Identification of the Genomic Insertion Site of Pmel-1 TCR α and β Transgenes by Next-Generation Sequencing

Yun Ji1*, Natalie Abrams2, Wei Zhu1, Eddie Salinas2, Zhiya Yu3, Douglas C. Palmer3, Parthav Jailwala2, Zulmarie Franco3, Rahul Roychoudhuri3, Eric Stahlberg2, Luca Gattinoni1*, Nicholas P. Restifo3*

1 Experimental Transplantation and Immunology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America, 2 Advanced Biomedical Computing Center, Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America, 3 Surgery Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America

Abstract
The pmel-1 T cell receptor transgenic mouse has been extensively employed as an ideal model system to study the mechanisms of tumor immunology, CD8+ T cell differentiation, autoimmunity and adoptive immunotherapy. The ‘zygosity’ of the transgene affects the transgene expression levels and may compromise optimal breeding scheme design. However, the integration sites for the pmel-1 mouse have remained uncharacterized. This is also true for many other commonly used transgenic mice created before the modern era of rapid and inexpensive next-generation sequencing. Here, we show that whole genome sequencing can be used to determine the exact pmel-1 genomic integration site, even with relatively ‘shallow’ (8X) coverage. The results were used to develop a validated polymerase chain reaction-based genotyping assay. For the first time, we provide a quick and convenient polymerase chain reaction method to determine the dosage of pmel-1 transgene for this freely and publically available mouse resource. We also demonstrate that next-generation sequencing provides a feasible approach for mapping foreign DNA integration sites, even when information of the original vector sequences is only partially known.

Introduction
Transgenic animal models are indispensable resources for studies of gene function and disease. Their construction often involves large bacterial or yeast artificial chromosomes, which are used to assemble the transgene [1]. Unfortunately, many transgenic lines remain poorly characterized, and the method for generating these transgenic animals (i.e. the injection of genetic material into the pro-nucleus of a fertilized egg) results in the random integration of foreign transgenic DNA into the genome [1]. Generally transgenic animals are commonly evaluated by Southern blot to determine gene incorporation [1]. Southern blotting can also provide a rough estimate of copy number, but does not indicate zygosity. The site of integration, the possibility of rearrangements of the transgene and potential deletions of non-lethal native DNA at the site of integration remain unknown for most transgenic lines. It is worth noting here that transgenes may tend to integrate into sites of active gene transcription. Furthermore, many non-lethal sites of integration can disrupt or alter the function of genes that although non-lethal but key to physiologic functions [1]. Thus, random and unknown integration of transgenes can affect the behavior of transgenic mice in unpredictable ways [1].

To minimize ‘unknown unknowns’ and to design optimal breeding schemes or evaluate dosage effects of transgenic animals, it is necessary to identify the site of integration, which is generally only one, and also distinguish heterozygotes from homozygotes because zygosity can affect the behavior of transgenic mice. Ideally, the method employed need to be rapid and easy. Fluorescence in situ hybridization (FISH) [2], as currently practiced, is not as ‘high throughput’ or as straightforward as polymerase chain reaction (PCR) to determine zygosity of transgenic lines as it is slower, more expensive and labor-intensive.

PCR provides an optimal and reliable assay for the purpose of managing mouse breeding colonies, but is only feasible if the genomic integration site is known. Various methods have been currently employed to identify the integration sites of foreign DNA fragments in the genome. Among them, inverse PCR is the most commonly used but its feasibility is limited unless optimal restriction enzyme for digesting the inserted fragment is available [3]. Splinkerette PCR is another approach, which was originally developed to amplify the genomic DNA between a known restriction site and a target gene [4], and later adapted to map the insertion sites of retroviral integrating sites in the mouse genome [5]. Alternatively, a more conventional method could be employed by multiple steps of cloning and sub-cloning plus FISH, Southern blot, library construction, screening and sequencing [6]. All together, these methods are very laborious and cost-ineffective, seriously limiting the progress of mapping transgenic insertion sites.
The pmel-1 mouse was developed as a model system for studying the treatment of malignant melanoma using adoptive cell therapy [7]. The target antigen, pmel-17, is an ortholog of the melanocyte differentiation antigen gp100, which is often overexpressed in human melanomas [8]. Adoptive transfer of transgenic T cells expressing the gp100-specific T cell receptor (TCR) from pmel-1 mice can effectively mediate the regression of large established tumors when administered in combination with a lymphodepleting preconditioning regimen [9–13], exogenous γc cytokine [7,9,14–18], and vaccination with the cognate antigen [7,15,19,20]. Pmel-1 mouse now is available from the Jackson laboratory (http://www.jax.org).

