Ornithine decarboxylase gene is overexpressed in colorectal carcinoma

Hai-Yan Hu, Xian-Xi Liu, Chun-Ying Jiang, Yi Lu, Shi-Lian Liu, Ji-Feng Bian, Xiao-Ming Wang, Zhao Geng, Yan Zhang, Bing Zhang

AIM: To investigate the ornithine decarboxylase (ODC) gene expression in colorectal carcinoma, ODC mRNA was assayed by RT-PCR and ODC protein was detected by a monoclonal antibody against fusion of human colon ODC prepared by hybridoma technology.

METHODS: Total RNA was extracted from human colorectal cancer tissues and their normal counterpart tissues. ODC mRNA levels were examined by RT-PCR. ODC genes amplified from RT-PCR were cloned into a prokaryotic vector pQE-30. The expressed proteins were purified by chromatography. Anti-ODC mAb was prepared with classical hybridoma techniques and used to determine the ODC expression in colon cancer tissues by immunohistochemical and Western blotting assay.

RESULTS: A cell line, which could steadily secrete anti-ODC mAb, was selected through subcloning four times. Western blotting reconfirmed the mAb and ELISA showed that its subtype was IgG2a. RT-PCR showed that the ODC mRNA level increased greatly in colon cancer tissues compared to paired normal tissues (P<0.01). Immunohistochemical staining showed that colorectal carcinoma cells expressed a significantly higher level of ODC than normal colorectal mucosa (98.6±1.03% vs 5.26±5%, P<0.01).

CONCLUSION: ODC gene overexpression is significantly related to human colorectal carcinoma. ODC gene expression may be a marker for the gene diagnosis and therapy of colorectal carcinoma.

© 2005 The WJG Press and Elsevier Inc. All rights reserved.
cancer tissues with the surrounding uninvolved mucosa. The results indicate that ODC mRNA and protein expressions in cancer tissues are much higher than those in normal tissues.

MATERIALS AND METHODS

Tissue samples
Eighty-eight paraffin colorectal tissue specimens and 62 fresh specimens were collected by colonoscopy or surgical resection. All patients had no radiation therapy or chemotherapy before surgery. Among these, 100 samples were taken from sporadic colorectal carcinoma and 50 samples of normal colon mucosa were taken from 15 cm apart from the neoplasm.

Cloning, expressing and purifying of human ODC protein
ODC cDNA was synthesized by RT-PCR using total RNA template extracted from human colon cancer tissues. An ODC gene expression vector pQE-ODC was established by inserting ODC cDNA into an expression vector pQE-30, which had a 6-His tag. The protein was purified by Ni-NTA affinity chromatography.[13]

Preparation of monoclonal antibody
BALB/c female mice were immunized with the prepared ODC protein directly administered into the spleen by about 20 μg/mouse and reimmunized every two weeks intraperitoneally by about 5 μg/mouse and administered intravenously 5 d before the mice were killed. A spleen cell suspension was prepared as shown by Gerhard et al.[14]. BALB/c (spl2/0-Ag14) myeloma cells were mixed with immune spleen cells at 1:10. The antibodies in the supernatant of cell clones were tested by ELISA and the positive hybridoma cells were recloned four times in HAT medium by limiting dilution. The subtype of mAb was analyzed with ELISA.

Testing mAb by Western blotting
Standard ODC protein and purified ODC protein were separated by standard SDS-PAGE techniques and transferred to a cation nylon membrane. The proteins were detected using the anti-ODC antibody purified from ascites. Immunoreactive proteins were detected using HRP-goat anti-mouse IgG.

Immunohistochemical test by anti-ODC antibody
Tissues were fixed in 96% ethanol for 6 h at 4℃, embedded in paraffin, and cut into 5-μm thick sections. The sections were deparaffinized in xylol, rehydrated through graded ethanol, washed with PBS-Tween, and incubated for 2 h at room temperature in a humidified chamber with 100 μL of the anti-ODC mAb at 1:1 000 dilution. The slides were washed and incubated with HRP-labeled rabbit anti-mouse IgG (Dako) diluted in PBS with 100 g/L BSA for 1 h at room temperature. After being washed, the HRP was visualized by development with chromogenic agents.

The staining intensity was graded as follows: -, no staining; +, weak staining; ++, moderate staining; and ++++, strong staining.

