Embedding truncated skew polynomial rings into matrix rings and embedding of a ring into 2×2 supermatrices

Jenő Szigeti

Abstract. For an endomorphism $\sigma : R \to R$ with $\sigma^2 = 1$ we prove that the truncated polynomial ring (algebra) $R[w, \sigma]/(w^t)$ embeds into $M_2(R[z]/(z^t))$. For an involution σ we exhibit an embedding $R \to M^\sigma_{2, 1}(R)$, where $M^\sigma_{2, 1}(R)$ is the algebra of the so called $(\sigma, 2, 1)$ supermatrices.

1. INTRODUCTION

The main inspiration of the present work are the various embedding results in [SvW] and [MMSvW]. A certain embedding of the two-generated Grassmann algebra $E^{(2)}$ into a 2×2 matrix algebra over a commutative ring leads to a Cayley-Hamilton identity of degree $2n$ for any $n \times n$ matrix over $E^{(2)}$ (see [SvW]). For a field K (of characteristic zero) let $E^{(m)} = K \langle v_1, \ldots, v_m \mid v_iv_j + v_jv_i = 0 \text{ for all } 1 \leq i \leq j \leq m \rangle$ denote the m-generated Grassmann algebra and $M_n(K)$ denote the full $n \times n$ matrix ring (K-algebra) over a ring (K-algebra) R with identity $I_n \in M_n(R)$. In [MMSvW] a so called constant trace representation (K-embedding)

$$\varepsilon^{(m)} : E^{(m)} \to M_{2^m - 1}(K[z_1, \ldots, z_m]/(z_1^2, \ldots, z_m^2)),$$

is presented, where the ideal (z_1^2, \ldots, z_m^2) of the commutative polynomial algebra $K[z_1, \ldots, z_m]$ is generated by the monomials z_1^2, \ldots, z_m^2. One of the remarkable consequences of this embedding is a Cayley-Hamilton identity (with coefficients in K) of degree $2^m - 1 - n$ for $n \times n$ matrices over $E^{(m)}$.

The induction step in the construction of the above $\varepsilon^{(m)}$ is based on the observation that $E^{(m)}[w, \tau]/(w^2) \cong E^{(m+1)}$ as K-algebras, where $\tau : E^{(m)} \to E^{(m)}$ is the natural involution defined by the well known \mathbb{Z}_2-grading $E^{(m)} = E^{(m)}_0 \oplus E^{(m)}_1$ and (w^2) is the ideal of the skew polynomial algebra $E^{(m)}[w, \tau]$ generated by w^2. The main ingredient of the mentioned induction is a ”Fundamental Embedding” $\mu : R[w, \sigma]/(w^2) \to M_2(R[z]/(z^2))$, which is defined for an arbitrary involution

1991 Mathematics Subject Classification. 16S36, 16S50, 16R10, 16R20.

Key words and phrases. skew polynomial algebra, truncated skew polynomial algebra, matrix algebra, embedding, supermatrix defined by an involution.

The author was supported by OTKA K-101515 of Hungary.

This research was carried out as part of the TAMOP-4.2.1.B-10/2/KONV-2010-0001 project with support by the European Union, co-financed by the European Social Fund.
\[\sigma : R \rightarrow R\]. In Section 2 we give a far reaching generalization of this "Fundamental Embedding". We note that the idea of considering the truncated polynomial ring \((K\text{-algebra}) R[w, \sigma] / (w^t)\) comes from \([SSz]\).

The use of an endomorphism (involution) \(\sigma : R \rightarrow R\) enables us to give a generalization of the concept of a supermatrix. Supermatrices over the infinitely generated Grassmann algebra play an important role in Kemer's classification of T-prime T-ideals (see \([K]\)). Section 3 contains an embedding of \(R\) into a \(2 \times 2\) supermatrix algebra (over \(R\)) determined by \(\sigma\).

