Bag of visual words and fusion methods for action recognition: Comprehensive study and good practice

Xiaojiang Peng\textsuperscript{a,d,e}, Limin Wang\textsuperscript{b,c}, Xingxing Wang\textsuperscript{c}, Yu Qiao\textsuperscript{c}

\textsuperscript{a} College of Computer Science and Technology, Hengyang Normal University, Hengyang, China
\textsuperscript{b} Computer Vision Lab, ETH Zurich, Zurich, Switzerland
\textsuperscript{c} Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
\textsuperscript{d} LEAR Team, INRIA, Grenoble, France

\textbf{Abstract}

Video-based action recognition is one of the important and challenging problems in computer vision research. Bag of visual words model (BoVW) with local features has been very popular for a long time and obtained the state-of-the-art performance on several realistic datasets, such as the HMDB51, UCF50, and UCF101. BoVW is a general pipeline to construct a global representation from local features, which is mainly composed of five steps: (i) feature extraction, (ii) feature pre-processing, (iii) codebook generation, (iv) feature encoding, and (v) pooling and normalization. Although many efforts have been made in each step independently in different scenarios, their effects on action recognition are still unknown. Meanwhile, video data exhibits different views of visual patterns, such as static appearance and motion dynamics. Multiple descriptors are usually extracted to represent these different views. Fusing these descriptors is crucial for boosting the final performance of an action recognition system. This paper aims to provide a comprehensive study of all steps in BoVW and different fusion methods, and uncover some good practices to produce a state-of-the-art action recognition system. Specifically, we explore two kinds of local features, ten kinds of encoding methods, eight kinds of pooling and normalization strategies, and three kinds of fusion methods. We conclude that every step is crucial for contributing to the final recognition rate and improper choice in one of the steps may counteract the performance improvement of other steps. Furthermore, based on our comprehensive study, we propose a simple yet effective representation, called hybrid supervector, by exploring the complementarity of different BoVW frameworks with improved dense trajectories. Using this representation, we obtain impressive results on the three challenging datasets: HMDB51 (61.9%), UCF50 (92.3%), and UCF101 (87.9%).

\textsuperscript{e} Corresponding author. Tel.: +330763117277.
E-mail address: xiaojiang.peng@inria.fr (X. Peng).

\url{http://dx.doi.org/10.1016/j.cviu.2016.03.013}

1077-3142/© 2016 Elsevier Inc. All rights reserved.
bodies, and are robust to background clutter, illumination changes, and noise.

More recently, with the progress of pose estimation (Yang and Ramanan, 2011) and deep learning (Krizhevsky et al., 2012; Simonyan and Zisserman, 2014), several works focus on how to combine local features with high-level information (e.g., pose information) and learned features. Xu et al. (2012) applied a popular pose estimator (Yang and Ramanan, 2011) and extracted HoG features (Klaser et al., 2008) based on the detected poses. Simonyan et al. designed the well-known two-stream convolutional networks based on raw RGB frames and pre-computed optical flows. Wang et al. (2015) combined the two-stream convolutional networks with dense trajectories, Wang et al. (2013a), Chéron et al. (2015) proposed P-CNN (Pose Convolutional Neural Networks) which extracts CNN features based on poses.

BoVW framework and its variants (Karaman et al., 2013; Murthy and Goecke, 2013; Peng et al., 2013; Wang and Schmid, 2013b; Wu, 2013) have dominated the research work of action recognition for a long time. It is necessary to overview the details and uncover the good practice of each step in BoVW pipeline for beginners or other researchers. As shown in Fig. 1, the pipeline of BoVW for video based action recognition consists of five steps: (i) feature extraction, (ii) feature pre-processing, (iii) codebook generation, (iv) feature encoding, and (v) pooling and normalization. Regarding local features, many successful feature extractors (e.g. STIPs (Laptev, 2005), Dense Trajectories (Wang et al., 2013a)) and descriptors (e.g. HOG (Laptev et al., 2008), HOF (Laptev et al., 2008), MBH (Wang et al., 2013a)) have been designed for representing the visual patterns of cuboid. Feature pre-processing technique mainly de-correlates these descriptors to make the following representation learning more stable. For codebook generation, it aims to describe the local feature space and provide a partition (e.g. k-means (Bishop, 2006)) or generative process (e.g. GMMs (Bishop, 2006)) for local descriptor. Feature encoding is a hot topic in image classification and many alternatives have been developed for effective representation and efficient implementation (see good surveys Chatfield et al. (2011) and Huang et al. (2014)). Max pooling (Yang et al., 2009) and sum pooling (Zhang et al., 2007) are usually used to aggregate information from a spatiotemporal region. For normalization methods, typical choices include $\ell_1$-normalization (Zhang et al., 2007), $\ell_2$-normalization (Wang et al., 2010), power normalization (Perronnin et al., 2010), and intra-normalization (Arandjelovic and Zisserman, 2013). How to make the best decision in each step for action recognition still remains unknown and needs to be extensively explored.

Meanwhile, unlike static image, video data exhibits different views of visual pattern, such as appearance, motion, and motion boundary, and all of them play important roles in action recognition. Therefore, multiple descriptors are usually extracted from a cuboid and each descriptor corresponds to a specific aspect of the visual data (Laptev et al., 2008; Wang et al., 2013a). BoVW is mainly designed for a single descriptor and ignores the problem of fusing multiple descriptors. Many research studies have been devoted to fusing multiple descriptor for boosting performance (Cai et al., 2014; Gehler and Nowozin, 2009; Tang et al., 2013; Vedaldi et al., 2009a; Wang and Schmid, 2013a). Typical fusion methods include descriptor level fusion (Laptev et al., 2008; Wang et al., 2012), representation level fusion (Wang et al., 2013a; Wang and Schmid, 2013b), and score level fusion (Myers et al., 2014; Tang et al., 2013). For descriptor level fusion, multiple descriptors from the same cuboid are concatenated as a whole one and fed into a BoVW framework. For representation level fusion, the fusion is conducted in the video level, where each descriptor is firstly fed into a BoVW framework independently and the resulting global representations are then concatenated to train a final classifier. For score level fusion, each descriptor is separately input into a BoVW framework and used to train a recognition classifier. Then the scores from multiple classifiers are fused using arithmetic mean or geometric mean. In general, these fusion methods are developed in different scenarios and adapted for action recognition by different works. How these fusion methods influence the final recognition of a BoVW framework and whether there exists a best one for action recognition is an interesting question and well worth of a detailed investigation.

Several related study works have been performed about encoding methods for image classification (Chatfield et al., 2011; Huang et al., 2014). But these study works are with image classification task or lacking full exploration of all steps in BoVW framework. This paper is an extension of our previous work (Wang et al., 2012). We extend (Wang et al., 2012) from the following aspects:

- We explore pre-processing step for all the encoding methods (not only for Fisher vectors as Wang et al. (2012)).
• We extend the study to dense features, and find different observations between dense features and sparse features (only STIP in Wang et al. (2012)).
• We summarize all the popular encoding methods, and give a generic analysis here.
• We first introduce intra-normalization for action recognition, and it is helpful for dense features because it can suppress feature burstiness.
• We explore different fusion methods, and give more experiments and analysis.

In short, this article aims to provide a comprehensive study of all steps in a BoVW pipeline and different fusion methods, and uncover some good practices to produce a state-of-the-art action recognition system. Our work is mainly composed of three parts:

**Exploration of BoVW.** We place an emphasis on extensively explorations about all components in a BoVW pipeline and discovery of useful practices. Specifically, we investigate two widely-used local features, namely Space Time Interest Points (STIPs) with HOG, HOF (Laptev, 2005), and Improved Dense Trajectories (iDTs) with HOG, HOF, MBH (Wang and Schmid, 2013a). For feature encoding methods, the current approaches can be roughly classified into three categories: (i) voting based encoding methods, (ii) reconstruction based encoding methods, (iii) supervector based encoding methods. For each type of encoding methods, we choose several representative approaches and totally analyze ten encoding methods. Meanwhile, we explore the relations among these different encoding methods and provide a unified and generative perspective over these encoding methods. We fully explored eight pooling and normalization strategies for each encoding method.

**Investigation of fusion methods.** As combination of multiple descriptors is very crucial for performance improvement, we also investigate the influence of different fusion methods in our designed action recognition system. Specifically, we study three kinds of fusion methods, namely descriptor level fusion, representation level fusion, and score level fusion. We find that the way different descriptors correlate with each other determines the effectiveness of fusion methods. The performance gain obtained from fusing multiple descriptors mainly owns to their complementarity. We observe that this complementarity is not only with multiple descriptors, but also with multiple BoVW models. Based on this view, we propose a new representation, called hybrid supervector, combining the outputs of multiple BoVW models of improved dense trajectories. This representation utilizes the benefit of each BoVW and fully considers the complementarity among them. In spite of its simplicity, this representation turns out to be effective for improving final recognition rate.

