Further insights into the discoloration of TATB under ionizing radiation

Dan Lewis \(^{a,b}\), James Padfield\(^{b}\), Scott Connors\(^{a}\), Ian Wilson\(^{b}\), and Jacqueline Akhavan\(^{b}\)

\(^{a}\)Explosives Materials and Initiation Science Group, AWE Plc, Aldermaston, Reading, UK; \(^{b}\)Centre of Defence Chemistry, Cranfield University, Defence Academy of the UK, Shrivenham, UK

ABSTRACT

To determine degradation products formed by exposure of TATB to ionizing radiation, a computational and experimental study is presented. Thermochemical and spectral data have been calculated using DFT at the MH06-HF/aug-cc-pVTZ level which suggest the formation of the cation radical derivative of TATB. Irradiated TATB samples showed the widely reported yellow-to-green discoloration, with measured CIE L*, a*, b* and RGB values correlating with total dose. Trace quantities of a mono-furazan derivative were detected by HPLC-MS; the discoloration is not attributed to this, but rather to the presence of a paramagnetic species (i.e., the cation), as detected by ESR measurements. Recrystallized irradiated TATB samples reverted to their original color, further suggesting it is the cation radical that is responsible for color change.

KEYWORDS

TATB; radiation; DFT; explosives; sensitiveness

Introduction

TATB (1,3,5-Triamino, 2,4,6-trinitrobenzene) has received significant attention since its discovery mainly due to its comparative insensitivity, but also due to an optical phenomenon where the material alters color from yellow to green upon exposure to radiation (Avrami 1980; Britt et al. 1981; Connors 2014; Firsichand and Guse 1984; Golubev 2010; Manaa et al. 2002; Skidmore et al. 1998; Tian et al. 2017; Xiong et al. 2014). There have been several works looking at the source and the consequence of this change to the material, with three key decomposition products being reportedly responsible, namely the mono-furazan (Connors 2014), mono-nitroso (Manaa et al. 2002) and mono-phenoxyl radical (Xiong 2014) derivatives. In order to elucidate the cause of the discoloration, and ultimately the effect that ionizing radiation has upon the material, a joint computational and experimental study has been undertaken.

Computational Thermodynamics

The available literature was reviewed and, by its consideration, a selection of possible decomposition products resultant from the ionization of TATB was derived. Additional molecules were also added where no literature evidence was available, if their generation was thought to be credible. The resultant decomposition map is shown in Figure 1.

Each molecule within the decomposition map was optimized and analyzed vibrationally at the unrestricted Density Functional Theory (DFT) MH06-HF level of theory with the augmented triple-zeta correlation-consistent basis set, aug-cc-pVTZ. All calculations were undertaken with the Gaussian 16a.03 software (Frisch et al. 2016). All optimizations were achieved at the ‘very tight’ criteria and no negative frequencies were observed during the subsequent vibrational analysis of the molecules, indicating a global minimum on the potential energy surface.
The thermodynamics resultant from the vibrational analysis of each molecule were then interrogated to provide an insight into the energetically favorable decomposition pathways TATB may follow upon irradiation (Ochterski 2000). Consideration was made as to the electronic state of the molecules within the decomposition pathways; for example, ionized TATB was analyzed as a cation radical, i.e., as a double state with a charge of +1. In cases where fragmentation occurs, it is not known which species will remain ionic, as charge must be conserved. In such instances, all fragments were considered in every perceivable electronic state, in order to ascertain which is the most favorable fragmentation mechanism (Nguyen Vana et al. 2015).

In an attempt to improve the accuracy of the computational investigation, an implicit solvent method (polarizable continuum model) was employed to approximate the solid state; gas phase calculations were also undertaken as a comparison.

Ground state TATB was also considered computationally alongside its cation radical equivalent, affording a value of the ionization potential and its equivalent wavelength, derived using the Planck–Einstein relationship. This is presented in Table 1.

The calculated ionization potentials suggest that the energy required to ionize TATB is within the mid ultraviolet range, indicating that the material behavior under UV light will likely be similar to that of higher incident energies. This is perhaps unsurprising considering the reported discoloration of TATB, from UV, X-ray, and gamma ray sources. Consideration of the thermodynamics of the

Phase	E_1 (eV)	λ (nm)
Gas	9.56	129.71
Solid	8.01	154.81

Figure 1. Purported degradation products of TATB.
decomposition pathways suggested that six subsets of the twenty initial pathways were energetically favorable, these are detailed within Table 2 and shown in Figure 2.

