Research on the Evaluation Model of the Overall Benefit of the Nonlinear Rural Pension Based on Particle Swarm Optimization Algorithm: From the Perspective of Migrant Workers Returning

Yong Wang,1,2 Fang Li,2 and Jia-Li Dou3

1Anhui Science and Technology University Finance and Economics College, Bengbu, Anhui 233100, China
2School of Public Administration of Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
3Anhui Science and Technology University Administration College, Bengbu, Anhui 233100, China

Correspondence should be addressed to Jia-Li Dou; doujl@ahstu.edu.cn

Received 18 January 2022; Revised 25 February 2022; Accepted 31 March 2022; Published 12 April 2022

Academic Editor: Naeem Jan

In this paper, based on the existing research, the rural talent supply situation is analyzed. Rural talent relative to the existing rural labor force has a higher human capital of the labor force. We also discuss the part of moving workers who can be considered as talents. Financial dimension is mostly through literature collection and statistical data finding and computational calculation, according to the results of communicate indicators, to reflect its performance level. The performance analysis of organizational management dimension and institutional development dimension mainly focuses on qualitative analysis and comparative analysis, and then we summarize and evaluate the performance status of Shanghai basic endowment insurance system for urban and rural residents. Therefore, all countries in the world are constantly exploring and trying to improve the performance management model of their social security institutions. Through the evaluation and analysis of the above four dimensions, it can be found that the overall performance level of urban and rural residential insurance in Shanghai is relatively high, but there are still some problems in the operation process.

1. Introduction

The study found that although various pension systems are implemented in all countries, there are still some similarities in performance judgment, and also the provider of financing insurance services. For the performance evaluation of social security and financing insurance, researchers around the world mostly focus on the performance management of government departments. Then, work performance and management performance are similarly related to the service quality and service level received by citizens. Because it can reflect the specific use of government public funds, the service rate of government public finance has an impact. Therefore, all countries in the world are constantly exploring and trying to improve the performance management model of their social security institutions.

As for the study of government performance evaluation, most foreign scholars focus on the performance evaluation of local governments and then carry out the practice of large-scale performance evaluation. In the 1980s, some Western scholars put forward the “3E” theory of performance evaluation of public expenditure, including “Efficiency, Economy, and Effectiveness,” which were gradually developed and improved and eventually became the basic principle of performance evaluation. Based on these three principles, and combined with their own special situation, the world has formed a performance management mode with its own characteristics.

Performance evaluation is an extremely important aspect in the work of the FEDERAL government in the United States, and the Government Performance and Results Act has been specially formulated to address this issue. Local
governments and relevant departments have formulated corresponding performance strategic planning and specific implementation plans according to this act and based on the local actual situation. There are six major departments related to social insurance in the federal government, among which the Social Security Administration is the most important. Their service objects include retired citizens, low-income groups, disabled groups, medical groups, and elderly groups. In order to guarantee its functions to work effectively, the obstacle of social security office to build a set of complete performance appraisal system, guided by citizens to provide high-quality public services, maintain its sustainable payment ability, ensure the high quality management of social resources and social security programs, and strive to social security programs can not only conform to the demand of social development in the short term, but also be beneficial to support the long-term development of social strategic goals. In view of these strategic objectives, they are decomposed into many clear and feasible evaluation indicators, and the assessment content, assessment purpose, assessment time, assessment methods, assessment results, and other aspects of the indicators are specified in detail. Among them, the specific main content is as follows: according to the needs of the society, enterprises, citizens, etc., to develop new social insurance projects with development potential and market value, and to cultivate supporting policies and systems, etc., to complete specific and detailed market investigation reports or evaluation reports, to ensure the competitiveness of the Social Security Administration in the insurance market and reduce the probability of unfair and illegal events in the implementation of the system, to improve the quality and level of public services to citizens, and to improve the working level, working ability, and work awareness of civil servants.

