Enzymatic Treatment of Specimens before DNA Extraction Directly Influences Molecular Detection of Infectious Agents

Pablo Goldschmidt*, Sandrine Degorge, Lilia Merabet, Christine Chaumeil
Laboratoire du Centre Hospitalier National d'Ophtalmologie des Quinze-Vingts, Paris, France

Abstract

Introduction: Biological samples, pharmaceuticals or food contain proteins, lipids, polymers, ammoniums and macromolecules that alter the detection of infectious agents by DNA amplification techniques (PCR). Moreover the targeted DNA has to be released from the complex cell walls and the compact nucleoprotein matrices and cleared from potential inhibitors. The goal of the present work was to assess the efficiency of enzymatic pretreatments on infectious agents to make DNA available for further extraction and amplification.

Methods: Staphylococcus epidermidis, Streptococcus mitis, Propionibacterium acnes, Escherichia coli, Pseudomonas aeruginosa, Candida albicans, Aspergillus niger and Fusarium solani were mixed with an internal control virus and treated with: 1) proteinase K; 2) lyticase and 3) lyticase followed by proteinase K. DNAs was manually extracted using the QIAmp DNA Mini kit or the MagNA Pure Compact automate. DNA extraction yields and the inhibitors were assessed with a phocid HRM (real-time PCR followed by high-resolution melting analysis).

Results: Viral DNA was released, extracted and detected using manual and automatic methods without pre enzymatic treatments. Either the manual or the automatic DNA extraction systems did not meet the sensitivity expectations if enzymatic treatments were not performed before: lyticase for Fungi and Proteinase K for Bacteria. The addition of lyticase and proteinase K did not improve results. For Fungi the detection after lyticase was higher than for Proteinase K, for which melting analysis did not allow fungal specification.

Discussion: Columns and magnetic beads allowed collecting DNA and separate PCR inhibitors. Detection rates cannot be related to DNA-avidity of beads or to elution but to the lack of proteolysis.

Citation: Goldschmidt P, Degorge S, Merabet L, Chaumeil C (2014) Enzymatic Treatment of Specimens before DNA Extraction Directly Influences Molecular Detection of Infectious Agents. PLoS ONE 9(6): e94886. doi:10.1371/journal.pone.0094886

Editor: Deborah Dean, University of California, San Francisco, University of California, Berkeley, and the Children's Hospital Oakland Research Institute, United States of America

Received January 27, 2014; Accepted March 20, 2014; Published June 17, 2014

Copyright: © 2014 Goldschmidt et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: No current funding sources for this study. The hospital management had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: pablogol@aol.com

Introduction

In situations where rapid diagnostic decisions are required, the culture methods (gold standard) take several hours to days to yield results and may produce erroneous results for fastidious species [1]. The culture performances depend among other factors on the type of agent, the microbial load, the mass of material that can be processed, the residual level of antibiotics, antiseptics or antifungal agents to make DNA available for further extraction and amplification. The nucleic-acid amplification based tests (NAATs) show higher sensitivity than cultures and are less affected by the prior use of antibiotics or antifungal agents [14,15]. However, the tests based on the classic polymerase chain reaction technology (PCR) are unable to differentiate among species and require post amplification procedures (restriction enzyme digestion and analysis; single-base extension; hybridization probes or molecular sequencing) [7,8,16,17]. Species characterization may require DNA sequencing (laborious, expensive and difficult to be performed on primary samples for daily diagnosis in clinical sets) [15–18]. To improve microbiology diagnosis and sterility testing directly from samples we developed rapid molecular approaches producing in only one run a series of quantifiable signals, in which relevance is automatically interpreted. These tests are carried out in an environment kept closed after the DNA extraction [19–21].
Preparation of quantified bacterial and fungal suspensions

To reduce the over representation of DNA from non-viable microorganisms, one colony of *Staphylococcus epidermidis*, *Streptococcus mitis*, *Propionibacterium acnes*, *Pseudomonas aeruginosa*, *Candida albicans*, *Aspergillus niger* and * Fusarium solani* was scraped from the agar plates, suspended and re plated on a solid rich-agar (Fungi were plated on Sabouraud’s solid agar). After 24 hours, one colony was scraped from the second plate, suspended in Phosphate Buffer Solution (PBS) and tenfold diluted. Each dilution was divided in several aliquots; three were plated on agar to assess the number of colonies (equivalent CFU/ml) and the others kept as calibrators. Randomized tubes containing saline were spiked with titrated bacterial or fungal suspensions (10^2 to 10^5 CFU/ml).

