THE REDUCTION OF THE ELECTRON ABUNDANCE DURING THE PRE-EXPLOSION SIMMERING IN WHITE DWARF SUPERNOVAE

DAVID A. CHAMULAK,1,2 EDWARD F. BROWN,1,2,3 F. X. TIMMES,2,4,5 AND KIMBERLY DUPCZAK 1

Received 2007 June 26; accepted 2007 December 22

ABSTRACT

Prior to the explosion of a carbon-oxygen white dwarf in a Type Ia supernova there is a long “simmering,” during which the \(^{12}C + ^{12}C \) reaction gradually heats the white dwarf on a long (~10^3 yr) timescale. Piro & Bildsten showed that weak reactions during this simmering set a maximum electron abundance \(Y_e \) at the time of the explosion. We investigate the nuclear reactions during this simmering with a series of self-heating, at constant pressure, reaction network calculations. Unlike in AGB stars, \(p \) captures onto \(^{22}\)Ne and heavier trace nuclei do not play a significant role. The \(^{12}\)C abundance is sufficiently high that the neutrons preferentially capture onto \(^{12}\)C, rather than iron group nuclei. As an aid to hydrodynamical simulations of the simmering phase, we present fits to the rates of heating, electron capture, change in mean atomic mass, and consumption of \(^{12}\)C in terms of the screened thermally averaged cross section for \(^{12}\)C + \(^{12}\)C. Our evaluation of the net heating rate includes contributions from electron captures into the 3.68 MeV excited state of \(^{13}\)C. This results in a slightly larger energy release, per \(^{12}\)C consumed, than that found by Piro & Bildsten, but less than that released for a burn to only \(^{20}\)Ne and \(^{23}\)Na. We compare our one-zone results to more accurate integrations over the white dwarf structure to estimate the amount of \(^{12}\)C that must be consumed to raise the white dwarf temperature, and hence to determine the net reduction of \(Y_e \) during simmering.

Subject headings: galaxies: evolution — nuclear reactions, nucleosynthesis, abundances — supernovae: general — white dwarfs

Online material: color figures

1. INTRODUCTION

The leading scenario for a Type Ia supernova (SN Ia) is the thermonuclear incineration of a carbon-oxygen white dwarf that has increased in mass, through accretion, to just below the Chandrasekhar limit (for a review, see Hillebrandt & Niemeyer 2000). Despite the advances in modeling the postignition flame evolution (for a sampling of recent work, see Gamezo et al. 2004; Plewa et al. 2004; Röpke et al. 2006; Jordan et al. 2007), we still lack a complete understanding of which subset of the binary white dwarf population become SNe Ia, and how differences in the progenitor map onto differences in the outcome of the explosion.

The composition of the white dwarf at the time of the explosion should have an effect on the nucleosynthesis that takes place during the explosion and the isotopic abundances of the final composition. The observable properties of SNe Ia resulting from Chandrasekhar-mass explosions are chiefly determined by their final composition, the velocity profiles of key spectral lines at early and late times (e.g., P Cygni profiles of Si ii at 615.0 nm at early times), the opacity of the material through which the photons from radioactive decay must propagate, the kinetic energy of ejecta, and its interaction with the density profile of the surrounding circumstellar or interstellar medium (Filippenko 1997; Pinto & Eastman 2000; Hillebrandt & Niemeyer 2000; Leibundgut 2001; Mazzali & Podsiadlowski 2006; Marion et al. 2006; Blondin et al. 2006; Badenes et al. 2007; Woosley et al. 2007). The dominant parameter in setting the peak brightness, and hence width, of the light curve is widely believed to be the mass of \(^{56}\)Ni ejected by the explosion. Timmes et al. (2003) showed the mass of \(^{56}\)Ni produced depends linearly on the electron fraction, \(Y_e \), at the time of the explosion, and that \(Y_e \) itself depends linearly on the abundance of \(^{22}\)Ne in the white dwarf.

In this paper we explore, using a reaction network coupled to an equation for self-heating at constant pressure, the reduction in \(Y_e \) that occurs after the onset of the thermonuclear runaway (when the heating from \(^{12}\)C + \(^{12}\)C reactions is faster than cooling by thermal neutrino emission), but before the burning becomes so fast that local regions can thermally run away and launch a flame. This “simmering” epoch lasts for \(\sim \)10^3 yr, long enough that electron captures onto products of \(^{12}\)C burning can reduce the free electron abundance \(Y_e \). A similar, but independent calculation, of the reduction of \(Y_e \) during simmering was performed by Piro & Bildsten (2008). Their calculation did not use a full reaction network, but it did take into account the change in energy of the white dwarf due to the growth of the convective zone. Our calculation agrees with their findings, in particular that there is a maximum \(Y_e \) at the time of the explosion, and that the reduction in \(Y_e \) is linear in the amount of \(^{12}\)C consumed prior to when the rate of \(^{12}\)C burning outpaces that of the weak reactions. This paper expands on their work in three ways. First, by using a full reaction network, we are able to quantify the role of \(^{22}\)Ne and trace nuclides in setting the change in electron abundance with \(^{12}\)C consumption, \(dY_e/dY_{12} \). Second, we calculate the heating from the electron capture reactions and include the contribution from an excited state of \(^{13}\)C. Third, we provide tabulated expressions for the rate of heating \(\varepsilon \), the rate of change in electron abundance \(dY_e/dt \), and the rate of change in the mean atomic mass \(d(A)/dt \) in terms of the reaction rate for the \(^{12}\)C + \(^{12}\)C reaction. These expressions are useful input for large-scale hydrodynamical simulations of the simmering phase, which do not resolve such microphysics.

