Maximum likelihood random galaxy catalogues and luminosity function estimation

Shaun Cole

Institute for Computational Cosmology, Department of Physics, University of Durham, Science Laboratories, South Road, Durham DH1 3LE

ABSTRACT

We present a new algorithm to generate a random (unclustered) version of an magnitude limited observational galaxy redshift catalogue. It takes into account both galaxy evolution and the perturbing effects of large-scale structure. The key to the algorithm is a maximum likelihood (ML) method for jointly estimating both the luminosity function (LF) and the overdensity as a function of redshift. The random catalogue algorithm then works by cloning each galaxy in the original catalogue, with the number of clones determined by the ML solution. Each of these cloned galaxies is then assigned a random redshift uniformly distributed over the accessible survey volume, taking account of the survey magnitude limit(s) and, optionally, both luminosity and number density evolution. The resulting random catalogues, which can be employed in traditional estimates of galaxy clustering, make fuller use of the information available in the original catalogue and hence are superior to simply fitting a functional form to the observed redshift distribution. They are particularly well suited to studies of the dependence of galaxy clustering on galaxy properties as each galaxy in the random catalogue has the same list of attributes as measured for the galaxies in the genuine catalogue. The derivation of the joint overdensity and LF estimator reveals the limit in which the ML estimate reduces to the standard \(1/V_{\text{max}}\) estimate, namely when one makes the prior assumption that there are no fluctuations in the radial overdensity. The new ML estimator can be viewed as a generalization of the \(1/V_{\text{max}}\) estimate in which \(V_{\text{max}}\) is replaced by a density corrected \(V_{\text{dc},\text{max}}\).

Key words: galaxies: luminosity function, mass function – large-scale structure of Universe.

1 INTRODUCTION

Studies of galaxy clustering as a function of the galaxy properties are placing increasingly powerful constraints on models of galaxy formation. For instance, the quantification of the dependence of the strength of galaxy clustering on luminosity and colour (Norberg et al. 2002; Zehavi et al. 2005) constrains how the distribution in mass of the dark matter haloes that host the galaxies depends on luminosity and colour. This information, in turn, places very useful constraints on models of galaxy formation (e.g. Kim et al. 2009). Such techniques are being extended to new wavelengths (e.g. Guo et al. 2011) and higher redshifts (e.g. Coil et al. 2008).

Measuring the galaxy correlation function usually involves counting galaxy pairs and comparing to the expectation for an unclustered or random catalogue (Hamilton 1993; Landy & Szalay 1993). If one has a very large galaxy redshift survey then the redshift used for the random catalogue can be determined fairly accurately by fitting some assumed functional form to the observed distribution. However, this is not ideal if the survey is not large or one wants to subdivide it into smaller samples in bins of luminosity or colour. In such cases one can artificially suppress the measured clustering by overfitting random fluctuations in the redshift distribution. An alternative method is to predict the galaxy redshift distribution from an estimate of the galaxy luminosity function (LF) and the flux and other selection limits of the survey (e.g. Cole et al. 2005). The redshift distribution derived by this technique is less susceptible to distortions from density fluctuations as one can use estimators of the galaxy LF that are independent of the galaxy density (Sandage, Tammann & Yahil 1979; Efstathiou, Ellis & Peterson 1988). Also, one predicts not only the redshift, but also the luminosity of each galaxy in the random catalogue and so a single random catalogue can be used to estimate galaxy clustering as a function of luminosity. However, if one wants to extend this technique so that one can measure galaxy clustering as a function of other properties, e.g. colour and surface brightness, one has the more complicated task of first estimating a multivariate luminosity–colour–surface brightness distribution function.

We develop a new algorithm for generating a random galaxy catalogue that corresponds to a given observed catalogue defined by a simple flux limit. This is a maximum likelihood estimator for the LF, \(\Phi(L)\), in which, like the standard \(1/V_{\text{max}}\) (Schmidt 1968;
Felten 1976) estimator, $\Phi(L)$ reduces to a weighted sum over the galaxies with luminosity L, but unlike $1/V^{\text{max}}$ explicitly accounts for fluctuations in the galaxy density with redshift. As each observed galaxy contributes linearly to this estimated LF, this means that a random catalogue with a consistent LF can be generated by simply cloning galaxies from the observed catalogue, with a rate which we derive from a maximum likelihood analysis, and redistributing them uniformly over the volume in which they would satisfy the survey selection criteria. As each galaxy in the random catalogue is a clone of an observed galaxy it carries with it all the measured properties of that galaxy. Hence, provided they can be modified for the change in redshift (e.g. k-correcting luminosities), the resulting random catalogue has all the properties of the original and can be used to study clustering as a function of any of those properties. This technique should be particularly applicable to multi-wavelength surveys such as GAMA (Driver et al. 2011) and its overlap with H-ATLAS (Eales et al. 2010), 6dF (Jones et al. 2009), zCOSMOS (Lilly et al. 2007) and future redshift surveys designed to probe galaxy evolution.

In Section 2 we develop a joint maximum likelihood estimator for an assumed non-evolving LF and the run of overdensity as a function of redshift. We, also, show how the LF estimator relates to the standard $1/V^{\text{max}}$ estimator. Section 3 extends this estimator to include galaxy evolution. In Section 4 we show how the estimator can be extended to provide a simple algorithm for generating a random galaxy catalogue. The method is tested and illustrated with mock data in Section 5 and we conclude in Section 6.

