Transition metal dichalcogenide (TMDC) metaphotonic and self-coupled polaritonic platform grown by chemical vapor deposition

Fuhuan Shen1,5, Zhenghe Zhang2,3,5, Yaoqiang Zhou1,5, Jingwen Ma1, Kun Chen4, Huanjun Chen4, Shaojun Wang2,3, Jianbin Xu1, & Zefeng Chen1,2,3

Transition metal dichalcogenides (TMDCs) have recently attracted growing attention in the fields of dielectric nanophotonics because of their high refractive index and excitonic resonances. Despite the recent realizations of Mie resonances by patterning exfoliated TMDC flakes, it is still challenging to achieve large-scale TMDC-based photonic structures with a controllable thickness. Here, we report a bulk MoS2 metaphotonic platform realized by a chemical vapor deposition (CVD) bottom-up method, supporting both pronounced dielectric optical modes and self-coupled polaritons. Magnetic surface lattice resonances (M-SLRs) and their energy-momentum dispersions are demonstrated in 1D MoS2 gratings. Anticrossing behaviors with Rabi splitting up to 170 meV are observed when the M-SLRs are hybridized with the excitons in multilayer MoS2. In addition, distinct Mie modes and anapole-exciton polaritons are also experimentally demonstrated in 2D MoS2 disk arrays. We believe that the CVD bottom-up method would open up many possibilities to achieve large-scale TMDC-based photonic devices and enrich the toolbox of engineering exciton-photon interactions in TMDCs.

The rapid progress in nanophotonics has a profound influence on an abundance of fields such as nonlinear optics and quantum photonics1–6, forming the bases of multiple photonic metadevices, including single-photon switches, nano-scale lasers, and metasurfaces7–9. Compared to the plasmonic counterparts which suffer from high metal losses and heating problems, the dielectric nanostructures offer unique possibilities to confine resonant modes in a subwavelength scale with reduced material losses10–12. Importantly, the coexistence of magnetic and electric resonances of the dielectric resonators, and their interference, bring intriguing functionalities to the system such as unidirectional scattering in the far field and enhanced nonlinear responses13–15. Moreover, by artificially designing and arranging the optical components, the wavefront shaping of light could be achieved, leading to promising applications such as metalens and Huygens metasurfaces16,17. Recently, with the topological effects, dielectric metastructures are playing a vital role in the development of novel topological photonics18–19. Multiple resonant modes, subwavelength thickness,
and design flexibility make the dielectric metastructures a superb platform to manipulate the light field and facilitate the realization of strong light-matter in a compact way20-22.

On the other hand, semiconducting transition metal dichalcogenides (TMDCs) have emerged as promising van der Waals (vdW) materials because of their high refractive index and distinct excitonic properties at room temperature23-25. In particular, multilayer (ML) TMDCs such as MoS\textsubscript{2} or WS\textsubscript{2} are of direct bandgap and exhibit large excitonic oscillator strengths. By coupling ML TMDCs with optical cavities or dielectric photonics, such as photonic crystals (PCs), the half-light half-matter quasiparticles, i.e., exciton-polaritons, will be formed due to the strong exciton-photon interactions26-28. However, the atomic thin nature of ML TMDCs (thickness < 1 nm) is nonideal to construct the dielectric resonators by themselves to support optical resonant modes at visible or near-infrared frequencies, due to the limited thickness along the \(z\)-direction29,30. Compared to monolayer counterparts, albeit lacking strong luminescence due to the indirect bandgap, multilayer TMDCs still exhibit relatively large exciton oscillator strengths and high refractive indices (>4)30. Distinct Mie modes and self-coupled exciton-polaritons have been reported with dielectric resonators by themselves to support optical resonant modes and self-coupled exciton-polaritons have been experimentally demonstrated in the metasurfaces built by high refractive-index TMDCs31-34, which even show better performances in some aspects when compared with metastructures based on Si or GaAs34. The high index, as well as the presence of excitons, renders multilayer TMDCs promising to enrich the existing dielectric materials for nanophotonics and polaritonics35,36.

To date, the overwhelming majority of previous reports on TMDC nanostructures are based on the multilayer TMDC flakes by a mechanical exfoliation method32,37. The exfoliated TMDC flakes are of random sizes and suffer from uncontrollable and uneven thickness38, thus impeding the sufficient reproducibility and large-scale production of the TMDC metasurfaces. In contrast, the chemical vapor deposition (CVD) techniques have been proven to be efficient fabrication methods to synthesize large-area TMDCs with controllable thickness39,40. It is thus of great promise to adopt the CVD bottom-up method to build scalable photonic devices with TMDC materials, to overcome the limitations due to the exfoliated flakes.

