Recent Advances on Bioactivity of Seaweed Polysaccharides

Junwen Wang,a Xueyan Li,a and Chaoyan Zhang*a,b,c,d

a Department of Marine Bio-Pharmacology, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
b National Freshwater Aquatic Products Processing Technology R&D Center (Shanghai), Shanghai 201306, China
c Shanghai Aquatic Products Processing and Storage Engineering Technology Research Center, Shanghai 201306, China
d Laboratory of Storage and Preservation Quality and Safety Risk Assessment of Aquatic Products of the Ministry of Agriculture (Shanghai), Shanghai 201306, China

Email: chzhang@shou.edu.cn (C. Z.)

Abstract Seaweed polysaccharide is an important active substance in seaweed with good gel property, stability, and film-forming properties. It possesses various biological activities such as anti-virus, anti-tumor, immune regulation, anti-oxidation, and is widely used in food, health care and cosmetics. This article reviews recent advances on biological activities of seaweed polysaccharides, with a view to better development and utilization of seaweed polysaccharides, and promoting the sustainable and healthy development of the seaweed polysaccharide industry.

Keywords seaweed polysaccharide, bioactivities, applications

Introduction

Marine life accounts for about 80% of the earth's biological resources and grows in a special environment with high pressure, high salt, low oxygen and low nutrition. According to the origin, marine life is divided into three categories: seaweed, marine microorganisms and marine animals. Compared to marine animals and microorganisms, algae has attracted much attention in the fields of pharmacology and biochemistry in the past decade. Seaweed is a good source of carotenoids, vitamins, minerals, phenols, sulfated polysaccharides, peptides and proteins. These compounds have a variety of biological activities, including antioxidant, anti-tumor, anti-viral, anti-allergic and anti-microbial, etc. Due to the bioactivities, seaweed extracts have been studied as important ingredients in food and feed products. According to ancient Chinese medical literature, seaweed can be used as a therapeutic agent. For modern research, seaweed consumption also contributes to human health, such as the regulation of intestinal flora. This article reviews current bioactivities of seaweed polysaccharides with a view to providing references for further development and utilization of seaweed polysaccharides.

Structure of Seaweed Polysaccharide

Seaweed polysaccharide is a class of high molecular weight natural compound with complex chemical structures. According to their sources, they can be divided into red algae polysaccharides, green algae polysaccharides, and brown algae polysaccharides. In recent years, the research on brown algae polysaccharide is the most, and the red algae polysaccharide is the second. Macie et al. isolated and purified a red sulfated polysaccharide from Gracilaria birdiae. Structural analysis showed that the polysaccharide was mainly composed of galactose, and the sulfate group was linked to the C-6 position (Figure 1). Barros et al. obtained a polysaccharide gel permeation chromatography (GPC) with a molecular weight of 250 kDa from red algae Gracilaria caudata, which is mainly composed of galactose.

It is well known that brown algae produces different polysaccharides, such as alginites, fucoidans, and laminarins. Fucoidan and laminarins are main water-soluble polysaccharides of brown algae, and high molecular alginic acid is an alkali-soluble polysaccharide. Fucoidan can be divided into three categories: fucoidan, xylose glucuronide, and glycogalactan (Figure 2a). Fucoidan is a branched-chain polysaccharide sulfate, and its main component is L-fucose 4-sulfate. Fucoidan is composed of fucose, uronic acid, galactose, xylose and sulfated fucose. Xylose glucuronide is mainly poly-β-(1,4)-D-mannuronic acid and 3-O-D-xylosyl-L-fucose-4-sulfate or occasional uronic acid. Glycogalactan is composed of a linear chain of (1,4)-D-galactose on C5 with L-fucosyl-3-sulfate or
In recent decades, seaweed polysaccharides extracted from resources such as land and sea is the focus of current research. Present, the development of effective antioxidants from natural and antioxidant system, which ultimately leads to oxidative stress in the body.

