placed in the human and animal intestines which are very difficult to control and eradicate because ESBL genes can be transmitted between different genus, species, and different strains of intestinal bacteria (7). There are some reports of Shigella sonnei multiple-resistance to antibiotics, especially cephalosporins third-generation such as cefotaxime and ceftriaxone.

In recent years, the emergence of the antibiotic resistance phenomenon has raised many concerns in the medical communities due to the failure of the treatment process (8). Due to the development of broad-spectrum beta-lactam antibiotic resistance genes in Shigella sonnei strains and the high speed and accurate detection of molecular methods and simultaneous identification of several genes, this study aimed to identify broad-spectrum beta-lactamase genes CTX-M-2, CTX-M and AmpC-dependent CMY gene in Shigella sonnei strains isolated from diarrheal specimens by Multiplex-PCR method and the antibiotic resistance pattern of these strains.

Materials and Methods

In this descriptive cross-sectional study, diarrheal stool samples of the patients with suspected shigellosis were randomly collected from the Children’s Medical Center (Tehran) over a period of 6 months from the beginning of June to the end of October 2016. A total of 200 diarrhea stool samples were collected in disposable sterile containers specified for stool collection, including 94 male and 106 female samples. The samples were examined macroscopically for the consistency, mucus and blood presence and microscopically for the red and white blood cells. The inclusion criteria included the presence of blood and mucus in diarrheal stool, tenesmus and no antibiotic use and the exclusion criteria were the absence of Shigella in the positive culture samples or arbitrary use of antibiotics before referral. The stool samples were transferred to the laboratory in Kerry-Blair (Merck, Germany) medium at the earliest opportunity. The Selenite-F (SF) medium was used to enrich the samples. After incubation at 37°C for 8 hr, the samples were transferred from the SF medium to Salmonella-Shigella agar (SS) and McConkey agar (Merck, Germany) and incubated for 24 to 48 hr at 37°C.

Finally, to differentiate and confirm Shigella species the biochemical tests (oxidase, catalase, SIM, MRVP, citrate consumption, TSI test, urease production, phenylalaninidaminase, lysine decarboxylase, sodium malonate, and decarboxylation of the amino acids ornithine and mannitol) were conducted. The isolates with biochemical properties: lactose negative, gas production negative, immobilized, lysine decarboxylation negative, citrate negative, urea hydrolysis negative and methyl red positive were considered as Shigella isolate. Serotyping tests were performed on the slides of fresh Shigella cultures using Baharafshan Co. kits by agglutination method (1, 2).
Disk Diffusion

The antibiotic susceptibility test was performed using disk diffusion method and according to the instructions of the Laboratory and Clinical Standards Institute (14) on Müller-Hinton agar medium (Merck, Germany) for the antibiotics trimethoprim-sulfamethoxazole (25 µg), erythromycin (30 µg), amoxicillin (25 µg), ceftriaxone (30 µg), cefepime (30 µg), amoxiclav (25 µg) (produced by Himedia Co, India).

After bacterial DNA extraction using gram-negative bacterial genomic DNA extraction kit of Iranian Biological Resource Center (Cat no. MBK0041) and confirmation of the extracted DNA purity using biophotometer (Bio-Rad, USA), the genes CTX-M-2, CTX-M-8 and CMY were amplified using M-PCR method and specific primer sequences (Table 1) in thermocycler (Eppendorf, Germany) in the final volume of 25 µL including 10.5 µL PCR master mix 5X (Sinaclon, Iran) containing Taq DNA polymerase (0.05 U/µL), MgCl₂ (3 mM) and dNTPs (0.4 mM), 0.7 µL of each primer, 1 µL of template DNA (10 ng) and 12.1 µL of double-distilled water for 33 cycles. The primer BLAST was performed on the website https://www.ncbi.nlm.nih.gov/tools/primer-blast/.

Thermal cycling included denaturation step at 95°C for 1 min, primer annealing at 60°C for 30 sec and elongation step at 72°C for 1 min. Finally, the PCR products were run on 1% agarose gel containing ethidium bromide (Figure 1). In the molecular study, Shigella sonnei ATCC 25931 and Escherichia coli ATCC 25922 (prepared from the Microbial Bank of Pasteur Institute of Iran) were used as negative and positive controls, respectively.

Statistical Analysis

Data were collected and analyzed using SPSS software version 16. The statistical analysis was performed using Pearson-Chi Square test. The P-value<0.05 was considered as significant level.