RNA isolation and reverse transcriptase polymerase chain reaction (RT-PCR)
Total RNA was extracted from normal and cancer tissues, respectively. The method of RNA extraction was similar to the TRIzol RNA extraction protocol (Life Technologies Inc.). The concentration of RNA extracted was determined at wavelength of 260 nm using a U-2000 spectrophotometer (HITACH Ltd, Tokyo, Japan). The sequences of ODC primers were as follows: up-stream primer: 5' -GCAGG-ATCCACCATGAACA.ACTTTGATGAA -3', down-stream primer: 5' -GCCGAGATTCGAGAAAGAAACTTC -3'. This pair of primers could span a 120-bp fragment of human ODC exon 3. Human β-actin was used as a control. Ten microliters of each amplification reaction were analyzed by electrophoresis using 1.2% agarose gel in the presence of 5 ng/mL ethidium bromide. DNA was detected under UV light.

RESULTS

Detection of anti-ODC mAb by enzyme linked immunosorbent assay and Western blotting
ELISA showed that the mAb could immunobind to recombinant human ODC and standard ODC protein (Sigma). ELISA showed that the immunoglobulin produced by the positive clone was the IgG2a type.

Western immunoblotting showed that the mAb bound to the ODC protein (Figure 1).

Detection of ODC in colorectal carcinoma by immunohistochemical staining
Tumor histotype and grade of differentiation were defined according to the WHO criteria.[15] Immunohistochemical staining of human colorectal carcinoma using ODC mAb demonstrated staining in cytoplasm. Density staining in deep brown color could be seen in most of the carcinoma tissues while only a few faint stainings were in the normal tissues (Figure 2). The staining intensity showed that ODC protein expression in cancer tissue was much higher than that in normal tissue, but there was no significant difference among different histologic grades of the tumor (Table 1). There was no difference between Duck’s stages A/B and C/D.

ODC mRNA expression analysis
RT-PCR showed that the expressed ODC mRNA in colorectal carcinoma tissues was significantly higher than that in normal tissues (P<0.01). There was no difference between male and female cases. Among the 27 well-to-moderately differentiated cancer samples, 9 were over-expressed and 18 were highly-expressed. Three of four
undifferentiated samples were over-expressed (Figure 3 and Table 2). χ² test showed that there was no difference among the different histologic grades, but there was a significant difference between Duck’s stages AB/CD (P<0.05).

DISCUSSION

Polyamines, such as putrescine, spermidine and spermine, play an important role in cell proliferation, differentiation, and transformation. It has been proposed that urinary or blood measurement might be a useful, non-invasive diagnostic marker of colon cancer. Since the intracellular polyamine pool could be regulated by external factors, such as uptake and excretion, the research outcome was disappointing. As the first and rate-limiting enzyme, ODC is the most extensively studied enzyme in polyamine metabolism. ODC protein is 50 ku as a monomer and about 100 ku when the active dimer is formed. ODC synthesis is dramatically induced by different growth stimuli, such as hormones, growth factors, carcinogens, viruses and oncogenes. The regulation can occur at the levels of transcription, translation and protein degradation. The alterations in enzymes can occur very quickly and change polyamine level in the end. ODC gene is considered as an immediate early gene, and contains response elements for several transacting factors, including a cAMP response element, a possible insulin response element and several Sp1 binding sites. In addition, ODC gene expression has been tightly linked to transformation by activated ras, v-src and myc. So, recently, ODC gene has been postulated as an oncogene, which is essential for cell transformation and several Sp1 binding sites. In addition, ODC gene expression has been tightly linked to transformation by activated ras, v-src and myc. So, recently, ODC gene has been postulated as an oncogene, which is essential for cell transformation and several Sp1 binding sites. ODC gene was found in a very limited amount in quiescent cells and its activity was found to be increased significantly in colon adenocarcinoma and prostate tissue compared to normal tissue from the same patients. Polyp is a benign neoplasia with a high risk of developing into colorectal cancer. Increased ODC activity and polyamine concentrations have

![Figure 2](image-url) Immunohistochemical staining of colon tissues. A: Normal colon tissue obtained 15 cm apart from neoplasm; B: Tissue from well-differentiated adenocarcinoma; C: Tissue from moderately differentiated adenocarcinoma; D: Tissue from poorly differentiated mucinous adenocarcinoma; E: Tissue from undifferentiated carcinoma.

