Reply to the comment on “Frame-dragging: meaning, myths, and misconceptions” by A. Deriglazov

L. Filipe O. Costa¹*, José Natário¹†
¹CAMGSD — Departamento de Matemática, Instituto Superior Técnico, Universidade de Lisboa, 1049-001, Lisboa, Portugal

Abstract

It has been claimed in [arXiv:2110.09522] that the expression for the Sagnac coordinate time delay given in [arXiv:2109.14641] “differs from the standard interpretation described in the book by Landau-Lifshitz (LL)”. We note that: 1) the Sagnac effect is not even discussed in LL; 2) the expression in [arXiv:2109.14641] is standard, given in countless papers and even textbooks; 3) the expression by LL quoted by the author consists of the (infinitesimal) two-way trip travel time for a light signal, which the author confuses with the Sagnac time delay (when they are actually very different things); 4) such confusion would negate the existence, both in special and general relativity, of the well-known and experimentally tested Sagnac effect; 5) the claims that it sheds doubt in any of the assertions made in [arXiv:2109.14641] are completely unfounded.

1 Two-way trip of light signals, and Landau-Lifshitz space metric

The line element $ds^2 = g_{\alpha\beta} dx^\alpha dx^\beta$ of a stationary spacetime can generically be written as

$$ds^2 = -e^{2\Phi}(dt - A_i dx^i)^2 + h_{ij} dx^i dx^j,$$

(1)

where $e^{2\Phi} = -g_{00}$, $\Phi \equiv \Phi(x^i)$, $A_i \equiv A_i(x^j) = -g_{0i}/g_{00}$, and $h_{ij} \equiv h_{ij}(x^k) = g_{ij} + e^{2\Phi} A_i A_j$.

Consider two infinitesimally close observers at rest in the coordinates of [1]: observer E, carrying a flashlight, and observer R, carrying a mirror. Observer E emits a light flash at position x^i_E, which is reflected by observer R’s mirror at $x^i_R = x^i_E + dx^i$, returning then to E; see Fig. 18 in Sec. §84 of the Landau-Lifshitz (LL) textbook [1]. Along the photon’s worldline, $ds^2 = 0$; by [1], this yields two solutions for dt, of which the one corresponding to a future-oriented null worldline is

$$dt = A_i dx^i + e^{-\Phi} dl ; \quad dl = \sqrt{h_{ij} dx^i dx^j} \quad \text{(for a photon)}.$$

(2)

For the trips $E \rightarrow R$, and $R \rightarrow E$ we have, respectively,

$$dt_{ER} = A_i dx^i + e^{-\Phi} dl ; \quad dt_{RE} = -A_i dx^i + e^{-\Phi} dl .$$

Observe that the term $A_i dx^i$, but not dl, changes sign with an inversion of direction. Hence, for the photon’s two-way trip $E \rightarrow R \rightarrow E$,

$$dt_{ER} + dt_{RE} = 2e^{-\Phi} dl ,$$

(3)

*lfilipecosta@tecnico.ulisboa.pt
†jnatar@math.ist.utl.pt
Figure 1: (a) Light beams propagating in opposite directions along an optical fiber loop C around a spinning body (Fig. 1(a) of [10]). (b) Spacetime diagram for this setup (inspired on Fig. 2 of [19]): the difference in arrival times Δt_S in Eq. (5) (Sagnac coordinate time delay) is an interval along a t-coordinate line (which translates, in the observer’s proper time, to $\Delta \tau_S = e^\Phi \Delta t_S$). The quantity $t_p = \int_C dl$, dubbed “true time” in [2], yields in fact the length of the spatial curve C. Confusing it with the beams’ travel time would lead to the erroneous conclusion that they arrive at the same time, in contradiction with measurement (by e.g. a Sagnac interferometer).

which corresponds to the unnumbered equation below Eq. (84.5) in [1] quoted by the author of [2].

In terms of observer E’s proper time, $d\tau = e^\Phi dt$, this time interval equals twice dl, which is thus the measured spatial distance between E and R. This standardly defines h_{ij} as the spatial metric, introduced in [1], and subsequently widely used in the literature on 1+3 spacetime splittings (e.g. [3–9], including [10]).

From the above discussion it follows that integrating the quantity

$$dl = e^\Phi (dt - A_i dx^i) \equiv dt_p$$ \hspace{1cm} (4)

along the worldline of a photon propagating in an optical fiber, as suggested by the author of [2] (but not by LL), will simply result in the length of the optical fiber as measured by the observers at rest in the coordinates of [1] (which of course is the same in both directions), see Fig. 1(b). Notice that such integral does not even represent the time measured by some observer E for a finite photon two-way trip along the optical fiber (unless Φ is constant along it), since such interval would, by Eq. (2), be $\Delta \tau_{ERE} = e^\Phi (\Delta t_{ER} + \Delta t_{RE}) = 2 e^\Phi \int_{E}^{R} e^{-\Phi} dl$. More importantly: this has nothing to do with the Sagnac effect.

