Divergent functions of murine Pax3 and Pax7 in limb muscle development

Frédéric Relaix,1 Didier Rocancourt,1 Ahmed Mansouri,2 and Margaret Buckingham1,3

1Centre National de la Recherche Scientifique (CNRS) URA 2578, Department of Developmental Biology, Pasteur Institute, 75724 Paris Cedex 15, France; 2Max-Planck Institute for Biophysical Chemistry, Department of Molecular Cell Biology, D-37077 Gottingen, Germany

Pax genes encode evolutionarily conserved transcription factors that play critical roles in development. Pax3 and Pax7 constitute one of the four Pax subfamilies. Despite partially overlapping expression domains, mouse mutations for Pax3 and Pax7 have very different consequences. To investigate the mechanism of these contrasting phenotypes, we replaced Pax3 by Pax7 by using gene targeting in the mouse. Pax7 can substitute for Pax3 function in dorsal neural tube, neural crest cell, and somite development, but not in the formation of muscles involving long-range migration of muscle progenitor cells. In limbs in which Pax3 is replaced by Pax7, the severity of the muscle phenotype increases as the number of Pax7 replacement alleles is reduced, with the forelimb more affected than the hindlimb. We show that this hypomorphic activity of Pax7 is due to defects in delamination, migration, and proliferation of muscle precursor cells with inefficient activation of c-met in the hypaxial domain of the somite. Despite this, overall muscle patterning is retained. We conclude that functions already prefigured by the single Pax3/7 gene present before vertebrate radiation are fulfilled by Pax7 as well as Pax3, whereas the role of Pax3 in appendicular muscle formation has diverged, reflecting the more recent origin of this mode of myogenesis.

[Keywords: Pax3, Pax7; myogenesis; appendicular muscle; evolution; neural tube]

Supplemental material is available at http://www.genesdev.org.

Received November 27, 2003, revised version accepted March 19, 2004.
et al. 1997). In contrast, no embryonic muscle defect has been described in Pax7-mutant mice [Mansouri et al. 1996b], although Pax7 is expressed in part of the dermomyotome [Jostes et al. 1990; Tajbakhsh et al. 1997]. However Pax7 plays a critical role postnatally when it is required for the formation of skeletal muscle (Seale et al. 2000). Pax3 is also expressed in satellite cells [Conboy and Rando 2002; Buckingham et al. 2003]; however, due to the perinatal death of Pax3 mutants, its role in adult muscle remains to be elucidated.

Although Pax3 and Pax7 are apparently involved in different stages of myogenesis, evidence for shared functions comes from the observation that translocations in humans of both Pax3 and Pax7 with Ewing’s sarcoma breakpoint region (EWSR1) to give EWSR1–PAX3 and EWSR1–PAX7 fusion proteins lead to the formation of alveolar rhabdomyosarcomas (ARMSs), a pediatric tumor of skeletal muscle [Galili et al. 1993; Davis et al. 1994; Barr 2001].

A key question in understanding the relative functions of Pax3 and Pax7 is whether these are determined by biochemical differences between the proteins or by differences in the spatiotemporal expression of the two genes. To address this, we replaced Pax3 by Pax7 by using gene targeting in the mouse. Analysis of mutant embryos with one or two alleles of Pax7 replacing Pax3 shows that Pax7 can replace Pax3 in the neural tube, in neural crest cells, and in somite development. However, Pax3 function in the long-range migration of muscle progenitor cells is only partially rescued. Different combinations of the Pax7 replacement alleles act as hypomorphic alleles of Pax3 in the formation of limb muscles, and reveal a multistep requirement for Pax3 activity in appendicular muscle development. These results provide new insights into the evolution of the Pax3/7 functions.

Results

Pax3 and Pax7 expression in normal and mutant embryos

The expression domains of Pax3 and Pax7 in the mouse embryo were compared, using mice in which Pax3 [Relaix et al. 2003] as well as Pax7 [Mansouri et al. 1996b] genes have been targeted with nLacZ and lacZ reporter genes, respectively. X-Gal staining [Fig. 1A–H] of normal and mutant embryos was complemented by in situ hybridization of transcripts from the endogenous Pax genes [Fig. 1I–Q]. In thoracic somites, Pax3 is expressed throughout the dermomyotome, with the strongest expression observed in the hypaxial epithelium [Fig. 1A,K; Relax et al. 2003]. In Pax3-mutant embryos, the somites are reduced mainly in the hypaxial, but also in the epaxial domains, and somite segmentation is perturbed [Fig. 1B, Relax et al. 2003]. Pax7 is also expressed in the dermomyotome [Fig. 1C,L], however, this expression is mainly restricted to the central region and is excluded from the epaxial and hypaxial extremities, which strongly express Pax3 [Fig. 1, cf. L and K]. In contrast to the situation in chicken embryos [Marcelle et al. 1995], Pax7 transcripts are not detected in muscle progenitor cells migrating to...
the limb, which express Pax3 as shown at embryonic day 10.5 [E10.5; Fig. 1, cf. O and N]. In the embryonic limb, Pax7 transcripts are first detected at E11.5 in the proximal limb [Fig. 1P] and then by E12.5 in more distal limb muscles as well [Fig. 1Q]. In Pax7 mutants, limb muscles are present [Fig. 1G,H] and Pax7-expressing cells show a normal distribution in the somite [Fig. 1C,D]. Trunk muscles develop normally [Fig. 1G,H]. Pax7, unlike Pax3, is expressed in the branchial arches [Fig. 1I,J] and later in facial muscles [Fig. 1G,H], some of which derive from muscle precursor cells in the arches. In Pax7-mutant mice, facial muscles do not appear to be affected [Fig. 1H], and indeed, further regulators intervene specifically in the formation of muscles derived from the arches [Lu et al. 2002].

Pax3 and Pax7 are also expressed in the dorsal neural tube, where, unlike Pax3 [Fig. 1L], Pax7 is excluded from the dorsal most domain [Fig. 1K]. Embryos in which both alleles of Pax3 have been targeted with nLacZ have defects in neural tube closure [Fig. 1F]. As in the case of the spontaneous Sp mutation [Auerbach 1954; Epstein et al. 1993], spina bifida is observed with a frequency approaching 100%, whereas exencephaly is more frequent (65%) than in Sp-mutant embryos (~40%). Pax7-mutant embryos do not show neural tube defects [Fig. 1D].

Loss of function in critical developmental genes can lead to up-regulation of closely related factors as a compensation mechanism, as in the myogenic lineage, in which MyoD-mutant mice up-regulate Myf5 [Rudnicki et al. 1992]. In Pax3-deficient somites, Pax7 is not up-
regulated, and its expression is further reduced due to cell death in the absence of Pax3 (Fig. 1J,M). In the neural tube also, we detect no significant change in Pax7 expression [Fig. 1M, Supplementary Fig. S1]. This is in contrast to a previous report for Sp7 embryos, in which up-regulation of Pax7 was described [Borycki et al. 1999]. This may reflect differences in genetic background or differences between the targeted nLacZ allele and the Sp alleles from which a truncated form of Sp is still be generated, potentially affecting Pax7 levels. Differences in the frequency of exencephaly may reflect this. We conclude that there is no change in the spatio-temporal expression pattern of Pax7 in the absence of Pax3, and we do not detect major differences in expression levels, suggesting that the two genes are independently regulated.

To determine if Pax3 and Pax7 have similar transcriptional activities, we compared the expression of Pax3nLacZ and Pax7LacZ with that of a Pax3 transcriptional reporter mouse line, P34TKZ (Fig. 1R–T; Relaix et al. 2003). At E11.5, nLacZ transcripts are found at all sites of Pax3 and Pax7 expression [Fig. 1, cf. R and S and T]. Notably, P34TKZ expresses nLacZ in head muscles, in which Pax7 but not Pax3 transcripts are detected [Fig. 1R–T; arrowhead]. These results suggest that Pax7, similarly to Pax3, acts as a transcriptional activator in vivo.

