Measurement of Singly Cabibbo Suppressed Decays $\Lambda^+_{c}\rightarrow p\pi^+\pi^-$ and $\Lambda^+\rightarrow pK^+K^-$
X. L. Zhu39, Y. C. Zhu46,\textordmasculine, Y. S. Zhu1, Z. A. Zhu1, J. Zhuang1,\textordmasculine, L. Zotti49A,49C, B. S. Zou1, J. H. Zou1 (BESIII Collaboration)

1 Institute of High Energy Physics, Beijing 100049, People’s Republic of China
2 Beihang University, Beijing 100191, People’s Republic of China
3 Beijing Institute of Petrochemical Technology, Beijing 102617, People’s Republic of China
4 Bochum Ruhr-University, D-44780 Bochum, Germany
5 Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
6 Central China Normal University, Wuhan 430079, People’s Republic of China
7 China Center of Advanced Science and Technology, Beijing 100190, People’s Republic of China
8 COMSATS Institute of Information Technology, Lahore, Defence Road, Off Raiwind Road, 54000 Lahore, Pakistan
9 G.I. Budker Institute of Nuclear Physics SB RAS (BINP), Novosibirsk 630090, Russia
10 GSI Helmholtz Centre for Heavy Ion Research GmbH, D-64291 Darmstadt, Germany
11 Guangxi Normal University, Guilin 541004, People’s Republic of China
12 Guangxi University, Nanning 530004, People’s Republic of China
13 Hangzhou Normal University, Hangzhou 310036, People’s Republic of China
14 Helmholtz Institute Mainz, Johann-Joachim-Becher-Weg 45, D-55099 Mainz, Germany
15 Henan Normal University, Xinxiang 453007, People’s Republic of China
16 Henan University of Science and Technology, Luoyang 471003, People’s Republic of China
17 Huangshan College, Huangshan 245000, People’s Republic of China
18 Hunan University, Changsha 410082, People’s Republic of China
19 Indiana University, Bloomington, Indiana 47405, USA
20 (A)INFN Laboratori Nazionali di Frascati, I-00044, Frascati, Italy; (B)INFN and University of Perugia, I-06100, Perugia, Italy
21 (A)INFN Sezione di Ferrara, I-44122, Ferrara, Italy; (B)University of Ferrara, I-44122, Ferrara, Italy
22 Johannes Gutenberg University of Mainz, Johann-Joachim-Becher-Weg 45, D-55099 Mainz, Germany
23 Joint Institute for Nuclear Research, 141980 Dubna, Moscow region, Russia
24 Justus-Liebig-Universitaet Giessen, II. Physikalisches Institut, Heinrich-Buff-Ring 16, D-35392 Giessen, Germany
25 KVI-CART, University of Groningen, NL-9747 AA Groningen, The Netherlands
26 Lanzhou University, Lanzhou 730000, People’s Republic of China
27 Liaoning University, Shenyang 110036, People’s Republic of China
28 Nanjing Normal University, Nanjing 210023, People’s Republic of China
29 Nanjing University, Nanjing 210093, People’s Republic of China
30 Nankai University, Tianjin 300071, People’s Republic of China
31 Peking University, Beijing 100871, People’s Republic of China
32 Seoul National University, Seoul, 151-747 Korea
33 Shandong University, Jinan 250100, People’s Republic of China
34 Shanghai Jiao Tong University, Shanghai 200240, People’s Republic of China
35 Shanxi University, Taiyuan 030006, People’s Republic of China
36 Sichuan University, Chengdu 610064, People’s Republic of China
37 Soochow University, Suzhou 215006, People’s Republic of China
38 Sun Yat-Sen University, Guangzhou 510275, People’s Republic of China
39 Tsinghua University, Beijing 100084, People’s Republic of China
40 (A)Ankara University, 06100 Tandogan, Ankara, Turkey; (B)Istanbul Bilgi University, 34060 Eyup, Istanbul, Turkey; (C)Uludag University, 16059 Bursa, Turkey; (D)Near East University, Nicosia, North Cyprus, Mersin 10, Turkey
41 University of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
42 University of Hawaii, Honolulu, Hawaii 96822, USA
43 University of Minnesota, Minneapolis, Minnesota 55455, USA
44 University of Rochester, Rochester, New York 14627, USA
45 University of Science and Technology Liaoning, Anshan 114051, People’s Republic of China
46 University of Science and Technology of China, Hefei 230026, People’s Republic of China
47 University of South China, Hengyang 421001, People’s Republic of China
48 University of the Punjab, Lahore 54590, Pakistan
Hadronic decays of charmed baryons provide an ideal laboratory to understand the interplay of weak and strong interaction in the charm region [1, 2]. In contrast to the charmed meson decays, which are usually dominated by factorizable amplitudes, decays of charmed baryons receive sizable nonfactorizable contributions from W-exchange diagrams, which are subject to color and helicity suppression. The study of nonfactorizable contributions is critical to understand the dynamics of charmed baryon decays.

