ABSTRACT

Objective: The objective of this article is to carry out a systematic review of scientific articles that reveal the risk factors associated with Barrett’s esophagus in hospitalized patients. Methods: The review was performed by electronic search for articles related to risk factors associated with Barrett’s esophagus in hospitalized patients. The PEO question was: What are the risk factors associated with Barrett’s esophagus in hospitalized patients? The search sources were in PUBMED. The search terms were: Risk Factors; Barrett’s esophagus; hospitalized patients. For this review, articles published from 2010 that had research experiences and theoretical-conceptual aspects were selected. Results: Of the 389 results found with indexing sources, a total of 25 articles were selected where 22 articles contained research results and 3 were considered for theoretical-conceptual aspects that are related to the purpose of the study. The search resulted in risk factors associated with Barrett’s esophagus according to demographic characteristics and patient traits, presentation, and clinical data and lifestyles. Conclusion: An association of various risk factors with Barrett’s esophagus is evidenced in hospitalized patients. The most concordant risk factors associated with Barrett’s esophagus in the review were male sex, increased age, metabolic syndrome, hiatal hernia, use of proton pump inhibitors, gastroesophageal reflux (GER), obstructive sleep apnea, and erosive esophagitis.

Key words: Risk Factors; Barrett’s esophagus; Patients (source: MeSH NLM).

RESUMEN

Objetivo: El objetivo de este artículo es realizar una revisión sistemática de artículos científicos que revelen los factores de riesgo asociados a Esófago de Barrett en pacientes hospitalizados. Métodos: La revisión fue efectuada mediante búsqueda electrónica de artículos relacionados a factores de riesgo asociadas a Esófago de Barrett en pacientes hospitalizados. La pregunta PEO fue ¿Cuáles son los factores de riesgo asociados a Esófago de Barrett en pacientes hospitalizados? Las fuentes de búsqueda fueron en PUBMED. Los términos de búsqueda fueron: Factores de Riesgo; Esófago de Barrett; pacientes hospitalizados. Para esta revisión se seleccionaron los artículos publicados a partir el año 2010 que tuvieron experiencias investigativas y aspectos teórico-conceptuales. Resultados: De los 389 resultados encontrados con fuentes de indexación, se seleccionaron un total de 25 artículos donde 22 artículos contenían resultados de investigación y 3 fueron considerados para aspectos teórico – conceptuales que se relacionan con el propósito del estudio. La búsqueda dio como resultado factores de riesgo asociados a Esófago de Barrett según las características demográficas y rasgos del paciente, presentación y datos clínicos y estilos de vida. Conclusion: Se evidencia una asociación de diversos factores de riesgo con Esófago de Barrett en pacientes hospitalizados. Los factores de riesgo asociados a Esófago de Barrett en la revisión que fueron más concordantes son sexo masculino, edad incrementada, síndrome metabólico, hernia hiatal, uso de inhibidores de bomba de protones, refluo gastroesofágico(RGE), apnea obstructiva del sueño y esofagitis erosiva.

Palabras clave: Factores de Riesgo; Esófago de Barrett; Pacientes (fuente: DeCS BIREME).
INTRODUCTION

At present, there are several risk factors for Barrett’s esophagus which have not been fully reviewed in hospitalized patients. Barrett’s esophagus is an acquired esophageal condition characterized by the presence of metaplastic columnar epithelium in the distal esophagus that replaces the normal stratified squamous mucosa. Factors associated with Barrett’s esophagus are symptoms of gastroesophageal reflux disease (GERD), advanced age, and male gender. Studies have revealed an association with central obesity (waist / hip ratio or abdominal circumference, but less clearly with body mass index or overall body fat content), smoking, Caucasian race, and a positive family history. In contrast, alcohol consumption does not appear to be a significant risk factor. Research has also found possible risk factors, such as metabolic syndrome, type 2 diabetes mellitus, and sleep apnea[1].

A potential mechanism of BE pathogenesis involves transdifferentiation, in which fully differentiated esophageal squamous cells change to fully differentiated columnar cells, either directly (without undergoing cell division) or indirectly (through cell division). Although once differentiated cells are considered immutable, studies have shown that differentiated cells can be reprogrammed to acquire characteristics of immature progenitor cells. Many types of mature cells have the ability to de-differentiate into cells with progenitor cell characteristics. Therefore, trans difference in the esophagus can occur through a 2-stage GERD process in an induced reprogramming in which mature squamous cells reverse their differentiation to acquire progenitor cell plasticity before changing to a columnar phenotype[2].

