Endogenous CRISPR-Cas System-Based Genome Editing and Antimicrobials: Review and Prospects

Yingjun Li* and Nan Peng*

State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China

CRISPR-Cas systems adapt “memories” via spacers from viruses and plasmids to develop adaptive immunity against mobile genetic elements. Mature CRISPR RNAs guide CRISPR-associated nucleases to site-specifically cleave target DNA or RNA, providing an efficient genome engineering tool for organisms of all three kingdoms. Cas9, Cas12, and Cas13 are single proteins with multiple domains that are the most widely used CRISPR nucleases of the Class 2 system. However, these CRISPR endonucleases are large in size, leading to difficulty for manipulation and toxicity for cells. Most archaeal genomes and half of the bacterial genomes encode different types of CRISPR-Cas systems. Therefore, developing endogenous CRISPR-Cas systems-based genome editing will simplify manipulations and increase editing efficiency in prokaryotic cells. Here, we review the current applications and discuss the prospects of using endogenous CRISPR nucleases for genome engineering and CRISPR-based antimicrobials.

Keywords: endogenous CRISPR-Cas system, genome editing, antimicrobials, phage therapy, Mycobacterium tuberculosis

INTRODUCTION

Site-specific nucleases which can introduce targeted DNA double-strand break (DSB) are employed for genome editing, facilitating the identification, characterization, and modification of important genetic element in the study of biological processes. Three kinds of designer nucleases have been used for targeted DNA DSB formation: zinc finger nuclease (ZFN), transcription activator-like effector nuclease (TALEN), and clustered regularly interspaced short palindromic repeat-associated (CRISPR-Cas) system. The first two nucleases are protein-driven genome editors (Kim et al., 1996; Moscou and Bogdanove, 2009), while the CRISPR-Cas system is a RNA-guided genome editing system (Barrangou et al., 2007). Currently, CRISPR-Cas9 and CRISPR-Cas12a (formerly called Cpf1) systems from bacteria have been developed as efficient genetic manipulation tools for a wide range of species in three domains of life (Doudna and Charpentier, 2014; Shalem et al., 2014; Zetsche et al., 2017). Although the heterogenous CRISPR-Cas system based-tools such as Cas9 and Cpf1 show high genome editing efficiency, they also have many limitations. For example, the intracellular environment and living conditions may affect the activity of the commonly used CRISPR
nucleases in some extremophile organisms. Moreover, either heterologous Cas9 or Cpf1 is difficult to introduce into some bacteria and archaea due to their intrinsic protein toxicity (Zhang et al., 2018). Notably, a better strategy for genome editing in prokaryotes that already carry an active CRISPR-Cas system of DNA cleavage is to utilize their endogenous CRISPR-Cas systems.

Endogenous CRISPR-Cas system-based genetic tools can be used for several purposes: prokaryotic genome engineering, mobile genetic element engineering, as well as the antimicrobials against pathogens and microorganisms carrying antibiotic resistance genes. In this review, we introduce basic concept and principle of CRISPR-Cas systems, and summarize pre-existing applications of the endogenous CRISPR-Cas systems for genome editing in bacteria and archaea. In addition, we will focus on the use of CRISPR-based antimicrobials. Furthermore, the future directions and outlook of endogenous CRISPR-based applications are discussed.

CRISPR-CAS SYSTEMS

CRISPR-Cas systems have been found in ~45% of bacterial and ~87% of archaeal genomes, which provide an adaptive defense against invading nucleic acids, such as viruses and plasmids (Barrangou et al., 2007; Grissa et al., 2007; van der Oost et al., 2014). This remarkable feature of CRISPR-Cas systems, which are composed of alternating identical repeats and unique spacers, was first recognized in 1987 in *E. coli* K12 (Ishino et al., 1987). Subsequently, three groups found that the spacer sequences in CRISPR arrays match phage genomes and plasmids, which hinted CRISPR-Cas might be a defense system for prokaryotes (Mojica et al., 2005). Adjacent to the CRISPR array, a series of genes encoding the CRISPR associated (Cas) proteins that control the three functional stages of CRISPR adaptive defense: adaptation, processing, and interference. In the best-studied model for adaptation stage, the type I-E CRISPR-Cas system of *E. coli*, two highly conserved nucleases (Cas1 and Cas2) form a stable complex (Nunez et al., 2014) with two Cas1 dimers linked by one Cas2 dimer, that are minimally required for *de novo* spacer acquisition (Yosef et al., 2012). Notably, a dedicated transcriptional regulator is required for adaptation of activation genes for uptake of naive spacers in *Sulfolobus islandicus* REY15A (Liu et al., 2015, 2017b). The second stage is defined as crRNA processing (Blaya et al., 2011). During the final stage of CRISPR-Cas-mediated immunity, Cas proteins and mature CRISPR RNA (crRNA) form a ribonucleoprotein complex (RNP) that recognizes and cleaves invading foreign DNA (or RNA) via base pairing of crRNA and target nucleic acids (Figure 1, see details below) (Brouns et al., 2008).

