Article

Association between Nighttime Work and HbA1c Levels in South Korea

Yeon-Suk Lee 1, Jae Hong Joo 2,3,*† and Eun-Cheol Park 3,4,*†

1 Graduate School of Public Health, Yonsei University, Seoul 03722, Korea
2 Department of Public Health, Graduate School, Yonsei University, Seoul 03722, Korea
3 Institute of Health Services Research, Yonsei University, Seoul 03722, Korea
4 Department of Preventive Medicine, Yonsei University College of Medicine, Seoul 03722, Korea
* Correspondence: jhj3040@yuhs.ac (J.H.J.); ecpark@yuhs.ac (E.-C.P.)
† These authors contributed equally to this work.

Abstract: Background: As the world has become a 24 h society, people’s demands have generated various work schedules, leading to an increase in workers’ health problems. The study aimed to investigate the association between nighttime work and HbA1c levels among South Korean adults over the age of 30. Methods: Participants were selected from the 2016–2019 Korea National Health and Nutrition Survey; those diagnosed with diabetes were excluded. The dependent variable was the HbA1c level reported in the KNHANES health examination report. The main independent variable was the participant’s work schedule. Work schedules were classified into three categories based on the participant’s report: (1) day; (2) night and overnight, and (3) other. Generalized multiple linear regression was used, and the significance level was defined as \(p < 0.05 \). Results: The participants comprised 4773 men and 4818 women. Those engaged in the “day” schedule served as the reference group. Among the male participants, the “night and overnight” group had significantly larger HbA1c (%) levels than the “day” group \((\beta = 0.061, p = 0.0085) \). Among these nighttime male workers, HbA1c (%) levels were particularly higher in the people who were physically inactive \((\beta = 0.094, p = 0.0031) \), slept less than 7 h \((\beta = 0.108, p = 0.0009) \), and skipped meals \((\beta = 0.064, p = 0.0401) \). Conclusion: Our results revealed an association of nighttime work with increased HbA1c levels in male participants. High-risk groups for HbA1c levels require careful observation of physical activity, sleeping time, and eating habits.

Keywords: shift work; work schedule; nighttime; HbA1c

1. Introduction

Shift work has become an essential part of the modern society with the emergence of occupational conditions requiring 24 h labor in the fields of healthcare, manufacturing, wholesale and retail businesses [1]. The term “shift work” often refers to the employment practice designed to provide service across the entire day including nighttime and early morning. Recently, there has been a growing number of publications suggesting the association between shift work and negative health outcomes. In particular, work hours outside of the conventional daytime is likely to cause disruption of circadian rhythms, which could potentially lead to the development of chronic diseases, including metabolic disorders, cardiovascular disease, and cancer [2–5].

Diabetes is one of the most prevalent metabolic disorders worldwide. According to the International Diabetes Federation (IDF), 463 million people (9.3%) were suffering from it in 2019 [6,7]. Given the increased life expectancy due to the advances in medicine, population aged 65 years and older will account for 20% of the global population within the next few years [6]. Hence, this implies that the growing population of elderly people corresponds to the epidemiologic concept of increased prevalence of diabetes. The current trend estimates that a sharp increase in the prevalence of diabetes will result in as many as 700 million
patients by 2045 [7]. In South Korea, diabetes is a substantial contributor to public health concerns, affecting nearly 10% of the national population, and has been reported as one of the leading causes of death among both sexes [6–9]. Thus, it is anticipated that diabetes will increase its burden on the healthcare system in the future.

Potential health-related risk factors associated with shift work, such as irregular living habits, work stress, and sleep complaints, can act as part of a diabetes outbreak [10–12]. It has been suggested that shift workers are more likely to experience the destruction of their biorhythms around the clock [13–16]. Of the various work schedules, those who conduct labor during the nighttime have reported lower scores in perceived health. Hemoglobin A1c (HbA1c) is a central biomarker for the presence and severity of hyperglycemia that is used as a predictive biomarker for diabetes [17]. Thus, this study aimed to investigate the potential effect of nighttime (i.e., night and overnight) work on HbA1c in comparison to the conventional daytime work.

2. Methods

2.1. Study Participants

We collected data from the 2016–2019 Korea National Health and Nutrition Examination Survey (KNHANES). The KNHANES is a self-reported nationally representative survey of South Koreans of all ages designed to gather annual national data on sociodemographic, economic, and health-related conditions and behaviors. Since 2007, the collected data have been subjected to an annual review and approval by the KCDCP Research Ethics Review Committee. The KNHANES comprises secondary data and is publicly available to researchers [18].

There were 32,379 participants in the 2016–2019 KNHANES. A total of 2435 people who had already been diagnosed with diabetes at the time of the survey were excluded to ensure the reliability of the results. Additionally, 9541 participants under the age of 30 were excluded because the majority of them did not undergo blood testing as part of the survey. We also excluded 10,812 participants with no response/other missing values from each variable’s survey items. Finally, a total of 9591 participants (4773 men and 4818 women) were selected for analysis.

2.2. Variables

HbA1c level, the dependent variable in this study, was measured in the blood samples collected after 8 h of fasting. HbA1c was considered as a continuous variable. Blood samples are among the key components of health examination reported in the KNHANES which was conducted at mobile examination centers that travel to the survey location [18].