2. TRUNCATED SKEW POLYNOMIAL RINGS AND EMBEDDINGS

For a ring \((K\text{-algebra})\) endomorphism \(\sigma : R \rightarrow R\) let us consider the skew polynomial ring \((K\text{-algebra}) R[w, \sigma]\) in the skew indeterminate \(w\). The elements of \(R[w, \sigma]\) are left polynomials of the form \(f(w) = r_0 + r_1 w + \cdots + r_k w^k\) with \(r_0, r_1, \ldots, r_k \in R\). Besides the obvious addition, we have the following multiplication rule in \(R[w, \sigma]\): \(\sigma(w = \sigma(r)w\) for all \(r \in R\) and

\[(r_0 + r_1 w + \cdots + r_k w^k)(s_0 + s_1 w + \cdots + s_l w^l) = u_0 + u_1 w + \cdots + u_{k+l} w^{k+l},\]

where

\[u_m = \sum_{i+j=m, i \geq 0, j \geq 0} r_i \sigma^j(s_j) \text{ (for } 0 \leq m \leq k + l)\].

If \(\sigma^t = 1\) (such a \(\sigma\) is an automorphism), then \(w^t\) is a central element of \(R[w, \sigma]\): we have \(\sigma^t(r) = r\) and \(w^t r = w^{t-1} \sigma(r) w = \cdots = \sigma^t(r) w^t = r w^t\) for all \(r \in R\), moreover \(w^t\) commutes with the powers of \(w\). Thus the ideal \((w^t) < R[w, \sigma]\) generated by \(w^t\) can be written as \((w^t) = R[w, \sigma]/w^t R[w, \sigma]\). For any element \(f(w) + (w^t)\) of the truncated polynomial ring \((K\text{-algebra}) R[w, \sigma]/(w^t)\) there exists a unique sequence of coefficients \(r_0, r_1, \ldots, r_{t-1} \in R\) such that

\[r_0 + r_1 w + \cdots + r_{t-1} w^{t-1} + (w^t) = f(w) + (w^t)\].

Hence the elements of \(R[w, \sigma]/(w^t)\) can be represented by left polynomials of degree less or equal than \(t - 1\).

The following is called "Fundamental Embedding" in \([MMSzvW]\).

2.1. Theorem \([MMSzvW]\). For an involution \(\sigma : R \rightarrow R\), putting

\[\mu(r_0 + r_1 w + (w^2)) = \begin{bmatrix} r_0 + (z^2) & r_1 z + (z^2) \\ \sigma(r_1) z + (z^2) & \sigma(r_0) + (z^2) \end{bmatrix}\]

(with \(r_0, r_1 \in R\)) gives an embedding \(\mu : R[w, \sigma]/(w^2) \rightarrow M_2(R[z]/(z^2))\).

Now we present the following generalization of Theorem 2.1 (already announced in \([MMSzvW]\)).

2.2. Theorem. For an endomorphism \(\sigma : R \rightarrow R\) with \(\sigma^t = 1\), putting

\[\mu(r_0 + r_1 w + \cdots + r_{t-1} w^{t-1} + (w^t)) = [\sigma^{t-1}(r_{j-i}) z^{j-i} + (z^t)]_{t \times t}\]

gives an embedding \(\mu : R[w, \sigma]/(w^t) \rightarrow M_t(\sigma(R[z]/(z^t)))\), where the difference \(j - i \in \{0, 1, \ldots, t - 1\}\) is taken modulo \(t\), and the element of the factor algebra \(\sigma(R[z]/(z^t))\) in the \((i, j)\) position of the \(t \times t\) matrix \([\sigma^{t-1}(r_{j-i}) z^{j-i} + (z^t)]_{t \times t}\) is \(\sigma^{t-1}(r_{j-i}) z^{j-i} + (z^t)\).

The trace of \([\sigma^{t-1}(r_{j-i}) z^{j-i} + (z^t)]_{t \times t}\) is in the fixed ring \(R^T = \{r \in R | \sigma(r) = r\}\):

\[\text{tr}(\mu(r_0 + r_1 w + \cdots + r_{t-1} w^{t-1} + (w^t))) = \text{tr}([\sigma^{t-1}(r_{j-i}) z^{j-i} + (z^t)]_{t \times t}) = \]
\[r_0 + \sigma(r_0) + \cdots + \sigma^{t-1}(r_0) + (z^t) \in R^\sigma + (z^t). \]

Proof. We only have to prove the multiplicative property of \(\mu \).

