Abstract. Laser trapping and interfacing of laser-cooled atoms in an optical fiber network is an important capability for quantum information science. Following the pioneering work of Balykin et al. and Vetsch et al., we propose a robust method of trapping single Cesium atoms with a two-color state-insensitive evanescent wave around a dielectric nanofiber. Specifically, we show that vector light shifts (i.e., effective inhomogeneous Zeeman broadening of the ground states) induced by the inherent ellipticity of the forward-propagating evanescent wave can be effectively canceled by a backward-propagating evanescent wave. Furthermore, by operating the trapping lasers at the magic wavelengths, we remove the differential scalar light shift between ground and excited states, thereby allowing for resonant driving of the optical D_2 transition. This scheme provides a promising approach to trap and probe neutral atoms with long trap and coherence lifetimes with realistic experimental parameters.
A state-insensitive nanofiber trap

1. Introduction

The development of a matter-light quantum interface using cold atoms and optical fibers has been an active field of research over the past years [1]. Recent advances towards this goal include the observation of electromagnetically induced transparency and the loading of ultracold atoms in hollow-core optical fibers [2, 3, 4, 5], as well as the trapping and probing of atomic ensembles via the evanescent fields surrounding tapered nanofibers [6, 7, 8, 9]. While prominent examples of off-resonant interaction between evanescent waves and matter have used a plane dielectric geometry for atom optics and interferometry [10, 11] as well as for surface traps of quantum degenerate gases [12, 13, 14], recent progress of atom-light interactions with optical waveguides [4, 5, 7, 8, 9] sets the stage for the fiber integration of free-space quantum systems in a quantum network via quantum-state transfer between matter and light [15, 16, 17, 18] and for strong coupling of single atoms and photons trapped near microcavities [19, 20, 21, 22, 23, 24]. Furthermore, these effective 1-dimensional systems may be applied for investigating quantum many-body phenomena in low dimensions with long-range interactions mediated by the waveguide [25, 26, 27, 28].

One major drawback of many optical traps is that spatially inhomogeneous energy shifts $U(r)$ generally depend on the atomic electronic state, limiting long-lived trap and coherence times necessary for repeated coherent operations [29]. This is traditionally alleviated by constructing a state-insensitive optical trap designed to decouple atomic transition frequencies from the spatially varying potential of each electronic state [30]. Specifically, at the “magic” wavelength conditions, the differential response of the dynamic scalar polarizabilities $\alpha^{(0)}(\omega)$ for the ground and excited states $\alpha^{(0)}_{|g\rangle}, \alpha^{(0)}_{|e\rangle}$ at the optical frequency ω can be tailored such that both levels are perturbed identically $\alpha^{(0)}_{|g\rangle} = \alpha^{(0)}_{|e\rangle}$. This leads to a vanishing differential atomic level shift $\delta U_{\text{scalar}} = 0$ [30, 31, 32, 33, 34]. Differential shifts for the hyperfine ground states can be minimized by using far off-resonant beams, whereas Zeeman coherence can be conveniently protected by using linearly polarized light in which the vector light shifts are zero.

Although such magic wavelengths can be used for nanofiber traps [35], the strongly guiding nature of the waveguide inevitably leads to non-negligible longitudinal electric fields E_z in the evanescent region, which are out of phase with the transverse field $E_\perp = (E_x, E_y)$. Here, z refers to the direction parallel to the fiber axis, while x and y are the coordinates perpendicular to the fiber axis. The resulting local polarization at location r is in general elliptical even for linearly polarized input beams, and induces vector shifts U_{vector}. The differential vector shift δU_{vector} in turn manifests itself as a “fictitious magnetic field”, leading to inhomogeneous Zeeman broadening [36]. Furthermore, the spatially varying elliptical polarization of the evanescent field on a scale $\delta r < \lambda$ renders it difficult to cancel δU_{vector} using bias fields, resulting in increased heating rate [29] and limited coherence time [37].

Building upon the recent realization of a nanofiber trap as proposed in Ref. 38 and demonstrated in Refs. 6, 39, we propose a promising strategy for a state-insensitive
A state-insensitive nanofiber trap

Differential scalar shifts δU_{scalar} between $|g\rangle$ and $|e\rangle$ are canceled using “magic” wavelength conditions. The inhomogeneous Zeeman broadening δU_{vector} caused by a forward propagating blue-detuned field $\mathbf{E}^{(\text{fwd})}$ is canceled by a backward propagating field $\mathbf{E}^{(\text{bwd})}$ with a small relative frequency detuning δ_{fb}. Thus, our scheme can compensate for the light shifts of the strongly guided evanescent waves to the first order in the space external to the dielectric fiber, leading to favorable parameters for the realization of a long-lived fiber-integrated quantum memory and resonant coupling to ultra-high quality micro-cavities based on optically trapped atoms.

2. A state-insensitive nanofiber trap

In this section, we discuss an \textit{ab initio} calculation of the optical nanofiber trap for atomic Cesium. We show that the light shifts caused by the elliptically polarized components of the fiber’s evanescent field are not negligible. We then propose a scheme to cancel these shifts and generate a two-color, state-insensitive, three-dimensional trap for Cs atoms along the nanofiber.

2.1. \textit{ac} Stark shift Hamiltonian

We start by considering the Hamiltonian for an atom interacting with an electric field \mathbf{E} in the dipole approximation:

$$\hat{H}_{ls} = -\hat{d} \cdot \hat{E},$$ \hspace{1cm} (1)

where \hat{d} is the electric dipole operator and \hat{E} is the electric field operator. Taking into account the atomic hyperfine structure, this Hamiltonian can be decomposed into its spherical tensor components parameterized by the dynamic polarizability $\alpha(\omega)$ [40, 41, 42]:

$$\hat{H}_{ls} = \hat{H}_0 + \hat{H}_1 + \hat{H}_2$$

$$= \alpha^{(0)} \hat{E}^{(-)} \cdot \hat{E}^{(+)} + i\alpha^{(1)} (\hat{E}^{(-)} \times \hat{E}^{(+)}) \hat{F}$$

$$+ \sum_{\mu, \nu} \alpha^{(2)} \hat{E}_{\mu}^{(-)} \hat{E}_{\nu}^{(+)} \frac{3}{F(2F-1)} \left[\frac{1}{2} (\hat{F}_\mu \hat{F}_\nu + \hat{F}_\nu \hat{F}_\mu) - \frac{1}{3} \hat{F} \delta_{\mu\nu} \right],$$ \hspace{1cm} (2)

where $\alpha^{(0)}$, $\alpha^{(1)}$ and $\alpha^{(2)}$ are the scalar, vector and tensor atomic dynamic polarizabilities, $\hat{E}^{(+)}$ and $\hat{E}^{(-)}$ are the positive and negative frequency components of the electric field, $\hat{F} = \hat{I} + \hat{J}$ is the atomic total angular momentum operator, with \hat{I} and \hat{J} the nuclear and electronic angular momentum operators, $\mu, \nu \in \{-1, 0, 1\}$ are components in the spherical tensor basis, and \hat{H}_0, \hat{H}_1, and \hat{H}_2 are the terms associated with the scalar, vector, and tensor light shifts, respectively. The light shifts U_{scalar}, U_{vector}, and U_{tensor} arising from each term have been expressed explicitly in Refs. [40, 41].

