Small-bowel capsule endoscopy: A ten-point contemporary review

Anastasios Koulaouzidis, Emanuele Rondonotti, Alexandros Karargyris

The introduction of capsule endoscopy (CE) in clinical practice increased the interest for the study of the small-bowel. Consequently, in about 10 years, an impressive quantity of literature on indications, diagnostic yield (DY), safety profile and technical evolution of CE has been published as well as several reviews. At present time, there are 5 small-bowel capsule enteroscopy (SBCE) models in the worldwide market. Head-to-head trials have showed in the great majority of studies comparable results in terms of DY, image quality and completion rate. CE meta-analyses formed the basis of national/international guidelines; these guidelines place CE in a prime position for the diagnostic work-up of patients with obscure gastrointestinal bleeding, known and/or suspected Crohn's disease and possible small-bowel neoplasia. A 2-L polyethylene glycol-based purge, administered the day before the procedure, is the most widely practiced preparation regimen. Whether this regimen can be further improved (i.e., by further decreasing its volume, changing the timing of administration, coupling it with prokinetics and/or other factors) or if it can really affect the DY, is still under discussion. Faecal calprotectin has been used in SBCE studies in two settings: in patients taking non-steroidal anti-inflammatory drugs, to evaluate the type and extent of mucosal damage and, more importantly from a clinical point of view, in patients with known or suspected Crohn's disease for assessment of inflammation activity. Although there is still a lot of debate around the exact reasons of SBCE poor performance in various small-bowel segments, it is worth to remember that the capsule progress is non-steerable, hence more rapid in the proximal than in lower segments of the small-bowel. Capsule aspiration, a relatively unexpected complication, has been reported with increasing frequency. This is probably related with the increase in the mean age of patients undergoing CE. CE video review is a time-consuming procedure. Therefore, several attempts have been made to develop technical software features, in order to make CE video analysis easier and shorter (without jeopardizing its accuracy). Suspected Blood Indicator, QuickView and Fujinon Intelligent Chromo Endoscopy are some of the software tools that have been checked in various clinical studies to date.

© 2013 Baishideng. All rights reserved.
tion that has often been overlooked by the plethora of similar reviews and/or info on contentious issues in capsule enteroscopy. We believe that this document can be used as reference for study, in reference lists of future manuscript and as important guide for future clinical research on the field.

Koulaouzidis A, Rondonotti E, Karargyris A. Small-bowel capsule endoscopy: A ten-point contemporary review. World J Gastroenterol 2013; 19(24): 3726-3746 Available from: URL: http://www.wjgnet.com/1007-9327/full/v19/i24/3726.htm DOI: http://dx.doi.org/10.3748/wjg.v19.i24.3726

INTRODUCTION

An early conceptual abstract on capsule endoscopy (CE), entitled “an endorobot for flexible endoscopy, a feasibility study”, was published in 1994[1]. Then, in 1997 two groups of pioneers, initially working independently in Israel and London, joined forces to achieve wireless endoscope[2]. Three years later, in the Digestive Disease Week meeting of the millennium and almost concurrently in Nature[3], Professor Swain presented the world’s first wireless capsule endoscope.

Indeed, the brainchild of Iddan[4] has revolutionised the field of gastrointestinal (GI) diagnostics, turning into reality the concept of painless and wireless endoscopy. Furthermore, the introduction of CE in clinical practice increased the interest for the study of the small-bowel. Consequently, in about 10 years, an impressive quantity of literature on indications, diagnostic yield (DY), safety profile and technical evolution of CE has been published as well as several reviews. Therefore, we aim to focus readers’ attention on contemporary and contentious issues, often missed from similar reviews on the field. We herein present (in a comprehensive yet user-friendly manner) a systematic review of the current literature in a form of question-and-answer. We expect CE readers, of all experience levels, will find this review useful source of further reading and reference.

WHICH ARE THE DIFFERENCES AMONG THE CURRENT COMMERCIALY AVAILABLE CAPSULES?

Since 2001, the year of approval by the Food and Drug Administration of the first video capsule with the proprietary, yet slightly unfortunate, brand name mouth-to-anus (M-A®; Given Imaging, Yoqneam, Israel), a total of more than 2000000 capsules have been ingested worldwide[5]. Furthermore, over the last decade, technology has improved in the field of CE as competition has become quite stiff. At present time, there are 5 small-bowel capsule enteroscopy (SBCE) models in the market worldwide (Table 1)[6,7]. Although similar in size and shape, they differ on several technical aspects. Of the 5 SBCE, four are in widespread use, although most of the published literature studies are with PillCam®. Nevertheless, head-to-head trials have showed in the great majority of studies comparable results in terms of DY, image quality and completion rate (Table 2)[8-11].

DO HIGH-GRAGE EVIDENCE SUPPORT THE USE OF CE IN CLINICAL PRACTICE?

In recent years, many authors[12-14] reviewed systematically the validity of SBCE in clinical practice. Out of this evidence base, it clearly emerges that in daily practice the leading indications for CE are: Obscure gastrointestinal bleeding (OGIB accounts for 60%-70% of all SBCE examinations world-wide), and Crohn’s disease (CD; known and/or suspected). Other clinical indications, although less common, are coeliac disease, small-bowel polyposis syndromes and clinical suspicion of small-bowel neoplasia[15,16]. Therefore, we decided to summarise (Table 3)[17-32], the results of the more robust - from a methodological point of view - publications which addressed the role of CE in the field of small-bowel coeliac disease. These meta-analyses have formed the basis of national/international guidelines, which place CE in a prime position for the diagnostic work-up of patients with OGIB, known and/or suspected CD and possible small-bowel neoplasia[13,30].

WHICH IS THE BEST PREPARATION REGIMEN FOR SMALL-BOWEL CAPSULE ENDOSCOPY?

This certainly is one of the most contentious issues in CE. Since the introduction of CE in clinical practice, it was clear that small-bowel cleanliness is one of the key factors (as in fact is often the case for endoscopic examinations) to guarantee high diagnostic performance. Thus far, several studies have been performed in order to test whether the administration of different purgatives and/or prokinetics would impact on small-bowel cleanliness. It is noteworthy that these studies are rather heterogeneous in terms of type of laxatives administered, dosages and/or administration schedule (Table 3)[22,25,30]. Furthermore, in some studies laxatives and prokinetics were administered concurrently, which is probably a further source of bias. Essentially, the current evidence base suggests that a preparation regimen based on laxatives [more specifically polyethylene glycol (PEG)] is more effective - than fasting alone - in improving the small-bowel mucosa visualization. Among the PEG-based laxatives, a low volume schedule seems to be at least equally effective than high volume regimens[22,30]. Therefore, a 2-L PEG-based purge, administered the day before the procedure, is the most widely practiced preparation regimen. Whether this regimen can be further improved (i.e., by further decreasing its volume, changing the timing of administration, coupling it with prokinetics and/or other pharmaceutical factors) or if it can really affect the DY, is still under discussion[37].
Table 1 Available types of small-bowel capsule endoscopes and operating characteristics

Capsule device	Company	Country	Field of view (°)	Lens	Image sensor	Optical enhancements	Reviewing software	FDA approval	Weight (g)	Battery life (h)	Frames per second (fps)	Dimensions (mm)	FDA review software	Operating characteristics
PillCam® SB2	Given Imaging, Yokneam, Israel	150	Multi-element	CMOS	CMOS, CMOS	Radiofrequency	密封7	Yes	3.45	11 × 26	3.45	9–11.5	No	核心8
MiniCam® V2	IntroMedic Co., Seoul, Korea	170	N/A	CMOS	CMOS	Radiofrequency	密封V2	Yes	3.2	11 × 24	10	12	No	密封V2
EndoCapsule	EndoCapsule Co., Tokyo, Japan	146	N/A	CMOS	CMOS	Radiofrequency	密封V2	Yes	3	11 × 26	12	10	Yes	密封V2
MiroCam® v2	MiroView Co., Ltd., Korea	140	N/A	CMOS	CMOS	Radiofrequency	密封v2	Yes	3	11 × 26	12	10	Yes	密封v2
CapsoCam® SV1	ALICE, A Large Ion Collider Experiment, United States	360	N/A	N/A	N/A	Radiofrequency	密封v2	No	16	11 × 31	6	13 × 31	No	密封v2
PillCam® SB2 (L) captures 2 fps - PillCam® SB2 (H) captures 4 fps - PillCam® SB2 (S) captures 8 fps - PillCam® SB2 battery life > 11.5 h - PillCam® SB2 battery life > 8 h. LED: Light-emitting diode; N/A: Not available; CMOS: Complementary metal-oxide-semiconductor; CCD: Charge-coupled device; EP: Electric field propagation; EPROM: Erasable programmable read-only memory; USB: Universal Serial Bus; FDA: Food and Drug Administration; FICE: Fujinon Intelligent Chromo Endoscopy; ALICE: A Large Ion Collider Experiment.														

IS THERE A ROLE FOR FAECAL TESTING (CALPROTECTIN) AS “SELECTION TOOL” FOR CAPSULE ENDOSCOPY

Due to its high DY and its negative predictive value (NPV), CE has shown considerable cost-effectiveness. However, CE still remains less widely available and likely more expensive, when compared to other diagnostic modalities for the small-bowel. Furthermore, although CE is generally considered overall a safe modality, it can lead to severe complications (capsule retention in some patients’ subgroups is reported as high as 15% 𝑖𝑛 [13-15,40]). Consequently, any tool or methods that allows selection of candidates, hence a more targeted and/or smooth “delivery” of SBCE, is a welcome approach. However, any pre-CE selection tool should be easy to perform, safe, inexpensive and fast. In light of all these issues, faecal inflammation tests [of which, faecal calprotectin (FC) is the more widely available] have been proposed. In fact, FC has been used in SBCE studies in two settings: in patients taking non-steroidal anti-inflammatory drugs, to evaluate the type and extent of mucosal damage (Table 4) and, more importantly from a clinical point of view, in patients with known or suspected CD for assessment of inflammation activity (Table 4). In these patients, although there is no clear agreement on a cut-off level, FC seems to be a cost-effective “screening test”, able to identify those with higher possibility to present small-bowel lesions.

HAS CE THE SAME DIAGNOSTIC CAPABILITY ALONG THE SMALL BOWEL?

There are several papers, mostly case presentations and/or case series, reporting patients in whom CE failed to identify small-bowel lesions which were subsequently diagnosed by other modalities. Such missed lesions (including neoplastic pathology) were occasionally large and often located in the proximal small-bowel. Although there is still a lot of debate about the reasons of poor SBCE performance, it is worth remembering that for any non-steerable capsule progress is more rapid in the proximal than in lower segments of the small-bowel; furthermore, opaque bile secretions and/or intra-luminal content might consequently hamper/prevent detailed mucosa visualization. Table 5 summarises all studies reporting the number of exams in which one of the few small-bowel landmarks, the ampulla of Vater (AoV), was visible during CE. Hence, this evidence base provides an indirect confirmation of the limitations of SBCE in evaluating the proximal small-bowel.

