A conserved ATG2-GABARAP family interaction is critical for phagophore formation

Bozic, Mihaela; van den Bekerom, Luuk; Milne, Beth A.; Goodman, Nicola; Roberston, Lisa; Prescott, Alan

Published in:
EMBO Reports

DOI:
10.15252/embr.201948412

Publication date:
2020

Document Version
Publisher's PDF, also known as Version of record

Link to publication in Discovery Research Portal

Citation for published version (APA):
Bozic, M., van den Bekerom, L., Milne, B. A., Goodman, N., Roberston, L., Prescott, A., Macartney, T., Dawe, N., & McEwan, D. (2020). A conserved ATG2-GABARAP family interaction is critical for phagophore formation. EMBO Reports, 1-17. [e48412]. https://doi.org/10.15252/embr.201948412

General rights
Copyright and moral rights for the publications made accessible in Discovery Research Portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from Discovery Research Portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain.
- You may freely distribute the URL identifying the publication in the public portal.

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Download date: 07. May. 2020
A conserved ATG2-GABARAP family interaction is critical for phagophore formation

Mihaela Bozic1,2,†, Luuk van den Bekerom1,3,†, Beth A Milne3, Nicola Goodman1,3, Lisa Roberston3, Alan R Prescott4, Thomas J Macartney3, Nina Dawe1 & David G McEwan1,5,*,†

Abstract

The intracellular trafficking pathway, macroautophagy, is a recycling and disposal service that can be upregulated during periods of stress to maintain cellular homeostasis. An essential phase is the elongation and closure of the phagophore to seal and isolate unwanted cargo prior to lysosomal degradation. Human ATG2A and ATG2B proteins, through their interaction with WIPI proteins, are thought to be key players during phagophore elongation and closure, but little mechanistic detail is known about their function.

We have identified a highly conserved motif driving the interaction between human ATG2 and GABARAP proteins that is in close proximity to the ATG2-WIPI4 interaction site. We show that the ATG2A-GABARAP interaction mutants are unable to form and close phagophores resulting in blocked autophagy, similar to ATG2A/ATG2B double-knockout cells. In contrast, the ATG2A-WIPI4 interaction mutant fully restored phagophore formation and autophagy flux, similar to wild-type ATG2A. Taken together, we provide new mechanistic insights into the requirements for ATG2 function at the phagophore and suggest that an ATG2-GABARAP/GABARAP-L1 interaction is essential for phagophore formation, whereas ATG2-WIPI4 interaction is dispensable.

Keywords ATG2; autophagosome; autophagy; GABARAP; phagophore
Subject Category Autophagy & Cell Death
DOI 10.15252/embr.201948412 | Received 3 May 2019 | Revised 16 December 2019 | Accepted 23 December 2019
EMBO Reports (2020) e48412

Introduction

The ability of our cells to deal with a wide variety of cellular stresses depends on two quality control pathways—the ubiquitin–proteasome and the autophagosome-to-lysosome (macroautophagy) pathways. Both act in concert to ensure that homeostasis is maintained in our cells. Macroautophagy (henceforth autophagy) is a multi-step process that requires the initiation and formation of a phagophore that grows and surrounds cargo to be degraded. The phagophore eventually seals to form a double-membraned vesicle, termed autophagosome. The autophagosome is then transported to, and fuses with, the lysosome where the inner autophagosomal membrane along with the cargo contents is degraded and recycled back to the cell (reviewed in [1]). This provides an intracellular pool of amino acids and lipids that the cell can utilize under periods of stress. Autophagy is induced by stresses including amino acid/growth factor starvation (non-selective, bulk autophagy), mitochondrial depolarization [2,3], pathogen invasion [4] and protein aggregate accumulation [5] (selective autophagy). In all cases, the inclusion of the cargo within the growing phagophore, and eventually the autophagosome, serves to isolate potentially cytotoxic material from the surrounding intracellular environment.

The molecular machinery involved in autophagosome formation is extensive and, for the most part, highly conserved. More than 30 ATG (autophagy-related) proteins regulate all stages of autophagosome formation; from initiation, cargo selection, transport and fusion with the lysosome. In higher eukaryotes, several kinase complexes, as well as ubiquitin-like conjugation machinery, are required for the initiation and expansion of the autophagosome. For example, the initiation kinase complex consists of ULK1/ATG13/ATG101/FIP200 and the lipid kinase complex VPS34/Beclin1/ATG14L1/p150 [6–8]. Growth of the autophagosome and cargo recruitment requires the ubiquitin-like conjugation machinery, consisting of ATG7 (E1-like) ATG3 and ATG10 (E2-like) and ATG12-ATG5-ATG16L1 (E3-like complex), which are responsible for the conjugation of ubiquitin-like MAP1LC3 (microtubule-associated protein 1A/1B light chain)/GABARAPs (gamma-aminobutyric acid receptor-associated proteins; mammalian homologues of yeast Atg8) to phosphatidylethanolamine (PE) on the growing phagophore membrane [9]. LC3/GABARAP proteins, once conjugated to PE, can localize to both the inner and outer autophagosomal membranes. This allows the ATG8s to interact with proteins containing an LC3 interaction region (LIR), linking the phagophore to the cargo or the phagophore/autophagosome to the cellular

1 Division of Cell Signalling & Immunology, School of Life Sciences, University of Dundee, Dundee, UK
2 Edinburgh Cancer Research UK Centre, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
3 MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee, UK
4 Dundee Imaging Facility, School of Life Sciences, University of Dundee, Dundee, UK
5 Cancer Research UK Beatson Institute, Glasgow, UK
*Corresponding author. Tel: +44 141 330 3953; E-mails: d.g.mcewan@dundee.ac.uk; d.mcewan@beatson.gla.ac.uk
†These authors contributed equally to this work
transport and fusion machinery [10–13]. The majority of LIR motifs contain a core W/Y/F-X-X-L/I/V motif. In addition, acidic and/or phosphorylatable serine/threonine residues N- and C-terminal of the core LIR sequence can contribute to the stabilization of LIR-ATG8 interactions [13–16].

Despite a surge in our understanding of the mechanisms involved in autophagy, there are still questions pertaining as to how the double-membrane phagophore closes and seals to form the autophagosome. In particular, the molecular components and how they interact are relatively unknown. For example, in yeast, Vps21 (Rab5-related GTPase) and Rab5 influence phagophore closure [17,18]. The mammalian ATG8 protein GATE-16 (GABARAP-L2) has been shown to be involved in the later stages of autophagosome biogenesis [19] and its N-terminal extension can promote membrane fusion events, hinting at a possible role during phagophore closure [20]. However, a recent study where LC3 and GABARAPs were knocked out indicated that LC3/GABARAPs were not required for phagophore closure [21]. A mutant form of ATG4B (C74A), the cysteine protease responsible for LC3 and GABARAP priming and removal from the autophagosomal membrane, prevents LC3 and GABARAP lipidation and results in an increased number of unsealed phagophore membranes [22]. In addition to core autophagy proteins, a component of the ESCRT-III (endosomal sorting complex required for transport) endocytic machinery, CHMP2A, regulates the separation of inner and outer phagophore membranes [23].

