Parameterized and exact algorithms for class domination coloring. (English) [Zbl 1444.68147]

Summary: A class domination coloring (also called as cd-coloring) of a graph is a proper coloring such that for every color class, there is a vertex that dominates it. The minimum number of colors required for a cd-coloring of the graph G, denoted by $\chi_{cd}(G)$, is called the class domination chromatic number (cd-chromatic number) of G. In this work, we consider two problems associated with the cd-coloring of a graph in the context of exact exponential-time algorithms and parameterized complexity. (1) Given a graph G of n vertices, find its cd-chromatic number. (2) Given a graph G and integers k and q, can we delete at most k vertices such that the cd-chromatic number of the resulting graph is at most q? For the first problem, we give an exact algorithm with running time $O(2^n n^4 \log n)$. Also, we show that the problem is FPT with respect to the number of colors q as the parameter on chordal graphs. On graphs of girth at least 5, we show that the problem also admits a kernel with $O(q^3)$ vertices. For the second (deletion) problem, we show NP-hardness for each $q \geq 2$. Further, on split graphs, we show that the problem is NP-hard if q is a part of the input and FPT with respect to k and q. As recognizing graphs with cd-chromatic number at most q is NP-hard in general for $q \geq 4$, the deletion problem is unlikely to be FPT when parameterized by the size of deletion set on general graphs. We show fixed parameter tractability for $q \in \{2, 3\}$ using the known algorithms for finding a vertex cover and an odd cycle transversal as subroutines.

For the entire collection see [Zbl 1355.68020].

MSC:

68R10 Graph theory (including graph drawing) in computer science
05C15 Coloring of graphs and hypergraphs
05C85 Graph algorithms (graph-theoretic aspects)
68Q17 Computational difficulty of problems (lower bounds, completeness, difficulty of approximation, etc.)
68Q25 Analysis of algorithms and problem complexity
68Q27 Parameterized complexity, tractability and kernelization

Full Text: DOI arXiv

References:

[1] Alber, J., Bodlaender, H.L., Fernau, H., Kloks, T., Niedermeier, R.: Fixed parameter algorithms for dominating set and related problems on planar graphs. Algorithmica 33(4), 461–493 (2002) - Zbl 1016.68055 · doi:10.1007/s00453-001-0116-5

[2] Alon, N., Gutner, S.: Linear time algorithms for finding a dominating set of fixed size in degenerated graphs. Algorithmica 54(4), 544–556 (2009) - Zbl 1192.68464 · doi:10.1007/s00453-008-9204-0

[3] Björklund, A., Husfeldt, T., Koivisto, M.: Set partitioning via inclusion-exclusion. SIAM J. Comput. 39(2), 546–563 (2009) - Zbl 1215.05056 · doi:10.1137/070683933

[4] Blum, A., Karger, D.R.: An $\tilde{O}(\sqrt{\text{degree}})$-coloring algorithm for $\chi(\text{treewidth})$-colorable graphs. In: Proceedings of the 3rd Workshop on Randomization and Approximation Techniques in Computer Science, WINE 2007, pp. 154–162. Springer (2007) - Zbl 1228.68068 · doi:10.1007/978-3-540-76997-2_16

[5] Cai, L.: Parameterized complexity of vertex covering. Discrete Appl. Math. 127(3), 415–429 (2003) - Zbl 1016.68055 · doi:10.1016/S0166-218X(02)00242-1

[6] Chellali, M., Maffray, F.: Dominator Coloring in Some Classes of Graphs. Graph. Comb. 28(1), 97–107 (2012) - Zbl 1234.05082 · doi:10.1007/s00373-010-1012-z

[7] Chen, J., Kanj, I., Xia, G.: Improved upper bounds for vertex cover. Theor. Comput. Sci. 411(40–42), 3736–3756 (2010) - Zbl 1205.05217 · doi:10.1016/j.tcs.2010.06.026

[8] Courcelle, B.: The monadic second-order logic of graphs. I. Recognizable sets of finite graphs. Inf. Comput. 85(1), 12–75 (1990) - Zbl 0708.05022 · doi:10.1016/0019-9958(90)90034-6
[10] Courcelle, B.: The monadic second-order logic of graphs III: tree-decompositions. Minor Complex. Issues ITA 26, 257–286 (1992) - Zbl 0754.03006

[11] Cygan, M., Fomin, F.V., Kowalik, L., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, Cham (2015) - Zbl 1334.90001 - doi:10.1007/978-3-319-21275-3

[12] Diestel, R.: Graph Theory. Springer, Heidelberg (2006) - Zbl 1086.05001

[13] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity. Springer, London (2013) - Zbl 1358.68006 - doi:10.1007/978-1-4471-5559-1

[14] Downey, R.G., Fellows, M.R., McCartin, C., Rosamond, F.A.: Parameterized approximation of dominating set problems. Inf. Process. Lett. 109(1), 68–70 (2008) - Zbl 1191.68862 - doi:10.1016/j.ipl.2008.09.017

[15] Flum, J., Grohe, M.: Parameterized Complexity Theory. Springer, Heidelberg (2006)

