Effects of TNP-470 on proliferation and apoptosis in human colon cancer xenografts in nude mice

Zong-Hai Huang, Ying-Fang Fan, Hu Xia, Hao-Miao Feng, Fu-Xiang Tang

AIM: To study the effect of TNP-470 on cell growth, proliferation and apoptosis in human colon cancer xenografts in nude mice.

METHODS: Human colon cancer xenografts were transplanted into 20 nude mice. Mice were randomly divided into two groups. TNP-470 treated group received TNP-470 (30 mg/kg, s.c) every other day and the control group received a sham injection of the same volume saline solution. They were sacrificed after 4 weeks and their tumors were processed for histological examination. The expression of proliferating cell nuclear antigen (PCNA) in tumors was detected using immunohistochemical method with image analysis, and apoptosis in tumor cells was measured by TdT-mediated biotinylated-dUTP nick end labeling (TUNEL) staining.

RESULTS: Comparing with controls, tumor growth was significantly inhibited in TNP-470 treated group, the inhibitory rate being 54.4 %. Expression of PCNA in tumors of TNP-470 treated group (PI 54.32±11.47) was significantly lower than that of control group (PI 88.54±12.36), P<0.01. Apoptosis index (AI) of TNP-470 treated group (18.95±1.71) was significantly higher than that of control group(7.26±1.44), P<0.001, typical morphological change of apoptosis in tumor cells was observed in TNP-470 treated group.

CONCLUSION: Besides the anti-angiogenic effects, TNP-470 can inhibit tumor growth by inhibiting the proliferation and inducing apoptosis of tumor cells.

Huang ZH, Fan YF, Xia F, Feng HM, Tang FX. Effects of TNP-470 on proliferation and apoptosis in human colon cancer xenografts in nude mice. World J Gastroenterol 2003; 9(2): 281-283

http://www.wjgnet.com/1007-9327/9/281.htm

INTRODUCTION

The worldwide incidence of colorectal cancer is estimated at 945 000 patients per year. Many of these patients present with metastases. The past decade has seen several extensive investigations into advanced colorectal cancer. However, Most patients have limited improvement in long-term prognosis[13]. Therefore, new therapeutic methods are needed to treat and improve the survival rate in colorectal cancer patients.

Tumors are always dependent on the development of an adequate blood supply through angiogenesis for growth at both primary and secondary sites, and conlon cancer would not be an exception[2-9]. The concept of anti-angiogenesis therapy was first proposed by Folkman[10,11]. The implications of angiogenesis for tumor biology and therapy were investigated, and some anti-angiogenesis agents have been developed[12-14]. TNP-470 is a potent angiogenesis inhibitor and an analogue of fimagillin, which is a natural antibiotic secreted by Aspergillus fumigatus fresenius[15,16]. This agent shows a marked inhibitory effect on tumor growth and metastasis in vivo[17-19]. Its target is not only the endothelial cells but also the cancer cells of the host, and the tumor is affected directly[20-22]. In this study, we examined the inhibitory effect of TNP-470 on tumor growth of human colon cancer xenografts in nude mice. The expression of proliferating cellular nuclear antigen (PCNA) in tumors was examined by immunohistochemical method and apoptotic cancer cells were measured by TUNEL assay.

MATERIALS AND METHODS

Drug and reagents

TNP-470 was a generous gift from Takeda Chemical Industries (Osaka, Japan). Its structure and characteristics have been reported. TNP-470 was suspended in a vehicle composed of 0.5 % ethanol plus 5 % gum Arabic in saline. RPMI 1640 and heat-inactivated fetal calf serum (FCS) were purchased from Gibco (Grand Island, NY).

Cell line

Human colon adenocarcinoma cell line Lovo was kindly provided by the Department of Pathology, Cancer Center, First Military Medical University (FIMMU). Cells were cultured in RPMI 1640 supplemented with 10 % FCS, and were maintained at 37 °C in 5 % CO2. A single cell suspension of approximately 5x106 cells in 0.5 mL of culture medium was inoculated subcutaneously in two Balb/c nude mice to make source tumors. These source tumors were excised approximately 1 cm3, and then 2 to 3 mm3 of minced tumor tissue was implanted subcutaneously into the left axial region of the cervix of each balb/c nude mouse on day 0.

