Trade Policy versus Trade Facilitation:
An Application Using “Good Old” OLS

Laura Márquez-Ramos
Universitat Jaume I

Inmaculada Martínez-Zarzoso
Georg-August University of Göttingen and Universitat Jaume I

Celestino Suárez-Burguet
Universitat Jaume I

Abstract Trade policy barriers are only one element of overall trade costs. Among these, and due to the decrease in the influence of tariff barriers on trade over time, institutional barriers might increase in relative importance and become a key obstacle to the movements of goods across countries. This paper quantifies and compares the impact that a number of trade facilitation and trade policy barriers have on bilateral trade flows. A theoretically justified gravity model of trade is estimated by using the methodology proposed in Baier and Bergstrand (2009) for a cross-section of countries in the year 2000. Results indicate that institutional trade barriers have a greater impact on trade flows than tariff barriers. According to these findings, trade policy negotiation efforts should focus on facilitating trade processes and should be at the forefront of multilateral negotiations.

Paper submitted to the special issue
Trade Facilitation, Transport Costs and Logistics: A New Challenge for European Competitiveness

JEL F14

Keywords Tariff barriers; trade facilitation; sectoral trade

Correspondence Laura Márquez-Ramos, Department of Economics and Institute of International Economics, Universitat Jaume I, Campus del Riu Sec, 12071 Castellón, Spain; e-mail: lmarquez@eco.uji.es

Financial support from the Spanish Ministry of Science and Technology is gratefully acknowledged (ECO 2010-15863).
TRADE POLICY VERSUS TRADE FACILITATION: AN APPLICATION USING “GOOD OLD” OLS

1. Introduction
In the last decades, trends towards geographical regionalisation and globalisation have led to a decrease in the influence of tariff barriers on trade. Indeed, in 1987, the overall annual average applied tariff rate (expressed in non-weighted terms) was 25%, whereas in 2007 this figure was only 9%\(^1\). As a consequence, other trade cost components, such as transport costs and information costs, have gained importance as determinants of trade patterns worldwide. Indeed, a broader concept named “trade facilitation” is of growing interest in the trade policy debate and has been explicitly included in the Doha Development Agenda.

While the role of tariffs in trade has a long tradition (see e.g. Kreinin, 1961; Harrigan, 1993), as is the case with technological innovation (see e.g. Vernon, 1970; Soete, 1987; Freund and Weinhold, 2004; Fink, Mattoo and Neagu, 2005; Márquez-Ramos and Martínez-Zarzoso, 2010), only recently have a number of studies examined the importance of trade facilitation (Wilson, Mann and Otsuki, 2005; Djankov, Freund and Pham, 2006; Martínez-Zarzoso and Márquez-Ramos, 2008). In earlier studies, the usual approach was to focus on only one of the abovementioned trade determinants, instead of considering simultaneously the effect of the different components of trade costs. More recently, a few studies have considered different components of trade costs in one sole study. Examples are Baier and Bergstrand (2001), who explained the growth of world trade with transport costs, tariffs and income variables and Anderson and van Wincoop (2004), who specifically studied the different components of trade cost and their trade effects and presented an extensive review of the empirical literature.

From a methodological point of view, a growing number of studies use the gravity model of trade as a general framework to estimate the determinants of bilateral trade flows. However, only the most recent research solves some of the estimation problems related to the correct specification of the so-called multilateral resistance terms (MR). Anderson and van Wincoop (2003) show that it is not just bilateral trade costs, but those costs relative to multilateral trade that are relevant for predicting bilateral trade. Omitting controls for MR can lead to biased coefficient estimates. More importantly, it can lead to grossly misleading comparative static estimates of the impact of trade barriers on trade. Based upon the model of Anderson and van Wincoop (2003), Baier and Bergstrand (2009) proposed a first-order log-linear approximation method that introduces theoretically-motivated exogenous MR terms and generates comparative statics.

This paper aims to contribute to the existing literature on four fronts. First, it aims to quantify and compare the effect of policy and institutional trade barriers on international trade flows at sectoral level. We consider the role of tariffs to measure policy trade barriers, whereas internal transport costs, time required to cross borders and the number of documents required for trade, together with information technology are

\(^1\) See Figure A.1 in the Appendix I.
considered to measure trade facilitation procedures. Secondly, the methodology developed by Baier and
Bergstrand (2009) is used for constructing MR terms for all bilateral variables, in the context of the
Anderson and van Wincoop (2003) structural gravity model. The advantage of this method over the
traditional log-linear OLS approach is that it is based on a theoretically grounded gravity model. Thirdly, as
there are clear economic differences between developed and developing countries leading to disparities in
the impact that the determinants of bilateral trade flows have on trade, the model will be estimated
separately for each exporter. Finally, the model is also estimated for different sectors as both trade policy
and institutional barriers are expected to have a differential effect on the exports of different sectors. To our
knowledge, this is the first paper that quantifies the relative role of trade policy and institutional trade
barriers by using a theoretically well-specified gravity model. Methodologically speaking, this is the second
paper that addresses the linear approximation method introduced by Baier and Bergstrand (2009) in the
context of the two-stage Helpman, Melitz, and Rubinstein (2008) approach that accounts for firm
heterogeneity and zero trade flows.

The main results can be summarised as follows. Firstly, a reduction in the number of days and the number
of documents needed for trade promotes international trade to a greater extent than equivalent reductions in
tariff barriers. Secondly, the former effect is comparable to the effect of distance on trade. Finally,
information technology also plays an important role in promoting trade.

The paper is organised as follows. A review of the literature on trade facilitation is provided in Section 2,
along with an outline of the methodology used in this paper. Section 3 presents the data, sources and
variables used, together with a detailed description of how the trade facilitation and tariff data were
gathered. Section 4 specifies the model and details the main results. Section 5 and 6 perform the sensitivity
analysis and the robustness checks, respectively. Simulations are presented in Section 7. Finally, Section 8
offers some concluding remarks and policy implications.

2. Literature Review
In this section we mainly review the recent literature related to trade facilitation in a very broad sense,
including information technology as one of the factors that facilitate trade, and hence, affects the volume of
trade. But, as we also consider the effect of tariffs, we believe it is worth briefly referring to the literature
on the effects of trade policy barriers on imports. Harrigan (1993) is probably the paper most related to our
investigation. The author develops a monopolistic competition model to evaluate the effect of trade barriers
on OECD imports. In his model, transport costs are also included as a determinant of trade and trade policy
barriers are divided into tariffs and non-tariff barriers (NTBs). In his empirical evaluation of the theoretical
model, estimated for a cross-section of 13 OECD countries and 28 product categories using data for 1983,
Harrigan concludes that estimated transport costs and average tariffs had a marked negative effect on
imports, although the level of tariffs was generally low. In contrast, NTBs had a small or imperceptible
effect on gross imports. In a more recent paper, Chen (2004) analyses the effect of non-tariff barriers and,

2 Egger, Leiter, and Pfaffermayr (2011) recently derived the properties of the Baier-Bergstrand
approximation method.
in particular, technical barriers on the volume of exports in the context of the border effect. This author finds that technical barriers together with product-specific information increase border effects.

As regards trade facilitation, this issue is clearly gaining interest in the trade policy debate, as shown by its inclusion in the Doha Development Agenda. However, the measurement and quantification of the potential benefits of trade facilitation have only recently been investigated and the approaches used are far from uniform in terms of the definition of trade facilitation and the empirical approach used.

In relation to the definition, Wilson et al. (2003, 2005) considered a broad definition of trade facilitation and quantified the impact of four different measures (port efficiency, customs environment, regulatory environment and e-business usage). As an alternative, Engman (2005) used the WTO definition of trade facilitation (the simplification and harmonisation of international trade procedures) by paying attention only to what happens around the border. Other authors focused instead on the effects of single measures of trade facilitation (information technology, port efficiency, institution quality).

Two main modelling approaches have been used. On the one hand, several papers use the gravity model of trade augmented with “trade facilitation” variables. In this line, Wilson et al. (2003, 2005) estimated a gravity model of trade augmented with the above-mentioned trade-facilitation variables for a group of countries in the Asia-Pacific region and for a sample of 75 countries. In addition, Soloaga, Wilson and Mejía (2006) used a similar methodology and data, but focused on Mexican competitiveness. In a more general setting, Djankov et al. (2006) used the World Bank’s Doing Business Database, as we do in this paper, but focused only on the effects of time delays in the exporting country, whereas Nordas, Pinali and Grosso (2006) concentrated on how time delays affect the probability to export and export volumes for imports from Japan, Australia and the United Kingdom. Persson (2007) studied the effect of time delays and transaction costs on trade flows using a sample selection approach and focusing on the specific effects for each of the six groups of ACP countries negotiating Economic Partnership agreements with the EU. Finally, Martínez-Zarzoso and Márquez-Ramos (2008) analyse the effect of trade facilitation on trade volumes at a disaggregated level. They focus on the simplification of “at the border procedures”, which includes the number of documents and amount of time involved in border crossings, as well as the transaction costs incurred. Their results support multilateral initiatives that encourage countries to assess and improve their trade facilitation needs and priorities.

On the other hand, several institutions and authors (UNCTAD, 2001; OECD, 2003; Dennis, 2006; Deereux and Fontagne, 2006) used a computable general equilibrium model to estimate the effect of a composite index of trade facilitation on trade flows.

Although several data sets and estimation methods have been utilised within the context of these two approaches, the results reveal significant and positive effects on trade flows in most cases.

3 See Wilson, Mann and Otsuki (2003, 2005) for a more detailed review of earlier work on single measures of trade facilitation.
This paper mainly differs from the existing literature in that it estimates the effectiveness of several trade facilitation measures together with the effectiveness of trade liberalisation, by including different measures of trade facilitation for exporter and importer countries and improving the methodological approach.

3. Data, sources and variables

Bilateral trade data by commodity were obtained from Feenstra et al. (2005). The level of disaggregation chosen was the 4-digit Standard International Trade Classification (SITC). The sample of countries comprised 13 exporters and 167 importers in the year 2000 (Table A.1, Appendix I). The 13 exporters were chosen to have a representative sample of the world economy in accordance to the classification matrix constructed in Martínez-Zarzoso and Márquez-Ramos (2008). The sectors analysed include 146 industries with homogeneous goods, 349 with reference-priced goods and 694 with differentiated goods.