DNA extraction procedures

The DNA extraction procedures were carried out in a vertical safety laminar flow cabinet in a dedicated room. To monitor the extraction yields and the absence of PCR inhibitors the internal control (IC, high molecular-mass tracer) consisting of 5 µl of a whole virus (gift from G. J. van Doornum, Dept. of Virology Erasmus MC, Rotterdam, The Netherlands) was added to each suspension before extraction (final concentration of 1000 to 2000 viral particles/ml) [19–21,30,31]. Each reaction was validated if the differences in the Ct values for the IC for each sample were < 2.0 respect to the value for the IC suspended in saline. For the 3 pre-treatments the final volume (specimen + enzymes + buffer) was homogenized (300 µl) and 100 µl were extracted.

Proteinase K treatment

Proteinase K (QIagen, France) is a serine protease that cleaves the peptide bond adjacent to the carboxyl group of aliphatic and aromatic amino acids with blocked alpha amino groups [32]. Each suspension (sample + IC) was mixed with tris-EDTA buffer (inhibition of calcium-dependent nucleases) and 100 µl of proteinase K and incubated at 37°C for 60 min and heated at 94°C for 10 min to inactivate the enzyme. One hundred µl were used for DNA extraction [20].

Lyticase treatment

Lyticase (Sigma-Aldrich, France) is a synergistic enzyme complex of endoglucanase and protease that catalyzes yeast cell lysis by β-1,3-glucanase (linear glucose polymers at beta-1,3-linkages) and a highly specific alkaline protease activity, producing protoplasts or spheroplasts [33].

Bacterial or fungal suspensions (samples + IC) were mixed with tris-EDTA buffer and 10 U recombinant lyticase/100 µl of suspension and incubated at 37°C for 60 min. The suspensions were vortexed thoroughly, heated for 10 min at 94°C, cooled and 100 µl were used for DNA extraction [30,34].

Proteinase K followed by Lyticase treatment

Each specimen (sample + IC) was mixed with tris-EDTA buffer and 10 U recombinant lyticase (Sigma-Aldrich, France)/100 µl of suspension and incubated at 37°C for 60 min. After incubation, the suspensions were vortexed thoroughly, heated for 10 min at 94°C and after cooling at room temperature 100 µl were mixed with tris-EDTA buffer and 100 µl of proteinase K and incubated at 37°C for 60 min and heated at 94°C for 10 min to inactivate the enzyme and extracted.

Bacterial or fungal suspensions (samples + IC) were mixed with tris-EDTA buffer and 10 U recombinant lyticase (Sigma-Aldrich, France)/100 µl of suspension and incubated at 37°C for 60 min. After incubation, the suspensions were vortexed thoroughly, heated for 10 min at 94°C and after cooling at room temperature 100 µl were mixed with tris-EDTA buffer and 100 µl of proteinase K and incubated at 37°C for 60 min and heated at 94°C for 10 min to inactivate the enzyme and extracted.
DNA extraction procedures

QI(Amp DNA Mini kit and MagNA Pure Nucleic Acid isolation kit. The DNA extraction was performed manually using the solid column-based extraction kit QI(Amp DNA Mini kit tissue protocol (Qiagen, France) or by magnetic beads using the MagNA Pure Nucleic Acid isolation kit with the MagNA Pure Compact (Roche) automate. Nucleic acids were eluted in 100 μl of DNA free distilled-water. The time needed for the manual QI(Amp procedure was 120 min with no additional equipment required and for MagNA Pure less than 28 min with a specific dedicated robot.

Detection and characterization of Bacteria. Bacterial detection was performed using real-time PCR with primers chosen from regions of identity within the 16S rDNA following the alignment of sequences outlined in Bergey’s Manual of Determinative Bacteriology [35,36]. Testing was carried out by adding 10 μl of the extracted DNA to each of the 4 tubes containing the primers (0.5 uM) and fluorophore-labelled TaqMan probes (0.5 uM) in 10 μl of TaqMan FAST Universal PCR Mastermix (Applied Biosystems-France Ref. 432042). The cycling program consisted in 1 cycle at 95°C for 10 min and 45 cycles of amplification (15 s at 95°C, 8 s at 52°C, and 10 s at 72°C). Each run contained negative controls with no template and DNA extracts from the reactants [20,21].

