REVIEW

mRNA cancer vaccines: Advances, trends and challenges

Qing He, Hua Gao, Dejiang Tan, Heng Zhang, Jun-zhi Wang*

National Institutes for Food and Drug Control, State Key Laboratory for Evaluation and Standardization of Innovative Vaccines and Biotechnology Products, Beijing 102629, China

Received 8 January 2022; received in revised form 21 February 2022; accepted 25 February 2022

KEY WORDS
mRNA; Cancer vaccine; Tumor-associated antigens; Neoantigens; mRNA delivery vectors; Adjuvants; Administration routes

Abstract Patients exhibit good tolerance to messenger ribonucleic acid (mRNA) vaccines, and the choice of encoded molecules is flexible and diverse. These vaccines can be engineered to express full-length antigens containing multiple epitopes without major histocompatibility complex (MHC) restriction, are relatively easy to control and can be rapidly mass produced. In 2021, the U.S. Food and Drug Administration (FDA) approved the first mRNA-based coronavirus disease 2019 (COVID-19) vaccine produced by Pfizer and BioNTech, which has generated enthusiasm for mRNA vaccine research and development. Based on the above characteristics and the development of mRNA vaccines, mRNA cancer vaccines have become a research hotspot and have undergone rapid development, especially in the last five years. This review analyzes the advances in mRNA cancer vaccines from various perspectives, including the selection and expression of antigens/targets, the application of vectors and adjuvants, different administration routes, and preclinical evaluation, to reflect the trends and challenges associated with these vaccines.

© 2022 Chinese Pharmaceutical Association and Institute of Materia Medica, Chinese Academy of Medical Sciences. Production and hosting by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. mRNA vaccines and mRNA cancer vaccines

In 1961, Brenner et al. first discovered mRNA, which is a key intermediate molecule necessary for expressing genes as proteins and contains codon information corresponding to amino acids (basic units of proteins). In 1990, Wolff et al. first showed that a specific protein [e.g., chloramphenicol acetyltransferase and luciferase (Luc)] could be effectively expressed in vivo by intra-muscularly injecting pure RNA encoding the corresponding protein into mice; specifically, protein expression from βgLuc/βgA2 RNA occurred in both a dose-dependent and time-dependent manner; this work also proposed the concept of an mRNA vaccine. In 2020, the U.S. Food and Drug Administration (FDA) granted emergency approval to two mRNA-based vaccines produced by Pfizer-BioNTech/BNT162b2 and Moderna/mRNA-1273 for the prevention of coronavirus disease 2019 (COVID-19). In 2021, the FDA approved the first COVID-19 vaccine, produced by Pfizer-BioNTech (marketed as Comirnaty), which has stimulated enthusiasm for research and development of mRNA vaccines and created expectations for breakthroughs in mRNA cancer vaccines.

To date, researchers have used mRNA as a vaccine platform [e.g., influenza virus, human immunodeficiency virus, coronavirus, viral antigens (rabies virus glycoprotein and proteins from Zika virus and Venezuelan equine encephalitis virus), bacterial pathogens (Mycobacterium tuberculosis) and cancer] and as a protein replacement platform (e.g., factor IX, follistatin, ornithine transcarbamylase and erythropoietin) for prevention and treatment of disease. mRNA vaccines have many shared characteristics. Unlike plasmid deoxyribonucleic acid (DNA) and viral vectors, which carry the risk of mutation caused by gene insertion and/or infection, mRNA can be directly translated into proteins after entering the cytoplasm; thus, mRNA vaccines are nonintegrated, noninfectious and well tolerated. mRNA is also briefly expressed in cells, allowing repeated inoculation. The choice of units encoded in an mRNA transcript is flexible and diverse, allowing encoding of both antigenic and immunomodulatory molecules to induce and regulate both the adaptive and innate immune responses, and an encoded full-length antigen containing multiple epitopes can be presented by MHC class I (MHC-I) and II (MHC-II) molecules without MHC restriction. The production of in vitro-transcribed (IVT) mRNA does not require cells, preventing contamination with proteins or viruses and allowing fast, economical and easy mass production. mRNA cancer vaccines use mRNA encoding tumor antigens or immunomodulatory molecules to deliver the corresponding proteins, combined with relevant delivery vectors and adjuvants, to induce antitumor responses. A timeline showing the development of mRNA cancer vaccines is presented in Fig. 1.

Antitumor T cells are the main expected effector cells that mediate the therapeutic effects of these vaccines, and the mechanism underlying the production and action of antitumor T cells is summarized in Fig. 2. mRNA is taken up by DCs at the vaccine site, translated and processed into antigen-MHC II/III complexes and presented on the cell surface. Activated DCs travel to the draining lymph nodes, and the presented antigen-MHC II/III complexes bind to T cell receptor (TCR) on the surface of cluster of differentiation 8 (CD8)+/CD4+ T cells (the first signal) in the lymph nodes, resulting in T cell activation and proliferation, with the participation of costimulatory signaling molecules [e.g., CD80/CD86, OX40 ligand (OX40L)] binding to receptors (e.g., CD28, OX40) on the T cells (the second signal) and cytokines [e.g., interferon (IFN) I, interleukin 12 (IL-12), IL-1] binding to cytokine receptors on the T cells (the third signal). Additionally, IL-2 secreted by CD4+ T cells can promote amplification of CD8+ T cells. Activated T cells migrate to and infiltrate tumor tissue under the action of chemokines [e.g., CC-chemokine receptor 7, CC-chemokine ligand (CCL) 5, CXC-chemokine ligand 9/10] to maximize the antitumor effect of their secreted effectors [e.g., IFN-γ, tumor necrosis factor (TNF), perforins, granzymes]. Endogenous antigens are mainly presented by MHC-I molecules to activate cytotoxic CD8+ T cells, while exogenous antigens are mainly presented by MHC-II molecules to activate helper CD4+ T cells. Cytotoxic CD8+ T cells usually have a strong direct killing effect on target cells, and these cells are the main effector cells expected to be induced by cancer vaccines.

2. Progress in mRNA cancer vaccines in preclinical and clinical settings

The core role of a vaccine is to deliver antigens that can be recognized by the body’s immune cells to trigger immune responses. The selection and expression of antigens/targets, the application of vectors and adjuvants, and administration routes are key factors to be considered in vaccine design. Table 1 summarizes the progress in those factors in the preclinical and clinical settings. Table 2 summarizes clinical trials employing mRNA-based cancer vaccines conducted between 2016 and 2021.

2.1. Selected antigens or targets

2.1.1. Tumor-associated antigens

The major first step in developing cancer vaccines is the selection of an antigen, which should have high tumor specificity and induce strong and controllable antitumor T cell responses. Tumor antigens can be divided into TAAs and TSAs according to their tissue distribution, expression level and central tolerance. TAAs are generally overexpressed in tumors and expressed in normal tissues, exhibit weak tumor specificity, strong central tolerance and weak immunogenicity, and these antigens mainly include tissue differentiation antigens and carcinoembryonic antigens. The central immune tolerance of TAAs is a major challenge in developing cancer vaccines using those antigens. Using combinations of multiple (e.g., 2–6) shared TAAs has become the trend in development of targeted mRNA cancer vaccines in the clinic. The selected TAAs are often widely expressed in related tumors and can induce antitumor immune responses when combined with different vectors or adjuvants.

In 2009, Weide et al. conducted a phase I/II clinical study on a protamine (RNAActive®)-protected mRNA cancer vaccine, adopting GM-CSF as an adjuvant that encoded 6 TAAs (Melan-A, tyrosinase, gp100, MAGE-A1, MAGE-A3, and survivin). The vaccine was administered by intradermal injection. This vaccine significantly reduced immunosuppressive cells [e.g., Foxp3+/CD4+ regulatory T cells (Tregs) in peripheral blood and myeloid suppressor cells] and increased specific T cells in a subset of patients. One treated patient had a complete response, and no adverse reactions greater than grade II occurred (NCT00204607). In 2011, Fotin-Mleczek et al. conducted a preclinical study on protamine-complexed mRNA cancer vaccines encoding ovalbumin (OVA)/PSMA/STEAP and showed that the two-component mRNA cancer vaccine could induce self-adjuvant action via TLR7, balanced adaptive immune
responses and sustained antitumor effects (NCT00831467, NCT00923312). In 2014, Fotin-Mleczek et al. showed the strong synergistic antitumor effect of a combination of a protamine-complexed OV A-encoding mRNA cancer vaccine and preclinical radiation. Protamine-complexed mRNA cancer vaccines encoding 4 prostate-specific antigens (e.g., CV9103 (NCT00831467) and CV9104 (NCT01817738)) or 5 TAAs for melanoma and NSCLC (e.g., CV9201 (NCT00923312) and CV9202 (NCT03164772)) are in clinical trials. BN111 is an mRNA cancer vaccine candidate encoding a fixed combination of 4 TAAs (NY-ESO-1, MAGE-A3, tyrosinase, and TPTE) that are prevalent in melanoma and delivered as an RNA-lipoplex formulation (Lipo-MERIT). BNT111 alone or in combination with an immune checkpoint PD-1 inhibitor induces persistent and strong antigen-specific CD8+ T cell responses and objective responses in patients with unresectable melanoma. Related adverse events occurred in more than 5% of patients, and the majority of adverse reactions were grade 1-2 (NCT02410733). Based on these results, BNT111 has received FDA fast track designation for clinical translation to treat advanced melanoma. Lipo-MERIT mRNA cancer vaccines encoding 3 TAAs for OC (NCT04163094), 5 TAAs for PC (e.g., BNT112 (NCT04382898)), or a fixed combination of shared cancer antigens for HNSCC and HNC [BNT113 (NCT04534205)] are in clinical trials.

The clinical translation of mRNA cancer vaccines for AML and myeloma has also shown a trend from the application of a single TAA (e.g., WT1 (NCT00834002, NCT00965224, NCT01291420)) to a combination of multiple TAAs (e.g., WT1, PRAME, CMV pp65, cancer-testis antigen 7, and MAGE-A3 (NCT01734304, NCT02405338, NCT01995708)). DCs electroporated with WT1 mRNA were found to prevent or delay relapse in 43% of AML patients in remission after chemotherapy (NCT00965224), and the improved overall survival (OS) rates or clinical responses were correlated with the induction of a WT1-specific CD8+ T cell response (NCT00965224, NCT01291420). TLR7/8-matured DCs transfected with RNA encoding WT1, PRAME, and CMV pp65 prevented relapse in a subset of AML patients in complete remission (NCT01734304).

mRNA cancer vaccines are also being developed toward individualization and precision, and the preliminary trend is from the application of autologous tumor (e.g., AML (NCT00514189-Terminated), prostate cancer (NCT01197625), NCT01278940, NCT00846456, NCT00961844-Terminated) or tumor stem cell (e.g., OC (NCT01334047-Terminated)-derived mRNAs to adopt personalized TAA panels (NCT01334047, NCT02709616, NCT02808364, NCT02808416)). DCs loaded with complete tumor mRNA can induce T cell responses targeting a wide range of antigens within the tumor, even those unique to the patient

Figure 1 Timeline showing the development of mRNA cancer vaccines. Abbreviations: CARTs, charge-altering releasable transporters; CLAN, cationic lipid-assisted nanoparticles; DCs, dendritic cells; DOTAP/DP7-C, 1,2-diol-3-trimethylpropane chloride/cholesterol-modified cation peptide DP7; LCP NPs, lipid/calcium/phosphate (LCP) nanoparticles (NPs); LPC, cationic liposome/protamine complex; LNPs, lipid nanoparticles; Mann, mannan; PGCP NPs, poly (lactic-co-glycolic acid) (PLGA)/G0-C14/ceramide-poly (ethylene glycol) (PEG) (PGCP) NPs; PSA, prostate-specific antigen; ssPalmE-KALA, a vitamin E-scaffold (ssPalmE)-lipid nanoparticle and an α-helical cationic peptide “KALA”; triMN-LPR, cationic liposomes (L)-a cationic polymer (P)-mRNA (R) called lipopolyplexes (LPR) functionalized with a tri-antenna of α-D-mannopyranoside (triMN).
DCs transfected with cancer stem cell-derived mRNA were found to induce an immune response in patients and showed promising preliminary safety results (NCT00846456). DCs pulsed with personalized TAA panels containing 3–13 different TAA mRNAs were associated with favorable OS, and the treated patients experienced no grade III/IV adverse events (NCT02709616, NCT02808364, NCT02808416)89. mRNA derived from autologous tumor cells or tumor stem cells contains all the proteins in tumor cells. This strategy is simple and feasible; however, its targeting and effectiveness need to be improved, and safety should also be considered.

\subsection*{2.1.2. Tumor-specific antigens}

TSAs are usually tumor neoantigens formed by nonsynonymous mutations in the genome of tumor cells; these antigens are not expressed in normal cells and have strong tumor specificity and immunogenicity and weak central tolerance65,66. A correlation between TSAs and antitumor immune responses has been confirmed in several studies. Analysis of thousands of RNA sequences in data for 18 solid tumors from The Cancer Genome Atlas showed a positive correlation between the number of neoantigens in each tumor and the expression of genes related to the cytotoxic activity of T cells107. Analysis of RNA-seq data for 6 sites in 515 patients from The Cancer Genome Atlas showed that a high level of immunogenic mutant epitopes was associated with improved patient survival. Tumors with high levels of immunogenic mutations had much higher levels of CD8A, PD-1 and CTLA4108. Analysis of the whole-exon sequences of 619 colorectal cancer samples showed that a high level of neoantigens in the tumor was correlated with both an increase in tumor-infiltrating lymphocytes and an improvement in survival109. An association between the level of neoantigens and the number of tumor-infiltrating lymphocytes has also been confirmed in endometrial carcinoma110. Furthermore, tumors with a high level of neoantigens were found to be significantly more homogenous than those with a low level of neoantigens111. Tumors with a mutational load greater than 10 somatic cell mutations per million bases (equivalent to 150 nonsynonymous mutations in expressed genes) are more likely to form immunogenic neoantigens, and tumors with a mutational load less than 1 somatic cell mutation per million bases are less likely to form immunogenic neoantigens. Most tumors have a mutational load of 1–10 somatic cell mutations per million bases and can generally form neoantigens recognized by T cells112. Rajasagi et al.113 analyzed the predicted mutant HLA-binding peptides of 13 different tumors (2488 samples) using whole-exon sequencing and an HLA-peptide predictive binding algorithm (i.e., NetMHCpan) and showed that each tumor could produce tens to thousands of neoantigens, indicating that neoantigens are common in most tumors.

