Transnasal High-Flow Oxygen Therapy versus Noninvasive Positive Pressure Ventilation in the Treatment of COPD with Type II Respiratory Failure: A Meta-Analysis

Wei Liu, Mingli Zhu, Liuqin Xia, Xiangying Yang, Pei Huang, Yanming Sun, Ye Shen, and Jianping Ma

1Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
2Department of Critical Care Medicine, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China

Correspondence should be addressed to Mingli Zhu; hzfgf2007@163.com and Jianping Ma; zdsylw411@163.com

Received 25 May 2022; Revised 11 June 2022; Accepted 22 June 2022; Published 26 July 2022

Objective. To compare the safety and efficacy of transnasal high-flow oxygen therapy (HFNT) and noninvasive positive pressure ventilation (NIV) in the treatment of chronic obstructive pulmonary disease (COPD) with type II respiratory failure.

Methods. PubMed, the Cochrane Library, Embase, CBM, CNKI, and other databases were searched for randomized controlled trials (RCTS) on the efficacy of HFNT and NIV in the treatment of COPD. Meta-analysis was conducted using RevMan 5.3 software after two researchers screened literatures, extracted data, and evaluated the methodological quality of the included studies according to inclusion and exclusion criteria.

Results. A total of 948 patients were included in 12 RCTS. Comprehensive analysis results showed that the HFNC group had higher levels of 12 h-PAO 2, 48 h-PACO 2 and, 48 h-pH than the NIV group, and the differences were statistically significant (P < 0.05). There were no significant differences in 24 h-PAO 2 and 72 h-PAO 2, 12 h-PACO 2, 24 h-PACO 2 and 72 h-PACO 2, 24 h-pH, 48 h-pH, and 72 h-pH between the two groups after treatment (P > 0.05).

Conclusions. Compared with NIV, HFNC does not increase the treatment failure rate in COPD patients with type II respiratory failure, and HFNC has better comfort and tolerance, which is a new potential respiratory support treatment for COPD patients with type II respiratory failure.

1. Introduction

Chronic obstructive pulmonary disease (COPD) is a common, preventable, and treatable disease characterized by persistent respiratory symptoms and restricted airflow due to abnormalities in the Airways and/or alveoli [1]. The prevalence of COPD is rapidly increasing and is going to become the third leading fatal disease in the world by 2030 [2]. COPD is characterized by progressive, irreversible airflow restriction and is resource-efficient and costly due to outpatient visits, chronic treatment, and frequent hospitalizations for the disease. Chronic hypercapnia respiratory acidosis is a common feature of acute exacerbation of COPD, which is called acute hypercapnia respiratory failure (AHRF) [3]. At this time, severe ventilation dysfunction occurs in the patient, and the probability of disability and death is very high if the patient does not receive timely and effective treatment [4]. Clinically, emergency endotracheal intubation assisted by an invasive ventilator can significantly improve the respiratory status of patients, but there are still some cases after extubation, such as incomplete control of pulmonary infection, weak muscle strength, poor expectoration ability, and mild respiratory failure, which require postextubation treatment. Traditional oxygen therapy has poor effect on the treatment of humidification after extubation, which is easy to cause dry sputum and difficult to cough up, which is not conducive to improving respiratory failure [5].

Nearly half of COPD patients with AHRF did not survive in the first year after target hospitalization, 80% required readmission, and nearly two-thirds had another life-threatening
event [6]. In the case of AHRF, the unique optimization failure of standard drug therapy may be as high as 74%. In addition to drug therapy, the 2019 guidelines showed that the success rate of noninvasive ventilation (NIV) in treating COPD was 80%–85% [7]. NIV refers to a ventilation application without any conduit into the airway, that is, without an endotracheal tube or tracheostomy tube. NIV improves vital signs and gas exchange, increases alveolar ventilation, and reduces dyspnea, intubation needs, length of ICU stay, and mortality. NIV, however, may not be well tolerated, and about 25% of subjects have NIV contraindications [8]. The high-flow nasal cannula (HFNC) is used to enhance ventilation while providing higher oxygen concentration. HFNC uses a fully regulated, heated, and humidified air/oxygen mixture to give oxygen to patients through large-caliber nasal cannula at a flow rate of 20-60 L/min [9]. HFNC reduces anatomic dead space in the nasopharyngeal airway, improves mucociliary clearance in the great bronchus and small trachea, and increases end-expiratory pressure. HFNC forms a significant blood-dependent CO₂ flushing effect in nasopharyngeal space, which can reduce ventilation of anatomic dead space and thus reduce CO₂ retention [10]. Additional evidence in lung rehabilitation suggests that HFNC as part of rehabilitation training may improve exercise endurance in patients with COPD as opposed to conventional oxygen therapy, but further studies are needed to evaluate the efficacy of the therapy. Oxygen intake during exercise training allows COPD patients to tolerate higher activity levels and reduce fatigue symptoms, ultimately improving their quality of life.

