Microsatellite marker development for the tetraploid Veronica aragonensis (Plantaginaceae) using next-generation sequencing and high-resolution melting analyses

Nélida Padilla-García, Teresa Malvar-Ferreras, Josie Lambourdière, M. Montserrat Martínez-Ortega, Nathalie Machon

To cite this version:
Nélida Padilla-García, Teresa Malvar-Ferreras, Josie Lambourdière, M. Montserrat Martínez-Ortega, Nathalie Machon. Microsatellite marker development for the tetraploid Veronica aragonensis (Plantaginaceae) using next-generation sequencing and high-resolution melting analyses. Applications in Plant Sciences, 2018, 6 (5), pp.e1154. 10.1002/aps3.1154. hal-01822845

HAL Id: hal-01822845
https://hal.sorbonne-universite.fr/hal-01822845
Submitted on 25 Jun 2018

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License
Microsatellite marker development for the tetraploid Veronica aragonensis (Plantaginaceae) using next-generation sequencing and high-resolution melting analyses

Nélida Padilla-García1,2,3, Teresa Malvar-Ferreras1,2, Josie Lambourdière4, M. Montserrat Martínez-Ortega1,2, and Nathalie Machon3

PREMISE OF THE STUDY: The tetraploid Veronica aragonensis (Plantaginaceae) is a narrow endemic to the Iberian Peninsula. Specific microsatellite markers were developed to investigate genetic structure and diversity.

METHODS AND RESULTS: A total of 15 polymorphic markers were characterized on three populations of V. aragonensis, using a microsatellite-enriched library on an Ion Torrent sequencer and high-resolution melting (HRM) analyses to rapidly discard nonreliable, multicopy, and/or monomorphic loci. Allele number per locus ranged from one to five, and levels of observed heterozygosity per population varied from 0.142 ± 0.301 to 0.281 ± 0.369. Most primers also amplified in the closely related species V. rosea and in three subspecies of V. tenuifolia.

CONCLUSIONS: The species-specific microsatellite markers developed here represent an essential tool to provide genetic information on the population level for V. aragonensis. The low levels of variation detected highlight the importance of continued efforts to improve conservation of the species.

KEY WORDS: high-resolution melting (HRM) analyses; microsatellites; Plantaginaceae; polyploidy; Veronica aragonensis.
generated on an Ion Torrent Personal Genome Machine Sequencer (Life Technologies, Saint Aubin, France) using the kit NEBNext Fast DNA Fragmentation & Library Prep Set for Ion Torrent (New England Biolabs, Ipswich, Massachusetts, USA). Then, an emulsion PCR was performed to enrich the library, and sequencing was performed using 800 flows (generating ca. 100–400 bp read lengths) on an Ion 316 v2 sequencing chip (Life Technologies). Sequences were submitted to the National Center for Biotechnology Information's (NCBI) Sequence Read Archive (SRA; accession no. SRP129594). BioProject information and BioSample records are available under accession numbers PRJNA429875 and SAMN08362105, respectively. From a total of 737,951 sequences, 11,604 microsatellites were detected, and 4572 of them were in singleton sequences. Microsatellite selection and primer design were performed using QDD version 3.1 (Meglécz et al., 2014) for detecting unique microsatellite sequences, with a minimum of five repeats, a PCR product

