Heterotrimeric G\textsubscript{q} proteins as therapeutic targets?

Evi Kostenis1, Eva Marie Pfeil, and Suvi Annala

From the Section of Molecular, Cellular and Pharmacobiology, Institute of Pharmaceutical Biology, Nussallee 6, 53115 Bonn, Germany

Edited by Henrik G. Dohlman

Heterotrimeric G proteins are the core upstream elements that transduce and amplify the cellular signals from G protein–coupled receptors (GPCRs) to intracellular effectors. GPCRs are the largest family of membrane proteins encoded in the human genome and are the targets of about one-third of prescription medicines. However, to date, no single therapeutic agent exerts its effects via perturbing heterotrimeric G protein function, despite a plethora of evidence linking G protein malfunction to human disease. Several recent studies have brought to light that the G\textsubscript{q} family–specific inhibitor FR900359 (FR) is unexpectedly efficacious in silencing the signaling of G\textsubscript{q} oncogenes, mutant G\textsubscript{q} variants that mostly exist in the active state. These data not only raise the hope that researchers working in drug discovery may be able to potentially strike G\textsubscript{q} oncogenes from the list of undruggable targets, but also raise questions as to how FR achieves its therapeutic effect. Here, we place emphasis on these recent studies and explain why they expand our pharmacological armamentarium for targeting G\textsubscript{q} protein oncoproteins as well as broaden our mechanistic understanding of G\textsubscript{q} protein oncogene function. We also highlight how this novel insight impacts the significance and utility of using G\textsubscript{q} proteins as targets in drug discovery efforts.

GTP/GDP exchange and the intrinsic activity of GTP-binding proteins constitute widespread regulatory mechanisms in cells. These are utilized by heterotrimeric \(\alpha \beta \gamma \) G proteins, downstream effectors of G protein–coupled receptors (GPCRs),2 to directly or indirectly regulate numerous physiological processes in mammals (1–6). Despite the discovery of G proteins about 40 years ago and their relevance for maintaining homeostasis in response to a myriad of extracellular cues, remarkably little effort has been devoted to development of selective and cell-permeable pharmacological agents for inhibition of members of this protein family (7–15). This is in stark contrast to the plethora of modulators currently available for pharmacological control of GPCRs (16, 17) and likely relates to the fact that perturbation of receptor function rather than their shared signaling cascades is a more specific approach to interfere with pathologies. However, such specific approaches may fail, if pathology is complex and involves dysregulation of more than one receptor and/or its associated signaling circuitry, as is the case in certain diseases of the lung (18–23) as well as various forms of pain (24–27) and cancer (28–35). Therefore, development of G protein–targeting pharmacological agents that are active in intact cells, on the level of an isolated organ and ideally also in the living organism, would offer unique opportunities to explore the biological consequences that arise from more broad inhibition of signaling components.

G proteins are grouped into four major families (G\textsubscript{q}, G\textsubscript{i}, G\textsubscript{s}, and G\textsubscript{12}) based on \(\alpha \) subunit homology and function (1–6). Missense mutations to codons within almost all of these (G\textsubscript{q}, G\textsubscript{i}, and G\textsubscript{s}) result in diverse pathological conditions, yet all but G\textsubscript{q} are lacking effective pharmacological inhibitors (i.e. remain untapped from a drug development perspective) (1–6). Note that members of the G\textsubscript{\(\alpha_{i/0} \)} family except for G\textsubscript{\(\alpha_{i} \)} are effectively hindered from signal transmission by pertussis toxin through ADP-ribosylation of a C-terminal cysteine residue (36–38). However, cell-permeable small-molecule inhibitors specifically targeting the G\textsubscript{\(\alpha_{i/0} \)} branch have yet to be identified. Therefore, this review will focus primarily on the more recent discoveries obtained with the G\textsubscript{q} family–specific inhibitors FR900359 (FR) and YM254890 (YM) (Fig. 1) and will highlight the conceptual advances originating therefrom for basic biological research and drug discovery. Specifically, we will single out a subset of G\textsubscript{q} protein activities, namely aberrant signaling in cancer, to advance the ideas on drug–G protein interaction for therapeutic advantage. Because much of today’s progress in this field traces back to a resurgence of interest in G\textsubscript{q} protein inhibitors, a brief historical perspective will also be included.

G protein signaling

The delicate balance between on and off states

To maintain organismal homeostasis, mammalian cells require an exquisite balance between G protein activation and deactivation. They achieve this by tight control over GDP/GTP exchange and GTP hydrolysis rates. Ligand-activated GPCRs act as guanine nucleotide exchange factors (GEFs) to stimulate GDP/GTP exchange on the G protein \(\alpha \) subunit (Fig. 2). Upon GTP binding, G\(\alpha \) changes its conformation, and this is followed by separation of the heterotrimer (the extent of physical separation may vary however (39–45)) into G\(\alpha_{GTP} \) and a G\(\beta \gamma \) dimer, each of which interacts with downstream effectors (Fig. 2) (1–6). GTP hydrolysis by the inherent GTPase activity, which is often supported by GTPase-activating proteins (GAPs), then terminates G signaling and allows G\(\alpha_{GDP} \) to associate with G\(\beta \gamma \) to return the G protein to the inactive state.
state (Fig. 2) (1, 46–48). This activation-inactivation cycle suffices to explain why guanine nucleotide dissociation inhibitors (GDIs), such as FR and YM, are efficient terminators of G protein signaling; they block the rate-limiting step of the cycle, which is GDP release (Fig. 2) (11, 49). It also rationalizes why G protein activity may be elevated in cancer cells because (i) GPCRs and/or their activating ligands are present in excess, (ii) cancer cells may harbor constitutively active receptor variants, (iii) cancer cells may have activating mutations within the Ga protein itself (29–31, 35), or (iv) may be deficient in expression of GAPs as well as carry mutated versions of these effective terminators of G protein–dependent signaling (50–53). Unlike the conventional GPCR-targeted therapies that intervene with categories (i) and (ii), the therapeutic concept discussed in this review is also, and perhaps especially, effective for category (iii). GAPs, category (iv), are not within the scope of this review and interested readers may refer to several excellent reviews on this topic elsewhere (46, 47, 54–56).