The prevailing trend in mRNA cancer vaccines toward individualization and precision aims to develop mRNA cancer vaccines using multiple (e.g., 20) neoantigens [e.g., IVAC MUTANOME (NCT02035956)49, IVAC_W_bre1_uLD and IVAC_W_bre1_uLD/IVAC_M_uLD (NCT02316457), RO7198457 (NCT03289962, NCT04161755, NCT03815058, NCT04486378), mRNA-4157 (NCT03313778, NCT03897881), NCI4650/mRNA-4650 (NCT03480152)50, NCT03468244, NCT03908671]. In 2015, Kreiter et al.48 analyzed the mutant peptides in murine tumor cells (e.g., the melanoma cell line B16F10, colon cancer cell line CT26 and breast cancer cell line 4T1) via exome

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{Figure2.png}
\caption{Diagram showing the mechanism of mRNA cancer vaccines.}
\end{figure}
Key factor	Stage	mRNA cancer vaccine
Antigens/targets	Preclinical	CEA\(^{41}\), tumor-derived mRNA\(^{42}\), gp100\(^{66}\), MART1/MART1-LAMP1\(^{70,71}\), PSMA/STEAP\(^{72}\), TRP2/WT1/PA\(^{73}\), total tumor RNA\(^{2}\), thymus cell antigen 1/truncated nerve growth factor receptor/TRP2\(^{75}\), truncated nerve growth factor receptor\(^{68}\), TRP-1/gp70\(^{72}\), gp100/TRP2\(^{75}\), MUC1\(^{76}\), MART1\(^{77}\), TRP2\(^{2,57,61,62,75}\), cytokeratin 19\(^{80}\), claudin 6\(^{81}\)
	Clinical	PSA\(^{3}\); PSA, prostate stem cell antigen, PSMA, and STEAP1 (NCT00831467); PSA, prostate stem cell antigen, PSMA, STEAP1, prostatic acid phosphatase, and MUC1 (NCT01817738); autologous tumor mRNA\(^{82}\); AML lysate plus mRNA (NCT00514189); tumor stem cell-derived mRNA\(^{83}\); mRNA from primary prostate cancer tissue, hTERT, and surviving (NCT01197625); hTERT and LAMP (NCT00510133); amplified OC stem cell mRNA, hTERT and surviving (NCT01334047); hTERT, surviving and tumor cell-derived mRNA (NCT00961844); Melan-A, MAGE-A1, MAGE-A3, survivin, and gp100, tyrosinase\(^{85}\); gp100 and tyrosinase\(^{83}\); MAGE-C1, MAGE-C2, NY-ESO-1, survivin, and 5T4 (NCT00923312); TRP2 (NCT01456104); MUC1 and survivin\(^{86}\); NY-ESO-1, MAGE-A3, tyrosinase, and TPTE\(^{35}\) (NCT04526899); suppressor of cytokine signaling-1, MUC1 and survivin (NCT02688686); NY-ESO-1, MAGE-A1, MAGE-C2, ST\(\alpha\), survivin, and MUC1 (NCT03164772); 3 OC TAAs (NCT04163094); 5 PC TAAs (NCT04382898); fixed combination of shared cancer antigens (NCT04534205); WT1\(^{86,87}\); WT1, PRAME, and CMV pp65\(^{88}\); cancer-testis antigen 7, MAGE-A3, and WT1 (NCT01995708); WT1 and PRAME (NCT02405338); CEA (NCT00529984, NCT01890213); personalized TAA panels\(^{3}\)
Tumor-specific antigens (TSAs)	Preclinical	Poly-neo-epitope\(^{12}\), neoantigens\(^{22}\), HPV E6/E7\(^{22}\), HPV E7-TriMix\(^{22}\), human CMV pp65\(^{45}\)
	Clinical	CMV pp65-LAMP (NCT02529072); neoantigens\(^{22}\), Kirsten rat sarcoma viral oncogene mutated proteins (NCT03948763);
Immunomodulatory molecules	Preclinical	TriMix (CD40 ligand, CD70, constitutively active TLR4)\(^{3,9,50}\), mRNA-2752 (OX40L, IL-23 and IL-36\(\alpha\))\(^{46}\), BNT131 (IL-12, IL-15, GM-CSF, IFN-\(\alpha\))\(^{39}\), BisCCL2/5\(\alpha\)\(^{44}\)
	Clinical	TriMix\(^{95,96}\), CV8102 (TLR7/8-agonist, RIG-1-agonist) (NCT03291002, NCT03203005), mRNA-2752 (human OX40L, IL-23 and IL-36\(\alpha\)) (NCT02872025, NCT03739931), mRNA-2416 (human OX40L) (NCT03233987), BNT131 (IL-12, IL-15, GM-CSF, IFN-\(\alpha\)) (NCT03871348), BNT151/MEDI191 (IL-12) (NCT03946800, NCT04455620), BNT152/BNT153 (IL-7, IL-12) (NCT04710043)
Tumor suppressor genes	Preclinical	PTEN\(^{107}\), p53\(^{31}\)
	Clinical	p53 [two to three shared TAAs plus p53, 20 neoantigens (NCT02316457); survivin, hTERT and p53 (NCT00978913)]
Vectors	Preclinical	Liposome\(^{84,88}\), DCS\(^{2,79}\), hemagglutinating virus of Japan–liposomes\(^{89}\), cationic liposome–protein\(^{90}\), cationic liposomes\(^{100}\), histidylated lipopolyplexes\(^{87}\), proteamine-complexed\(^{72}\), Man11-LPR\(^{100}\), nanoparticle\(^{97,98}\), proteamine-formulated\(^{101}\), cationic lipids\(^{99}\), mannosylated liposomes\(^{85}\), lipid mRNA particles\(^{92}\), lipoplexes\(^{94}\), a cell-penetrating peptide rich in the arginine peptide amphiphile RALA motif\(^{32}\), CLAN\(^{92}\), LNP\(^{91}\), triMN-LPR\(^{52}\), PCGP NPs\(^{81}\), CART\(^{54}\), ssPalmE-KALA\(^{55}\), LNP\(^{6,67,77}\), Mann-capsule\(^{60}\), LPC\(^{61}\), DOTAP/DP/7\(^{59}\), lipid-like material C\(^{61}\), VLVP\(^{03}\)
	Clinical	DCS\(^{83,84,85,86,88,89,90,91,92,93,94,95,96,97,98,99,100,101}\), Langherans-type DCs (NCT01456104), proteamine (RNAActive\(^{48}\), Lipo-MERIT\(^{45}\), LNP\(^{91}\)
Adjuvants	Preclinical	GM-CSF\(^{3,8,40}\), FLT3\(^{49}\), LPS/poly (IC)\(^{71}\), TriMix\(^{3,8,50}\), cholera toxin\(^{3,8}\), GM-CSF\(^{3,8,40}\), TriMix\(^{3,8,50}\), CV8102 (NCT03291002, NCT03203005), mRNA-2752 (human OX40L) (NCT03233987), BNT131 (IL-12, IL-15, GM-CSF, IFN-\(\alpha\)) (NCT03871348), BNT151/MEDI191 (IL-12) (NCT03946800, NCT04455620), BNT152/BNT153 (IL-7, IL-12) (NCT04710043)
Administration routes	Preclinical	Intramuscular\(^{41,87}\), intraperitoneal\(^{43}\), injection directly into the spleen\(^{43}\), intravenous\(^{2,58,50,53,54,56,70,75,97,97}\), subcutaneous\(^{2,43,58,50,53,54,56,70,75,97,97}\), intradermal\(^{2,41,43}\), intradermal and intravenous\(^{2,41,43}\), intranasal\(^{41,43}\), intratumoral\(^{2,41,43}\), intratumoral and intravenous\(^{2,41,43}\), intramuscular\(^{41,43}\), subcutaneous (NCT03468244), intratumoral (NCT03788083), intralesional (NCT02872025)

Abbreviations: AML, acute myelogenous leukemia; \(\alpha\)-GC, \(\alpha\)-galactosylceramide; BisCCL2/5\(\alpha\), an antibody that specifically binds and neutralizes CCL2 and CCL5; CEA, carcinoembryonic antigen; CMV, pp65, cytomegalovirus phosphor protein 65; Cpg, cytosine–guanine–cytosine–guanine phosphate–guanine; FLT3, Fms-like tyrosine kinase 3; GM-CSF, granulocyte-macrophage colony-stimulating factor; gp, glycoprotein; hTERT, human telomerase reverse transcriptase gene; HPV, human papilloma virus; LAMP1, lysosomal-associated membrane protein 1; LPS, lipopolysaccharide; MART1, melanoma antigen recognized by T cells; MAGE, melanoma-associated antigen; MUC1, mucin 1; NY-ESO-1, New York esophageal squamous cell carcinoma 1; NKT, natural killer T cell; OC, ovarian cancer; PC, prostate cancer; poly(L/C), polynosinic:polycytidylic acid; PSA, prostate-specific antigen; PSMA, prostate-specific membrane antigen; PRAME, preferentially expressed antigen in melanoma; PTEN, phosphatase and tensin homolog deleted on chromosome ten; RIG-1, retinoic acid-inducible gene 1 protein; STEAP, six-transmembrane epithelial antigen of prostate; TLR, Toll-like receptor; TRP, tyrosinase-related protein; TPTE, transmembrane phosphatase with tensin homology; Td, tetanus/diphtheria; VLVP, virus-like vaccine particle; WT1, Wilms’ tumor 1.
sequenceing and an MHC-II epitope predictive binding algorithm and prepared RNA vaccines encoding those mutant peptides to evaluate their antitumor effects in a preclinical setting. The polynucleotide RNA effectively induced T cell responses in vivo and inhibited the growth and metastasis of the tumors in mice, and the majority of the immunogenic mutanome was recognized by CD4+ T cells; even RNA encoding just one neoepitope (e.g., B16-M30) induced stronger T cell responses and controlled the growth of B16F10 melanoma in mice
d. Zhang et al. conducted a preclinical study on DOTAP/DP7-C liposomes, as both the carrier and the adjuvant, loaded with mRNA encoding five tumor neoantigens of the mouse LLC cell line LL2 (DOTAP/DP7-C/LL2). DOTAP/DP7-C/LL2 significantly inhibited the growth of in situ and subcutaneous LL2 tumors and stimulated antigen-specific lymphocyte reactions. In 2017, Sahin et al. showed that an RNA-based multiple neoepitope vaccine could induce antigen-specific polyclonal T cell immune responses in patients with melanoma; 60% of the selected neoantigens had immunogenicity, the main T cell responses induced by those neoepitopes were CD4+ T cell responses, tumor metastasis was significantly reduced, and approximately 75% of patients had a progression-free survival of 27 months (NCT02035956). In 2020, Cafri et al. showed that NCI4650/mRNA-4650 encoding 20 neoantigens could induce a neoantigen-specific T cell response in patients with gastrointestinal cancer; 21% of the selected neoantigens were immunogenic, and 59% of neoantigen-specific T cells from patients were CD4+ T cells (NCT03480152).

Although mRNA preparation is rapid and economical (good manufacturing practice grade RNA can be prepared within 3 weeks), the screening and identification of tumor neoantigens can take a long time and be expensive, and the patients’ condition may change during vaccine preparation, resulting in researchers missing the best treatment opportunity for patients. Based on the parameters for deep sequencing of genes and proteomics analysis of big datasets using high-throughput and bioinformatic techniques, the preparation times of therapeutic tumor neoantigenic peptide vaccines, RNA vaccines and fused DC-tumor cell vaccines are approximately 160 days, 103 (89–160) days, and 10 days, respectively. The speed of screening and identification of neoantigens directly affects the clinical efficacy of mRNA neoantigenic vaccines, which is a major challenge faced by those vaccines. Meanwhile, the accuracy of predicting tumor neoantigens needs to be improved.