The diagnosis of Barrett’s esophagus should appear to be straightforward, that means, a visible change in the lining of the distal esophagus and histologic confirmation with columnar metaplasia. Diagnostic components of Barrett’s esophagus include endoscopic recognition, appropriately targeted biopsies, and histologic confirmation[3].

The objective of this article is to carry out a systematic review of scientific articles which reveal the risk factors associated with Barrett’s esophagus in hospitalized patients.

METHODS

A systematic search of electronic databases was carried out to identify publications related to risk factors for Barret’s esophagus, in the PUBMED indexing source. The PEO question was: What are the risk factors associated with Barret’s esophagus in hospitalized patients?

The advanced search terms for PUBMED were: Risk factors, Barret’s esophagus and patients. For this review, articles published with research results and those with theoretical-conceptual aspects since June 2010 and carried out in humans were selected with the help of the PUBMED advanced search. The systematic search used in PUBMED was: ((Patients[tiab] OR patient[tiab] OR Clients[tiab] OR Client[tiab]) AND (risk factors[tiab] OR Factor, Risk[tiab] OR Factors, Risk[tiab] OR Risk Factor[tiab] OR Population at Risk[tiab] OR Risk, Population at[tiab] OR Populations at Risk[tiab] OR Risk, Populations at[tiab] AND (Barrett Metaplasia[tiab] OR Barrett Metaplasias[tiab] OR Metaplasia, Barrett[tiab] OR Metaplasias, Barrett[tiab] OR Barrett’s Syndrome[tiab] OR barrett Syndrome[tiab] OR Barrett Syndrome[tiab] OR Barrett’s Esophagus[tiab] OR barrett Esophagus[tiab] OR Esophagus, Barrett's[tiab] OR Esophagus, Barrett[tiab] OR Barrett Epithelium[tiab] OR Epithelium, Barrett)). Figure 1 shows the process of selecting the terms for the systematic search.
The search resulted in risk factors associated with Barret's esophagus according to demographic characteristics and patient traits, presentation and clinical data, and lifestyles. Table 1 shows the risk factors for Barret's esophagus in hospitalized patients from observational cohort studies and selected cases and controls for the review article.

RESULTS

A total of 389 results were obtained in the systematic search found in PUBMED and a total of 25 articles were selected where 22 articles contained research results and 3 were considered for theoretical-conceptual aspects that are related to the purpose of the study. Figure 2 shows the article selection process in PUBMED.

Figure 1. Selection process of research and theoretical-conceptual articles for the review article in PUBMED

The search resulted in risk factors associated with Barret's esophagus according to demographic characteristics and patient traits, presentation and clinical data, and lifestyles. Table 1 shows the risk factors for Barret's esophagus in hospitalized patients from observational cohort studies and selected cases and controls for the review article.
Table 2. Risk factors for Barret’s esophagus in hospitalized patients from observational cohort and case-control studies.

