In-plane electronic anisotropy resulted from ordered magnetic moment in iron-based superconductors

S.-F. Wu,¹,⁺ W.-L. Zhang,¹,⁺ V. K. Thorsmølle,¹ G. F. Chen,² G. T. Tan,³ P. C. Dai,³ Y. G. Shi,³ C. Q. Jin,⁷ T. Shibauchi,⁵ S. Kasahara,⁶ Y. Matsuda,⁶ A. S. Sefat,⁷ H. Ding,² P. Richard,⁸ and G. Blumberg ¹,⁹,⁺

¹Department of Physics and Astronomy, Rutgers University, Piscataway, New Jersey 08854, USA.
²Beijing National Laboratory for Condensed Matter Physics, and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.
³Center for Advanced Quantum Studies and Department of Physics, Beijing Normal University, Beijing 100875, China.
⁴Department of Physics and Astronomy, Rice University, Houston, Texas 77005, USA.
⁵Department of Advanced Materials Science, University of Tokyo, Kashiwa, Chiba 277-8561, Japan.
⁶Department of Physics, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan.
⁷Materials Science & Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA.
⁸Institut quantique, Université de Sherbrooke, 2500 Boulevard de l’Université, Sherbrooke, Québec J1K 2R1, Canada.
⁹National Institute of Chemical Physics and Biophysics, 12618 Tallinn, Estonia.

(Received 5 December 2017; revised 30 June 2020; accepted 7 July 2020; published 24 July 2020)

We study the in-plane electronic anisotropy in the parent compounds of several families of Fe-based superconductors (BaFe₂As₂, EuFe₂As₂, NaFeAs, LiFeAs, FeSe, and LaFeAsO) by polarization-resolved Raman scattering. We measure intensity of the fully symmetric c-axis vibration of As atom mode in the XY scattering geometry and notice that the mode’s intensity is significantly enhanced below the magnetostructural transition only for compounds showing magnetic ordering. In particular, we find that the intensity ratio of this As phonon in the XY vs. XX scattering geometries is proportional to the square of the ordered magnetic moment. We relate this As phonon intensity enhancement below the Néel temperature in iron pnictides to in-plane electronic anisotropy induced by the collinear spin-density wave order.

DOI: 10.1103/PhysRevResearch.2.033140

The lattice, orbital, and magnetic degrees of freedom are strongly coupled in the Fe-based superconductors. This is best evidenced by the observation, in most parent compounds, of a magnetic transition from paramagnetic to collinear antiferromagnetic (AFM), occurring at a temperature \(T_N \) slightly below the temperature \(T_S \) at which a structural transition from tetragonal to orthorhombic phase occurs. The interplay between these degrees of freedom is complex and led to a chicken-egg problem for which there is still no consensual view [1,2].

The electronic structure is directly affected by an electronic band folding accompanied by the formation of a collinear spin-density wave (SDW) gap [3–6]. As a result, a significant electronic anisotropy was found for properties measured along the two planar orthogonal Fe-Fe directions (Fig. 1) below the magnetostructural transition, notably in electrical transport [7], optical conductivity [8,9], thermopower [10], local density-of-states (DOS) imaging [11], and quasiparticle band dispersions [12].

Raman scattering offers a unique way to study the electronic anisotropy below the magnetostructural transition of the iron-based superconductors [6,13]. For example, one can study the interband transitions along the two planar orthogonal Fe-Fe directions (Fig. 1) in a detwinned sample [6] or investigate the As fully symmetric phonon in a twinned sample [14].

