Evaluation of the burnout efficiency of Np-237 and Am-241 in a BN-600 reactor with a modified core

I A Ignatev¹, D S Klinenko¹, V V Kolesov¹, V V Korobeynikov² and R A Vnukov¹

¹ OINPE NRNU MEPhI, Obninsk, Russia
² SSC RF – IPPE, Obninsk, Russia

igntatevia@oiate.ru

Abstract. From the results of comparing the fission and capture cross sections, it follows that a reactor with fuel in the form of Am-241 or Np-237 can only be on fast neutrons, because in the thermal and intermediate spectra, the capture cross section significantly exceeds the fission cross section. Therefore, this paper analyzes the possibility of achieving criticality when loading the BN-600 reactor core with fuel from Am-241 or Np-237 alone, as well as the efficiency of their burning out in various modifications and variants of core loading. The calculation results show that when the reactor is fully loaded with fuel consisting of minor actinides of interest, we have a huge reactivity reserve, which does not decrease, and in some cases increases, during 450 days of reactor operation at rated power. Also, when calculating the modified core with fuel from minor actinides and uranium dioxide, it was possible to achieve high burnout rates of Am-241 and Np-237.

1. Introduction

Since the fuel spent in a nuclear reactor is a potential threat to the environment, it would be appropriate to develop the most efficient ways to burn it in existing industrial reactors. From the results of comparing the fission and capture cross sections (see figure 1), it follows that a reactor with fuel in the form of Am-241 or Np-237 can only be on fast neutrons, because in the thermal and intermediate spectra, the capture cross section significantly exceeds the fission cross section, so in this work it was decided to use the BN-600 reactor as a computational model.

In order to increase the proportion of burned-out actinide nuclei, it makes sense to create a core configuration in which the neutron flux will make the maximum contribution to the transmutation of the actinide under study. Based on this, we assumed that the most efficient burning of Am²⁴¹/Np²³⁷ can be achieved by "diluting" the fast spectrum with lower-energy neutrons, where fast neutrons will lead to fission, and thermal and intermediate neutrons to transmutation with possible further fission. To achieve this purpose, the BN-600 reactor core was modeled in various variations using the SERPENT 2.1.30 software package, as well as geometric parameters and data on the isotopic composition of structural materials from works [1-3].
2. Description of calculation models

While working on the study, three different layouts of the bn-600 reactor core were modeled (for further simplification, the name of each model is indicated in parentheses):

1. reactor core fully loaded with fuel from Am241/Np237 ("Full Am241/Np237");
2. standard fuel assemblies in the Central zone of the reactor were replaced with fuel assemblies with fuel from Am241/Np237 ("Center Am241/Np237");
3. central zone of the reactor consists of a fuel assembly with fuel from Am241/Np237, the fuel assembly consists of beryllium blocks, inside which are placed fuel cells from Am241/Np237 ("Ring Am241/Np237"). [4-5]

The following materials were considered as fuel: americium metal (neptunium) and americium dioxide (neptunium).

In «Ring» model, boron carbide (B\textsubscript{4}C) was placed on the periphery of the experimental area as a thermal neutron absorber to prevent neutron flux mitigation in standard fuel assemblies.

The main design characteristics are presented below (see table 1).

Characteristic	Value
Heat output, MW	1470
The average fuel temperature, K	1500
The average temperature of the coolant, K	600
Estimated operating time of the reactor at stationary power, days	450
Fuel:	
Uranium dioxide	8.5 g/cm3
Metal americium-241	13.65 g/cm3
Metallic neptunium-237	20.25 g/cm3
Americium dioxide-241	11.68 g/cm3
Neptunium dioxide-237	11.1 g/cm3

Used nuclear data library – JEFF-3.1.1

When constructing the calculation models, the heterogeneous structure was taken into account only for fuel assemblies in terms of the height of the fuel column, and control rods were excluded from the calculation. The following diagrams show the radial (see figure 2) and axial (see figure 3) locations of elements of the BN-600 core design models, as well as the diagrams of core cells (see figure 4). Figure 2a shows the "Center Am241/Np237" model, and figure 2b shows the "Ring Am241/Np237" (the «Full
Am241/Np237» model is similar to the model shown in figure 2a, but fuel assemblies with uranium fuel have been replaced with actinide fuel assemblies).

