Abstract

Background: Viral infections, congenitally or perinatally acquired, have been associated with neonatal cholestasis. Investigators have suggested a similar link to biliary atresia (BA).

Aim: The aim of the current study is to investigate the prevalence of serological markers of congenital infections in BA and other neonatal cholestatic disorders.

Methods: This retrospective study included 94 patients with confirmed diagnosis of BA. A nearly comparable number of patients with cholestasis due to causes other than BA (n = 91) were also recruited and termed non-BA group. The data was retrieved from patients' records. TORCH (toxoplasma, rubella, cytomegalovirus [CMV] and herpes simplex virus [HSV] type 1 and type 2) antibodies (immunoglobulin [Ig] M and IgG) were performed in all the patients using enzyme-linked immunosorbent assay. CMV DNA was detected by polymerase chain reaction (PCR).

Results: Both groups were age and sex matched (P > 0.05). TORCH IgM antibodies were detected in 15.7% of all the study population (8.5% in BA group and 23% in non-BA group), of which CMV was the commonest agent. CMV IgM and CMV DNA by PCR were significantly higher in non-BA group (20.9% and 23% respectively) than in BA group (4.3% and 5.3% respectively). Toxoplasma IgM was positive in only one patient in BA group and rubella IgM was positive only in one patient in the non-BA group. HSV-1 IgM was found in a total of 4 patients; 3 in BA group and one in non-BA group while HSV-2 IgM was negative in all the patients. CMV infection was the sole incriminated agent in 13 patients (CMV hepatitis), while it was associated with other etiologies such as progressive familial intrahepatic cholestasis (5 of 29 patients), and intrahepatic biliary paucity (3 of 14 patients). Liver transaminases, prothrombin time and the frequency of growth failure were significantly higher in non-BA group.

Conclusions: TORCH IgM antibodies were detected in 8.5% of BA and in 23% of non-BA group, of which CMV was the commonest agent. In addition to CMV hepatitis, CMV infection was associated with other causes of neonatal cholestasis. For that, all cases with neonatal cholestasis should be thoroughly evaluated for other causes, even in cases with demonstrable CMV infection.
consistently has accounted for one third of all neonatal cholestasis and more than 90% of obstructive cholestasis cases. The only available treatment is early surgical intervention with Kasai portoenterostomy [3,4]. If portoenterostomy is not successful or not performed, liver transplantation is the only life-saving alternative [5]. Congenital infections caused by TORCH (toxoplasma, rubella, cytomegalovirus [CMV] and herpes simplex virus [HSV] type 1 and type 2), were also incriminated as an etiologic factors for neonatal cholestasis [6].

The etiology of BA is poorly understood. There is controversy about the etiologic role of viruses. The studies have implicated reoviruses, rotaviruses and CMV [7]. The initial event may be a viral infection, which targets the biliary epithelium [8]. This is followed by activation of immune cells and release of proinflammatory cytokines [9] and adhesion molecules [10,11] that perpetuates the injury and causes biliary destruction, leading to the atresia phenotype [12].

CMV hepatitis may present with cholestasis and clay colored stool, a presentation which is similar to that of BA [13]. The association between BA and CMV has been investigated and described by different groups [14–16]. It was reported that CMV hepatitis may proceed to progressive hepatic fibrosis and cirrhosis [17] and the establishment of CMV infection in infants with cholestasis should not deter the search for other etiologies of cholestasis [18].

It is of importance to understand the magnitude of congenital infections as a contributor to neonatal cholestasis. For that, we aimed to investigate the prevalence of serological markers of TORCH infections among infants with BA and other neonatal cholestatic disorders.

Patients and Methods

Study population

This retrospective study included 94 patients with BA attending the department of Pediatric Hepatology, Gastroenterology and Nutrition over a period of three years between May 2011 and June 2013. The data was retrieved from patients’ records. A nearly comparable number of patients with cholestasis due to causes other than BA (n = 91) were recruited within nearly the same time period and termed non–BA group. During retrieval process, those with incomplete data or those without liver biopsy were excluded from the study. A written informed consent was not needed due to the retrospective nature of the study. The study was approved by the Research Ethics Committee of National Liver Institute, Menofiya University.

Etiological diagnosis

After full history taking, thorough clinical examination and routine (laboratory, ultrasonography and liver biopsy) investigations, the diagnosis of BA was confirmed by operative cholangiography (IOC) prior to corrective surgery (Kasai operation). In the non–BA group, clinical evaluation together with a set of specific laboratory tests according to the expected etiology, liver biopsy and negative IOC in some patients, the diagnosis of BA was ruled out in the patients of this group. Diagnoses in the non–BA group were as presented in Table 1.

