A non standard approach of spectral theory of self-adjoint operators (generalized Gelfand eigenvectors)

Fatma Karray Meziou
Université Pierre & Marie Curie.
meziou@math.jussieu.fr

Abstract
Let $u = \int_{-\infty}^{+\infty} \lambda dE_{\lambda}$ be a self-adjoint operator in a Hilbert space H. Our purpose is to provide a non-standard description of the spectral family (E_{λ}) and the generalized Gelfand eigenvectors.

1 The non standard framework
We consider here the nonstandard analysis framework (see [Goldblatt], for a brief overview) and apply it to set universes : Let A be a set of \in-independent elements (i.e. a non empty set such as there is not any chain $x_0 \in x_1 \in \ldots \in x_n$ whose ends belong to A) and let us associate to A its superstructure U_A, i.e. the union of the sequence (A_n) defined by $A_0 = A$ and $A_{n+1} = A_n \cup P'(A_n)$, where P' denotes the set of non empty subsets. The couple made of U_A and the restriction of \in to U_A is a standard model of Zermelo theory with atoms and where Zorn's theorem holds.

Note :
1. Zermelo theory is ZF without the substitution axiom (see [Jech]).

2. We need to choose once for all a $\emptyset_A \in A$ that will play the role of the empty set in U_A; U_A atoms are then the elements of $A\setminus\{\emptyset_A\}$. Such a U_A universe contains all necessary sets to describe the structures (in the sense of N.Bourbaki) over elements of U_A.

3. We may assume that A is chosen such that C and H are its subsets; even if this requires to replace C and H by isomorphic copies. C and H have then their binary operation graphs in U_A. One can associate to U_A a first order language $L(U_A)$ whose relational symbols are $=$ and \in and whose constant set is U_A.
The non-standard method relies on the existence of a function called enlargement defined from U_A to the set class as $a \mapsto ^* a$ with the following properties:

i. $^*a = a$ for each atom,

ii. if R is a relation of $L(U_A)$ without any free variable and where all quantifiers are limited - i.e. in the form of $\exists x \in t$ or $\forall x \in t$ - and if *R is the relation obtained by replacing every outstanding constant a by its image *a, R and *R relations are either both true or both false (transfer principle),

iii. if $F \in U_A$ is a filter on a set $u \in U_A$, the intersection of *F sets (which is a filter over *u) is not empty.

In particular, given i and ii, \mathbb{C} could be enlarged into a set $^*\mathbb{C}$ containing \mathbb{C}. We will call $^*\mathbb{C}$ elements hypercomplexes and define over $^*\mathbb{C}$ an addition and a multiplication operations, whose graphs are the enlargements of the addition and multiplication graphs over \mathbb{C}. For these operations $^*\mathbb{C}$ is an algebraically closed field. The same analysis applies to \mathbb{R} and leads to the subfield $^*\mathbb{R}$ of $^*\mathbb{C}$. $^*\mathbb{R}$ is totally ordered and generates with element i the field $^*\mathbb{C}$ (This allows to consider the real and imaginary parts of a hypercomplex and to introduce the absolute hypervalue of a hypercomplex).

An element $\xi \in ^* \mathbb{R}$ is infinitesimal (resp. limited), if $-1 < n\xi < 1$ for every natural number n (resp. $-n < \xi < n$ for at least one natural number). A hypercomplex is infinitesimal (resp. limited) if its absolute hypervalue is infinitesimal (resp. limited). The subset $^*\mathbb{C}_b$ made of bounded elements is a valuation ring whose residual field could be identified with \mathbb{C}: more precisely the image of $z \in ^* \mathbb{C}_b$ is the unique complex number $^\circ z$ such that $z - ^\circ z$ is infinitesimal.

From now on, we consider a fixed universe U and an enlargement *U of U.

2 Hyperhermitian spaces

2.1 Internal vector spaces A set is called internal if it belongs to an enlargement. A $^*\mathbb{C}$-vector space F is internal if the set F is internal and if the graphs of its binary operations are internal. A linear function $u : F \rightarrow G$ between internal vector spaces is internal if its graph is internal.
Theorem 1 Internal $^\ast \mathbb{C}$ vector spaces and internal linear applications make up an abelian category (denoted Ivs).

