Prolyl 4-Hydroxylase Activity Is Essential for Development and Cuticle Formation in the Human Infective Parasitic Nematode *Brugia malayi*

Received for publication, July 3, 2012, and in revised form, November 16, 2012. Published, JBC Papers in Press, December 7, 2012. DOI 10.1074/jbc.M112.397604

Alan D. Winter1, Gillian McCormack2, Johanna Myllyharju3, and Antony P. Page2

From the 1Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Garscube Estate, Bearsden Road, Glasgow G61 1QH, Scotland, United Kingdom and the 2Biocenter Oulu and Department of Medical Biochemistry and Molecular Biology, Oulu Center for Cell Matrix Research, University of Oulu, FIN-90014 Oulu, Finland

Background: Collagen prolyl 4-hydroxylases (C-P4H) are involved in the formation of extracellular matrices.

Results: The full complement of C-P4H enzymes from the human infective parasite *Brugia malayi* have been bioinformatically, biochemically, and functionally characterized.

Conclusion: C-P4H enzymes are essential for development in *B. malayi*.

Significance: Unique features of these essential enzymes may be exploited in future control mechanisms.

Collagen prolyl 4-hydroxylases (C-P4H) are required for formation of extracellular matrices in higher eukaryotes. These enzymes convert proline residues within the repeat regions of collagen polypeptides to 4-hydroxyproline, a modification essential for the stability of the final triple helix. C-P4H are most often oligomeric complexes, with enzymatic activity contributed by the α subunits, and the β subunits formed by protein disulfide isomerase (PDI). Here, we characterize this enzyme class in the important human parasitic nematode *Brugia malayi*. All potential C-P4H subunits were identified by detailed bioinformatic analysis of sequence databases, function was investigated both by RNAi in the parasite and heterologous expression in *Caenorhabditis elegans*, whereas biochemical activity and complex formation were examined via co-expression in insect cells. Concurrent RNAi of two *B. malayi* C-P4H α subunit-like genes resulted in a striking, highly penetrant body morphology phenotype in parasite larvae. This was replicated by single RNAi of a *B. malayi* C-P4H β subunit-like PDI. Surprisingly, however, the *B. malayi* proteins were not capable of rescuing a *C. elegans* α subunit mutant, whereas the human enzymes could. In contrast, the *B. malayi* PDI did functionally complement the lethal phenotype of a *C. elegans* β subunit mutant. Comparison of recombinant and parasite derived material indicates that enzymatic activity may be dependent on a non-reducible covalent link, present only in the parasite. We therefore demonstrate that C-P4H activity is essential for development of *B. malayi* and uncover a novel parasite-specific feature of these collagen biosynthetic enzymes that may be exploited in future parasite control.

The parasitic filarial nematode *Brugia malayi* is one of the causative agents of lymphatic filariasis, a condition affecting around 120 million people in 73 countries worldwide (1, 2). The *B. malayi* genome has been sequenced and is similar in size and gene number to the free-living nematode *Caenorhabditis elegans* (3). All nematodes display similar body plans and are encased in a collagenous exoskeleton, known as the cuticle, which covers the outermost layer of epithelial cells. We have previously demonstrated in *C. elegans* that collagen prolyl 4-hydroxylase (C-P4H) (EC 1.14.11.2) and protein disulfide isomerase (PDI) (EC 5.3.4.1) activities are essential for nematode development due to their cuticle collagen modification function (4–6). We therefore examined whether the *B. malayi* forms of these enzymes were similarly required for development and as such would represent effective anti-parasitic drug targets.

The nematode cuticle is a collagen-rich extracellular matrix, which is required for maintenance of body morphology and interaction with the environment (7). The collagens that constitute the cuticle are formed via a multi-step process of intracellular and extracellular post-translational enzymatic modifications (reviewed in Ref. 7). An essential step in this process is catalyzed by C-P4H and occurs within the endoplasmic reticulum where secreted proteins are folded. C-P4H converts peptide bound proline residues in the X-Pro-Gly repeat region of procollagen polypeptides to 4-hydroxyproline. Mature collagen triple helices that lack this modification are thermally unstable at physiological temperatures. In most species examined, C-P4H are oligomeric complexes with the C-P4H active sites present in

1 To whom correspondence may be addressed: Institute of Infection, Immunity, and Inflammation, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Garscube Estate, Bearsden Rd., Glasgow G61 1QH, UK. Tel.: 44-141-330-5759; Fax: 44-141-330-2271; E-mail: Alan.Winter@glasgow.ac.uk.
2 To whom correspondence may be addressed: Institute of Infection, Immunity, and Inflammation, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Garscube Estate, Bearsden Rd., Glasgow G61 1QH, UK. Tel.: 44-141-330-1997; Fax: 44-141-330-2271; E-mail: Tony.Page@glasgow.ac.uk.

* This work was supported by grants from the Medical Research Council and the Biotechnology and Biological Sciences Research Council of Great Britain.

Author’s Choice—Final version full access.

This article contains supplemental “Experimental Procedures,” Tables S1 and S2, Figs. S1–S6, and additional references.

The full complement of C-P4H enzymes from the human infective parasite *Brugia malayi* have been bioinformatically, biochemically, and functionally characterized.

Results: The full complement of C-P4H enzymes from the human infective parasite *Brugia malayi* have been bioinformatically, biochemically, and functionally characterized.

Conclusion: C-P4H enzymes are essential for development in *B. malayi*.

Significance: Unique features of these essential enzymes may be exploited in future control mechanisms.

The parasitic filarial nematode *Brugia malayi* is one of the causative agents of lymphatic filariasis, a condition affecting around 120 million people in 73 countries worldwide (1, 2). The *B. malayi* genome has been sequenced and is similar in size and gene number to the free-living nematode *Caenorhabditis elegans* (3). All nematodes display similar body plans and are encased in a collagenous exoskeleton, known as the cuticle, which covers the outermost layer of epithelial cells. We have previously demonstrated in *C. elegans* that collagen prolyl 4-hydroxylase (C-P4H) (EC 1.14.11.2) and protein disulfide isomerase (PDI) (EC 5.3.4.1) activities are essential for nematode development due to their cuticle collagen modification function (4–6). We therefore examined whether the *B. malayi* forms of these enzymes were similarly required for development and as such would represent effective anti-parasitic drug targets.

The nematode cuticle is a collagen-rich extracellular matrix, which is required for maintenance of body morphology and interaction with the environment (7). The collagens that constitute the cuticle are formed via a multi-step process of intracellular and extracellular post-translational enzymatic modifications (reviewed in Ref. 7). An essential step in this process is catalyzed by C-P4H and occurs within the endoplasmic reticulum where secreted proteins are folded. C-P4H converts peptide bound proline residues in the X-Pro-Gly repeat region of procollagen polypeptides to 4-hydroxyproline. Mature collagen triple helices that lack this modification are thermally unstable at physiological temperatures. In most species examined, C-P4H are oligomeric complexes with the C-P4H active sites present in...
the α subunits and the enzyme PDI present in the β subunit (8). PDI is also found at high levels free from the C-P4H complex and functions to ensure correct disulfide bond formation and, therefore folding, of many proteins, including collagens, which transit the endoplasmic reticulum (6).

The form and function of collagen C-P4H have been reviewed in detail (8) and are summarized in supplemental Fig. S1. Humans possess three catalytically active α subunits (named P4HA1, P4HA2, and P4HA3), each of which form α2β2 complexes containing matching α subunits. The β subunit, which is common to all forms of the human complexes, is PDI (P4HB). In C. elegans, there are two α subunits (named DPY-18 and PHY-2) and a β subunit (PDI-2) that also form three C-P4H complexes. However, unlike humans, these consist of a mixed α subunit tetramer, [DPY-18][PHY-2][PDI-2]2, and two dimers, [DPY-18][PDI-2] and [PHY-2][PDI-2] (5). The diversity of complexes formed in nematodes is highlighted in Caenorhabditis briggsae, a close relative of C. elegans, where, in addition to a mixed α subunit tetramer and [DPY-18][PDI-2] dimer identical to those found in C. elegans, a [PHY-2][PDI-2]2 tetramer can also form (9).

