Secondary graviton spectra, second-order correlations and Bose–Einstein enhancement

Massimo Giovannini

Department of Physics, Theory Division, CERN, 1211 Geneva 23, Switzerland
INFN, Section of Milan–Bicocca, I-20126 Milan, Italy

E-mail: massimo.giovannini@cern.ch

Received 18 September 2012, in final form 15 November 2012
Published 11 December 2012
Online at stacks.iop.org/CQG/30/015009

Abstract
Primary graviton spectra, produced via stimulated emission from an initial Bose–Einstein distribution, are enhanced for typical scales larger than the redshifted thermal wavelength. A mixed state of phonons induces a secondary graviton spectrum which is hereunder computed in terms of three parameters (i.e. the number of phonon species, the tensor-to-scalar ratio and the thermal wavelengths of the mixture). The primary and secondary graviton spectra are shown to be sensitive, respectively, to the first-order and second-order correlation properties of the initial quantum mixture so that the semiclassical theory is argued to be generally inadequate in this context. For particular values of the parameters, the secondary contribution may turn out to be comparable with the primary spectrum over large scales.

PACS numbers: 04.62.+v, 98.80.Cq, 98.80.-k, 98.80.Es

1. Introduction

The analysis of the cosmic microwave background (CMB) anisotropies and polarization [1–4] of the extended galaxy surveys [5, 6] and of the supernova data sets [7, 8] aims at a highly accurate statistical determination of the cosmological parameters belonging to a class of simplified scenarios developed around the so-called concordance paradigm also dubbed, sometimes, ΛCDM model\(^1\). In the concordance paradigm, the tensor modes are assumed to be absent, but there are good reasons to believe in their existence. It is plausible to think that, in the near future, we shall be forced to deal with some sort of TΛCDM scenario [9] (with T\(^1\) In the acronym, the Λ term parametrizes the dark energy component and CDM stands for the cold dark matter component.

\[^1\] In the acronym, the Λ term parametrizes the dark energy component and CDM stands for the cold dark matter component.
standing for the tensor modes) where experiments operating at high-frequencies\(^2\) (such as the wide-band interferometers [10, 11] or devices operating at even larger frequencies [12, 13]) and CMB polarization experiments could be jointly analyzed to probe possible excesses both over large length-scales (i.e. small frequencies) and over comparatively higher frequencies. The precise nature of the pre-inflationary initial conditions calls for supplementary assumptions [14] and it is anyway not explained in the framework of the simplistic \(\Lambda\)CDM paradigm. It is useful to speculate that the spectrum of relic gravitons has a steeper slope at large scales. This is what happens if thermal corrections to the graviton spectrum are consistently included in the scenario. The thermal corrections arise if a Bose–Einstein distribution of spin-2 fluctuations of the geometry was present around 65 efolds prior to the end of a conventional inflationary phase (see, e.g. [15–17]). The correction to the power spectrum takes a standard form which can be written as [18–24]

\[
P^{(1)}_{\mathcal{T}}(k, k_T) = \coth \left(\frac{k}{2k_T} \right) \mathcal{P}_T(k),
\]

(1.1)

where \(k_T = T\) is the comoving thermal wavenumber in units \(\hbar = c = k_B = 1\); \(\mathcal{P}_T(k)\) is the spectrum in the absence of thermal corrections so that the two spectra are not distinguishable when \(k \gg k_T\), while the spectral slopes differ for wavelengths \(\lambda > \lambda_T = 2\pi/k_T\). In the limit \(\lambda \gg \lambda_T\), \(P^{(1)}_{\mathcal{T}}(k, k_T) \simeq (k/k_T)^{-1} \mathcal{P}_T(k)\). More general situations can be contemplated if the initial state of the gravitons is mixed but not exactly thermal. In all these situations, particles are produced by stimulated emission as opposed to the spontaneous emission operating when the initial state is the vacuum. For wavenumbers \(k \gg k_T\), as a consequence of equation (1.1), the stimulated and spontaneous emissions lead, in practice, to the same results.

The idea pursued in this paper is, in short, the following. If the initial state of the gravitons is mixed, then it is also plausible that all the other fields (both conformally and non conformally coupled) will be in a mixed state characterized either by the same or by a similar comoving temperature. Among all the possible fields with different spins, particular importance should be attributed to the non-conformally coupled species. To address this broad problem, it is useful to consider the simplest non-trivial situation where the initial state of the fluctuations is given as the direct product of the quantum state of the gravitons and of the other quantum states of the matter fields which will be assumed to consist of a collection of phonons (i.e. non-conformally coupled scalar fields):

\[
|\Psi\rangle = |\psi_{\text{gravitons}}\rangle \otimes |\phi_{\text{phonons}}\rangle \otimes \ldots,
\]

(1.2)

where the ellipses stand for other matter fields eventually present in the system. Both the gravitons and the phonons will be characterized by a density matrix whose statistical weights define the correlation properties of the initial state, as it will be specifically discussed hereunder. The secondary graviton spectra induced by a mixture of phonons are the main theme of the present analysis which may serve as a useful approximation to more realistic (but also necessarily more complicated) situations. The secondary graviton spectra, unlike their primary counterpart, are sensitive to the second-order correlation properties of the initial quantum mixture so that the semiclassical theory is argued to be generally inadequate. In section 2,

\(^2\)Current CMB and large-scale observations are commonly phrased in terms of wavenumbers expressed in units of Mpc\(^{-1}\), while the operational windows of wide-band interferometers (cross-correlated among themselves and with some bar detector) are given in Hz. It is useful to recall, in this respect, that the pivot scale at which the CMB power spectra are assigned corresponds to \(k_p = 0.002\) Mpc\(^{-1}\) (related to an effective multipole \(\ell_p = 30\)). In the natural units used throughout this paper (i.e. \(\hbar = c = k_B = 1\)), the frequency \(\nu_p = k_p/(2\pi) \simeq 3.092 \times 10^{-18}\) Hz. The devices quoted in [10, 11] roughly probe regions between 60 and 110 Hz, while the ones of [12, 13] are expected to work in the MHz region.
the quantum treatment of the anisotropic stress will be outlined. In section 3, the discussion focuses on the relation between the secondary spectrum and the correlation properties of the initial state. In section 4, the secondary spectrum is deduced in the realistic situation. Section 5 contains the concluding considerations and some perspectives for future developments in the light of forthcoming satellite experiments.

2. Quantum anisotropic stresses

A simple way to pin down the primary contribution to the graviton spectrum is to consider the limit where the gravitons are decoupled from the phonons but not from the initial mixed state. The secondary contribution depends instead on the contribution of the phonons to the total anisotropic stress which must be viewed, for the present purposes, as a field operator. Defining three mutually orthogonal directions as \(\hat{k}_i = k_i/|k| \), \(\hat{m}_i = m_i/|m| \) and \(\hat{n}_i = n_i/|n| \), the two polarizations of the gravitons in a conformally flat background are

\[
e_i^{g(i)}(\hat{k}) = (\hat{m}_i \hat{m}_j - \hat{n}_i \hat{n}_j), \quad e_i^{g(\prime)(i)}(\hat{k}) = (\hat{m}_i \hat{n}_j + \hat{n}_i \hat{m}_j).
\]

(2.1)

From equation (2.1), it follows that \(e_i^{g(i)} e_j^{g(i)} = 2\delta_{ij} \). The sum over the polarization gives instead:

\[
\sum_k e_i^{g(i)}(\hat{k}) e_j^{g(i)}(\hat{k}) = [p_{mi}(\hat{k})p_{nj}(\hat{k}) + p_{mj}(\hat{k})p_{ni}(\hat{k}) - p_{ij}(\hat{k})p_{mn}(\hat{k})],
\]

(2.2)

where \(p_{ij}(\hat{k}) = (\delta_{ij} - \hat{k}_i \hat{k}_j) \) is the traceless projector. The primary spectra of the relic gravitons can be deduced from the following action:

\[
S = \frac{1}{8\ell_p^2} \int d^4x \sqrt{-g} \rho_0 \partial_a h^i \partial_b h^j,
\]

(2.3)

where \(\overline{g}_{\mu\nu} \) denotes a conformally flat background metric\(^3\) and \(\ell_p = \sqrt{8\pi G} = 1/\sqrt{M_p} \). In what follows, we shall distinguish (especially in the last section) between \(\overline{M}_p \) and \(M_p = 1.22 \times 10^{19} \text{ GeV} = \sqrt{8\pi \overline{M}_p} \). In the action (2.3), \(h_{ij} \) denote the traceless and divergenceless modes of the geometry written in the form \(g_{\mu\nu}(\vec{x}, \tau) = \overline{g}_{\mu\nu}(\tau) + \delta g_{\mu\nu}(\vec{x}, \tau) \), where \(\delta g_{ij} = -a^2 h_{ij} \) and \(\delta g^i = h^i/\ell^2 \). By taking the functional variation of the action (2.3) with respect to \(h^i_j \), the equation of motion reads

\[
h''_{ij} + 2\overline{H} h'_{ij} - \overline{\nabla}^2 h_{ij} = 0,
\]

(2.4)

where \(\overline{g}_{\mu\nu} = a^2(\tau) \eta_{\mu\nu} \). In equation (2.4), the prime denotes a derivation with respect to the conformal time coordinate \(\tau \) and \(\overline{H} = (\ln a)' = a H \), where \(H \) is the Hubble rate.

2.1. Primary spectra

In terms of the two polarizations of equation (2.1), the mode expansion of the field operator \(h_{ij}(\vec{x}, \tau) \) becomes\(^4\)

\[
\hat{h}_{ij}^{(1)}(\vec{x}, \tau) = \frac{\sqrt{2\ell_p}}{(2\pi)^{3/2} a(\tau)} \sum_k d^3k e_i^{g(i)}(\hat{k}) \left[\hat{a}_{\vec{k},\lambda}^* f_{\lambda,\lambda}(\tau) e^{-ik \cdot \vec{x}} + \hat{a}_{\vec{k},\lambda}^* f_{\lambda,\lambda}(\tau) e^{ik \cdot \vec{x}} \right].
\]

(2.5)

\(^3\) Greek letters are used to denote four-dimensional indices; lowercase Latin characters denote spatial indices; uppercase Latin characters denote the different phonon indices.

\(^4\) The superscript in equation (2.5) stands for the primary contribution which is the one obtainable by setting the phonon contribution to zero.
The expectation value defined in equation (2.5) what really matters is only the averaged multiplicity of the initial state and not its dispersion. The form of the density matrix is immaterial: for the results of the present section, the normalized power spectrum of the tensor modes of the geometry of inflationary origin. To compute the primary spectrum, we need to calculate the expectation value

\[\langle \Psi | \hat{h}_{ij}^{(1)}(q_1, \tau) \hat{h}_{mn}^{(1)}(q_2, \tau') | \Psi \rangle = \text{Tr}[\hat{\rho}_{\text{gravitons}} \hat{h}_{ij}^{(1)}(q_1, \tau) \hat{h}_{mn}^{(1)}(q_2, \tau')]. \]

The first equality of equation (2.8) follows from equation (1.2), while the second equality prescribes that the expectation value must be computed by using the appropriate density matrix for the gravitons. We postpone to section 3 a more specific discussion of the density matrix itself. For the results of the present section, the form of the density matrix is immaterial: what really matters is only the averaged multiplicity of the initial state and not its dispersion. The expectation value defined in equation (2.8) can be written, in more explicit terms, using equation (2.7):

\[\frac{2f_q^2}{a^2(\tau)} \sum_{\lambda} \sum_{\lambda'} \left\{ f_{q_1, \lambda}(\tau) f_{q_2, \lambda'}(\tau') \delta_{\lambda, \lambda'}(\hat{q}_1) \delta_{\lambda, \lambda'}(\hat{q}_2) \right\} \]

\[+ f_{q_1, \lambda}(\tau) f_{q_2, \lambda'}(\tau') \delta_{\lambda, \lambda'}(-\hat{q}_1) \delta_{\lambda, \lambda'}(-\hat{q}_2) \].

