Accurate correlation energies in one-dimensional systems from small, system-adapted basis functions

Thomas E. Baker,1 Kieron Burke,2,1 and Steven R. White1

1Department of Physics & Astronomy, University of California, Irvine, California 92697 USA
2Department of Chemistry, University of California, Irvine, California 92697 USA

(Dated: February 23, 2018)

We propose a general method for constructing system-dependent basis functions for correlated quantum calculations. Our construction combines features from several traditional approaches: plane waves, localized basis functions, and wavelets. In a one-dimensional mimic of Coulomb systems, it requires only 2-3 basis functions per electron to achieve high accuracy, and reproduces the natural orbitals. We illustrate its effectiveness for molecular energy curves and chains of many one-dimensional atoms. We discuss the promise and challenges for realistic quantum chemical calculations.

I. INTRODUCTION

Many tens of thousands of electronic structure calculations are performed each year, the vast majority in a single-particle basis set of some sort. These calculations can be divided into two types: those that extract the energy from a set of single-particle occupied orbitals (denoted single-determinant) such as density functional theory (DFT)1–5 or Hartree Fock (HF), and those that go beyond a single determinant, such as configuration interaction,6–11 coupled cluster methods,12–17 density matrix renormalization group (DMRG)11,18 and some types of quantum Monte Carlo. Going beyond a single determinant is necessary for many systems, but is typically much more demanding computationally. Such calculations are more difficult because larger basis sets are needed to achieve chemical accuracy (1 kcal/mol), and computation times usually scale as a high power of the number of basis functions. These larger basis sets are needed to represent the electron-electron cusp in the wavefunction which exists at every point in space.

A natural question arises: what would be the optimal basis set for an electronic structure calculation, assuming the basis is specifically adapted to that system? For a single-determinant method, the answer is clear: the self-consistent occupied orbitals are the optimal basis for that calculation: used as a basis, they reproduce the exact energy and properties. The number of these basis functions (for a spin-restricted calculation) is thus \(N_e/2 \), where \(N_e \) is the number of electrons. Of course, this minimal basis does not offer a computational shortcut: the occupied orbitals must be determined in a separate, non-adapted basis calculation. Here, we are concerned with multi-determinant methods, and we will assume that the computational time for a traditional single-determinant calculation is small in comparison to the multi-determinant method.

For post-HF methods, there is no exact finite system-adapted basis: any finite basis introduces errors. However, the natural orbitals are close to the most rapidly converging single-particle basis, at least in terms of allowing the greatest possible overlap with the exact ground state.17–19 The natural orbitals are the eigenstates of the single-particle density matrix (also known as the equal-time one-particle Green’s function). The number of nonzero eigenvalues (occupancies) is infinite. A (near) optimal basis of \(M_{no} \) orbitals consists of the \(M_{no} \) natural orbitals with the greatest occupancy.

One obvious weakness in using natural orbitals is that one does not know them until after one has solved the interacting system, using a post-HF method, with another larger basis. Iterative natural orbital methods are a way to reduce the computational expense, but approximate natural orbitals that did not need a post-HF method to determine them could be very useful.19 But natural orbitals have another key weakness: they are (normally) completely delocalized across the system. This delocalization prevents a number of shortcuts that can greatly decrease computation times for large systems. Delocalization is especially harmful for low-entanglement methods such as DMRG, since there is no area law for the entanglement entropy in a delocalized basis.20

Here we describe an approach that starts with the occupied orbitals of a DFT (or HF) calculation, and yields basis sets which produce high accuracy in correlated calculations. We test this approach in 1D, using potentials that make 1D mimic 3D in many respects, and using DMRG. The computational effort for the basis construction is minimal. The number of basis functions needed is typically about \(2M_{no} \), where \(M_{no} \) is the minimal number of natural orbitals needed to reach high accuracy, or about two or three times the number of electrons. We expect this method can be easily extended to quasi-1D systems (such as large-\(Z \) atoms or chains of real \(\text{H} \) atoms) and hope it can be applied more generally in 3D.

The first step produces what we call “product plane waves” (PPWs) by multiplying the occupied orbitals by a set of low momentum cutoff plane waves. The lowest momentum is determined by the spatial extent of the entire system. This simple ansatz converges well in our tests in 1D, and we show how its convergence is within about a factor of 2 compared to natural orbitals. But a weakness of PPWs, shared with natural orbitals, is...
that the basis is not local. As the second major part of this work, we describe fragmentations of the PPWs that utilize wavelets[22,66] to produce atom-centered adapted orthogonal bases with good completeness and locality. This approach requires only a modest additional number of basis functions to yield the same accuracy as PPWs, but with a smooth, local, and orthogonal basis.

II. BACKGROUND

A. The one dimensional Hamiltonian

Our non-relativistic many-electron Hamiltonian, expressed in second quantized form, either in a basis set or on a grid, is:[22,28]

\[\hat{H}^{\text{MB}} = \sum_{i,j,\sigma} t_{ij} c_d^{\dagger} c_{i\sigma} + \sum_{k,\ell,\sigma'} V_{ijkl} c_d^{\dagger} c_{j\sigma} c_{k\sigma'} c_{\ell\sigma'} \]

with fermionic operators \(\hat{c} \) labeled either by site or basis-function \(i, j, k, \ell \) and with spin \(\sigma \) (or \(\sigma' \)). We define the ‘exact’ solution as solving this Hamiltonian on a very fine grid, which is close to the continuum limit.[22] For both the grid and for basis functions, we find the exact many-particle ground state of these 1D reference systems using DMRG. The one-electron integrals are

\[t_{ij} = \int dr \varphi_i^*(r) \left(-\frac{\nabla^2}{2} + v_{\text{ext}}(r) \right) \varphi_j(r), \]

where \(\nabla^2 = \partial_x^2 \) for the 1D calculations, \(v_{\text{ext}}(r) \) is the external potential, discussed below. In a basis, with functions \(\varphi_i(r) \), the two-electron integrals are

\[V_{ijkl} = \frac{1}{2} \int \int dr dr' \varphi_i^*(r) \varphi_j^*(r') v_{\text{ee}}(r-r') \varphi_k(r') \varphi_l(r). \]