We first give, in \(\S \) 2, a simple estimate for the reduction in \(Y_e \) during the pre-explosion simmering and describe the role of
\(^{22}\text{Ne} \) and other trace nuclides. In § 3 we describe our numerical calculations, explain the reactive flows that occur (§ 3.1), and give simple approximations to the heating rate and carbon consumption (§ 3.2). We detail, in § 3.3, some of the limitations of our approach. We evaluate the energy required to raise the white dwarf central temperature, and hence the amount of \(^{12}\text{C} \) that must be consumed, and compare it against the one-zone calculation. We also estimate the central temperature at which convective mixing becomes faster than electron captures. This convective mixing advects electron capture products to lower densities where they can \(\beta^- \)-decay: the convective Urca process. Because each electron capture-decay cycle emits a neutrino–antineutrino pair, there is energy lost from the white dwarf, and our calculation underestimates the amount of \(^{12}\text{C} \) consumed prior to the flame runaway. The convective Urca process (Paczynski 1972) reduces the rate of heating by nuclear reactions (thereby increasing the amount of \(^{12}\text{C} \) that must be consumed to raise the temperature), but cannot result in a net decrease in entropy and temperature for constant or increasing density (Stein et al. 1999; Stein & Wheeler 2006). The Urca reactions also tend to reduce the effects of buoyancy, and in degenerate matter have a direct influence on the convective velocity (Lesaffre et al. 2005). The paper concludes (§ 4) with a discussion of the implications for systematic variations in the mass of \(^{56}\text{Ni} \) produced in the explosion.

2. THE REDUCTION IN ELECTRON ABUNDANCE DURING THE EXPLOSION

The demise of an accreting white dwarf begins when the central temperature and density are such that the heating from the \(^{12}\text{C} + ^{12}\text{C} \) reaction becomes greater than the cooling from thermal neutrino emission. For a density \(\rho = 2.0 \times 10^9 \text{ g cm}^{-3} \) this requires a temperature \(T \approx 3.0 \times 10^8 \text{ K} \) (see Gasques et al. 2005 for a recent calculation). Initially the heating timescale is long, \(t_H \equiv T(dT/dt)^{-1} \approx 10^3 \text{ yr} \); as the temperature rises and the reaction rate increases, \(t_H \) decreases. Woosley et al. (2004) estimate that when \(T > 7.6 \times 10^8 \text{ K} \), fluctuations in the temperature are sufficient to ensure that a local patch can run away and the flame ignites.

The basic reactions during \(^{12}\text{C} \) burning were first worked out in the context of core carbon burning in evolved stars (Reeves & Salpeter 1959; Cameron 1959). During burning, \(^{12}\text{C} \) is primarily consumed via \(\text{C}^{12} + ^{12}\text{C} \to ^{24}\text{Mg} \) and \(^{12}\text{C} \to ^{12}\text{C} + e^- + \nu_e \). These reactions occur with a branching ratio 0.56/0.44 for \(^{12}\text{C} \) processed through the \(\beta^- \) reaction or the \(^{23}\text{Na} \to ^{23}\text{Na} \) reaction. The \(^{23}\text{Na} + ^{12}\text{C} \) reaction requires the high temperatures \(T > 2.5 \times 10^8 \text{ K} \) that can be found at the bottom of the pulse-driven convective zone during the helium shell flashes. The neutrons are released with high density \(\log(N_e/\text{cm}^{-3}) \approx 10 \) in a short burst (Gallino et al. 1998; Busso et al. 1999). These peak neutron densities are realized for only about a year, followed by a neutron density tail that lasts a few years, depending on the stellar model assumptions. These neutrons are the genesis of the classic high-temperature \(s \)-process in AGB stars.

Should \(^{23}\text{Na} \) be present, there are two possible situations for subsequent nuclear processing in AGB stars. \(^{23}\text{Na} \) can be created in the classical NeNa cycle (Marion & Fowler 1975; Rolfs & Rodney 1988; Rowland et al. 2004), whereas the competing \(^{12}\text{C} + ^{12}\text{C} \) reaction transforms \(^{23}\text{Na} \) to heavier isotopes and bypasses the NeNa cycle. How much material is processed through the \(^{12}\text{C} + ^{12}\text{C} \) reaction? Prior to the explosion, the large \(^{23}\text{Na} \) present in evolved stars may be either produced in the classical NeNa cycle or by an alternative reaction sequence involving the reaction \(^{12}\text{C} + ^{12}\text{C} \). The heat released during the \(^{12}\text{C} + ^{12}\text{C} \) reaction is of interest for AGB star (and classical nova) nucleosynthesis. New measurements of the \(^{23}\text{Na} + p \) cross section (Rowland et al. 2004) suggest that for \(T = 20–40 \text{ MK} \), \(^{23}\text{Na} \to ^{23}\text{Na} \) competes with the \(^{12}\text{C} + ^{12}\text{C} \) reaction.

