Cytotoxic T Lymphocyte Epitopes of HIV-1 Nef:
Generation of Multiple Definitive Major Histocompatibility
Complex Class I Ligands by Proteasomes

By Maria Lucchiari-Hartz,* Peter M. van Endert,‡ Grégoire Lauvau,‡
Reinhard Maier,§ Andreas Meyerhans,§ Derek Mann,ⅰ
Klaus Eichmann,* and Gabriele Niedermann*

From the *Max-Planck Institute of Immunobiology, D-79108 Freiburg, Germany; the ‡Institut National de la Santé et de la Recherche Médicale (INSERM) U 25, Hôpital Necker, 75743 Paris Cedex 15, France; the §Institute of Microbiology and Hygiene, Department of Virology, The Saarland University Hospital, D-66421 Homburg, Germany; and the ⅰDepartment of Clinical Biochemistry, University of Southampton School of Medicine, Southampton SO16 7PX, United Kingdom

Abstract

Although a pivotal role of proteasomes in the proteolytic generation of epitopes for major histocompatibility complex (MHC) class I presentation is undisputed, their precise function is currently the subject of an active debate: do proteasomes generate many epitopes in definitive form, or do they merely generate the COOH termini, whereas the definitive NH2 termini are cleaved by aminopeptidases? We determined five naturally processed MHC class I ligands derived from HIV-1 Nef. Unexpectedly, the five ligands correspond to only three cytotoxic T lymphocyte (CTL) epitopes, two of which occur in two COOH-terminal length variants. Parallel analyses of proteasomal digests of a Nef fragment encompassing the epitopes revealed that all five ligands are direct products of proteasomes. Moreover, in four of the five ligands, the NH2 termini correspond to major proteasome cleavage sites, and putative NH2-terminally extended precursor fragments were detected for only one of the five ligands. All ligands are transported by the transporter associated with antigen processing (TAP). The combined results from these five ligands provide strong evidence that many definitive MHC class I ligands are precisely cleaved at both ends by proteasomes. Additional evidence supporting this conclusion is discussed, along with contrasting results of others who propose a strong role for NH2-terminal trimming with direct proteasomal epitope generation being a rare event.

Key words: proteasome • HIV Nef • cytotoxic T lymphocyte epitopes • antigen processing • naturally processed peptides

Introduction

Proteasomes are the major cytosolic proteases of eukaryotic cells and participate in the processing of many antigens presented by MHC class I molecules. However, the precise role of proteasomes in epitope generation is not yet clear. It is particularly a matter of debate whether proteasomes often generate both COOH and NH2 termini of proteasome-dependent epitopes, or whether they only generate their COOH termini (1, 2).

Purified proteasomes degrade polypeptides into a large number of extensively overlapping oligopeptides. Most major peptide products of vertebrate 20S proteasomes have hydrophobic, acidic, or basic amino acids (aa)1 at the COOH terminus, most frequently leucine. Peptides with other aa at the COOH terminus are produced less frequently and are usually found in small amounts. With the exception of acidic residues, which are found in proteasome products but very rarely in MHC class I ligands, a similar distribution of aa is observed at the COOH termini of MHC class I ligands. Small neutral and polar aa, especially serine, are enriched at the NH2 termini of proteaso-
enal products, also similar to MHC class I ligands (3-5). With a few exceptions, the size range of peptides eluted from typical MHC class I molecules is 7-13 aa, and most alleles prefer nonamers (6). Although some peptides produced by vertebrate 205 or 265 proteasomes from polypeptides or proteins are shorter than 8 aa, only a few are larger than 11 aa (3, 4, 7), and many major products are in the size range of MHC class I ligands (3, 4). Digestion of relatively short polypeptides proceeds partially via single cleavage intermediates; formation of “dual cleavage” peptides, i.e., MHC class I ligands and slightly longer peptides, is accelerated by the IFN-γ-inducible proteasome activator 28 (PA28 [4, 8]). Degradation of most full-length proteins is processive, without the release of longer intermediates (9, 10). Of 10 MHC class I ligands examined so far in various laboratories for production by purified proteasomes in vitro, 7 were shown to be generated in definitive form (see Discussion). Collectively, these data support the conclusion that proteasomes produce both the COOH- and NH₂-termini of many MHC class I ligands in vitro.

Nevertheless, these data have not led to a general consensus on the precise role of proteasomes in antigen processing. The validity of the in vitro results has been challenged by observations on the generation of the major OVA epitope SIINFEKL from the products of minigenes (11). Although the production of the epitope from COOH-terminally (Ct)-extended versions was inhibited by the proteasome inhibitor lactacystin, production from NH₂-terminally (Nt)-extended versions was not. Moreover, SINFEKL could be produced from the Nt-extended fragment QLESIINFEKL by leucine aminopeptidase (LAP), a cytosolic peptidase inducible by IFN-γ (12). This was put forward as evidence that the SIINFEKL NH₂-terminus is produced in vivo by trimming enzymes rather than by proteasomes. Although these results can be interpreted in alternative ways (see Discussion), they have led to the general perception that proteasomes mainly release the COOH-termini of class I ligands, whereas the NH₂-termini are derived by trimming of longer precursors by aminopeptidases (1, 13).

Nef is a key factor in HIV pathogenicity and immunogenicity and a potential candidate for CTL-targeted vaccination. More than 45 CTL epitopes for multiple HLA alleles have been described in HIV Nef by the use of overlapping synthetic peptides and/or “allele-specific” peptide motifs (14). Many of the Nef CTL epitopes are overlapping, and most of them cluster within four regions of the protein. To date, naturally processed peptides corresponding to these epitopes have not been determined. In this study we focused on one of the four immunogenic regions of Nef, Nef123-152, which is relatively conserved among different HIV subtypes (15). We identified two HLA-A2 and three HLA-B7 peptide ligands in this region. Unexpectedly, both HLA-A2 ligands and two of the three HLA-B7 ligands represented COOH-terminal length variants of one HLA-A2 and one HLA-B7 epitope, respectively. Proteolytic fragments identical to each of the five definitive MHC class I ligands were found in proteasomal digests of the synthetic polypeptide Nef123-152. In four of these five naturally processed peptides, the NH₂ 123-152 were produced by major proteasome cleavage sites, and Nt-extended precursors were found for only one of the five peptides. Thus, at least four of the class I ligands are loaded onto HLA molecules in the form generated by proteasomes. These results favor the view that proteasomes often produce the peptides presented by MHC class I molecules.

Materials and Methods

Cell Lines. The human lymphoblastoid T cell lines T1 (HLA class I typing A2, B5; subtyping for A2 is A*0201) and Jurkat (HLA I typing A9/25, B7/41; subtyping for B7 is B*0702), the HLA-A- and HLA-B-deficient C1R human lymphoblastoid B cell lines transfected with HLA-A2 or HLA-B7 (C1R-A2 and C1R-B7, respectively), and the P815 murine mastocytoma cell lines transfected with HLA-A2 or HLA-B7 (P815-A2 and P815-B7, respectively), have been described elsewhere (16-19). C1R-A2 and C1R-B7 cells were stably transfected with the pcF+ EBV vector containing the sequence encoding the whole Nef protein from the HIV-1 strain strain LAI under the control of the cytomegalovirus promoter (20). These cells, referred to as Nef⁺ C1R-A2 and Nef⁺ C1R-B7, were used as stimulator cells to induce polyclonal Nef-specific CTL lines and as target cells in experiments with proteasome inhibitors. We were not able to maintain large scale cultures of C1R-A2 and C1R-B7 cells stably expressing Nef for acid elution of naturally processed peptides. For this purpose, we used T1 and Jurkat cells transfected with the heavy metal-inducible vector pSBBRU6e containing the sequence encoding the whole Nef protein from HIV-1 strain LAI, under the control of the human metallothionein II A promoter (21). These cells are referred to as Nef⁺ T1 cells and Nef⁺ Jurkat cells. Expression of Nef in the transfectants was verified by Western blot analysis. P815-A2 and P815-B7 cells were used as target cells pulsed with peptides in cytotoxicity assays because C1R cells had a high spontaneous 51Cr release. The human T1 line was used for isolation of proteasomes.

