We study and solve the problem of distilling secret key from quantum states representing correlation between two parties (Alice and Bob) and an eavesdropper (Eve) via one-way public discussion: we prove a coding theorem to achieve the “wire-tapper” bound, the difference of the mutual information Alice–Bob and that of Alice–Eve, for so-called cqq-correlations, via one-way public communication. This result yields information-theoretic formulas for the distillable secret key, giving “ultimate” key rate bounds if Eve is assumed to possess a purification of Alice and Bob’s joint state.

Specialising our protocol somewhat and making it coherent leads us to a protocol of entanglement distillation via one-way LOCC (local operations and classical communication) which is asymptotically optimal: in fact we prove the so-called “hashing inequality” which says that the coherent information (i.e., the negative conditional von Neumann entropy) is an achievable EPR rate. This result is well-known to imply a whole set of distillation and capacity formulas which we briefly review.

I. INTRODUCTION

Entanglement and secret correlation share an “exclusiveness” — in the one case towards the total outside world, in the other towards an entity “Eve” — that has led quantum information scientists to speculate on a systematic relation between their theories: the works in this direction range from building analogies to using entanglement to prove information theoretic security of quantum key distribution, to attempts to prove the equivalence of the distillability of secret key and of entanglement.

Of course there are also conceptual differences: while the task of distilling secret perfect correlation derives from potential cryptographic applications (and requires a third, malicious, party to formulate the operational problem), entanglement is useful for simple transmission tasks between two perfectly cooperating parties, as exemplified by dense coding and teleportation.

The present paper falls into the third of the above categories, for we address the two questions, of distilling secret key from many copies of a quantum state (itself a generalisation of classical information theoretic work begun by Maurer and Ahlswede and Csiszár) by public discussion and of distilling EPR pairs by local operations and classical communication (LOCC), in a unified way. To be more precise, after describing a protocol for secret key distillation from a state by one-way public discussion, we show how secrecy codes of a particular structure can be converted into one-way LOCC entanglement distillation protocols achieving the coherent information, as was conjectured for some time under the name of the “hashing inequality” (after the hashing protocol in which attains the bound for Bell-diagonal two-qubit states). It is well-known from that this inequality yields information theoretic characterisations of distillable entanglement under general LOCC, as well as the quantum transmission capacity, without, with forward and with bidirectional classical side channel (the first of these capacity theorems proved recently by Shor, following a heuristic argument of Lloyd, and subsequently in). Our approach is very close to that of, and — as far as secret key distillation is concerned — the work: while here our resource is a three-party quantum state (“static” model), these papers deal with the “dynamic” analogue, where the resource is a quantum/wiretap channel.

As for the structure of the paper: the main result of the cryptographic part is theorem in section; the form of the optimal rates is then not hard to obtain, as we shall show in the detailed discussion. It is theorem which we return to in the entanglement distillation part: a very general modification of the coding procedure will give us theorem the hashing inequality; and as before, the form of the optimal rates is not hard to get from there. A reader only interested in entanglement distillation can thus skip the second part of section there the general form of optimal one-way distillable secret key is derived. In section we turn to one-way entanglement distillation, proving the hashing inequality and exhibiting the general form of optimal one-way distillation; then in section the consequences of the hashing inequality are detailed. Appendices collect the necessary facts about typical subspaces, some miscellaneous lemmas and miscellaneous proofs.
II. ONE-WAY SECRET KEY DISTILLATION

We will first study and solve the case of cqq–correlations, i.e., the initial state ρ^{ABE} has the form

$$\rho^{ABE} = \sum_{x \in X} P(x) |x\rangle_A \langle x| \otimes \rho^{BE}_x.$$ \hspace{1cm} (1)

Then n copies of that state can be written

$$(\rho^{ABE})^\otimes_n = \sum_{x^n} P^n(x^n) |x^n\rangle_A \langle x^n| \otimes \rho^{BE}_{x^n},$$

with $x^n = x_1 \ldots x_n$ and

$$|x^n\rangle = |x_1\rangle \otimes \cdots \otimes |x_n\rangle,$$

$$\rho^{BE}_{x^n} = \rho^{BE}_{x_1} \otimes \cdots \otimes \rho^{BE}_{x_n}.$$

Let X be a random variable with distribution P, and corresponding to the n copies of ρ consider independent identically distributed (i.i.d.) realisations X_1, \ldots, X_n of X.

A one–way key distillation protocol consists of:

- A channel $T: x^n \rightarrow (\ell, m)$, with range $\ell \in \{1, \ldots, L\}$ and $m \in \{1, \ldots, M\}$.
- A POVM $D^{(\ell)} = (D_m^{(\ell)})_{m=1}^{M}$ on B^n for every ℓ.

The idea is that Alice generates $T(X^n) = (\Lambda, K)$; her version of the key is $K = m$, while she sends $\Lambda = \ell$ to Bob. He obtains his K' by measuring his system B using $D^{(\ell)}$:

$$\Pr\{K' = m|\Lambda = \ell, X^n = x^n\} = \text{Tr}(D^{(\ell)}_m \rho^{BE}_{x^n}).$$

For technical reasons we assume that the communication has a rate $L \leq 2^{nF}$, for some constant F.

We call this an (n, ε)–protocol if

1. $\Pr\{K \neq K'\} \leq \varepsilon$.
2. $\|\text{Dist}(K) - \frac{1}{M}1_{\{1, \ldots, M\}}\|_1 \leq \varepsilon$.
3. There is a state σ_0 such that for all m,

$$\|\sum_{x^n, \ell} \Pr\{X^n = x^n, \Lambda = \ell|K = m\}|\ell\rangle \langle \ell| \otimes \rho^{BE}_{x^n} - \sigma_0\|_1 \leq \varepsilon.$$

We call R an achievable rate if for all n there exist (n, ε)–protocols with $\varepsilon \rightarrow 0$ and $\frac{1}{n} \log M \rightarrow R$ as $n \rightarrow \infty$.

(cavity the convention in this paper is that log and exp are understood to be to basis 2.) Finally define

$$K_{\rightarrow}(\rho) := \sup\{R: R \text{ achievable}\},$$

the one–way (or forward) secret key capacity of ρ.

Before we can formulate our first main result, we have to introduce some information notation: for a quantum state ρ we denote the von Neumann entropy $H(\rho) = -\text{Tr}\rho \log \rho$, and the Shannon entropy of a probability distribution P, $H(P) = -\sum_x P(x) \log P(x)$. If the state is the reduced state of a multi–party state, like the ρ^{ABE} above, we write $H(A) = H(\rho^A)$, etc. In the particular case of eq. (1), obviously $H(\rho^A) = H(P)$. For a general bipartite state ρ^{AB} define the (quantum) mutual information

$$I(A : B) = H(A) + H(B) - H(AB),$$

which for the cqq–state of eq. (1) is easily checked to be equal to

$$H(\rho^B) - \sum_x P(x) H(\rho^B_x),$$

a quantity known as the Holevo bound and which we denote $I(P; \rho^B)$, reflecting in the notation the distribution P and the cq–channel with channel states ρ^B. We shall often use the abbreviation $I(X; B)$ for this latter, if the states and distribution of the random variable X are implicitly clear: this latter notation has the advantage that for any U jointly distributed with X, $I(U; B)$ makes sense immediately, without our having to write down a composite state.

Finally, for a tripartite state ρ^{ABC}, define the (quantum) conditional mutual information

$$I(A : C|B) := H(AB) + H(BC) - H(ABC) - H(B),$$

which is non–negative by strong subadditivity. Usually the state these notations refer too will be clear from the context; where not we add it in subscript. Observe that for a classically correlated system B, the conditional mutual information takes the form of a probability average over mutual informations: e.g., for the state of eq. (1),

$$I(B : E|A) = \sum_x P(x) I(B : E)_{\rho^E_x}.$$

Also for conditional mutual information we make use of the hybrid notation involving random variables: for example, for random variables T and U, jointly distributed with X, $I(U; B|T)$ is the average over T of Holevo quantities as above.

Theorem 1 For every cq–state ρ,

$$K_{\rightarrow}(\rho) \geq I(X; B) - I(X; E).$$

Proof. The idea is as follows: the state

$$\rho^{AB} = \sum_x P(x) |x\rangle \langle x| \otimes \rho^E_x$$

contains the description of a cq–channel with channel states ρ_x. We will cover “evenly” all typical type classes of block length n by channel codes C_ℓ to transmit $nI(X; B)$ bits, most of which are “good” in the sense that they have small error probability. All of them are of the kind that the state of E, when taking the average
over the last \(\approx nI(X; E) \) bits of the input, is almost a constant operator, \(\sigma_e \), independent of the leading bits.

The key distillation scheme works then as follows: on observing \(x^n \), which is typical with high probability, Alice announces the type of it and a random \(\ell \), such that \(x^n \) is a codeword of the code \(C_\ell \), to Bob. He is able to decode it with high probability (because the code will be good with high probability), and they take the leading

\[\approx n(I(X; B) - I(X; E)) \]

of the message as the key. This is uniformly distributed because the code is entirely within one type class. Eve knows almost nothing about the key since she only has a state very close to \(\sigma_\ell \), independent of the key.

\[
\begin{align*}
\sigma(Q) := \frac{1}{|T_Q^n|} \sum_{x^n \in T_Q^n} \rho_{x^n}^E = \mathbb{E}[\rho_{U^{(\ell m s)}}^E].
\end{align*}
\]

We are interested in the probability of various random events (for \(0 < \epsilon < 1/2 \)):

\(\epsilon \)-Evenness: for all \(x^n \in T_Q^n \),

\[(1 - \epsilon) \frac{LMS}{|T_Q^n|} \leq \sum_{\ell m s} 1_{U^{(\ell m s)}}(x^n) \leq (1 + \epsilon) \frac{LMS}{|T_Q^n|}, \]

with the indicator functions \(1_{U^{(\ell m s)}} \) on \(T_Q^n \).

