Small intestinal bacterial overgrowth and orocecal transit time in patients of nonalcoholic fatty liver disease

Haitao Shi, Lijuan Mao, Lianli Wang, Xiaojing Quan, Xiaoyu Xu, Yan Cheng, Shanshan Zhu, and Fei Dai

Objective The aim of the present study is to explore the frequency of small intestinal bacterial overgrowth (SIBO) and orocecal transit time (OCTT) in patients with nonalcoholic fatty liver disease (NAFLD).

Patients and methods 103 patients with NAFLD and 49 healthy controls were enrolled. Clinical indicators such as BMI, liver function, blood lipids, homeostasis model assessment-insulin resistance (HOMA-IR), serum endotoxin of NAFLD patients were collected and examined. FibroTouch was used to detect the controlled attenuation parameter (CAP) and liver stiffness measurement (LSM). SIBO and OCTT were measured by the lactulose hydrogen breath test.

Results The incidence of SIBO in NAFLD patients (58.3%) was significantly higher than that in healthy controls (26.5%). The level of serum endotoxin in NAFLD patients was higher than that in healthy controls. The levels of CAP, LSM, serum endotoxin, alanine transaminase, aspartate aminotransferase and HOMA-IR in SIBO-positive NAFLD patients were higher than those in SIBO-negative patients. There was no significant difference in glutamyl transpeptidase triglyceride, low density lipoprotein and BMI between the two groups. OCTT in NAFLD patients was longer than that in healthy controls. It was also observed that OCTT in SIBO-positive NAFLD patients was significantly delayed compared with SIBO-negative NAFLD patients.

Conclusions Patients with NAFLD exhibit the increased incidence rate of SIBO and prolonged OCTT; SIBO in NAFLD patients maybe a contributing factor to the elevated transaminase, hepatic steatosis, progression of liver fibrosis and prolonged OCTT. Eur J Gastroenterol Hepatol 33: e535–e539

Keywords: endotoxin, nonalcoholic fatty liver, orocecal transit time, abdominal bacterial overgrowth

European Journal of Gastroenterology & Hepatology 2021, 33:e535–e539

Introduction

Nonalcoholic fatty liver disease (NAFLD), the most common cause of chronic liver disease affecting both children and adults, is closely related to genetic factors and insulin resistance [1–3]. The pathogenesis of NAFLD is widely recognized by ‘two hit hypothesis’ [4] proposed by Day, namely, the ‘first hit’ caused by excessive accumulation of triglycerides in the liver resulting from insulin resistance, and the ‘second hit’ caused by hepatocellular injury resulting from oxidative stress, inflammatory factors and lipid peroxidation. In recent years, it has been found that intestinal bacteria also play an important role in the occurrence and progression of NAFLD with unclear mechanism. Investigators have speculated the role of endotoxemia-induced increased inflammatory in liver and insulin resistance. Small intestinal bacterial overgrowth (SIBO), a condition characterized by excessive gram-negative aerobic and anaerobic bacteria in the proximal small bowel, has been shown to induce hepatic steatosis in animal models. However, there are still few studies on the effects of SIBO on various clinical indicators of patients with NAFLD. SIBO can possibly lead to delayed orocecal transit time (OCTT) due to mucosal injury, bacterial translocation and worsening of small bowel motility [5]. Lactulose hydrogen breath test is a sensitive, convenient and noninvasive test for the diagnosis of SIBO and for the evaluation of OCTT. In clinical practice, FibroScan and FibroTouch are the two major noninvasive ways to evaluate the fibrosis of nonalcoholic fatty liver, noninvasive fibrosis scores is less used. [6]. In this study, we diagnosed SIBO with lactulose hydrogen breath test and assessed severity of NAFLD and fibrosis with FibroTouch. This study is intended to clarify the effects of SIBO on various clinical indicators of patients with NAFLD, providing new clues to reveal the pathogenesis of NAFLD and offering evidence for its prevention and treatment.