Both HFNC and NIV can improve the respiratory pattern of hypercapnia patients during COPD exercise training to varying degrees by measuring diaphragm pressure, respiratory pattern, and gas exchange, which may play a role in the long-term treatment of patients. For patients with hypoxemic COPD, exercise training can effectively improve exercise capacity and there may be differences in oxygen therapy. At present, regarding the efficacy of HFNC and NIV, we still need to investigate whether all patients can benefit from NIV or HFNC treatment, and this study explored this question.

2. Materials and Methods

2.1. Data Retrieval. Two researchers screened articles by reading abstracted data published in the database until October 2021 to compare randomized controlled trials (RCTs) of the HFNC group and NIV group in the treatment of COPD with hypercapnia. Specific retrieval methods: PubMed, Cochrane Library, Embase, CBM, CNKI, and other databases were searched. Search using MeSH terms and test words: high flow or high-flow or noninvasive or non-invasive and COPD or chronic obstructive pulmonary disease. The type of literature was limited to RCTs and included only adult patients over 18 years of age. References to all relevant studies and recent review articles were scanned to identify additional citations. After the exclusion of obviously irrelevant publications, further full-text screening of potentially eligible articles is carried out according to our predefined inclusion criteria, and disagreements are resolved by consensus.

2.2. Inclusion Criteria. Twelve RCTs were included in this study. Subjects were COPD patients with acute respiratory failure complicated by hypercapnia according to the guidelines for chronic obstructive pulmonary disease [11], and the blood gas analysis results after admission were arterial partial blood oxygen pressure (PaO₂ < 60 mmHg) and arterial partial pressure of carbon dioxide (PaCO₂ < 50 mmHg). All the articles were related to the NIV group and HFNC group. The observation indexes included blood gas indexes such as PaO₂, PaCO₂, hydrogen ion concentration index (pH), and the incidence of complications.

2.3. Exclusion Criteria. The exclusion criteria were as follows: under the age of 18; severe respiratory failure requiring immediate endotracheal intubation: respiratory rate >40 times/min; severe hypoxia (oxygenation index under high concentration of oxygen inhalation <150 mmHg, severe respiratory acidosis pH <7.25, disturbance of consciousness, etc.); NIV contraindications exist, including oral and facial trauma, excessive sputum and poor sputum discharge ability, and hemodynamic instability, etc.; poor short-term prognosis; increased risk of death within 7 days; ongoing palliative care; failure of other organs; tracheotomy; poor treatment compliance; no comparison between the two groups; incomplete information; and not meeting inclusion criteria.

2.4. Quality Evaluation of the Included Literature. The quality of the included literature was evaluated independently by two researchers according to the Cochrane Review Manual. The evaluation contents include the following: (1) random allocation method, (2) hidden allocation scheme, (3) blind method, (4) completeness of outcome indicators, (5) selective reporting, and (6) other sources of bias. The literature was graded according to the evaluation results. Grade A is when a patient fully meets the above criteria, with low risk of bias; partially meeting the above criteria belongs to grade B, with moderate risk of bias; and completely not meeting the standard is grade C, indicating a high risk bias. For literatures with inconsistent opinions, a third party shall intervene and negotiate to determine the quality of literatures.

2.5. Data Extraction and Statistical Processing. Basic information includes first author, year of publication, treatment of COPD, and number of cases. The observation indexes included blood gas analysis and complication indexes, such as PaO₂, PaCO₂, and pH. Statistical data were extracted using the RevMan 5.3 software package. Relative risk and 95% CIs were used for dichotomy data, standard mean difference and 95% CIs were used for continuous data, and funnel plots were used to assess publication bias at test level α = 0.05.

3. Results

3.1. Retrieval Results and Risk of Bias. According to the predefined retrieval strategy, a total of 12 RCTs [12–23] were screened out, and 948 RCTs were reviewed from the bias risk review. A total of 473 patients were treated with a
noninvasive ventilator, and 475 patients were treated with high-flow humidified oxygen therapy (Fisher Pike, New Zealand) (Figure 1).