Here, we report the experimental realization of a large-area (up to 0.38 \times 0.38 \text{mm}^2 in scale) MoS\textsubscript{2} metastructure platform via a CVD bottom-up fabrication method. The material properties of bulk MoS\textsubscript{2} structures are firstly characterized and the polycrystalline nature of MoS\textsubscript{2} (after sulfidation) is shown. We find that the geometric shape and the uniformity of the designed structures are well retained after the sulfidation process. The dielectric resonant modes in both 1D MoS\textsubscript{2} gratings and 2D MoS\textsubscript{2} disk arrays are demonstrated through the optical measurements, which can be well reproduced with the numerical simulations. In addition, the self-coupled exciton-polaritons with unambiguous anticrossing behaviors are also experimentally observed. We argue that this CVD bottom-up method for dielectric metastructures would enrich the toolbox of engineering exciton-photon interactions in TMDCs.

Results

Fabrication of MoS\textsubscript{2} metastructures

Figure 1a outlines the procedures to fabricate the MoS\textsubscript{2} metastructures (disk array is used as a representative example). Firstly, using standard electron-beam lithography (EBL) and electron-beam evaporation (EBE) technologies, we fabricate the Mo nanopatterns on SiO\textsubscript{2} (2 \text{mm})/Si substrate (II). Then the patterned Mo structures are sent to the quartz-tube furnace for the sulfidation process at the temperature of 750 °C (III). Finally, the Mo patterns would be chemically converted to the MoS\textsubscript{2} patterns after the sulfidation process (IV).

Structures and material properties characterization

Figure 1b shows the microscope image of the 1D MoS\textsubscript{2} gratings, along with the zoomed-in scanning electron microscopy (SEM) image. The color of the corresponding structure evolves with different periods \(P\) and filling factors \(\varphi = \frac{\omega}{\pi}\) where \(\omega\) is the width of the original Mo grating bar. Different capital letters (A, B, C,...) and numbers (1, 2, 3,...) are adopted to label various \(P\) and \(\varphi\) respectively. For instance, A1 represents \(P = 400\) nm and \(\varphi = 0.3\) and A2 represents \(P = 400\) nm and \(\varphi = 0.4\) (see Supplementary Fig. 1 for comprehensive definitions). Supplementary Fig. 5 shows that the geometric shape and uniformity of the grating bars (or disks) are well retained after sulfidation, while slightly lateral extension can be found. The atomic force microscopy (AFM) images (Fig. 1c) of Mo pattern and corresponding MoS\textsubscript{2} pattern confirm the unaltered period and the lateral extension, but also show the growing-up of the thickness after the sulfidation process. As the height profiles in Fig. 1d show, the height of the original Mo grating bar is increased from 55 ± 5 nm (green curve) to 110 ± 10 nm (red curve) when converted to MoS\textsubscript{2} pattern. Figure 1e-g shows similar results for 2D MoS\textsubscript{2} disk arrays whose total device size is up to 0.38 mm (Fig. 1e). Compared to the previous work where the exfoliated WS\textsubscript{2} or MoS\textsubscript{2} flakes were adopted11,12,20, our bottom-up method achieves scalable TMDC metastructures with a controlled thickness34. In addition, all-dielectric TMDC structures (the knowledge that MoS\textsubscript{2} has distinct differences from Mo previously reported) are uniformly demonstrated. A few-layer (2-4 layers) MoS\textsubscript{2} is formed at the surface of Au disk\textsuperscript{7}. Strong electric and magnetic resonances can thus be realized and enhanced in these well-structured, high refractive-index MoS\textsubscript{2} metastructures, which are key to the fields of metaphotonics7,8,35,36.

