ALGEBRAIC THEORIES OF BRACKETS AND RELATED (CO)HOMOLOGIES

I. Krasil’shchik

Abstract A general theory of the Frölicher–Nijenhuis and Schouten–Nijenhuis brackets in the category of modules over a commutative algebra is described. Some related structures and (co)homology invariants are discussed, as well as applications to geometry.

Keywords Frölicher–Nijenhuis bracket · Schouten–Nijenhuis bracket · Poisson structures · Integrability · Nonlinear differential equations · Hamiltonian formalism · Algebraic approach

PACS 02.10.Hh · 02.30.Jr · 02.30.Ik

Mathematics Subject Classification (2000) 58J10 · 58H15 · 37K10

1 Introduction

Bracket structures play an important role in classical differential geometry (see, for example, Refs. [3,4,19,20,21,22,23]), Poisson geometry (e.g., [17]), and the theory of integrable systems (Refs. [5,6,9]). Being initially of a geometrical nature, these brackets found exact counterparts in abstract algebra, in the framework of Vinogradov’s theory of algebraic differential operators, [25] (see also book [15]). It became clear that many geometrical constructions (such as the ones we meet in Hamiltonian mechanics or in partial differential equations; cf. with Refs. [27] and [7], respectively) may be more or less exactly expressed using the language of commutative algebra.

In this paper, I collected together my old results on the algebraic theory of the Frölicher–Nijenhuis and Schouten–Nijenhuis brackets and related homological and cohomological theories (for shortness, I call these brackets Nijenhuis and Schouten ones). These results were initially published in papers [7,8,9,13]. The results exposed below are easily generalized to the case of super-commutative algebras (see [10]) and, being slightly modified, can be incorporated in Lychagin’s “colored calculus” (see Ref. [16]).

This work was supported in part by the NWO–RFBR grant 047.017.015, RFBR–Consortium E.I.N.S.T.E.I.N. grant 06-01-92060 and RFBR–CNRS grant 08-07-92496.

Iosif Krasil’shchik
Independent University of Moscow, B. Vlasevsky 11, 119002 Moscow, Russia
E-mail: josephk@diffiety.ac.ru
To simplify exposition, I shall always assume that the algebra A is such that the module $A^1(A)$ (see Sec. 3.2) of 1-forms is projective and of finite type.

2 A general scheme

This scheme was first presented in Ref. [26]. Let k be a field, $\text{char} k \neq 2$. Let also $P = \sum_{k \in \mathbb{Z}} P_k$, $Q = \sum_{k \in \mathbb{Z}} Q_k$ be graded vector spaces and Q be endowed with a differential $d : Q_k \to Q_{k+1}$, $d^2 = 0$.

Assume that there exists a graded monomorphism

$$\varphi : P \to \text{Hom}_k^\varphi(Q, Q), \quad \varphi(P_\alpha) \subset \text{Hom}_k^{\alpha+\beta}(Q, Q), \quad \beta = \text{gr} \varphi,$$

and define the “Lie derivative”

$$L^\varphi_p = [d, \varphi(p)], \quad p \in P.$$

Here and everywhere below $[\cdot, \cdot]$ denotes the graded commutator. If we are lucky then for two elements $p \in P_\alpha, p' \in P_{\alpha'}$ we can define their φ-bracket by

$$L^\varphi_{[p, p']} = [L^\varphi_p, L^\varphi_{p'}], \quad [p, p'] \in P_{\alpha + \alpha' + \beta + 1}.$$

In some interesting cases we are lucky indeed.

3 Algebraic calculus

Let us introduce the basic notions of the calculus over commutative algebras that will be needed below (see Refs. [12, 15, 25] for details).

3.1 Differential operators

Consider a unitary commutative associative k-algebra A and A-modules P and Q.

Definition 1 A k-linear map $\Delta : P \to Q$ is a differential operator (DO) of order $\leq k$ if

$$[a_0, [a_1, \ldots, [a_k, \Delta], \ldots]] = 0$$

for all $a_0, \ldots, a_k \in A$.

The set of all DOs $P \to Q$ forms an A-bimodule denoted by $\text{Diff}_A(P, Q)$. An operator $X : A \to P$ is called a P-valued derivation if

$$X(ab) = aX(b) + bX(a), \quad a, b \in A.$$

The module of these derivations is denoted by $D_1(P)$. Define by induction the modules

$$D_i(P) = \{ X \in D_1(D_{i-1}(P)) \mid X(a, b) + X(b, a) = 0 \}, \quad i \geq 2,$$

and set formally $D_0(P) = P$. Elements of $D_1(P)$ are called multiderivations.

Remark 1 Let M be a smooth manifold and $A = C^\infty(M)$. Let also π and ξ be vector bundles over M and $P = \Gamma(\pi)$, $Q = \Gamma(\xi)$ be the modules of their smooth sections. Then Definition 1 gives the classical notion of a linear differential operator.
3.2 Differential forms

Proposition 1 The correspondence $P \Rightarrow D_i(P)$ is a representable functor from the category of A-modules to itself. The corresponding representative object is denoted by $\Lambda^i = \Lambda^i(A)$ and called the module of differential i-forms of the algebra A. In particular, there exists a natural derivation $d: A \rightarrow \Lambda^1$ such that any derivation $X \in D_1(P)$ uniquely decomposes as $X = \psi_X \circ d$, where $\psi_X \in \text{Hom}_A(\Lambda^1, P)$. The module Λ^1 is generated by the elements of the form da, $a \in A$, while Λ^i are exterior powers of Λ^1. This leads to the complex

\[0 \rightarrow A \xrightarrow{d} \Lambda^1 \rightarrow \cdots \rightarrow \Lambda^i \xrightarrow{d} \Lambda^{i+1} \rightarrow \cdots\]

called the de Rham complex of A.