3.2. Comparison of 12 h-PaO\textsubscript{2} after Treatment between the HFNC Group and NIV Group. Four studies [13, 14, 17, 20] reported 12 h-PaO\textsubscript{2}, with no heterogeneity between studies ($P = 0.82, I^2 = 0\%$). The fixed effects model was used for analysis, and the difference between the two groups was statistically significant (SMD = 0.47, 95% CI (0.26, 0.68), $P < 0.0001$), and the HFNC group had an advantage in the treatment of 12 h-PaO\textsubscript{2} in acute respiratory failure (Figure 2).

3.3. Comparison of 12 h-PaCO\textsubscript{2} after Treatment between the HFNC Group and NIV Group. Four studies [13, 14, 17, 20] reported 12 h-PaCO\textsubscript{2}, with interstudy heterogeneity ($P < 0.00001, I^2 = 90\%$), which was analyzed using a random effects model. The results showed that there was no significant difference between the two groups (SMD = -0.08, 95% CI (-0.26, 0.11), $P = 0.66$) (Figure 3).

3.4. Comparison of 24 h-PaO\textsubscript{2} after Treatment between the HFNC Group and NIV Group. Eight studies [12–14, 16, 18, 19, 21, 23] compared 24 h-PaO\textsubscript{2} in the HFNC group and NIV group. There was no significant difference in heterogeneity among studies ($P = 0.14, I^2 = 57\%$), and the fixed effects model was used for analysis. The results showed that there was no significant difference between the HFNC group and NIV group (SMD = 0.08, 95% CI (-0.08, 0.25), $P = 0.31$) (Figure 4).

3.5. Comparison of 24 h-PaCO\textsubscript{2} after Treatment between the HFNC Group and NIV Group. Nine studies [12–14, 16, 18, 19, 21, 23] compared 24 h-PaCO\textsubscript{2} in the HFNC group and NIV group. There was no significant difference in heterogeneity among studies ($P = 0.62, I^2 = 0\%$), and the fixed effects model was used for analysis. The results showed that there was no significant difference between the HFNC group and NIV group (SMD = -0.05, 95% CI (-0.21, 0.11), $P = 0.53$) (Figure 5).

3.6. Comparison of 24 h-pH after Treatment between the HFNC Group and NIV Group. Seven studies [13, 14, 16, 18, 19, 21, 23] reported 24 h-pH with interstudy heterogeneity ($P = 0.001, I^2 = 6\%$) and were analyzed using a random effects model. The results showed that there was no significant difference between the HFNC group and NIV group (SMD = 0.13, 95% CI (-0.25, 0.1), $P = 0.86$) (Figure 6).

3.7. Comparison of 48 h-PaO\textsubscript{2} after Treatment between the HFNC Group and NIV Group. Five studies [16–18, 21, 23] compared 48 h-PaO\textsubscript{2} in the HFNC group and NIV group. There were statistically significant differences in heterogeneity among different studies ($P < 0.001, I^2 = 89\%$), and the
Study or subgroup	NFNC Mean	SD	Total Mean	SD	Total	Weight	IV, Fixed, 95% CI	IV, Fixed, 95% CI
Jing Liu 2018	87.98	6.55	38	85.45	5.24	37	21.5%	0.42 [-0.04, 0.88]
Xiaojuan Liu 2019	111.53	6.47	30	109.62	6.98	30	17.4%	0.28 [-0.23, 0.79]
Xin Jiang 2019	72.3	13.56	50	63.09	17.39	50	28.1%	0.59 [0.19, 0.99]
Xu Feng 2019	94.24	8.95	58	89.54	9.88	58	33.0%	0.50 [0.13, 0.86]
Total (95% CI)	316		175			100.0%	0.47 [0.26, 0.68]	

Test for overall effect: Z = 4.31 (P < 0.0001)

Figure 2: Comparison of 12h-PACO2 after treatment between the HFNC group and NIV group.