In order to avoid confusion, for \(i, j \in \{1, \ldots, t\} \) let \(j \circ i \) denote the modulo \(t \) difference:

\[j \circ i = \begin{cases}
 j - i & \text{if } i \leq j \\
 (j - i) + t & \text{if } j \leq i - 1
\end{cases} . \]

The \((p, q)\) entry in the product of the \(t \times t \) matrices

\[\mu(r_0 + r_1 w + \cdots + r_{t-1} w^{t-1} + (w^t)) = \left[\sigma^{i-1}(r_{j \circ i}) z^{j \circ i} + (z^t) \right]_{t \times t} \]

and

\[\mu(s_0 + s_1 w + \cdots + s_{t-1} w^{t-1} + (w^t)) = \left[\sigma^{j-1}(s_{q \circ j}) z^{q \circ j} + (z^t) \right]_{t \times t} \]

is

\[a_{p, q} = \sum_{j=1}^{t} (\sigma^{p-1}(r_{j \circ p}) z^{j \circ p} + (z^t)) \left(\sigma^{j-1}(s_{q \circ j}) z^{q \circ j} + (z^t) \right) = \]

\[\left(\sum_{j=1}^{t} \sigma^{p-1}(r_{j \circ p}) \sigma^{j-1}(s_{q \circ j}) \right) z^{(j \circ p) + (q \circ j)} + (z^t). \]

Since \(\sigma^t = 1 \), we have \(\sigma^{p-1}(\sigma^{j \circ p}(s_{q \circ j})) = \sigma^{j-1}(s_{q \circ j}) \). It is straightforward to check that if \((j \circ p) + (q \circ j) \leq t - 1 \) holds, then

\[(j \circ p) + (q \circ j) = q \circ p \text{ and } 0 \leq j \circ p \leq q \circ p. \]

In view of the above observations and using \(i = j \circ p \), we can see that

\[a_{p, q} = \sigma^{p-1} \left(\sum_{j=1}^{t} r_{j \circ p} \sigma^{j \circ p}(s_{q \circ j}) \right) z^{(j \circ p) + (q \circ j)} + (z^t) = \]

\[\sigma^{p-1} \left(\sum_{j=1}^{t} r_{j \circ p} \sigma^{j-1}(s_{q \circ (j-1)}) \right) z^{q \circ p} + (z^t) = \sigma^{p-1}(u_{q \circ p}) z^{q \circ p} + (z^t) \]

is the \((p, q)\) entry of \(\mu(u_0 + u_1 w + \cdots + u_{t-1} w^{t-1} + (w^t)) \), where

\[u_0 + u_1 w + \cdots + u_{t-1} w^{t-1} + (w^t) = (r_0 + r_1 w + \cdots + r_{t-1} w^{t-1} + (w^t))(s_0 + s_1 w + \cdots + s_{t-1} w^{t-1} + (w^t)). \]

holds in \(R[w, \sigma]/(w^t) \).

Since

\[\sigma(r_0 + \sigma(r_0) + \cdots + \sigma^{t-1}(r_0)) = \sigma(r_0) + \sigma^2(r_0) + \cdots + \sigma^{t-1}(r_0) + \sigma^t(r_0) \]

and \(\sigma^t(r_0) = r_0 \), the trace of \(\left[\sigma^{i-1}(r_{j \circ i}) z^{j \circ i} + (z^t) \right]_{t \times t} \) is in \(R^\sigma + (z^t) \). \(\square \)

Now consider the free associative \(K \)-algebra \(K \langle x_1, \ldots, x_m, \ldots \rangle \) generated by the (non-commuting) indeterminates \(x_1, \ldots, x_m, \ldots \) and let

\[S_m(x_1, \ldots, x_m) = \sum_{\pi \in \text{Sym}(m)} \text{sgn}(\pi)x_{\pi(1)} \cdots x_{\pi(m)} \]

be the standard polynomial in \(K \langle x_1, \ldots, x_m, \ldots \rangle \). In the following corollaries we keep the notations and the conditions of Theorem 2.2.

