Placebo Responses Among Men With Erectile Dysfunction Enrolled in Phosphodiesterase 5 Inhibitor Trials
A Systematic Review and Meta-analysis

Alexander Stridh, MSc; Moa Pontén, MSc; Stefan Arver, MD, PhD; Irving Kirsch, PhD; Christoph Abé, PhD; Karin B. Jensen, PhD

Abstract

IMPORTANCE Placebo responses in the treatment of erectile dysfunction (ED) are poorly described in the literature to date.

OBJECTIVE To quantify the association of placebo with ED outcomes among men enrolled in placebo-controlled, phosphodiesterase 5 inhibitor (PDE5I) trials.

DATA SOURCES For this systematic review and meta-analysis, a database search was conducted to identify double-blind, placebo-controlled studies using PDE5Is for the treatment of ED published from January 1, 1998, to December 31, 2018, within MEDLINE, Embase, Cochrane Library, and Web of Science. Only articles published in the English language were included.

STUDY SELECTION Double-blind, placebo-controlled randomized clinical trials of PDE5Is for ED were included. Studies were excluded if they did not provide distribution measures for statistical analysis. Study selection review assessments were conducted by 2 independent investigators. A total of 2215 studies were identified from the database search, and after review, 63 studies that included 12,564 men were analyzed.

DATA EXTRACTION AND SYNTHESIS Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines were followed in abstracting data and assessing validity. Data were extracted from published reports by 2 independent reviewers. Quality assessment was performed using the Jadad scale. Data were pooled using a random-effects model.

MAIN OUTCOMES AND MEASURES The main outcome was improvement in the erectile function domain of the International Index of Erectile Function questionnaire in the placebo arm of the included studies. Effect size was reported as bias-corrected standardized mean difference (Hedges g). The hypothesis was formulated before data extraction.

RESULTS A total of 63 studies that included 12,564 men (mean [SD] age, 55 [7] years; age range, 36-68 years) were included. Erectile function was significantly improved among participants in the placebo arm, with a small to moderate effect size (Hedges g [SE], 0.35 [0.03]; P < .001). Placebo effect size was larger among participants with ED associated with posttraumatic stress disorder (Hedges g [SE], 0.78 [0.32]; P = .02) compared with the overall analysis. No significant difference was found between placebo and PDE5Is for ED after prostate surgery or radiotherapy (Hedges g [SE], 0.30 [0.17]; P = .08).

(continued)
CONCLUSIONS AND RELEVANCE In this study, placebo was associated with improvement of ED, especially among men with ED-related posttraumatic stress disorder. No difference was found between placebo and PDE5I among men treated for ED after prostate surgery.

Introduction

In the past few decades, few drugs have achieved the same mythologic status as sildenafil. Approved in 1998 for treatment of erectile dysfunction (ED), it was soon accompanied by tadalafil and vardenafil, and more recently a few additional drugs within the class of phosphodiesterase 5 inhibitors (PDE5Is) entered the market. Sildenafil was originally developed to relieve symptoms of angina pectoris. What was first considered an adverse effect turned out to be beneficial for increasing blood flow in other areas as well. Anecdotes from early clinical trials describe study participants being unwilling to return unused pills because of the positive erectile effects of the study drug. Despite its specific effect on blood flow through relaxing the penile cavernosal smooth muscle cells, the reputation of the drug has become synonymous with potency, increased virility, and improved sexual performance in general. A previous study reported that sildenafil and other equivalent drugs have been used recreationally by men (both adults and adolescents) without ED. Given the reputation of this class of drugs, it seems possible that some of the effects of the drugs may be related to the power of belief.

Erectile function can be divided into a central component that influences the sympathetic outflow from the thoracolumbar region of the spinal cord and a peripheral reflexogenic erectile function mediated by nitricergic nerves that project from the sacral region of the spinal cord. Erectile dysfunction can be caused by many adversities, such as cardiovascular disease, diabetes, smoking, hypogonadism, iatrogenesis due to pelvic surgery, and adverse effects of medication, but it can also be of psychogenic origin. It has been estimated that approximately 80% of ED is peripheral in origin, although psychogenic factors is likely associated with ED in these cases too. The severity of ED is commonly diagnosed using the International Index of Erectile Function questionnaire (IIEF). A previous study performed in the United States estimated the prevalence of ED to be 44% to 70% in men 60 years and older, with increased prevalence with advancing age. A European study has estimated that ED prevalence ranges from 6% to 64% beginning at 40 years of age and becoming more prevalent in the upper range of the age span.

In any clinical trial, improvement in the placebo arm is common. Placebo effects have been demonstrated in many conditions, such as Parkinson disease, pain disorders, anxiety disorders, depression, asthma, and irritable bowel syndrome. Several neurobiological mechanisms have been proposed to underlie placebo effects, including involvement of endogenous opioids, endogenous cannabinoids, and activation of dopaminergic neurons. The placebo effect has also been demonstrated in neuroimaging studies, which have found increased neural activations in brain structures involved in reduction of, for example, pain or motor symptoms.

We conducted a systematic review and meta-analysis on the use of PDE5Is for ED. The primary goal was to quantify the change in erectile function among patients in the placebo arm of randomized clinical trials as measured by the erectile function domain of the IIEF questionnaire. To our knowledge, this is the first comprehensive meta-analysis that quantifies the association of placebo with ED outcomes in randomized clinical trials of PDE5I.
Methods

Data Sources and Searches
The review protocol was preregistered in the PROSPERO database for meta-analyses (CRD42018109553), including a full account of searches, inclusion and exclusion criteria, main outcomes, and an analysis plan. This study followed the Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) reporting guideline. Data were obtained in collaboration with the Karolinska Institute Library. Searches in MEDLINE, Embase, Cochrane Library, and Web of Science Core Collection were performed for all randomized clinical trials published between January 1, 1998, and December 31, 2018, that focused on PDE5Is for ED treatment.

The most common measure to evaluate erectile function is the erectile function domain of the IIEF (IIEF-EF). Along with the IIEF-EF, the other domains of the IIEF are orgasmic function (IIEF-OF), intercourse satisfaction (IIEF-IS), sexual desire (IIEF-SD), and overall satisfaction (IIEF-OS). The IIEF-EF domain has a top score of 30, with a score below 14 indicating clinically impaired ED function and recommending use of a PDE5I. A change of 4 points or more is considered clinically meaningful. The IIEF-EF domain was chosen as the primary outcome of this meta-analysis. Some studies used the abridged 5-question version of the IIEF, Sexual Health Inventory for Men.