The main independent variable was the work schedule. Work schedules were classified into three categories based on the survey report as follows: (1) day; (2) night and overnight; and (3) other (rotational, flexible, split, or irregular working hours/schedules).

Demographic, socioeconomic, health, and disease-related factors were also assessed to account for the confounding. The demographic factors included age (30–39, 40–49, 50–59, 60–69, and ≥70 years). The socioeconomic factors included educational level (≤elementary, middle, high, ≥college), occupational status (white, pink, blue), household income (low, middle, high), and household composition (one person, one-generation household, ≥two-generation household). The health-related factors included physical activity (active, inactive), smoking status (current smoker, former smoker, non-smoker), drinking status (2–4 times/week, 2–4 times/month, never or occasionally), sleeping hours (<7 h, ≥7 h), eating habits (eating three meals regularly, skipping meals), total energy intake (proteins, fats, carbohydrates; quintile 1, quintile 2, quintile 3, quintile 4, quintile 5), and body mass index (BMI)-defined obesity status (obese (≥25), normal (18.5–24.9), underweight (<18.5)). The disease-related factors included hypertension (hypertension (SBP ≥ 140 mm Hg), pre-hypertension (120 ≤ SBP ≤ 139 mm Hg), normal (SBP < 120 mm Hg)) and fasting glucose level (impaired fasting glucose (100–125 mg/dL), normal (<100 mg/dL)).
2.3. Statistical Analysis

The mean HbA1c level was calculated for each of the categorized variables included in the study. Analysis of variance (ANOVA) was performed to compare the mean HbA1c levels within each categorized variable to assess for significant differences. A generalized linear regression model (GLM) adjusted for confounding variables was used to assess the HbA1c level according to the reported work schedule. Those who reported the “day” schedule served as the reference group. The stratified, clustering, and weight variables developed by the KNHANES were applied to all the analyses to improve the representativeness of the sample and account for the limited proportion of participants retained in the final analysis. All the statistical analyses were performed using SAS version 9.4 (SAS Inc., Cary, NC, USA).

3. Results

Table 1 summarizes the general characteristics of the study population (male: 4773; female: 4818). Among the male participants, 4103 (86.0%) reported “day”, 302 (6.3%) reported “night and overnight”, and 368 (7.7%) reported “other” as their ordinary work schedule. Of the male workers, those who reported “night and overnight” had the highest mean HbA1c level (5.64) with the lowest standard deviation. The p-value for ANOVA within the work schedule was 0.0071.

Table 1. General characteristics of the study subjects and analysis of variance for the HbA1c levels.

Variables	HbA1c (%)								
	Total Male		Female						
	n %	n %	Mean ± SD	p-Value	n %	Mean ± SD	p-Value		
Total schedule	9591 100.0	4773 49.8	5.60 ± 0.39	0.0071	4818 50.2	5.55 ± 0.34	0.2566		
Day	8180 85.3	4103 86.0	5.59 ± 0.43	0.4077	4077 84.6	5.55 ± 0.42	0.2566		
Night and overnight	883 9.2	302 6.3	5.64 ± 0.46	0.5811	581 12.1	5.56 ± 0.42	0.2566		
Other	528 5.5	368 7.7	5.64 ± 0.49	0.1600	160 3.3	5.60 ± 0.44	0.2566		
Age (years)		<0.0001			<0.0001				
30–39	2107 22.0	1135 23.8	5.43 ± 0.31	0.9727	1032 21.4	5.44 ± 0.32	0.9727		
40–49	2623 27.3	1253 26.3	5.53 ± 0.42	1.3370	1370 28.4	5.54 ± 0.43	1.3370		
50–59	2441 25.5	1138 23.8	5.65 ± 0.41	1.3033	1303 27.0	5.64 ± 0.42	1.3033		
60–69	1615 16.8	821 17.2	5.73 ± 0.47	0.7941	794 16.5	5.78 ± 0.45	0.7941		
≥70	805 8.4	426 8.9	5.83 ± 0.58	0.3791	379 7.9	5.90 ± 0.51	0.3791		
Educational level		0.8381			0.8638				
≤Elementary	1404 14.6	515 10.8	5.74 ± 0.49	0.8891	889 18.5	5.79 ± 0.50	0.8891		
Middle	919 9.6	446 9.3	5.72 ± 0.48	0.4731	473 9.8	5.68 ± 0.41	0.4731		
High	2982 31.1	1418 29.7	5.62 ± 0.46	1.1564	1564 32.5	5.54 ± 0.40	1.1564		
≥College	4286 44.7	2394 50.2	5.53 ± 0.39	1.1892	393 21.6	5.43 ± 0.33	1.1892		
Occupational status		0.0719			0.0607				
White	3936 41.0	1952 40.9	5.52 ± 0.39	1.9841	1421 29.5	5.43 ± 0.35	1.9841		
Pink	1886 19.7	565 11.8	5.61 ± 0.44	1.3211	1274 27.3	5.60 ± 0.45	1.3211		
Blue	3769 39.3	2256 47.3	5.66 ± 0.47	1.1511	1513 31.4	5.68 ± 0.44	1.1511		
Household income		0.451			0.3665				
Low	1022 10.7	386 8.1	5.72 ± 0.58	0.6361	636 13.2	5.74 ± 0.50	0.6361		
Middle	5143 53.6	2621 54.9	5.60 ± 0.42	2.2522	2252 52.3	5.56 ± 0.42	2.2522		
High	3426 35.7	1766 37.0	5.56 ± 0.43	1.6600	1660 34.5	5.48 ± 0.37	1.6600		
Household composition		0.5193			0.3746				
One-person household	936 9.8	412 8.6	5.56 ± 0.47	0.5241	524 10.9	5.70 ± 0.53	0.5241		
One-generation household	2280 23.8	1238 25.9	5.68 ± 0.49	1.0421	1042 21.6	5.66 ± 0.44	1.0421		
≥Two-generation household	6375 66.5	3123 65.4	5.57 ± 0.41	3.2522	3252 67.5	5.50 ± 0.38	3.2522		
Physical activity		0.7231			0.9600				
Active	4086 42.6	2161 45.3	5.57 ± 0.43	1.9251	1925 40.0	5.54 ± 0.41	1.9251		
Inactive	5505 57.4	2612 54.7	5.62 ± 0.45	2.8901	2383 60.0	5.56 ± 0.43	2.8901		
Smoking status		<0.0001			0.4196				
Current smoker	1864 19.4	1648 34.5	5.61 ± 0.45	0.2160	216 4.5	5.47 ± 0.37	0.2160		
Former smoker	2381 24.8	2100 44.0	5.62 ± 0.45	0.2810	281 5.8	5.43 ± 0.45	0.2810		
Non-smoker	5346 55.7	1025 21.5	5.54 ± 0.40	4.3211	389 8.7	5.57 ± 0.42	4.3211		
Table 1. Cont.