Interestingly, even in earlier studies which have not been confirmed since by other investigators, the AoV was missed in > 50% of SBCE examinations. This is obviously an important drawback, especially when SBCE is used as surveillance tool, in patients with small-bowel polyposis syndromes.
Table 2 Head-to-head trials of small-bowel capsule endoscopy systems

Ref.	Country	Centre Objective(s)	Study type	Design	Outcome(s)	
[6]	Germany	Single centre evaluation of technical live performance and DY comparison of EndoCapsule SB (Olympus America, Allentown, PA) vs PillCam SB (Given Imaging, Yoqneam, Israel) and MiroCam (IntroMedic Co. Ltd., Seoul, South Korea);	Prospective	Head-to-head comparison of 2 capsule systems	• CR: PillCam SB 33/40 (82%); EndoCapsule 40/40 (100%); MiroCam 25/30 (83.3%); CR=NS; PillCam SB vs EndoCapsule; EndoCapsule vs MiroCam; EndoCapsule vs PillCam SB. CR=NS; PillCam SB vs MiroCam; MiroCam vs EndoCapsule; MiroCam vs PillCam SB. CR NS.	• CR: PillCam SB 33/40 (82%); EndoCapsule 40/40 (100%); MiroCam 25/30 (83.3%); CR=NS; PillCam SB vs EndoCapsule; EndoCapsule vs MiroCam; EndoCapsule vs PillCam SB. CR=NS; PillCam SB vs MiroCam; MiroCam vs EndoCapsule; MiroCam vs PillCam SB. CR NS.
[7]	USA	Single centre evaluation of technical live performance and DY comparison of PillCam SB vs EndoCapsule and MiroCam	Prospective	Head-to-head comparison of 2 capsule systems	• CR: PillCam SB vs EndoCapsule and MiroCam; CR=NS.	• CR: PillCam SB vs EndoCapsule and MiroCam; CR=NS.
[8]	USA	Single centre evaluation of technical live performance and DY comparison of PillCam SB vs EndoCapsule and MiroCam	Prospective	Head-to-head comparison of 2 capsule systems	• CR: PillCam SB vs EndoCapsule and MiroCam; CR=NS.	• CR: PillCam SB vs EndoCapsule and MiroCam; CR=NS.

DY: Diagnostic yield; CE: Capsule endoscopy; OGB: Obscure gastrointestinal bleeding; pts: Patients; CR: Completion rate; NS: Not significant (statistically); SB: Small-bowel; SBTT: Small-bowel transit time.
Most common indications: OGIB (60%); investigation of clinical symptoms (0.6%); definite suspected CD (0.4%);

Pooled DRs for overall, OGIB, CD, neoplasia: 59.4%, 60.5%, 55.3%, 55.9%, respectively;

Commonest cause for OGIB: angiodysplasia (50%);

Pooled CRs (overall): 83.5%, breakdown: 83.6% (OGIB), 84.8% (clinical symptoms); 84.2% (CD);

Pooled CRs (overall): 14.5%, breakdown: 12% (OGIB), 26% (clinical symptoms); 21% (CD);

Hence, most common indication for SBCE vs OGIB, with high DR and low RR.

A relatively high RR is associated with definite/suspected CD and neoplasms

Table 3: Available meta-analyses and systematic reviews in the field of small-bowel capsule endoscopy

Ref.	Title	Search (start-end date)	Type	Subject	Data extractors	Titles entered meta-analysis	Individuals included	Outcome/conclusion	
Liao et al	Indications, detection, completion, and retention rates of SBCE: A systematic review	2000-June 2009	Systematic review of evidence base	Indications, DR, CR and RR of SBCE	227	227	227.53	Pts; 22840 CE	
Marmo et al	Meta-analysis: Capsule enteroscopy in diagnosis of small bowel diseases	1966-Mar 2005	Meta-analysis of diagnostic test accuracy	DY/safety of SBCE vs alternative modalities (PE, SBBaR or enteroclysis) in SB disease	2	187	17	526 pts (290 OGIB and 237 CD)	
Triester et al	A meta-analysis of the yield of CE compared to other diagnostic modalities in patients with OGIB	N/A-April 2005	Meta-analysis of diagnostic test accuracy	IY (yield of CE-yield of comparative modality) and 95%CI of CE over comparative modalities	2	80	14	396 CE-PF	88 CE-SBBaR
Leighton et al	Capsule enteroscopy: A meta-analysis for use with OGIB and CD	N/A-April 2005	Meta-analysis of diagnostic test accuracy	DY and safety of SBCE vs alternative modalities (PE, SBBaR or enteroclysis) in SB disease	2	80	20	517 pts	
Leighton et al	Capsule enteroscopy: A meta-analysis for use with OGIB and CD	N/A-April 2005	Meta-analysis of diagnostic test accuracy	DY and safety of SBCE vs alternative modalities (PE, SBBaR or enteroclysis) in SB disease	2	80	20	517 pts	
Triester et al	A meta-analysis of the yield of CE compared to other diagnostic modalities in patients with non-stricturing SB Crohn’s disease	N/A-Aug 2005	Meta-analysis of diagnostic test accuracy	IY (yield of CE-yield of comparative modality) and 95%CI of CE over comparative modalities	2	82	9	250 pts	

Most common indications: OGIB (60%); investigation of clinical symptoms (0.6%); definite suspected CD (0.4%);

Pooled DRs for overall, OGIB, CD, neoplasia: 59.4%, 60.5%, 55.3%, 55.9%, respectively;

Commonest cause for OGIB: angiodysplasia (50%);

Pooled CRs (overall): 83.5%, breakdown: 83.6% (OGIB), 84.8% (clinical symptoms); 84.2% (CD);

Pooled CRs (overall): 14.5%, breakdown: 12% (OGIB), 26% (clinical symptoms); 21% (CD);

Hence, most common indication for SBCE vs OGIB, with high DR and low RR.

A relatively high RR is associated with definite/suspected CD and neoplasms

For OGIB, 37% (95%CI: 29.6-44.1) for Crohn's disease 45% (95%CI: 30.9-58.0);

For clinically significant findings DY was 42% (CE) vs 36% (SBBaR) IY = 36%

For OGIB, 37% (95%CI: 29.6-44.1) for Crohn's disease 45% (95%CI: 30.9-58.0);

For CE over PE/SB radiography to diagnose SB pathology in pts with OGIB (yield comparable to intraoperative endoscopy);

Incremental yield of CE over PE/SB radiography is > 30% for clinically significant findings, due to visualization of additional vascular, inflammatory lesions by CE;

CE was also superior to SB radiography, C + IL, CT enterography, PE for diagnosing non-stricturing SBCD;

Marked improvement in yield with the use of CE over all other methods in pts who had established CD and were evaluated for SB recurrence;

Unknown whether these results will translate into improved pt outcomes with the use of CE vs alternative methods;

Sub-analysis (pts with suspected CD): no difference in DY CE vs SBBaR (n = 88), IL (n = 48), CT enterography (n = 10), PE (n = 100);
Reference	Methodology	Study Parameters	Key Findings	
Pasha et al.	Meta-analysis	12 eligible studies (6 prospective/6 retrospective), including 16 sets of data;	- Significant difference in SBVQ between pts prepared with purgatives (n = 263) vs pts prepared with clear liquids (n = 213); OR = 1.813 (95%CI: 1.251-2.628, P = 0.002);	- There was no statistically significant difference regarding CR rate. Purgatives did not affect VCE GTT or VCE SBTT.
Chen et al.	Meta-analysis	8 studies (n = 277 pts) prospectively compared the yield of CE and DBE were included;	- No difference between the yield of CE and DBE (70/277 vs 156/277, OR 1.21, 95%CI: 0.64-2.29);	- No major complications reported;
Rokkas et al.	Meta-analysis	For suspected CD, several comparisons met statistical significance; Yields in this subgroup were: CE vs GTT: 71% (IYW = 3%, 95%CI: 58%-74%), CE vs SBTT: 63% (IYW = 6%, 95%CI: 50%-76%), CE vs SBCE: 71% (IYW = 7%, 95%CI: 61%-80%);	- No significant difference regarding CR rate. Purgatives did not affect VCE GTT or VCE SBTT.	
Dionisio et al.	Meta-analysis	For suspected CD, several comparisons met statistical significance; Yields in this subgroup were: CE vs GTT: 71% (IYW = 3%, 95%CI: 58%-74%), CE vs SBTT: 63% (IYW = 6%, 95%CI: 50%-76%), CE vs SBCE: 71% (IYW = 7%, 95%CI: 61%-80%);	- No significant difference regarding CR rate. Purgatives did not affect VCE GTT or VCE SBTT.	
Wu et al.	Meta-analysis	Adequate or excellent SB mucosa visualization in pts receiving Simethicone for GI endoscopic visibility;	- Adequate or excellent SB mucosa visualization in pts receiving Simethicone vs those who did not (66.1% vs 37.2%);	- No significant difference regarding CR rate. Purgatives did not affect VCE GTT or VCE SBTT.
Rokkas et al.	Meta-analysis	For suspected CD, several comparisons met statistical significance; Yields in this subgroup were: CE vs GTT: 71% (IYW = 3%, 95%CI: 58%-74%), CE vs SBTT: 63% (IYW = 6%, 95%CI: 50%-76%), CE vs SBCE: 71% (IYW = 7%, 95%CI: 61%-80%);	- No significant difference regarding CR rate. Purgatives did not affect VCE GTT or VCE SBTT.	
CE has a significantly higher DY in patients with suspected and established SBCE-CD: A meta-analysis

Dominio et al.[29] 2010 - May 2009

- Meta-analysis of diagnostic test accuracy
- DY of CE vs. modalities in patients with suspected/established CD
- Pooled SBCE-DY in IDA: 47% (95%CI: 42%-52%), with significant heterogeneity among included studies

Wu et al.[2] 2009 - Nov 2009

- Systematic review and meta-analysis of RCTs of Simethicone for GI endoscopic visibility

- Systematic review of RCTs
- Simethicone and CE
- Pooled DY for CE: 62% (95%CI: 47.3%-76.1%)

- Use of CE in diagnosis and management of pediatric patients, based on meta-analysis

Cohen et al.[26] 2010 - Jan 2001

- Systematic review of evidence base
- Systematic compilation of data on indications and outcomes of CE in pediatric patients
- Pooled OR = 2.84 (95%CI: 1.74-4.65, P = 0.00); no significant heterogeneity (P = 0.28);
- Sensitivity analyses stratified by factors such as bowel preparation (purging vs. fasting): Significant results for bowel preparation + fasting (OR = 4.43, 95%CI: 1.82-10.76, P = 0.00) with P = 0.78, I^2 = 38.9%.

- DBE and CE for OGIB: An updated meta-analysis

Teshima et al.[30] 2010 - June 2001

- Meta-analysis of diagnostic test accuracy
- OGB/B vs. CE or DBE
- Pooled DY for CE: 62% (95%CI: 47.3%-76.1%)
- Pooled DBE-DY 56% (95%CI: 48.9%-62.1%); OR for CE vs. DBE 1.39 (95%CI: 0.88-2.20; P = 0.16).

