Local Topology Inference of Mobile Robotic Networks Under Formation Control

Yushan Li, Student Member, IEEE, Jianping He, Senior Member, IEEE, Lin Cai, Fellow, IEEE, and Xinping Guan, Fellow, IEEE

Abstract—The interaction topology is critical for efficient cooperation of mobile robotic networks (MRNs). We focus on the local topology inference problem of MRNs under formation control, where an inference robot with a limited observation range can maneuver among the formation robots. This problem faces new challenges brought by the highly coupled influence of unobservable formation robots, inaccessible formation inputs, and unknown interaction range. The novel idea here is to advocate a range-shrink strategy to perfectly avoid the influence of unobservable robots while filtering the input. To that end, we develop consecutive algorithms to determine a feasible constant robot subset from the changing robot set within the observation range, and estimate the formation input offline and the interaction range online. Then, an ordinary least squares-based local topology estimator is designed with the previously inferred information. Resorting to the concentration measure, we prove the convergence rate and accuracy of the proposed estimator, taking the estimation errors of previous steps into account. Extensions on non-identical observation slots and more complicated scenarios are also analyzed. Comprehensive simulation tests and method comparisons corroborate the theoretical findings.

Index Terms—Formation control, mobile robotic network, topology inference.

NOMENCLATURE

Symbol Definition

Symbol	Description
r_a, r_i	Abbreviation of the inference robot, robot i.
z_k^a, z_k^i	State of r_a, r_i at time k.
Z_k^a, Z_k^i	2-D position of r_a, r_i at time k.
V	Interaction topology matrix.
V_F	Interaction topology matrix between V_H and V_F.
W_F	State vector of robot set V_F at time k.
R_f	Observation range of r_a.
R_c	Interaction range of formation robots.
R_o	Obstacle detection radius of formation robots.
X	Matrix of k_a filtered observations about V_F.
Y	Matrix of k_s filtered observations about V_H.
c	Desired velocity of formation robots.
h	Shape configuration vector of formation robots.
k_a	Time when c-steady pattern is reached.
k_{end}	Time when r_a stops observation.
$V_a^o(k)$	Robot set within r_a’s observation range at time k.
V_H	Constant robot subset observed by r_a.
V_H, V_F	Robot subset by range-shrink strategy ($V_H \subseteq V_F$).

I. INTRODUCTION

MOBILE robotic networks (MRNs) have received increasing attention in the last decades. Thanks to the mobility, flexibility, and distributed fashion, MRNs are widely deployed, e.g., surveillance, reconnaissance, search, and environmental monitoring [1]. Among these applications, formation control serves as a fundamental technique to enhance the cooperation performance by maintaining a preset geometric shape [2]. Numerous methods have been proposed to obtain stable and robust formation control, see [3], [4] for a detailed review. Despite the large variety of the control methods, the interaction topology among robots is universal and critical for effective cooperation of MRNs. The topology characterizes the locality of information exchange, and determines the shape-forming stability and convergence.

Recent years have witnessed the emergence of many applications that necessitate advances in topology inference, which provides key support to better understand and interact with the system. From the security perspective, the topology describing the interactions of formation robots is extremely sensitive information in many military scenarios. External attackers can utilize the inferred topology to find the critical robot that has significant impacts in the formation, e.g., by calculating the node degree and centrality [5], or identifying the leadership relationship in the formation [6]. Following this, more intelligent attacks can be performed to interfere with the formation [7], [8], [9], [10]. From the perspective of system flexibility, inferring the topology of formation can support the self-configuration...
of the robots based on their local interaction nature [11]. For instance, when a robot disconnects with others, it can use the inferred topology to maintain coordination by predicting the state and reconnecting with neighboring robots [12]. Even when the system scale becomes large and one can only have local topology information, the inferred local topology can still be leveraged to find the locally optimal node and implement the above tasks with locally optimal rewards.

Mathematically, topology inference can be seen as a typical inverse modeling problem. Plenty of related works have been developed for various dynamic models [13], [14], [15]. In relation to the basic consensus dynamics, the interaction topology was reconstructed by measuring the power spectral density of the network response to input noises in [16]. For sparsely connected dynamical networks, eigenvalue decomposition-based optimization methods in [17] and [18] were proposed to reconstruct the topology. Bazanella et al. [19] and van Waarde et al. [20] investigated the identifiability conditions of the system topology of a class of heterogeneous dynamical networks, from the perspective of characterizing the system transfer matrix from input to output. Despite the fruitful results, these methods cannot handle the topology inference of MRNs under formation control. For example, many well-established techniques are effective when the system is asymptotically stable and only involves zero-mean noises input [21], or the input is known [22], [23]. Nevertheless, in practical formation control, the input is generally regular, the system can be marginally stable, and the state is not always fully observable. In a word, careful treatments of the formation input, interaction characteristics, and observation limitations are still lacking.

To fill the gap, this article focuses on the local topology inference problem of MRNs under first-order linear formation control, where an inference robot can maneuver among the formation robots and observe their motions. Specifically, the inference robot has no knowledge of the formation input and interaction parameters, and the observation range is strictly limited. This problem is challenging due to three aspects. First, the set of robots within the observation range of the inference robot can change over time. Second, the movement of formation robots heavily depends on the unknown formation input and interaction constraints. Third, the state evolution of the observable robot subset is determined by not only itself but also the unobservable robots. It is quite difficult to decouple the influences of the mixed three factors, and obtain a reliable local topology from the noise-corrupted observations. To address these issues, the key insight is to determine an available robot set from the changing observable robot set, and eliminate the influence of the unobservable robots. Then, we need to filter the influence of the formation input from local observations and design an unbiased topology estimator.

Preliminary results about estimator design with known interaction range appeared in [24]. In this article, we consider a more general situation where the interaction range is unknown, and extend the method design and performance analysis of the whole inference process. The main contributions of this article are summarized as follows.

1) We investigate the local topology inference problem of MRNs under noisy observations, without the knowledge about the formation input and interaction parameters. By characterizing the steady formation pattern, we determine a constant subset from the time-varying set of robots within the observation range, and identify the formation input parameters offline. The estimation error bound under finite observations is established in probability.

2) Leveraging the interaction constraints between formation robots, we develop an active excitation-based method to estimate the interaction range online. Combining the novel range-shrink strategy and the monotonicity analysis of the interaction range, the influence of unobservable robots is perfectly avoided. Then, an ordinary least squares (OLS)-based local topology estimator is established after filtering the formation input’s influence on the observations before the steady stage.

3) The convergence and accuracy of the proposed estimator are proved, by resorting to the concentration measure with probability guarantees. Extensions on nonidentical observation slots of the robots and on more complicated control models are also discussed and analyzed. Simulation studies and comparison tests illustrate the effectiveness of the proposed method.

The rest of this article is organized as follows. Section II presents the related literature. Section III gives the modeling for MRNs and formulates the inference problem. Section IV studies how to identify the steady pattern and interaction range. Section V develops the design of the local topology estimator and analyzes the inference performance. Simulation results are shown in Section VI, followed by the concluding remarks and further research issues in Section VII. All the proofs of theorems are provided in the Appendix.

II. RELATED WORK

Formation control in MRNs: The fundamental rules for formation control were first introduced by the famous Reynolds’ Rules [25]: separation, alignment, and cohesion. Based on the rules, numerous methods have been proposed to achieve the desired performance, and consensus-based algorithms have become the mainstream, e.g., [26], [27], [28]. The key idea of consensus-based algorithms is that the formation is modeled as a graph, and every robot exchanges information (positions and velocities) with its neighbors and computes its control inputs. Therefore, the interaction structure lays critical support for effective formation control and is largely affected by communication network. In recent years, communication-free formation control [29], [30], [31] has been developed and attracts research interests, which avoids information delays and network bandwidth consumption in the interaction. For instance, formation control with bearing measurements by vision sensors was investigated in [32]. Note that in all cases, the interaction range is restricted by the physical distance between robots due to the energy constraints, i.e., two distant robots outside the interaction range are disconnected.

Topology Inference: A large body of research concerning topology inference has been developed in the literature. Granger [33] and Brovelli et al. [34] used Granger causality to formulate the directionality of the information exchange among system
nodes, and constructed corresponding estimators to infer the underlying topology. Identifying the topology of spuriously connected networks via compressed sensing was also commonly investigated [35, 36, 37, 38], which is transformed to a constrained L_1-norm optimization problem based on limited observations. Considering the latent regularity in the time series of nodal observations and adopting some basic assumptions (e.g., smoothness), graph signal processing methods [39, 40, 41, 42, 43] were proposed to derive a topology interpretation for the causation or correlation between nodes. When the network dynamics are nonlinear, kernel-based methods were developed to infer the topology [44, 45, 46]. The key idea is to select appropriate kernel functions to approximate the nonlinearities, where the performance is mainly determined by the kernel design. Several works [6, 23] have directly considered inferring the topology of MRNs, but they still lack performance guarantees, especially when the knowledge about the formation input is unavailable.

In summary, most existing works cannot directly infer the topology of MRNs under formation control, due to the unknown formation input and interaction characteristics. Despite many attempts on the asymptotic inference performance, there is no analytical model for the inference error under finite observations. These challenges motivate this article.

III. PRELIMINARIES AND PROBLEM FORMULATION

Let $\mathcal{G} = (\mathcal{V}, \mathcal{E})$ be a directed graph that models an MRN, where $\mathcal{V} = \{1, \ldots, n\}$ is a finite set of nodes (i.e., robots) and $\mathcal{E} \subseteq \mathcal{V} \times \mathcal{V}$ is the set of interaction edges. An edge $(i, j) \in \mathcal{E}$ indicates that i will use the information from j. The adjacency matrix $A = [a_{ij}]_{n \times n}$ of \mathcal{G} is defined such that $a_{ij} > 0$ if $(i, j) \in \mathcal{E}$, and $a_{ij} = 0$ otherwise. Denote $\mathcal{N}^i_{in} = \{j \in \mathcal{V} : a_{ji} > 0\}$ and $\mathcal{N}^i_{out} = \{j \in \mathcal{V} : a_{ij} > 0\}$ as the in-neighbor and out-neighbor sets of i, respectively. Throughout this article, we use the scripts \cdot and \cdot^t as the spectral norm and by $\| \cdot \|_F$ the Frobenius norm of a matrix. Denote $\mathbf{0}$ by all-zero matrix and $\mathbf{1}$ by all-one matrix in compatible dimensions. The set variables are expressed in capital calligraphy fonts, and $\mathcal{V}_a \setminus \mathcal{V}_b$ represents the elements in \mathcal{V}_a that are not in \mathcal{V}_b. The 2-D state of a robot is expressed in boldface font (e.g., \mathbf{x}). Unless otherwise noted, the formulation with nonboldface state variables applies to the robot state in each dimension independently. For square matrices M_o and M_b in the same dimensions, $M_o \geq M_b$ ($M_o \leq M_b$) means $M_o - M_b$ is positive-semidefinite (negative-semidefinite). For two real-valued functions f_1 and f_2, $f_1(x) = O(f_2(x))$ as $x \to x_0$ means $\lim_{x \to x_0} |f_1(x)/f_2(x)| < \infty$, and $f_1(x) = O(f_2(x))$ as $x \to x_0$ means $\lim_{x \to x_0} f_1(x)/f_2(x) = 0$. Some important symbols are summarized in the nomenclature.