ROS often creates an imbalance between oxidant generation and antioxidant defense, which can lead to oxidative damage. Due to different oxygen metabolism pathways, including mitochondrial electron pathways, ROS is continuously produced in organisms. However, long-term use of synthetic antioxidants has side effects such as blood coagulation. At present, the development of effective antioxidants from natural resources such as land and sea is the focus of current research. In recent decades, seaweed polysaccharides extracted from seaweed have received considerable attention.

Some research shows that crude polysaccharides from spore leaves of Undaria pinnatifida can significantly increase the thymus and spleen indexes of oxidatively injured mice, promote lymphocyte proliferation, enhance the killing power of NK cells and the ability of antibody secretion. Feng et al. studied on the monosaccharide composition and antioxidant activity of Ulva lactuca, Saccharina japonica, Undaria pinnatifida, and Porphyra. The results showed that the ability of Undaria pinnatifida polysaccharide for removal of 2,2-diphenyl-1-picrylhydrazyl was significantly higher than the other three seaweed polysaccharides. Ulva, Undaria and Saccharina have strong scavenging activities for hydroxyl free radicals, while Porphyra polysaccharides have poor scavenging ability for hydroxyl free radicals. The activity of scavenging activity of Ulva and Undaria on superoxide anion is stronger than that of Saccharina and Porphyra. Ma et al. studied the free radical scavenging ability and lipid peroxidation inhibition ability of crude polysaccharides from Betaphycus gelatinae, Ulva, Sargassum polycystum, Padina australis and Caulerpa Sertularioides. The results showed that the polysaccharides of Padina and Sargassum polycystum had strong reducing power and they had strong scavenging activities against superoxide anion and hydroxyl radical. Zhao et al. analyzed the composition of seaweed polysaccharides such as Sargassum thunbergii, Hizikia fusiforme, Saccharina and Porphyra yezoensis. The results showed that Sargassum thunbergii and Hizikia fusiforme showed good antioxidant activity. Different seaweed polysaccharides have different antioxidant capacities. Seaweed with strong antioxidant capacity can be selected for further research.

Antiviral Effect of Seaweed Polysaccharides

In recent years, infectious diseases caused by emerging viruses have caused huge threats, and we are committed to the research and development of antiviral drugs. Although the number of antiviral drugs approved for clinical use has been increasing, the treatment of infectious diseases is still problematic due to insufficient drug efficacy and high cost. Therefore, there is an urgent need to develop new antiviral drugs. Some polysaccharides isolated from seaweeds have antiviral and immunomodulatory activities and are suitable for developing antiviral agents. Although the life cycle of a virus varies greatly between species, there are six basic stages of the life cycle of a virus: attachment, penetration, uncoating, replication, assembly, and release. It has been reported that marine polysaccharides, especially polysaccharides in seaweeds, have a unique structure and play a role in killing various viruses by interfering with different stages of the viral infection process (Figure 4). It has resulted in widespread interest in drug development and antiviral drug development.

Zhang et al. used in vitro cell culture methods to study the antiviral activity of seven seaweed polysaccharides in the South China Sea. The results showed that these seven seaweed polysaccharides showed certain antiviral activity against herpes simplex virus 1 (HSV-1) and Coxsackie B group 3 virus (Cox B3). Among them, Ulva lactuca polysaccharide and Grateloupia filicina polysaccharide can significantly inhibit HSV-1 virus, IC_{50} is about 3.90 μg/mL, and the selection index (SI) can reach 363.0 and 296.4, respectively. Ulva lactuca polysaccharides and G. divaricatum Martens polysaccharides can significantly inhibit Cox B3 virus, with IC_{50} of 1.95 and 7.81 μg/mL, and SI of 1025.6 and 212.0, respectively. Zou et al. studied the antiviral biological activity of Eucheuma muricatum polysaccharides. The results showed that Eucheuma muricatum polysaccharides inhibited viral infection by directly...
transcription, but had no effect on viral DNA copy number. Polysaccharides could down-regulate the amount of viral RNA in the low-dose group. Therefore, the tumor-suppression rate of the middle-dose group was significantly higher than that of the control group were 5.0%, 22.3%, 27.9%, and 50.3%, respectively. The tumor inhibition rates of the mice in the low-dose group, the medium-dose group, and the high-dose group, and the positive control group were 5.0%, 22.3%, 27.9%, and 50.3%, respectively. The tumor control rates of the positive control group were significantly higher than those of the other three groups. The tumor inhibition rate of the high-dose group was significantly higher than that of the low-dose and middle-dose groups, and the tumor-suppression rate of the middle-dose group was significantly higher than that of the low-dose group. Therefore, Saccharina lutea polysaccharide has a significant anti-tumor effect.

