Single-session image-guided robotic radiosurgery and quality of life for glomus jugulare tumors

Felix Ehret MD1 | Markus Kufeld MD1 | Christoph Fürweger PhD1,2 | Alfred Haidenberger MD1 | Christian Schichor MD, MHBA3 | Jörg-Christian Tonn MD3 | Alexander Muacevic MD1 | John-Martin Hempel MD4

1European Cyberknife Center, Munich, Germany
2Department of Stereotaxy and Functional Neurosurgery, Center for Neurosurgery, University Hospital Cologne, Cologne, Germany
3Department of Neurosurgery, Campus Grosshadern, Ludwig-Maximilians-University Munich, Munich, Germany
4Department of Otorhinolaryngology and Head and Neck Surgery, Campus Grosshadern, Ludwig-Maximilians-University Munich, Munich, Germany

Correspondence
Felix Ehret, MD, European Cyberknife Center, Max-Lebsche-Platz 31, 81377 Munich, Germany. Email: felix.ehret@campus.lmu.de

Funding information
Munich Medical Research School, Ludwig-Maximilians-University Munich. Open Access funding enabled and organized by ProjektDEAL.

Abstract
Background: Limited data are available on the efficacy and impact on the quality of life (Qol) of single-session image-guided robotic radiosurgery (RRS) for glomus jugulare tumors (GJTs). This study investigates the role of RRS in the management of GJTs and reviews the RRS literature.

Methods: We analyzed 53 GJT patients treated with RRS to evaluate the safety, local control, clinical outcome, and Qol assessed by the SF12v2.

Results: The local control was 98% at a median follow-up of 38 months. The median tumor volume was 4.3 cc and tumors were treated with a median dose of 16.5 Gy. At the last follow-up, 35 patients had recovered from their symptoms or experienced symptom improvement. Qol analyses showed no significant decline while bodily pain significantly decreased.

Conclusions: RRS is a safe and efficient tool for the treatment of GJTs. Qol of patients after treatment is stable and tends to improve over time.

Key words: CyberKnife, glomus jugulare, quality of life, radiosurgery, review

1 | INTRODUCTION

Paragangliomas, also known as chemodectomas, are highly vascularized, rare, slow-growing tumors deriving from extra-adrenal parasympathetic or sympathetic paraganglia. Depending on their location, size, and hormone activity, they can cause a broad spectrum of symptoms ranging from pulsatile tinnitus, headache, hearing loss, vertigo, and lower cranial nerve palsies in glomus jugulare tumors (GJTs) to tachycardia and labile blood pressure in catecholamine-secreting paragangliomas. Even though histologically considered as benign tumors, paragangliomas can locally infiltrate surrounding tissue such as bones or vessels. Moreover, tumors can metastasize, leading to a significantly decreased overall survival rate. However, only approximately 3% of the found tumors are considered to be malignant, bearing the risk of distant metastases.

Until the development of radiotherapy, the primary treatment option for paragangliomas was the surgical resection of the tumor. Due to its high vascularization and its localization near the skull base and large vessels, surgical procedures may cause severe complications including high-grade cranial nerve dysfunctions, significant blood loss, and strokes. Despite technical advancements, the microsurgical...
tumor extirpation yields substantial morbidity for patients, also when preoperative embolization procedures are performed to reduce the intraoperative bleeding risk.8,9

Today, possible treatment options range from surgery alone, tumor embolization with and without surgical resection to various radiation techniques including fractionated radiotherapy, proton therapy as well as radiosurgery.10-15 There is still no consensus on the optimal management in regard to local tumor control, treatment-related morbidity, and quality of life (Qol).16 However, since its introduction, primary and adjuvant radiotherapy played a pivotal role in the management of glomus jugulare patients, showing similar or even better treatment outcomes than surgical approaches.8,17

Several studies have investigated the role of radiosurgery in the treatment of GJTs either using single-session or fractionated treatments.18 Especially the use of Gamma Knife (GK)- and linear accelerator-based radiosurgery were analyzed by different researchers over the past decades and showed good results.17,19-22 Due to the inherent limitations of the stereotactic frame-based radiosurgery, it may not be performed for lower located GJTs. Image-guided robotic radiosurgery (RRS) has no such spatial limitation. Moreover, only sparse data are available on the role of RRS for the management of GJTs.

Furthermore, almost no data are available on post-treatment Qol changes in this tumor entity.

The aim of this retrospective, monocentric study is to report and evaluate the efficacy and safety of RRS and its impact on the posttreatment Qol at our institution. Finally, we compare our results with the existing RRS literature.

