Supporting information for

Phase Transitions and Chemical Reactions of Octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine under High Pressure and High Temperature

Dexiang Gao, a Jin Huang, a Xiaohuan Lin, a Dongliang Yang, b Yajie Wang, a,* Haiyan Zheng a,*

a Center for High Pressure Science and Technology Advanced Research, 100094, Beijing, China
b Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China

*E-mail: Yajie Wang: yajie.wang@hpstar.ac.cn; Haiyan Zheng: zhenghy@hpstar.ac.cn
Table S1. Assignments of Raman modes of β-HMX at ambient pressure, room temperature

Assignments	Experiment (cm$^{-1}$)	Calculation from the reference(cm$^{-1}$)1
$\gamma_{NN}(NO_2)$	99	87, 115
σ(CNC)	144	154
		184
b(NNC), b(CNC)	232	217
b(NNC), b(NCN)	284	270
b(NNC), b(NNO)	317	299
v(CN), v(NN), b(NCN)	365	342
b(NNO), b(NNC)	416	399
b(CNC), b(NNC)	438	420
b(NNO)	599	594
b(NNO), v(NN)	641	625
b(NNO), v(NN)	663	650
b(ONO), v(CN)	722	726
σ(ONO)	762	741
v_s(NC$_2$)	836	826
v_s(NNC$_2$)	885	872
v(NN), ρ(CH$_2$)	953	925
v_{as}(NNO$_2$)	1080	1061
v_{as}(CNN), ρ(CH$_2$)	1170	1167
v_{as}(NC$_2$)	1191	1197
v_{as}(NC$_2$)	1250	1238
v_s(NO$_2$)	1269	1272
ω(CH$_2$)	1420	1422
Assignments	Experiment at 1.0 GPa (cm$^{-1}$)	Calculation from the reference (cm$^{-1}$)1
-------------	----------------------------------	---
b(HCH)	1438	1446
b(HCH)	1455	1461
$\nu_{as}(NO_{2})$	1526	1611
$\nu_{as}(NO_{2})$	1559	1624
$\nu_{as}(NO_{2})$	1570	1626
$\nu_s(CH_{2})$	2993	2983
$\nu_{as}(CH_{2})$	3028	3046
$\nu_{as}(CH_{2})$	3036	3049

Note: b(XYZ): X-Y-Z bending vibration; $\nu_{as}(XY_{2})$: Y-X-Y asymmetric stretching vibration; $\nu_{as}(XXY_{2})$: X-X-Y$_2$ asymmetric stretching vibration; $\nu_s(XXY_{2})$: X-X-Y$_2$ symmetric stretching vibration; $\rho(XXY_{2})$: XY$_2$ rocking vibration in XY$_2$ plane; $\sigma(XXY_{2})$: X atom rocking vibration out of XY$_2$ plane; $\omega(XXY_{2})$: Y$_2$ rocking vibration out of XY$_2$ plane; $\gamma_{NN}(XY_{2})$: XY$_2$ twisting vibration about N-N bond.

Table S2. Assignments of IR modes of β-HMX at 1.0 GPa, room temperature
P (GPa)	a(Å)	b(Å)	c(Å)	θ (°)
0.2	6.5400(53)	11.022(2)	8.7012(25)	124.371(74)
1.0	6.370(3)	10.892(5)	8.5699(57)	124.100(75)
2.0	6.345(4)	10.771(5)	8.4963(55)	124.174(88)
3.1	6.282(5)	10.629(5)	8.430(7)	124.3(1)
4.2	6.252(5)	10.548(5)	8.3760(69)	124.5(1)

Note: b(XYZ): X-Y-Z bending vibration; v_\text{as}(XY_2): Y-X-Y asymmetric stretching vibration; v_\text{as}(XXY_2): X-X-Y asymmetric stretching vibration; v_\text{s}(XY_2): Y-X-Y symmetric stretching vibration; v_\text{s}(XXY_2): X-X-Y symmetric stretching vibration; \(\rho(XY_2)\): XY_2 rocking vibration in XY_2 plane; \(\sigma(XY_2)\): X atom rocking vibration out of XY_2 plane; \(\omega(XY_2)\): Y_2 rocking vibration out of XY_2 plane; \(\gamma(XY_2)\): XY_2 twisting vibration about bisector of Y-X-Y angle.

Table S3. The refined cell parameters under non-hydrostatic pressure conditions
Pressure (GPa)	x	y	z	Occupancy
5.1	6.233(6)	10.474(5)	8.3691(76)	124.49(12)
6.2	6.215(18)	10.417(5)	8.2724(78)	124.88(26)
7.5	6.183(4)	10.240(4)	8.2993(63)	124.902(97)
8.1	6.182(8)	10.146(5)	8.29(1)	124.92(17)
9.1	6.126(7)	10.083(4)	8.2746(75)	124.75(14)
10.6	6.146(8)	10.037(5)	8.2593(93)	124.94(16)
11.6	6.125(6)	9.978(6)	8.2570(73)	124.93(12)
12.6	6.130(7)	9.846(5)	8.2578(88)	125.06(15)
13.6	6.130(9)	9.763(6)	8.282(11)	125.19(19)
14.5	6.109(8)	9.672(5)	8.3097(95)	124.96(17)

Table. S4 Atomic coordinates of HMX at 6.2 GPa
Table. S5 Atomic coordinates of HMX at 12.6 GPa

Atom	x	y	z	Occupancy
C1	0.777669	0.957574	0.756563	1
C2	0.257581	0.883921	0.009341	1
N1	0.359191	0.99604	0.719635	1
N2	0.621561	0.029659	0.813958	1
N3	0.973534	0.865065	0.911512	1
N4	0.891796	0.779844	0.996675	1
O1	0.208721	0.079615	0.720349	1
O2	0.265464	0.910467	0.587171	1
O3	0.058757	0.732505	0.160045	1
O4	0.664538	0.793308	0.950863	1
H1	0.659531	0.907335	0.637082	1
H2	0.867345	0.022405	0.727194	1
H3	0.289201	0.923013	0.918064	1
H4	0.344492	0.797062	0.045582	1
Figure S1. Frequency shifts of β-HMX in the IR spectra as a function of pressure in the region of (a) 600-1050, (b) 1050-1650 and (c) 2950-3200 cm\(^{-1}\). The symbol of the different vibration modes can be found in the note of table S2. The dotted lines represent the phase boundaries.

Figure S2. Torsion angles of axial NO\(_2\) (the angle between line C1'-C2 and O3-O4) and equatorial NO\(_2\) (the angle between line C1-C2 and O1-O2) under non-hydrostatic pressure condition. Above 6.2 GPa, the torsion angle abruptly changes by 23.3°.
Figure S3. The lengths of hydrogen bonds (O…H) under high pressure. The hydrogen bonds 1, 4 and 5 are indicated in the Figure 7b. (a) is intramolecular hydrogen bond; (b) and (c) are intermolecular hydrogen bonds. The vertical line represents boundary of phase transition.

Reference

1 V. B. Holmann, L. R. Ronald, J. F. David, D. Irina, P. Peter and K. L. Thomas, *J. Phys. Chem. B.*, 2002, **106**, 10594-10604.