We report the results of a search for the decay $B^0 \rightarrow K^{*+} K^{*-}$ with a sample of 454 ± 5 million $B \bar{B}$ pairs collected with the BABAR detector at the PEP-II asymmetric-energy $e^+ e^-$ collider at the Stanford Linear Accelerator Center. We obtain an upper limit at the 90% confidence level on the branching fraction for $B (B^0 \rightarrow K^{*+} K^{*-}) < 2.0 \times 10^{-6}$, assuming the decay is fully longitudinally polarized.

PACS numbers: 13.25.Hw, 11.30.Er, 12.15.Hh

The study of the branching fractions and angular distributions of B meson decays to hadronic final states
without a charm quark probes the dynamics of both weak and strong interactions, and plays an important role in understanding CP violation. Improved experimental measurements of these charmless decays, combined with theoretical developments, can provide significant constraints on the Cabibbo-Kobayashi-Maskawa (CKM) matrix parameters [1] and uncover evidence for physics beyond the standard model [2, 3].

QCD factorization models predict the angular distribution of the decay of the B meson to two vector particles (VV), as measured by the longitudinal polarization fraction f_L, to be ~ 0.9 for both tree- and penguin-dominated decays [3]. Two measurements of the pure penguin VV decay $B \to \phi K^*$ give $f_L = 0.52 \pm 0.08 \pm 0.03$ and $f_L = 0.49 \pm 0.05 \pm 0.03$ [4], while $f_L = 0.81^{+0.10}_{-0.12} \pm 0.06$ has recently been measured for the decay $B^0 \to K^{*0}\pi^0$ [5]. Several attempts to understand the values of f_L within or beyond the standard model have been made [7]. Further information about decays related by $SU(3)$ symmetry may provide insights into this polarization puzzle and test factorization models.

The decay $B^0 \to K^{+}K^{-}$ is expected to occur through a $b \to u$ quark transition via W-exchange, as shown in Figure 1, or from final-state interactions. Its branching fraction is expected to be small, with Beneke, Rohrer and Yang [2] predicting $(0.09^{+0.05+0.12}_{-0.05-0.10}) \times 10^{-6}$, while Cheng and Yang [3] quote $(0.1 \pm 0.0 \pm 0.1) \times 10^{-6}$, both based on QCD factorization. The current experimental upper limit on the branching fraction at the 90% confidence level (C.L.) is $141(89) \times 10^{-6}$ [8], assuming a fully longitudinally (transversely) polarized system. Searches for the related decay $B^0 \to K^+K^-$ have produced upper limits on the branching fraction at the 90% C.L. in the range $(0.4 - 0.8) \times 10^{-6}$ [9].

![Diagram](image.png)

FIG. 1: The $b \to u$ W-exchange diagram for $B^0 \to K^{+}K^{-}$.

We report on a search for the decay mode $B^0 \to K^{+}K^{-}$, where K^{+} refers to the $K^{*+}(892)$ resonance, without explicit consideration of interference from higher mass K^* states, and place an upper limit on the branching fraction. Charge-conjugate modes are implied throughout and we assume equal production rates of B^+B^- and $B^0\bar{B}^0$.

This analysis is based on a data sample of 454 ± 5 million $B\bar{B}$ pairs, corresponding to an integrated luminosity of 413 fb$^{-1}$, collected with the Babar detector at the PEP-II asymmetric-energy e^+e^- collider operated at the Stanford Linear Accelerator Center. The e^+e^- center-of-mass (c.m.) energy is $\sqrt{s} = 10.58$ GeV, corresponding to the $\Upsilon(4S)$ resonance mass (on-resonance data). In addition, 41.2 fb$^{-1}$ of data collected at 40 MeV below the $\Upsilon(4S)$ resonance (off-resonance data) are used for background studies.

