Evaluation of Novel Biomarkers for Early Diagnosis of Acute Kidney Injury in Asphyxiated Full-Term Newborns: A Case-Control Study

Ying Zhanga Bili Zhangb Dan Wanga Wujuan Shia Anjie Zhenga

aDepartment of Neonatology, Tianjin Children’s Hospital, Tianjin, China; bDepartment of Nephrology, Tianjin Children’s Hospital, Tianjin, China

Significance of the Study

- Previous studies have focused on urinary parameters, marker proteins or renal indices, but a holistic study combining all three has been rarely embarked upon.
- We explored the individual and combined ability of serum cystatin C, beta 2-microglobulin, urinary neutrophil gelatinase-associated lipocalin, and alpha 1-microglobulin to predict acute kidney injury in asphyxiated neonates.
- This study provides a reference for combined detection of renal injury after neonatal asphyxia.

Keywords

Acute kidney injury · Asphyxia · Full-term neonates · Urinary neutrophil gelatinase-associated lipocalin

Abstract

Objectives: To investigate the changes of serum cystatin C (Cys-C), beta 2-microglobulin (β2-MG), urinary neutrophil gelatinase-associated lipocalin (NGAL), and alpha 1-microglobulin (α1-MG) in asphyxiated neonates, and to evaluate the value of combined detection of multiple biomarkers in the early diagnosis of acute kidney injury (AKI) in asphyxiated neonates. Methods: A total of 110 full-term asphyxiated and 30 healthy neonates were included. The asphyxia neonates were divided into AKI and non-AKI groups. Serum Cys-C, β2-MG, urine NGAL, and α1-MG were measured 24 h after birth. The diagnostic value of the biomarkers was determined using receiver operating characteristic (ROC) curves. Results: There was no significant difference in serum creatinine and blood urea nitrogen among the control group, moderate asphyxia group, and severe asphyxia group at 24 h after birth. Significant differences were noticed in terms of serum Cys-C, β2-MG, urinary NGAL, and α1-MG among the 3 groups. Moreover, with the aggravation of asphyxia, the above indicators gradually increased. There were significant differences in the 4 indicators between the AKI and non-AKI groups ($p < 0.05$). The area under the ROC curve of the above indicators was 0.670, 0.689, 0.865, and 0.617, respectively ($p < 0.05$). The sensitivity and specificity of the combined diagnosis of asphyxia neonatorum AKI with the 4 indicators were 0.974 and 0.506, respectively. Conclusions: Serum Cys-C, β2-MG, urine NGAL, and α1-MG are early specific indicators for
the diagnosis of renal injury after neonatal asphyxia. Combined detection of these parameters could aid clinical evaluation of renal injury in asphyxiated neonates.

© 2019 The Author(s)
Published by S. Karger AG, Basel

Introduction

Asphyxia is an important cause of morbidity and mortality among neonates. The incidence of asphyxia is estimated to be 10 per 1,000 live births and is influenced by the local availability of medical resources [1]. It can lead to multi-organ dysfunction and a redistribution of cardiac output to maintain cerebral, cardiac, and adrenal perfusion while potentially compromising renal, gastrointestinal, and skin perfusion [2]. Renal injury in asphyxiated preterm infants has a high incidence (30–55%) and mortality rate 60–66% [3]. Renal impairment in perinatal asphyxia has been noted by several studies in the past [4, 5]. However, diagnosis of acute kidney injury (AKI) is difficult in neonates as many of the established clinical and biochemical parameters are unreliable in this age group [6]. The immediate and long-term outcome depends to a large extent on the early recognition and appropriate management of complications.