2.1.3. Immunomodulatory molecules and tumor suppressor genes
mRNA encoding CD70, CD40 ligand, and constitutively active TLR4 (named TriMix, NCT01302496); mRNA encoding IL-23, IL-36y (named mRNA-2752, NCT02872025, NCT03739931); and mRNA encoding IL-12, IL-15, GM-CSF, and IFN-α (named SAR441000/BNT131, NCT387134893) are three representative mRNA cancer vaccines that can encode immunomodulatory molecules, and such vaccines also include mRNA vaccines encoding a TLR7/8 agonist and RIG-I agonist (CV8102/RNAAdjuvant, NCT03291002, NCT03203005); mRNA encodingOX40L [mRNA-2416 (NCT03323398)]; mRNA encoding IL-12 [MEDI1191 (NCT03946800), BNT151 (NCT04455620)]; mRNA encoding IL12 and IL-7 (BNT152, BNT153, NCT04710043); and mRNA encoding BisCCL2/5i. Several studies have shown that mRNA cancer vaccines encoding immunomodulatory molecules (e.g., TriMix, mRNA-2752, BNT131, and mRNA encoding BisCCL2/5i) and tumor suppressor genes (e.g., PTEN or p53-encoding mRNA), which also have antitumor effects as a monotherapy, are often used as adjuvant treatment in combination with multiple tumor antigens (e.g., MAGE-A3, MAGE-C2, tyrosinase, gp100, survivin, hTERT, and neoantigens) and immune checkpoint inhibitors (e.g., anti-PD-1, anti-CTLA-4, and anti-PD-L1 antibodies). In 2012, Van Lint et al. showed that intranodal injection of TriMix together with TAA (e.g., TRP2/WT1/PIA) mRNA could induce the maturation of DCs and the priming of antigen-specific T cells in situ. Compared with DCs pulsed with firefly luciferase (FLuc) mRNA without the adjuvant, TriMix significantly reduced the expression of FLuc in DCs, and the reduction effect induced by LPS, monophosphoryl lipid A, or poly(I:C) was even stronger; however, TriMix can generate an immunostimulatory environment to improve T cell responses, which was superior to that induced by LPS. In 2016, Bielawska et al. showed that HPV16-E7-TriMix mRNA could induce CD8+ T lymphocytes to migrate into mucosally located tumors and control tumor growth. When combined with cisplatin, HPV16-E7-TriMix mRNA resisted the immunosuppressive microenvironment by downregulating the number of myeloid-derived suppressor cells (MDSCs) and Tregs, leading to complete regression of tumors in the genital tract. Intratumoral injection of TriMix has been shown to be taken up by tumor-infiltrating dendritic cells and then presented to T cells in tumor-draining lymph nodes to induce antitumor T cell responses and antitumor effects in a variety of mouse tumor models. In 2013 and 2016, Wilgenhof et al. showed that DCs coelectroporated with TriMix and mRNA encoding one of four melanoma-associated antigens (either MAGE-A3, MAGE-C2, tyrosinase or gp100) linked to an HLA II targeting signal (DC-LAMP) (named TriMixDC-MEL) were well tolerated in pretreated advanced melanoma patients and caused a complete response and a partial response in two patients (NCT01066390). TriMixDC-MEL combined with an immune checkpoint inhibitor (ipilimumab) was tolerated and induced highly durable tumor responses in pretreated advanced melanoma patients (NCT01302496). In 2020, De Keersmaecker et al. showed that the combination of TriMixDC-MEL and ipilimumab could induce potent CD8+ T cell responses, which were correlated with the clinical responses of patients, in a meaningful portion of advanced melanoma patients (NCT01302496). In 2019, Hewitt showed that intratumoral injection of triplet mRNAs encoding IL-23, IL-36γ, and OX40L encapsulated in LNPs could activate and recruit multiple immune cells (e.g., DCs and T cells) into the tumor to induce long-lasting antitumor immunity depending on Batf3-dependent cross-presenting DCs and cytotoxic CD8+ T cells. Combination of this vaccine with immune checkpoint inhibitors (e.g., anti-PD-1, anti-CTLA-4, and anti-PD-L1 antibodies) had potent antitumor effects in vivo models resistant to immune checkpoint inhibitors. In 2021, Hotz et al. showed that BNT131 combined with an anti-PD-1 antibody could significantly improve the survival of tumor-bearing (e.g., B16 and MC38 tumor-bearing) mice. In 2021, Wang et al. showed that mRNA encoding BisCCL2/5i LNPs combined with mRNA encoding PD-1 ligand inhibitor LNPs could significantly prolong the survival of tumor-bearing (e.g., primary liver cancer and liver metastases of colorectal and pancreatic cancers) mice, and BisCCL2/5i could promote the sensitivity of those tumors to PD-1 ligand inhibitor.

Several preclinical studies have shown the feasibility of using mRNAs encoding tumor suppressor genes (e.g., PTEN and p53) to treat tumors. In 2018, Islam et al. showed that PEG-coated
mRNA encoding	Vector	Start Year	NCI Number	Status	Phase	Conditions	Interventions	Route	
TAA	DC	2016	NCT02709616	Unknown status	1	GBM	• Biological: PCV (mRNA-pulsed autologous DCs)	Intradermal and intravenous	
Personalized TAA panels containing 3–13 different TAAas	DC	2016	NCT02808364	Unknown status	1	GBM	• Biological: PCV	Intradermal and intravenous	
Personalized TAA panels containing 3–13 different TAAas	DC	2016	NCT02808416	Unknown status	1	Brain cancer, neoplasm metastases NSCLC with bone metastases	• Biological: genetically modified DC + cytokine-induced killer	Subcutaneous	
Suppress of cytokine signaling-1, MUC1 and survivin	Protamine (RNActive®)	2017	NCT03164772	Completed	1/2	Metastatic NSCLC, NSCLC	• Drug: Durvalumab	Intradermal	
NY-ESO-1, MAGE-C1, MAGE-C2, 5T4, survivin, MUC1	Protamine (RNActive®)	2017	NCT03164772	Completed	1/2	Metastatic NSCLC, NSCLC	• Drug: Durvalumab	Intradermal	
NY-ESO-1, MAGE-A3, tyrosinase, and TPTE	Lipo-MERIT	2021	NCT04526899	Recruiting	1	OC	• Biological: W_ov1 Vaccine	Intravenous	
Tumor-specific antigen (TSA)/ personalized TAA	Lipo-MERIT	2021	NCT04534205	Recruiting	2	Melanoma stage III/IV, unresectable melanoma Unresectable HNSCC, metastatic/recurrent HNC	• Biological: Pembrolizumab Drug: Nivolumab	Intravenous	
CMV pp65-LAMP	DC	2016	NCT02529072	Completed	1	Malignant glioma, astrocytoma, GBM	• Biological: Human CMV pp65-LAMP mRNA-pulsed autologous DCs	Intravenous	
Two to three shared TAAs plus p53, 20 neoantigens	/	2016	NCT02316457	Active, not recruiting	1	Breast cancer (e.g., TNBC)	• Biological: IVAC_W_bre1_uID	Intravenous	
20 neoantigens	Lipo-MERIT	2017	NCT03289962	Recruiting	1	Melanoma, NSCLC, bladder cancer, colorectal cancer, TNBC, renal cancer, HNC, other solid cancers Solid tumors	• Drug: Pembrolizumab	Intravenous	
~20 neoepitopes	LNP	2017	NCT03313778	Recruiting	1		• Biological: Pembrolizumab		
mRNA encoding	Vector	Start Year	NCI Number	Status	Phase	Conditions	Interventions	Route	
---------------	--------	------------	------------	------------	-------	------------	---------------	-------------	
Neoantigens	LNP	2018	NCT03480152	Terminated	1/2	Melanoma, colon/ gastrointestinal/ genitourinary/ hepatocellular cancer	Biological: NCI4650	Intramuscular	
Neoantigen	/	2018	NCT03468244	Recruiting	Not applicable	Advanced esophageal squamous carcinoma, gastric adenocarcinoma, pancreatic adenocarcinoma, colorectal adenocarcinoma	Biological: Personalized mRNA tumor vaccine	Subcutaneous	
Neoantigen	/	2019	NCT03908671	Not yet recruiting	Not applicable	Esophageal cancer, NSCLC	Biological: Personalized mRNA tumor vaccine	Subcutaneous	
20 neoantigens	Lipo-MERIT	2019	NCT04161755	Recruiting	1	Pancreatic cancer	Biological: Personalized mRNA tumor vaccine	/	
20 neoantigens	Lipo-MERIT	2019	NCT03815058	Recruiting	2	Advanced melanoma	Biological: RO7198457	Intravenous	
20 neoantigens	Lipo-MERIT	2021	NCT04486378	Recruiting	2	Colorectal cancer stage II/III	Biological: RO7198457	Intravenous	
~20 neoeptopes	LNP	2019	NCT03897881	Recruiting	2	Melanoma	Biological: mRNA-4157	/	
4 Kirsten rat sarcoma viral oncogene mutated proteins (G12C, G12D, G12V and G13C)	LNP	2019	NCT03948763	Recruiting	1	Neoplasms, carcinoma, non-small-cell lung, pancreatic neoplasms, colorectal neoplasms	Biological: Pembrolizumab	Intramuscular	
Immunomodulators and cytokines	TLR7/8-agonist, RIG-1-agonist	/	2017	NCT03291002	Active, not recruiting	1	Melanoma (skin)	Biological: CV8102	Intratumoral
						Squamous cell carcinoma of the skin	Biological: CV8102	/	
						Carcinoma, squamous cell of head and neck	Biological: CV8102+anti-PD-1 therapy		
TLR7/8-agonist, RIG-1-agonist	/	2017	NCT03203005	Completed	1/2	Hepatocellular carcinoma	Drug: IMA970A plus CV8102 (RNAAdjuvant®) and cyclophosphamide	Intradermal	
Study Title	Status	NCT Number	Recruitment Phase	Disease(s)	Drug(s)	Biological Agent(s)			
-------------	--------	------------	------------------	------------	---------	-------------------			
Human OX40L, IL-23, and IL-36γ	/	2017	Recruiting Early1	Carcinoma, intraductal, noninfiltrating	Carcinoma, intraductal, noninfiltrating	• Drug: Pembrolizumab Intralesional • Biological: mRNA-2752			
Human OX40L, IL-23, and IL-36γ	/	2018	Recruiting 1	Dose escalation: relapsed/refractory solid tumor malignancies or lymphoma Dose expansion: TNBC, HNSCC, non-Hodgkin’s, urothelial cancer, immune-checkpoint refractory melanoma, and NSCLC lymphoma	Dose escalation: relapsed/refractory solid tumor malignancies or lymphoma Dose expansion: TNBC, HNSCC, non-Hodgkin’s, urothelial cancer, immune-checkpoint refractory melanoma, and NSCLC lymphoma	• Drug: Pembrolizumab Intralesional • Biological: mRNA-2752 • Biological: Durvalumab			
TriMix	/	2018	Recruiting 1	Breast cancer female, early-stage breast cancer	Breast cancer female, early-stage breast cancer	• Drug: TriMix Intratumoral • Drug: Placebo			
Human OX40L	/	Study Completion: 2022	Active, not recruiting 1/2	Relapsed/refractory solid tumor malignancies or lymphoma, OC Metastatic neoplasm	Relapsed/refractory solid tumor malignancies or lymphoma, OC Metastatic neoplasm	• Drug: TriMix Intratumoral • Biological: mRNA-2416 Intratumoral • Biological: Durvalumab			
IL-12, IL-15, GM-CSF, IFN-α	/	2019	Recruiting 1	Metastatic neoplasm	Metastatic neoplasm	• Drug: SAR441000 Intratumoral (BNT131) • Drug: Cemiplimab REGN2810			
IL-12	/	2019	Recruiting 1	Solid tumors, cancer	Solid tumors, cancer	• Biological: MEDI1191 Intratumoral • Biological: Durvalumab			
IL-7, IL-12	/	2021	Recruiting 1	Solid tumor	Solid tumor	• Biological: BNT151 Intravenous • Drug: BNT152 Intravenous • Drug: BNT153 Intravenous			