Animals

Female Balb/c nude mice were obtained from the Experimental Animal Center, FIMMU, and reared under specific pathogene-free conditions. Four-week-old mice weighing 17-22 g were used in the experiments. On day 1 after implantation, tumor-bearing nude mice were randomly divided into a control group (n=10) and a TNP-470 treated group (n=10). In the TNP-470 treated group, TNP-470 of 30 mg/kg was injected subcutaneously every other day from day 1 until sacrifice. In the control group, mice received a sham injection of the same volume of saline. The average tumor volumes and animal volume...
weights in the treatment and control groups were almost equal at the beginning of treatment.

Tumor growth and animal weights
The tumor dimensions were measured every 3 days with a dial caliper. The tumor volumes were calculated with the formula \(\text{width} \times \text{length} \times \text{height} \times 0.52 \). Mice were weighed every 3 days. The animals were painlessly killed on day 30. All animals were weighed before autopsy, at which time, the tumor weight and volume were obtained. The tumor volume was also expressed by the rate of the mean tumor volume in that treated animals to the mean tumor volume in that of control animals (T/S ratio). Tumor tissues were resected and fixed intact with 10% formalin solution, and then cut into four-micrometer-thick sections for PCNA immunohistochemical assay and TUNEL staining.

Immunohistochemical detection of PCNA
Four-micrometer-thick sections were incubated with mouse monoclonal antibodies against PCNA (Gibco, Grand Island, NY) as the primary antibody, followed by biotinylated anti-mouse immunoglobulin and avidin-biotin complex. The PCNA indices were calculated with image analysis system as the percent rate of positively stain Lovo cell nuclei to the total of Lovo nuclei. A minimum of 500 cells was counted in triplicate\(^{[23]}\).

TUNEL staining detection of apoptotic Lovo cells
We stained tumor tissue sections with terminal deoxynucleotidyl transferase (TdT)-mediated dUTP nick end labeling (TUNEL) to identify apoptotic cells\(^{[24]}\). Briefly, the sections (after being dewaxed in xylene and rehydrated in ethanol) were incubated with 20 \(\mu \text{g/L} \) proteinase K at room temperature for 15 minutes. After quenching of endogenous peroxidase, sections were rinsed in TdT buffer (30 mM Tris, 140 mM sodium cacodylate, 1 mM cobalt chloride), pH 7.2, and incubated with TdT (Pharmacia Biotech, Piscataway, NJ, USA) 1:50 and biotinylated dUTP (Gibco, Grand Island, NY, USA) 1:50 in TdT buffer for 60 min at room temperature. Labeled nuclei were detected with DAB in PBS and counterstained with methyl green for 10 minutes and 5 minutes, respectively. The slides were then mounted and examined under light microscope. Negative controls were tissues processed with omission of the TdT reaction step. Cells were defined as apoptotic if the whole nuclear area of the cell labeled positively. The apoptotic cells and bodies were counted in 10 high-power fields, and this figure was divided by the number of cells in the high-power fields with image analysis system.

Statistical analysis
Data were expressed as mean ± standard deviation. Comparison between two groups was made by the independent samples \(t \) test. \(P<0.05 \) was considered statistically significant. All statistics were carried out using SPSS10.0 statistics software.

RESULTS

Antitumor effects
Before treatment, the mean tumor volumes in the two groups were approximately the same. The mean tumor volume and tumor weight of two groups at the end of the experiment are shown in Table 1. Tumor growth curve is illustrated in Figure 1. Significant inhibitory efficacy was obtained in TNP-470 treated group.

Proliferation and apoptosis of Lovo cells
In PCNA immunohistochemical analysis and TUNEL staining, the number and extent of apoptotic cells were considerably increased and PCNA positive cells were decreased in the TNP-470 treated group compared with those on the control group. The proliferation index and apoptosis rate of Lovo cells in two groups are shown in Table 2.