Recent clinical success of T cell-based cancer immunotherapy [21–27] has resulted in a surge in demand for the pmel-1 mouse as an ideal model system to study the mechanism of tumor immunology, CD8+ T cell differentiation, and adoptive immunotherapy [28–59] Moreover, pmel-1 mice have been increasingly employed to study autoimmune vitiligo [7,60–64] and uveitis [61,63,65]. The pmel-1 mouse was generated using two transgenic vectors, which contained variable domains of the endogenous TCR as described previously [7] (Figure S1). To design an efficient breeding scheme with other transgenes, it is essential to identify the zygosity status of the pmel-1 transgene. However, the highly identical and repetitive nature of transgenic TCR α and β chains with the endogenous loci and the large size of the construction vectors made it especially daunting to determine the integration site with established methods. Currently, determination of whether a mouse that is genotypically positive for the pmel-1 transgene is homozygous or heterozygous relies on observation of Mendelian inheritance rules, which is a time-consuming and labor-intensive process.

Here we propose an alternative strategy to identify pmel-1 genomic integration site(s) based on shallow next-generation sequencing (NGS) of the entire transgenic mouse genome. Recently, a transgenic insertion site was identified by using a combination of microarray hybrid capture and NGS analysis [66]. This approach can be very useful when the sequence of a transgene is known, which is not applicable for the pmel-1 case. In this study, we applied the NGS to analyze the pmel-1 genome and successfully identified the integration site of pmel-1 TCR α and β transgenes. This information allowed us to design PCR assay to easily distinguish heterozygous from homozygous animals. The results obtained by PCR were consistent with previous observation that pmel-1 homozygous or heterozygous CD8+ T cells can be distinguished by different tetramer staining efficiency, confirming the results obtained from the NGS data analysis.

Methods

Ethics statement

The care and use of all mice in this study was carried out with the approval of the National Cancer Institute Animal Use and Care Committee (protocol # SB-126).

Mice

Pmel-1 (B6.Cg-Thy1/Cy Tg(TcraTcrob)9ReSt/F) were obtained from the Jackson Laboratory.

Antibodies and flow cytometry

We purchased all FACS antibodies from BD Biosciences Flow cytometry acquisition was performed on a BD FACS Canto I or BD FACS Canto II flow cytometer. Samples were analyzed with FlowJo software (Tree Star).

Genomic DNA sample preparation

Genomic DNA (gDNA) was extracted from pmel-1 homozygous transgenic animal tail with OmniPrep for Tissue (G BIOSCIENCES) following the manufacturer’s instruction. Genomic DNA was analyzed by nanodrop and agarose gel to verify the quality (O.D. 260/280 ratio is more than 1.8) and quantity (1 ug for library construction).

Illumina library preparation and sequencing

Sequencing was done on Illumina HiSeq 2000 using TruSeq v3 chemistry at the Center for Cancer Research sequencing facility, SAIC-Frederick/FNLCR, Frederick, MD. The gDNA sample was sequenced on one individual lane with paired-end read length of 101 bp. Raw data was processed and basecalling performed using the standard Illumina pipeline (CASAVA version 1.8.2 and RTA version 1.8.70.0).

Illumina data quality control

Over three hundred million (2*157,554,381) pass-filter reads were generated. Quality control analysis of the sequencing reads was conducted using the in-house Illumina QC 08.08.2012 workflow, which is based on FastQC (http://www.bioinformatics. babraham.ac.uk/projects/fastqc) and Picard (picard.sourceforge.net) software tools. The description of the workflow is available at http://crrlix.cancer.gov/apps/site/workflows_for_bioinformatics_analysis. Over 84% of all pass-filter reads had a Basecall quality score above 30, while library complexity was over 81% for Pmel-1 libraries. Mapping to reference mouse genome (mm9) has shown that more than 75% read aligned uniquely with low mismatch error rate (1–1.2%).

Illumina read mapping and analysis

Reference-guided assembly was performed using Bowtie [67,68]. To detect discordant read pairs, all reads that passed the standard Illumina chastity filter were aligned to the mouse nuclear and mitochondrial genomes (mm9, http://genome.ucsc.edu) using Bowtie version 2.0.0-beta7 and allowing for two mismatches per read (bowtie2-2.0.0-beta7/bowtie2 —un —un-conc unconc.txt —al conc alconc.txt —met-file mets.txt -x genome -l read_unconc.1.fastq -2 read_unconc.2.fastq -S map.sam). The “—un-conc ” option was used to capture read pairs that could not be aligned to the reference genome concordantly. These discordantly mapped read pairs (unconc.txt) were passed on to SVDetect and DELLY for structural variant detection.