When the balance is tipped toward the on state

It has been known for many years that activating point mutations in Ga proteins are important causative factors in several human cancers (31, 57). Of the four families of heterotrimeric G proteins, gain-of-function mutations were found in GNAS (Gaα) (58–61), GNA12 (Gaα12) (62), GNAO1 (Gaαo1) (63, 64), and GNAQ/GNA11 (Gaαq/Gaα11) (65–68) gene loci. Whereas GNAS and GNAI mutations occur in subsets of human endocrinopathies (57, 62, 69, 70), the first activating somatic GNAO1 mutation was found in breast cancer (63). Within the GNAQ and GNAI1 genes, two particular codons are frequently mutated: arginine 183 and glutamine 209. Mutations at these two positions cause diminished GTPase function and so are linked to gain-of-signaling phenotypes (7, 9, 11, 31, 35, 71). Interestingly, both are also considered oncogenic driver mutations in ocular (uveal) melanoma (UM), an aggressive malignancy of the adult eye (72–76). Aside from mutationally activated Ga subunits, an additional recurrent hotspot mutation in UM was recently identified in the CYSLTR2 gene, which codes for the G protein–coupled cysteinyl-leukotriene receptor type 2: CysLTR2L129Q (77). A hallmark feature of this mutant receptor is an overactive Gq signaling cascade coupled with impaired arrestin-mediated down-regulation, abolished responsiveness to its cognate endogenous ligands, and insensitivity to CysLTR2 antagonist/ inverse agonist ligands (78). It follows that inhibitors of Gq function such as FR or YM should have therapeutic potential to suppress the aberrant activity of this signaling module originating on either the receptor or the G protein level. In other words, targeting a convergence point in signal transduction with a single agent might bring therapeutic benefit irrespective of the precise nature of the upstream activating oncoprotein.

Pharmacological inhibitors of G protein function: Focus on FR900359

Discovery of a cyclic depsipeptide with the code name FR900359 from a methanol extract of the evergreen plant Ardisia crenata dates back to 1988 (Fig. 3) (79). Along with the elucidation of its chemical structure, a preliminary description of biological effects was provided: FR inhibits platelet aggregation, decreases blood pressure, and is cytotoxic to cultured rat fibroblasts and myelocytic leukemia cells (data not shown in Ref. 79). Whereas all of the observed biological effects may be explained entirely by specific inhibition of Gq family proteins, it was not until 2010 that FR was rediscovered as “compound 362-63-08” in a plant extract library screen searching for inhibitors of the gut hormone cholecystokinin type 1 (CCK1, formerly CCK-A) receptor (Fig. 3) (10). The structural similarity of compound 362-63-08 with YM together with its in vitro selectivity profile led the authors to conclude that the screening hit 362-63-08 does not target the receptor itself but rather hinders CCK1 receptor signaling by specific inhibition of its signal transducing Gqq/11 proteins (10). Selective inhibition by FR of Gq, G11, and G14 over all other mammalian G proteins, its molecular mechanism of GDI action, and the potential to probe the Gq contribution to complex biological processes in physiology and disease were not addressed until 2015, when a comprehensive study provided in vitro and ex vivo characterization at a level of detail sufficient to reinvigorate the field of Gq protein inhibitors (11) (Fig. 3). Indeed, this very study impacted G protein inhibitor research in manifold beneficial ways: (i) created scientific community awareness for the existence of a most valuable signal transduction inhibitor, (ii) triggered independent confirmatory studies to re-examine FR’s selectivity profile (80–82), (iii) helped fuel the competitive efforts to identify the best-suited synthetic methodology for preparing the complex molecule by chemical synthesis (83–86), (iv) sparked broad interest for the application of FR and YM to explore the biological consequences that arise from specific Gq inhibition (7, 87–107), and (v) provided experimental evidence that Gq inhibition may

![Figure 1. Chemical structures of Gq inhibitors FR and YM. Colored areas highlight the components of the amino acid building blocks that differ between FR and YM, accounting for the higher hydrophobicity of FR as well as for the distinct pharmacological features of the two inhibitors (123, 124).](image-url)
Qualify as an effective postreceptor strategy to target oncogenic signaling in cancer cells with elevated G_q activity.

FR suppresses oncogenic signaling in melanoma cells with elevated G_q activity

The first signs for FR efficacy in cancer treatment were obtained when exposing a panel of skin melanoma cells to FR in cell culture (11). Interestingly, despite an intrinsically activated G_q cascade in a number of these lines, and despite potent suppression by FR of G_q-mediated inositol phosphate accumulation across all of these, proliferation, cell cycle progression, and mitogenic signaling were abolished in all but MZ7 cells. MZ7 cells harbor the constitutively active G_{qR183C} variant, considered susceptible to FR treatment (9, 83). These data provided the first hint that aberrant G_q activity per se does not suffice to instruct MZ7 cancer cells to proliferate. Apparently, an overactive G_q system is required but not sufficient to define the molecular subtype of melanoma that responds to FR treatment or else to forecast therapeutic efficacy of G_q-inhibiting agents. Given the rich mutational landscape of skin melanoma and the high frequency of mutations in the $BRAF$, $NRAS$, $CDK4$, $PTK2B$, and $ERBB4$ genes (108, 109), along with the notion that MZ7 cells also harbor the constitutively active $BRAF^{V600E}$ allele, the findings argue that $BRAF^{V600E}$ but not $G_{11R183C}$ must act as the dominant oncogenic driver and that the occurrence of R183C may merely be a consequence of the general mutational burden in this melanoma cell line. Indeed, mitogenic signaling in MZ7 cells is completely blunted by the BRAF inhibitors vemurafenib and trametinib (11). Regardless, G_q inhibition with FR provided the proof of principle for a novel route to reprogram a range of skin melanoma cells—those that are instructed by G_q to proliferate—to a less aggressive phenotype (11). Because mutant G_{q} or G_{11} proteins are found in only 4% of skin melanoma but in 90% of uveal melanoma, it was not surprising to observe researchers turn to the study of FR in cell lines from uveal melanoma tumors: four independent studies on similar subject matter emerged within just a 6-month time frame (97, 100, 110, 111).

FR inhibition of uveal melanoma G_q oncoproteins: A mechanistic surprise?