DISCUSSION
TNP-470 has been reported to be highly effective against a wide variety of tumors and metastases. This agent mainly exerts its anti-tumor effect by preventing tumor neovascularization\(^{[25-27]}\). Angiogenesis is essential for the growth of solid tumors at primary and at secondary sites\(^{[28]}\). It is thought that the new blood vessels in tumor are highly permeable and provide a route for cancer cells to enter the circulation\(^{[28]}\). Therefore, anti-angiogenesis agents may have the potential to be clinically useful for the prevention of cancer progression.

TNP-470 is well described to antiproliferate the activity against endothelial cells and anti-angiogenic properties in vivo. In the recent study, TNP-470 was found to suppress DNA synthesis and cause an increased proportion of cells to go into the G0/G1 phase\(^{[29-32]}\). A molecular target recently identified that TNP-470 is the mammalian protein MetAP-2. TNP-470 covalently attaching MetAP-2 in endothelial cells may prevent the myristylation of signaling components specific to cell cycle regulation of these cells, and inhibited the proliferation of endothelial cells\(^{[33-35]}\). Other studies\(^{[36,37]}\) described that cell cycle inhibition by TNP-470 is mediated by p53 and p21\(^{[38]}\).

TNP-470 has been reported to inhibit various tumor cell proliferation at concentrations much higher than those required to inhibit endothelial cells, yet the exact mechanisms underlying these effects are unclear. In contrast, there are reports that TNP-470 has no significant effect on primary tumors transplanted s. c\(^{[38]}\). These differences may arise because of organ-site-dependent differences in tumorigenesis and on cancer-cell properties. In addition, sensitivity to TNP-470 varied from tumors possibly due to the tumors’ biological malignancy, the growth activity,
the mechanisms of tumor growth and metastasis. The antitumor activity of TNP-470 on a variety of tumors was evaluated in vitro and in vivo, but not in human colon cancer Lovo cells. In the present study, we found that TNP-470 inhibited the growth of human colon cancer cell line Lovo in vivo with an inhibitory rate (T/C) of 45.6 % and no weight loss was observed. Another important discovery in the present study was that TNP-470 could inhibit the expression of PCNA in tumors and induce apoptosis of cancer cells in vivo. But mechanisms of effect are not clear. Further studies in vitro will be necessary.

In conclusion, the present in vivo results demonstrated that treatment with TNP-470 could be efficient to inhibit the growth of colon cancer. Further investigation on the mechanism of the apoptosis-inducing effect of TNP-470 will help understand the mechanisms of tumor growth and metastasis.