Strategy for the replacement of Pax3 by Pax7

To investigate the functional difference between these factors, we replaced Pax3 by Pax7, using gene targeting in the mouse. The targeting strategy is outlined in Figure 2A and B. We first generated the Pax3D3Red(Pax7–ILZ) allele [Fig. 2A,B]. The construct replaces the coding region in the first Pax3 exon and deletes the splice donor site to ensure that no functional Pax3 protein is made from the targeted locus (similarly to the previously reported Pax3PAX3–FKHR–IRESnLacZ allele, see Relaix et al. 2003). The Pax3D3Red(Pax7–ILZ) allele was then generated by crossing the Pax3D3Red(Pax7–ILZ) allele with a transgenic line driving ubiquitous expression of the Cre recombinase [Lallemand et al. 1998]. This allele contains a mouse Pax7 coding sequence [Seale et al. 2000] followed by an IRESnLacZ reporter gene and is used in the studies presented here. The Pax3D3Red(Pax7–ILZ) adult mice are viable and fertile and do not present the pigmentation phenotype of Pax3 heterozygous mice [Auerbach 1954], suggesting that Pax7 can complement Pax3 activity in migration of the neural crest cells, which give rise to melanocytes. The Pax3D3Red(Pax7–ILZ) embryos presented the pigmentation phenotype of Pax3 (Sp) heterozygous mice, and when crossed to generate homozygous embryos, mutant embryos presented Pax3-mutant defects [such as failure of neural tube closure, defi-
Figure 2. Strategy and specificity of Pax7 targeting into the Pax3 locus. (A) Schematic diagram of the Pax3 locus and targeting construct. The construct contains 2.4 kb and 4 kb, respectively, of 5' and 3' Pax3 genomic sequence. A floxed DsRed reporter gene followed by a FRT site and then a puromycin-pA (Puro) selection marker replaces the coding sequence in exon 1 of Pax3, followed by a dicistronic cassette containing 1.8 kb of the murine Pax7 cDNA comprising the whole coding region, followed by an IRESnLacZ cassette surrounded by FRT sites and a pA signal. A counter-selection cassette encoding the A subunit of Diphtheria Toxin (DTA) was inserted at the 5' end of the vector. The probes and restriction enzymes are indicated, with the size of the resulting wild-type and recombined restriction fragments. (B) Schematic diagram of the Pax3nLacZ(Pax7–ILZ) and Pax3Pax7–ILZ alleles. After homologous recombination in embryonic stem (ES) cells, Pax7–IRESnLacZ expression from the Pax3nLacZ allele is blocked by the floxed DsRed-FRT-puromycin-pA cassette and is therefore conditional to removal by crossing with a Cre mouse (Lallemand et al. 1998). This generates the Pax3nLacZ(Pax7–IRESnLacZ) allele (abbreviated Pax3nLacZ–ILZ) with the Pax7–IRESnLacZ–FRT-pA preceded by a single LoxP site. Pax3nLacZ–ILZ/+ mice are viable and fertile. The probes and restriction enzymes are indicated, with the size of the resulting wild-type and recombined restriction fragments. (C–K) Immunohistochemistry on transverse sections of neural tube (C–H') and thoracic somites (I–K') from E10.5 Pax3nLacZ/+ (C',F',I',K'), Pax3Pax7–ILZ/+ (D',G',J',L'), and Pax3Pax7–ILZ/+Pax7+/Sp (E',E',H',J',K',K') embryos using antibodies recognizing β-Gal (C–K), Pax3 [C'–K'], and Pax7 (F'–H'). Note Pax3-specific staining in the dorsal-most neural tube (C', arrowhead) and dorsal root ganglia (C', arrow), whereas Pax7 is excluded from these domains (F', arrowhead and arrow). In Pax3nLacZ–ILZ/+ [G'] and Pax3Pax7–ILZ/+Pax7+/Sp [H'] embryos, Pax7 is now expressed in these structures (dorsal neural tube, arrowhead; dorsal root ganglia, arrow). Whereas Pax3 is expressed in Pax3nLacZ/+ [G',I'] and Pax3Pax7–ILZ/+ [D',J'], no expression is detected in Pax3Pax7–ILZ/+Pax7+/Sp embryos, either in the neural tube and dorsal root ganglia (E') or in somites (K').
cient neural crest cell migration, lack of dorsal root ganglia and limb muscles), suggesting that no functional Pax3 is generated from this allele.

Because a low level of transcript was detected using a Pax3 3′ probe in the Pax3Pax7−ILZ/Pax7−ILZ embryos (Supplementary Fig. S2A,B), possibly due to a cryptic promoter or splice site, we used Pax3- and Pax7-specific antibodies to verify that the replacement strategy had worked. In a preliminary experiment, we tested the Pax3 antibody on Pax3nLacZ/nLacZ embryos and found that, although a 3′UTR transcript was also observed (Supplementary Fig. S2C,D), no Pax3 protein was made (Supplementary Fig. S2E–J). This finding is consistent with the loss-of-function phenotype observed in the Pax3nLacZ/nLacZ mutant embryos [Fig. 3E]. We then performed coimmunostaining with the Pax3 and Pax7 antibodies, which recognize a COOH region specific to each protein, on E10.5 Pax3Pax7−ILZ/Sp embryos, in which one Pax7 knock-in allele is expressed and there is no functional Pax3 allele. The results, presented in Figure 2C–K, confirm that no Pax3 protein is detected from the Pax3Pax7−ILZ allele, either in the neural tube and dorsal root ganglia (Fig. 2, cf. E′, and E,C′) or in the somites (Fig. 2, cf. K′, and K,I). Furthermore Pax7 is now detect-

![Figure 3](image-url)
ed at sites where Pax3, but not Pax7, is normally expressed, such as the dorsal-most region of the neural tube or the dorsal root ganglia of the peripheral nervous system [Fig. 2, cf. G’, H’, and F] as well as in the somitic hypaxial dermomyotome [data not shown]. From these data we conclude that the replacement strategy is working.

Expression of the Pax3Pax7–ILZ allele and resulting phenotypes

The Pax3Pax7–ILZ allele permit analysis of the expression of the Pax7 coding sequences targeted to Pax3 due to the presence of the IRESnLacZ reporter gene, as illustrated in Figure 3. Comparison of the Pax3Pax7–ILZ allele with the Pax3nLacZ reporter line, which contains an nLacZ reporter gene targeted to exon 1 of Pax3 (F. Relaix and M. Buckingham, in prep.) led us to conclude that expression of the Pax3Pax7–ILZ allele is identical (Fig. 3A, B). The results shown in Figure 3 demonstrate that Pax7 is able to replace Pax3 function in dorsal neural tube closure [avoiding exencephaly and spina bifida; Fig. 3A–E], in the formation of neural crest cell derivatives in the trunk, such as melanocytes, or cranial and spinal ganglia [Fig. 3K–O] and in somitogenesis, both in somite segmentation and in hypaxial and epaxial dermomyotome development [Fig. 3E–J; cf. Fig. 2K and Supplementary Fig. S2H]. However, X-Gal staining of Pax3Pax7–ILZ/Sp embryos reveals a complete lack of forelimb muscles, whereas Pax3Pax7–ILZ/+ embryos have a reduction [Fig. 3K–O]. This suggests that Pax7 cannot compensate for Pax3 function in forelimb muscle development.

A hallmark of the Pax gene family is sensitivity to gene dosage (Tremblay and Gruss 1994). In the Pax3Pax7–ILZ/Sp embryos (in which one copy of Pax7 replaces both Pax3 alleles), there was no melanocyte phenotype, and the spina bifida phenotype was not observed at a higher frequency than in Pax3 heterozygote embryos. This suggests that the Pax7 allele is expressed at a comparable level to that of the endogenous Pax3 gene. This was confirmed by comparing the intensity of expression of the IRESnLacZ in the Pax3Pax7–ILZ/+ and Pax3nLacZ/+ alleles (Fig. 3; Relaix et al. 2003). We therefore conclude that the appendicular muscle defects observed in Pax3Pax7–ILZ/Sp and Pax3Pax7–ILZ/Pax7–ILZ embryos are due to Pax7 function rather than to a reduced level of expression of this allele.

Impaired muscle formation in the limbs of Pax3Pax7–ILZ/Pax7–ILZ embryos

To further investigate limb muscle defects when Pax7 replaces Pax3, we compared transverse sections of forelimbs from Pax3Pax7–ILZ/+ and Pax3Pax7–ILZ/Pax7–ILZ embryos at E11.5 [Fig. 4A, B]. In homozygote Pax3Pax7–ILZ/Pax7–ILZ limbs, the distal ventral muscles are lacking [Fig. 4B, black arrow], whereas distal dorsal muscles are reduced [Fig. 4B, blue arrow]. Furthermore, the proximal muscle masses are reduced and incorrectly patterned [Fig. 4A, B, arrowheads].
To evaluate the consequence of these defects at later stages, we analyzed transverse sections of the forelimb at E15.5 along the proximal to distal axis. Staining with an anti-myosin heavy chain antibody reveals major reduction and loss in muscle masses in the *Pax3Pax7−ILZ/Sp* fetuses compared with controls [Fig. 4C–H]. This follows a proximal to distal gradient: Proximally, dorsal muscle masses (extensor muscles) are lacking or severely reduced and ventral masses (flexor muscles) are reduced [Fig. 4C,D]; distally, all dorsal muscles masses and almost all ventral masses are lacking [Fig. 4G,H].