In Australia, Centrelink, a social security agency, provides public services on behalf of the government. It obtains service contracts of government departments through bidding and other means. Its service scope covers all public service fields and provides citizens with high-quality social security services. Through continuous introduction of leading management concepts and methods, Centrelink gradually forms a complete and systematic performance evaluation system and adopts balanced scorecard, a scientific evaluation method, to manage and adjust strategic planning, plan setting, strategy arrangement, performance evaluation, and problem feedback.

The main contents of Sweden’s social security evaluation are as follows: whether the work process of the staff of the social security agency is standardized; whether the issuance of social security funds is accurate and timely; whether the social security information service system is perfect and can operate safely and efficiently; whether the internal control mechanism of social security agencies is sound; social security laws and regulations are sound and can be fully and effectively implemented. In the South Korean government departments, through the comprehensive evaluation of result objectives, strategic objectives, and specific performance indicators, it is reflected that they attach great importance to the assessment of specific implementation effects in the implementation of performance evaluation. They regard performance appraisal as an important way to gather information to test the scientificity and feasibility of strategic planning. In order to ensure that the public sector can be responsible to the public in the competition, the scientific performance evaluation system is used to evaluate it, find its problems and deficiencies, and then improve and perfect it, so as to improve the quality of public service.

To sum up, it can be seen that the government performance evaluation, on the one hand, imparts the management concept of customer first into the work, and on the other hand, permeates the governing concept of public responsibility throughout. The government management mode is shifting towards maintaining the coordinated development of the relationship between democracy and fairness. Finally, the service system of public service should be perfected, normal public order maintained, group cohesion and influence of public sector improved, and public responsibility mechanism optimized.

1.1. Research on the Construction of Old-Age Insurance System for Urban and Rural Residents. As the integration of the new rural insurance system and the urban housing insurance system, the study of the research results related to the new rural insurance system and urban employment insurance can provide a very important reference for the future study of the urban and rural housing insurance (UaRHI) system and its development and construction. At present, the research on urban and rural residence insurance system mainly includes the following aspects: first, the necessity of system establishment; second, the specific system design.

1.1.1. The Necessity of System Establishment. Domestic scholars generally believe that we should first build a set of old-age security system, which is a necessary condition to further improve the social security system. In about the necessity of the construction of endowment insurance system (EIS) for urban residents, Chen Yongjie and Li Weijun [1] believe that, in order to eradicate poverty and improve the poor old man’s old age, it is an urgent need to establish and improve the urban residents EIS, perfect our country’s social security system, improve the livelihood of the people, and improve people’s living standard, which has a very important role.

Liu Junmin [2] believes that, to thoroughly implement the scientific outlook on Development and effectively implement the Social Insurance Law, the establishment of the urban resident insurance system is conducive not only to guaranteeing and improving the quality of life of people with low income, but also to giving play to the function of income redistribution of social security, so as to ensure the fair and equal distribution of public resources. We will further promote the policy of balancing urban and rural development and equalizing basic public services. In terms of the necessity of establishing the rural social EIS, Yao Jiaxiang [3] believes that the impact of rural traditional family concept and moral concept and the weakening of family security function require the country to establish the corresponding
urban and rural social security system to solve the growing demand for the elderly. Tang Jun [4] believes that a sound rural social EIS should be established to deal with the serious problem of rural population aging caused by large population mobility.

1.1.2. Specific Design of the System

In view of the specific system design that will directly determine the specific implementation of the system, Chinese scholars attach great importance to the system design of endowment insurance: in urban and rural insurance system design aspect, in weeks [5] rang in analysis and clear after the influence factors of urban and rural residents ginseng intend, in questionnaire design selection of age, cultural level, income, traditional endowment concepts, understanding of the policy, ginseng protect cost, and the causes for the uninsured as the analysis of the empirical analysis of the quantitative indicators such as variables, based on the empirical analysis. The corresponding incentive mechanism is put forward from the perspective of residents and government, respectively. On the one hand, for individual residents, it is necessary to enhance residents' awareness of the system and insurance participation, ensure the stability and sustainability of various systems, improve the investment returns of urban and rural residents' pension funds through various ways, and reduce residents' insurance participation risks.