Measured risk factor	Author	Study type	Article	Population	Measurement value	CI 95%	P
			Características demográficas y rasgos del paciente (edad, sexo, etnia, imc)				
Male patient	Yousaf Bashir Hadi (4)	cases and controls	Independent association of obstructive sleep apnea with Barret’s esophagus	1091	OR:1.71	1.13–2.59	<0.01
			Low Prevalence of Suspected Barrett’s Esophagus in Gastroesophageal Reflux Disease Without Alarm Symptoms	4122	OR:2.61	2.44–2.79	
Male patient	Emery C Lin (5)	Cohort study	Prevalence and risk factors for Barret’s esophagus in Taiwan	3385	OR:2.106	1.145–3.872	0.017
Male patient	Yan-Hua Chen (6)	Cohort study	The influence of Helicobacter pylori on the ethnic distribution of Barret’s metaplasia	596 479	OR:3.34	3.28–3.40	<0.0001
Male patient	A. Sonnenberg (7)	cases and control	Risk Factors for Barret’s Esophagus Compared Between African Americans and Non-Hispanic Whites	1952	OR:3.35	1.51–7.43	0.003
Male patient	Theresa H. Nguyen (8)	cases and control	Barrett’s esophagus in Latinos undergoing endoscopy for gastroesophageal reflux disease symptoms	663	OR:2.34	1.35–4.05	0.002
Male patient	Matheus Degiovani (90)	cases and control	Is there a relation between hellybacter pylori and intestinal metaplasia in short column epitelization up to 10 mm in the distal esophagus?	373	OR:1.76	1.13–2.76	0.013
Male patient	Matheus Degiovani (90)	cases and control	Independent association of obstructive sleep apnea with Barret’s esophagus	1091	OR:1.04	1.02–1.06	<0.01
Edad incrementada	Yousaf Bashir Hadi (6)	cases and control	Influence of hiatal hernia and male sex on the relationship between alcohol intake and occurrence of Barret’s esophagus	8031	OR:1.42	1.23–1.64	<0.0001
Increased age	Matheus Degiovani(10)	Cases and control	IS THERE A RELATION BETWEEN HELYBACTER PYLORI AND INTESTINAL METAPLASIA IN SHORT COLUMN EPITELIZATION UP TO 10 MM IN THE DISTAL ESOPHAGUS?	373	OR: 1.017	1.001-1.033	0.031
Increased age	Yan-Hua Chen(6)	Cohort study	Prevalence and risk factors for Barrett’s esophagus in Taiwan	3385	OR: 1.033	1.012-1.055	0.002
Increased age	Rena Yadlapati(12)	Cohort study	Reduced Esophageal Contractility Is Associated with Dysplasia Progression in Barrett’s Esophagus: A Multicenter Cohort Study	193	OR: 1.08	1.01-1.16	0.03
Increased age	Wytske M. Westra(13)	Cases and controls (Cigarette and smokeless tobacco users vs Non-users)	Smokeless Tobacco and Cigar and/or Pipe Are Risk Factors for Barrett Esophagus in Male Patients With Gastroesophageal Reflux Disease	1015	OR: 1.06	1.05-1.08	<.001
Increased age	Wytske M. Westra(13)	Cases and controls (cigarette and cigar users vs Non-users)	Smokeless Tobacco and Cigar and/or Pipe Are Risk Factors for Barrett Esophagus in Male Patients With Gastroesophageal Reflux Disease	1015	OR: 1.06	1.05-1.08	<.001
Increased age	A. Sonnenberg(7)	Cases and control	The influence of Helicobacter pylori on the ethnic distribution of Barrett’s metaplasia	596479	OR: 18.29	17.39–19.24	<.0001
Increased age	K. Keyashian(9)	Cases and control	Barrett’s esophagus in Latinos undergoing endoscopy for gastesophageal reflux disease symptoms	663	OR: 2.17	1.25–3.76	0.006
Increased age	Gloria Vargas Cárdenas(14)	Cases and control	Esófago de Barrett: Prevalencia y Factores de Riesgo en el Hospital Nacional “Arzobispo Loayza” Lima-Perú	11,970	OR: 2.57	1.41-4.69	0.001
Age 40 to 49 years	Emery C Lin(5)	Cohort study	Low Prevalence of Suspected Barrett’s Esophagus in Gastroesophageal Reflux Disease Without Alarm Symptoms	4122	OR: 1.32	1.18 - 1.47	
Age 50 to 59 years	Emery C Lin(5)	Cohort study	Low Prevalence of Suspected Barrett’s Esophagus in Gastroesophageal Reflux Disease Without Alarm Symptoms	4122	OR: 1.54	1.39 - 1.71	
Age 60 to 69 years	Emery C Lin\(^{(5)}\)	Cohort study	Low Prevalence of Suspected Barrett’s Esophagus in Gastroesophageal Reflux Disease Without Alarm Symptoms	4122	OR:1.68	1.51 - 1.87	
--------------------	----------------------	--------------	---	------	--------	-------------	
Aqual to or greater than 70 years	Emery C Lin\(^{(5)}\)	Cohort study	Low Prevalence of Suspected Barrett’s Esophagus in Gastroesophageal Reflux Disease Without Alarm Symptoms	4122	OR:1.42	1.25 - 1.61	
BMI greater than 25	Hirohiko Shinkai\(^{(15)}\)	Cases and controls	Association between the Body Mass Index and the Risk of Barrett’s Esophagus in Japan	113	OR:3.45	1.30–9.13 <0.01	
North european	A. Sonnenberg\(^{(7)}\)	Cases and controls	The influence of Helicobacter pylori on the ethnic distribution of Barrett’s metaplasia	596 479	OR:1.14	1.03–1.26 0.0117	

Presentation and clinical data (medical history)