- Meta-analysis: efficacy of SB preparation for SBCE

Behery et al.[31] 2010 - Jan 2001

- Meta-analysis of RCTs
- Purgative use vs. fasting alone for SBCE
- Pooled DY for CE: 62% (95%CI: 47.3%-76.1%)
- Pooled DBE-DY 56% (95%CI: 48.9%-62.1%); OR for CE vs. DBE 1.39 (95%CI: 0.88-2.20; P = 0.16).

- The role of video CE in the diagnosis of coeliac disease: A meta-analysis

Rokkas et al.[32] 2011 - N/A

- Meta-analysis of diagnostic test accuracy
- Coeliacac CE
- Pooled CE: Sens 89% (95%CI: 82%-94%) and Spec 95% (95%CI: 89%-98%), AuROC: 0.9584; although not as accurate as pathology, CE a reasonable alternative method of diagnosing coeliac disease

- Diagnostic yield of SBCE in patients with IDA: A systematic review

Koulaouzidis et al.[33] 2011 - Jan 2001

- Systematic review of evidence base
- IDA and CE
- Pooled SBCE-DY in IDA: 47% (95%CI: 42%-52%), with significant heterogeneity among included studies (I^2 = 78.8%, P < 0.0001).
- Pooled SBCE-DY (subgroup 1: 4 studies focused solely on IDA pts): 66% (95%CI: 61.0%-72.3%, I^2 = 44.3%)
- Pooled SBCE-DY (subgroup 2: 20 studies not focusing only on IDA pts): 44% (95%CI: 39.4%-48%, I^2 = 64.9%);
- SBCE in subgroup 1: more vascular (31% vs 22.6%, P = 0.007), inflammatory (17.8% vs 11.3%, P = 0.009), neoplastic (7.95% vs 2.25%, P < 0.0001) lesions detected.

CE: Capsule endoscopy; N/A: Not available or not applicable; Sens: Sensitivity; Spec: Specificity; AuROC: Area under Receiver operation characteristics curve; DBE: Double-balloon enteroscopy; OGB/B: Observe gastrointestinal bleeding; DY: Diagnostic Yield; pts: Patients; IY: Incremental yield; GTT: Gastric transit time; SBTT: Small bowel transit time; SBCE: Small-bowel capsule endoscopy; OR: Odds ratio; RR: Relative risk; C + IL: Colonoscopy with ileoscopy; PE: Push enteroscopy; SBCD: Small bowel Crohn’s disease; CT: Computed tomography; IDA: Iron deficiency anemia; FEM: Fixed effect model.

May 2013 - Nov 2011

Volume 19 | Issue 24

Koulaouzidis A et al. Tabulated review on capsule endoscopy
Table 4 Studies evaluating the clinical application of faecal calprotectin in the setting of small-bowel capsule endoscopy

Ref.	Country	Centre	Study Design	Participants	FC	CE	Objective(s)	Outcome(s)
Goldstein et al⁴⁰	United States	Multi-centre	Prospective study, double-blind, placebo controlled	334 healthy subjects	N/A	M2A®; Given® Imaging, Yokenearn, Israel	Evaluate incidence of SB injury and correlation with FC in healthy subjects on celecoxib or ibuprofen + omeprazole	►Mean increase in FC higher in subjects on ibuprofen+omeprazole compared with celecoxib alone (P < 0.001); ▶No correlation between FC and SB mucosal breaks
Hawkey et al⁴³	United Kingdom	Multi-centre	Prospective study, double-blind, placebo controlled	139 healthy subjects	Phical Calprotectin Test Kit NovaTec Immunodiagnostics, GmbH Dietzenbac, Germany	M2A®; Given® Imaging, Yokenearn, Israel	Investigate SB injury lumiracoxib reduces vs naproxen + omeprazole	►More SB mucosal breaks on naproxen+omeprazole (77.8% vs 40.4%, P < 0.001); ▶Furthermore, higher FC vs placebo (96.8 vs 14.5 μg/g, P < 0.001); ▶27.7% on lumiracoxib had SB mucosal breaks (P=0.019; vs naproxen, P < 0.001)
Smecuol et al⁴³	Spain, Argentina, Multi-centre	Prospective study, non-blinded study	20 healthy subjects	Calprest[®] Eurohospital Spa, Trieste, Italy	M2A®; Given® Imaging, Yokenearn, Israel	Determine SB damage by low-dose ASA (on a short-term basis)	▶Short-term administration of low-dose ASA associated with mucosal abnormalities of the SB mucosa; ▶Median baseline FC (6.05 μg/g; range 1.9-79.2 μg/g) increased significantly after ASA use	
Werlin et al⁴³	United States, Israel	Multi-centre	Prospective study, N/A	42 pts with CP[®] (aged 10-36 yr); 29 had pancreatic insufficiency	Calprest[®] Eurohospital Spa, Trieste, Italy	PillCam[®]SB; Given® Imaging, Yokenearn, Israel	Examine the SB of pts with CF without overt evidence of GI disease using CE	▶Varying degrees of diffuse areas of inflammatory findings in the SB: oedema, erythema, mucosal breaks and frank ulcerations; ▶No adverse events recorded; FC markedly high in pts with pancreatic insufficiency, 235 μg/g (normal < 50)
Koulaouzidis et al⁴³	United Kingdom	Single centre	Retrospective Chart study	70 pts with suspected CD and 10-36 yr; ≥ 92% bi-directional endoscopy	CALPRO NovaTec Immunodiagnostics GmbH, Dietzenbac, Germany	PillCam[®]SB; Given® Imaging, Yokenearn, Israel	Value of FC as selection tool for further investigation of the SB with SBCE, in a cohort of pts with suspected CD	▶Short-term administration of low-dose ASA associated with higher SBCE (65%); confirmed CD in 50%; ▶Measurement of FC prior SBCE: useful tool to select patients for referral. If FC < 100 μg/g SBCE is not indicated (NPV 1.0)
Jensen et al⁴³	Denmark	Single centre	Prospective, blinded study	83 pts from GI OPD clinics with suspected CD	Calprotectin ELISA, BÜHLMANN Laboratories AG, Basel, Switzerland	PillCam[®]SB; Given® Imaging, Yokenearn, Israel	Determine FC levels in CD restricted to SB compared to colonic CD, in pts on first diagnostic work-up; Assess the Sens and Spec of FC in suspected CD	▶In pts with SB or colonic CD FC is equal: median 890 μg/g vs 830 mg/kg, respectively (P = 1.0); ▶FC cut-off ≤ 50 μg/g: 92% and 94% Sens for SB and colonic CD, respectively; ▶Overall, Sens and Spec for FC: 95% and 56%; ▶CD was ruled out with NPV of 92%; ▶In suspected CD, FC is effective marker to t/o CD and select patients for endoscopy
Koulouzidis A et al. Tabulated review on capsule endoscopy

Koulouzidis et al. United Kingdom Single retrospective review 49 pts known or suspected CD CALPRO NovaTec Immuno-diagnostics GmbH, Dietzenbach, Germany PillerCam®; Given® Imaging, Yokneam, Israel; MiroCam®; IntroMedic Co., Seoul, South Korea Assess performance of 2 SBCE inflammation scoring systems (LS and CECDAI) correlating them with FC; Define threshold levels for CECDAI ▶ LS performs better than CECDAI in describing SB inflammation, especially at FC < 100 μg/g ▶ CECDAI levels of 3.8 and 5.8 correspond to 1.5 thresholds of 135 and 790, respectively

Sipponen et al. Finland Single prospective study 84 pts known or suspected CD Calpresp® Eurosperital SpA, Trieste, Italy PillerCam®; Given® Imaging, Yokneam, Israel; MiroCam®; IntroMedic Co., Seoul, South Korea Study the role of FC and S100A12 in predicting SB inflammatory lesions ▶ CE abnormal in 35/84 (42%) pts: 14 CD, 8 NSAID-enteropathy, 8 angioectasias, 4 polyps/tumours, 1 ischamic stricture ▶ Median FC/S100A12: 22 μg/g (range: 2-342 μg/g) / 0.08 μg/g (range: 0.003-1.215 μg/g) ▶ FC significantly higher in CD pts (median 91, range: 2-312) compared with pts with normal CE or other abnormalities (P = 0.008) ▶ Faecal S100A12 (0.087 μg/g, range: 0.008-0.896 μg/g): no difference between the groups (P = 0.166) ▶ Sens, Spec, PPV, NPV in detecting SB inflammation; FC (cut-off 50 μg/g): 59%, 71%, 42%, 83%; S100A12 (cut-off 0.06 μg/g): 59%, 66%, 38%, 82%, respectively

Ref.	CE	Type of CE model; Company	AoV seen, n (%)	Reviewers speed (fps)	Frames AoV visible	Comments	
Wijeratne et al.	138	NS	9 (6.0)	1	NS	NS	4 FAP patients (AoV not seen)
Kong et al.	110	M2A®; Given® Imaging Ltd.	48 (43.6)	2	15	3.5 ± 2.5	
Clarke et al.	125	M2A®; Given® Imaging Ltd.	13 (10.4)	5	NS		
Iaquinto et al.	23	PillerCam®; Given® Imaging Ltd.	0 (0.0)	2	NS	NS	
Metzger et al.	20	PillerCam®; Given® Imaging Ltd.	1 (5.0)	NS	NS		
		PillerCam®; Given® Imaging Ltd.	5 (25.0)	NS	NS		
Katsinelos et al.	14	NS	0 (0.0)	1	NS	N/A	FAP patients (11/23 had duodenal polypy)
Nakamura et al.	96	PILCam®; Given® Imaging Ltd.	18 (18.0)	2	10	NS	
Karagianni et al.	10	PILCam®; Colon; Given® Imaging Ltd.	6 (6.0)	NS	NS	Two-headed PILCam®	
Lee et al.	30	PILCam®; Given® Imaging Ltd.	13 (43.3)	NS	NS		
		PILCam®; Given® Imaging Ltd.	15 (50.0)	NS	NS		
		PILCam®; Given® Imaging Ltd.	0 (0.0)	2	NS	N/A	
Selby et al.	50	PILCam®; Given® Imaging Ltd.	9 (18.0)	2	NS		
		PILCam®; Given® Imaging Ltd.	0 (0.0)	2	NS	N/A	Two-headed PILCam®
		PILCam®; Given® Imaging Ltd.	1 (0.0)	2	NS	N/A	
		PILCam®; Given® Imaging Ltd.	4 (36.4)	1	NS	Two-headed PILCam®	
		PILCam®; Given® Imaging Ltd.	1 (14.3)	1	9		
		PILCam®; Given® Imaging Ltd.	13 (43.3)	6	7	3.1 ± 1.1	
		PILCam®; Given® Imaging Ltd.	6 (20.0)	6	9		
		PILCam®; Given® Imaging Ltd.	28 (10.7)	1	6	36.35 ± 72.34	
Koulaouzidis et al.	148	PILCam®; Given® Imaging Ltd.	13 (8.9)	1	6	42.46 ± 69.3	
		MiroCam®; IntroMedic Ltd.	18 (8.6)	1	6	87.20 ± 248.4	
Friedrich et al.	25	CapsCam®SV1; Capsovision Ltd.	22 (71)	3	NS	3.1 ± 1.8	

1Published only as abstracts; 2mean ± SD. CE: Capsule endoscopy; NS: Not stated; N/A: Not available or not applicable; AoV: Ampulla of Vater; fps: Frames per second; FAP: Familial adenomatous polyposis syndrome.

