High Resolution Mapping of a *Hordeum bulbosum*-Derived Powdery Mildew Resistance Locus in Barley Using Distinct Homologous Introgression Lines

Parastoo Hoseinzadeh1†, Brigitte Ruge-Wehling2, Patrick Schweizer2‡, Nils Stein1,4 and Hélène Pidon1*†

1 Genomics of Genetic Resources, Department of Genebank, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany, 2 Institute for Breeding Research on Agricultural Crops, Julius Kühn Institute (JKI), Sanitz, Germany, 3 Pathogen-Stress Genomics, Department of Breeding Research, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany, 4 Department of Crop Sciences, Center for Integrated Breeding Research (CiBreed), Georg-August-University, Göttingen, Germany

Powdery mildew caused by *Blumeria graminis* f. sp. *hordei* (*Bgh*) is one of the main foliar diseases in barley (*Hordeum vulgare* L.; *Hv*). Naturally occurring resistance genes used in barley breeding are a cost effective and environmentally sustainable strategy to minimize the impact of pathogens, however, the primary gene pool of *H. vulgare* contains limited diversity owing to recent domestication bottlenecks. To ensure durable resistance against this pathogen, more genes are required that could be unraveled by investigation of secondary barley gene-pool. A large set of *Hordeum bulbosum* (*Hb*) introgression lines (ILs) harboring a diverse set of desirable resistance traits have been developed and are being routinely used as source of novel diversity in gene mapping studies. Nevertheless, this strategy is often compromised by a lack of recombination between the introgressed fragment and the orthologous chromosome of the barley genome. In this study, we fine-mapped a *Hb* gene conferring resistance to barley powdery mildew. The initial genotyping of two *Hb* ILs mapping populations with differently sized 2HS introgressions revealed severely reduced interspecific recombination in the region of the introgressed segment, preventing precise localization of the gene. To overcome this difficulty, we developed an alternative strategy, exploiting intraspecific recombination by crossing two *Hv/Hb* ILs with collinear *Hb* introgressions, one of which carries a powdery mildew resistance gene, while the other doesn’t. The intraspecific recombination rate in the *Hb*-introgressed fragment of 2HS was approximately 20 times higher than it was in the initial simple ILs mapping populations. Using high-throughput genotyping-by-sequencing (GBS), we allocated the resistance gene to a 1.4 Mb interval, based on an estimate using the *Hv* genome as reference, in populations of only 103 and 146 individuals, respectively, similar to what is expected at this locus in barley. The most likely candidate resistance gene within this...
INTRODUCTION

The increased genetic uniformity of cultivated crops, makes them highly vulnerable to various biotic and abiotic stresses, leading to crop yield losses and serious food security issues (Hoisington et al., 1999). Disease resistance breeding is a cost effective and environmentally sustainable strategy for minimizing the damage caused by plant pathogens. Hence, plant breeders are continuously working to discover novel sources of genetic resistance. Crop wild relatives (CWRs) are a reservoir of genetic variation providing an important source of novel alleles for the genetic improvement of cultivated species. Crosses between cultivars and CWRs have been carried out in several crop species to unlock this favorable genetic diversity (Tanksley and McCouch, 1997; Feuillet et al., 2008). Some prominent examples of the introgression of favorable disease resistance alleles from CWRs are the introductions of late blight resistance into potato from the wild potato Solanum demissum (Rao, 1979; Prescott-Allen and Prescott-Allen, 1986), and of stem rust resistance genes Sr21 (Chen et al., 2015) and Sr39 (Kerber and Dyck, 1990), both effective against the race Ug99, into bread wheat from Triticum monococcum and Aegilops speltoides, respectively.

Barley (Hordeum vulgare L.), the fourth most important cereal crop in the world, is affected each year by up to 30% potential yield loss due to pests and diseases (Savary et al., 2012). Limitations in the availability of novel resistance genes or alleles in the primary gene pool of barley, comprising the cultivated barley H. vulgare spp. vulgare and its wild progenitor H. vulgare spp. spontaneum, has directed the focus of research toward other barley gene pools. Bulbous barley, Hordeum bulbosum (Hb), a wild self-incompatible species and the only member of the secondary gene pool of cultivated barley (von Bothmer et al., 1995) is resistant to many barley pathogens (Xu and Kashka, 1992; Walther et al., 2000). A large panel of Hb introgression lines (ILs) harboring a diverse spectrum of resistance traits has been developed during recent years (Pickering et al., 1995; Johnston et al., 2009). This resource comprises ILs carrying, among others, the barley leaf rust resistance gene Rph26 on chromosome 1HL (Yu et al., 2018); barley leaf rust gene Rph22 (Johnston et al., 2013) and barley mild mosaic virus gene Rym16Hb (Ruge-Wehling et al., 2006) both located on chromosome 2HL; barley yellow dwarf virus resistance gene RyderHb on chromosome 3HL (Scholz et al., 2009) as well as loci conferring powdery mildew resistance located on chromosome 2HS, 2HL and 7HL in barley/Hb introgression lines (Xu and Kashka, 1992; Pickering et al., 1995; Shtaya et al., 2007). These ILs represent a unique genetic resource for improving barley resistance to pathogens and for scientific investigation of resistance mechanisms as they provide access to further genetic diversity out of the primary gene pool of barley (Tanksley and Nelson, 1996; Zamir, 2001; Johnston et al., 2009). Genotyping-by-sequencing (GBS) of 145 Hv/Hb introgression lines (Wendler et al., 2014, 2015) has provided an extensive pool of molecular markers, sequence resources and single-nucleotide polymorphisms (SNPs) information, greatly improving the efficiency of mapping Hb loci.

Since the identification and the extensive use of the durable and complete mlo resistance gene in European germplasm (Jorgensen, 1992), the threat of powdery mildew to barley has been largely mitigated. However, mlo is associated with yield penalties (Kjaer et al., 1990) and increased susceptibility to some hemibiotrophic and necrotrophic fungi (Jarosch et al., 1999; Kumar et al., 2001; McGrann et al., 2014). Thus, the search for alternative sources of resistance to powdery mildew remains important for barley breeding (Czembor, 2002; Corrion and Day, 2015). The wild progenitor H. vulgare spp. spontaneum proved to be a great source of diversity of resistance genes (Fischbeck et al., 1976; Dreiseitl and Bockelman, 2003). However, these genes are mostly race-specific, major resistance genes. They are particularly effective, but prone to be rapidly overcome by emerging new pathotypes. Therefore, the search for non-host resistance, from plant species to which the pathogen is not coevolutionary adapted, represent a great hope to achieve a complete and durable resistance. Several Hv/Hb introgression lines carrying a locus conferring powdery mildew resistance have been described (Xu and Kashka, 1992; Pickering et al., 1995, 1998; Shtaya et al., 2007). The Hb accession A42 displays a dominant high resistance to powdery mildew that has been localized on the short arm of chromosome 2Hb in preliminary studies (Szigt and Szigt, 1991; Michel, 1996). Interestingly, several significant QTLs and major genes associated with powdery mildew resistance have been repeatedly reported in this region in cultivated barley (Backes et al., 2003; von Korff et al., 2005; Repková et al., 2009). Moreover, a resistance gene to powdery mildew has been reported in this region in various Hb accessions (Pickering et al., 1995; Zhang et al., 2001; Shtaya et al., 2007).