Before studying the optical properties of the MoS\textsubscript{2} metastructures, we first characterize the structural and material properties of our MoS\textsubscript{2} sample after the sulfidation process. Scanning transmission electron microscopy (STEM) and energy dispersive X-ray spectroscopy (EDS) techniques are used to characterize the chemical compositions and crystal structure of the MoS\textsubscript{2} samples. Figure 2a shows the STEM images of the cross-section of 1D MoS\textsubscript{2} grating (A2), to exhibit the distributions of the elements with the EDS maps. We find that Mo and S elements are uniformly distributed both at the outer shell and inside of the grating bar, confirming that the Mo structures are sulfurized to the MoS\textsubscript{2} structures completely. High-resolution TEM (HRTEM) images in Fig. 2b exhibit the polycrystalline nature of our MoS\textsubscript{2} samples. The interval of neighboring MoS\textsubscript{2} layers is around 0.62 nm which is consistent with previous results41. More interestingly we find that the MoS\textsubscript{2} of around 10 layers prefer to grow horizontally at the surface and the interface between the MoS\textsubscript{2} and substrate (green and magenta boxes) while the internal MoS\textsubscript{2} layers prefer to be vertically aligned to the surface (yellow box).

MoS\textsubscript{2} patterns are then transferred to the transparent glass substrate (Fig. 2c) via a wet transfer method11 for optical characterizations. The Raman spectra (Fig. 2d) are measured from the top and bottom sides separately, which both show the signatures of two peaks for MoS\textsubscript{2} (in sharp comparison with the Raman spectrum of Mo pattern)44. Figure 2e shows the refractive index \(n\) and extinction coefficient \(k\) of the bulk MoS\textsubscript{2}, which can be roughly divided into two regions: region I (400–750 nm) with the unambiguous excitonic resonances, region II (>750 nm) with high refractive index \((n > 4)\) and low material loss \((k < 10^{-3})\).

M-SLR modes in MoS\textsubscript{2} gratings

The grating structure is anisotropic in-plane and its optical response is dependent both on the polarization and propagation direction of the incident light, as illustrated in Fig. 3a. x-(y) direction is defined as along (across) the bar and the z-direction is defined as perpendicular to the grating plane. For the polarization, transverse-magnetic (TM for short)/transverse-electric (TE for short) represents the electric field across/along the bar. Without loss of generality, A1 to A3 are selected
as representative examples (see Supplementary Fig. 9 for extinction spectra of other gratings). From A1 to A3 the period is kept at 400 nm while the width is increased, as clearly shown by the SEM images in Fig. 3b. Figure 3c shows the measured extinction spectra for A1-A3 under normal incidence (TM-polarized) which can be well reproduced by the numerical simulation (see methods). In addition to the A, B excitonic resonances that emerged in the spectra, a surface lattice resonance (SLR) mode, arising from the coupling of the individual excitonic resonances of MoS2 bar and the in-plane diffraction orders of the grating lattice, appears on the low-energy side of A exciton\(^2\). The calculated near-field distributions (insets in Fig. 3c) indicate the magnetic nature of the SLR\(^4\). This magnetic resonance arises from the phase retardation inside of the particle along the propagation direction (i.e., z-direction) such that a displacement current is formed\(^4\). We label this resonance as magnetic SLR (or M-SLR for short). The comparisons of near-field distributions under TM and TE polaritons are shown in Supplementary Fig. 6. Figure 4a shows the experimental extinction spectra for A1-A3 the period is kept at 400 nm while the width is increased, as clearly shown by the SEM images in Fig. 3d. As Fig. 3e shows, the extracted linewidth \(\gamma\) is linearly related to \(\kappa\) while \((\gamma - \kappa)\) is almost unchanged (i.e., \(\gamma_{\text{rad}}\) is constant for the same geometric parameters and refractive index adopted in the grating structure). At zero material loss (\(\kappa = 0\)), the linewidth is around 96 meV which is purely ascribed to the radiation loss (i.e., \(\gamma_{\text{rad}} = 96\text{meV}\)). By inserting linewidth from our experiment result (yellow star), we find that the material loss of M-SLR mode in Fig. 3c is estimated as \(\kappa < 1 \times 10^{-2}\), confirming the high refractive index and low material loss properties of bulk MoS2 in region II.

Polariton dispersions in MoS2 gratings

The energy-momentum dispersions of MoS2 gratings are measured by angle-resolved transmission spectra (see methods). Without loss of generality, we here focus on the dispersions of TM-polarized modes along \(k_x\). Results for TE-polarized modes and propagation direction along \(k_y\) are shown in Supplementary Fig. 6. Figure 4a shows the measured dispersions which can be well reproduced with the numerical simulations (Fig. 4b). The theoretical model is applied to describe the dispersions due to the coupling of excitonic resonances of MoS2.
numerical simulations where the dielectric function of the constituent height = 100 nm, width = 150 nm, period = 400 nm) is adopted for the zoomed-in regions (A2 and A3) from Fig.4a.