Variables	Total	Male	Female							
	n	%	n	%	Mean ± SD	p-Value	n	%	Mean ± SD	p-Value
Drinking status										
2–4 times/week	2471	25.8	1824	38.2	5.57 ± 0.42	<0.0001	647	13.4	5.41 ± 0.38	<0.0001
2–4 times/month	2289	23.9	1264	26.5	5.58 ± 0.45	0.0426	1025	21.3	5.47 ± 0.40	0.2398
Never or occasionally	4831	50.4	1685	35.3	5.64 ± 0.44	0.0975	3146	65.3	5.61 ± 0.43	<0.0001
Hours of sleep										
<7 h	3779	39.4	1932	40.5	5.62 ± 0.46		1847	38.3	5.59 ± 0.41	
≥7 h	5812	60.6	2841	59.5	5.58 ± 0.42	0.0001	2971	61.7	5.53 ± 0.43	
Eating habits										
Eating three meals regularly	5438	56.7	2773	58.1	5.64 ± 0.46	0.0426	2665	55.3	5.63 ± 0.43	0.0001
Skip meal(s)	4153	43.3	2000	41.9	5.63 ± 0.41	0.0975	2153	44.7	5.56 ± 0.39	
Total energy intake (kcal)										
Quintile 1	1919	20.0	956	20.0	5.64 ± 0.48	0.4732	963	20.0	5.56 ± 0.46	0.8141
Quintile 2	1918	20.0	954	20.0	5.62 ± 0.49	0.0001	964	20.0	5.57 ± 0.40	<0.0001
Quintile 3	1919	20.0	955	20.0	5.58 ± 0.41	0.017	964	20.0	5.56 ± 0.43	<0.0001
Quintile 4	1918	20.0	954	20.0	5.60 ± 0.44	0.0001	964	20.0	5.55 ± 0.43	<0.0001
Quintile 5	1917	20.0	954	20.0	5.54 ± 0.35	0.0001	963	20.0	5.53 ± 0.39	<0.0001
BMI (kg/m²)										
Obese (≥25)	3340	34.8	2015	42.2	5.66 ± 0.44	0.017	1325	27.5	5.71 ± 0.46	<0.0001
Normal (18.5–24.9)	5964	62.2	2699	55.9	5.55 ± 0.43	0.0001	3295	68.4	5.51 ± 0.39	<0.0001
Underweight (<18.5)	287	3.0	89	1.9	5.51 ± 0.35	0.0001	198	4.1	5.53 ± 0.34	<0.0001
Hypertension (mm Hg)										
Hypertension (≥140)	2758	28.8	1582	33.1	5.71 ± 0.47	0.0017	1176	24.4	5.78 ± 0.48	<0.0001
Prehypertension (120–139)	2605	27.2	1520	31.8	5.58 ± 0.43	0.0001	1085	22.5	5.59 ± 0.43	<0.0001
Normal (<120)	4228	44.1	1671	35.0	5.51 ± 0.39	0.0001	2557	53.1	5.44 ± 0.36	<0.0001
Fasting glucose level										
Impaired fasting glucose	3206	33.4	1930	40.4	5.79 ± 0.49	0.0001	1276	26.5	5.85 ± 0.48	<0.0001
Normal (<100)	6385	66.6	2843	59.6	5.47 ± 0.35	0.0001	3542	73.5	5.45 ± 0.34	<0.0001
Year										
2016	2258	23.5	1144	24.0	5.57 ± 0.45	0.0001	1114	23.1	5.50 ± 0.40	<0.0001
2017	2382	24.8	1181	24.7	5.55 ± 0.40	0.0401	1201	24.9	5.53 ± 0.41	<0.0001
2018	2492	26.0	1220	25.6	5.58 ± 0.41	0.0001	1272	26.4	5.55 ± 0.43	<0.0001
2019	2459	25.6	1228	25.7	5.68 ± 0.49	0.0001	1231	25.6	5.64 ± 0.43	<0.0001

