Cardy-Verlinde formula for an axially symmetric dilaton-axion black hole

Mubasher Jamil, 1, M. Akbar, 1,† and M. R. Setare 2,‡

1Center for Advanced Mathematics and Physics, National University of Sciences and Technology, Rawalpindi, 46000, Pakistan
2Department of Science, Payame Noor University, Bijar, Iran

Abstract: It is shown that the Bekenstein-Hawking entropy of an axially symmetric dilaton-axion black hole can be expressed as a Cardy-Verlinde formula. By utilizing the first order quantum correction in the Bekenstein-Hawking entropy we find the modified expressions for the Casimir energy and pure extensive energy. The first order correction to the Cardy-Verlinde formula in the context of axially symmetric dilaton-axion black hole are obtained with the use of modified Casimir and pure extensive energies.

*Electronic address: mjamil@camp.nust.edu.pk
†Electronic address: makbar@camp.nust.edu.pk
‡Electronic address: rezakord@ipm.ir
I. INTRODUCTION

The entropy S_{CFT} of conformal field theory (CFT) in an arbitrary dimension n has been related to its total energy E and Casimir energy E_C by a relation, named as the Cardy-Verlinde formula $S_{CFT} = \frac{2\pi R}{n} \sqrt{E_C(2E - E_C)}$ \[1\]. The entropy associated with the conformal field theory has been related to the Bekenstein-Hawking entropy for various black hole geometries with asymptotically anti-de Sitter (AdS) boundary \[2-10]\. Thus, one may naively expect that the entropy of all CFTs that have an AdS-dual description is given as the Cardy-Verlinde formula \[1\]. However, AdS black holes do not always satisfy the Cardy-Verlinde formula \[11\]. Recently, much interest has been developed in calculating the quantum corrections to the Bekenstein-Hawking entropy S by using various techniques like radial null geodesics, Hamilton-Jacobi method and loop quantum gravity etc \[12-14]\. The leading-order correction is proportional to $\ln S$ which comes out to be the same with the use of above techniques. The leading order quantum correction to the classical Cardy-Verlinde formula has been studied by Carlip \[15\].

The thermodynamics of conformal field theories with gravity duals has been studied actively in literature with the remarkable resemblance of the relevant thermodynamic formulas \[1-10]\. It has been shown that the Cardy-Verlinde formula holds with a negative cosmological constant or a more general certain potential term for super-gravity scalars \[16\]. There it has been argued that the Cardy-Verlinde formula also holds for black hole geometry which are asymptotically flat instead of asymptotically AdS space. In the spirit of this Ref. \[16\], we discuss the entropy of dilaton-axion black hole which is asymptotically flat spacetime in terms of the Cardy-Verlinde formula. Here we consider the stationary axially-symmetric axion-dilaton black hole to study the Cardy-Verlinde formula and its first order correction. This black hole is a string theory inspired black hole in lower spacetime dimensions \[17, 18\]. The string theory inspired-models consist of two massless scalar fields namely dilaton and axion, in the low energy effective action in four dimension. The thermodynamics of axially-symmetric axion-dilaton black hole is investigated by various authors \[19\]. We shall demonstrate that the Cardy-Verlinde formula can be related with the Bekenstein-Hawking entropy of the stationary axially-symmetric axion-dilaton black hole. By employing the first order entropy correction to Bekenstein-Hawking entropy, we are able to find the leading order term of the Cardy-Verlinde formula.
The plan of the paper is: In the second section, we shall briefly discuss the thermodynamic quantities associated with the horizon of the stationary axially-symmetric dilaton-axion black hole. In third section, we will study the entropy of the axially-symmetric axion-dilaton black hole which can be represented by the Cardy-Verlinde formula. In the fourth section, we provide the leading order correction to the Cardy-Verlinde formula by using quantum corrected Bekenstein-Hawking entropy in the context of dilaton-axion black hole. Finally we shall conclude our results.

