We report high-resolution photoemission results for the 4f levels in YbCu_{2}Si_{2} and CeSi_{2}. The data are compared to the predictions of the Anderson impurity model for valence band photoemission. These predicted spectra are obtained both in an approximate fashion by broadening crystal field (CF) states whose parameters are determined from existing neutron scattering data, as well as from a Gunnarson-Schonhammer calculation.

Inclusion of crystal fields does not affect our two fundamental conclusions: that there is a natural linewidth in the problem (=130 meV) which is much greater than predicted by the Anderson model, and that the expected temperature dependence of the Kondo resonance is absent. Due to the large natural linewidth, experimental resolution (60-95 meV) is not a limiting factor.

The prevailing model used to explain the photoemission spectra (PES) of heavy fermion compounds is the Anderson impurity model. A key prediction of the model is the existence of the so-called Kondo Resonance (KR). This is predicted to be of width kT_K (where T_K is the Kondo temperature), to be of integrated weight kT_K (where Γ is the hybridization width), and to lie a distance kT_K above (below) the Fermi energy E_F in cerium (ytterbium) compounds. For Ce compounds the KR can be viewed in inverse photoemission (BIS) since only the tail of the KR lies below E_F; for Yb compounds, however, the KR should be directly observed in photoemission spectra (PES). The KR is expected to renormalize to zero (i.e. vanish) at $T = T_K$. In the presence of spin orbit and crystal field splitting the predicted spectra are considerably more complicated.

In addition to the KR of the ground state multiplet, crystal field and spin orbit sidebands are predicted above and below E_F, with characteristic temperature scales for renormalization of the spectral weight which can be substantially different than T_K.

In recent work we have examined the PES for a series of Ce compounds with T_K's varying from 0-300K. We demonstrated that the spectral weight of the feature which lies near E_F does not scale with T_K (i.e. as T_K/Γ, or the associated sidebands) but rather appears to have similar width independent of T_K; that the feature near E_F has a natural linewidth which is much larger than $T_K\Gamma$ or $T_K\Gamma_F$; and that there is no observable temperature dependence beyond that expected on the basis of Fermi function broadening and a small amount of phonon broadening.

In this paper we present new data for YbCu_{2}Si_{2} and reanalyze existing data for CeSi_{2} to show that the latter two conclusions hold even in the presence of spin orbit (SO) and crystal field (CF) effects. We make use of existing inelastic neutron scattering data for both compounds to determine the crystal field splittings and linewidths to be used in a simple determination of the expected spectra for the case where crystal fields and the Kondo effect coexist.

Given that the KR should be readily observed in PES in ytterbium, our analysis for YbCu_{2}Si_{2} directly establishes that the linewidth is larger than predicted and that the temperature dependent renormalization is much smaller than expected. For CeSi_{2}, where only the "tail" of the KR is occupied (along with the KR sidebands), we have performed (in addition to the above simple lineshape analysis of broadened neutron states) a full Gunnarson-Schonhammer (GS) calculation containing the CF states, but not including the effects of the finite f-f correlation U, which we find has minimal effect on the spectrum, provided that T_K remains invariant with U. The fits from the GS calculation are substantially narrower than measured.

Experiments were carried out at the Los Alamos U3C beamline at NSLS and at the University of Wisconsin's SRC. The YbCu_{2}Si_{2} samples were flux-grown single crystals cleaved along the basal plane in ultra high vacuum (UHV); the CeSi_{2} samples were arc-melted polycrystals fractured in UHV. The chamber base pressure was 5×10^{-11} torr. Temperature was controlled by placing the sample in direct contact with a cryostat cooled either by liquid helium ($T=20K$) or by liquid nitrogen ($T=80K$) held at room temperature. The total experimental resolution was determined to be 60 or 80 meV for YbCu_{2}Si_{2} at $h\nu=60eV$ and 95 meV for CeSi_{2} at the 4d resonance of $h\nu=120eV$.

Although the characteristic Kondo and crystal field widths are expected to be smaller than this, we will show subsequently, that the natural linewidth is of order 130 meV; for this reason our experimental resolution is adequate. To further establish this point we will analyze data for CeSi_{2} reported by Patthey et al taken at 18 meV resolution using HeI and HeII discharge radiation, and
show that there is no essential change in our conclusions.