The Babar detector is described in detail in Ref. [10]. Charged particles are reconstructed as tracks with a 5-layer silicon vertex detector (SVT) and a 40-layer drift chamber inside a 1.5-T solenoidal magnet. An electromagnetic calorimeter (EMC) comprising 6580 CsI(Tl) crystals is used to identify electrons and photons. A ring-imaging Cherenkov detector (DIRC) is used to identify charged hadrons and to provide additional electron identification information. The average $K-\pi$ separation in the DIRC varies from 12σ at a laboratory momentum of 1.5 GeV/c to 2.5σ at 4.5 GeV/c. Muons are identified by an instrumented magnetic-flux return (IFR).

The $B^0 \to K^{+}K^{-}$ candidates are reconstructed through the decay of both K^\pm to $K^0_s\pi^\pm$ or with one K^\pm decaying to $K^0_s\pi^\mp$ and the other to $K^\mp\pi^0$. The differential decay rate, after integrating over the angle between the decay planes of the vector mesons, for which the acceptance is uniform, is

$$\frac{1}{\Gamma} \frac{d^2\Gamma}{d\cos\theta_1 d\cos\theta_2} \propto \frac{1 - f_L}{4 \sin^2\theta_1 \sin^2\theta_2 + f_L \cos^2\theta_1 \cos^2\theta_2},$$

where θ_1 and θ_2 are the helicity angles of the K^{*+} and K^{-}, defined as the angle between the daughter kaon (K^0_s or K^\pm) momentum and the direction opposite to the B meson in the $K^{*\pm}$ rest frame.

The charged particles from the K^\pm decays are required to have at least 12 hits in the drift chamber and a transverse momentum greater than 0.1 GeV/c. The particles are identified as either charged pions or kaons by measurement of the energy loss in the tracking devices, the number of photons recorded by the DIRC and the corresponding Cherenkov angle. These measurements are combined with additional information from the EMC and IFR detectors, where appropriate, to reject electrons, muons, and protons.

The K^0_s is reconstructed through its decay to $\pi^+\pi^-$. The K^0_s candidates are required to have a reconstructed mass within 0.01 GeV/c2 of the nominal K^0_s mass [12], a decay vertex separated from the B meson decay vertex by at least twenty times the uncertainty in the measurement of the vertex position, a flight distance in the transverse direction of at least 0.3 cm, and the cosine of the angle between the line joining the B and K^0_s decay vertices and the K^0_s momentum greater than 0.999.

We reconstruct the π^0 through the decay $\pi^0 \to \gamma\gamma$. In the laboratory frame, the energy of each photon from the π^0 candidate must be greater than 0.04 GeV, the
energy of the π⁰ must be greater than 0.25 GeV, and
the reconstructed π⁰ invariant mass is required to be
0.12 ≤ mγγ ≤ 0.15 GeV/c².

We require the invariant mass of the K⁺⁺ candidates to
be 0.792 < mKπ < 0.992 GeV/c². A B meson candidate is
formed from the K⁺± candidates, with the condition that
the K⁺± candidates originate from the interaction region.

B meson candidates are characterized kinetically
by the energy difference \(\Delta E = E_{B} - \sqrt{s}/2 \)
and the beam energy-substituted mass \(m_{ES} = \left[(s/2 + p_i \cdot p_B)^2/E_{B}^2 - p_B^2\right]^{1/2} \), where \((E_i, p_i)\) and
\((E_B, p_B)\) are the four-momenta of the \(\Upsilon(4S) \) and B
meson candidate, respectively, and the asterisk denotes
the \(\Upsilon(4S) \) rest frame. For a final state with a π⁰,
the total event sample is taken from the region
\(-0.1 \leq \Delta E \leq 0.2 \text{ GeV} \) and 5.25 ≤ \(m_{ES} \leq 5.29 \text{ GeV/c}^2 \);
with no π⁰, the signal \(\Delta E \) has a smaller width and the
region \(-0.08 \leq \Delta E \leq 0.15 \text{ GeV} \) is used. The asymmetric
\(\Delta E \) criteria are applied to remove backgrounds from
charm decays which occur in the negative \(\Delta E \) region. In
both cases, events outside the region |\(\Delta E \)| ≤ 0.07 GeV
and 5.27 ≤ \(m_{ES} \) ≤ 5.29 GeV/c² are used to characterize
the background.