2 Sagnac effect

The Sagnac effect (e.g. [9,[11],[31]) consists of the difference in arrival times of light beams propagating in opposite directions around a spatially closed loop C. Consider an optical fiber loop, where observer E at rest in the coordinates of [1] injects light beams in opposite directions, as depicted in Fig. 1 (a) (similar to Fig. 1 (a) of [10]). Using the $+$ ($-$) sign to denote the anti-clockwise (clockwise) directions, the coordinate time it takes for a full loop is, from Eq. (2), respectively $	ext{LL write this as the difference between the coordinate time intervals calculated with respect to the reflection event (thus one being typically positive and the other typically negative); this is perhaps the source of the confusion by the author of [2].}$
therefore, the Sagnac time delay is, in coordinate time and in observer E’s proper time, respectively (cf. Eq. (4) of [10]),

$$\Delta t_S \equiv t_+ - t_- = 2 \int_C A_i dx^i = 2 \int_C A,$$

$$\Delta \tau_S = e^\Phi \Delta t_S$$ (5)

(above and $[10]$). Equation (5) is a well known, standard result, given, precisely in (one, or both of) these two forms, in e.g. [8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25]. It applies both to rotating frames in flat spacetime as well as to arbitrary stationary gravitational fields, has been thoroughly experimentally tested, plays a key role in the relativistic corrections for the Global Position System [22,23], and is the basis of optical gyroscopes [14,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34]. Based on this equation, proposals for experimental detection of frame-dragging have also been put forth [16,17,27,28,29].

Finally, we remark that although this effect is not explicitly discussed in LL [1], a closely related quantity — the synchronization gap along C, which is well known (e.g. [9,20]) to be one half the corresponding Sagnac time delay — is computed therein, see Eq. (88.5) in Sec. §88; the result is, as would be expected, exactly $\Delta t_S/2$, as given by Eq. (5) above (Eq. (4) in [10]).

3 Conclusions

To conclude, we have shown that the claims in [2] regarding the results presented in [10] are completely unfounded: the Sagnac effect is not even discussed in [1] (just the closely related synchronization gap, and with results entirely consistent with those in [10]); the integral (5) in [2], that the author dubs “true time”, does not actually correspond to the travel time as measured by any observer, but instead to the usual definition of spatial length; and the expression for the Sagnac coordinate time delay in [10] is completely standard.

References

[1] L. D. Landau and E. M. Lifshitz, *The classical theory of fields; 4rd ed.*, vol. 2 of *Course of theoretical physics*. Butterworth-Heinemann, Oxford, UK, 1975. Trans. from the Russian.

[2] A. A. Deriglazov, “Comment on "Frame-dragging: meaning, myths, and misconceptions" by L. F. O. Costa and J. Natário,” arXiv:2110.09522 [gr-qc].

[3] D. Lynden-Bell and M. Nouri-Zonoz, “Classical monopoles: Newton, nut space, gravomagnetic lensing, and atomic spectra,” Rev. Mod. Phys. **70** (Apr, 1998) 427–445.

[4] R. T. Jantzen, P. Carini, and D. Bini, “The Many faces of gravitoelectromagnetism,” Annals Phys. **215** (1992) 1–50. arXiv:gr-qc/0106043.

[5] J. Natário, “Quasi-Maxwell interpretation of the spin–curvature coupling,” General Relativity and Gravitation **39** no. 9, (Sep, 2007) 1477–1487.
[6] L. F. O. Costa and J. Natário, “Gravito-electromagnetic analogies,” General Relativity and Gravitation 46 no. 10, (2014) 1792 [arXiv:1207.0465].

[7] R. Gharechahi, J. Koohbor, and M. Nouri-Zonoz, “General relativistic analogs of Poisson’s equation and gravitational binding energy,” Phys. Rev. D 99 (2019) 084046.

[8] L. F. O. Costa, J. Natário, and N. O. Santos, “Gravitomagnetism in the Lewis cylindrical metrics,” Class. Quant. Grav. 38 no. 5, (2021) 055003 [arXiv:1912.09407].

[9] E. Minguzzi, “Simultaneity and generalized connections in general relativity,” Class. Quant. Grav. 20 (2003) 2443–2456 [arXiv:gr-qc/0204063].

[10] L. F. O. Costa and J. Natário, “Frame-Dragging: Meaning, Myths, and Misconceptions,” Universe 7 no. 10, (2021) 388 [arXiv:2109.14641].

[11] G. Sagnac, “L’êther lumineux démontré par l’effet du vent relatif d’êther dans un interféromètre en rotation uniforme,” C. R. Acad. Sci., Paris 157 (1913) 708–710.

[12] G. Sagnac, “Sur la preuve de la réalité de l’êther lumineux par l’expérience de l’interférographe tournant,” C. R. Acad. Sci., Paris 157 (1913) 1410–1413.