2 | MATERIALS AND METHODS

2.1 | Patients

Fifty-three patients with GJTs were consecutively treated between July 2005 and November 2018 and enrolled in this retrospective, monocentric study. Medical history, previous treatments, clinical symptoms as well as treatment and follow-up data were collected in a dedicated database for radiosurgery. Local tumor response, clinical symptoms, and adverse events were evaluated clinically and by MRI assessment every 6 months for the first year after treatment and then every 12 to 24 months for the following years. This study received the approval of the institutional review board. Informed and written consent was obtained from all patients prior to data assessment, evaluation, and analysis.

2.2 | Treatment procedure and outcome

Prior to RRS, patients underwent a planning CT scan and MRI of the head, both with 1-mm slice thickness and contrast agent. The CT was subsequently overlaid with secondary MRI, including gadolinium-enhanced T1 and T2 sequences, as well as vessel-focused time of flight series when available. Inverse treatment planning was performed with various versions of the MultiPlan and Precision software (MultiPlan, Precision, Accuray Inc, Sunnyvale, California). All treatments were delivered in a single-session outpatient setting using a CyberKnife RRS system (Accuray Inc). The CyberKnife utilizes a lightweight 6 MeV linear accelerator mounted on a six-axis robotic arm, a stereoscopic kV imaging system, and a robotic treatment table. In all patients, the 6D-Skull tracking software was used to track the position of the patient’s head, whereas custom-fitted thermoplastic face masks were employed for light, noninvasive fixation.23 Radiographic assessment of the treatment outcome was defined as follows. Complete remission (CR) is the disappearance of the whole tumor, partial response (PR) is at least a 30% decrease in tumor volume, minor response is a decrease of tumor volume up to 30%, stable disease is the unchanged tumor volume, and progressive disease (PD) is an increase of the overall tumor volume of at least 20% or tumor growth of at least 5 mm. Local control (LC) was defined as no radiographic evidence of PD.

2.3 | Quality of life

Health-related Qol was assessed using the 12-item health survey questionnaire (SF12v2, 1992, 2000 Health Assessment Lab, Medical Outcomes Trust and QualityMetric Inc). The SF12v2 assesses various health concepts (HC) of Qol including physical functioning (PF), role physical (RP), bodily pain (BP), general health, vitality (VT), social functioning (SF), role emotional, and mental health (MH).

Patients were asked to complete the questionnaire before treatment delivery and during follow-up visits. All survey results were evaluated using the SF Health Outcomes Scoring Software (Qualimetric Inc, Lincoln, Rhode Island). Only patients who answered all questions were included in the analysis. The received answers were transformed into a standardized continuous scale ranging from 0 to 100, with 50 being the mean. Higher SF12v2 scores indicate a better Qol and better overall function. The data were tested for normality by graphic appearance, skewness, kurtosis, and the Shapiro-Wilk test. Baseline data and values at first and last follow-up were compared using paired two-tailed t tests or Wilcoxon signed-rank tests in STATA 15.1 (StataCorp, College Station, Texas). Statistical significance was set at a P value ≤.05.

2.4 | Literature review

We conducted a PubMed-based literature research by using various keyword combinations including CyberKnife, glomus jugulare tumor, paranganglioma, chemodectoma,
robotic radiosurgery, radiosurgery, radiotherapy, and stereotactic to search the National Library of Medicine database. Only articles that reported the use of single-session or multisession (fractionated) RRS for GJTs or paragangliomas were included in this study, even if they included the treatment of other tumor entities or the use of other radiation techniques. Articles published after February 1, 2019, were not considered.

TABLE 1 Patient characteristics, pretreatment deficits, and pretreatments

Patient characteristics	All patients	Untreated	Pretreated
Number of patients	53	33 (62.3)	
Sex (male/female, %)	20 (37.7)	33 (62.3)	
Age (years)	54.5	53.1	27.0-83.4
Pretreatment Karnofsky Performance Score (%)	100	95.6	80-100
Follow-up (months)	38.0	46.6	4.0-160.8
Number of follow-up MRI scans	4	4.7	1-13
Total tumor volume (cc)	4.3	6.3	0.1-31.6
Side of the tumor (left/right, %)	37 (69.8)	16 (30.2)	-
Dose (Gy)	16.5	16.2	13.5-18.0
Prescription isodose (%)	70	69	60-75