3.3 Exterior products

Due to the above formulated proposition, the module $\Lambda^* = \sum_i \Lambda^i$ is a Grassmannian algebra with the exterior, or wedge product

$\wedge: \Lambda^i \otimes_A \Lambda^j \rightarrow \Lambda^{i+j}$.

A similar operation

$\wedge: D_i(A) \otimes_A D_j(P) \rightarrow D_{i+j}(P)$

is introduced by induction in $D_*(P) = \sum_i D_i(P)$. Namely, for $i + j = 0$ we set

$a \wedge p = ap$, \quad $a \in D_0(A) = A, \quad p \in D_0(P) = P$,

and

$(X \wedge Y)(a) = X \wedge Y(a) + (-1)^j X(a) \wedge Y, \quad i + j > 0, \quad i > 0$,

$X \in D_i(A), Y \in D_j(P)$. In this way, $D_*(A)$ becomes a Grassmannian algebra, $D_*(P)$ being a module over $D_*(A)$.

3.4 Inner product

The inner product

$i: D_i(P) \otimes_A \Lambda^j \rightarrow \begin{cases} P \otimes_A \Lambda^{i-j}, & j \geq i, \\ D_{i-j}(P), & j \leq i, \end{cases}$

is defined by induction. If $i = 0$ we set

$i(p \otimes \omega) = p \otimes \omega$, \quad $p \in P = D_0(P), \quad \omega \in \Lambda^j$,

and for $j = 0$ we set

$i(X \otimes a) = aX$, \quad $a \in A = \Lambda^0, \quad X \in D_i(P)$.

If $i, j > 0$ we set

$i(X \otimes da \wedge \omega) = i(X(\omega) \otimes \omega)$.

We shall use the notation

\[i_X \omega = \begin{cases} i(X \otimes \omega), & i \geq j, \\ 0, & i < j \end{cases}, \quad i_\omega X = \begin{cases} i(X \otimes \omega), & i \leq j, \\ 0, & i > j. \end{cases}\]
Remark 2 When $P = \Lambda^k$ and $j \geq i$, the inner product may be completed to the following operation

$$D_i(\Lambda^k) \otimes_A \Lambda^j \rightarrow \Lambda^k \otimes_A \Lambda^{j-i} \rightarrow \Lambda^{k+j-i}$$

which will be also called the inner product.

Remark 3 Let $X \in D_i(P)$ and $\omega \in \Lambda^j$. Then the maps

$$i_X : \Lambda^* \rightarrow P \otimes_A \Lambda^*$$

and

$$i_\omega : D_\ast(P) \rightarrow D_\ast(P)$$

are super-differential operators of order i and j, respectfully.

4 The Schouten bracket

We define here the Schouten bracket, describe its properties and related (co)homologies. Some applications are also discussed.

4.1 Definition and existence

Let $X \in D_i(A)$. Consider the Lie derivative

$$L_X = d \circ i_X - (-1)^i i_X \circ d = [d, i_X] : \Lambda^i \rightarrow \Lambda^{i-i}.$$

Theorem 1 For any two elements $X \in D_i(A)$ and $X' \in D_{i'}(A)$ there exists a uniquely defined element $[[X, X']]^* \in D_{i+i'-1}(A)$ such that

$$[L_X, L_{X'}] = L_{[[X, X']]^*}.$$

This element is called the Schouten bracket of X and X'.

Proof We establish existence of $[[X, X']]^*$ by induction. For $i' = 0$ we set

$$[[X, a]]^* = X(a), \quad a \in A = D_0(A),$$

and similarly for $i = 0$

$$[[a, X']]^* = (-1)^i X'(a).$$

If $i, i' > 0$ we set

$$[[X, X']]^*(a) = [[X, X'(a)]]^* + (-1)^{i'} [[X(a), X']]^*.$$

It is easily checked that thus defined bracket enjoys the needed property.
4.2 Properties

Proposition 2 Let $X, X', X'' \in D_*(A)$ be multiderivations of degree i, i' and i'' respectively. Then:

1. $[X, X']^s + (-1)^{(i-1)(i'-1)} [X', X]^s = 0.$
2. $[X, [X', X'']^s] = [[X, X']^s, X'']^s + (-1)^{(i-1)(i'-1)} [X', [X, X'']^s],$
3. $[X, X' \wedge X''] = [X, X']^s \wedge X'' + (-1)^{(i-1)(i'-1)} X' \wedge [X, X'']^s,$
4. $[X, X''] = [X, X'],$ if $i = i' = 1,$
5. $i_{[X, X']^s} = [L X, i_{X'}].$

5 Poisson structures

To any bivector $\mathcal{P} \in D_2(A),$ one can put into correspondence a skew-symmetric bracket $\{a, b\}_\mathcal{P} = \mathcal{P}(a, b), a, b \in A.$