Study Selection
The selection of studies to be included in our analysis was independently conducted by 2 of us (A.S. and C.A.) in a blinded fashion using the Rayyan software for meta-analyses (Qatar Computing Research Institute). The inclusion criteria were double-blind, placebo-controlled randomized clinical trials that used PDE5I for ED treatment or had ED as a comorbidity for another condition and that were reported in English. After unblinding with the Rayyan software, any discrepancies between the 2 reviewers were reconciled in a consensus meeting. The study selection procedure adhered to the Consolidated Standards of Reporting Trials (CONSORT) reporting guideline to ensure adequate quality of included studies. A flowchart of study selection is given in Figure 1.

Statistical Analysis
Data extraction was independently conducted by 2 of us (A.S. and M.P.). Studies were excluded from the meta-analysis if they did not contain any IIEF questionnaire data, did not report any separate data for drug and placebo arms, provided incomplete data, did not allow the calculation of an effect size, or used mixed treatments with proposed effects for ED in the treatment regimen (eg, testosterone).

Figure 1. Flowchart for the Trials Included in the Meta-analysis
The quality of included studies was graded with Jadad scores and was included in the risk of bias assessments at the study and outcome levels.

The Comprehensive Meta-Analysis software, version 3.0, was used for data management and statistical calculations of bias-corrected standardized mean differences (Hedges g). Effect size is commonly interpreted as small (Hedges g, 0.2), moderate (Hedges g, 0.5), or large (Hedges g, 0.8). Treatment response data from various domains of the IIEF questionnaire were analyzed separately per treatment arm as measured from before to after treatment, as well as the difference in outcomes between patients receiving active treatment and those receiving placebo. All analyses were performed with a random-effects approach using a 2-tailed α = .05.

Studies that contained arms with different doses of active drug treatment were averaged to a mean treatment response. In line with a prespecified protocol, subanalyses were performed to explain effect size heterogeneity. Moderators included mean age of participants, study duration, evidence of financial interest, study drug, Jadad scale (range of 0-5, with higher numbers indicating higher quality), and comorbidities. A random-effect metaregression analysis was conducted on mean age of study participants, study drug, study duration, and influence of financial interest by study sponsor or investigators.

Results

A total of 63 studies fulfilled the inclusion criteria; 59 studies were included in the main analysis that assessed the effect size before and after treatment for the various domains of IIEF. Four studies were analyzed separately because PDE5Is were used for treatment of ED after prostate cancer treatment and the design and patient groups differed considerably from the other studies (end of treatment scores indicate worsened erectile function compared with baseline because of surgery or radiotherapy). The treatment effect size in this subset of studies was calculated in a traditional drug vs placebo comparison. The methodologic quality of studies had a mean (SD) of 3.6 (0.88) points on the Jadad scale. A funnel plot was created in the Comprehensive Meta-Analysis software and revealed no risks of publication bias. The 63 included trials (Table 1) included a total of 12,564 men with ED (mean [SD] age, 55 [7] years; age range, 36-68 years). Some studies reported the cause of ED, but in general, studies represented a mix of peripheral and centrally mediated causes of ED, which was commonly referred to in the literature as organic and psychogenic. The mean duration of a treatment trial was 14 weeks (range, 4-104 weeks). A calculation on the combined effect size within the drug and placebo arms was conducted for all included studies in the main analysis (k = 59) excluding the 4 studies in patients with prostate surgery. The effect size in the placebo arm showed a small to moderate improvement of erectile function (Hedges g [SE], 0.35 [0.03]; I² = 70.48; P < .001). The overall effect size in the drug arm showed a large response (Hedges g [SE], 1.25 [0.07]; I² = 93.34; P < .001). A comparison between responses in the drug and placebo arms revealed a large difference in favor of active drug (Hedges g [SE], 1.04 [0.08]; I² = 92.38; P < .001) (Figure 2).

An analysis was performed on the other domains of the IIEF (ie, the IIEF-OF, IIEF-IS, IIEF-SD, and IIEF-OS). Not all included studies reported data on all domains; therefore, the number of studies per domain in this follow-up analysis was reduced. All results of IIEF subdomains are given in Table 2. For the effect size on orgasmic function (IIEF-OF; n = 31), the drug arm showed a high response, whereas the placebo arm showed a lower response, and between-group analysis showed a moderate response in favor of the drug arm. For intercourse satisfaction (IIEF-IS; n = 40), the drug arm showed a large response, the placebo arm showed a moderate response, and the between-group analysis showed a large effect size that favored the study drug. For sexual desire (IIEF-SD; n = 30), the drug arm showed a moderate response, and the placebo arm showed a low to moderate response. The between-group analysis was in favor of the study drug, with a moderate effect size. For overall satisfaction (IIEF-OS; n = 39), the drug arm showed a large response, whereas the placebo arm showed a low to moderate response. The between-group analysis showed a large effect size that favored the drug arm.
Table 1. Studies Included in the Meta-analysis

Source	Study drug	No. of patients	Jadad score	Financial interest	Mean age, y	Study duration, wk
Albuquerque et al, 2005	Sildenafil	87	2	Yes	60.0	8
Althof et al, 2006	Sildenafil	282	3	Yes	55.0	12
Bernard et al, 2010	Sildenafil	162	3	Yes	50.0	8
Carrier et al, 2005	Tadalafil	239	4	Yes	59.0	12
Chen et al, 2004	Tadalafil	194	4	Yes	59.3	12
Chung et al, 2012	Mirodenafil	134	3	Yes	55.5	12
Eardly et al, 2004	Tadalafil	215	3	Yes	53.5	12
Egerdie et al, 2012	Tadalafil	583	4	Yes	62.5	12
Evilyaoglu et al, 2010	Tadalafil	50	3	No	42.5	12
Farca et al, 2008	Sildenafil	89	3	Yes	56.0	12
Fawzie et al, 2016	Sildenafil	131	5	No	66.0	24
Gacci et al, 2012	Vardenafil	59	5	No	67.0	12
Giteiman et al, 2010	Vardenafil	319	4	Yes	55.5	4
Guiliano et al, 2013	Tadalafil	211	3	Yes	63.0	12
Glna et al, 2009	Sildenafil	129	3	Yes	53.5	12
Glna et al, 2009	Lodenafil	60	4	Yes	54.5	4
Glna et al, 2010	Lodenafil	319	4	Yes	55.5	4
Heiman et al, 2007	Sildenafil	176	5	Yes	58.0	12
Hellstrom et al, 2015	Avanafil	414	3	Yes	58.0	8
Jones et al, 2008	Sildenafil	202	3	Yes	52.0	10
Kadioglu et al, 2007	Sildenafil	294	2	Yes	45.0	6
Kim et al, 2014	Tadalafil	592	4	Yes	58.0	12
Mahon et al, 2005	Sildenafil	16	3	Yes	53.0	12
Martin-Morales et al, 2007	Vardenafil	121	3	Yes	53.0	12
Mavuduru et al, 2015	Tadalafil	82	4	No	NA	4
McCullogen et al, 2008	Sildenafil	260	3	Yes	52.5	8
McMahon et al, 2005	Tadalafil	133	5	Yes	59.5	26
McVary et al, 2007	Tadalafil	156	3	Yes	61.5	12
McVary et al, 2007	Sildenafil	351	4	Yes	60.0	12
Meuleman et al, 2001	Sildenafil	315	3	Yes	54.5	26
Miner et al, 2008	Vardenafil	386	3	No	54.5	12
Moncada et al, 2009	Sildenafil	817	3	Yes	56.0	12
Moon et al, 2015	Udenafil	346	5	Yes	58.5	24
Nunes et al, 2013	Lodenafil	48	5	No	37.5	8
Nurnberg et al, 2003	Sildenafil	77	5	Yes	45.0	6
Orr et al, 2006	Sildenafil	42	4	Yes	45.0	4
Ortac et al, 2013	Udenafil	118	5	Yes	43.5	8
Paic et al, 2008	Udenafil	164	3	Yes	55.0	12
Paic et al, 2008	Mirodenafil	222	3	Yes	53.5	12
Paic et al, 2010	Mirodenafil	107	3	Yes	57.5	12
Park et al, 2010	Udenafil	103	3	Yes	53.0	4
Park et al, 2010	Mirodenafil	108	2	Yes	56.5	12
Park et al, 2012	Udenafil	73	5	No	55.0	12
Park et al, 2017	Avanafil	158	4	Yes	56.5	8
Porst et al, 2001	Vardenafil	580	4	Yes	52.0	12
Porst et al, 2011	Tadalafil	300	3	Yes	65.0	12
Rosen et al, 2007	Vardenafil	216	4	Yes	58.0	8
Safarinejad et al, 2009	Sildenafil	242	4	No	48.0	4
Santi et al, 2016	Vardenafil	42	5	No	55.5	24
Saylan et al, 2006	Tadalafil	132	3	Yes	50.5	12
Seftel et al, 2004	Tadalafil	205	4	Yes	59.0	12

