Impact of Nitrogen and Boron Fertilization on Winter Triticale Productivity Parameters

Stanislaw Bielski 1, Kęstutis Romankecas 2,* and Egidijus Šarauskis 3

1 Department of Agrotechnology, Agricultural Production Management and Agribusiness, University of Warmia and Mazury in Olsztyn, Oczapowskiego str. 8, 10-791 Olsztyn, Poland; stanislaw.bielski@uwm.edu.pl
2 Institute of Agroecosystems and Soil Sciences, Vytautas Magnus University, Agriculture Academy, K. Donelaicio str. 58, 44248 Kaunas, Lithuania
3 Institute of Agricultural Engineering and Safety, Vytautas Magnus University, Agriculture Academy, K. Donelaicio str. 58, 44248 Kaunas, Lithuania; egidijus.sarauskis@vdu.lt

* Correspondence: kestutis.romaneckas@vdu.lt; Tel.: +370-656-30044

Received: 20 January 2020; Accepted: 13 February 2020; Published: 15 February 2020

Abstract: Research related to fertilization in winter triticale cultivation was limited to macroelements. The effects of boron on triticale (deficiency or toxicity) affecting productivity are still unknown. In 2013–2015, a field experiment was carried out at the Experimental Station in Tomaszkowo near Olsztyn. The objective was to set response of winter triticale variety Pigmej under the influence of various levels of nitrogen (N) and boron (B) fertilization. Five levels of nitrogen fertilization: 0, 40, 80 (50+30), 120 (90+30), and 160 (90+70) kg ha⁻¹ and four levels of boron fertilization: 0, 0.8, 1.6, and 2.4 kg ha⁻¹ were tested. The experiment has demonstrated considerable differences in the grain yield volume and structure under the influence of various weather conditions and different doses of nitrogen. The difference between the highest and lowest grain yield was 1.7 t ha⁻¹—53.6%. The effect of boron application was also manifested as an increase in the winter triticale grain yield and improved yield component structure, but the statistically significant differences were observed only in ears number per 1 m². The highest dose of boron applied in the experiment caused a decrease in the quantity of grain yield and its component parts.

Keywords: Triticosecale; grain yield; yield components; nitrogen; boron

1. Introduction

The cultivation of triticale as a cereal crop is a distinguishing feature of Poland, a leading cereal producer in the European Union. The total area of farmland cropped with triticale in Poland represents around 34% of the total area of triticale production worldwide. Currently, the European agriculture also appreciates this species. Over the past decade, the area sown with triticale has increased by 30%. This definitely is the evidence of the rising position of this species [1]. Triticale is mostly grown for animal feed. However, owing to its high yielding potential and good nutritive properties [2], it raises much interest as a raw food product for the food industry [3–5]. Although triticale can be a useful ingredient in a human diet, as of yet it has secured only a modest position on the food market. The most promising trend for the future of this cereal in the food industry is to investigate the usefulness of triticale grain for baking [3,4,6] and bioenergy production, especially bioethanol [7,8]. Triticale is considered to be an interesting species that can be grown even in unfavorable biotic and abiotic conditions [9,10], even at high salinity [11]. Moreover, it is a species with high genetic potential. In comparison with wheat, triticale varieties are often superior in terms of yields, adjust better to various soil and environmental conditions, and are able to produce a much higher yield of grain [12,13]. Peltonen-Sainio et al. [14]
claim that winter cereals will be grown in northern regions on a much larger area in the near future than at present.

One of the most important agrotechnical factors influencing the yield of grain and enabling farmers to take full advantage of the high production potential of cereals is mineral fertilization, especially nitrogen nutrition [9,15–17]. In intensive plant production, the level of nitrogen fertilization and the date of its application are essential for the attainment of high productivity of plants, supplying good quality yields [18].

Boron is one of the micronutrients that are deficient in soil [19]. According to Herrera-Rodriguez [20], large areas of farmland across the world are characterized by a boron deficit, which inhibits the growth, development, and yielding of major crops. In Poland, the majority of soils are light and acidic. This is conducive to boron deficiencies, because the element is readily soluble in water and therefore easily leached from soil.

Boron can be applied in long-term and in annual plantations; it is usually supplied in spring or autumn, in the form of solid fertilizers, either to soil or sprayed over foliage, and sometimes even during seed dressing. Plants should have access to this element from germination of maturity [21]. Boron is involved in many processes in the plant, e.g., calcium utilization, cell division, during the generative growth of plants, when the element affects water relations, resistance to diseases, and nitrogen metabolism [22]. Among elements essential for plants, boron is the only element that is absorbed not as an ion but as an uncharged molecule [23].

Boron is essential for plants, and recent studies on the biological role of this element in different metabolic, nutritive, hormonal, and physiological circumstances have provided evidence that boron is also an essential element for humans and animals. There is ongoing research on the influence of this element on metabolism. They prove the formation of disorders in the metabolism of calcium and fluorine in the conditions of the deficiency of this microelement, leading to diseases arthritis, osteoporosis, and brain abnormalities. Boron, which is a micronutrient, is obtained by humans and animals from a daily diet, in amounts depending on its composition [24–26].