In parallel, we also used Bowtie to detect soft-clipped reads associated with the insertion site. This time Bowtie was used in a "local" alignment mode (-l), which doesn’t require that reads align end-to-end (bowtie2-2.0.0-beta7/bowtie2 —un un.txt —al al.txt —un-conc unconc.txt —al conc alconc.txt —met-file mets.txt -x genome -l read_R1.fastq -2 read_R2.all.fastq -S map.sam). This way the reads were “soft-clipped” at one or both ends to optimize alignment score and allow for local alignment. This approach identified several subsets of “split reads”, which had either both ends mapped to different genomic locations or only a portion of the read mapped to the genome reference.

Structural variation detection using DELLY

We used two DELLY modules, DELLY-DUPS and DELLY-JUMPY using default parameters. DELLY-DUPS extracts data from a reference sequence file and a sequence alignment (BAM) file and outputs filtered lists of predicted structural variations (SVs), their genomic coordinates, and confidence scores as a tab-
separated text. DELLY-DUPS runs yielded hundreds of candidate duplication sites, which were captured in a VCF (Variant Call Format) file. This candidate SVs were filtered by supporting evidence filters (read quality and genotype) and then ranked by normalized high-quality read count ("RC") for each predicted duplication variant. After excluding the first two candidates associated with mitochondrial chromosomes and repeats, the top candidate duplication was placed near a TCR region on chromosome 14. Because the reads were mapped to the reference genome, these "duplications" appear to be located on chromosomes 6 and 14, in the vicinity of TCR regions. DELLY-JUMPY generated hundreds of candidate translocations that were filtered by average mapping quality and then ranked by the number of supporting split-reads and by the location identified by DELLY-DUPS.

SVDetect analysis of chromosome-spanning read pairs

Quality-filtered discordant (spanning) read pairs were analyzed using SVDetect to identify regions associated with structural rearrangements (SRs). The software was run at default setting. Top-scoring SVDetect-filtered read pairs were reviewed and filtered manually to remove: SRs with too few or many supporting reads (fewer than 5 or larger than 16); SRs mapping to centromeres or the mitochondrial chromosome; SRs with multiple adjacent rearrangements. The insertion site boundaries were supported by eight read pairs spanning chromosomes 2 and 6 and five pairs spanning chromosomes 2 and 14. The exact insertion site was confirmed by the presence of split reads that were soft-clipped at one or both ends to optimize alignment score and allow for local alignment.

Genotyping PCR

Genomic DNA was extracted with QuickExtract DNA extraction solution 1.0 (EPICENTRE). PCR was performed under standard conditions. Primers used were Ch2Pmel-F1: ctttagctctccgagcagcttg; Ch2Pmel-R1: gcaatgagctgattataaatg; PmelTCR-R1: gtacgtttgaaggtgctgag. Ch2Pmel-F1 and Ch2Pmel-R1 amplify a transgenic band of 308 bp. Ch2Pmel-F1 and PmelTCR-R1 amplify an endogenous band of 203 bp.

Results

Tetramer analysis distinguishes the zygosity status of pmel-1 mice

Currently, the identification of the zygosity status of pmel-1 transgene is based on deducing the breeder genotype by Mendelian inheritance rules. Interestingly, we discovered that gp100 D6 tetramer staining enable to distinguish pmel-1 homozygous from heterozygous CD8+ T cells. There were no notable differences of intensity or frequency between homozygous and heterozygous cells stained with the antibody specific for the Vβ13 chain of pmel-1 TCR (Figure 1, upper panel). However, both frequency and intensity of tetramer+ T cells were reduced in homozygous compared to heterozygous pmel-1 T cells (Figure 1, lower panel). Although this observation allow us to distinguish pmel-1 homozygous or heterozygous, the requirements of FACS analysis of naïve CD8+ T cells, the cost of tetramers, and the inability to perform this type of assay reliably on neonatal mice limit the application of this method.