A. Formation Control

To describe the predefined geometric shape under formation control, the shape vector $h_0 = [h^1_0, \ldots, h^n_0]^T$ is introduced, where h^i_0 ($i \in \mathcal{V}$) is the desired relative deviation between robot i (abbreviated to r_i hereafter) and a common reference point. To achieve this pattern, a common first-order discrete consensus-based controller is given by [47]

$$z^i(t_{k+1}) = z^i(t_k) + \varepsilon_T \sum_{j \in \mathcal{N}^i_{in}} a_{ij}(z^j(t_k) - z^i(t_k) - h^j_0) \tag{1}$$

where $h^j_0 = h^i_0 - h^{j}_0$ is desired state deviation between j and i, and $\varepsilon_T = t_{k+1} - t_k$ is the control period satisfying $\varepsilon_T \leq 1/\max\{d_i : i \in \mathcal{V}\}$. Note that once the formation shape is specified, the choice of the reference point will make no difference as h_0 remains unchanged.

Generally, to dynamically guide the formation motion, one robot will be specified as the leader with an extra velocity input. For simplicity and without loss of generality, r_n is taken as the leader and reference node, and suppose that it runs in a constant velocity c_0. Let $L = \text{diag}\{A_1\} - A$ be the Laplacian matrix of \mathcal{G}, and denote $u_0 = Lh_0 + [0, \ldots, 0, c_0]^T$. Then, the global dynamics of the system is described by

$$z(t_{k+1}) = (I_n - \varepsilon_T L)z(t_k) + \varepsilon_T u_0 \Delta Wz(t_k) + \varepsilon_T u_0 \tag{2}$$

where W equivalently represents the original topology matrix A and is known as the Perron matrix. Apparently, W is row-stochastic, i.e., $W1_n = 1_n$. For ease of notation, we denote $z_k = z(t_k)$, $c = \varepsilon_T c_0$, $\Delta = \varepsilon_T h_0$, and $u = \varepsilon_T u_0$ in following sections. Then, (2) is rewritten as

$$z_{k+1} = Wz_k + u. \tag{3}$$

We make the following assumption throughout this article.

Assumption 1 (System stability): The eigenvalue 1 of W is simple (i.e., its algebraic multiplicity equals one), and the magnitudes of all other eigenvalues are less than one.

B. Obstacle-Avoidance and Interaction Constraints

The obstacle-avoidance mechanism is critical for MRNs to interact with the physical environment. Denote by R_o, the obstacle detection range, and by $u_k^{i,c}$ the input triggered by the excitation source (i.e., the obstacle r_{ob}) on r_j. Once the relative distance between r_j and r_{ob} satisfies $\|z^j - z^{ob}\| \leq R_o$, the state of r_j is updated by

$$z_k^{j,c} = \sum_{\ell \in \mathcal{V}} w_{j\ell}(z_{k}^{\ell} - z_k^j) + u_k^j + u_k^{j,c} \tag{4}$$

where the first two terms on the right-hand side (RHS) can be seen as the internal interaction within the MRN, while the last term represents the external interaction with the environment.

There are numerous obstacle-avoidance algorithms in the literature (e.g., [48] provides a detailed review), and among them, $u_k^{i,c}$ is mainly determined by the desired goal state, the relative state and velocity between r_j and r_{ob}. As long as the excitation source appears within the obstacle-detection range of r_j, there will always be $u_k^{i,c} = 0$. In this work, we do not specify the detailed form of $u_k^{i,c}$, but mainly leverage the obstacle-avoidance property that

$$|u_k^{i,c}| > 0, \text{ if } \|z^j - z^{ob}\| \leq R_o. \tag{5}$$

In practical applications, the interaction capability of robots is limited due to the energy constraint, and thus, the interaction
range among robots (denoted by \(R_c\)) is bounded \([1]\), satisfying
\[
R_a < R_c < \infty.
\]
(C. Problem of Interest)

Suppose an inference robot (denoted by \(r_a\)) can maneuver in an MRN described by the formation control model (3). Specifically, \(r_a\) is equipped with advanced sensors with a limited observation range, and does not have knowledge about the formation input and interaction parameters. Note that both the formation robots and \(r_a\) are moving during the whole process, indicating that the robots within the observation range of \(r_a\) can change over time. Let \(\mathcal{V}_p(k) \subseteq \mathcal{V}\) be the set of robots within \(r_a\)'s observation range at time \(k\), given by
\[
\mathcal{V}_p(k) = \{i : \|z_k^i - z_k^0\|_2 < R_f\}
\]
where \(R_f\) is the observation range of \(r_a\). Since there can be possible observation inaccuracies brought by the movement of robots, \(r_a\)'s observation for \(i \in \mathcal{V}_p(k)\) is described by
\[
z_k^i = z_k^i + \omega_k^i, \quad i \in \mathcal{V}_p(k)
\]
where \(\omega_k^i\) is the \(i\)th element of independent identically distributed (i.i.d.) Gaussian noise vector \(\omega_k \in \mathbb{R}^n\), satisfying \(\omega_k \sim N(0, \sigma^2 I)\). Considering the interaction constraint (6) in \(\mathcal{V}\), we assume that \(R_f\) satisfies
\[
R_f \geq R_c
\]
which implicates that \(r_a\) can observe at least one single robot and all its in-neighbors.

The goal of this article is to investigate how \(r_a\) can infer the local topology of the formation from the observations \(\{z_k^i, i \in \mathcal{V}_p(k)\}\). This problem is very challenging, and most existing methods cannot be directly applied due to three factors. 1) Time-varying \(\mathcal{V}_p(k)\): the observations of robots in \(\mathcal{V}_p(k)\) may be discontinuous and insufficient. 2) Weak prior knowledge: the formation input and interaction parameters make direct inference from \(\{z_k^i, i \in \mathcal{V}_p(k)\}\) unavailable. 3) Limited observation range: the neighbors that send real-time information to \(\mathcal{V}_p(k)\) may locate outside the observation range of \(r_a\). We will address these issues from the following aspects to obtain a reliable local topology inference.

1) Utilizing the steady pattern of the formation, we first demonstrate how to determine a constant subset \(\mathcal{V}_p \subseteq \mathcal{V}_p(k)\) as available inference sources, and identify the formation input from corresponding observations.
2) Since the interaction range between robots is limited, we develop an excitation method to estimate the interaction range, and later use it to improve the local topology inference performance.
3) Toward the influence of unobservable robots on \(\mathcal{V}_p\), we propose a novel range-shrink method to guarantee that the inferred topology is unbiased in the asymptotic sense.

Based on the above treatments, we finally present the local topology estimator, along with its convergence and accuracy analysis. Specifically, the situation that the observation slots for robots in \(\mathcal{V}_p\) are nonidentical will also be analyzed. The whole framework of this article is shown in Fig. 1. Note that the final estimator is determined after the maneuver-observation process is done, and thus, the sequence of the proposed inference steps is not necessarily aligned with the running sequence of the formation in the timeline.

IV. Estimating the Steady Pattern and the Interaction Range

In this section, we first demonstrate how to determine a constant subset \(\mathcal{V}_p\) from \(\mathcal{V}_p(k)\) and identify the formation input. Then, we present the range-shrink idea by introducing a common truncated estimator. Finally, the excitation strategy for estimating the interaction range is provided.

A. Determining Constant Robot Subset \(\mathcal{V}_p\)

Suppose the MRN starts the formation task from an arbitrary initial state. Given the initial position of \(r_a\), \(r_a\) needs to maneuver among the formation robots and avoid collisions with them, namely, keeping \(\|z_k^i - z_k^j\|_2 > R_a, i \in \mathcal{V}_p(k)\). This can be easily achieved by making \(r_a\) not too close to the robots and track the formation velocity, e.g., setting
\[
u_k = \sum_{i \in \mathcal{V}_p(k)} (z_k^i - z_{k-1}^i)/|\mathcal{V}_p(k)| + g_a(\mathcal{V}_p(k))
\]
where \(|\mathcal{V}_p(k)|\) represents the cardinality of \(\mathcal{V}_p(k)\), \(g_a(\mathcal{V}_p(k))\) represents the adjusting input when \(r_a\) is too close to some robots, and the sum term is for formation tracking. Note that any strategy that meets the above requirement can be adopted by \(r_a\). Then, we focus on how to infer the local topology from \(r_a\)'s observations in this process.

Since the steady pattern of the MRN reflects the formation shape and moving speed of the MRN, we first characterize the steady pattern by introducing the notion of linear steady trajectory, and determine the subset \(\mathcal{V}_p\) to be inferred.

Definition 1 (Linear steady trajectory): Given the dynamic system (3), its state evolution \(\{z_k\}\) is subject to linear steady trajectory if there exists unique \(c \in \mathbb{R}\) and \(s \in \mathbb{R}^n\) such that
\[
z_k = cz_k + s.
\]
By referring to [24, Th. 1], we have the following result about the steady trajectory.

Lemma 1: By the constant controller \(u = Lh + [0 \cdots 0 \ 0]^T\), the system (3) will approximate the linear steady trajectory with arbitrary precision, i.e., given an arbitrary \(\epsilon > 0\), there always exists a \(k_0 \in \mathbb{N}^+\) and a \(s \in \mathbb{R}^n\), such that
\[
\|z_k - cz_k + s\|_1 < \epsilon, \quad \forall k \geq k_0.
\]
Lemma 1 illustrates that when the formation is in the linear steady trajectory with tolerant accuracy \(\epsilon\) (we call it as \(\epsilon\)-steady pattern hereafter), all robots are running at a common speed with fixed relative state deviations. Given appropriate moving strategies for \(r_a\), e.g., by (10), we have the following result.

Lemma 2: Given an arbitrary \(\epsilon > 0\), there always exists a \(k_1 \in \mathbb{N}^+\), such that \(\mathcal{V}_p(k)\) remains unchanged \(\forall k \geq k_1\).

Lemma 2 follows easily from Lemma 1. Taking the moving strategy (10) as an example, when the formation reaches \(\epsilon\)-steady pattern, \(r_a\) will also move stably with the MRN with almost the
same velocity, and thus, the formation robots in the observation range of \(r_a \) will not change. Based on this analysis, we determine the constant local subset \(V_p \) by
\[
V_p = V_p^0(k_{end}) \tag{13}
\]
where \(k_{end} \) represents the time when \(r_a \) stops observing the MRN. For simplicity, we temporarily assume \(V_p \subseteq V_p^0(k) \) for an arbitrary \(k \), and extend the analysis to the cases when this assumption is violated in Section V-E.