While the potential value of untapped genetic diversity of CWR is immense, their application in breeding programs through the use of ILs is hampered by negative linkage drag, mainly caused by severely repressed genetic recombination (Wijker and de Jong, 2008; Prohens et al., 2017), which can confer yield penalties or other unfavorable characteristics (Hospital, 2001). The degree of drag is correlated with the size of introgressed CWR chromatin segments, and thus can be mitigated by reducing the size of respective introgressions through recombination (Frisch and Melchinger, 2001). However, the efficient utilization of Hb germplasm in barley crop
improvement and the genetic mapping of loci contributed by Hb suffers from highly reduced frequency of recombination in introgressed intervals up to 14-fold compared to intraspecific barley crosses (Ruge et al., 2003; Ruge-Wehling et al., 2006; Kakeda et al., 2008; Johnston et al., 2013). Possible explanations for this phenomenon include excessive sequence diversity, structural variation among Hordeum genomes, and probably other unknown mechanisms (Pickering, 1991; Hoffmann et al., 2004; Wendler et al., 2017). To reduce the negative linkage drag, precise delimitation of the causal gene is required, which usually demands intensive screening of large segregating Hv/Hb ILs populations.

Canady et al. (2006) compared the recombination rate in crosses between cultivated tomato (*Solanum lycopersicum*) and ILs with *Solanum lycopersicoides* fragments in *S. lycopersicum* backgrounds with the recombination in crosses between ILs with *S. lycopersicoides* fragments and ILs with *Solanum pennellii* fragments in the same region. They showed that tomato ILs with overlapping fragments from closely related species exhibited increased recombination rates in those fragments. Similarly, in barley, Johnston et al. (2015) demonstrated the usefulness of intraspecific recombination between Hb ILs to overcome the negative linkage between genes conferring pathogen resistance and reduced yield. They crossed two recombinant ILs containing an Hb locus on chromosome 2HL comprising the genes $Rph22$ and $Rym16Hb$, together with the proximal region of the original introgression for one of them, and the distal region for the other. They obtained four lines with reduced introgressions around the locus of interest for which the yield was close to the one of the recurrent Hv genotype.

The current study aimed to map a dominant powdery mildew resistance locus on chromosome 2HS introgressed from the tetraploid A42 powdery mildew resistant Hb accession into a susceptible barley cultivar “Borwina.” Mapping in populations of over 200 F7 and BC1F6 from crosses between a susceptible barley cultivar and an Hb IL showed severely repressed recombination between the introgressed segment and the Hv genome. To overcome this difficulty, we exploited intraspecific recombination instead of interspecific recombination by crossing the IL carrying the resistance locus with another Hv/Hb IL carrying a homologous Hb introgression without resistance loci.

MATERIALS AND METHODS

Fungal Isolate and Phenotyping Test

The swiss powdery mildew field isolate CH4.8 was chosen based on its hypersensitive response it triggers on resistant plants and its capacity to overcome the resistance gene $MIRu2$ present in Borwina, allowing a clear discrimination between resistant and susceptible plants. The resistance test was carried out in two technical replicates by detached leaf assay on the second seedling leaf sampled 14 days after sowing, as described in Hoseinzadeh et al. (2019). The inoculated detached leaves were kept for 7 days in a growth cabinet (MLR-352H, Panasonic, Japan) with LED light sources (S2 20W matt nw, ARTEKO-LED, Germany) at 20°C with 60% humidity and a 16:8 h photoperiod. Powdery mildew resistance phenotype was scored macroscopically based on percentage infection area as described by Mains and Dietz (1930). Plants without mycelial growth and sporulation but presenting necrotic flecks (infection type 1) were classified as resistant, while those having infection types similar to the susceptible parent “Borwina,” with sporulation of well-developed colonies (infection types 3 and 4) were classified as susceptible.

Plant Material and Population Development

Initial genetic mapping was performed on the F7 and BC1F6 populations “5216” and “4176,” respectively, both derived from crossing a tetraploid derivative of the colchicine treated German winter barley cultivar “Borwina” and the tetraploid Hb accession A42, which is resistant to several European barley powdery mildew isolates. Both “5216” and “4176” populations were derived from selfing of a single plant from the previous generation established as both resistant and heterozygous at the resistance locus. The crossing scheme used to generate those populations is described in Figure 1.

![Figure 1](https://example.com/figure1.png)
We hypothesized that differences in the sequence or organization between Hv and Hb orthologous genome regions would severely reduce meiotic recombination. To test this hypothesis, we analyzed intraspecific Hb/Hb recombination in a Hv background. We generated two F2 populations by crossing two independent Hv/Hb ILs carrying independent but overlapping Hb introgressions at the terminal 2HS chromosome, thus representing different Hb genotypes at the resistance locus. Three introgression lines “IL 88,” “IL 99,” and “IL 116,” developed in New Zealand Institute for Crop and Food Research, were selected that carry independent Hb introgressions at end of the short arm of barley chromosome 2H (Wendler et al., 2015; Table 1). These three ILs were phenotyped for resistance against isolate CH4.8 (Figure 2). Only “IL 88” displayed full susceptibility to CH4.8 and was used for further population development.

The homozygous resistant ILs 5216/4_40 and 4176/26_33 from the populations “5216” and “4176” were crossed to the susceptible “IL 88.” From each cross, a single F1 plant was selfed, resulting in 103 and 146 F2 seeds, respectively. These two F2 populations were named “dIL_5216” and “dIL_4176,” respectively.

Genomic DNA Extraction

Genomic DNA was extracted from third leaves of barley seedlings using a guanidine isothiocyanate-based DNA isolation method in 96-well plate format as described earlier (Milner et al., 2018). dsDNA concentration was measured by Qubit® 2.0 Fluorometer using the Qubit™ dsDNA BR (Broad Range) Assay Kit (Invitrogen, Carlsbad, CA, United States) following the manufacturer’s protocol.

Marker Development

To screen the initial IL mapping populations “4176” and “5216” for recombinants, nine CAPS markers (Supplementary Table 1) were designed to be evenly distributed over the distal 20 cM of barley chromosome 2HS, based on the conserved interspecific SNPs identified by targeted enrichment resequencing of 145 Hb ILs (Wendler et al., 2015). This set of ILs included the F4 homozygous 2HS IL (3026) from the mapping population “5216” and its associated donor lines, plus four additional Hv cultivars and four Hb accesses (Wendler et al., 2015). Only conserved Hv/Hb SNPs with a minimum of six-fold read coverage and located in the target region on the barley draft genome (International Barley Genome Sequencing Consortium., 2012) were selected and converted into CAPS markers using SNP2CAPS software (Thiel et al., 2004). Primer design was carried out using the default settings of Primer3 v0.4.01 (Koressaar and Remm, 2007; O’Halloran, 2015) with minor modifications: The primer length was set between 19–21 bp. Primer melting temperature (Tm) was set to minimum Tm = 58°C, optimum Tm = 59°C and maximum Tm = 60°C. The product size was defined to be between 700 and 1,000 bp and Guanine-Cytosine content (GC-content) was set within the range of 50–55%.

CAPS Genotyping

Genotyping of populations “4176” and “5216” with the described CAPS markers was performed in a 20 µl PCR reaction volume including 20 ng genomic DNA, 0.1 U of HotStarTaq DNA Polymerase (Qiagen, Hilden, Germany), 1x PCR reaction buffer containing 15 mM MgCl₂ (Qiagen, Hilden, Germany), 0.2 mM of each dNTP (Fermentas, Fermentas, St. Leon-Rot, Germany), and 0.5 mM of each primer. All fragments were amplified using the following touchdown PCR profile: an initial denaturing step of 15 min at 95°C was followed by four cycles with denaturation at 95°C for 30 s, annealing at 62°C for 30 s (decreasing by 1°C per cycle), and extension at 72°C for 30 s. A final extension step was performed at 72°C for 7 min. The enzymatic digestion of the amplicons was performed in a 10 µl volume containing 5 µl of PCR product, 1× of appropriate buffer (New England Biolabs, Hitchin, United Kingdom), 1 U of enzyme (New England Biolabs, Hitchin, United Kingdom) and adjusted to final volume by adding molecular biology grade pure water. The reaction mix was incubated for 1 h at recommended incubation temperature. The digested PCR products were resolved by 1.5–2.5% gel-electrophoresis depending on amplicon size.

