Finite groups with \mathbb{P}-subnormal primary cyclic subgroups

V. N. Kniahina and V. S. Monakhov

Abstract

A subgroup H of a group G is called \mathbb{P}-subnormal in G whenever either $H = G$ or there is a chain of subgroups $H = H_0 \subset H_1 \subset \ldots \subset H_n = G$ such that $|H_i : H_{i-1}|$ is a prime for all i. In this paper, we study the groups in which all primary cyclic subgroups are \mathbb{P}-subnormal.

Keywords: finite group, supersolvable group, primary subgroup, cyclic subgroup

MSC2010 20D20, 20E34

Introduction

We consider finite groups only. A. F. Vasilyev, T. I. Vasilyeva and V. N. Tyutyunnov in [1] introduced the following definition. Let \mathbb{P} be the set of all prime numbers. A subgroup H of a group G is called \mathbb{P}-subnormal in G whenever either $H = G$ or there is a chain

$$H = H_0 \subset H_1 \subset \ldots \subset H_n = G$$

of subgroups such that $|H_i : H_{i-1}|$ is prime for all i.

Let $|G| = p_1^{a_1} p_2^{a_2} \ldots p_k^{a_k}$, where $p_1 > p_2 > \ldots > p_k$, $a_i \in \mathbb{N}$. We say that G has an ordered Sylow tower of supersolvable type if there exist normal subgroups G_i with

$$1 = G_0 \subset G_1 \subset G_2 \subset \ldots \subset G_{k-1} \subset G_k = G,$$

and where each factor G_i/G_{i-1} is isomorphic to a Sylow p_i-subgroup of G for all i. We denote by \mathfrak{D} the class of all groups which have an ordered Sylow tower of supersolvable type. It is well known that \mathfrak{D} is a hereditary saturated formation.

In [1] finite groups with \mathbb{P}-subnormal Sylow subgroups were studied. A group G is called w-supersolvable if every Sylow subgroup of G is \mathbb{P}-subnormal.
in G. Denote by $w\mathfrak{U}$ the class of all w-supersolvable groups. Observe that the class \mathfrak{U} of all supersolvable groups is included into $w\mathfrak{U}$. In [1], the authors proved that the class $w\mathfrak{U}$ is a saturated hereditary formation; every group in $w\mathfrak{U}$ possesses an ordered Sylow tower of supersolvable type; all metanilpotent and all biprimary subgroups in $w\mathfrak{U}$ are supersolvable.

In [2] the following problem was proposed.

To describe the groups in which all primary cyclic subgroups are \mathbb{P}-subnormal.

In this note we solve this problem. Denote by \mathfrak{X} the class of groups whose primary cyclic subgroups are all \mathbb{P}-subnormal. It is easy to verify that $\mathfrak{U} \subset w\mathfrak{U} \subset \mathfrak{X}$.

Theorem.
1. A group $G \in w\mathfrak{U}$ if and only if G possesses an ordered Sylow tower of supersolvable type and every biprimary subgroup of G is supersolvable.
2. The class \mathfrak{X} is a hereditary saturated formation.
3. A group $G \in \mathfrak{X}$ if and only if G possesses an ordered Sylow tower of supersolvable type and every biprimary subgroup of G with cyclic Sylow subgroup is supersolvable.
4. Every minimal non-\mathfrak{X}-group is a biprimary minimal non-supersolvable group whose non-normal Sylow subgroup is cyclic.

1 Preliminary results

We use the standard notation of [3]. The set of all prime divisors of $|G|$ is denoted $\pi(G)$. We write $[A]B$ for a semidirect product with a normal subgroup A. If H is a subgroup of G, then $\text{Core}_G H = \bigcap_{x \in G} x^{-1}Hx$ is called the core of H in G. If a group G contains a maximal subgroup M with trivial core, then G is said to be primitive and M is its primitivator. We will use the following notation: S_n and A_n are the symmetric and the alternating groups of degree n, E_{p^t} is the elementary abelian group of order p^t, Z_m is the cyclic group of order m, D_8 is the dihedral group of order 8, $Z(G)$, $\Phi(G)$, $F(G)$, G' is the center, the Frattini subgroup, the Fitting subgroup and the derived subgroup of G respectively.

Lemma 1. Let H be a subgroup of a solvable group G, and assume that $|G : H|$ is a prime number. Then $G/\text{Core}_G H$ is supersolvable.

Proof. By hypothesis, $|G : H| = p$, where p is a prime number. If $H = \text{Core}_G H$, then G/H is cyclic of order p and $G/\text{Core}_G H$ is supersolvable, as required. Assume now that $H \neq \text{Core}_G H$, i.e., H is not normal in G. It
follows that $G/\text{Core}_G H$ contains a maximal subgroup $H/\text{Core}_G H$ with trivial core. Hence, $G/\text{Core}_G H$ is primitive and the Fitting subgroup $F/\text{Core}_G H$ of $G/\text{Core}_G H$ has prime order p. Since

$$F/\text{Core}_G H = C_{G/\text{Core}_G H}(F/\text{Core}_G H),$$

it follows that

$$(G/\text{Core}_G H)/(F/\text{Core}_G H) \cong H/\text{Core}_G H$$

is isomorphic to a cyclic group of order dividing $p - 1$. Thus, $G/\text{Core}_G H$ is supersolvable.

Lemma 2. 1. A group G is supersolvable if and only if all of its maximal subgroups have prime indices.

2. Every subgroup of a supersolvable group is P-subnormal.

Proof. 1. This is Huppert’s classic theorem, see [3, Theorem VI.9.5].

2. The statement follows from 1 of the lemma.

Immediately, using the definition of P-subnormality, we deduce the following properties.