Using the Kroenecker deltas over the polarizations and the Dirac deltas over the momenta equation (2.9) becomes, for \(\tau \to \tau' \),

\[\langle \Psi | \hat{h}_{ij}^{(1)}(q_1, \tau) \hat{h}_{mn}^{(1)}(q_2, \tau') | \Psi \rangle = \frac{8f_q^2}{a^2(\tau)} S_{ijmn}(q_1) |f_q(\tau)|^2 [2\pi(q_1) + 1] \delta^{(3)}(q_1 - q_2). \]

In equation (2.10), the following auxiliary sum \(S_{ijmn}(q) = \sum_{\lambda} e_{ij}^{\lambda}(\hat{k}) e_{mn}^{\lambda}(\hat{k}) / 4 \) has been defined; recalling equation (2.7), \(\pi(q_1) \) denotes the averaged multiplicity of the initial state

\[\pi(q_1) \delta_{\lambda, \lambda'}(\hat{q}_1 - \hat{q}_2) = \langle \psi | \hat{a}_{\ell_1, \lambda}^{\dagger} \hat{a}_{\ell_2, \lambda'} | \psi \rangle \equiv \text{Tr}[\hat{\rho}_{\text{gravitons}} \hat{a}_{\ell_1, \lambda}^{\dagger} \hat{a}_{\ell_2, \lambda'}]. \]

In equation (2.10), the mode functions of each polarization obey the same equation, i.e. where \(f_{q_1} = f_{q_2} = f_{q_3} \). Recalling now that, from equation (2.2), \(S_{ijmn}(\hat{k}) = 1 \), the primary power spectrum \(P_T^{(1)}(q, \tau) \) arises from the first-order correlation between the graviton field operators

\[\langle \psi | \hat{h}_{ij}^{(1)}(\hat{q}, \tau) \hat{h}_{mn}^{(1)}(\hat{p}, \tau') | \psi \rangle = \frac{2\pi^2}{q^3} P_T^{(1)}(q, \tau) \delta^{(3)}(\hat{q} - \hat{p}), \]

\[P_T^{(1)}(q, \tau) = \frac{4f_q^2 q^3}{\pi^2 a^2(\tau)} |f_q(\tau)|^2 [2\pi(q) + 1]. \]

In the limit \(\pi(q) \to 0 \), using the results the mode functions calculated during a quasi-de Sitter stage (see, e.g. section 4 equations (4.2) and (4.3)), equation (2.13) gives exactly the properly normalized power spectrum of the tensor modes of the geometry of inflationary origin.
2.2. Energy densities

The energy–momentum tensor of the gravitons can be derived from the action (2.3) by varying with respect to Ξ^ρ_β. As argued by Ford and Parker [26], the resulting expression is a reasonable (but not unique) quantity to use for the calculation of the spectral energy density of the gravitons; the energy–momentum tensor is given, in this case, by

$$T^\mu_\mu = \frac{1}{4\ell_\text{p}^2} \left[\partial_\mu h_{ij} \partial_\nu h^{ij} - \frac{1}{2} \delta^\mu_\nu g^{\rho\beta} \partial_\rho h_{ij} \partial_\beta h^{ij} \right].$$

(2.14)

The energy density of the gravitons is therefore obtained by averaging the (00) component of equation (2.14) over the appropriate (mixed) state defined introduced in equation (1.2) and already mentioned earlier in this section, i.e. $\rho_{GW} = \langle \psi | T^0_0 | \psi \rangle$. Defining $g_q = f_q$ and recalling equation (2.11), the energy density of the gravitons is

$$\rho_{GW} = \frac{1}{a^2} \int d\ln q \frac{q^3}{2\pi^2} \left[|g_q(\tau)|^2 + (q^2 + \mathcal{H}^2)|f_q(\tau)|^2 \right] - \mathcal{H} \left[f_q^*(\tau)g_q(\tau) + f_q(\tau)g_q^*(\tau) \right]|2\pi(q + 1)|. \tag{2.15}$$

By measuring equation (2.15) in units of the critical energy density ρ_{crit}, the critical fraction of energy density stored in the gravitons is obtained:

$$\Omega_{GW}(q, \tau) = \frac{\rho_{GW}}{\rho_{\text{crit}}} = \langle \psi | T^0_0 | \psi \rangle, \quad \rho_{\text{crit}} = \frac{3\mathcal{H}^2}{a^2\ell_\text{p}^2}. \tag{2.16}$$

Using equation (2.15), equation (2.16) becomes

$$\Omega_{GW}(q, \tau) = \frac{q^2 P^{(1)}_T(q, \tau)}{24\mathcal{H}^2} \left[1 + \frac{|g_q(\tau)|^2 + \mathcal{H}^2|f_q(\tau)|^2 - \mathcal{H} \left[f_q^*(\tau)g_q(\tau) + f_q(\tau)g_q^*(\tau) \right]|q^2|f_q(\tau)|^2} \right]. \tag{2.17}$$

Instead of deriving the energy density from equation (2.14), it is equally plausible to use the energy–momentum pseudo-tensor [27] appropriately generalized to curved backgrounds [28, 29]. By defining the energy–momentum pseudo-tensor from the second-order variation of the Einstein tensor, the expression for ρ_{GW} is given by [30, 31]

$$\rho_{GW} = \frac{1}{a^2\ell_\text{p}^2} \left[\mathcal{H} \langle \psi | \partial_\mu h_{ik} h^{ik} | \psi \rangle + \frac{1}{8} \left(\langle \psi | \partial_\mu h_{ik} \partial_\nu h^{ik} | \psi \rangle + \langle \psi | \partial_\mu h_{ik} \partial_\nu h^{ik} | \psi \rangle \right) \right], \tag{2.18}$$

implying that $\Omega_{GW}(q, \tau)$ is now given by

$$\Omega_{GW}(q, \tau) = \frac{q^2 P^{(1)}_T(q, \tau)}{24\mathcal{H}^2} \left[1 + \frac{|g_q(\tau)|^2 - 7\mathcal{H}^2|f_q(\tau)|^2 + 3\mathcal{H} \left[f_q^*(\tau)g_q(\tau) + f_q(\tau)g_q^*(\tau) \right]|q^2|f_q(\tau)|^2} \right]. \tag{2.19}$$

The difference between equations (2.17) and (2.19) only appears in the correction to the leading results. By expanding equations (2.17) and (2.19) in the limit $\mathcal{H}/q \ll 1$, the results are, respectively:

$$\Omega_{GW}(q, \tau) = \frac{q^2 P^{(1)}_T(q, \tau)}{12\mathcal{H}^2} \left[1 + \frac{\mathcal{H}^2}{2q^2} \right], \quad \Omega_{GW}(q, \tau) = \frac{q^2 P^{(1)}_T(q, \tau)}{12\mathcal{H}^2} \left[1 - \frac{7\mathcal{H}^2}{2q^2} \right], \tag{2.20}$$

where we used that $g_q(\tau) \simeq \pm \text{i}q f_q(\tau)$ for $\mathcal{H}/q \ll 1$. In the opposite limit (i.e. $q/\mathcal{H} \ll 1$), the approximate solution of the mode function reads

$$f_q(\tau) \simeq A(q)a(\tau) + B(q)a(\tau) \int^\tau \frac{d\tau'}{a^2(\tau')}, \quad g_q(\tau) \simeq \mathcal{H} f_q + \frac{B(q)}{a(\tau)}. \tag{2.21}$$

5 The following two statements are derived from the approximate solution of the equation for the mode function reported in equation (2.6).
The spectra obtained so far hold provided the induced anisotropic stress is strictly vanishing.

2.3. Anisotropic stresses

The spectra obtained so far hold provided the induced anisotropic stress is strictly vanishing. In the opposite case, equation (2.4) inherits a source term, by perturbing the Einstein equations and focusing on the modes which are traceless and divergenceless, we shall have

\[\delta R^i_\ell = \xi^i_\ell \Pi^i_\ell, \quad \delta R^i_\ell = -\frac{1}{2a^2} [h^{i''}_\ell + 2\mathcal{H}h^{i'}_\ell - \nabla^2 h^i_\ell], \tag{2.22} \]

where \(\delta R^i_\ell \) denotes the fluctuation of the Ricci tensor and where \(\Pi^i_\ell \) must be both divergenceless and traceless, i.e.

\[\hat{h}^{i''}_\ell + 2\mathcal{H}\hat{h}^{i'}_\ell - \nabla^2 \hat{h}^i_\ell = -2a^2 \xi^i_\ell \hat{\Pi}^i_\ell, \tag{2.23} \]

where the classical fields have been promoted to the status of quantum operators (i.e. \(h_{ij} \rightarrow \hat{h}_{ij} \) and \(\Pi^i_\ell \rightarrow \hat{\Pi}^i_\ell \)). The problem we ought to address is to obtain an explicit form of the anisotropic stress \(\hat{\Pi}_{ij} \) in Fourier space. By taking the Fourier transform of both sides of equation (2.23), we obtain

\[\hat{h}^{i''}_{ij} + 2\mathcal{H}\hat{h}^{i'}_{ij} + q^2 \hat{h}^i_{ij} = -2\xi^i_\ell a^2(\tau) \hat{\Pi}_{ij}(\hat{q}, \tau), \tag{2.24} \]

where \(\hat{\Pi}_{ij}(\hat{q}, \tau) \) can be appropriately expanded in on the basis of the two polarizations of the graviton defined in equation (2.1):

\[\hat{\Pi}_{ij}(\hat{q}, \tau) = \sum_\lambda e^{(\lambda)}_{ij}(\hat{q}) \hat{\Pi}_\lambda(\hat{q}, \tau) = e^{0}_{ij}(\hat{q}) \hat{\Pi}^{(0)}(\hat{q}, \tau) + e^{(\pm)}_{ij}(\hat{q}) \hat{\Pi}^{(\pm)}(\hat{q}, \tau), \tag{2.25} \]

where

\[\hat{\Pi}^{(0)}(\hat{q}, \tau) = \frac{1}{2} \sum_{A=1}^{N'} e^{mn}_{\Box}(\hat{q}) \hat{\pi}^{(A)}_{mn}(\hat{q}, \tau), \quad \hat{\Pi}^{(\pm)}(\hat{q}, \tau) = \frac{1}{2} \sum_{A=1}^{N'} e^{mn}_{\Box}(\hat{q}) \hat{\pi}^{(A)}_{mn}(\hat{q}, \tau), \tag{2.26} \]