Anti-tumor Effect of Seaweed Polysaccharide

The anti-tumor activity of polysaccharides is closely related to its immune regulation function. Polysaccharide can inhibit or kill tumor cells by enhancing the body's immune function. Wu et al.[34] studied the anti-inflammatory and anti-tumor activities of two large-scale seaweed polysaccharides using Gracilaria chouae and Gracilaria lemaneiformis. The results showed that the polysaccharides of Gracilaria chouae inhibited tumor cell autophagy by inhibiting the function of lysosomes in tumor cells, causing cell metabolism disorders and further apoptosis. Gracilaria chouae polysaccharide achieves anti-cancer effect by inhibiting autophagy and promoting apoptosis. The polysaccharides of Gracilaria chouae and Gracilaria lemaneiformis have anti-inflammatory activity in vitro. Gracilaria lemaneiformis can relieve intestinal inflammation and protect the intestinal tract, and it is expected to be developed as an intestinal health product and an anti-inflammatory drug for functional food and biomedical fields. Zhang et al.[35] studied the anti-tumor activity of Saccharina polysaccharides using Saccharina lutea as a raw material. The results showed that the tumor inhibition rates of the mice in the low-dose group, the medium-dose group, the high-dose group, and the positive control group were 5.0%, 22.3%, 27.9%, and 50.3%, respectively. The tumor control rates of the positive control group were significantly higher than those of the other three groups. The tumor inhibition rate of the high-dose group was significantly higher than that of the low-dose and middle-dose groups, and the tumor-suppression rate of the middle-dose group was significantly higher than that of the low-dose group. Therefore, Saccharina lutea polysaccharide has a significant anti-tumor effect.

Brain and Kidney Protective Activity of Seaweed Polysaccharides

Alzheimer's disease (AD) is commonly known as Alzheimer's disease and is a degenerative disease of the central nervous system. The pathogenesis of AD is the lack of choline during the impulsive transmission of nerves, excessive phosphorylation of tau protein, excessive apoptosis, β-amyloid protein (Aβ) deposition, genetic factors and genetic susceptibility. Intestinal flora imbalance.[36] It is known that traditional Chinese medicine polysaccharides have a good inhibitory effect on AD, such as Resveratrol,[37] Fallopia multiflora,[38] Rhodiola rosea L,[39] Astragaloside A,[40] Centella asiatica,[41] Icarin.[42] In recent years, more and more researchers have found that seaweed polysaccharides can delay the onset of AD.[43] Sulfate groups exist in seaweed polysaccharides, and sulfated polysaccharides have inhibitory effects on the activities of acetylcholinesterase, butyrylcholinesterase, and β-secretase, so that the fibrils of Aβ protein disappear, and it can be used as a nutraceutical to treat AD.[44] Tang et al.[45] studied the intervention effects of Sargassum fusiforme polysaccharide on the behavior of AD rat model. Compared with the normal control group, the learning and memory ability of the model group was significantly reduced. Compared with the model group, the treatment groups of 0.8 and 1.6 g/kg Sargassum fusiforme polysaccharide extract can improve the learning and memory ability and have a certain dose dependence. It can be seen that Sargassum fusiformis improves the learning and memory ability of AD rats.