Table 1. Sequence of the primers

Target gene	Primer sequence (3´ to 5´)	Product length (bp)
CTX-M-2	F: TTAATGATGACTCAGAGCATTC R: GATACCTCGCTCCATTATTG	901
CTX-M-8	F: CGCTTTGCCATGTGCAGCACC R: GCTCAGTACGATCGAGCC	307
CMY	F: TGGCCAAGAAGCTGACGGCACA R: TTCTCTGGAACGTGGCTGCG	462

Results

From a total of 200 diarrheal fecal samples obtained from children, 60 isolates of Shigella sonnei were obtained, of which 28 isolates (46.6%) were from boys and 32 isolates (53.3%) belonged to female fecal samples. All the strains obtained in this study were Shigella sonnei confirming by the slide agglutination test. The results of antibiotic susceptibility test showed that all (100%) Shigella sonnei isolates were sensitive to cotrimoxazole. Also, only eight isolates (13.4%) were resistant to ceftriaxone (Table 2). In the other words, the highest percentage of resistance among the isolates of this study was related to erythromycin (43.3%) and cefepime (40%). From 60 Shigella isolates in this study, 19 (31.6%) strains were resistant to three different classes of antibiotics and were considered as MDR.

Table 2. Antibiotic resistance pattern of the isolates under study

Antibiotic	Sensitive (S) (%)	Intermediate (I) (%)	Resistant (R) (%)
Cotrimoxazole	60 (100)	0 (0.0)	0 (0.0)
Erythromycin	30 (50)	4 (6.7)	26 (43.3)
Amoxicillin clavulanic acid	40 (66.6)	8 (13.4)	12 (20)
Cefepime	30 (50)	6 (10)	24 (40)
Ceftriaxone	40 (86.6)	0 (0.0)	8 (13.4)

The presence or absence of broad-spectrum beta-lactamase genes was studied on all 60 Shigella sonnei isolates of the children’s diarrheal stool samples. The frequencies of CMY and CTX-M-8 genes were 66.7% (n=40) and 55% (n=33), respectively (Figure 1). All the strains were negative regarding CTX-M-2 gene (Figure 2).
Figure 1. The M-PCR test result on some isolates. C+: Positive control (E. coli ATCC 25922), C: Negative control (Shigella sonnei ATCC 25931). The numbers 1-12 are clinical strains collected from diarrhea (M: DNA marker: 100 bp, Fermentas).

Figure 2. Number and results of beta-lactamase genes in Sony Shigella samples

Discussion

Shigellosis is endemic worldwide and is the most common cause of bacterial dysentery (1). The disease heals spontaneously in adults, while it is very dangerous in infants and children which can lead to death (3). In developing countries, this disease still remains an important health issue (4).

Due to the increase in antibiotic resistance in intestinal pathogens, it seems that opting a suitable drug to treat these infections has become difficult, thus, determining the drug resistance pattern on a regional and periodic basis seems necessary for this bacterium. In accordance with the present study, Abbaspour et al., (16) in 2014 showed that 23.3% and 24.4% of Shigella sonnei isolates were resistant to ceftriaxone and cefixime, respectively. In the present study, 31.6% of the strains were MDR and the highest resistance (40%) was related to cefepime. The results showed a significant association (P<0.02) between the presence of ESBL genes and the incidence of resistance to cephalosporins such as cefepime. In a study conducted by Bonnet et al., in 2007 in Brazil, the beta-lactamase genes CMY-2 and AmpC were examined. In line with our study, all the strains with multiple resistance in the study contained CMY gene (17).

Like our study, Hussain et al., in Pakistan in 2011 showed that the frequencies of CTX-M and CMY genes were 57.7% and 50%, respectively (18). Contrary to the present study, Mendonça et al., in 2007 in Portugal showed that blaCTX-M-2 had the highest abundance among other genes in the isolates (19). This difference can be due to differences in the year of the study, geographical distance, variety of strains and sample size. Again, contrary to the present study, the broad-spectrum beta-lactamase gene CTX-M-2 in cefotaxime-resistant Shigella sonnei was detected in Argentina by molecular method in the study conducted by Radice et al., in 2001. The strains containing this gene were reported to be resistant to commonly used cephalosporins (20). This gene was not detected in any of the samples in our study. This difference could be due to the geographical distance and genetics of the strains.

More comprehensive studies are needed to identify different types of beta-lactamase classes and other
resistance genes in *Shigella* strains in the country. Also, by determining the antibiotic resistance pattern and using the appropriate antibiotics when treatment is needed, antibiotic resistance and the spread of resistant strains in the community among human populations can be prevented. One of the salient features of the present study is the simultaneous study of resistance genes using M-PCR method. It is suggested that, the presence of other resistance genes and determining the genetic relationship of these strains should be considered in the future studies.