Rates of extraction of DNA and detection of Taq polymerase inhibitors. The extraction yields of DNA and the polymerase inhibitors were assessed using a phocid H. influenzae as internal control (IC) for both the TaqMan real-time PCR for *Bacteria* and the HRM for *Fungi*. If more than one probe had to be introduced into one reaction tube (for real-time PCR), the differences in the emission wavelength spectrums of the fluorophores were separated in the spectra at least for 15 nanometers. The IC primer sequences were: 5’GGGGCAATCTACAGATATGCCAT and 5’TGCCTGTTCCGAGCGTCAT (forward primer) and HRM probe for *H. influenzae* as IC. These results confirm that both extraction systems eliminate the potential PCR inhibitors for agents suspended in saline [20,30]. Surprisingly, the different enzymatic pretreatments show that the IC Cts were almost identical for all (virus) but not for *Bacteria* or *Fungi*, for which the Cts were significantly different depending from the pretreatment before magnetic bead automatic DNA extraction (differences <3 Cts). In Table S1 and Table S2 are presented the results after 3 different enzymatic pre-treatments on spiked suspensions. For the lowest bacterial and fungal loads (equivalent to 10^2 CFU/ml) neither the manual nor the automatic DNA extraction systems meet the highest sensitivity expectations if lyticase (to transform rigid yeast and spores in fragilized spheroplasts [33,43]) or proteinase K pretreatments were not carried out respectively for *Fungi* or for *Bacteria*.

Detection of yeasts and filamentous *Fungi* by HRM (real-time PCR with high resolution melting analysis). The selected primers bracket significant polymorphisms of multicopy ribosomal genes of the 18S ribosomal RNA gene [30,36–38]. The Primer 1: HRM CandUn: 5’CATGCTGTGTGTCGGCGTC (conserved sequences of *Fungi*), and the Primer 2: HRM FungUn: 5’TCTCGGCTATTTGATA TGCT (conserved regions of all *Fungi*) allow obtaining profiles for the different yeasts according to the sizes of amplicons (alignment of sequences according to EMBL data library). The amplicon size for Candida albicans (nucleotides bracketed by the primers CandUn + FungUn) is 189. The primer sequences for filamentous *Fungi* produce amplicons of 180 to 210 nucleotides. The selected sequences are: HRM FilamUn: 5’TGGCTGTGTGGCCAGGCGTAT (forward primer) and HRM FungUn: 5’TCTCGGCTATTTGATA TGCT [30,38,39].

For HRM 10 μl of DNA extract were introduced in 2 tubes, the first containing CandUn + FungUn in the Master Mix for HRM (MMHRM, Applied Biosystems, France) and the second FilamUn + FungUn. The neo formed amplicons were measured in a closed tube format using integrated cycler/fluorometer ABI 7500 upgraded equipment and monitored using the fluorescent SYTO9 DNA intercalating dye present in the MMHRM. The PCR program started with a denaturation of 10 min at 95°C, followed by 55 cycles of amplification (15 s at 95°C, 30 s at 60°C and 30 s at 72°C). The PCR-HRM curve was drafted after denaturation at 95°C for 15 sec, cooling to 50°C for 1 min and a temperature increase until 60°C for 15 sec with a 2.2°C/s ramp rate. Samples with fluorescence of less than the 100% of the maximum were excluded from the analysis. The melting temperature (Tm) at which 50% of the DNA is in the double stranded state was assessed by taking the derivative of the melting curve. The DNA patterns of the derivative plot (difference plot) were used for amplicon analysis [38].

For HRM the additional IC detection was carried out in a dedicated tube containing 18.5 μl of the TaqMan FAST’ Universal PCR Mastermix (2x no Amperase UNG) (Applied Biosystems-France Ref. 4352042), the forward and the reverse primers (0.5 μM each) with or without the fluorophore-labelled TaqMan probe (0.5 uM). This solution was mixed with 5 μl of the DNA eluted in DNA and RNA-free solution. The PCR cycling program consisted of one cycle at 95°C for 20 sec and 45 cycles at 95°C for 3 sec and 30 sec at 60°C [39].