2.3. Corollary. If \(R \) is commutative and \(n \geq 1 \) is an integer, then \(S_{2n} = 0 \) is an identity on \(M_n(R[w, \sigma]/(w^t)) \). In particular \(S_{2t} = 0 \) is an identity on \(R[w, \sigma]/(w^t) \).
Proof. The natural extension
\[\mu_n : M_n(R[w,\sigma]/(w^t)) \to M_n(M_l(R[z]/(z^t))) \cong M_{tn}(R[z]/(z^t)) \]
of \(\mu \) is an embedding. Since \(R[z]/(z^t) \) is also commutative and \(S_{2tn} = 0 \) is an identity on \(M_{tn}(R[z]/(z^t)) \) by the Amitsur-Levitzki theorem (see [Dr, DrF]), the proof is complete. \(\square \)

2.4. Corollary. If \(S_m = 0 \) is an identity on \(R \) and \(n \geq 1 \) is an integer, then \(S_{(m-1)2n^2+1} = 0 \) is an identity on \(M_n(R[w,\sigma]/(w^t)) \). In particular \(S_{(m-1)2n^2+1} = 0 \) is an identity on \(R[w,\sigma]/(w^t) \).

Proof. Since \(S_m = 0 \) is also an identity on \(R[z]/(z^t) \), using \(\mu_n \) and Theorem 5.5 of Domokos [Do] completes the proof. \(\square \)

2.5. Corollary. If \(R \) is a PI-algebra and \(n \geq 1 \) is an integer, then \(M_n(R[w,\sigma]/(w^t)) \) is also a PI-algebra. In particular \(R[w,\sigma]/(w^t) \) is a PI-algebra.

Proof. Since \(R[z]/(z^t) \) is also PI, using \(\mu_n \) and the well known fact that full matrix algebras over a PI-algebra are PI (a special case of Regev’s tensor product theorem), the proof is complete. \(\square \)

2.6. Theorem. If \(R \) is commutative and \(\sigma : R \to R \) is an endomorphism, then the fixed ring (algebra) \(R^\sigma = \{ r \in R \mid \sigma(r) = r \} \) of \(\sigma \) is a central subring (algebra) of \(R[w,\sigma] \) and \(R^\sigma + (z^t) \subseteq Z(R[w,\sigma]/(w^t)) \).

If \(\sigma^t = 1 \) and \(A \in M_n(R[w,\sigma]/(w^t)) \) is an \(n \times n \) matrix, then \(A \) satisfies a “Cayley-Hamilton” identity of the form
\[A^n + c_1 A^{n-1} + \cdots + c_{tn-1} A + c_{tn} I_n = 0, \]
where \(c_i \in R^\sigma = \{ r \in R \mid \sigma(r) = r \}, 1 \leq i \leq tn \). In particular \(R[w,\sigma]/(w^t) \) is integral over \(R^\sigma \) of degree \(t \).

Proof. The containments \(R^\sigma \subseteq Z(R[w,\sigma]) \) and \(R^\sigma + (z^t) \subseteq Z(R[w,\sigma]/(w^t)) \) are clear. In the rest of the proof we follow the steps of the proof of Theorem 2.1 in [MMSzvW]. Let \(A = [a_{i,j}] \) and take \(\mu_n \) from the proof of Corollary 2.3. The trace of the \(tn \times tn \) matrix \(B = \mu_n(A) \in M_{tn}(R[z]/(z^t)) \) is the sum of the traces of the diagonal \(t \times t \) blocks:
\[\text{tr}(B) = \sum_{i=1}^n \text{tr}(\mu(a_{i,i})). \]

