Firmly nonexpansive and Kirszbraun-Valentine extensions: a constructive approach via monotone operator theory

Heinz H. Bauschke* and Xianfu Wang†

July 8, 2008

Dedicated to Alex Ioffe and Simeon Reich, on the occasion of their 70th and 60th birthdays

Abstract

Utilizing our recent proximal-average based results on the constructive extension of monotone operators, we provide a novel approach to the celebrated Kirszbraun-Valentine Theorem and to the extension of firmly nonexpansive mappings.

2000 Mathematics Subject Classification: Primary 46C05, 47H09; Secondary 52A41, 90C25.

Keywords: Proximal average, extension of a monotone operator, firmly nonexpansive mapping, nonexpansive mapping, Kirszbraun-Valentine extension theorem.

1 Introduction

Throughout, X is a real Hilbert space with inner product $\langle \cdot, \cdot \rangle$ and associated norm $\| \cdot \|$.

Definition 1.1 Let $S \subseteq X$ and let $T: S \to X$. Then T is nonexpansive if

$$ (\forall x \in S)(\forall y \in S) \quad \|Tx - Ty\| \leq \|x - y\|. \quad (1) $$

See, e.g. [12, 13] for further information on nonexpansive mappings. Let us recall the celebrated Kirszbraun-Valentine Theorem (see [13, 24, 25]), which states that every nonexpansive mapping can be extended to the entire space.

*Mathematics, Irving K. Barber School, UBC Okanagan, Kelowna, British Columbia V1V 1V7, Canada. E-mail: heinz.bauschke@ubc.ca.
†Mathematics, Irving K. Barber School, UBC Okanagan, Kelowna, British Columbia V1V 1V7, Canada. E-mail: shawn.wang@ubc.ca.
Fact 1.2 (Kirszbraun-Valentine) Let \(S \subseteq X \) and let \(T : S \rightarrow X \) be nonexpansive. Then there exists a mapping \(\tilde{T} : X \rightarrow X \) such that \(\tilde{T} \) is nonexpansive and \(\tilde{T}|_S = T \).

In this note, we present constructive approaches to the Kirszbraun-Valentine extension theorem for nonexpansive mappings. Our main tool is the proximal average, which is used to provide an explicit maximal monotone extension of any monotone operator. In Section 2 we give maximal monotone extensions with “small domains” under some mild constraint qualifications. Our extension results for firmly nonexpansive and for nonexpansive mappings are presented in Section 3. In some cases, it is possible to provide constructive extensions with an optimally localized range.

2 Firmly Nonexpansive Mappings and Monotone Operators

Definition 2.1 Let \(S \subseteq X \) and let \(F : S \rightarrow X \). Then \(F \) is firmly nonexpansive if

\[
(\forall x \in S) (\forall y \in S) \quad \|F x - F y\|^2 \leq \langle F x - F y, x - y \rangle.
\] (2)

The Cauchy-Schwarz inequality implies that every firmly nonexpansive operator is nonexpansive. The next result, which is well known (see, e.g., [12, Theorem 12.1]), provides a bijection between nonexpansive and firmly nonexpansive mappings.

Fact 2.2 Let \(S \subseteq X \), let \(T : S \rightarrow X \), and let \(F : S \rightarrow X \). Suppose that \(F = \frac{1}{2} \text{Id} + \frac{1}{2} T \). Then \(T \) is nonexpansive \(\iff \) \(F \) is firmly nonexpansive.

Remark 2.3 Note that (see also [15]) the linear relationship between \(\text{gra} T \) and \(\text{gra} F \). In fact, the linear operator \((x, y) \mapsto (x, \frac{1}{2} x + \frac{1}{2} y)\) provides a bijection from \(\text{gra} T \) to \(\text{gra} F \) with inverse \((x, y) \mapsto (x, 2y - x)\).

Definition 2.4 Let \(A : X \rightrightarrows X \), i.e., \(A \) is a set-valued operator from \(X \) to the power set of \(X \). Denote the graph of \(A \) by \(\text{gra} A : = \{(x, x^*) \in X \times X \mid x^* \in Ax\} \). Then \(A \) is monotone if

\[
(\forall (x, x^*) \in \text{gra} A) (\forall (y, y^*) \in \text{gra} A) \quad \langle x - y, x^* - y^* \rangle \geq 0.
\] (3)

If \((x, x^*) \in X \times X \) and the operator with graph \(\{(x, x^*)\} \cup \text{gra} A \) is monotone, then \((x, x^*)\) is monotonically related to \(\text{gra} A \). If \(A \) is monotone and every proper extension of \(A \) fails to be monotone, then \(A \) is maximal monotone. The inverse operator \(A^{-1} \) is defined via \(\text{gra} A^{-1} : = \{(x^*, x) \in X \times X \mid x^* \in Ax\} \).