As Fig.4a, b shows, the dispersions of LP (short for lower polariton) and UP (short for upper polariton) can be well described by the theoretical model (+ and − signs are used to separate the polaritons regarding whether SLR (+1) or SLR (−1) mode is coupled to the A exciton). A clear anti-crossing behavior (Fig.4c) is shown in the polariton dispersions (Eq.(1)), the Rabi splitting can be calculated as 170 meV (II) and 240 meV (III) which meets the previously reported mechanism shown in Fig.4a, b where the cavity modes (M-SLRs) and A exciton. Detuning of cavity mode and A excitonic resonance are exhibited in Fig.4d. Figure 4e shows the calculated angular-resolved extinction spectra for the 1D grating structure with the dielectric functions from Fig.4d. When $\omega_c=0$, the M-SLR shows the linear dispersion, associated with the ± 1 diffraction orders, i.e., Rayleigh anomalies (RAs), which is detailly analyzed in Supplementary Note 2. Such linear dispersions of RAs are also observed in our fabricated samples (Supplementary Fig. 3a) where the M-SLR is far detuned from the excitonic resonances.

However, once the excitons are coupled in the grating structure (i.e., $f > 0$), the originally linear-dispersed M-SLR would strongly interact with the excitons, such that two polaritons states (LP and UP) are generated with a clear anticrossing behavior. By fitting results with the polariton dispersions (Eq.(1)), the Rabi splitting can be calculated as 170 meV (II) and 240 meV (III) which meets the previously reported $\Omega \propto \sqrt{f}$ relation. The above analyses confirm the self-coupled mechanism shown in Fig. 4a, b where the cavity modes (M-SLRs) strongly interact with the excitons inside of the grating structures, resulting in robust and highly dispersive polaritons.

Meanwhile, we surprisingly find that, as Fig. 4f exhibits, the coupling strength g_A is increased from 40 meV (A1), 55 meV (A2) to 85 meV

$\varepsilon_p = 16$ is adopted as the background permittivity. $\omega_0 = 2\pi$ eV and $\gamma = 40$ meV are adopted as the resonant frequency and linewidth of the exciton. f is the corresponding excitonic oscillator strength. We adopt three sets of oscillator strengths: (I) $f = 0$ (i.e., without excitonic resonance), (II) $f = 0.2$, and (III) $f = 0.4$, whose corresponding dielectric functions are exhibited in Fig. 4d. Figure 4e shows the calculated angular-resolved extinction spectra for the 1D grating structure with the dielectric functions from Fig. 4d. When $f = 0$, the M-SLR shows the linear dispersion, associated with the ± 1 diffraction orders, i.e., Rayleigh anomalies (RAs), which is detailly analyzed in Supplementary Note 2. Such linear dispersions of RAs are also observed in our fabricated samples (Supplementary Fig. 3a) where the M-SLR is far detuned from the excitonic resonances.

To give an unambiguous illustration of polariton dispersions observed in Fig. 4a, b, a 1D grating structure (geometric parameters: height = 100 nm, width = 150 nm, period = 400 nm) is adopted for the numerical simulations where the dielectric function of the constituent material is described by a multi-Lorentz oscillator model:

$$
\varepsilon = \varepsilon_0 + \frac{\omega_0^2}{\omega_0^2 - \omega^2 - i\gamma \omega}.
$$

where ω_c and ω_A represent the resonant frequencies of cavity mode (M-SLR) and A exciton. Detuning of cavity mode and A excitonic resonance is defined as $\delta = \omega_c - \omega_A$. g_A represents the coupling strength of A exciton to the cavity mode. Here, similar to the previous work42,48,49, only A exciton is considered in the coupling for simplicity. As Fig. 4a, b shows, the dispersions of LP (short for lower polariton) and UP (short for upper polariton) can be well described by the theoretical model (+ and − signs are used to separate the polaritons regarding whether SLR (+1) or SLR (−1) mode is coupled to the A exciton). A clear anti-crossing behavior (Fig. 4c) is shown in the zoomed-in regions (A2 and A3) from Fig. 4a.
(A3). The previous studies on TMDC-cavity hybrid systems indicated that both the cavity mode volume and the exciton numbers determine systematic Rabi splitting. In our system, the resonator itself is composed of the bulk MoS$_2$ showing the excitonic resonances. Though the increase of the mode volume would degrade the interaction strength between a single exciton and optical modes, the benefit comes with more excitons entering the coupling process. A more quantitative analysis will be shown in the following.

