Horticultural innovation by viral-induced gene regulation of carotenogenesis

Lucky Paudel1, Stephanie Kerr2-3, Peter Prentis2-3, Miloš Tanurdžić4, Alexie Papanicolaou1, Jonathan M. Plett1 and Christopher I. Cazzonelli1-4*

1Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith NSW 2751, Australia
2Centre for Agriculture and the Bioeconomy (CAB), Queensland University of Technology, 2 George Street, Brisbane City, QLD 4000, Australia
3School of Biology and Environmental Sciences, Faculty of Science, Queensland University of Technology, 2 George Street, Brisbane, QLD 4000, Australia
4School of Biological Sciences, The University of Queensland, St Lucia, QLD 4072, Australia
*Corresponding Author: E-mail: c.cazzonelli@westernsydney.edu.au.
†The author responsible for the distribution of materials integral to the findings presented in this article is: Christopher Cazzonelli.

Abstract

Multipartite viral vectors provide a simple, inexpensive and effective biotechnological tool to transiently manipulate (i.e. reduce or increase) gene expression in planta and characterise the function of genetic traits. The development of virus-induced gene regulation (VIGR) systems usually involve the targeted silencing or overexpression of genes involved in pigment biosynthesis or degradation in plastids, thereby providing rapid visual assessment of success in establishing RNA- or DNA-based VIGR systems in planta. Carotenoids, pigments provide plant tissues with an array of yellow, orange, and pinkish-red colours. VIGR-induced transient manipulation of carotenoid-related gene expression has advanced our understanding of carotenoid biosynthesis, regulation, accumulation and degradation, as well as plastid signalling processes. In this review, we describe mechanisms of VIGR, the importance of carotenoids as visual markers of technology development, and knowledge gained through manipulating carotenogenesis in model plants as well as horticultural crops not always amenable to transgenic approaches. We outline how VIGR can be utilised in plants to fast-track the characterisation of gene function(s), accelerate fruit tree breeding programs, edit genomes, and biofortify plant products enriched in carotenoid micronutrients for horticultural innovation.

Introduction to carotenoid functional genomics mediated by virus-induced gene regulation (VIGR)

There is an ongoing arms race between host plants and their infectious viruses. Viruses have evolved virulence factors which can hijack the plant’s immune system to enable effective viral infection and replication. In response, host plants have co-evolved sequence-specific RNA-mediated viral gene silencing mechanisms that recognise and destroy the double-stranded RNA (dsRNA) replication intermediate [1]. Researchers have leveraged this mechanism of viral infection and host-mediated RNA defense to fast-track basic research, biotechnology, and plant breeding ventures. That is, a partial mRNA sequence of interest can be introduced into a modified viral vector and upon host infection causes RNA-mediated gene silencing of the target gene in planta. A widely established visual reporter system used to engineer viral vector systems has involved silencing genes involved in carotenoid or pigment biosynthesis. For example, the tobacco mosaic virus-based virus-induced gene silencing (VIGS) system was first reported in 1995 to silence carotenoid pigment biosynthesis in Nicotiana benthamiana leaves, that caused white or bleached sectors to appear due to an inhibition of chloroplast biogenesis [2]. Carotenoids are a diverse subgroup of isoprenoid secondary metabolites synthesized in eukaryotic plants, algae and fungi, as well as some prokaryotic cyanobacteria and bacteria [3]. In plants, carotenoids are synthesized within cellular plastids and provide different shades of colour, between yellow and pinkish red, to various plant parts including tubers, leaves, flowers, fruits, and seeds. The colour of carotenoids is dependent on the desaturation of their 40-carbon linear backbone that is conjugated with double bonds [4]. The increase in desaturation, from 3 to a maximum of 15 bonds, shifts the colour spectrum from yellow to orange to red. Carotenoids provide essential functions in plants, they assist to capture light photons required for photosynthesis, protect cells from photooxidation and scavenge reactive oxygen species [5]. They also provide precursors for the biosynthesis of phytohormones and apocarotenoid signalling molecules that maintain plastid development, cellular homeostasis, regulate growth and development, attract mycorrhiza or insect pollinators, and deter insect feeding. Several comprehensive reviews have been published describing...
carotenoid biosynthesis, regulation, degradation, and storage, as well as their functions [3, 6–12].

The genes required for carotenoid metabolism were initially functionally characterised using traditional methods (e.g. transgenic overexpression or silencing, and mutant screening). However, VIGR has become a powerful transient tool to study carotenogenesis in non-model horticultural crops such as pepper, cassava, California poppy, peaches, loquat, tomato and strawberry where transgenic approaches can be time consuming to functionally characterise multiple alleles of a carotenoid associated gene (Fig. 1). In this review, we briefly discuss the mechanisms of VIGR (silencing and overexpression), highlight developments in VIGR technology using carotenoid pigmentation as a visual marker of success, and reveal how VIGR has been used to manipulate carotenoid biosynthesis, storage, degradation, regulation, and plastid signalling in planta. We discuss potential applications of VIGR to advance horticultural innovation and plant-breeding with a view towards biofortifying carotenoid enriched and more nutritional crop products.

Molecular mechanisms of VIGR in planta
Virus-induced gene silencing (VIGS)

VIGS is based upon the mechanism of homology-based RNA-mediated gene silencing that involves first, cleaving of dsRNA formed during viral replication to produce small interfering RNAs (siRNAs) and, second recruiting siRNAs as a guide to cleave other homologous mRNAs (Fig. 2) [13–15]. The process of dsRNA synthesis in virus infected cells depends on the type of viral nucleic acid. For positive-sense (+) single-stranded (ss) RNA viruses, viral genomic RNA is first translated to produce different viral proteins including RNA-dependent RNA polymerases (RdRPs) and other replication factors that are used to synthesize negative-stranded RNA from the ssRNA viral parental template [16–18]. The neosynthesized negative strands serve as a template for synthesis of the positive strand RNA. The dsRNA can be formed either by complete or partial annealing of positive and negative RNA strands, or by folding of positive RNA strands to develop secondary stem-loop-like structures. In ssDNA viruses, such as geminiviruses, the parental single-stranded viral DNA is used as a template to directly synthesize dsDNA that occurs in the nucleus through a rolling-cycle mechanism [19]. The dsDNA is then bidirectionally transcribed to produce positive- and negative-stranded polycistronic RNAs which anneal to form dsRNA [20, 21] (Fig. 2).

Plants have multiple homologs of the host-encoded DICER-like (DCL) endoribonucleases that recognise dsRNA and cleave it to synthesize 21–24 nucleotide (nt) long primary siRNAs [22]. In Arabidopsis there are four DCL genes present [23]. DCL4 is responsible for production of 21 nt siRNAs, the most abundant type of siRNA synthesized during RNA virus-induced gene silencing [24]. DCL2 and DCL3 are more actively involved in producing 22 nt and 24 nt siRNAs, respectively. DCL1 produces microRNAs; however it can produce siRNAs when a host becomes infected with geminivirus or caulimovirus DNA viruses [25]. DCL1 can also become more active in processing siRNAs when other DCLs are absent [25]. The neofunctionalization and redundancy of different DCLs indicate that plants have evolved their preparedness to strengthen RNA-mediated defense mechanisms against viral infection using siRNAs generated from perfect and imperfect dsRNA even when one or more DCL homologs may not be functional. As an example, TRV-mediated VIGS of PHYTOENE DESATURASE (PDS) using a 21 nucleotide guide from N. benthamiana worked successfully in a wide range of Solanaceous plant species, and heterologous sequences from distant plant species silenced the PDS ortholog in N. benthamiana demonstrating the effectiveness of the siRNA system to mount defense through gene silencing [26].

The siRNAs help guide, maintain, and spread post-transcriptional gene silencing processes throughout plant tissues. During silencing, the guide strand of siRNA is loaded into an ARGONAUTE family protein, AGO1, to form a multicomponent RNA-induced silencing complex (RISC) [27]. The guide siRNA strand provides specificity in the RISC complex to target viral RNAs, endogenous mRNAs, or heterologous RNA [28]. The primary siRNAs generated through cleaving of viral dsRNA are capable of inducing silencing of the targeted gene of interest (GOI) in hosts, however, studies indicate that secondary siRNAs (formed by cleavage of dsRNA generated by host RDRP using primary siRNA as a template) enhance the maintenance and spread of VIGS [29–32] (Fig. 2). The spread of siRNA can occur locally through plasmodesmata and systemically via the phloem to silence expression of the GOI in uninfected tissues [30, 33, 34]. Although, silencing does not always proceed in a systemic manner as exemplified when California poppy plants were inoculated with a TRV-based VIGS vector targeting PDS, the white sectors resulting from the inhibition of carotenoid biosynthesis were restricted to certain organs or parts of organs [35].

The VIGS system has also been used to interrogate heritable transcriptional gene silencing (TGS) through RNA directed DNA methylation [36]. VIGS-induced TGS becomes inhibited at higher temperatures, reducing unwanted transmission of epigenetic gene silencing to subsequent generations, which can facilitate TGS-free crop improvement [37]. Details regarding the biogenesis and environmental regulation of plant small RNAs, as well as diversification of silencing pathways through the expansion of RNA-dependent RNA polymerases, DICER proteins and ARGONAUTE proteins have been reviewed elsewhere [38].

Virus-induced gene overexpression (VIGO)

Viral vectors can also serve to transiently overexpress a foreign or endogenous GOI in plants. In contrast to viral vectors that harbor a partial sequence of a GOI
that triggers RNA-mediated silencing of targeted gene expression, VIGO vectors contain a full-length coding sequence (CDS) of the GOI inserted in-frame within the viral coding region (Fig. 2) [39]. The CDS of the GOI is translated together with the viral genome during virus replication in infected cells resulting in a high copy number of synthesised proteins. The wild-type virus usually has a limited cargo capacity to accommodate a foreign GOI [39–41]. Elimination of viral coding sequences that are not necessary for virus replication in the host, such

that triggers RNA-mediated silencing of targeted gene expression, VIGO vectors contain a full-length coding sequence (CDS) of the GOI inserted in-frame within the viral coding region (Fig. 2) [39]. The CDS of the GOI is translated together with the viral genome during virus replication in infected cells resulting in a high copy number of synthesised proteins. The wild-type virus usually has a limited cargo capacity to accommodate a foreign GOI [39–41]. Elimination of viral coding sequences that are not necessary for virus replication in the host, such
as coat protein or genes required for virus transmission via insect/nematodes, can help to increase the capacity to overexpress larger GOI in the VIGO vector system [42]. For example, deletion of the NUCLEAR INCLUSION b (Nib) gene from potyvirus plus-strand RNA based vector system of Tobacco etch virus (TEV) increased capacity to allow introduction of a carotenoid gene cluster (e.g. GERANYLGERANYL DIPHOSPHATE SYNTHASE I; crtE, PHYTOENE SYNTHASE; crtB, and PHYTOENE DESATURASE; crtI) from Pantoea ananatis, that was flanked by native cleavage sites to allow transient processing of these proteins [43] (Fig. 1). This strategy enabled the
heterologous manipulation of the carotenoid pathway to produce the health-promoting carotenoid lycopene in tobacco leaf tissues transformed with the \textit{Nib} transgene [44]. This highlights an engineering challenge when eliminating regions important for viral movement and/or replication, in that the altered virus may become restricted in its ability to systemically spread and/or produce sufficient protein levels within host tissues.

Viruses and vectors for VIGR

The engineering of viral vectors to transiently regulate gene expression has advanced rapidly in recent years providing a suite of over fifty viral expression systems, mostly developed from +ssRNA viruses, DNA viruses as well as negative-sense RNA viruses [45, 46]. Tobacco rattle virus (TRV) has been engineered to become the “gold-standard” bipartite (genome divided into two segments)+ ssRNA viral vector commonly used for VIGS. TRV-based VIGS expression systems have been successfully established in a wide range of hosts including many horticultural crops such as: tomato (\textit{Solanum lycopersicum}), chili pepper (\textit{Capsicum annuum}), strawberry (\textit{Fragaria ananassa}), peach (\textit{Prunus persica}), California poppy (\textit{Eschscholzia californica}), Jatropha curcas, petunia (\textit{Petunia hybrida}), Four O’Clock (\textit{Mirabilis jalapa}), loquat (\textit{Eriobotrya japonica}) and rose (\textit{Rosa hybrida}) [35, 47–55]. The Apple latent spherical virus, \textit{Prunus necrotic ringspot virus}, \textit{Citrus tristeza virus} and \textit{Citrus leaf blotch virus} are +ssRNA viruses that have also been used to regulate gene expression in fruit trees including apple, peach and citrus [56–60].

