CASE REPORT

MR Imaging of Focal Medullary Sponge Kidney: Case Report

Tomoyuki HIDA¹, Akihiro NISHIE¹*, Yoshiki ASAYAMA¹, Kousei ISHIGAMI¹, Nobuhiro FUJITA¹, Junichi INOKUCHI², Seiji NAITO², Sadamu ANDO³, and Hiroshi HONDA¹

Departments of ¹Clinical Radiology and ²Urology, Graduate School of Medical Sciences, Kyushu University
3–1–1 Maidashi, Higashi-ku, Fukuoka 812–8582, Japan
³Department of Urology, Kitakyushu Municipal Medical Center

(Received July 22, 2011; Accepted September 29, 2011)

We present a case of focal medullary sponge kidney (MSK) that mimicked a renal tumor. Evaluation of a patient with history of macrohematuria revealed a left renal mass of 3-cm diameter. T₁-weighted magnetic resonance (MR) images revealed a mass of mixed intensity protruding toward the renal sinus. On fat-saturated T₂-weighted MR images, the lesion’s remarkable hyperintensity suggested the presence of an aggregation of tiny cysts. On diffusion-weighted MR images, the mass also demonstrated high intensity, and its apparent diffusion coefficient was partly decreased (1.12 × 10⁻³ mm²/s). On computed tomography, precontrast images revealed no calcification in the mass. Although slight enhancement was seen in the corticomedullary phase, thick and dense streaks of contrast radiating peripherally were identified in the mass in the excretory phase. Focal MSK was diagnosed. We discuss the potential of MR imaging for diagnosing focal MSK.

Keywords: CT, diffusion-weighted imaging, medullary sponge kidney, MRI, MR urography

Introduction

Medullary sponge kidney (MSK) is a developmental abnormality characterized by cystic dilatation of the collecting ducts in the pyramids¹,² and is usually diagnosed by plain X-ray of the abdomen or intravenous urography (IVU) based on imaging characteristics, such as calcification of the renal medulla and dilatation of the collecting ducts. Although computed tomography (CT) has been used to recognize these findings,³-⁵ we believe magnetic resonance (MR) findings related to MSK are not reported.

MSK often occurs in both kidneys and multiple renal pyramids; its rare occurrence in only one kidney or pyramid¹ is termed “focal” or “segmental.”⁶,⁷

We report a case of focal MSK that mimics a renal tumor and describe its appearance on MR.

Case Report

A 31-year-old man with a several-year history of asymptomatic macrohematuria visited a nearby clinic, where he underwent IVU that showed possible compression of the infundibulum in the upper pole of the left kidney (Fig. 1). He was referred to our hospital for further examination because he was found to have a mass of 3-cm diameter in the left kidney. The patient had no appreciable past history or familial history. Laboratory data were within normal ranges, and urinary cytology was negative. On MR imaging, fat-saturated T₁-weighted images revealed a mass of mixed intensity protruding toward the renal sinus (Fig. 2). On fat-saturated T₂-weighted images, the mass was described as remarkably hyperintense. MR urography showed the mass to be an aggregation of tiny cysts (Fig. 3). On diffusion-weighted images, the entire mass showed high intensity (Fig. 4A). However, the apparent diffusion coefficient (ADC) was relatively low on the side of the papilla (1.12 × 10⁻³ mm²/s) and high on the side of the cortex (1.97 × 10⁻³ mm²/s) (Fig. 4B). On CT, precontrast images revealed no calcification. Although the
Fig. 1. Intravenous urography scanned 5 min after injection of iodine contrast showed possible compression of the infundibulum in the upper pole of the left kidney.

Fig. 2. Axial fat-saturated T1-weighted imaging (water selective excitation, repetition time [TR]/echo time [TE] = 200 ms/3.9 ms) showed a mass of mixed intensity protruding toward the renal sinus in the left kidney (arrow).

mass showed slight enhancement in the corticomedullary phase (Fig. 5A), thick and dense streaks of contrast radiating peripherally were identified in the mass in the excretory phase (Fig. 5B). We also created an oblique sagittal maximum intensity projection image (CT urography) (Fig. 5C). Focal MSK was diagnosed based on CT findings. One year later, the mass was stable in size and appearance on CT.

Discussion

MSK is a developmental abnormality involving the medullary pyramids and characterized by cystic dilatation of the collecting ducts.1,2 Morbidity is estimated at one in 5,000 to 20,000 people.8 Although most patients with MSK remain asymptomatic, 2.6 to 20% demonstrate clinical symptoms, such as renal colic, urinary tract infection, and macrohematuria due to urinary stones.2,9 Therefore, MSK is mainly diagnosed by kidney-ureter-bladder radiography (KUB) and IVU. KUB may demonstrate calcification that corresponds to the renal pyramids, and IVU shows characteristic findings of so-called “bunches of grapes,” “pyramidal blush,” or “bouquets of flowers.”10 We believe that in our case, stools in the colon overlying the left kidney may have disturbed the clear depiction of characteristic IVU findings.

Recent improvements in imaging devices and techniques have resulted in the frequent use of CT or MR imaging for evaluating renal masses before IVU. Thus, familiarity with the characteristic CT and MR findings of MSK is important. Ginalski and associates3 reported that hyperdense papillae of 55 to 70 Hounsfield units on precontrast CT may suggest the presence of MSK, even if macroscopic calcification is not detected. However, a similar finding can also be observed that results from high medullary concentration of sodium chloride.11 It may be difficult to diagnose MSK using only precontrast CT. The appearance of an MSK lesion in the excretory phase of contrast-enhanced CT and CT urography corresponds to that seen on IVU and should aid differentiation of MSK from other renal tumors.3-5 In fact, our case was diagnosed using the excretory phase and CT urography. However, in cases with only single phase scanning after contrast administration, focal MSK tends to be misdiagnosed as a hypovascular renal tumor, especially when it involves only one medulla and demon-
Fig. 3. Coronal magnetic resonance (MR) urography (single shot fast spin echo, repetition time [TR]/echo time [TE] = 10,000 ms/800 ms, 5-cm slice thickness) showed the mass as an aggregation of tiny cysts (arrow).