Methods

Study population

In total 103 NAFLD patients and 49 healthy controls were enrolled in the Second Affiliated Hospital of Xi’an...
Comparison of clinical biochemical parameters between patients with nonalcoholic fatty liver disease and control

Table 1. Characteristics of the subjects

	NAFLD	Control
N	49	103
Gender (male/female)	26/23	54/49
Age (years)	46.39 ± 8.89	48.79 ± 12.34
BMI (Kg/m²)	26.52 ± 2.27	26.13 ± 2.45
ALT (IU/L)	46.13 ± 20.54	35.18 ± 9.14
LDLC (mmol/L)	3.51 ± 0.96	3.17 ± 0.69
Triglyceride (mmol/L)	2.16 ± 0.59	2.33 ± 0.72
LSM (kPa)	8.88 ± 3.16	7.66 ± 2.60

N: NAFLD, nonalcoholic fatty liver disease; SIBO: small intestinal bacterial overgrowth.

Analysis of SIBO and serum endotoxin in patients with nonalcoholic fatty liver disease and control

Table 2. Small intestinal bacterial overgrowth and serum endotoxin

Group	N	Incidence rate of SIBO (%)	Endotoxin (pg/ml)
Control	49	26.5	5.0 (3.8)
NAFLD	103	58.9	6.0 (5.0, 4.9)
Mild	46	32.6	7.76 (5.0, 5.5, 8.6)
Moderate	32	71.8	4.71 (6.2, 3.3)
Severe	25	88.0	47.14 (6.8, 32.5)

N: NAFLD, nonalcoholic fatty liver disease; SIBO, small intestinal bacterial overgrowth.

P < 0.05 compared with the control group.

Table 3. Comparison of clinical biochemical parameters between small intestinal bacterial overgrowth positive and negative nonalcoholic fatty liver disease

	SIBO positive (N=60)	SIBO negative (N=45)	P value
Gender (male/female)	32/28	22/21	0.828
Age (years)	48.25 ± 9.98	48.79 ± 11.36	0.799
LSM (Kg/m²)	277.45 ± 18.45	268.70 ± 19.25	0.022
ALT (IU/L)	46.13 ± 20.54	35.18 ± 9.14	0.032
AST (IU/L)	34.18 ± 13.02	27.95 ± 7.52	0.006
GGT (IU/L)	41.30 ± 17.02	37.16 ± 17.45	0.231
Triglyceride (mmol/L)	2.16 ± 0.59	2.33 ± 0.72	0.181
LDL (mmol/L)	3.51 ± 0.96	3.17 ± 0.69	0.055
BMI (Kg/m²)	26.52 ± 2.27	26.13 ± 2.45	0.413
HOMA-IR	2.57 ± 0.68	2.24 ± 0.79	0.031

ALT: alanine transaminase; AST: aspartate aminotransferase; CAP: controlled attenuation parameter; GGT: glutamyl transpeptidase; HOMA-IR: homeostasis model assessment-insulin resistance; LDL: low density lipoprotein; LSM: liver stiffness measurement; SIBO: small intestinal bacterial overgrowth.

Inclusion and exclusion criteria

Inclusion criteria: patients who have imaging evidence (transabdominal ultrasound) of diffuse fatty liver and have no alcoholic history or alcohol intake less than 140 g/week of ethanol (less than 70 g/week for females).

Exclusion criteria: patients with specific hepatic diseases that can cause hepatic steatosis, such as viral hepatitis, drug-induced liver damage, autoimmune liver disease and hepatotencular degeneration; patients with severe organ damage; patients with intestinal organic lesions and a past medical history of abdominal surgery; patients with diseases that clearly affect gastrointestinal motility and intestinal microecology, such as infection, inflammatory bowel diseases, hyperthyroidism, and so on; patients who have recently taken drugs affecting the results, such as antibiotics, active microbial agents, and prokinetics; and pregnant and lactating patients.

Ethics Statement

This study has been approved by the Ethics Committee of the Second Affiliated Hospital of Xi’an Jiaotong University, and all the research subjects have been informed and agreed to participate in this trial.

General information

Basic information of all subjects was collected and recorded, such as age, gender, alcoholic history, BMI = body mass (Kg)/height (m)², past medical history and recent medication history.