For two-level atoms with ground and excited states $|g\rangle, |e\rangle$, the scalar shift U_{scalar} can be approximated by $U_{\text{scalar}} \propto |\mathbf{E}|^2/\delta$ for detunings $\delta = \omega - \omega_a$ large compared to the...
excited state decay rate Γ, where ω is the electric field angular frequency and ω_a is the $|g\rangle \rightarrow |e\rangle$ transition frequency. The ground state will experience a repulsive potential for blue-detuned ($\delta > 0$) electric fields, and an attractive potential for red-detuned ($\delta < 0$) electric fields. The scalar dynamic polarizability $\alpha^{(0)}$ is in general different for the states $|g\rangle$ and $|e\rangle$ resulting in a differential scalar shift and a mismatch of the ground and excited state potentials. For the typically anti-trapped excited state, near-resonant driving of the transition by an additional beam with frequency $\omega_2 \simeq \omega_a$ can cause significant heating of a trapped atom [29]. This situation can be remedied by the use of “magic” wavelengths for which $\alpha^{(0)}_{|g\rangle} = \alpha^{(0)}_{|e\rangle}$ [30, 31, 32, 34].

The vector term \hat{H}_1 of Eq. (2) induces a Zeeman-like splitting proportional to a projection of the total atomic angular momentum \mathbf{F} and arises from a so-called “fictitious magnetic field” proportional to the ellipticity of the electric field [36]. In the case of a free-space plane wave propagating along the z axis, \hat{H}_1 can be expressed in terms of the Stokes operators $\hat{S} = (\hat{S}_0, \hat{S}_x, \hat{S}_y, \hat{S}_z)$ as [41]:

$$\hat{H}_1 \propto \alpha^{(1)}(\omega) \epsilon \hat{F}_z,$$

where $\epsilon = \langle \hat{S}_z \rangle / \langle \hat{S}_0 \rangle = \frac{|E_{+1}|^2 - |E_{-1}|^2}{|E_{+1}|^2 + |E_{-1}|^2}$ is the ellipticity of the electric field. For an elliptically polarized beam, the vector shift can be as large as the scalar shift, and can, for example, be used to cancel the differential light shifts of Rubidium atoms confined in a 3D optical lattice [43].

The last term \hat{H}_2 in Eq. (2) represents the tensor shift. It vanishes for atoms with total angular momentum $F = 1/2$ [41]. In the case of the D_2 transition of Cs, that we consider here, it will depend only on the electronic angular momentum \hat{J} for detunings large compared to the $6P_{3/2}$ excited state hyperfine structure, and vanish for $J = \frac{1}{2}$ [40, 41]. It will therefore only act on the excited state of the Cs D_2 transition, inducing shifts on the Zeeman m_F sublevels proportional to m^2_F.

2.2. Evanescent optical traps using the fundamental mode of the waveguide

When the radius a of an optical fiber is reduced well below the propagating field wavelength λ, the resulting cladding-to-air waveguide supports only the “hybrid” fundamental mode HE$_{11}$ [7, 44]. In this strongly guiding regime, a significant fraction of energy of the HE$_{11}$ mode is carried in the form of an evanescent wave outside of the nanofiber. The evanescent field intensity is azimuthally asymmetric when the input polarization is linear [7, 44]. Fig. 1 shows the electric field intensity $|E|^2 = |E_x|^2 + |E_y|^2 + |E_z|^2$ in a plane transverse to the fiber for a single, linearly-polarized beam. The unit vectors $(\mathbf{e}_x, \mathbf{e}_y, \mathbf{e}_z)$ form the basis of the (x,y,z) frame, and (r, ϕ) are the cylindrical coordinates in the transverse plane (x,y).

By appropriately combining blue-detuned and red-detuned fields \mathbf{E}_{red} and \mathbf{E}_{blue} in an optical nanofiber, an atomic trapping potential can be engineered from the evanescent electric fields [38]. Different configurations can be used for obtaining 3D
confinement. Here, we consider the schemes illustrated in Fig. 1 for an infinite SiO$_2$ cylindrical waveguide of radius $a = 250$ nm. In all configurations, the beams are linearly polarized at the waveguide input to ensure azimuthal confinement for trapped atoms. A pair of x-polarized red-detuned beams generates a 1D lattice along the fiber axis for longitudinal confinement. Fig. 1b shows the configuration used in Ref. [6], namely a pair of red-detuned, x-polarized beams, and a single blue-detuned, y-polarized beam. An alternative scheme would be to use the three beams with parallel polarizations, as illustrated in Fig. 1c. This scheme allows for the use of lower power for the blue-detuned beam, by about a factor of three for the parameters that we will consider in section 3, but results in larger vector shifts as we will discuss in the next sections. The scheme that we propose makes use of four beams with parallel linear input polarizations, as shown in Fig. 1d. The additional blue-detuned beam compensates for the vector shifts of its companion blue-detuned beam, as we will show.

Fig. 2 illustrates a trap generated using the configuration of Fig. 1b and the parameters in Ref. [6]. About 2000 atoms were trapped in a 1-D lattice with a 50 ms lifetime. This advance in the group of A. Rauschenbeutel represents an important milestone towards the micro-manipulation of ultra-cold atoms using evanescent field traps.

2.3. HE$_{11}$ mode - electric field polarization

The fundamental mode HE$_{11}$ is often referred to as “quasi-linear” when excited with a linearly polarized input beam. However, for a dielectric waveguide in the strong-guiding regime with indices of refraction $n_1 \approx 1.5$ inside the waveguide and $n_2 \approx 1.0$ outside, the HE$_{11}$ mode actually exhibits a significant ellipticity for $a \lesssim \lambda/2$, leading to vector shifts of the Zeeman sublevels. Formally, for a linearly polarized input, the evanescent field $\mathbf{E} = (E_x, E_y, E_z)$ of the fundamental mode propagating in the fiber can be expressed as follows for $r \geq a$ [7, 44, 45]:

$$E_x(r, \phi, z, t) = A_{\text{lin}} \frac{\beta_{11} J_1(h_{11}a)}{2 q_{11} K_1(q_{11}a)} \frac{1}{2} \left[(1 - s_{11}) K_0(q_{11}r) \cos(\varphi_0) + (1 + s_{11}) K_2(q_{11}r) \cos(2\phi - \varphi_0) \right] e^{i(\omega t - \beta_{11} z)},$$

$$E_y(r, \phi, z, t) = A_{\text{lin}} \frac{\beta_{11} J_1(h_{11}a)}{2 q_{11} K_1(q_{11}a)} \frac{1}{2} \left[(1 - s_{11}) K_0(q_{11}r) \sin(\varphi_0) + (1 + s_{11}) K_2(q_{11}r) \sin(2\phi - \varphi_0) \right] e^{i(\omega t - \beta_{11} z)},$$

$$E_z(r, \phi, z, t) = i A_{\text{lin}} \frac{J_1(h_{11}a)}{K_1(q_{11}a)} \frac{1}{2} \left[K_1(q_{11}r) \cos(\phi - \varphi_0) e^{i(\omega t - \beta_{11} z)},$$

with
Figure 1. Trapping schemes. a) Field intensity $|E|^2$ in the plane transverse to the fiber for a single, x-polarized beam at $\lambda = 937$ nm. $|E|^2$ is normalized to the intensity just outside the fiber $I_0 = |E(r = a_+, \phi = 0)|^2$, with $a = 250$ nm and $a_+ = a + |r - a|$, $r \to a$. The red dashed arrow indicates the input polarization. b) Trapping scheme used in Ref. [6]. Red(blue)-detuned beams are shown by red(blue) thick arrows. Input polarizations are shown by the thin arrows. A single, y-polarized blue-detuned beam is used. c) Three-beam scheme with parallel x-polarizations. All beams have an intensity maximum in the $x-y$ plane along the direction of the input polarization. d) A second x-polarized blue-detuned beam is added to compensate for the vector shifts, as discussed in the main text.