In Vitro Induction of Primary Nef-specific CTL Lines. Polyclonal Nef-specific CTL lines were induced as described (20) using PBLS of a healthy HIV-1 seronegative donor (HLA class I typing A2/28, B7/40W60, Cw3/w7; A2 and B7 subtypes are A*0201 and B*0702, respectively) and Nef⁺ C1R-A2 or Nef⁺ C1R-B7 as stimulator cells.

Nef peptide-specific CTL lines were obtained from the same donor (22). In brief, PBLS (4 or 5 × 10⁶) were incubated in 24-well culture plates (Nalge Nunc International) using RPMI 1640 (GIBCO BRL) supplemented with 5% human AB serum (Butter Donor Center Schweizerisches Rotes Kreuz [SR K], Basel, Switzerland), 1 mM sodium pyruvate, 20 mM Hepes, 2 mM glutamine, 100 U/100 µg/ml penicillin/streptomycin (all from GIBCO BRL), 1 × 10⁻⁵ M 2-ME (Sigma Chemical Co.), and 1% MEM nonessential amino acids (GIBCO BRL) for 90 min at 37°C. The nonadherent cells were removed, and the adherent fraction (monocytes) was pulsed with 100 µg/ml of peptide for 4 h to be used as stimulator cells. Adherent cells were then incubated with 1 × 10⁶ autologous PBLS. After 5 d of culture, 100 U/ml proleukin (Chiron Corp.) was added. After an additional 7 d, the PBLS were restimulated with 1 × 10⁶ irradiated autologous PHA (Murex Biotec, Ltd) T cell blasts; pulsed with 10 µg/ml of peptide.

Cytotoxicity Assay. Cytolytic activity was tested in triplicate in a standard 4-h 51Cr-release assay (23). Activity was assessed against cells expressing Nef as well as against P815-A2 and P815-B7 cells pulsed with synthetic peptides or reverse phase HPLC
In Vitro Digestion of Polypeptide Substrate by Purified 20S Proteasomes. 20S proteasomes were purified from human T1 cells as described previously (4). No impurities were detected by SDS or native gel electrophoresis. Trypsinoid peptide II (TPII) contaminants were excluded by use of the TPII inhibitors AAF-chloromethylketone (Bachem) and PM SF (Sigma Chemical Co.). Digestion of the synthetic 30-mer polypeptide Nef (122,123(10 µg) with isolated 20S proteasomes (2 µg) was carried out at 37°C. Digests were incubated in a total volume of 300 µl buffer consisting of 50 mM Tris HCl (pH 7.8), 1 mM EDTA, 5 mM MgCl₂, 0.5 mM 2-ME, and 0.02% azide. Aliquots of the reaction mixture were fractionated by rp-HPLC.

rp-HPLC Fractionation and Analysis of Naturally Processed Peptides. Aliquots of rp-HPLC fractions were separated by rp-HPLC (Smart System [Amersham Pharmacia Biotech]) equipped with a Sephasil C18 SC2.1/10 column. Amino acid residues are given in single-letter code as follows: C, Cys; D, Asp; E, Glu; F, Phe; G, Gly; H, His; I, Ile; K, Lys; L, Leu; M, Met; N, Asn; P, Pro; Q, Gln; R, Arg; S, Ser; T, Thr; V, Val; W, Trp; and Y, Tyr.

Synthetic Peptides. Peptides were either synthesized using solid phase 9-fluorenylmethoxycarbonyl (Fmoc) chemistry on an Applied Biosystems 431A peptide synthesizer or purchased from Genosys Biotechnologies. Peptides to purified to >98% homogeneity by rp-HPLC. Amino acid residues are given in single-letter code as follows: C, Cys; D, Asp; E, Glu; F, Phe; G, Gly; H, His; I, Ile; K, Lys; L, Leu; M, Met; N, Asn; P, Pro; Q, Gln; R, Arg; S, Ser; T, Thr; V, Val; W, Trp; and Y, Tyr.

Extraction of Naturally Processed Peptides. Naturally processed peptides were extracted from whole cells with TFA (25) and purified as described previously (26, 27). Batches of 10⁷ Nef-T1, Nef-T1, Nef-Jurkat, and Nef-Jurkat cells were lysed by adding 15 ml cold 1% TFA (Sigma Chemical Co.) and disrupted using a hand-held glass homogenizer. Centriprep 10K (Amicon Corp.) centrifugal concentrators were used for isolation of low molecular weight peptides. The ultrafiltrate suspensions (molecular weight <10 kD) were dried by lyophilization and redissolved in 0.1% TFA for fractionation by rp-HPLC.

In Vitro Digestion of Polypeptide Substrate by Purified 20S Proteasomes. 20S proteasomes were purified from human T1 cells as described previously (4). No impurities were detected by SDS or native gel electrophoresis. Trypsinoid peptide II (TPII) contaminants were excluded by use of the TPII inhibitors AAF-chloromethylketone (Bachem) and PM SF (Sigma Chemical Co.). Digestion of the synthetic 30-mer polypeptide Nef (122,123(10 µg) with isolated 20S proteasomes (2 µg) was carried out at 37°C. Digests were incubated in a total volume of 300 µl buffer consisting of 50 mM Tris HCl (pH 7.8), 1 mM EDTA, 5 mM MgCl₂, 0.5 mM 2-ME, and 0.02% azide. Aliquots of the reaction mixture were fractionated by rp-HPLC.
bated for 2 h in the presence of 10 μM lactacystin and then briefly exposed to pH 3.1 to denature and remove surface class I peptide complexes. Acid-stripped target cells were then allowed to reexpress MHC class I–peptide complexes for 4 h during a standard 51Cr-release assay, in the presence or absence of 10 μM lactacystin. In the absence of lactacystin, target cell lysis by HLA-A2– and HLA-B7–restricted Nef-specific CTLs was restored after acid treatment (Fig. 1), reaching 80–100% of the lysis of untreated target cells (data not shown). Incubation of acid-treated cells with lactacystin completely abrogated the restoration of HLA-A2– and HLA-B7–restricted CTL recognition of Nef epitopes (Fig. 1). CTL recognition of acid- and lactacystin-treated target cells was restored by addition of known HLA-A2– or HLA-B7–binding Nef peptides, excluding nonspecific deterioration of target cells or of CTLs by the experimental procedures (Fig. 1). A similar degree of inhibition was observed with the peptide aldehyde inhibitor N-acetyl-leucinyl-leucinyl-norleucinal, another potent but less specific proteasome inhibitor (data not shown). These results suggested that processing of Nef for presentation by HLA-A2 as well as HLA-B7 MHC molecules was dependent on proteasomes.

Design of the Experiments.