Locus	Repeat motif	Product size (bp)	No. of dF/dT peaks	T_a range (K)	Variability
01	(AAT)_12	90	—	—	No amplification
02	(AT)_10	90	2	1.20	Potentially polymorphic
03	(AC)_9	91	1	0.40	Potentially polymorphic
04	(AGAT)_9	95	1	0.40*	Potentially polymorphic
05	(AAT)_9	97	—	—	No amplification
06	(AGAT)_9	103	—	—	No amplification
07	(AAGAC)_9	103	1	0.40	Potentially polymorphic
08	(AT)_9	105	—	—	No amplification
09	(AG)_9	105	—	—	No amplification
10	(AAT)_9	111	1–2	1.20	Potentially polymorphic
11	(AT)_10	113	1	0.40*	Potentially polymorphic
12	(AAAC)_10	114	1	0.60	Potentially polymorphic
13	(AC)_9	115	1	0.40*	Potentially polymorphic
14	(AAT)_9	126	1–2	4.00	Potentially polymorphic
15	(AC)_10	127	1	0.20*	Potentially polymorphic
16	(AT)_10	129	—	—	No amplification
17	(ATATC)_9	137	1	0.80	Potentially polymorphic
18	(ACAT)_9	138	1	0.40	Potentially polymorphic
19	(AG)_9	138	1	0.20	Monomorphic
20	(AAAT)_9	141	1	0.40	Potentially polymorphic
21	(AAAT)_6	150	2	2.00	Potentially polymorphic
22	(AAT)_10	156	1	0.00	Monomorphic
23	(AAG)_9	162	1	0.40*	Potentially polymorphic
24	(AT)_10	162	—	—	No amplification
25	(AG)_10	166	1	0.20*	Potentially polymorphic
26	(AAAAT)_10	167	1–2	0.60	Potentially polymorphic
27	(AAT)_9	180	1	0.20*	Potentially polymorphic
28	(AAAG)_9	185	1	0.20	Monomorphic
29	(AT)_10	190	1	0.40*	Potentially polymorphic
30	(AAAAC)_9	191	1	0.20	Monomorphic
31	(AC)_9	191	1	0.40	Potentially polymorphic
32	(AT)_9	195	1–2	2.80	Potentially polymorphic
33	(AAT)_9	195	—	—	No amplification
34	(AAG)_9	196	1	0.40	Potentially polymorphic
35	(AC)_9	198	1	0.40	Potentially polymorphic
36	(AT)_9	207	2	0.20*	Potentially polymorphic
37	(AAAT)_9	207	1	0.20	Monomorphic
38	(AC)_10	219	1	0.20	Monomorphic
39	(AATC)_9	225	1	0.20	Monomorphic
40	(AAC)_9	240	1	0.20	Monomorphic
41	(AC)_10	240	1	0.60	Potentially polymorphic
42	(AT)_9	253	1	0.20	Monomorphic
43	(AT)_10	260	2	0.40*	Potentially polymorphic
44	(ACT)_9	265	2	0.00	Monomorphic
45	(ACTC)_9	270	1	0.20	Monomorphic
46	(AAAG)_9	290	1	0.20	Monomorphic
47	(AT)_9	297	1	0.20	Monomorphic
48	(AAAAC)_9	340	1	0.20	Monomorphic
49	(AG)_9	340	1	0.00	Monomorphic
50	(AT)_10	369	1	0.00	Monomorphic

Note: — = no data due to failed PCR amplification; dF/dT peaks = peaks observed in the melt curve when plotting the derivative of fluorescence over temperature; K = melting temperature range; T_a = annealing temperature. *Differences observed in curve shape among samples.
size of 90–450 bp, an optimal temperature of 60°C, and 50% of GC. Primers were designed for 1727 microsatellites, of which 50 were tested for polymorphism.

High-resolution melting (HRM) analyses were used as a previous screening to rapidly identify PCR failure, monomorphism, or multiplicity of microsatellite loci (Arthofer et al., 2011). Amplification and HRM analyses were performed on a CFX96 Real-Time PCR Detection System (Bio-Rad Laboratories, Hercules, California, USA) using SsoFast EvaGreen 2× SuperMix (Bio-Rad Laboratories) with 0.4 μM simple sequence repeat (SSR)–specific primers and 2 μL of template DNA (ca. 32 ng/μL) in a 10 μL total reaction volume. Cycling conditions were 2 min initial hot start at 98°C, followed by 40 cycles of 98°C for 5 s, 60°C for 10 s, and 72°C for 20 s. Cycling was followed by 20 s holds at 95°C to ensure a homogeneous denaturation of amplicons. HRM analysis consisted of an initial 5 s hold at 65°C and ramping from 65°C to 95°C in 0.2°C steps. Each was followed by 20 s holds at 95°C to ensure a homogeneous denaturation of amplicons. HRM analysis consisted of an initial 5 s hold at 65°C and ramping from 65°C to 95°C in 0.2°C steps. Each step was held for 5 s before the fluorescence was acquired. Melting-temperature ranges and differences in curve shape among samples were analyzed as a measure of SSR size variation. Of 50 loci tested by HRM analyses, eight did not amplify in quantitative PCR and 16 were excluded as monomorphic due to the low melting temperature range observed (≤0.20 K). Although polymorphism was difficult to confirm by this methodology, it allowed us to screen for robust amplification and single-copy status of the tested loci (Table 1).