Figure 2. Radial layout of BN-600 core elements in the studied models:
1. radial reflectors; 2-3. steel shielding; 4. FAs HEZ (26% 235U); 5. FAs MEZ (21% 235U); 6. control rods; 7. FAs with fuel from Am241/Np237; 8. beryllium blocks with fuel cells from Am241/Np237.

Figure 3. Axial layout of BN-600 core elements in the studied models:
1 – axial reflector;
2 – cones;
3 – upper boron shield;
4 – sodium plenum;
5 – plugs;
6 – core;
7, 8 – axial blanket 1,2;
6, 7, 8 – core for fuel assemblies with fuel from Am241/Np237.
Figure 4. The layout of elements in cells of the reactor core:
a – regular FA; b – cells in the "Ring" calculation model (figure 2b);
1 – hexagonal wrapper; 2 – beryllium block; 3 – cladding (δ = 0.4 mm);
4 – fuel (d = 6.1 mm); 5 – absorber at the boundary of the study region (B₄C
with 25% B¹⁰ enrichment).

3. Analysis of calculation results
For computational studies, we used the SERPENT program code [6-8], which implements the Monte-
Carlo method. It provides the ability to calculate criticality, account for changes in the isotopic
composition of fuel during the operation of a nuclear reactor, and track the neutron flux.

3.1. Metal fuel
Figure 5 shows the change in the K_{eff} of the calculated systems (for comparison, a graph of the change
in K_{eff} for the standard load of the BN-600 is shown). The results show quite an interesting effect.
Despite the fact that for the "Center" and "Full" models we already have a huge reactivity reserve,
the value of K_{eff} for models with a full load of fuel from minor actinides is constantly increasing during the
estimated time, and for other models, K_{eff} increases at the beginning of irradiation, and then falls. The
explanation is related to the produced isotopes, which are more effective in contributing to the
multiplication coefficient than the original Am-241 or Np-237. Thus, there is an effect of reproduction
of a new fuel, which is obtained not from a special raw material such as U-238, but from the same Np-
237, which did not split, but captured a neutron, then decayed into Pu-238, and so on. This effect requires
a separate study.
Due to the fact that the model of the standard core of the BN-600 reactor was changed for the study, we are interested in how the distribution of the neutron flux over the core radius changed (see figure 6 and figure 7).

Figure 5. Graph of K_{eff} changes in the studied models.

Figure 6. Distribution of the neutron flux density over the core radius in the studied models.
Figure 7. Distribution of the thermal (up to 1 eV) neutron flux density over the core radius in the studied models.

This behavior of the neutron flux density for the "Center" and "Ring" models is due to the fact that the neutron yield is higher for fission of Am\(^{241}\) and Np\(^{237}\) than for fission of U\(^{235}\). Moreover, in the "Ring" model, central part is surrounded by beryllium blocks that act as a reflector and moderator (this can be seen from the graphs in figure 7).

Table 2-4 shows the results of calculating changes in the nuclide composition of Am-241 fuel from the time of fuel irradiation in each of the calculated models. As we can see, the greatest decrease in the concentration of Am-241 occurs in the "Ring" model, namely in the third ring – fuel assemblies with beryllium blocks (about 80% of the initial concentration of Am-241 nuclei was separated or mutated). A significant increase is seen in comparison with other Pu-238 nuclides, followed by Pu-242.

Almost the same situation is observed in models with fuel from Np-237 (see table 5-7), where the maximum change was 63% of the initial concentration of Np-237.

Table 2. Change in the nuclide composition of metal fuel from Am-241 in the «Full Am\(^{241}\) » model.