Results

The Cts for the ICs indicate viral DNA was released and extracted using the manual solid column-based extraction kit QIAamp and the MagNA Pure Nucleic Acid isolation kit (Roche) with the MagNA Pure Compact (Roche) automate. For the 2 methods pre enzymatic treatments did not improve the rate of detection of the phocid *H. influenzae* used as IC. These results confirm that both extraction systems eliminate the potential PCR inhibitors for agents suspended in saline [20,30]. Surprisingly, the different enzymatic pretreatments show that the IC Cts were almost identical for all (virus) but not for *Bacteria* or *Fungi*, for which the Cts were significantly different depending from the pretreatment before magnetic bead automatic DNA extraction (differences >3 Cts).

In Table S1 and Table S2 are presented the results after 3 different enzymatic pre-treatments on spiked suspensions. For the lowest bacterial and fungal loads (equivalent to 10^2 CFU/ml) neither the manual nor the automatic DNA extraction systems meet the highest sensitivity expectations if lyticase (to transform rigid yeast and spores in fragilized spheroplasts [33,43]) or proteinase K pretreatments were not carried out respectively for *Fungi* or for *Bacteria*.

The pretreatment of specimens with lyticase produced low detection real-time PCR rates for several *Bacteria* at concentrations of 10^2 CFU/ml using the universal BacUn probe [17,20]. The performances were repeatedly reduced for 5 *Bacteria* pre-treated with lyticase, for which Cts were delayed for more than 3 cycles (>1 log PFU/ml) for Streplococi, Staphylococi, Propionibacteria, E. coli, and *P. aeruginosa*. The lack of efficiency of lyticase treatment was confirmed with the specific probes for *Enterobacteria*, for Gram positive cocci and for 4 different *Genera* [20]. The addition of a lyticase to the proteinase K pre-treatment K did not improve *Bacteria* detection using Taqman real-time PCR.

On the other hand, fungal detection was conducted by simultaneous amplification of DNA extracts in 2 tubes, the first with the set of primers CandUn + FungUn and the second with FilamUn + FungUn. The patterns of the first derivative (difference plot) permitted differentiation of yeasts from filamentous *Fungi*. For Candida albicans, Aspergillus niger and Fusarium solani the detection limits were significantly reduced after proteinase K pre-treatment of compared to those achieved after lyticase (Table S2). Moreover, during the amplification process the specimens spiked with *Fungi* and treated with proteinase K produced signals that could suggest that *Fungi* were present (at concentrations of 10^3 CFU/ml or higher) but the melting curve analysis did not allow their specification (identification) [37–39].
Discussion

The results of this study confirm that a) that the Taqman real-time PCR is able to detect and semi quantify Bacteria and differentiates among several Genera [20,31], and b) the automatic melting analysis of fungal sequences amplified with 2 sets of primers (HRM) allows detection and semi quantification of Fungi [39]. Both approaches were performed without post amplification procedures (gel electrophoresis, hybridizations or immunoenzymatic assays, sequencing, ampiclon restriction enzyme analysis, etc.).

For fungal detection the patterns of the first (difference plot) dye-melting derivative curve analysis drafted profiles validated only if the Ct values for the IC compared to the blank were not delayed for more than 2.0 cycles.

One of the major limitations firstly describe for the diagnosis techniques based on NAATs was the inhibition of the amplification process by substances in the samples [40,41]. Therefore, all the specimens were spiked with a known amount of a phocid Herpesvirus (IC) [42]. The IC signals (TaqMan real-time PCR) triggered by the IC in the bacterial or fungal suspensions were identical to their respective controls (phocid Herpesvirus diluted in PBS and extracted). Both, the column and the Magnetic silica bead-based strategies allowed collecting DNA and separate the PCR inhibitors and both, lyticase and proteinase K treatments before extraction produced satisfactory results for the extracted IC. On the above, the differences in Bacteria and Fungi detection cannot be directly associated to the avidity of the magnetic beads or to the intrinsic capacity of the solid columns to bind DNA, nor to the inefficiency of the elution procedures. Hence, the differences in detection rates suggest that the enzymatic pretreatments with proteinase K are not efficient for detecting low amounts of Fungi and the pretreatments with lyticase are insufficient to release DNA from Bacteria (the signals not detected represent potential risks for false negative results) [28].