Metabolic syndrome	Shou-Wu Lee\(^{(16)}\)	Cases and controls	Association of metabolic syndrome with erosive esophagitis and Barrett’s esophagus in a Chinese population	7712	OR:2.82	2.05–3.88 <0.001
Metabolic syndrome	Cadman L. Leggett\(^{(27)}\)	Cases and controls BE VS with GERD	Metabolic Syndrome as a Risk Factor for Barrett Esophagus: A Population-Based Case-Control Study	309	OR:2	1.1–3.6 0.02
Metabolic syndrome	Cadman L. Leggett\(^{(27)}\)	Cases and controls BE vs without GERD	Metabolic Syndrome as a Risk Factor for Barrett Esophagus: A Population-Based Case-Control Study	309	OR:1.9	1.03–3.6 0.04
Central obesity	Chih-Cheng Chen\(^{(18)}\)	Cases and controls	Central Obesity and H. pylori Infection Influence Risk of Barrett’s Esophagus in an Asian Population	161	OR:2.79	1.89–4.12 <0.001
Diabetes	K. Keyashian\(^{(9)}\)	Cases and controls	Barrett’s esophagus in Latinos undergoing endoscopy for gastresophageal reflux disease symptoms	663	OR:2.23	1.10–4.53 0.03
Hiatal hernia	Camille Baziri\(^{(39)}\)	Cases and controls	Esophageal Motor Disorders Are a Strong and Independant Associated Factor of Barrett’s Esophagus	201	OR:5.60	2.45-12.76 < 0.001
Hiatal hernia	Atsuhiro Masuda\(^{(37)}\)	Cohort study	Influence of hiatal hernia and male sex on the relationship between alcohol intake and occurrence of Barrett’s esophagus	8031	OR:3.37	2.50–4.59 <0.0001
Hiatal hernia	Author(s)	Study Type	Description	Prevalence	OR Value	Confidence Interval	p Value
Low Prevalence of Suspected Barrett's Esophagus in Gastroesophageal Reflux Disease Without Alarm Symptoms	Emery C Lin(5)	Cohort study		4122	1.60	1.50 - 1.70	< 0.001
Prevalence and risk factors for Barrett's esophagus in Taiwan	Yan-Hua Chen(6)	Cohort study		3385	3.037	1.765 - 5.225	< 0.001
Risk factors for Barrett's esophagus in Indian patients with gastroesophageal reflux disease	Praveen Mathew(20)	Cases and controls		278	3.14	1.2 - 8.17	0.01
Risk Factors for Barrett's Esophagus Compared Between African Americans and Non-Hispanic Whites	Theresa H. Nguyen(8)	Cases and controls		1952	5.08	3.35 - 7.69	<0.001
Risk Factors for Barrett's Esophagus Compared Between African Americans and Non-Hispanic Whites	Theresa H. Nguyen(8)	Cases and controls		1952	2.79	1.85 - 4.19	<0.001
Association between the Body Mass Index and the Risk of Barrett's Esophagus in Japan	Hirohiko Shinkai(15)	Cases and controls		113	18.3	7.21 - 46.5	<0.01
Risk Factors for Barrett's Esophagus Compared Between African Americans and Non-Hispanic Whites	Theresa H. Nguyen(8)	Cases and controls		1952	1.73	1.10 - 2.73	0.02
Risk Factors for Barrett's Esophagus Compared Between African Americans and Non-Hispanic Whites	Theresa H. Nguyen(8)	Cases and controls		1952	1.88	1.40 - 2.52	<0.001
Association between the Body Mass Index and the Risk of Barrett's Esophagus in Japan	Hirohiko Shinkai(15)	Cases and controls		113	8.28	2.96 - 123.1	0.01
Risk factors for Barrett's esophagus in Indian patients with gastroesophageal reflux disease	Praveen Mathew(20)	Cases and controls		278	2.28	1.11 - 4.66	0.02
Motor disorder of the esophagus

Authors	Study Design	Cases and Controls	Findings
Camille Bazin	Cases and controls	Esophageal Motor Disorders Are a Strong and Independent Associated Factor of Barrett's Esophagus	OR: 4.49, 1.85-10.93, <0.001
Yousaf Bashir Hadi	Cases and controls	Independent association of obstructive sleep apnea with Barrett's esophagus	OR: 2.23, 1.45-3.49, 0.01
Cadman L. Leggett	Cases and controls	Obstructive Sleep Apnea Is a Risk Factor for Barrett's Esophagus	OR: 4.77, 1.57-14.02, <0.01
Jiro Watari	Cases and controls	Association between obesity and Barrett's esophagus in a Japanese population: a hospital-based, cross-sectional study	OR: 3.48, 1.89-6.41, <0.0001
Jiro Watari	Cases and controls	Association between obesity and Barrett's esophagus in a Japanese population: a hospital-based, cross-sectional study	OR: 5.67, 2.17-14.86, 0.0004