The formation of kidney stone is the main result of CaOx salt supersaturation in renal tubule fluid.[46] The stone formation process involves nucleation, growth and aggregation of crystals. When urine supersaturation exceeds metastable state, oxalate and calcium ions begin to form spontaneous crystal nucleation.[47] Sulfated polysaccharides in seaweeds have a large number of negatively charged groups such as sulfate, carboxyl, and hydroxyl groups. These anions have a strong ability to interact with calcium ions.[48] These anions increase the concentration of soluble Ca2+ in the supernatant and reduce the degree of supersaturation of the renal fluid, thereby inhibiting the nucleation of CaOx crystals (Figure 5).[49] Veena et al.[50] found that Fucoidan, extracted from Fucus, reduced the content of major components of kidney stones, such as calcium, oxalate, uric acid, and phosphorus in urine.

Regulation of Intestinal Flora by Seaweed Polysaccharides

In our daily diet, only small amounts of nutrients such as starch and monosaccharides (glucose, sucrose and lactose) can be processed directly by enzymes encoded by our genome.[51] Many complex carbohydrates in the gastrointestinal tract pass through fermentation and become food for symbiotic bacteria. Utilizing and processing complex carbohydrates is essential for the intestinal flora, as it relies primarily on indigestible fiber and polysaccharides as energy sources.[52] After a long time, the co-evolution between the intestinal flora and the human body has led to a large number of species of bacteria, among which a few species play a key role in human health.
and the host and intestinal microorganisms has developed a variety of foraging glycans.

Marine polysaccharides in the diet are not absorbed and cannot be processed by stomach and intestinal enzymes. Once in the lower digestive tract, they are degraded and fermented by specific microorganisms in the gut. The degradation of marine polysaccharides produces a large amount of oligosaccharides, which can be absorbed and exert a therapeutic effect. Fermentation of marine polysaccharides and their oligosaccharides can produce short chain fatty acids and other metabolites. SCFA is easily absorbed and may have a positive systemic physiological effect on the host. During the fermentation process, the composition of the gut microbiota changed because marine polysaccharides and their oligosaccharides stimulated the growth or activity of only a limited number of local bacteria (for example, Bifidobacterium and Lactobacillus) (Figure 6). Song et al.[15] studied the effect of sea cucumber polysaccharides on the intestinal flora of experimental mice induced by antibiotics. When the concentration of polysaccharides extracted from sea cucumber was 1.92 mg/mL, the intestinal flora of mice in the normal control group was dominated by beneficial bacteria (Lactobacillus and Clostridium). After the intervention of antibiotics, the content of the two bacteria decreased significantly, and the pathogenic Porphyromonas was detected. After treatment with sea cucumber polysaccharide, the content of beneficial bacteria recovered and the content bacteria decreased.

Figure 6 Gut microbiota degradation of marine polysaccharides and its effects on intestinal ecology.[15]

Conclusion

The active components and functions of seaweed polysaccharides have begun to be valued by food, medical, marine and nutrition scholars, but the analysis of the composition and structure of seaweed polysaccharides needs to be further studied. The specific function of polysaccharide components also requires the improvement of separation and purification technology of seaweed polysaccharides. Therefore, the study of seaweed polysaccharides will be a systematic project with great research value and broad application prospect.

Conflict of Interest

The authors declare no conflict of interest.