\[
s_{11} = \frac{1}{(h_{11})^2 + \frac{1}{(q_{11})^2}} \left[\frac{J'_1(h_{11}a)}{h_{11}aJ_1(h_{11}a)} + \frac{K'_1(q_{11}a)}{q_{11}aK_1(q_{11}a)} \right],
\]

\[
h_{11} = \sqrt{k_0^2n_1^2 - \beta_{11}^2},
\]

\[
q_{11} = \sqrt{\beta_{11}^2 - k_0^2n_2^2}.
\]

Here, ϕ denotes the azimuthal position in the transverse plane (Fig. [a]), ϕ_0 indicates the polarization axis for the input polarization relative to the x axis, n_1 and n_2 are the indices of refraction inside and outside the waveguide, β_{11} is the mode propagation constant, $1/h_{11}$ is the characteristic decay length for the guided mode inside
Figure 2. A ground state trapping potential U_{trap} is generated by two orthogonally polarized evanescent fields, confining Cs atoms outside a 500 nm diameter optical fiber. Input polarizations are denoted by the arrows. a) x-y plane. b) x-z plane. U_{trap} results from two counter-propagating red-detuned beams (1064 nm, 2×2.2 mW), and a single blue-detuned beam (780 nm, 25 mW), as shown in Fig. 1b [6]. The standing wave structure of the attractive red-detuned field and the repulsive force from the blue-detuned beam enable 3D confinement of Cs atoms at each minimum of U_{trap} near the dielectric waveguide. U_{trap} diverges as the surface is approached due to the attractive van der Walls force.

the fiber, $1/q_{11}$ is the characteristic decay length for the guided mode outside the fiber, A_{lin} is the real-valued amplitude for the linearly polarized input, J_l is the l-th Bessel function of the first kind, and K_l is the l-th modified Bessel function of the second kind.

It is clear from Eq. (4) that the electric field intensity is not azimuthally symmetric. For a beam polarized along e_x, i.e. $\varphi_0 = 0$, the intensity at the fiber’s outer surface is maximum for $\phi = 0$, π and minimum for $\phi = \pm\pi/2$.

Notably, the evanescent modes of the nanofiber have a significant longitudinal component E_z along the fiber propagation direction, which is $\pi/2$ out-of-phase with the transverse components (E_x, E_y) (Eq. (4c)). At the outer fiber surface, E_z is maximum for $\phi = \varphi_0, \varphi_0 + \pi$ (i.e., along the input polarization axis), and vanishes for $\phi = \varphi_0 \pm \pi/2$. For an x-polarized input at 937 nm and a nanofiber of radius $a = 250$ nm, $|E_z|^2/|E|^2 \left(r = a_x, \phi = 0 \right) \approx 20\%$. As a consequence, the polarization of a single propagating beam will be elliptical everywhere except for $\phi = \varphi_0 \pm \pi/2$. The ellipticity of the beam will be maximum for $\phi = \varphi_0, \varphi_0 + \pi$ as is illustrated in Fig. 3 giving rise to significant vector shifts, which we describe in section 3.

We can re-write Eqs. (4) as follows:
A state-insensitive nanofiber trap

Figure 3. Electric field $\mathbf{E}(x, y, z, t)$ of a single propagating beam in the plane $y = 0$. The input beam is x-polarized. The electric field $\text{Re}[\mathbf{E}(x, y, z, t)]$, with $\mathbf{E}(x, y, z, t)$ defined as in Eq. [4], is shown by the blue arrows. The red arrow indicates the beam propagation direction. The field is shown for a) $\omega t = 0$, b) $\omega t = \pi/2$, and c) $\omega t = \pi$.

\begin{align}
E_x(r, \phi, z, t) &= Ae^{i(\omega t - \beta_{11}z)}, \\
E_y(r, \phi, z, t) &= Be^{i(\omega t - \beta_{11}z)}, \\
E_z(r, \phi, z, t) &= iCe^{i(\omega t - \beta_{11}z)},
\end{align}

(6a) (6b) (6c)

where A, B, and C are real functions of r and ϕ. In particular, if one combines a forward-propagating beam $\mathbf{E}^{(\text{fwd})}$ expressed as Eq. (6) with a backward-propagating beam of same amplitude and input polarization $\mathbf{E}^{(\text{bwd})} = Ae^{i(\omega t + \beta_{11}z)}e_x + Be^{i(\omega t + \beta_{11}z)}e_y - iCe^{i(\omega t + \beta_{11}z)}e_z$, the total field can be expressed as:

$$\mathbf{E}^{(\text{tot})} = \mathbf{E}^{(\text{fwd})} + \mathbf{E}^{(\text{bwd})} = 2[A \cos(\beta_{11}z)e_x + B \cos(\beta_{11}z)e_y + C \sin(\beta_{11}z)e_z] \cdot e^{i\omega t}. \quad (7)$$

The resulting electric field $\mathbf{E}^{(\text{tot})} = \mathbf{E}^{(\text{fwd})} + \mathbf{E}^{(\text{bwd})}$ forms an optical lattice with spatially rotating linear polarization as illustrated in Fig. 4. In particular, the polarization state of the field rotates between the pure linear x and z-polarizations along z at $\phi = 0$, as illustrated in Fig. 5.

2.4. Cancellation of the vector shifts

In Ref. [6], the properties shown in Figs. 4 and 5 were used to cancel the vector shifts of ground and excited m_F states in Cs for the pair of red-detuned trapping beams for the configuration in Fig. 1b. However, vector shifts due to the single blue-detuned beam were zero only for $\phi = \varphi_0$, $\varphi_0 + \pi$. Although the atoms are trapped at $\phi = \varphi_0$, $\varphi_0 + \pi$, inevitable fluctuations of the atom position will lead to non-zero vector light shifts of both ground and excited states.

The scheme in Fig. 1c allows for the use of reduced power for the blue-detuned beams as compared to Fig. 1b but with the consequence of large vector shifts from the ellipticity of the electric field even for $\phi = 0$. We will therefore not consider this scheme in the next sections.
A state-insensitive nanofiber trap

Figure 4. Total electric field $E(x, y, z, t)$ for two counter-propagating beams in the plane $y = 0$. The input beams are x-polarized. The electric field $\text{Re}[E(x, y, z, t)]$ is shown by the blue arrows. The red arrows indicate the beams propagation directions. The electric field is shown for (a) $\omega t = 0$, (b) $\omega t = \pi/4$, and (c) $\omega t = \pi$. As opposed to Fig. 3, the polarization of the electric field is linear at any point $|r| > a$ (i.e., the polarization vector has no ellipticity and E does not rotate in time at a given position r as in 3).