2 LF ESTIMATION

The commonly used STY (Sandage et al. 1979) and EEP (Efstathiou et al. 1988) maximum likelihood estimators of the galaxy LF assume the probability of a galaxy having luminosity in the interval $L - dL/2$ to $L + dL/2$ in a volume element d^3x centred at position x can be factorized as

$$P(L, x) d^3x = \phi(L) n(x) dL d^3x.$$

They then construct estimators that are independent of the density, $n(x)$, by factoring out its dependence.

Thus they start with the following conditional probability:

$$p_a = \int_{L_{\text{min}}(z_a)}^{L_{\text{max}}(z_a)} \phi(L_a) dL$$

that in an apparent magnitude limited catalogue a galaxy α at redshift z_a will have luminosity L_a.

The STY and EEP methods differ in that STY assume a parametric (Schechter function) form for the LF, while EEP simply adopt a step-wise (binned) description of the LF. In both cases the derivation of the LF estimator follows by forming the likelihood, which is the total probability for the whole galaxy sample given the model parameters,

$$L = \Pi_a p_a,$$

and maximizing this likelihood (or its logarithm) over the model parameters (bin values in the case of EEP).

If we are interested in estimating both the LF and the spherically averaged density field we can instead start with the joint probability

$$p_a = \frac{\Delta(z_a) dV(z_a)}{dL} \int_{L_{\text{min}}(z_a)}^{L_{\text{max}}(z_a)} \phi(L_a) dL d^3x,$$

of finding a galaxy at redshift z_a with luminosity L_a in an apparent magnitude limited sample. Here dV/dz is the differential of the survey volume with redshift and $\Delta(z)$ is the galaxy overdensity (averaged over a radial bin) at redshift z. Here we are assuming that there is no redshift evolution of the LF and hence $\rho(x)$ varies only due to density fluctuations. Adopting binned estimates of both the LF ϕ_i and overdensity Δ_p we can write this probability as

$$p_a = \frac{\sum_p V_p \Delta_p D(z_a | z_p) \sum_i \phi_i D(L_u | L_i)}{\sum_p V_p \Delta_p \sum_i \phi_i S(L^{\text{min}}_p | L_i)}.$$

Here the sum over p (later also q) runs over redshift bins with V_p being the volume and Δ_p the galaxy overdensity of the bin. The sum over i (later also j) runs over the bins in the LF with ϕ_i being equal to $\phi(L) dL$ for that bin. The functions $D(z_a | z_p)$ and $D(L_u | L_i)$ represent simple binning functions which are unity if galaxy α falls in the corresponding redshift and luminosity bin and zero otherwise. Similarly $S(L^{\text{min}}_p | L_i)$ is a step-function which is unity if the minimum luminosity L^{min}_p required for a galaxy to make it into the magnitude limited sample at the redshift of bin p is fainter than the luminosity L_i of that bin. Using this notation we can write

$$\ln L = \sum_a \left(\ln \sum_p V_p \Delta_p D(z_a | z_p) + \ln \sum_i \phi_i D(L_u | L_i) \right)$$

$$- \ln \sum_p V_p \Delta_p \sum_i \phi_i S(L^{\text{min}}_p | L_i).$$

For the maximum likelihood solution, the derivatives of $\ln L$ with respect to bin values Δ_q and ϕ_i will be zero. Hence we have

$$\frac{d \ln L}{d \Delta_q} = 0 \quad \text{and} \quad \frac{d \ln L}{d \phi_i} = 0$$

and

$$\Delta_q = \sum_i \phi_i S(L^{\text{min}}_p | L_i).$$

The meaning of the various terms in these equations can be made more explicit by adopting the following notation. Let the estimate of the number of galaxies in the survey based on the values of ϕ_i and Δ_q, be

$$\hat{N}_i = \sum_q V_q \Delta_q \sum_i \phi_i S(L^{\text{min}}_p | L_i).$$

Let the number of galaxies falling in each luminosity and redshift bin be N_i and \hat{N}_i, respectively, and let

$$\hat{n}_q = \sum_i \phi_i S(L^{\text{min}}_q | L_i)$$

be the predicted mean galaxy number density in redshift bin q based on the estimated LF and assuming the mean density, i.e. $\Delta_q = 1$. Finally let

$$V_{ij}^{\text{max}} = \sum_p \Delta_p V_p S(L^{\text{min}}_p | L_i),$$

which is a density corrected version of the normal V^{max} in which the volume elements, V_p, are weighted by the estimated overdensities, Δ_p.

Using this notation we can rewrite the two constraint equations as

$$0 = \frac{N_q V_q}{V \Delta_q} - \frac{N_{\text{tot}} V_q \hat{n}_q}{\hat{N}_{\text{tot}}}$$

and

$$0 = \frac{N_i}{\phi_j} - \frac{N_{\text{tot}} V_{ij}^{\text{max}}}{\hat{N}_{\text{tot}}}.$$
which rearrange to give the coupled equations
\[\Delta_q = \frac{N_q}{V_{dc}^q} \hat{N}_{tot} \] and \[\phi_j = \frac{N_j}{V_{dc}^{max}} \hat{N}_{tot} \] (13)

To the extent to which the maximum likelihood model is a good description of the data \(\hat{N}_{tot} = N_{tot} \) and so these equations simplify to quite intuitive estimators
\[\Delta_q = \frac{N_q}{V_{dc}^q} \] and \[\phi_j = \frac{N_j}{V_{dc}^{max}} \] (14)
The first of these equations simply says that the estimate of the overdensity is the measured density divided by that predicted by the LF, while the second equation is equivalent to
\[\phi(L) = \sum_a \frac{1}{V_{dc, max}(L_a)} \] (15)
with the sum being over galaxies within that luminosity bin, i.e. the normal 1/V^max estimator, but with V^max replaced by V^{dc,max}.

