CO$_2$ Capture and Storage in Coal Gasification Projects

Anand B Rao1,2,3,* and Pranav C Phadke1

1Centre for Technology Alternatives for Rural Areas (CTARA), Indian Institute of Technology Bombay, Powai, Mumbai 400076, INDIA
2Department of Energy Science & Engineering (DESE), Indian Institute of Technology Bombay, Powai, Mumbai 400076, INDIA
3Inter-disciplinary Program in Climate Studies, Indian Institute of Technology Bombay, Powai, Mumbai 400076, INDIA

*Corresponding Author. Tel: +91-22-25767877, Fax: +91-22-25767874, E-mail: a.b.rao@iitb.ac.in

Abstract. In response to the global climate change problem, the world community today is in search for an effective means of carbon mitigation. India is a major developing economy and the economic growth is driven by ever-increasing consumption of energy. Coal is the only fossil fuel that is available in abundance in India and contributes to the major share of the total primary energy supply (TPES) in the country. Owing to the large unmet demand for affordable energy, primarily driven by the need for infrastructure development and increasing incomes and aspirations of people, as well as the energy security concerns, India is expected to have continued dependence on coal. Coal is not only the backbone of the electric power generation, but many major industries like cement, iron and steel, bricks, fertilizers also consume large quantities of coal. India has very low carbon emissions (~ 1.5 tCO$_2$ per capita) as compared to the world average (4.7 tCO$_2$ per capita) and the developed world (11.2 tCO$_2$ per capita). Although the aggregate emissions of the country are increasing with the rising population and fossil energy use, India has a very little contribution to the historical GHG accumulation in the atmosphere linked to the climate change problem. However, a large fraction of the Indian society is vulnerable to the impacts of climate change – due to its geographical location, large dependence on monsoon-based agriculture and limited technical, financial and institutional capacity. Today, India holds a large potential to offer cost-effective carbon mitigation to tackle the climate change problem. Carbon Capture and Storage (CCS) is the process of extraction of Carbon Dioxide (CO$_2$) from industrial and energy related sources, transport to storage locations and long-term isolation from the atmosphere. It is a technology that has been developed in recent times and is considered as a bridging technology as we move towards carbon-neutral energy sources in response to the growing concerns about climate change problem. Carbon Capture and Storage (CCS) is being considered as a promising carbon mitigation technology, especially for large point sources such as coal power plants. Gasification of coal helps in better utilization of this resource offering multiple advantages such as pollution prevention, product flexibility (syngas and hydrogen) and higher efficiency (combined cycle). It also enables the capture of CO$_2$ prior to the combustion, from the fuel gas mixture, at relatively lesser cost as compared to the post-combustion CO$_2$ capture. CCS in gasification projects is considered as a promising technology for cost-effective carbon mitigation. Although many projects (power and non-power) have been announced internationally, very few large-scale projects have actually
come up. This paper looks at the various aspects of CCS applications in gasification projects, including the technical feasibility and economic viability and discusses an Indian perspective. Impacts of including CCS in gasification projects (e.g. IGCC plants) have been assessed using a simulation tool. Integrated Environmental Control Model (IECM) – a modelling framework to simulate power plants - has been used to estimate the implications of adding CCS units in IGCC plants, on their performance and costs.

1. Introduction

Close to one third of the population in India has no access to reliable electricity. The per capita annual energy consumption in India is ~ 1075 kWh [1] whereas the global average is ~ 3200 kWh [2]. The required electricity is presently being supplied by coal, natural gas, hydro, nuclear power, and renewable energy, with coal contributing to about 60% [1]. Table 1 provides a snapshot about current installed capacity in the country as of 31st Dec 2016.