On a grid, the interaction takes a much simpler diagonal form with \(i = \ell \) and \(j = k \), with the integral taking the value \(v_{\text{ee}}(r_i - r_j) \). For grid calculations, we use the ITensor library, along with continuum product operator technology.[28] In the basis, we use the Block DMRG code since it is specifically tailored to avoid stationary states that are not the ground state in a basis set and has implemented the form of the Hamiltonian efficiently.[21,24]

Previously, we have explored 1D potentials which mimic as closely as possible the behavior of real 3D systems. A particularly convenient choice matching a number of 3D features is a single exponential function, \(v_{\text{ee}}(x - x') = A \exp(-\kappa|x - x'|) \) with \(A = 1.071 \) and \(\kappa = 0.419 \), and \(v_{\text{ext}}(x) = -Z v_{\text{ee}}(x) \), where \(Z \) is the atomic number, just as in 3D. This particular function closely mimics the results from a soft-Coulomb interaction, but at a reduced cost for grid DMRG calculations.[21,24] This potential also more closely mimics 3D since it has a mild singularity at zero distance. In 3D, the Coulomb interaction is divergent, but its effect is moderated, and integrals over it are finite, because of the very small volume

associated with the \(r \to 0 \) region, and the associated integration factor \(4\pi r^2 \). In 1D, we get qualitatively similar behavior from the slope discontinuity in the potential at \(r = 0 \). A local density approximation (LDA) was also derived for this interaction. Our finite difference grid Hamiltonian looks like an extended Hubbard model,[29]

\[\hat{H}_{\text{fine}} = \sum_i \left(-\frac{1}{2a^2} \left(\hat{c}_i^\dagger \hat{c}_i - 2\hat{n}_i + \hat{c}_i^\dagger \hat{c}_{i+1} \right) \right) + \sum_i v_i \hat{n}_i + \sum_{i,j} \left(v_{\text{ee}}^{ij} \hat{n}_i (\hat{n}_j - \delta_{ij}) \right) \]

where the superscript “fine” indicates we will use this lattice on the finest (original) grid of spacing \(a = 1/32 \), \(\hat{n}_i = \hat{c}_i^\dagger \hat{c}_i \), external potential \(v_i \), and long-ranged electron-electron interaction \(v_{\text{ee}}^{ij} \) on sites \(i \) and \(j \). A distance of 60 from the outermost grid points to the first or last atom is used for all systems that follow, allowing wavefunctions to have extended tails.

The natural orbitals are the eigenvectors of the one-particle reduced density matrix (RDM), which is the equal-time one-particle Green’s function, with matrix elements:

\[\rho_{ij} = \langle \hat{c}_i^\dagger \hat{c}_j \rangle. \]

The eigenvalues of \(\rho_{ij} \) are the occupation numbers and the eigenvectors are the natural orbitals, which we order in decreasing occupation. Fig. 1 shows the first two for 1D He, and we later show (Fig. 3) that, in a basis set of these 2 orbitals alone, the expectation value of the Hamiltonian is only 1 kcal/mol above the exact ground-state energy. We use the term high accuracy to indicate errors of less than 1.6 mHa, which corresponds to the 1 kcal/mol criterion commonly called “chemical accuracy” in quantum chemistry.
B. Wavelets

Wavelets were originally introduced by Haar in 1910\(^{(22)}\), but they have since been modernized and expanded by several works by Gabor\(^{(23)}\), Grossman and Morlet\(^{(24)}\), Meyer\(^{(25)}\), Mallat\(^{(26)}\), and Daubechies\(^{(27)}\) and many others. These functions have become widely used in audio and image compression (such as jpeg and mp3 file formats). These were also connected to a quantum gate structure, tensor network algorithms, and compression of matrix product states\(^{(55–60)}\).

Consider a localized function \(f(x)\) located near the origin. We can form a basis from this function by translating it by all integer translations, i.e., \(\{f(x−j)\}\) for integer \(j\). A wavelet transformation (WT) is a mapping of \(f(x)\) to a new function \(f′(x)\) defined by

\[
f′(x) = \sum_k c_k f(xd−k),
\]

where \(d\) is the dilation factor, which is normally taken to be 2. The WT is defined by the coefficients \(c_k\). We will only consider compact wavelets, for which the number of nonzero \(c_k\)'s is finite. The scaling function of the WT, \(S(x)\), is the fixed point of this mapping. The \(c_k\) are chosen cleverly to make the \(S(x−j)\) to be orthogonal for different \(j\), and to have a number of other desirable properties, such as polynomial completeness up to a certain order\(^{(22)}\). The scaling function is designed to represent smooth, low momentum parts of functions. The scaling function is not a wavelet, although it does form the top layer of a wavelet basis. A wavelet is formed from \(S(x)\) using another set of coefficients \(w_k\) (which are defined in terms of the \(c_k\)):

\[
W(x) = \sum_k w_k S(xd−k).
\]

The wavelets capture higher momentum features.