Figure 1. Pmel-1 TCR tetramer staining distinguishes the gene dosage of pmel-1 transgene in CD8+ T cells. Staining of pmel-1 heterozygous or homozygous CD8+ T cells with antibodies recognizing pmel-1 TCR β chain Vβ13 (upper panel) or tetramers recognizing pmel-1 TCR (lower panel).
doi:10.1371/journal.pone.0096650.g001

Determination of the pmel-1 integration site by low-coverage whole genome sequencing

We performed shallow NGS of the pmel-1 homozygous mouse, which produced 8X coverage of the genome, to identify the transgenic insertion site. Since the pmel-1 transgene contained multiple tandem copies of mouse endogenous TCR domains [7], we used this information to streamline our analysis strategy. Notably, knowing the exact integrative cassette sequence was not a prerequisite for the identification of the integration site. Although this partial knowledge of the transgene origin has facilitated the validation of the integration site.

To identify candidate integration site, we searched for evidence of structural variations such as tandem duplications and translocations based on discordant NGS reads pairs. To that end, we first aligned paired-end Illumina reads from whole-genome sequencing to the reference mouse genome using Bowtie in global (reads align end to end) and local modes (reads are soft-clipped) (Figure 2). From the global alignment, only uniquely and discordantly mapped read pairs (4,092,067 reads or 2.6%) were retained for the subsequent analyses. These read pairs were analyzed further using the SVDetect [69] and DELLY (PMID: 22962449) software to identify potential structural variants (SVs). These SV candidates were filtered to remove predictions associated with repeats, mitochondria, centromeres, and intra-chromosomal rearrangements and then ranked based on confidence scores. After filtering, the top candidate duplication was placed near a TCR region on chromosome 14, while a duplication associated with a TCR region on chromosome 6 was ranked 23rd.

These duplications appear to be located on chromosomes 6 and 14 because sequence reads were mapped to the reference genome, which does not have tandem copies of TCR domains. These findings confirmed our expectations and provided us with way to identify junction read pairs bridging these regions and the area surrounding the yet unknown insertion site. Since we anticipated that in pmel-1 both regions immediately adjacent to the insertion site might have been derived from endogenous TCR regions on
chromosomes 6 and 14, our next goal was to find these discordant read pairs that aligned partially to these TCR loci.

These filters narrowed thousands of SVDetect and DELLY-JUMPY predictions down to several candidate structural variants supported by discordant junction read pairs. Subsequently we used these junction read pairs as well as soft-clipped reads generated by local alignment to identify the exact genomic coordinates of the integration site. This step was done by manually inspecting local alignment files using the Integrative Genomics Viewer (IGV) [70,71]. Our results showed that the top candidate insertion site was supported by 13 discordant read pairs and 5 soft-clipped reads (Figure 3). In Figure 3A, these reads flank the area in the reference genome that corresponds to the insertion site in the pmel-1 genome. Figure 3B shows five junction reads that aligned partially to chromosome 2 and partially to α or β chain regions on chromosomes 14 and 6, which harbor the respective endogenous TCR loci in the reference genome. The insertion site is located in the 3’UTR region of the gene Stk39, which encodes a serine/threonine kinase that may function in the cellular stress response pathway [72].

The pmel-1 insertion is accompanied by a 157-bp deletion (chr2: 68,208,872–68,209,029 bp). Such deletions are common in transgenic mice [73,74]. The left side insertion boundary (chr2: 68,208,872 bp) was supported by 8 discordant read pairs and 4 soft-clipped reads mapped partially to the β sequence and partially to chromosome 2 (Figure 3B, 3C). In contrast, the right-side boundary was supported by 5 discordant read pairs and 1 soft-clipped read aligned with the α sequence and chromosome 2, consistent with insertion at 68,209,029 bp (Figure 3B). The insertion area is bounded by a 5-bp duplicated sequence (TGGAT) on the right and by a 7-bp duplicated sequence (CCAGCAG) on the left, which are identical between the regions on chromosome 2 and the α and β TCR sequences. Such homologous regions are thought to facilitate chromosomal rearrangements that accompany a transgene insertion.

Figure 2. NGS data analysis workflow. This chart depicts the analysis of NGS data from Whole Genome Sequencing. In this analysis, standard tools for small structural variation detection were used to predict large insertions based on short paired-end (2*100 bp) sequence reads. Both SVDetect and DELLY extract data from a reference sequence file and a sequence alignment (BAM) file and generate filtered lists of predicted structural variations, their genomic coordinates, and confidence scores as a tab-separated text. Downstream steps, such as data visualization, cross-sectioning and ranking of SVs were done in the Integrative Genomics Viewer and Excel.

doi:10.1371/journal.pone.0096650.g002
Confirmation of the integration sites by PCR analysis

The identification of the potential integration site of TCR β chain at 68,208,872 bp on chromosome 2 allows us to design three primers for PCR genotyping analysis, which are located at the 5′ and 3′ of the integration site, and also at the 3′ of the integrated pmel-1 TCR β chain transgenic vector junction site, respectively (Figure 4A). According to the design, we would observe a single 308 bp band from the PCR products of homozygous pmel-1 transgenic animals and a single 203 bp band from wild type animals while both the 203 bp and the 308 bp bands would appear from heterozygous animals. Consistent to our expectations, we observed distinctive PCR bands with the exact predicted size (Figure 4B). Furthermore, the transgene dosage determined by the PCR analysis was consistent to the conclusions drawn from the tetramer staining analysis (Figure 1), further corroborating that the integration site resolved by whole-genome sequencing data analysis was correct.