Viral and Toxoplasma markers

TORCH antibodies (immunoglobulin [Ig]M and IgG) were performed in all the patients, using enzyme-linked immunosorbent assay according to the manufacturer instructions; Toxoplasma antibodies (Pishtaz Teb Zaman Diagnostics, Tehran, Iran), HSV-1, HSV-2, CMV and rubella antibodies (all from Dia pro diagnostic bioprobes, Milano, Italy). CMV–DNA polymerase chain reaction (PCR): By COBAS AMPLICOR monitor test, version 2.0, COBAS AMPLICOR Analyzer, Roche [19]. The detection limit of the kit was 200 copy/ml.

Statistical methods

Descriptive results were expressed as mean ± standard deviation (mean ± SD) or number and percentage. For quantitative data, significance was tested either by independent sample t-test or Mann–Whitney U-test according to the nature of the data. For qualitative data, significance was tested by Chi-square test. Results were considered significant if P-value < 0.05. Statistical analysis was performed using SPSS statistical package version 13 (SPSS Inc, Chicago, IL, USA).

Results

Study population’s characteristics

This study included 185 individuals divided according to the diagnosis into BA group (n = 94) and non–BA group (n = 91). Baseline demographic, clinical and laboratory characteristics were comparable in both BA and non–BA groups except for clay stool, platelet count, and gammaglutamyl transpeptidase which were significantly higher in BA than in the non–BA group. On the other hand, transaminases and prothrombin time were

Diagnosis	n
Idiopathic neonatal hepatitis	18
Progressive familial intrahepatic cholestasis	29
Galactosemia	6
Intrahepatic biliary paucity	14
Tyrosinemia	1
Cystic fibrosis	1
Caroli disease	1
Mitochondrial hepatopathy	1
Congenital hepatic fibrosis	1
Cholodocal cyst	1
Alagille syndrome	3
Cytomegalovirus hepatitis	13
Glycogen storage disease type IV	2

* Cytomegalovirus DNA was positive in progressive familial intrahepatic cholestasis (n=5), intrahepatic biliary paucity (n=3) and cytomegalovirus hepatitis (n=13)
significantly higher in the non-BA group. Of importance, 27 (29.7%) of cholestasis group had growth failure compared to only 9 (9.6%) of BA group ($P = 0.001$) (Table 2).

The occurrence of toxoplasma and viral markers in the studied patients

Among the studied serological makers, CMV IgM and CMV DNA were the most frequent (12.4% and 14.1% respectively) in the study population. IgG antibodies of all infections were detected in the majority (from 50.8% to 82.2%) of patients except for that of toxoplasma which was detected in the minority (37.8%) of patients (Table 3).

Looking at BA and non-BA groups individually, the occurrence of viral markers was comparable in both groups except for CMV IgM (which was confirmed by PCR for CMV DNA) that was significantly higher in Non-BA. The occurrence of IgG antibodies of the studied infections was more frequent than IgM antibodies and was comparable in both groups ($P > 0.05$). Generally, CMV represents the hight frequency in both groups (Table 3).

CMV infection was the sole incriminated agent in 13 patients (CMV hepatitis), while it was assoaited with other etiologies as BA ($n = 4$), progressive familial intrahepatic cholestasis (5 of 29 patients), and intrahepatic biliary paucity (3 of 14 patients) (Table 1). Toxoplasma IgM was positive in only one patient in BA group and rubella IgM was positive only in one patient in the non-BA group. HSV-1 IgM was detected in a total of 4 patients; 3 in the BA group and one in the non-BA group while HSV-2 IgM was negative in all the patients.

Table 2: Demographic, clinical, and laboratory characteristics of the studied patients