The rank-2 tensor \(\pi^{(A)}_{mn}(\hat{q}, \tau) \) appearing in equation (2.26) is in fact a convolution of two field operators:

\[\hat{\pi}^{(A)}_{mn}(\hat{q}, \tau) = \frac{1}{(2\pi)^{3/2}} a^2(\tau) \int d^3 p C^{(A)}_{mn}(\hat{q} - \hat{p}, \hat{p}) \hat{\phi}_A(\hat{q} - \hat{p}, \tau) \hat{\phi}_A(\hat{p}, \tau), \]

\[C^{(A)}_{mn}(\hat{a}, \hat{b}) = a_m b_n - \frac{a \cdot b}{3} \delta_{mn}, \quad a = \hat{q} - \hat{p}, \quad b = \hat{p}. \tag{2.27} \]

In practice, \(\hat{\pi}^{(A)}_{ij}(\hat{q}, \tau) \) is the Fourier transform of

\[\pi^{(A)}_{ij}(\vec{x}, \tau) = -\frac{1}{a^2} \left[\partial_k \hat{\phi}_A \partial_j \hat{\phi}_A - \frac{1}{3} (\partial_k \hat{\phi}_A \partial^k \hat{\phi}_A) \delta_{ij} \right], \tag{2.28} \]

which is defined from the canonical energy–momentum tensor of the phonon field. In equation (2.27), the field operators are defined as

\[\hat{\phi}_A(\vec{k}, \tau) = \hat{b}_{k A} F_k(\tau) + \hat{b}^\dagger_{-k A} F^*_k(\tau), \quad F_k'' + 2\mathcal{H}k F_k' + \left[k^2 + 6\alpha \frac{a''}{a} \right] F_k = 0. \tag{2.29} \]

Equation (2.29) is derived by using a phonon action containing also the coupling to the Ricci scalar [25], i.e.

\[S = \frac{1}{2} \int \sqrt{-g} d^4x \sum_{A=1}^{N} \left[g^{\mu\nu} \partial_\mu \phi_A \partial_\nu \phi_A - \alpha R \phi_A^2 \right], \tag{2.30} \]
where R denotes the Ricci scalar. If $\alpha = 1/6$, then the coupling is conformal; if $\alpha \neq 1/6$ the coupling is non-conformal. We shall assume, in agreement with equation (2.28), that the N scalars are minimally coupled (i.e. $\alpha = 0$). Still it is useful to look at the general form of equation (2.29) whose general solution, in the case of a quasi-de Sitter (and spatially flat) background, is given in terms of Bessel functions. The dependence on a generic α can be easily included in the discussion and it amounts to a different Bessel index characterizing the evolution of the mode functions $F(A)$. Along the same line, there is the possibility of including a mass term for the various phonons and this will result in a term $m^2 a^2$ inside the squared brackets of equation (2.29). During a quasi-de Sitter stage of expansion, the mass contribution introduces a further modification of the Bessel index since $m^2 a^2 \approx (m^2 H^2) \tau^{-2}$. The fields ϕ_A are fully inhomogeneous and do not have any background component. Their masses, if present, are assumed to be smaller than the inflationary curvature scale, as it will be discussed below.

The set-up defined by equation (2.30) is not exhaustive and it is only aimed at illustrating, in a simplified situation, how secondary graviton spectra can be produced and enhanced by stimulated emission.

Using equation (2.27) into equation (2.26), we can obtain a more explicit form of $\hat{\Pi}_\oplus(\vec{q}, \tau)$ and $\hat{\Pi}_\otimes(\vec{q}, \tau)$:

\[
\hat{\Pi}_\oplus(\vec{q}, \tau) = \frac{1}{2(2\pi)^{3/2}a_d^2(\tau)} \sum_{A=1}^{N} \int d^3 p C_\oplus(\vec{q} - \vec{p}, \vec{p}) \hat{\phi}_A(\vec{q} - \vec{p}, \tau) \hat{\phi}_A(\vec{p}, \tau),
\]

\[
\hat{\Pi}_\otimes(\vec{q}, \tau) = \frac{1}{2(2\pi)^{3/2}a_d^2(\tau)} \sum_{A=1}^{N} \int d^3 p C_\otimes(\vec{q} - \vec{p}, \vec{p}) \hat{\phi}_A(\vec{q} - \vec{p}, \tau) \hat{\phi}_A(\vec{p}, \tau).
\] (2.31)

where, from equation (2.1),

\[
C_\oplus(\vec{a}, \vec{b}) = (\hat{\vec{m}} \cdot \vec{a})(\hat{\vec{m}} \cdot \vec{b}) - (\hat{\vec{n}} \cdot \vec{a})(\hat{\vec{n}} \cdot \vec{b}), \quad C_\otimes(\vec{a}, \vec{b}) = (\hat{\vec{m}} \cdot \vec{a})(\hat{\vec{n}} \cdot \vec{b}) + (\hat{\vec{n}} \cdot \vec{a})(\hat{\vec{m}} \cdot \vec{b}).
\] (2.32)

Since, in equation (2.31), $\vec{a} = \vec{q} - \vec{p}$ and $\vec{b} = \vec{p}$ all the scalar products $\hat{\vec{m}} \cdot \vec{q}$ and $\hat{\vec{n}} \cdot \vec{q}$ vanish given that $\hat{\vec{m}}, \hat{\vec{n}}$ and $\hat{\vec{q}}$ are all orthogonal. As a consequence, the final expressions can be simplified even further:

\[
C_\oplus(\vec{q} - \vec{p}, \vec{p}) = -e_\oplus^{\vec{m}}(\vec{q}) p_m p_n, \quad C_\otimes(\vec{q} - \vec{p}, \vec{p}) = -e_\otimes^{\vec{m}}(\vec{q}) p_m p_n.
\] (2.33)

Going now back to equation (2.24), the evolution equation for each polarization can then be written as

\[
\hat{h}_m'' + 2\mathcal{T}_m h_m' + q^2 h_m = -2a^2 \ell_p^2 \hat{\Pi}_\oplus,
\]

\[
\hat{\Pi}_\oplus(\vec{q}, \tau) = -\frac{1}{2a^2(2\pi)^{3/2}} \int d^3 p e_\oplus^{\vec{m}}(\vec{q}) p_m p_n \hat{\phi}(\vec{q} - \vec{p}, \tau) \hat{\phi}(\vec{p}, \tau).
\] (2.34)

We now have two complementary choices. Either we go on by representing the anisotropic stress on the basis of the tensor polarizations, or we go back to the tensor indices. In the second case, using equation (2.34), we obtain the following:

\[
\hat{\Pi}_{ij}(\vec{q}, \tau) = \sum_{A=\oplus, \otimes} e_\oplus^{ij}(\vec{q}) \hat{\Pi}_A(\vec{q}, \tau)
\]

\[
= -\frac{1}{2a^2(2\pi)^{3/2}} \sum_{A=1}^{N} \int d^3 p S(A)_{ij}(\vec{q}) p_m p_n \hat{\phi}_A(\vec{q} - \vec{p}, \tau) \hat{\phi}_A(\vec{p}, \tau).
\] (2.35)
where the sum over the polarizations has been performed with the help of equation (2.2), i.e.,
\[S_{ij}(q, p) = p^o \sum_k e^{(k)}_i(q) e^{(k)}_j(p) = 4 S_{ijmn}(q) p^o p^m p^n \]
\[= p^2 \left\{ \left[1 - \frac{(q \cdot p)^2}{q^2 p^2} \right] \delta_{ij} + \left[1 + \frac{(q \cdot p)^2}{q^2 p^2} \right] \frac{p q i}{q^2} + 2 p q p \right\}, \tag{2.36} \]
It is simple to check that, indeed, equation (2.35) is traceless and divergence-less \(\hat{T}_i = q_i \hat{T}_j = 0 \). To avoid confusions, note that \(S_{ij}(q, p) = 4 p^o p^m S_{ijmn}(q) \) in agreement with the definition given right after equation (2.10).

2.4. Secondary spectra

Inserting equation (2.35) into equation (2.24), the resulting expression can be simplified by introducing an appropriately rescaled anisotropic stress
\[\hat{\mu}^{(ij)}_{ij}(q, p) = \hat{\mu}^{(ij)}_{ij}(q, \tau) = \sum_{A=1}^{N} \hat{A}^{(A)}_{ij}(q, \tau), \tag{2.37} \]
\[\hat{\mu}^{(ij)}_{ij}(q, \tau) = \frac{1}{(2 \pi)^{3/2}} \int d^3 \tilde{q} S^{(A)}_{ij}(\tilde{q}, \tilde{p}) \psi_{ij}(\tilde{q} - \tilde{p}, \tau) \psi_{ij}(\tilde{p}, \tau). \tag{2.38} \]
By rescaling \(\hat{\mu}_{ij} \), equation (2.37) is further modified as
\[\hat{\mu}^{(ij)}_{ij}(q, \tau) = \hat{\mu}^{(ij)}_{ij}(q, \tau) \equiv \frac{1}{(2 \pi)^{3/2}} \int d^3 \tilde{q} S^{(A)}_{ij}(\tilde{q}, \tilde{p}) \psi_{ij}(\tilde{q} - \tilde{p}, \tau) \psi_{ij}(\tilde{p}, \tau). \tag{2.39} \]
The solution of equation (2.39) is
\[\hat{\mu}^{(ij)}_{ij}(q, \tau) = \hat{\mu}^{(ij)}_{ij}(q, \tau) + \ell^2 a(\tau) \int_\tau^\tau d\xi \psi_{ij}(\xi, \tau) \hat{\psi}_{ij}(\xi, \tau), \tag{2.40} \]
where
\[G_q(\xi, \tau) = \frac{f_q(\xi) f_q(\tau) - f_q(\xi) f_q(\tau)}{W(\xi)}, \quad W(\xi) = f_q(\xi) g_q(\xi) - f_q(\xi) g_q(\xi) = i. \tag{2.41} \]
In terms of \(\hat{h}_{ij}(q, \tau) \), the solution of equation (2.40) becomes
\[\hat{h}_{ij}(q, \tau) = \hat{h}^{(i)}_{ij}(q, \tau) + \ell^2 a(\tau) \int_\tau^\tau \bar{\psi}_{ij}(\xi, \tau) \hat{\psi}_{ij}(\xi, \tau) d\xi, \quad \bar{\psi}_{ij}(\xi, \tau) = \frac{a(\xi)}{a(\tau)} G_q(\xi, \tau). \tag{2.42} \]
Equation (2.42) leads to the total spectrum of the gravitons in full analogy with the calculation of the primary contribution reported in equation (2.12), i.e.,
\[\langle \Psi | \hat{h}_{ij}(q, \tau) \hat{\psi}_{ij}(p, \tau) | \Psi \rangle = \frac{2 \pi^2}{q^2} P_T(q, \tau) \delta^{(3)}(q - p), \tag{2.43} \]
where now \(P_T(q, \tau) = P_T^{(1)}(q, \tau) + P_T^{(2)}(q, \tau) \) denotes the total power spectrum written as the sum of the primary contribution obtained in equation (2.12) and of the secondary contribution \(P_T^{(2)}(q, \tau) \) which is explicitly given by the following expression:
\[\frac{q^3 \ell^2}{2 \pi^2} \sum_{A=1}^{N} N \int_{\tau_1}^{\tau} \int_{\tau_2}^{\tau} d\xi_1 d\xi_2 \bar{G}_q(\xi_1, \tau) \bar{G}_p(\xi_2, \tau) \langle \psi | \hat{A}^{(A)}_{ij}(q, \xi_1) \hat{\psi}_{ij}^{(B)}(-p, \xi_2) | \Psi \rangle. \tag{2.44} \]
Note that in equation (2.44) we used that $\hat{Q}_{ij}^{(j)}(\vec{q}, \xi) = \hat{Q}_{ij}(-\vec{q}, \xi)$. It must be also appreciated that, as a consequence of the normalization of the Wronskian in equation (2.41), we have $G_{ij}(\xi, \tau) = G^*_j(\xi, \tau)$.