**Comparison with the state of the art.** Guided by the practice tips concluded from our insightful analysis of BoVW variants and feature fusion methods, we design an effective action recognition system using our proposed hybrid supervector, and demonstrate its performance on three challenging datasets: HMDB51 (Kuehne et al., 2011), UCF50 (Reddy and Shah, 2013), and UCF101 (Soomro et al., 2012). Specifically, hybrid supervector is obtained by representation level fusion of Fisher vectors (Peronnin et al., 2010) and SVC-k. From comparison with other methods, we conclude that our recognition system reaches the state-of-the-art performance on the three datasets, and our hybrid supervector acts as a new baseline for further research of action recognition.

The rest of this paper is organized as follows. In Section 2, we give a detailed description of each step in the BoVW framework. Meanwhile, we uncover several useful techniques commonly adopted in these encoding methods, and provide a unified generative perspective over these encoding methods. Then, several fusion methods and a new representation are introduced in Section 3. Finally, we empirically evaluate the BoVW frameworks and fusion methods on three challenging datasets. We analyze these experiment results and uncover some good practices for constructing a state-of-the-art action recognition system. We conclude the paper in Section 5.

2. Framework of bag of visual words

Here we refer to BoVW as a generic framework which obtains video-level representations from local features. As shown in Fig. 1, the pipeline of a BoVW framework consists of five steps: (i) feature extraction, (ii) feature pre-processing, (iii) codebook generation, (iv) feature encoding, and (v) pooling and normalization. Then the global representation is fed into a classifier such as linear SVM for action recognition. In this section, we will give detailed descriptions of the popular technical choices in each step, which are very important for constructing a state-of-the-art recognition system. Furthermore, we summarize several useful techniques in these encoding methods and provide a unified generative perspective over these different encoding methods.

2.1 Feature extraction

Low-level local features have become popular in action recognition due to their robustness to background clutter and independence on detection and tracking techniques. These local features are typically divided into two parts: detecting a local region (detector) and describing the detected region (descriptor) (Wang et al., 2009). Many feature detectors have been developed such as 3D-Harris (Laptev, 2005), 3D-Hessian (Willems et al., 2008), Cuboid (Dollar et al., 2005), Dense Trajectories (Wang et al., 2013a), and Improved Dense Trajectories (Wang and Schmid, 2013a). These detectors try to select locations and scales in a video by maximizing certain kind of function or using a dense sampling strategy. To describe the extracted region, several hand-crafted features have been designed such as Histogram of Oriented Gradients (HOG) (Laptev et al., 2008; Wang et al., 2013a), HOF (Laptev et al., 2008; Wang et al., 2013a), and Motion Boundary Histogram (MBH) (Wang et al., 2013a; Wang and Schmid, 2013a). Multiple descriptors are usually adopted to represent the local region, each of which corresponds to a certain aspect of a visual pattern such as static appearance, motion, and motion boundary.

Among these local features, STIPs (Laptev, 2005) and Improved Dense Trajectories (iDTs) (Wang et al., 2013a) are widely used due to their easy usages and good performance. STIPs resort to 3D-Harris to extract regions of high motion salience, which result in a set of sparse interest points. For each interest point, STIPs extract two kinds of descriptors, namely HOG and HOF. iDTs features are an improved version from Dense Trajectories (DTs), where a set of dense trajectories are firstly obtained by tracking pixels with median filter, and five kinds of descriptors are extracted, namely trajectory shape, HOG, HOF, MBHx, and MBHy. iDTs improve the performance of DTs by taking into account camera motion correction. Generally speaking, iDTs resort to more sophisticated engineering skills and integrate much richer low-level visual cues compared with STIPs. Therefore, they represent two different kinds of low level features, namely sparse features and dense features, and may exhibit different properties with respect to variants of BoVW frameworks.

2.2 Feature pre-processing

The low-level local descriptors are usually high dimensional and strongly correlated, which results in great challenges in the subsequent unsupervised learning such as k-means clustering and GMM training. Principal Component Analysis (PCA) (Bishop, 2006) is a
Given the feature set $\mathbf{X} = \{\mathbf{x}_1, \ldots, \mathbf{x}_M\}$, the optimal parameters of GMM are learned through maximum likelihood estimation $\arg\max _\theta \log p(\mathbf{X}; \theta)$. We use the iterative EM algorithm (Bishop, 2006) to solve this problem.

$k$-means algorithm performs a hard assignment of feature descriptor to codeword, while the EM algorithm of GMM makes soft assignment of feature to each mixture component based on posterior probabilities $p(k|x)$. But unlike $k$-means, GMM delivers not only the mean information of code words, but also the shape of their distribution.

### 2.4. Encoding methods

In this section, we provide a detailed description of thirteen feature encoding methods. According to the characteristics of encoding methods, they can be roughly classified into three groups, namely (i) voting based encoding method, (ii) reconstruction based encoding method, and (iv) supervector based encoding method, as shown in Table 1.

Let $\mathbf{X} = \{\mathbf{x}_1, \mathbf{x}_2, \ldots, \mathbf{x}_N\} \in \mathbb{R}^{D \times N}$ be a set of $D$-dimensional local descriptors extracted from a video, and given a codebook with $K$ codewords, $\mathbf{D} = \{\mathbf{d}_1, \mathbf{d}_2, \ldots, \mathbf{d}_K\} \in \mathbb{R}^{D \times K}$, the objective of encoding is to compute a code $\mathbf{s}$ (or $\mathbf{s}'$) $^1$ for input vector $\mathbf{x}$ with $\mathbf{D}$. Table 1 lists all the formulations and dimension of encoding methods, where $s(i)$ denotes the $i$th element of $s$.

#### 2.4.1. Voting based encoding methods

Voting based encoding methods (van Gemert et al., 2010; Huang et al., 2011; Liu et al., 2011; Sivic and Zisserman, 2003; Wu et al., 2012) are designed from the perspective of encoding process and each descriptor directly votes for the codeword using a specific strategy. A $K$-dimensional ($K$ is the size of codebook) code $\mathbf{s}$ is constructed for each descriptor to represent the votes of the whole codebook. Methods along this line include Vector Quantization (or Hard Voting) (Sivic and Zisserman, 2003), Soft Assignment (or Kernel Codebook Coding) (van Gemert et al., 2010), Localized Soft Assignment (Liu et al., 2011), Salient Coding (Huang et al., 2011), and Group Salient Coding (Wu et al., 2012), as shown in Fig. 2.

For each descriptor $\mathbf{x}$, the voting value for the codeword $\mathbf{d}_i$ can be viewed as a function of $\mathbf{x}$, namely $s(i) = \phi_i(\mathbf{x})$. Different encoding methods differ in the formulation of $\phi(\mathbf{x})$. For encoding of Vector Quantization (VQ):

$$\text{VQ:} \quad \phi(\mathbf{x}) = \begin{cases} 1, & \text{if } i = \arg \min_j ||\mathbf{x} - \mathbf{d}_j||_2, \\ 0, & \text{otherwise}, \end{cases}$$

where each descriptor $\mathbf{x}$ only votes for its nearest codeword. The VQ encoding method can be viewed as a hard quantization and may cause much information loss. To encounter this problem, SA encoding method votes for all the codewords:

$$\text{SA:} \quad \phi(\mathbf{x}) = \omega_i,$$

where $\omega_i$ is the normalized weight of descriptor $\mathbf{x}$ with respect to codeword $\mathbf{d}_i$:

$$\omega_i = \frac{\exp(-\beta ||\mathbf{x} - \mathbf{d}_i||_2^2)}{\sum_{j=1}^{K} \exp(-\beta ||\mathbf{x} - \mathbf{d}_j||_2^2)},$$

where $\beta$ is a smoothing factor controlling the softness of the assignment. Considering the manifold structure in the descriptor space, localized SA-$k$ votes for its $k$-nearest codewords:

$$\text{SA-$k$:} \quad \phi(\mathbf{x}) = \omega_i' = \frac{l(\mathbf{x}, \mathbf{d}_i) \exp(-\beta ||\mathbf{x} - \mathbf{d}_i||_2^2)}{\sum_{j=1}^{K} l(\mathbf{x}, \mathbf{d}_j) \exp(-\beta ||\mathbf{x} - \mathbf{d}_j||_2^2)},$$

$^1$ We use $s$ to denote the code of voting and reconstruction based encoding methods, and $\mathbf{s}$ to represent the one of supervector based encoding methods.
where \( l(x, d_i) \) is the indicator function to identify whether \( d_i \) belongs to the \( k \) nearest neighbor of \( x \):

\[
l(x, d_i) = \begin{cases} 
1 & \text{if } d_i \in NN_k(x), \\
0 & \text{otherwise.}
\end{cases}
\]  

(8)

Note that VQ can be viewed as a special case of SA-k when \( k \) is set as 1.

Fig. 2 illustrates the difference of these voting based encoding methods. VQ, Sparse Coding, and Group salient coding are all hard assignment strategies. Unlike VQ, the salient coding employs the difference between the closest visual word and the other \( k - 1 \) closest ones to obtain the voted weight but not 1. The detailed formulations of salient coding and Group salient coding can be found in Table 1.