Genotyping-by-Sequencing and Data Analysis

GBS was used, following published procedures (Mascher et al., 2013b), to check the genetic purity and state of heterozygosity of F1 hybrid seeds derived from crosses between overlapping 2HS introgression lines as well as to genotype the whole F2 populations derived from these crosses. DNA of the progeny and parental lines were pooled per Illumina HiSeq2500 lane in an equimolar manner and sequenced for 107 cycles, single read, using a custom sequencing primer as previously described (Hoseinzadeh et al., 2019). The reads were aligned to the TRITEX genome assembly of barley cultivar Morex (Monat et al., 2019) with BWA-MEM version 0.7.12a (Li and Durbin, 2009). Variants were filtered following the protocol of Milner et al. (2018) for a minimum depth of sequencing of four to accept a genotype call, a minimum

TABLE 1 | Hb introgression lines containing segments overlapping with IL “4176” and IL “5216” and their observed resistance phenotype to the Bgh isolate CH4.8.

IPK ID	IL code (New Zealand)	Crossing scheme	Introgression location GBS	Start (Mb)	End (Mb)	Phenotype of ILs to isolate CH4.8
88	200A3/7/M1	Emir x A17/1	2HS	0	19,4	Susceptible
99	213G3/2/2/2/1	Emir x (2920/4 x Tinos16/1)	2HS, 6HS	0	22,1	Resistant
116	230H24/5/M1/M1	Morex x 2032	2HS	0	19,4	Resistant
mapping quality score of the SNPs (based on read depth ratios calculated from the total read depth and depth of the alternative allele) of six, a maximum fraction of heterozygous call of 70% and a maximum fraction of 25% of missing data. The resulting tables of polymorphisms are provided in Supplementary Tables 2, 3.

RESULTS

Inheritance of the Resistance Contributed by Hb

The susceptible parental Hv genotype “Borwina” consistently displayed a leaf infection area of ≥80% in all experiments. The scoring rates of all susceptible individuals of both populations “4176” and “5216” was similar to the susceptible parent and did not significantly vary between phenotyping experiments, indicating high infection efficiency and reproducibility in all phenotyping experiments. The resistance phenotype to the CH4.8 powdery mildew isolate of plants carrying the Hb introgressed segment in a heterozygous state was identical to that of plants homozygous for the Hb fragment (Figure 3). The resistance phenotype was invariably accompanied with a hypersensitive response (HR) forming a necrotic lesion.

Phenotypic segregation for powdery mildew resistance against CH4.8 isolate was consistent with a 3:1 ratio (resistant/susceptible, R/S, P < 0.05) in all mapping populations, indicating the control of resistance by a single dominant resistance gene (Table 2). We propose the temporary name Mlh.b.A42 for this locus, based on previous naming of Hb powdery mildew resistance genes (Pickering et al., 1995; Steffenson, 1998).

Recombination Frequency and Mapping of Mlh.b.A42 in Single-Introgression Line Mapping Populations

Genotyping of the mapping populations employed nine CAPS markers designed based on existing exome capture re-sequencing data (Supplementary Table 1). This showed that the BC1F6 population “4176” carried a longer introgressed segment compared to the F7 population “5612” (Figure 4). The genotyping results for population “5612” confirmed the extent of the introgressed segment, previously detected by exome capture in the F6 generation (Wendler et al., 2015).

Genotyping of 266 and 203 individuals in the initial IL mapping populations “4176” and “5612,” uncovered only three and two recombinants within the introgressed segments, respectively (Figure 4). The introgressed segment therefore has a genetic length of approximately 1 centiMorgan (cM). Yet, the segment of population “5612” represents 10 cM on the barley POPSEQ map (Mascher et al., 2013a; Wendler et al., 2015). This confirms the anticipated reduced recombination between the Hv genome and the introgressed Hb segment. The resulting genetic interval for Mlh.b.A42 is flanked by markers CAPS02 and CAPS11, corresponding to a 9.5 Mbp interval between bp positions 2,269,761 and 11,819,688 on chromosome 2HS.
Recombination and Mapping of *Mlhb.A42* in Double Introgression Lines

The 103 and 146 F2 plants from the two double introgression populations “dIL_5216” and “dIL_4176,” respectively, were genotyped by GBS and phenotyped for resistance against CH4.8 isolate. Based on obtained SNP variants across candidate interval for *Mlhb.A42* defined in the initial mapping populations, 14 and 36 recombinants were obtained in “dIL_5216” and “dIL_4176,” respectively (Figure 5). The phenotypes of all non-recombinant plants corresponded to their genotype in this interval. Association between the phenotypes and genotypes of the recombinants defined overlapping 1.7 Mbp (between 7,943,409 and 9,595,691 bp) and 1.4 Mbp (between 8,193,151 and 9,595,691 bp) intervals on barley chromosome 2HS (Monat et al., 2019) in “dIL_5216” and “dIL_4176,” respectively (Figure 5).

Candidate Genes Within the Target Interval

Based on the annotated barley reference genome sequence (Monat et al., 2019), 46 high confidence (HC) genes (Table 3) are located within the 1.4 Mbp *Mlhb.A42* interval as delimited in the “dIL_4176” population. Those genes with a putative functional annotation included a nucleotide-binding-site leucine-rich-repeat class of gene (NBS-LLR), an HR-like lesion-inducing protein-coding gene, a lectin receptor kinase (LecRK) and a Heat shock protein 90, all gene functions that could be directly or indirectly implied with plant resistance to biotic and/or abiotic stresses and therefore, qualify as candidate genes for *Mlhb.A42*. HORVU.MOREX.r2.2HG0082250 is annotated as a LecRK. However, analysis of its protein sequence with InterPro (Mitchell et al., 2018), showed that, like LecRKS, it is composed of an extracellular legume (L-type) lectin domain and a transmembrane domain. However, its cytoplasmic domain is only 23 amino-acid long and does not bear a kinase domain, making this gene a probable lectin receptor-like protein (LecRLP).

DISCUSSION

We report the fine mapping of *Mlhb.A42*, a dominant powdery mildew resistance locus originating from *Hb*, using mapping populations derived by crossing two independent, resistant and susceptible, *Hv/Hb* ILs. The strong suppression of recombination between homeologous genomic segments in *Hv/Hb* introgression lines, which typically results in severe linkage drag, previously represented a barrier to the efficient utilization of *Hb* germplasm in barley crop improvement, and to the isolation of disease resistance genes introgressed from *Hb*.