Characteristics	BA ($n = 94$)	non-BA ($n = 91$)	P-value
Age (days)	60.86 ± 15.77	67.30 ± 26.78	0.087
Male n (%)	42 (44.7%)	50 (54.9%)	0.163
Growth failure	9 (9.6%)	27 (29.7%)	0.001
Hepatomegaly n (%)	94 (100%)	87 (95.6%)	0.057
Splenomegaly n (%)	66 (70.2%)	58 (63.7%)	0.053
Clay-colored stool	92 (97.9)	32 (35.2%)	<0.0001
Total bilirubin (mg/dl)	11.27 ± 3.91	11.64 ± 6.54	0.529
Direct bilirubin (mg/dl)	7.20 ± 2.97	7.67 ± 4.23	0.678
Alamine transaminase (U/L)	134.51 ± 101.99	204.21 ±173.47	0.001
Aspartate transaminase (U/L)	230.57 ± 156.03	367.02 ±313.69	0.001
Total proteins (g/dl)	5.46 ± 0.72	5.36 ± 0.91	0.33
Albumin (g/dl)	3.41 ± 0.54	3.29 ± 0.63	0.221
Alkaline phosphatase (U/L)	519.07 ± 231.33	597.33 ±368.04	0.304
gammaglutamyl transeptidase (U/L)	682.66 ± 558.39	231.26 ± 252.83	<0.0001
Prothrombin time (seconds)	12.62 ± 1.23	13.4 ± 1.98	0.009

Table 3: Occurrence of TORCH markers in the studied patients

Viral markers	All patients ($n = 185$)	BA ($n = 94$)	non-BA ($n = 91$)	P-value
Toxoplasma IgM	1 (0.5)	1 (1.1)	0.0	1.0
Toxoplasma IgG	70 (37.8)	35 (37.2)	35 (38.5)	0.863
HSV-1 IgM	4 (2.2)	3 (3.1)	1 (1.1)	0.621
HSV-1 IgG	97 (52.4)	46 (48.9)	51 (56)	0.333
HSV-2 IgM	0.0 (0%)	0.0 (0%)	0.0 (0%)	--
HSV-2 IgG	45 (24.3)	23 (24.5)	22 (24.2)	0.693
Cytomegalovirus IgM	23 (12.4)	4 (4.3)	19 (20.9)	0.001
Cytomegalovirus IgG	152 (82.2)	75 (79.8)	77 (84.6)	0.391
Cytomegalovirus DNA	26 (14.1)	5 (5.3)	21 (23)	0.001
Rubella virus IgM	1 (0.5)	0.0	1 (1.1)	0.492
Rubella virus IgG	94 (50.8)	47 (50)	47 (51.6)	0.823
Total IgM positive cases	29 (15.7)	6 (8.5)	21 (23)	0.006

Discussion

Viral infections, congenitally or perinatally acquired, have been associated with neonatal cholestasis. In 1974, Benjamin Landing a pediatric pathologist proposed that BA as well as choleodochal cyst and neonatal hepatitis represent varied manifestations of a single basic disease process and coined the term infantile obstructive cholangiopathies to describe these entities [20].

We separated the current study population into BA and non-BA groups. The reason for this separation is not to point out the discriminative laboratory or clinical parameters between both groups. We have already covered this issue extensively in our previous studies [10,11,21,22], so it will not be discussed here. But as BA is the main etiologic cause of neonatal cholestasis [23] and as CMV has been proposed as a possible etiologic agent for BA [18], this separation seemed logical.

In the current study, IgM antibodies for TORCH infections were detected in a total of 29/185 (15.6%) of patients. The prevalence of IgM antibodies was significantly higher in non-BA group compared to BA group (23% vs. 8.5%; $P = 0.006$) with CMV showing the highest frequency. CMV IgM and CMV DNA by PCR were significantly higher in non-BA group (20.9% and 23% respectively) than in BA group (4.3% and 5.3% respectively). On the other hand, there was no significant statistical difference regarding the other studied markers. Similar to our results, Quack et al. [24], reported that TORCH infections constitute 22% cases of neonatal cholestasis, of which CMV was the commonest agent. The high frequency of IgG antibodies of TORCH infections may represent transplacental transfer from the mother in most cases, which confer passive immunity to the fetus [25]. Some patients with positive CMV DNA were negative for CMV IgM. A possible explanation is that IgM had not yet been produced or that the infants had been infected for a long time that no viral IgM production persisted [26].

Many studies investigating the role of CMV infection in the pathogenesis of BA reported conflicting results. Tarr et
Sira et al. (2016)

al [18] reported that 5 out of 23 patients (24%) were found to be positive for CMV by analyzing liver histology and CMV IgM. Oliveira et al [27] found positive CMV IgM in 28.5% of patients with BA or choledochal cysts. Similarly, Fischler et al [26] showed a higher prevalence of CMV antibodies in mothers of BA infants, and CMV DNA was present in livers of 9 /18 (50%) of BA infants. Contrarily, a Canadian group could not demonstrate CMV DNA in bile duct remnants removed from 12 children with BA at the time of the Kasai portoenterostomy. CMV cannot be conclusively excluded as an etiology of BA in selected patients, but it does not appear to be involved in the large majority of cases [28].