Nematodes produce a new cuticle for each developmental stage, and in C. elegans, the C-P4H complex encoding genes are expressed almost exclusively in the cuticle collagen secreting cells of the hypodermis in waves of abundance that correspond to that of collagen (4). C-P4H activity is developmentally required in C. elegans; worms that have lost the α subunit DPY-18 are viable but show defects at the levels of worm body morphology, cuticle structure, and collagen localization (4). Complete combined loss of both α subunits, DPY-18 and PHY-2, or complete single loss of the β subunit, PDI-2, results in embryonic lethality (4, 6). In C. briggsae, C-P4H function is similarly essential (9). The phenotypes resulting from loss of C-P4H can be replicated using enzyme inhibitors (5).

The in vivo action of the C. elegans C-P4H β subunit PDI-2 has been examined in detail with incomplete loss of function producing sterile adults with severely abnormal body morphology, cuticle structure, and collagen localization (6). Interestingly, although it was not possible to analyze separately the C-P4H-dependent and -independent roles of PDI-2, intact PDI-2 thioredoxin active site residues are essential for correct development (6). In addition, loss of C. elegans PDI-2 could be completely rescued by human PDI (P4HB), suggesting it may be possible to heterologously express B. malayi PDIs in C. elegans to examine their function.

The likely importance of C-P4H activity during B. malayi development and cuticle collagen modification is suggested by several lines of evidence. Chemical inhibition of C-P4H produces cuticle associated defects and a reduction in 4-hydroxyproline levels in cultured B. malayi adults (10), whereas for cultured third stage larvae, the essential C-P4H co-factor ascorbate is necessary for correct molting and development (11). Furthermore, adult B. malayi cuticle collagens contain 7.9% hydroxyproline (40% of prolines are hydroxylated) (12), a level comparable with that found in C. elegans (12% hydroxyproline, 51% of prolines are hydroxylated) (13).

We have previously characterized a protein from B. malayi with homology to C-P4H α subunits, Bma-PHY-1, which showed a number of unusual properties (14). Recombinant α subunits expressed alone are in general insoluble, and therefore, complexes are usually produced by co-expression of α and β subunits in systems such as insect cells. In most cases, complexes can be formed by combining α and β subunits from different species. However, when Bma-PHY-1 was expressed in an insect cell expression system, it was soluble without a β subunit, did not form complexes with β subunits from other species, and instead formed an active homotetramer (14). Despite this in vitro activity, when Bma-PHY-1 was expressed in C. elegans, it was not capable of replacing the in vivo functions of the α subunit DPY-18 (14). We therefore speculated that either additional C-P4H α subunit-like genes were present in B. malayi, or, that only complexes containing native partner protein(s) would produce fully functional enzyme. In this study, we utilized the B. malayi genome sequence (3) to ensure identification of all potential C-P4H subunits and used a recently developed approach for RNAi in this parasite (15) to demonstrate that these genes are required for development and formation of the cuticle. In addition, we uncovered a novel parasite-specific non-reducible covalent modification required for association of this critical enzyme complex.

EXPERIMENTAL PROCEDURES

Procedures for RNA extraction, cDNA synthesis, genomic DNA isolation, plasmid construction, single worm PCR, and RT-PCR assessment of transgene expression in C. elegans are provided in the supplemental “Experimental Procedures.” All primer names, sequences, and descriptions of their uses are given in supplemental Table S1. The abbreviations Bma and Cel are used throughout before gene and protein names to indicate B. malayi and C. elegans respectively.

Nematode Strains, Culture, and Microscopy—C. elegans strains used in this study were N2 (wild type), CB364 (dpy-18(e364) III) (4), and TP69 (pdi-2(tm0689)/lon-2(e678) X) (6). The pdi-2(tm0689) allele was maintained by selecting pdi-2(tm0689) heterozygotes, which are the only phenotypically wild type progeny segregating from strain TP69. C. elegans strains were cultured as described previously (16). B. malayi nematodes were kindly provided by Rick Maizels and Yvonne Harcus (University of Edinburgh). For microscopy, live C. elegans were transferred to slides with a 2% agarose, 0.065% sodium azide pad. B. malayi were prepared for microscopy by transferring microfilaria to slides with a coverslip and heating the slides to 60 °C on a hot plate for 10 s to immobilize the larvae. All images were captured using an Axioskop 2 microscope (Zeiss) and an AxioCam MRm camera (Zeiss).

RNAi of B. malayi by Soaking and C. elegans by Feeding—For RNAi of B. malayi, Bma-phy-1, Bma-phy-2, Bma-pdi-2, and Cel-phy-3 (negative control) were targeted following previously described methods (15). Briefly, in vitro transcription templates were produced by linearizing the Bma-phy-1, Bma-phy-2, Bma-pdi-2, and Cel-phy-3 RNAi plasmids each in two separate reactions (using the cloning restriction enzymes) and single-stranded RNAs produced using a MEGAscript kit (Ambion). Equal quantities of the complementary single stranded RNAs were then annealed and the long double-stranded RNA digested with ShortCut RNase III (New England Biolabs) to
Prolyl 4-Hydroxylase Activity Is Essential in Brugia malayi

produce heterogeneous short-interfering RNAs (hsiRNAs). Freshly extracted *B. malayi* adult females were cultured in 24-well plates containing two females per well in 1 ml of culture medium. Medium for culture of *B. malayi* was RPMI 1640 (with glutamine and HEPES) (Invitrogen), 1% glucose, 100 units/ml penicillin and 100 μg/ml streptomycin (Invitrogen), and 10% heat-inactivated fetal calf serum (Invitrogen). Following an overnight culture period in medium alone, the parasites were exposed to RNAi for a total of 48 h by adding fresh medium containing hsiRNAs, at a final concentration of 0.5–2 μM, at the start of the culture and again after 24 h. For RNAi of *C. elegans* lines expressing *Bma-pdi-2*, the *Bma-pdi-2* RNAi plasmid was transformed into bacterial strain HT115(DE3) (17) (HT115(DE3) available from the Caenorhabditis Genetics Center). RNAi by feeding was performed as described previously (18). As a negative control all processes were replicated using control RNAi bacteria containing the RNAi vector without an insert.

Database Searches for Additional B. malayi phy Genes—tBLASTn was performed on whole genome shotgun sequences using *Bma-phy-1* and *Bma-phy-2* (maximum values selected for “alignment” and “descriptions” options). The genomic sequences of *Bma-phy-1* and -2 were then used as BLASTn queries against the same database. Those hits that showed complete nucleotide identity to each gene were considered to represent that gene (to identify any potential new *Bma-phy*, this analysis assumes some degree of sequence divergence). This enabled all whole genome shotgun sequences with amino acid homology to PHYs (tBLASTn results) to be assigned as being derived from either *Bma-phy-1* (complete nucleotide identity to *Bma-phy-1*) or *Bma-phy-2* (complete nucleotide identity to *Bma-phy-2*). The BLASTn results were then subtracted from the tBLASTn results to determine if any whole genome shotgun sequences were present which were not derived from the known genes.

Expression of B. malayi Proteins in Insect Cells—Recombinant vectors were co-transfected into *Spodoptera frugiperda* SF9 cells with a modified *Autographa californica* nuclear polyhedrosis virus DNA (BaculoGold, BD Pharmingen) to calcium phosphate precipitation. SF9 or High Five (Invitrogen) insect cells were cultured as monolayers in TNM-FH (modified Grace’s insect cell medium, Sigma) supplemented with 10% fetal bovine serum (BioClear) or in suspension in SF9001ISFM serum-free medium (Invitrogen). The cells were seeded at a density of 5 × 10⁶ cells/100-mm plate or 1 × 10⁶ cells/ml and infected at a multiplicity of 5 for either single or multiple virus coding for *B. malayi* proteins. Cells were harvested 72 h after infection, washed with a solution of 0.15 M NaCl and 0.02 M phosphate, pH 7.4, homogenized in a 0.1 M NaCl, 0.1 M glycine, 10 μM dithiothreitol, 0.1% Triton X-100, and 0.01 M Tris buffer, pH 7.4, and centrifuged at 10,000 g for 20 min. The pellets were further solubilized in 1% SDS. C-P4H activity was assayed by a method based on the hydroxylation-coupled decarboxylation of 2-oxo-[1-14C]glutarate, and K_m and K_i values were determined as described previously (19).