Most renal function markers commonly used in clinical practice assess glomerular function. These include creatinine (Cr)-based parameters such as serum creatinine (sCr), from which the glomerular filtration rate (GFR) or endogenous Cr clearance is calculated, as well as measures of GFR calculated from serum cystatin C (Cys-C) [7]. Human Cys-C is a low-molecular weight protein, belonging to the cystatin superfamily of protease inhibitors, which is produced at a constant rate in all nucleated cells. Cys-C is freely filtered through the glomerular membrane, then completely reabsorbed and degraded by the proximal tubule. Serum Cys-C is being promoted as a more accurate estimate of neonatal GFR [8]. Serum beta 2-microglobulin (β2-MG) is of special interest to us, because it has been associated with the risk of end-stage kidney disease and death [9]. It belongs to low-molecular weight proteins that are freely filtered via the glomerular membrane and catabolized in tubules [10]. Urinary concentration of β2-MG is a sensitive index of renal tubular function in asphyxiated neonates [11]. AKI biomarkers in the urine have been shown to be predictive of AKI and mortality in children undergoing cardiopulmonary bypass [12] and in critically ill preterm infants [13]. Urinary neutrophil gelatinase-associated lipocalin (NGAL) has bacteriostatic properties and contributes to innate immunity [14]. At the early phase of ischemia-induced AKI there is a rapid upregulation of NGAL mRNA in the Henle loop and proximal tubules, causing an increase in the synthesis and excretion of NGAL into the urine. In normal conditions, serum NGAL is filtered by the glomerulus and rapidly re-absorbed by the proximal tubule [15]. There is evidence that it can serve as a useful marker in pediatric populations with high predictive efficiency [16]. A previous study has suggested that the urinary measurement of alpha 1-microglobulin (α1-MG) can be a useful method of screening populations in whom there is a risk of tubular proteinuria whatever the underlying cause [17].

The ideal marker for detecting AKI should be upregulated shortly after an injury and independent of the level of GFR [18]. sCr levels and changes in urine output are the most commonly applied measures of renal function; however, using Cr to monitor renal function and to diagnose AKI is not ideal for many reasons: (i) the Cr value in a neonate reflects maternal Cr; (ii) Cr is a measure of function (not injury), and it is a late marker of an acute injury; (iii) >50% of nephrons must be compromised before changes in the Cr level become evident, so it is a late marker of significant renal dysfunction; (iv) at lower GFR, serum Cr will overestimate renal function, owing to tubular secretion of Cr; (v) Cr varies by muscle mass, hydration status, age, and gender; and (vi) bilirubin and medications can affect Cr measurement by the Jaffe method [19].

Previous studies have focused on urinary parameters, marker proteins, or renal indices but a holistic study combining all of these has been embarked upon. To investigate the utility of serum and urine AKI biomarkers in asphyxiated neonates, we evaluated 6 previously identified candidate serum and urinary biomarkers: sCr, blood urea nitrogen (BUN), serum Cys-C, β2-MG, urinary NGAL, and α1-MG. We explored the individual and combined ability of these biomarkers to predict AKI in asphyxiated neonates.

Materials and Methods

Patients

A total of 110 asphyxiated full-term newborns admitted in our hospital, between September 2016 and August 2017, were enrolled in our study. Thirty cases of normal newborn infants born in the same period were enrolled as healthy controls. All infants underwent physical examination and laboratory examination.

Inclusion criteria were based on the diagnostic criteria for neonatal asphyxia established by the Neonatal Resuscitation Group of the Chinese Medical Association Perinatal Medicine Branch in 2016. These criteria included infants born at term with perinatal asphyxia as evidenced by 3 or more of the following: (a) cord blood
null
the 3 groups are shown in Table 1. No significant differences were observed among the 3 groups in terms of gender, gestational age, birth weight, and birth length \((p > 0.05)\).

Meanwhile, 110 asphyxiated full-term newborns were divided into the AKI group and the non-AKI group according to the diagnostic criteria for AKI in asphyxiated neonates [20]. The baseline characteristics in the AKI and non-AKI groups are shown in Table 2. Differences in gender, gestational age, birth weight, and birth length had no statistical significance \((p > 0.05)\).

