On-device Real-time Hand Gesture Recognition

George Sung Kanstantsin Sokal Esha Uboweja Valentin Bazarevsky Jonathan Baccash Eduard Gabriel Bazavan Chuo-Ling Chang Matthias Grundmann
Google Research
1600 Amphitheatre Pkwy, Mountain View, CA 94043, USA
{gsung, kanstantsin, eshauboweja, bazarevsky, jbaccash, egbazavan, chuoling, grundman}@google.com

Abstract

We present an on-device real-time hand gesture recognition (HGR) system, which detects a set of predefined static gestures from a single RGB camera. The system consists of two parts: a hand skeleton tracker and a gesture classifier. We use MediaPipe Hands [14, 2] as the basis of the hand skeleton tracker, improve the keypoint accuracy, and add the estimation of 3D keypoints in a world metric space. We create two different gesture classifiers, one based on heuristics and the other using neural networks (NN).

1. Introduction

Hand gesture recognition (HGR) is a natural and intuitive method for human-computer interaction (HCI), and has been an active research area [11, 10]. A wide variety of input devices and techniques have been investigated, and skeleton-based HGR is a popular choice due to its robustness to background and light variations [7, 6]. Many skeleton-based HGR systems rely on depth sensors, such as RGBD cameras, which are not nearly as common as RGB cameras on mobile devices. Our HGR, on the other hand, requires only a single RGB camera. It does so by first predicting 3D skeleton keypoints from a camera image, then running a gesture classifier on the keypoints.

We design two gesture classifiers with different use cases in mind. The heuristics-based classifier is easier to create and extend, without the need for training data, and more intuitive to develop and troubleshoot. The NN-based classifier is more accurate and precise, especially for borderline cases. It’s also more forgiving of errors in skeleton keypoints.

Our HGR runs real-time at 30fps on mainstream mobile devices.

2. Architecture

Our HGR consists of two parts: a hand skeleton tracker improved from MediaPipe Hands and a gesture classifier, as shown on Figure 1. The two-step approach has a few advantages:

- Reduced engineering effort by leveraging the hand tracker which is already real-time, robust, and fair [4].
- Simpler gesture classifier design which processes skeleton keypoints instead of raw pixels.
- Optimized complexity by running the gesture classifier only when hands are tracked.

2.1. Hand Skeleton Tracker

Both our gesture classifiers operate on a keypoint level (not with RGB data), therefore accurate hand keypoint estimation is a key prerequisite for gesture classification. As a basis for our gesture recognition pipeline, we improve MediaPipe Hands [2] by training with a new sophisticated hand poses data (like American Sign Language). Analysis of various gestures indicates that robust estimation of hand rotation angle and normalization distance is key to an accurate hand tracker. The original hand rotation and scale estimation is based on the 2D vector from the wrist to the middle finger knuckle. For various cases (like frontal view)
such normalization becomes very unstable as the normaliza-
tion distance approaches zero, which results in a significant
degradation in tracking quality. To overcome this problem,
we introduce a new algorithm similar to the approach taken
by BlazePose [5].

For our case, we define two virtual keypoints to describe
hand center, scale and rotation angle: a center keypoint and
an alignment keypoint. The center keypoint is estimated as
the average of the index, middle and pinky knuckles. The
alignment keypoint location is estimated so it forms the ro-
tation/scale vector with the center keypoint. The rotation
angle is estimated from a sum of two vectors: from the
middle base knuckle to the wrist, and from the index to the
pinky base knuckle. As the component vectors tend to be
orthogonal in the majority of cases; the resulting sum vec-
tor changes smoothly for any hand pose, and never degrades
to zero, as shown on Figure 2. This increases overall hand
tracking quality for frontal hand cases. The new rotation and scale normalization results in a sig-
nificant quality boost for the whole hand pose estimation
pipeline: 71.3 mAP vs 66.5 mAP (for the original Medi-
aPipe Hands [2] pipeline) on our validation dataset with
complex ASL hand poses.

Accurate hand pose estimation in the 3D space is a vi-
tal component for both angle based and few-shot learning
gesture classification. It minimizes the ambiguity among
projections of the same hand pose from different observer
positions in space, and allows the gesture classification to be
invariant to rotation. Therefore, in addition to predicting the
hand pose in the screen “pixel” space, we also estimate the
pose in a world metric space relatively to the hand wrist. To
obtain a 3D hand pose ground truth in a metric space, we fit
our 2D hand annotation with a statistical and highly realis-
tic GHUM [12, 13] hand model as shown in Figure 3. Due
to the nature of perspective projection, objects of different
sizes may have the same projection on the image plane: two
objects with the same shape (bigger and smaller) will have
the same projection if placed respectively further and closer
to the camera. Therefore we have to make the following as-
sumptions when we perform the hand fitting from 2D key-

• The extrinsic features are composed of palm pose com-
 ponents such as rotation, scale and translation. For
 classification purposes, we only use the rotation pose
 component of the palm represented by its three Euler
 angles.