Forelimb muscles are absent in embryos in which only one *Pax7−ILZ* allele replaces *Pax3* [Fig. 3D,N]. In situ hybridization with a *MyoD* probe at E11.5 confirms that myogenic cells are absent from the forelimbs of *Pax3Pax7−ILZ/Sp* embryos [Fig. 5, cf. B and A], whereas muscle masses in the trunk or head express *MyoD* normally. At E13.5, this is also evident [Fig. 5D] when the *nLacZ* reporter gene in the forelimb is only expressed in cells of the peripheral nervous system, derived from neural crest, which is rescued by Pax7 [Fig. 5F]. Patterning of the peripheral nervous system appears normal in the absence of any muscle masses in the forelimb of these mutant mice.

Whereas *Pax3Pax7−ILZ/Pax7−ILZ* embryos do not have a hindlimb phenotype, muscle formation is abnormal in *Pax3Pax7−ILZ/Sp* embryos [Fig. 3A], as indicated by *MyoD* in situ hybridization at E11.5 [Fig. 5B]. At E13.5 [Fig. 5D,H], hindlimb muscles masses are reduced and distal muscle masses of the palm are lacking in *Pax3Pax7−ILZ/Sp* fetuses [Fig. 5, cf. H and G].

One copy of *Pax7* cannot replace *Pax3* function in the delamination/migration of muscle progenitor cells

Limb muscles are formed by cells that delaminate from the hypaxial dermomyotome of somites facing the limbs and then migrate into the limb bud. We therefore investigated if the migration of these muscle progenitor cells is normal in the hindlimbs of *Pax3Pax7−ILZ/Sp* embryos, and found that distal cells are absent [Fig. 5I,J, black arrow]. This correlates with the more pronounced effect of the mutant in the distal muscles of the limb.

Muscle progenitor cells initiate migration around the 20-somite stage [E9.5] to the forelimb and hypoglossal chord. After delamination, the cells rapidly invade the limb bud [22 somites in the mouse embryo; Fig. 6A,C]. In *Pax3Pax7−ILZ/Sp* embryos, however, these cells leave the somite in the ventral region but do not migrate further into the limb field. At E10.25 [31 somites] in control embryos, migration to the forelimb is virtually complete [Fig. 6E,G]. In *Pax3Pax7−ILZ/Sp* embryos, labeled cells are present ventrally, but myogenic progenitor cells have not invaded the limb bud [Fig. 6E,H]. These results suggest that Pax7 can partially fulfill the Pax3 requirement for delamination, but one replacement allele of Pax7 cannot compensate for Pax3 function in migration (see Fig. 8, below).

Muscles of the pharynx and some tongue muscles are also derived from long-range migrating muscle progeni-

![Figure 5](image-url)

Figure 5. Distal hindlimb defects in *Pax3Pax7−ILZ/Sp* embryos. (A,B) *MyoD* in situ hybridization shows that myogenic cells are specifically lost in the forelimb of *Pax3Pax7−ILZ/Sp* embryos (*B*, white arrow), whereas hindlimb muscle masses are slightly reduced (green arrowhead). (A) Myotomal expression of *MyoD* [black arrow] like that in other trunk and head muscles is apparently not affected when compared to the control. (C,F) X-Gal staining of E13.5 *Pax3Pax7−ILZ/+* (C) or *Pax3Pax7−ILZ/Sp* (D) embryos shows lack of forelimb muscles [black arrow] and reduced hindlimb muscles [red arrow] in a *Pax3Pax7−ILZ/Sp* embryo (D), compared with the control embryo (C). (E,F) X-Gal staining of the ventral forelimb of *Pax3Pax7−ILZ/+* (E) or *Pax3Pax7−ILZ/Sp* (F) fetuses at E13.5 shows that, although muscles are completely absent from the *Pax3Pax7−ILZ/Sp* forelimb [red arrowhead], expression of Pax3 in the peripheral nervous system is not perturbed [black arrowhead]. (G,H) X-Gal staining of *Pax3Pax7−ILZ/+* (G) or *Pax3Pax7−ILZ/Sp* (H) in ventral hindlimbs at E13.5 shows loss of muscle masses, particularly evident for distal palm muscles in the mutant embryo (H, black arrow), compared with the control (G). (I,J) Dorsal view of the muscle progenitor cells that migrate into the hindlimb at E10.5 in *Pax3Pax7−ILZ/+* (I) or *Pax3Pax7−ILZ/Sp* (J) embryos. Lack of distal cells in the mutant embryos is shown by a black arrow (J, cf. I).
Relaix et al.

(Figure 6 legend on facing page)
tor cells. This stream of cells [hypoglossal chord] originates from the cervical and occipital somites and migrates through the pharyngeal region between E9.75 and E11.5. Pax3 is also required for its formation [Tajbakhsh and Buckingham 2000]. At E10.5, Pax3Pax7–ILZ/Sp embryos have a severely reduced hypoglossal chord [Fig. 6, cf. J and I]. This is consistent with the limb results, which suggest that Pax7 is not functionally equivalent to Pax3 for the development of muscles that require long-range migration of muscle progenitor cells. Identical results were obtained for the cells migrating to the diaphragm anlagen at the level of the ventral forelimb [data not shown]. Impairment of diaphragm development probably underlies the perinatal lethality of Pax3Pax7–ILZ and Pax3Pax7–ILZ/Sp mouse lines [from 12 and 15 litters, respectively, there were no live neonates].

Expression of c-met is impaired in Pax3Pax7–ILZ/Sp embryos

Pax3 controls delamination and migration of muscle progenitor cells through the direct transcriptional control of c-met, which encodes a receptor tyrosine kinase essential for these processes [Bład et al. 1995; Epstein et al. 1996, Yang et al. 1996, Relaxi et al. 2003]. We therefore investigated whether c-met expression is detected in embryos in which Pax7 replaces Pax3. At E9.75, in Pax3Pax7–ILZ/Sp embryos, c-met is activated in the epaxial dermomyotome but not in the hypaxial dermomyotome of cervical somites [Fig. 6M,N]. At E10.5, c-met expression is not detectable in the forelimb of Pax3Pax7–ILZ/Sp embryos and is reduced in the hypaxial somites at the thoracic level [Fig. 6O,P, red arrowhead], whereas epaxial expression of c-met appears normal [Fig. 6O,P, yellow arrowhead]. In hindlimbs, in which some migration of myogenic progenitor cells occurs in Pax3Pax7–ILZ/Sp embryos, c-met expression is detectable, although severely reduced [Fig. 6O–P]. Unlike Pax3-mutant mice, in which the hypaxial dermomyotome is missing, the Pax3Pax7–ILZ/Sp allele rescues this phenotype [Fig. 6K,L], indicating that Pax7 can substitute for the antiapoptotic function of Pax3 [Borycki et al. 1999; Pani et al. 2002], as shown by labeling with an antibody to the activated form of Caspase-3, which marks apoptotic cells [Fig. 6R–T]. This is in contrast to the effect on c-met activation. The oncogenic gain-of-function form of Pax3, Pax3–FKHR, has been shown previously to transactivate the human c-met promoter [Epstein et al. 1996]. We therefore investigated whether Pax7 was able to transactivate the human c-met promoter region, because the putative Pax3-binding sites are not conserved in the}