Age of presentation of GER symptom under 30 years

Authors	Study Design	Cases and Controls	Findings
Omar Bakr	Cases and controls (Cases vs Population)	Gastroesophageal Reflux Frequency, Severity, Age of Onset, Family History and Acid Suppressive Therapy Predict Barrett's Esophagus in a Large Population	OR: 2.93, 1.67-5.15
Omar Bakr	Cases and controls (Cases vs Patients with GER)	Gastroesophageal Reflux Frequency, Severity, Age of Onset, Family History and Acid Suppressive Therapy Predict Barrett's Esophagus in a Large Population	OR: 1.93, 1.15-3.22

Nighttime symptoms of GER

Authors	Study Design	Cases and Controls	Findings
Omar Bakr	Cases and controls (Cases vs Population)	Gastroesophageal Reflux Frequency, Severity, Age of Onset, Family History and Acid Suppressive Therapy Predict Barrett's Esophagus in a Large Population	OR: 5.40, 3.81-7.72

Feeling stuck

Authors	Study Design	Cases and Controls	Findings			
Omar Bakr	Cases and controls (Cases vs Population)	Gastroesophageal Reflux Frequency, Severity, Age of Onset, Family History and Acid Suppressive Therapy Predict Barrett's Esophagus in a Large Population	OR: 3.00, 2.13-4.24			
Family history	Cases and controls (Cases vs Population)	Gastroesophageal Reflux Frequency, Severity, Age of Onset, Family History and Acid Suppressive Therapy Predict Barrett's Esophagus in a Large Population	OR: 2.55	1.80-3.62		
----------------	--	--	----------	-----------		
BE family history	Cases and controls (Cases vs Population)	Gastroesophageal Reflux Frequency, Severity, Age of Onset, Family History and Acid Suppressive Therapy Predict Barrett's Esophagus in a Large Population	OR: 10.08	2.83-35.84		
BE family history	Cases and controls (Patients with GER)	Gastroesophageal Reflux Frequency, Severity, Age of Onset, Family History and Acid Suppressive Therapy Predict Barrett's Esophagus in a Large Population	OR: 3.64	1.50-8.83		
1-2 appointments per year for GER	Cases and controls (Cases vs Population)	Gastroesophageal Reflux Frequency, Severity, Age of Onset, Family History and Acid Suppressive Therapy Predict Barrett's Esophagus in a Large Population	OR: 7.13	4.71-10.81		
More than 3 appointments per year for GER	Cases and controls (Cases vs Population)	Gastroesophageal Reflux Frequency, Severity, Age of Onset, Family History and Acid Suppressive Therapy Predict Barrett's Esophagus in a Large Population	OR: 5.12	2.96-8.83		
3-5 appointments per year for any reason	Cases and controls (Cases vs Population)	Gastroesophageal Reflux Frequency, Severity, Age of Onset, Family History and Acid Suppressive Therapy Predict Barrett's Esophagus in a Large Population	OR: 2.06	1.40-3.03		
6-10 appointments per year for any reason	Cases and controls (Cases vs Population)	Gastroesophageal Reflux Frequency, Severity, Age of Onset, Family History and Acid Suppressive Therapy Predict Barrett's Esophagus in a Large Population	OR: 2.69	1.65-4.37		
Risk Factor	Study Description	Study Type	Study Details	p-Value	Odds Ratio (OR)	95% Confidence Interval
---	--	------------	---	---------	-----------------	----------------------------------
More than 10 visits per year for any reason	Omar Bakr	Cases and controls (Cases vs Population)	Gastroesophageal Reflux Frequency, Severity, Age of Onset, Family History and Acid Suppressive Therapy Predict Barrett’s Esophagus in a Large Population		2.25	1.33–3.83
Human papillomavirus DNA	M. YW Wong	Cases and controls	Human papillomavirus exposure and sexual behavior are significant risk factors for Barrett’s dysplasia/esophageal adenocarcinoma		8.2	2.8–23.8 0.0001
Obstructive sleep apnea	Yousaf Bashir Hadi	Cases and controls	Independent association of obstructive sleep apnea with Barrett’s esophagus		3.26	1.72–6.85 0.01
Obstructive sleep apnea	Cadman L. Leggett	Cases and controls	Obstructive Sleep Apnea Is a Risk Factor for Barrett’s Esophagus		1.8	1.1–3.2 0.03
Erosive esophagitis	Atsuhiro Masuda	Cohort study	Influence of hiatal hernia and male sex on the relationship between alcohol intake and occurrence of Barrett’s esophagus		2.82	2.04–3.85 0.0001
Erosive esophagitis	Hirohiko Shinkai	Cases and controls	Association between the Body Mass Index and the Risk of Barrett’s Esophagus in Japan		15.3	3.49–66.8 0.01
Esophagitis	Gloria Vargas Cárdenas	Cases and controls	Esófago de Barrett: Prevalencia y Factores de Riesgo en el Hospital Nacional “Arzobispo Loayza” Lima-Perú		14.81	3.96–55.41 0.001
Grade B esophagitis (LA)	Emery C Lin	Cohort study	Low Prevalence of Suspected Barrett’s Esophagus in Gastroesophageal Reflux Disease Without Alarm Symptoms		2.19	1.72 - 2.78
Grade C / D esophagitis (LA)	Emery C Lin	Cohort study	Low Prevalence of Suspected Barrett’s Esophagus in Gastroesophageal Reflux Disease Without Alarm Symptoms		3.50	2.59 - 4.73
Premature birth	Seiji Shiota	Cohort study	Premature Birth and Large for Gestational Age Are Associated with Risk of Barrett’s Esophagus in Adults		4.08	1.38 - 12.05
Lifestyle (sexual intercourse, consumption of food and drink, tobacco, alcohol)