Conclusion

Based on the present study results, it was found that the highest resistance in *Shigella sonnei* strains was against cefepime and the most common broad-spectrum beta-lactamase gene in these strains was *CMY*. There was a statistically significant association between the presence of *CMY* gene and resistance to cefepime (*P*<0.05). For the high prevalence of beta-lactam antibiotic resistance genes in *Shigella sonnei* strains, careful medical care and proper and timely use of appropriate antibiotics are essential to prevent the spread of resistant strains.

Acknowledgment

The authors would like to thank Dr. Fereshteh Shahcheraghi for providing positive control strain. We also thank the staff of the Children’s Medical Center (Tehran) for the preparation of microbial strains and the management and the staff of the Pasargad Research Laboratory who assisted in carrying out this project.

Conflict of Interest

Authors declared no conflict of interests.
انتقالات مقاله

تاریخچه مقاله
دریافت: 14/06/1396
پذیرش: 14/05/1399
انتشار آثار: 06/1399

موضوع:
باکتری شناسی پزشکی

نویسنده مسئول:
کیومرث امینی، گروه میکروبیولوژی، دانشکده علوم پایه، واحد ساوه، دانشگاه آزاد اسلامی، ساسوج، ایران

ایمیل:
dr_kumarss_amily@yahoo.com

کیفیت وارده: شیگلا سونئی، بالاکتاماز و سطح سیبیل

کیفیت گزارشی:
Majallah-i-mikrob-shanashei-şenashii-i-irán

مقدمه
گونه شیگلا عضوی از خانواده انتروباکتریاسه می‌باشد که دارای چهار گروه شامل گروه B (شیگلا مولر)، گروه D (شیگلا سونئی) هستند که دو گروه دیگر به عنوان خاصیت گروهی به‌شمار می‌آیند. گروه B از نظر عغوض، دارای چهار شیگلا دیستروفیکس، گروه D از نظر عغوض، دارای چهار شیگلا سونئی هستند. این گروه‌ها دارای چهار شیگلا دیستروفیکس، گروه D از نظر عغوض، دارای چهار شیگلا سونئی هستند. این گروه‌ها دارای چهار شیگلا دیستروفیکس، گروه D از نظر عغوض، دارای چهار شیگلا سونئی هستند. این گروه‌ها دارای چهار شیگلا دیستروفیکس، گروه D از نظر عغوض، دارای چهار شیگلا سونئی هستند. این گروه‌ها دارای چهار شیگلا دیستروفیکس، گروه D از نظر عغوض، دارای چهار شیگلا سونئی هستند. این گروه‌ها دارای چهار شیگلا دیستروفیکس، گروه D از نظر عغوض، دارای چهار شیگلا سونئی هستند. این گروه‌ها دارای چهار شیگلا دیستروفیکس، گروه D از نظر عغوض، دارای چهار شیگلا سونئی هستند. این گروه‌ها دارای چهار شیگلا دیستروفیکس، گروه D از نظر عغوض، دارای چهار شیگلا سونئی هستند. این گروه‌ها دارای چهار شیگلا دیستروفیکس، گروه D از نظر عغوض، دارای چهار شیگلا سونئی هستند. این گروه‌ها دارا
شرکت نظر واکنش، به ها مدفوع خون، آوری اسهالی به شدند کشور و امپس (Ampc) CTX-M، سازی سنجشی جداسازی شده از مونوهای اسپهی با روش Multiplex-PCR و اگری مختصر این بیوپتیک است.

روش پژوهش
در این مطالعه- مقطعی- مونوهای مدفع اسپهی بیماران مشکوک به شیگلازیوس- بروصو تصادفی از بیمارستان مرکز طالب پزشکان در کی بارز رژیم 5 ساله از گروه خود نوار غایت از 463 آزمایش در انتهای آیا 1995 جمعیت شد. در مجموع تعداد 200 نمونه مدفع اسپهی در یک طرفت بیمارستان طراحی می شود. CTX-M و سفارش (ESBLs) با هم. در مقاله CTX-M و سفارش (ESBLs) با H. مبتلا در سال 1399 میلادی.
آزمایش انتشار در دیسک (دسک دیفیوژن)

