A Theoretical Perspective on Strategies for Modeling High Performance Nonlinear Optical Materials

Rehana Bano1, Maria Asghar2, Khurshid Ayub2, Tariq Mahmood2,3, Javed Iqbal4,5, Sobia Tabassum6, Rozalina Zakaria7 and Mazhar Amjad Gilani8*

1School of Chemistry, University of the Punjab, Lahore, Pakistan, 2Department of Chemistry, COMSATS University, Abbottabad Campus, Abbottabad, Pakistan, 3Department of Chemistry, College of Science, University of Bahrain, Zallaq, Bahrain, 4Department of Chemistry, University of Agriculture, Faisalabad, Pakistan, 5Punjab Bio-energy Institute, University of Agriculture, Faisalabad, Pakistan, 6Interdisciplinary Research Centre in Biomedical Materials (IRCBM), COMSATS University Islamabad, Lahore Campus, Lahore, Pakistan, 7Photonics Research Centre, Faculty of Science, University of Malaya, Lembah Pantai, Malaysia, 8Department of Chemistry, COMSATS University Islamabad, Lahore Campus, Lahore, Pakistan

Nonlinear optical (NLO) materials have spanned a large area of science and technology owing to their potential applications in optoelectronics. The invention of the first Ruby laser has sparked a fresh interest in the area of nonlinear optics. The computational designing and experimental synthesis of organic and inorganic NLO materials with higher order nonlinearities come into vogue in the field of materials science. To date, several strategies including metal ligand framework, push pull mechanism, diradical character, and so on have been devised to enhance the NLO response of materials. In addition, introduction of diffuse excess electrons is an efficient approach to design noncentrosymmetric materials for nonlinear optics. The current review highlights a systematic array of different computational studies (covering the last decade of intensive research work) for the theoretical designing of NLO materials. In the present review, theoretical designing from the simplest NLO material to the complex alkali, alkaline earth, transition, and superalkali doped nanomaterials is summarized. The emergence of excess electrons strategy has played a pivotal role in enhancing the NLO properties especially hyperpolarizabilities. We expect that this review will provide a better understanding of the NLO responses of nanoclusters, paving the way for the advancement of hi-tech NLO materials to meet the real challenges in optoelectronics.

Keywords: nonlinear optical materials (NLO), fullerenes, hyperpolarizability, electrides, alkalides

INTRODUCTION

Nonlinear optics is a new and versatile branch of science that describes the light-matter interaction when induced polarization nonlinearly depends on external electric and magnetic fields (Boyd, 2020; Shen, 1984). Nonlinear optical (NLO) phenomenon arises when a material generates electromagnetic radiations of varying phase, amplitude, and frequency during its propagation on interaction with electromagnetic fields (Tessore et al., 2018). The NLO effect is produced when strong electrical fields under high intensity laser beams interact with matter. In 1960, the invention of the first Ruby laser by Maiman sparked fresh interest in the field of nonlinear optics (Maiman, 1960).
Franken et al. also complemented this phenomenon by observing the second harmonic generation (SHG) effect in quartz crystals (Franken et al., 1961). The simple manifestations of nonlinear optics include intensity-dependent light refraction and absorption (Majumdar et al., 2020; Wang et al., 2018). The formation of solitons (Z. Luo et al., 2015), power restriction of absorption (Majumdar et al., 2020; Wang et al., 2018). The optics include intensity-dependent light refraction and dynamic image processing (Van Steenwinckel et al., 2001), addition, nonlinear optics have remarkable applications in optical switches (Biswal et al., 2019; W. Li et al., 2014). In (Stucky et al., 1989), beta-barium borate (β-BaB$_2$O$_4$) (Girisun et al., 2018a), modulators (Grote et al., 2002), and optical switches (Biswal et al., 2019; W. Li et al., 2014). In addition, nonlinear optics have remarkable applications in dynamic image processing (Van Steenwinckel et al., 2001), sensing (Ray, 2010), high resolution imaging (Miller et al., 2002), optical computing (Hutchinson and Milburn, 2004), optical fiber communication (Arivuoli, 2001), optical data storage (Iliopoulos et al., 2010), and materials analysis (Y. R. Shen, 1989). The biological applications in the field of NLO microscopic imaging (Huff et al., 2008; Wang et al., 2009) or photodynamic therapy (Kachynski et al., 2014) are also of great interest. Some major applications of nonlinear optical materials are represented in Figure 1.

Bulk crystals such as potassium titanyl phosphate (KTP) (Stucky et al., 1989), beta-barium borate (β-BaB$_2$O$_4$) (Girisun et al., 2017), and lithium iodate (LiIO$_3$) (Kumar et al., 2010a; Kumar et al., 2010b) are currently used as commercial nonlinear media. NLO materials have covered a vast area of science and technology and many scientists are working on their exploration in various fields of optoelectronics. The increase in the number of publications year after year, approaching almost 570 papers in 2021, is evidence of the considerable efforts in the field of nonlinear optics. A bar graph showing the number of publications for the last 5 years is shown in Figure 2. The current state of technology necessitates a strong demand for on-chip integration of photonic and optoelectronic devices.

Background of Nonlinear Optics

The history of nonlinear optics can be traced by the work of John Kerr on carbon disulfide (CS$_2$) crystals. He observed the alteration in the refractive index by induced quadratic electric field (E) and this phenomenon is known as the electro-optic Kerr effect (Kerr, 1879). In 1883, a similar but linear electric field effect was also observed in quartz and is now known as Pockel’s effect (Burland, 1994). These nonlinear phenomena were only used in a limited way until the laser was invented in 1960, followed by the discovery of the second harmonic generation in quartz (Maiman, 1960; Franken et al., 1961). Based on these developments, the area of nonlinear optics exploded in the 1960s, with Bloembergen’s pioneering research into the complete range of NLO responses of different materials (Armstrong et al., 1962; Ducuing and Bloembergen, 1964). A. D. Buckingham and co-workers have added a key contribution in developing understanding of NLO processes at the atomic and molecular levels (Buckingham and Orr, 1967).

The basic sources of microscopic hyperpolarizabilities were studied in depth during the 1970s. In 1973, the transmission of stationary NLO pulses in dispersive dielectric fibers was observed by Hasegawa et al. (Buckingham and Orr, 1967). The experimental methodologies for measuring these molecular nonlinearities, and fabricating novel crystals that could be useful in second-harmonic production and optoelectronic modulation have been devised (Gibbs et al., 1976; Mollenauer et al., 1980; Cirilo et al., 2010). In the early 1990s, second and third order NLO responses in atoms and small molecules were calculated and measured in the gas phase by David Shelton and Julia Rice (Shelton and Rice, 1994). David et al. worked on identification of chromophores with higher order optical nonlinearities using a range of electronic structural models and computational approaches (Kanis et al., 1992, 1994). This literature demonstrates that advanced computational methodologies on isolated atoms and molecules might help us to understand the origin of nonlinear processes and to contribute toward the designing tools for forecasting their features. Currently, a majority of the NLO work is focused on the causes, processes, and applications of NLO materials.

Basic Principle of Nonlinear Optics

Nonlinear optics illustrate the light-matter nonlinear relationship in a medium under the intense light beam (laser) and electromagnetic fields (Becker, 1998). On propagation of light through a medium, the valence electrons produce a charge transfer relative to the atoms in the medium under the action of induced electric field and results in medium polarization (P). The relationship between polarization intensity of medium and electric field strength of the incident light can be expressed as in Equation 1.

$$P = \epsilon_0 \chi^{(1)} E + \epsilon_0 \chi^{(2)} E^2 + \epsilon_0 \chi^{(3)} E^3 + \ldots$$ \hspace{1cm} (1)
Here, \(P \) is the macroscopic polarization strength, \(E \) is applied electric field strength, \(\epsilon_0 \) is vacuum dielectric constant, \(\chi^{(1)} \) is the first order linear susceptibility, \(\chi^{(2)} \) is the second order nonlinear susceptibility, and so on. At the microscopic level, Equation 1 can be written as

\[p = \alpha E + \beta E^2 + yE^3 + ... \] (2)

Here, \(p \) is the microscopic polarization intensity of a molecule under electric field, \(\alpha \) is the polarizability, \(\beta \) is first hyperpolarizability, \(y \) is the second hyperpolarizability, and so on. In the presence of a weak electric field, higher order susceptibilities (from the second term and so on) can be neglected. As a result, polarization and electric field strength \((P = \epsilon_0 \chi E) \) have a linear response making linear optics possible.

Under the action of intense laser light, higher order susceptibilities from second to onward cannot be neglected. Therefore, NLO phenomenon occurs when the medium microscopic polarization \(p \) and macroscopic polarization \(P \) are nonlinearly proportional to the \(E \) (strength of the applied electric field). As a result, higher order NLO effect (second order NLO, third order NLO effect, and so on) have been observed in materials.

NLO response is not the property of all systems. In centrosymmetric systems, the induced polarization is the same in all directions and has no NLO response. Therefore, hyperpolarizability is zero in all directions in such systems. While in the case of non-centrosymmetric systems, the restoring force is determined by the charges of displaced electrons. The direction and amount of the applied electromagnetic field will also influence the induced polarization. As a result, materials that can generate an asymmetric wave can also produce an NLO response. Non-centrosymmetry is a basic requirement for a system to show an NLO response (Fan et al., 2010; Luo et al., 2018). All kinds of non-centrosymmetric systems exhibit NLO effects, but in order to obtain their potential applications, they must have a maximum nonlinearity at low power. Therefore, the researchers have focused on designing novel materials with a higher order NLO response.

STRATEGIES FOR ENHANCEMENT OF NLO RESPONSE

A revolution in electronics is on the horizon with the uprising of two unique domains including spintronics and molecular electronics. Single-molecule magnets in spintronics can be used to establish a basic link between these two domains (Bogani and Wernsdorfer, 2010). Molecular optics may result by intriguing development in optics since the implementation and development of NLO materials at the molecular level. The NLO molecules can be used to make macroscopical NLO materials (Cheng et al., 1991; Delaire and Nakatani, 2000).

Due to the discovery and diverse applications of nonlinear optics, the researchers are focused on improving the NLO response of various inorganic and organic materials by using a variety of strategies. To date, several approaches for tuning the NLO response of materials have been established. These include electron donor to accepter push–pull mechanisms, designing octupolar molecules, introducing diffuse excess electrons, using multi-decker sandwich clusters, applying bond length alteration theory, designing metal organic frameworks (MOFs), and so forth. Some of these are listed here.

Electron Push–Pull Mechanism

The electron push-pull strategy was first introduced by Zyss and his co-workers (Zyss and Ledoux, 1994). This approach is primarily employed for organic chromophores especially stilbenes, porphyrins, paracyclophanes (Vijayakumar et al., 2008; Orbelli Biroli et al., 2011), and so on. The structure of such organic compounds is a major contributor toward the development of NLO response. When the donor-acceptor...
groups are connected via π-bonding, a conjugated (D-π-A) system is formed. This system is referred to as a push-pull mechanism based system because of the intermolecular charge transfer (ICT) from donor to acceptor (linked through π-bonding), which leads to induction of polarization under the presence of light and electric field. The best example of such NLO chromophores is DANS (4-[N,N-dimethylamino]-4'-nitrostilbene) which shows an intramolecular charge transfer (ICT) (Vijayakumar et al., 2008). It has an electron donor dimethylamino group (-$N(CH_3)_2$) and nitro group (-NO_2) as electron acceptor with trans-stilbene as π-conjugated bridge as shown in Figure 3. Vijayakumar et al. observed that planar conformations would result in increased NLO activity (435.41 $\times 10^{-31}$ esu), but a departure from planarity results in decreased NLO activity (285.16 $\times 10^{-31}$ esu).

Paracyclophane (pCP) is an important building block for complexes in which D-A substituents interact via a sterically restricted (π-π) stack. In 2000, Zyss et al. observed the experimental and theoretical quadratic hyperpolarizability tensor (60 $\times 10^{-30}$ esu) of dipolar 4-(4-dihexylaminostyryl)-16-(4-nitrostyryl)[2.2]paracyclophane for the first time. The collective electron oscillator (CEO) approach was used to confirm collective nonlinear polarization involving the entire end-to-end molecular structure (Zyss et al., 2000). Since then, paracyclophanes are serving as novel NLO candidates in various fields. Recently, the NLO response of [2.2]paracyclophane based polymers has been investigated theoretically (Ivonina et al., 2020).

The NLO properties of a series of diacetylene-functionalized organic molecules (DFOM) with D-π-A stacking have been computed. These complexes were designed by structural tailoring of newly synthesized BDDA (4,4'-buta-1,3-diyl-1,4-diyli) diamine) chromophores. The involvement of extended conjugation and charge transfer character have been explored via different DFT methods. The enhanced NLO response ($\beta \approx 2.5 \times 10^4$ au) of the designed diacetylene-functionalized organic complexes reflected that these complexes could serve as better NLO candidates (Khalid et al., 2019). The development of novel synthetic and theoretical techniques leads to more diverse substitution patterns of porphyrin rings because it widens the potential applicability in nonlinear optics. In this regard, NLO response of a series of substituted zinc(II) porphyrinates with $-N(CH_3)_2$ as donors and $-NO_2$ as electron acceptors has been investigated. The experimental and theoretical investigation of a series of 5,15 push–pull meso-diaryldiazinc(II) porphyrinates with $-OCH_3$ or $-N(CH_3)_2$ as donors and $-COOH$ or $-COOCH_3$ as electron acceptors in DMF and chloroform have been explored (Orbelli Biroli et al., 2017). Their NLO response was determined using the electric-field-induced second-harmonic generation technique.