Discussion

In this study, we identified the genomic integration site of pmel-1 TCR α and β transgenes by performing the NGS of pmel-1 genome. Based on the predicted integration site, we further designed a fast and convenient PCR method to distinguish pmel-1...
transgene dosage. The conclusions made from PCR genotyping assay are consistent with the results obtained by FACS analysis of pmel-1 T cells and prediction based on Mendelian inheritance rules, confirming the validity of the integration sites identified by NGS analysis.

The alignment results are consistent with a pattern of tandem integration of the vectors for both pmel-1 TCR α chain and β chain. To estimate how many copies of α and β sequences were inserted into each transgenic animal genome, we calculated the mean coverage for the entire genome as well as α and β regions on chromosomes 14 and 6, respectively. The genome coverage was estimated as 8X, while the insert copy numbers are 16X and 4X for α and β cassettes, respectively. Except for a few gaps, most vector sequences appear to be integrated into the pmel-1 genome. Therefore, we proposed a model for the potential layout of the transgene in the genome (Figure 4C).

The identification of pmel-1 genomic integration site will not only greatly facilitate the genotyping for researchers employing the pmel-1 model system, but also allow a more efficient and effective breeding scheme design. Many researchers breed pmel-1 transgenic mouse with other transgenic strains to evaluate the function of other transgenes that are involved or potentially involved in T cell development or function. However, previously all the breeding schemes were designed blindly and the certainty of obtaining desired progeny is susceptible to risk. The identification of the insertion site can also prevent futile attempts to breed pmel-1 with transgenes knockout animals where the relevant gene of interest is actually located very close to the pmel-1 transgene on chromosome 2. Thus, identification of the integration site can prevent unnecessary losses of time and resources.

In our system we have demonstrated the possibility of identification of transgene integration site with little information of the original design of transgenic animals. In principle, with the advances in whole genome sequencing technology, this method can be applied to characterize all other transgenic animals [66]. Furthermore, NGS data of the genomic DNA can be further used for genome comparison, another alternative choice for animal genetic background test besides microsatellite test. In this study, we

Figure 4. PCR analysis distinguishes the homozygosity or heterozygosity of pmel-1 transgene. (A) Diagram of PCR primers designed from the predicted pmel-1 TCR β transgene insertion site on chromosome 2. (B) PCR results of pmel-1 homozygous or heterozygous animals. (C) Conceptual model of tandem integration of the pmel-1 α and β chains in the genome.

doi:10.1371/journal.pone.0096650.g004
focused on the identification of the pmel-1 integration site, but NGS can also indicate details about the genetic background of the mice, such as their similarity to other mice on the ‘C57BL/6’ background. This information can be used to understand mechanisms underlying immune rejection as well as host and donor compatibility. The sequences for pmel-1 genomic DNA have been deposited to NCBI Short Read Archives (SRA) and free for the public access, which will provide significant value to the transgenic mice genome studies.

Data Visualization
The Integrative Genomics Viewer (IGV) [70,71] and SAMtools were used for data visualization [75].

Data Access
Read sequence data has been submitted to the NCBI Short Read Archive (SRA) under accession number SRP037973 and BioProject accession No. PRJNA238124.