2.4.2. Reconstruction based encoding methods

Reconstruction based encoding methods (Tropp and Gilbert, 2007; Wang et al., 2010; Yang et al., 2009; Yu et al., 2009) are designed from the perspective of decoding process, where the codes \( s \) are enforced to reconstruct the input descriptor \( x \). This kind of algorithm includes Orthogonal Matching Pursuit (OMP) (Tropp and Gilbert, 2007), Sparse Coding (SPC) (Yang et al., 2009), Local Coordinate Coding (LCC) (Yu et al., 2009), and Locality-constrained Linear Coding (LLC) (Wang et al., 2010). Typically, these encoding methods are formulated in a least square framework with a regularization term:

\[
\arg \min_{\hat{s}} \| x - D\hat{s} \|^2 + \lambda \psi(s).
\]  

(9)

where the least square term enforces the small reconstruction error, \( \psi(s) \) encourages some properties of codes \( s \), \( \lambda \) is a weight factor to balance this two terms.

Among these methods, OMP and SPC pursue a sparse representation. As for OMP, this constraint is conducted by \( \ell_0 \)-norm:

\[
\text{OMP:} \quad \psi(s) = \|s\|_0
\]  

(10)

where \( \ell_0 \)-norm means the number of non-zero elements in \( s \). However, due to the non-convexity of \( \ell_0 \)-norm, solution to this problem usually needs some heuristic strategy and obtains an approximate optimal solution. SPC relaxes this non-convex \( \ell_0 \)-norm with \( \ell_1 \)-norm:

\[
\text{SPC:} \quad \psi(s) = \|s\|_1
\]  

(11)

where \( \ell_1 \)-norm can also encourage the sparsity in code \( s \), and the solution is equal to the solution of \( \ell_0 \)-norm under some conditions (Bruckstein et al., 2009). The \( \ell_1 \)-norm relaxation allows for more efficient optimization algorithm (Lee et al., 2006) and obtaining the global optimal solution.

OMP and SPC are empirically observed to tend to be local, i.e. nonzero coefficients are often assigned to bases nearby to the encoded data (Yu et al., 2009). But this locality cannot be ensured theoretically and Yu et al. (2009) suggested a modification to SPC, called Local Coordinate Coding (LCC). This encoding method explicitly encourages the coding to be local, and Yu et al. theoretically pointed out that under certain assumptions locality is more essential than sparsity for successful nonlinear function learning using the obtained codes. Specifically, the LCC is defined as follows:

\[
\text{LCC:} \quad \psi(s) = \| \hat{e} \odot s \|_1, \quad \text{s.t.} \quad 1^T s = 1,
\]  

(12)

where \( \odot \) denotes the element-wise multiplication, \( \hat{e} \) is the locality adapter that gives weights for each basis vector proportional to its similarity to the input descriptor \( x \):

\[
\hat{e} = [\text{dist}(x, d_1), \ldots, \text{dist}(x, d_K)]^T.
\]  

(13)

with \( \text{dist}(x, d_i) \) being the Euclidean distance between \( x \) and \( d_i \).

Due to the problem of \( \ell_1 \)-norm optimization in both SPC and LCC, it is computationally expensive and hard to apply to large scale problems. Then, a practical coding scheme called Locality-constrained Linear Coding (LLC) (Wang et al., 2010) is designed, which can be viewed as a fast implementation of LCC that utilizes the locality constraint to project each descriptor into its local-coordinate system:

\[
\text{LLC:} \quad \psi(s) = \| \hat{e} \odot s \|_2^2, \quad \text{s.t.} \quad 1^T s = 1,
\]  

(14)

where \( \hat{e} \) is the exponentiation of \( \hat{e} \):

\[
\hat{e} = \exp \left( \frac{\text{dist}(x, D)}{\sigma} \right).
\]  

(15)

with \( \sigma \) being used for adjusting the weighted decay speed for the locality adaptor. The constraint \( 1^T s = 1 \) follows the shift-invariant requirements of the final code vector. In practice, an approximate solution can be used to improve the computational efficiency of LLC. It directly selects the \( k \) nearest basis vectors of \( x \) to minimize the first term in Eq. (9) by solving a much smaller linear system. This gives that the code coefficients for the selected \( k \) basis vectors and other code coefficients are simply set to be zero.

2.4.3. Supervector based encoding methods

Supervector based encoding methods yield a very high dimensional representation by aggregating high order statistics. Typical methods include Local Tangent-based Coding (LTC) (Yu and Zhang, 2010), Super Vector Coding (SVC) (Zhou et al., 2010), Vector of Locally Aggregated Descriptors (VLAD) (Jegou et al., 2012), and Fisher Vector (FV) (Perronnin et al., 2010) . Note that we refer to SVC as a specific encoding method and supervector based as a group of encoding methods.

Local Tangent-based Coding (Yu and Zhang, 2010) assumes that codebook and descriptors are embedded in a smooth manifold. The main contents of LTC are manifold approximation and intrinsic dimensionality estimation. Under the Lipschitz smooth condition, the nonlinear function \( f(x) \) can be approximated by a local linear function as:

\[
f(x) \approx \sum_{i=1}^{K} s(i) \left[ f(d_i) + 0.5 \nabla f(d_i)^T (x - d_i) \right].
\]  

(16)

where \( s(i) \) is obtained by LCC (Yu et al., 2009). Then, this approximate function can be viewed as a linear function of a coding vector \( [s(i), s(i)(x - d_i)]_{i=1}^{K} \in \mathbb{R}^{K+1+D} \). LTC argues that there
is lower intrinsic dimensionality in the feature manifold. To obtain it, Principal Component Analysis (PCA) is applied to the term of 
\( s(i) (x - d_i) \) using a projection matrix \( U = [u_1, \ldots, u_k] \in \mathbb{R}^{D \times C} \) trained from training data, i.e., the local tangent directions of the manifold. Therefore, the final coding vector for LTC is written as follows:

\[
S = \left[ \alpha s(i) (x - d_i)^T U \right]_{i=1}^K
\]

(17)

where \( \alpha \) is a positive scaling factor to balance the two types of codes. Super Vector Coding (SVC) (Zhou et al., 2010) is a simple version of LTC. Unlike LTC, SVC yields the \( s(i) \) via VQ and does not apply PCA to the term of \( s(i) (x - d_i) \). Consequently, the coding vector of SVC is defined as follows:

\[
S = \left[ 0, 0, \ldots, \frac{\alpha s(i)}{N \sqrt{p_{ij}}} (x - d_i), \ldots, 0, 0 \right]
\]

(18)

where \( s(i) = 1, d_i \) is the closest visual word to \( x \), and \( \alpha \) is a positive constant.

Fisher vector is another supervector based encoding method derived from fisher kernel (Jaakkola and Haussler, 1998) and is introduced for large-scale image categorization (Perronnin et al., 2010). The fisher kernel is a generic framework which combines the benefits of generative and discriminative approaches. As it is known, the gradient of the log-likelihood with respect to a parameter can describe how that parameter contributes to the process of generating a particular example. Then the video can be described by the gradient vector of log likelihood with respect to the model parameters (Jaakkola and Haussler, 1998):

\[
G_x = \nabla_x \log p(x; \theta).
\]

(19)

Note that the dimensionality of this vector depends on the number of parameters in \( \theta \). Perronnin et al. (2010) developed an improved fisher vector which is as follows:

\[
G_{\mu_k} = \frac{1}{\sqrt{2\pi}_k} \gamma_k \left( \frac{x - \mu_k}{\sigma_k} \right).
\]

(20)

\[
G_{\sigma_k} = \frac{1}{2\pi\sigma_k^2} \gamma_k \left( \frac{(x - \mu_k)^2}{\sigma_k^2} - 1 \right).
\]

(21)

where \( \gamma_k \) is the weight of local descriptor \( x \) to the \( k \)th Gaussian Mixture:

\[
\gamma_k = \frac{\pi_k N(x; \mu_k, \Sigma_k)}{\sum_{k=1}^K \pi_k N(x; \mu_k, \Sigma_k)}.
\]

(22)

The final fisher vector is the concatenation of this two gradients:

\[
FV: \quad S = [s_{\mu_1}^k, s_{\sigma_1}^k, \ldots, s_{\mu_K}^k, s_{\sigma_K}^k].
\]

(23)

VLAD (Jégou et al., 2012) can be viewed as a hard version of FV and it only keeps the first order statistics:

\[
VLAD: \quad S = [s_1, \ldots, s_i (x - d_i), \ldots, 0],
\]

(24)

where \( s(i) = 1, d_i \) is the closest visual word to \( x \).

### 2.4.4. Relations of encoding methods

In this section, we summarize several practical techniques widely used in these encoding methods, and give a unified generative perspective of these encoding methods. This analysis will uncover the underlying relations between these methods and provide insights for developing new encoding methods.