The genomic resource created by the GBS study of Wendler et al. (2015) on 145 *Hv/Hb* ILs proved to be a useful tool.
FIGURE 5 Intraspecific mapping of the powdery mildew resistance locus Mlhb.A42 in F2 populations derived from two different 2HS Hv/Hb introgression lines. The horizontal black bar schematically represents barley chromosome 2HS. The physical coordinates of each GBS marker are indicated below it. The genomic region containing the Mlhb.A42 locus on barley chromosome 2HS is shown in purple. The graphical genotypes of recombinants are indicated as horizontal bars. The genotype of the susceptible parent “IL88” is represented in orange, the one of the resistant parents 4176/26_33 and 5216/4_40 is represented in gray, and heterozygous state is shown in olive green. The phenotype of each recombinant plant is indicated on the right of its genotype (R = resistant; S = susceptible). The recombination rates in “dIL_4176” and “dIL_5216” are 24.7 and 13.6%, respectively, corresponding to a 20-fold increase compared to single introgression lines. The Mlhb.A42 gene was allocated to a 1.4 Mb interval, based on an estimate using the Hv genome as reference.
TABLE 3 | High confidence (HC) genes based on automated annotation of barley reference genome.

Gene name	Start1	End1	Annotation
HORVU.MOREX.r2.HG0081650	8223903	8224706	Serine/threonine-protein phosphatase 7 long form-like protein
HORVU.MOREX.r2.HG0081660	8227905	8233246	NBS-LRR-like resistance protein
HORVU.MOREX.r2.HG0081670	8278638	8280547	2-oxoglutarate (2OG) and Fe(II)-dependent oxygenase superfamily protein, putative
HORVU.MOREX.r2.HG0081680	8302525	8304846	2-oxoglutarate (2OG) and Fe(II)-dependent oxygenase superfamily protein, putative
HORVU.MOREX.r2.HG0081690	8320263	8321485	12-oxophytodienoate reductase-like protein
HORVU.MOREX.r2.HG0081700	8328715	8329968	2-oxoglutarate (2OG) and Fe(II)-dependent oxygenase superfamily protein, putative
HORVU.MOREX.r2.HG0081720	8364720	8365206	NADH-ubiquinone oxidoreductase chain 1
HORVU.MOREX.r2.HG0081740	8381983	8383512	ATP synthase subunit alpha
HORVU.MOREX.r2.HG0081760	8470715	8473118	HR-like lesion-inducing protein-related protein
HORVU.MOREX.r2.HG0081770	8474573	8487616	Actin-related protein
HORVU.MOREX.r2.HG0081780	8511271	8512941	Cytochrome P450
HORVU.MOREX.r2.HG0081810	8576880	8577147	Cytochrome P450
HORVU.MOREX.r2.HG0081820	8607940	8608750	Cytochrome P450
HORVU.MOREX.r2.HG0081830	8615323	8617046	Cytochrome P450
HORVU.MOREX.r2.HG0081840	8664852	8679924	Cytochrome P450
HORVU.MOREX.r2.HG0081850	8689994	8691803	Cytochrome P450
HORVU.MOREX.r2.HG0081860	8729062	8731108	Cytochrome P450, putative
HORVU.MOREX.r2.HG0081880	8896440	8898414	Copalyl diphosphate synthase
HORVU.MOREX.r2.HG0081890	8905788	8907365	Cytochrome P450
HORVU.MOREX.r2.HG0081900	8930477	8930938	Cytochrome P450
HORVU.MOREX.r2.HG0081920	8961925	8964012	Cytochrome P450
HORVU.MOREX.r2.HG0081930	8965503	8967761	Cytochrome P450
HORVU.MOREX.r2.HG0081980	9008320	9008997	Cytochrome P450
HORVU.MOREX.r2.HG0082000	9064624	9088923	Cytochrome P450
HORVU.MOREX.r2.HG0082010	9095159	9096736	Cytochrome P450
HORVU.MOREX.r2.HG0082020	9253177	9258032	Cytochrome P450
HORVU.MOREX.r2.HG0082050	9310583	9312095	Cytochrome P450
HORVU.MOREX.r2.HG0082060	9337837	9339296	Cytochrome P450
HORVU.MOREX.r2.HG0082080	9357711	9359256	Cytochrome P450
HORVU.MOREX.r2.HG0082090	9369337	9378163	Cytochrome P450
HORVU.MOREX.r2.HG0082100	9379916	9381655	Cytochrome P450
HORVU.MOREX.r2.HG0082140	9435844	9439807	Cytochrome P450
HORVU.MOREX.r2.HG0082150	9441094	9442595	Cytochrome P450
HORVU.MOREX.r2.HG0082160	9482767	9483051	Cytochrome P450
HORVU.MOREX.r2.HG0082190	9488781	9489636	Cytochrome P450
HORVU.MOREX.r2.HG0082190	9482767	9483051	Cytochrome P450
HORVU.MOREX.r2.HG0082200	9498809	9499725	Cytochrome P450
HORVU.MOREX.r2.HG0082240	9505214	9508513	Cytochrome P450
HORVU.MOREX.r2.HG0082250	9538406	9539521	Cytochrome P450
HORVU.MOREX.r2.HG0082260	9543886	9546930	Cytochrome P450
HORVU.MOREX.r2.HG0082270	9550542	9550993	Cytochrome P450
HORVU.MOREX.r2.HG0082280	9555681	9557307	Cytochrome P450
HORVU.MOREX.r2.HG0082310	9591121	9593401	Cytochrome P450
HORVU.MOREX.r2.HG0082320	9595584	9597283	Cytochrome P450

1 Coordinates based on TRITEX Morex assembly (Monat et al., 2019).

To identify suitable partners for the development of double ILs populations, the exploitation of intraspecific recombination allowed us to overcome the barrier to recombination usually observed in IL populations. Recombination rates in the region carrying the introgressed fragment were estimated to be 24.7% (“dIL_4176”) and 13.6% (“dIL_5216”), comparable to the corresponding 10% rate observed in pure Hv/Hv mapping populations [e.g. POPSEQ map (Mascher et al., 2013)]. The rate of recombination was exceeded by a factor of 20-fold as compared to the F7 and BC1F6 single IL populations “5216” and “4176”
The powdery mildew resistance conferred by this \(Hb \) genome assembly of cultivar "Morex" (Monat et al., 2019). The powdery mildew resistance conferred by this \(Hb \) locus is dominantly inherited, displaying chlorotic/necrotic flecks of HR with collapsed hyphae at inoculation sites, suggesting a salicylic acid (SA)-independent resistance pathway. Genes from the NBS-LRR or the receptor-like-kinase (RLK) families are over-represented among genes conferring this type of strong dominant resistance to pathogens (Kourelis and van der Hoorn, 2018), making genes from these families likely candidates in the context of this study. HORVU.MOREX.r2.2HG0081660, one of the annotated genes in the interval, is a coiled-coil (CC)-NBS-LRR gene and therefore the most likely candidate gene. However, HORVU.MOREX.r2.2HG0082250 is annotated as a LecRK and could also be a good candidate. LecRKS are a type of RLK characterized by an extracellular lectin motif (Wu and Zhou, 2013). They have been described as implicated in biotic stress resistance, mostly to bacteria and fungi (Singh and Zimmerli, 2013). This type of gene has been identified in resistance to oomycetes (Wang et al., 2015a,b; Balagüe et al., 2017) and fungi (Huang et al., 2013; Wang et al., 2014a) in Arabidopsis thaliana and to wheat powdery mildew in H. bulbosum (Wang et al., 2018). According to InterPro (Mitchell et al., 2018), HORVU.MOREX.r2.2HG0082250 does not bear a kinase domain and is likely to be a L-type LecRLP. So far, the only LecRLPs described have a lectin-like Lysin-motif (LysM)-type lectin domain. Two LysM-LecRLPs from A. thaliana and three from rice have been identified reported in context of disease resistance through interaction with the LysM-LecRK CERK1. The rice LysM-LecRLP CEBIP recognizes chitin and, through a direct interaction with CERK1, confers pattern-triggered immunity against fungi (Shimizu et al., 2010). Similarly, LYP4 and LYP6 both perceive peptidoglycan and chitin and interact with CERK1 (Liu et al., 2012). In A. thaliana, LYM1 and LYM3 sense pectidoglycan and trigger immunity, through CERK1, to bacterial infection (Willmann et al., 2011). A. thaliana contains only four L-type LecRLPs (Bellande et al., 2017) but, so far, no L-type LecRLPs have been functionally described. However, a mode of action of HORVU.MOREX.r2.2HG0082250 similar to one of LysM-LecRLPs is a possibility for further investigation.