Caution about intuition developed for reaction sequences on \(^{22}\text{Ne} \) and \(^{23}\text{Na} \) in AGB star environments seems prudent when applied to the dense, carbon-rich environments of white dwarfs near the Chandrasekhar mass limit. During the slow \(^{12}\text{C} \) burning preceding the explosion, the large \(^{12}\text{C} \) ensures that \(^{23}\text{Na} \) produced by the \(^{12}\text{C} + ^{12}\text{C} \) reaction will be preferentially distributed onto \(^{12}\text{C} \), rather than \(^{22}\text{Ne} \) or \(^{23}\text{Na} \). Figure 1 shows the ratio of the \(^{12}\text{C} + ^{12}\text{C} \) reaction to that for \(^{12}\text{C} + ^{12}\text{C} \). For three reactions: \(^{23}\text{Na} \to ^{23}\text{Na} \) (solid line), \(^{23}\text{Na} \to ^{23}\text{Na} \) (dashed line), and \(^{23}\text{Na} \to ^{23}\text{Na} \) (dotted line). In addition to the Coulomb penetration, there are numerous resonances that determine how the cross sections change with temperature. When the ratio of the thermally averaged cross sections is of order unity, as it is for \(^{22}\text{Ne} \), the proton capture is determined by the relative abundances of \(^{22}\text{Ne} \) and \(^{12}\text{C} \).

Note that for the latter two reactions, we plot the largest proton-consumption branch rather than the \(^{12}\text{C} \) branch. We include screening in all reactions (Yakovlev et al. 2006) with the plasma taken to consist of \(^{12}\text{C} + ^{16}\text{O} \) with mass fraction 0.3 and 0.7, respectively. For \(T > 10^8 \text{ K} \), \(^{22}\text{Ne} + ^{12}\text{C} \) is well-constrained experimentally (Iliadis et al. 2001). For a white dwarf with a
central density $\rho = 2 \times 10^9$ g cm$^{-3}$, the ignition temperature (where nuclear heating dominates over cooling via thermal neutrino emission) is $\approx 3 \times 10^8$ K (Gasques et al. 2005); the burning timescale becomes less than the timescale for 23Na(e^-, ν_e) 23Ne once the temperature increases beyond $T \approx 7 \times 10^8$ K. Over this range, the thermally averaged cross sections for 22Ne(p, γ) 23Na and 12C(p, γ) 13C are comparable, but the abundance of 12C is far greater; having p capture preferentially onto 22Ne would therefore require it to have a mass fraction roughly twice that of 12C. At densities greater then 1.7×10^9 g cm$^{-3}$, the reaction 23Na(e^-, ν_e) 22Ne produces roughly one 22Ne nucleus for every six 12C nuclei consumed. The screened thermally averaged cross section for 23Na(p, α) 20Ne is ≥ 30 times that of 12C(p, γ) 13N (Fig. 1), so that 23Ne could become a competitive sink for protons. For our self-heating burn (see § 3.1) starting at $\rho = 3 \times 10^9$ g cm$^{-3}$, the abundance of 23Ne reaches $Y_{23} = 3 \times 10^{-4}$ ($Y_{23} \approx 0.015 Y_{12}$) by the point the heating timescale τ_{H} becomes shorter than the timescale for electron captures onto 23Na. Although our one-zone approximation overestimates the amount of 12C that must be consumed to raise the central temperature (see § 3.3), should enough of the convective core lie above the threshold for electron capture onto 23Na, the abundance of 23Ne can become large enough to choke off the 12C(p, γ) 13N reaction, as noted by Piro & Bildsten (2008).

2.2. The Reaction 13N(e^-, ν_e) 12C

As described above, the large 12C abundance ensures that protons produced by 12C(p, α) 15N lead to the formation of β^+-unstable 15N via 12C(p, γ) 13N unless an appreciable abundance of 23Na or 22Ne can build up. At these densities, the rate for electron capture is substantially greater than the rate of β^+-decay for 13N. The electron Fermi energy is ≈ 5.1 MeV ($\rho_Y / 10^9$ g cm$^{-3}$)$^{1/3}$, and the q-value for the β^+ decay of 13N is 2.2 MeV. As a result, there are several excited states of 13C into which the electron can capture. Of these, the transition to the excited state $E_{\text{exc}} = 3.68$ MeV, with spin and parity $J^\pi = 3/2^-$, is an allowed Gamow-Teller transition. We computed the electron capture rate using the experimental log ft for the ground-state transition (Ajzenberg-Selove 1991). Gamow-Teller strengths to excited states were calculated with the shell-model code OXBASH (Brown et al. 2004) employing the Cohen-Kurath II potential (Cohen & Kurath 1967) in the p-shell model space. A quenching factor of 0.67 (Chou et al. 1993) was applied to this strength, and the resulting ft values were used with the analytical phase-space approximations of Becerril Reyes et al. (2006) to obtain the capture rate. These shell-model calculations agree well with recent $(\text{He}, \alpha$) scattering data (Zegers et al. 2007). At $\rho_Y = 10^9$ g cm$^{-3}$, captures into the excited state at $E_{\text{exc}} = 3.68$ MeV account for ≥ 0.3 of the total rate ($R_{\text{exc}} = 12$ s$^{-1}$); this fraction increases with density. Because $R_{\text{exc}} \geq (Gp)^{-1/2}$, this capture does not freeze out during the simmering, unlike capture onto 23Na. Although the capture into the excited level does not increase the capture rate substantially beyond that for the ground-state-to-ground-state transition, it does increase the heat deposited into the white dwarf from this reaction. We find the heat deposited from this reaction, at $\rho_Y = 10^9$ g cm$^{-3}$, to be 1.3 MeV.

