Abstract. Sommese has conjectured a classification of smooth projective varieties X containing, as an ample divisor, a \mathbb{P}^d-bundle Y over a smooth variety Z. This conjecture is known if $d > 1$, if $\dim(X) \leq 4$, or if Z admits a finite morphism to an Abelian variety. We confirm the conjecture if the Picard rank $\rho(Z) = 1$, or if Z is not uniruled. In general we reduce the conjecture to a conjectural characterization of projective space: namely that if W is a smooth projective variety, E is an ample vector bundle on W, and $\text{Hom}(E, T_W) \neq 0$, then $W \simeq \mathbb{P}^n$.

1. Introduction

Beltrametti and Sommese give a conjectural classification of smooth projective varieties X containing a \mathbb{P}^d-bundle as an ample divisor [4, Conjecture 5.5.1]. The main goal of this paper is to prove this conjecture in the case where X has minimal Picard rank,

$$\rho(X) = 2.$$

Throughout the paper we work over \mathbb{C}; the phrase “\mathbb{P}^d-bundle,” will be taken to mean a \mathbb{P}^d-bundle locally trivial in the analytic topology.

The conjecture is:

Conjecture 1. Let X be a smooth projective variety and $Y \subset X$ a smooth ample divisor. Suppose that $p : Y \to Z$ is a morphism exhibiting Y as a \mathbb{P}^d-bundle over a b-dimensional manifold Z. Then one of the following holds:

1. $X \simeq \mathbb{P}^3$, $Y \simeq \mathbb{P}^1 \times \mathbb{P}^1$ is a smooth quadric, and p is one of the projections to \mathbb{P}^1.
2. $X \simeq Q^3 \subset \mathbb{P}^4$ is a smooth quadric threefold, $Y \simeq \mathbb{P}^1 \times \mathbb{P}^1$ is a hyperplane section, and p is a projection to one of the factors.
3. $Y \simeq \mathbb{P}^1 \times \mathbb{P}^b$, $Z \simeq \mathbb{P}^b$, $p : Y \to Z$ is the projection to the second factor, and X is the projectivization of an ample vector bundle E on \mathbb{P}^1.
4. $X \simeq \mathbb{P}(E)$ for an ample vector bundle E on Z, and $\mathcal{O}_X(Y) \simeq \mathcal{O}_{\mathbb{P}(E)}(1)$ (i.e. Y is a fiberwise hyperplane).
Sommese has proven Conjecture 1 in the case where $d \geq 2$ (see e.g. [4, Theorem 5.5.2]). The conjecture has also been proven under the assumption that $d = 1$ and $b := \dim(Z) \leq 2$, due to the work of several authors (see e.g. [3, Theorem 7.4] and the references therein). We prove the conjecture in the case where

$$\rho(Z) = 1,$$

(if $\dim(X) \geq 4$, this is equivalent to $\rho(X) = 2$) and in general reduce it to a plausible conjectural improvement of a result of Andreatta–Wisniewski [1], namely

Conjecture 2. Let X be a smooth projective variety and \mathcal{E} an ample vector bundle on X. If

$$\text{Hom}(\mathcal{E}, T_X) \neq 0,$$

then $X \cong \mathbb{P}^n$.

We also prove the Conjecture 1 in the case that Z is not uniruled.

Remark 3. By [1], the existence of a map $\mathcal{E} \to T_X$ of constant rank implies $X \cong \mathbb{P}^n$; likewise, [2, Corollary 4.3] proves the conjecture if $\rho(X) = 1$. One may also use the methods of [2, Section 4] to prove the conjecture if there exists a map $\mathcal{E} \to T_X$ generically of maximal rank.

The idea of our argument is to show (via an analysis of the deformation theory of the map $p : Y \to Z$) that either p extends to a map $\tilde{p} : X \to Z$ (using results of [7,8]), or there is an ample vector bundle \mathcal{E} on Z and a map $\mathcal{E} \to T_Z$. In the former case, we are done by work of Sommese; in the latter case, we may apply Conjecture 2 to proceed.

2. The Proof

We first show:

Lemma 4. As before, let X be a smooth projective variety, $Y \subset X$ a smooth ample divisor, and $p : Y \to Z$ a \mathbb{P}^1-bundle. Let \tilde{Y} be the formal scheme obtained by completing X at Y. If $p : Y \to Z$ does not extend to a morphism $\tilde{p} : \tilde{Y} \to Z$, then there exists an ample vector bundle \mathcal{E} on Z and a non-zero morphism $\mathcal{E} \to T_Z$.

Proof. Let \mathcal{I}_Y be the ideal sheaf of Y, and let Y_n be the subscheme of X cut out by \mathcal{I}_Y^n. Then the obstruction to extending a map

$$p_n : Y_n \to Z$$

(1)

to a map

$$Y_{n+1} \to Z$$

(2)

lies in

$$\text{Ext}^1(p^*\Omega^1_Z, \mathcal{I}_Y^n / \mathcal{I}_Y^{n+1}) = H^1(Y, p^*T_Z \otimes \mathcal{I}_Y^n / \mathcal{I}_Y^{n+1}).$$
(See e.g. [8, Theorem 4.3] for this deformation-theoretic computation.) This last is equal to

$$H^1(\mathcal{R}p_*(p^*T_Z \otimes J^n_Y / J^{n+1}_Y))$$

which is the same as

$$H^1(T_Z \otimes R^1p_*J^n_Y / J^{n+1}_Y)$$

by the projection formula. As J^n_Y / J^{n+1}_Y is anti-ample, this last equals

$$H^0(T_Z \otimes R^1p_*J^n_Y / J^{n+1}_Y).$$

Applying Serre duality, we see that this is the same as

$$H^0(T_Z \otimes (p_*(\mathcal{O}(nY)|_Y \otimes \omega_{Y/Z}))^\vee) \cong \text{Hom}(p_*(\omega_{Y/Z} \otimes \mathcal{O}(nY)|_Y), T_Z).$$