Almost all the genes annotated in the delimited target interval might be directly or indirectly involved in resistance to biotic and abiotic stresses and should be considered tentative candidates. NADH-ubiquinone oxidoreductase is involved in intracellular ROS production that can prevent pathogen infection (van der Merwe and Dubery, 2006). Cytochrome P450 and O-methyltransferase proteins are responsible for production of several molecules that can play a role in resistance to pathogens or pests (He and Dixon, 2000; Dixon, 2001; Noordermeer et al., 2001). Some glycosyl-transferase genes have been identified as necessary for the HR (Langlois-Meurinne et al., 2005). The rice gene OsHRL encodes for a HR-like lesion inducing protein and has been shown to be associated with resistance to bacterial blight (Park et al., 2010). Copalyl-diphosphate synthases are implicated in the biosynthesis of phytohormones including gibberellic acid or phytoalexins, which contribute to defensive secondary metabolism (Prisic et al., 2004; Harris et al., 2005). Finally, HORVU.MOREX.r2.2HG0082310 is annotated as a Heat shock protein 90 (Hsp90), which are involved in stress resistance, in particular disease resistance, mediating signal transduction for HR (Xu et al., 2012). Notably, it has been shown by virus-induced gene silencing that an Hsp90 gene is required for Mla13 resistance of barley to powdery mildew (Hein et al., 2005).

In addition to the annotated genes, other genes, e.g. members of NBS-LRR and RLK families, might be present in the interval of the resistant \(Hb \) parent but missing in the respective interval of the "Morex" reference sequence. Indeed, \(Hv \) and \(Hb \) diverged 6 million years ago, accumulating structural variations since then (Jakob and Blattner, 2006). Therefore, this \(Hb \) resistance to powdery mildew could be due to a gene absent from the barley reference genome. In particular, NBS-LRR genes are subject to frequent duplication (Flagel and Wendel, 2009), and resistances conferred by NBS-LRRs genes are frequently due to presence/absence variation of such genes (Grant et al., 1998; Griffiths et al., 1999; Henk et al., 1999; Stahl et al., 1999; Tian et al., 2002). The wheat powdery mildew-resistance gene \(Pm21 \) (Xing et al., 2018) originates from the wheat/Dasypyrum villosum translocation line T6AL.6VS and is localized in a region presenting a high level of synteny with the \(Mlbhb.A42 \) locus. This gene confers broad spectrum dominant resistance against wheat powdery mildew isolates and encodes a RPP13-like NBS-LRR gene (He et al., 2017; Xing et al., 2018). The protein sequence of \(Pm21 \) only shares 34% identity with the translated nucleotide sequence of HORVU.MOREX.r2.2HG0081660. However, its localization in a syntenic region to the resistance conferring \(Mlbhb.A42 \) locus provides a tempting working hypothesis that \(Pm21 \) and \(Mlbhb.A42 \) could represent orthologous genes or members of the same locally evolved gene family.

A resequencing strategy of the \(Mlbhb.A42 \) locus in both resistant and susceptible \(Hb \) will be necessary to ascertain the structure of the locus and the number and nature of the candidate genes. With the development of new sequencing methods this could be achieved by Cas9-guided enrichment of the locus (Wang et al., 2014b) or sorting and sequencing for assembly of the chromosome 2H in one of the two introgression lines (Third et al., 2017). Moreover, a locus of resistance to powdery mildew has been identified on chromosome 2HS in the \(Hb \) accessions S1 – where it was named \(Mlbhb1.a \) – (Pickering et al., 1995; Shtaya et al., 2007), 2032 (Zhang et al., 2001; Shtaya et al., 2007), and A17 (Shtaya et al., 2007). Allelism tests are required to check whether the same locus is involved in the resistance from those four accessions or not. Xu and Kashka (1992) identified another \(Hb \) powdery mildew resistance gene in the accession GBC141. However, the causal dominant gene, designated as \(Mlbhb2.b \), was
located by Kasha et al. (1996) on chromosome 2HL and therefore not allelic to \textit{Mlhb1.a} or \textit{Mlhb.A42}.

Durability and spectrum of a resistance gene are two major criteria to assess its application potential (Mundt, 2014). Durability of resistance genes can become a major concern as deployed resistance genes are experiencing a boom-and-bust phenomenon (Gladieux et al., 2015). The spectrum of \textit{Mlhb.A42} was not evaluated in this study and should be tested in order to ascertain its potential for field resistance. Durability is difficult to estimate under laboratory scenarios. The durability of orthologs genes can be used as a proxy, yet quite imperfect. As discussed earlier, the wheat resistance gene \textit{Pm21} could be orthologous to \textit{Mlhb.A42}. Varieties carrying \textit{Pm21} have increasingly been cultivated in China in the recent years (Bie et al., 2015) and its durability can therefore be evaluated in real conditions. Unfortunately, in some wheat fields, new \textit{Bgt} isolates, virulent against \textit{Pm21} have been identified (Shi et al., 2009; Yang et al., 2009). However, resistance based on this gene persisted close to 40 years (Tang et al., 2018) and is still effective against more than a thousand of field isolates in China (Zeng et al., 2014) and Poland (Czembor et al., 2014). To counteract the risk of isolates breaking the resistance provided by a single locus it is of ongoing importance to identify new resistance genes and to pyramid new loci with existing sources of resistance to increase the durability of resistance in the system (Wu et al., 2019). Moreover, exploiting CWR resistances could be a way to unravel even more effective resistance genes. Indeed, Wang et al. (2019) showed that the \textit{Hb} LecRLK gene of resistance to leaf rust \textit{Rph}22 confers a stronger resistance to leaf rust adapted to \textit{Hv} than its \textit{Hv} ortholog \textit{Rph}q2. The hypothesis is that crop receptors have a lower recognition of crop-adapted pathogens than the CWR receptors because of adaptation of the pathogens during centuries of coevolution with their host plant.

In the current study we report genetic mapping of \textit{Mlhb.A42}, a dominant resistance locus introgressed to cultivated barley from \textit{Hb}. This work is a proof-of-concept study for establishing the basic steps of map-based cloning of genes present in \textit{Hv/Hb} IL collections by exploiting double ILs mapping populations. Using this strategy, we circumvented the limitation of repressed meiotic recombination which was frequently observed in attempts of genetic mapping employing populations derived between \textit{Hv/Hb} introgression lines and pure barley cultivars. Here, we observed similar or even higher recombination rates as expected in \textit{Hv} and thus providing a major step toward facilitated exploitation of secondary gene pool-derived resistance genes in barley crop improvement.