Abbreviations: GBM, glioblastoma; HNC, head and neck cancer; HNSCC, head and neck squamous cell carcinoma; NSCLC, non-small-cell lung cancer; OC, ovarian cancer; PC, prostate cancer; PCV, personalized cellular vaccine; TNBC, triple-negative breast cancer.
significantly synergistic antitumor effects in the combination of p53-mRNA NPs and everolimus produced models of hepatocellular carcinoma and NSCLC98. mRNA cancer checkpoint inhibitors 2.1.4. Combination of mRNA cancer vaccines and immune checkpoint inhibitors (e.g., anti-CTLA-4, and anti-PD-L1 antibodies) is another major trend in the application of mRNA vaccines encoding p53 and tumor antigens (e.g., survivin, hTERT, neoantigens) are currently in clinical trials (NCT00978913, NCT02316457). 2.1.4. Combination of mRNA cancer vaccines and immune checkpoint inhibitors Central immune tolerance to TAAs and peripheral immune tolerance (e.g., immune checkpoint pathways, TME) during tumor development are two major challenges faced by cancer vaccines. Both can affect the efficacy and duration of cancer vaccines. To target central immune tolerance, a combination of multiple TAAs or multiple TSAs is a major trend in the development of mRNA cancer vaccines. To target peripheral immune tolerance, a combination of mRNA cancer vaccines and immune checkpoint inhibitors (e.g., anti-PD-1, anti-CTLA-4, and anti-PD-L1 antibodies) is another major trend in the application of mRNA cancer vaccines. In 2018, Liu et al.31 conducted a preclinical evaluation of LCP NPs loaded with MUC1 mRNA in combination with an anti-CTLA-4 antibody to treat TNBC and showed that LCP-mRNA NPs as a monotherapy or part of a combined treatment (LCP-mRNA NPs + anti-CTLA-4) could significantly inhibit tumor growth, and the inhibitory effect of the combined treatment was significantly stronger than that of LCP-mRNA NP monotherapy31. In 2018, Wang et al.78 showed that LCP NPs loaded with both mRNA encoding melanoma-associated antigen TRP2 and small interfering RNA targeting PD-L1 could effectively deliver mRNA into DCs in vitro and in vivo and promote the maturation of DCs. The small interfering RNA targeting PD-L1 downregulated the expression of PD-L1 in DCs to enhance antitumor immunity and antitumor effects, and the vaccine effectively inhibited tumor growth78. In 2019, Verbeke et al.58 showed that the in vivo antitumor effects of Galsomes mRNA alone were modest, and this treatment could increase the number of cytotoxic T lymphocyte (CTL), invariant NKT (iNKT), NK and M1 tumor-associated macrophages (TAMs) in the immune microenvironment; these authors also found that negative regulation of the PD-1/PD-L1 pathway by the treatment might limit its antitumor effects. Compared to the vaccine alone, the combination of OVA mRNA Galsomes and an anti-PD-L1 antibody significantly increased the number of iNKT cells in the spleen, reduced the level of PD-L1 on DCs from the spleen and the level of PD-1 on proliferative iNKT cells from the spleen, and significantly improved the antitumor effect58. Additionally, Oberli et al.77 showed that both LNP-containing mRNA encoding a single tumor antigen (e.g., gp100 or TRP2) and sequential therapy with the two antigens had significant antitumor effects in vivo; however, there was no significant difference between the antitumor effects of the two methods. 2.2. Expression of antigens or targets 2.2.1. Pharmacodynamics of mRNA molecules The mRNA used to prepare vaccines mainly includes conventional nonreplicating mRNA and virus-derived self-amplifying mRNA. IVT of mRNA is the main technique applied to prepare the molecule and utilizes a bacteriophage RNA polymerase, such as T3, T7 or SP6 RNA polymerase, and a linearized DNA template containing the targeted antigen sequences118-119. The fundamental structure of nonreplicating IVT mRNA includes an open reading frame (ORF) that encodes the protein of interest, flanking five-prime (5') and three-prime (3') untranslated regions (UTRs), a 7-methylguanosine 5' cap and a 3' poly(A) tail30,116. The 5’ cap and 3’ poly(A) can be added during IVT or added enzymatically after initial IVT117. Self-amplifying mRNA contains two ORFs, one that encodes the targeted antigen sequences and another that encodes viral replication machinery, which enables durable intracellular RNA amplification118. An mRNA vaccine (called AVX701) consisting of an alpavirus replicon encoding CEA is in clinical trials (NCT00529984, NCT01890213). Unlike protein or peptide vaccines, the first step necessary for an mRNA cancer vaccine to produce its effects is that the sequence information of a coded protein can be translated into the functional protein. The factors affecting the translation process include positive, negative and bidirectional regulating factors. Positive regulatory factors are summarized as follows: (1) The 5’ cap and its modification [e.g., anti-reverse cap analogs119-123]. CleanCap124 can recruit eukaryotic translation initiation factor 4E to facilitate ribosome recognition and translation initiation126 and eliminate free phosphate groups in the mRNA sequence to significantly enhance the stability of mRNA125. (2) The poly(A) sequence and its modification (e.g., length126-128), can slow the process of degradation by RNA exonuclease, which increases stability, extends the in vivo half-life, and enhances the translation efficiency of mRNA129. (3) UTR optimization [e.g., 3’ UTR sequence derived from α-globin and β-globin, AU and GU-enriched sequences130-132], stable elements in the 3’ UTR30,133; GCC-(A/G)-CCAUGG in the 5’ UTR134; a short and loose 5’ UTR125 and codon optimization of the ORF (e.g., uridine depletion, enrichment of G/C content, synonymous frequent codons, codons with higher transfer RNA abundance) can increase mRNA stability and protein translation136,137. Epitopes in the expression vector are linked by different sequences and signaling peptides (e.g., endosome/lysosomal signal sorting fragment and transmembrane-cyttoplasmic domain) to increase IVT and improve the targeting of intracellular processing and presentation of antigens1. (4) Nucleoside modification [e.g., pseudouridine (Ψ), 1-methylpsuedouridine, 5-methylcytidine (5meC), and post-transcriptional RNA modification with N4-acetylcytidine138-141 and purification of IVT-mRNA (e.g., Mg2+,31, temperature31, high-pressure liquid chromatography142,143, and fast protein liquid chromatography142) to reduce contamination with double-stranded RNA can decrease innate immune activation of the molecule and increase protein translation. Compared with unmodified mRNA, nucleoside-modified mRNA (5meC, Ψ) was found to significantly
promote FLuc expression in mice. The in vivo antitumor effects of LCP (modified mRNA) have been shown to be significantly stronger than those of LCP (unmodified mRNA).

Negative regulatory factors include the following: (i) Extra-cellular RNases can rapidly degrade naked mRNA. (ii) Double-stranded RNA impurities produced by IVT can bind pattern recognition receptors (PRRs) in the cytoplasm (e.g., RIG-I, melanoma differentiation-associated protein 5 (one type of RIG-I receptor)), protein kinase RNA-activated (also known as eukaryotic translation initiation factor 2alpha kinases 2), 2′-5′-oligoadenylate synthetase) and endosomes (e.g., TLR3) to activate specific pathways [e.g., RIG-I/MAD5→mitochondrial antiviral signaling protein→IFN I, (IFN I→) protein kinase RNA-activated→eukaryotic translation initiation factor 2alpha, (IFN I→) 2′-5′-oligoadenylate synthetase→ribonuclelease L, TLR3→Toll/IL-1 receptor domain containing adaptor inducing IFN-β→IFN I], which can inhibit mRNA translation and promote mRNA enzymolysis. Bidirectional regulating factors include unmodified single-stranded RNA as a pathogen-associated molecular pattern (PAMP) that can bind PRRs in endosomes [e.g., TLR7, TLR8] to activate specific pathways (TLR8→myeloid differentiation factor 88→proinflammatory cytokines; TLR7→myeloid differentiation factor 88→interferon regulatory factor 7→IFN I)147. On the one hand, mRNA can activate innate immune responses (DC maturation and activation), which further activate adaptive immune responses (T and B cell immune responses); on the other hand, premature and overly strong activation of IFN I can inhibit mRNA translation, promote mRNA enzymatic hydrolysis, and promote apoptosis of DCs and T cells. Overly strong inflammatory reactions can also cause toxic side effects. Activation of type I IFN receptor signaling precedes that of TCR signaling in T cells, which can serve as the true third signal to promote immune responses. Udhayakumar et al. showed that compared with RALA mRNA nanocomplexes containing unmodified mRNA, mRNA nanocomplexes containing 5′- and 5meC-modified mRNA induced potent antigen-specific cytotoxic T cell responses and had superior efficacy and that the modified (5meC, 5′) mRNA nanocomplex significantly reduced the inhibitory effect of type I IFNs on CTLs by suppressing IFN-β activation and effectively induced CTLs. In contrast, Oberli et al. showed that unmodified mRNA LNP vaccines induced much stronger CD8 T cell responses in peripheral blood (7.8%) than nucleoside-modified mRNA (5meC, 5′) LNP vaccines (1.0%) and suggested that type I interferon was necessary for a protective CD8 T cell response. These contradictory results may be related to bidirectional regulatory factors.

2.2.2. Methods of antigen expression for vaccines

According to the expression of antigens, vaccines can be divided into peptide or protein vaccines, cell vaccines (e.g., tumor cell vaccines, DC vaccines and engineered cell vaccines), nucleic acid vaccines (e.g., DNA and RNA vaccines) and viral vector vaccines. Peptide or protein vaccines are widespread vaccine types. The sequence of an antigenic peptide is well defined and easily controlled. Peptide vaccines include short and long peptide vaccines. Short peptide vaccines containing nine amino acids can provide minimal epitopes to induce CD8+ T cell responses. Short peptide vaccines have some shortcomings, including antigen degradation caused by protein hydrolysis and a weak duration of immune responses, and short peptides can bind MHC I molecules on the surface of many nuclear cells, which, as nonprofessional antigen-presenting cells (APCs), often do not contain costimulatory signals, leading to antigen tolerance and T cell dysfunction. Long peptide vaccines generally contain 20–30 amino acids and can activate both CD4+ and CD8+ T cells. Protein vaccines can also induce T cell responses; however, long peptides are generally much more efficiently internalized and processed by APCs than proteins. The shortcomings of long peptide vaccines include their sensitivity to enzyme degradation, rapid clearance and inadequate uptake at the injection site.

Cell vaccines mainly include cancer cell vaccines and DC vaccines. Cancer cell vaccines immunize the body with autogenous or allogeneic inactivated whole cells and their derivatives (e.g., cell lysates, derivatives of DC fusion, modified whole cells expressing TSAs or immune-enhancing factors, and tumor-derived mRNAs), which often contain all antigens of the cells and do not require laborious identification prior to vaccine design and production, leading to a relatively quick preparation and certain personalized characteristics. However, the method using cancer cells cannot accurately determine and control the corresponding tumor antigens, quality control is difficult, and cancer cells often contain fewer specific antigens, resulting in weak immunogenicity and potential carcinogenicity. DCs are the most potent APCs and play a central role linking innate and adaptive immune responses. DC vaccines generally use autologous DCs as carriers to express and present antigens. In 1996, Boczkowski et al. showed the feasibility of using DCs pulsed with tumor-derived mRNA cancer cells. Before 2017, in approximately 24 clinical trials, mRNA cancer vaccines used DCs as the carrier. However, the preparation technology for DC vaccines is complicated, production is expensive, and quality control is difficult. Moreover, the patient must have a relatively normal immune function without marrow suppression caused by chemotherapy or other treatments and provide a large number of functional DCs, leading to a limited number of available vaccines.

Nucleic acid vaccines are prepared using nucleic acids (e.g., DNA, RNA) encoding antigens. The features of mRNA vaccines have been described in part 1 of this paper. In contrast to mRNA, DNA must enter the nucleus to be translated into the corresponding antigens, which has a potential risk caused by insertional mutations and is likely less safe than mRNA. On the whole, nucleic acids are sensitive to degradation, unstable and have a short half-life, resulting in a poor efficiency of naked nucleic acids taken up by APCs. Novel carriers and administration routes have been developed to improve the uptake and presentation efficiency of nucleic acids (discussed below). Limited studies have shown the antitumor advantages of mRNA cancer vaccines compared with peptide or protein cancer vaccines. DCs pulsed with in vitro synthesized chicken OVA RNA were more effective than OVA peptide-pulsed DCs in stimulating primary, OVA-specific CTL responses in vitro. DOTAP/DP/C-mRNA encoding five neo-antigens was significantly stronger than DOTAP/DP/C-mutant peptides in inducing the spleen to produce activated T cells (CD3+ CD8+ IFN-γ+) in an in situ therapeutic tumor model. The in vivo antitumor effects of LCP (modified mRNA) were significantly stronger than those of LCP (TRP2 peptide/CpG). The ability of triplet mRNAs encoding IL-23, IL-36, and OX40L to improve the survival rate of MC38-S tumor-bearing mice was significantly stronger than that of the corresponding protein treatments. Peptide antigens often contain only one epitope, while full-length antigens encoded by mRNAs contain multiple epitopes, which can induce T cells to target those epitopes and produce stronger antitumor effects.
Viral vector vaccines are prepared by using a virus as a carrier for expressing or presenting antigens. Currently, viral vectors that have been widely studied include poxvirus, adenovirus and herpesvirus. For safety reasons, replication-defective viruses or attenuated viruses are adopted. Poxvirus can contain multiple genes, replication and transcription are limited to the cytoplasm, the risk of insertional mutations is low, and the expressed products can be presented by MHC I and II. Nonavirial poxviruses can induce the host to produce immune responses that can neutralize the virus, limiting their application to one or at most two vaccines. Recombinant avipoxviruses can be inoculated multiple times, their viral coat protein cannot be produced in mammalian cells, and the virus cannot induce the host to produce immune responses that neutralize the virus. Recombinant adenovirus vectors are easy to design and have shown utility as vectors for vaccines and gene therapy drugs; however, their immunogenicity can impact the effects of vaccines. Herpesvirus has a wide host range; can infect nerve cells, peripheral blood monocytes and DCs; and has a short replication cycle, a large capacity and range; can infect nerve cells, peripheral blood monocytes and DCs. In 2011, Perche et al. showed that mRNA-loaded DCs. In 2020, Son et al. showed that Mann-capsules, prepared using polysaccharide-coated silica nanoparticles, could activate bone marrow-derived dendritic cells (BMDCs) via Dectin-2 or TLR-4 and that the ability of Mann-capsules to promote BMDC differentiation and maturation was significantly stronger than that of PEI or Lipofectamine; moreover, PEI and Lipofectamine were highly toxic.

LNP s seem to be a promising carrier for delivery of mRNA cancer vaccines. The components of LNP s mainly include ionizable liposomes, which facilitate self-assembly and endosomal release of mRNA; phospholipids, which support the lipid bilayer structure; cholesterol, a stabilizing agent; and lipid-anchored PEG, which extends the half-life of formulations. High-throughput techniques for screening and identifying these vectors have also been considered. In 2017, Oberli et al. constructed and optimized an LNP library and showed that LNP s containing mRNAs encoding tumor antigens (e.g., gp100 and TRP2) combined with LPS as the adjuvant could effectively induce antigen-specific CD8+ T cells, inhibit tumor growth and prolong OS in mice. In 2018, McInlay et al. performed a high-throughput screening study on a library of mRNA carriers based on amphilic CARTs and showed that dual CARTs could improve the in vitro mRNA transfection efficiency in lymphocytes by 9-fold compared with a single CART or Lipofectamine 2000; the in vitro mRNA transfection efficiency was >80%, and the mRNA transfection efficiency in mouse lymphocytes was >1.5%. In 2019, Miao et al. established a high-throughput technique for ionic lipidoid construction, which enabled synthesis of thousands of lipid formulations in one day, and used DCs (e.g., HeLa cells, BMDCs or bone marrow-derived macrophages) to evaluate the transfection efficiency of the LNP s with high throughput. The results showed that the mRNA LNP s could induce APC maturation and enhance antitumor efficiency through the intracellular stimulator of interferon genes pathway. In 2021, Meng et al. showed that VLVP s containing CpG cores can promote DC maturation and antigen presentation, antigen-specific CD8+ T cell proliferation in lymphatic organs and T cell infiltration in tumors and decrease immunosuppressive cells (e.g., tumor-associated bone marrow-derived suppressor cells and arginase 1-expressing suppressive DCs). mRNA cancer vaccines using LNP s as the carrier (e.g., mRNA-4157 encoding neoantigens (NCT03313778, NCT03897881) and V941 encoding mutated proteins (NCT03948763)) are currently in clinical trials.