One of the four immunogenic regions of Nef (Nef123–152, Table I) was chosen for this study. One HLA-A2 (Nef136PLTFGWCYKL145) and two HLA-B7 (Nef128TPGPGVRYPL137 and Nef135YPLTFGWCY143) restricted CTL epitopes in this region have been identified previously, using polyclonal Nef-specific CTLs from HIV-seropositive donors and target cells pulsed with overlapping Nef peptides or Nef epitopes predicted according to allele-specific motifs (34, 35, 37). We now wanted to determine the naturally processed peptides corresponding to these epitopes. For acid elution from Nef-transfected cells, large-scale cell cultures of Nef-expressing cells were necessary. Because of the cytotoxic effect of Nef, attempts to prepare large-scale cultures of cells stably transfected with Nef have

Table I. CTL Epitopes Previously Predicted by Epitope Mapping with Synthetic Peptides and/or Peptide–HLA Binding Assays in the 123–152 Region of Nef of HIV-1 LAI

Position	Sequence*	HLA class	Reference
126–138	NYTPGPGVRYPGL	B7	33
128–137	TPGPGVRYP	B7	34, 35
130–143	GPGVRYPPLTFGWCY	B57	36
132–147	GVRYPPLTFGWCYKLVP	A1, B8, B18, B49	37, 38
133–148	VRYPLTFGWCYKLVPV	B57	39
134–143	RYPLTFGWCY	B18, B49	37
134–144	RYPLTFGWCYK	B18, B49	37, 40
135–143	YPLTFGWCY	B7, B18, B49	37
135–144	YPLTFGWCYK	B18, B49	37
136–145	PLTFGWCYK	A2.1	35

*The single-letter amino acid code is used.
rarely been successful (41, 42). To overcome these problems, we used a regulated Nef expression vector (pSBBRU nef) based on a mutated version of the heavy metal-inducible human metallothionein IIA promoter. T1 (HLA class I typing A2, B5) and Jurkat (HLA I typing A9/25, B7/41) cells transfected with this vector produce low basal levels of Nef compatible with large-scale cultures (21). Several liters of either T1 or Jurkat cells stably transfected with pSBBRU nef were grown, followed by induction of Nef expression for 24 h. Peptides were isolated by acid extraction of cell lysates followed by ultrafiltration (10-kD cutoff).

In parallel, a synthetic polypeptide corresponding to the region Nef123-152 was digested with 20S proteasomes isolated from T1 cells. Both peptide pools, that of the acid-extracted naturally processed peptides and that obtained upon proteasomal digestion of Nef123-152, were separated under the exact same conditions by rp-HPLC on an analytical C18 column. Fractions obtained were tested for their ability to sensitize target cells expressing the appropriate MHC class I restriction elements for recognition by Nef peptide-specific CTL lines. To identify the relevant peptides in fractions recognized by CTLs, retention times were compared with those of a series of synthetic Nef-derived overlapping peptides recognized by the same CTLs (Figs. 2 and 3, arrows). To achieve efficient separation of such closely related peptides, extremely shallow TFA/acetonitrile gradients were used, individually adjusted for the analysis of each of the epitopes under study (see Materials and Methods). To ascertain that peptides identified in acid-eluted fractions were indeed Nef-derived MHC ligands, control lysates of cells

Figure 2. Comparison between HLA-A2-restricted naturally processed HIV-1 Nef peptides and products derived from in vitro 20S proteasomal degradation of the synthetic polypeptide HIV-1 Nef123-152. Acid-soluble extracts prepared from Nef T1 cells and peptide products derived from 20S proteasome-mediated degradation of the synthetic 30-mer polypeptide Nef123-152 were fractionated by rp-HPLC using a very shallow TFA/acetonitrile gradient (see Materials and Methods). Individual fractions were tested for their ability to sensitize P815-A2 cells for lysis by CTL lines specific for the peptides Nef136PTFGWCYKL145 (A) and Nef136PLTFGWCYKLV146 (B) in a 4-h 51Cr-release assay. Acid-soluble extracts from Nef T1 cells fractionated before the eluate of Nef T1 cells (A and B, top left), or mock rp-HPLC fractions (buffer only) collected before fractionation of the proteasomal products (A and B, bottom left), gave no activity. The A2-restricted Nef136PTFGWCYKL145 peptide-specific CTL line did not lyse P815-A2 cells pulsed with peptides eluted from HLA-A2+ Nef Jurkat cells (A, top left). CTL assays were carried out using an E/T ratio of 50:1 (A and B, left) or at different E/T ratios as indicated (A and B, right). The elution position of synthetic peptides is indicated by arrows. The results are representative of five independent experiments.
not transfected with Nef and from Nef-transfected cells lacking the MHC molecule in question were fractionated using the same gradient and tested by the same CTLs.

Comparison between HLA-A2-restricted naturally processed Nef peptides and peptides derived from proteasomal degradation of the 30-mer Nef123-152 polypeptide. Fractionations obtained upon rp-HPLC separation of acid extracts of A2\(^+\), Nef\(^+\) T1 cells were tested for the ability to sensitize HLA-A2\(^+\) target cells for lysis by HLA-A2-restricted CTL lines generated against the peptide Nef135YPLTFGWCYKLV146 (Fig. 2, A, top). Surprisingly, Nef136PLTFGWCYKL145-specific CTLs recognized not only fractions coeluting with the synthetic peptide Nef135YPLTFGWCYKL145 (fraction 21/22), but also fractions coeluting with the synthetic peptide Nef136PLTFGWCYKL146 as shown in Fig. 2 B (top), these CTLs also recognized fractions containing Nef136PLTFGWCYKL146, as well as fractions containing Nef136PLTFGWCYKL146. Each either CTL line recognized peptide material eluted from Nef\(^+\) T1 cells (Fig. 2, A [top] and B [top]) or peptides eluted from A2\(^+\), Nef\(^+\) Jurkat cells (Fig. 2 A, top left; data for Nef136PLTFGWCYKL146-specific CTLs not shown). These controls indicate that the acid-eluted peptides recognized by both CTL lines were Nef derived and specifically associated with HLA-A2 molecules of the T1 cells. Moreover, and unexpectedly, the results suggest that the two peptides represent two naturally processed versions of the same epitope, differing in length by one COOH-terminal aa.

In parallel, a digest of Nef fragment 123-152 was prepared with isolated proteasomes, fractionated, and analyzed by the same protocol (Fig. 2, A [top] and B [top]). Strikingly, both CTL lines recognized the exact same rp-HPLC fractions as in the Nef\(^+\) T1 cell extracts (fractions 21/22 and 33-35). Active fractions identified in the Nef\(^+\) T1 cell extracts and in the products derived by proteasomal digestion and corresponding control fractions were reexamined with serial dilutions of the CTLs, confirming the single E/T ratio results of individual fractions (Fig. 2, A [right] and B [right]). These results strongly suggested that the HLA-A2-restricted CTL epitopes detected in material eluted from Nef-transfected cells were identical to those epitopes identified in the proteasomal digest.

Comparison between HLA-B7-restricted naturally processed Nef peptides and peptides derived from proteasomal degradation of the 30-mer Nef123-152 polypeptide. To identify HLA-B7-restricted naturally processed Nef peptides, peptides were acid eluted from B7\(^+\), Nef\(^+\) Jurkat cells and fractionated by rp-HPLC. Fractions were first screened with an HLA-B7-restricted CTL line generated against Nef128TPGPGRYPL137. Again surprisingly, Nef128TPGPGRYPL137-specific CTLs recognized two rp-HPLC fractions of acid-eluted material: fraction 3 corresponding to the elution time of Nef128 TPGPGVRY135, and fraction 15 corresponding to the elution time of Nef128 TPGPGVRYPL137 (Fig. 3 A, top). Accordingly, CTLs were prepared against the smaller peptide, the octamer Nef128 TPGPGVRY135, and these were found to recognize the same two fractions (Fig. 3 B). These results suggest that the two peptides represent two naturally processed versions of the same epitope, differing in length by two COOH-terminal aa.

Peptides eluted from Nef-transfected Jurkat cells were also screened with a CTL line against Nef135YPLTFGWCY143. This CTL line recognized a single fraction of naturally processed peptides (fraction 23), corresponding to the elution time of the inducing peptide (Fig. 3 C, top). This suggests that Nef135YPLTFGWCY143 is indeed a naturally processed peptide, and that this epitope exists only in one HLA-B7-binding version. However, the epitope overlaps extensively with the HLA-A2-binding naturally processed peptides Nef136PLTFGWCYKL145 and Nef136PLTFGWCYKL146 described in the previous section. All three HLA-B7-restricted Nef peptide-specific CTL lines failed to recognize peptide material eluted from Nef\(^-\) Jurkat cells or HLA-B7\(^+\), Nef\(^+\) T1 cells, indicating that the peptides eluted from Nef-transfected Jurkat cells were Nef derived and specifically bound to HLA-B7 molecules (Fig. 3 B, top left).