We suppress the background from decays to charm states
by forming the invariant mass, \(m_{D} \), from combinations of three out of the four daughter particles’
four-momenta. The event is rejected if 1.845 < \(m_{D} < 1.895 \text{ GeV/c}^2 \) and the charge and particle type of the
tracks are consistent with a decay from a D meson. We
reduce backgrounds from \(B^0 \rightarrow \phi K^{*0} \) by assigning the
kaon mass to the pion candidate and rejecting the event
if the combined invariant mass of the two charged tracks
is between 1.00 and 1.04 GeV/c². Finally, to reduce the
continuum background and avoid the region where the re-
construction efficiency falls off rapidly for low momentum
tracks, we require the cosine of the helicity angle of the
K⁺± candidates to be in the range \(-1.0 \leq \cos(\theta) \leq 0.9 \)
for states without a π⁰ and \(-0.9 \leq \cos(\theta) \leq 0.9 \) for
decays with a π⁰.

To reject the dominant background consisting of light
quark \(q\bar{q} \) (\(q = u, d, s, c \)) continuum events, we require
\(|\cos(\theta_T)| < 0.8 \), where \(\theta_T \) is the angle, in the c.m. frame,
between the thrust axis \[13\] of the B meson and that
formed from the other tracks and neutral clusters in the
event. Signal events have a flat distribution in |\(\cos(\theta_T)\)|,
while continuum events peak at 1.

We use Monte Carlo (MC) simulations of the signal
decay to estimate the number of signal candidates per
event. After the application of the selection criteria, the
average number of signal candidates per event is pre-
dicted to be 1.08 (1.02) for fully longitudinally (trans-
versely) polarized decays with no π⁰ in the final state
and 1.18 (1.10) for decays with one π⁰ in the final state.
A single candidate per event is chosen as the one whose
fitted decay vertex has the smallest \(\chi^2 \). MC simulations
also show that up to 7% (2.4%) of longitudinally (trans-
versely) polarized signal events with no π⁰ are misre-
constructed, with one or more tracks originating from the
other B meson in the event. In the case of signal events
with one π⁰, the number of misreconstructed candidates is
11% (4.3%) for longitudinally (transversely) polarized
signal events.

We create a Fisher discriminant \(F \) to be used in the
maximum-likelihood (ML) fit, constructed from a linear
combination of five variables: the polar angles of the B
meson momentum vector and the B meson thrust axis
with respect to the beam axis, the ratio of the second-
and zeroth-order momentum-weighted Legendre poly-
nomial moments of the energy flow around the B meson
thrust axis in the c.m. frame \[14\], the flavor of the other
B meson as reported by a multivariate tagging algo-