\(\epsilon \)-Secrecy: for all \(\ell, m \), the average of \(\rho_{x^n}^B \) over \(S_{\ell m} = \{ U^{(\ell m s)} : s = 1, \ldots, S \} \) is close to \(\sigma(Q) \):

\[\left\| \frac{1}{S} \sum_s \rho_{x^n}^B - \sigma(Q) \right\|_1 \leq \epsilon. \]

Codes \(C_\ell \) are \(\epsilon \)-good: define the code \(C_\ell \) as the collection of codewords \(\{ U^{(\ell m s)} \}_{m,s} \). We call it \(\epsilon \)-good if there exists a POVM \(\{ D_{ms}^\ell \}_{m,s} \) such that

\[\frac{1}{MS} \sum_{m,s} Tr(\rho_{U^{(\ell m s)}}^B D_{ms}^\ell) \geq 1 - \epsilon. \]

Using the Chernoff bound for the indicator functions \(1_{U^{(\ell m s)}} \) evaluated at all points in \(T_Q^n \) (lemma 3 and following remarks), we obtain

\[\Pr\{ \text{\(\epsilon \)-evenness} \} \geq 1 - |X|^n \exp (-LMS \frac{\epsilon^2}{2 \ln 2 |T_Q^n|}). \quad (2) \]

Proposition 4 gives us (observing \(MS \leq |X|^n \)), for every \(\delta > 0 \) and sufficiently large \(n \),

\[\Pr\{ \text{\(\epsilon \)-secrecy} \} \geq 1 - 2d^n |X|^n \exp \left(-Si^n \frac{\epsilon}{288 \ln 2} \right), \quad (3) \]

with \(\log \ell = -I(Q; \rho^E) - \delta \).

Finally, proposition 5 yields for every \(\delta > 0 \) and if \(MS \leq \exp(n(I(Q; \rho^B) - \delta)) \) (\(n \) sufficiently large),

\[\forall \ell \quad \Pr\{ C_\ell \ \text{\(\epsilon \)-good} \} \geq 1 - \epsilon. \quad (4) \]

Since the individual events in this equation are independent, another application of the Chernoff bound (to the indicator function of \("\epsilon\)-goodness") gives,

\[\Pr\{ \text{A fraction } 1 - 2\epsilon \text{ of the } C_\ell \text{ is \(\epsilon \)-good} \} \]

\[\geq 1 - \exp \left(-L \frac{\epsilon^2}{4 \ln 2} \right). \quad (5) \]

Thus, if we pick

\[S = \exp(n(I(Q; \rho^E) + 2\delta)), \]
\[M = \exp(n(I(Q; \rho^B) - I(Q; \rho^E) - 3\delta)), \]
\[L = \exp(n(H(Q) - I(Q; \rho^B) + 2\delta)), \]

and observing \(|T_Q^n| \leq \exp(nH(Q)) \), the right hand sides of eqs. (2), (3) and (5) converge to 1 as \(n \to \infty \), and hence by the union bound also the conjunction of these three events approaches unit probability asymptotically.

Thus, for sufficiently large \(n \), there exist codewords \(U^{(\ell m s)} \in T_Q^n \) which together have the property of \(\epsilon \)-evenness, \(\epsilon \)-secrecy and that a fraction of at least \(1 - 2\epsilon \) of the \(C_\ell = \{ U^{(\ell m s)} \}_{m,s} \) is \(\epsilon \)-good. Clearly, we can construct such code sets for all types \(Q \), of which there are at most \((n + 1)|X|^n \) many.

Figure 1: A schematic view of the anatomy of the code: the typical sequences are covered by sets \(C_\ell \), which are good transmission codes for \(B \). A magnified view of one \(C_\ell \) (to the lower right) reveals its inner structure: it is composed of \(S_{\ell m} \), which are good privacy amplification codes against \(E \).
Now, the protocol works as follows: on observing x^n from the source, Alice determines its type Q and sends it to Bob. If x^n is not typical, i.e. if $\|P - Q\|_1 > \delta$, the protocol aborts here. Otherwise she selects a random ℓ such that x^n is a codeword of C_ℓ, as well as random m, s such that $u_{\ell(m,s)} = x^n$. (The latter choice of course is unique most of the time: if C_ℓ is a good code, only a fraction of at most ϵ of the codewords have a collision.) She informs Bob also of ℓ; if C_ℓ is not ϵ–good the protocol aborts.

Note that by the ϵ–evenness of the codewords, the state of ABE conditional on Q and ℓ is

$$\frac{1}{MS} \sum_{m,s} (1 + \epsilon)|m\rangle\langle m| \otimes \rho_{u_{\ell(m,s)}}^B,$$

(6)

(By way of notation, “$1 + \epsilon$” stands for any number in the interval $[1 - \epsilon; 1 + \epsilon]$.) Now, since C_ℓ is a good code, Bob can apply the decoding POVM $D^{(\ell)}$ to his part of the system, and transform the state in eq. (6) into a state θ with the property

$$\frac{1}{2} \left\| \theta - \frac{1}{MS} \sum_{m,s} |m\rangle\langle m| \otimes |m\rangle\langle m| \otimes \rho_{u_{\ell(m,s)}}^E \right\|_1 \leq 2\epsilon.$$

Both Alice and Bob measure m and end up with a perfectly uniformly distributed key of length

$$n(I(Q; \rho^B) - I(Q; \rho^E) - 3\delta) \geq n(I(P; \rho^B) - I(P; \rho^E) - 3\delta' - \delta'),$$

with probability $1 - 3\epsilon$, where

$$\delta' = 2\delta \log(d_A d_B d_E) + 2\tau(\delta),$$

with the dimensions d_B and d_E of Bob’s and Eve’s local system, respectively. (Recall that Q is typical, and use the Fannes inequality, stated in appendix B as lemma B.) By the above property of θ, Alice and Bob disagree with probability $\leq \epsilon$.

Finally, thanks to the ϵ–secrecy, for all ℓ and m,

$$\left\| \frac{1}{S} \sum_s \rho_{u_{\ell(m,s)}}^E - \sigma(Q) \right\|_1 \leq \epsilon,$$

so Eve’s state after the protocol (including her knowledge of Q and ℓ) is almost constant, whatever the value of m.

Remark 2 The communication cost of the protocol described in the above proof is asymptotically

$$H(X) - I(X; B) = H(A|B)$$

bits of forward communication (per copy of the state): the information which code C_ℓ to apply from Alice to Bob.

Here are the facts we use in the proof:

Lemma 3 (“Operator Chernoff bound”) Let X_1, \ldots, X_M be i.i.d. random variables taking values in the operators $E(\mathcal{H})$ on the D–dimensional Hilbert space \mathcal{H}, $0 \leq X_j \leq 1$, with $A = \mathbb{E}X_j \geq \alpha I$, and let $0 < \eta < 1/2$. Then

$$\Pr \left\{ \frac{1}{M} \sum_{j=1}^M X_j \notin [(1 - \eta)A; (1 + \eta)A] \right\} \leq 2D \exp \left(-M \frac{\alpha \eta^2}{2 \ln 2} \right),$$

where $[A; B] = \{ X : A \leq X \leq B \}$ is an interval in the operator order.

Note that for the case $D = 1$ this reduces to the classical Chernoff bound for bounded real random variables [23]. Also the case of finite vectors of bounded real random variables is included by considering the matrices with vector entries on the diagonal and zero elsewhere. It is essential in the proof of the following result.

Proposition 4 For a cq–channel $W : \mathcal{X} \rightarrow S(\mathcal{H})$ and a type P, let $U^{(i)}$ be i.i.d. according to the uniform distribution on the type class T^n_P, $j = 1, \ldots, M$. Define the state

$$\sigma(P) = \frac{1}{|T^n_P|} \sum_{x^n \in T^n_P} W^n_{x^n} = \mathbb{E}W^n_{U^{(i)}}.$$

Then for every $\epsilon, \delta > 0$, and sufficiently large n,

$$\Pr \left\{ \left\| \frac{1}{M} \sum_{j=1}^M W^n_{U^{(i)}} - \sigma(P) \right\|_1 \geq \epsilon \right\} \leq 2d^n \exp \left(-M \frac{\epsilon^2}{288 \ln 2} \right),$$

with $\log d = -I(P; W) - \delta$.

Proof. The proof is very close to that of the compression theorem for POVMs [51]. We reproduce a version of the argument in appendix C.

Proposition 5 (HSW theorem) Consider a cq–channel $W : \mathcal{X} \rightarrow S(\mathcal{H})$ and a type P, and let $U^{(i)}$ be i.i.d. according to the uniform distribution on the type class T^n_P, $i = 1, \ldots, N$. Then for every $\epsilon, \delta > 0$ and sufficiently large n, if $\log N \leq n(I(P; W) - \delta)$,

$$\Pr \left\{ C = (U^{(i)})_1^N \text{ is } \epsilon \text{–good} \right\} \geq 1 - \epsilon.$$

Here we call a collection of codewords ϵ–good if there exists a POVM $(D_i)_1^N$ on $\mathcal{H}^\otimes n$ such that

$$\frac{1}{N} \sum_{i=1}^N \text{Tr}(W^n_{U^{(i)}} D_i) \geq 1 - \epsilon.$$
Proof. This really is only a slight modification of the Holevo–Schumacher–Westmoreland argument: we give the proof in appendix C. \qed

This coding theorem puts us in the position to prove the following formula for the one-way secret key distillation capacity of a cqq-state:

Theorem 6 For every cqq-state \(\rho \),

\[
K_\rightarrow(\rho) = \lim_{n \to \infty} \frac{1}{n} K^{(1)}(\rho^{\otimes n}),
\]

with

\[
K^{(1)}(\rho) = \max_{T[U/X]} \left[I(U; B|T) - I(U; E|T) \right],
\]

where the maximisation runs over all random variables \(U \) depending on \(X \) and \(T \) depending on \(U \), i.e. there are channels \(Q \) and \(R \) such that \(U = Q(X) \) and \(T = R(U) \), and the above formula refers to the state

\[
\omega^{TUABE} = \sum_{t,u,x} R(t|u)Q(u|x)P(x) |t\rangle \langle t|^{U} \otimes |u\rangle \langle u|^{Q} \otimes |x\rangle \langle x|^{A} \otimes \rho^{BE}_{x}.
\]

The ranges of \(U \) and \(T \) may be taken to have cardinalities \(|T| \leq |X| \) and \(|U| \leq |X|^2 \), and furthermore \(T \) can be taken a (deterministic) function of \(U \).

Proof. Let us begin with the converse part, i.e. the inequality \(\leq \): Consider an \((n, \epsilon)\)-protocol with rate \(R \); then by its definition, and using standard information inequalities and the Fannes inequality lemma we have

\[
nR \leq H(K) + n(\tau(\epsilon) + \epsilon R)
\]

\[
\leq I(K; K\Lambda) + n(2\tau(\epsilon) + \epsilon R + \epsilon F)
\]

\[
\leq I(K; BA) + n(2\tau(\epsilon) + \epsilon R + \epsilon F)
\]

\[
\leq I(K; BA) - I(K; E\LambdaA) + n(3\tau(\epsilon) + \epsilon R + 2\epsilon F + \epsilon \log d_{E})
\]

\[
= I(K; B\LambdaA) - I(K; E\LambdaA) + n\delta
\]

Letting \(U = (K, \LambdaA) \) and \(T = \LambdaA \) we obtain

\[
R \leq \frac{1}{n} K^{(1)}(\rho) + \delta,
\]

with arbitrarily small \(\delta \) as \(n \to \infty \).