In the design of urban housing insurance system, Wei Fang [6] believes that the system design of urban housing insurance should be coordinated with the new rural insurance system. Yu Qingbo [7] believes that the payment standard and treatment standard of urban residential insurance system should be determined according to urban residents' pension needs, paying ability, and fund income and expenditure. In addition, the government should also play a leading role in the source of funds, provide financial support to the system through financial subsidies, do a good job in the operation and supervision of endowment insurance fund, innovate its operation and development mode, and ensure the connection between various social security systems. Li Qiang, Xue Xingli, and Wei Xinzi [8] put forward that the government, collectively and individually, must assume their respective responsibilities to ensure that the new rural insurance system has diversified sources of funds and encourage all sectors of society to contribute actively. Since the new rural insurance system is quasi-public and good, the government should take the main responsibility in the development of the system.

1.1.3. Current Situation of System Implementation

Through data analysis and comparison, Zhang Fengyi [9] and Wu Liming and Li Chao [10] concluded that the coverage rate of urban and rural residential insurance is low, the treatment level is wide, and the financing method is not fair and reasonable. Yu Yanfeng and Peng Shijie [11] found that the current UaRHI system in Jiaxing has such problems as low coordination level, high financial risk, weak mutual benefit function, poor working ability of staff in social security agencies, and lagging social security informatization.

In Li Wei [12] regarding the investigation and study of the urban and rural areas in the implementation of the specific situation of the development of the insurance system in Henan province Zhengzhou, it is concluded that the system in the process of execution showed poor ginseng protect enthusiasm, low level of pension, and weak ability of organization of social security services, business departments responsibility division of labor is not clear, there are coordination difficulties, related system connecting mechanism is imperfect, and so on. In terms of the new rural insurance system, Zou Dexin and Cao Xujie [13] pointed out that the following problems generally exist in the implementation of China’s rural EIS: narrow coverage of the system, low participation rate of the system, poor mutual aid of the system, unclear government responsibilities, low level of security, poor fund management, and operation mechanism.

1.1.4. Suggestions on Improving the System

In terms of countermeasures and suggestions to improve the pension insurance system for urban and rural residents, many scholars put forward suggestions from three perspectives: government financial responsibility, policy publicity, fund management, and other perspectives. In terms of government financial responsibility, Zhou Xiangxiang [14] and Yu Qingbo [15] believe that a guarantee mechanism of public financial input should be established to ensure the implementation of government responsibility, to accelerate the formulation of the government to provide financial support to the old-age insurance measures or regulations, ensure the implementation of the responsibilities of all parties, so as to establish and improve the government subsidy mechanism at all levels of finance, and to alleviate the maximum economic pressure of all types of residents to participate in the insurance payment, so as to promote the active and effective operation of old-age insurance work. Liu Junmin and Zhou Zhikai [16], on the basis of interpreting the basic points of UaRHI policies, proposed that, in order to ensure the sustainable development of UaRHI system, emphasis should be placed on strengthening the government’s responsibility, so as to establish a long-term and stable financing mechanism, perfect the personal account system, and enhance the accumulation mechanism of pooling accounts.

The rest of this paper is organized as follows. Section 2 reviews the particle swarm optimization algorithm with limitations of previous research. Section 3 introduces the construction process of design and determination of evaluation index the whole model. The experimental analysis is demonstrated in Section 4, while the conclusion is presented in Section 5.

2. Particle Swarm Optimization Algorithm

In this section, we discuss the different ideas of particle swarm optimization and then define the various technique of working. We consider evolutionary game analysis of water pollution control system planning in this system and define the different analysis equations.
2.1. Ideas of Particle Swarm Optimization. Particle Swarm Optimization (PSO) algorithm is a kind of evolutionary computing technology based on swarm intelligence. Its idea comes from artificial life and evolutionary computing theory. It is derived from the study of flock predation behavior and was first proposed by literature [1]. It has been successfully applied in many fields such as function optimization, neural network design, classification, pattern recognition, signal processing, and robot technology. In the PSO algorithm, the latent solutions of every optimization problem are two in the search space.