Maximal monotone operators play a critical role in modern Analysis and Optimization; see, e.g., [8, 21, 22, 23, 26].

The following result, brought out fully by Eckstein and Bertsekas [10], has its roots in the seminal works by Minty [17] and by Rockafellar [20].
Fact 2.5 Let $A: X \rightrightarrows X$, let $S \subseteq X$, and let $F: S \to X$. Suppose that $F = (A + \text{Id})^{-1}$; equivalently, that $A = F^{-1} - \text{Id}$. Then the following hold.

(i) A is monotone \iff F is firmly nonexpansive.

(ii) A is maximal monotone \iff F is firmly nonexpansive and $S = X$.

Remark 2.6 Using notation of Fact 2.5 we recall the linear relationship (see [15]) between the graphs of F and A. Indeed, the linear operator $(x, y) \mapsto (y, x - y)$ provides a bijection from gra F to gra A with inverse $(x, y) \mapsto \frac{1}{2}(x + y, x - y)$.

Corollary 2.7 Let $F: X \to X$ be firmly nonexpansive. Then ran F is convex.

Proof. Set $A := T^{-1} - \text{Id}$ and observe that dom $A = \text{ran} T$. The conclusion now follows from Fact 2.5 (ii) and [22, Theorem 18.6].

Remark 2.8 Suppose that $X = \mathbb{R}^2$, let P_A the projector onto the line $\mathbb{R} \times \{1\}$ and let P_B be the projector onto the closed unit ball. Then P_A and P_B are both (firmly) nonexpansive (see, e.g., [12, Theorem 12.2]). Set $T := P_B P_A$. Then T is a nonexpansive mapping defined on the entire Euclidean plane; however, ran T is equal to the the closed upper half circle, which is not convex.

The following result, originally obtained with the help of the proximal average, the Fitzpatrick function, and other tools from Convex Analysis, is of key importance. We refer the reader to [2, 3, 4, 5, 7] for further information on the proximal average, to [9, 11, 16, 18, 23] and the references therein for results on the Fitzpatrick function, and to [20, 21, 26] for the basic theory of Convex Analysis. The notation \tilde{A} for the maximal monotone extension of a monotone operator $A: X \rightrightarrows X$ will be used from now on.

Fact 2.9 (See [7, Fact 5.6 and Theorem 5.7].) Let $A: X \rightrightarrows X$ be monotone. Recall that the Fitzpatrick function of A is the function on $X \times X$ defined by

$$\Phi_A: (x, x^*) \mapsto \sup_{(a, a^*) \in \text{gra } A} \left(\langle x, a^* \rangle + \langle a, x^* \rangle - \langle a, a^* \rangle \right),$$

with Fenchel conjugate

$$\Phi_A^*: (y^*, y) \mapsto \sup_{(x, x^*) \in X \times X} \left(\langle x, y^* \rangle + \langle y, x^* \rangle - \Phi_A(x, x^*) \right).$$

Set

$$\Psi_A: (x, x^*) \mapsto \min_{(x, x^*)=(y+z, y^*+z^*)} \left(\frac{1}{2} \Phi_A(y, y^*) + \frac{1}{2} \Phi_A^*(z^*, z) + \frac{1}{8} \left(\|y - z\|^2 + \|y^* - z^*\|^2 \right) \right),$$

which is the proximal average between Φ_A and the (transpose of the) Φ_A^*, and define $\tilde{A}: X \rightrightarrows X$ via

$$\text{gra } \tilde{A} = \{(x, x^*) \in X \times X \mid (x^*, x) \in \partial \Psi_A(x, x^*)\},$$

where “∂” denotes the subdifferential operator from Convex Analysis. Then the following hold.