Of the six energetically favorable pathways, only paths E, G, R, and O are credible due to a lack of energetically favorable preceding reactions for the remaining pathways. This suggests that a mono-furazan, di-furazan, mono-nitrite cation radical and mono-phenoxyl radical are potential decomposition products of ionized TATB.

Table 2. Calculated thermodynamic favorable properties for TATB degradation.

Pathway	Gas phase ΔH_f (kJ/mol)	Gas phase ΔG (kJ/mol)	Solid phase ΔH_f (kJ/mol)	Solid phase ΔG (kJ/mol)
E	-7.14	-48.97	-22.67	-68.01
G	-225.49	-240.15	-219.46	-231.90
K	36.33	-6.81	15.67	-26.02
L	-34.27	-37.07	-23.35	-25.55
O	-5.46	-49.16	-10.70	-54.24
R	9.22	-22.35	4.76	-28.75

Figure 2. Thermodynamically favorable decomposition products.

decomposition pathways suggested that six subsets of the twenty initial pathways were energetically favorable, these are detailed within Table 2 and shown in Figure 2.

Of the six energetically favorable pathways, only paths E, G, R, and O are credible due to a lack of energetically favorable preceding reactions for the remaining pathways. This suggests that a mono-furazan, di-furazan, mono-nitrite cation radical and mono-phenoxyl radical are potential decomposition products of ionized TATB.

Irradiation Experiments

Pressed discs of TATB (Type B batch AD/5/101, as provided by AWE Plc. with no binder), were irradiated to a total dose (equivalent to water) of 50, 100, 200, and 400 kGy, at a dose rate of 1.8 kGy hr$^{-1}$ using the 1.17 and 1.33 MeV quanta from a cobalt-60 source. As expected, when compared to the baseline material, a significant color change that correlated with total dose resulted, as shown in Figure 3.
Color Measurement Experiments

The color change of the irradiated TATB was quantified using a PCE Instruments color meter, and CIE L*, a* and b* values were recorded. The L* and b* values, indicating a color change from lighter to darker (decreasing L*), and toward green (decreasing b*), showed a good correlation with total dose, as shown in Figure 4; a* values remained essentially constant.

In addition, the UV-vis reflectance properties of the irradiated samples were measured against a Spectralon® reflectance standard using a Thermo Scientific Evolution 220 UV-Visible Spectrophotometer.

The UV/Vis reflectance spectra were converted to CIE RGB values using the technique described by Williams et al. (2007). As with the L* and b* values, good correlation of the R, G, and B values with radiation dose were obtained (Figure 5).

Both techniques, use of a color meter to measure CIE L* a* and b*, or measurement of UV/Vis reflectance with a spectrometer and subsequent conversion to CIE RGB values, have been demonstrated to be effective methods for estimating with good accuracy the total radiation dose received by sample of TATB.

The reflectance spectra was also converted to absorbance (Figure 6 – colored according to RGB values) which agreed with that observed by Xiong et al. (2014) who saw a similar growth in the red absorption area of the spectra as a function of exposure time from a UV source. Absorptions below 300 nm are believed to be minimal; however, the image suggests that they are significant due to scattering of the low wavelength light and the conversion to absorbance from reflectance.

Other Experimental Analysis

Samples of baseline (a), 10 (b), 50 (c) and 100 (d) kGy gamma-irradiated TATB were submitted for HPLC analysis, which showed a peak eluting at approximately 1.074 min that was not in the baseline sample, as shown in Figure 7.

In agreement with the UV/Vis results, the area of the additional peak also correlated with the total dose as shown in Figure 8.

Negative electrospray mass spectroscopy was undertaken on the eluate from the additional peak, where a species with neutral atomic mass of 240, 18 less than TATB was identified, as shown in Figure 9.

The species was attributed to a loss of water from TATB and the subsequent generation of a mono-furazan derivative of TATB, as shown in Figure 2, resultant from path E.
Samples of irradiated TATB were submitted for thermal analysis by differential scanning calorimetry (2°C per minute) which yielded a marked change in the thermal behavior of the decomposition peak. An example of 400 kGy irradiated TATB is shown in Figure 10, however a correlation with dose could not be ascertained, attributed to sampling variability. A sample of 120 day UV irradiated TATB, which showed the greatest decoloration of all available samples was also run showing the most altered thermal behavior.