The proof of the properties of \(U \) and \(T \) is given in appendix C.

Now we come to the proof of the direct part, i.e. the inequality \(\geq \): it is clearly sufficient to show that, for given \(U \) and \(T \), the rate \(R = I(U; B|T) - I(U; E|T) \) is achievable. To this end, consider a protocol, where Alice generates \(U \) and \(T \) for each copy of the state i.i.d., and broadcasts \(T \): this leaves Alice, Bob and Eve in \(n \) copies of

\[
\tilde{\rho} = \sum_{t,u,x} R(t|u)Q(u|x)P(x) |t\rangle \langle t| \otimes |x\rangle \langle x| \otimes \rho^{BE}_{x} \otimes |E\rangle \langle E|.
\]

Observing

\[
R = I(U; BB') - I(U; EE'),
\]

we can invoke theorem 4 and are done. \qed

Remark 7 Comparing this with the classical analogue in \(\mathbb{R} \), it is a slight disappointment to see that here we don’t get a single-letter formula. The reader may want to verify that the technique used there to single-letterise the upper bound does not work here, as it introduces conditioning on quantum registers, while our \(T \) has to be classical.

One can clearly also use a general three-party state \(\rho^{ABE} \) to generate secret key between Alice and Bob: a particular strategy certainly is for Alice to perform a quantum measurement described by the POVM \(Q = (Q_{x})_{x \in X} \), which leads to the state

\[
\tilde{\rho}^{ABE} = \sum_{x} |x\rangle \langle x| \otimes \text{Tr}_{A}(\rho^{ABE}(Q_{x} \otimes I^{BE})).
\]

Then, starting from many copies of the original state \(\rho \), we now have many copies of \(\tilde{\rho} \), and theorem 4 can be applied. Because we can absorb the channel \(U|X \) into the POVM, we obtain the direct part (“\(\geq \”) in the following statement:

Theorem 8 For every state \(\rho^{ABE} \),

\[
K_{\rightarrow}(\rho) = \lim_{n \to \infty} K^{(1)}(\rho^{\otimes n}),
\]

with

\[
K^{(1)}(\rho) = \max_{Q, T|X} I(X; B|T) - I(X; E|T),
\]

where the maximisation runs over all POVMs \(Q = (Q_{x})_{x \in X} \) and channels \(R \) such that \(R = R(X) \), and the information quantities refer to the state

\[
\omega^{T^{A'B'E}} = \sum_{t,x} R(t|x)P(x) |t\rangle \langle t| \otimes |x\rangle \langle x| \otimes \rho^{BE}_{x} \otimes |E\rangle \langle E|.
\]

The range of the measurement \(Q \) and the random variable \(T \) may assumed to be bounded as follows: \(|T| \leq d_{A} \) and \(|X| \leq d_{A} \), and furthermore \(T \) can be taken a (deterministic) function of \(X \).

Proof. After our remarks preceding the statement of the theorem, we have only the converse to prove. This will look very similar to the converse of theorem 4. Even though we haven’t so far defined what a key distillation
protocol is in the present context, we can easily do that now (and check that the procedure above is of this type): it consists of a measurement POVM $Q = (Q_{\ell m})_{\ell,m=1}^{L,M}$ for Alice and the POVMs $D^{(\ell)}$ for Bob, with the same conditions (1)–(3) as in the first paragraphs of this section, where as before we assume a rate bound on the public discussion: $L \leq 2^n F$. This obviously generalises the definition we gave for cqq-states.

Consider an (n, ϵ)–protocol with rate R; using standard information inequalities and the Fannes inequality lemma [14] we can estimate as follows:

$$nR \leq H(K) + n(\tau(\epsilon) + \epsilon R) \leq I(K : K') + n(2\tau(\epsilon) + \epsilon R + \epsilon F) \leq I(K; B\Lambda) + n(2\tau(\epsilon) + \epsilon R + \epsilon F) \leq I(K; B\Lambda) - I(K; E\Lambda) + n(3\tau(\epsilon) + \epsilon R + 2\epsilon F + \epsilon \log d_E)$$

$$= I(K; B|\Lambda) - I(K; E|\Lambda) + n\delta$$

The measurement Q and $T(\ell, m) = \ell$ are permissible in the definition of $K^{(1)}$, hence we obtain

$$R \leq \frac{1}{n} K^{(1)}(\rho) + \delta,$$

with arbitrarily small δ as $n \to \infty$.

It remains to prove the bounds on the range of X and T for which we imitate the proof of the corresponding statement in theorem [6]; the full argument is given in appendix [7].

Remark 9 Clearly the worst case for Alice and Bob is when Eve holds the system E of a purification $|\psi^{ABE}\rangle$ of ρ^{AB}, because clearly every other extension ρ^{ABE} of ρ^{AB} can be obtained from the purification by a quantum operation acting on E.

Our result (at least in principle) characterises those bipartite states ρ^{AB} for which one–way key distillation is possible at positive rate. We have to leave open the question of characterising the states for which positive rates can be obtained by general two–way public discussion (compare the classical case [2], [3], [11]).

Note that the classical analogue of the “worst case” is total knowledge of Eve about both Alice’s and Bob’s random variables — which makes key distillation totally impossible. For quantum states thus, it must be some “non–classical” correlation which makes positive rates possible; it is tempting to speculate that a manifestation of entanglement is behind this effect.

We do not fully resolve this issue in the present paper; nevertheless, in a similar vein, we show in the following section that if ρ^{AB} allows one–way distillation of EPR pairs at positive rates, then our cryptographic techniques give a construction of an entanglement distillation protocol by a modification of key distillation protocols of a particular form.

III. ONE–WAY ENTANGLEMENT DISTILLATION

Consider an arbitrary state ρ^{AB} between Alice and Bob. In [6] the task of distilling EPR pairs at optimal rate from many copies of ρ, via local operations and classical communication (LOCC), was introduced.

A one–way entanglement distillation protocol consists of

- A quantum instrument $T = (T_\ell)_{\ell=1}^L$ for Alice. (An instrument [8] is a quantum operation with both classical and quantum outputs — it is modelled in general as a cp–map valued measure; for our purposes it is a finite collection of cp–maps which sum to a cptp map.)
- For each ℓ a quantum operation R_ℓ for Bob.

We call it an (n, ϵ)–protocol if it acts on n copies of the state ρ and produces a maximally entangled state

$$|\Phi_M\rangle = \frac{1}{\sqrt{M}} \sum_{m=1}^M |m\rangle^A \otimes |m\rangle^B$$

up to fidelity $1 - \epsilon$:

$$F \left(\Phi_M, \sum_{\ell=1}^L (T_\ell \otimes R_\ell) (\rho^{\otimes n}) \right) \geq 1 - \epsilon.$$

Note that we may assume without loss of generality that T_ℓ and R_ℓ output states supported on the reduced states of Φ_M on Alice’s and Bob’s system, respectively: otherwise we could improve the fidelity.

A number R is an achievable rate if there exist, for every n, (n, ϵ)–protocol, with $\epsilon \to 0$ and $\frac{1}{n} \log M \to R$ as $n \to \infty$. Finally,

$$D_\to(\rho) := \sup \{ R : R \text{ achievable} \}$$

is the one–way (or forward) entanglement capacity of ρ.

In [8], the case of Bell–diagonal two–qubit states,

$$\rho = p_{00} \Phi^+ + p_{01} \Phi^- + p_{10} \Psi^+ + p_{11} \Psi^-,$$

was considered and proved that $D_\to(\rho) \geq 1 - H(\{p\})$, by a method called “hashing protocol” (this was generalised recently to higher dimensions in [32]). Concerning lower bounds not much more is known, but there are numerous works dealing with upper bounds on the distillable entanglement: the entanglement of formation $E_F(\rho)$ [9], the relative entropy of entanglement $E_{\text{rel}}(\rho)$ [51], the Rains bound $R(\rho)$ [12], and the recently introduced squashed entanglement $E_{\text{squ}}(\rho)$ [13].

To connect to the cryptographic setting discussed so far, construct a purification $|\psi\rangle^{ABE}$ of ρ, of which we are particularly interested in its Schmidt form

$$|\psi\rangle^{ABE} = \sum_x \sqrt{P(x)} |x\rangle^A \otimes |\psi_x\rangle^{BE}.$$

Consider the following special strategy for a one-way secret key distillation protocol, on \(n\) copies of the state: Alice measures \(x^n\) (i.e. the above Schmidt basis), and applies the secret key distillation protocol from theorem \(\text{I}\) it is easy to evaluate the key rate:

\[
I(P; \psi^B) - I(P; \psi^E) = H(B) - H(E) = H(B) - H(AB).
\]

By letting Alice and Bob execute this protocol “coherently”, we can prove:

Theorem 10 (Hashing inequality)

\[
D \rightarrow (\rho) \geq H(\rho^B) - H(\rho^{AB}).
\]

The right hand side here equals the negative conditional von Neumann entropy, \(-H(A|B)\), a quantity known as coherent information \(\text{I}_c(A;B)\), which we denote (acknowledging is directionality) \(I_c(A|B)\). If the state this is referring to is not apparent from the context, we add it in subscript: \(I_c(A|B)_\rho\).

Proof. Recall the structure of the protocol in the proof of theorem \(\text{I}\) for each typical type \(Q\), we have a collection of codewords \(u^{(QL)}\), \(\ell = 1, \ldots, L\), \(m = 1, \ldots, M\) and \(s = 1, \ldots, S\) from \(T_Q^n\) satisfying \(-\varepsilon\)-evenness, \(-\varepsilon\)-secrecy, and a fraction of at least \(1 - 2\varepsilon\) of the codes \(C = (u^{(QL)})_{m,s}\) are \(-\varepsilon\)-good.

The first step of the protocol is that Alice measures the type \(Q\) non-destructively and informs Bob about the result. The protocol aborts if \(Q\) is not typical, i.e. if \(\|P - Q\|_1 > \delta\). This leaves the post-measurement state

\[
\sqrt{\frac{1}{|T_Q^n|}} \sum_{x^n \in T_Q^n} |x^n\rangle^A \otimes |\psi_{x^n}\rangle^BE.
\]

Define now a quantum operation for Alice, with Kraus elements

\[
C_\ell = \sqrt{\frac{1}{1 + \epsilon LMS}} \sum_{m,s} |ms\rangle^{QL} \langle u^{(QL)}|,
\]

\[
C_\theta = \frac{1 - \sum_{Q,T} C_{\ell} C_{\ell}^\dagger}{1},
\]

which we interpret as an instrument with outcomes \(\ell\) and \(\theta\); \(T_\theta(\sigma) = C_\theta \sigma C_\theta^\dagger\). This outcome is communicated to Bob. That these are really permissible Kraus operators we obtain from the \(-\varepsilon\)-evenness condition.