Lifestyle Factor	Reference	Study Design	Cases and Controls Description	N	OR	95% CI	P-value
Person in a sexual relationship	M. YW Wong (24)	Cases and controls	Human papillomavirus exposure and sexual behavior are significant risk factors for Barrett’s dysplasia/esophageal adenocarcinoma	133	11.4	1.4–93.9	0.02
More than 6 oral sex partners	M. YW Wong (24)	Cases and controls	Human papillomavirus exposure and sexual behavior are significant risk factors for Barrett’s dysplasia/esophageal adenocarcinoma	133	4.0	1.2–13.7	0.046
Alcohol consumption	Atsuhiro Masuda (11)	Cohort study	Influence of hiatal hernia and male sex on the relationship between alcohol intake and occurrence of Barrett’s esophagus	8031	1.92	1.41–2.61	<0.0001
Hot tea consumption	Yan-Hua Chen (6)	Cohort study	Prevalence and risk factors for Barrett’s esophagus in Taiwan	3385	1.695	1.043–2.754	0.033
Always use a cigarette	Wytske M. Westra (13)	Cases and controls	Smokeless Tobacco and Cigar and/or Pipe Are Risk Factors for Barrett Esophagus in Male Patients With Gastroesophageal Reflux Disease	1015	1.43	1.06–1.88	0.02
Always use cigarettes and smokeless tobacco	Wytske M. Westra (13)	Cases and controls	Smokeless Tobacco and Cigar and/or Pipe Are Risk Factors for Barrett Esophagus in Male Patients With Gastroesophageal Reflux Disease	1015	2.53	1.22–5.22	0.01
Always use a cigarette	Wytske M. Westra (13)	Cases and controls	Smokeless Tobacco and Cigar and/or Pipe Are Risk Factors for Barrett Esophagus in Male Patients With Gastroesophageal Reflux Disease	1015	1.43	1.07–1.91	0.02
Always consume cigarette and cigar	Wytske M. Westra (13)	Cases and controls	Smokeless Tobacco and Cigar and/or Pipe Are Risk Factors for Barrett Esophagus in Male Patients With Gastroesophageal Reflux Disease	1015	1.90	1.03–3.58	0.04
Consumption of fatty foods	Gloria Vargas Cárdenas (14)	Cases and controls	Esófago de Barrett: Prevalencia y Factores de Riesgo en el Hospital Nacional “Arzobispo Loayza” Lima-Perú	11,970	8.67	2.28–32.99	0.001
The most consistent risk factors in the articles reviewed are male, increased age, metabolic syndrome, hiatal hernia, use of proton pump inhibitors, gastroesophageal reflux (GER), obstructive sleep apnea and erosive esophagitis. Central obesity, diabetes, active gastritis, presence of belching, esophageal motor disorder, human papillomavirus DNA, alcohol consumption, tobacco use, consumption of hot tea and consumption of fatty foods are risk factors with only one study showing confirms the association with Barret’s esophagus, which should be further studied.