The databases used to construct the explanatory variables for the regression analysis are the World Development Indicators (2005) for income\(^4\) and the Doing Business (2006) database for trade facilitation variables. This database was recently created by the World Bank and compiles procedural requirements for exporting and importing a standardised cargo of goods. Trade facilitation data refer to 2004. Distance between capitals is taken from CEPII\(^5\). As in Márquez-Ramos and Martínez-Zarzoso (2010), technological innovation is proxied using the Technological Achievement Index (TAI) computed by UNDP (2001).

Tariff data come from the Trade Analysis Information System (TRAiNS) and were extracted using the World Integrated Trade Solution (WITS). The tariffs faced by each of the 13 exporting countries were collected using the importing countries as reporting countries. We obtained tariffs weighted by their corresponding trade values at one digit SITC level in the year 2000. TRAUNS presents three types of tariff for each product: bound rate, preferential and Most-Favoured Nation tariffs (MFN). Bound tariffs are specific commitments made by individual WTO members. The bound rate is the maximum MFN tariff level for a given product line. When WTO members negotiate tariff levels, they agree the bound tariff rates, but these are not necessarily the same rates that a WTO member applies to other WTO members’ products\(^6\). The preferential rate is the lowest. Under a preferential trade agreement, one country imposes lower tariffs on another country’s products than their MFN rate. Exporting countries may therefore have access to several different preference programmes from a given importing partner and for a given product. MFN tariffs are the rate countries promise to impose on imports from other members of the World Trade Organisation, unless the country is part of a preferential trade agreement.

WITS uses the concept of effectively applied tariffs, defined as the lowest tariff granted by an importer to an exporter for a particular product. The rates used in this paper are the weighted average of effectively applied tariffs.

\(^4\) We are aware of the fact that sectoral production could be a better proxy for exporter supply capacity when using sectoral data. Unfortunately, these data are not available for all the exporter countries analysed.

\(^5\) The dist_cepii file was taken from http://www.cepii.fr/anglaisgraph/bdd/distances.htm. Simple distances are calculated following the great circle formula, which uses the latitudes and longitudes of the most important cities or agglomerations (in terms of population).

\(^6\) Countries can break a commitment (i.e. raise a tariff above the bound rate), but only with difficulty. To do so they have to negotiate with the countries most involved and this could result in compensation for trading partners’ loss of trade.
applied tariffs for each country importing each product from the 13 exporters in the sample. Table 1 shows the weighted average tariffs imposed on imports from the 13-country sample to all importing countries in the year 2000 for the different sections of the Standard International Trade Classification (SITC, revision 2).
Table 1. Average effectively applied tariffs (expressed in weighted terms) imposed on imports from the 13-country sample by all countries in the year 2000.

Product	Product Name	South Africa	Australia	Bolivia	Brazil	Chile	China	Czech Republic
0	Food and live animals	9.92	18.41	12.92	9.30	7.20	7.33	17.61
1	Beverages and tobacco	12.90	6.93	15.23	25.30	7.21	5.04	34.26
2	Raw materials, inedible, except fuels	1.68	3.11	4.28	5.85	1.15	2.32	1.99
3	Mineral fuels, lubricants and related materials	3.38	1.47	0.66	1.56	6.61	2.61	1.40
4	Animal and vegetable oils, fats and waxes	10.42	11.27	19.54	17.19	9.66	1.97	17.06
5	Chemicals and related products, n.e.s.	6.04	3.56	7.07	3.69	5.95	4.68	4.36
6	Manufactured goods classified chiefly by material	2.17	3.11	3.49	3.54	3.55	4.77	5.79
7	Machinery and transport equipment	6.65	3.99	2.67	4.57	13.66	2.58	6.33
8	Miscellaneous manufactured articles	4.68	5.32	6.12	5.82	7.78	4.64	4.83
9	Commodities and transactions, n.e.s.	14.72	1.54	0.00	2.86	0.68	7.30	10.90

Product	Product Name	Germany	Ghana	Japan	Spain	United Kingdom	United States
0	Food and live animals	14.16	1.65	10.46	12.19	13.75	18.70
1	Beverages and tobacco	16.25	7.45	21.31	14.70	23.83	30.22
2	Raw materials, inedible, except fuels	4.17	1.53	4.76	5.25	6.15	6.75
3	Mineral fuels, lubricants and related materials	2.67	2.80	7.36	14.50	1.33	5.13
4	Animal and vegetable oils, fats and waxes	13.53	0.75	6.73	8.72	10.83	12.38
5	Chemicals and related products, n.e.s.	4.28	6.43	5.70	7.35	4.15	4.55
6	Manufactured goods classified chiefly by material	5.52	1.45	8.32	11.43	8.35	7.49
7	Machinery and transport equipment	5.54	1.92	5.27	8.23	3.71	4.07
8	Miscellaneous manufactured articles	4.07	3.56	4.29	10.05	4.30	5.99
9	Commodities and transactions, n.e.s.	3.23	0.00	0.23	4.44	11.42	1.32

Source: WITS (2008) and authors’ calculations.
Overall, protection is greater on “sensitive” products such as food and live animals, beverages and tobacco and animal and vegetable oils, fats and waxes. Finally, the first half of Table 2 shows summary statistics of the variables used in the empirical application (except dummy variables) and the second half shows their simple correlations after the linear transformation that is explained in the next section.

Table 2. Summary statistics and correlations

Summary Statistics	Observations	Mean	Std. Dev.	Min	Max
Exports (thousands of US$)	226029	25100.1	296128	0	4.31E+07
Exporter Income (US$)	226029	2.95E+12	2.88E+12	1.99E+10	9.63E+12
Importer Income (US$)	196430	7.09E+11	1.61E+12	4.95E+08	9.63E+12
Distance (km)	207313	6935.02	4977.62	173.524	19586.2
Ad-valorem tariff (%)	195365	8.72824	6.49074	0	119
Ad-valorem weighted tariff (%)	210912	7.49892	11.80166	0	928.04
TAI exporter	226029	0.53444	0.14808	0.139	0.733
TAI importer	193854	0.3639	0.22088	0	0.744
Time to export (days)	226029	12.5176	6.07162	6	31
Time to import (days)	199841	22.54901	16.1429	3	139
Documents to export (number)	226029	5.1739	0.96657	4	12
Documents to import (number)	199841	8.142495	3.61971	2	20
Transport costs to export (US$ per container)	226029	712.212	188.29	335	1110
Transport costs to import (US$ per container)	199841	1066.436	591.777	333	4565

Correlations	Exports	Income	Distance	Tariff	TAI	Time	Transport Costs	Documents
Exports	1.00							
Income	0.370	1.000						
Distance	-0.244	-0.048	1.000					
Tariffs	-0.148	0.041	0.548	1.000				
TAI	0.268	0.390	0.025	0.039	1.000			
Time	-0.242	-0.270	-0.006	-0.014	-0.726	-0.726	1.000	
Transport Costs	-0.097	-0.222	0.038	-0.015	-0.090	0.298	1.000	
Documents	-0.157	-0.101	-0.054	0.008	-0.506	0.715	0.129	1.000

4. Empirical analysis

The empirical analysis is based on the gravity model of trade, which is widely recognised for its impressive goodness of fit when applied to bilateral trade flows. Indeed, some authors have referred to this model as the “workhorse” of empirical trade studies (Eichengreen and Irwin, 1998; Cheng and Wall, 2005). In the context of the gravity model, Anderson and van Wincoop (2003) emphasize the dependence of trade on a bilateral and multilateral resistance factor. These authors refer to price indices as “multilateral resistance” variables that depend on all bilateral resistances, including those that do not directly involve the exporting country.

7 We refer to “sensitive” products as those products which are susceptible to competition from imports from other country suppliers.
The theoretical background for our study is provided by the model in Baier and Bergstrand (2009). This model is a generalisation of previous work on the gravity equation, in which special attention is given to modelling the so-called multilateral resistance terms. Baier and Bergstrand (2009) demonstrate that a first-order log-linear Taylor series expansion of the nonlinear system of price equations provides an alternative OLS log-linear specification that introduces theoretically motivated MR. This methodology has two basic advantages over the other approaches recently proposed to estimate a “theoretically motivated” gravity equation. Firstly, it is simpler than the custom nonlinear least squares (CNLS) program proposed by Anderson and van Wincoop (2003), which has scarcely been applied by empirical researchers. Secondly, it enables researchers to estimate the comparative static effects of trade costs. The most commonly applied approach to estimate potentially unbiased gravity equation coefficients since Anderson and van Wincoop (2003) is to use region-specific fixed effects, as already suggested by the authors and by Feenstra (2004). Although this method is very simple and avoids the measurement error associated with measuring regions’ “internal distances” (as in CNLS), it does not allow direct estimation of the comparative static effects of trade costs. Moreover, the Anderson and van Wincoop (2003) approach is only valid in a world with symmetrical bilateral trade costs \(t_{ij} = t_{ji} \), whereas the MR approximation terms also work under asymmetrical bilateral trade costs\(^8\) and, in reality, many trade costs are bilaterally asymmetric, such as tariff rates and transport costs.

Baier and Bergstrand (2009) suggest applying a first-order Taylor expansion to the explanatory variables and then using OLS to estimate the gravity model specified with the transformed variables. The focus in this paper is on estimation (not in comparative statics) and therefore the simple average weights \((1/N)\) are used in the MR construction, instead of the GDP shares used as weights in Baier and Bergstrand (2009). By using this methodology, the bilateral independent variables are transformed as follows:

\[
(x_{ij})_{P_{ij}} = \frac{1}{N_r} \sum_{r=1}^{N_r} x_{ir} + \frac{1}{N_m} \sum_{m=1}^{N_m} x_{mj} - \frac{1}{N_r} \frac{1}{N_m} \sum_{r=1}^{N_r} \sum_{m=1}^{N_m} x_{mr}
\]

(Equation (1))

where \(r \) is an index of the country partners of \(i \) and \(m \) is an index of the country partners of \(j \). Equation (1) refers to variables with bilateral variability (e.g. distance)\(^9\) and both bilateral and sectoral variability (tariffs), which are a proxy for bilateral trade costs. The first term on the RHS is the simple average of the gross trade costs facing exporter \(i \) across all importers \(r \), whereas the second term on the RHS is the simple average of the gross trade costs facing importer \(j \) across all exporters \(m \). The estimated equation is:

\(^8\) See Addendum to “Bonus Vetus OLS” (B-B, 2007) in http://www.nd.edu/~jbergstr/working_papers.html.