The productivity of crops on fields with boron deficit depends on the sources of boron, and on the application schedule and methods. Soil or topdressing fertilization with boron is effective in the improvement of yields and yield quality [27]. The availability of boron is affected by many soil conditions, including: concentration of the soil solution, pH, soil texture, soil moisture, temperature, content of organic matter, and content of aluminum and iron hydroxides [28]. According to Eggert and Wirén [29], boron supply strongly promoted water and nutrient uptake as well as biomass formation. In recent years, both the Polish and international references have failed to provide results of research concerning the effect of boron fertilization on the growth and development of winter triticale. This has encouraged us to conduct an experiment with the winter triticale Pigmej variety, where the following objective was set to identify the production effects—expressed by grain yield volume and structure—under the influence of various levels of nitrogen and boron fertilization. The research hypothesis assumed that the fertilizer factors (nitrogen and boron) would significantly modify the grain yield and its components.

2. Materials and Methods

2.1. Location and Soil Characteristic

In 2013–2015, a field experiment on winter triticale was conducted at the Experimental Station in Tomaszkowo near Olsztyn (N = 53°71’74’’; E = 20°40’62’’). Triticale was grown on proper brown soil, classified as a very good rye complex in the Polish soil taxonomy (Table 1).
Table 1. Soil agrochemical characteristics.

Specification	Vegetative Period		
	2013	2014	2015
Soil type	proper brown soil		
Soil texture	light clay		
Soil pH (1 M KCl)	5.5	5.7	6.0
Soil valuation class	R-IVa		
Soil suitability complex	rye very good		
Content of nutrients (mg kg\(^{-1}\) of soil):			
P	27.4	25.8	26.5
K	26.7	24.9	27.2
Mg	4.7	5.3	5.1
\(N_{\text{min}}\) (0–90 cm)	19.4	18.5	17.2
B	0.73	0.75	0.74

2.2. Experimental Design and Details

A two-factorial experiment was set up according to the random sub block method (split-plot) with four replications. The first order factor was nitrogen fertilization (kg ha\(^{-1}\)): A—0, B—40, C—80 (50 + 30), D—120 (90 + 30), and E—160 (80 + 80). A dose of nitrogen equal 60 kg N ha\(^{-1}\) was applied in early spring (after the plant vegetative growth was resumed—BBCH 27). Higher doses (80, 120, and 160 kg N ha\(^{-1}\)) were split and applied on two dates: at resumed vegetative growth (BBCH 27) and at the 4-internode stage (BBCH 38). Nitrogen in the first dose was applied as CO(NH\(_2\))\(_2\) (46%), and in the second dose as NH\(_4\)NO\(_3\) (34%). The second order factor was composed of boron fertilization: a—0 kg ha\(^{-1}\), b—0.8 kg ha\(^{-1}\), c—1.6 kg ha\(^{-1}\), and d—2.4 kg ha\(^{-1}\).

Chemical protection against diseases consisted of seed dressing with the preparation Baytan Universal 094 FS (active substances: triadimenol + imazalil + fuberidazol), and the application of Input 460 EC in a dose of 1 l ha\(^{-1}\) (spiroxamine + prothioconazol) at the first node stage (BBCH 31). Weeds were controlled in the autumn by spraying the fields with the preparations Dicuran Forte 80 WP in a dose of 1 kg ha\(^{-1}\) (chlorotoluron) and Gold 450 EC in a dose of 1.2 l ha\(^{-1}\) (2,4-D ester + fluroxipir). Phosphorus and potassium fertilization was applied in one dose, prior to sowing, in an amount of 30 kg P ha\(^{-1}\) in the form of triple superphosphate (46%) and 75 kg K ha\(^{-1}\) in the form of potassium salt (60%). Dressed seeds of the winter triticale variety Pigmej were sown to a depth of 3 cm, in rows spaced at 10 cm, and in an amount of 350 germinating kernels per 1 m\(^2\). The variety Pigmej is one of the dwarf forms of winter triticale, and therefore resistant to lodging. This variety is quite resistant to diseases, as well as to sprouting at the ear. In addition, it is recommended for growing, among others in the Warmia and Mazury province due to good frost resistance. The surface area of a plot for harvest was 15 m\(^2\). The yield of grain in kg per plot was determined at the full maturity stage, and then expressed in t ha\(^{-1}\) at 13% grain moisture. Plant samples were taken from an area of 0.25 m\(^2\) in order to determine the yield structure components (number of ears per unit area, number of grains per ear, and 1000-grain weight).

2.3. Statistical Analysis

The results were processed statistically according to analysis of variance (ANOVA), supported by Statistica\(^{\text{®}}\) 13 program (TIBCO Software Inc., Palo Alto, CA, USA). Significance of differences was verified with the Tukey’s test at the level of confidence equal \(p = 0.05\). In order to determine relationships between the dose of applied nitrogen and winter triticale yield components, correlation equations were calculated.
3. Results

3.1. Grain Yield and Meteorological Conditions

Yields of winter triticale were significantly varied during the three-year experiment, and ranged from an average of 4.62 t ha$^{-1}$ in 2014, a year with favorable precipitations and temperatures in autumn and spring (Table 2), through 4.56 in 2013 and 3.82 t ha$^{-1}$ in 2015. The gap between the best years for triticale yields and the worst one was 17.3%.

Table 2. Meteorological conditions in the vegetation period of winter triticale in years 2013–2015, according to Meteorological Station in Tomaszkowo.