REFERENCES

Arend, D., Junker, A., Scholz, U., Schüler, D., Wylie, J., and Lange, M. (2016). PGP repository: a plant phenomics and genomics data publication infrastructure. Database 2016:baw033. doi: 10.1093/database/baw033

Backes, G., Madsen, L., Jaiser, H., Stougard, J., Herz, M., Mohler, V., et al. (2003). Localisation of genes for resistance against \textit{Blumeria graminis} f. sp. hordei and \textit{Puccinia graminis} in a cross between a barley cultivar and a wild barley (\textit{Hordeum vulgare} ssp. spontaneum) line. \textit{Theor. Appl. Genet.} 106, 353–362. doi: 10.1007/s00122-002-1148-1

Balagüé, C., Gouget, A., Bouchez, O., Souriac, C., Haget, N., Bouet-Mercey, S., et al. (2017). The \textit{Arabidopsis thaliana} lectin receptor kinase LecKL-1.9 is required for full resistance to \textit{Pseudomonas syringae} and affects jasmonate signalling. \textit{Mol. Plant Pathol.} 18, 937–948. doi: 10.1111/mpp.12457

DATA AVAILABILITY STATEMENT

The GBS datasets generated and analyzed in this study are deposited at e!DAL PGP repository (Arend et al., 2016) under the doi: 10.5447/IPK/2020/2.

AUTHOR CONTRIBUTIONS

PH performed the experimental work. PH and HP performed the data analysis and wrote the manuscript. BR-W provided seed material and sample information for two IL mapping populations “4176” and “5216.” PS supervised the phenotyping. NS designed the study, supervised the experimental work, and contributed to the writing of the manuscript. All authors read, corrected, and approved the manuscript.

FUNDING

This manuscript is part of a Ph.D. study of PH, which was financially supported by a grant from the German Research Foundation (DFG) to PS and NS (“DURESTrit,” STE 1102/5-1/608699) in frame of the ERACAPS initiative. This study was further supported by German Ministry of Food and Agriculture (BMEF, FKZ:2818201615) by reason to the decision of the German Bundestag.

ACKNOWLEDGMENTS

We gratefully appreciate the excellent technical support by Mary Ziems in performing crossings and Susanne Koenig in GBS library preparation. We kindly acknowledge Dr. Axel Himmelbach for his valuable support in the sequencing, Dr. Martin Mascher for his invaluable guidance in data processing and analysis, Dr. Dimitar Douchkov for his input on the phenotyping test and fungal material, and Dr. Timothy Rabanus-Wallace for language editing. We are grateful to Dr. Neele Wendler for her support in the employment of the current study.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fpls.2020.00225/full#supplementary-material
Bellande, K., Bonò, J.-I., Savelli, B., Jamet, E., and Canut, H. (2017). Plant lectins and lectin receptor-like kinases: how do they sense the outside? Int. J. Mol. Sci. 18:1164. doi: 10.3390/ijms18061164

Bie, T., Zhao, R., Jiang, Z., Gao, D., Zhang, B., and He, H. (2015). Efficient marker-assisted screening of structural changes involving Haynaldia villosa chromosome 6V using a double-distal-marker strategy. Mol. Breed. 35:34. doi: 10.1007/s11032-015-0211-y

Canady, M. A., Ji, Y., and Chetelat, R. T. (2006). Homeologous recombination in Solanum lycopersicoides introgression lines of cultivated tomato. Genetics 174, 1775–1788. doi: 10.1534/genetics.106.065144

Chen, S., Rouse, M. N., Zhang, W., Jin, Y., Akhunov, E., Wei, Y., et al. (2015). Chromosomal inversion polymorphisms and adaptation. Trends Ecol. Evol. 19, 482–488. doi: 10.1016/j.tree.2004.06.013

Hoisington, D., Khairallah, M., Reeves, T., Ribaut, J.-M., Skovmand, B., Tabca, S., et al. (1999). Plant genetic resources: what can they contribute toward increased crop productivity? Proc. Natl. Acad. Sci. U.S.A. 96, 5937–5943. doi: 10.1073/pnas.96.11.5937

Hoseinzadeh, P., Zhou, R., Mascher, M., Himmelbach, A., Niks, R. E., Schweizer, P., et al. (2019). High resolution genetic and physical mapping of a major powdery mildew resistance locus in barley. Front. Plant Sci. 10:146. doi: 10.3389/fpls.2019.00146

Hospital, F. (2001). Size of donor chromosome segments around introgressed loci and reduction of linkage drag in marker-assisted backcross programs. Genetics 158, 1363–1379.

Huang, P., Ju, H.-W., Min, J.-H., Zhang, X., Kim, S.-H., Yang, K.-Y., et al. (2013). Overexpression of L-type lectin-like protein kinase 1 confers pathogen resistance and regulates salinity response in Arabidopsis thaliana. Plant Sci. 20, 98–106. doi: 10.1016/j.plantsci.2012.12.019

International Barley Genome Sequencing Consortium. (2012). A physical, genetic and functional sequence assembly of the barley genome. Nature 491, 711–716. doi: 10.1038/nature11543

Jakob, S. S., and Blattner, F. R. (2006). A chloroplast genealogy of Hordeum (Poaceae): long-term persisting haplotypes, incomplete lineage sorting, regional extinction, and the consequences for phylogenetic inference. Mol. Biol. Evol. 23, 1602–1612. doi: 10.1093/molbev/msl018

Jarosch, B., Kogel, K.-H., and Schaffrath, U. (1999). The Ambivalence of the barley Mlo locus: mutations conferring resistance against powdery mildew (Blumeria graminis f. sp. hordei) Enhance Susceptibility to the Rice Blast Fungus Magnaporthe grisea. Mol. Plant-Microbe Interact. 12, 508–514. doi: 10.1094/MPMI.1999.12.6.508

Johnston, P. A., Meiyalahvan, V., Forbes, M. E., Habekuß, A., Butler, R. C., and Pickering, R. (2015). Marker assisted separation of resistance genes Rph22 and Rym16Hb from an associated yield penalty in a barley: Hordeum bulbosum introgression line. Theor. Appl. Genet. 128, 1137–1149. doi: 10.1007/s00122-015-2495-x

Johnston, P. A., Niks, R. E., Meiyalahvan, V., Blanchet, E., and Pickering, R. (2013). Rph22: mapping of a novel leaf rust resistance gene introgressed from the non-host Hordeum bulbosum L. into cultivated barley (Hordeum vulgare L.). Theor. Appl. Genet. 126, 1613–1625. doi: 10.1007/s00122-013-2078-9

Johnston, P. A., Timmerman-Vaughan, G. M., Farnden, K. J. F., and Pickering, R. (2009). Marker development and characterisation of Hordeum bulbosum powdery mildew resistance in a resource for barley improvement. Theor. Appl. Genet. 118, 1429–1437. doi: 10.1007/s00122-009-0992-7

Jørgensen, J. H. (1992). Discovery, characterisation and exploitation of Mlo powdery mildew resistance in barley. Euphytica 63, 141–152. doi: 10.1007/BF00023919

Kakeda, K., Ibuki, T., Suzuki, J., Tadano, H., Kurita, Y., Hanai, Y., et al. (2008). Molecular and genetic characterization of the S locus in Hordeum bulbosum L., a wild self-incompatible species related to cultivated barley. Mol. Genom. 280, 509–519. doi: 10.1104/mg.0.0383-8

Kasha, K. J., Pickering, R. A., William, H. M., Hill, M. A., Oro, R., Reader, S., et al. (1996). "GISH and RFLP facilitated identification of a barley chromosome carrying powdery mildew resistance from Hordeum bulbosum," in Proceedings 7th International Barley Genetics Symposium, Saskatoon, Canada.