DNA viruses from the family \textit{Geminiviridae}, which have a single-stranded circular genome, have also been developed for VIGS. For example, the East African cassava mosaic virus, \textit{Pepper huasteco yellow vein virus}, \textit{Tomato yellow leaf curl China virus}, \textit{Beet curly top virus}, Tobacco curly shoot virus and \textit{Tomato leaf curl virus} have been successfully used to silence gene expression in cassava (\textit{Manihot esculenta}), tomato (\textit{S. lycopersicum}), \textit{C. annuum}, spinach (\textit{Spinacia oleracea}) or \textit{P. hybrida} [61–67]. Despite the development of effective VIGS expression systems for over 130 plant species to date, there are still elusive horticultural tree species such as mango, macadamia and avocado that are not yet amenable to VIGR. An intriguing aspect is that at least 43 reports of VIGR describe the manipulation of carotenoid metabolism (Table 1). Carotenoid pigments provide a favourable visual marker of VIGR success, and for the remainder of this review we focus on how VIGR has advanced our knowledge of carotenoid biosynthesis and metabolism in plants.

Insights into carotenoid biosynthesis and regulation by VIGR

VIGR has served as an important tool to enhance our knowledge regarding carotenoid biosynthesis and regulatory pathways in plants. Instances include when; 1) transgenic approaches are not always possible, time- and/or cost-effective in non-model species [35], 2) combinatorial silencing of multiple pathway targets or simultaneous overexpression of several genes is necessary [44], 3) the loss-of-function of the carotenoid gene via mutation or transgenic approaches causes lethality making it difficult to study tissue specific gene functions (e.g. ZDS [120], and 4) there are multiple homologs, alleles and/or redundancies in gene functions (e.g CCD) [99].

The first committed step in carotenoid biosynthesis involves the catalytic conversion of all-trans geranylgeranyl diphosphate (GGPP) into 15-cis phytoene in plastids by \textit{PHYTOENE SYNTHASE (PSY)} [121] (Fig. 1). Formation of 15-cis phytoene from GGPP is a rate limiting step in carotenoid biosynthesis and perturbation in this step can significantly reduce downstream product accumulation. PSY downregulation impairs plastid development, pigmentation and colour thereby providing a reporter system to develop VIGR systems [95]. For example, silencing of PSY in tomato fruits with a TRV-based VIGS expression system (herein silencing of any gene/mRNA will refer to silencing using TRV-based VIGS expression system unless otherwise stated) resulted in 90% silencing of PSY mRNA and a 30-fold reduction in total carotenoid content [109]. Fruits with silenced PSY were completely devoid of cis-carotenones and had significantly lower levels of lutein and \(\beta\)-carotene. Silencing PSY in detached pepper and loquat fruits also caused a significant reduction in PSY transcript levels and carotenoid content [75, 83]. Similarly, silencing of PSY in green leaves of California poppy and cassava led to a whitish/bleached appearance in leaves, indicative of a drastic decrease in carotenoids and chlorophyll pigmentation due to a retrograde impairment in chloroplast biogenesis [84, 95].

VIGS systems have proven utility to advance functional genomics studies by rapidly enabling the dissection of functional redundancy and tissue specific expression patterns of homologous genes through the simultaneous silencing of gene alleles (targeting conserved sequences) or silencing of an individual gene (targeting unique regions) within a gene family. Many horticultural plants including tomato, apple, loquat, citrus, maize, rice and \textit{Brassica} spp. have multiple homologs of PSY that are functionally diverse and transcribed in a tissue-specific manner [122–126]. In tomato, PSY1 is highly expressed in fruits during the breaker stage and fruit ripening, whereas other homologs \textit{PSY2} and \textit{PSY3} are mostly expressed in chloroplast-containing tissues and roots, respectively [109, 127]. Silencing of \textit{PSY1} at the breaker-stage during fruit development resulted in a reduction in carotenoids and development of a yellow coloured fruit phenotype similar to that of the natural yellow-flesh \textit{psy1} mutant in tomato accession “\textit{yellow flesh}” [35,32] [109]. Unlike \textit{PSY1}, silencing of \textit{PSY2} did not cause a significant change in carotenoid content or composition, which supports the conclusion that \textit{PSY2} may not play a significant role during tomato fruit development [128]. In contrast, silencing of the \textit{PSY3} in tomato fruits reduced phytoene, phytofluene and \(\zeta\)-carotene, revealing
Table 1. VIGR systems utilised to manipulate gene expression governing carotenoid metabolism and plastid biogenesis in horticultural plant species. Abbreviations: VIGS: virus-induced gene silencing, ALSV: Apple latent spherical virus, BCTV: Beet curly top virus, BSMV: Barley stripe mosaic virus, CGMMV: cucumber green mottle mosaic virus, CLBV: Citrus leaf blotch virus, CLCV: Cotton leaf crumple virus, CMV: Cucumber mosaic virus, CTV: Citrus tristeza virus, DNAβ- TYLCVV: DNAβ- of Tomato yellow leaf curl China virus, EACMV: East African cassava mosaic virus, GLRaV-2: Grapevine leafroll-associated virus-2, GVA: Grapevine virus A, PEBV: Pea early brown virus, FNRR: Prunus necrotic ring spot virus, PVX: Potato Virus X, TRV: Tobacco etch virus, TEV: Tobacco rattle virus, TRSV: Tobacco ring spot virus, TYMV: Turnip yellow mosaic virus, PDS: PHYTOENE DESATURASE, PSY: PHYTOENE SYNTHASE, ZDS: ζ-CAROTENE DESATURASE, ZISO: ζ-CAROTENE ISOMERASE, CRTISO: CAROTENOID ISOMERASE, β-LYC: Lycopene β-CYCLASE, ε-LYC: Lycopene ε-CYCLASE, β-OHase: β-CAROTENE HYDROXYLASE, ZEP: ZEAXANTHIN EPOXIDASE, CCS: CAPSANTHIN/CAPSORUBIN SYNTHASE, NCED: 9-CIS-EPOXYCAROTENOID DIOXYGENASE, CCD: CAROTENOID CLEAVAGE DIOXYGENASE, CHLH: MAGNESIUM CHELATASE H-SUBUNIT, CHLI: MAGNESIUM CHELATASE I-SUBUNIT, CRTE: GERANYLGERANYL CAPSANTHIN/CAPSORUBIN SYNTHASE, TRV: TOBACCO ETCH VIRUS, TEV: TOBACCO RATTLE VIRUS, TYMV: TURNIP YELLOW MOSAIC VIRUS, WCMV: WHITE CLOVER MOSAIC VIRUS, PDS: PHYTOENE DESATURASE, PSY: PHYTOENE SYNTHASE, ZDS: ζ-CAROTENE DESATURASE, ZISO: ζ-CAROTENE ISOMERASE, CRTISO: CAROTENOID ISOMERASE, β-LYC: Lycopene β-CYCLASE, ε-LYC: Lycopene ε-CYCLASE, β-OHase: β-CAROTENE HYDROXYLASE, ZEP: ZEAXANTHIN EPOXIDASE, CCS: CAPSANTHIN/CAPSORUBIN SYNTHASE, NCED: 9-CIS-EPOXYCAROTENOID DIOXYGENASE, CCD: CAROTENOID CLEAVAGE DIOXYGENASE, CHLH: MAGNESIUM CHELATASE H-SUBUNIT, CHLI: MAGNESIUM CHELATASE I-SUBUNIT, CRTE: GERANYLGERANYL DIPHOSPHATE SYNTHASE, CRTB: PHYTOENE SYNTHASE, CRTI: PHYTOENE DESATURASE.

Plants	Viruses used for developing VIGR system	Gene Regulated (All are silenced unless indicated)	Plant tissue	Reference
Aquilegia vulgaris	TRV	PDS	Leaf and flower	[68]
Brassica campestris	TYMV	PDS	Leaf	[69]
Brassica nigra	TRV	PDS	Leaf	[70]
Brassica rapa	TYMV	PDS	Leaf, stem, flower, silique and stalk	[71]
Cannabis sativa	CLCV	PDS, ChlI	Leaf	[72]
Capsicum annuum	TRV	PDS, PDS, ε-LYC, β-OHase, ZEP, CCS	Leaf and fruit	[73, 74]
Catharanthus roseus (periwinkle)	TRV	PDS, ChlH	Leaf and flower	[76, 77]
Citrus spp. (Watermelon, melon, cucumber, bottle gourd, Zucchini, sponge gourd)	CTV, CLBV	PDS	Leaf	[58, 78]
Cucurbitus (Watermelon, melon, cucumber, bottle gourd, Zucchini, sponge gourd)	CGMMV, TRV, TRSV, ALSV	PDS	Leaf	[79, 80, 81, 82]
Enoplota japonica (Loquat)	TRV	PDS, ChlI, ChlI	Leaf and flower	[87]
Eucholzia californica (California poppy)	TRV	PDS, PDS, ZDS, β-OHase, ZEP	Leaf	[88]
Frangula x ananassa (Strawberry)	TRV, ALSV	PDS, NCED1	Leaf and fruit	[49, 85, 86]
Gerbera hybrida (Gerbera)	TRV	PDS, ChlI, ChlI	Leaf and flower	[89]
Gladiolus hybrida	TRV	PDS, ChlI, ChlI	Leaf	[51]
Jalapa curcas	TRV	PDS	Leaf	[50]
Lactuca sativa (Lettuce)	LMV	CrtB (VIGO)	Leaf	[91]
Lathyrus odorata	PEBV	PDS	Leaf	[90]
Lilium leichtlinii (Lilies)	CMV	PDS	Leaf and flower	[91]
Lithichlo denisii Sonn. (Litchi)	TRV	PDS	Leaf	[92]
Lycium spp. (Wolfberry)	TRV	NCED1, PDS, ChlI	Leaf and fruit	[93, 94]
Malus domestica (Apple)	ALSV	PDS	Leaf	[56]
Manihot esculenta (Cassava)	EACMV	PDS	Leaf	[61, 62, 95]
Mimulus guttatus	TRV	PDS	Leaf	[96]
Mirabilis jalapa	TRV	PDS	Leaf	[53]
Nicotiana tabacum (Tobacco)	TRV	PDS, ε-LYC	Leaf	[97, 98]
N. tubacum (Tobacco)	TEV	crtE, crtB, crtI (VIGO)	Leaf	[44]
N. benthamiana	TEV	CCD2, CCD4	Leaf	[99]
Ocimum basilicum (Sweet basil)	TRV	PDS	Leaf	[100]
Olea europaea (Olive)	TRV	PDS, ChlI	Leaf	[101]
Petunia	TRV	PDS	Leaf	[102]
Piper cubeba (Link)	TRV	PDS	Leaf	[103]
Pisum sativum (Pea)	PEBV	PDS	Leaf and stem	[82, 90, 105]
Prunus dulcis (Almond)	ALSV	PDS	Leaf	[60]
Prunus persica (Peach)	TRV, ALSV, PNRV	CCD4, PDS	Fruit	[50, 60]
Pyrus sp. (Pear and Japanese pear)	ALSV	PDS	Leaf	[56]
Rosa sp. Rose	ALSV, TRV	PDS	Leaf	[106, 107]
Senecio cruentus	TRV	PDS	Leaf and flower	[108]
Solanum lycopersicum L. (Tomato)	TRV, BCTV, DNAβ-, TYLCVV, ALSV	PDS, PDS, ZDS, ZISO, CRTISO, ChlI	Leaf and flower and fruit	[63, 67, 82, 109]
Solanum melongena (Eggplant)	TRV	PDS, ChlI	Leaf	[110]
Table 1. Continued

Plants	Viruses used for developing VIGR system	Gene Regulated (All are silenced unless indicated)	Plant tissue	Reference
Solanum tuberosum (Potato)	PVX, TRV	PDS	Leaf and tubers	[111, 112]
Spinacia oleracea L. (Spinach)	BCTV, TRV	PDS	Leaf	[63, 113]
Thalictrum sp.	TRV	PDS	Leaf and flower	[114]
Vitis vinifera (Grape)	GVA, ALSV, GLRaV-2	PDS	Leaf	[115–117]
Withania somnifera	TRV	PDS	Leaf	[118]
Zingiber officinal (Ginger)	BSMV	PDS	Leaf	[119]
Zucchini	ZYMV	CrtB (VIGO)	Fruit	[89]

its function in controlling carotenoid biosynthesis. The decrease in carotenoid content might have been caused by minor off-target silencing of PSY1, however given that off-target homology between the PSY3 fragment and PSY1 are low, a role for PSY3 in mediating carotenoid biosynthesis in fruits cannot be excluded [109]. PSY homologs have been shown to have functional redundancy in different plant species. For example, when PSY1 was silenced in detached C. annuum fruit pericarp, silenced fruits were orange in colour and still synthesized a low level of carotenoids [75]. Fruits developed an albino phenotype and became devoid of carotenoids only when the PSY2 gene was silenced in the natural psy1 mutant pepper variety “Micropep yellow” [129]. Moreover, a colour complementation assay testing enzymatic activities of PSY in Escherichia coli revealed that PSY1 and PSY2 have the same enzymatic function and additionally, PSY1 is significantly overexpressed in the psy1 mutant plants. These findings emphasised the active redundancy between PSY homologs and highlighted the utility of VIGS in delineating gene functions and interactions between gene homologs among diverse horticultural crops.

