Discovery of a highly specific 18F-labeled PET ligand for phosphodiesterase 10A enabled by novel spirocyclic iodonium ylide radiofluorination

Zhiwei Xiaoa,b,†, Huiyi Weia,†, Yi Xuc,†, Ahmed Haiderb, Junjie Weia, Shiyu Yuana, Jian Rongb, Chunyu Zhaob, Guocong Lia, Weibin Zhangd, Huangcan Chend, Yuefeng Lie, Lingling Zhanga, Jiyun Suna,b, Shaojuan Zhanga, Hai-Bin Luof, Sen Yang, Qijun Caia, Lu Houa, Chao Chea,*,d, Steven H. Liangb,*,a, Lu Wanga,*,a

aCenter of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine and PET/CT-MRI Center, the First Affiliated Hospital of Jinan University, Guangzhou 510630, China
bDivision of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA 02114, USA
cDepartment of Cardiology, the First Affiliated Hospital of Jinan University, Guangzhou 510630, China
dState Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China
eGuangdong Landau Biotechnology Co. Ltd., Guangzhou 510555, China
fKey Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China
gGuangdong-Hongkong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou 510652, China

Received 13 July 2021; received in revised form 30 September 2021; accepted 20 October 2021

KEY WORDS
Phosphodiesterase 10A;

Abstract As a member of cyclic nucleotide phosphodiesterase (PDE) enzyme family, PDE10A is in charge of the degradation of cyclic adenosine (cAMP) and guanosine monophosphates (cGMP). While PDE10A is primarily expressed in the medium spiny neurons of the striatum, it has been implicated in...
PET radioligand; 18F
Spirocyclic iodonium ylide; Nonhuman primate; Target occupancy

1. Introduction

Cyclic adenosine monophosphate (cAMP) and guanosine monophosphate (cGMP) serve as critical intracellular second messengers that are involved in a myriad of downstream signaling pathways via activation of protein kinase A (PKA) and protein kinase G (PKG), respectively. As such, cAMP and cGMP regulate a wide range of physiological processes including apoptosis, learning and memory, cell differentiation, ion channel function, insulin secretion, platelet aggregation, smooth muscle relaxation, and T-cell activation. Cyclic nucleotide phosphodiesterase (PDE) enzymes, encoded by 21 human genes and categorized into 11 distinct families, provide the sole route for the downregulation of cAMP and/or cGMP, thereby regulating their intracellular levels. The latter is required for physiological functions of the central nervous system (CNS). In contrast to other members of PDE families, PDE10A was found to be expressed modestly in peripheral organs, with the exception of the testes, while abundant in the CNS, especially in the medium spiny neurons of the striatum. Along this line, PDE10A plays pivotal roles in the regulation of signaling transduction from dopaminergic and glutamatergic input to the striatal medium spiny neurons. The inhibition of PDE10A holds therapeutic potentials in neurologic and psychiatric disorders caused by dysfunction of the basal ganglia, of which the striatum constitutes a major component. As such, the development of PDE10A inhibitors has drawn continuous attention, with a number of preclinical and clinical studies recently reported. Note, the plant-derived PDE10A inhibitor, papaverine, was the first compounds that entered the clinical arena. Nonetheless, the use of papaverine was hampered by the relatively low potency and selectivity, as well as the relatively fast in vivo clearance. Another PDE10A inhibitor with improved pharmacology, MP-10 (PF-2545920), was tested for the treatment of PD and schizophrenia. Despite promising preclinical findings, MP-10 treatment did not result in the anticipated antipsychotic effect in multiple clinical trials. Underlying causes for the discrepancy between preclinical and clinical studies are likely of multifactorial origin and further studies are warranted. TAK-063 is another PDE10A inhibitor that exhibited efficacy in animal models. Although TAK-063 has proven to be safe in two phase I clinical trials, the primary endpoint of improving schizophrenia symptoms was not met in a clinical phase II study. These results indicate that an improved understanding of species-differences is crucial to allow the successful translation of PDE10A inhibitors from rodent models to humans. PDE10A inhibitors that have been repurposed or are still under clinical development include, but are not limited to, TAK-063 and PBF-999.
applications in clinical settings while maintaining the in vivo metabolic stability. Along this line, [\(^{18}\text{F}\)]FM-T-773-d2 (\([\text{[18F]}\])16, \(\text{IC}_{50} = 1.8 \text{ nmol/L}\)) portrayed closely mimicking properties to \([\text{[11C]}\]4, however, with improved stability, thus serving as an optimal tool for in vivo applications\(^{40}\). To date, \([\text{[18F]}\])MN659 (\([\text{[18F]}\])7, \(\text{IC}_{50} = 0.097 \text{ nmol/L}\)) constitutes the most sensitive, reliable and frequently used radioligand for clinical PDE10A imaging due to the favorable pharmacokinetics, specific binding and test-retest reliability\(^{7,46,47}\). However, the \([\text{[18F]}\]fluoroethoxy motif in the structure of \([\text{[18F]}\]7 is prone to cytochrome-P450 monooxygenase metabolism, thereby complicating the neuroPET image analysis. Indeed, substitution of the \([\text{[18F]}\]fluoroethoxy motif with a \([\text{[18F]}\]fluoromethoxy-d2 group proved to be beneficial for PET, as evidenced by the superior radiometabolic stability and higher \(\text{BP}_{\text{ND}}\) values of \([\text{[18F]}\]8 (\(K_{i} = 2.9 \text{ nmol/L}\)) compared to the non-deuterated version, \([\text{[18F]}\]7 (Fig. 1)\(^{50}\). Nevertheless, since the purification of \([\text{[18F]}\]fluoromethoxy-d2 synthon (bp 15 \(^{\circ}\)C) consisted of discreet distillation, series of Sep-Pak cartridges separation, followed by effective trapping in the hot cell\(^{6,30}\), the automated synthesis of \([\text{[18F]}\]8 proved to be challenging in several radiochemistry facilities, thus impeding a broad clinical application.

We hypothesized that the direct attachment of \(^{18}\text{F}\) to the inactive phenyl ring would maintain a reasonable binding affinity and lipophilicity of the ligand, as well as exhibit an improved in vivo metabolic profile due to the inherently inert features of aryl-\(^{18}\text{F}\) bonds. Therefore, the aims of this work were (i) to synthesize the novel PDE10A inhibitor 9 (P10A-1910), to determine its in vitro binding affinity, selectivity and physicochemical properties, (ii) to establish radiolabelling strategy of 9 via the spirocyclic iodonium ylide (SCIDY) precursor and assess the brain penetration, metabolic stability and in vitro/in vivo specificity of \([\text{[18F]}\]9 towards PDE10A. Further, we envisioned, (iii) the assessment of its utility for in vivo target engagement studies in nonhuman primates.

2. Results and discussion

2.1. Chemical synthesis

To prepare PDE10A inhibitor 9 (P10A-1910) and the key radiolabeling precursor 15 containing the isoidoline-quinazolinone scaffold, we envisioned an efficient synthetic strategy that was based on previously reported synthetic procedures\(^{51}\), however, with modifications. As shown in Scheme 1, starting with the commercially available 3-hydroxyphthalic anhydride 10, nucelophilic substitution and intramolecular cyclization occurred under basic conditions, affording isoidoline-1,3-dione 11 in 33% yield.