The remaining loci (26) were genotyped on 11 individuals from a single population of *V. aragonensis* and 10 individuals from 10 different populations (Appendix 1) to evaluate the intrapopulation and interpopulation polymorphism of the markers, respectively. PCR reactions contained 1.25 μL of *Taq* Pol Buffer (10×), 0.8 mM of dNTPs mix (Life Technologies, Carlsbad, California, USA), 1.5 mM of MgCl₂, 0.08 μM of each forward primer modified with an M13 tail, 0.2 μM of reverse primer, 0.2 μM of fluorescent-labeled M13 universal primer, 0.5 units *Taq* DNA Polymerase (Biotools B&M Labs S.A., Madrid, Spain), 40–50 ng of DNA template, and H₂O up to a final volume of 12.5 μL. Gradient PCRs were performed to test all primers as follows: 2 min at 94°C; 30 cycles of 1 min at 94°C, 1 min at 55.7–62.5°C, and 50 s at 72°C; followed by 10 cycles of 1 min at 94°C, 1 min at 53°C, and 50 s at 72°C; with a final extension of 15 min at 72°C. PCR products were visualized on a 2.5% agarose gel and separated on a multi-capillary sequencer ABI PRISM 3730 (Applied Biosystems, Waltham, Massachusetts, USA) using GeneScan 500 LIZ Size Standard (Applied Biosystems). Electropherograms were visualized and scored with GeneMarker version 1.8 software (SoftGenetics, State College, Pennsylvania, USA). Fifteen primer combinations (Table 2) displaying clear peak patterns and polymorphism were combined in multiplex reactions according to annealing temperature and amplicon sizes. Sequences from these loci were deposited in GenBank (Table 2).

To characterize the microsatellite loci, a total of 92 individuals from three populations representing the main distribution areas of this endemic species were used (34, 23, and 35 individuals from the Nerín, Arguís, and La Sagra populations, respectively; see Table 2). Description of 15 microsatellite loci developed in *Veronica aragonensis*.

Locus	Primer sequences (5′–3′)	Fluorescent dye	Repeat motif	Allele size range (bp)	Tm (°C)	GenBank accession no.
04	F: TCACTGTAACATCTACTCCCATC	S-FAM	(AGAT)₉	94–126	61.2	MF946655
	R: AACACAAGAGTAGGCCTGCCTG					
10	F: AGCATGACTGGTTTCCATCAC	S-FAM	(AAT)₉	115–160	55.7	MF946656
	R: CGATATCGGGTAACTCGTCTC					
11	F: CAACTGTAGAAAGAAGCTGCAAC	PET	(AAT)	124–134	61.2	MF946657
	R: CAGGAATACAGCCTGGTCCTC					
12	F: TCAARTGCCTACCATCTTCTGTCG	NED	(AAC)	105–125	61.2	MF946658
	R: CATTCAATCTGCAGTCTGGGG					
13	F: TCCATCTTGGAAAGTCATC	WC	(AC)	127–137	61.2	MF946659
	R: CATGAACAACACATTTGAGAACC					
15	F: TGATGCTAGAGTGGAGGACC	PET	(AAT)	145–157	61.2	MF946660
	R: AAAGCATAAAGAGCACTAATCCTC					
21	F: TCAGAAGTCTGTCGGCAACCT	NED	(AAAT)	169–193	61.2	MF946661
	R: CATTCTACGCTTCTTCTTAACG					
23	F: TTCTCTCCTTTCTCTGACAGCG	VIC	(AAQ)	164–206	57.2	MF946662
	R: TTTGCAACATATTTTCAAGATCCG					
25	F: TGATATTTCTTTTAAAGTACCCG	NED	(AG)	180–206	57.2	MF946663
	R: TATGCTCTGTATTGCGAAGCG					
26	F: CGGTGTCATCTGGAAATTTCCC	VIC	(AAAT)	172–187	61.2	MF946664
	R: CGTGTAAATTTGACGTTTTGTTG					
27	F: TGCTGATGGTCGTAATTCGAC	S-FAM	(AAT)	167–225	61.2	MF946665
	R: AATCTGCGTATTGTTCTTG					
29	F: CAGATGACCTTGGACAGGGATC	PET	(AT)	205–225	61.2	MF946666
	R: TCTACTGCTTCTCTCTCTGCGC					
36	F: ACACTGCACTTTGAGAATTACCATC	AT	(AC)	226–240	61.2	MF946667
	R: ATGATGGGCTTATGAGTGGT					
53	F: GCTAAATACGACACACACACAGAGATG	NED	(AT)	104–122	55.7	MF946668
	R: TGATGCTGCTTTAATCCACC					
56	F: AAAGCTTAACTTTGAGTGGTG	VIC	(AAAG)	128–148	61.2	MF946669
	R: CCAAAGCTTTATTTCATCTAAT					