Proposition 3 The following statements are equivalent:

1. $\{a, b\}_\mathcal{P}$ satisfies the Jacobi identity;
2. $[\mathcal{P}, \mathcal{P}]^s = 0;$
3. $\partial_{\mathcal{P}} \circ \partial_{\mathcal{P}} = 0,$ where $\partial_{\mathcal{P}} = [[\mathcal{P}, \cdot]]^s.$

Definition 2 If one of the previous conditions fulfills then:

1. \mathcal{P} is called a Poisson structure and a pair (A, \mathcal{P}) is a Poisson algebra.
2. $\{\cdot, \cdot\}_\mathcal{P}$ is the Poisson bracket associated with $\mathcal{P}.$
3. $\mathcal{P}(a) \in D_1(A)$ are Hamiltonian derivations.
4. Derivations X satisfying $X \{a, b\}_\mathcal{P} = \{X a, b\}_\mathcal{P} + \{a, X b\}_\mathcal{P}$ are canonical derivations.

5.1 Example: algebraic T^* (see Ref. [27])

Let $\text{Diff}_k(A) = \bigcup_{k \geq 0} \text{Diff}_k(A)$ denote the algebra of all DOs $A \rightarrow A.$ For any $\Delta \in \text{Diff}_k(A)$ the coset $[\Delta]_k = \Delta \mod \text{Diff}_{k-1}(A)$ is called its symbol.

If $s_1 = [\Delta_1]_{k_1}, s_2 = [\Delta_2]_{k_2}$ are two symbols we define their product by

$$s_1 \cdot s_2 = [\Delta_1 \circ \Delta_2]_{k_1 + k_2}$$

and their bracket by

$$\{s_1, s_2\} = [\Delta_1 \circ \Delta_2 - \Delta_2 \circ \Delta_1]_{k_1 + k_2 - 1}.$$

In such a way we obtain the algebra of symbols

$$S_*(A) = \sum_k \frac{\text{Diff}_k(A)}{\text{Diff}_{k-1}(A)}.$$

Proposition 4 The above introduced algebra of symbols $S_*(A)$ is a graded commutative algebra with a graded Poisson bracket $\{\cdot, \cdot\}.$ In the case $A = C^\infty(M)$ it coincides with the algebra of smooth functions on T^*M polynomial along the fibers, while the bracket is the one defined by the canonical symplectic form $\Omega = dp \wedge dq.$
Remark 4 The parallel between geometrical constructions and the corresponding algebraic modules is even deeper, though perhaps not so straightforward. As an example, let us describe how the canonical form $\rho = pdq$ is defined within the model under consideration (other illustrations can be found, e.g., in Refs. [11][14]).

Note first that exactly in the same way as it was done above one can define symbols of arbitrary operators $A \in \text{Diff}_r(P, Q)$. Moreover, under the assumption of Sec. 1, one has the isomorphism
\[S_\omega(P, Q) = S_\omega(A) \otimes A \text{Hom}_A(P, Q). \] (1)

Now, to define a 1-form, one needs to evaluate all derivations on this form. Let $X : S_\omega(A) \rightarrow R$ be such a derivation, R being an $S_\omega(A)$-module. Since $A = S_0(A) \subset S_\omega(A)$, one can consider the restriction $X = X|_A : A \rightarrow R$. Due to Eq. (1), one has
\[[X] \in S_\omega(A, R) = S_\omega(A) \otimes_A R, \]
and we set
\[i_X \rho = \mu_S(X), \]
where $\mu_S : S_\omega(A) \otimes_A R \rightarrow R$ is the multiplication. Consequently, we can define the form $\Omega = d\rho$, but for general algebras it may be degenerate, contrary to the geometric case.

Remark 5 It may be also appropriate to discuss another parallel here. Namely, in geometry, 1-forms are identified with sections of the cotangent bundle. In algebra, the notion of section is generated by arbitrary operators $s \in \Delta$. Therefore, any element $s \in S_\omega(A)$ is of the form $s = \sum [X_{a_1}] \cdots [X_{a_k}]$, where X_{a} are derivations. Then we set
\[\varphi_\omega(s) = \sum i_{X_{a_1}}(\omega) \cdots i_{X_{a_k}}(\omega). \]
Conversely, let $\varphi : S_\omega(A) \rightarrow A$ be a homomorphism. To define the corresponding 1-form ω_φ, we need to evaluate an arbitrary derivation $X : A \rightarrow P$ at it, where P is an A-module. But
\[[X] \in S_\omega(A, P) = S_\omega(A) \otimes_A P, \]
and we set
\[i_X(\omega_\varphi) = \mu_A(\varphi \otimes \text{id}_P([X])), \]
where $\mu_A : A \otimes_k P \rightarrow P$ is the multiplication.

5.2 Poisson cohomologies

Let (A, \mathcal{P}) be a Poisson algebra. The sequence
\[0 \rightarrow A \xrightarrow{\partial_\rho} D_1(A) \xrightarrow{\partial_\rho} \cdots \xrightarrow{\partial_\rho} D_i(P) \xrightarrow{\partial_\rho} D_{i+1}(P) \xrightarrow{\partial_\rho} \cdots, \]
where $\partial_\rho = [\mathcal{P}, \cdot]$; is the Poisson complex of A and its cohomologies $H^i(A, \mathcal{P})$ are the Poisson cohomologies.