\(^9\) Note that the bilateral distances (and tariffs) have to be logged before doing the MR transformation.
\[
\ln X_{ijk} = \alpha_0 + \alpha_1 \ln(Y_i Y_j) + \alpha_2 (\ln \text{Dist}_{ij} - \ln \text{Dist}_{pp_i}) + \alpha_3 (\ln \text{Tariffs}_{ijk} - \ln \text{Tariffs}_{pp_i}) + \\
+ \alpha_4 (\text{CAN}_{ij} - \text{CAN}_{pp_i}) + \alpha_5 (\text{MERC}_{ij} - \text{MERC}_{pp_i}) + \alpha_6 (\text{EU}_{ij} - \text{EU}_{pp_i}) + \\
+ \alpha_7 (\text{EMU}_{ij} - \text{EMU}_{pp_i}) + \alpha_8 (\text{ECOWAS}_{ij} - \text{ECOWAS}_{pp_i}) + \\
+ \alpha_9 (\text{CEFTA}_{ij} - \text{CEFTA}_{pp_i}) + \alpha_{10} (\text{NAFTA}_{ij} - \text{NAFTA}_{pp_i}) + \alpha_{11} (\text{Col}_{ij} - \text{Col}_{pp_i}) + \\
+ \alpha_{12} (\text{Lang}_{ij} - \text{Lang}_{pp_i}) + \alpha_{13} (\text{Contig}_{ij} - \text{Contig}_{pp_i}) + \alpha_{14} \ln(ET_{i} ET_{j}) + \varepsilon_{ijk}
\]

where \(\ln \) denotes natural logarithms. \(X_{ijk} \) denotes the value of exports of commodity \(k \) from country \(i \) to country \(j \); \(Y_i \) and \(Y_j \) are incomes in the origin and destination market respectively; \(\text{Dist}_{ij} \) is the geographical great circle distance in kilometres between the most important cities (in terms of population) of countries \(i \) and \(j \). \(\text{Tariff}_{ijk} \) is the weighted average effectively applied tariff for each country importing each commodity from the 13 exporters. Martínez-Zarzoso and Márquez-Ramos (2008) used effectively applied rates in sector \(k \) and obtained the unexpected result of a positive sign for the tariff variable in their regressions. Hence, in the present paper, we take the construction of a proper tariff measure a step further. In order to do so, the rates used in this paper are the weighted average effectively applied tariffs for each country importing each product from each of the 13 exporters in the sample at 1-digit level (SITC classification). By doing so, we expect to capture the variability of policy barriers by exporter, by importer and by sector when estimating trade regressions. CAN is a dummy that takes a value of 1 when both exporting and importing countries are Andean Community members, zero otherwise; MERC is a dummy that takes a value of 1 when both exporting and importing countries belong to Mercosur and EU takes a value of 1 when countries are members of the European Union. Additionally, EMU takes a value of 1 when countries are members of the Economic and Monetary Union; ECOWAS takes a value of 1 when countries are members of the Economic Community of West African States; CEFTA takes a value of 1 when countries are members of the Central European Free Trade Agreement, and NAFTA takes a value of 1 when countries are members of the North American Free Trade Area. \(\text{Col} \) is a dummy that takes the value of 1 when trading partners have had a colonial link at any time; \(\text{Lang} \) is a dummy for countries sharing a common official language. Finally, \(\text{Contig} \) is a dummy that indicates whether the trading partners are contiguous. \(ET_i \) and \(ET_j \) are easy-to-trade variables (technological innovation, internal transport costs, time and the number of documents required to trade) for the exporting and importing country respectively. Technological innovation is measured as the product of the Technological Achievement Index (TAI) of countries \(i \) and \(j \), internal transport costs are measured as the product of the fees levied on a 20-foot container in US dollars in countries \(i \) and \(j \). All the fees associated with completing the procedures to export or import goods are included. Documentation (time) is measured as the product of the number of documents (days) required to trade in countries \(i \) and \(j \). Finally, \(\varepsilon_{ijk} \) is the error term, which is assumed to be independently and identically distributed.

Estimating equation (2) by OLS would yield identical coefficients to other estimates used to obtain unbiased gravity equation coefficients (fixed effects and CNLS), although as with any linear approximation, an approximation error is introduced: It would have a lower average absolute comparative-
static error than the Anderson and van Wincoop (2003) method in the case of asymmetric bilateral trade costs ($t_{ij} \neq t_{ji}$), which is a more realistic assumption when quantifying the impact that institutional and policy trade barriers have on bilateral trade flows.

Table 3 shows the results obtained for the full sample. Note that due to the complementarity of the ET variables considered, models 1-4 include each trade facilitation variable separately, namely technological innovation, transport costs, number of days and number of documents required to trade, respectively. In order to improve the measure of ET, we also computed an average ET that is calculated as the simple average of the variables: \[\frac{1}{3} \sum_{m=1}^{3} \ln(x_i x_j) / 3 \], where x denotes time, internal transport costs and number of documents. The results obtained when including this variable are shown in Model 5 (last column of Table 3).

The estimated coefficients indicate that income variables have the expected positive effect on trade, whereas distance influences trade negatively. The OLS results also show that dummy variables included in the regression are significant and present the expected positive sign, with the exception ECOWAS, which has also been found to be significant and negative signed in previous research (see Martinez-Zarzoso and Márquez-Ramos, 2008). With respect to the variables of interest, tariff barriers record a negative and significant coefficient, as do internal transport costs, time to trade and number of documents, although the coefficients obtained for the trade facilitation variables are higher in magnitude. The coefficient of technological innovation is positive and significant, indicating that improving service infrastructure fosters international trade. The trade deterrent effect is greater for variables related to bureaucratic procedures and waiting time at the border than for internal transport costs.

These results are similar to those found in the estimates with exporter and importer fixed effects. In particular, elasticity for income was 0.36 (0.02)10, for distance -0.43 (0.007), for tariff barriers -0.02 (0.002) and for number of documents -0.45 (0.04). A Wald test is then applied, confirming that the difference in the coefficients of tariff and trade facilitation variables is, in turn, statistically significant.

As each variable is measured in different units, we calculate beta coefficients to be able to compare the magnitude of the effects in terms of standard deviations. The beta coefficients are shown in Table A.2 in the Appendix I. The highest beta coefficients are, in absolute terms, for income and a number of trade facilitation variables, especially time to trade, technological innovation and number of documents. Tariff barriers and internal transport costs record the lowest beta coefficients. These results indicate that trade facilitation variables play a more important role as determinants of trade patterns than tariff barriers. The beta coefficients are interpreted as follows: changing the time to trade by one standard deviation and holding constant the other explanatory variables would increase exports by 0.17 standard deviations, whereas the effect of a reduction in the average distance by one standard deviation would increase exports by 0.15 standard deviations. According to these estimates, a change in time to trade has a slightly greater relative effect on exports than a change in distance.

10 Robust standard errors in brackets.
Finally, with respect to the goodness of fit of the model, the R squared indicates that the model is able to explain around twenty-two percent of the variability of sectoral exports. This low explanatory power, in comparison to the high explanatory power of the model when aggregated trade data are used, is common to other gravity model estimations using disaggregated data11.

Table 3. The effect of policy and institutional trade barriers.

	Model 1	Model 2	Model 3	Model 4	Model 5
Income	0.331***	0.368***	0.319***	0.348***	0.323***
	122.906	171.391	146.2	164.712	146.751
Distance	-0.367***	-0.339***	-0.380***	-0.391***	-0.373***
	-45.591	-46.507	-52.518	-53.662	-51.422
Tariffs	-0.024***	-0.011***	-0.021***	-0.015***	-0.018***
	-10.816	-5.335	-10.21	-7.219	-8.644
CAN	1.254***	1.316***	1.328***	1.373***	1.351***
	4.923	5.4	5.438	5.675	5.48
MERC	-0.131**	0.147**	-0.034	-0.007	0
	-2.134	2.445	-0.572	-0.117	-0.003
EU	0.158***	0.336***	0.144***	0.169***	0.176***
	4.239	9.538	4.109	4.815	5.007
EMU	0.142***	0.071**	0.065***	0.086***	0.074***
	4.738	2.435	2.273	2.996	2.588
ECOWAS	-26.647***	-0.961***	-0.958***	-1.046***	-0.981***
	-9.534	-3.501	-3.379	-3.788	-3.493
CEFTA	0.663***	0.570***	0.649***	0.538***	0.558***
	14.674	13.099	14.796	12.19	12.709
NAFTA	0.898***	1.098***	1.057***	1.047***	1.060***
	13.212	16.425	15.698	15.594	15.625
Colony	0.202***	0.166***	0.197***	0.189***	0.190***
	9.955	8.829	10.574	10.123	10.182
Language	0.180***	0.217***	0.155***	0.172***	0.174***
	9.787	12.933	9.459	10.474	10.528
Contiguity	0.537***	0.510***	0.435***	0.460***	0.466***
	22.072	22.499	19.933	20.988	21.164
TAI	0.538***	63.644			
Transport Costs	-0.048***				
Time		-0.378***			
		-78.974			
Documents	-0.500***				
		-63.324			
ET_average	0.556***				
		-68.303			
Constant Term	-10.002***	-12.233***	-8.234***	-9.968***	-6.302***
	-65.899	-72.56	-64.003	-80.859	-41.66
R-squared	0.224	0.209	0.234	0.227	0.228
Number of observations	149885	183420	183420	183420	183420

11 For a comparison, see Márquez-Ramos and Martinez-Zarzoso (2010), Table 1.
RMSE | 1.705479 | 1.684433 | 1.658351 | 1.665775 | 1.663984

Notes: ***, **, * indicate significance at 1%, 5% and 10%, respectively. The corresponding t-statistic is reported below each coefficient. The dependent variable is the natural logarithm of exports in value (thousands of SUS) of commodity k from country i to j. The estimation uses White’s heteroskedasticity-consistent standard errors. Data is for the year 2000.