Where sample availability permitted (0, 50, and 200 kGy), the sensitiveness to impact of the irradiated samples was assessed by a 10 shot Langlie Rotter impact test (STANAG 4489). A marked increase in the sensitiveness to impact was noted from the Rotter results as detailed in Table 3.

Electron spin resonance analysis was undertaken on baseline, 50, 100, 200, and 400 kGy irradiated specimens approximately 7 years after the initial irradiation took place. All samples, including the baseline, produced a non-complex spectra as shown in Figure 11, similar to that observed by Tian et al. (2017) and Britt et al. (1981). As with the UV/Vis and HPLC-MS analysis, the strength of the signal appeared to correlate linearly with the total absorbed dose.
The ESR results suggest that a radical species is present within the material and is particularly long lived. Up until this piece of evidence, the discoloration had been attributed to the mono-furazan; however, the molecule does not have any unpaired spin and would therefore not yield an ESR signal. The signal itself is non-complex and is typical of signals seen in the solid state where hyperfine coupling is lost due to degeneracy, therefore little to no chemical information could be ascertained from the signal other than the fact that a radical is present in the irradiated, but also the baseline material. The small, almost unobservable, signal in the baseline material is attributed to laboratory exposure to sunlight causing small ionizations.

Additional Investigations

Investigations continued in the attempted synthesis of the mono-furazan derivative of TATB, with the ultimate aim of positive confirmation of the HPLC results. Synthesis was successful (Entwhistle 2018) and a pure sample isolated and confirmed by NMR analysis. However, the
resultant material, dissolved in DMSO, was a ‘deep red-orange’ color and not blue, indicating that the molecule is not responsible for the widely reported discoloration of TATB. As a further observation, the material appears to be unstable and decomposes readily, possibly to the difurazan derivative which is energetically favorable, but this is still to be confirmed. Unfortunately, the synthetic product was produced at a different site to where the irradiated TATB samples were kept and the sample would decompose before transport could be completed, affording no comparative HPLC analysis.

Synthesis of the mono-nitroso derivative was also performed successfully, resulting in an off-yellow/green product that was markedly less green than even the most mildly irradiated specimen at
Figure 8. Peak area correlated radiation dose.

Figure 9. Mass spectra of 1.074 min elute.
Figure 10. DSC thermograms.

Table 3. Small-scale hazard properties.

Dose (kGy)	Rotter–Langlie (F of I)
0	165
50	141
200	87

Figure 11. Measured ESR spectra.
50 kGy, suggesting that this was also not the cause of the discoloration, this was later supported by DSC analysis.

These results coupled with the ESR signal began to suggest that the discoloration of TATB may be attributed to a paramagnetic species rather than the mono-furazan or mono-nitroso species. This agrees with Xiong’s (Xiong et al. 2014) suggestion that a phenoxyl derivative could be the cause of the discoloration. However, the computational investigation suggested that in the case of the nitrite cation derivative fragmenting, the energetically favorable path results in the phenoxyl derivative remaining positively charged and therefore would not give rise to a signal in an EPR spectrometer.

Despite this, further computational calculations were undertaken on all species within Scheme 1 in all possible electronic states in order to identify the potential source of the discoloration. Time Dependant DFT (TD-DFT) at the MH06-HF level of theory was used along with the same basis set as the thermodynamic study. In order to generate a sufficiently detailed spectra the first 50 singlet and first 50 triplet excitations were calculated, which provided a predicted UV-Vis response of each molecule. In addition, the electrostatic properties of any paramagnetic species were also achieved at the same level of theory, but by utilizing the EPR-II basis set required for such calculations.

Interestingly at this particularly high level of theory and basis set, neither the mono-nitroso, mono-furazan, or the mono-phenoxyl radical produced a UV-Vis spectrum that was comparable to that observed experimentally, as shown in Figure 6. This disagrees with that observed by Xiong et al. (2014) for the phenoxyl radical derivative; however, those calculations were undertaken with a much less complex basis set and hybrid functional of DFT.

Only one of the species from Figure 2 showed a UV-Vis spectrum that was comparable to that seen experimentally, this was the cationic radical derivative of TATB. The resultant computational spectra is shown in Figure 12, where strong absorptions in the 600–650 nm region can be seen. This suggests that light reflected from the cation derivative of TATB will be comparatively deficient in red light, making the material appears blue/green.