In relation to this study, it has been noticed that the Raman coupling vertex to the As fully symmetric phonon: the c-axis vibration of As atom, which modulates the Fe-As bond angle of the Fe-As tetrahedra (Fig. 1), is forbidden for \(XY \) scattering geometry in the tetragonal phase, whereas the coupling becomes finite in the orthorhombic phase. However, because orthorhombicity of the lattice constants \(\delta \) for all studied materials is weak, the emerging As mode’s intensity due to geometrical lattice anisotropy is expected to be small. Surprisingly, a significant intensity of the As phonon in the nearly forbidden \(XY \) scattering geometry has been observed for Ba(Fe₁−χAu)_₂As₂ below \(T_N \), in contrast to the weak signals at temperatures between \(T_S \) and \(T_N \) [14]. Similar results were reported for Ba(Fe₁−χCo)_₂As₂ [15]. In addition, the temperature dependence of integrated As phonon intensity was reported to be proportional to square of the magnetic moment \(M(T)^2 \) below \(T_N \) [14]. The origin of this anomalous intensity enhancement was related to the in-plane electronic anisotropy induced by the collinear SDW order.
the 122 system, a detailed study of this relation among temperature and doping dependence of the As phonon in anisotropy and the magnetic order parameter by studying the we observe a strong intensity for the fully symmetric As mode conductors. For all compounds showing magnetic ordering, that temperature dependence of the Raman vertex amplitude is proportional to magnitude of the magnetic order parameter

\[M \propto |M| \]

Furthermore, the Fano model analysis of data revealed the geometrical lattice anisotropy, and ordered magnetic moment

\[\frac{1}{T} \propto \frac{1}{T^2} \]

Single crystals of materials listed in Table I were grown in-plane electronic anisotropy. As shown in Fig. 2(a), sharp Raman phonon peaks at 186 cm\(^{-1}\) and 237 cm\(^{-1}\), corresponding to a \(A_{1g} \) and \(B_{2g} \) modes, respectively, are detected in the XX scattering geometry. However, as expected for the tetragonal structure of LiFeAs, these modes have no intensity in the XY scattering geometry. Similar Raman results are reported for the tetragonal \(FeSe_{1+y}Te_{0.2}Se_{0.4} \) single crystal [30].

If anisotropy develops in the orthorhombic phase, the \(A_{1g} \) anion mode may acquire a finite intensity [\((\bar{a}' - \bar{b}')/2 \)] in the XY scattering geometry related to the anisotropy of the in-plane polarizability associated to this \(A_{1g} \) anion mode, because \(\bar{a}' \) and \(\bar{b}' \) are the polarizability derivatives along the two Fe-Fe orthogonal directions (\(X' \) and \(Y' \)) in the orthorhombic phase. Since the lattice anisotropy \(\delta \) is small (Table I), the intensity due to geometrical anisotropy is expected to be weak. For example, for the FeSe material, which exhibits a structural phase transition at 90 K [31,32] but no long-range magnetic ordering, we observe a \(A_{1g}(Se) \) phonon at 180 cm\(^{-1}\) and a \(B_{1g}(Fe) \) phonon at 208 cm\(^{-1}\) for the XX polarization [Fig. 2(b)]. Although the intensity of the \(A_{1g}(Se) \) phonon with the \(XY \) polarization is finite at 20 K [inset of Fig. 2(b)], it is only 2% of the corresponding intensity recorded for the XX polarization (Table I) [13,33].

Table I. Summary of \(T_N \), \(T_N \) (in Kelvin), lattice anisotropy [\(\delta = (a-b)/(a+b) \)], intensity ratio of \(A_{1g} \) phonon in \(XY \) vs. \(XX \) geometries, and ordered magnetic moment/Fe M (in \(\mu_B \)) for compounds studied in this paper.