Kerber, E. R., and Dyck, P. L. (1990). Transfer to hexaploid wheat of linked genes for adult-plant leaf rust and seedling stem rust resistance from an amphiploid of Aegilops speltoides × Triticum monococcum. Genome 33, 530–537. doi: 10.1139/g90-079

Kürr, B., Jensen, H. P., Jensen, J., and Jørgensen, J. H. (1990). Associations between three Mlo powdery mildew resistance genes and agronomic traits in barley. Euphytica 46, 185–193. doi: 10.1007/BF00027217

Koressaar, T., and Remm, M. (2007). Enhancements and modifications of primer design program Primer3. Bioinformatics 23, 1289–1291. doi: 10.1093/bioinformatics/btm091

Koulalis, J., and van der Hoorn, R. A. L. (2018). Defended to the nines: 25 years of resistance gene cloning identifies nine mechanisms for R protein function. Plant Cell 30, 285–299. doi: 10.1105/tpc.17.00579
Kumar, J., Hückelhoven, R., Beckhove, U., Nagarajan, S., and Kogel, K.-H. (2001). A compromised mlo pathway affects the response of barley to the necrotrophic fungus Bipolaris sorokiniana (Teleomorph: Cochliobolus sativus) and its toxins. *Plant Pathology* 50, 127–133. doi: 10.1111/j.1365-3059.2001.00827.x

Langlois-Meurinne, M., Gachon, C. M. M., and Saindrenan, P. (2005). Pathogen-responsive expression of glycosyltransferase genes UGT71B3 and UGT73B5 is necessary for resistance to *Pseudomonas syringae* pv tomato in Arabidopsis. *Plant Physiol.* 139, 1890–1901. doi: 10.1104/pp.105.07223

Li, H., and Durbin, R. (2009). Fast and accurate short read alignment with Burrows-Wheeler transform. *Bioinformatics* 25, 1754–1760. doi: 10.1093/bioinformatics/btp324

Liu, B., Li, J.-F., Ao, Y., Qu, J., Li, Z., Su, J., et al. (2012). Lysin Motif6Containing Proteins LYP4 and LYP6 play dual roles in peptidoglycan and chitin perception in rice in innate immunity. *Plant Cell* 24, 3406–3419. doi: 10.1105/tpc.112.102475

Mains, E. B., and Dietz, S. M. (1930). Physiologic forms of barley mildew. *Physiol. Plant.* 4, 299–310. doi: 10.1111/j.1399-3054.1930.tb00802.x

Munst, C. C. (2014). Durable resistance: a key to sustainable management of *Puccinia graminis* hordae. *Plant Pathology* 20, 229–239.

Mascher, M., Muehlbauer, G. J., Rokhsar, D. S., Chapman, J., Schmutz, J., Barry, K., et al. (2013a). Anchoring and ordering NGS contig assemblies by population sequencing (POPSSEQ). *Plant J.* 76, 718–727. doi: 10.1111/tpj.12319

Mascher, M., Wu, S., Amand, P. St., Stein, N., and Poland, J. (2013b). Application of genotyping-by-sequencing on semiconductor sequencing platforms: a comparison of genetic and reference-based marker ordering in barley. *PloS One* 8:e67925. doi: 10.1371/journal.pone.0076925

McGrann, G. R. D., Stavrinides, A., Russell, J., Corbitt, M. M., Booth, A., Chartrain, E., et al. (2016). InterPro in 2019: improving coverage, classification and access to protein sequence annotations. *Nucleic Acids Res.* 44, D351–D360. doi: 10.1093/nar/gky1100

Michel, M. (1996). Untersuchungen zur Übertragung von Resistenzzügen aus der Wildart Hordeum bulbosum L. in die Kulturgüter Hordeum vulgare L. Diss. Munich: TU München.

Milner, S., Jost, M., Taketa, S., Mazón, E., Himmelbach, A., Oppermann, M., et al. (2018). Genebank genomics reveals the diversity of a global barley collection. *Nat. Genet.* 50, 319–326. doi: 10.1038/s41588-018-0266-x

Mitchell, A. L., Attwood, T. K., Babbitt, P. C., Blum, M., Bork, P., Bridge, A., et al. (2013). InterPro in 2019: improving coverage, classification and access to protein sequence annotations. *Nucleic Acids Res.* 41, D351–D360. doi: 10.1093/nar/gks1100

Montat, C., Padmarasu, S., Lux, T., Wicker, T., Gundlach, H., Himmelbach, A., et al. (2019). TritEx: chromosome-scale assembly sequence of Triticeae genomes with open-source tools. *bioRxiv* [preprint], doi: 10.1101/631648

Mundt, C. C. (2014). Durable resistance: a key to sustainable management of pathogens and pests. *Insect. Genet. Evol.* 27, 446–455. doi: 10.1016/j.mge.2014.01.011

Noordermeer, M. A., Veldink, G. A., and Vliegenthart, J. F. G. (2001). Fatty acid biosynthesis by *Erysiphe graminis f. sp. tritici* and the resistance genes of wheat (*Hordeum vulgare*). *Theor. Appl. Genet.* 102, 229–239. doi: 10.1007/3-540-44582-0_21

O’Halloran, D. M. (2015). PrimerView: high-throughput primer design and visualization. *Source Code Biol. Med.* 10.8. doi: 10.1186/s13029-015-0038-2

Park, S.-R., Moon, S.-J., Shin, D.-J., Kim, M.-G., Hwang, D.-J., Bae, S.-C., et al. (2010). Isolation and characterization of rice *Shtaya, M. J. Y., Sillero, J. C., Flath, K., Pickering, R., and Rubiales, D. (2007). The resistance to leaf rust and powdery mildew of recombinant lines of barley (*Hordeum L.* used in barley and conferring complete and dominant resistance to the barley yellow dwarf virus. *Theor. Appl. Genet.* 119, 837–849. doi: 10.1007/s00122-006-0656-2

Shi, Y., Wang, B., Li, Q., Wu, X., Wang, F., Liu, H., et al. (2009). Analysis of the virulent genes of *Erysiphe graminis* f. sp. tritici and the resistance genes of wheat commercial cultivars in Shaanxi Province. *J. Triticaceae Crop.* 29, 706–711.

Shimizu, T., Nakano, T., Takamizawa, D., Desaki, Y., Ishii-Minami, N., Hishizawa, Y., et al. (2010). Two LysM receptor molecules, CEBP and OsCERK1, cooperatively regulate chitin elicitor signaling in rice. *Plant J.* 64, 204–214. doi: 10.1111/j.1365-313X.2010.04324.x

Shyata, M. Y. F., Siliero, J. C., Flath, K., Pickering, R., and Rubiales, D. (2007). *Rym16Hb*: a novel resistance gene introgressed from *Hordeum bulbosum* into barley and conferring complete and dominant resistance to the barley yellow dwarf virus (*Hordeum × H. bulbosum* crosses. *Plant Breed.* 126, 259–267. doi: 10.1111/j.1439-0523.2007.01328.x

Singh, P., and Zimmerli, L. (2013). Lectin receptor kinases in plant innate immunity. *Front. Plant Sci.* 4:124. doi: 10.3389/fpls.2013.00124

Stahl, E. A., Dwyer, G., Mauricio, R., Kreitman, M., and Bergelson, J. (1999). Dynamics of disease resistance polymorphism at the *Rpm1* locus of *Arabidopsis*. *Nature* 400, 667–671. doi: 10.1038/23260

Steffenson, B. J. (1998). Coordinators reports: disease and pest resistance genes. *Barley Genet. newsletter*. Suzuki, G., and Szigat, G. (1991). Amphiplodiploid hybrids between *Hordeum vulgare* and *H. bulbosum*-basis for the development of new initial material for winter barley breeding. *Vor. Pflanzenzüchtung* 20, 34–39.