Figure 5. Electric field amplitude after interference $E^{(\text{tot})} = E^{(\text{fwd})} + E^{(\text{bwd})}$ of two 937 nm beams with $\delta_{fb} = 0$, at $t = 0$ and $r = a + z$ as in Fig. [1]d (i.e., x-polarized inputs with $\phi_0 = 0$). The fields are normalized to the intensity I_0 at $r = a + z$, $\phi = 0$, $z = 0$.
(a) axial direction z (at $\phi = 0$). (b), azimuthal direction ϕ (at $z = 0$). In particular, $E^{(\text{tot})}$ has a fixed linear polarization at any given point r which rotates as r is varied.

By contrast, the vector shifts of both the ground and excited states can be canceled for both the red and blue-detuned fields by using pairs of counter-propagating beams, as shown in Fig. [1]d. In the $x - z$ plane, the vector shift for each pair becomes $\hat{H}_1 \propto (\alpha^{(1)}(\omega^{(\text{fwd})}) - \alpha^{(1)}(\omega^{(\text{bwd})})) \hat{F}_y$ with $\omega^{(\text{fwd})} \approx \omega^{(\text{bwd})}$, where $\omega^{(\text{fwd,bwd})}$ are the angular frequencies for the forward and backward propagating beams, and $\delta \pm \delta_{fb}/2$ are their detunings from the atomic transition frequency ω_a, with two-photon detuning $\delta_{fb} = \omega^{(\text{bwd})} - \omega^{(\text{fwd})}$. For an atom in the $x - z$ plane, the total electric field is also contained in the $x - z$ plane, such that the scalar product $\left(\hat{E}^{(-)} \times \hat{E}^{(+)}\right) \cdot \hat{F}$ in Eq. (2) is proportional to \hat{F}_y.

In the case of the red-detuned lattice, $\omega^{(\text{fwd})}_{\text{red}} = \omega^{(\text{bwd})}_{\text{red}}$ and $\hat{H}_1^{(\text{red})} = 0$, precisely
A state-insensitive nanofiber trap

as in Ref. [6]. Adding a blue-detuned lattice with $\delta_{fb} = 0$ would result in two superimposed lattices with unmatched spatial periods $2\pi/\beta_{\text{red}}^\text{red}, 2\pi/\beta_{\text{blue}}^\text{blue}$. To avoid this effect, the interference between the counter-propagating blue-detuned fields $E_{\text{blue}}^{(\text{fwd})}$ and $E_{\text{blue}}^{(\text{bwd})}$ can be averaged over times short compared to the time scale of the motional and internal dynamics of a trapped atom by offsetting the frequencies of the two fields by $\delta_{fb} \gg (\omega_{\text{trap}}, \delta_{\text{hfs}})$, where ω_{trap} and δ_{hfs} are the trap angular frequency and the hyperfine splitting for the ground state, respectively. This will also suppress spurious two-photon processes (e.g., two-photon Stark shift [46]) as well as parametric heating due to intensity modulation [47].

For $\omega_{\text{blue}}^{(\text{fwd,bwd})} = \omega_a + (\delta \pm \delta_{fb}/2)$, we achieve a vector shift cancellation for the blue-detuned field to the first order in $1/\delta$, namely:

$$\hat{H}_1^{(\text{blue})} \propto \frac{\delta_{fb}}{\delta^2} F_y + \mathcal{O}(1/\delta^3). \quad (8)$$

For typical values of $\delta = 85$ THz and $\delta_{fb} = 30$ GHz, $\delta_{fb}/\delta = 3.5 \times 10^{-4}$.

2.5. Magic wavelengths for an evanescent field trap

To make the nanofiber trap state-insensitive, it is necessary to cancel the differential scalar shift δU_{scalar} by operating the trap at the magic wavelengths, as proposed in Ref. [35], in which only the effects of the scalar and tensor shifts were considered. Here we deal with the full complexity of the vector field $E(r)$ and the resulting vector light shifts. We numerically determine the red-detuned and blue-detuned magic wavelengths, following the procedure described in Refs. [30, 34, 48, 49]. We include all the hyperfine levels F and Zeeman sublevels m_F of the electronic states $\{6S_{1/2}, \cdots, 15S_{1/2}\}, \{6P_{1/2}, \cdots, 11P_{1/2}\}, \{6P_{3/2}, \cdots, 11P_{3/2}\}, \{6D_{3/2}, \cdots, 11D_{3/2}\}$, and $\{6D_{5/2}, \cdots, 11D_{5/2}\}$. The effect of the tensor shifts on the excited state is manifest in the quadratic splitting of the m_F' sublevels (Fig. [6]). We find a red-detuned magic-wavelength located around 935nm, in accordance with the previously published values [34, 49]. In the next sections, we will use the value $\lambda_{\text{red}} = 937$ nm, that cancels δU_{scalar} for the $6P_{3/2}$ excited state $|F' = 4, m_{F'} = 0\rangle$. We choose $F' = 4$ due to its relevance to coherent two-photons processes [15, 16, 17]. There are several blue-detuned magic wavelengths [35, 49]. For our trap, we use the magic wavelength λ_{blue} at approximately 687 nm [35]. Since this is the second closest blue-detuned magic wavelength to 852 nm, it has the second highest ground-state polarizability and therefore requires the second lowest optical intensity to generate the required trapping potential (we do not consider the magic wavelength at 792 nm, as it is too close to the $8S_{1/2}$ to $6P_{3/2}$ transition at 794 nm).

We have neglected higher order processes in our analysis, including two-photon and electric quadrupole transitions, near 687 nm [50].
3. Numerical results: trapping potentials

Using the atomic interaction Hamiltonian in the dipole approximation with the actual polarization profile of the evanescent field, we proceed to analyze the adiabatic potentials for the nanofiber trap for a Cs atom in its $6S_{1/2}$ ground and $6P_{3/2}$ excited states.

3.1. Total potential

For a specific atomic state of Cs, the total atomic trap potential U_{trap} consists of the total light-shift potential U_{ls} calculated from the full Stark shift Hamiltonian (Eq. (2)), as well as the surface interaction potential of an atom with the dielectric waveguide U_{surface}, namely

$$U_{\text{trap}} = U_{ls} + U_{\text{surface}}.$$ \hspace{1cm} (9)

The Casimir-Polder interaction between the atom and dielectric surface has a significant effect on the atomic motion at distance scales near 100 nm \cite{20, 51, 52, 53, 54}. The surface potential of a ground state Cs atom near a planar dielectric surface can be reasonably approximated by the van der Waals potential which decays as d^{-3}, where $d = r - a$:

$$U_{\text{surface}} = -\frac{C_3}{d^3},$$ \hspace{1cm} (10)

where we use $C_3/h = 1.2 \ \text{kHz} \ \mu\text{m}^3$ \cite{21}. Because the retarded Casimir-Polder forces decrease faster away from the surface than the van der Waals forces, using U_{surface} overestimates the surface interaction at the trap location $d \approx 200 \ \text{nm}$. Additionally, the curvature of the nanofiber cylindrical geometry reduces the potential strength even further \cite{21, 55}. The d^{-3} scaling of the van der Waals expression for a planar surface is therefore an overestimate of the actual surface potential, and is used for simplicity.