3
Combining (10), (16), and (14), we see that
\[(\forall (x, x^*) \in X \times X) \; \Psi_A(x, x^*) \geq \langle x, x^* \rangle. \]

(ii) \((\forall (x, x^*) \in X \times X) \; x^* \in A_x \iff \Psi_A(x, x^*) = \langle x, x^* \rangle. \)

(iii) \(\tilde{A} \) is a maximal monotone extension of \(A. \)

It is convenient (see, e.g., Example 3.3 below) to be able to use the following alternative description of \(\tilde{A}. \)

Theorem 2.10 Let \(A : X \rightrightarrows X^* \) be monotone. Define \(B : X \rightrightarrows X^* \) via

\[
x^* \in Bx \iff (x, x^*) = \frac{1}{2}(x_1 + x_2, x_1^* + x_2^*),
\]

where

\[
(x_2^*, x_2) \in \partial \Phi_A(x_1, x_1^*) \quad \text{and} \quad x_1 - x_2 = x_1^* - x_2^*.
\]

Then \(B = \tilde{A}. \)

Proof. Take \((x, x^*) \in X \times X. \)

"gra \(\tilde{A} \subseteq \text{gra } B" : \) Suppose that \((x, x^*) \in \text{gra } \tilde{A}. \) Then \(\Psi_A(x, x^*) = \langle x^*, x \rangle \) by Fact 2.9(ii) and, by (7), there exist \((x_1, x_1^*) \) and \((x_2, x_2^*) \) in \(X \times X \) such that

\[
(x, x^*) = \frac{1}{2}(x_1 + x_2, x_1^* + x_2^*)
\]

and

\[
\frac{1}{4}\langle x_1 + x_2, x_1^* + x_2^* \rangle = \frac{1}{2}\Phi_A(x_1, x_1^*) + \frac{1}{2}\Phi_A^*(x_2, x_2^*) + \frac{1}{8}(\|x_1 - x_2\|^2 + \|x_1^* - x_2^*\|^2).
\]

The Fenchel-Young inequality yields

\[
\Phi_A(x_1, x_1^*) + \Phi_A^*(x_2, x_2^*) \geq \langle (x_1, x_1^*), (x_2, x_2^*) \rangle = \langle x_1, x_2^* \rangle + \langle x_1^*, x_2 \rangle.
\]

Hence, (11) results in

\[
\frac{1}{4}\langle x_1 + x_2, x_1^* + x_2^* \rangle \geq \frac{1}{2}\langle x_1, x_2^* \rangle + \frac{1}{2}\langle x_1^*, x_2 \rangle + \frac{1}{8}(\|x_1 - x_2\|^2 + \|x_1^* - x_2^*\|^2);
\]

equivalently,

\[
\frac{1}{2}\|x_1 - x_2\|^2 + \frac{1}{2}\|x_1^* - x_2^*\|^2 \geq \langle x_1 - x_2, x_1^* - x_2^* \rangle.
\]

Thus, \(x_1^* - x_2^* \in \partial \left(\frac{1}{2}\| \cdot \|^2 \right)(x_1 - x_2) \) and hence

\[
x_1^* - x_2^* = x_1 - x_2.
\]

In view of (11) and (14), it follows that

\[
\frac{1}{2}\langle x_1 + x_2, x_1^* + x_2^* \rangle = \Phi_A(x_1, x_1^*) + \Phi_A^*(x_2, x_2^*) + \frac{1}{2}\langle x_1 - x_2, x_1^* - x_2^* \rangle,
\]

i.e., \(\Phi_A(x_1, x_1^*) + \Phi_A^*(x_2, x_2^*) = \langle x_1, x_2^* \rangle + \langle x_2, x_1^* \rangle = \langle (x_1, x_1^*), (x_2^*, x_2) \rangle \) and hence

\[
(x_2^*, x_2) \in \partial \Phi_A(x_1, x_1^*).
\]

Combining (10), (16), and (14), we see that \((x, x^*) \in \text{gra } B. \)
Using (10), (17), and (18), we obtain
\[\Phi_A(x_1, x_1^*) + \Phi_A^*(x_2^*, x_2) = \langle x_1, x_1^* + x_2^* \rangle = \langle x_1, x_1^* + x_2^* \rangle \]
and
\[\frac{1}{2} \| x_1 - x_2 \|^2 + \frac{1}{2} \| x_1^* - x_2^* \|^2 = \langle x_1 - x_2, x_1^* - x_2^* \rangle. \]