Metal Ligand Framework

Metal organic frameworks, a fascinating class of hybrid NLO materials, have resulted by altering the central metal atom or adjusting the organic linkers (with different functional groups) as compared to traditional organic and inorganic NLO crystals. According to a recent research on ZIF-8 (zeolitic imidazolate) framework (Van Cleuvenbergen et al., 2016), it is observed that ZIF-8 has a strong SHG signal that is similar to the inorganic crystals of K_2P$_4$. A theoretical investigation on the structures and exploration of NLO response of experimentally synthesized Zr-based UiO-66 MOFs with BDC (1,4-benzene-dicarboxylate) linkers and its substituents ($-NH_2$, $-OH$, $-SH$, and halogen atoms) has been carried out to reveal the effect of ligand functionalization on NLO properties (Ni et al., 2020).

Recently, the NLO response of titanium-based MIL-125 MOFs (crystals) has been investigated using DFT calculations. In this MOFs, the BDC linkers have been altered either by extending the BDC ligands or by substituting various functional groups as in MIL-126 and MIL-127. It was observed that the NLO response especially SHG intensity has been improved on introducing substituent groups into the BDC linker (Ni et al., 2019). These findings are helpful for developing novel NLO materials with higher performance.

Diradical Character

Diradical character is an efficient approach for the enhancement of NLO response of open-shell singlet systems (Nakano et al., 2004, 2007; Nakano et al., 2006b). The chemical systems with intermediate diradical character exhibit greater NLO response (hyperpolarizabilities) than pure or closed shell diradical systems. The cause of this reliance has been speculated by using the VCI (valence configuration interaction) approach for H_2 model (two-site diradical system) (Nakano et al., 2006b) and a linear H_4 model for tetraradical systems (Nakano et al., 2012). Several DFT calculations have been performed to investigate the relationship between hyperpolarizabilities and diradical character (y) of singlet diradical systems such as p-quinodimethane (PQM) molecule (Nakano et al., 2005), polycyclic diphenalenyl radicals (Ohta et al., 2007), graphene nanoflakes (Nakano et al., 2008), and imidazole ring based diradical systems (Nakano et al., 2006a; Qiu et al., 2008). Apart from these studies, a comparison of NLO response of cyclic/linear acenes vs. phenylenes has reflected a distinct enhancement in the tetraradical nature of cycloacenes as well as their second hyperpolarizabilities ($\gamma_{xxxx} \approx 10^4$ au) (Muhammad et al., 2013). These theoretical predictions have been observed in the TPA (two-photon absorption) analysis of experimentally synthesized diphenalenyl diradical compounds (Kamada et al., 2007), hepta-octazethrenes (Li et al., 2012), and benzannulated Chichibabin’s hydrocarbons (Zeng et al., 2012), as well as in the THG (third harmonic generation) effect of BDPI-2Y (1,4-bis-(4,5-diphenylimidazole-2-ylidene)cyclohexa2,5-diene) (Kishida et al., 2017).
et al., 2010). Muhammad et al. theoretically observed the dependence of NLO response on the diradical character of various fullerenes (C_{20}, C_{26}, C_{30}, C_{36}, C_{40}, C_{42}, C_{48}, C_{60}, and C_{70}). It was observed that C_{20}, C_{60}, and C_{70} were closed-shell systems while others were intermediate and open-shell systems. The larger second order hyperpolarizabilities were observed for fullerenes with intermediate diradical character such as C_{40} have shown \(\gamma_{zzzz} \) up to 43.44 \times 10^3 au. Similarly, the NLO responses of diradical character based various buckyferrocenes have been explored at the molecular level. The closed-shell buckyferrocenes were \((\text{CpFe})_2\eta^5\text{C}_{60}\text{Me}_{10}\) and \((\text{CpFe})_2\eta^5\text{C}_{70}\text{Me}_{10}\), intermediate open-shell singlets were \((\text{CpFe})_2\eta^5\text{C}_{70}\text{Me}_8\) \((\text{CpFe})_2\eta^5\text{C}_{30}\), and \((\text{CpFe})_2\eta^5\text{C}_{70}\text{Me}_4\) while others were purely open shell based complexes. The largest third order NLO response (\(\beta_{zzzz} \approx 10^7\) au) was observed for \((\text{CpFe})_2\eta^5\text{C}_{70}\) buckyferrocenes with intermediate diradical character (Muhammad et al., 2015). These findings show that diradical character has enhanced the NLO response of complexes and served as a suitable approach for obtaining high performance NLO materials.

EXCESS ELECTRONS STRATEGY

Introduction of excess electrons into various systems is a novel approach that remarkably enhances their NLO properties. The NLO response of organic and inorganic systems can be boosted by excess electrons. In 2004, Li et al. introduced a new potential class of NLO materials with diffuse excess electrons for the first time (Li et al., 2004). They investigated theoretically the nonlinear optical response of \((\text{FH})_2\eta^6\text{e}^-\) clusters with the highest hyperpolarizability of \(8.1 \times 10^6\) au. Similarly, first hyperpolarizability (\(\beta \approx 10^7\) au) of excess electron bound water trimer anion \((\text{H}_2\text{O})_3^-\) was extremely larger than molecular cluster of water trimer \((\text{H}_2\text{O})_3\) itself (W. Chen et al., 2004). These results indicate that the excess electrons have a potent role in improving the nonlinear optical features. A dispersive orbital is occupied by the diffuse excess electrons, which is in a Rydberg-like state. The nonlinear optical susceptibilities of a Rydberg atom or molecule are extremely high in the gas phase, as evidenced by available experimental data and theoretical studies (Manykin, 2002). The significant impact of excess electrons on clusters’ hyperpolarizability opened new possibilities for the design and preparation of innovative NLO molecular materials. Doping of metal atoms (alkali, alkaline, transition) on complexants is an efficient approach to obtain excess electrons compounds (Ahsan and Ayub, 2020b; Munsif et al., 2018; Rad and Ayub, 2018c; Sun et al., 2017a). Electrides, alkalides, alkaline earthides, coinage metalides, and superalkalides are the various classes of excess electron compounds that show remarkable NLO response. A general representation for alkalide, alkaline earthide, and coinage metalide complexes is shown in Figure 4.

Electrides

Electrides are a representative type of diffuse excess electron compounds that have a great possibility to serve as NLO materials. They are formed when valance electrons of metal atom are pushed by complexants and become excess electrons in the system. Dye et al. synthesized the first electride Cs+ \(\text{e}^-\) as an excess electron system in 1983 (Ellaboudy et al., 1983; Dawes et al., 1986). In 2005, Chen et al. theoretically investigated the NLO response of \((\text{HCN})_n\)-Li and Li-(\text{HCN})_n (n = 1, 2, 3) electrides for the first time (W. Chen et al., 2005b). The 2s valence electrons of Li have become excess electrons by the interaction of a Li atom and (HCN)_n. Since then, many alkali metal based electride complexes with larger NLO response have been investigated. Electrides include cup-like Li@calix [4]pyrrole (W. Chen et al., 2005b), M@pyrrole (M = Li, Na, and K) (Yu et al.,

FIGURE 4 | A general representation of alkalide, alkaline earthide, and coinage metalide complexes.
TABLE 1 | Some excess electron based electride complexes with enhanced NLO response.

Complex	Hyperpolarizability (au)	Software	Level of theory	References
Li@calix [4]pyrrole	7.3 x 10^3	Gaussian	B3LYP/6-311++G for (C,H,N)	W. Chen et al. (2005b)
M_2O_O(e@C_{20}F_{20})^-	1.3 x 10^4	Gaussian	CAM-B3LYP/6-311+G(d)	J.-J. Wang et al. (2012)
K@Ir6-Zn12O12	1.0 x 10^2	Gaussian	LC-BLYP/6-311+G(d)	S. Khan et al. (2021b)
Li@NB_{12}F_{12}	6.3 x 10^4	Gaussian	CAM-B3LYP/6-311+G(d) (2days,2p)	Ullah et al. (2019a)
Li@B_{12}O_{12}	3.4 x 10^4	Gaussian	LC-BLYP/6-311+G(d)	H. L. Xu et al. (2007)
Li~H~(CF_2~CH_2)_3~H	7.7 x 10^4	Gaussian	MP2/6-31+G(d) for (C,H,F)	H.-L. Xu et al. (2011)
K-TIMA	1.1 x 10^7	Gaussian	MP2/6-31+G(d) for (C,H,N)	Muhammed et al. (2009)
Li@B_{12}H_{14}	2.3 x 10^7	Gaussian	MP2/6-31+G(d)	Y.-F. Wang et al. (2014)
Li@H_3C_{2}N_2--Ca	2.7 x 10^7	Gaussian	MP2/6-311+G(3df, 2pd)	N. Hou et al. (2018c)
Li@F_{6}C_{6}H_{6}	7.1 x 10^5	Gaussian	MP2/6-31+G(d)	Srivastava, (2020)
C_6Li--K	5.4 x 10^6	Gaussian	CAM-B3LYP/6-311+G(d)	Ullah et al. (2020a)
C_6Li--LiO	9.9 x 10^5	Gaussian	ωB97XD/6-311+G(d)	Li et al. (2009b)
K_2–TCNQ^-	3.0 x 10^4	Gaussian	ROMP2/6-311++G(2days,2p)	

FIGURE 5 | Superalkali based alkalides of LiO^+(calix [4]pyrrole)M^- and M_2O^+(calix [4]pyrrole)K^- complexes. Reprinted from W. M. Sun et al., 2014 with permission from Copyright (2014) American Chemical Society.
opened a fresh approach for developing innovative alkalides (W. Chen et al., 2005a). The alkalide complexes of Li+ (calix [4] pyrrole)K+ (W. Chen et al., 2006; Sun et al., 2013) and (M+@nºadz)M− (n = 2, 3, M, M′ = Li, Na, and K) (F.-F. Wang et al., 2008) with larger NLO response have been reported. Similarly, theoretical studies on smaller alkalides Li+(NH3)4M+ were explored (Jing et al., 2006). It was observed that the NLO response of smaller alkalides was four times larger than larger organic Li+(calix [4]pyrrole)M− alkalides (Jing et al., 2006). A series of alkaline earth based alkalides M(NH3)6NaCl and M(NH3)6Na2− (M = Mg and Ca), with the highest hyperpolarizability up to 123,050 au have been explored theoretically (W.-M. Sun et al., 2015). Theoretical exploration of the NLO response of a new series of superalkali based alkalides Li+(calix [4]pyrrole)M+, Li3O+(calix [4]pyrrole)M+, and M2O+(calix [4]pyrrole)K− (M = Li, Na, and K) has been carried out via DFT calculations with the highest first hyperpolarizability up to 34,718 au (W. M. Sun et al., 2014). The superalkali based alkalides are shown in Figure 5.

Similarly, superalkali (Li3F,Li3O, Li,N, and Li3) doped (aza222)K alkalides with enhanced NLO response have been investigated theoretically (W.-M. Sun et al., 2016b). Coinage metal (Cu, Ag, and Au) based alkalides of (M@3ºadz)M− have been investigated via DFT calculations and exhibit enhanced NLO responses (W. M. Sun et al., 2017a). A theoretical investigation of Li3F superalkali based alkalides FLi3−LiiLiiF (M = Li, Na, and K) has been carried out (Srivastava and Misra, 2015b). The negative charge on the sandwiched alkali metal atoms confirmed their alkali nature. The mean hyperpolarizabilities of these stable superalkali based alkalides are up to 106 au and hence may serve as better NLO candidates. The NLO response of Li3O based alkalides OLi3−OLi3 (M = Li, Na, and K) have been observed theoretically for the first time (Srivastava and Misra, 2017a). The sandwiched Li, Na, and K metal atoms bear a negative charge donated by excess electrons of superalkalids. The highest NLO response of 1.9 × 104 au is observed for OLi3-K-OLi3 at C2v symmetry.

Recently, a series of novel alkalides M′−1M− (M, M′ = Li, Na, K) of a facially polar C6H4F6 molecule (C6H4F6 = 1-all-cis-1,2,3,4,5,6-hexafluorocyclohexane) has been investigated theoretically (Sun et al., 2017b). These alkalides show remarkable NLO response with the highest hyperpolarizability of 1.45 × 106 au. These findings were a tour de force of NLO materials and paved the way to new possibilities for designing stable alkalides. The NLO response (hyperpolarizability) of some excess electron based alkalides is listed in Table 2.

