Relativistic-Newtonian correspondence of the zero-pressure but weakly nonlinear cosmology

Hyerim Noh(a) and Jai-chan Hwang(b)

(a) Korea Astronomy and Space Science Institute, Daejon, Korea
(b) Department of Astronomy and Atmospheric Sciences, Kyungpook National University, Taegu, Korea
E-mails: (a) hr@kasi.re.kr, (b) jchan@knu.ac.kr

It is well known that couplings occur among the scalar-, vector-, and tensor-type perturbations of Friedmann world model in the second perturbational order. Here, we prove that, except for the gravitational wave contribution, the relativistic zero-pressure irrotational fluid perturbed to second order in a flat Friedmann background coincides exactly with the Newtonian result. Since we include the cosmological constant, our results are relevant to currently favoured cosmology. As we prove that the Newtonian hydrodynamic equations are valid in all cosmological scales to the second order, our result has an important practical implication that one can now use the large-scale Newtonian numerical simulation more reliably even as the simulation scale approaches and even goes beyond the horizon. That is, our discovery shows that, in the zero-pressure case, except for the gravitational wave contribution, there are no relativistic correction terms even near and beyond the horizon to the second-order perturbation.

I. INTRODUCTION

Historically, the first proper cosmological analysis appeared only after the advent of Einstein’s gravity theory in 1917 [1]: the only known preceding cosmologically relevant discussions can be found in Newton’s correspondences to Bentley in 1692 [2]. The expanding world model and its linear structures were first studied in the context of Einstein’s gravity in the classic studies by Friedmann in 1922 [3] and Lifshitz in 1946 [4], respectively. In an interesting sequence, the much simpler and, in hindsight, more intuitive Newtonian studies followed later by Milne in 1934 [5] and Bonnor in 1957 [6], respectively. According to Ellis “It is curious that it took so long for these dynamic models to be discovered after the (more complex) general relativity models were known” [7]. This is particularly so, because in the case without pressure the Newtonian results coincide exactly with the previously derived relativistic ones for both the background world model and its first (linear) order perturbations. It would be fair to point out, however, that the ordinarily known Newtonian cosmology (both for the Friedmann background and its linear perturbations) is not purely based on Newton’s gravity, but is a guided one by Einstein’s theory [8]. The zero-pressure system with the cosmological constant describes the current stage of our universe and its large scale structures in the linear stage remarkably well.

Here we show that such a relativistic-Newtonian correspondence continues even to the weakly nonlinear order. As the observed large-scale structures show weakly nonlinear processes our relativistic result has theoretical as well as practical significances to interpret and analyse such structures properly in relativistic level. As a consequence, our result implies that even to the weakly nonlinear (second perturbational) order the well known Newtonian equations can be used in all cosmological scales including the super-horizon scale.

The known equations are

\[
\frac{\dot{a}^2}{a^2} = \frac{8\pi G}{3} \frac{\delta}{a^2} + \frac{\text{const.}}{a^2} + \frac{\Lambda c^2}{3}, \tag{1}
\]

with \(\varrho \propto a^{-3} \) for the background [3,5], and

\[
\delta + 2\frac{\dot{a}}{a} \delta - 4\pi G \varrho \delta = 0, \tag{2}
\]

for the linear order perturbations [4,6]. The variable \(a(t) \) is the scale factor, and \(\delta \equiv \delta \varrho / \varrho \) with \(\varrho \) and \(\delta \varrho \) the background and perturbed parts of the density field, respectively; \(\Lambda \) is the cosmological constant. The “const.” part is interpreted as the spatial curvature in Einstein’s gravity [3,9] and the total energy in the Newton’s gravity [5]. Although eq. (2) is also valid with general spatial curvature the relativistic-Newtonian correspondence is somewhat ambiguous in the case with curvature [10]. Therefore, in the following we consider the flat background only. Equation (2) is valid even in the presence of the cosmological constant \(\Lambda \). We will include \(\Lambda \) term in our analyses of the weakly nonlinear stage. The above two equations with vanishing spatial curvature describe remarkably well the current expanding stage of our universe and its large-scale structures which are believed to be in the linear stage. In the small scale, however, the structures are apparently in nonlinear stage, and even in the large scale weakly nonlinear study is needed. Up until now, such a weakly nonlinear stage has been studied based on Newton’s gravity only.