Figure 6. Magic wavelengths of the Cs D_2 line. We display the light shift U_{ls} for a linearly polarized beam with constant intensity $2.9 \times 10^9 \text{W/m}^2$ around a), the blue-detuned magic wavelength at $\lambda_{\text{blue}} \approx 687 \ \text{nm}$, and b), red-detuned magic wavelength at $\lambda_{\text{red}} \approx 937 \ \text{nm}$.
in the calculations presented here, with more complete expressions for Cs presented in Ref. [21]. Furthermore, we neglect any dependence on the $m_{F'}$ sublevels of the excited state $6P_{3/2}$, and simply approximate $U_{\text{surface}}^{6P_{3/2}} \approx 2U_{\text{surface}}$ [50].

We calculate the adiabatic potential of Eq. (9) by diagonalizing the total interaction Hamiltonian $\hat{H} = \hat{H}_{ls} + \hat{H}_{\text{surface}}$ at each point in space, where \hat{H}_{surface} is the scalar surface Hamiltonian. At each point $\mathbf{r}(r, \phi, z)$, we obtain a set of eigenstates and the corresponding eigenenergies. These eigenstates are superpositions of the $|F, m_F\rangle$ bare Zeeman sublevels. Due to the complex polarization of the trapping fields, the energy eigenstates are not necessarily eigenstates of any projection of the angular momentum operator.

3.2. Effect of the light shifts in a “non-magic” trap

First, we consider the trapping parameters for the experiment by Vetsch et al. [6]. Despite its impressive experimental success, the ground-state levels exhibit splittings that impair the ground state coherence. In the realization of Ref. [6], the two-color evanescent trap is constructed using a pair of counter-propagating x-polarized ($\varphi_0 = 0$) red-detuned beams $E_{\text{red}} = E_{\text{red}}^{(\text{fwd})} + E_{\text{red}}^{(\text{bwd})}$ ($P_{\text{red}} = 2 \times 2.2$ mW) at $\lambda_{\text{red}} = 1064$ nm, forming an optical lattice, and a single repulsive y-polarized ($\varphi_0 = \pi/2$) blue-detuned beam E_{blue} ($P_{\text{blue}} = 25$ mW) at $\lambda_{\text{blue}} = 780$ nm. The SiO$_2$ tapered optical fiber has a radius $a = 250$ nm in the trapping region.
A state-insensitive nanofiber trap

Figure 8. Azimuthal dependence of the trapping potential of the ground and excited states for the scheme in Fig. 1b and for the parameters used in Fig. 7. \(r - a = 230 \) nm, \(z = 0 \). a) The ground state splitting is minimum for \(\phi = 0 \) and \(\phi = \pi \). Everywhere else, the polarization of the blue-detuned field induces large vector shifts. b) Expanded view of a) near a trap minimum at \(\phi = \pi \). The Zeeman-like splitting of the ground states is large even for small azimuthal angles. The excited-state level structures are greatly altered by the combined vector and tensor shifts.

Fig. 7 shows the radial trapping potential \(U_{\text{trap}}(r, \phi, z) \) of the ground states \(F = 3 \) and \(F = 4 \) of 6\(S_{1/2} \) and excited states \(F' = 4 \) of 6\(P_{3/2} \), for \(z = 0 \) and \(\phi = 0 \) (\(x \)-axis) (Fig. 7a) and for \(\phi = \pi/2 \) (\(y \)-axis) (Fig. 7b). The energy sublevels of the ground states at the trap location \((\phi = 0) \) are degenerate, as both trapping fields are linearly polarized as illustrated in Fig. 4. The excited state energy sublevels are shifted due to the vector and tensor shifts. The trap depth for the ground state is \(U_{\text{depth}} = -0.4 \) mK, located at \(r - a \simeq 230 \) nm and \(\phi = 0 \), whereas the excited states are not trapped at all.

The azimuthal dependence of the trap potential reveals a significant inhomogeneous broadening of the energy sublevels due to the ellipticity of \(E_{\text{blue}} \) for \(\phi \neq 0, \pi \) (Fig. 8). To estimate this broadening, we assume that the potential is harmonic around the trap minimum. By fitting the ground state \(F = 3 \) potential with a harmonic potential around \(\phi = \pi \), we obtain an azimuthal trapping frequency \(\nu_{\text{trap}} \simeq 150 \) kHz. For an atom in its azimuthal motional ground state \(|n\rangle_{\phi} = |0\rangle_{\phi} \) in such a potential, the half-width \(\sigma_{\phi} \) of the corresponding single-atom distribution is given by \(\sigma_{r_{\phi}} = \langle (r\phi)^2 \rangle \simeq r_{\text{trap}} \sigma_{\phi} = \sqrt{\frac{\hbar}{4\pi m \nu_{\text{trap}}}} \simeq 16 \) nm (or azimuthal half-width of \(\sigma_{\phi} \simeq 2^\circ \)). This leads to fast decoherence of the hyperfine and Zeeman levels, even with ground state cooling. Specifically, we estimate a spin-wave coherence time \(\tau_m = 1/\delta\nu_{\phi} \lesssim 5 \) \(\mu s \), derived from the \(\delta\nu_{\phi} = 200 \) kHz splitting between the sublevels of the \(F = 4 \) atomic ground state \(16 \) nm away from the trap minimum. This is significantly limited compared to the quantum memory performances of atomic ensembles in optical lattices (see, e.g., [57]).

Finally, we plot in Fig. 9 a cross-section of the axial potentials showing the axial confinement of the ground and excited states.

The excited states are untrapped in all directions except along the fiber axis \(z \) for the
parameters of Ref. [6]. An atom excited to these untrapped potentials will experience dipole-force fluctuations, leading to heating [29] and preventing near-resonant driving of the optical transition [58].

3.3. State-insensitive trapping potential

Now, we analyze our proposed “magic compensation” scheme (as illustrated in Fig. 1d), demonstrating how using magic wavelength beams and compensating the trap ellipticity can reduce inhomogeneous broadening of the Zeeman sublevels in a nanofiber trap. For this trap, we use a pair of counter-propagating \(x\)-polarized (\(\phi_0 = 0\)) red-detuned beams \(E_{\text{red}} = E_{\text{red}}^{(\text{fwd})} + E_{\text{red}}^{(\text{bwd})}\) (\(P_{\text{red}} = 2 \times 0.95\) mW) at the “magic” wavelength \(\lambda_{\text{red}} = 937\) nm, forming a 1-D optical lattice. Counter-propagating, \(x\)-polarized blue-detuned beams at the second “magic” wavelength \(\lambda_{\text{blue}} = 687\) nm are used with a power \(P_{\text{blue}} = 2 \times 16\) mW. The resulting interference is averaged out by detuning the beams by \(\delta f_b = 30\) GHz, as explained in section 2.4, leading to a first-order cancellation of vector light shifts as expressed by Eq. (8). The beam intensities are chosen to generate a trap of similar depth as the one demonstrated in Ref. [6]. The resulting adiabatic potential \(U_{\text{trap}}\) allows for state-insensitive 3D confinement of cold Cs atoms around a SiO\(_2\) nanofiber of radius \(a = 250\) nm.