Table 1. Total installed capacity in India as of 31st Dec 2016 [1]

Energy Source	Installed Capacity (MW)	% of Total
Coal	188,968	60.0%
Gas	25,282	8.2%
Oil	919	0.3%
Hydro	43,139	13.9%
Nuclear	5,780	1.9%
Renewable Energy Sources*	45,917	14.8%
Total	**310,005**	**100%**

*Renewable Energy Sources include small hydro project, biomass, waste to electricity, wind energy, solar (PV + thermal)

As per the NITI Ayog report [3], coal is expected to continue to be a major energy source in India for the next few decades due to the large demand of energy requirement of the economy, and adequate availability of coal. India has substantial reserves of low sulfur, low grade (high ash) coal, which provides a reliable, cheap baseload power. But the coal-based thermal power industry is responsible for significant share of emissions of the industrial sector in India. Main emissions from coal fired thermal power plants are CO₂, NOₓ, SO₂, and fly ash [4]. Between 2001-02 to 2009-10, emissions from coal power plants have increased by 4.9% for CO₂, 4.7% for SO₂ and 4.9% for NOₓ measured in CAGR (compounded annual growth rate) [4]. Recognizing these worrying trends, several countries have imposed emission control norms for coal power plants. In India, the Ministry of Environment, Forest & Climate Change (MoEF&CC), in December 2015, announced more stringent emission control standards for coal-based thermal power plants in order to drastically reduce emissions of particulate matter (PM), sulfur dioxide (SO₂), oxides of nitrogen (NOₓ). However, CO₂ emissions from coal power plants in India are currently unregulated. Coal power plants have the highest density of CO₂ emissions when normalized per unit area and unit time [5]. Recognizing that CO₂, a major greenhouse gas responsible for climate change, countries like Canada, US, UK have already imposed CO₂ emission standards for coal power plants [6]. Thus, for climate change mitigation while continuing the use of fossil fuels, a special attention needs to be given to the reduction of CO₂ emissions by capture and storage (CCS) techniques applied to power generation and other energy intensive industrial sectors (cement, metallurgy, oil refinery etc.) [7].

Carbon capture and storage or carbon capture and sequestration (CCS) involves capture and separation of CO₂ as a concentrated stream for subsequent transport and storage. Thus, the concept of carbon capture and sequestration (CCS) can be divided into three major steps namely: CO₂ capture, transport and storage. The separation stage (i.e. CO₂ capture) is the most energy intensive and largely determines the cost of the CCS as a whole. It represents ~ 75–80% of the total cost of CCS [8]. The three potential technology options which have a potential to handle CO₂ emissions from large-scale
point sources, such as the fossil fuel based power plants are: a) Post-combustion capture of CO$_2$ from the flue gas, b) Pre-combustion capture of CO$_2$ from the fuel gas, and c) Oxyfuel combustion for CO$_2$ capture [9]. Subsequently, the captured CO$_2$ is then transported using pipelines, ships, trucks and trains to suitable storage sites. There are broadly three ways of sequestering CO$_2$: geological storage, ocean and mineral fixation.

Most available CCS technologies capture about 85–95% of the CO$_2$ processed in a capture plant. A power plant equipped with a CCS system (with access to storage) would need roughly 10–40% more energy than a plant of equivalent output without CCS, of which most is for capture and compression. With secure storage, the net result is that a power plant with CCS could reduce CO$_2$ emissions from power plant to the atmosphere by approximately 80–90% compared to a plant without CCS [8]. Thus, CCS can be a key tool in tackling climate change and would become an unavoidable option if we are to ensure that we can meet the increasing electricity demand with an acceptable carbon footprint.

Post-combustion capture of CO$_2$ from the flue gas is employed in case of conventional power plants. However, before implementation of CCS, these power plants also require other emission control technologies for stringent SO$_2$ and NO$_x$ control. This further adds to the cost of electricity.

An alternative technology to generate power from coal is through the gasification process. Here, the coal is converted into a gaseous mixture (syngas) in a gasifier, which is then subjected to a gas turbine to generate electricity. Additional power is generated from a steam turbine using steam generated from the heat recovered from the flue gases of the gas turbine. It is possible to undertake pre-combustion capture of CO$_2$ from this “Integrated Gasification Combined Cycle (IGCC) plant” where CO$_2$ can be separated from syngas at a much lower energy penalty, also resulting in much lower emissions of conventional pollutants as compared to the conventional power plants. In this paper, we focus on this advanced coal technology and the feasibility of pre-combustion capture of CO$_2$ in terms of performance, emissions, capital cost and levelised cost of electricity (LCOE).