A wavelet basis consists of scalings and translations of \(S(x)\) and \(W(x)\), and it is complete and orthonormal. It is characterized by a coarse grid with spacing \(\Delta\). At all integer multiples \(j\) of \(\Delta\), one puts a scaling function, of size \(\Delta\), namely \(S(x/\Delta−j)/\sqrt{\Delta}\). Then, at scales \(\Delta, \Delta/2, \Delta/4, \text{etc.}\), one puts down a grid of scaled wavelets, with the spacing and the size of the functions always equal. All these functions together are complete, and they are all orthogonal to each other. Some of the functions of a wavelet basis are shown in Fig. 2.

We then show how to combine planewave-type basis functions (PPWs), wavelet technology, and adaptation via approximate DFT (or other) single-particle orbitals, to create a basis with no more than about twice this number, but still yielding high accuracy. A crucial feature is that we never use more than a few of each kind of function, so that we never come close to being limited by the asymptotic convergence properties of any one set of basis functions. Further, the initial orbitals do not need to be obtained to high accuracy. The purpose of these orbitals is to find the important features (where the density is large) features of the system to act as a scaffold for the following calculations. These orbitals can be obtained quickly at a

III. PRODUCT PLANE WAVES

In this section, we describe our new approach to design a specific system-dependent basis with as few functions as is practical. We first argue that the exact natural orbitals provide a natural least possible number, but rely on knowing the exact solution\(^{(17–19)}\). We then show how to combine planewave-type basis functions (PPWs), wavelet technology, and adaptation via approximate DFT (or other) single-particle orbitals, to create a basis with no more than about twice this number, but still yielding high accuracy. A crucial feature is that we never use more than a few of each kind of function, so that we never come close to being limited by the asymptotic convergence properties of any one set of basis functions. Further, the initial orbitals do not need to be obtained to high accuracy. The purpose of these orbitals is to find the important features (where the density is large) features of the system to act as a scaffold for the following calculations. These orbitals can be obtained quickly at a
A. Natural orbitals as a basis

We wish to find basis sets that, when solved exactly, give ground-state energies of high accuracy, i.e., no more than 1 kcal/mol above the exact, complete basis limit. We wish to find basis sets that converge to this accuracy with as few functions as possible, but also without needing to know the exact solution to determine them. With the fine grid DMRG wavefunction, we can calculate ρ_{ij} exactly and find the exact natural orbitals. Since our DMRG solutions do not break spin symmetry if the number of electrons is even, the up and down RDMs are identical. (For odd electron numbers, we average the up- and down-RDMs and use that to define our natural orbitals.)

The first two natural orbitals for a 1D helium atom were shown in Fig. 1. The natural orbitals yield the smallest number of basis functions that can be expected to yield high accuracy, i.e., when ordered by occupancy, the least number M_{no} which, when used as a basis, yields an error below high accuracy. Fig. 3 shows the energy error for a variety of systems, when the basis is chosen as a finite number of the most occupied exact natural orbitals. We see that $M_{no} = 2$ for 1D He, but is 3 for 1D H$_2$ either close to equilibrium ($R = 2$) or stretched ($R = 4$). For 1D Li, $M_{no} = 4$, while 1D Be has $M_{no} = 6$. Unstretched 1D H$_4$ also has $M_{no} = 4$, but stretched 1D H$_4$ requires $M_{no} = 7$. Thus M_{no} increases with the number of electrons, and also (slightly) with the number of centers.

Fig. 4 shows the first four natural orbitals for an 1D H$_4$ chain, which is stretched. Clearly, the orbitals delocalize over the entire chain. We also see from Fig. 3 that even in this basis, there remains about 8 kcal/mol error, and 3 more orbitals are needed to reach high accuracy.

B. Constructing the basis

Given the orbitals from a HF or DFT calculation, perhaps the simplest conceivable basis would be the occupied HF or DFT orbitals, since this allows the reproduction of the single determinant. One well-known approach for enlarging this basis to allow for correlation is to use additional eigenstates of the Fock matrix, selected by an energy cutoff.

It is clear, however, that this eventually becomes inappropriate. For a more complete basis, one needs functions with positive energy, but there are an infinite number of functions at zero energy far from the molecule. To remedy this, we could put a box around the molecule and include only functions within that box. However, this can be very wasteful, since the box needs to include extended tail regions, where additional basis functions are not very useful. Instead of using energies, we adopt a quite different approach, motivated by the construction of variational wavefunctions—in particular, Jastrow functions.

Single-particle determinantal states φ from DFT or HF are rough approximations to the many-particle wavefunction, but can be improved substantially by multiplication by a Jastrow factor, \mathcal{J}, which provides explicit correlation. Modifying a determinantal wavefunction with a Jastrow factor is often the first step in designing a variational wavefunction for quantum Monte Carlo calculations. The Jastrow factor acts as a multiplicative factor for the wavefunction and simple form for \mathcal{J} is

$$\mathcal{J}(r_1, r_2, \ldots) = \prod_{i < j} J_2(r_i - r_j).$$

The J_2 term is near 1 if r_i and r_j are far away, and becomes less than one as r_i and r_j come together, building
in the electron-electron cusp. We now ask the question: what would be a good single-particle basis to represent J or J_2?

The fact that J_2 is a function of the difference of two position vectors means that there is no benefit to increasing resolution in one region relative to another, at least for fitting J_2. One does expect, however, that longer wavelength functions are more important than short wavelength functions. This suggests that a plane wave basis, restricted to the general vicinity of the molecule, with a momentum cutoff which is not too high, is a reasonable approximate basis for a Jastrow function.