Silencing of PSY reduces carotenoid content since this is the key rate-limiting bottle neck in carotenogenesis. PSY silencing causes an albino phenotype in fruits, making it an obvious visual reporter for the development and confirmation of VIGS expression systems [109]. Since plants can have multiple homologs of PSY with tissue specific expression, this adds another step to identify the correct gene homolog for targeted silencing [84]. Attempts to silence both PSY and PHYTOENE DESATURASE (PDS) in California poppy leaves and flowers using partial gene sequences, successful caused silencing of both genes in leaves, but only PDS was silenced in flowers. The inability of TRV-PSY to induce silencing in flowers could be accounted for by the presence of another PSY homolog specifically expressed in flowers. Therefore, the different activities exerted by different PSY homologues can complicate targeted silencing and limit its effectiveness as a visual reporter in assessing the successful engineering of a viral vectors in planta.

Phytoene undergoes a series of consecutive desaturation and isomerization reactions to extend the conjugated double bond in the C₄₀ backbone. This process is initiated by PDS, which desaturates 15-cis phytoene at 11–12 and 11′-12′ in two consecutive steps to produce 15,9′-di-cis phytofluene and 9,15,9′-tri-cis ζ-carotene, respectively [121]. Most plant species harbor only a single copy of PDS [130]. PDS is the most widely used reporter for VIGS as it provides a cheap and quick means of observing a visual marker change in tissue pigmentation (bleached, white or albino phenotype) and hence success, that accurately reflects the functionality of VIGS technology in planta (Table 1). VIGS of PDS expression rate-limits carotenoid biosynthesis to generate a biochemical loss of downstream carotenoids, like that of silencing PSY. Silencing PDS in leaves of tomato, cassava, pepper, petunia and Citrus sp. and in flowers of tomato and California poppy reduced PDS transcript levels, total carotenoid and chlorophyll content, leading to white sectors in leaves and flowers [35, 73, 84, 102, 131, 132]. Even if PDS silencing becomes less efficient during fruit cell division and expansion, white sectors that developed during the immature stages will later turn yellow during tomato fruit ripening and hence report VIGS [109, 132, 133]. The reduction in PDS transcript levels in TRV-VIGS-infected fruit can cause a severe reduction in desaturation of 15-cis phytoene into downstream carotenones causing a 2-fold increase in phytoene levels, and 95% and 50% reduction in lycopene and total carotenoid content, respectively [109].

ζ-CAROTENE DESATURASE (ZDS) desaturates 9,9′-di-cis-ζ-carotene at carbon positions 7 and 8 to produce 7,9,9′-tri-cis-neurosporene and at carbon positions 7′ and 8′ to produce 7,9,7′,9′-tetra-cis-lycopene (prolycopene) [134, 135]. Silencing of ZDS enhances the accumulation of 9,9′-di-cis-ζ-carotene and to a lesser extent, phytofluene and phytoene, causing a reduction in all-trans-lycopene (lycopene), the major carotenoid present in ripe tomato fruit [84, 109]. In contrast, ZDS silencing was also shown to cause a 30% increase in total carotenoid content in tomato fruits [84, 109]. In California poppy petals, silencing of ZDS reduced the total carotenoid content by 16-fold and triggered bleaching in flower petals [84]. Differences in the effect of ZDS silencing on the total carotenoid content in leaf, flower or fruits are likely due to the type and developmental stage of the plastid. There could also be differences in the biochemical activity of ZDS and/or feedback triggered by aberrant metabolite...
accumulation that alters carotenoid biosynthesis in different plant species and/or within plant tissues.

ZETA-CAROTENE ISOMERASE (ZISO) and CAROTENOID ISOMERASE (CRTISO) isomerise tri-cis-\(\gamma\)-carotene into di-cis-\(\gamma\)-carotene and tetra-cis-lycopeno (prolycopeno) into all-trans-lycopeno, respectively [134, 136, 137]. In the presence of a photosensitizer, light can mediate the photoisomerization of the cis-carotene bonds in the absence of ZISO or CRTISO activity [3]. Under light-limiting environmental conditions such as those conferred by a shorter photoperiod, CRTISO enzyme activity remains critical to ensure sufficient carotenoid biosynthesis and control the production of an apocarotenoid signal that regulates plastid development [138]. In tomato fruits, VIGS of ZISO and CRTISO did not significantly alter total carotenoid content, yet did alter carotenoid composition [109]. The differences in carotenoid composition between control and CRTISO silenced fruits were similar to that between wild type tomato (Rutgers) and the tangerine mutant (t3002) that has reduced CRTISO activity [139]. VIGS of ZISO and CRTISO resulted in the accumulation of its preceding desaturates’ substrate, indicating that PDS/ZISO and ZDS/CRTISO form functional catalytic units, where repression of either enzyme within each unit can lead to accumulation of the first substrate isomerised by either enzyme [109]. These findings reveal how utilising VIGS can provide valuable insights into the sequential biosynthesis of cis-carotenes and highlight the importance of ZISO and CRTISO in controlling carotenoid isomerisation in the absence, as well as presence of light.

The addition of either two \(\beta\)-ionone rings or \(\beta-\epsilon\)-ionone rings to all-trans-lycopeno through cyclization bifurcates the carotenoid pathway into alpha- and beta-branches. \(\beta\)-carotene and \(\beta-\beta\) xanthophylls, zeaxanthin, antheraxanthin, violaxanthin and neoxanthin, are generated by action of LYCOPENE \(\beta\)-CYCLASE (\(\beta\)-LYC), \(\beta\)-CAROTENE HYDROXYLASE (\(\beta\)-OHase), ZEAXANTHIN EPOXIDASE (ZEP) AND NEOXANTHIN SYNTHASE (NXS) (Fig. 1). \(\alpha\)-carotene and formation of \(\epsilon-\epsilon\)-xanthophylls; zeinoxanthin and lutein, are generated via a sequential activity by LYCOPENE EPSILON-CYCLASE (\(\epsilon\)-LCY), \(\beta\)-LYC and \(\beta\)-OHase (Fig. 1). The cyclic carotenoids provide a significant carbon sink of metabolites that are stored in leaves, fruits and flowers of different fruit and ornamental crops. VIGS systems have not extensively been used to study the function of these downstream carotenoid biosynthetic enzymes that synthesise xanthophylls and \(\alpha/\beta\)-carotene metabolites. Silencing of \(\epsilon\)-LCY in tobacco (Nicotiana tabacum) reduced downstream carotenoids and redirected carotenoid flux towards the \(\beta\)-branch in the pathway [98]. Cyclic carotenoids can be converted into specific carotenoids in different plant species such as capsanthin/capsorubin in pepper fruits and the lily flower (Lilium leichtini), astaxanthin in the flowers of Adonis aestivalis, and eschscholtzaxanthin in flowers from the California poppy [140, 141]. Even though the exact mechanism of biosynthesis of these carotenoids has not been completely elucidated, silencing of upstream carotenoid biosynthesis genes such as PSY, \(\beta\)-LYC or \(\beta\)-OHase in pepper fruit, or PDS, ZDS, \(\beta\)-OHase or ZEP in California poppy, was able to reduce the total content of capsanthin/capsorubin and eschscholtzaxanthin, respectively [75, 84].

VIGR of carotenoid degradation

Carotenoids are degraded enzymatically and non-enzymatically to produce various apocarotenoids that have important biological functions [142–144]. The enzymatic degradation of carotenoids occurs through oxidative cleavage of double bonds by CAROTENOID CLEAVAGE DIOXYGENASE (CCD) enzymes [145]. The CCD gene family in Arabidopsis contains four CCD homologues (CCD1, 4, 7, 8) and five NCED homologues (NCED2, 3, 5 and 9) [146]. Some CCD genes have undergone gene duplication events in different plants to produce similar variants such as CCD1A and CCD1B in tomatoes [147] and CCD4A, CCD4B and CCD4C in Crocus sativus [148, 149]. CCDs degrade carotenoid substrates to produce apocarotenoids [146]. VIGR has been used to demonstrate that carotenoid degradation and apocarotenoid biosynthesis pathways could be exploited to biofortify fruits and produce valuable secondary metabolites. In a white peach variety “Akatsuki” the total content of carotenoid was increased approximately 2.5-fold when the CCD4 gene was transiently silenced using the TRV-based VIGS system [50]. The silenced part of the fruit mesocarp displayed a yellow pigmentation because of increased levels of violaxanthin, lutein, zeaxanthin, \(\beta\)-cryptoxanthin and \(\beta\)-carotene. The transient heterologous overexpression of C. sativus CCD2 and Buddleja davidii CCD4 in N. benthamiana using a tobacco etch potyvirus-based VIGO system led to the synthesis of highly valued carotenoid-derived spices, such as crocins and picrocrocin by 0.2% and 0.8% of leaf dry weight, respectively [99]. Apocarotenoid levels were further increased to 0.35% of leaf dry weight when \(\beta\) ananatis PSY and saffron \(\beta\)-OHase were overexpressed together with the aforementioned genes. Collectively, these studies demonstrate how VIGR has served as an effective tool to decipher strategies (biotechnology or breeding) towards biofortifying commercially important carotenoids and apocarotenoids for industrial application.

VIGR of carotenoid storage and sequestration

Fruits and leaves are composed of chromoplast and chloroplast plastid types that provide suitable sinks to store carotenoids [6]. The differentiation of a proplastid into these plastid types is controlled by genetic factors, environmental conditions, and the cellular level of carotenoids. VIGO of the bacterial carotenoid biosynthesis gene CritB using Lettuce mosaic virus and Zucchini yellow mosaic virus vectors in lettuce and zucchini, respectively, increased carotenoids and caused differentiation of chloroplasts into chromoplasts in green tissues [89]. The
accumulation of higher amounts of phytoene caused the chloroplasts to lose their photosynthetic functionality and, upon conversion of phytoene into downstream carotenoids, a retrograde apocarotenoid signal was proposed to trigger the differentiation of the chloroplasts into chromoplasts thereby providing a better sink to store carotenoids.

Plastid number (biosynthesis and differentiation) and size are genetically regulated by a network of genes and transcription factors (TFs). Transient silencing of capsicum *ARABIDOPSIS PSEUDO RESPONSE REGULATOR 2-LIKE* (PRR2) with TRV vectors in capsicum fruit pericarp caused the development of pale-yellow fruit compared to the yellow control fruit [150]. Transmission electron microscopy of capsicum genotype with non-functional PPR2 mutation indicated that PPR2 positively regulates plastid number and overall size by increasing plastid compartment size, maintaining thylakoid and granum structure in chloroplast, and enlarging plastoglobules in the chromoplast [150]. These results are in accordance with where tomato PPR2 was transgenically overexpressed [151]. The *DIFFERENTIATION 1* (DET1) – CULLIN 4 (CUL4) multiprotein complex for proteosome degradation [154, 155]. The loss-of-function of DDB1 and DET1 in *high pigment 1* (hp1) and *high pigment 2* (hp2) tomato varieties, respectively, leads to a higher plastid number and size resulting in enhanced chlorophyll and carotenoid levels in immature and ripe tomato fruits [156, 157]. VIGS of DDB1, DET1 or CUL4 in *N. benthamiana* increased accumulation of GLK2, revealing that plastid number and pigment content in hp1 and hp2 could be due to increased activity of GLK2 [158]. These findings established by using VIGS have deepened our understanding of linkages between carotenoid sequestration and plastid biogenesis.