Months	Rainfall (mm)	Temperature (°C)						
	2012–13	2013–14	2014–15	1961–2010	2012–13	2013–14	2014–15	1961–2010
IX	45.7	67.5	30.8	57.1	13.5	14.1	14.5	12.6
X	68.5	29.5	21.3	46.0	7.5	8.4	9.5	7.7
XI	45.2	14.1	21.2	47.9	4.9	3.1	4.4	2.8
XII	11.8	25.8	56.6	36.6	−3.5	2.3	−0.6	−1.2
I	34.6	44.0	28.5	31.2	−4.5	−3.5	0.6	−2.9
II	21.3	11.4	8.8	21.9	−0.8	2.0	0.3	−1.3
III	14.0	55.7	46.0	28.5	−4.0	5.5	4.6	1.2
IV	22.5	26.1	23.4	34.2	6.3	9.5	7.2	7.0
V	46.2	34.9	25.4	54.6	15.0	13.3	12.1	12.7
VI	45.4	72.1	43.0	79.0	17.4	14.8	15.7	15.9
VII	163.8	20.4	71.0	75.5	17.9	21.0	18.0	18.0
Mean/Sum	519.0	401.5	376.0	-	6.3	8.2	7.8	-

The first year was quite beneficial for the growth and development of winter triticale. It was only in July that very abundant rainfall made harvest difficult and caused the sprouting of grain. The second research season 2013/2014 was also favorable to the growth and development of triticale, and the modest rainfall in July allowed a timely harvest of grain. In the third research season, the autumn of 2014 (October and November) was characterized by higher temperatures and rainfall deficit (lower by as much as 97% in comparison with the multi-annual precipitation data), as a result of which the emergent plants were considerably thinned and the plant tillering was weaker. In consequence, the density of stems with panicles was low.

The lowest grain yield of triticale was obtained in the control treatment—without nitrogen fertilization (3.17 t ha$^{-1}$; Table 3).

Table 3. Winter triticale yields (t ha$^{-1}$) depending on nitrogen and boron fertilization.

Fertilization Rate	nitrogen fertilization (kg ha$^{-1}$)	2013	2014	2015	Mean
0	3.57^c	3.25^d	2.67^d	3.17^d	
40	4.30^c	4.59^{bc}	3.86^{bc}	4.25^c	
80	4.65^b	5.08^a	4.08^d	4.57^b	
120	5.13^a	5.08^a	4.20^d	4.80^a	
160	5.17^a	5.15^a	4.28^c	4.87^a	

Fertilization Rate	boron fertilization (kg ha$^{-1}$)	2013	2014	2015	Mean
0	4.51	4.60	3.79	4.30	
0.8	4.36	4.65	3.84	4.35	
1.6	4.67	4.64	3.87	4.39	
2.4	4.52	4.59	3.76	4.29	
mean	4.56^a	4.62^a	3.82^b	-	

* Different letters significant with α < 0.05.
Nitrogen fertilization caused a distinct increase in grain although it was statistically significant up to the dose of 120 kg N ha\(^{-1}\). The highest grain yield was harvested from the plots fertilized with 160 kg N ha\(^{-1}\), although the difference relative to the yield obtained under the effect of 120 kg N ha\(^{-1}\) was not statistically significant. There was a tendency to increase triticale yields increasing intensity of boron fertilization. The highest boron dose (2.4 kg ha\(^{-1}\)) caused decreased grain yields.

The calculated regression equation between the dose of nitrogen and grain yield, which is a second-degree curve, shows that the maximum yield of grain in a field experiment with the Pigmej variety can be achieved at 141 kg ha\(^{-1}\) N (Figure 1).

![Figure 1](image)

Figure 1. Regression curve of grain yield (y) of winter triticale cv. Pigmej depending on nitrogen fertilization dose (x).

3.2. Ears Number per 1 m\(^2\)

The number of ears per 1 m\(^2\) depended on the year of the experiment. The highest value of this trait was noted in 2013 (Table 4).

Fertilization Rate	Years	Mean		
	2013	2014	2015	
	nitrogen fertilization (kg ha\(^{-1}\))			
0	448\(^{de}\)	434\(^{e}\)	398\(^{g}\)	427\(^{e}\)
40	461\(^{d}\)	472\(^{d}\)	417\(^{f}\)	450\(^{d}\)
80	495\(^{c}\)	489\(^{c}\)	430\(^{e}\)	472\(^{c}\)
120	512\(^{b}\)	505\(^{b}\)	442\(^{de}\)	486\(^{b}\)
160	546\(^{a}\)	537\(^{a}\)	450\(^{de}\)	511\(^{a}\)
boron fertilization (kg ha\(^{-1}\))				
0.8	496	489	429	471\(^{a}\)
1.6	501	492	433	475\(^{a}\)
2.4	486	484	422	464\(^{b}\)
mean	493\(^{a}\)	487\(^{a}\)	427\(^{b}\)	-

* Different letters significant with \(\alpha < 0.05\).
A significantly smaller number of ears (by 11.2%) per unit area was recorded in 2015. Nitrogen fertilization significantly differentiated the number of productive ears before harvest per unit area. Their smallest number was observed in the control treatment (without nitrogen). The highest increase in this trait occurred under the influence of nitrogen fertilization with the dose of 40 kg N ha\(^{-1}\) (an increase by 4.6% relative to the control). A significant increase in the number of productive ears took place up to the dose of 160 kg N ha\(^{-1}\) (higher by 10% than in the control). The significant higher ears number per 1 m\(^2\) of triticale was obtained from objects with boron fertilization in a dose of 0.8 and 1.6 kg ha\(^{-1}\). Application of the highest in experiment boron dose caused a significant decrease in the ears number (2.3%).