The case with non-vanishing pressure cannot be handled in the Newtonian context, especially for the perturbation. In this work, we will show an additional continuation of relativistic-Newtonian correspondences in the
zero-pressure medium by showing that, except for the gravitational wave contribution, the relativistic second-order perturbation is described by the same set of equations known in the Newtonian system. That is, except for the coupling with the gravitational waves, the Newtonian equations coincide exactly with the relativistic ones even to the second order in perturbations.

For relativistic perturbations, due to the covariance of field equations we have the freedom to fix the spacetime coordinates by choosing some of the metric or energy-momentum variables at our disposal: this is often called the gauge choice. The relativistic-Newtonian correspondence to the linear order was made by properly arranging the equations using various gauge-invariant variables [11,10]. In the relativistic case, the solutions for the zero-pressure medium by showing that, except for the second order, after some algebra using perturbed variables in this gauge condition are equivalently gauge invariant to the second order: this is in the sense that each of the variables has a unique corresponding gauge-invariant combination, see [13].

In [13] the equations are presented in the normal frame \bar{n}_a with $\bar{n}_a = 0$. The fluid four-vector \bar{u}_a in general differs from the normal four-vector \bar{n}_a. Only in the comoving gauge without rotation the two frames coincide. Since the fluid quantities are defined in the fluid (\bar{u}_a) frame, the zero-pressure condition should be imposed in \bar{n}_a frame. Thus, for the fluid quantities defined in the normal frame the physical zero-pressure condition implies vanishing pressures (both isotropic and anisotropic) only in the comoving gauge without rotation. In this normal frame, the gauge transformation to the second order causes pressure terms to appear in other gauges, see [13]. In the energy frame, which takes vanishing flux $\bar{q}_a = 0$ as the frame condition, the comoving gauge condition takes $\bar{u}_a = 0$ for the fluid four-vector; here, we ignore the vector-type perturbation. Since $\bar{u}_a = 0$ it coincides with the normal frame vector. Now, in the normal frame, which takes $\bar{n}_a = 0$ as the frame condition, the comoving gauge condition without rotation implies $\bar{q}_a = 0$. Thus, as long as we take the comoving gauge without rotation, in either frame we have $\bar{q}_a = 0$ and $\bar{u}_a = 0 = \bar{n}_a$; i.e., the fluid four-vector coincides with the normal four-vector.

II. FULLY NONLINEAR EQUATIONS

We may start from the completely nonlinear and covariant equations; for a complete set of the covariant $(1+3)$ equations, see [14]. We consider a zero-pressure fluid with vanishing isotropic pressure and anisotropic stress, thus $\bar{\rho} \equiv 0 = \bar{\pi}_{ab}$. In the energy frame we take $\bar{\alpha} = 0$. Tildes indicate the covariant quantities, and the Greek and Latin indices indicate the space and spacetime indices, respectively. The momentum conservation gives vanishing acceleration vector \bar{a}_a to all orders; see eq. (27) of [13]. The energy conservation and the Raychaudhury equation ($G_a^a - G_b^0$ part of Einstein’s equation) give

$$\bar{\dot{\mu}} + \bar{\mu}\bar{\dot{\theta}} = 0, \quad (3)$$

$$\bar{\dot{\theta}} + \frac{1}{3} \bar{\mu}^2 + \bar{\sigma}^{ab}\bar{\sigma}_{ab} - \bar{\omega}^{ab}\bar{\omega}_{ab} + 4\pi\bar{G}\bar{\mu} - \Lambda = 0, \quad (4)$$

see eqs. (26,28) of [13]; $\bar{\theta} \equiv \bar{u}^a_{\alpha}$ is an expansion scalar with \bar{u}_a, a fluid four-vector, $\bar{\sigma}_{ab}$ and $\bar{\omega}_{ab}$ are the shear and the rotation tensors, respectively; if $\bar{\alpha} = 0$ we have no rotation of the fluid four-vector \bar{u}_a. We set $c \equiv 1$. An overdot with tilde is a covariant derivative along the \bar{u}_a vector, e.g., $\bar{\dot{\mu}} \equiv \bar{\mu}_{,a}\bar{u}^a$. By combining these equations we have