Biomarker Differences in Asphyxia Infants and Healthy Controls

There was no significant difference in terms of sCr and BUN among the control group, moderate asphyxia group, and severe asphyxia group 24 h after birth \((p > 0.05)\), while significant differences were noticed in terms of serum Cys-C, \(\beta2\)-MG, urine NGAL, and \(\alpha1\)-MG among the 3 groups \((p < 0.05)\). The above indicators showed a gradual upward trend with the aggravation of asphyxia (Table 3).

Biomarker Differences in Infants with and without AKI

There were no significant differences in levels of sCr and BUN between the AKI and non-AKI groups, while the levels of Cys-C and \(\beta2\)-MG in blood, and NGAL and \(\alpha1\)-MG in urine in the AKI group were significantly higher than those in the non-AKI group \((p < 0.05; \text{Table 4})\).

Table 2. Details of the AKI and Non-AKI groups

	AKI \((n = 37)\)	Non-AKI \((n = 73)\)	\(X^2/F\)	\(p\) value
Male/female, \(n\)	29/8	45/28	3.123	0.077
Gestational age, weeks	39.54±1.22	39.18±1.32	-1.416	0.160
Birth weight, g	3,322±408.76	3,328±458.34	0.076	0.939
Birth length, cm	49.77±1.26	49.84±0.83	-0.349	0.728

Data are presented as means ± SD unless otherwise indicated.

Table 3. Levels of biomarkers in asphyxia and healthy groups 24 h after birth

Groups	sCr, \(\mu\)mol/L	BUN, mmol/L	\(\beta2\)-MG, mg/L	Cys-C, mg/L	NGAL, \(\mu\)g/L	\(\alpha1\)-MG, mg/L
Healthy controls \((n = 30)\)	49.25±7.42	3.35±1.16	2.25±0.31	1.00±0.20	59±12	8.95 (4.25)
Moderate asphyxia \((n = 85)\)	51.03±9.44	3.89±1.27	2.89±0.84	1.28±0.26	108±31	36.6 (31.90)
Severe asphyxia \((n = 25)\)	52.74±8.58	4.01±1.38	3.54±0.98	1.81±0.39	268±57	68.70 (7.79)

\(F/Z\): 1.057 2.446 18.342 60.125 280.22 9.792

\(p\) value: 0.350 0.090 0.000 0.000 0.000 0.000

Data are presented as means ± SD or median (IQR). sCr, serum creatinine; Cys-C, cystatin C; \(\beta2\)-MG, beta 2-microglobulin; NGAL, urinary neutrophil gelatinase-associated lipocalin; \(\alpha1\)-MG, alpha 1-microglobulin.

Table 4. Levels of biomarkers in the AKI and Non-AKI groups 24 h after birth

Group	sCr, \(\mu\)mol/L	BUN, mmol/L	\(\beta2\)-MG, mg/L	Cys-C, mg/L	NGAL, \(\mu\)g/L	\(\alpha1\)-MG, mg/L
AKI \((n = 37)\)	51.36±10.7	4.35±1.03	3.70±1.17	1.96±0.34	270±88	53.3 (68.6)
Non-AKI \((n = 73)\)	48.15±9.26	4.06±1.14	3.09±0.60	1.78±0.28	93±52	38.20 (27.90)

\(t/Z\): 1.625 1.301 –3.588 –2.985 13.247 –2.347

\(p\) value: 0.107 0.196 0.001 0.004 0.000 0.019

Data are presented as means ± SD or median (IQR). sCr, serum creatinine; Cys-C, cystatin C; \(\beta2\)-MG: beta 2-microglobulin; NGAL, neutrophil gelatinase-associated lipocalin; \(\alpha1\)-MG: alpha 1-microglobulin.
ROC Analysis of Marker Proteins

Using ROC analysis, we calculated the sensitivity and specificity for each marker’s ability to detect AKI (Fig. 1). Values for NGAL gave the best diagnostic performance, with an AUC of 0.865. Analysis of Cys-C concentrations yielded an AUC of 0.670, and β2-MG and α1-MG achieved a comparable AUC of 0.689 and 0.617, respectively. Table 5 shows the results of the ROC analysis for all markers at 24 h after birth. The sensitivity and specificity of combined diagnosis of AKI in asphyxiated neonates with the above 4 indicators were 0.974 and 0.506, respectively, indicating that the combined detection of multiple biomarkers could be helpful in the clinical evaluation of AKI in asphyxiated neonates.

