On the action of the group of isometries on a locally compact metric space

Antonios Manoussos

(Communicated by Katrin Tent)

Abstract. In this short note we give an answer to the following question. Let \(X \) be a locally compact metric space with group of isometries \(G \). Let \(\{g_i\} \) be a net in \(G \) for which \(g_i x \) converges to \(y \), for some \(x, y \in X \). What can we say about the convergence of \(\{g_i\} \)? We show that there exist a subnet \(\{g_j\} \) of \(\{g_i\} \) and an isometry \(f : C_x \to X \) such that \(g_j \) converges to \(f \) pointwise on \(C_x \) and \(f(C_x) = C_y \), where \(C_x \) and \(C_y \) denote the pseudo-components of \(x \) and \(y \) respectively. Applying this we give short proofs of the van Dantzig-van der Waerden theorem (1928) and Gao-Kechris theorem (2003).

The main result and some applications

A few words about the notation we shall be using. In what follows, \(X \) will denote a locally compact metric space with group of isometries \(G \). If we endow \(G \) with the topology of pointwise convergence then \(G \) is a topological group \([2, \text{Ch. X, §3.5 Cor.}]\). On \(G \) there is also the topology of uniform convergence on compact subsets which is the same as the compact-open topology. In the case of a group of isometries these topologies coincide with the topology of pointwise convergence, and the natural action of \(G \) on \(X \) with \((g, x) \mapsto g(x), g \in G, x \in X\), is continuous \([2, \text{Ch. X, §2.4 Thm. 1 and §3.4 Cor. 1}]\). For \(F \subset G \), let \(K(F) := \{x \in X \mid \text{the set } Fx \text{ has compact closure in } X\} \). The sets \(K(F) \) are clopen \([6, \text{Lem. 3.1}]\).

Lemma 1. Let \(\Gamma = \{g_i\} \) be a net in \(G \) and \(x \in K(\Gamma) \) such that \(g_i x \) converges to \(y \) for some \(y \in X \). Then a subnet of \(\Gamma \) converges to an isometry \(f : K(\Gamma) \to X \) on \(K(\Gamma) \).

Proof. Let \(g_i|_{K(\Gamma)} \) denote the restriction of \(g_i \) on \(K(\Gamma) \). Arzela-Ascoli theorem implies that the set \(\{g_i|_{K(\Gamma)} : K(\Gamma) \to X\} \) has compact closure in the set of...
all continuous maps from $K(\Gamma')$ to X. Thus, there exist a subnet $\{g_j\}$ of $\{g_i\}$ and an isometry $f : K(\Gamma) \to X$ such that $g_j \to f$ on $K(\Gamma)$.

In [4] S. Gao and A. S. Kechris introduced the concept of pseudo-components. These are the equivalence classes C_x of the following equivalence relation: $x \sim y$ if and only if x and y, as also y and x, can be connected by a finite sequence of intersecting open balls with compact closure. The pseudo-components are clopen [4, Prop. 5.3]. We call X pseudo-connected if it has only one pseudo-component. An immediate consequence of the definitions is that $gC_x = C_{g x}$ for every $g \in G$. Another notion, that will be used in the proofs, is the radius of compactness $\rho(x)$ of $x \in X$ [4]. Let $B_r(x)$ denote the open ball centered at x with radius $r > 0$. Then $\rho(x) := \sup\{r > 0 \mid B_r(x) \text{ has compact closure}\}$. If $\rho(x) = +\infty$ for some $x \in X$ then every ball has compact closure (i.e., X has the Heine-Borel property), hence $\rho(x) = +\infty$ for every $x \in X$. If $\rho(x)$ is finite for some $x \in X$ then the radius of compactness is a Lipschitz map [4, Prop. 5.1]. Note that ρ is G-invariant.

Lemma 2. Let $x, y \in X$ and $\{g_i\}_I$ be a net in G with $g_i x \to y$. Then there is an index $i_0 \in I$ such that $C_x \subset K(F)$, where $F := \{g_i \mid i \geq i_0\}$.