Proposition 5 1. $H^0(A; \mathcal{P})$ consists of Casimirs of \mathcal{P} and coincides with the Poisson center of A.

2. $H^1(A; \mathcal{P}) = \text{Can}(\mathcal{P})/\text{Ham}(\mathcal{P})$, where $\text{Can}(\mathcal{P})$ is the space of canonical derivations and $\text{Ham}(\mathcal{P})$ consists of the Hamiltonian ones.

3. $H^2(A; \mathcal{P})$ coincides with the set of classes of nontrivial infinitesimal deformations of the Poisson structure \mathcal{P}.

4. $H^3(A; \mathcal{P})$ contains obstructions to prolongation of infinitesimal deformations up to formal ones.

5.3 Poisson homologies (see Ref. [2])

Take a Poisson algebra (A, \mathcal{P}) and consider the operator

$$d_{\mathcal{P}} = L_{\mathcal{P}} = [d, i_{\mathcal{P}}] : \Lambda^j \rightarrow \Lambda^{j-1}.$$

By definition of the Poisson structure, one has

$$2d_{\mathcal{P}} \circ d_{\mathcal{P}} = [d_{\mathcal{P}}, d_{\mathcal{P}}] = [L_{\mathcal{P}}, L_{\mathcal{P}}] = L_{[\mathcal{P}, \mathcal{P}]} = 0$$

and one gets the complex

$$\cdots \rightarrow \Lambda^j \xrightarrow{d_{\mathcal{P}}} \Lambda^{j-1} \rightarrow \cdots \rightarrow \Lambda^1 \xrightarrow{d_{\mathcal{P}}} A \rightarrow 0,$$

whose homologies $H_j(A, \mathcal{P})$ are called the Poisson homologies of (A, \mathcal{P}). The action of $d_{\mathcal{P}}$ is fully defined by the following two properties:

$$d_{\mathcal{P}}(\omega \wedge \omega') = (d_{\mathcal{P}}\omega) \wedge \omega' + (-1)^j \omega \wedge d_{\mathcal{P}}\omega'$$

and

$$d_{\mathcal{P}}(ab) = \{a, b\}_{\mathcal{P}}, \quad a, b \in A.$$

5.4 Hamiltonian filtrations

Let $\mathcal{H}^1 \subset D_0(A)$ be the ideal generated by Hamiltonian derivations. Let

$$\mathcal{H}^p = \underbrace{\mathcal{H}^1 \wedge \cdots \wedge \mathcal{H}^1}_{p \text{ times}}$$

be its powers. Then

$$D_*(A) = \mathcal{H}^0 \supset \mathcal{H}^1 \supset \cdots \supset \mathcal{H}^p \supset \mathcal{H}^{p+1} \supset \cdots$$

is a filtration that generates a spectral sequence for Poisson cohomologies. In a dual way, the filtration

$$0 \subset \mathcal{H}_1 \subset \cdots \subset \mathcal{H}_p \subset \mathcal{H}_{p+1} \subset \cdots$$

where

$$\mathcal{H}_p = \{ \omega \in \Lambda^* | i_{X_1} \cdots (i_{X_p}(\omega)) \cdots = 0 \ \forall X_i \in \text{Ham}(\mathcal{P}) \}$$

gives rise to a spectral sequence for Poisson homologies.
6 Extended Poisson bracket

The Poisson bracket defined by a Poissonian bi-vector \mathcal{P} can be extended to a super-bracket on the Grassmannian algebra $\Lambda^*(A)$.

Consider the differential $\partial_{\mathcal{P}} : D_i(A) \to D_{i+1}(A)$ and a form $\omega \in \Lambda^j$. Then we have the map

$$L_{\omega}^{\mathcal{P}} = [\partial_{\mathcal{P}}, i_\omega] : D_i(A) \to D_{i-j+1}(A).$$

Proposition 6 For any two forms $\omega \in \Lambda^j$, $\omega' \in \Lambda^j$ the equality

$$i_{(\omega, \omega')}^{\mathcal{P}} = [L_{\omega}^{\mathcal{P}}, i_{\omega'}]$$

uniquely determines a form $\{\omega, \omega'\}^{\mathcal{P}} \in \Lambda^{j+i-1}$, which is called their Poisson bracket.

Proposition 7 The Poisson bracket of forms enjoys the following properties:

1. $\{ab\}^{\mathcal{P}} = -\{b,a\}^{\mathcal{P}}$.
2. $\{da, db\}^{\mathcal{P}} = d\{a, b\}^{\mathcal{P}}$.
3. $\{\omega, \omega' \wedge \omega''\}^{\mathcal{P}} = \{\omega, \omega'\}^{\mathcal{P}} \wedge \omega'' + (-1)^{(j-1)f} \omega' \wedge \{\omega, \omega''\}^{\mathcal{P}}$.
4. $\{\omega, \{\omega', \omega''\}^{\mathcal{P}}\}^{\mathcal{P}} = \{\{\omega, \omega'\}^{\mathcal{P}}, \omega''\}^{\mathcal{P}} + (-1)^{(j-1)(f-1)} \{\omega', \{\omega, \omega''\}^{\mathcal{P}}\}^{\mathcal{P}}$.
5. $\{\omega, \omega'\}^{\mathcal{P}} = -(-1)^{(j-1)(f-1)} \{\omega', \omega\}^{\mathcal{P}}$.
6. $L_{\{\omega, \omega'\}^{\mathcal{P}}} = [L_{\omega}, L_{\omega'}]^{\mathcal{P}}$.