Using (10), (17), and (18), we obtain
\[\langle x, x^* \rangle = \frac{1}{4} \langle x_1 + x_2, x_1^* + x_2^* \rangle = \frac{1}{2} \Phi_A(x_1, x_1^*) + \frac{1}{2} \Phi_A^*(x_2^*, x_2) + \frac{1}{2} \langle x_1^*-x_2^*, x_1-x_2 \rangle = \frac{1}{2} \Phi_A(x_1, x_1^*) + \frac{1}{2} \Phi_A^*(x_2^*, x_2) + \frac{1}{8} (\| x_1 - x_2 \|^2 + \| x_1^* - x_2^* \|^2). \]

Using this, (6), and Fact 2.9(i), we estimate
\[\langle x, x^* \rangle = \frac{1}{4} \langle x_1 + x_2, x_1^* + x_2^* \rangle = \frac{1}{2} \Phi_A(x_1, x_1^*) + \frac{1}{2} \Phi_A^*(x_2^*, x_2) + \frac{1}{8} (\| x_1 - x_2 \|^2 + \| x_1^* - x_2^* \|^2) \geq \Psi_A(x, x^*) \geq \langle x, x^* \rangle, \]
and we see that \(\Psi_A(x, x^*) = \langle x, x^* \rangle \). By Fact 2.9(ii) \((x, x^*) \in \text{gra} \tilde{A} \).

Example 2.11 Let \((a, a^*) \in X \times X \) and let \(A: X \rightharpoonup X \) be given by \(\text{gra} A = \{ (a, a^*) \} \). Then \(\text{gra} \tilde{A} = \{ (x, x + a^* - a) \}_{x \in X} \).

Proof. In view of (4), we see that
\[\Phi_A: X \to \mathbb{R}: (x, x^*) \mapsto \langle x, a^* \rangle + \langle a, x^* \rangle - \langle a, a^* \rangle = \langle (x, x^*), (a^*, a) \rangle - \langle a, a^* \rangle. \]

Since \(\partial \Phi_A \equiv (a^*, a) \), Theorem 2.10 implies
\[\text{gra} \tilde{A} = \{ \frac{1}{2} (x_1 + a, x_1 - a + 2a^*) \mid x_1 \in X \}. \]

The change of variable \(x = \frac{1}{2} (x_1 + a) \) now yields the result.\[\square \]

Note that in Example 2.11 the domain of the extension \(\tilde{A} \) is the entire space \(X \) while the domain of the given operator is a singleton. This raises the question on finding extensions with the smallest possible domain. Let \(A: X \rightharpoonup X \) be monotone and set \(D := \text{conv dom} A \). Denote the normal cone operator to \(D \) by \(N_D \); i.e., \(N_D = \partial \|D\| \) so that \(\text{dom} N_D = D \) and \(\forall x \in D \)
\[N_D(x) = \{ x^* \in X \mid \text{sup}(D - x, x^*) \leq 0 \}. \]

Since \(\forall x \in D \) \(0 \in N_D(x) \), the operator
\[A + N_D \]
is monotone extension of \(A \). However, \(A + N_D \) may fail to be maximal monotone: consider, e.g., the case when \(A \) is the zero operator restricted to the open unit ball. The following result will aid us in our quest to provide a sufficient condition for \(A + N_D \) to be maximal monotone.
Fact 2.12 (See [7, Theorem 2.14 and Theorem 2.15].) Let $A : X \rightrightarrows X$ be monotone, and set $D := \text{conv dom } A$. Then the following hold.

(i) $(x, x^*) \in X \times X$ is monotonically related to $\text{gra}(A + N_D) \iff (x, x^*)$ is monotonically related to $\text{gra } A$ and $x \in \bigcap_{a \in \text{dom } A} (a + T_D(a))$, \hspace{1cm} (26)

where $T_D(a) = N_D^\ominus(a)$ is the polar (negative dual) cone of $N_D(a)$.

(ii) If $\text{conv dom } A$ is closed, then $\bigcap_{a \in \text{dom } A}(a + T_D(a)) = D$.

Theorem 2.13 Let $A : X \rightrightarrows X$ be monotone, set $D := \text{conv dom } A$ and $A_D := A + N_D$. Then the following hold.

(i) $\widetilde{A_D}$ is a maximal monotone extension of A, and

$$\text{dom } \widetilde{A_D} = \text{conv } \text{dom } \widetilde{A_D} \subseteq \bigcap_{a \in \text{dom } A} (a + T_D(a)). \hspace{1cm} (27)$$

(ii) If $\text{conv dom } A$ is closed, then $\text{dom } \widetilde{A_D} = D$.