Proof. Since X is locally compact there exists an index i_0 such that the set $F(x)$ has compact closure, where $F := \{g_i \mid i \geq i_0\}$. We claim that for every $z \in C_x$ the set $F(z)$ also has compact closure, hence $C_x \subset K(F)$. The strategy is to start with an open ball $B_r(x)$ with radius $r < \rho(x)$ and prove that $F(z)$ has compact closure for every $z \in B_r(x)$. Then our claim follows from the definition of C_x. To prove the claim take a sequence $\{g_n z\} \subset F$. Since the closure of $F(x)$ is compact we may assume, upon passing to a subsequence, that $g_n x \to w$ for some w in the closure of $F(x)$. Assume that $\rho(x)$ is finite and take a positive number ε such that $r + \varepsilon < \rho(x)$. Then for n big enough

$$d(g_n z, w) \leq d(g_n z, g_n x) + d(g_n x, w) = d(z, x) + d(g_n x, w) < r + \varepsilon < \rho(x).$$

Recall that the radius of convergence is a continuous map, and since $g_n x \to w$ then $\rho(x) = \rho(w)$. So, the sequence $\{g_n z\}$ is contained eventually in a ball of w with compact closure, hence it has a convergence subsequence. The same also holds in the case where $\rho(x) = +\infty$.

Theorem 3. Let X be a locally compact metric space with group of isometries G and let $\{g_i\}$ be a net in G for which $g_i x$ converges to y, for some $x, y \in X$. Then there exist a subnet $\{g_j\}$ of $\{g_i\}$ and an isometry $f : C_x \to X$ such that g_j converges to f pointwise on C_x and $f(C_x) = C_{f(x)}$

Proof. By Lemma 2 there is an index $i_0 \in I$ such that $C_x \subset K(F)$, where $F := \{g_i \mid i \geq i_0\}$. Hence, by Lemma 1, there exists a subnet $\{g_j\}$ of $\{g_i\}$ which converges to an isometry $f : K(F) \to X$ on $K(F)$. Therefore, $g_j \to f$ on C_x. Let us show that $f(C_x) = C_{f(x)}$. Since $d(x, g_j^{-1} f(x)) = d(g_j x, f(x)) \to 0$ it follows that $g_j^{-1} f(x) \to x$. Hence, by repeating the previous procedure, there exist a subnet $\{g_k\}$ of $\{g_j\}$ and an isometry $h : C_{f(x)} \to X$ such that $g_k^{-1} \to h$.
pointwise on $C_f(x)$ and $h(f(x)) = x$. Note that $g_kx \in C_f(x)$ eventually for every k, since $g_kx \to f(x)$ and $C_f(x)$ is clopen. Therefore, $g_kC_x = Cg_kx = C_f(x)$. Take a point $z \in C_x$. Then, $g_kz \to f(z)$ and since $C_f(x)$ is clopen then $f(z) \in C_f(x)$, so $f(C_x) \subset C_f(x)$. By repeating the same arguments as before, it follows that $hC_f(x) \subset C_x$. Take now a point $w \in C_f(x)$. Then $h(w) \in C_x$, hence $g_k^{-1}(w) \in C_x$ eventually for every k. So, $w = g_kg_k^{-1}(w) \to f(h(w)) \in f(C_x)$ from which follows that $C_f(x) \subset f(C_x)$.

A few words about properness. A continuous action of a topological group H on a topological space Y is called proper (or Bourbaki proper) if the map $H \times Y \to Y \times Y$ with $(g, x) \mapsto (g \cdot x, x)$ for $g \in H$ and $x \in Y$, is proper, i.e., it is continuous, closed and the inverse image of a singleton is a compact set [1, Ch. III, §4.1 Def. 1]. In terms of nets, a continuous action is proper if and only if whenever we have two nets $\{g_i\}$ in H and $\{x_i\}$ in Y, for which both $\{x_i\}$ and $\{g_ix_i\}$ converge, then $\{g_i\}$ has a convergent subnet. For isometric actions, it is easy to see that a continuous action is proper if and only if whenever we have a net $\{g_i\}$ in H for which $\{g_ix\}$ converges for some $x \in Y$, then $\{g_i\}$ has a convergent subnet. If H is locally compact and Y is Hausdorff, then H acts properly on Y if and only if for every $x, y \in Y$ there exist neighborhoods U and V of x and y, respectively, such that the set $\{g \in H \mid gU \cap V \neq \emptyset\}$ has compact closure in H [1, Ch. III, §4.4 Prop. 7]. Observe that if H acts properly on a locally compact space Y then H is also locally compact.