Figure 6. Reduced delamination and aberrant migration of muscle progenitor cells correlate with defective c-met expression in Pax3Pax7–ILZ/Sp embryos. [A,B] X-Gal staining of E9.5 [22 somites] Pax3Pax7–ILZ/Sp [A] or Pax3Pax7–ILZ/Sp [B] embryos shows a reduced number of muscle progenitor cells invading the forelimb bud of Pax3Pax7–ILZ/Sp embryos [B] compared with the control embryo [A]. In contrast, neural crest cells in the arches appear normal [black arrows]. [C,D] Close-up views [boxed in A,B] of the somites at the forelimb level in E9.5 [22 somites] Pax3Pax7–ILZ/Sp [C] or Pax3Pax7–ILZ/Sp [D] embryos, stained with X-Gal, show delamination but not migration from the hypaxial region of the somites in Pax3Pax7–ILZ/Sp embryos [D, black arrow] compared with the control embryo [C, black arrow]. Neural crest cell migration from the dorsal neural tube is normal (yellow arrow). [E,F] Close-up views of the somites opposite to the forelimb in E10.25 [31 somites] Pax3Pax7–ILZ/Sp [E] or Pax3Pax7–ILZ/Sp [F] embryos, stained with X-Gal, show that in the mutant embryos, labeled cells are present ventrally to the forelimb [white arrow], but muscle progenitor cells [black arrow] have not migrated in the limb. [G,H] X-Gal staining of a transverse section from Pax3Pax7–ILZ/Sp [G] or Pax3Pax7–ILZ/Sp [H] embryos at E10.25 [31 somites] shows accumulation of muscle progenitor cells ventrally to the proximal forelimb of Pax3Pax7–ILZ/Sp embryos [H, arrow] probably corresponding to cells that will contribute to the diaphragm anlagen as in Pax3Pax7–ILZ/Sp embryos [G, arrow]. [I,J] At E10.5 the muscle progenitor cells of the hypoglossal chord are strongly reduced and migrate aberrantly in Pax3Pax7–ILZ/Sp embryos [J] compared with the control Pax3Pax7–ILZ/Sp embryos [I]. [K,L] X-Gal staining of Pax3Pax7–ILZ/Sp [K] or Pax3Pax7–ILZ/Sp [L] embryos at E9.75 [26 somites] shows a loss of muscle progenitor cells populating the forelimb bud (FL) and hypoglossal chord [blue arrow] in Pax3Pax7–ILZ/Sp embryos [K] compared with the control embryo [L]. Whereas the hypaxial dermomyotome is intact in these embryos [yellow arrow]. [M,N] In situ hybridization using a c-met probe shows severely reduced expression of c-met in the hypaxial domain of occipital/cervical somites (yellow arrowhead) and at the base of the limb bud [blue arrowhead], whereas epaxial expression in the somite is normal [black arrow], at E9.75 in Pax3Pax7–ILZ/Sp embryos [N] compared with Pax3Pax7–ILZ/Sp control embryos [M]. [O–P] In situ hybridization using a c-met probe at E10.5 shows complete loss of c-met transcripts in the hypaxial dermomyotome of somites at the cervical level and in the forelimb in Pax3Pax7–ILZ/Sp embryos [P, black arrowhead] compared with Pax3Pax7–ILZ/Sp control embryos [O, black arrowhead]. Reduction in c-met expression is also observed in the hypaxial dermomyotome of thoracic somites in Pax3Pax7–ILZ/Sp embryos compared with Pax3Pax7–ILZ/Sp control embryos [P, cf. O, red arrowhead]. At this stage the epaxial expression of c-met is similar in Pax3Pax7–ILZ/Sp embryos compared with Pax3Pax7–ILZ/Sp control embryos [P, cf. O, yellow arrowhead]. In contrast to the forelimb c-met expression is just detectable in the muscle progenitor cells migrating to the hindlimbs of Pax3Pax7–ILZ/Sp embryos [P, arrow] compared with Pax3Pax7–ILZ/Sp control embryos [O, arrow]. [Q] Transactivation of the human c-met promoter by Pax3–FKHR, Pax3–VP16, and Pax7–VP16 in 293 cells. One microgram of test construct (or empty vector) was cotransfected with 0.2 µg c-met TP-nLuc and 1 µg RSV-luciferase for normalization. Data show relative β-Gal activity 36 h after transfection. Fold induction was calculated with reference to the activity measured in cells transfected with the expression vector alone. Mean values are given and the standard deviation indicated for three independent determinations. [R–T] Immunohistochemistry on transverse sections of thoracic somites from E10.5 Pax3Pax7–ILZ/Sp [Pax3–ILZ/Sp, R,R], Pax3Pax7–ILZ/Sp [Pax3–ILZ/Sp, S,S], and Pax3Pax7–ILZ/Sp [T,T] embryos using DAPI staining [R–T], antibodies recognizing β-Gal [R–T] or the active form of Caspase-3 [R–T]. Apoptotic β-Gal-positive cells that have activated Caspase-3 are found in the hypaxial somite of Pax3Pax7–ILZ/Sp [S, arrowhead, also in S,S] but not in control Pax3Pax7–ILZ/Sp or Pax3Pax7–ILZ/Sp embryos [T,T] compared with Pax3Pax7–ILZ/Sp [S,S].
mouse sequence. Pax3 and Pax7 act in vivo as transcriptional activators (see Fig. 1R–T; Relaix et al. 2003); however, both proteins on their own are very poor transactivators, probably reflecting a requirement for coactivators. We found that Pax7-VP16 was able to transactivate the c-met reporter gene better than was Pax3–FKHR or Pax3–VP16 [Fig. 6Q]. This indicates that the inability of Pax7 to activate c-met in the hypaxial somite is probably due to the lack of Pax7-specific coactivator[s]. We conclude that genes involved in the migration of myogenic progenitor cells are regulated by Pax3 independently of other Pax3/7 functions, probably through interaction with Pax3-specific coactivators.

The role of Pax3 in patterning limb muscles and in cell proliferation

Pax3Pax7–ILZ/Sp embryos fail to develop forelimb muscles, and homozygous Pax3Pax7–ILZ/–ILZ embryos present an intermediate phenotype, with a reduction of limb musculature [Figs. 3, 4]. In these embryos, the onset of the migratory process is apparently normal, but the number of delaminating cells is reduced compared with that of control embryos [Fig. 7A,B]. By E10.5, when migration to the forelimb is complete, in Pax3Pax7–ILZ/Pax7–ILZ embryos the number of muscle precursor cells located in the forelimb is severely reduced as revealed by whole-mount X-Gal staining [Fig. 7, cf. D and C, arrow]. Histological examination at this stage reveals an 80% reduction of myogenic progenitor cells [Fig. 7, cf. F and E], which tend to accumulate in the dorsal and ventral-most position in the forelimb bud at this stage [Fig. 7E,F]. This deficit leads to a reduction in muscle masses by E11.5 [Figs. 7G,H, 4A,B]. However, strikingly, the muscle cells are organized in a pattern that mimics normal muscle (Figs. 7G,H, 4A,B). However, distal palm muscles are absent (Fig. 4), although it is clear that proximal muscle masses are also affected [Fig. 7H]. The overall muscle pattern in Pax3Pax7–ILZ/Pax7–ILZ embryos is very penetrant and almost identical in all embryos examined at this stage.

In the mouse forelimb, myogenesis is initiated around E10.5 by the activation of Myf5, followed a few hours later by MyoD [Tajbakhsh et al. 1996]. Because MyoD is a potential Pax3 target [Tajbakhsh et al. 1997, Relaix et al. 2003], we performed MyoD in situ hybridization, which revealed that MyoD expression is normal in the remaining muscle masses in Pax3Pax7–ILZ/Pax7–ILZ embryos [Fig. 7I,J].

The reduction in limb musculature observed in the Pax3Pax7–ILZ/Pax7–ILZ embryos is due to a reduction in the migration of muscle progenitor cells, but it may also reflect a reduction in their proliferation or, alternatively, an increase in apoptosis. We found no significant apoptosis in the limb muscle masses of E11.5 Pax3Pax7–ILZ/Pax7–ILZ embryos compared with the control [Fig. 7K–N]. We therefore examined the proliferation of these cells in Pax3Pax7–ILZ/Pax7–ILZ embryos compared with control embryos by scoring the percentage of β-galactosidase (β-Gal)-positive cells (which marks all the muscle progenitor cells at this stage) within the forelimb that are in mitosis, by labeling with an antibody directed against the Ser 10 phosphorylated form of histone H3. We found that at E11.5 the forelimbs of Pax3Pax7–ILZ/Pax7–ILZ embryos contained 2.9% of β-Gal/H3-P double-positive cells, versus 4.7% in the control Pax3Pax7–ILZ/+ embryos [Fig. 7O]. From this, we conclude that the proliferative capacity of muscle progenitor cells is reduced by 40% when two Pax7 alleles replace a single Pax3 allele.

In addition to the role of Pax3 in the hypaxial dermomyotome, which is replaced by Pax7, Pax7 only partially fulfills the function of Pax3 in the delamination, migration, and proliferation of limb muscle progenitor cells and in the establishment of individual muscle masses [Fig. 8].

Discussion

Pax3 and Pax7 proteins are functionally equivalent in somite, neural tube, and neural crest development

Although Pax3 and Pax7 are expressed in partially overlapping domains in the mouse embryo, mice mutated in each of these genes have very contrasting phenotypes. To investigate whether these are caused by differences in temporal expression or biochemical activity of the Pax3 and Pax7 proteins, we replaced Pax3 by a Pax7 coding sequence, using gene targeting in the mouse. Our data show that Pax7, generated from one Pax3 allele, can functionally compensate for Pax3 at all sites where it is expressed, with the exception of the muscle progenitor cells, which migrate from the somites to form distant muscle masses such as those in the limbs. Therefore, differences in spatiotemporal expression probably account for phenotypic differences between these two mouse mutants in the dorsal neural tube, in neural crest and its derivatives, and in somites and trunk musculature. The function of Pax3/7 in the dorsal neural tube, neural crest, and somite probably existed before the Pax3/7 gene duplication at the onset of vertebrate evolution.

