Analysis of Pedestrian Fractures in Collisions Between Small Cars and Pedestrians Based on Surveillance Videos

Qi Miao, MM,* Yan-Lin Zhang, MM,† Xing-An Yang, MM,* Qi-Feng Miao, MS,† Wei-Dong Zhao, PhD,‡ Fang Tong, PhD,‡† Feng-Chong Lan, PhD,‡ and Dong-Ri Li, MD*†

Objective: To discuss the collision relationship and the cause of the fracture caused by traffic accidents in which the front of a small car collides with the side of a pedestrian while braking.

Methods: The surveillance videos of 42 traffic accidents involving the front of a small car colliding with the side of a pedestrian while braking were collected. By analyzing the surveillance videos and the paths, the speed of the collision, the relationship between the vehicle and the pedestrian upon collision, and the movement trajectory of the human body were clearly identified. The type and severity of the injuries were also determined through autopsy. The characteristics of the human injuries and vehicle paths were analyzed according to the collision speed (<40 km/h, 40–60 km/h, 60–90 km/h), and the correlations between the fracture and the height of the pedestrian, the height of the hood and the length of the hood were discussed.

Results: When a small car hits the side of a pedestrian, the front bumper first hits the lower limbs of the pedestrian, and then the human body falls to the side of the vehicle, causing a secondary collision with the hood and front windshield; thus, the pedestrian is thrown at a speed similar to the speed of the vehicle, finally falling to the ground and sliding forward a certain distance. (1) When V is less than 40 km/h (n = 10), the pedestrian’s head did not collide with the windshield, and the fatal injuries were caused by the individual striking the ground. (2) When V is greater than 40 km/h (n = 32), the majority (97%) of cases showed collision with the windshield. (3) When 40 to 60 km/h (n = 16), the pedestrian’s head collided with the windshield, which can cause fatal injuries, and pelvic fractures and rib fractures occurred in 56.25% of patients. (4) When V is less than 60 km/h (n = 26), the ratio of the height of the pedestrian to the height of the hood was significantly smaller in the pelvic fracture group than in the nonpelvic fracture group (P < 0.01). (5) When 60 to 90 km/h (n = 16), there were holes in the windshield, and the pedestrians experienced severe head injuries, with cervical spine fracture occurring in 37.5% of patients, pelvic fractures occurring in 43.75% of patients, and rib fractures occurring in 31.25% of patients.

Conclusions: When V is less than 40 km/h, the vehicle does not cause severe injuries in pedestrians; when V is greater than 40 km/h, the collisions of the pedestrian’s head with the windshield lead to severe head injuries and the accident can cause severe pelvic and rib fractures; when V is greater than 60 km/h, the collisions of the pedestrian’s head with the windshield can cause cervical spine fracture in addition to head injuries. The occurrence of human injuries is related to not only the vehicle speed but also factors such as the height of the pedestrian, the height of the hood and the length of the hood.

Key Words: forensic pathology, traffic injuries, surveillance video, collision speed, accident reconstruction

(Am J Forensic Med Pathol 2022;43: 11–17)
small cars and pedestrians, computer models still have many limitations in forensic medical research because it is difficult to reconstruct complex anatomic geometry models and accurately recreate damage patterns.15 For example, PC-Crash and MADYMO software have important practical value in the recreation of accidents and yield simulation results that are the most consistent with the actual results; however, the pedestrian model in this kind of software is simple in structure and lacks complex and diverse materials and properties, so it has many limitations in the evaluation of traffic injuries.11,16,17

Surveillance videos can theoretically capture the entire process of an accident, including the movement of the human body. With the vehicle paths and autopsy findings, the collision relationships between the vehicles and pedestrians, as well as the correlations between speed, paths and human injuries, can be clearly identified.18 Although there are differences across monitoring devices and weather, distance and viewing angle influence the data, most of these factors can be accounted for by computers19; thus, the accident can be recreated, and the mechanisms of major traffic injuries can be revealed. Compared with other research methods, this method has many advantages.19,20

This study uses surveillance videos to explore the characteristics and the mechanisms of pedestrian injuries by determining the relationships between the vehicle and pedestrian, collision speed and human movement trajectories during actual traffic accidents in which the front of a small car collides with the side of a pedestrian.