B. Steady Pattern Identification

After the local set \(V_p \) is determined, the steady pattern parameters of the formation can be identified from the observations by utilizing Lemma 1. Based on (12) and taking the observation noises into account, if the robots in \(V_p \) have reached \(\epsilon \)-steady pattern, then the pattern parameters can be identified by solving
\[
\min_{s^F} \sum_{t=k}^{k+L_c-1} \| s^F_t - \epsilon t 1_{n_f} + s^F \|_2^2 \tag{14}
\]
where \(s^F_t = [z^F_t, i \in V_p] \in \mathbb{R}^{n_f} \) represents the observation vector of \(V_p \) at time \(t, n_f = |V_p| \), and \(L_c \) is the observation window length. Note that (14) is a typical least squares problem, whose solution is given by

- Steady pattern estimator:
\[
\begin{align*}
\hat{c}(k, L_c) &= \sum_{t=k}^{k+L_c-1} 1_{n_f} (z^F_t - \epsilon t 1_{n_f}) / (n_f L_c), \\
\hat{s}^F(k, L_c) &= \sum_{t=k+1}^{k+L_c} (z^F_t - \hat{c}(k, L_c)) / L_c.
\end{align*}
\tag{15}
\]

Next, we demonstrate the estimation performance of (15).

Theorem 1 (Accuracy of \(\hat{c} \) and \(\hat{s}^F \)): Suppose the MRN has reached \(\epsilon \)-steady pattern after \(k_0 \). Let \(\Delta_c = \hat{c}(k_0, L_c) - c \) be the estimation error of \(\hat{c} \), then we have
\[
\Pr \left\{ |\Delta_c| \leq \frac{4 \epsilon}{\sqrt{L_c}} \right\} \geq P_1(L_c), \tag{16}
\]
where \(P_1(L_c) = 1 - 2 \exp\left\{ -\frac{n_f L_c \epsilon^2}{2} \right\} \). Denote the estimation error of \(\hat{s}^F \) as \(\Delta_s = 1_{n_f} (\hat{s}^F(k_0, L_c) - s) / n_f \), then it satisfies
\[
\lim_{L_c \to \infty} \mathbb{E}[\Delta_s] \leq 2 \epsilon, \quad \lim_{L_c \to \infty} \mathbb{D}[\Delta_s] = \frac{\sigma^2}{2 n_f}, \tag{17}
\]
where \(\mathbb{E}[\cdot] \) and \(\mathbb{D}[\cdot] \) represent the expectation and variance of a random variable, respectively.

Proof: The proof is provided in Appendix 1.

Theorem 1 demonstrates that, with sufficient observations over the \(\epsilon \)-steady pattern, the estimation accuracy of \(\hat{c} \) is determined by \(\epsilon \). In other words, the confidence interval of \(\hat{c}(k_0, L_c) \) is given as \(\hat{c}(k_0, L_c) \in [c - \frac{4 \epsilon}{\sqrt{L_c}}, c + \frac{4 \epsilon}{\sqrt{L_c}}] \) with probability at least \(P_1(L_c) \). Specifically, when \(L_c \to \infty \), we have with probability one that
\[
\lim_{L_c \to \infty} |\Delta_c| = 0. \tag{18}
\]

However, as for the estimation accuracy of \(\hat{s}^F \), it only achieves \(\epsilon \)-level accuracy in the expected sense with bounded variance.

Remark 1: Note that (17) only presents the estimation error of \(\hat{s}^F \) in limit form. It is shown in the proof of Theorem 1 that, one has with high probability
\[
\begin{align*}
|\mathbb{E}[\Delta_s]| &\leq \left(2 + \frac{2 k_0 + 1}{L_c} \right) \epsilon, \\
\mathbb{D}[\Delta_s] &\leq \frac{\sigma^2}{2 n_f} + \sigma^2 \left(\frac{1}{n_f L_c^2} + \frac{(2 k_0 + 1)^2}{L_c^2} + \frac{4 k_0 + 2}{L_c} \right).
\end{align*}
\tag{19}
\]

Despite the undesired uncertainty in \(\Delta_s \), one can tighten the error bound of \(\hat{s}^F(k, L_c) \) by using more observations.

Note that (15) is not an appropriate solution if the system is not in \(\epsilon \)-steady pattern. Hence, we need to judge whether the system is in \(\epsilon \)-steady pattern before obtaining the final \(\hat{c} \) and \(\hat{s} \). Inspired by (16), we in turn deduce that \(|\Delta_s| > 4 \epsilon / \sqrt{L_c} \) holds with high probability if the observations used are not all in \(\epsilon \)-steady pattern. Hence, we use the last \(L_c \) groups of observation to obtain a benchmark estimator of \(c \) by
\[
\hat{c}_b = \hat{c}(k_{end} - L_c, L_c). \tag{20}
\]

Based on Theorem 1, if the system is in \(\epsilon \)-steady pattern after \(k_0 \), one has with probability \(1 - 2 \exp\left\{ -\frac{n_f L_c \epsilon^2}{2} \right\} \) that
\[
|\hat{c}(k_0, L_c) - \hat{c}_b| \leq |\hat{c}(k_0, L_c) - c| + |c - \hat{c}_b| \leq 8 \epsilon / \sqrt{L_c}. \tag{21}
\]
Although infinite observations are not available in practice, the upper bound in (21) can be used as an empirical criterion to judge when the ϵ-steady pattern is reached, given by ϵ-steady time criterion:

$$k_s = \inf \{ k : |\hat{c}(k, L_c) - \hat{c}_b| \leq 8\epsilon / \sqrt{L_c} \}. \quad (22)$$

Once k_s is obtained, the two input parameters, the velocity c and the shape vector of \mathcal{V}_f, h^F, are finally determined by

$$\begin{align*}
\hat{c} &= \hat{c}(k_s, L_s) \\
h^F &= s^F(k_s, L_s) - 1_N \cdot s^F(k_s, L_s)
\end{align*} \quad (23)$$

where $L_s = k_{end} - k_s$ represents the amount of observations of the system in the ϵ-steady stage.

C. Range-Shrink: Motivated by Truncated Estimator

To explicitly illustrate the necessity of the range-shrink strategy, we begin with the case where the observations are noise-free and the input is known. Under full observation, denote $z^F_{k+1} = z^F_k - u_k = W_k z_k$. Then, the global topology can be obtained from K groups of noise-free observations by

$$W = Z^w_{K+1} Z^T_{1:K} (Z^F_{1:K})^{-1} \quad (24)$$

where $Z^w_{K+1} = [z^w_{K+1}, z^w_{K+1}, \ldots, z^w_{K+1}]$ and $Z^F_{1:K} = [z_1, z_2, \ldots, z_K]$. Note that the feasibility of the estimator under full observations relies on the invertibility of $(Z^F_{1:K})^{-1}$, which is related to the number of observations and the steady pattern of the formation. Here, we temporarily suppose the invertibility holds, and analyze the details in the proposed local topology estimator in Section V-A.

Let $W_{FF} = [w_{ij}, i, j \in \mathcal{V}_f] \in \mathbb{R}^{n_f \times n_f}$ be the topology matrix of \mathcal{V}_f. To infer W_{FF} from $\{z^F_k\}$, it is certainly free for one to adopt a truncated form of (24) as in [49]

$$W_{FF} = Z^w_{K+1} Z^T_{1:K} (Z^F_{1:K})^{-1} \quad (25)$$

The works [21, 49, 50] have explored the conditions of using the truncated estimator to approximate the ground truth. Nevertheless, these conditions are not consistent with our problem setting, and W_{FF} is far away from the ground truth from basic linear algebra, i.e.,

$$W_{FF} \neq Z^w_{K+1} Z^T_{1:K} (Z^F_{1:K})^{-1} \quad (26)$$

More precisely, let $\mathcal{V}_f = \mathcal{V} \setminus \mathcal{V}_f$ and the formation dynamics (3) can be divided into

$$\begin{align*}
\begin{bmatrix}
z^F_{k+1} \\
n^F_{k+1}
\end{bmatrix} &= \begin{bmatrix} W^F_{FF} & W^F_{FF} \\
W^F_{FF} & W^F_{FF} \end{bmatrix} \begin{bmatrix} z^F_k \\
n^F_k
\end{bmatrix} + \begin{bmatrix} u^F_k \\
u^F_k
\end{bmatrix}
\end{align*} \quad (27)$$

where z^F_k is the state of \mathcal{V}_f at time k. Substituting $z^F_k = z^F_k + \omega^F_k$ into (27), the observation of \mathcal{V}_f is given by

$$\begin{align*}
z^F_{k+1} &= W^F_{FF} z^F_k + u^F_k + W^F_{FF} \omega^F_k + \omega^F_{k+1} - W^F_{FF} \omega^F_k \quad (28)
\end{align*}$$

Note that (28) only represents the explicit relationship of every two consecutive observations, not a real process. It is clear that the unobserved and nonnegligible term $W^F_{FF} \omega^F_k$ incurs the inequality of (26), making it extremely hard to obtain an unbiased estimator of W_{FF} from noisy $\{z^F_k\}$.

Thanks to the constrained interaction characteristics of MRNs, we observe that the robots that are outside r_i’s interaction range have no influence on r_i. Therefore, we transform the inference objective by shrinking the inference scope from \mathcal{V}_f to a smaller \mathcal{V}_f, which directly avoids the inference bias in the truncated estimator (25). As shown in Fig. 2, we use a concentric circle to cover the feasible subset $\mathcal{V}_f \subseteq \mathcal{V}_f$ with radius R_h, satisfying

$$R_h = R_f - R_c.$$

Once the subset \mathcal{V}_f is determined, we can design an unbiased estimator of the following local topology:

$$W_{HF} = [w_{ij}, i \in \mathcal{V}_f, j \in \mathcal{V}_f] \in \mathbb{R}^{n_h \times n_f} \quad (30)$$

where $n_h = |\mathcal{V}_f|$. Note that W_{HF} covers all connections within \mathcal{V}_f and the directed connections from $\{\mathcal{V}_f \setminus \mathcal{V}_f\}$ to \mathcal{V}_f. The details are presented in the next section.

D. Inferring Interaction Range by Active Excitation

Next, we present the active excitation-based method to illustrate how to estimate the interaction radius R_c.