2.3. Production and Subsequent Captures of Neutrons

Finally, we consider the contribution from heavier nuclei, such as 56Fe, inherited from the main-sequence star. In AGB stars the reaction 13C(n, γ) 16O [during a He shell flash, 22Ne(α, n) 25Mg also contributes] acts as a neutron source for the α-process. In contrast, the large 12C abundance of the white dwarf core prevents a strong α-process flow during the pre-explosion simmering. The cross section for 12C(n, γ) 13N is 63.5 times smaller than the cross section for 56Fe(n, γ) 57Fe (Bao & Kappeler 1987) at an energy of 30 MeV, which is not sufficient to overcome the vastly larger abundance of 12C nuclei (for a progenitor with solar metallicity, the 12C : 56Fe ratio [for a 12C mass fraction of 0.3] is 1400 : 1).

3. REACTION NETWORK CALCULATIONS

In this section we investigate the reactions that occur during simmering in more detail using a "self-heating" reaction network. Under isobaric conditions, the temperature T evolves with time according to

$$\frac{dT}{dt} = \frac{\varepsilon}{C_P}. \tag{1}$$

Here C_P is the specific heat at constant pressure, and the heating rate ε is given by

$$\varepsilon = -N_\alpha \left[c^2 \sum_i \left(M_i \frac{dY_i}{dt} \right) + \mu \varepsilon \frac{dY_\nu}{dt} \right] - \varepsilon_\nu, \tag{2}$$

where M_i and Y_i are, respectively, the atomic mass and molar abundance of species i, μ is the electron chemical potential, ε_ν is the neutrino loss rate, per unit mass, from the weak reactions (Fuller et al. 1982; Langanke & Martinez-Pinedo 2001), and $N_\alpha = 6.022 \times 10^{26}$ g$^{-1} = 1$ amu$^{-1}$. We neglect thermal neutrino emission processes; this is an excellent approximation over most of the integration. Our reaction network incorporated 430 nuclides up to 76Ge and is the same one used to explore the effect of 22Ne
flows having magnitude >0 with the period of the burn with $T < 6 \times 10^8$ K. Each row contains the isotopes of a particular element Z, with the columns containing different neutron numbers N. The width of the arrow is proportional to the magnitude of the flow, with only those flows having magnitude >0.01 max (F) being shown. The primary $^{12}\text{C} + ^{12}\text{C}$ reactive flows are indicated with a lighter shading and are in red in the online version.

[See the electronic edition of the Journal for a color version of this figure.]

3.1. The Reactive Flows

In this section we refine our estimate of dY_e/dY_{12} made in § 2.2. We integrate equations (1)–(2) starting from the temperature at which heating from the $^{12}\text{C} + ^{12}\text{C}$ reaction equals the heat loss from thermal neutrino losses (this determines the onset of thermal instability). For simplicity, we split the solution of the thermal and network equations. That is, for each time step dt we solve the thermal equations to obtain T and ρ, integrate the reaction network at that T and ρ to compute Y_i and ε, and use ε to advance the solution of equation (1).

In the initial phases of the simmering, the convective timescale is slow, and our one-zone calculations give an adequate description of the heating (when corrected for the gradient in temperature). As the temperature of the white dwarf increases, the heating timescale t_H decreases; moreover, the convective mixing becomes more rapid, and one must treat the hydrodynamical flows in order to calculate the nucleosynthesis properly (see § 3.3). In this section, we will restrict our integration to $T < 0.6$ GK, for which the heating timescale is $\approx 10^7$ s, so that electron captures onto ^{23}Na are not frozen out.

To explore the reaction channels that link ^{12}C consumption with the reduction in Y_e, we define the reactive flow between nuclides i and j as

$$F(i \rightarrow j) = \int \left| \frac{dY_i}{dt} \right|_{i=j} dt,$$

where the integral is for the reactions linking nuclide i with j. We differentiate between $F(i \rightarrow j)$ and $F(j \rightarrow i)$, i.e., we treat inverse rates separately. Figures 2 and 3 show the reactive flows for $\rho = 10^8$ g cm$^{-3}$ and 3×10^8 g cm$^{-3}$, respectively. In both cases the composition is $\{X_{12}, X_{16}, X_{22}\} = \{0.3, 0.7, 0.0\}$. Each row of the chart is a different element (Z), with the columns corresponding to neutron number. For viewing ease, we only plot those flows having $F > 0.01$ max (F), and we indicate the strength of the flow by the line thickness. We highlight the flows of the initial ^{12}C fusion reactions with a lighter shading (red in the online version). For illustrative purposes, we only show the flows for the first 3200 s of the simulation.

[See the electronic edition of the Journal for a color version of this figure.]