Uveal melanoma is the most common cancer of the adult eye, originating from melanocytes in the choroid, iris, or ciliary body (72–76). The genetic signature and evolution of this particularly lethal form of melanoma is distinct from skin melanoma in that mutations within a G_q signaling module comprising the gene loci for $GNAQ$, $GNA11$, their downstream effector $PLCB4$, or the upstream activating $CYSLTR2$ occur in a mutually exclusive fashion (65–67, 77, 112). Particularly prominent are gain-of-function mutations within the two highly homologous G protein α subunits, $G_{q\alpha}$ and $G_{11\alpha}$, at the recurrent hotspots Gln-209 and Arg-183 (65–67), with mutations at Gln-209 being 13 times more frequent than those at Arg-183 (67). Both mutation hotspots are located in the GTPase domain (Fig. 4A) and are catalytically important for the GTPase turn-off reaction by stabilizing the transition state for GTP hydrolysis. Gln-209 of $G_{q\alpha}$ and $G_{11\alpha}$ is analogous to Gln-204 within $G_{q\alpha}$, Gln-227 within $G_{11\alpha}$, and Gln-61 within the small GTPase Ras, the latter mutated in multiple human cancers (61, 113). If altered by mutation, $G_{q\alpha}$ deactivation is disturbed, driving inappropriate proliferative signaling, yet different in extent for each of the two hotspots: the Gln-209 mutations ($G_{q\alpha}^{Q209L/F}$ or $G_{11\alpha}^{Q209L/F}$) cripple the GTPase activity to create persistently active G_{α} subunits (as inferred from pioneering X-ray crystallographic studies with $G_{q\alpha}$ (114, 115) and recent biochemical investigations (71), whereas Arg-183 mutants ($G_{q\alpha}^{R183C}$ or...
Gα11^{R183C}) retain the capacity to hydrolyze GTP, albeit at a reduced catalytic rate (Fig. 4A) (116). Thus, both mutants differ in their oncogenic properties because R183C prefers GTP over GDP yet still responds to receptor stimulation, whereas Q209L/P is largely, if not entirely, uncoupled from activation by upstream acting GPCRs (9, 110, 116–118) (Fig. 4A). This mechanistic difference explains why Gα11^{Q209L/P} but not Gα11^{R183C} mutants were long considered unresponsive to inhibitors of receptor-mediated nucleotide exchange (so-called GDIs). FR and YM are precisely such GDIs, viewed as unsuited for manipulating the oncogenic signaling driven by GTPase-deficient Gq proteins for experimental or therapeutic purposes. However, FR in particular has shown convincing efficacy against UM cancer cells as brought to focus by four independent studies (97, 100, 110, 111). How come?

Experimental efficacy of FR in UM cancer cells: Solving an apparent paradox

G protein signaling requires both activation and deactivation. In normal cells, deactivation is an intrinsic property of the Gα subunit and is not rate-limiting (Fig. 4B). Mammalian Gα proteins typically deactivate by hydrolyzing GTP to GDP at catalytic rates k_{cat} between 0.01 and 3.5 min⁻¹ (116). Because GTP hydrolysis is faster than GDP release, the steady-state pool of activated Gα subunits is tightly linked to the amount of agonist-occupied GPCRs (Fig. 4B). In this way, G protein signaling is largely controlled by and dependent on catalytic input from the upstream acting receptors. However, in Gα11^{Q209L/P} mutant cells, the inherent hydrolysis rate is far too slow to reset GDP-Gα (Fig. 4B). It follows that the nucleotide state of Gα11^{Q209L/P} becomes more dependent on nucleotide affinity and concentration. Because GTP is in molar excess over GDP in living cells (119) and because GTP dissociates an order of magnitude slower than GDP (120), GTPase-deficient mutants predominantly exist in the GTP-bound state (Fig. 5). However, inhibitors of nucleotide dissociation may shift the nucleotide preference to enrich the fraction of inactive Gα_qGDP-βγ heterotrimers over time (Fig. 5). Their onset of action will depend on the rate of nucleotide exchange and/or the rate of GTP hydrolysis in a given cellular environment. Let us pause for a moment to reiterate this point: For a GTPase-deficient Gα_q to become GDP-bound at a relatively fast pace, it must either exchange nucleotides in cells at rates much faster than those believed to occur in vitro experiments and/or hydrolyze GTP better than predicted from in vitro studies. It may therefore be advisable to revisit the molecular details underlying these quintessential processes of nucleotide exchange and GTP hydrolysis in the living cell context. This does not only appear timely but may also be technically feasible, given the availability of CRISPR-Cas9 genome-edited cells depleted of multiple G protein α subunits (103). So far, only FR (and not YM) has shown efficacy in the UM context. It is conceivable that this efficacy is in keeping with the kinetic parameters recently determined for direct interaction between tritiated FR and Gα_q unlike YM, FR dissociates from Gα_q with a remarkably slow off rate (t_{1/2diss(FR)} ~92 min versus t_{1/2diss(YM)} ~4 min (124)), suggesting interaction in a pseudo-irreversible manner. Long Gα_q residence times may therefore be decisively advantageous for duration of action as well as experimental and therapeutic efficacy of Gα_q inhibitors in UM. Regardless of the kinetic differences, inhibitors of guanine nucleotide dissociation diminish the signaling of GTP-bound...
Ga in an indirect manner, clearly illustrating their dual value to blunt signaling not only of WT GTPases but also of mutationally activated GTPase-deficient oncogenes.

Heterotrimeric Ga subunits as drug targets?

Inhibition of Ga\(_{\text{GTP}}\) and, thereby, its downstream signaling repertoire, may be relevant to treat pathologies that are driven by overactive G proteins as is the case in various types of human cancers (31, 35, 57). Provided that targeting of heterotrimeric G proteins in a subfamily- or even isoform-specific manner will be expanded beyond the G\(_{q/11}\) branch, the issue of ubiquitous Ga expression will still remain a perceived safety concern for potential medications. One possibility to overcome systemic toxicity is local drug application. For FR treatment of ocular melanoma, this may be achieved by local delivery directly into the eye just as established for a number of clinically used intraocular therapeutics. Topical application, for the avoidance of systemic adverse effects, has already proven successful for FR inhibition of G\(_{q}\)-GPCR signaling in the airways using various in vivo models for acute and chronic lung diseases (94). Whereas the pulmonary administration route of an FR aerosol effectively suppressed G\(_{q}\) signaling, as evidenced by remarkable bronchodilation, systemic side effects that would directly result from G\(_{q}\) inhibition, such as blood pressure or heart rate alterations, were
not detected (94). Long-term toxicity studies will be required to assess whether FR accumulates in certain cells, tissues, or organs to judge its potential to be administered to humans.