Nuclei	Am\(^{241}\)	Am\(^{241d}\)	Am\(^{241m}\)	Np\(^{239\text{m}}\)	Np\(^{239}\)	Pu\(^{239}\)	Pu\(^{239m}\)	Pu\(^{240}\)	Pu\(^{240m}\)	Np\(^{237}\)	U\(^{235}\)
Time, days	Ring 1										
0	4.1002E+22	6.0000E+00	0.0000E+00								
10	3.3180E+22	3.0500E+19	3.7240E+18	1.3400E+17	3.3270E+16	1.3400E+15	4.9900E+15	5.3000E+15	5.4400E+15	0.0000E+00	0.0000E+00
180	1.2700E+16	6.1000E+15	3.7010E+15	5.9600E+14	1.7800E+14	5.9600E+13	2.2400E+13	2.3100E+13	2.5300E+13	0.0000E+00	0.0000E+00
270	1.2100E+16	6.1000E+15	3.7010E+15	5.9600E+14	1.7800E+14	5.9600E+13	2.2400E+13	2.3100E+13	2.5300E+13	0.0000E+00	0.0000E+00
360	1.1100E+16	6.1000E+15	3.7010E+15	5.9600E+14	1.7800E+14	5.9600E+13	2.2400E+13	2.3100E+13	2.5300E+13	0.0000E+00	0.0000E+00
450	1.0600E+16	6.1000E+15	3.7010E+15	5.9600E+14	1.7800E+14	5.9600E+13	2.2400E+13	2.3100E+13	2.5300E+13	0.0000E+00	0.0000E+00
Time, days	Ring 2										
0	4.1000E+22	2.0820E+19	3.6630E+18	1.2920E+17	3.1330E+16	5.9820E+15	1.9010E+15	1.9010E+15	1.9010E+15	0.0000E+00	0.0000E+00
10	3.3090E+22	3.0500E+19	3.7240E+18	1.3100E+17	3.7820E+16	5.8840E+15	1.7010E+15	1.7010E+15	1.7010E+15	0.0000E+00	0.0000E+00
180	1.2700E+16	6.1000E+15	3.7010E+15	5.9600E+14	1.7800E+14	5.9600E+13	2.2400E+13	2.3100E+13	2.5300E+13	0.0000E+00	0.0000E+00
270	1.2100E+16	6.1000E+15	3.7010E+15	5.9600E+14	1.7800E+14	5.9600E+13	2.2400E+13	2.3100E+13	2.5300E+13	0.0000E+00	0.0000E+00
360	1.1100E+16	6.1000E+15	3.7010E+15	5.9600E+14	1.7800E+14	5.9600E+13	2.2400E+13	2.3100E+13	2.5300E+13	0.0000E+00	0.0000E+00
450	1.0600E+16	6.1000E+15	3.7010E+15	5.9600E+14	1.7800E+14	5.9600E+13	2.2400E+13	2.3100E+13	2.5300E+13	0.0000E+00	0.0000E+00
Table 3. Change in the nuclide composition of metal fuel from Am-241 in the «Center Am-241» model.

Nuclide	Am-235	Am-239	Am-241	Am-242	Am-243	Am-244	Am-245	Am-246	Am-247	Am-248	Am-249	Am-250	Am-251	Am-252	Am-253	Am-254	Am-255	Am-256	Am-257	Am-258	
Ring 1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
Time, days	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Table 4. Change in the nuclide composition of metal fuel from Am-241 in the «Ring Am-241» model.

Nuclide	Am-235	Am-239	Am-241	Am-242	Am-243	Am-244	Am-245	Am-246	Am-247	Am-248	Am-249	Am-250	Am-251	Am-252	Am-253	Am-254	Am-255	Am-256	Am-257	Am-258	
Ring 1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
Time, days	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Table 5. Change in the nuclide composition of metal fuel from Np-237 in the «Full Np-237» model.

Nuclide	Am-235	Am-239	Am-241	Am-242	Am-243	Am-244	Am-245	Am-246	Am-247	Am-248	Am-249	Am-250	Am-251	Am-252	Am-253	Am-254	Am-255	Am-256	Am-257	Am-258	
Ring 1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
Time, days	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Table 6. Change in the nuclide composition of metal fuel from Np-237 in the «Center Np237» model.