CAPSULE ENDOSCOPE ASPIRATION; HOW COMMON IS THIS?

Capsule enteroscopy is generally considered safe, having an overall complication rate of about 1%-3%. Indeed, the most feared complication of CE is capsule retention in the small bowel (overall retention rate 1.5%-2%), which seems directly related with the clinical indication for SBCE. Interestingly enough, other possible complications - which were postulated at the time of CE introduction (i.e., retention inside colonic diverticula, interaction with pacemakers, etc.) to represent

Unoubtedly, the most feared complication of CE is...
potential hurdles for the method, were shown to be very infrequent and/or without clinically relevant consequences[67-71]. Conversely, capsule aspiration - an unexpected complication - has been reported with increasing frequency (Table 6)[72-98]. Overall, this is probably related to the increase in the mean age of patients undergoing CE. In fact, capsule aspiration occurs in 1 out of 800-1000 procedures[88] mostly in elderly male patients with comorbidities and/or swallowing disorders. In the majority of cases capsule aspiration resolves quickly, because patients expectorate the capsule. However, in selected cases, emergency bronchoscopy is required. Thus far, only one fatality-directly associated with capsule aspiration-has been reported[99].

CAN WE SHORTEN OUR READING TIME IN CAPSULE ENDOscopy?

Few will disagree with the notion that CE is a time-consuming procedure. In fact, although capsule administration and swallowing requires only a couple of minutes, SBCE transit through the small bowel, although variable, on average lasts about 2-5 h[99]. This results in 14400-72000 frames, depending on capsule frame rate (Table 1). This large amount of visual information requires careful evaluation by the CE reader. In addition, any small-bowel lesion may only be visible in just a few or even in a single frame[99]. Therefore, focused and unidivided attention is required for the entire duration of each CE video evaluation. In light of all that, several attempts have been made to develop technical software features, in order to make CE video analysis easier and shorter (without jeopardising its accuracy). The first software feature designed for this purpose was the Suspected Blood Indicator (SBI), an automatic system able to pick up, in a completely automatic fashion, frames containing several red pixels and, therefore (theoretically), to detect blood and or other red-coloured lesions. Nevertheless, the accuracy profile of this tool (Table 7) is suboptimal and, at present time[96-102], it can be used only as supportive tool[102].

Given®Imaging Ltd. has also introduced another software tool, which aims specifically at shortening the CE reading time, the QuickView. This sampling tool is able to select one frame every X CE frames (the sampling rate can be set by the reader) and therefore present, with the click of a tag-button, a shortened CE video which can be reviewed in a few minutes. Although the sampling method of the QuickView system is only quantitative, it has showed a promising sensitivity and specificity in identifying small-bowel lesions (Table 8), and reveals promising potential when coupled with other image enhancing systems[104-112]. Olympus has similar software function (express mode) and are we aware of a single relevant study with very similar results[113].

In the last few years, Given®Imaging Ltd., through a collaboration with Fujinon Inc., Japan introduced the electronic chromo-endoscopy (Fujinon Intelligent Chromo Endoscopy, FICE) in the field of capsule enteroscopy. Data available thus far, show that application of FICE in SBCE videos, leads to improved image quality and definition of the surface texture of small-bowel lesions (Table 9)[114-120]. Although this seems to facilitate the detectability of small-bowel findings, it is still under question whether it proves to be clinically significant[121]. Similar function from Olympus Inc., shows promising results[122].

WHAT’S NEW ON THE FIELD OF SMALL-BOWEL CAPSULE ENDOscopy?

As aforementioned, there are differences among different capsule models (Table 1). Since its introduction in clinical practice in 2001, CE technology has been significantly. For instance, battery life is longer, image capture frame rate has increased, angle of view is now wider, light control has been optimized, and many real time viewing systems are now available. Nevertheless, these impressive advancements, do not allow overcoming the main current limitation of CE, i.e., uncontrolled propulsion; CE relies totally on natural bowel peristalsis, i.e., it still remains a rather “passive” diagnostic technique.

Several research groups are working to design brand new capsules able to actively move or to be remotely manoeuvred through their descent in the small bowel[123]. These new capsules would allow not only recognizing a small bowel lesion but also, in a near future, to collect targeted tissue samples or to deliver drugs (Table 10)[124-141].

CONCLUSION

Since CE introduction in clinical practice in 2001, over 1500 papers, focused on SBCE, have been published (PubMed search 17/03/2012; keyword term: “small bowel capsule endoscopy”; available from: http://www.ncbi.nlm.nih.gov/pubmed/?term=s+small+bowel+capsule+endoscopy). Out of those, < 20% are clinical trials; case reports and reviews account for about 40% of published evidence. As the amount of information has increased exponentially, and in fact continues to do so[12], it is often difficult for the busy clinician to retrieve and filter data or extract answers to questions arising from the daily clinical practice. In the present review, we opted to answer certain pertinent questions on contentious and important issues in CE through comprehensive tables. Essentially, we aim to present an easy-to-read review with all the necessary evidence to support opinions expressed herein.

The analysis of the publications listed in the tables clearly demonstrates how SBCE, although much “younger” than other endoscopic techniques, has found a definite role in the diagnostic work-up of certain patient-subgroups. Further success of this modality depends not only on continuous technological progress (i.e., introduction of new capsule models, improved battery life and/or development of new reading software features)[142] but also on the search for new diagnostic strategies, aiming to select for SBCE those patients with higher potential for positive DY[124,131,141,177].
Table 6 Case reports of aspiration of capsule endoscopes

Case	Comorbidities	Swallowing difficulties	Final diagnosis	No. of attempts to swallow CE/ingestion	Aspiration time/where in bronchial tree seen	Company	
Schneider et al[72]	50 s/bifurcation of the trachea	No Hx of dysphagia, coughing	Spontaneous resolution	2 min/trachea-bronchi	NS	M2A®	Given Imaging Ltd.
Sin et al[73]	No Hx of dysphagia, coughing	Last attempt recurrent coughing	Spontaneous resolution	2 min/trachea-bronchi	NS	M2A®	Given Imaging Ltd.
Tabib et al[74]	No Hx of dysphagia	Coughing, difficulty swallowing, gagging	Spontaneous resolution	1/coughed several times	NS	M2A®	Given Imaging Ltd.
Rondinotti et al[75]	No Hx of dysphagia	Coughing, difficulty swallowing	Spontaneous resolution	2 weeks/trachea-bronchi	NS	M2A®	Given Imaging Ltd.
Tabib et al[76]	No Hx of dysphagia	Coughing, difficulty swallowing	Spontaneous resolution	1/coughed several times	NS	M2A®	Given Imaging Ltd.
Supph et al[77]	No Hx of dysphagia	Coughing, difficulty swallowing	Spontaneous resolution	2 days/lobar bronchus	NS	M2A®	Given Imaging Ltd.
Koulaouzidis et al[78]	No Hx of dysphagia	Coughing, difficulty swallowing	Spontaneous resolution	1/coughed several times	NS	M2A®	Given Imaging Ltd.
Le et al[79]	No Hx of dysphagia	Coughing, difficulty swallowing	Spontaneous resolution	1/coughed several times	NS	M2A®	Given Imaging Ltd.
Broderskov et al[80]	No Hx of dysphagia	Coughing, difficulty swallowing	Spontaneous resolution	1/coughed several times	NS	M2A®	Given Imaging Ltd.
Choi et al[81]	No Hx of dysphagia	Coughing, difficulty swallowing	Spontaneous resolution	1/coughed several times	NS	M2A®	Given Imaging Ltd.
Depriest et al[82]	No Hx of dysphagia	Coughing, difficulty swallowing	Spontaneous resolution	1/coughed several times	NS	M2A®	Given Imaging Ltd.
Depriest et al[83]	No Hx of dysphagia	Coughing, difficulty swallowing	Spontaneous resolution	1/coughed several times	NS	M2A®	Given Imaging Ltd.
Choi et al[84]	No Hx of dysphagia	Coughing, difficulty swallowing	Spontaneous resolution	1/coughed several times	NS	M2A®	Given Imaging Ltd.
Depriest et al[85]	No Hx of dysphagia	Coughing, difficulty swallowing	Spontaneous resolution	1/coughed several times	NS	M2A®	Given Imaging Ltd.
Choi et al[86]	No Hx of dysphagia	Coughing, difficulty swallowing	Spontaneous resolution	1/coughed several times	NS	M2A®	Given Imaging Ltd.
Depriest et al[87]	No Hx of dysphagia	Coughing, difficulty swallowing	Spontaneous resolution	1/coughed several times	NS	M2A®	Given Imaging Ltd.
Choi et al[88]	No Hx of dysphagia	Coughing, difficulty swallowing	Spontaneous resolution	1/coughed several times	NS	M2A®	Given Imaging Ltd.
Depriest et al[89]	No Hx of dysphagia	Coughing, difficulty swallowing	Spontaneous resolution	1/coughed several times	NS	M2A®	Given Imaging Ltd.
Choi et al[90]	No Hx of dysphagia	Coughing, difficulty swallowing	Spontaneous resolution	1/coughed several times	NS	M2A®	Given Imaging Ltd.
Depriest et al[91]	No Hx of dysphagia	Coughing, difficulty swallowing	Spontaneous resolution	1/coughed several times	NS	M2A®	Given Imaging Ltd.
Choi et al[92]	No Hx of dysphagia	Coughing, difficulty swallowing	Spontaneous resolution	1/coughed several times	NS	M2A®	Given Imaging Ltd.
Kurtz et al. 73/male Renal cell cancer,
MV (bovine), hyperlipidaemia, melena NS No Hx of dysphagia Sips of water, 1st attempt, 2 min later non-productive cough (20s) Level of carina; then right main stem bronchus Bronchoscopy-retrieval basket (multiple spontaneous ejections from trachea prior bronchscopy) NS

Lucendo et al. 80/male Advanced PD, DM, walking + speech difficulties PillCam®SB; Given Imaging Ltd. No Hx of dysphagia Several attempts/persistent coughing and some dyspnoea 20s/tracheobronchial tree Spontaneous resolution Oesophageal ulcer + ideal ulcer

Pezzoli et al. 82/male Unexplained anaemia, HTN NS No Hx of dysphagia NS/asymptomatic (minimal cough) 3d/in the right bronchus Spontaneous resolution NS

Parker et al. 77/female Hysterectomy NS No Hx of dysphagia Initial attempt unsuccessful/chocking episode, CE coughed-up NS/NS Spontaneous resolution, endoscopic placement with AdvanCE® device Patient suffered intracranial bleed, eventually succumbed

Despott et al. 65/male COPD, cirrhosis, pancreatitis NS No Hx of dysphagia NS/asymptomatic NS/right main bronchus Rigid bronchoscopy-Roth net Endoscopic placement with AdvanCE® device

Poudel et al. 80/male NS COPD, GORD NS No Hx of dysphagia NS/NS brief coughing NS/left main bronchus Bronchoscopy-snare + Roth net Endoscopic placement with AdvanCE® device

Girdhar et al. 81/male COPD, GORD NS No Hx of dysphagia NS/NS NS/right main bronchus Rigid bronchoscopy-crocodile grasping forceps + stiff-wire basket with a pin-vise handle Endoscopic placement with AdvanCE® device

Gourou et al. 83/male NS COPD, GORD NS No Hx of dysphagia NS/NS NS/right main bronchus Rigid bronchoscopy-crocodile grasping forceps + stiff-wire basket with a pin-vise handle Endoscopic placement with AdvanCE® device

MV: Mitral valve; BMI: Body mass index; HHT: Hereditary haemorrhagic telangiectasia; IDA: Iron deficiency anaemia; CHF: Chronic heart failure; IHD: Ischaemic heart disease; AF: Atrial fibrillation; CRF: Chronic renal failure; Hx: History; Ns: Not stated; HTN: Hypertension; DM: Diabetes mellitus; CVA: Cerebrovascular accident; PVD: Peripheral vascular disease; PD: Parkinson’s disease; COPD: Chronic obstructive pulmonary disease; GORD: Gastro-oesophageal reflux disease; CE: Capsule endoscopy.