$$\left(\frac{\bar{\dot{\mu}}}{\bar{\mu}}\right)^2 - \frac{1}{3} \left(\frac{\bar{\dot{\mu}}}{\bar{\mu}}\right)^2 - \bar{\sigma}^{ab}\bar{\sigma}_{ab} + \bar{\omega}^{ab}\bar{\omega}_{ab} - 4\pi\bar{G}\bar{\mu} + \Lambda = 0. \quad (5)$$

Equations (3-5) are valid to all orders, i.e., these equations are fully nonlinear and still covariant.

We consider the scalar- and tensor-type perturbations in the flat Friedmann background without pressure. We ignore the vector-type perturbation; the vector-type perturbation (rotation) is supposed to be not important because it always decays in the expanding phase even to the second order, see §VII.E of [13]. We will take the comoving gauge, and by ignoring the vector-type perturbations we have no rotation. In this case the four-vector becomes $\bar{u}_a = 0$, thus coincides with the normal four-vector \bar{n}_a. We lose no generality by imposing the gauge condition. In our case the energy-momentum tensor becomes $T_0^0 = -\bar{\mu}$, and $T_a^0 = \bar{T}_a^0$ where $\bar{\mu}$ is the energy density. We emphasize that as our comoving gauge condition fixes the gauge degree of freedom completely, all variables in this gauge condition are equivalently gauge invariant to the second order: this is in the sense that each of the variables has a unique corresponding gauge-invariant combination, see [13].

In [13] the variables are presented in the normal frame \bar{n}_a with $\bar{n}_a = 0$. The fluid four-vector \bar{u}_a in general differs from the normal four-vector \bar{n}_a. Only in the comoving gauge without rotation the two frames coincide. Since the fluid quantities are defined in the fluid (\bar{u}_a) frame, the zero-pressure condition should be imposed in \bar{n}_a frame. Thus, for the fluid quantities defined in the normal frame the physical zero-pressure condition implies vanishing pressures (both isotropic and anisotropic) only in the comoving gauge without rotation. In this normal frame, the gauge transformation to the second order causes pressure terms to appear in other gauges, see [13]. In the energy frame, which takes vanishing flux $\bar{q}_a = 0$ as the frame condition, the comoving gauge condition takes $\bar{u}_a = 0$ for the fluid four-vector; here, we ignore the vector-type perturbation. Since $\bar{u}_a = 0$ it coincides with the normal frame vector. Now, in the normal frame, which takes $\bar{n}_a = 0$ as the frame condition, the comoving gauge condition without rotation implies $\bar{q}_a = 0$. Thus, as long as we take the comoving gauge without rotation, in either frame we have $\bar{q}_a = 0$ and $\bar{u}_a = 0 = \bar{n}_a$; i.e., the fluid four-vector coincides with the normal four-vector.

III. CORRESPONDENCE TO THE SECOND ORDER: A PROOF

Now, we consider equations perturbed to the second order in the metric and matter variables. We introduce

$$\bar{\mu} \equiv \mu + \delta\mu, \quad \bar{\theta} \equiv \frac{\dot{\theta}}{a} + \delta\theta, \quad (6)$$

where μ and $\delta\mu$ are the background and perturbed energy density, respectively, and $\delta\theta$ is the perturbed part of expansion scalar; we set $\delta \equiv \delta\mu/\mu$. We identify $\mu \equiv \bar{\varrho}$ to the background order, and

$$\delta\mu \equiv \delta\bar{\varrho}, \quad \delta\theta \equiv \frac{1}{a} \nabla \cdot \mathbf{u}, \quad (7)$$

to both the linear- and second-order perturbations. Now, to the second order, after some algebra using perturbed
order quantities presented in [13], the perturbed parts of eqs. (3,4) give (see the Appendix)

\[\dot{\delta} + \frac{1}{a} \nabla \cdot \mathbf{u} = -\frac{1}{a} \nabla \cdot (\delta \mathbf{u}), \]