Since the Jastrow function in a variational wavefunction multiplies the determinant of occupied DFT orbitals, this suggests a very simple ansatz for a basis for correlated calculations: the product of occupied orbitals and low momentum cutoff plane waves, which we call a product plane wave (PPW). To be more specific: let $\{\phi_j(r)\}$ be a set of plane waves with a low momentum cutoff, and let $\{\phi_j(r)\}$ be the occupied orbitals from a DFT/HF calculation. Then our product plane-wave (PPW) basis is $\{\phi_j(r)\}$. The momentum cutoff in $\{\phi_j(r)\}$ corresponds to some minimal resolution. Linear combinations of the $\phi_j(r)$ can represent a correlation hole at any position within the system, while high momentum behavior near the nuclei is captured by the $\{\phi_j(r)\}$. $\phi_{k=0} = 1$, so that the $\{\phi_j(r)\}$ themselves are part of the basis.

In generating a PPW basis, several choices must be made. First, we want to put the molecule in a “box” that defines the sequence of momenta in the plane waves. Since the detailed correlations we want from the plane waves are weak in the tails, and since the box size is only used to define momenta, we do not include long density tails. We simply choose a small density cutoff, ρ_m, to define the edge of our box, from our DFT (or HF) calculation. Here $\rho_m = 10^{-3}$ throughout, but we expect our qualitative results to be very insensitive to this choice. For neutral atoms, the corresponding box sizes are 4.90, 5.34, 8.40, and 8.71 for $Z = 1$ to 4. A simple example of a product plane wave basis is illustrated in Fig. [5]. The first two functions resemble the natural orbitals of 1D He in Fig. [4] and the natural orbitals here. This resemblance between PPWs and NOs tends to continue for higher functions, although the precise order of the functions can vary.

Let N_{occ} be the number of occupied orbitals in a DFT or other approximate calculation. Let L be the width of the box defined by the cutoff ρ_m. Then choose an integer $J \geq 0$ to create $2J + 1$ functions, the identity and $\cos(k_n x)$ and $\sin(k_n x)$, where $k_n = n\pi/L$, $n = 1, \ldots, J$, and multiply each by the occupied DFT orbitals, creating $(2J + 1)N_{\text{occ}}$ primitive PPWs. Next, we exactly orthogonalize these orbitals via the Gram-Schmidt process, in the order of k-values, starting with the identity. The results for 1D H$_2$ are shown in Fig. [6] and compared to the exact natural orbitals. These orthogonalized PPWs are remarkably close to the exact natural orbitals, especially for those orbitals that are occupied in the DFT calculation, but also even for those that are not. (The additional wiggle in the 4th PPW is due to the orthogonalization procedure).

Finally, in Fig. [7] we show the energies for our systems as a function of the number of (orthogonalized) PPWs. For 1D He and 1D H$_2$, $N_{\text{occ}} = 1$, so increasing J by 1 yields two more PPWs (the sine and the cosine); for the rest, $N_{\text{occ}} = 2$, and 4 PPWs are added each time. A quick glance shows a remarkable similarity to the ordered natural-orbital energy errors of Fig. [3]. The PPW functions yield high accuracy with a few more functions than M_{no}, showing that they do not just look similar to the NO’s, they are similar in an energetically meaningful sense. We denote M_{PPW} as the least number needed to reach high accuracy. A more careful inspection shows that they are not quite as accurate, even for 1D He, and that the difference grows with the number of electrons and the number of atoms. It is most noticeable for stretched 1D H$_4$, where $M_{\text{PPW}} = 18$, whereas $M_{\text{no}} = 7$. But this is still a remarkably small number for a strongly correlated system.

IV. WAVELET LOCALIZATION

So far, we have accomplished our goals of a basis function set with a low number of orbitals. Our PPWs yield high accuracy with about $2M_{\text{no}}$ basis functions. But, to be efficient, tensor network methods such as DMRG require the low entanglement that comes from localized basis sets. Other methods may also benefit from localized basis functions, which make Hamiltonians sparse. Now we study cases with more than one atom, showing how we can use wavelet technology to break down a PPW into lo-
FIG. 6. (color online) The first five PPWs (red dashed) after orthogonalization compared to the exact natural orbitals (blue) for 1D H₄ with $R = 3$. Here $L = 13.8$. These functions are similar to those found in Ref. 85 from density-partitioning.

Localized, smooth orthogonalized basis functions, centered around each atom, without too large an increase in the number of functions.

Traditional methods for localization rely on orthogonal transformations within the set of basis functions one already has. Not enlarging the set of functions puts a strong limit on how localized the functions can be made. However, if one enlarges the space without limit, one can make the basis as local as one wishes. One can think of “chopping up” each delocalized basis function (which we can picture as a molecular orbital): partition all of space into a chosen number of disjoint regions, or cells. For example, one can make the number of cells the same as the number of atoms, and define each cell by associating each point in space with the closest nucleus. Form a basis by projecting each delocalized basis function into each cell, i.e. multiplying it by a function which is unity for points in the cell and zero outside, and repeating for all delocalized functions. Linear combinations of chopped up functions would allow one to reproduce any of the original delocalized functions, but this would make a terrible basis, for two reasons: 1) discontinuous basis functions have infinite kinetic energy, and 2) the number of localized functions scales as the square of the number of atoms.

Using wavelets, we can retain this idea of “chopping up” basis functions into different regions, but fix these two problems. As discussed in II B, we define a complete wavelet basis consisting of a grid of scaling functions with lattice spacing Δ (say with $\Delta \sim 1$ Bohr), and an infinite sequence of wavelets at scales $\Delta, \Delta/2, \Delta/4$, etc, as shown in Fig. 2. We will refer to any of these functions, either a scaling function or a wavelet of any scale, as a WF (wavelet-function).