Since the first discovery of the ground state charmed baryon Λc in 1979 [12, 13], progress with charmed baryons has been relatively slow, due to a scarcity of experimental data. Recently, based on an e+e− annihilation data sample of 567 pb−1 [14] at a center-of-mass (c.m.) energy of √s = 4.599 GeV, the BESIII Collaboration measured the absolute branching fractions (BFs) of 12 Cabibbo-favored (CF) Λc+ hadronic decays with a significantly improved precision [15]. For many other CF charmed baryon decay modes and most of the singly Cabibbo-suppressed (SCS) decays, however, no precision measurements are available; many of them even have not yet been measured [16]. As a consequence, we are not able to distinguish between the theoretical predictions among the different models [3, 4].

The SCS decays Λc+ → pπ+π− and Λc+ → pK+K− proceed via the external W-emission, internal W-emission and W-exchange processes. Precisely measuring and comparing their BFs may help to reveal the Λc internal dynamics [1]. A measurement of the SCS mode Λc+ → pφ is of particular interest because it receives contributions only from the internal W-emission diagrams, which can reliably be obtained by a factorization approach [3]. An improved measurement of the Λc+ → pφ BF is thus essential to validate theoretical models and test the application of large-Nc factorization in the charmed baryon sector [17], where, Nc is the number of colors.

In this Letter, we describe a search for the SCS decays Λc+ → pπ+π− and present an improved measurement of the Λc+ → pK+K− and Λc+ → pφ BFs. The BFs are measured relative to the CF mode Λc+ → pK−π+. Our analysis is based on the same data sample as that used in Ref. [15] collected by the BESIII detector. Details on the features and capabilities of the BESIII detector can be found in Ref. [18]. Throughout this Letter, charge-
conjugate modes are implicitly included, unless otherwise stated.

The GEANT4-based Monte Carlo (MC) simulations of e^+e^- annihilations are used to understand the backgrounds and to estimate detection efficiencies. The generator KKMC is used to simulate the beam-energy spread and initial-state radiation (ISR) of the e^+e^- collisions. The inclusive MC sample includes $\Lambda_c^+\Lambda_c^-$ events, charm meson $D^{(*)}$ pair production, ISR returns to lower-mass ψ states, and continuum processes $e^+e^-\rightarrow q\bar{q}$ ($q = u, d, s$). Decay modes as specified in the PDG are modeled with EVTGEN. Signal MC samples of $e^+e^-\rightarrow \Lambda_c^+\Lambda_c^-$ are produced in which the Λ_c^+ decays to the interested final state ($pK^+\pi^+, px^+\pi^-$, or $pK^+K^-\bar{p}$) together with the Λ_c^- decaying generically to all possible final states.