Proof. Note that $\text{dom } A_D = \text{dom } A \cap \text{dom } N_D = \text{dom } A \cap D = \text{dom } A$.

(i) By Fact 2.12(iii), $\widetilde{A_D}$ is a maximal monotone extension of A_D. On the other hand, A_D is a monotone extension of A. Altogether, $\widetilde{A_D}$ is a maximal monotone extension of A. Fact 2.12(i) yields $\text{dom } \widetilde{A_D} \subseteq \bigcap_{a \in \text{dom } A} (a + T_D(a))$. Since the last intersection is closed and convex, we obtain the inclusion in (27). Finally, the maximal monotonicity of $\widetilde{A_D}$ and [22, Theorem 18.6] imply that $\text{conv dom } \widetilde{A_D} = \text{dom } \widetilde{A_D}$.

(ii) Combining (i) and Fact 2.12(ii), we deduce that

$$D = \text{conv } \text{dom } A \subseteq \text{conv } \text{dom } \widetilde{A_D} = \text{dom } \widetilde{A_D} \subseteq \bigcap_{a \in \text{dom } A} (a + T_D(a)) = D. \hspace{1cm} (28)$$

The proof is complete. \hfill \blacksquare

Remark 2.14 In Theorem 2.13(ii), the set $\text{conv dom } A$ is closed whenever one of the following holds.

(i) $\text{dom } A$ is a finite subset of X.

(ii) X is finite-dimensional, and $\text{dom } A$ is closed and bounded.

We conclude this section with a second approach that tailored to finite-dimensional spaces.
Theorem 2.15 Suppose that X is finite-dimensional, and let $A: X \rightrightarrows X$ be monotone. Suppose that (after translation if necessary) $0 \in \text{ri conv dom } A = \text{conv dom } A$, i.e., $0 \in \text{int conv dom } A$, where $Y := \text{aff dom } A = \text{sp dom } A$ is a closed subspace of X. Let $P: X \to X$ be the linear orthogonal projector onto Y, and let $Q: X \to Y$: $x \mapsto Px$. Then $P^* = P$ and $Q^*: Y \to X$: $y \mapsto y$. Finally, set $D := \text{conv dom } A$. Then the following hold.

(i) The composition $PA: Y \rightrightarrows Y$ is monotone.

(ii) If $B: Y \rightrightarrows Y$ is a maximal monotone extension of PA (e.g., $B = \tilde{P}A$), then

\[\hat{B} := Q^*BQ + N_D: X \rightrightarrows X \]

is a maximal monotone extension of A and $\overline{\text{dom } \hat{B}} = D$.

Proof. (i) Take (y_1, y_1^*) and (y_2, y_2^*) in $\text{gra } A$. Since $P^* = P$, $\text{dom } A \subseteq Y$, and A is monotone, it follows that $\langle y_1 - y_2, P^*y_1^* - P^*y_2^* \rangle = \langle Py_1 - Py_2, y_1^* - y_2^* \rangle = \langle y_1 - y_2, y_1^* - y_2^* \rangle \geq 0$.

(ii) Let $B: Y \rightrightarrows Y$ be a maximal monotone extension of PA. Using [22, Theorem 12.43] and since $\text{sp dom } B = \text{sp dom } A = Y$, we see that

\[\text{int}_Y \text{ dom } B = \text{int}_Y \text{ conv dom } B = \text{int}_Y \text{ conv dom } A \]

and that $\text{int}_Y \text{ conv dom } A = \text{int}_Y \text{ conv dom } A$. Thus

\[\text{int}_Y \text{ dom } B = \text{int}_Y \text{ conv dom } B \supseteq \text{int}_Y \text{ conv dom } A = \text{int}_Y \text{ conv dom } A \ni 0, \]

and hence $0 \in \text{int}_Y \text{ dom } B = \text{ri dom } B$. Since $0 \in Y \cap \text{ri dom } B = \text{ran } Q \cap \text{ri dom } B$, [21, Theorem 12.43] implies that Q^*BQ: $X \rightrightarrows X$ is maximal monotone. Because $\text{dom } Q^*BQ = Q^{-1} \text{ dom } B$, $Q0 = 0 \in \text{int}_Y \text{ dom } B$, and $Q: X \to Y$ is continuous, we see that $0 \in \text{int } \text{dom } Q^*BQ$. On the other hand, $0 \in \text{ri } D = \text{ri dom } N_D$. Altogether,

\[0 \in \text{int dom } Q^*BQ \cap \text{ri dom } N_D. \]