5. Sensitivity Analysis

In this section we present estimates of the extended gravity model for different exporters and different types of goods to account for possible sources of heterogeneity in the sample. The level of protection for goods from developing countries face lower average weighted tariffs in developed countries than in developing countries; however, developing countries face higher tariffs in developed countries than those applied to developed countries trading among themselves (Table A.3). Average weighted tariffs equal to zero are more frequent among developed countries. Indeed, the second part of Table A.3 shows that the mean of the effectively applied weighted tariffs among developed countries is 4.5%, while it is much higher when one (or both) of the trading partners is a developing country (10.6%). This phenomenon is known as a “tariff bias” against developing countries.

In order to focus on the effect of trade barriers on imports from different countries, we estimate a separate regression for each of the 13 exporters included in the sample. We analyse the extent to which imports from developed and developing countries are deterred by tariffs and by trade facilitation barriers. The results of estimating equation (2) for different countries are shown in Table 4. With respect to the trade facilitation variables, 97% of the estimated coefficients present the expected sign. The first part (a) of Table A.4 (Appendix I) shows the corresponding beta coefficients. On the one hand, regressions results for Brazil, Japan, Spain and United Kingdom show the highest beta coefficient in absolute terms is for income indicating that income is the most important determinant of bilateral trade flows in those countries, followed by distance. On the other hand, estimates for China, Japan and the United States exports show the largest beta coefficients for the number of documents and days needed to trade. Consequently, these countries would benefit the most from decreasing institutional trade barriers. Furthermore, beta coefficients show that improvements in technological achievement are also of greater importance for China, Japan and the United States than for the rest of countries. Trade facilitation variables are in general of greater importance than tariff barriers, except for Germany, and tariffs are non-significant for Brazil.

Additionally, the magnitude of the coefficient of the inland transport cost variable for exporters located far away from the main markets (China and Japan) is considerably higher than the average value obtained in Table 3. As the transport cost variable includes only internal transport costs, and we control for distance in the model, the question that arises is why products exported from China and Japan face greater elasticity with respect to internal transport costs. A possible explanation is that importers easily can substitute goods coming from those locations with goods coming from closer exporters with lower internal transport costs.

12 Regressions results for Bolivia, Chile, Czech Republic, Ghana and South Africa are not reported because sample size was considerably reduced due to missing tariff data. Full results are available upon request from the authors.
Table 4. The effect of policy and institutional trade barriers (by exporter).

Exporting country	Income	Distance	Tariffs	Technological innovation	Transport costs	Time	Documents	Obs	R-squared	RMSE
Australia	0.157***	-0.197***	-0.044***	0.490***	-0.163***	-0.258***	-0.248***	7150	0.08	1.66
	9.776	-4.729	-4.599	9.071	-3.567	-8.917	-4.836			
Brazil	0.241***	-0.268***	0.005	0.403***	0.041	-0.195***	-0.169***	8559	0.10	1.59
	15.839	-7.933	0.622	5.447	1.061	-5.156	-3.102			
China	0.376***	-0.134***	0.017**	0.855***	-0.401***	-0.570***	-0.778***	18495	0.23	1.71
	31.969	-5.626	2.165	26.453	-16.283	-29.631	-24.814			
Germany	0.408***	-0.311***	-0.077***	0.638***	-0.265***	-0.315***	-0.285***	26547	0.28	1.66
	48.998	-10.555	-13.459	23.614	-14.095	-21.732	-12.286			
Japan	0.369***	-0.527***	-0.058***	0.986***	-0.379***	-0.490***	-0.365***	15901	0.19	1.88
	25.864	-16.946	-4.327	18.904	-12.128	-18.272	-9.599			
Spain	0.266***	-0.639***	-0.001	0.332***	-0.009	-0.148***	-0.054*	16043	0.24	1.45
	28.616	-19.226	-0.886	8.778	-0.391	-7.337	-1.84			
United Kingdom	0.329***	-0.497***	-0.050***	0.550***	-0.208***	-0.290***	-0.280***	22004	0.25	1.55
	40.495	-17.176	-7.94	21.805	-11.065	-18.789	-11.605			
United States	0.517***	-0.034	-0.089***	1.166***	-0.325***	-0.482***	-0.449***	21539	0.25	1.84
	38.756	-0.801	-11.464	25.264	-9.986	-19.359	-13.295			

Notes: ***, **, * indicate significance at 1%, 5% and 10%, respectively. The corresponding t-statistic is reported below each coefficient. All regressions include variables from Equation (2), the coefficients are not reported to save space. The dependent variable is the natural logarithm of exports in value (thousands of US$) of commodity k from country i to j. The estimation uses White’s heteroskedasticity -consistent standard errors. Data is for the year 2000. Income, distance, tariffs, number of observations, R-squared and RMSE correspond to regression including technological innovation as a trade facilitation measure.

Next, the effect of trade barriers and trade facilitation variables on trade for different sectors are analysed and compared. Two classifications are considered. Firstly, the model is estimated for differentiated, reference-priced and homogeneous goods according to the Rauch classification. High-technology goods, as defined in the OECD (2001) and Eurostat (1999) classifications are also considered as a separate category (see Márquez-Ramos, 2007). Secondly, the model is estimated for each of the sections of the SITC (Sections 0-9)13. Table 5 shows the main results and the second part (b) of Table A.4 (Appendix I) shows beta coefficients.

When Rauch’s classification and high-technology sectors are considered, results show that the highest beta coefficient, in absolute terms, is for income (except for Section 1- Beverages and tobacco and 3 – Mineral fuels, lubricants and related materials). Trade facilitation improvements would benefit differentiated, reference-priced and high-technology products to a greater extent than homogeneous goods. This result is in line with the assumption that the search model developed by Rauch (1999) applies most strongly to differentiated products and most weakly to products traded on organised exchanges. Hence, trade

13 See Table A.4 in the Appendix I for a description of each Section.
facilitation variables should have the greatest effects on matching international buyers and sellers of differentiated products, and search costs should act as the greatest barrier to trade in differentiated products. In relation to the second classification, the coefficient of tariffs is negative and significant and registers negative elasticities between -0.03 and –0.06. According to the results obtained, the greatest beta coefficients for tariffs are found in “sensitive” products such as mineral fuels, lubricants and related materials (Section 3); and animal and vegetable oils, fats and waxes (Section 4). These results can be compared with those obtained by other authors. For example, Fink et al. (2005) also estimate a sectoral gravity equation using trade flows classified according to the Rauch classification. These authors find that the estimated coefficient for the tariff variable is not statistically different from zero in the case of differentiated goods, whereas it is negative and statistically significant in the case of reference-priced and homogeneous goods. Along the same lines, Tang (2006) analyses the factors that contribute to the growth of US imports in differentiated, reference-priced and homogeneous goods. Although US tariffs on differentiated goods were reduced by 2.25% in the period 1975-2000, this reduction explains only 0.2% of the growth in US imports of differentiated goods. Meanwhile, the contribution of decreasing tariff barriers to the growth of US imports is about 8% for reference-priced and 13.7% for homogeneous goods. Tariff barriers therefore play a more important role for trade in reference-priced and homogeneous goods, as when comparing across different regressions the obtained beta coefficients in tariff variables are higher in magnitude for homogeneous goods than for differentiated, referenced and high-technological goods. In relation to trade facilitation variables, results show that improvements in service infrastructure (measured as countries’ technological achievement), and reducing the number of days and documents required for trade are of greater importance than internal transport costs (which include all the official fees associated with completing the procedures to export or import goods), the highest beta coefficients for these variables are found in Chemicals and related products (Section 5) and Machinery and transport equipment (Section 7). Nonetheless, inland transport costs play an important role in the case of trade of goods included in Section 8.
Table 5. The effect of policy and institutional trade barriers (by sector).

Rauch Classification	Tariffs	Technological innovation	Transport costs	Time	Documents	Observations	R-squared	RMSE
Differentiated	-0.010***	0.598***	-0.067***	-0.422***	-0.598***	93873	0.25	1.68
	-3.547	58.023	-7.68	-71.551	-60.97			
Referenced	-0.022***	0.512***	0.030**	-0.335***	-0.428***	35283	0.21	1.60
	-5.079	30.183	2.173	-34.874	-27.539			
Homogeneous	-0.048***	0.027	0	-0.089***	0.007	7454	0.08	1.93
	-5.769	0.568	-0.006	-3.582	0.173			
High-technology	-0.008	0.953***	-0.144***	-0.607***	-0.791***	27221	0.34	1.70
	-1.384	47.801	-8.372	-52.015	-41.024			
Sections SITC 1-Digit level								
Food and live animals	0.009	0.135***	-0.023	-0.155***	-0.232***	12005	0.14	1.69
	1.157	4.014	-0.975	-9.414	-8.578			
Beverages and tobacco	-0.008	0.434***	-0.035	-0.260***	-0.286***	1643	0.09	1.77
	-0.522	4.636	-0.546	-5.811	-3.871			
Crude materials	-0.040***	0.166***	0.021	-0.126***	0.028	9016	0.09	1.75
	-4.647	4.051	0.681	-5.875	0.861			
Mineral fuels, lubricants and related	-0.061***	0.435***	-0.054	-0.299***	-0.343***	1933	0.17	2.05
	-4.278	4.492	-0.706	-5.572	-3.919			
Animal and vegetable oils	-0.03	-0.063	0.255***	-0.087	-0.063	1249	0.13	1.40
	-1.586	-0.638	3.385	-1.606	-0.77			
Chemicals and related	0.006	0.692***	0.110***	-0.456***	-0.512***	22926	0.31	1.53
	0.806	33.887	6.513	-37.556	-26.019			
Manufactured goods	-0.031***	0.414***	-0.021*	-0.328***	-0.487***	38786	0.24	1.54
	-7.864	27.829	-1.675	-38.632	-34.642			
Machinery and transport	0.032***	0.809***	-0.085***	-0.537***	-0.700***	40798	0.30	1.76
Category	Coefficient 1	Coefficient 2	Coefficient 3	Coefficient 4	Coefficient 5	Observations	R-squared	RMSE
----------------	---------------	---------------	---------------	---------------	---------------	--------------	-----------	------
Miscell. Manufactures	0.008	0.432***	-0.302***	-0.396***	-0.651***	21070	0.27	1.68
	1.399	19.939	-16.013	-32.54	-32.234			
Commodities N.E.C	-0.059**	0.986***	0.067	-0.416***	-0.415**	459	0.19	2.30
	-2.092	4.335	0.362	-3.447	-2.199			

Notes: ***, **, * indicate significance at 1%, 5% and 10%, respectively. The corresponding t-statistic is reported below each coefficient. All regressions include variables from Equation (2), the coefficients are not reported to save space. The dependent variable is the natural logarithm of exports in value (thousands of $US) of commodity k from country i to j. The estimation uses White’s heteroskedasticity-consistent standard errors. Data is for the year 2000. Tariffs, number of observations, R-squared and RMSE correspond to regression including technological innovation as a trade facilitation measure.
6. Robustness Analysis

In this section we further examine the robustness of our results concerning the impact of tariffs and trade facilitation on trade by working with data at 1-digit disaggregation level and adding zero trade flows.