Charged tracks are reconstructed from hits in the main drift chamber (MDC) and are required to have polar angles within $|\cos\theta| < 0.93$. The points of closest approach of the charged tracks to the interaction point (IP) are required to be within 1 cm in the plane perpendicular to the beam (V_x) and ±10 cm along the beam (V_z). Information from the time-of-flight (TOF) system and dE/dx in the MDC are combined to form PID confidence levels (C.L.) for the π, K, and ρ hypotheses. Each track is assigned to the particle type with the highest particle identification (PID) C.L. To avoid backgrounds from beam interactions with residual gas or detector materials (beam pipe and MDC inner wall), a further requirement of $V_x < 0.2$ cm is imposed for the proton.

Λ_c^+ candidates are reconstructed by considering all combinations of charged tracks in the final states of interest $pK^-\pi^+, px^+\pi^-$, and $pK^+K^-\bar{p}$. Two variables, the energy difference $\Delta E = E - E_{\text{beam}}$ and the beam-constrained mass $M_{\text{BC}} = \sqrt{E_{\text{beam}}^2/c^4 + p^2/c^2}$, are used to identify the Λ_c^+ candidates. Here, E_{beam} is the beam energy, and $E(p)$ is the reconstructed energy (momentum) of the Λ_c^+ candidate in the e^+e^- c.m. system. A Λ_c^+ candidate is accepted with $M_{\text{BC}} > 2.25$ GeV/c^2 and $|\Delta E| < 20$ MeV (corresponding to 3 times the resolution). For a given signal mode, we accept only one candidate per Λ_c charge per event. If multiple candidates are found, the one with the smallest $|\Delta E|$ is selected. The ΔE sideband region, $40 < |\Delta E| < 60$ MeV, is defined to investigate potential backgrounds.

For the $\Lambda_c^+\rightarrow px^+\pi^-$ decay, we reject K_S^0 and Λ candidates by requiring $|M_{\pi^+\pi^-} - M_{\Lambda_c^{BDG}}| > 15$ MeV/c^2 and $|M_{px^-} - M_{\Lambda_c^{BDG}}| > 6$ MeV/c^2, corresponding to 3 times the resolution, where $M_{K_S^0}$ (M_{Λ_c}) is the K_S^0 (Λ) mass quoted from the PDG and $M_{\pi^+\pi^-}$ (M_{px^-}) is the $\pi^+\pi^-$ (px^-) invariant mass. These requirements suppress the peaking backgrounds of the CF decays $\Lambda_c^+\rightarrow \Lambda\pi^+\pi^-$ and $\Lambda_c^+\rightarrow pK^0_S$, which have the same final state as the signal.

With the above selection criteria, the M_{BC} distributions are depicted in Fig.(a) for the decays $\Lambda_c^+\rightarrow pK^-\pi^+$ and $\Lambda_c^+\rightarrow px^+\pi^-$ and in Fig. (b) for the decay $\Lambda_c^+\rightarrow pK^+K^-\bar{p}$. Prominent Λ_c^+ signals are observed. The inclusive MC samples are used to study potential backgrounds. For the decays $\Lambda_c^+\rightarrow pK^-\pi^+$ and $\Lambda_c^+\rightarrow pK^+K^-\bar{p}$, no peaking background is evidenced in the M_{BC} distributions, while for the decay $\Lambda_c^+\rightarrow px^+\pi^-$, the peaking backgrounds of 28.2±1.6 events from the decays $\Lambda_c^+\rightarrow \Lambda\pi^+\pi^-$ and $\Lambda_c^+\rightarrow pK^0_S$ are expected, where the uncertainty comes from the measured BF’s in Ref. [15]. The cross feed between the decay modes is negligible by the MC studies.

FIG. 1. Distributions of M_{BC} for the decays (a) $\Lambda_c^+\rightarrow pK^-\pi^+$ and (b) $\Lambda_c^+\rightarrow px^+\pi^-\bar{p}$. Points with an error bar are data, the blue solid lines show the total fits, the blue long dashed lines are the combinatorial background shapes, and the red long dashed histograms are data from the ΔE sideband region for comparison. In (b), the green shaded histogram is the peaking background from the CF decays $\Lambda_c^+\rightarrow pK^0_S$ and $\Lambda_c^+\rightarrow \Lambda\pi^+\pi^-\bar{p}$. The inset plot in (b) shows the $\pi^+\pi^-$ invariant mass distribution with the additional requirement $|\Delta E| < 8$ MeV and 2.2836 < M_{BC} < 2.2894 GeV/c^2, where the dots with an error bar are for the data, the blue solid histogram shows the fit curve from PWA, and the green shaded histogram shows background estimated from the M_{BC} sideband region.