To conclude this section, it is appropriate to mention that the relation holding between the primary spectrum and the spectral energy density $\Omega_{GW}(q, \tau)$ can be obtained also in the situation where the secondary spectrum is present. In particular, it can be shown that

$$\Omega_{GW}(q, \tau) = \frac{q^2}{12 \pi^2} f(q, q_{eq}) [P^{(1)}_T(q, \tau) + P^{(2)}_T(q, \tau)],$$

(2.45)

where the power spectra are evaluated for typical scales larger than the Hubble radius (i.e. $q \tau \ll 1$) prior to matter radiation equality. The function $f(q, q_{eq})$ parametrizes the transfer function of the tensor spectra across matter-radiation equality [9]:

$$f(q, q_{eq}) = 1 + c_1 \left(\frac{v_{eq}}{v} \right) + b_1 \left(\frac{v_{eq}}{v} \right)^2,$$

(2.46)

where

$$v_{eq} = \frac{k_{eq}}{2\pi} = 1.288 \times 10^{-17} \left(\frac{h_0^2 \Omega_{M0}}{0.1334} \right) \left(\frac{M_0 \Omega_{b0}}{4.15 \times 10^{-5}} \right)^{-1/2} \text{Hz};$$

(2.47)

Ω_{M0} and Ω_{b0} denote, respectively, the present critical fractions of non-relativistic matter and radiation.

3. Quantum correlations

The secondary power spectrum of equation (2.44) is determined by the expectation value

$$\mathcal{G}(\vec{q}_1, \vec{q}_2; \xi_1, \xi_2) = \langle \Psi | \hat{\chi}^{(A)}_{ij}(\vec{q}_1, \xi_1) \hat{\chi}^{(B)}_{ij}(\vec{q}_2, \xi_2) | \Psi \rangle,$$

(3.1)

whose explicit form is given by the following expression:

$$\mathcal{G}(\vec{q}_1, \vec{q}_2; \xi_1, \xi_2) = \int \frac{d^3p_1}{(2\pi)^{3/2}} \int \frac{d^3p_2}{(2\pi)^{3/2}} S^{ij}_{(A)}(\vec{q}_1; \vec{p}_1) S^{ij}_{(B)}(\vec{q}_2; \vec{p}_2) \mathcal{M}_{AB}(\vec{q}_1, \vec{p}_1; \vec{q}_2, \vec{p}_2).$$

(3.2)

The explicit expression of $\mathcal{M}_{AB}(\vec{q}_1, \vec{p}_1; \vec{q}_2, \vec{p}_2)$ appearing in equation (3.2) is quartic in the phonon fields:

$$\mathcal{M}_{AB}(\vec{q}_1, \vec{p}_1; \vec{q}_2, \vec{p}_2) = \langle \Psi | \hat{\phi}_A(q_1 - p_1, \xi_1) \hat{\phi}_A(p_1, \xi_1) \hat{\phi}_B(q_2 - p_2, \xi_2) \hat{\phi}_B(p_2, \xi_2) | \Psi \rangle,$$

(3.3)

and $\hat{\phi}_C(\vec{k}, \tau) = \hat{b}_{kC}(\vec{F}_C(\tau) + \hat{b}_k^\dagger \vec{F}_C^*(\tau)$. In equations (3.1) and (3.3), the average over the quantum state $|\Psi\rangle$ determines the properties of the final spectrum.

The primary graviton spectrum $P^{(1)}_T(q, \tau)$ depends on the averaged multiplicity of the initial state. The secondary graviton spectrum $P^{(2)}_T(q, \tau)$ depends on the expectation value of two anisotropic stresses i.e. four field operators. In terms of the statistical properties of the initial state, this means that secondary graviton spectra are not only sensitive to the average multiplicity of the initial distribution, but also to its variance. There is here an analogy with quantum optics [32] where first-order correlation effects (i.e. Young interferometry) are unable to define completely the statistical properties of the light source. Second-order correlation effects are instead probed with Hanbury–Brown–Twiss interferometry where, instead of correlating the field amplitudes the correlation is between field intensities which are themselves quadratic in the field amplitudes. Similarly, primary and secondary graviton spectra depend, respectively, on the average of field amplitudes and field intensities. In this connection, two issues need to be addressed: the problem of the ordering of the operators and the statistical properties of the initial quantum state.
3.1. Ordering of the operators

Should we impose a specific ordering to the operators appearing in equation (3.3)? If we do not impose any ordering, then the averages of the creation and annihilation operators appear in various combinations. Following the standard habit of quantum optics [32] and suppressing all the indices, it is useful to consider the following normalized expectation values in a simple quantum mechanical framework where only one mode of the field is considered:

\[
\begin{align*}
g^{(N)} &= \frac{\langle \hat{b}^\dagger \hat{b}^\dagger \hat{b} \hat{b} \rangle}{\langle \hat{b}^\dagger \hat{b} \rangle^2}, \\
g^{(A)} &= \frac{\langle \hat{b} \hat{b} \hat{b} \hat{b}^\dagger \rangle}{\langle \hat{b}^\dagger \hat{b} \rangle^2}, \\
g^{(S)} &= \frac{\langle \hat{b}^\dagger \hat{b} \hat{b} \hat{b}^\dagger \rangle}{\langle \hat{b}^\dagger \hat{b} \rangle^2},
\end{align*}
\]

(3.4)

where \([\hat{b}, \hat{b}^\dagger] = 1 \). The superscripts of equation (3.4) denote, respectively, the normal, antinormal and symmetric ordering. The averages are taken over a mixed state characterized by a density matrix

\[
\hat{\rho} = \sum_{n=0}^{\infty} P_n \vert n \rangle \langle n \vert, \quad \sum_{n=0}^{\infty} P_n = 1.
\]

(3.5)

Using the commutation relations, equation (3.4) can be written without mentioning any specific property of \(P_n \) as

\[
\begin{align*}
g^{(A)} &= g^{(N)} + \frac{3}{\langle \hat{n} \rangle} + \frac{2}{\langle \hat{n} \rangle^2}, \\
g^{(S)} &= g^{(N)} + \frac{2}{\langle \hat{n} \rangle}, \\
g^{(N)} &= 1 + \frac{D^2 - \langle \hat{n} \rangle}{\langle \hat{n} \rangle^2},
\end{align*}
\]

(3.6)

where

\[
\langle \hat{n} \rangle = \text{Tr}[\hat{\rho} \hat{b}^\dagger \hat{b}], \quad \langle \hat{n}^2 \rangle = \text{Tr}[\hat{\rho} \hat{b}^\dagger \hat{b} \hat{b} \hat{b}^\dagger], \quad D^2 = \langle \hat{n}^2 \rangle - \langle \hat{n} \rangle^2.
\]

(3.7)

Consider now two examples associated with the density matrix of equation (3.5): a Poisson mixture (denoted by \(P_n^{(P)} \)) and a Bose–Einstein mixture (denoted by \(P_n^{(BE)} \)); their explicit expressions are given, respectively, by

\[
\begin{align*}
P_n^{(P)} &= \frac{\pi^n}{n!} e^{-\pi}, \\
P_n^{(BE)} &= \frac{1}{\pi + 1} \left(\frac{\pi}{\pi + 1} \right)^n.
\end{align*}
\]

(3.8)

In the case of the Poisson mixture, \(g^{(N)} = 1 \) since, in this case, \(\langle \hat{n} \rangle = \bar{n} \) and \(D^2 = \bar{n} \) as it can be expected from the well-known properties of the Poisson distribution. The antinormal and symmetric correlation functions \(g^{(A)} \) and \(g^{(S)} \) coincide, approximately, in the large \(\bar{n} \) limit with the normal-ordered expression \(g^{(N)} \).

In the case of the Bose–Einstein mixture \(g^{(N)} = 2 \) and, as in the Poisson case, \(g^{(A)} \approx g^{(S)} \) for \(\bar{n} \gg 1 \) since, from \(P_n^{(BE)} \) of equation (3.8), \(D^2 = \bar{n}^2 + \bar{n} \). Again, the latter result is implied by known properties of the Bose–Einstein (or geometric) distribution. Let us finally consider the interesting example of the negative binomial mixture where the weight is given by

\[
P_n^{(NB)} = \frac{\Gamma(\zeta + n)}{\Gamma(\zeta) \Gamma(n + 1)} \left(\frac{\pi}{\pi + \zeta} \right)^n \left(\frac{\zeta}{\pi + \zeta} \right)^\xi.
\]

(3.9)

Equation (3.9) corresponds to the distribution followed by \(\xi \) Bose–Einstein distributions all emitting at the same temperature. In the case of equation (3.9),

\[
\begin{align*}
g^{(N)} &= 1 + \frac{1}{\xi}, \\
\frac{D^2}{\bar{n}} &= 1 + \frac{1}{\xi},
\end{align*}
\]

(3.10)

with \(g^{(S)} \) and \(g^{(A)} \) coinciding in the large \(\bar{n} \) limit. The examples of equations (3.8)–(3.10) suggest two complementary conclusions. The first conclusion is that since the normal-ordered expectation values dominate the normalized correlation functions, it is useful to employ the normal ordering as long as the interesting physical limit is the one for \(\bar{n} \gg 1 \). The second conclusion is that the semiclassical approximation fails in the case of a Bose–Einstein initial
state and, more generally, whenever $D^2 - \pi \neq 0$. In quantum optics, it is natural to impose the normal ordering in the higher order correlators since the detection of light quanta (i.e. in the optical range of frequencies) occurs by measuring a photo-current, i.e. a current induced by the absorption of a photon [32]. In the present case by normal-ordering the expectation values of two intensities (i.e. four field operators), we implicitly demand that when the averaged multiplicity of the phonons goes to zero the secondary contribution to the graviton spectrum vanishes. This is consistent with the requirement that, ultimately, the interesting physical regime involves typical wavelengths much larger than the thermal wavelength where the averaged multiplicity of the (thermal) phonons is large.