Sample	\(T_N/T_S \)	\(\delta (\%) \)	\(I_{XY}/I_{XX} \)	M
\(FeSe \)	175/175	0.5 [22]	3.3	0.98 [23]
\(BaFe_2As_2 \)	135/135	0.4 [24]	3.1	0.87 [25]
\(LaFeAsO \)	155/157	0.24 [20]	0.54	0.36-0.6 [25]
\(NaFeAs \)	55/40	0.18 [26]	0.16	0.09 [25]
\(FeSe \)	90/1	0.25 [27]	0.017	–
\(LiFeAs \)	–/–	0.01	0	–
In contrast, BaFe$_2$As$_2$ with strong magnetic ordering clearly shows the 181 cm$^{-1}$ A_g(As) mode [13,15,34,35] in the XY scattering geometry below T_N [Fig. 2(c)]. Similar observation is made for NaFeAs [Figs. 2(e) and 2(f)], which also encounters both a structural and a magnetic phase transition: (i) We observe only a weak intensity between T_S and T_N, and (ii) the 162 cm$^{-1}$ A_g(As) phonon mode appears in the XY spectra only below T_N. LaFeAsO [36–38] is another system with split structural and magnetic phase transitions. In this case as well, we detect sizable intensity for the A_{g}^1 (in-phase La and As) mode at 166 cm$^{-1}$ and the A_{g}^2 (out-of-phase La and As) mode at 209 cm$^{-1}$ in the XY scattering geometry below T_N [Fig. 2(d)].

To quantify the intensity of the A_g(As) phonon in the XY scattering geometry below T_N in different families of Fe-based superconductors, we study the ratio between the A_g(As) mode intensity in the XY and XX scattering geometries I_{XY}/I_{XX}. This ratio is proportional to $|\langle \hat{a}' - \hat{b}' \rangle/\langle \hat{a}' + \hat{b}' \rangle|^2$, which is a direct measure of the in-plane polarizability anisotropy of the A_g(As) mode. Based on Table I, the ratio I_{XY}/I_{XX} is significant only for compounds with long-range magnetic ordering. For example, the ratio I_{XY}/I_{XX} is 300% for BaFe$_2$As$_2$, 16% for NaFeAs and 50% for LaFeAsO, as compared to 2% for FeSe, i.e., 1–2 orders of magnitude smaller. Such behavior cannot be solely explained by weak geometrical lattice orthorhombicity δ, instead, the observation relates the mode’s intensity to magnetic order parameter. This is best evident from Fig. 2(g), where we show that the I_{XY}/I_{XX} ratio of the A_g(As) phonon intensity for different Fe-based families is proportional to the square of the magnetic moment/Fermi level.

In conclusion, we revealed a significant intensity enhancement of the emergent A_g(As) phonon mode in the XY scattering geometry below T_N only for parent compounds of Fe-based superconductors showing magnetic order. We demonstrate that the ratio of the As phonon intensity in the XY and XX scattering geometries I_{XY}/I_{XX} is proportional to the square of the magnetic ordered moment M^2. We conclude that the generic A_g(As) phonon intensity enhancement below T_N in iron pnictides is due to the in-plane electronic anisotropy induced by the collinear SDW order: a larger ordered moment in the magnetic phase results in larger in-plane electronic anisotropy, which in turn causes larger As phonon intensity ratio I_{XY}/I_{XX} below T_N.

We thank E. Bascones and K. Haule for discussions. The spectroscopic work conducted at Rutgers (S.-F.W., W.-L.Z., V.K.T., and G.B.) was supported by NSF Grant No. DMR-1709161. The sample preparation and characterization at ORNL (A.S.S.) was supported by the US Department of Energy, Basic Energy Sciences, Materials Sciences and Engineering Division. The work at NICPB was supported by the Estonian Research Council Grant No. PRG736 and by the European Research Council (ERC) under Grant Agreement No. 885413.
on the Elastic Properties of IronArsenide Superconductors, Phys. Rev. Lett. 105, 157003 (2010).

[3] W. Z. Hu, J. Dong, G. Li, Z. Li, P. Zheng, G. F. Chen, J. L. Luo, and N. L. Wang, Origin of the Spin Density Wave Instability in AFe2As2 (A=Ba,Sr) as Revealed by Optical Spectroscopy, Phys. Rev. Lett. 101, 257005 (2008).