Table 7: Studies looking at the clinical validity of Suspected Blood Indicator, feature of capsule endoscopy reading software, in small-bowel capsule endoscopy

Ref.	Country Centre	Objective(s)	Study type	Design	CE type	Outcome(s)	Conclusions
Gross et al.	United States Single centre	Accuracy of SBI to number of blood transfusions	Retrospective	▶Gold standard for lesions detected by experienced CE reviewer	M2A; Given Imaging Ltd.	▶Gold standard: 72 pts; ▶pts received blood transfusions ranging between 0-16 units; ▶Overall: A total of 17 pts had positive SBI. Active bleeding in 16 pts, who were transfused an average of 8 units before the study; ▶55 pts had a negative SBI and no active bleeding was seen on their capsule studies. In this group, the average number of PRBC transfused was 1 unit. There was one patient who had a false positive SBI with no active bleeding seen in the capsule study review	Pts receiving blood transfusions are more likely to have a positive SBI correlating with the localization of active bleeding
Liangpunsakul et al.	United States Single centre	Assess accuracy of SBI	Retrospective	▶Gold standard for lesions detected by experienced CE reviewer; ▶Significant lesions considered AVMs, ulcers, erosions, active bleeding; ▶Reviewing speed: 35fps	M2A; Given Imaging Ltd.	▶Gold standard: 109 lesions; ▶SBI: 31 potential areas of blood correctly identified lesions: 26; ▶Overall: SBI (sens, PPV, accuracy): 25.7%, 90%, 34.8%, respectively; ▶For actively bleeding SBI lesions only: SBI (sens, PPV, accuracy): 81.2%, 81.3%, 83.3%, respectively	SBI has good Sens and PPV for actively bleeding SB lesions
For suspected CD: SBI (Sens, NPV): 64%, 80.4%, respectively; SBI has low Sens.

Assess Sens/Spec of SBI (in OGIB).

Gold standard for lesions detected by experienced CE reviewers: SBI tags marked by another investigator; SBI tags calculated both per lesion and per patient by two reviewers, SBI tags marked by another investigator; reviewing speed: NS.

For OGIB: SBI Sens 58.3%; for anaemia: SBI Sens 41.3%; for active intestinal bleeding: 58.3%, 70%, respectively; for actively bleeding lesions: SBI Sens, Spec, PPV, NPV: 58.3%, 75.5%, 75%, 87.2%, respectively.

Overall Sens: 28%; Spec of SBI: 80.4%, 95 patients; 209 red findings; reviewing speed: 8-15 fps.

Concordance: same time code in frames selected by the reader and those tagged by SBI; review time: NS.

Complete review of the recordings is still necessary.

Lagrange et al.®

Park et al.®

D'Halluin et al.®

Signorielli et al.®

France

Spain

Italy

United States

Korea

Assess Sens/Spec of SBI (in QOB).

M2A;

Imaging Ltd.

SBI has low Sens/Spec in per-lesion and per-patient SBI evaluation.

SBI-based detection and capsule passage velocity in the models.

Red spots detection rate differs significantly per background colour of SB model, background velocity in the models and capsule passage velocity (0.5, 1, 2 cm/s).

SBI red spots detection rate decreases at rapid CE passage (1-2 cm/s) (P = 0.042) and increases at low CE velocity (0.5 cm/s) (P = 0.001).

Red spots detection rate no different according to velocity for light brown (P = 0.643) or dark brown (P = 0.396) background.

Red spots detection rate decreases at rapid CE passage (1-2 cm/s) (P = 0.042) and increases at low CE velocity (0.5 cm/s) (P = 0.001).

Red spots detection rate no different according to velocity for light brown (P = 0.643) or dark brown (P = 0.396) background.

SBI performance characteristics: Sensitivity of SBI (Sen): 64%, 80.4%, respectively; SBI Sens higher for identification of blood (61%) than for nonbleeding red spots, e.g., AVMs (26%).

SBI red spots detection rate decreases at rapid CE passage (1-2 cm/s) (P = 0.042) and increases at low CE velocity (0.5 cm/s) (P = 0.001).

Red spots detection rate no different according to velocity for light brown (P = 0.643) or dark brown (P = 0.396) background.

SBI performance characteristics: Sensitivity of SBI (Sen): 64%, 80.4%, respectively; SBI Sens higher for identification of blood (61%) than for nonbleeding red spots, e.g., AVMs (26%).

SBI red spots detection rate decreases at rapid CE passage (1-2 cm/s) (P = 0.042) and increases at low CE velocity (0.5 cm/s) (P = 0.001).

Red spots detection rate no different according to velocity for light brown (P = 0.643) or dark brown (P = 0.396) background.

SBI performance characteristics: Sensitivity of SBI (Sen): 64%, 80.4%, respectively; SBI Sens higher for identification of blood (61%) than for nonbleeding red spots, e.g., AVMs (26%).

SBI red spots detection rate decreases at rapid CE passage (1-2 cm/s) (P = 0.042) and increases at low CE velocity (0.5 cm/s) (P = 0.001).

Red spots detection rate no different according to velocity for light brown (P = 0.643) or dark brown (P = 0.396) background.

SBI performance characteristics: Sensitivity of SBI (Sen): 64%, 80.4%, respectively; SBI Sens higher for identification of blood (61%) than for nonbleeding red spots, e.g., AVMs (26%).

SBI red spots detection rate decreases at rapid CE passage (1-2 cm/s) (P = 0.042) and increases at low CE velocity (0.5 cm/s) (P = 0.001).

Red spots detection rate no different according to velocity for light brown (P = 0.643) or dark brown (P = 0.396) background.

SBI performance characteristics: Sensitivity of SBI (Sen): 64%, 80.4%, respectively; SBI Sens higher for identification of blood (61%) than for nonbleeding red spots, e.g., AVMs (26%).

SBI red spots detection rate decreases at rapid CE passage (1-2 cm/s) (P = 0.042) and increases at low CE velocity (0.5 cm/s) (P = 0.001).

Red spots detection rate no different according to velocity for light brown (P = 0.643) or dark brown (P = 0.396) background.

SBI performance characteristics: Sensitivity of SBI (Sen): 64%, 80.4%, respectively; SBI Sens higher for identification of blood (61%) than for nonbleeding red spots, e.g., AVMs (26%).

SBI red spots detection rate decreases at rapid CE passage (1-2 cm/s) (P = 0.042) and increases at low CE velocity (0.5 cm/s) (P = 0.001).

Red spots detection rate no different according to velocity for light brown (P = 0.643) or dark brown (P = 0.396) background.

SBI performance characteristics: Sensitivity of SBI (Sen): 64%, 80.4%, respectively; SBI Sens higher for identification of blood (61%) than for nonbleeding red spots, e.g., AVMs (26%).

SBI red spots detection rate decreases at rapid CE passage (1-2 cm/s) (P = 0.042) and increases at low CE velocity (0.5 cm/s) (P = 0.001).

Red spots detection rate no different according to velocity for light brown (P = 0.643) or dark brown (P = 0.396) background.

SBI performance characteristics: Sensitivity of SBI (Sen): 64%, 80.4%, respectively; SBI Sens higher for identification of blood (61%) than for nonbleeding red spots, e.g., AVMs (26%).

SBI red spots detection rate decreases at rapid CE passage (1-2 cm/s) (P = 0.042) and increases at low CE velocity (0.5 cm/s) (P = 0.001).

Red spots detection rate no different according to velocity for light brown (P = 0.643) or dark brown (P = 0.396) background.

SBI performance characteristics: Sensitivity of SBI (Sen): 64%, 80.4%, respectively; SBI Sens higher for identification of blood (61%) than for nonbleeding red spots, e.g., AVMs (26%).

SBI red spots detection rate decreases at rapid CE passage (1-2 cm/s) (P = 0.042) and increases at low CE velocity (0.5 cm/s) (P = 0.001).

Red spots detection rate no different according to velocity for light brown (P = 0.643) or dark brown (P = 0.396) background.

SBI performance characteristics: Sensitivity of SBI (Sen): 64%, 80.4%, respectively; SBI Sens higher for identification of blood (61%) than for nonbleeding red spots, e.g., AVMs (26%).

SBI red spots detection rate decreases at rapid CE passage (1-2 cm/s) (P = 0.042) and increases at low CE velocity (0.5 cm/s) (P = 0.001).

Red spots detection rate no different according to velocity for light brown (P = 0.643) or dark brown (P = 0.396) background.

SBI performance characteristics: Sensitivity of SBI (Sen): 64%, 80.4%, respectively; SBI Sens higher for identification of blood (61%) than for nonbleeding red spots, e.g., AVMs (26%).

SBI red spots detection rate decreases at rapid CE passage (1-2 cm/s) (P = 0.042) and increases at low CE velocity (0.5 cm/s) (P = 0.001).

Red spots detection rate no different according to velocity for light brown (P = 0.643) or dark brown (P = 0.396) background.

SBI performance characteristics: Sensitivity of SBI (Sen): 64%, 80.4%, respectively; SBI Sens higher for identification of blood (61%) than for nonbleeding red spots, e.g., AVMs (26%).

SBI red spots detection rate decreases at rapid CE passage (1-2 cm/s) (P = 0.042) and increases at low CE velocity (0.5 cm/s) (P = 0.001).

Red spots detection rate no different according to velocity for light brown (P = 0.643) or dark brown (P = 0.396) background.