The polycationic peptide protamine and DCs are two other major vectors adopted for use in mRNA cancer vaccines. The characteristics of protamine and DCs and the progress in their use as vectors in mRNA cancer vaccines are summarized in Sections 2.1.1 and 2.2.2, respectively. Protamine can protect mRNA from being degraded by serum RNases to promote mRNA delivery. Additionally, protamine can be used in combination with liposomes (e.g., cationic liposome-protamine, LPC and VLVP). In 2000, Hoerr et al. showed that a liposome-encapsulated condensed RNA–peptide complex could induce antigen-specific cellular and humoral immune responses and that both naked and protamine-protected RNA could induce a specific immune response in vivo, while the protected RNA was stable in vitro for a longer period of time. Mai et al. showed that intranasal delivery of a LPC loaded with cytokeratin 19-encoding mRNA could induce APC maturation and strong cellular immune responses and decrease the growth of tumors in mice. The carrier has a critical effect on the efficacy of the vaccine. Phua et al. showed that intranasal naked mRNA vaccination cannot induce antitumor immune responses in the absence of a NP vectors. However, both preclinical and clinical studies have demonstrated the feasibility and effectiveness of naked mRNA based on comprehensive
Table 3 An overview of delivery systems adopted for mRNA cancer vaccines in the preclinical setting.

Type	Time	Delivery system or adjuvant	Administration	Size (nm)	Charge (mV)
Liposomes and their derivatives	1995	Liposomes	Intramuscular	/	/
	1999	Hemagglutinating virus of Japan–liposomes	Injection directly into the spleen	/	/
	2000	Cationic liposome-protamine	Intravenous, subcutaneous	/	/
	2006	Cationic liposomes; GM-CSF as the adjuvant	Intradermal, intravenous and subcutaneous	/	/
	2009	Histidylated lipopolyplexes (PEG-HpK/HDHE:cholesterol complexes)	Intravenous	60–100	/
	2011	Mannosylated and histidylated lipopolyplexes (Man11-LPR100)	Intravenous	162	18.3
	2014	NPs; cholera toxin as the adjuvant	Nasal	180–300	–12–40
	2015	Cationic lipids	Intravenous	/	/
	2016	Mannosylated liposomes	Intravenous	/	/
	2016	Lipid mRNA particles	Intramuscular or intravenous	~242	–58.9
	2016	RNA-lipoplexes (DOTMA/DOPE liposomes)	Intravenous	200–400	/
	2017	LNP (ionizable lipid + phospholipid + cholesterol + lipid-anchored PEG); LPS as the adjuvant	Subcutaneous	50–150	–15, –3
	2017 (a)	A cell-penetrating peptide rich in the arginine peptide amphiphile RALA motif + DOTAP + DOPE	Intradermal	90–144	–7–26
	2018	CLAN (PEG5k-b-PLGA11k + PLGA11k + cationic lipid BHEM-Chol)	Intravenous	~110	25
	2018 (c)	LCP NPs (calcium phosphate cores + DOPE + DOTAP + cholesterol + DSPE-PEG-2000+DSPE-PEG-mannose)	Subcutaneous	58. ~ 45	38, 0
	2018 (d)	trMN-LPR (PEG-HpK + trMN-liposome)	Intradermal, intravenous and subcutaneous	/	/
	2018 (e)	PGCNP NPs [cationic lipid-like compound (G0-C4)+PLGA + DSPE-PEG]	Intravenous	~120	6
	2018 (f)	CARTs: CpG as the adjuvant	Subcutaneous or intravenous	/	/
	2019	ssPalmE-KALA [a vitaminE-scaffold (ssPalmE)-LNP (ssPalmE + DOPE + cholesterol)+an α-helical cationic peptide “KALA”]	Intradermal	126	29
	2019 (g)	LNP (cationizable lipid + structural lipid + helper lipid + PEG-lipid)	Intratumoral or peritumoral, subcutaneous or intradermal	80–100	/
	2019 (h)	DOTAP-cholesterol LNPs, the NKT ligand α-GC as the adjuvant	Intravenous	190	47
	2019 (i)	A redox-responsive NP	Intravenous	/	/
	2020	Mann-capsule (PEI + polysaccharide layer)	Subcutaneous	~220	–10
	2020 (j)	LCP (DOTAP/cholesterol/DSPE-PEG-2000 cationic liposomes/protamine complex)	Nasal	170	10
	2020 (k)	DOTAP/DP7-C liposomes (DOTAP modified with cholesterol-modified cationic peptide DP7)	Subcutaneous	130	35
	2021	Lipid-like material C1 (cationic lipid)+DSPE-PEG-2000	Subcutaneous	150	16
	2021 (l)	VLV [CpG-core (protamine + mRNA + CpG)+lipid mixture (cationic lipid EDOPC + helper lipid DOPE + PEGylated lipid DSPE-PEG2k)]	Intrafootpad injection	80–90	~25

(continued on next page)
Time	Type	Administration	Delivery system or adjuvant	Size (nm)	Charge (mV)
2021	NPs (copolymer of mPEG-PLGA + cationic molecule)	Intravenous	/	/	200-300
2022	LNPs (Dlin-MC3-DMA + DOPE + cholesterol + C14-)	Intravenous	/	/	/
2019	DCs	Intraperitoneal	/	/	/
2012	DCs; LPS, poly(I:C), or TriMix as the adjuvant	Intravenous	/	/	/
2010	DC	Subcutaneous	/	/	/
2010	OV A naked mRNA	Intranodal, subcutaneous, intradermal	/	/	/
2011	HPV16 E7-TriMix naked mRNA	Intranodal	/	/	/
2016	TriMix naked mRNA	Intratumoral	/	/	/

Abbreviations: BHEM-Chol, N-[bis(2-hydroxyethyl)-N-methyl-N-(2-cholesteryloxycarbonyl aminoethyl) ammonium bromide; DOPA, dioleoylphosphatidic acid; DOTAP, 1,2-dioleoyl-3-
N-trimethylammonium-propane; DOTMA, 1-[1-(2,3-dioleyloxy)propyl]-N,N,N-
trimethylammonium chloride; DOPE, 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine-
N-(methoxy[polyethyleneglycol-2000]); EDOPC, 1,2-dioleoyl-sn-glycero-3-ethylphosphocholine; HDHE, L-histidine-(N,N-di-
n-hexadecylamine)ethylamide; HpK, histidylated polylysine; histidylated lipopolyplexes, PEGylated derivative of HpK and HDHE liposomes; PEG 5K-b-PLGA11K, poly(ethylene glycol)-block-poly(lactic-co-glycolic acid); PEI, polyethyleneimine.

2.4. Adjuvants

A major class of adjuvants [e.g., LPS, poly(I:C), Td, CpG] developed in preclinical studies of mRNA cancer vaccines is PAMPs, which activate DCs through PAMP–PRR pathways and then modulate innate and adaptive immune responses. As a potent recall antigen, Td can promote DC migration and improve antitumor effects through the CCL3 pathways. Adjuvant LPS treatment further improved the level of CD8+ T cells and the antitumor activity of the cells induced by LNP mRNA57. The in vivo antitumor effects of mRNA-CART combined with CpG were significantly stronger than those of mRNA-CART and the combination of naked mRNA and CpG, which were also stronger than those of the combination of mRNA-CART and TLR7 ligand or CD80/86 mRNA64.

Most novel carriers (e.g., lipid-like material C1 [63], DOTAP/DP7-C [59], Mann-capsule [60], LNPs [57,58]) have the characteristics of both carriers and adjuvants, while some of those carriers function as adjuvants and are similar to PAMPs. Mann-capsules activate BMDCs through Dectin-2 or TLR-4, and dextran-capsules activate BMDCs through CD206, CD209, or macrophage-inducible C-type lectin60. DP7-C, DOTAP and mRNA can activate DCs through TLR2, TLR4 and TLR7, respectively. The ability of DOTAP/DP7-C to induce DC maturation and antigen presentation was significantly stronger than that of DOTAP, poly(I:C) and CpG59. C1 or C mRNA can promote BMDC activation through the TLR4-dependent nuclear factor kB signaling pathway, and the in vivo antitumor effects of C1-OVA mRNA were TLR4-dependent61. CpG, as the adjuvant contained in the VLVP, can improve the effects of the vaccine and prevent PD-1 expression in T cells103. However, these PAMP-like adjuvants may affect the translation efficiency and degradation of mRNAs and have potential toxicity, as discussed in Section 2.2.1.

Developing novel adjuvants that do not affect the efficiency of mRNA translation and can also positively regulate a variety of innate and adaptive immune responses with relatively mild proinflammatory effects and low toxicity has become an important direction. The immunogenicity of TAA mRNA can be augmented by codelivery of GM-CSF mRNA [80]. FLT3 ligand can promote the amplification of plasmacytoid DCs, classical DCs and NK cells; induce a T helper 1-type microenvironment; enhance antigen-specific CD8+ T cells in lymph nodes; and enhance T cell infiltration in tumors and the antitumor effects of naked RNA105. mRNA LNPs can induce APC maturation through stimulator of interferon genes-dependent activation of type I IFN, restrict systemic cytokine expression and enhance antitumor efficacy62. The adjuvant α-GC adopted for use in mRNA Galsomes can be presented by DCs to activate iNKT cells. Activated iNKT cells can have bidirectional positive regulatory effects with DCs and can positively regulate NK cells and immunosuppressive cells (e.g., MDSCs and M1 TAMs), which does not affect the efficiency of mRNA translation and promotes direct and indirect antitumor effects65. mRNA encoding immune costimulatory molecules can be used as an adjuvant (discussed in Section 2.1.3). TriMix...
mRNA cancer vaccines

(90-1066390, NCT01302496); mRNA-2752 (NCT02872025); mRNA encoding human OX40L (mRNA-2416, NCT03323988); mRNA encoding IL-12, IL-15, GM-CSF and IFN-α (BNT131, NCT03871348); mRNA encoding IL-12 (MEDI1191, NCT03946800); and mRNA encoding a TLR7/8-agonist and RIG-1-agonist [CV8102 (RNAAdjuvant®), NCT03291002, NCT03203005] are in clinical trials as adjuvant treatments in combination with immune checkpoint inhibitors.

2.5. Administration routes

The administration route has a direct effect on the efficacy of a vaccine, and the administration routes often adopted for use in mRNA cancer vaccines include intravenous, intradermal, subcutaneous, intramuscular, intranodal, and intratumoral administration. Intravenous administration allows for a larger vaccine volume and direct delivery of the vaccine into the lymphatic organs but carries a greater risk of systemic toxicity. The dermis into which the vaccine is intradermally injected contains APCs (e.g., DCs and macrophages) as well as vascular and lymphatic vessels but is mainly composed of dense connective tissue, resulting in a small vaccine volume when administered via the intradermal route. Intradermal delivery can also lead to adverse reactions at the injection site (e.g., swelling, pain, erythema and pruritus). The subcutis region into which the vaccine is subcutaneously injected contains fewer APCs than the dermis; however, it is mainly composed of a loose network of adipose tissues, permitting a larger injection volume via the subcutaneous route, which induces fewer local side effects (e.g., pain). The muscle into which a vaccine is intramuscularly injected contains dense blood networks that can help recruit and recirculate different types of immune cells (e.g., infiltrating APCs) to the injection site. Intramuscular administration permits a relatively larger injection volume than the intradermal route and causes milder local side effects than the intradermal and subcutaneous routes. Lymph nodes into which a vaccine is intranodally injected contain multiple APCs, and intranodal administration has a high delivery efficiency, permits a small volume of vaccine, but involves complicated procedures.

Intratumoral administration is mainly used for mRNA vaccines encoding immunocostimulatory molecules (e.g., TriMix, CV8102, mRNA-2752, mRNA-2416, BNT131 and MEDI1191) as immunoadjuvant therapy and also permits a small vaccine volume and involves complicated procedures.

Predicting exactly the best administration route for a particular vaccine is difficult, and direct comparative studies are recommended to select the best administration route for a vaccine. The in vivo transfection efficiency of Luc-RNA injected via intranodal administration was superior to that following intradermal or subcutaneous administration. The killing effects of CTLs induced by intravenous administration efficiency of Luc-RNA injected select the best administration route for a vaccine. The vaccine is difficult, and direct comparative studies are recommended to

3. Challenges and trends in mRNA cancer vaccines

To date, hundreds of cancer vaccines have undergone clinical evaluation and the U.S. FDA has approved three therapeutic cancer vaccines [Bacillus Calmette-Guerin (TheraCys), a live attenuated strain of Mycobacterium bovis for the treatment of nonmuscle invasive bladder cancer; Sipuleucel-T (Provenge), a DC vaccine for the treatment of metastatic castration-resistant prostate cancer; and an oncolytic herpes virus vaccine (talimogene laherparepvec, T-VEC) (Imlygic®) for the treatment of advanced melanoma] and two prophylactic cancer vaccines [a HPV vaccine and a hepatitis B virus vaccine]. Factors influencing the development of mRNA cancer vaccines mainly include intrinsic factors of the molecule itself and external factors (e.g., the central tolerance to tumor antigens (discussed in Section 2.1.1), the heterogeneity of tumors and HLA, and the tumor immune microenvironment). These factors have deeply influenced the development of mRNA cancer vaccines.