Note that the first three properties may be taken for the constructive definition of the extended bracket.

7 Commuting structures

Two Poisson structures \mathcal{P} and \mathcal{P}' commute, or are compatible if $\|\mathcal{P}, \mathcal{P}'\|^s = 0$. This is equivalent to

$$\partial_{\mathcal{P}} \circ \partial_{\mathcal{P}'} = 0$$

or to the fact that $\mu \mathcal{P} + \mu' \mathcal{P}'$ (the Poisson pencil) is a Poisson structure for all μ, $\mu' \in \mathbb{k}$.

The Magri scheme (see Ref [13]) that establishes existence of infinite series of commuting conservation laws for bi-Hamiltonian systems has an exact algebraic counterpart:

Theorem 2 Let A be an algebra with two commuting Poisson structures \mathcal{P} and \mathcal{P}' and assume that $H^1(A; \mathcal{P}') = 0$. Assume also that two elements $a_1, a_2 \in A$ are given, such that $\partial_{\mathcal{P}}(a_1) = \partial_{\mathcal{P}'}(a_2)$. Then:

1. There exist elements $a_3, \ldots, a_{l} \in A$ satisfying

$$\partial_{\mathcal{P}}(a_i) = \partial_{\mathcal{P}'}(a_{i+1}).$$

2. All elements a_1, \ldots, a_{l} are in involution with respect to both Poisson structures, i.e.,

$$\{a_{\alpha}, a_{\beta}\}^{\mathcal{P}} = \{a_{\alpha}, a_{\beta}\}^{\mathcal{P}'} = 0$$

for all $\alpha, \beta \geq 1$.

8 The Nijenhuis bracket

Consider a form-valued derivation $\Omega \in D_1(A^k)$ and the Lie derivative

$$L_{\Omega} = [d, i_{\Omega}]: A^j \to A^{k+j},$$

where i_{Ω} is defined by the composition

$$D_1(A^k) \otimes_A A^j \xrightarrow{i} A^k \otimes_A A^j \to A^{k+j}.$$

Proposition 8 The above Lie derivative possesses the following properties:

1. $L_{\Omega}(\omega \wedge \omega') = L_{\Omega}(\omega) \wedge \omega' + (-1)^{kj} \omega \wedge L_{\Omega}(\omega'),$
2. $[L_{\Omega}, d] = 0,$
3. $L_{\omega \wedge \Omega} = \omega \wedge L_{\Omega} + (-1)^{kj} d\omega \wedge i_{\Omega}.$

Here $\omega \in A^j$, $\omega' \in A^{j'}, \Omega \in D_1(A^k).$

Other basic properties of the Nijenhuis bracket are presented in the following

Proposition 9 Let $\Omega \in D_1(A^j)$, $\Omega' \in D_1(A^{j'})$, $\Omega'' \in D_1(A^{j''})$, and $\omega \in A^j$. Then:

1. $[[\Omega, \Omega'', \omega]]^n = (-1)^{jj'}[\Omega', \omega]' = 0,$
2. $[[\Omega, [\Omega', \omega]]^n] = [[[\Omega, [\Omega', \omega]]^n, [\Omega'', \omega]]^n] = 0,$
3. $[[\Omega, \omega \wedge [\Omega', \omega]']^n = L_{\Omega}(\omega) \wedge [\Omega', \omega]' - (-1)^{jj'} \omega \wedge \omega' \wedge i_{\Omega} = (-1)^{jj'} \omega \wedge L_{\Omega}(\omega') + (-1)^{jj'} [\Omega', \omega'] \wedge i_{\Omega}.$
4. $[L_{\Omega}, i_{\Omega}'] = (-1)^{jj'} [L_{\Omega}, \omega] + i_{\Omega} \omega.$
5. $i_{\Omega}[[\Omega', \omega]']^n = i_{\Omega}[[\Omega', \omega]'^n] = [i_{\Omega} \omega', \omega]'^n = 0.$

On decomposable elements the Nijenhuis bracket acts as follows. Let $\omega \in A^j$, $\omega' \in A^{j'}, X, X' \in D_1(A).$ Then

$$[[\omega \wedge X, \omega' \wedge X']^n = \omega \wedge \omega' \wedge [X, X'] + L_{\omega \wedge X}(\omega') \wedge X' = (-1)^{jj'} L_{\omega \wedge X}(\omega') \wedge X,$$

$$+ \omega \wedge \omega' \wedge X - [L_{\omega \wedge X}(\omega') \wedge X' - L_{\omega \wedge X}(\omega') \wedge \omega' \wedge X$$

$$+ (-1)^{ij} d\omega \wedge i_{X}(\omega') \wedge X' + (-1)^{ij} i_{X}(\omega') \wedge d\omega' \wedge X.$$