INTERFERENCE BY CRISPR-CAS SYSTEMS

Based on the differences between the interference complexes, CRISPR-Cas systems are classified into two classes that are subdivided into six types: Type I, III, and IV for Class 1 and Type II, V, and VI for Class 2 (Makarova et al., 2015; Mohanraj et al., 2016). Class I systems employ multi-subunits, while in contrast, Class 2 systems employ a single protein and crRNA in RNP complex against invaders (Shmakov et al., 2015). Nearly all characterized CRISPR-Cas systems (except type III) mediate both adaptation and interference to the foreign genetic elements by specifically recognizing a short sequence located at the 5′-flanking region of the protospacers, called the protospacer adjacent motif (PAM) (Peng et al., 2013; Westra et al., 2013; Anders et al., 2014; Li et al., 2014; Wang et al., 2015; Yamano et al., 2017).

Type I system employs a multi-subunit ribonucleoprotein complex termed CRISPR-associated complex for antiviral defense (Cascade) for target DNA recognition and cleavage (Brouns et al., 2008). Cas6 family endoribonucleases recognize and process the CRISPR repeat RNA in almost all type I systems (Cas5d for subtype I-C) (Carte et al., 2008; Garside et al., 2012; Sefcikova et al., 2017). Cascade first recognizes the PAM sequence on the target DNA, and triggers the recruitment of the endonuclease Cas3, which initiates degradation of the non-target strand (Mulepati et al., 2014; Hayes et al., 2016).

Similar to type I complexes, type III systems employ crRNA-bound multi protein complexes for antiviral defense and target both DNA and RNA substrates. The target RNA capture was mediated by a seed motif at the 3′-end of crRNA and the rear-end subunit Cmr1 (Li et al., 2017; Pan et al., 2019). Following the backbone-mediated target transcript cleavage with 6-nucleotide spacing, a RNA-activated DNA cleavage is carried out by the HD (Histidine-aspartate) nuclease domain of the Cas10 subunit (Goldberg et al., 2014; Samai et al., 2015; Elmore et al., 2016; Estrella et al., 2016; Kazlauskienė et al., 2016; Han et al., 2017; Liu et al., 2017c). Meanwhile, the cyclic oligonucleotide (cOA) synthetase activity is catalyzed by the Palm domain of Cas10 which is also activated by the cognate target RNA, and the cOA signaling pathway coordinates the type III RNP complexes and CARF (CRISPR-associated Rossmann fold) domain ribonucleases (Csm6/Csx1 families) to prevent viral infection and propagation (Kazlauskienė et al., 2017; Niewoehner et al., 2017; Han et al., 2018; Wang et al., 2019; You et al., 2019). Type IV systems are also included among the Class 1 CRISPR-Cas systems and harbor multiple subunits, but lack apparent adaptation modules (*cas1* and *cas2*) and interference nucleases (*cas3* or *cas10*) (Koonin et al., 2017). However, the activities of type IV systems are not clear, except the limited knowledge about crRNA maturation and RNP formation (Ozcan et al., 2018).

Type II, V, and VI CRISPR-Cas systems only employing a single protein and crRNA in the RNP complex against invaders are included in Class 2 systems. For CRISPR RNA maturation, Cas12a of type V and Cas13 of type VI can process crRNA themselves (Abudayyeh et al., 2016; Dong et al., 2016; East-Seletsky et al., 2016; Fonfara et al., 2016); however, Cas9 of type II processes the crRNA with help of tracrRNA and RNase III (Deltcheva et al., 2011). Unlike Cas9 of type II that generates a blunt double-strand break, which utilize diverse PAMs on the non-target strand (Fonfara et al., 2014; Nishimasu et al., 2014), Cas12a and Cas12b cleave target DNA via a staggered
DNA double-stranded break (Figure 1), and recognize the T-rich PAM on both DNA strands (Fonfara et al., 2016; Gao et al., 2016; Yang et al., 2016). Type VI systems encode the single effector protein Cas13 that cleaves target ssRNA, and the target RNA complementary to the crRNA can activate Cas13 to degrade collateral ssRNAs, similar to the ssDNA cleavage activity of Cas10 in type III systems (Shmakov et al., 2015; Abudayeh et al., 2016; East-Seletsky et al., 2016; Smargon et al., 2017; Liu et al., 2017a); this property of Cas13a has been used for pathogen detection (East-Seletsky et al., 2016; Kambhathy et al., 2019). Moreover, Cas12a and Cas12b RNP complexes can also catalyze non-specific ssDNA cleavage when bound with a complementary target ssDNA as an activator (Figure 1; Chen et al., 2018; Li et al., 2018).

**HARNESSING ENDOGENOUS CRISPR-CAS SYSTEMS FOR GENOME EDITING**

Genome editing is an efficient technology for facilitating the identification and characterization of genes in biological studies. Early versions of genome editing techniques include homing
endonucleases (HEs), ZFNs, and TALENs. Homing endonucleases are sequence-specific enzymes that recognize and cleave DNA, which span 12–40 bp at the target sites. By making site-specific double-strand breaks (DSBs) in the target genes, these nucleases can stimulate DNA repair mechanisms with non-homologous end joining (NHEJ) (Lieber, 2010) or homology directed repair (HDR) (Moy nanahan and Jasin, 2010), enabling precise genome modification.