One intriguing example of the role of ATG proteins during phagophore formation and closure is the poorly understood ATG2 proteins, ATG2A and ATG2B. Mammalian ATG2s are >1,900 amino acids in length and share approximately 40% amino acid sequence homology but are only 13% similar to the single isoform of S. cerevisiae Atg2 and 24–26% to the D. melanogaster Atg2, indicating a potential divergence of function. Indeed, the reconstitution of human ATG2A in yeast Δatg2 cells is not sufficient to restore the autophagy defects [24]. In yeast, Atg2 constitutively interacts with Atg18 at phosphatidylinositol-3-phosphate (PtIns3P)-rich membrane regions and tethers pre-autophagosomal membranes to the endoplasmic reticulum for autophagosome formation [25,26]. Mammalian homologues of yeast Atg18 are the WIPI (WD repeat domain phosphoinositide-interacting) proteins (WIPI1-4) that are involved in various stages of autophagosome formation [27–29]. ATG2A and ATG2B preferentially interact with WIPI4 (WDR45) through a conserved Y/HFS motif [29–31]. Simultaneous depletion of both ATG2A and ATG2B results in the accumulation of small, open immature phagophore structures [32,33]. The depletion of WIPI4 also causes open phagophore structures, but they are morphologically dissimilar to those generated after ATG2A/B depletion [29]. Interestingly, previous studies have not, despite mapping the ATG2-WIPI4 interaction, shown whether this interaction is required for the restoration of autophagy flux in ATG2A/B-depleted cells [29–31]. Herein, CRISPR/Cas9 was used to generate GFP-ATG2A knock-in cells as a tool to address the endogenous localization and interaction of human ATG2A. We have identified a direct interaction between the GABARAP family of mammalian ATG8 proteins and ATG2A and ATG2B that is mediated through a highly conserved LIR sequence. Surprisingly, the newly identified LIR sequence in ATG2A and ATG2B is approximately 30-amino acid N-terminal of the WIPI4 interaction motif and represents independent interaction sites in the C-terminus of human ATG2s. Using reconstituted ATG2A/2B double-knockout cells, we show that the disruption of ATG2A-WIPI4 interaction had no discernible effects on phagophore closure and autophagy flux but slightly enhanced lipidated GABARAP interaction, whereas mutation of the LIR motif on ATG2 completely blocked phagophore closure and autophagy flux, despite ATG2A maintaining its ability to interact with WIPI4. Taken together, these data provide new insights into essential ATG2 interactions during autophagosome biogenesis.

Results and Discussion

Endogenous GFP-tagged ATG2A co-localizes and co-precipitates with GABARAP/GABARAP-L1

In order to study the function of endogenous ATG2 proteins, we generated GFP-tagged ATG2A knock-in U2OS cells using CRISPR/Cas9 (Figs EV1A and 1C). Under complete, nutrient-rich conditions (CM), GFP-ATG2A showed a dispersed localization, with little overlap with LC3B (Fig 1A, Upper panels). However, upon starvation we observed the formation of punctate and ring-like structures that localized in close proximity to LC3B-positive vesicles (Fig 1A, Lower panels). Endogenous ATG2B co-localized with GFP-ATG2A on both the punctate and ring-like structures observed (Fig 1A, lower panels). Furthermore, endogenous GFP-ATG2A co-localized with early autophagy marker proteins WIPI2 (Fig 1B) and ATG16L1 (Fig 1C) at LC3B-positive structures formed under starvation conditions. In addition, GABARAP-L1 was present on GFP-ATG2A/LC3B-positive structures under starvation conditions (Fig 1D). Given the presence of both GABARAP-L1 and LC3B co-localizing with GFP-ATG2A, we were curious as to whether we could co-precipitate an endogenous ATG2A/LC3/GABARAP complex using GFP-ATG2A as bait. Using U2OS WT (control) or GFP-ATG2A U2OS cells under CM or starvation conditions, we immunoprecipitated GFP-ATG2A. WIPI4, a cognate ATG2 interaction partner [29–31], co-precipitated with GFP-ATG2A under both CM and starvation conditions (Fig 1E). We could not detect endogenous LC3B in GFP-ATG2A immunoprecipitates, but we detected increased co-precipitation of GABARAP proteins, using a pan-GABARAP antibody under starvation conditions (Fig 1E). Endogenous ATG2A and ATG2B were able to co-precipitate with GFP-tagged GABARAP, GABARAP-L1 and weakly with LC3A but not with GFP-LC3B, GFP-LC3C or GABARAP-L2 when overexpressed in HEK293T cells (Fig EV1D). Notably, endogenous WIPI4 co-precipitated with GFP-ATG8s only when ATG2A or ATG2B proteins were present, indicating a potential complex between ATG2, WIPI4 and the ATG8s. Given that we could detect endogenous GABARAP proteins co-localizing and co-precipitating with ATG2s, we hypothesize that these form the functionally active complex. However, we cannot rule out a role for LC3A, but we have been unable to confirm an endogenous complex between ATG2, LC3A and WIPI4 proteins.

Identification of a conserved LC3 interaction region in ATG2A and ATG2B

Direct interaction with Atg8/LC3/GABARAP proteins is mediated through the presence of a LIR (LC3 interaction region) on the target protein [5,13,34–37]. ATG2 proteins have previously been shown to
Figure 1.
be part of the mammalian LC3/GABARAP interactome [38], but no direct link interaction, or consequences, has been shown. We therefore performed an in silico analysis of both ATG2A and ATG2B proteins using the iLIR tool [39], as well as manual annotation, to identify potential LIRs that conform to the [E/D/S/T]-W/F/Y-X₁-X₂-L/I/V consensus sequence. We excluded potential LIR sequences present on secondary structures or within domains, as LIR sequences are most frequently found within disordered regions between domains [40]. We found that ATG2A contained five, and ATG2B contained six, potential LIRs (Table 1 and Fig EV2A). We then mutated the core sequence of all the potential LIR sequences in both ATG2A and ATG2B to alanine residues (Table 1) and tested the interaction using purified GST (glutathione S-transferase)-tagged ATG8 proteins [5]. Out of the five potential LIRs present within ATG2A (Fig EV2A–E) and six potential LIRs of ATG2B (Fig EV2A, F and G), only a single, highly conserved functional LIR was present in both ATG2A (LIR#5) and ATG2B (LIR#6; Fig EV2A). Mutation of ATG2A-LIR#5 (amino acids 1,362–1,365; SDEFCIL; Fig EV2H, mLIR) and ATG2B-LIR#6 (amino acids 1,491–1,494; NDDFCIL; Fig EV2H, mLIR) reduced ATG2A/B and GST-ATG8 interaction, compared with WT proteins (Fig EV2H). Overexpression of ATG2A-LIR (Fig 2B) or ATG2B-LIR mutants (mLIR, FCIL/AAAA; Fig 2C) with GFP alone, GFP-LC3B or GFP-GABARAP abolished co-precipitation with GFP-GABARAP, compared with WT proteins. No interaction with GFP only and only weak interaction with LC3B were detected (Fig 2B and C), consistent with previous results (Fig EV1D).

Alignment of the amino acid sequences of ATG2 proteins from multiple species revealed that the ATG2A/2B LIR sequence is highly conserved in multiple vertebrates and invertebrates (Fig 2A, orange box). This includes organisms with a single ATG2 isoform: Droso-

LIR number	Gene	Potential LIR sequence	Amino acid position (WxxL)	Mutant LIR interaction with GST-LC3/GABARAPs?
1	ATG2A	GTSEPYTEILT	536–539	+++
2	ATG2A	SLHQSTFSTLV	926–929	–
3	ATG2A	GQPCGLYFCLEA	981–984	+++
4	ATG2A	HSQLEFLDVLD	1,092–1,095	+++
5	ATG2A	TLDSDFFCILDAP	1,362–1,365	–
6	ATG2B	SSDDFDWPVIL	845–848	+++
7	ATG2B	LPNKSFYKLNY	954–957	Present on alpha helix
8	ATG2B	PSPVETFENSY	979–982	Not expressed
9	ATG2B	EETQFFSTVD	1,026–1,029	++
10	ATG2B	INLSRFYVRVM	1,306–1,309	Not expressed
11	ATG2B	PTENDDFCLFP	1,491–1,494	–
Figure 2.
Interestingly, ATG2A and ATG2B do not conform to the recently identified GABARAP interaction motif consensus sequence (W/F-I-V-X-I/V) [13] despite preferring GABARAP and GABARAP-L1 over LC3 in co-immunoprecipitation from cells (Figs EV1D, EV1E and EV1F). Surprisingly, both ATG2A and ATG2B can also interact with LC3A (Fig EV1D); however, we have been unable to confirm an endogenous ATG2A-LC3 interaction (Figs 2A and EV2J). Therefore, understanding the role of ATG2-LC3/GABARAP interaction in multiple species.