Regulation of fruit ripening and carotenoid accumulation

Carotenoid biosynthesis and storage in ripening climacteric fruits is intricately regulated by ethylene biosynthesis and signalling mechanisms [159]. In tomato, VIGS of key genes regulating the ethylene biosynthesis and signalling 1-AMINOCYCLOPROPANE-1-CARBOXYLATE SYNTHASE 2 (ACS2), ACS4 and 1-AMINOCYCLOPROPANE-1-CARBOXYLATE OXIDASE 1 (ACO1) reduced carotenoid synthesis leading to the development of green patches in silenced fruit that reflected an inhibition of ripening processes [160]. PROTEIN RIPENING INHIBITOR (RIN), SQUAMOSA PROMOTER BINDING PROTEIN COLOURLESS NON-RIPENING (SPL-CNR), HOMEODOMAIN-LEUCINE ZIPPER 1 (HB-1) and NACs (NO APICAL MERISTEM, ATAF, CUP-SHAPED COTYLEDON FAMILY PROTEIN) are TFs that regulate ethylene biosynthesis and affect carotenoid metabolism [161]. RIN binds to the promoters of ACS2 and ACS4 to promote ethylene biosynthesis [160, 162]. Silencing of RIN in tomato using TRV-based vectors reduced transcript levels of ACS2 and ACS4 (~70%) and ACO1 (~40%) [160]. Silencing SPL-CNR with Potato virus x-VIGS and NORK-like1 with the TRV-VIGS system in tomato inhibited ripening causing patches of pale green unripe sectors to develop [163, 164]. VIGS coupled with an in vitro retardation assay of HB-1 in tomato indicated that HB-1 binds to the promoter of ACO1 to regulate conversion of 1-aminocyclopropane-1-carboxylic acid (ACC) into ethylene [165]. VIGS of NAC4 and NAC9 TFs in tomato fruit suppressed ethylene biosynthesis by reducing expression of ACS2, ACS4, ETHYLENE RECEPTOR 4 (ETR4) and NEVER RIPENING (NR, involved in ethylene perception), and correspondingly decreased total carotenoid content due to a reduction in expression of PSY1, PSY2, PDS, ZDS, ZISO and CRTISO [166]. VIGS of tomato AGAMOUS-LIKE1 (TAGL1) reduced carotenoid levels in ripening fruit and displayed a thinner pericarp as has been seen in tomato fruits where TAGL1 was silenced using a transgenic approach [167]. Transcriptomic analysis of transgene-silenced TAGL1 as well as a transient promoter binding assay indicated that TAGL1 promoted carotenoid accumulation by activating expression of ACS2 [167]. Similarly, VIGS of ethylene responsive-WRKY 16, 17, 53 and 54 in tomato fruits reduced ripening of fruits that developed greenish-yellow fruit indicating lower carotenoid levels. These phenotypes resemble those caused by 1-methylcyclopropene (1-MC, inhibitor of ethylene action) treatment of fruits. RNA-seq analysis of ethylene and 1-MC treated fruit, along with yeast-2-hybrid assay, indicated that WRKY TFs promote carotenoid accumulation by upregulating the expression of PSY1 and PDS [168]. These aforementioned VIGR studies further evidence an integrated regulation between ethylene and carotenoid biosynthesis during climacteric fruit ripening.

Carotenoid metabolism during ripening of non-climacteric fruits can be controlled by abscisic acid (ABA)-mediated regulation [169]. ABA is an apocarotenoid formed by the catalytic sequential degradation of violaxanthin and neoxanthin by 9-CIS-EPOXYCAROTENOID DIOXYGENASE (NCEDs), SHORT-CHAIN DEHYDROGENASE/REDUCTASE (SDR/ABA2) and ABSCISIC ACID HYDROGENASE (AAO). ABA plays an important feedback regulatory role in controlling carotenogenesis. For example, silencing of NCED1, the PYRABACTIN RESISTANCE 1 (PYR1) ABA receptor, and other signalling components such as the MAGNESIUM CHLORIDE CHLORIDE (CHLH/ABA) and ABA-SENSITIVE 4 (ABI4) using TRV-based VIGS caused a reduction in carotenoid accumulation and delayed/inhibited strawberry fruit ripening [49, 170–172]. These studies also found that sucrose positively regulated ABA accumulation and fruit ripening. That is,
exogenous application of sugar increased endogenous ABA and accelerated ripening in strawberry, whereas silencing of the sucrose transporter SUT1 via RNAi decreased the level of sucrose, ABA, fruit ripening and total carotenoid levels [49, 170].

The roles of ethylene and ABA in regulating ripening processes in climacteric and non-climacteric fruits appear to be interrelated in controlling ripening and carotenoid metabolism [166, 173, 174]. In hot pepper (Capsicum frutescens, a non-climacteric fruit), VIGS of ABA biosynthesis genes NCED1 and NCED3 and the ethylene biosynthesis gene AC03 had the opposite effects on fruit carotenoid content [175]. That is silencing of NCED1 and NCED3 increased total carotenoid by upregulating expression of PSY, PDS, ZEP, ZDS, and CAPSANTHIN-CAPSORUBIN SYNTHASE (CCS), whereas silencing of AC03 reduced total carotenoid by downregulating the aforementioned carotenoid biosynthesis genes [175]. In strawberry fruits, VIGS of the ethylene biosynthesis gene S-ADENOSYL-L-METHIONINE SYNTHETASE (SAMS) and ethylene signalling component CONSTITUTIVE TRIPLE RESPONSE 1 (CTR1) inhibited ripening and development of red pigments [176]. In tomato, silencing of the ABA biosynthesis gene NCED1 suppressed lycopene production by silencing PSY1 and PDS, inhibited ripening-related fruit softness by downregulating PG1 and EXP1, and yet increased ethylene biosynthesis and corresponding gene expressions (e.g. ACS2, ACS1, ETR3, ETHYLENE RESPONSE FACTOR 2; ERF2) [177]. In contrast, silencing of the CYTOCHROME P450 707A family gene CYP707A2 (involved in ABA degradation) resulted in early ripening of tomato fruits. The transcript levels of ACS2, ACS1, ETR3, EXP1, and PSY1 reached the highest level in silenced fruits three days earlier than control fruits. These results clearly indicate that there is a crosstalk between ethylene- and ABA-mediated ripening mechanisms [175, 177]. There are gaps in understanding how ethylene- and ABA-mediated ripening mechanisms are interconnected with carotenogenesis. The fast and easy application of VIGR expression systems in different fruits has advanced our understanding of ripening-mediated carotenoid metabolism. Developing VIGR systems for other crops where genetic manipulation strategies are not always efficient, such as mangoes, citrus and avocado, will further improve our understanding of carotenogenesis in these horticultural tree crops.

Manipulating substrate supply alters carotenogenesis process

Carotenoid biosynthesis is reliant upon the upstream methyerythritol phosphate (MEP) pathway for the supply of isoprenoid substrates, and disruption of the MEP pathway can block carotenogenesis [178]. For example, disrupting the MEP pathway by VIGS of 4-(CYTIDINE 5'-DIPHOSPHO)-2-C-METHYL-D-ERYTHRITOL KINASE (CMK), 4-HYDROXY-3-METHYL-2-ENYL-DIPHOSPHATE SYNTHASE (HDS) and 4-HYDROXY-3-METHYL-2-ENYL-DIPHOSPHATE REDUCTASE (HDR) in N. benthamiana caused an approximate 72% decrease in total carotenoid levels [179]. Silencing expression of HDS and HDR using TRV led to the development of albino leaves in N. benthamiana and decreased (~96%) chlorophyll and carotenoid pigment levels [180]. These results were consistent with findings from other studies where mutations or T-DNA knockout of MEP pathway genes, 1-DEOXY-D-XYLULOSE-5-PHOSPHATE SYNTHASE (DXS), 1-DEOXY-D-XYLULOSE-5-PHOSPHATE REDUCTOISOMERASE (DXR), 4-DIPHOSPHOCYTIDYL-2-C-METHYLERITHRITOL SYNTHASE (CMS), CMK, 2-C-METHYL-D-ERYTHRITOL-2,4-CYCLODIPHOSPHATE SYNTHASE (MCS) and HDS in Arabidopsis lead to development of an albino phenotype as a result of decreased chlorophyll and carotenoid content [181–185]. Therefore, VIGR studies can be utilised effectively to manipulate the expression of MEP pathway genes and hence enzyme functions that catalyse the supply isoprenoid substrates for carotenogenesis.

The carotenoid biosynthesis pathway is interlinked with numerous other pathways that require the plastid derived GGPP as a common precursor for biosynthesis. The supply of common precursors is paramount to maintain a natural flux of GGPP to maintain cellular homeostasis, and manipulation of any one pathway can create a cascade of changes to other metabolic pathways. For example, increasing GGPP flux into the carotenoid pathway by overexpressing PSY in N. benthamiana and tomato using transgenic approaches caused an increase in total carotenoid content [186, 187]. However, this reduced the availability of GGPP for gibberellic acid (GA) biosynthesis pathway, which in turn reduced GA biosynthesis and caused dwarfism. Similarly, increasing the pool of GGPP for other pathways by limiting its flux into carotenogenesis using TRV-PSY in N. benthamiana increased paclitaxel biosynthesis and caused a 2-fold accumulation of taxadiene, the first committed product of the paclitaxel pathway [188]. Therefore, manipulating the upper MEP pathway and GGPP biosynthesis using VIGR adds further value to our knowledge of how upper rate-limiting steps effect the supply of substrates for carotenoid biosynthesis.

Scope, advantages and limitations of VIGR for horticulture advancement

The VIGR system has several advantages over other biotechnological techniques such as chemical mutagenesis, transgene insertion, RNA interference or CRISPR/Cas9 gene editing, regarding functional genomic approaches involving the silencing or overexpression of target genes. For example, the transient VIGR system can be used to manipulate the expression of any gene, including those that become lethal to the plant host when transgenically altered. The VIGR system can be used to specifically silence genes in detached fruits from horticultural crops, thereby reducing the
need to grow large trees or climbing plants within an approved arrangement biosecurity containment facility designated for VIGR research. VIGR does not require transgene transformation or tissue culture to alter transcript levels of target genes and hence, VIGR can be performed rapidly and in a cost-efficient manner. These advantages of VIGR makes it a tool of choice for conducting functional genomic studies in non-model horticultural crops (Fig. 3).

VIGR provides a reliable high throughput platform to advance both functional genomic studies in non-model horticultural crops producing fruits, vegetables, nuts, or ornamental features. Functional genomics in non-model crops has been expanded through recent advances in de novo assembly of plant genomes, such as pineapple [189], almond [190, 191], mango [192], macadamia [193] and avocado [194] where new genomic knowledge can now lead to improved functional annotation. VIGR in combination with phylogenetics, metabolomics, transcriptomics and/or genomic approaches can advance gene characterisation and protein function in non-model species (Fig. 3A). Such a technique was used in citrus to identify OXIDOSQUALENE CYCLASE and CHALCONE SYNTHASE genes that regulate limonoid and flavonoid synthesis, respectively [195, 196]. As another forward genomics approach, VIGR was used to refine the C1 locus (PSEUDO RESPONSE REGULATOR 2; PRR2) responsible for fruit colour in pepper and the R1 locus (GhPSY) responsible for red pigment plant phenotype in cotton (Fig. 3A) [150, 197]. VIGR of differential genes obtained from a suppression subtractive hybridization cDNA library identified the SINA P7 gene as the candidate associated with reduced lycopene pigment formation in tomato fruit. When SINA P7 was silenced using VIGS there was a downregulation in POR and PORA expression leading to an impairment in chloroplast development and reduced lycopene accumulation in tomato fruits [198]. These aforementioned examples, highlight how VIGR can be used to fast forward genetic cDNA library screening and hence functional genomics [199].