Nuclide	Np237	Np239	Am241	Am242	Am244	Pu239	Pu240	Pu242	Pu244	Pu246	Pu248	Pu250	Pu252	L216	L22
Time, day															
0	5.144E+12	6.0000E+00	6.0000E+00	6.0000E+00	6.0000E+00	3.4000E+00	9.3000E+00	1.2000E+00	2.5000E+00	1.6000E+00	8.6000E+00	3.9000E+00	1.2000E+00	6.0000E+00	1.0000E+00
90	4.733E+12	2.679E+09	2.610E+10	6.126E+09	1.374E+09	1.673E+09	1.832E+09	7.400E+08	1.770E+08	1.630E+08	1.510E+08	1.420E+08	1.330E+08	1.240E+08	1.150E+08
180	4.444E+12	8.615E+11	9.347E+12	6.085E+12	1.276E+11	2.327E+10	3.624E+09	1.046E+10	1.276E+09	1.626E+09	1.276E+09	1.046E+09	7.900E+08	5.500E+08	2.200E+08
270	3.738E+12	1.497E+09	1.328E+10	3.343E+09	5.060E+09	1.504E+10	1.584E+10	6.680E+09	7.980E+09	1.143E+10	1.374E+10	1.697E+10	1.921E+10	2.145E+10	2.369E+10
360	3.509E+12	4.395E+09	2.567E+10	7.460E+09	1.387E+10	2.932E+10	6.860E+10	1.607E+10	2.237E+10	2.818E+10	3.624E+10	4.227E+10	4.954E+10	5.680E+10	6.406E+10
450	3.286E+12	3.941E+09	7.825E+10	1.428E+10	1.124E+10	8.404E+10	3.175E+10	4.377E+10	5.786E+10	6.666E+10	7.679E+10	8.703E+10	9.729E+10	1.076E+10	1.178E+10

Table 7. Change in the nuclide composition of metal fuel from Np-237 in the «Ring Np237» model.

Nuclide	Np237	Np239	Am241	Am242	Am244	Pu239	Pu240	Pu242	Pu244	Pu246	Pu248	Pu250	Pu252	L216	L22
Time, day															
0	5.144E+12	6.0000E+00	6.0000E+00	6.0000E+00	6.0000E+00	3.4000E+00	9.3000E+00	1.2000E+00	2.5000E+00	1.6000E+00	8.6000E+00	3.9000E+00	1.2000E+00	6.0000E+00	1.0000E+00
90	4.733E+12	2.679E+09	2.610E+10	6.126E+09	1.374E+09	1.673E+09	1.832E+09	7.400E+08	1.770E+08	1.630E+08	1.510E+08	1.420E+08	1.330E+08	1.240E+08	1.150E+08
180	4.444E+12	8.615E+11	9.347E+12	6.085E+12	1.276E+11	2.327E+10	3.624E+09	1.046E+10	1.276E+09	1.626E+09	1.276E+09	1.046E+09	7.900E+08	5.500E+08	2.200E+08
270	3.738E+12	1.497E+09	1.328E+10	3.343E+09	5.060E+09	1.504E+10	1.584E+10	6.680E+09	7.980E+09	1.143E+10	1.374E+10	1.697E+10	1.921E+10	2.145E+10	2.369E+10
360	3.509E+12	4.395E+09	2.567E+10	7.460E+09	1.387E+10	2.932E+10	6.860E+10	1.607E+10	2.237E+10	2.818E+10	3.624E+10	4.227E+10	4.954E+10	5.680E+10	6.406E+10
450	3.286E+12	3.941E+09	7.825E+10	1.428E+10	1.124E+10	8.404E+10	3.175E+10	4.377E+10	5.786E+10	6.666E+10	7.679E+10	8.703E+10	9.729E+10	1.076E+10	1.178E+10

3.2. Dioxide fuel

Figure 8 shows the change in the K_{eff} of the calculated systems (for comparison, a graph of the change in K_{eff} for the standard load of the BN-600 is shown).