In parallel, proteasomal digests of Nef123-152 were separated by rp-HPLC using the exact same gradients. Each of the three HLA-B7-restricted CTL lines recognized fractions identical to that of the acid-eluted peptides (Fig. 3, A - C; compare top and bottom). Active fractions identified in the Nef-transfected Jurkat cell extracts and in the products derived by proteasomal digestion and corresponding control fractions were reexamined with serial dilutions of CTLs, confirming the single E/T ratio results of individual fractions (Fig. 3, A [right] and B [right]). These results suggest that the peptides recognized by the three HLA-B7-restricted CTLs in acid eluates of Nef-transfected Jurkat cells and in proteasomal digests of Nef123-152 were identical.

Comprehensive analysis of peptide fragments generated by digestion of Nef123-152 with purified proteasomes in vitro. The proteasomal digest of Nef123-152 was separated by rp-HPLC using a relatively steep gradient to recover the vast majority of all possible fragments (Fig. 4 A). The peptides produced were identified by mass spectrometry and Edman degradation. Fig. 4 B shows a digestion map compiling all identified degradation products and proteasomal cleavage sites, the strength of the latter according to the quantification of the adjacent products by Edman degradation. All of the five naturally processed peptides detected by CTLs (see above) could also be found by protein analytical methods. The HLA-B7-binding octamer peptide Nef128 TPGPGVRY135 is the major dual cleavage product, presumably because it is flanked by predominant cleavage sites and very little cleavage occurs internally. The remaining four peptides suffer more pronounced internal cleavage and are thus produced in smaller, but still considerable amounts. It is remarkable that significant quantities of the HLA-B7 ligands Nef128 TPGPGVRYPL137 and Nef135YPLTFGWCY143 are produced upon proteasomal digestion, as both peptides are subject to destruction by the predominant cleavage site in the polypeptide Y135-P136. This major cleavage site generates the COOH-terminus of the abundant HLA-B7-binding octamer Nef128-135 as well as the NH2-termini of the two naturally processed HLA-A2 ligands. Most signifi-
cantly, in four of the five naturally processed peptides (Nef128TPGPGVRY135, 128TPGPGVRYPL137, 136PLTFGWCYKL145, and 136PLTFGWCYKLV146), the NH$_2$ termini correspond to major proteasomal cleavage sites.

Peptide Binding to TAP and MHC Class I Molecules. The results described above strongly suggest, but do not directly prove, that each of the five acid-eluted peptides are also successfully translocated by TAP and bind to MHC class I. To directly address affinity for TAP, binding assays were performed using microsomes isolated from insect cells expressing human TAP1-TAP2 complexes (28). Relative affinities (IC$_{50}$ values) measurable in this assay range from 0.1 to 3,000. Peptides with IC$_{50}$ values $>$3,000 are excluded from translocation into the endoplasmic reticulum (ER [43]). The IC$_{50}$ values suggest a slightly higher TAP-binding affinity for the two HLA-A2 ligands than for the three
246 Proteasomal Generation of HIV Nef Epitopes

HLA-B7 ligands (Table II). Of note, all five HLA-binding peptides have a proline in either position 1 or 2, a situation thought to be unfavorable for TAP transport (28, 44, 45). Nevertheless, IC50 values for all five peptides were in the range consistent with moderately efficient TAP transport (Table II).

The five HLA ligands were also tested for their ability to bind to their MHC class I restriction elements (Table II). For the two HLA-A2 ligands, this was done by a competition assay using immunofluorescence-purified HLA-A2 molecules. For the three HLA-B7 ligands, stabilization of HLA-B7 on the surface of HLA-B7-transfected T2 cells was determined by flow cytometry. As expected, MHC class I binding could be shown for all five peptides. The results for both the HLA-A2 and HLA-B7 ligands suggest binding affinities somewhat below that of the high affinity peptides used as positive control in the assays. Together, the TAP- and MHC-binding data would predict low to moderate efficiencies of presentation for all five of the Nef-derived HLA ligands.

Discussion

Although it is undisputed that the COOH termini of proteasome-dependent epitopes are predominantly generated by proteasomal cleavage, it is controversial whether proteasomes also contribute significantly to liberation of the NH2 termini of MHC class I ligands (1). Here we describe five naturally processed MHC class I binding peptides of HIV-1 Nef, corresponding to three different CTL epitopes. These are the first naturally processed peptides ever identified in HIV Nef. In contrast to previous reports on this subject, our study concerns not only a single but also a cohort of determinants derived, in addition, from a highly relevant antigen. Four results in combination strongly suggest the generation of these determinants by proteasomes without assistance of other proteases: (a) all five ligands studied were produced in definitive form by proteasomes in digests of the fragment HIV-1 Nef123–152 (this paper) as well as of recombinant full-length Nef (Lucchiari-Hartz, M., N. Hitziger, K. Eichmann, and G. Niedermann, manuscript in preparation); (b) the NH2 termini of four of the five ligands correspond to major proteasomal cleavage sites; (c) NT-extended proteolytic fragments were found in proteasomal digests for only one of the five definitive ligands; and (d) all five peptides were transported by TAP.
Table II. Characteristics of HIV-1 Nef CTL Epitopes Described in This Study

Peptide	Sequence	Relative IC₅₀ for TAP*	MHC class I binding	N. of MHC I ligands per cell‡
HLA-A2				
Nef₁₃₆₋₁₄₅	PLTFGWCYKL	49	295	85
Nef₁₃₆₋₁₄₆	PLTFGWCYKLV	17	75	125
HLA-B7				
Nef₁₂₈₋₁₃₅	TPGPGVRY	160	30	3,600
Nef₁₂₈₋₁₃₇	TPGPGVRYPL	195	25	840
Nef₁₃₅₋₁₄₃	YPLTFGWCY	304	18	80

*The unlabeled Nef peptides were used to compete the binding of 125I-labeled RRYNASTEL (used at 240 nM) to TAP1/2 insect cell microsomes. The average IC₅₀ of the reporter peptide in these assays was 400 nM. All values are normalized by dividing IC₅₀ for test peptides by the IC₅₀ of unlabeled reporter peptide measured in the same assay.

†The number of Nef ligands per Nef_{T1} cell (HLA-A2 restriction) and Nef_{Jurkat} cell (HLA-B7 restriction) was estimated as described in Materials and Methods (see also Fig. 5). Numbers given are corrected for extraction yields. Extraction yields: Nef₁₃₆₋₁₄₅ (69%), Nef₁₃₆₋₁₄₆ (74%), Nef₁₂₈₋₁₃₅ (88%), Nef₁₂₈₋₁₃₇ (95%), and Nef₁₃₅₋₁₄₃ (50%).

‡The unlabeled Nef peptides were used to compete the binding of 125I-labeled RRYNASTEL (used at 240 nM) to TAP1/2 insect cell microsomes. The average IC₅₀ of the reporter peptide in these assays was 80 nM. All values are normalized by dividing IC₅₀ of unlabeled reporter peptide measured in the same assay.

In four of the five ligands, the NH₂ termini coincide with major proteasome cleavage sites. In the case of all five ligands, not only the COOH-terminal aa, but also the aa in the flanking position N minus 1, are preferred P1 residues of proteasomes (either tyrosine, leucine, valine, or arginine). Four ligands have small or polar aa in the NH₂-terminal (P1') position of proteasomal cleavage sites. The major cleavage site that creates the COOH terminus of the abundant octamer HLA-B7-binding epitope and the NH₂ terminus of the two HLA-A2 ligands has a valine in position P3. Small and/or polar P1 residues and hydrophobic P3 residues can promote proteasomal cleavage at the P1-P1' site (3, 4, 10, 51). The NH₂-terminal two thirds of the HLA-B7 ligand Nef₁₂₈TPGPGVRY₁₃₅, the sequence of which is identical with the NH₂-terminal flanking region of the two HLA-A2 ligands and of the HLA-B7 ligand Nef₁₃₅YPLTFGWCY₁₄₃, contains only proline, glycine, and threonine. These residues are extremely disfavored P1 residues of proteasomes (3, 10) conferring protection against proteasomal cleavage.