Transgenic Expression in C. elegans—Transgenic *C. elegans* carrying extrachromosomal arrays were generated by microinjection following standard protocols (20) with at least three independent lines analyzed in all cases. Repetitive extrachromosomal arrays were produced by injecting circular plasmids. These were performed by co-injecting the test plasmid at 2–25 μg/ml, the transformation marker *dpy-7prom:gfp* plasmid (from Iain Johnstone, University of Glasgow) at 5 μg/ml, with pBluescript SKM (Stratagene) added to give a total plasmid concentration of 150 μg/ml. To produce complex extrachromosomal arrays (21), plasmids were linearized by restriction digest and co-injected with fragmented *C. elegans* genomic DNA. Genomic DNA was prepared for injection by digestion with Pvull followed by phenol/chloroform extraction and ethanol precipitation. The *dpy-7prom:gfp* transformation marker was digested with FspI, and plasmids for expression of *B. malayi* or human genes were digested with blunt cutting enzymes where possible or were subsequently treated with DNA polymerase I large (Klenow) fragment (New England Biolabs) (see supplemental Table S2). All linearized plasmids were purified using a QIAquick PCR purification kit. Injections to produce complex arrays were performed by co-injecting the linearized plasmid(s) each at 1 μg/ml, the transformation marker at 2 μg/ml, and fragmented *C. elegans* genomic DNA at 100 μg/ml. For unknown reasons, direct introduction of complex arrays by injection of the *dpy-18* mutant strain CB364 resulted in high toxicity, even in the absence of *B. malayi* PHY and PDI expression constructs. Therefore, in these cases, injections were performed in the *C. elegans* wild type N2 strain, and the transgenic extrachromosomal array subsequently crossed into the *dpy-18* mutant strain.

Nematode Extracts—*B. malayi* parasite extracts were made by resuspending adults in extraction buffer (0.1 M NaCl, 0.1 M glycine, 10 μM dithiothreitol, 0.1% Triton X-100, and 10 mM Tris, pH 8.0, supplemented with protease inhibitors 1 mM phenylmethylsulfonyl fluoride, 1 mM EDTA, 1 mM EGTA, 2 μM E64, and 0.1 μM pepstatin) and disrupting using a 3-ml glass hand-held homogenizer (Jencons). To examine the expression of transgenic proteins, *C. elegans* extracts were made by adding 50 transgenic worms to 30 μl of 1XM9 (16) with 12 μl of 4× SDS sample buffer and freezing the samples at −80°C. For reducing gels, 5% (v/v) 2-mercaptoethanol was added, and the samples were boiled before loading.

Western Blotting—Electrophoresis and Western blotting of nematode and insect cell-derived material was carried out using Bio-Rad equipment as described by the manufacturer, with Tris–HCl gels (Bio-Rad) and Hybond-P PVDF membrane (GE Healthcare). *Bma-PHY-1* was detected using an anti-peptide antibody described previously (14). An anti-peptide antibody was raised to the C-terminal sequence of *Bma-PHY-2* (CLGAPEPKRLNIRSEKARK, the underlined cysteine was added to couple the peptide to keyhole limpet hemocyanin) (Sigma). An anti-peptide antibody raised previously to MATTH is directed against the C-terminal region of the major 50 kDa extracellular molecules of *B. malayi* and was raised to the C-terminal sequence of *Bma-PHY-2* (5) was found to cross-react with human PHY and PDI expression constructs. Therefore, in these cases, injections were performed in the *C. elegans* wild type N2 strain, and the transgenic extrachromosomal array subsequently crossed into the *dpy-18* mutant strain.
care), and alkaline phosphatase conjugates with SigmaFast BCIP/NBT (Sigma).

In immunoprecipitation (co-IP)—The peptide used to raise the anti-Cel-PDI-2 antibody (5) was linked to a beaded agarose support, and the antibody was affinity purified using a SulfoLink immobilization kit (Thermo Scientific). Purified anti-Cel-PDI-2 antibody was dialyzed using a Slide-A-Lyzer dialysis cassette (Thermo Scientific) and the Pierce co-immunoprecipitation kit (Thermo Scientific) protocol was followed to immobilize the antibody to an agarose support and perform co-IP using adult *B. malayi* lysate. Lysate was generated by resuspending adult parasites in IP lysis buffer containing halt protease and phosphatase inhibitor mixture (Thermo Scientific) and disrupting using a 1-ml Radnoti Econo-Grind Micro Tissue Grinder. Control co-IP reactions were performed in parallel using isotype-matched, affinity-purified antibody reactive to *C. elegans* BLI-5.

RESULTS

Cloning of *Bma-phy-2* and *Bma-pdi-2*—We had previously cloned and characterized a *B. malayi* protein, *Bma-PHY-1*, with C-P4H activity (14) (cDNA and genomic accession nos. AJ297845 and AJ421993). Prior to publication of the complete annotated *B. malayi* genome (3), we searched for further proteins with homology to C-P4H α subunits (known as PHY in nematodes). Sequences of an additional PHY-encoding gene, which was distinct from *Bma-phy-1*, were identified in the *B. malayi* genome preassembly using tBLASTn. The complete sequence was identified by finding overlapping sequences and identifying coding regions with homology to known PHYs. The full-length cDNA was verified by PCR amplification, cloning, and sequencing (accession no. AJ628347) with the 5′ end verified by RT-PCR utilizing the trans-spliced leader SL1 sequence (22) (data not shown).

An EST (accession no. AI784701) containing a partial sequence for a *B. malayi* pdi (named *Bma-pdi-2* for reasons described in later sections) was identified by tBLASTn at EBI using *Cel*-PDI-2 as a query. The sequences identified enabled PCR screening of lysates from a BAC library (kindly provided by Mark Blaxter, University of Edinburgh) and sequencing of a positive BAC provided the full-length *Bma-pdi-2* genomic sequence (accession no. AJ577085). A full-length cDNA was generated by PCR (accession no. AJ577086), and the 5′ end confirmed by SL1-RT-PCR (data not shown). In the annotated *B. malayi* genome (3), the genes representing *Bma-pdi-2* (Bm1_39250) and *Bma-phy-2* (Bm1_45460) both have inaccurately predicted splicing, and therefore, all work here refers to our experimentally confirmed sequences and the accession numbers for those that are listed above.

Bma-phy-2 encodes a 551-amino acid protein with a predicted signal peptide (23) occurring between residues 17 and 18 (VSA-DS) and a single predicted N-glycosylated asparagine. The mature protein shows 51.9% identity and 69.1% similarity with *Bma-PHY-1* (Table 1), and is most similar to *Onchocerca volvulus* PHY-1 (10), with which it shows 69.3% identity and 77.0% similarity. As described for *Bma-PHY-1* (14), all residues identified as being required for protein structure, complex formation, and enzyme activity (24–26) are conserved in *Bma-PHY-2* (supplemental Fig. S2). *Bma-pdi-2* encodes a 503-amino acid protein with a predicted signal peptide occurring between residues 22 and 23 (AHD-AS) and an endoplasmic reticulum retention signal at the C terminus. *Bma-PDI-2* shows higher homology to C-P4H β subunit PDIs (Table 2) than to other PDIs. The degree of conservation of residues defined previously as the active sites (27), active site role charged residues (28), hydrophobic ligand binding site (29), and residues involved in C-P4H complex formation (30), is shown in supplemental Fig. S3.

