Supporting Information

Computational Design of Rhenium(I) Carbonyl Complexes for Anticancer Photodynamic Therapy

Daniel Álvarez,† M. Isabel Menéndez,† and Ramón López*†

†Departamento de Química Física y Analítica, Facultad de Química, Universidad de Oviedo, C/ Julián Clavería 8, 33006 Oviedo, Spain

*Corresponding author

Email address: rlopez@uniovi.es – Tel. +34 985 10 29 67
Discussion 1. Validating the computational protocol for geometry optimizations.

Discussion 2. Validating the computational protocol for TD-DFT calculations.

Table S1. Cartesian coordinates of the X-ray and B3LYP-D3/6-31+G(d)-LANL2DZ structures for the Re(I) complex 1ref.

Figure S1. Two comparative views for the X-ray and B3LYP-D3/6-31+G(d)-LANL2DZ structures of the Re(I) complex 1ref.

Table S2. X-Ray and B3LYP-D3/6-31+G(d)-LANL2DZ bond distances of the Re(I) complex 1ref along with absolute difference and square of the absolute difference of these distances.

Table S3. X-Ray and B3LYP-D3/6-31+G(d)-LANL2DZ bond angles of the Re(I) complex 1ref together with absolute difference and square of the absolute difference of these angles.

Table S4. Excitation energies and oscillator strengths of the first ten lowest-lying singlet-singlet electron transitions calculated for complex 1.

Table S5. Excitation energies and oscillator strengths of the first ten lowest-lying singlet-singlet electron transitions calculated for complex 2.

Table S6. Excitation energies and oscillator strengths of the first ten lowest-lying singlet-singlet electron transitions calculated for complex 3.

Figure S2. Electronic spectra computed for complex 1.

Figure S3. Electronic spectra computed for complex 2.

Figure S4. Electronic spectra computed for complex 3.

Table S7. Excitation energy of the most red-shifted absorption band found for complexes 1-3 along with the difference in absolute value between the computed excitation energies and the experimental value and the total error obtained.

Table S8. B3LYP-D3/6-31+G(d)-LANL2DZ relevant optimized geometry data for Re(I) complexes 1-3 and 1a-1s in their singlet ground states.

Table S9. PCM-TD-M06/6-31+G(d)-LANL2DZ//B3LYP-D3/6-31+G(d)-LANL2DZ excitation energies and oscillator strengths of the first ten lowest-lying singlet-singlet electron transitions for Re(I) complexes 1-3.

Table S10. B3LYP-D3/6-31+G(d)-LANL2DZ relevant optimized geometry data for Re(I) complexes 1-3 and 1a-1s in their triplet excited states.

Table S11. PCM-M06/6-31+G(d)-LANL2DZ//B3LYP-D3/6-31+G(d)-LANL2DZ energies in the singlet ground state and triplet excited state and difference between them, excitation energy, oscillator strength, dominant orbital excitations for the lowest-lying absorption band, HOMO and LUMO energies, and difference between them for Re(I) complexes 1-3 and 1a-1s.
Table S12. B3LYP-D3/6-31+G(d)-LANL2DZ variations of some relevant bond distances, bond angles, and dihedral angles when going from the singlet ground state to the corresponding first excited state of Re(I) complexes 1-3 and 1a-1s.

Figure S5. B3LYP-D3/6-31+G(d)-LANL2DZ singlet ground-state optimized geometries of Re(I) complexes 1a-1s.

Figure S6. Contour maps of the spin density distribution for the triplet excited state of the Re(I) complexes 1a-1s. For clarity, two views are given for each species.

Table S13. B3LYP-D3/6-31+G(d)-LANL2DZ variations of relevant bond distances, bond angles, and dihedral angles between complexes 1a-1h and 1.

Table S14. PCM-TD-M06/6-31+G(d)-LANL2DZ//B3LYP-D3/6-31+G(d)-LANL2DZ excitation energies and oscillator strengths of the first ten lowest-lying singlet-singlet electron transitions for Re(I) complexes 1a-1h.

Tables S15. B3LYP-D3/6-31+G(d)-LANL2DZ variations of relevant bond distances, bond angles, and dihedral angles between complexes 1i-1s and 1.

Table S16. PCM-TD-M06/6-31+G(d)-LANL2DZ//B3LYP-D3/6-31+G(d)-LANL2DZ excitation energies and oscillator strengths of the first ten lowest-lying singlet-singlet electron transitions for Re(I) complexes 1i-1s.

Figure S7. PCM-TD-M06/6-31+G(d)-LANL2DZ//B3LYP-D3/6-31+G(d)-LANL2DZ electronic absorption spectra of Re(I) complexes bearing the phosphine ligands DAPTA (1k), PMe3 (1p and 1q), and CAP (1r and 1s).

Figure S8. Contour maps of the frontier Kohn-Sham orbitals involved in the main orbital transition of the lowest-lying absorption band found for Re(I) complexes containing the phosphine ligands DAPTA (1k), PMe3 (1p and 1q) CAP (1r and 1s).

Table S17. B3LYP-D3/6-31+G(d)-LANL2DZ cartesian coordinates of the optimized structures in the singlet ground state of Re(I) complexes 1-3 and 1a-1s.

Table S18. B3LYP-D3/6-31+G(d)-LANL2DZ cartesian coordinates of the optimized structures in the triplet excited state of Re(I) complexes 1-3 and 1a-1s.

References related to Discussion 1.

References related to Discussion 2.
Discussion 1. Validating the computational protocol for geometry optimizations.

The geometry of all the Re(I) carbonyl complexes investigated in this work was optimized in the gas phase at the B3LYP-D3/6-31+G(d)-LANL2DZ level of theory. Although this computational level was chosen on the basis of numerous theoretical investigations on the photophysical and spectroscopic properties of Re(I) carbonyl complexes,1-39 we checked its performance for geometry optimizations by comparing the X-ray structure of a \(N\)-benzylated derivative of the Re(I) tricarbonyl complex containing pyridyl and pyridocarbazol ligands (\(1^{\text{ref}}\) in Scheme S1)40 with its B3LYP-D3/6-31+G(d)-LANL2DZ optimized structure. Complex \(1^{\text{ref}}\) is closely related to the Re(I) carbonyl indolato complexes studied in the present investigation and furthermore its X-ray structure is available.40 Cartesian coordinates of both structures are collected in Table S1.

![Scheme S1](image.png)

\textbf{Scheme S1.} \(N\)-benzylated derivative of the Re(I) tricarbonyl complex containing a pyridine ligand and another pyrido[2,3-\(a\)]pyrrolo[3,4-\(c\)]carbazole-5,7(6\(H\))-dione ligand considered in the validation calculations of the B3LYP-D3/6-31+G(d)-LANL2DZ level for geometry optimizations. Atom numbering of the non-hydrogen atoms, the most relevant ones, is included.

Figure S1 shows that the main difference between X-ray (in blue colour) and B3LYP-D3/6-31+G(d)-LANL2DZ (in red colour) structures lies in the orientation of the benzyl...
group attached to the nitrogen atom N32 of the pyridocarbazol ligand (Scheme S1), which can be ascribed to the crystal packing of 1^{ref}. Specifically, as collected in Table S2, we note that the absolute difference between X-ray and B3LYP-D3 bond distances involving non-hydrogen atoms in 1^{ref} varies from 0.0002 Å (C27-C28 bond distance) to 0.048 Å (Re1-N8 bond distance). The mean absolute deviation (MAD) and the root mean square deviation (RMSD) between all those X-ray and B3LYP-D3 bond distances are 0.011 and 0.014 Å, respectively. When comparing X-ray and B3LYP-D3 bond angles involving non-hydrogen atoms in 1^{ref} (see Table S3), the absolute discrepancy between them ranges from 0.020º (Re1-N21-C20 bond angle) to 3.9º (C2-Re1-N8 bond angle). MAD of all the differences in those bond angles is 0.65º, whereas the RMSD value is about 1.0º. The relatively small RMSD value obtained for both bond distances (less than 0.02 Å) and bond angles (less than 2º) confirms the adequacy of using the B3LYP-D3/6-31+G(d)-LANL2DZ optimized geometries to carry out Time-Dependent Density Functional Theory (TD-DFT) calculations.
Discussion 2. Validating the computational protocol for TD-DFT calculations.

Electronic excitation energies and oscillator strengths of the Re(I) carbonyl complexes were computed by performing TD-DFT calculations on the B3LYP-D3/6-31+G(d)-LANL2DZ optimized geometries. To predict a reliable level of theory for studying the excited-state properties of the Re(I) complexes investigated in this work, different density functionals (B3LYP-D3,1-4 CAM-B3LYP,5 M05,6 M06,7 MN15,8 PBE,9,10 PBE0,11 TPSS,12 TPSSh,12,13 wB97x,14 wB97xD)15 were employed along with the same basis set (6-31+G(d)-LANL2DZ) as the one used for geometry optimizations in gas phase. Bulk solvent effects (dimethyl sulfoxide, DMSO, $\varepsilon = 46.826$) were taken into account with the polarizable continuum model (PCM) developed by Tomasi and coworkers16-22 using the integral equation formalism variant (IEF)20 and the universal force field (UFF) radii.23 In these PCM-TD-DFT computations, the solute-solvent electrostatic interaction energy and the non-electrostatic terms due to the solute cavitation energy24 as well as to the solute-solvent dispersion25,26 and repulsion25,26 interaction energies were considered.

Among the TD-DFT computational levels mentioned above, the most reliable was chosen by comparing the theoretical electronic spectra obtained for complexes 1-3 (see Scheme S2) with those measured experimentally in DMSO for the same complexes.27 Tables S4-S6 collect excitation energies (both in eV, E, and in nm, λ) and oscillator strengths (f) of the first ten lowest-lying singlet-singlet electron transitions for complexes 1-3, respectively. Figures S2-S4 display the corresponding simulated absorption spectra obtained through TD-DFT calculations and, for comparison purposes, the respective experimental spectra reported are also included.27

Scheme S2. Rhenium(I) tricarbonyl complexes used for validating the computational protocol employed in the TD-DFT computations.
As seen in Figure S2, B3LYP-D3, PBE, TPSS, and TPSSh provide UV/Vis absorbance spectra for 1 in Scheme S2 that differ greatly from the experimental one. The B3LYP-D3 spectrum shows three absorption bands as in the experimental one, but the sequence of the first and third intensities is erroneously predicted. Specifically, the most red-shifted absorption band is more intense than the least one, while the reverse trend was found experimentally. For PBE, TPSS, and TPSSh, the simulated UV/Vis spectra do not clearly show the presence of three absorption bands, nor at least the two most intense ones. However, the general shape of the UV/Vis spectrum of 1 is acceptably well-reproduced with the remaining functionals (CAM-B3LYP, M05, M06, MN15, PBE0, wB97x, wB97xD), although we note that the intermediate absorption band, the experimentally less intense, does not reproduce sharply. For complexes 2 and 3 in Scheme S2 (see Figures S3 and S4, respectively), the UV/Vis spectra predicted by all the functionals fit reasonably well the main features of those reported experimentally.

In addition to the aforementioned and since we are interested in Re(I) carbonyl complexes that absorb in the red region of Vis spectrum, let us turn our attention to the excitation energy of the most red-shifted absorption band. Table S7 collects the excitation energy of the most red-shifted absorption band found for complexes 1-3 at the levels of theory PCM-TD-DFT/6-31+G(d)-LANL2DZ//B3LYP-D3/6-31+G(d)-LANL2DZ (DFT = B3LYP-D3, CAM-B3LYP, M05, M06, MN15, PBE, PBE0, TPSS, TPSSh, wB97x, wB97xD). For each computational level and each complex, the choice of that excitation energy is based on the position and intensity of the most red-shifted absorption wavelength that fits better the one found experimentally. In addition, we also show in Table S7 the absolute error obtained when comparing the computed excitation energies with the respective experimental value for each complex. For 1 (sixth column in Table S7), the excitation energy obtained with M05, PBE, PBE0, M06, and TPSS only differs, in absolute value, 0.01, 0.03, 0.03, 0.04, and 0.04 eV from the experimental one, respectively. B3LYP-D3 and MN15 give similar absolute errors (0.15 and 0.17 eV, respectively) and clearly larger than the previous functionals. The remaining DFT methods provide discrepancies larger than 0.25 eV, thus preventing their use to predict reliable UV/Vis spectra. In the case of 2 (seventh column in Table S7), we found that M06, PBE0, and M05 with absolute discrepancies of 0.003, 0.04, and 0.06 eV are the most adequate to fit the excitation energy of the experimental most red-shifted absorption band. We note, however, that M06 behaves better than PBE0 and M05. It
then follows B3LYP-D3 that only differs by 0.09 eV (in absolute value) from the experimental excitation energy. All the others functionals investigated present absolute errors larger than 0.23 eV. Concerning 3 (eighth column in Table S7), the absolute error in the excitation energy predicted by M06 (0.003 eV), MN15 (0.01 eV), B3LYP-D3 (0.02 eV), M05 (0.07 eV), PBE0 (0.09 eV), and TPSSh (0.09 eV) is very small. Yet again, M06 presents the best behavior. The remaining functionals provide absolute errors larger than 0.20 eV. Therefore, looking at the Re(I) complexes 1-3, M06 is the best functional in predicting the shortest excitation energy (longest maximum absorption wavelength) by far. In fact, M06 shows a total absolute error of 0.04 eV (tenth column in Table S7). M05 and PBE0 are the following functionals in level of accuracy with total absolute errors of 0.14 and 0.16 eV, respectively. By contrast, wB97xD and wB97x present the largest total absolute errors, 1.18 and 1.80 eV, respectively. In addition, M06 is also one of the best functionals in reproducing the general shape of the UV/Vis absorption spectrum for complexes 1-3. So, we conclude that M06 presents the best performance in order to investigate the spectroscopic properties of the Re(I) pyridocarbazole complexes investigated in the present work.
Table S1. Cartesian coordinates in Å of the X-ray and B3LYP-D3-6/31+G(d)-LANL2DZ structures of the Re(I) complex 1
ref in Scheme S1.