Blood biochemical index

Fasting venous blood of NAFLD patients were collected. Alanine transaminase (ALT), aspartate aminotransferase (AST), glutamyl transpeptidase (GGT), triglyceride, low density lipoprotein (LDL) and fasting plasma glucose were detected using a biochemical analyzer. Fasting insulin and endotoxin were detected by radioimmunoassay. Homeostasis model assessment-insulin resistance (HOMA-IR) = fasting blood glucose level × fasting insulin/22.5.

Noninvasive examination of liver fibrosis

The liver fibrosis diagnostic apparatus FibroTouch (FibroTouch-B-004-004; Wuxi Hisky Medical Co., Ltd.) was used to detect the controlled attenuation parameter (CAP) of liver fat and liver stiffness measurement (LSM) in subjects. Patients were classified according to CAP as mild (240–264 db/m), moderate (265–294 db/m) and severe (>295 db/m).

Lactulose hydrogen breath test

An EC60 Gastrolyzer gastrointestinal hydrogen detector and lactulose oral liquid (66.7g/100 ml) manufactured by Bedfont Science Ltd (UK) were used. The background value of hydrogen breath concentration in the fasting state was measured. The subjects were suggested to drink 10 g of lactulose dissolved in 250 ml of lukewarm water. In the next 3 h, the hydrogen breath value was measured every 15 min. During the test, subjects were kept quiet, and banned from eating, smoking and sleeping. Among the following three items, patients who conformed to one of them were diagnosed as SIBO positive: (1) in the fasting state, the baseline hydrogen breath concentration is ≥20 ppm, and it is still ≥20 ppm measured after 30 min interval; (2) a typical double-peak pattern appears, namely, the small intestine peak above the baseline value 12 ppm occurs within 60 min, and the second colon peak with a higher peak value appears after 60 min; (3) fusion waveform: the hydrogen breath value above the baseline value 12 ppm occurs within 60 min, and the subsequent hydrogen breath values are higher or not lower than this value. Each hydrogen breath value is connected to present a rising platform. The latent and higher hydrogen breath waveforms are higher or not lower than this value. Each hydrogen breath value is connected to present a rising platform. The latent and higher hydrogen breath waveforms are higher or not lower than this value.

Copyright © 2021 Wolters Kluwer Health, Inc. Unauthorized reproduction of this article is prohibited.
Frequency of SIBO and OTT in patient with NAFLD Shi et al.

Oro-cecal transit time in patients with nonalcoholic fatty liver disease and control

Group	N	OCTT (min)
Control	49	(107.55 ± 22.96)
NAFLD	103	(142.18 ± 32.36)*
Mild	46	(125.21 ± 27.06)*
Moderate	32	(145.16 ± 27.11)*
Severe	25	(169.60 ± 27.96)*

NAFLD, nonalcoholic fatty liver disease; OCTT, oro-cecal transit time. *P < 0.05 compared with the control group.

Comparison of clinical biochemical parameters between small intestinal bacterial overgrowth-positive nonalcoholic fatty liver disease and -negative nonalcoholic fatty liver disease

No significant differences in gender or age distribution were present between the SIBO-positive and -negative group. The levels of CAP, LSM, serum endotoxin, ALT, AST and HOMA-IR in SIBO-positive NAFLD patients were higher than those in SIBO-negative patients (P < 0.05). There was no significant difference in GGT, triglyceride, LDL and BMI between the two groups (Table 3).

Orocecal transit time in subjects

OCTT in the NAFLD group was longer than that in the healthy control group (P < 0.05). With the increase of the severity of NAFLD graded by CAP, OCTT prolonged significantly (P < 0.05) (Table 4). OCTT in the positive SIBO group was significantly longer than the negative group (Table 5).