Lemma 3. Suppose that H is a subgroup of G, and let N be a normal subgroup of G. Then the following hold:

1) if H is P-subnormal in G, then $(H \cap N)$ is P-subnormal in N, and HN/N is P-subnormal in G/N;

2) if $N \subseteq H$ and H/N is P-subnormal in G/N, then H is P-subnormal in G;

3) if H is P-subnormal in K, and K is P-subnormal in G, then H is P-subnormal in G;

4) if H is P-subnormal in G, then H^g is P-subnormal in G for each element $g \in G$.

Example 1. The subgroup $H = A_4$ of the alternating group $G = A_5$ is P-subnormal. If $x \in G \setminus H$, then H^x is P-subnormal in G. The subgroup $D = H \cap H^x$ is a Sylow 3-subgroup of G and D is not P-subnormal in H. Therefore, an intersection of two P-subnormal subgroups is not P-subnormal. Moreover, if H is P-subnormal in G and K is an arbitrary subgroup of G, in general, their intersection $H \cap K$ is not P-subnormal in K.

However, this situation is impossible if G is a solvable group.

Lemma 4. Let G be a solvable group. Then the following hold:
1) if \(H \) is \(\mathbb{P} \)-subnormal in \(G \), and \(K \) is a subgroup of \(G \), then \((H \cap K) \) is \(\mathbb{P} \)-subnormal in \(K \);

2) if \(H_i \) is \(\mathbb{P} \)-subnormal in \(G \), \(i = 1, 2 \), then \((H_1 \cap H_2) \) is \(\mathbb{P} \)-subnormal in \(G \).

Proof. 1. It is clear that in the case \(H = G \) the statement is true. Let \(H \neq G \). According to the definition of \(\mathbb{P} \)-subnormality, there exists a chain of subgroups

\[H = H_0 \subset H_1 \subset \ldots \subset H_n = G \]

such that \(|H_i : H_{i-1}|\) is a prime number for any \(i \). We will use induction by \(n \).

Consider the case when \(n = 1 \). In this situation, \(H = H_{n-1} \) is a maximal subgroup of prime index in \(G \). By Lemma 1, \(G/N \) is supersolvable, \(N = \text{Core}_G H \). Since, by Lemma 2 (2), every subgroup of a supersolvable group is \(\mathbb{P} \)-subnormal, we have

\[H/N \cap KN/N = N(H \cap K)/N \]

is \(\mathbb{P} \)-subnormal in \(KN/N \). Lemma 3 (2) implies that \(N(H \cap K) \) is \(\mathbb{P} \)-subnormal in \(KN \). It means that there exists a chain of subgroups

\[N(H \cap K) = A_0 \subset A_1 \subset \ldots \subset A_{m-1} \subset A_m = NK \]

such that \(|A_i : A_{i-1}| \in \mathbb{P}\) for all \(i \). Since

\[N(H \cap K) \subseteq A_i \subseteq NK, \]

we have \(A_i = N(A_i \cap K) \) and \(H \cap K \subseteq A_i \cap K \) for all \(i \). We introduce the notation \(B_i = A_i \cap K \). It is clear that

\[B_{i-1} \subseteq B_i, \quad A_i = N(A_i \cap K) = NB_i, \quad N \cap B_i = N \cap A_i \cap K = N \cap K \]

for all \(i \). Since \(N \subseteq H \), we have

\[B_0 = A_0 \cap K = N(H \cap K) \cap K = (N \cap K)(H \cap K) = H \cap K, \]

\[B_m = A_m \cap K = KN \cap K = K. \]

Moreover,

\[
\frac{|A_i : A_{i-1}|}{|NB_i|} = \frac{|N||B_i||N \cap B_{i-1}|}{|N \cap B_i||N||B_{i-1}|} = \frac{|B_i : B_{i-1}|}{|N \cap B_i : N \cap B_{i-1}|} = \frac{|B_i : B_{i-1}|}{|N \cap K : N \cap K|} = |B_i : B_{i-1}|.
\]
Now we have a chain of subgroups

\[H \cap K = B_0 \subset B_1 \subset \ldots \subset B_{m-1} \subset B_m = K, \quad |B_i : B_{i-1}| \in \mathbb{P}, \quad 1 \leq i \leq m, \]

which proves that the subgroup \(H \cap K \) is \(\mathbb{P} \)-subnormal in \(K \).

Let \(n > 1 \). Since \(H_{n-1} \) is a maximal subgroup of prime index in \(G \), and \(G \) is solvable, thus, as it was proved, \(H_{n-1} \cap K \) is \(\mathbb{P} \)-subnormal in \(K \). The subgroup \(H \) is \(\mathbb{P} \)-subnormal in the solvable group \(H_{n-1} \) and the induction is applicable to them. By induction,

\[H \cap (H_{n-1} \cap K) = H \cap K \]

is \(\mathbb{P} \)-subnormal in \(H_{n-1} \cap K \). By Lemma 3 (3), \(H \cap K \) is \(\mathbb{P} \)-subnormal in \(K \).

2. Let \(H_i \) is \(\mathbb{P} \)-subnormal in \(G \), \(i = 1, 2 \). It follows from 1 of the lemma, that \((H_1 \cap H_2) \) is \(\mathbb{P} \)-subnormal in \(H_2 \). Now by Lemma 3 (3), we obtain that \((H_1 \cap H_2) \) is \(\mathbb{P} \)-subnormal in \(G \).

Lemma 5. Let \(H \) be a subnormal subgroup of a solvable group \(G \). Then \(H \) is \(\mathbb{P} \)-subnormal in \(G \).