Pretreatment deficits

Pretreatment deficits	All patients	Untreated	Pretreated
Number of patients	53	33	20
Patients without deficits	3	1	2
Patients with deficits	50	32	18
Pulsatile tinnitus	28	19	9
Partial hearing loss	25	18	7
Dysphagia	24	14	10
Dysarthria	19	11	8
Vertigo	15	10	5
Total hearing loss	11	4	7
Facial nerve palsy (all degrees)	9	1	8
Dysesthesia	7	2	5
Feeling of pressure around tumor side	7	7	0
Spinal accessory nerve palsy (all degrees)	5	4	1
Pain	4	3	1
Cardiovascular complications	2	2	0
Epiphora	1	1	0

Pretreatments

Pretreatments	Number of patients
Patients with pretreatments	20
Single surgery	9
Single surgery plus tumor embolization	6
Multiple surgeries	3
Multiple surgeries plus tumor embolization	1
Radiosurgery (GK) plus single surgery plus tumor embolization	1

Abbreviations: cc, cubic centimeter; GK, Gamma Knife; Gy, Gray.
TABLE 2 Radiographic and clinical outcomes of symptomatic patients at the last follow-up

Radiographic outcomes	CR	PR	MR	SD	PD
Number of patients	1	17	10	24	1
% of all patients	1.9	32.0	18.8	45.2	1.9
Crude local control (%)	~98				

Clinical outcome of symptomatic patients at the last follow-up
Clinical outcome
Number of patients
% of all patients

Abbreviations: CR, complete remission; MR, minor response; PD, progressive disease; PR, partial response; SD, stable disease.

TABLE 3 Qol results (SF12v2)

Number of patients	35
Time to first follow-up:	
Median: 6.1 months, mean: 6.7 months	
Mean (±SD)	

HC	Baseline	First follow-up	Δ	P value
PF	68.5 ± 31.7	72.1 ± 34.1	3.5	.23
RP	64.2 ± 28.7	61.0 ± 28.0	−3.2	.31
BP	71.4 ± 30.4	77.1 ± 32.3	5.7	.04
GH	48.8 ± 26.7	50.0 ± 27.2	1.1	.78
VT	52.1 ± 29.3	55.7 ± 28.5	3.5	.53
SF	65.7 ± 28.5	68.5 ± 29.9	2.8	.87
RE	65.7 ± 26.3	65.3 ± 28.9	−0.3	.80
MH	59.2 ± 22.5	63.9 ± 21.6	4.6	.08

Number of patients	28
Time to last follow-up	
Median: 38.0 months, mean: 54.5 months	
Mean (±SD)	

HC	Baseline	Last follow-up	Δ	P value
PF	71.4 ± 30.9	73.2 ± 28.0	1.7	.62
RP	61.1 ± 28.9	66.9 ± 26.8	5.8	.06
BP	72.3 ± 31.4	72.3 ± 33.5	0.0	1.00
GH	46.4 ± 22.8	51.7 ± 25.9	5.3	.18
VT	53.5 ± 29.4	59.8 ± 22.9	6.2	.08
SF	66.9 ± 28.9	72.3 ± 26.6	5.3	.35
RE	65.1 ± 24.1	70.0 ± 21.8	4.9	.41
MH	61.1 ± 22.4	66.9 ± 18.0	5.8	.15

Note: All statistically significant values (p < .05) are given in bold.

Abbreviations: BP, bodily pain; GH, general health; HC, health concept; MH, mental health; PF, physical functioning; RE, role emotional; RP, role physical; SF, social functioning; VT, vitality.
3 | RESULTS

3.1 Patient characteristics and treatment parameters

The baseline characteristics of patients are summarized in Table 1. The median age at treatment was 54.5 years, ranging from 27 to 83.4 years. With 33 cases, the majority of patients were female, 20 patients were male. The median tumor volume was 4.3 cc, ranging from 0.1 to 31.6 cc. Most of the treated tumors were located on the left side, with 69.8% vs the remaining 30.2% being on the right side. There were no patients with bilateral tumors. All tumors were treated with RRS using a median dose of 16.5 Gy, enclosing the tumor with doses ranging from 13.5 to 18.0 Gy. The median prescription isodose line was 70%. Fifty patients (94.3%) had pretreatment deficits. The most common symptoms included pulsatile tinnitus, partial hearing loss, dysphagia, dysarthria, and vertigo. The complete list of pretreatment deficits is summarized in Table 1. Overall, 20 patients (37.7%) had received previous treatments with all of them undergoing surgery at least once. Only one patient had received upfront radiosurgery with GK. A detailed overview of the previous treatments is summarized in Table 1.