Distinct from the site-specific nucleases described above, the CRISPR-Cas system, an RNA-guided DNA endonuclease, is more efficient and simpler for designing system, that has been rapidly exploited as a genome engineering system in a short period of time and applied to many different kinds of living cells and organisms. Currently, CRISPR-Cas9 and CRISPR-Cpf1 systems from bacteria have been developed as efficient genome editing tools for a wide range of species in three domains of life (Jinek et al., 2013; Doudna and Charpentier, 2014; Shalem et al., 2014; Singh et al., 2017, 2018).

However, CRISPR-Cas9 or Cpf1 is not always effective in bacterial and archaeal cells, especially in extremophlic microorganisms. Therefore, an alternative strategy for genome editing in these prokaryotic cells is using their endogenous CRISPR-Cas systems. This strategy only requires shuttle vectors expressing the corresponding CRISPR RNA matching the target site and carrying the repairing donor DNA. The CRISPR RNA is processed by the endogenous ribonuclease. The first report of genome editing using an endogenous CRISPR-Cas system employed Cas9 in *Streptococcus pneumoniae* (jiang et al., 2013). In the bacterium *Clostridium pasteurianum*, its endogenous subtype I-B CRISPR-Cas system resulted in superior genome editing efficiency compared to using the CRISPR-Cas9 system from *Streptococcus pyogenes* (Pyne et al., 2016). A self-targeted genome editing technology has been successfully established in *Streptococcus mutans* using its endogenous II-A CRISPR-Cas system (Gong et al., 2018). Otherwise, an exploitation of the type I-B CRISPR-Cas system for multiplex genome editing to engineer high-level butanol production in *Clostridium tyrobutyricum* has been reported (Zhang et al., 2018). Recently, the endogenous subtype I-E system was employed to edit the genetically recalcitrant species *Lactobacillus crispatus* with high efficiency (Hidalgo-Cantabrana et al., 2019).

Endogenous CRISPR-based genetic tools are especially suitable for extremophilic bacteria or archaea, because Cas9 or Cpf1 from mesophlic bacteria do not work well in these cells. Therefore, our group explored the endogenous type I and III systems in the thermophilic archaeon *Sulfolobus islandicus* for high-efficiency genome editing (Li et al., 2016). Similarly, the haloarchaea I-B CRISPR-Cas system was harnessed for efficient genome editing in this polyploid archaeon (Cheng et al., 2017). Altogether, given the wide diversity of native CRISPR-Cas systems in bacteria and archaea, this approach can be readily adapted to other prokaryotes for genome editing (Hidalgo-Cantabrana et al., 2018). Endogenous CRISPR-based genome editing methods are also suitable for newly isolated industrial strains with robust production efficiency but fewer genetic tools. For example, low efficiency of genome editing was found in *Zymomonas mobilis* and *Pediococcus acidilactici*, important for ethanol or lactic acid fermentation, using CRISPR-Cas9 or double-crossover recombination methods. Using their endogenous subtype I-F or II-A systems, high-efficient genome editing has been achieved (Liu et al. and Wang et al., unpublished).

### CRISPR-BASED ANTIMICROBIALS

Pathogens showing antimicrobial resistance are called superbugs. The development of antimicrobial resistant bacteria (AMRB) poses an increasingly serious threat to global public health (Friedman, 2015; Jans et al., 2018). Phage therapy against superbugs is an important method (Mertz, 2019); however, CRISPR-Cas systems can be repurposed to specifically target AMRB genomic DNA (or RNA) to combat antibiotic resistance and kill them (de la Fuente-Nunez and Lu, 2017). To develop CRISPR-based antimicrobials, successful delivery of self-targeting mini-CRISPR DNA is crucial. Development of non-viral delivery strategies and the engineering of bacteriophages present potential solutions. Several non-viral materials as vehicles of delivery to microorganisms have been reported, such as the use of polymer-derivatized Cas9 protein by direct covalent modification for treating multidrug-resistant bacteria (Kang et al., 2017), gold nanoparticles (Wang et al., 2018), and other lipid formulations. Another alternative is bacteriophages, which have been widely used for gene delivery and the treatment of pathogenic bacterial infections (Westwater et al., 2003; Lu and Collins, 2007). Especially, many AMRBs, including *Staphylococcus aureus*, *Enterococcus faecium*, *Klebsiella pneumonia*, and *Mycobacterium tuberculosis*, encode endogenous CRISPR-Cas systems. Therefore, transduction of phages or transformation of plasmids expressing artificial crRNA matching superbugs’ conserved DNA sequence can kill AMRB via the endogenous CRISPR-Cas systems without requirement of an additional CRISPR nuclease. As an example, using the *E. coli* endogenous subtype I-E CRISPR-Cas system, individual bacterial strains and species with specific sequences in the genome were targeted and removed, no matter the genomic location, strand, or transcriptional activity of the target site (Goma et al., 2014). A M13-based phagemid was used to deliver the CRISPR-Cas system to target antibiotic resistance plasmids and chromosomal genes in pathogenic *E. coli*, leading to antibiotic sensitivity and death (Citorik et al., 2014). At the same time, similar work using heterogeneous CRISPR-Cas carried by *Staphylococcus aureus* φ NM1 phage-based phagemid to target the pathogenic host was reported (Bikard et al., 2014). In short, CRISPR-Cas systems, the pathogen’s defenses, were turned into a weapon against the pathogen itself (Greene, 2018).