Discussion

In recent years, the incidence rate of NAFLD has increased year by year, becoming the second largest liver disease in China after viral hepatitis. As the study on intestinal bacteria increases, the association between them and NAFLD is revealed. Intestinal bacteria have also become the key to exploring the pathogenesis of NAFLD. Under normal circumstances, only a small number of bacteria survive in the duodenum and proximal jejunum, while the terminal ileum is the transitional site of a small number of aerobic bacteria in the small intestine and a large number of anaerobic bacteria in the colon. SIBO is a syndrome in which the number of bacteria in the small intestine is excessive or the type of bacteria is abnormal. It can cause various symptoms such as abdominal pain, abdominal distension, diarrhea and abdominal discomfort, and so on. In patients with NAFLD, the secretion of gastric acid, bile, pancreatic secretions and immunoglobulin is reduced and the regulation of intestinal pH and the inhibition of bacteria are weakened [7], resulting in the occurrence of SIBO. This study showed that the incidence rate of SIBO in patients with NAFLD was significantly higher than that in healthy people, consistent with the findings at home and abroad [8], and the incidence rate of SIBO in NAFLD patients with severe CAP was obviously increased compared with patients with mild CAP, suggesting that the occurrence of SIBO may be related to the severity of hepatic steatosis. At the same time, this study showed that the OCTT of patients with NAFLD was significantly prolonged compared with the controls, suggesting that the intestinal peristalsis slowed down in patients with NAFLD, consistent with the findings at home and abroad [9], which might be related to the decrease in the number of interstitial cells of Cajal at the end of the jejunum. Interstitial cells of Cajal are mainly distributed in the muscular and intermuscular plexus in the gastrointestinal tract and play an important role in the gastrointestinal movement. The decrease in the number of interstitial cells of Cajal or abnormal morphology can cause changes in gastrointestinal motility. The slowing of the intestinal peristalsis will reduce the discharge of bacteria in the intestine and further promote the occurrence of SIBO. Meanwhile, this study also founded that OCTT in SIBO-positive NAFLD patients was significantly delayed compared with SIBO-negative NAFLD patients. As reported by Cuoco et al. [10], SIBO could slow human intestinal transit, prolong OCTT and affect intestinal motility. The excessive growth and reproduction of bacteria in the intestine leads to an increase in the number of metabolites, wherein endotoxin is one of the metabolites closely
related to NAFLD. Endotoxin is an important component of the cell wall of gram-negative bacteria, which will be released when bacteria in the intestine grow rapidly or are dissolved after death [11]. Under normal circumstances, the barrier function of the intestinal mucosa can effectively prevent intestinal bacterial translocation and endotoxin invasion [12]. When NAFLD occurs, the endotoxin released by intestinal bacteria increases, the permeability of intestinal mucosa increases, and the barrier function is impaired, which cannot effectively prevent endotoxin from entering the portal system [13]. According to Abdul-Hai et al. [14], it was found that the intestinal mucosal permeability of patients with NAFLD was increased compared with the healthy people, and the degree of increase was associated with the severity of hepatic steatosis. This phenomenon is related to the destruction of the tight junction integrity among intestinal mucosal epithelial cells. In addition, the immune function of the liver in the pathological state is disordered, and thus its clearance effect on endotoxin is weakened. The combination of the above factors leads to an increase in endotoxin levels in patients with NAFLD. This study showed that patients with SIBO-positive NAFLD had higher endotoxin levels than the negative patients, consistent with the past research results [15].

After the endotoxin reaches the liver through the portal system, it recognizes and activates Toll-like receptor 4 (TLR4) [16]. Once TLR4 is activated, the region within TLR4 cells binds to the adaptive molecule of myeloid differentiation factor 88, activating the downstream interleukin (IL)-1 receptor associated kinase/tumor necrosis factor receptor association factor 6 complex, further activating nuclear transcription factor-κB (NF-κB) [17], thereby inducing the gene expression of pro-inflammatory cytokines in the nucleus and releasing various cytokines, such as tumor necrosis factor-α (TNF-α), IL-1, IL-6 and IL-8 [18–20]. The released inflammatory factors can also activate other Kupffer cells, expanding the inflammatory response and causing more cell injury. In this study, the levels of serum ALT and GGT in SIBO-positive NAFLD patients were higher than those in SIBO-negative patients, suggesting that SIBO might promote the inflammatory injury response in the liver.