2. CCS in Coal Gasification Projects

Integrated Gasification Combined Cycle (IGCC) is emerging as a promising technology to utilize low quality or contaminated energy resources such as coal. It is a technology that uses a high-pressure gasifier to turn coal and other carbon based fuels into pressurized gas—synthesis gas (syngas) and can then remove impurities from the syngas prior to the power generation cycle. This results in lower emissions of SO$_2$, particulates, mercury, and even CO$_2$. Thus, by integrating CCS with IGCC plants, drastic CO$_2$ emission reductions (81-91%) can be achieved [8]. The schematic of a typical IGCC plant with CCS has been shown in Figure 1.

![Figure 1. Schematic of IGCC Plant with CCS][9]
Initially, coal is fed into a high-pressure vessel called gasifier with controlled quantity of oxygen (or air) and steam (or water) to produce hot syngas. This hot syngas is then cooled and filtered to remove particulate matter. The heat extracted is used to generate high-pressure steam. The sour water gas shift (WGS) reaction is a key conversion step in the IGCC-CCS process in which carbon monoxide (CO) produced by the gasification of the fuel is reacted with steam to produce additional hydrogen and CO₂ in the presence of H₂S [9, 10]. The resulting acid gas stream consisting of H₂S, CO₂ and H₂O is sent to the Selexol™ system and Claus unit where H₂S is recovered as elemental sulfur, which is a valuable byproduct. Most of the CO₂ in the flue gas stream is then recovered, compressed, transported and sequestered.

2.1 Advantages of IGCC with CCS
1. Less pollution: Significant reduction in emission of criteria air pollutants (SO₂ and NOₓ) compared to Pulverized Coal (PC) boilers.
2. Lower energy penalty: Typically, the syngas is obtained at high pressure with substantial CO₂ content and hence, less energy required for the separation and capture of CO₂ from the syngas.
3. Multi-product flexibility: Hydrogen (H₂) can be consumed in the gas turbine to generate power, or as a valuable chemical agent with a great variety of industrial applications.
4. Valuable byproducts: Sulfur (almost all the sulfur in the coal can be recovered), Nitrogen (from the air separation unit) and CO₂ (from the CO₂ capture unit) are also obtained as byproducts [9].

2.2 Disadvantages of IGCC with CCS:
1. Gasification is a complicated chemical process and not many IGCC plants exist around the globe. For a given coal, the resulting product (syngas) depends on fine-tuning of a variety of control parameters including the gasifier design, the gasifier temperature and pressure, and the amount of steam and air/ oxygen input.
2. Uncertainty about the capture ready status of IGCC plants with CCS for Indian scenarios. Pilot projects in Indian context required. Also, compared to post-combustion capture, it is not easy to retrofit an existing IGCC plant to accommodate CO₂ capture unit, since it will affect the power generation from the turbines.
3. Uncertainty about use of low quality coals for IGCC plants with CCS.
4. Need for a large-scale demonstration project to establish the commercial viability of the technology.
5. Higher capital cost of IGCC plants compared to PC plants, lack of experience of CCS, lack of accurate estimation of storage potential and the perceived financial risk [9].

3. Current Global Status of Gasification based CO₂ Capture
Table 2 lists some of the gasification projects that are operational/under construction/under evaluation globally which employ pre-combustion (gasification) CO₂ capture & storage.