From “hard” to “soft”. These encoding methods transform local features from descriptor space to codeword space. There are two typical transformation rules in these methods, namely hard assignment and soft assignment. Hard assignment quantizes the feature descriptor into a single codeword, while soft assignment enables the feature descriptor to vote for multiple codewords. In general, soft assignment accounts for the codeword uncertainty and
plausibility (van Gemert et al., 2010), and reduces the information loss during encoding. This technical skill of soft assignment can be found in several encoding algorithms, such as SA-all vs. VQ, and VLAD vs. Fisher Vector. By the same techniques, we can extend the VLAD to VLAD-all, SVC to SVC-all:

\[ S = [\omega_1(x - d_1), \ldots, \omega_K(x - d_K)]. \]  

(25)

\[
S_{\text{C-V}} = \left\{ \frac{\omega_1}{\sqrt{\sum_{\ell=1}^{K}}} (x - d_1), \ldots, \frac{\omega_K}{\sqrt{\sum_{\ell=1}^{K}}} (x - d_K) \right\},
\]

(26)

where \( \omega_i \) is the normalized weight of feature descriptor \( x \) with respect to codeword \( d_i \) defined in Eq. (6).

From “global” to “local”. In several encoding methods, the manifold structure in descriptor space is captured to improve the stability of encoding algorithms. In the traditional soft assignment, each descriptor is assigned with all the codewords, which is called global assignment. However, in the high dimensional space of feature descriptor, Euclidean distance may not be reliable especially when the codeword is outside the neighborhood of feature descriptor. Therefore, in the encoding methods such as SA-k and LLC, each descriptor is enforced to only vote for these codewords belonging to its \( k \)-nearest neighbors, called local assignment. In general, the incorporation of local structure in encoding methods is able to improve the stability and reduce the sensitivity to noise in a descriptor. Using the same techniques, we can also extend the VLAD-all to VLAD-k, SVC-all to SVC-k by replacing the \( \omega_i \) in Eqs. (25), (26) with localized \( \omega_i^l \) defined in Eq. (7):

\[ S = [\omega_1^l(x - d_1), \ldots, \omega_K^l(x - d_K)]. \]  

(27)

\[
S_{\text{VC-V}} = \left\{ \frac{\omega_1^l}{\sqrt{\sum_{\ell=1}^{K}}} (x - d_1), \ldots, \frac{\omega_K^l}{\sqrt{\sum_{\ell=1}^{K}}} (x - d_K) \right\}.
\]

(28)

From “zero order statistics” to “high order statistics”. In these supervised based encoding methods, they preserve not only the affiliations of descriptors to codewords (zero order statistics), but also the high order information such as the difference between descriptors and codeword, thus it results in a high-dimensional supervector representation. As these supervectors keep much richer information for each codeword, the codebook size is usually much smaller than that of voting and reconstruction based encoding methods. Above all, these supervectors are with high dimension, storing more information, and are proved to outperform the other two kinds of encoding methods in Section 4. The high dimensional supervector will be a promising representation and designing effective dimension reduction algorithms for the supervector will be an interesting problem.

Generative perspective of encoding methods. Although these encoding methods are developed in different scenarios, a unified generative probabilistic model can be used to uncover the underlying relations among them. These encoding methods can be interpreted in a latent generative model:

\[
p(h) = \prod_{i=1}^{K} \pi_i^{h_i},
\]

(30)

where \( h \in \{0, 1\}^K \) is discrete random variable, and the prior distribution is a Multinomial distribution. For SA-all, this Multinomial distribution is specified by uniform distribution, i.e. \( \pi_1 = \cdots = \pi_K = \frac{1}{K} \). For Fisher vector, this multinomial distribution is learned during GMM training. Meanwhile the SA-all chooses the latent variable embedding to encode the descriptor by computing conditional expectation, i.e. \( s(x) = \mathbb{E}(h(x)) \), while the FV chooses the gradient embedding \( \mathbb{J} = \nabla_{\theta} \log p(x; \theta) \). The VQ encoding can be viewed as an extreme case of the Soft-all when:

\[
p(x|s) = \mathcal{N}(x; Ws + \mu, \Sigma), \quad \epsilon \to 0.
\]

(31)

VLAD-all and SVC-all can be viewed as the gradient embedding in this extreme case.

For encoding methods such as sparse coding, the latent variable \( h \) is continuous and its corresponding prior distribution is specified as:

\[
p(h) = \prod_{i=1}^{K} \frac{\lambda}{2} \exp(-\lambda |h_i|).
\]

(32)

This prior distribution is called Laplace prior distribution. Sparse coding can be viewed as the latent variable embedding of this generative model using the maximum posterior value (MAP), i.e. \( s(x) = \arg\max_h p(h|x) \).

2.5. Pooling and normalization methods

Given the code coefficients of all local descriptors in a video, a pooling operation is often used to obtain a global representation \( p \) for the video. Specifically, there are two common pooling strategies:

- **Sum Pooling.** With sum pooling scheme (Lazebnik et al., 2006), the \( k \)-th component of \( p \) is \( p_k = \sum_{n=1}^{N} s_n(k) \).
- **Max Pooling.** With max pooling scheme (Yang et al., 2009), the \( k \)-th component of \( p \) is \( p_k = \max(s_1(k), \ldots, s_N(k)) \), where \( N \) is the number of extracted local descriptors, and \( s_n \) denotes the code of descriptor \( x_n \).

In Boureau et al. (2010), the authors presented a theoretical analysis of average pooling and max pooling. Their results indicate that sparse features may prefer max pooling.

To make this representation invariant to the number of extracted local descriptors, the pooling result \( p \) is further normalized by some methods. Generally, there are three common normalization techniques:

- **\( \ell_1 \)-Normalization.** In \( \ell_1 \) normalization (Yang et al., 2009), the feature \( p \) is divided by its \( \ell_1 \)-norm: \( p = p/\| p \|_1 \).
- **\( \ell_2 \)-Normalization.** In \( \ell_2 \) normalization (Perronnin et al., 2010), the feature \( p \) is divided by its \( \ell_2 \)-norm: \( p = p/\| p \|_2 \).
- **Power Normalization.** In power normalization (Perronnin et al., 2010), we apply in each dimension the following function:

\[
f(p_k) = \text{sign}(p_k)|p_k|^\alpha.
\]

where \( 0 \leq \alpha \leq 1 \) is a parameter for normalization. We can combine power normalization with \( \ell_1 \)-normalization or \( \ell_2 \)-normalization.
Recently, a special normalization strategy is proposed for the VLAD, called **intra-normalization** (Arandjelovic and Zisserman, 2013). In this paper, we extend it to all the supervector based encoding algorithms. This method carries out normalization operation in a block by block manner, where each block denotes the vector related to one codeword. Generally, the intra-normalization can be formulated as follows:

$$p = \left[ \frac{p^1}{\|p^1\|} , \ldots , \frac{p^k}{\|p^k\|} , \ldots , \frac{p^K}{\|p^K\|} \right], \quad (33)$$

where $p^k$ denotes a vector related to codeword $d_k$ (or the $k$th Gaussian), $\| \cdot \|$ may be $\ell_1$-norm or $\ell_2$-norm.

### 3. Feature fusion

Fusing multiple local features has turned out to be an effective method to boost the performance of recognition system in computer vision community (Cai et al., 2014; Gehler and Nowozin, 2009; Tang et al., 2013; Vedaldi et al., 2009a; Wang and Schmid, 2013a). The video data is usually characterized in multiple views, such as static appearance, motion pattern, and motion boundary. The essence of multi-view data requires fusing different features for action recognition. In this section, we present several feature fusion methods for action recognition, and analyze its corresponding properties. Meanwhile, based on the analysis of fusion methods, we propose a simple yet effective representation, called **hybrid supervector**.

As shown in Fig. 3, the fusion methods are usually conducted in different levels, typically including: descriptor level, representation level, and score level. For descriptor level fusion, it is performed in the cuboid level, where multiple descriptors from the same cuboid are concatenated into a single one, and then it is fed into the BoVW to obtain the global representation. For representation-level fusion, it is performed in the video level, where different descriptors are input into BoVW separately and the resulting global representations are fused as a single one, which is further fed into classifier for recognition. For score-level fusion, it is also performed in the video level, but the representations of different descriptors are used independently for classifier training. The final recognition score is obtained by fusing the scores from multiple classifiers. For fusing the scores, arithmetical mean or geometrical mean is often used. We note that there are many other fusion methods like multiple kernel learning (MKL) (Sun et al., 2010) and weighted score fusion (Tamrakar et al., 2012), but we do observe that those fusion methods based on representations or scores do not help. There are also evidences in Vedaldi et al. (2009b) and Tamrakar et al. (2012) that MKL obtains similar results with averaging kernel (which is the same as representation concatenation) and weighted score fusion by a retrained SVM on score is slightly worse than geometrical mean fusion.

In general, these fusion methods at different levels own their pros and cons, and the choice of fusion method should be guided by the dependence of descriptors. If these multiple descriptors from the same cuboid are highly correlated, it will be better to resort to descriptor level feature fusion. Otherwise, the choice of descriptor level fusion is not a good one, as descriptor level fusion usually results in a higher dimension and adds the difficulty for unsupervised feature learning such as $k$-means and sparse coding. For the case where different views of features are less correlated in cuboid level but highly correlated in video level, representation level fusion is usually a good choice. When these different features are independent with each other, it will be appropriate to choose score level fusion, as this fusion reduces the dimension for classifier training and makes the learning faster and more stable.