A derivation $\mathcal{N} \in D_1(A^1)$ is called integrable if

$$[[\mathcal{N}', \mathcal{N}]]^n = 0.$$

With any integrable derivation one can associate a complex

$$0 \to D_1(B) \xrightarrow{\partial_x} \cdots \to D_1(A^j(B)) \xrightarrow{\partial_y} D_1(A^{j+1}(B)) \to \cdots$$

where $\partial_x = [[\mathcal{N}', \cdot]]^n.$

Such structures, in particular, arise in an algebraic model of flat connections.
9 Flat connections

Let A and B be k-algebras and $\gamma: A \to B$ be a homomorphism. Then B is an A-algebra and one can consider the module $D_1(A,B)$ of B-valued derivations $A \to B$. For any $X \in D_1(B)$ denote by $X|_A \in D_1(A,B)$ its restriction to A.

A connection is a B-homomorphism $\nabla: D_1(A,B) \to D_1(B)$ such that $\nabla(X)|_A = X$. A vector-valued form $U \in D_1(B)$ defined by

$$i_X(U \nabla) = X - \nabla(X|_A), \quad X \in D_1(B),$$

is called the connection form. For any two derivations $X, X' \in D_1(A,B)$ we set

$$R_\nabla(X, X') = [\nabla(X), \nabla(X')] - \nabla([X, X']) - \nabla(X') \circ X - \nabla(X) \circ X';$$

R_∇ is the curvature of ∇. A connection is flat if $R_\nabla = 0$.

9.1 Nijenhuis cohomologies associated to a connection

Theorem 3 Let ∇ be a connection. Then

$$i_X(i_X([U_\nabla, U_\nabla]|^n)) = 2R_\nabla(X|_A, X'|_A)$$

for any $X, X' \in D_1(B)$.

Hence, to any flat connection, i.e., to a connection whose curvature vanishes, we associate a Nijenhuis complex with $\mathcal{N} = U_\nabla$. In applications, its vertical subcomplex is useful:

$$0 \to D_1^0(B) \overset{\partial}{\to} D_1^1(B) \overset{\partial}{\to} D_1^2(B) \overset{\partial}{\to} \cdots,$$

where $D_1^p(P) = \{ X \in D_1(P) \mid X|_A = 0 \}$. Denote its cohomologies by $H^i(B, \nabla)$.

9.2 Nijenhuis cohomologies: $H^0, H^1, and \ H^2$

Theorem 4 Let ∇ be a flat connection. Then:

1. The cohomology groups $H^i(B, \nabla)$ inherit the inner product operation,

 $$i: H^i(B, \nabla) \times H^j(B, \nabla) \to H^{i+j-1}(B, \nabla).$$

 In particular, the group $H^1(B, \nabla)$ is an associative algebra represented in endomorphisms of $H^0(B, \nabla)$:

 $$i: H^1(B, \nabla) \times H^1(B, \nabla) \to H^1(B, \nabla),$$

 $$i: H^1(B, \nabla) \times H^0(B, \nabla) \to H^0(B, \nabla).$$

2. The cohomology groups $H^i(B, \nabla)$ inherit the Nijenhuis bracket,

 $$[[\cdot, \cdot]]^n: H^i(B, \nabla) \times H^j(B, \nabla) \to H^{i+j}(B, \nabla).$$

 In particular, $H^0(B, \nabla)$ is a Lie algebra:

 $$[[\cdot, \cdot]]^n: H^0(B, \nabla) \times H^0(B, \nabla) \to H^0(B, \nabla).$$
9.3 Application to differential equations

Let \(\mathcal{E} \subset J^\infty(\pi) \) be an infinitely prolonged differential equation in the jet bundle of a bundle \(\pi: E \to M \). The bundle \(\pi_{\infty}: \mathcal{E} \to M \) is always endowed with a natural flat connection \(\mathcal{E} \) (the Cartan connection, see Refs [115]) and taking

\[
\gamma = \pi_{\infty}^*: A = C^\infty(M) \to B = C^\infty(\mathcal{E})
\]

we obtain the picture considered above.

Let us use the notation \(H^j(\mathcal{E}, \mathcal{E}) \) for the cohomology groups arising in this case.

9.4 The main result

Theorem 5 For any formally integrable equation \(\mathcal{E} \) that surjectively projects to \(J^0(\pi) \) one has:

1. \(H^0(\mathcal{E}, \mathcal{E}) \) coincides with the Lie algebra sym\(\mathcal{E} \) of higher symmetries of \(\mathcal{E} \).
2. Elements of \(H^1(\mathcal{E}, \mathcal{E}) \) act on sym\(\mathcal{E} \) and thus are identified with recursion operators for symmetries.
3. On the other hand, elements of \(H^1(\mathcal{E}, \mathcal{E}) \) can be understood as classes of nontrivial infinitesimal deformations of the equation structure.
4. \(H^2(\mathcal{E}, \mathcal{E}) \) contains obstructions to prolongation of infinitesimal deformations up to formal ones.