VIGR technologies have advanced considerably over the past two decades. Major drawbacks associated with VIGR technology have been limited to a small number of effective viral vectors, narrow host range specificity and off-target silencing. This has been resolved mostly through the development of new VIGR vectors capable of infecting a wider host range, facilitating homologous recombination multiple cloning sites, and improved agrobacterium/viral vector inoculation methodologies [200]. Different web-based programs such as Sol Genomics Network (SGN) VIGS and pssRNAIt have been developed to simplify the process of identifying gene sequence fragments that are unique and avoid off-target silencing incidents [201, 202]. However, there are still further limitations of VIGR. For example, the spread of systemic RNA-mediated signals and suppression of viral infection are not ubiquitous among all plants. Experiments silencing PDS in fruits and leaves of tomatoes and Capsicum sp. have shown that VIGS does not silence genes homogeneously in all plant tissues. In California poppy, the spread of PDS silencing was faster when the shoot apical meristem and surrounding leaves were inoculated in comparison to when lower leaves were inoculated [35]. The uneven silencing can make it difficult to collect VIGR tissues for metabolic and gene expression studies, especially if there is no obvious pigmentation phenotype to score. Several species-specific reporter systems such as Delila and Rosea1 (Del/Ros1)-based reporter system for tomatoes [203], anthocyanin accumulating purple reporter system for tobacco [204], and the generic green fluorescent protein (GFP)-based reporter system [205] can help to overcome phenotyping challenges and further refine VIGR technologies.

The use of VIGO to transiently overexpress target genes regulating carotenoid metabolism or other biological processes is rather sparse compared to the application of VIGS (Fig. 1; Table 1). The biggest obstacle towards developing VIGO systems has been the limitations surrounding the insert size that can be delivered and retained by the viral vector. Different techniques have been implemented to increase the cargo capacity for foreign gene insertion into viral vectors that allow larger or multiple proteins to be expressed in planta. In a Barley stripe mosaic virus based VIGR vector, increasing the partite system from a three-partite to four-partite vector enhanced the capacity of the viral vector to overexpress genes up to 2.1 kb [206]. Eliminating viral coat protein or movement protein coding sequences (deconstructed virus vector strategy) in viral vectors can also increase the cargo capacity of vectors [207, 208]. For example, deletion of the viral Nib cistron from TEV increased the cargo capacity or space to harbor foreign sequences and enabled the simultaneously overexpress of three bacterial carotenoid biosynthesis genes (crtE, crtB and crtI) in transgenic N. benthamiana haboring the Nib cistron [43]. Overexpression of these three bacterial carotenoid proteins increased endogenous carotenoid levels in the cytosol and reduced chlorophylls to result in a bright yellow pigmentation in N. benthamiana leaves, providing a useful colour-based reporter system to track the infection dynamics of plant viruses [44]. This exemplifies the utility of viral vectors for multiple gene expressions that drive complex foreign biochemical pathways.

The latest development of Potato virus x, Foxtail mosaic virus, Barley yellow striate mosaic virus and Sonchus yellow net rhado virus-based viral vectors are capable of overexpressing large gene sequences, including an ∼4.5 kb CRISPR-Cas9 cassette in N. benthamiana, which is an important break-through in the field allowing researchers to conduct virus-induced genome editing (VIGE) [46, 209–211]. Furthermore, DNA-free genome editing of Nicotiana benthamiana has been achieved using TEV and Potato virus X (PVX) vectors to simultaneous overexpress Cas12a nuclease and guide RNAs to mediate VGE without the need of transgenic processing elements.
Application of virus induced gene regulation

(a) Functional genomics
- One or multiple genes cloned into the viral vector
- cDNA libraries of genes cloned in viral vectors
- Viral vectors transformed into Agrobacterium
- Inoculation of viral vectors into any plant tissue
- Silencing/over-expression of target gene in plants
- Phenotypic and molecular characterisation
- Reverse Genetics
- Forward Genetics

(b) Crop improvement
- Clone full FT gene (to overexpress) and partial TFL gene (to silence) into viral vector
- Inoculation of viral vector into plant tissue
- Precocious flowering induced in plantlets
- Selfing/crossing
- Screen germplasm for important traits
- Collection of next-generation seeds
- Accelerate traditional breeding

(c) New genetic cultivars
- CRISPR-Cas9 cassette and guide RNA sequence cloned into viral vector
- Inoculation of viral vector into plant tissues allows CRISPR-Cas9 to guide editing of genome
- Select for transformed cell with edited genome
- Eliminate virus from new plant growth
- Tissue culture
- Seed collection
- Vegetative propagation
- Mutant plant for functional genomics
- Non-transgenic plant, new genetic variety

Figure 3. Application of virus-induced gene regulation (VIGR) in advancing functional genomics and crop improvement in horticultural crops. (a) Functional genomics. VIGS and VIGO can be utilised in forward and reverse genetic screening approaches. Partial fragments or full-length coding sequences of the target gene (single, multiple or cDNA library) are cloned into the viral genome within a binary vector and transiently expressed in plants. Phenotypic and molecular assays are performed to characterise gene functions in infected tissues. (b) Crop improvement. Simultaneous overexpression of flowering locus T (FT) and silencing of terminal flower locus (TFL) using the VIGR system can trigger precocious (early) flowering. Flowers that are self- or cross-pollinated will develop fruits and seeds. Phenotyping and molecular analysis of flowers, fruits and seeds can be undertaken in combination with traditional breeding strategies to speed up the identification of germplasm harboring desirable genetic traits (e.g. pathogen resistance, self-compatibility). Virus-free seeds can be isolated to advance the next breeding cycle. (c) New genetic cultivars. VIG gene-editing systems have been deployed to identify non-transgenic mutant plants for functional genomics and engineer elite genetic cultivars. Overexpression of the CRISPR-Cas9 and RNA guide system can edit a heritable mutation in the genome that will be inherited during mitosis and cell division. The virus can be eliminated from the plant through heat/cold treatment. Selection and confirmation of the transformed cell or genetic mutation in virus-free plants can be obtained from seeds, tissue culture cell lines, or by vegetative propagation. Systemic spread of siRNA for silencing. Systemic spread of target gene with viral component for overexpression.
thereby allowing transgenerational inheritance of mutations to seeds from infected plants without inclusion of viral components [212, 213]. VIGE systems expand our toolbox to create heritable mutations without requiring the development of a transgenic organism (Fig 3C). This has several advantages over transgenic or CRISPR/Cas9-mediated gene overexpression approaches, as VIGE does not require genotyping and self- or back-crossing. Such non-transgenic plants could be used for functional genomics studies and/or released as new crop varieties that are more nutritious and productive. For example, editing of the genes/promoters of CRTISO, ε-LYC and β-LYC in mango through VIGE could fast-forward development of a non-transgenic pink mango fruit altered in colour and enriched in lycopene. Similarly, VIGE of PSY and β-LYC could lead to a new generation of golden coloured rice enriched in provitamin A (β-carotene). Further research is necessary to determine if the large Cas9 could be replaced with smaller Cas proteins such as Cas9 [214], as this could enable the remaining cargo capacity of the VIGE vector to be used to edit multiple genes when attempting to modify complex traits. The capability of VIGE to cause heritable non-transgenic mutations and induce gene overexpression will provide unprecedented opportunities to transform future functional genomics studies and plant breeding endeavours in horticultural crops.

Carotenoids provide colour to fruits and flowers of horticultural trees and add economic value by providing essential micronutrients such as provitamin A. However, carotenoid metabolism among other important traits such as shoot branching and precocity have scarcely been studied in horticultural fruit tree crops. Long juvenile phases can range between 3 to over 20 years thereby increasing the amount of time and resources required to conduct functional genomic studies in tree crop species [215]. Transient overexpression of positive regulators of flowering such as FLOWERING LOCUS T and/or the downregulation of negative regulators of flowering such as TERMINAL FLOWERING LOCUS 1 in apple, pear and citrus have demonstrated how VIGR can be utilised to induce precocious flowering in juvenile horticultural tree plants and reduce the juvenile phase from several years to less than a few months [56, 59]. Pollination following virus-induced flowering can result in the development of fruit with fertile, non-transgenic seeds like that of non-VIGR infected plants. Successful induction of precocious flowering has opened new opportunities to fast-forward functional genomic studies to study carotenogenesis and associated phytohormone pathways such as shoot branching architecture (e.g. strigolactones) or drought responses (e.g. abscisic acid). VIGR can speed up germplasm development and plant breeding programs through inducing early flowering/fruiting and enable the rapid identification of allelic gene functions, new trait loci or novel gene functions controlling these commercially important traits in fruit trees (Fig. 3B). The advantages of virus-induced flowering: high-throughput germplasm screening, rapid functional genomics studies and reduced breeding cycle, can overcome current challenges and provide new avenues to advance the genomics of horticultural tree crop breeding.

Acknowledgments
Horticulture Innovation Australia - National Tree Genomics Program (AS17000).

Author Contributions
CIC and LP conceived review and visualised perspectives. LP wrote the article and prepared figures with assistance from primary supervisor CIC. Co-supervision of LP was provided by JP and AP. All authors reviewed, edited, provided critical input and approved the manuscript.

Conflicts of interest statement
We declare there are not conflicts of interest.

References
We declare there are not conflicts of interest.