Equation 1
\[
L = \frac{1}{N!} \exp \left(-\sum_{j} n_{j} \right) \prod_{i=1}^{N} \left[\sum_{j} n_{j} \mathcal{P}_{j}(\bar{x}_{i}; \bar{\alpha}_{j}) \right].
\]
For the final state with no π^0, the two invariant mass and helicity angle distributions for each $K^{*\pm}$ meson are indistinguishable and so we use the same PDF parameters for both $K^{*\pm}$ candidates; for the final state with a π^0, we use separate PDFs for $K^{*\pm} \rightarrow K^0\pi^\pm$ and $K^{*\mp} \rightarrow K^\mp\pi^0$. For the signal, we use a relativistic Breit-Wigner for the $K^{*\pm}$ invariant mass and a sum of two Gaussians for m_{ES} and ΔE. The longitudinal (transverse) helicity angle distributions are described with a $\cos^2 \theta$ ($\sin^2 \theta$) function corrected for changes in efficiency as a function of helicity angle. The correction also accounts for the reduction in efficiency at a helicity of ~ 0.78 introduced indirectly by the criteria used to veto D mesons. The $B\bar{B}$ backgrounds use an empirical non-parametric function for ΔE, the masses and helicity angles. The continuum and the $B\bar{B}$ background m_{ES} shapes are described by the function $x\sqrt{1-x^2}\exp[-\xi(1-x^2)]$ (with $x = m_{ES}/E_{B}$ and ξ a free parameter) and a first- or third-order polynomial is used for ΔE and the helicity angles, respectively. The continuum invariant mass distributions contain real $K^{*\pm}$ candidates; we model the peaking mass component using the parameters extracted from the fit to the signal invariant mass distributions together with a second-order polynomial to represent the non-peaking component. The Fisher distributions are modeled using an asymmetric Gaussian for all hypotheses.

$B\bar{B}$ backgrounds that remain after the event selection criteria have been applied are identified and modeled using MC simulation based on the full physics and detector models. There are no significant charmless $B\bar{B}$ backgrounds. The charm $B\bar{B}$ backgrounds are effectively suppressed by applying the veto on D meson mass described above. The remaining charm $B\bar{B}$ background events are mostly single candidates formed from the decay products of a D, D^* or D_s^\pm, together with another track from the event. Given the uncertainty in the polarization and branching fractions of these backgrounds, we allow the $B\bar{B}$ background yield to float in the fit.

The continuum background PDF parameters that are allowed to vary are the F peak position, ξ for m_{ES}, the slope of ΔE, and the polynomial coefficients and normalizations describing the mass and helicity angle distributions. We fit for the branching fraction B and f_L directly and exploit the fact that B is less correlated with f_L than is either the yield or efficiency taken separately. We validate the fitting procedure and extract fitting biases by applying the fit to ensembles of simulated experiments using the extracted fitted yields from data. The $q\bar{q}$ component is drawn from the PDF, and the signal and $B\bar{B}$ background events are randomly sampled from the fully simulated MC samples.

The total event sample consists of 602 and 1923 events for $B^0 \rightarrow K^{*+}K^{*-}$ with zero or one π^0 in the final state, respectively. The corresponding signal event yield is $1.8^{+2.7}_{-1.7}$ and $4.1^{+5.8}_{-3.2}$ and the longitudinal polarization f_L is 0.0 ± 0.6 and 1.0 ± 1.0, respectively. Given the large errors on f_L, we repeat the analysis with f_L set to 1.0; this gives the most conservative 90% confidence level upper limit on the branching fractions. The results of the ML fits with $f_L = 1.0$ are summarized in Table I.

The $B\bar{B}$ background yield agrees with the MC prediction within the large statistical errors. We compute the branching fractions B by subtracting the ML fit bias from the fitted yield and dividing the result by the number of $B\bar{B}$ pairs and by the reconstruction efficiency, ϵ, times $B(K^0 \rightarrow K^0 \rightarrow \pi^+\pi^-) = 0.5 \times (69.20 \pm 0.05)\%$ and $B(\pi^0 \rightarrow \gamma\gamma) = (98.80 \pm 0.03)\%$. The significance S of the signal is defined as $S = 2\Delta \ln L$, where $\Delta \ln L$ is the change in likelihood from the maximum value when the number of signal events is set to zero, corrected for the systematic errors defined below.

The significance of the $B^0 \rightarrow K^{*+}K^{*-}$ branching fraction is 0.87σ, including statistical and systematic uncertainties. The 90% C.L. branching fraction upper limit (B_{UL}) is determined by combining the likelihoods from the two fits and integrating the total likelihood distribution (taking into account correlated and uncorrelated systematic uncertainties) as a function of the branching fraction from 0 to B_{UL}, so that $\int_0^{B_{UL}} d\bar{B} = 0.9 \int_0^{\infty} d\bar{B}$.