We note that this maximum likelihood estimate of the LF is equivalent to the standard 1/V^max estimator if one makes the prior assumption that \(\Delta_q \equiv 1 \), i.e. that there are no fluctuations in the radial galaxy density.

Choloniewski (1986) derived the same estimator of the LF using a different approach in which it was assumed that the number of galaxies in a given luminosity and redshift bin were drawn from a Poisson distribution. Our derivation shows that the estimator does not depend on the details of the assumed statistical distribution. The same density estimator was derived by maximum likelihood by Saunders et al. (1990). They also stated that an improved estimate of the LF could be made by making the same density correction to V^max, though they did not derive this result via maximum likelihood. Another related analysis is that of Heyl et al. (1997). They followed similar steps but choose not to make the separability assumption of equation (1) so as to be able to directly probe evolution of the shape of the LF using wide redshift bins.

Before detailing our simple algorithm for generating a random catalogue that is consistent with the LF given by equation (15), we will generalize this result to take account of redshift evolution. The resulting algorithm, described in Section 4, can then be applied to surveys that span a wide range of redshifts.

3 ALLOWING FOR REDSHIFT EVOLUTION

First let us consider the case where one has external knowledge of the evolution of the galaxy population. For instance, one might have evolutionary corrections for each galaxy or an average for the population based on fitting stellar population synthesis models (e.g. Bruzual & Charlot 2003; Blanton & Roweis 2007) to the observed galaxy colours. One could also have a pre-imposed model for density evolution, e.g. that the amplitude of the galaxy LF, \(\Phi^* \), varies with redshift as \(\Phi^*(z) = P(z) \Phi^*(0) \). In this case the only changes that are needed are those above the estimators are:

(i) when computing the redshift range over which a given galaxy satisfies the catalogue selection criteria the \(e \)-correction along with the \(k \)-correction and
(ii) include the factor \(P(z) \), by which \(\Phi^* \) evolves, in the definition of \(V_{dc, max} \).

Thus, we redefine \(V_{dc, max} \) for galaxy or used in equation (15) to be
\[V_{a, dc}^{max} = \sum_p \Delta_p \hat{P}_p V_p S(L_{min} | L_a), \] (16)
which simply represents and integral over the survey volume weighted by the combined factor \(\Delta(z) P(z) \) with limits set by the redshift range over which galaxy \(a \) would satisfy the survey selection criteria.

If one does not have foreknowledge of the evolution one can instead parametrize the evolution and use the survey data to constrain its parameters by an extension of the maximum likelihood technique. For instance for the \(P(z) \) model of \(\Phi^* \) evolution introduced above, equation (6) becomes
\[\ln L = \sum_a \left(\ln \sum_p V_p \hat{P}_P \Delta_p D(z_a | z_p) + \ln \sum_i \phi_i D(L_a | L_i) \right) - \ln \sum_p V_p \hat{P}_P \Delta_p \sum_i \phi_i S(L_{min} | L_i) \]. (17)
Here the parametric form of \(P(z) \) might simply be \(P(z) = 1 + az \) with \(a \) being the evolution parameter we wish to determine. The method is easily generalized to more parameters. As \(\hat{P}_P \) and \(\Delta_p \) always appear as a pair in this likelihood function they are degenerate, i.e. we are unable distinguish evolution in the number density of galaxies from a redshift dependent change in the overdensity.

If, however, we are able to specify the expected amplitude of the density fluctuations this will enable the likelihood analysis to distinguish fluctuations from smooth evolution.1 If the redshift bins are sufficiently large in volume we can make a simple estimate of the expected fluctuations in the galaxy overdensity using the integral \(J_1 = \int \xi(r) r^2 dr \) (assumed to be a constant when integrated to scales \(> 10 h^{-1} \) Mpc) of the galaxy correlation function, \(\xi(r) \) (Peekle 1980). The resulting expected variance in \(\Delta_p \) is
\[\sigma^2_p = \frac{1 + 4\pi \hat{P}_P J_3}{\hat{P}_P V_p}, \] (18)
with the second term enhancing the variance above the Poisson value because galaxy positions are correlated and tend to come in clumps of 4\pi\hat{P}_P J_1 galaxies at a time. Assuming the density fluctuations are Gaussian distributed with this variance and including this as a prior probability which multiplies our likelihood function, \(P = L \times P_{prior} \), we can replace equation (17) with the following equation for the logarithm of the posterior probability (to within an unimportant additive constant)
\[\ln P = \sum_a \left(\ln \sum_p V_p \hat{P}_P \Delta_p D(z_a | z_p) + \ln \sum_i \phi_i D(L_a | L_i) \right) - \ln \sum_p V_p \hat{P}_P \Delta_p \sum_i \phi_i S(L_{min} | L_i) \right) - \sum_p \frac{(\Delta_p - 1)^2}{2\sigma^2_p}. \] (19)
The final term breaks the degeneracy between \(P_p \) and \(\Delta_p \) and so allows us to solve for the evolution parameter. In some instances, e.g. for a small survey in which density evolution is inevitably poorly constrained, it may be beneficial to place a Gaussian prior
\[P_{prior}(a) = \frac{1}{\sqrt{2\pi\sigma_a}} \exp \left(-a^2 / 2\sigma^2_a \right) \] (20)
on the density evolution parameter.