In the current absence of precision pharmacological targeting for mutationally activated Gα proteins, one can only speculate about possible advantages of targeted GαGTP therapeutics. Such a strategy does spring to mind as an attempt to preferentially diminish the aberrant Gα activity in cancer cells only, akin to therapies targeting mutationally activated BRAFV600E in metastatic melanoma. Yet, mutation-specific inhibitors for active Gα have not been reported to date, and, moreover, GαGTP antagonizing agents will likely also block the signaling of WT GTPases in that only a low dosage might afford a therapeutic window for targeted (preferential) inhibition of the oncogenic over the WT Gα pool. In light of these considerations and the current absence of X-ray structural information on GTPase-deficient Gα, the recent successes to target mutationally activated Gα with FR in uveal melanoma must be viewed as a considerable breakthrough (97, 110, 111). Guanine nucleotide dissociation inhibitors of heterotrimeric G proteins such as FR may therefore evolve to be cornerstones of “anti-GαGTP therapies,” given their proven capacity to shift the nucleotide preference of Gα proteins toward the GDP-bound inactive state (Fig. 5). If combined with tissue- or cell-specific targeting, such as antibody-drug conjugates, systemic side effects may be kept at a minimum or even be spared. In such a scenario, concomitant inhibition of both mutationally activated and WT Gα may even be of advantage to harm the aberrant cells.

Conclusions and outlook

It has been known for decades that GTPase-inactivating point mutations in Gα proteins are important causative factors in many human cancers. However, there have been few attempts to establish approaches for inhibition of Gα oncoproteins (97, 100, 110, 111). One possible daunting challenge may have been that G protein–targeted pharmacological agents must enter the cell to exert their desired biological effect. How-ever, molecules like FR or YM are beginning to bring this goal within reach. As far as pharmacological strategies are concerned, direct competition with GTP binding, in analogy to kinase inhibitors that compete with ATP binding, has not been seriously considered. This is because of the extremely high affinities of GTP and GDP for their nucleotide-binding pockets along with their micromolar abundance in cells, meaning that nucleotide binding to the catalytic site is very hard to overcome by any competitive inhibitor (121). What other strategies do come to mind to hinder constitutively active Gα proteins from

Figure 5. Schematic for FR inhibition of oncogenic Gαq, GTPases. A, oncogenic Gln-209 mutations result in functional activation of Gαq, family proteins by impairing GTP hydrolysis. With diminished regulation by GTPase activity (GTP hydrolysis is rate-limiting), the nucleotide state of mutant Gαq becomes more dependent on nucleotide affinity and concentration. Because GTP is in higher abundance than GDP in cells, Gαq, freed from its Gβγ binding partner is the major nucleotide-bound form of GTPase-deficient Gln-209 mutants. Inhibitors of nucleotide dissociation, such as FR, shift the equilibrium toward Gαq/GDPCαq,βγ heterotrimers over time, thereby enriching the fraction of G proteins in a signaling-incompetent state. Subversion of the nucleotide preference of Gln-209 mutants to favor GDP over GTP is an allosteric mechanism whereby FR gains control over aberrant signaling of oncogenic GTPase-deficient Gαq, proteins. B, schematic, overall structural fold and detailed view of the heterotrimeric G protein Gαq subunit (Protein Data Bank entry 3AH8) in its inactive, GDP-bound form; G209L is visualized with a space-filling model. FR does not directly interact with Gln-209 but allosterically stabilizes the GDP-bound fraction of the oncoprotein, a conformation that cannot be maintained when Gαq is GTP-bound (49).
aberrant signaling? Pharmacological reactivation of deficient Gα-GTPase activity may be a way to go (122), but conceivably very hard to implement. Thus, in the current absence of pharmacological agents to directly antagonize persistently active Gα, targeting nucleotide exchange, for long viewed ineffective for this purpose, appears particularly straightforward. In this respect, the re-emergence of FR, a highly specific Gαi-directed inhibitor of GDP/GTP exchange and cellular signaling, has not only revitalized the idea of targeting G protein oncogenes but also provided proof of principle in vitro (97, 100, 110, 111) and in vivo (110) that this is indeed experimentally feasible.