Study or subgroup	HFNC Mean	SD	Total Mean	SD	Total	Weight	IV, Random, 95% CI	IV, Random, 95% CI
Jing Liu 2018	59	7.15	38	60.23	4.22	37	24.9%	-0.21 [-0.66, 0.25]
Xiaojuan Liu 2019	48.74	4.1	30	42.61	4.35	30	23.4%	1.43 [0.86, 2.00]
Xin Jiang 2019	64.9	13.5	50	67.59	13.21	50	25.7%	-0.20 [-0.59, 0.19]
Xu Feng 2019	54.3	9.21	58	57.4	10.64	58	26.0%	-0.31 [-0.68, 0.06]
Total (95% CI)	176		175			100.0%	0.15 [-0.52, 0.83]	

Heterogeneity: Tau² = 0.42, Chi² = 28.65, df = 3 (P < 0.0001); I² = 90%

Test for overall effect: Z = 0.44 (P = 0.66)

Figure 3: Comparison of 12h-PaCO2 after treatment between the HFNC group and NIV group.

Study or subgroup	HFNC Mean	SD	Total Mean	SD	Total	Weight	IV, Fixed, 95% CI	IV, Fixed, 95% CI
Fajuan 2019	63.78	10.25	46	64.05	11.41	43	15.3%	-0.02 [-0.44, 0.39]
Guoqiang Jing 2019	96.36	12.35	22	100.08	10.51	0	Not estimable	
Huaping Liu 2018	72.3	9.08	47	67.95	11.85	46	15.6%	0.41 [-0.00, 0.82]
Hui Fan 2019	65.73	8.26	41	66.33	7.38	43	14.4%	-0.08 [-0.50, 0.35]
Jing Liu 2018	92.03	5.32	38	91.15	5.38	37	12.8%	0.16 [-0.29, 0.62]
Liyan Guo 2018	71.34	5.56	34	71.33	5.55	34	11.7%	0.00 [-0.47, 0.48]
Xin Jiang 2019	76.35	12.77	50	69.23	23.35	50	16.9%	0.38 [-0.02, 0.77]
Yuxiang Wu 2019	74.3	11.2	38	78.8	12.5	41	13.3%	0.37 [-0.82, 0.07]
Total (95% CI)	316		294			100.0%	0.08 [-0.08, 0.25]	

Heterogeneity: Chi² = 9.60, df = 6 (P = 0.14); I² = 37%

Test for overall effect: Z = 1.01 (P = 0.31)

Figure 4: Comparison of 24h-PACO2 after treatment between the HFNC group and NIV group.

Study or subgroup	HFNC Mean	SD	Total Mean	SD	Total	Weight	IV, Fixed, 95% CI	IV, Fixed, 95% CI
Fajuan 2019	53.9	4.12	41	54.4	5.32	43	13.9%	-0.10 [-0.53, 0.32]
Guoqiang Jing 2019	54.7	4.7	22	58.9	12.7	20	6.8%	-0.44 [-1.05, 0.17]
Hongbin Zheng 2019	53.2	12.2	43	51.9	14.6	39	13.5%	0.10 [-0.34, 0.53]
Huaping Liu 2018	59	7.32	47	62.17	7.389	46	15.4%	-0.00 [-0.41, 0.41]
Hui Fan 2019	53.9	4.12	41	54.45	5.32	43	13.9%	-0.11 [-0.54, 0.31]
Jing Liu 2018	53.55	4.28	38	55.21	6.28	37	12.3%	-0.31 [-0.76, 0.15]
Liyan Guo 2018	46.61	7.69	34	46.63	7.67	34	11.3%	-0.00 [-0.48, 0.47]
Xin Jiang 2019	62.1	13.88	50	64.95	11.74	0	Not estimable	
Yuxiang Wu 2019	42.1	6.4	38	40.55	5.8	41	13.0%	0.26 [-0.18, 0.70]
Total (95% CI)	354		303			100.0%	-0.05 [-0.21, 0.11]	

Heterogeneity: Chi² = 5.32, df = 7 (P = 0.62); I² = 0%

Test for overall effect: Z = 0.63 (P = 0.53)

Figure 5: Comparison of 24h-PaCO2 after treatment between the HFNC group and NIV group.
random effects model was used for analysis. After treatment, 48 h-PAO\(_2\) of the HFNC group was higher than that of the NIV group; the difference was not statistically significant (SMD = −0.07, 95% CI (−0.67, 0.53), \(P = 0.006\)) (Figure 7).