References
1. Schneider MR, Wolf E (2005) Genotyping of transgenic mice: old principles and recent developments. Anal Biochem 344: 1–7.
2. Abrahams BS, Chong AC, Nisha M, Milette D, Brewster DA, et al. (2003) Metaphase FISHing of transgenic mouse recommended: FISH and SKY define BAC-mediated transduction. Genesis 36: 134–141.
3. Cooley L, Kelley R, Spradling A (1986) Insertional mutagenesis of the Drosophila genome with single P elements. Science 239: 1121–1128.
4. Devos RS, Porteous DJ, Brookes AJ (1995) Splinkerettes—improved vectorettes for greater efficiency in PCR walking. Nucleic Acids Res 23: 1644–1645.
5. Uren AG, Mikkers H, Koel J, van der Weyden L, Land AH, et al. (2009) A high-throughput splinkerette-PCR method for the isolation and sequencing of retroviral insertion sites. Nat Protoc 4: 789–796.
6. Ohigashi I, Yamazaki Y, Hirasawa T, Tsuchikawa Y (2010) Identification of the transgenic integration site in immunodeficient tg(plus)palio26 human CD3epsilon transgenic mice. PLoS One 5: e13491.
7. Overwijk WW, Theoret MR, Finkelstein SE, Surman DR, de Jong LA, et al. (2003) Tumor regression and autoimmunity after reversal of a functionally tolerant state of self-reactive CD8+ T cells. J Exp Med 198: 569–580.
8. Overwijk WW, Tsung A, Levine KR, Parkhurst MR, Gorets T, et al. (1998) gp100/pmelt17 is a murine tumor rejection antigen: induction of "self"-reactive, tumoricidal T cells using high-affinity, altered peptide ligand. J Exp Med 188: 237–256.
9. Gattinoni L, Finkelstein SE, Klebanoff CA, Antony PA, Palmer DC, et al. (2005) Removal of homeostatic cytokine sinks by lymphodepletion enhances the efficacy of adoptively transferred tumor-specific CD8+ T cells. J Exp Med 202: 907–912.
10. Wrzesinski G, Paulos CM, Gattinoni L, Palmer DC, Kaiser A, et al. (2007) Hematopoietic stem cell promotion the expansion and function of adoptively transferred antitumor CD8+ T cells. J Clin Invest 117: 492–501.
11. Wrzesinski G, Paulos CM, Kaiser A, Muranskii P, Palmer DC, et al. (2010) Increased intensity lymphodepletion enhances tumor treatment efficacy of adoptively transferred tumor-specific CD8+ T cells. J Immunother 33: 1–7.
12. Salem ML, Diaz-Montero CM, Al-Khami AA, El-Naggar SA, Naga O, et al. (2009) Recovery from cyclophosphamide-induced lymphopenia results in expansion of immature dendritic cells which can mediate enhanced prime-boost vaccination antitumor responses in vivo when stimulated with the TLR3 agonist poly(IC). J Immunol 182: 2030–2040.
13. Wang LX, Li R, Yang G, Lim M, O’Hara A, et al. (2005) Interleukin-7 dependent expansion and persistence of melanoma-specific T cells in lymphodepleted mice lead to tumor regression and editing. Cancer Res 65: 10569–10577.
14. Wrzesinski G, Finkelstein SE, Surman DR, Lichtman MK, Gattinoni L, et al. (2004) IL-15 enhances the in vivo antitumor activity of tumor-reactive CD8+ T cells. Proc Natl Acad Sci U S A 101: 1969–1974.
15. Gattinoni L, Kaiser A, Palmer DC, Muranskii P, Ji Y, et al. (2011) Determinants of successful CD8+ T-cell adoptive immunotherapy for large established tumors in mice. Clin Cancer Res 17: 5343–5352.
16. Zeng R, Spolski R, Finkelstein SE, Oh S, Kovanen PE, et al. (2005) Synergy of IL-21 and IL-15 in regulating CD8+ T cell expansion and function. J Exp Med 201: 139–148.