II. AXIALLY SYMMETRIC EINSTEIN-MAXWELL DILATON-AXION BLACK HOLE

In this section we shall consider the effective Lagrangian of the low-energy heterotic string theory in four dimensions given by [18, 20]

\[I = \frac{1}{16\pi} \int d^4x \sqrt{-g} \left(R - 2g^{\mu\nu}\nabla_\mu \Phi \nabla_\nu \Phi - \frac{1}{2}e^{4\Phi}g^{\mu\nu}\nabla_\mu K_a \nabla_\nu K_a - e^{-2\Phi}g^{\mu\lambda}g^{\nu\rho}F_{\mu\nu}F_{\lambda\rho} - K_a F_{\mu\nu} \tilde{F}^{\mu\nu} \right), \]

(1)

where the dual of electromagnetic field tensor \(F_{\mu\nu} \) is

\[\tilde{F}^{\mu\nu} = \frac{1}{2} \sqrt{-g} \epsilon_{\mu\nu\alpha\beta} F^{\alpha\beta}. \]

(2)

Here \(R \) is the Riemann curvature scalar, \(\epsilon_{\mu\nu\alpha\beta} \) is the Levi Civita symbol and \(g^{\mu\nu} \) is the metric tensor. Also \(\Phi \) and \(K_a \) are the massless dilaton field and the axion field respectively.

In the Boyer-Lindquist coordinates \((t, r, \theta, \varphi)\), the stationary axially-symmetric solution to the Einstein-Maxwell’s equations in the presence of the dilaton-axion is given by [18],

\[ds^2 = \frac{-\Sigma - a^2 \sin^2 \theta}{\Delta} dt^2 - \frac{2a \sin^2 \theta}{\Delta} \left[(r^2 - 2Dr + a^2) - \Sigma \right] dt d\varphi + \Delta dr^2 + \Delta d\theta^2 + \frac{\sin^2 \theta}{\Delta} \left[(r^2 - 2Dr + a^2)^2 - \Sigma a^2 \sin^2 \theta \right] d\varphi^2, \]

(3)

where

\[\Delta = r^2 - 2Dr + a^2 \cos^2 \theta, \quad \Sigma = r^2 - 2mr + a^2, \]

(4)

and

\[e^{2\Phi} = \frac{W}{\Delta} = \frac{\omega}{\Delta} (r^2 + a^2 \cos^2 \theta), \quad \omega = e^{2\Phi_0}, \]

(5)
\[
K_a = K_0 + \frac{2aD \cos \theta}{W},
\]
\[
A_t = \frac{1}{\Delta} (Qr - ga \cos \theta), \quad A_r = A_\theta = 0,
\]
\[
A_\varphi = \frac{1}{a \Delta} (-Q r a^2 \sin^2 \theta + g (r^2 + a^2) a \cos \theta).
\]
The mass \(M\), angular momentum \(J\), electric charge \(Q\), and magnetic charge \(P\), dilaton charge \(D\) of the black hole are given by

\[
M = m - D, \quad J = a(m - D), \quad Q = \sqrt{2\omega D(D - m)}, \quad P = g.
\]
The above results show that the stationary axis symmetric dilaton-axion black hole significantly differs from the the Kerr-Newmann black hole. The two horizons are the inner \(r_-\) and the outer one \(r_+\) of the black hole under consideration are

\[
r_\pm = M + D \pm \sqrt{(M + D)^2 - a^2}.
\]
Only \(r_+\) is the event horizon and one can associate thermodynamical quantities with it.