Discussion

In this study, we evaluated the association of 6 serum and urine biomarkers with AKI in asphyxiated neonates. We found that the levels of Cys-C and β2-MG in blood, and NGAL and α1-MG in urine measured 24 h after birth were associated with AKI. These data suggest their potential as biomarkers of AKI.

Perinatal asphyxia is one of the most important causes of neonatal mortality and morbidity. AKI is independently associated with poor outcomes in the critically ill patient. The standard kidney function biomarker, sCr, shows a demonstrable rise in concentration many hours to days after insult to the kidney. Thus, Cr-based AKI diagnosis is likely delayed, rendering treatments to mitigate or prevent AKI ineffective. Neonatal AKI is further confounded by the fact that sCr concentrations in infants actually reflect maternal levels.

The diagnosis of AKI is usually based on changes in sCr, but such measurements are a poor marker of acute deterioration in kidney function and hence biomarkers are gaining importance. Biomarkers like serum Cys-C, urine interleukin-18 (IL-18), urine kidney injury molecule-1, urine NGAL, IL-18, glutathione-S-transferase-pi, and gamma-glutathione-S-transferase have been used in a few studies on AKI [21, 22].

Estimation of urinary β2-MG as an indicator of proximal renal tubular dysfunction in asphyxiated full-term newborns has been documented [23]. Cys-C is normally filtered freely and is completely reabsorbed and catabolized within the proximal tubule [24]. Urine Cys-C levels increase with structural and functional renal tubular impairment independent of GFR [25]. It is highly predictive of AKI in children and adults who undergo cardiopulmonary bypass surgery and kidney transplantation [26].

![Fig. 1. ROC curves of blood Cys-C, β2-MG, urinary NGAL, and α1-MG in diagnosing AKI after neonatal asphyxia. Cys-C, cystatin C; β2-MG, beta 2-microglobulin; NGAL, neutrophil gelatinase-associated lipocalin; α1-MG, alpha 1-microglobulin.](image)

This study has several limitations. First, the study is limited by the relatively small number of patients. Therefore, large-scale, head-to-head comparisons of the different biomarkers are required in the future. Another important limi-
neonatal asphyxia can cause changes in glomerular and tubular function, and more severely asphyxiated neonates are more likely to experience renal failure compared to those with milder asphyxia. Serum Cys-C and β2-MG, and urine NGAL and α1-MG levels are early and specific indicators of renal damage after asphyxia. The combined detection of multiple biomarkers may contribute to clinical evaluation of renal injury in asphyxiated neonates. Because of limitations in sample size and the heterogeneous population of sick newborns, this study was not able to control for other potential confounders. Therefore, a large-scale, head-to-head comparison of serum and urinary levels is required to ascertain which of the two is the more useful test.

Conclusion

Neonatal asphyxia can cause changes in glomerular and tubular function, and more severely asphyxiated neonates are more likely to experience renal failure compared to those with milder asphyxia. Serum Cys-C and β2-MG, and urine NGAL and α1-MG levels are early and specific indicators of renal damage after asphyxia. The combined detection of multiple biomarkers may contribute to clinical evaluation of renal injury in asphyxiated neonates. Because of limitations in sample size and the heterogeneous population of sick newborns, this study was not able to control for other potential confounders. Therefore, a large-scale, head-to-head comparison of serum and urinary levels is required to ascertain which of the two is the more useful test.

Statement of Ethics

This study was approved by the Ethics Committee of the local hospital and informed consent was obtained from guardians of all the participants.

Disclosure Statement

The authors declare that they have no conflict of interest.

Funding Sources

No funding was received for this study.