References

1. Gilman, A. G. (1987) G proteins: transducers of receptor-generated signals. Annu. Rev. Biochem. 56, 615–649 CrossRef Medline
2. Neves, S. R., Ram, P. T., and Iyengar, R. (2002) G protein pathways. Science 296, 1636–1641 CrossRef Medline
3. Johnston, C. A., and Siderowsky, D. P. (2007) Receptor-mediated activation of heterotrimeric G-proteins: current structural insights. Mol. Pharmacol. 72, 219–230 CrossRef Medline
4. Oldham, W. M., and Hamm, H. E. (2008) Heterotrimeric G protein activation by G-protein-coupled receptors. Nat. Rev. Mol. Cell Biol. 9, 60–71 CrossRef Medline
5. Preninger, A. M., Meiler, J., and Hamm, H. E. (2013) Conformational flexibility and structural dynamics in GPCR-mediated G protein activation: a perspective. J. Mol. Biol. 425, 2288–2298 CrossRef Medline
6. Milligan, G., and Kostenis, E. (2006) Heterotrimeric G-proteins: a short history. Br. J. Pharmacol. 147, S46–S55 CrossRef Medline
7. Campbell, A. P., and Smrcka, A. V. (2018) Targeting G protein-coupled receptor signalling by blocking G proteins. Nat. Rev. Drug Discov. 17, 789–803 CrossRef Medline
8. Smrcka, A. V. (2013) Molecular targeting of Ga and Gβγ subunits: a potential approach for cancer therapeutics. Trends Pharmacol. Sci. 34, 290–296 CrossRef Medline
9. Takasaki, J., Saito, T., Taniguchi, M., Kawasaki, T., Moritani, Y., Hayashi, K., and Kobori, M. (2004) A novel Gqα11-selective inhibitor. J. Biol. Chem. 279, 47438–47445 CrossRef Medline
10. Nesterov, A., Hong, M., Hertel, C., Jiao, P., Brownell, L., and Cannon, E. (2010) Screening a plant extract library for inhibitors of cholecystokinin receptor CCK1 pathways. J. Bioulm. Screen. 15, 518–527 CrossRef Medline
11. Schrage, R., Schmitz, A.-L., Gaffal, E., Annala, S., Kehraus, S., Wenzel, D., Büllesbach, K. M., Bald, T., Inoue, A., Shinjo, Y., Galandrin, S., Shridhar, N., Hesse, M., Grundmann, M., Merten, N., et al. (2015) The experimental power of FR900359 to study Gαi-regulated biological processes. Nat. Commun. 6, 10156 CrossRef Medline
12. Bonacci, T. M., Mathews, J. L., Yuan, C., Lehmann, D. M., Malik, S., Wu, D., Font, J. L., Bidlack, J. M., and Smrcka, A. V. (2006) Differential targeting of Gβγ-subunit signaling with small molecules. Science 312, 443–446 CrossRef Medline
13. Moulton, B. C., and Fryer, A. D. (2011) Muscarinic receptor antagonists, from folklore to pharmacology: finding drugs that actually work in asthma and COPD. Br. J. Pharmacol. 163, 44–52 CrossRef Medline
14. Arakaki, A. K. S., Pan, W.-A., and Trejo, J. (2018) GPCRs in cancer: pharmacology and G protein-coupled receptor signaling in cancer. Curr. Top. Cell Regul. 65, 73–96 CrossRef Medline
15. Ancin-Aconcatte, M., Pan, W.-A., and Trejo, J. (2018) GPCRs in cancer: protease-activated receptors, endoergic adaptors and signaling. Int. J. Mol. Sci. 19, E1886 CrossRef Medline
16. Erle, D. J., and Sheppard, D. (2014) The cell biology of asthma. J. Cell Biol. 205, 621–631 CrossRef Medline
17. Rask-Andersen, M., Almén, M. S., and Schiöth, H. B. (2011) Trends in the exploitation of novel drug targets. Nat. Rev. Drug Discov. 10, 579–590 CrossRef Medline
18. Panettieri, R. A., Pera, T., Liggett, S. B., Benovic, J. L., and Penn, R. B. (2018) Pepducins as a potential treatment strategy for asthma and COPD. Curr. Opin. Pharmacol. 40, 120–125 CrossRef Medline
19. Bel, E. H. (2013) Clinical practice: mild asthma. N. Engl. J. Med. 369, 549–557 CrossRef Medline
20. Scadding, G. W., and Scadding, G. K. (2010) Recent advances in antileukotriene therapy. Curr. Opin. Allergy Clin. Immunol. 10, 370–376 CrossRef Medline
21. Barnes, P. J. (2017) Cellular and molecular mechanisms of asthma and COPD. Clin. Sci. 131, 1541–1558 CrossRef Medline
22. Moulton, B. C., and Fryer, A. D. (2011) Muscarinic receptor antagonists, from folklore to pharmacology: finding drugs that actually work in asthma and COPD. Br. J. Pharmacol. 163, 44–52 CrossRef Medline
23. Erle, D. J., and Sheppard, D. (2014) The cell biology of asthma. J. Cell Biol. 205, 621–631 CrossRef Medline
24. Geppetti, P., Veldhuis, N. A., Loeu, T., and Bunnett, N. W. (2015) G protein-coupled receptors: dynamic machines for signaling pain and itch. Neuron 88, 635–649 CrossRef Medline
25. Yim, Y. Y., Zurawski, Z., and Hamm, H. (2018) GPCR regulation of secretion. Pharmacol. Ther. 192, 124–140 CrossRef Medline
26. Han, S.-K., and Simon, M. I. (2011) Intracellular signaling and the origins of the sensations of itch and pain. Sci. Signal. 4, pe38 CrossRef Medline
27. Wirotanseng, L. N., Kuner, R., and Tappe-Theodor, A. (2013) Gαi rather than Gβγ preferentially mediates nociceptor sensitization. Mol. Pain 9, 54 CrossRef Medline
28. NietoGutierrez, A., and McDonald, P. H. (2018) GPCRs: emerging anti-cancer drug targets. Cell. Signal. 41, 65–74 CrossRef Medline
29. Wu, V., Yeerna, H., Nohata, N., Chou, J., Harisemond, O., Raimondi, F., Inoue, A., Russell, R. B., Tamayo, P., and Gutkind, J. S. (2019) Illuminating the Onco-GPCCRome: novel G protein-coupled receptor-driven oncologic networks and targets for cancer immunotherapy. J. Biol. Chem. 294, 11062–11086 CrossRef Medline
30. Nohata, N., Goto, Y., and Gutkind, J. S. (2017) Onco-GPCR signaling and dysregulated expression of microRNAs in human cancer. J. Hum. Genet. 62, 87–96 CrossRef Medline
31. O’Hayre, M., Degese, M. S., and Gutkind, J. S. (2014) Novel insights into G protein and G protein-coupled receptor signaling in cancer. Curr. Opin. Cell Biol. 27, 126–135 CrossRef Medline
32. Scadding, G. W., and Scadding, G. K. (2010) Recent advances in antileukotriene therapy. Curr. Opin. Allergy Clin. Immunol. 10, 370–376 CrossRef Medline
33. Lappano, R., Jacquot, Y., and Maggioni, M. (2018) GPCR modulation in breast cancer. Int. J. Mol. Sci. 19, E3840 CrossRef Medline
34. Arakaki, A. K. S., Pan, W.-A., and Trejo, J. (2018) GPCRs in cancer: protease-activated receptors, endoergic adaptors and signaling. Int. J. Mol. Sci. 19, E1886 CrossRef Medline
35. O’Hayre, M., Vázquez-Prado, J., Kufareva, I., Stawiski, E. W., Handel, T. M., Seshagiri, S., and Gutkind, J. S. (2013) The emerging mutational landscape of G-proteins and G-protein coupled receptors in cancer. Nat. Rev. Cancer 13, 412–424 CrossRef Medline
36. Codina, J., Hildebrandt, J., Iyengar, R., Birnbaum, L., Sekura, R. D., and Manclark, C. R. (1983) Pertussis toxin substrate, the putative Ni component of adenyl cyclases, is an αβ heterodimer regulated by guanine nucleotide and magnesium. Proc. Natl. Acad. Sci. U.S.A. 80, 4276–4280 CrossRef Medline
37. Casey, P. J., Fong, H. K., Simon, M. I., and Gilman, A. G. (1990) Gz, a guanine nucleotide-binding protein with unique biochemical properties. J. Biol. Chem. 265, 2383–2390 Medline
38. Murayama, T., and Ui, M. (1983) Loss of the inhibitory function of the guanine nucleotide regulatory component of adenylate cyclase due to its ADP ribosylation by islet-activating protein, pertussis toxin, in adipocyte membranes. J. Biol. Chem. 258, 3319–3326 Medline
59. Innamorati, G., Wilkie, T. M., Kantheti, H. S., Valenti, M. T., Dalle Carbonare, L., Giacomello, L., Parenti, M., Melisi, D., and Bassi, C. (2018) The curious case of Gαi gain-of-function in neoplasia. *BMC Cancer* **18**, 293 CrossRef Medline