To facilitate comparisons between different runs, we define a normalized flow as

$$F(i \rightarrow j) = \frac{F(i \rightarrow j)}{F(12\text{C} \rightarrow 23\text{Na}) + F(12\text{C} \rightarrow 20\text{Ne})}.$$

At a density of 10^9 g cm$^{-3}$ we find $F(12\text{C} \rightarrow 23\text{Na}) = 0.43$ and $F(12\text{C} \rightarrow 20\text{Ne}) = 0.57$, which reflects the branching ratio (Caughlan & Fowler 1988). In agreement with the arguments in § 2, most of the protons liberated by $^{12}\text{C}(^{12}\text{C}, p)\, ^{23}\text{Na}$ capture onto ^{12}C, with $F(12\text{C} \rightarrow 13\text{Na}) \approx F(13\text{Na} \rightarrow 13\text{C}) = 0.20$. Note that if all p were to capture onto ^{12}C, we would have $F(12\text{C} \rightarrow 13\text{N}/23\text{Na}) = 0.5$, because the reaction $^{12}\text{C}(^{12}\text{C}, p)\, ^{23}\text{Na}$ consumes two ^{12}C. The α-particle released by the $^{12}\text{C}(^{12}\text{C}, \alpha)\, ^{20}\text{Ne}$ reaction captures onto ^{13}C to form ^{16}O and a neutron, which in turn destroys another ^{12}C via $^{12}\text{C}(n, \gamma)13\text{C}$. The flow $F(12\text{C} \rightarrow 13\text{C}) = 0.26$ and nearly matches the number of α-particles produced by $^{12}\text{C}(^{12}\text{C}, \alpha)\, ^{20}\text{Ne}$; n-captures onto ^{23}Na and ^{20}Ne account for the difference. At $\rho = 10^9$ g cm$^{-3}$ the only electron captures are onto ^{11}N, so $\Delta Y_i = -F(13\text{N} \rightarrow 13\text{C})$. Dividing by $\Delta Y_{12} = -F(12\text{C} \rightarrow 23\text{Na}) + F(12\text{C} \rightarrow 20\text{Ne}) + F(12\text{C} \rightarrow 13\text{N}) + F(12\text{C} \rightarrow 13\text{C})$ gives $dY_e/dY_{12} = 0.14$ (Table 1). This is slightly less than the estimate of 1/6 (§ 2.2) because of the lower branching ratio of $^{12}\text{C} \rightarrow 23\text{Na}$. At $\rho = 3 \times 10^9$ g cm$^{-3}$, ^{23}Na is consumed by the reaction $^{23}\text{Na}(e^-, \nu_e)\, ^{23}\text{Ne}$ rather than by p- or n-capture (cf. Figs. 2 and 3). The flow is much larger than that from ^{13}N, because the reaction $^{23}\text{Ne}(p, n)\, ^{22}\text{Ne}$ competes for p and produces more ^{23}Na. Indeed, $F(12\text{C} \rightarrow 13\text{C}) = 2.5 F(12\text{C} \rightarrow 13\text{N})$ because of extra n produced by the reaction $^{23}\text{Ne}(p, n)\, ^{22}\text{Ne}$. There is an additional contribution from electron captures onto ^{17}F produced via $^{16}\text{O}(p, \gamma)^{17}\text{F}$, but this flow is only about 4% of the $^{23}\text{Na}(e^-, \nu_e)^{23}\text{Ne}$ flow. At both
Our focus here is to elucidate the reactions that set densities, ^{22}Ne plays a small role in reducing change appreciably so long as dY_e/C_{12} suppressing the strong interactions and allowing the mixture to rich environment. We therefore start the calculation by artificially at higher densities carbon ignition occurs in a more neutron-rich environment. We therefore start the calculation by artificially suppressing the strong interactions and allowing the mixture to come into β-equilibrium. We then turn on the strong reactions and let the runaway commence. In all cases the heavier nuclei did not have a substantial impact on the reactive fluxes. The value for dY_e/dY_{12} is somewhat larger at 0.3 at densities $\rho \geq 1.2 \times 10^9$ g cm$^{-3}$, the threshold density for $^{25}\text{Mg}(e^-, \nu_e)\overline{\nu}_e$ [12C, p, n], because of the reactions $^{24}\text{Mg}(p, \gamma)\overline{\nu}_e$, $^{25}\text{Al}(e^-, \nu_e)\overline{\nu}_e$, and $^{25}\text{Mg}(e^-, \nu_e)\overline{\nu}_e$. Na. Of these two captures, ^{25}Al is β^+-unstable, and hence the electron capture is fast enough to proceed throughout simmering; the capture onto ^{25}Mg has a timescale, at $\rho = 2 \times 10^9$ g cm$^{-3}$, of ≈ 900 s, and will therefore freeze out during simmering, just as captures onto ^{25}Na freeze out.

Our runs span a range of initial densities, from 10^9 g cm$^{-3}$ for which the electron Fermi energy is too low to induce electron captures onto ^{25}Na to 6×10^9 g cm$^{-3}$, which represents an extreme case for accretion onto a cold, initially massive white dwarf (Lesaffre et al. 2006). In all cases, we took the initial ^{12}C mass fraction to be $X_{12} = 0.3$. As noted above, the mass fraction of ^{25}Ne would have to exceed that of ^{12}C to change the nucleosynthesis during simmering appreciably. At higher densities, p-captures onto ^{24}Mg can also play a role (\S 3.1), but our results will not change appreciably so long as X_{12} is not substantially less than 0.3.