The outcome \(\theta\) (resulting in abortion of the protocol) is observed with probability at most \(\varepsilon\) (if \(n\) is large enough). The other outcomes \(\ell\) all occur with the probability

\[
\gamma(Q) = P^{\otimes n}(T^n_Q) \frac{1}{1 + \epsilon L},
\]

in which case the output state of the instrument is

\[
\sqrt{\frac{1}{MS}} \sum_{m,s} |ms\rangle^A \otimes |\psi_{u^{(QL)}}\rangle^BE.
\]

(The absence of the \(1 \pm \epsilon\) factors when compared to the analogous eq. \(\text{(3)}\) in the proof of theorem \(\text{I}\) is due to our having introduced the error event \(\theta\).)

Now, just as in the proof of theorem \(\text{I}\) Bob decodes \(m\) and \(s\), at least if \(C_t\) is \(-\varepsilon\)-good (which fails to happen with probability only \(2\varepsilon\)). But he does it coherently, by introducing an ancilla system \(B'\) in a standard state \(|0\rangle\) and applying a unitary to extract \(ms\) into \(B\), leaving in \(B'\) whatever is necessary to make the map unitary. This transforms the state in eq. \(\text{(7)}\) into a state

\[
|\hat{\theta}\rangle^{ABB'} = \sqrt{\frac{1}{MS}} \sum_{m,s} |ms\rangle^A \otimes |ms\rangle^B |\varphi_{\text{OK}}^{(ms)}\rangle^BE \otimes \sqrt{1 - \epsilon_{ms}} |\varphi_{\text{bad}}^{(ms)}\rangle^{BB'} E,
\]

where \(\epsilon_{ms}\) is the probability of the code incorrectly identifying \(ms\), and \(|\varphi_{\text{bad}}^{(ms)}\rangle\) is orthogonal to \(|ms\rangle |\varphi_{\text{OK}}^{(ms)}\rangle\). Now, because the code is \(-\varepsilon\)-good,

\[
F (|\hat{\theta}\rangle, \sqrt{\frac{1}{MS}} \sum_{m,s} |ms\rangle^A \otimes |ms\rangle^B |\varphi_{\text{OK}}^{(ms)}\rangle^BE) \geq (1 - \sqrt{c})^2 \geq 1 - 2\sqrt{c},
\]

where we have used the Markov inequality: at most a fraction of \(\sqrt{c}\) of the \(\epsilon_{ms}\) can be larger than \(\sqrt{c}\). Since the decoding only affects Bob’s registers, but certainly not \(E\), we have

\[
(1 - \epsilon_{ms}) (\varphi_{\text{OK}}^{(ms)})^E + \epsilon_{ms} (\varphi_{\text{bad}}^{(ms)})^E = \psi_{u^{(QL)}}^E,
\]

and hence we can assume that

\[
\langle \varphi_{\text{OK}}^{(ms)} | \psi_{u^{(QL)}}^E \rangle \geq \sqrt{1 - \epsilon_{ms}}. \tag{8}
\]

This implies

\[
F (|\hat{\theta}\rangle, \sqrt{\frac{1}{MS}} \sum_{m,s} |ms\rangle^A \otimes |ms\rangle^B |\psi_{u^{(QL)}}^E\rangle^BE) \geq 1 - 3\sqrt{c}. \tag{9}
\]

At this point, Alice and Bob almost have their maximal entanglement of the \(m\)-variable. All that remains is to be done is to disentangle Eve:

To begin, Alice measures the \(s\)-component of her register in the Fourier-transformed basis:

\[
|\hat{t}\rangle = \sqrt{\frac{1}{S}} \sum_{s=1}^S e^{2\pi ist/S} |s\rangle : t = 1, \ldots, S,
\]

and tells Bob the result \(t\), who applies the phase shift

\[
\sum_{s=1}^S e^{2\pi ist/S} |s\rangle \langle s|.
\]
to the s–component of his register B. This transforms $|\psi\rangle^{ABB'E}$ into a state $|\Theta\rangle^{ABB'E}$ with

$$F(\Theta), \sqrt{\frac{1}{MS} \sum_{m} |m\rangle^A \otimes |m\rangle^B \otimes |\psi_{\omega(t)}\rangle^{B'E}} \geq 1 - 3\sqrt{\epsilon},$$

(10)

invoking the non–decrease of the fidelity under quantum operations, applied to Θ.

Absorbing s into the register B', the right hand state in the last equation can be rewritten as

$$\frac{1}{\sqrt{M}} \sum_{m} |m\rangle^A \otimes |m\rangle^B \otimes |\tilde{\psi}_{t\omega(t)}\rangle^{B'E},$$

(11)

with

$$|\tilde{\psi}_{t\omega(t)}\rangle^{B'E} = \frac{1}{\sqrt{S}} \sum_{s} |s\rangle^{B'} \otimes |\psi_{s(t)}\rangle^{B'E}.$$

The reduced states of Eve of the $|\psi_{t\omega(t)}\rangle^{B'E}$ is

$$\sigma_{t\omega(t)} = \frac{1}{S} \sum_{s} |\psi_{s(t)}\rangle \langle \psi_{s(t)}|,$$

where we made use of eq. (8), which is, by the ϵ–secrecy, at trace distance at most ϵ from a state we denoted $\sigma(Q)$ in the proof of theorem 1. By lemma 1 in appendix B, $F(\sigma_{t\omega(t)}, \sigma(Q)) \geq 1 - \epsilon$.

Choosing a purification $|\zeta\rangle^{B'E}$ of $\sigma(Q)$, this means that there are unitaries $U_{t\omega(t)}$ on B' such that

$$F\left(\left(U_{t\omega(t)} \otimes 1\right) |\tilde{\psi}_{t\omega(t)}\rangle, |\zeta\rangle^{B'E}\right) \geq 1 - \epsilon,$$

because the mixed state fidelity equals the maximum pure state fidelity over all purifications of the states and all purifications are related by unitaries on the purifying system. Hence, if Bob applies

$$U := \sum_{m} |m\rangle \langle m| \otimes U_{t\omega(t)}$$

to his share of the state, then the state in eq. (11) is transformed into a state $|\Xi\rangle^{ABB'E}$ with

$$F\left(\Xi, \frac{1}{\sqrt{M}} \sum_{m} |m\rangle^A \otimes |m\rangle^B \otimes |\zeta\rangle^{B'E}\right) \geq 1 - \epsilon.$$

Of course, he actually works on $|\Theta\rangle$, so they end up with the state $(1 \otimes U \otimes 1)|\Theta\rangle$, which has fidelity $1 - 3\sqrt{\epsilon}$ to $|\Xi\rangle$, hence with eq. (11) we conclude (by simple geometry) that it has fidelity $\geq 1 - 12\sqrt{\epsilon}$ to $|\Phi_M \rangle^{ABB'} \otimes |\zeta\rangle^{B'E}$.

Nontypical Q, the event \emptyset or bad code C_{t} happen with total probability at most 4ϵ. In the “good” case, Alice and Bob distill — up to fidelity $1 - 12\sqrt{\epsilon}$ a maximally entangled state of log Schmidt rank

$$n(I(Q; \psi^B) - I(Q; \psi^E) - 3\delta)$$

$$\geq n(I(P; \psi^B) - I(P; \psi^E) - 3\delta - \delta')$$

$$= n(H(B) - H(E) - 3\delta - \delta'),$$

with δ' just as at the end of the proof of theorem 1.

Remark 11 The communication cost of the above protocol is asymptotically

$$H(A) - I(X; B) + I(X; E) = H(A) - H(B) + H(E)$$

$$= H(A) + H(E) - H(AE)$$

$$= I(A; E)$$

bits of forward classical communication per copy of the state: the information which code C_{t} to use, plus the information from the measure of the Fourier–transformed basis $(|\ell\rangle)_{s}$.

Even though at first sight there seems to be little reason to believe that our procedure is optimal for this resource (consider for example a separable initial state: Alice will have mutual information with a purification but clearly the best thing is to do nothing), it is amusing to see the quantum mutual information show up here.

It is in fact possible to show that subject to another optimisation, the quantum mutual information between Alice and Eve gives indeed the minimum forward communication cost \cite{22}.

Example 12 It is interesting to compare our method to the original hashing protocol of \cite{14}, for the case of mixtures of Bell states

$$\rho = \sum_{i,j=0}^{1} \pi_{ij} \Phi_{ij},$$

with the numbering of the Bell states introduced in \cite{14}:

$$\Phi_{00} = \Phi^{+}, \quad \Phi_{01} = \Phi^{-}, \quad \Phi_{10} = \Psi^{+}, \quad \Phi_{11} = \Psi^{-}.$$

The purification we use in the proof reads

$$|\psi\rangle^{ABE} = \sum_{i,j=0}^{1} \sqrt{\pi_{ij}} |\Phi_{ij}\rangle^{AB} \otimes |i\rangle^{E},$$

with

$$|\psi_{0}\rangle^{BE} = \sqrt{\pi_{00}} |0\rangle^{B} |0\rangle^{E} + \sqrt{\pi_{10}} |0\rangle^{B} |1\rangle^{E} + \sqrt{\pi_{11}} |1\rangle^{B} |1\rangle^{E},$$

$$|\psi_{1}\rangle^{BE} = \sqrt{\pi_{00}} |1\rangle^{B} |0\rangle^{E} - \sqrt{\pi_{10}} |0\rangle^{B} |1\rangle^{E} + \sqrt{\pi_{11}} |0\rangle^{B} |1\rangle^{E}.$$

Note that this is indeed a Schmidt decomposition. First of all, the communication cost of our protocol evaluates (using the symmetry between A and B) to

$$I(A : E) = I(B : E)$$

$$= H(B) + H(E) - H(BE)$$

$$= 1 + H(|\psi\rangle) - 1 = H(|\psi\rangle),$$

which is the same as in \cite{14}. But the way of the hashing protocol is to “hash” information about the identity of the state in the Bell ensemble into approximately
where \(\omega_\ell = \frac{1}{n}(T_\ell \otimes \text{id})(\rho^{\otimes n}) \). Hence we get
\[
R \leq \frac{1}{n} D^{(1)}(\rho^{\otimes n}) + \delta',
\]
with arbitrarily small \(\delta' \) as \(n \to \infty \), and we are done.