Theorem 2.2 ensures that \(\text{tr}(\mu(a_{i,i})) \in R^\sigma + (z^t) \) for each \(1 \leq i \leq n \). For the sake of simplicity we can take \(\text{tr}(\mu(a_{i,i})) \in R^\sigma \). It follows that \(\text{tr}(B) \in R^\sigma \). The coefficients of the characteristic polynomial
\[\det(xI - B) = c_0 x^n + c_1 x^{n-1} + \cdots + c_{tn-1} x + c_{tn} \in (R[z]/(z^t))[x] \]
of \(B \) determined by the following recursion: \(c_0 = 1 \) and
\[c_k = -\frac{1}{k} \left(c_{k-1} \text{tr}(B) + c_{k-2} \text{tr}(B^2) + \cdots + c_1 \text{tr}(B^{k-1}) + c_0 \text{tr}(B^k) \right) \]
for \(1 \leq k \leq tn \) (Newton formulae). In view of
\[\text{tr}(B^k) = \text{tr}((\mu_n(A))^k) = \text{tr}(\mu_n(A^k)) \in R^\sigma, \]
we deduce that \(c_i \in R^a \) for each \(0 \leq i \leq tn \). Thus \(\det(xI - B) \in R^a[x] \) and the Cayley-Hamilton identity for \(B \) is of the form
\[
B^{tn} + c_1B^{tn-1} + \cdots + c_{tn-1}B + c_{tn}I_n = 0.
\]
Notice that for \(r \in R \) and \(c \in R^a \) we have \(c\sigma^{i-1}(r) = \sigma^{i-1}(cr) \) and \(c\mu_n(A^k) = \mu_n(cA^k) \) follows from
\[
\mu(cr_0 + cr_1w + \cdots + cr_{t-1}w^{t-1} + (w^t)) = c\mu(r_0 + r_1w + \cdots + r_{t-1}w^{t-1} + (w^t)).
\]
Thus
\[
(\mu_n(A))^{tn} + c_1(\mu_n(A))^{tn-1} + \cdots + c_{tn-1}\mu_n(A) + c_{tn}I_n = 0
\]
holds in \(M_{tn}(R[z]/(z^t)) \) and the injectivity of \(\mu_n \) gives the desired identity. \(\square \)

3. SUPERMATRIX ALGEBRAS DETERMINED BY INVOLUTIONS

For an arbitrary endomorphism \(\sigma : R \rightarrow R \) and for the integers \(1 \leq k \leq n \) a matrix \(A \in M_n(R) \) is called a \((\sigma, n, k) \)-supermatrix if \(A \) is of the shape
\[
A = \begin{bmatrix}
 A_{1,1} & A_{1,2} \\
 A_{2,1} & A_{2,2}
\end{bmatrix},
\]
where \(A_{1,1} \) is a \(k \times k \) and \(A_{2,2} \) is an \((n-k) \times (n-k) \) square block, while \(A_{1,2} \) is a \(k \times (n-k) \) and \(A_{2,1} \) is an \((n-k) \times k \) rectangular block such that \(\sigma(u) = u \) for each entry \(u \) of \(A_{1,1} \) and \(A_{2,2} \) and \(\sigma(u) = -u \) for each entry \(u \) of \(A_{1,2} \) and \(A_{2,1} \). Let \(M_{n,k}^\sigma(R) \) denote the set of \((\sigma, n, k) \)-supermatrices. If \(R = E \) is the (infinitely generated) Grassmann algebra and \(\tau(g_0 + g_1) = g_0 - g_1 \) is the natural \(E \rightarrow E \) involution, then \(M_{n,k}^\sigma(E) \) is the classical algebra of \((n,k) \)-supermatrices (see [K]).

3.1. Proposition

The set \(M_{n,k}^\sigma(R) \) is a subring (subalgebra) of \(M_n(R) \).