The final modification is to use a Lagrange multiplier, \(\mu \), to impose the constraint that, in the absence of density fluctuations,

1 If the estimate of the variance of the density fluctuations is inaccurate or the function \(P(z) \) is given too much freedom then this may lead to bias in the recovered evolution parameters, but for the smooth evolution models considered here we find no evidence of bias.
the predicted number of galaxies, \(\sum_q \hat{N}_q V_q \), equals the number in the genuine catalogue, \(N_{\text{gal}} \). In the simple case presented in Section 2 this is not necessary as the likelihood expression of equation (6) is invariant under the transformation \(\phi_i \to \theta \phi_i \) and \(\Delta_\theta \to \Delta_\theta / \theta \). Thus, in that case one can simply impose this normalization constraint after having found the ML solution. However, the introduction of last term in equation (19) has broken this symmetry and so to maximize equation (19) subject to this constraint we need instead to maximize

\[
\ln \Lambda = \ln P - \mu \sum_q (\hat{N}_q V_q - N_{\text{gal}}).
\]

Following the same steps that led from equation (6) to (12), but now also setting the derivatives

\[
\frac{d \ln \Lambda}{da} = 0 \quad \text{and} \quad \frac{d \ln \Lambda}{d \mu} = 0,
\]

where \(\mu \) is the Lagrange multiplier and \(a \) is the parameter of the evolution model \(P(z) \), leads to the following ML solution,

\[
0 = \frac{N_q}{\Delta_q} - V_q \hat{N}_q - \frac{\Delta_q - 1}{\sigma_q^2},
\]

\[
0 = \frac{N_q}{\Delta_q} - (V_q \Delta_q + \mu V_q^{\text{max}}),
\]

\[
0 = \sum_q (N_q - \hat{N}_q V_q (\Delta_q + \mu)) \frac{d \ln P_q}{da} - \frac{a}{\sigma_a^2},
\]

\[
0 = \sum_q \hat{N}_q V_q - N_{\text{gal}}.
\]

Here we have generalized the earlier notation to include the \(P(z) \) model so that

\[
\hat{N}_q = P_q \sum_i \phi_i S(L^\text{min}_q | L_i),
\]

\[
V_q^{\text{min}} = \sum_p \Delta_q P_p V_p S(L^\text{min}_q | L_p),
\]

and made use of the result that if the model accurately describes the data then

\[
\hat{N}_{\text{gal}} = \sum_p P_p V_p \Delta_p \sum_i \phi_i S(L^\text{min}_p | L_i) = N_{\text{gal}}.
\]

These equations can be solved efficiently by an iterative method. Starting with \(\Delta_q \equiv 1 \) and \(P_q \equiv 1 \) (or a prior guess for the evolution parameter \(a \)).

(i) Evaluate \(V_q^{\text{max}} \) and \(V_q^{\text{max}} \) for each galaxy using the current values of \(\Delta_q \) and \(P_q \).

(ii) Find the value of \(\mu \) such that \(\frac{V_q^{\text{max}}}{V_q^{\text{max}} + \mu V_q^{\text{max}}} = 1 \), which is achieved easily using the Newton–Raphson method.

(iii) Evaluate \(\hat{N}_q \) using

\[
\hat{N}_q V_q = \sum_p P_p V_p S(L^\text{min}_q, L_p) \frac{V_q^{\text{max}}}{V_q^{\text{max}} + \mu V_q^{\text{max}}},
\]

which follows from evaluating equation (27) using the estimate of \(\phi_i \) given by equation (24).\(^2\)

(iv) Substitute this estimate of \(\hat{N}_q \) into equation (23) to solve for the \(\Delta_q \).

(v) Solve for the number density evolution parameter, \(a \), by finding the root of equation (25).\(^3\)

(vi) Now repeat this process from step (i) until the \(\Delta_q \) and the \(P_q \) converge.

In the iterative process described above we never explicitly evaluate the LF, \(\Phi(L) \), though one could do this at any stage by simply evaluating

\[
\Phi(L) = \sum_u \frac{1}{V_u^{\text{max}}(L_u) + \mu V_u^{\text{max}}(L_u)},
\]

which follows from equation (24). Hence although we derived the method by considering a binned estimate of the LF this binning does not enter in any way in determining the parameters \(\Delta_q \) and \(a \) or into the predicted redshift distribution, \(\hat{N}_q V_q \), they imply.

One could deal with luminosity evolution in an analogous way. First, define the \(e \)-correction term in the standard way so that absolute, \(M \), and apparent, \(m \), magnitudes are related by

\[
M = m - 5 \log_{10} d_{\text{lum}}(z) - k(z) - e(z),
\]

where \(d_{\text{lum}} \) is the luminosity distance and \(k(z) \) the \(k \)-correction (see e.g. Hogg et al. 2002). Then parametrize the \(e \)-correction (or its deviation from a default individual \(e \)-correction for each galaxy) as e.g. \(e(z) = u z \) and maximize the posterior probability with respect to the parameter \(u \). This yields the constraint equation

\[
\frac{d \ln P}{du} = 0 = \sum_j \frac{dN_j}{du} \ln \Phi(L_j)
\]

\[
- \sum_p V_p P_p (\Delta_p + \mu) \phi(L_p) \frac{dL_p}{du} - \frac{u}{\sigma_u^2},
\]

where the last term comes from assuming a Gaussian prior on the evolution parameter. The other terms depend on \(u \) through the implicit dependence of the luminosities \(L_u \) and \(L_p \) on the \(e \)-correction via the relationship between the inferred absolute magnitude, the observed apparent magnitude, \(m_a \) and redshift \(z_a \),

\[
M_a = m_a - 5 \log_{10} d_{\text{lum}}(z_a) - k(z_a) - e(z_a),
\]

and through the dependence of the limiting absolute magnitude at redshift \(z_p \) on the apparent magnitude limit of the survey, \(m_{\text{lum}} \),

\[
M_{\text{lum}} = m_{\text{lum}} - 5 \log_{10} d_{\text{lum}}(z_p) - k(z_p) - e(z_p).
\]