Of the three other Pax subfamilies in vertebrates—Pax1/9, Pax4/6, and Pax2/5/8—a previous report of gene replacement of Pax2 by Pax5 showed that these transcription factors have maintained equivalent biochemical functions, because Pax5 was able to compensate functionally for all Pax2 functions in the mouse [Bouchard et al. 2000]. Moreover, replacement of closely related genes in families of transcription factors that play important regulatory roles in development—such as the bHLH transcription factors myogenin and Myf5 [Wang et al. 1996], or MesP1 and MesP2 [Saga 1998], the homeobox transcription factors Otx1 and Otx2 [Suda et al. 1999], or En1 and En2 [Hanks et al. 1995], the components of the AP-1 transcription factor Jun and JunB [Fassegue et al. 2002], or Fra-1 and c-Fos [Fleischmann et al. 2000]—has been reported to suggest conservation of function. However, gene replacement of more distantly related transcription factors, such as the homeobox-containing proteins Emx2 or Otx2 [Suda et al. 2001] or the proneural
Figure 7. Impaired muscle progenitor cell proliferation and patterning of muscle masses in Pax3Pax7–ILZ/Pax7–ILZ embryos. (A,B) X-Gal staining of the anterior somites of Pax3Pax7–ILZ/+ (A) or Pax3Pax7–ILZ/Pax7–ILZ (B) embryos at E9.75 (26 somites) shows reduced numbers of muscle progenitor cells invading the forelimb (red arrow) and the hypoglossal chord (black arrow) in Pax3Pax7–ILZ/Pax7–ILZ embryos (B) compared with the control embryo (A). However, anterior neural crest cell migration (blue arrowhead) appears normal. (C,D) X-Gal staining of the forelimb of Pax3Pax7–ILZ/+ (C) or Pax3Pax7–ILZ/Pax7–ILZ (D) embryos at E10.5 shows severe reduction of muscle precursor cells once the migration process is achieved (arrow). (E,F) X-Gal staining of transverse sections [plane of section shown in C,D] of the forelimb of Pax3Pax7–ILZ/+ (E) or Pax3Pax7–ILZ/Pax7–ILZ (F) embryos at E10.5 shows that the muscle progenitor cells are reduced by ~80% and accumulate in the dorsal and ventral-most part of the limb bud (black and red arrowheads, respectively). (G,H) X-Gal staining of the forelimb of Pax3Pax7–ILZ/+ (G) or Pax3Pax7–ILZ/Pax7–ILZ (H) embryos at E11.5. Muscle masses that are reduced in the mutant embryo are indicated by a black arrow, whereas muscle masses that are undetectable are labeled by an asterisk. (I,J) In situ hybridization using a MyoD probe on the forelimb of Pax3Pax7–ILZ/+ (I) or Pax3Pax7–ILZ/Pax7–ILZ (J) embryos at E11.5. Although muscle masses are reduced in size and number, expression of MyoD is detectable in the mutant forelimb (J) compared with the control (I). (K–N) Immunohistochemistry on transverse sections of the forelimb (K–N) and dorsal root ganglia (K′–N′) of E11.5 Pax3Pax7–ILZ/+ (K,K′,M,M′) and Pax3Pax7–ILZ/Sp (L,L′,N,N′) embryos using antibodies recognizing desmin (pink; with DAPI staining in blue, K′–L′) and the active form of Caspase-3 which marks apoptotic cells (bright green; with desmin in red, M–N′). At this stage, whereas apoptotic cells can be found in the dorsal root ganglia of both Pax3Pax7–ILZ/+ (M′) and Pax3Pax7–ILZ/Sp (N′) embryos, no apoptosis is detected in the limb muscle masses of Pax3Pax7–ILZ/+ (M) and Pax3Pax7–ILZ/Sp (N) embryos. (O) Proliferation of muscle precursor cells is reduced in the forelimb of Pax3Pax7–ILZ/Pax7–ILZ compared with Pax3Pax7–ILZ/+ embryos at E11.5. Coimmunostaining with an antibody that recognizes the phosphorylated form of histone H3 Ser 10 in β-Gal-positive cells gave an indication of cell proliferation. The mean percentage of β-Gal/ phosphorylated histone H3 (Ser 10) double-positive cells as well as the standard deviation are indicated for four independent determinations.
Migrating neural crest cells in the head and body also bifida and, with a lower frequency, exencephaly (Fig. 4). Spina deficient mice exhibit neural tube defects such as mouse embryo since then. Our Pax3nlacZ and these deficiencies have been well documented in the identified and analyzed 50 years ago (Auerbach 1954), the absence of Pax3, there is almost no neural crest cellatives, such as melanocytes or the dorsal root ganglia. In expressed in the roof plate. As a consequence, 1990; Goulding et al. 1991). In addition, Pax7 which begins after neural tube closure (Jostes et al. 1996b). Our results demonstrate that Pax7 in the dorsal neural tube and neural crest points to a common function for the two proteins and suggests its pre-existence in the nervous system before the Pax3/7 gene duplication at the onset of vertebrate evolution rather than coevolution. This may also apply to the neural crest function because the Amphipax3/7 is expressed in a cellular population comparable to the premigratory neural crest cells of vertebrates (Holland et al. 1999).

Pax3 and Pax7 function in neural crest and nervous system development

Pax7-mutant mice have subtle embryonic abnormalities in facial ossification that almost disappear on a mixed genetic background. Defects in anterior neural crest cells are believed to account for this phenotype [Mansouri et al. 1996b]. Splotch mice have no facial phenotype, although, in contrast, a function for Pax3 has been described in human facial development, in which PAX3 mutations lead to Waardenburg syndrome types I and III, a rare (1/40,000) disorder characterized clinically by the association of craniofacial dysmorphism, pigmentation defects, and severe sensorineural congenital hearing impairment [Tassabehji et al. 1993]. This congenital disorder is likely to be caused by defective function of the embryonic neural crest. In contrast, no human developmental syndrome has been associated so far with mutations in PAX7.

Spontaneous mutations in the Pax3 locus were first identified and analyzed 50 years ago [Auerbach 1954], and these deficiencies have been well documented in the mouse embryo since then. Our Pax3locZ allele illustrates the deficiencies of the mutant embryo in many sites where Pax3 is expressed: for example, in the developing neural tube, where Pax7 and Pax3 expression overlaps in the alar plate. At this level, Pax3 transcription is initiated at the neural plate stage and precedes that of Pax7, which begins after neural tube closure [Jostes et al. 1990; Goulding et al. 1991]. In addition, Pax7 is never expressed in the roof plate. As a consequence, Pax3-deficient mice exhibit neural tube defects such as spina bifida and, with a lower frequency, exencephaly [Fig. 4]. Migrating neural crest cells in the head and body also express Pax3 [Fig. 6A,C] as do neural crest cell derivatives, such as melanocytes or the dorsal root ganglia. In the absence of Pax3, there is almost no neural crest cell migration from the dorsal neural tube in the trunk, which leads to the almost complete absence of the peripheral nervous system and melanocytes [Tremblay et al. 1995]. The severity of the neural crest cell defects increases along the rostrocaudal axis [Auerbach 1954], although the molecular basis remains unclear. Because Pax7 is expressed in anterior neural crest cells [Mansouri et al. 1996b], it is possible that an anteroposterior gradient of Pax7 expression underlies this phenotype. Our demonstration that Pax7 can replace Pax3 in the dorsal neural tube and neural crest points to a common function for the two proteins and suggests its pre-existence in the nervous system before the Pax3/7 gene duplication.

Pax3 and Pax7 functions in somitogenesis and myogenesis

In addition to its role in the nervous system and in neural crest, Pax3 has important functions in somitogenesis. This role has been acquired during evolution because the primitive Pax3/7 gene is not expressed in mesoderm. Again, it is in *Amphioxus* that this function is observed [Holland et al. 1999]. Our results demonstrate that Pax7 can efficiently substitute for Pax3 during somite segmentation and in the development and maintenance of the dermomyotome. Furthermore, myogenesis proceeds normally in the trunk in the absence of Pax3. This therefore suggests that during vertebrate evolution, Pax7 has retained the biochemical activity that is now mainly exercised by Pax3 during somitogenesis in the mouse.

Pax3 also has a critical function in appendicular muscle formation and in that of other muscles, such as those derived from the hypoglossal chord, that also depend on the long-range migration of muscle progenitor cells from the hypaxial somite. Pax7 is not expressed in these migrating cells and is only transcribed later as limb muscles develop. It was therefore not clear whether the genes *Mash1* and *Ng2* [Parras et al. 2002], demonstrated that these proteins are not functionally equivalent, and that antiquity in evolution and divergence of biochemical functions are directly linked.
Pax3-mutant phenotype reflected the lack of Pax7 in these cells. The fact that the hypaxial dermomyotome is lost in the mutant further complicates any interpretation. However, when Pax7 replaces Pax3, the hypaxial dermomyotome, which is the source of the migratory cells, is present, and in this situation it is now possible to analyze the role of Pax7 in these myogenic progenitor cells. The results demonstrate that Pax7 is not equivalent to Pax3 in the context of limb muscle formation, and this also applies to other muscles that depend on long-range migration, such as the diaphragm or those derived from the hypoglossal chord.