MATERIALS AND METHODS

Materials

From 2015 to 2019, the surveillance videos of 42 fatal traffic accidents in which the front of a small car collides with the side of a pedestrian while braking were retrieved. The decedents were all between 20 and 50 years old. An accident site inspection, an accident vehicle inspection, surveillance video correction, and a systematic forensic pathological anatomy examination were conducted in all cases.

Methods

This study divided the collision speed into 3 ranges, <40 km/h, 40 to 60 km/h, and 60 to 90 km/h, based on the Road Traffic Safety Laws of the People's Republic of China, the Regulation and the Implementation of the Road Traffic Safety Laws of the People's Republic of China, and the general speed limits for urban, county, and provincial roads in China. The collision speeds of the cars were calculated by using the surveillance videos according to the national standards of the People’s Republic of China (GB/T 33195-2016, GA/T 1087-2013). Damage information, such as the damage to the front bumper, hood, and front windshield, was retrieved from the accident inspection records for the vehicle, and the height of the front edge of the hood from the ground (hood's height) and the length of the hood (hood's length) were measured. The ratio of the height of the pedestrian to the height of the hood (pedestrian's height/hood's height) and the ratio of the pedestrian's height to the height of the hood plus the length of the hood (pedestrian's height/hood's height + hood's length) were calculated. Through the correction and analysis of the surveillance videos, as well as the evaluation of the trace inspection and autopsy records, the collision relationships between the small cars and pedestrians were identified, and the collision processes were verified and restored.21

The autopsy report recorded the fractures and the damage of each organ in detail, and the damage degree of the human body was evaluated according to the injury severity score on the abbreviated injury scale (AIS).22–24

| Table 1. Vehicle Damage, Human Body Injuries, and AIS Scores of the Injuries Caused by Collisions at Different Speeds |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Vehicle Damage | Human Body Injuries | AIS Scores |
| Front Bumper | Engine Cover | Front Bumper | Windshield | Front Bumper | Rib Fractures | Pelvic Fractures | Femoral Fractures | Tibiofibular Fractures | Head Injuries | Cervical Spine Fractures |
| <40 (10) | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 |
| 40–60 (16) | 16 | 16 | 16 | 16 | 16 | 16 | 16 | 16 | 16 | 16 | 16 |
| 60–90 (16) | 16 | 16 | 16 | 16 | 16 | 16 | 16 | 16 | 16 | 16 | 16 |
| Total (42) | 42 | 42 | 42 | 42 | 42 | 42 | 42 | 42 | 42 | 42 | 42 |

*The unit of vehicle speed V is km/h, which is the same in the following table. The human body injuries refer to direct collision injuries, not including fall injuries.
Moreover, whether there is a correlation between pedestrian fractures and pedestrian height/hood height and pedestrian height/(hood height + hood length) was explored.

RESULTS

Of the 42 accidents investigated, 10 had a collision speed <40 km/h, 16 had a speed between 40 and 60 km/h, and 16 between 60 and 90 km/h. Damage to the cars was mainly concentrated on the front bumper, hood, and front windshield. The data show that all the vehicles involved in the accident incurred damage to the front bumper and hood (100%), and the damage to the windshield was related to the vehicle speed, pedestrian height, hood height, and hood length.

(1) The Process of Collision

According to the analysis of the surveillance videos in this research, when a small car hits the side of a pedestrian, the front bumper first hits the lower limbs of the pedestrian, and then, the human body falls to the side of the vehicle, causing a secondary collision with the hood and front windshield; thus, the pedestrian is thrown at a speed similar to the speed of the vehicle, finally falling to the ground and sliding forward a certain distance.

(2) Front Windshield

When V is less than 40 km/h, the windshield was not damaged in any of the 10 cases; when 40 to 60 km/h, a spider-web-like damage pattern was found on the windshield in all 16 cases (100%); when 60 to 90 km/h, a hole in the windshield occurred in 15 of the 16 cases (93.75%). When V is greater than 40 km/h, the front windshield was damaged in 31 of 32 cases, mainly because of the collision of the pedestrian’s head with the windshield; in these cases, the pedestrian height/(hood height + hood length) was 0.96 ± 0.04. In the remaining case, the windshield was not damaged, and the pedestrian height/(hood height + hood length) was 0.87 (Table 1, Table 2).