The positivity of CMV IgM or DNA does not necessarily indicate that it is the cause of the cholestasis, but it implies that the virus may has influenced the severity of the original pathology [29]. This may explain the significantly higher levels of transaminases and prothrombin time in non–BA group compared to BA group (P = 0.001 and 0.009 respectively). Furthermore, 27 (29.7%) of non–BA group had growth failure compared to 9 (9.6%) in BA group (P = 0.001). This may be explained by the fact that early intrauterine CMV infection induces disturbances in intrauterine and postnatal growth [29]. On the other hand, the majority of BA patients appear entirely well-nourished and well-developed during the first 4–6 weeks of life [30].

In the current study, CMV DNA was detected in 3 infants of 12 (25%) with intrahepatic biliary paucity. Zabiegaj-Zwick et al [16] reported that CMV has been associated with intrahepatic bile duct destruction and duct paucity. Whether it is the cause of this pathology or just exaggerating the original disease; remains to be elucidated.

A recent study by Zani et al [31] hypothesized that CMV IgM-positive BA is a separate clinical entity compared to CMV IgM-negative BA with unfavorable response to Kasai portoenterostomy. CMV infection was not always the only factor causing cholestatic disease and it must be emphasized that all cases with neonatal cholestasis should be thoroughly evaluated for other causes, even in the case of demonstrable CMV infection, so that other treatable disorders such as BA are not missed [18].

Our results showed that, in addition to all the patients with CMV hepatitis, CMV DNA was detected in some patients with BA, progressive familial intrahepatic cholestasis, and intrahepatic biliary paucity. Interestingly, we recently reported that CMV hepatitis, and progressive familial intrahepatic cholestasis can have a clinicopathological features similar to that of BA [32].

The notion that CMV may cause BA is more complex than it seems. Fischler et al [26] questioned the role of CMV even when detected in liver tissue. One important question was whether the detected CMV DNA really originated from liver cells or simply represented a carry-over from peripheral leukocytes in the same liver specimens; the latter possibility cannot be ruled out. On the other hand, CMV–induced immune mechanisms may affect the liver, even if virus is no longer demonstrable in liver tissue.

Recent studies suggested a number of genes [33-38] and toxins [39,40] that may be incriminated in the development of the BA phenotype. These findings have opened the horizon for novel etiopathogenic mechanism of BA and narrowed the spectrum of cases that were imputed to viral infection.

In conclusion, TORCH IgM antibodies were detected in 8.5% of BA and in 23% of non–BA group, of which CMV was the commonest agent. CMV may be incriminated in only few cases of BA. All cases with neonatal cholestasis should be thoroughly evaluated for other causes of cholestasis, even in cases with demonstrable CMV infection.

Funding

This study was funded by the National Liver Institute, Menofiya University, Egypt. Without any particular role in the study design, recruitment of individuals, data analysis or the writing of the report.