WIP4 can negatively regulate the ATG2A-GABARAP interaction

Intriguingly, the recently described WIP4 interaction region that contains an essential Y/HFS motif [30,31] is approximately 30-amino acid C-terminal of the newly identified LIR sequence in both ATG2A and ATG2B (Fig 2A, purple box). Therefore, we wanted to test whether the interaction between ATG2, GABARAP and WIP4 was co-dependent, or whether they represented independent interactions. The YFS motif found in ATG2A (amino acids 1,395–1,397; YFS/AAA; mYFS) was mutated, and HA-tagged ATG2A-WT, ATG2A-mLIR or ATG2A-mYFS variants were stably expressed in ATG2A/B double-knockout cells (DKO; Fig EV2J), immunoprecipitated from cell lysates and probed for the presence of GFP-tagged GABARAP and endogenous WIP4. ATG2-WT co-precipitated both WIP4 and GFP-GABARAP under complete media (CM) and starvation conditions (Fig 2D and quantified in 2E). ATG2A-LIR mutant failed to co-precipitate GFP-GABARAP, whereas the ATG2A (mLIR)-WIP4 interaction was slightly enhanced (Fig 2D and quantified in 2E; mLIR). Conversely, mutation of the ATG2A-YFS motif resulted in the loss of WIP4 interaction and increased interaction with lipidated GABARAP (GABARAP-ii; Fig 2D and quantified in 2E; mYFS). Immunoprecipitation of GFP-GABARAP resulted in WIP4 co-precipitation only in the presence of ATG2A-WT, indicating that WIP4 interacts only with ATG2A and not GABARAP directly (Fig 2F and quantified in 2G). Next, we overexpressed GFP alone, GFP-GABARAP alone or GFP-GABARAP with increasing concentrations of mCherry-WIP4 in HEK293 cells (Fig 2H and quantified in 2I). Interestingly, increasing expression of mCherry-WIP4 resulted in a steady decline in endogenous ATG2A/ATG2B immunoprecipitation with GFP-GABARAP (Fig 2H and quantified in 2I). Thus, within a 30-amino acid stretch mammalian ATG2 proteins are two distinct interaction motifs that can potentially regulate ATG2 function at the growing phagophore membrane.

ATG2A-LIR mutant but not WIP4 mutant is sufficient to block autophagy

ATG2A can simultaneously interact with both GABARAP and WIP4 (Fig 2D–F). Interestingly, previous reports that identified the WIP4 interaction region on ATG2 [30,31] and the ATG2 interaction site of WIP4 [29] did not address the role of these interaction mutants
during autophagy flux. Considering the close proximity of both GABARAP and WIPI4 interaction motifs on ATG2A, we wanted to dissect the individual roles of ATG2A–GABARAP and ATG2A–WIPI4 interactions during autophagy. Stable expression of the tandem-tagged LC3B autophagy reporter (mCherry-GFP-LC3B; [45]) in ATG2A/B DKO cells was used to assess LC3B transition from autophagosomes (GFP+ve/mCherry+ve) to autolysosomes (GFP–ve/mCherry+ve) due to GFP quenching at low pH [45]. Using confocal imaging and flow cytometry to quantify, tandem-tagged LC3B puncta in ATG2A/2B DKO cells under complete medium (CM) or starvation conditions were both GFP- and mCherry-positive (Fig 3A and quantified in 3B). This indicated that the ATG2A/B DKO U2OS cells had impaired autophagy flux, consistent with previous work [46]. Stable reconstitution of tandem-LC3B expressing ATG2A/B DKO cells with ATG2A-WT resulted in more mCherry-only-positive cells/puncta in CM conditions that were increased upon starvation and was nullified using bafilomycin A1 (to prevent lysosome acidification and quenching of GFP signal) (Fig 3A and quantified in 3B). Surprisingly, expression of ATG2A-mLIR resulted in a complete lack of mCherry-only puncta/cells, resembling the ATG2A/B DKO cells, and unexpectedly, the ATG2A-mYFS (WIPI4 mutant) was able to fully restore autophagy flux similar to ATG2A-WT (Fig 3A and quantified in 3B).

Next, we analysed the effect of ATG2A-WT, ATG2A-mLIR and ATG2A-mYFS expression on both p62/SQSTM1, LC3B and GABARAP protein levels, as these are autophagy substrates and are good indicators of flux [47]. Stable expression of HA-tagged ATG2A-WT in ATG2A/2B DKO cells resulted in decreased p62/SQSTM1 and LC3B-II levels, compared with DKO alone, indicating rescue of the pathway and restoration of autophagy flux (Fig 3C–E, WT lane). Consistent with the tandem-tagged LC3B reporter assay (Fig 3A and B), expression of ATG2A-mYFS was able to fully restore autophagy flux under nutrient-rich (CM, complete medium), starvation and bafilomycin treatment (Fig 3C–E). However, GABARAP proteins did not show clear changes in flux as LC3B and p62, indicating that these may not be the best measure of autophagy flux (Fig 3C). Interestingly, the expression of ATG2A-mLIR failed to restore the defect in p62/SQSTM1 and LC3B-II (Fig 3C–E). In DKO plus ATG2A-WT and DKO plus ATG2A-mYFS expressing cells, LC3B was present within LAMP2-positive vesicles (lysosomes) after starvation plus bafilomycin A1 treatment, to induce autophagosome formation but halted their degradation (Fig EV3A, open arrows). In stark contrast, LC3B was observed juxtaposed to LAMP2 vesicles in both ATG2A/2B DKO and DKO plus ATG2A-mYFS (Fig EV3A, closed arrows), indicating an autophagosome maturation defect and consistent with the tandem-LC3B reporter assay (Fig 3A and B). One aspect of mammalian ATG2 function is the regulation of the size and distribution of lipid droplets (LDS) [33]. ATG2A localizes to the limiting membrane of LDS [33,46]. Importantly, both HA-tagged ATG2A-mLIR and ATG2A-mYFS, as well as HA-ATG2A-WT, are able to localize to lipid droplets induced by oleate, a fatty acid supplement that induces the accumulation of neutral lipids into LDS (Fig EV5B and C). Therefore, disruption of either the ATG2A–GABARAP or ATG2A–WIPI4 interaction does not affect ATG2A localization to LDS. Taken together, our data show that mutation of a conserved GABARAP/GABARAP-L1 interaction motif on ATG2A fails to restore the autophagy defect of ATG2A/ATG2B double-knockout cells, whereas the interaction with WIPI4 is dispensable for autophagy flux.

Mutation of the ATG2A–GABARAP interaction impairs phagophore closure

The mammalian ATG2 proteins have been suggested to function at either the initial formation of phagophores [32,33] or the transition from phagophore to autophagosome, the closure step [48]. Therefore, in order to address the functional significance of the ATG2 interaction with GABARAP, we used two assays to distinguish between phagophores and autophagosomes—a protease K protection assay (Fig 4A(ii)) and Syntaxin 17 (STX17) translocation (Fig 4A(iii)). Firstly, using the protease K limited proteolysis assay, which degrades proteins not protected within a membrane compartment (Fig 4A (i)), we tested whether the expression of ATG2A-LIR mutant resulted in defective phagophore closure. ATG2A/B DKO cells and DKO cells reconstituted with ATG2A-WT, ATG2A-mLIR or ATG2A-mYFS (Fig 4B) were left in CM or starved for 4 h in the presence of bafilomycin A1 (Starve+BafA1) to accumulate autophagosomes. Cells were then permeabilized using digitonin and incubated in buffer only, protease K or protease K plus Triton X-100 (to permeabilize membranes). Under CM conditions, the majority of the autophagy substrate p62 was degraded in all samples (Fig 4B, upper panel). After starvation plus bafilomycin A1 treatment, DKO cells reconstituted with ATG2A-WT and ATG2A-mYFS showed a large proportion of p62 resistant to protease K degradation (Fig 4B, lower panel; 38 and 56%, respectively). However, p62 in both DKO and DKO plus ATG2A-mLIR cells was sensitive to protease K digestion (Fig 4B, lower panel; 18 and 17%, respectively), which is indicative of immature/unsealed autophagosomes.