Tuberculosis (TB) is a serious infectious respiratory disease caused by *M. tuberculosis*, which has developed resistance to the most effective first-line antibiotic rifampicin, and has multidrug-resistance. Gene silencing was achieved by employing 1https://crispr.i2bc.paris-saclay.fr/
the heterogenous dCas9 system in mycobacteria for understanding the gene function (Choudhary et al., 2015, 2019) and tuberculosis drug discovery (Rock et al., 2017; McNeil and Cook, 2019; Rock, 2019). Here, we use an ongoing work in our lab as an example, to introduce the strategies and principles of an endogenous CRISPR-Cas system-based genetic tool as an antimicrobial against Mycobacterium tuberculosis. M. tuberculosis encodes a subtype III-A CRISPR-Cas system, including two CRISPR loci, six csm genes for target interference, one cas6 gene for crRNA processing, and an adaptation module (Figure 2A; He et al., 2012; Gruschow et al., 2019; Wei et al., 2019). As mentioned above, the subtype III-A CRISPR-Cas system provides a strong defense against targets including RNA, non-specific ssDNA and RNA (Kazlauskienė et al., 2016; Liu et al., 2017c; Huo et al., 2018; Jia et al., 2018, 2019; Gruschow et al., 2019). Additionally, M. tuberculosis has a rich bacteriophage population, which is convenient for selecting a phage vector for delivery of gDNA against the host chromosome.

To achieve this purpose, the plasmid phAE159, derived from mycobacteriophage TM4 (PH101ts) (Bardarov et al., 2002), can be used as the delivery vector. An artificial mini-CRISPR array harboring the “Repeat-Spacer-Repeat” cassette including the spacer can target an essential gene (such as RNA polymerase gene, etc.) in the genome of M. tuberculosis. The recombinant phagemid can be transfected into M. smegmatis mc²155 at 30°C to obtain mycobacteriophage plaques for high-titer phage stock production (Jain et al., 2014). Then, the anti-tuberculosis bacteriophages can be delivered by different inhalation devices to compare titer
REFERENCES

Abudayeh, O. O., Gootenberg, J. S., Konermann, S., Joung, J., Slaymaker, I. M., Cox, D. B., et al. (2016). C2c2 is a single-component programmable RNA-guided RNA-targeting CRISPR effector. Science 353:aaf5573. doi: 10.1126/science.aaf5573

Anders, C., Niewoehner, O., Duerst, A., and Jinek, M. (2014). Structural basis of PAM-dependent target DNA recognition by the Cas9 endonuclease. Nature 513, 569–573. doi: 10.1038/nature13579

Bardarov, S., Bardarov, S. Jr., Pavelka, M. S. Jr., Sambandamurthy, V., Larsen, M., Tufariello, J., et al. (2002). Specialized transduction: an efficient method for generating marked and unmarked targeted gene disruptions in Mycobacterium tuberculosis. M. bovis BCG and M. smegmatis. Microbiology 148, 3007–3017. doi: 10.1099/00221287-148-10-3007

Barrangou, R., Fremaux, C., Deveau, H., Richards, M., Boyaval, P., Moineau, S., et al. (2007). CRISPR provides acquired resistance against viruses in prokaryotes. Science 315, 1709–1712. doi: 10.1126/science.1138140

Bhaya, D., Davison, M., and Barrangou, R. (2011). CRISPR-Cas systems in bacteria and archaea: versatile small RNAs for adaptive defense and regulation. Annu. Rev. Genet. 45, 273–297. doi: 10.1146/annurev-genet-110410-132430

Bikard, D., Euler, C. W., Jiang, W., Nussenzweig, P. M., Goldberg, G. W., Duportet, X., et al. (2014). Exploiting CRISPR-Cas nucleases to produce sequence-specific antimicrobials. Nat. Biotechnol. 32, 1146–1150. doi: 10.1038/nbt.3043

Brouns, S. J., Jore, M. M., Lundgren, M., Westra, E. R., Slijkhuis, R. J., Snijders, A. P., et al. (2008). Small CRISPR RNAs guide antiviral defense in prokaryotes. Science 321, 960–964. doi: 10.1126/science.1159689

Carrigy, N. B., Chang, R. Y., Leung, S. S. Y., Harrison, M., Petrova, Z., Pope, W. H., et al. (2017). Anti-tuberculosis bacteriophage D29 delivery with a vibrating mesh nebulizer, jet nebulizer, and soft mist inhaler. Pharm. Res. 34, 2084–2096. doi: 10.1007/s11095-017-2213-4

Carter, J., Wang, R., Li, H., Terns, R. M., and Terns, M. P. (2008). Cas9 is an endoribonuclease that generates guide RNAs for invader defense in prokaryotes. Genes Dev. 22, 3489–3496. doi: 10.1101/gad.1742908

Chen, J. S., Ma, E., Harrington, L. B., Da Costa, M., Tian, X., Palefsky, J. M., et al. (2018). CRISPR-Cas12a target binding unleashes indiscriminate single-stranded DNase activity. Science 360, 436–439. doi: 10.1126/science.aar6245

Cheng, F., Gong, L., Zhao, D., Yang, H., Zhou, J., Li, M., et al. (2017). Harnessing the native type I-B CRISPR-Cas for genome editing in a polypl oid archaeon. J. Genet. Genomics 44, 541–548. doi: 10.1016/j.jbg.2017.09.010