Calculation of the electrostatic properties of the cationic radical derivative of TATB yielded hyperfine coupling that, along with the electron density of the molecule, strongly suggested that the radical is carbon centered, sitting beneath one of the nitro, rather than amine, groups on the molecule. The radical appears to couple strongly to the adjacent nitrogen of the nitro group, which twists out of plane when compared to ground state TATB. The hyperfine coupling between the

![Figure 12. UV-Vis absorption properties of irradiated TATB.](image-url)
radical and the adjacent nitrogen can be visualized within Figure 13 (Biternas, Charnock, and Kuprov 2014), by the orange mesh, where the twist can also be observed.

The calculated hyperfine coupling and g tensors were passed through EasySpin (Stoll and Schweiger 2005), in order to provide a calculated ESR spectra as shown in Figure 14. Once anisotropy was removed, the resultant spectra consists of three peaks which is typical for an unpaired electron coupling with a nitrogen atom. Coupling to other atoms, such as hydrogens, was negligible.

In an effort to investigate further, and also consider the possibility that the discoloration may be due to structural effects, recrystallization of the most heavy gamma irradiated and discolored sample of TATB was attempted. 460 mg of the 400 kGy gamma irradiated TATB was dissolved in DMSO at 80°C for 1 h. Once in solution, a marked color change was observed from green to yellow across a period of 30 min.

The solution was crash precipitated into water, where a white/yellow precipitate was recovered. As analysis by DSC and ESR had proven to be the most sensitive technique on irradiated specimens, the recovered product was analyzed by these methods where it appeared indistinguishable from baseline TATB.
The recrystallization was repeated under inert (nitrogen) atmosphere with a 42.82 mg sample of TATB that had been UV irradiated for 120 days. This material was selected as it was the most discolored sample of TATB available. As shown in Figure 15, the same color change of a deep green/black to yellow was observed, requiring a longer period of approximately 2 h to complete. A yellow precipitate was successfully recovered after the addition of water, sodium chloride, and magnesium sulfate. The recovered material was washed copiously with water to remove traces of the salts, and a final recovered mass was measured at 42.86 mg indicating full recovery at 100.09 ± 0.29% yield.

Discussion

Through the experimental and computational investigations, it is suggested that the paramagnetic cation radical derivative of TATB is responsible for the discoloration observed within irradiated material. The discoloration and radical concentration appear to correlate linearly with dose, which is perhaps unsurprising as samples were exposed to a constant dose rate. This linearity alongside the strong ESR signal observed up to 8 years after the initial irradiation suggests that the radical is particularly long lived which is likely due to stabilization born through aromatic resonance, a known phenomenon that imbues a material with resistance to radiation.

It is this stabilization that is believed to be the cause of the discrepancy between the observed and predicted ESR spectra. Where the computational spectra has been generated by a fixed radical location, it is likely that practically the radical will be delocalized through the molecule by means of this resonance, causing degeneracy in the measured ESR spectra.
It is thought that in the solid state, electrons or rather a deficiency of electrons are likely to be shared across molecules, much like a semi-conductor. Tian et al. (2017) suggested in their research that the discoloration was resultant from changes in the crystalline structure of TATB. However, in a phenomenon also widely observed with the irradiation of gemstones (Ashbaugh 1988), it is

Figure 15. Recrystallization of UV irradiated TATB.
thought that the irradiation simply alters the color center of the crystal. Through irradiation, the color center responsible for the widely reported discoloration of TATB is now believed to be the cationic derivative of TATB, rather than changes to the crystal structure. This color center is blue in nature and mixes with the yellow color center of unaltered TATB. This yields the widely reported discoloration, which appears to correlate with dose, as well as with the concentration of the paramagnetic species, observed through ESR measurements.

The lack of an electron on a TATB molecule is likely to cause a reduction in its stability, as it is electronically unbalanced. It is hypothesized that it is for this reason that there is an increase in the sensitiveness to impact and the altered DSC thermograms, alongside the aforementioned optical properties.

The recrystallization study does suggest that the effects that irradiation has on TATB may be reversed, as shown by the change in color from green to yellow and the reversal of the altered thermal properties, determined by DSC and lack of an ESR signal. It is suggested that the cation radical TATB derivative is stable in the solid state and further decompositions, such as those that appear to be energetically favorable from the computational investigation, do not occur. However, once the material is no longer in the solid state, it is free to react, by either further decomposition to the mono-furazan or mono-phenoxyl radical, or by capturing unbound electrons to re-form the parent TATB. The probability of each occurring is described by their thermodynamics, but it is significantly more favorable for TATB to reform compared to further decomposition. It is for this reason that it appears that the damage caused by irradiation may be reversed, whilst trace quantities of decomposition products are detected by HPLC.