Subsequent alkylation reaction installed the isopropyl group on the phenol moiety, followed by TFA-triggered esterolysis to afford the primary acid 13 in 68% yield over two steps. Reacting compound 13 with 2-amino-4-methylbenzoic acid and triphenyl phosphite in pyridine at 100 \(^{\circ}\)C for 4 h, and subsequent treatment with 4-fluoroaniline yielded reference compound 9. Similar condensation reactions were readily achieved in the presence of 4-iodoaniline, whereas carboxylic acid 13 was converted to aryl halide 14 in 47% yield over two steps. Oxone was used to oxidize 14 in a mixture of CHCl\(_3\)/TFA into the corresponding iodo(III) intermediate, which was then coupled with SPIAd under basic conditions to afford the SCIDY precursor 15 in high yield (72%, two steps from 14).

2.2. Pharmacological and physicochemical properties

With target compound 9 in hand, the pharmacological and physicochemical properties were investigated. Fluorescence polarization (FP) was carried out to measure in vitro binding potency of 9 for PDE10A and its selectivity over other PDE subtypes. As shown in Table 1, the IC\(_{50}\) for PDE10A was 2.07 nmol/L, which was comparable to the lead structure 8 and is anticipated to provide sufficient binding potential for successful PDE10A-targeted PET imaging\(^{50}\). The binding affinities of 9 for other PDE subtypes including PDE1A/B/C, PDE2A, PDE3A/B, PDE4A/B/C/D, PDE5A, PDE7A, PDE8A, and PDE9A were tested (Supporting Information Fig. S1), and no significant inhibition was observed for concentrations up to 5 \(\mu\text{mol/L}\), which demonstrated that 9 is highly selective for PDE10A. Log\(_{D2,4}\) value of 9 was found to be 3.5 by the shake flask method, and the calculated topological polar surface area (tPSA) was 0.79 nm\(^2\) (79 A\(^{\circ}\)). Furthermore, MDCK-MDR1 experiment revealed an apparent permeability coefficient \([P_{\text{app}}(A\rightleftharpoons \text{B})]\) of \(30 \times 10^{-6} \text{ cm/s (values >} 10 \times 10^{-6} \text{ cm/s suggest high BBB permeability, indicating that the inhibitor 9 was able to penetrate the brain. Further, 9 was not a substrate of P-glycoprotein (P-gp), as evidenced by an MDR1 efflux ratio (ER) of 1.11. Overall, these

![Figure 1](Image 94x74 to 493x256)
Figure 1 Representative radioligands for PET imaging of PDE10A.
results strongly supported the radiolabeling of 9 and biological evaluation of \([^{18}F]9\) as a PDE10A-targeted PET radioligand.

2.3. Radiochemistry

Encouraged by the promising pharmacology findings and based on our previous research on SCIDY-mediated radiofluorination\(^5\), we envisioned to optimize the radiolabeling parameters, including bases, solvents, reaction temperature and labeling period to obtain the desired PET ligand \([^{18}F]9\) with good labeling yield and molar activity. We initially conducted the radiolabeling in N,N-dimethylacetamide (DMAc) at 140°C with several commonly used bases including KOAc/K\(_2\)CO\(_3\) (1 mg/5 mg), K\(_2\)C\(_2\)O\(_4\)/K\(_2\)CO\(_3\) (1 mg/5 mg), tetraethylammonium hydrogensulfate (TEAHS, 1 mg), tetrabutylammonium methanesulfonate (TBAOMs, 1 mg) and tetraethylammonium bicarbonate (TEAHCO\(_3\), 1 mg). Our findings indicated that TEAHCO\(_3\) provided the most favorable labeling efficiency with a radiochemical conversion (RCC) of approximately 20% (Fig. 2A). Further optimization showed a positive correlation between the RCC and reaction temperature in DMF, while the highest radiochemical conversion in DMAc (ca. 20%) was obtained at a reaction temperature of 140°C (Fig. 2B). We next assessed the impact of reaction time and amount of TEAHCO\(_3\) on RCC (Fig. 2C). The results showed that the amount of TEAHCO\(_3\) was pivotal for the radiolabeling. Indeed, while 2 mg of TEAHCO\(_3\) virtually suppressed the formation of \([^{18}F]9\), the use of low TEAHCO\(_3\) amounts (0.5 mg) led to a significant improvement of RCC (33% at 10 min). Notably, shortening of reaction time further improved the RCC (47% at 5 min). Interestingly, the only tested condition that led to a consistent increase of RCC over time was at 0.25 mg TEAHCO\(_3\). Consequently, the low amount of base seemed to circumvent instability issues, however, at the cost of longer reaction times. At the end of the synthesis, \([^{18}F]9\) was obtained in 25/65% decay-corrected final yield (70 min total synthesis time) with >99% radiochemical purity and >111 GBq/mmol (3 Ci/mmol) molar activity. No radioysis was detected by radio-HPLC up to 180 min after formulation with 5% DMSO, 5% Tween 80 and 90% sterile water. Further, \([^{18}F]9\) was stable in mouse serum in vitro at 37°C for 180 min.

2.4. In vitro autoradiography

To assess the binding specificity as well as the selectivity of \([^{18}F]9\) towards PDE10A, we performed in vitro autoradiography (ARG) studies using wild-type Sprague–Dawley (SD) rat brain slices. Under baseline conditions (Fig. 3A), highest radioactivity was found to be accumulated in the striatum, while the cerebellum showed lowest radioactivity uptake, which was in accordance with the biological expression of PDE10A in the rodent brain\(^5\). Blocking experiments were conducted by incubating the brain slices with a mixture of \([^{18}F]9\) (120 µCi/mL) and PDE10A high-affinity ligand 1 (10 µmol/L) and resulted in a dramatical reduction of striatal radioligand binding (Fig. 3B). Indeed, autoradiographic data quantification revealed a specificity of more than 20%.

Table 1

In vitro characterization of target compound 9.

Property	Value
PDE10A IC\(_{50}\) (nmol/L)	2.07
PDE selectivity	>2500
LogD (pH 7.4)	3.5
tPSA (Å\(^2\))	79
Permeability (×10\(^{-6}\) cm/s)	30
P-gp (B–A/A–B)	1.1

\(^a\)Concentration-response curve of 9 for the inhibition of PDE10A activity determined by human red blood cell (RBC) phosphodiesterase assay with TC-E 5005, a known PDE10A inhibitor, as a reference.
assessed time points, which indicated that [18F] fluorodefluorination. Notably, radioactivity uptake in the bone remained low during all excreted through both, the hepatobiliary and urinary system. The pharmacokinetic properties of [18F] were assessed using ICR mice, and the radioactivities in different tissues/organs were measured at a series of time points post injection. As shown in Fig. 4, the radioactivity in blood was rapidly cleared. High initial radioactivity uptake (%ID/g > 3) was found in the brain, lung, heart, kidney, liver, pancreas, and small intestine at 1 min pi. Subsequently, the radioactivity was washed out gradually in most organs, while gradually increased to the peak in liver and small intestine at 5 min post injection. The high uptake (%ID/g > 10) in the kidney, liver and small intestine indicated that [18F] may be excreted through both, the hepatobiliary and urinary system. Notably, radioactivity uptake in the bone remained low during all assessed time points, which indicated that [18F] did not undergo in vivo radiodefluorination.