9.5 Commutative hierarchies

Let \((B, V) \) be an algebra with flat connection. For \(X = X_0 \in H^0(B, V) \) and \(R \in H^1(B, V) \), use the notation \(R(X) = i_X(R), X_n = R^n(X), n = 0, 1, 2\ldots \)

Theorem 6 Assume that \(H^2(B, V) = 0 \). Then for any \(X, Y \in H^0(B, V) \) and \(R \in H^1(B, V) \) for all \(m, n \in \mathbb{Z}_+ \) one has

\[
[X_m, Y_n] = [X, Y]_{m+n} + \sum_{j=0}^{n-1} ([X, R]^n(Y_j))_{m+n-j-1} - \sum_{j=0}^{m-1} ([Y, R]^n(X_j))_{m+n-j-1}.
\]

Corollary 1 If \(\|[X, R]^n = [Y, R]^n = 0 \) and \([X, Y] = 0 \) then \([X_m, Y_n] = 0 \) for all \(m, n \in \mathbb{Z}_+ \).

Remark 6 If \(\mathcal{E} \) is a scalar evolutionary equation of order \(> 1 \) then \(H^2(\mathcal{E}, \mathcal{E}) = 0 \).

9.6 Bi-complex

Let \(\mathcal{N} \in D_1(A^1) \) be an integrable element, i.e., \(\|[\mathcal{N}, \mathcal{N}] = 0 \). Then the operator

\[
d_{\mathcal{N}} = L_{\mathcal{N}}: A^{j} \to A^{j+1}
\]

is a differential: \(d_{\mathcal{N}} \circ d_{\mathcal{N}} = 0 \). Moreover, one has

\[
[d, d_{\mathcal{N}}] = 0
\]

and consequently the pair \((d_{\mathcal{N}}, \tilde{d}_{\mathcal{N}}) \), where \(\tilde{d}_{\mathcal{N}} = d - d_{\mathcal{N}} \), constitutes a bi-complex that converges to the de Rham cohomologies of \(B \).

In the case of differential equations (\(A = C^\infty(M) \), \(B = C^\infty(\mathcal{E}) \), and \(\mathcal{N} \) is the connection form of the Cartan connection in the bundle \(\pi_{\infty}: \mathcal{E}^{\infty} \to M \)), this bi-complex coincides with the variational bi-complex, or Vinogradov’s \(\mathcal{C} \)-spectral sequence, see Ref. [24][28].
10 More brackets…

To conclude, note that several more brackets can be constructed in a similar way.

1. First, mention the Nijenhuis–Richardson bracket

\[
\llbracket \cdot, \cdot \rrbracket^f: D_1(A^j) \otimes_A D_1(A^j) \to D_1(A^{j+j-1})
\]

that can be defined by

\[
[i_\Omega, i_\Omega'] = i_{[\Omega, \Omega']^f}
\]

and is of the form

\[
\llbracket \Omega, \Omega' \rrbracket^f = i_\Omega(\Omega') - (-1)^{(i-1)(j-1)}i_{\Omega'}(\Omega)
\]

and is one of the classical and well known brackets.

Two more brackets arise also if we fix a Poisson structure \(\mathcal{P} \in D_2(A) \) or a Nijenhuis

structure \(\mathcal{N} \in D_1(A) \):

2. Consider the inner product

\[
i: D_i(A^1) \otimes_A D_k(A) \to D_{i+k-1}(A).
\]

Then for \(\Omega \in D_i(A^1) \) the following “Lie derivative” arises:

\[
L^\mathcal{P}_{\Omega} = [\partial_{\mathcal{P}}, i_\Omega]: D_k(A) \to D_{k+i}(A)
\]

and one can introduce a bracket

\[
\llbracket \cdot, \cdot \rrbracket^\mathcal{P}: D_i(A^1) \times D_k(A^1) \to D_{i+k}(A^1)
\]

by

\[
L^\mathcal{P}_{[\Omega, \Omega]} = [L^\mathcal{P}_\Omega, L^\mathcal{P}_{\Omega'}].
\]

3. In a similar way, one can consider the inner product

\[
i: D_1(A^i) \otimes_A D_1(A^k) \to D_1(A^{i+k-1})
\]

and the “Lie derivative”

\[
L^\mathcal{N}_\Omega = [\partial_{\mathcal{N}}, i_\Omega]: D_1(A^i) \to D_1(A^{k+i}),
\]

\(\Omega \in D_1(A^i) \). Then a new bracket

\[
\llbracket \cdot, \cdot \rrbracket^\mathcal{N}: D_i(A^i) \times D_1(A^i) \to D_1(A^{i+i})
\]

is defined by

\[
L^\mathcal{N}_{[\Omega, \Omega']} = [L^\mathcal{N}_\Omega, L^\mathcal{N}_{\Omega'}].
\]
11 . . . and when brackets fail to arise

One can also define the inner products

\[i: D^i(A^j) \otimes_A A^k \rightarrow A^{k+j-i} \]

and

\[i: D^i(A^j) \otimes_A D_k(A) \rightarrow D_{k-j+i}(A) \]

together with the corresponding Lie actions

\[L_{\Omega} = [d, i_\Omega]: A^k \rightarrow A^{k+j-i+1} \]

and

\[L_{\Omega}^\rho = [\partial_\rho, i_\Omega]: D_k(A) \rightarrow D_{k-j+i+1}(A), \]

where \(\Omega \in D^i(A^j) \). Of course, it is tempting to find the elements \([\Omega, \Omega']\] and \([\Omega, \Omega']^\rho\) such that

\[L_{[\Omega, \Omega']} = [L_\Omega, L_{\Omega'}], \quad L_{[\Omega, \Omega']}^\rho = [L_\Omega^\rho, L_{\Omega'}^\rho], \]

but in general such elements do not exist (see discussion of these matters in Ref. [26]).