Database Searches Indicate *Bma-phy-1* and *Bma-psy-2* Are the Only *B. malayi* phy Genes—Analyzing the available completed genome sequences for other parasitic nematodes we noted that although the *Trichinella spiralis* genome (31) is likely to encode only two PHYs (results not shown), an expanded family of five PHY-encoding genes exists in the compact genome of the plant parasite *Meloidogyne hapla* (32), and *Ascaris suum*, which, similar to *B. malayi*, is an animal parasite in nematode clade III, has three PHY-encoding genes (accession nos. ADY44523, ADY43128, and ADY44875) (33, 34). A careful analysis of the *B. malayi* genome was therefore undertaken to determine whether any additional PHY-encoding genes, other than *Bma-phy-1* and -2, were present in this organism. tBLASTn analysis of the assembled *B. malayi* scaffolds using PHY protein sequences did not reveal any additional *Bma-phy* genes, other than *Bma-phy-1* and -2 and a *Bma-psy* gene fragment. *Bma-phy* and -2 are arranged in tandem in the genome with the *Bma-psy* gene fragment situated between them (supplemental Fig. S4 and supplemental “Experimental Procedures”). tBLASTn and BLASTn was then carried out using the whole genome shotgun database so that sequences that may not have assembled into scaffolds could also be examined. The BLASTn results were used to identify sequences that showed complete nucleotide identity with the known genes (and were therefore assumed to represent these genes) and were subtracted from the tBLASTn results. This analysis did not reveal any sequences with homology to PHY proteins that

Table 1

| Amino acid similarity and identity of C-P4H α subunits |
|-----------------|-----------------|-----------------|-----------------|-----------------|
| | *Cel-PHY-2* | *Bma-PHY-1* | *Bma-PHY-2* | *Hsa-P4HA1* |
| *Cel-PHY-1* | 53.1/66.3 | 40.7/56.1 | 39.4/54.7 | 39.4/54.7 |
| *Bma-PHY-1* | 47.6/63.3 | 44.8/58.8 | 42.9/58.9 | 42.3/56.7 |
| *Bma-PHY-2* | 51.9/69.1 | 43.0/55.5 | 39.1/55.1 | 39.1/54.7 |

* Identity/similarity.

4 A. D. Winter and A. P. Page, unpublished results.
were not completely identical to the known Bma-phy genes at the nucleotide level. Similar analysis of the B. malayi BAC end sequences held at TIGR and the Sanger Institute, EST sequences held at EBI, and NematodeNet, and analysis of genomic scaffolds from a resequenced B. malayi genome (kindly provided prepublication by Elodie Ghedin, University of Pittsburgh) also failed to uncover any sequences considered to represent new genes. In addition, sequencing of an ∼2-kb genome assembly gap, situated between the Bma-phy-1 and -2 genes and downstream of the Bma-phy gene fragment region, revealed no further PHY-encoding genes (see supplemental “Experimental Procedures”). Therefore, as exhaustive searches of multiple databases revealed no additional genes encoding proteins with homology to C-P4H α subunits, Bma-phy-1 and Bma-phy-2 represent the only identifiable genes of this type in all databases and are very likely to encode the only PHYs in this organism.

Expression Profiling—The expression of Bma-phy and Bma-pdi-2 genes was examined in a range of developmental stages by RT-PCR. In each case, the test gene was amplified simultaneously along with the constitutively expressed tubulin gene Bma-tub-1. Expression in the first larval stage (termed microfilaria) of Bma-phy-2, Bma-pdi-2, and Bma-phy-1 is shown in Fig. 1A, with Bma-phy-2 found at a lower level than Bma-pdi-2 and Bma-phy-1. A panel of cDNAs used previously to investigate the expression of Bma-phy-1 (14), representing stages from post-infective third stage larvae (L3) to juvenile adult, was then employed for Bma-phy-2 and Bma-pdi-2. The Bma-phy-2 message was predominantly found in the early and mid L3 stages and was barely detectable in the late fourth stage larvae (L4) and adult stages (Fig. 1B). In contrast, the Bma-phy-2 message was abundant in all stages examined, displaying a very similar profile to that shown previously for Bma-phy-1 (14).

RNAi of Cultured B. malayi—To investigate the functional roles of our identified genes during B. malayi development, we employed a recently described RNAi approach (15). In contrast to previously described RNAi studies in animal parasitic nematodes (reviewed in Ref. 35), this approach uses a pool of hsiRNAs generated enzymatically from a long double-stranded RNA template, to give robust, reproducible RNAi. The effect of targeting Bma-phy-1, Bma-phy-2, and Bma-pdi-2 by RNAi was determined by culturing adult females in the presence of hsiRNAs corresponding to each gene singly, as well as Bma-phy-1 and Bma-phy-2 in combination. For each RNAi, multiple pairs of adult females (at least four groups of two females over two experiments) were treated, and the viability and morphology of the first stage larvae (microfilaria) produced was analyzed. Applying either Bma-phy-1 or Bma-phy-2 RNAi singly at 1 μM produced no visible effects on either the females or the microfilaria produced (Fig. 2, A and B). Bma-pdi-2 RNAi at 1 μM (data not shown) and especially 2 μM produced mutant microfilaria that were immotile and presented with a coiled lumpy appearance (Fig. 2C). The first larval cuticle surrounding the microfilaria is highly irregular, whereas the extracuticular microfilarial sheath, a remnant of the eggshell, remained intact. This phenotype was more penetrant after the second day of culture. A practically identical highly penetrant microfilarial mutant phenotype was found by simultaneous RNAi of Bma-phy-1/Bma-phy-2 at a combined concentration of 1 μM (each gene at 0.5 μM) (Fig. 2, D and E) and was also observed at a combined concentration of 0.5 μM and at 2 μM (data not shown). Untreated controls with no hsiRNA added and controls treated with 2 μM hsiRNA from Cel-phy-3 (Fig. 2F) (36), for which no homologous sequences were identifiable in the B. malayi genome, were included in all cases.

Expression of B. malayi Proteins in Insect Cells—Recombinant baculoviruses were produced containing Bma-phy-2 and Bma-pdi-2 singly. These were used, along with a recombinant virus for Bma-phy-1 generated previously (14), to investigate the enzymatic activity and protein–protein interactions of these presumed C-P4H subunits. Insect cells were then infected either with a single recombinant virus or with combinations of viruses. Cells were harvested 72 h after infection and extracts analyzed by Western blotting of native PAGE gels with peptide-specific antibodies. C-P4H activity of extracted material was assessed using a method based on the hydroxylation-coupled decarboxylation of radiolabeled co-substrate and a defined artificial substrate (19). These methods have been used to determine recombinant C-P4H activities from a range of species (8). The insect cell extracts were compared with parasite-derived extracts (Fig. 3, lane 6) with the designation of the type of complex being based on comparisons with previously characterized forms of the enzyme (5, 14). Sole expression of Bma-PHY-1...
 inactive (data not shown). To investigate whether proteins, C-P4H tetramer formation required the presence of all three 3, higher order structure, considered to be a homotetramer (Fig. 3,

A) Bma-phy-1 RNAi, 1 µM
B) Bma-phy-2 RNAi, 1 µM
C) Bma-pdi-2 RNAi, 2 µM
D) Bma-phy-1/2 RNAi, 1 µM
E) Bma-phy-1/2 RNAi, 1 µM
F) Cel-phy-3 RNAi, 2 µM

FIGURE 2. RNAi effects in B. malayi microfilariae (first stage larvae). Cultured adult female B. malayi were treated with hsiRNA derived from Bma-phy-1 (A), Bma-phy-2 (B), and Bma-pdi-2 (C), and the effects were determined in the microfilariae produced. Single targeting of Bma-pdi-2 shows severe morphological defects. D and E depict the severe morphological defects resulting from the simultaneous targeting of Bma-phy-1 and -2. F, Cel-phy-3 (negative control). All images are of microfilariae produced from females treated with hsiRNA at a concentration of 1–2 µM over a 48-h period. Scale bars represent 50 µm in A–D and F and 25 µm in E.

FIGURE 3. Western blot (native PAGE) of Triton X-100 extracts of B. malayi proteins expressed in insect cells. Bma-PHY-1 and Bma-PH-2 were expressed singly (lanes 1 and 2), co-expressed with Bma-PDI-2 (lanes 3 and 4), and triple-expressed (lane 5). The complexes produced are compared with B. malayi adult parasite material (lane 6, Adult Bma). The size of homotetramer (HT), homodimer (HD), heterodimer (D), and higher molecular weight hetero-tetramer (T) bands are indicated.

produced a soluble homotetramer and homodimer as described previously (Fig. 3, lane 1) (14), whereas single expression of Bma-PH-2 resulted in a soluble protein that formed a higher order structure, considered to be a homotetramer (Fig. 3, lane 2). The homotetramer was found to be enzymatically inactive (data not shown). To investigate whether Bma-PH-1 and -2 required a PDI from B. malayi to produce a fully active C-P4H enzyme complex, each subunit was co-expressed with Bma-PDI-2. For Bma-PH-1, co-expression with Bma-PDI-2 resulted in an additional dimer and a band running above the homotetramer (Fig. 3, lane 3), both of which show the same mobility as the two bands from the parasite extract (Fig. 3, upper panel, lane 6). For Bma-PH-2, co-expression with Bma-PDI-2 produced a band running above the homotetramer that was equivalent to the band in parasite extract (Fig. 3, lower panel, lane 6). Co-expression of Bma-PDI-2 along with either Bma-PH-1 or -2 had no effect on enzymatic activity (data not shown).