The performance boosting of fusing multiple features mainly owns the complementarity of these features. However, the complementarity can be explored not only for different features, but also for different types of BoVW methods. In this paper, we propose a simple yet effective representation, called hybrid supervector, which combines the outputs from multiple variants of BoVW frameworks with iDTs. The resulting hybrid supervector effectively explores the complementarity of different encoding methods and greatly enhances the descriptive power for action recognition. As we shall see in Section 4.7, this representation will improve the

---

**Fig. 3.** Feature fusion is performed in different levels: descriptor level, representation level, and score level.
recognition rate of a single BoVW model and obtain the state-of-the-art results on the three challenging datasets.

4. Empirical study

In this section, we describe the detailed experimental settings and the empirical study of variants of BoVW and different fusion methods. We first introduce the datasets used for evaluation and their corresponding experimental setup. We then extensively study different aspects of BoVW, including pre-processing techniques, encoding methods, pooling strategies, and normalization approaches. After that, we explore the different choices of fusion methods for multiple features. Finally, we compare the performance of our hybrid supervisor with that of the state-of-the-art methods on three challenging datasets.

4.1. Datasets and evaluation protocols

We conduct experiments on three public datasets: HMDB51 (Kuehne et al., 2011), UCF50 (Reddy and Shah, 2013), and UCF101 (Soomro et al., 2012). Some examples of video frames are illustrated in Fig. 4. Totally, we work with 26,704 videos in this paper.

The HMDB51 dataset has 51 action classes with 6766 videos in total and each class has more than 100 videos. All the videos are obtained from real world scenarios such as movies and youtube. The intra-class variation is very high due to many factors, such as viewpoint, scale, background, illumination etc. Thus, HMDB51 is a very difficult benchmark for action recognition. There are three training and testing splits released on the website of this dataset. Following (Kuehne et al., 2011), we conduct experiments based on these splits and report average accuracy for evaluation.

The UCF50 dataset has 50 action classes with 6618 videos in total, and each action class is divided into 25 groups with at least 100 videos for each class. The video clips in the same group are usually with similar background. We choose the suggested evaluation protocols of Leave One Group Out cross validation (LOGO) and report the average accuracy (Reddy and Shah, 2013).

The UCF101 dataset is an extension of the UCF50 dataset and has 101 action classes. The action classes can be divided into five types: human-object interaction, body-motion only, human-human interaction, playing musical instruments, and sports. Totally, it has 13,320 video clips, with fixed frame rate and resolution as 25 FPS and 320 × 240, respectively. To our best knowledge, this dataset has been the largest dataset so far. We perform evaluation according to the three train/test splits as in Soomro et al. (2012) and report the mean average accuracy of these splits.

In our evaluation experiment, we choose linear Support Vector Machine (SVM) as our recognition classifier. Specifically, we use the implementation of LIBSVM (Chang and Lin, 2011). For multiclass classification, we adopt one-vs-all training scheme and choose the prediction with highest score as our predicted label.

4.2. Local features and codebook generation

In our evaluation, we choose two widely-used local features, namely STIPs (Laptev, 2005) with HOG, HOF descriptors (Laptev et al., 2008), and improved Dense Trajectories (iDTs) with HOG, HOF, MBHx, MBHy descriptors (Wang et al., 2013a). Specifically, we use the implementation released on the website of Laptev2 for STIPs and Wang3 for iDTs. We choose the default parameter settings for both local features. STPs and iDTs represent two types of local features: sparse interest points and densely-sampled trajectories. They may exhibit different properties with varying BoVW settings, and thus it is well worth exploring both STIPs and iDTs.

Regarding codebook generation, we randomly sample 100, 000 features to conduct k-means, where codebook sizes range from 1000 to 10,000 for STIPs, and from 1000 to 20,000 for iDTs. For GMM training, we randomly sample 256,000 features to learn GMMs with mixture number ranging from 16 to 512 for both STIPs and iDTs.

4.3. Importance of pre-processing

In this section, we explore the importance of pre-processing in BoVW framework. Specifically, we use STIPs as local features and choose a representative method for each type of encoding, namely FV, LLC, and VQ. For pooling and normalization strategy, we use sum pooling and power l2-normalization. We use the descriptor-level fusion method to combine HOG and HOF descriptors.

We conduct experiments on the UCF101 dataset and investigate the importance of pre-processing for these encoding methods. With pre-processing step, the descriptors of STIPs are firstly reduced to 100-dimension and then whitened to have unit variance. The results are shown in Fig. 5. We observe that the pre-processing technique of PCA-Whiten is very important to boost the performance of encoding methods. Surprisingly, the performance of FV (state-of-the-art) without PCA-Whiten is lower than or comparable to VQ and LLC with PCA-Whiten. In previous research work, PCA-Whiten is often done for FV encoding methods but seldom used for other encoding methods. Our study suggests that using

---

2 http://serre-lab.clps.brown.edu/resources/HMDB/index.htm.
3 http://www.di.ens.fr/~laptev/download.html.
4 https://lear.inrialpes.fr/people/wang/improved_trajectories.
PCA-Whiten techniques enable us to greatly improve final recognition rate for all encoding methods. We obtain the recognition rate 56.1% for VQ. This significantly outperforms over the result 43.9% reported in Soomro et al. (2012), where the same local feature and encoding method is used. We do also evaluate the pre-processing step for the iDT features, the other encoding, pooling, normalization, and fusion methods, which show same observations. These observations indicate that handcrafted local features are usually noisy and keeping a part of principal components is helpful for subsequent processing.

In the remaining part of the evaluation, we use PCA-Whiten for all cases. We will remove the suffix “(PCA-Whiten)” for conciseness. For descriptor level fusion of STIP, the dimension of concatenated descriptor is reduced from 162 to 100. For HOG and HOF, the dimension is reduced from 72 to 40, and from 90 to 60, respectively. For descriptor level fusion of iDT, the dimension of concatenated descriptor is reduced from 396 to 200. For separate descriptor, the dimensions of HOG, MBHx, and MBHy are all reduced from 96 to 48. HOF descriptor is reduced from 108 to 54.

4.4. Exploration of encoding methods

In this section, we compare and analyze the performance of different encoding methods. For each encoding method, we fix other settings, such as parameter setting, pooling and normalization strategy, the same with previous papers. We explore these encoding methods with descriptor level fusion, for both STIPs and iDTs. The influence of different pooling and normalization strategy, and fusion methods will be investigated in the following sections.

4.4.1. Encoding methods selection and setting

We select six popular encoding methods according to the categorization in Table 1. For voting based encoding methods, we choose VQ as a baseline and SA-k as a representative method. LLC is selected as the representative of reconstruction-based encoding methods due to its computational efficiency and performance (Wang et al., 2012). Supervector based encoding methods have shown the state-of-the-art performance on several datasets (Wang and Schmid, 2013a). We choose three supervector based encoding methods for evaluation, namely FV, VLAD, and SVC.

Baseline: Vector Quantization Encoding (VQ). In the baseline method, each descriptor is quantized into a single codeword. Following the suggested settings in object recognition (Zhang et al., 2007), the final histogram is obtained by sum pooling and normalized with $\ell_2$ norm.

Localized Soft Assignment Encoding (SA-k). In the localized soft assignment, each descriptor is assigned to its corresponding $k$ nearest neighborhood. It requires a single parameter $\beta$, which is the smoothing factor controlling the softness. According to Liu et al. (2011), we set $\beta$ as 1 and $k$ as 5 in our evaluation. We use max pooling and $\ell_2$-normalization.

Locality-constrained Linear Encoding (LLC). Following Wang et al. (2010), we use approximated LLC for fast encoding, where we simply use $k$ nearest neighborhood of descriptor as the local bases. The parameter of $k$ is set as 5, and we choose max pooling and $\ell_2$-normalization strategy.

Fisher Vector (FV). For GMM training, we use the $k$-means result to initialize iteration and the covariance matrix of each mixture is set as a diagonal one. Following Perronnin et al. (2010), we use sum pooling and power $\ell_2$-normalization.

Vector of Locally Aggregated Vector (VLAD). VLAD was originally designed for image retrieval in Jégou et al. (2012) and can be viewed as a simplified version FV for fast implementation. Just like FV, we choose sum pooling and power $\ell_2$-normalization.

Super Vector Coding (SVC). From the view of statistics, SVC can be viewed as a combination of VQ and VLAD. It contains the zeros and first-order statistics, and the parameter $\alpha$ keeps balance between these two components. Following Zhou et al. (2010), we
set $\alpha$ as 0.1. Like other supervector based encoding methods, we choose sum pooling and power $\ell_2$-normalization.

Results and analysis. The experimental results of STIPs and iDTs on the three datasets are shown in Fig. 6. Several rules can be found from these experimental results:

- Basically, the recognition performance of all selected encoding methods increases as the size of codebook (GMM) becomes larger, and it reaches a plateau when the size exceeds a threshold. For supervector based encoding methods, the performances reach a saturation when the size of codebook (GMM) becomes 256 for both STIPs and iDTs. There is a slight change of the recognition rate when GMM size grows from 256 to 512. For the other two types of encoding methods, the performances are saturated as the size of codebook reaches 8000. We also notice that these encoding methods using iDTs have slight improvements when the codebook size varies from 8000 to 20,000, while the performances using STIPs start shaking when the codebook size becomes larger than 8000 due to the over-fitting effect. This difference may be ascribed to the dimension of local descriptors and sampling strategy. The descriptors’ dimension of iDTs is twice of STIPs’ and requires more codewords to divide the feature space. Meanwhile, STIPs are a set of interest points and the extracted descriptors distribute sparsely in the feature space. The codebook with large size will result in an over-partition of feature space, which means for a specific
video, there may be no descriptors falling into the corresponding regions for some codewords. iDTs are more densely sampled features and codebook with large size is more suitable to divide the space of dense features. Above all, for a good balance between performance and efficiency, sizes of 256 and 8000 are good choices for supervisor based encoding and other encoding respectively.