X-ray	B3LYP-D3-6/31+G(d)-LANL2DZ
Re	3.040103 -0.242807 -0.178800
C	3.699845 0.001476 -1.987624
O	4.025991 0.146154 -3.081539
C	4.316517 -1.657436 0.135955
O	5.048850 -2.507994 0.310089
C	4.275556 1.802073 0.473025
C	4.979725 1.851145 0.888496
C	2.099165 -0.514888 1.857485
C	1.927124 -1.740486 2.392311
C	1.281818 -1.945750 3.610858
C	0.804432 -0.840493 4.317730
C	0.991635 0.430061 3.772191
C	1.638909 0.551652 2.545791
C	1.385682 -1.640745 0.790725
C	1.408909 -2.960677 -0.987918
C	0.249393 -3.698935 -2.184159
N	-0.984563 -3.662745 -1.373311
N	-1.048278 -1.662671 -1.179767
N	0.181435 -0.998904 -0.894885
N	0.197913 0.398307 -0.706764
N	1.330822 0.189506 -0.443334
N	0.941905 2.415625 -0.329574
N	1.740037 3.534037 -0.054229
N	1.134164 4.776614 0.031234
N	-0.279204 4.917168 -0.153690
N	-1.028637 3.813327 -0.429946
N	-0.477051 2.549981 -0.513697
N	-0.963162 1.216903 -0.772528
N	-2.163334 0.543719 -0.103772
N	-3.559937 1.669740 -1.158649
N	-3.966111 2.217935 -1.476725
N	-4.361547 -0.034274 -1.448507
N	-0.639548 -1.226615 -1.485731
N	-4.095950 -2.334434 -1.692132
N	-2.208880 -0.838652 -1.234787
N	-0.581957 0.014248 -1.544490
N	-6.487940 -0.149211 -0.927977
N	-6.810970 -1.426076 0.280706
N	-7.395947 -1.580027 1.547138
N	-7.660734 -0.457987 3.239045
N	-7.306015 -1.818145 -1.907028
N	-6.751433 0.971553 0.606950
N	-2.302890 -2.573579 1.813327
N	-1.163166 -2.559512 3.895003
N	-0.298927 -0.967138 5.270833
N	0.639605 1.323007 4.278496
N	1.788111 1.520371 2.084648
N	2.378521 -3.442779 -0.913017
N	0.328466 -4.770239 1.434252
N	-1.894517 -3.618886 -1.582809
N	-2.154101 3.902928 -1.755034
N	-0.728402 5.039351 -0.081770
N	1.714187 5.658776 0.240095
N	2.812288 3.92183 0.078584
N	-6.117710 -0.785548 -2.227302
N	-6.591474 -2.967393 -3.326124
N	-7.646496 -2.574406 -1.908711
N	-8.118903 -0.577141 3.318155
N	-7.538917 1.693922 2.478711
N	-6.485796 1.960781 -0.242434
N	-6.076038 0.977394 -1.936788
Figure S1. Two comparative views for the X-ray and B3LYP-D3/6-31+G(d)-LANL2DZ structures (blue and red colours, respectively) of the N-benzylated derivative of the Re(I) tricarbonyl complex containing pyridine and pyridocarbazole ligands (1_{\text{ref}} in Scheme S1).
Table S2. X-Ray and B3LYP-D3/6-31+G(d)-LANL2DZ bond distances ($r_{X\text{-Ray}}$ and $r_{B3LYP-D3}$, respectively) of the Re(I) tricarbonyl complex 1$^{\text{ref}}$ in Scheme S1. Absolute difference and square of the absolute difference of the X-Ray and B3LYP-D3/6-31+G(d)-LANL2DZ distances are also given for each bond. Only bond distances involving non-hydrogen atoms (the most relevant ones) are considered.

| bond distance | $r_{X\text{-Ray}}$ (Å) | $r_{B3LYP-D3}$ (Å) | $|r_{X\text{-Ray}} - r_{B3LYP-D3}|$ (Å) | $|r_{X\text{-Ray}} - r_{B3LYP-D3}|^2$ (Å2) |
|---------------|------------------------|---------------------|--------------------------------------|-------------------------------------|
| Re(1) - C(2) | 1.92656 | 1.93083 | 0.00427 | 0.000182 |
| C(2) - O(3) | 1.14216 | 1.15949 | 0.01733 | 0.003003 |
| Re(1) - C(4) | 1.91904 | 1.92845 | 0.00941 | 0.000885 |
| C(4) - O(5) | 1.15512 | 1.16557 | 0.01045 | 0.001092 |
| Re(1) - C(6) | 1.91364 | 1.92400 | 0.01036 | 0.001073 |
| C(6) - O(7) | 1.15496 | 1.16273 | 0.00777 | 0.000604 |
| Re(1) - N(8) | 2.21128 | 2.25961 | 0.04833 | 0.0023358 |
| N(8) - C(9) | 1.34431 | 1.34898 | 0.00467 | 0.000218 |
| C(9) - C(10) | 1.38195 | 1.39139 | 0.00944 | 0.000891 |
| C(10) - C(11)| 1.38781 | 1.39612 | 0.00831 | 0.000691 |
| C(11) - C(12)| 1.37191 | 1.39534 | 0.02343 | 0.0005490 |
| C(12) - C(13)| 1.39173 | 1.39205 | 0.00032 | 0.000001 |
| N(8) - C(13) | 1.33803 | 1.35002 | 0.01199 | 0.001438 |
| Re(1) - N(14)| 2.21866 | 2.25154 | 0.03288 | 0.0010811 |
| Re(1) - N(21)| 2.17397 | 2.18049 | 0.00652 | 0.000425 |
| N(14) - C(15)| 1.32074 | 1.33489 | 0.01415 | 0.000202 |
| C(15) - C(16)| 1.40748 | 1.40920 | 0.00172 | 0.000030 |
| C(16) - C(17)| 1.36647 | 1.38737 | 0.02090 | 0.0004368 |
| C(17) - C(18)| 1.40526 | 1.41480 | 0.00954 | 0.000910 |
| C(18) - C(19)| 1.41332 | 1.42617 | 0.01285 | 0.001651 |
| C(19)-N(14) | 1.37225 | 1.36760 | 0.00465 | 0.000216 |
| C(19) - C(20)| 1.40722 | 1.40979 | 0.00257 | 0.000066 |
| C(20) - N(21)| 1.35023 | 1.35091 | 0.00068 | 0.000005 |
| N(21) - C(22)| 1.38875 | 1.39092 | 0.00217 | 0.000047 |
| C(22) - C(23)| 1.39289 | 1.40131 | 0.00842 | 0.0000709 |
| C(23) - C(24)| 1.38801 | 1.39392 | 0.00591 | 0.000349 |
| C(24) - C(25)| 1.40238 | 1.41242 | 0.01004 | 0.000108 |
| C(25) - C(26)| 1.37808 | 1.39301 | 0.01493 | 0.000229 |
| C(26) - C(27)| 1.40214 | 1.40385 | 0.00171 | 0.000029 |
| C(27) - C(28)| 1.44159 | 1.44140 | 0.00019 | 0.000000 |
| C(28) - C(29)| 1.40589 | 1.42211 | 0.01622 | 0.0002631 |
| C(28) - C(29)| 1.41251 | 1.40140 | 0.01111 | 0.001234 |
| C(29) - C(30)| 1.48885 | 1.49727 | 0.00842 | 0.0000709 |
| C(30) - O(31)| 1.20486 | 1.22049 | 0.01563 | 0.0002443 |
| C(30) - N(32)| 1.38975 | 1.39479 | 0.00504 | 0.000254 |
| N(32) - C(33)| 1.40075 | 1.41033 | 0.00958 | 0.000918 |
| C(33) - O(34)| 1.21731 | 1.22344 | 0.00613 | 0.000376 |
| C(33) - C(35)| 1.47742 | 1.47497 | 0.00245 | 0.000060 |
| C(18) - C(35)| 1.42273 | 1.42443 | 0.00170 | 0.000029 |
| C(29)-C(35) | 1.38885 | 1.39713 | 0.00828 | 0.0000686 |
| N(32) - C(36)| 1.45464 | 1.46194 | 0.00730 | 0.000533 |
Bond	Ethylene (Å)	B3LYP-D3 (Å)	Δ (Å)	Δ (Å^2)
C(36) - C(37)	1.50855	1.51676	0.00821	0.0000674
C(37) - C(38)	1.38933	1.40177	0.01244	0.0001548
C(38) - C(39)	1.38889	1.39780	0.00891	0.0000794
C(39) - C(40)	1.37658	1.39885	0.02227	0.0004960
C(40) - C(41)	1.36538	1.39885	0.03347	0.0011202
C(41) - C(42)	1.39352	1.39776	0.00424	0.0000180
C(37) - C(42)	1.38647	1.40183	0.01536	0.0002359

Mean Absolute Deviation (MAD):

\[
\left(\frac{1}{48} \sum |r_{X-Ray} - r_{B3LYP-D3}| \right) = 0.01068
\]

\[
\sum |r_{X-Ray} - r_{B3LYP-D3}|^2 = 0.00954
\]

Root Mean Square Deviation (RMSD):

\[
\sqrt{\left(\frac{1}{48} \sum |r_{X-Ray} - r_{B3LYP-D3}|^2 \right)} = 0.01429
\]
Table S3. X-Ray and B3LYP-D3/6-31+G(d)-LANL2DZ bond angles in degrees (θ\text{X-Ray} and θ\text{B3LYP-D3}, respectively) of the Re(I) tricarbonyl complex 1ref in Scheme S1. Absolute difference and square of the absolute difference of the X-Ray and B3LYP-D3/6-31+G(d)-LANL2DZ angles are also given for each bond angle (in degrees and degrees squared, respectively). Only bond angles involving non-hydrogen atoms (the most relevant ones) are considered.

| bond angle | θ\text{X-Ray} | θ\text{B3LYP-D3} | |θ\text{X-Ray} − θ\text{B3LYP-D3}| |θ\text{X-Ray} − θ\text{B3LYP-D3}|² |
|------------------|---------------|------------------|-----------------|-------------------------------|-------------------------------|
| Re(1) - C(2) - C(3) | 178.131 | 178.843 | 0.712 | 0.507 |
| Re(1) - C(4) - C(5) | 178.311 | 177.246 | 1.065 | 1.134 |
| Re(1) - C(6) - C(7) | 177.580 | 178.307 | 0.727 | 0.529 |
| Re(1) - N(8) - C(9) | 120.921 | 121.438 | 0.517 | 0.267 |
| Re(1) - N(8) - C(13) | 121.462 | 120.413 | 1.049 | 1.100 |
| Re(1) - N(14) - C(15) | 129.562 | 129.845 | 0.283 | 0.080 |
| Re(1) - N(14) - C(19) | 112.325 | 112.095 | 0.230 | 0.053 |
| Re(1) - N(21) - C(20) | 111.792 | 111.812 | 0.020 | 0.000 |
| Re(1) - N(21) - C(22) | 142.704 | 142.353 | 0.351 | 0.123 |
| C(2) - Re(1) - N(14) | 96.584 | 93.655 | 2.929 | 8.579 |
| C(2) - Re(1) - N(21) | 95.264 | 93.725 | 1.539 | 2.369 |
| C(2) - Re(1) - C(4) | 88.684 | 91.255 | 2.571 | 6.610 |
| C(2) - Re(1) - C(6) | 88.064 | 91.200 | 3.136 | 9.834 |
| C(2) - Re(1) - N(8) | 178.354 | 174.427 | 3.927 | 15.421 |
| C(4) - Re(1) - N(14) | 95.222 | 94.198 | 1.024 | 1.049 |
| C(4) - Re(1) - N(21) | 171.686 | 169.811 | 1.875 | 3.516 |
| C(4) - Re(1) - C(6) | 90.710 | 91.552 | 0.842 | 0.709 |
| C(4) - Re(1) - N(8) | 91.344 | 92.741 | 1.397 | 1.952 |
| C(6) - Re(1) - N(14) | 172.534 | 173.878 | 0.147 | 0.022 |
| C(6) - Re(1) - N(21) | 96.722 | 97.220 | 0.498 | 0.248 |
| C(6) - Re(1) - N(8) | 93.582 | 92.573 | 1.009 | 1.018 |
| N(8) - Re(1) - N(14) | 81.774 | 82.183 | 0.409 | 0.167 |
| N(8) - Re(1) - N(21) | 84.500 | 81.736 | 2.764 | 7.640 |
| N(8) - C(9) - C(10) | 123.322 | 122.809 | 0.513 | 0.263 |
| C(9) - C(10) - C(11) | 118.326 | 118.933 | 0.607 | 0.368 |
| C(10) - C(11) - C(12) | 119.031 | 118.492 | 0.539 | 0.291 |
| C(11) - C(12) - C(13) | 119.174 | 119.102 | 0.072 | 0.005 |
| C(12) - C(13) - N(8) | 122.517 | 122.590 | 0.073 | 0.005 |
| C(13) - N(8) - C(9) | 117.617 | 118.073 | 0.456 | 0.208 |
| N(14) - C(15) - C(16) | 121.782 | 122.255 | 0.473 | 0.224 |
| C(15) - C(16) - C(17) | 120.825 | 120.369 | 0.456 | 0.208 |
| C(16) - C(17) - C(18) | 119.127 | 118.990 | 0.137 | 0.019 |
| C(17) - C(18) - C(19) | 116.781 | 116.682 | 0.099 | 0.010 |
| C(17) - C(18) - C(35) | 127.214 | 127.148 | 0.066 | 0.004 |
| C(18) - C(19) - N(14) | 123.388 | 123.734 | 0.346 | 0.120 |
| C(18) - C(19) - C(20) | 120.036 | 119.859 | 0.177 | 0.031 |
| C(19) - N(14) - C(15) | 118.087 | 117.962 | 0.125 | 0.016 |
| C(19) - C(20) - C(28) | 123.947 | 123.703 | 0.244 | 0.060 |
| C(20) - C(28) - C(29) | 115.524 | 115.552 | 0.028 | 0.001 |
| C(28) - C(29) - C(35) | 121.297 | 121.999 | 0.702 | 0.493 |
Bond	Distance (Å)	Angle (°)	MAD (Å)	RMSD (Å)
C(29) - C(35) - C(18)	123.153	122.709	0.444	0.197
C(35) - C(18) - C(19)	115.951	116.170	0.219	0.048
C(19) - N(21) - C(22)	105.462	105.534	0.072	0.005
N(21) - C(22) - C(27)	110.520	110.764	0.244	0.060
C(22) - C(23) - C(24)	118.214	117.890	0.324	0.105
C(23) - C(24) - C(25)	121.313	121.572	0.259	0.067
C(24) - C(25) - C(26)	121.358	121.071	0.287	0.082
C(25) - C(26) - C(27)	118.631	118.482	0.149	0.022
C(26) - C(27) - C(22)	119.824	120.093	0.269	0.072
C(27) - C(22) - C(23)	120.655	120.892	0.237	0.056
C(26) - C(27) - C(28)	134.490	134.265	0.225	0.051
C(27) - C(28) - C(20)	104.504	104.416	0.088	0.008
C(27) - C(28) - C(29)	139.923	140.030	0.107	0.011
C(28) - C(20) - N(21)	113.882	113.641	0.241	0.058
C(28) - C(29) - C(30)	130.634	130.192	0.442	0.195
C(29) - C(30) - O(31)	129.120	128.707	0.413	0.171
O(31) - C(30) - N(32)	125.040	125.343	0.303	0.092
C(29) - C(30) - N(32)	105.840	105.949	0.109	0.012
C(30) - N(32) - C(33)	111.887	111.613	0.274	0.075
C(30) - N(32) - C(36)	123.225	124.092	0.867	0.752
N(32) - C(33) - O(34)	124.303	124.198	0.105	0.011
N(32) - C(33) - C(35)	105.999	106.221	0.222	0.049
C(33) - C(35) - C(29)	108.194	108.380	0.186	0.035
C(33) - C(35) - C(18)	128.611	128.910	0.299	0.089
C(33) - N(32) - C(36)	124.809	123.924	0.885	0.783
O(34) - C(33) - C(35)	129.698	129.581	0.117	0.014
C(35) - C(29) - C(30)	108.065	107.808	0.257	0.066
N(32) - C(36) - C(37)	114.309	112.173	2.136	4.562
C(36) - C(37) - C(42)	122.620	120.337	2.283	5.212
C(36) - C(37) - C(38)	118.826	120.315	1.489	2.217
C(37) - C(38) - C(39)	120.256	120.354	0.098	0.010
C(38) - C(39) - C(40)	120.600	120.097	0.503	0.253
C(39) - C(40) - C(41)	119.638	119.778	0.140	0.020
C(40) - C(41) - C(42)	120.398	120.102	0.296	0.088
C(41) - C(42) - C(37)	120.575	120.349	0.226	0.051
C(42) - C(37) - C(38)	118.521	119.319	0.798	0.637

Mean Absolute Deviation (MAD): \[\left(\frac{1}{78} \right) \sum \left| \theta_{\text{X-Ray}} - \theta_{B3LYP-D3} \right| = 0.6519 \]

\[\sum \left| \theta_{\text{X-Ray}} - \theta_{B3LYP-D3} \right|^2 = 82.112 \]

Root Mean Square Deviation (RMSD): \[\sqrt{\left(\frac{1}{78} \right) \sum \left| \theta_{\text{X-Ray}} - \theta_{B3LYP-D3} \right|^2} = 1.026 \]
Table S4. Excitation energies, E, in eV (in parentheses absorption wavelengths, λ, in nm) and oscillator strengths (f) of the first ten lowest-lying singlet-singlet electron transitions calculated at the PCM-TD-DFT/6-31+G(d)-LANL2DZ//B3LYP-D3/6-31+G(d)-LANL2DZ level for Re(I) complex 1.