Figure 8. Graph of K_{eff} changes in the studied models.
Due to the fact that the dioxide fuel has a lower density than the metal fuel, there is a decrease in the reactivity margin in comparison with the calculations of models based on metal fuel. For the same reason, the behavior of K_{eff} changes during reactor operation differs from the behavior in previous calculations.

Due to the fact that the model of the standard core of the BN-600 reactor was changed for the study, we are interested in how the distribution of the neutron flux over the core radius changed (see figure 9 and figure 10).

Figure 9. Distribution of the neutron flux density over the core radius in the studied models.

Figure 10. Distribution of the thermal (up to 1 eV) neutron flux density over the core radius in the studied models.

This behavior of the neutron flux density for the "Center Np237" and "Ring Am241/Np237" models is difficult to explain, but I assume that this is due to a change in the fuel density (for neptunium almost 2 times), and this in turn is due to the concentration. In addition, the presence of oxygen nuclei in the fuel,
even if very small, allows neutrons to slow down, which can lead to the predominance of transmutation of the studied actinides over their fission. Plus, in the "Ring" model, central part is surrounded by beryllium blocks that act as a reflector and moderator (this can be seen from the graphs in figure 10).

Table 8 shows the results of calculating changes in the nuclide composition of Am-241 fuel from the time of fuel irradiation in each of the calculated models. As we can see, the greatest decrease in the concentration of Am-241 occurs in the "Ring" model, namely in the third ring – fuel assemblies with beryllium blocks (about 53% of the initial concentration of Am-241 nuclei was separated or mutated). A significant increase is seen in comparison with other Pu-238 nuclides, followed by Pu-242.

Almost the same situation is observed in models with fuel from Np-237 (see table 11-13), where the maximum change was 38% of the initial concentration of Np-237.

Table 8. Change in the nuclide composition of dioxide fuel from Am-241 in the «Full Am241» model.

Nuclide	Am241	Am242	Am243	Am244	Np237	Np238	Pu238	Pu239	Pu240	Pu241	Pu242	L238	L239	L240
Time, days														
Ring 1														
0	2.576×10^-2	0.000×10^-0	0.000×10^-0	0.000×10^-0	0.000×10^-0	0.000×10^-0	0.000×10^-0	0.000×10^-0	0.000×10^-0	0.000×10^-0	0.000×10^-0	0.000×10^-0		
10	2.576×10^-2	0.000×10^-0	0.000×10^-0	0.000×10^-0	0.000×10^-0	0.000×10^-0	0.000×10^-0	0.000×10^-0	0.000×10^-0	0.000×10^-0	0.000×10^-0	0.000×10^-0		
Ring 2														
0	2.576×10^-2	0.000×10^-0	0.000×10^-0	0.000×10^-0	0.000×10^-0	0.000×10^-0	0.000×10^-0	0.000×10^-0	0.000×10^-0	0.000×10^-0	0.000×10^-0	0.000×10^-0		
10	2.576×10^-2	0.000×10^-0	0.000×10^-0	0.000×10^-0	0.000×10^-0	0.000×10^-0	0.000×10^-0	0.000×10^-0	0.000×10^-0	0.000×10^-0	0.000×10^-0	0.000×10^-0		

Table 9. Change in the nuclide composition of dioxide fuel from Am-241 in the «Center Am241» model.

Nuclide	Am241	Am242	Am243	Am244	Np237	Np238	Pu238	Pu239	Pu240	Pu241	Pu242	L238	L239	L240
Time, days														
Ring 1														
0	2.576×10^-2	0.000×10^-0	0.000×10^-0	0.000×10^-0	0.000×10^-0	0.000×10^-0	0.000×10^-0	0.000×10^-0	0.000×10^-0	0.000×10^-0	0.000×10^-0	0.000×10^-0		
10	2.576×10^-2	0.000×10^-0	0.000×10^-0	0.000×10^-0	0.000×10^-0	0.000×10^-0	0.000×10^-0	0.000×10^-0	0.000×10^-0	0.000×10^-0	0.000×10^-0	0.000×10^-0		
Ring 2														
0	2.576×10^-2	0.000×10^-0	0.000×10^-0	0.000×10^-0	0.000×10^-0	0.000×10^-0	0.000×10^-0	0.000×10^-0	0.000×10^-0	0.000×10^-0	0.000×10^-0	0.000×10^-0		
10	2.576×10^-2	0.000×10^-0	0.000×10^-0	0.000×10^-0	0.000×10^-0	0.000×10^-0	0.000×10^-0	0.000×10^-0	0.000×10^-0	0.000×10^-0	0.000×10^-0	0.000×10^-0		
Table 10. Change in the nuclide composition of dioxide fuel from Am-241 in the «Ring Am 241» model.