Figures 2 and 3 show the projections of the two fits onto m_{ES}, ΔE, $K^{*\pm}$ mass and cosine of the $K^{*\pm}$ helicity angle for the final state with zero and one π^0, respectively. The candidates in the figures are signal-enhanced with a requirement on the probability ratio $P_{sig}/(P_{sig} + P_{bkg})$, optimized to enhance the visibility of potential signal, where P_{sig} and P_{bkg} are the signal and the total background probabilities, respectively (computed without using the variable plotted). The dip in helicity at ~ 0.78 is created by the criteria used to veto charm background.

TABLE I: Summary of results with $f_L=1.0$ for the fitted yields, fit biases, reconstruction efficiencies ϵ, sub-branching fractions $\prod B_i$, branching fraction B ($B^0 \rightarrow K^{*+}K^{*-}$), significance S, and 90% C.L. upper limit B_{UL}. The first error is statistical and the second, if given, is systematic.

Final State	$K^0\pi^+$	$K^0\pi^-$	$K^0\pi^\pm$	$K^0\pi^0$
Yields (events):	602	1923		
Signal	0.7^{+2.7}_{-1.4}	4.2^{+4.6}_{-3.3}		
$B\bar{B}$ bkg.	20 \pm 20	84 \pm 51		
$q\bar{q}$ bkg.	580 \pm 25	1835 \pm 70		
ML Fit Biases	-0.170	1.70		

Efficiencies and B:
ϵ (%)
$\prod B_i$ (%)
B ($\times 10^{-6}$)
Significance S (σ)

Combined Results:
B ($\times 10^{-6}$)
Significance S (σ)
B_{UL} ($\times 10^{-6}$)
The systematic uncertainties are summarized in Table I. The errors on the branching fractions arise from the PDFs, fit biases and efficiencies. The PDF uncertainties are calculated by varying the PDF parameters that are held fixed in the original fit by their errors. The uncertainty from the fit bias includes its statistical uncertainty from the simulated experiments and half of the correction itself, added in quadrature. The uncertainties in PDF modeling and fit bias are additive in nature and affect the significance of the branching fraction results. Multiplicative uncertainties include reconstruction efficiency uncertainties from tracking and particle identification (PID), track multiplicity, MC signal efficiency statistics, and the number of $B\bar{B}$ pairs.

Final State	$K^0_S \pi^+$	$K^0_S \pi^-$	$K^0_S \pi^+ \pi^-$	$K^0_S \pi^0$
Additive errors (events)	0.09	0.85	0.06	0.25
Fit Bias [U]				
Number of $B\bar{B}$ pairs [C]	1.1	1.1		
PID [C]	2.2	1.1		
Neutrals Corrections [C]	-	3.0		
K^0_L Corrections [C]	1.8	1.4		
Total Additive (events)	0.10	0.88		
Total Multiplicative (%)	3.6	3.9		

In summary, we have measured the branching fraction $\mathcal{B}(B^0 \to K^{*+}K^{-}) = [0.52^{+0.83+0.08}_{-0.58-0.06}] \times 10^{-6}$, assuming the decay is fully longitudinally polarized. The 90% C.L. upper limit on the branching fraction $\mathcal{B}(B^0 \to K^{*+}K^{-}) < 2.0 \times 10^{-6}$ is nearly two orders of magnitude more stringent than previous searches.