2.5. Whole-body biodistribution studies

The pharmacokinetic properties of [18F] were assessed using ICR mice, and the radioactivities in different tissues/organs were measured at a series of time points post injection. As shown in Fig. 4, the radioactivity in blood was rapidly cleared. High initial radioactivity uptake (%ID/g > 3) was found in the brain, lung, heart, kidney, liver, pancreas, and small intestine at 1 min pi. Subsequently, the radioactivity was washed out gradually in most organs, while gradually increased to the peak in liver and small intestine at 5 min post injection. The high uptake (%ID/g > 10) in the kidney, liver and small intestine indicated that [18F] may be excreted through both, the hepatobiliary and urinary system. Notably, radioactivity uptake in the bone remained low during all assessed time points, which indicated that [18F] did not undergo in vivo radiodefluorination.

80%, as depicted in Fig. 3C. These results confirmed that [18F] possessed a high in vitro specificity towards PDE10A.

2.6. PET imaging studies in rat brains

To further corroborate the binding specificity of [18F] in vivo, dynamic microPET imaging (0–60 min) under different conditions were conducted in SD rats. Co-registration of averaged PET images (0–25 and 25–60 min) with MRI T1WI template, as well as the time–activity curves (TACs) of specific tissues are depicted in Fig. 5. The baseline study (Fig. 5A and D) demonstrated that [18F] rapidly entered the brain, whereby highest uptake levels were observed in the striatum (SUVmax = 1.4) within 1 min, followed by gradual washout. No obvious radioactivity accumulation was observed in other brain regions such as cerebral cortex, hippocampus and cerebellum. The neuro-distribution pattern of [18F] was found to be in agreement with previous reports of other PDE10A PET ligands.

To assess specific binding of [18F] to PDE10A, both pre-blocking and chase-blocking dynamic PET imaging studies were conducted with the injected dose as 5 mg/kg of PDE10A inhibitor 1. As shown in Fig. 5B and E, pre-injection abolished the heterogeneous distribution, leading to a significantly accelerated washout of radioactivity from the striatum (SUV1 min/60 min > 20). Administration of 1 at 25 min post injection of [18F] resulted in a substantially decreased PET signal in the striatum (75% in vivo specificity, Fig. 5F). The PET signal in the striatum was decreased to ca. 0.1 SUV at 60 min under both blocking conditions. These results demonstrated that [18F] exhibited a high in vivo specificity with a reversible binding mechanism.

2.7. Radiometabolite analysis

To investigate the metabolic stability of [18F] in vivo, we analyzed the radiometabolites in SD rats at two time points after tracer injection. Brain and plasma samples were harvested at 20 and 60 min pi, whereas the samples were analyzed by radio-HPLC and gamma counter. As shown in Fig. 6, [18F] was relatively stable in the plasma with intact parent tracer fractions of 58% at 20 min and 43% at 60 min, respectively. Of note, we observed the formation of uncharacterized more polar radiometabolites in the plasma, however, these radiometabolites were not detected in the brain. Indeed, [18F] possessed excellent in vivo stability in the brain, with no detectable [18F]-labeled metabolites (unchanged fraction >96% at

Image Descriptions

Figure 2 Optimization of [18F] radiosynthesis. [18F]fluoride (111–185 MBq; 3–5 mCi) was added in each reaction. (A) Ylide (2 mg), DMAc (300 μL), base, 140 °C, 10 min. (B) Ylide (2 mg), DMF or DMAc (300 μL), TEAHCO3 (1 mg), heated for 10 min. (C) Ylide (2 mg), DMAc (300 μL), TEAHCO3 (indicated loadings), 140 °C. Radiochemical conversions were determined by radio-TLC, and the identity of [18F]-labeled radioligand was evaluated by radio-HPLC.

Figure 3 In vitro autoradiography of [18F] on rat brain sagittal sections. (A) Brain slices were incubated with [18F] (120 μCi/mL) for 30 min; (B) Brain slices were co-incubated with [18F] (120 μCi/mL) and I (10 μmol/L) for 30 min; (C) Quantitative analysis of [18F] specificity by comparison of baseline and blocking conditions. Str = striatum; Cer = cerebellum. Data are presented as mean ± SEM (n = 4) and analyzed by unpaired t test. Asterisks indicated statistical significance. ****P ≤ 0.0001.

Figure 4 TACs of specific tissues are depicted in Fig. 5. The baseline study (Fig. 5A and D) demonstrated that [18F] rapidly entered the brain, whereby highest uptake levels were observed in the striatum (SUVmax = 1.4) within 1 min, followed by gradual washout. No obvious radioactivity accumulation was observed in other brain regions such as cerebral cortex, hippocampus and cerebellum. The neuro-distribution pattern of [18F] was found to be in agreement with previous reports of other PDE10A PET ligands.

Image 1 to **Image 5** show various compounds and reactions involved in the radiosynthesis and characterization of [18F] for the PET ligand, along with autoradiography studies.
both two time points). These results indicated that the radiometabolites were not able to cross the BBB, rendering 18F9 suitable for CNS-targeted imaging.

Although 18F7MNI659 (18F7) is currently considered the reference standard in PDE10A-targeted PET imaging, concerns have been raised with regard to its metabolic stability. Indeed, Zhang and co-workers\(^50\) have recently shown the presence of brain radiometabolites following administration of 18F9MNI659 to rodents\(^50\). Further, their research indicated that the replacement of the 18Ffluoroethoxy moiety in the structure of 18F9MNI659 by a deuterated 18Ffluoromethoxy analog ultimately precluded the formation of brain radiometabolites, which points towards metabolic instability of the fluorine-18 bearing side chain of 18F9MNI659. These results were further supported by the PET images of Huntington’s disease patients that were presented by Russel et al.\(^48\), where skull uptake—an indicator of in vivo defluorination—seems evident, particularly in HD patients. While skull uptake can indeed complicate brain image analysis via partial volume effects as well as differences in enzymatic activity across individuals (for instance, between patient and healthy subject), in vivo defluorination is more likely to occur in aliphatic than in aromatic radiofluorines\(^60\). Notwithstanding the lack of clinical data with 18F9, preclinical findings indicate an improved metabolic profile of 18F9, as compared to 18F7MNI659, which is evidenced by the lack of brain radiometabolites and the higher fraction of intact parent tracer in the plasma at 20 and 60 min post injection in rats\(^50\). Of note, we did not observe any defluorination by in vitro assays with human liver microsomes (Supporting

Figure 4 Ex vivo Biodistribution of 18F9 in ICR mice. Data are expressed as injected dose per gram of wet tissue (%ID/g) with means ± standard deviations, $n = 3$.

Figure 5 PET studies of 18F9 in the rat brain. (A)–(D) Representative PET-MRI images and TACs in various brain regions of interest under baseline conditions; (B)–(E) representative PET-MRI images and TACs in various brain regions of interest under blocking conditions (pre-injection of MP-10, iv); (C)–(F) representative PET-MRI images and TACs in various brain regions of interest under blocking conditions (post-injection of MP-10, iv).
Information Fig. S3). Future clinical studies will unveil whether this improved stability will translate into enhanced performance characteristics in patients.