As indicated by Supplementary eqs (10, 11), Rabi splitting $\Omega \propto \frac{\sigma_n}{\sqrt{V}}$. Both the number of excitons (N) and mode volume (V) of the resonant mode determine the coupling strength of the system. In this context, we define the mode area as $\sigma_m = \int \sigma_z \cdot \sigma_n \cdot \sigma_r \cdot \sigma_0$ and the cross-sectional area as $\sigma_c = \sigma_n \cdot \sigma_r \cdot \sigma_0$, where σ_n, σ_r, and σ_0 represent the width, the length of the grating bar, and the effective area, respectively. Thus can calculate the mode volume $V = \sigma_m \cdot x$, where x is the length of the grating bar along the y-axis. As a result, the Rabi splitting can be deduced as $\Omega \propto \frac{\sigma_n}{\sqrt{V}}$. Figure 4g shows the calculated σ_n and σ_m from simulation results of A1 to A3. The increase of σ_m reflects the increase of the mode volume of M-SLR, which would reduce the coupling intensity. On the other hand, the increase of σ_n indicates more excitons entering the coupling process. The combined effect is reflected by the effective area σ_{eff}. In Fig. 4h, we find that σ_{eff} shows great consistency with the Rabi splitting (represented by $2\kappa_{tot}$) from A1 to A3, confirming the above analyses.

Mie modes and polaritons in MoS$_2$ disk arrays

To introduce more possible optical resonant modes, 2D MoS$_2$ square disk arrays are designed and fabricated (Fig. 1e). We choose H1-H7 (period $P = 510$ nm and filling factor A varies from 0.3 to 0.48) as representative examples, whose microscope images are shown in Fig. 5a. The measured extinction spectra under normal incidence are shown in Fig. 5b and can be well reproduced by numerical simulations (Fig. 5c). Multiple optical Mie modes appear and their resonant frequencies show a red shift with the increase of the filling factor. The simulated spectrum of H3 is selected for the detailed analyses. As Fig. 5d shows, two resonant peaks overlap with each other in region II ($1.25 - 1.7$ eV). The electric near field distributions in Fig. 5e reflect the electric dipole (ED) and magnetic dipole (MD) instants for these two modes respectively. In region I (>1.7 eV), a broad and asymmetric peak arises and near field distribution in Fig. 5e indicates the anapole-like signature of this mode. We find that the electric field distribution of the anapole mode supported in the square disk array is slightly different from that in the isolated particle. This is due to the mutual interactions of neighboring disks in a 2D array, as is detailed in this work.
is within the weak or intermediate coupling regime \(^5\). The typical Fano interference signature indicates the coupling dispersions of polaritons could be well increasing, the anapole gradually overlaps with the A excitonic resonance. Red and yellow lines represent the dispersions of the upper polariton (UP) and lower polariton (LP) separately, where the +/− symbol represents the polarization formed from the SLR(+1)/SLR(−1) mode.

To sum up, we present a CVD bottom-up method to fabricate the large-area metastructures based on the high refractive-index MoS\(_2\). In such a TMDC-based metaphotonic platform, both the dielectric resonant modes such as M-SLR and their interactions with excitons are studied with both experimental measurements and numerical simulations. Moreover, the resonant modes and self-coupled polaritons due to light-matter interaction can be tuned by changing the incidence conditions (e.g., incident angles) and geometric parameters of TMDC structures.

In this work, both the 1D and 2D metastructures are built with the non-luminous material, i.e., the multilayer MoS\(_2\), which impedes further applications such as using it as a gain medium in the field of nanolasers. Extending our CVD bottom-up method to some direct bandgap TMDC materials such as InSe is worthy to be explored in the future\(^3\). Nevertheless, despite the limitation due to the indirect bandgap of bulk MoS\(_2\), the pronounced dielectric resonances and self-coupled polaritons demonstrated in this work indicate the great potential of adopting the CVD bottom-up method for dielectric metaphotonics and engineering light-matter interaction. The bottom-
up strategy introduced in this work provides additional design flexibility for photonic devices, rendering it a promising way to realize large-area metasurfaces with vdW TMDC materials.