Choudhary, E., Sharma, R., Kumar, Y., and Agarwal, N. (2019). Conditional silencing by CRISPRi reveals the role of DNA gyrase in formation of drug-tolerant persister population in Mycobacterium tuberculosis. Front. Cell. Infect. Microbiol. 9:70. doi: 10.3389/fcimb.2019.00070
Choudhary, E., Thakur, P., Pareek, M., and Agarwal, N. (2015). Gene silencing by CRISPR interference in mycobacteria. Nat. Commun. 6, 5267. doi: 10.1038/ncomms7267

Citrik, R. J., Mimee, M., and Lu, T. K. (2014). Sequence-specific antimicrobials using efficiently delivered RNA-guided nucleases. Nat. Biotechnol. 32, 1141–1145. doi: 10.1038/nbt.3011

Datsenko, K. A., Pougach, K., Tikhonov, A., Wanner, B. L., Severinov, K., and Semenova, E. (2012). Molecular memory of prior infections activates the CRISPR/Cas adaptive bacterial immunity system. Nat. Commun. 3, 945. doi: 10.1038/ncomms1937

de la Fuente-Nunez, C., and Lu, T. K. (2017). CRISPR-Cas9 technology: applications in genome engineering, development of sequence-specific antimicrobials, and future prospects. Integr. Biol. 9, 109–122. doi: 10.1039/c8ib00140h

Delchara, E. U., Finn, K., Sharma, C. M., Gonzales, K., Chao, Y., Pirzada, Z., et al. (2011). CRISPR RNA maturation by trans-encoded small RNA and host factor RNAse III. Nature 471, 602–607. doi: 10.1038/nature09886

Dong, D., Ren, K., Qiu, X., Zheng, J., Guo, M., Guan, X., et al. (2016). The crystal structure of Cpf1 in complex with CRISPR RNA. Nature 532, 522–526. doi: 10.1038/nature17944

Doudna, J. A., and Charpentier, E. (2014). The new frontier of genome engineering with CRISPR-Cas9. Science 346, 1258096. doi: 10.1126/science.1258096

East-Seletsky, A., O’Connell, M. R., Knight, S. C., Burstein, D., Cate, J. H., Tjian, R., et al. (2016). Two distinct Rnase activities of CRISPR-C2c2 enable guide RNA processing and Rna recognition. Nature 538, 270–273. doi: 10.1038/nature19802

Elmore, J. R., Sheppard, N. F., Ramia, N., Deighan, T., Li, H., Terns, R. M., et al. (2015). Antibiotic-resistant bacteria: prevalence in food and livestock. Front. Microbiol. 6:6267. doi: 10.3389/fmicb.2015.00626

Fonfara, I., Richter, H., Bratovic, M., Le Rhun, A., and Charpentier, E. (2016). The CRISPR-associated DNA-cleaving enzyme Cpf1 also processes precursor CRISPR RNA. Nature 535, W52–W57. doi: 10.1038/nkgm360

Gensch, S., Thakur, P., Zhou, X., Guo, M., Guan, X., et al. (2018). Cyclic oligoadenylate signalling mediates Mycobacterium tuberculosis CRISPR defence. Nucleic Acids Res. 47, 9259–9270. doi: 10.1093/nar/gkz676

Gudbergsdottir, S., Deng, L., Chen, Z., Jensen, J. V., Jensen, L. R., She, Q., et al. (2011). Dynamic properties of the Sulfolobus CRISPR/Cas and CRISPR/Cmr systems when challenged with vector-borne viral and plasmid genes and proteosomers. Mol. Microbiol. 79, 35–49. doi: 10.1111/j.1365-2958.2010.07452.x

Han, W., Li, Y., Deng, L., Feng, M., Peng, W., Hallstrom, S., et al. (2017). A type III-B CRISPR-Cas effector complex mediating massive target DNA destruction. Nucleic Acids Res. 45, 1983–1993. doi: 10.1093/nar/gkw1274

Han, W., Stella, S., Zhang, Y., Guo, T., Sulek, K., Peng-Lundgren, L., et al. (2018). A type III-B Cmr effector complex catalyzes the synthesis of cyclic oligoadenylate second messengers by cooperative substrate binding. Nucleic Acids Res. 46, 10319–10330. doi: 10.1093/nar/gky844

Huang, P., Xiao, Y., Ding, F., Pan, P., Bhatnagar, K., Bailey, S., et al. (2016). Structural basis for promiscuous PAM recognition in type I-E Cascade from E. coli. Nature 530, 499–503. doi: 10.1038/nature16995

He, L., Fan, X., and Xie, J. (2012). Comparative genomic structures of mycobacterium CRISPR-Cas. J. Cell. Biochem. 113, 2464–2473. doi: 10.1002/jcb.24121

Hidalgo-Cantabrana, C., Goh, Y. J., and Barrangou, R. (2018). Characterization and repurposing of type I and type II CRISPR-Cas systems in bacteria. J. Mol. Biol. 431, 21–33. doi: 10.1016/j.jmb.2018.09.013