3.2 Treatment results

All 53 patients obtained a clinical as well as radiographic follow-up which ranged from 4 to 160.8 months with a median of 38 months. The 5-year actuarial LC was 100%, the crude LC was 98% at last follow-up. Fifty-two tumors either shrunk or remained unchanged in size (Table 2). After 70.8 months, one patient developed a local recurrence and was subsequently treated with proton radiotherapy. As of today, there is no new evidence of a local recurrence in this patient. Another patient developed lymph node metastases 4 months after treatment delivery while his primary treatment site remained controlled. During the last follow-up, 18 patients had entirely recovered and 17 had experienced symptom improvement while all three patients without pretreatment deficits remained symptom-free (Table 2). In 13 patients, the symptoms remained unchanged, whereas one patient experienced a transient worsening before improvement. Only one patient reported a symptom worsening, consisting of a newly occurred pulsatile tinnitus during the first follow-up at 6 months.

3.3 Complications

After treatment delivery, only one acute complication occurred. One patient developed an edema around the tumor leading to mild to moderate pain irradiating to the ear, neck, and mandibula. The complication was treated with dexamethasone in an outpatient setting and did resolve shortly after (<72 hours). No radiation necrosis, seizures, acute bleedings, or other complications have been observed in the other 52 patients. Throughout follow-up, no radiation-induced malignancies occurred.

3.4 Quality of life

Before treatment delivery, 47 of 53 patients completed the SF12v2 questionnaire and answered all questions (return rate 88.6%). During first follow-up, which took place around 6 months after treatment (median: 6.1 months), 35 patients had filled out the questionnaire again (66.0% return rate).

Analysis of the data showed no significant decline in any of the eight Qol HC (Table 3; Figure 1). The category BP significantly improved compared with the baseline ($P = .04$), whereas MH showed a trend toward post-treatment improvement without reaching significance ($P = .08$). During the last patient follow-up, after a median of 38 months, 28 of 42 patients completed the SF12v2 as a total of 11 patients only had one follow-up.
Authors/study	Year	Sample size (number of patients treated with robotic radiosurgery)	Median time of follow-up (months)	Median tumor size (cc)	Fractions (number)	Median dose (Gy)	Local control (%)	Quality of life results
Lim et al\(^{24}\)	2003	10 (4) GJTs	26	NR (mean diameter for 9 patients: 2.3 cc)	1-3	18	100	NR
Lim et al\(^{25}\)	2004	13 with 16 GJTs (8 with 11 tumors)	Clinical: 41 Radiographic: 27	NR (mean diameter: 3.0 cc)	1-3	18.3	100	NR
Lim et al\(^{26}\)	2007	18 with 21 GJTs (13 with 16 tumors)	35	NR	1-3	20	100	NR
Tuniz et al\(^{27}\)	2009	21 meningiomas, 9 schwannomas, 4 GJTs (34)	31	19.3	2-5	NR	100	No decline in all patients (no standardized measures reported)
Bianchi et al\(^{28}\)	2009	9 (8) GJTs	NR (mean: 20)	5.8	1-3	12.7	100	NR
Lieberson et al\(^{17}\)	2012	33 GJTs, 3 carotid body tumors, 3 glomus vagale tumors, 2 spinal parangliomas (30 with 35 tumors)	Clinical: 57.6 Radiographic: 46.8	4.6	1-5	20	100 (for 38 tumors)	NR
Golanov et al\(^{29}\)	2012	34 (34) GJTs	NR (mean: 8)	NR (mean: 14.6)	1-7	NR (mean: 17)	100	NR
Hurmuz et al\(^{30}\)	2013	14 (14) GJTs	39	15.8	1-5	25	100	NR
Chun et al\(^{31}\)	2014	18 glomus jugulotympanicum, 12 GJTs, 1 carotid body tumor (31)	24	8.2	5	25	100	NR
Marchetti et al\(^{32}\)	2017	20 patients with 17 jugulotympanic parangliomas, 4 carotid body parangliomas (21)	35 (mean: 46)	4 single-session PTV, 18.9 multisession PTV (mean for single-session: 4, mean for multisession 18.9)	1-5	12 for single-session, 25 for multisession (mean for single-session: 12.2, mean for multisession 25.7)	100	NR
visit (66.6% return rate). The results do not show any decrease in the measured QoL areas. All mean differences were at least zero or positive while no statistically significant improvement was identified. RP and VT showed trends toward improvement but failed to reach significance ($P = .06$ and $P = .08$). Values for PF and BP were normally distributed and analyzed with a paired two-tailed t test. The remaining data were analyzed with Wilcoxon signed-rank tests.