60. Landis, C. A., Masters, S. B., Spada, A., Pace, A. M., Bourne, H. R., and Valler, L. (1989) GTPase inhibiting mutations activate the α chain of Gs and stimulate adenyl cyclase in human pituitary tumours. *Nature* **340**, 692–696 CrossRef Medline

61. Forbes, S. A., Bhamra, G., Bamford, S., Dawson, E., Kok, C., Clements, J., Menzies, A., Teague, J. W., Futreal, P. A., and Stratton, M. R. (2008) The Catalogue of Somatic Mutations in Cancer (COSMIC). *Curr. Protoc. Hum. Genet*. Chapter 10, Unit 10.11 CrossRef Medline

62. Lyons, J., Landis, C. A., Harsh, G., Valler, L., Grünewald, K., Feichtinger, H., Duh, Q. Y., Clark, O. H., Kawasaki, E., and Bourne, H. R. (1990) Two G protein oncogenes in human endocrine tumors. *Science* **249**, 655–659 CrossRef Medline

63. Kan, Z., Jaiswal, B. S., Stinson, J., Janakiraman, V., Bhatt, D., Stern, H. M., Yue, P., Haverty, P. M., Bourgon, R., Zheng, J., Moorhead, M., Chaudhuri, S., Tomsho, L. P., Peters, B. A., Pujara, K., et al. (2010) Diverse somatic mutation patterns and pathway alterations in human cancers. *Nature* **466**, 869–873 CrossRef Medline

64. Leyme, A., Marivin, A., Casler, J., Nguyen, L. T., and García-Marcos, M. (2014) Different biochemical properties explain why two equivalent Gαi subunit mutants cause unrelated diseases. *J. Biol. Chem.* **289**, 21818–21827 CrossRef Medline

65. Van Raamsdonk, C. D., Biezcovvke, V., Green, G., Bauher, J., Gaugler, L., O’Brien, J. M., Simpion, E. G., Barsh, G. S., and Bastian, B. C. (2009) Frequent somatic mutations of GNAQ in uveal melanoma and blue naevi. *Nature* **457**, 599–602 CrossRef Medline

66. Van Raamsdonk, C. D., Griewank, K. G., Crosby, M. B., Garrido, M. C., Vemula, S., Wiesner, T., Obenauf, A. C., Wackernagel, W., Green, G., Bouvier, N., Sozen, M. M., Baimukanov, G., Roy, R., Heguy, A., Dolgalev, L., et al. (2010) Mutations in GNA11 in uveal melanoma. *The New England journal of medicine* **363**, 2191–2199 CrossRef Medline

67. Moller, I., Murali, R., Muller, H., Wiesner, T., Jocquet, L. A., Scholz, S. L., Cosgrae, I., van de Nes, J. A., Sucker, A., Hillen, U., Schilling, B., Paschen, A., Kutzner, H., Ruetten, A., Boekers, M., Scolyer, R. A., Schadendorf, D., and Griewank, K. (2017) Activating cysixin leukotriene receptor 2 (CYSLTR2) mutations in blue nevi. *Med. Pediatr. 30*, 350–356 CrossRef Medline

68. Weinstein, L. S., Shenker, A., Gejman, P. V., Herino, M. J., Friedman, E., and Spiegel, A. M. (1991) Activating mutations of the stimulatory G protein in the McCune-Albright syndrome. *N. Engl. J. Med.* **325**, 1688–1695 CrossRef Medline

69. Shenker, A., Weinstein, L. S., Sweet, D. E., and Spiegel, A. M. (1994) An activating Gsα mutation is present in fibrous dysplasia of bone in the McCune-Albright syndrome. *J. Clin. Endocrinol. Metab.* **79**, 750–755 CrossRef Medline

70. Maziarz, M., Leyme, A., Marivin, A., Luebbers, A., Patel, P. P., Chen, Z., Sprang, S. R., and Garcia-Marcos, M. (2018) Atypical activation of the G protein Gαi by the oncogenic mutation Q209P. *J. Biol. Chem.* **293**, 19586–19599 CrossRef Medline

71. Sisley, K., Doherty, R., and Cross, N. A. (2011) What hope for the future? GNAQ and uveal melanoma. *Br. J. Ophthalmol.* **95**, 620–623 CrossRef Medline

72. Bastian, B. C. (2014) The molecular pathology of melanoma: an integrated taxonomy of melanocytic neoplasia. *Annu. Rev. Pathol. 9*, 239–271 CrossRef Medline

73. Luke, J. J., Triozzi, P. L., McKenna, K. C., Van Meir, E. G., Gershenwald, J. E., Bastian, B. C., Gutkind, J. S., Bowcock, A. M., Streecher, H. Z., Patel, P. M., Sato, T., Sossman, J. A., Sznol, M., Welch, J., Thurnin, M., et al. (2015) Biology of advanced uveal melanoma and next steps for clinical therapeutics. *Pigment Cell Melanoma Res.* **28**, 135–147 CrossRef Medline

74. Singh, A. D., Turell, M. E., and Topham, A. K. (2011) Uveal melanoma: trends in incidence, treatment, and survival. *Ophthalmology* **118**, 1881–1885 CrossRef Medline

75. Carvajal, R. D., Schwartz, G. K., Tezel, T., Marr, B., Francis, J. H., and Nathan, P. D. (2017) Metastatic disease from uveal melanoma: treatment
options and future prospects. Br. J. Ophthalmol. 101, 38–44 CrossRef Medline

77. Moore, A. R., Ceraudo, E., Sher, J. I., Guan, Y., Soushastari, A. N., Chang, M. T., Zhang, I. Q., Walczak, E. G., Kazmi, M. A., Taylor, B. S., Huber, T., Chi, P., Sakmar, T. P., and Chen, Y. (2016) Recurrent activating mutations of G-protein-coupled receptor CYSLTR2 in uveal melanoma. Nat. Genet. 48, 675–680 CrossRef Medline

78. Ceraudo, E., Horioka, M., Mattiesen, J. M., Hitchman, T. D., Moore, A. R., Kazmi, M. A., Chi, P., Chen, Y., Sakmar, T. P., and Huber, T. (2019) Uveal melanoma oncogene CYSLTR2 encodes a constitutively active GPCR highly biased toward Gq signaling. bioRxiv CrossRef

79. Fujioka, M., Koda, S., Morimoto, Y., and Biemann, K. (1988) Structure of FR900359, a cyclic depsipeptide from Ardisia crenata ssp. J. Org. Chem. 53, 2820–2825 CrossRef