\[a \text{ Total energy intake} = (\text{carbohydrates (g} \times 4 \text{kcal/g}) + (\text{proteins (g} \times 4 \text{kcal/g}) + (\text{fats (g} \times 9 \text{kcal/g}). \]

\[b \text{ Obesity status defined by body mass index (BMI) based on the 2014 Clinical Practice Guidelines for Overweight and Obesity in Korea.}\]

Among the 4818 female participants, 4077 (84.6%) reported “day”, 581 (12.1%) reported “night and overnight”, and 160 (3.3%) reported “other” as their ordinary work schedule. Of the male workers, those who reported “night and overnight” had the highest mean HbA1c level (5.64) with the lowest standard deviation. The \(p \)-value for ANOVA was not statistically significant.

Table 2 summarizes the results of the generalized multiple regression analysis for HbA1c levels according to the types of work schedule. The HbA1c levels are represented as adjusted beta (\(\beta \)) coefficient in relation to “day” work schedules. Among the male workers, the “night and overnight” workers had the highest HbA1c levels (\(\beta = 0.061 \)) and that was statistically significant (\(p = 0.0085 \)). On the other hand, there was no significant difference among the female workers according to their reported work schedules.

Table 3 summarizes the subgroup results of generalized multiple linear regression for HbA1c levels stratified by physical activity, hours of sleep, and daily eating. Among the 302 male “night and overnight” workers, the average HbA1c level significantly increased to 0.108 (\(p = 0.009 \)) for those who reported having less than 7 h of sleep daily, to 0.064 (\(p = 0.0401 \)) for those who reported skipping meals, and to 0.108 (\(p = 0.0579 \)) for those who took the least amount of energy. Those who reported being physically inactive also showed an increased level of HbA1c (\(\beta = 0.094; p = 0.0031 \)).
Table 2. Generalized multiple linear regression for HbA1c levels according to work schedule.

Variable	Male	Female				
	β	SE	p-Value	β	SE	p-Value
Work schedule						
Day	Ref.			Ref.		
Night and overnight	0.061	0.023	0.0085	0.019	0.017	0.2687
Other	0.008	0.025	0.7357	0.049	0.032	0.1273
Age						
30–39	Ref.			Ref.		
40–49	0.056	0.015	0.0002	0.062	0.013	<0.0001
50–59	0.135	0.017	<0.0001	0.200	0.017	<0.0001
60–69	0.207	0.022	<0.0001	0.272	0.024	<0.0001
>70	0.296	0.039	<0.0001	0.326	0.038	<0.0001
Educational level						
≤Elementary	−0.017	0.028	0.5471	0.009	0.026	0.7357
Middle	−0.020	0.026	0.4381	0.014	0.024	0.5605
High	−0.012	0.015	0.4321	−0.003	0.013	0.8335
≥College	Ref.			Ref.		
Occupational status						
White	Ref.			Ref.		
Pink	0.040	0.020	0.0460	0.014	0.014	0.3233
Blue	0.036	0.015	0.0166	−0.010	0.017	0.5349
Household income						
Low	0.005	0.031	0.8590	−0.001	0.022	0.9491
Middle	0.013	0.013	0.3162	0.013	0.011	0.2480
High	Ref.			Ref.		
Household composition						
One-person household	−0.040	0.021	0.0522	0.032	0.021	0.1370
One-generation household	−0.002	0.016	0.9219	0.010	0.015	0.4869
≥Two-generation household	Ref.			Ref.		
Physical activity						
Active	Ref.			Ref.		
Inactive	0.006	0.012	0.5834	−0.002	0.011	0.8164
Smoking status						
Current smoker	0.080	0.016	<0.0001	−0.010	0.023	0.6642
Former smoker	0.015	0.015	0.3137	−0.027	0.023	0.2503
Non-smoker	Ref.			Ref.		
Drinking status						
2–4 times/week	−0.113	0.014	<0.0001	−0.118	0.016	<0.0001
2–4 times/month	−0.046	0.015	0.0020	−0.035	0.013	0.0077
Never or occasionally	Ref.			Ref.		
Hours of sleep						
<7 h	0.021	0.012	0.0727	0.023	0.011	0.0393
≥7 h	Ref.			Ref.		
Eating habits						
Eating three meals regularly	−0.020	0.013	0.1198	−0.045	0.011	<0.0001
Skipping meals	Ref.			Ref.		
Total energy intake (kcal)						
Quintile 1	0.004	0.018	0.8165	−0.014	0.018	0.4402
Quintile 2	0.022	0.019	0.2519	0.000	0.016	0.9795
Quintile 3	Ref.			Ref.		
Quintile 4	0.018	0.018	0.3109	−0.007	0.016	0.6509
Quintile 5	0.000	0.017	0.9834	0.007	0.016	0.6596
BMI (kg/m²)						
Obese (≥25)	0.071	0.012	<0.0001	0.080	0.013	<0.0001
Normal (18.5~24.9)	Ref.			Ref.		
Underweight (<18.5)	−0.031	0.031	0.3094	−0.067	0.025	0.0079
Table 2. Cont.