To obtain the signal yields of the decays $\Lambda_c^+\rightarrow pK^-\pi^+$ and $\Lambda_c^+\rightarrow px^+\pi^-\bar{p}$, a maximum likelihood fit is performed to the corresponding M_{BC} distributions. The signal shape is modeled with the MC simulated shape convoluted with a Gaussian function representing the resolution difference and potential mass shift between the data and MC simulation. The combinatorial background is modeled by an ARGUS function [23]. In the decay $\Lambda_c^+\rightarrow px^+\pi^-$, the peaking background is included in the fit, and is modeled with the MC simulated shape convoluted with the same Gaussian function for the signal, while the magnitude is fixed to the MC prediction. The fit curves are shown in Fig. 1. The M_{BC} distribution for events in the ΔE sideband region is also shown in Fig. 1(b), and a good agreement with the fitted background shape is indicated. The signal yields are summarized in Table [1].

For the decay $\Lambda_c^+\rightarrow pK^+K^-\bar{p}$, a prominent ϕ signal is observed in the $M_{K^+K^-}$ distribution, as shown in Fig. 2 (b). To determine the signal yields via ϕ (N_{sig}^{ϕ}) and non-ϕ ($N_{\text{non-}\phi}$) processes and to better model the background, we perform a two-dimensional unbinned extended maximum likelihood fit to the M_{BC} versus $M_{K^+K^-}$ distributions for events in the ΔE signal region and side-
FIG. 2. Distributions of M_{BC} (left) and $M_{K^+K^-}$ (right) for data in the ΔE signal region (upper) and sideband region (bottom) for the decay $\Lambda_c^+ \to pK^+K^-$. The blue solid curves are for the total fit results, the red dash-dotted curves show the $\Lambda_c^+ \to p\phi \to pK^+K^-$ signal, the green dotted curves show the $\Lambda_c^+ \to pK^+K_{\text{non-}\phi}$ signal, the blue long-dashed curves are the background with ϕ production, and the magenta dashed curves are the non-ϕ background.

In the M_{BC} distribution, the shapes of Λ_c signal (via ϕ or non-ϕ process) and background, denoted as $S_{M_{BC}}$ and $B_{M_{BC}}$, respectively, are modeled similarly to those in the decay $\Lambda_c^+ \to p\pi^+\pi^-$. In the $M_{K^+K^-}$ distribution, the ϕ shape for the Λ_c process ($\Lambda_c^+ \to p\phi \to pK^+K^-$), S_{MKK}^{ϕ}, is modeled with a relativistic Breit-Wigner function convoluted with a Gaussian function representing the detector resolution, while that for the Λ_c decay without ϕ ($\Lambda_c^+ \to pK^+K^-$), $S_{MKK}^{\text{non-}\phi}$, is represented by the MC shape with a uniform distribution in K^+K^- phase space. The shape for the non-Λ_c background including ϕ state, B_{MKK}^{ϕ}, has the same parameters as S_{MKK}^{ϕ}, while that for the background without ϕ, $B_{MKK}^{\text{non-}\phi}$, is described by a third-order polynomial function. Detailed MC studies indicate the non-Λ_c background (both with and without ϕ included) have the same shapes and yields in both the ΔE signal and sideband regions, where the yields are denoted as N_{bkg}^{ϕ} and $N_{bkg}^{\text{non-}\phi}$, respectively. The likelihoods for the events in the ΔE signal and sideband regions are given in Eqs. 1 and 2, respectively:

$$L_{\text{signal}} = \frac{e^{-(N_{\text{sig}}^\phi + N_{\text{sig}}^{\text{non-}\phi} + N_{bkg}^\phi)} N_{\text{signal}}!}{\prod_{i=1}^{N_{\text{sig}}} (N_{\text{sig}}^\phi S_{M_{BC}}(m_{BC}^i) \times S_{MKK}^{\phi}(m_{K^+K^-}^i) + N_{\text{sig}}^{\text{non-}\phi} S_{M_{BC}}(m_{BC}^i) \times S_{MKK}^{\text{non-}\phi}(m_{K^+K^-}^i) + N_{bkg}^\phi B_{M_{BC}}(m_{BC}^i) \times B_{MKK}^{\phi}(m_{K^+K^-}^i) + N_{bkg}^{\text{non-}\phi} B_{M_{BC}}(m_{BC}^i) \times B_{MKK}^{\text{non-}\phi}(m_{K^+K^-}^i))}$$

$$L_{\text{side}} = \frac{e^{-(N_{bkg}^\phi + N_{bkg}^{\text{non-}\phi})} N_{\text{side}}!}{\prod_{i=1}^{N_{\text{side}}} (N_{bkg}^\phi B_{M_{BC}}(m_{BC}^i) \times B_{MKK}^{\phi}(m_{K^+K^-}^i) + N_{bkg}^{\text{non-}\phi} B_{M_{BC}}(m_{BC}^i) \times B_{MKK}^{\text{non-}\phi}(m_{K^+K^-}^i))}$$

where the parameter N_{sig} (N_{side}) is the total number of selected candidates in the ΔE signal (sideband) region and M_{BC} and $M_{K^+K^-}$ are the values of M_{BC} and $M_{K^+K^-}$, respectively, for the ith event. We use the product of PDFs, since the M_{BC} and $M_{K^+K^-}$ are verified to be uncorrelated for each component by MC simulations.

The signal yields are extracted by minimizing the negative log-likelihood $-\ln L = (-\ln L_{\text{signal}}) + (-\ln L_{\text{side}})$. The fit curves are shown in Fig. 2 and the yields are listed in Table 1. The significance is estimated by comparing the likelihood values with and without the signal components included, incorporating with the change of the number of free parameters, listed in Table 1.

TABLE I. Summary of signal yields in data (N_{signal}), detection efficiencies (ε), and the significances. The errors are statistical only.

Decay modes	N_{signal}	ε (%)	Significance
$\Lambda_c^+ \to pK^-\pi^+$	5940 ± 85 48.0 ± 0.1	-	
$\Lambda_c^+ \to p\pi^+\pi^-$	495 ± 35 50.7 ± 0.1	16.2σ	
$\Lambda_c^+ \to pK^+K^-$ (via ϕ)	44 ± 8 40.2 ± 0.1	9.6σ	
$\Lambda_c^+ \to pK^+K^-$ (non-ϕ)	38 ± 9 32.7 ± 0.1	5.4σ	

In the decays $\Lambda_c^+ \to pK^-\pi^+$ and $\Lambda_c^+ \to p\pi^+\pi^-$, the detection efficiencies are estimated with data-driven MC samples generated according to the results of a simple partial wave analysis (PWA) by the covariant helicity coupling amplitude 24 25 for the quasi-two-body decays. In the decay $\Lambda_c^+ \to p\pi^+\pi^-$, prominent structures arising from $^0P(770)$ and $f_0(980)$ resonances are observed in the $M_{\pi^+\pi^-}$ distribution as shown in the inset plot of Fig. (1 b) and are included in the PWA. Because of the limited statistics and relatively high background, the PWA does not allow for a reliable extraction of BF's for...
intermediate states; it however does describe the kinematics well, and it is reasonable for the estimation of the detection efficiency. The corresponding uncertainty is taken into account as a systematic error. For the decays $\Lambda^+_c \to pK^+K^-$ via ϕ or non-ϕ, the detection efficiencies are estimated with phase space MC samples, where the angular distribution of the decay $\phi \to K^+K^-$ is considered.