The Hawking temperature associated with the event horizon is

\[
T = \frac{\hbar}{4\pi} \left(\frac{r_+ - M - D}{r_+^2 - 2Dr_+ + a^2} \right).
\]
The angular velocity \(\Omega\) at the event horizon can be rewritten as

\[
\Omega = \frac{J/M}{r_+^2 - 2Dr_+ + a^2}.
\]
Here \(J\) is the angular momentum. The electrostatic potential can be given by

\[
\Phi = \frac{-2DM}{Q(r_+^2 - 2Dr_+ + a^2)}.
\]
The entropy associated with the event horizon of the dilaton-axion black hole is

\[
S = \frac{\pi}{\hbar} (r_+^2 - 2Dr_+ + a^2).
\]

III. CARDY-VERLINDE FORMULA AND DILATON-AXION BLACK HOLE

In this section, we introduce the Cardy-Verlinde formula which states that the entropy of a \((1+1)\)-dimensional CFT is given by

\[
S = 2\pi \sqrt{\frac{c}{6} \left(L_0 - \frac{c}{24} \right)},
\]
where \(c \) is the central charge and \(L_0 \) is the Virasoro generator. After appropriate identifications of \(c \) and \(L_0 \), the above Cardy formula, we obtain the generalized Cardy-Verlinde formula which takes the form

\[
S_{CFT} = \frac{2\pi R}{\sqrt{a_1 b_1}} \sqrt{E_C(2E - E_C)},
\]

where \(E \) is the total energy, \(E_C \) is the Casimir energy, \(a_1 \) and \(b_1 \) are arbitrary positive constants. Also \(R \) is the radius of the \(n + 1 \) dimensional spacetime, \(ds^2 = -dt^2 + R^2 d\Omega_n \).

The definition of Casimir energy is derived by the violation of the Euler relation as

\[
E_C = n(E + PV - TS - \Phi Q - J\Omega),
\]

where the pressure of the CFT is given by \(P = E/nV \). The total energy is the sum of two terms

\[
E(S, V) = E_E(S, V) + \frac{1}{2} E_C(S, V).
\]

Here \(E_E \) is the purely extensive part of the total energy. The Casimir energy and the purely extensive part of the total energy are expressed as

\[
E_C = \frac{b_1}{2\pi R} S^{1-\frac{1}{n}},
\]

\[
E_E = \frac{a_1}{4\pi R} S^{1+\frac{1}{n}}.
\]

IV. ENTROPY OF AXIALLY SYMMETRIC AXION-DILATON BLACK HOLE AND CARDY-VERLINDE FORMULA

Using Eq. (12) with \(n = 2 \) and \(E = M \), we obtain

\[
E_C = 3M - 2TS - 2\Phi Q - 2\Omega J,
\]

\[
= 3M - \frac{1}{2}(r_+ - M - D) + \frac{4DM}{r_+^2 - 2Dr_+ + a^2} - \frac{2J^2}{M(r_+^2 - 2Dr_+ + a^2)}.\]

From (16) we have

\[
2E - E_C = -M + 2TS + 2\Phi Q + 2\Omega J,
\]

\[
= -M + \frac{1}{2}(r_+ - M - D) - \frac{4DM}{r_+^2 - 2Dr_+ + a^2} + \frac{2J^2}{M(r_+^2 - 2Dr_+ + a^2)}.\]
From (13) and (16), the extensive part of total energy becomes

\[E_E = E - \frac{1}{2}E_C, \]
\[= -\frac{1}{2}M + \frac{1}{4}(r_+ - M - D) - \frac{2DM}{r_+^2 - 2Dr_+ + a^2} + \frac{J^2}{M(r_+^2 - 2Dr_+ + a^2)}. \]

(23)

Comparison of (14) and (16) yields

\[R = \frac{b_1 S^{1/2}}{2\pi} \left[3M - 2TS - 2\Phi Q - 2\Omega J \right]^{-1}, \]
\[= \frac{b_1}{2\pi} \sqrt{\frac{\pi}{2}} \frac{(r_+^2 - 2Dr_+ + a^2)}{3M - \frac{1}{2}(r_+ - M - D) + \frac{4DM}{r_+^2 - 2Dr_+ + a^2}}. \]

(24)