Variable	HbA1c (%)	Male		Female		
	β	SE	p-Value	β	SE	p-Value
Hypertension (mm Hg)						
Hypertension (≥140)	0.064	0.016	<0.0001	0.079	0.018	<0.0001
Prehypertension (120–139)	0.022	0.014	0.1189	0.030	0.014	0.0272
Normal (<120)	Ref.			Ref.		
Fasting glucose level (mg/dL)						
Impaired fasting glucose (100–125)	0.267	0.013	<0.0001	0.297	0.015	<0.0001
Normal (<100)	Ref.			Ref.		
Year						
2016						
2017	−0.021	0.016	0.1844	0.033	0.015	0.0321
2018	−0.003	0.017	0.8475	0.048	0.015	0.0018
2019	0.095	0.018	<0.0001	0.120	0.015	<0.0001

BMI—body mass index. a Total energy intake = (carbohydrates (g) × 4 kcal/g) + (proteins (g) × 4 kcal/g) + (fats (g) × 9 kcal/g). b Obesity status defined by BMI based on the 2014 Clinical Practice Guidelines for Overweight and Obesity in Korea.

Table 3. Generalized multiple linear regression for HbA1c levels stratified by physical activity, hours of sleep, and daily eating.

Variable	HbA1c (%)	Male (n = 4773)		Female (n = 4818)						
	B	β	SE	p-Value	β	SE	p-Value	β	SE	p-Value
Physical activity										
Active	Ref.	0.023	0.034	0.4995	0.014	0.035	0.6842	−0.011	0.027	0.6791
Inactive	Ref.	0.094	0.032	0.0031	−0.002	0.037	0.9605	0.037	0.022	0.0899
Hours of sleep										
<7 h	Ref.	0.108	0.033	0.0009	−0.049	0.038	0.2011	0.024	0.026	0.3685
≥7 h	Ref.	0.034	0.032	0.2894	0.065	0.032	0.0043	0.014	0.022	0.5105
Eating habits										
Eating three meals regularly	Ref.	0.053	0.033	0.1095	−0.008	0.035	0.8227	−0.006	0.025	0.8017
Skipping meals	Ref.	0.064	0.031	0.0401	0.028	0.036	0.4494	0.035	0.022	0.1206
Total energy intake (kcal) a										
Quintile 1	Ref.	0.108	0.057	0.0579	0.067	0.077	0.3870	0.025	0.038	0.5129
Quintile 2	Ref.	0.059	0.056	0.2922	−0.042	0.045	0.3359	0.008	0.038	0.8297
Quintile 3	Ref.	0.057	0.041	0.1679	−0.075	0.052	0.1555	0.010	0.044	0.8155
Quintile 4	Ref.	−0.021	0.050	0.6658	0.021	0.057	0.7097	0.021	0.036	0.3720
Quintile 5	Ref.	0.045	0.046	0.3293	0.070	0.053	0.1913	0.066	0.030	0.0298

a Total energy intake = (carbohydrates (g) × 4 kcal/g) + (proteins (g) × 4 kcal/g) + (fats (g) × 9 kcal/g).

Figure 1 demonstrates the results of generalized multiple linear regression for HbA1c levels according to the specific work schedules. In the male participants, HbA1c levels increased the greatest among those who worked overnight (β = 0.092; p = 0.0247), followed by those who worked during the night (β = 0.500; p = 0.0441).
The findings of our study add empirical evidence to support the existing phenomenon that workers who work during the nighttime have increased HbA1c levels [23–28]. In particular, the study showed that HbA1c levels increased in the nighttime workers who were physically inactive, those who slept less than 7 h, and those who had the least amount of energy intake.

Metabolism operates on circadian rhythms around the clock. Work schedules outside the standard daytime period may impair physiological activities and are likely to result in aberrant glucose homeostasis [22,23]. The findings of our study add empirical evidence to support the existing phenomenon that workers who work during the nighttime have increased HbA1c levels [23–28]. In particular, the study showed that HbA1c levels increased in the nighttime workers who were physically inactive, those who slept less than 7 h, and those who had the least amount of energy intake.

Exercise promotes glucose metabolism, which leads to elevated insulin sensitivity and lower blood sugar. Furthermore, lack of exercise can increase the risk of diabetes. Prior research publications showed that people with impaired fasting glucose disorder showed a statistically significant difference in the relative risk for non-exercising groups (1.375 for men and 1.124 for women), confirming the benefits of exercise [29]. Studies of diabetic and prediabetic men also showed that one to two physical activities a week were more effective in controlling blood sugar than inactivity [29,30].