Methods

Dielectric constants of the MoS2 sample
Following the previous work, we combined the multi-Lorentz oscillator model and transfer matrix method to fit the transmission (extinction) spectrum we obtained in the experiment (Supplementary Fig. 16). The excitonic resonant frequencies and oscillator strengths for A, B, C excitons are adjusted by comparing the numerical and experimental results, to obtain the best fitting. Then the fitting parameters were substituted in the Lorentzian model to obtain the dielectric function of bulk MoS2 in this work.

Material properties characterizations
The cross-section (yz-plane) of MoS2 structure was obtained by etching the 1D MoS2 grating (A2) via focused ion beam (FIB) technique (Thermoscientific Scios 2). The morphology of MoS2 was characterized using TEM/STEM. The Raman spectroscopies are performed in Horiba-Jobin Yvon LabRAM HR Evolution System equipped with 532 nm green laser, where an objective lens of 50X magnification was applied with a 5-second accumulation time.

Optical characterizations
The angle-resolved extinction measurements for the samples were carried out with a home-built Fourier imaging setup (Supplementary Fig. 2), which consists of an inverted microscope (Nikon Ti2-U) equipped with a couple of objectives with the same optical parameters (Plan Fluor ELWD 60X, NA = 0.7, Nikon). The quasi-collimated incident light is focused onto the sample through the former objective (OL1) and the transmitted light from the sample passes through the latter objective (OL2). A Fourier lens (FL) at the side port of the microscope records and sends the back focal plane image (i.e. Fourier image) of the latter objective to infinity. Another tube lens (TL) focuses the Fourier image onto the slit of the imaging spectrometer (Shemrock Fig. 5 | Mie resonant modes and exciton-anapole polaritons in 2D MoS2 disk arrays. a Optical microscope images of 2D MoS2 disk arrays (H1-H7, i.e., P=510 nm and Λ is from 0.3 to 0.48), along with the SEM image for H2 sample. The scale bar represents 20 μm. b, c Measured (b) and simulated (c) extinction spectra (under normal incidence) for H1-H7. Red, blue, and cyan circles represent the resonant frequencies of electric dipole (ED), magnetic dipole (MD), and anapole modes. d The simulated spectrum for H3 region (indicated by the white dotted line in (c)). Red, blue, and cyan lines are Lorentzian fittings for ED, MD, and anapole modes. The purple-dashed line is the sum of the ED and MD fitting curves. The black dashed line indicates the A excitonic resonance. e The electric field distributions of the corresponding ED, MD, and anapole modes in (d). f, g Zoomed-in extinction spectra from box I in (b). The extinction spectra (H1-H7) in (g) are shifted vertically for clarity. The purple diamonds and yellow stars indicate the resonant energies of UP and LP. Purple and yellow lines in (f) are the fitting curves (fitted by Eq.(1)) for UP and LP. The dark blue dashed and dotted lines in (f) indicate the dispersions of anapole mode and A exciton separately. Dashed-dotted line in (g) indicates the A excitonic resonance. (h, i) Similar to (f, g) but for the zoomed-in region from box II in (e).
coupled with an electron-multiplying charge-coupled device camera (EMCCD, iXon Ultra 888). A linear polarizer between the FL and TL defines the polarization of the beam.

FDTD simulations
A finite-difference time-domain (FDTD) solver (Lumerical Solutions, Inc.) was used in simulation analyses. The refractive index of MoS2 (Fig. 2e in the main text) is inserted in the material layer in the software. The simulations for 1D MoS2 grating were performed by the 2D FDTD simulation region. The illumination consists of a broadband (400–1000 nm) plane-wave beam, which was incident normally to the substrate. Power transmission monitors were placed at the back side (opposite side to the incident source) of the substrate to detect the transmission spectra. The simulations for 2D MoS2 disk arrays were performed under the similar condition as 2D case but a 3D FDTD simulation region and the illumination of (opposite side to the incident source) of the substrate to detect the transmission spectra. The simulations for 2D MoS2 disk arrays were performed under the similar condition as 2D case but a 3D FDTD simulation region was applied in the simulation. For the angle-resolved spectra (Fig. 4b, e), we varied the incident angle from 0 to 40 degrees with a step of 2 degrees.