References

[1] Danovaro, R.; Sneglof, P. V. R.; Tyler, P. Challenging the paradigms of deep-sea ecology. Trends Ecol. Evol. 2014, 29, 465–475.
[2] Wu, J.; Zhou, X.; Zhang, M. Krishnolides A-D: New 2-Ketokhayanolides from the Krishna Mangrove, Xylocarpus moluccensis. Mar. Drugs 2017, 15, 140.
[3] Kadam, S. U.; Prabhasankar, P. Marine foods as functional ingredients in bakery and pasta products. Food Res. Int. 2010, 43, 1975–1980.
[4] Hui, Wu; Hongyu, Lu; Melting, Li. Hypolipidemic and Antibacterial Activity of Ethanol Extracts of Sargassum henslowianum. Food Ind. Technol. 2018, 39, 319–323 (in Chinese).
[5] Koyanagi, S.; Tanigawa, N.; Nakagawa, H. Oversulfation of fucoidan enhances its anti-angiogenic and antitumor activities. Biochem. Pharmacol. 2003, 65, 173–179.
[6] Artan, M.; Li, Y.; Karadeniz, F. Anti-HIV-1 activity of phloroglucinol derivative, 6,6′-bieckol, from Ecklonia cava. Bioorg. Med. Chem. 2008, 16, 7921–7926.
[7] Liu, Q.; Yang, Y.; Maieki, S. J. Anti-Food Allergic Activity of Sulfated Polysaccharide from Gracilaria lemaneiformis is Dependent on Immunosuppression and Inhibition of p38 MAPK. J. Agr. Food Chem. 2016, 64, 4536–4544.
[8] Gupta, S.; Abu-Ghannam, N. Bioactive potential and possible health effects of edible brown seaweeds. Trends Food Sci. Technol. 2011, 22, 315–326.
[9] Cox, S.; Abu-Ghannam, N.; Gupta, S. An assessment of the antioxidant and antimicrobial activity of six species of edible Irish seaweeds. Int. Food Res. J. 2010, 17, 205–220.
[10] Zhu, W.; Ooi, V. E. C.; Chan, P. K. S. Isolation and characterization of a sulfated polysaccharide from the brown alga Sargassum patens and determination of its anti-herpes activity. Biochem. Cell Biol. 2003, 81, 25–33.
[11] Chen, B. J.; Shi, M. J.; Cui, S. Improved antioxidant and antityrosinase activity of polysaccharide from Sargassum fusciforme by degradation. Int. J. Biol. Macromol. 2016, 92, 715–722.
[12] Rajapakse, N.; Kim, S. K. Nutritional and Digestive Health Benefits of Seaweed. Adv. Food Nutr. Res. 2011, 64, 17–28.
[13] Maria, D. J. R.; Alcina, D. M.; Rui, D. M. Emergent Sources of Prebiotics: Seaweeds and Microalgae. Mar. Drugs 2016, 14, 27.
[14] Xinjun, Luo.; Xinguang, Wang.; Dongsheng, Yang. Recent advances in seaweeds polysaccharide-survey on structure, extraction and biological activity. China Food Addit. 2006, 4, 100–105 (in Chinese).
[15] Maciel, J. S.; Chaves, L. S.; Souza, B. W. S. Structural characterization of cold extracted fraction of soluble sulfated polysaccharide from red seaweed Gracilaria birdiae. Carbohydr. Polym. 2008, 71, 559–565.
[16] Barros, F. C. N.; Da, Silva, D. C.; Sombra, V. G. Structural characterization of polysaccharide obtained from red seaweed Gracilaria caudata (J Agardh). Carbohydr. Polym. 2013, 92, 598–603.
[17] Nelson, T.; E Lewis, B. A. Separation and characterization of soluble and insoluble components of insoluble Laminaran. Carbohydr. Res. 1974, 33, 63–74.
[18] Shilpi, G.; Nissreen, A. G. Bioactive potential and possible health effects of edible brown seaweeds. Trends Food Sci. Technol. 2011,
[19] Aruoma, O. I. Free radicals, oxidative stress, and antioxidants in human health and disease. J. Am. Oil Chem. Soc. 1998, 75, 199–212.

[20] El-Habib, O. H.; Saada, H. N.; Azab, K. S. The modifying effect of beta-carotene on gamma radiation-induced elevation of oxidative reactions and genotoxicity in male rats. Mutat. Res. Genet. Toxicol. Environ. Mutagen. 2000, 466, 179–186.

[21] Valko, M.; Leibfritz, D.; Moncol, J. Free radicals and antioxidants in human health and disease. Int. J. Biochem. Cell B 2007, 39, 44–84.