References

1. Bocharov, A. V., Chetverikov, V. N., Duzhin, S. V., et al., Symmetries and Conservation Laws for Differential Equations of Mathematical Physics, xiv+333 pp. Amer. Math. Soc., Providence, RI (1999). Edited and with a preface by I. Krasil’shchik and A. Vinogradov.
2. J.-L. Brylinski, A differential complex for Poisson manifolds. Source, J. Differential Geom. 28 (1988), no. 1, 93–114.
3. A. Frölicher, A. Nijenhuis, Theory of vector valued differential forms. Part I., Indagationes Math., 18 (1956), 338–360.
4. A. Frölicher, A. Nijenhuis, Invariance of vector form operations under mappings, Comm. Math. Helv., 34 (1960), 227–248.
5. Kersten P., Krasil’shchik I., Verbovetsky A., Hamiltonian operators and \(\ell^\star \)-coverings, J. Geom. and Phys. 50, pp. 273–302 (2004), arXiv:math.DG/0304245.
6. P. Kersten, I. Krasil’shchik, A. Verbovetsky, R. Vitolo, this issue.
7. I. Krasil’shchik, Algebras with flat connections and symmetries of differential equations, in: Lie Groups and Lie Algebras: Their Representations, Generalizations and Applications, Kluwer Acad. Publ., Dordrecht/Boston/London, 1998, 407–424.
8. I. Krasil’shchik, Schouten brackets and canonical algebras, Global Anal. and Math. Physics, Voronezh State University, 1987. English translation in Springer Lecture Notes in Math., 1334, Springer-Verlag, 1988.
9. I. Krasil’shchik, Some new cohomological invariants of nonlinear differential equations, Differential Geometry and Its Appl., 2, (1992), no. 4, 307–350.
10. I. Krasil’shchik, Supercanonical algebras and Schouten brackets, Mat. Zametki, 49 (1991), no. 1. English translation in Soviet Mat. Zametki, 70–76.
11. I. Krasil’shchik, Characteristics of linear differential operators over commutative algebras, Acta Appl. Math., 49, (1997), no. 3, 257–269.
12. I. Krasil’shchik, Calculus over commutative algebras: a concise user guide, Acta Appl. Math., Volume 49, Issue 3, December 1997, 235–248.
13. I. Krasil’shchik, Hamiltonian cohomologies of canonical algebras, Dokl. AN SSSR, 251, (1980), no. 6 (in Russian, English translation in: Soviet Math. Dokl.).
14. I. Krasil’shchik, Poincaré \(\delta \)-lemma for smooth algebras, Acta Appl. Math., 49, (1997), no. 3, 249–255.
15. I. Krasil’shchik, V. Lychagin, A. Vinogradov, Geometry of Jet Spaces and Nonlinear Differential Equations, Advanced Studies in Contemporary Mathematics, 1 (1986), Gordon and Breach, New York, London, xx+441 pp.
16. V. Lychagin, Color calculus and color quantizations, Acta Appl. Math., 41 (1995), 193–226
17. A. Lichnerowicz, Les variétés de Poisson et leurs algèbres de Lie associées, J. Diff. Geom. 12 (1977), 253–300.
18. F. Magri, A simple model of the integrable Hamiltonian equation, J. Math. Phys., 19 (1978), 1156–62.
19. A. Nijenhuis, Jacobi-type identities for bilinear differential concomitants of certain tensor fields I, Indagationes Math., 17 (1955) 390–403.
20. A. Nijenhuis, R. Richardson, Cohomology and deformations in graded Lie algebras, Bull. Amer. Math. Soc., 72 (1966), 1–29.
21. A. Nijenhuis, R. Richardson, Deformation of Lie algebra structures, J. Math. Mech., 17 (1967), 89–105.
22. J. A. Schouten, Über Differentialkonkomitanten zweier kontravarianten Grössen, Indagationes Math., 2 (1940), 449–452.
23. J. A. Schouten, On the differential operators of the first order in tensor calculus, in: Convegno Int. Geom. Diff. Italia, 1953, Edizione Cremonese, Roma, 1–7.
24. Vinogradov A. M., Cohomological Analysis of Partial Differential Equations and Secondary Calculus, vi+247 pp. Amer. Math. Soc., Providence, RI (2001).
25. A. Vinogradov, The logic algebra for the theory of linear differential operators, Soviet Math. Dokl., 13 (1972), 1058–1062.
26. A. Vinogradov, The union of the Schouten and Nijenhuis brackets, cohomology, and superdifferential operators, Mat. Zametki, 47 (1990), no. 6, 138–140. English translation in Russian Math. Notes.
27. A. Vinogradov, I. Krasil’shchik, What is the Hamiltonian formalism? London Math. Soc. Lect. Notes Ser., 60 (1981), Cambridge Univ. Press, London, 241–266.
28. A. Vinogradov, The ’6’-spectral sequence, Lagrangian formalism, and conservation laws I, II, J. Math. Anal. Appl., 100 (1984), 1–129.