DISCUSSION

According to the demographic characteristics, for several authors, being a male is a risk factor for Barret’s esophagus\(^{4,5,6,7,8,9}\). Although Matheus Degiovani et al, say that being a female is a risk factor for Barret’s esophagus\(^{10}\).

According to many authors, increased age is a risk factor\(^{4,6,7,8,9,10,11,12,13,14}\). Although Emery C Lin et al, found that the OR increases constantly from 40 years to 69 years where their OR is 1.68\(^{15}\).

With regard to presentation and clinical data, according to Shou-wu Lee et al and Cadman L. Leggett et al, metabolic syndrome is a risk factor for Barret's esophagus\(^{16,17}\).

Other authors have found other components of the metabolic syndrome triad as risk factors, such as Chih-Cheng Chen et al, who mentioned that central obesity is a risk factor for Barret’s esophagus\(^{18}\).

According to several authors, hiatal hernia is a risk factor for Barret’s esophagus\(^{5,6,11,19,20}\). Although Theresa H. Nguyen distinguishes the size of the hiatal hernia considering that one greater than or equal to 3 cm is more likely to have Barret’s esophagus.8

According to Yousaf Bashir Hadi et al, Cadman L. Leggett et al and Jiro Watari et al, GER is a risk factor for Barret’s esophagus\(^{6,21,22}\). Although Omar Bakr et al, mentions that both the age of presentation, symptoms, family history and the number of consultations made for GER could also be risk factors\(^{23}\). Furthermore, Theresa H. Nguyen et al and Hirohiko Shinkai et al , tells us that the use of proton pump inhibitors is a risk factor for Barret’s esophagus\(^{8,15}\).

Conforming to Yousaf Bashir Hadi et al, Cadman L. Leggett et al, obstructive sleep apnea is a risk factor for Barrett’s esophagus\(^{6,21}\). According to Atsuhiro Masuda et al and Hirohiko Shinkai et al, erosive esophagitis is a risk factor for Barret’s esophagus\(^{11,15}\). Although for Gloria Vargas Cárdenas et al, only the fact of having esophagitis would already be a risk factor\(^{14}\), on the other hand for Emery C Lin et al, they mention that only grade B, C, D esophagitis are a risk factor for Barret's esophagus.5 Lifestyles are not as well studied as a risk factor for which more studies should be carried out.

CONCLUSION

An association of multiple risk factors with Barret’s esophagus is evidenced in hospitalized patients. The risk factors associated with Barret’s esophagus in the review that were the most concordant are male sex, increased age, metabolic syndrome, hiatal hernia, use of proton pump inhibitors, gastroesophageal reflux (GER), obstructive sleep apnea and erosive esophagitis.

Authorship contributions: The authors participated in the genesis of the idea, project design, development, collection and interpretation of data, analysis of results, and manuscript preparation.

Financing: Self-financed.

Conflict of interest: The authors declare that they have no conflicts of interest in the publication of this article.

Received: October 1, 2020

Approved: December 04, 2020

Correspondence: Gerard Gomez
Address: Av. Benavides 5440, Santiago de Surco, Lima-Perú.
Telephone number: +51 952 831 740
E-mail: gerardgomez321@gmail.com
1. Amadi, Chidi, y Pieris Gatesby. «Barrett's oesophagus: Current controversies». World Journal of Gastroenterology 23, n.o 28 (28 de julio de 2017): 5051-67. https://doi.org/10.3748/wjg.v23.i28.5051.

2. Que, Jianwen, Katherine S. Garman, Rhonda F. Souza, y Stuart Jon Spechler. «Pathogenesis and Cells of Origin of Barrett's Esophagus». Gastroenterology 157, n.o 2 (2019): 349-364.e1. https://doi.org/10.1053/j.gastro.2019.03.072.

3. Clermont, Michelle, y Gary W. Falk. «Clinical Guidelines Update on the Diagnosis and Management of Barrett's Esophagus». Digestive Diseases and Sciences 63, n.o 8 (agosto de 2018): 2122-28. https://doi.org/10.1007/s10620-018-5070-2.

4. Hadi, Yousaf Bashir, Adnan Aman Khan, Syeda Fatima Zahra Naqvi, y Justin Thomas Kupec. «Independent Association of Obstructive Sleep Apnea with Barrett's Esophagus». Journal of Gastroenterology and Hepatology 35, n.o 3 (marzo de 2020): 408-11. https://doi.org/10.1111/jgh.14779.