3.5 Literature review

A total of 11 studies investigating RRS for GJTs or paragangliomas have been identified until February 1, 2019, the earliest study being published in 2003, the latest in 2017 (Table 4). Given the various studies from Stanford University, it was not possible to determine the exact number of cases treated. A total of approximately 148 GJTs or jugulotympanic paragangliomas have been treated with RRS with one or up to seven fractions. The LC for all tumors was 100% with median follow-up durations ranging from 24 to 57 months. The tumor size ranged from <1 to 69.2 cc. Only a few severe complications had been described and no standardized QoL results had been reported in any of the studies. Only 37 GJTs have been treated with single-session RRS. The published data does not allow for calculation of the median follow-up time, median dose, and average tumor size of this subgroup.

4 DISCUSSION

Herein, we report our long-term experience with RRS and its safety, efficacy as well as the impact on QoL of treated patients. To date, this study comprises the largest and most homogeneous series of patients treated with RRS and it is the first to provide standardized QoL measurements before and after treatment delivery. In agreement with previous RRS and radiosurgical studies, our LC rate was close to 100% (Table 4). We are the first to report a local recurrence of a tumor as other studies consistently reached LC rates of 100% with sometimes even longer median follow-up periods. Given the sparse data available, any prognostic factors are unclear so far. The recurrence after 5.9 years in one of our patients highlights the fact that GJTs can relapse even after a long follow-up, as discussed in various other studies. In addition, GJTs are usually slowly growing tumors with most of them having a tumor doubling time of more than 10 years and an average growth rate of less than 1 mm per year. Subsequently, long follow-up periods are

Authors/study	Year	Sample size (number of patients treated with robotic radiosurgery)	Median time of follow-up (months)	Median tumor size (cc)	Fractions (number)	Median dose (Gy)	Local control (%)	Quality of life results
Tosun et al.33	2017	12 with 3 GJTs, 5 carotid body tumors, 3 sympatetic paragangliomas, and 1 with bilateral neck paragangliomas (right neck; carotid body paraganglioma, left neck; GJT) (12)	30	3.5	24	30	100	No decline in QoL after treatment with significant improvement in BP
Current series	2019	53 (53) GJTs	38	4.3	1	16.5	98	No decline in QoL after treatment with significant improvement in BP

Abbreviations: cc, cubic centimeter; GJTs, glomus jugulare tumors; Gy, Gray; NR, not reported; PTV, planning target volume.
needed to detect relapses and to confirm the high LC rates initially reported in the current literature and herein.

Still, there are no consensus guidelines on how and when to treat GJTs. Some colleagues have argued that only fast-growing, large, catecholamine-secreting or symptomatic tumors should be treated.8,17,37

In young patients with hereditary tumors, chances of malignant GJTs are higher and, thus, should be treated in a timely manner as well.38,39 Lieberson and colleagues have proposed a treatment guideline including four primary options—surgery ± adjuvant radiation (conventional radiotherapy or radiosurgery), radiation alone or watchful waiting.17 Nevertheless, the decision making is not linked to the actual tumor size as the LC rates do not seem to be correlated with tumor size. This is also in agreement with the experience at our institution—larger tumors can be treated with good success. However, it is unclear to what extent fractionation plays a role in long-term tumor control as fractionated radiotherapy studies showed high tumor control rates as well.8,17 Based on our experience, RRS can be used in most of the cases and surgery may be reserved for patients with rapid neurological worsening and peripheral tumors. The primary use of RRS is still feasible regardless of the histological confirmation as the imaging findings and caused symptoms are usually sufficient to diagnose GJTs.40,41 For catecholamine-secreting tumors, it remains unclear which treatment is safe and most beneficial. We treated two hormone-secreting tumors, which caused syncope, tachycardia, and labile blood pressures. Despite short-term LC, cardiovascular symptoms remained unchanged and patients were lost to follow-up, emphasizing the need for interdisciplinary treatments including surgery. With regard to the proposed guidelines, more studies, ideally of prospective nature, are needed for verification.