B3LYP-D3	CAM-B3LYP	M05	M06	MN15	PBE	PBE0	TPSS	TPSSh	wB97x	wB97xD			
$E (\lambda)$	f												
2.27 (547)	0.1344	2.81 (441)	0.0699	3.08 (403)	0.0382	3.25 (381)	0.0116	3.27 (379)	0.0044	3.36 (369)	0.0027	3.40 (350)	0.0151
2.73 (454)	0.2056	3.36 (369)	0.0206	3.67 (338)	0.1676	4.03 (308)	0.0146	4.11 (302)	0.0046	4.14 (299)	0.0158	4.15 (299)	0.0073
2.41 (514)	0.1514	2.94 (421)	0.0573	3.24 (383)	0.0668	3.40 (365)	0.0049	3.49 (355)	0.0056	3.52 (352)	0.0049	3.54 (350)	0.0150
2.38 (521)	0.1459	2.89 (428)	0.0577	3.18 (390)	0.0606	3.36 (369)	0.0062	3.44 (361)	0.0056	3.45 (359)	0.0056	3.49 (356)	0.0025
2.59 (479)	0.1802	3.19 (389)	0.0343	3.45 (359)	0.1206	3.78 (328)	0.0005	3.82 (324)	0.0002	3.84 (323)	0.0002	3.88 (319)	0.0012
1.88 (660)	0.0896	2.39 (519)	0.0723	2.56 (485)	0.0025	2.58 (480)	0.0080	2.62 (474)	0.0005	2.67 (473)	0.0005	2.71 (457)	0.0012
2.39 (519)	0.1466	2.95 (420)	0.0629	3.21 (386)	0.0561	3.44 (360)	0.0109	3.48 (357)	0.0089	3.55 (349)	0.0031	3.58 (346)	0.0060
1.94 (640)	0.0960	2.46 (504)	0.0766	2.66 (467)	0.0020	2.69 (462)	0.0001	2.70 (458)	0.0001	2.73 (454)	0.0001	2.82 (440)	0.0001
2.14 (579)	0.1142	2.68 (462)	0.0750	2.93 (424)	0.0198	3.02 (411)	0.0090	3.04 (408)	0.0090	3.10 (399)	0.0040	3.16 (393)	0.0040
2.97 (418)	0.2331	3.62 (342)	0.0021	4.04 (307)	0.2763	4.25 (292)	0.0113	4.27 (290)	0.0173	4.31 (288)	0.0028	4.44 (279)	0.1233
2.79 (445)	0.2080	3.43 (362)	0.0116	4.09 (303)	0.1949	4.27 (290)	0.0005	4.31 (288)	0.0005	4.41 (279)	0.0005	4.44 (279)	0.0005

S15
Table S5. Excitation energies, \(E \), in eV (in parentheses absorption wavelengths, \(\lambda \), in nm) and oscillator strengths (\(f \)) of the first ten lowest-lying singlet-singlet electron transitions calculated at the PCM-TD-DFT/6-31+G(d)-LANL2DZ//B3LYP-D3/6-31+G(d)-LANL2DZ level for Re(I) complex 2.

	B3LYP-D3	CAM-B3LYP	M05	M06	MN15	PBE	PBE0	TPSS	TPSSh	wB97x	wB97xD
E (\(\lambda \))											
2.69 (462)	3.25 (381)	2.84 (436)	2.78 (446)	3.06 (405)	2.23 (556)	2.82 (440)	2.31 (537)	2.54 (488)	3.56 (348)	3.32 (374)	
f	0.0638	0.1007	0.0712	0.0676	0.0877	0.0371	0.0706	0.0439	0.0557	0.1240	0.1053
2.97 (417)	3.67 (338)	3.24 (382)	3.16 (392)	3.51 (353)	2.30 (539)	3.19 (389)	2.40 (517)	2.74 (452)	3.87 (321)	3.73 (333)	
f	0.0061	0.0099	0.0067	0.0066	0.0021	0.0143	0.0067	0.0101	0.0058	0.0009	0.0010
3.25 (382)	3.95 (314)	3.36 (369)	3.29 (376)	3.63 (341)	2.84 (437)	3.37 (368)	2.91 (426)	3.13 (396)	4.19 (296)	4.06 (306)	
f	0.0095	0.0248	0.0088	0.0122	0.0155	0.0115	0.0071	0.0148	0.0121	0.0006	0.0043
3.50 (354)	4.05 (306)	3.67 (338)	3.57 (347)	3.81 (325)	2.89 (430)	3.66 (339)	3.01 (412)	3.34 (371)	4.28 (289)	4.13 (301)	
f	0.0307	0.1339	0.1321	0.0443	0.0352	0.0044	0.1175	0.0035	0.0085	0.0884	0.2089
3.55 (350)	4.11 (302)	3.73 (333)	3.63 (341)	3.90 (318)	2.92 (425)	3.72 (333)	3.02 (410)	3.38 (367)	4.44 (280)	4.20 (295)	
f	0.1018	0.0640	0.0487	0.1115	0.1473	0.0022	0.0493	0.0021	0.0320	0.4352	0.0123
3.65 (340)	4.30 (288)	3.90 (318)	3.79 (327)	4.11 (302)	3.05 (407)	3.88 (320)	3.14 (394)	3.43 (361)	4.52 (274)	4.38 (283)	
f	0.0115	0.2694	0.0071	0.0222	0.1596	0.0121	0.0020	0.0109	0.0682	0.0175	0.3124
3.73 (333)	4.40 (282)	3.96 (313)	3.85 (322)	4.16 (298)	3.10 (400)	3.95 (314)	3.20 (388)	3.51 (353)	4.62 (268)	4.43 (280)	
f	0.0088	0.0086	0.0753	0.0832	0.0054	0.0809	0.0095	0.0894	0.0221	0.0665	0.0087
3.76 (330)	4.47 (277)	3.98 (311)	3.90 (318)	4.26 (291)	3.19 (389)	3.97 (313)	3.28 (379)	3.59 (345)	4.67 (266)	4.52 (274)	
f	0.0709	0.0855	0.0257	0.0078	0.0223	0.0153	0.0853	0.0216	0.0373	0.1414	0.0078
3.90 (318)	4.49 (276)	4.01 (309)	3.92 (316)	4.33 (287)	3.28 (378)	4.05 (306)	3.41 (363)	3.71 (334)	4.69 (265)	4.54 (273)	
f	0.0224	0.1854	0.0129	0.0103	0.2907	0.0062	0.0237	0.0115	0.0249	0.1638	0.2382
3.92 (316)	4.61 (269)	4.02 (308)	3.95 (314)	4.38 (283)	3.31 (374)	4.08 (304)	3.43 (361)	3.74 (332)	4.75 (261)	4.64 (267)	
f	0.0075	0.0849	0.0199	0.0220	0.0060	0.0349	0.0056	0.0295	0.0154	0.0800	0.0955
	B3LYP-D3	CAM-B3LYP	M05	M06	MN15	PBE	PBE0	TPSS	TPSSh	wB97x	wB97xD
----------	----------	-----------	-----	-----	------	-----	------	------	-------	-------	--------
E (λ)	2.94 (422)	3.53 (351)	3.11 (399)	3.05 (407)	3.33 (372)	2.32 (533)	3.08 (403)	2.44 (509)	2.77 (448)	3.79 (327)	3.59 (346)
f	0.0944	0.3091	0.1413	0.1335	0.1911	0.0049	0.1128	0.0059	0.0676	0.5748	0.3361
E (λ)	3.06 (405)	3.68 (337)	3.34 (372)	3.26 (381)	3.53 (351)	2.42 (512)	3.28 (378)	2.51 (494)	2.81 (441)	3.92 (316)	3.74 (332)
f	0.0046	0.3310	0.0072	0.0060	0.3852	0.0438	0.0051	0.0496	0.0074	0.1262	0.3172
E (λ)	3.30 (376)	4.05 (306)	3.39 (365)	3.33 (373)	3.72 (333)	2.74 (453)	3.41 (364)	2.84 (436)	3.19 (389)	4.24 (293)	4.13 (300)
f	0.3312	0.0029	0.3704	0.3587	0.0056	0.0002	0.3714	0.0008	0.1273	0.0012	0.0019
E (λ)	3.45 (359)	4.17 (298)	3.71 (334)	3.62 (343)	3.89 (319)	2.86 (433)	3.68 (337)	2.98 (416)	3.23 (383)	4.39 (282)	4.29 (289)
f	0.0198	0.0088	0.0108	0.0089	0.0045	0.0083	0.0137	0.0256	0.1486	0.0357	0.0219
E (λ)	3.53 (351)	4.27 (290)	3.76 (330)	3.67 (338)	4.06 (305)	2.94 (422)	3.72 (333)	3.04 (408)	3.33 (373)	4.51 (275)	4.32 (287)
f	0.0173	0.0220	0.0035	0.0016	0.0026	0.0206	0.0084	0.2049	0.0378	0.0032	0.0224
E (λ)	3.62 (343)	4.39 (282)	3.82 (325)	3.70 (335)	4.14 (299)	2.96 (419)	3.81 (326)	3.07 (403)	3.43 (361)	4.62 (268)	4.42 (280)
f	0.0049	0.0086	0.0083	0.0129	0.0082	0.1897	0.0071	0.0085	0.0025	0.0222	0.0097
E (λ)	3.82 (325)	4.40 (282)	4.00 (310)	3.92 (316)	4.17 (297)	3.14 (395)	4.04 (307)	3.23 (384)	3.59 (346)	4.69 (265)	4.51 (275)
f	0.0109	0.0551	0.0248	0.0361	0.0542	0.0114	0.0019	0.0129	0.0122	0.0148	0.0229
E (λ)	3.86 (321)	4.47 (277)	4.03 (308)	3.94 (315)	4.19 (296)	3.26 (380)	4.05 (306)	3.36 (369)	3.69 (336)	4.76 (261)	4.52 (274)
f	0.0133	0.0361	0.0442	0.0203	0.0375	0.002	0.0175	0.0032	0.0026	0.0293	0.0588
E (λ)	3.89 (319)	4.53 (274)	4.05 (306)	3.97 (312)	4.27 (291)	3.32 (374)	4.06 (305)	3.44 (361)	3.72 (333)	4.83 (257)	4.64 (267)
f	0.0223	0.0220	0.0204	0.0048	0.0490	0.0188	0.0466	0.0241	0.0262	0.0545	0.0328
E (λ)	3.97 (312)	4.64 (267)	4.10 (303)	3.99 (311)	4.45 (279)	3.36 (369)	4.12 (301)	3.49 (355)	3.80 (326)	5.04 (246)	4.72 (263)
f	0.0078	0.0206	0.0110	0.0076	0.0395	0.0075	0.0086	0.0066	0.0017	0.0805	0.0206
Figure S2. Simulated electronic spectra obtained at the PCM-TD-DFT/6-31+G(d)-LANL2DZ//B3LYP-D3/6-31+G(d)-LANL2DZ (DFT = B3LYP-D3, CAM-B3LYP, M05, M06, MN15, PBE, PBE0, TPSS, TPSSh, wB97x, wB97xD) levels for complex 1. Experimental UV/Vis absorbance spectrum measured in DMSO for the same complex is also provided for comparison purposes.
Figure S3. Simulated electronic spectra obtained at the PCM-TD-DFT/6-31+G(d)-LANL2DZ/B3LYP-D3/6-31+G(d)-LANL2DZ (DFT = B3LYP-D3, CAM-B3LYP, M05, M06, MN15, PBE, PBE0, TPSS, TPSSh, wB97x, wB97xD) levels for complex 2. Experimental UV/Vis absorbance spectrum measured in DMSO for the same complex is also provided for comparison purposes.
TPSS

TPSSh

wB97x

wB97xD
Figure S4. Simulated electronic spectra obtained at the PCM-TD-DFT/6-31+G(d)-LANL2DZ//B3LYP-D3/6-31+G(d)-LANL2DZ (DFT = B3LYP-D3, CAM-B3LYP, M05, M06, MN15, PBE, PBE0, TPSS, TPSSh, wB97x, wB97xD) levels for complex 3. Experimental UV/Vis absorbance spectrum measured in DMSO for the same complex is also provided for comparison purposes.
Table S7. Excitation energy, E (in parenthesis the corresponding absorption wavelength, λ), of the most red-shifted absorption band found for complexes 1-3 at the PCM-TD-DFT/6-31+G(d)-LANL2DZ//B3LYP-D3/6-31+G(d)-LANL2DZ levels along with the difference in absolute value between the computed excitation energies and the respective experimental value, ΔE, for each level of theory and complex and the total error, ΔE_{total}, obtained for each level of theory, ΔE_{total}.