3.2. The density operator and the expectation values

In the quantum mechanical examples discussed so far, the dependence on the momenta has been neglected but their presence is essential. The expectation values are evaluated using the appropriate density operator. Recalling equation (1.2), the density operator can be written as $\hat{\rho} = \hat{\rho}_{\text{gravitons}} \otimes \hat{\rho}_{\text{photons}}$. In the Fock basis, the gravitons and the photons will then be characterized, in principle, by different statistical mixtures since the two density matrices span two different Hilbert spaces. The notations established in section 2 (see, e.g. equations (2.7) and (2.29)) imply that the gravitons are characterized by creation and annihilation operators conventionally denoted by $\hat{a}^+_\ell A$ and $\hat{a}_{\ell A}$, respectively, while, for the phonons, the notation $\hat{b}^{+\ell}_{kA}$ and \hat{b}^ℓ_{kA} has been employed. The density matrix for the gravitons is therefore given by

$$\hat{\rho}_{\text{gravitons}} = \sum_{\{m\}} p_{\{m\}}^{(\text{gravitons})} |\{m\}\rangle \langle \{m\}|, \quad \sum_{\{m\}} p_{\{m\}}^{(\text{gravitons})} = 1, \tag{3.11}$$

where $|\{m\}\rangle = |m_{\ell_1 A}\rangle |m_{\ell_2 A}\rangle |m_{\ell_3 A}\rangle \ldots$ and the ellipses stand for all occupied modes of the field. Similarly, the density matrix for the phonons can be written as

$$\hat{\rho}_{\text{photons}} = \sum_{\{n\}} p_{\{n\}}^{(\text{photons})} |\{n\}\rangle \langle \{n\}|, \quad \sum_{\{n\}} p_{\{n\}}^{(\text{photons})} = 1. \tag{3.12}$$

The $p_{\{n\}}$ (either for the phonons or for the gravitons) will be taken in the form6

$$p_{\{n\}} = \prod_k \frac{\Gamma(\xi_k + n_k)}{\Gamma(\xi_k)\Gamma(n_k + 1)} \left(\frac{\bar{\eta}_k}{\bar{\eta}_k + \xi_k}\right)^{n_k} \left(\frac{\xi_k}{\bar{\eta}_k + \xi_k}\right)^{\xi_k}, \tag{3.13}$$

which is the field theoretical generalization of the quantum mechanical example of equation (3.9). In the limit $\xi_k \to 1$, the distribution of equation (3.13) becomes a Bose–Einstein distribution:

$$p_{\{n\}} \to p_{\{n\}}^{(\text{BE})} = \prod_k \frac{\bar{\eta}_k^{n_k}}{(1 + \bar{\eta}_k)^{n_k + 1}}. \tag{3.14}$$

Using equations (3.11) and (3.13), the expectation values are computed with the help of the density operator:

$$\langle \hat{b}^\ell_{q' p'} \hat{b}^\ell_{q p} \hat{b}^\ell_{q' p'} \hat{b}^\ell_{q p} \rangle = \text{Tr}[\hat{\rho}_{\text{photons}} \hat{b}^\ell_{q' p'} \hat{b}^\ell_{q p} \hat{b}^\ell_{q' p'} \hat{b}^\ell_{q p}]. \tag{3.15}$$

6 To avoid the pedantic repetition of the same formula with slightly different subscripts, the indices denoting the polarizations of the gravitons (i.e. ℓ) and the different phonon fields (i.e. A) have been dropped.
Using a stenographic notation\(^7\) where each letter corresponds to a momentum, the previous expectation value can be written as
\[
\langle \hat{b}^+_i \hat{b}^+_j \hat{b} \hat{b}_\ell \rangle = \langle \hat{b}^+_i \hat{b}^+_j \hat{b} \rangle \delta_{ij} \delta_{\ell \ell} + \langle \hat{b}^+_i \hat{b}^+_j \hat{b} \rangle \delta_{ij} \delta_{\ell 1} + \langle \hat{b}^+_i \hat{b}^+_j \hat{b} \rangle \delta_{i1} \delta_{\ell 1} + \langle \hat{b}^+_i \hat{b}^+_j \hat{b} \rangle \delta_{i1} \delta_{\ell \ell}.
\]
(3.16)

In the term \(\langle \hat{b}^+_i \hat{b}^+_j \hat{b} \rangle\), there are four different operators all acting on the same momentum; in the second class of terms (i.e. \(\langle \hat{b}^+_i \hat{b}^+_j \hat{b} \rangle\) and \(\langle \hat{b}^+_i \hat{b}^+_j \hat{b} \rangle\)), the momenta are paired two by two (as the corresponding deltas indicate). Using equation (3.13), we shall have that
\[
\langle \hat{b}^+_i \hat{b}^+_j \hat{b} \hat{b}_\ell \rangle = \sum_{m_i} m_i (m_i - 1) P_i(m_i), \quad \langle \hat{b}^+_i \hat{b}^+_j \hat{b} \rangle = \sum_{m_i, m_j} m_i m_j P_i(m_i, m_j),
\]
(3.17)
where \(P_i(m_i) = P_k(m_k),\) \(P_m(m_i, m_j) = P_k(m_k),\) \(P_i(m_i, m_j) = P_k(m_k).\) The relations of equation (3.17) follow from the definition of \(P_i(m_i, m_j)\), i.e. \(P_i(m_i) = P_k(m_k)\) \(P_k(m_k)\) \(P_k(m_k)\) \ldots where the ellipses stand for the product over the various momenta. Inserting equation (3.17) into equation (3.16), we obtain, after simple algebra,
\[
\langle \hat{b}^+_i \hat{b}^+_j \hat{b} \hat{b}_\ell \rangle = \pi^2 \left(\frac{1}{\xi^2} - 1 \right) \delta_{\ell \ell} \delta_{ij} + \pi_1 \pi_j [\delta_{ii} \delta_{\ell \ell} + \delta_{ij} \delta_{i1} + \delta_{i1} \delta_{\ell \ell}].
\]
(3.18)

In the limit \(\xi_i \rightarrow 1\), for every mode of the field the contributions of the terms of the type \(\langle \hat{b}^+_i \hat{b}^+_j \hat{b} \rangle\) exactly cancel; the standard rules of evaluating correlators in thermal field theory are quickly recovered [33]. If, however, \(\xi_i \neq 1\), then the first contribution in equation (3.18) does not vanish. The same procedure leading to equation (3.18) can be used to compute, with the due differences, all the other expectation values arising when the ordering is either anti-normal or symmetric. Just to give some examples consider, for instance, the following results:
\[
\langle \hat{b} \hat{b}^+_j \hat{b}^+_k \hat{b}^+_l \rangle = \pi^2 \left(\frac{1}{\xi^2} - 1 \right) \delta_{ij} \delta_{kl} + (\pi_1 + 1) [\delta_{ij} \delta_{kl} + \delta_{ik} \delta_{jak}],
\]
(3.19)
\[
\langle \hat{b} \hat{b}^+_j \hat{b}^+_k \hat{b} \rangle = \pi^2 \left(\frac{1}{\xi^2} - 1 \right) \delta_{ij} \delta_{kl} + \pi_1 (\pi_1 + 1) [\delta_{ij} \delta_{kl} + \delta_{ik} \delta_{jk}].
\]
(3.20)

3.3. Secondary spectrum

Using the notations \(\bar{k}_1 = \bar{q}_1 - \bar{p}_1\) and \(\bar{k}_2 = \bar{q}_2 - \bar{p}_2\), the expectation value of equation (3.3) becomes
\[
\mathcal{M}_{AB}(\bar{q}_1, \bar{p}_1; \bar{q}_2, \bar{p}_2) = \langle \hat{b}^+_{\bar{k}_1} \hat{b}^+_{\bar{k}_2} \hat{b}_{\bar{p}_1, A} \hat{b}_{\bar{p}_2, B} | \Psi \rangle F^a_{\bar{k}, A}(\bar{q}_1) F^a_{\bar{p}, B}(\bar{q}_2) F^a_{\bar{p}, A}(\bar{q}_1) F^a_{\bar{k}, B}(\bar{q}_2) + \langle \hat{b}^+_{\bar{p}_1, A} \hat{b}^+_{\bar{p}_2, B} \hat{b}^+_{\bar{k}_1} \hat{b}_{\bar{k}_2, A} | \Psi \rangle F^a_{\bar{p}, A}(\bar{q}_1) F^a_{\bar{p}, B}(\bar{q}_2) F^a_{\bar{k}, A}(\bar{q}_1) F^a_{\bar{k}, B}(\bar{q}_2) \]
\[
+ \langle \hat{b}^+_{\bar{k}_1} \hat{b}^+_{\bar{p}_1, A} \hat{b}^+_{\bar{p}_2, B} \hat{b}_{\bar{k}_2, A} | \Psi \rangle F^a_{\bar{k}, A}(\bar{q}_1) F^a_{\bar{p}, A}(\bar{q}_1) F^a_{\bar{p}, B}(\bar{q}_2) F^a_{\bar{k}, B}(\bar{q}_2) \]
\[
+ \langle \hat{b}^+_{\bar{k}_1} \hat{b}^+_{\bar{p}_1, A} \hat{b}^+_{\bar{p}_2, B} \hat{b}_{\bar{p}_1, A} | \Psi \rangle F^a_{\bar{k}, A}(\bar{q}_1) F^a_{\bar{p}, B}(\bar{q}_2) F^a_{\bar{p}, A}(\bar{q}_1) F^a_{\bar{p}, B}(\bar{q}_2) \]
\[
+ \langle \hat{b}^+_{\bar{k}_1} \hat{b}^+_{\bar{p}_1, A} \hat{b}^+_{\bar{p}_2, B} \hat{b}_{\bar{k}_2, A} | \Psi \rangle F^a_{\bar{k}, A}(\bar{q}_1) F^a_{\bar{p}, A}(\bar{q}_1) F^a_{\bar{p}, B}(\bar{q}_2) F^a_{\bar{p}, B}(\bar{q}_2) \]
Recalling that \(\delta_{\hat{L}_{A}, \hat{B}} \) \(\hat{\Gamma}_{A,B} \) = \(\delta^{(3)}(k - \tilde{p}) \delta_{A,B} \), the resulting expression for the secondary power spectrum becomes then

\[
P^{(2)}_{T}(q, \tau) = \frac{q^{3}N_{q}^{4\pi}}{\sqrt{64\pi^{5}}} \int d^{3}p \int_{\tau}^{\tau'} d\xi_{1} \int_{\tau_{2}}^{\tau_{1}} d\xi_{2} \bar{G}_{q}(\xi_{1}, \tau) \bar{G}_{q}(\xi_{2}, \tau) \pi(|q - \tilde{p}|) \pi(p) \times q^{3}p^{2} \left[\frac{(q \cdot \tilde{p})^{2}}{q^{2}p^{2}} - 1 \right]^{2} F(|q - \tilde{p}|; \xi_{1}, \xi_{2}) F'(p; \xi_{1}, \xi_{2}) + \frac{N_{q}^{4\pi}q^{3}p^{2}}{64\pi^{5}} \mathcal{V} \left(\frac{1}{\xi_{q}} - 1 \right) \int_{\tau}^{\tau'} d\xi_{1} \int_{\tau_{2}}^{\tau_{1}} d\xi_{2} \bar{G}_{q}(\xi_{1}, \tau) \bar{G}_{q}(\xi_{2}, \tau) \mathcal{U}(q; \xi_{1}, \xi_{2}),
\]

where \(\mathcal{V} \) denotes the fiducial normalization volume and the other functions are defined as

\[
F(k; \xi_{1}, \xi_{2}) = f_{k}(\xi_{1}) f_{k}^{*}(\xi_{2}) + f_{k}^{*}(\xi_{1}) f_{k}(\xi_{2}),
\]

\[
\mathcal{U}(q; \xi_{1}, \xi_{2}) = \left[F_{q}^{*} f_{q}(\xi_{1}) f_{q}(\xi_{2}) + F_{q} f_{q}^{*}(\xi_{1}) f_{q}^{*}(\xi_{2}) \right].
\]

The second term in equation (3.22) vanishes in the Bose–Einstein limit (i.e. \(\zeta_{q} \to 1 \)), but it vanishes also in the infinite volume limit. This term is per se interesting, but its analysis is not central to the present discussion. So, in what follows, we shall just assume that \(\zeta_{q} = 1 \) which means that the phonons will be characterized by a single Bose–Einstein mixture.