Table 5. Analysis of β2-MG, Cys-C, α1-MG, and NGAL

Biomarker	24-h AUC	95% CI	Sensitivity, %	Specificity, %	Cutoff
β2-MG	0.689	0.586–0.791	0.487	0.787	3.49 mg/L
Cys-C	0.670	0.565–0.774	0.615	0.693	1.86 mg/L
α1-MG	0.617	0.508–0.726	0.461	0.8	57.35 mg/L
NGAL	0.865	0.788–0.943	0.846	0.880	109.5 μg/L

Cys-C, cystatin C; β2-MG, beta 2-microglobulin; NGAL, urinary neutrophil gelatinase-associated lipocalin; α1-MG, alpha 1-microglobulin.

References

1. McGuire W. Perinatal asphyxia. BMJ Clin Evid. 2007 Nov;2007:379.
2. Durkan AM, Alexander RT. Acute kidney injury post neonatal asphyxia. J Pediatr. 2011 Feb;158(2 Suppl):e29–33.
3. Beck S, Woudyala D, Say L, Betran AP, Merialdi M, Requejo JH, et al. The worldwide incidence of preterm birth: a systematic review of maternal mortality and morbidity. Bull World Health Organ. 2010 Jan;88(1):31–8.
4. Perlman JM, Tack ED. Renal injury in the asphyxiated newborn infant: relationship to neurologic outcome. J Pediatr. 1988 Nov;113(5):875–9.
5. Nouri S, Mahdhaoui N, Beizig S, Zakhama R, Salem N, Ben Dhafer S, et al. [Acute renal failure in full term neonates with perinatal asphyxia. Prospective study of 87 cases]. Arch Pediatr. 2008 Mar;15(3):229–35.
6. el-Mauhoub M, Kishan J, Jaiswal OP, Asbali AA, el houni N. Urinary beta 2-microglobulin as an indicator of proximal renal tubular dysfunction in asphyxiated full-term newborns. Pediatr Nephrol. 1994 Dec;8(6):787.
7. Heise D, Waeschle RM, Schlobohm J, Wessels J, Quintel M. Utility of cystatin C for assessment of renal function after cardiac surgery. Nephron Clin Pract. 2009;112(2):107–14.
8. Kandasamy Y, Smith R, Wright IM. Measuring cystatin C to determine renal function in neonates. Pediatr Crit Care Med. 2013 Mar;14(3):318–22.
9. Astor BC, Shafi T, Hoogeveen RC, Matsushita K, Ballantyne CM, Inker LA, et al. Novel markers of kidney function as predictors of ESRD, cardiovascular disease, and mortality in the general population. Am J Kidney Dis. 2012 May;59(5):653–62.
10. Zaleska-Kociecka M, Skrobisz A, Wojtkowska I, Grabowski M, Dabrowski M, Kusmierski K, et al. Serum beta-2 microglobulin levels for predicting acute kidney injury complicating aortic valve replacement. Interact Cardiovasc Thorac Surg. 2017 Oct;25(4):533–40.
11. Karlo J, Bhat BV, Koner BC, Adhisivam B. Evaluation of renal function in term babies with perinatal asphyxia. Indian J Pediatr. 2014 Mar;81(3):243–7.
Early Diagnosis of Acute Kidney Injury

12 Haase M, Devarajan P, Haase-Fielitz A, Bellomo R, Cruz DN, Wagener G, et al. The outcome of neutrophil gelatinase-associated lipocalin-positive subclinical acute kidney injury: a multicenter pooled analysis of prospective studies. J Am Coll Cardiol. 2011 Apr;57(17):1752–61.

13 Askenazi DJ, Montesanti A, Hunley H, Koralkar R, Pawar P, Shuaib F, et al. Urine biomarkers predict acute kidney injury and mortality in very low birth weight infants. J Pediatr. 2011;159:907–12.e1.

14 Bellos I, Fitrou G, Daskalakis G, Perrea DN, Pergialiotis V. Neutrophil gelatinase-associated lipocalin as predictor of acute kidney injury in neonates with perinatal asphyxia: a systematic review and meta-analysis. Eur J Pediatr. 2018 Oct;177(10):1425–34.