The previous sections used information on “positive” bilateral trade flows for 13 exporters, 167 importers and 1,189 products, discarding observations with zero trade. As Helpman et al. (2008) show, the estimated coefficients can be seriously biased if the number of zero observations is large, since zero trade flows could measure the extent to which trade responds to changes in factors that influence the extensive margin of bilateral trade. Therefore, in order to take into account the problem of zeroes, the gravity equation is estimated following a Heckman (1979) procedure (Table A.6, Appendix I) to address the problem of selection bias and also by using an alternative specification based on Helpman et al. (2008) that takes into account firm heterogeneity (Table A.7, Appendix I).

Helpman et al. (2008) developed a two-stage estimation procedure that uses a selection equation in the first stage and a trade-flow equation in the second. They showed that traditional estimates are biased and that the bias is primarily due to the omission of the extensive margin (number of exporters), rather than to selection into trade partners. The first equation (selection equation) specifies a latent variable that is positive only if country i exports to country j of a particular sector k. The second equation specifies the log of bilateral exports from country i to country j as a function of standard variables (income, distance and regional integration agreements), dyadic random effects, and a variable, \(\omega_{ijk} \), that is an increasing function of the fraction of country i firms that export to country j. The resulting equations are:

\[
\begin{align*}
\rho_{ijk} &= P(X_{ijk}) = \theta_0 + \theta_1 \ln(Y_{ij}) + \theta_2 (\ln Dist_{ij} - \ln Dist_{pp}) + \theta_3 (CAN_{ij} - CAN_{pp}) + \\
&+ \theta_4 (MERC_{ij} - MERC_{pp}) + \theta_5 (EU_{ij} - EU_{pp}) + \theta_6 (EMU_{ij} - EMU_{pp}) + \\
&+ \theta_7 (ECOWAS_{ij} - ECOWAS_{pp}) + \theta_8 (CEFTA_{ij} - CEFTA_{pp}) + \\
&+ \theta_9 (NAFTA_{ij} - NAFTA_{pp}) + \theta_{10} (Col_{ij} - Col_{pp}) + \theta_{11} (Lang_{ij} - Lang_{pp}) + \\
&+ \theta_{12} (Contig_{ij} - Contig_{pp}) + \theta_{13} \ln(ET_{ij}ET_{p}) + \zeta_{ij} + \eta_{ijk}
\end{align*}
\]

14 Extending our dataset to a balanced panel will give a number of observations=13*167*1189 (sectors) = 2,581,319 observations, which exceeds our software capacity, therefore we estimate the model for data at a 1-digit disaggregation level (10 sectors).

15 Egger and Larch (2011) estimated a two-part Poisson Pseudo-Maximum Likelihood allowing zeroes in trade flows to assess the agreement’s effects on bilateral trade and Egger, Leiter, and Pfaffermayr (2011) used the linear approximation method introduced by Baier and Bergstrand (2009) in the context of the two-stage Helpman et al. (2008) approach, accounting for heterogeneous firm productivities and zeros in trade flows.

16 According to recently developed models of trade with imperfect competition and heterogeneous firms (Melitz, 2003), lower trade costs increase bilateral trade not only through a rise in the quantity exported of every variety (the intensive margin of trade), but also through an increase in the number of exported varieties (the extensive margin of trade).

17 The selection equation should contain at least one variable that is not in the outcome equation, therefore colony; language and contiguity are not included in equation (4).

18 Tariff variable is not included in the regressions when estimating using Heckman (1979) and Helpman et al. (2008), as they present missing values when there is no trade in a particular sector between two trading countries.
\[
\ln X_{ij} = \alpha_0 + \omega_{ij} + \gamma_1 \ln(Y_{ij}) + \gamma_2 (\ln \text{Dist}_{ij} - \ln \text{Dist}_{pp}) + \gamma_3 (\text{CAN}_{ij} - \text{CAN}_{pp}) + \\
\gamma_4 (\text{MERC}_{ij} - \text{MERC}_{pp}) + \gamma_5 (\text{EU}_{ij} - \text{EU}_{pp}) + \gamma_6 (\text{EMU}_{ij} - \text{EMU}_{pp}) + \\
\gamma_7 (\text{ECOWAS}_{ij} - \text{ECOWAS}_{pp}) + \gamma_8 (\text{CEFTA}_{ij} - \text{CEFTA}_{pp}) + \\
\gamma_9 (\text{NAFTA}_{ij} - \text{NAFTA}_{pp}) + \gamma_{10} \ln(ET,ET) + \nu_{ij} + \mu_{ijk}
\]

(4)

where \(\varsigma_{ij}\) and \(\upsilon_{ij}\) are dyadic country-pair effects, specified as random in equation (3), to control for unobserved heterogeneity.

The new variable, \(\omega_{ijk}\), is an inverse function of firm productivity and proxies for the fraction of existing exporters that is a function of their productivity. The error terms in both equations are assumed to be normally distributed. Clearly, the error terms in both equations are correlated. Helpman et al. (2008) construct estimates of the \(\omega_{ijk}\)s using predicted components of equation (3) and propose a second stage non-linear estimation that corrects for both sample-selection bias and firm heterogeneity bias. They also decompose the bias and find that correcting only for firm heterogeneity addresses almost all the biases in the standard gravity equation. They implement a simple linear correction for unobserved heterogeneity (\(\omega_{ijk}\)), proxied with a transformed variable (\(z_{ijk}^*\)) given by,

\[
z_{ijk}^* = \Phi^{-1}(\hat{\rho}_{ijk}),
\]

(5)

where \(z_{ijk}^* = \frac{z_{ijk}}{\sigma_{ijk}}\) and \(\Phi(\cdot)\) is the cumulative distribution function (cdf) of the unit-normal distribution.

\(\hat{\rho}_{ijk}\) is the predicted probability of exports from country \(i\) to country \(j\), using the estimates from the random-effects-panel-probit equation (3). We also decompose the bias and use the inverse Mills ratio as a proxy for sample selection and the linear prediction of exports down-weighted by its standard error as a proxy for firm heterogeneity (\(\omega_{ijk}\)), both obtained from equation (3).

The inverse Mills ratio is given by

\[
\hat{\lambda}_{ijk} = \frac{\phi(z_{ijk})}{\Phi(z_{ijk})}
\]

where \(\phi\) is the probability density function (pdf).

Equations (3) and (4) are estimated for data at 1-digit level and for all the countries in the sample. Table A.6 and A.7 in Appendix I show the estimation results for Heckman (1979) and Helpman et al. (2008) methods, respectively. In Table A.6, we observe that the estimated coefficients for trade facilitation variables (technological innovation, transport costs, time and easy to trade average) present the expected sign and are statistically significant. However, the number of documents required to trade is not statistically significant.

Used alone, the standard Heckman correction would only be valid in a world without firm-level heterogeneity, or where such heterogeneity was not correlated with the export decision, thus all firms make the same export decisions (Helpman et al. 2008). Table A.7 shows that the proxy for sample selection
(inverse. Mills ratio) is only positive and significant in Models 0 and 2 (when trade facilitation measures are excluded from the regressions in Model 0 and when inland transport costs are included in Model 2), whereas the proxy for firm heterogeneity (zhat) is positive and significant (excluding the regression where technological innovation is included). These results indicate that the bias corrections implemented in the second stage estimation when following Helpman et al. (2008) methodology are dominated by the influence of unobserved firm heterogeneity rather than sample selection19. With regards to trade facilitation, these variables present the expected sign and are significant. The obtained beta coefficients are equal to 0.17 for technological innovation; -0.12 for inland transport costs; -0.10 for time to trade; -0.04 for number of documents to trade and -0.10 for easy to trade variable20. The obtained elasticities for technological innovation and transport costs are significantly higher in Tables A.6 and A.7 than in Table 3 and, opposite to the rest of trade facilitation variables, they are only significant in the second step estimation and hence, only have a significant effect on the intensive margin of trade. Furthermore, institutional trade barriers elasticities are even higher in magnitude when compared to Heckman results in Table A.6. These results indicate the importance of accounting for both heterogeneous firm productivities and zeros in trade flows. Due to aggregation bias, we use the results obtained in Table 4 for the simulations in the next section.

7. Simulations

Using the estimated elasticities presented in Table 4, we are able to simulate the increase in exports for several countries derived from taking the country to the sample average. In order to do so, we run simulations for the change in trade for several countries: China, Germany, Japan, the United Kingdom and the United States and, in each case, we assume all other countries do not change. These simulations are performed following Behar, Manners and Nelson (2009), who conducted simulations for export documents.

Table 6 presents the increase in exports associated to reductions in the cost to import and in the number of days and documents needed to import in countries for which trade facilitation measures are above the sample average. Simulations21 are presented for several groups of importers: low-income, middle-income, high-income non-OECD and high-income OECD countries. Columns (1), (4) and (7) show the average cost to import, time for import and number of documents for import in low-income, middle-income, high-income non-OECD and high-income OECD countries, respectively. Columns (2), (5) and (8) show the percentage reduction necessary to take the group of countries to the sample average. Finally, columns (3), (6) and (9) show the changes in trade flows for different exporters derived from taking the importing economic regions to the sample average. Table 6 shows the increase in trade flows which would take place if the importing countries were to reduce the cost,

19 The same conclusions hold when comparing beta coefficients.
20 Full results are available upon request from the authors.
21 We calculate the percentage change in exports as $\exp(\beta \delta \text{D}_{ij} * S_i) - 1$, where β is the estimated coefficient of the effect of trade facilitation on exports, δD_{ij} is the reduction to the average of a particular trade facilitation measure in the importing countries and S_i is the share of the exporter country in world GDP.
time and documents to the sample average. For example, if low-income countries were to reduce the average days for imports to the average (the reduction needed would be 65%),22 China’s exports would increase by 3.13%. Meanwhile the increase in exports would be approximately 1.38\%, 2.13\%, 0.93\% and 6.35\% for Germany, Japan, the United Kingdom and the United States, respectively. The results obtained are in line with those obtained by Behar et al. (2009), who show that the magnitude of the effect of improving trade facilitation depends on country size and that the largest countries benefit the most.23

\begin{footnotesize}
\paragraph{22} This percentage changes as it is calculated as the simple average of trade facilitation measures in countries importing from China, Germany, Japan, the United Kingdom and the United States, which export to different destinations.