Finally, to determine whether, similar to C. elegans, C-P4H tetramer formation required the presence of all three proteins, Bma-PH-1, -2 and Bma-PDI-2 were all co-expressed. Surprisingly, the availability of all identified potential C-P4H subunits had no additional effect on complex formation (Fig. 3, lane 5) or enzymatic activity (data not shown). A low molecular weight nonspecific band was noted in Western blots using the anti-Bma-PH-2 antibody in insect cell derived material but not in the parasite extracts (Fig. 3).

Bma-pdi-2 Can Replace the Essential Function of C. elegans pdi-2—In vertebrates and C. elegans, a single PDI is the C-P4H β subunit. We have previously shown that the human C-P4H β subunit PDI (P4HB) could functionally substitute for the C. elegans C-P4H β subunit PDI (Cel-PDI-2) (6). Although examination of the B. malayi genome suggested that Bma-PDI-2 was the only likely orthologue of Cel-PDI-2 (data not shown), we looked to confirm this in vivo. A C. elegans pdi-2 mutant strain described previously (6) has severe body morphology defects and results in sterile adults. The ability of Bma-pdi-2 to functionally substitute for loss of Cel-pdi-2 was tested by expressing Bma-pdi-2 in this mutant background. Two Bma-pdi-2 expression plasmids, one genomic and one cDNA (with synthetic intron, SI), were made using vector pAW2 (Cel-pdi-2 promoter and Cel-dpy-18 3’ UTR (6)). Striking rescue of the severe phenotype of the Cel-pdi-2 mutant was achieved using complex extrachromosomal arrays carrying either of the Bma-pdi-2 expression plasmids (Fig. 4, A–D). In C. elegans, extrachromosomal arrays are lost naturally in a percentage of the progeny, and viability of the Bma-pdi-2 rescued transgenic lines was completely dependent on the presence of the extrachromosomal array, with animals that lost the array all dying during embryogenesis. SW-PCR was performed to ensure the Bma-pdi-2 expression plasmids were present (data not shown), and the transgenic lines were genotyped to confirm they were Cel-pdi-2(tm0689) mutant homozygotes (Fig. 4E). Genotyping also ensured that no wild type Cel-pdi-2 sequences had been introduced with the co-injected fragmented C. elegans genomic DNA used to generate the complex arrays. RT-PCR was performed to verify Bma-pdi-2 expression (Fig. 4F). Transgenic lines carrying only the transformation marker and fragmented genomic DNA failed to rescue. Finally, the rescued transgenic lines were RNAi-treated with a construct targeting Bma-pdi-2. As shown in Table 3, viability was completely dependent on
Prolyl 4-Hydroxylase Activity Is Essential in Brugia malayi

![Image of figure 4](image)

TABLE 3

RNAi of *C. elegans pdi-2* mutants carrying *Bma-pdi-2* transgenes
Bma-pdi-2
Construct/line

Bma-pdi-2
genomic
Ex1
Ex2
Ex3
Bma-pdi-2
cDNA + SI
Ex1
Ex2
Ex3
Total

Unhatched consisted of GFP-positive and -negative embryos for all lines.

Some GFP-positive dead embryos were present, possibly due to expression levels being either borderline too high or too low.

Transgenic *Bma-pdi-2*, confirming that rescue was due entirely to the introduced *B. malayi* gene.

Rescue of a *C. elegans C-P4Hα Subunit Mutant with Human but Not B. malayi Proteins—We again used *C. elegans* as an expression system to examine the possibility that formation of active *B. malayi* C-P4H complexes might require a factor, such as a specific post-translational modification or auxiliary protein(s) required for folding, which was present in *C. elegans* but not in insect cells. A previously characterized homozygous viable *C. elegans* C-P4H α subunit mutant strain, *Cel-dpy-18* (e364), shows a marked reduction in C-P4H activity and has a malformed cuticle resulting in a readily identifiable body morphology defect (4, 5). We therefore expressed heterologous protein(s) in this mutant and observed whether they were able to repair the mutant body morphology, thereby providing a simple assay for enzyme activity and the ability of these proteins to functionally substitute for *C. elegans dpy-18*. Previously, this approach was successful when using *C. briggsae* sequences (9) but not with *Bma-phy-1* introduced singly (14). *Bma-pdi-2* was expressed from a vector, pAW1 (14), which contains the promoter and 3′ UTR from *Cel-dpy-18*. To express multiple genes simultaneously, a similar construct for *Bma-phy-1* (generated previously (14)) and a *Bma-pdi-2* expression construct (described above) were also used. *Bma-phy-2* was introduced singly and in combination with *Bma-phy-1* and *Bma-pdi-2* into the *C. elegans dpy-18* mutant strain on repetitive extrachromosomal arrays. Neither *Bma-phy-2* alone, in multiple pairings of the three genes, nor all three genes in combination was able to rescue the body morphology defect of *Cel-dpy-18* (e364) (results not shown). However, RT-PCR of transgenic lines carrying the three *B. malayi* genes highlighted the difficulty of achieving robust expression of multiple transgenes from repetitive arrays (results not shown). We therefore next attempted rescue of the *Cel-dpy-18* mutant strain using complex extrachromosomal arrays. As explained under “Experimental Procedures,” complex arrays to be tested in the *Cel-dpy-18* strain were first generated in the *C. elegans* wild type N2 strain and then crossed into the mutant. Three constructs for expression of *B. malayi* genes in *C. elegans* were used (Bma-phy-1 cDNA + SI, Bma-phy-2 cDNA + SI, and *Bma-pdi-2* genomic). The res-
Blots were stripped and reprobed for arrays carrying a synthetic intron; spliced, 369 bp; unspliced, 420 bp. (Of the body morphology defects of the unspliced amplicon size derived using the plasmid (same extrachromosomal array. whereas expression from the morphology defect of the mutant; C

cDNA/H11001 carrying Bma-phy-1

FIGURE 5. A–F, introduction of transgenes into a C. elegans C-P4H mutant strain. dpy-18. A, wild type C. elegans N2 strain; B, C. elegans dpy-18(e364) homozygote mutant; C and D, introduction of an extrachromosomal array carrying three B. malayi genes (Bma-phy-1, Bma-phy-2, and Bma-pdi-2) results in an exacerbation of the body morphology defects of the dpy-18 mutant strain, with D showing GFP expression from the transformation marker dpy-7prom::gfp carried on the same extrachromosomal array. E and F, introduction of an extrachromosomal array carrying the human C-P4H α subunit gene P4HA1 partially repairs the body morphology defect of the dpy-18 strain. Scale bars represent 100 μm. G, RT-PCR demonstrating expression of all transgenes from the extrachromosomal array carrying Bma-phy-1, Bma-phy-2 and Bma-pdi-2. The results from one transgenic line are shown with other lines showing comparable expression levels. For the cDNA + synthetic intron (S) construct, primers corresponding to the B. malayi gene sequences situated on either side of the 51-bp synthetic intron were used, whereas expression from the Bma-pdi-2 genomic construct was detected using primers amplifying the full-length Bma-pdi-2 sequence. Lanes 2 and 5 show the unspliced amplification size derived using the plasmid (P) carrying the cDNA + synthetic intron, in lane 7 the 3.5-kb amplicon from the Bma-pdi-2 genomic plasmid (P) is not amplified under the conditions used. Lanes 3, 6, and 9 are the no template (NT) controls for each primer set. Bma-phy-1 from construct with cDNA and a synthetic intron; spliced, 369 bp; unspliced, 420 bp. Bma-phy-2 from construct with cDNA and a synthetic intron; spliced, 178 bp; unspliced, 229 bp. Bma-pdi-2 from genomic construct; spliced, 1512 bp; unspliced, 3579 bp. H, Western blots (reducing SDS-PAGE) of transgenic C. elegans with complex extrachromosomal arrays carrying Bma-phy-1, Bma-phy-2, and Bma-pdi-2. Expression of Bma-PHY1 and Bma-PHY-2 protein was demonstrated in three transgenic lines (Ex1–Ex3). Blots were stripped and reprobed for β-actin as a loading control. Lane 4 is blank, and lane 5 is wild type N2; the faint band produced with both Bma-PHY-1 and -2 antibodies is likely to be a cross-reaction with the C. elegans proteins. The sizes of the mature (minus signal peptide) proteins are as follows: Bma-PHY-1, 60 kDa; Bma-PHY-2, 62 kDa.