Alkaline Earthides

Alkaline earthides are novel excess electron compounds in which electron acceptors are alkaline earth metals (alkaline earth anion) in place of alkali metals. They show very large NLO response and have partial p-electrons participation in excess electron formation, unlike alkalides in which partial s-electrons participate. Development of negative charge on alkaline earth metals in the presence of alkali metals is more difficult due to their ns2 (closed shell) electronic configuration and their weak electron affinity. As a result, selecting the right complexant to stabilize the alkali metal cation and alkaline earth metal anion at the same time is critical. One such alkaline earth organic system Li−1-M (1 = C6H4F6 (all-cis-1,2,3,4,5,6-hexafluorocyclohexane) with Be, Mg, and Ca as an electron acceptor has been reported (Hou J. et al., 2018). Sajjad et al. carried out theoretical investigation of thermally stable alkaline earthides of M′−1-M′ (1 = C6H4F6 (all-cis-1,2,3,4,5,6-hexafluorocyclohexane). These complexes have large NLO response with the highest hyperpolarizability up to 4.14 × 106 au (Sajjad et al., 2020).

Ahsan et al. theoretically investigated the NLO response of two series of a novel organic M′2(2ºAdz)M− (M′ = Be, Mg and Ca) alkaline earthides. These complexes show remarkable NLO response up to 1.0 × 106 au (Ahsan and Ayub, 2020a). Zhu et al. reported alkaline-earthides of Li(NH2)4M (M = Be, Mg, Ca) based on a cage-like complexant. These complexes have an Li+ cation near the center of the complexant and the alkaline-earth anion is present outside. These alkaline earthides exhibit larger NLO response up to 8.01×106 au and could be considered as novel NLO molecules (Zhu et al., 2019). Another example of alkaline earthide complexes based on hexaamine complexant M′+ (NH3)6M− (M′ = Li, Na, K; M′ = Be, Mg, Ca) that show larger NLO have been investigated by Ahsan et al. (Ahsan and Ayub, 2020b). These complexes have remarkable NLO response up to 6.4 × 106 au and were thermodynamically stable. Recently, the NLO response of superalkali containing alkaline earthides M2O−1−1-M− (1 = C6H4F6, M′ = Be, Mg, Ca, and M′ = Li, Na, and K) has been explored. The highest first hyperpolarizability is up to 5.2 × 106 au and shows that designed complexes would have potential applications in optoelectronics (Bano et al., 2022).

Table 2 | Nonlinear optical response (hyperpolarizability) of excess electron based alkalide complexes.

Complex	Hyperpolarizability (au)	Software	Level of theory	References
Li+(calix [4]pyrrole)K+	2.4 × 104	Gaussian	B3LYP/6-311++G	Chen et al. (2006)
(K+@2ºadz)K−	3.2 × 105	Gaussian	B3LYP/6-311++G	F.-F. Wang et al. (2008)
Li+(NH3)6M−	1.8 × 105	Gaussian	B3LYP/6-311++G	Jing et al. (2006)
Ca(NH3)6NaCl	1.2 × 106	Gaussian	CAM-B3LYP/6-311++G	W.-M. Sun et al. (2015)
K2O+(calix [4]pyrrole)K+	3.4 × 104	Gaussian	CAM-B3LYP/	W. M. Sun et al. (2014)
OLi3−OLi3	1.9 × 104	Gaussian	MP2/6-311 + G (d,d)	Srivastava and Misra, (2017)
Coinage Metalides

Coinage metalides are new representatives of excess electron compounds in which coinage metal atoms [copper (Cu), silver (Ag), and gold (Au)] serve as excess electron acceptors. The ns\(^1\) valence-electron configurations and higher electron affinities (EA) were main features of coinage metal atoms than alkali metal atoms. Therefore, it is highly expected that the coinage metal atoms would be used to produce a new type of stable NLO material. In this regard, designing of a series of all-cis-1,2,3,4,5,6-hexafluorocyclohexane based M\(^{+}\)-I-M\(^{-}\) (I = Cs\(_{6}\)F\(_{16}\), M\(^{+}\) = Cu, Ag, and Au and M = Li, Na, and K) complexes have been investigated theoretically. These complexes were thermodynamically stable due to stronger electrostatic interactions. All these coinage metalides possess remarkably enhanced NLO response up to 90,220 au (X.-H. Li et al., 2020a).

Superalkalides

The excess electron compounds in which a superalkali bears the anionic site are termed superalkalides. The larger volume of superalkalides than alkalides results in loosely binding of excess electrons to the superalkali core. It results in a more diffuse and readily polarized electron density distribution of complexes. Therefore, superalkalides might be responsible for the enhancement of NLO response. It is more difficult to locate an acceptable complexant to synthesize superalkalides due to the more loosely bounded nature of excess electron in superalkalis. The complexant in superalkalides must be highly resistive toward reduction. In 2015, the designing of the first superalkalides M\(^{+}\)(en)\(_2\)M\(^{3+}\)O\(^-\) (en = ethylenedi amine; M\(^{+}\) = Li, Na, and K) was carried out by the aid of ab initio calculations. These superalkalides were stabilized by the presence of hydrogen bonds and have remarkable NLO response (Mai et al., 2015). Similarly, designing superalkalides L-M-L-M\(^{3+}\)O (L, C\(_6\)H\(_6\)F\(_6\)) has been investigated theoretically (B. Li et al., 2018). It was observed that designed superalkalides L-M-L-M\(^{3+}\)O were thermodynamically more stable than their respective alkalides. Moreover, these superalkalides possess larger NLO response up to 1.31 \(\times\) 10\(^5\) au for L-Li-L-LiO complex and would be useful candidates for high performance NLO materials.

Supersalts

Supersalts in combination with superhalogens result in the formation of supersalts such as Li\(_3\)O, Cs\(_2\)NO\(_3\), and Cs\(_2\)Cl (superalkalides) in combination with BeF\(_3\), BeF\(_3\), and NO\(_3\) (superhalogens) constitute supersalts (Giri et al., 2014). Wang et al. theoretically observed superhalides of (Li\(_3\))(\(^{+}\))\(^{-}\)(SH)\(^{-}\) (SH = LiF\(_2\), BeF\(_3\), and BF\(_3\)). These superalkali-superhalogen compounds have special characteristics of low vertical ionization energy, delocalized \(\sigma\) bonding orbital on the Li\(_3\) ring and are electrides or alkalides in nature (F. Wang et al., 2006). The theoretically calculated bond energies of Li\(_3\)-B-X (X = F, LiF\(_2\), BeF\(_3\), BF\(_3\)) supersalts are up to 220.6 kcal/mol with enhanced NLO response ranging from 5166.5 to 17,791 au (Li et al., 2008). Similarly, the supersalts of BF\(_3\)-M (M = Li, FLi\(_2\), OLi\(_3\), NLi\(_4\)) have been investigated theoretically (Yang et al., 2012). The NLO response and binding energies of these ionic compounds are also higher than pure superhalalides.

EXCESS ELECTRON BASED SYSTEMS IN NONLINEAR OPTICS

Many organic and inorganic excess electron based NLO materials have been designed theoretically. Doping is an efficient approach to enhance the NLO response of various systems including cyclacene (Xu et al., 2009), calix [4] pyrrole (W. Chen et al., 2006), organic and inorganic fullerenes (Ahnsan et al., 2021; S.; Liu et al., 2019; Shakerzadeh et al., 2016a; Ullah et al., 2020b), phosphorenes, B\(_3\)H\(_14\) baskets (Muhammad et al., 2009), cyclic polyamines (Li et al., 2009a), fluorocarbons (H. L. Xu et al., 2007), and so forth.

Fullerenes

Kroto et al. invented fullerene, a third allotropic form of carbon, in 1985 and were awarded the Nobel prize in 1996 for fullerene discovery (Kroto et al., 1985; Lopez et al., 2011). Fullerenes are sp\(^2\) hybridized polyhedral carbon cages with resonating \(\pi\) electrons (Haymet, 1985; Haddon et al., 1986). Fullerenes exist in a variety of shapes, including hollow spheres, ellipsoids, and tubes depending on the amount of carbon atoms in them, for example, C\(_{20}\), C\(_{60}\), and C\(_{70}\) (Wakabayashi and Achiba, 1992; Ortiz-Saavedra et al., 1993; Frieringer, 1996). Bucky balls, also known as spherical fullerene (C\(_{60}\)), is a stable carbon cluster with 20 hexagons and 12 pentagons that resemble a soccer ball (Hawkins et al., 1991). It has a hollow sphere like geometry with a diameter of 7Å. It is stabilized by electron resonance and can tolerate extreme temperature and pressure conditions (Chuvilin et al., 2010). Fullerenes have attracted extensive attention in various fields including optoelectronics (Tutt and Kost, 1992), information technology (Senftleben et al., 2009), biomedical (Q. Liu et al., 2014; Markovic and Trajkovic, 2008; Stoi lova et al., 2007), etc. In the area of nonlinear optics, various classes of fullerene family such as endohedral fullerenes, exohedral fullerenes, and substituted fullerenes have been explored as in Figure 6.

Exohedral fullerenes are the most versatile fullerenes. They are formed by the doping of atoms to the outside of the fullerene cage. In this regard, LaC\(_{60}\) has been synthesized and theoretically investigated (Rosen and Wästberg, 1989; Rosen and Wästberg, 1988). The exohedral nature of fullerene was also observed in superconductive alkali fullerides general formula M\(_3\)C\(_{60}\) (M = K, Rb, Cs) (Erwin and Pickett, 1991; Pauling, 1991; Sparn et al., 1991; Novikov et al., 1992). Endohedral metallofullerenes are formed by inside doping of metal atoms to a fullerene cage. Endohedral metallofullerenes were first predicted in 1985 by the encapsulation of the La\(^{3+}\) lanthanum ion in C\(_{60}\) (Heath et al., 1985). After the macroscopic manufacture of fullerenes in 1990, rapid research of its unique features became available (Krätschmer et al., 1990a; Krätschmer et al., 1990b). Polar endohedral metallofullerenes LiC\(_{60}\) have emerged as novel nanomaterials from its first synthesis reported in 1996 (Tellgmann et al., 1996). Later on, two of its salts [Li\(^{+}\)C\(_{60}\)PF\(_6\)] and [Li\(^{+}\)C\(_{60}\)SbCl\(_6\)] have been synthesized and were confirmed by crystallographic analysis (Okada et al., 2012). A theoretical investigation on [LiC\(_{60}\)PF\(_6\)] endofullerene complex has been carried out and its spectral properties match well with...
the experimental data (Srivastava et al., 2016a). The endohedral metallofullerene complex of Li@C_{60}-PF$_6$ is resulted by the interaction of Li@C$_{60}$ with PF$_6$ superhalogen and shows a remarkable NLO response up to 1500 au. Similarly, NLO response of stable Li@C$_{60}$-BX$_4$ (X = F, Cl, Br) complexes have been explored theoretically (S.-J. Wang et al., 2013). Superalkali (Li$_2$F, Li$_3$O, Li$_4$N) entrapped C$_{60}$ endofullerenes have been investigated theoretically and a comparison of their electronic properties with Li@C$_{60}$ has been carried out (Srivastava et al., 2016). These superalkali@C$_{60}$ endofullerenes are stabilized by charge transfer from superalkali toward C$_{60}$ fullerenes and have large polarizabilities. Superalkali endofullerenes on interaction with superhalogens SA@C$_{60}$-X (SA = Li$_2$F, Li$_3$O, Li$_4$N, X = BF$_4$, BCl$_4$, and BBr$_4$) form stable endofullerene complexes (Srivastava et al., 2017). The nonlinear optical response has been computed for these complexes and the highest NLO response up to 3.2 × 104 au for Li$_2$F@C$_{60}$-BBr$_4$ has been computed. Fullerenes with encapsulated metal atoms have unique features that are not present in pristine fullerenes (A. A. Popov et al., 2013). Endohedral fullerene complexes have prospective applications in MRI contrast agents (Anilkumar et al., 2011; Zhang et al., 2007), radiotracers (Kobayashi et al., 1995), polymeric solar cells (PSCs) (Ross et al., 2009), lasers (Yakigaya et al., 2007), optoelectronics (B. Wu et al., 2015; Lee et al., 2002), and in quantum computers (Benjamin et al., 2006).

Substituted fullerenes, also known as hetero-fullerenes, have one or more carbon atom of fullerene replaced by heteroatoms. The first heterofullerene C$_{59}$B was synthesized by Gou et al., in 1991 (Guo et al., 1991). Similarly, synthesis and electronic structure of five stable metallofullerenes M$_8$C$_{12}$ (M = Ti, Zr, Hf, V) have been achieved by using anion photoelectron spectroscopy (S. Li et al., 1997). Since then, a variety of hybrid or non-carbon fullerene-like structures with varied numbers of substituted metal atoms (Al$_{12}$N$_{12}$, B$_{12}$N$_{12}$, Al$_{12}$P$_{12}$, B$_{12}$P$_{12}$ etc.) has also been reported (Akasaka et al., 1999; Billas et al., 2000; Liu et al., 2019; Paul et al., 2017) and is shown in Figure 7.