In addition, future treatment guidelines should implement patient-centered outcomes including Qol analyses. Only sparse Qol data after radiotherapy and radiosurgery are available for paragangliomas and, more specifically, GJTs. It has been described that head and neck paragangliomas have a considerable impact on the Qol of affected patients.42,43 Galland-Girodet and colleagues reported that Qol significantly differs in a group of 30 head and neck paraganglioma patients according to the treatment modalities (surgery/embolization ± radiotherapy).44 Patients undergoing radiotherapy alone had better values for speech, hearing, trismus, and total score.44 Results were obtained retrospectively by mailing the EORTC-QLQ-C30 and EORTC-QLQ-H&N 35 questionnaire at least 12 months after treatment delivery.44 Recently, more data have been published by Patel and colleagues, investigating changes in Qol stratified by primary or secondary GK-based radiosurgery after a median of 97 months posttreatment delivery.45 Swallowing function was better in a group of 26 glomus jugulare patients undergoing primary radiosurgery. Overall and disease-specific measures did not significantly differ.45

To the best of our knowledge, we report the first standardized Qol data for GJT patients with pretreatment and follow-up comparisons using the SF12v2 questionnaire. Results show no decrease in any of the Qol concepts either during first or last follow-up with positive trends for RP, MH, and VT, whereas BP significantly improved in our series. These results confirm one of the essential features of RRS besides its high local tumor control, namely limiting negative impacts on the Qol from treatment delivery, especially in comparison with surgical treatment options.8,17 This is underlined by the observed symptom control and deficit improvements seen in two-third of our patients with pretreatment deficits. Various other studies using radiosurgery or radiotherapy reported similar experiences, with rates of stable or improved pre-treatment deficits ranging from 42% to 85%.17,21,32,46

4.1 Limitations

As inherent to retrospective clinical studies, reporting as well as selection biases cannot be ruled out.

In our case, we included every patient undergoing RRS since the availability of the technique at our institution in 2005. However, as the prevalence and incidence of GJTs is very low, we were only able to include 53 patients. Still, this is the most extensive series using RRS to date (Table 4) and one of the largest radiosurgical studies in the literature. This indicates the problem that even with our series, our patients might not be representative of the whole glomus jugulare population. Furthermore, our series include 33 primarily treated patients and histological confirmation of the tumor was not conducted.

Even though the radiological appearance including tumor location, contrast uptake, and clinical symptoms were characteristic for GJTs, we cannot completely exclude other possible diagnoses. Still, modern imaging techniques like CT, MRI, and angiography show high rates of sensitivity and specificity in the diagnosis of GJTs.40,41,47 In addition, our follow-up duration is still not long enough to reliably detect recurrences after 5 years or more. As previously described, relapses can occur even 40 years after treatment delivery.35 Finally, not all patients have fully completed the SF12v2 questionnaires before treatment and during follow-up. Hence, there could be selection and reporting biases in our Qol analyses.
5 | CONCLUSION

RRS is a safe, reliable, and efficient tool for the primary and secondary treatment of GJTs even for larger tumors. RRS achieves high rates of LC and leads to improved or stable pre-treatment deficits in most patients. This is also reflected by the Qol analysis showing no significant decrease in any of the Qol concepts during first or last follow-up with positive trends for RP, MH, and VT while BP significantly improved. RRS may be considered as a primary treatment option for most GJTs.

ACKNOWLEDGMENT

This work was supported by the Munich Medical Research School, Ludwig-Maximilians-University Munich. Open Access funding enabled and organized by ProjektDEAL.