cue results above for Bma-pdi-2 demonstrate the production of functional protein in transgenic C. elegans using this construct. Surprisingly, introduction of an array carrying the three B. malayi genes into the Cel-dpy-18 mutant strain resulted in an exacerbation of the existing body morphology defect (Fig. 5, A–D) and could not be maintained in the homozygote mutant genetic background. Control experiments where complex arrays bearing only the transformation marker and fragmented genomic DNA were crossed into Cel-dpy-18 strain did not result in an enhanced mutant phenotype. The presence of the three B. malayi constructs on the array was verified by SW-PCR (data not shown), RT-PCR indicated that all three transgenes were expressed (Fig. 5G), and production of Bma-PHY-1 and Bma-PHY-2 protein was demonstrated by Western blotting (Fig. 5H). Due to the toxicity of these arrays in the Cel-dpy-18 mutant, RT-PCR and Western blotting had to be performed with the array in the wild type genetic background.

The possibility that failure to rescue the C. elegans C-P4H α subunit mutant using B. malayi proteins might be a result of evolutionary distance was next investigated by similarly analyzing the human C-P4H α subunits P4HA1 and P4HA2. Introduction of either of these genes into the Cel-dpy-18 mutant using complex arrays resulted in partial rescue with a clear return to wild type body shape being evident (shown for P4HA1 in Fig. 5, E and F). The human proteins are therefore able to compensate to a large degree for loss of Cel-DPY-18.

Comparison of Parasite-derived and Insect Cell-expressed Protein Identified a Non-reducible Covalent Complex Association—Due to the difficulties encountered producing active B. malayi C-P4H both in insect cells and C. elegans systems, we next re-examined the insect cell expressed B. malayi proteins and compared these with parasite-derived material by reducing SDS-PAGE followed by Western blotting (Fig. 6). In addition to the monomer-sized band, a band running at the size predicted
for a dimer was found in the parasite material, whereas B. malayi proteins produced in insect cell displayed only the monomer size for all three proteins. The same sized band was observed using three different antibodies reactive to the three B. malayi proteins (Fig. 6) and was replicated in three independent extracts of parasite material (results not shown). We also note that this band was absent from extracts of C. elegans expressing the B. malayi proteins (result not shown). These findings suggested that a non-reducible post-translational modification was present in the parasite material. We suspected that such a linkage would be most likely to occur between Bma-PDI-2 and each Bma-PHY to produce linked dimers. This was further investigated by co-IP using affinity-purified anti-Cel-PDI-2 antibody to isolate proteins that interact with Bma-PDI-2 from adult parasite extract. Testing the parasite extract via sensitive Western blotting methods prior to co-IP confirmed the presence of dimer-sized bands and shows they are present at high abundance (Fig. 7A). Co-IP was carried out on these extracts and analyzed by reducing SDS-PAGE and sensitive Western blotting using antibodies against Bma-PHY-1 and -2. This showed both Bma-PHYS were co-immunoprecipitated using the anti-PDI-2 antibody, whereas control co-IPs using isotype-matched antibody, reactive to C. elegans BLI-5, did not result in co-IP of either Bma-PHY (Fig. 7B). As well as monomer forms, Bma-PHY-1 and Bma-PHY-2 are both detected as dimer-sized bands after reducing SDS-PAGE, confirming that Bma-PHY-1 and -2 are each individually linked to Bma-PDI-2 via a non-reducible covalent linkage.

DISCUSSION

The C-P4H enzymes play critical roles in matrix formation and development in metazoaans (8). Our previous studies in C. elegans had shown that C-P4H function was vital for development and collagen biogenesis in this species (4–6), whereas an analogous function remained to be established in any parasitic nematode species. We therefore investigated the role of C-P4H in B. malayi and in this study demonstrate that these enzymes are developmentally essential in this important human parasite.

The size of the phy gene family in B. malayi was examined in detail revealing that Bma-PHY-1 (14) and Bma-PHY-2 are the only proteins with homology to C-P4H α subunits in this organism. The temporal expression profile of Bma-phy-2 is more restricted than that of either Bma-pdi-2 or the previously described Bma-phy-1 (14). Bma-phy-1 and Bma-pdi-2 are both abundantly expressed in all stages examined, whereas Bma-phy-2 is expressed only in the first larval stage (microfilaria) and the early and mid-L3 stages. The lower abundance of Bma-phy-2 in microfilaria may reflect a more restricted cell/tissue expression pattern.

C-P4H Is Essential for Larval Development in B. malayi—RNAi approaches to examine gene function in parasitic nematodes of animals have, to date, met with very limited success (35). However, in this study, we employed a recently adapted RNAi approach (15) to examine the B. malayi phy and pdi genes in cultured parasites. Pronounced mutant body morphology phenotypes of stunted, lumpy immotile larvae, were found in first stage larvae when Bma-phy-1 and Bma-phy-2 were disrupted simultaneously, but not singly, or when Bma-pdi-2 was targeted singly. The severity of the phenotype from simultaneous RNAi of Bma-phy-1 and -2 also supports the contention that other Bma-PHYS are unlikely to be present in this organism. These results echo those of C. elegans where single RNAi of either Cel-dpy-18 or Cel-phy-2 are viable but combined RNAi results in mutant larvae with body morphology defects and malformed cuticles (4). Interestingly, in C. elegans, single disruption of Cel-pdi-2 results in phenotypes equivalent to the combined disruption of Cel-dpy-18 with Cel-phy-2 (4, 6). Likewise, in B. malayi, Bma-pdi-2 RNAi produces a similar phenotype to that of combined Bma-phy-1/Bma-phy-2 RNAi. In C. elegans, complete removal of both Cel-dpy-18 and Cel-phy-2 by genetic mutation is completely embryonic lethal (4, 6), suggesting that this could also be the case in B. malayi.

That Bma-pdi-2 RNAi resulted in a phenotype suggests that the Bma-PHY-1 complex we described previously (14) is either.
not sufficiently active in vivo for normal development or, as it does not possess a recognizable endoplasmic reticulum retention signal, becomes mislocalized. Our RNAi results in B. malayi represent one of a limited number of successful RNAi experiments reported in animal parasitic nematode species. In addition, the striking, highly penetrant morphological mutant phenotypes found have, to our knowledge, not been described previously in this species.

Functional Analysis of B. malayi Proteins in C. elegans—In parasitic nematodes such as B. malayi, experimental options using the parasite itself are limited, with no genetic approaches available and transgenesis only possible to a very limited extent (37). The function of the B. malayi proteins was therefore further investigated utilizing C. elegans mutants and transgenically introducing proteins to interrogate their functional roles. Surprisingly, despite confirmation of expression of multiple transgenic B. malayi genes in C. elegans, we were unable to rescue the phenotype associated with the C. elegans C-P4H α subunit mutant strain, dpy-18(e364). This result is all the more intriguing as we were able to rescue the same mutant using the human enzymes. However, at the amino acid level, Cel-PHY-1 and -2 are more similar to Bma-PHY-1 and -2 than they are to the human C-P4H α subunits P4HA1 and P4HA2 (Table 1). It therefore seemed unlikely that evolutionary distance would explain the inability of the B. malayi proteins to rescue the C. elegans mutant. In addition, we found that the cuticle collagen gene families of B. malayi were very similar to those of C. elegans (see supplemental “Experimental Procedures”), making it unlikely that differences in the substrate might account for our results. In contrast, the natural collagen substrates of human P4HA1 and P4HA2 differ from C. elegans cuticle collagens in a number of respects; yet, as reasonable repair was found by expressing the human enzymes in C. elegans, they must be capable of correctly modifying worm collagen substrates. Importantly, we also find that the failure to rescue the C. elegans dpy-18 mutant strain is not a reflection of the general lack of complementation using B. malayi genes because we conclusively demonstrated that B. malayi pdi-2 can rescue the more extreme phenotypes associated with loss of C. elegans pdi-2. The highlighted differences in C-P4H complex formation between the host and parasite may represent novel drug targets in otherwise highly conserved enzymes.