3.8. Comparison of 48 h-PACO\(_2\) after Treatment between the HFNC Group and NIV Group

Six studies [16–18, 21–23] compared 48 h-PACO\(_2\) in the HFNC group and NIV group. The heterogeneity between studies was statistically significant (\(P = 0.04, I^2 = 61\%\)) and was analyzed using a random effects model. After treatment, 48 h-PACO\(_2\) in the HFNC group was higher than that in the NIV group; the difference was statistically significant (SMD = −0.36, 95% CI (−0.66, −0.05), \(P = 0.02\)) (Figure 8).

3.9. Comparison of 48 h-pH after Treatment between the HFNC Group and NIV Group

Four studies [16, 18, 21, 23] compared the 48 h-pH of the HFNC group and NIV group. There was no statistically significant difference in heterogeneity among different studies (\(P = 0.67, I^2 = 0\%\)), and the fixed effects model was used for analysis. The results showed that there was a statistically significant difference between the HFNC group and NIV group (SMD = 0.25, 95% CI (0.02, 0.47), \(P = 0.03\)) (Figure 9).

3.10. Comparison of 72 h-PAO\(_2\) between the HFNC Group and NIV Group after Treatment

Three studies [14, 18, 19] compared 72 h-PAO\(_2\) between the HFNC group and NIV group. There was no significant difference in heterogeneity among studies (\(P = 0.65, I^2 = 0\%\)), and the fixed effects model was used for analysis. The results showed that there was no significant difference between the HFNC group and NIV group (SMD = 0.08, 95% CI (−0.23, 0.39), \(P = 0.61\)) (Figure 10).

3.11. Comparison of 72h-PACO\(_2\) between the HFNC Group and NIV Group after Treatment

Four studies [14, 15, 18, 19] compared 72 h-PACO\(_2\) in the HFNC group and NIV group. There was no significant difference in heterogeneity between studies (\(P = 0.13, I^2 = 48\%\)), and the fixed effects model was used for analysis. The results showed that there was no significant difference between the HFNC group and NIV group (SMD = −0.10, 95% CI (−0.31, 1.43), \(P = 0.36\)) (Figure 11).

3.12. Comparison of 72 h-pH between the HFNC Group and NIV Group after Treatment

Three studies [14, 18, 19] compared 72 h-pH levels between the HFNC group and NIV group. The heterogeneity between different studies was statistically significant (\(P = 0.002, I^2 = 84\%\)) and was analyzed using a random effects model. The results showed that there was no significant difference between the HFNC group and NIV group (SMD = −0.43, 95% CI (−1.07, 0.21), \(P = 0.18\)) (Figure 12).

3.13. Publication Bias

A total of 12 articles [12–23] were included in this study, and the funnel plot of 24 h-PAO\(_2\) and 24 h-PACO\(_2\) was used to evaluate publication bias. The results show that the funnel plot of the observed index is basically symmetric, and the shape of the funnel plot does not show any obvious asymmetry. The results showed no evidence of publication bias (Figure 13).
Study or subgroup	HFNC	NIV	Weight	Std. Mean difference				
Mean	**SD**	**Total**	**Mean**	**SD**	**Total**			
Fajuan 2019	54.35	9.28	46	55.86	11.89	43	20.5%	-0.14 [-0.56, 0.28]
Guoqiang Jing 2019	56.9	10	22	61.5	16.3	0	Not estimable	
Huaping Liu 2018	54.37	6.08	47	57.42	6.84	46	20.6%	-0.47 [-0.56, -0.06]
Hui Fan 2019	49.1	5.12	41	48.4	4.83	43	20.0%	0.14 [-0.29, 0.57]
Xu Feng 2019	48.48	8.12	58	53.62	9.0	58	22.2%	-0.60 [-0.97, -0.22]
Xuliang Chen 2017	45.6	6.9	30	50.8	6.7	30	16.7%	-0.75 [-1.28, 0.23]
Total (95% CI)	**244**	220	**100.0%**	**-0.36 [-0.66, -0.05]**				

Heterogeneity: Tau² = 0.07, Chi² = 10.25, df = 4 (P = 0.04); I² = 61%
Test for overall effect: Z = 2.28 (P = 0.02)

Figure 8: Comparison of 48 h-PACO₂ after treatment between the HFNC group and NIV group.