Ishino, Y., Shinagawa, H., Makino, K., Amemura, M., and Nakata, A. (1987). Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product. J. Bacteriol. 169, 5429–5433. doi: 10.1128/jb.169.12.5429-5433.1987

Jain, P., Hsu, T., Arai, M., Biermann, K., Thaler, D. S., Nguyen, A., et al. (2014). Specialized transduction designed for precise high-throughput unmarked deletions in Mycobacterium tuberculosis. MBio 5, e01245–e01214. doi: 10.1128/mBio.01245-14

Jans, C., Sarno, E., Collin, M., Meile, L., Stärk, K. D. C., and Stephan, R. (2018). Consumer exposure to antimicrobial resistant bacteria from food at Swiss retail level. Front. Microbiol. 9, 362. doi: 10.3389/fmicb.2018.00362

Jia, N., Jones, R., Sukenick, G., and Patel, D. J. (2019). Second messenger cA4 facilitates type I-A CRISPR-Cas adaptation by CRISPR interference in mycobacteria. Cell 176, 933–943.e6. doi: 10.1016/j.cell.2019.06.013

Jia, N., Mo, C. Y., Wang, C., Eng, E. T., Marraffini, L. A., and Patel, D. J. (2018). Type III-A CRISPR-Cas3 complexes: assembly, periodic RNA cleavage, DNAse activity regulation, and autoimmunity. Mol. Cell. 73, 264–277.e5. doi: 10.1016/j.molcel.2018.11.007

Jiang, W., Bikard, D., Cox, D., Zhang, F., and Marraffini, L. A. (2013). RNA-guided editing of bacterial genomes using CRISPR-Cas systems. Nat. Biotechnol. 31, 233–239. doi: 10.1038/nbt.2508

Jinek, M., East, A., Cheng, A., Lin, S., Doudna, J. A., and Charpentier, E. (2013). RNA-programmed genome editing in human cells. elife 2:e00471. doi: 10.7554/ elife.00471

Kang, Y. K., Kwon, K., Ryu, J. S., Lee, H. N., Park, C., and Chung, H. J. (2017). Nonviral genome editing based on a polymer-derivatized CRISPR complex scaffold. Bioconjug. Chem. 28, 957–967. doi: 10.1021/acs.bioconjchem.6b00676

Kazlauskienė, M., Kostik, G., Venclovas, C., Tamulaitis, G., and Siksnys, V. (2017). A cyclic oligonucleotide signaling pathway in type III CRISPR-Cas3 complex and its release path. Mol. Cell 75, 933–943.e6. doi: 10.1016/j.molcel.2019.06.013

Kazlauskienė, M., Tamulaitis, G., Kostik, G., Venclovas, C., and Siksnys, V. (2016). Spatiotemporal control of type III-A CRISPR-Cas immunity: coupling DNA degradation with the target RNA recognition. Mol. Cell 62, 295–306. doi: 10.1016/j.molcel.2016.03.024
Khambhati, K., Bhattacharjee, G., and Singh, V. (2019). Current progress in CRISPR-based diagnostic platforms. J. Cell. Biochem. 120, 2721–2725. doi: 10.1002/jcb.27690

Kim, Y. G., Cha, J., and Chandrasegaran, S. (1996). Hybrid restriction enzymes: zinc finger fusions to Fok I cleavage domain. Proc. Natl. Acad. Sci. USA 93, 1156–1160.

Koonin, E. V., Makarova, K. S., and Zhang, F. (2017). Diversity, classification and evolution of CRISPR-Cas systems. Curr. Opin. Microbiol. 37, 67–78. doi: 10.1016/j.mib.2017.05.008

Li, S. Y., Cheng, Q. X., Liu, J. K., Nie, X. Q., Zhao, G. P., and Wang, J. (2018). CRISPR-Cas12a has both cis- and trans-cleavage activities on single-stranded DNA. Cell Res. 28, 491–493. doi: 10.1038/s41422-018-0096-5

Li, Y., Pan, S., Zhang, Y., Ren, M., Feng, M., Peng, N., et al. (2016). Harnessing type I and type III CRISPR-Cas systems for genome editing. Nucleic Acids Res. 44:e34. doi: 10.1093/nar/gkj044

Li, M., Wang, R., and Xiang, H. (2014). Haloarcuca hispanica CRISPR authenticates PAM of a target sequence to prime discriminative adaptation. Nucleic Acids Res. 42, 7226–7235. doi: 10.1093/nar/gku389

Li, Y., Zhang, Y., Lin, J., Pan, S., Han, W., Peng, N., et al. (2017). Cmr1 enables efficient RNA and DNA interference of a III-B CRISPR-Cas system by binding to target RNA and crRNA. Nucleic Acids Res. 45, 11305–11314. doi: 10.1093/nar/gkz791

Lieber, M. R. (2010). The mechanism of double-strand DNA break repair by the nonhomologous DNA end-joining pathway. Annu. Rev. Biochem. 79, 181–211. doi: 10.1146/annurev.biochem.052308.093133

Liu, T. Y., Iavarone, A. T., and Doudna, J. A. (2017c). RNA and DNA targeting by Cas13a complex formation mediates spacer acquisition during CRISPR-Cas adaptive immunity. Nat. Struct. Mol. Biol. 21, 528–534. doi: 10.1038/nsmb.2820