In view of intrinsic factors, researchers have improved the effectiveness of mRNA cancer vaccines to a certain extent by improving the mRNA structure and sequences, advancing mRNA preparation and purification technologies (discussed in Section 2.2.1) and developing novel delivery vectors (discussed in Section 2.3). The essence of tumor heterogeneity is the genomic heterogeneity of tumor cells, leading to antigen heterogeneity, which is the key factor affecting the generation of antitumor T cell responses and the main reason for developing personalized cancer vaccines. HLA heterogeneity mainly refers to the different types of HLA molecules among individuals, resulting in differences among individuals in the binding region or binding affinity of those molecules to the tumor antigen, which affects the generation and strength of antitumor T cell responses. HLA heterogeneity is caused by polymorphisms of HLA alleles in different ethnic and regional populations. HLA I alleles include 9-11 common supertypes, of which the coverage rate is 90%/185,186. HLA-A loci (HLA-A alleles: A*0101, A*0201, A*0301, A*1101 and A*2402) account for 60% of HLA I alleles, and HLA-B loci (HLA-B alleles: B*0702, B*0801, B*2705, B*3501 and B*5701) account for more than 35% of those alleles.

The TME is composed of immune cells, mesenchymal cells and various cytokines and tissue factors, which play an important role in tumorigenesis and immune escape. Interstitial pressure within a large mass can reduce the diffusion of large molecules (e.g., antibodies) and effector cells (e.g., T cells). Most solid tumors also lack T cell costimulatory molecules. The TME often contains immunosuppressive cells, including CD4+ Tregs, MDSCs, suppressor CD8+ T cells, M2 TAMs and regulatory NK/NKT cells. These immunosuppressive cells and tumor cells in the TME can release a large number of soluble immunosuppressive factors, including transforming growth factor β, IL-10, PD-L1, indoleamine 2,3-dioxygenase and vascular...
endothelial growth factor, into the microenvironment. With regard to tumor and HLA heterogeneity, the development of tumor neoantigen vaccines, which in theory have much stronger specific antitumor effects and weaker toxic side effects than TAA-directed vaccines, has been a leading hotspot in cancer vaccine research (discussed in Section 2.1.2). In view of the tumor immune microenvironment, the development of immune-based combination therapies (e.g., combination with adjuvants or immune checkpoint inhibitors) has been a key trend in the application of cancer vaccines (discussed in Sections 2.1.4 and 2.4).

4. Discussion

Preclinical evaluation of a product is a prerequisite to entering clinical translation, and reasonable evaluation can improve the reliability of predicted clinical outcomes. Moreover, the parameters, technologies and methods adopted in preclinical evaluations are an important part of the quality standard of vaccines. Preclinical evaluation of vaccines should fully elucidate the action and mechanism of vaccines, and the key points in preclinical evaluation of mRNA cancer vaccines are to identify the production (e.g., number and activation of T cells) and the effect (e.g., killing effect and antigen affinity of T cells) of antigen-specific T cell responses. In general, quantitative in vitro and in vivo tests are used to evaluate the effects and mechanisms of mRNA cancer vaccines in preclinical evaluations. According to the current understanding of antigen-specific T cell immune responses, the evaluated parameters mainly include (1) identification of the physical and chemical characteristics of the vaccine; (2) the efficiency of APC transfection with the mRNA (e.g., binding and uptake, internalization and transport, and expression and distribution); (3) differentiation, maturation and antigen presentation of APCs; (4) immunological stimulation by vaccines; (5) cellular immunogenicity (e.g., production, proliferation and target cell killing of CTLs); (6) humoral immunogenicity; (7) antitumor effect and associated mechanism; and (8) preliminary toxicities (e.g., cytotoxicity, visceral toxicity and hemolysis).

Factors such as particle size, charge, the binding capability to mRNA and load rate, stability (e.g., time, temperature, and serum stability), PEGylation, and hardness can affect antigen delivery (e.g., lymphatic drainage). Son et al. showed that Mann-capsules ~220 nm in size had good deformability, and the recovery rate of the capsules after being passed through a 50 nm pore membrane was approximately 30%. Different from protein-based or peptide-based vaccines, the first step in mRNA vaccine development is ensuring that the information encoded in the mRNA sequence can be effectively translated into the corresponding protein or peptide. The in vitro and in vivo transfection efficiencies of mRNA are important parameters in the preclinical evaluation of mRNA vaccines, and the key way to improving the pharmacodynamics of an mRNA vaccine is to improve the mRNA transfection efficiency. However, the in vitro transfection efficiency can be different in APCs, the in vitro efficiency of transfection with DOTAP/DP7-C-enhanced green fluorescent protein mRNA in APCs, including 293T, JAWSII, DC2.4 and BMDCs, was $84.87 \pm 3.21\%$, $12.23 \pm 1.35\%$, $28.49 \pm 2.46\%$ and $14.51 \pm 2.35\%$, respectively. To verify the mRNA transfection efficiency in vitro and in vivo, a variety of APCs were used as in vitro transfection models, and the mRNA transfection efficiencies for a variety of APCs from different organs was detected in vivo. Enhanced green fluorescent protein or FLuc is often used as the transfection protein in experiments. A dye-tagged mRNA or vaccine vector has been widely used in transfection studies. Confocal microscopy and flow cytometry are often used to evaluate intracellular microtransfection (e.g., delivery, uptake, and translation), confocal microscopy can be used to evaluate the translation efficiency of mRNA more intuitively and accurately, and an interactive video information system is used to evaluate systemic or local macrotransfection (e.g., distribution, lymphatic drainage).

The tumor models used for evaluating in vivo antitumor activity mainly include therapeutic or prophylactic subcutaneous, in situ and lung metastasis tumor models, and the established in vivo tumor models should accurately simulate human pathology. Białkowski et al. showed that the TME of TC-1 tumors can be significantly different depending on the site of tumor inoculation (i.e., subcutaneous, in the lungs and in the genital tract), which directly affected the antitumor effects of the E7-TriMix mRNA vaccine. Species specificity is an important factor to be considered when selecting cell or animal models for preclinical evaluation. To obtain more accurate evaluation information, humanized animal models can be established. Do ASS used humanized mice, which were established via intravenous injection of CD34+ hematopoietic stem cells from human peripheral blood mononuclear cells (HLA-A2 type) into immunodeficient NOD/Shi-scid IL-2Rγnull mice or C57BL/6 mice, to establish in vivo tumor models (e.g., human brain tumor stem cell 5 and murine GL261) and showed that the median survival of the humanized mouse model treated by DCs transfected with modified human CD133 mRNA was more than 60 days and that of the homologous mouse tumor model treated by DCs transfected with modified mouse CD133 mRNA was 38 days. Cancer vaccines can resist tumor recurrence and metastasis in theory, and multiple in vivo tumor models could be established for evaluation to clarify the advantages of these vaccines related to preventing or treating tumor metastasis or recurrence.

Effective antitumor responses require the synergistic action of multiple immune cells rather than the action of a single cell. At present, most tumor vaccines focus on inducing CD8+ T cells, but CD4+ T cells and other immune cells also play important roles in inducing and maintaining immune memory and enhancing the tumor-killing effect of CTLs. mRNA Galsomes adopting an NKT ligand (e.g., α-GC) as the adjuvant induced antitumor effects through iNKT cells. DCs transfected with CD133 mRNA in an incubation system containing both CD4+ and CD8+ T cells can activate T cells and kill tumor target cells more effectively than DCs in an incubation system containing only CD4+ or CD8+ T cells. There are also concerns about the safety and side effects of mRNA cancer vaccines. Modified mRNA can combine with serum protein to form a vascular occlusion, which has potential toxicity. DOTAP/DP7-C mRNA shows good serum stability and low cytotoxicity; however, Lipo2000 and PEI25K have strong cytotoxicity. Finally, we look forward to the successful clinical translation of mRNA cancer vaccines.

Author contributions

Jun-zhi Wang designed the study. Qing He and Heng Zhang collected the data and wrote the manuscript. Hua GAO, Dejiang Tan, and Jun-zhi Wang checked and revised the article. All of the authors have read and approved the final manuscript.

Conflicts of interest

The authors have no conflicts of interest to declare.
References

1. Brenner S, Jacob F, Meselson M. An unstable intermediate carrying information from genes to ribosomes for protein synthesis. Nature 1961;190:576–81.

2. Xu S, Yang K, Li R, Zhang L. mRNA cancer vaccine-era-mechanisms, drug platform and clinical prospection. Int J Mol Sci 2020;21:6582.

3. Wolff JA, Maloney RW, Williams P, Chong W, Acsadi G, Jani A, et al. Direct gene transfer into mouse muscle in vivo. Science 1990;247:1465–8.

4. Polack FP, Thomas SJ, Kitchin N, Absalon J, Gurtman A, Lockhart S, et al. Safety and efficacy of the BNT162b2 mRNA COVID-19 vaccine. N Engl J Med 2020;383:2603–15.

5. Shroff RT, Chalasani P, Wei R, Pennington D, Quirk G, Schoene MV, et al. Immune responses to two and three doses of the BNT162b2 mRNA vaccine in adults with solid tumors. Nat Med 2021;27:2002–11.

6. Jackson LA, Anderson EJ, Rouphael NG, Roberts PC, Mak恒ne M, Coler RN, et al. An mRNA vaccine against SARS-CoV-2—preliminary report. N Engl J Med 2020;383:1920–31.

7. Petsch B, Schnee M, Vogel AB, Lange E, Hoffmann B, Voss D, et al. Protective efficacy of in vitro synthesized, specific mRNA vaccines against influenza A virus infection. Nat Biotechnol 2012;30:1210–6.

8. Pardi N, Parkhouse K, Kirkpatrick E, McMahon M, Zost SJ, Mui BL, et al. Nucleoside-modified mRNA immunization elicits influenza virus hemagglutinin stalk-specific antibodies. Nat Commun 2019;10:3361.

9. Feldman RA, Fuhr R, Smolenv I, Mick Ribeiro A, Panther L, Watson M, et al. mRNA vaccines against H10N8 and H7N9 influenza viruses: indication of pandemic potential and well tolerated in healthy adults in phase 1 randomized clinical trials. Vaccine 2019;37:3326–34.

10. Guardo AC, Joe PT, Miralles L, Bargalló ME, Mothe B, Krasniqi A, et al. Preclinical evaluation of an mRNA HIV vaccine combining rationally selected antigenic sequences and adjuvant signals (HTT-TrMix). AIDS 2017;31:532–3.

11. Wong J, Leal L, Buyze J, Pannus P, Guardo A, Salgado M, et al. Therapeutic vaccine in chronically HIV-1-infected patients: a randomized, double-blind, placebo-controlled phase IIA trial with HTT-TrMix. Vaccines (Basel) 2019;7:209.

12. Erasmus JH, Khanderia AP, O’Connor MA, Walls AC, Hemmam EA, Murapa P, et al. An alphavirus-derived replicon RNA vaccine induces SARS-CoV-2 neutralizing antibody and T cell responses in mice and nonhuman primates. Sci Transl Med 2020;12:eabc9396.

13. Zhang NN, Li XF, Deng YQ, Zhao H, Huang YJ, Yang G, et al. A thermostable mRNA vaccine against COVID-19. Cell 2020;182:1271–83.

14. Schnee M, Vogel AB, Voss D, Petsch B, Baumhoff P, Kramps T, et al. An mRNA vaccine encoding rabies virus glycoprotein induces protection against lethal infection in mice and correlates of protection in adult and newborn pigs. PLoS Neglected Trop Dis 2016;10:e0004746.

15. Alberer M, Gnäd-Voge U, Hong HS, Mehr KT, Backert L, Finak G, et al. Safety and immunogenicity of a mRNA rabies vaccine in healthy adults: an open-label, non-randomised, prospective, first-in-human phase 1 clinical trial. Lancet 2017;390:1511–20.

16. Pardi N, Hogan MJ, Pelc RS, Muramatsu H, Andersen H, DeMarco CR, et al. Zika virus protection by a single low-dose nucleoside-modified mRNA vaccination. Nature 2017;543:248–51.

17. Richner JM, Himansu S, Dowd KA, Butler SL, Salazar V, Fox JM, et al. Modified mRNA vaccines protect against Zika virus infection. Cell 2017;168:1114–25.

18. Zhong Z, Portela Catani JP, McCafferty S, Couck L, Van Den Broeck W, Gorlé N, et al. Immunogenicity and protection efficacy of a naked self-replicating mRNA-based Zika virus vaccine. Vaccines (Basel) 2019;7:976.

19. Samsa MM, Dupuy LC, Beard CW, Six CM, Schmaljohn CS, Mason PW, et al. Self-amplifying RNA vaccines for Venezuelan equine encephalitis virus induce robust protective immunogenicity in mice. Mol Ther 2019;27:850–65.

20. Maruggi G, Chiarot E, Giovani C, Buccato S, Bonacci S, Frigimelica E, et al. Immunogenicity and protective efficacy induced by self-amplifying mRNA vaccines encoding bacterial antigens. Vaccine 2017;35:361–8.

21. Xue T, Stavropoulos E, Yang M, Rago N, Vordermeier M, Chambers M, et al. RNA encoding the MPT83 antigen induces protective immune responses against Mycobacterium tuberculosis infection. Infect Immun 2004;72:6324–9.

22. Kranz LM, Diken M, Haas H, Kreiter S, Loquai C, Reuter KC, et al. Systemic RNA delivery to dendritic cells exploits antiviral defence for cancer immunotherapy. Nature 2016;534:396–401.

23. Pastor F, Beranpodo P, Etxeberria I, Fredrick J, Sahin U, Gilboa E, et al. An mRNA toolbox for cancer immunotherapy. Nat Rev Drug Discov 2018;17:751–67.

24. Ramaswamy S, Tonnu N, Tachiwawa K, Limphong P, Vega JB, Karimali P, et al. Systemic delivery of factor IX messenger RNA for protein replacement therapy. Proc Natl Acad Sci U S A 2017;114:E1941–50.

25. Schumann C, Nguyen DX, Norgard M, Bortnyak Y, Korzun T, Chan S, et al. Increasing lean muscle mass in mice via nanoparticle-mediated hepatic delivery of factor IX mRNA. Theranostics 2018;8:5276–88.