Thus, by [21, Corollary 12.44],

\[\hat{B} := Q^*BQ + N_D \text{ is maximal monotone.} \]

We shall now show that \hat{B} is an extension of A. To this end, take $(a, a^*) \in \text{gra } A$. Since $a \in \text{dom } A \subseteq Y$, we have $Qa = a$. Recalling that B extends PA, we deduce that $Pa^* \in PAa \subseteq Ba = BQa = Q^*BQa$ and so

\[Pa^* \in Q^*BQa. \]

On the other hand, $a \in \text{dom } A \subseteq D \subseteq Y$, which implies $Y^\perp \subseteq N_D(a)$ and further

\[a^* - Pa^* \in N_D(a). \]

Adding (34) and (35) yields

\[a^* \in (Q^*BQ + N_D)(a) = \hat{B}a. \]
Hence \((a, a^*) \in \operatorname{gra} \hat{B}\) and we conclude that
\[
\hat{B} \text{ is a maximal monotone extension of } A.
\] (37)

By [22, Theorem 18.6], \(\operatorname{conv} \operatorname{dom} \hat{B} = \lim \hat{B} \subseteq \lim N_D = D\). Furthermore, (37) implies that \(\operatorname{dom} A \subseteq \operatorname{dom} \hat{B}\) and thus \(D = \operatorname{conv} \operatorname{dom} A \subseteq \operatorname{conv} \operatorname{dom} \hat{B}\). Therefore, \(D = \operatorname{dom} \hat{B}\). □

Let us now illustrate and compare Theorem 2.13 and Theorem 2.15.

Example 2.16 Suppose that \(X = \mathbb{R}\), let \(A = \operatorname{Id}_{]-1,1[}\) be the identity operator restricted to the open interval \(]-1,1[\), and set \(D = \operatorname{conv} \operatorname{dom} A = [-1, 1]\). Since \(\operatorname{dom} A\) is open, we have \(A_D := A + N_D = A\). Hence
\[
\hat{A}_D = \hat{A} = \operatorname{Id}
\] (38)

by [7, Example 5.10]. Let \(B\) be an arbitrary maximal monotone extension of \(A\). Since \(\operatorname{gra} B\) is closed, it follows that \(B\) extends \(\operatorname{Id} |_D\). Hence \(B + N_D\) extends \(\operatorname{Id} + N_D\), but the latter is already maximal monotone. Thus, the operator \(\hat{B}\) provided by Theorem 2.15 (ii) is
\[
\hat{B} = \operatorname{Id} + N_D.
\] (39)

Therefore, Theorem 2.13 and Theorem 2.15 may in general produce different maximal monotone extensions.

3 Main Results

We now turn to the extension of (firmly) nonexpansive operators. For recent results in this direction, all based on Zorn’s Lemma, see [19], [11], and the references therein.

Theorem 3.1 (constructive extension) Let \(S \subseteq X\) and let \(T : S \to X\) be nonexpansive. Proceed as follows.

\begin{itemize}
 \item **Step 1.** Set \(F := \frac{1}{2} \operatorname{Id} + \frac{1}{2} T\).
 \item **Step 2.** Set \(A := F^{-1} - \operatorname{Id}\).
 \item **Step 3.** Compute \(\tilde{A}\) as in Fact 2.9.
 \item **Step 4.** Set \(\tilde{F} := (\operatorname{Id} + \tilde{A})^{-1}\).
 \item **Step 5.** Set \(\tilde{T} := 2\tilde{F} - \operatorname{Id}\).
\end{itemize}

Then \(\tilde{T} : X \to X\) is a nonexpansive extension of \(T\).
Proof. Since T is nonexpansive, F of Step 1 is firmly nonexpansive (Fact 2.2). By Fact 2.5 (i), A is monotone. Now Fact 2.9 implies that \tilde{A} is a maximal monotone extension of A. Hence, by Fact 2.5 $F: X \to X$ is firmly nonexpansive. Finally, Fact 2.2 yields that $\tilde{T}: X \to X$ is a nonexpansive extension of T.

Example 3.2 Let $S \subseteq X$ and set $T = 0 |_{S}$. Then Theorem 3.1 returns $\tilde{T} = 0$.

Proof. We use the notation of Theorem 3.1. Then $F = \frac{1}{2} \text{Id} |_{S}$ and $A = \text{Id} |_{S}$. By [7, Example 5.10], $\tilde{A} = \text{Id}$. Therefore, $\tilde{F} = \frac{1}{2} \text{Id}$ and $\tilde{T} = 0$.