4. Bose–Einstein enhancement

To assess the Bose–Einstein enhancement of secondary graviton spectrum, we must go back to equations (2.41) and (2.42) and compute explicitly \(G_{q}(\xi, \tau) \) and \(\bar{G}_{q}(\xi, \tau) \). For the estimates of the integrals appearing in the expressions of the secondary graviton spectra, it will also be necessary to deduce more explicit forms of equation (3.23). Equations (2.6) and (2.29) can be solved using standard techniques [34–36] in the case of quasi-de Sitter spacetimes.

4.1. Explicit expression for Green’s functions

From equation (2.41), the explicit expression of \(G_{q}(\xi, \tau) \) during a slow-roll phase is given by

\[
G_{q}(\xi, \tau) = \frac{\tau}{2} \sqrt{\varepsilon} \left[Y_{q}(-k\xi) J_{x}(-k\tau) - Y_{x}(-k\tau) J_{q}(-k\xi) \right], \quad v = \frac{3 - \epsilon}{2(1 - \epsilon)},
\]

where \(\epsilon = -H/\dot{H} \) is the slow-roll parameter. Equation (4.1) are derived by first solving equation (2.6) and the related equations for the tensor mode functions \(g_{q}(k, \tau) \)

\[
f_{q}(k, \tau) = \frac{N}{\sqrt{2k}} \sqrt{-k\tau H_{v}^{(2)}(\tau)} - v, \quad N = \sqrt{\frac{\pi}{2}} e^{\frac{v+1}{2}n},
\]

\[
g_{q}(k, \tau) = -\partial_{\tau} f_{q} = -N \sqrt{\frac{k}{2}} \sqrt{-k\tau \left[H_{v}^{(2)}(-x) + \frac{2v}{2(2-x)} H_{v-x}^{(2)}(-k\tau) \right]},
\]

where \(H_{v}^{(2)}(x) \) is the Hankel functions of first kind [34]. Note that equations (4.2) and (4.3) imply a constant Wronskian, i.e. \(W(\xi) = i \). For power-law inflation, we have \(a(\tau) = \left(-\tau_{s}/\tau \right)^{\beta} \) and \(v = (\beta + 1/2) \). In the latter case, the rescaled Green functions are expressible as

\[
\bar{G}_{q}(\xi, \tau) = -\frac{\pi}{2k} (-k\xi)^{-v} \left[Y_{q}(-k\xi) J_{x}(-k\tau) - Y_{x}(-k\tau) J_{q}(-k\xi) \right].
\]

The normalization \(N \) appearing in equations (4.2) and (4.3) should not be confused with \(N \) counting the phonon fields.
In the limit \(\epsilon \ll 1 \), we have that \(\mathcal{G}_k(\xi, \tau) \) is, approximately,

\[
\mathcal{G}_k(\xi, \tau) = \frac{1}{k^3 \xi^2} \left[k(\xi - \tau) \cos \left(k(\xi - \tau) \right) - (k^2 \xi \tau + 1) \sin \left(k(\xi - \tau) \right) \right]. \tag{4.5}
\]

It is also possible to deduce a more general expression for Green’s function valid across the transition between inflation and radiation. The expression for the mode function is

\[
f_k(\tau) = \frac{1}{2k} \left\{ \theta(-\tau - \tau_*) \left(1 - \frac{i}{k\tau} \right) e^{-ik\tau} \right. \\
+ \theta(\tau + \tau_*) \left[\left(1 - \frac{i}{k\tau_*} - \frac{1}{2k^2 \tau_*^2} \right) e^{-ik\tau} + \frac{1}{2k^2 \tau_*^2} e^{ik(\tau + 2\tau_*)} \right] \right\}, \tag{4.6}
\]

where \(\tau_* \) denotes the transition time between the inflationary phase and the radiation-dominated phase and \(\theta(z) \) denotes the Heaviside theta function with argument \(z \). To derive equation (4.6), it is necessary to use an expression for the scale factor which is continuous across \(-\tau_* \) such as

\[
a(\tau) = \left(\frac{-\tau_*}{\tau} \right) \theta(-\tau_* - \tau) + \left(\frac{\tau + 2\tau_*}{\tau_*} \right) \theta(\tau + \tau_*). \tag{4.7}
\]

When the mode function is given by equation (4.6), the rescaled Green’s function is

\[
\mathcal{G}_q(\xi, \tau) = \frac{1}{q} \left\{ \theta(-\tau - \tau_* \frac{q(\xi - \tau) \cos \left[q(\xi - \tau) \right] - (q^2 \xi \tau + 1) \sin \left[q(\xi - \tau) \right]}{q^2 \xi^2} \right. \\
- \theta(\tau + \tau_* \frac{\xi + 2\tau_*}{\tau_*} \sin \left[q(\xi - \tau) \right]} \right\}. \tag{4.8}
\]

To estimate the secondary graviton spectrum, the functions defined in equation (3.23) must be computed; the function \(\mathcal{F}(k; \xi_1, \xi_2) \) is given, in explicit terms, by

\[
\mathcal{F}(k; \xi_1, \xi_2) = \frac{\pi}{2a(\xi_1) a(\xi_2)} \left[J_{\mu}(k\xi_1) J_{\mu}(k\xi_2) + Y_{\mu}(k\xi_1) Y_{\mu}(k\xi_2) \right], \tag{4.9}
\]

where the Bessel index \(\mu \) depends on the coupling of the phonons, i.e. \(\mu \neq 1/2 \) if the coupling is not conformal; \(\mu \) can also contain an explicit dependence on the mass of the phonon as already remarked in connection with equation (2.29). For sake of simplicity, the mass of the various phonon species will be assumed to be always smaller than the de Sitter curvature scale.

In the limit \(k\xi_1 \ll 1 \) and \(k\xi_2 \ll 1 \), the function \(\mathcal{F}(k; \xi_1, \xi_2) \) can be expressed as

\[
\mathcal{F}(k; \xi_1, \xi_2) \simeq \frac{\Gamma^2(\mu)}{k^2 \pi a(\xi_1) a(\xi_2)} \left(\frac{k^2 \xi_1 \xi_2}{4} \right)^{1/2-\mu} = \frac{4 \xi_1 \xi_2}{a(\xi_1) a(\xi_2)} \frac{\Gamma^2(\mu)}{k^2 \pi} \left(\frac{k^2 \xi_1 \xi_2}{4} \right)^{3/2-\mu}. \tag{4.10}
\]

Instead of performing the integrations over \(\xi_1 \) and \(\xi_2 \) in equation (3.22), it is useful to introduce the following set of rescaled variables:

\[
\alpha = \frac{p}{q}, \quad \beta = \frac{k}{q}, \quad x_1 = q \xi_1, \quad x_2 = q \xi_2, \quad y = q \tau. \tag{4.11}
\]

For instance, with the rescalings of equation (4.11), the explicit expressions for the functions \(\mathcal{G}_q(\xi, \tau) \) and \(\mathcal{F}(p; \xi_1, \xi_2) \) are, for \(\tau < -\tau_* \):

\[
\mathcal{G}_q(\xi_1, \tau) = \mathcal{G}_q(x_1, y) = \frac{(x_1 - y) \cos (x_1 - y) - (x_1 y + 1) \sin (x_1 - y)}{q x_1^2},
\]

\[
\mathcal{G}_q(\xi_2, \tau) = \mathcal{G}_q(x_2, y) = \frac{(x_2 - y) \cos (x_2 - y) - (x_2 y + 1) \sin (x_2 - y)}{q x_2^2},
\]

\[
\mathcal{F}(p_1; \xi_1, \xi_2) = \frac{(\alpha^2 x_1 x_2 + 1) \cos [\alpha(x_1 - x_2)] - \alpha(x_2 - x_1) \sin [\alpha(x_1 - x_2)]}{p a(\xi_1) a(\xi_2) \alpha^2 x_1 x_2},
\]

\[
\mathcal{F}(k_1; \xi_1, \xi_2) = \frac{(\beta^2 x_1 x_2 + 1) \cos [\beta(x_1 - x_2)] - \beta(x_2 - x_1) \sin [\beta(x_1 - x_2)]}{k a(\xi_1) a(\xi_2) \beta^2 x_1 x_2}, \tag{4.12}
\]

where we remind that, according to the notations of equation (3.21), \(k = |\vec{q} - \vec{p}| \).
4.2. Explicit expressions for the secondary spectrum

With the explicit formulas derived so far, the secondary spectrum can be expressed as

\[P^{(2)}_\tau(q, \tau) = \frac{N^2}{4\pi^3} \int d^3p \int_{-\tau_0}^{\tau} d\xi_1 \int_{-\tau_0}^{\tau} d\xi_2 \mathcal{L}(q, p; \xi_1, \xi_2, \tau) \mathcal{R}(q, p), \] \tag{4.13}

where the functions \(\mathcal{L}(q, p; \xi_1, \xi_2, \tau) \) and \(\mathcal{R}(q, p) \) are

\[\mathcal{L}(q, p; \xi_1, \xi_2, \tau) = \mathcal{C}_q(\xi_1, \tau) \mathcal{C}_q(\xi_2, \tau) \mathcal{F}(|\vec{q} - \vec{p}|; \xi_1, \xi_2) \mathcal{F}(p; \xi_1, \xi_2), \] \tag{4.14}

\[\mathcal{R}(q, p) = q^3 p^3 \overline{\pi}(|\vec{q} - \vec{p}|) \overline{\pi}(p) \left[\frac{(q \cdot p)^2}{q^2 p^2} - 1 \right]^2. \] \tag{4.15}

Let us now consider, as an example, the case of minimal coupling of the phonons leading to \(\mu \simeq 3/2 \). In this case, the integrals over \(\xi_1 \) and \(\xi_2 \) can be performed exactly by breaking the integration for \(\tau < -\tau_+ \) and for \(\tau > -\tau_+ \):

\[\int_{-\tau_0}^{\tau} d\xi_1 \int_{-\tau_0}^{\tau} d\xi_2 \mathcal{L}(q, p; \xi_1, \xi_2, \tau) = \frac{\mathcal{A}^2 Z^2(\tau, \tau_0, \tau_+)}{4 \pi^4 q^4 |\vec{q} - \vec{p}|^4}, \] \tag{4.16}

where the function \(Z(\tau, \tau_0, \tau_+) \) is

\[Z(\tau, \tau_0, \tau_+) = \frac{q \tau_0 \cos[q(\tau + \tau_0)]}{q \tau_0} \left[\frac{\sin[q(\tau + \tau_0)]}{q} + \frac{\sin[q(\tau + \tau_+) - q \tau \cos[q(\tau + \tau_+)]]}{q \tau_+} \right] \frac{q \tau_+}{q(\tau + 2 \tau_+)} + \frac{q \tau_+ \cos[q(\tau + \tau_+) - q \tau \cos[q(\tau + \tau_+)]]}{q} - q(\tau + 2 \tau_+). \] \tag{4.17}

The amplitude of each intensity (quadratic in the field operators) has been denoted by \(\mathcal{A} = \mathcal{A}/\ell_P^3 \); from the latter relation, it also follows that \(\mathcal{A} = \ell_P^3 \mathcal{A} \) is the dimensionless amplitude given in Planck units. The correct physical limit where the function \(Z(\tau, \tau_0, \tau_+) \) should be evaluated is the one where \(q \tau \ll 1, q \tau_+ \ll 1 \) and \(|\tau_0| \gg |\tau_+| \). Recall, indeed, that \(\tau = -\tau_0 \) corresponds to the initial integration time and \(-\tau_+ \) marks, in the sudden approximation, to the end of the quasi-de Sitter phase. After this limit, the dependence on \(\tau \) drops, to leading order. Bearing then in mind, the expression of \(\mathcal{R}(q, p) \) of equation (4.15) and putting all together we have that the expression of the secondary spectrum can be written as

\[P^{(2)}(q) = \frac{\mathcal{A}^2 N}{16\pi^5} \int p d^3p \overline{\pi}(|\vec{q} - \vec{p}|) \overline{\pi}(p) \left[\frac{(q \cdot p)^2}{q^2 p^2} - 1 \right]^2. \] \tag{4.18}

The dependence on the conformal time coordinate has been dropped since we are considering here the secondary contribution for the modes which are larger than the Hubble radius prior to matter-radiation equality. This is the quantity which must be directly compared with the standard form of the primary spectrum (see section 5).