26. Prieve MG, Harvie P, Monahan SD, Roy D, Li AG, Blevins TL, et al. Targeted mRNA therapy for ornithine transcarbamylase deficiency. Mol Ther 2018;26:801–13.

27. Sabnis S, Kumarasinghe ES, Salerno T, Mihai C, Ketova T, Senn JJ, et al. A novel amino lipid series for mRNA delivery: improved endosomal escape and sustained pharmacology and safety in non-human primates. Mol Ther 2018;26:1509–19.

28. Tombazic L, Weissman D, Pardi N. Vaccination with messenger RNA: a promising alternative to DNA vaccination. Methods Mol Biol 2021;2197:13–31.

29. Miao L, Zhang Y, Huang L. mRNA vaccine for cancer immunotherapy. Mol Cancer 2021;20:41.

30. Pardi N, Hogan MJ, Porter FW, Weissman D. mRNA vaccines—a new era in vaccinology. Nat Rev Drug Discov 2018;17:261–79.

31. Linares-Fernández S, Lacroix C, Exposito JY, Verrier B. Tailoring mRNA vaccine to balance innate/adaptive immune response. Trends Mol Med 2020;26:311–23.

32. Faghfouri H, Pourfarzi F, Faghfouri AH, Abdolishad B, Hajisajargazadeh K, Baradaran B. Recent developments of RNA-based vaccines in cancer immunotherapy. Exp Opin Biol Ther 2021;21:201–18.

33. Van Nuffel AM, Vanscheploeg S, Thieleman J, Bonehill A, Overcoming HLA restriction in clinical trials: immune monitoring of mRNA-loaded DC therapy. Oncoimmunology 2012;1:e11324–9.

34. Iavarone C, O’hagan DT, Yu D, Delahaye NF, Ulmer JB. Mechanism of action of mRNA-based vaccines. Expert Rev Vaccines 2017;16:871–81.

35. Hu Z, Ott PA, Wu CJ. Towards personalized, tumour-specific, therapeutic vaccines for cancer. Nat Rev Immunol 2018;18:168–82.

36. Jackson NAC, Kester KE, Casimiro D, Gurunathan S, DeRosa F. The promise of mRNA vaccines: a biotech and industrial perspective. NPJ Vaccines 2020;5:11.

37. Furuehchi Y, Miura K. A blocked structure at the 5’ terminus of mRNA from cytoplasmic polyhedrosis virus. Nature 1975;253:374–5.

38. Krieg PA, Melton DA. Functional messenger RNAs are produced by in vitro transcription of cloned cDNAs. Nucleic Acids Res 1984;12:7057–70.

39. Malone RW, Felgner PL, Verma IM. Cationic liposome-mediated RNA transfection. Proc Natl Acad Sci U S A 1989;86:6077–81.

40. Martinon F, Krishnan S, Lamz S, Bonacci S, Frigimelica E, et al. Totally self-amplifying mRNA vaccines encoding bacterial antigens induce robust protective immunity in mice. Mol Ther 2019;27:850–65.
2986 Qing He et al.

41. Conry RM, LoBuglio AF, Wright M, Sumerel L, Pike MJ, Johannings F, et al. Characterization of a messenger RNA poly-
nucleotide vaccine vector. Cancer Res 1995;55:1397–400.

42. Bozcowski D, Nair SK, Snyder D, Gilboa E. Dendritic cells pulsed with RNA are potent antigen-presenting cells in vitro and in vivo. J Exp Med 1996;184:465–72.

43. Heiser A, Coleman D, Dannull J, Yancey D, Maurice MA, Lallas CD, et al. Autologous dendritic cells transfected with prostate-specific antigen RNA stimulate CTL responses against metastatic prostate tumors. J Clin Invest 2002;109:409–17.

44. Karikó K, Buckstein M, Ni H, Weissman D. Suppression of RNA recognition by Toll-like receptors: the impact of nucleoside modi-
cation and the evolutionary origin of RNA. Immunity 2005;23:
165–75.

45. Weide B, Pascolo S, Scheel B, Derhovanessian E, Pflogfelder A, Eigentler TK, et al. Direct injection of protamine-protected mRNA: results of a phase 1/2 vaccination trial in metastatic melanoma pa-
ients. J Immunother 2009;32:498–507.

46. Kreiter S, Selmi A, Diken M, Koslowski M, Britten CM, Huber C, et al. Intranasal vaccination with naked antigen-encoding RNA elicits potent polyphlic and therapeutic anti-tumour immunity. Cancer Res 2010;70:9031–40.

47. Phua KK, Staats HF, Leong KW, Nair SK. Intranasal mRNA nano-
particle vaccination induces polyphlic and therapeutic anti-tumor immunity. Sci Rep 2014;4:5128.

48. Kreiter S, Vorvemm R, van de Roemer N, Diken M, Löwer M, Diekmann J, et al. Mutant MHC class II epitopes drive therapeutic immune responses to cancer. Nature 2015;520:692–6.

49. Sahini U, Derhovanessian E, Miller M, Kloke BP, Simon P, Löwer M, et al. Personalized RNA mutanome vaccines mobilize poly-specific therapeutic immunity against cancer. Nature 2017;547:222–6.

50. Fan YN, Li M, Luo YL, Chen Q, Wang L, Zhang HB, et al. Cationic lipid-assisted nanoparticles for delivery of mRNA cancer vaccine. Biomater Sci 2018;6:3009–18.

51. Liu L, Wang Y, Miao L, Liu Q, Musetti S, Li J, et al. Combination immuno
therapy of MUC1 mRNA nano-vaccine and CTLA-4 blockade effectively inhibits growth of triple negative breast can-
ters. J Control Release 2020;354:104143.

52. Conry RM, LoBuglio AF, Wright M, Sumerel L, Pike MJ, Johannings F, et al. Characterization of a messenger RNA poly-
nucleotide vaccine vector. Cancer Res 1995;55:1397–400.

53. Islam MA, Xu Y, Tao W, Ubellacker JM, Lim M, Aum D, et al. Maximizing anti-tumor immunity through conventional and natural killer T cells. ACS Nano 2019;13:1655–69.

54. Blass E, Ott PA. Advances in the development of personalized neoantigen-based therapeutic cancer vaccines. Nat Rev Clin Oncol 2021;18:215–29.

55. Sikandar A, Katiyar M, Chaudhary A, Rastogi P, et al. mRNA vaccine with dual activity increased anti-tumor immunity. J Immunother Cancer 2021;9:222–6.

56. Son S, Nam J, Zenkov I, Ochyl LJ, Xu Y, Scheetz L, et al. Sugar-
nanocapsules imprinted with microbial molecular patterns for mRNA vaccination. Nano Lett 2020;20:1499–509.

57. Zhang H, You X, Wang X, Cui L, Wang Z, Xu F, et al. Delivery of mRNA vaccine with a lipid-like material potentiates anti-tumor effic-
cy through Toll-like receptor 4 signaling. Proc Natl Acad Sci U S A 2021;118:e2005191118.

58. Thorne J, Zhao Y, Ma S, Hou Y, Yang J. Intranasal delivery of cationic liposome–proteome complex mRNA vaccine elicits effective anti-tumor immunity. Cell Immunol 2020;354:104143.

59. BioNTech. BioNTech receives FDA fast track designation for its FixVac candidate BNT111 in advanced melanoma. November 19, 2021. Available from: https://investors.biontech.de/news-releases/news-release-details/biontech-receives-fda-fast-track-designation-its-fixvac.

60. Durrer D, Hallenbeck S, Lorenz H, et al. Preclinical evaluation of TriMix and antigen releasable transporters elicits human T cell responses and cures melanoma. Proc Natl Acad Sci U S A 2011;108:19

61. van der Burg SH. Melief CJM, Bhardwaj N. Therapeutic cancer vaccines. Nat Rev Cancer 2008;8:70–80.

62. Diekmann J, et al. Autologous dendritic cells transfected with prostate-specific antigen RNA stimulate CTL responses against metastatic prostate tumors. J Clin Invest 2002;109:409–17.

63. Hollingsworth RE, Jansen K. Turning the corner on therapeutic cancer vaccines. NPJ Vaccines 2019;4:47.

64. Schrittwieser J, Dewitte H, et al. Particle-mediated intravenous delivery of antigen denridge and provide productive anti-tumour response in murine tumors. J Control Release 2016;210:210–21.

65. Hollingsworth RE, Jansen K. Turning the corner on therapeutic cancer vaccines. NPJ Vaccines 2019;4:47.

66. Blass E, Ott PA. Advances in the development of personalized neoantigen-based therapeutic cancer vaccines. Nat Rev Clin Oncol 2021;18:215–29.

67. Saxena A, van der Burg SH, Melief CJM, Bhardwaj N. Therapeutic cancer vaccines. Nat Rev Cancer 2021;21:360–78.

68. Kwak M, Leick KM, Melsens MM, Slingluff Jr CL. Vaccine strategy in melanoma. Surg Oncol Clin N Am 2019;28:337–51.

69. Zhou WZ, Hoon DS, Huang SK, Fujii S, Hashimoto K, Morishita R, et al. RNA melanoma vaccine: induction of antitumor immunity by human glycoprotein 100 mRNA immunization. J Mol Immunol 2019;125:3401–12.

70. Mochly R, Bhardwaj N. Therapeutic cancer vaccines. Nat Rev Cancer 2021;21:360–78.

71. Kwak M, Leick KM, Melsens MM, Slingluff Jr CL. Vaccine strategy in melanoma. Surg Oncol Clin N Am 2019;28:337–51.

72. Zhou WZ, Hoon DS, Huang SK, Fujii S, Hashimoto K, Morishita R, et al. RNA melanoma vaccine: induction of antitumor immunity by human glycoprotein 100 mRNA immunization. J Mol Immunol 2019;125:3401–12.

73. Mochly R, Bhardwaj N. Therapeutic cancer vaccines. Nat Rev Cancer 2021;21:360–78.

74. Kwak M, Leick KM, Melsens MM, Slingluff Jr CL. Vaccine strategy in melanoma. Surg Oncol Clin N Am 2019;28:337–51.

75. Zhou WZ, Hoon DS, Huang SK, Fujii S, Hashimoto K, Morishita R, et al. RNA melanoma vaccine: induction of antitumor immunity by human glycoprotein 100 mRNA immunization. J Mol Immunol 2019;125:3401–12.

76. Mochly R, Bhardwaj N. Therapeutic cancer vaccines. Nat Rev Cancer 2021;21:360–78.

77. Kwak M, Leick KM, Melsens MM, Slingluff Jr CL. Vaccine strategy in melanoma. Surg Oncol Clin N Am 2019;28:337–51.

78. Zhou WZ, Hoon DS, Huang SK, Fujii S, Hashimoto K, Morishita R, et al. RNA melanoma vaccine: induction of antitumor immunity by human glycoprotein 100 mRNA immunization. J Mol Immunol 2019;125:3401–12.
mRNA cancer vaccines