Both Pax3 and Pax7 genes may generate more than one transcript and protein isoform (see Ziman and Kay 1998; Barber et al. 1999), although it has not been shown that these are functionally significant. Because a sequence encoding a single isoform of Pax7 was inserted into the Pax3 locus, it is formally possible that other isoforms of Pax7 may be able to perform specific functions such as those required for limb muscle formation. The isoform that was targeted to Pax3 lacks the first of three putative ATGs, and thus potentially lacks 10 N-terminal amino acid residues. It has been proposed that the first 90 N-terminal amino acids of Pax3 may contribute to repressor activity (Chalepakis et al. 1994), but transactivation experiments showed no difference between the activity of this isoform of Pax7 and Pax3 [data not shown], suggesting that the repression domain does not include these potential N-terminal residues of the Pax7 protein. In addition, we have previously shown that Pax3 acts genetically as a transcriptional activator during limb muscle formation [Relaix et al. 2003]. The stability of the Pax7 transcript or protein produced from the knock-in allele may be different from that of endogenous Pax3, leading to altered relative protein levels, which might affect limb muscle formation if this is more sensitive to dose than other sites of myogenesis. However, the nLacZ reporter gene expression and the antibody staining shown here would suggest that any differences in mRNA or protein levels between the Pax3NLacZ or the Pax3NLacZ alleles are probably minor.

Pax3 controls several steps in limb muscle development

Pax3NLacZ embryos [with one copy of Pax7 replacing both Pax3 alleles] and Pax3NLacZ embryos [with two copies of Pax7 replacing both Pax3 alleles] have graded defects in limb formation, showing that Pax7 acts as a hypomorph of Pax3, revealing previously hidden functions for Pax3 in this process [Fig. 8]. Defects in hypoglossal chord formation also clearly illustrate this hypomorphic activity of the Pax7 replacement allele.

As a result of early apoptosis, Pax3-deficient embryos lack the hypaxial dermomyotome from which the migrating myogenic progenitor cells delaminate. The role of Pax3 in maintaining this structure is similar to the situation in the dorsal neural tube, where Pax3 has a role in blocking p53-mediated apoptosis [Pani et al. 2002]. Because the hypaxial somite is intact in Pax3NLacZ embryos, Pax7 clearly rescues this early function, suggesting that, similarly to Pax3 [Borycki et al. 1999; Relaix et al. 2003], it may target anti-apoptotic genes.

In the presence of an intact hypaxial dermomyotome, myogenic progenitor cells expressing two Pax7 alleles in place of Pax3 will form apparently normal skeletal musculature in the hindlimb, whereas in the forelimb this is already compromised. In the presence of only one Pax7 replacement allele, myogenesis in the hindlimb is also defective and there is no muscle formation in the forelimb. This anterior/posterior difference may be related to the developmental timing of limb formation, with a higher threshold for Pax3/7 activity initially. In addition, embryonic limbs differ in the expression of genes such as Tbx4 and 5, expressed in fore- and hindlimbs, respectively [Gibson-Brown et al. 1996]. Such differences in the regulatory environment may affect the behavior of myogenic cells. The Hox code is another potential modulator of myogenesis on the anterior/posterior axis [Alvares et al. 2003].

Myogenic progenitor cells delaminate from the epithelium of the dermomyotome and then migrate into the limb field. Some delamination occurs, even in situations in which there is no subsequent migration to the limb, as seen in Pax3NLacZ embryos. There is therefore uncoupling between the two processes. When limb muscle formation occurs but is compromised, migration of muscle progenitor cells appears to be retarded, which may explain why the most distal palm muscles are lacking in the hindlimbs of Pax3NLacZ embryos. However, in this situation some proximal muscles are also no longer detectable, and there is an overall reduction in both delamination and migration. A key effector of these processes is the tyrosine kinase receptor, Met [Yang et al. 1996]. In Pax3NLacZ embryos, c-met expression is barely detectable hypaxially. A few cells are still able to delaminate from the hypaxial dermomyotome, suggesting that some residual Met signaling activity is still present. However, the myogenic progenitor cells are unable to migrate to invade the forelimb bud in these embryos, indicating that a threshold level of Met is not reached and suggesting that in the absence of efficient Met signaling the cells that have delaminated cannot enter the limb. These results further confirm the role of Pax3 in the transcriptional activation of c-met [Epstein et al. 1996; Relaix et al. 2003] and demonstrate that Pax7 performs this function much less efficiently. In addition, our data show that a Pax7-VP16 protein can transactivate a c-met reporter construct as well if not better than the equivalent Pax3 fusion protein, indicating that it binds efficiently. Because Pax3 and Pax7 alone are very poor transcriptional activators, the functional difference between Pax3 and Pax7 in c-met activation probably lies in the recruitment of specific coactivator[s]. Mutants for the Gab1 adapter protein, an important mediator of Met signaling, display limb muscle phenotypes similar to those observed in Pax3NLacZ embryos [Sachs.
et al. 2000], suggesting that reduced c-met expression mainly accounts for the limb muscle phenotype. Surprisingly, c-met expression in the epaxial domain of the somite is maintained in the presence of only one replacement allele of Pax7. In Pax3-mutant mice the epaxial, similarly to the hypaxial, extremity of the dermomyotome is lost, and it is therefore not possible to conclude about Pax3 regulation of this site of c-met expression. However, in a gain-of-function mutant due to the presence of PAX3–FKHR, c-met is also up-regulated in this domain [Relaix et al. 2003]. Epaxial expression may also depend on transcriptional regulators other than Pax3. The role of Met signaling in the epaxial somite is not clear, because the mutants do not have epaxial defects [Bladt et al. 1995; Dietrich et al. 1999; Relaix et al. 2003]. This expression may be an evolutionary remnant of an epaxial function of Met lost in amniotes, required, for example, in dorsal fin formation of fish.

Myogenic progenitor cells in the limb proliferate, and we show that the effects of a reduction in the number of cells in these proliferation [but not apoptosis] in the presence of a Pax7 replacement allele. Met plays a role in tumorigenesis and proliferation [Danilkovitch-Miagkova and Zhi, 2002; Trusolino and Comoglio 2002]. In skeletal muscle it has been implicated in the proliferation of fetal, but not embryonic, myoblasts [Main et al. 1996]. In addition to c-met, Pax3 probably targets other genes involved in cell cycle regulation, as suggested by microarray analysis on cultured cells [Khan et al. 1999; Mayanil et al. 2001].

When limb muscle masses are reduced, on Pax3 replacement by Pax7, differentiation appears to proceed normally, with activation of MyoD, a Pax3 target [Tajbakhsh et al. 1997; Relaix et al. 2003]. It has been suggested that Pax3 itself is not required for muscle differentiation in the limb, based on transplantation experiments of myogenic progenitor cells from 5p-mutant embryos into the chick wing bud where they formed muscle [Daston et al. 1996]. It is striking that although they are reduced in size, the overall patterning of muscle masses is maintained, as seen in the hindlimbs of Pax3Pax7–ILZ/Sp mice. Some muscles are, however, lost. Loss of distal muscles may reflect a failure of migrating progenitor cells to reach these locations, as discussed. More surprising is the apparent loss of specific proximal muscles. It is possible that this reflects a reduction in muscle progenitor cells at this site, due to migration and proliferation defects, below a threshold level required for a community effect, leading to skeletal muscle formation [Cosson and Borello 1999; Buckingham 2003].