The calculation, being a single reaction network integration, does not incorporate the effects of mixing in the white dwarf core. Our focus here is to elucidate the reactions that set Y_e. These calculations do not determine the total amount of carbon consumed (although see \S 3.3 for an estimate) or the total mass of processed material that lies at a density greater than the electron capture threshold. We list our one-zone results in terms of the change in electron abundance per carbon consumed, dY_e/dY_{12}. Table 1 summarizes our numerical findings of dY_e/dY_{12} for densities 10^9, 3×10^9, and 6×10^9 g cm$^{-3}$, for ^{22}Ne mass fractions $X_{22} = 0$ and 0.06, and finally a run (denoted as 3 Z_0 in Table 1) with elements heavier than ^{20}Ne present at 3 times solar abundance. We use this value of 3 Z_0 as representing a rough upper limit based on the ≈ 0.5 dex scatter in [Fe/H] present in local field stars (Feltzing et al. 2001).

3.2. The Effective q-Value of the $^{12}\text{C} + ^{12}\text{C}$ Reaction

The scope of this work is to elucidate the nuclear reactions that occur during the pre-explosion simmering, and including their effects in large-scale hydrodynamics simulations of the entire white dwarf is advisable. As an aid to such simulations, we present fits for the carbon depletion rate and effective heat deposition, which improve on previous expressions (Woosley et al. 2004). Since the reaction chain is controlled by the reaction $^{12}\text{C} + ^{12}\text{C}$, we write the rate of carbon consumption, dY_{12}/dt as being proportional to the thermally averaged cross section, $\lambda = N_d/(\sigma v)$.

$$
\frac{dY_{12}}{dt} = -M_{12}\left(\frac{1}{2}Y_{12}^2\rho\lambda\right).
$$

This definition is such that the quantity in parenthesis is the reaction rate per pair of ^{12}C nuclei and $M_{12} = 2$ if the only ^{12}C-destroying reaction present is $^{12}\text{C} + ^{12}\text{C}$. One can determine M_{12} from summing the normalized reaction flows (eq. [4]) out of ^{12}C.

In a similar fashion, we can define the effective heat evolved, q_{eff}, per reaction $^{12}\text{C} + ^{12}\text{C}$ by the equation

$$
\varepsilon = q_{\text{eff}}N_d\left(\frac{1}{2}Y_{12}^2\rho\lambda\right).
$$

With this definition, one has $\varepsilon = \langle q_{\text{eff}}N_d/M_{12}\rangle dY_{12}/dt$; this may be compared with equation (2) to relate q_{eff} to the binding energy of the nuclei. To compute these quantities, we integrated the reaction network over a grid of ρ and T, both of which were held fixed for each run. We found in all cases that the instantaneous energy generation rate ε would, after some initial transient fluctuations, settle onto a constant value until a significant (>10%) depletion in ^{12}C had occurred. We used this plateau in ε to obtain q_{eff} and M_{12}. For the densities of interest, the values of both q_{eff} and M_{12} obtained this way are nearly independent of temperature. We find $M_{12} = 2.93$; this value is accurate to within 2% over all our runs. The value of q_{eff} increases slightly with density, but is nearly constant over the temperature range of interest. We find that $q_{\text{eff}} = 8.91, 9.11$, and 9.43 MeV for $\rho = 10^9, 2 \times 10^9$, and 3×10^9 g cm$^{-3}$, respectively. At each of these densities, the quoted value of q_{eff} is accurate to within 3% over the temperature range of 3×10^8 to 7×10^8 K.

For use in large-scale hydrodynamic models, one first computes the screened thermally averaged cross section λ (for the most recent rate, see Gasques et al. 2005) at the thermodynamic conditions of a given cell. Combining λ and the cell’s carbon abundance Y_{12} with our estimates of M_{12} and q_{eff}, one computes dY_{12}/dt and ε from equations (5) and (6). In effect, this procedure incorporates the results of a large reaction network and careful treatment of the detailed nuclear physics into simple expressions. We caution that these fits were obtained in the regime $-\Delta Y_{12} < 0.003$, for which proton captures onto ^{24}Na are not competitive with proton captures onto ^{12}C. Note that the heat released per ^{12}C nucleus consumed is $q_{\text{eff}}/M_{12} \approx 3.1$ MeV, slightly higher than our simple estimate (\S 2), and also somewhat higher than those used by Piro & Bildsten (2008). This is because of our inclusion of heating from the $^{13}\text{N}(e^-, \nu_e)^{13}\text{C}$ and $^{25}\text{Na}(e^-, \nu_e)^{21}\text{Ne}$ reactions.

TABLE 1

Composition	Density (109 g cm$^{-3}$)	dY_e/dY_{12}	$\sum dY_i/dY_{12}$
$X_{22} = 0.00$	1.0	0.136	0.340
	3.0	0.297	0.340
	6.0	0.302	0.342
$X_{22} = 0.06$	1.0	0.125	0.347
	3.0	0.301	0.344
	6.0	0.305	0.345

a In all cases the initial mass fraction of ^{12}C is 0.3.
Our estimate of the heat evolved is less than that computed under the assumption that the products of 12C burning are a 3:1 20Ne: 24Mg mixture (see, e.g., Woosley et al. 2004), which releases 5.0 MeV per 12C nucleus consumed.\(^6\) Our net heating rate, per 12C + 12C reaction, is about 10% less than that used by Woosley et al. (2004), but we effectively consume ≈ 3 12C nuclei per reaction.