Proof. Straightforward verification. \(\square \)

3.2. Theorem

Let \(\frac{1}{2} \in R \) and \(\sigma : R \rightarrow R \) be an arbitrary endomorphism. For \(r \in R \) the definition
\[
\Theta(r) = \frac{1}{2} \begin{bmatrix}
 r + \sigma(r) & r - \sigma(r) \\
 r - \sigma(r) & r + \sigma(r)
\end{bmatrix}
\]
gives an embedding \(\Theta : R \rightarrow M_2(R) \). If \(\sigma \) is an involution \((\sigma^2 = 1) \), then \(\Theta \) is an \(R \rightarrow M_{2,1}^\sigma(R) \) embedding.

Proof. We give the details of the straightforward proof.
The additive property of \(\Theta \) is clear. In order to prove the multiplicative property of \(\Theta \) take \(r, s \in R \) and compute the product of the \(2 \times 2 \) matrices \(\Theta(r) \) and \(\Theta(s) \):
\[
\Theta(r) \cdot \Theta(s) = \frac{1}{4} \begin{bmatrix}
 r + \sigma(r) & r - \sigma(r) \\
 r - \sigma(r) & r + \sigma(r)
\end{bmatrix} \begin{bmatrix}
 s + \sigma(s) & s - \sigma(s) \\
 s - \sigma(s) & s + \sigma(s)
\end{bmatrix} =
\frac{1}{4} \begin{bmatrix}
 (r + \sigma(r))(s + \sigma(s)) + (r - \sigma(r))(s - \sigma(s)) & (r + \sigma(r))(s - \sigma(s)) + (r - \sigma(r))(s + \sigma(s)) \\
 (r - \sigma(r))(s + \sigma(s)) + (r + \sigma(r))(s - \sigma(s)) & (r - \sigma(r))(s - \sigma(s)) + (r + \sigma(r))(s + \sigma(s))
\end{bmatrix} =
\frac{1}{4} \begin{bmatrix}
 2rs + 2\sigma(r)s(s) & 2rs - 2\sigma(r)s(s) \\
 2rs - 2\sigma(r)s(s) & 2rs + 2\sigma(r)s(s)
\end{bmatrix} = \Theta(rs).
\]
The injectivity of \(\Theta \) follows from the fact that
\(r + \sigma(r) = s + \sigma(s) \) and \(r - \sigma(r) = s - \sigma(s) \)
imply
\[2r = (r + \sigma(r)) + (r - \sigma(r)) = (s + \sigma(s)) + (s - \sigma(s)) = 2s. \]
If \(\sigma \) is an involution, then
\[\sigma(r + \sigma(r)) = \sigma(r) + \sigma^2(r) = \sigma(r) + r \quad \text{and} \quad \sigma(r - \sigma(r)) = \sigma(r) - \sigma^2(r) = \sigma(r) - r \]
ensure that \(\Theta(r) \in M_{2,1}^\sigma(R). \)

3.3. Remark. Taking \(R = M_n(E) \) and the natural extension \(\sigma = \tau_n \), we obtain the well-known embedding
\[\Theta : M_n(E) \longrightarrow M_{2n}^{\tau_n^2}(M_n(E)) \cong M_{2n,n}^2(E). \]

REFERENCES

[Do] M. Domokos, *Eulerian polynomial identities and algebras satisfying a standard identity*, Journal of Algebra 169(3) (1994), 913-928.
[Dr] V. Drensky, *Free Algebras and PI-Algebras*, Springer-Verlag, 2000.
[DrF] V. Drensky and E. Formanek, *Polynomial Identity Rings*, Birkhäuser-Verlag, 2004.
[K] A. R. Kemer, *Ideals of Identities of Associative Algebras*, Translations of Math. Monographs, Vol. 87 (1991), AMS, Providence, Rhode Island.
[MMSzvW] L. Márki, J. Meyer, J. Szigeti and L. van Wyk, *Matrix representations of finitely generated Grassmann algebras and some consequences*, arXiv:1307.0292
[SSz] S. Sehgal and J. Szigeti, *Matrices over centrally \(\mathbb{Z}_2 \)-graded rings*, Beiträge zur Algebra und Geometrie (Berlin) 43(2) (2002), 399-406.

Institute of Mathematics, University of Miskolc, Miskolc, Hungary 3515
E-mail address: matjeno@uni-miskolc.hu