2.8. Dose-response studies in the rhesus monkey brain

Given that neuroPET imaging on higher species, such as non-human primate (NHP), typically provides crucial insights for clinical translation, and encouraged by the promising results obtained from experiments in rodent, our efforts then focused on PET imaging studies in rhesus monkey to explore brain penetration, regional distribution and clearance of $[^{18}F]$9. Representative averaged PET images (20–60 min) in rhesus brain and corresponding TACs under baseline and blocking conditions (pretreatment with indicated dose of 1) are shown in Fig. 7. $[^{18}F]$9 was brain penetrant, whereas the radioactivity was specifically accumulated in striatum with highest standardized uptake values (SUVs) > 3.0. Importantly, a dose-dependent PET signal

Figure 6 Ex vivo radiometabolite analysis of $[^{18}F]$9 in the brain and plasma of rats at 20 and 60 min post-injection. (A) Representative reconstructive radiochromatograms of the rat brain samples; (B) Representative reconstructive radiochromatograms of the rat plasma samples showing two detectable polar radiometabolite fractions; (C) Quantitative analysis of intact $[^{18}F]$9 fraction. Data are presented as mean ± SD ($n = 3$).

Figure 7 PET studies of $[^{18}F]$9 in the rhesus monkey brain. (A) Representative summed PET images (20–60 min) under baseline and dose-dependent blocking conditions (pre-injection of MP-10, iv); (B) TACs representing striatal radioligand accumulation under baseline and dose-dependent blocking conditions.

Figure 8 Kinetic modeling analysis and target occupancy assessment. (A) Representative PET images presented as non-displaceable binding potential (BPND) under baseline and blocking conditions; (B) BPND in striatum, putamen and caudate under baseline and blocking conditions; (C) target occupancy of PDE10A inhibitor MP-10 using $[^{18}F]$9 in the rhesus monkey striatum, calculated from BPND. An ID$_{50}$ (iv dose at which 50% target occupancy was achieved) value of 0.3 μmol/kg was estimated.
reduction was achieved with escalating doses of 1, a PDE10A inhibitor with documented clinical efficacy9,24,25, thus underscoring the utility of $[^{18}\text{F}]$9 for target engagement studies in higher species.

Given the reported lack of PDE10A expression in the cerebellum13, we performed kinetic modeling applying the simplified reference tissue model (SRTM)62 with the cerebellum as pseudo-reference region63,64. To assess the validity of the SRTM model in vivo, in vitro and ex vivo metabolic studies in rats showed that $[^{18}\text{F}]$9 was fully radiolabeled in high radiochemical yields and purities65. We have designed and synthesized a novel PDE10A inhibitor facilitating optimal dose finding for PDE10A-targeted drug candidates.

3. Conclusions

We have designed and synthesized a novel PDE10A inhibitor 9 with good binding affinity and selectivity. The corresponding $[^{18}\text{F}]$-isotopologue, $[^{18}\text{F}]$9 (designated $[^{18}\text{F}]$P10A-1910), was successfully radiolabeled in high radioactive yields and purities via the SCIDY methodology. In vitro autoradiography on brain slides, ex vivo whole-body biodistribution, neuroPET imaging and in vivo metabolic studies in rats showed that $[^{18}\text{F}]$9 exhibited sufficient brain penetration, reversible and specific binding, and good stability, which was superior to the clinically used reference standard for PDE10A-targeted PET imaging. $[^{18}\text{F}]$MNI659. Subsequent dose–response studies in NHPs demonstrated the utility of $[^{18}\text{F}]$9 for assessing target engagement of PDE10A inhibitors. Our findings indicate that $[^{18}\text{F}]$9 harbors enormous potential for successful clinical translation, thereby facilitating PDE10A-targeted drug discovery and contributing to a better understanding of PDE10A-related CNS pathologies.

4. Experimental

4.1. General information

All commercial reagents were purchased from Sigma–Aldrich, and used as received. Unless otherwise noted, solvents were freshly dried and degassed according to the purification handbook Purification of Laboratory Chemicals before using. Analytical thin-layer chromatography (TLC) was performed on pre-coated glass-backed plates (EMD TLC silica gel 60 F254) and visualized using a UV lamp (254 nm) or potassium permanganate. Silica gel for flash chromatography was 300–400 mesh. H, $[^{1}\text{H}]$, and $[^{18}\text{F}]$ NMR spectra were recorded on Bruker 300, 400, 500 MHz on Bruker spectrometers, and resonances chemical shifts (δ) were given in parts per million (ppm) relative residual solvent ($[^{1}\text{H}]$ chemical shifts are unreferenced unless otherwise noted). Peak multiplicities are abbreviated by the following symbols: s, singlet, bs, broad singlet; d, doublet; t, triplet; q, quartet; h, heptadebr; m, multiplet; dd = doublet of doublets. HRMS spectra were measured on a Thermo Scientific LTQ Orbitrap XL using ESI+.

The rodent animal protocols were accredited by the Animal Ethics Committee at Jinan University, and the rhesus imaging studies were conducted following the ethical rules of Animal Care and Use Committee of Guangdong Landau Biotechnology Co., Ltd., which were approved by Association for Assessment and Accreditation of Laboratory Animal Care (AAALAC).

4.2. Chemical synthesis

terr-Butyl 3-(4-hydroxy-1,3-dioxoisoindolin-2-yl)propanoate (11). To a solution of 3-hydroxyphthalic anhydride (4.9 g, 30 mmol) and NEt\textsubscript{3} (90 mmol) in 1,4-dioxane (60 mL) was added tert-butyl 3-aminopropanoate hydrochloride (33 mmol). After stirring at 50 °C overnight, the reaction was quenched with water, then extracted with ethyl acetate. The organic layers were washed with brine, dried over Na\textsubscript{2}SO\textsubscript{4} and concentrated under reduced pressure. Compound 11 was prepared as a white solid (33%) and used directly for next step without further purification.

terr-Butyl 3-(4-isoproxy-1,3-dioxoisoindolin-2-yl)propanoate (12, reported compound57). To a mixture of 11 (2.9 g, 10 mmol), 2-iodopropane (20 mmol) and Cs\textsubscript{2}CO\textsubscript{3} (35 mmol) was added CH\textsubscript{3}CN (50 mL) and then stirred at 80 °C for 4 h. After cooling to ambient temperature, the mixture was filtered and concentrated under reduced pressure. The crude compounds were purified by chromatography on silica gel (Hexane:EtOAc = 5:1), and compound 12 was prepared as a white solid (73%). $[^{1}\text{H}]$ NMR (400 MHz, CDCl\textsubscript{3}) δ: 7.60 (dd, J = 8.4, 7.3 Hz, 1H), 7.40 (d, J = 6.9 Hz, 1H), 7.17 (d, J = 8.4 Hz, 1H), 4.76 (hept, J = 6.1 Hz, 1H), 3.92–3.87 (m, 2H), 2.62 (t, J = 7.4 Hz, 2H), 1.44 (s, 3H), 1.43 (s, 3H), 1.40 (s, 9H), 3-(4-Isoproxy-1,3-dioxoisoindolin-2-yl)propanoic acid (13, reported compound57). To a solution of intermediate 12 (1.7 g, 5 mmol) in dichloromethane (5 mL) was added dropwise trifluoroacetic acid (5 mM) at ambient temperature. After stirring for 4 h, the solvent was removed under reduced pressure. Compound 13 was prepared as a white solid (93%) and used directly for next step without further purification. $[^{1}\text{H}]$ NMR (400 MHz, CDCl\textsubscript{3}) δ: 8.50 (brs, 1H), 7.61 (dd, J = 8.4, 7.3 Hz, 1H), 7.40 (d, J = 7.2 Hz, 1H), 7.18 (d, J = 8.5 Hz, 1H), 4.76 (hept, J = 6.1 Hz, 1H), 3.95 (t, J = 7.4 Hz, 2H), 2.77 (t, J = 7.4 Hz, 2H), 1.44 (s, 3H), 1.43 (s, 3H).