Let E be a complex vector space of U and let us assume that binary operations are in U. If $\text{vss}_f(E)$ is the set of finite-dimensional subspaces of E, its enlargement $^\ast \text{vss}(E)$ is made of $^\ast E$ internal subspaces (and is itself an internal linear space for the enlargement of binary operations of E).

An internal vector space F is said to be hyperfinite-dimensional, if there is a complex vector space E in U such that F is isomorphic (through an internal isomorphism) to an element of $^\ast \text{vss}(E)$.

Corollary 2 The full subcategory of Ivs set made of hyperfinite-dimensional subspaces is a thick subcategory.

The importance of these subspaces lies in the following proposition :

Proposition 3 Let H be a complex vector space of U. Since $\mathbb{C} \subset ^\ast \mathbb{C}$, $^\ast H$ is also a complex space and the function :

$$f : H \rightarrow ^\ast H$$

$$h \mapsto ^\ast h$$

is an injective linear map whose image is included in an internal hyperfinite-dimensional subspace.

2.2 Definition of hyperhermitian spaces and orthonormal hyperbases

The concept of positive-definite sesquilinear form extends easily to hypercomplex vector spaces. We call hyperhermitian space an internal hyperfinite-dimensional vector space provided with an internal positive-definite sesquilinear form. A number of properties are preserved by transfer, when passing from hermitian to hyperhermitian spaces. Let us mention in particular the orthogonal property and moreover the decomposition of a hyperhermitian space into a direct sum of an internal linear subspace and its orthogonal.

Orthonormal hyperbases play a very important role here : a subset B of a hyperhermitian space F is an orthonormal hyperbasis, if B is an orthonormal set and 0 is the only element of F to be orthogonal to every element of B.

Theorem 4 Let F be a hyperhermitian vector space with scalar product \langle , \rangle and let u be a symmetric internal linear function for \langle , \rangle over F. There exists an orthonormal hyperbasis B of F made of eigenvectors of u.

3
Such a hyperbasis B has an important property: it is hyperfinite i.e. it belongs to the enlargement of the set of finite subsets of some set in U_A. We can then define by enlargement the sum operation \sum for a hyperfinite set of indices. This internal operation has by transfer the following characteristic properties:

1. $\sum_{b \in B} \lambda_b b = 0$
2. $\sum_{b \in B_1 \cup B_2} \lambda_b b + \sum_{b \in B_1 \cap B_2} \lambda_b b = \sum_{b \in B_1} \lambda_b b + \sum_{b \in B_2} \lambda_b b$, for B_1 and B_2 hyperfinite sets.

This leads to:

Proposition 5 Let B be an orthonormal hyperbasis of a hyperhermitian space F. Every $x \in F$ could be expressed as: $x = \sum_{b \in B} < b, x > b$

Remark 6 Infinite hyperfinite sets are uncountable.

2.3 Hull of a hyperhermitian space

Let F be a hyperhermitian space with a scalar product $<, >$. We define a hypernorm $|||$(i.e. a norm with hyperreal values) by $||x|| = \sqrt{< x, x >}$.

Let us consider now the set $F_b \subset F$ of bounded hypernorm elements and define over F_b an equivalence relation \sim by: $x \sim y$ iff $x - y$ has an infinitesimal norm. The operations over F are preserved by passing to the quotient space and make of $^eF = F/\sim$ a complex vector space. The scalar product $<, >$ is also preserved by passing to the quotient and make of eF a prehilbertian space. A classic result (see [Luxemburg Stroyan]) shows that eF is a Hilbert space. For $x \in ^eF$, we call shadow of x the class of x in eF and denote it also $^o x$.

Let B be an orthonormal hyperbasis of F. If F is a non finite-dimensional space, set B is uncountable, while for every bounded x, the subset $\{ b \in B / < b, x > \text{ is not negligible} \}$ is countable. This prevents the extension of the equality $x = \sum_{b \in B} < x, b >$ to the hull of F.