Several studies evaluated manual the methods for the extraction of DNA from Bacteria (QIAmp Blood kit, Roche high PCR template, Puregene, boiling, glass beads/sonication and wash/alkali/heat lysis) and showed that the wash/alkali/heat lysis method was sensitive enough, reproducible and cost effective, and did remove the PCR inhibitors [43]. For intracellular Bacteria (Chlamydia trachomatis) four manual DNA extraction techniques: a) 65°C phenol, b) incubation at 97°C, c) proteinase K and d) extraction and elution using the QIAmp tissue kit, showed that the digestion with proteinase K and the heat denaturation were unable to eliminate PCR inhibitors and that only a proteinase K pretreatment followed by QIAmp extraction or by MagNAPure or the hot phenol extraction produced high detection rates [19,22].

For EDTA-human blood spiked with Bacteria the DNA recovery capacities of several commercial kits (manual QIAmp DNA Mini kit and the High Pure PCR Template Preparation kit, and two automated systems with magnetic beads [MagNA Pure LC with the DNA Isolation Kit I, and the QIAcube using the QIAamp DNA Mini kit and the QIAamp DNA Blood Mini kit) were studied. Without enzymatic pretreatment the QIAmp DNA Mini, the MagNA Pure Compact, and the QIAcube running the QIAamp DNA Mini and QIAamp DNA Blood Mini produced detectable signals for blood spiked with 5.5×10^6 CFU/ml of Fungi [43–46]. However, in the present study, the treatment with proteinase K followed by the extraction procedures allowed consistently detecting 10^2 CFU/ml of Bacteria and Fungi suspended in saline.

The performances of seven different methods for manual DNA extraction from Candida, Aspergillus and Cryptococcus sp. have been studied for: 1-lyticase and QIAgen column; 2- the lyticase step replaced by glass beads + QIAgen column (30 s at maximum speed in a bead beater followed by centrifugation at full speed for 10 min; 3-MasterPure yeast DNA purification kit (Epicentre, US); 4- benzyl alcohol/guanidine hydrochloride (BAGH)/DNA extraction [3]; 5- gene trapping by liquid extraction (DrGenTle, Takara Bio Japan) and extra phenol clean-up steps; 6-yeast DNA extraction reagent Y-DER (Pierce Biotechnology, US) with the addition of linear acrylamide (Ambion, US) before 2-propanol precipitation, and 7- Yeastar genomic DNA zymolase kit (Zymo Research US), followed by spin-column purification. The manual DNA extraction by either the guanidium isothiocyanate-silica method [42] or by the QIAmp tissue kit yielded the best results if minibead heating treatments were carried out before extraction to mechanically disrupt the yeast cell walls [25,26,43,44]. For cell suspensions, cotton, foam and polyester swabs spiked with Fungi the performances of the automated and manual DNA extraction methods were compared (automated MagNA Pure Compact and QIAcube, and the manual IT 1-2-3 DNA sample purification kit, the MasterPure Complete DNA and RNA purification kit, the QIAamp DNA blood mini kit, and the UltraClean Microbial DNA isolation kit). The results were similar for DNA extracted with both automated methods and with the manual MasterPure and QIAamp, indicating that automated extractions are suitable alternatives to laborious methods for the routine isolation of DNA [45].

In this study the stringent procedures for specimen processing and the technological contribution of the real-time PCR and the HRM (tubes kept closed during the whole procedure of amplification and during signal analysis) minimized the risks for cross contamination and false positive conclusions [15,20,28]. On the other hand, it could have been expected that Taqman real time PCR and HRM also minimized the risks for false negative results (these techniques are extremely sensitive and the yields of extraction of DNA were assessed by systematic testing the IC introduced in all the specimens before DNA extraction) [20]. However, viruses, free DNA or plasmids used for both manual and automatic DNA extraction procedures appear incapable to reveal the real performances of the extraction procedures. On the above, it appears that NAATs require comprehensive evaluations to proof for samples with low infectious loads that the targeted DNA is available for its amplification after being extracted from the compact matrices of the different infectious agents and from the tissues [47–48]. The picture of patients with fungaemia, in which the fungal load in blood can be as low as 1 CFU/ml blood enforces the requirement for systematic optimization of DNA extraction [23,49,50–52].