[22] Grune, T.; Jung, T.; Merker, K. Decreased proteolysis caused by protein aggregates, inclusion bodies, plaques, lipofuscin, ceroid, and ’aggresomes’ during oxidative stress, aging, and disease. Int. J. Biochem. Cell B 2004, 36, 2519-2530.

[23] Kahl, R.; Kappus, H. Toxicology of the synthetic antioxidants BHA and BHT in comparison with the natural antioxidant vitamin E. Z Lebensm. Unters. Forsch. A-Food Res. Technol. 1993, 196, 329–338.

[24] Xi, Q.; He, D.; Han, Z. Antioxidant and immunomodulation activities of polysaccharide from sporophyll of Undaria pinnatifida in vivo. J. Dalian Polytechnic Univ. 2013, 33, 79–83 (in Chinese).

[25] Feng, S.; Lu, Y.; Li, N. Effect of monosaccharide composition on antioxidant activity of algal polysaccharides. Nat. Prod. Res. Dev. 2019, 31, 119–124 (in Chinese).

[26] Ma, J.; Hou, P.; Chen, Y. Study on antioxidant activity and anti-lipid peroxidation effect of several algal polysaccharides. South China Fish. Sci. 2017, 13, 97–104 (in Chinese).

[27] Zhao, P.; Wang, J.; Qi, J. Extraction, Component Analysis, and Antioxidant activity of Polysaccharides from Ulva lactuca. Food Ind. R. 2017, 38, 144–148 (in Chinese).

[28] Balzarini, J.; Hatse, S.; Vermeire, K. Mannose-specific plant lectins from the Amaryllidaceae family qualify as efficient microbicides for prevention of human immunodeficiency virus infection. Antimicrob. Agents Chemother. 2004, 48, 3858–3870.

[29] Ivanova, V.; Rousева, R.; Kolarova, M.; Serkedjieva, J.; Rachev, R.; Manolova, N. Isolation of a polysaccharide with antiviral effect from ulva-lactuca. Prep. Biochem. Biotechnol. 1994, 24, 83–97.

[30] Shi, Q.; Wang, A.; Lu, Z.; Qin, C. Overview on the antiviral activities and mechanisms of marine polysaccharides from seaweeds. Carbohydr. Res. 2017, 453–454, 1–9.

[31] Damonte, E. B.; Matulewicz, M. C.; Cerezo, A. S. Sulfated seaweed polysaccharides as antiviral agents. Curr. Med. Chem. 2004, 11, 2395–2419.

[32] Zhang, Y.; Cen, Y. Z.; Huang, R. M. Preliminary study on antiviral activity of seaweed polysaccharides from the South China Sea. J. Virol. 2006, 22, 282–285.

[33] Zou, M. M. S. Dissertation. Jinan University. Guangzhou, China, 2015 (in Chinese).

[34] Wu, F. M. S. Dissertation. Jinan University. Guangzhou. China, 2018 (in Chinese).

[35] Zhang, K.; Mu, L. The separation and purification of seaweed polysaccharide sulfate and its antitumor effect. Clin. J. Chin. Med. 2016, 8, 31–32 (in Chinese).

[36] Yago, L.; Ramón, I. R.; Noemi, G. L.; Pablo, A. Porphyromonas gingivalis lipopolysaccharide-induced peroxiditons and serum amyloid-beta peptides. Arch. Oral Biol. 2019, 99, 120–125.

[37] Dong, W.; Wang, S.; Chen, X. Research Progress on the Mechanism of Resveratrol in the Prevention and Treatment of Alzheimer’s Disease. Chin. J. Mod. Appl. Pharm. 2018, 35, 153–156 (in Chinese).

[38] Gao, W.; Yuan, M.; Zeng, Q. Effect of Heshouwu Granule on Learning and Memory and miRNA-101 Expression in a Rat Model of Alzheimer’s Disease. J. Hunan Univ. Chin. Med. 2018, 38, 33–37 (in Chinese).