2.4 The Loeb spectral measure

Let F be an infinite-dimensional hyperhermitian space and B an orthonormal basis. The set $\mathcal{F}_0(B)$ of hyperfinite subsets of B is a Boolean algebra where the union of a increasing sequence (B_n) does not belong to the Boolean algebra unless this sequence is stationary. For every $\xi \in F_b$ we define a positive measure on $\mathcal{F}_0(B)$ by $\nu_{\xi}(C) = ^o \langle \sum_{b \in C} | < b, \xi > |^2 \rangle$. By the fundamental theorem of P. Loeb, this measure extends to the Boolean σ-algebra $\mathcal{F}(B)$ generated by $\mathcal{F}_0(B)$ and depends only on the shadow h of ξ.

Theorem 7 There is a unique mapping ϖ from the Boolean σ-algebra $\mathcal{F}(B)$ to the set of orthogonal projectors of eF such that for any $h \in ^eF$ and any $C \in \mathcal{F}(B)$: $\nu_h(C) = < h, \varpi(C)h >$.

4
2.5 Hull of a symmetric internal linear function over a hyperhermitian space

Let \(v \) be this function. The linear mapping \(v - iI \) (where \(I \) is the identity function) is bijective and allows us to define the Cayley transform \(c_v = (v + iI)(v - iI)^{-1} \) which is a unitary function that becomes, by passing to the quotient, a unitary function \(^e c_v \) over \(^e F \). Let \(^e F_{v,f} \) be the orthogonal of the eigenspace of \(^e c_v \) associated to the eigenvalue 1.

The graph \(\Gamma_v \subset F \times F \) is an internal subset. The shadows of \(\Gamma_v \) bounded elements in \(^e (F \times F) \) make up a closed subspace \(G_v \). Note here that \(^e (F \times F) \) could be easily identified with \(^e F \times ^e F \).

Proposition 8 The intersection \(G_v \cap ^e F_{v,f} \times ^e F_{v,f} \) is the graph of a self-adjoint operator \(t_v \) in \(^e F_{v,f} \).

Let us define an orthonormal hyperbasis \(B \) of \(F \) made of \(v \) eigenvectors. The mapping \(b \mapsto \lambda_b \) (which associates to an eigenvector \(b \) its eigenvalue) is an internal hyperreal function. The set \(B_{v,f} \) of \(v \) eigenvectors with bounded eigenvalues is a borelian set in the sense of 2.4.

Proposition 9 The orthogonal projector over \(^e F_{v,f} \) is the orthogonal projector associated to the borelian set \(B_{v,f} \) by the spectral measure \(\varpi \) defined in 2.4.

For any \(\lambda \in \mathbb{R} \) the set \(\Omega_{\lambda} = \{ b \in B_{v,f} \mid ^e \lambda_b \leq \lambda \} \), is a borelian set. We can thus define \(E_{\lambda} = \varpi(\Omega_{\lambda}) \) as an orthogonal projector in \(^e F_{v,f} \).

Proposition 10 We have \(t_v = \int_{-\infty}^{+\infty} \lambda dE_{\lambda} \), which means that \((E_{\lambda}) \) is the spectral family of \(t_v \).

3 Renormalization of an orthonormal basis

We still consider a hyperhermitian space \(F \) and an orthonormal hyperbasis \(B \) of \(F \).

3.1 \(^e F_{B,h} \) Spaces

For any element \(h \in ^e F \), \(h =^o x \) and \(^e F_{B,h} \) denotes the closed subspace generated by \(\varpi(C)(h) \), where \(C \) evolves in the Borel algebra \(\mathfrak{F}(B) \).

\(\nu_h \) is the unique measure over \(\mathfrak{F}(B) \) such that

\[
\nu_h(C) = ^o \left(\sum_{b \in C} |< b, x >|^2 \right)
\]

for every hyperfinite subset \(C \).
Proposition 11 a. There is a unique isometry $J_{B,h} : {}^eF_{B,h} \to L^2(B, \nu_h)$ that links $\varpi(C)(h)$ to the characteristic function class of C in $L^2(B, \nu_h)$.

b. Let z be a bounded element of F and k its shadow in $^eF_{B,h}$. The image k of k is the class of the function $f_z : b \mapsto \left(\frac{<b,z>}{<b,x>} \right)$ if this ratio is bounded and 0 otherwise.

c. Let ζ be the measure $\nu_k - |k|^2 \nu_h$. ζ and ν_h are mutually singular (and $\nu_k = |k|^2 \nu_h + \zeta$ is the Lebesgue decomposition of ν_k with respect to ν_h).