DFT	E (eV)	ΔE/eV	ΔE_{total}/eV					
	λ/nm	1	2	3	1	2	3	
B3LYP-D3		2.27 (547)	2.69 (462)	3.30 (376)	0.15	0.09	0.02	0.26
CAM-B3LYP		2.73 (454)	3.25 (381)	3.53 (351)	0.31	0.47	0.21	0.99
M05		2.41 (514)	2.84 (436)	3.39 (365)	0.01	0.06	0.07	0.14
M06		2.38 (521)	2.78 (446)	3.33 (373)	0.04	0.00	0.00	0.04
MN15		2.59 (479)	3.06 (405)	3.33 (372)	0.17	0.28	0.01	0.46
PBE		2.39 (519)	3.10 (400)	2.96 (419)	0.03	0.32	0.36	0.71
PBE0		2.39 (519)	2.82 (440)	3.41 (364)	0.03	0.04	0.09	0.16
TPSS		2.46 (504)	3.20 (388)	3.04 (408)	0.04	0.42	0.28	0.74
TPSSh		2.68 (462)	2.54 (488)	3.23 (383)	0.26	0.24	0.09	0.59
wB97x		2.97 (418)	3.56 (348)	3.79 (327)	0.55	0.78	0.47	1.80
wB97xD		2.79 (445)	3.32 (374)	3.59 (346)	0.37	0.54	0.27	1.18
exp.		2.42 (512)	2.78 (446)	3.32 (373)				
Table S8. B3LYP-D3/6-31+G(d)-LANL2DZ relevant optimized geometry data for Re(I) complexes 1-3 and 1a-1s in their singlet ground states. Bond distances, bond angles, and dihedral angles are given in Å, degrees, and degrees, respectively. The atom numbering used is collected for complex 1.a

	Re-C1	Re-C2	Re-L3	Re-N4	Re-N5	Re-N6	N4-Re-N7	L3-Re-N7	C8-N4-Re-N7	C9-N5-N6-C10
1	1.928	1.924	1.931	2.259	2.251	2.181	75.7	98.3	-80.4	1.3
2	1.928	1.923	1.929	2.261	2.254	2.178				1.1
3	1.929	1.927	1.928	2.265	2.224	2.158				2.1
1a	1.931	1.923	1.931	2.258	2.254	2.183	76.5	98.1	-79.1	0.7
1b	1.929	1.924	1.932	2.258	2.254	2.181	76.0	98.2	-79.4	1.0
1c	1.929	1.924	1.931	2.260	2.251	2.178	75.4	98.7	-79.3	1.3
1d	1.929	1.924	1.931	2.260	2.251	2.177	75.4	98.6	-79.8	1.2
1e	1.931	1.922	1.931	2.259	2.254	2.180	76.2	98.3	-78.4	0.5
1f	1.931	1.926	1.931	2.258	2.254	2.179	76.2	98.3	-78.5	0.6
1g	1.930	1.923	1.932	2.257	2.254	2.185	77.0	97.6	-80.1	1.0
1h	1.930	1.923	1.932	2.259	2.254	2.178	75.8	98.8	-78.6	0.7
1i	1.902	1.900	2.381	2.225	2.258	2.194	81.6	90.1	-76.8	-2.0
1j	1.901	1.900	2.382	2.226	2.260	2.199	82.7	88.3	-77.0	-1.9
1k	1.906	1.903	2.359	2.217	2.263	2.197	87.9	82.0	-76.0	-5.9
1l	1.905	1.899	2.380	2.224	2.259	2.196	81.9	89.9	-76.7	-2.1
1m	1.905	1.899	2.380	2.224	2.259	2.193	81.6	90.1	-76.0	-1.9
1n	1.904	1.899	2.383	2.225	2.261	2.200	83.1	88.0	-76.7	-1.9
1o	1.904	1.898	2.382	2.226	2.261	2.198	82.5	88.5	-76.0	-2.0
1p	1.903	1.900	2.382	2.226	2.257	2.194	81.6	90.3	-76.2	-2.0
1q	1.904	1.900	2.382	2.226	2.258	2.191	81.5	90.2	-75.5	-2.3
1r	1.902	1.900	2.385	2.227	2.259	2.199	82.3	88.7	-76.4	-1.8
1s	1.902	1.899	2.384	2.227	2.260	2.196	82.7	88.3	-75.3	-2.0

a L3 is the carbon atom of the carbonyl ligand in trans disposition to the pyridine ligand for complexes 1-3 and 1a-1h or the phosphorus atom of the phosphine ligand in trans disposition to the pyridine ligand for complexes 1i-1s.
Table S9. Excitation energies in eV (E) and nm (λ), and oscillator strengths (f) of the first ten lowest-lying singlet-singlet electron transitions calculated at the PCM-TD-M06/6-31+G(d)-LANL2DZ//B3LYP-D3/6-31+G(d)-LANL2DZ level for Re(I) complexes 1-3.

Transition	Complex			
	1	2	3	
1	$E (\lambda)$	2.38 (521)	2.78 (446)	3.05 (407)
	f	0.1459	0.0676	0.1335
2	$E (\lambda)$	2.89 (428)	3.16 (392)	3.26 (381)
	f	0.0577	0.0066	0.0060
3	$E (\lambda)$	**3.18 (390)**	3.29 (376)	**3.33 (373)**
	f	0.0606	0.0122	**0.3587**
4	$E (\lambda)$	3.36 (369)	3.57 (347)	3.62 (343)
	f	0.0062	0.0443	0.0089
5	$E (\lambda)$	3.44 (361)	**3.63 (341)**	3.67 (338)
	f	0.0058	**0.1115**	0.0016
6	$E (\lambda)$	3.45 (359)	3.79 (327)	3.70 (335)
	f	0.0025	0.0122	0.0129
7	$E (\lambda)$	3.49 (356)	3.85 (322)	3.92 (316)
	f	0.0146	0.0832	0.0361
8	$E (\lambda)$	3.78 (328)	3.90 (318)	3.94 (315)
	f	0.0056	0.0078	0.0203
9	$E (\lambda)$	**3.79 (327)**	3.92 (316)	3.97 (312)
	f	**0.2133**	0.0103	0.0048
10	$E (\lambda)$	3.81 (325)	3.95 (314)	3.99 (311)
	f	0.0006	0.0220	0.0076
Table S10. B3LYP-D3/6-31+G(d)-LANL2DZ relevant optimized geometry data for Re(I) complexes 1-3 and 1a-1s in their triplet excited states. Bond distances, bond angles, and dihedral angles are given in Å, degrees, and degrees, respectively. The atom numbering used is collected for complex 1.\(^a\)

	Re-C1	Re-C2	Re-L3\(^a\)	Re-N4	Re-N5	Re-N6	N4-Re-N7	L3-Re-N7	C8-N4-Re-N7	C9-N5-N6-C10
1	1.936	1.926	1.935	2.164	2.236	2.260	74.3	100.7	-84.9	0.9
2	1.933	1.928	1.930	2.174	2.209	2.268				1.0
3	1.934	1.930	1.929	2.153	2.192	2.270				-1.3
1a	1.940	1.925	1.936	2.161	2.237	2.259	75.4	99.7	-82.6	-0.1
1b	1.937	1.926	1.936	2.162	2.237	2.260	74.6	100.4	-84.1	0.5
1c	1.936	1.925	1.934	2.164	2.234	2.261	74.0	100.8	-85.9	0.7
1d	1.934	1.924	1.932	2.168	2.235	2.263	74.0	100.5	-85.4	0.2
1e	1.939	1.924	1.935	2.162	2.235	2.261	75.2	99.7	-83.0	-0.4
1f	1.937	1.923	1.932	2.168	2.237	2.262	75.3	99.4	-83.2	-0.8
1g	1.940	1.926	1.936	2.162	2.238	2.258	75.8	99.4	-83.6	0.3
1h	1.937	1.924	1.935	2.163	2.235	2.261	74.5	100.4	-84.7	-0.03
1i	1.927	1.902	2.396	2.129	2.248	2.228	81.4	91.0	-83.0	-0.4
1j	1.931	1.903	2.399	2.120	2.250	2.229	82.4	89.8	-82.8	-0.5
1k	1.923	1.905	2.369	2.221	2.250	2.147	85.1	85.7	-82.2	-3.5
1l	1.935	1.902	2.401	2.118	2.246	2.227	82.3	90.5	-81.9	-0.6
1m	1.929	1.900	2.395	2.129	2.247	2.228	82.0	90.4	-81.7	-0.7
1n	1.938	1.902	2.401	2.133	2.246	2.228	84.1	88.4	-82.0	0.5
1o	1.932	1.900	2.397	2.124	2.248	2.229	83.5	88.4	-81.9	0.2
1p	1.931	1.902	2.403	2.122	2.248	2.227	81.1	90.8	-82.8	-0.1
1q	1.925	1.900	2.395	2.132	2.249	2.229	81.4	90.8	-82.8	-0.7
1r	1.936	1.903	2.401	2.114	2.249	2.229	82.4	89.8	-82.8	-0.4
1s	1.928	1.900	2.398	2.128	2.249	2.230	82.8	88.9	-83.3	0.1

\(^a\) L3 is the carbon atom of the carbonyl ligand in \textit{trans} disposition to the pyridine ligand for complexes 1-3 and 1a-1h or the phosphorus atom of the phosphine ligand in \textit{trans} disposition to the pyridine ligand for complexes 1i-1s.
Table S11. Energies in the singlet ground state and triplet excited state \((E_S \text{ and } E_T)\) in hartree, respectively), difference between \(E_T\) and \(E_S\) (\(\Delta E_{ST}\), in kcal/mol), excitation energy in nm and eV \((\lambda_{max} (E))\), oscillator strength \((f)\), dominant orbital excitations with their corresponding coefficients for the lowest-lying absorption band, HOMO and LUMO energies \((E_H \text{ and } E_L)\) in eV, respectively, and difference between \(E_i\) and \(E_{H-L}\) (\(\Delta E_{H-L}\)) in eV of the Re(I) complexes 1-3 and 1a-1s calculated at the PCM-M06/6-31+G(d)-LANL2DZ/B3LYP-D3/6-31+G(d)-LANL2DZ level.

Species	\(E_S\)	\(E_T\)	\(\Delta E_{ST}\)	\(\lambda_{max} (E)\)	\(f\)	Configuration	\(E_H\)	\(E_L\)	\(\Delta E_{H-L}\)
1	-1633.912888	-1633.851279	38.7	521 (2.38)	0.1459	H → L (0.6960)	-5.98	-2.82	3.16
2	-1353.183798	-1353.108711	47.1	446 (2.78)	0.0676	H → L (0.6993)	-5.64	-1.98	3.66
3	-1277.008324	-1276.930089	49.1	373 (3.33)	0.3587	H-1 → L (0.6718)/H → L (-0.1659)	-5.73	-1.88	3.85
1a	-1900.959515	-1900.899520	37.7	534 (3.22)	0.1386	H → L (0.6937)	-6.05	-2.96	3.09
1b	-1733.125226	-1733.064473	38.1	532 (2.33)	0.1435	H → L (0.6967)	-6.04	-2.93	3.11
1c	-1748.373801	-1748.317551	35.3	565 (2.19)	0.1292	H → L (0.6978)	-5.75	-2.80	2.95
1d	-1767.776972	-1767.732364	28.0	659 (1.88)	0.1007	H → L (0.6998)	-5.35	-2.77	2.58
1e	-2015.420137	-2015.365833	34.1	579 (2.14)	0.1415	H → L (0.6942)	-5.81	-2.94	2.87
1f	-2034.824141	-2034.781497	26.8	678 (1.83)	0.1312	H → L (0.6935)/H → L+1 (-0.1110)	-5.40	-2.94	2.46
1g	-2168.011959	-2167.948813	39.6	517 (2.40)	0.1537	H → L (0.6945)	-6.21	-3.04	3.17
1h	-1847.585859	-1847.531178	34.3	578 (2.14)	0.1292	H → L (0.6994)	-5.80	-2.91	2.89
1i	-1981.602431	-1981.546457	35.1	584 (2.12)	0.0979	H-1 → L (0.1119)/H → L (0.6897)	-5.61	-2.74	2.87
1j	-2379.582469	-2379.527312	34.6	611 (2.03)	0.0767	H-1 → L (-0.3159)/H → L (0.6171)	-5.44	-2.75	2.69
1k	-2528.857023	-2528.798015	37.0	559 (2.22)	0.1017	H-1 → L (0.1114)/H → L (0.6898)	-5.77	-2.80	2.97
1l	-2248.648310	-2248.595150	33.4	608 (2.04)	0.0945	H-1 → L (0.1233)/H → L (0.6875)	-5.66	-2.88	2.78
1m	-2363.109107	-2363.059803	30.9	631 (1.96)	0.1161	H → L (0.6924)	-5.54	-2.86	2.68
1n	-2646.628760	-2646.577198	32.4	644 (1.92)	0.0698	H-1 → L (-0.3458)/H → L (0.6007)	-5.48	-2.89	2.59
1o	-2761.089141	-2761.040814	30.3	653 (1.90)	0.0934	H-1 → L (-0.2543)/H → L (0.6431)	-5.45	-2.87	2.58
1p	-2080.815019	-2080.760020	34.5	601 (2.06)	0.0860	H-1 → L (0.1407)/H → L (0.6839)	-5.67	-2.84	2.83
1q	-2195.275858	-2195.225650	31.5	627 (1.98)	0.0995	H-1 → L (-0.1015)/H → L (0.6926)	-5.54	-2.81	2.63
1r	-2478.794985	-2478.741640	33.5	632 (1.96)	0.0651	H-2 → L (0.1021)/H-1 → L (-0.4084)/H → L (0.5515)	-5.48	-2.85	2.63
1s	-2593.255739	-2593.206056	31.2	645 (1.93)	0.0822	H-2 → L (0.1029)/H-1 → L (-0.2869)/H → L (0.6261)	-5.45	-2.82	2.63
Table S12. Variations of some relevant bond distances (in Å), bond angles (in degrees), and dihedral angles (in degrees) when going from their singlet ground states to their corresponding triplet excited states of Re(I) complexes 1-3 and 1a-1s at the B3LYP-D3/6-31+G(d)-LANL2DZ level of theory. The atom numbering used is collected for complex 1.a

	Re-C1	Re-C2	Re-L3\(^a\)	Re-N4	Re-N5	Re-N6	N4-Re-N7	C3-Re-N7	C8-N4-Re-N7	C9-N5-N6-C10
1	0.008	0.002	0.004	-0.017	-0.015	0.001	-1.4	2.4	-4.5	-0.4
2	0.005	0.005	0.001	-0.004	-0.045	0.007				
3	0.005	0.003	0.001	-0.005	-0.032	0.005	-0.008	-0.004	-0.045	-0.005
1a	0.009	0.002	0.005	-0.022	-0.017	0.001	-1.1	1.6	-3.5	-0.1
1b	0.008	0.002	0.004	-0.019	-0.017	0.002	-1.4	2.2	-4.7	-0.7
1c	0.007	0.001	0.003	-0.014	-0.017	0.001	-1.4	2.1	-6.6	-0.6
1d	0.005	0.000	0.001	-0.009	-0.016	0.003	-1.4	1.9	-5.6	-1.0
1e	0.008	0.002	0.004	-0.018	-0.019	0.002	-1.0	1.4	-4.6	-0.9
1f	0.006	-0.003	0.001	-0.011	-0.017	0.004	-0.9	1.1	-4.7	-1.4
1g	0.010	0.003	0.004	-0.023	-0.016	0.001	-1.2	1.8	-3.5	0.7
1h	0.007	0.001	0.003	-0.015	-0.019	0.002	-1.3	1.6	-6.1	-0.7
1i	0.025	0.002	0.015	-0.065	-0.010	0.003	0.2	0.9	-6.2	1.6
1j	0.030	0.003	0.017	-0.079	-0.010	0.003	0.3	1.5	-5.8	1.4
1k	0.017	0.002	0.010	-0.050	-0.013	0.004	-2.8	3.7	-6.2	-2.4
1l	0.030	0.003	0.021	-0.078	-0.013	0.003	0.4	0.6	-5.2	1.5
1m	0.024	0.001	0.015	-0.064	-0.012	0.004	0.4	0.3	-5.7	1.2
1n	0.034	0.003	0.018	-0.067	-0.015	0.003	1.0	0.4	-5.3	2.4
1o	0.028	0.002	0.015	-0.074	-0.013	0.003	1.0	0.4	-5.9	2.2
1p	0.028	0.002	0.021	-0.072	-0.009	0.001	0.5	0.5	-6.6	1.9
1q	0.021	0.000	0.013	-0.059	-0.009	0.003	0.1	0.6	-7.3	1.6
1r	0.034	0.003	0.016	-0.085	-0.010	0.002	0.1	1.1	-6.4	1.4
1s	0.026	0.001	0.014	-0.068	-0.011	0.003	0.1	0.6	-8.0	2.1

\(^a\) L3 is the carbon atom of the carbonyl ligand in *trans* disposition to the pyridine ligand for complexes 1-3 and 1a-1h or the phosphorus atom of the phosphine ligand in *trans* disposition to the pyridine ligand for complexes 1i-1s.
Figure S5. B3LYP-D3/6-31+G(d)-LANL2DZ optimized structures in the singlet ground state of Re(I) complexes 1a-1s. For clarity, two views are given for each species.
Figure S5. (cont.)