آزمون حساسیت الیوتیونیک با استفاده از روش انتشار در دیسک بر اساس استاندارد آزمایش‌گاه و بالین (14) بر روی میژخت مواد هپتیوت آگار (مرکز آمیل) برای انی بیوتیک‌های تری‌مهتریم - سولفاتوکسازول (25 µg)، اریترومایسین (30 µg)، آمونیاکسیل (25 µg)، و سفیریاکسون (30 µg)، با استفاده از PCR میدان 30 میکرولیتر یک آنتی‌ژنی در زیر شرایط داده شد: تقطیر 2% میکروبی در حجم مثبت مطالعه و طول مدت 40 دقیقه از واکنش انتی‌ژنی از واکنش انتی‌ژنی 1% تا 2% درجه 30 درجه سیلیوس در آب (Cat no. MBK0041) استفاده شده با استفاده از دستگاه بیوفتومتر (Bio-Rad, USA)، در خاک-۲ (CTX-M-2) و با استفاده از M-PCR در دستگاه انتشار در دیسک (CTX-M-8).

جدول ۲: توانایی رپرمیهای سایت‌بندی

Target gene	Primer sequence (3’ to 5’)	Product length (bp)
CTX-M-2	F: TTAAGGAGCATGAGCCATTACG	901
	R: GATACCTCGCTCCATTTATTG	
CTX-M-8	F: CAGCTTGCATGTCAGCCCCATG	307
	R: GCCGAGCGACGAGGCAAATACCG	
CMY	F: TGGCCGAGACGAGGCAAATACCG	462
	R: TTCTTCCTGAACTGGCTGTCG	

تجزیه و تحلیل آماری

پس از جمع‌آوری داده‌ها در نرم‌افزار SPSS نسخه 16، آنالیز (Pearson-Chi Square) آماری با استفاده از آزمون پیرسون با بهره‌گیری از جدول‌های حساسیت انی بیوتیک‌های سایت‌بندی چهار گروه در ۲۰۰۰ نمونه میژخت مواد هپتیوت آگار با استفاده از روش آزمایش انتشار در دیسک چهار گروه از ریز پسرها در سه جفت، با استفاده از جدول ۲ توانایی رپرمیهای آنتی‌ژنیکی چندگانه تحت مطالعه.

جدول ۱: تی‌تیاپاسمیه مورد استفاده

Antibiotic	Intermediate (I) (%)	Resistant (R) (%)
Cotrimoxazole	60 (100)	0 (0.0)
Erythromycin	30 (50)	26 (43.3)
برابر ۶۶/۶٪ (n=۴۰) و ۵۵٪ (n=۳۳) بود (شکل ۱). تمامی سویهها از نظر وجود زن-۲-صفر مثبت بودند (شکل ۲). وجود یا عدم وجود زن-۲-صفر باعث افزایش وسیع‌الطبیعه بر روی تمامی ۶۰ ایزوپلاری شیگلا سونئی جدایی از نمونه‌های مدفوع اسهالی کودکان انجام شد. فراوانی زن-۲-صفر و CMY بترتیب CTX-M-۸ و CTX-M-۸ مثبت اکثریت آزمایش از جایی‌ها داشتند.

شکل ۱. نتیجه آزمایش M-PCR بر روی تعدادی از جایی‌ها. C: کنترل مثبت (شیگلا سونئی ATCC ۲۵۹۲۲)، C+: کنترل منفی (شیگلا سونئی ATCC ۲۵۹۳۱). M (DNA size marker ۱۰۰ bp, Fermentas).

شکل ۲. فراوانی زن-۲-صفر باعث افزایش وسیع‌الطبیعه بر روی تمامی سویه‌هایمنفی به ترتیب CTX-M-۸ و CTX-M-۸ مثبت اکثریت آزمایش از جایی‌ها داشتند.
مطالعات وسیع‌تر و جامع‌تری جهت شناسایی انواع کلاس‌های بیوتیک ساپیونی، سبز‌پوشش و سبز‌پوشش سیاه‌پوشش و سبز‌پوشش قهوه‌ای در کشورها، انجام شده است. با توجه به این ها و در مصاحبه‌های مربوط به موضوع درمان باشنده، می‌تواند مقام دارای نقش مهمی در درمان برخی از بیماری‌ها حتی‌که به پیشرفت در درمان بیماری‌های متعددی کمک می‌کند. به‌طور کلی، مناظری داده‌هایی که در این مقاله مطرح شده‌اند، به‌نظر می‌رسد که می‌تواند همکاران یک جامعه از طریق بهبود رفتار درمانی به پیشرفت در درمان بیماری‌ها کمک کند.