REFERENCES
1 Shelton BK. Introduction to colorectal cancer. Semin Oncol Nurs 2002; 18: 2-12
2 Ellis LM, Liu W, Fan F, Jung YD, Reimnuth N, Stoeltzing O, Takeda A, Akagi M, Parikh AA, Ahmad S. Synopsis of angiogenesis inhibitors in oncology. Oncology 2002; 16: 14-22
3 Liu XP, Song SB, Li G, Wang DJ, Wei LX. Correlations of microvessel quantitation in colorectal tumors and clinicopathology. Shijie Huan R Xiu hua Z Zhi 1997; 7: 37-39
4 Jia L, Chen TX, Sun JW, Na ZM, Zhang HH. Relationship between microvessels density and proliferating cell nuclear antigen and prognosis in colorectal cancer. Shijie Huan R Xiu hua Z Zhi 2000; 8: 74-76
5 Fan YF, Huang ZH. Progress in the studies of gene therapy for colorectal cancer. Shijie Huan R Xiu hua Z Zhi 2003; 9: 427-430
6 Liu H, Wu JS, Li LH, Yao X. The expression of Platelet-derived growth factor and angiogenesis in human colorectal carcinoma. Shijie Huan R Xiu hua Z Zhi 2000; 8: 661-664
7 Wu J, Fan DM. Neoplastic vascularization and vascular inhibitor treatment. Shijie Huan R Xiu hua Z Zhi 2003; 9: 316-321
8 Fan YF, Huang ZH. Angiogenesis inhibitor TNP-470 suppresses growth of peritoneal disseminating foci of human colon cancer line Lovo. World J gastroenterol 2002; 8: 853-856
9 Fan YF, Huang ZH. Inhibitory effect of TNP-470 on colon ascites cancer in nude mice. Shijie Huan R Xiu hua Z Zhi 2002; 10: 770-773
10 Kanai T, Kondo H, Tanaka T, Matsumoto K, Baba M, Nakamura S, Baba S. Effect of angiogenesis inhibitor TNP-470 on the progression of human gastric cancer xenotransplanted into nude mice. Int J Cancer 1997; 71: 938-941
11 Ribatti D, Vacca A, Nico B, De Falco G, Giuseppe Montaldo P, Ponzioni P. Angiogenesis and anti-angiogenesis in neuroblastoma. Eur J Cancer 2002; 38: 750-757
12 Kieran MW, Billett A. Antiangiogenesis therapy. Current and future agents. Hematol Oncol Clin North Am 2001; 15: 835-851
13 Tseng JE, Glisson BS, Khuri FR, Shin DM, Myers JN, El-Naggar AK, Roach JS, Ginsberg LE, Thall PF, Wang X, Teddy S, Lawhorn KN, Zenrrgraf RE, Stainhaus GD, Pluda JM, Abruzzese JL, Hong WK, Herbst RS. Phase I study of the angiogenesis agent thalidomide in recurrent or metastatic squamous cell cancer of the head and neck. Cancer 2001; 92: 2364-2373
14 Takahashi Y, Mai M. Significance of angiogenesis and clinical application of anti-angiogenesis. Nippon Geka Gakkai Zasshi 2001; 102: 381-384
15 Mikita T, Nonomura N, Nozawa M, Harada Y, Nishimura K, Kojima Y, Takahara S, Okuyama A. Angiogenesis inhibitor TNP-470 inhibits growth and metastasis of a hormone-independent rat prostatic carcinoma cell line. J Urol 1998; 160: 210-213
16 Ogawa H, Sato Y, Kondo M, Takahashi N, Oshima T, Sasaki F, Une Y, Nishihira J, Todo S. Combined treatment with TNP-470 and 5-fluorouracil effectively inhibits growth of murine colon cancer cells in vitro and liver metastasis in vivo. Oncol Rep 2007; 467-472
17 Niwano M, Arii S, Morii A, Ishigami S, Harada T, Mise M, Furutani M, Fujikura M, Iinamura M. Inhibition of tumor growth and microvascular angiogenesis by the potent angiogenesis inhibitor, TNP-470, in rats. Surg Today 1998; 28: 915-922
18 Katzenstein HM, Salwen HR, Nguyen NN, Metest D, Cohn SL. Antiangiogenic therapy inhibits human neuroblastoma growth. Med Pediatr Oncol 2001; 36: 190-193
19 Liu B, Lin Y, Yin H. Experimental study of the effect of angiogenesis inhibitor TNP-470 on the growth and metastasis of gastric cancer in vivo. Zhonghu Zhongliu Zazhi 1998; 20: 34-36
20 Fantasia S, Maloney H, Chabotin C, Destedecker C, Dedeker R, Gras T, Darro F, Fontaine J, Assabi G, Kiss R. Characterization of TNP-470-induced modifications to cell functions in HUVEC and cancer cells. J Pharmacol Toxicol Methods 2000; 43: 15-24