References

1. Feldman AG, Sokol RJ. (2013) Neonatal Cholestasis, NeoReviews 14:10.1542/neo.1514-1542-e1563. Link: https://goo.gl/tt2Vc6W
2. Venigalla S, Gourley GR (2004) Neonatal cholestasis, Semin Perinatol 28: 349-355. Link: https://goo.gl/AObiSI
3. Tufano M, Nicastro E, Giberti P, Vegnente A, Raimondo F, et al. (2009) Cholestasis in neonatal intensive care unit: incidence, aetiology and management, Acta Paediatr 98: 1756-1761. Link: https://goo.gl/p8JK020
4. Lee MS, Kim MJ, Lee MJ, Yoon CS, Han SJ, et al. (2009) Biliary atresia: color doppler US findings in neonates and infants, Radiology 252: 282-289. Link: https://goo.gl/qBQqev
5. Sokol RJ (2009) Biliary atresia screening: why, when, and how? Pediatrics 123: e951-e952. Link: https://goo.gl/aKiCwg
6. Suchy FJ (2004) Neonatal cholestasis, Pediatr Rev 25: 388-396. Link: https://goo.gl/nlJp3nk
7. de Carvalho E, Ivantes CA, and Bezerra JA (2007) Extrahepatic biliary atresia: current concepts and future directions, J Pediatr (Rio J) 83: 105-120. Link: https://goo.gl/78LBw5f
8. Bessho K, and Bezerra JA (2011) Biliary atresia: will blocking inflammation tame the disease?, Annu Rev Med 62: 171-185. Link: https://goo.gl/hXfDwF
9. Arafa RS, Abdel Haie OM, El-Azab DS, Abdel-Rahman AM, Sira MM (2016) Significant hepatic expression of IL-2 and IL-8 in biliary atresia compared with other neonatal cholestasis disorders, Cytokine 79: 59-65. Link: https://goo.gl/AYBDj
10. Sira MM, Sira AM, Ehsan NA, Mosbeh A (2015) P-Selectin (CD62P) Expression in Liver Tissue of Biliary Atresia: A New Perspective in Etiopathogenesis, J Pediatr Gastroenterol Nutr 61: 561-567. Link: https://goo.gl/t569n0
11. Ghoneim EM, Sira MM, Abd Elaziz AM, Khalil FO, Sultan MM, et al. (2011) Diagnostic value of hepatic intercellular adhesion molecule-1 expression in Egyptian infants with biliary atresia and other forms of neonatal cholestasis, Hepatol Res 41: 763-775. Link: https://goo.gl/GsnpjG
12. Srivastava A (2011) Biliary atresia and inflammation: from pathogenesis to prognosis, Trop Gastroenterol 32: 1-3. Link: https://goo.gl/2Wcj0a
13. Oliveira NL, Kanawaty FR, Costa SC, Hessel G (2002) Infection by cytomegalovirus in patients with neonatal cholestasis, Arq Gastroenterol 39: 132-136. Link: https://goo.gl/vxtSBN

Citation: Sira MM, Sira AM, Elhenawy IA, Khalil FO (2016) Prevalence of Serological Markers of TORCH Infections in Biliary Atresia and Other Neonatal Cholestatic Disorders. Peertechz J Pediatr Ther 2(1): 013-017.
14. De Tommaso AM, Andrade PD, Costa SC, Escanhoea CA, Hessel G (2005) High frequency of human cytomegalovirus DNA in the liver of infants with extrahepatic neonatal cholestasis, BMC Infect Dis 5: 108. Link: https://goo.gl/BRv8Fn

15. Soomro GB, Abbas Z, Hassan M, Luck N, Memon Y, et al. (2011) Is there any association of extra hepatic biliary atresia with cytomegalovirus or other infections?, J Pak Med Assoc 61: 281-283. Link: https://goo.gl/bOKSOr

16. Zabiegaj-Zwick C, Nel E, Moore S (2012) Problems related to cytomegalovirus infection and biliary atresia, S Afr Med J 102: 890-892. Link: https://goo.gl/Cl1sAU

17. WANG X, GUO H, ZHU Q, WANG D (2005) Clinical Study on Infantile Cytomegalovirus Infection and Biliary Atresia, J Appl Clin Pediatr 274-275. Link: https://goo.gl/mdBYQZ

18. Tarr PI, Haas JE, Christie DL (1996) Biliary atresia, cytomegalovirus, and age at referral, Pediatrics 97: 828-831. Link: https://goo.gl/vUDpi

19. Boom R, Sol C, Weel J, Gerrits Y, de Boer M, et al. (1999) A highly sensitive assay for detection and quantitation of human cytomegalovirus DNA in serum and plasma by PCR and electrochemiluminescence, J Clin Microbiol 37: 1489-1497. Link: https://goo.gl/TZP9AB

20. Landing B (1974) Considerations of the pathogenesis of neonatal hepatitis, biliary atresia and choleodochal cyst-the concept of infantile obstructive cholangiopathy, Prg Pediatr Surg 6: 113. Link: https://goo.gl/JAHFDw

21. El-Guindi MA, Sira MM, Konowsa HA, El-Abd OL, Salem TA (2013) Value of hepatic subcapsular flow by color Doppler ultrasonography in the diagnosis of biliary atresia, J Gastroenterol Hepatol 28: 867-872. Link: https://goo.gl/wBHuF0

22. El-Guindi MA, Sira MM, Sira AM, Salem TA, El-Abd OL, et al. (2014) Design and validation of a diagnostic score for biliary atresia, J Hepatol 61: 116-123. Link: https://goo.gl/0aadp0

23. Gautier M, Eliot N (1981) Extrahepatic biliary atresia. Morphological study and validation of a diagnostic score for biliary atresia, J Hepatol 61: 116-123. Link: https://goo.gl/0aadp0