2-(2-(3-(4-Fluorophenyl)-1-oxo-3,4-dihydropyrimidin-2-yl)ethyl)-4-(isopropoxy)isoindoline-1,3-dione (P10A-1910, 9). To a solution of intermediate 13 (500 mg, 0.8 mmol), 2-amino-4-methylbenzoic acid (0.8 mmol) and triphenyl phosphate (1.2 mmol) in pyridine (10 mL) was stirred under argon atmosphere at 100 °C for 4 h. After 4-fluoroaniline (0.88 mmol) added under argon atmosphere, the mixture was stirred for another 4 h. After cooling to ambient temperature, the solvent was removed under reduced pressure. The crude compounds were purified by chromatography on silica gel (hexane:EtOAc = 2:1), and PDE10A inhibitor 9 was prepared as a...
Highly specific 18F-labeled radioligand for PET imaging of PDE10A 1971

white solid in 48% yield. 1H NMR (500 MHz, CDCl3) δ: 8.10 (d, J = 8.1 Hz, 1H), 7.57 (dd, J = 8.5, 7.2 Hz, 1H), 7.34 (d, J = 7.2 Hz, 1H), 7.32 (s, 1H), 7.30–7.24 (m, 3H), 7.20 (t, J = 8.5 Hz, 2H), 7.14 (d, J = 8.4 Hz, 1H), 4.68 (p, J = 6.1 Hz, 1H), 4.06 (t, J = 7.4 Hz, 2H), 2.69 (t, J = 7.4 Hz, 2H), 2.45 (s, 3H), 1.38 (s, 3H), 1.37 (s, 3H), 1.35 (s, 3H). 13C NMR (125 MHz, CDCl3) δ: 168.0, 166.8, 162.9 (d, J = 249.8 Hz), 162.4, 155.6, 153.3, 147.3, 145.6, 139.8, 134.6, 132.9 (d, J = 0.1 Hz), 130.4 (d, J = 8.5 Hz), 128.5, 127.1, 126.9, 120.6, 118.5, 113.8, 113.2 (d, J = 23.0 Hz), 115.5, 72.6, 34.9, 33.7, 22.0. 15F NMR (470 MHz, CDCl3) δ: −111.39–111.51 (m). HRMS (m/z, ESI) calcd for C25H17F2N5O5Na+ 508.1649, found 508.1644.

2-((2-((4-Iodophenyl)-7-methyl-4-oxo-3,4-dihydroquinazolin-2-yl)ethyl)-4-isopropoxyisoindoline-1,3-dione (14). The key iodo compound 14 was prepared in a similar manner as described for 9. The crude compounds were purified by chromatography on silica gel (hexane:EtOAc = 2:1), and compound 14 was prepared in 47% yield as a light yellow solid. 1H NMR (400 MHz, CDCl3) δ: 8.14 (d, J = 8.1 Hz, 1H), 7.89–7.85 (m, 2H), 7.61 (dd, J = 8.5, 7.2 Hz, 1H), 7.41–7.35 (m, 2H), 7.30 (d, J = 1.6 Hz, 1H), 1.78 (d, J = 8.4 Hz, 1H), 7.11–7.05 (m, 2H), 4.72 (hept, J = 6.0 Hz, 1H), 4.12–4.06 (m, 2H), 2.75–2.68 (m, 2H), 2.49 (s, 3H), 1.42 (s, 3H), 1.41 (s, 3H). 13C NMR (100 MHz, CDCl3) δ: 167.9, 166.7, 165.6, 162.0, 155.5, 152.8, 149.8, 147.2, 145.6, 139.3, 136.7, 135.7, 134.5, 130.4, 128.5, 127.0, 126.8, 120.6, 118.3, 115.4, 95.2, 72.5, 34.7, 33.6, 21.93, 21.91. HRMS (m/z, ESI) calcd for C25H17F2N5O5Na+ 616.0709, found 616.0704.

2-(2-(3-(4-Iodophenyl)-7-methyl-4-oxo-3,4-dihydroquinazolin-2-yl)ethyl)-4-isopropoxyisoindoline-1,3-dione (15). To a solution of intermediate 14 (120 mg, 0.2 mmol) in CHCl3 (0.3 mL) was added dropwise trifluoroacetic acid (1.0 mL). To the product. To measure the lipophilicity, [18F]P10A-1910 was first added into a mixture of n-octanol and PBS aqueous solution (0.1 mol/L) that both were pre-saturated with each other before use. After vortexing for 3 min, n-octanol and PBS were separated into sample tube (n = 3) and centrifuged for 5 min (3500–4000 rpm) to ensure proper phase separation. Subsequently, the weight and radioactivity (using PerkinElmer 2480 Wizard automatic gamma counter) were measured and the logD was calculated based on the radioactivity distribution between organic and aqueous layer.

4.3.3. Measurement of permeability

Madin–Darby Canine Kindy-Multidrug Resistance Protein 1 (MDCK-MDR1) model was used to investigate the permeability of 9 according to the literature, with the concentration of 1 μmol/L. The transport studies were used on inserts consisting of two interseptal structures (apical and basolateral), separated by MDCK-MDR1 cell monolayers. Trans-epithelial electrical resistance (TEER) value was measured to monitor the integrity of the MDCK-MDR1 cell monolayers. The assays were carried out in hank's balanced salt solution (HBSS) buffer along with 5 μmol/L Lucifer Yellow (LY) and 0.4% DMSO (pH 7.4). Eqs. (1)–(5) were used as follows:

TEER = (Resistance sample–Resistance blank) × Effective membrane area

where TEER value of MDCK-MDR1 monolayers from random wells was 445 ± 22 Ω cm² (mean ± SD, cell monolayer will be used if TEER value > 100 Ω cm²).

\[P_{app} = \frac{[V_a/(Area \times Time)] \times (Candidate_{acceptor, 90-min})}{[(Candidate_{donor, 0-min}) \times Dilution \text{ factor}]} \]
\[P_{\text{app(LY)}} = \frac{[V_A/(\text{Area} \times \text{Time})] \times (\text{RFU}_{\text{acceptor, 90-min}} - \text{RFU}_{\text{blank}})}{(\text{RFU}_{\text{donor, 0-min}} - \text{RFU}_{\text{blank}})} \]

(3)

Mass recovery (%) = \(\frac{100 \times (V_D \times \text{Candidate}_{\text{donor, 90-min}} \times \text{Dilution factor} + V_A \times \text{Candidate}_{\text{acceptor, 90-min}})}{(V_D \times \text{Candidate}_{\text{donor, 0-min}} \times \text{Dilution factor})} \) (4)

Efflux ratio = \(\frac{P_{\text{app(B-A)}}}{P_{\text{app(A-B)}}} \) (5)

were then calculated to assess the activity of transporters on drug kinetics across the model.