3.3. Number of Grains per Ear

The highest number of grains per ear in the cultivated winter triticale was recorded in 2015, when it was significantly higher than noted in 2013 and 2014 (Table 5).

Table 5. Grain number per one ear of winter triticale depending on nitrogen and boron fertilization.

Fertilization Rate	Years	Mean		
	2013	2014	2015	
nitrogen fertilization (kg ha\(^{-1}\))				
0	21.2\(^{b}\)	20.1\(^{a}\)	23.1\(^{f}\)	21.4\(^{b}\)
40	25.3\(^{c}\)	27.8\(^{d}\)	29.6\(^{b}\)	27.6\(^{a}\)
80	26.8	27.5\(^{d}\)	30.2\(^{a}\)	28.1\(^{a}\)
120	27.8\(^{d}\)	28.1\(^{c}\)	30.5\(^{a}\)	28.8\(^{a}\)
160	28.1\(^{c}\)	28.3\(^{c}\)	30.5\(^{a}\)	29.0\(^{a}\)
boron fertilization (kg ha\(^{-1}\))				
0	25.8	26.3	28.7	26.9
0.8	25.9	26.4	28.9	27.1
1.6	26.0	26.5	28.9	27.1
2.4	25.7	26.2	28.6	26.8
mean	25.8\(^{a}\)	26.4\(^{b}\)	28.8\(^{c}\)	-

* Different letters significant with \(\alpha < 0.05\).

The number of grains per ear in winter triticale was differentiated by the applied nitrogen fertilization. A significant increase in the number of grains per ear continued up to the nitrogen dose of 40 kg N ha\(^{-1}\), and above this amount the said increase was small and the difference was statistically insignificant. Our research shows that more grain number per one ear winter triticale was recorded from objects with boron fertilized but was not a significant difference.

3.4. Weight of 1000 Grains

The weight of 1000 grains of winter triticale was significantly varied between the years of the experiment. The largest grains were harvested in the third year with a kernel weighing on average 40.9 g, whereas the smallest grains were produced in 2013 with 36.7 g on average (Table 6).

With respect to nitrogen fertilization, it needs to be underlined that the smallest 1000 grain weight was achieved by triticale grown in the control treatment, without fertilization (36.4 g). Even the smallest dose of nitrogen (40 kg ha\(^{-1}\)) caused a significant rise in this trait’s value (10.2%). Triticale plants fertilized with this amount of nitrogen produced grains with the highest 1000 grain weight (40.1 g). Increasing the fertilizing nitrogen doses caused a so-called post-fertilization diminution of grains and a tendency towards a decrease in the weight of 1000 grains. However, a significant decline in this trait occurred at the second highest (120 kg N ha\(^{-1}\)) dose of nitrogen. When raised to 160 kg ha\(^{-1}\), it caused another significant decrease relative to the impact of the dose of 120 kg N ha\(^{-1}\).
Table 6. Weight of 1000 grains (g) of winter triticale depending on nitrogen and boron fertilization.

Fertilization Rate	2013	2014	2015	Mean
nitrogen fertilization (kg ha\(^{-1}\))				
0	35.1\(^a\)*	36.8\(^d\)	39.1\(^a\)	36.4\(^d\)
40	37.4\(^c\)	40.7\(^ab\)	42.1\(^a\)	40.1\(^a\)
80	38.2\(^bc\)	39.4\(^b\)	41.7\(^a\)	39.8\(^a\)
120	37.0\(^c\)	38.3\(^bc\)	41.1\(^a\)	38.8\(^b\)
160	36.5\(^cd\)	36.8\(^cd\)	40.4\(^ab\)	37.7\(^c\)
boron fertilization (kg ha\(^{-1}\))				
0	36.7	37.9	40.8	38.5
0.8	36.8	38.1	40.9	38.6
1.6	36.9	38.2	41.1	38.7
2.4	36.5	38.1	40.8	38.4
mean	36.7\(^c\)	38.1\(^b\)	40.9\(^a\)	-

* Different letters significant with \(\alpha < 0.05\).

3.5. Correlations Between Yield and Yield Related Traits

Table 7 shows the correlation coefficients between the grain yield and its components. Significant positive correlations were observed between yield and grain number in ear, yield and ears number per 1 m\(^2\), 1000 grain weight and grain number in ears, grain number in ear and ears number per 1 m\(^2\).

Table 7. Correlation coefficients between grain yield and its components (significant level (\(p\))/correlation coefficient (r)).

Traits	Yield	1000 Grain Weight	Grain Number in Ears	Ears Number per 1 m\(^2\)
Yield	1.00	\(p = 0.012/-0.842\)	\(p = 0.000/0.5596\)*	\(p = 0.000/0.8316\)*
1000 grain weight	1.00	\(1.00\)	\(p = 0.000/0.6957\)*	\(p = 0.019/-0.1515\)*
Grain number in ears			\(1.00\)	\(p =0.019/0.2877\)*
Ears number per 1 m\(^2\)				\(1.00\)

* Significant at 0.05.