Note that robots are equipped with sensors to detect obstacles around. When r_n is very close to r_j, by the obstacle-avoidance rule (4), an excitation input will be triggered in r_j. Then, the observed state of r_j under excitation is given by

Observation under excitation:

$$\begin{align*}
z^F_{k+1} &= c k + s^I + \omega^I_k + u^I_{k-1}
\end{align*} \quad (31)$$

where s^I_k is the state of r_j at time k. Substituting $z^I_{k+1} = z^I_k + \omega^I_k$ into (27), the observation of \mathcal{V}_f is given by

$$\begin{align*}
z^F_{k+1} &= W^F_{FF} z^F_k + u^F_k + W^F_{FF} z^I_k + \omega^F_{k+1} - W^F_{FF} \omega^I_k \quad (28)
\end{align*}$$

Note that (28) only represents the explicit relationship of every two consecutive observations, not a real process. It is clear that the unobserved and nonnegligible term $W^F_{FF} \omega^I_k$ incurs the inequality of (26), making it extremely hard to obtain an unbiased estimator of W_{FF} from noisy $\{z^F_k\}$.

Thanks to the constrained interaction characteristics of MRNs, we observe that the robots that are outside r_i’s interaction range have no influence on r_i. Therefore, we transform the inference objective by shrinking the inference scope from \mathcal{V}_f to a smaller \mathcal{V}_f, which directly avoids the inference bias in the truncated estimator (25). As shown in Fig. 2, we use a concentric circle to cover the feasible subset $\mathcal{V}_f \subseteq \mathcal{V}_f$ with radius R_h, satisfying

$$R_h = R_f - R_c.$$

Once the subset \mathcal{V}_f is determined, we can design an unbiased estimator of the following local topology:

$$W_{HF} = [w_{ij}, i \in \mathcal{V}_f, j \in \mathcal{V}_f] \in \mathbb{R}^{n_h \times n_f} \quad (30)$$

where $n_h = |\mathcal{V}_f|$. Note that W_{HF} covers all connections within \mathcal{V}_f and the directed connections from $\{\mathcal{V}_f \setminus \mathcal{V}_f\}$ to \mathcal{V}_f. The details are presented in the next section.

Observation under excitation:

$$\begin{align*}
z^F_{k+1} &= c k + s^I + \omega^I_k + u^I_{k-1}
\end{align*} \quad (31)$$

where s^I_k is the state of r_j at time k. Substituting $z^I_{k+1} = z^I_k + \omega^I_k$ into (27), the observation of \mathcal{V}_f is given by

$$\begin{align*}
z^F_{k+1} &= W^F_{FF} z^F_k + u^F_k + W^F_{FF} z^I_k + \omega^F_{k+1} - W^F_{FF} \omega^I_k \quad (28)
\end{align*}$$

Note that (28) only represents the explicit relationship of every two consecutive observations, not a real process. It is clear that the unobserved and nonnegligible term $W^F_{FF} \omega^I_k$ incurs the inequality of (26), making it extremely hard to obtain an unbiased estimator of W_{FF} from noisy $\{z^F_k\}$.

Thanks to the constrained interaction characteristics of MRNs, we observe that the robots that are outside r_i’s interaction range have no influence on r_i. Therefore, we transform the inference objective by shrinking the inference scope from \mathcal{V}_f to a smaller \mathcal{V}_f, which directly avoids the inference bias in the truncated estimator (25). As shown in Fig. 2, we use a concentric circle to cover the feasible subset $\mathcal{V}_f \subseteq \mathcal{V}_f$ with radius R_h, satisfying

$$R_h = R_f - R_c.$$
\[
\begin{align*}
\mathbf{z}_{k+1}^n &= \mathbf{z}_{k+1}^n - \mathbf{z}_k^j, \quad \mathbf{z}_k^j \in \mathcal{Z}_{k+1}^n, \quad \mathbf{z}_k^j \geq 0 \\
\text{for } t = 1 \rightarrow m \text{ do} \quad &\text{Update } \mathbf{z}_{k+1} \text{ by (35)}; \\
\text{end for} \quad &\text{for all } \mathbf{z}_{k+1} \text{ by (40)};
\end{align*}
\]

\[\text{Algorithm 1: Infer the Interaction Range } R_c.\]

\textbf{Input:} Steady moment } k_s, \text{ excitation number } m, \hat{c}, \text{ and } \hat{h}. \\
\textbf{Output:} Lower bound of } R_c. \\
1: \text{Select a excitation target } j \in \mathcal{V}_r; \\
2: \text{while } |\delta_k^j| \leq \sqrt{3\varepsilon^2 + 2\sigma^2} \text{ do} \\
3: \quad r_a \text{ moves closer to } j, k = k + 1; \\
4: \text{end while} \\
5: \quad k = k, \tilde{R}_o = \|z_{k+1}^n - z_k^n\|_2; \\
6: \text{for } t = 1 \rightarrow m \text{ do} \\
7: \quad \text{Update } \mathbf{z}_{k+1} \text{ by (35)}; \\
8: \text{end for} \\
9: \quad \text{for all } \mathbf{z}_{k+1} \text{ by (40)}; \\
10: \quad \text{if } |\delta_{k+m}^j| > \left(\frac{1}{\sqrt{m}} + \frac{1}{\sqrt{m}}\right) \text{ then} \\
11: \quad \quad \hat{\Theta}_{ij} = 1; \\
12: \quad \text{end if} \\
13: \quad \text{end for} \\
14: \quad \text{if all } \hat{\Theta}_{ij} = 0 \text{ then} \\
15: \quad \quad \text{re-select a target robot and go to line 2;} \\
16: \quad \text{end if} \\
17: \quad \text{Compute } R_c^{ib} \text{ by (40)};
\]

\[\text{Next, we define the following out-neighbor estimation function and demonstrate its accuracy.} \]

\textbf{Definition 2 (Out-neighbor indicator):} The indicator of the event that } i \in \mathcal{N}_{ij}^{out}, \hat{\Theta}_{ij}, \text{ is defined as} \\
\[\Theta_{ij} = \begin{cases}
1 & \text{if } \omega_{ij} > 0 \\
0 & \text{otherwise.}
\end{cases} \]

The estimator of } \hat{\Theta}_{ij} \text{ is defined as} \\
\[\hat{\Theta}_{ij} = \begin{cases}
1 & \text{if } \frac{\delta_{k+m}^j}{\sqrt{m}} > \left(\frac{1}{\sqrt{m}} + \frac{1}{\sqrt{m}}\right) \epsilon \\
0 & \text{otherwise.}
\end{cases} \]

\[\text{Theorem 2 (Accuracy of } \hat{\Theta}_{ij})\text{: Under } m \text{ consecutive excitations on } r_j, \text{ the true positive probability of estimator } \hat{\Theta}_{ij} \text{ is lower bounded as} \\
\[P_T\left(\hat{\Theta}_{ij} = 1|\Theta_{ij} = 1\right) \geq P_L(L_c) \cdot P_2(m) \] \\
\text{where } P_2(m) = 1 - 2\exp\{-\frac{m\epsilon^2}{2}\}. \\
\textbf{Proof:} \text{ The proof is provided in Appendix 2.} \]

\text{Theorem 2 demonstrates that by active excitations, the out-neighbor of } r_j \text{ (within the observation range) can be determined with a high probability. Besides, if there exists at least one out-neighbor of } r_j \text{ in } \mathcal{V}_r, \text{ then the two robots are always within the interaction range during the whole process. Utilizing this characteristic, we take the maximum distance between } r_j \text{ and }
where \(f_x = | \sum_{k=0}^{k-1} (z_{k_{i+1}} - z_{k_{i}} - \hat{c}_k) | / k_s \). Note that if \(\hat{r}_n \) is empty, it means \(r_n \notin V_F \). To discriminate this situation, we define the indicative leader vector \(l_F \) by

\[
l_F(i) = \begin{cases} 1, & \text{if } i \in V_F, i = \hat{r}_n \\ 0, & \text{otherwise} \end{cases}
\]

(43)

Next, we will illustrate how to filter the influence of the input to infer the local topology, and use it to approximate the real \(R_c \). Let \(V_F = \{ V _F \} \) and \(W_{HF} = [W_{HF1} \ldots W_{HF3}] \). Define two variables of filtered \(\hat{x}_k \) and organize them as

\[
x_k = (z^F_k - \hat{h}^F) \in \mathbb{R}^{n_f}
\]

\[
y_k = (z^H_k - \hat{h}^H - \hat{e}^H) \in \mathbb{R}^{n_h}
\]

\[
X = [x_0, x_1, \ldots, x_{k_s-1}] \in \mathbb{R}^{n_f \times k_s}
\]

\[
Y = [y_1, y_2, \ldots, y_{k_s}] \in \mathbb{R}^{n_h \times k_s}
\]

(44)

Then, by referring to [24, Th. 2], we present the following local topology estimator.

Theorem 3: Given the filtered observation matrices \(X \) and \(Y \), and supposing \(R_c \) is known, if \(k_s \geq |V_F| + 1 \), then the optimal estimation of \(W_{HF} \) in the sense of least squares is

\[
\hat{W}_{HF} = YX^T(XX^T)^{-1}
\]

(45)

Theorem 3 gives the least squares solution of \(W_{HF} \) when \(R_c \) is known. The core insight is that by the range-shrink strategy, the truncated state \(\{ Wx^F \} = W_{HF}x^F \), which perfectly avoids the influence brought by the unobservable \(V_F \). Although the number of feasible observations is limited in practice, Theorem 3 can be used as the basis for approximating \(W_{HF} \) from noisy observations.

Remark 2: Note that the invertibility of \(XX^T \) is guaranteed by two aspects: the used observations from the nonsteady stage and the random observation noises. First, the observation matrix \(X \) consists of \(k_s \) groups of observations before the \(\epsilon \)-steady pattern is reached. These informative observations reflect the transient phase of the formation from the initial state to the steady pattern, and are the key to inferring the underlying topology. To ensure the informativity, i.e., the minimal observation number condition \(k_s \geq |V_F| + 1 \) in Theorem 3, the initial state of the formation cannot be set such that it is too close with the preset shape (if so, the inference robot can interfere with formation to make it deviate from the preset shape), while the topology matrix \(W \) satisfies Assumption 1. Second, the observations \(\{ z^F_k \} \) are corrupted by independent random noises. According to Sard’s theorem in measure theory, \(X \) has full rank almost surely. In other words, the random noises further enhance the invertibility of \(XX^T \) with the informativity guaranteed, and together effectively avoid the ill-posedness of the estimator.

B. Convergence of the Proposed Estimator

Next, we focus on the convergence performance of \(\hat{W}_{HF} \) assuming that \(R_c \) is known. Taking the estimation error of \(\hat{c} \) and \(\hat{h}^F \) into account, the convergence of \(\hat{W}_{HF} \) is characterized by the following result.