The replacement of C=C double bonds with X-Y hetero bonds is a viable technique for the development of stable heterofullerenes. The geometric, stability and electronic properties of C$_{20}$ analogous heterofullerenes X$_4$Y$_4$C$_{12}$ (X = B, Al, Ga, Si and Y = N, P, As, Ge) have been investigated theoretically (Koohi et al., 2018). The homonuclear non-carbon nanocages may include gold (Gao et al., 2014; Zheng et al., 2018a) and boron nanocages (Z. Wang et al., 2020) while nitrides and phosphides of group III and carbides of group IV are included in heteronuclear non-carbon nanocages (Tahmasebi et al., 2016). The relative stabilities of different sized nanocages have been the subject of several theoretical investigations. Fowler et al. theoretically investigated that B$_{12}$N$_{12}$ is the most stable nanocage among B$_{12}$N$_{12}$, B$_{16}$N$_{16}$, and B$_{28}$N$_{28}$ nanoclusters (Seifert et al., 1997). The first synthesis of B$_{12}$N$_{12}$ nanocluster was carried out by Oku et al. and was detected by laser desorption time-off-light mass spectrometry (Oku et al., 2004). Wu et al. explored a series of (AlN)$_n$ (n = 2–41) nanocages and concluded that Al$_{12}$N$_{12}$ inorganic fullerene is the most stable and served as a suitable NLO substrate (H.-S. Wu et al., 2003). Similarly, Beheshtian et al. explored the geometric and electronic properties of Al$_{12}$N$_{12}$, B$_{12}$N$_{12}$, Al$_{12}$P$_{12}$, and B$_{12}$P$_{12}$ fullerene like structure via DFT simulations (Beheshtian et al., 2012). These nanostructures are
semiconductor materials with a wide energy gap. Group III nitrides and phosphides with fullerene-like properties come in a variety of sizes. The geometrical, electrical, and nonlinear optical properties of these fullerene-like structures were altered on heteroatom introduction. These nanocages can be doped by various electron-based systems as shown in Figure 8.

Alkali Metal Doped Nanocages

Introduction of diffuse excess electron is an efficient approach to improve the NLO response of various systems. Alkali metals can donate excess electrons easily due to low ionization potential (Redko et al., 2005). Fullerene-like nanostructures of group II-VI and III–V (Al12N12, B12N12, Al12P12, B12P12, Be12O12, Mg12O12, Ca12O12, Si12C12, etc.) are important sources of nanoscale materials due to their potential applications as solar cells, optoelectronics quantum devices, hydrogen storage, photocatalysts, and in biomedicine (Rad and Ayub, 2018a; Zheng et al., 2018b; Ravaei et al., 2019; Zhou et al., 2019). The geometrical, electrical, and optical properties of these nanocages will be altered on the introduction of alkali metal. Niu et al. observed the alkali metal doping at various position of M@x-Al12N12 (x = b66, b64, and r6). Diffuse excess electrons of alkali metals have lowered the energy gap that led to an enhancement in NLO response of Al12N12. The highest β of 8.89×10^5 au has been obtained for Li@r6-Al12N12. It reflects that designed complexes will be applicable in hi-tech NLO materials and electronic nanodevices (Niu et al., 2014). Alkali metal doping at various position (b66, and r6) of Al12N12 nanocage is shown in Figure 9.

Alkali metal doping on Be12O12 and Mg12O12, the most viable clusters of group II-VI, has been reported. Their results show that alkali metal interaction with Be12O12 and Mg12O12 tuned up their structural and optoelectronic properties. A more pronounced NLO response was observed by exohedral doping and was larger than encapsulated ones for these metal oxide nanoclusters (Shakerzadeh et al., 2015). First synthesis of B12N12 nanocage and its detection by laser desorption mass spectrometry by Oku et al. opened new research perspectives in various fields (Oku et al., 2004). Theoretical investigation of alkali metals doped MB12N11 and MB11N12 has been carried out for their potential applications in nonlinear optics. The highest NLO response of 1.3×10^4 au for KB12N11 was obtained (Maria et al., 2016). In another work, structural stability, boundary crossing barriers, and NLO properties of alkali metals encapsulated X12Y12 nanocages (X = B, Al and Y = N, P) have been studied. A correlation existed between the size of alkali metal with adsorption energies of complexes and diameter of nanocages with the distortion energies. It was concluded that the nonlinear optical properties of alkali metal encapsulated phosphide nanocages (B12P12) were two to three times larger than those of corresponding nitride nanocages. The highest NLO response was obtained for K@B12P12 nanocage, i.e., 5.7×10^5 au due to its very low excitation energy (0.5 eV) (Ayub, 2016). In 2016, Hou et al. studied the structural and NLO response of alkali metal atoms doped B12N12 electrides via DFT simulations. It was observed that HOMO-LUMO energy gap of designed electrides was lowered by the introduction of excess electrons of alkali metals. The highest nonlinear optical response of $18,889$ au was observed in B12N12-Na isomer. The decrease in transition energy values in the range of 1.4–2.3 eV has caused the enhancement in NLO response (N. Hou et al., 2016).

Shakerzadeh and co-workers observed the electro-optical properties of Li complexation with B12N12 and B16N16 nanoclusters theoretically. It was concluded that Li complexation with boron nitride nanoclusters has significantly tuned up the nonlinear optical response with the reduction in
HOMO–LUMO energy gap. Large NLO response in the range of 2975–130,837 au reflected that the Li complexed boron nitride clusters could serve as innovative electro-optical materials (Shakerzadeh et al., 2016b). The same group observed the optoelectronic effect of alkali metals (Li, Na, and K) encapsulation on B_{12}N_{12}, Al_{12}N_{12}, Ga_{12}N_{12}, C_{24}, Si_{12}C_{12}, and Ge_{12}C_{12} nanoclusters of group III nitrides and group IV carbides. Nitride nanoclusters show remarkable NLO response than that of corresponding carbides. Optoelectronic properties of B_{12}N_{12} complexes especially hyperpolarizabilities were remarkably increased to 8505.49 au for Na@B_{12}N_{12} and 122,503.76 au for K@B_{12}N_{12} (Tahmasebi et al., 2016).

Alkali metal substituted MX_{12}P_{11} and MX_{11}P_{12} (X = B, Al) nanocages were also explored for geometric, electronic, and NLO properties investigation. Diffuse excess electrons of alkali metals (M = Li, Na, and K) have boosted up the NLO response of phosphide nanocages by the decrease in HOMO-LUMO energy gap (Maria et al., 2017). In the same year, Song et al. computed the optoelectronic properties of alkali metal doped C_{24}N_{24} nanocage by using DFT calculations. Alkali metals were doped outside (M = Li, Na, and K) and inside (M = Na and K) the nanocage at various doping positions. Alkali metal doping altered the electronic properties and orbital energy gap have lowered in both cases in contrast to pristine C_{24}N_{24}. The highest first hyperpolarizabilities obtained for M_{out}@C_{24}N_{24} and M_{in}@C_{24}N_{24} were 1242 au and 4772 au, respectively (Song et al., 2017). Stable Si_{12}C_{12} nanocage has been observed theoretically and has many applications in optical communication, optical data storage, laser devices, and optical computing (Pochet et al., 2010; Javan, 2013; Duan and Burggraf, 2015). Theoretical investigation of alkali metals (M = Li, Na, and K) doping on Si_{12}C_{12} nanocage was carried out. There was a remarkable enhancement in nonlinear optical response of M@Si_{12}C_{12} complexes as compared to pristine Si_{12}C_{12} (Solimannejad et al., 2017).

Exploring novel NLO materials is an area of scientific investigation of our recent era. In this regard, Zn_{12}O_{12} nanocage served as a stable motif with a potential for cluster materials (Reber et al., 2006). In a recent work, endohedral and exohedral doping of alkali metals on Zn_{12}O_{12} clusters at all possible sites have been carried out. The DFT results manifest that most of M@Zn_{12}O_{12} complexes were electrode in nature and thermodynamically stable. Alkali metal doped Zn_{12}O_{12} nanocages have prominent features of exothermic encapsulation superior to other inorganic nanocages with endothermic encapsulation. The energy gaps were significantly reduced with the enhancement in NLO response. The highest NLO response of 1.0 × 10^5 au was observed for K@r_{6}-Zn_{12}O_{12} complex. Third order NLO response was also computed for the designed M@Zn_{12}O_{12} electrides (S. Khan et al., 2021b). Similarly, geometric, electronic, and NLO response of endohedral and exohedral alkali metal doped Ca_{12}O_{12} electrides have been studied. The excess electrons of alkali metals have caused reduction in energy gaps of these complexes. The highest NLO response of the order of 1.0 × 10^6 au was obtained for endohedral electrides (endo-K@Ca_{12}O_{12}) (Ahsan et al., 2021).

Recently, a DFT investigation of bi-alkali metals (Li_{2}, Na_{2}, K_{2}) doped B_{12}P_{12} nanocages has proved to be an effective approach. These bi-alkali metals doped complexes were thermodynamically stable with enhanced NLO response of the order of 4.0 × 10^4 au. Non-covalent interactions and atoms in molecules analyses reflected their bonding phenomenon (Baloach et al., 2021). In other work, bi-alkali metal doped Al_{12}N_{12} nanoclusters were explored with greater stability. A remarkable enhancement in the NLO response with the reduction in HOMO-LUMO energy gap was observed. The highest hyperpolarizability of 1.2 × 10^5 au
for K₂@Nₓop−Al₂N₁₂ reflected that these bi-alkali metal doped complexes proved as potential candidates in high-tech NLO materials (Sohail et al., 2021). The highest nonlinear optical response of some alkali metal doped nanocages is listed in Table 3.

Alkaline Earth Metal Doped Nanocages

Alkaline earth metals (Be, Mg, Ca, Sr, Ba, and Ra) are also a good source of excess electrons for complexes. In this regard, alkaline earth metal oxides especially BeO and MgO are wurtzite insulators, with very high thermal conductivity and melting points (Duman et al., 2009). Nonlinear optical response of alkaline earth metals doped Be₁₂O₁₂ and Mg₁₂O₁₂ nanocluster was studied. Excess electrons of alkaline earth metals have profoundly enhanced the NLO response of Be₁₂O₁₂ and Mg₁₂O₁₂ nanocages and their HOMO-LUMO gaps were lowered. The highest hyperpolarizability of the order of 8.6 × 10⁴ au was obtained for endo-Ca@Mg₁₂O₁₂.

Hyperpolarizability trend was rationalized by two-level model calculations and 𝜌osc was also computed (Kosar et al., 2020a). In another work, alkaline earth metals doping on (XY)₁₂ (X = Al, B, and Y = P) based phosphide nanoclusters of group III has been observed theoretically. Excess electrons of alkaline earth metals have lowered the HOMO-LUMO gaps of designed complexes and enhanced NLO response. The highest hyperpolarizability of the order of 7.8 × 10⁶ au was observed in this case (Ullah et al., 2020b). Similarly alkaline earth metals doping on Al₁₂N₁₂ nanocages was carried out by using DFT calculations. It was observed that designed complexes were thermodynamically stable, and their energy gaps (G₁₁,₁) were significantly reduced. These designed complexes have the ability to serve as potential NLO candidates as they have large NLO response of 7769 au as compared to pristine Al₁₂N₁₂ (0 au) (Ullah et al., 2020c). Further exploration of NLO materials by single and multi-doping of odd number alkaline earth metals on C₂₀ fullerenes was carried out. The stable complex Ca₆@C₂₀ has the highest hyperpolarizability of 6.5 × 10⁷ au with the energy gap of 1.40 eV. These multi-alkaline earth metal doped complexes would be an ideal choice to obtain novel nanomaterials in optoelectronics (Tahir et al., 2020).

In other work, theoretical investigation of Be, Mg, and Ca (even number = 2, 4, 6) doped C₂₀ nanocluster have been carried out. The complexes were thermodynamically stable and the highest binding energy of ~241.18 kcal mol⁻¹ was observed for Be₆@C₂₀. Their energy gap (G₁₁,₁) was effectively reduced for all complexes with the lowest value of 0.82 eV for Ca₆@C₂₀ nanocluster. Their NLO response was also enhanced significantly but was lower than odd alkaline earth metal doped C₂₀ (Kosar et al., 2021b). Single and multi-alkaline earth metal atoms doping on C₄₄ fullerene have been carried out. The Be₄@C₄₄ has the highest stabilization energy of ~182.87 kcal mol⁻¹ which reflected that designed complexes are thermodynamically stable. The lowest energy gap (G₁₁,₁) of 0.83 eV for Mg₄@C₄₄ has reflected its conductive nature. Newly generated HOMO orbitals (due to excess electrons) have dramatically enhanced the NLO response up to 3.62 × 10⁶ au in the case of Mg₄@C₄₄. These results have paved the way to synthesize highly efficient optoelectronic materials (Kosar et al., 2021c).