Hence, \(u \) can be found in an iterative way, updating \(u \) by finding the root of equation (33) in the same way as we update \(a \) by finding the root of equation (25). Implementing this modified algorithm requires a smooth luminosity binning scheme, as in Efstathiou et al. (1988), so that the derivative \(dN/du \) is well defined. Although we have successfully implemented such a scheme we prefer to present

\textit{ensures that equation (26) is satisfied. In practice, we find }|\mu| \ll 1 \text{ and that setting } \mu = 0 \text{ makes very little difference to the resulting LF and redshift distribution.}

\(^2\) Here we have written the equation in this form as if we then sum over the redshift bins, \(q \), it is straightforward to see that the choice of \(\mu \) from step (ii)

\(^3\) We have written the expression in this form as if we then sum over the redshift bins, \(q \), it is straightforward to see that the choice of \(\mu \) from step (ii)
results in which we use the simpler iterative algorithm detailed above. This is sufficiently fast that we can repeat it for different fixed values of the e-correction (\(u\)), iterating to the final solution for each value of \(u\), and then search over the values of \(u\) to find the value which maximizes the logarithm of the posterior probability

\[
\ln P = \sum_a \left(\ln \sum_p V_p \Delta_p D(z_a|z_p) + \ln \sum_i \phi_i D(L_a|L_i) \right)
- \ln \sum_p V_p \Delta_p \sum_i \phi_i S(L_p^{\text{max}}|L_i)
- \frac{\sum_p (\Delta_p - 1)^2}{2\sigma_p^2} - \frac{\alpha^2}{2\sigma_a^2} - \frac{\mu^2}{2\sigma_a^2}.
\] (36)

The initial terms come from equation (19) and the terms on the final line of this equation come from assumed Gaussian priors on the evolution parameters \(a\) and \(u\). The term on the second line is effectively constant as it involves only the total number of galaxies predicted by the model. Thus, to within an unimportant additive constant we can evaluate this expression as

\[
\ln P = \sum_a \left(\ln \sum_p V_p \Delta_p D(z_a|z_p) + \ln \sum_i \phi_i D(L_a|L_i) \right)
- \frac{\sum_p (\Delta_p - 1)^2}{2\sigma_p^2} - \frac{\alpha^2}{2\sigma_a^2} - \frac{\mu^2}{2\sigma_a^2},
\] (37)

or equivalently in terms of the binned quantities as

\[
\ln P = \sum_p N_p \ln(V_p \Delta_p) + \sum_i N_i \ln(\phi_i)
- \frac{\sum_p (\Delta_p - 1)^2}{2\sigma_p^2} - \frac{\alpha^2}{2\sigma_a^2} - \frac{\mu^2}{2\sigma_a^2}.
\] (38)

Thus for each trial value of the luminosity evolution parameter \(u\) one evaluates this expression using the values of \(\phi_i\) and \(\Delta_p\) that result from the iterative solution of equations (23) to (26) and then simply selects the most probable model.

4 GENERATING A RANDOM CATALOGUE

The LF estimates we have derived in Sections 2 and 3 are both simply weighted sums over the galaxies of that luminosity. This feature means they are very well suited for generating random catalogues. Rather than having to estimate the LF and then compute the number of galaxies expected at a given redshift in the random catalogue as an integral over \(\Phi(L)\), one can instead carry out a weighted duplication of the galaxies in the original catalogue with each being redistributed in redshift.

The key to the algorithm is equation (30). The left-hand side of this equation is the predicted number of galaxies in the redshift bin \(z_\alpha\) of the random catalogue. The right-hand side of the equation we can interpret as saying each galaxy in the original catalogue has a weight \(w_a = V_a^\text{max}(V_{d,\text{max}} + \mu V_a^\text{max})\) and because \(V_a^\text{max} = \sum_p P_p V_p S(L_a^{\text{max}}|L_p)\) we see that the first term indicates that this weight is distributed amongst the redshift bins according to the fraction of its \(V_a^\text{max}\) that falls within each bin. This interpretation of equation (30) leads to a very simple Monte Carlo algorithm for generating a random catalogue, i.e. the galaxy catalogue one would expect if there were no galaxy clustering.

To generate a random catalogue with approximately \(N_{\text{lines}}\) as many galaxies as the original we proceed as follows. Loop over the galaxies in the original catalogue and, for each one, place \(N_{\text{lines}} w_a\) duplicates\(^4\) into the random catalogue, with the redshift of each duplicate being randomly selected within the volume \(V^{\text{max}}\) that is accessible to that galaxy. These weights correct for the fact that galaxies of a given luminosity may be over- or under-represented in the original catalogue as a result of density fluctuations within the volume probed by the catalogue. The definition of \(V^{\text{max}}\) used here should include the \(P(z)\) factor, but not \(\Delta(z)\), i.e.