1e

1f

1g

1h
Figure S5. (cont.)
Figure S5. (cont.)
Figure S5. (cont.)
Figure S6. Contour maps of the spin density distribution (isovalue 0.0004) for the triplet excited state of the Re(I) complexes 1a-1s. For clarity, two views are given for each species.
Figure S6. (cont.)

1e

1f

1g

1h
Figure S6. (cont.)

1i

1j

1k

1l
Figure S6. (cont.)

1q

1r

1s
Table S13. B3LYP-D3/6-31+G(d)-LANL2DZ variations of some relevant bond distances (in Å), bond angles (in degrees), and dihedral angles (in degrees) of complexes 1a-1h compared to complex 1. The atom numbering used is collected for complex 1.a

![Chemical structure diagram](image)

Complexes	Re-C1 (Å)	Re-C2 (Å)	Re-L3a (Å)	Re-N4 (Å)	Re-N5 (Å)	Re-N6 (Å)	N4-Re-N7 (°)	N5-Re-N7 (°)	C3-Re-N7 (°)	C8-N4-Re-N7 (°)	C9-N5-N6-C10 (°)
1a	0.003	-0.001	0.000	0.002	0.003	-0.001	0.8	-0.2	1.3	-0.6	
1b	0.001	0.000	0.001	0.000	0.003	-0.001	0.3	-0.1	1.0	-0.3	
1c	0.001	0.000	0.000	-0.003	0.000	0.001	-0.3	0.4	1.1	0.0	
1d	0.001	0.000	0.000	-0.004	0.000	0.001	-0.3	0.3	0.6	-0.1	
1e	0.003	-0.002	0.000	-0.001	0.003	0.000	0.5	0.0	2.0	-0.8	
1f	0.003	0.002	0.000	-0.002	0.003	-0.001	0.5	0.0	1.9	-0.7	
1g	0.002	-0.001	0.001	0.004	0.003	-0.002	1.3	-0.7	0.3	-0.3	
1h	0.002	-0.001	0.001	-0.003	0.003	0.000	0.1	0.5	1.8	-0.6	

a L3 is the carbon atom of the carbonyl ligand in \textit{trans} disposition to the pyridine ligand for complexes 1 and 1a-1h.
Table S14. Excitation energies in eV (E) and nm (λ), and oscillator strengths (f) of the first ten lowest-lying singlet-singlet electron transitions calculated at the PCM-TD-M06/6-31+G(d)-LANL2DZ//B3LYP-D3/6-31+G(d)-LANL2DZ level for Re(I) complexes 1a-1h. For comparison purposes, the data obtained for complex 1 are also included.

Transition	1	1a	1b	1c	1d	1e	1f	1g	1h	
1	E (λ)	2.38 (521)	2.32 (534)	2.33 (532)	2.19 (565)	1.88 (659)	2.14 (579)	1.83 (678)	2.40 (517)	2.14 (578)
	f	0.1459	0.1386	0.1435	0.1292	0.1007	0.1415	0.1312	0.1537	0.1292
2	E (λ)	2.89 (428)	2.80 (443)	2.83 (439)	2.63 (471)	2.64 (470)	2.38 (521)	2.88 (430)	2.77 (448)	
	f	0.0577	0.0083	0.0669	0.0490	0.0423	0.0048	0.0348	0.0100	0.0770
3	E (λ)	3.18 (390)	2.96 (418)	3.15 (394)	2.98 (416)	2.74 (452)	2.84 (436)	2.64 (470)	3.05 (406)	2.94 (421)
	f	0.0606	0.1024	0.0300	0.0943	0.1465	0.1196	0.1325	0.1053	0.0397
4	E (λ)	3.36 (369)	3.25 (381)	3.29 (377)	3.26 (381)	2.96 (419)	3.24 (383)	2.98 (416)	3.24 (383)	3.28 (379)
	f	0.0062	0.0030	0.0156	0.0063	0.0035	0.0052	0.0035	0.0075	0.0221
5	E (λ)	3.44 (361)	3.33 (372)	3.36 (369)	3.36 (369)	3.30 (376)	3.29 (376)	3.19 (389)	3.31 (375)	3.29 (376)
	f	0.0058	0.0037	0.0008	0.0091	0.0303	0.0032	0.0300	0.0018	0.0042
6	E (λ)	3.45 (359)	3.37 (368)	3.40 (364)	3.43 (361)	3.40 (365)	3.32 (373)	3.25 (381)	3.35 (370)	3.35 (371)
	f	0.0025	0.0139	0.0145	0.0131	0.0247	0.0100	0.0333	0.0185	0.0166
7	E (λ)	3.49 (356)	3.48 (356)	3.48 (356)	3.43 (362)	3.37 (368)	3.26 (380)	3.61 (344)	3.39 (366)	
	f	0.0146	0.0150	0.0137	0.0038	0.0601	0.0037	0.1678	0.0308	0.0066
8	E (λ)	3.78 (328)	3.61 (343)	3.76 (330)	3.64 (340)	3.47 (357)	3.50 (354)	3.35 (370)	3.66 (339)	3.62 (343)
	f	0.0056	0.4810	0.2128	0.0119	0.0473	0.4735	0.1614	0.4517	0.0633
9	E (λ)	3.79 (327)	3.70 (335)	3.78 (328)	3.67 (338)	3.48 (356)	3.52 (352)	3.38 (367)	3.76 (330)	3.66 (339)
	f	0.2133	0.0882	0.0101	0.0660	0.0075	0.0457	0.0406	0.0002	0.0835
10	E (λ)	3.81 (325)	3.77 (329)	3.80 (327)	3.70 (335)	3.54 (351)	3.69 (336)	3.48 (356)	3.77 (329)	3.68 (337)
	f	0.0006	0.0002	0.0005	0.2316	0.1401	0.0050	0.0089	0.0181	0.1738
Table S15. B3LYP-D3/6-31+G(d)-LANL2DZ variations of some relevant bond distances (in Å), bond angles (in degrees), and dihedral angles (in degrees) of complexes 1i-1s compared to complex 1. The atom numbering used is collected for complex 1.a

Complexes	Re-C1	Re-C2	Re-L3\(^a\)	Re-N4	Re-N5	Re-N6	N4-Re-N7	C3-Re-N7	C8-N4-Re-N7	C9-N5-N6-C10
1i	-0.026	-0.024	0.450	-0.034	0.007	0.013	5.9	-8.2	3.6	-3.3
1j	-0.027	-0.024	0.451	-0.033	0.009	0.018	7.0	-10.0	3.4	-3.2
1k	-0.022	-0.021	0.428	-0.042	0.012	0.016	12.2	-16.3	4.4	-7.2
1l	-0.023	-0.025	0.449	-0.035	0.008	0.015	6.2	-8.4	3.7	-3.4
1m	-0.023	-0.025	0.449	-0.035	0.008	0.012	5.9	-8.2	4.4	-3.2
1n	-0.024	-0.025	0.452	-0.034	0.010	0.019	7.4	-10.3	3.7	-3.2
1o	-0.024	-0.026	0.451	-0.033	0.010	0.017	6.8	-9.8	4.4	-3.3
1p	-0.025	-0.024	0.451	-0.033	0.006	0.013	5.9	-8.0	4.2	-3.3
1q	-0.024	-0.024	0.451	-0.033	0.007	0.010	5.8	-8.1	4.9	-3.6
1r	-0.026	-0.024	0.454	-0.032	0.008	0.018	6.6	-9.6	4.0	-3.1
1s	-0.026	-0.025	0.453	-0.032	0.009	0.015	7.0	-10.0	5.1	-3.3

\(^a\) L3 is the carbon atom of the carbonyl ligand in \textit{trans} disposition to the pyridine ligand for complex 1 and the phosphorus atom of the phosphine ligand in \textit{trans} disposition to the pyridine ligand for complexes 1i-1s.
Table S16. Excitation energies in eV (E) and nm (λ), and oscillator strengths (f) of the first ten lowest-lying singlet-singlet electron transitions calculated at the PCM-TD-M06/6-31+G(d)-LANL2DZ/B3LYP-D3/6-31+G(d)-LANL2DZ level for Re(I) complexes 1i-1s. For comparison purposes, the data obtained for complex 1 are also included.

Transition	1	1i	1j	1k	1l	1m	1n	1o	1p	1q	1r	1s	
$E (\lambda)$	2.38 (521)	2.12 (584)	2.03 (611)	2.22 (559)	2.04 (608)	1.96 (631)	1.92 (644)	1.90 (653)	2.06 (601)	1.98 (627)	1.96 (632)	1.92 (645)	
f	0.1459	0.0979	0.0767	0.1017	0.0945	0.1161	0.0698	0.0934	0.0860	0.0995	0.0651	0.0822	
2	$E (\lambda)$	2.89 (428)	2.47 (503)	2.14 (579)	2.56 (484)	2.37 (523)	2.38 (520)	2.02 (614)	2.04 (607)	2.41 (514)	2.43 (510)	2.06 (603)	2.08 (596)
f	0.0577	0.0557	0.0083	0.0323	0.0580	0.0374	0.0076	0.0111	0.0791	0.0674	0.0129	0.0154	
3	$E (\lambda)$	3.18 (390)	2.78 (446)	2.28 (545)	2.81 (441)	2.57 (483)	2.45 (505)	2.16 (575)	2.17 (571)	2.73 (454)	2.64 (471)	2.20 (564)	2.21 (560)
f	0.0606	0.0297	0.0232	0.0309	0.0069	0.0248	0.0276	0.0256	0.0394	0.0461	0.0296	0.2073	
4	$E (\lambda)$	3.36 (369)	2.94 (422)	2.56 (485)	2.99 (414)	2.78 (446)	2.67 (465)	2.45 (505)	2.35 (528)	2.86 (434)	2.79 (445)	2.49 (497)	2.39 (519)
f	0.0062	0.0003	0.0472	0.0408	0.0275	0.0497	0.0340	0.0275	0.0005	0.0168	0.0527	0.0359	
5	$E (\lambda)$	3.44 (361)	2.96 (418)	2.80 (443)	3.03 (409)	2.83 (438)	2.85 (436)	2.51 (494)	2.43 (510)	2.91 (426)	2.87 (432)	2.76 (450)	2.70 (459)
f	0.0058	0.0603	0.0027	0.0305	0.0015	0.0024	0.0146	0.0168	0.0541	0.0441	0.0255	0.0011	
6	$E (\lambda)$	3.45 (359)	3.00 (414)	2.90 (428)	3.06 (405)	2.94 (422)	2.87 (433)	2.68 (463)	2.67 (465)	2.97 (418)	2.88 (430)	2.83 (437)	2.80 (442)
f	0.0025	0.0336	0.0870	0.0111	0.0367	0.0475	0.0029	0.0038	0.0167	0.0181	0.0540	0.0929	
7	$E (\lambda)$	3.49 (356)	3.19 (389)	2.93 (423)	3.31 (374)	3.02 (410)	3.00 (413)	2.79 (445)	2.77 (448)	3.21 (386)	3.14 (395)	2.85 (435)	2.87 (432)
f	0.0146	0.0256	0.0002	0.0372	0.0450	0.0236	0.0006	0.0002	0.0255	0.0220	0.0056	0.0007	
8	$E (\lambda)$	3.78 (328)	3.32 (374)	3.01 (412)	3.40 (364)	3.19 (389)	3.12 (398)	2.80 (443)	2.80 (443)	3.32 (373)	3.31 (375)	2.94 (421)	2.93 (423)
f	0.0056	0.0368	0.0006	0.0250	0.0202	0.0178	0.0463	0.0632	0.0318	0.0267	0.0001	0.0081	
9	$E (\lambda)$	3.79 (327)	3.49 (356)	3.04 (408)	3.60 (344)	3.36 (369)	3.26 (380)	2.82 (440)	2.84 (437)	3.52 (352)	3.47 (358)	2.99 (414)	2.99 (415)
f	0.2133	0.0791	0.0046	0.0910	0.0205	0.0091	0.0333	0.0027	0.0680	0.0921	0.0035	0.0019	
10	$E (\lambda)$	3.81 (325)	3.63 (342)	3.11 (398)	3.67 (338)	3.47 (357)	3.35 (370)	2.93 (423)	2.92 (425)	3.58 (346)	3.53 (351)	3.10 (401)	3.03 (409)
f	0.0006	0.0776	0.0274	0.0174	0.0921	0.0661	0.0035	0.0173	0.1234	0.1008	0.0253	0.0237	
Figure S7. PCM-TD-M06/6-31+G(d)-LANL2DZ//B3LYP-D3/6-31+G(d)-LANL2DZ electronic absorption spectra of Re(I) pyridocarbazole complexes bearing the phosphine ligands DAPTA (1k), PMe$_3$ (1p and 1q), and CAP (1r and 1s).

1k
($R^1 = H, R^2 = H, R^3 = \text{DAPTA}$)

1p
($R^1 = F, R^2 = H, R^3 = \text{PMe}_3$)

1q
($R^1 = F, R^2 = \text{OMe}, R^3 = \text{PMe}_3$)

1r
($R^1 = F, R^2 = H, R^3 = \text{CAP}$)

1s
($R^1 = F, R^2 = \text{OMe}, R^3 = \text{CAP}$)
Figure S8. Contour maps of the frontier Kohn-Sham orbitals involved in the main orbital transition of the lowest-lying absorption band found for Re(I) dicarbonyl pyridyl complexes containing the phosphine ligands DAPTA (1k), PMe₃ (1p and 1q), and CAP (1r and 1s). Two views are given for each orbital.
Table S17. B3LYP-D3/6-31+G(d)-LANL2DZ cartesian coordinates, in Å, of the optimized structures in their singlet ground states of all Re(I) complexes investigated.