The inflammatory factors that are released by Kupffer cells activated by endotoxins can also induce the formation of insulin resistance by interfering with the insulin signaling [21]. After insulin reaches the target organ through blood circulation, it binds to the insulin receptor on the cell surface, which phosphorylates tyrosine protein kinase and changes the conformation of insulin receptor. Phosphokinase can phosphorylate the insulin receptor substrate (IRS) to make it activated. Inflammatory factors such as TNF-α can inhibit the phosphorylation of IRS, thereby interfering with the insulin signaling and leading to insulin resistance [22]. Cani et al. [23] injected subcutaneously endotoxin into mice to form endotoxemia. After 4 weeks, it was found that the fasting blood glucose and insulin levels of the mice increased compared with the previous. Mehta et al. [24] injected endotoxin into healthy volunteers, causing an increase in levels of serum IL-6 and TNF-α, which induced insulin resistance. Insulin resistance is the key link in the development of NAFLD, which promotes dyslipidemia and triglyceride accumulation in the liver. In this study, SIBO-positive NAFLD patients had higher CAP and serum triglyceride levels than SIBO-negative patients, and patients with moderate and severe CAP had significantly increased serum endotoxin levels compared with CAP mild patients, suggesting that the occurrence of SIBO aggravated the severity of liver steatosis.

In addition, inflammatory factors such as TNF-α can stimulate the activation, proliferation and transformation of hepatic stellate cells into myofibroblasts and on the other hand promote the synthesis of transforming growth factor β1, resulting in the deposition of extracellular matrix in the liver because of its synthesis beyond the degradation capacity of the liver, which leads to the formation of liver fibrosis. This study showed that SIBO-positive patients had higher LSM than the negative patients, indicating that SIBO also promoted liver fibrosis in patients with NAFLD. Bacterial overgrowth increased intestinal permeability and serum endotoxin and all likely to play a role in the liver fibrosis and cirrhosis. Regulation of gut microbiota represents a therapeutic method to NAFLD and other chronic liver disease [25] [26].

Conclusion

In summary, this study found that patients with NAFLD had an increased incidence rate of SIBO and prolonged OCTT. SIBO had a promoting effect on elevated transaminase, dyslipidemia, hepatic steatosis and progression of liver fibrosis in patients with NAFLD.Regulating the micro-ecological environment of the intestine and improving the small intestinal bacterial overgrowth are expected to be the key to the treatment of NAFLD.

Acknowledgements

The authors would like to thanks to the cooperation of Ultrasound Department of the Second Affiliated Hospital of Xi’an Jiaotong University. The design of the study and data collection were supported by the National Natural Science Foundation of China (NO. 81770540). Data analysis and interpretation were supported by the Key Science and Technology Program of Shaanxi Province (NO. 2015SF011 and NO. 2017SF-100).

Conflicts of interest

There are no conflicts of interest.

Reference

1. Doycheva I, Watt KD, Akhouri N. Nonalcoholic fatty liver disease in adolescents and young adults: the next frontier in the epidemic. *Hepatology* 2017; 65:2100–2109.
2. Karamfilova V, Gateva A, Assiyov Y, Alexiev A, Savov A, Yaneva N, et al. PNPLA3 I148M Polymorphism in patients with nonalcoholic fatty liver disease, obesity and prediabetes. *J Gastrointestin Liver Dis* 2019; 28:433–438.
3. Karamfilova V, Gateva A, Alexiev A, Zheleva N, Velikova T, Ivanova-Boyanova R, et al. The association between retinol-binding protein 4 and prediabetes in obese patients with nonalcoholic fatty liver disease. *Arch Physiol Biochem* 2019;1–6.
4. Day CP, James OF. Steatohepatitis: a tale of two “hits”? *Gastroenterology* 1998;114:942–945.
5. Roland BC, Clarleglio MM, Clarke JO, Semler JR, Tomakin E, Mullin GE, Pasricha PJ. Small intestinal transit time is delayed in small intestinal bacterial overgrowth. *J Clin Gastroenterol* 2015;49:571–576.
6 Doycheva I, Shaker M, Allende D, Lopez R, Watt KD, Alkhouri N. Low utility of noninvasive fibrosis scores in young adults with nonalcoholic fatty liver disease. Am J Gastroenterol 2017; 112:652–653.

7 Augustyn M, Grys I, Kukla M. Small intestinal bacterial overgrowth and nonalcoholic fatty liver disease. Clin Exp Hepatol 2019; 5:1–10.