Next, STX17 translocation to LCB3-positive vesicles in the ATG2A-WT and mutant-expressing cells was tested. STX17 translo- cates from the ER to fully formed autophagosomes, but not phago- phores, prior to their fusion with the lysosome (Fig 4A (ii)) [49–51]. Stable expression of GFP-Syntaxin 17 in the reconstituted ATG2A/B DKO cells revealed that STX17 can efficiently localize to, and surround, LC3B-positive structures in both ATG2A-WT and ATG2A- mYFS expressing cells after starvation plus bafilomycin A1 treatment (Fig 4C, open arrows and quantified in Fig 4D). Conversely, in ATG2A/B DKO and DKOs plus ATG2A-mLIR cells, GFP-STX17 localized mainly to ER and punctate structures with few GFP-STX17+ve/LC3B+ve vesicles observed (Fig 4C, closed arrows and quantified in Fig 4D). Taken together, our data suggest that a conserved GABARAP interaction motif in both mammalian ATG2A is essential for phagophore formation and/or closure and surprisingly that the WIPI4 interaction is dispensable for this function during starvation-induced autophagy.

ATG2A-LIR is essential for autophagosome formation

To gain a better understanding of the impact the ATG2A-LIR mutation has on phagophore formation and/or closure, we used super-resolution confocal microscopy to assess autophagosome formation under starvation conditions. In ATG2A/2B DKO and DKO cells expressing ATG2A-mLIR, the cells exhibited large LC3B-positive/p62-positive structures (Fig EV4A). Moreover, these structures showed WIPI2 staining throughout (Fig 5A) and accumulated ATG9A (Fig 2B), GABARAP (Fig 5C) and GABARAP-L1 (Fig EV4B). Interestingly, despite their accumulation, little difference was observed in the total protein levels of ATG9A, WIPI2 and slight changes in lipidd
Figure 3.

A. mCherry-GFP-LC3B

B. mCherry-GFP-LC3B flux

C. HA-ATG2A

D. p62/SQSTM1

E. LC3B-II
GABARAP and GABARAP-L1, compared with p62 and LC3B (Fig EV4C). In contrast, ATG2A/B DKO cells reconstituted with ATG2A-WT or ATG2A-mYFS resulted in vesicular LC3 and punctate p62/SQSTM1 structures (Fig EV4A), punctuate WIPI2 (Fig 2A), juxtanuclear ATG9A localization (Fig 2B) and vesicular GABARAP (Fig 2A) and GABARAP-L1 (Fig EV4B) consistent with restoration of efficient autophagosome biogenesis and autophagy flux.

In cells expressing ATG2A-mLIR, LC3B is lipidated (LC3B-II; Figs 3C and EV4C), early phagophore-associated proteins are present (ATG9A, Fig 5B), GABARAP and GABARAP-L1 are also associated (Figs 5C and EV4A, respectively) and the membranes contain PI3P (inferred by the presence of WIPI2, Fig 5A). This indicates that the observed structures (Figs 5A–C and EV4A and B) are most likely immature phagophore membranes. Indeed, the structures observed in ATG2A/DKO and DKO+ATG2A-mLIR expressing cells resemble small, clustered vesicles as shown for GABARAP-L1 (magenta) and LC3B (green) in Movie EV1 (DKO) and Movie EV2 (DKO+ATG2A-mLIR). Lastly, we used transmission electron microscopy to ascertain the nature of the membrane clusters we observed (Figs 5A–C and EV4A and B). Notably, in both ATG2A/B DKO and DKO+ATG2A-mLIR expressing cells, we observed small, clustered vesicles interlaced with endoplasmic reticulum that were not evident in ATG2A-WT or ATG2A-mYFS expressing cells that contained double-membraned autophagosomes/phagophores (Fig 5D). Taken together, we show that an ATG2A-GABARAP/GABARAP-L1 interaction is essential for efficient phagophore formation and eventual closure.

The formation of the autophagosome and its subsequent trafficking and fusion with the lysosome is a tightly controlled pathway with a number of essential components that allows it to progress in an orderly fashion. This enables the cell to liberate amino acid and lipid stores during periods of stress, target and remove intracellular pathogens or remove cytotoxic protein aggregates from the cell. Critical to this process is the ability of the cell to form a double-membraned phagophore that grows, surrounds and isolates the material to be removed. Despite recent advances in our knowledge, the mechanisms involved in phagophore closure are poorly understood. Recent work has shown that the ESCRT-III component CHMP2A regulates the separation of inner and outer phagophore membranes [23], and more recently, VPS37A is essential for phagophore closure [52]. In addition to the ESCRT-III machinery, TRAPPComplex, a member of TRAPP complexes involved in membrane trafficking, has been shown to recruit ATG2B-WIPI4 to phagophores in an ATG9A-dependent manner [53]. The depletion of TRAPPComplex11 results in a phenotype similar to that of ATG2A/B DKO and ATG2A-mLIR [53]. The mammalian ATG2 proteins, ATG2A and ATG2B, have been shown to be essential for phagophore formation and closure [32,33,46], and depletion of WIPI4, a constitutive interaction partner of mammalian ATG2s, also negatively impacts on phagophore closure [29]. Herein, we have described a hitherto unidentified GABARAP/GABARAP-L1 interaction region on both ATG2A and ATG2B that is essential for phagophore formation.

These results shed new light on the role of ATG2 during autophagosome biogenesis, and in particular, the interactions that are necessary for this process. Perhaps most surprisingly was the effect, or rather lack thereof, that the ATG2A-WIPI4 interaction mutant had on phagophore closure and autophagy flux. From yeast
Figure 4.
Figure 5.

Mihaela Bozic et al

EMBO reports
to fruit flies to humans, the ATG2-ATG18 (WIPI) interaction is highly conserved. In yeast, Atg2-Atg18 interaction occurs independently of Atg18 binding PI3P [26], much like the ATG2A/B interaction with WIPI4 [29–31]. Yeast Atg2 has been shown to contain both N- and C-terminal membrane binding domains that help tether Atg2 to membrane contact sites [25], and yeast Atg9-Atg2-Atg18 complex is essential to establish phagophore-ER contact sites for phagophore expansion [54]. Human ATG2A has several domains that determine its ability to localize to membranes. Firstly, ATG2 has an N-terminal membrane binding region that is essential for autophagosome formation [46] that has now been shown to be a lipid transport domain [55,56]. This N-terminal lipid transport domain is thought to be essential for the transport of PE and phosphatidylycerine from the ER/omegasoome to the growing phagophore [55,56], potentially at mitochondrial-ER contact sites [57]. This domain is homologous to the Vps13 lipid transport domain involved in organelle-organelle contact sites [58]. The second lipid interaction region of ATG2A is an amphipathic helix (AH; aa1,750–1,767), which is essential for ATG2 localization to both lipid droplets and isolation membranes and is essential for autophagy flux [46]. In addition, ATG2 has a C-terminal region (aa1,830–1,938 HaATG2A) that is involved in localization to lipid droplets but is dispensable for autophagy [46]. This raises an interesting question as to the role of the ATG2-WIP14 interaction, as this was previously thought to be involved in ATG2 autophagy function. However, we have shown that ATG2-WIP14 is dispensable for autophagosome formation and autophagy flux. Given that the ATG2A-LIR mutant we identified has impaired autophagy flux (Fig 3) but can still localize to lipid droplets (Fig EV3B and C), we suggest that both the ATG2-AH and the ATG2-LIR are essential to define the target membrane, allowing tethering and lipid transfer and driving efficient phagophore formation and autophagosome maturation (Fig 5E).