2.2. Algorithm Principle. In PSO algorithm, individuals are gradually moved to a better area according to the adaptability of each particle to the environment, and the optimal solution of the problem is finally searched and found. PSO algorithm has a distinct biological social background: cognitive behavior and social behavior; that is, in the process of seeking consistent recognition, individuals tend to remember their beliefs and consider the beliefs of other peers. When individuals perceive that their peers’ beliefs are good, they will make adaptive adjustments [2].

Let PSO be initialized as a group of random particles (random solutions), and in each iteration, the particles update themselves by tracking 2 "extreme values": the first is the best solution found by the particle itself, called the individual extreme point (its position is indicated by PI), and the other extreme point is the best solution found by the whole population so far, called the global extreme point (its position is indicated by PG). After finding these two best solutions, the particle can update its position and speed according to (1) and (2). Let us say that there are m particles, and the information about particle i can be represented by a D-dimensional vector, where the position of the i-th particle is \(X_i = (X_{i1}, X_{i2}, \ldots, X_{id}) \), \(i = 1, 2, \ldots, m \), and its velocity is \(V_i = (V_{i1}, V_{i2}, \ldots, V_{id}) \). The adaptive value can be calculated by taking xi with the optimized objective function. Remember that the optimal location searched for the ith particle is \(P_i = (P_{i1}, P_{i2}, \ldots, P_{id}) \), and the optimal location searched for the whole particle swarm is \(P_g = (P_{g1}, P_{g2}, \ldots, P_{gd}) \). The particle status update operation is as follows:

\[
\begin{align*}
V_i' &= \omega V_i + c_1 r_1 (P_i - X_id) + c_2 r_2 (P_g - X_id), \\
X_i' &= X_i + V_i', \quad i = 1, 2, \ldots, m,
\end{align*}
\]

where \(i = 1, 2, \ldots, m; \quad d = 1, \ldots, D; \) \(\omega \) is a nonnegative constant, known as the inertia factor, and we can also decrease it linearly with iteration. The learning factors \(c_1 \) and \(c_2 \) are nonnegative constants. \(R1 \) and \(R2 \) are random numbers between \([0,1]\); \(V_{id} \in (-P_{min}, P_{max}); \) \(V \) is constant; \(V_{id} \) and \(X_{id} \) are the updated particle velocity and position, respectively, and the iteration termination conditions are generally selected as the maximum iteration times, and the optimal position searched by the particle swarm so far meets the adaptation threshold. \(W \) decreases linearly from the maximum habitual weight \(w_{max} \) to \(w_{min} \) with iteration, where \(k_{max} \) is the maximum number of iterations set by the algorithm, namely,

\[
\omega = w_{max} - k \frac{w_{max} - w_{min}}{k_{max}}.
\]

2.3. Evolutionary Game Analysis of Water Pollution Control System Planning. In this paper, the evolutionary game behavior of nonlinear water pollution control system planning is analyzed based on particle swarm optimization algorithm. Water environment system planning can be regarded as a subsystem composed of interconnected, interacting, and integrated benefits. This highly complex evolution process can be expressed as

\[
C_i = f(x_i), \quad x = (B_i, S_i, E_i, T_d)^T.
\]

Among them, subsystem I has a variety of complex factors, such as ecological environment resource status factor and, social status factor Si, economic status factor E, and all dynamic factors Td. There are

\[
C_i = f(B_i, S_i, E_i, T_d).
\]

In a sufficiently small time period \(t \), the time derivative of this equation can be calculated to obtain the evolution and cultivation process of self-changing parameter capability corresponding to subsystem I, namely,

\[
\frac{\partial C_i}{\partial t} = \frac{\partial C_i}{\partial B_i} \frac{\partial B_i}{\partial t} + \frac{\partial C_i}{\partial S_i} \frac{\partial S_i}{\partial t} + \frac{\partial C_i}{\partial E_i} \frac{\partial E_i}{\partial t} + \frac{\partial C_i}{\partial T_d} \frac{\partial T_d}{\partial t}.
\]

