On confidence intervals for the power of F-tests

A. A. Jafari*, A. Bazargan-Lari†, Mingfei Li‡

*Department of Statistics, Shiraz University, Shiraz 71454, IRAN
†Department of Statistics, Islamic Azad University-Fars Science & Research Branch, Shiraz, IRAN
‡Department of Mathematics, Michigan State University, East Lansing, MI 48824

E-mail: Bazargan-lari@susc.ac.ir
E-mail: limingfe@msu.edu

Abstract

This note points out how confidence interval estimates for standard deviation transform into confidence interval estimates for the power of F-tests at fixed alternative means. An application is shown for the test of a two-sided hypothesis for the mean of a normal distribution.

Keywords: F-test; power; confidence intervals.

Let \(Y \) be a random variable distributed \(P_{\sigma} \) and \((a(Y), b(Y)) \) be a 100(1 – \(\gamma \))% confidence interval estimator for the parameter \(\sigma \). If \(\omega = f(\sigma) \) is a strictly increasing function of \(\sigma \), then \((f(a(Y)), f(b(Y)))\) is a 100(1 – \(\gamma \))% confidence interval estimator for \(\omega \) and if \(\omega = f(\sigma) \) is a strictly decreasing function of \(\sigma \), then \((f(b(Y)), f(a(Y)))\) is a 100(1 – \(\gamma \))% confidence interval estimator for \(\omega \).

Tarasinska (2005) uses the above idea in discussing confidence interval estimation of the power of the one-sided t-test based on confidence interval estimation of standard deviation. We point out how the power of the F-test is easily handled as well, a result that subsumes the two-sided t-test.

Consider the power \(\omega \) of the typical \(\alpha \) level F-test of the mean vector based on \(X_1, X_2, \ldots, X_n \) independent, normally distributed random variables with common standard deviation \(\sigma \). Under the standard model, the F-statistic has the distribution of \((U/u)/(V/v) \) where \(U \) is distributed
noncentral chi-square with \(u \) degrees of freedom and noncentrality parameter \(\delta \), \(V \) is distributed central chi-square with \(v \) degrees of freedom, and \(U \) and \(V \) are independent. At fixed alternative mean vectors, the noncentrality parameter \(\delta = \delta(\sigma) \) is a strictly decreasing function of the scale parameter \(\sigma \). (See Scheffé (1959, p. 39).) As an example consider the two-way, normal theory ANOVA with \(K \) observations in each of \(IJ \) cells, and the F-test that all interactions are 0. Here \(u = (I-1)(J-1) \), \(v = (K-1)IJ \) and the noncentrality parameter is \(\delta(\sigma) = \sqrt{K\sum(\alpha\beta\gamma^2/\sigma)} \).

Let \(G_{u,v,\delta} \) denote the cdf of \((U/u)/(V/v) \), that is, the noncentral F-distribution. It is easy to see from the representation \((U/u)/(V/v) \) that

\[
\text{Power} = \omega = 1 - G_{u,v,\delta}(c) = 1 - P(U \leq cv) = 1 - E[F_{u,\delta}(cuV/v)] \tag{1}
\]

where the expectation \(E \) is with respect to \(V \), \(F_{u,\delta} \) denotes the cdf of \(U \), and \(c \) is the \(1-\alpha \) quantile of \(G_{u,v,0} \). Now \(F_{u,\delta}(cuV/v) \) is the probability content of an origin centered hypersphere of radius \(r = \sqrt{cuV/v} \) under translation of an origin centered spherical multivariate normal distribution by a distance \(\delta \). That this is monotone decreasing in \(\delta \) may be taken as obvious by some. It follows from more general results in Anderson (1955). For a direct proof start with the fact that

\[
F_{u,\delta}(r^2) = \delta^{1-u/2}e^{-\delta^2/2} \int_0^r x^{u/2}e^{-x^2/2}I_{u/2-1}(\delta x)dx \tag{2}
\]

where \(I_w \) denotes the modified Bessel function of the first kind and order \(w \). (For example, see Ruben (1962, (3.5))). The derivative with respect to \(\delta \) is calculated in Gilliland (1964) where we find

\[
dF_{u,\delta}(r^2)/d\delta = -r^{u/2}\delta^{1-u/2}e^{-(r^2+\delta^2)/2}I_{u/2}(r\delta). \tag{3}
\]

Since \(I_{u/2}(r\delta) > 0 \) for \(r\delta > 0 \), we see that \(F_{u,\delta}(r^2) \) is a strictly decreasing function of \(\delta \). Together with (1) and the fact that \(\delta = \delta(\sigma) \) is strictly decreasing in \(\sigma \), we see that the power \(\omega \) is a strictly decreasing function of \(\sigma \). As seen, all the necessary monotonicities are easily established if not very widely known.