Comparison of (15) and (18) yields

\[R = \frac{a_1 S^{3/2}}{4\pi} \left[-\frac{1}{2}M + TS + \Phi Q + \Omega J \right]^{-1}, \]
\[= \frac{a_1}{4\pi} \left[\frac{\pi}{2} (r_+^2 - 2Dr_+ + a^2) \right]^{3/2} \frac{3/2}{-\frac{1}{2}M + \frac{1}{4}(r_+ - M - D) - \frac{2DM}{r_+^2 - 2Dr_+ + a^2} + \frac{J^2}{M(r_+^2 - 2Dr_+ + a^2)}}. \]

(25)

Combining the last two expressions (19) and (20), we obtain

\[R = \frac{\sqrt{a_1 b_1 \pi}}{2\sqrt{2}} \frac{\pi}{\hbar} (r_+^2 - 2Dr_+ + a^2) \left[3M - \frac{1}{2}(r_+ - M - D) + \frac{4DM}{r_+^2 - 2Dr_+ + a^2} - \frac{2J^2}{M(r_+^2 - 2Dr_+ + a^2)} \right]^{-1} \]
\[\times \left[-\frac{1}{2}M + \frac{1}{4}(r_+ - M - D) - \frac{2DM}{r_+^2 - 2Dr_+ + a^2} + \frac{J^2}{M(r_+^2 - 2Dr_+ + a^2)} \right]^{-1}. \]

(26)

Using (16), (17) and (21) in (11) yields

\[S_{CFT} = \frac{\pi}{\hbar} (r_+^2 - 2Dr_+ + a^2) = S. \]

(27)

V. LOGARITHMIC CORRECTION TO THE CARDY-VERLINDE FORMULA

In this section, we shall obtain the first order entropy correction by using corrected Bekenstein-Hawking entropy formula in the Cardy-Verlinde formula. The first order correction to the semi-classical Bekenstein-Hawking entropy \(S_0 \) is given by [21]

\[S = S_0 - \frac{1}{2} \ln C. \]

(28)

Here \(C \) is the heat capacity of the black hole evaluated at the event horizon. We suppose that \(C \simeq S = S_0 \) [21] so that the above equation (28) turns out

\[S = S_0 - \frac{1}{2} \ln S_0. \]

(29)
First we calculate the corrected Casimir energy and the corrected extensive part of the total energy by using first order corrected entropy (29) which admit

$$\tilde{E}_C = E_C + T \ln S_0,$$

(30)

$$\tilde{E}_E = E - \frac{1}{2} E_C - \frac{1}{2} T \ln S_0.$$

(31)

By using modified Casimir energy (30) and the extensive part of the total energy (31) in the Cardy-Verlinde formula (16), we obtain the modified Cardy-Verlinde entropy relation

$$\tilde{S}_0 = \frac{2 \pi R}{\sqrt{a_1 b_1}} \sqrt{\tilde{E}_C (2E - \tilde{E}_C)}.$$

(32)

Simplifying (32) we obtain

$$\tilde{S}_0 \simeq S_0 \left[1 + \frac{(E - E_C)}{E_C (2E - E_C)} T \ln S_0 \right].$$

(33)

Finally using (33) in (29) yields the corrected entropy as

$$S \simeq \frac{2 \pi R}{\sqrt{a_1 b_1}} \sqrt{E_C (2E - E_C)} + \left[\frac{2 \pi R}{\sqrt{a_1 b_1}} \frac{(E - E_C)}{E_C (2E - E_C)} - \frac{1}{2} \right] T \ln \left[\frac{2 \pi R}{\sqrt{a_1 b_1}} \sqrt{E_C (2E - E_C)} \right].$$

(34)

Hence the entropy correction to the semi-classical Bekenstein-Hawking entropy is obtained in terms of the modified Cardy-Verlinde formula which further investigates the AdS/CFT correspondence in terms of modified Cardy-Verlinde entropy formula. The first term corresponds to the usual CV formula while the second term relates to correction to Hawking entropy in terms of modified Cardy-Verlinde entropy formula.