\paragraph{23} These results also hold with results obtained by using Helpman et al. (2008) methodology. The results of the simulations are available upon request.
\end{footnotesize}
Country	(1) Cost to import	(2) % reduction to the average	(3) % increase in exports	(4) Time for import (days)	(5) % reduction to the average	(6) % increase in exports	(7) Documents for import	(8) % reduction to the average	(9) % increase in exports
China									
Low Income	2394.37	-55.46	1.94	65.03	-65.33	3.13	13.46	-39.51	1.89
Middle Income	1746.24	-38.93	1.36	34.11	-33.89	1.61	9.68	-15.88	0.76
High Inc. Non-OECD	1138.5	-6.33	0.22	25.5	-11.57	0.55	11	-25.98	1.24
High Income OECD	1301.2	-18.04	0.63	19.2	-	-	8.4	-3.07	0.15
Germany									
Low Income	2394.37	-55.46	0.86	65.03	-65.33	1.38	13.46	-39.51	0.84
Middle Income	1763.97	-39.54	0.61	33.92	-33.52	0.71	9.65	-15.62	0.33
High Inc. Non-OECD	1138.5	-6.33	0.10	25.5	-11.57	0.24	11	-25.98	0.55
High Income OECD	1301.2	-18.04	0.28	19.2	-	-	8.4	-3.07	0.06
Japan									
Low Income	2394.37	-55.46	1.32	65.03	-65.33	2.13	13.46	-39.51	1.29
Middle Income	1637.56	-34.88	0.83	33.64	-32.97	1.07	9.64	-15.53	0.50
High Inc. Non-OECD	1138.5	-6.33	0.15	25.5	-11.57	0.37	11	-25.98	0.85
High Income OECD	1228	-13.16	0.31	16.86	-	-	7.86	-	-
UK									
Low Income	2394.37	-55.46	0.58	65.03	-65.33	0.93	13.46	-39.51	0.57
Middle Income	1729.08	-38.32	0.40	34.03	-33.74	0.48	9.77	-16.66	0.24
High Inc. Non-OECD	1138.5	-6.33	0.07	25.5	-11.57	0.16	11	-25.98	0.37
High Income OECD	1301.2	-18.04	0.19	19.2	-	-	8.4	-3.07	0.04
USA									
Low Income	2394.37	-55.46	3.92	65.03	-65.33	6.35	13.46	-39.51	3.81
Middle Income	1637.56	-34.88	2.45	33.64	-32.97	3.16	9.64	-15.53	1.48
High Inc. Non-OECD	1138.5	-6.33	0.44	25.5	-11.57	1.10	11	-25.98	2.49
High Income OECD	1228	-13.16	0.92	16.86	-	-	7.86	-	-

Note: The elasticities used for the simulations are the simple average coefficient obtained in Table 4 for China, Germany, Japan, the United Kingdom and the United States: -0.32 for transport costs, -0.43 for time to trade and -0.43 for documents to trade. Empty cells indicate trade facilitation measures that are below the sample average.
8. Conclusions and policy implications

In this paper, the effect of reducing trade barriers is analysed and compared with the effect of improving trade facilitation using sectoral data, as disaggregation allows a more accurate analysis of policies for different products. Time, number of documents and cost of trade, as well as information technology achievements are used as proxies for trade facilitation, while tariffs are measured as the weighted average effectively applied tariffs for each country importing each product from the 13 exporters in the sample. Overall, the main results indicate that trade facilitation variables are, in relative terms, more important than tariffs, and this result is also obtained for specific countries and sectors. The single-exporter regressions indicate that our model performs better for developed countries than for developing exporters, for which other factors, such as exchange rates, market access or infrastructures, could be the main determinants of exports.

The results for specific types of goods indicate that trade facilitation improvements would benefit trade in differentiated and high-technology sectors to a greater extent than trade in homogeneous goods, basically due to the different weight of fixed costs that both groups of products are assuming.

Important policy implications can be derived from this study. In relation to tariff barriers, it is widely recognised that trade policy is still a key issue in low and middle income countries today due to a number of factors. First, as the border is often the easiest point to levy taxes, revenue needs may be determining trade policy in developing countries. Second, the infant industry argument has determined trade policy in a number of developing countries after the Second World War. Third, the existence of influential lobby groups for government support may play a key role in the determination of trade protection in a number of “sensitive” products, as has recently been the case in the European Union after the re-establishment of Mercosur-EU trade negotiations within the Spanish rotating presidency of the EU. Finally, situations where tariffs rise along processing chains still prevail in a number of sectors which are mainly of export interest for developing countries, therefore limiting export growth and diversification in those countries. Therefore, tariff peaks and tariff escalation remain important issues for developing countries.

24 The infant industry argument supports the protection of domestic nascent industries as they do not have the economies of scale that their older competitors from other countries may have.
25 See “EU farmers led by France promise to lobby against concessions for Mercosur” in http://en.mercopress.com/2010/05/17/eu-farmers-led-by-france-promise-to-lobby-against-concessions-for-mercosur
26 Although most import tariffs are now quite low, particularly in developed countries, they remain high for a few products that governments consider to be “sensitive”. These are “tariff peaks”. Some affect exports from developing countries (see World Trade Organisation, 2010: “Understanding the WTO: Developing countries”).
27 Tariff escalation occurs when a country sets low tariffs on imported materials used by industry and higher tariffs on finished products to protect the goods produced by a particular manufacturing industry. If importing countries protect their industries in this way, they make it more difficult for countries producing raw materials to process and manufacture value-added products for export. Tariff escalation exists in both developed and developing countries, but particularly affects those low-income countries which are highly specialised in raw materials (see World Trade Organisation, 2010: “Understanding the WTO: Developing countries”). http://www.wto.org/.
paper finds that trade policy negotiation efforts should also focus on facilitating trade processes, which should be at the forefront of multilateral negotiations. Decreasing institutional barriers would lead to an increase in world trade, although this increase would not be the same in all countries, or for all sectors. According to the results obtained, exports of homogeneous and referenced goods, such as agricultural products, from developing countries would experience lower increases than exports of differentiated products, which would benefit developed countries to a greater extent. Additionally, the magnitude of the effect of improving trade facilitation depends on country size. Hence, the largest countries would benefit the most.

References
- Anderson, J. E. and Van Wincoop, E. (2003), “Gravity with gravitas: A solution to the border puzzle”, American Economic Review 93(1), 170-192.
- Anderson, J. E. and Van Wincoop, E. (2004), “Trade Costs”, Journal of Economic Literature, American Economic Association, 42(3), 691-751.
- Baier, S. L. and J. H. Bergstrand (2001), “The growth of world trade: tariffs, transport costs, and income similarity”, Journal of International Economics 53 (1), 1-27.
- Baier, S.L. and J.H. Bergstrand (2009), “Bonus vetus OLS: A simple method for approximating international trade-cost effects using the gravity equation,” Journal of International Economics 77, 77-85.
- Behar, A. Manners, P. and Nelson, B. (2009), “Exports and Logistics”, Discussion Paper Series number 439, Department of Economics, University of Oxford.
- Chen, N. (2004), “Intra-National Versus International Trade in the European Union: Why Do National Borders Matter?”, Journal of International Economics 63, 1, 93-118.
- Cheng, I-H. and Wall, H. J. (2005), "Controlling for heterogeneity in gravity models of trade and integration," Review, Federal Reserve Bank of St. Louis, 49-63.
- Decreuse, I. and Fontagne, L. (2006), "A quantitative assessment of the outcome of the Doha development agenda, CEPII Working Paper No. 2006-10.
- Dennis, A. (2006), "The impact of regional trade agreements and trade facilitation in the Middle East and North Africa region" Policy Research Working Paper Series 3837, The World Bank.
- Djankov, S., Freund, C. and Pham, C. S. (2006), “Trading on Time” World Bank Policy Research Working Paper 3909, The World Bank.
- Egger, P. and Larch, M. (2011), “An assessment of the Europe agreements’ effects on bilateral trade, GDP, and welfare”, European Economic Review 55 (2), 263-279.
- Egger, P., Leiter, A. and Pfaffermayr, M. (2011), “Structural Estimation of Gravity Models with Market Entry Dynamics,” CESifo conference working paper, February.
http://www.cesifo-group.de/portal/page/portal/CFP_CONF/CFP_CONF_2011/Conf-ge11-Egger/Papers/ge11_Egger_Peter.pdf
- Eichengreen, B. and Irwin, D. (1998), “The Role of History in Bilateral Trade Flows.” In: Jeffrey A. Frankel, ed., *The Regionalization of the World Economy*, Chicago, The University of Chicago Press.
- Engman, M. (2005), "The Economic Impact of Trade Facilitation" OECD Trade Policy Working Papers 21, OECD Trade Directorate.
- EUROSTAT (1999), Répartition régionale de l’emploi dans les secteurs de Haute Technologie. Serie ‘Statistiques en Bref’.
- Feenstra, R. C. (2004), “*Advanced International Trade. Theory and Evidence*” Princeton University Press, Princeton.
- Feenstra, R. C., Lipsey, R. E., Deng, H., Ma, A. C. and Mo, H. (2005), “World Trade Flows, 1962-2000”. NBER-United Nations Trade Data, NBER Working Paper No. 11040.
- Fink, C., Mattoo, A. and Neagu, I. C. (2005), “Assessing the impact of communication costs on international trade,” *Journal of International Economics* 67(2), 428-445.
- Freund, C. L. and Weinhold, D. (2004). “The effect of the Internet on international trade”, *Journal of International Economics* 62(1), 171-189.
- Harrigan J. (1993), “OECD imports and trade barriers in 1983”, *Journal of International Economics* 35, 91-111.
- Heckman, J. J. (1979), “Sample Selection Bias as a Specification Error”, *Econometrica* 47, 153-161.
- Helpman, E., Melitz, M and Rubinstein, Y. (2008), “Estimating Trade Flows: Trading Partners and Trading Volume”, *Quarterly Journal of Economics* 123, 2, 441-487.
- Kreinin, M. E. (1961), “Effect of Tariff Changes on the Prices and Volume of Imports”, *The American Economic Review* 51 (3), 310-324.
- Márquez Ramos, L. (2007), *New determinants of bilateral trade: An empirical analysis for developed and developing countries*. Doctoral Dissertation. Universitat Jaume I, Castellón de la Plana.
- Márquez-Ramos, L. and Martínez-Zarzoso, I. (2010), “The effect of technological innovation on international trade,” *Economics - The Open-Access, Open-Assessment E-Journal*, Kiel Institute for the World Economy, 4(11), 1-37.
- Martínez-Zarzoso, I and Márquez-Ramos, L. (2008), “The Effect of Trade Facilitation on Sectoral Trade,” *The B.E. Journal of Economic Analysis & Policy* 8(1) (Topics), Article 42. Available at: http://www.bepress.com/bejeap/vol8/iss1/art42.
- Melitz, M. J. (2003), “The Impact of Trade on Intra-Industry Reallocations and Aggregate Industry Productivity,” *Econometrica* 6, 1695–1725.
- Nordas, E. P., Pinali, E. and Grosso, N. G. (2006), “Logistics and Time as a Trade Barrier”, OECD Trade Policy Working Papers 35, OECD Trade Directorate.
- OECD (2001), Classification des secteurs et des produits de haute technologie.
- OECD (2003), “Quantitative Assessment of the Benefits of Trade Facilitation” TD/TC/WP31, OECD, Paris.
- Persson, M. (2007), “Trade Facilitation and the EU-ACP Economic Partnership Agreements: Who Has the Most to Gain?,” Working Papers 2007:8, Lund University, Department of Economics, revised 01 Oct 2007.