Data availability
The experimental and simulated spectra, near field distributions, Raman spectra, SEM images, STEM data, and HRTEM data that support the findings of this work are available at https://doi.org/10.6084/m9.figshare.20494848. Additional data are provided in the Supplementary Information and are available from the corresponding author upon request.

References
1. Chikkaraddy, R. et al. Single-molecule strong coupling at room temperature in plasmonic nanocavities. Nature 535, 127 (2016).
2. Munkhbat, B., Canales, A., Küçükoğlu, B., Baranov, D. G. & Shegai, T. O. Tunable self-assembled Casimir microcavities and polaritons. Nature 597, 214–219 (2021).
3. Schneider, C. et al. An electrically pumped polariton laser. Nature 497, 348–352 (2013).
4. Wang, Z. et al. Giant photoluminescence enhancement in tungsten diselenide–gold plasmonic hybrid structures. Nat. Commun. 7, 11283 (2016).
5. Cihan, A. F., Curto, A. G., Raza, S., Kik, P. G. & Brongersma, M. L. Silicon Mie resonators for highly directional light emission from monolayer MoS2. Nat. Photonics 12, 284–290 (2018).
6. Bose, R., Sridharan, D., Kim, H., Solomon, G. S. & Waks, E. Low-photon-number optical switching with a single quantum dot coupled to a photonic crystal cavity. Phys. Rev. Lett. 108, 227402 (2012).
7. Cuadra, J. et al. Observation of Tunable Charged Exciton Polaritons in Hybrid Monolayer WS2-Plasmonic Nanoantenna System. Nano Lett. 18, 1777–1785 (2018).
8. Liu, N. et al. Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit. Nat. Mater. 8, 758–762 (2009).
9. Liu, N., Mesch, M., Weiss, T., Hentschel, M. & Giessen, H. Infrared perfect absorber and its application as plasmonic nano sensor. Nano Lett. 10, 2342–2348 (2010).
10. Liu, T., Xu, R., Yu, P., Wang, Z. & Takahara, J. Multipole and multi-mode engineering in Mie resonance-based metastructures. Nanophotonics 9, 1115–1137 (2020).
11. Verre, R. et al. Transition metal dichalcogenide nanodisks as high-index dielectric Mie nanoresonators. Nat. Nanotechnol. 14, 679–684 (2019).
12. Green, T. D. et al. Optical material anisotropy in high-index transition metal dichalcogenide Mie nanoresonators. Optica 7, 680 (2020).
13. Miroshnichenko, A. E. et al. Nonradiating anapole modes in dielectric nanoparticles. Nat. Commun. 8, 8069 (2015).
14. Fu, Y. H., Kuznetsov, A. I., Miroshnichenko, A. E., Yu, Y. F. & Luk’yanchuk, B. Directional visible light scattering by silicon nanoparticles. Nat. Commun. 4, 1527 (2013).
15. Shcherbakov, M. R. et al. Enhanced third-harmonic generation in silicon nanoparticles driven by magnetic response. Nano Lett. 14, 6488–6492 (2014).
16. Chen, W. T. et al. A broadband achromatic metalens for focusing and imaging in the visible. Nat. Nanotechnol. 13, 220–226 (2018).
17. Decker, M. et al. High-Efficiency Dielectric Huygens’ Surfaces. Adv. Opt. Mater. 3, 813–820 (2015).
18. Lu, L., Ioannopoulos, J. D. & Soljačić, M. Topological photonics. Nat. Photonics 8, 821–829 (2014).
19. Koshelev, K. & Kivshar, Y. Dielectric Resonant Metaphotonics. ACS Photonics 8, 102–112 (2020).
20. Solntsev, A. S., Agarwal, G. S. & Kivshar, Y. Y. Metasurfaces for quantum photonics. Nat. Photonics 15, 327–336 (2021).
21. Jin, L. et al. Dielectric multi-momentum meta-transformer in the visible. Nat. Commun. 10, 4789 (2019).
22. Arbabi, E. et al. MEMS-tunable dielectric metasurface lens. Nat. Commun. 9, 812 (2018).
23. Munkhbat, B. et al. Transition metal dichalcogenide metamaterials with atomic precision. Nat. Commun. 11, 4604 (2020).
24. Munkhbat, B., Küçükoğlu, B., Baranov, D. G., Antosiewicz, T. J. & Shegai, T. O. Nanostructured transition metal dichalcogenide multilayers for advanced nanophotonics. Preprint at https://arxiv.org/abs/2202.04989 (2022).
25. Wang, S. et al. Coherent coupling of WS2 monolayers with metallic photonic nanostructures at room temperature. Nano Lett. 16, 4368–4374 (2016).
26. Zhang, L., Gogna, R., Burg, W., Tutuc, E. & Deng, H. Photonic-crystal exciton-polaritons in monolayer semiconductors. Nat. Commun. 9, 713 (2018).
27. Wang, S. et al. Collective Mie Exciton-Polaritons in an Atomically Thin Semiconductor. J. Phys. Chem. C 124, 19196–19203 (2020).
28. Liu, W. et al. Generation of helical topological exciton-polaritons. Sci. (80–). 370, 600–604 (2020).
29. Kumar, P. et al. Light–matter coupling in large-area van der Waals superlattices. Nat. Nanotechnol. 17, 182–189 (2022).
30. Zhang, X. et al. Azimuthally Polarized and Unidirectional Exciton Emission from Deep Subwavelength Transition Metal Dichalcogenide Annular Heterostructures. ACS Photonics 8, 2861–2867 (2021).
31. Zhang, X. et al. Guiding of visible photons at the angstrom thickness limit. Nat. Nanotechnol. 14, 844–850 (2019).
32. Zhang, X. et al. Ultrathin WS2-on-Glass Photonic Crystal for Self-Resonant Exciton-Polaritons. Adv. Opt. Mater. 8, 1901988 (2020).
33. Busschaert, S. et al. Transition Metal Dichalcogenide Resonators for Second Harmonic Signal Enhancement. ACS Photonics 7, 2482–2488 (2020).
34. Nauman, M. et al. Tunable unidirectional nonlinear emission from transition-metal-dichalcogenide metasurfaces. Nat. Commun. 12, 5597 (2021).
35. Ling, H., Li, R. & Davoyan, A. R. All van der Waals Integrated Nanophotonics with Bulk Transition Metal Dichalcogenides. ACS Photonics 8, 721–730 (2021).
36. Anantharaman, S. B. et al. Self-Hybridized Polaritonic Emission from Layered Perovskites. Nano Lett. 21, 6245–6252 (2021).
37. Huang, W., Gan, L., Li, H., Ma, Y. & Zhai, T. Phase-Engineered Growth of Ultrathin InSe Flakes by Chemical Vapor Deposition for High-Efficiency Second Harmonic Generation. Chem. - A Eur. J. 24, 15678–15684 (2018).
38. Masubuchi, S. et al. Autonomous robotic searching and assembly of two-dimensional crystals to build van der Waals superlattices. Nat. Commun. 9, 1413 (2018).
Acknowledgements