(3) Pedestrian Fracture

The injuries of the pedestrians mainly affected the tibia, fibula, femur, pelvis, ribs, cervical vertebra, and head. Tibiofibular fractures and head injuries were the most common, whereas fractures of the femur, pelvis, ribs, and cervical vertebrae also being common (Table 1, Fig. 1).

Tibiofibular fractures: a total of 4 of the 10 (40%) accidents with V less than 40 km/h involved tibiofibular fractures, whereas 31 of the 32 (96.87%) accidents with V greater than 40 km/h involved tibiofibular fractures. Only 1 accident with V greater than 40 km/h did not result in a tibiofibular fracture.

Femoral fractures: a total of 1 of 10 (10%) accidents with V less than 40 km/h involved femoral fractures; 5 of 16 (31.25%) accidents with V of 40 to 60 km/h involved femoral fractures; 8 of 16 (50%) accidents with V of 60 to 90 km/h involved femoral fractures. The probability of femoral fractures tended to gradually increase with increasing speed.

Pelvic fractures: a total of 3 of 10 (30%) accidents with V less than 40 km/h involved pelvic fractures; 9 of 16 (56.25%) accidents with V of 40 to 60 km/h involved pelvic fractures; and 7 of 16 (43.75%) accidents with V in 60–90 km/h involved pelvic fractures. When V is less than 60 km/h, the probability of pelvic fractures tended to gradually increase with increasing speed; however, when V is greater than 60 km/h, the probability of pelvic fractures did not increase with increasing vehicle speed.

Fractures of the rib: a total of 3 of 10 (30%) accidents with V less than 40 km/h involved rib fractures; 9 of 16 (56.25%) accidents with V greater than 40 km/h involved rib fractures. The probability of rib fractures increased with increasing speed.

TABLE 2. The Correlation Between Damaged Front Windshield and Pedestrian Height/(Bonnet Height + Bonnet Length) in the 32 Cases With V > 40 km/h

The Collision Speed: V (32)	Damaged (31)	Undamaged (1)
V > 40	0.96 ± 0.04	0.87

FIGURE 1. The probability of femoral fractures tended to gradually increase with increasing speed. When V < 60 km/h, the probability of pelvic and rib fractures tended to gradually increase with increasing speed; however, when V > 60 km/h, the probability of fracture did not increase with increasing vehicle speed.

© 2021 The Author(s). Published by Wolters Kluwer Health, Inc. www.amjforensicmedicine.com | 13
accidents with V of 40 to 60 km/h involved rib fractures; and 5 of 16 (31.25%) accidents with V of 60 to 90 km/h involved rib fractures. When V is less than 60 km/h, the probability of rib fractures tended to gradually increase with increasing speed; however, when V is greater than 60 km/h, the probability of rib fractures did not increase with increasing vehicle speed.

Cervical spine fractures: when V is less than 60 km/h, no cervical spine injuries were found in any of the 26 cases; when V is greater than 60 km/h, cervical spine fractures were discovered in 6 of the 16 cases, 2 of which were accompanied by pelvic fractures, accounting for 12.5% of cases. A total of 10 cases did not involve cervical spine fracture, 5 of which involved pelvic fractures, accounting for 31.25% of cases.

(4) Degree of Injury Due to Collision

When V is less than 40 km/h, 2 cases had AIS scores less than 8 (minor injuries) and the remaining 8 all had AIS scores less than 16 (moderate injuries); when 40 to 60 km/h, there were 9 cases with AIS ranging from 16–25 (serious injuries) and 7 cases with AIS greater than 25 (severe injuries); when 60 to 90 km/h, there were 4 cases with AIS ranging from 16 to 25 (serious injuries) and 12 cases with AIS greater than 25 (severe injuries). The degree of pedestrian injury became increasingly severe with increasing vehicle speed (Table 1, Fig. 2).