In equation (4.18), \(\mathcal{A} \) denotes the common amplitude of the phonon fields; \(\mathcal{A} \) depends on the Hubble rate in Planck units during the quasi-de Sitter stage of expansion and will be specified later for notational convenience. Without fine-tuning \(\mathcal{A} \sim \mathcal{A}_R \) where \(\mathcal{A}_R \) is the amplitude of curvature perturbations (see also section 5). The most interesting limit for the present analysis is the one where \(\overline{\pi}(p) \gg 1 \) and \(\overline{\pi}(|\vec{q} - \vec{p}|) \gg 1 \). Thus, \(\overline{\pi}(p) \) and \(\overline{\pi}(|\vec{q} - \vec{p}|) \) will be approximated as

\[\overline{\pi}(q) = \frac{1}{e^{r_0/q} - 1} \simeq \frac{q r_0}{q}, \quad q < q_T, \] \tag{4.19}
where \(q_T \equiv T \) is the (comoving) thermal wavenumber; we shall also assume that \(\pi(q) = 0 \) for \(q > q_T \). Using equation (4.19) inside equation (4.18), the secondary spectrum can be written as

\[
P_T^{(2)}(q) = \frac{A^2 N}{16\pi^5} q_T^2 \mathcal{I}(q, q_T, k_p),
\]

(4.20)

where \(k_p = 0.002 \text{ Mpc}^{-1} \) denotes the pivot scale already mentioned in the introduction and corresponding to a pivot frequency \(\nu_p = k_p/(2\pi) = 3.092 \times 10^{-18} \text{ Hz} \). The integral appearing in equation (4.20) is

\[
\mathcal{I}(q, q_T, k_p) = \int_0^{\pi} \frac{d^3 p}{|\vec{q} - \vec{p}|^4} \left[\frac{(\vec{q} \cdot \vec{p})^2}{q^2 p^2} - 1 \right]^2.
\]

(4.21)

By making explicit the angular and radial integrations, we shall have that

\[
\mathcal{I}(q, q_T, k_p) = \int_0^{q_T} dp \int_{k_p}^{q_T} p^3 dp \frac{(x^2 - 1)^2}{(q^2 + p^2 - 2qpx)^2},
\]

(4.22)

where we used that \(|\vec{q} - \vec{p}| = \sqrt{q^2 + p^2 - 2qpx} \). By explicitly performing the angular integrations in equation (4.22), the explicit expression of the secondary spectrum becomes

\[
P_T^{(2)}(q) = \frac{A^2 N}{192\pi^2} \left(\frac{q}{q_T} \right)^{-2} \int_{q_T}^{q_T} dp \left(\frac{4(3p^4 - 2q^2 p^2 + 3q^4)}{q^3 p} \cdot \right.
\]

\[
+ 3 \left(\frac{p^2 - q^2}{p^2 + q^2} \right)^2 \left(\frac{p^2 + q^2}{p^2} \right)^2 \ln \left[\frac{|p - q|^2}{|p + q|^2} \right].
\]

(4.23)

To estimate the last angular integral appearing in equation (4.23), we divide the integration interval in two regions, i.e. \(k_p \leq p < q \) and \(q < p \leq q_T \). In the first region, we can expand the integrand in powers of \(|p/q| < 1\) and perform the integration over \(p \). Similarly, in the second region the integrand can be expanded in powers of \(|p/q| < 1\). The final result for the secondary spectrum for \(k_p \leq q < q_T \) can then be expressed as

\[
P_T^{(2)}(q) = \frac{52N A^2}{315 \pi^4} \left(\frac{q}{q_T} \right)^{-2} \left[1 - \frac{7}{26} \left(\frac{k_p}{q} \right)^3 - \frac{21}{26} \left(\frac{q}{q_T} \right)^3 + \frac{1}{13} \left(\frac{q}{q_T} \right)^3 \right].
\]

(4.24)

Finally, as already remarked, for \(q \gg q_T \) the secondary spectrum is exponentially suppressed.

5. Concluding considerations

Physical considerations suggest that the gravitons and the phonons have the same temperature. However, different situations cannot be ruled out. In what follows, the primary and secondary contributions will be compared in different limits. By focussing on the primary contribution, let us insert equations (4.2) and (4.19) into equation (2.13); in the limit \(|q\tau| = |q/(aH)| \ll 1\), the result is

\[
P_T^{(1)}(q) = \frac{\epsilon p H^2 2^{2\nu}}{\pi \tau} \Gamma^2(\nu)(1 - \epsilon)^{2\nu-1} \left(\frac{q}{aH} \right)^{3-2\nu} \coth \left(\frac{q}{2q_T} \right),
\]

(5.1)

which is nothing but the amplitude of the primary power spectrum for typical length-scales larger than the Hubble radius prior to matter-radiation equality. As already mentioned in equation (4.1), \(\nu = (3 - \epsilon)/[2(1 - \epsilon)] \). There are now different (but equivalent) ways of

\textit{footnote:}

In equation (5.1), the term \((1 - \epsilon)^{2\nu-1}\) arises by eliminating \(\tau \) is favor of \((aH)^{-1}\) since, within the slow-roll approximation \(aH = -1/[(1 - \epsilon)] \).
expressing the result of equation (5.1). Recalling that $\ell_P = \sqrt{M_p}$, the spectrum (5.1) at horizon crossing (i.e. $q \approx H\Delta$) becomes

$$
P_T^{(1)}(q) = \frac{2}{3\pi^2} \left(\frac{V}{M_p^2} \right) \frac{q}{2q_T} \coth \left(\frac{q}{2q_T} \right),
$$

where the slow-roll relation $3M_p^2H^2 \simeq V$ has been used and V denotes the inflaton potential. It is sometimes useful to express the normalization of equation (5.2) in terms of $M_p = \sqrt{8\pi M_p}$ with the result that the prefactor $2/(3\pi^2)(V/M_p^2)$ appearing in equation (5.2) is modified and becomes $(128/3)(V/M_p^2)$. From equations (5.1) and (5.3), to first order in the slow-roll approximation, the standard tensor spectral index n_T is

$$
n_T = 3 - 2v \simeq -2\epsilon + O(\epsilon^2), \quad r_T = 16\epsilon = -8n_T,
$$

where r_T is the ratio between the tensor and the scalar amplitude in the concordance model. The relation between the tensor amplitude and the inflaton potential is not central to the present consideration so that the primary graviton spectrum can be usefully parametrized as

$$
P_T^{(1)}(q) = A_T \left(\frac{q}{k_p} \right)^{n_T} \coth \left(\frac{q}{2q_T} \right), \quad A_T = r_T A_R,
$$

where $A_T = r_T A_R$ is the tensor amplitude expressed in terms of the amplitude of curvature perturbations A_R at the pivot scale $k_p = 0.002$ Mpc$^{-1}$. The values of the cosmological parameters determined using the WMAP 7 yr data alone [1, 2] in the light of the vanilla ΛCDM scenario are

$$
(\Omega_b, \Omega_c, \Omega_{de}, h_0, n_s, \epsilon_{re}) = (0.0449, 0.222, 0.734, 0.710, 0.963, 0.088).
$$

The uncertainty for each component of the string of equation (5.5) is given by

$$
(\pm 0.0028, \pm 0.026, \pm 0.029, \pm 0.025, \pm 0.014, \pm 0.015).
$$

This uncertainty is immaterial for the illustrative considerations of this section. If a tensor component is allowed in the analysis of the WMAP 7 yr data alone, then the relevant cosmological parameters are determined to be [1, 2]

$$
(\Omega_b, \Omega_c, \Omega_{de}, h_0, n_s, \epsilon_{re}) = (0.0430, 0.200, 0.757, 0.735, 0.982, 0.091).
$$

The uncertainty for each component of the parameters of equation (5.7) is

$$
(\pm 0.0030, \pm 0.028, \pm 0.031, \pm 0.032, \pm 0.030, \pm 0.015).
$$

In the case of equation (5.5), the amplitude of the scalar modes is $A_R = (2.43\pm 0.11) \times 10^{-9}$, while in the case of equation (5.7) the corresponding values of A_R and of r_T are given by

$$
A_R = (2.28 \pm 0.15) \times 10^{-9}, \quad r_T < 0.36,
$$

to 95% confidence level. The qualitative features of the effects discussed here do not change if, for instance, one would endorse the parameters drawn from the minimal tensor extension of the ΛCDM paradigm and compared not to the WMAP 7 yr data release, but rather with the WMAP 3 yr data release, implying, for instance, $A_R = 2.1^{+2.2}_{-2.3} \times 10^{-9}$, $n_s = 0.984$ and $r_T < 0.65$ (95% confidence level).

Let us now compare the primary and secondary contributions to the graviton spectrum in two different and extreme cases. In the first case, the gravitons are not produced from stimulated emission but rather from spontaneous emission. This limit is recovered from equation (2.13)

$$
10 \text{ Following the standard notations, } \Omega_b, \Omega_c, \text{ and } \Omega_{de} \text{ are, respectively, the critical fractions of cold dark matter, baryons and dark energy; } \epsilon_{re} \text{ denotes the optical depth at reionization and } n_s \text{ is the spectral index of curvature perturbations; } h_0 \text{ is the Hubble rate in units of } 100 \text{ km/(s } \times \text{ Mpc).}
$$
by setting $\pi(q) \to 0$. Conversely, the phonons are produced by stimulated emission. In the latter case, the primary spectrum, unlike the secondary contribution, will not experience any Bose–Einstein enhancement. Consequently, the total power spectrum will be given by

$$P_T(q) \simeq A_T \left(\frac{q}{k_p}\right)^n_T + \frac{52 N A_R^2}{315 \pi^4} \left(\frac{q}{q_T}\right)^{-2}, \quad (5.10)$$

where only the leading term of the secondary contribution has been kept (compare with equation (4.24)). In equation (5.10), the amplitude of the phonon field has been estimated by setting $A \simeq A_R$. This choice is fully justified since this is what happens in the case of a quasi-de Sitter phase.