Proof. Since \(H \) is subnormal in \(G \), and \(G \) is solvable, then there exists a series

\[H = H_0 \subset H_1 \subset \ldots \subset H_{n-1} \subset H_n = G, \]

such that \(H_i \) is normal in \(H_{i+1} \) for all \(i \). Working by induction on \(|G| \), we can assume that \(H \) is \(\mathbb{P} \)-subnormal in \(H_{n-1} \). Since \(G/H_{n-1} \) is solvable, the composition factors of \(G/H_{n-1} \) have prime orders. Thus, there is a chain of subgroups

\[H_{n-1} = G_0 \subset G_1 \subset \ldots \subset G_{m-1} \subset G_m = G \]

such that \(G_j \) is normal in \(G_{j+1} \) and \(|G_{j+1}/G_j| \in \mathbb{P} \) for all \(j \). This means that \(H_{n-1} = G_0 \) is \(\mathbb{P} \)-subnormal in \(G \). Using Lemma 3 (3), we deduce that \(H \) is a \(\mathbb{P} \)-subnormal in \(G \).

Example 2. The subgroup \(Z(SL(2, 13)) \) of the non-solvable group \(SL(2, 13) \) is normal, but is not \(\mathbb{P} \)-subnormal. This follows from the fact that the identity subgroup is not \(\mathbb{P} \)-subnormal in \(PSL(2, 13) = SL(2, 13)/Z(SL(2, 13)) \).

Lemma 6. Let \(A \) be a \(p \)-subgroup of a group \(G \). Then \(A \) is subnormal in \(G \) if and only if \(A \subseteq O_p(G) \).

Proof. The statement follows from Theorem 2.2 [4].

Lemma 7. Let \(A \) be a \(p \)-subgroup of a group \(G \). If \(|G : N_G(A)| = p^\alpha \), \(\alpha \in \mathbb{N} \), then \(A \) is subnormal in \(G \).
Proof. Let \(P \) be a Sylow \(p \)-subgroup of \(G \) with the property that \(P \) contains \(A \). Then

\[
G = N_G(A)P, \quad A^G = A^{N_G(A)}P = A^P \subseteq P,
\]

so \(A^G \subseteq O_p(G) \). It is clear that \(A \) is subnormal in \(G \).

Lemma 8. Let \(p \) be the largest prime divisor of \(|G| \), and let \(A \) be a \(p \)-subgroup of \(G \). If \(A \) is \(P \)-subnormal in \(G \), then \(A \) is subnormal in \(G \).

Proof. Let \(|A| = p^\alpha \). Since \(A \) is \(P \)-subnormal in \(G \), then there exists a series

\[
A = A_0 \subseteq A_1 \subseteq \ldots \subseteq A_{t-1} \subseteq A_t = G, \quad |A_i : A_{i-1}| \in P, \quad 1 \leq i \leq t.
\]

Since \(|A_1 : A_0| \in P \), we have

\[
|A_1| = p^{1+\alpha} \text{ or } |A_1| = p^\alpha q, \quad p \neq q.
\]

If \(|A_1| = p^{1+\alpha} \), then \(A \) is a normal subgroup of \(A_1 \). If \(|A_1| = p^\alpha q \), then \(p > q \) and again \(A \) is normal in \(A_1 \). Suppose we already know that \(A \) is subnormal in \(A_j \). Using Lemma 6 we have, \(A \subseteq O_p(A_j) \). Since \(|A_{j+1} : A_j| \in P \), we obtain

\[
|A_{j+1}| = p|A_j| \text{ or } |A_{j+1}| = q|A_j|, \quad p \neq q.
\]

If \(|A_{j+1}| = p|A_j| \), then, by Lemma 7, \(O_p(A_j) \subseteq O_p(A_{j+1}) \), and \(A \) is subnormal in \(A_{j+1} \). If \(|A_{j+1}| = q|A_j| \), \(p \neq q \), then \(p > q \). Consider the set of left cosets of \(A_j \) in \(A_{j+1} \). We know that \(A_{j+1}/\text{Core}_{A_{j+1}}A_j \) is isomorphic to a subgroup of the symmetric group \(S_q \) and any Sylow \(p \)-subgroup of \(A_{j+1} \) is contained in \(\text{Core}_{A_{j+1}}A_j \). Since \(A \) is subnormal in \(A_j \), so \(A \) is subnormal in \(\text{Core}_{A_{j+1}}A_j \). Since \(\text{Core}_{A_{j+1}}A_j \) is normal in \(A_{j+1} \), it follows that \(A \) is subnormal in \(A_{j+1} \). Therefore, \(A \) is subnormal in \(A_i \) for all \(i \). This implies that \(A \) is subnormal in \(G \).

Corollary. (\cite{I, Proposition 2.8}) Every \(w \)-supersolvable group possesses an ordered Sylow tower of supersolvable type.

Proof. Use induction on \(|G| \). Let \(G \) be a \(w \)-supersolvable group, and assume that \(p \) is the largest prime divisor of \(|G| \). Let \(P \) be a Sylow \(p \)-subgroup of \(G \). By Lemma 8, \(P \) is normal in \(G \). It follows by Lemma 3 (1), that any quotient group of a \(w \)-supersolvable group is \(w \)-supersolvable. Working by induction on \(|G| \), we deduce that \(G/P \) possesses an ordered Sylow tower of supersolvable type, so \(G \) possesses an ordered Sylow tower of supersolvable type. The corollary is proved.
Recall that a Schmidt group is a finite non-nilpotent group all of whose proper subgroups are nilpotent. Given a class \(\mathfrak{F} \) of groups. By \(\mathcal{M}(\mathfrak{F}) \) we denote the class of all minimal non-\(\mathfrak{F} \)-groups. A group \(G \) is a minimal non-\(\mathfrak{F} \)-group if \(G \notin \mathfrak{F} \) but all proper subgroups of \(G \) belong to \(\mathfrak{F} \). Clearly, the class \(\mathcal{M}(\mathfrak{N}) \) consists of Schmidt groups. Here \(\mathfrak{N} \) denotes the class of all nilpotent groups. We will need the properties of groups from \(\mathcal{M}(\mathfrak{N}) \) and \(\mathcal{M}(\mathfrak{U}) \).