Four HLA ligands had low to moderate affinities for human TAP, whereas the 130_{PLTFGWCYKLV}₁₄₆ HLA-A2 ligand had a slightly higher TAP affinity. All five ligands have proline in either position 1 or 2. It has been recognized previously that prolyl residues in positions 1, 2, or 3 are generally unfavorable for TAP translocation (28, 44, 45, 52). In such cases, it has been proposed that NH₂-terminal residues...
extension can improve TAP affinity, and that the final class I ligands may be produced by trimming of epitope precursors in the ER (52, 53). However, we have recently presented evidence suggesting that even for presentation by HLA-A2, which is suboptimally adapted to TAP, antigen processing may favor peptides that do not require ER processing (43, 45). For the two HLA-A2 ligands and for two of the three HLA-B7 ligands identified in this study, Nt-elongated precursor peptides were not found among the proteasomal products. One of the potential precursors of the HLA-B7-binding octamer Nef128TPGPGVRY135 was the nonamer YTPGPGVRY. However, this nonamer is generated in lower amounts than the octamer. In addition, it has a proline in position 3 and should therefore not be preferred in TAP transport. The 10-mer NYTPGPGVRY and the 12-mer WQNYTPGPGVRY might have higher TAP affinity because they lack a prolyl residue in positions 1–3. Although these peptides are generated in significantly smaller amounts than the octamer, a contribution of NH₂-terminal trimming of these putative precursors in the ER is presently not excluded and needs to be evaluated. The only proteasomal fragment that could represent an Nt-elongated precursor of the HLA-B7-binding 10-mer ligand Nef128TPGPGVRYPL137 was a single cleavage product starting with the NH₂-terminus of the 30-mer substrate. A similar single cleavage intermediate was found in significant amounts for the HLA-B7-binding octamer. However, these single cleavage intermediates were not found in digests of full-length Nef (Lucchiari-Hartz, M., N. Hitziger, K. Eichmann, and G. Niedermann, manuscript in preparation) and most probably result from the limited length of the substrate used here. Together, our data suggest that at least four of the five HLA-A2 and HLA-B7 ligands identified here are translocated into the ER predominantly in their definitive form, despite suboptimal TAP transport. We have shown previously that peptides with similar TAP affinities can even be very efficiently presented when abundantly generated (43). Of note, it has been shown that even the highly restrictive mouse TAP translocates peptides with unfavorable COOH-terminal residues in amounts sufficient for T cell recognition. The selective TAP influence became detectable only at limiting cytosolic peptide concentrations (54).

Several previous studies showing that MHC class I ligands may be direct major products of 20S proteasomes and/or proteasome–PA28 complexes were concerned with highly selected examples, i.e., the high copy self-peptides SYFPEITHI and TLWVDPYEV derived from the cellular tyrosine kinase Janus kinase (JAK) 1, and the product of the B cell translocation gene 1, respectively (4, 8, 55), or the immunodominant OVA epitope SIINFEKL (3, 4, 56). Slightly longer precursor peptides that could be candidates for NH₂-terminal trimming were either not found or were produced in low quantities in these cases. A second group of MHC ligands was shown to be generated by proteasomes as minor products. The Ld ligand YPHFMPTNL derived from the pp89 protein of the murine cytomegalovirus and the subdominant OVA epitope KVVRFDKL are produced by proteasomes, albeit in small amounts, whereas Nt-extended peptides are more efficiently produced (3, 8, 57, 58). A p53-derived and a β-galactosidase-derived class I ligand could also be detected in proteasomal digests of a source polypeptide and the source protein, respectively, albeit only with the highly sensitive use of specific CTLs (27, 56). Three further reports describe unsuccessful attempts to detect epitopes in proteasomal digests: the KSPWFTTL peptide derived from the p89 protein of the murine cytomegalovirus and the peptide IPGLPLSL derived from the c-akt protooncogene.

Figure 5. Titration of the defined HIV-1 Nef-derived HLA-B7 ligands (synthetic peptides) and rp-HPLC fractions of acid-eluted NefJurkat cells. P815-B7 targets were pulsed with the indicated concentrations of peptide, and cytotoxicity assays were performed using the following Nef peptide-specific CTL lines generated from donor PR3 (see Materials and Methods): (A) 128TPGPGVRY135 specific CTLs; (B) 128TPGPGVRYPL137 specific CTLs and (C) 135YPLTFGWCY143 specific CTLs. As negative control, target cells were incubated with medium only. The E/T ratio was 100:1.
(60). In these cases, only slightly longer peptides were found by protein analytical methods. However, in one of these studies, minor products have not been analyzed (60). Furthermore, the exact NH$_2$ terminus of human melanoma antigen (Mage)$_{271-179}$ is liberated by proteasomes. Nevertheless, the epitope is cryptic, because its COOH terminus is normally not liberated by proteasomes. However, crypticity of this epitope is abolished in the presence of lactacystin, since lactacystin-treated proteasomes generate the epitope COOH terminus in addition to its NH$_2$ terminus (61). Together, these data suggest that proteasomes often produce the final MHC class I ligands, albeit in varying amounts. Therefore, the available data have not led to a general consensus on the role of proteasomes in antigen processing.

The notion that epitope NH$_2$ termini may frequently result from nonproteasomal cleavage in vivo stems primarily from a study on the generation of SIINFEKL in cells transfected with minigenes. Although production of the epitope from Ct-extended versions was inhibited by 2 or 20 µM lactacystin, that from Nt-extended versions was not (11). This finding may have an alternative explanation. The peptide bond at the SIINFEKL NH$_2$ terminus is hydrolyzed efficiently by purified 20S proteasomes and proteasome–PA28 complexes (3, 4, 56). Since the SIINFEKL NH$_2$ terminus is directly preceded by glutamic acid (E), cleavage of the E$_{256}$–S$_{257}$ bond is most likely dependent on the post–glutamyl activity of the proteasome. This activity is only marginally and competitively inhibited by lactacystin, i.e., only partially even at excessive lactacystin concentrations (62). Thus, it is to be expected that proteasomal generation of the SIINFEKL NH$_2$ terminus is poorly inhibited by lactacystin. Moreover, it is unlikely that the extraordinarily rapid hydrolysis by proteasomes at this site is efficiently blocked by any competitive inhibitor.

Along the same lines, it was proposed that the SIINFEKL NH$_2$ terminus is produced by LAP, a cytosolic aminopeptidase inducible by IFN–γ. Small amounts of SIINFEKL were shown to be produced upon prolonged incubation of synthetic QLESINFEKL with cytosol preparations from IFN–γ-treated cells, or by purified LAP (12). We think that this study potentially overemphasizes a minor mechanism in the generation of SIINFEKL. This epitope is excised by purified proteasomes from partial or total OVA in 7–10-fold greater amounts than QLESINFEKL (3, 56). In addition, SIINFEKL is resistant against proteasomal attack once generated (3). In contrast, SIINFEKL is degraded when incubated with LAP (our unpublished data). Thus, the production of SIINFEKL via QLESINFEKL by a two-step digestion involving aminopeptidases is likely to be a minor pathway. In addition, TFP II, which was inadvertently depleted from the cytosol in the protocol used by Beningsa et al. (12), is a strong candidate for the generation of SIINFEKL via the QLESIN FEKL precursor.

We do not mean to exclude that precursor trimming (at least NH$_2$–terminal trimming) also contributes to MHC class I ligand formation. The steric constraints on peptide extensions at the NH$_2$ terminus of the class I peptide binding groove appear to be stricter than on peptide extensions at the COOH terminus (63). In accordance with that fact, alignments of eluted class I ligands (6) and MHC–peptide affinity measurements (64) suggest that stable complex formation between class I MHC molecules and Nt-extended peptides may not occur normally, although there may be exceptions (65). These stringent requirements for correct NH$_2$ termini in MHC class I ligands are compatible with a trimming activity generating suitable termini. This activity may act in cases where proteasomes do not generate the correct NH$_2$ terminus of a class I ligand. Moreover, trimming may often contribute to ligand formation when elongated peptides are produced by proteasomes in addition to the minimal ligands, especially when such precursors have significantly higher TAP affinities than the minimal epitopes. Indeed, experimental evidence for NH$_2$–terminal trimming capacity has been reported in the cytosol (12) and in the ER for both signal peptide–coupled epitope precursors (11, 66–68) and a TAP-translocated peptide (43). However, it remains to be determined whether the generation of an epitope by two distinct proteases is as efficient as the generation of an epitope by proteasomes alone.