1. Rovere CV, Del Vas M, Hopp HE. RNA-mediated virus resistance. Curr Opin Biotechnol. 2002;13:67–72.
2. Kumagai MH, Donson J, della-Cioppa G et al. Cytoplasmic inhibition of carotenoid biosynthesis with virus-derived RNA. Proc Natl Acad Sci 1995;92:1679–83.
3. Alagoz Y, Nayak P, Dhami N et al. Cis-carotene biosynthesis, evolution and regulation in plants: the emergence of novel signaling metabolites. Arch Biochem Biophys. 2018;654:172–84.
4. Armstrong GA, Hearst JE. Genetics and molecular biology of carotenoid pigment biosynthesis. FASEB J. 1996;10:228–37.
5. Baranski R, Cazzonelli C. In: Kaczor A, Baranska M, eds. Carotenoid Biosynthesis and Regulation in Plants in Carotenoids: Nutrition, Analysis and Technology. Wiley-Blackwell, 2016;161–89.
6. Cazzonelli CI, Pogson BJ. Source to sink regulation of carotenoid biosynthesis in plants. Trends Plant Sci. 2010;15:266–74.
7. Ruiz-Sola MA, Rodríguez-Concepción M. Carotenoid biosynthesis in Arabidopsis: a colorful pathway. The Arabidopsis book/American Society of Plant Biologists. 2012;10.
8. Sun T, Yuan H, Cao H et al. Carotenoid metabolism in tomato. Mol Plant. 2018;11:58–74.
9. Watkins JL, Pogson BJ. Prospects for carotenoid biofortification targeting retention and catabolism. Trends Plant Sci. 2020;25:501–12. https://doi.org/10.1016/j.tplants.2019.12.021.
10. Liu L, Shao Z, Zhang M et al. Regulation of carotenoid metabolism in tomato. Mol Plant. 2015;8:28–39. https://doi.org/10.1016/j.molp.2014.11.006.
11. Anwar S, Brenya E, Alagoz Y et al. Epigenetic control of Carotenogenesis during plant development. Crit Rev Plant Sci. 2021;40:23–48. https://doi.org/10.1080/07352689.2020.1866829.
12. Cazzonelli CI. Carotenoids in nature: insights from plants and beyond. Funct Plant Biol. 2011;38:83–47.
13. Llave C. Virus-derived small interfering RNAs at the core of plant–virus interactions. Trends Plant Sci. 2010;15:701–7.
14. Baulcombe D. RNA silencing in plants. Nature. 2004;431:356–63.
15. de Alba AEM, Elvira-Matelot E, Vaucheret H. Gene silencing in plants: a diversity of pathways. Biochimica et Biophysica Acta (BBA)-Gene Regulatory Mechanisms. 2013;1829:1300–8.
16. Ahlquist P, Noubiery AO, Lee W-M et al. Host factors in positive-strand RNA virus genome replication. J Virol. 2003; 77: 8181–6.
17. Den Boon JA, Ahlquist P. Organelle-like membrane compartmentalization of positive-strand RNA virus replication factories. Annu Rev Microbiol. 2010; 64: 241–56.
18. Weber F, Wagner V, Rasmussen SB et al. Double-stranded RNA is produced by positive-strand RNA viruses and DNA viruses but not in detectable amounts by negative-strand RNA viruses. J Virol. 2006; 80: 5059–64.
19. Pooggin MM. How can plant DNA viruses evade siRNA-directed DNA methylation and silencing? Int J Mol Sci. 2013; 14: 15233–59.
20. Aregger M, Borah BK, Seguin J et al. Primary and secondary siRNAs in geminivirus-induced gene silencing. PLoS Pathog. 2012; 8: e1002941.
21. Li F, Wang A. RNA-targeted antiviral immunity: more than just RNA silencing. Trends Microbiol. 2019.
22. MacRae JI, Zhou K, Doudna JA. Structural determinants of RNA recognition and cleavage by dicer. Nat Struct Mol Biol. 2007; 14: 934–40.
23. Garcia-Ruiz H, Takeda A, Chapman EJ et al. Arabidopsis RNA-dependent RNA polymerases and dicer-like proteins in antiviral defense and small interfering RNA biogenesis during turnip mosaic virus infection. Plant Cell. 2010; 22: 481–96.
24. Dunoyer P, Himber C, Voinnet O. DICER-LIKE 4 is required for RNA interference and produces the 21-nucleotide small interfering RNA component of the plant cell-to-cell silencing signal. Nat Genet. 2005; 37: 1356–60.
25. Blevins T, Rajeswara R, Shivaprakash PV et al. Four plant dicers mediate viral small RNA biogenesis and DNA virus induced silencing. Nucleic Acids Res. 2006; 34: 6233–46.
26. Senthil-Kumar M, Hema R, Anand A et al. A systematic study to determine the extent of gene silencing in Nicotiana benthamiana and other Solanaceae species when heterologous gene sequences are used for virus-induced gene silencing. New Phytol. 2007; 176: 782–91. https://doi.org/10.1111/j.1469-8137.2007.02225.x.
27. Song J-J, Smith SK, Hannon GJ et al. Crystal structure of Argonaute and its implications for RISC slicer activity. Science. 2004; 305: 1434–7.
28. Hutvagner G, Simard MJ. Argonaute proteins: key players in RNA silencing. Nat Rev Mol Cell Biol. 2008; 9: 22–32.
29. Vaistij FE, Jones L. Compromised virus-induced gene silencing in RDR6-deficient plants. Plant Physiol. 2009; 149: 1399–407.
30. Himber C, Dunoyer P, Moissiard G et al. Transitivity-dependent and-independent cell-to-cell movement of RNA silencing. EMBO J. 2003; 22: 4523–33.
31. Bleya A, Van Houdt H, Depicker A. Transitive and systemic RNA silencing: both involving an RNA amplification mechanism? In: Small RNAs. Springer, 2006, 119–39.
32. Sharma N, Sahu PP, Puranik S et al. Recent advances in plant-virus interaction with emphasis on small interfering RNAs (siRNAs). Mol Biotechnol. 2013; 55: 63–77.
33. Tournier B, Tablier M, Kalantidis K. Phloem flow strongly influences the systemic spread of silencing in GFP Nicotiana benthamiana plants. Plant J. 2006; 47: 383–94.
34. Kalantidis K, Schumacher HT, Alexiadis T et al. RNA silencing movement in plants. Biol Cell. 2008; 100: 13–26.
35. Wege S, Scholz A, Gleissberg S et al. Highly efficient virus-induced gene silencing (VIGS) in California poppy (Eschscholzia californica): an evaluation of VIGS as a strategy to obtain functional data from non-model plants. Ann Bot. 2007; 100: 641–9.
36. Bond DM, Baulcombe DC. Epigenetic transitions leading to heritable, RNA-mediated de novo silencing in Arabidopsis thaliana. Proc Natl Acad Sci. 2015; 112: 917–22. https://doi.org/10.1073/pnas.1413053112.
37. Fei Y, Pyott DE, Molnar A. Temperature modulates virus-induced transcriptional gene silencing via secondary small RNAs. New Phytol. n/a. 2021. https://doi.org/10.1111/nph.17586.
38. Borges F, Martienssen RA. The expanding world of small RNAs in plants. Nat Rev Mol Cell Biol. 2015; 16: 727–41. https://doi.org/10.1038/nrm4085.
39. Schothof HB, Schothof K-BG, Jackson AO. Plant virus gene vectors for transient expression of foreign proteins in plants. Annu Rev Phytopathol. 1996; 34: 299–323.
40. Gleba Y, Marillonnet S, Kluytmuk V. Engineering viral vector systems for vectors for the ‘full virus’ and the ‘deconstructed virus’ strategies. Curr Opin Plant Biol. 2004; 7: 182–8.
41. Lee W-S, Hammond-Kosack KE, Kanyuka K. barley stripe mosaic virus-mediated tools for investigating gene function in cereal plants and their pathogens: virus-induced gene silencing, host-mediated gene silencing, and virus-mediated overexpression of heterologous protein. Plant Physiol. 2012; 160: 582–90.
42. Lindbo JA. TRBO: a high-efficiency tobacco mosaic virus RNA-based overexpression vector. Plant Physiol. 2007; 145: 1232–40.
43. Daros JA. Use of Potyvirus vectors to produce carotenoids in plants. Methods Mol Biol. 2083, 2020; 303–12. https://doi.org/10.1007/978-1-4939-9952-1_23.
44. Majer E, Llorente B, Rodríguez-Concepción M et al. Rewiring carotenoid biosynthesis in plants using a viral vector. Sci Rep. 2017; 7: 1–10.
45. Dommes AB, Gross T, Herbert DB et al. Virus-induced gene silencing: empowering genetics in non-model organisms. J Exp Bot. 2019; 70: 757–70.
46. Ma X, Zhang X, Liu H et al. Highly efficient DNA-free plant genome editing using virally delivered CRISPR-Cas9. Nature Plants. 2020; 1–7.
47. Liu Y, Schiff M, Dinesh-Kumar S. Virus-induced gene silencing in tomato. Plant J. 2002; 31: 777–86.
48. Chung E, Seong E, Kim Y-C et al. A method of high frequency virus induced gene silencing in chili pepper (Capsicum annuum L. cv. Bukang). Mol Cells. 2004; 17: 377–80.
49. Jia H-F, Chai Y-M, Li C-L et al. Abscisic acid plays an important role in the regulation of strawberry fruit ripening. Plant Physiol. 2011; 157: 188–99.
50. Bai S, Tuan PA, Tatsuki M et al. Knockdown of carotenoid cleavage dioxygenase 4 (CCD4) via virus-induced gene silencing confers yellow coloration in peach fruit: evaluation of gene function related to fruit traits. Plant Mol Biol Report. 2016; 34: 257–64.
51. Ye J, Qu J, Bui HTN et al. Rapid analysis of Jatropha curcas gene functions by virus-induced gene silencing. Plant Biotechnol J. 2009; 7: 964–76.
52. Chen J-C, Johnson F, Clark DG et al. Potential application of virus-induced gene silencing (VIGS) in flower senescence studies. In: VIII International Symposium on Postharvest Physiology of Ornamental Plants 669. 2003, 147–52.
53. Singh A, Liang Y-C, Kumar P et al. Co-silencing of the mirabilis antiviral protein (MAP) permits virus-induced gene silencing (VIGS) of other genes in four O’Clock plants (mirabilis Jalapa). J Hortic Sci Biotechnol. 2012; 87: 334–40.
54. Ma N, Xue J, Li Y et al. Rh-PiP2, 1, a rose aquaporin gene, is involved in ethylene-regulated petal expansion. Plant Physiol. 2008; 148: 894–907.
55. Hong M, Chi Z-H, Wang Y-Q et al. Expression of a Chromoplast-specific lycopene β-cyclase gene (CYC-B) is implicated in...
56. Sasaki S, Yamagishi N, Yoshikawa N. Efficient virus-induced gene silencing in apple, pear and Japanese pear using apple latent spherical virus vectors. Plant Methods. 2011;7:15.

57. Cui H, Wang A. An efficient viral vector for functional genomic studies of Prunus fruit trees and its induced resistance to plum pox virus via silencing of a host factor gene. Plant Biotechnol J. 2017;15:344–56.

58. Killiny N, Nehela Y, Hijaz F et al. Citrus tristeza virus-based induced gene silencing of phytoene desaturase is more efficient when antisense orientation is used. Plant Biotechnology Reports. 2019;13:179–92.

59. Velázquez K, Agüero J, Vives MC et al. Precocious flowering of juvenile citrus induced by a viral vector based on citrus leaf blotch virus: a new tool for genetics and breeding. Plant Biotechnol J. 2016;14:1976–85.

60. Kawai T, Gonoib A, Nitta M. Optimization of virus-induced gene silencing (VIGS) in Lilium leichtlinii using the cucumber mosaic virus vector. Phytochemistry. 2011;72:1969–77.

61. Huang C, Xie Y, Zhou X. Efficient virus-induced gene silencing in various Prunus species with the apple latent spherical virus vector. Sci Hortic. 2016;199:103–13.

62. Fofana IB, Sangaré A, Collier R. Introduction of leaf chloroplasts into carotenoid-rich plastids reveals the mechanistic basis of natural chromoplast development. Plant Cell, Tissue and Organ Culture (PCTOC). 2019;157:275–84.

63. Cui H, Wang A. An efficient viral vector for functional genomic studies of Prunus fruit trees and its induced resistance to plum pox virus via silencing of a host factor gene. Plant Biotechnol J. 2017;15:344–56.

64. Huang C, Xie Y, Zhou X. Efficient virus-induced gene silencing of phytoene desaturase is more efficient when antisense orientation is used. Plant Biotechnology Reports. 2019;13:179–92.

65. Pandey P, Choudhury NR, Mukherjee SK. A geminiviral ampli-
geminivirus. Plant Methods. 2009;5:9.

66. del Rosario Abraham-Juárez M, del Carmen Rocha-Granados M, López MG et al. Virus-induced silencing of Comt, pAmt and pOsBDH genes results in a reduction of capsaicinoid accumulation in a wide variety of plant species and also acts as a VIGS vector. Viral J. 2009;6:152.

67. del Rosario Abraham-Juárez M, del Carmen Rocha-Granados M, López MG et al. Virus-induced silencing of Comt, pAmt and pOsBDH genes results in a reduction of capsaicinoid accumulation in a wide variety of plant species and also acts as a VIGS vector. Viral J. 2009;6:152.

68. Huang C, Xie Y, Zhou X. Efficient virus-induced gene silencing in plants using a modified geminivirus DNA1 component. Plant Biotechnol J. 2009;7:254–65.

69. Yang X, Dai W, Zhang CW. Development of tobacco ringspot virus-based vectors for foreign gene expression and virus-induced gene silencing in a variety of plants. Virology. 2016;492:166–78.

70. Min H, Si S, Shanshan H et al. Effects of VIGS-induced PSY gene silencing on carotenoid accumulation in fruit of Erionotrya japonica Lindl. Molecular Plant Breeding. 2018;14.

71. Min H, Si S, Shanshan H et al. Effects of VIGS-induced PSY gene silencing on carotenoid accumulation in fruit of Erionotrya japonica Lindl. Molecular Plant Breeding. 2018;14.

72. Zhou J, Hunter DA, Lewis DH et al. Insights into carotenoid accumulation using VIGS to block different steps of carotenoid biosynthesis in petal of California poppy. Plant Cell Rep. 2018;37:1311–23. https://doi.org/10.1007/s00299-018-2314-5.

73. Cai X, Wang C, Xu Y et al. Efficient gene silencing induction in tomato by a viral satellite DNA vector. Virus Res. 2007;125:169–75.

74. Jang S-J, Jeong H-B, Jung A et al. Phytoene synthase 2 can compensate for the absence of Psy1 in pepper fruit (Capsicum annuum). bioRxiv. 2019;797977.

75. Tian S-L, Li L, Chai W-G et al. Effects of silencing key genes in the capsanthin biosynthetic pathway on fruit color of detached pepper fruits. BMC Plant Biol. 2014;14:314. https://doi.org/10.1186/s12870-014-0314-3.

76. Yang X, Dai W, Zhang CW. Development of tobacco ringspot virus-based vectors for foreign gene expression and virus-induced gene silencing in a variety of plants. Virology. 2016;492:166–78.

77. Igarashi A, Yamagata K, Sugai T et al. Citrus tristeza virus-based vector. Phytochemistry. 2011;72:1969–77.

78. Agüero J, del Carmen Vives M, Velázquez K et al. Effectiveness of gene silencing induced by viral vectors based on citrus leaf blotch virus is different in Nicotiana benthamiana and citrus plants. Virology. 2014;460:154–64.

79. Liu M, Liang Z, Aranda MA et al. A cucumber green mottle mosaic virus vector for virus-induced gene silencing in cucurbit plants. Plant Methods. 2020;16:9.