As for the bound on \(L \) and the structure of \(T \), observe that if one \(T_\ell \) has more than one Kraus element, one can decompose \(T_\ell(\sigma) \) into a sum of terms \(A_\ell \rho_\ell A_\ell^\dagger \); for the corresponding probabilities \(\lambda_\ell = \sum_j \lambda_{\ell j} \rho_\ell \) and for the post–measurement states \(\lambda_{\ell j} \rho_\ell = \sum_j \lambda_{\ell j} \rho_{\ell j} \). Then by the convexity of \(I_c \) in the state [36],
\[
\lambda_{\ell j} I_c(A)(B)_{\rho_\ell} \leq \sum_j \lambda_{\ell j} I_c(A)(B)_{\rho_{\ell j}},
\]
By the polar decomposition and invariance of \(I_c \) under local unitaries we may further assume that \(A_\ell \geq 0 \), i.e.
\[
A_\ell = \sqrt{A_\ell^\dagger A_\ell}; \text{ in this form the whole instrument is actually described by the POVM } (A_\ell^\dagger), \text{ and each POVM}
\]
corresponds to an instrument by taking as the \(\pi \)-maps of \(A_\ell \), and this convex decomposition clearly carries over to the instruments: \(T = \sum_j \pi_j T_j \). Since then \(\sum_j \lambda_{\ell j} I_c(A)(B)_{\rho_\ell} \) is the same convex combination of similar such terms for the instruments \(T_j \), at least one of these gives a higher yield \(\sum_j \lambda_{\ell j} I_c(A)(B)_{\rho_j} \); note that the \(\pi \)-maps of \(T_j \) are scalar multiples of the \(T_\ell \), hence the output state of \(T_j \) with classical result \(\ell \) is \(\rho_j \). □

IV. QUANTUM AND ENTANGLEMENT CAPACITIES

Horodecki [13, 83] have observed that the hashing inequality implies information theoretic formulas for a number of quantum capacities and the distillable entanglement:

In particular, the quantum capacity of a quantum channel, either unassisted or assisted by forward or two–way communication is given by a formula involving coherent information (where we indicate the assisting resource in the subscript):

Theorem 14 Let \(T : B(H_A) \longrightarrow B(H_B) \) be any quantum channel. Then,
\[
Q_\delta(T) = Q_\rightarrow(T) = \lim_{n \to \infty} \frac{1}{n} \max_{|\psi\rangle} I_c(A')(B^n)_\omega,
\]
with any pure state \(\psi \) on \(A'A^n \) and the state
\[
\omega = (\text{id} \otimes T)^{\otimes n}(\psi^{A'}).\]
Furthermore,
\[Q_{\psi}(T) = \lim_{n \to \infty} \frac{1}{n} \sup_{V} I_c(A^B^n)_{\omega},\]
with any pure state \(\psi \) on \((A^B)^n \), two–way LOCC operation \(V \) and the state
\[\omega = V \left[(\text{id} \otimes T)^{\otimes n} (\psi^{A^B}) \right].\]

Proof. See \[33\]. That forward communication does not help was proved in \[6\], and that the right hand side is an upper bound to \(Q_{\psi} \) was shown in \[26, 46\].

The idea of achievability is to distill the state \(\omega \) and then use teleportation — this involves forward communication but either it is free or the whole procedure including the distillation and teleportation uses only forward communication, which by \[6\] can be removed.

In \[33\] a similar formula (involving a coherent information \(I_c(B|A)_{\rho} \)) was proposed for the quantum capacity with classical feedback. However, the proof as indicated above does not work in this case: indeed we may use the back–communication to help distillation, but teleportation needs a forward communication, so we end up with a quantum channel code utilising two–way classical side communication, which is not known to be reducible to just back–communication: in fact, the results of Bowen \[6\] might be taken as indication that for the erasure channel the capacities with feedback and without two–way side communication are different. \(\square \)

We have already given a formula for the distillable entanglement using one–way LOCC in theorem \[13\].

Theorem 15 For any state \(\rho^{AB} \),
\[D(\rho) = \lim_{n \to \infty} \frac{1}{n} \sup_{V} I_c(A^B^n)_{\omega},\]
with any two–way LOCC operation \(V \) and the coherent information refers to the state \(\omega = V (\rho^{\otimes n}) \).

Proof. For the direct part (“\(\geq \)” it is obviously sufficient to consider any two–way LOCC operation \(V \) on the bipartite system, which applied to \(\rho \) gives a state \(\sigma \). Doing that for \(n \) copies of \(\rho \), application of theorem \[13\] shows that we can distill EPR pairs at rate \(I_c(A^B^n)_{\sigma} \) from this.

Conversely, let \(V_0 \) be a two–way LOCC producing a state \(\Omega \) with \(\|\Omega - \Phi_M\|_1 \leq \epsilon, nR = \log M \). Without loss of generality we may assume that \(\Omega \) is supported within the tensor product of the supports of the reduced states of \(\Phi_M \). Thus,
\[nR \leq H(\Omega^B) - H(\Omega^{AB}) + 3n(\epsilon R + \tau(\epsilon)) \]
\[= I_c(A|B)_{\Omega} + 3n(\epsilon R + \tau(\epsilon)) \]
\[\leq \sup \{ I_c(A|B)_{V(\rho^{\otimes n})} : V \text{ two–way LOCC} \} \]
\[+ 3n(\epsilon R + \tau(\epsilon)) , \]
and we are done. \(\square \)

It was shown furthermore in \[33\] that for an ensemble \(\{\rho_i, p_i\} \) of bipartite pure states the hashing inequality implies
\[\Delta D := \sum_{i} p_i D(\rho_i) - D(\rho) \]
\[\leq \Delta I := H(\rho) - \sum_{i} p_i H(\rho_i). \]
This inequality was first exhibited in \[23\] for a class of examples, and conjectured to be true in general. Note that the inequality is trivially true (using only concavity of the entropy) for the loss of coherent information on the left hand side.

History and relation to other work:

The coherent information made its appearance in \[45\] where its relation to quantum channel capacity was conjectured and many of its properties proved. Independently \[37\] proposed this quantity and a heuristic for a proof which however fell short of a proof. Only recently Hamada \[26\] succeeded in giving a lower bound on quantum channel capacity in terms of coherent information — still with a crucial restriction to stabiliser codes. It took until \[48\] for a full proof to be found — but then quite quickly one of us \[17\] discovered a proof based on private information transmission, an idea inspired by the work of Schumacher and Westmoreland \[47\].

Regarding entanglement distillation, the hashing inequality appears to have been a folk conjecture from the publication of \[6\] on, which however has received much less attention than the quantum channel coding problem. It was codified as an important conjecture in \[33\].

While completing the writing of the present paper we learned of the work \[32\], in which it is shown that the proof by random coding of the channel capacity theorem can be used to obtain the hashing inequality. It may be interesting to compare the proofs \[31, 48\] for the achievable of the coherent information to ours and \[17\]. While we, on the face of it, take a detour via secret key distillation, the final procedure can be argued more direct: in particular, we don’t require the “double blocking” which in the other approaches seem necessary to reduce to a situation in which Alice’s end is in a maximally mixed state. Thus, presumably, our codes achieve rates approaching the coherent information more quickly, i.e. for smaller block length.

V. CONCLUSION

Our findings not only transport an existing classical theory of distilling secret key from prior correlation (Maurer \[39\], Ahlswede and Csiszár \[2\], and follow–up work) to the quantum case, but also link this subject to
entanglement distillation in an operational way: a coherent implementation of the basic secret key distillation protocol yielded an entanglement distillation protocol achieving the coherent information — this then implies information theoretic formulas for distillable entanglement and quantum capacities.

We want to draw the reader’s attention to several open questions that we have to leave: first of all, are there states for which \(D_{\to}(\rho) < K_{\to}(\rho) \)? Are there maybe even bound entangled states with positive key rate? A first step might be to find states such that \(D^{(1)}(\rho) < K^{(1)}(\rho) \). Note that the potential gap between \(K_{\to} \) and \(D_{\to} \) comes from the possibility to have more general measurements at Alice’s side than the complete von Neumann measurement in the Schmidt basis that was our starting point in the proof of theorem 10 (actually any complete von Neumann measurement would do); namely, in key distillation, a viable option for Alice is to discard part of her state (corresponding to using higher rank POVM elements), but keep that part secret from Eve all the same; while in entanglement distillation, “Eve“ is everything except Alice and Bob, so it is as if she would get the parts Alice decided to toss away.

A second group of open questions: in general, the optimisations in theorems 6, 8 and 13 are quite nasty, most so because they involve a limit of many copies of the state. In the classical theory of secret key distillation, a single-letter formula for the optimal one-way key rate is proved in 2, so there might be hope at least for theorem 6. In contrast, the optimal rate of two-way protocols or even a procedure to decide if it is nonzero is still to be found (see the very well-informed reviews 31 and 32), which is why we concentrate on one-way protocols for now. It is known that distillability of entanglement may be absent for a single copy of a state, but could appear for collective operations on several copies (see again the review 32, sections 6.3 and 7.2 and references therein), so there are only limited possibilities for making theorem 13 into a single-letter formula. Note in particular that the results of 22 — see also the discussion of Barnum, Nielsen and Schumacher 44 where the failure of subadditivity for the coherent information is observed — imply that single-letter maximisation of the coherent information is observed — imply that single-letter maximisation of the coherent information will certainly not achieve the optimum distillability. It would therefore be good to have at least an a priori bound on the number \(n \) of copies of the state which we have to consider to have \(D^{(1)}(\rho^\otimes n) \) within, say \(\epsilon \), of the optimal rate. In general, good single-letter lower and upper bounds 13 are still wanted!

Finally, we would like to know what the public/classical communication cost is of distilling secret key and entanglement, respectively, in particular in the one-way scenario (which at any rate seems to be the one open to analysis). More generally, if we limit the amount of communication, can we determine the optimal distillation rates (see 21 for the communication cost of common randomness distillation)? In the entanglement case this should link up with initial efforts to understand the communication cost of various state transformation tasks 4, 27, 28, 38. A study concerning the forward communication cost of entanglement distillation is in preparation 20.

Acknowledgments

We wish to thank Patrick Hayden and Debbie Leung for a discussion at the conception of this work. After the present research had been done, we learned from Michal and Paweł Horodecki that they had a different approach to proving the hashing inequality, which they were able to carry through after hearing of our result. We want to thank them for showing us an early draft of their paper 34.