Lemma 9. ([5], [6]) Let \(S \in \mathcal{M}(\mathfrak{N}) \). Then the following statements hold:
1) \(S = [P]\langle y \rangle \), where \(P \) is a normal Sylow \(p \)-subgroup, and \(\langle y \rangle \) is a non-normal cyclic Sylow \(q \)-subgroup, \(p \) and \(q \) are distinct primes, \(y^q \in Z(S) \);
2) \(|P/P'| = p^m \), where \(m \) is the order of \(p \) modulo \(q \);
3) if \(P \) is abelian, then \(P \) is an elementary abelian \(p \)-group of order \(p^m \) and \(P \) is a minimal normal subgroup of \(S \);
4) if \(P \) is non-abelian, then \(Z(P) = P' = \Phi(P) \) and \(|P/Z(P)| = p^m \);
5) \(Z(S) = \Phi(S) = \Phi(P) \times \langle y^q \rangle \); \(S' = P, P' = (S')' = \Phi(P) \);
6) if \(N \) is a proper normal subgroup of \(S \), then \(N \) does not contain \(\langle y \rangle \) and either \(P \subseteq N \) or \(N \subseteq \Phi(S) \).

Lemma 10. ([7]) Let \(G \in \mathcal{M}(\mathfrak{U}) \). Then the following statements hold:
1) \(G \) is solvable and \(|\pi(G)| \leq 3 \);
2) if \(G \) is not a Schmidt group, then \(G \) possesses an ordered Sylow tower of supersolvable type;
3) \(G \) has a unique normal Sylow subgroup \(P \) and \(P = G^\mathfrak{U} \);
4) \(|P/\Phi(P)| > p \) and \(P/\Phi(P) \) is a minimal normal subgroup of \(G/\Phi(G) \);
5) the Frattini subgroup \(\Phi(P) \) of \(P \) is supersolvable embedded in \(G \), i.e., there exists a series
 \[
 1 \subset N_0 \subset N_1 \ldots \subset N_m = \Phi(P)
 \]
such that \(N_i \) is a normal subgroup of \(G \) and \(|N_i/N_{i-1}| \in \mathbb{P} \) for all \(i \);
6) let \(Q \) be a complement to \(P \) in \(G \), then \(Q/Q \cap \Phi(G) \) is a minimal non-abelian group or a cyclic group of prime power order;
7) all maximal subgroups of non-prime index are conjugate in \(G \), and moreover, they are conjugate to \(\Phi(P)Q \).

We now present new properties of w-supersolvable groups.

Lemma 11.
1. If \(G \in \mathcal{M}(\mathfrak{U}) \) and \(|\pi(G)| = 3 \), then \(G \) is w-supersolvable.
2. \(\mathcal{M}(\mathfrak{U}) \setminus w\mathfrak{U} = \{ G \in \mathcal{M}(\mathfrak{U}) \mid |\pi(G)| = 2 \} \).
3. If \(G \in w\mathfrak{U} \), then the derived length of \(G/\Phi(G) \) is at most \(|\pi(G)| \).
Proof. 1. Let $G \in M(U)$ and $|\pi(G)| = 3$. By Lemma 10, $G = [P]([Q]|R)$, where P, Q and R are Sylow subgroups of G. The subgroup P is normal in G, and using Lemma 5, we see that P is P-subnormal in G. The subgroup PQ is normal in G, and by Lemma 5, PQ is P-subnormal in G. Since PQ is supersolvable, it follows by Lemma 2 (2), that Q is P-subnormal in PQ. By Lemma 3 (3), Q is P-subnormal in G. Since $G/P \simeq QR$, so G/P is supersolvable and PR/P is P-subnormal in G/P by Lemma 2 (2). Hence PR is P-subnormal in G by Lemma 3 (2). Since PR is supersolvable, we see that R is P-subnormal in PR by Lemma 2 (2). Hence R is P-subnormal in G by Lemma 3 (3). We conclude that all Sylow subgroups of G are P-subnormal in G. Therefore, G is w-supersolvable.

2. If $G \in M(U) \setminus wU$, then $|\pi(G)| = 2$ by assertion 1 of the lemma. Conversely, let $G \in \{M(U) \mid |\pi(G)| = 2\}$. Suppose that $G \in wU$. Then by Theorem 2.13 (2) [1], the group G is supersolvable, this is a contradiction.

3. By theorem 2.13 (3) [1], $G/F(G)$ has only abelian Sylow subgroups. By theorem VI.14.16 [3], the derived length of $G/F(G)$ is at most $|\pi(G/F(G))|$. Since G has an ordered Sylow tower of supersolvable type, so $|\pi(G/F(G))| \leq |\pi(G)| - 1$. But if G is solvable, then the quotient group $F(G)/\Phi(G)$ is abelian, and we conclude that the derived length of $G/\Phi(G)$ does not exceed $|\pi(G)|$.

2 Finite groups with P-subnormal primary cyclic subgroups

Example 3. There are three non-isomorphic minimal non-supersolvable groups of order 400:

$$[E_{5^2}(<a>), |a| = |b| = 4.$$ Numbers of these groups in the library of SmallGroups [8] are [400,129], [400,130], [400,134]. Sylow 2-subgroups of these groups are non-abelian and have the form: $[Z_4 \times Z_2]Z_2$ and $[Z_4]Z_4$. Let G be one of these groups. All subgroups of G are P-subnormal except the maximal subgroup $<a>$. Therefore, these groups belong to the class \mathcal{X}.