Remark 12 a. The quantity $\frac{<b,z>}{<b,x>}$ is in general the ratio of two infinitesimals. We cannot indeed express it through the shadows h and k of x and z.

b. We will determine $J_{B,h}^{-1}$ in the next paragraph (Theorem 14).

3.2 Introduction of a second scalar product Let us consider a second internal scalar product $[,]$ over the hyperhermitian space F. There exists a symmetric positive definite internal linear function j such that $[x,y] = < j(x), j(y) >$. The dual scalar product $\{,\}$ is defined by $\{x,y\} = < j^{-1}(x), j^{-1}(y) >$ and we have $|<x,y>|^2 \leq [x,x]\{y,y\}$ for every x,y.

We now introduce the mapping:

$${}^eF_{[,]} \times {}^eF_{\{,\}} \to \mathbb{C}$$

where $\langle {}^o x_{[,]}, {}^o y_{\{,\} \rangle} = {}^o < x, y >$,

$${}^eF_{[,]}$$ is the hull of F with a scalar product $[,]$,

$${}^eF_{\{,\}}$$ is the hull of F with a scalar product $\{,\}$,

$${}^o x_{[,]}$$ is the shadow of x in $^eF_{[,]}$,

$${}^o y_{\{,\}}$$ is the shadow of y in $^eF_{\{,\}}$.

Reminder - Let G be a complex vector space. A mapping $f : G \to \mathbb{C}$ is called antilinear if $f(x + y) = f(x) + f(y)$ and $f(\lambda x) = \lambda f(x)$. This property is equivalent to have $\overline{f} : x \mapsto \overline{f(x)}$ linear.

A linear function f over a normed space G is bounded, if the linear form \overline{f} is bounded. The norm of f is then defined as the norm of \overline{f}. The vector space of bounded antilinear functions from G to \mathbb{C}, is called the antilinear dual of G and denoted \tilde{G}.

6
Proposition 13 Every linear form \(f \) over \({^e}_F \{, \} \) can be defined as \(y \mapsto \langle x_f, y \rangle \) with a unique \(x_f \in {^e}_F [,] \). The mapping \(f \mapsto x_f \) is an antilinear bijective isometry from the dual of \({^e}_F [,] \) into \({^e}_F [,] \).

Every antilinear form \(\phi \) over \({^e}_F [,] \) can be defined as \(x \mapsto \langle x | \phi, y \rangle \) with a unique \(y_\phi \in {^e}_F \{, \} \). The mapping \(\phi \mapsto y_\phi \) is an antilinear bijective isometry from the dual of \({^e}_F [,] \) into \({^e}_F \{, \} \).

In other words, the sesquilinear form \(\langle | \rangle \) puts in duality \({^e}_F [,] \) and \({^e}_F \{, \} \).

In addition we can find an orthonormal hyperbasis \(\Gamma \) of \(F [,] \) which is also orthogonal for \(<, > \).

The hypersum \(\sigma = \sum_{\gamma \in \Gamma} \| \langle \gamma, \gamma \rangle \| = \sum_{\gamma \in \Gamma} \sqrt{\langle \gamma, \gamma \rangle} \) is independent of the choice of \(\Gamma \) basis.

Theorem 14 Assume \(\sigma \) bounded.

a. The identity mapping from \(F \) to \(F \) transforms bounded elements for \([,] \) into bounded elements for \(<, > \) and bounded elements for \(<, > \) into bounded elements for \(\{, \} \). This induces, by passing to the quotient, continuous mappings : \({^e}_F [,] \to {^e}_F \) and \({^e}_F \to {^e}_F \{, \} \).

b. The complementary of the set \(\{ b | \frac{b}{<x,b>} \text{ is bounded for } \{, \} \} \) is of null \(\nu_h \)-measure. Let us define the following function :

\[
\phi_x : B \to {^e}_F \{, \} \quad b \mapsto \begin{cases} \circ \left(\frac{b}{<x,b>} \right) & \text{if } \frac{b}{<x,b>} \text{ is bounded} \\ 0 & \text{if not} \end{cases}
\]

c. Let \(f \in L^2(B, \nu_h) \) and \(J_{B,h} : {^e}_F_{B,h} \to L^2(B, \nu_h) \) the isometry defined in proposition \(\ref{prop:Isometry} \). The mapping :

\[
B \to \quad {^e}_F \{, \} \\
b \mapsto f(b) \phi_x(b)
\]

is weakly integrable. For every \(q \in {^e}_F_h \) we have :

\[
\langle \tilde{q}, J_{B,h}^{-1}(f) \rangle = \int_B f(b) \langle q, \phi_x(b) \rangle d\nu_h(b)
\]

where \(\tilde{q} \) is the image of \(q \) by the mapping : \({^e}_F [,] \to {^e}_F \) defined in a.