We measure the relative BF s of the SCS decays with respect to that of the CF decay $\Lambda^+_c \to pK^-\pi^+$ and the absolute BF s by incorporating $B(\Lambda^+_c \to pK^-\pi^+) = (5.84 \pm 0.27 \pm 0.23)\%$ from the most recent BESIII measurement [15]. Several sources of systematic uncertainty, including tracking and PID efficiencies and the total number of $\Lambda^+_c\Lambda^-_c$ pairs in the data, cancel when calculating the ratio of BF s, due to the similar kinematics between the SCS and CF decays. When calculating these uncertainties, cancellation has been taken into account whenever possible.

Sources	$\Lambda^+_c \to p\pi^+\pi^-$	$\Lambda^+_c \to p\phi$	$\Lambda^+_c \to pK^+K^-_{\text{non-}\phi}$
Tracking	1.1	2.5	1.6
PID	1.3	1.5	1.9
V_c requirement	0.6	2.5	2.5
K^0_S/Λ vetoes	0.7	--	--
ΔE requirement	0.5	0.7	0.9
Fit	2.7	5.8	6.6
Cited branching ratio	--	1.0	--
MC model	1.4	1.0	1.1
MC statistics	0.3	0.4	0.4
Total	3.7	7.2	7.6
B_{ref}	0.1	6.1	6.1

The uncertainties associated with tracking and PID efficiencies for π, K, and proton are studied as a function of (transverse) momentum with samples of $e^+e^- \to \pi^+\pi^-\pi^+\pi^-$, $K^+K^+\pi^+\pi^-$ and $p\bar{p}\pi^+\pi^-$ from data taken at $\sqrt{s} > 4.0$ GeV. To extract the tracking efficiency for particle i ($i = \pi$, K, or proton), we select the corresponding samples by missing particle i with high purity, and the ratio to find the track i around the missing direction is the tracking efficiency. Similarly, we select the control sample without a PID requirement for particle i, and then the PID requirement is further implemented. The PID efficiency is the ratio between the number of candidates with and without the PID requirement. The differences on the efficiency between the data and MC simulation weighted by the (transverse) momentum according to the data are assigned as uncertainties.

The uncertainties due to the V_c requirements and K^0_S/Λ vetoes (in $\Lambda^+_c \to p\pi^+\pi^-$ only) are investigated by repeating the analysis with alternative requirements ($V_c < 0.25$ cm, $|M_{\pi^+\pi^-} - M_{\text{PDG}}^{K^0_S}| > 20$ MeV/c^2, and $|M_{p\pi^-} - M_{\text{PDG}}^\Lambda| > 8$ MeV/c^2, respectively). The result-

ing differences in the BF s are taken as the uncertainties. Uncertainties related to the ΔE resolution are estimated by widening the ΔE windows from 3σ to 4σ of the resolution.

For the decays $\Lambda^+_c \to pK^-\pi^+$ and $\Lambda^+_c \to p\pi^+\pi^-$, the signal yields are determined from fits to the M_{BC} distributions. Alternative fits are carried out by varying the fit range, signal shape, background shape and the expected number of peaking backgrounds. The resultant changes in the BF s are taken as uncertainties. In the decay $\Lambda^+_c \to pK^+K^-$, the uncertainties associated with the fit are studied by varying the fit ranges, signal and background shapes for both the M_{BC} and $M_{K^+K^-}$ distributions, and ΔE sideband region.