21 Sedlakova O, Sedlak J, Hunakova L, Jakubikova D, Duraj V, Slikova M, Chovancova J, Chovancova J, Chorvath B. Angiogenesis inhibitor TNP-470: cytotoxic effects on human neoplastic cell lines. Neoplasma 1999; 46: 283-289
22 Mori J, Haisa M, Naito Y, Takaoka M, Kimura Y, Yamatsuji T, Notohara K, Tanaka N. Suppression of tumor growth and downregulation of platelet-derived endothelial cell growth factor/ thromidine phosphate in tumor cells by angiogenesis inhibitor TNP-470. Jpn J Cancer Res 2000; 91: 643-650
23 Kato H, Ishikura H, Kawara Y, Furuya M, Kondo S, Kato H, Yoshiki T. Anti-angiogenic treatment for peritoneal dissemination of pancreas adenocarcinoma: a study using TNP-470. Jpn J Cancer Res 2001; 92: 67-72
24 Lopes de Faria JB, Aikawa da Silveira L. Increased renal cell proliferation in spontaneously hypertensive rats before the onset of hypertension. Nephron 2002; 91: 170-172
25 Takei H, Lee ES, Cisneros A, Jordan VC. Effects of angiogenesis inhibitor TNP-470 on tamoxifen-stimulated MCF-7 breast tumors in nude mice. Cancer Lett 2000; 155: 129-135
26 Gleisch LL, Zimmerman N, Wang YO, Gluckman JL. Angiogenesis inhibition for the treatment of head and neck cancer. Anticancer Res 1998; 18: 2607-2609
27 Maj A, Pulfer S, Li S, Chu J, Reed K, Gallo JM. Pharmacodynamic-mediated reduction of temozolomide tumor concentrations by the angiogenesis inhibitor TNP-470. Cancer Res 2001; 61: 5491-5498
28 Li CY, Shan S, Cao Y, Dewhirst MW. Role of incipient angiogenesis in cancer metastasis. Cancer Metastasis Rev 2000; 19: 7-11
29 Wyckoff JB, Jones JS, Cordes JS, Segall JE. A critical step in metastasis: in vivo analysis of intravasation at the primary tumor. Cancer Res 2000; 60: 2504-2511
30 Kruger EA, Figg WD. TNP-470: an angiogenesis inhibitor in clinical development for cancer. Expert Opin Investig Drugs 2000; 9: 1383-1396
31 Taniguchi H. Angiogenesis inhibitor (TNP-470: A GM-1470). Nippon Rinsho 2001; 59: 678-682
32 Kumedai S, Deguchi A, Tosi M, Otsuru S, Urmean K. Induction of G1 arrest and selective growth inhibition by lactacytin in human umbilical vein endothelial cells. Anticancer Res 1999; 19: 3963-3968
33 Wang F, Liu P, Henkin J. Selective inhibition of endothelial cell proliferation by fumagillin is not due to differential expression of methionine aminopeptidases. J Cell Biochem 2000; 77: 465-473
34 Turk BE, Griffith EC, Wolf S, Biemann K, Chang YH, Liu JQ. Selective inhibition of amino-terminal methionine processing by TNP-470 and ovalicin in endothelial cells. Chem Biol 1999; 6: 823-833
35 Griffith EC, Su Z, Niwayama S, Ramsay CA, Chang YH, Liu JQ. Molecular recognition of angiogenesis inhibitors fumagillin and ovalicin by methionine aminopeptidase 2. Proc Natl Acad Sci USA 1998; 95: 15183-15188
36 Yeh JR, Mohan R, Crews CM. The antiangiogenic agent TNP-470 requires p53 and p21CIP/WAF for endothelial cell growth arrest. Proc Natl Acad Sci USA 2000; 97: 12782-12787
37 Zhang Y, Griffith EC, Sage J, Jacks T, Liu JQ. Cell cycle inhibition by the anti-angiogenic agent TNP-470 is mediated by p53 and p21WAF1/CIP1. Proc Natl Acad Sci USA 2000; 97: 6427-6432
38 Sano J, Sugiyama Y, Kuniteda K, Sano B, Saji S. Therapeutic effect of TNP-470 on spontaneous liver metastasis of colon tumors in the rabbit. Surg Today 2000; 30: 1100-1106
39 Shishido T, Yasoshima T, Danno R, Mukaiya M, Sato N, Hirata K. Inhibition of liver metastasis of human pancreatic carcinoma by angiogenesis inhibitor TNP-470 in combination with cisplatin. Jpn J Cancer Res 1998; 99: 963-969
40 Gasparini G. The rationale and future potential of angiogenesis inhibitors in neoplasia. Drugs 1999; 58: 17-38

Edited by Maj Y