Remark 15 a. Point c. could be also expressed as : the weak integral \(\int_B f(b) \langle q, \phi_x(b) \rangle d\nu_h(b) \) is the image of \(J_{B,h}^{-1}(f) \) by the mapping : \({^e}_F \to {^e}_F \{, \} \) defined in point a.
b. With a possible exception for a countable set of elements \(b\), the scalar product \(<x, b>\) is infinitesimal and \(\frac{b}{<x, b>}\) is thus unbounded for \(<, >\). The introduction of the \(\{, \}\) associated norm (renormalization procedure) allows however to extract a finite value.

4 Application to spectral theory

Let \(G\) be a complex vector space with a locally convex topology, \(<, >\) a continuous scalar product over \(G\), and \(u\) a continuous linear function over \(G\), symmetric and essentially selfadjoint relative to \(<, >\). We have the following results :

a. \(< u(x), y > = < x, u(y) >\) for every \(x\) and \(y\) in \(G\),

b. If \(\hat{G}\) is the completion of \(G\) for the scalar product \(<, >\), the closure of the graph of \(u\) in \(\hat{G} \times \hat{G}\) is the graph of a selfadjoint operator \(\tilde{u}\).

Note

1. A scalar product \([,]\) over \(G\) is nuclear (relative to \(<, >\)) if there is a constant \(C\) such that \(\sum_{i=1}^{n} \|b_i\|^2 = \sum_{i=1}^{n} < b_i, b_i > \leq C\) for any finite sequence \(b_1, ..., b_n\) of vectors of \(G\) that is orthonormal for \([,]\).

2. \([,]\) is called strongly nuclear (relative to \(<, >\)) if there is an auxiliary nuclear scalar product \([,]_{aux}\) such that \([,]\) is nuclear relative to \([,]_{aux}\).

In what follows we assume a fixed scalar product \([,]\) over \(G\) continuous and strongly nuclear relative to \(<, >\). The existence of such a scalar product is guaranteed if \(G\) is a nuclear space.

We introduce the enlargement \(*G\) of \(G\) and provide it with the internal scalar product obtained by extending the scalar product \(<, >\) (with the same notation). We then extend \(u\) into an internal linear application \(*u\) over \(*G\). By proposition 3 there exists a hyperfinite-dimensional internal subspace \(F\) of \(*G\) that contains the image of \(G\) in \(*G\) by the mapping \(*\).

Let us fix such a subspace \(F\) that we assume hyperhermitian for the scalar product \(<, >\). To simplify notations, we identify \(G\) with its image in \(\overline{F}\).

The canonical injection of \(G\) into \(F\) induces an isometry from \(G\) into \(\overline{F}\); and the closure \(\overline{G}\) of \(G\) in \(\overline{F}\) is a completion of \(G\) for \(<, >\).

Let \(v\) be a mapping over \(F\) that associates to an element \(x\) the orthogonal projection of \(u(x)\) over \(F\). \(v\) is an internal linear application, symmetric for \(<, >\), that extends \(u\). We can thus apply to \(v\) propositions 8 and 9 using same notations :
Proposition 16 a. The mapping t_v associated to v in proposition 8 is defined everywhere in G; and $t_v = u(x)$.

b. Let (E_λ) be the spectral family associated to t_v in proposition 10. Every E_λ preserves the closure \overline{G} and the family $\left(E_\lambda|_G \right)$ of E_λ restrictions to \overline{G} is the spectral family of projectors of the closure \overline{u} of u.

Remark 17 Passing from G, u to F, v can be seen as the nonstandard variant of the Ritz projection method.