Bma-PDI-2 Is a C-P4H β Subunit—Oligomeric C-P4H in every species examined contain only one type of PDI that is present in all forms of the complex. That we had correctly identified the C-P4H forming PDI in B. malayi and that this represented the only PDI with this function was suggested by sequence analysis, which showed that only Bma-PDI-2 had high homology to C-P4H forming PDIs (data not shown). That Bma-PDI-2 was the sole protein involved in C-P4H complex formation was also shown by the effect of single Bma-pdi-2 RNAi being equivalent to combined loss of Bma-phy-1 and -2, suggesting the PDI was present in complexes with both Bma-PHYs. This hypothesis is also supported by the fact that the PDI-2 antibody immunoprecipitated complexes containing Bma-PHY-1 and Bma-PHY-2. In addition, transgenic rescue of a C. elegans pdi-2 mutant with Bma-PDI-2 demonstrated this was the orthologue of the C-P4H forming PDI in C. elegans. All these lines of evidence indicate that Bma-PDI-2 is the C-P4H β subunit in B. malayi.

Dominant Negative Phenotype from Expression of B. malayi Proteins in dpy-18 Mutant—Interestingly, expression of the three B. malayi genes in the C. elegans dpy-18 mutant strain caused a pronounced enhancement of the aberrant body morphology phenotype. However, in the wild type genetic background, the same transgenic arrays did not disrupt worm body morphology. In the wild type background, all C-P4H complexes are able to form. Where the three B. malayi genes were expressed in the wild type background, assuming Cel-PDI-2 is not preferentially incorporated into complexes, some of these will contain Bma-PDI-2 and others Cel-PDI-2. In the wild type background, where all forms of the C-P4H complexes can be produced, if any reduction to C-P4H activity resulted from Bma-PDI-2-containing complexes, it must not have been enough to affect worm morphology. That Bma-PDI-2-containing C-P4H complexes generate sufficient activity is supported by expression of Bma-PDI-2 in the Cel-PDI-2 mutant; here, full rescue was found when all C-P4H complexes would have contained Bma-PDI-2. However, in the dpy-18 mutant strain, the only C-P4H complex present is the (Cel-PHY-2)(Cel-PHY-2) dimer (5). This dimer does not form naturally and is found only after loss of DPY-18, where its low C-P4H activity must be enough to permit survival (5). In the dpy-18 mutant strain expressing the three B. malayi genes, Bma-PDI-2 most likely competes with Cel-PDI-2 for association with Cel-PHY-2 but forms a complex that is less active or inactive. As Bma-PHY-1 and Bma-PHY-2 containing complexes provide no or minimal C-P4H activity, due to lack of the required linkage, the net result is a reduction in the already low level of C-P4H activity, causing it to drop below the threshold required for viability.

Subunit Linkage via a Non-reducible Covalent Bond—The subunit associations and enzymatic activity of C-P4H complexes are usually assessed in an insect cell co-expression system, an approach that has been invaluable in defining these enzymes in organisms as diverse as Drosophila melanogaster, C. elegans, mouse, and human (8). The ability of the PHY and PDI proteins from B. malayi to form active C-P4H complexes was therefore also examined using this recombinant system. Bma-PHY-2 was soluble when expressed alone in the absence of a PDI and formed what is likely to be a homotrimer, a similar finding to that described previously for Bma-PHY-1 (14). However, unlike Bma-PHY-1, the Bma-PHY-2 homotrimer was not enzymatically active. In addition, Bma-PHY-2, again similar to Bma-PHY-1, failed to form an active complex with C-P4H β subunit PDIs from other species. Surprisingly, however, co-expression of all combinations of Bma-PHY-1, Bma-PHY-2, and Bma-PDI-2, including all three together, also resulted in no enzyme activity, despite the formation of complexes analogous to those found in parasite-derived material. Potential explanations for our findings in insect cells, such as additional Bma-PHYs, with Bma-PDI-2 not being the correct and only C-P4H β subunit, or B. malayi enzymes evolving to process unusual collagen substrates, were ruled out by our systematic examination described above.

Previously described nematode C-P4H subunits combine in unique fashions (7), and our results in B. malayi indicate a fur-
ther level of complexity in this species. Our co-IP analysis showed that in vivo Bma-PHY-1 and -2 are each found in two types of complex with Bma-PDI-2. In the first type, each Bma-PHY protein is linked to Bma-PDI-2 via a non-reducible covalent linkage, and in the second, each Bma-PHY is associated with Bma-PDI-2 but not linked by such a bond (see supplemental Fig. S6). We suspect that Bma-PDI-2 epitope may be partially masked in the covalently linked complex, resulting in this binding less efficiently during co-IP than the non-linked form. We therefore predict based on our combined results that in B. malayi C-P4H activity is generated by the covalent linked form of the complex. This novel modification has not been found in C-P4H identified from any other species to date. The enzyme generating this modification is currently unknown but could potentially be identified by RNAi screening of candidate enzymes to identify a similar phenotype to that produced by knockdown of B. malayi PHY-1/-2 and PDI-2.

Acknowledgments—Some nematode strains used in this work were provided by the Caenorhabditis Genetics Center, which is funded by the National Institutes of Health National Center for Research Resources. We thank the following people for reagents and materials: Rick Maitzels and Yvonne Harchus (University of Edinburgh) for B. malayi nematodes and staged CDNA, Steven Williams (NIAD/National Institutes of Health FR3, Smith College) for EST clones, Mark Blaxter (University of Edinburgh) for BAC library lysates and clones, and Eldie Ghedin (University of Pittsburgh) for access to the resequenced B. malayi genome data.