Theorem 4 (Convergence of \(\hat{W}_{HF} \) with known \(R_c \)): Let \(P_3(k_s) = 1 - 2 \exp\{- (k_s + n_h) \} \) and suppose that \(R_c \) is known. With probability at least \(P_1(L_c) \cdot P_3(k_s) \), the error of the topology estimator \(\hat{W}_{HF}(\hat{R}_c) \) satisfies

\[
\| \hat{W}_{HF} - W_{HF} \| = O \left(\frac{1}{k_s} \right) + o \left(\frac{1}{k_s^2} \right)
\]

(46)

Proof: The proof is provided in Appendix 3. □

Theorem 4 demonstrates the convergence rate of \(\hat{W}_{HF} \) in terms of \(k_s \) in probability. Apparently, if the observations before the \(\epsilon \)-steady pattern are sufficient, then \(W_{HF} \) will closely approximate the ground truth in a rate of \(\frac{1}{k_s} \), satisfying

\[
Pr \left\{ \lim_{L_c,k_s \to \infty} \| \hat{W}_{HF} - W_{HF} \| = 0 \right\} = 1.
\]

(47)

Remark 3: Note that since \(\hat{W}_{HF} \) is based on the estimators \(\hat{c} \) and \(\hat{h}^F \), the bound of \(\| \hat{W}_{HF} - W_{HF} \| \) is also related to \(\epsilon, \sigma \) and \(L_c \). In the proof of Theorem 4, we show that the RHS in (46) is in fact composed of multiple factors, including \(O \left(\frac{\epsilon}{k_s} \right) \), \(O \left(\frac{\sigma}{k_s^2} \right) \), and \(o \left(\frac{\sigma^2}{k_s^2} \right) \). Hence, we can characterize the bound as a uniform one about \(k_s \). It is worth noting that, although the estimation errors of \(\hat{c} \) and \(\hat{h}^F \) are influenced by \(\epsilon \) and \(\sigma \), these parts of errors will have a slight influence on the accuracy of \(\hat{W}_{HF} \) as \(k_s \) grows.

Note that there are some possible techniques to further alleviate the influence of the observation noises, e.g., by de-regularization. In this method, the optimization objective is

\[
\sum_{k=1}^{k_s} \| y^F_k - \hat{W}_{HF}y^H_k \|^2 - \beta \| \hat{W}_{HF} \|^2_F
\]

(46)

where \(\beta > 0 \) and the second negative term is called deregularization term. Deeper investigation toward this direction will be left as future work.

C. Accuracy Analysis

It is illustrated in Theorem 4 that if the interaction range \(R_c \) is known, the local topology estimator \(\hat{W}_{HF} \) converges to \(W_{HF} \) asymptotically. However, we only have an estimation range of \(R_c \), i.e., \([R_{cb}^L, R_{cb}^U] \), and different \(\hat{R}_c \) renders different cardinality of \(V_F \). To analyze the accuracy of the local topology inference under various \(R_c \), we explicitly write the local topology estimator as \(\hat{W}_{HF}(\hat{R}_c) \), and propose a range approximation algorithm to find appropriate \(R_c \).

First, we use the maximum range \(R_{cb}^U \) to determine an auxiliary robot set \(V_{\theta_0} \subseteq V_F \), which is covered by a concentric circle of \(r_a \)'s observation range, with radius \(R_{\theta_0} \) satisfying

\[
R_{\theta_0} = R_f - R_{cb}^U.
\]

(48)

Let \(V_{\theta_0} \) be the set of robots within the concentric circle range with radius \((R_{\theta_0} + \hat{R}_c) \), and denote \(V_{\theta_0} = V_F \setminus V_{\theta_0} \). Note that here \(V_{\theta_0} \) is constant and \(V_{\theta_0} \) will change with \(\hat{R}_c \). Apparently, we have \(V_{\theta_0} \subseteq V_F \) and \(V_{\theta_0} = \emptyset \). For the robots in \(V_{\theta_0} \), \(\hat{r}_a \) will regard that \(\hat{w}_{ij} \hat{R}_c = 0, i \in V_{\theta_0}, j \in V_F \). For the robots in \(V_{\theta_0} \), \(\hat{W}_{HF} \) is computed by the OLS estimator. Combining the two parts, \(W_{HF} \) is estimated by

\[
\hat{W}_{HF}(\hat{R}_c) = \left[Y_{\theta_0} X_{\theta_0}^T X_{\theta_0} X_{\theta_0}^T \right]^{-1} Y_{\theta_0} \cdot X_{\theta_0} \cdot |V_{\theta_0}| \cdot |V_{\theta_0}|.
\]

(49)

Recall \(\hat{W}_{HF}(\hat{R}_c) \) utilizes \(k_s \) groups of observations, and we define the following evaluation function of \(\hat{R}_c \) to describe its
Algorithm 2: search_suboptimal \(R_c(R^{ab}_c, R^{ub}_c, n_c, n_w) \)

Input: Range \([R^{lb}_c, R^{ub}_c] \), decision threshold \(\varepsilon_w \), counting number \(n_c \), and stopping threshold \(n_w \).

Output: Suboptimal estimation of \(R_c \).

1. \(\hat{R}_c = (R^{lb}_c + R^{ub}_c)/2 \);
2. Determine the subset \(\mathcal{V}_{f_0} \) by \(R_{f_0} = R_{h0} + \hat{R}_c \);
3. Compute \(f_\ast(\hat{R}_c) \) by (53);
4. if \(f_\ast(\hat{R}_c) > \varepsilon_w \) then
5. \(R^{ub}_c = \hat{R}_c, n_c = 1 \);
6. search_suboptimal \(R_c(R^{ub}_c, R^{lb}_c, n_c, n_w) \);
7. else
8. \(R^{lb}_c = \hat{R}_c, n_c = n_c + 1 \);
9. if \(n_c \geq n_w \) then
10. Return \(\hat{R}_c \);
11. else
12. search_suboptimal \(R_c(R^{ub}_c, R^{lb}_c, n_c, n_w) \);
13. end if
14. end if

Influence on \(\hat{W}_{h_F}(\hat{R}_c) \):

Asymptotic inference bias of \(\hat{W}_{h_F}(\hat{R}_c) \):

\[
f_w(\hat{R}_c) = \lim_{k_s \to \infty} \| \hat{W}_{h_F}(\hat{R}_c, k_s) - \hat{W}_{h_F} \|. \tag{50}
\]

Theorem 5 (Inference bias under different \(\hat{R}_c \)): The asymptotic inference bias \(f_w(\hat{R}_c) \) is monotonically decreasing w.r.t. the inferred range \(\hat{R}_c \) in probability, i.e., if \(\hat{R}_{c1} \geq \hat{R}_{c2} \),

\[
\Pr \left\{ f_w(\hat{R}_{c1}) \leq f_w(\hat{R}_{c2}) \right\} = 1. \tag{51}
\]

Specifically, if \(\hat{R}_c \geq R_c \), the estimator \(\hat{W}_{h_F}(\hat{R}_c) \) is asymptotically unbiased, i.e.,

\[
\Pr \left\{ f_w(\hat{R}_c) = 0 \right\} = 1. \tag{52}
\]

Proof: The proof is provided in Appendix 4.

Remark 4: Our previous assumption about i.i.d. Gaussian noises can be relaxed on independent but nonidentical cases, i.e., \(\mathbb{E} [\omega_i \omega_j^T] = \delta_{ij} \text{diag}(\sigma_1^2, \sigma_2^2, \ldots, \sigma_q^2) \). The key insight is to adopt \(\max \{\sigma_1^2, \sigma_2^2, \ldots, \sigma_q^2\} \) as the variance bound for all observation noises in the analysis. Although the upper bound of the error \(\|\hat{W}_{h_F} - W_{h_F}\| \) during analysis process becomes conservative, this scaling step does not invalidate the asymptotic accuracy of \(\hat{W}_{h_F} \) when \(k_s \to \infty \), i.e., \(\lim_{k_s \to \infty} \|\hat{W}_{h_F} - W_{h_F}\| = 0 \) still holds with a convergence rate of \(\mathcal{O}(\frac{1}{k_s}) \). If one specifically focuses on the minimal error bound performance under finite samples, the analysis can be carried out using the concentration inequality and state-of-the-art system identification methods (e.g., see [51], [52]).

D. Estimator Design With Its Improved Solution

With the \(\epsilon \)-steady pattern parameter \(\hat{c} \), \(\hat{h}_F \) and interaction range \(\hat{R}_c \) (output of Algorithm 2) determined, we are able to design the unbiased topology estimator of \(W_{h_F} \) with the maximum number of robots. Consequently, the set \(\mathcal{V}_{h} \) is in turn specified by \(R_h = R_f + \hat{R}_c \). Then, the local topology \(W_{h_F} \) is estimated by

\[
\hat{W}_{h_F}(\hat{R}_c) = Y(\hat{R}_c)X^T(XX^T)^{-1}. \tag{54}
\]

Despite the asymptotic boundedness of the OLS estimator (54), the proposed method nevertheless can be used as the basis for inferring the local topology when a finite number of observations are available.

Note that (54) only utilizes \(\hat{R}_c \) to specify the inference scope of \(\mathcal{V}_{h} \). In fact, \(\hat{R}_c \) can be regarded as the prior knowledge that \(r_a \) has mastered in the excitation stage to further improve the inference accuracy. The key insight is that two robots that are not within range \(R_c \) will not receive information from each other. Leveraging this as a hard constraint, \(\hat{W}_{h_F} \) can be further optimized by solving the following problem:

\[
\min_{\hat{W}_{h_F}} \|Y(\hat{R}_c) - W_{h_F}X\|^2_{V_{h}} \quad \text{s.t.} \quad w_{ij} = 0, \text{if } \|\hat{z}_i^j - \hat{z}_i\| \geq \hat{R}_c, i \in \mathcal{V}_{h}, j \in \mathcal{V}_{h}. \tag{55a}
\]

Note that (55) is a typical constrained least squares problem, and can be solved by many mature optimization techniques, e.g., interior-point method [53].

Finally, we briefly summarize how the local topology \(W_{h_F} \) is inferred from noisy observations \(\{\hat{z}_k^i, i \in \mathcal{V}_h, k = 1, \ldots, k_s\} \). The first step is to determine the constant subset \(\mathcal{V}_{h} \) and estimate the input parameters from the observations in a steady pattern. Then, the interaction range between robots is estimated. Utilizing the range-shrink strategy and estimated interaction range, we further determine the appropriate subset \(\mathcal{V}_{h} \). At last, the local topology is inferred by (45) and its improved version (55), where the input’s influence on the nonsteady observations \(\{\hat{z}_k\}_{k=1}^{k_s} \) is filtered.

E. Extensions and Discussions

Recall that the topology estimator is obtained by solving

\[
\min_{\hat{W}_{h_F}} \|Y - W_{h_F}X\|^2 \quad \text{in } \mathcal{V}_{h}. \tag{56}
\]

In fact, it can be decomposed into inferring the rows of \(W_{h_F} \) independently, i.e., solving

\[
\min_{\hat{W}_{h_F}} \|Y[i,:] - W_{h_F}^{[i,:]}X\|^2 \quad \text{in } \mathcal{V}_{h}. \tag{56}
\]
for all \(i \in \mathcal{V}_H \). Based on this decomposition, we demonstrate how to infer the local topology when \(\mathcal{V}_P \subseteq \mathcal{V}_P^i(k) \) does not always hold.