HbA1c levels of people working during the nighttime with less than seven hours of sleep were significantly higher. Adequate sleeping time can help the body recover from fatigue and maintain biorhythms. According to the recommended sleeping time...
for each age group provided in the National Sleep Foundation (NSF) guidelines for 2015, the optimal sleeping time for adults is more than seven hours [31]. Structural changes in modern society are affecting the amount and quality of sleep as shifts increase and various types of working hours arise [32]. In addition, the amount and quality of this poor sleep are consistent with previous studies that linked them with the risk of type 2 diabetes [33,34].

Regarding eating habits, higher HbA1c levels are found in people who skip more than one meal a day compared to those who regularly eat three meals a day while working evenings and nights. Dining patterns have changed to Westernized eating habits since industrialization, which has also affected the development of diabetes, closely related to insulin secretion [30–34]. Carlson et al. assessed the effect of glucose metabolism on healthy men and women of normal weight without decreasing energy consumption [35,36]. They found that the morning fasting blood sugar level of the meal skipping group was higher than that of the group who regularly ate three meals a day. A prior study that investigated the relationship between the regularity of meals and impaired blood glucose disorder in adult non-diabetes groups also showed aligned results, with a 1.27 times higher incidence of impaired fasting glucose disorder in the groups that skipped meals [36,37].

In this study, HbA1c levels did not reach the prediabetes level. However, previous studies reported higher rates of the incidence of diabetes for five years according to glycated hemoglobin levels. Notably, HbA1c levels increased to less than 9% if they previously were 5.0–5.5%, to 9–25% if they previously were 6.0–6.5%, and to 25–50% if they previously were 6.0–6.5% [2]. Another previous study tracked HbA1c levels for six years, excluding those with a history of diabetes. It showed the highest sensitivity (59%) and specificity (77%) when the HbA1c level was initially 5.6%, with a 2.4 times increase in men and 3.1 times increase in women [38].

This study has several limitations. First, the cross-sectional design rendered us unable to determine a causal relationship between nighttime work and HbA1c levels. Second, the key covariates considered in this study, including physical activity, sleeping time, and eating habits were self-reported, possibly subject to recall bias. Third, the duration in working years of the current shift work was not considered. Lastly, the types of shift work were not specified in the survey data, and the workers were only specified by “collar colors”. Despite these limitations, this study also has certain strengths. First, it was the first study to analyze the association between shift work and HbA1c for non-diabetes groups in South Korea. Second, the data used in this study came from a national health statistics survey that calculated more than 500 health indicators such as eating habits and chronic diseases. The National Health and Nutrition Survey comprised a representative sample of the South Korean population, representing the actual health status of Koreans, and an updated questionnaire every year can identify changes in health status. Therefore, it can contribute to improving the health of the people by reflecting on health policies.

5. Conclusions

This study investigated the association between nighttime work and HbA1c levels among Korean adults aged 30 or older. We found a significant association between working night shifts and HbA1c levels in the men. Lack of exercise, sleeping less than 7 h, and skipping more than one meal a day were especially highly associated with increased HbA1c levels. High-risk groups with increased HbA1c levels require careful monitoring of physical activity, sleeping time, eating habits, and BMI. However, our study could not determine a causal relationship between HbA1c and night work, and further studies are needed for validation.

Author Contributions: Y.-S.L. and E.-C.P. designed the study, collected the data, performed the statistical analysis, and wrote the manuscript. J.H.J. contributed to the discussion and reviewed and edited the manuscript. E.-C.P. is the guarantor of this work and as such had full access to all of the data. J.H.J. and E.-C.P. assume responsibility for the integrity of the data and the accuracy of the data analysis, and they are the corresponding authors of the manuscript. All authors have read and agreed to the published version of the manuscript.
Funding: This research received no external funding.

Institutional Review Board Statement: This study was an analysis of the existing data; thus, it did not require approval by an ethics review board. The data used in this study came from the KNHANES, and it has been annually reviewed and approved by the Korea Centers for Disease Control (KCDC) Research Ethics Review Committee since 2007.

Informed Consent Statement: Informed consent was obtained from all subjects involved in the study. The data used in the study is a secondary data with encrypted personal information.

Data Availability Statement: The data is publicly accessible on the website of KNHANES administered by the Korea Disease Control and Prevention Agency (https://knhanes.cdc.go.kr/knhanes/index.do, accessed on 4 October 2022).

Acknowledgments: We thank the Korea Centers for Disease Control (KCDC) which produced and provided the national-level survey data. We also thank those colleagues from the Institute of Health Services Research at Yonsei University who gave advice regarding important intellectual content.

Conflicts of Interest: The authors declare that they have no competing interest.