- For local features of both STIPs and iDTs, supervisor based encoding methods outperform the other types of encoding methods on the three datasets. According to previous introduction, these supervisor encoding methods not only preserve the affiliations of descriptors to codewords, but also keep high order information such as the difference of means and variances. These high order information enables the encoding methods to better capture the distribution shape of descriptor in feature space. In these supervisor based methods, FV is typically better than VLAD and SVC, whose performance is quite similar. This can be due to two facts: (i) FV keeps both first order and second order statistics, which is more informative than VLAD (only first statistics) and SVC (0th statistics and first statistics). (ii) FV is based on GMM and each descriptor is softly assigned to codewords using posterior probability, while VLAD and SVC are based on k-means results and use hard assignment. We also notice that the difference between FV and the other two methods (VLAD, SVC) for iDTs seems smaller than STIPs. The more dense descriptors may make the learned codebook more stable for SVC and VLAD, and reduce the influence of soft assignment in FV. Meanwhile, the information contained in second statistics may be less complementary to first statistics for iDTs. In conclusion, supervisor based representation, via aggregating high order information, is a more suitable choice for good performance, when the high dimension of representation is acceptable.

- For reconstruction based and voting based encoding methods, VQ reaches the lowest recognition rate for STIPs and iDTs on the three datasets. This can be ascribed to the hard assignment and descriptor ambiguity in the VQ method. In essence, the LLC and SA-k are quite similar in spirit, for that they both consider locality when mapping descriptor into codeword. The performance of LLC is better than SA-k for STIPs, while the performances of them are almost the same for iDTs. This can be explained by the mapping strategy in LLC and SA-k. The mappings of a descriptor to the k nearest codewords in LLC are determined jointly according to their effect in minimizing the reconstruction error, while the mappings in SA-k are calculated independently for each individual codeword according to the Euclidean distance. The mapping method in LLC may be more effective to deal with manifold structure than just considering Euclidean distance in SA-k. For sparse features such as STIPs, the descriptors distribute sparsely around each codeword, and using Euclidean distance may introduce noise and instability for SA-k. For dense features such as iDTs, the descriptors are usually sampled densely and more compact around codewords. As a result, they can reduce the influence caused by the usage of Euclidean distance. In a word, compared with hard assignment, locality and soft assignment is an effective strategy to improve the performance of encoding methods.

- STIPs and iDTs represent two types of local features, namely sparsely-sampled and densely-sampled features. In general, they exhibit consistent performance trends for different encoding methods. For example, supervisor encoding methods outperform others, and soft-assignment is better than hard-assignment. However, there is a slight difference between them in some aspects, such as sensitivity to codebook size and encoding methods, performance gaps among supervisor based methods, difference between LLC and SA-k, as previously observed. From the perspective of data manifold, the more densely-sampled features can help us more accurately describe the data structure in the feature space. We can obtain a more compact clustering result using k-means, and the local Euclidean distance is more stable. Thus, when choosing codebook size and encoding method, the type of local feature can be a factor needed to be considered.

4.4.2. Computational costs

We also compare the efficiency of different encoding methods. The running time is shown in Fig. 7. Our codes are all implemented in Matlab and run on a workstation with 2 × Intel Xeon 5560 2.8 GHz CPU and 32 G RAM. We randomly sample 50 videos from the UCF101 dataset and report the total time for these videos. For supervisor based methods, FV is much slower due to the calculation of posterior probability during encoding, and the time of VLAD and SVC is almost the same. For the other types of encoding methods, LLC is less efficient as it solves a least square problem. The computational cost of supervisor encoding methods are usually lower than that of the other types of encoding methods, due to their smaller codebook sizes.

Based on the above analysis, supervisor based encoding methods are more promising for high performance and fast implementation, especially for SVC and VLAD. However, the feature dimension of supervisor methods is much higher than the other two kinds of encoding methods, for example, when the codebook size is 256, the dimension of FV and VLAD is 102,400 and 51,200 respectively for iDT features. The effective dimension reduction may be a future research direction for supervisor encoding methods.

4.5. Exploration of pooling and normalization

In this section, we mainly investigate the influence on recognition rate for different pooling and normalization strategies on the UCF101 dataset. Based on the performances of different encoding methods on the UCF101 dataset in previous section, we choose the codebook size for each codebook as 512 for supervisor based methods and codebook size as 8000 for the other two types of encoding approaches. Meanwhile, according to our conclusion that supervisor based encoding is a promising method and soft assignment is an effective way to improve the encoding methods, we extend VLAD to VLAD-k and VLAD-all, SVC to SVC-k and SVC-all as described in Section 2.4.4. Thus, there are totally 10 kinds of encoding methods.

For supervisor based encoding methods, we evaluate eight normalization methods, specified by with or without intra-normalization, with or without power operation, and final $\ell_1$ or $\ell_2$ normalization. For the other two types of encoding methods, we choose two pooling methods, namely max pooling and sum pooling, and four normalization methods, namely $\ell_1$-normalization, $\ell_2$-normalization, power $\ell_1$-normalization, and power $\ell_2$-normalization. In our evaluation, the parameter $\alpha$ in power normalization is set as 0.5.

The experimental results are shown in Figs. 8 and 9. Several observations can be concluded from these results:

- For supervisor based encoding methods, intra-normalization is an effective way to balance the weight of different codewords and suppress the burst of features corresponding to background. We found this technique works very well when dense features are chosen. A large number of features in iDTs are irrelevant with the action class and intra-normalization can suppress this influence. However, for sparse features, the effect

---

5 The Matlab and Python code are publicly available at http://xjpeng.weebly.com/software.html.
of intra-normalization is not so evident, and even cause performance degradation in the case of hard assignment such as VLAD and SVC. We ascribe this phenomenon to the fact that the STIPs features are usually located in the moving foreground and related with action class. Thus, these descriptors only vote for a subset of codewords, that are highly related with action class. In this case, intra-normalization can decrease the discriminative power of action-related codewords and increase the influence of irrelevant codewords. In conclusion, intra-normalization is effective in handling burst of irrelevant features in the case of dense-sampling strategy.

• For different encoding methods and local features, we observe that the final $\ell_2$-normalization outperforms $\ell_1$-normalization. In fact, the normalization method is related to kernel used in final classifier. In our case of linear SVM, the kernel is $k(x, y) = x^\top y$. The choice of $\ell_2$-normalization can ensure two things: (i) $k(x, x) = \text{const}$.; (ii) $k(x, x) \geq k(x, y)$. This can guarantee a simple consistency criterion by interpreting $k(x, y)$ as a similarity score, $x$ should be the most similar point to itself (Vedaldi and Zisserman, 2012). However, the choice of $\ell_1$-normalization can not make sure that the point is most similar to itself and may cause the instability during SVM training. Above all,
\( \ell_2 \)-normalization generally outperforms \( \ell_1 \)-normalization when using linear SVM.

- The influence of power operation in normalization is highly related to pooling methods. We observe that power normalization is an effective approach to boost the performance of representation obtained from sum pooling, such as supervector based representation, LLC, and SA-k with sum pooling. However, power normalization has little effect for max pooling and sometimes even causes the performance degradation for LLC, SA-k. The operation of power usually reduces the difference between different codewords, which means smoothing the histogram. This smooth effect can reduce the influence of high frequent codeword on the kernel calculation and improve the influence of less frequent codeword. For sum pooling, the resulting histogram is usually very sharp and unbalanced due to feature burst, and the smooth operation has a positive effect for suppress the high frequent codeword. However, for max pooling, the histogram is itself not so sharp as sum pooling, and thus the power normalization may have a side effect. In above, power operation is an effective strategy to smooth the resulting histogram and can greatly improve the performance of sum pooling representation.

- Among different choices of pooling operations and normalizations methods, we conclude that sum pooling and power \( \ell_2 \)-normalization is the best combination. For dense features, intra normalization is an extra bonus for performance boosting. For sparse features, intra normalization sometimes may have a negative effect. The success of sum pooling and power \( \ell_2 \)-normalization can be explained by the Hellinger’s kernel \( \text{Vedaldi and Zisserman (2012)} \), which has turned out to be an effective kernel to calculate the similarity between two histograms. The linear kernel calculation in the feature space resulting from power \( \ell_2 \)-normalization is equivalent to the Hellinger’s kernel calculation in the original space using \( \ell_1 \) normalisation:

\[
\sqrt{\frac{X}{||X||_2}} \cdot \sqrt{\frac{Y}{||Y||_2}} = \sqrt{\frac{x}{||x||_1}} \cdot \sqrt{\frac{y}{||y||_1}},
\]

which means power \( \ell_2 \)-normalization explicitly introduces non-linear kernel in the final classifier. In a word, sum pooling and power \( \ell_2 \)-normalization is an effective and efficient way to enable linear SVM to have the power of non-linear classifier and boost final recognition rate.