Pax3/7 function in myogenic progenitor cells and evolutionary history of vertebrate appendicular muscles

In the vertebrate clade, the ancestral mechanism for appendicular muscle development involves the direct extension of the epithelial (dermo)myotome into the fin or limb bud. Subsequently, a mechanism for the delamina-
X-Gal staining, histology, immunohistochemistry, whole-mount in situ hybridization, and whole-mount immunohistochemistry

Mouse embryos were collected after natural overnight matings, for staging, fertilization was considered to take place at 6 a.m. For X-Gal staining, dissected embryos were fixed for 10–30 min (depending on the stage) with 4% paraformaldehyde (PAF) in PBS, on ice. Embryos were rinsed twice with PBS and then stained with X-Gal (Roche), using 0.4 mg/mL X-Gal in 2 mM MgCl₂, 0.02% NP-40, 0.1 M PBS (pH 7.5), 20 mM K₃Fe(CN)₆, and 20 mM K₄Fe(CN)₆ for 4–16 h at 37°C, with shaking. Embryos were rinsed in PBS and postfixed overnight in 4% PAF. For histological analysis, sections (12 µm) were prepared from X-Gal colored embryos and stained with eosin according to standard procedures. Genotyping for whole-mount in situ hybridization was carried out by PCR or X-Gal staining in X-Gal + 0.2% PAF for 30 min following 1–2-h fixation in 4% PAF, on ice. When light color had developed (20–30'), embryos were rinsed in PBS and postfixed overnight in 4% PAF. Whole-mount in situ hybridization with digoxigenin-labeled riboprobes was performed as described (Tajbakhsh et al. 1997). The MyoD riboprobe was as previously described (Tajbakhsh et al. 1997). The c-met probe was kindly provided by C. Birchmeier (Max Delbrück Center for Molecular Medicine, Berlin, Germany; Bladt et al. 1995). The Pax7 probe was obtained from C. Birchmeier (Max Delbrück Center for Molecular Medicine, Berlin, Germany; Bladt et al. 1995). The Pax7 probe was obtained from M. Rudnicki (Scale et al. 2000). Fluorescent coimmunohistochemistry was carried out as described previously (Relaix et al. 2003), using the following antibodies: polyclonal anti–β-galactosidase (Molecular Probe. Diluted 1:200), polyclonal anti–MHC (obtained from G. Cossu, Stem Cell Research Institute, H.S. Raffaele, Milan, Italy, 1:200), monoclonal anti-phosphohisto pheno H3 (Cell Signalling, 1:100), monoclonal anti–β-Gal (Sigma, 1:200), monoclonal anti–Pax7 (Developmental Studies Hybridoma Bank, 1:100), monoclonal anti–Pax3 (kindly provided by M. Bronner-Fraser, California Institute of Technology, Pasadena, CA, 1:100), monoclonal antidesmin (Dako, 1:200), and polyclonal anti–active Caspase 3 (Pharmingen, 1:250).

Transient transfection experiments

The human c-met promoter (3 kb) was amplified by PCR from mouse genomic DNA and cloned in front of the TK-nLacZpA plasmid (Relaix et al. 2003). Transient transfections, β-Gal, and luciferase assays were performed as described previously (Relaix et al. 2003).

Acknowledgments

We thank Catherine Bodin for excellent histology work, Dominique Michel for technical assistance, and the Buckingham laboratory for helpful discussions. The work in M.B.'s laboratory was supported by the Pasteur Institute and the CNRS, and by grants from the AFM and the AC Integrative Biology program of the MJER. F.R. is supported by Inserm.

The publication costs of this article were defrayed in part by payment of page charges. This article must therefore be hereby marked “advertisement” in accordance with 18 USC section 1734 solely to indicate this fact.

References

Alvares, L.E., Schubert, F.R., Thorpe, C., Mootooosamy, R.C., Cheng, L., Parkyn, G., Lumsden, A., and Dietrich, S. 2003.

Intrinsic, Hox-dependent cues determine the fate of skeletal muscle precursors. Dev. Cell 5: 379–390.

Auerbach, R. 1954. Analysis of the developmental effects of a lethal mutation in the house mouse. J. Exp. Zool. 127: 305–329.

Barber, T.D., Barber, M.C., Cloutier, T.E., and Friedman, T.B. 1999. PAX3 gene structure, alternative splicing and evolution. Gene 237: 311–319.

Barr, F.G. 2001. Gene fusions involving PAX and FOX family members in alveolar rhabdomyosarcoma. Oncogene 20: 5736–5746.

Baumgartner, S., Bopp, D., Burri, M., and Noll, M. 1987. Structure of two genes at the gooseberry locus related to the paired gene and their spatial expression during Drosophila embryogenesis. Genes & Dev. 1: 1247–1267.

Bladt, F., Rietmacher, D., Isenmann, S., Aguzzi, A., and Birchmeier, C. 1995. Essential role for the c-met receptor in the migration of myogenic precursor cells into the limb bud. Nature 376: 768–771.

Bober, E., Franz, T., Arnold, H.H., Gruss, P., and Tremblay, P. 1994. Pax-3 is required for the development of limb muscles: A possible role for the migration of dermomyotomal muscle progenitor cells. Development 120: 603–612.

Borycki, A.G., Li, J., Jin, F., Emerson, C.P., and Epstein, J.A. 1999. Pax3 functions in cell survival and in pax7 regulation. Development 126: 1665–1674.

Bouchard, M., Pfeffer, P., and Busslinger, M. 2000. Functional equivalence of the transcription factors Pax2 and Pax5 in mouse development. Development 127: 3703–3713.

Buckingham, M. 2003. How the community effect orchestrates muscle differentiation. Bioessays 25: 13–16.

Buckingham, M., Bajard, L., Chang, T., Daubas, P., Hadchouel, J., Meilhac, S., Montarras, D., Rocancourt, D., and Relaix, F. 2003. The formation of skeletal muscle: From somite to limb. J. Anat. 202: 59–68.

Chalepakis, G., Jones, F.S., Edelman, G.M., and Gruss, P. 1994. Pax-3 domains for transcription activation and transcription inhibition. Proc. Natl. Acad. Sci. 91: 12745–12749.

Conboy, I.M. and Rando, T.A. 2002. The regulation of notch signaling controls satellite cell activation and cell fate determination in postnatal myogenesis. Dev. Cell 3: 397–409.

Cossu, G. and Borello, U. 1999. Wnt signaling and the activation of myogenesis in mammals. EMBO J. 18: 6867–6872.

Damilkowitich-Miagkova, A. and Zbar, B. 2002. Dysregulation of Met receptor tyrosine kinase activity in invasive tumors. J. Clin. Invest. 109: 863–867.

Daston, G., Lamar, E., Olivier, M., and Goulding, M. 1996. Pax-3 is necessary for migration but not differentiation of limb muscle precursors in the mouse. Development 122: 1017–1027.

Davis, R.J., D’Cruz, C.M., Lovell, M.A., Biegel, J.A., and Barr, F.G. 1994. Fusion of PAX7 to FKHR by the variant t[1;13][p36;q14] translocation in alveolar rhabdomyosarcoma. Cancer Res. 54: 2809–2872.

Dearnley, P.K., Donly, C., and Grbic, M. 2002. Expression of pair-rule gene homologues in a chelicerate: Early patterning of the two-spotted spider mite Tetranychus urticae. Development 129: 5461–5472.

Dietrich, S., Abou-Rebyeh, F., Brohmann, H., Bladt, F., Sonnenberg-Riethmacher, E., Yamaai, T., Lumsden, A., Brand-Saberi, B., and Birchmeier, C. 1999. The role of SF/HGF and c-Met in the development of skeletal muscle. Development 126: 1621–1629.

Epstein, D.J., Vogan, K.J., Trasler, D.G., and Gros, P. 1993. A
mutation within intron 3 of the Pax-3 gene produces aberrantly spliced mRNA transcripts in the splotch (Sp) mouse mutant. *Proc. Natl. Acad. Sci.* 90: 532–536.

Epstein, J.A., Shapiro, D.N., Cheng, J., Lam, P.Y., and Maas, R.L. 1996. Pax3 modulates expression of the c-Met receptor during limb muscle development. *Proc. Natl. Acad. Sci.* 93: 4213–4218.

Fleischmann, A., Hafezi, F., Elliott, C., Reme, C.E., Ruther, U., and Wagner, E.F. 2000. Fra-1 replaces c-Fos-dependent functions in mice. *Genes & Dev.* 14: 2695–2700.

Franz, T. 1989. Persistent truncus arteriosus in the Splotch mutant mouse. *Anat. Embryol. (Berl)* 180: 457–464.

Franz, T., Kohthary, R., Surani, M.A., Halata, Z., and Grim, M. 1993. The Splotch mutation interferes with muscle development in the limbs. *Anat. Embryol. (Berl)* 187: 153–160.

Galili, N., Davis, R.J., Fredericks, W.J., Mukhopadhyay, S., Rauscher III, F.J., Emanuel, B.S., Rovera, G., and Barr, F.G. 1993. Fusion of a fork head domain gene to PAX3 in the solid tumour alveolar rhabdomyosarcoma. *Nat. Genet.* 5: 230–235.

Galis, F. 2001. Evolutionary history of vertebrate appendicular muscle. *Bioessays* 23: 383–387.

Gibson-Brown, J.J., Agulnik, S.I., Chapman, D.L., Alexiou, M., and Joyner, A.L. 1995. Rescue of the En-1 mutant phenotype by replacement of En-1 with En-2. *Science* 269: 679–682.

Hobert, O. 2001. The nervous and muscular system. *Mech. Dev.* 10: 1135–1147.

Gruss, P. 1996a. Pax genes and their roles in cell differentiation and development. *Curr. Opin. Cell. Biol.* 8: 851–857.