Example 4. The general linear group $GL(2,7)$ contains the symmetric group S_3 which acts irreducibly on the elementary abelian group E_{7^2} of order 49. The semidirect product $[E_{7^2}]S_3$ is a minimal non-supersolvable group, it has subgroups of orders 14 and 21. Every primary cyclic subgroup of the group $[E_{7^2}]S_3$ is P-subnormal. Therefore, these groups belong to the class \mathcal{X}.
Example 5. Non-supersolvable Schmidt groups do not belong to the class \(\mathcal{X} \). We verify this fact. Let \(S = [P]Q \) be a non-supersolvable Schmidt group. Suppose that \(S \in \mathcal{X} \). It follows that \(Q \) is \(\mathbb{P} \)-subnormal in \(S \) and \(Q \) is contained in some subgroup \(M \) of prime index. Therefore, \(M = P_1 \times Q \), where \(P_1 \) is a normal subgroup of \(S \) with the property \(|P/P_1| = p \). By the properties of Schmidt groups, see Lemma 9, we have \(|P/\Phi(P)| > p \) and \(P/\Phi(P) \) is a chief factor of \(S \). We have a contradiction.

Lemma 12. Suppose that all cyclic \(p \)-subgroups of a group \(G \) are \(\mathbb{P} \)-subnormal and let \(N \) be a normal subgroup of \(G \). Then all cyclic subgroups of \(N \) and \(G/N \) are \(\mathbb{P} \)-subnormal.

Proof. Lemma 3 (1) implies that all cyclic \(p \)-subgroups of the normal group \(N \) are \(\mathbb{P} \)-subnormal in \(N \). Let \(A/N \) be a cyclic \(p \)-subgroup of \(G/N \) and assume that \(a \in A \setminus N \). Let \(P \) be a Sylow \(p \)-subgroup of \(\langle a \rangle \). By hypothesis, \(P \) is \(\mathbb{P} \)-subnormal in \(G \). Since \(PN/N = AN/N \), it follows by Lemma 3 (1), that \(A/N \) is \(\mathbb{P} \)-subnormal in \(G/N \).

Lemma 13. 1. If every primary cyclic subgroup of a group \(G \) is \(\mathbb{P} \)-subnormal, then \(G \) possesses an ordered Sylow tower of supersolvable type.

2. \(\mathcal{U} \subset w\mathcal{U} \subset \mathcal{X} \subset \mathcal{D} \).

Proof. 1. Let \(P \) be a Sylow \(p \)-subgroup of \(G \), where \(p \) is the largest prime divisor of \(|G| \). If \(a \in P \), then by hypothesis, the subgroup \(\langle a \rangle \) is \(\mathbb{P} \)-subnormal in \(G \). By Lemma 8, the subgroup \(\langle a \rangle \) is subnormal in \(G \), and by Lemma 6, \(\langle a \rangle \subseteq O_p(G) \). Since \(a \) is an arbitrary element of \(P \), we see that \(P \subseteq O_p(G) \), and hence \(G \) is \(p \)-closed. By Lemma 12, the conditions of the lemma are inherited by all quotient groups of \(G \). Applying induction on \(|G| \), we see that \(G/P \) possesses an ordered Sylow tower of supersolvable type, and thus \(G \) possesses an ordered Sylow tower of supersolvable type.

2. By Lemma 2 (2), we have the inclusion \(\mathcal{U} \subseteq w\mathcal{U} \). It follows from Example 4, that \([E_{72}]_3 \) is non-supersolvable and \([E_{72}]_3 \in w\mathcal{U} \setminus \mathcal{U} \). Therefore, \(\mathcal{U} \subseteq w\mathcal{U} \).

We verify the inclusion \(w\mathcal{U} \subseteq \mathcal{X} \). Suppose that \(G \in w\mathcal{U} \), and let \(A \) be an arbitrary primary cyclic subgroup of \(G \). Then \(A \) is a \(p \)-subgroup for some \(p \in \pi(G) \). By Sylow’s theorem, \(A \) is contained in some Sylow \(p \)-subgroup \(P \) of the group \(G \). Since \(G \in w\mathcal{U} \), it follows that \(P \) is \(\mathbb{P} \)-subnormal in \(G \). By Lemma 2 (2), \(A \) is \(\mathbb{P} \)-subnormal in \(P \), and by Lemma 3 (3), \(A \) is \(\mathbb{P} \)-subnormal in \(G \). Therefore, \(G \in \mathcal{X} \). The group \([E_{52}]_Q \) from Example 3 is a biprimary minimal non-supersolvable group, \(Q \) is non-cyclic. The group \([E_{52}]_Q \in \mathcal{X} \setminus w\mathcal{U} \), therefore, \(w\mathcal{U} \subset \mathcal{X} \).
By the above assertion of the lemma, $\mathfrak{X} \subseteq \mathfrak{D}$. Since there exist non-supersolvable Schmidt groups which have an ordered Sylow tower of supersolvable type (for example, $[E_5^2]Z_3$), and they do not belong to the class \mathfrak{X}, it follows that $[E_5^2]Z_3 \in \mathfrak{D} \setminus \mathfrak{X}$. Therefore, $\mathfrak{X} \subset \mathfrak{D}$.

Lemma 14. Let G be a minimal non-supersolvable group. The group $G \not\in \mathfrak{X}$ if and only if G is a biprimary group whose non-normal Sylow subgroup is cyclic.