Transition Metal Doped Nanocages

DFT investigation of second row transition metal atoms (zirconium (Zr), ruthenium (Ru), molybdenum (Mo), and palladium (Pd)) substituted C₂₀ fullerene was carried out. The results manifest that charge distribution of C₂₀ was altered by substitution. The HOMO-LUMO energy gap was lowered in the case of Zr and Mo atoms while it was increased on Ru and Pd substitution. Their nonlinear optical properties including polarizability and hyperpolarizabilities were improved. Their first hyperpolarizabilities were 2795, 2775, 1304, and 66,669 au for Zr, Mo, Ru, and Pd substituted C₂₀ nanocluster (Rad and Ayub, 2017). Scandium (Sc) doped Be₁₂O₁₂, Mg₁₂O₁₂, and Ca₁₂O₁₂ nanocages were explored to study the effect of Sc doping on structure, stability, and optoelectronic properties. Reduction in energy gaps of designed complexes has enhanced conductance of Sc doped complexes. NLO response of all designed complexes was increased and the highest NLO was obtained for Sc-doped Ca₁₂O₁₂. TD-DFT calculations also confirmed that the highest hyperpolarizability was observed.
for Sc-doped Ca₁₂O₁₂ nanoclusters with the smallest transition energy values (ΔE). Sc-doped nanoclusters would be an ideal candidate for optoelectronic devices (Omidi et al., 2017). Exohedral doping of the first row transition metal doping at various sites (x = b₄₆₋, b₅₋₆, r₆₋, and r₄₋) of Al₁₂N₁₂ nanocage was carried out. The geometric, electronic, and optoelectronic properties were computed for all M@x-Al₁₂N₁₂ complexes and their spin state stability was also computed. Transition metal doping resulted in chemisorption and a remarkable reduction in energy gap up to 40% were observed in this case. Their NLO response was comparable to their alkaline metal doped Al₁₂N₁₂ analogs and the highest NLO response of 1.85 × 10⁴ au was observed for Cu@r₆-Al₁₂N₁₂ (Arshad et al., 2018).

Gili et al. have carried out exohedral and endohedral doping of copper on Al₁₂N₁₂ nanocages. It was concluded that the Cu@r₆-Al₁₂N₁₂ (copper at the center of the six-membered ring of Al₁₂N₁₂) has the highest reduction in energy gap (ΔE) up to 52%. Excess electrons have generated a new HOMO orbital between the original Frontier molecular orbitals as revealed from total and partial densities of states. The highest NLO response of 1.8 × 10⁴ au was observed for Cu@r₆-Al₁₂N₁₂ as in the case of previous studies. TD-DFT simulations were performed to obtain crucial excited states. Two level model-based verification of hyperpolarizability was also carried out. These striking results reflect that the designed copper doped complexes would have potential applications in nonlinear optics (Gili et al., 2018). Ali et al. have explored the exohedral doping of nickel metal (Ni) on inorganic Mg₁₂O₁₂ nanocluster by using DFT simulations. Different energy changes including zero-point energies (ZPE), thermal enthalpies (ΔH), thermal energies (ΔE), and thermal Gibbs free energies (ΔG) were also computed and compared with interaction energies of Ni@Mg₁₂O₁₂ nanocluster. A remarkably enhanced nonlinear optical response on doping was observed as compared to pristine Mg₁₂O₁₂ (Rad and Ayub, 2018b). In another work, Rad et al. carried out substitutional doping of transition metal (Cr, Ni, and Ti) at C₂₀ fullerene theoretically. Transition metals substitution has altered the charge distribution of C₂₀ with the highest charge distribution for TiC₁₉. The nonlinear optical properties were enhanced significantly and the highest hyperpolarizability 2.5 × 10⁴ au observed in the case of TiC₁₉ complex (Rad and Ayub, 2018c).

In 2019, the same group also performed the substitutional doping of transition metal (Sc, Fe, Cu, and Zn) at C₂₀ fullerene via DFT simulations. Replacement of carbon by a transition metal has enhanced the optoelectronic properties and the highest hyperpolarizability of 2224.5 au was observed for Sc-C₁₉. Furthermore, the results of reactivity descriptors reflected iron-substituted fullerene (Fe-C₁₉) as the softest metal. These results showed that designed transition metal substituted fullerene would have promising applications in optoelectronics (Rad and Ayub, 2019). The optoelectronic effect of the first row transition metal doping C₂₄N₂₄ cavernous nitride fullerene has been performed via DFT simulation. Transition metal atoms were doped in the N4 cavity of the nanocage. Spin state analysis reflected that spin state stability increases to sextet up to Mn@C₂₄N₂₄ and then gradually decreases to singlet for Zn@C₂₄N₂₄ system. Transition metal atoms have decreased the HOMO-LUMO energy gap up to 63%. The NLO response was enhanced for all M@C₂₄N₂₄ cavernous nitride complexes and reflected that designed complexes would be better candidates for high performance NLO materials (Shakerzadeh et al., 2020a). The first experimental synthesis of novel all-boron fullerene B₄₀ has opened new research avenues for its potential application in various fields (Zhai et al., 2014).

Optoelectronic properties of the first row transition metal decorated at hexagonal and heptagonal rings of B₄₀ fullerene have been computed. Obtained complexes were stable with the reduced HOMO-LUMO energy gaps and work functions. The highest hyperpolarizability of 1.35 × 10³ au was observed for cobalt (Co) doped B₄₀ fullerene (Shakerzadeh et al., 2020b). Ullah et al. investigated the structural and optoelectronic effect of first row transition metals decorated Al₁₂P₁₂ heterofullerene. Thermally stable M@Al₁₂P₁₂ complexes have reduced energy gaps due to excess electrons of transition metal atoms. Nonlinear optical properties were enhanced and the highest hyperpolarizability up to 5.9 × 10⁴ au was obtained (Ullah et al., 2021). Similarly, optoelectronic properties of transition metal doped B₁₂P₁₂ nanocage at different doping sites have been explored via DFT simulations. Adsorption of the first row transition metals at B₁₂P₁₂ have significantly enhanced the thermodynamic stability with the highest interaction energy of −74.42 kcal mol⁻¹ for Ni@r₄-B₁₂P₁₂ nanocluster. Their NLO response has improved remarkably up to 4.4 × 10⁴ au due to excess electron of transition metals. Furthermore, SHG and EOPE values of 1.1 × 10⁵ and 4.4 × 10⁴ au for Sc@B₁₂P₁₂ showed that designed M@B₁₂P₁₂ have a tendency to serve as NLO materials (Irshad et al., 2021). Recently, Khaliq et al. investigated the NLO properties of lanthanum metal doping on Al₁₂N₁₂ and Al₁₂P₁₂ nanocages. Interaction energy analysis indicated that designed complexes were stable and endohedral doping was more favorable than exohedral doping. Lanthanum doping has uplifted the NLO responses of complexes up to 4.43 × 10⁵ au and will serve as a high-tech NLO material in optoelectronics (Khaliq et al., 2021a). The highest nonlinear optical response of some alkaline metal doped nanocages is listed in Table 4.

Superalkali Doped Nanocages

Superalkalis have low ionization potential than alkaline metals and have a better tendency to donate excess electrons toward the system (Gusev and Boldyrev, 1982). This enables them to form a wide range of unique molecules with intriguing features while the structural integrity of superalkalis remains intact on interaction with other atoms. In this regard, superalkalis (Li₂F, Li₂O, and Li₂N) (Rehm et al., 1992), hyperlithiated superalkali clusters Li₆F (n = 2–5) (Srivastava and Misra, 2015c), and hypervalent superalkalis MₓX (M = Li, Na; X = F, Cl) (Srivastava and Misra, 2016c) served as potential superalkali subunits. These superalkali clusters on interaction with metal atoms resulted in the formation of hyperlithalized superalkali-metal (SA-M) species (Srivastava and Misra, 2016b). These species possess remarkable NLO response and the highest NLO up to 3.6 × 10⁴ au is observed for NLi₁-Na. The gas phase basicities of superalkali hydroxides FLiOH (n = 2–5) have been computed theoretically and are
comparable to those of strong alkali hydroxides such as LiOH and some of them may act as superbases (Srivastava and Misra, 2015a). These superalkali hydroxides have several unusual and intriguing features, one of which is their enhanced NLO responses. The hydrogenated superalkalis (SAHs /Li2H, OLi3H, and NLi4H) with enhanced NLO response have also been investigated theoretically (Srivastava and Misra, 2016a).

These superalkali clusters donate their excess electrons on interaction with nanocages to form high performance NLO materials. In 2016, Sun et al. carried out theoretical investigation of superalkali M3O (M = Li, Na, K; n = 2, 3, 4) doping on Si12C12 nanocage for the first time (Sun et al., 2016a). Diffuse excess electrons of superalkalis have enhanced the hyperpolarizability of complexes up to 1.86 × 107 au. Moreover, NLO response of Li3O superalkali on other nanocages has been investigated systematically. These electrides have high deep ultraviolet transparency and larger NLO response. These superalkali doped nanocages would be potential precursors for high-performance NLO materials as shown in Figure 10.

The optoelectronic properties of superalkali M3O (M = Li, Na, K; n = 2, 3, 4) doped M12O12 nanocages have been investigated theoretically. Superalkali excess electrons have reduced the energy gap and remarkable increment in the NLO response was observed for M12O superalkali doped nanocluster series. These complexes were potential candidates in the field of nonlinear optics with the highest hyperpolarizability of β ≈ 600,000 au for K3O@Mg12O12 complex (Hesari et al., 2016). In another work, Li3O, Na3O, and K3O doped Si12C12 nanocages have been explored via DFT simulations. It was observed that energy gap (HOMO-LUMO) was reduced monotonically with the size of superalkali subunits. Doping of superalkali Li3O@Si12C12 (3.750 eV), Na3O@Si12C12 (2.984 eV), and K3O@Si12C12 (2.634 eV) has transformed the pristine Si12C12 nanocage (5.452 eV) to n-type semiconductors. A reduction in HOMO-LUMO gap has strikingly enhanced the NLO response with the highest hyperpolarizability for K3O@Si12C12. These superalkali doped Si12C12 nanocages would have a major role in optoelectronic devices due to their semiconducting nature (Lin et al., 2017).

Nonlinear optical properties of superalkali doped C20 fullerene like nanocluster have been investigated theoretically. A decrement in energy gap was observed and indicated that superalkalis have enhanced the optoelectronic properties of C20 fullerene. A large NLO response was observed with the highest hyperpolarizability for Na3O@C20 nanocluster (Noormohammadbeigi and Shamlouei, 2018).

Inorganic boron-based nanosystem of all-boron fullerene B40 has also been doped with superalkali subunits (M3O)n (M = Li and K, n = 1 and 2) to investigate the geometrical, stability, and optoelectronic properties. Excess electrons of superalkalis have significantly enhanced the NLO response and narrowed the HOMO-LUMO energy gap (0.61–1.11 eV) as compared to pristine B40 (2.86 eV). The increment in the first hyperpolarizability and second hyperpolarizability was up to 2.46 × 105 and 4.85 × 108 au, respectively. These complexes were structurally stable due to formation of B-O bond and have binding energies in the range of 57.0–99.8 kcal/mol. Their fascinating results reflect that superalkali doped B40

Complex	Hyperpolarizability (au)	Software	Level of theory	References
Pd-C19	6.6 × 10⁴	Gaussian	ωB97XD/6-311G(d,p) for C and LANL2DZ for Pd	Rad and Ayub. (2017)
Sc-Ca12O12	2.9 × 10⁵	Gaussian	CAM-B3LYP/6-31+G(d)	Omidi et al. (2017)
Cu@Al2N12	1.8 × 10⁴	Gaussian	CAM-B3LYP/6-311+G(d)	Gilani et al. (2018)
M@Mg2O12	1.2 × 10³	Gaussian	ωB97XD/6-311G(d,p)	Rad and Ayub. (2018b)
Ti-C19	2.5 × 10³	Gaussian	LCωB97XD/6-311+G(d)	Rad and Ayub. (2018c)
Co@B40	1.3 × 10³	Gaussian	CAM-B3LYP/6-311+G(d)	Shakerzadeh et al. (2020b)
Co@Al2P12	5.9 × 10⁶	Gaussian	CAM-B3LYP/6-311+G(d)	Ullah et al. (2021)
Sc@B12P12	4.4 × 10⁴	Gaussian	CAM-B3LYP/6-311+G(d)	Inshad et al. (2021)

TABLE 4 | Transition metal doped nanocages with enhanced nonlinear optical responses.
nanocluster would be beneficial for modern electronic nanodevices (Noormohammadbeigi and Shamlouei, 2018).