The sustainable evolution of subsystem i is driven by social, economic, and environmental conditions and dynamic factors (ecological evolution, economic and social development and progress). Due to the nonlinear, continuous, and complex problems of water environment ecosystem, the aquatic environment can be regarded as a whole based on rules and unit autonomy, and the intelligence and regeneration ability of subsystems can be fully utilized to guide the development of the whole system to the optimal direction. In the process of the evolution of water environment system, the actors involved in it can change their behavior through learning, so as to achieve mutual coordination and adaptation with the external environment.
3. Design and Determination of Evaluation Index System

In this section, firstly define the design of index system and performance evaluation. Some explanation of indicators discusses the public and financial dimension. The organizational management dimension and the different institutional development dimension are evaluated and discussed.

3.1. Index System Design. This paper uses the revised balanced scorecard method to evaluate the performance of Shanghai UaRHI system and designs the evaluation index system through the top-down objective decomposition method. The first step is to decompose the strategic objectives into various dimensions and then refine them to form specific performance indicators. Starting from four dimensions, namely, public dimension, financial dimension, organizational management dimension, and system development dimension, this paper establishes the following basic framework for the performance evaluation of UaRHI system in Shanghai. Secondary index system of rural residents’ pension is shown in Figure 1.

3.2. Explanation of Some Indicators. The indexes include two categories. One is direct index, which can be obtained directly through data query or some simple operations. The other is indirect indicators, which are difficult to obtain directly and must reflect their specific conditions through other forms. The specific indicators are explained as follows:

3.2.1. Public Dimension. This dimension contains the first-level index of satisfaction and is specifically decomposed into six second-level indicators, which are defined as follows:

First, residents’ expectations: residents’ expectations refer to the effect that residents hope to obtain at a certain stage based on certain experience or through prediction. Residents’ expectations will directly affect the level of satisfaction. Therefore, residents’ expectations are placed in a crucial position in all satisfaction studies. Therefore, this paper investigates and studies the setting of residents’ expectation observation variables mainly from three aspects: the expectation of feedback mechanism, the expectation of handling services, and the expectation of treatment level.

Second, perceived quality: perceived quality refers to the actual feeling of residents, which involves all aspects of the UaRHI system. Therefore, it is one of the key factors that must be selected in the satisfaction evaluation of UaRHI system, in order to discuss the importance of sensory quality more clearly, on the part of the design of choice for capture to expend scale, government subsidies, treatment conditions, service attitude, service level, and service efficiency, basic annuities level, basic pension adjustment mechanism and pension level, and so on to get to know ginseng protects the actual perception of residents, and to more fully reflect the importance and influence of perceived quality.

Thirdly, perceived value reflects customers’ subjective feelings about the resulting benefits based on their full understanding of products and services. In general, we judge customers’ perceived value by evaluating the quality of the product or service. This paper mainly selects two indexes: the function of basic pension and the degree of pension to reflect the perceived value of insured residents to Shanghai’s UaRHI system.

Fourth, residents’ satisfaction, which essentially reflects a kind of emotion, represents the degree of psychological satisfaction of insured residents to obtain rights and interests from the UaRHI system. According to the theory of public satisfaction, this paper sets observation variables from three aspects when measuring residents’ satisfaction index, namely, system design, handling service, and guarantee function.

Fifth, residents complaints: when people question or feel dissatisfied with something, it represents the generation of complaining emotions, which may be vented or solved in some way or another. In the UaRHI system, when residents complain, residents may seek solutions from relevant government departments through letters and visits, reports, and complaints, but sometimes residents’ complaints can also be alleviated through some informal ways. In the index design of residents’ complaints, this paper mainly considers the degree of complaints and whether complaints have been dealt with.

Sixth, residents trust: for the system of UaRHI, residents’ trust is mainly reflected in their trust in the implementation of UaRHI policies by the government and in the implementation of a more secure system by the government in the future. This index should include the following aspects: trust in system design, trust in policy implementation, and trust in the fulfillment of benefits.