Materials and Methods

Antibodies

The antibodies used in this study are as follows: anti-GFP (Santa Cruz, clone B-2, sc9996), anti-FlagM2 (Sigma, F3165), anti-p62 (MBL, ML162-3), anti-LC3B (clone 5F10 Nanotools, 0231-100/LC3-5F10) and anti-GABARAP (Abcam, ab109364), and anti-ATG16L1 (MBL, PM040), anti-ATG9A (Abcam, ab108338), anti-WIPI2 and anti-WIPI4 were kind gifts from Prof. Sharon Tooze, LC3A clone D50G8 (CST, #4599), anti-LC3C (D188V; CST # 14723), anti-pan-GABARAP (GABARAP/GABARAP-L1/GABARAP-L2) (Abcam, ab109364), anti-GABARAP (IF, Western blotting; Abgent, AP1821a), anti-GATE-16 (MBL, PM038), anti-GABARAP-L1 (WB, IF, Proteintech, 11010-1-AP), anti-vinculin (Sigma, V9131-100UL), anti-ATG2A (Proteintech, 23226-1-AP) and ATG2B (Proteintech, 25155-1-AP), LAMP-2 (DSHB, clone H4B4) and c-Myc (DSHB, clone 9E10).

Cell culture and reagents

HEK293T and U2OS or U2OS ATG2A/B double-knockout cells were maintained in Dulbecco’s modified Eagle’s medium (DMEM; Invitrogen 10313021) supplemented with 10% foetal bovine serum (FBS), 5 U/ml penicillin and 50 μg/ml streptomycin, 1 mM L-glutamine and 1% sodium pyruvate. For starvation in nutrient-depleted medium, the cells were incubated 2 h in Earle’s balanced salt solution (EBSS; Gibco, 24010-043). Bafilomycin A1 (BafA1; Enzo, BML-CM110-0100) was used at 200 nM. ATG2A/2B DKO cells were stably transfected by retroviral transduction of pMSCV-Flag-HA (ITAP) vectors. Briefly, HEK293T cells were transfected with ITAP vectors with pCG-GagPol and pCG-VSVG (retrovirus) packaging vectors. Virus-containing media was harvested 48 h post-transfection, centrifuged at 300× g, passed through a 0.45-μm filter and added to ATG2A/B DKO cells in the presence of 10 μg/ml polybrene (Sigma, H9268-5G). Transduced cells were selected by addition of 1 μg/ml puromycin (ITAP and GFP-STX17) 48 h after addition of viral media.

CRISPR/Cas-9 gene editing

CRISPR/Cas9-mediated deletion of ATG2A (NM_015104.3) and ATG2B (NM_018036.7) in osteosarcoma cells (U2OS) was performed by using the Cas9 D10A “nickase” mutant, and paired gRNA approach [59] was used to target exon 1 of both ATG2A (5'-CCATGCTCAAACTGTTGAAAGA-3' and 5'-TACTTGCTGCACCC TACTTAG-3') and ATG2B (5'-CGTGTGGTGAATGGCAGA-3' and 5'-CTGGGCGTACCTGCGAGG-3'). ATG2A- and ATG2B-targeting gRNAs were transcribed into 1 × 10⁵ U2OS cells followed by selection with 1 μg/ml puromycin for 48 h, re-transfection, recovery (in puromycin-free media) and single-cell sorting to isolate clone candidates with the gene deletion.

Endogenous GFP-tagged ATG2A knock-ins were generated using a modified “nickase” strategy (as above). Optimal sgRNA pairs were identified and chosen on the basis of being as close as possible to the point of GFP insertion while having a low combined off-targeting score (ATG2A-sgRNA1: 5'-GTAAGACTGTGAAAGAC-3' and sgRNA2: 5'-GATGTCACGATGGCAG-3'). Complementary oligos with BbsI compatible overhangs were designed for each,
and these dsDNA guide inserts ligated into BbsI-digested target vectors; the antisense guide (sgRNA2) was cloned onto the spCas9 D10A expressing pX335 vector (Addgene plasmid no. 42335) and the sense guides (sgRNA1) into the puromycin-selectable pBABED P U6 plasmid (Dundee-modified version of pBABE-puro plasmid). A donor construct consisting of GFP flanked by approximately 500-bp homology arms was synthesized by GeneArt (Life Technologies); each donor was engineered to contain sufficient silent mutations to prevent recognition and cleavage by Cas9 nuclease. Both sgRNA and donor constructs were transfected into U2OS cells, selected in 1 µg/ml puromycin for 48 h, re-transfected and allowed to recover in puromycin-free complete media. When confluent, cells were single-cell-sorted for GFP-positive populations and homozygous clones selected for further analysis.

Western blot and immunoprecipitation

Cells (HEK293T, U2OS) were lysed in NP-40 lysis buffer (50 mM Tris, pH 7.5, 120 mM NaCl, 1% NP-40) supplemented with Complete® protease inhibitor (Roche) and phosphatase inhibitor cocktail (Roche). Lysates were passed through a 27G needle, centrifuged at 21,000× g and incubated with either anti-GFP agarose (Chromotek, gta-20) or anti-HA agarose (Sigma, A2095), washed three times in lysis buffer and subjected to SDS–PAGE and Western blot. For total cell lysis (TCL), cells were lysed in 50 mM Tris, pH 7.5, 150 mM NaCl, 1 mM MgCl₂, 1% SDS. TCL buffer was supplemented with Complete® protease inhibitor (Roche), phosphatase inhibitor cocktail (Roche) and Benzonase (VWR/Fisher Scientific); washed twice in PBS/0.1% saponin, and secondary antibodies (Invitrogen, donkey anti-mouse, anti-rabbit, anti-rat) and Alexa dyes (488, 555 and 647) were used in combination depending on the primary antibody species and incubated in PBS/5% BSA/0.1% saponin. For detection of endogenous GFP-ATG2A, nanobody boosters towards GFP (anti-GFP, Atto-488 Coupled, Chromotek; gba488-100) were used to enhance the signal. Secondary antibodies were then washed twice in PBS/0.1% saponin, once in PBS and once in ddH₂O to remove the residual saponin prior to mounting in ProLong Diamond Antifade containing Mowiol (Invitrogen, p36965). Cells were imaged using a Zeiss 710 confocal microscope with a 63× objective lens. Super-resolution microscopy images were taken on Zeiss 880 AiryScan, and image processing was carried out using built-in-software (Zen Software AiryScan Processing). Subsequent image analysis was performed using FIJI (ImageJ) [61].

Transmission electron microscopy

Cells were treated as indicated, media removed and fixed in 0.1 M sodium cacodylate buffer (pH 7.2) containing 4% paraformaldehyde and 2.5% glutaraldehyde for 30 min at room temperature on the plate, scraped into fixative and left for a further 30 min at room temperature. Samples were then spun at 500× g for 15 min and the pellet washed twice in cacodylate buffer. For post-fixation, samples were incubated in 1% OsO₄ with 1.5% sodium ferrocyanide in 0.1 M cacodylate buffer for 60 min. Samples were subsequently stained with 1% tannic acid in 0.1 M cacodylate buffer for 1 h and washed in sodium acetate buffer (pH 5) overnight. Samples were then stained with 1% uranyl acetate in acetate buffer for 1 h and dehydrated in alcohol solution series from 50 to 100% with 10-min incubation in each alcohol. Samples were changed to 100% propylene oxide with two times 10-min incubations. Samples were changed to 50% propylene oxide, 50% Durecupan resin (Sigma; mix: A—5 g, B—5 g, C—6 drops, D—6 drops—invert to mix and avoid bubbles) and left overnight in rotator. The propylene oxide was then allowed to evaporate, and samples changed into 100% Durecupan resin in specimen embedding moulds, polymerized at 60°C overnight and sections cut on ultramicrotome at 70–100 nm thickness (Leica Ultracut UCT). Sections were stained with 3% aqueous uranyl acetate followed by Reynolds lead citrate. Grids were then imaged on JEOL 1200EX TEM using SIS camera and processed using FIJI (ImageJ).