[4] Y. Ran, F. Wang, H. Zhai, A. Vishwanath and D.-H. Lee, Nodal spin density wave and band topology of the FeAs-based materials, Phys. Rev. B 79, 014509 (2009).

[5] P. Richard, K. Nakayama, T. Sato, M. Neupane, Y.-M. Xu, J. H. Bowen, G. F. Chen, J. L. Luo, N. L. Wang, X. Dai, Z. Fang, H. Ding and T. Takahashi, Observation of Dirac Cone Electronic Dispersion in BaFe2As2, Phys. Rev. Lett. 104, 137001 (2010).

[6] W.-L. Zhang, Z. P. Yin, A. Ignatov, Z. Bukowski, Janusz Karpinski, Athena S. Sefat, H. Ding, P. Richard, and G. Blumberg, Raman scattering study of spin-density-wave-induced anisotropic electronic properties in AFe2As2 (A=Ca, Eu), Phys. Rev. B 93, 205106 (2016).

[7] J.-H. Chu, J. G. Analytis, K. De Greve, P. L. McMahon, Z. Islam, Y. Yamamoto, and I. R. Fisher, In-plane resistivity anisotropy in an underdoped iron arsenide superconductor, Science 329, 824 (2010).

[8] A. Dusza, A. Lucarelli, F. Pfuner, J.-H. Chu, I. R. Fisher, and L. Degiorgi, Anisotropic charge dynamics in detwinned Ba(Fe1-xCo)x2As2, Europhys. Lett. 93, 37002 (2011).

[9] M. Nakajima, T. Liang, S. Ishida, Y. Tomioka, K. Kihou, C. H. Lee, A. Iyo, H. Eisaki, T. Kakeshita, T. Ito, and S. Uchida, Unprecedented anisotropic metallic state in undoped iron arsenide BaFe2As2 revealed by optical spectroscopy, Proc. Natl. Acad. Sci. USA 108, 12238 (2011).

[10] S. Jiang, H. S. Jeevan, J. K. Dong, and P. Gegenwart, Thermopower As a Sensitive Probe of Electronic Nematicity in Iron Pnictides, Phys. Rev. Lett. 110, 067001 (2013).

[11] E. P. Rosenthal, E. F. Andrade, C. J. Arguello, R. M. Fernandes, L. Y. Xing, X. C. Wang, C. Q. Jin, A. J. Millis, and A. N. Pasupathy, Visualization of electron nematicity and unidirectional antiferroic fluctuations at high temperatures in NaFeAs, Nature Phys. 10, 225 (2014).

[12] M. Yi, D. Lu, J.-H. Chu, J. G. Analytis, A. P. Sorini, A. F. Kemper, B. Moritz, S.-K. Mo, R. G. Moore, M. Hashimoto, W.-S. Lee, Z. Hussain, T. P. Devereaux, I. R. Fisher, and Z.-X. Shen, Symmetry-breaking orbital anisotropy observed for detwinned BaFe2As2: above the spin density wave transition, Proc. Natl. Acad. Sci. USA 108, 6878 (2011).

[13] A. Baum, Y. Li, M. Tomi¢, N. Lazarevi¢, D. Jost, F. Löffler, B. Muschler, T. Böhm, J.-H. Chu, I. R. Fisher, R. Valen¢, I. J. Mazin, and R. Hackl, Interplay of lattice, electronic, and spin degrees of freedom in detwinned BaFe2As2: A Raman scattering study, Phys. Rev. B 98, 075113 (2018).

[14] S.-F. Wu, W.-L. Zhang, L. Li, H.-B. Cao, H.-H. Kung, A. S. Sefat, H. Ding, P. Richard, and G. Blumberg, Coupling of fully symmetric As phonon to magnetism in BaFe1-xCo2-xAs2, Phys. Rev. B 102, 014501 (2020).