In Fig. 10, we show the radial trapping potential \(U_{\text{trap}}(r, \phi, z)\) of the ground and excited states for \(z = 0, \phi = 0\) (\(x\)-axis) (Fig. 10a) and for \(z = 0, \phi = \pi/2\) (\(y\)-axis) (Fig. 10b). Because the trapping fields are now effectively linearly polarized, the ground states are degenerate at both \(\phi = 0\) and \(\phi = \pi/2\). In contrast to a non-magic wavelength trap, the excited states are trapped with gradients that closely map that of the ground states. The sublevels of \(6P_{3/2}\) are still non-degenerate due to the tensor shifts. For \(P_{\text{red}}, P_{\text{blue}}\) specified above, we find that the trap depth is \(U_{\text{depth}} = -0.4\) mK, located at
A state-insensitive nanofiber trap

Figure 10. Radial dependence of the trapping potentials of the ground and excited states using the magic wavelengths and the configuration shown in Fig. 1d. All beams are polarized along $\phi = 0$ (i.e., $\varphi_0 = 0$). The 937 nm beams each have a power of 0.95 mW. The 687 nm beams each have a power of 16 mW. a) Radial potentials along $\phi = 0$ (i.e., $\varphi_0 = 0$). The trap minimum for $6S_{1/2}$ is located about 210 nm from the fiber surface. Both electronic ground and excited states are trapped, with residual splittings of the excited states due to the tensor shifts. b) Radial potential along $\phi = \pi/2$. c), d) Expanded view of a), b) around the trap minimum.

$r - a \simeq r_{\text{trap}} - a = 210$ nm and $\phi = 0, \pi$.

The azimuthal confinement of the atoms is shown by Fig. 11. In contrast to the configurations shown in Figs. 1b and 1c, the inhomogeneous Zeeman broadening from the ellipticity of E_{blue} is greatly reduced thanks to the compensation scheme of Fig. 1d. It is non-zero, however, as expressed by Eq. (8). The remaining splitting of the $F = 4$ ground state is $\delta_\nu \approx 700$ Hz, limiting the coherence time to $\tau \lesssim 1/\delta_\nu = 1.4$ ms.

In the case of perfect cancellation of the vector shift with $\delta_{fb} = 0$, a residual non-zero ground state splitting δ_ν_ϕ would still arise from the different scalar dynamic polarizabilities of the $6S_{1/2}$ $F = 3$ and $F = 4$ ground states [59]. For atoms in their azimuthal motional ground state $|n\rangle_\phi = |0\rangle_\phi$, the single-atom distribution half-width is $\sigma_r \simeq 30$ nm (or $\sigma_\phi \simeq 4^\circ$) with azimuthal trap frequency $\nu_{\text{trap}} \simeq 44$ kHz obtained from a harmonic fit of the potential around $\phi = \pi$. We estimate a spin-wave coherence time $\tau_m = 1/\Delta(\delta_\nu_\phi) \leq 30$ ms, coming from the spread $\Delta(\delta_\nu_\phi) = \delta_\nu_\phi(\phi = \pi) -$
A state-insensitive nanofiber trap

Figure 11. a) Azimuthal dependence of the trapping potential of the ground and excited state for the “magic compensated” trap (Fig. 11) with the parameters used in Fig. 10 for \(r - a = 210 \, \text{nm} \). b) Expanded view of a) around a trap minimum. The effect of the compensation beam in Fig. 11 is to suppress the vector shifts and to reduce the ground-state splittings \(\delta \nu_\phi \) in the transverse plane for \(\phi \neq 0, \pi \).

\[\delta \nu_\phi (\phi = \pi + \sigma_\phi) \approx 30 \, \text{Hz} \] of the atomic ground states for the \(F = 3 \rightarrow F = 4 \) transition frequency.

We note that the longest achievable coherence time in the “magic compensated” adiabatic potential in the absence of ground-state splitting \(\delta \nu_\phi \) would be limited by spontaneous Raman scattering driven by the trapping beams [34].

Figure 12. Axial dependence of the trapping potentials of the ground and excited states for the “magic compensated” trap (Fig. 11) with the parameters used in Fig. 10. a) Longitudinal potential along \(\phi = 0 \) for \(r - a = 210 \, \text{nm} \). b) Longitudinal potential along \(\phi = \pi/2 \) for \(r - a = 210 \, \text{nm} \).

Finally, we also plot the axial potentials in Fig. 12 showing the confinement for both the ground and excited states.

Thanks to the use of the magic wavelengths, the excited states are trapped in all directions. This results in greatly suppressed dipole-force fluctuations, allowing for on-resonance driving of the optical transition.
4. Conclusion

We have proposed and analyzed in detail a scheme for a state-insensitive optical nanofiber trap which utilizes realistic experimental parameters. The “magic” trapping wavelengths of 937 nm and 687 nm for Cs atoms are readily available using semiconductor laser sources, and require a reasonable power for trapping. Tapered optical fibers can be made with sub-wavelength diameters and high transmission, as has been demonstrated experimentally \cite{60, 61}. In Ref. \cite{62} we describe an experiment for trapping Cs using Fig. 1d configuration and explicitly demonstrate features of the “compensated magic” trap for a nanofiber.

Furthermore, extension to other nanoscopic dielectric waveguides \cite{63} would make evanescent optical trapping possible in integrated hybrid quantum devices \cite{64}. It is worthwhile to note that the compensation scheme of the vector shift would work at any wavelength, increasing the ground state coherence time in a straightforward manner.

The proposed “magic compensated” scheme allows for in-trap resonant processes, and leads to increased ground state coherence time relative to uncompensated schemes. These properties will make quantum-state engineering more feasible in such a trap, allowing for a wide range of experiments including creating quantum memories, coupling of single atoms and ensembles to optical or mechanical resonators, and studying 1-D spin chains.

5. Acknowledgment

We gratefully acknowledge interactions with E. S. Polzik and M. Pototschnig. Funding is provided by the Institute for Quantum Information and Matter, an NSF Physics Frontier Center with support of the Gordon and Betty Moore Foundation, by NSF Grant # PHY0652914, by the DoD NSSEFF program, by the AFOSR MURI for Quantum Memories, and by Northrop Grumman Aerospace Systems. Akihisa Goban is supported by the Nakajima Foundation.