8 Sajjad A, Mottonerhead M, Syn WK, Jones R, Smith S, Nwokolo CJ. Ciprofloxacin suppresses bacterial overgrowth, increases fasting insulin but does not correct low acylated ghrelin concentration in non-alcoholic steatohepatitis. Aliment Pharmacol Ther 2005; 22:291–299.

9 Soza A, Riquelme A, González R, Pérez-Ayuso RM, Glasinovic JC, Arrese M. Increased orocecal transit time in patients with nonalcoholic fatty liver disease. Dig Dis Sci 2005; 50:1136–1140.

10 Cuoco LMM, Jorizzo RA, Santarelli L, Arancio F, Cammarota G, Gasbarrini G. Eradication of small intestinal bacterial overgrowth and oro-cecal transit in diabetics. Hepato-gastroenterology 2001; 49:1582–1586.

11 Lu ML, Huang H, Liu LM, Chang J. The relationship between intestinal motility and interstitial cells of cajal in nonalcoholic fatty liver mice. Hepat Mon 2013; 13:e13674.

12 Pendyala S, Walker JM, Holt PR. A high-fat diet is associated with endotoxemia that originates from the gut. Gastroenterology 2012; 142:1100–1101.e2.

13 Kirpich IA, Marsano LS, McClain CJ. Gut-liver axis, nutrition, and non-alcoholic fatty liver disease. Clin Biochem 2015; 48:923–930.

14 Abdul-Hai A, Abdallah A, Malnick SD. Influence of gut bacteria on development and progression of non-alcoholic fatty liver disease. World J Hepatol 2015; 7:1679–1684.

15 Mele L, Valenza V, La Torre G, Montalto M, Cammarota G, Ricci R, et al. Increased intestinal permeability and tight junction alterations in nonalcoholic fatty liver disease. Hepatology 2009; 49:1877–1887.

16 Zhang G, Ghosh S. Molecular mechanisms of NF-kappaB activation induced by bacterial lipopolysaccharide through Toll-like receptors. J Endotoxin Res 2000; 6:453–457.

17 Verstak B, Nagpal K, Bottomley SP, Golenbock DT, Hertzog PJ, Mansell A. MyD88 adapter-like (Mal)/TIRAP interaction with TRAF6 is critical for TLR2- and TLR4-mediated NF-kappaB proinflammatory responses. J Biol Chem 2006; 281:24192–24203.

18 Blizier M, Roggel F, Gerbes AL. Role of Kupffer cells in host defense and liver disease. Liver Int 2006; 26:1175–1186.

19 O’Neill LA, Bowie AG. The family of five: TIR-domain-containing adaptors in Toll-like receptor signalling. Nat Rev Immunol 2007; 7:353–364.

20 Mridha AR, Wree A, Robertson AAB, Yeh MM, Johnson CD, Van Roojen DM, et al. NLRP3 inflammasome blockade reduces liver inflammation and fibrosis in experimental NASH in mice. J Hepatol 2017; 66:1037–1046.

21 Zeyda M, Stulnig TM. Obesity, inflammation, and insulin resistance—a mini-review. Gerontology 2009; 55:379–386.

22 Ma LJ, Mao SL, Taylor KL, Kanjanabuch T, Guan Y, Zhang Y, et al. Prevention of obesity and insulin resistance in mice lacking plasminogen activator inhibitor 1. Diabetes 2004; 53:336–346.

23 Cani PD, Amar J, Iglesias MA, Poggi M, Krauf C, Bastelica D, et al. Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes 2007; 56:1761–1772.

24 Mehta NN, Mcgillicuddy FC, Anderson PD, Hinkle CC, Shah R, Pruscino L, et al. Experimental endotoxemia induces adipose inflammation and insulin resistance in humans. Diabetes 2010; 59:172–181.

25 Fukui H. Gut-liver axis in liver cirrhosis: How to manage leaky gut and endotoxemia. World J Hepatol 2015; 7:425–442.

26 Safari Z, Gérard P. The links between the gut microbiome and non-alcoholic fatty liver disease (NAFLD). Cell Mol Life Sci 2019; 76:1541–1558.