4. Discussion

4.1. Grain Yield

In a previous study by Bielski [30], the maximum nitrogen fertilization with a dose of 150 kg ha\(^{-1}\) caused a significant increase in the grain yield of the winter triticale Gniewko variety. In another experiment conducted by Bielski and Falkowski [31], where the Twingo variety was tested, the highest dose of nitrogen (150 kg ha\(^{-1}\)) caused an increase in grain yield relative to the dose of 120 kg ha\(^{-1}\), yet the differences were not statistically significant. Triticale is capable of using very high doses of nitrogen, even 180 kg ha\(^{-1}\) [32]. According to Lestingi et al. [15], an application of 50 kg N ha\(^{-1}\) in comparison with the dose of 100 kg N ha\(^{-1}\) is a good compromise as it combines a relatively small input with good grain and protein yields, good grain quality parameters, as well as being ecofriendly. The year × nitrogen fertilization interaction shows that the highest triticale grain yield was achieved in 2013 when the nitrogen dose applied was 160 kg ha\(^{-1}\). In a study by Alaru et al. [33], the strongest effect on the yield volume and structure was produced by the years of the experiment, followed by the cultivar and then the division of the nitrogen fertilization dose. This supports the earlier studies conducted by other authors, who reported that the yield volume and quality of triticale depended not only on fertilization but also on the weather conditions [34,35]. Biberdžić et al. [12] mention the weather as one of the most important factors affecting the yield of grain.
Boron fertilization did not differentiate significantly the volume of winter triticale grain yield (Table 3). In the years of the study, there occurred a tendency towards higher grain yields under the influence of higher boron doses. However, the highest dose of this element (2.4 kg ha\(^{-1}\)) decreased the grain yield. This response of winter triticale to boron fertilization was noted in each year. On average for a growing season, triticale without boron fertilization yielded by 0.04 t ha\(^{-1}\) lower (1.2\%) than when supplied a dose of 0.8 kg B ha\(^{-1}\). Similarly, the dose of 1.6 kg B ha\(^{-1}\) raised the grain yield by 0.04 t ha\(^{-1}\) (0.9\%) compared with the plots fertilized with 0.8 kg B ha\(^{-1}\).

Due to the lack of publications providing the latest results of boron fertilization on winter triticale yield and yield components, the authors will confront their data with reports on wheat, a species, which is a maternal form of triticale. The results of our researches prove the higher nutritional needs of winter triticale varieties than boron reported in the literature. Boron is an essential micronutrient for plants, needed to achieve proper growth. Disorders in the development of plants may be caused by both deficit and excess of boron [36]. Ahmad et al. [27] report that boron fertilization can enhance the yield volume and quality. Ahmad et al. [27] recommend to use boron in a dose up to 2.5 kg ha\(^{-1}\), so as to prevent or correct boron deficit in major crops. Debnath et al. [37] obtained the highest wheat grain yield from plots fertilized with nitrogen in a dose of 120 kg ha\(^{-1}\) and 2 kg B ha\(^{-1}\). Fakir et al. [38] as well as Thakur and Mukhopadhyay [39] noted a significant rise in wheat grain yield under the influence of boron fertilization. Iqbal et al. [40] concluded that the addition of boron to a seed dressing mixture ensured earlier and more uniform germination of seeds.

In our study, a decrease in grain yield and its component traits noticed on plots with the highest boron dose is most probably a consequence of its excessive amount supplied to winter triticale, which therefore produced a toxic effect. Similar tendencies associated with boron fertilization were noted by Debnath et al. [41] and Zare et al. [42]. Matula [28] claims that the gap between boron deficit and toxicity to plants is extremely narrow. Any change in the concentration of boron may considerably affect the growth and development of plants.

4.2. Ears Number per 1 m\(^2\)

The most important factor influencing the volume of yield is the ears number per unit area [43]. In another study by Bielski [30], significant differences in the number of ears per unit area were also noted depending on the research year. However, nitrogen fertilization did not have a significant effect on this property. The author only noted a tendency towards a higher number of ears in response to nitrogen fertilization. Similar research results concerning this characteristic were also reported by Bielski and Falkowski [31].

4.3. Number of Grains per Ear

In a study by Lalević and Biberdžić [44], an increase in this trait appeared up to the dose of 90 kg N ha\(^{-1}\), and 120 kg N ha\(^{-1}\) resulted in a lower number of grains per ear. In earlier studies reported by Bielski [30] as well as by Bielski and Falkowski [31], both on winter triticale, years of the research had no influence on the value of this trait. However, these authors noted a significantly greater number of grains per ear only when the nitrogen dose applied reached 90 kg N ha\(^{-1}\).

4.4. Weight of 1000 Grains

Dekić et al. [17] observed that the influence of nitrogen fertilization on grain yield and 1000 grain weight was highly significant statistically. Likewise, the effect of the interaction between years of the research and nitrogen fertilization on the weight of 1000 grains was substantial. According to Gerdzhikova [45], the highest dose of nitrogen, i.e., 180 kg ha\(^{-1}\), caused a statistically significant decrease in the weight of 1000 grains relative to the treatment where the nitrogen dose equaled 120 kg ha\(^{-1}\). Different impact of nitrogen fertilization on the weight of 1000 grains is reported by Lalević and Biberdžić [44]. All the winter triticale varieties tested by these authors (Odisej, Kg-20, Trijumf, Rtanj, and Tango) responded to higher doses of nitrogen by raising the weight of 1000 grains.
A positive effect of boron fertilization was also noted with respect to basic yield structure components but same as for yield volume only to the dose of 1.6 kg ha$^{-1}$. The boron fertilization treatment with 2.4 kg ha$^{-1}$ caused a trend towards a lower density of ear per unit area, lower number of grains per ear and lower 1000 grain weight.