(8)

\[\frac{1}{a^2} \nabla \cdot \left(\dot{\mathbf{u}} + \frac{\dot{a}}{a} \mathbf{u} \right) + 4\pi G \mu \delta \]

\[= -\frac{1}{a^2} \nabla \cdot (\mathbf{u} \cdot \nabla \mathbf{u}) - \dot{C}^{(t)\alpha\beta} \left(\frac{2}{a} \nabla u_{\alpha} + C^{(t)\alpha\beta} \right), \]

(9)

where \(C^{(t)\alpha\beta} \) is the transverse and tracefree tensor-type perturbation (the gravitational waves) introduced in eq. (15); the indices of \(C^{(t)\alpha\beta} \) are raised and lowered by \(\delta_{\alpha\beta} \); its contribution in eq. (9) comes from the shear term in eq. (4); see the Appendix. By combining these equations we have

\[\ddot{\delta} + \frac{2}{a} \frac{\dot{a}}{a} - 4\pi G \mu \delta = -\frac{1}{a^2} \frac{\partial}{\partial t} [a \nabla \cdot (\delta \mathbf{u})] + \frac{1}{a^2} \nabla \cdot (\mathbf{u} \cdot \nabla \mathbf{u}) \]

\[+ \dot{C}^{(t)\alpha\beta} \left(\frac{2}{a} \nabla u_{\alpha} + C^{(t)\alpha\beta} \right), \]

(10)

which also follows from eq. (5). Equations (8-10) are our extension of eq. (2) to the second-order perturbations in Einstein’s theory. We will show that, except for the gravitational wave contribution, exactly the same equations also follow from Newton’s theory.

The presence of linear-order gravitational waves can generate the second-order scalar-type perturbation by generating the shear terms. The coupling between the scalar-type perturbation and the gravitational waves to the second order was noticed in the original study of the second-order perturbations by Tomita in 1967 [15]. Here, we note the behaviour of the gravitational waves in the linear regime. To the linear order the gravitational waves are described by the well known wave equation [4]

\[\ddot{C}_{\alpha\beta}^{(t)} + 3 \frac{\dot{a}}{a} C_{\alpha\beta}^{(t)} - \frac{\Delta}{a^2} C_{\alpha\beta}^{(t)} = 0. \]

(11)

In the super-horizon scale the non-transient mode of \(C_{\alpha\beta}^{(t)} \) remains constant, thus \(\dot{C}^{(t)\alpha\beta} = 0 \), and in the sub-horizon scale, the oscillatory \(C_{\alpha\beta}^{(t)} \) redshifts away, thus \(C_{\alpha\beta}^{(t)} \propto a^{-1} \). Notice that only time derivatives of \(C_{\alpha\beta}^{(t)} \) generate the scalar-type perturbation. Thus, we anticipate that the contribution of gravitational waves to the scalar-type perturbation is not significant to the second order. The quadratic combinations of linear-order scalar-type perturbation can also work as sources for the gravitational waves to the second-order [16].

In the Newtonian context, the mass conservation, the momentum conservation, and the Poisson’s equation give [17]

\[\dot{\delta} + \frac{1}{a} \nabla \cdot \mathbf{u} = -\frac{1}{a} \nabla \cdot (\delta \mathbf{u}), \]

(12)

\[\frac{1}{a^2} \nabla^2 \dot{\Phi} = 4\pi G \rho \delta, \]