References

1. Lee, Y.K. Analysis of the Relationship between Working Hour Mismatch and Worker’s Health. *Health Soc. Welf. Rev.* 2015, 35, 135–165.
2. Sparks, K.; Cooper, C.; Fried, Y.; Shirom, A. The effects of hours of work on health: A meta-analytic review. In *Managerial, Occupational and Organizational Stress Research*; Routledge: Oxfordshire, UK, 2018; pp. 451–468.
3. Caruso, C.C.; Hitchcock, E.M.; Dick, R.B.; Russo, J.M.; Schmitt, J.M. Overtime and Extended Work Shifts; Recent Findings on Illnesses, Injuries, and Health Behaviors; U.S. Department of Health and Human Services, NIOSH Publication: Washington, DC, USA, 2004; p. 143.
4. Spurgeon, A.; Harrington, J.M.; Cooper, C.L. Health and safety problems associated with long working hours: A review of the current position. *Occup. Environ. Med.* 1997, 54, 367–375. [CrossRef] [PubMed]
5. Tucker, P.; Folkard, S. *Working Time, Health and Safety: A Research Synthesis Paper; Conditions of Work and Employment Series 31*; ILO: Geneva, Switzerland, 2012.
6. Won, J.C.; Lee, J.H.; Kim, J.H.; Kang, E.S.; Won, K.C.; Kim, D.J.; Lee, M.K. Diabetes Fact Sheet in Korea, 2016: An Appraisal of Current Status. *Diabetes Metab. J.* 2018, 42, 415–424. [CrossRef] [PubMed]
7. Seuring, T.; Archangelidi, O.; Suhrcke, M. The Economic Costs of Type 2 Diabetes: A Global Systematic Review. *Pharmacoeconomics* 2015, 33, 811–831. [CrossRef] [PubMed]
8. Tabák, A.G.; Herder, C.; Rathmann, W.; Brunner, E.J.; Kivimäki, M. Diabetes 1: Prediabetes: A high-risk state for diabetes development. *Lancet* 2012, 379, 2279–2290. [CrossRef] [PubMed]
9. Forouhi, N.G.; Lau, J.; Hennings, S.; Wareham, N.J. Incidence of type 2 diabetes in England and its association with baseline impaired fasting glucose: The Ely study 1990–2000. *Diabet. Med.* 2007, 24, 200–207. [CrossRef] [PubMed]
10. Nathan, D.M.; Davidson, M.B.; DeFronzo, R.A.; Heine, R.J.; Henry, R.R.; Pratley, R.; Zinman, B. Impaired fasting glucose and impaired glucose tolerance: Implications for care. *Diabetes Care* 2007, 30, 753–759. [CrossRef] [PubMed]
11. Diabetes Prevention Program Research Group. 10-year follow-up of diabetes incidence and weight loss in the Diabetes Prevention Program Outcomes Study. *Lancet* 2009, 374, 1677–1686. [CrossRef] [PubMed]
12. The DREAM (Diabetes Reduction Assessment with ramipril and rosiglitazone Medication) Trial Investigators. Effect of rosiglitazone on the frequency of diabetes in patients with impaired glucose tolerance or impaired fasting glucose: A randomised controlled trial. *Lancet* 2006, 368, 1096–1105. [CrossRef]
13. Diabetes Prevention Program Research Group. Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin. *N. Engl. J. Med.* 2002, 346, 499–505. [CrossRef]
14. Ramachandran, A.; Snehalatha, C.; Mary, S.; Mukesh, B.; Bhaskar, A.D.; Vijay, V. The Indian Diabetes Prevention Programme shows that lifestyle modification and metformin prevent type 2 diabetes in Asian Indian subjects with impaired glucose tolerance (IDPP-1). *Diabetologia* 2006, 49, 289–297. [CrossRef] [PubMed]
15. Torgerson, J.S.; Hauptman, J.; Boldrin, M.N.; Sjöström, L. XENical in the prevention of diabetes in obese subjects (XENDOS) study: A randomized study of orlistat as an adjunct to lifestyle changes for the prevention of type 2 diabetes in obese patients. *Diabetes Care* 2004, 27, 155–161. [CrossRef] [PubMed]
16. Tuomilehto, J.; Lindström, J.; Eriksson, J.G.; Valle, T.T.; Härdöläinen, H.; Ilanne-Parikka, P.; Uusitupa, M. Prevention of type 2 diabetes mellitus by changes in lifestyle among subjects with impaired glucose tolerance. *N. Engl. J. Med.* 2001, 344, 1343–1350. [CrossRef] [PubMed]
17. Cho, N.H. Diabetes epidemiology in Korean. *Diabetes* 2001, 25, 1–10.
18. Kweon, S.; Kim, Y.; Jang, M.; Kim, Y.; Kim, K.; Choi, S.; Chun, C.; Kang, Y.H.; Oh, K. Data resource profile: The Korea National Health and Nutrition Examination Survey (KNHANES). *Int. J. Epidemiol.* 2014, 43, 69–77. [CrossRef] [PubMed]
19. Simon, D.; Senan, C.; Gamier, P.; Saint-Paul, M. Papoz L: Epidemiological features of glycated haemoglobin A1c-distribution in a healthy population. *Diabetologia* **1989**, *32*, 864–869. [CrossRef]

20. Dukes, P.P.; Goldwasser, E. Inhibition of erythropoiesis by estrogens. *Endocrinology* **1961**, *69*, 21–25. [CrossRef]