ORCID

Felix Ehret https://orcid.org/0000-0001-6177-1755

REFERENCES

1. Welander J, Soderkvist P, Gimm O. Genetics and clinical characteristics of hereditary phaeochromocytomas and paragangliomas. Endocr Relat Cancer. 2011;18(6):R253-R276.
2. Forbes JA, Brock AA, Ghiassi M, Thompson RC, Haynes DS, Tsi SA. Jugulotympanic paragangliomas: 75 years of evolution in understanding. Neurosurg Focus. 2012;33(2):E13.
3. Lundgren N. Tympanic body tumours in the middle ear; tumours of carotid body type. Acta Oto-Laryngologica. 1949;37(4):367-379.
4. Chretien PB, Engelman K, Hoye RC, Geelhoed GW. Surgical management of intravascular glomus jugulare tumor. Am J Surg. 1971;122(6):740-743.
5. Gulya AJ. The glomus tumor and its biology. Laryngoscope. 1993;103(11 Pt 2 Suppl 60):7-15.
6. Lee JH, Barich F, Karnell LH, et al. National Cancer Data Base report on malignant paragangliomas of the head and neck. Cancer. 2002;94(3):730-737.
7. Hallett JW Jr, Nora JD, Hollier LH, Cherry KJ Jr, Pairolero PC. Trends in neurovascular complications of surgical management for carotid body and cervical paragangliomas: a fifty-year experience with 153 tumors. J Vasc Surg. 1988;7(2):284-291.
8. Suarez C, Rodrigo JP, Bodeker CC, et al. Jugular and vagal paragangliomas: systematic study of management with surgery and radiotherapy. Head Neck. 2013;35(8):1195-1204.
9. Gottfried ON, Liu JK, Couldwell WT. Comparison of radiosurgery and conventional surgery for the treatment of glomus jugulare tumors. Neurosurg Focus. 2004;17(2):E4.
10. Gaynor BG, Elhammady MS, Jethanamet D, Angeli SI, Aziz-Sultan MA. Incidence of cranial nerve palsy after preoperative embolization of glomus jugulare tumors using Onyx. J Neurosurg. 2014;120(2):377-381.
11. Dalfino JC, Drazin D, Nair A, Gifford I, Boulos AS. Successful Onyx embolization of a giant glomus jugulare: case report and review of nonsurgical treatment options. World Neurosurg. 2014;81(5-6):842.e11-842.e16.
12. Young NM, Wiet RJ, Russell EJ, Monsell EM. Superselective embolization of glomus jugulare tumors. Ann Otol Rhinol Laryngol. 1988;97(6 Pt 1):613-620.
13. Ozyer U, Harman A, Yildirim E, Aytekin C, Akay TH, Boyvat F. Devascularization of head and neck paragangliomas by direct percutaneous embolization. Cardiovasc Intervent Radiol. 2010;33(5):967-975.
14. White JB, Link MJ, Cloft HJ. Endovascular embolization of paragangliomas: a safe adjuvant to treatment. J Vasc Interv Neurol. 2008;1(2):37-41.
15. Cao KI, Feuvret L, Herman P, et al. Protontherapy of head and neck paragangliomas: a monocentric study. Cancer Radiother. 2018;22(1):31-37.
16. Ivan ME, Sughrue ME, Clark AJ, et al. A meta-analysis of tumor control rates and treatment-related morbidity for patients with glomus jugulare tumors. J Neurosurg. 2011;114(5):1299-1305.
17. Lieberson RE, Adler JR, Soltys SG, Choi C, Gibbs IC, Chang SD. Stereotactic radiosurgery as the primary treatment for new and recurrent paragangliomas: is open surgical resection still the treatment of choice? World Neurosurg. 2012;77(5-6):745-761.
18. Shapiro S, Kellermeyer B, Ramadan J, Jones G, Wiseman B, Cassis A. Outcomes of primary radiosurgery treatment of glomus jugulare tumors: a multicenter study. J Neurosurg. 2012;117(2):246-254.
19. Guss ZD, Batra S, Li G, et al. Radiosurgery for glomus jugulare: history and recent progress. Neurosurg Focus. 2009;27(6):E5.
20. Fu D, Kuduvalli G. A fast, accurate, and automatic 2D-3D image registration for image-guided cranial radiosurgery. Med Phys. 2008;35(5):2180-2194.
21. Sheehan JP, Tanaka S, Link MJ, et al. Gamma Knife surgery for the management of glomus tumors: a multicenter study. J Neurosurg. 2012;117(2):246-254.
22. Guarini D, Brait L, Bello A, et al. Radiosurgery for glomus jugulare: systematic review with meta-analysis. J Neurosurg. 2018;129(5):1079-1087.
23. Lieberson RE, Adler JR, Soltys SG, Choi C, Gibbs IC, Chang SD. Stereotactic radiosurgery as the primary treatment for new and recurrent paragangliomas: is open surgical resection still the treatment of choice? World Neurosurg. 2012;77(5-6):745-761.
24. Ware J Jr, Kosinski M, Keller SD. A 12-Item Short-Form Health Survey: construction of scales and preliminary tests of reliability and validity. Med Care. 1996;34(3):220-233.
25. Lim M, Gibbs IC, Adler JR Jr, Chang SD. Efficacy and safety of stereotactic radiosurgery for glomus jugulare tumors: systematic review with meta-analysis. World Neurosurg. 2018;117(2):E11.
26. Lim M, Bower R, Nangiana JS, Adler JR, Chang SD. Radiosurgery for glomus jugulare tumors. Technol Cancer Res Treat. 2007;6(5):419-423.
27. Tuniz F, Soltys SG, Choi CY, et al. Multisession CyberKnife stereotactic radiosurgery of large, benign cranial base tumors: preliminary study. Neurosurgery. 2009;65(5):898-907.
28. Bianchi LC, Marchetti M, Brait L, et al. Paragangliomas of head and neck: a treatment option with CyberKnife radiosurgery. Neurol Sci. 2009;30(6):479-485.
29. Golovan AV, Kapitanov DN, Pronin IN, et al. First experience of CyberKnife stereotactic radiotherapy for glomus jugulare tumors. Zh Vopr Neirokhir Im N N Burdenko. 2012;76(1):30-36. discussion 6.
30. Hurmuz P, Cengiz M, Ozyigit G, et al. Robotic stereotactic radiosurgery in patients with unresectable glomus jugulare tumors. Technol Cancer Res Treat. 2013;12(2):109-113.
31. Chun SG, Nedzi LA, Choe KS, et al. A retrospective analysis of tumor volumetric responses to five-fraction stereotactic radiotherapy for paragangliomas of the head and neck (glomus tumors). Stereotact Funct Neurosurg. 2014;92(3):153-159.