(14)

where \(\delta \Phi \) is the perturbed gravitational potential. We note that these equations are valid to fully nonlinear order. Equation (8) follows from eq. (12), and eq. (9) ignoring the gravitational waves follows from eqs. (13,14). Thus, eq. (10) also naturally follows in Newton’s theory [17]. In this Newtonian situation \(\mathbf{u} \) is the perturbed velocity and \(\delta \equiv \delta \rho / \rho \). This completes our proof of the relativistic-Newtonian correspondence to the second order. Although we successfully identified the relativistic density and velocity perturbation variables we do not have a relativistic variable which corresponds to the Newtonian potential \(\delta \Phi \) to the second order. This situation could be understood because the gravitational potential introduced in eq. (5) should not be so obvious either, because our system lacks any spatial symmetry contrary to the Birkhoff’s theorem [19]; for cosmology related discussions of the theorem, see [17]. However, our results should not be so obvious either, because our system lacks any spatial symmetry contrary to the Birkhoff’s theorem which is concerned with the spherically symmetric system. It might be as well that our relativistic results give relativistic correction terms appearing to the second order which become important as we approach and go beyond the horizon scale. Our results show that there are no such correction terms appearing to the second order, and the correspondence is exact to that order. A complementary result, showing the relativistic-Newtonian cor-

\[\dot{\mathbf{u}} + \frac{\dot{a}}{a} \mathbf{u} + \frac{1}{a} \nabla \delta \Phi = -\frac{1}{a} \mathbf{u} \cdot \nabla \mathbf{u}, \]

(13)
correspondence in the Newtonian limit of post-Newtonian approach (z-expansion with $\frac{\alpha}{\sqrt{\pi}} \ll 1$, thus valid far inside the horizon), can be found in [20]. In fact, the Newtonian hydrodynamic equations naturally appear in the zeroth post-Newtonian order of Einstein’s gravity [21]; for the cosmological extension, see [22].

In a classic study of the cosmic microwave background radiation anisotropy in 1967 Sachs and Wolfe have mentioned that “the linear perturbations are so surprisingly simple that a perturbation analysis accurate to second order may be feasible using the methods of Hawking (1966)” [23]. Our proof of the exact relativistic-Newtonian correspondence to the second order could be regarded as one of such accurate results anticipated in [23]. Indeed, in this work we used the method of Hawking which is the covariant (1+3) equations [24]; for other proofs see [16].

As we consider a flat background the ordinary Fourier analysis can be used to study the mode-couplings as in the Newtonian case [25]. Our equations include the cosmological constant, thus compatible with current observations of the large-scale structure and the cosmic microwave background radiation which favour nearly flat Friedmann world model with non-vanishing Λ [26]. Our result may also have the following important practical cosmological implication. As we have proved that the Newtonian hydrodynamic equations are valid in all cosmological scales to the second order, our result has an important cosmological implication that one can use the large-scale Newtonian numerical simulation more reliably in the general relativistic context even as the simulation scale approaches near (and goes beyond) horizon scale. The fluctuations near the horizon scale are supposed to be linear or weakly nonlinear; otherwise, it is difficult to imagine the presence of spatially homogeneous and isotropic background world model which is the basic assumption and the backbone of the modern cosmology.

Since the Newtonian system is exact to the second order in nonlinearity, any non-vanishing third and higher order perturbation terms in the relativistic analysis can be regarded as the pure relativistic correction. Expanding the fully nonlinear equations in (3-5) to third and higher order will give the potential correction terms. For our recent work in the third-order perturbations, see [18]. In [18] we derive the nonvanishing third-order terms which are purely relativistic correction terms. We also show that these correction terms are independent of the horizon and are smaller than the second-order Newtonian/relativistic terms by a factor 10^{-5}, thus negligible indeed.

Acknowledgments

We thank Dirk Puetzfeld for helpful comments. We wish to thank Lev Kofman and Ethan Vishniac for their comments on possible relation to the Birkhoff’s theorem.

HN and JH were supported by grants No. R04-2003-10004-0 and No. R02-2003-000-10051-0, respectively, from the Basic Research Program of the Korea Science and Engineering Foundation.