The compound YbCu$_2$Si$_2$ is a nearly trivalent Yb compound with a Kondo temperature of order 50K as determined from the specific heat or inelastic neutron quasielastic linewidth. In Fig. 1a we show the spectra of YbCu$_2$Si$_2$ taken at hv=60eV. As is generally true for heavy fermion compounds with Kondo temperatures of order 100K, the valence is non-integral. A series of peaks with binding energies in the range 6-12eV represent f$_{14} \rightarrow f_{13}$ transitions from the trivalent component of the ground state. The peaks within 3eV of EF represent f$_{14} \rightarrow f_{12}$ transitions from the divalent component. Based on similar spectra taken at several photon energies we estimate the number of holes in the 4f shell is n$_f = 0.9$.

In the language of the Anderson model the f$_{14} \rightarrow f_{13}$ transitions are the Kondo resonances. The peak labeled J=5/2 represents an "excited state" resonance from the divalent component of the ground state to the J=5/2 spin orbit excited state of the f$_{13}$ final state. The peak labeled J=7/2, representing transitions into the lower spin-orbit manifold of the final state, should be further split due to crystal field splitting. The measured J=7/2 spectrum should consist of four doublets. The lowest (the ground state KR) should lie a distance kT$_K$ below EF and also has width 4meV. The spectrum is multiplied by the Fermi function at 20K and convoluted with instrumental resolution (60meV). The resulting curve is shown as the broad line in the bottom of Fig. 2 (and the dashed line in the top frame) and is compared to the experimental spectrum in the top of Fig. 2. It can be seen that the data is substantially broader than predicted. This reflects the existence of a natural linewidth which is substantially larger than kT$_K$. To estimate this natural linewidth we generate a Voigt function fit to the data, using a 60meV Gaussian to account for instrumental resolution, a 20K Fermi function cutoff, and a Lorentzian peak, energies represent binding energies below EF in PES for Yb). For the case of n$_f = 0.9$ theory predicts at the very least, a factor of two decrease in the spectral weight of both the KR and the sidebands as T increases from T = 0 to 31K.

To test these predictions we first normalize the spectra at different temperatures to the Cu 3d peak (at 4eV binding energy). We then isolate the bulk J=7/2 peak (Fig. 1b) by subtracting off the surface peaks. To determine the predicted spectrum we use neutron scattering results for the CF splittings; peaks are observed at 12 and 30meV in the neutron experiment, and an additional peak at 80meV is inferred from fits to the susceptibility. We approximate the predicted spectrum by first including three Lorentzians of equal weight at 12, 30 and 80meV; we make the assumption that the linewidths of the excited doublets in PES are equal to the measured neutron linewidths (=8meV). An additional Lorentzian representing the ground state doublet KR lies a distance kT$_K$=4meV below EF and also has width 4meV. The spectrum is multiplied by the Fermi function at 20K and convoluted with instrumental resolution (60meV). The resulting curve is shown as the broad line in the top frame (Fig. 2) and the dashed line in the bottom frame) and is compared to the experimental spectrum in the top of Fig. 2. It can be seen that the data is substantially broader than predicted. This reflects the existence of a natural linewidth which is substantially larger than kT$_K$. To estimate this natural linewidth we generate a Voigt function fit to the data, using a 60meV Gaussian to account for instrumental resolution, a 20K Fermi function cutoff, and a Lorentzian peak,
which was allowed to vary in width and position to fit the PES data. The resulting Lorentzian parameters are $\Gamma_L=130$ meV (FWHM) and $E=60$ meV below E_F. This is shown as the solid line at the top of Fig. 2. The Voigt function fits the data very well; the data has a smooth symmetrical character as opposed to the asymmetric lineshape expected from the composite crystal field prediction.

The temperature dependence of the $J=7/2$ peak is shown in the top frame of Fig. 3. Apart from Fermi function broadening (0.1 eV at 300 K) there is no discernible temperature dependence. (The $J=5/2$ peak, not shown here, shows no temperature dependence.) As already discussed, for Yb the CF and SO resonances should vanish on the same scale as the ground state KR; here the scale is 50 K so that by 300 K the peaks should be reduced in intensity at the very least by a factor of two. The data distinctly violate the impurity theory as extended to PES.