The injuries caused by collisions between small cars and pedestrians are very complicated and are related to many factors, such as vehicle speed, collision angle, pedestrian height, pedestrian walking direction, pedestrian reaction, and whether the car brakes before the collision. Although there are currently dummy models, mathematical computer simulations, and other research methods, dummy models are not able to reveal pathophysiological changes and are expensive, and it is difficult to reconstruct complex anatomic geometric models and accurately reproduce damage patterns in mathematical computer simulations. In contrast, surveillance videos can theoretically capture the entire process of an accident, including the movement of the human body. Combined with the vehicle paths and autopsy findings, the information from the videos can reveal the collision relationships between vehicles and pedestrians, as well as the correlations between speed, the paths, and human injuries. Compared with other research methods, this method has many advantages, but there are also problems, such as the difficulty in case retrieval and the need to process surveillance video with computers.

DISCUSSION

The injuries caused by collisions between small cars and pedestrians are very complicated and are related to many factors, such as vehicle speed, collision angle, pedestrian height, pedestrian walking direction, pedestrian reaction, and whether the car brakes before the collision. Although there are currently dummy models, mathematical computer simulations, and other research methods, dummy models are not able to reveal pathophysiological changes and are expensive, and it is difficult to reconstruct complex anatomic geometric models and accurately reproduce damage patterns in mathematical computer simulations. In contrast, surveillance videos can theoretically capture the entire process of an accident, including the movement of the human body. Combined with the vehicle paths and autopsy findings, the information from the videos can reveal the collision relationships between vehicles and pedestrians, as well as the correlations between speed, the paths, and human injuries. Compared with other research methods, this method has many advantages, but there are also problems, such as the difficulty in case retrieval and the need to process surveillance video with computers.
Because of the unique advantages of surveillance videos, this study used the surveillance videos of 42 traffic accident cases of collisions between small cars and pedestrians crossing the road while braking to determine the characteristics and conditions of pedestrian injuries. In addition, the conclusions of this study can provide references for cases without surveillance video. The data from this study show that the location and degree of injury are related to many factors, such as vehicle speed, collision angle, pedestrian height, pedestrian walking direction, pedestrian reaction, and whether the car brakes before the collision, as well as the height of the hood and the length of the hood.

When V is less than 40 km/h, the pedestrian’s head does not collide with the windshield, and the damage to the vehicle is limited to only the front bumper and hood. Fractures of the pelvis and ribs occur in 30% of cases. It has also been reported that severe pelvic fractures can be fatal because of blood loss, with a mortality rate of 32%. In this study, there was one case with a collision speed of 70 km/h, but the pedestrian’s head did not collide with the windshield. In that case, the ratio of pedestrian height/hood height (hood height + hood length) was 0.87, which was smaller than those in the 31 cases with damage to the windshield and a speed greater than 40 km/h, for which the average ratio was 0.96 ± 0.04 (Table 2).

These data from the study indicate that the incidence of pelvic and rib fractures does not necessarily increase with increasing vehicle speed, although there does seem to be a relationship between with height of the pedestrian and height of the hood. When V is less than 60 km/h, the smaller the ratio of pedestrian height to hood height, the higher the incidence of pelvic fractures, although the incidence of femoral and rib fractures did not show significant differences (Table 4). However, when V is greater than 60 km/h, the incidence rates of fractures of the pelvis, ribs, and femurs were not found to significantly differ by the ratio of pedestrian height to hood height.

Because of the unique advantages of surveillance videos, this study used the surveillance videos of 42 traffic accident cases of collisions between small cars and pedestrians crossing the road while braking to determine the characteristics and conditions of pedestrian injuries. In addition, the conclusions of this study can provide references for cases without surveillance video. The data from this study show that the location and degree of injury are related to many factors, such as vehicle speed, collision angle, pedestrian height, pedestrian walking direction, pedestrian reaction, and whether the car brakes before the collision, as well as the height of the hood and the length of the hood.

When V is less than 40 km/h, the pedestrian’s head does not collide with the windshield, and the damage to the vehicle is limited to only the front bumper and hood. Fractures of the pelvis and ribs occur in 30% of cases. It has also been reported that severe pelvic fractures can be fatal because of blood loss, with a mortality rate of 32%. In this study, there was one case with a collision speed of 70 km/h, but the pedestrian’s head did not collide with the windshield. In that case, the ratio of pedestrian height/hood height (hood height + hood length) was 0.87, which was smaller than those in the 31 cases with damage to the windshield and a speed greater than 40 km/h, for which the average ratio was 0.96 ± 0.04 (Table 2).