The work is in part supported by Research Grants Council of Hong Kong, particularly, via Grant Nos. AoE/P-701/20, 14203018, N_CUHK438/18, and CUHK Group Research Scheme, and CUHK Postdoctoral Fellowship by Innovation and Technology Commission, Hong Kong SAR Government and partially supported by the National Natural Science Founda-

tion of China (62104165), the Natural Science Foundation of Jiangsu Province (BK20200859, BK20210713), Gusu Youth Leading Talent ZXL2021452, and the Priority Academic Program Development (PAPD) of Jiangsu Higher Education Institutions. K.C thanks the support by National Natural Science Foundation of Guangdong for Distinguished Young Scholars (Grant No. 2018B030306043); Pearl River Talent Plan (Grant No. 2019QN01C109); The Fundamental Research Funds for the Central Universities, Sun Yat-sen University (Grant No. 22qntd0503); State Key Laboratory of Optoelectronic Materials and Technology Independent subject (Grant No. OMEM-2022-ZRC-06).

Author contributions

Z.F.C., J.B.X., F.H.S. and S.W. conceived the concept. F.H.S. and Y.Q.Z. designed, fabricated and characterized the samples. S.W. and Z.H.Z performed the optical measurements. F.H.S. made the data analyses and FDTD simulations. J.W.M., K.C. and H.J.C. contributed to the data analyses. All the authors contributed to the paper writing.

Competing interests

The authors declare no competing interests.

Additional information

Supplementary information The online version contains supplementary material available at https://doi.org/10.1038/s41467-022-33088-0.

Correspondence and requests for materials should be addressed to Shaojun Wang, Jianxin Xu or Zefeng Chen.

Peer review information Nature Communications thanks the anonymous reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2022