APPENDIX

Since eqs. (8,9) allow us to conclude about the relativistic-Newtonian correspondence, in the following we will derive these equations in some detail using the basic quantities presented in [13]. As the metric we take

$$ds^2 = -a^2 (1 + 2\alpha) dt^2 - 2a \chi_{,\alpha} dy dx^\alpha + a^2 \left[(1 + 2\varphi) \delta_{\alpha\beta} + 2C_{\alpha\beta}^{(t)} \right] dx^\alpha dx^\beta,$$

which follows from our convention in eqs. (49,175,178) of [13]. Here, α, χ and φ are spacetime dependent perturbed-order variables; $C_{\alpha\beta}^{(t)}$ is a transverse-tracefree tensor-type perturbation variable. In our metric we took the spatial C-gauge which removes the spatial gauge modes completely, thus all the remaining variables are we are using are spatially gauge-invariant, see §VI.B.2 of [13]; to the linear order, our notation coincides with Bardeen’s in [27]. We work in the temporal comoving gauge which takes $v = 0$ in [13]. The momentum conservation gives $\tilde{\alpha}_\alpha = 0$ which gives $\alpha = -\frac{1}{2\pi} \chi^{,\alpha} \chi_{,\alpha}$, see eq. (69) of [13]. In our comoving gauge condition, the four-vector in eq. (53) of [13], using eq. (175) in that paper, becomes

$$\tilde{u}_0 = -a, \quad \tilde{u}_\alpha = 0;$$

$$\tilde{u}^0 = \frac{1}{a}, \quad \tilde{u}^\alpha = \frac{1}{a^2} \chi^{,\alpha} \left[(1 - 2\varphi) \delta_{\beta}^{,\alpha} - 2C_{,\alpha\beta}^{(t)} \right].$$

With these, we have

$$\tilde{\mu} = \tilde{\mu}_{,0} u^0 + \tilde{\mu}_{,\alpha} \tilde{u}^\alpha = [\mu (1 + \delta)] + \frac{1}{a^2} \delta_{,\alpha} \chi^{,\alpha},$$

$$\tilde{\theta} = \left(3\frac{\ddot{a}}{a} + \frac{1}{a} \nabla \cdot \mathbf{u} \right), \quad \frac{1}{a^2} (\nabla \cdot \mathbf{u}) \chi^{,\alpha}.$$

Our $\delta \theta$ is the same as $-\kappa$ in [13]. Using eqs. (55,57,70) of [13] we can show

$$\tilde{\sigma}^{ab} \tilde{\sigma}_{ab} = \frac{4}{a^4} \left[\chi^{,\alpha\beta} \chi_{,\alpha\beta} - \frac{1}{3} (\Delta \chi)^2 \right] + C_{\alpha\beta}^{(t)} \left(\frac{2}{a^2} \chi^{,\alpha\beta} + C_{\alpha\beta}^{(t)} \right).$$

Now, we have to relate χ to our notation. Apparently, we need χ only to the linear order. The $G_{\alpha\beta}^{0}$-component of Einstein’s equation in eq. (197) of [13] gives $\frac{\Delta \chi}{a^2} = -\kappa \equiv \delta \theta \equiv \frac{1}{a} \nabla \cdot \mathbf{u}$. As our \mathbf{u} is of the potential type, i.e., of the form $\mathbf{u} \equiv u_{,\alpha}$, we have $\mathbf{u} = \frac{1}{a} \nabla \chi$ to the linear order. Using these, eqs. (3,4) give
\[
\begin{align*}
\left(\frac{\dot{\mu}}{\mu} + \frac{\ddot{a}}{a}\right) (1 + \delta) + \frac{1}{a} \nabla \cdot \mathbf{u} &= -\frac{1}{a} \nabla \cdot (\delta \mathbf{u}), \\
3\frac{\ddot{a}}{a} + 4\pi G\mu - \Lambda + \frac{1}{a} \nabla \cdot \left(\dot{\mathbf{u}} + \frac{\dot{a}}{a} \mathbf{u}\right) + 4\pi G\mu \delta &= -\frac{1}{a^2} \nabla \left(\mathbf{u} \cdot \nabla \mathbf{u}\right) - \dddot{C}(t)_{\alpha\beta} \left(\frac{2}{a} u_{\alpha,\beta} + \dddot{C}(t)_{\alpha\beta}\right).
\end{align*}
\]

To the background order, we have \(\dot{\mu} + 3(\ddot{a}/a)\mu = 0\) and \(3\ddot{a}/a + 4\pi G\mu - \Lambda = 0\); after an integration we recover eq. (1) with \(\Lambda\); in this case the “const.” is an integration constant which can be interpreted as the spatial curvature. The perturbed parts give eqs. (8,9).