The first-line therapy for Gram-positive and Gram-negative Bacteria or for yeasts and filamentous Fungi as well as for different yeasts, viruses and parasites is different, and in several clinical situations the highly sensitive and specific diagnosis tests that have to be performed on only one sample may orientate treatments according to the susceptibilities of the detected agents [52–55]. Nevertheless, in clinical environments the potential false negative results frustrate diagnosis and laboratories cannot always count with systematic double checking of PCR results by asking additional samplings (especially central spinal fluid, corneal scrapings, intraocular fluids and biopsies).

So far, for the molecular detection of infectious agents there is no universal enzymatic treatment that warrants optimal DNA release for magnetic bead or column extraction. The material to be tested requires 2 different pretreatments before DNA extraction (manual or automatic) because the highest detection rates for Bacteria and for Protozoa (Cryptosporidia) [28] are achieved after pretreating samples with proteinase K and with lyticase for Fungi. Finally, the optimization diagnosis performances implies a relevant increase in the cost of the DNA extraction procedures because 2
separate devices are necessary, one for DNA extraction after proteinase K and the other after lysis treatment.

Supporting Information

Table S1 Polymerase chain reaction (PCR) results of suspensions spiked with *Bacteria* after treatment with proteinase K and/or lysis. (DOC)

Table S2 High resolution melting real-time PCR (HRM) results of suspensions spiked with yeast or filamentous Fungi after treatment with proteinase K and/or lysis. (DOC)