SBI performance characteristics: Sensitivity of SBI (Sen): 64%, 80.4%, respectively; SBI Sens higher for identification of blood (61%) than for nonbleeding red spots, e.g., AVMs (26%).

SBI red spots detection rate decreases at rapid CE passage (1-2 cm/s) (P = 0.042) and increases at low CE velocity (0.5 cm/s) (P = 0.001).

Red spots detection rate no different according to velocity for light brown (P = 0.643) or dark brown (P = 0.396) background.

SBI performance characteristics: Sensitivity of SBI (Sen): 64%, 80.4%, respectively; SBI Sens higher for identification of blood (61%) than for nonbleeding red spots, e.g., AVMs (26%).

SBI red spots detection rate decreases at rapid CE passage (1-2 cm/s) (P = 0.042) and increases at low CE velocity (0.5 cm/s) (P = 0.001).

Red spots detection rate no different according to velocity for light brown (P = 0.643) or dark brown (P = 0.396) background.
Table 8 Studies looking at the clinical validity of QuickView, feature of capsule endoscopy reading software, in small-bowel capsule endoscopy

Ref.	Country	Centre	Study type	Objective(s)	Design	Images	FICE	CE	Cases	QuickView	Lesions missed	
Imagawa et al.	Japan	Single centre	Retrospective	Assess whether visualization of SB lesions improves with FICE	▶ 5 experienced readers compared CE-WL images to their FICE counterparts	FICE 1,2,3 Given Imaging Ltd.	PillCam®SB1;		▶ Angiectasias (n = 23); ▶ Erosion/ulcers (n = 47); ▶ Tumour (n = 75)	▶ FICE 1: AVMs: improvement in 87% (20/25) cases; erosion/ ulceration: improvement 33.3% (26/78) cases; tumour images: improvement 25.3% (19/75) cases; ▶ FICE 2: AVMs: improvement in 87% (20/25) cases; erosion/ ulceration: improvement in 25.3% (12/47) cases; tumour images: improvement in 20.0% (15/75) cases; ▶ FICE 3: All images groups: only equivalence achieved in all cases; intra-observer agreement: good to satisfactory (5.4 or higher)	92.3 (QVWL P1 + P2) 96 (QVWL P1 + P2)	NS
							50	pts			12	

Table 9 Studies looking at the clinical validity of Fujinon® intelligent chromoendoscopy enhancement/Blue mode, feature of capsule endoscopy reading software, in small-bowel capsule endoscopy

Ref.	Country	Centre	Study type	Objective(s)	Design	Images	FICE	CE	Cases	QuickView	Lesions missed
Imagawa et al.	Japan	Single centre	Prospective	Assess whether FICE improves detection rate of SB lesions in CE	▶ A CE reader reviewed CE-WL videos; ▶ Another reader, reviewed CE-FICE videos with FICE 1,2,3	FICE 1,2,3 Given Imaging Ltd.	PillCam®SB1;		▶ Angiectasias detection: CE-WL: 17 AVMs; CE-FICE 1: 48 AVMs; CE-FICE 2: 45 AVMs; CE-FICE 3: 24 AVMs; significant CE-FICE 1 and 2 (P = 0.0003 and P < 0.0001, respectively) ▶ Detection rate for erosion, ulceration and tumour did not differ statistically between CE-WL and CE-FICE 1,2,3 ▶ Similar interpretation time (CE-WL: 36 ± 6.9 min; CE-FICE 1: 36 ± 6.4 min; CE-FICE 2: 38 ± 5.8 min; CE-FICE 3: 35 ± 6.7 min)		12
							50	pts			12
Gupta et al. [8]
Belgium	Single centre	Retrospective	CE videos analysed by 2 GI fellows with and without FICE 1,2,3; Reference standard: Senior consultant described findings as P0, P1 and P2 lesions
			60 pts with OGIB

- Assess potential benefit of FICE for SB lesion detection in patients with OGIB
- FICE 1,2,3

Krystallis et al. [9,10]
United Kingdom	Single centre	Retrospective	2 experienced physicians reviewed CE-WL images to FICE/Blue mode counterparts
			20 patients with OGIB

- Assess reproducibility and diagnostic accuracy of CE-FICE
- CE videos analysed by 2 GI

Duque et al. [11]
Portugal	Single centre	Prospective	4 physicians reviewed 150 FICE images
			20 patients with OGIB

- Assess FICE and Blue mode visualisation of SB lesions in CE
- FICE 1,2,3

Nakamura et al. [12]
Japan	Single centre	Prospective	One experienced physician analysed CE videos in QuickView mode; Mean reading time, sensitivity and specificity for angiodysplasia detection were evaluated including SBI
			50 pts with angiodysplasia

- Assess preview of angiodysplasia by CE-FICE preview (compared to CE-WL)
- FICE 1,2,3

Sakai et al. [13]
Japan	Single centre	Prospective	4 gastroenterology trainees interpreted 12 CE videos with WL and FICE 1,2,3
			60 AVMs

- Assess whether CE-FICE improves detectability of SB lesions by CE trainees and if it contributes to reducing the bile-pigment effect
- 82 erosions/ulcers

Summary

- Overall, 157 lesions diagnosed with CE-FICE vs 114 with CE-WL ($P = 0.15$);
- For P2 lesions CE-FICE Sens/Spec: 94%/95 vs CE-WL Sens/Spec: 97%/96, respectively; 5/55 AVMs better characterized with CE-FICE than CE-WL
- More P0 diagnosed by CE-FICE than CE-WL (39 vs 8, $P < 0.001$);
- Intra-class kappa correlations between fellows and reference: CE-FICE vs CE-WL for P2 lesions: 0.88 vs 0.92; CE-FICE vs CE-WL for P1 lesions: 0.61 vs 0.79
- Intra-class kappa correlations between fellows and reference: CE-FICE vs CE-WL for P2 lesions: 0.88 vs 0.92; CE-FICE vs CE-WL for P1 lesions: 0.61 vs 0.79
- Concordance between the 4 gastroenterologists: 0.650;
- CE-WL identified 75 findings and the CE-FICE 95
- Mean reading time: 14min for both CE-WL and CE-FICE reading;
- The two previews for angiodysplasia were significantly superior to the function of SBI ($P < 0.01$);
- Sens and Spec of CE-WL: 80% and 100%, respectively;
- Sens and Spec of CE-FICE: 91% and 86%, respectively;
- FICE reading was superior in Sens, while it resulted in more false (+)ve lesion findings and lower Spec:
- 60 angiodysplasia; CE trainees identified: 26 by CE-WL, 40 by CE-FICE1, 38 by CE-FICE2, 31 by CE-FICE3;
- 82 erosions/ulcerations, CE trainees identified: 38 by CE-WL, 62 by CE-FICE, 38 by CE-FICE2, 31 by CE-FICE3;
- CE-FICE 1 and 2 significantly improved detectability of angiodysplasia ($P = 0.0017$ and $P = 0.041$, respectively) and erosions/ ulcers ($P = 0.0012$ and $P = 0.0094$, respectively);
- Detectability of SB lesions by CE-FICE1 was not affected ($P = 0.59$) by the presence of bile-pigments;
- Detectability of SB lesions by CE-WL ($P = 0.020$) and CE-FICE2 ($P = 0.0023$) was reduced by the presence of bile-pigments;
- In poor bowel visibility conditions, CE-FICE yielded a high rate of false-positive findings

FICE: Fujinon Intelligent chromoendoscopy enhancement; **CE**: Capsule endoscopy; **SB**: Small bowel; **WL**: White light; **OGIB**: Obscure gastrointestinal bleeding; **SBI**: Suspected Blood Indicator; **AVM**: arterio-venous malformation; **κ**: Inter-observer agreement; **LICS**: Lesions of indeterminate clinical significance; **Sens**: Sensitivity; **Spec**: Specificity.
Table 10 Experimental and models in development for capsule-endoscopy the future?

Ref.	Project	Status	Active actuation	Magnetic propulsion	Therapeutic capabilities
Johannessen et al[79]	IDEAS: A miniature lab-in-a-pill multi-Sens or microsystem	Prototype	No	Yes	Yes
Karagözler et al[90]	Miniature endoscopy capsule robot using biomimetic micro-patterned adhesives	Prototype	Yes	No	No
Quirini et al[94]	An approach to capsule endoscopy with active motion	Prototype	Yes	No	No
Valdastri et al[123]	Wireless therapeutic endoscopic capsule: in vivo experiment	Prototype	No	Yes	Yes
Glass et al[124]	A legged anchoring mechanism for capsule endoscopes using micro-patterned adhesives	Prototype	Yes	No	No
Valdastri et al[125]	An endoscopic capsule robot: a meso-scale engineering case study	Concept	Yes	No	No
Tortora et al[128]	Propeller-based wireless device for active capsule endoscopy in the gastric district	Prototype	Yes	No	No
Valdastri et al[130]	A magnetic internal mechanism for precise orientation of the camera in wireless endoluminal applications	Prototype	No	Yes	Yes
Ciuti et al[132]	Robotic magnetic steering and locomotion of capsule endoscope for diagnostic and surgical endoluminal procedures	Prototype	No	Yes	Yes
Bourbakis et al[133]	Design of new-generation robotic capsules for therapeutic and diagnostic endoscopy	Concept	Yes	No	No
Gao et al[134]	Design and fabrication of a magnetic propulsion system for self-propelled capsule endoscopy	Concept	No	Yes	No
Simi et al[135]	Design, fabrication, and testing of a capsule with hybrid locomotion for gastrointestinal tract exploration	Concept	No	Yes	No
Morita et al[136]	A further step beyond wireless capsule endoscopy	Concept	No	Yes	No
Yang et al[137]	Autonomous locomotion of capsule endoscope in gastrointestinal tract	Concept	Yes	No	No
Filip et al[138]	Electronic stool (e-Stool): A novel self-stabilizing video capsule endoscope for reliable non-invasive colon imaging	Prototype	No	Yes	No
Yim et al[139]	Design and rolling locomotion of a magnetically actuated soft capsule endoscope	Prototype	No	Yes	No
Kong et al[140]	A robotic biopsy device for capsule endoscopy	Prototype	No	Yes	No
Woods et al[141]	Wireless capsule endoscope for targeted drug delivery: Mechanics and design considerations	Prototype	No	Yes	Yes

Certain issues (i.e., best small-bowel preparation for CE[143,144]), occurrence of some potentially life-threatening complications, visualisation quality of the proximal small-bowel) remain open and they will surely be the target of further clinical studies and technical improvements.