3.2.2. Financial Dimension. The financial dimension is divided into three first-level indicators, namely, the fund income and expenditure status, the fund financing capacity, and the fund payment capacity. In these first-level indicators, they are specifically divided into corresponding second-level indicators. First, the fund income and expenditure index set, which describes the fund income and expenditure of Shanghai UaRHI system, reflects the development scale of UaRHI system.

3.2.3. Organizational Management Dimension. This dimension includes a set of first-level indicators for organization management, which describes organization setting and management efficiency. It is evaluated from the following aspects: organization network density = number of management organizations/10,000 people. This index reflects whether the establishment of UaRHI institutions is sufficient. Per capita service population = number of insured personnel/numbers of management personnel. This index describes the work efficiency of the staff in UaRHI institutions. Management personnel density = amount of auditors/number of management personnel. This index reflects the safe operation degree of UaRHI fund.
3.2.4. Dimension of Institutional Development. Institutional development mainly describes the status quo and trend of institutional development and focuses on the coupling of institutions. From the perspective of institutional coupling, this index set analyzes the coupling of Shanghai’s UaRHI system from three aspects: institutional coupling with new rural insurance system, urban housing insurance system, urban employment insurance system, and urban-rural housing insurance system with other social security systems. At present, this dimension index is qualitative analysis.

4. Experimental Analysis

In this section, we firstly collect the basic information of this research related. The information data reliability defines to the degree of stability. Then, we discuss validity analysis to the experimental evaluation.

4.1. Basic Information of the Research Object. According to the statistics of the questionnaire, there are 78 males, accounting for 59% of the total sample, and 55 females, accounting for 41% of the total sample. The proportion of males is consistent with the actual situation in the society. The gender ratio of males and females in the survey sample is shown in Figure 2.

4.2. Reliability Analysis. Reliability refers to the degree of stability or consistency of the results measured by the test table, which is often reflected by internal consistency. Generally, the higher the reliability coefficient, the higher the consistency, stability, and reliability of the research results. In the reliability, the influence of systematic error is relatively small, because the generation of systematic error is measured or investigated by the same object and way, so it reflects the consistency of the situation. On the contrary, there is random error. Due to the high randomness under this condition, different research objects will lead to inconsistency, thus reducing the reliability.

Table 1 shows the reliability test results of each dimension. The reliability tests of the six dimensions all met the requirements, and Cronbach’s α values of each dimension all exceeded 0.7. Among them, residents’ expectation, perceived quality and residents’ trust reached over 0.8. The perceived quality dimension is even as high as 0.9. Considering that Cronbach α coefficient will increase with the increase of scale items, we cannot rule out that this is due to the large number of items in this dimension. In general, the reliability test results show that the design of the pre-survey questionnaire is reasonable, and the internal stability and consistency of the questions in each dimension of the questionnaire are high.

4.3. Validity Analysis. A concise explanation is the accuracy and usefulness of the data obtained from the test. It is one of the most important conditions necessary for scientific measurement data. There is also a positive correlation between the fit degree of the investigated object and the measured result, and the greater the fit degree, the higher the validity value. Validity analysis can reflect different levels of validity according to the measured results.

As shown in Table 2, the validity analysis was conducted on the six dimensions by SPSS, and Kaiser-Meyer-Olkin (KMO) test values of the six dimensions, including residents’
expectation, perceived quality, perceived value, residents’
complaint, residents’ trust, and satisfaction, were all over 0.5.
As can be seen from Table 2, the KMO value of the di-
mension of perceived quality is as high as 0.846, which
means that it has good validity with each dimension and
meets the basic conditions for verifying factor analysis.
Moreover, Bartlett’s sphericity data between all dimensions
are less than 0.05, indicating that the correlation between
variables is very close. Therefore, the validation of factor
analysis can be expanded, and the questionnaire design is
reasonable and has high validity.

Table 3 shows the cumulative total variance of interpre-
tation of the six dimensions. It can be seen from Table 3
that the cumulative total variance of interpretation of each
dimension of the six dimensions can reach 100%, which
further shows that the six dimensions have good validity and
the ability to explain structural variables.