References

1. Allen SD (1985) Anaerobic Bacteria. Manual of Clinical Microbiology 4th Ed. American Society for Microbiology.
2. Aciooglu S, Rex JH, de Paauw B, Bennett JE, Bille J, et al. (2002) Defining opportunistic invasive fungal infections in immunocompromised patients with cancer and hematopoietic stem cell transplants: an international consensus. Clin Infect Dis 34:7–14.
3. Fredericks DN, Relman DA (1998) Improved amplification of microbial DNA from blood cultures by removal of the PCR inhibitor sodium polyanethol sulfonate. J Clin Microbiol 36: 2810–2816.
4. Fairfax MR, Salminen H (2013) Diagnostic molecular microbiology. Clin Lab Med 33:797–803.
5. Heckenberg SG, Brouwer MC, van de Beek D (2014) Bacterial meningitis. Handb Clin Neuro 121: 1361–75.
6. Seal D, Reischl U, Behr A, Ferrer C, Alio J, et al. (2008) Laboratory diagnosis of endocarditis: comparison of microbiology and molecular methods in the European Society of Cardiac and Refractory Surgeons multicenter study and susceptibility testing. J Cataract Refract Surg 34:1439–50.
7. Ratanarat R, Cazzavillan S, Ricci Z, Rausu M, Segala C, et al. (2007) Usefulness of a molecular strategy for the detection of bacterial DNA in patients with severe sepsis undergoing continuous renal replacement therapy. Blood Purif 25:106–11.
8. Thivolet-Bejui, Vandenesch F (2005) Molecular diagnosis of infective endocarditis by PCR amplification and direct sequencing of DNA from valve tissue. J Clin Microbiol 41:763–766.
9. Ng JQ, Moetet P, Pearman J, Constanble J, McAllister I, et al. (2005) Management and outcomes of postoperative endocarditis since the endocarditis vitrectomy study: The Endocarditis Population Study of Western Australia (EPSWA)'s fifth report. Ophthalmol 112:1199–206.
10. Poppert S, Essig A, Stoehr B, Steingruber A, Wirths B, et al. (2005) Rapid diagnosis of bacterial meningitis by real-time PCR and fluoroscein in situ hybridization. J Clin Microbiol 43:3990–7.
11. Allan E, Jordanius N, McInloit L, Copland M, Devaney M, et al. (2005) Poor prediction of galactomannan and mannan sandwich enzyme-linked immunoassay in the diagnosis of invasive fungal infection. Br J Haematol 128:593–7.
12. Horvath J, George B, Murray C, Harrison L, Hospenthal D (2004) Direct comparison of the BACTEC 9240 and BacT/ALERT 3D automated blood culture systems for Candida growth detection. J Clin Microbiol 42:115–8.
13. Surinder K, Binettea K, Megha M (2007) Latex particle agglutination test as an adjunct to the diagnosis of bacterial meningitis. Indian J Med Microbiol 25:393–7.
14. Obara H, Aikawa N, Hasegawa N, Hori S, Ikeda Y, et al. (2011) The role of a real-time PCR technology for rapid identification and characterization of bacterial and fungal pathogens in whole-blood samples. J Infect Chemother 17:327–33.
15. Weidner-Olsson C, Dotevall L, Hogevik H, Jungnelius R, Trollfors B, et al. (1994) PCR primers and probes for certain fungal pathogens. J Infect Dis 169:1333–8.
16. Greisen K, Loeffelholz M, Purohit A, Leong D (1994) PCR primers and probes for certain fungal pathogens. J Infect Dis 169:1333–8.
17. Mohammadi T, Pietersz RN, Vandenbroucke-Grauls CM, Savelkoul PH, et al. (2004) Detection of yeast in whole-blood samples by real time PCR. J Clin Microbiol 42:2756–63.
18. Loffler J, Hebart H, Schumacher U, Reitze H, Einsele H (1997) Comparison of different methods for extraction of DNA of fungal pathogens from cultures and blood. J Clin Microbiol 35: 3311–3312.
19. Henning L, Felger I, Beck HP (1999) Rapid DNA extraction for molecular epidemiological studies of malaria. Acta Trop 72:149–55.
20. Boom R, Sol C, Salimans M, Jansen C, Verhe Astrvin D, et al. (1990) Rapid and simple method for purification of nucleic acids. J Clin Microbiol 28:495–503.
21. Metwally L, Fairley DJ, Coyle PV, Hay RJ, Hedderwick S, et al. (2008) Improving molecular detection of Candida DNA in whole blood: comparison of seven fungal DNA extraction protocols using real-time PCR. J Med Microbiol 57:296–303.
22. Bretagne S, Costa JM (2005) Towards a molecular diagnosis of invasive aspergillosis and disseminated candidiasis. FEMS Immunol Med Microbiol 45: 361–364.
23. Goldschmidt P, Degorge S, Saint-Jean C, Yera H, Zehnhae F, et al. (2008) Detection of Pneumocystis carinii DNA in blood samples from human immunodeficiency virus-infected patients by nested PCR. J Clin Microbiol 37:127–31.
24. Goldschmidt P, Degorge S, Che Sarria P, Benallaoua D, Semmou O, et al. (2012) New strategy for rapid diagnosis and characterization of fungal infections: the example of cornal scrapings. PLoS One. 2012;7(7):e37660.
25. Goldschmidt P, Ferreira C, Degorge S, Benallaoua D, Bouabd E, et al. (2009) Rapid detection and quantification of Propionibacteriaceae. Br J Ophthalmol 93:258–62.
26. Betzel C, Singh TP, Visani M, Peters K, Fittkau S (1993) Structure of the complex of proteinase K with a substrate analogue hexapeptide inhibitor at 2.2-Å resolution. J Biol Chem 268: 15854–8.
27. Scott JT, Schelke M (1980) Lyticase: endoglucanase and protease activities that act together in yeast cell lysis. J Bacteriol 142:414–23.