REFERENCES

1. Gong F, Swain CP, Mills TN. An endorobot for gastrointestinal endoscopy. Gut 1994; 35:552.
2. Adler SN, Bjarnason I. What we have learned and what to expect from capsule endoscopy. World J Gastroenterol 2012; 4: 448-452 [PMID: 23189215 DOI: 10.4253/wjg.v4.i10.448].
3. Iddan G, Meron G, Glukhovsky A, Swain P. Wireless capsule endoscopy. Nature 2000; 405: 417 [PMID: 10839527 DOI: 10.1038/35013140].
4. Muñoz-Navas M. Capsule endoscopy. World J Gastroenterol 2009; 15: 1584-1586 [PMID: 19340899 DOI: 10.3748/wjg.15.1584].
5. Eliakim R. Video capsule endoscopy of the small bowel. Curr Opin Gastroenterol 2013; 29: 133-139 [PMID: 23221650 DOI: 10.1097/MOG.0b013e32853bd005].
6. Fisher LR, Hasler WL. New vision in video capsule endoscopy: current status and future directions. Nat Rev Gastroenterol Hepatol 2012; 9: 392-405 [PMID: 22565098 DOI: 10.1038/nrgastro.2012.88].
7. Hartmann D, Eickhoff A, Darnian U, Riemann JF. Diagnosis of small-bowel pathology using paired capsule endoscopy with two different devices: a randomized study. Endoscopy 2007; 39: 1041-1045 [PMID: 18072053].
8. Cave DR, Fleisher DE, Leighton JA, Faigel DO, Heigh RI, Sharma VK, Gostout CJ, Rajan E, Mergener K, Foley A, Lee M, Bhattacharya K. A multicenter randomized comparison of the Endocapsule and the PillCam SB. Gastrointestinal Endosc 2008; 68: 487-494 [PMID: 18410941 DOI: 10.1016/j.gie.2007.12.037].
9. Kim HM, Kim YJ, Kim HJ, Park S, Park JY, Shin SK, Cheon JH, Lee SK, Lee YC, Park SW, Bang S, Song SY. A Pilot Study of Sequential Capsule Endoscopy Using MiroCam and PillCam SB Devices with Different Transmission Technologies. Gut Liver 2010; 4: 192-200 [PMID: 20559521 DOI: 10.5009/gnl.2010.4.2.192].
10. Pioche M, Gaudin JL, Filoche B, Jacob P, Lamouliatte H, Lapalus MG, Duburque C, Chaput U, Ben Soussan E, Daudet J, Tournan R, Gaudric M, Edery J, Cellier C, Halluin PN, Saurin JC. Prospective, randomized comparison of two small-bowel capsule endoscopy systems in patients with obscure GI bleeding. Gastrointest Endosc 2011; 73: 1181-1188 [PMID: 21628014 DOI: 10.1016/j.gie.2011.02.011].
11. Dolak W, Kulminig-Dabsch S, Evstatiev R, Gasche C, Trauner M, Pispök A. A randomized head-to-head study of small-bowel imaging comparing MiroCam and EndoCapsule. Endoscopy 2012; 44: 1012-1020 [PMID: 22930176 DOI: 10.1055/s-0032-1310158].
12. Liao Z, Gao R, Li F, Xu C, Zhou Y, Wang JS, Li ZS. Fields of applications, diagnostic yields and findings of OMOM capsule endoscopy in 2400 Chinese patients. World J Gastroenterol 2010; 16: 2669-2676 [PMID: 20518090 DOI: 10.3748/wjg.v16.i21.2669].
13. Liao Z, Gao R, Xu C, Li ZS. Indications and detection, completion, and retention rates of small-bowel capsule endoscopy: a systematic review. Gastrointest Endosc 2010; 71: 280-286 [PMID: 20152309 DOI: 10.1016/j.gie.2009.09.031].
14. Rondonotti E, Soncini M, Girelli C, Ballardini G, Bianchi G, Brunati S, Centenara L, Cesari P, Cortelesczi C, Curioni S, Gozzini C, Gullotta R, Lazzaroni M, Maino M, Mandelli G, Mantovani N, Morandi E, Pansoni C, Piubello W, Putignano R, Schalling R, Tarella M, Villa F, Vitagliano P, Russo A, Conte D, Masci E, de Franchis R. Small bowel capsule endoscopy in clinical practice: a multicenter 7-year survey. Eur J Gastroenterol Hepatol 2010; 22: 1380-1386 [PMID: 20173546 DOI: 10.1097/MEG.0b013e3283535ced].
15. Rondonotti E, de Franchis R. Diagnosing coeliac disease:
is the videocapsule a suitable tool? *Dig Liver Dis* 2007; 39: 145-147 [PMID: 1714163 DOI: 10.1016/j.dld.2006.10.005]

[16] Pennazio M, Rondonotti E, de Franchis R. Capsule endoscopy in neoplastic diseases. *World J Gastroenterol* 2006; 14: 5245-5253 [PMID: 18975274 DOI: 10.3748/wjg.v14.i32.5245]

[17] Marmo R, Rotondano G, Piscopo R, Bianco MA, Cipolletta L. Meta-analysis: capsule endoscopy vs. conventional modalities in diagnosis of small bowel diseases. *Aliment Pharmacol Ther* 2005; 22: 595-604 [PMID: 16181299 DOI: 10.1111/j.1365-2036.2005.02625.x]

[18] Triester SL, Leighton JA, Leontiadis GI, Fleischer DE, Hara AK, Heigh RI, Shift AD, Sharma VK. A meta-analysis of the yield of capsule endoscopy compared to other diagnostic modalities in patients with obscure gastrointestinal bleeding. *Am J Gastroenterol* 2005; 100: 2407-2418 [PMID: 16279893]

[19] Leighton JA, Triester SL, Sharma VK. Capsule endoscopy: a meta-analysis for use with obscure gastrointestinal bleeding and Crohn's disease. *Gastrointest Endosc Clin N Am* 2006; 16: 229-250 [PMID: 16644453 DOI: 10.1016/j.gie.2006.03.004]

[20] Triester SL, Leighton JA, Leontiadis GI, Gurusu SR, Fleischer DE, Hara AK, Heigh RI, Shift AD, Sharma VK. A meta-analysis of the yield of capsule endoscopy compared to other diagnostic modalities in patients with non-stricturing small bowel Crohn's disease. *Am J Gastroenterol* 2006; 101: 954-964 [PMID: 16969781 DOI: 10.1111/j.1572-0241.2006.00506.x]

[21] Pasha SF, Leighton JA, Das A, Harrison ME, Decker GA, Fleischer DE, Sharma VK. Double-balloon enteroscopy and capsule endoscopy: have comparable diagnostic yield in small-bowel disease: a meta-analysis. *Clin Gastroenterol Hepatol* 2008; 6: 671-676 [PMID: 18356113 DOI: 10.1016/j.cgh.2008.01.005]

[22] Niv Y. Efficiency of bowel preparation for capsule endoscopy examination: a meta-analysis. *World J Gastroenterol* 2008; 14: 1313-1317 [PMID: 18322940 DOI: 10.3748/wjg.v14.i13.1313]

[23] El-Matary W, Huynh H, Vandermeer B. Diagnostic characteristics of given video capsule endoscopy in diagnosis of celiac disease: a meta-analysis. *J Laparoendosc Adv Surg Tech A* 2009; 19: 815-820 [PMID: 19405806 DOI: 10.1089/lap.2008.0380]

[24] Chen X, Ran ZH, Tong JL. A meta-analysis of the yield of capsule endoscopy compared to double-balloon enteroscopy in patients with small bowel diseases. *World J Gastroenterol* 2007; 13: 4572-4578 [PMID: 17708614]

[25] Rokkas T, Papaxoinis K, Triantafyllou K, Pistorias D, Ladas SD. Does bowel preparation influence the diagnostic yield of small bowel video capsule endoscopy?: A meta-analysis. *Am J Gastroenterol* 2009; 104: 219-227 [PMID: 19098872 DOI: 10.1038/ajg.2008.63]

[26] Dionisio PM, Gurusu SR, Leighton JA, Leontiadis GI, Fleischer DE, Hara AK, Heigh RI, Shift AD, Sharma VK. Capsule endoscopy has a significantly higher diagnostic yield in patients with suspected and established small-bowel Crohn's disease: a meta-analysis. *Am J Gastroenterol* 2010; 105: 1240-1248; quiz 1249 [PMID: 2009412 DOI: 10.1038/ajg.2009.713]

[27] Wu L, Cao Y, Liao C, Huang J, Gao F. Systematic review and meta-analysis of randomized controlled trials of Simethicone for gastrointestinal endoscopic visibility. *Scand J Gastroenterol* 2011; 46: 227-235 [PMID: 20977386 DOI: 10.1080/030056559.2010.525714]

[28] Cohen SA, Klevens AJ. Use of capsule endoscopy in diagnosis and management of pediatric patients, based on meta-analysis. *Clin Gastroenterol Hepatol* 2011; 9: 490-496 [PMID: 21440674 DOI: 10.1016/j.cgh.2011.03.025]

[29] Teshima CW, Kuipers EJ, van Zanten SV, Mensink PB. Double-balloon enteroscopy and capsule endoscopy for obscure gastrointestinal bleeding: an updated meta-analysis. *J Gastroenterol Hepatol* 2011; 26: 796-801 [PMID: 21155884 DOI: 10.1111/j.1440-1746.2010.06530.x]
is useful and safe for small-bowel surveillance in familial adenomatous polyposis. Gut 2009; 56: 1600-1605 [PMID: 20142041]

Koulaouzidis S, Ducker C, Daulet P, Strubenhoff J, Fais S. Identification of the duodenal papilla by colon capsule endoscopy. Z Gastroenterol 2010; 48: 753-755 [PMID: 20607632 DOI: 10.1055/s-0028-1190970]

Lee HS, Lee KG, Kim J, Hyun JJ, Kim ES, Park SC, Park S, Keum B, Seo YS, Jeen YT, Chun HJ, Um SH, Kim CD, Ryu HS. Comparison of PillCam SB and SB2 - Study of Normally Positioned Ampulla of Vater Detection. Gastrointest Endosc 2010; 71: AB370-371

Selby WS, Prakoso E. The inability to visualize the ampulla of Vater is an inherent limitation of capsule endoscopy. Eur J Gastroenterol Hepatol 2011; 23: 101-103 [PMID: 21650868 DOI: 10.1097/MEG.0b013e3283410210]

Koulaouzidis A, Douglas S, Plevisr JN. Identification of the ampulla of Vater during oesophageal capsule endoscopy: two heads and viewing speed make a difference. Eur J Gastroenterol Hepatol 2011; 23: 361; author reply 362 [PMID: 21430448 DOI: 10.1097/MEG.0b013e3283440443]

Park S, Chun HJ, Keum B, Seo YS, Kim YS, Jeen YT, Lee HS, Um SH, Kim CD, Ryu HS. Capsule Endoscopy to Detect Normally Positioned Duodenal Papilla: Performance Comparison of SB and SB2. Gastrointestinal Endoscopy 2012; 76: 202935 [PMID: 22548051 DOI: 10.1155/2012/202935]

Koulaouzidis A, Plevisr JN. Detection of the ampulla of Vater in small bowel capsule endoscopy: experience with two different systems. J Dig Dis 2012; 13: 621-627 [PMID: 23134524 DOI: 10.1111/j.1751-2980.2012.00638.x]

Friedrich K, Gehrke S, Sieg A. First clinical trial of a newly developed capsule endoscope with panoramic side view for small bowel capsule endoscopy. A pilot study. Gastrointestinal Endoscopy 2013 [PMID: 23701674 DOI: 10.1111/j.ghj.12280]