5. Conclusion

Using particle swarm algorithm to analyze the example and
obtain the reference gauge row results, using the particle
swarm algorithm to calculate the single solution problem of
demarcation between the Nash equilibrium is feasible, and
compared with genetic algorithm, this algorithm can per-
form direct optimization, showed more efficient computing
performance, and can be more easily applied to the optimization of actual project. In the field of thought and the balanced scorecard method, analytic hierarchy process (AHP), and other research methods, through a series of field investigation, from the public dimension, finance dimension, organization and management dimension, and system development dimension four aspects set out to build a set of basic EIS for urban and rural residents in Shanghai performance evaluation index system, this paper analyzes the implementation situation and performance level of the UAHR system in Shanghai and finds the problems and deficiencies in the implementation process.

Data Availability

The data used to support the findings of this study are available from the corresponding author upon request.

Conflicts of Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgments

This study was supported by Philosophy and Social Science Planning Project of Anhui Province, China: Research on rural old-age security from the perspective of the return of elderly migrant workers--Based on the survey of Fuyang, Anhui Province (ahsky2016d18), and Industry university research innovation fund project of science and technology development center of the Ministry of Education: Research on influencing factors and mechanism of purchase intention of Internet personal financial products based on big data technology (2018a01011).

References

[1] R. Holzman and R. Hinz, Old Age Income Support in the Century: An International Perspective on Pension Systems and Reform, pp. 57–62, The World Bank, NW, Washington, 2005.
[2] M. Qassoum, Glocal Dialectics in the Production and Reproduction of the Palestinian Space, University of Illinois at Chicago, Chicago, Illinois, 2004.
[3] J. Kennedy and R. Eberhart, "Particle swarm optimization," vol. 4, pp. 1942–1948, in Proceedings of the ICNN’95-International Conference on Neural Networks, vol. 4, pp. 1942–1948, IEEE, Perth, WA, Australia, December 1995.
[4] A. A. Alchian and H. demsetz, "Production, information costs and economic organization," The American Economic Review, vol. 62, no. 5, pp. 777–795, 1972.
[5] M. C. Jensen and W. H. Meckling, "Theory of the firm: m, " Journal of Financial Economics, vol. 3, no. 4, pp. 305–360, 1976.
[6] M. A. Spence and R. Z. Insurance, "Information, and individual action," The American Economic Review, vol. 61, no. 2, pp. 380–387, 1971.
[7] J. Mirrlees, Notes on Welfare Economics. Information and Uncertainty, North Holland, Amsterdam, 1974.
[8] B. Holmstrom, "Moral hazard in teams," The Bell Journal of Economics, vol. 13, no. 2, pp. 324–340, 1982.
[9] S. J. Grossman and O. D. Hart, "An analysis of the principal-agent problem," Econometrica, vol. 51, no. 1, pp. 7–45, 1983.
[10] E. F. Fama, "Agency problems and the theory of the firm," Journal of Political Economy, vol. 88, no. 2, pp. 288–307, 1980.
[11] D. M. Kreps, P. Milgrom, J. Roberts, and R. Wilson, "Rational cooperation in the finitely repeated prisoners dilemma," Journal of Economic Theory, vol. 27, pp. 245–252, 1982.
[12] B. Holmstrom, "Managerial incentive problems: a dynamic perspective," The Review of Economic Studies, vol. 66, no. 1, pp. 169–182, 1999.
[13] S. J. Grossman and O. D. Hart, "One share-one vote and the market for corporate control," Journal of Financial Economics, vol. 20, pp. 203–235, 1988.
[14] W. A. Lewis, "Economic development with unlimited supplies of labor," The Manchester School, no. 22, pp. 139–191, 1954.
[15] G Ranis and J. C. H. Fei, "A theory of economic development," The American Economic Review, vol. 51, no. 4, pp. 533–565, 1961.
[16] M. P. Todaro, "A model of labor migration and urban unemployment in less developed countries," The American Economic Review, vol. 59, no. 1, pp. 138–148, 1969.