Overall, our hand tracking model achieves a mean aver-
age prediction error of 1.5cm, and provides 21 hand key-
points in a metric 3D space to the gesture classifier.

2.2. Heuristics Gesture Classifier

Based on the hand skeleton tracker, we build a single-
shot, heuristics-based classifier for a small set of static ges-
tures. We start with the simple gesture classification ap-
proach described in [14], which first derives a set of angles
between various 2D hand keypoints, then applies thresholds
to the derived angles to define a discrete state for each fin-
ger (e.g. bent or straight), and finally defines a static gesture
as a logic expression based on the finger states. To get a
more accurate set of underlying angles, we replace features
based on the 2D hand keypoints with features based on the
3D world metric hand keypoints. In order to de-correlate
the gesture classifier features and make manual threshold
picking easier, we distinguish between extrinsic and intrin-
sic features with respect to the palm pose in the 3D world
metric space during the preprocessing stage:
The **intrinsic** features are angles between various hand keypoints. For classification purposes, we derive a single feature angle for each finger with a goal of thresholding them to define a discrete state (e.g. fully bent, fully straight or neither). In accordance with the underlying hand skeleton topology, each finger is represented by a base joint keypoint, two intermediate joint keypoints and a tip keypoint. To define an individual finger feature angle, we first introduce a 3D polygonal chain: starting from the wrist keypoint, to the finger’s base joint keypoint, the first intermediate joint keypoint, the second intermediate joint keypoint, and finishing at the tip keypoint. Then, we define the feature angle as the maximum angle between the first chain segment and each of the remaining chain segments. Additionally, we derive a feature angle for each adjacent pair of fingers with the same goal of thresholding them to define a discrete state (e.g. fingers crossed, apart or neither).

As shown on Figure 4, removing the influence of the extrinsic features from the intrinsic features produces a consistent 3D hand keypoint set for a fixed hand shape configuration, regardless of its position on the input frames. In turn, this significantly de-correlates features and makes it manageable to manually pick thresholds on a larger feature set in order to define a more complex static gesture.

As the final stage of the heuristics-based classifier, we establish a system of 6 gesture definitions based on the features derived from the pre-processed 3D world metric hand keypoints. Figure 5 showcases the supported gestures. This particular gesture set is chosen so that it covers some of the most recognizable and common static hand gestures.

To evaluate our approach, we collect and annotate an in-house gesture dataset. The dataset contains 1882 short video clips that cover various angles and lighting conditions for 21 static hand gestures (for the full list of gestures, please see Appendix A). The dataset contains all 6 gestures supported by the heuristics-based classifier (see Figure 5) and those are used as positive samples. The remaining 15 gestures are used as negative samples. The presence of a diverse negative sample collection allows us to evaluate how often the classifier recognizes an unknown gesture as a known one. The limitation of this dataset is that it’s collected from only 18 users with limited variation in background. The classifier achieves 0.86% false positive rate and 44.4% recall rate on the dataset.

2.3. NN Gesture Classifier

The dataset used in Section 2.2 is for evaluation only and too small for training NN models. We collect and mine another in-house dataset containing 7307 images from 6478 users, representing a rich variety of hand shapes of both gestures and non-gestures in the wild. In addition to regular positive samples we collect easy and hard **Negative** samples. Please see Figure 6 for some example images.

We train an NN classifier to distinguish among six static hand gestures, namely, **OpenPalm**,**ClosedFist**,**PointingUp**,**Victory**,**ThumbUp**,**ThumbDown** and a background **Negative** class. The NN model consists of 3 fully connected layers of 50 neurons each. The model inputs are the intrinsic and extrinsic features computed in Section 2.2. We use focal loss [8] to deal with the class imbalance, where there are a lot more negative samples than positive samples in our dataset.

The NN classifier achieves an average recall rate of 87.9% across the 6 static gesture classes at a false positive rate of 1%.

3. MediaPipe Implementation

The proposed HGR system is implemented using the open source MediaPipe framework [1]. The system adds to MediaPipe Hands, primarily consisting of a hand-detection and a hand-keypoint component [14, 2], an additional gesture-classification component as discussed in Section 2.2 and 2.3.