Now to chop up a delocalized basis: expand all delocalized functions in terms of the WFs. Many WFs will not have significant overlap with any functions, and can be dropped. This procedure thus produces a localized but smooth basis encompassing the original functions, assuming one has chosen smooth wavelets. However, the number of functions tends to be rather high, so we use this only as a starting point.

Again we partition all of space into cells, associated with atoms. Associate each WF to a cell. A natural way to do this is to define a center of mass for each function,
and then the WF goes in the cell that contains its center of mass. Now we can project each delocalized function into each cell, simply by expanding the function in terms of the WFs belonging to the cell. This cuts the delocalized function into pieces which are all orthogonal. An example of this procedure is shown in Fig. 8.

If we repeat this with additional delocalized functions, the pieces in different cells will be orthogonal, even if they came from different delocalized functions, since the WFs of different cells are orthogonal. Within a single cell, the pieces will not be orthogonal, and may have substantial overlap. The final step is to recombine all the pieces in a particular cell into a reduced set of orthogonal functions for that cell, and repeat for all cells. Note that while the original delocalized functions may be normalized, the pieces come from a projection and will not be, and some pieces may have very small normalization. It is important to leave the pieces unnormalized. For each cell, we wish to find the minimal set of basis functions that can represent all the pieces to within a specified accuracy. This is a well known linear algebra problem with a simple solution. Let f^c_i be the piece of delocalized function i, expanded in terms of the WFs j belonging to a cell c. Form a cell covariance matrix ρ^c as

$$\rho^c_{ij} = \sum_i f^c_i f^c_j.$$ \hspace{1cm} (9)

Then the reduced basis we seek is the set of eigenvectors of ρ^c (which is positive semi-definite) with eigenvalues above a specified cutoff, η. This cutoff is roughly the mean-square error in representing all the different pieces. This is often called a principal component analysis. Here we call the entire process wavelet localization (WL) and the resulting basis functions wavelet-localized orbitals (WLOs). Although the WLO procedure could be applied to other delocalized bases, here we will only consider its application to PPWs.

Fig. 9 shows the results of wavelet localization for 1D H$_4$, with a spacing $R = 2$, discussed more in Sec. IV A. For simplicity, the figure shows only the two leading eigenfunctions and their eigenvalues for only cells 1 and 3. The dashed lines show the dividing lines between the different boxes; the nuclei are at $x = -3, -1, 1, 3$. The functions are all orthogonal, with oscillations in the tails of each function to ensure orthogonality between boxes.

The parameter Δ, the spacing of the scaling functions, is crucial, as it sets the size of the region in which functions on adjacent boxes overlap. In the limit $\Delta \to 0$, this chopping up procedure reduces to the naive discontinuous procedure mentioned at the beginning of this section. The procedure also becomes poorly behaved if Δ is larger than the interatomic spacing. Roughly, one should set Δ to a modest fraction of the interatomic spacing, but later on we show results as a function of Δ to determine optimal values.

Lastly, we note that, for multi-center stretched systems, if $R > L_a$, the box for an atom, then we use L_a instead of L for that cell. This can greatly increase the number of functions to $N_a \times N_{fa}$, where N_{fa} is the number needed to reach high accuracy for the isolated atom, but unneeded functions will be discarded by our wavelet localization.
FIG. 10. Error as a function of bond length R for 1D H_2 using both pure PPWs and WLOs, for various values of J. The sudden shift is at the Coulson-Fischer point of the LDA calculation, beyond which a broken spin-symmetry solution, with twice as many orbitals, has the lowest energy.

A. Performance of WLO bases

In this section, we wish to check that our WLOs work well for some correlated quantum calculations, and find out how many WLOs are needed for a given task. Our procedure requires, at most, $N_{\text{occ}} \times (2J + 1) \times N_{\text{cell}}$ functions. Thus, for a H_4 chain that is unstretched (no spin-symmetry breaking), $N_{\text{occ}} = 2$, we will usually choose $J = 1$, and have 4 cells. A PPW calculation has 6 functions, and up to 24 (6 per cell) when fragmented. However, in practice, up to half those functions can be eliminated by the cutoff of our covariance matrix. This removal of irrelevant functions becomes increasingly important as the number of atoms grows.

The prototype calculation is the dissociation of molecular hydrogen. All single-determinant methods fail as bonds are stretched and electrons localize on distinct sites. Molecular hydrogen dissociates into an open-shell biradical (two 1D H atoms). The molecular energy as a function of separation is given in Fig 6 of Ref. 21. That figure also shows the failure of LDA, with a Coulson-Fischer point $R_{\text{CF}} = 3.53$, where the unrestricted broken symmetry solution becomes lower in energy than the spin-singlet within LDA. In Fig 10, we show the error in the energy curve, using pure PPWs, and also separating into separate cells, using $\Delta = 1$ and $\eta = 10^{-4}$.

Beginning with the PPWs (dashed lines), we see that increasing J improves accuracy systematically, as expected. Moreover, for a given $J = 1$ or higher, we see that the error increases systematically as the bond is stretched until R_{CF} is reached. This is because the LDA orbital is becoming less and less close to the exact natural orbital as the bond is stretched. Beyond this point, there is a great decrease in error, as the the number of LDA orbitals doubles (due to spin-symmetry breaking). Even the largest PPW basis shown here ($J = 2$) does not achieve high accuracy close to the CF point. But our WLOs do reach high accuracy everywhere for $J = 2$, and almost everywhere with $J = 1$, using $3 \times 2 = 6$ functions for $R < R_{\text{CF}}$, and double that beyond. (The wavelet localization does not throw out any WLOs here.) Thus our basis set works, even through the CF point. Of course, in practice, quantum chemists want forces, and some smoothing procedure would be adopted to avoid the kink at the CF point.