The change in electron abundance is related to λ via

$$\frac{dY_e}{dt} = - \left(M_{12} \frac{dY_e}{dY_{12}} \right) \left(\frac{1}{2} Y_{12} \rho \lambda \right),$$

where dY_e/dY_{12} is taken from Table 1. Finally, we may compute the change in the mean atomic mass, $\langle A \rangle$, as a function of carbon consumed. On differentiating $\langle A \rangle = \left(\sum_i dY_i/dY_{12} \right)^{-1}$, and substituting equation (5), we have

$$\frac{d\langle A \rangle}{dt} = \langle A \rangle^2 M_{12} \left(\frac{1}{2} Y_{12} \rho \lambda \right) \left(\sum_i \frac{dY_i}{dY_{12}} \right),$$

where the quantity $\sum_i dY_i/dY_{12}$ is computed from the flows (eq. [4]) and is listed in Table 1. From the simple description of the reactions (§ 2; see also Piro & Bildsten 2008) we have, for every six 12C destroyed, one each of 13C, 16O, 20Ne, and 23Na (or 23Ne), so that $\sum_i dY_i/dY_{12} \approx 7$. This results in a smaller change in $\langle A \rangle$ than would result from burning 12C + 12C to a 3:1 20Ne: 23Na mixture (in that case, $\sum_i dY_i/dY_{12} = 0.42$). We advocate using equations (5)–(8) and the computed values (Table 1) of dY_e/dY_{12} and $\sum_i dY_i/dY_{12}$ in numerical simulations of simmering.

3.3. Heating of the White Dwarf Core and the End of Simmering

In previous sections, we evaluated the heating and neutronization of the white dwarf core in terms of the rate of 12C consumption. We now estimate the net amount of 12C that is consumed in raising the white dwarf temperature and evaluate the temperature at which electron captures onto 23Na freeze out. In the one-zone isobaric calculations, using equations (5) and (6), we have $dT/dY_{12} = (q_{\text{eff}} N_A)/(M_{12} C_P)$, so that $\Delta T \approx 0.15$ GK ($\Delta X_{12}/0.01$), where ΔX_{12} is the change in mass fraction of 12C. The change of 12C abundance required to raise the temperature from 3×10^8 to 8×10^8 K is then $\Delta Y_{12} \approx 2.8 \times 10^{-3}$. This is about 11% of the available 12C, for an initial 12C mass fraction $X_{12} = 0.3$. Figure 4 shows the decrement of the e^- abundance, $Y_e(t = 0) - Y_e(t) = -\Delta Y_e$, as a function of 12C consumed, $Y_{12}(t = 0) - Y_{12}(t) = -\Delta Y_{12}$. Note that we are plotting the decrement in abundance. The calculation was started at an initial density and temperature $\rho = 3.0 \times 10^9$ g cm$^{-3}$ and $T = 1.9 \times 10^8$ K. As t_Hshortens, the electron captures onto 23Na “freeze out” and dY_e/dY_{12} decrease to $\approx 1/6$. When $-\Delta Y_{12} \geq 0.003$, the abundances of 23Na and 23Ne have increased sufficiently that they compete with 12C to consume protons, and thereby halt the neutronization, in agreement with Piro & Bildsten (2008).

As noted by Piro & Bildsten (2008), a one-zone model will overestimate the heat required to raise the central temperature by a given amount, and hence overestimate the amount of 12C that must be consumed during simmering. We perform a calculation similar to theirs: starting with an isothermal white dwarf with a given central density and with a temperature set by equating heating from the 12C + 12C reaction with neutrino losses, we then raise the central temperature to 8×10^8 K, keeping the total white

\(^6\) Note that in eq. (1) of Woosley et al. (2004) the factor of $\frac{1}{2}$ is subsumed into their quantity λ_{12}.
pronounced there. Using our estimate of r_{conv}, we estimate that within the convective zone $|\Delta Y_{12}| = 3.0 \times 10^{-3}, 2.1 \times 10^{-3},$ and 2.01×10^{-3}, respectively, for $\rho_{\text{init}}(10^9$ g cm$^{-3}$) = 1.0, 3.0, and 6.0. Should the radial extent of the convective zone be smaller than our estimate, for example because of convective Urca losses (Stein et al. 1999; Stein & Wheeler 2006; Lesaffre et al. 2005), the abundance of 12C will be further reduced in the white dwarf core. A lower 12C abundance reduces the laminar speed of the flame launched at the end of simmering (Timmes & Woosley 1992; Chamulak et al. 2007).