(continued)
The effect size for studies in which ED was associated with posttraumatic stress disorder (PTSD; \(n = 2 \)) indicated a large response for the drug arm (Hedges’ \(g \) SE, 1.12 [0.39]; \(I^2 = 77.79; P = .004 \)) and a large response in the placebo arm (Hedges’ \(g \) SE, 0.77 [0.32]; \(I^2 = 76.15; P = .02 \)). The between-group analysis yielded a moderate effect size in favor of the study drug (Hedges’ \(g \) SE, 0.40 [0.17]; \(I^2 = 27.64; P = .02 \)).

Using a regression model, we assessed the association of moderators with ED treatment responses. In an overall analysis including data from the drug and placebo arms combined, no significant association of PDE5 drug type with treatment responses was found (\(q = 10.02; df = 6; I^2 = 94.44; P = .12 \)). The association was significant when the placebo arm was analyzed separately (\(q = 15.96; df = 6; I^2 = 68.63; P = .01 \)), but no significant association was seen in the drug arm (\(q = 11.14; df = 6; I^2 = 92.83; P = .08 \)) or in the between-group comparisons (\(q = 11.79; df = 6; I^2 = 92.71; P = .07 \)). There was a high correlation between treatment responses in the drug and placebo arm (\(r = 0.67 \)), and without avanafil, a drug assessed in only 2 of the 63 studies, the correlation was higher (\(r = 0.94 \)). There was no significant association of any of the other moderators with ED treatment responses (ie, financial interest, study duration, mean study participant age, or Jadad score). For these moderators, there were no significant associations for drug and placebo combined, for drug and placebo arms separately, or in a traditional drug vs placebo comparison.

An explorative analysis was conducted on the studies using PDE5Is as aid in recovery of erectile function after prostate surgery or radiotherapy (\(n = 4 \)). This between-group analysis of the effect size did not show a significant response in favor of drug vs placebo (Hedges’ \(g \) SE, 0.29 [0.17]; \(I^2 = 59.35; P = .08 \)).

Discussion

This study found a significant association between placebo treatment and IIEF-EF scores in patients with ED, but the potential mechanisms are still unexplored. One possibility is that the association between placebo effect and erectile function are mediated by an increased nervous tone in the thoracolumbar tract because this nerve tract is mainly influenced by arousal mechanisms.\(^3\) Several neurobiological mechanisms have been proposed to underlie placebo effects. Endogenous opioids and cannabinoids have been proposed to mediate the placebo effect in various conditions.\(^9\)\(^\text{-}^11\) Given that these 2 substrates (opioid and cannabinoid) are mainly involved in a negative association with sexual arousal, it seems unlikely that they are associated with the placebo effect in treatment for ED.
Erectile dysfunction outcomes were measured using the Erectile Function Domain of the International Index of Erectile Function. A low to moderate improvement was seen in the placebo arm, as indicated by the bias-corrected standardized mean difference (Hedges g [SE]). 0.35 (0.03); $P < 0.001$.
Another commonly proposed neural substrate for the placebo effect, the dopaminergic system, would be more likely to be involved in the association between placebo effect and erectile function because dopamine has a positive association with sexual arousal. The dopaminergic hypothesis is supported by dopamine agonists having been used in the treatment of ED.

There was a significant association of the active drug with erectile function scores in patients with ED. Given that the site of action of PDE5Is is the smooth muscle cells that influence the blood flow necessary to achieve erection, it seems plausible that the effect of the active drug would vary depending on the cause of the ED. If the problem were mainly vascular or endocrinologic, such as in atherosclerosis, diabetes, or hypogonadism, it seems plausible that the PDE5Is would have a strong effect because they address the underlying pathophysiological cause. If the nerves to the penis have been severed or severely damaged (as in the 4 prostate cancer trials in this analysis), the PDE5Is cannot amplify the nervous signal to the smooth muscle cells; thus, PDE5Is would have no specific effect.

Other domains of the IIEF questionnaire showed variations in effect sizes, in which responses in the drug arm were lower for orgasmic function (IIEF-OF) and sexual desire (IIEF-SD) compared with erectile function (IIEF-EF). This finding was expected because orgasmic function and especially sexual desire are associated with numerous factors other than the ability to achieve erection. There were also variations in effect size in the placebo arm, in which the response was lower for IIEF-OF and IIEF-SD compared with IIEF-EF. This finding was most likely attributable to the same factors as the differences among domains in the drug arm. Of interest, the response for intercourse satisfaction (IIEF-IS) was higher compared with the IIEF-EF response in the placebo arm. This result was not concordant with the result in the drug arm, and because the degree of the association with intercourse satisfaction may be more affected by psychological factors, this result supports separate mechanisms for placebo and drug improvements in patients with ED.