Proof. Let $G \in \mathcal{M}(\mathfrak{U}) \setminus \mathfrak{X}$. If $|\pi(G)| = 3$, then by Lemma 11 (1), $G \in w\mathfrak{U}$. Since $w\mathfrak{U} \subset \mathfrak{X}$, we have $G \in \mathfrak{X}$, which contradicts the choice of G. So, if $G \in \mathcal{M}(\mathfrak{U}) \setminus \mathfrak{X}$, then $|\pi(G)| = 2$ and $G = [P]Q$, where P is a Sylow p-subgroup of G, Q is a Sylow q-subgroup of G. Suppose that Q is non-cyclic, and let $a \in Q$. Since $P \langle a \rangle$ is a proper subgroup of G, we deduce that $P \langle a \rangle$ is supersolvable. Lemma 2 (2) implies that $\langle a \rangle$ is a \mathbb{P}-subnormal subgroup of $P \langle a \rangle$. Since $P \langle a \rangle$ is subnormal in G, it follows by Lemma 5, that $P \langle a \rangle$ is a \mathbb{P}-subnormal subgroup of G. Now by Lemma 3 (3), we deduce that $\langle a \rangle$ is \mathbb{P}-subnormal in G. Applying Lemma 3 (4), we can conclude that all cyclic q-subgroups of G are \mathbb{P}-subnormal in G. Lemma 5 implies that all cyclic p-subgroups of G are \mathbb{P}-subnormal in G. Thus $G \in \mathfrak{X}$. We have a contradiction. Therefore, the assumption is false and Q is cyclic.

Conversely, let $G \in \mathcal{M}(\mathfrak{U})$, $|\pi(G)| = 2$ and a non-normal Sylow subgroup Q of G is cyclic. Assume that $G \in \mathfrak{X}$. This implies that Q is \mathbb{P}-subnormal in G, and so both Sylow subgroups of the group G are \mathbb{P}-subnormal. Now, by Theorem 2.13 (2) [1], G is supersolvable, which is a contradiction.

Lemma 15. ([9]) If P is a normal Sylow subgroup of a group G, then $\Phi(P) = \Phi(G) \cap P$.

Theorem. 1. A group $G \in w\mathfrak{U}$ if and only if G possesses an ordered Sylow tower of supersolvable type and every biprimary subgroup of G is supersolvable.

2. The class \mathfrak{X} is a hereditary saturated formation.

3. A group $G \in \mathfrak{X}$ if and only if G possesses an ordered Sylow tower of supersolvable type and every biprimary subgroup of G with cyclic Sylow subgroup is supersolvable.

4. Every minimal non-\mathfrak{X}-group is a biprimary minimal non-supersolvable group whose non-normal Sylow subgroup is cyclic.

Proof. 1. If a group $G \in w\mathfrak{U}$, then G possesses an ordered Sylow tower of supersolvable type by the corollary of Lemma 8, and every biprimary subgroup
of G is ω-supersolvable by Lemma 4 (1). We conclude by Lemma 10 (2), that every biprimary subgroup of G is supersolvable.

Conversely, suppose that a group G possesses an ordered Sylow tower of supersolvable type and every biprimary subgroup of G is supersolvable. Assume that G is not ω-supersolvable. Let us choose among all such groups a group with the smallest possible $|\pi(G)|$. Then $|\pi(G)| \geq 3$ and G contains a Sylow r-subgroup R such that R is not P-subnormal in G. Let $p \in \pi(G)$, where p is the largest prime divisor of $|G|$ and let P be a Sylow p-subgroup of G. Since G possesses an ordered Sylow tower of supersolvable type, we deduce that P is normal in G. By hypothesis, the subgroup PR is supersolvable, and we deduce by Lemma 2 (2) that R is P-subnormal in PR. It is clear that G/P possesses an ordered Sylow tower of supersolvable type and all of its biprimary subgroups are supersolvable. Since $|\pi(G/P)| = |\pi(G)| - 1$, it follows by the inductive hypothesis, that G/P is ω-supersolvable. Therefore, the Sylow r-subgroup PR/P is P-subnormal in G/P. Lemma 3 (2) implies that the subgroup PR is P-subnormal in G, and hence by Lemma 3 (3), the subgroup R is P-subnormal in G. This is a contradiction.

2. By Lemma 13 (1), the class \mathfrak{X} consists of finite groups which have an ordered Sylow tower of supersolvable type, so we can apply Lemma 4. Let $G \in \mathfrak{X}$ and suppose that H is an arbitrary subgroup of G. If A is a cyclic primary subgroup of H, then A is P-subnormal in G. By Lemma 4 (1), the subgroup A is P-subnormal in H, and hence \mathfrak{X} is a hereditary class.

By Lemma 12, the class \mathfrak{X} is closed under homomorphic image. By induction on the order of G, we verify that the class \mathfrak{X} is closed under subdirect products. Let G be a group of least order with the following properties:

$$G/N_i \in \mathfrak{X}, \ i = 1, 2, \ N_1 \cap N_2 = 1, \ G \not\in \mathfrak{X}.$$

In this case, G has a primary cyclic subgroup A which is not P-subnormal in G. Since $G/N_i \in \mathfrak{X}, \ i = 1, 2$, it follows that AN_i/N_i is P-subnormal in G/N_i, and thus by Lemma 4 (2), $AN_1 \cap AN_2$ is P-subnormal in G. If $K = AN_1N_2$ is a proper subgroup of G, then $K/N_i \in \mathfrak{X}$ because \mathfrak{X} is a hereditary class. By the induction hypothesis, $K \in \mathfrak{X}$. It follows that A is P-subnormal in $AN_1 \cap AN_2$, and by Lemma 3 (3), A is P-subnormal in G, which is a contradiction. Therefore, $G = AN_1N_2$. Assume that $G = AN_1$. Then

$$N_2 \cong N_1N_2/N_1 \subseteq G/N_1 \cong A/A \cap N_1.$$

Thus N_2 is cyclic and AN_2 is supersolvable by Theorem VI.10.1 [3]. It follows that A is P-subnormal in AN_2, AN_2 is P-subnormal in G, and by Lemma 3 (3),
A is \mathbb{P}-subnormal in G, which is a contradiction. Thus our assumption is false and $AN_1 \neq G \neq AN_2$.