نتیجه‌گیری
بر اساس نتایج مطالعه حاضر مشخص گردید که بیشترین مقام از سویه‌ها سیاه‌پوشش سیاه‌پوشش و CMY در سیاه‌پوشش و سبز‌پوشش در این سویه‌ها می‌باشد. از این جهت نمی‌توان انتباض معنی‌داری را در بین حوزه‌های سیاه‌پوشش و CMY داشت. در نتیجه، انتباض سیاه‌پوشش و سبز‌پوشش در این سویه‌ها می‌تواند به اصلاح بیماری‌های بیوتیک سیاه‌پوشش و سبز‌پوشش کمک کند. این نتایج با نتایج مطالعات قبلی و نظرسنجی‌های قبلی مطابقت دارد.

سیاست‌گزاري
نویسندگان مقام از سرکار خانم دکتر فرشته شاهچراغی به خاطر بهره‌برداری منبت و مشارکت در این مقاله تشکر می‌کنند. تا کنون، نویسندگان مقام به خوب خود لزوم دانست که از کارکنان بیمارستان‌ها کمک اطلاع برای بهره‌برداری سویه‌های سیاه‌پوشش و سبز‌پوشش در مدیریت و ارائه زمینه‌های تحقیقاتی کمک کننده بوده‌اند و اجرای این برندهای رساندن کمال تشرکر را او را در انجام

تعارض در منافع
این مقاله پژوهشی مستقل است که بدون حمایت مالی سازمانی انجام شده است. در انجام مطالعه حاضر، نویسندگان هیچگونه تعارض منافعی نداشته‌اند.

Reference
1. Jafari M, Ghasemi Kia I, Mohsen M, Alimadadi H, Abbasi A, Pourajaf A, et al. Plasmid-mediated quinolone resistance in Shigella sonnei and Shigella flexneri isolated from pediatric diarrheal. JMJ. 2019; 17 (1): 8-14.

2. Tajaddini M, Kheyrkhah B, Amini K. Detection of blaPER, blaGES and blaVEB Genes in Shigella sonnei Isolates from Patients with Diarrhea and Determination of Antibiotic Susceptibility Pattern. J Ardabil Univ Med Sci. 2018; 18 (1): 52-61. [DOI:10.29252/jarums.18.1.52]

3. Mosadegh S, Moradi G. Molecular analysis of genes of ESBL SHV.TEM.CTX in Shigella Sonnei isolated from clinical samples by PCR. J Shahrekord Univ Med Sci. 2017; 19 (2): 98-108.

4. Goldberg M, Calderwood SB, Edwards MS, Bloom A. Shigella infection: epidemiology, microbiology, and pathogenesis. Recuperado el, 2013. p. 14-4-130.

5. Ranjbar R, Dallal MM, Talebi M, Pourshafie MR. Increased isolation and characterization of Shigella sonnei obtained from hospitalized children in Tehran, Iran. Journal of health, population, and nutrition, 2008. 26(4): p. 246-432. [DOI:10.3329/jhpn.v26i4.1884] [PMID] [PMCID]

6. Dallal MM, Eghbal M, Sharafianpour A, Zolfaghari MR, Yazdi MK. Prevalence and multiple drug resistance of Shigella sonnei isolated from diarrhea stool of children. Journal of Medical Bacteriology, 2015. 4(3): p. 24-9.

7. Abbasi E, Abtahi H, van Belkum A, Ghaznavi-Rad E. Multidrug-resistant Shigella infection in pediatric patients with diarrhea from central Iran. Infect Drug Resist. 2019; 12:1535-1544. [DOI:10.2147/IDR.S203654] [PMID] [PMCID]

8. Li J, Li B, Ni Y, Sun J. Molecular characterization of the extended-spectrum β-lactamase (ESBL)-producing Shigella spp. in Shanghai. Eur J Clin Microbiol Infect Dis. 2015; 34(3): 447-51. [DOI:10.1007/s10496-014-2244-2] [PMID]

9. Ambler RP, Coulson AF, Frere JM, Ghuysen, JM, Joris B, Forsman M, et al. A standard numbering scheme for the class A beta-lactamases. Biochem J. 1991; 276: 269-270. [DOI:10.1042/b2760269] [PMID] [PMCID]

10. Pai H, Choi EH, Lee HI, Hong JY, Jacoby GA. Identification of CTX-M-14 extended-spectrum β-lactamase in clinical isolates of Shigella sonnei, Escherichia coli, and Klebsiella pneumoniae in Korea. J Clin Microbiol. 2001; 39(10): 3747-9. [DOI:10.1128/JCM.39.10.3747-3749.2001] [PMID] [PMCID]

11. Cheddie P, Dživa F, Akpaka PE. Detection of a CTX-M group 2 β-lactamase gene in a Klebsiella pneumoniae isolate from a tertiary care hospital, Trinidad and Tobago.