Note that if there exists \(k < k_{end} \) such \(\mathcal{V}_P \not\subseteq \mathcal{V}_P^i(k) \), it indicates that the observation range of \(r_i \) does not cover robots in \(\mathcal{V}_P \) simultaneously. Let the starting time that \(i \in \mathcal{V}_P \) be

\[
k_f^i = \inf \left\{ k_f : i \in \bigcap_{k=k_f^i}^{k_{end}} \mathcal{V}_P^i(k) \right\}.
\]

Next, as indicated in (55), if \(r_j \) is outside the interaction range of \(r_i \), then the interaction weight \(w_{ij} = 0 \). This property further relaxes the dependence on the observations of \(\mathcal{V}_P \). For an explicit expression, denote by \(\mathcal{V}_P^i \) the robot set that has possible influences on \(r_i \), given by

\[
\hat{\mathcal{V}}_P^i = \{ j : j \in \mathcal{V}_P \text{ and } \| \tilde{z}_{k_{end}}^j - \tilde{z}_{k_{end}}^i \|_2 \leq \hat{R}_c \}. \tag{58}
\]

Apparently, there is \(i \in \mathcal{V}_P^i \subseteq \mathcal{V}_P \). Recalling the filtered observation variables defined in (44), we permute the filtered observations of \(\mathcal{V}_P^i \) and the local topology matrix associated with \(r_i \) as follows:

\[
\hat{X}_i = [\hat{x}_{k+1}^i(i), \ldots, \hat{x}_{k-1}^i(i), \tilde{x}_{k_0}^i(i)] \in \mathbb{R}^{[\mathcal{V}_P^i] \times (k_s - k_f^i)}
\]

\[
\hat{Y}_i = [\hat{y}_{k+1}^i, \ldots, \hat{y}_{k}^i, \tilde{y}_{k_0}^i] \in \mathbb{R}^{1 \times (k_s - k_f^i)}
\]

\[
\hat{W}_i = [\tilde{w}_{ij}^i, \ldots, \tilde{w}_{k_s}^i, 0] \in \mathbb{R}^{1 \times [\mathcal{V}_P^i]}
\]

where \(\tilde{x}_k(i) = [x_k^i, x_0^i] \) is the partitioned part in \(x_k \) that corresponds to \(\mathcal{V}_P^i \). Based on the above formation, the following result is presented to illustrate how to infer the local topology \(\hat{W}_{HF} \) row-by-row.

Corollary 1: Given the observations before \(\epsilon \)-steady time \(k_s \). For \(r_i \), if \(|\mathcal{V}_P^i| \leq k_s - k_f^i \), then its associated local topology \(\hat{W}_i \) can be uniquely inferred by

\[
\hat{W}_i = [\hat{Y}_i \hat{X}_i^T (\hat{X}_i \hat{X}_i^T)^{-1}, 0_{1 \times (n_f - |\mathcal{V}_P^i|)}]. \tag{59}
\]

The proof of this corollary is the same as that of Theorem 3, and the details are omitted here. From Corollary 1, the available observation slot for inferring \(r_i \)’s local topology \(\hat{W}_i \) is not necessarily the same as that of other robots in \(\mathcal{V}_P \). Besides, \(\hat{W}_i \) is the optimal estimation of \(\hat{W}_i \) in the sense of least squares, as long as the observation slot satisfies \(|\mathcal{V}_P^i| \leq k_s - k_f^i \). Similar to the convergence and accuracy of \(\hat{W}_{HF} \), \(\hat{W}_i \) enjoys the convergence of \(O(\frac{1}{k_s - k_f^i}) \), and the asymptotic accuracy when \(k_s \to \infty \).

In summary, although the integrated estimator \(\hat{W}_{HF} \) can be unavailable if robots in \(\mathcal{V}_H \) occur in \(r_a \’s \) observation range at different moments, one can still utilize Corollary 1 to infer the local topology associated with each \(i \in \mathcal{V}_H \). Finally, the underlying \(\hat{W}_{HF} \) is recovered by appropriately permuting the robot indexes of \(\{ \hat{W}_i, i \in \mathcal{V}_H \} \), and stacking them into one matrix row-by-row.

Remark 5: The proposed inference method in this article, which takes the first-order linear formation control as the entry point, also provides insights to tackle some second-order and nonlinear cases. Taking the second-order linear model in [54] as an example, the major difference here is that the topology matrix to be inferred describes the element-to-element interaction connections between both the positions and velocities of robots. The proposed method can be extended to the second-order cases because the global state evolution shares the same linear form as that of the first-order case, with appropriate notations and treatments of the double dimensions for each robot. Besides, for a common class of nonlinear models like\(z_{k+1}^i = z_k^i + \sum_{j=1}^{n} w_{ij} \varphi_{ij}(z_k^i - h_j^i) \) (where \(\varphi_{ij} \) is the continuous and strictly bounded nonlinear interaction function satisfying \(\varphi_{ij}(y) = 0 \) if \(y = 0 \)), one can still use the proposed linear estimator to infer the underlying binary adjacent topology, combined with popular clustering methods as [49] does.

In many cases, it is also desirable to infer a sparse topology when the network size is large or the connections among nodes are sparsely distributed [37], [55], [56]. In this regard, we can modify the proposed method by adding an \(L_1 \)-norm regularization term in the objective function (56) to enforce the sparsity, which is formulated as

\[
\min_{\hat{W}_{HF}} \| Y^{[\cdot]} - W^{[\cdot]} X \|^2 + \alpha \| W^{[\cdot]} \|_1 \tag{60}
\]

where \(\alpha > 0 \) is the regularization parameter. Note that this problem is convex and can be efficiently solved using many mature optimization algorithms, e.g., [57], [58]. Finally, organize the solutions of the above problem for \(i \in \mathcal{V}_H \) in an appropriate order, and the sparse estimation of \(W_{HF} \) is obtained.

VI. SIMULATION

A. Simulation Setting

In this section, we conduct numerical experiments to demonstrate the feasibility of inferring the local topology of the MRN, and validate the theoretical results. For simplicity, we consider a representative case of an MRN consisting of 11 robots. The preset formation shape and the robot set division are shown in Fig. 3. Specifically, robot 1 is set as the leader, and the moving speed in stable stage is set as 0.3 m/s. The observation range of \(r_a \) is set as \(R_f = 9 \) m, and the interaction and obstacle-detection radius of a formation robot are set as \(R_c = 5 \) m and \(R_o = 1.5 \) m, respectively. The observation window length \(L_c \) is set to be 500.
In the following sections, we will present the inference results of the steady pattern, the interaction range, and the local topology.

B. Simulation Results

Let us begin with examining the steady pattern estimator (15) in terms of $\hat{c}(k, L_c)$. For simplicity, we set the threshold parameter $\epsilon = 0.8\sigma$, and conduct two groups of experiments using different σ. As shown in Fig. 4, when the MRN reaches the steady state, the velocity estimation remains stable. Specifically, the red line illustrates how to find the ϵ-steady time by the bound $8\epsilon/\sqrt{L_c}$ in (22). Apparently, the larger ϵ is set, the more conservative $\hat{c}(k, L_c)$ is.

Next, as shown in Fig. 5, the inference performance of the interaction range is evaluated. Since the active excitation method mainly aims to obtain a lower bound of \hat{R}_c, here we omit the simulation process of this stage and directly present the inference error under different \hat{R}_c. For fair comparisons, Fig. 5(a) and (b) depicts the error curve under noise variance from 0 to 1 using 200 observations, while Fig. 5(c) and (d) depicts the error curve under observation amount from 20 to 260 with $\sigma = 0.4$. Note that the average error of the inferred topology with the ground truth is computed as $\frac{||\hat{W}_{H_c}(\hat{R}_c) - W_{H_c}||}{||W_{H_c}||}$.

Finally, we present the performance comparison of the proposed approach with the methods in [21] and [23] (denoted as M-1 and M-2, respectively), under the same settings of \hat{R}_c, noise variance, and observation amount as the last experiment. Note that for fair comparisons, we use the filtered observations to implement M-1. Fig. 7(a) shows the relationships between the inference error and the observation noise variance for all methods. Fig. 7(b) shows the relationships between the inference error and the observation noise variance for all methods, under common noise variance $\sigma = 0.4$. It is clear from the presented results that the proposed method outperforms the other two, which mainly results from the estimation of the formation input and the interaction range. We also observe that the reason for M-1 having better performance than M-2 lies in the filtered observations we used. More detailed technical comparisons along with some other inference algorithms are summarized in Table I, which shows that the proposed method has better applicability and inference performance guarantees for the considered problem.

![Fig. 4. Estimation of the formation speed $\hat{c}(k, L_c)$. The threshold parameter ϵ is set as $\epsilon = 0.8\sigma$. (a) $\sigma = 0.05$ (b) $\sigma = 0.1$.](image)

![Fig. 5. Inference performance of the interaction range.](image)

![Fig. 6. (a) Inference errors under different variances of observation noises, varying from 0 to 0.5. Each test is based on 200 observations over the same time window. (b) Inference errors under different number of observations, ranging from 20 to 260, with $\sigma = 0.1$.](image)

![Fig. 7. Performance comparison of the proposed approach with the methods in [21] and [23]].](image)

Table I

Method	Topology Structure	Input Consideration	Local Inference	Input Filtering	Observation Convergence Speed	
Truncated estimator	✓	✓	✓	Erdős-Rényi graph $\frac{N\epsilon}{N} \in (0, 1) [N \rightarrow \infty] 3$	$O(\sqrt{\frac{T}{F}})$	
Spectral method	✓	✓	✓	Binary judgment 4	$O(e^{-k})$	
Geometric method	✓	✓	✓	Nonsteady trajectory is available	✓	No guarantee
OLS-based method	✓	✓	✓	Nonsteady trajectory is available	✓	No guarantee
Our method	✓	✓	✓	Nonsteady trajectory is available	✓	$O(\frac{1}{k})$

1 N_c and N represent the cardinality of the observable subset and the whole node set, respectively. 2 T here refers to the number of observations in the non-steady stage, and the system in this reference is asymptotically stable. 3 In [59] the authors implement L_n groups of tests over the system, with the same initial state while ending at different moments, and no noise terms are involved. 4 The method is based on the geometric characteristics of the robot trajectory. Although not tailored for the local topology inference of MRNs, we point out it can apply to infer whether the connection between two robots exists. 5 The method is originally designed for global topology inference, and can be revised for the local cases if using the idea in this paper.
Inference error of $\hat{W}_{RF}(\hat{R}_c)$. (a) and (b) Under different noise variance using 200 observations. (c) and (d) Under different observation amount with $\sigma = 0.4$. (a) Empirical error $f_e(\hat{R}_c)$. (b) Average error with ground truth. (c) Empirical error $f_e(\hat{R}_c)$. (d) Average error with ground truth.