\[
V^{\text{max}}(z_\alpha) = \int_0^{z_\alpha} \frac{dV}{dz} P(z) dz.
\] (39)

where \(z_\alpha^{\text{max}}\) is the redshift at which the galaxy \(\alpha\) would drop outside the survey selection criteria. A fast algorithm to achieve this is to first generate a lookup table for \(V^{\text{max}}(z_\alpha)\). Then, for the clone of each galaxy, \(\alpha\), one generates a uniform random variable, \(s\), in the interval [0, 1] and uses the lookup table to assign it the redshift at which \(V^{\text{max}}(z_\alpha) = s V^{\text{max}}(z_\alpha^{\text{max}})\). The redshift dependent properties of the galaxy such as apparent magnitude must be adjusted using the distance modulus, \(k\) and \(e\)-corrections to this assigned redshift. The angular position of the galaxy can be independently randomly chosen within the angular footprint of the survey. The result is a random catalogue with a smooth redshift distribution and LF consistent with the maximum likelihood value given by equation (31).\(^5\)

5 RESULTS

As a first test of our algorithm we have analysed a mock galaxy catalogue that has been constructed from the Virgo Millennium Simulation (Springel et al. 2005). The simulation was populated with galaxies using the Bower et al. (2006) version of the galform semi-analytic model.\(^6\)

In Fig. 1 we show the redshift distribution of a shallow, \(r < 17.5\) and \(z < 0.2\), portion of a 1000 deg\(^2\) region of this mock catalogue. The redshift distribution is very structured as a result of realistic large-scale structure – voids, filaments and clusters – in the three dimensional galaxy distribution (Springel et al. 2005). The smooth curves in the upper panel of Fig. 1 show the redshift distributions of our corresponding random catalogues. The dotted (green) curve is the result of the simple algorithm in which the catalogue galaxies are just randomized within the accessible volume, \(V^{\text{max}}\), within which the galaxy could be detected and meet the selection criteria of the catalogue. In this process a simple \(r\)-band \(k\)-correction,

\[
k(z) = 0.87z + 1.38z^2,
\] (40)

was assumed for all galaxies, this being typical of the \(k\)-correction given by Blanton & Roweis (2007) for \(r\)-band selected galaxies in the Sloan Digital Sky Survey (SDSS). The evolution, \(e\)-correction, was assumed to be negligible. Even without reference to the other models it is clear that this redshift distribution has been biased by the presence of large-scale structure. For instance the overdensity

\(^4\) Although this ratio is not in general an integer one can round up or down with probabilities chosen such that the mean is the required value.

\(^5\) A related random catalogue algorithm was explored in Cresswell (2010), but without applying the density dependent weights, \(w_a\), that are required by this maximum likelihood derivation. Cresswell (2010) used the resulting redshift distribution as an alternative to the LF based prediction employed in Cresswell & Percival (2009) when quantifying scale dependent bias for red and blue galaxies in SDSS.

\(^6\) This catalogue is a prototype of set of mock Pan-STARRS galaxy catalogues available at https://ps1-durham.dur.ac.uk/mocks (Merson et al., in preparation).
at $z \approx 0.04$ results in a shoulder in the redshift distribution of the random catalogue.

The two remaining and almost identical curves in the upper panel of Fig. 1 show the redshift distributions of the random catalogues that result from taking the V^{max} based estimate as a starting point and applying the iterative procedure described in Section 4 to find the solutions to equations (14). The same k-correction and no evolution were assumed as in the V^{max} based estimate. This procedure rapidly converges to a stable random catalogue with a smooth redshift distribution which is unbiased by the large-scale structure. The lower panel of Fig. 1 shows the overdensity of the mock catalogue as a function of redshift, estimated as the ratio of the redshift distribution for an intermediate magnitude by the overdensity at $z = 0$, and solid (red) curves.

The estimated LFs corresponding to these different random catalogues are shown in Fig. 2. We again see excellent convergence in estimates resulting from our iterative procedure. In this case, the $1/V^{\text{max}}$ estimate from the first iteration, shown by the dotted (green) curve, is simply the standard $1/V^{\text{max}}$ estimate of the LF. Subsequent iterations, shown by the dashed (blue) and almost coincident solid (red) curves, rapidly converge.

To impose density fluctuations on the smooth redshift distribution we divided the catalogue into redshift bins, with volumes V_p, and for each bin generated a random density perturbation $\delta_p > -1$ drawn from a truncated Gaussian with variance $4\pi J_1/V_p$. Here we chose $4\pi J_1 = 5000$, which is appropriate for L_* galaxies (Hawkins et al. 2003). We then generated the catalogue with the redshift distribution shown by the histogram in Fig. 3 by randomly accepting galaxies from a D times denser version of original unclustered catalogue with probability $(1 + \delta_p)/D$. The Poisson fluctuations from this sampling process combine with the imposed fluctuations, δ_p, to produce fluctuations consistent with the variance given by equation (18).

Figure 1. The upper panel compares the redshift distribution of the data from a mock catalogue with the predicted smooth redshift distributions of selected iterations of the random catalogue. The first iteration is shown by the dotted (green) curve and a subsequent and final iteration by the dashed (blue) and solid (red) curves, respectively. The lower panel shows the overdensity in redshift shells, $\Delta(z)$, of the mock catalogue compared to the different iterations of the random catalogue. In both panels the dashed (blue) curves are almost coincident with the solid (red) curves.