80. Gao, Z.-G., and Jacobson, K. A. (2016) On the selectivity of the Gq agonist inhibitor UBO-Q1C: a comparison with the Gq agonist pertussis toxin. Biochem. Pharmacol. 107, 59–66 CrossRef Medline

81. Inamdar, V., Patel, A., Manne, B. K., Dangelmaier, C., and Kunapuli, S. P. (2015) Characterization of UBO-Q1C as a Gq agonist in platelets. Platelets 26, 771–778 CrossRef Medline

82. Kukkonen, J. P. I. (2016) G-protein inhibition profile of the reported Gq11 inhibitor UBO-Q1C. Biochem. Biophys. Res. Commun. 469, 101–107 CrossRef Medline

83. Xiong, X.-F., Zhang, H., Underwood, C. R., Harpsøe, K., Gardella, T. J., Wöldle, M. F., Mannsperger, M., Gloriam, D. E., Bräuner-Osborne, H., and Strømgaard, K. (2016) Total synthesis and structure-activity relationship studies of a series of selective G protein inhibitors. Nat. Chem. 8, 1035–1041 CrossRef Medline

84. Rensing, D. T., Uppal, S., Blumer, K. J., and Moeller, K. D. (2015) Toward a Gq antagonist. Biochim. Biophys. Acta 1852, 592–601 CrossRef Medline

85. Inamdar, V., Patel, A., Manne, B. K., Dangelmaier, C., and Kunapuli, S. P. (2015) Characterization of UBO-Q1C as a Gq agonist in platelets. Platelets 26, 771–778 CrossRef Medline

86. Reher, R., Kühl, T., Annala, S., Benkel, T., Kaufmann, D., Nubbemeyer, B., Reher, R., Kühl, T., Annala, S., Benkel, T., Kaufmann, D., Nubbemeyer, B., Reher, R., Kühl, T., Annala, S., Benkel, T., Kaufmann, D., Nubbemeyer, B., Reher, R., Kühl, T., Annala, S., Benkel, T., Kaufmann, D., Nubbemeyer, B., Reher, R., Kühl, T., Annala, S., Benkel, T., Kaufmann, D., Nubbemeyer, B., Reher, R., Kühl, T., Annala, S., Benkel, T., Kaufmann, D., Nubbemeyer, B., Reher, R., Kühl, T., Annala, S., Benkel, T., Kaufmann, D., Nubbemeyer, B., Reher, R., Kühl, T., Annala, S., Benkel, T., Kaufmann, D., Nubbemeyer, B., Reher, R., Kühl, T., Annala, S., Benkel, T., Kaufmann, D., Nubbemeyer, B., Reher, R., Kühl, T., Annala, S., Benkel, T., Kaufmann, D., Nubbemeyer, B., Reher, R., Kühl, T., Annala, S., Benkel, T., Kaufmann, D., Nubbemeyer, B., Reher, R., Kühl, T., Annala, S., Benkel, T., Kaufmann, D., Nubbemeyer, B., Reher, R., Kühl, T., Annala, S., Benkel, T., Kaufmann, D., Nubbemeyer, B., Reher, R., Kühl, T., Annala, S., Benkel, T., Kaufmann, D., Nubbemeyer, B., Reher, R., Kühl, T., Annala, S., Benkel, T., Kaufmann, D., Nubbemeyer, B., Reher, R., Kühl, T., Annala, S., Benkel, T., Kaufmann, D., Nubbemeyer, B., Reher, R., Kühl, T., Annala, S., Benkel, T., Kaufmann, D., Nubbemeyer, B., Reher, R., Kühl, T., Annala, S., Benkel, T., Kaufmann, D., Nubbemeyer, B., Reher, R., Kühl, T., Annala, S., Benkel, T., Kaufmann, D., Nubbemeyer, B., Reher, R., Kühl, T., Annala, S., Benkel, T., Kaufmann, D., Nubbemeyer, B., Reher, R., Kühl, T., Annala, S., Benkel, T., Kaufmann, D., Nubbemeyer, B., Reher, R., Kühl, T., Annala, S., Benkel, T., Kaufmann, D., Nubbemeyer, B., Reher, R., Kühl, T., Annala, S., Benkel, T., Kaufmann, D., Nubbemeyer, B., Reher, R., Kühl, T., Annala, S., Benkel, T., Kaufmann, D., Nubbemeyer, B., Reher, R., Kühl, T., Annala, S., Benkel, T., Kaufmann, D., Nubbemeyer, B., Reher, R., Kühl, T., Annala, S., Benkel, T., Kaufmann, D., Nubbemeyer, B., Reher, R., Kühl, T., Annala, S., Benkel, T., Kaufmann, D., Nubbemeyer, B., Reher, R., Kühl, T., Annala, S., Benkel, T., Kaufmann, D., Nubbemeyer, B., Reher, R., Kühl, T., Annala, S., Benkel, T., Kaufmann, D., Nubbemeyer, B., Reher, R., Kühl, T., Annala, S., Benkel, T., Kaufmann, D., Nubbemeyer, B., Reher, R., Kühl, T., Annala, S., Benkel, T., Kaufmann, D., Nubbemeyer, B., Reher, R., Kühl, T., Annala, S., Benkel, T., Kaufmann, D., Nubbemeyer, B., Reher, R., Kühl, T., Annala, S., Benkel, T., Kaufmann, D., Nubbemeyer, B., Reher, R., Kühl, T., Annala, S., Benkel, T., Kaufmann, D., Nubbemeyer, B., Reher, R., Kühl, T., Annala, S., Benkel, T., Kaufmann, D., Nubbemeyer, B., Reher, R., Kühl, T., Annala, S., Benkel, T., Kaufmann, D., Nubbemeyer, B., Reher, R., Kühl, T., Annala, S., Benkel, T., Kaufmann, D., Nubbemeyer, B., Reher, R., Kühl, T., Annala, S., Benkel, T., Kaufmann, D., Nubbemeyer, B., Reher, R., Kühl, T., Annala, S., Benkel, T., Kaufmann, D., Nubbemeyer, B., Reher, R., Kühl, T., Annala, S., Benkel, T., Kaufmann, D., Nubbemeyer, B., Reher, R., Kühl, T., Annala, S., Benkel, T., Kaufmann, D., Nubbemeyer, B., Reher, R., Kühl, T., Annala, S., Benkel, T., Kaufmann, D., Nubbemeyer, B., Reher, R., Kühl, T., Annala, S., Benkel, T., Kaufmann, D., Nubbemeyer, B., Reh
108. Dutton-Regester, K., Irwin, D., Hunt, P., Aouda, L. G., Tembe, V., Pupo, G. M., Lanagan, C., Carter, C. D., O’Connor, L., O’Rourke, M., Sloyer, R. A., Mann, G. J., Schmidt, C. W., Herinton, A., and Hayward, N. K. (2012) A high-throughput panel for identifying clinically relevant mutation profiles in melanoma. *Mol. Cancer Ther.* **11**, 888–897 CrossRef Medline