The subgroup $D = N_1 \cap AN_2$ is normal in $AN_2 = H \neq G$. Hence the group H contains two normal subgroups D and N_2 such that

$$D \cap N_2 \subseteq N_1 \cap N_2 = 1,$$

$$H/N_2 \subset G/N_2 \in \mathcal{X}, \ H/N_2 \in \mathcal{X},$$

$$G/N_1 = (AN_2)N_1/N_1 \simeq AN_2/N_1 \cap AN_2 = H/D \in \mathcal{X}.$$

By the inductive assumption, $H \in \mathcal{X}$. It follows that A is \mathbb{P}-subnormal in H, H is \mathbb{P}-subnormal in G, and hence A is \mathbb{P}-subnormal in G. This contradicts the fact that G has a primary cyclic subgroup which is not \mathbb{P}-subnormal in G. Thus \mathcal{X} is formation.

We prove that \mathcal{X} is a saturated formation by induction on $|G|$. Suppose that $\Phi(G) \neq 1$ and $G/\Phi(G) \in \mathcal{X}$. Since by Lemma 13, the quotient group $G/\Phi(G)$ possesses an ordered Sylow tower of supersolvable type, it follows that G possesses an ordered Sylow tower of supersolvable type.

Let N be a minimal normal subgroup of G. It is clear that

$$\Phi(G)N/N \subseteq \Phi(G)/N, \ G/\Phi(G)N \simeq (G/\Phi(G))/(\Phi(G)N/\Phi(G)) \in \mathcal{X},$$

$$(G/N)/(\Phi(G)/N) \simeq ((G/N)/(\Phi(G)N/N))/(\Phi(G)/N/\Phi(G)) \in \mathcal{X},$$

because

$$(G/N)/(\Phi(G)/N) \simeq G/\Phi(G)N \in \mathcal{X}.$$

By the inductive hypothesis, we have $G/N \in \mathcal{X}$. Since \mathcal{X} is a formation, this implies that N is a unique minimal normal subgroup of G, $N \subseteq \Phi(G)$, N is a p-subgroup for the largest $p \in \pi(G)$, and $O_{p'}(G) = 1$. Let P be a Sylow p-subgroup of G, P is normal in G.

Suppose that G has a primary cyclic subgroup A which is not \mathbb{P}-subnormal in G. Since $G/N \in \mathcal{X}$, it follows that the quotient group AN/N is \mathbb{P}-subnormal in G/N, and by Lemma 3 (2), AN is \mathbb{P}-subnormal in G. By Lemma 3 (3), we see that A is not \mathbb{P}-subnormal in AN, and Lemma 5 implies that the orders of A and N are coprime. Therefore, AP/N is a biprimary subgroup in which the Sylow subgroups AN/N and P/N are both \mathbb{P}-subnormal. Theorem 2.13 (2) \cite{1} implies that AP/N is supersolvable. By Lemma 15, $\Phi(P) = P \cap \Phi(G)$, thus $N \subseteq \Phi(P) \subseteq \Phi(AP)$, and by Theorem VI.8.6 \cite{3}, we deduce that AN is supersolvable. Lemma 2 (2) implies that A is \mathbb{P}-subnormal in AN, which is a contradiction.
3. Let $G \in \mathfrak{X}$ and B is a biprimary group with cyclic Sylow subgroup R. By Lemma 16 (1), G possesses an ordered Sylow tower of supersolvable type. If R is normal in B, then B/R is primary, it follows that B is supersolvable. If R is not normal in B, then $B = PR$, where P is a normal Sylow subgroup of B. By hypothesis, we conclude that R is \mathbb{P}-subnormal in G, and by Lemma 4 (1), R is \mathbb{P}-subnormal in B. Hence, by Lemma 10 (2), B is supersolvable.

Conversely, suppose that G possesses an ordered Sylow tower of supersolvable type and every biprimary subgroup of G with cyclic Sylow subgroup is supersolvable. Assume that $G \notin \mathfrak{X}$. Let us choose among all such groups a group G with the smallest possible order. Then G contains a cyclic non-\mathbb{P}-subnormal r-subgroup R. Since G possesses an ordered Sylow tower of supersolvable type, we deduce that a Sylow p-subgroup P for the largest prime $p \in \pi(G)$ is normal. If $p = r$, then $R \subseteq P$, it follows that R is \mathbb{P}-subnormal in G, which is a contradiction. Thus $p \neq r$ and PR is biprimary with cyclic Sylow subgroup R. By hypothesis, PR is supersolvable, and by Lemma 2 (2), R is \mathbb{P}-subnormal in PR. The quotient group G/P possesses an ordered Sylow tower of supersolvable type and every its biprimary subgroup with cyclic Sylow subgroup is supersolvable. Thus $G/P \in \mathfrak{X}$. Since PR/P is a cyclic r-subgroup, we see that PR/P is \mathbb{P}-subnormal in G/P. It follows by Lemma 3 (2) that PR is \mathbb{P}-subnormal in G. Now by Lemma 3 (3), we obtain that R is \mathbb{P}-subnormal in G. This is a contradiction. The assertion is proved.

4. Let $G \in \mathcal{M}(\mathfrak{X})$, and let q be the smallest prime divisor of $|G|$. Consider an arbitrary proper subgroup H of G. Since $H \in \mathfrak{X}$, so by Lemma 13 (1), the subgroup H has an ordered Sylow tower of supersolvable type, in particular, H is q-nilpotent. By Theorem IV.5.4 [3], the group G is either q-nilpotent or a q-closed Schmidt group. If G is a q-closed Schmidt group, then G is a biprimary minimal non-supersolvable group whose non-normal Sylow subgroup is cyclic. In this case, the statement is true.