The 2 studies on treatment for PTSD-associated ED had a lower effect size for the drug response compared with results from the main analysis. The effect size of the placebo response in PTSD studies was markedly higher compared with the main analysis. Assuming that ED in this patient group was associated with psychological stress caused by traumatic experiences, the large improvement in the placebo arm could indicate that psychological factors might be associated with ED symptom improvements. This finding is supported by clinical studies that found comparable ED improvements for psychological interventions and PDE5Is, or increased improvements when combined (compared with PDE5Is alone). However, neither the drug nor placebo arm in the 2

Table 2. Results From All IIEF Survey Domains Other Than Erectile Function*

Domain	Studies, No.	Hedges g, (SE)	P value
Intercourse satisfaction (IIEF-IS)			
Drug arm	40	1.27 (0.09)	<.001
Placebo arm	40	0.52 (0.05)	<.001
Between	40	0.88 (0.08)	<.001
Overall satisfaction (IIEF-OS)			
Drug arm	39	1.17 (0.08)	<.001
Placebo arm	39	0.35 (0.04)	<.001
Between	39	0.89 (0.09)	<.001
Sexual desire (IIEF-SD)			
Drug arm	30	0.60 (0.06)	<.001
Placebo arm	30	0.25 (0.25)	<.001
Between	30	0.40 (0.04)	<.001
Orgasmic function (IIEF-OF)			
Drug arm	31	0.75 (0.05)	<.001
Placebo arm	31	0.21 (0.03)	<.001
Between	31	0.57 (0.05)	<.001

Abbreviations: IIEF, International Index of Erectile Function; IS, intercourse satisfaction; OF, orgasmic function; OS, overall satisfaction; SD, sexual desire.

* Data are given in descending order of effect size in the placebo arm. Not all studies used all subscales, which accounts for the different number of studies. Effect sizes are reported as bias-corrected standardized mean difference (Hedges g).
studies52,64 on ED associated with PTSD reached a median IIEF-EF score, indicating normal erectile function, although clinically significant improvements were observed.

A metaregression analysis revealed a significant association between PDE5I drug type and treatment responses in the placebo arm and high correlation between the treatment response in the drug and placebo arms. The association of PDE5I drug type with erectile function in individuals given placebo suggests that differences in subjective perception of the different drugs exist because they differ in brand names, marketing, and visual appearance. Previous research shows that placebo effects are associated with labels87 and marketing88 and it is possible that such differences contributed to the results in the present study.

No significant association of study duration, participant age, Jadad score, or financial interest with treatment effect size was found in the drug or placebo arm. Study duration is difficult to compare with previous studies of placebo longevity because PDE5Is are taken when needed, and the effects may be different from placebo responses in long-term use of, for example, antidepressants.89 Furthermore, there was little variation in participant age among studies, and new studies are needed to determine whether placebo responses in ED treatment may differ depending on participant age. The lack of an association between documented financial interests and treatment responses suggests that the trials included in this meta-analysis were not biased by the potential influence of a study sponsor.

The Jadad score reflects the quality of the clinical trials included in the meta-analysis. The lack of an association between Jadad scores and treatment outcomes indicates that the results in this meta-analysis are not biased by study quality.

Usually, PDE5Is are only taken before sexual intercourse. It has been theorized that daily long-term treatment with PDE5Is after prostate surgery and radiotherapy can aid the healing of damaged nerves through an amplification of the nervous input to the smooth muscles of the cavernous body.90 Previous research4 regarding the usefulness of this practice has been inconclusive. The results from the present meta-analysis showed no statistically significant differences between the response in the drug and placebo arms among patients who underwent treatment for prostate cancer. Individual studies91,92 that are not part of this meta-analysis have found stronger associations of erectile function and active drug compared with placebo. However, differences in the degree of nerve damage in the pelvic area may represent a confounding factor by which patients with less severe nerve damage after surgery or radiotherapy might receive a short-term benefit from PDE5Is (unrelated to the proposed effects of long-term treatment). The results in this meta-analysis suggest that PDE5Is have no significant association with the recovery of erectile function after prostate surgery or radiotherapy. Until robust differences between drug and placebo have been demonstrated, the practice of prescribing daily intake of PDE5Is after prostate cancer treatment may not be considered evidence, questioning the long-term use of PDE5Is for these patients.

Limitations

This study has limitations. This meta-analysis is limited by the inability to compare improvements in the placebo arm with no-treatment data from the included study populations. In any placebo-controlled drug trial, the inclusion of a no-treatment group will help understanding of how much of the treatment response is attributable to the drug itself, how much is attributable to the placebo effect, and how much of the treatment response is attributable to factors such as spontaneous remission and regression to the mean. We cannot exclude that the observed placebo response was partly associated with spontaneous ED improvements. The inclusion of a no-treatment control group in randomized clinical trials of ED is warranted because it would potentially lead to a better understanding of placebo effects in PDE5I treatment trials.
Conclusions

This systematic review and meta-analysis found a significant association of placebo and ED outcomes, with larger effect sizes among men with PTSD-associated ED. No difference in erectile function was found between those who received placebo vs PDE5I for ED after prostate surgery.

ARTICLE INFORMATION
Accepted for Publication: January 30, 2020.

Published: March 20, 2020. doi:10.1001/jamanetworkopen.2020.1423

Open Access: This is an open access article distributed under the terms of the CC-BY License. © 2020 Stridh A et al. JAMA Network Open.

Corresponding Author: Alexander Stridh, MSc, Department of Clinical Neuroscience, Karolinska Institute, Nobels väg 9, 17177 Stockholm, Sweden (alexander.stridh@stud.ki.se).

Author Affiliations: Department of Clinical Neuroscience, Karolinska Institute, Solna, Sweden (Stridh, Pontén, Abé, Jensen); Department of Medicine, Karolinska Institute, Solna, Sweden (Arver); Program in Placebo Studies, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts (Kirsch).

Author Contributions: Drs Abé and Jensen contributed equally to this work. Mr Stridh and Dr Jensen had full access to all the data in the study and take responsibility for the integrity of the data and the accuracy of the data analysis.

Concept and design: Stridh, Kirsch, Abé, Jensen.

Acquisition, analysis, or interpretation of data: Stridh, Pontén, Arver, Abé, Jensen.

Drafting of the manuscript: Stridh, Jensen.

Critical revision of the manuscript for important intellectual content: All authors.

Statistical analysis: Stridh, Pontén, Kirsch, Abé, Jensen.

Administrative, technical, or material support: Stridh, Arver, Abé, Jensen.

Supervision: Arver, Kirsch, Abé, Jensen.

Conflict of Interest Disclosures: None reported.

Funding/Support: This study supported by the Pro Futura Grant from Riksbankens Jubileumsfond (Dr Jensen).

Role of the Funder/Sponsor: The funding source had no role in the design and conduct of the study; collection, management, analysis, and interpretation of the data; preparation, review, or approval of the manuscript; and decision to submit the manuscript for publication.

Additional Contributions: Magdalena Svanberg, MA, and Carl Gornitzki, MLIS, librarians at the Karolinska University Library, Solna, Sweden, assisted in the search for articles in this meta-analysis. They were not compensated for their work.