Tang, S., Hu, Y., Zhong, S., and Luo, P. (2018). The potential role of powdery mildew-resistance Gene *Pm8* in Chinese wheat-breeding programs in the Post-Pm21 Era. *Engineering* 4, 500–506. doi: 10.1016/j.eng.2018.06.004

Tanksley, S. D., and Crouch, S. R. (1997). Seed banks and molecular maps: unlocking genetic potential from the wild. *Science* 273, 1063–1066. doi: 10.1126/science.273.5293.1063

Tankley, S. D., and Nelson, J. C. (1996). Advanced backcross QTL analysis: a method for the simultaneous discovery and transfer of valuable QTLs from unadapted germplasm into elite breeding lines. *Theor. Appl. Genet.* 92, 191–203. doi: 10.1007/BF00233736

Thiel, T., Kota, R., Grosse, I., Stein, N., and Graner, A. (2004). SNP2CAPS: a SNP and INDEL analysis tool for CAPS marker development. *Nucleic Acids Res.* 32, e5–e5. doi: 10.1093/nar/gnh006

Thind, A. K., Wicker, T., Simkova, H., Fossati, D., Moulet, O., Brabant, C., et al. (2017). Rapid cloning of genes in hexaploid wheat using cultivar-specific long-range chromosome assembly. *Nat. Biotechnol.* 35, 793–796. doi: 10.1038/nbt.3877

Tian, D., Araki, H., Stahl, E., Bergelson, J., and Kreitman, M. (2002). Signature of balancing selection in *Arabidopsis*. *Proc. Natl. Acad. Sci. U.S.A.* 99, 11525–11530. doi: 10.1073/pnas.172203599
van der Merwe, J. A., and Dubery, I. A. (2006). Benzo thiadiazole inhibits mitochondrial NADH: ubiquinone oxidoreductase in tobacco. J. Plant Physiol. 163, 877–882. doi: 10.1016/j.jplph.2005.08.016

von Bothmer, R., Jacobsen, N., Baden, C., Jorgensen, R. B., and Linde-Laursen, I. (1995). "An ecogeographic study of the genus Hor-deum." in Systematic and Ecogeographic Studies on Crop Gene Pools 7, (Rome: International Plant Genetic Resources Institute).

von Korff, M., Wang, H., Léon, J., and Pillen, K. (2005). AB-QTL analysis in spring barley. I. Detection of resistance genes against powdery mildew, leaf rust and scald introgressed from wild barley. Theor. Appl. Genet. 111, 583–590. doi: 10.1007/s00122-005-2049-x

Walther, U., Rapke, H., Proeseler, G., and Szigat, G. (2000). Hordeum bulbosum—a new source of disease resistance-transfer of resistance to leaf rust and mosaic viruses from H. bulbosum into winter barley. Plant Breed. 119, 215–218. doi: 10.1046/j.1439-0523.2000.00475.x

Wang, Y., Bouwmeester, K., Beeseh, P., Shan, W., and Govers, F. (2014a). L-type lectin receptor kinases LecRK-IX.1 and LecRK-IX.2 Are functional analogs in regulating phytophthora resistance and plant cell death. Mol. Plant-Microbe Interact. 28, 1032–1048. doi: 10.1094/MPMI-02-15-0025-R

Wang, Y., Cheng, X., Shan, Q., Zhang, Y., Liu, J., Gao, C., et al. (2014b). Phenotypic analyses of Arabidopsis T-DNA insertion lines and expression profiling reveal that multiple L-Type lectin receptor kinases are involved in plant immunity. Mol. Plant-Microbe Interact. 27, 1390–1402. doi: 10.1094/MPMI-06-14-0191-R

Wang, Y., Subedi, S., de Vries, H., Doornenbal, P., Vels, A., Hensel, G., et al. (2014). Unlocking the secondary gene-pool of barley with next-generation sequencing. Plant Biotechnol. J. 12, 1122–1131. doi: 10.1111/pbi.12219

Wendler, N., Mascher, M., Himmelbach, A., Bini, F., Kummeln, J., and Stein, N. (2017). A high-density, sequence-enriched genetic map of Hordeum vulgare and Its collinearity to H. vulgare. Plant Genome 10, 1–11. doi: 10.3835/plantgenome2017.06.0049

Wijmkinster, E., and de Jong, H. (2008). Managing meiotic recombination in plant breeding. Trends Plant Sci. 13, 640–646. doi: 10.1016/j.tplants.2008.09.004

Willmann, R., Lajunen, H. M., Erbs, G., Newman, M.-A., Kolb, D., Tsuda, K., et al. (2011). Arabidopsis lysin-motif proteins LYM1 LYM3 CERK1 mediate bacterial peptidoglycan sensing and immunity to bacterial infection. Proc. Natl. Acad. Sci. U.S.A. 108, 19824–19829. doi: 10.1073/pnas.1112862108

Wu, Z. X., Xu, X. F., Ma, D. X., Chen, R. Z., Li, T. Y., and Cao, Y. Y. (2019). Virulence structure and its genetic diversity analyses of Blumeria graminis f. sp. tritici isolates in China. BMC Evol. Biol. 19:183. doi: 10.1186/s12862-019-1511-3

Wu, Y., and Zhou, J. -M. (2013). Receptor-Like Kinases in Plant Innate Immunity. J. Integr. Plant Biol. 55, 1271–1286. doi: 10.1111/jipb.12123

Xing, L., Hu, P., Liu, J., Witek, K., Zhou, S., Xu, J., et al. (2018). Pm21 from Haynaldia villosa Encodes a CC-NBS-LRR protein conferring powdery mildew resistance in wheat. Mol. Plant 11, 874–878. doi: 10.1016/j.molp.2018.02.013

Yu, X., and Kasha, K. J. (1992). Transfer of a dominant gene for powdery mildew resistance and DNA from Hordeum bulbosum into cultivated barley (H. vulgare). Theor. Appl. Genet. 84, 771–777. doi: 10.1007/BF00227383

Xu, Z.-S., Li, Z.-Y., Chen, Y., Chen, M., Li, L.-C., and Ma, Y.-Z. (2012). Heat shock protein 90 in plants: molecular mechanisms and roles in stress responses. Int. J. Mol. Sci. 13, 15706–15723. doi: 10.3390/ijms131215706

Yang, L., Xiang, L., Zeng, F., Wang, H., Shi, W., and Yu, D. (2009). Virulence gene structure analysis of Blumeria graminis f. sp. tritici in Hubei. Plant Prot 35, 76–79.

Yu, X., Kong, H. Y., Meiyalaghan, V., Casonato, S., Chng, S., Jones, E. E., et al. (2018). Genetic mapping of a barley leaf rust resistance gene Rph26 introgressed from Hordeum bulbosum. Theor. Appl. Genet. 131, 2567–2580. doi: 10.1007/s00122-018-3173-8

Zamir, D. (2001). Improving plant breeding with exotic genetic libraries. Nat. Rev. Genet. 2, 983–989. doi: 10.1038/3503590

Zeng, F., Yang, L., Gong, S., Shi, W., Zhang, X., Wang, H., et al. (2014). Virulence and Diversity of Blumeria graminis f. sp. populi Populations in China. J. Integr. Agric. 13, 2424–2437. doi: 10.1016/S2095-3119(13)60669-3

Zhang, L., Pickering, R. A., and Murray, B. G. (2001). Hordeum vulgare × H. bulbosum tetraploid hybrid provides useful agronomic introgression lines for breeders. New Zeal. J. Crop Hortic. Sci. 29, 239–246. doi: 10.1080/01140671.2001.9514185

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2020 Hoseinzadeh, Ruge-Wehling, Schweizer, Stein and Pidon. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.