X	Y	Z	
C	-1.024946	0.217753	-0.386651
N	0.061628	1.035618	-0.428157
C	-0.446574	2.318033	-0.324976
C	0.250431	3.536985	-0.308205
C	-0.794804	4.711963	-0.173828
C	-1.893202	4.693307	-0.059022
C	-2.594511	3.490826	-0.076685
C	-1.882998	2.287043	-0.207235
C	-2.253905	0.893530	-0.254624
C	-3.451977	0.972923	-0.250840
C	-3.379199	-1.264612	-0.296007
C	1.936996	-2.301058	1.779526
C	1.403377	-2.580447	4.192469
C	0.634663	-0.571740	5.503605
C	0.441943	1.630585	4.295821
C	0.998819	1.723454	1.875311
C	1.445459	-3.420405	-0.814011
C	-2.826763	-4.003261	-0.521655
C	1.331865	3.556613	-0.407357
C	0.036988	5.666159	-0.162846
C	-3.768801	3.483111	0.009465
C	-4.408939	0.606303	-0.107336
C	-4.291857	-1.853969	-0.264674
C	2.080263	0.227345	4.079599
C	2.158135	0.099372	-3.561650
C	-0.531868	-4.953770	-0.772040
C	-2.432619	5.631561	0.045032

X	Y	Z	
C	1.820259	-0.091711	-0.490398
C	3.298898	-1.327869	-0.414134
C	4.152399	-2.418720	-0.498781
C	3.033174	1.382911	-0.228592
C	3.757876	2.273790	-0.042271
C	1.424284	-0.268688	1.732475
C	1.574017	-1.440772	2.382344
C	1.292765	-1.593919	3.736706
C	0.839811	-0.488256	4.460342
C	0.686019	0.727211	3.792670
C	0.984230	0.796663	2.434192
C	0.249300	-1.661020	-0.596894
C	0.872722	1.298457	-2.411902
C	0.536171	-3.930320	-0.732205
C	1.858404	-3.489132	-0.562396
C	2.106920	-2.133355	0.423049
C	1.036765	-1.217215	-0.478566
C	-0.194703	0.521234	-3.266950
C	-0.049393	0.984102	-0.428798
C	-0.454261	2.289383	-0.336551
C	0.314308	3.740002	-0.368694
C	-0.345006	4.684000	-0.233194
C	-1.753981	4.748886	-0.068737
C	-2.523272	3.597038	-0.039118
C	3.366083	-1.374313	-0.407931
C	2.411099	-2.175308	-0.336069
C	3.110805	1.373772	-0.239972
C	0.816019	2.281935	0.066231
C	0.770516	-0.227791	1.727291
C	1.046756	-1.458266	2.374687
C	1.303388	-1.065960	3.725132
C	0.807144	-0.489889	4.478775
C	0.770166	0.732142	3.783184
C	1.086387	0.796680	2.428795
C	0.324876	-1.075979	-0.596054
C	0.439575	-3.015105	-0.707277
C	-0.682113	-3.882865	-0.678826
C	-1.957504	-3.349732	-0.541595
C	-2.128601	-1.951369	-0.434322
C	-0.931000	-1.177692	-0.472231

X	Y	Z	
C	0.206231	0.142686	-3.560685
X	Y	Z	
--------	--------	--------	
-3.523689	-1.272923	-0.350640	
-5.276030	-2.956950	-0.624732	
5.388491	-4.681025	0.746530	
5.542752	-4.578860	-1.037913	
-5.539845	1.611487	-0.053729	
6.940914	-4.196197	0.007096	
-2.077781	2.289441	0.132242	
-2.071553	4.677506	0.406226	
4.857590	-0.290603	0.022196	
4.357519	8.440319	0.098232	
-1.826380	-2.382680	-2.397368	
-1.830649	-3.34275	-3.553275	
-3.182526	4.380019	-0.638739	
5.545942	-2.747146	-0.031997	
5.854869	-4.131846	-0.083677	
6.940914	-4.196197	0.007096	
5.942752	-5.578600	-1.037913	
5.388491	-4.681025	0.746530	
4.857590	-0.290603	0.022196	
4.357519	8.440319	0.098232	
-1.826380	-2.382680	-2.397368	
-1.830649	-3.34275	-3.553275	
-3.182526	4.380019	-0.638739	
5.545942	-2.747146	-0.031997	
5.854869	-4.131846	-0.083677	

1j

X	Y	Z
-5.141100	1.612999	-0.068549
-1.507981	2.688070	-1.282552
0.229599	3.321832	-0.098156
0.138523	2.380827	1.435051
-0.905325	2.831702	2.385553
1.234658	2.987380	0.024207
1.626019	3.707806	-1.048623
2.748872	4.503978	-1.048623
3.506478	4.682355	0.130449
3.104177	3.889910	1.242429
1.972111	0.849299	-1.51985
0.692497	0.610883	-1.695197
0.641215	0.782224	-0.018124
1.466192	0.061895	-3.904822
2.371380	-0.871319	-4.205511
2.455506	-1.080670	-0.203177
1.583981	-0.297950	-1.204416
1.613778	-0.459843	-0.198510
0.810820	0.241370	1.025632
1.109360	-0.212152	2.304461
0.547545	0.002960	3.520277
1.008174	-0.402881	4.689302
2.008255	-1.400422	4.660919
2.574181	-1.819130	3.458445
2.127922	-1.226271	2.264646
2.458307	-1.388554	0.872109
3.302501	-1.245863	0.050229
4.306889	-3.390563	0.101022
4.608039	-3.624716	1.511086
4.851376	-3.611853	-0.804885
4.297194	-2.933559	-1.910160
4.615513	-3.285185	-0.073688
3.307813	-1.999275	-1.342374
1.008072	3.613429	-1.933596
3.012297	0.584992	-1.933175
4.386003	5.264648	0.171869
3.654659	3.927514	2.178976
1.635077	2.491920	1.993173
0.080670	1.051431	-3.381819
3.010565	-1.443450	-4.085216
0.224872	0.364272	3.541843
0.585912	-0.103703	5.448486
3.343043	-2.589497	3.426312
5.566103	-4.322795	-0.888605
0.084317	-0.137783	-0.136154
3.931198	0.379915	-0.020625
4.123309	-0.612190	-0.391143
5.422031	-1.413699	0.766718
4.389797	-1.781164	1.867257
2.013995	1.179974	4.826308
1.701831	1.490965	2.425120
\[
\begin{array}{cccc}
C & -2.021551 & -1.355035 & 1.299431 \\
C & -5.029786 & -1.149700 & -1.683965 \\
C & -4.239626 & -2.446610 & -2.007856 \\
N & -2.845809 & -2.484181 & -1.598076 \\
C & -2.417556 & -3.527424 & -0.686280 \\
C & -3.053452 & -3.558841 & 0.730067 \\
C & -2.059762 & -1.275323 & -1.639901 \\
H & -3.103996 & 0.887091 & 0.863871 \\
C & -0.097399 & 1.191552 & -0.856635 \\
C & -6.255241 & -0.901372 & 1.281043 \\
H & -5.844284 & -2.334618 & 0.348190 \\
H & -4.195433 & -0.895880 & 2.484258 \\
H & -4.880350 & -2.508865 & 2.531185 \\
H & -3.938687 & -0.735829 & 2.201148 \\
H & -1.066640 & -1.881881 & 1.219755 \\
H & -4.713956 & -0.357425 & -2.373264 \\
H & -0.684887 & -1.353396 & -1.925592 \\
H & -4.744636 & -3.300661 & -1.541760 \\
H & -4.329264 & -2.598094 & -3.099311 \\
H & -1.328898 & -3.442159 & -0.586540 \\
H & -2.601002 & -4.513801 & -1.140792 \\
H & -0.478563 & -3.939908 & 0.655880 \\
H & -2.486884 & -3.412877 & 1.306360 \\
H & -5.972939 & -0.207382 & -1.143035 \\
H & -1.000466 & -1.532061 & -1.766034 \\
H & 1.374883 & 0.243893 & -4.971146 \\
H & 2.339421 & -1.847959 & 5.594222 \\
\end{array}
\]

\[1k \]

\[
\begin{array}{cccc}
C & 0.333227 & 2.716393 & 0.567852 \\
O & -1.424203 & -1.439960 & -0.055252 \\
C & -1.788986 & -2.869262 & -1.261845 \\
O & -2.001456 & -3.710269 & -2.054557 \\
C & -1.671115 & -2.567777 & 1.457833 \\
O & -1.821196 & -2.335957 & 2.408420 \\
N & -3.503706 & -0.670594 & -0.024524 \\
C & -4.299629 & -0.738908 & -1.112853 \\
C & -5.585279 & -0.207382 & -3.121801 \\
C & -6.085854 & 0.420751 & -0.001008 \\
C & -5.269415 & 0.490173 & 1.128584 \\
C & -3.992384 & -0.061332 & 1.078027 \\
C & -1.128931 & 0.883847 & -1.697553 \\
C & -2.069132 & -0.060903 & -0.312288 \\
C & -0.892453 & 0.979345 & -3.918430 \\
C & -0.467868 & 2.210923 & -3.441978 \\
C & -0.374761 & 2.407927 & -2.040476 \\
C & -0.739578 & 1.307608 & -2.147040 \\
C & -1.686334 & 4.200541 & -1.854718 \\
N & -0.961922 & 0.413880 & -1.029459 \\
C & -0.628565 & 0.891295 & 2.303621 \\
C & -0.802211 & 0.215634 & 3.526270 \\
C & -4.431252 & -0.855042 & 4.685503 \\
C & -0.051333 & 2.222320 & 4.642009 \\
C & -1.073781 & 2.094423 & 3.434412 \\
C & -0.192392 & 2.242009 & 2.250390 \\
C & -0.179867 & 2.593481 & -0.852100 \\
C & 0.179660 & 3.662606 & 0.018372 \\
C & 0.726287 & 5.013724 & 0.366941 \\
O & 0.973727 & 5.477201 & 1.466135 \\
C & 0.903970 & 5.666073 & -0.854847 \\
C & 0.535345 & 4.860462 & -1.954077 \\
C & 0.597293 & 5.201121 & -3.121801 \\
C & 0.075530 & 3.581963 & -1.372455 \\
C & -3.880313 & -1.240765 & -1.976940 \\
C & -6.177057 & -0.292728 & -2.048941 \\
C & -7.086691 & 0.842962 & 0.008271 \\
C & -2.965767 & -0.171188 & 1.931283 \\
C & -3.327174 & 0.171188 & -1.379117 \\
C & -1.506223 & -1.041368 & -3.379117 \\
C & -0.196608 & 3.018884 & -4.113668 \\
C & -1.611642 & -0.808916 & 3.560593 \\
C & -0.511523 & 0.390046 & 5.644696 \\
C & 0.546851 & 3.922984 & 3.388606 \\
C & 1.268931 & 6.599713 & -0.947128 \\
P & 0.897380 & -1.858747 & -0.099170 \\
\end{array}
\]
C	-2.684269	3.663251	-2.559495
O	-3.871075	3.600131	-2.843736
N	-1.872819	2.800649	-1.682600
H	-2.007741	-0.671387	3.561124
H	-2.826571	1.08270	5.209362
H	-1.377200	3.297060	5.754469
H	0.840478	3.502746	4.575575
H	1.491154	1.756681	2.930199
O	-0.856133	-1.050735	1.186005
C	-4.374807	1.529089	-1.462373
H	3.734371	0.731521	1.381555
H	5.482445	2.311737	0.647510
H	2.630619	4.505324	-1.794944
H	2.073551	5.379600	-3.684743
P	1.008362	-2.139182	-0.289710
O	0.454392	-3.904095	0.414422
C	1.725003	-4.770284	-1.097361
O	3.003347	-4.788589	-1.789797
C	3.764036	-3.437821	-0.987959
O	3.021041	-2.268277	-2.303075
C	2.453225	-1.430400	-1.276163
C	0.537756	-1.575380	-1.822899
C	0.115275	-4.331721	-0.356619
N	0.205523	-2.889556	-2.880751
C	0.913038	-2.063943	-0.733235
C	2.452745	-2.244686	-3.638929
C	-0.323490	-2.338013	-1.610581
N	2.463115	-3.857137	0.637427
C	0.776441	-4.371284	-1.365201
C	3.696570	-5.502313	-1.306793
C	2.827964	-5.171787	-2.799873
C	4.199475	-3.206078	-0.900674
C	4.671881	-3.599662	-2.557155
C	3.218480	-1.092387	0.321227
C	2.133933	-0.471559	-1.698277
C	-0.289379	-0.195311	-1.03454
C	0.654135	-6.219237	-1.74202
C	0.794882	-4.547046	-3.889112
C	0.875995	-4.711235	-3.36521
C	0.663158	-1.018882	-3.514711
C	0.636958	-2.224397	-4.787429
C	2.736041	-3.179041	-4.137397
C	2.896405	-1.429291	-2.392536
C	1.131349	-2.938584	-1.755551
C	-0.743008	-1.335808	-1.764258
C	-0.510181	-0.729588	-0.015296
O	-0.530863	-1.719115	0.665619
O	-6.045963	-0.119557	-0.754468
O	-3.774554	-0.600198	0.691192
C	-8.257697	0.146139	-1.615256
C	-7.721258	-0.703837	0.322874
C	-7.309607	-1.738687	-0.015427
C	-8.293352	-1.82496	-1.263235
C	-9.276888	-0.257486	-1.616629
C	-7.882407	0.144461	-2.644083
O	5.081269	4.415922	-1.045083
C	6.428906	4.294228	-0.617073
O	6.867480	3.336594	-0.931468
C	6.517080	4.394435	0.474052
C	6.967771	5.112778	-1.098466