REFERENCES
1. Goldstein I, Burnett AL, Rosen RC, Park PW, Stecher VJ. The serendipitous story of sildenafil: an unexpected oral therapy for erectile dysfunction. Sex Med Rev. 2019;7(1):115-128. doi:10.1016/j.sxmr.2018.06.005

2. Delate T, Simmons VA, Mootheral BR. Patterns of use of sildenafil among commercially insured adults in the United States: 1998-2002. Int J Impot Res. 2004;16(4):313-318. doi:10.1038/sj.ijir.3901191

3. Dean RC, Lue TF. Physiology of penile erection and pathophysiology of erectile dysfunction. Urol Clin North Am. 2005;32(4):379-395, v. v. doi:10.1016/j.ucin.2005.08.007

4. Yafi FA, Jenkins L, Albersen M, et al. Erectile dysfunction. Nat Rev Dis Primers. 2016;2:16003. doi:10.1038/nrdp.2016.3

5. Rosen RC, Riley A, Wagner G, Osterloh IH, Kirkpatrick J, Mishra A. The international index of erectile function (IIEF): a multidimensional scale for assessment of erectile dysfunction. Urology. 1997;49(6):822-830. doi:10.1016/S0090-4295(97)00238-0

6. Pastuszak AW. Current diagnosis and management of erectile dysfunction. Curr Sex Health Rep. 2014;6(3):164-176. doi:10.1007/s11930-014-0023-9

7. Corona G, Lee DM, Forti G, et al; EMAS Study Group. Age-related changes in general and sexual health in middle-aged and older men: results from the European Male Ageing Study (EMAS). J Sex Med. 2010;7(4, pt 1):1362-1380. doi:10.1111/j.1743-6009.2009.01601.x
8. Benedetti F, Carlino E, Pollo A. How placebos change the patient's brain. *Neuropsychopharmacology*. 2011;36(1):339-354. doi:10.1038/npp.2010.81

9. Sauro MD, Greenberg RP. Endogenous opiates and the placebo effect: a meta-analytic review. *J Psychosom Res*. 2005;58(2):115-120. doi:10.1016/j.jpsychores.2004.07.001

10. Amanzio M, Benedetti F. Neuropharmacological dissection of placebo analgesia: expectation-activated opioid systems versus conditioning-activated specific subsystems. *J Neurosci*. 1999;19(1):484-494. doi:10.1523/JNEUROSCI.19-01-00484.1999

11. Benedetti F, Amanzio M, Rosato R, Blanchard C. Nonopioid placebo analgesia is mediated by CB1 cannabinoid receptors. *Nat Med*. 2011;17(10):1228-1230. doi:10.1038/nm.2435

12. de la Fuente-Fernández R, Liston S, Stoessl AJ. Placebo effect and dopamine release. *J Neural Transm Suppl*. 2006;(70):415-418.

13. de la Fuente-Fernández R. The placebo-reward hypothesis: dopamine and the placebo effect. *Parkinsonism Relat Disord*. 2009;15(suppl 3):S72-S74. doi:10.1016/S1353-8020(09)70785-0

14. Wager TD, Rilling JK, Smith EE, et al. Placebo-induced changes in FMRI in the anticipation and experience of pain. *Science*. 2004;303(5661):1162-1167. doi:10.1126/science.1093065

15. Geuter S, Eippert F, Hindi Attar C, Büchel C. Cortical and subcortical responses to high and low effective placebotreatments. *Neuroimage*. 2013;67:227-236. doi:10.1016/j.neuroimage.2012.11.029

16. Jadad AR, Moore RA, Carroll D, et al. Assessing the quality of reports of randomized clinical trials: is blinding necessary? *Control Clin Trials*. 1996;17(1):1-12. doi:10.1016/0197-2456(95)00134-4

17. Albuquerque DC, Miziara L, Saraiva JF, Rodrigues US, Ribeiro AB, Wajngarten M. Efficacy, safety and tolerability of sildenafil in Brazilian hypertensive patients on multiple antihypertensive drugs. *Int Braz J Urol*. 2005;31(4):342-353. doi:10.1590/S1677-55382005000400008

18. Althof SE, O’leary MP, Cappelleri JC, et al. International SEAR Study Group. Sildenafil citrate improves self-esteem, confidence, and relationships in men with erectile dysfunction: results from an international, multi-center, double-blind, placebo-controlled trial. *J Sex Med*. 2006;3(3):521-529. doi:10.1111/j.1743-6109.2006.00234.x

19. Bénard F, Carrier S, Lee JC, Talwar V, Defoy I. Men with mild erectile dysfunction benefit from sildenafil treatment. *J Sex Med*. 2010;7(11):3725-3735. doi:10.1111/j.1743-6109.2010.02015.x

20. Carrier S, Brock GB, Pommerville PJ, et al. Efficacy and safety of oral tadalafil in the treatment of men in Canada with erectile dysfunction: a randomized, double-blind, parallel, placebo-controlled clinical trial. *J Sex Med*. 2005;2(5):685-698. doi:10.1111/j.1743-6109.2005.00097.x

21. Chen KK, Jiann BP, Lin JS, et al. Efficacy and safety of on-demand oral vardenafil in the treatment of men with erectile dysfunction in Taiwan: a randomized, double-blind, placebo-controlled clinical study. *J Sex Med*. 2004;1(2):201-208. doi:10.1111/j.1743-6109.2004.04029.x

22. Chung JH, Kang DH, Oh CY, et al. Safety and efficacy of once daily administration of 50 mg mirodenafil in patients with erectile dysfunction: a multicenter, double-blind, placebo controlled trial. *J Urol*. 2013;189(3):1006-1013. doi:10.1016/j.juro.2012.08.243

23. Eardley I, Gentile V, Austin E, et al. Efficacy and safety of tadalafil in a Western European population of men with erectile dysfunction. *BJU Int*. 2004;94(6):871-877. doi:10.1111/j.1464-410X.2004.05049.x

24. Egerdie RB, Auerbach S, Roehrborn CG, et al. Tadalafil 2.5 or 5 mg administered once daily for 12 weeks in men with both erectile dysfunction and signs and symptoms of benign prostatic hyperplasia: results of a randomized, placebo-controlled, double-blind study. *J Sex Med*. 2012;9(1):271-281. doi:10.1111/j.1743-6109.2011.02504.x

25. Evliyaoğlu Y, Yelsel K, Kobaner M, Alma E, Saygılı M. Efficacy and tolerability of tadalafil for treatment of erectile dysfunction in men taking serotonin reuptake inhibitors. *Urology*. 2011;77(5):1137-1141. doi:10.1016/j.urology.2010.12.036