ID is supported in part by the NSA under US Army Research Office (ARO) grants DAAG55–98–C–0041 and DAAD19–01–1–006. AW is supported by the U.K. Engineering and Physical Sciences Research Council.

Appendix A: TYPES AND TYPICAL SUBSPACES

The following material can be found in most textbooks on information theory, e.g. 15, 16, or in the original literature on quantum information theory 44, 16, 53.

For strings of length \(n \) from a finite alphabet \(\mathcal{X} \), which we generically denote \(x^n = x_1 \ldots x_n \in \mathcal{X}^n \), we define the type of \(x^n \) as the empirical distribution of letters in \(x^n \): i.e., \(P \) is the type of \(x^n \) if

\[
\forall x \in \mathcal{C} \quad P(x) = \frac{1}{n} |\{ k : x_k = x \}|.
\]

It is easy to see that the total number of types is upper bounded by \((n+1)^{|\mathcal{X}|}\).

The type class of \(P \), denoted \(T_P^n \), is defined as all strings of length \(n \) of type \(P \). Obviously, the type class is obtained by taking all permutations of an arbitrary string of type \(P \).

The following is an elementary property of the type class:

\[
(n+1)^{-|\mathcal{X}|} \exp(nH(P)) \leq |T_P^n| \leq \exp(nH(P)), \quad (A1)
\]

with the (Shannon) entropy \(H(P) \).

For \(\delta > 0 \), and for an arbitrary probability distribution \(P \), define the set of \(P \)-typical sequences as

\[
T_{P,\delta}^n := \left\{ x^n : \left| -\frac{1}{n} \log P^\otimes n(x^n) - H(P) \right| \leq \delta \right\}.
\]

By the law of large numbers, for every \(\epsilon > 0 \) and sufficiently large \(n \),

\[
P^\otimes n(T_{P,\delta}^n) \geq 1 - \epsilon. \quad (A2)
\]

Furthermore:

\[
|T_{P,\delta}^n| \leq \exp(n(H(P) + \delta)), \quad (A3)
\]

\[
|T_{P,\delta}^n| \geq (1 - \epsilon) \exp(n(H(P) - \delta)). \quad (A4)
\]
For a (classical) channel \(W : \mathcal{X} \rightarrow \mathcal{Y} \) (i.e. a stochastic map, taking \(x \in \mathcal{X} \) to a probability distribution \(W_x \) on \(\mathcal{Y} \)) and a string \(x^n \in \mathcal{X}^n \) of type \(P \) we denote the output distribution of \(x^n \) in \(n \) independent uses of the channel by

\[
W_{x^n} = W_{x_1} \otimes \cdots \otimes W_{x_n}.
\]

Let \(\delta > 0 \), and define the set of conditional \(W \)-typical sequences as

\[
T_{W,\delta}(x^n) := \left\{ y^n : \left| \frac{1}{n} \log W_{x^n}(y^n) - H(W|P) \right| \leq \delta \right\},
\]

where \(H(W|P) = \sum_x P(x)H(W_x) \) is the conditional entropy.

Once more by the law of large numbers, for every \(\epsilon \) and sufficiently large \(n \),

\[
W_{x^n}(T_{W,\delta}(x^n)) \geq 1 - \epsilon. \tag{A5}
\]

Furthermore:

\[
|T_{W,\delta}(x^n)| \leq \exp(n(H(W|P) + \delta)), \tag{A6}
\]

\[
|T_{W,\delta}(x^n)| \geq (1 - \epsilon) \exp(n(H(W|P) - \delta)). \tag{A7}
\]

All of these concepts and formulas have analogues as “typical projectors” \(\Pi \) for quantum states: by virtue of the spectral decomposition, the eigenvalues of a density operator can be interpreted as a probability distribution over eigenstates. The subspaces spanned by the typical eigenstates are the “typical subspaces”. The trace of a density operator with one of its typical projectors is then the probability of the corresponding set of typical sequences.

Notations like \(\Pi_{\rho,\delta} \) etc. should be clear from this.

There is only one such statement for density operators that we shall use, which is not of this form:

Lemma 16 (Operator law of large numbers) Let \(x^n \in \mathcal{X}^n \) be of type \(P \), and let \(W : \mathcal{X} \rightarrow \mathcal{S}(\mathcal{H}) \) be a cq-channel. Denote the average output state of \(W \) under \(P \) as

\[
\rho = \sum_x P(x)W_x.
\]

Then, for every \(\epsilon > 0 \) and sufficiently large \(n \),

\[
\text{Tr}(W_{x^n}\Pi_{\rho,\delta}) \geq 1 - \epsilon.
\]

Proof. See [52], Lemma 6.

Appendix B: MISCELLANEOUS FACTS

This appendix collects some standard facts about various functionals we use: entropy, fidelity and trace norm.

\[\text{Lemma 17 (Fannes [24]) Let } \rho \text{ and } \sigma \text{ be states on a } d \text{-dimensional Hilbert space, with } \|\rho - \sigma\|_1 \leq \delta. \text{ Then } \|H(\rho) - H(\sigma)\|_1 \leq \delta \log d + \tau(\delta), \text{ with } \tau(\delta) = \begin{cases} -\delta \log \delta & \text{if } \delta \leq 1/4, \\
1/2 & \text{otherwise.} \end{cases}\]

Note that \(\tau \) is a monotone and concave function.

\[\text{Lemma 18 (25) Let } \rho \text{ and } \sigma \text{ be any two states on a Hilbert space. Then } 1 - \sqrt{F(\rho,\sigma)} \leq \frac{1}{2}\|\rho - \sigma\|_1 \leq 1 - F(\rho,\sigma).\]

\[\text{Lemma 19 (Gentle measurement [53]) Let } \rho \text{ be a (subnormalized) density operator, i.e. } \rho \geq 0 \text{ and } \text{Tr}\rho \leq 1, \text{ and let } 0 \leq X \leq I. \text{ Then, if } \text{Tr}(\rho X) \geq 1 - \lambda, \|\sqrt{X}\rho\sqrt{X} - \rho\|_1 \leq \sqrt{8}\lambda.\]

\[\text{Lemma 20 (Caratheodory’s theorem [55, 1.6]) Let } v_1, \ldots, v_n \text{ be points in a } d \text{-dimensional } \mathbb{R} \text{-vector space, and let } p(1), \ldots, p(n) \text{ be probabilities (i.e., non-negative and summing to 1). Then the convex combination } v = \sum_{i=1}^n p(i)v_i \text{ can be expressed as a convex combination of (at most) } d + 1 \text{ of the } v_i.\]

As a consequence, there exist probability distributions \(p_j \) on \(\{1, \ldots, n\} \) and probability weights \(\lambda_j \) such that for all \(j \),

\[
v = \sum_{i=1}^n p_j(i)v_i, \quad |\text{supp } p_j| \leq d + 1.
\]

Appendix C: MISCELLANEOUS PROOFS

Proof of proposition 4 The proof follows closely the argument of [54] and of [55]. We begin by constructing the typical projectors \(\Pi_{\omega,x^n} \) of the \(W_{x^n} \), which, for \(x^n \) of type \(P \), is defined as the sum of the eigenstate projectors of \(W_{x^n} \) with eigenvalues in the interval

\[
[\exp(-n(H(W|P) + \delta)) ; \exp(-n(H(W|P) - \delta))],
\]

with the conditional entropy \(H(W|P) = \sum_x P(x)H(W_x) \). For sufficiently large \(n \), by the law of large numbers, \(\text{Tr}(W_{x^n}\Pi_{\omega,x^n}) \geq 1 - \epsilon \). Now define

\[
\omega_{x^n} := \Pi_{\Pi_{\omega,x^n}} W_{x^n}\Pi_{\omega,x^n}.
\]
where Π is the typical projector of $\rho = \sum_x P(x)W_x$, i.e. the sum of the eigenstate projectors with eigenvalues in the interval

$$[\exp(-n(H(\rho) + \delta)); \exp(-n(H(\rho) - \delta))].$$

These concepts are taken from [44] and [46], but see also appendix A. By the law of large numbers, for sufficiently large n,

$$\text{Tr}(W_x^n \Pi) \geq 1 - \epsilon^2/8.$$

From this and the gentle measurement lemma we get

$$\|\omega_x^n - W_x^n\|_1 \leq 2\epsilon.$$

The strategy is now to apply the operator Chernoff bound to the ω_x^n: they are supported on a subspace of dimension $\leq \exp(n(H(\rho) + \delta))$, and are all upper bounded by $\exp(-n(H(W(P)) - \delta))\Pi$.

The only remaining obstacle is that we need a lower bound on

$$\varpi = \frac{1}{|T^P_2|} \sum_{x \in T^P_2} \omega_x^n.$$

To this end, let $\hat{\Pi}$ be the projector onto the subspace spanned by eigenvectors of ϖ with eigenvalues $\geq \exp(-n(H(\rho) - 2\delta))$. In this way, for sufficiently large n,

$$\text{Tr}(\varpi \hat{\Pi}) \geq 1 - \epsilon.$$

Defining the operators

$$\hat{\omega}_x^n := \hat{\Pi} \omega_x^n \hat{\Pi},$$

we can now apply lemma B to the (rescaled) $\hat{\omega}_{U^{(j)}}$, and get

$$\text{Pr}\left\{ \frac{1}{M} \sum_{j=1}^{M} \hat{\omega}_{U^{(j)}} \not\in \left[(1 \pm \epsilon)\hat{\Pi}\varpi\hat{\Pi}\right] \right\} \leq 2d^n \exp\left(-M \exp(-n(I(P;W) + 3\delta)) - \frac{\epsilon^2}{2\ln 2}\right).$$

But

$$\Omega := \frac{1}{M} \sum_{j=1}^{M} \hat{\omega}_{U^{(j)}} \in \left[(1 \pm \epsilon)\hat{\Pi}\varpi\hat{\Pi}\right]$$

implies $\|\hat{\Pi}(\Omega - \varpi)\hat{\Pi}\|_1 \leq \epsilon$, which in turn implies

$$\|\hat{\Pi}\Omega\hat{\Pi} - \varpi\|_1 \leq 2\epsilon.$$

In particular we get, invoking eq. (C1),

$$\text{Tr}\Omega \geq \text{Tr}\varpi - 2\epsilon \geq 1 - 4\epsilon,$$

Hence, with the gentle measurement lemma appendix B we obtain

$$\|\hat{\Pi}\Omega\hat{\Pi} - \Omega\|_1 \leq \sqrt{32\epsilon}.$$

Combining eqs. (C3) and (C4) via the triangle inequality gives

$$\|\Omega - \varpi\|_1 \leq 2\epsilon + \sqrt{32\epsilon},$$

and using eq. (C1) to replace ω_x^n by W_x^n in both above operators, we get finally

$$\left\| \frac{1}{M} \sum_j W_{U^{(j)}}^n - \sigma(P) \right\|_1 \leq 6\epsilon + \sqrt{32\epsilon} \leq 12\epsilon.$$

The complement of this event has probability smaller than eq. (C2), and since δ was arbitrary we obtain our claim.