Haines, L. and Currie, P.D. 2000. Evolutionary origins of vertebrate appendicular muscle. *Nature* 408: 82–86.

Relaix et al.

Le Douarin, N. and Kalcheim, C. 1999. *The Neural crest*. Cambridge University Press, New York.

Li, X. and Noll, M. 1994. Evolution of distinct developmental functions of three *Drosophila* genes by acquisition of different cis-regulatory regions. *Nature* 367: 83–87.

Lu, J.R., Bassel-Duby, R., Hawkins, A., Chang, P., Valdez, R., Wu, H., Gan, L., Shelton, J.M., Richardson, J.A., and Olson, E.N. 2002. Control of facial muscle development by MyoR and capsulins. *Science* 298: 2378–2381.

Maina, F., Casagranda, F., Audero, E., Simeone, A., Comoglio, P.M., Klein, R., and Ponzetto, C. 1996. Uncoupling of Grb2 from the Met receptor in vivo reveals complex roles in muscle development. *Cell* 87: 531–542.

Mansouri, A. and Gruss, P. 1998. Pax3 and Pax7 are expressed in commissural neurons and restrict ventral neuronal identity in the spinal cord. *Mech. Dev.* 78: 171–178.

Mansouri, A., Hallonet, M., and Gruss, P. 1996a. Pax genes and their roles in cell differentiation and development. *Curr. Opin. Cell. Biol.* 8: 851–857.

Mansouri, A., Stoykova, A., Torres, M., and Gruss, P. 1996b. Dysgenesis of cephalic neural crest derivatives in Pax7−/− mutant mice. *Development* 122: 831–838.

Marille, C., Wolf, J., and Bronner-Fraser, M. 1995. The in vivo expression of the FGF receptor FREG mRNA in avian myoblasts suggests a role in muscle growth and differentiation. *Dev. Biol.* 172: 100–114.

Mayani, C.S., George, D., Freilich, L., Miljan, E.J., Mania-Farr, B., McNone, D.G., and Bremer, E.G. 2001. Microarray analysis detects novel Pax3 downstream target genes. *J. Biol. Chem.* 276: 49299–42309.

Melilac, S.M., Kelly, R.G., Rocancourt, D., Eloy-Trinquet, S., Nicolas, J.E., and Buchanan, M.E. 2003. A retrospective clonal analysis of the myocardium reveals two phases of clonal growth in the developing mouse heart. *Development* 130: 3877–3889.

Neyt, C., Jagla, K., Thisse, C., Thisse, B., Haines, L., and Currie, P.D. 2000. Evolutionary origins of vertebrate appendicular muscle. *Nature* 408: 82–86.

Noll, M. 1993. Evolution and role of Pax genes. *Curr. Opin. Genet. Dev.* 3: 595–605.

Pani, L., Horal, M., and Locken, M.R. 2002. Rescue of neural tube defects in Pax3- deficient embryos by p53 loss of function: Implications for Pax-3-dependent development and tumorigenesis. *Genes & Dev.* 16: 676–680.

Parras, C.M., Schuurmans, C., Scardigli, R., Kim, J., Anderson, D.J., and Guillemin, F. 2002. Divergent functions of the proneural genes Mash1 and Ngn2 in the specification of neuronal subtype identity. *Genes & Dev.* 16: 324–338.

Passague, E., Choum, W., Behrens, A., Ricci, R., and Wagner, E.F. 2002. JunB can substitute for Jun in mouse development and cell proliferation. *Nat. Genet.* 30: 158–166.

Relaix, F., Polimeni, M., Rocancourt, D., Ponzetto, C., Schäfer, B.W., and Buchkima, M. 2003. The transcriptional activator PAX3–FKHR rescues the defects of Pax3 mutant mice but induces a myogenic gain of function phenotype with ligand-independent activation of Met signaling in vivo. *Genes & Dev.* 17: 2930–2965.

Rudnicki, M.A., Braun, T., Hinuma, S., and Jaenisch, R. 1992. Inactivation of MyoD in mice leads to up-regulation of the myogenic HLH gene Myf-5 and results in apparently normal muscle development. *Cell* 71: 383–390.

Sachs, M., Brohmann, H., Zechner, D., Muller, T., Hulskens, J., Walther, I., Schaeper, U., Birchmeier, C., and Birchmeier, W. 2000. Essential role of Gab1 for signaling by the c-Met receptor in vivo. *J. Cell. Biol.* 150: 1375–1384.

Sage, Y. 1998. Genetic rescue of segmentation defect in *MesP2-
deficient mice by MesP1 gene replacement. Mech. Dev. 75: 53–66.
Schubert, F.R., Tremblay, P., Mansouri, A., Faist, A.M., Kammendel, B., Lumsden, A., Gruss, P., and Dietrich, S. 2001. Early mesodermal phenotypes in splotch suggest a role for Pax3 in the formation of epithelial somites. Dev. Dyn. 222: 506–521.
Seale, P., Sabourin, L.A., Girgis-Gabardo, A., Mansouri, A., Gruss, P., and Rudnicki, M.A. 2000. Pax7 is required for the specification of myogenic satellite cells. Cell 102: 777–786.
Seo, H.C., Sactre, B.O., Havik, B., Ellingsen, S., and Fjose, A. 1998. The zebrafish Pax3 and Pax7 homologues are highly conserved, encode multiple isoforms and show dynamic segment-like expression in the developing brain. Mech. Dev. 70: 49–63.
Suda, Y., Nakabayashi, J., Matsuo, I., and Aizawa, S. 1999. Functional equivalency between Otx2 and Otx1 in development of the rostral head. Development 126: 743–757.
Suda, Y., Hossain, Z.M., Kobayashi, C., Hatano, O., Yoshida, M., Matsuo, I., and Aizawa, S. 2001. Emx2 directs the development of diencephalon in cooperation with Otx2. Development 128: 2433–2450.
Tajbakhsh, S. and Buckingham, M. 2000. The birth of muscle progenitor cells in the mouse: Spatiotemporal considerations. Curr. Top. Dev. Biol. 48: 225–268.
Tajbakhsh, S., Rocancourt, D., and Buckingham, M. 1996. Muscle progenitor cells failing to respond to positional cues adopt non-myogenic fates in myf-5 null mice. Nature 384: 266–270.
Tajbakhsh, S., Rocancourt, D., Cossu, G., and Buckingham, M. 1997. Redefining the genetic hierarchies controlling skeletal myogenesis: Pax-3 and Myf-5 act upstream of MyoD. Cell 89: 127–138.
Tassabehji, M., Read, A.P., Newton, V.E., Patton, M., Gruss, P., Harris, R., and Strachan, T. 1993. Mutations in the PAX3 gene causing Waardenburg syndrome type 1 and type 2. Nat. Genet. 3: 26–30.
Tremblay, P. and Gruss, P. 1994. Pax: Genes for mice and men. Pharmacol. Ther. 61: 205–226.
Tremblay, P., Kessel, M., and Gruss, P. 1995. A transgenic neuroanatomical marker identifies cranial neural crest deficiencies associated with the Pax3 mutant Splotch. Dev. Biol. 171: 317–329.
Tremblay, P., Dietrich, S., Mericskay, M., Schubert, F.R., Li, Z., and Paulin, D. 1998. A crucial role for Pax3 in the development of the hypaxial musculature and the long-range migration of muscle precursors. Dev. Biol. 203: 49–61.
Trusolino, L. and Comoglio, P.M. 2002. Scatter-factor and semaphorin receptors: Cell signalling for invasive growth. Nat. Rev. Cancer 2: 289–300.
Wada, H., Holland, P.W., and Satoh, N. 1996. Origin of patterning in neural tubes. Nature 384: 123.
Wada, H., Holland, P.W., Sato, S., Yamamoto, H., and Satoh, N. 1997. Neural tube is partially dorsalized by overexpression of HrPax-37: The ascidian homologue of Pax-3 and Pax-7. Dev. Biol. 187: 240–252.
Wang, Y., Schnegelsberg, P.N., Dausman, J., and Jaenisch, R. 1996. Functional redundancy of the muscle-specific transcription factors Myf5 and myogenin. Nature 379: 823–825.
Xue, L., Li, X., and Noll, M. 2001. Multiple protein functions of paired in Drosophila development and their conservation in the Gooseberry and Pax3 homologs. Development 128: 395–405.
Yang, X.M., Vogan, K., Gros, P., and Park, M. 1996. Expression of the met receptor tyrosine kinase in muscle progenitor
Divergent functions of murine Pax3 and Pax7 in limb muscle development

Frédéric Relaix, Didier Rocancourt, Ahmed Mansouri, et al.

Genes Dev. 2004, 18: Access the most recent version at doi:10.1101/gad.301004