32. Marchetti M, Pinzi V, Tramacere I, Bianchi LC, Ghielmetti F, Fariselli L. Radiosurgery for paragangliomas of the head and neck: another step for the validation of a treatment paradigm. World Neurosurg. 2017;98:281-287.

33. Tosun I, Atalar B, Sahin B, et al. Robotic radiosurgery of head and neck paragangliomas: a single institution experience. Asia Pac J Clin Oncol. 2018;14(2):c3-c7.

34. Pollock BE, Foote RL. The evolving role of stereotactic radiosurgery for patients with skull base tumors. J Neurooncol. 2004;69(1–3):199-207.

35. Boyle JO, Shimm DS, Coulthard SW. Radiation therapy for paragangliomas of the temporal bone. Laryngoscope. 1990;100(8):896-901.

36. Jansen JC, van den Berg R, Kuiper A, van der Mey AG, Zwinderman AH, Cornelisse CJ. Estimation of growth rate in patients with head and neck paragangliomas influences the treatment proposal. Cancer. 2000;88(12):2811-2816.

37. van der Mey AG, Frijns JH, Cornelisse CJ, et al. Does intervention improve the natural course of glomus tumors? A series of 108 patients seen in a 32-year period. Ann Otol Rhinol Laryngol. 1992;101(8):635-642.

38. Al-Mefty O, Teixeira A. Complex tumors of the glomus jugulare: criteria, treatment, and outcome. J Neurosurg. 2002;97(6):1356.

39. Manolidis S, Shohet JA, Jackson CG, Glasscock ME 3rd. Malignant glomus tumors. Laryngoscope. 1999;109(1):30-34.

40. Larson TC 3rd, Reese DF, Baker HL Jr, McDonald TJ. Glomus tympanicum chemodectomas: radiographic and clinical characteristics. Radiology. 1987;163(3):801-806.

41. Lo WW, Solti-Bohman LG, Lambert PR. High-resolution CT in the evaluation of glomus tumors of the temporal bone. Radiology. 1984;150(3):737-742.

42. Havekes B, van der Klaauw AA, Hoftijzer HC, et al. Reduced quality of life in patients with headand-neck paragangliomas. Eur J Endocrinol. 2008;158(2):247-253.

43. van Hulsteijn LT, Louisse A, Havekes B, et al. Quality of life is decreased in patients with paragangliomas. Eur J Endocrinol. 2013;168(5):689-697.

44. Galland-Girodet S, Maire JP, De-Mones E, et al. The role of radiation therapy in the management of head and neck paragangliomas: impact of quality of life versus treatment response. Radiother Oncol. 2014;111(3):463-467.

45. Patel NS, Link MJ, Tombers NM, Pollock BE, Carlson ML. Quality of life in jugular paraganglioma following radiosurgery. Otol Neurotol. 2019;40(6):820-825.

46. El Majdoub F, Hunsche S, Igressa A, Kocher M, Sturm V, Maarouf M. Stereotactic LINACRadiosurgery for glomus jugulare tumors: a long-term follow-up of 27 patients. PLoS One. 2015;10(6):e0129057.

47. Neves F, Huwart L, Jourdan G, et al. Head and neck paragangliomas: value of contrastenhanced 3D MR angiography. AJNR Am J Neuroradiol. 2008;29(3):883-889.

How to cite this article: Ehret F, Kufeld M, Fürweger C, et al. Single-session image-guided robotic radiosurgery and quality of life for glomus jugulare tumors. Head & Neck. 2020;42:2421–2430. https://doi.org/10.1002/hed.26231