Study or subgroup	HFNC	NIV	Weight	Std. Mean difference				
Mean	**SD**	**Total**	**Mean**	**SD**	**Total**			
Fajuan 2019	7.33	0.12	46	7.32	0.12	43	29.2%	0.12 [-0.48, 0.50]
Liyuan Guo 2018	7.38	0.05	41	7.37	0.06	43	27.5%	0.18 [-0.25, 0.61]
Xin Jiang 2019	7.43	0.07	22	7.41	0.06	20	13.6%	0.30 [-0.31, 0.91]
Total (95% CI)	**156**	152	**100.0%**	**0.25 [0.02, 0.47]**				

Heterogeneity: Chi² = 1.57, df = 3 (P = 0.67); I² = 0%
Test for overall effect: Z = 2.14 (P = 0.03)

Figure 9: Comparison of 48 h-pH after treatment between the HFNC group and NIV group.

Study or subgroup	HFNC	NIV	Weight	Std. Mean difference				
Mean	**SD**	**Total**	**Mean**	**SD**	**Total**			
Fajuan 2019	80.58	7.63	46	79.47	7.59	43	56.6%	-0.00 [-0.48, 0.47]
Liyuan Guo 2018	75.14	7.11	34	75.16	7.09	34	43.4%	-0.00 [-0.48, 0.47]
Xin Jiang 2019	79.95	14.41	50	77.95	15.44	0	Not estimable	
Total (95% CI)	**130**	77	**100.0%**	**0.08 [-0.23, 0.39]**				

Heterogeneity: Chi² = 0.21, df = 1 (P = 0.65); I² = 0%
Test for overall effect: Z = 0.50 (P = 0.61)

Figure 10: Comparison of 72 h-PAO₂ after treatment between the HFNC group and NIV group.

Study or subgroup	HFNC	NIV	Weight	Std. Mean difference				
Mean	**SD**	**Total**	**Mean**	**SD**	**Total**			
Fajuan 2019	3.63	2.53	46	50.23	5.45	43	26.4%	-0.17 [-0.38, 0.02]
Hongbin Zheng 2019	47.7	10.4	43	44.5	12.1	39	24.1%	0.28 [-0.15, 0.72]
Liyuan Guo 2018	43.25	2.63	34	43.27	2.62	34	20.3%	-0.01 [-0.48, 0.47]
Xin Jiang 2019	60.8	13.95	50	66.59	13.25	50	29.1%	-0.04 [-0.82, 0.03]
Total (95% CI)	**173**	166	**100.0%**	**-0.10 [-0.31, 0.11]**				

Heterogeneity: Chi² = 5.73, df = 3 (P = 0.13); I² = 48%
Test for overall effect: Z = 0.92 (P = 0.36)

Figure 11: Comparison of 72 h-PaCO₂ after treatment between the HFNC group and NIV group.
Study or subgroup	HFNC Mean	SD	Total Mean	SD	Total Weight	IV, Random, 95% CI	NIV Mean	SD	Total Mean	SD	Total Weight	IV, Random, 95% CI
Fajian 2019	7.36	0.11	46	7.35	0.13	43	0.08	-0.33, 0.50				
Liyuan Guo 2018	7.39	0.03	34	7.4	0.02	34	-0.39	-0.87, 0.09				
Xin Jiang 2019	7.31	0.04	50	7.35	0.04	50	-0.99	-1.41, -0.58				
Total (95% CI)			130		127	100.0%	-0.43	-1.07, 0.21				

Heterogeneity: $\tau^2 = 0.27$; $\chi^2 = 12.87$, df = 2 ($P = 0.002$); $I^2 = 84\%$

Test for overall effect: $Z = 1.33$ ($P = 0.18$)

Figure 12: Comparison of 72h-pH after treatment between the HFNC group and NIV group.

Figure 13: Funnel plot.
4. Discussion

Acute exacerbation of COPD is characterized by sudden exacerbation of respiratory symptoms, decreased respiratory function, and poor prognosis [3]. Patients with moderate to severe exacerbations of COPD often develop acute respiratory failure, which often requires emergency department and hospitalization. NIV is recommended as an additional method of treatment for patients with COPD acute progressive exacerbation and respiratory failure [24]. NIV has been shown to reduce intubation rate and improve the survival rate of COPD patients requiring ventilation support, and it is recommended to be used in the treatment of COPD patients with type II respiratory failure [25]. However, NIV has disadvantages, such as reduced comfort and poor interaction and synchronization between patients and ventilators, which are often difficult to identify and manage [26]. In recent years, HFNC has been increasingly applied in stabilizing and aggravating COPD patients [27].