Example 3.3 Let d and d^* be in X, and set $S = \{d\}$. Consider the nonexpansive operator $T: S \to X$ given by $Td = d^*$. Then Theorem 3.1 returns $\tilde{T} \equiv d^*$.

Proof. Adopting the notation of Theorem 3.1 we see that $\text{gra} \ F = \{(d, e)\}$, where $e = \frac{1}{2}(d + d^*)$. Hence $\text{gra} \ A = \{(e, d - e)\}$ and Example 2.11 yields $\tilde{A}: x \mapsto x + (d - e) - e = x - d^*$. It follows that $\tilde{F}: x^* \mapsto \frac{1}{2}(x^* + d^*)$. Therefore, $\tilde{T} \equiv d^*$.

We now translate the results on maximal monotone extensions of the previous section to the setting of (firmly) nonexpansive mappings. The next two results are constructive counterparts to [1, Corollary 5] provided some assumption on the range is satisfied.

Theorem 3.4 Let $S \subseteq X$, and let $F: S \to X$ be firmly nonexpansive. Set $D := \text{conv ran} \ F$, $A := F^{-1} - \text{Id}$, and $A_D := A + N_D$. Compute A_D, and set $\tilde{F} := (\text{Id} + \tilde{A}_D)^{-1}$. Then the following hold.

(i) $\tilde{F}: X \to X$ is a firmly nonexpansive extension of F such that $\text{ran} \ \tilde{F} = \text{conv ran} \ \tilde{F} \subseteq \bigcap_{r \in \text{ran} F} (r + T_D(r))$.

(ii) If $\text{conv ran} F$ is closed, then $\text{ran} \ \tilde{F} = D$.

Proof. Since $\text{ran} F = \text{dom} A$, the result is a direct consequence of Theorem 2.13.

Theorem 3.5 Suppose that X is finite-dimensional, let $S \subseteq X$, and let $F: S \to X$ be firmly nonexpansive. Set $D := \text{conv ran} \ F$ and $Y := \text{span} D$, and assume that $0 \in \text{ri} D$. Denote the orthogonal projector from X onto Y by P. Let $B: Y \rhd Y$ be an arbitrary maximal monotone extension of $P(F^{-1} - \text{Id})$: $Y \rhd Y$, set $\tilde{B} := BP + N_D: X \rhd X$, and $\tilde{F} := (\text{Id} + \tilde{B})^{-1}$. Then \tilde{F} is a firmly nonexpansive extension of F and $\text{ran} \tilde{F} = D$.

Proof. This is a direct consequence of Theorem 2.15.

We conclude this paper with a constructive version of the original Kirschbraun-Valentine result.
Theorem 3.6 (constructive Kirszbraun-Valentine extension) Let $S \subseteq X$ and let $T: S \to X$ be nonexpansive. Compute \tilde{T} as in Theorem 3.1. Set $D := \text{conv ran } T$, and denote the orthogonal projector onto D by P. Then $PT: X \to X$ is a nonexpansive extension of T such that $\text{ran } (PT) \subseteq D$.

Proof. From Theorem 3.1 we know that $\tilde{T}: X \to X$ is a nonexpansive extension of T. Since P is nonexpansive, the result follows. ■

Remark 3.7 We point out that if the given (firmly) nonexpansive mapping is described by its graph, then Remark 2.3 and Remark 2.6 may be used to go back and forth between the (firmly) nonexpansive mapping and its full-domain extension, and the corresponding monotone operators, respectively.

Remark 3.8 Let $S \subseteq X$ and let $F: S \to X$ be firmly nonexpansive. Then Corollary 2.7 and [1 Corollary 5] — which was proved nonconstructively — guarantees the existence of a firmly nonexpansive extension $G: X \to X$ of F such that $\text{ran } G = \text{conv ran } F$. We do not know whether it is possible to use Theorem 3.6 — or any other constructive result — to obtain such a mapping; see also [1, Remark 8].

Acknowledgment

Heinz Bauschke was partially supported by the Natural Sciences and Engineering Research Council of Canada and by the Canada Research Chair Program. Xianfu Wang was partially supported by the Natural Sciences and Engineering Research Council of Canada.