109. Davies, H., Bignell, G. R., Cox, C., Stephens, P., Edkins, S., Clegg, S., Teague, J., Woffendin, H., Garnett, M. J., Bottomley, W., Davis, N., Dicks, E., Ewing, R., Floyd, Y., Gray, K., et al. (2002) Mutations of the BRAF gene in human cancer. *Nature* **417**, 949–954 CrossRef Medline

110. Annala, S., Feng, X., Shridhar, N., Eryilmaz, F., Patt, J., Yang, J., Pfeil, E. M., Cervantes-Villagran, R. D., Inoue, A., Häberlein, F., Slodczyk, T., Reher, R., Kehraus, S., Monteleone, S., Schrage, R., et al. (2019) Direct targeting of Gαq and Go11 oncoproteins in cancer cells. *Sci. Signal.* **12**, eaau5948 CrossRef Medline

111. Feng, X., Arang, N., Rigiracciolo, D. C., Lee, J. S., Yeerna, H., Wang, Z., Lubrano, S., Kishore, A., Pachter, J. A., König, G. M., Maggiolini, M., Kostenis, E., Schaepfer, D. D., Tamayo, P., Chen, Q., et al. (2017) A platform of synthetic lethal gene interaction networks reveals that the GNAQ uveal melanoma oncogene controls the Hippo pathway through FAK. *Cancer Cell* **35**, 457–472.e5 CrossRef Medline

112. Robertson, A. G., Shih, J., Yau, C., Gibb, E. A., Oba, J., Mungall, K. I., Hess, J. M., Uzunangelov, V., Walter, V., Danilova, L., Lichtenberg, T. M., Kucherlapati, M., Kimes, P. K., Tang, M., Penson, A., et al. (2017) Integrative analysis identifies four molecular and clinical sub-sets in uveal melanoma. *Cancer Cell* **32**, 204–220.e15 CrossRef Medline

113. Malfacini, D., Patt, J., Annala, S., Harpsøe, K., Eryilmaz, F., Reher, R., Küppers, J., Sylvester, K., Teague, J., Woffendin, H., Garnett, M. J., Wagenaar, S. S., Vanderschueren, R. G., van Zandwijk, N., and Hayward, N. K. (2002) Mutations of the BRAF gene and the mechanism of GTP hydrolysis. *Science* **295**(16), 5206–5215 Crossing Medline

114. Coleman, D. E., Berghuis, A. M., Lee, E., Linder, M. E., Gilman, A. G., and Sprang, S. R. (1994) Structures of active conformations of Gαq and the mechanism of GTP hydrolysis. *Science* **265**, 1405–1412 CrossRef Medline

115. Sprang, S. R. (2016) Invited review: activation of G proteins by GTP and the mechanism of Go-catalyzed GTP hydrolysis. *Biopolymers* **105**, 449–462 CrossRef Medline

116. Sprang, S. R. (1994) Structures of active conformations of Gαq and the mechanism of GTP hydrolysis. *Science* **265**, 1405–1412 CrossRef Medline

117. Wu, D., Katz, A., Lee, C. H., and Simon, M. I. (1992) Activation of phospholipase C by α1-adrenergic receptors is mediated by the α subunits of Gαq family. *J. Biol. Chem.* **267**, 25798–25802 Medline

118. Kalinec, G., Nazarali, A. J., Hermouet, S., Xu, N., and Gutkind, J. S. (1992) Mutated α subunit of the Gα protein induces malignant transformation in NIH 3T3 cells. *Mol. Cell. Biol.* **12**, 4687–4693 CrossRef Medline

119. Traut, T. W. (1994) Physiological concentrations of purines and pyrimidines. *Mol. Cell. Biochem.* **140**, 1–22 CrossRef Medline

120. Chidiac, P., Markin, V. S., and Ross, E. M. (1999) Kinetic control of guanine nucleotide binding to soluble Goq. *Biochem. Pharmacol.* **58**, 39–48 CrossRef Medline

121. John, J., Sohmen, R., Feuerstein, J., Linke, R., Wittinghofer, A., and Goody, R. S. (1990) Kinetics of interaction of nucleotides with nucleotide-free H-ras p21. *Biochemistry* **29**, 6058–6065 CrossRef Medline

122. Ja, W. W., Wiser, O., Austin, R. J., Jan, L. Y., and Roberts, R. W. (2006) Turning G proteins on and off using peptide ligands. *ACS Chem. Biol.* **1**, 570–574 CrossRef Medline

123. Malfacini, D., Patt, J., Annala, S., Harpsøe, K., Eryilmaz, F., Reher, R., Crüse-Maier, M., Hanke, W., Zhang, H., Tietze, D., Gloriam, D. E., Bräuner-Osborne, H., Strømgaard, K., König, G. M., Inoue, A., et al. (2019) Rational design of a heterotrimeric G protein α subunit with artificial inhibitor sensitivity. *J. Biol. Chem.* **294**, 5747–5758 CrossRef Medline

124. Kasukh, M., Namasiyawam, V., Rafehi, M., Voss, J. H., Garg, J., Schlegel, J. G., Abdelrahman, A., Kehraus, K., Reher, R., Küppers, J., Sylvester, K., Hinz, S., Matthey, M., Wenzel, D., Fleischmann, B. K., et al. (2020) Cell-permeable high-affinity tracers for Gq proteins provide structural insights, reveal distinct binding kinetics and identify small molecule inhibitors. *Br. J. Pharmacol.* **177**, 1898–1916 CrossRef Medline

125. Kleuss, C., Raw, A. S., Lee, E., Sprang, S. R., and Gilman, A. G. (1994) Mechanism of GTP hydrolysis by G-protein alpha subunits. *Proc. Natl. Acad. Sci. U.S.A.* **91**, 9828–9831 CrossRef Medline

126. Coleman, D. E., Berghuis, A. M., Lee, E., Linder, M. E., Gilman, A. G., and Sprang, S. R. (1994) Structures of active conformations of Gαq and the mechanism of GTP hydrolysis. *Science* **265**, 1405–1412 CrossRef Medline