The strong changes with R in the error in the red curve past the CF point can be attributed to the grouping of the scaling and wavelet functions. As the bond is stretched, because the functions are fixed in real space, some of the functions are assigned to the left cell, and others to the right. This assignment can change suddenly, causing a drop in the eigenvalue weights in the covariance matrix of one of the cells and decreasing the number of functions. Note that this effect occurs only for errors far below the high accuracy threshold.

Next we consider performance for longer chains of 1D H atoms. Now the covariance cutoff becomes important for curtailing the total number of functions. Figure 11 illustrates the effect of the covariance cutoff for H_4 near equilibrium. The higher the value of η, the more functions are thrown away, but the greater the error is. If η is set too small, then no functions are removed, not even those that have essentially no effect on the energy. The figure shows that the full basis has an error of about 0.1 kcal/mol. But high accuracy is achieved with $\eta = 10^{-3}$ and only 14 functions. This is to be contrasted with $M_{\text{no}} = 6$ from Fig 3 and $M_{\text{PPW}} = 14$ from Fig 7. In this case (near equilibrium), the WLOs form a near-complete localized orthogonal basis with no more functions than PPW, and with lower error. Note that setting $\eta = 10^{-4}$...
does not add in any more functions.

To see the effect as a function of bond length, in Table I we give energy errors and numbers of basis functions for various values of R and several values of Δ, for a $J = 1$ calculation with $\eta = 10^{-4}$. (In all cases, $J = 0$ was found to yield errors higher than 1 kcal/mol.) We see that the least number of functions needed occurs for $\Delta = 1$, especially as the chain is stretched.

Finally, we have run examples of 10-atom chains. We achieve high accuracy for $J = 1$, $\Delta = 1$ throughout the range of R shown in the table, with about 5 functions per site when $\eta = 10^{-4}$. This may seem like a large number of functions, but keep in mind that, as R increases, this is a strongly correlated system tending toward its thermodynamic limit. Moreover, we have required our total energy to be accurate to 1 kcal/mol all along the curve, not just the energy per atom. One would also expect most energy differences to converge more rapidly than the total energy. Table II also illustrates the benefits of the covariance cutoff. By setting its value to 10^{-4} as the covariance cutoff yields the number of functions and accuracy shown. The units provided are in kcal/mol.

Δ	N_f	ΔE	N_f	ΔE	N_f	ΔE				
0.5	16.0	0.24	16.0	0.33	26.0	0.11	24.0	0.09	23.0	0.21
1.0	14.0	0.43	16.0	0.26	24.0	0.15	22.0	0.11	22.0	0.16
2.0	16.0	0.37	15.0	1.50	28.0	0.04	25.0	0.08	24.0	0.15
4.0	18.0	0.34	18.0	0.52	29.0	0.04	25.0	0.10	25.0	0.17

FIG. 12. The first two natural orbitals for stretched 1D LiH (X’s denote nuclear centers with Li on right). The exact NO’s are marked in red, and are indistinguishable from the WLO NO’s ($\Delta = J = 1$, $\eta = 10^{-4}$), black dotted line, but slightly different from the occupied LDA orbitals (green). Also shown are WLOs with weights above 10^{-4} (dashed lines). The WLO basis has 11 functions, and an error of 1.04 kcal/mol.

V. DISCUSSION AND CONCLUSIONS

We have presented algorithms to generate a basis set that is adapted to a specific molecular system and designed to be used in correlated calculations. The basis begins with an inexpensive DFT or HF calculations, and the generation of additional functions from the occupied orbitals to allow correlation is even less expensive. A product plane wave (PPW) ansatz adds additional functions using a product of low momentum plane waves times each occupied orbital. In our 1D test systems, this ansatz produces results within high accuracy using about twice as many functions as an ideal natural orbital basis. Then, to generate basis functions localized near each atom, we introduced a wavelet localization procedure. Compared to standard localization methods, which involve an orthogonal transformation of the existing functions without expanding the basis, wavelet localization produces stronger localization with much smaller orthogonalizing tails, at the expense of adding basis functions. This procedure is particularly useful for DMRG calculations, where locality in the basis is an important criteria. It may also improve scaling on large systems in other correlation approaches. Our method, as presented here, should allow much larger systems to be treated than previously possible in our 1D mimic of realistic electronic structure (such as the 100-atom chains of Ref. 97).

Our procedure has only been given and tested upon a 1D mimic of the 3D world. A naive generalization of PPW to arbitrary 3D problems would involve many more plane waves, roughly the cube of the number in 1D. For a fixed momentum cutoff the number of plane waves also grows with the length of the system, even in 1D.
would appear to generate far too many functions to be practical, but the wavelet localization would counteract this effect. We can think about how this works by considering one particular cell, centered on an atom. The PPW basis generates occupied orbitals times plane waves with a low momentum cutoff. The number of functions needed to span this set in one cell should not be too large, since the only high frequencies present are from the cusps of the occupied orbitals at the nuclei, which in a Gaussian basis can be represented by a small number of basis functions. Otherwise, there are only a limited number of low frequency modes in a single atom cell. This means that there must be significant redundancy in the PPW functions, particularly for many electrons. The principle component analysis of the wavelet localization would remove this redundancy. This makes it clear that except for very small molecules, one should not apply PPW on its own, but in conjunction with wavelet localization. Nevertheless, there are likely significant challenges in going to 3D which we must leave for future work. In 1D, our bases give high accuracy with only about twice as many functions as in an equivalent natural orbital basis. It seems reasonable that a variation of our 1D approach can be found for 3D which is similarly less efficient than a natural orbital basis by only a modest factor.