VI. CONCLUSION

In this paper, we have shown that the Bekenstein-Hawking entropy of the axially-symmetric axion-dilaton black hole can also be expressed in the form of Cardy-Verlinde entropy formula which further investigates the AdS/CFT correspondence in terms of Cardy-Verlinde entropy formula. The axially symmetric dilaton axion black hole is asymptotically flat instead of AdS space. So our study indicates that the AdS/CFT correspondence still holds in the black hole geometries with asymptotically flat background. By using the logarithmic correction to the Bekenstein-Hawking entropy, we obtained the modified expressions for the Casimir and extensive energy relations. By utilizing modified expressions for Casimir
and extensive energy in the Cardy-Verlinde formula, we obtained the corrected S_{CFT} relation which relates the entropy of a certain CFT to its total energy and Casimir energy. The second result of this paper is the entropy correction to the semi-classical Bekenstein-Hawking entropy in terms of the modified Cardy-Verlinde formula. The first term in (34) corresponds to the usual Cardy-Verlinde formula while the second term relates correction to Hawking entropy in terms of modified Cardy-Verlinde entropy formula.

[1] E. Verlinde, [hep-th/0008140](http://arxiv.org/abs/hep-th/0008140)
M.R. Setare and E.C. Vagenas, Phys. Rev. D 68 (2003) 064014;
R-G Cai, Phys. Lett. B 525 (2002) 331;
R-G. Cai, Nucl. Phys. B 628 (2002) 375.

[2] M.R. Setare, Mod. Phys. Lett. A 17 (2002) 2089.

[3] M.R. Setare, and M.B. Altaie, Eur. Phys. J. C 30 (2003) 273.

[4] D. Birmingham and S. Mokhtari, Phys. Lett. B 508 (2001) 365;
C.O. Lee, Phys. Lett. B 670 (2008) 146.

[5] D. Klemm et al, Nucl. Phys. B 601 (2001) 380.

[6] M.R. Setare and M. Jamil, Phys. Lett. B 681 (2009) 471.

[7] M.R. Setare and R. Mansouri, Int. J. Mod. Phys. A 18 (2003) 4443.

[8] M.R. Setare and E.C. Vagenas, Int. J. Mod. Phys. A 20 (2005) 7219.

[9] B. Wang et al, Phys. Lett. B 503 (2001) 394.

[10] M.R. Setare and M. Jamil, [arXiv:1001.4716](http://arxiv.org/abs/1001.4716).

[11] G.W. Gibbons et al, Phys. Rev. D 72 (2005) 084028.

[12] A.J.M. Medved, Class. Quant. Grav. 19 (2002) 2503.

[13] S. Mukherji and S.S. Pal, JHEP 0205 (2002) 026.

[14] J.E. Lidsey et al, Phys. Lett. B 544 (2002) 337.

[15] S. Carlip, Class. Quant. Grav. 17 (2000) 4175.

[16] D. Klemm et al, [hep-th/0104141](http://arxiv.org/abs/hep-th/0104141).

[17] D. Garfinkle et al, Phys. Rev. D 43 (1991) 3140.

[18] J. Jing, Nuc. Phys. B 476 (1996) 548.

[19] G.A.S. Dias and J.P.S. Lemos, Phys. Rev. D 78 (2008) 084020;
Y.S. Myung et al, Phys. Lett. B 663 (2008) 342;
A. Sheykhi, Phys. Rev. D 76 (2007) 124025;
G. Kunstatter et al, Phys.Rev. D 57 (1998) 3537.

[20] A. Garcia et al, Phys. Rev. Lett. 74 (1995) 1276
[21] R. K. Kaul and P. Majumdar, Phys. Rev. Lett. 84 (2000) 5255;
 S. Das, P. Majumdar and R.K. Bhaduri, Class. Quant. Grav. 19 (2002) 2355;
 M. R. Setare, Eur. Phys. J. C 33 (2004) 555.