[15] F. Kretzschmar, T. Böm, U. Karahasasovic, B. Muschler, A. Baum, D. Jost, J. Schmalian, S. Caprara, M. Grilli, C. Di Castro, J. G. Analytis, J.-H. Chu, I. R. Fisher, and R. Hackl, Critical spin fluctuations and the origin of nematic order in Ba(Fe1-xCo)x2As2, Nature Phys. 12, 560 (2016).

[16] A. S. Sefat, Bulk synthesis of iron-based superconductors, Curr. Opin. Solid State Mater. Sci. 17, 59 (2013).

[17] L. Li, H. B. Cao, M. A. McGuire, J. S. Kim, G. R. Steward, and A. S. Sefat, Role of magnetism in superconductivity of BaFe2As2: Study of 5d Au-doped crystals, Phys. Rev. B 92, 094504 (2015).

[18] M. A. Tanatar, N. Spyrisson, K. Cho, E. C. Blomberg, G. Tan, P. Dai, C. Zhang, and R. Prozorov, Evolution of normal and superconducting properties of single crystals of Na1-xCoFeAs upon interaction with environment, Phys. Rev. B 85, 014510 (2012).

[19] Y. Kamihara, T. Watanabe, M. Hirano, and H. Hosono, Iron-based layered superconductor La01-xFexAs (x = 0.05 – 0.12) with Tc = 26 K, J. Am. Chem. Soc 130, 3296 (2008).

[20] C. de la Cruz, Q. Huang, J. W. Lynn, J. Li, W. R. II, J. L. Zarestky, H. A. Mook, G. F. Chen, J. L. Luo, N. L. Wang, and P. C. Dai, Magnetic order close to superconductivity in the iron-based layered LaO1-xFexAs systems, Nature (London) 453, 899 (2008).

[21] S. Hosoi, K. Matsura, K. Ishida, H. Wang, Y. Mizukami, T. Watahighe, S. Kasahara, Y. Matsuda, and T. Shibauchi, Nematic quantum critical point without magnetism in Fe1−xSrx1−xAs, Phys. Rev. Lett. 113, 8139 (2014).

[22] M. Hegel, M. Rotter, V. Weiß, F. M. Schappacher, R. Pöttgen, and D. Johrendt, Structural and magnetic phase transitions in the ternary iron arsenides SrFe2As2 and EuFe2As2, J. Phys.: Condens. Matter 20, 452201 (2008).

[23] Y. Xiao, Y. Su, M. Meven, R. Mittal, C. M. N. Kumar, T. Chatterji, S. Price, J. Persson, N. Kumar, S. K. Dhar, A. Thamizhavel, and Th. Brueckel, Magnetic structure of EuFe2As2 determined by single-crystal neutron diffraction, Phys. Rev. B 80, 174424 (2009).

[24] Q. Huang, Y. Qiu, W. Bao, M. A. Green, J. W. Lynn, Y. C. Gasparovic, T. Wu, G. Wu, and X. H. Chen, Neutron-Diffraction Measurements of Magnetic Order and a Structural Transition in the Parent BaFe2As2 Compound of FeAs-Based High-Temperature Superconductors, Phys. Rev. Lett. 101, 257003 (2008).

[25] P. C. Dai, Antiferromagnetic order and spin dynamics in iron-based superconductors, Rev. Mod. Phys. 87, 855 (2015).

[26] S. Li, C. de la Cruz, Q. Huang, G. F. Chen, T.-L. Xia, J. L. Luo, N. L. Wang, and P. C. Dai, Structural and magnetic phase transitions in Na1-xFe1+xAs, Phys. Rev. B 80, 020504(R) (2009).

[27] T. M. McQueen, A. J. Williams, P. W. Stephens, J. Tao, Y. Zhu, V. Ksenofontov, F. Casper, C. Felser, and R. J. Cava, Tetragonal-to-Orthorhombic Structural Phase Transition at 90 K in the Superconductor Fe1-xTe0.6Se0.4, Phys. Rev. Lett. 103, 057002 (2009).