We are grateful for the extraordinary contributions of our PEP-II colleagues in achieving the excellent luminosity and machine conditions that have made this work possible. The success of this project also relies critically on the expertise and dedication of the computing organizations that support BABAR. The collaborating institutions wish to thank SLAC for its support and the kind hospitality extended to them. This work is supported by the US Department of Energy and National Science Foundation, the Natural Sciences and Engineering Research Council (Canada), the Commissariat à l’Énergie Atomique and Institut National de Physique Nucléaire et de Physique des Particules (France), the Bundesministerium für Bildung und Forschung and Deutsche Forschungsgemeinschaft (Germany), the Istituto Nazionale di Fisica Nucleare (Italy), the Foundation for Fundamental Research on Matter (The Netherlands), the Research Council of Norway, the Ministry of Education and Science of the Russian Federation, Ministerio de Educación y Ciencia (Spain), and the Science and Technology Facilities Council (United Kingdom). Individuals have received support from the Marie-Curie IEF program (European Union) and the A. P. Sloan Foundation.

* Deceased
† Now at Temple University, Philadelphia, Pennsylvania 19122, USA
‡ Now at Tel Aviv University, Tel Aviv, 69978, Israel
§ Also with Università di Perugia, Dipartimento di Fisica, Perugia, Italy
¶ Also with Università di Roma La Sapienza, I-00185 Roma, Italy
∗∗ Now at University of South Alabama, Mobile, Alabama 36688, USA
†† Also with Università di Sassari, Sassari, Italy

[1] N. Cabibbo, Phys. Rev. Lett. 10, 531 (1963); M. Kobayashi and T. Maskawa, Prog. Theor. Phys. 49, 652 (1973).
[2] M. Beneke, J. Rohrer and D. Yang, Nucl. Phys. B 774, 64 (2007).
[3] H.Y. Cheng and K.C. Yang. [arXiv:0805.0329v1].
[4] A. Ali et al., Z. Phys. C 1, 269 (1979); M. Suzuki, Phys. Rev. D 66, 054018 (2002).
[5] K.-F. Chen et al. (Belle Collaboration), Phys. Rev. Lett. 94, 221804 (2005); B. Aubert et al. (BABAR Collaboration), Phys. Rev. Lett. 99, 201802 (2007).
[6] B. Aubert et al. (BABAR Collaboration), Phys. Rev. Lett. 100, 081801 (2008).
[7] A. Kagan, Phys. Lett. B 601, 151 (2004); C. Bauer et al., Phys. Rev. D 70, 054015 (2004); P. Colangelo et al., Phys. Lett. B 597, 291 (2004); M. Ladisa et al., Phys. Rev. D 70, 114025 (2004); H.-n. Li and S. Mishima, Phys. Rev. D 71, 054025 (2005); M. Beneke et al., Phys. Rev. Lett. 96, 141801 (2006).
[8] R. Godang et al. (CLEO Collaboration), Phys. Rev. Lett. 88, 021802 (2001).
[9] B. Aubert et al. (BABAR Collaboration), Phys. Rev. D 75, 012008 (2007); S.-W. Lin et al. (Belle Collaboration), Phys. Rev. Lett. 98, 181804 (2007); A. Bornheim et al. (CLEO Collaboration), Phys. Rev. D 68, 052002 (2003).
[10] B. Aubert et al. (BABAR Collaboration), Nucl. Instrum. Methods Phys. Res., Sect. A 479, 1 (2002).
[11] G. Kramer and W.F. Palmer, Phys. Rev. D 45, 193 (1992).
[12] W.-M. Yao et al. (Particle Data Group), J. Phys. G 33, 1 (2006).
[13] S. Brandt et al., Phys. Lett. 12, 57 (1964); E. Farhi, Phys. Rev. Lett. 39, 1587 (1977).
[14] B. Aubert et al. (BABAR Collaboration), Phys. Rev. D 70, 032006 (2004).
[15] B. Aubert et al. (BABAR Collaboration), Phys. Rev. Lett. 89, 201802 (2002).
[16] H. Albrecht et al. (ARGUS Collaboration), Phys. Lett. B 241, 278 (1990).
[17] S. Agostinelli et al. (GEANT Collaboration), Nucl. Instrum. Methods Phys. Res., Sect. A 506, 250 (2003).