28. Martin C, Roberts D, van Der Weide M, Rossau R, James G, et al. (2000) Development of a PCR-based line probe assay for identification of fungal pathogens. J Clin Microbiol 38:3735–42.
29. Holt JD, Krieg NR, Sneath PH, Staley JT, Williams ST, et al. (1994) Bergey's Manual of Determinative Bacteriology 1994 9th Ed. Williams & Wilkins Ed. Baltimore, USA.
30. Altschul SF, Gish W, Miller W, Myers E, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410.
31. Ierme RM, Rasmussen RP, Wittwer CT (1997) Product differentiation by analysis of DNA melting curves during the polymerase chain reaction. Anal Biochem 245:134–60.
32. Reed GH, Kent JO, Wittwer CT (2007) High-resolution DNA melting analysis for simple and efficient molecular diagnostics. Pharmacogenomics 8:597–608.
33. Goldschmidt P, Degorge S, Benallaoua D, Semmou O, Borsali E, et al. (2012) New strategy for rapid diagnosis and characterization of keratoconjunctivitis. Ophthalmol 119:945–50.
34. Goldschmidt P, Rostane H, Saint-Jean C, Degorge S, Benallaoua D, Semmou O, Borsali E, et al. (2012) New strategy for rapid diagnosis and characterization of keratoconjunctivitis. Ophthalmol 119:945–50.
35. Goldschmidt P, Rostane H, Saint-Jean C, Degorge S, Benallaoua D, Semmou O, Borsali E, et al. (2012) New strategy for rapid diagnosis and characterization of keratocysticosis. Ophthalmol 119:945–50.
36. Goldschmidt P, Rostane H, Saint-Jean C, Degorge S, Benallaoua D, Semmou O, Borsali E, et al. (2012) New strategy for rapid diagnosis and characterization of keratoconjunctivitis. Ophthalmol 119:945–50.
37. Scott JT, Schelke M (1980) Lyticase: endoglucanase and protease activities that act together in yeast cell lysis. J Bacteriol 142:414–23.
38. Martin C, Roberts D, van Der Weide M, Rossau R, James G, et al. (2000) Development of a PCR-based line probe assay for identification of fungal pathogens. J Clin Microbiol 38:3735–42.
39. Holt JD, Krieg NR, Sneath PH, Staley JT, Williams ST, et al. (1994) Bergey's Manual of Determinative Bacteriology 1994 9th Ed. Williams & Wilkins Ed. Baltimore, USA.
40. Altschul SF, Gish W, Miller W, Myers E, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410.
41. Ierme RM, Rasmussen RP, Wittwer CT (1997) Product differentiation by analysis of DNA melting curves during the polymerase chain reaction. Anal Biochem 245:134–60.
42. Reed GH, Kent JO, Wittwer CT (2007) High-resolution DNA melting analysis for simple and efficient molecular diagnostics. Pharmacogenomics 8:597–608.
43. Lo¨ffler J, Hebart H, Schumacher U, Reitze H, Einsele H (1997) Comparison of different methods for extraction of DNA of fungal pathogens from cultures and blood. J Clin Microbiol 35:3311–2.
44. Millar B, Jiru X, Moore J, Earle J (2001) A simple and sensitive method to extract bacterial, yeast and fungal DNA from blood culture material. J Microbiol Methods 47:255.
45. Dauphin L, Walker R, Petersen J, Bowen M (2011) Comparative evaluation of automated and manual commercial DNA extraction methods for detection of Francisella tularensis DNA from suspensions and spiked swabs by real-time polymerase chain reaction. Diagn Microbiol Infect Dis 70:299–306.
46. Podnecky N, Elrod M, Newton B, Dauphin L, Shi J, et al. (2013) Comparison of DNA extraction kits for detection of Burkholderia pseudomallei in spiked human whole blood using real-time PCR. PLoS One 8(2):e50032.
47. Rabodonirina M, Cotte L, Boilieux A, Kaiser M, Mayencon M, et al. (1999) Detection of Pneumocystis carinii DNA in blood specimens from human immunodeficiency virus-infected patients by nested PCR. J Clin Microbiol 37:127–31.
48. White P, Shetty A, Barnes R (2003) Detection of seven Candida species using the Light-Cycler system. J Med Microbiol 52:229–38.
49. Heid C, Stevens J, Livak K, Williams PM (1996) Real time quantitative PCR. Genome Res 6: 986–984.
50. Marr KA, Carter R, Crippa F, Wald A, Corey L (2002) Epidemiology and outcome of mould infections in hematopoietic stem cell transplant recipients. Clin Infect Dis 34:909–17.
51. Ostrosky-Zeichner L, Rex J, Pappas P, Hamill R, Larsen R, et al. (2003) Antifungal susceptibility survey of 2,000 bloodstream Candida isolates in the United States. Antimicrob Agents Chemother 47:3149–54.
52. Benz M, Scott I, Flynn H, Unonius N, Miller D (2004) Endophthalmitis isolates and antibiotic sensitivities: a 6-year review of culture-proven cases. Am J Ophthalmol 137:38–42.
53. Radomski N, Kreitmann L, McIntosh F, Behr MA (2013) The critical role of DNA extraction for detection of Mycobacteria in tissues. PLoS One 23,8(10):e70749.
54. Molteni C, Terranova I, Zampiero A, Galeone C, Principi N, et al. (2013) Comparison of manual methods of extracting genomic DNA from dried blood spots collected on different cards: implications for clinical practice. Int J Immunopathol Pharmacol 26:571–78.
55. Jeddi F, Piarroux R, Mary C (2013) Application of the NucliSENS easyMAG system for nucleic acid extraction: optimization of DNA extraction for molecular diagnosis of parasitic and fungal diseases. Parasite 20:52.