Lipid droplet induction and imaging

Cells were set up on glass coverslips and incubated with either complete medium plus 2% BSA or complete media plus 2% BSA/500 µM oleic acid for 16 h. Cells were then fixed in 4% PFA/PBS for 10 min and permeabilized using the saponin method detailed above. Coverslips were incubated with anti-HA primary antibody and donkey anti-rat Alexa 657 secondary antibody. Lipid droplets were stained using 5 µM BODIPY 493/503 (Thermo Fisher...
Scientific) to stain neutral lipids. Samples were mounted, imaged and analysed as detailed above.

Protein expression and purification

GST-tagged mammalian ATG8 fusion proteins were cloned into pGEX-4T-1 (GE Healthcare) and expressed in *Escherichia coli* BL21 (DE3) cells in LB medium as previously described [5]. Expression was induced by addition of 0.5 mM IPTG, and cells were incubated at 16°C overnight. Harvested cells were lysed using sonication in a lysis buffer (20 mM Tris–HCl pH 7.5, 10 mM EDTA, 5 mM EGTA, 150 mM NaCl), and the supernatant was subsequently applied to Glutathione Sepharose 4B beads (GE Healthcare). After several washes, fusion protein-bound beads were used directly in GST pull-down assays.

Proteinase K protection assay

Proteinase K assay was performed as previously detailed [60]. Briefly, U2OS ATG2A/B DKO or DKO plus ATG2A-WT, ATG2A-mLR or ATG2A-mYFS cells were grown in complete media or starved (EBSS) in the presence of bafilomycin A1 (200 nM) for 4 h.

Table 2. Plasmids used in this study.

Plasmid/epitope tag	Gene/mutation	Reference
pDONOR233-hATG2A	Human ATG2A	This study
pDONOR223-hATG2B	Human ATG2B	This study
(iTAP) pMSCV-Flag-HA-ATG2A	ATG2A-WT	This study
(iTAP) pMSCV-Flag-HA-ATG2A-mLIR	ATG2A aa362-1,365 FCL/AAAAA	This study
(iTAP) pMSCV-Flag-HA-ATG2A-mYFS	ATG2A aa395-1,397 YFS/AAAAA	This study
pDEST-CMV-Myc-ATG2A-WT	ATG2A-WT	This study
pDEST-CMV-Myc-ATG2A-mLIR#1	ATG2A aa536-539 YTEI/AAAAA	This study
pDEST-CMV-Myc-ATG2A-mLIR#2	ATG2A aa926-929 FSTL/AAAAA	This study
pDEST-CMV-Myc-ATG2A-mLIR#3	ATG2A aa981-984 YFLC/AAAAA	This study
pDEST-CMV-Myc-ATG2A-mLIR#4	ATG2A aa1,092-1,095 FLDV/AAAAA	This study
pDEST-CMV-Myc-ATG2A-mLIR #5	ATG2A aa1,362-1,365 FCLI/AAAAA	This study
pDEST-CMV-Myc-ATG2B-WT	ATG2B-WT	This study
pDEST-CMV-Myc-ATG2B-mLIR#1	ATG2B aa845-848 WPRI/AAAAA	This study
pDEST-CMV-Myc-ATG2B-mLIR#3	ATG2B aa979-982 FENI/AAAAA	This study
pDEST-CMV-Myc-ATG2B-mLIR#4	ATG2B aa1,026-1,029 FSTV/AAAAA	This study
pDEST-CMV-Myc-ATG2B-mLIR#5	ATG2B aa1,306-1,309 YVRV/AAAAA	This study
pDEST-CMV-Myc-ATG2B-mLIR#6	ATG2B aa1,491-1,494 FCII/AAAAA	This study
pGEX-4T1 alone	GST only	[5]
pGEX-4T1-LC3A-ΔG	MAP1LC3A deletion of c-term Gly	[5]
pGEX-4T1-LC3B-ΔG	MAP1LC3B deletion of c-term Gly	[5]
pGEX-4T1-LC3C-ΔG	MAP1LC3C deletion of c-term Gly	[5]
pGEX-4T1-GABARAP-ΔG	GABARAP deletion of c-term Gly	[5]
pGEX-4T1-GABARAP-L1-ΔG	GABARAP-L1 deletion of c-term Gly	[5]
pGEX-4T1-GABARAP L2-ΔG	GABARAP-L2 deletion of c-term Gly	[5]
pEGFP-C1 empty	GFP only	[5]
pEGFP-C1-LC3A	GFP-tagged MAP1LC3A	[5]
pEGFP-C1-LC3B	GFP-tagged MAP1LC3B	[5]
pEGFP-C1-LC3C	GFP-tagged MAP1LC3C	[5]
pEGFP-C1-GABARAP	GFP-tagged GABARAP	[5]
pEGFP-C1-GABARAP-L1	GFP-tagged GABARAP-L1	[5]
pEGFP-C1-GABARAP-L2	GFP-tagged GABARAP-L2 (GATE-16)	[5]
pmCherry-C1-GABARAP	mCherry-tagged GABARAP	This study
pDEST-mCherry-WIPI4	mCherry-tagged WIPI4 (WDR45)	This study
pDEST-EGFP-WIPI4	GFP-tagged WIPI4 (WDR45)	This study
pMRXIP-GFP-Stx37 WT	GFP-tagged Syntaxin 17	[51]
scrapped in PBS and centrifuged at 500× g. The cells were then resuspended in PBS/6.5 mg/ml digitonin incubated for 5 min at room temperature and then for a further 30 min on ice. Samples were subsequently centrifuged at 13,000× g and the supernatant removed. The membrane fractions were then resuspended in 50 mM Tris, pH 7.5, 0.18 M sucrose. Resuspended membrane pellets were then incubated with either buffer only, buffer + 100 ng/ml proteinase K (PK) or PK + 0.1% Triton X-100 (PK+TX) for 10 min at 30°C. The reaction was stopped by addition of 3× Laemmli sample buffer and boiled at 95°C.

Cloning and plasmid generation

pDONOR-ATG2A and pDONOR-ATG2B were kind gifts from C. Behrends. These were used in conjunction with Gateway cloning system (Invitrogen) pDEST-CMV-Myc and pMSCV-Flag-HA-IRESPuro (iTAP) to generate plasmids expressing either ATG2A or ATG2B. Site-directed mutagenesis was carried out to mutate the wild-type gene for the required amino acid substitutions. For a full list of plasmids used in this study, see Table 2.

Expanded View for this article is available online.

Acknowledgements

We would like to acknowledge P. Crocker, I. Ganley, A. Gubas, I. Dikic and K. Ryan for critical reading of the manuscript and valuable insights and discussions. We are grateful to Prof. Sharon Tooze for providing a kind gift of WIPI antibodies as well as WIPI expression plasmids. The anti-LAMP-2 (H4B4) and anti-β-Myc (9E10) antibodies were obtained from the Developmental Studies Hybridoma Bank, created by the NICHD of the NIH and maintained at the University of Iowa. We gratefully acknowledge the support from ERASMUS+ for the support of MB and LvdB. This work was supported by grants from TenoVus Scotland (T16/44) and a Wellcome Trust Seed Award (202061/12/16/2).

Author contributions

MB, LVDG, NG and ND performed experiments; BAM and LR characterized ATG2 KO cells. TJM designed and synthesized CRISPR/cas9 guides; and ARP assisted in confocal imaging and prepared samples for TEM. DGM designed, performed and analysed experiments and wrote the manuscript.

Conflict of interest

The authors declare that they have no conflict of interest.