4.4. Radiolabeling of \(^{18}\text{F}\)P10A-1910

\(^{18}\text{F}\)F\(^{-}\) was generated via the \(^{18}\text{O}(p,n)^{18}\text{F} \) reaction that occurred in a 10 MeV cyclotron (GE, Qilin) with the protons bombarded on >98% enriched H\(^{2}\)O (TAIYO NIPPON SANSO Corporation, Tokyo, Japan). After pretreatment with 10 mL of 7.5% aqueous NaHCO\(_3\) and washing with 20 mL of H\(_2\)O, the Sep-Pak QMA cartridge was used to trap the radioactivity \[^{18}\text{F}\]fluoride (1.48–1.85 GBq; 40–50 mCi) from the female side, and the solvent on the cartridge was removed with 20 mL of air. The elution of \[^{18}\text{F}\]fluoride was achieved with a solution of TEA/HCO\(_3\) (98% enriched H\(_2\)O (22.2–29.6 MBq) of \[^{18}\text{F}\]\(\text{F} \) (250 mL) was intravenously administered into the rat via a preinstalled 24-gauge catheter, and rat brain dynamic PET scans were acquired for 60 min in a 3D list mode. For blocking conditions, MP-10 (5 mg/kg) was administrated before injection of \[^{18}\text{F}\]F\(^{-}\), or at 25 min post tracer injection. PMOD software (version 4.006) was used to generate the representative PET images (co-registered with the rat brain MRI template) and analyze the TACs from VOI in the cerebral cortex, striatum, hippocampus and cerebellum. The radioactivity was characterized by SUV.

4.8. Radiometabolite analysis

Under isoflurane anesthesia, SD rats (n = 3, each time point) were decapitated at 20 and 60 min post injection of \[^{18}\text{F}\]F\(^{-}\). The blood and whole brain were then harvested immediately. The rat brain was cooled on ice, homogenized in 50% CH\(_3\)CN in H\(_2\)O on ice, and then centrifuged for 2.5 min at 4 °C (14,500 \(\times \) g). The supernatant was recovered. Similarly, the supernatant (0.5 mL) of blood samples was collected and mixed with ice-cooled CH\(_3\)CN (0.5 mL). The residue was vortexed for 20 s and again centrifuged for 2.5 min at 4 °C (14,500 \(\times \) g) for deproteinization. Both, brain and plasma homogenates were mixed with an aliquot of standard compound 9 (P10A-1910), and co-injected into the radio-HPLC system with a UV detector set on 264 nm. The samples were separated into ten sections (1 min for each section) using an analytical column (Phenomenex Luna C18, 250 mm \(\times \) 10 mm, 5 \(\mu \)m), and with 70% CH\(_3\)CN in water as mobile phase for elution (5.0 mL/min). The radioactivity for each section was measured by a 2480 Wizard automatic gamma counter (PerkinElmer, USA), and the counts were all decaying-corrected. The radiochromatograms were reconstructed, and the
percentage of $^{[18F]}$F9 (standard UV peak as an indicator on HPLC) to total radioactivity was measured as $[(\text{counts for sections} \ 6-9)/(\text{total counts})] \times 100$.

4.9. PET-MRI imaging studies on rhesus monkey

T1-weighted MR anatomical images were acquired on a 3.0 T scanner. A rhesus monkey was anesthetized by intramuscular injection of ketamine (10 mg/kg), and then put on the scanning bed in the supine position. The whole-brain images were acquired with a 3D Bravo T1 sequence.

The rhesus monkey used for PET/CT scan was allowed only water for 14–16 h before the radioligand injection, but allowed to drink water at any time. A male rhesus (weight range 6.01–6.85 kg) underwent PET scan. The subject was initially anesthetized with ketamine (10 mg/kg; im), put on the scanning bed, and maintained in light narcosis with 2% isoflurane and 98% oxygen. The rhesus was supine, and a stereotactic frame was used to fix the position of head. A solution of $^{[18F]}$F9 (3.57–4.12 mCi) was injected into the monkey through an intravenous indwelling needle, followed by a dynamic PET scan of the head for 60 min. For the blocking studies, MP-10 (in the order of 0.042, 0.09, 0.3, 0.55, 1.0, 2.0 mg/kg) was injected intravenously, followed by the injection of $^{[18F]}$F9. Each PET/CT scan was conducted with an interval of no less than two weeks.

The PET and MR images were co-registered according to the method of literature. The co-registered PET images were converted to brain template MR and single MR image using the same parameters. TACs, derived from the VOIs, were presented as SUV which were decay-corrected back to the radioligand injection time point.

Acknowledgments

We gratefully acknowledge the support of K.C. Wong Education Foundation (China). This work was financially supported by the National Natural Science Foundation of China (No. 82071974), Shenzhen Basic Research Project (JCYJ20180503182116931, China), Guangdong Basic and Applied Basic Research Foundation (2020A151011192, 2018A0303130052, China), Guangzhou Key Research Program on Brain Science (202007030008, China), the Fundamental Research Funds for the Central Universities (21619104, 21621051, China).

Author contributions

All the authors contributed to this manuscript and have approved its final version. Steven H. Liang and Lu Wang proposed the study and conceived project. Zhiwei Xiao, Huiyi Wei and Lu Wang wrote the manuscript. Steven H. Liang and Ahmed Haider modified the paper. Zhiwei Xiao, Huiyi Wei, Yi Xu, Junjie Wei, Shiyu Yuan, Jian Rong, Chunyu Zhao, Guocong Li, Weinbin Zhang, Huangcan Chen, Yuefeng Li, Lingling Zhang, Jiyun Sun, Shaojuan Zhang, Qijun Cai and Lu Hou performed experiments. Hai-Bin Luo, Sen Yan, and Chao Che designed and guided experiments.

Conflicts of interest

The authors declare no conflicts of interest.

Appendix A. Supporting information

Supporting information to this article can be found online at https://doi.org/10.1016/j.apsb.2021.11.014.