Figure 2. The r-band LF of selected iterations of the random catalogue. The estimate from the first iteration, shown by the dotted (green) curve, is simply the standard $1/V^{\text{max}}$ estimate of the LF. Subsequent iterations, shown by the dashed (blue) and almost coincident solid (red) curves, rapidly converge.
Comparison of the input Schechter LF with those recovered by its lack of evolution. This is seen more clearly in the upper panel shows two sets of redshift distributions. The original catalogue (blue dashed curves) from which it was constructed. As described in the text the synthetic catalogue includes both luminosity and density evolution. The lower panel shows the ratio, $\Delta(z)$, of the full redshift distribution of the data to each of the random catalogues. The random catalogue shown by the dotted (green) curves, the starting point of the iterative process, is based on the V_{max} of each galaxy and ignores both luminosity and density evolution. For the random catalogue shown by the solid (red) curves, the iterative procedure described in Section 3 has been applied to determine the luminosity and density evolution parameters that maximize the posterior probability, equation (38). In each case the solid (red) curves are almost coincident with the (blue) dashed curves. The error bars shown in the lower panel are the expected level of fluctuations as given by equation (18).

Under these assumptions the initial V_{max} based estimate results in a random catalogue with the redshift distribution shown by the dotted (green) curve in Fig. 3. This can be seen to be biased high at $z \lesssim 0.1$ by a local overdensity and to underpredict the number of galaxies at $z \gtrsim 0.8$ due to its lack of evolution. This is seen more clearly in the lower panel which plots the overdensity estimated as the ratio of the redshift distributions of the input catalogue to the random catalogue. The maximum likelihood random catalogue is shown by the solid (red) curves in Fig. 3. The converged result for the evolution parameters is $\alpha = 0.05$ and $\mu = -1.11$, which are close to the true values. One does not expect to recover the exact input values as the density fluctuations introduce noise into the estimates. One could determine formal errors on all the model parameters by determining the Fisher matrix from the second derivatives of the likelihood function. However, it is probably simpler, more convenient and more robust to determine the errors by repeating the whole procedure on jackknife samples of the original catalogue. For a catalogue of this particular size and depth it turns out that the density evolution parameter α is only weakly constrained and hence the prior on α is playing a role (i.e. a broader prior leads to a different α, but the resulting random catalogues are hardly distinguishable). In contrast, the luminosity evolution parameter, μ, is tightly constrained and the input value is recovered quite accurately. This is true provided that sufficiently narrow magnitude bins are used for the LF. We have found that using wide bins leads to an underestimate of the degree of luminosity evolution. Broadening the underlying LF by the bin width artificially boosts the bright end of the LF and so, just like luminosity evolution, it makes a tail of high-redshift luminous galaxies more probable. With magnitude bins of width less than 0.5 mag this effect is very small.

In Fig. 3, one can see that this procedure has produced a smooth redshift distribution that in accurate agreement with the true underlying redshift distribution from which the synthetic catalogue was constructed. The redshift distributions that are shown in Fig. 3 for the subset of galaxies with absolute magnitudes $M_r < -20$ illustrate that the random catalogue we have produced can be used to model the underlying smooth redshift distribution of any selected subset of the data.

We compare the input and recovered $z = 0$ LFs in Fig. 4. We see the initial $1/V_{\text{max}}$ is shifted towards bright magnitudes due to the incorrect luminosity evolution and is also biased high at the faintest magnitudes due to the local $z < 0.1$ overdensity. The maximum likelihood maximum posterior probability estimate has recovered the input LF very accurately.

6 CONCLUSIONS

We have presented a maximum likelihood estimator for the galaxy LF which can be viewed as an extension to the $1/V_{\text{max}}$ method (Schmidt 1968), taking into account the effect of density fluctuations within the volume probed by the galaxy catalogue. The standard V_{max} is replaced by a density corrected version, $V_{\text{dc, max}}$, that explicitly corrects for the over- and under-representation of galaxies of a particular luminosity in the catalogue produced by large-scale structure. The utility of our LF estimator is that it is a very simple and intuitive modification of the much used, but biased, $1/V_{\text{max}}$ method. Similar density corrections to $1/V_{\text{max}}$ have been utilized by Croton et al. (2005) and Baldry et al. (2006) to study the dependence of galaxy properties on environment and to probe the very low mass end of the stellar mass function (Baldry et al., in preparation), but they used an external volume limited galaxy sample as the

Figure 3. The upper panel shows two sets of redshift distributions. The upper distributions are for the full population of galaxies in a 5 deg2, $r < 24$ mag limited survey. The lower distributions are for the subset of these galaxies with absolute magnitudes $M_r < -20$. In both cases the clumpy distribution (black histograms) from the synthetic catalogue is compared with the smooth redshift distributions of two random catalogues and that of the original uniform catalogue (blue dashed curves) from which it was constructed. As described in the text the synthetic catalogue includes both luminosity and density evolution. The lower panel shows the ratio, $\Delta(z)$, of the full redshift distribution of the data to each of the random catalogues. The random catalogue shown by the dotted (green) curves, the starting point of the iterative process, is based on the V_{max} of each galaxy and ignores both luminosity and density evolution. For the random catalogue shown by the solid (red) curves, the iterative procedure described in Section 3 has been applied to determine the luminosity and density evolution parameters that maximize the posterior probability, equation (38). In each case the solid (red) curves are almost coincident with the (blue) dashed curves. The error bars shown in the lower panel are the expected level of fluctuations as given by equation (18).

Figure 4. Comparison of the input Schechter LF with those recovered by V_{max} and the iterative maximum likelihood method. For a fair comparison, the input Schechter function has been averaged over the 0.25 mag width bins used in the other estimates.
density defining population rather than computing the overdensity via maximum likelihood.