The following four aspects are considered for the MC simulation model uncertainty. (a) The uncertainties related to the beam energy spread are investigated by changing its value in the simulation by ± 0.4 MeV, where the nominal values is 1.5 MeV determined by the data. The larger change in the measurement is taken as a systematic uncertainty. (b) The uncertainties associated with the input line shape of the $e^+e^- \to \Lambda^+_c\Lambda^-_c$ cross section is estimated by replacing the line shape directly from BESIII data with that from Ref. [20]. (c) The Λ^+_c polar angle distribution in the e^+e^- rest frame is parameterized with $1 + a \cos^2 \theta$, where the a value is extracted from the data. The uncertainties due to the Λ^+_c polar angle distribution are estimated by changing the a value by one standard deviation. (d) The decays $\Lambda^+_c \to pK^-\pi^+$ and $\Lambda^+_c \to p\pi^+\pi^-$ are modeled by a data-driven method according to PWA results. The corresponding uncertainties are estimated by changing the intermediate states included, changing the parameters of the intermediate states by one standard deviation quoted in the PDG [16], and varying the background treatment in the PWA and the output parameters for the coupling. Assuming all of the above PWA uncertainties are independent, the uncertainty related to MC modeling is the quadratic sum of all individual values. For the non-ϕ decay $\Lambda^+_c \to pK^+K^-$, phase space MC samples with an S wave for the K^+K^- pair are used to estimate the detection efficiency. An alternative MC sample with a P wave between the K^+K^- pair is also used, and the resultant difference in efficiency is taken as the uncertainty. The uncertainties due to limited MC statistics in both the measured and reference modes are taken into account.

Assuming all uncertainties, summarized in Table I are independent, the total uncertainties in the relative BF measurements are obtained by adding the individual uncertainties in quadrature. For the absolute BF measurements, the uncertainty due to the reference BF $B_{\text{ref}}(\Lambda^+_c \to pK^-\pi^+)$, listed in Table I, too, is included.

In summary, based on 567 pb$^{-1}$ of e^+e^- annihilation data collected at $\sqrt{s} = 4.599$ GeV with the BESIII detector, we present the first observation of the SCS decays $\Lambda^+_c \to p\pi^+\pi^-$ and improved (or comparable) measurements of the $\Lambda^+_c \to p\phi$ and $\Lambda^+_c \to pK^+K^-_{\text{non-}\phi}$ BFs comparing to PDG values [10]. The relative BF s with
TABLE III. Summary of relative and absolute BFs, and comparing with the results from PDG [16]. Uncertainties are statistical, experimental systematic, and reference mode uncertainty, respectively.

Decay modes	$B_{\text{mode}}/B_{\text{ref}}$ (This work)	$B_{\text{mode}}/B_{\text{ref}}$ (PDG average)
$\Lambda_c^+ \rightarrow p\pi^+\pi^-$	$(6.70 \pm 0.48 \pm 0.25) \times 10^{-2}$	$(6.9 \pm 3.6) \times 10^{-2}$
$\Lambda_c^+ \rightarrow p\phi$	$(1.81 \pm 0.33 \pm 0.13) \times 10^{-2}$	$(1.64 \pm 0.32) \times 10^{-2}$
$\Lambda_c^+ \rightarrow pK^+K^-$ (non-ϕ)	$(9.36 \pm 2.22 \pm 0.71) \times 10^{-3}$	$(7 \pm 2 \pm 2) \times 10^{-3}$

respects to the CF decay $\Lambda_c^+ \rightarrow pK^-\pi^+$ are measured. Taking $B(\Lambda_c^+ \rightarrow pK^-\pi^+) = (5.84 \pm 0.27 \pm 0.23)\%$ from Ref. [13], we also obtain absolute BFs for the SCS decays. All the results are summarized in Table III. The results provide important data to understand the dynamics of Λ_c^+ decays. They especially help to distinguish predictions from different theoretical models and understand contributions from factorizable effects [1].