Histological grade and Duck’s stage	–	+	++	+++	Total	Positive rate (%)	P
Normal	18	1	0	0	19	5	
Grade 1 well differentiated	1	2	4	9	16	93.75	<0.01
Grade 2 moderately differentiated	0	0	7	21	28	100	<0.01
Grade 3 poorly differentiated	0	0	8	7	15	100	<0.01
Grade 4 undifferentiated	0	1	6	3	10	100	<0.01
Duck’s A/B	1	1	11	17	31	96.7	<0.01
Duck’s C/D	0	1	14	23	38	100	<0.01

P<0.01 vs normal tissue.
also been observed in the colon of presymptomatic familial adenomatous polyposis patients. In the present study, we compared the ODC gene expression in human colorectal carcinoma with that in normal colon mucosa. ODC mRNA was extracted from human colon cancer tissues and ODC mRNA was detected by RT-PCR. The results showed that the ODC mRNA level in colorectal carcinoma was significantly higher than that in contiguous normal colon mucosa. Furthermore, we found that ODC gene expression was associated with the stage of malignancy. These findings suggest that the increase of ODC mRNA may play an important role in the process of colorectal tumor progression. ODC cDNA was inserted into an expression vector and the ODC gene expression vector pQE-ODC was established. The vector with a 6-His tag, which made the expression of ODC protein with about 95% purity, was used as a good immunogenic agent to immunize the BALB/c mice. Monoclonal anti-ODC antibody was produced by cell hybrids between hypoxanthine phosphoribosyl transferase-deficient myeloma cells and spleen cells of immunized mice. The antibody was the IgG2a type. ELISA and Western blotting showed that the mAb could combine the standard ODC (EC4.1.1.17) protein. Staining of colorectal tissues with ODC mAb showed a significant difference between normal and tumor mucosa. The deep brown staining could be found in gland cells of the tumor, while there was no staining or weak staining in stoma cells. The results suggested that there was a high concentration of ODC protein in tumor cell cytoplasm. These changes did not correlate with gender, histologic grade or Duck’s stage, which confirmed that increase of ODC protein was associated with the stage of malignancy. These findings suggest that the increase of ODC expression was associated with the stage of malignancy. These findings suggest that the increase of ODC protein in colorectal carcinoma may be a diagnosis and therapeutic marker of human colorectal carcinoma.

ACKNOWLEDGMENTS

The authors thank Dr. Jian Zhan, Dr. Jian-Hua Zhan and their colleagues in Shandong Academy of Medical Sciences for their kind help with the preparation of anti-ODC monoclonal antibody.

REFERENCES

1. Ries LA, Wingo PA, Miller DS, Howe HL, Weir HK, Rosenberg HM, Vernon SW, Cronin K, Edwards BK. The annual report to the nation on the status of cancer, 1973-1997, with a special section on colorectal cancer. Cancer 2000; 88: 2398-2424
2. Greenlee RT, Murray T, Bolden S, Wingo PA. Cancer statistics, 2000. CA Cancer J Clin 2000; 50: 7-35
3. Shu Z. Colorectal cancer. In: Jiefu Wang, ed: Gastrointestinal Surgery. Beijing: People’s Medical Publishing House, 2000: 920-923
4. McCormick D, Kibbe PJ, Morgan SW. Colon cancer: prevention, diagnosis, treatment. Gastroenterol Nurs 2002; 25: 204-211; quiz, 211-212
5. Hamilton SR. Colon cancer testing and screening. Arch Pathol Lab Med 1999; 123: 1027-1029
6. Wallace HM, Caslake R. Polyamines and colon cancer. Eur J Gastroenterol Hepatol 2001; 13: 1033-1039
7. Rich TA, Skibber JM, Ajani JA, Buchholz DJ, Cleary KR, Dubrow RA, Levin B, Lynch PM, Meterissian SH, Roubein LD. Preoperative infusional chemoradiation therapy for stage T3 rectal cancer. Int J Radiat Oncol Biol Phys 1995; 32: 1025-1029
8. Thomas T, Thomas TJ. Polyamine metabolism and cancer. J Cell Mol Med 2003; 7: 113-126
9. Auvinen M, Paasinen A, Andersson LC, Holtta E. Ornithine decarboxylase activity is critical for cell transformation. Nature 1992; 360: 355-358
10. Rozhin J, Wilson PS, Bull AW, Nigro ND. Ornithine decarboxylase activity in the rat and human colon. Cancer Res 1984; 44: 3226-3230
11. Liu XX, Fu SJ, Zhao CH, Zhang YY, Luo DC, Lin YQ, Jiang CY, Zhang XT, Xuan YJ. ODC activity and polyamine concentration in colon tumor tissue and peritumor tissue. Zhongguo Gangchanxue Za Zhi 1996; 11: 11
12. Canizares F, Salinas J, de las Heras M, Diaz J, Tovar I, Martinez P, Penafiel R. Prognostic value of ornithine decarboxylase and polyamines in human breast cancer: correlation with clinicopathologic parameters. Clin Cancer Res 1999; 5: 2035-2041
13. Hu HY, Liu XX, Jiang CY, Zhang Y, Bian JF, Lu Y, Geng Z, Liu SL, Liu CH, Wang XM, Wang W. Cloning and expression of ornithine decarboxylase gene from human colorectal carcinoma. World J Gastroenterol 2003; 9: 714-716
14. Gerhard W, Braciale TJ, Kliman NR. The analysis of the monoclonal immune response to influenza virus. I. Production of monoclonal anti-viral antibodies in vitro. Eur J Immunol