24. Gauthier M, Eliot N (1981) Extrahepatic biliary atresia. Morphological study of 98 biliary remnants, Arch Pathol Lab Med 105: 397-402. Link: https://goo.gl/jk9zsv

25. Quak S, Bial, Chang M (2008) Liver Disease in the Developing World, In Diseases of the Liver and Biliary System in Children (Kelly, D., Ed.) 3 ed., pp 553-576, Blackwell Publishing, UK. Link: https://goo.gl/6VS80t

26. Silasi M, Cardenas I, Racicot K, Kwon J-Y, Aldo P, et al. (2015) VIRAL INFECTIONS DURING PREGNANCY, Am J Reprod Immunol 73: 199-213. Link: https://goo.gl/idqVef

27. Fischler B, Ehrenst A, Forsgren M, Örvel C, Nemeth A (1998) The viral association of neonatal cholestasis in Sweden: a possible link between cytomegalovirus infection and extrahepatic biliary atresia, J Pediatr Gastroenter Nutr 27: 57-64. Link: https://goo.gl/0sPQ1

28. Jeffon G, Dimnick J (1999) Biliary atresia and cytomegalovirus infection: a DNA study, Pediatr Dev Pathol 2: 11-14. Link: https://goo.gl/exv13U

29. Britt W, Alford C (1996) Cytomegalovirus-associated biliary atresia: an aetiological and prognostic subgroup, J Pediatr Surg 50: 1739-1745. Link: https://goo.gl/K190xu

30. Knisely A (1990) Biliary atresia and its complications, Annals of Clinical & Laboratory Science 20: 113-118. Link: https://goo.gl/1sD7mF

31. Zani A, Guagli A, Hadzić N, Zuckerman M, Davenport M (2015) Cytomegalovirus-associated biliary atresia: an aetiological and prognostic subgroup, J Pediatr Surg 50: 1739-1745. Link: https://goo.gl/K190xu

32. Sira MM, Taha M, Sira AM (2014) Common misdiagnoses of biliary atresia, Eur J Gastroenterol Hepatol 26: 1300-1305. Link: https://goo.gl/hqM1EJ

33. Tang Y, Cofer ZC, Cui S, Sapp V, Loones KM, et al. (2016) Loss of a Candidate Biliary Atresia Susceptibility Gene, add3a, Causes Biliary Developmental Defects in Zebrafish, J Pediatr Gastroenterol Nutr 63: 524. Link: https://goo.gl/0QBxUv

34. Tsai EA, Grochowski CM, Falsey AM, Rajagopalan R, Wendel D, et al. (2015) Heterozygous deletion of FOXA2 segregates with disease in a family with heterotaxy, panhypopituitarism, and biliary atresia, Hum Mutat 36: 631-637. Link: https://goo.gl/mN2b04

35. Wang J, Wang W, Dong R, Zhao R, Jin Z, et al. (2015) Gene expression profiling of extrahepatic ducts in children with biliary atresia, Int J Clin Exp Med 8: 5186. Link: https://goo.gl/A3Cee8

36. Ningappa M, So J, Glessner J, Ashokkumar C, Ranganathan S, et al. (2015) The role of ARF6 in biliary atresia, PLoS one 10: e0138381. Link: https://goo.gl/M7hq9Y

37. Uemura M, Ozawa A, Nagata T, Kurasawa K, Tsunekawa N, et al. (2013) Sox17 haploinsufficiency results in perinatal biliary atresia and hepatitis in C57BL/6 background mice, Development 140: 639-648. Link: https://goo.gl/nBwPVd

38. Kotolova R, Dusatkova P, Cinek O, Dusatkova L, Dedic T, et al. (2015) Hepatic phenotypes of HNF1B gene mutations: a case of neonatal cholestasis requiring portoenterostomy and literature review, World J Gastroenterol 21: 2550-2557. Link: https://goo.gl/bldqHu

39. Lorent K, Gong W, Koo KA, Shisooka K, Oshikawa S, et al. (2015) Identification of a plant isoaltervaparin that causes biliary atresia, Sci Transl Med 7: 286ra267. Link: https://goo.gl/ArbdMn

40. Koo KA, Lorent K, Gong W, Windsor P, Whittaker SJ, et al. (2015) Bilirubin, a Reactive Natural Toxin from Dysphania glomulifera and D. littoralis: Discovery of the Toxic Moiety 1,2-Diaryl-2-Propenone, Chem Res Toxicol 28: 1519-1521. Link: https://goo.gl/or71qW