Table 2. Some of the gasification projects that are operational/under construction/under evaluation globally which employ Pre-combustion (gasification) CO₂ capture & storage [11]

Project name	Location	Purpose	CO₂ Capture Start	Capture capacity (Mtpa)	Transport type	Primary storage type
Great Plains Synfuel Plant and Weyburn-Midale Project	Canada	Production of natural gas and other by-products	2000	3.0	Pipeline	Enhanced oil recovery
Out of these projects, Kemper County energy facility is the only large scale IGCC+CCS project for electric power generation, which is expected to start CO₂ capture soon. A 582 MW plant using TRIG™ Integrated Gasification Combined Cycle is set to capture at least 65% of CO₂ emissions and use it for enhanced oil recovery by sequestering it in Mississippi oil fields, Mississippi. The total cost of the project, designed to generate electricity from burning 4.5 million tonnes of Mississippi lignite coal per year, is around $7.1 billion [11, 12].

4. Plant Simulations
The impact of integrating CCS in an IGCC plant has been demonstrated here through a case study simulation. Using Integrated Environmental Control Model (IECM) – a modelling framework to simulate power plants [13], we simulated an IGCC plant with and without CCS. Plants are simulated using both bituminous and sub-bituminous coal, whose composition is provided in Table 3.

Project	Location	Type	Year	Power	Method	Cost
Kemper County Energy Facility	Mississippi, USA	Power Generation	2017	3.0	Pipeline	Enhanced oil recovery
Yan’gong Integrated Carbon Capture and Storage Demonstration Project	China	Chemical Production	2018	0.4	Pipeline	Enhanced oil recovery
Texas Clean Energy Project	Texas, USA	Power Generation	2021 (estimate)	2.4	Pipeline	Enhanced oil recovery
GreenGen IGCC Project (Phase 3)	China	Power Generation	2022 (planned)	3.8	Pipeline	Dedicated Geological Storage
Caledonia Clean Energy Project	United Kingdom	Power Generation	2013	1	Pipeline	Enhanced oil recovery
Coffeyville Gasification Plant	Kansas, USA	Fertiliser production			Pipeline	Enhanced oil recovery
Yanchang Integrated Carbon Capture and Storage Demonstration Project	China	Power Generation			Pipeline	Enhanced oil recovery
Texas Clean Energy Project	Texas, USA	Power Generation			Pipeline	Enhanced oil recovery
GreenGen IGCC Project (Phase 3)	China	Power Generation			Pipeline	Dedicated Geological Storage
Caledonia Clean Energy Project	United Kingdom	Power Generation			Pipeline	Enhanced oil recovery
Coffeyville Gasification Plant	Kansas, USA	Fertiliser production			Pipeline	Enhanced oil recovery

Table 3. Characteristics of Coals considered for the Case Study

Bituminous Coal	C	H	N	S	O	HHV (MJ/kg)				
Moisture	11.12	9.70	63.75	4.50	1.25	2.51	6.88	27.14		
Ash Analysis (wt. %)			TiO₂	CaO	K₂O	Na₂O	MgO	SO₃		
SiO₂	46.80	18.00	20.00	0.20	1.00	7.00	1.90	0.60	1.00	3.50
Fe₂O₃	Al₂O₃	53.24	3.31	0.70	0.37	11.87	19.40			
P₂O₅	1.00	1.00	3.50							
Sub-Bituminous Coal	C	H	N	S	O	HHV (MJ/kg)				
Moisture	30.24	5.32	48.18	3.31	0.70	0.37	11.87	19.40		
Ash Analysis (wt. %)			TiO₂	CaO	K₂O	Na₂O	MgO	SO₃		
SiO₂	63.19	30.00	2.90	0.08	0.09	0.91	1.49	0.38	0.76	0.20
Fe₂O₃	Al₂O₃	2.90	0.08	TiO₂	CaO	K₂O	Na₂O	MgO	SO₃	
P₂O₅	1.00	1.00	3.50							

The details about the plant configurations and some key input parameters used in IECM simulations are listed in Table 4.
Table 4. Configuration of IGCC plant with and without CCS

Parameters	IGCC	IGCC + CCS	IGCC	IGCC + CCS
Gross Capacity (MW)	724.3	690.3	748.5	691.4
Coal	Bituminous	Sub-Bituminous		
Capacity Factor (%)	75			
Gasifier Temperature (°C)	1343			
Gasifier Pressure (Mpa)	4.24			
Turbine Inlet Temperature (°C)	1371			
Cost of Fuel ($/tonne)	42.09	9.64		
Annual operating hours (hours)	6575			
H2S Control	Selexol™			
H2S Removal Efficiency (%)	98			
Plant Life (years)	30			
CO2 Capture	-	Sour Shift + Selexol™	-	Sour Shift + Selexol™

The composition of the syngas obtained from the gasifier after the gasification of coal and the performance and cost results have been provided in Table 5 and Table 6, respectively.