References

1. Beavo JA, Brunton LL. Cyclic nucleotide research—still expanding after half a century. *Nat Rev Mol Cell Biol* 2002;3:710–8.
2. Lorenz R, Bertinetti D, Herberg F. cAMP-dependent protein kinase and cGMP-dependent protein kinase as cyclic nucleotide effectors. *Handb Exp Pharmacol* 2017;238:105–22.
3. Uckert S, Hedlund P, Waldkirch E, Sohn M, Jonas U, Andersson K, et al. Interactions between cGMP- and cAMP-pathways are involved in the regulation of penile smooth muscle tone. *World J Urol* 2004;22:261–6.
4. Lafontan M, Moro C, Berlan M, Crampes F, Sengenes C, Galizty K. Control of lipolysis by natriuretic peptides and cyclic GMP. *Trends Endocrinol Metabol* 2008;19:130–7.
5. Begona J, Gambaryan S, Schulze H, Patel-Hett S, Italiano J, Hartwig J, et al. Differential roles of cAMP and cGMP in megakaryocyte maturation and platelet biogenesis. *Exp Hematol* 2013;41:91–101.e4.
6. Manoury B, Idres S, Leblais V, Fischmeister R. Ion channels as effectors of cyclic nucleotide pathways: functional relevance for arterial tone regulation. *Pharmacol Ther* 2020;209:107499.
7. Beavo J. Cyclic nucleotide phosphodiesterases: functional implications of multiple isoforms. *Physiol Rev* 1995;75:725–48.
8. Abdollahi M, Chan T, Subrahmanyam V, O’Brien P. Effects of phosphodiesterase 3,4,5 inhibitors on hepatocyte cAMP levels, glycogenolysis, gluconeogenesis and susceptibility to a mitochondrial toxin. *Mol Cell Biochem* 2003;252:205–11.
9. Menniti F, Faraci W, Schmidt C. Phosphodiesterases in the CNS: targets for drug development. *Nat Rev Drug Discov* 2006;5:660–70.
10. Kelly M. Cyclic nucleotide signaling changes associated with normal aging and age related diseases of the brain. *Cell Signal* 2018;42:281–91.
11. Fujishige K, Kotera J, Michibata H, Yusa K, Takebayashi S, Okumura K, et al. Cloning and characterization of a novel human phosphodiesterase that hydrolyzes both cAMP and cGMP (PDE10A). *J Biol Chem* 1999;274:18438–45.
12. Coskran T, Morton D, Menniti F, Adamowicz W, Kleiman R, Ryan A, et al. Immunohistochemical localization of phosphodiesterase 10A in multiple mammalian species. *J Histochem Cytochem* 2006;54:1205–13.
13. Xie Z, Adamowicz W, Eldred W, Jakowski A, Kleiman R, Morton D, et al. Cellular and subcellular localization of PDE10A, a striatum-enriched phosphodiesterase. *Neuroscience* 2006;139:597–607.
14. Russwurm C, Koessling D, Russwurm M. Phosphodiesterase 10A is tethered to a synaptic signaling complex in striatum. *J Biol Chem* 2015;290:11936–47.
15. Piccart E, De Backer J, Gall D, Lambot L, Raes A, Vanhoof G, et al. Genetic deletion of PDE10A selectively impairs incentive salience attribution and decreases medium spiny neuron excitability. *Behav Brain Res* 2014;268:48–54.
16. Schmidt C, Chapin D, Cianfroga J, Corman M, Hajo M, Harms J, et al. Preclinical characterization of selective phosphodiesterase 10A inhibitors: a new therapeutic approach to the treatment of schizophrenia. *J Pharmacol Exp Therapeut* 2008;325:681–90.
17. Kehler J, Nielsen J. PDE10A inhibitors: novel therapeutic drugs for schizophrenia. *Curr Pharmaceut Des* 2011;17:137–50.
18. Suzuki K, Harada A, Suzuki H, Miyamoto M, Kimura H. TAK-063, a PDE10A inhibitor with balanced activation of direct and indirect pathways, provides potent antipsychotic-like effects in multiple paradigms. *Neuropsychopharmacology* 2016;41:2252–62.
19. Geerts H, Spiros A, Roberts P. Phosphodiesterase 10 inhibitors in clinical development for CNS disorders. *Expert Rev Neurother* 2017;17:553–60.
20. Harada A, Suzuki K, Kimura T. TAK-063, a novel phosphodiesterase 10A inhibitor, protects from striatal neurodegeneration and ameliorates behavioral deficits in the R6/2 mouse model of Huntington’s disease. J Pharmacol Exp Therapeut 2017;360:75–83.

21. Abdel-Magid AF. Potential of PDE10A inhibitors as treatment for Schizophrenia and other neurological disorders. ACS Med Chem Let 2018;9:866–7.

22. Eliwa D, Albadry MA, Ibrahim AS, Kabbash A, Meepagala K, Khan IA, et al. Biotransformation of papaveroine and in silico docking studies of the metabolites on human phosphodiesterase 10A. Phytochemistry 2021;183:112598.

23. Kim DY, Park JS, Leem YH, Park JE, Kim HS. The Potent PDE10A inhibitor MP-10 (PF-2545920) suppresses microglial activation in LPS-induced neuroinflammation and MPTP-induced Parkinson’s disease mouse models. J Neuromimune Pharmacol 2021;16:470–82.

24. Bailie GS, Tejeda GS, Kelly MP. Therapeutic targeting of 3’,5’-cyclic nucleotide phosphodiesterases: inhibition and beyond. Nat Rev Drug Discov 2019;18:770–96.

25. Walling DP, Banerjee A, Dawra V, Boyer S, Schmidt CJ, DeMartinis N. Phosphodiesterase 10A inhibitor monotherapy is not an effective treatment of acute schizophrenia. J Clin Pharmacol Psychopharmacol 2019;39:575–82.

26. Yurgelun-Todd DA, Renshaw PF, Goldsmith P, Uz T, Macek TA. Phosphodiesterase 10A inhibitor MP-10 suppresses microglial activation in LPS-induced neuroinflammation and MPTP-induced Parkinson’s disease mouse models. J Neuromimune Pharmacol 2021;16:470–82.

27. Macek TA, McCue M, Dong X, Hanson E, Goldsmith P, Affinito J, et al. Striatal phosphodiesterase 10A and medial prefrontal cortical thickness in patients with schizophrenia: a PET and MRI study. Transl Psychiatry 2017;7:e1050.

28. Lin S, Labarre D, Chen M, Holden D, Gallozet J, Kapinos M, et al. Further evaluation of [11C]MP-10 as a radiotracer for phosphodiesterase 10A: PET imaging study in rhesus monkeys and brain tissue metabolite analysis. Synapse 2015;69:86–95.

29. Marques T, Natesan S, Niccolini F, Politis M, Gunn R, Searle G, et al. Phosphodiesterase 10A in schizophrenia: a PET study using [11C]IMA107. Am J Psychiatry 2016;173:714–21.

30. Kehler J, Kilburn J, Estrada S, Christensen S, Wall A, Thibblin A, et al. Discovery and development of [11C]-Lu AE92686 as a radioligand for PET imaging of phosphodiesterase 10A in the brain. J Nucl Med 2014;55:1513–8.

31. Boden R, Persson J, Wall A, Lubberink M, Ekelius L, Larsson E, et al. Striatal phosphodiesterase 10A and medial prefrontal cortical thickness in patients with schizophrenia: a PET and MRI study. Transl Psychiatry 2017;7:e1050.

32. Lidska E, Tabakova E, Van Laere K, et al. PET imaging shows loss of striatal PDE10A in patients with Huntington disease. Neurology 2014;82:279–81.

33. Tu Z, Fan J, Li S, Jones L, Cui J, Padakanti P, et al. Radiosynthesis and in vivo evaluation of [11C]MP-10 as a PET probe for imaging PDE10A in rodent and non-human primate brain. Bioorg Med Chem 2011;19:1666–73.

34. Plisson C, Weinizimmer D, Jakobsen S, Natesan S, Salinas C, Lin S, et al. Phosphodiesterase 10A PET radioligand development program: from pig to human. J Nucl Med 2014;55:595–601.

35. Niccolini F, Foltynie T, Reis Marques T, Muhlert N, Tziotzi A, Searle G, et al. Loss of phosphodiesterase 10A expression is associated with progression and severity in Parkinson’s disease. Brain 2015;138:3003–15.

36. Niccolini F, Haider S, Reis Marques T, Muhlert N, Tziotzi A, Searle G, et al. Altered PDE10A expression detectable early before symptomatic onset in Huntington’s disease. Brain 2015;138:3016–29.