[39] Qian, L.; Qian, L.; Wang, G. Effects of Rhodolia on Learning and Memory Ability and Hippocampal MAPKs Pathway in Alzheimer’s Disease Model Rats. Chin. J. Gerontol. 2018, 38, 172–175 (in Chinese).

[40] Zhao, Q.; Yao, Y.; Zheng, P. Effects of Astragaloside IV on Oxidative Stress Level and Protein Expression of NADPH Oxidase in Lipopolysaccharides Induced Alzheimer’s Mice Model. J. Ningxia Med. Univ. 2018, 40, 7–10 (in Chinese).

[41] Huang, Y.; Huang, X.; Tang, H. Learning and memory abilities in mice with Alzheimer’s disease after pre-intragastric infusion of Centelila asiatica water decoction. Shandong Med. J. 2018, 58, 47–50 (in Chinese).

[42] Zhao, D. Analysis of the Protective Effect of Icarin on Nerve Cells in Rats with Alzheimer’s Disease Inflammation. Guide China Med. 2018, 16, 29–30 (in Chinese).

[43] Liu, Q.; Wang, S.; Ding, K. Research advances in the treatment of Alzheimer’s disease with polysaccharides from traditional Chinese medicine. Chin. J. Nat. Med. 2017, 15, 641-652.

[44] Shu, Y.; Yu, Z.; Zhang, J. Progress on the correlation between inflammation and Alzheimer’s disease. J. Xinxiang Med. Univ. 2018, 35, 93–96 (in Chinese).

[45] Tang, C.; Cao, G.; Ye, Y. Effect of Sargassum fusiforme Polysaccharide on the Ethology and Expressions of Bcl-2 and Bax in Brain Tissue for Alzheimer’s Disease Rat model. Chin. Arch. Tradit. 2012, 30, 1832–1834 (in Chinese).

[46] Basavajka, D. R.; Biyani, C. S.; Browning, A. J. The role of urinary kidney stone inhibitors and promoters in the pathogenesis of calcium containing renal stones. EAU EBU Update Series. 2007, 5, 126-136.

[47] Ratkalkar, V. N.; Kleinman, J. G. Mechanisms of Stone Formation. Clin Rev Bone Miner Metab. 2011, 9, 187–197.

[48] Bhadja, P.; Lunagariya, J.; Ouyang, J. M. Seaweed sulphated polysaccharide as an inhibitor of calcium oxalate renal stone formation. J. Funct. Foods. 2016, 27, 685–694.

[49] Melo, T.; Rachel, K.; Camara, G. Evaluation of Sulfated Polysaccharides from the Brown Seaweed Dictyopteris Justii as Antioxidant Agents and as Inhibitors of the Formation of Calcium Oxalate Crystals. Molecules 2013, 18, 14543–14563.

[50] Veena, C. K.; Josephine, A.; Preeatha, S. P. Physico-chemical alterations of urine in experimental hyperoxaluria: a biochemical approach with fucoidan. J. Pharm. Pharmacol. 2010, 59, 419–427.

[51] El Kaoutari, A.; Armougom, F.; Gordon, J. I.; Raoullet, D.; Henrissat, B. The abundance and variety of carbohydrate-active enzymes in the human gut microbiota. Nat. Rev. Microbiol. 2013, 11, 497–504.

[52] Sonnenburg, E. D.; Sonnenburg, J. L. Starving our Microbial Selves: The Deletious Consequences of a Diet Deficient in Microbiota-Accessible Carbohydrates. Cell Metab. 2014, 20, 779–786.

[53] Shang, Q.; Jiang, H.; Cai, C.; Hao, J.; Li, G.; Yu, G. Gut microbiota fermentation of marine polysaccharides and its effects on intestinal ecology: An overview. Carbohydr. Polym. 2018, 179, 173–185.

[54] Song, S.; Li, M.; Wang, Z. Restoration effect of Sea Cucumber polysaccharides on intestinal microbiota disorder in mice. Chin. J. Microbiol. 2019, 31, 1023–1026.