It follows that any 100\((1-\gamma)\)% confidence interval estimator for \(\sigma \) based on the residual sum of squares \(V \) transforms to a 100\((1-\gamma)\)% confidence interval estimator for the power \(\omega \). The usual 100\((1-\gamma)\)% CI interval estimate for \(\sigma \) is \(a < \sigma < b \) where \(a = \sqrt{V/B} \) and \(b = \sqrt{V/A} \) with \(A \) and \(B \) such that \(F_{v,0}(B) - F_{v,0}(A) = 1-\gamma \). The typical choices are \(A = F_{v,0}^{-1}(\gamma/2) \) and
\[B = F_{v,0}^{-1}(1 - \gamma/2). \] The corresponding 100(1 - \gamma)\% confidence interval estimator for \(\omega \) is

\[1 - G_{u,v,\delta(b)}(c) < \omega < 1 - G_{u,v,\delta(a)}(c). \] (4)

Tarasinska (2005, pp. 126-127, Table 1) proposes using positions \(A \) and \(B \) to minimize the length of the confidence interval for the power of the one-sided t-test. The idea applied to the power of the F-test would be to choose \(A \) and \(B \) to minimize

\[L = G_{u,v,\delta(\sqrt{V/A})}(c) - G_{u,v,\delta(\sqrt{V/B})}(c) \] (5)

subject to the constraint \(F_{v,0}(B) - F_{v,0}(A) = 1 - \gamma \). In this case, the minimizing \(A \) and \(B \) depend upon \(V \) and the resulting intervals for power \(\omega \) and their corresponding intervals for \(\sigma \) are not shown to have 100(1 - \gamma)\% coverage probability (See Gilliland and Li (2007)).

Let \(Y_1, \ldots, Y_n \) be a random sample from a normal population with mean \(\mu \) and variance \(\sigma^2 \). Consider the test for the null hypothesis \(H_0 : \mu = \mu_o \) against the two-sided alternative hypothesis \(H_1 : \mu \neq \mu_o \) with the level of significance \(\alpha \). The null hypothesis \(H_0 \) is rejected if

\[|\bar{Y} - \mu_o| > \frac{S}{\sqrt{n - 1}} \sqrt{c} \]

in which \(\bar{Y} = \frac{1}{n} \sum_{i=1}^{n} Y_i \), \(S^2 = \frac{1}{n} \sum_{i=1}^{n} (Y_i - \bar{Y})^2 \) and \(c \) are the sample mean, the sample variance and the \(1 - \alpha \) quantile of the central F-distribution \(G_{1,n-1,0} \), respectively.

The power function of the test (Lehmann, 1991) is defined as:

\[P(|\bar{Y} - \mu_o| > \frac{S}{\sqrt{n - 1}} \sqrt{c}) = 1 - G_{1,n-1,\delta(\sigma)}(c). \] (6)

where \(\delta(\sigma) = \sqrt{n} \left| \frac{\mu - \mu_o}{\sigma} \right| \) is non-centrality parameter. By using the invariant properties of Maximum Likelihood Estimators (MLE), the MLE of power function in (6) is

\[1 - G_{1,n-1,\delta(S)}(c). \] (7)

Let \((a,b) \) be any 100(1 - \gamma)\% confidence interval for \(\sigma \), then by (4) the confidence interval for power function is

\[\{1 - G_{1,n-1,\delta(b)}(c), 1 - G_{1,n-1,\delta(a)}(c)\}. \] (8)

The curve of the confidence intervals in (8) and the MLE estimates in (7) for the power function, as functions of \(\frac{\mu - \mu_o}{S} \) for \(n = 10 \) and \(\alpha = 0.05 \), are given in Figure 1.
Figure 1. CI curves for the test power and the estimate of the power as the functions of $\frac{\mu - \mu_0}{\sigma}$.

Acknowledgement: We are grateful to the editor and referee for their helpful comments and suggestions which improved the presentation of the result.

References

[1] Anderson, T. W., (1955). The integral of a symmetric unimodal function over a symmetric convex set and some probability inequalities, Proc. Am. Math. Soc., 6, 170-176.

[2] Gilliland, Dennis, (1964). A note on the maximization of a non-central chi-square probability, Ann. Math. Statist., 35, 441-442.

[3] Gilliland, Dennis and Li, Mingfei, (2007). A note on confidence intervals for the power of t-test, Statistics & Probability Letters (to appear).

[4] Lehmann, E. L., (1991), Testing statistical hypothesis, Wiley, New York.

[5] Ruben, Harold, (1960). Probability content of regions under spherical normal distributions, I, Ann. Math. Statist., 31, 598-618.

[6] Scheffé, H., (1959). The Analysis of Variance, Wiley, New York.

[7] Tarasinška, J., (2005). Confidence intervals for the power of Student’s t-test. Statistics & Probability Letters, 73, 125-130.