37. Marques T, Natesan S, Niccolini F, Politis M, Gunn R, Searle G, et al. Phosphodiesterase 10A in schizophrenia: a PET study using [11C]IMA107. Am J Psychiatry 2016;173:714–21.

38. Kehler J, Kilburn J, Estrada S, Christensen S, Wall A, Thibblin A, et al. Discovery and development of [11C]-Lu AE92686 as a radioligand for PET imaging of phosphodiesterase 10A in the brain. J Nucl Med 2014;55:1513–8.

39. Boden R, Persson J, Wall A, Lubberink M, Ekelius L, Larsson E, et al. Striatal phosphodiesterase 10A and medial prefrontal cortical thickness in patients with schizophrenia: a PET and MRI study. Transl Psychiatry 2017;7:e1050.

40. Lin S, Labarre D, Chen M, Holden D, Gallozet J, Kapinos M, et al. Further evaluation of [11C]MP-10 as a radiotracer for phosphodiesterase 10A: PET imaging study in rhesus monkeys and brain tissue metabolite analysis. Synapse 2015;69:86–95.

41. Celen S, Koole M, De Angelis M, Sannen I, Chitneni S, Alcazar J, et al. Preclinical evaluation of [11F]-JN141504147 as a radioligand for PET imaging of phosphodiesterase-10A in the brain. J Nucl Med 2010;51:1584–91.

42. Andrés J, De Angelis M, Alcázar J, Iuririno L, Langlois X, Dederuewerdhe S, et al. Synthesis, in vivo occupancy, and radiolabeling of potent phosphodiesterase subtype-10 inhibitors as candidates for positron emission tomography imaging. J Med Chem 2011;54:5820–35.

43. Ooms M, Celen S, Koole M, Langlois X, Schmidt M, De Angelis M, et al. Synthesis and biological evaluation of carbon-11 and fluorine-18 labeled tracers for in vivo visualization of PDE10A. Nucl Med Biol 2014;41:695–704.

44. Stepanov V, Takano A, Nakao R, Aminn Ni, Miura S, Hasui T, et al. Development of two fluorine-18 labeled PET radioligand targeting PDE10A and in vivo PET evaluation in nonhuman primates. Nucl Med Biol 2018;57:12–9.

45. Barrot O, Thomae D, Tavares A, Alagilde D, Papin C, Waterhouse R et al. In vivo assessment and dosimetry of 2 novel PDE10A radiotracers in humans: 18F-MNI-659 and 18F-MNI-654. J Nucl Med 2015;55:1297–304.

46. Hallgren M, Vardanyan P, Samaan J, Powell C, Faillle C, et al. Change in PDE10 across early Huntington disease assessed by [11F] MNI-659 and PET imaging. Neurology 2016;86:748–54.

47. Russell D, Barrett O, Tamagnan G, Carroll V, Caille F et al. Change to PDE10 across early Huntington disease assessed by [11F]MNI-659 and PET imaging. Neurology 2016;86:748–54.

48. Russell D, Barrett O, Jennings D, Friedman J, Tamagnan G, Thomae D, et al. The phosphodiesterase 10 positron emission tomography tracer, [11F] MNI-659, as a novel biomarker for early Huntington disease. JAMA Neurol 2014;71:1520–8.

49. Mori W, Yamasaki T, Fujinaga M, Ogawa M, Zhang Y, Hatiori A, et al. Development of 2-2 3-3-(4′-(2-fluoroethyl)oxy)-phenyl)-7-methyl-4-oxo-3,3-dihydroquinazolin-2-yl)ethyl)-4-isopropoxyisoindoline-1,3-dione for Positron-Emission Tomography imaging of phosphodiesterase 10A in the brain. J Med Chem 2018;62:688–98.

50. Cox C, Hostettler F, Flores B, Evelhoch J, Fan H, Gantert L, et al. Discovery of [11C]MK-8193 as a PET tracer to measure target engagement of phosphodiesterase 10A (PDE10A) inhibitors. Bioorg Med Chem Let 2015;25:4893–8.
57. Takano A, Stepanov V, Gulyás B, Nakao R, Amini N, Miura S, et al. Evaluation of a novel PDE10A PET radioligand, [11C]T-773, in nonhuman primates: brain and whole body PET and brain autoradiography. *Synapse* 2015;69:345–55.
58. Wagner S, Teodoro R, Deuther-Conrad W, Kranz M, Scheunemann M, Fischer S, et al. Radiosynthesis and biological evaluation of the new PDE10A radioligand [18F]AQ28A. *J Label Compd Radiopharm* 2017;60:36–48.
59. Ory D, Postnov A, Koole M, Celen S, de Laat B, Verbruggen A, et al. Quantification of TSPO overexpression in a rat model of local neuroinflammation induced by intracerebral injection of LPS by the use of [18F]DPA-714 PET. *Eur J Nucl Med Mol Imag* 2016;43:163–72.
60. Preshlock S, Tredwell M, Gouverneur V. [18F]-Labeling of arenes and heteroarenes for applications in positron emission tomography. *Chem Rev* 2016;116:719–66.
61. Targum S, Cara Pendergrass J, Toner C, Zupano L, Rauh P, DeMartinis N. Impact of BPRS interview length on ratings reliability in a schizophrenia trial. *Eur Neuropsychopharmacol* 2015;25:312–8.
62. Lammertsma A, Hume S. Simplified reference tissue model for PET receptor studies. *Neuroimage* 1996;4:153–8.
63. Liu H, Jin H, Yue X, Han J, Yang H, Flores H, et al. Comparison of [11C]TZ1964B and [18F]MN1659 for PET imaging brain PDE10A in nonhuman primates. *Pharmacol Res Perspect* 2016;4:e00253.
64. Liu H, Jin H, Luo Z, Yue X, Zhang X, Flores H, et al. In vivo characterization of two F-labeled PDE10A PET radioligands in nonhuman primate brains. *ACS Chem Neurosci* 2018;9:1066–73.
65. Cumberland W, Fong Y, Yu X, Defawe O, Frahm N, De Rosa S. Nonlinear calibration model choice between the four and five-parameter logistic models. *J Biopharm Stat* 2015;25:972–83.
66. Hennenberg M, Schott M, Kan A, Keller P, Tamalunas A, Ciolkowska A, et al. Inhibition of adrenergic and non-adrenergic smooth muscle contraction in the human prostate by the phosphodiesterase 10-selective inhibitor TC-E 5005. *Prostate* 2016;76:1364–74.
67. Nandhikonda P, Yasgar A, Baranowski A, Sidhu P, McCallum M, Pawlak A, et al. Peroxisome proliferation-activated receptor delta agonist GW0742 interacts weakly with multiple nuclear receptors, including the vitamin D receptor. *Biochemistry* 2013;52:4193–203.
68. Jing YR, Zhou W, Li WL, Zhao LX, Wang YF. The synthesis of novel taxoids for oral administration. *Bioorg Med Chem* 2014;22:194–203.
69. McLaren DG, Kosmatka KJ, Oakes R, Kroenke CD, Kohama SG, Matochik JA, et al. A population-average MRI-based atlas collection of the rhesus macaque. *Neuroimage* 2009;45:52–9.
70. Nie B, Wang L, Hu Y, Liang S, Tan Z, Chai P, et al. A population stereotaxic positron emission tomography brain template for the macaque and its application to ischemic model. *Neuroimage* 2019;203:116163.