17. Brennjes RJ, Davilla ML, Riviere I, Park J, Wang X, et al. (2013) CD19-targeted T cells rapidly induce molecular remissions in adults with chemotherapy-refractory acute lymphoblastic leukemia. Sci Transl Med 5: 177ra138.
18. He H, Wiener P, Yang G, Hu HM, Haley D, et al. (2006) Combined IL-21 and low-dose IL-2 therapy induces anti-tumor immunity and long-term curative effects in a murine melanoma tumor model. J Exp Med 204: 24.
19. Palmer DC, Balasubramaniam S, Hanada K, Wrzesinski G, Yu Z, et al. (2004) Vaccine-stimulated, adoptively transferred CD8+ T cells traffic indiscriminately and ubiquitously while mediating specific tumor destruction. J Immunol 173: 7209–7216.
20. Lou Y, Wang G, Lizee G, Kim GJ, Finkelstein SE, et al. (2004) Dendritic cells strongly boost the antitumor activity of adoptively transferred T cells in vivo. Cancer Res 64: 6783–6790.
21. Grupp SA, Kalos M, Barrett D, Aplenc R, Porter DL, et al. (2013) Chimeric antigen receptor-modified T cells for acute lymphoid leukemia. N Engl J Med 368: 1509–1518.
22. Porter DL, Levine BL, Kalos M, Bagg A, June CH (2011) Chimeric antigen receptor-modified T cells in chronic lymphoid leukemia. N Engl J Med 365: 725–733.
23. Rosenberg SA, Yang JC, Sherry RM, Kammula US, Hughes MS, et al. (2011) Durable complete responses in heavily pretreated patients with metastatic melanoma using T-cell transfer immunotherapy. Clin Cancer Res 17: 4530–4537.
24. Robbins PF, Morgan RA, Feldman SA, Yang JC, Sherry RM, et al. (2011) Tumor regression in patients with metastatic synovial cell sarcoma and melanoma using genetically engineered lymphocytes reactive with NY-ESO-1. J Clin Oncol 29: 917–924.
25. Kochenderfer JN, Dudley ME, Carpenter RO, Kassim SH, Rose JJ, et al. (2013) Donor-derived CD19-targeted T cells cause regression of malignancy persisting after allogeneic hematopoietic stem cell transplantation. Blood 122: 4129–4139.
26. Chupp AG, Ragavarsson GI, Nguyen HN, Chaney CN, Puflick JS, et al. (2013) Transferred WT1-reactive CD8+ T cells can mediate antileukemic activity and persist in post-transplant patients. Sci Transl Med 5: 174ra127.
27. Radchenyi LG, Bernatchez C, Zhang M, Fox PS, Miller P, et al. (2012) Specific lymphocyte subsets predict response to adoptive cell therapy using expanded autologous tumor-infiltrating lymphocytes in metastatic melanoma patients. Clin Cancer Res 18: 6758–6770.
28. Gattinoni L, Klebanoff CA, Palmer DC, Wrzesinski G, Kristman K, et al. (2005) Acquisition of full effector function in vitro paradoxically impairs the in vivo antitumor efficacy of adoptively transferred CD94+ T cells. J Clin Invest 115: 1616–1626.
29. Gattinoni L, Klebanoff CA, Restifo NP (2012) Paths to stemness: building the ultimate antitumour T cell. Nat Rev Cancer 12: 671–684.
30. Gattinoni L, Zong XS, Palmer DC, Ji Y, Hinrichs CS, et al. (2009) Wnt signaling arrests effector T cell differentiation and generates CD8+ memory cells. Nat Med 15: 808–813.
31. Hinrichs CS, Borman ZA, Cassard L, Gattinoni L, Spolks R, et al. (2009) Adoptively transferred effector cells derived from naive rather than central memory CD8+ T cells mediate superior antitumor immunity. Proc Natl Acad Sci U S A 106: 17469–17474.