Nef is a major virulence factor of HIV and simian immunodeficiency virus (SIV), and appears to be critical for the development of AIDS (69–71). Among other biological effects, Nef downregulates MHC class I expression in HIV-infected and Nef-transfected cells (72), and was suggested to partially protect HIV-infected primary CD4$^+$ T cells against recognition by HLA-A2–restricted HIV-Gag and HIV reverse transcriptase–specific CTL clones (73). On the other hand, there is also strong evidence that CD8$^+$ lymphocytes play an important role in controlling viremia in SIV and HIV infections (74, 75). An effective HIV vaccine should therefore be designed to elicit CTL responses. Before the present report, only two naturally processed CTL epitopes of HIV were known, one for Gag and the other for reverse transcriptase (26). In view of the MHC downregulation by Nef, it may be mandatory to target CTL vaccines to epitopes that are present in high copy numbers, such as the HLA-B7–restricted naturally processed Nef peptide, $\text{Y}_{135}^\text{PGPGRVY}_{135}$, identified in this paper. Nef is synthesized at the earliest stage of viral gene expression and is abundantly expressed (76). High anti-Nef CTL responses have been detected in the acute and asymptomatic phases as well as later in HIV infection (35, 77, 78), and high frequencies of CTL precursors have been found in noninfected individuals (20). A detailed knowledge of MHC class I–peptide ligands and their intracellular generation, as well as the molecular basis of the adverse effects of Nef, should be instrumental in the development of an HIV vaccine including Nef CTL epitopes.

The CTL donor H.K.'s generous participation in this study is acknowledged. We thank Dr. Ian Haidl (Max-Planck Institute of Immunobiology) for his critical reading of this manuscript. We also thank M. S. K. Danappel for her peptide analysis (Biochemistry Service, Max-Planck Institute of Immunobiology), and E. Geier (Max-Planck Institute of Immunobiology) for her helpful discussions. This study was supported by grants from the Deutsche Forschungsgemeinschaft to G. Niedermann (NI 368/2-1), R. M. Jaer, and A. Meyerhans (Me 1061/2-3), and from the European Union Planck Institute of Immunobiology for her helpful discussions.
to K. Eichmann (Biotech 98-0242). M. Lucchiari-Hartz was funded by a fellowship from the Max-Planck Gesellschaft with the Conselho Nacional de Pesquisa-CNPq (contract 49.0303-97.8).

Submitted: 2 July 1999
Revised: 28 October 1999
Accepted: 3 November 1999

References

1. Früh, K., and Y. Yang. 1999. Antigen presentation by MHC class I and its regulation by interferon-γ. Curr. Opin. Immunol. 11:76–81.
2. Van Endert, P. 1999. Genes regulating MHC class I processing of antigens. Curr. Opin. Immunol. 11:81–88.
3. Niedermann, G., G. King, S. Butz, U. Birnser, R. Grimm, J. Shabanowitz, D.F. Hunte, and K. Eichmann. 1996. The proteolytic fragments generated by vertebrate proteasomes: structural relationships to major histocompatibility complex class I binding peptides. Proc. Natl. Acad. Sci. USA. 93:8572–8577.
4. Niedermann, G., R. Grimm, E. Geier, M. Maurer, C. Re- alini, C. Gartinmann, J. Soll, S. O mura, M.C. R. echsteiner, W. Baumeister, and K. Eichmann. 1997. Potential immunocompetence of proteolytic fragments produced by proteasomes before evolution of the vertebrate immune system. J. Exp. Med. 186:209–220.
5. Cardozo, C., and R.A. Kohanski. 1998. Altered properties of the branched chain amino acid-prefering activity contribute to increased cleavages after branched chain residues by the "immunoproteasome". J. Biol. Chem. 273:16764–16770.
6. Rammensee, H.-G., J. Bachmann, and S. Stevanovic. 1997. The function. In MHC Ligands and Peptide Molecules. H.-G. Rammensee, editor. R.G. Landes, Austin, TX. 217–369.
7. Kisselev, A.F., T.N. Akopian, K.M. Woo, and A.L. Goldberg. 1999. The sizes of peptides generated from protein by mammalian 26 and 20 S proteasomes. Implications for understanding the degradative mechanism and antigen presentation. J. Biol. Chem. 274:3363–3371.
8. Dick, T.P., T. Ruppert, M. Groetttrup, P.M. Kloetzel, L. Kueh, U.H. Koszynowski, S. Stevanovic, H. SCALE, and H.G. Rammensee. 1996. Coordinated dual cleavages induced by the proteasome regulator PA28 lead to dominant MHC ligands. Cell. 86:253–262.
9. Akopian, T.N., A.F. Kisselev, and A.L. Goldberg. 1997. Progressive degradation of proteins and other catalytic properties of the proteasome from Thermoplasma acidophilum. J. Biol. Chem. 272:1791–1798.
10. Nussbaum, A.K., T.P. Dick, W. Kielholz, M. Schirle, S. Stevanovic, K. Dietz, W. H einemeyer, M. Groll, D.H. Wolf, R. Huber, et al. 1998. Cleavage motifs of the yeast 20S proteasome beta subunits deduced from digests of enolase 1. Proc. Natl. Acad. Sci. USA. 95:12504–12509.
11. Craiu, A., T. Akopian, A. Goldberg, and K.L. Rocz. 1997. Two distinct proteolytic processes in the generation of a major histocompatibility complex class I presented peptide. Proc. Natl. Acad. Sci. USA. 94:10850–10855.
12. Beninga, J., K.L. Rocz, and A.L. Goldberg. 1998. Interferon-gamma can stimulate post-proteasomal trimming of the N terminus of an antigenic peptide by inducing leucine aminopeptidase. J. Biol. Chem. 273:18734–18742.
13. Beninga, J., and A.L. Goldberg. 1998. Function of the proteasome in antigen presentation. In Ubiqtin and the Biology of the Cell. J.M. Peters, and D. Finley, editors. Plenum Press, New York, NY. 191–222.
14. Korber, B.T.M., C. Brander, J.P. Moore, B.D. Walker, R. Koup, and B.F. Haynes. 1997. HIV Molecular Immunology Database. Los Alamos National Laboratory, Theoretical Biology and Biophysics, Los Alamos, New Mexico.
15. da Silva, J., and A.L. Hughes. 1998. Conservation of cytotoxic T lymphocyte (CTL) epitopes as a host strategy to constrain parasite adaptation: evidence from the nef gene of human immunodeficiency virus 1 (HIV-1). Mol. Biol. Evol. 15:1259–1268.
16. Weiss, A., and J.D. Stobo. 1984. Requirement for the coexpression of T3 and the T cell antigen receptor on a malignant human cell line. J. Exp. Med. 160:1284–1299.
17. Storkus, W.J., D.N. Howell, R.D. Saltet, J.R. Dawson, and P. Cresswell. 1987. NK susceptibility varies inversely with target cell class I HLA antigen expression. J. Immunol. 138:1657–1659.
18. Cerundolo, V., J. Alexander, K. Anderson, C. Lamb, P. Cresswell, A. McMichael, F. Gotch, and A. Townsend. 1990. Presentation of viral antigen controlled by a gene in the major histocompatibility complex. Nat. Rev. 345:449–452.
19. Komard, E., B. Begue, S. Sodoyer, J.L. Maryanski, S. Bocard, and J.P. Levy. 1986. Murine cells expressing an HLA molecule are specifically lysed by HLA-restricted antiviral human T cells. Nat. Rev. 319:153–154.
20. Lucchiar, M., G. Niedermann, C. Leipner, A. Meyermans, K. Eichmann, and B. Mair. 1994. Human immune response to HIV Nef. I. CD45RO+ T lymphocytes of non-infected donors contain cytotoxic T lymphocyte precursors at high frequency. Int. Immunol. 6:1739–1749.
21. Cooke, S.J., K. Coates, C.H. Barton, T.E. Biggs, S.J. Barrett, A. Cochran, K. Oliver, J.A. Mck eating, M. P. Harris, and D.A. Mann. 1997. Regulated expression vectors demonstrate cell-type-specific sensitivity to human immunodeficiency virus type 1 nef-induced cytostasis. J. Gen. Virol. 78:381–392.
22. Gagliardi, M.C., G. De Petrolio, S. Salemi, L. Boffa, M.G. Longobardi, P. Dellabona, G. Casarotti, N. Tanigali, R. Harris, A. Lanzavecchia, and V. Barnaba. 1995. Presentation of peptides by cultured monocytes or activated T cells allows specific priming of human cytotoxic T lymphocytes in vitro. Int. Immunol. 7:1741–1752.
23. Lucchiar-Hartz, M., M. Bauer, G. Niedermann, B. Mair, A. Meyermans, and K. Eichmann. 1996. Human immune response to HIV-1 Nef. II. Induction of HIV-1/Nef cross-reactive cytotoxic T lymphocytes in peripheral blood lymphocytes of non-infected healthy individuals. Int. Immunol. 8:577–584.
24. Cerundolo, V., A. Benham, V. Braud, S. Mukherjee, K. Gould, B. Macino, J. Neefjes, and A. Townsend. 1997. The proteasome-specific inhibitor lactacystin blocks presentation of cytotoxic T lymphocyte epitopes in human and murine cells. Eur. J. Immunol. 27:336–341.
25. Rötzschke, O., K. Fink, H.J. Walny, S. Faath, and H.G. Rammensee. 1990. Characterization of naturally occurring minor histocompatibility peptides including H-4 and H-Y. J. Exp. Med. 173:1284–1299.
26. Tsomides, T.J., A. Aldovini, R.P. Johnson, B.D. Walker, R.A. Young, and H.N. Eisen. 1994. Naturally processed viral peptides recognized by cytotoxic T lymphocytes on cells chronically infected by human immunodeficiency virus type 1. J. Exp. Med. 180:1283–1293.
27. Theobald, M., T. Ruppert, U. Kuckelkom, J. Hernandez, A. Häussler, E.A. Ferreira, U. Liewer, J. Biggs, A.J. Levine, C. Hüber, et al. 1998. The sequence alteration associated with a
mutational hotspot in p53 protects cells from lysis by cytotoxic T lymphocytes specific for a flanking peptide epitope. J. Exp. Med. 188:1017–1028.