For CeSi$_2$ we perform not only a similar analysis as above, but also a full GS $T=0$ calculation including CF states with infinite U (since finite U changes no widths at E_F). We constrained T_K to the thermodynamic value of ≈ 35 K as determined from the specific heat. Neutron scattering shows two excitations, at 25 and 48 meV, with widths 13-14 meV, due to crystal field splitting of the $J=5/2$ manifold. In addition the spin-orbit splitting is expected to be 0.2-0.3 eV. The Anderson Model expectations for the spectra for Ce compounds are more complicated than for the Yb case. Due to hybridization the excited CF and SO multiplets acquire some 4f character. Photoemission causes excitations from the dominant (4f1) 4f component of the hybridized ground state to the 4f0 component of the excited state. Hence sidebands below E_F are expected at the CF and SO excitation energies. The widths of these excitations (kT_{KCF} and kT_{KSO}) can be substantially larger than the width of the ground state KR doublet, which lies above E_F and has width kT_K. In

our simple analysis we will assume that kT_{KCF} is equal to the linewidths of the CF excitations measured in neutron scattering. (The crystal field splittings would in any case set an upper limit on kT_{KCF}.) In the GS $T=0$ calculation these widths as well as weights are determined by the input parameters of the calculation.

The experimental spectrum for CeSi$_2$ at $h\nu=120$ eV, shown in Fig. 1c, consists of the main 4f1 \rightarrow 4f0 excitation at $=2$ eV binding energy and a second feature near E_F. This feature consists of two peaks, one at E_F and the other at 0.28 eV. This can be seen either in the 21.2 eV data ($\Delta E=18$ meV) of Patthey et al. (Fig. 1d) or in our 4d resonance data taken at 120 eV with $\Delta E=95$ meV (Fig. 3). The peak at 280 meV is assumed to represent the $J=7/2$ SO manifold, the peak near E_F the $J=5/2$ manifold.

To isolate the $J=5/2$ peak for lineshape analysis we proceed as follows. As shown in Joyce et al. and Patthey's 18 meV resolution data and our 95 meV resolution data can be fit with nearly identical Voigt functions, both showing two Lorentzians (E1=280 meV, F1=220 meV; E2=20 meV, F2=145 meV) cut off by a $T=20$ K Fermi function, but with appropriately different experimental widths (18 or 95 meV). The 20 meV feature obtained after subtracting the 280 meV component from Patthey's data is shown in Fig. 1e. To determine the curve expected from CF states found in neutron scattering, we proceed as for YbCu$_2$Si$_2$. Lorentzians at 25 and 48 meV represent the CF sidebands; the widths are set equal to the neutron linewidth (13-14 meV). A Lorentzian situated 4 meV above E_F with width 4 meV represents the ground state KR. These are cut off by a $T=20$ K Fermi function; an 18 meV Gaussian represents instrumental resolution. The spectrum thus ob-

![Fig. 3](image-url)
Fig. 3 The photoemission spectra for YbCu$_2$Si$_2$ and CeSi$_2$ in the near E_F region at three temperatures. (For CeSi$_2$, $h\nu=120$ eV and $\Delta E=95$ meV; for YbCu$_2$Si$_2$, $h\nu=60$ eV and $\Delta E=80$ meV). The strong temperature dependence predicted by the Anderson Model is not observed.

![Fig. 4](image-url)
Fig. 4 The $J=5/2$ spectrum near E_F for CeSi$_2$ from Fig. 1E compared to lineshape from broadened crystal field states. In the bottom frame the three crystal field doublets determined from neutron scattering are shown, together with the Gaussian broadened composite. The latter is replicated in the top frame and directly compared to the data. Again, the data is substantially broader ($=145$ meV). The parameters of the Voigt fit are given in the top frame.
HEAVY FERMION Ce AND Yb COMPOUNDS

Fig. 5 Comparison of lineshapes obtained from the PES experiment of Ref. 6 (dots) vs lineshapes calculated from the GS model (heavy solid line) and broadened neutron linewidths (light solid line). All fits are poor, but the extra weight for the KR in the GS calculation yields a substantially worse fit than the simplistic neutron linewidth spectrum.