26. Zonana Farca E, Francolugo-Vélez V, Moy-Eransus C, Orozco Bravo A, Tseng LJ, Stecher VJ. Self-esteem, confidence and relationship satisfaction in men taking phosphodiesterase 5 inhibitors. *Int J Impot Res*. 2008;20(4):402-408. doi:10.1016/j.ijir.2008.08.024

27. Fawzi A, Kamel M, Salem E, et al. Sildenafil citrate in combination with tamsulosin versus tamsulosin monotherapy for management of male lower urinary tract symptoms due to benign prostatic hyperplasia: a randomized, double-blind, placebo-controlled trial. *Arab J Urol*. 2016;15(3):53-59. doi:10.1016/j.aju.2016.11.001

28. Gacci M, Vittori G, Tosi N, et al. A randomized, placebo-controlled study to assess safety and efficacy of vardenafil 10 mg and tamsulosin 0.4 mg vs. tamsulosin 0.4 mg alone in the treatment of lower urinary tract symptoms secondary to benign prostatic hyperplasia. *J Sex Med*. 2012;9(6):1624-1633. doi:10.1111/j.1743-6109.2012.02718.x

JAMA Network Open. 2020;3(3):e201423. doi:10.1001/jamanetworkopen.2020.1423
29. Gittelman M, McMahon CG, Rodriguez-Rivera JA, Beneke M, Ulbrich E, Ewald S. The POTENTII randomised trial: efficacy and safety of an orodispersible vardenafil formulation for the treatment of erectile dysfunction. Int J Clin Pract. 2010;64(5):594-603. doi: 10.1111/j.1742-1241.2010.02358.x

30. Giuliano F, Oelke M, Jungwirth A, et al. Tadalafil once daily improves ejaculatory function, erectile function, and sexual satisfaction in men with lower urinary tract symptoms suggestive of benign prostatic hyperplasia and erectile dysfunction: results from a randomized, placebo- and tamsulosin-controlled, 12-week double-blind study. J Sex Med. 2013;10(3):857-865. doi:10.1111/jsm.12039

31. Glinas S, Damiao R, Abdo C, Afif-Abdo J, Tseng LJ, Stecher V. Self-esteem, confidence, and relationships in Brazilian men with erectile dysfunction receiving sildenafil citrate: a randomized, parallel-group, double-blind, placebo-controlled study in Brazil. J Sex Med. 2009;6(1):268-275. doi:10.1111/j.1743-6109.2008.01026.x

32. Glinas S, Toscano I, Gomatzky C, et al. Efficacy and tolerability of lodenafil carbonate for oral therapy in erectile dysfunction: a phase II clinical trial. J Sex Med. 2009;6(2):553-557. doi:10.1111/j.1743-6109.2008.01079.x

33. Glinas S, Fonseca GN, Bertero EB, et al. Efficacy and tolerability of lodenafil carbonate for oral therapy of erectile dysfunction: a phase III clinical trial. J Sex Med. 2010;7(5):1928-1936. doi:10.1111/j.1743-6109.2010.01711.x

34. Heiman JR, Talley DR, Bailen JL, et al. Sexual function and satisfaction in heterosexual couples when men are administered sildenafil citrate (Viagra) for erectile dysfunction: a multicentre, randomised, double-blind, placebo-controlled trial. BJOG. 2007;114(4):437-447. doi:10.1111/j.1471-0528.2006.01228.x

35. Hellstrom WJ, Kaminetsky J, Belkoff LH, et al. Efficacy of aavanafil 15 minutes after dosing in men with erectile dysfunction: a randomized, double-blind, placebo controlled study. J Urol. 2015;194(2):485-492. doi:10.1016/j.juro.2014.12.101

36. Jones LA, Klimberg IW, McMurray JG, Padula R, Tseng LJ, Stecher VJ. Effect of sildenafil citrate on the male sexual experience assessed with the Sexual Experience Questionnaire: a multicentre, randomised, double-blind, placebo-controlled trial with open-label extension. J Sex Med. 2008;5(8):1955-1964. doi:10.1111/j.1743-6109.2008.00879.x

37. Kadioglu A, Grohmann W, Depko A, Levinson IP, Sun F, Collins S. Quality of erections in men treated with flexible-dose sildenafil for erectile dysfunction: multicenter trial with a double-blind, randomized, placebo-controlled phase and an open-label phase. J Sex Med. 2008;5(3):726-734. doi:10.1111/j.1743-6109.2007.00701.x

38. Kim ED, Seftel AD, Goldfischer ER, Ni X, Burns PR. A return to normal erectile function with tadalafil once daily after an incomplete response to as-needed PDE5 inhibitor therapy. J Sex Med. 2014;11(3):820-830. doi:10.1111/jsm.12253

39. Mahon A, Sidhu PS, Muir G, Macdougall IC. The efficacy of sildenafil for the treatment of erectile dysfunction in male peritoneal dialysis patients. Am J Kidney Dis. 2005;45(2):381-387. doi:10.1053/ajkd.2004.10.012

40. Martin-Morales A, Mejide F, Garcia N, Artes M, Munoz A. Efficacy of vardenafil and influence on self-esteem and self-confidence in patients with severe erectile dysfunction. J Sex Med. 2007;4(2):440-447. doi:10.1111/j.1743-6109.2006.00426.x

41. Pattanaik S, Kaundal P, Mavuduru RS, Singh SK, Mandal AK. Endothelial dysfunction in patients with erectile dysfunction: a double-blind, randomized-control trial using tadalafil. Sex Med. 2019;7(1):41-47. doi:10.1016/j.esxm.2018.11.008

42. McCullough AR, Steidle CP, Klee B, Tseng LJ. Randomized, double-blind, crossover trial of sildenafil in men with mild to moderate erectile dysfunction: efficacy at 8 and 12 hours postdose. Urology. 2008;71(4):686-692. doi:10.1016/j.urology.2007.12.025

43. McMahon CG, Stuckey BG, Lording DW, et al. A 6-month study of the efficacy and safety of tadalafil in the treatment of erectile dysfunction: a randomised, double-blind, parallel-group, placebo-controlled study in Australian men. Int J Clin Pract. 2005;59(2):143-149. doi:10.1111/j.1742-1241.2005.00451.x

44. McVary KT, Roehrborn CG, Kaminetsky JC, et al. Tadalafil relieves lower urinary tract symptoms secondary to benign prostatic hyperplasia. J Urol. 2007;177(4):1401-1407. doi:10.1016/j.juro.2006.11.037

45. McVary KT, Monnig W, Camps JL Jr, Young JM, Tseng LJ, van den Ende G. Sildenafil citrate improves erectile function and urinary symptoms in men with erectile dysfunction and lower urinary tract symptoms associated with benign prostatic hyperplasia: a randomized, double-blind trial. J Urol. 2007;177(3):1071-1077. doi:10.1016/j.juro.2006.10.055