REFERENCES

1. Ottesen, E. A., Duke, B. O., Karam, M., and Behbehani, K. (1997) Strategies and tools for the control/elimination of lymphatic filariasis. Bull. W.H.O. 75, 491–503
2. Hotz, P. J., Brindley, P. J., Bethony, J. M., King, C. H., Pearce, E. J., and Jacobson, J. (2008) Helminth infections: the great neglected tropical diseases. J. Clin. Investig. 118, 1311–1321
3. Ghedin, E., Wang, S., Spiro, D., Caler, E., Zhao, Q., Crabtree, J., Allen, J. E., Delcher, A. L., Guillon, D. B., Miranda-Saavedra, D., Anguio, S., Creasy, T., Amedeo, P., Haas, B., El-Sayed, N. M., Wortman, J. R., Feldby, T., Tallon, L., Schatz, M., Shumway, M., Koo, H., Salmon, S. L., Schol, S., Pertea, M., Pop, M., White, O., Barton, G. J., Carlow, C. C., Crawford, M. J., Daub, J., Dimmic, M. W., Estes, C. F., Foster, J. M., Gatnara, M., Gregory, W. F., Johnson, N. M., Jin, J., Komuniecki, R., Kor, I., Kusmierczuk, S., Laney, S., Li, B. W., Li, W., Lindblom, T. H., Lobell, M., Juffer, J., and Nilsen, T. W. (1988) A 22-nucleotide spliced leader sequence in the human parasitic nematode, Brugia malayi, Proc. Natl. Acad. Sci. U.S.A. 85, 7932–7936
4. Martin, D. M., McCarter, J. P., McReynolds, L., and Mitreva, M. (2007) Characterization of the human protein disulphide isomerase family: substrate interactions and functional properties. Mol. Biochem. Parasitol. 153, 275–286
5. Myllyharju, J., Kivirikko, K. I. (1982) Posttranslational enzymes in the biosynthesis of collagen: intracellular enzymes. Methods Enzymol. 82, 245–304
6. Evans, T. C. (2006) Transformation and microinjection. WormBook, doi/10.1895/wormbook.1.108.1
7. Kelly, W. G., Xu, S., Montgomery, M. K., and Fire, A. (1997) Distinct requirements for somatic and germline expression of a generally expressed Caenorhabditis elegans gene. Genetics 146, 227–238
8. Takacs, A. M., Denker, J. A., Perrine, K. G., Maroney, P. A., and Nilsen, T. W. (1998) A 22-nucleotide spliced leader sequence in the human parasitic nematode Brugia malayi is identical to the trans-spliced leader exon in Caenorhabditis elegans. Proc. Natl. Acad. Sci. U.S.A. 85, 7932–7936
9. Bendtsen, J. D., Nielsen, H., von Heijne, G., and Brunak, S. (2004) Improved prediction of signal peptides: SignalP 3.0. J. Mol. Biol. 340, 783–795
10. John, D. C., and Bulleid, N. J. (1994) Prolyl 4-hydroxylase: defective assembly of a subunit mutants indicates that assembled a-subunits are intramolecularly disulfide bonded. Biochemistry 33, 14018–14025
11. Lambert, A., Pihlajaniemi, T., and Kivirikko, K. I. (1995) Site-directed mutagenesis of the a-subunit of human prolyl 4-hydroxylase. Identification of three histidine residues critical for catalytic activity. J. Biol. Chem. 270, 9926–9931
12. Myllyharju, J., and Kivirikko, K. I. (1997) Characterization of the iron- and turosa—Brugia malayi, and Dicrofilaria immitis: a comparative study of the immunochemical properties of cuticular proteins from filarial parasites. Exp. Parasitol. 72, 164–173
13. Cox, G. N., Kusch, M., and Edgar, R. S. (1981) Cuticle of Caenorhabditis elegans: its isolation and partial characterization. J. Cell Biol. 90, 7–17
14. Winter, A. D., Myllyharju, J., and Page, A. P. (2003) A hypoderma expressed prolyl 4-hydroxylase from the filarial nematode Brugia malayi is solubil and active in the absence of protein disulfide isomerase. J. Biol. Chem. 278, 2554–2562
15. Landmann, F., Foster, J. M., Slatkob, B. E., and Sullivan, W. (2012) Efficient in vitro RNA interference and immunofluorescence-based phenotype analysis in a human parasitic nematode, Brugia malayi. Parasit. Vectors 5, 16
16. Sterngale, T. (2006) Maintenance of C. elegans. WormBook, doi/10.1895/wormbook.1.108.1
17. Timmons, L., Court, D. L., and Fire, A. (2001) Injection of bacterially expressed rDNAs can produce specific and potent genetic interference in Caenorhabditis elegans. Gene 263, 103–112
18. Kamath, R. S., Martinez-Campos, M., Zipperlen, P., Fraser, A. G., and Ahringer, J. (2001) Effectiveness of specific RNA-mediated interference through ingested double-stranded RNA in Caenorhabditis elegans. Genome Biol. 2, RESEARCH0002
19. Kivirikko, K. I., and Myllylä, R. (1982) Posttranslational enzymes in the biosynthesis of collagen: intracellular enzymes. Methods Enzymol. 82, 245–304
20. Evans, T. C. (2006) Transformation and microinjection. WormBook, doi/10.1895/wormbook.1.108.1
21. Kelly, W. G., Xu, S., Montgomery, M. K., and Fire, A. (1997) Distinct requirements for somatic and germline expression of a generally expressed Caenorhabditis elegans gene. Genetics 146, 227–238
22. Takacs, A. M., Denker, J. A., Perrine, K. G., Maroney, P. A., and Nilsen, T. W. (1998) A 22-nucleotide spliced leader sequence in the human parasitic nematode Brugia malayi is identical to the trans-spliced leader exon in Caenorhabditis elegans. Proc. Natl. Acad. Sci. U.S.A. 85, 7932–7936
23. Bendtsen, J. D., Nielsen, H., von Heijne, G., and Brunak, S. (2004) Improved prediction of signal peptides: SignalP 3.0. J. Mol. Biol. 340, 783–795
24. John, D. C., and Bulleid, N. J. (1994) Prolyl 4-hydroxylase: defective assembly of a subunit mutants indicates that assembled a-subunits are intramolecularly disulfide bonded. Biochemistry 33, 14018–14025
25. Lambert, A., Pihlajaniemi, T., and Kivirikko, K. I. (1995) Site-directed mutagenesis of the a-subunit of human prolyl 4-hydroxylase. Identification of three histidine residues critical for catalytic activity. J. Biol. Chem. 270, 9926–9931
26. Myllyharju, J., and Kivirikko, K. I. (1997) Characterization of the iron- and 2-oxoglutarate-binding sites of human prolyl 4-hydroxylase. EMBO J. 16, 1173–1180
27. Lappi, A. K., Lensink, M. F., Alanen, H. I., Salo, K. E., Lobell, M., Juffer, A. H., and Ruddock, L. W. (2004) A conserved arginine plays a role in the catalytic cycle of the protein disulfide isomerases. J. Mol. Biol. 335, 283–295
28. Ellgaard, L., and Ruddock, L. W. (2005) The human protein disulfide isomerase family: substrate interactions and functional properties. EMBO Rep. 6, 28–32
29. Pirneskoski, A., Klapa, P., Lobell, M., Williamson, R. A., Byrne, L., Alanen, H. I., Salo, K. E., Kivirikko, K. I., Freedman, R. B., and Ruddock, L. W.
(2004) Molecular characterization of the principal substrate binding site of the ubiquitous folding catalyst protein disulfide isomerase. J. Biol. Chem. 279, 10374–10381

30. Koivunen, P., Pirneskoski, A., Karvonen, P., Ljung, J., Helaakoski, T., Notbohm, H., and Kivirikko, K. I. (1999) The acidic C-terminal domain of protein disulfide isomerase is not critical for the enzyme subunit function or for the chaperone or disulfide isomerase activities of the polypeptide. EMBO J. 18, 65–74

31. Mitreva, M., Jasmer, D. P., Zarlenga, D. S., Wang, Z., Abubucker, S., Martin, J., Taylor, C. M., Yin, Y., Fulton, L., Minx, P., Yang, S. P., Warren, W. C., Fulton, R. S., Bhonagiri, V., Zhang, X., Hallsworth-Pepin, K., Clifton, S. W., McCarter, J. P., Appleton, J., Mardis, E. R., and Wilson, R. K. (2011) The draft genome of the parasitic nematode Trichinella spiralis. Nat. Genet. 43, 228–235

32. Opperman, C. H., Bird, D. M., Williamson, V. M., Rokhsar, D. S., Burke, M., Cohn, J., Cromer, J., Diener, S., Gajan, J., Graham, S., Houfek, T. D., Liu, Q., Mitros, T., Schaff, J., Schaffer, R., Scholl, E., Sosinski, B. R., Thomas, V. P., and Windham, E. (2008) Sequence and genetic map of Meloidogyne hapla: A compact nematode genome for plant parasitism. Proc. Natl. Acad. Sci. U.S.A. 105, 14802–14807

33. Wang, J., Czech, B., Crunk, A., Wallace, A., Mitreva, M., Hannon, G. J., and Davis, R. E. (2011) Deep small RNA sequencing from the nematode Ascaris reveals conservation, functional diversification, and novel developmental profiles. Genome Res. 21, 1462–1477

34. Jex, A. R., Liu, S., Li, B., Young, N. D., Hall, R. S., Li, Y., Yang, L., Zeng, N., Xu, X., Xiong, Z., Chen, F., Wu, X., Zhang, G., Fang, X., Kang, Y., Anderson, G. A., Harris, T. W., Campbell, B. E., Vlaminck, J., Wang, T., Cantacessi, C., Schwarz, E. M., Ranganathan, S., Geldhof, P., Nejsum, P., Sternberg, P. W., Yang, H., Wang, J., Wang, J., and Gasser, R. B. (2011) Ascaris suum draft genome. Nature 479, 529–533

35. Maule, A. G., McVeigh, P., Dalzell, J. J., Atkinson, L., Mousley, A., and Marks, N. J. (2011) An eye on RNAi in nematode parasites. Trends Parasitol. 27, 505–513

36. Riihimaa, P., Nissi, R., Page, A. P., Winter, A. D., Keskiaho, K., Kivirikko, K. I., and Myllyharju, J. (2002) Egg shell collagen formation in Caenorhabditis elegans involves a novel prolyl 4-hydroxylase expressed in spermatheca and embryos and possessing many unique properties. J. Biol. Chem. 277, 18238–18243

37. Lok, J. B. (2012) Nucleic acid transfection and transgenesis in parasitic nematodes. Parasitology 139, 574–588