Fig. 4. The axial diffusion-weighted echo-planar imaging (respiratory trigger, single shot, b factor = 1,000 s/mm², repetition time [TR]/echo time [TE] = 1197 ms/71 ms, 0.7 half scan factor, one signal average, spectral presaturation inversion recovery, 2 sensitivity encoding [SENSE] factor, diffusion gradients applied in 3 axes) showed a hyperintense mass at the corresponding site (arrow) (A). The axial apparent diffusion coefficient (ADC) map calculated with 3 different b factors (0, 500, and 1,000 s/mm²) showed a relatively hypointense region with a value of 1.12×10^{-3} mm²/s on the side of the papilla (arrow) and a hyperintense region with a value of 1.97×10^{-3} mm²/s on the side of the cortex (arrowheads) (B).

MRI of Focal Medullary Sponge Kidney

V o l . 1 1 N o . 1 , 2 0 1 2

strates no calcification. It is desirable to perform an additional scan of the excretory phase in patients with renal medullary mass.

To our knowledge, MR findings of MSK are not reported. In our case, the lesion showed mixed intensity on T₁-weighted imaging, and its obvious high intensity on T₂-weighted imaging was thought especially to reflect the pathological characteristics of this disease, such as the dilation of collecting ducts and aggregation of cystic structures. MR urography directly showed such pathological changes and should be very useful for diagnosing MSK. One interesting finding was that the ADC of the lesion was heterogeneous, though the mass was entirely hyperintense on diffusion-weighted imaging (b = 1,000). High ADC on the side of the cortex can be explained pathologically by dilation of the collecting ducts and aggregation of cystic structures.

On the other hand, the ADC on the side of the papilla was relatively low and rather similar to those of solid masses like renal cell carcinoma or angiomyolipoma, though the imaging parameters and methods used to calculate ADC differed somewhat. This finding may reflect clotted blood in cystic structures, or increased cellularity of the interstitium around the cysts. Given the history of macrohematuria, mixed intensity on T₁-weighted imaging, and remarkable hyperintensity on T₂-
weighted imaging, the more likely cause of the low ADC would seem to be the clotted blood. It is important that MSK not be misdiagnosed as a solid renal mass. Because MR imaging can confuse diagnosis though it provides more information about the target, it may be better to perform CT prior to MR imaging to evaluate a renal mass.

In conclusion, we presented MR findings of focal MSK that mimicked a renal tumor. Remarkable hyperintensity on T2-weighted imaging and aggregation of cystic structures on MR urography are key findings in establishing a diagnosis of focal MSK.

References
1. Thomsen HS, Levine E, Meilstrup JW, et al. Renal cystic diseases. Eur Radiol 1997; 7:1267–1275.
2. Katabathina VS, Kota G, Dasyam AK, Shanbhogue AK, Prasad SR. Adult renal cystic disease: a genetic, biological, and developmental primer. Radiographics 2010; 30:1509–1523.
3. Ginalske JM, Schnyder P, Portmann L, Jaeger P. Medullary sponge kidney on axial computed tomography: comparison with excretory urography. Eur J Radiol 1991; 12:104–107.
4. Maw AM, Megibow AJ, Grasso M, Goldfarb DS. Diagnosis of medullary sponge kidney by comput-
ed tomographic urography. Am J Kidney Dis 2007; 50:146–150.
5. Boag GS, Nolan R. CT visualization of medullary sponge kidney. Urol Radiol 1988; 9:220–221.
6. Kaver I, Flanders EL, Kay S, Koontz WW Jr. Segmental medullary sponge kidney mimicking a renal mass. J Urol 1989; 141:1181–1183.
7. Choong M, Phillips GW. Renal transitional cell carcinoma mimicking medullary sponge kidney. Br J Radiol 1991; 64:275–277.
8. Forster JA, Taylor J, Browning AJ, Biyani CS. A review of the natural progression of medullary sponge kidney and a novel grading system based on intravenous urography findings. Urol Int 2007; 78: 264–269.
9. Indridason OS, Thomas L, Berkoben M. Medullary sponge kidney associated with congenital hemihypertrophy. J Am Soc Nephrol 1996; 7:1123–1130.
10. Fellegara G, Froio E, Luong TV, et al. A case of medullary sponge kidney (Cacchi-Ricci disease) mimicking a renal mass. Arch Ital Urol Androl 2005; 77:202–205.
11. Kumar R, Wang ZJ, Fu Y, Forsythe C, Webb EM, Yeh BM. Visualization of renal medullary hyperattenuation at unenhanced CT: what is the effect of furosemide administration? Radiology 2010; 255: 495–500.
12. Kilickesmez O, Inci E, Atilla S, et al. Diffusion-weighted imaging of the renal and adrenal lesions. J Comput Assist Tomogr 2009; 33:828–833.
13. D'Agati VD, Jennette JC, Silva FG. AFIP Non-tumor Fascicle 4: non-neoplastic kidney diseases. Chapter 2: Congenital abnormalities including cystic diseases. Washington D.C.: American Registry of Pathology, 2005; 45–46.