Future directions include 1) generalizing the method to more complex formation control cases (e.g., switching topology and nonlinear dynamics); 2) investigating the possible attack against the MRNs based on the inferred topology along with its countermeasures.

APPENDIX

A. Proof of Theorem 1

Proof: Based on Lemma 1, when the MRN has reached ϵ-steady pattern after k_0, the dynamics (3) is equivalent to

$$z_k^e = ck_1n_f + s^L + \epsilon_k^e$$ \hspace{1cm} (61)

where $\epsilon_k = W_k z_0 + (\sum_{t=0}^{k-1} W^t) u - ck_1 n_f - s$, satisfying $\|\epsilon_k\|_1 \leq \epsilon$. Then, the estimation error of $\hat{c}(k_0, L_c)$ is given by

$$\Delta_c = \hat{c}(k_0, L_c) - c = \sum_{t=0}^{k_0 + L_c - 1} \sum_{i \in V_F} \left(z_{t+1}^i - \hat{z}_t^i - c \right)$$

$$= \sum_{t=0}^{k_0 + L_c - 1} \sum_{i \in V_F} \left(e_{t+1}^i - e_t^i + \omega_{t+1}^i - \omega_t^i \right) / n_f L_c$$

$$= \sum_{i \in V_F} \left(e_{k_0 + L_c}^i - e_{k_0}^i + \omega_{k_0 + L_c}^i - \omega_{k_0}^i \right) / n_f L_c$$ \hspace{1cm} (62)

For ease of notation, define

$$\epsilon_c = \sum_{i \in V_F} (e_{k_0 + L_c}^i - e_{k_0}^i) / (n_f L_c)$$

$$\bar{\omega}_c = \sum_{i \in V_F} (\omega_{k_0 + L_c}^i - \omega_{k_0}^i) / (n_f L_c).$$ \hspace{1cm} (63)

Then, we only need to prove the upper bound of $\Delta_c = \bar{\omega}_c + \bar{\epsilon}_c$.

Note that $\omega_k^i \sim N(0, \sigma^2)$ i.i.d., and thus, $\bar{\omega}_c$ is subject to $N(0, 2\sigma^2 / (n_f L_c^2))$. Based on the Gaussian nature, one can obtain the concentration inequality by finding the optimal Chernoff bound of $\bar{\omega}_c$ (see [60, example 2.1]), i.e.,

$$\Pr\left\{ |\bar{\omega}_c| \leq \frac{2\epsilon}{\sqrt{L_c}} \right\} \geq 1 - 2 \exp\left\{ -\frac{n_f L_c \epsilon^2}{2 \sigma^2} \right\} = P_1(L_c).$$ \hspace{1cm} (64)

As for $|\bar{\epsilon}_c|$, since the system is in ϵ-steady pattern, one has

$$|\bar{\epsilon}_c| \leq 2\epsilon / L_c \leq 2\epsilon / \sqrt{L_c}.$$ \hspace{1cm} (65)

Hence, combining (64) and (65) yields that

$$\Pr\left\{ |\epsilon_c| + |\bar{\omega}_c| \leq \frac{4\epsilon}{\sqrt{L_c}} \right\} \geq P_1(L_c).$$ \hspace{1cm} (66)
Substituting the absolute inequality $|\Delta_c| \leq |\hat{\omega}_c| + |\bar{\epsilon}_c|$ into (66), the first statement (16) is proved.

Next, consider the estimation error of $s^p(k; L_c)$. Based on (61), one has

$$s^p(k_0, L_c) - s^p = \sum_{t=k_0+1}^{k_0+L_c} (\epsilon^p_t + \omega^p_t - \Delta_c t \bar{1}_{n_f}) / L_c$$

(67)

Similar with Δ_c, the average estimation of all elements in (67) is given by

$$\Delta_s = \frac{1}{n_f} \epsilon_s + \frac{1}{n_f} \omega_s - \frac{\Delta_c (2k_0 + L_c + 1)}{2}$$

(68)

where $\epsilon_s = \sum_{t=k_0+1}^{k_0+L_c} \epsilon^p_t / L_c$ and $\omega_s = \sum_{t=k_0+1}^{k_0+L_c} \omega^p_t / L_c$. Substituting ϵ_c and ω_c into the third term $\Delta_c (2k_0 + L_c + 1)$, one obtains

$$\Delta_s (2k + L_c + 1) = (\epsilon_s + \omega_s) (2k_0 + L_c + 1) / 2.$$

(69)

Substituting (69) into (68), then one has $\Delta_s = \epsilon_s + \omega_s$ where

$$\epsilon_s = \frac{1}{n_f} \epsilon_s + \frac{(2k_0 + L_c + 1)}{2} \epsilon_{s_0},$$

$$\omega_s = \frac{1}{n_f} \omega_s + \frac{(2k_0 + L_c + 1)}{2} \omega_{s_0}.$$

Utilizing $|\epsilon_s| \leq 2 \epsilon / L_c$ and $\omega_s \sim \mathcal{N}(0, \sigma^2)$, one deduces that

$$|\epsilon_s| \leq \left(2 + \frac{2k_0 + 1}{L_c} \right) \epsilon \quad \text{(70)}$$

$$\mathbb{D}[\omega_s] = \frac{\sigma^2}{n_f L_c^2} + \frac{\sigma^2}{2n_f} \left(1 + \frac{(2k_0 + 1)^2}{L_c^2} + \frac{4k_0 + 2}{L_c} \right).$$

(71)

Combining (70) and (71), it yields that $\mathbb{E}[|\epsilon_s| + \omega_s] = |\epsilon_s| + \mathbb{D}[\omega_s]$ hold. When $L_c \to \infty$, the second statement (17) is proved. □

B. Proof of Theorem 2

Proof: To begin with, similar with (32), the accumulated velocity prediction error $\delta^i_{k+m,k}$ is expanded as

$$\delta^i_{k+m,k} = \sum_{t=i}^{m} w^{(t)}_{ij} u^{l}_{i,j,k-m-1} - m \Delta_c$$

$$+ \omega^i_{k+m} - m \omega^i_{k+m-1} - \epsilon^i_{k+m} - \epsilon^i_{k+1}$$

(72)

where $w^{(t)}_{ij}$ represents the t-power of w_{ij}.

Then, it follows that the average velocity prediction error in the m-period is given by

$$\frac{\delta^i_{k+m,k}}{m} = \frac{1}{m} \sum_{t=i}^{m} w^{(t)}_{ij} u^{l}_{i,j,k+m-t-1} - \Delta_c$$

$$+ \omega^i_{k+m} - \omega^i_{k+m-1} + \epsilon^i_{k+m} - \epsilon^i_{k+1}.$$

(73)

Note that $\frac{\omega^i_{k+m} - \omega^i_{k+m-1}}{m}$ is subject to $\mathcal{N}(0, 2\sigma^2/m^2)$. Applying the Chernoff concentration inequality, one obtains

$$\Pr\left\{ \frac{\omega^i_{k+m} - \omega^i_{k+m-1}}{m} \leq \frac{2}{\sqrt{m}} \right\} \geq 1 - 2 \exp\left\{ -\frac{m c^2}{\sigma^2} \right\} = P_2(m).$$

(74)

Recall that it is proved that $\Pr\{ |\Delta_c| \leq 4 \epsilon / \sqrt{L_c} \} \geq P_1(L_c)$ in Theorem 1, and $|\epsilon^i_{k+m} - \epsilon^i_{k+1}| \leq \frac{\epsilon}{m}$ always holds. Combining these pieces, if r_j is under no excitation (i.e., $u_j^{k+1} = 0$), it yields that

$$\Pr\left\{ \left| \frac{\delta^i_{k+m}}{m} \right| \leq \left(\frac{4}{\sqrt{L_c}} + \frac{4}{m} \right) \epsilon \right\} \geq P_1(L_c) \cdot P_2(m).$$

(75)

Taking the converse-negative version of the statement (i.e., if $u_j^{k+1} = 0$, then (75) holds), it yields the statement described by (39). The proof is completed. □

C. Proof of Theorem 4

Proof: For notational brevity, let $u_{\Delta} = \hat{u} - u$ be the error vector of the filtered input. Then, for each pair of (y_k, x_k), we have

$$y_k = W_{HF} x_k + (W_{HH} - I_{n_h}) u_{\Delta} + \omega_{k+1} - W_{HF} \bar{y}_k.$$

(76)

Let $U_{\Delta} = [u_{\Delta}, \ldots, u_{\Delta}] \in \mathbb{R}^{n_k \times k}, \Omega_\Delta = \omega_{k} + \cdots + \omega_{k-1},$ and $\Omega_+ = \omega_{k} + \cdots + \omega_{k-1}$. Then, all the filtered observations can be compactly written as

$$Y = W_{HF} X + (W_{HH} - I_{n_h}) U_{\Delta} + \Omega_+ - W_{HF} \Omega_-. $$

(77)

Based on the estimator (45), the inference error matrix of W_{HF} is given by

$$||W_{HF} - W_{HF}|| = ||(W_{HH} - I_{n_h}) U_{\Delta} + \Omega_+ - W_{HF} \Omega_- X^T (X X^T)^{-1}||$$

$$\leq ||(W_{HH} - I_{n_h}) U_{\Delta} X^T|| + ||(\Omega_+ - W_{HF} \Omega_-) X^T|| ||(X X^T)^{-1}||.$$

(78)

Next, we will prove that each term of the RHS of (78) is bounded individually.

Part 1: Upper Bounding $||(X X^T)^{-1}||$.