Table 2 ODC mRNA expression in normal and colorectal tumor tissues

Samples	ODC mRNA expression (n)	Total (n)	P		
	Low	Over	high		
Normal	31	0	0	31	<0.01
Tumor	0	19	12	31	
Gender					
Male	0	9	6	15	>0.05
Female	0	10	6	16	
Histologic grade					
Well-to-moderately differentiated	0	18	9	27	>0.05
Undifferentiated					
Duck's stage					
A/B	0	17	5	22	<0.05
C/D	0	2	7	9	

Figure 3 ODC mRNA expression assay by RT-PCR. M: molecular weight marker DL-2000. Lanes 1, 3 and 5: normal mucosa tissues. Lanes 2, 4 and 6: malignant tissue samples. β-actin was amplified as an internal control.
15 WHO. Histological typing of intestinal tumors 2nd ed. In: Jass J. R, Sobin L H. eds. International histological classifications of tumors: Berlin: Springer-Verlag, 1989

16 Russell DH, Durie BGM. Polyamines and the clinical evaluation of patients with cancer. Russell and Durie (editors). New York: Raven Press; 1978: 139-155

17 Montminy MR, Bilezikjian LM. Binding of a nuclear protein to the cyclic-AMP response element of the somatostatin gene. Nature 1987; 328: 175-178

18 Manzella JM, Rychlik W, Rhoads RE, Hershey JW, Blackshear PJ. Insulin induction of ornithine decarboxylase. Importance of mRNA secondary structure and phosphorylation of eucaryotic initiation factors eIF-4B and eIF-4E. J Biol Chem 1991; 266: 2383-2389

19 Sistonen L, Holta E, Lehvaslaiho H, Lehtola L, Alitalo K. Activation of the neu tyrosine kinase induces the fos/jun transcription factor complex, the glucose transporter and ornithine decarboxylase. J Cell Biol 1989; 109: 1911-1919

20 Rousseau D, Kaspar R, Rosenwald I, Gebrie L, Sonenberg N. Translation initiation of ornithine decarboxylase and nucleocytoplasmic transport of cyclin D1 mRNA are increased in cells overexpressing eukaryotic initiation factor 4E. Proc Natl Acad Sci USA 1996; 93: 1065-1070

21 Pendeville H, Carpino N, Marine JC, Takahashi Y, Muller M, Martial JA, Cleveland J. The ornithine decarboxylase gene is essential for cell survival during early murine development. Mol Cell Biol 2001; 21: 6549-6558

22 Love RR, Astrow SH, Cheeks AM, Havighurst TC. Ornithine decarboxylase (ODC) as a prognostic factor in operable breast cancer. Breast Cancer Res Treat 2003; 79: 329-334

23 Linsalata M, Caruso MG, Leo S, Guerra V, D’Attoma B, Di Leo A. Prognostic value of tissue polyamine levels in human colorectal carcinoma. Anticancer Res 2002; 22: 2465-2469

24 Giardiello FM, Hamilton SR, Hylind LM, Yang VW, Tamez P, Casero RA. Ornithine decarboxylase and polyamines in familial adenomatous polyposis. Cancer Res 1997; 57: 199-201

Science Editor Wang XL and Li WZ Language Editor Elsevier HK