21. Peschle, C.; Magli, M.C.; Cillo, C.; Lettieri, F.; Cacciapuoti, A.; Pizzella, E.; Marone, G. Erythroid colony formation and erythropoietin activity in mice treated with estradiol benzoate. *Life Sci.* **1977**, *21*, 1303–1310. [CrossRef]

22. Roenneberg, T.; Merrow, M. The circadian clock and human health. *Curr. Biol.* **2016**, *26*, R432–R443. [CrossRef]

23. Kecklund, G.; Axelsson, J. Health consequences of shift work and insufficient sleep. *BMJ* **2016**, *355*, i5210. [CrossRef]

24. Wang, X.S.; Armstrong, M.E.G.; Cairns, B.J.; Key, T.J.; Travis, R.C. Shift work and chronic disease: The epidemiological evidence. *Occup. Med.* **2011**, *61*, 78–89. [CrossRef] [PubMed]

25. Gan, Y.; Yang, C.; Tong, X.; Sun, H.; Cong, Y.; Yin, X.; Li, L.; Cao, S.; Dong, X.; Gong, Y.; et al. Shift work and diabetes mellitus: A meta-analysis of observational studies. *Occup. Environ. Med.* **2015**, *72*, 72–78. [CrossRef] [PubMed]

26. Claus, M.; Schuster, M.; Oberlinner, C.; Webendörfer, S. Rotating shift work and prevalence of diabetes mellitus and prediabetes in male employees of a large german chemical company: Results of a cross-sectional study. *Occup. Environ. Med.* **2017**, *74*, A73.

27. Pan, A.; Schernhammer, E.S.; Sun, Q.; Hu, F.B. Rotating night shift work and risk of type 2 diabetes: Two prospective cohort studies in women. *PloS Med.* **2011**, *8*, e1001141. [CrossRef] [PubMed]

28. Seo, E.K.; Lee, M.Y.; Jeong, E.S.; Sung, D.J. Difference of Selected Metabolic Syndrome Makers in Nurses on Rotating Shift and Daytime Fixed Work Schedules. *Korean Soc. Wellness* **2018**, *13*, 61–72. [CrossRef]

29. Hong, D.U.; Lee, D.C.; Lee, S.Y.; Kim, Y.S. A Prospective Cohort Study of Exercise and the Incidence of Type 2 Diabetes in Impaired Fasting Glucose Group. *J. Prev. Med. Public Health* **2008**, *41*, 45–50.

30. Park, S.Y.; Lee, S.W.; Lee, H.S.; Byun, A.R.; Kwon, Y.E. Effects of Intermittent Leisure Time Physical Activity on Glycemic Control in Korean Adult Men with Diabetes and Prediabetes. *Korean Acad. Fam. Med.* **2019**, *9*, 29–35. [CrossRef]

31. Hirshkowitz, M.; Whiton, K.; Albert, S.M.; Alessi, C.; Bruni, O.; DonCarlos, L.; Hillard, P.A. National Sleep Foundation’s sleep time duration recommendations: Methodology and results summary. *Sleep Health* **2015**, *1*, 40–43. [CrossRef]

32. Jun, K.Y. Association between Occupational Environments including Working Hours and Sleep Duration among Korean Adults. Master’s Thesis, Hanyang University Graduate School, Seoul, Korea, 2015.

33. Ha, Y.M. The Effect of Sleep Quality and Quantity on Type II Diabetes Mellitus. Master’s Thesis, Chung-Ang University Graduate School of Health and Nursing, Anseong, Korea, 2015.

34. Knutson, K.L.; Ryden, A.M.; Mander, B.A.; Cauter, E.V. Role of sleep duration and quality in the risk and severity of type 2 diabetes mellitus. *Arch. Intern. Med.* **2006**, *166*, 1768–1774. [CrossRef]

35. Carlson, O.; Martin, B.; Stote, K.S.; Golden, E.; Maudsley, S.; Najar, S.S.; Ferrucci, L.; Ingram, D.K.; Longo, D.L.; Rumpler, W.V.; et al. Impact of reduced meal frequency without caloric restriction on glucose regulation in healthy, normal-weight middle-aged men and women. *Metabolism* **2007**, *56*, 1729–1734. [CrossRef]

36. You, H.S.; Lee, J.H.; Choi, W.J.; Lee, J.W. Relationship between Skipping Meals and Impaired Fasting Glucose in Non-Diabetic Korean Adults. *Korean J. Fam. Pract.* **2017**, *7*, 824–829. [CrossRef]

37. Zhang, X.; Gregg, E.W.; Williamson, D.F.; Barker, L.E.; Thomas, W.; Bullard, K.M.; Imperatore, G.; Williams, D.E.; Albright, A.L. A1C level and future risk of diabetes: A systematic review. *Diabetes Care* **2010**, *33*, 1665–1673. [CrossRef] [PubMed]

38. Choi, S.H.; Kim, T.H.; Lim, S.; Park, K.S.; Jang, H.C.; Cho, N.H. Hemoglobin A1c as a diagnostic tool for diabetes screening and new-onset diabetes prediction: A 6-year community-based prospective study. *Diabetes Care* **2011**, *34*, 944–949. [CrossRef] [PubMed]