To evaluate explicitly the figures in equation (5.10), we still need an estimate of the ratio q/q_T. Let us therefore proceed along this direction and remind the definition of N_{max}, i.e. the maximal number of efolds which are today accessible by our observations:

$$e^{N_{\text{max}}} = (2 \pi \epsilon A_R^{1/4} (\Omega_{\text{de}}))^{1/4} \left(\frac{M_p}{H_0}\right)^{1/2} \left(\frac{H}{H_0}\right)^{\gamma - 1/2}, \quad (5.11)$$

where $H_0 = 100 h_0 \text{Mpc}^{-1} \text{km s}^{-1}$ is the present value of the Hubble rate and $h_0^2 \Omega_{\text{de}} = 4.15 \times 10^{-3}$. In equation (5.11), we included the possibility of a delayed reheating terminating at a putative scale H_r possibly much smaller than the Hubble rate during inflation denoted by H; γ controls the expansion rate during this intermediate phase. Note that H_r can be, at most, $10^{-4} M_p$ corresponding to a reheating scale occurring just prior to the formation of the light nuclei. If $\gamma - 1/2 > 0$ (as it happens if $\gamma = 2/3$ when the post-inflationary background is dominated by dust), then N_{max} diminishes in comparison with the case when $H = H_r$. Conversely, if $\gamma - 1/2 < 0$ (as it happens in $\gamma = 1/3$ when the post-inflationary background is dominated by stiff sources) N_{max} increases. If $H_r = H$ (or if $\gamma = 1/2$), there is a sudden transition between the inflationary and the post-inflationary regimes and, in this case, we have approximately $N_{\text{max}} \simeq 64 + 0.25 \ln \epsilon$. The value of N_{max} has then a large theoretical error, i.e. based on the previous considerations, 65 ± 15. In practice, N_{max} is determined by fitting the redshifted inflationary event horizon inside the present Hubble radius H_0^{-1}. If the total number of inflationary efolds N_t is larger than N_{max} (i.e. $N_t > N_{\text{max}}$), then the reduced value of the inflationary event horizon is larger than the present value of the Hubble radius. The value of the thermal wavenumber q_T is therefore given by

$$q_T = H_0 \left(\frac{45}{4\pi^2 3 N_{\text{th}}}\right)^{1/4} \sqrt{\frac{M_p}{H}} e^{-\left(N_{\text{max}} - N_{\text{th}}\right)}, \quad (5.12)$$

where N_{th} denotes the total number of spin degrees of freedom in thermal equilibrium at the onset of inflation. From equation (5.12), it is possible to argue for which values of the parameters $q < q_T$ so that the possible enhancement of the power spectrum in equation (5.10) is effectively realized. In this respect, from equation (5.12) it follows that

$$\frac{q}{q_T} \simeq O(10) \epsilon^{-\left(N_{\text{max}} - N_t\right)} \left(\frac{q}{h_0 \text{Mpc}^{-1}}\right) N_{\text{th}}^{1/4} \left(\frac{A_R}{2.20 \times 10^{-9}}\right)^{1/4} \left(\frac{\epsilon}{0.1}\right)^{1/4}. \quad (5.13)$$

Choosing $N_t \simeq N_{\text{max}}$ and focusing the attention on the pivot scale (i.e. $q \simeq k_p$ in equation (5.10)), the total spectrum of equation (5.10) becomes:

$$P_T(k_p) \simeq A_T + \frac{52 N A_R^2}{315 \pi^4} \left(\frac{k_p}{q_T}\right)^{-2}. \quad (5.14)$$

Let us now suppose, in agreement with equation (5.13), that $k_p/q_T \simeq O(10^{-3})$ (at most) and $N_{\text{th}} \simeq O(10^3)$ (at most). In the latter case, the first term in equation (5.14) must be smaller than 10^{-10} (according to equation (5.9)), but the second term in equation (5.14) can be as large as
$O(10^{-13})$. Let us finally suppose that both the gravitons and the phonons are produced from stimulated emission. In this case, equation (5.14) is modified as

$$P_T(q) \simeq A_T \left(\frac{q}{q_T} \right)^{-1} \left[1 + \frac{52 N \mathcal{A} \nu}{315 \pi^2} \left(\frac{q}{q_T} \right)^{-1} \right]. \quad (5.15)$$

The primary tensor spectrum is also enhanced so that the secondary contribution is always smaller except in the limit of a very large number of phonon fields such as $N > O(10^4)$. Note that equation (5.15) holds for $q < q_T$; in the opposite limit (i.e. $q > q_T$), the secondary contribution vanishes while $P_T(q) \simeq A_T (q/k_p)^{n_T}$. If the total number of efolds is $N_l \sim N_{\text{max}}$, then it seems plausible that the primary and secondary contributions could be directly bounded by forthcoming satellite missions such as Planck explorer. The phenomenological signature will be a power spectrum with primary slope $(n_T - 1)$ and with secondary slope going as -2.

The same hierarchies between the primary and secondary spectra are reflected, according to equations (2.45)–(2.47), in the spectral energy density $\Omega_{GW}(q, \tau)$ whose explicit expression can be written, as a function of the frequency, as

$$\hbar^2 \Omega_{GW}(\nu, \tau_0) = \Omega_T f(\nu/\nu_{eq}) \left[p_T \left(\frac{\nu}{\nu_p} \right)^n \coth \left(\frac{\nu}{2\nu_T} \right) + \frac{52 \mathcal{A} \nu}{315 \pi^2} \left(\frac{\nu}{\nu_T} \right)^{-2} \right], \quad (5.16)$$

$$\Omega_T = 3.94 \times 10^{-15} \left(\frac{\hbar^2 \Omega_{eq}}{4.15 \times 10^{-5}} \right) \left(\frac{\mathcal{A}}{2.28 \times 10^{-9}} \right). \quad (5.17)$$

For $\nu \geq \nu_{\text{max}} \simeq \text{GHz} \ \Omega_{GW}(\nu, \tau_0)$ is exponentially suppressed\(^{11}\). In spite of possible observational implications (which are notoriously difficult to assess in the case of the tensor modes of the geometry), the theoretical lesson we can draw from the present analysis is that the correlation properties of the initial quantum state can modify the tensor power spectrum at large scales. This situation bears some analogy with the Glauber theory of optical coherence: first-order coherence of light is controlled by the analogue of the primary graviton spectrum, while second-order coherence is described by the analogue of what has been called secondary power spectrum. Consequently, the secondary graviton spectra, in spite of their detectability prospects, reflect the statistical properties of pre-inflationary mixed states and of their second-order correlations.

Acknowledgments

It is a pleasure to thank T Basaglia and A Gentil-Beccot of the CERN scientific information service for their kind assistance.

References

[1] Bennett C L et al 2011 Astrophys. J. Suppl. 192 17
 Jarosik N et al 2011 Astrophys. J. Suppl. 192 14
 Weiland J L et al 2011 Astrophys. J. Suppl. 192 19

[2] Larson D et al 2011 Astrophys. J. Suppl. 192 16
 Gold B et al 2011 Astrophys. J. Suppl. 192 15
 Komatsu E et al 2011 Astrophys. J. Suppl. 192 18

[3] Reichardt C L, Ade P A R and Bock J J et al 2009 Astrophys. J. 694 1200–19

\(^{11}\)For the fiducial set of parameters adopted above, we have that $\nu_{\text{max}} = (\epsilon/0.1)^{1/3} (\mathcal{A}/2.28 \times 10^{-9})^{1/3} \left[\hbar^2 \Omega_{eq}/(4.15 \times 10^{-5}) \right]^{1/4}$ GHz. These frequencies will be however not touched by the present considerations.
[4] Zemcov M et al (QUaD collaboration) 2010 Astrophys. J. 710 1541
Brown M L et al (QUaD collaboration) 2009 Astrophys. J. 705 978

[5] Percival W J et al 2010 Mon. Not. R. Astron. Soc. 401 2148–68

[6] Reid B A et al 2010 Mon. Not. R. Astron. Soc. 404 60–85

[7] Kessler R et al 2009 Astrophys. J. Suppl. 185 32–84

[8] Hicken M et al 2009 Astrophys. J. 700 1097–140

[9] Giovannini M 2008 Phys. Lett. B 668 44
Giovannini M 2009 Class. Quantum Grav. 26 045004

[10] Abbott B et al (LIGO Collaboration) 2007 Astrophys. J. 659 918
Abbott B et al (LIGO Collaboration) 2007 Phys. Rev. D 76 082003

[11] Abbott B et al (ALLEGRO Collaboration and LIGO Scientific Collaboration) 2007 Phys. Rev. D 76 022001
Cella G, Colacino C N, Cuoco E, Virgilio A Di, Regimbau T, Robinson E L and Whelan J T 2007 Class. Quantum Grav. 24 S639
Abbott B P et al (LIGO Scientific and VIRGO Collaborations) 2009 Nature 460 990

[12] Nishizawa A et al 2008 Phys. Rev. D 77 022002

[13] Cruise A M 2000 Class. Quantum Grav. 17 2525
Cruise A M and Ingley R M 2006 Class. Quantum Grav. 23 6185

[14] Weinberg S 2009 Cosmology (Oxford: Oxford University Press)

[15] Collins P D B and Langbein R F 1992 Phys. Rev. D 45 3429
Collins P D B and Langbein R F 1993 Phys. Rev. D 47 2302

[16] Sokolov I Yu 1992 Class. Quantum Grav. 9 L61

[17] Giovannini M 2012 Class. Quantum Grav. 29 155003

[18] Gasperini M, Giovannini M and Veneziano G 1993 Phys. Rev. D 48 439–443

[19] Bhattacharya K, Mohanty S and Nautiyal A 2006 Phys. Rev. Lett. 97 251301

[20] Bhattacharya K, Mohanty S and Rangarajan R 2006 Phys. Rev. Lett. 96 121302

[21] Zhao W, Baskaran D and Coles P 2009 Phys. Lett. B 680 411

[22] Giovannini M 2011 Phys. Rev. D 83 023515

[23] Agullo I and Parker L 2011 Phys. Rev. D 83 063526

[24] Kundu S 2012 J. Cosmol. Astropart. Phys. JCAP02(2012)005

[25] Birrell N D and Davies P C W 1982 Quantum Fields in Curved Space (Cambridge: Cambridge University Press)

[26] Ford L H and Parker L 1977 Phys. Rev. D 16 1601
Ford L H and Parker L 1977 Phys. Rev. D 16 245

[27] Landau L D and Lifshitz E M 1971 The Classical Theory of Fields (New York: Addison-Wesley)

[28] Isaacson R 1968 Phys. Rev. 166 1263
Isaacson R 1968 Phys. Rev. 166 1272

[29] Abramowicz M and Stegan I A 1972 Handbook of Mathematical Functions (New York: Dover)

[30] Gradshteyn I S and Ryzhik I M 2000 Tables of Integrals, Series and Products (San Diego, CA: Academic)