46. Meuleman E, Cuzin B, Opsomer RJ, et al. A dose-escalation study to assess the efficacy and safety of sildenafil citrate in men with erectile dysfunction. BJU Int. 2001;87(1):75-81. doi:10.1046/j.1440-1618.2001.00998.x

47. Miner M, Gilderman L, Baillen J, et al. Vardenafil in men with stable statin therapy and dyslipidemia. J Sex Med. 2008;5(6):1455-1467. doi:10.1111/j.1743-6109.2008.00820.x
48. Moncada I, Martínez-Jabaloyas JM, Rodríguez-Vela L, et al. Emotional changes in men treated with sildenafil citrate for erectile dysfunction: a double-blind, placebo-controlled clinical trial. J Sex Med. 2009;6(12):3469-3477. doi:10.1111/j.1743-6109.2009.01514.x

49. Moon KH, Ko YH, Kim SW, et al. Efficacy of once-daily administration of udenafil for 24 weeks on erectile dysfunction: results from a randomized multicenter placebo-controlled clinical trial. J Sex Med. 2015;12(5):1194-1201. doi:10.1111/jsm.12862

50. Nunes LV, Lacaz FS, Bressan RA, Nunes SO, Mari Jde J. Adjunctive treatment with lodenafil carbonate for erectile dysfunction in outpatients with schizophrenia and spectrum: a randomized, double-blind, crossover, placebo-controlled trial. J Sex Med. 2013;10(4):1136-1145. doi:10.1111/jsm.12040

51. Nurnberg HG, Hensley PL, Gelenberg AJ, Fava M, Lauriello J, Paine S. Treatment of antidepressant-associated sexual dysfunction with sildenafil: a randomized controlled trial. JAMA. 2003;289(1):56-64. doi:10.1001/jama.289.1.56

52. Orr G, Weiser M, Polliack M, Raviv G, Tadmor D, Grunhaus L. Effectiveness of sildenafil in treating erectile dysfunction in PTSD patients: a double-blind, placebo-controlled crossover study. J Clin Psychopharmacol. 2006;26(4):426-430. doi:10.1097/01.jcp.0000227701.33999.b3

53. Ortaç M, Çayan S, Çalışkan MK, et al. Efficacy and tolerability of udenafil in Turkish men with erectile dysfunction of psychogenic and organic etiology: a randomized, double-blind, placebo-controlled study. Andrology. 2013;1(4):549-555. doi:10.1111/j.2047-2927.2013.00085.x

54. Paick JS, Kim SW, Yang DY, et al. The efficacy and safety of udenafil, a new selective phosphodiesterase type 5 inhibitor, in patients with erectile dysfunction. J Sex Med. 2008;5(4):946-953. doi:10.1111/j.1743-6109.2007.00723.x

55. Paick JS, Ahn TY, Choi HK, et al. Efficacy and safety of mirodenafil, a new oral phosphodiesterase type 5 inhibitor, for treatment of erectile dysfunction. J Sex Med. 2008;5(11):2672-2680. doi:10.1111/j.1743-6109.2008.00945.x

56. Paick JS, Kim JJ, Kim SC, et al. Efficacy and safety of mirodenafil in men taking antihypertensive medications. J Sex Med. 2010;7(9):3143-3152. doi:10.1111/j.1743-6109.2010.01926.x

57. Park HJ, Park JK, Park K, Min K, Park NC. Efficacy of udenafil for the treatment of erectile dysfunction up to 12 hours after dosing: a randomized placebo-controlled trial. J Sex Med. 2010;7(6):2209-2216. doi:10.1111/j.1743-6109.2010.01817.x

58. Park HJ, Choi HK, Ahn TY, et al. Efficacy and safety of oral mirodenafil in the treatment of erectile dysfunction in diabetic men in Korea: a multicenter, randomized, double-blind, placebo-controlled clinical trial. J Sex Med. 2010;7(8):2842-2850. doi:10.1111/j.1743-6109.2010.01888.x

59. Park SY, Choi GS, Park JS, Kim JJ, Park JA, Choi JI. Efficacy and safety of udenafil for the treatment of erectile dysfunction after total mesorectal excision of rectal cancer: a randomized, double-blind, placebo-controlled trial. Surgery. 2015;157(1):64-71. doi:10.1016/j.surg.2014.07.007

60. Park HJ, Kim SW, Kim JJ, et al. A randomized, placebo-controlled, double-blind, multi-center therapeutic confirmatory study to evaluate the safety and efficacy of avanafil in Korean patients with erectile dysfunction. J Korean Med Sci. 2017;32(6):1016-1023. doi:10.3346/jkms.2017.32.6.1016

61. Porst H, Rosen R, Padma-Nathan H, et al. The efficacy and tolerability of vardenafil, a new, oral, selective phosphodiesterase type 5 inhibitor, in patients with erectile dysfunction: the first-at-home clinical trial. Int J Impot Res. 2001;13(4):192-199. doi:10.1038/sj.ijir.3900713

62. Porst H, Kim ED, Casabel AR, et al; LVHJ study team. Efficacy and safety of tadalafil once daily in the treatment of men with lower urinary tract symptoms suggestive of benign prostatic hyperplasia: results of an international randomized, double-blind, placebo-controlled trial. Eur Urol. 2011;60(5):1105-1113. doi:10.1016/j.euro.2011.08.005

63. Rosen RC, Wincze J, Mollen MD, Gondek K, McLeod LD, Fisher WA. Responsiveness and minimum important differences for the erection quality scale. J Urol. 2007;178(5):2076-2081. doi:10.1016/j.juro.2007.07.019

64. Safarinejad MR, Kolahi AA, Ghaedi G. Safety and efficacy of sildenafil citrate in treating erectile dysfunction in patients with combat-related post-traumatic stress disorder: a double-blind, randomized and placebo-controlled study. BJU Int. 2009;104(3):376-383. doi:10.1111/j.1464-410X.2009.08560.x

65. Santi D, Granata AR, Guidi A, et al. Six months of daily treatment with vardenafil improves parameters of endothelial inflammation and of hypogonadism in male patients with type 2 diabetes and erectile dysfunction: a randomized, double-blind, prospective trial. Eur J Endocrinol. 2016;174(4):513-522. doi:10.1530/EJE-15-1100

66. Saylan M, Khalaf I, Kadioglu A, et al. Efficacy of tadalafil in Egyptian and Turkish men with erectile dysfunction. Int J Clin Pract. 2006;60(7):812-819. doi:10.1111/j.1742-1241.2006.00993.x
67. Seftel AD, Wilson SK, Knapp PM, Shin J, Wang WC, Ahuja S. The efficacy and safety of tadalafil in United States and Puerto Rican men with erectile dysfunction. J Urol. 2004;172(2):652-657. doi:10.1097/01.ju.0000132857.39680.ce