Table 5. Syngas composition obtained from gasifier

Syngas composition obtained using bituminous coal	CO	H2	CH4	H2S	CO2	H2O	N2	Ar
	30.64	32.92	0.26	0.97	18.52	14.86	0.86	0.87

Syngas composition obtained using sub-bituminous coal	CO	H2	CH4	H2S	CO2	H2O	N2	Ar
	22.66	31.06	0.10	0.12	22.01	22.53	0.69	0.79

Table 6. Simulation Results for IGCC plant with and without CCS

Parameters	IGCC	IGCC + CCS	IGCC	IGCC + CCS
Net Capacity (MW)	609.0	529.7	620.0	513.3
Gross Capacity (MW)	724.3	690.3	748.5	691.4
Coal Type	Bituminous	Sub-Bituminous		
Cost of Fuel ($/tonne)	42.09		9.64	
Cost of Fuel ($/MJ)	1551		497.20	
Gross Plant Heat Rate, (kJ/kWh)	9247	10130	9448	10370
Net Plant Heat Rate, (kJ/kWh)	10990	13200	11410	13970
Net Plant efficiency (%)	32.73	27.27	31.56	25.78
Coal Flow Rate (kg/s)	68.55	71.58	101.27	102.66
Total Makeup Water Requirement (m³/MWh)	1.55	1.76	1.55	1.81
Emissions				
CO₂ emission (kg/MWh_{net})	918.39	93.10	1006.93	94.07
SO₂ emission (kg/MWh_{net})	0.57	0.07	0.09	0.01
NOₓ emission (kg/MWh_{net})	0.05	0.06	0.05	0.06
Particulate emission (kg/MWh_{net})	0.004	0.005	0.004	0.006
Cost (in 2014 USD)				
Total Capital Cost (M$)	1643	2177	1709	2259
Fixed O&M MS/year	52.90	73.08	55.26	76.83
Variable O&M MS/year	74.91	94.09	32.21	49.50
LCOE ($/MWh)	78.21	118.5	68.75	112.9
CO₂ Avoidance Cost ($/tonne)	-	49.30	-	48.73
It can be seen that it is difficult to keep the same power output of the IGCC plant, if CCS is incorporated. Using CCS, the CO₂ emissions from the IGCC plants can be reduced by about 90% as compared to that of the IGCC plant without CCS. However, the levelised cost of electricity (LCOE) increases by about 51% for the bituminous coal case and to about 64% for the sub-bituminous coal case. Thus, CCS can substantially reduce the CO₂ emissions though it is significantly expensive at present.

5. Barriers and Issues Related to CCS
CCS is still in developmental stages globally and following are some of the main barriers in adoption of this technology [14]:

1. Technical Issues: Worldwide still there aren’t many large scale successful CCS projects and thus on-field experience is still lacking with this technology. There is a lack of accurate geological storage site data and depending upon the location and plant size, feasibility studies are required. Also, there is no clarity about the feasibility of CCS retrofits for the existing plants, especially in case of IGCC plants.

2. Economic Issues: CCS technology drastically increases the levelised cost of electricity and also decreases the net plant output. Enhanced Oil Recovery (EOR) is currently the only attractive option for CO₂ storage, since the cost of storing the CO₂ is (partly) offset by the revenues accrued by oil recovered from the depleted/depleting oil fields. Access to funding from financing agencies and incentives are required.

3. Social Issues: Public acceptability of CCS is not yet understood.

4. Monitoring Issues: There is a risk of slow/accidental leakages of CO₂ to atmosphere. This poses a further environmental, health and safety risk. Rigorous monitoring is needed over long period of time.