Note: Tm = annealing temperature.
TABLE 3. Genetic characterization of 10 polymorphic microsatellites in three populations of Veronica aragonensis.a

Locus	Nerín (N = 34)	Arguis (N = 23)	La Sagra (N = 35)									
	\(H_o \)	\(H_e \)	\(H_{e-d} \)	\(H_o \)	\(H_e \)	\(H_{e-d} \)	\(H_o \)	\(H_e \)	\(H_{e-d} \)			
04	2	0.273	0.383	0.379	3	0.000	0.372	0.372	2	0.000	0.115	0.115
10	2	0.364	0.504	0.504	3	0.200	0.556	0.567	5	0.206	0.418	0.460
13	4	0.281	0.522	0.520	2	1.000	0.512	0.512	3	0.970	0.583	0.507
15	1	0.000	0.000	0.000	1	0.000	0.000	0.000	2	0.029	0.015	0.015
21	1	0.000	0.000	0.000	2	0.130	0.506	0.506	1	0.000	0.000	0.000
23	4	0.118	0.120	0.120	3	0.318	0.448	0.470	1	0.000	0.000	0.000
25	2	0.125	0.065	0.064	4	0.077	0.641	0.643	3	0.030	0.075	0.075
26	2	0.265	0.490	0.489	2	0.000	0.290	0.290	1	0.000	0.000	0.000
36	2	0.938	0.500	0.498	3	0.905	0.585	0.551	2	0.182	0.096	0.094
56	2	0.091	0.211	0.210	2	0.182	0.486	0.486	2	0.000	0.059	0.059

Total 22 0.246 ± 0.273 0.280 ± 0.222 0.278 ± 0.222 25 0.281 ± 0.369 0.440 ± 0.185 0.440 ± 0.183 22 0.142 ± 0.301 0.136 ± 0.200 0.133 ± 0.190

Note: \(N \) = number of individuals sampled; \(H_o \) = observed heterozygosity; \(H_e \) = expected heterozygosity corrected by allele dosage; \(H_{e-d} \) = expected heterozygosity; \(e-d \) = expected heterozygosity corrected by allele dosage; \(e-d \) = observed heterozygosity; \(N \) = number of individuals sampled.

TABLE 4. Cross-amplification tests of 15 microsatellite loci developed in Veronica aragonensis across four additional taxa.a

Locus	V. rosea (N = 6)	V. tenuifolia subsp. fontqueri (N = 6)	V. tenuifolia subsp. javalambrensis (N = 6)	V. tenuifolia subsp. tenuifolia (N = 6)
04	+	+	+	+
10	+	+	+	+
11	+	+	+	+
12	+	+	+	+
13	—	—	*	+
15	≡	≡	≡	≡
21	—	+	+	+
23	≡	≡	—	≡
25	—	—	—	—
26	*	*	*	*
27	+	+	+	+
29	—	—	*	+
36	≡	≡	—	—
53	—	—	—	—
56	—	—	—	—

Note: + = successful amplification; ≡ = several bands; * = weak amplification; — = no amplification; \(N \) = number of individuals tested.

CONCLUSIONS

A new set of nuclear microsatellite loci has been developed for the tetraploid endemic species V. aragonensis. These markers will be useful for assessing genetic diversity and structure, as well as levels of gene flow within and among populations of this endangered endemic species. The amplification of some of these loci was successful for other closely related taxa (i.e., V. rosea, V. tenuifolia subsp. fontqueri, V. tenuifolia subsp. javalambrensis, and V. tenuifolia subsp. tenuifolia). Therefore, they will be suitable to provide genetic information on these additional North African and Iberian endemics.

ACKNOWLEDGMENTS

The authors thank all colleagues from the Service de Systématique Moléculaire team (CNRS-MNHN) for technical support in NGS and HRM analyses: R. Debruyne, D. Gey, C. Bonillo, and B. Gangloff. We are grateful to J. Abdelkrim for assistance with primer design and analyses, and for his continuous support. This work was funded in part by the Spanish Ministerio de Economía y Competitividad (CGL2009-07555 and CGL2012-32574), the MNHN, and the Universidad de Salamanca (Ph.D. grant to N.P. G. cofounded by Banco Santander).