5. Lin, Emery C., Jennifer Holub, David Lieberman, y Chin Hur. «Low Prevalence of Suspected Barrett’s Esophagus in Patients With Gastroesophageal Reflux Disease Without Alarm Symptoms». Clinical Gastroenterology and Hepatology: The Official Clinical Practice Journal of the American Gastroenterological Association 17, n.o 5 (2019): 857-63. https://doi.org/10.1016/j.cgh.2018.08.066.

6. Chen, Yan-Hua, Hsien-Chung Yu, Kung-Hung Lin, Huey-Shyan Lin, y Ping-I Hsu. «Prevalence and risk factors for Barrett's esophagus in Taiwan». World Journal of Gastroenterology 25, n.o 25 (7 de julio de 2019): 3231-41. https://doi.org/10.3748/wjg.v25.i25.3231.

7. Sonnenberg, A., K. O. Turner, y S. J. Spechler. «The Influence of Helicobacter Pylori on the Ethnic Distribution of Barrett’s Metaplasia». Alimentary Pharmacology & Therapeutics 45, n.o 2 (2017): 283-90. https://doi.org/10.1111/apt.13854.

8. Nguyen, Theresa H., Aaron P. Thrift, David Ramsey, Linda Green, Yasser H. Shaib, David V. Graham, y Hashem B. El-Serag. «Risk Factors for Barrett’s Esophagus Compared Between African Americans and Non-Hispanic Whites». The American Journal of Gastroenterology 109, n.o 12 (diciembre de 2014): 1870-80. https://doi.org/10.1038/aajg.2014.205.

9. Keyashian, K., V. Hua, K. Narishri, M. Kline, P. T. Chandrasoma, y J. J. Kim. «Barrett’s Esophagus in Latinos Undergoing Endoscopy for Gastroesophageal Reflux Disease Symptoms». Diseases of the Esophagus: Official Journal of the International Society for Diseases and Sciences 10, n.o 1 (enero de 2013): 44-49. https://doi.org/10.1111/j.1442-2050.2011.01316.x.

10. Degiovanni, Mattheo, Carmem Australia Paredes Marcadores Ribas, Nicolau Gregori Cezcko, Artur Adolfo Parada, Juliana de Andrade Que, Jianwen, Kim. «Influence of Hiatal Hernia and Male Sex on the Relationship Between Alcohol Intake and Occurrence of Barrett's Esophagus». PLoS ONE 13, n.o 2 (2018): e0192951. https://doi.org/10.1371/journal.pone.0192951.

11. Masuda, Atsuhiro, Tsuyoshi Fujita, Manabu Murakami, Yukino Yamazaki, Masao Kobayashi, Shuihui Terao, Tsuyoshi Sanuki, et al. «Association between the Body Mass Index and the Risk of Barrett’s Esophagus in Japan». Digestion 90, n.o 1 (julio de 2014): 1139-47. https://doi.org/10.1159/000357776.

12. Watarl, Jiro, Kazutoshi Hori, Fumihiro Yoshimia, Noriko Kamiya, Takahisa Yamasaki, Takuya Okugawa, Haruki Asano, et al. «Association between Obesity and Barrett’s Esophagus in a Japanese Population». PLoS ONE 11, n.o 12 (9 de diciembre de 2016). https://doi.org/10.1371/journal.pone.0167815.

13. Bakr, Omar, Wei Zhao, y Douglas Corley. «Gastroesophageal Reflux Frequency, Sensitivity, Age of Onset, Family History and Acid Supressive Therapy Predict Barrett’s Esophagus in a Large Population». Journal of clinical gastroenterology 52, n.o 10 (2018): 873-79. https://doi.org/10.1097/MCG.0000000000000983.

14. Wang, M. Y. W., B. Wang, A. Yang, A. Khor, W. Xuan, y S. Rajendra. «Human Papillomavirus Exposure and Sexual Behavior Are Significant Risk Factors for Barrett’s Dysplasia/Esophageal Adenocarcinoma». Diseases of the Esophagus: Official Journal of the International Society for Diseases of the Esophagus 31, n.o 12 (1 de diciembre de 2018). https://doi.org/10.1093/dote/doy051.

15. Shiota, Seiji, Hashem B. El-Serag, y Aaron P. Thrift. «Premature Birth and Large for Gestational Age Are Associated with Risk of Barrett’s Esophagus in Adults». Digestive Diseases and Sciences 61, n.o 4 (abril de 2016): 1139-47. https://doi.org/10.1007/s10620-015-3967-3.