[28] X. C. Wang, Q. Q. Liu, Y. X. Lv, Z. Deng, K. Zhao, R. C. Yu, M. V. Klein, Electronic Raman Scattering, in Electronic Transition in the Parent BaFe2As2 Compound of FeAs-Based High-Temperature Superconductors, Phys. Rev. Lett. 103, 057002 (2009).

[29] X. C. Wang, Q. Q. Liu, Y. X. Lv, Z. Deng, K. Zhao, R. C. Yu, J. L. Zhu, and C. Q. Jin, Superconducting properties of “111” type LiFeAs iron arsenide single crystals, Sci. China Phys. Mech. 53, 1199 (2010).

[30] M. V. Klein, Electronic Raman Scattering, in Light Scattering in Solids I, Vol. 8, edited by M. Cardona (Springer-Verlag, Berlin, 1983), Chap. 4, pp. 147–202.

[31] S.-F. Wu, A. Almoelem, I. Feldman, A. Lee, A. Kanigel, and G. Blumberg, Superconductivity and phonon self-energy effects in Fe1+xTe0.6Se0.4, Phys. Rev. Research 2, 013373 (2020).

[32] A. E. Böhm, F. Hardy, F. Eilers, D. Ernst, P. Adelmann, P. Schweiss, T. Wolf, and C. Meingast, Lack of coupling between superconductivity and orthorhombic distortion in stoichiometric single-crystalline FeSe, Phys. Rev. B 87, 180505(R) (2013).
[32] A. E. Böhmer, T. Arai, F. Hardy, T. Hattori, T. Iye, T. Wolf, H. v. Löhneysen, K. Ishida, and C. Meingast, Origin of the Tetragonal-to-Orthorhombic Phase Transition in FeSe: A Combined Thermodynamic and NMR Study of Nematicity, Phys. Rev. Lett. 114, 027001 (2015).

[33] W.-L. Zhang, S.-F. Wu, S. Kasahara, T. Shibauchi, Y. Matsuda, and G. Blumberg, arXiv:1710.09892.

[34] L. Chauvière, Y. Gallais, M. Cazayous, A. Sacuto, M. A. Méasson, D. Colson, and A. Forget, Doping dependence of the lattice dynamics in Ba(Fe$_{1-x}$Co$_x$)$_2$As$_2$ studied by Raman spectroscopy, Phys. Rev. B 80, 094504 (2009).

[35] S. Sugai, Y. Mizuno, R. Watanabe, T. Kawaguchi, K. Takenaka, H. Ikuta, Y. Takayanagi, N. Hayamizu, and Y. Sone, Spin-density-wave gap with dirac nodes and two-magnon Raman scattering in BaFe$_2$As$_2$, J. Phys. Soc. Jpn. 81, 024718 (2012).

[36] U. F. Kaneko, P. F. Gomes, A. F. García-Flores, J.-Q. Yan, T. A. Lograsso, G. E. Barberis, D. Vaknin, and E. Granado, Nematic fluctuations and phase transitions in LaFeAsO: A Raman scattering study, Phys. Rev. B 96, 014506 (2017).

[37] V. G. Hadjiev, M. N. Iliev, K. Sasmal, Y.-Y. Sun, and C. W. Chu, Raman spectroscopy of RFeAsO (R=Sm, La), Phys. Rev. B 77, 220505(R) (2008).

[38] S. C. Zhao, D. Hou, Y. Wu, T. L. Xia, A. M. Zhang, G. F. Chen, J. L. Luo, N. L. Wang, J. H. Wei, Z. Y. Lu, and Q. M. Zhang, Raman spectra in iron-based quaternary CeO$_{1-x}$F$_x$FeAs and LaO$_{1-x}$F$_x$FeAs, Supercond. Sci. Tech 22, 015017 (2008).