Supporting Information
Figure S1 Diagrams of original constructs for generating pmel-1 transgenic animals. (A) Pmel-1 TCR α transgenic vector. The variable region of TCR α were cloned between Xmal and Not I sites. (B) Pmel-1 TCR β transgenic vector. The variable region of TCR β were cloned between Xho I and Sac II sites. (TIF)

Acknowledgments
This study utilized the high-performance computational capabilities of the Biowulf Linux cluster at the National Institutes of Health, Bethesda, MD (http://biowulf.nih.gov). For statistical analysis and bioinformatics support, we thank the CCRIFX Bioinformatics Core operated by Leidos Biomedical Research and supported by the Intramural Research Program of the Center for Cancer Research, National Cancer Institute, NIH (YT-10-060).

Author Contributions
Conceived and designed the experiments: YJ LG NPR. Performed the experiments: YJ ZF DCP ZY. Analyzed the data: YJ NA WZ E. Salinas JJ RR E. Stahlberg. Wrote the paper: YJ NA LG NPR.

Figure S1 Diagrams of original constructs for generating pmel-1 transgenic animals. (A) Pmel-1 TCR α transgenic vector. The variable region of TCR α were cloned between Xmal and Not I sites. (B) Pmel-1 TCR β transgenic vector. The variable region of TCR β were cloned between Xho I and Sac II sites. (TIF)
32. Hinrichs CS, Spolicky R, Paulos CM, Gattinoni L, Kerstann KW, et al. (2008) IL-2 and IL-21 confer opposing differentiation programs to CD8+ T cells for adoptive immunotherapy. Blood 111: 5326–5333.
33. Ji Y, Pos Z, Rao M, Klebanoff CA, Yu Z, et al. (2011) Repression of the DNA-binding inhibitor Ikaros by Blimp-1 limits the formation of memory CD4+ T cells. Nat Immunol 12: 1230–1237.
34. Klebanoff CA, Gattinoni L, Torabi-Parizi P, Kerstann K, Cardones AR, et al. (2005) Central memory self/tumor-reactive CD8+ T cells confer superior antitumor immunity compared with effector memory T cells. Proc Natl Acad Sci U S A 102: 9571–9576.
35. Sukumar M, Liu J, Ji Y, Subramanian M, Crompton JG, et al. (2013) Inhibiting binding inhibitor Id3 by Blimp-1 limits the formation of memory CD8+ T cells. Blood 111: 5326–5333.
36. Hinrichs CS, Kaiser A, Paulos CM, Cassard L, Sanchez-Perez L, et al. (2009) Priming of naive CD8+ T cells for adoptive immunotherapy of cancers in lymphodepleted hosts. Cancer Res 70: 6725–6734.
37. Lu Y, Hong B, Li H, Zheng Y, Zhang M, et al. (2014) Tumor-specific IL-15-producing CD8+ T cells with superior effect than type-I cytotoxic Tc1 cells for adoptive immunotherapy of cancers. Proc Natl Acad Sci U S A.
38. Paulos CM, Wrzesinski C, Kaiser A, Hinrichs CS, Chieppa M, et al. (2007) Effector memory T cells display enhanced antitumor immunity. Blood 111: 5326–5333.
39. Koya RC, Mok S, Otte N, Blacketor KJ, Comin-Anduix B, et al. (2012) BRAF inhibitor vemurafenib improves the antitumor activity of adoptive cell immunotherapy in mice. Clin Cancer Res 18: 1939–1949.
40. Kerkar SP, Goldszmid RS, Muranuk P, Chinnasamy D, Yu Z, et al. (2011) IL-12 triggers a programmatic change in dysfunctional myeloid-differented cells within mouse tumors. J Clin Invest 121: 4735–4747.
41. Quatromoni JG, Wang Y, Vo DD, Morris LF, Jazirehi AR, et al. (2012) T cell tumor infiltration by TLR4 signaling. J Clin Invest 117: 2197–2204.
42. Kaluza KM, Kottke T, Diaz RM, Rommelfanger D, Thompson J, et al. (2012) CD4+ T cells maintain effector and memory tumor-specific CD8+ T cells for adoptive immunotherapy of cancers. Proc Natl Acad Sci U S A.
43. Amos SM, Pegram HJ, Westwood JA, John LB, Devaud C, et al. (2011) Use of microarray hybrid capture and next-generation sequencing to identify the transgene integrity and expression. Mamm Genome 18: 693–708.
44. Palmer DC, Chan CC, Gattinoni L, Wrzesinski C, Paulos CM, et al. (2008) Effective tumor treatment targeting a melanoma/melanocyte-associated antigen triggers severe ocular autoimmunity. Proc Natl Acad Sci U S A 105: 8061–8066.
45. Rashighi M, Agarwal P, Richmond JM, Harris TH, Dresser K, et al. (2014) CXCL11 is Critical for the Progression and Maintenance of Depigmentation in a Mouse Model of Vitiligo. Sci Transl Med 6: 223ra223.
46. Langmead B, Trapnell C, Pop M, Salzberg SL (2009) Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol 10: R25.
47. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, et al. (2009) The Sequence Alignment/Map format and SAMtools. Bioinformatics 25: 2078–2079.
48. Zeitouni B, Boeva V, Janoueix-Lerosey I, Loeillet S, Legoix-Peyrolé P, et al. (2010) SVDetect: a tool to identify genomic structural variations from paired-end and mate-pair sequencing data. Bioinformatics 26: 1893–1896.
49. Robinson JT, Thorvaldsdottir H, Winckler W, Guttman M, Lander ES, et al. (2011) Integrative genomics viewer. Nat Biotechnol 29: 202–206.
50. Zeitouni B, Boeva V, Janoueix-Lerosey I, Loeillet S, Legoix-Peyrolé P, et al. (2010) Use of microarray hybrid capture and next-generation sequencing to identify the anatomy of a transgene. Nucleic Acids Res 41: e70.
51. Chim Y, Wang J, Palmer DC, et al. (2006) Sensitization to self-proteins in tumors across major histocompatibility barriers. Blood 112: 4746–4754.
52. Palacios M, Amos SM, Hegde S, Li H, Handsaker B, et al. (2011) Integrative genomics viewer. Nat Biotechnol 29: 202–206.
53. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, et al. (2009) The Sequence Alignment/Map format and SAMtools. Bioinformatics 25: 2078–2079.