References

1. Galluzzi L, Baehrecke EH, Ballabio A, Boya P, Bravo-San Pedro JM, Cecconi F, Choi AM, Chu CT, Codogno P, Colombo MI et al (2017) Molecular definitions of autophagy and related processes. EMBO J 36: 1811 – 1836
2. Novak I, Kirkin V, McEwan DG, Zhang J, Wild P, Rozenknop A, Rogov V, Lohr F, Popovc D, Occhipinti A et al (2010) Nix is a selective autophagy receptor for mitochondrial clearance. EMBO Rep 11: 45 – 51
3. McWilliams TG, Prescott AR, Allen CF, Tamjar J, Munson MJ, Thomson C, Muqit MM, Ganley IG (2016) mito-QC illuminates mitophagy and mitochondrial architecture in vivo. J Cell Biol 214: 333 – 345
4. Wild P, Farhan H, McEwan DG, Wagner S, Rogov V, Brady NR, Richter B, Korac J, Waidmann O, Choudhary C et al (2011) Phosphorylation of the autophagy receptor optineurin restricts Salmonella growth. Science 333: 228 – 233
5. Kirkin V, Lamark T, Sou YS, Bjorkoy G, Nunn JL, Bruun JA, Shvets E, McEwan DG, Clausen TH, Wild P et al (2009) A role for NBR1 in autophagosomal degradation of ubiquitinated substrates. Mol Cell 33: 505 – 516
6. Ganley IG, du Lam H, Wang J, Ding X, Chen S, Jianguo X (2009) ULK1LATG13.FIP200 complex mediates mTOR signaling and is essential for autophagy. J Biol Chem 284: 12297 – 13205
7. Matsunaga K, Saitoh T, Tabata K, Omi H, Sato T, Kurotani N, Maejima I, Shirahama-Noda K, Ichimura T, Isobe T et al (2009) Two Beclin 1-binding proteins, Atg14L and Rubicon, reciprocally regulate autophagy at different stages. Nat Cell Biol 11: 385 – 396
8. Zhong Y, Wang QJ, Li X, Yan Y, Backer JM, Chait BT, Heintz N, Yue Z (2009) Distinct regulation of autophagic activity by Atg14L and Rubicon associated with Beclin 1-phosphatidylinositol-3-kinase complex. Nat Cell Biol 11: 468 – 476
9. Hanada T, Noda NN, Satomi Y, Ichimura Y, Fujioka Y, Takao T, Inagaki F, Ohsumi Y (2007) The Atg12-Atg5 conjugate has a novel E3-like activity for protein lipidation in autophagy. J Biol Chem 282: 37298 – 37302
10. Pankiv S, Clausen TH, Lamark T, Brech A, Bruun JA, Outzen H, Overvatn A, Bjorkoy G, Johansen T (2007) p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy. J Biol Chem 282: 24131 – 24145
11. Rogov V, Dotsch V, Johansen T, Kirkin V (2014) Interactions between autophagy receptors and ubiquitin-like proteins form the molecular basis for selective autophagy. Mol Cell 53: 167 – 178
12. Stolz A, Ernst A, Dikic I (2014) Cargo recognition and trafficking in selective autophagy. Nat Cell Biol 16: 495 – 501
13. Rogov VV, Stolz A, Ravichandran AC, Rios-Szwed DO, Suzuki H, Kniss A, Lohr F, Wakiatsu S, Dotsch V, Dikic I et al (2017) Structural and functional analysis of the GABARAP interaction motif (GIM). EMBO Rep 18: 1382 – 1396
14. Wirth M, Zhang W, Razi M, Nyoni L, Joshi D, O'Reilly N, Johansen T, Tooze SA, Mouilleron S (2019) Molecular determinants regulating selective binding of autophagy adapters and receptors to ATG8 proteins. Nat Commun 10: 2055
15. Lystad AH, Ichimura Y, Takagi K, Yang Y, Pankiv S, Kanegae Y, Kageyama S, Suzuki M, Saito I, Mizushima T et al (2014) Structural determinants in GABARAP required for the selective binding and recruitment of ALFY to LC3-positive structures. EMBO Rep 15: 557 – 565
16. Alemu EA, Lamark T, Torgersen KM, Birgisdottor AB, Larsen KB, Jain A, Olsvik H, Overvatn A, Kirkin V, Johansen T (2012) ATG8 family proteins act as scaffolds for assembly of the ULK complex: sequence requirements for LC3-interacting region (LIR) motifs. J Biol Chem 287: 39275 – 39290
17. Zhou F, Wu Z, Zhao M, Murtazina R, Cai J, Zhang A, Li R, Sun D, Li W, Zhao L et al (2019) Rab5-dependent autophagosome closure by ESCRT. J Cell Biol 218: 1908 – 1927
18. Zhou F, Zou S, Chen Y, Lipatova Z, Sun D, Zhu X, Li R, Wu Z, You W, Cong X et al (2017) A Rab5 GTPase module is important for autophagosome closure. PLoS Genet 13: e1007020
19. Weidberg H, Shvets E, Shpilka T, Shimron F, Shinder V, Elazar Z (2010) LC3 and GATE-16/GABARAP subfamilies are both essential yet act differently in autophagosomal biogenesis. EMBO J 29: 1792 – 1802
20. Weidberg H, Shpilka T, Shvets E, Abada A, Shimron F, Elazar Z (2011) LC3 and GATE-16N termini mediate membrane fusion processes required for autophagosomal biogenesis. Dev Cell 20: 444 – 454
21. Nguyen TN, Padman BS, Usher J, Oorschot V, Ramm G, Lazarou M (2016) Atg8 family LC3/GABARAP proteins are crucial for autophagosome-lysosome fusion but not autophagosome formation during PINK1/ Parkin mitophagy and starvation. J Cell Biol 215: 857 – 874
22. Fujita N, Hayashi-Nishino M, Fukumoto H, Omori H, Yamamoto A, Noda T, Yoshimori T (2008) An Atg4B mutant hampers the lipidation of LC3 paralogues and causes defects in autophagosome closure. Mol Biol Cell 19: 4651 – 4659
23. Takahashi Y, He H, Tang Z, Hatton T, Liu Y, Young MM, Serfass JM, Chen L, Gebru M, Chen C et al (2018) An autophagy assay reveals the ESCRT-III component CHMP2A as a regulator of phagophore closure. Nat Commun 9: 2855
24. Romanyuk D, Polak A, Maleszewska A, Sienko M, Grynberg M, Zoladek T (2011) Human hAtg2α protein expressed in yeast is recruited to preautophagosomal structure but does not complement autophagy defects of atg2Δ strain. Acta Biochim Pol 58: 365 – 374
25. Kotani T, Kirisako H, Koizumi M, Ohsumi Y, Nakatogawa H (2018) The Atg2-Atg18 complex tethers pre-autophagosomal membranes to the endoplasmic reticulum for autophagosome formation. Proc Natl Acad Sci USA 115: 10363 – 10368
26. Obara K, Sekito T, Niimi K, Ohsumi Y (2008) The Atg18-Atg2 complex is recruited to autophagic membranes via phosphatidylinositol 3-phosphate and exerts an essential function. J Biol Chem 283: 23972 – 23980
27. Proikas-Cezanne T, Waddell S, Gaugel A, Frickey T, Lupas A, Nordheim A (2004) WIPI1-alpha (WIPI19) is a member of the novel 7-bladed WIP1-like protein family, is aberrantly expressed in human cancer and is linked to starvation-induced autophagy. Oncogene 23: 9314 – 9325
28. Polson HE, de Larigue J, Rigden DJ, Reedijk M, Urbe S, Clague MJ, Tooze SA (2010) Mammalian Atg18 (WIPI2) localizes to omegasome-anchored phagophores and positively regulates LC3 lipidation. Autophagy 6: 506 – 522
29. Bakula D, Muller AJ, Zuleger T, Takacs F, Franz-Wachtel M, Thost AK, Brigger D, Tschan MP, Frickey T, Robenek H et al (2017) WIPI3 and WIPI4 beta-propellers are scaffolds for LX81-AMPK-TSC signalling circuits in the control of autophagy. Nat Commun 8: 15637