- Rauch, James E. (1999), “Networks versus markets in international trade,” *Journal of International Economics* 48(1), 7-35.

- Soete, L. (1987), “The impact of technological innovation on international trade patterns: The evidence reconsidered”, *Research Policy* 16 (2-4), 101-130.

- Soloaga, I., Wilson, J. and Mejia, A. (2006), “Moving Forward Faster: Trade Facilitation reform and Mexican Competitiveness” World Bank Policy Research Working Paper No. 3953, The World Bank.

- Tang, L. (2006), “What accounts for the growth of trade in differentiated goods: Economic causes or technological imperatives?”, *Economics Letters* 91, 204-209.

- UNCTAD (United Nations Conference on Trade and Development) (2001), *E-Commerce and Development Report 2001*, UNCTAD: Geneva.

- United Nations Development Programme (UNDP), (2001), *Human Development Report*, New York, Oxford University Press.

- Vernon, R. (1970), *The Technology Factor in International Trade*, Columbia University Press, New York.

- Wilson, J. S., Mann, C. L. and Otsuki, T. (2003), “Trade Facilitation and Economic Development: A New Approach to Quantifying the Impact,” *World Bank Economic Review*, Oxford University Press, vol. 17(3), pages 367-389, December.

- Wilson, J. S., Mann, C. L. and Otsuki, T. (2005), “Assessing the benefits of trade facilitation: A Global Perspective”, *World Economy* 28 (6), 841-871.

- World Bank (2005), *World Development Indicators*, Washington, DC.
APPENDIX I

Figure A.1 Average Applied Tariff Rates (1981-2007)

Table A.1. List of countries.

Importing countries: Afghanistan, Albania, Algeria, Angola, Argentina, Armenia, Australia, Austria, Azerbaijan, Bahamas, Bahrain, Bangladesh, Barbados, Belarus, Belgium-Luxembourg, Belize, Benin, Bermuda, Bolivia, Bosnia Herzegovina, Brazil, Bulgaria, Burkina Faso, Burundi, Cambodia, Cameroon, Canada, Central African Republic, Chad, Chile, China, China Hong Kong SAR, China Macau SAR, Colombia, Congo, Costa Rica, Côte d’Ivoire, Croatia, Cuba, Cyprus, Czech Republic, Democratic Republic of the Congo, Denmark, Djibouti, Dominican Republic, Ecuador, Egypt, El Salvador, Equatorial Guinea, Estonia, Ethiopia, Fiji, Finland, France, Monaco, Gabon, Gambia, Georgia, Germany, Ghana, Gibraltar, Greece, Greenland, Guatemala, Guinea, Guinea Bissau, Guyana, Haiti, Honduras, Hungary, Iceland, Indonesia, Iran, Iraq, Ireland, Israel, Italy, Jamaica, Japan, Jordan, Kazakhstan, Kenya, Kiribati, Korea D P Republic, Korea Republic, Kuwait, Kyrgyzstan, Laos, Latvia, Lebanon, Liberia, Libya, Lithuania, Madagascar, Malawi, Malaysia, Mali, Malta, Mauritania, Mauritius, Mexico, Mongolia, Morocco, Mozambique, Myanmar, Nepal, Netherlands Antilles and Aruba, Netherlands, New Caledonia, New Zealand, Nicaragua, Niger, Nigeria, Norway, Oman, Pakistan, Panama, Papua New Guinea, Paraguay, Peru, Philippines, Poland, Portugal, Qatar, Republic of Moldova, Romania, Russia, Rwanda, Samoa, Saudi Arabia, Senegal, Seychelles, Sierra Leone, Singapore, Slovakia, Slovenia, Somalia, South Africa, Spain, Sri Lanka, St Kitts and Nevis, Sudan, Suriname, Sweden, Switzerland-Liechtenstein, Syria, The former Yugoslav Republic of Macedonia, Taiwan, Tajikistan, Tanzania, Thailand, Togo, Trinidad and Tobago, Tunisia, Turkey, Turkmenistan, United Kingdom, United States, Uganda, Ukraine, United Arab Emirates, Uruguay, Uzbekistan, Venezuela, Viet Nam, Yemen, Zambia, Zimbabwe.

Exporting countries: Australia, Bolivia, Brazil, Chile, China, Czech Republic, Germany, Ghana, Japan, South Africa, Spain, United Kingdom, and the United States.

28 “Trends in average applied tariff rates in developing and industrial countries, 1981-2007”. The data are compiled from UNCTAD, IMF, WTO, and country sources. Data on Trade and Import Barriers, The World Bank.
Table A.2. Beta coefficients

Variables	Table 3
Income	0.31*** (122.91)
Distance	-0.15*** (-45.59)
Tariffs	-0.04*** (-10.82)
Technological innovation	0.15*** (63.64)
Transport costs	-0.01*** (-6.82)
Time	-0.17*** (-78.97)
Documents	-0.13*** (-63.32)
Easy to trade	-0.15*** (-68.30)

Notes: ***, **, * indicate significance at 1%, 5% and 10%, respectively. T-statistics are given in brackets. The dependent variable is the natural logarithm of exports in value (thousands of US$) of commodity k from country i to j. The estimation uses White’s heteroskedasticity-consistent standard errors. Data is for the year 2000. Income, distance and tariffs correspond to regression including technological innovation as a trade facilitation measure.

Table A.3. Average weighted tariffs by importer

Exporter	Mean	Std. Dev.	Observations	Mean	Std. Dev.
The importing country is developed					
Australia	3.84	7.86	5725	10.60	11.71
Bolivia	5.64	11.83	224	12.57	5.46
Brazil	4.81	6.51	6013	10.79	8.59
Chile	6.87	9.10	1677	12.31	5.97
China	5.09	5.76	13915	15.40	8.83
Czech Republic	5.81	6.83	2996	10.33	10.72
Germany	3.74	7.27	21380	11.02	8.22
Ghana	0.69	2.26	303	17.55	13.09
Japan	5.73	16.30	11893	13.99	10.34
South Africa	5.28	11.54	4358	12.41	8.51
Spain	3.75	6.54	12691	14.29	9.84
United Kingdom	3.71	10.03	18659	12.43	18.44
United States	5.44	21.38	17320	11.71	7.74
The importing country is developing					
Both trading partners are developed					
Observations	Mean	Std. Dev.	Equal to 0		
96699	4.48	12.83	33.19%		
One or both trading partners are developing					
Observations	Mean	Std. Dev.	Equal to 0		
94414	10.59	10.42	4.11%		
Table A.4. Beta coefficients. Sensitivity Analysis.

a) By exporting country

Variable	Australia	Brazil	China	Germany	Japan	Spain	United Kingdom	United States
Income	0.13	0.25	0.28	0.30	0.25	0.23	0.27	0.28
Distance	-0.11	-0.16	-0.06	-0.11	-0.22	-0.20	-0.18	-0.01
Tariffs	-0.09	0.01	0.02	-0.13	-0.08	-0.001	-0.09	-0.15
Technological Innovation	0.11	0.09	0.20	0.13	0.19	0.07	0.13	0.18
Transport costs	-0.04	0.01	-0.10	-0.06	-0.09	-0.002	-0.06	-0.07
Time	-0.10	-0.08	-0.22	-0.11	-0.16	-0.06	-0.11	-0.15
Documents	-0.07	-0.05	-0.20	-0.07	-0.09	-0.01	-0.08	-0.10

b) By sector

Variable	Diff	Ref	Hom H.Tech	S.0	S.1	S.2	S.3	S.4	S.5	S.6	S.7	S.8	S.9	
Income	0.33	0.27	0.21	0.38	0.23	0.13	0.24	0.22	0.17	0.35	0.30	0.36	0.39	0.31
Distance	-0.15	-0.15	-0.07	-0.18	-0.08	-0.05	-0.05	-0.23	-0.01	-0.19	-0.18	-0.18	-0.16	-0.06
Tariffs	-0.02	-0.04	-0.09	-0.01	0.02	-0.02	-0.07	-0.10	-0.08	0.01	-0.06	0.05	0.01	-0.09
Techn. Innov.	0.17	0.15	0.01	0.25	0.04	0.13	0.04	0.11	-0.02	0.20	0.13	0.21	0.12	0.20
Transport costs	-0.02	0.01	-0.001	-0.04	-0.01	-0.01	0.01	0.09	0.03	-0.01	-0.02	-0.09	0.01	
Time	-0.19	-0.16	-0.04	-0.24	-0.07	-0.13	-0.05	-0.12	-0.05	-0.21	-0.16	-0.22	-0.17	-0.14
Documents	-0.16	-0.12	0.001	-0.19	-0.07	-0.08	0.01	-0.08	-0.02	-0.14	-0.14	-0.17	-0.17	-0.09

Table A.5. Sectoral classification

Code	Description
0	Food and live animals
1	Beverages and tobacco
2	Crude materials, inedible, except fuels
3	Mineral fuels, lubricants and related materials
4	Animal and vegetable oils, fats and waxes
5	Chemicals and related products, n.e.s.
6	Manufactured goods classified chiefly by material
7	Machinery and transport equipment
8	Miscellaneous manufactured articles
9	Commodities and transactions not classified elsewhere in the SITC

Note: Standard International Trade Classification at one digit level. Source: United Nations Statistics Division. http://unstats.un.org.
Table A.6. The effect of policy and institutional trade barriers (1-digit level sectors). Heckman (1979) results.