The BESIII Collaboration thanks the staff of BEPCII, the IHEP computing center and the supercomputing center of USTC for their strong support. This work is supported in part by National Key Basic Research Program of China under Contract No. 2015CB856700; National Natural Science Foundation of China (NSFC) under Contracts No. 1125525, No. 11235011, No. 11322544, No. 11335008, No. 11425524, No. 11375170, No. 11275189, No. 11475169, No. 11475164; the Chinese Academy of Sciences (CAS) Large-Scale Scientific Facility Program; the CAS Center for Excellence in Particle Physics (CCEPP); the Collaborative Innovation Center for Particles and Interactions (CICPI); Joint Large-Scale Scientific Facility Funds of the NSFC and CAS under Contracts No. 11179007, No. U1232201, No. U1332201; CAS under Contracts No. KJCX2-YW-N29 and No. KJCX2-YW-N45; 100 Talents Program of CAS; INPAC and Shanghai Key Laboratory for Particle Physics and Cosmology; German Research Foundation DFG under Collaborative Research Center CContract No. RC-1044, FOR 2359; Istituto Nazionale di Fisica Nucleare, Italy; Ministry of Development of Turkey under Contract No. DPT2006K-120470; Russian Foundation for Basic Research under Contract No. 14-07-91152; U. S. Department of Energy under Contracts No. DE-FG02-04ER41291, No. DE-FG02-05ER41374, No. DE-FG02-94ER40823, No. DESC0010118; U. S. National Science Foundation; University of Groningen (RuG) and the Helmholtz Centre for Heavy Ion Research GmbH (GSI), Darmstadt; and WCU Program of National Research Foundation of Korea under Contract No. R32-2008-000-10155-0.

[1] H. Y. Cheng, Front. Phys. 10, 101406 (2015).
[2] C. D. Lu, W. Wang and F. S. Yu, Phys. Rev. D 93, 056008 (2016).
[3] Y. Kohara, Nuovo Cimento A 111, 67 (1998).
[4] M. A. Ivanov, J. G. Korner, V. E. Lyubovitskij, and A. G. Rusetsky, Phys. Rev. D 57, 5632 (1998).
[5] K. K. Sharma and R. C. Verma, Phys. Rev. D 55, 7067 (1997).
[6] T. Uppal, R. C. Verma, and M. P. Khanna, Phys. Rev. D 49, 3417 (1994).
[7] P. Zenczykowski, Phys. Rev. D 50, 402 (1994).
[8] J. G. Korner and M. Kramer, Z. Phys. C 55, 659 (1992).
[9] J. G. Korner, M. Kramer, and J. Willrodt, Z. Phys. C 2, 117 (1979).
[10] W. Detmold, C. Lehner, and S. Meinel, Journal 92, 034503 (2015).
[11] R. Dutta, Phys. Rev. D 93, 054003 (2016).
[12] G. S. Abrams et al. (MARKIII Collaboration), Phys. Rev. Lett. 44, 10 (1980).
[13] A. M. Cnops et al. (BNL-0427 Collaboration), Phys. Rev. Lett. 42, 197 (1979).
[14] M. Ablikim et al. (BESIII Collaboration), Chin. Phys. C 39, 093001 (2015).
[15] M. Ablikim et al. (BESIII Collaboration), Phys. Rev. Lett. 116, 052001 (2016).
[16] K. A. Olive et al. (Particle Data Group), Chin. Phys. C 38, 090001 (2014).
[17] H. Y. Cheng and C. W. Chiang, Phys. Rev. D 81, 074021 (2010).
[18] M. Ablikim et al. (BESIII Collaboration), Nucl. Instrum. Methods Phys. Res., Sect. A 614, 345 (2010).
[19] S. Agostinelli et al., Nucl. Instr. Methods Phys. Res., Sect. A 506, 250 (2003).
[20] S. Jadach, B. F. L. Ward, and Z. Was, Phys. Rev. D 63, 113009 (2001).
[21] R. G. Ping, Chin. Phys. C 32, 599 (2008).
[22] D. J. Lange, Nucl. Instrum. Methods Phys. Res., Sect. A 462, 152 (2001).
[23] H. Albrecht et al. (ARGUS Collaboration), Phys. Lett. B 241, 278 (1990).
[24] S. U. Chung, Phys. Rev. D 57, 431 (1998).
[25] S. U. Chung, Phys. Rev. D 48, 1225 (1993).
[26] G. Pakhlova et al. (Belle Collaboration), Phys. Rev. Lett. 101, 172001 (2008).