5. Legal Issues: Issues related to land acquisition, ground water contamination, CO₂ leakages and long term liabilities need to be resolved.

6. Regulatory and Strategic Issues: Specific clearances would be required in addition to existing clearances and a smooth regulatory framework would be required.

6. Conclusion
CCS is a potential mitigation option to tackle global climate change problem, but it needs to overcome several barriers/challenges. The key challenges are technical feasibility, assessment of storage potential, scale up of technology, economic viability, public acceptance and monitoring issues. Pilot plants as well as demonstration projects are now under development across many countries. IGCC plant with CCS is an attractive option as it also reduces SO₂ and NOₓ emissions significantly and imposes (relatively) lower energy penalty for separation and capture of CO₂, as compared to combustion plants. However, the technology is yet to be demonstrated at the full scale. Gasification using the high ash containing coals in India is a challenge [15]. The issue of CCS drastically increasing the cost of electricity while reducing net power output poses the biggest barrier to acceptability of CCS in India [13]. Our priorities as a developing country - towards improving efficiency, reducing costs and increasing electricity accessibility - are in odds with that of the expected impacts of CCS implementation. However, R&D in CCS need to continue in search for more acceptable solution so as prepare ourselves for the future.

References
[1] Central Electrical Authority 2017 Executive Summary available at http://www.cea.nic.in/reports/monthly/executivesummary/2017/exec_summary-01.pdf
[2] The World Bank n.d., Electric Power Consumption (kWh per capita), available at http://data.worldbank.org/indicator/EG.USE.ELEC.KH.PC
[3] NITI Aayog 2015 A Report on Energy Efficiency and Energy Mix in the Indian Energy System (2030), Using India Energy Security Scenarios, 2047 http://niti.gov.in/content/report-energy-
efficiency-and-energy-mix-indian-energy-system-2030-using-india-energy

[4] Mittal M L, Sharma C amd Singh R 2014 *Environmental monitoring and assessment* **186** 6857-6866

[5] White C M, Strazisar B R, Granite E J, Hoffman J S and Pennline H W 2003 *Journal of the Air & Waste Management Association* **53** 645-715

[6] Electric Power Research Institute 2015 *Can Future Coal Power Plants Meet CO₂ Emission Standards Without Carbon Capture & Storage?* http://www.epri.com/abstracts/Pages/ProductAbstract.aspx?ProductId=000000003002006770

[7] Cormos C C 2012 *Energy* **42** 434-445

[8] IPCC 2005 *IPCC special report on carbon dioxide capture and storage* (Cambridge University Press)

[9] Rao A B 2007 *Carbon Capture and Sequestration: Integrating Technology, Monitoring, and Regulation* ed E J Wilson and D Gerard (Iowa: Blackwell Publishing) p 11-34

[10] Beavis R, Forsyth J, Roberts, E, Song B, Combes G, Abbott J and Barton I 2013 *Energy Procedia* **37** 2256-2264

[11] Global CCS Institute *Projects Database* https://www.globalccsinstitute.com/projects/large-scale-ccs-projects#map

[12] Mississipi Power Kemper County Energy Facility, *Quick Facts* http://www.mississippipower.com/about-energy/plants/kemper-county-energy-facility/facts

[13] Integrated Environmental Control Model (IECM) *Version 9.2.1* (Carnegie Mellon University) https://www.cmu.edu/epp/iecm/

[14] TERI *Barriers to CCS implementation in India* available at https://hub.globalccsinstitute.com/publications/india-ccs-scoping-study-final-report/8-barriers-ccs-implementation-india

[15] Singh N, Raghavan V and Sundararajan T 2013 In *9th Asia-Pacific Conf. on Combustion, Korean Combustion Society* (Gyeongju, Korea)

Acknowledgements

The authors are grateful to the GTWG-ACT project of the Department of Science and Technology (DST), Government of India, for financial support. Authors also thank the IECM team at the Carnegie Mellon University, USA, for making the tool freely available.