[13] M. v. Laue, “Zum Versuch von F. Harress,” Annalen der Physik 367 no. 13, (1920) 448–463.

[14] E. J. Post, “Sagnac effect,” Rev. Mod. Phys. 39 (Apr, 1967) 475–493.

[15] A. Ashtekar and A. Magnon, “The Sagnac effect in general relativity,” J. Math. Phys. 16 (1975) 341–344.

[16] W. W. Chow et al., “The ring laser gyro,” Rev. Mod. Phys. 57 (Jan, 1985) 61–104.

[17] I. Ciufolini and J. A. Wheeler, Gravitation and Inertia. Princeton Series in Physics, Princeton, NJ, 1995.

[18] A. Tartaglia, “General relativistic corrections to the Sagnac effect,” Phys. Rev. D 58 (1998) 064009 [arXiv:gr-qc/9806019].

[19] E. Kajari, M. Buser, C. Feiler, and W. P. Schleich, “Rotation in relativity and the propagation of light,” in Proceedings of the International School of Physics "Enrico Fermi", Course CLXVIII, pp. 45–148 [Riv. Nuovo Cim. 32, 339–438]. IOS Press, Amsterdam, 2009. [arXiv:0905.0765].

[20] D. Bini, R. T. Jantzen, and B. Mashhoon, “Gravitomagnetism and relative observer clock effects,” Class. Quant. Grav. 18 (2001) 653–670 [arXiv:gr-qc/0012065].

[21] E. Kajari, R. Walser, W. P. Schleich, and A. Delgado, “Sagnac effect of Godel’s universe,” Gen. Rel. Grav. 36 (2004) 2289 [arXiv:gr-qc/0404032].

[22] N. Ashby, “Relativity in the Global Positioning System,” Living Reviews in Relativity 6 no. 1, (Jan., 2003) 1.

[23] N. Ashby, “The sagnac effect in the global positioning system,” in Relativity in Rotating Frames., R. M. e. Rizzi G., ed., pp. 215–258 [Fund. Theor. Phys. 135, 215]. Springer, Dordrecht, 2004.

[24] M. H. Sofiel, Relativity in Astrometry, Celestial Mechanics and Geodesy Springer-Verlag, Berlin, Heidelberg, 1989.
[25] G. Rizzi and M. L. Ruggiero, “The Relativistic Sagnac effect: Two derivations,” in *Relativity in Rotating Frames*, G. Rizzi and M. L. Ruggiero, eds., pp. 179–220. Kluwer Academic Publishers, Dordrecht, 2004. [arXiv:gr-qc/0305084](https://arxiv.org/abs/gr-qc/0305084).

[26] E. Gourgoulhon, *Special Relativity in General Frames*. Graduate Texts in Physics. Springer, Berlin, Heidelberg, 2013.

[27] M. L. Ruggiero, “Sagnac Effect, Ring Lasers and Terrestrial Tests of Gravity,” *Galaxies* 3 no. 2, (2015) 84–102 [arXiv:1505.01268](https://arxiv.org/abs/1505.01268).

[28] A. Tartaglia, A. Di Virgilio, J. Belfi, N. Beverini, and M. L. Ruggiero, “Testing general relativity by means of ring lasers,” *Eur. Phys. J. Plus* 132 no. 2, (2017) 73 [arXiv:1612.09099](https://arxiv.org/abs/1612.09099).

[29] A. Tartaglia, “Relativistic positioning and Sagnac-like measurements for fundamental physics in space,” *Adv. Space Res. 66* (2020) 2757–2763 [arXiv:2005.13397](https://arxiv.org/abs/2005.13397).

[30] F. Bosi *et al.*, “Measuring Gravito-magnetic Effects by Multi Ring-Laser Gyroscope,” *Phys. Rev. D* 84 (2011) 122002 [arXiv:1106.5072](https://arxiv.org/abs/1106.5072).

[31] A. Rincón and J. R. Villanueva, “The Sagnac effect on a scale-dependent rotating BTZ black hole background,” *Class. Quant. Grav.* 37 no. 17, (2020) 175003 [arXiv:1902.03704](https://arxiv.org/abs/1902.03704).

[32] “Ring laser gyroscope.” https://en.wikipedia.org/wiki/Ring_laser_gyroscope.

[33] “Fibre-optic gyroscope.” https://en.wikipedia.org/wiki/Fibre-optic_gyroscope.

[34] V. Passaro *et al.*, “Gyroscope technology and applications: A review in the industrial perspective.” *Sensors* 17 no. 10, (2017).

[35] H. Kajioka *et al.*, “Commercial applications of mass-produced fiber optic gyros,” in *Fiber Optic Gyros: 20th Anniversary Conference*, E. Udd, H. C. Lefevre, and K. Hotate, eds., vol. 2837, pp. 18 – 32, International Society for Optics and Photonics. SPIE, 1996.