28. Van Endert, P.M., D. Riganelli, G. Greco, K. Fleishhauer, J. Sidney, A. Sette, and J.-F. Bach. 1995. The peptide binding motif for the human transporter associated with antigen processing. J. Exp. Med. 182:1883–1895.

29. Nietfeld, W., M. Bauer, M. Fevrier, R. Maier, B. Holzwarth, R. Frank, B. Maier, Y. Riviere, and A. Meyerhans. 1995. Sequence constraints and recognition by CTL of an HLA-B27-restricted HIV-1 gag epitope. J. Immunol. 154:2188–2197.

30. Alexander, J., J. Sidney, S. Southwood, J. Ruppert, C. Ossendorp, A. Maewal, K. Snake, H.M. Serra, R.T. Kuba, A. Sette, et al. 1994. Development of high potency universal DR-restricted helper epitopes by modification of high affinity DR-blocking peptides. Immunity. 1:751–761.

31. Fenteany, G., R.F. Standaert, W.S. Lane, S. Choi, E.J. Cooney, G. Haas, P. Debre, and B. Autran. 1992. Carboxyl-terminal and central region of the HIV-1 NEF protein.

32. Goulder, P.J., M. Bunce, P. Krausa, K. McIntyre, S. Crowther, G. Niedermann, M. Ostankovitch, P. Yotnda, H. Firat, F.V. Chisari, and P.M. Van Endert. 1999. Human transporters associated with antigen processing (TAPs) select epitope precursor peptides for processing in the endoplasmic reticulum and presentation to T cells. J. Exp. Med. 190:1227–1240.

33. Culmann, B., E. Gomard, M.P. Kiency, B. Guy, F. Dreyfus, A.G. Salmot, D. Sereni, D. Sicard, and J.P. Levy. 1991. Six epitopes reacting with human cytotoxic CD8+ T cells in the central region of the HIV-1 NEF protein. J. Immunol. 146:1560–1565.

34. Haas, G., U. Plikat, P. Debre, M. Lucchiari-Hartz, R. Maier, G. Haas, B. Autran, K. Eichmann, R. Frank, B. Maier, and A. Meyerhans. 1997. Structural constraints of HIV-1 Nef may curtail escape from HLA-B7-restricted CTL recognition. Immunol. Lett. 55:119–122.

35. Kast, C.J. Melief, and J.J. Neefjes. 1995. Major differences in the structure of a peptide extending from one end of a class I MHC binding site. Nature. 371:963–972.

36. Powis, S.J., L.L. Young, E. Joly, P.J. Barker, L. Richardson, R.P. Brandt, C.J. Melief, J.C. Howard, and G.W. Butcher. 1996. The cim effect: TAP allele-dependent changes in a class I MHC anchor motif and evidence against C-terminal trimming of peptides in the ER. Immunity. 4:159–165.

37. Collins, E.J., D.N. Garboczi, and D.C. Wiley. 1994. Three-dimensional structure of a peptide extending from one end of a class I MHC binding site. Nature. 371:963–972.

38. Guo, H.C., T.S. Jardetzky, T.P. Garrett, W.S. Lane, J.L. Strominger, and D.C. Wiley. 1992. Different length peptides bind to HLA-Aw68 similarly at their ends but bulge out in the middle. Nature. 360:364–366.

39. Cardozo, C., A. Vinitsky, C. Michaud, and M. Oroszlaw. 1994. Evidence that the nature of amino acid residues in the P3 position directs substrates to distinct catalytic sites of the pituitary multicatalytic protease complex (proteasome). Biochemistry. 33:6483–6489.

40. Brander, C., G. Corradin, T. Haier, and W.J. Pichler. 1996. Peptide immunization in humans a combined CD8+ 4CD4+ T cell-targeted vaccine restimulates the memory CD4 T cell response but fails to induce cytotoxic T lymphocytes (CTL). Clin. Exp. Immunol. 105:18–25.

41. Yellen-Shaw, A., C.E. Laughlin, R.M. Metrione, and L.C. Eisenlohr. 1997. M urine transporters associated with antigen processing virus 1 nef protein. J. Exp. Med. 180:1129–1134.

42. Baur, A.S., E.T. Sawal, P. Dazin, W.J. Fanti, C. Cheng-Mayer, and B.M. Peterlin. 1994. HIV-1 Nef leads to inhibition or activation of T cells depending on its intracellular localization. Immunity. 1:373–384.

43. Lauvau, G., K. Kakimi, G. Niedermann, M. Ostankovitch, P. Yotnda, H. Firat, F.V. Chisari, and P.M. Van Endert. 1999. Human transporters associated with antigen processing (TAPs) select epitope precursor peptides for processing in the endoplasmic reticulum and presentation to T cells. J. Exp. Med. 190:1227–1240.

44. Nefees, J., E. Gottfried, R. Roelse, M. Grommé, R. Oost, G.J. Hämmerling, and F. Momburg. 1995. Analysis of the fine specificity of rat, mouse and human TAP peptide transporters. Eur. J. Immunol. 25:1133–1136.