Niewoehner, O., Garcia-Dovale, C., Rostol, J. T., Berk, C., Schwede, F., Bigler, L., et al. (2017). Type III CRISPR-Cas systems produce cyclic oligodeoxyadenylate second messengers. Nature 548, 543–548. doi: 10.1038/nature23467

Nishimasu, H., Ran, F. A., Hsu, P. D., Konermann, S., Shehata, S. I., Dohmace, N., et al. (2014). Crystal structure of Cas9 in complex with guide RNA and target DNA. Cell 156, 935–949. doi: 10.1016/j.cell.2014.02.001

Nunez, J. K., Kranzusch, P. J., Noeske, J., Wright, A. V., Davies, C. W., and Doudna, J. A. (2014). Cas13a complex formation mediates spacer acquisition during CRISPR-Cas adaptive immunity. Nat. Struct. Mol. Biol. 21, 528–534. doi: 10.1038/nsmb.2820

Ozcan, A., Pausch, P., Linden, A., Wulf, A., Schuhle, K., Heider, J., et al. (2018). Type IV CRISPR RNA processing and effector complex formation in Aromatoleum aromaticum. Nat. Microbiol. 4, 89–96. doi: 10.1038/s41564-018-0274-8

Pan, S., Li, Q., Deng, L., Jiang, S., Jin, X., Peng, N., et al. (2019). A seed motif for target RNA capture enables efficient immune defense by a type III-B CRISPR-Cas system. RNA Biol. 16, 1166–1178. doi: 10.8053/jmg.2016.160693

Peng, W., Li, H., Hallstrom, S., Peng, N., Liang, Y. X., and She, Q. (2013). Genetic determinants of PAM-dependent DNA targeting and pre-crRNA processing in Sulfolobus islandicus. RNA Biol. 10, 738–748. doi: 10.4161/rna.23798

Pyne, M. E., Bruder, M. R., Moo-Young, M., Chung, D. A., and Chou, C. P. (2016). Harnessing heterologous and endogenous CRISPR-Cas machineries for efficient markerless genome editing in clostridium. Sci. Rep. 6:25666. doi: 10.1038/srep25666

Rock, J. (2019). Tuberculosis drug discovery in the CRISPR era. PLoS Pathog. 15:e1007975. doi: 10.1371/journal.ppat.1007975

Rock, J. M., Hopkins, F. F., Chavez, A., Diacono, M., Chase, M. R., Gerrick, E. R., et al. (2018). Programmable transcriptional repression in mycobacteria using an orthogonal CRISPR interference platform. Nat. Microbiol. 2:16274. doi: 10.1038/nmicrob.2016.274

Sambanis, M., Pyenson, N., Jiang, W., Goldberg, G. W., Hatoum-Aslan, A., and Marraffini, L. A. (2015). Co-transcriptional DNA and RNA cleavage during type III CRISPR-Cas immunity. Cell 161, 1164–1174. doi: 10.1016/j.cell.2015.04.027

Selčíková, J., Roth, M., Yu, G., and Li, H. (2017). Cas6 processes tight and relaxed repeat RNA via multiple mechanisms: a hypothesis. BioEssays 39. doi: 10.1002/bies.201700019

Selle, K., and Barrangou, R. (2015). Harnessing CRISPR-Cas systems for bacterial genome editing. Trends Microbiol. 23, 225–232. doi: 10.1016/j.tim.2015.01.008

Semenova, E., Jore, M. M., Dansenkov, K. A., Semenova, A., Westra, E. R., Wanner, B., et al. (2011). Interference by clustered regularly interspaced short palindromic repeat (CRISPR) RNA is governed by a seed sequence. Proc. Natl. Acad. Sci. USA 108, 10098–10103. doi: 10.1073/pnas.1104144108

Shalem, O., Sanjana, N. E., Hartenian, E., Shi, X., Scott, D. A., Mikkelsen, T. S., et al. (2014). Genome-scale CRISPR-Cas9 knockout screening in human cells. Science 343, 84–87. doi: 10.1126/science.1247005

Shmakov, S., Abudayyeh, O. O., Makarova, K. S., Wolf, Y. I., Gootenberg, J. S., and Barrangou, R. (2018). Deletion-based escape of CRISPR-Cas9 targeting in lactobacillus gasseri. Science. doi: 10.1126/science.aat3569

Singh, V., Bradick, D., and Dhar, P. K. (2017). Exploring the potential of genome editing CRISPR-Cas9 technology. Gene 599, 1–18. doi: 10.1016/j.jgene.2016.11.008

Singh, V., Gohil, N., Ramirez Garcia, R., Bradick, D., and Fofie, C. K. (2018). Recent advances in CRISPR-Cas9 genome editing Technology for Biological and Biomedical Investigations. J. Cell. Biochem. 119, 81–94. doi: 10.1002/jcb.26165

Smargon, A. A., Cox, D. B., Pyzocha, N. K., Zheng, K., Slaymaker, I. M., Gootenberg, J. S., et al. (2017). Cas13b is a type VI-B CRISPR-associated RNA-guided RNase differentially regulated by accessory proteins Casx27 and Csx28. Mol. Cell 65, 618–630.e7. doi: 10.1016/j.molcel.2016.12.023