80. Schachtsiek J, Hussain T, Azzouhri K et al. Virus-induced silencing for Asteraceae—a reverse genetics approach for functional gene validation in oriental melon (Cucumis melo var. makuwa Makino). Plant Cell, Tissue and Organ Culture (PCTOC). 2019;137:275–84.

81. Zhao F, Lim S, Igi D et al. Development of tobacco ringspot virus-based vectors for foreign gene expression and virus-induced gene silencing in a variety of plants. Virology. 2016;492:166–78.

82. Igarashi A, Yamagata K, Sugai T et al. Citrus tristeza virus-based vector. Phytochemistry. 2011;72:1969–77.

83. Llorente B, Torres-Montilla S, Morelli L et al. Synthetic conver-
synthesis in strawberry (Fragaria × ananassa) using apple latent spherical virus vectors. Horticulture research. 2019;6:1–10.

84. Zhong X, Yuan X, Wu Z et al. Virus-induced gene silencing for comparative functional studies in Gladiolus hybridx. Plant Cell Rep. 2014;33:301–12.

85. Llorente B, Torres-Montilla S, Morelli L et al. Synthetic conver-
synthesis in strawberry (Fragaria × ananassa) using apple latent spherical virus vectors. Horticulture research. 2019;6:1–10.

86. Deng X, Eloma P, Nguyen CX et al. Virus-induced gene silencing for Asteraceae—a reverse genetics approach for functional genomics in Gerbera hybrida. Plant Biotechnol J. 2012;10:970–8.

87. Zhang W, Yuan X, Wu Z et al. Virus-induced gene silencing for comparative functional studies in Gladiolus hybridx. Plant Cell Rep. 2014;33:301–12.

88. Llorente B, Torres-Montilla S, Morelli L et al. Synthetic conver-
synthesis in strawberry (Fragaria × ananassa) using apple latent spherical virus vectors. Horticulture research. 2019;6:1–10.

89. Llorente B, Torres-Montilla S, Morelli L et al. Synthetic conver-
synthesis in strawberry (Fragaria × ananassa) using apple latent spherical virus vectors. Horticulture research. 2019;6:1–10.
92. Li XJ, Zhang J-Q, Wu Z-C. et al. Functional characterization of a glucosyltransferase gene, LcUGFT1, involved in the formation of cyanidin glucoside in the pericarp of Litchi chinensis. Physiol Plant. 2016;156:139–49.

93. Liu Y, Sunbl W, Zeng S. et al. Virus-induced gene silencing in two novel functional plants, Lycium barbarum L. and Lycium ruthenicum Murr. S Afr Hortic. 2014;170:267–74.

94. Li G, Zhao J, Qin B. et al. ABA mediates development-dependent anthocyanin biosynthesis and fruit coloration in Lycium plants. BMC Plant Biol. 2019;19:317.

95. Beyene G, Chauhan RD, Taylor NJ. A rapid virus-induced gene silencing (VIGS) method for assessing resistance and susceptibility to cassava mosaic disease. Virol J. 2017;14:47.

96. Preston JC, Barnett LL, Kost MA. et al. Optimization of virus-induced gene silencing to facilitate Evo-devo studies in the emerging model species Mimulus guttatus (Phrymaceae). 1 Ann Mo Bot Gard. 2014;99:301–12.

97. Harries PA, Palanichvelam K, Bhat S. et al. Tobacco mosaic virus 126-kDa protein increases the susceptibility of Nicotiana tabacum to other viruses and its dosage affects virus-induced gene silencing. Mol Plant-Microbe Interact. 2008;21:1539–48.

98. Shi Y, Wang R, Luo Z. et al. Molecular cloning and functional characterization of the lycopene cyclase gene via virus-induced gene silencing and its expression pattern in Nicotiana tabacum. Int J Mol Sci. 2014;15:14766–85.

99. Martí M, Diretto G, Aragonés V. et al. Efficient production of saffron crocins and picrocrocin in Nicotiana benthamiana using a virus-driven system. Metab Eng. 2020;61:238–50. https://doi.org/10.1016/j.menb.2020.06.009.

100. Misra RC, Sharma S, Garg A. et al. Virus-Induced Gene Silencing in Sweet Basil (Ocimum basilicum). In: Virus-Induced Gene Silencing in Plants. Springer, 2020,123–38.

101. Koudounas K. et al. Virus-Induced Gene Silencing in Olive Tree (Olea europaea). In: Virus-Induced Gene Silencing in Plants. Springer, 2020,165–82.

102. Naing AH, Song HY, Lee JM. et al. Development of an efficient virus-induced gene silencing method in petunia using the pepper phytoene desaturase (PDS) gene. Plant Cell, Tissue and Organ Culture (PCTOC). 2019;138:507–15.

103. Krishnan A, Mahadevan C, Mani T. et al. Virus-induced gene silencing (VIGS) for elucidation of pathogen defense role of serine/threonine protein kinase in the non-model plant Piper colubrinum link. Plant Cell, Tissue and Organ Culture (PCTOC). 2015;122:269–83.

104. Constantin GD, Krath BN, MacFarlane SA. et al. Virus-induced gene silencing as a tool for functional genomics in a legume species. Plant J. 2004;40:622–31.

105. Ido Y, Nakahara KS, Uyeda I. White clover mosaic virus-induced gene silencing in pea. J Gen Plant Pathol. 2012;78:127–32.

106. Ito H, Ochiai M, Kato H. et al. Rose phytoene desaturase gene silencing by apple latent spherical virus vectors. Hort Science. 2012;47:1278–82.

107. Tian J, Pei H, Zhang S. et al. TRV–GFP: a modified tobacco rattle virus vector for efficient and visualizable analysis of gene function. J Exp Bot. 2014;65:311–22.

108. Li Y, Liu Y, Qi F. et al. Establishment of virus-induced gene silencing system and functional analysis of SchHLH17 in Senecio cruentus. Plant Physiol Biochem. 2020;147:272–9.

109. Fantini E, Falcone G, Frusciante S. et al. Dissection of tomato lycopene biosynthesis through virus-induced gene silencing. Plant Physiol. 2013;163:986–98. https://doi.org/10.1104/pp.113.224733.

110. Liu H, Fu D, Zhu B. et al. Virus-induced gene silencing in eggplant (Solanum melongena). J Integr Plant Biol. 2012;54:422–9.

111. Faivre-Rampant O, Gilroy EM, Hrubíková K et al. Potato virus X-induced gene silencing in leaves and tubers of potato. Plant Physiol. 2004;134:1308–16.

112. Du J, Tian Z, Liu J. et al. Functional analysis of potato genes involved in quantitative resistance to Phytophthora infestans. Mol Biol Rep. 2013;40:957–67.

113. Lee J, Cao D-V, Kim J. et al. Development of a virus-induced gene silencing (VIGS) system for Spinacia oleracea L. In: Viral Cell & Developmental Biology-Plant. 2017;53:97–103.

114. Di Stilio VS, Kumar RA, Oddone AM. et al. Virus-induced gene silencing as a tool for comparative functional studies in Thalictrum. PLoS One. 2010;5:e12064.

115. Muruganantham M, Moskovitz Y, Haviv S. et al. Grapevine virus A-mediated gene silencing in Nicotiana benthamiana and Vitis vinifera. J Virol Methods. 2009;155:167–74.

116. Maeda K, Kikuchi T, Kasajima I. et al. Virus-induced flowering by apple latent spherical virus vector: effective use to accelerate breeding of grapevine. Viruses. 2020;12:70.

117. Kurth EG, Peremyslov VV, Prokhnovsky AI. et al. Virus-derived gene expression and RNA interference vector for grapevine. J Virol. 2012;86:6002–9.

118. Singh AK, Dwivedi V, Rai A. et al. Virus-induced gene silencing of Withania somnifera squalene synthase negatively regulates sterol and defence-related genes resulting in reduced anolides and biotic stress tolerance. Plant Biotechnol J. 2015;13:1287–99.

119. Renner T, Bragg J, Driscoll HE. et al. Virus-induced gene silencing in the culinary ginger (Zingiber officinale): an effective mechanism for down-regulating gene expression in tropical monocots. Mol Plant. 2009;2:1084–94.

120. McQuinn RP, Gapper NE, Gray AG. et al. Manipulation of ZDS in tomato exposes carotenoid- and ABA-specific effects on fruit development and ripening. Plant Biotechnol J. 2020.

121. Cunningham F Jr, Garcì E. Genes and enzymes of carotenoid biosynthesis in plants. Annu Rev Plant Biol. 1998;49:557–83.

122. Gallagher CE, Matthews PD, Li F et al. Gene duplication in the carotenoid biosynthetic pathway preceded evolution of the grasses. Plant Physiol. 2004;135:1767–83.

123. Peng G, Wang C, Song S. et al. The role of 1-deoxy-d-xylulose-5-phosphate synthase and phytoene synthase gene family in citrus carotenoid accumulation. Plant Physiol Biochem. 2013;67:76–83.

124. López-Emparan A, Quezada-Martinez D, Zúñiga-Bustos M. et al. Functional analysis of the Brassica napus L. phytoene synthase (PSY) gene family. FEBS J. 2012;289:527–35.

125. Di Stilio VS, Kumar RA, Oddone AM. et al. Virus-induced gene silencing as a tool for comparative functional studies in Thalictrum. PLoS One. 2010;5:e12064.

126. Fraser PD, Kiano JW, Truesdale MR. et al. Establishment of virus-induced gene silencing in leaves and tubers of potato. Plant Physiol. 2004;134:1308–16.

127. Fantini E, Falcone G, Frusciante S. et al. Dissection of tomato lycopene biosynthesis through virus-induced gene silencing. Plant Physiol. 2013;163:986–98. https://doi.org/10.1104/pp.113.224733.
129. Jang S-J, Jeong H-B, Jung A. et al. Phytone synthase 2 can compensate for the absence of Psy1 in capsicum fruit. J Exp Bot. 2020.

130. Qin G et al. Disruption of phytone desaturase gene results in albino and dwarf phenotypes in Arabidopsis by impairing chlorophyll, carotenoid, and gibberellin biosynthesis. Cell Res. 2007;17:471–82. https://doi.org/10.1038/cr.2007.40.

131. Killiny N, Nehela Y. Absciscic acid deficiency caused by phytone desaturase silencing is associated with dwarfing syndrome in citrus. Plant Cell Rep. 2019;38:965–80.

132. Fu D-Q, Zhu B-Z, Zhu H-L. Carotenoid cleavage dioxygenase 1 genes contribute to the deeper study in Crocus sativus and its allies. Genomics. 2010;96:239–50.

133. Naing AH, Kyu SY, Pe PPW et al. Genomic analysis and gene structure of the plant carotenoid dioxygenase 4 family: a deeper study in Crocus sativus and its allies. Genomics. 2010;96:239–50.

134. Rubio-Moraga A, Rambla JL, Fernández-de-Carmen A. et al. New target carotenoids for CCD4 enzymes are revealed with the characterization of a novel stress-induced carotenoid cleavage dioxygenase gene from Crocus sativus. Plant Mol Biol. 2014;86:555–69.

135. Hou X, Liu X, Jiang S. et al. Candidate gene analysis reveals that the fruit color locus C1 corresponds to PRR2 in pepper (Capsicum frutescens). Front Plant Sci. 2020;11:399.

136. Isaacson T, Ohad I, Beyer P. et al. Network inference analysis identifies an AFRR2-like gene linked to pigment accumulation in tomato and pepper fruits. Plant Physiol. 2013;161:1476–85.

137. Powell AL, Nguyen CV, Hill T. et al. Uniform ripening encodes a Golden 2-like transcription factor regulating tomato fruit chloroplast development. Science. 2012;336:1715–5.

138. Chen M, Liu X, Jiang S. et al. Transcriptomic and functional analyses reveal that PpGLK1 regulates chloroplast development in peach (Prunus persica). Front Plant Sci. 2018;9:34. https://doi.org/10.3389/fpls.2018.00034.

139. Bernhardt A, Lechner E, Hano P. et al. CUL14 associates with DDB1 and DET1 and its downregulation affects diverse aspects of development in Arabidopsis thaliana. Plant J. 2006;47:591–603.

140. Cunningham FX, Gantt E. Elucidation of the pathway to astaxanthin in the flowers of Adonis aestivalis. Plant Cell. 2011;23:3055–69.