References

[1] H. J. Kimble. The quantum internet. Nature, 453(7198):1023–1030, June 2008.
[2] M. J. Renn, D. Montgomery, O. Vdovin, D. Z. Anderson, C. E. Wieman, and E. A. Cornell. Laser-guided atoms in hollow-core optical fibers. Phys. Rev. Lett., 75(18):3253–3256, October 1995.
[3] H. Ito, T. Nakata, K. Sakaki, M. Ohtsu, K. I. Lee, and W. Jhe. Laser spectroscopy of atoms guided by evanescent waves in micron-sized hollow optical fibers. Phys. Rev. Lett., 76(24):4500–4503, June 1996.
[4] Caleb A. Christensen, Sebastian Will, Michele Saba, Gyu-Boong Jo, Yong-Il Shin, Wolfgang Ketterle, and David Pritchard. Trapping of ultracold atoms in a hollow-core photonic crystal fiber. Phys. Rev. A, 78(3):033429, 2008.
[5] M. Bajcsy, S. Hofferberth, V. Balic, T. Peyronel, M. Hafezi, A. S. Zibrov, V. Vuletic, and M. D. Lukin. Efficient all-optical switching using slow light within a hollow fiber. Phys. Rev. Lett., 102(20):203902, May 2009.
[6] E. Vetsch, D. Reitz, G. Sague, R. Schmidt, S. T. Dawkins, and A. Rauschenbeutel. Optical interface created by Laser-Cooled atoms trapped in the evanescent field surrounding an optical nanofiber. *Physical Review Letters*, 104(20):203603, May 2010.

[7] Fam Le Kien, J.Q. Liang, K. Hakuta, and V.I. Balykin. Field intensity distributions and polarization orientations in a vacuum-clad subwavelength-diameter optical fiber. *Optics Communications*, 242(4-6):445–455, December 2004.

[8] K. P. Nayak, P. N. Melentiev, M. Morinaga, Fam Le Kien, V. I. Balykin, and K. Hakuta. Optical nanofiber as an efficient tool for manipulating and probing atomic fluorescence. *Opt. Express*, 15(9):5431–5438, April 2007.

[9] G. Sague, E. Vetsch, W. Alt, D. Meschede, and A. Rauschenbeutel. Cold-Atom physics using ultrathin optical fibers: Light-Induced dipole forces and surface interactions. *Physical Review Letters*, 99(16):163602, October 2007.

[10] V. I. Balykin, V. S. Letokhov, Yu. B. Ovchinnikov, and A. I. Sidorov. Quantum-state-selective mirror reflection of atoms by laser light. *Phys. Rev. Lett.*, 60(21):2137–2140, May 1988.

[11] Alexander D. Cronin, Jörg Schmiedmayer, and David E. Pritchard. Optics and interferometry with atoms and molecules. *Rev. Mod. Phys.*, 81(3):1051–1129, July 2009.

[12] Yu. B. Ovchinnikov, I. Manek, and R. Grimm. Surface trap for Cs atoms based on evanescent-wave cooling. *Phys. Rev. Lett.*, 79(12):2225–2228, 1997.

[13] D. Rychtarik, B. Engeser, H.-C. Ngerl, and R. Grimm. Two-dimensional Bose-Einstein condensate in an optical surface trap. *Phys. Rev. Lett.*, 92(17):173003, April 2004.

[14] W. S. Bakr, A. Peng, M. E. Tai, R. Ma, J. Simon, J. I. Gillen, S. Folling, L. Pollet, and M. Greiner. Probing the Superfluid-to-Mott insulator transition at the Single-Atom level. *Science*, 329(5991):547–550, July 2010.

[15] A. D. Boozer, A. Boca, R. Miller, T. E. Northup, and H. J. Kimble. Reversible state transfer between light and a single trapped atom. *Phys. Rev. Lett.*, 98(19):193601, May 2007.

[16] K. S. Choi, H. Deng, J. Laurat, and H. J. Kimble. Mapping photonic entanglement into and out of a quantum memory. *Nature*, 452(7183):67–71, March 2008.

[17] Klemens Hammerer, Anders S. Srensen, and Eugene S. Polzik. Quantum interface between light and atomic ensembles. *Rev. Mod. Phys.*, 82(2):1041–1092, April 2010.

[18] Nicolas Sangouard, Christoph Simon, Hugues de Riedmatten, and Nicolas Gisin. Quantum repeaters based on atomic ensembles and linear optics. *Rev. Mod. Phys.*, 83(1):33–80, March 2011.

[19] Takao Aoki, Barak Dayan, E. Wilcut, W. P. Bowen, A. S. Parkins, T. J. Kippenberg, K. J. Vahala, and H. J. Kimble. Observation of strong coupling between one atom and a monolithic microresonator. *Nature*, 443(7122):671–674, October 2006.

[20] D. J. Alton, N. P. Stern, Takao Aoki, H. Lee, E. Ostby, K. J. Vahala, and H. J. Kimble. Strong interactions of single atoms and photons near a dielectric boundary. *Nat Phys*, 7(2):159–165, February 2011.

[21] N. P. Stern, D. J. Alton, and H. J. Kimble. Simulations of atomic trajectories near a dielectric surface. *New J. Phys.*, 13(8):085004, August 2011.

[22] Paul E. Barclay, Kartik Srinivasan, Oskar Painter, Benjamin Lev, and Hideo Mabuchi. Integration of fiber-coupled high-Q SiNx microdisks with atom chips. *Applied Physics Letters*, 89:131108, 2006.

[23] Yves Colombe, Tilo Steinmetz, Guilhem Dubois, Felix Linke, David Hunger, and Jakob Reichel. Strong atom-field coupling for bose-einstein condensates in an optical cavity on a chip. *Nature*, 450(7167):272–276, November 2007.

[24] M. Trupke, J. Goldwin, B. Darquié, G. Dutier, S. Eriksson, J. Ashmore, and E. A. Hinds. Atom detection and photon production in a scalable, open, optical microcavity. *Phys. Rev. Lett.*, 99(6):063601, 2007.

[25] Hashem Zoubi and Helmut Ritsch. Hybrid quantum system of a nanofiber mode coupled to two chains of optically trapped atoms. *New J. Phys.*, 12(10):103014, 2010.
A state-insensitive nanofiber trap

[26] Takuya Kitagawa, Matthew A Broome, Alessandro Fedrizzi, Mark S Rudner, Erez Berg, Ivan Kassal, Alán Aspuru-Guzik, Eugene Demler, and Andrew G White. Observation of topologically protected bound states in a one dimensional photonic system. arXiv:1105.5334, May 2011.

[27] J. T. Shen and Shanhui Fan. Coherent photon transport from spontaneous emission in one-dimensional waveguides. Opt. Lett., 30(15):2001–2003, 2005.

[28] Darrick E. Chang, Anders S. Sorensen, Eugene A. Demler, and Mikhail D. Lukin. A single-photon transistor using nanoscale surface plasmons. Nat Phys, 3(11):807–812, November 2007.

[29] K. L. Corwin, S. J. M. Kuppens, D. Cho, and C. E. Wieman. Spin-polarized atoms in a circularly polarized optical dipole trap. Phys. Rev. Lett., 83(7):1311–1314, 1999.

[30] Jun Ye, H. J. Kimble, and Hidetoshi Katori. Quantum state engineering and precision metrology using state-insensitive light traps. Science, 320(5884):1734–1738, June 2008.

[31] H. J. Kimble. In R. Blatt, J. Eschner, D. Leibfried, and F. Schmidt-Kaler, editors, Proceedings of the XIV International Conference on Laser Spectroscopy, volume XIV, pages 80 – 89. World Scientific, Innsbruck, Austria, 1999.