15 Sweetman DU. Neonatal acute kidney injury - Severity and recovery prediction and the role of serum and urinary biomarkers. Early Hum Dev. 2017 Feb;105:57–61.

16 Filho LT, Grande AJ, Colonetti T, Della ES, da Rosa MI. Accuracy of neutrophil gelatinase-associated lipocalin for acute kidney injury diagnosis in children: systematic review and meta-analysis. Pediatr Nephrol. 2017 Oct;32(10):1979–88.

17 Yu H, Yanagisawa Y, Forbes MA, Cooper EH, Croxson RA, MacLennan IC. Alpha-1-microglobulin: an indicator protein for renal tubular function. J Clin Pathol. 1983 Mar;36(3):253–9.

18 Treiber M, Gorenjak M, Pecovnik Balon R. Serum cystatin-C as a marker of acute kidney injury in the newborn after perinatal hypoxia/asphyxia. Ther Apher Dial. 2014 Feb;18(1):57–67.

19 Askenazi DJ, Ambalavanan N, Goldstein SL. Acute kidney injury in critically ill newborns: what do we know? What do we need to learn? Pediatr Nephrol. 2009 Feb;24(2):265–74.

20 Mehta RL, Kellum JA, Shah SV, Morigliano BA, Ronco C, Warnock DG, et al. Acute Kidney Injury Network. Acute Kidney Injury Network: report of an initiative to improve outcomes in acute kidney injury. Crit Care. 2007;11(2):R31.

21 Coca SG, Yalavarthy R, Concato J, Parikh CR. Biomarkers for the diagnosis and risk stratification of acute kidney injury: a systematic review. Kidney Int. 2008 May;73(9):1008–16.

22 Askenazi DJ, Koralkar R, Hundley HE, Montesanti A, Parwar P, Sonjara S, et al. Urine biomarkers predict acute kidney injury in newborns. J Pediatr. 2012 Aug;161(2):270–5.e1.

23 Sarafidis K, Tsepentzi E, Agakidou E, Diamanti E, Taparkou A, Soubasi V, et al. Serum and urine acute kidney injury biomarkers in asphyxiated neonates. Pediatr Nephrol. 2012 Sep;27(9):1575–82.

24 Nejat M, Pickering JW, Walker RJ, Westhuyzen J, Shaw GM, Frampton CM, et al. Urinary cystatin C is diagnostic of acute kidney injury and sepsis, and predicts mortality in the intensive care unit. Crit Care. 2010;14(3):R85.

25 Herget-Rosenthal S, van Wijk JA, Bröcker-Preuss M, Bökenkamp A. Increased urinary cystatin C reflects structural and functional renal tubular impairment independent of glomerular filtration rate. Clin Biochem. 2007 Sep;40(13-14):946–51.

26 Hall IE, Koyner JL, Doshi MD, Marcus RJ, Parikh CR. Urine cystatin C as a biomarker of proximal tubular function immediately after kidney transplantation. Am J Nephrol. 2011;33(5):407–13.

27 Yavuz S, Anarat A, Acartürk S, Dalay AC, Kesiktaş E, Yayuz M, et al. Neutrophil gelatinase associated lipocalin as an indicator of acute kidney injury and inflammation in burned children. Burns. 2014 Jun;40(4):648–54.

28 Hoffman SB, Massaro AN, Soler-Garcia AA, Perazzo S, Ray PE. A novel urinary biomarker profile to identify acute kidney injury (AKI) in critically ill neonates: a pilot study. Pediatr Nephrol. 2013 Nov;28(11):2179–88.

29 Askenazi DJ, Koralkar R, Levitan EB, Goldstein SL, Devarajan P, Khandrika S, et al. Baseline values of candidate urine acute kidney injury biomarkers vary by gestational age in premature infants. Pediatr Res. 2011 Sep;70(3):362–6.