A direct implication of Theorem 3 is the van Dantzig-van der Waerden Theorem [3]. The advantage of our proof, comparing to the proofs given in the original work of van Dantzig-van der Waerden or in [5, Thm. 4.7, pp. 46–49], is that it is considerably shorter.

Corollary 4. (van Dantzig-van der Waerden theorem 1928) Let X be a connected locally compact metric space with group of isometries G. Then G acts properly on X and is locally compact.

Another application of Theorem 3 is that we can rederive the results of Gao and Kechris in [4, Thm. 5.4 and Cor. 6.2].

Corollary 5. (Gao-Kechris theorem 2003) Let X be a locally compact metric space with finitely many pseudo-components. Then the group of isometries G of X is locally compact. If X is pseudo-connected, then G acts properly on X.

Proof. Let C_1, C_2, \ldots, C_n denote the pseudo-components of X and take points $x_1 \in C_1, x_2 \in C_2, \ldots, x_n \in C_n$ and open balls $B_r(x_m) \subset C_m, m = 1, 2, \ldots , n, r > 0$ such that all $B_r(x_m)$ have compact closures. We will show that the set $V := \bigcap_{m=1}^{n} \{g \in G \mid gx_m \in B_r(x_m)\}$ is an open neighborhood of the identity in G with compact closure. Indeed, take a net $\{g_i\}$ in V. Since each $B_r(x_m)$ has compact closure there exist a subnet $\{g_{j_l}\}$ of $\{g_i\}$ and points $y_1 \in C_1, y_2 \in C_2, \ldots, y_n \in C_n$ such that $g_jx_m \to y_m$ for every $m = 1, 2, \ldots , n$. Theorem 3 implies that there exist a subnet $\{g_l\}$ of $\{g_{j_l}\}$ and isometries $f_m : C_m \to X$ such that $g_l \to f_m$ on C_m and $f_m(C_m) = C_m$ for all m. The last implies that $\{g_l\}$ converges to an isometry on X, hence V has compact closure.
If X is pseudo-connected the proof of the statement follows directly from Theorem 3.

\[\square\]

Remark 6. Note that in Corollary 5 we do not require that X is separable as in [4, Thm 5.4 and Cor. 6.2]. This is not a real improvement since if X has countably many pseudo-components then it is separable. Indeed, we define a relation on X by xSy if and only if there exist separable balls $B_r(x)$ and $B_l(y)$ with $y \in B_r(x)$ and $x \in B_l(y)$. Let $U(x)$ be the equivalence class of x in the transitive closure of the relation S. Then, each $U(x)$ is a separable clopen subset of X [5, Lem. 3 in App. 2]. By construction $C_x \subset U(x)$, therefore X is separable.

ACKNOWLEDGEMENTS

We would like to thank the referee for an extremely careful reading of the manuscript. Her/his remarks and comments helped us to improve considerably the presentation of the paper.

REFERENCES

[1] N. Bourbaki, Elements of mathematics. General topology. Part 1, Hermann, Paris, 1966. MR0205210 (34 #5044a)
[2] N. Bourbaki, Elements of mathematics. General topology. Part 2, Hermann, Paris, 1966. MR0205211 (34 #5044b)
[3] D. van Dantzig and B. L. van der Waerden, Über metrisch homogene Räume, Abh. Math. Seminar Hamburg 6 (1928), 367–376.
[4] S. Gao and A. S. Kechris, On the classification of Polish metric spaces up to isometry, Mem. Amer. Math. Soc. 161 (2003), no. 766, viii+78 pp. MR1950332 (2004b:03067)
[5] S. Kobayashi and K. Nomizu, Foundations of differential geometry. Vol I, Interscience Publishers, a division of John Wiley & Sons, New York, 1963. MR0152974 (27 #2945)
[6] A. Manoussos and P. Strantzalos, On the group of isometries on a locally compact metric space, J. Lie Theory 13 (2003), no. 1, 7–12. MR1958572 (2004a:54045)

Received January 17 2010; accepted March 16 2010

Antonios Manoussos
Fakultät für Mathematik, SFB 701, Universität Bielefeld
Postfach 100131, D-33501 Bielefeld, Germany
E-mail: amanouss@math.uni-bielefeld.de
URL: http://www.math.uni-bielefeld.de/~amanouss