[32] Hidetoshi Katori, Tetsuya Ido, and Makoto Kuwata-Gonokami. Optimal design of dipole potentials for efficient loading of Sr atoms. J. Phys. Soc. Jpn., 68(8):2479–2482, 1999.

[33] Tetsuya Ido, Yoshitomo Isoya, and Hidetoshi Katori. Optical-dipole trapping of Sr atoms at a high phase-space density. Phys. Rev. A, 61(6):061403, May 2000.

[34] J. McKeever, J. R. Buck, A. D. Boozer, A. Kuzmich, H.-C. Ngerl, D. M. Stamper-Kurn, and H. J. Kimble. State-insensitive cooling and trapping of single atoms in an optical cavity. Phys. Rev. Lett., 90(13):133602, April 2003.

[35] Fam Le Kien, Victor I. Balykin, and Kohzo Hakuta. State-Insensitive trapping and guiding of Cesium atoms using a Two-Color evanescent field around a Subwavelength-Diameter fiber. Journal of the Physics Society Japan, 74(3):910–917, 2005.

[36] J. Dupont-Roc, N. Polonsky, C. Cohen-Tannoudji, and A. Kastler. Lifting of a Zeeman degeneracy by interaction with a light beam. Physics Letters A, 25(2):87–88, July 1967.

[37] D. Felinto, C. W. Chou, H. de Riedmatten, S. V. Polyakov, and H. J. Kimble. Control of decoherence in the generation of photon pairs from atomic ensembles. Phys. Rev. A, 72(5):053809, November 2005.

[38] V. I. Balykin, K. Hakuta, Fam Le Kien, J. Q. Liang, and M. Morinaga. Atom trapping and guiding with a subwavelength-diameter optical fiber. Physical Review A, 70(1):011401, July 2004.

[39] S. T. Dawkins, R. Mitsch, D. Reitz, E. Vetsch, and A. Rauschenbeutel. Dispersive optical interface based on nanofiber-trapped atoms. ArXiv 1108.2469, August 2011.

[40] Ivan H. Deutsch and Poul S. Jessen. Quantum control and measurement of atomic spins in polarization spectroscopy. Optics Communications, 283(5):681–694, March 2010.

[41] J. M. Geremia, John K. Stockton, and Hideo Mabuchi. Tensor polarizability and dispersive quantum measurement of multilevel atoms. Phys. Rev. A, 73(4):042112, April 2006.

[42] Ivan H. Deutsch and Poul S. Jessen. Quantum-state control in optical lattices. Phys. Rev. A, 57(3):1972–1986, March 1998.

[43] R. Chicireanu, K. D. Nelson, S. Olmschenk, N. Lundblad, A. Derevianko, and J. V. Porto. Differential light-shift cancellation in a magnetic-field-insensitive transition of 87Rb. Phys. Rev. Lett., 106(6):063002, February 2011.

[44] Limin Tong, Jingyi Lou, and Eric Mazur. Single-mode guiding properties of subwavelength-diameter silica and silicon wire waveguides. Opt. Express, 12(6):1025–1035, March 2004.

[45] G Sague, A Baade, and A Rauschenbeutel. Blue-detuned evanescent field surface traps for neutral atoms based on mode interference in ultrathin optical fibres. New Journal of Physics, 10(11):113008, 2008.

[46] M. M. Ashraf. The effects of phase and Stark shift on two-photon process. J. Opt. B: Quantum Semiclass. Opt., 3(2):39–43, April 2001.

[47] T. A. Savard, K. M. O’Hara, and J. E. Thomas. Laser-noise-induced heating in far-off resonance optical traps. Phys. Rev. A, 56(2):R1095–R1098, 1997.
A state-insensitive nanofiber trap

[48] Hidetoshi Katori, Masao Takamoto, V. G. Pal’chikov, and V. D. Ovsiannikov. Ultrastable optical clock with neutral atoms in an engineered light shift trap. *Phys. Rev. Lett.*, 91(17):173005, October 2003.

[49] Bindiya Arora, M. S. Safronova, and Charles W. Clark. Magic wavelengths for the np-ns transitions in alkali-metal atoms. *Phys. Rev. A*, 76(5):052509, November 2007.

[50] D. DiBerardino, C. E. Tanner, and A. Sieradzan. Lifetime measurements of cesium $5d^2d_5/2,3/2$ and $1s^2s_{1/2}$ states using pulsed-laser excitation. *Phys. Rev. A*, 57(6):4204–4211, June 1998.

[51] C. I. Sukenik, M. G. Boshier, D. Cho, V. Sandoghdar, and E. A. Hinds. Measurement of the Casimir-Polder force. *Phys. Rev. Lett.*, 70(5):560–563, February 1993.

[52] M. Bordag, U. Mohideen, and V. M. Mostepanenko. New developments in the Casimir effect. *Physics Reports*, 353(1-3):1–205, October 2001.

[53] V. Sandoghdar, C. I. Sukenik, E. A. Hinds, and Serge Haroche. Direct measurement of the van der Waals interaction between an atom and its images in a micron-sized cavity. *Phys. Rev. Lett.*, 68(23):3432–3435, June 1992.

[54] E. A. Hinds, K. S. Lai, and M. Schnell. Atoms in micron-sized metallic and dielectric waveguides. *Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences*, 355(1733):2353–2365, December 1997.

[55] T. Emig, R. L. Jaffe, M. Kardar, and A. Scardicchio. Casimir interaction between a plate and a cylinder. *Phys. Rev. Lett.*, 96(8):080403, March 2006.

[56] A. Laliotis. Testing the distance-dependence of the van der waals interaction between an atom and a surface through spectroscopy in a vapor nanocell. *Proc. SPIE*, 6604(1):660406, 2007.

[57] A. G. Radnaev, Y. O. Dudin, R. Zhao, H. H. Jen, S. D. Jenkins, A. Kuzmich, and T. A. B. Kennedy. A quantum memory with telecom-wavelength conversion. *Nat. Phys.*, 6(11):894–899, November 2010.

[58] E. Vetsch. *Optical Interface Based on a Nanofiber Atom-Trap*. PhD thesis, Johannes Gutenberg-Universität in Mainz, 2010.

[59] P. Rosenbusch, S. Ghezali, V. A. Dzuba, V. V. Flambaum, K. Beloy, and A. Derevianko. ac Stark shift of the Cs microwave atomic clock transitions. *Phys. Rev. A*, 79(1):013404, January 2009.

[60] Ariane Stiebeiner, Ruth Garcia-Fernandez, and Arno Rauschenbeutel. Design and optimization of broadband tapered optical fibers with a nanofiber waist. *Opt. Express*, 18(22):22677–22685, October 2010.

[61] Takao Aoki. Fabrication of ultralow-loss tapered optical fibers and microtoroidal resonators. *Jpn. J. Appl. Phys.*, 49(11):118001, November 2010.

[62] In Preparation.

[63] Matt Eichenfield, Jasper Chan, Ryan M. Camacho, Kerry J. Vahala, and Oskar Painter. Optomechanical crystals. *Nature*, 462(7269):78–82, November 2009.

[64] M. Wallquist, K. Hammerer, P. Rabl, M. Lukin, and P. Zoller. Hybrid quantum devices and quantum engineering. *Phys. Scr.*, T137:014001, December 2009.