[16] Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W.H. Freeman and Company, New York (1979) - Zbl 0411.68039

[17] Gaspers, S., Kratsch, D., Liedloff, M., Todinca, I.: Exponential time algorithms for the minimum dominating set problem on some graph classes. ACM Trans. Algorithms 6(1), 9:1–21 (2009) - Zbl 1300.05300 - doi:10.1145/1640156.164024

[18] Gaspers, S., Liedloff, M.: A branch-and-reduce algorithm for finding a minimum independent set. Discrete Math. Theor. Comput. Sci. 14(1), 29–42 (2012) - Zbl 1283.05203

[19] Gera, R.: On dominator colorings in graphs. In: Graph Theory Notes of New York LII, pp. 25–30 (2007)

[20] Gera, R., Rasmussen, C., Horton, S.: Dominator colorings and safe clique partitions. Congressus Numerantium 181(7–9), 1932 (2006) - Zbl 1113.05032

[21] Guha, S., Khuller, S.: Improved methods for approximating node weighted steiner trees and connected dominating sets. Inf. Comput. 150(1), 57–74 (1999) - doi:10.1006/inco.1998.2754

[22] Kim, D., Zhang, Z., Li, X., Wang, W., Wu, W., Du, D.Z.: A better approximation algorithm for computing connected dominating sets in unit ball graphs. IEEE Trans. Mob. Comput. 9(8), 1108–1118 (2010) - doi:10.1109/TMC.2010.55

[23] Kratsch, D.: Exact algorithms for dominating set. In: Kao, M.-Y. (ed.) Encyclopedia of Algorithms, pp. 284–286. Springer, New York (2008) - doi:10.1007/978-0-387-30155-8_42

[24] Lawler, E.: A note on the complexity of the chromatic number problem. Inf. Process. Lett. 5(3), 66–67 (1976) - Zbl 0336.05105

[25] Lenzen, C., Wattenhofer, R.: Minimum dominating set approximation in graphs of bounded arboricity. In: Lynch, N.A., Shvartsman, A.A. (eds.) DISC 2010. LNCS, vol. 6343, pp. 510–524. Springer, Heidelberg (2010). doi:10.1007/978-3-642-15763-9_48 - Zbl 1290.68130 - doi:10.1007/978-3-642-15763-9_48

[26] Lewis, J.M., Yannakakis, M.: The node-deletion problem for hereditary properties is NP-complete. J. Comput. Syst. Sci. 20(2), 219–230 (1980) - Zbl 0436.05039 - doi:10.1016/0022-0000(80)90060-4

[27] Lokshtanov, D., Narayanaswamy, N.S., Raman, V., Ramanujan, M.S., Saurabh, S.: Faster parameterized algorithms using linear programming. ACM Trans. Algorithms 11(2), 15:1–15:31 (2015) - Zbl 1398.68254 - doi:10.1137/140981648

[28] Lorin, V.V., Kaminsky, M.: Coloring edges and vertices of graphs without short or long cycles. Contrib. Discrete Math. 2(1), 61–66 (2007) - Zbl 1188.05065

[29] Niedermeier, R.: Invitation to Fixed Parameter Algorithms. Oxford University Press, Oxford (2006) - Zbl 1095.68038 - doi:10.1093/acprof:oso/9780198566067.001.0001

[30] Panolan, F., Philip, G., Saurabh, S.: B-Chromatic number: beyond NP-hardness. In: 10th International Symposium on Parameterized and Exact Computation, IPEC 2015, pp. 389–401 (2015) - Zbl 1378.68090

[31] Raman, V., Saurabh, S.: Short cycles make W-hard problems hard: FPT algorithms for W-hard problems in graphs with no short cycles. Algorithmica 52(2), 203–225 (2008) - Zbl 1170.68019 - doi:10.1007/s00453-007-9148-9

[32] van Rooij, J.M.M., Bodlaender, H.L.: Exact algorithms for dominating set. Discrete Appl. Math. 159(17), 2147–2164 (2011) - Zbl 1273.65015 - doi:10.1016/j.dam.2011.07.001

[33] Schönhage, A., Strassen, V.: Schnelle Multiplikation grosser Zahlen. Computing 7(3–4), 281–292 (1971) - Zbl 0223.10005

[34] Shalit, A., J., Personal communication (2016)

[35] Shvartsman, A.A. (eds.) DISC 2010. LNCS, vol. 6343, pp. 510–524. Springer, Heidelberg (2010). doi: `10.1007/978-3-642-15763-9_48`

[36] Courcelle, B.: The monadic second-order logic of graphs III: tree-decompositions. Minor Complex. Issues ITA 26, 257–286 (1992) - Zbl 0754.03006

[37] Venkatakrishnan, Y.B., Swaminathan, V.: Color class domination number of middle graph and center graph of K \(_{1, n}\). Zbl 1378.05090 - doi:10.1016/j.ipl.2008.09.017

[38] Yannakakis, M., Gavril, F.: The maximum || k || -colorable subgraph problem for chordal graphs. Inf. Process. Lett. 24(2), 133–137 (1987) - Zbl 0653.68070 - doi:10.1016/0020-0190(87)90107-4

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.