In conclusion, pooling and normalization is a crucial step in the pipeline of a BoVW framework, whose importance may not be highlighted in previous research work. Proper choice of pooling and normalization strategy may largely reduce the performance gap of different encoding methods. For sum pooling and power \( \ell_2 \)-normalization, which is the best combination in all these possible choices, the performances of LLC, SA-k, and VQ are comparable to each other for iDTs features. Adding intra-normalization after power operation boosts performance for supervector based encoding methods with iDTs features.

4.6. Exploration of fusion methods

The local features usually have multiple descriptors, such as HOG, HOF, MBHx, and MBHy, each of which corresponds to a specific view of video data. For the empirical study in previous section, we choose a simple method to combine these multiple descriptors, where we just concatenate them into a single one, namely descriptor level fusion. In this section, we mainly analyze the influence of different fusion methods on final recognition performance.

For encoding methods, we choose the same ten approaches as in previous section. The codebook size of supervector based methods is set as 512 and the one of other encoding methods is set as 8000. For pooling and normalization methods, we use sum pooling and power \( \ell_2 \)-normalization, according to the observations in Section 4.5. We also apply intra-normalization after power operation for supervector based encoding methods with iDTs features which shows better results than only using power \( \ell_2 \) normalization (see Fig. 9). For fusion methods, we evaluate three kinds of methods, namely descriptor level fusion, representation level fusion, and score level fusion, as described in Section 3. For score level fusion, we use the geometrical mean to combine the scores from multiple SVMs.

The experimental results on three datasets are shown in Tables 2, 3, and 4. From these results, we observe several trends:

- For iDTs features, representation level fusion is the best choice for all of the selected encoding methods on the three datasets. This result indicates that these multiple descriptors are most correlated in the video level. Descriptor level fusion emphasizes the dependance in cuboid and results in high dimension features for codebook training and encoding. This may make these unsupervised learning algorithm unstable.

- For STIPv features, representation level fusion is more effective for reconstruction based and voting based encoding methods. For supervector based encoding methods, the performance of representative level fusion is comparable to that of descriptor level fusion. This trend is consistent with the finds with iDTs features.

- For both features, SA-k, LLC, and VQ encoding methods are much more sensitive to fusion methods than those supervector based encoding methods. Great improvement can be obtained for SA-k, LLC, and VQ by using representation level fusion, but slight improvements happen to those supervector methods. We analyze that this is due to two facts. Firstly, for reconstruction and voting based encoding methods, the final dimension of representation level fusion is \( M \) (the number of descriptors) times of the dimension of descriptor level fusion. However, for supervector based encoding methods, the dimension of descriptor level fusion is the same with representation level fusion. The higher dimension of final representation may enable SVM to classify more easily. Secondly, the codebook size \( K \) of supervector methods is much smaller than that of other types of encoding methods, where clustering algorithm may be more stable for high dimensionality in descriptor level fusion method.

Based on the above observation and analysis, we conclude that fusion method is a very important component for handling combination of multiple descriptors in the action recognition system. Representation level fusion method is a suitable choice for different kinds of encoding methods due to its good performance. From our analysis, we know that the performance boosting of fusing multiple features mainly possesses the complementarity of these features. This complementarity may be not limited to the exploration of different descriptors, but also can be extended to the different BoVWs. From the perspective of statistics, FV aggregates information using first and second order statistics, while SFC is about zero and first order statistics. Intuitively, these two kinds of supervector encoding methods are complementary to each other. Thus, we present a new feature representation, called Hybrid Supervector (HSV). HSV combines the outputs FV and soft version SFC of multiple descriptors, including HOG, HOF, MBHx, and MBHy. This representation is simple but proved to be effective in next section.
4.7. Comparison

In this section, we demonstrate the effectiveness of our proposed HSV according to our previous insightful analysis. Specifically, we choose two supervisor based encoding methods, namely SVC-k and FV, for iDTs features. We use the power operation and then intra $\ell_2$-normalization. For feature fusion, we adopt the representation level fusion method. We also try spatial-temporal pyramid (STP) with $k \times k \times l$ cells where $k \in \{1, 2\}$ and $l = 2$ as suggested in Lan and Hauptsamt (2015).

Table 5 shows our final recognition rates and compares our results to that of state-of-the-art approaches. The best results we obtained are 61.9%, 87.9%, and 92.3% for HMDB51, UCF101, and UCF50, respectively. Spatial-temporal pyramid slightly improves the result of HMDB51 dataset by our experimental study. The main reason may be that there are no fixed spatial-temporal layouts for actions in videos especially for those from Youtube (i.e., UCF101 and UCF50). Given traditional BoVW pipeline and iDTs, our results outperform the best result (Wang and Schmid, 2013a) by 3.9%, 2%, and 1% respectively. Peng et al. (2014b) proposed a stacked FVs (from local large volumes) and got the state of the art by combining with the traditional Fisher vectors but their stacked FVs is very high in computational cost. The last three rows in Table 5 present those methods based on convolutional neural networks (CNN). Among them, Wang et al. (2015) applied a trajectory-based pooling stra-
Table 5 Comparison our hybrid supervector with the state-of-the-art methods.

| Method            | HMDDB51 | UCIF01 | UCIF05 |
|-------------------|---------|--------|--------|
| Kuehne et al. (2011) | 23.0    | 43.9   | 57.9   |
| Kliper-Gross et al. (2012) | 29.2    | 83.5   | 73.7   |
| Jiang et al. (2012) | 40.7    | 84.2   | 76.9   |
| Wang et al. (2013c) | 42.1    | 84.2   | 78.4   |
| Wang et al. (2013a) | 46.6    | 85.4   | 84.5   |
| Peng et al.        | 49.2    | 85.7   | 85.7   |
| Wang and Schmid (2013a) | 57.2    | 85.9   | 91.1   |
| Peng et al. (2014b) | 66.8    | 85.9   | 91.1   |
| Our HSV            | 61.1    | 87.9   | 92.3   |
| Our HSV+STP        | 61.9    | 87.2   | 92.1   |
| Methods with CNN features |       |        |        |
| Simonyan and Zisserman (2014) | 59.4    | 88.0   |        |
| Wang et al. (2015) | 65.9    | 91.5   |        |
| Sun et al. (2015)  | 59.1    | 91.5   |        |

References

Aggarwal, J.K., Ryoo, M.S., 2011. Human activity analysis: a review. ACM Comput. Surv. 43 (2), 16.
Arandjelovic, R., Zisserman, A., 2013. All about VLAD. In: CVPR, pp. 1578–1585.
Bishop, C.M., 2006. Pattern Recognition and Machine Learning (Information Science and Statistics). Springer-Verlag New York, Inc., Secaucus, NJ, USA.
Boureau, Y.L., Ponce, J., LeCun, Y., 2010. A theoretical analysis of feature pooling in visual recognition. In: ICML, pp. 111–118.
Bruckstein, A.M., Donoho, D.L., Elad, M., 2009. From sparse solutions of systems of equations to sparse modeling of signals and images. SIAM Rev. 51 (1), 34–81.
Cai, Z., Wang, L., Peng, X., Qiao, Y., 2014. Multi-view super vector for action recognition. In: CVPR.
Campbell, L.W., Bobick, A.F., 1995. Recognition of human body motion using phase space constraints. In: ICCV, pp. 624–630.
Chang, C.-C., Lin, C.-J., 2011. LIBSVM: a library for support vector machines. ACM TIST 2 (3), 27.
Chafﬁeld, K., Lempeisky, V.S., Vedaldi, A., Zisserman, A., 2011. The devil is in the details: an evaluation of recent feature encoding methods. In: BMVC, pp. 1–12.
Chéron, G., Laptev, I., Schmid, C., 2015. P-CNN: Pose-based CNN Features for Action Recognition. In: ICCV. Santiago, Chile.
Dollar, P., Rabaud, V., Cottrell, G., Belongie, S., 2005. Behavior recognition via sparse spatio-temporal features. In: VS-PETS.
Gehrler, P.V., Nowozin, S., 2009. On feature combination for multiclass object classiﬁcation. In: ICCV, pp. 221–228.
Huang, Y., Huang, K., Yu, Y., Tan, T., 2011. Salient coding for image classiﬁcation. In: CVPR, pp. 1753–1760.
Huang, Y., Wu, Z., Wang, L., Tan, T., 2014. Feature coding in image classiﬁcation: A comprehensive study. IEEE Trans. Pattern Anal. Mach. Intell. 36 (3), 493–506.
Jaakkola, T., Haussler, D., 1998. Exploiting generative models in discriminative classiﬁcation: Naive Bayes models. In: NIPS, pp. 487–493.
Jégou, H., Perronnin, F., Douze, M., Sánchez, J., Pérez, P., Schmid, C., 2012. Aggregating local image descriptors into compact codes. IEEE Trans. Pattern Anal. Mach. Intell. 34 (9), 1704–1716.
Jiang, Y.-C., Dai, Q., Xue, X., Liu, W., Ngo, C.-W., 2012. Trajectory-based modeling of human actions with motion reference points. In: ECCV, pp. 425–438.
Johnson, S.C., 1967. Hierarchical clustering schemes. Psychometrika 32 (3), 241–254.
Karaman, S., Seidenari, L., Bagdanov, A.D., Bimbo, A.D., 2013. L1-regularized logistic regression stacking and transductive CRF smoothing for action recognition in video. In: ICCV Workshop on Action Recognition with a Large Number of Classes.
Karpathy, A., Toderici, G., Shetty, S., Leung, T., Sukhahankar, R., Fei-Fei, L., 2014. Large-scale video classification with convolutional neural networks. In: CVPR.
Klaser, A., Marszalek, M., Schmid, C., 2008. A spatio-temporal descriptor based on 3D-gradients. In: BMVC. British Machine Vision Association 275–1.
Kliper-Gross, O., Gurovic, Y., Hassner, T., Wolf, L., 2012. Motion interchange patterns for action recognition in unconstrained videos. In: ECCV.
Krizhevsky, A., Sutskever, I., Hinton, G.E., 2012. Imagenet classiﬁcation with deep convolutional neural networks. In: NIPS, pp. 1097–1105.
Kuehne, H., Jiang, H., Garrote, E., Poggio, T., Serre, T., 2011. HMDIR: A large video database for human motion recognition. In: ICCV, pp. 2556–2563.
Lan, Z., Hauptmann, A.G., 2015. Beyond spatial pyramid matching: Space-time extended descriptor for action recognition. arXiv preprint arXiv:1510.04565.
Laptev, I., 2005. On space-time interest points. Int. J. Comput. Vis. 64 (2–3), 107–123.
Laptev, I., Marszalek, M., Schmid, C., Rozenfeld, B., 2008. Learning realistic human actions from movies. In: CVPR, pp. 1–8.
Lazebnik, S., Schmid, C., Ponce, J., 2006. Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories. In: CVPR, pp. 2169–2178.
Lee, H., Battle, A., Raina, R., Ng, A.Y., 2006. Efficient sparse coding algorithms. In: NIPS, pp. 801–808.
Liu, L., Wang, L., Liu, X., 2011. In defense of soft-assignment coding. In: ICCV, pp. 2486–2493.