In 2019, Ullah et al. carried out three superalkalis doping on Li$_3$F, Li$_3$O, and Li$_4$N on fullerene like B$_{12}$P$_{12}$ inorganic nanocluster to investigate the NLO response of designed complexes. Doping at various sites resulted in different isomers with excess electrons and were thermodynamically stable. Nonlinear optical response of complexes has been enhanced with the highest hyperpolarizability of 3.48 × 105 au. These superalkali doped B$_{12}$P$_{12}$ nanoclusters have deep ultraviolet transparency and would have potential applications in high-performance NLO devices (Ullah et al., 2019a). In the same year, theoretical investigation of Li$_2$F, Li$_3$O, and Li$_4$N doping on Si$_{12}$C$_{12}$ nanocluster have been carried out to observe their geometric, electronic, and NLO properties. All the designed complexes were electrode in nature due to diffuse excess electrons of superalkali subunits. These complexes were highly stable as indicated by their interaction energies (~105.13 kcal mol$^{-1}$). These stable inorganic electrides have narrowed HOMO-LUMO energy gap with an increment in NLO response up to 6.25 × 105 au for Li$_4$N@Al$_{12}$P$_{12}$ (Ullah et al., 2019b). Ullah et al. also explored the superalkali (Li$_2$F, Li$_3$O, and Li$_4$N) doping on Si$_{12}$C$_{12}$ nanocluster at various positions via DFT calculations. Superalkali doping has altered the electronic properties of Si$_{12}$C$_{12}$ from insulator to n-type semiconductor. These complexes have static first hyperpolarizability up to 19,864 au. Furthermore, frequency dependent hyperpolarizability calculations were also performed in the region 400–1600 nm to check their practical applicability. The designed complexes were transparent in deep UV regions and would be applicable in nonlinear optics (Omidi et al., 2020). Li$_3$O super alkali doping on cyclic conjugated ring systems especially cyclic oligofuran (CF) and hexathiophene ring (6CT) has been carried out theoretically to evaluate their NLO response (Sajid et al., 2020; Sajid et al., 2021). The highest NLO response of some organic complexes is listed in Table 5.

Excess Electron Based Organic Complexes

Besides inorganic nanoclusters, superalkali doping on many other organic clusters has been carried out for their potential applications in nonlinear optics (X. Li and Li, 2019) (P. Khan et al., 2021a). Organic NLO materials have extended π conjugation, high laser damage thresholds, and smaller dielectric constants (Kang et al., 2019). Most of these organic NLO materials are electrides, alkalides, alkaline earthides, coinage metalides, and superalkalides and have been described in the above sections. However, some other superalkali doped organic NLO materials have attracted much attention in recent years. In this regard, the NLO response of M$_2$O and M$_3$S (M = Li, Na, and K) single and double superalkali M$_3$O doped graphdiyne nanoclusters have been explored (N. Hou et al., 2021; Ksar et al., 2020b; X. Li et al., 2020b). Similarly, Shehzadi et al. observed a remarkable increase in the NLO response of superalkali doped graphdiyne nanoclusters (M$_3$X@GDY X = F, Cl, Br and M = Li, Na, and K) with the highest response (7.7 × 105 au) for Na$_3$F@GDY (Shehzadi et al., 2019). Such novel carbon material graphynes (GYs) on combination with superalkalis results in the formation of stable complexes. These GY superalkali complexes OM$_3^+$@GY (GY@GTY = graphtrigene). The NLO properties of doping of alkali metal atoms and superalkali at pyridinic vacancy graphene (3NG) have been studied theoretically. The highest NLO response of 1.6 × 104 was observed for K$_3$O@3NG (Song et al., 2018b). A theoretical exploration of superalkali doped boron substituted biphenalenyl diradical dimer (BC$_{25}$H$_{18}$) was carried out by Song et al. and the highest NLO response was for K$_3$O@BC$_{25}$H$_{18}$ (Song et al., 2018a). Superalkali doping on cyclic conjugated ring systems especially cyclic oligofuran (CF) and hexathiophene ring (6CT) has been carried out theoretically to evaluate their NLO response (Sajid et al., 2020; Sajid et al., 2021). The highest NLO response of some organic complexes is listed in Table 5.

NONLINEAR OPTICAL RESPONSE: EXPERIMENTAL VS. THEORETICAL

The corroboration between theoretical and experimental data is useful for designing and synthesis of novel NLO materials. In this regard, various NLO systems have been synthesized and their
NLO responses have been investigated theoretically and experimentally. The linear and NLO susceptibilities of single crystals of potassium titanyl phosphate KTiOP4 have been studied experimentally and theoretically (Reshak et al., 2010). Using DFT calculations, the theoretically predicted band gap (3.1 eV) of KTiOPO4 shows excellent agreement with the experimental data (3.2 eV) at WIEN2K code. Furthermore, the computed second harmonic generation (SHG) susceptibility coefficients are matched with single crystal SHG response. The experimental and theoretical NLO studies of synthesized LiBaB9O15 crystals have been carried out (Reshak et al., 2013). The electronic properties especially band gap energies (5.11 eV) by using DFT simulations match well with the experimental values (5.17 eV). The calculated second order NLO susceptibility especially second harmonic generation (SHG) was \(\beta_{333} = 0.291 \times 10^{-30} \text{ esu} \) at 1064 nm. This computed value correlated with the experimental one \((0.467 \times 10^{-30} \text{ esu}) \) at 1064 nm by using Nd: YAG laser. Single crystals of LiNaB4O7 have been synthesized and confirmed by X-ray crystallography. The results of DFT calculations for electronic properties by using LDA, GGA, EVGGA, and mBJ methods demonstrate that these crystals have a substantial band gap of about 2.80, 2.91, 3.21, and 3.81 eV, respectively. These results match well with the experimental band gap of 3.88 eV. The calculated absorption spectrum of LiNaB4O7 crystals also matched well with the experimental one. The second order hyperpolarizabilities of these crystals were \(\chi^{(2)} = 0.306 \times \) \(10^{-30} \text{ esu} \) (static) and \(0.332 \times 10^{-30} \text{ esu} \) at 1064 nm. The first and

TABLE 5 | Some superalkali doped organic complexes with enhanced nonlinear optical response.

Complex	Hyperpolarizability (au)	Software	Level of theory	References
Na3S@GDY	1.36 \times 10^5	Gaussian	LC-BLYP/6-311G(d,p)	Kosar et al. (2020b)
Na2F@GDY	7.7 \times 10^6	Gaussian	LC-BLYP/6-311G+(d,p)	Shehzadi et al. (2019)
K2O@3NG	1.6 \times 10^6	Gaussian	CAM-B3LYP/6-31+G(d)	Song et al. (2018b)
K2O@GDY	3.06 \times 10^6	Gaussian	CAM-B3LYP/6-311+G(2 days, 2p)	X. Li et al. (2020b)
Li3O@GTY	6.5 \times 10^6	Gaussian	CAM-B3LYP/6-31+G(d)	N. Hou et al. (2021)
K2O@C130H62	1.7 \times 10^6	Gaussian	CAM-B3LYP/6-31+G(d)	Kosar et al. (2021a)
K2O@ncF	5.1 \times 10^7	Gaussian	LC-BLYP/6-31+G(d)	Sajid et al. (2020)
K2O@BC25H18	1.1 \times 10^7	Gaussian	BhandHLYP/6-31+G(d)	Song et al. (2018a)
Li3O@6CT	5.0 \times 10^4	Gaussian	LC-BLYP/6-31+G(d)	Sajid et al. (2021)

FIGURE 11 | Li4N@Al12N12 complex with the highest hyperpolarizability of 5.7 \times 10^4 au. Reprinted from Khaliq et al., 2021b with permission from Elsevier.
second hyperpolarizabilities of substituted dimesityl boranes have been explored both theoretically (AM1 semi-empirical level, MOPAC program) and experimentally (at 1907 nm under Nd: YAG laser). The theoretical results were in concurrence with the experimentally measured data for these complexes (Yuan et al., 2006). The nonlinear optical crystals of strontium borate Sr2B5O9(OH)H2O have been synthesized. The DFT calculations of SHG response, nonlinear refractive index, and birefringence computed by using CASTEP package were consistent with experimentally measured values (Zhang et al., 2015). These studies show that theoretical strategies for calculating NLO response show a good agreement with the available experimental data. Therefore, theoretically predicted high performance NLO materials could be a good starting point for the experimentalists.

CONCLUSION AND OUTLOOK

The current review establishes a systematic array of different studies for the theoretical designing of NLO materials. NLO materials have covered a large area of science and technology owning to their potential applications in optoelectronics. In material research, computational design and experimental synthesis of NLO materials with higher order nonlinearities come into vogue. Several strategies including metal ligand framework, push pull mechanism, diradical character, and so on have been elaborated for the enhancement of NLO response of materials. Role of diffuse excess electron in developing noncentrosymmetric materials for nonlinear optics have been discussed. A theoretical design from the simplest NLO material to the complex alkali, alkaline earth, transition, and superalkali doped nanoclusters is summarized in the present review. Excess electrons of the nanoclusters have played a pivotal role in enhancing the NLO properties of various systems especially hyperpolarizabilities. These excess electron-based systems may help to increase the second hormonic generation (SHG) efficiency and electro-optical Pockels effect (EOPE). These insights are essential for the development of new NLO materials. These findings also provide an intriguing area for future research into potential building blocks and structure-directing constituents that may help to promote the synthesis of these theoretically designed NLO materials. It is expected that the present review will provide a better understanding of the NLO responses of nanoclusters, paving the way for the development of high-tech NLO materials.

AUTHOR CONTRIBUTIONS

K.A., M.G., and T.M. contributed to the design and outlines of the review. R.B. and M.A. collected the literature and wrote the first draft. R.Z. revised the first draft and corrected its language. J.I. and S.T. wrote some sections of the review. All authors contributed to manuscript revision, read, and approved the submitted version.

FUNDING

This project was financially supported by the Higher Education Commission, Pakistan under HEC-NRPU project (7853).

REFERENCES

Ahsan, A., and Ayub, K. (2020a). Adamanzane Based Alkaline Earthides with Excellent Nonlinear Optical Response and Ultraviolet Transparency. Opt. Laser Tech. 129 (April), 106298. doi:10.1016/j.optlastec.2020.106298
Ahsan, A., and Ayub, K. (2020b). Extremely Large Nonlinear Optical Response and Excellent Electronic Stability of True Alkaline Earthides Based on Hexaamine Complexant. J. Mol. Liquids 297, 118199. doi:10.1016/j.molliq.2019.118199
Ahsan, A., Khan, S., Gilani, M. A., and Ayub, K. (2021). Endohedral Metallofullerene Electrides of Ca2+2012 with Remarkable Nonlinear Optical Response. RSC Adv. 11 (3), 1569–1580. doi:10.1039/d0ra08571e
Akasaka, T., Okubo, S., Wakahara, T., Yamamoto, K., Kobayashi, K., Nagase, S., et al. (1999). Endohedrally Metal-Doped Heterofullerenes: La@C81N and La2@C79N. Chem. Lett. 28 (9), 945–946. doi:10.1246/cl.1999.945
Anilkumar, P., Lu, F., Cao, L., G. Luo, P., Liu, J.-H., Sahu, S., et al. (2011). Fullerene for Applications in Biology and Medicine. Cmc 18 (14), 2045–2059. doi:10.2174/09298671179565225
Arrivuoli, D. (2001). Fundamentals of Nonlinear Optical Materials. Pramana - J. Phys. 57 (5–6), 871–883. doi:10.1007/s12043-001-0004-1
Armstrong, I. A., Bloembergen, N., Ducuing, J., and Pershan, P. S. (1962). Interactions between Light Waves in a Nonlinear Dielectric. Phys. Rev. 127 (6), 1918–1939. doi:10.1103/physrev.127.1918
Arshad, Y., Khan, S., Hashmi, M. A., and Ayub, K. (2018). Transition Metal Doping: A New and Effective Approach for Remarkably High Nonlinear Optical Response in Aluminum Nitride Nanocages. New J. Chem. 42 (9), 6976–6989. doi:10.1039/c7n04971d
Ayub, K. (2016). Are Phosphide Nano-Cages Better Than Nitride Nano-Cages? A Kinetic, Thermodynamic and Non-linear Optical Properties Study of Alkali Metal Encapsulated X12Y12 Nano-Cages. J. Mater. Chem. C 4 (46), 10919–10934. doi:10.1039/c6tc04456e
Baloach, R., Ayub, K., Mahmood, T., Asif, A., Tabassum, S., and Gilani, M. A. (2021). A New Strategy of Bi-alkali Metal Doping to Design Boron Phosphide Nanocages of High Nonlinear Optical Response with Better Thermodynamic Stability. J. Inorg. Organomet. Polym. 31 (7), 3062–3076. doi:10.1007/s10904-021-02000-6
Bano, R., Arshad, M., Mahmood, T., Ayub, K., Sharif, A., Perveen, S., et al. (2022). Face Specific Doping of Janus AB-Cis-2,3,4,5,6-Hexafluorocyclocexane with Superalkalis and Alkaline Earth Metals Leads to Enhanced Static and Dynamic NLO Responses. J. Phys. Chem. Sol. 160, 110361. doi:10.1016/j.jpcs.2021.110361
Becker, P. (1998). Borate Materials in Nonlinear Optics. Adv. Mater. 10 (13), 979–992. doi:10.1002/(sici)1521-4095(199809)10:13<979::aid-adma979>3.0.co;2-n
Beheshtian, J., Bagheri, Z., Kamfroozi, M., and Ahmad, A. (2012). A Comparative Study on the Bi2N12, Al2N12, Bi2P12 and Al2P12 Fullerene-like Cages. J. Mol. Model. 18 (6), 2653–2658. doi:10.1007/s00894-011-1286-y
Benjamin, S. C., Arzavan, A., Briggs, G. A. D., Britz, D. A., Gunlycke, D., Jefferson, J., et al. (2006). Towards a Fullerene-Based Quantum Computer. J. Condens. Matter. 18 (21), S687–S683. doi:10.1088/0953-8984/18/21/s12
Bezi Javan, M. (2013). Optical Properties of SiC Nanocages: Ab Initio Study. Appl. Phys. A. 113 (1), 105–113. doi:10.1007/s00339-013-7633-3
Billas, I. M. L., Massobrio, C., Boero, M., Parrinello, M., Branz, W., Tast, F., et al. (2000). First Principles Calculations of Iron-Doped Heterofullerenes. Comput. Mater. Sci. 17 (2–4), 191–195. doi:10.1016/s0927-0256(00)00022-7
Biswal, B. P., Valligatla, S., Wang, M., Banerjee, T., Saad, N. A., Mariserla, B. M. K., et al. (2019). Nonlinear Optical Switching in Regioregular Porphyrin Covalent Organic Frameworks. Angew. Chem. 131, 6970–6974. doi:10.1002/ange.201814412
Bogani, L. and Werndorfer, W. (2010). “Molecular Spintrons Using Single-Molecule Magnets,” in Nanoscience and Technology: A Collection of Reviews from Nature Journals (Singapore: World Scientific), 194–201.