77. Oberli MA, Reichmuth AM, Dorkin JR, Mitchell MJ, Fenton OS, Jaklencic A, et al. Lipid nanoparticle assisted mRNA delivery for potent cancer immunotherapy. *Nano Lett* 2017;17:1326–33.
78. Wang Y, Zhang L, Xu Z, Miao L, Huang L. mRNA vaccine with antigen-specific checkpoint blockade induces an enhanced immune response against established melanoma. *Mol Ther* 2018;26:420–34.
79. Do ASS, Amano T, Edwards LA, Zhang L, De Peralta-Venturina M, Yu JS. CD133 mRNA-loaded dendritic cell vaccination abrogates glioma stem cell propagation in humanized glioblastoma mouse model. *Mol Ther Oncolytics* 2020;18:295–303.
80. Reinhardt K, Rengstl B, Oehm P, Michel K, Billmeier A, Hayduk N, et al. An RNA vaccine drives expansion and efficacy of claudin-CAR-T cells against solid tumors. *Science* 2020;367:446–53.
81. Kyte JA, Mu L, Aamdal S, Kvalheim G, Dueland S, Hauser M, et al. Phase I/II trial of melanoma therapy with dendritic cells transfected with autologous tumor-mRNA. *Cancer Gene Ther* 2006;13:905–18.
82. Vik-Mo EO, Nyakas M, Mikkelson BV, Mikkelsen BV, Moe MC, Due-Tønnesen P, Do ASS, Amano T, Edwards LA, Zhang L, De Peralta-Venturina M, Yu JS. CD133 mRNA-loaded dendritic cell vaccination abrogates glioma stem cell propagation in humanized glioblastoma mouse model. *Mol Ther Oncolytics* 2020;18:295–303.
83. de Vries IJ, Bernsen MR, Lesterhuis WJ, Scharenborg NM, Strijp S, Gerritsen MJ, et al. Immunomonitoring of tumor-specific T cells in delayed-type hypersensitivity skin biopsies after dendritic cell vaccination correlates with clinical outcome. *J Clin Oncol* 2005;23:5779–87.
84. Wang D, Zhang B, Gao H, Ding G, Wu Q, Zhang J, et al. Clinical research of genetically modified dendritic cells in combination with cytokine-induced killer cell treatment in advanced renal cancer. *BMC Cancer* 2014;14:251.
85. Sahin U, Oehm P, Derhovanessian E, Jabulowsky RA, Vormehr M, Gold M, et al. An RNA vaccine drives immunity in checkpoint-inhibitor-treated melanoma. *Nature* 2020;585:107–12.
86. Anguille S, Van de Velde AL, Smits EL, Van Tendeloo VF, Juliusso G, Cools N, et al. Dendritic cell vaccination as post-remission treatment to prevent or delay relapse in acute myeloid leukemia. *Blood* 2017;130:1713–21.
87. Van Tendeloo VF, Van de Velde A, Van Driessche A, Cools N, Anguille S, Ladell K, et al. Induction of complete and molecular remissions in acute myeloid leukemia by Wilms’ tumor 1 antigen-targeted dendritic cell vaccination. *Proc Natl Acad Sci U S A* 2010;107:13824–9.
88. Lichtenegger FS, Schoroffl FM, Rothe M, Deiser K, Altmann T, Lichtenegger FS, Schnorfeil FM, Rothe M, Deiser K, Altmann T, et al. Enhancing the T-cell stimulatory capacity of human dendritic cells by co-electroporation with CD40L, CD70 and tumour-associated macrophages. *Cancer Gene Ther* 2006;13:905–18.
89. Wang QT, Nie Y, Sun SN, Lin T, Han RJ, Jiang J, et al. Tumor-associated antigen recognition by engineered CD8 T cells in vivo and correlation with increased patient survival. *Genome Biol* 2021;22:1375–87.
90. Biakalowski L, Van Weijnen A, Van der Jeught K, Remans D, Bialkowski L, et al. Intralymphatic mRNA vaccine-mediated restoration of p53 tumor suppressor sensitizes p53-deficient cancers to MIR7B inhibition. *Sci Transl Med* 2019;11:eaw1565.
91. Bozczowski D, Nair SK, Snyder D, Gilboa E. Vaccination with mRNAs encoding tumor-associated antigens and granulocyte-macrophage colony-stimulating factor efficiently primes CTL responses, but is insufficient to overcome tolerance to a model tumor/self antigen. *Cancer Immunol Immunother* 2006;55:672–83.
92. Fotin-Mleczek M, Zaninger K, Heidenreich R, Lorenz C, Kowalczyk A, Kallen KF, et al. mRNA-based vaccines synergize with radiation therapy to eradicate established tumors. *Radiat Oncol* 2014;9:180.
93. Udhayakumar KV, De Beuckelaer A, McCaffrey J, McCrudden CM, Kirschman JL, Vanover D, et al. Arginine-rich peptide-based mRNA nanocomplexes efficiently instigate cytotoxic T cell immunity dependent on the amphipathic organization of the peptide. *Adv Healthc Mater* 2017;6:1601412.
94. Meng C, Chen Z, Mai J, Shi Q, Tian S, Hinkle L, et al. Virus-mimic mRNA vaccine for cancer treatment. *Adv Ther (Weinh)* 2021;4:2100144.
95. Wilgenhof S, Cortals J, Heirman C, van Baren N, Lucas S, Kvistborg P, et al. Phase II study of autologous monocyte-derived dendritic cells (TriMixDC-MEL) plus ipilimumab in patients with pretreated advanced melanoma. *Cancer Gene Ther* 2013;20:347–53.
96. Kreiter S, Diken M, Selmi A, Diekmann J, Attig S, Huesemann Y, et al. Neo-antigens predicted by tumor genome meta-analysis correlate with increased patient survival. *Genome Res* 2019;30:3541–51.
97. Rooney MS, Shukla SA, Wu CJ, Getz G, Hacothen N. Molecular and genetic properties of tumors associated with local immune cytolytic activity. *Cell* 2015;160:48–61.
98. Brown SD, Warren RL, Gibb EA, Martin SD, Spinelli JJ, Nelson BH, et al. Neo-antigens predicted by tumor genome meta-analysis correlate with increased patient survival. *Genome Res* 2014;24:743–50.
99. Giannakis M, Mu XJ, Shukla SA, Qian ZR, Cohen O, Nishihara R, et al. Genomic correlates of immune-cell infiltrates in colorectal carcinoma. *Cell Rep* 2016;17:1206.
100. Howitt BE, Shukla SA, Sholl LM, Ritterhouse LL, Watkins JC, Rodig S, et al. Association of polymere e-mutated and microsatellite-instable endometrial cancers with neoantigen load, number of tumor-infiltrating lymphocytes, and expression of PD-1 and PD-L1. *JAMA Oncol* 2015;1:1319–23.
101. McGranahan N, Furness AJ, Rosenthal R, Ramskov S, Lyngaa R, Saini SK, et al. Clonal neoantigens elicit T cell immunoreactivity and associated macrophages and synergize immunotherapy against liver malignancies. *Adv Mater* 2021;33:e2007603.
102. Udhayakumar KV, De Beuckelaer A, McCaffrey J, McCrudden CM, Kirschman JL, Vanover D, et al. Arginine-rich peptide-based mRNA nanocomplexes efficiently instigate cytotoxic T cell immunity dependent on the amphipathic organization of the peptide. *Adv Healthc Mater* 2017;6:1601412.
sensitivity to immune checkpoint blockade. Science 2016;351:1463–9.
112. Schumacher TN, Schreiber RD. Neutonagins in cancer immuno-
therapy. Science 2015;348:69–74.
113. Rajasagi M, Shukla SA, Fritsch EF, Keskin DB, DeLuca D, Carmona E, et al. Systematic identification of personal tumor-
specific neutonagins in chronic lymphocytic leukemia. Blood 2014;
124:453–62.
114. Hilf N, Kutturu-Coqui S, Frenzel K, Bukur V, Stevanović S, Gouttefangeas C, et al. Actively personalized vaccination trial for
newly diagnosed glioblastoma. Nature 2019;565:240–5.
115. Wei Y, Sticca RP, Holmes LM, Burgin KE, Li J, Williamson J, et al. Dendritoma vaccination combined with low dose interleukin-2 in
metastatic melanoma patients induced immunological and clinical responses. Int J Oncol 2006;28:85–93.
116. Sahin U, Karikó K, Türeci O. mRNA-based therapeutics—develop-
ing a new class of drugs. Nat Rev Drug Discov 2014;13:759–80.
117. Martin SA, Paolleti E, Moss B. Purification of mRNA guanylyl-
transferase and mRNA (guanine-7-) methyltransferase from vaccinia
virions. J Biol Chem 1975;250:9322–9.
118. Brito LA, Kommedreedy M, Maione D, Uematsu Y, Giovani C, Ber-
landa Scorza F, et al. Self-amplifying mRNA vaccines. Adv Genet
2015;89:179–233.
119. Stepinski J, Waddell C, Stolarski R, Darzynkiewicz E, Rhoads RE.
Synthesis and properties of mRNAs containing the novel “anti-
reverse” cap analogs 7-methyl(3'-O-methyl)GpppG and 7-methyl (3'-
deoxy)GpppG. RNA 2001;7:1486–95.
120. Jemielity J, Fowler T, Zuberek J, Stepinski J, Lewdorowicz M, Niedzwiecka A, et al. Novel “anti-reverse” cap analogs with superior
translational properties. RNA 2003;9:1108–22.
121. Grudzien-Nogalska E, Stepinski J, Jemielity J, Zuberek J, Stolarski R, Rhoads RE, et al. Synthesis of anti-reverse cap analogs
(ARCAs) and their applications in mRNA translation and stability.
Methods Enzymol 2007;431:203–27.
122. Kuhn AN, Diken M, Kreiter S, Selmi A, Kowalska J, Jemielity J, et al. Phosphorothioate cap analogs increase stability and transla-
tional efficiency of RNA vaccines in immature dendritic cells and
induce superior immune responses in vivo. Gene Ther 2010;17:
961–71.
123. Strenkowska M, Grzela R, Majewski M, Wnek K, Kowalska J, Lukaszewicz M, et al. Cap analogs modified with 1,2-
dithiodiphosphate moiety protect mRNA from decapping and
enhance its translational potential. Nucleic Acids Res 2016;44:
9578–90.
124. Vaidyanathan S, Azizian KT, Haque AKM, Henderson JM, Hendel A, Shore S, et al. Uridine depletion and chemical modifica-
tion increase Cas9 mRNA activity and reduce immunogenicity
without HPLC purification. Mol Ther Nucleic Acids 2018;12:
530–42.
125. Weissman D. mRNA transcript therapy. Expert Rev Vaccines 2015;
14:265–81.
126. Lima SA, Chipman LB, Nicholson AL, Chen YH, Yee BA, Yeo GW,
et al. Short poly(A) tails are a conserved feature of highly expressed
genes. Nat Struct Mol Biol 2017;24:1057–63.
127. Holtkamp S, Kreiter S, Selmi A, Simon P, Koslowski M, Huber C, et al. Modification of antigen-encoding RNA increases stability,
translational efficacy, and T-cell stimulatory capacity of dendritic
cells. Blood 2006;108:4009–17.
128. Park JE, Yi H, Kim Y, Chang H, Kim VN. Regulation of poly(A) tail
and translation during the somatic cell cycle. Mol Cell 2016;62:
462–71.
129. Gallie DR. The cap and poly(A) tail function synergistically
to regulate mRNA translational efficiency. Genes Dev 1991;5:
2108–16.
130. Orlandini von Niessen AG, Poleganov MA, Rechner C, Plaschke A,
Kranz LM, Fesser S, et al. Improving mRNA-based therapeutic gene
delivery by expression-augmenting 3' UTRs identified by cellular
library screening. Mol Ther 2019;27:824–36.
131. Murray EL, Schoeneng DR. A+U-rich instability elements differ-
entially activate 5'–3' and 5'–5' mRNA decay. Mol Cell Biol 2007;
27:2791–9.
132. Vlasova-St Louis I, Bohjaren PR. Coordinate regulation of mRNA
decay networks by GU-rich elements and CELF1. Curr Opin Genet
Dev 2011;21:444–51.
133. Ferizi M, Leonardt C, Meggle C, Aneja MK, Rudolph C, Plank C, et al. Stability analysis of chemically modified mRNA using
micropattern-based single-cell arrays. Lab Chip 2015;15:3561–71.
134. Kozak M. At least six nucleotides preceding the AUG initiator codon
enhance translation in mammalian cells. J Mol Biol 1987;196:
947–50.
135. Pelletier J, Sonenberg N. Insertion mutagenesis to increase secondary
structure within the 5' non-coding region of a eukaryotic mRNA re-
duces translational efficiency. Cell 1985;40:515–26.
136. Gustafsson C, Govindarajan S, Minshull J. Codon bias and heterolo-
gous protein expression. Trends Biotechnol 2004;22:346–53.
137. Schlake T, Thess A, Fotin-Mleczek M, Kallén KJ. Developing
mRNA-vaccine technologies. RNA Biol 2012;9:1319–30.
138. Pardi N, Weissman D. Nucleoside modified mRNA vaccines for in-
fecstious diseases. Methods Mol Biol 2017;1499:109–21.
139. Willis E, Pardi N, Parkhouse K, Mui BL, Tam YK, Weissman D, et al. Nucleoside-modified mRNA vaccination partially overcomes
maternal antibody inhibition of de novo immune responses in mice. Sci Transl Med 2020;12:eaav5701.
140. Kariko K, Muramatsu H, Welsh FA, Ludwig J, Kato H, Akira S, et al. Incorporation of pseudouridine into mRNA yields superior non-
immunogenic vector with increased translational capacity and bio-
logical stability. Mol Ther 2008;16:1833–40.
141. Arango D, Sturgill D, Alhusaini N, Dillman AA, Sweet TJ, Hansj G, et al. Acetylation of cytidine in mRNA promotes trans-
lation efficiency. Cell 2018;175:1872–86.
142. Kariko K, Muramatsu H, Ludwig J, Weissman D. Generating the
optimal mRNA for therapy: HPLC purification eliminates immune
activation and improves translation of nucleoside-modified, protein-
encoding mRNA. Nucleic Acids Res 2011;39:e142.
143. Weissman D, Pardi N, Muramatsu H, Kariko K. HPLC purification of
in vitro transcribed long RNA. Methods Mol Biol 2013;969:43–54.
144. Baierdersorff M, Boros G, Muramatsu H, Mahiny A, Vlatkovic I, Sahin U, et al. A facile method for the removal of dsRNA contam-
inant from in vitro-transcribed mRNA. Mol Ther Nucleic Acids 2019;
15:26–35.
145. Bourquin C, Schmidt L, Hornung V, Wurzenberger C, Anz D, Sandholzer N, et al. Immunostimulatory RNA oligonucleotides
trigger an antigen-specific cytosolic T-cell and IgG2a response. Blood
2007;109:2953–60.
146. De Beuckelaer A, Grooten J, De Koker S. Type I interferons modulate
CD8+ T cell immunity to mRNA vaccines. Trends Mol Med 2017;23:
216–26.
147. Heil F, Hemmi H, Hochrein H, Ampenberger F, Kirschning C,
Akira S, et al. Species-specific recognition of single-stranded RNA via
toll-like receptor 7 and 8. Science 2004;303:1526–9.
148. Knutson KL, Schiﬀman K, Cheever MA, Diis ML. Immunization of
cancer patients with a HER-2/neu, HLA-A2 peptide, p369-377, results in short-lived peptide-speciﬁc immunity. Clin Cancer Res
2002;8:1014–8.
149. Bijker MS, van den Eeden SJ, Franken KL, Melief CJ, Offringa R,
van der Burg SH, CD8+ T-cell priming by exact peptide epitopes in
incomplete Freund’s adjuvant induces a vanishing CTL response,
whereas long peptides induce sustained CTL reactivity. J Immunol
2007;179:5033–40.
150. Melief CJ, van der Burg SH. Immunotherapy of established (pre)
malignant disease by synthetic long peptide vaccines. Nat Rev
Cancer 2008;8:351–60.
151. Li W, Joshii MD, Singhania S, Ramsey KH, Murthy AK. Peptide
vaccine: progress and challenges. Vaccines (Basel) 2014;2:515–56.
152. Ye Z, Li Z, Jin H, Qian Q. Therapeutic cancer vaccines. Adv Exp Med
Biol 2016;909:139–67.