LITERATURE CITED

Alcántara de la Fuente, M., D. Goñi, D. Guzmán, and J. Puente. 2007. Catálogo de especies amenazadas en Aragón: Flora. Gobierno de Aragón, Departamento de Medio Ambiente, Huesca, Spain.

Arthofer, W., F. M. Steiner, and B. C. Schlick-Steiner. 2011. Rapid and cost-effective screening of newly identified microsatellite loci by high-resolution melting analysis. Molecular Genetics and Genomics 286: 225–233.

Barbá, T., C. Palma-Silva, G. M. Paggi, F. Bered, M. F. Fay, and C. Lexer. 2007. Cross-species transfer of nuclear microsatellite markers: Potential and limitations. Molecular Ecology 16: 3759–3767.
APPENDIX 1. Geographic location and voucher information for the *Veronica* samples used in this study.

Species	Collector no.	N	Locality	Collection date	Latitude	Longitude	Altitude (m)	Voucher code
V. aragonensis Stroh	NPG18	34	Spain. Pyrenees. Huesca, Nerín, La Estiba mountain	25/07/2015	42°35′57″N 0°00′30″W	1728	SALA 154410	
V. aragonensis	NPG12	1	Spain. Pyrenees. Huesca, betw. Chía and Plan, Sahún mountain pass	08/07/2014	42°33′14″40″N	1722	SALA 154268	
V. aragonensis	NPG13	1	Spain. Pyrenees. Huesca, Bisaurri, Gabás mountain	09/09/2014	42°27′45″00″N	1830	SALA 154272	
V. aragonensis	NPG15	1	Spain. Pyrenees. Huesca, Seira, Barbarrunz. Cociella massif	10/08/2014	42°30′44″08″N	1806	SALA 154362	
V. aragonensis	NPG22	1	Spain. Pyrenees. Huesca, Yésero, Del Puerto cliff, Tendehera mountains	14/07/2014	42°40′12″10″N	1971	SALA 155054	
V. aragonensis	NPG67	1	Spain. Pyrenees. Huesca, Laspuña, Ceresa mountain pass to the Peña Montañesa	27/07/2015	42°29′25″00″N	1713	SALA 121537	
V. aragonensis	NPG68	1	Spain. Pyrenees. Huesca, Vilas del Turbón, Turbón mountain	29/07/2015	42°24′14″30″N	1527	SALA 121536	
V. aragonensis	NPG24	2	Spain. Pre-Pyrenees. Huesca, Nocito, Tozal de Guara mountain	03/08/2015	42°17′13″80″N	1980	SALA 121538	
V. aragonensis	NPG25	1	Spain. Pre-Pyrenees. Huesca, betw. Arguis & Bentué de Ralas	04/08/2015	42°19′54″10″N	1075	SALA 121540	
V. aragonensis	MO2047	23	Spain. Pre-Pyrenees. Huesca, betw. Arguis & Bentué de Ralas	17/07/2007	42°19′59″90″N	1075	SALA 121540	
V. aragonensis	NPG28	35	Spain. Granada, Puebla de Don Facduque, La Sagra mountain	31/07/2015	37°57′12″70″N	2285	SALA 93529	
V. rosea Desf.	DP783	1	Morocco. Ifran. Azrou, near Djebel Hebri	07/07/2010	33°21′10″60″N	1927	SALA 149323	
V. rosea	NLG88	1	Morocco. Taroudant. Souss-Massa-Drâa, Jebel Siroua	21/07/2013	30°46′38″40″N	2611	SALA 155071	
V. rosea	VL173	1	Morocco. Tinghir. Souss-Massa-Drâa, Ighl Mgoun	20/07/2013	31°32′11″70″N	3031	SALA 155074	
V. rosea	MO5502	1	Algeria. Tlemcen. Ktcherbe	15/06/2010	34°34′30″20″N	1517	SALA 149324	
V. rosea	MO5510	1	Algeria. Batna, Djebel Ichali summit	19/06/2010	35°28′18″90″N	1745	SALA 149338	
V. rosea	MO5518	1	Algeria. Tizi Ouzou. Djurjura Natural Park, Tizi n-Kouial	20/06/2010	36°28′36″10″N	1607	SALA 149325	
V. tenuifolia Asso subsp. fontqueri (Pau) M. M. Mart. Ort. & E. Rico	MO886	1	Spain. Granada, betw. Calar de Sta. Bárbara & Relumbre cliff, Sierra de Baza	08/06/2000	37°22′44″50″N	1900	SALA 95042	
V. tenuifolia subsp. fontqueri	MO1905	1	Spain. Málaga, Ronda, Sierra de las Nieves	05/06/2006	36°41′41″30″N	1733	MGC 46659	
V. tenuifolia subsp. fontqueri	MO1512	1	Spain. Málaga, Ronda, Sierra de las Nieves	23/05/2002	37°41′00″00″N	1730	MGC 46659	