Boyd, R. W. (2020). Nonlinear Optics. Cambridge: Academic Press.

Buckingham, A. D., and Orr, B. J. (1967). Molecular Hyperpolarisabilities. Q. Rev. Chem. Soc. 21 (2), 195–212. doi:10.1021/qrc00025a000

Burland, D. (1994). Optical Nonlinearities in Chemistry: Introduction. Chem. Rev. 94 (1), 1–2. doi:10.1021/cr00025a000

Chen, W., Li, Z.-R., Wu, D., Gu, F.-L., Hao, X.-Y., Wang, B.-Q., et al. (2004). The Static Polarizability and First Hyperpolarizability of the Water Trimer anion: Ab Initio Study. J. Chem. Phys. 121 (21), 10489–10494. doi:10.1063/1.1811609

Chen, W., Li, Z.-R., Wu, D., Li, R.-Y., andSun, C.-C. (2005b). Theoretical Investigation of the Large Nonlinear Optical Properties of HCN1 Clusters with Li Atom. J. Phys. Chem. B 109 (1), 601–608. doi:10.1021/jp0480394

Chen, W., Li, Z.-R., Wu, D., Li, Y., Sun, C.-C., Gu, F.-L., et al. (2006). Nonlinear Optical Properties of Alkalides Li+(calix[4]pyrrole)M (M = Li, Na, and K): Alkali Anion Atomic Number Dependence. J. Am. Chem. Soc. 128 (4), 1072–1073. doi:10.1021/ja053143z

Chen, W., Li, Z.-R., Wu, D., Li, Y., Sun, C.-C., and Gu, F. L. (2005a). The Structure and the Large Nonlinear Optical Properties of Li[Calix[4]pyrrole]. J. Am. Chem. Soc. 127 (31), 10977–10981. doi:10.1021/ja050610w

Cheng, L. T., Tam, W., Stevenson, S. H., Meredith, G. R., Rikken, G., and Marder, S. R. (1991). Experimental Investigations of Organic Molecular Nonlinear Optical Polarizabilities. I. Methods and Results on Benzene and Stilbene Derivatives. J. Phys. Chem. 95 (26), 10631–10643. doi:10.1021/jp00179a026

Chuvilin, A., Kaiser, U., Bichoutskaia, E., Besley, N. A., and Khalobystov, A. N. (2010). Direct Transformation of Graphene to Fulleren. Nat. Chem. 2 (6), 450–453. doi:10.1038/ncchem.644

Cirilo, E. R., Natti, P. L., Remeiro, N. M. L., Natti, E. R. T., and de Oliveira, C. F. (2010). Solitons in Ideal Optical Fibres—A Numerical Development. Semina: Ciências Exatas e Tecnológicas 31, 57–68. doi:10.5433/1679-0375.20100311p57

Dawes, S. B., Ward, D. L., Huang, R. H., and Dye, J. L. (1986). First Electride Crystal Conversion. J. Am. Chem. Soc. 108 (12), 3534–3535. doi:10.1021/ja00272a073

Delaire, J. A., and Nakatani, K. (2000). Linear and Nonlinear Optical Properties of Photochromic Molecules and Materials. Chem. Rev. 100 (5), 1817–1846. doi:10.1021/cr9800790

Duan, X. F., and Burhgraff, L. W. (2015). Theoretical Investigation of Stabilities and Optical Properties of Si12C12 Clusters. J. Chem. Phys. 142 (3), 034303. doi:10.1063/1.4955542

Ducuing, J., and Bloembergen, N. (1964). Statistical Fluctuations in Nonlinear Optical Processes. Phys. Rev. 133 (6A), A1493–A1502. doi:10.1103/physrev.133.a1493

Duman, S., Stült, A., Bağış, S., Tutucü, H. M., and Srivistava, G. P. (2009). Structural, Elastic, Electronic, and Phonon Properties of Zinc-Blende and Wurtzite BeO. J. Appl. Phys. 105 (3), 033719. doi:10.1063/1.3075814

Dye, J. L., Ceresa, J. M., Lok, M., Barnett, B. L., and Tehan, F. J. (1974). Crystalline Salt of the Sodium Anion (Na+). J. Am. Chem. Soc. 96 (2), 608–609. doi:10.1021/ja00809a060

Ellaboudy, A., Dye, J. L., and Smith, P. B. (1983). Cesium 18-crown-6 Compounds. A Crystalline Ceside and a Crystalline Electride. J. Am. Chem. Soc. 105 (21), 6490–6491. doi:10.1021/ja00359a022

Erwin, S. C., and Pickett, W. E. (1991). Theoretical Fermi-Surface Properties and Superconducting Parameters for K 3 C 6. Science 254 (5033), 842–845. doi:10.1126/science.254.5033.842

Fan, X., Pan, S., Hou, X., Tian, X., Han, J., Haag, J., et al. (2010). Growth and Properties of Single Crystals of Noncentrosymmetric Na3VO2Bi6O30·112. Cryst. Growth Des. 10 (1), 252–256. doi:10.1021/cg908877h

Franken, P. A., Hill, A. E., Peters, C. W., and Weinreich, G. (1961). Generation of Optical Harmonics. Phys. Rev. Lett. 7 (4), 118–119. doi:10.1103/physrevlett.7.118

Friepertinger, H. (1996). The Cycle index of the Symmetry Group of the FullereC60. MATCH Commun. Math. Comput. Chem. 33, 121–138.
Kobayashi, K., Krupka, O., Gindré, D., and Salle, M. (2010). Reversible Two-Photon Optical Data Storage in Coumarin-Based Copolymers. J. Am. Chem. Soc. 132 (41), 14343–14345. doi:10.1021/ja104728s

Irshad, S., Ullah, F., Khan, S., Ludwig, R., Mahmood, T., and Ayub, K. (2021). First Row Transition Metals Decorated boron Phosphide Nanoclusters as Nonlinear Optical Materials with High Thermodynamic Stability and Enhanced Electronic Properties; A Detailed Quantum Chemical Study. Opt. Laser Tech. 134, 106570. doi:10.1016/j.optlastec.2020.106570

Ivonina, M. V., Orimoto, Y., and Aoki, Y. (2020). Nonlinear Optical Properties of Push-Pull Systems Containing [2.2]paracyclophane: Theoretical Study via Elongation Method. Chem. Phys. Lett. 755, 137760. doi:10.1016/j.cplett.2020.137760

Jing, Y.-Q., Li, Z.-R., Wu, D., Li, Y., Wang, B.-Q., Gu, F. L., et al. (2006). Effect of the Complexant Shape on the Large First Hyperpolarizability of Alkalides Li+ (NH3)4M−. ChemPhysChem 7 (8), 1759–1763. doi:10.1002/cphc.200600157

Kachynski, A. V., Pliss, A., Kuzmin, A. N., Oulhichansky, T. Y., Baev, A., Qu, J., et al. (2014). Photodynamic Therapy by In Situ Nonlinear Photon Conversion. Nat. Photon. 8 (6), 455–461. doi:10.1038/nphoton.2014.90

Kamada, K., Ohita, K., Kubo, T., Shimizu, A., Morita, Y., Nakasuji, K., et al. (2007). Strong Two-Photon Absorption of Singlet Diradical Hydrocarbons. Angew. Chem. Int. Ed. 46 (19), 3544–3546. doi:10.1002/anie.200605061

Kang, L., Liang, F., Jiang, X., Lin, Z., and Chen, C. (2019). First-Principles Design and Simulations Promote the Development of Nonlinear Optical Crystals. Acc. Chem. Res. 53, 209–217. doi:10.1021/acs.accounts.9b00448

Kanis, D. R., Ratner, M. A., and Marks, T. J. (1992). Calculation and Electronic Description of Quadratic Hyperbirefringences. Toward a Molecular Understanding of NLO Responses in Organotransition Metal Chromophores. J. Am. Chem. Soc. 114 (26), 10338–10357. doi:10.1021/ja00025a035

Kanis, D. R., Ratner, M. A., and Marks, T. J. (1994). Design and Construction of Molecular Assemblies with Large Second-Order Optical Nonlinearities. Quantum Chemical Aspects. Chem. Rev. 94 (1), 195–242. doi:10.1021/cr00025a007

Kerr, J. (1879). Electro-optic Observation on Various Liquids. Lond. Edinb. Dublin Philos. Mag. J. Sci. 8 (47), 85–102. doi:10.1080/14786443598639658

Khalid, M., Hussain, R., Hussain, A., Ali, B., Jaleel, F., Imran, M., et al. (2019). Electron Donor and Acceptor Influence on the Nonlinear Optical Response of Diacetylene-Functionalized Organic Materials (DFOMs): Density Functional Theory Calculations. Molecules 24 (11), 2096. doi:10.3390/molecules24112096

Khaliq, F., Ayub, K., Mahmood, T., Muhammad, S., Tabassum, S., and Gilani, M. A. (2021a). First Example of Lanthanum as Dopant on Al12N12 and Al12P12 Nanoclusters as Nonlinear Optical Data Storage in Coumarin-Based Copolymers. Chem. Int. Ed. 152, 109972. doi:10.1016/j.chenepol.2021.109972

Kratschmer, W., Fostiropoulos, K., and Huffman, D. R. (1990a). The Infrared and Ultraviolet Absorption Spectra of Laboratory-Produced Carbon Dust: Evidence for the Presence of the C60 Molecule. Chem. Phys. Lett. 170 (2–3), 167–170. doi:10.1016/0009-2614(90)87109-5

Kratschmer, W., Lamb, L. D., Fostiropoulos, K., and Huffman, D. R. (1990b). Solid C60: A New Form of Carbon. Nature 347 (6291), 354–358. doi:10.1038/347354a0

Kroto, H. W., Heath, J. R., O’Brien, S. C., Curl, R. F., and Smalley, R. E. (1985). C60: Buckminsterfullerene. Nature 318 (6042), 162–163. doi:10.1038/318162a0

Kumar, R. A., Vizhi, R. E., Vijayan, N., and Babu, D. R. (2010a). Growth, Optical and Mechanical Properties of Nonlinear Optical Alpha-Lithium Iodate Single Crystal. Sch. Res. Lib. 2 (5), 247–254.

Kumar, R. A., Vizhi, R. E., Vijayan, N., Bhagavannarayana, G., and Babu, D. R. (2010b). Growth, Crystallographic Perfection and Z-Scan Studies of Nonlinear Optical Alpha-Lithium Iodate Single crystal. J. Pure Appl. Ind. Phys. 1 (1), 1–106.