141. Valadon L, Mummery RS. Carotenoids of lilies and of red pepper: biogenesis of capsanthin and capsorubin. Z Pflanzenphysiol. 1977;82:407–16.

142. Hou X, Rivers J, León P. et al. Analysis in vitro of the enzyme CRTISO establishes a poly-cis-carotenoid biosynthesis pathway in plants. Plant Physiol. 2010;153:66–79.

143. Li F, Murillo C, Wurtzel ET. Maize Y9 encodes a product essential for 15-cis-ε-carotene isomerization. Plant Physiol. 2007;144:1181–9.

144. Isaacson T, Ohad I, Beyer P. et al. Identification of the carotenoid isomerase provides insight into carotenoid biosynthesis, prolamellar body formation, and photomorphogenesis. Plant Cell. 2002;14:321–32.

145. Cazzonelli CI, Hou X, Alagöz Y. et al. Identification of a cis-carotene derived apocarotenoid regulates etioplast and chloroplast development. elife. 2020;9 https://doi.org/10.7554/elife.45310.

146. Kachanovsky DE, Filler S, Isaacson T. et al. Epistasis in tomato color mutations involves regulation of phytone synthase 1 expression by cis-carotenoids. Proc Natl Acad Sci. 2012;109:19021–6.

147. Alexander L, Grierson D. Ethylene biosynthesis and action in tomato: a model for climacteric fruit ripening. J Exp Bot. 2002;53:2039–55.

148. Li L, Zhu B, Fu D. et al. RIN transcription factor plays an important role in ethylene biosynthesis of tomato fruit ripening. J Sci Food Agric. 2011;91:2308–14.

149. Manning K, Tör M, Poole M. et al. Uniform ripening encodes a naturally occurring epigeic factor inhibiting tomato fruit ripening. Nat Genet. 2006;38:948.

150. Gao Y,Wei W, Zhao X. et al. A NAC transcription factor, NOR-like1, is a new positive regulator of tomato fruit ripening. Horticulture research. 2018;5:1–18.

151. Lin Z, Hong Y, Yin M. et al. A tomato HD-zip homeobox protein, LeHB-1, plays an important role in floral organogenesis and ripening. Plant J. 2008;55:301–10.

152. Kou X, Zhaoa Y, Wu C. et al. SNAC4 and SNAC9 transcription factors show contrasting effects on tomato carotenoids biosynthesis and softening. Postharvest Biol Technol. 2018;144:9–19.

153. Ahrazem O, Trapero A, Gómez MD. et al. Genomic analysis and gene structure of the plant carotenoid dioxygenase family: a deeper study in Crocus sativus and its allies. Genomics. 2010;96:239–50.
Wang L, Zhang X-L, Wang L. et al. Regulation of ethylene-responsive SLWKYs involved in color change during tomato fruit ripening. Sci Rep. 2017;7:1–17.

Cherian S, Figueras CR, Nair H. ‘Movers and shakers’ in the regulation of fruit ripening: a cross-dissection of climacteric versus non-climacteric fruit. J Exp Bot. 2014;65:4705–22.

Jia H, Wang Y, Sun M. et al. Sucrose functions as a signal involved in the regulation of strawberry fruit development and ripening. New Phytol. 2013;198:453–65.

Chai Y-M, Jia H-F, Li C-L. et al. FaPYR1 is involved in strawberry fruit ripening. J Exp Bot. 2011;62:5079–89.

Chai L, Shen Y-Y. FaABI4 is involved in strawberry fruit ripening. Sci Hortic. 2016;210:34–40.

Guo J, Wang S, Yu X. et al. Polyamines regulate strawberry fruit ripening by abscisic acid, auxin, and ethylene. Plant Physiol. 2018;177:339–51.

Villarreal NM, Bustamante CA, Civello PM. et al. Effect of ethylene and 1-MCP treatments on strawberry fruit ripening. J Sci Food Agric. 2010;90:685–9.

Hou B-Z, Li C-L, Han Y-Y. et al. Characterization of the hot pepper (Capsicum frutescens) fruit ripening regulated by ethylene and ABA. BMC Plant Biol. 2018;18:162.

Sun J-H, Luo J-J, Tian L. et al. New evidence for the role of ethylene in strawberry fruit ripening. J Plant Growth Regul. 2013;32:461–70.

Ji K, Kai W, Zhao B. et al. SINCED1 and SICYP707A2: key genes involved in ABA metabolism during tomato fruit ripening. J Exp Bot. 2014;65:5243–55.

Phillips MA, León P, Boronat A. et al. The plastidial MEP pathway: unified nomenclature and resources. Trends Plant Sci. 2008;13:619–23.

Ahn CS, Pai H-S. Physiological function of IspE, a plastid MEP pathway gene for isoprenoid biosynthesis, in organelle biogenesis and cell morphogenesis in Nicotiana benthamiana. Plant Mol Biol. 2008;66:503–17. https://doi.org/10.1007/s11103-007-9286-0.

Page JE, Hause G, Raschke M. et al. Functional analysis of the final steps of the 1-deoxy-D-xylulose 5-phosphate (DXP) pathway to isoprenoids in plants using virus-induced gene silencing. Plant Physiol. 2004;134:1401–13.

de la Luz Gutiérrez-Nava M, Gillmor CS, Jiménez LF. et al. CHLOROPLAST BIOGENESIS genes act cell and noncell autonomously in early chloroplast development. Plant Physiol. 2004;135:471–82.

Mandel MA, Feldmann KA, Herrera-Estrella L. et al. CLA1, a novel gene required for chloroplast development, is highly conserved in evolution. Plant J. 1996;9:649–58.

Cordoba E, Salmi M, León P. Unravelling the regulatory mechanisms that modulate the MEP pathway in higher plants. J Exp Bot. 2009;60:2933–43.

Xing S, Miao J, Li S. et al. Disruption of the 1-deoxy-D-xylulose-5-phosphate reductoisomerase (DXR) gene results in albino, dwarf and defects in trichome initiation and stomata closure in Arabidopsis. Cell Res. 2010;20:688–700.

Hsieh M-H, Chang C-Y, Hsu S-J. et al. Chloroplast localization of methylenetetrahydrol 4-phosphate pathway enzymes and regulation of mitochondrial genes in ispD and ispE albino mutants in Arabidopsis. Plant Mol Biol. 2008;66:663–73.

Busch M, Seuter A, Hain R. Functional analysis of the early steps of carotenoid biosynthesis in tobacco. Plant Physiol. 2002;128:439–53.

Fray RG, Wallace A, Fraser PD. et al. Constitutive expression of a fruit phytoene synthase gene in transgenic tomatoes causes dwarfism by redirecting metabolites from the gibberellin pathway. Plant J. 1995;8:693–701.

Hasan MM, Kim H-S, Jeon J-H. et al. Metabolic engineering of Nicotiana benthamiana for the increased production of taxadiene. Plant Cell Rep. 2014;33:895–904.

Ming R, VanBuren R, Wai CM. et al. The pineapple genome and the evolution of CAM photosynthesis. Nat Genet. 2015;47:1435–42.

Alioto T, Alexiou KG, Bardil A. et al. Transposons played a major role in the diversification between the closely related almond and peach genomes: results from the almond genome sequence. Plant J. 2020;101:455–72.

Sánchez-Pérez R, Pavan S, Mazzeo R. et al. Mutation of a bHLH transcription factor allowed almond domestication. Science. 2019;364:1095–8.

Wang P, Luo Y, Huang J. et al. The genome evolution and domestication of tropical fruit mango. Genome Biol. 2020;21:1–17.

Nock CJ. et al. Chromosome-scale assembly and annotation of the macadamia genome (Macadamia integrifolia HAES 741). G3: Genes, Genomes, Genetics. 2020;10:3497–504.

Rendón-Anaya M, Ibarra-Laclette E, Méndez-Brazo A. et al. The avocado genome informs deep angiosperm phylogeny, highlights introgressive hybridization, and reveals pathogen-influenced gene space adaptation. Proc Natl Acad Sci. 2019;116:17081–9.

Wang Z, Yu Q, Shen W. et al. Functional study of CHS gene family members in citrus revealed a novel CHS gene affecting the production of flavonoids. BMC Plant Biol. 2018;18:1–13.

Wang F, Wang M, Liu X. et al. Identification of putative genes involved in limonoids biosynthesis in citrus by comparative transcriptomic analysis. Front Plant Sci. 2017;8:782.

Cai C, Zhang X, Niu E. et al. GhPSY, a phytoene synthase gene, is related to the red plant phenotype in upland cotton (Gossypium hirsutum L.). Mol Biol Rep. 2014;41:491–52.

Fu D-Q, Meng L-H, Zhu B-Z. et al. Silencing of the SlNAP7 gene influences plastid development and lycopen accumulation in tomato. Sci Rep. 2016;6:38664.

Liu E, Page JE. Optimized cDNA libraries for virus-induced gene silencing (VIGS) using tobacco rattle virus. Plant Methods. 2008;4:5. https://doi.org/10.1186/1746-4811-4-5.

Shi G, Hao M, Tian B. et al. A methodological advance of tobacco rattle virus-induced gene silencing for functional genomics in plants. Frontiers in Plant Science (Review). 2021;12. https://doi.org/10.3389/fpls.2021.671091.

Fernandez-Pozo N, Rosili HG, Martin GB. et al. The SGN VIGS tool: user-friendly software to design virus-induced gene silencing (VIGS) constructs for functional genomics. Mol Plant. 2015;8:486–8.

Ahmed F, Senthil-Kumar M, Dai X. et al. pssRNAit: a web server for designing effective and specific plant siRNAs with genome-wide off-target assessment. Plant Physiol. 2020;184:65–81. https://doi.org/10.1104/pp.20.00293.

Orzaez D, Medina A, Torre S. et al. A visual reporter system for virus-induced gene silencing in tomato fruit based on anthocyanin accumulation. Plant Physiol. 2009;150:1122–34.

Velten J, Cakir C, Youn E. et al. Transgene silencing and transgene-derived siRNA production in tobacco plants homozygous for an introduced AtMYB90 construct. Plant Cell Rep. 2012;31:30141. https://doi.org/10.1371/journal.pone.0030141.
205. Burch-Smith TM, Schiff M, Liu Y. et al. Efficient virus-induced gene silencing in Arabidopsis. Plant Physiol. 2006;142:21–7. https://doi.org/10.1104/pp.106.084624.

206. Cheuk A, Houde M. A new barley stripe mosaic virus allows large protein overexpression for rapid function analysis. Plant Physiol. 2018;176:1919–31.

207. Hwang MS, Lindenmuth BE, McDonald KA. et al. Bipartite and tripartite cucumber mosaic virus-based vectors for producing the Acidothermus cellulolyticus endo-1, 4-β-glucanase and other proteins in non-transgenic plants. BMC Biotechnol. 2012;12:66.

208. Wang Y, Cong Q-Q, Lan Y-F. et al. Development of new potato virus X-based vectors for gene over-expression and gene silencing assay. Virus Res. 2014;191:62–9.

209. Wang Q, Ma X, Qian S. et al. Rescue of a plant negative-strand RNA virus from cloned cDNA: insights into enveloped plant virus movement and morphogenesis. PLoS Pathog. 2015;11:e1005223.

210. Gao Q, Xu W-Y, Yan T. et al. Rescue of a plant cytorhabdovirus as versatile expression platforms for planthopper and cereal genomic studies. New Phytol. 2019;223:2120–33.

211. Zhang X, Kang L, Zhang Q. et al. An RNAi suppressor activates in planta virus–mediated gene editing. Functional & integrative genomics. 2019;1–7.

212. Uranga M, Aragoné S, Selma S. et al. Efficient Cas9 multiplex editing using unspaced sgRNA arrays engineering in a potato virus X vector. Plant J. 2021;106:555–65. https://doi.org/10.1111/tpj.15164.

213. Uranga M, Vazquez-Vilar M, Orzáez D. et al. CRISPR-Cas12a genome editing at the whole-plant level using two compatible RNA virus vectors. bioRxiv 2021.04.19.440450. 2021. https://doi.org/10.1101/2021.04.19.440450.

214. Pausch P, Al-Shayeb B, Bisom-Rapp E. et al. CRISPR-CasΦ from huge phages is a hypercompact genome editor. Science. 2020;369:333–7.

215. Flachowsky H, Hanke MV, Peil A. et al. A review on transgenic approaches to accelerate breeding of woody plants. Plant Breed. 2009;128:217–26.