Since the above lineshape analysis may appear somewhat ad-hoc (although the only serious question is one of relative weights for the various CF’s), we also include the full GS calculation in Fig. 5 with parameters as in ref. 6, but including the correct CF’s with infinite U. Due to the added strength of the KR relative to the CF’s, one can see that the fit becomes substantially worse than our approximate fits which give equal weight to all levels. Thus, surprisingly, our approximate representation (using Lorentzians at the neutron CF levels) of the GS excitation spectrum is actually a best case scenario. In Fig. 3 we show the temperature dependence of the J=5/2 and J=7/2 peaks for CeSi2. The data have been normalized to the incident photon flux. No dramatic temperature dependence is observed; rather the small decrease with temperature can be explained primarily by Fermi function broadening and secondarily by inclusion of a small but reasonable amount of phonon broadening. Fig. 34 of Ref. 4 states that depletion of CF(SO) sidebands occurs with characteristic temperature equal to the CF(CO) splitting. It thus predicts a weak T dependence which may be difficult to distinguish from that due to ordinary mechanisms. Despite earlier claims, PES for Ce heavy fermions is not the optimum experiment to test for thermal renormalization of the excitation spectrum resulting from the Kondo model.

We thus have seen, both for a Yb and a Ce compound, that inclusion of excited multiplets, both crystal field and spin orbit, in the analysis of the photoemission spectrum does not alter the fundamental conclusions that the feature in PES near Ep has a linewidth (~130meV) much larger than predicted by Anderson impurity theory, and that for YbCu2Si2 the predicted renormalization of the spectra with increasing temperature is absent. Due to the large natural linewidth these conclusions are not altered by the fact that our experimental resolution (60-95meV) is larger than the Kondo energies. Although the Anderson impurity model has proven highly successful in explaining the thermodynamic behavior of heavy fermion compounds, the extensions of the model to PES cannot explain these valence band photoemission results.

Acknowledgment - We wish to thank the referee for encouraging us to perform the full GS calculation.

REFERENCES

1. J.W. Allen, S.-J. Oh, O. Gunnarson, K. Schonhammer, M.B. Maple, M.S. Torikachvili and I. Lindau, Advances in Physics 35, 275 (1986)
2. O. Gunnarson and K. Schonhammer in Theory of Heavy Fermions and Valence Fluctuations, T. Kasuya and T. Saso, editors (Springer-Verlag, Berlin, 1986) p. 110
3. See various articles in The Handbook on the Physics and Chemistry of the Rare-Earths, vol. 10, K.A. Gschneidner, Jr., L. Eyring and S. Hufner, editors (North Holland, Amsterdam, 1987)
4. N. E. Bickers, D.L. Cox and J.W. Wilkins, Phys. Rev. B 36, 2036 (1987)
5. J.J. Joyce, A.J. Arko, J.M. Lawrence, P.C. Canfield, Z. Fisk, R.J. Bartlett, J.D. Thompson, Phys. Rev. Lett., to be published
6. F. Patthey, J.-M. Imer, W.-D. Schneider, H. Beck and Y. Baer, Phys. Rev. B 42, 8864 (1990)
7. B.C. Sales and R. Viswanathan, J. Low Temp. Phys., 23, 449 (1976). Use of the Bethe-Ansatz formula \(T_K = \beta R/6y \) relevant for a Kondo ground state doublet gives \(T_K = 32K \) for YbCu2Si2.
8. E. Holland-Moritz, D. Wohlleben, and M. Loewenhaupt, Phys. Rev. B 25, 7482 (1982). The quasielastic linewidth is 4-5meV consistent with \(T_K = 50-60K \) for YbCu2Si2.
9. P.S. Riseborough, to be published
10. R. Currat, R.G. Lloyd, P.W. Mitchell, A.P. Murani and J.W. Ross, Physica B 156&157, 812 (1989)
11. H. Yashima and T. Satoh, Solid State Comm. 41, 723 (1982)
12. R.M. Galera, A.P. Murani and J. Pierre, Physica B 156&157, 801 (1989)