4.1 Disintegration of the measure ν_h Let us fix an orthonomal hyper-basis B of eigenvectors of v and denote λ_b the eigenvalue associated to eigenvector b and ϖ the Loeb spectral measure associated to B in theorem 7. Let h be an element of \overline{G}. Propositions 9 and 16 show that $\sigma_h(\lambda) = \langle h, E_\lambda h \rangle$ is equal to $\langle h, \varpi(\Omega_\lambda)(b) \rangle$ where Ω_λ is the set of b such that λ_b is bounded and $\circ \lambda_b \leq \lambda$.

Proposition 18 Let q be a real function defined on B as follows :

$$
q(b) = \begin{cases}
\circ \lambda_b & \text{if } \lambda_b \text{ is limited} \\
0 & \text{otherwise}
\end{cases}
$$

The Stieljes measure generated by the increasing real function σ_h is the image of measure ν_h by q.

Since a linear raising $j : L^\infty(\mathbb{R}, d\sigma_\lambda) \rightarrow L^\infty(\mathbb{R}, d\sigma_\lambda)$ (i.e. a linear mapping such as ϕ is the class of $j(\phi)$) exists, with $L^\infty(\mathbb{R}, d\sigma_\lambda)$ the space of essentially bounded numerical functions, we have the following proposition :

Proposition 19 We can associate to every hyperfinite subset C of B an element ω_C of the space of essentially bounded numerical functions $L^\infty(\mathbb{R}, d\sigma_\lambda)$, that meets the following conditions :

a. The function ω_C takes only positive real values

b. $\omega_{\varnothing}(\lambda) = 0$ and $\omega_{C_1 \cup C_2}(\lambda) = \omega_{C_1}(\lambda) + \omega_{C_2}(\lambda)$ if C_1 and C_2 are disjoint.

c. Every numerical function f integrable with respect to $d\sigma_\lambda$ verifies: $\int_C f(q(b))d\nu_h(b) = \int_{-\infty}^{+\infty} f(\lambda)\omega_C(\lambda)d\sigma_h(\lambda)$.

Statements a. and b. show that we can extend the mapping $\tau_\lambda : C \mapsto \omega_C(\lambda)$ to a Loeb measure over the Boolean σ-algebra $\mathfrak{S}(B)$.
Proposition 20 a. \(\nu_h(C) = \int_{-\infty}^{+\infty} \tau_\lambda(C) d\sigma_h(\lambda) \) for every borelian set \(C \).

b. For \(\sigma_h \)-almost every \(\lambda \), the measure \(\tau_\lambda \) is carried by the set \\
\(q^{-1}(\lambda) = \{ b \in B \mid \lambda_b \text{ is bounded and } ^o\lambda_b = \lambda \} \)

This means that the family \((\tau_\lambda) \) is a disintegration of the measure \(\nu_h \) with respect to its image by \(q \).

We assumed so far the existence of a scalar product \([,]\) that is strongly nuclear over \(G \). This scalar product extends to \(^*G \) and induces a scalar product on \(F \) with hypercomplex values. We will keep denoting it \([,]\).

We can now introduce the dual scalar product \([,]\) (see 3.2):

Lemma 21 a. Let \(\Gamma \) be an orthonormal basis for \([,]\) that is also orthogonal for \(<, > \). The hypersum \(\sum_{\gamma \in \Gamma} \| \gamma \| \) is bounded – and we can thus apply theorem 14.

b. Let \(\phi \) be an element of \(F \) limited for the dual scalar product \([,]\). For every \(g \in G \) the hypercomplex \(< g, \phi > \) is limited and the function \(\phi^G : g \mapsto ^o(< g, \phi >) \) is a continuous antilinear form on \(G \).

Consequences of lemma 21

a. \(\eta_b = \frac{b}{\sqrt{\langle b,b \rangle}} \) is of norm 1 for the dual scalar product \([,]\) and defines therefore the continuous antilinear form \(\eta^G_b \) on \(G \).

b. Assume again theorem 14 notations. If \(h \) is an element of \(^cF \) and a shadow of an element \(x \), we know that \(\nu_h \)-almost every \(\frac{b}{\langle x,b \rangle} \) is limited for \([,]\) and we have therefore a continuous antilinear form \(\phi^G_x : g \mapsto ^o(\frac{\langle g,b \rangle}{\langle x,b \rangle}) \).