Proof of proposition 2 In [46], it is proved that selecting $N' = 2(n + 1)|X|\exp(n(I(P;W) - \delta))$ codewords $u(i)$ at random, i.i.d. according to $P^{\otimes n}$, one can construct a canonical decoding POVM such that for the expectation (over the code C_{HSW}) of the average error probability, p_E, goes to zero:

$$\langle p_E \rangle_{C_{HSW}} \leq 9\epsilon + N' \exp(-n(I(P;W) - \delta/2)).$$

(See [46], eq. (34).) The first thing we note is that (for sufficiently large n) $\epsilon = \exp(-\gamma n)$ for a constant $\gamma > 0$ depending on δ: this follows by inspection of section III of [46], where ϵ is introduced as the loss of probability mass by removing non–typical contributions. As non–typicality is defined as large deviation events for a sum of independent random variables, of the form

$$\log \lambda_{x_k} = \sum_k \log \lambda_{x_k},$$

the Chernoff bound allows us to put exponential bounds on the non–typical mass.

Hence eq. (C6) can be rewritten, for sufficiently large n,

$$\langle p_E \rangle_{C_{HSW}} \leq \exp(-n\beta),$$

with some $\beta > 0$.

We want to show that $C_{HSW} \cap T_2^n$ is a good approximation to a random code from the type class T_2^n. Of course, it is not quite that, if only because it has a variable number of codewords! There is an easy fix to this problem: define, with $N = \exp(n(I(P;W) - \delta))$,

$$C := \text{First } N \text{ elements of } C_{HSW} \cap T_2^n,$$

which makes sense because we can put the codewords in the order we select them. If the intersection is too small, define C to be empty.
By symmetry, it is clear that conditional on ρ^B we aim at writing the four conditional entropies on the values uT:

$$H(T|u) = H(T|u) = H(T|u) = H(T|u)$$

and similarly for $H(E|UT)$.

First of all, let us bound the error probability of C:

$$p_E(C) \leq \frac{1}{N} \sum_{uT \in T} (1 - \text{Tr}(W_n^T D_t))$$

$$\leq \frac{1}{N} \sum_{i=1}^{N^T} (1 - \text{Tr}(W_n^T D_t))$$

$$= \frac{N^T}{N} p_E(C_{HSW})$$

Now, that $|C_{HSW} \cap T^P| < N$, happens extremely rarely: because $P_{\text{in}}(T^P) \geq (n+1)^{-|X|}$, the expected cardinality of the intersection is larger than $2N$, for sufficiently large n. But then, using the Chernoff bound,

$$\Pr\{C_{HSW} \cap T^P < N\} \leq \exp\left(-N^T \ln 2(n+1)^{|X|}\right)$$

$$\leq \exp(-N/4).$$

By symmetry, it is clear that conditional on $C \neq 0$, the code C is a uniformly random code of N words from T^P, i.e. it can be described by i.i.d. and uniformly picking codewords.

Hence, denoting by \tilde{C} a truly random code of N words from T^P, we have

$$\frac{1}{2} \left\|\text{Dist}(C) - \text{Dist}(\tilde{C})\right\|_1 \leq \exp(-N/4).$$

Observe that the left hand side is the total variational distance of distributions. Thus, putting this together with eqs. (C8) and (C7), we obtain

$$\langle p_E\rangle_{\tilde{C}} \leq \langle p_E\rangle_C + \exp(-N/4)$$

$$\leq 2(n+1)|X|\exp(-n/2) + \exp(-N/4)$$

$$\leq \exp(-n/2),$$

for sufficiently large n. But this in turn implies that

$$\Pr\{p_E(C) > \exp(-n/4)\} \leq \exp(-n/4),$$

by the Markov inequality.

\[\square\]

Proof of range bounds in theorem 4. Here we prove that we may assume that T is a deterministic function of U, $|T| \leq |X|$ and $|U| \leq |X|^2$:

Observing

$$I(U; B|T) - I(U; E|T) = H(B|T) - H(B|UT)$$

$$- \left[H(E|T) - H(E|UT) \right],$$

we aim at writing the four conditional entropies on the right as averages over similar such quantities but with limited range of U and T. To this end, observe that the channels Q and R induce a probability distribution $q(ut)$ on the values uT of $U := UT$ (of which T clearly is a deterministic function), and that for each ut there is the conditional distribution P_{ut} on X:

$$P_{ut}(x) = \Pr\{X = x|U = u, T = t\},$$

which has the property $\sum_u q(ut)P_{ut} = P$. With these notations,

$$H(B|UT) = \sum_{ut} q(ut)S(\rho^B_{ut}),$$

and similarly for $H(E|UT)$.

For each t, let $q(t) = \sum_u q(ut)$, which allows us to write down the conditional distribution $q(ut')$ on the points ut:

$$q(ut'|t) = \left\{ \begin{array}{ll} \frac{1}{q(t)} q(ut) & \text{ for } t' = t, \\ 0 & \text{ otherwise.} \end{array} \right.$$

With this, the conditional distribution P_t on X can be written

$$P_t = \Pr\{X = x|T = t\} = \sum_u q(u)P_{ut},$$

for which clearly $\sum_t q(t)P_t = P$. This allows us to write

$$H(B|T) = \sum_t q(t)S(\rho^B_t),$$

and similarly for E.

Now, invoking Caratheodory’s theorem, lemma we can write, for all t,

$$q(\cdot|t) = \sum_j \lambda_{jt} q_j(\cdot|t),$$

(C9)

with probabilities λ_{jt} and conditional distributions q_j such that for all j,

$$\sum_{ut'} q_j(ut'|t)P_{ut'} = P_t$$

(C10)

and $\text{supp } q_j(\cdot|t) \leq |X|$. Another application of Caratheodory’s theorem gives a convex decomposition

$$q = \sum_k \mu_k q_k,$$

(C11)

such that the support of all the q_k has cardinality $\leq |X|$ and for all t,

$$\sum_t q_k(t)P_t = P.$$

(C12)

Eqs. (C9) and (C11) define random variables J and K, respectively: by eqs. (C10) and (C12), for each value
Using Carathéodory’s theorem, lemma 20, we can write
\[H(B|T) - H(E|T) = H(B|TJ) - H(E|TJ) \]
with distributions \(q = \sum_{jk} \Pr{JK = jk}[H(B|T_{jk}) - H(E|T_{jk})] \).

In the same way,
\[-H(B|UT) + H(E|UT) = -H(B|\tilde{U}JK) + H(E|\tilde{U}JK) \]
\[= \sum_{jk} \Pr{JK = jk}[-H(B|\tilde{U}_{jk}) + H(E|\tilde{U}_{jk})]. \]
Hence there exist \(j \) and \(k \) such that
\[I(U; B|T) - I(U; E|T) \leq I(\tilde{U}_{jk}; B|T_{jk}) - I(\tilde{U}_{jk}; E|T_{jk}), \]
and \(\tilde{U}_{jk} \) and \(T_{jk} \) satisfy the range constraints.

Proof of range bounds in theorem 8. Here we prove that we may assume that \(T \) is a deterministic function of \(X \), \(|T| \leq d_A^2 \) and \(|X| \leq d_A^4 \):

Denote the POVM elements of the measurement producing \(x \) and \(t \) by \(P_{xt} \), and introduce the coarse-grained operators \(P_t = \sum_x P_{xt} \). To decompose the POVM using convexity arguments, we rewrite the completeness conditions as
\[\frac{1}{d_A^2} I = \sum_t \frac{\text{Tr} P_t}{d_A^2} P_t =: \sum_t q(t) \pi_t, \]
\[\pi_t = \sum_x \frac{\text{Tr} P_{xt} P_t}{\text{Tr} P_t} = \sum_{xt'} q(xt'|t) \pi_{xt'}. \]

Using Carathéodory’s theorem, lemma 20 we can write
\[q = \sum_k \mu_k q_k, \] with distributions \(q_k \) of support \(\leq d_A^2 \) and such that for all \(k \),
\[\sum_t q_k(t) \pi_t = \frac{1}{d_A^2} I. \]
Using Carathéodory’s theorem once more, we obtain, for each \(t \), a decomposition
\[q(t) = \sum_j \lambda_{jt} q_j(t), \]
with conditional distributions \(q_j(t) \) of support \(\leq d_A^2 \) and such that for all \(j \),
\[\sum_{xt'} q_j(xt'|t) \pi_{xt'} = \pi_t. \]

Now, let \(\tilde{X} := XT \), which \(T \) clearly is a function of. Then, eqs. \(^{16}\) and \(^{15}\) define random variables \(J \) and \(K \), respectively; by eqs. \(^{14}\) and \(^{10}\), for each value \(JK = jk \) we have a POVM \(P^{(jk)} \) (whose output variable we denote \(\tilde{X}_{jk} \) the function \(T \) of which we denote \(T_{jk} \)). Then (compare the previous proof),
\[H(B|T) - H(E|T) = H(B|TJ) - H(E|TJ) \]
\[= \sum_{jk} \Pr{JK = jk}[H(B|T_{jk}) - H(E|T_{jk})]. \]
\[-H(B|XT) + H(E|XT) = -H(B|\tilde{X}JK) + H(E|\tilde{X}JK) \]
\[= \sum_{jk} \Pr{JK = jk}[-H(B|\tilde{X}_{jk}) + H(E|\tilde{X}_{jk})]. \]
Hence there exist \(j \) and \(k \) such that
\[I(X; B|T) - I(X; E|T) \leq I(\tilde{X}_{jk}; B|T_{jk}) - I(\tilde{X}_{jk}; E|T_{jk}), \]
and \(\tilde{X}_{jk} \) and \(T_{jk} \) satisfy the range constraints.

\[\begin{aligned} \text{[1]} & \text{ A. Acín, L. Masanes, N. Gisin, “Equivalence between two-qubit entanglement and secure key distribution”, e-print quant-ph/0303053, 2003.} \\ \text{[2]} & \text{ R. Ahlswede, I. Csiszár, “Common Randomness in Information Theory and Cryptography — Part I: Secret Sharing”, IEEE Trans. Inf. Theory, vol. 39, no. 4, pp. 1121–1132, 1993.} \\ \text{[3]} & \text{ R. Ahlswede, A. Winter, “Strong Converse for Identification Via Quantum Channels”, IEEE Trans. Inf. Theory, vol. 48, no. 3, pp. 569–579, 2002. Addendum ibid., vol. 49, no. 1, p. 346, 2003.} \\ \text{[4]} & \text{ A. Ambainis, K. Yang, “Towards the Classical Communication Complexity of Entanglement Distillation Protocols with Incomplete Information”, e-print quant-ph/0207090, 2002.} \\ \text{[5]} & \text{ H. Barnum, M. Knill, M. A. Nielsen, “On quantum fidelities and channel capacities”, IEEE Trans. Inf. Theory, vol. 46, no. 4, pp. 1317–1329, 2000.} \\ \text{[6]} & \text{ C. H. Bennett, D. P. DiVincenzo, J. A. Smolin, W. K. Wootters, “Mixed-state entanglement and quantum error correction”, Phys. Rev. A, vol. 54, no. 5, pp. 3824–3851, 1996.} \\ \text{[7]} & \text{ C. H. Bennett, S. Wiesner, “Communication via one- and two–particle operators on Einstein–Podolsky–Rosen} \end{aligned} \]
states”, Phys. Rev. Letters, vol. 69, 2881–2884, 1992.