Recall that the system state can be expanded recursively as

$$z_{k+1} = W^{k+1} z_0 + \sum_{t=0}^{k} W^t u_c$$

$$= c(k + 1) I_n + W^{k+1} z_0 + \sum_{t=0}^{k} \sum_{i=2}^{n} \lambda^i_0 q_i u^T u.$$

(79)

Note that the last two terms on the RHS of (79) are strictly bounded regardless of the moment k, and the influence of the independent observation noises will not accumulate during the state evolution. Since the term $c(k + 1) I_n$ takes the dominant role in the state evolution, we can directly characterize $||X||$ in terms of the time horizon k_s. Based on the matrix norm inequality $||X|| \leq ||X|| F \leq \sqrt{\min\{n_h, k_s\}} ||X||$, one easily infers that

$$\frac{||X|| F}{\sqrt{\min\{n_h, k_s\}}} \leq ||X|| \leq ||X|| F.$$

(80)

Further utilizing $||z_i z_i^T|| F = O(t^2)$ and $\sum_{t=0}^{k_s} t^2 = k_s (k_s + 1)(2k_s + 1)/6$, one deduces that $||z_i z_i^T|| F = O(k_s^2).$
Then, it follows that
\[\|X\| = O(k_s^{3/2}), \quad \|XX^T\| = O\left(\sum_{t=0}^{k_s} \|z_t z_t^T\|\right) = O(k_s^3). \] (81)

By (81), one can always find a group of \(\beta_1, \beta_2 \in \mathbb{R}^+ \), such that \(\beta_1 k_s^a I_n \preceq X X^T \preceq \beta_2 k_s^b I_n \). In turn, the inverse matrix of \(XX^T \) satisfies
\[\frac{I_n}{\beta_1 k_s^a} \geq (XX^T)^{-1} \geq \frac{I_n}{\beta_2 k_s^b} \] (82)
where the invertibility of \(XX^T \) is guaranteed by the i.i.d. noise \(\{\omega_k^k\}_{k=0}^{\infty} \). Therefore, the spectral norm of \(XX^T \) is characterized by
\[\|(XX^T)^{-1}\| = O\left(\frac{1}{k_s}\right). \] (83)

Part 2: Upper Bounding \(\|\Omega_{\omega}^T - W_{HF} \Omega_{\omega}^T X^T\| \).

Utilizing the concentration measure in Gaussian space [61], given a random matrix \(\Omega \in \mathbb{R}^{n_h \times k_s} \) with independent standard normal entries, one has with probability at least \(1 - 2\exp\{-r^2/2\} \)
\[\|\Omega\| \leq \sqrt{k_s} + \sqrt{n} + r. \] (84)

Let \(r = \sqrt{2(k_s + n)} \) and utilize \(\sqrt{k_s} + \sqrt{n} \leq \sqrt{2(k_s + n)} \), one has with probability at least \(1 - 2\exp\{-r^2/2\} \) that \(\|\Omega\| \leq \sqrt{2(k_s + n)} + \sigma \). Note that the observation matrix \(X \) contains the noise matrix \(\Omega_{\omega} \), i.e., \(\exp[\Omega_{\omega}^T X^T] = \sigma^2 I_n \). Therefore, it yields that with probability at least \(P_3(k_s) \) it is
\[\|\Omega_{\omega}^T - W_{HF} \Omega_{\omega}^T X^T\| = O(\sigma k_s^2) + o(\sigma^2 k_s^2). \] (85)

Part 3: Upper Bounding \(\|\|W_{HF} - I_n\| \Delta \Delta^T\| \).

Recall that \(u_\Delta = \hat{h}^u + \tilde{c} \nu^u \), it can be split as
\[u_\Delta = U_\Delta = U_\Delta^H + U_\Delta^H \] (86)
where \(U_\Delta^H = [(\hat{c} - \bar{c})^H, \ldots, (\hat{c} - \bar{c})^H] \) and \(U_\Delta^H = [\hat{h}^u - \bar{h}, \ldots, \hat{h}^u - \bar{h}] \). Then, the upper bound of \(\|U_\Delta^H \Omega_{\omega}^T X^T\| \) is given by
\[\|U_\Delta^H \Omega_{\omega}^T X^T\| \leq \|U_\Delta^H X^T\| + \|U_\Delta^H \Omega_{\omega}^T \| + \|\Omega_{\omega}^T X^T\|. \] (87)

By the conclusion of Theorem 1, with probability at least \(P_3(L_c) \), one has \(\|U_\Delta^H X^T\| \leq 4C \sqrt{k_s^3 L_c} \) and
\[\|U_\Delta^H X^T\| = O\left(\frac{c k_s^3}{\sqrt{L_c}}\right). \] (88)
Note that Theorem 1 demonstrates that each term in \(U_\Delta^H \) is a random variable of \(\epsilon \)-level mean and \(\sigma^2 \)-level variance, and thus, one deduces that with probability at least \(P_3(k_s) \)
\[\|U_\Delta^H X^T\| = O(\epsilon k_s^3) + O(\sigma k_s^3). \] (89)
Combining (88) and (89), one obtains
\[\|U_\Delta X^T\| = O(\epsilon k_s^3) + O(\sigma k_s^3). \] (90)

Finally, the multiplying terms (85) and (90) with (83), one has with probability at least \(P_3(L_c) \cdot P_3(k_s) \),
\[\|\hat{W}_{HF} - W_{HF}\| = O\left(\frac{\epsilon}{k_s \sqrt{L_c}}\right) + O\left(\frac{\epsilon}{k_s}\right) \]
\[\quad + O\left(\frac{\sigma}{k_s}\right) + O\left(\frac{\sigma^2}{k_s^2}\right) \] (91)
Taking \(\epsilon, \sigma \), and \(L_c \) as fixed constants, (91) can be further characterized as \(\|\hat{W}_{HF} - W_{HF}\| = O(\frac{1}{k_s^2}) + O(\frac{1}{k_s}) \). The proof is completed.

D. Proof of Theorem 5

Proof: To begin with, suppose \(R_c \geq \hat{R}_c \geq \hat{R}_c \) and the observations are noise-free for ease notation. Denote by \(\mathcal{V}_{F} \) the robot set that is within the range \(R_{h0} + \hat{R}_{c} \), and define \(\mathcal{N}^{in}_{h0} = \{j : j \in \mathcal{V}_{F}, \ell \in \mathcal{V}_{h0}, \omega_j > 0\} \). Then, the filtered observations of \(\mathcal{V}_{h0} \) satisfy
\[Y_{h0} = W_{h0} X_{F} + W_{h0} \Omega_{\omega} X_{F} \] (92)

where \(\mathcal{V}_{F} = \{N^{in}_{h0}\} \cap \{\mathcal{V}_{F} \setminus \mathcal{V}_{F} \} \). Note that \(W_{h0} X_{F} \) is a \(|\mathcal{V}_{h0}| \)-dimensional vector. There exists at least a \(\|Y_{h0} \times \mathcal{V}_{F} \times \Omega_{\omega} \| \) of \(\{\hat{W}_{HF} \} \) such that
\[W_{\Delta_0} X_{F} = W_{h0} X_{F} \] (93)
Then, substitute (93) into (92) and it yields
\[Y_{h0} = W_{h0} X_{F} + W_{h0} \Omega_{\omega} X_{F} \] (94)
Taking the observation noises into account, the OLS estimator of \(W_{h0} \) with observations \(Y_{h0} \) and \(X_{F} \) is given by
\[\hat{W}_{h0}(\hat{R}_c) = Y_{h0} X_{F} (X_{F}^T X_{F})^{-1}. \] (95)

Next, applying Theorem 4 on \(\hat{W}_{h0}(\hat{R}_c) \), it yields that
\[\Pr\{\lim_{k_s \to \infty} \hat{W}_{h0}(\hat{R}_c) - W_{h0} = 0\} = 1. \] (96)
It is straightforward to infer that, if some in-neighbors of \(\mathcal{V}_{h0} \) are in \(\mathcal{V}_{F} \), then \(\|\hat{W}_{HF} - W_{HF}\| > 0 \). Therefore, for the local topology estimator \(\hat{W}_{h0}(\hat{R}_c) \), the asymptotic inference bias is given by
\[f_w(\hat{R}_c) = \|\hat{W}_{HF} - W_{HF}\| \] (97)
For \(R_c \geq \hat{R}_c \), the cardinal numbers of \(\mathcal{V}_{F} \) and \(\mathcal{V}_{F} \) satisfy \(|\mathcal{V}_{F}| \leq |\mathcal{V}_{F}| \), which indicates that \(\hat{W}_{HF}(\hat{R}_c) \) is less biased from the real \(W_{HF} \). The monotone decreasing property of \(f_w(\hat{R}_c) \) is proved.
Specifically, if \(\hat{R}_c \geq R_c \), the set \(\mathcal{V}_{F} = \{N^{in}_{h0}\} \setminus \mathcal{V}_{F} \setminus \mathcal{V}_{F} \) is empty, i.e., \(\hat{W}_{HF}(\hat{R}_c) \) is asymptotically unbiased. The proof is completed.

ACKNOWLEDGMENT

The authors would like to thank the editors and the reviewers for their valuable comments, and also thank Prof. Xiaoming Duan and Dr. Zitong Wang for the helpful suggestions.
[50] M. Cirillo, V. Matta, and A. H. Sayed, “Learning Bollabás-Riordan graphs under partial observability,” in Proc. IEEE Int. Conf. Acoust., Speech, Signal Process., 2021, pp. 5360–5364.

[51] A. Caré, B. C. Csáji, M. C. Campi, and E. Weyer, “Finite-sample system identification: An overview and a new correlation method,” IEEE Control Syst. Lett., vol. 2, no. 1, pp. 61–66, Jan. 2018.

[52] N. Matni and S. Tu, “A tutorial on concentration bounds for system identification,” in Proc. IEEE 58th Conf. Decis. Control, 2019, pp. 3741–3749.

[53] S. Boyd, S. P. Boyd, and V. Vandenberghe, Convex Optimization. Cambridge, U.K.: Cambridge Univ. Press, 2004.

[54] Y. Cao and W. Ren, “Sampled-data discrete-time coordination algorithms for double-integrator dynamics under dynamic directed interaction,” Int. J. Control, vol. 83, no. 3, pp. 506–515, 2010.

[55] A. Bolstad, B. D. Van Veen, and R. Nowak, “Causal network inference via group sparse regularization,” IEEE Trans. Signal Process., vol. 59, no. 6, pp. 2628–2641, Jun. 2011.

[56] A. Venkitaraman and D. Zachariah, “Learning sparse graphs for prediction of multivariate data processes,” IEEE Signal Process. Lett., vol. 26, no. 3, pp. 495–499, Mar. 2019.

[57] R. Tibshirani, “Regression shrinkage and selection via the lasso,” J. Roy. Stat. Soc.: Ser. B (Methodological), vol. 58, no. 1, pp. 267–288, 1996.

[58] S.-J. Kim, K. Koh, M. Lustig, S. Boyd, and D. Gorenstein, “An interior-point method for large-scale l1-regularized least squares,” IEEE J. Sel. Topics Signal Process., vol. 1, no. 4, pp. 606–617, Dec. 2007.

[59] Y. Zhu, M. T. Schaub, A. Jadbabaie, and S. Segarra, “Network inference from consensus dynamics with unknown parameters,” IEEE Trans. Signal Inf. Process. Netw., vol. 6, pp. 300–315, 2020.

[60] M. J. Wainwright, High-Dimensional Statistics: A Non-Asymptotic Viewpoint. Cambridge, U.K.: Cambridge Univ. Press, 2019.

[61] K. R. Davidson and S. J. Szarek, “Local operator theory, random matrices and Banach spaces,” Handbook Geometry Banach Spaces, vol. 1, no. 317/366, 2001, Art. no. 131.