Cuschiere JR, Osman MN, Wong RC, Chak A, Isenberg GA. Small bowel capsule endoscopy in patients with cardiac pacemakers and implantable cardioverter defibrillators: Outcome analysis using telemetry review. World J Gastrointest Endosc 2012; 4: 87-93 [PMID: 22442746 DOI: 10.4253/wjge.v4.i3.87]

Bandorski D, Irnich W, Brücker M, Beyer N, Kramer W, Jakobs R. Capsule endoscopy and cardiac pacemakers: investigation for possible interference. Endoscopy 2008; 40: 36-39 [PMID: 18067067]

Yang XY, Chen CX, Zhang BL, Yang LP, Su HJ, Teng LS, Li YM. Diagnostic effect of capsule endoscopy in 31 cases of subacute small bowel obstruction. World J Gastroenterol 2009; 15: 2401-2405 [PMID: 19452586 DOI: 10.3748/wjg.15.2401]

Cheon JH, Kim YS, Lee JS, Chang DK, Ryu JK, Lee KJ, Moon JS, Park CH, Kim JO, Shim KN, Choi CH, Cheung DY, Jang BI, Seo GS, Chun HJ, Choi MG. Can we predict spontaneous capsule passage after retention? A nationwide study to evaluate the incidence and clinical outcomes of capsule retention. Endoscopy 2007; 39: 1046-1052 [PMID: 18072054]

Orduñobi D, Blaha B, Schmid A, Krampla W, Hinterberger W, Gschwantler M. Capsule endoscopy with retention of the capsule in a duodenal diverticulum. Endoscopy 2008; 40
Asymptomatic aspiration -

Schmelkin IJ, Kwak GS. Relationship of sus-

Aspiration--an important complica-

Koulaouzidis A et al. Tabulated review on capsule endoscopy

Suppl 2: E247-E248 [PMID: 18991225 DOI: 10.1055/s-2008-1077563]

Schneider AR, Hoepfner N, Rösch W, Caspary WF. Aspiration of an M2A capsule. Endoscopy 2003; 35: 713 [PMID: 12920075 DOI: 10.1055/s-2003-4145127]

Fleischer DE, Heigh RL, Nguyen CC, Leighton JA, Sharma VK, Musil D. Videocapsule impaction at the cricopharyngeus: a first report of this complication and its successful resolu-

Gastrointest Endosc 2003; 57: 427-428 [PMID: 12612537]

Sinn I, Neef B, Andrus T. Aspiration of a capsule endoscope. Gastrointest Endosc 2004; 59: 926-927 [PMID: 15173819]

Tabi S, Fuller C, Daniels J, Lo SK. Asymptomatic aspiration of a capsule endoscope. Gastrointest Endosc 2004; 60: 845-848 [PMID: 15559795]

Buchkremer F, Herrmann T, Stremmel W. Mild respiratory distress after wireless capsule endoscopy. Gut 2004; 53: 472 [PMID: 14960546 DOI: 10.1136/gut.2003.033845]

Rondonotti E, Herreras JM, Pennazio M, Caunedo A, Mascarenhas-Sarata M, de Franchis R. Complications, limitations, and failures of capsule endoscopy: a review of 733 cases. Gastrointest Endosc 2005; 62; 712-716; quiz 752, 754 [PMID: 16246685 DOI: 10.1016/j.gie.2005.05.002]

Nathan SR, Biernat L. Aspiration--an important complica-

Shiff AD, Leighton JA, Heigh RL. Pulmonary aspiration of a capsule endoscope. Am J Gastroenterol 2007; 102: 215-216 [PMID: 17572927]

Sepehr A, Albers GC, Armstrong WB. Aspiration of a capsule endoscope and description of a unique retrieval technique. Otolaryngol Head Neck Surg 2007; 137: 965-966 [PMID: 18036432 DOI: 10.1155/otohns.2007.09.011]

Koulaouzidis A, Appalaneni V, González-Castillo S, Fernández-Fuente M, De Rezende L. Tracheal aspiration of a capsule endoscope: a new case report and literature compilation of an increasingly reported complication. Dig Dis Sci 2011; 56: 2758-2762 [PMID: 21409372 DOI: 10.1007/s10620-011-1666-2]

Pezzoli A, Fusetti N, Carella A, Guillini S. Asymptomatic bronchial aspiration and prolonged retention of a capsule endoscope: a case report. J Med Case Rep 2011; 5: 341 [PMID: 21810229 DOI: 10.1186/1752-1947-5-341]

Parker C, Davison C, Panter S. Tracheal aspiration of a cap-
sule endoscope: not always a benign event. Dig Dis Sci 2012; 57: 1727-1728 [PMID: 22526588 DOI: 10.1007/s10620-012-2173-9]

Desplat EJ, O’Rourke A, Anikin V, Davison C, Panter S, Bromley J, Place J, Corbett M, Fraser C. Tracheal aspiration of capsule endoscopes: detection, management, and sus-

Gastrointest Endosc 2010; 61: 298-301 [PMID: 18253535 DOI: 10.1016/j.gie.2007.12.029]

Park SC, Chun HJ, Kim ES, Keum B, Seo YS, Kim YS, Jeen YT, Lee HS, Um SH, Kim CD, Ryu HS. Sensitivity of the suspected blood indicator and blood transfusions in wireless capsule endoscopy. Am J Gastroenterol 2008; 103: 929-936 [PMID: 18082131 DOI: 10.1111/j.1572-0241.2008.00910.x]

Liangpunsakul S, Mays L, RK. Performance of Given sus-

Gastroenterol Hepatol 2005; 39 Suppl 1: E43 [PMID: 18273788 DOI: 10.1055/s-2007-995327]

Shiff AD, Leighton JA, Heigh RL. Pulmonary aspiration of a capsule endoscope. Am J Gastroenterol 2007; 102: 215-216 [PMID: 17572927]

Sepehr A, Albers GC, Armstrong WB. Aspiration of a capsule endoscope and description of a unique retrieval technique. Otolaryngol Head Neck Surg 2007; 137: 965-966 [PMID: 18036432 DOI: 10.1155/otohns.2007.09.011]

Koulaouzidis A, Pendlebury J, Douglas S, Plevris JN. Aspira-

Bredenoord AJ, Stolk MF, Al-toma A. Unintentional video capsule bronchoscopy. Eur J Gastroenterol Hepatol 2009; 21: 593 [PMID: 19190498 DOI: 10.1097/MEG.0b013e3282826ece2]

Choi HS, Kim JO, Kim HG, Lee TH, Kim WJ, Cho WY, Cho JY, Lee JS. A case of asymptomatic aspiration of a capsule endoscope with a successful resolution. Gut Liver 2010; 4: 114-116 [PMID: 20479923 DOI: 10.5009/gnl.2010.4.114]

Depriest K, Wahla AS, Blair R, Fein B, Chin R. Capsule endosco-

Kurtz LE, Devito B, Sultan K. Electronic image of the month. Small bowel video capsule aspiration with bronchoscopically assisted extraction. Clin Gastroenterol Hepatol 2010; 8: e37-e38 [PMID: 19879662 DOI: 10.1016/j.cgh.2009.10.024]

Lucendo AJ, González-Castillo S, Fernández-Fuente M, De Rezende L. Tracheal aspiration of a capsule endoscope: a new case report and literature compilation of an increasingly reported complication. Dig Dis Sci 2011; 56: 2758-2762 [PMID: 21409372 DOI: 10.1007/s10620-011-1666-2]

Pezzoli A, Fusetti N, Carella A, Guillini S. Asymptomatic bronchial aspiration and prolonged retention of a capsule endoscope: a case report. J Med Case Rep 2011; 5: 341 [PMID: 21810229 DOI: 10.1186/1752-1947-5-341]
Koulaouzidis A et al. Tabulated review on capsule endoscopy
Koulaouzidis A et al. Tabulated review on capsule endoscopy

[PMID: 20542758 DOI: 10.1109/TBME.2010.2051947]

135 Simi M, Valdastri P, Quaglia C, Menciassi A, Dario P. Design, fabrication, and testing of a capsule with hybrid locomotion for gastrointestinal tract exploration. *IEEE-ASME T Mechatronics* 2010; 15: 170-180 [DOI: 10.1109/TMECH.2010.2041244]

136 Morita E, Ohtsuka N, Shindo Y, Nouda S, Kuramoto T, Inoue T, Murano M, Umeegaki E, Higuchi K. In vivo trial of a driving system for a self-propelling capsule endoscope using a magnetic field (with video). *Gastrointest Endosc* 2010; 72: 836-840 [PMID: 20883863 DOI: 10.1016/j.gie.2010.06.016]

137 Yang S, Park K, Kim J, Kim TS, Cho IJ, Yoon ES. Autonomous locomotion of capsule endoscope in gastrointestinal tract. *Conf Proc IEEE Eng Med Biol Soc* 2011; 2011: 6659-6663 [PMID: 22255866 DOI: 10.1109/IEMBS.2011.6091642]

138 Filip D, Eggermont M, Nagel J, Andrews CN. Electronic Stool (e-Stool): A Novel Self-Stabilizing Video Capsule Endoscope for Reliable Non-Invasive Colonic Imaging. In: Proceedings of the ASME 2011 International Mechanical Engineering Congress and Exposition, Volume 2, Biomedical and Biotechnology Engineering; Nanoelectronics for Medicine and Biology. New York: ASME, 2011: 711-722

139 Yim S, Sitti M. Design and rolling locomotion of a magnetically actuated soft capsule endoscope. *IEEE T Robot* 2012; 28: 183-194 [DOI: 10.1109/TRO.2011.2163861]

140 Kong K, Yim S, Choi S, Jeon D. A Robotic Biopsy Device for Capsule Endoscopy. *J Med Devices* 2012; 6 [DOI: 10.1115/1.4007100]

141 Woods SP, Constandinou TG. Wireless capsule endoscope for targeted drug delivery: mechanics and design considerations. *IEEE Trans Biomed Eng* 2013; 60: 945-953 [PMID: 23192476 DOI: 10.1109/TBME.2012.2228647]

142 Basar MR, Malek F, Juni KM, Shaharom Idris M, Iskandar M, Saleh M. Ingestible Wireless Capsule Technology: A Review of Development and Future Indication. *Int J Antenn Propag* 2012: 2012 [DOI: 10.1155/2012/807165]

143 Song HJ, Moon JS, Do JH, Cha IH, Yang CH, Choi MG, Jeen YT, Kim HJ. Korean Gut Image Study Group. Guidelines for Bowel Preparation before Video Capsule Endoscopy. *Clin Endosc* 2013; 46: 147-154 [DOI: 10.5946/ce.2013.46.2.147]

144 Koulaouzidis A, Giannakou A, Yung DE, Dabos KJ, Plevris JN. Do prokinetics influence the completion rate in small-bowel capsule endoscopy? - A systematic review and meta-analysis. *Curr Med Res Opin* 2013 Jun 21 [DOI: 10.1185/03007995.2013.818532]