In many applications, such as remote control, the user gestures only once in a while but the HGR is always running in the background. In order to reduce average computation requirement and maintain real-time performance across a wide range of devices, the HGR system de-
Figure 6. Some examples of true positive samples for gesture classes, easy samples for Negative hand shapes and subtle variations of hand shapes that should not be confused with the gesture class.

tection is configured to run only as needed, capped at a maximum frequency lower than the frequency of hand key-point generation and gesture classification, by utilizing the flow-control and stream-synchronization support in MediaPipe [9] similar to [14]. When there’s no hand in the camera view, the HGR runs hand detection at a lower frequency to save computation and power. As soon as a hand is detected, it’s tracked at a higher frequency for better accuracy and temporal resolution. Furthermore, GPU acceleration is heavily exploited end-to-end, covering tasks like ML model inference as well as image and tensor processing, via OpenGL/OpenCL/Metal on mobile devices and WebGL locally in Web browsers (similar to the Web ML effort enabling background blur/replace in Google Meet [3]).

4. Applications

Our HGR can be used as an HCI mechanism for various applications, such as a virtual touchscreen for desktop computers, sending visual commands for robots, a controller for virtual reality gaming systems, and a remote control for large screen displays [11].

References

[1] MediaPipe. https://mediapipe.dev/, 2019. 3
[2] MediaPipe Hands. https://solutions.medipiipe.dev/hands, 2019. 1, 2, 3
[3] Background Features in Google Meet, Powered by Web ML. https://ai.googleblog.com/2020/10/background-features-in-google-meet.html, 2020. 4
[4] MediaPipe Hands Model Card. https://mediapipe.page.link/handmc, 2020. 1
[5] Valentin Bazarevsky, Ivan Grishchenko, Karthik Raven-dran, Tyler Zhu, Fan Zhang, and Matthias Grundmann. BlazePose: On-device Real-time Body Pose Tracking, 2020. 2
[6] Quentin De Smedt, Hazem Wannous, and Jean-Philippe Van-deborre. Skeleton-based dynamic hand gesture recognition.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pages 1–9, 2016. 1
[7] Guillaume Devineau, Fabien Moutarde, Wang Xi, and Jie Yang. Deep learning for hand gesture recognition on skeletal data. In 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pages 106–113. IEEE, 2018. 1
[8] Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and Piotr Dollar. Focal loss for dense object detection. In Proceedings of the IEEE international conference on computer vision, pages 2980–2988, 2017. 3
[9] Camillo Lugaresi, Jiuqiang Tang, Hadon Nash, Chris McClanahan, Esha Uboweja, Michael Hays, Fan Zhang, Chuo-Ling Chang, Ming Guaiqg Yong, Juhyun Lee, Wan-Teh Chang, Wei Hua, Manfred Georg, and Matthias Grundmann. MediaPipe: A Framework for Building Perception Pipelines. In CVPR Workshop on Computer Vision for AR/VR, 2019. 4
[10] Munir Oudah, Ali Al-Naji, and Javaan Chahl. Hand gesture recognition based on computer vision: a review of techniques. journal of Imaging, 6(8):73, 2020. 1
[11] Siddharth S Rautaray and Anupam Agrawal. Vision based hand gesture recognition for human computer interaction: a survey. Artificial intelligence review, 43(1):1–54, 2015. 1, 4
[12] Hongyi Xu, Eduard Gabriel Bazavan, Andrei Zanfir, William T Freeman, Rahul Sukthankar, and Cristian Sminchisescu. GHUM & GHUL: Generative 3D Human Shape and Articulated Pose Models. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 6184–6193, 2020. 2
[13] Andrei Zanfir, Eduard Gabriel Bazavan, Hongyi Xu, William T. Freeman, Rahul Sukthankar, and Cristian Sminchisescu. Weakly Supervised 3D Human Pose and Shape Reconstruction with Normalizing Flows. In Computer Vision – ECCV 2020, pages 465–481, 2020. 2
[14] Fan Zhang, Valentim Bazarevskv, Andrey Vakunov, George Sung, Chuo-Ling Chang, Matthias Grundmann, and Andrei Tkachenka. MediaPipe Hands: On-device Real-time Hand Tracking. In CVPR Workshop on Computer Vision for Augmented and Virtual Reality, Seattle, WA, 2020. 1, 2, 3, 4
Appendix A. In-house static gesture dataset:
gesture code names

1. OpenPalm
2. Victory
3. ClosedFist
4. PointingUp
5. ThumbUp
6. ThumbDown
7. OK
8. CallMe
9. IndexMiddlePointingUp
10. Three
11. Four
12. ILoveYou
13. FingerHeart
14. HandHeart
15. IndexMiddlePointingUpWithClosedThumb
16. IndexMiddlePointingUpWithOpenThumb
17. IndexPointingToCamera
18. Loser
19. PinchedFingers
20. VulcanSalute
21. SignOfTheHorns