In the case of a He atom, this means roughly that 3D He would need about the cube of the number of functions as 1D He. This argument would apply to any basis, including natural orbitals. Indeed, one finds one needs about 15 NOs for chemical accuracy in 3D He versus 2 or 3 for 1D He. Our PPW basis does not try to beat the NOs, which is not possible; rather, it tries to duplicate their completeness but based on a cheap calculation. In 1D, we obtain the same accuracy as with an NO basis if we use about twice as many functions. In 3D, we hope to do similarly—but this has not been tested.

One improvement to our PPW approach which we have not explored here is to give more weight to the occupied orbitals than to the additional functions coming from the plane waves with nonzero momentum. This would be fairly simple to implement in our wavelet localization, by multiplying the \(J > 0 \) functions by a weighting factor less than 1. One would expect this natural modification to further reduce the number of functions needed for high accuracy. We also note that our procedure could also be applied without chopping, but still removing irrelevant basis functions, by constructing the orthonormal basis from the PPWs

\[
g_j^i = \sum_k O_{jk}^{-1/2} f_k^i, \tag{10}
\]

where \(O \) is the overlap matrix of the \(f^i \). Now \(\rho^c = O \), so the principle component analysis consists of forming a basis of the eigenvectors of the overlap matrix with the largest eigenvectors, up to cutoff \(\eta \). This procedure reduces basis-set linear dependence; here it might reduce the PPW basis size significantly without much loss of accuracy.

A number of existing approaches also utilize or are based on approximate natural orbitals. For example, some Gaussian basis sets attempt to reproduce properties of atomic natural orbitals. A key difference with our approach is that we start from the beginning with orbitals adapted to the specific molecule under consideration, based on a DFT or HF calculation. It would be interesting to compare the number of functions needed to reach chemical accuracy in 3D between our PPW approach and standard Gaussian basis sets. (We do not have these Gaussian basis sets for our 1D test systems.)

Another common approach is to find approximate natural orbitals from a low-order correlation calculation, such as second order perturbation theory, e.g. MP2. Our PPW method is simpler and faster, and it would be interesting to compare the accuracy of these two approaches. One might also combine them: in cases where the perturbation calculation was expensive to do in a large basis, one might first get a PPW basis, which would be much smaller than an unadapted basis, and then refine it further by getting approximate natural orbitals with a perturbation theory approach.

The localization using wavelets could be applied in a broader context than we have used here, such as to standard Gaussian bases or to approximate natural orbitals coming from a low order correlation method. This could potentially improve the performance of DMRG or other tensor network methods. By improving the sparsity of the Hamiltonian, it may also improve the computational scaling for DFT on large systems. In particular, using wavelet localization to impose locality only at the atomic level may be more efficient than existing wavelet approaches which do not recombine the wavelets into a smaller number of functions. Specifically, one could wavelet filter a standard Gaussian basis to produce an orthogonal basis with more locality and sparsity than traditionally localized Gaussian bases.

Since we are trying to produce basis sets for correlated calculations, where basis set convergence is slower than for DFT or HF calculations, we must think about the effect of the basis on the electron-electron cusp. Our choice of 1D potential interaction, which has a slope discontinuity at the origin, is designed to partially mimic the electron-electron cusp behavior in 3D. In 3D, the potential diverges as \(r \to 0 \), but the effect is substantially reduced by the 3D volume element. The moderate singularity we have in 1D is similar, but we cannot expect our results to match 3D precisely. Also, when trying to achieve chemical accuracy, the short range cusp behavior is thought to be less relevant than intermediate distance electron-electron correlation. This further complicates the comparisons between 1D and 3D, and a 3D procedure and benchmark calculations are clearly needed.

Another difficulty in implementing our approach in 3D is the computation of the integrals defining the Hamiltonian, once the basis is defined. In our 1D implementation, all integrals are written in terms of sums over the fine grid; this would not be practical in 3D. Wavelet
bases, which are a crucial part of our wavelet localization, are able to represent nuclear cusps more efficiently than grids, so one might try to work directly in the wavelet basis, expressing all the final basis functions as linear combinations of wavelet functions. However, wavelets are much less efficient than atom-centered Gaussians for representing nuclear cusps, and so a much more efficient approach might be to try to combine wavelets with a few Gaussians per nucleus. Another approach to dealing with nuclear cusps would be to use pseudopotentials, so there are no cusps. Yet another is to employ a basis set that inherently has a one-dimensional structure. We leave this set of 3D implementation problems for future work.

VI. ACKNOWLEDGEMENTS

This work was supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences under award #DE-SC000896. T.E.B. also thanks the gracious support of the Pat Beckman Memorial Scholarship from the Orange County Chapter of the Achievement Rewards for College Scientists Foundation. T.E.B. graciously thanks Professor Filip Furche, Dr. Shane Parker, Dr. Vansee K. Voora, and Sree Balasubramani for their patience in explaining and introducing methods from quantum chemistry. Access to and discussion about the Block code was provided to T.E.B. by Professor Garnet K. Chan and Professor Sandeep Sharma, both of whom we thank.