Stout, E. A., Sanokyz-Dawes, R., Goh, Y. J., Crawley, A. B., Klaenhammer, T. R., and Barrangou, R. (2018). Deletion-based escape of CRISPR-Cas9 targeting in lactobacillus gasseri. Microbiol. 164, 1098–1111. doi: 10.1099/mic.0.00689

van der Oost, J., Westra, E. R., Jackson, R. N., and Wiedenheft, B. (2014). Unravelling the structural and mechanistic basis of CRISPR-Cas systems. Nat. Rev. Microbiol. 12, 479–492. doi: 10.1038/nrmicro3279

Wang, L., Li, Z., Zhao, H., Peng, G., Wang, M., Yin, M., et al. (2015). Structural and mechanistic basis of PAM-dependent spacer acquisition in CRISPR-Cas systems. Cell 163, 840–853. doi: 10.1016/j.cell.2015.10.008
Wang, L., Mo, C. Y., Wasserman, M. R., Rostol, J. T., Marraffini, L. A., and Liu, S. (2019). Dynamics of Cas10 govern discrimination between self and non-self in type III CRISPR-Cas immunity. *Mol. Cell* 73, 278–290.e4. doi: 10.1016/j.molcel.2018.11.008

Wang, P., Zhang, L., Zheng, W., Cong, L., Guo, Z., Xie, Y., et al. (2018). Thermo-triggered release of CRISPR-Cas9 system by lipid-encapsulated gold nanoparticles for tumor therapy. *Angew. Chem. Int. Ed. Engl.* 57, 1491–1496. doi: 10.1002/anie.201708689

Wei, Y., Terns, R. M., and Terns, M. P. (2015). Cas9 function and host genome sampling in type II-A CRISPR-Cas adaptation. *Genes Dev.* 29, 356–361. doi: 10.1101/gad.257550.114

Wei, W., Zhang, S., Fleming, J., Chen, Y., Li, Z., Fan, S., et al. (2019). *Mycobacterium tuberculosis* type III-A CRISPR/Cas system crRNA and its maturation have atypical features. *FASEB J.* 33, 1496–1509. doi: 10.1096/fj.201800557RR

Westra, E. R., Semenova, E., Datsenko, K. A., Jackson, R. N., Wiedenheft, B., Severinov, K., et al. (2013). Type I-E CRISPR-cas systems discriminate target from non-target DNA through base pairing-independent PAM recognition. *PLoS Genet.* 9:e1003742. doi: 10.1371/journal.pgen.1003742

Westwater, C., Kasman, L. M., Schofield, D. A., Werner, P. A., Dolan, J. W., Schmidt, M. G., et al. (2003). Use of genetically engineered phage to deliver antimicrobial agents to bacteria: an alternative therapy for treatment of bacterial infections. *Antimicrob. Agents Chemother.* 47, 1301–1307. doi: 10.1128/AAC.47.4.1301-1307.2003

Yamano, T., Zetsche, B., Ishihani, R., Zhang, F., Nishimasu, H., and Nureki, O. (2017). Structural basis for the canonical and non-canonical PAM recognition by CRISPR-Cpf1. *Mol. Cell* 67, 633–645.e3. doi: 10.1016/j.molcel.2017.06.035

Yang, H., Gao, P., Rajashankar, K. R., and Patel, D. J. (2016). PAM-dependent target DNA recognition and cleavage by C2c1 CRISPR-Cas endonuclease. *Cell* 167, 1814–1828.e12. doi: 10.1016/j.cell.2016.11.053

Yosef, I., Goren, M. G., and Qimron, U. (2012). Proteins and DNA elements essential for the CRISPR adaptation process in *Escherichia coli*. *Nucleic Acids Res.* 40, 5569–5576. doi: 10.1093/nar/gks216

Yosef, I., Manor, M., Kiro, R., and Qimron, U. (2015). Temperate and lytic bacteriophages programmed to sensitize and kill antibiotic-resistant bacteria. *Proc. Natl. Acad. Sci. USA* 112, 7267–7272. doi: 10.1073/pnas.1500107112

You, L., Ma, J., Wang, J., Artamonova, D., Wang, M., Liu, L., et al. (2019). Structure studies of the CRISPR-Csm complex reveal mechanism of co-transcriptional interference. *Cell* 176, 239–253.e16. doi: 10.1016/j.cell.2018.10.052

Zetsche, B., Heidenreich, M., Mohanraju, P., Fedorova, I., Kneippers, J., DeGennaro, E. M., et al. (2017). Multiplex gene editing by CRISPR-Cpf1 using a single crRNA array. *Nat. Biotechnol.* 35, 31–34. doi: 10.1038/nbt.3737

Zhang, Z., Pan, S., Liu, T., Li, Y., and Peng, N. (2019). Cas4 nucleases can effect specific integration of CRISPR spacers. *J. Bacteriol.* 201, e00747–e00718. doi: 10.1128/JB.00747-18

Zhang, L., Zong, W., Hong, W., Zhang, Z. T., and Wang, Y. (2018). Exploiting endogenous CRISPR-Cas system for multiplex genome editing in *clostridium tyrobutyricum* and engineer the strain for high-level butanol production. *Metab. Eng.* 47, 49–59. doi: 10.1016/j.ymben.2018.03.007

**Conflict of Interest:** The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2019 Li and Peng. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.