| Nuclide | Am²⁴¹ | Am²⁴² | Am²⁴³ | Am²⁴⁴ | Am²⁴⁵ | Am²⁴⁶ | Am²⁴⁷ | Am²⁴⁸ | Am²⁴⁹ | Am²⁵⁰ | Am²⁵¹ | Am²⁵² | Am²⁵³ | Am²⁵⁴ | Am²⁵⁵ | Am²⁵⁶ | Am²⁵⁷ | Am²⁵⁸ | Am²⁵⁹ | Am²⁶⁰ | Am²⁶¹ | Am²⁶² | Am²⁶³ | Am²⁶⁴ | Am²⁶⁵ | Am²⁶⁶ | Am²⁶⁷ | Am²⁶⁸ | Am²⁶⁹ | Am²⁷⁰ | Am²⁷¹ | Am²⁷² |
|---------|
| |

Table 11. Change in the nuclide composition of dioxide fuel from Np-237 in the «Full Np ²³⁷» model.

| Nuclide | Np²³⁷ | Np²³⁸ | Np²³⁹ | Np²⁴⁰ | Np²⁴¹ | Np²⁴² | Np²⁴³ | Np²⁴⁴ | Np²⁴⁵ | Np²⁴⁶ | Np²⁴⁷ | Np²⁴⁸ | Np²⁴⁹ | Np²⁵⁰ | Np²⁵¹ | Np²⁵² | Np²⁵³ | Np²⁵⁴ | Np²⁵⁵ | Np²⁵⁶ | Np²⁵⁷ | Np²⁵⁸ | Np²⁵⁹ | Np²⁶⁰ | Np²⁶¹ | Np²⁶² | Np²⁶³ | Np²⁶⁴ | Np²⁶⁵ | Np²⁶⁶ | Np²⁶⁷ | Np²⁶⁸ | Np²⁶⁹ | Np²⁷⁰ | Np²⁷¹ | Np²⁷² |
|---------|
| |

Table 12. Change in the nuclide composition of dioxide fuel from Np-237 in the «Center Np ²³⁷» model.

| Nuclide | Np²³⁷ | Np²³⁸ | Np²³⁹ | Np²⁴⁰ | Np²⁴¹ | Np²⁴² | Np²⁴³ | Np²⁴⁴ | Np²⁴⁵ | Np²⁴⁶ | Np²⁴⁷ | Np²⁴⁸ | Np²⁴⁹ | Np²⁵⁰ | Np²⁵¹ | Np²⁵² | Np²⁵³ | Np²⁵⁴ | Np²⁵⁵ | Np²⁵⁶ | Np²⁵⁷ | Np²⁵⁸ | Np²⁵⁹ | Np²⁶⁰ | Np²⁶¹ | Np²⁶² | Np²⁶³ | Np²⁶⁴ | Np²⁶⁵ | Np²⁶⁶ | Np²⁶⁷ | Np²⁶⁸ | Np²⁶⁹ | Np²⁷⁰ | Np²⁷¹ | Np²⁷² | Np²⁷³ |
|---------|
| |
Table 13. Change in the nuclide composition of dioxide fuel from Np237 in the «Ring Np237» model.