[8] C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels”, Phys. Rev. Letters, vol. 70, no. 13, pp. 1895–1899, 1993.

[9] G. Bowen, “Quantum feedback channels”, e-print quant-ph/0209072, 2002.

[10] D. Bruß, M. Christandl, A. Ekert, B.–G. Englert, D. Kaszlikowski, C. Macchiavello, “Tomographic Quantum Cryptography: Equivalence of Quantum and Classical Key Distillation”, e-print quant-ph/0303184, 2003.

[11] N. Cai, R. W. Yeung, “Quantum Privacy and Quantum Wiretap Channels”, in preparation.

[12] H. Chernoff, “A measure of asymptotic efficiency for tests of a hypothesis based on the sum of observations”, Ann. Math. Statistics, vol. 23, pp. 493–507, 1952.

[13] M. Christandl, A. Winter, “A new additive entanglement measure: squashing it”, in preparation.

[14] D. Collins, S. Popescu, “Classical analog of entanglement”, Phys. Rev. A, vol. 65, no. 3, 032321, 2002.

[15] T. Cover, J. A. Thomas, Elements of Information Theory, John Wiley & Sons, Inc., New York, 1991.

[16] I. Császár, J. Körner, Information Theory: Coding Theorems for Discrete Memoryless Systems, Academic Press, Inc., New York–London, 1981.

[17] E. B. Davies, “Information and quantum measurement”, IEEE Trans. Inf. Theory, vol. 24, no. 5, pp. 596–599, 1978.

[18] E. B. Davies, J. T. Lewis, “An operational approach to quantum probability”, Comm. Math. Phys., vol. 17, pp. 239–260, 1970.

[19] I. Devetak, “The private classical information capacity and quantum information capacity of a quantum channel”, e-print quant-ph/0304127, 2003.

[20] I. Devetak, A. Harrow, A. Winter, in preparation.

[21] I. Devetak, A. Winter, “Distilling common randomness from bipartite quantum states”, e-print quant-ph/0304196, 2003.

[22] D. P. DiVincenzo, P. W. Shor, J. A. Smolin, “Quantum-channel capacity of very noisy channels”, Phys. Rev. A, vol. 57, no. 2, pp. 830–839, 1998. Erratum: Phys. Rev. A, vol. 59, no. 2, p. 1717, 1999. See also P. W. Shor, J. A. Smolin, “Quantum Error–Correcting Codes Need Not Completely Reveal the Error Syndrome”, e-print quant-ph/9604006, 1996.

[23] J. Eisert, T. Felbinger, P. Papadopoulos, M. B. Plenio, M. Wilkens, “Classical Information and Distillable Entanglement”, Phys. Rev. Letters, vol. 84, no. 7, pp. 1611–1614, 2000.

[24] M. Fannes, “A continuity property of the entropy density for spin lattice systems”, Comm. Math. Phys., vol. 31, pp. 291–294, 1973.

[25] C. A. Fuchs, J. van de Graaf, “Cryptographic distinguishability measures for quantum-mechanical states”, IEEE Trans. Inf. Theory, vol. 45, no. 4, pp. 1216–1227, 1999.

[26] M. Hamada, “Information Rates Achievable with Algebraic Codes on Quantum Discrete Memoryless Channels”, e-print quant-ph/0207113, 2002.

[27] A. Harrow, H.-K. Lo, “A tight lower bound on the classical communication cost of entanglement dilution”, e-print quant-ph/0204096, 2002.

[28] P. Hayden, A. Winter, “Communication cost of entanglement transformations”, Phys. Rev. A, vol. 67, 012326, 2003.

[29] A. S. Holevo, “Some estimates for the amount of information transmittable by a quantum communications channel” (Russian), Probl. Pered. Inf., vol. 9, no. 3, pp. 3–11, 1973. English translation: Probl. Inf. Transm., vol. 9, no. 3, pp. 177–183, 1973.

[30] A. S. Holevo, “The capacity of the quantum channel with general signal states”, IEEE Trans. Inf. Theory, vol. 44, no. 1, pp. 269–273, 1998.

[31] M. Horodecki, “Entanglement measures”, Quantum Information and Computation, vol. 1, no. 1, pp. 3–26, 2001.

[32] M. Horodecki, P. Horodecki, R. Horodecki, “Distillation and bound entanglement”, Quantum Information and Computation, vol. 1, no. 1, pp. 45–75, 2001.

[33] M. Horodecki, P. Horodecki, R. Horodecki, “Unified Approach to Quantum Capacities: Towards Quantum Noisy Coding Theorem”, Phys. Rev. Letters, vol. 85, no. 2, pp. 433–436, 2000.

[34] M. Horodecki, P. Horodecki, “Hashing Inequality”, in preparation.

[35] R. Jozsa, “Fidelity for mixed quantum states”, J. Mod. Optics, vol. 41, no. 12, pp. 2315–2323, 1994.

[36] E. H. Lieb, M. B. Ruskai, “Proof of the strong subadditivity of quantum–mechanical entropy. With an appendix by B. Simon”, J. Math. Phys., vol. 14, pp. 1938–1941, 1973.

[37] S. Lloyd, “Capacity of the noisy quantum channel”, Phys. Rev. A, vol. 55, no. 3, pp. 1613–1622, 1997.

[38] H.–K. Lo, “Classical communication cost in distributed quantum information processing: A generalization of quantum communication complexity”, Phys. Rev. A, vol. 62, 012313, 2000.

[39] U. M. Maurer, “Secret Key Agreement by Public Discussion from Common Information”, IEEE Trans. Inf. Theory, vol. 39, no. 3, pp. 733–742, 1993.

[40] U. M. Maurer, S. Wolf, “Towards characterizing when information–theoretic secret key agreement is possible, in: Proc. ASIACRYPT 1996, LNCS 1163, pp. 196–109, Springer Verlag, 1996.

[41] E. M. Rains, “Rigorous treatment of distillable entanglement”, Phys. Rev. A, vol. 60, no. 1, pp. 173–178, 1999. E. M. Rains, “Bound on distillable entanglement”, Phys. Rev. A, vol. 60, no. 1, pp. 179–179, 1999; Erratum: Phys. Rev. A, vol. 63, 019902(E), 2001.

[42] E. M. Rains, “Semidefinite Program for Distillable Entanglement”, IEEE Trans. Inf. Theory, vol. 47, no. 7, pp. 2921–2933, 2001.

[43] R. Renner, S. Wolf, “New Bounds in Secret–Key Agreement: The Gap Between Formation and Secrecy Extraction”, in: Proc. EUROCRYPT 2003, LNCS 2656, pp. 562–577, Springer Verlag, 2003.

[44] B. Schumacher, “Quantum coding”, Phys. Rev. A, vol. 51, no. 4, pp. 2738–2747, 1995. R. Jozsa, B. Schumacher, “A new proof of the quantum noiseless coding theorem”, J. Mod. Optics, vol. 41, no. 12, pp. 2343–2349, 1994.

[45] B. Schumacher, “Sending entanglement through noisy quantum channels”, Phys. Rev. A, vol. 54, no. 4, pp. 2614–2628, 1996. B. Schumacher, M. A. Nielsen, “Quantum data processing and error correction”, Phys. Rev. A, vol. 54, no. 4, pp. 2629–2635, 1996. H. Barnum, M. A. Nielsen, B. Schumacher, “Information transmission through a noisy quantum channel”, Phys. Rev. A, vol. 57, no. 6, pp. 4153–4175, 1998.
[46] B. Schumacher, M. D. Westmoreland, “Sending classical information via noisy quantum channels”, Phys. Rev. A, vol. 56, no. 1, pp. 131–138, 1997.

[47] B. Schumacher, M. D. Westmoreland, “Quantum Privacy and Quantum Coherence”, Phys. Rev. Letters, vol. 80, no. 25, pp. 5695–5697, 1998.

[48] P. W. Shor, “The quantum channel capacity and coherent information”, in preparation. Lecture notes and video (RealPlayer) available at http://www.msri.org/publications/ln/msri/2002/quantumcrypto/shor/1/index.html.

[49] P. W. Shor, J. Preskill, “Simple Proof of Security of the BB84 Quantum Key Distribution Protocol”, Phys. Rev. Letters, vol. 85, no. 2, pp. 441–444, 2000.

[50] A. Uhlmann, “The ‘transition probability’ in the state space of a *-algebra”, Rep. Math. Phys., vol. 9, no. 2, 273–279, 1976.

[51] V. Vedral, M. B. Plenio, M. A. Rippin, P. L. Knight, “Quantifying Entanglement”, Phys. Rev. Letters, vol. 78, no. 12, pp. 2275–2279, 1997.

[52] K. G. H. Vollbrecht, M. M. Wolf, “Efficient distillation beyond qubits”, Phys. Rev. A, vol. 67, 012303, 2003.

[53] A. Winter, “Coding theorem and strong converse for quantum channels”, IEEE Trans. Inf. Theory, vol. 45, no. 7, pp. 2481–2485, 1999.

[54] A. Winter, “‘Extrinsic' and ‘intrinsic’ data in quantum measurements: asymptotic convex decomposition of positive operator valued measures”, e-print quant-ph/0109050 2001.

[55] G. M. Ziegler, *Lectures on Polytopes*, GTM 152, Springer Verlag, New York, 1995.