Many researchers have noted a positive effect of boron on yield and yield structure. Most often, it was manifested as a significantly higher weight of 1000 grains [37,38,46], number of grains per ear [22] and wheat plant density [47].

4.5. Correlations between Yield and Yield Related Traits

Other authors have found that seed yield had positive and significant correlation with number of spikes 1 m$^{-2}$ [42], grain number in ear [41,42], and 1000 grain weight [41,48]. Dekić et al. [17] reported that winter triticale grain yield was highly correlated with the weight of 1000 grains (in 3 research years, respectively $r = 0.71$, 0.52, and 0.54).

5. Conclusions

Winter triticale grain yield volume was strongly dependent on weather conditions during the study years and on nitrogen fertilization. Winter triticale grain volume was significantly positively correlated with number of ear per unit area (0.8316), grain number in ears (0.5596), and significantly negatively correlated with the weight of 1000 grains (~0.842). Boron fertilization had a positive effect on yield and yield structure, but the statistically significant differences were observed only in ears number per 1 m2. The highest boron dose in the experiment (2.4 kg ha$^{-1}$) caused a decrease in the yield and lower values of yield component traits. The regression equation between doses of nitrogen and grain productivity, which is a second degree curve, shows that the maximum grain productivity in a field experiment with the variety Pigmej can be obtained at a dose of 141 kg ha$^{-1}$ N.

Author Contributions: S.B. and K.R. analyzed the data and wrote the original draft; S.B. performed investigations, S.B. and K.R. provided resources; E.Š. reviewed and edited the paper. All authors have read and agreed to the published version of the manuscript.

Funding: The research of the paper was supported by University of Warmia and Mazury in Olsztyn, Department of Agrotechnology, Agricultural Production Management and Agribusiness. Project financially supported by Ministry of Science and Higher Education in the range of the program entitled “Regional Initiative of Excellence” for the years 2019–2022. Project No. 010/RID/2018/19, amount of funding 12.000.000 PLN”.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. FAOSTAT. 2018. Available online: http://faostat.fao.org (accessed on 2 December 2019).
2. Jonnala, R.S.; Irmak, S.; Macritchie, F.; Bean, S.R. Phenolics in the bran of waxy wheat and triticale lines. J. Cereal Sci. 2010, 52, 509–515. [CrossRef]
3. Rakha, A.; Åman, P.; Andersson, R. Dietary fibre in triticale grain: Variation in content, composition, and molecular weight distribution of extractable components. J. Cereal Sci. 2011, 54, 324–331. [CrossRef]
4. Nakurte, I.; Klavins, K.; Kirhner, I.; Namniece, J.; Adlere, L.; Matvejevs, J.; Kronberga, A.; Koka, A.; Strazdina, V.; Legzdina, L.; et al. Discovery of lunasin peptide in triticale (X Triticosecale Wittmack). J. Cereal Sci. 2012, 56, 510–514. [CrossRef]
5. Pattison, A.L.; Trethowan, R.M. Characteristics of modern triticale quality: Commercially significant flour traits and cookie quality. Crop Pasture Sci. 2013, 64, 874–880. [CrossRef]
6. Bielski, S.; Dubis, B.; Budzyński, W. Influence of nitrogen fertilisation on the technological value of semi-dwarf grain winter triticale varieties Alekto and Gniewko. Pol. J. Nat. Sci. 2015, 30, 325–336. Available online: http://www.uwm.edu.pl/polish-journal/sites/default/files/issues/articles/bielski_2015.pdf (accessed on 2 December 2019).
7. Bielski, S.; Romanieckas, K.; Novikova, A.; Šarauskis, E. Are higher input levels to triticale growing technologies effective in biofuel production system? Sustainability 2019, 11, 5915. [CrossRef]
8. Klikocka, H.; Kasztelan, A.; Zakrzewska, A.; Wyłupek, T.; Szostak, B.; Skwaryło-Bednarz, B. The energy efficiency of the production and conversion of spring triticale grain into bioethanol. *Agronomy* 2019, 9, 423. [CrossRef]

9. Dumbravá, M.; Ion, V.; Epure, L.I.; Bășa, A.G.; Ion, N.; Dușa, E.M. Grain yield and yield components at triticale under different technological conditions. *Agric. Agric. Sci. Procedia* 2016, 10, 94–103. [CrossRef]

10. Liu, W.; Maurer, H.P.; Leiser, W.L.; Tucker, M.R.; Weissmann, S.; Hahn, V.; Würschum, T. Potential for marker-assisted simultaneous improvement of grain and biomass yield in triticale. *Bioenergy Res.* 2017, 10, 449–455. [CrossRef]

11. Kankarla, V.; Shukla, M.K.; Van Leeuwen, D.; Schutte, B.J.; Picchioni, G.A. Growth, evapotranspiration, and ion uptake characteristics of alfalfa and triticale irrigated with brackish groundwater and desalination concentrate. *Agronomy* 2019, 9, 789. [CrossRef]

12. Biberdžić, M.; Jelić, M.; Deletić, N.; Barać, S.; Stojković, S. Ectotrophic conditions at trial locations and fertility on grain yield of triticale. *Res. J. Agric. Sci.* 2012, 44, 3–8. Available online: https://www.rjas.ro/download/paper_version/paper_file.bc615a32e6d405db.313334372e706466.pdf (accessed on 2 December 2019).