30. Zheng JX, Li Y, Ding YH, Liu JJ, Zhang MJ, Dong MQ, Wang HW, Yu L (2017) Architecture of the ATG2B-WDR45 complex and an aromatic V/HF motif crucial for complex formation. Autophagy 13: 1870 – 1883
31. Chowdhury S, Otomo C, Leitner A, Ohashi K, Aebersold R, Lander GC, Otomo T (2018) Insights into autophagosomal biogenesis from structural and biochemical analyses of the ATG2A-WIPI4 complex. Proc Natl Acad Sci USA 115: E9792 – E9801
32. Kishi-Itakura C, Koyama-Honda I, Itakura E, Mizushima N (2014) Ultrastructural analysis of autophagosome organization using mammalian autophagy-deficient cells. J Cell Sci 127: 4089 – 4102
33. Velikkakath AK, Nishimura T, Oita E, Ishihara N, Mizushima N (2012) Mammalian Atg2 proteins are essential for autophagosome formation and important for regulation of size and distribution of lipid droplets. Mol Biol Cell 23: 896 – 909
34. Noda NN, Ohsumi Y, Inagaki F (2010) Atg8-family interacting motif crucial for selective autophagy. FEBS Lett 584: 1379 – 1385
35. Johansen T, Lamark T (2011) Selective autophagy mediated by autophagosome proteins. Autophagy 7: 279 – 296
36. Rozenknop A, Rogov WV, Rogova NV, Lohr F, Guntert P, Dikic I, Dotsch V (2011) Characterization of the interaction of GABARAPL-1 with the LIR motif of NBR1. J Mol Biol 410: 477 – 487
37. Wu F, Watanabe Y, Guo XY, Qi X, Wang P, Zhao HY, Wang Z, Fujikyo Y, Zhang H, Ren JQ et al (2015) Structural basis of the differential function of the Two C. elegans Atg8 homologs, LGG-1 and LGG-2, in autophagy. Mol Cell 60: 914 – 929
38. Behrends C, Sowa ME, Gygi SP, Harper JW (2010) Network organization of the human autophagy system. Nature 466: 68 – 76
39. Kalvari I, Tsompanis SI, Mulakkal KC, Osgood R, Johansen T, Nezis IP, Promponas VJ (2014) iLIR: a web resource for prediction of Atg8-family interacting proteins. Autophagy 10: 913 – 925
40. Popelka H, Klionsky DJ (2015) Analysis of the native conformation of the LIR/AIM motif in the Atg8/LC3/GABARAP-binding proteins. Autophagy 11: 2153 – 2159
41. Jacomin AC, Samavедam S, Charles H, Nezis IP (2017) iLIRviral: a web resource for LIR motif-containing proteins in viruses. Autophagy 13: 1782 – 1789
42. Sudhakar P, Jacomin AC, Hautefort I, Samavendam S, Fatemian K, Ari E, Gul L, Demeter A, Jones E, Korcsmaros T et al (2019) Targeted interplay between bacterial pathogens and host autophagy. Autophagy 15: 1620 – 1633
43. Birgisdottir AB, Mouilleron S, Bhujabal Z, Wirth M, Sjöttom E, Eijgen V, Zhang W, Lee R, O’Reilly N, Tooze SA et al (2019) Members of the autophagy class III phosphatidylinositol 3-kinase complex I interact with GABARAP and GABARAPL3 via LIR motifs. Autophagy 15: 1333 – 1355
44. Jatana N, Ascher DB, Pires DE, Gokhale RS, Thukral L (2019) Human LC3 and GABARAP subfamily members achieve functional specificity via specific structural modifications. Autophagy 16: 299 – 255
45. Kimura S, Noda T, Yoshimori T (2007) Dissection of the autophagosome maturation process by a novel reporter protein, tandem fluorescent-tagged LC3. Autophagy 3: 452 – 460
46. Tamura N, Nishimura T, Sakamaki Y, Koyama-Honda I, Yamamoto H, Mizushima N (2017) Differential requirement for ATG2A domains for localization to autophagic membranes and lipid droplets. FEBS Lett 591: 3819 – 3830
47. Klionsky DJ, Abdelmohsen K, Abe A, Abedin MJ, Abeliovich H, Acevedo-Arozena A, Adachi H, Adams CM, Adams PD, Adeli K et al (2016) Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy 12: 1 – 222
48. Tang Z, Takahashi Y, Chen C, Liu Y, He H, Tsotakos N, Serfass JM, Gebru MT, Chen H, Young MM et al (2017) Atg2A/B deficiency switches cyto-protective autophagy to non-canonical caspase-8 activation and apoptosis. Cell Death Differ 24: 2127 – 2138
49. Takats S, Pirics K, Nagy P, Varga A, Karpati M, Hegedus K, Kramer H, Kovacs AL, Sass M, Juhasz G (2014) Interaction of the HOPS complex with Syntaxin 17 mediates autophagosome clearance in Drosophila. Mol Biol Cell 25: 1338 – 1354
50. Hamasaki M, Furuta N, Matsuda A, Nezu A, Yamamoto A, Fujita N, Oomori H, Noda T, Haraguchi T, Hiraoka Y et al (2013) Autophagosomes form at ER-mitochondria contact sites. Nature 495: 389 – 393
51. Itakura E, Kishi-Itakura C, Mizushima N (2012) The hairpin-type tail-anchored SNARE syntaxin 17 targets to autophagosomes for fusion with endosomes/lysosomes. Cell 151: 1256 – 1269
52. Takahashi Y, Liang X, Hatton T, Tang Z, He H, Chen H, Liu X, Abrahams T, Imamura-Kawasawa Y, Buchkovich NJ et al (2019) VPS37A directs ESCRT recruitment for phagophore closure. J Cell Biol 218: 3336 – 3354
53. Stanga D, Zhao Q, Milev MP, Saint-Dic D, Jimenez-Mallebrera C, Sacher M, Terzic S, Papinski D, Rieter E, Geerts WJ, Hardenberg R, Kraft C, Ungermann C et al (2018) Atg9...
establishes Atg2-dependent contact sites between the endoplasmic reticulum and phagophores. J Cell Biol 217: 2743 – 2763
55. Osawa T, Kotani T, Kawaoka T, Hirata E, Suzuki K, Nakatogawa H, Ohsumi Y, Noda NN (2019) Atg2 mediates direct lipid transfer between membranes for autophagosome formation. Nat Struct Mol Biol 26: 281 – 288
56. Valverde DP, Yu S, Boggavarapu V, Kumar N, Lees JA, Walz T, Reinisch KM, Melia TJ (2019) ATG2 transports lipids to promote autophagosome biogenesis. J Cell Biol 218: 1787 – 1798
57. Tang Z, Takahashi Y, He H, Hattori T, Chen C, Liang X, Chen H, Young MM, Wang HG (2019) TOM40 targets Atg2 to mitochondria-associated ER membranes for phagophore expansion. Cell Rep 28: 1744 – 1757 e5
58. Kumar N, Leonzino M, Hancock-Cerutti W, Horenkamp FA, Li P, Lees JA, Wheeler H, Reinisch KM, De Camilli P (2018) VPS13A and VPS13C are lipid transport proteins differentially localized at ER contact sites. J Cell Biol 217: 3625 – 3639
59. Ran FA, Hsu PD, Wright J, Agarwala V, Scott DA, Zhang F (2013) Genome engineering using the CRISPR-Cas9 system. Nat Protoc 8: 2281 – 2308
60. McEwan DG, Popovic D, Gubas A, Terawaki S, Suzuki H, Stadel D, Coxon FP, Miranda de Stengmann D, Bhogaraju S, Maddi K et al (2015) PLEKHM1 regulates autophagosome-lysosome fusion through HOPS complex and LC3/GABARAP proteins. Mol Cell 57: 39 – 54
61. Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C, Saalfeld S, Schmid B et al (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods 9: 676 – 682

License: This is an open access article under the terms of the Creative Commons Attribution 4.0 License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.