1O	Re	0.400946	-0.839872	1.617257
	C	-0.444787	-2.325130	2.456138
	O	-1.031859	-3.529519	2.961601
	C	0.203697	-2.141191	2.440066
	O	3.110293	-1.458901	2.926329
	N	-0.226942	0.628561	3.167603
	C	-1.410376	0.518194	3.038278
	C	-7.705801	-2.998183	-0.537860
	C	-6.862219	-3.946167	-1.780706
	C	-7.848664	-4.770481	-0.552299
	C	2.301597	6.045983	-2.138589
1p	Re	0.400946	-0.839872	1.617257
	C	-0.444787	-2.325130	2.456138
	O	-1.031859	-3.529519	2.961601
	C	0.203697	-2.141191	2.440066
	O	3.110293	-1.458901	2.926329
	N	-0.226942	0.628561	3.167603
	C	-1.410376	0.518194	3.038278
	C	-7.705801	-2.998183	-0.537860
	C	-6.862219	-3.946167	-1.780706
	C	-7.848664	-4.770481	-0.552299
	C	2.301597	6.045983	-2.138589
	X	Y	Z
H	4.344003	-2.87517	-1.74558
O	0.475941	-3.01698	-2.89692
C	3.330942	-1.96585	-1.17986
H	1.074838	3.68443	0.62899
H	1.093511	5.13275	-1.47632
H	4.385037	5.19136	0.68689
H	3.563120	3.76375	2.59410
H	1.540232	2.36060	2.25743
H	0.094167	1.63165	-3.24591
H	3.165097	-1.28134	-3.92695
H	-0.426212	0.788005	3.65901
C	0.282539	-0.37070	5.74896
H	3.137937	-2.76479	3.56522
H	5.561743	-4.31379	-0.72487
C	-2.160797	-0.123784	-0.134113
H	-3.950101	0.427874	-0.311376
H	-9.428733	-0.579825	-0.636437
H	-5.546383	-1.349524	0.430671
H	-4.66692	-1.666326	1.684335
H	-3.326743	-2.231835	1.384162
H	-2.225740	-1.303148	1.334723
H	-4.881941	-1.151276	-1.967402
H	-4.075419	-2.462928	-2.169234
H	-0.130501	-2.980415	-1.511666
H	-5.422079	-3.523331	-0.626504
H	-3.210434	-3.513241	0.711454
H	-1.937193	-1.300411	-1.591953
H	-3.938000	1.203936	-1.087750
H	-4.222717	0.940701	0.618665
H	-6.425921	-0.817465	0.836169
H	-5.929461	-2.277481	-0.009331
H	-5.413014	-0.796862	2.260802
H	-5.215536	-2.409265	2.720308
H	-2.236793	-0.659206	2.22040
H	-1.271374	-1.838568	1.374738
H	-4.482807	-0.379407	-2.636308
H	-5.905827	-1.352521	-2.320145
H	-4.638268	-3.299918	-1.740551
H	-1.270443	-2.641978	-1.259521
H	-1.350169	-3.444210	-0.409398
H	-2.568427	-4.519540	-1.073863
H	-4.224840	-3.888906	0.534462
H	-2.718201	-4.255731	1.365509
H	-0.873317	-1.569114	-1.591492
H	-2.101953	-0.724683	-2.510691
F	1.563669	0.501368	-5.022679
C	2.033609	-2.120284	5.704857

1s

	X	Y	Z
Re	-0.809188	-0.976482	-1.281752
C	-2.129024	-2.326089	-1.517973
O	-2.921137	-3.191013	-1.690911
C	-1.419536	-0.008454	-2.797494
O	-1.770759	0.618734	-3.725095
N	0.782045	-2.068427	-2.395717
C	0.655499	-3.416563	-2.380384
O	1.873281	-4.124833	-0.012245
C	2.863860	-3.420365	-3.699066
C	2.504018	-2.026888	-3.721649
C	1.742923	-1.391684	-3.060003
C	0.703051	-1.980415	1.116666
C	-0.209399	-1.324060	1.109998
C	0.501332	-3.585370	2.230361
C	1.566439	-2.900748	2.776657
C	1.943516	-1.686082	2.155135

S55
	Re	C	N	C	C	C	C	C	C	C	C	C	C	C	C	C		
1	3.005145	-0.108745	-0.465515	3.365436	-1.373508	-0.334252	4.210226	-2.166443	-0.248092	3.096111	1.375681	-0.150592	3.783265	2.286406	0.063311	1.412854	-0.321376	1.732012
	-2.328036	5.674720	0.043060	-0.490872	-2.952116	0.903901	-3.733553	2.809209	-0.014903	4.199124	-2.266890	-0.190910	5.123653	-1.220020	0.060808	4.699634	0.121647	-0.471722
	1.314442	-1.708953	3.654102	0.671584	-0.589821	4.413474	0.714174	0.666625	3.807743	1.092085	0.758594	2.471810	0.129683	-1.684470	-0.647960	1.700803	-1.782399	-0.518365
	6.182609	0.051595	0.556077	1.664008	0.079131	2.775665	3.085407	-2.962762	-0.281773	3.330363	-1.261546	-0.318098	1.642291	-2.379141	1.695139	0.995854	-2.708681	4.075813
	0.479068	-0.596828	5.454498	0.454027	1.568669	4.351879	1.124101	1.714950	1.963223	1.462838	-3.412555	-0.928001	2.819175	-4.020615	-0.592869	3.389421	3.524821	-0.234396
	-0.134175	5.667069	-0.182786	-0.621757	3.517175	0.025803	-6.522679	-0.729157	0.004756	2.152686	0.051197	-2.377667	0.440864	-1.892270	-1.352121	0.490872	-4.952116	-0.903901
	-2.328036	5.674720	0.043060	-0.490872	-2.952116	0.903901	-3.733553	2.809209	-0.014903	4.199124	-2.266890	-0.190910	5.123653	-1.220020	0.060808	4.699634	0.121647	-0.471722

Table S18. B3LYP-D3/6-31+G(d)-LANL2DZ cartesian coordinates, in Å, of the optimized structures in their triplet excited states of all Re(I) complexes investigated.
Atom	X	Y	Z
C	0.047337	2.956402	-0.38939
C	-0.317368	1.569472	-0.450352
C	0.702331	0.600445	-0.374687
H	0.817706	-0.524703	0.437301
C	1.650657	-1.394567	-0.36770
C	1.896875	-2.767908	-0.393227
C	2.232282	-3.197332	-0.292327
C	4.014823	-0.865536	-0.133207
C	2.705533	-0.443229	-0.234000
C	2.075899	0.874310	-0.245143
C	2.450180	2.213771	-0.169659
C	3.747552	2.859384	-0.021998
C	4.872603	2.368984	0.079713
C	3.460358	4.239978	-0.011904
C	2.096532	4.538194	-0.231813
O	1.608715	5.666143	-0.153091
C	1.429881	3.230282	-0.242183
C	0.022241	0.716879	1.750586
C	-2.747295	1.355368	4.140685
O	-0.934182	0.246881	5.491962
C	0.511351	-1.473081	4.354162
O	0.095812	-1.991133	1.958403
C	3.607735	1.689156	0.819094
C	-0.808984	4.968821	-0.45834
C	1.092387	-3.488658	-0.495664
C	4.332973	-2.457985	-0.320013
C	4.832568	-0.157593	-0.03496
C	5.371194	-4.951861	-0.075791
C	-1.801222	-1.357120	-2.365278
O	-1.839935	-1.490415	-3.515222
F	-3.330739	4.268089	-0.742179
O	5.580380	-2.596337	-0.063121
C	5.983733	-3.970783	-1.050783
C	6.664936	-4.431769	-1.056392
C	7.046359	-3.977173	-0.051490
C	5.517427	-4.527843	0.730983

lj

Atom	X	Y	Z
Re	1.722959	-0.119089	-0.025284
C	3.184082	-1.373903	-0.075631
O	4.036297	-2.173272	-0.127272
C	2.897359	1.346099	0.263347
O	3.600681	2.272275	0.437225
N	1.318511	-0.449952	2.141839
C	1.325056	-1.687971	2.678149
C	0.928878	-1.936395	4.007871
C	0.637234	-0.866215	4.827894
O	0.620968	0.416525	4.277535
C	0.962883	0.582538	2.939037
N	0.153627	-1.705392	-0.298455
C	-0.076009	-3.053780	-0.478641
C	-0.830629	-3.884222	-0.616857
C	-2.134960	-3.363459	-0.581553
C	-2.297990	-1.968237	-0.406217
C	-1.102405	-1.193190	-0.268236
C	-1.210294	0.202463	-0.108198
N	-0.091144	0.994133	0.007655
C	-0.569311	2.299885	0.123919
C	0.182213	3.481596	0.264672
C	-0.552228	4.683488	0.365508
C	-1.955627	4.703691	0.325375
C	-2.697060	3.517508	0.182466
C	-2.002558	2.316189	0.081770
C	-2.418220	0.926673	-0.074561
C	-5.199270	1.934174	-1.163324
C	-4.998201	0.590418	-0.020411
N	-5.514684	1.704958	-0.093679
N	-5.705063	-0.616315	-0.367223
O	-4.892084	-1.715053	-0.469845
O	-5.320324	-2.900639	-0.320097
O	1.597971	-2.493893	0.028190
C	1.024323	-2.954527	4.382895

S60
1o

Re	0.412900	0.774480	1.626584
Im	0.530472	2.167612	2.576066
Re	1.129900	3.001985	3.131784
Im	0.207519	1.293233	2.386927
Re	-0.119613	1.591675	2.833062
Im	0.956800	-0.772960	3.164663
Re	1.263878	-0.859593	3.729138
Im	1.610155	-1.859747	4.634702
Re	0.655711	-2.818928	4.976531
Im	0.877443	-2.436099	-0.858450
Re	2.126304	-1.818787	-0.943385
Im	1.149358	-1.116240	-0.164852
Re	-0.190043	-1.508258	-0.232101
Im	-1.178455	-0.839810	-0.477072
Re	-2.361295	-1.488132	-1.598303
Im	-3.657623	-1.215233	-0.602774
Re	-4.711474	-2.004917	-0.134817
Im	-4.472003	-3.060734	-0.769391
Re	-3.165698	-3.349793	-1.225271
Im	-2.565729	-2.567638	-0.761873
Re	-0.685403	-2.570189	-0.101520
Im	0.243025	-2.376945	-1.774126
Re	0.029520	-4.408646	-2.689574