But by [9, Theorem 1.2],

$$p_*(\omega_{Y/Z} \otimes \mathcal{O}(nY)|_Y)$$

is either zero or ample. Thus either the problem of extending p to \widehat{Y} is unobstructed, or the obstruction is a non-zero map from an ample vector bundle \mathcal{E} on Z to T_Z, as desired.

We will also require:

Lemma 5. Let X be a smooth projective variety of dimension at least 3, and $Y \subset X$ an ample divisor. Let Z be a smooth variety with $\dim(Z) < \dim(Y)$. Then the restriction map

$$\text{Hom}(X, Z) \to \text{Hom}(\widehat{Y}, Z)$$

is a bijection. Here \widehat{Y} is, as before, the formal scheme obtained by completing X at Y.

Proof. This is a combination of two results from [8]. First, by [8, Corollary 2.10] or [7, Corollary 2.2.3], applied to the projection $X \times Z \to X$, a map $p : \widehat{Y} \to Z$ extends uniquely to some Zariski-open neighborhood U of Y. Second, by [8, Corollary 3.3] or [7, Corollary 3.1.3], this rational map to Y is in fact regular.

Corollary 6. Let X, Y, Z, p be as in Conjecture 1. Suppose that either

1. Z is not uniruled, or
2. $\rho(Z) = 1$.

Then Conjecture 1 is true for X, Y, Z, p.

Proof. Without loss of generality, p has relative dimension 1 (i.e. it exhibits Y as a \mathbb{P}^1-bundle over Z) as the case of relative dimension greater than 1 is already known [4, Theorem 5.5.2]. We may also assume $\dim(Z) > 2$, as again, if $\dim(Z) \leq 2$, the result is already known [3, Theorem 7.4].

By Lemma 4, either p extends to a map $\hat{p} : \hat{Y} \to Z$ or T_Z contains an ample subsheaf, namely the image of \mathcal{O} from Lemma 4. In the former case, the map p extends to a map $\tilde{p} : X \to Z$ by Lemma 5 and we are done by [3, Theorem 5.5(ii)] (in particular, we are in case (4) of the conjecture). In the latter case, we consider the situations

1. Z not uniruled, or
2. $\rho(Z) = 1$

separately.

(1) Suppose Z is not uniruled. Then T_Z contains no ample subsheaves by a result of Miyaoka (see e.g. [6, IV.1.16]), so we have a contradiction.

(2) Alternately, suppose $\rho(Z) = 1$. Then as T_Z contains an ample subsheaf, by [2, Corollary 4.3], $Z \cong \mathbb{P}^n$. By [5, Theorem 2.1] (using that $\dim(Z) > 2$) we conclude the result, namely that we are in case (3) of the conjecture. □

Corollary 7. Suppose that Conjecture 2 is true. Then Conjecture 1 holds as well.

Proof. This is the same argument as in the $\rho(Z) = 1$ case above, replacing the reference to [2] with Conjecture 2. □

Acknowledgements This note owes a debt to conversations with Tommaso de Fernex, Paltin Ionescu, and Jason Starr. I also owe a debt to Patrick Graf for interesting discussions and for answering a related MathOverflow question of mine. It was written with support from an NSF Postdoctoral Fellowship.

References

[1] Andreatta, M., Wiśniewski, J.A.: On manifolds whose tangent bundle contains an ample subbundle. Invent. Math. 146(1), 209–217 (2001)
[2] Aprodu, M., Kebekus, S., Peternell, T.: Galois coverings and endomorphisms of projective varieties. Math. Z. 260(2), 431–449 (2008)
[3] Beltrametti, M.C., Ionescu, P.: A view on extending morphisms from ample divisors. In Interactions of Classical and Numerical Algebraic Geometry, vol. 496 of Contemp. Math., pp. 71–110. Am. Math. Soc., Providence, RI (2009)
[4] Beltrametti, M.C., Sommese, A.J.: The Adjunction Theory of Complex Projective Varieties, vol. 16 of de Gruyter Expositions in Mathematics. Walter de Gruyter & Co., Berlin (1995)
[5] Fania, M.L., Sato, E., Sommese, A.J.: On the structure of 4-folds with a hyperplane section which is a \mathbb{P}^1 bundle over a surface that fibres over a curve. Nagoya Math. J. 108, 1–14 (1987)
[6] Kollár, J.: Rational Curves on Algebraic Varieties, vol. 32 of Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics]. Springer, Berlin (1996)
[7] Litt, D.: Non-abelian Lefschetz Hyperplane Theorems, Ph.D. Thesis, Stanford University. https://purl.stanford.edu/fb648tn6223 (2015)
[8] Litt, D.: Non-abelian Lefschetz Hyperplane Theorems. arXiv:1601.07914 (2016)
[9] Mourougane, C., Takayama, S.: Hodge metrics and positivity of direct images. J. Reine Angew. Math. 606, 167–178 (2007)