Meta-analysis results of this study showed that PaO\textsubscript{2} level in HFNC group was higher than that in the NIV group after 12 h and 48 h. The PaCO\textsubscript{2} level of the HFNC group at 48 h was higher than that of the NIV group. There was no significant difference in 12 h-PACO\textsubscript{2}, 24 h-PACO\textsubscript{2}, 24 h-PH, 48 h-PACO\textsubscript{2}, 72 h-PACO\textsubscript{2}, 72 h-PH between the two groups after treatment. NIV has been proven to be an effective respiratory support technique that improves gas exchange, reduces the need for intubation in patients with COPD, acute cardiogenic pulmonary edema, and blunt chest trauma, and reduces mortality [28]. Plant et al. [29], in a landmark study involving 236 patients, half of whom received standard therapy and additional NIV, showed that early NIV in COPD patients with mild and moderate acidosis in the common ward resulted in rapid improvement of physiological variables. Reduce the need for invasive mechanical ventilation and in-hospital mortality. NIV in the treatment of acute respiratory failure can deal with abnormal gas exchange and reduce signs of dyspnea and activities of accessory respiratory muscles [30]. However, NIV intolerance is a frequently occurring condition that increases NIV failure rates, intubation rates, and overall mortality [31]. In addition, patients’ discomfort and adverse reactions frequently occur in the process of use, such as skin damage, air leakage, and claustrophobia, resulting in poor tolerance of patients.

HFNC is a novel oxygen therapy with good tolerability. HFNC is theoretically suitable for patients with COPD because it can provide a higher airflow, but a relatively low level of FiO\textsubscript{2} in inhaled air can produce a smaller positive average airway pressure, relieving respiratory distress and reducing respiratory work. HFNC continuously expels carbon dioxide from the upper respiratory tract (flushing dead nasopharyngeal cavities), reducing dead cavities and allowing more efficient alveolar ventilation. The beneficial effects of HFNC include the following: delivery of high flow, better matching of patients’ peak inspiratory flow, and finally enabling the implementation of FiO\textsubscript{2} setting, providing a small amount of positive pressure in the airway to increase end-expiratory lung volume, flushing of nasopharyngeal dead spaces to enhance CO\textsubscript{2} removal, with good tolerability and comfort [32–35]. Several studies have shown that HFNC improves respiratory work and breathing patterns in patients with acute hypoxic respiratory failure compared with conventional oxygen therapy. Facial skin breakage due to long-term treatment is more common and can increase intolerance to NIV. In addition, the release of warm, moist air through the nostrils avoids the discomfort caused by NIV masks putting pressure on the facial skin, and HFNC is better tolerated than NIV and can be used continuously for longer periods of time.

In summary, the use of a nasal cannula to deliver high-flow heating and humidifying gases at a preset FiO\textsubscript{2} ratio is an attractive alternative to conventional oxygen therapy and may be an alternative to NIV.

Data Availability

The simulation experiment data used to support the findings of this study are available from the corresponding author upon request.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Authors’ Contributions

Wei Liu and Xiangying Yang contributed equally to this work.

Acknowledgments

This study was supported by the Construction Fund of Medical Key Disciplines of Hangzhou (OO20200485) and (OO20200265).

References

[1] W. W. Labaki and S. R. Rosenberg, “Chronic obstructive pulmonary disease,” Annals of Internal Medicine, vol. 173, no. 3, 2020.
[2] S. Cook, A. E. Eggen, L. A. Hopstock et al., “Chronic obstructive pulmonary disease (COPD) in population studies in Russia and Norway: comparison of prevalence, awareness and management,” International Journal of Chronic Obstructive Pulmonary Disease, vol. 16, pp. 1353–1368, 2021.
[3] J. Sun, Y. Li, B. Ling et al., “High flow nasal cannula oxygen therapy versus non-invasive ventilation for chronic obstructive pulmonary disease with acute-moderate hypercapnic respiratory failure: an observational cohort study,” International Journal of Chronic Obstructive Pulmonary Disease, vol. 14, pp. 1229–1237, 2019.
[4] D. K. Kim, J. Lee, J. H. Park, and K. H. Yoo, “What can we apply to manage acute exacerbation of chronic obstructive pulmonary disease with acute respiratory failure?,” Tuberc Respir Dis (Seoul), vol. 81, no. 2, pp. 99–105, 2018.
[5] S. Hong, Y. Tian, Y. Li, and L. Qiao, “Meta-analysis of clinical efficacy of Helmet non-invasive ventilation and oxygen therapy on patients with hypoxemic respiratory failure,” Zhonghua Tuberc Respirolog Dis (Beijing), vol. 42, no. 6, pp. 413–418, 2019.
Comparison of nasal high-flow oxygen therapy and non-invasive ventilation in treatment of COPD with respiratory failure, *Southwest Defense Medicine*, vol. 28, no. 12, pp. 1168–1170, 2018.