Selection	Model 0	Selection	Model 1	Selection	Model 2	Selection	Model 3	Selection	Model 4	Selection	Model 5
lnXijk	0.463***	0.151***	0.435***	0.110***	0.414***	0.152***	0.417***	0.109***	0.455***	0.127***	0.388***
Xijk	13.351	41.753	14.565	19.103	11.733	40.029	16.564	27.947	16.74	34.238	14.861
Distance	-0.392***	-0.348***	-0.335***	-0.371***	-0.372***	-0.348***	-0.359***	-0.374***	-0.385***	-0.353***	-0.292***
CAN	-4.392	-19.51	-3.627	-15.979	-4.176	-19.152	-4.033	-20.548	-4.627	-19.45	-3.247
MERC	1.126**	-0.502***	-2.029***	2.014***	1.489***	-0.503***	1.076**	-0.221**	1.027**	-0.260**	1.414***
Income	2.208	-5.037	-2.616	10.691	2.937	-5.053	2.191	-2.163	2.079	-2.404	2.872
EU	0.322	0.969***	0.069	1.253***	0.377	0.986***	0.415	0.773***	0.427	0.731***	0.404
CAN	0.605	2.649	0.117	3.223	0.708	2.673	0.781	2.29	0.803	2.261	0.723
MERC	2.268***	-1.158***	1.937***	-0.794***	2.310***	-1.156***	2.171***	-1.248***	2.126***	-1.231***	2.415***
EU	6.36	-11.554	6.112	-7.195	6.478	-11.536	6.145	-12.021	6.317	-11.612	6.659
EMU	0.103	-0.027	0.281	-0.083	0.148	-0.028	0.105	0.005	0.138	-0.014	0.148
EMU	0.364	-0.216	0.872	-0.598	0.523	-0.219	0.371	0.036	0.489	-0.105	0.501
ECOWAS	1.009	-0.807***	-20.906***	8.214***	0.171	-0.807***	0.01	-0.771***	0.612	-0.721***	-0.274
CEFTA	1.234	-6.535	-7.635	16.916	0.211	-6.542	0.013	-6.12	0.767	-5.807	-0.35
NAFT	0.598	0.495**	0.393	0.467**	0.551	0.498**	0.658*	0.427**	0.513	0.506**	0.489
NAFTA	1.523	2.47	0.918	2.199	1.4	2.484	1.679	2.137	1.314	2.382	1.193
NAFT	2.057***	-0.743***	3.343***	-0.913***	2.251***	-0.748***	2.436***	-0.933***	2.325***	-1.058***	2.602***
Colony	3.475	-4.421	5.351	-5.15	3.809	-4.445	4.122	-5.547	3.919	-6.257	4.333
Contiguity	0.141***	0.061	0.141***	0.061	0.141***	0.061	0.141***	0.061	0.141***	0.061	0.141***
Language	0.282***	0.394***	0.282***	0.394***	0.282***	0.394***	0.270***	0.394***	0.287***	0.394***	0.280***
TAI	8.615	9.425	8.603	8.167	8.673	8.495	0.058	0.058	0.058	0.058	0.058
Transport costs	0.734***	0.031	12.023	1.383	-0.535***	0.021	-12.738	1.436	-0.304***	-0.323***	-0.304***
Time	0.075	-3.841	0.045	0.518	1.201	0.811	-0.475	-27.834	-0.475	-27.834	-0.475
Documents	ET_average										
---	---	---	---	---	---						
I. Mills	-1.647***	-2.485***	-1.710***	-1.823***	-1.757***	-0.473***	-0.487***				
Constant Term	-14.225***	-7.979***	-10.723***	-5.735***	-4.328*	-8.361***	-9.957***	-13.245***	-4.342***	-6.253***	-2.073***
Number of Observations	23650	14415	23650	23650	23650	23650					

Notes: ***, **, * indicate significance at 1%, 5% and 10%, respectively. The corresponding t-statistic is reported below each coefficient. The dependent variable is either the natural logarithm of exports in value (lnXijk) or exports in value (Xijk) of commodity k (1-digit level) from country i to j. Data is for the year 2000. I. Mills is the inverse Mills ratio given by equation (6).
Table A.7. The effect of policy and institutional trade barriers (1-digit level sectors). Helpman et al. (2008) results.

	Model 0	Model 1	Model 2	Model 3	Model 4	Model 5
Income	0.480***	0.434***	0.424***	0.429***	0.479***	0.401***
	14.421	16.027	12.682	17.79	17.971	16.687
Distance	-0.536***	-0.347***	-0.501***	-0.429***	-0.488***	-0.386***
	-5.977	-4.171	-5.65	-5.027	-5.81	-4.609
CAN	0.502	-1.927***	0.778*	0.863**	0.651	1.032**
	1.183	-3.342	1.771	2.109	1.584	2.502
MERC	1.916***	0.192	2.038***	1.088**	1.181***	1.249***
	4.163	0.424	4.403	2.497	2.702	2.875
EU	1.491***	1.932***	1.595***	1.996***	1.913***	2.140***
	4.279	7.663	4.629	6.229	6.07	6.737
EMU	0.065	0.274	0.128	0.154	0.148	0.133
	0.27	1.158	0.525	0.68	0.648	0.581
ECOWAS	0.357	-20.445***	-0.493	-0.261	0.292	-0.527
	0.41	-8.736	-0.677	-0.387	0.372	-0.807
CEFTA	1.474***	0.471	1.448***	1.076***	1.142***	1.069***
	4.358	1.385	4.274	3.308	3.43	3.262
NAFTA	2.516***	3.338***	2.826***	2.597***	2.374***	2.771***
	4.354	5.957	4.746	4.638	4.163	4.862
TAI	0.735***	14.493				
Transport Costs					-0.529***	-0.331***
					-14.404	-4.666
Time					-0.251**	-1.965
Documents						
ET_average						-0.528***
						-4.89
I. Mills	1.779***	-2.203***	1.837***	-0.187	0.235	0.056
	3.44	-4.528	3.606	-0.435	0.529	0.129
Zhat	0.047***	0.006	0.054***	0.023***	0.026**	0.031***
	9.953	0.718	10.427	5.606	6.719	7.553
Constant Term	-17.770***	-10.881***	-7.701***	-11.700***	-15.605***	-8.220***
	-8.652	-6.635	-3.524	-9.605	-12.219	-8.033
R-squared	0.306	0.369	0.318	0.334	0.317	0.338
Number of Observations	10702	6942	10702	10702	10702	10702
RMSE	2.271766	2.195568	2.252322	2.22538	2.253117	2.219417

Notes: ***, **, * indicate significance at 1%, 5% and 10%, respectively. The corresponding t-statistic is reported below each coefficient. The dependent variable is the natural logarithm of exports in value of commodity k (1-digit level) from country i to j. Data is for the year 2000. I. Mills is the inverse Mills ratio given by equation (6). Zhat is a proxy for firm heterogeneity.
The Doing Business Dataset compiles the procedural requirements for exporting and importing a standardised cargo of goods. Every official procedure for exporting and importing goods is recorded (from the contractual agreement between the two parties to the delivery of goods) along with the time and cost necessary for completion. All documents required for the clearance of goods across the border are also recorded. For exporting goods, procedures range from packing the goods at the factory to their departure from the port of origin. For importing goods, procedures range from the vessel’s arrival at the port of entry to the delivery of the cargo to the factory warehouse. Local freight forwarders, shipping lines, customs brokers and port officials provide information on required documents and costs, as well as the time for completing each procedure. To make the data comparable across countries, several assumptions regarding the business and the traded goods are made. The main assumptions refer to the business and types of goods traded. The business has to be located in the country’s most populous city, and must have 200 employees or more. It is assumed to be a private, limited liability company that does not operate within an export processing zone, or an industrial estate with special export or import privileges. The business must be domestically owned with no foreign ownership and must export more than 10% of its sales. The traded product must travel in a dry-cargo, 20-foot, full container load, not be hazardous, and not include military items. In addition, it must not require special conditions for transport, such as refrigeration, and must not require any special plant health or environmental safety standards other than accepted international standards. Finally, the product falls under the following Standard International Trade Classification (SITC) Revision categories: SITC 65 (textile yarn, fabrics and made-up articles); SITC 84 (articles of apparel and clothing accessories) or SITC 07 (coffee, tea, cocoa, spices and manufactures thereof)29. The inland transport cost is recorded as the fees levied on a 20-foot container in US dollars. All the fees associated with completing the procedures to export or import goods are included. These, in turn, include costs of documents, administrative fees for customs clearance and technical control, terminal handling charges and inland transport. The cost measurement does not include tariffs or trade taxes. Only official costs are recorded.

29 Martínez-Zarzoso and Márquez-Ramos (2008) estimate a gravity model using only exports for the 3 SITC product categories considered to collect data on trade facilitation variables. These authors obtain that the sign and significance of the coefficients on trade facilitation variables are similar to those found for the sample including all sectors.
Please note:

You are most sincerely encouraged to participate in the open assessment of this discussion paper. You can do so by either recommending the paper or by posting your comments.

Please go to:

http://www.economics-ejournal.org/economics/discussionpapers/2011-38

The Editor