Nuclide	Np237	Am241	Am243	Am244	Pu239	Pu240	Pu241	Pu242	U235	U238
Ring 1	0.000000000000	0.000000000000	0.000000000000	0.000000000000	0.000000000000	0.000000000000	0.000000000000	0.000000000000	0.000000000000	0.000000000000
90	2,645.7E+12	4,669.8E+12	1.021E+09	9.393E+08	6.726E+07	1.173E+08	4.157E+07	2.772E+07	1.057E+08	6.00000E+07
180	2.451E+13	8.090E+13	1.437E+09	8.387E+08	5.227E+07	1.085E+09	4.754E+07	2.931E+07	9.378E+08	5.09000E+07
270	2.416E+13	4.290E+13	3.742E+09	1.322E+08	8.51E+07	1.746E+09	4.419E+07	1.479E+08	5.716E+08	3.196E+08
360	2.383E+13	7.757E+13	1.959E+09	3.101E+08	2.322E+07	1.274E+10	8.471E+07	1.394E+09	5.864E+08	2.033E+08
456	2.312E+13	6.494E+13	8.419E+09	1.222E+08	9.287E+06	5.875E+09	6.09000E+06	2.331E+08	1.262E+08	1.337E+07

4. Conclusion

The advantages of implementing this approach to transmutation in comparison with traditional ones are quite obvious. So, if you use, for example, a reactor with uranium or MOX fuel for transmutation, then, in addition to burning out "foreign" minor actinides, it will additionally work out "its own". In the case of fuel from some minor actinides, the reactor will burn only "its own". [9-10]

The results of calculations showed that the BN-600 reactor can use fuel consisting only of Am241/Np237, while having a huge reactivity reserve.

It was also possible to achieve high Am241/Np237 burnout rates in the "Ring" model, which is based on the assumption that the most effective burning of actinides can be achieved by "diluting" the fast spectrum with lower-energy neutrons, where fast neutrons will lead to fission, and thermal and intermediate ones to transmutation with possible further fission.

References

[1] BN-600 hybrid core benchmark analyses IAEA, VIENNA, 2009, ISBN 978–92–0–109409–4, ISSN 1011-4289.
[2] BN-600 MOX core benchmark analysis: results from phases 4 and 6 of a coordinated research project on updated codes and methods to reduce the calculational uncertainties of the LMFR reactivity effects. — Vienna: International Atomic Energy Agency, 2013.p.; 30 cm. — (IAEA-TECDOC series, ISSN 1011-4289; no. 1700)
[3] Contribution of neutron-capture reactions in energy release in the fuel core of BN-600. — Bahdanovich R B et al. 2017 J. Phys.: Conf. Ser. 781 012011
[4] Kolesov V V, Kochnov O Y. Influence of a beryllium reflector placed in the core of the VVR-C reactor on its neutron-physical characteristics 2012//News of higher educational institutions. Nuclear power engineering.
[5] Nuclear power plants with fast neutron reactors with sodium coolant: a textbook. In 2 parts / Beltyukov A I, Karpenko A I, Poluyakov S A et al. – Yekaterinburg: UrFU, 2013. — 548 p.
[6] Tikhomirov G, Ternovikh M, Smirnov A, Saldikov I, Bahdanovich R and Gerasimov 2017 A Test tasks for verification of program codes for calculation of neutron-physical characteristics of the BN series reactors EPJ Web of Conferences 153 05013
[7] Serpent – a Continuous-energy Monte Carlo Reactor Physics Burnup Calculation Code June 18, 2015 User’s Manual Jaakko Leppänen
[8] Pisarev A N and Kolesov V V 2020 A study into the propagation of the uncertainties in nuclear data to the nuclear concentrations of nuclides in Burn-up calculations Izv. Wysshikh Uchebnikh Zawedeniy, Yad. Energ. 2020 108–21
[9] Korobeinikov V V, Kolesov V V, Terekhova A M, Karagalinskaya Y E. Studies on the possibility of burning and transmutation of Am-241 in a reactor with americium fuel: Preprint IPPE – 3284. – Obninsk, SSC RF – IPPE, 2018. – 14 p.

[10] Korobeinikov V V, Karazhelevskaya Y E, Kolesov V V and Terekhova A M 2019 Investigation of the possibility of AM-241 incineration and transmutation in ameritium-fueled reactor Izv. Vysshikh Uchebnykh Zawedeniy, Yad. Energ. 2019 153–63