These data from the study indicate that the incidence of pelvic and rib fractures does not necessarily increase with increasing vehicle speed, although there does seem to be a relationship between with height of the pedestrian and height of the hood. When V is less than 60 km/h, the smaller the ratio of pedestrian height to hood height, the higher the incidence of pelvic fractures, although the incidence of femoral and rib fractures did not show significant differences (Table 4). However, when V is greater than 60 km/h, the incidence rates of fractures of the pelvis, ribs, and femurs were not found to significantly differ by the ratio of pedestrian height to hood height.

Frame by frame analysis of two cases was performed, in which the speeds were 47.7 and 70 km/h, the heights of the pedestrians were 165 and 163 cm, the heights of the hoods were 82 and 80 cm, and the pedestrian height/hood height ratios were 2.012 and 2.038, respectively. As a result, the front right part of the small car collided with the left lower limb of the pedestrian at 47.7 km/h, and the torso rotated clockwise while moving toward the hood. The pedestrian’s left femur collided with the leading edge of the hood, followed by hip and chest collisions with the hood, which led to fractures of femur, pelvis and ribs. The front left part of the small car collided with the right lower limb of a pedestrian at 70 km/h, and the right lower limb propelled the hip and torso upward, which reduced the magnitude of impact to the pelvis, chest and hood. In other words, the faster the collision speed is, the larger the force of the pedestrian’s lower limbs that is directed upward; the collision force of the pelvis and ribs with the hood may be reduced, but the impact of the head and the windshield on the occurrence of head and neck injuries does not decrease. When V is greater than 60 km/h, in addition to severe head injuries, 37.5% of patients suffered from cervical spine fracture, of whom only 12.5% had pelvic fractures, which also supports the above results. Yanar et al also proposed that the incidence of cervical spine injuries after pedestrians are hit by cars increases with the severity of head trauma. Therefore, in the field of forensic medicine and clinical first aid, neck injuries should be considered in addition to head trauma.
CONCLUSIONS

Surveillance videos are important for studying the process of traffic accidents and the mechanisms of traffic injuries. In collisions between small cars and pedestrians, the formation of human injuries is related to not only the speed and angle of the collision but also to the height of the pedestrian, the height of the hood, the length of hood, and whether the car braked before the collision.

ACKNOWLEDGMENTS

The authors sincerely appreciate all the participants in this project.

REFERENCES

1. World Health Organization. Global Status Report on Road Safety. 2015.
2. Yoganandan N, Pintar F, Cusick J, et al. Biomechanics of human cervical vertebrae. J Biomech. 1988;21(10):853.
3. Bostrom O, Fredriksson R, Haland Y, et al. Comparison of car seats in low speed rear-end impacts using the BioRID dummy and the new neck injury criterion (NIC). Accid Anal Prev. 2000;32(2):321–328.
4. Ahmadiosilemanyi SS, Misoom S. Construction of a risk model through the fusion of experimental data and finite element modeling: application to car crash-induced TBI. Comput Methods Biomech Biomed Engin. 2019; 22(6):605–619.
5. Hitosugi M, Kosuki T, Hariya T, et al. Shorter pregnant women restrained in the rear seat of a car are at risk for serious neck injuries: biomechanical analysis using a pregnant crash test dummy. Forensic Sci Int. 2018; 291:133–137.
6. Khattak ZH, Fontaine MD, Smith BL, et al. Crash severity effects of adaptive signal control technology: an empirical assessment with insights from Pennsylvania and Virginia. Accid Anal Prev. 2019; 124:151–162.
7. Belwadi A, Yang KH. Vehicular causation factors and conceptual design modifications to reduce aortic strain in numerically reconstructed real world nearside lateral automotive crashes. Comput Math Methods Med. 2015;2015:269386.
8. Fredriksson R, Shin J, Untaroiu CD. Potential of pedestrian protection systems-a parameter study using finite element models of pedestrian dummy and generic passenger vehicles. Traffic Inj Prev. 2011; 12(4):398–411.
9. Anderson RW, Doecke S. An analysis of head impact severity in simulations of collisions between pedestrians and SUVS/work utility vehicles, and sedans. Traffic Inj Prev. 2011;12(4):388–397.
10. Cai Z, Xia Y, Huang X. Analyses of pedestrian's head-to-windshield impact biomechanical responses and head injuries using a head finite element model. J Mech Med Biol. 2020;20:19500631.
11. Liu W, Su S, Qiu J, et al. Exploration of pedestrian head injuries-collision parameter relationships through a combination of retrospective analysis and finite element method. Int J Environ Res Public Health. 2016;13(12):2150.
12. Liu W, Zhao H, Li K, et al. Study on pedestrian thorax injury in vehicle-to-pedestrian collisions using finite element analysis. Chin J Traumatol. 2015;18(2):74–80.
13. Han Y, Yang J, Mizuno K, et al. A study on chest injury mechanism and the effectiveness of a headform impact test for pedestrian chest protection from vehicle collisions. Saf Sci. 2012;50(5):1304–1312.
14. Yao J, Yang J, Otte D. Investigation of head injuries by reconstructions of real-world vehicle-versus-adult-pedestrian accidents. Saf Sci. 2008;46(7): 1103–1114.
15. Li Z, Zou D, Liu N, et al. Finite element analysis of pedestrian lower limb fractures by direct force: the result of being run over or impact? Forensic Sci Int. 2013;229:43–51.
16. Zhang X, Jin X, Shen J. Virtual reconstruction of two types of traffic accident by the tire marks. Adv Artificial Reality Tele-Existence. 2006; 1129–1135.
17. Geigl BC, Hoschopf H, Steffan H, et al. Reconstruction of occupant kinematics and kinetics for real world accidents. *Int J Crashworthiness*. 2003;8:17–27.

