Magnetars, Electromagnetic Pulses and Fast Radio Bursts

Roger Blandford
KIPAC
Stanford
(with Amir Levinson)
Fast Radio Bursts

- 2007 Lorimer (2001) burst/perytons
- ~GHz (only?) ~1ms? radio bursts
 - Dispersed and broadened; $d<\sim 2$ Gpc?
 - $E_{\text{FRB}} \sim 10^{33} f_{\text{beam}} J? \ll \text{SNR, GRB}$
 - $\delta t \gg 30\mu s$, spectrally complex
 - $T_B \sim 10^{30-40} K? \text{cf giant pulses}$
 - Can be highly linear (and circular) polarized
 - ~50 FRB; all sky frequency ~100 mHz?

- FRB 121102 - repeater
 - $z \sim 0.2$ dwarf galaxy; steady source
 - Large, variable RM

Many models: ET, DM, SGR/SN, AGN, PSR… Should learn much, soon, CHIME, DSA, ASKAP…
Magnetars?

- $B < \sim 10^3 B_{\text{Crab}} \sim 100 \text{ GT}; P \sim 3-10 \text{ s}$

 - SGR, AXP
 - MSM could be endpoint of stellar evolution

- Birthrate $\sim 10^{-4} \text{ yr}^{-1} \text{ Galaxy}^{-1}$

 - Repeat activity - 1-10 per magnetar

- Magnetic energy $> 10^{40} \text{ J};$ elastic energy $\sim 10^{39} \text{ J}$

 - Rotational energy $\sim 10^{45} \text{ J} $ but soon lost; $P \sim 5 \text{ s}$

- Magnetars flare

 - $E_x \sim 10^{37-39} \text{ J};$ magnetic? rotation
 - Radio sometimes but

Relativistic, spinning SF+SC nuclear matter with $B \sim 30 B_{\text{crit}}$

The boring and conservative explanation!
Why Magnetars?

- Known source!
- Birthrate \(\sim 10 \) mHz; FRB \(\sim 0.1-100 \) mHz
- Repeat activity
- Magnetic energy \(> 10^{40} J \)
- Elastic energy \(\sim 10^{39} J \)
- Magnetars glitch, wander and flare
 - Rotational energy could be much larger
- Active when young \(< \sim 100 \) yr?
- Pulsars produce coherent radio waves
Quakes and Flares

- **Pulsar glitches** – $\Delta P/P \sim 10^{-6-8}$, $\Delta E \sim 10^{30-32} J$
 - Vortex line unpinning?
 - Magnetars are slow rotators; ρ_{GJ} unimportant

- **Neutron astrology**
 - $\mu \sim 0.02$ K in lattice, maximized below neutron N drip?
 - $\rho \sim 4 \times 10^{14}$ kg m$^{-3}$, $\mu \sim 10^{28}$ Nm$^{-2}$, $B \sim 100$ GT
 - Most of crust moves horizontally, incompressibly
 - $L \sim 300$ m, $E_{\text{magnetoelectric}} < 10^{34} \varepsilon_1^2$ J; $V_{\text{shear}} \sim 0.01$-1 c, $t \sim 3$-100 μs
 - Good transmission unlike pulsars

- **Magnetic flares**
 - (Beloborodov)
 - Most of surface covered with closed field lines
 - Complex, multipolar, potential field has “coronal holes”
 - Invoked for SGR etc
Force-Free Electrodynamics

• Sufficient plasma for currents; insufficient for inertia
 \[j = \frac{(\mathbf{B} \cdot \nabla \times \mathbf{B} - \mathbf{E} \cdot \nabla \times \mathbf{E}) \mathbf{B} + \nabla \cdot \mathbf{E} \mathbf{E} \times \mathbf{B}}{B^2} \]

• Characteristics for linear waves
 - Fast mode: \(\omega = k \), unimportant
 - Intermediate mode: \(\omega = k || \), \(V_g = c \) along \(\mathbf{B} \); favored?

• Amplitude growth: \(\delta B / B \sim B^{-1/2} \) on open field lines
 - Nonlinearity-> steepening when \(r > ct \sim 100 \text{ km} \)
 • Bullwhip, tsunami…
 - Compute using Smooth Particle ElectroDynamics?

Pulse of toroidal field propagates into magnetosphere along open field lines?
Pair Production

- $T_{\text{ns}} \sim 10\text{MK};$ Compton processes near star
 - $E \sim 10\text{ EV/m}$
 - E.B?

- $R \sim 10 - 10^3 \, R_{\text{ns}}$
 - Curvature γ-rays
 - γ-B pair production
 - Avalanche

- Eventually pair production ceases
 - Mode convert to EM wave
ElectroMagnetic Pulse

- **Linear e-mode launched at** R_{ns}
 - $(\delta B/\phi/B) \sim 0.05$; $\lambda \sim 300$ m; $U \sim 10^{33}$ J;
 - pair production by inverse Compton, synchrotron processes

- **Wavefront become nonlinear at** $R_{nl} \sim 10 R_{ns}$
 - $(\delta B/\phi/B) \sim B^{-1/2}$

- **Wave detaches from field, propagates spherically, may steepen**
 - Energy $\sim B_{\phi}^2 R^2 \Delta \sim$ const; Flux: $B_{\phi} R \Delta \sim B\text{dipole} R^2 \sim R^{-1}$;
 - $\Rightarrow B_{\phi} \sim$ const, $\Delta \sim R^{-2}$;

- **Pair production too slow when** $R \sim 1000 R_{ns}$??
 - $\Delta \sim 0.1$ m \Rightarrow GHz frequencies
 - Linearly polarized
 - Intergalactic propagation disperses and scatters wave.
 - Alternatively an “Anomalous Cyclotron” maser may operate.

Waves are launched and may steepen $\Rightarrow \sim$GHz emission?
Propagation Effects

- High brightness radio emission subject to:
 - Induced Compton Scattering
 - Stimulated Raman Scattering
 - Same as pulsars

- Interstellar and Intergalactic Scintillation
 - Powerful probe of plasma turbulence spectra
 - Many correlations predicted

- Gravitational Lensing
 - Await macrolensing delay in months for $\sim 10^{-3}$ FRBs
 - Microlensing by stars

FRBs even more interesting as probes than as sources?
Summary

- FRB are <ms radio pulses every minute
- Good for Ap, Cos, plasmas, QED?
- Magnetars (ρ_{nuc}, 10^{15}G, 0.1c^2)-HED Heaven!
- Quake/flare create EMP
- Force free electrodynamics with pairs
- e-mode along B - nonlinear, steepen \rightarrow EM
- Polarized pulses dispersed and broadened
- Should repeat without observable γ-rays
- Good near-term observational prospects
- Pulsarshine?