Kumbhakar, P., and Kobayashi, T. (2007). Ultra-broadband Optical Parametric Amplification in KBr033F2 crystal. Opt. Commun. 277 (1), 205–208. doi:10.1016/j.optcom.2007.04.061

Lee, J., Kim, H., Kangh, S.-I., Kim, G., Son, Y.-W., Ihm, J., et al. (2002). Bandgap Modulation of Carbon Nanotubes by Encapsulated Metallfullerenes. Nature 415 (6875), 1005–1008. doi:10.1038/4151005a0

Lettow, J. S., and Martin, C. (2010). Graphene in NLO Devices for High Laser Energy Protection. J. Mater. Chem. C 1640. doi:10.1039/c8tc05392h

Li, B., Peng, D., Gu, F. L., and Zhu, C. (2018). Facially Polarized Molecule for Alkalides and Superalkalis with Considerable Nonlinear Optical Response. ChemistrySelect 3, 12782–12790. doi:10.1002/slct.201802469

Li, S., Wu, H., and Wang, L.-S. (1997). Probing the Electronic Structure of Metallcarbohedrenes: MBC12 (M = Ti, V, Cr, Zr, Nb). J. Am. Chem. Soc. 119 (32), 7417–7422. doi:10.1021/ja9710159

Li, W., Chen, B., Meng, C., Fang, W., Xiao, Y., Li, X., et al. (2014). Ultrafast All-Optical Graphene Modulator. Nano Lett. 14 (2), 955–959. doi:10.1021/nl404356

Li X.-H., Zhang, X.-L., Chen, Q.-H., Zhang, L., Chen, J.-H., Wu, D., et al. (2020a). Coinage Metallfullerenes: A New Class of Excess Electron Compounds with High Stability and Large Nonlinear Optical Responses. Phys. Chem. Chem. Phys. 22 (16), 8476–8484. doi:10.1039/c9cp06894e

Li, X., and Li, S. (2019). Investigations of Electronic and Nonlinear Optical Properties of Single Alkal Metal Adsorbed Graphene, Graphyne and Graphdiyne Systems by First-Principles Calculations. J. Mater. Chem. C 7 (6), 1630–1640. doi:10.1039/c8tc05392h

Li, X., Zhang, Y., and Lu, J. (2020b). Remarkably Enhanced First Hyperpolarizability and Nonlinear Refractive index of Novel Graphdiyne-
Metals Doped C20 Fullerene. J. Mol. Liquids 305, 112875. doi:10.1016/j.molliq.2020.112875

Tahmasebi, E., Shakerzadeh, E., and Biglari, Z. (2016). Theoretical Assessment of the Electro-Optical Features of the Group III Nitrides (B12N12, Al12N12 and Ga12N12) and Group IV Caribdes (C24, Si12C12 and Ge12C12) Nanoclusters Encapsulated with Alkalim Metals (Li, Na and K). Appl. Surf. Sci. 363, 197–208. doi:10.1016/j.apsusc.2015.12.001

Tehan, F. J., Barnett, B. L., and Dye, J. L. (1974). Alkalii Anions. Preparation and crystal Structure of a Compound Which Contains the Cryptated Sodium Cation and the Sodium Anion. J. Am. Chem. Soc. 96 (23), 7203–7208. doi:10.1021/ja0830a005

Tellgmann, R., Krawez, N., Lin, S.-H., Hertel, I. V., and Campbell, E. E. B. (1996). Theoretical Assessment of the Electro-Optical Features of the Group III Nitrides (B12N12, Al12N12 and Ga12N12) and Group IV Caribdes (C24, Si12C12 and Ge12C12) Nanoclusters Encapsulated with Alkalim Metals (Li, Na and K). Appl. Surf. Sci. 363, 197–208. doi:10.1016/j.apsusc.2015.12.001

Tessore, F., Biroli, A. O., Di Carlo, G., and Pizzotti, M. (2018). Porphyrins for the Electro-Optical Features of the Group III Nitrides (B12N12, Al12N12 and Ga12N12) and Group IV Carbides (C24, Si12C12 and Ge12C12) Nanoclusters Encapsulated with Alkalim Metals (Li, Na and K). Appl. Surf. Sci. 363, 197–208. doi:10.1016/j.apsusc.2015.12.001

Takahashi, T., and Achiba, Y. (1992). A Model for the C60 and C70 Growth Mechanism. Chem. Phys. Lett. 190 (5), 465–468. doi:10.1016/0009-2614(92)85174-9

Wang, F.-F., Li, Z.-R., Wu, D., Sun, X.-Y., Chen, W., Li, Y., et al. (2006). Novel Superalkali Superhalogen Compounds (Li)3+(SH)–(SH)–Li=Fe2+, Fe3+, and BF4 with Aromaticity: New Electrides and Alkalides. ChemPhysChem 7 (5), 1136–1141. doi:10.1002/cphc.200600014

Wang, F.-F., Li, Z.-R., Wu, D., Wang, B.-Q., Li, Y., Li, Z.-j., et al. (2008). Structures and Considerable First Hyperpolarizabilities: New Organic Alkalides (M+=[M–Li]3+) (M = Li, Na, K; N = 2, 3) with Cation inside and Anion outside of the Cage Complexes. J. Phys. Chem. B 112 (4), 1090–1094. doi:10.1021/jp076790h

Wang, G., Higgins, S., Wang, K., Bennett, D., Milosavljevic, N., Magan, J. J., et al. (2018). Intensity-dependent Nonlinear Refraction of Antimonene Dispersions in the Visible and Near-Infrared Region. Appl. Opt. 57 (22), E147–E153. doi:10.1364/ao.57.00e147

Wang, H.-W., Langohr, I. M., Sturek, M., and Cheng, J.-X. (2009). Imaging and Quantitative Analysis of Atherosclerotic Lesions by CARS-Based Multimodal Nonlinear Optical Microscopy. Atvb 29 (9), 1342–1348. doi:10.1161/ atvbaha.109.189316

Wang, J.-I., Zhou, Z.-j., Bai, Y., Liu, Z.-B., Li, Y., Wu, D., et al. (2012). The Interaction between Superalkalis (M30, M = Na, K) and a C20F20 Cage Forming Superalkali Electride Salt Molecules with Excess Electrons inside the C20F20 Cage: Dramatic Superalkali Effect on the Nonlinear Optical Property. J. Mater. Chem. 22 (19), 9652–9657. doi:10.1039/c2jm15405f

Wang, S.-j., Li, Y., Wang, Y.-F., Wu, D., and Li, Z.-R. (2013). Structures and Nonlinear Optical Properties of the Endohedral Metallofullerene-Superhalogen Compounds Li@C60-BX4 (X = F, Cl, Br). Phys. Chem. Chem. Phys. 15 (31), 12903–12910. doi:10.1039/c3cp51443a

Wang, Y.-F., Huang, J., Jia, L., and Zhou, G. (2014). Theoretical Investigation of the Structures, Stabilities, and NLO Responses of Calcium-Doped Pyridazine: Alkaline-Earth-Based Alkalide Salt Electrides. J. Mol. Graphics Model. 47, 77–82. doi:10.1016/j.jmgm.2013.11.003

Wang, Z., Li, Y., Sheng-Jiang, G., Jing-Hui, L., Mei, X., and Rastegar, S. F. (2020). Quasi-planar B36 boron Cluster: A New Potential Basis for Ammonia Detection. J. Mol. Model. 26 (10), 263–268. doi:10.1007/s00894-020-04486-2

Wostyn, K., Binnemans, K., Clays, K., and Persoons, A. (2001). Hyper-Rayleigh Scattering in the Fourier Domain for Higher Precision: Correcting for Multiphoton Fluorescence with Demodulation and Phase Data. Rev. Scientific Instr. 72 (8), 3215–3220. doi:10.1063/1.1384429

Wu, B., Hu, J., Cui, P., Jiang, L., Chen, Z., Zhang, Q., et al. (2015). Visible-light Photoexcited Electron Dynamics of Scandum Endohedral Metallofullerene: the Cage Symmetry and Substituent Effects. J. Am. Chem. Soc. 137 (27), 8769–8774. doi:10.1021/jacs.5b03612

Wu, H.-S., Zhang, F.-Q., Xu, X.-H., Zhang, C.-J., and Jiao, H. (2003). Geometric and Energetic Aspects of Alumium Nitride Cages. J. Phys. Chem. A. 107 (1), 204–209. doi:10.1021/jp027300i

Xu, H.-L., Li, Z.-R., Wu, D., Ma, F., Li, Z.-j., and Gu, F.-L. (2009). Lithiation and Li-Doped Effects of [5]cyclacene on the Static First Hyperpolarizability. J. Phys. Chem. C 113 (12), 4984–4986. doi:10.1021/jp908664w

Xu, H.-L., Li, Z.-R., Wu, D., Wang, B.-Q., Li, Y., Gu, F.-L., et al. (2007). Structures and Large NLO Responses of New Electrides: Li-Doped Fluorocarbon Chain. J. Am. Chem. Soc. 129 (10), 2967–2970. doi:10.1021/ja068038k

Xu, H.-L., Sun, S.-L., Muhammad, S., and Su, Z.-M. (2011). Three-propeller-blade-shaped Electride: Remarkable Alkali-Metal-Doped Effect on the First Hyperpolarizability. Theor. Chem. Acc. 128 (2), 241–248. doi:10.1007/s00214-010-0837-0

Yagiakia, K., Takeda, A., Yokoyama, Y., Ito, S., Miyazaki, T., Suetsumu, T., et al. (2007). Superconductivity of Doped AraiC80. New J. Chem. 31 (6), 973–979. doi:10.1039/b707726d

Yang, H., Li, Y., Wu, D., and Li, Z.-r. (2012). Structural Properties and Nonlinear Optical Responses of Superatom Compounds BF4-M (M = Li, FL2, OL3, NL4). Int. J. Quant. Chem. 112 (3), 770–777. doi:10.1002/qua.22053

Yu, G., Huang, X.-R., Chen, W., and Sun, C.-C. (2011). Alkali Metal Aromatic Ring: A Novel Interaction Mode Realizes Large First Hyperpolarizabilities of M@AR (M = Li, Na, and K, AR = Pyrrole, Indole, Thiophene, and Benzene). J. Comput. Chem. 32 (9), 2005–2011. doi:10.1002/jcc.21789

Yuan, Z., Entwistle, C. D., Collings, I. C., Albesa-Jove, D., Batsanov, A. S., Howard, J. A. K., et al. (2006). Synthesis, Crystal Structures, Linear and Nonlinear Optical Properties, and Theoretical Studies of (P-R-Phenyl)-(P-R-Phenylyl) and -(E)-[2-(P-R-Phenyl)ethyldimethylsilylbutanes and Related Compounds. Chem. Eur. J. 12 (10), 2758–2771. doi:10.1002/chem.200501096

Zeng, Z., Sung, Y. M., Bao, N., Tan, D., Lee, R., Zafra, J. L., et al. (2012). Stable Tetrazeno-Chichibabin’s Hydrocarbons: Tunable Ground State and Unusual
Transition between Their Closed-Shell and Open-Shell Resonance Forms. J. Am. Chem. Soc. 134 (35), 14513–14525. doi:10.1021/ja3050579
Zhai, H.-J., Zhao, Y.-F., Li, W.-L., Chen, Q., Bai, H., Hu, H.-S., et al. (2014). Observation of an All-boron Fullerene. Nat. Chem 6 (8), 727–731. doi:10.1038/nchem.1999
Zhang, F., Zhang, F., Qun, J., Pan, S., Yang, Z., and Jia, D. (2015). Synthesis, Characterization and Theoretical Studies of Nonlinear Optical crystal Sr2B5O9(OH)-H2O. Phys. Chem. Chem. Phys. 17 (16), 10489–10496. doi:10.1039/c5cp00864f
Zhang, J., Liu, K., Xing, G., Ren, T., and Wang, S. (2007). Synthesis and In Vivo Study of Metallolfullerene Based MRI Contrast Agent. J. Radioanal. Nucl. Chem. 272 (3), 605–609. doi:10.1007/s10967-007-0632-0
Zheng, C., Huang, J., Lei, L., Chen, W., Wang, H., and Li, W. (2018a). Nanosecond Nonlinear Optical and Optical Limiting Properties of Hollow Gold Nanocages. Appl. Phys. B 124 (1), 17. doi:10.1007/s00340-017-6888-3
Zheng, C., Huang, J., Lei, L., Chen, W., Wang, H., and Li, W. (2018b). Nanosecond Nonlinear Optical and Optical Limiting Properties of Hollow Gold Nanocages. Appl. Phys. B 124 (1), 1–8. doi:10.1007/s00340-017-6888-3
Zhou, S., Yang, X., Shen, Y., King, R. B., and Zhao, J. (2019). Dual Transition Metal Doped Germanium Clusters for Catalysis of CO Oxidation. J. Alloys Comp. 806, 698–704. doi:10.1016/j.jallcom.2019.07.297
Zhu, L., Xue, K., and Hou, J. (2019). A Theoretical Study of Alkaline-Earthides Li(NH3)4M (M = Be, Mg, Ca) with Large First Hyperpolarizability. J. Mol. Model. 25 (6), 1–10. doi:10.1007/s00894-019-4042-3
Zyss, J., and Ledoux, I. (1994). Nonlinear Optics in Multipolar media: Theory and Experiments. Chem. Rev. 94 (1), 77–105. doi:10.1021/cr00025a003
Zyss, J., Ledoux, I., Volkov, S., Chernyak, V., Mukamel, S., Bartholomew, G. P., et al. (2000). Through-space Charge Transfer and Nonlinear Optical Properties of Substituted Paracyclophane. J. Am. Chem. Soc. 122 (48), 11956–11962. doi:10.1021/ja0022526
Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.
Publisher’s Note: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors, and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.
Copyright © 2021 Bano, Asghar, Ayub, Mahmood, Iqbal, Tabassum, Zakaria and Gilani. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.