Concrete categories and higher-order recursion

With applications including probability, differentiability, and full abstraction

Cristina Matache†‡, Sean Moss† and Sam Staton†

LICS 2022

†University of Oxford and ‡University of Edinburgh
Modelling higher-order programs with recursion

Model

- Cartesian closed category (CCC) — higher-order functions
- Partiality monad, L — recursion
- Interpretation:
 Type \leftrightarrow Object
 Program \leftrightarrow Partial morphism with admissible domain

Examples:
1. Probabilistic programming [Heunen et al.’17, Vákár et al.’19]
2. Differentiable programming [Huot et al.’20, Vákár’20]
3. Full abstraction for a sequential language [O’Hearn & Riecke’95], [Matache, Moss, Staton, FSCD’21]
Goal of this work

The examples all model higher-order recursion using the same recipe

1. Probabilistic programming
2. Differentiable programming
3. Full abstraction for a sequential language

Main Theorem (Adequacy)

We build an adequate model of higher-order recursion as a category of concrete sheaves.

Each example is a special case + some domain specific work.

Concreteness: types = sets with structure, terms = structure preserving functions.
Categories of concrete sheaves $\text{ConcSh}(\mathbb{C}, J)$

[Concrete quasitopoi, Dubuc’77]

[Convenient categories of smooth spaces, Baez & Hoffnung’11]

$(\mathbb{C}, J) =$ site of the sheaf category

$\mathbb{C} =$ small (well-pointed) category; models first-order computation

- concrete presheaves on \mathbb{C} model higher-order computation
- restricting to concrete sheaves for a coverage J on \mathbb{C} changes the colimits, e.g. $[\text{nat}]$ is the coproduct $\sum_{\mathbb{N}} 1$

Concrete sheaf $X =$ set $|X|$ + sets of functions into $|X|$ + some conditions

(1) Probability: sets of random elements $\mathbb{R} \to |X|$
(2) Differentiability: sets of smooth plots $\mathbb{R}^n \to |X|$
(3) Sequentiality: logical relations on $|X|$.
Partiality monad L on $\text{ConcSh}((\mathcal{C}, J))$

Theorem

Starting with a class of admissible monos \mathcal{M} in the site (\mathcal{C}, J) we can construct a lifting monad L on $\text{ConcSh}((\mathcal{C}, J))$.

Proof sketch:

- From \mathcal{M} we obtain a dominance Δ in $\text{Sh}((\mathcal{C}, J))$ (in the sense of synthetic domain theory e.g. [Rosolini’86])
- Δ classifies the admissible domains of partial maps
- From the dominance Δ we construct L [Mulry’94, Fiore&Plotkin’97].
Main theorem

ConcSh(\(\mathbb{C}, J\)) with \(L\) will not in general admit a fixed point theorem.

Consider the partial order \(V = [0 \leq 1 \leq \ldots \leq \infty]\) and combine with \(\mathbb{C}\) \(X\) in ConcSh(\(\mathbb{C} + \{V\}, J\)) has a set of completed chains \(X(V) \subseteq [V \to |X|]\) \(\implies\) FP theorem in ConcSh(\(\mathbb{C} + \{V\}, J\)) see also [Fiore & Rosolini’97, ’01], [Fiore & Plotkin’97]

Main Theorem (Adequacy)

ConcSh(\(\mathbb{C} + \{V\}, J\)) with \(L\) is an adequate model for call by value PCF.

Example: the \(\omega\text{Qbs}\) model of probabilistic computation

\[
\begin{array}{cccc}
L & \subset & \omega\text{Qbs} & \xrightarrow{F} & \text{ConcSh}(Sbs + \{V\}, J) & \ni L \\
\text{[-]} & \ni & \mathcal{L} & \ni & \text{[-]} & \\
\end{array}
\]
We built an **adequate concrete sheaf** model of **higher-order recursion**.

Examples that are an instance of this construction:

1. Probabilistic programming
2. Differentiable programming
3. Full abstraction for a sequential language

Expect more examples in the future

e.g. piecewise differentiability [Lew et al.’21]