X.-l. Chen, J.-f. Cheng, G.-y. Wu, Z.-w. Huang, and X.-W. Huang, "Effect of humidified high flow ventilation on type ii respiratory failure during acute episode of chronic obstructive pulmonary disease (AECOPD)," *Journal of Jilin Medical Sciences*, vol. 38, no. 10, pp. 1857–1859, 2017.

G. Jing, J. Li, D. Hao et al., "Comparison of high flow nasal cannula with noninvasive ventilation in chronic obstructive pulmonary disease patients with hypercapnia in preventing postextubation respiratory failure: a pilot randomized controlled trial," *Research in Nursing & Health*, vol. 42, no. 3, pp. 217–225, 2019.

M. E. Wilson, C. C. Dobler, A. S. Morrow et al., "Association of home noninvasive positive pressure ventilation with clinical outcomes in chronic obstructive pulmonary disease: a systematic review and meta-analysis," *Journal of the American Medical Association*, vol. 323, no. 5, pp. 455–465, 2020.

S. C. Bourke, T. Piraino, L. Pisani, L. Brochard, and M. W. Elliott, "Beyond the guidelines for non-invasive ventilation in acute respiratory failure: implications for practice," *The Lancet Respiratory Medicine*, vol. 6, no. 12, pp. 935–947, 2018.

F. D. Martos-Benítez, Y. Domínguez-Valdés, D. Burgos-Aragüez et al., "Outcomes of ventilatory asynchrony in patients with inspiratory effort," *Revista Brasileira de Terapia Intensiva*, vol. 32, no. 2, pp. 284–294, 2020.

A. H. Attaway, J. Fares, F. Iacono, and S. Dasarathy, "Acute responses to oxygen delivery via high flow nasal cannula in patients with severe chronic obstructive pulmonary disease-HFNC and severe COPD," *Journal of Clinical Medicine*, vol. 10, no. 9, p. 1814, 2021, Published 2021 Apr 21.

S. van der Leest and M. L. Duijverman, "High-intensity noninvasive ventilation in stable hypercapnic COPD: evidence of efficacy and practical advice," *Respirology*, vol. 24, no. 4, pp. 318–328, 2019.

P. K. Plant, J. L. Owen, and M. W. Elliott, "Early use of non-invasive ventilation for acute exacerbations of chronic obstructive pulmonary disease on general respiratory wards: a multicentre randomised controlled trial," *The Lancet*, vol. 355, no. 9219, pp. 1931–1935, 2000.

M. L. Duijverman, J. M. Vonk, G. Bladder et al., "Home initiation of chronic non-invasive ventilation in COPD patients with chronic hypercapnic respiratory failure: a randomised controlled trial," *Thorax*, vol. 75, no. 3, pp. 244–252, 2020.

J. Liu, J. Duan, L. Bai, and L. Zhou, "Noninvasive ventilation intolerance: characteristics, predictors, and outcomes," *Respiratory Care*, vol. 61, no. 3, pp. 277–284, 2016.

D. L. Grieco, L. S. Menga, V. Raggi et al., "Physiological comparison of high-flow nasal cannula and helmet noninvasive ventilation in acute hypoxemic respiratory failure," *American Journal of Respiratory and Critical Care Medicine*, vol. 201, no. 3, pp. 303–312, 2020.
[33] S. Park, “High-flow nasal cannula for respiratory failure in adult patients,” *Acute and Critical Care*, vol. 36, no. 4, pp. 275–285, 2021.

[34] Y. Zhou, Z. Ni, Y. Ni, B. Liang, and Z. Liang, “Comparison of actual performance in the flow and fraction of inspired O2 among different high-flow nasal cannula devices: a bench study,” *Canadian Respiratory Journal*, vol. 2021, 2021 Published 2021 May 4.

[35] T. Mauri, A. Galazzi, F. Binda et al., “Impact of flow and temperature on patient comfort during respiratory support by high-flow nasal cannula,” *Critical Care*, vol. 22, no. 1, p. 120, 2018.