1p

Re	1.740478	-0.068018	-0.004699
Im	3.153051	-1.385925	-0.467550
Re	3.971461	-2.218118	-0.009985
Im	2.973207	1.362877	0.223325
Re	3.712918	2.262421	0.357727
Im	1.312454	-0.292583	1.269581
Re	1.275814	-1.506327	-0.684177
Im	0.932304	-1.684871	4.049848
Re	0.607531	-0.567574	4.865622
Im	0.642783	0.690183	2.620964
References related to Discussion 1:
1) Gabrielsson, A.; Busby, M.; Matousek, P.; Towrie, M.; Hevia, E.; Cuesta, L.; Pérez, J.; Záliš, S.; Vlček Jr., A. Electronic structure and excited states of rhenium(I) amido and phosphido carbonyl-bipyridine complexes studied by picosecond time-resolved IR spectroscopy and DFT calculations. Inorg. Chem. 2006, 45, 9789-9797.
2) Cannizzo, A.; Blanco-Rodríguez, A.M.; El Nahhas, A.; Šebera, J.; Záliš, S.; Vlček Jr., A.; Chergui, M. J. Am. Chem. Soc. 2008, 130, 8967-8974.
3) Li, G.; Parimal, K.; Vyas, S.; Hadad, C.M.; Flood, A.H.; Glusac, K.D. Pinpointing the extent of electronic delocalization in the Re(I)-to-tetrazine charge-separated excited state using time-resolved infrared spectroscopy. J. Am. Chem. Soc. 2009, 131, 11656-11657.
4) Zhang, T.T.; Jia, J.F.; Wu, H.S. Substituent and solvent effects on electronic structure and spectral property of ReCl(CO)3(NAN)(NAN = Glyoxime): DFT and TDDFT theoretical studies. J. Phys. Chem. A 2010, 114, 12251-12257.
5) Záliš, S.; Consani, C.; El Nahhas, A.; Cannizzo, A.; Chergui, M.; Hartl, F.; Vlček Jr., A. Origin of electronic absorption spectra of MLCT-excited and one-electron reduced 2,2'-bipyridine and 1,10-phenanthroline complexes. Inorg. Chim. Acta. 2011, 374, 578-585.
6) Zhao, F.; Wang, J.X.; Liu, W.Q.; Wang, Y.B. Electronic structures and spectral properties of rhenium(I) tricarbonyl diimine complexes with phosphine ligands: DFT/TDDFT theoretical investigations, Comput. Theor. Chem. 2012, 985, 90-96.
7) Machura, B.; Wolff, M.; Benoist, E.; Couilas, Y. Tricarbonyl rhenium(I) complex of benzothiazole: Synthesis, spectroscopic characterization, X-ray crystal structure and DFT calculations. J. Organomet. Chem. 2012, 724, 82-87.
8) Chartrand, D.; Castro-Ruiz, C.A.; Hanan, G.S. Diimine triscarbonyl Re(I) of isomeric pyridyl-fulvene ligands: An electrochemical, spectroscopic, and computational investigation. Inorg. Chem. 2012, 51, 12738-12747.
9) Xia, H.; Zhao, F.; Liu, W.; Wang, Y. Electronic structures and spectral properties of rhenium (I) tricarbonyl cyclopenta[b]dipyridine complexes containing different aromatic ring groups. J. Organomet. Chem. 2013, 727, 10-18.
10) Baranovskii, V.I.; D.A. Maltsev, DFT study of potential energy surfaces and conical intersection structures of rhenium(I) tricarbonyl diimine complexes. Comput. Theor. Chem. 2014, 1043, 71-78.
11) Blanco-Rodríguez, A.M.; Kvapilová, Sýkora, J; Towrie, M.; Nervi, C.; Volpi, G.; Záliš, S.; Vlček Jr., A. Photophysics of singlet and triplet intraligand excited states in [ReCl(CO)3(1-(2-pyridyl)-imidazo[1,5-a]pyridine)] complexes. J. Am. Chem. Soc. 2014, 136, 5963-5973.
12) van der Salm, H.; Fraser, M.G.; Horvath, R.; Cameron, S.A.; Barnsley, J.E.; Sun, X.Z.; George, M.W.; Gordon, K.C. Re(I) complexes of substituted dppz: A computational and spectroscopic study. Inorg. Chem. 2014, 53, 3126-3140.
13) Kondrasenko, I.; Kisel, K.S.; Karttunanen, A.J.; Jänis, J.; Grachova, E.V.; Tunik, S.P.; Koshevoy, I.O. Rhenium(I) complexes with alkynylphosphane ligands: Structural, photophysical, and theoretical studies. Eur. J. Inorg. Chem. 2015, 864-875.
14) Sarkar, R.; Rajak, K.K. Synthesis and characterization of rhenium(I) complexes based on O, N, N coordinating ligands: DFT/TDDFT studies on the electronic structures and spectral properties. *J. Organomet. Chem.* 2015, 729, 1-13.
15) Yang, X.Z.; Zhang, T.T.; Wei, J.; Jia, J.F.; Wu, H.S. DFT/TDDFT studies of the ancillary ligand effects on structures and photophysical properties of rhenium(I) tricarbonyl complexes with the imidazo[4,5-f]-1,10-phenanthroline ligand. *Int. J. Quantum Chem.* 2015, 115, 1467-1474.
16) Eng, J.; Daniel, D. Structural properties and UV-visible absorption spectroscopy of retinal-pyridyl-CN Re(I) carbonyl bipyridine complex: A theoretical study. *J. Phys. Chem. A* 2015, 119, 10645-10653.
17) Fumanal, M.; Daniel, C. Description of excited states in [Re(imidazole)(CO)$_3$(phen)]$^+$ including solvent and spin-orbit coupling effects: Density functional theory versus multiconfigurational wavefunction approach. *J. Comput. Chem.* 2016, 37, 2454-2466.
18) Hasheminasab, A.; Dawadi, M.B.; Mehr, H.S.; Herrick, R.S.; Ziegler, C.J. *Macromolecules*, 2016, 49, 3016-3027.
19) Yang, X.Z.; Wang, Y.L.; Guo, J.Y.; Zhang, T.T.; Jia, J.F.; Wu, H.S. The effect of group-substitution on structures and photophysical properties of rhenium(I) tricarbonyl complexes with pyridyltetrazole ligand: A DFT/TDDFT study. *Mater. Chem. & Phys.* 2016, 178, 173-181.
20) Kullapa Chanawanno, K.; Rhoda, H.M.; Hasheminasab, A.; Crandall, L.A.; King, A.J.; Herrick, R.S.; Nemykin, V.N.; Ziegler, C.J. Using hydrazine to link ferrocene with Re(CO)$_3$: A modular approach. *J. Organomet. Chem.* 2016, 818, 145-153.
21) Carreño, A.; Gacitúa, M.; Fuentes, J.A.; Páez-Hernández, D.; Peñaloza, J.P.; Otero, C.; Preite, M.; Molins, E.; Swords, W.B.; Meyer, G.J.; Manríquez, J.M.; Polanco, R.; Chávez, I.; Arratia-Pérez, R. Fluorescence probes for both prokaryotic and eukaryotic cells using new rhenium (I) tricarbonyl complexes with an electron withdrawing ancillary ligand. *New J. Chem.* 2016, 40, 7687-7700.
22) Harabuchi, Y.; Eng, J.; Gindensperger, E.; Takesugu, T.; Maeda, S.; Daniel, C. Exploring the mechanism of ultrafast intersystem crossing in rhenium(I) carbonyl bipyridine halide complexes: Key vibrational modes and spin–vibrionic quantum dynamics. *J. Chem. Theory Comput.* 2016, 12, 2335-2345.
23) Laramée-Milette, B.; Zaccheroni, N.; Palomba, F.; Hanan, G.S. Visible and near-IR emissions from k^2N- and k^3N-terpyridine rhenium(I) assemblies obtained by an $[n \times 1]$ head-to-tail bonding strategy. *Chem. Eur. J.* 2017, 23, 6370-6379.
24) Zúñiga, C.; Oyarzún, D. P.; Martin-Transaco, R.; Yáñez-S, M.; Tello, A.; Fuentealba, M.; Cantero-López, P.; Arratia-Pérez, R. Synthesis, characterization and relativistic DFT studies of fac-Re(CO)$_3$(isonicotinic acid)$_2$Cl complex. *Chem. Phys. Lett.* 2017, 688, 66-73.
25) Ramdass, A.; Sathish, V.; Velayudham, M.; Thanasekaran, P.; Umapathy, S.; Rajagopal, S. Luminescent sensor for copper(II) ion based on imine functionalized monometallic rhenium(I) complexes. *Sensors & Actuators B* 2017, 240, 1216-1225.
26) Chakraborty, I.; Jimenez, J.; Sameera, W.M.C.; Kato, M.; Masarak, P.K. Luminescent Re(I) carbonyl complexes as trackable photoCORMs for CO delivery to cellular targets. *Inorg. Chem.* 2017, 56, 2863-2873.
27) Mukuta, T.; Peter V. Simpson, P.V.; Vaughan, J.G.; Brian W. Skelton, B.W.; Stagni, S.; Massi, M.; Koike, K.; Ishitani, O.; Onda, K. Photochemical processes in a rhenium(I) tricarbonyl N-heterocyclic carbene complex studied by time-resolved measurements. *Inorg. Chem.* 2017, 56, 3404-3413.
28) Muñoz-Osses, M.; Siegmund, D.; Gómez, A.; Godoy, F.; Fierro, A.; Llanos, L.; Aravena, D.; Metzler-Nolte, N. Influence of the substituent on the phosphine ligand in novel rhenium(I) aldehydes. Synthesis, computational studies and first insights into antiproliferative activity. *Dalton Trans.* 2018, 47, 13861-13869.
29) Shillito, G.E.; Hall, T.B.J.; Preston, D.; Traber, P.; Wu, L.; Reynolds, K.E.A.; Horvath, R.; Sun, X.Z.; Lucas, N.T.; Crowley, J.D.; George, M.W.; Kupfer, S.; Gordon, K.C. Dramatic alteration of 3ILCT lifetimes using ancillary ligands in [Re(L)(CO)3(phen-TPA)]n+ complexes: An integrated spectroscopic and theoretical study. *J. Am. Chem. Soc.* 2018, 140, 4534-4542.
30) Whang, D.R.; Apaydin, D.H.; Park, S.Y.; Sariciftci, N.S. An electron-reservoir Re(I) complex for enhanced efficiency for reduction of CO2 to CO. *J. Catal.* 2018, 363, 191-196.
31) Fumanal, M.; Gindensperger, E.; Daniel, C. Ligand substitution and conformational effects on the ultrafast luminescent decay of [Re(CO)3(phen)(L)]+(L = imidazole, pyridine): non-adiabatic quantum dynamics. *Phys. Chem. Chem. Phys.* 2018, 20, 1134-1141.
32) Marker, S.C.; MacMillan, S.N.; Zipfel, W.R.; Li, Z.; Ford, P.C.; Wilson, J.J. Photoactivated in vitro anticancer activity of rhenium(I) tricarbonyl complexes bearing water-soluble phosphines. *Inorg. Chem.* 2018, 57, 1311-1331.
33) Klemens, T.; Świtlicka, A.; Szlapa-Kula, A.; Łapok, Ł.; Obłoza, M.; Siwy, M.; Szalkowski, M.; Mačkowski, S.; Libera, M.; Schab-Balcerzak, E.; Machura, B. Tuning optical properties of Re(I) carbonyl complexes by modifying push-pull ligands structure. *Organometallics* 2019, 38, 4206-4223.
34) Favale Jr., J.M.; Danilov, E.O.; Yarnell, J.E.; Castellano, F.N. Photophysical processes in rhenium(I) diiminetricarbonyl arylisocyanides featuring three interacting triplet excited states. *Inorg. Chem.* 2019, 58, 8750-8762.
35) Suntrup, L.; Stein, F.; Klein, J.; Wilting, A.; Parlane, F.G.L.; Brown, C.M.; Fiedler, J.; Berlinguette, C.P.; Sievert, I.; Sarkar, B. Rhenium complexes of pyridyl-mesoionic carbenes: Photochemical properties and electrocatalytic CO2 reduction. *Inorg. Chem.* 2020, 59, 4215-4227.
36) Shillito, G.E.; Preston, D.; Traber, P.; Steinmetzer, J.; McAdam, C.J.; Crowley, J.D.; Wagner, P.; Kupfer, S.; Keith C. Gordon, K.C. Excited-state switching frustrates the tuning of properties in triphenylamine-donor-ligand rhenium(I) and platinum(II) complexes. *Inorg. Chem.* 2020, 59, 6736-6746.
37) Auvray, T.; Del Secco, B.; Dubreuil, A.; Zaccheroni, N.; Hanan, G.S. In-depth study of the electronic properties of NIR-emissive κ3N-terpyridine rhenium(I) dicarbonyl complexes. *Inorg. Chem.* 2021, 60, 70-79.
38) Fernández-Terán, R.J.; Sévery, L. Coordination environment prevents access to intraligand charge-transfer states through remote substitution in rhenium(I) terpyridinedicarbonyl complexes. *Inorg. Chem.* 2021, 60, 1325-1333.
39) Fernández-Terán, R.J.; Sévery, L. Living long and prosperous: Productive intraligand charge-transfer states from a rhenium(I) terpyridine photosensitizer with enhanced light absorption. *Inorg. Chem.* 2021, 60, 1334-1343.
40) Kastl, A.; Dieckmann, S.; Wähler, K.; Völker, T.; Kastl, L.; Merkel, A. L.; Vultur, A.; Shanna, B.; Harms, K.; Ocker, M.; Parak, W. J.; Herlyn, M.; Meggers, E. Rhenium Complexes with Visible-Light-Induced Anticancer Activity. *ChemMedChem* **2013**, *8*, 924-927.

41) Kukovec, B.M.; Kodrin, I.; Mihalić, Z.; Furić, K.; Popović, Z. *Cis-trans* isomerism in cobalt(II) complexes with 3-hydroxypicolinic acid. Structural, DFT and thermal studies. *Inorg. Chim. Acta* **2010**, *363*, 1887-1896.

42) Smrečki, N.; Jović, O.; Molčanov, K.; Kukovec, B.M.; Kekez, I.; Matković-Čalogović, D.; Popović, Z. Influence of the non-coordinating alkyl chain type in N-alkylated iminodiacetamides on the stability and structure of their complexes with nickel(II) and cobalt(II). *Polyhedron* **2017**, *130*, 115-126.

43) Smrečki, N.; Rončević, T.; Jović, O.; Kukovec, B.M.; Maravić, A.; Gajski, G.; Čikeš-Čulić, V. Copper(II) complexes with N'-methylsarcosinamide selective for human bladder cancer cells. *Inorg. Chim. Acta* **2019**, *488*, 312-320.
References related to Discussion 2:

1) Becke, A. D. Density-functional exchange-energy approximation with correct asymptotic behavior. *Phys. Rev. A*: At., Mol., Opt. Phys. **1988**, 38, 3098-3100.

2) Lee, C.; Yang, W.; Parr, R.G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. *Phys. Rev. B*: Condens. Matter Mater. Phys. **1988**, 37, 785-789.

3) Becke, A. D. Density-functional thermochemistry. III. The role of exact exchange. *J. Chem. Phys.* **1993**, 98, 5648-5652.

4) Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A consistent and accurate ab initio parameterization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. *J. Chem. Phys.* **2010**, 132, 154104.

5) Yanai, T.; Tew, D. P.; Handy, N. C. A new hybrid exchange-correlation functional using the Coulomb-attenuating method (CAM-B3LYP). *Chem. Phys. Lett.* **2004**, 393, 51-57.

6) Zhao, Y.; Schultz, N. E.; Truhlar, D. G. Exchange-correlation functional with broad accuracy for metallic and nonmetallic compounds, kinetics, and noncovalent interactions. *J. Chem. Phys.* **2005**, 123, 161103.

7) Zhao, Truhlar, D. G. The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: Two new functionals and systematic testing of four M06-class functionals and 12 other functionals. *Theor. Chem. Acc.* **2008**, 120, 215-241.

8) MN15: Yu, H. S.; He, X.; Li, S. L.; Truhlar, D. G. MN15: A Kohn-Sham global-hybrid exchange-correlation density functional with broad accuracy for multi-reference and single-reference systems and noncovalent interactions. *Chem. Sci.* **2016**, 7, 5032-5051.

9) Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. *Phys. Rev. Lett.* **1996**, 77, 3865-3868.

10) Perdew, J. P.; Burke, K.; Ernzerhof, M. Errata: Generalized gradient approximation made simple. *Phys. Rev. Lett.* **1997**, 78, 1396-1399.

11) PBE0: Adamo, C.; Barone, V. Toward reliable density functional methods without adjustable parameters: The PBE0 model. *J. Chem. Phys.* **1999**, 110, 6158-6170.

12) Tao, J.; Perdew, J. P.; Staroverov, V. N.; Scuseria, G. E. Climbing the density functional ladder: Nonempirical meta-generalized gradient approximation designed for molecules and solids. *Phys. Rev. Lett.* **2003**, 91, 146401-146405.

13) Staroverov, V. N.; Scuseria, G. E.; Tao, J.; Perdew, J. P. Comparative assessment of a new nonempirical density functional: Molecules and hydrogen-bonded complexes. *J. Chem. Phys.* **2003**, 119, 12129-12137.

14) Chai, J.-D.; Head-Gordon, M. Systematic optimization of long-range corrected hybrid density functionals. *J. Chem. Phys.* **2008**, 128, 084106.

15) wB97xD: Chai, J. D.; Head-Gordon, M. Long-range corrected hybrid density functionals with damped atom-atom dispersion corrections. *Phys. Chem. Chem. Phys.* **2008**, 10, 6615-6620.

16) Mennucci, B.; Tomasi, J. Continuum solvation models: A new approach to the problem of solute’s charge distribution and cavity boundaries. *J. Chem. Phys.* **1997**, 106, 5151-5158.
17) Barone, V.; Cossi, M.; Tomasi, J. A new definition of cavities for the computation of solvation free energies by the polarizable continuum model. *J. Chem. Phys.* **1997**, *107*, 3210-3221.

18) Cancès, M. T.; Mennucci, B.; Tomasi, J. A new integral equation formalism for the polarizable continuum model: Theoretical background and applications to isotropic and anisotropic dielectrics. *J. Chem. Phys.* **1997**, *107*, 3032-3041.

19) Barone, V.; Cossi, M.; Tomasi, J. Geometry optimization of molecular structures in solution by the polarizable continuum model. *J. Comput. Chem.* **1998**, *19*, 404-417.

20) Tomasi, J.; Mennucci, B.; Cancès, M. T. The IEF version of the PCM solvation method: an overview of a new method addressed to study molecular solutes at the QM ab initio level. *J. Mol. Struct.: THEOCHEM* **1999**, *464*, 211-226.

21) Scalmani, G.; Frisch, M. J. Continuous surface charge polarizable continuum models of solvation. I. General formalism. *J. Chem. Phys.* **2010**, *132*, 114110.

22) Lipparini, F.; Scalmani, G.; Mennucci, B.; Cances, E.; Caricato, M.; Frisch, M. J. A variational formulation of the polarizable continuum model. *J. Chem. Phys.* **2010**, *133*, 014106.

23) Rappé, A. K.; Casewit, C. J.; Colwell, K. S.; Goddard, W. A., III; Skiff, W. M. UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations. *J. Am. Chem. Soc.* **1992**, *114*, 10024-10039.

24) Pierotti, R. A. A scaled particle theory of aqueous and nonaqueous solutions. *Chem. Rev.* **1976**, *76*, 717-726.

25) Floris, F.; Tomasi, J. Evaluation of the dispersion contribution to the solvation energy. A simple computational model in the continuum approximation. *J. Comp. Chem.* **1989**, *10*, 616-627.

26) Floris, F.; Tomasi, J.; Pascual-Ahuir, J. L. Dispersion and repulsion contributions to the solvation energy: Refinements to a simple computational model in the continuum approximation. *J. Comp. Chem.* **1991**, *12*, 784-791.

27) Kastl, A.; Dieckmann, S.; Wähler, K.; Völker, T.; Kastl, L.; Merkel, A. L.; Vultur, A.; Shanna, B.; Harms, K.; Ocker, M.; Parak, W. J.; Herlyn, M.; Meggers, E. Rhenium complexes with visible-light-induced anticancer activity. *ChemMedChem* **2013**, *8*, 924-927.