Suppose that G is a q-nilpotent group. Then $G = [G_{q'}]G_q$. Since $G_{q'} \in \mathfrak{X}$, it follows by Lemma 13 (1), that $G_{q'}$ possesses an ordered Sylow tower of supersolvable type, and thus G possesses an ordered Sylow tower of supersolvable type. Let N be a minimal normal subgroup of G.

First, assume that $\Phi(G) = 1$. In this case, $G = [N]M$, where M is some maximal subgroup of G. Since $G \notin \mathfrak{X}$, then G contains a primary cyclic non-\mathbb{P}-subnormal subgroup. Let A be a subgroup of least order among these subgroups. Since

$$AN/N \subseteq G/N \simeq M \in \mathfrak{X}, \ AN/N \simeq A/A \cap N,$$
it follows that AN/N is \mathbb{P}-subnormal in G/N, and by Lemma 3 (2), the subgroup AN is \mathbb{P}-subnormal in G. If $AN \neq G$, then $AN \in \mathfrak{X}$, it follows that A is \mathbb{P}-subnormal in AN, and by Lemma 3 (3), the subgroup A is \mathbb{P}-subnormal in G, which is a contradiction. Therefore $AN = G$, in particular, G is biprimary. Let H be an arbitrary maximal subgroup of G. Then either $A^x \subseteq H$, $x \in G$ or $N \subseteq H$. If $A^x \subseteq H$, then $A^x = H$ because N is a minimal normal subgroup of $AN = G$ and H is cyclic. If $N \subseteq H$, then by the Dedekind identity, $H = (A \cap H)N$. By the choice of A we can conclude that $A \cap H$ is \mathbb{P}-subnormal in G. Now by Theorem 2.13 (2) \[\square\], H is supersolvable. So in the case of $\Phi(G) = 1$, we proved that G is a biprimary minimal non-supersolvable group.

Let $\Phi(G) \neq 1$. According to statement 2 of the theorem, $G/\Phi(G) \not\in \mathfrak{X}$, and so by the inductive hypothesis, $G/\Phi(G)$ is a biprimary minimal non-supersolvable group. It follows from the structure of such groups that $G/\Phi(G)$ possesses an ordered Sylow tower. Since $\pi(G) = \pi(G/\Phi(G))$, we deduce that G is a biprimary group which possesses an ordered Sylow tower: $G = [P]Q$, where P and Q are Sylow subgroups of G. Since $G \not\in \mathfrak{X}$, then there exists a primary cyclic non-\mathbb{P}-subnormal subgroup. Let A be a subgroup of least order among these subgroups. If $PA \neq G$, then $PA \in \mathfrak{X}$, and thus A is \mathbb{P}-subnormal in PA. Since PA is \mathbb{P}-subnormal in G, it follows by Lemma 3 (3) that A is \mathbb{P}-subnormal in G, this is a contradiction. Therefore, $PA = G$. Let H be an arbitrary maximal subgroup of G. Then either $P \subseteq H$ or $A^x \subseteq H$, $x \in G$. If $P \subseteq H$, then $H = [P](A \cap H)$ by the Dedekind identity. By the choice of A, we can conclude that $A \cap H$ is \mathbb{P}-subnormal in G. Now by Theorem 2.13 (2) \[\square\], the subgroup H is supersolvable. If $A^x \subseteq H$, then $H = [P \cap H]A^x$. Since $H \in \mathfrak{X}$, we deduce that A^x is \mathbb{P}-subnormal in H, and thus H is supersolvable by Theorem 2.13 (2) \[\square\]. Hence, in the case of $\Phi(G) \neq 1$, we proved that G is a biprimary minimal non-supersolvable group.

Therefore, in any case every minimal non-\mathfrak{X}-group is a biprimary minimal non-supersolvable group. We conclude by Lemma 14, that every non-normal Sylow subgroup of G is cyclic.

The theorem is proved.

References

1. Vasilyev A. F., Vasilyeva T. I., Tyutyanov V. N. On the finite groups of
supersoluble type // Siberian Mathem. J. 2010. Vol. 51, No. 6. P. 1004–1012.

2. Vasilyev A. F., Vasilyeva T. I., Tyutyanov V. N. On finite groups similar to supersoluble groups // Problems of physics, mathematics and technics. 2010. No. 2(3). P. 21–27. (In Russian)

3. Huppert B. Endliche Gruppen I. Berlin–Heidelberg–New York: Springer. 1967.

4. Isaacs I. M. Finite group theory, Providence, Rhode Island, 2008.

5. Monakhov V. S. The Schmidt subgroups, its existence, and some of their applications, Tr. Ukraini. Mat. Congr. 2001, Kiev, 2002, Section 1, pp. 81–90. (In Russian)

6. Redei L. Die endlichen einstufig nicht-nilpotenten Gruppen // Publ. Math. Debrecen. 1956. Bd. 4. S. 303–324.

7. Doerk K. Minimal nicht überauflösbare, endliche Gruppen // Mathematische Zeitschrift. 1966. Bd. 91. S. 198–205.

8. GAP (2009) Groups, Algorithms, and Programming, Version 4.4.12. www.gap-system.org.

9. Baer R. Supersoluble immersion // Can. J. Math., 1959, Vol. 11, p. 353–369.

V. N. KNIAHINA
Gomel Engineering Institute,
Rechitskoe Shosse 35a,
Gomel 246035, BELARUS
E-mail: knyagina@inbox.ru

V. S. MONAKHOV
Department of mathematics
Gomel F. Scorina State University,
Sovetskaya str. 104,
Gomel 246019, BELARUS
E-mail: Victor.Monakhov@gmail.com