13. Roques, S.E.; Kindred, D.R.; Clarke, S. Triticale out-performs wheat on range of UK soils with a similar nitrogen requirement. *J. Agric. Sci.* 2016, 155, 261–281. [CrossRef]

14. Hetlingi, A.; Bovera, F.; De Giorgio, D.; Ventrella, D.; Tateo, A. Effects of tillage and nitrogen fertilisation on triticale grain yield, chemical composition and nutritive value. *J. Sci. Food Agric.* 2010, 90, 2440–2446. [CrossRef] [PubMed]

15. Zečević, V.; Knezevic, D.; Boskovic, J.; Milenkovic, S. Effect of nitrogen and ecological factors on quality of winter triticale cultivars. *Genetika* 2010, 42, 465–474. [CrossRef]

16. Dekić, V.; Milovanović, M.; Popović, V.; Milivojević, J.; Staletić, M.; Jelić, M.; Perišić, V. Effects of fertilization on yield and grain quality in winter triticale. *Rom. Agric. Res.* 2014, 31, 175–183. Available online: http://www.incdla-fundulea.ro/rar/nz31/rar31.22.pdf (accessed on 2 December 2019).

17. Janušauskaitė, D. Spring triticale yield formation and nitrogen use efficiency as affected by nitrogen rate and its splitting. *Zemdirbysto* 2013, 100, 383–392. [CrossRef]

18. Tahir, M.; Tanveer, A.; Shah, T.H.; Fiaz, N.; Wasaya, A. Yield response of wheat (*Triticum aestivum* L.) to boron application at different growth stages. *Pak. J. Life Soc. Sci.* 2009, 7, 39–42. Available online: http://www.pjllss.edu.pk/pdf_files/2009_1/39--42.pdf (accessed on 2 December 2019).

19. Herrera-Rodriguez, M.B.; Gonzalez-Fontes, A.; Rexach, J.; Camacho Cristobal, J.J.; Maldonado, J.M.; Navarro-Gochiaco, M.T. Role of boron in vascular plants and response mechanism to boron stresses. *J. Plant Stress Physiol.* 2010, 4, 115–122. Available online: http://www.globalsciencebooks.info/Online/GSBOnline/images/2010/PS_4(S12)/PS_4(S12)115--122o.pdf (accessed on 2 December 2019).

20. Jehangir, I.A.; Wani, S.H.; Bhat, M.A.; Hussain, A.; Raja, W.; Haribhushan, A. Micronutrients for crop production: Role of boron. *Int. J. Curr. Microbiol. Appl. Sci.* 2017, 6, 5347–5353. [CrossRef]

21. Ahmad, R.; Irshad, M. Effect of boron application time on yield of wheat, rice and cotton crop in Pakistan. *Plant Soil Environ.* 2011, 30, 50–57. Available online: http://www.se.org.pk/File-Download.aspx?publishedid=28 (accessed on 2 December 2019).

22. Miwa, K.; Fujiwara, T. Boron transport in plants: Co-ordinated regulation of transporters. *Ann. Bot.* 2010, 105, 1103–1108. [CrossRef] [PubMed]

23. Newnham, R.E. How boron is being used in medical practice. In *Boron in Plant and Animal Nutrition*; Goldbach, H.E., Ed.; Kluwer Academic Publisher: New York, NY, USA, 2002; pp. 59–62.

24. Nielsen, F.H. The Nutritional importance of boron throughout the life cycle of higher animals and human. In *Boron in Plant and Animal Nutrition*; Goldbach, H., Ed.; Kluwer Academic Publisher: New York, NY, USA, 2002; pp. 37–50.

25. Kabu, M.; Akosman, M.S. Biological effects of boron. *Rev. Environ. Contam. Toxicol.* 2013, 225, 57–75. [PubMed]
27. Ahmad, W.; Zia, M.H.; Malhi, S.S.; Niaz, A.; Ullah, S. Boron deficiency in soils and crops: A review. In Crop Plant; Aakash, G., Ed.; In Tech: Shanghai, China, 2012; pp. 77–114.

28. Matula, J. Boron sorption in soils and its extractability by soil tests (Mehlich 3, ammonium acetate and water extraction). Plant Soil Environ. 2009, 55, 42–49. [CrossRef]

29. Eggert, K.; von Wirén, N. The role of boron nutrition in seed vigour of oilseed rape (Brassica napus L.). Plant Soil 2016, 402, 63–76. [CrossRef]

30. Bielski, S. Yields of winter triticale under the influence of nitrogen fertilisation and fungicide application. Pol. J. Nat. Sci. 2015, 30, 337–348. Available online: http://www.uwm.edu.pl/polish-journal/sites/default/files/issues/articles/bielski_2015.pdf (accessed on 2 December 2019).