1. P. Hohenberg and W. Kohn, “Inhomogeneous electron gas,” Phys. Rev. 136, B864–B871 (1964).
2. W. Kohn and L. J. Sham, “Self-consistent equations including exchange and correlation effects,” Phys. Rev. 140, A1133–A1138 (1965).
3. Kieron Burke and Lucas O. Wagner, “Dft in a nutshell,” Int. J. Quant. Chem. 113, 96–101 (2013).
4. K. Burke, “Perspective on density functional theory,” J. Chem. Phys. 136, 150901 (2012).
5. Jeffrey Pribram-Jones, David A. Gross, and Kieron Burke, “Dft: A theory full of holes?” Annual Review of Physical Chemistry 66, 283–304 (2015).
6. C. David Sherrill and Henry F. Schaefer, “The configuration interaction method: Advances in highly correlated approaches,” Advances in quantum chemistry 34, 143–269 (1999).
7. Christopher J Cramer, Essentials of computational chemistry: theories and models (John Wiley & Sons, 2013).
8. Fritz Coester and Hermann Kümmerl, “Short-range correlations in nuclear wave functions,” Nuclear Physics 17, 477–485 (1960).
9. J. Cizek and J. Paldus, “Coupled cluster approach,” Physica Scripta 21, 251 (1980).
10. Jiří Cížek, “On the correlation problem in atomic and molecular systems. calculation of wavefunction components in ursell-type expansion using quantum-field theoretical methods,” The Journal of Chemical Physics 45, 4256–4266 (1966).
11. Steven R. White, “Density matrix formulation for quantum renormalization groups,” Phys. Rev. Lett. 69, 2863 (1992).
12. Steven R. White, “Density-matrix algorithms for quantum renormalization groups,” Phys. Rev. B 48, 10345–10356 (1993).
13. Steven R White and Richard L Martin, “Ab initio quantum chemistry using the density matrix renormalization group,” The Journal of chemical physics 110, 4127–4130 (1999).
14. Garnet Kin-Lic Chan and Martin Head-Gordon, “Highly correlated calculations with a polynomial cost algorithm: A study of the density matrix renormalization group,” The Journal of chemical physics 116, 4462–4476 (2002).
15. Ulrich Schollwöck, “The density-matrix renormalization group,” Reviews of modern physics 77, 259 (2005).
16. Ulrich Schollwöck, “The density-matrix renormalization group in the age of matrix product states,” Annals of Physics 326, 96–192 (2011).
17. Per-Olov Löwdin and Harrison Shull, “Natural orbitals in the quantum theory of two-electron systems,” Physical Review 101, 1730 (1956).
18. Per-Olov Löwdin, “Quantum theory of many-particle systems. i. physical interpretations by means of density matrices, natural spin-orbitals, and convergence problems in the method of configurational interaction,” Physical Review 97, 1474 (1955).
19. Hans Jørgen As Jensen, Poul Jørgensen, Hans Ågren, and Jeppe Olsen, “Second-order mo/ller–plesset perturbation theory as a configuration and orbital generator in multi-configurational self-consistent field calculations,” The Journal of chemical physics 88, 3834–3839 (1988).
20. Jens Eisert, Marcus Cramer, and Martin B Plenio, “Colloquium: Area laws for the entanglement entropy,” Reviews of Modern Physics 82, 277 (2010).
21. Thomas E. Baker, E. Miles Stoudenmire, Lucas O. Wagner, Kieron Burke, and Steven R. White, “One-dimensional mimicking of electronic structure: The case for exponentials,” Phys. Rev. B 91, 235141 (2015).
22. Alfred Haar, “Zur theorie der orthogonalen funktionen-systeme,” Mathematische Annalen 69, 331–371 (1910).
23. Dennis Gabor, “Theory of communication. part 1: The analysis of information,” Electrical Engineers-Part III: Radio and Communication Engineering, Journal of the Institution of 93, 429–441 (1946).
24. Alexander Grossmann and Jean Morlet, “Decomposition of hardy functions into square integrable wavelets of constant shape,” SIAM journal on mathematical analysis 15, 723–736 (1984).
25. Yves Meyer, “Orthonormal wavelets,” in Wavelets (Springer, 1989) pp. 21–37.
26. Stephane G Mallat, “A theory for multiresolution signal decomposition: the wavelet representation,” IEEE transactions on pattern analysis and machine intelligence 11, 674–693 (1989).
27. Ingrid Daubechies et al., Ten lectures on wavelets, Vol. 61 (SIAM, 1992).
Calculations were performed using the itensor library: http://itensor.org/.

"Calculations were performed using the itensor library; http://itensor.org/."
E. M. Stoudenmire, Lucas O. Wagner, Steven R. White, and Kieron Burke, “One-dimensional continuum electronic structure with the density-matrix renormalization group and its implications for density-functional theory,” Phys. Rev. Lett. 109, 056402 (2012).

R Ahlrichs, W Kutzelnigg, and WA Bingel, “On the solution of the quantum mechanical two-electron problem by direct calculation of the natural orbitals,” Theoretica chimica acta 5, 289–304 (1966).

Frank Neese and Edward F Valeev, “Revisiting the atomic natural orbital approach for basis sets: Robust systematic basis sets for explicitly correlated and conventional correlated ab initio methods?” Journal of chemical theory and computation 7, 33–43 (2010).

Andreas Grüneis, George H Booth, Martijn Marsman, James Spencer, Ali Alavi, and Georg Kresse, “Natural orbitals for wave function based correlated calculations using a plane wave basis set,” Journal of chemical theory and computation 7, 2780–2785 (2011).

Shane M Parker and Toru Shiozaki, “Communication: Active space decomposition with multiple sites: Density matrix renormalization group algorithm,” The Journal of chemical physics 141, 211102 (2014).

E. Miles Stoudenmire and Steven R. White, “Sliced basis density matrix renormalization group for electronic structure,” Phys. Rev. Lett. 119, 046401 (2017).