(continues)
Species	Collector no.\(^ab\)	\(N\)	Locality	Collection date\(^c\)	Latitude	Longitude	Altitude (m)	Voucher code\(^d\)	Voucher coded \(^e\)
V. tenuifolia subsp. *fontqueri*	MO1518*	1	Spain. Almería, Abla, Sierra de Baza	24/05/2002	37°22′09″N	2°50′18″W	2167		No voucher*
V. tenuifolia subsp. *fontqueri*	MO1519\(^a\)	1	Spain. Almería, Dalias, Sierra de Gádor	25/05/2002	36°51′54.60″N	2°47′53.00″W	1900	SALA 120855	
V. tenuifolia subsp. *fontqueri*	MO1520\(^a\)	1	Spain. Almería, Dalias, Sierra de Gádor	25/05/2002	36°52′27.00″N	2°47′12.60″W	1900	SALA 120855	
V. tenuifolia subsp. *javalambrensis* (Pau) Molero & J. Pujadas	BR222\(^a\)	2	Spain. Salamanca, La Mata de la Armuña	20/06/2012	41°02′16.20″N	5°40′36.50″W	789	SALA 149328	
V. tenuifolia subsp. *javalambrensis*	DP1322\(^a\)	2	Spain. Soria, Villaciervos, El Santo	08/06/2013	41°46′08.10″N	2°38′54.60″W	1228	SALA 150477	
V. tenuifolia subsp. *javalambrensis*	NLG05\(^a\)	2	Spain. Guadalajara, Atienza, Ermita de Sta. Lucía	27/05/2013	41°11′23.16″N	2°52′43.02″W	1120	SALA 155105	
V. tenuifolia subsp. *tenuifolia*	BR237\(^a\)	1	Spain. Barcelona, Collsuspina, Sta. Coloma de Castellterçol	14/06/2013	41°49′24.00″N	2°10′36.24″E	905	SALA 155065	
V. tenuifolia subsp. *tenuifolia*	BR241\(^a\)	1	Spain. Huesca, Arro, S. Vitorián's monastery	17/06/2013	42°24′36.84″N	0°13′20.34″E	605	SALA 155117	
V. tenuifolia subsp. *tenuifolia*	MO6059\(^a\)	1	Spain. Teruel, betw. Bordón & Calanda	10/06/2013	40°41′36.60″N	0°19′9.50″W	769	SALA 155099	
V. tenuifolia subsp. *tenuifolia*	MO6068\(^a\)	1	Spain. Barcelona, betw. Su & Fontelles	16/06/2013	41°53′17.88″N	1°34′42.42″E	713	SALA 155121	
V. tenuifolia subsp. *tenuifolia*	NLG09\(^a\)	1	Spain. Barcelona, Montserrat	13/06/2013	41°36′37.00″N	1°46′13.10″E	746	SALA 155098	
V. tenuifolia subsp. *tenuifolia*	NLG16\(^a\)	1	Spain. Barcelona, Sta. Cecilia de Voltregà, ermita de Sta. Perpetua	15/06/2013	41°59′54.90″N	2°12′9.90″E	663	SALA 155125	

Note: \(N\) = number of individuals.

\(^a\)Samples were used as follows: 1 = individual used for genomic library; 2 = individuals used for pre-screening analyses and genotyping tests; 3 = individuals used for characterization of microsatellites; 4 = individuals used for cross-amplification tests.

\(^b\)BR = Blanca M. Rojas-Andrés, collector; DP = Daniel Pinto-Carraico, collector; MO = M. Montserrat Martínez-Ortega, collector; NLG = Noemí López-González, collector; NPG = Nélida Padilla-García, collector; VL = Víctor Lucía, collector.

\(^c\)Date format is day/month/year.

\(^d\)Vouchers deposited at the Universidad de Salamanca herbarium (SALA) and Universidad de Málaga herbarium (MGC).

\(^e\)No voucher is available from this population due to its conservation status (Critically Endangered).