egy for CNN features which provides the state of the arts on both HMDDB51 and UCIF01 datasets.

5. Conclusion

In this paper, we have comprehensively studied each step in the BoVW pipeline and tried to uncover good practices to build an effi- cient action recognition system. Speciﬁcally, we mainly explore ﬁve aspects, namely local features, pre-processing techniques, encoding methods, pooling and normalization strategies, fusion methods. From our extensive study of different components in the BoVW pipeline, a number of good practices can be concluded as follows:

• iDTs with more descriptors are more informative than STIPs in capturing the content of video data and suitable for action recognition. Meanwhile, iDTs exhibit different properties with STIPs w.r.t. variations of BoVW such as codebook size and encoding methods.

• Data pre-processing is an important step in a BoVW pipeline and able to greatly improve the ﬁnal recognition performance.

• Basically, the high dimensional representation of supervector based methods makes it more effective and efﬁcient than voting based and reconstruction based encoding methods.

• Pooling and normalization is a crucial step in BoVW, whose importance may not be highlighted in previous studies. Sum pooling with power $r_2$-normalization is the best choice during all the possible combinations, and we provide theoretical evidence in the paper. Adding intra-normalization after power operation boosts performance for supervector based encoding methods with iDTs.

• In above, every step is crucial for contributing to the ﬁnal recognition rate. Improper choice in one of the steps may counteract the performance improvement of other steps.

Finally, based on the insights from our comprehensive study, we propose a simple yet effective representation, called hybrid supervector which outperforms the other traditional BoVW pipelines.

Acknowledgements

This work is partly supported by Natural Science Foundation of China (No. 61502152), the Open Projects Program of National Laboratory of Pattern Recognition, Guangdong Innovative Research Program (201001D010464820, 2014B050505017, 2015B010129013), and Shenzhen Basic Research Program (JCYJ2015033117354153, JCYJ20120903092050890, JCYJ20130402113127496).

Figure 5 (a) shows the representation of BoVW. The original video frames are first divided into patches, and each patch is transformed into a 124-dimensional vector. Then we can form a 124-dimensional BOVW vector based on the patch vectors. Figure 5 (b) shows the representation of supervector. The original video frames are first divided into patches, and each patch is transformed into a 124-dimensional vector. Then we can form a 124-dimensional supervector based on the patch vectors. The supervector is more robust to changes in the video frames.
Murthy, O.V.R., Goecke, R. 2013. Combined ordered and improved trajectories for large scale human action recognition. In: ICCV Workshop on Action Recognition with a Large Number of Classes.

Myers, G.K., Nallapati, R., van Hout, J., Pancoast, S., Nevatia, R., Sun, C., Habibian, A., Koelma, D., de van Sande, K.E.A., Smelsdiers, A.W.M., Snoek, C.G.M., 2014. Evaluating multimedia features and fusion for example-based event detection. Mach. Vis. Appl. 25 (1), 17–32.

Ng, A.Y., Jordan, M.J., Weiss, Y. 2001. On spectral clustering: Analysis and an algorithm. In: NIPS, pp. 849–856.

Niyogi, S.A., Adelson, E.H. 1994. Analyzing and recognizing walking figures in XVT. In: CVPR, pp. 469–474.

Peng, X., Qiao, Y., Peng, Q., Xi, X., Exploring motion boundary based sampling and spatial-temporal context descriptors for action recognition. In: BMVC, pp. 1–11.

Peng, X., Wang, L., Cai, Z., Qiao, Y., Peng, Q., 2013. Hybrid super vector with improved dense trajectories for action recognition. ICCV Workshop on Action Recognition with a Large Number of Classes.

Peng, X., Wang, L., Qiao, Y., Peng, Q., 2014a. A joint evaluation of dictionary learning and feature encoding for action recognition. In: ICPR, IEEE, pp. 2607–2612.

Peng, X., Zou, C., Qiao, Y., Peng, Q., 2014b. Action recognition with stacked fisher vectors. In: ECCV. Springer, pp. 581–595.

Perronnin, F., Sánchez, J., Mensink, T. 2010. Improving the fisher kernel for large-scale image classification. In: ECCV, pp. 143–156.

Reddy, K.K., Shah, M. 2013. Recognizing 50 human action categories of web videos. Mach. Vis. Appl. 24 (4), 971–981.

Sadanand, S., Corso, J.J. 2012. Action bank: A high-level representation of activity in video. In: CVPR.

Simonyan, K., Zisserman, A. 2014. Two-stream convolutional networks for action recognition in videos. In: NIPS, pp. 568–576.

Sivic, J., Zisserman, A. 2003. Video google: A text retrieval approach to object matching in videos. In: ICCV, pp. 1470–1477.

Solniz, R., Assari, S.M., Shah, M. 2013. Classifying web videos using a global video descriptor. Mach. Vis. Appl. 24 (7), 1473–1485.

Soomro, K., Zamir, A.R., Shah, M. 2012. UFCF01: a dataset of 101 human actions classes from videos in the wild. CoRR abs/1212.0402.

Sun, L., Jia, K., Yeung, D.Y., Shi, B.E. 2015. Human action recognition using factorized spatio-temporal convolutional networks. In: CVPR, pp. 4597–4605.

Sun, Z., Amorponpunt, N., Varma, M., Vishwanathan, S., 2010. Multiple kernel learning and the smo algorithm. In: NIPS, pp. 2361–2369.

Tamrakar, A., Ali, S., Yu, Q., Liu, J., Javed, O., Divakaran, A., Cheng, H., Sawhney, H. 2012. Evaluation of low-level features and their combinations for complex event detection in open source videos. In: CVPR, pp. 3681–3688.

Tang, K.D., Yao, B., Li, F.F., Koller, D. 2013. Combining the right features for complex event recognition. In: ICCV, pp. 2696–2703.

Tropp, J.A., Gilbert, A.C. 2007. Signal recovery from random measurements via orthogonal matching pursuit. IEEE Trans. Inf. Theory 53 (12), 4655–4666.

Turaga, P.K., Chellappa, R., Subrahmanian, V.S., Udrea, O. 2008. Machine recognition of human activities: a survey. IEEE Trans. Circuits Syst. Video Techn. 18 (11), 1473–1488.

van Gemert, J., Veenman, C.J., Smeulders, A.W.M., Geusebroek, J.-M. 2010. Visual word ambiguity. IEEE Trans. Pattern Anal. Mach. Intell. 32 (7), 1271–1283.

Vedaldi, A., Gulshan, V., Varma, M., Zisserman, A. 2009a. Multiple kernels for object detection. In: ICCV, pp. 606–613.

Vedaldi, A., Gulshan, V., Varma, M., Zisserman, A. 2009b. Multiple kernels for object detection. In: ICCV, pp. 606–613.