45. Daniel, S., V. Brusic, S. Callat-Zucman, N. Petrovsky, L. Harrison, D. Riganelli, F. Simagiglia, F. Gallazzi, J. Hammer, and P.M. Van Endert. 1998. Relationship between peptide selectivities of human transporters associated with antigen processing and HLA class I molecules. J. Immunol. 161:617–624.

46. Eisenlohr, L.C., I. Back, J.R. Bennink, K. Berns, and J.W. Yewdell. 1992. Expression of a membrane protease enhances presentation of endogenous antigens to MHC class I-restricted T lymphocytes. Cell. 68:7336–7343.
presentation (TAP) preferences influence class I–restricted T cell responses. J. Exp. Med. 186:1655–1662.
55. Dick, T.P., S. Stevanovic, W. Kielholz, T. Ruppert, U. Koszinowski, H. Schidl, and H.-G. Rammensee. 1998. The making of the dominant MHC class I ligand SYFPEITHI. Eur. J. Immunol. 28:2478–2486.
56. Dick, L.R., C. Aldrich, S.C. Jameson, C.R. Moomaw, B.C. Pramanik, C.K. Doyle, G.N. De Martino, M.J. Bevan, J.M. Forman, and C.A. Slaughter. 1994. Proteolytic processing of ovalbumin and beta-galactosidase by the proteasome to yield antigenic peptides. J. Immunol. 152:3884–3894.
57. Grooten, M., T. Ruppert, L. Kuehn, M. Seeger, S. Stander, U.-H. Koszinowski, and P.-M. Kloetzel. 1995. The interferon-gamma-inducible 11S regulator (PA28) and the LMP2/LMP7 subunits govern the peptide production by the 20S proteasome in vitro. J. Biol. Chem. 270:23808–23815.
58. Niedermann, G., S. Butz, H.G. Ihlenfeldt, R. Grimm, M. Lucchiali, H. Hoshutzky, J. Jung, B. Mäier, and K. Eichmann. 1995. Contribution of proteasome-mediated proteolysis to the hierarchy of epitopes presented by major histocompatibility complex class I molecules. Immunity. 2:289–299.
59. Stolte, L., T.P. Dick, M. Deeg, B. Pommerl, H.G. Rammensee, and H. Schidl. 1998. Generation of the vesicular stomatitis virus nucleoprotein cytototoxic T lymphocyte epitope requires proteasome-dependent and -independent proteolytic activities. Eur. J. Immunol. 28:4029–4036.
60. Shimbara, N., K. Ogawa, Y. Hidaka, H. Nakajima, N. Yamasaki, S.-I. Niwa, N. Tanahashi, and K. Tanaka. 1998. Contribution of proline residue for efficient production of MHC class I ligands by proteasomes. J. Biol. Chem. 273:23062–23071.
61. Valmori, D., U. Gileadi, C. Servis, P.R. Dunbar, J.-C. Cerottini, P. Romero, V. Cerundolo, and F. Levy. 1999. Modulation of proteasomal activity required for the generation of a cytotoxic T lymphocyte–defined peptide derived from the tumor antigen MAGE-3. J. Exp. Med. 189:895–906.
62. Bogyo, M., J.S. McMahon, M. Gaczynska, D. Tortorella, A.L. Goldberg, and H. Ploegh. 1997. Covalent modification of the active site threonine of proteasomal beta subunits and the Escherichia coli homolog H5v by a new class of inhibitors. Proc. Natl. Acad. Sci. USA. 94:6629–6634.
63. Madden, D.R. 1995. The three-dimensional structure of peptide-MHC complexes. Annu. Rev. Immunol. 13:587–622.
64. Chen, Y., J. Sidney, S. Southwood, A.L. Cox, K. Sakaguchi, R.A. Henderson, E. Appella, D.F. Hunt, A. Sette, and V.H. Engelhard. 1994. Naturally processed peptides longer than nine amino acid residues bind to the class I MHC molecule HLA-A2.1 with high affinity and in different conformations. J. Immunol. 152:2874–2881.
65. Urban, R.G., R.M. Chicz, W.S. Lane, J.L. Strominger, A. Rehm, M.J. Kenter, F.G. Uyttendaele, H. Ploegh, B. Uchanska-Ziegler, and A. Ziegler. 1994. A subset of HLA-B27 molecules contains peptides much longer than nonamers. Proc. Natl. Acad. Sci. USA. 91:1534–1538.
66. Snyder, H.L., J.W. Yewdell, and J.R. Bennink. 1994. Trimming of antigenic peptides in an early secretory compartment. J. Exp. Med. 180:2389–2394.
67. Elliott, T., A. Willis, V. Cerundolo, and A. Townsend. 1995. Processing of major histocompatibility class I–restricted antigens in the endoplasmic reticulum. J. Exp. Med. 181:1481–1491.
68. Snyder, H.L., I. Back, J.W. Yewdell, T.W. Behrens, and J.R. Bennink. 1998. Promiscuous liberation of MHC class I–binding peptides from the C termini of membrane and soluble proteins in the secretory pathway. Eur. J. Immunol. 28:1339–1346.
69. Kestler, H.W., D.J. Ringer, K. Mori, D.L. Panicali, P.K. Sehgal, M.D. Daniel, and R.C. Desrosiers. 1991. Importance of the nef gene for maintenance of high virus loads and for development of AIDS. C. R. 65:651–662.
70. Peter, F. 1998. HIV nef: the mother of all evil? Immunity. 9:433–437.
71. Hanna, Z., D.G. Kay, N. Rebai, A. Guimond, S. Jothy, and P. Jolicoeur. 1998. Nef harbors a major determinant of pathogenicity for an AIDS-like disease induced by HIV-1 in transgenic mice. Cell. 95:163–175.
72. Schwartz, O., V. Marechal, S. Le Gall, F. Lemonier, and J. Heard. 1996. Endocytosis of major histocompatibility complex class I molecules is induced by HIV-1 Nef protein. Nat. Med. 2:330–342.
73. Collins, K.L., B.K. Chen, S.A. Kalams, B.D. Walker, and D. Baltimore. 1998. HIV-1 Nef protein protects infected primary cells against killing by cytotoxic T lymphocytes. Nat. Med. 4:391–401.
74. Jin, X., D.E. Bauer, S. Tuttleton, S. Lewin, A. Gettie, J. Blanchard, C. Irwin, J. Safrit, J. Mittler, L. Weinberger et al. 1999. Dramatic rise in plasma viremia after CD8− T cell depletion in simian immunodeficiency virus–infected macaques. J. Exp. Med. 189:991–998.
75. Schmitz, J.E., M.J. Kuroda, S. Santra, V.G. Sasseville, M.A. Simon, M.A. Lifton, P. Racz, K. Tenner-Racz, M. Dalesandro, B.J. Scallon, et al. 1999. Control of viremia in simian immunodeficiency virus infection by CD8+ lymphocytes. Science. 283:857–860.
76. Robert-Guroff, M., M. Popovic, S. Gartner, P. Markham, R.A. Henderson, E. Appella, D.F. Hunt, A. Sette, and V.H. Engelhard. 1994. Nef protein protects infected primary cells against killing by cytotoxic T lymphocytes. Nature. 379:662–664.
77. Simon, M.A. Lifton, P. Racz, K. Tenner-Racz, M. Dalesandro, B.J. Scallon, et al. 1999. Control of viremia in simian immunodeficiency virus infection by CD8+ lymphocytes. Nature. 379:662–664.
78. Bozóki, I., M.S. Lifton, P. Racz, K. Tenner-Racz, M. Dalesandro, B.J. Scallon, et al. 1999. Control of viremia in simian immunodeficiency virus infection by CD8+ lymphocytes. Nature. 379:662–664.
79. Bozóki, I., M.S. Lifton, P. Racz, K. Tenner-Racz, M. Dalesandro, B.J. Scallon, et al. 1999. Control of viremia in simian immunodeficiency virus infection by CD8+ lymphocytes. Nature. 379:662–664.