We extended the maximum likelihood analysis to include arbitrary parametric models of the redshift evolution of both the characteristic luminosity and number density of the galaxy population and described a fast iterative scheme to solve the resulting equations.\(^7\) Our analysis assumes a redshift catalogue which is complete to a single specified apparent magnitude limit. The method can be extended to include a model of magnitude dependent incompleteness by incorporating an incompleteness term into the likelihood function (e.g. see Heyl et al. 1997). To determine \(\mathcal{V}_{\text{obs,max}}\) one merely needs to be able to determine over what range of redshift a given observed galaxy would continue to satisfy the survey selection criteria. Hence, in principle, it ought to possible to extend the method to surveys with colour selection. However, more work is required to see if modelling colour evolution will prove to be a barrier to getting sufficiently accurate models of such selection functions.

In both the simple and more generalized versions the estimate of the galaxy LF, \(\Phi(L)\), is a simple weighted sum over the galaxies of luminosity \(L\). One consequence of this is that we have been able to specify a simple algorithm to generate unclustered, random galaxy catalogues consistent with this LF by simply cloning galaxies (with a frequency determined by the weight) from the original catalogue and redistributing them uniformly throughout the survey volume in which they would be detected. At no point in this process is there any binning by luminosity and so no assumptions are required about the form or smoothness of the LF. One specifies redshift bins, within which to estimate the radial overdensity, but the bin widths only very weakly affect the resulting redshift distribution of the random catalogue which is smooth and continuous. Random galaxy catalogues are widely employed when making estimates of galaxy clustering. Often used alternatives such as simple parametric fits to the observed redshift distribution are inferior as they do not use the full information available in the galaxy catalogue and are prone to either over fitting density fluctuations or failing to capture the true shape of the selection function. These shortcomings can lead to underestimating the strength of clustering on intermediate scales and overestimating the strength on the largest scales. A particular advantage of these new random catalogues is that each galaxy they contain carries with it all the measured properties that existed for the observed galaxy from which it was cloned. Hence, we expect random catalogues produced by this maximum likelihood technique to be particularly valuable for studies of how galaxy clustering depends on galaxy properties such as colour, surface brightness, morphology or spectral features.

\(^7\) A fully documented Fortran95 subroutine that implements this algorithm and generates the related random catalogue is available at http://astro.dur.ac.uk/~cole/publications.html#software.

ACKNOWLEDGMENTS

I would like to thank Jim Cresswell as one topic we discussed in my PhD viva was partially responsible for prompting me to revisit some unfinished work on LF estimation that I had started years earlier. I thank Carlos Frenk for several useful discussions and comments on the manuscript. I also gratefully acknowledge the support of a Leverhulme Research Fellowship. This work was supported in part by an STFC rolling grant to the ICC. The calculations for this paper were performed on the ICC Cosmology Machine, which is part of the DiRAC Facility jointly funded by STFC, the Large Facilities Capital Fund of BIS, and Durham University.

REFERENCES

Baldry I. K., Balogh M. L., Bower R. G., Glazebrook K., Nichol R. C., Bamford S. P., Budavari T., 2006, MNRAS, 373, 469
Blanton M. R. et al., 2003, ApJ, 592, 819
Blanton M. R., Roweis S., 2007, AJ, 133, 734
Bower R. G., Benson A. J., Malbon R., Helly J. C., Frenk C. S., Baugh C. M., Cole S., Lacey C. G., 2006, MNRAS, 370, 645
Bruzual G., Charlot S., 2003, MNRAS, 344, 1000
Choloniewski J., 1986, MNRAS, 223, 1
Coil A. L. et al., 2008, ApJ, 672, 153
Cole S. et al., 2005, MNRAS, 362, 505
Cresswell J. G., 2010, PhD thesis, Univ. Portsmouth
Cresswell J. G., Percival W. J., 2009, MNRAS, 392, 682
Croton D. J. et al., 2005, MNRAS, 356, 1155
Driver S. P. et al., 2011, MNRAS, 413, 971
Eales S. et al., 2010, PASP, 122, 499
Efstathiou G., Ellis R. S., Peterson B. A., 1988, MNRAS, 232, 431
Felten J. E., 1976, ApJ, 207, 700
Guo Q. et al., 2011, MNRAS, 193
Hamilton A. J. S., 1993, ApJ, 417, 19
Hawkins E. et al., 2003, MNRAS, 346, 78
Heyl J., Colless M., Ellis R. S., Broadhurst T., 1997, MNRAS, 285, 613
Hogg D. W., Baldry I. K., Blanton M. R., Eisenstein D. J., 2002, preprint (astro-ph/0210394)
Jones D. H. et al., 2009, MNRAS, 399, 683
Kim H., Baugh C. M., Cole S., Frenk C. S., Benson A. J., 2009, MNRAS, 400, 1527
Landy S. D., Szalay A. S., 1993, ApJ, 412, 64
Lilly S. J. et al., 2007, ApJS, 172, 70
Norberg P. et al., 2002, MNRAS, 332, 827
Peebles P. J. E., 1980, The Large-Scale Structure of the Universe. Princeton Univ. Press, Princeton, NJ
Sandage A., Tammann G. A., Yahil A., 1979, ApJ, 232, 352
Saunders R., Rowan-Robinson M., Lawrence A., Efstathiou G., Kaiser N., Ellis R. S., Frenk C. S., 1990, MNRAS, 242, 318
Schmidt M., 1968, ApJ, 151, 393
Springel V. et al., 2005, Nat, 435, 629
Zehavi I. et al., 2005, ApJ, 630, 1

This paper has been typeset from a \TeX file prepared by the author.