18. Han Y, Li Q, Wang F, et al. Analysis of pedestrian kinematics and ground impact in traffic accidents using video records. *Int J Crashworthiness*. 2019; 24(2):211–220.

19. Jiao PF, Miao QF, Zhang MC, et al. A virtual reality method for digitally reconstructing traffic accidents from videos or still images. *Forensic Sci Int*. 2018;292:176–180.

20. Xiao N, Li SD, Zhang X, et al. Surface tyre imprints caused by a motorcycle collision rather than by being run over. *Med Sci Law*. 2019;59(1):4–8.

21. Steffan H, Moser A. How to use PC-Crash to simulate crashes. *SAE Technical Paper*. 2004;01–0341.

22. Rating the severity of tissue damage. I. The abbreviated scale. *JAMA*. 1971; 215(2):277–280.

23. Baker SP, O'Neill B, Haddon W Jr., et al. The injury severity score: a method for describing patients with multiple injuries and evaluating emergency care. *J Trauma*. 1974;14(3):187–196.

24. Copes WS, Champion HR, Sacco WJ, et al. The injury severity score revisited. *J Trauma*. 1988;28(1):69–77.

25. Shang S, Masson C, Teeling D, et al. Kinematics and dynamics of pedestrian head ground contact: A cadaver study. *Saf Sci*. 2020;127: (UNSP 104684).

26. Magee GA, Fox CJ, Moore EE. Resuscitative endovascular balloon occlusion of the aorta in pelvic ring fractures: the Denver Health protocol. *Injury*. 2020. doi:10.1016/j.injury.2020.01.044.

27. Costantini TW, Coimbra R, Holcomb JB, et al, AAST Pelvic Fracture Study Group. Current management of hemorrhage from severe pelvic fractures: results of an American Association for the Surgery of Trauma multi-institutional trial. *J Trauma Acute Care Surg*. 2016;80(5):717–723; discussion 723-5.

28. Simms CK, Wood DP. Pedestrian risk from cars and sport utility vehicles—a comparative analytical study. *P I Mech Eng D-J Aut*. 2006; 220(D8):1085–1100.

29. Han Y, Yang J, Mizuno K, et al. Effects of vehicle impact velocity, vehicle front-end shapes on pedestrian injury risk. *Traffic Inj Prev*. 2012; 13(5):507–518.

30. Yanar H, Demetriades D, Hadjizacharia P, et al. Pedestrians injured by automobiles: risk factors for cervical spine injuries. *J Am Coll Surg*. 2007; 205(6):794–799.