Consider an element \(h \) of \(G \). \(h \) is its own shadow. Since \\
\(\frac{b}{\langle h,b \rangle} = \frac{\sqrt{\langle h,b \rangle}}{\langle h,b \rangle} \cdot \frac{b}{\sqrt{\{b,b\}}} \) is limited for \([,]\) iff \(< h, \frac{b}{\sqrt{\{b,b\}}} > \) is not infinitesimal (i.e. if \(\eta^G_h(h) \neq 0 \)). And we have : \(\phi^G_b(b)(g) = \frac{\eta^G_b(g)}{\eta^G_b(h)} \).

4.2 Main Theorem Let \(G'_a \) be the antilinear dual of \(G \) (i.e. the space of continuous antilinear forms on \(G \)). \(G'_a \) is obviously a complex subspace of the space of complex functions defined on \(G \).

The function \(u \) admits an adjoint \(u^* \) which is the linear function from \(G'_a \) into itself defined by \(u^*(\phi)(g) = \phi(u(g)) \). We will call eigenfunctional of \(u \) any element of \(G'_a \) which is an eigenvector of \(u^* \). Those of \(\eta^G_b \) which
are not null are such eigenfuctionals of u (for the eigenvalues λ_b).

We finally get to the last and main theorem of this work (with the same notations used so far):

Theorem 22 Let h be an element of G and B_h the set of $b \in B$ such that $\eta^G_h(h) \neq 0$.

a. The set B_h is a borelian subset of B whose complementary is of null σ_h-measure. For $b \in B_h$ the antilinear form η^G_h is an eigenfuctional of u for the eigenvalue λ_b.

b. The family $\left(\phi^G_h(b) = \frac{\eta^G_h(b)}{\eta^G_h(h)} \right), b \in B_h$, is weakly τ_λ-integrable for σ_h-almost every λ.

c. For almost every λ the weak integral $\omega_{h,\lambda} = \int_{B_h} \frac{1}{\eta^G_h(h)} \eta^G_h b d\tau_\lambda(b)$ is, if not null, an eigenfuctional of u for the value λ.

d. Let (E_λ) be the spectral projector family of the closure of u in the completion of G for $\langle \cdot,\rangle$ (see proposition 16). For any $g \in G$ we have $\langle\cdot, E_\lambda h \rangle = \int_{-\infty}^{\lambda} \omega_\mu(g) d\sigma_h(\mu)$

Variant – The antilinear form $g \mapsto \langle g, E_\lambda h \rangle$ associated to an element $E_\lambda h$ of the completion of G, is the weak integral $\int_{-\infty}^{\lambda} \omega_\mu d\sigma_h(\mu)$ where for almost every μ the antilinear form ω_μ is, if not null, an eigenfuctional of u for the eigenvalue μ of u.

Remark 23 The statement c. of the preceding theorem is a nonstandard approach of the integral representation of the spectral projectors of an essentially selfadjoint operator with eigenfunctionals (see [Gelfand Chilov Tome 3 Chapter 4 n° 4.2 Theorem 1]).

The outcome of this approach is the description of these eigenfuctional ω_i with the eigenvectors of an extension v of the considered operator u in hyperfinite dimension. These eigenvectors do not have an immediate interpretation in the initial space G; but their normalised forms for the scalar product $\langle \cdot,\rangle$ define eigenfunctionals.

We aggregate through integration those eigenfunctionals which are associated to the same eigenvalue; and here again the Loeb’s technique comes to make things much easier.

Acknowledgements
I would like to thank Professor François Aribaud for his helpful comments and suggestions. All errors and omissions remain mine.
References

[Goldblatt] - Robert Goldblatt - Lectures on the Hyperreals - An Introduction to Nonstandard Analysis Graduate Texts in Mathematics n° 188 - Springer Verlag 1998

[Jech] - Thomas Jech - Set Theory - Pure and Applied Mathematics - Academic Press 1978

[Loeb Wolff] - Peter A. Loeb and Manfred Wolff - Nonstandard Analysis for the working mathematician Mathematics and its applications vol 510 Kluwer Academic Publishers 2000

[Luxemburg Stroyan] - W.A.J Luxemburg and K.D.Stroyan - Introduction to the Theory of Infinitesimals - Academic Press 1976