68. Seibel I, Poli De Figueiredo CE, Telóken C, Moraes JF. Efficacy of oral sildenafil in hemodialysis patients with erectile dysfunction. J Am Soc Nephrol. 2002;13(11):2770-2775. doi:10.1097/01.ASN.0000034201.97937.3E

69. Seidman SN, Roose SP, Menza MA, Shabsigh R, Rosen RC. Treatment of erectile dysfunction in men with depressive symptoms: results of a placebo-controlled trial with sildenafil citrate. Am J Psychiatry. 2001;158(10):1623-1630. doi:10.1176/appi.ajp.158.10.1623

70. Shabsigh R, Kaufman J, Magee M, Creanga D, Russell D, Budhwani M. A multicenter, double-blind, placebo-controlled trial to assess the efficacy of sildenafil citrate in men with unrecognized erectile dysfunction. Urology. 2010;76(2):373-379. doi:10.1016/j.urology.2010.03.017

71. Sharma RK, Prasad N, Gupta A, Kapoor R. Treatment of erectile dysfunction with sildenafil citrate in renal allograft recipients: a randomized, double-blind, placebo-controlled, crossover trial. Am J Kidney Dis. 2006;48(1):128-133. doi:10.1053/j.ajkd.2006.04.061

72. Shim YS, Pae CU, Cho KJ, Kim SW, Kim JC, Koh JS. Effects of daily low-dose treatment with phosphodiesterase type 5 inhibitor on cognition, depression, somatization and erectile function in patients with erectile dysfunction: a double-blind, placebo-controlled study. Int J Impot Res. 2014;26(2):76-80. doi:10.1038/ijir.2013.38

73. Skoumal R, Chen J, Kula K, et al. Efficacy and treatment satisfaction with on-demand tadalafil (Cialis) in men with erectile dysfunction. Eur Urol. 2004;46(3):362-369. doi:10.1016/j.eururo.2004.04.026

74. Vardi Y, Appel B, Ofer Y, Greenwald I, Dayan L, Jacob G. Effect of chronic sildenafil treatment on penile endothelial function: a randomized, double-blind, placebo controlled study. J Urol. 2009;182(6):2850-2855. doi:10.1016/j.juro.2009.08.025

75. Ziegler D, Merfort F, Van Ahlen H, Yassin A, Reblin T, Neureither M. Efficacy and safety of flexible-dose vardenafil in men with type 1 diabetes and erectile dysfunction. J Sex Med. 2006;3(5):883-891. doi:10.1111/j.1743-6109.2006.00295.x

76. Zelefsky MJ, Shasha D, Branco RD, et al. Prophylactic sildenafil citrate improves select aspects of sexual function in men treated with radiotherapy for prostate cancer. J Urol. 2014;192(3):868-874. doi:10.1016/j.juro.2014.02.097

77. Incrocci L, Koper PC, Hop WC, Slok AK. Sildenafil citrate (Viagra) and erectile dysfunction following external beam radiotherapy for prostate cancer: a randomized, double-blind, placebo-controlled, cross-over study. Int J Radiat Oncol Biol Phys. 2001;51(5):1190-1195. doi:10.1016/S0360-3016(01)01767-9

78. Padma-Nathan H, McCullough AR, Levine LA, et al; Study Group. Randomized, double-blind, placebo-controlled study of postoperative nightly sildenafil citrate for the prevention of erectile dysfunction after bilateral nerve-sparing radical prostatectomy. Int J Impot Res. 2008;20(5):479-486. doi:10.1038/ijir.2008.33

79. Pisansky TM, Pugh SL, Greenberg RE, et al. Tadalafil for prevention of erectile dysfunction after radiotherapy for prostate cancer: the Radiation Therapy Oncology Group [0831] randomized clinical trial. JAMA. 2014;311(13):1300-1307. doi:10.1001/jama.2014.2626

80. Pfaus JG. Pathways of sexual desire. J Sex Med. 2009;6(6):1506-1533. doi:10.1111/j.1743-6109.2009.01309.x

81. Montorsi F, Perani D, Anchisi D, et al. Apomorphine-induced brain modulation during sexual stimulation following the administration of apomorphine: results of a placebo-controlled study. Eur Urol. 2003;43(4):405-411. doi:10.1016/S0302-2838(03)00053-8

82. Mulhall JP. Sublingual apomorphine for the treatment of erectile dysfunction. Expert Opin Investig Drugs. 2002;1(2):295-302. doi:10.1517/13543784.11.2.295

83. Montorsi F, Perani D, Anchisi D, et al. Apomorphine-induced brain modulation during sexual stimulation: a new look at central phenomena related to erectile dysfunction. Int J Impot Res. 2003;15(3):203-209. doi:10.1038/ijir.3900999

84. Melnik T, AbdO CH. Psychogenic erectile dysfunction: comparative study of three therapeutic approaches. J Sex Marital Ther. 2005;31(3):243-255. doi:10.1080/00926230590513465

85. McCabe MP, Price E, Piterman L, Lording D. Evaluation of an internet-based psychological intervention for the treatment of erectile dysfunction. Int J Impot Res. 2008;20(3):324-330. doi:10.1038/ijir.2008.3

86. Aubin S, Heiman JR, Berger RE, Murallo AV, Yung-Wen L. Comparing sildenafil alone vs. sildenafil plus brief couple sex therapy on erectile dysfunction and couples’ sexual and marital quality of life: a pilot study. J Sex Marital Ther. 2009;35(2):122-143. doi:10.1080/00926230802712319

87. Kam-Hansen S, Jakubowski M, Kelley JM, et al. Altered placebo and drug labeling changes the outcome of episodic migraine attacks. Sci Transl Med. 2014;6(218):218ra5. doi:10.1126/scitranslmed.3006175
88. Waber RL, Shiv B, Carmon Z, Ariely D. Commercial features of placebo and therapeutic efficacy. *JAMA*. 2008;299(9):1016-1017. doi:10.1001/jama.299.9.1016

89. Khan A, Redding N, Brown WA. The persistence of the placebo response in antidepressant clinical trials. *J Psychiatr Res*. 2008;42(10):791-796. doi:10.1016/j.jpsychires.2007.10.004

90. Schwartz EJ, Wong P, Graydon RJ. Sildenafil preserves intracorporeal smooth muscle after radical retropubic prostatectomy. *J Urol*. 2004;171(2, pt 1):771-774. doi:10.1097/01.ju.0000106970.97082.61

91. Raina R, Lakin MM, Agarwal A, et al. Long-term effect of sildenafil citrate on erectile dysfunction after radical prostatectomy: 3-year follow-up. *Urology*. 2003;62(1):110-115. doi:10.1016/S0090-4295(03)00157-2

92. Ohebshalom M, Parker M, Guhring P, Mulhall JP. The efficacy of sildenafil citrate following radiation therapy for prostate cancer: temporal considerations. *J Urol*. 2005;174(1):258-262. doi:10.1097/01.ju.0000164286.47518.1e