References

[1] H.H. Bauschke, “Fenchel duality, Fitzpatrick functions and the extension of firmly nonexpansive mappings”, Proc. Amer. Math. Soc. 135, pp. 135–139, 2007.
[2] H.H. Bauschke, R. Goebel, Y. Lucet, and X. Wang, “The proximal average: basic theory”, SIAM J. Optim., in press.
[3] H.H. Bauschke, Y. Lucet, and M. Trienis, “How to transform one convex function continuously into another”, SIAM Review 50, pp. 115–132, 2008.
[4] H.H. Bauschke, Y. Lucet, and X. Wang, “Primal-dual symmetric intrinsic methods for finding antiderivatives of cyclically monotone operators”, SIAM J. Control Optim. 46, pp. 2031–2051, 2007.
[5] H.H. Bauschke, E. Matoušková, and S. Reich, “Projection and proximal point methods: convergence results and counterexamples”, Nonlinear Anal. 56, pp. 715–738, 2004.
[6] H.H. Bauschke and X. Wang, “An explicit example of a maximal 3-cyclically monotone operator with bizarre properties”, Nonlinear Anal., in press.
[7] H.H. Bauschke and X. Wang, “The kernel average for two convex functions and its application to the extension and representation of monotone operators”, Trans. Amer. Math. Soc., in press.
[8] R.S. Burachik and A.N. Iusem, *Set-Valued Mappings and Enlargements of Monotone Operators*, Springer-Verlag, 2007.

[9] R.S. Burachik and B.F. Svaiter, “Maximal monotone operators, convex functions and a special family of enlargements”, *Set-Valued Anal.* 10, pp. 297–316, 2002.

[10] J. Eckstein and D.P. Bertsekas, “On the Douglas-Rachford splitting method and the proximal point algorithm for maximal monotone operators”, *Math. Prog.* 55, pp. 293–318, 1992.

[11] S. Fitzpatrick, S. Fitzpatrick, “Representing monotone operators by convex functions”, in *Workshop/Miniconference on Functional Analysis and Optimization (Canberra 1988)*, Proceedings of the Centre for Mathematical Analysis, Australian National University vol. 20, Canberra, Australia, 1988, pp. 59–65.

[12] K. Goebel and W.A. Kirk, *Topics in Metric Fixed Point Theory*, Cambridge University Press, 1990.

[13] K. Goebel and S. Reich, *Uniform Convexity, Hyperbolic Geometry, and Nonexpansive Mappings*, Marcel Dekker, 1984.

[14] M.D. Kirszbraun, “Über die zusammenziehende und Lipschitzsche Transformationen”, *Fund. Math.* 22, pp. 77–108, 1934.

[15] J. Lawrence and J.E. Spingarn, “On fixed points of nonexpansive piecewise isometric mappings”, *Proc. London Math. Soc.* 55, pp. 605–624, 1987.

[16] J.-E. Martínez-Legaz and M. Théra, “A convex representation of maximal monotone operators”, *J. Nonlinear Convex Anal.* 2, pp. 243–247, 2001.

[17] G.J. Minty, “Monotone (nonlinear) operators in Hilbert space”, *Duke Math. J.* 29, pp. 341–346, 1962.

[18] J.-P. Penot, “The relevance of convex analysis for the study of monotonicity”, *Nonlinear Anal.* 58, pp. 855–871, 2004.

[19] S. Reich and S. Simons, “Fenchel duality, Fitzpatrick functions and the Kirszbraun-Valentine extension theorem”, *Proc. Amer. Math. Soc.* 133, pp. 2657–2660, 2005.

[20] R.T. Rockafellar, “Monotone operators and the proximal point algorithm”, *SIAM J. Control Optim.* 14, pp. 877–898, 1976.

[21] R.T. Rockafellar and R. J-B Wets, *Variational Analysis*, Springer-Verlag, 1998.

[22] S. Simons, *Minimax and Monotonicity*, Springer-Verlag, 1998.

[23] S. Simons, *From Hahn-Banach to Monotonicity*, Springer-Verlag, 2008.

[24] F.A. Valentine, “On the extension of vector function so as to preserve a Lipschitz condition”, *Bull. Amer. Math. Soc.* 49, pp. 100–108, 1943.

[25] F.A. Valentine, “A Lipschitz condition preserving extension for a vector function”, *Amer. J. Math.* 67, pp. 83–93, 1945.

[26] C. Zălinescu, *Convex Analysis in General Vector Spaces*, World Scientific Publishing, 2002.