[1] Einstein A 1917 Sitzungsberichte der Preussischen Akad. d. Wiss. 1917 142; translated in 1986 Cosmological-constants: papers in modern cosmology ed J Bernstein and G Feinberg (Columbia Univ. Press, New York) p 16
[2] Newton I 1692 Four Letters to Richard Bentley; reprinted in 1957 Theories of the universe ed M K Munitz (The Free Press, London) p 211
[3] Friedmann A A 1922 Zeitschrift für Physik 10 377; translated in 1986 Cosmological-constants: papers in modern cosmology ed J Bernstein and G Feinberg (Columbia Univ. Press, New York) p 49
Friedmann A A 1924 Zeitschrift für Physik 21 326; translated in 1986 Cosmological-constants: papers in modern cosmology ed J Bernstein and G Feinberg (Columbia Univ. Press, New York) p 59
[4] Lifshitz E M 1946 J. Phys. (USSR) 10 116
[5] Milne E A 1934 Quart. J. Math. 5 64
McCrea W H and Milne E A 1934 Quart. J. Math. 5 73
[6] Bonnor W B 1957 Mon. Not. R. Astron. Soc. 117 104
[7] Ellis G F R 1989 Einstein and the history of general relativity ed D Howard and J Stachel (Birkhäuser, Berlin) p 367
[8] Layzer D 1954 Astron. J. 59 268
[9] Robertson H P 1929 Proceedings of the National Academy of Science 15 822
[10] Hwang J and Noh H 1999 Gen. Rel. Grav. 31 1131
[11] Bardeen J M 1980 Phys. Rev. D 22 1882
[12] Nariai H 1969 Prog. Theor. Phys. 41 686
[13] Noh H and Hwang J 2004 Phys. Rev. D 69 104011
[14] Ehlers J 1961 Proceedings of the mathematical-natural science of the Mainz academy of science and literature, Nr. 11 792; translated in 1993 Gen. Rel. Grav. 25 1225
Ellis G F R 1971 General relativity and cosmology ed R K Sachs Proceedings of the international summer school of physics Enrico Fermi course 47 (Academic Press, New York) p 104
Ellis G F R 1973 Cargese lectures in Physics ed E Schatzmann (Gorden and Breach, New York) p 1
[15] Tomita K 1967 Prog. Theor. Phys. 37 831
Tomita K 1971 Prog. Theor. Phys. 45 1747
[16] Hwang J and Noh H 2005 Phys. Rev. D in press, Preprint gr-qc/0412128
[17] Peebles P J E 1980 The large-scale structure of the universe, (Princeton Univ. Press, Princeton)
[18] Hwang J and Noh H 2005 Phys. Rev. D in press, Preprint gr-qc/0412129
[19] Birkhoff G 1923 Relativity and modern physics (Harvard Univ. Press, Cambridge)
[20] Bertschinger E and Hamilton A J S 1994 Astrophys. J. 435 1
Kofman L and Pogosyan D 1995 Astrophys. J. 442 30
Ellis G F R and Dunsby P K S 1997 Astrophys. J. 479 97
[21] Chandrasekhar S 1965 Astrophys. J. 142 1488
[22] Hwang J Noh H and Puetzfeld D 2005 Preprint astro-ph/0507085
[23] Sachs R K and Wolfe A M 1967 Astrophys. J. 147 73
[24] Hawking S W 1966 Astrophys. J. 145 544
[25] Vishniac E T 1983 Mon. Not. R. Astron. Soc. 203 345
Goroff M H Grinstein B Rey S-J and Wise M B 1986 Astrophys. J. 311 6
Bernardeau F Colombi S Gaztanaga E and Scoccimarro R 2002 Phys. Rep. 367 1
[26] Spergel D N et al. 2003 Astrophys. J. Suppl. 148 175
Tegmark M et al. 2004 Phys. Rev. D 69 103501
[27] Bardeen J M 1988 Particle Physics and Cosmology ed L Fang and A Zee (Gordon and Breach, London) p 1