31. Bielski, S.; Falkowski, J. Effects of nitrogen and magnesium fertilisation on yield and economic efficiency of winter triticale production. In Proceedings of the 8th International Scientific Conference Rural Development 2017, Akademija, Lithuania, 23–24 November 2017; pp. 17–23. [CrossRef]

32. Mut, Z.; Sezer, I.; Gulumser, A. Effect of different sowing rates and nitrogen levels on grain yield, yield components and some quality traits of triticale. Asian J. Plant Sci. 2005, 4, 533–539. [CrossRef]

33. Alaru, M.; Laur, Ü.; Eremeev, V.; Reintam, E.; Selge, A.; Noormets, M. Winter triticale yield formation and quality affected by N rate, timing and splitting. Agric. Food Sci. 2009, 18, 76–90. [CrossRef]

34. Janusauskaite, D. Analysis of grain yield and its components in spring triticale under different N fertilisation regimes. Zemdirbyste 2014, 101, 381–388. [CrossRef]

35. He, J.F.; Goyal, R.; Laroche, A.; Zhao, M.A.; Lu, Z.X. Water stress during grain development affects starch synthesis, composition and physicochemical properties in triticale. J. Cereal Sci. 2012, 56, 552–560. [CrossRef]

36. Davies, M.J.; Atkinson, C.J.; Burns, C.; Arroo, R.; Woolley, J. Increases in leaf artemisinin concentration in Artemisia annua in response to the application of phosphorus and boron. Ind. Crops Prod. 2011, 34, 1465–1473. [CrossRef]

37. Debnath, C.; Kaderand, M.A.N.; Islam, N. Effect of nitrogen and boron on the performance of wheat. Int. J. Environ. Sci. 2014, 7, 105–110. [CrossRef]

38. Fakir, O.A.; Rahman, M.A.; Jahiruddin, M. Effect of foliar application of boron (B) on the grain set and yield of wheat (Triticum aestivum L.). Am. J. Exp. Agric. 2016, 12, 1–8. [CrossRef]

39. Thakur, P.; Mukhopadhyay, D. Effect of boron and lime on yield assessment of wheat (Triticum aestivum L.). Int. J. Curr. Microbiol. Appl. Sci. 2018, 7, 1133–1140. [CrossRef]

40. Iqbal, S.; Farooq, M.; Nawaz, A.; Rehman, A.U.; Rehman, A. Optimizing boron seed priming treatments for improving the germination and early seedling growth of wheat. J. Agric. Soc. Sci. 2012, 8, 57–61. Available online: http://www.fspublishers.org/published_papers/89239...pdf (accessed on 2 December 2019).

41. Debnath, M.R.; Jahiruddin, M.; Rahman, M.M.; Haque, M.A. Determining optimum rate of boron application for higher yield of wheat in old Brahmaputra floodplain soil. Bangladesh J. Agric. Res. 2011, 9, 205–210. [CrossRef]

42. Zare, M.; Zadehbagheri, M.; Azarpanah, A. Influence of potassium and boron on some traits in wheat (Triticum Aestivum CV. DARAB2). Int. J. Biotechnol. 2013, 2, 141–153. Available online: https://pdfs.semanticscholar.org/ed1d/5e4fd98d154e3984e13911d42851e85da483.pdf?_ga=2.175306149.601797383.1575365406--114672696.1575365406 (accessed on 2 December 2019).

43. Skuodienė, R.; Nekrošienė, R. Effect of preceding crops on the winter cereal productivity and diseases incidence. Acta Agric. Slov. 2009, 93, 169–179. [CrossRef]

44. Lalevic, D.N.; Biberdzic, M.O. Effects of rates of nitrogen on yield and yield components of winter triticale. J. Agric. Sci. 2016, 61, 127–135. [CrossRef]

45. Gerdzhikova, M. Influence of N fertilization and predecessors on triticale yield structure characteristics. Turk. J. Agric. Nat. Sci. 2014, 2, 1922–1931. [CrossRef]

46. Abid, K.; Zafar, H.; Asad, A.K.; Junaid, A.; Waseem, M.A.; Haq, N.; Farhan, A.; Kaleem, A. Effect of foliar application of zinc and boron on growth and yield components of wheat. J. Agric. Sci. Technol. 2019, 21, 1–4. [CrossRef]
47. Ali, S.; Shah, A.; Arif, M.; Miraj, G.; Ali, I.; Sajjad, M.; Farhatollah, M.; Khan, Y.; Khan, M.M. Enhancement of wheat grain yield components through foliar application of zinc and boron. *Sarhad J. Agric.* 2009, 25, 15–19. Available online: http://www.aup.edu.pk/sj_pdf/ENHANCEMENT%20OF%20WHEAT%20GRAIN%20YIELD%20AND%20YIELD%20COMPONENTS.pdf (accessed on 2 December 2019).

48. Hellal, F.A.; Zeweny, R.M.; Yassen, A.A. Evaluation of Nitrogen and Silicon Application for Enhancing Yield Production and Nutrient Uptake by Wheat in Clay Soil. *J. Appl. Sci. Res.* 2012, 8, 686–692. Available online: https://pdfs.semanticscholar.org/4631/58cc2492b42ae84aa560aa6c59cb7c0b4da4.pdf?_ga=2.82433425.601797383.1575365406--1146726296.1575365406 (accessed on 2 December 2019).

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).