High strain response and low hysteresis in BaZrO$_3$-modified KNN-based lead-free relaxor ceramics

Jian Zhang
 Nanjing Tech University

Zixuan Liu
 Nanjing Tech University

Tao Zhang
 Nanjing Tech University

Yunfei Liu (✉ yfliu@njtech.edu.cn)
 Nanjing Tech University https://orcid.org/0000-0002-4397-6607

Yinong Lyu
 Nanjing Tech University

Original Research

Keywords: KNN-based ceramics, BaZr03, high strain, low hysteresis

Posted Date: February 19th, 2021

DOI: https://doi.org/10.21203/rs.3.rs-206598/v1

License: © This work is licensed under a Creative Commons Attribution 4.0 International License.
Read Full License
Abstract

The high driving electric field and the large strain hysteresis was subject to a challenge for piezoelectric actuators’ practical applications. In order to obtain the piezoceramics with giant strain and low hysteresis at small electric field, a ternary solid solution (0.97 - x)(K 0.48 Na 0.52)Nb 0.965 Sb 0.035 - 0.03Bi 0.5 (K 0.18 Na 0.82) 0.5 ZrO 3 - x BaZrO 3 (x = 0 - 0.06) was designed and synthesized by the traditional solid-state reaction method. The relationships among phase transition, microstructure, and electrical properties of the ceramics samples were systemically investigated. Under a low electric field of 4 kV/mm, the ceramic with x = 0.02 obtained a high strain of 0.29 % (S max / E max = 729 pm/V) and a low hysteresis of 13.8 %. The excellent piezoelectric properties are mainly attributed to rhombohedral-orthorhombic-tetragonal (R-O-T) phase boundary and the relaxor-to-ferroelectric phase transition. We believe that our research can not only provide the pathway of achieving KNN-based ceramics with high strain and low hysteresis but also promote the practical application of lead-free piezoelectric actuators.

Full Text

Due to technical limitations, full-text HTML conversion of this manuscript could not be completed. However, the manuscript can be downloaded and accessed as a PDF.

Tables

Table 1 Comparison of S_{max}, E, d_{33}^*, and H_{ys} values of KNN-based and BNT-based ceramics

Compositions	S_{max} (%)	E (kV/mm)	d_{33}^* (pm/V)	H_{ys} (%)	Ref.
BNKT-SBTZ6	0.72	11	916	36.2	[42]
BNT-2.5Nb	0.7	5	1400	64	[28]
BNKT-0.02Sn	0.37	8	462	21.8	[43]
BNKT-0.02BCZ	0.33	6	549	25	[40]
NBST-0.005Mn	0.32	6	533	28	[44]
BNT-BKT-0.02BZT	0.32	6.5	503	40	[41]
BNKT-9BT	0.29	6	485	23	[45]
KNNS$_{0.06}$-SZ-BNZ	0.15	4	375	4.3	[46]
KNNS-BNKZ-0.02BZ	0.29	4	729	13.8	This work

Figures
Figure 1

XRD patterns of KNNS-BNKZ-xBZ ceramics with (a) $2\theta = 10^\circ$-60$^\circ$ and (b) $2\theta = 45$-47°, (c) Amplified XRD patterns ($2\theta = 45$-47°) of the ceramics with $x = 0, 0.01, 0.02$ where the XRD patterns are fitted by the Gauss method.
Figure 2
Temperature-dependent (-100 to 200 °C) permittivity of the ceramics with x = 0, 0.02, 0.04, 0.06, measured at 10 kHz
Figure 3

Temperature (30-450 °C) dependence of dielectric constant and frequency dependence of dielectric constant for the KNNS-BNKZ-xBZ ceramics, (a) x = 0, (b) x = 0.02, (c) x = 0.04, (d) x = 0.06, (e) ln(1/εr-1/εm)-ln(Tm) curves of KNNS-BNKZ-x BZ ceramics, (e1) x = 0, (e2) x = 0.02, (e3) x = 0.04, (e4) x = 0.06
Figure 4

SEM patterns of KNNS-BNKZ-xBZ ceramics, (a) x = 0, (b) x = 0.01, (c) x = 0.02, (d) x = 0.03, (e) x = 0.04, (f) x = 0.06
Figure 5

(a) P-E loops of KNNS-BNKZ-xBZ ceramics, (b) the variation of Pr and Ec with various BZ content, (c) I-E loops of KNNS-BNKZ-xBZ ceramics

Figure 6

(a) Bipolar S-E curves of KNNS-BNKZ-xBZ ceramics, (b) Smax and d33* curves of KNNS-BNKZ-xBZ ceramics
Figure 7

(a) Unipolar S-E curves of KNNS-BNKZ-xBZ ceramics, and the insets show Srem of x = 0, 0.02, 0.06, (b) Bipolar S-P curves of KNNS-BNKZ-0.06BZ ceramics.
Figure 8

Hysteresis curve of KNNS-BNKZ-xBZ ceramics