The authors would like to acknowledge the funding provided by AWE Plc. and Cranfield University in support of this work, as well as the help of Dr. Nathalie Mai for the HPLC analysis, Dr. Nathan Flood for his support to the irradiation experiments and ESR analysis, Mr. Gary Wright for the management of the JJT laboratory at Cranfield University, and Professor Malcolm Cook for his support with the computational chemistry.

ORCID

Dan Lewis http://orcid.org/0000-0002-8303-1894

References

Ashbaugh, C. E., III. 1988. Gemstone irradiation and radioactivity. Gems & Gemology, Gemological Institute of America 24 (4, Winter):196–213. ISSN 0016-626X. doi:10.5741/GEMS.24.4.196.
Avrami, L. 1980. Radiation effects on explosives, propellant and pyrotechnics. Encyclopaedia of Explosives and Related Items 9:2700.
Biternas, A. G., G. T. P. Charnock, and I. Kuprov. 2014. A standard format and a graphical user interface for spin system specification. Journal of Magnetic Resonance 240:124–31. doi:10.1016/j.jmr.2014.01.004.
Britt, A. D., W. B. Moniz, G. C. Chingas, D. W. Moore, C. A. Heller, and C. L. Ko. 1981. Free radicals of TATB. Propellants and Explosives 6:94, 95. doi:10.1002/prep.19810060403.
Connors, S. C. 2014. The effects of gamma radiation on a PBX containing TATB and the fluoropolymer FK-800. PhD thesis, Cranfield University.
Entwhistle, C. 2018. Synthesis of mono-furazan derivative of TATB. Unpublished results, Atomic Weapons Establishment Plc., Apr.
Firsichand, D. W., and M. P. Guse. 1984. On the photochemical phenomenon inTATB. Journal of Energetic Materials 2 (3):205–14. doi:10.1080/07370658408012334.
Frish, M. J., G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, et al. 2016. Gaussian 16, Revision a.03. Dec.
Golubev, V. 2010. Effect of electronic excitation and ionization on decomposition mechanisms of 1,3,5-triamino-2,4,6-trinitrobenzene molecules. New Trends in research of Energetic Materials – NTREM. Apr.
Manaa, M. R., R. D. Schmidt, G. E. Overturf, B. E. Watkins, L. E. Fried, and J. R. Kolb. 2002. Towards unravelling the photochemistry of TATB. Thermochimica Acta 3 (84):85–90. doi:10.1016/S0040-6031(01)00779-1.
Nguyen Vana, B., E. V. Nikolaevab, A. G. Shamovb, G. M. Khrapkovskiia, and R. V. Tsyehevsky. 2015. Exploration of decomposition pathways of 2,4,6-trinitrotoluene (TNT) radical ions by means of density functional theory. *International Journal of Mass Spectrometry* 392:7–15. doi:10.1016/j.ijms.2015.08.016.

Ochterski, J. 2000. Thermochemistry in Gaussian. *Software*. Gaussian, Inc., June.

Skidmore, C., D. Idar, G. Buntain, S. Son, and R. Sander. 1998. Ageing and PBX 9502. Tech. Rep. Los Alamos National Laboratory.

STANAG 4489 EXPLOSIVES, IMPACT SENSITIVITY TESTS, NATO, September 1999.

Stoll, S., and A. Schweiger. 2005. EasySpin, a comprehensive software package for spectral simulation and analysis in EPR. *Journal of Magnetic Resonance* 178:42–55. Sept. Version 5. 2.25. doi:10.1016/j.jmr.2005.08.013.

Tian, X., X. Wang, K. Yu, J. Sun, and D. Xiao. 2017. A new insight to the color change phenomenon of TATB: Structural color. *Propellants, Explosives and Pyrotechnics* 42 (11):1247–51. doi:10.1002/prep.v42.11.

Williams, D. L., T. J. Flaherty, C. L. Jupe, S. A. Coleman, K. A. Marquez, and J. J. Stanton. 2007. Beyond \(\lambda \)max: Transforming visible spectra into 24-bit color values. *Journal of Chemical Education* 84 (11):1873. doi:10.1021/ed084p1873.

Xiong, Y., J. Liu, F. Zhong, T. Xu, and K. Cheng. 2014. Identification of the free radical produced in the photolysis of 1,3,5-Triamino-2,4,6-trinitrobenzene (TATB). *The Journal of Physical Chemistry* 118 (34):6858–63. doi:10.1021/jp5029867.