Finally, we estimate at what point the convective mixing timescale becomes smaller than the timescale for electron captures onto 23Na. Using our adiabatic temperature-gradient white dwarf models, we compute the typical convective velocity v_{rms} and hence a characteristic turnover time $t_{\text{conv}} = r_{\text{conv}}/v_{\text{rms}}$, using the mixing length formalism (see the discussion in Woosley et al. 2004) with the total luminosity and evaluating thermodynamical quantities at their central values. Figure 5 shows t_{conv} (thick lines) for the three cases of ρ_{init} considered above, as well as the electron capture timescale, t_{ec} for 23Na (thin lines) for those cases with a density above threshold. To estimate the effect of the 22Ne/23Na pairs on the convective zone, we evaluated the mass fraction of these pairs for the case $\rho_{\text{init}} = 3.0 \times 10^9$ g cm$^{-3}$ when the temperature had risen to $T = 3.5 \times 10^8$ K and $t_{\text{ec}} \approx t_{\text{conv}}$ (Fig. 5, solid line). At this point the convective core has a mass $0.5 M_{\odot}$, which is comparable to their calculation. We estimate, from the energy required to heat the white dwarf to this point, that the mass fraction of 22Ne/23Na pairs in the convective zone will be $X_{23} = 0.004$ at this time. We note that such a large number of Urca pairs will have a dramatic effect on the properties of the convection zone (Lesaffre et al. 2005). As is evident from Figure 5, there is a range of temperatures for which $t_{\text{ec}} < t_{\text{conv}} < t_{1/2}$. In this region, the effective $dY_e/d\Delta Y_{12}$ will depend on the fraction of mass with densities above the capture threshold and on the effects of Urca losses on the convective flows, but will still be larger than the minimum value set by 13N(e$^-$, ν_e)13C. Incorporating the effects of the neutrino luminosity from the 22Na/23Ne reactions in this regime is numerically challenging (Lesaffre et al. 2005, 2006) and beyond the scope of this work; for now, we just note that this is the primary uncertainty in determining the amount of 12C consumed during the pre-explosive phase, and a better treatment is needed.

4. DISCUSSION AND CONCLUSIONS

Using a nuclear reaction network coupled to the equation for self-heating at constant pressure (eqs. [1] and [2]), we have investigated the change in Y_e induced by electron captures on nuclei produced by 12C fusion during the pre-explosion simmering of the white dwarf. We confirm that there is a maximum Y_e at flame ignition (Piro & Bildsten 2008). We quantified the role of 22Ne and other trace nuclides in setting the change in electron abundance with 12C consumption by using a full reaction network, and we included the heating from electron captures into an excited state of 13C. We gave simple formulae (eq. [5]–[8]) for the energy generation rate, the rate of change in electron abundance, and the rate of change in the mean atomic mass to include the detailed nuclear physics into large-scale hydrodynamical simulations.

Our estimates of the maximum Y_e at the time of the explosion are roughly similar to those of Piro & Bildsten (2008). If we neglect the effect of thermal neutrino losses on the evolution of the white dwarf, then Y_e is reduced by 2.7×10^{-4}. We expect this to be larger than our estimate, for example because of convective Urca losses (Iwamoto et al. 1999; Timmes et al. 2003), even in the absence of further electron captures onto the Fe-peak isotopes in nuclear statistical equilibrium (NSE) in the densest portion of the white dwarf. As a result, any correlation between host system metallicity and white dwarf peak luminosity will be weakened for $Z \lesssim Z_*$ (for which the reduction in Y_e due to captures during simmering is greater than the change due to initial white dwarf composition).

To illustrate how the simmering electron captures affect the light curve, we reconstruct the comparison made by Gallagher et al. (2005), who compiled a set of SNe Ia with measured $\Delta m_{15}(B)$, defined as the change in B over 15 days postpeak, and host galaxies with measured abundances of oxygen to hydrogen, denoted O/H. We construct an expression for M_{56}, the mass of 56Ni produced in the explosion, that depends on $dY_e/d\Delta Y_{12}$ (Table 1), ΔY_{12}, and the host galaxy composition (we assume that the white dwarf has the same O/H ratio as the galaxy). The trace nuclide that predominantly sets Y_e in the white dwarf is 22Ne, which traces the aboriginal abundance of CNO nuclei in the main-sequence star from which the white dwarf evolved. We therefore recast the linear formula for M_{56} (Timmes et al. 2003) in terms of O/H. For simplicity, we fix the 12C consumption given in Table 1, and ΔY_{12} is the total amount of 12C consumed during the pre-explosion convective phase.

Relating this to an observable such as $\Delta m_{15}(B)$ requires an explosion model that follows the radiation transfer. Our interest
here is to isolate how M_{56} changes with the CNO abundance of the progenitor when the other parameters, such as the ejecta kinetic energy and the total mass of iron-peak nuclei, are held fixed. This is important, because the relation between light curve width and peak brightness depends on these other parameters as well (see Woosley et al. 2007 for a lucid discussion). We use the model M070103 (Woosley et al. 2007), in which the total mass of iron-peak ejecta is 0.8 M_\odot: of that, the innermost 0.1 M_\odot is stable iron formed in situ from electron captures during the explosion, with the remainder being a mix of radioactive 56Ni and stable Fe. Note that this model follows the peak luminosity–light curve width relation (Phillips 1993), whereas Mazzali & Podsiadlowski (2006) suggest that varying the ratio of 56Ni to stable Fe may create dispersion about this relation.

Using the model of Woosley et al. (2007) we set $M_{56,0} = 0.7 \ M_\odot$, use equation (9) to compute M_{56} as a function of O/H for different ΔY_{12}, and interpolate from Woosley et al. (2007; their Fig. 22) to find $\Delta m_{15}(B)$. Figure 6 displays this result. We plot here a maximal case (dashed line) with $dY_e/dY_{12} = 0.30$ in the initial part of the simmer, appropriate for the one-zone calculation with electron captures onto 23Na (Fig. 4); for this case $\Delta Y_e = -7.5 \times 10^{-4}$. For comparison, we also plot a case (solid line) with $\Delta Y_e = 0$ during simmering. This gives a sense of how large the variation in Y_e might be. The vertical bar indicates the value of $12 + \log(O/H)$ at which the change in $\Delta m_{15}(B)$ from the 22Ne abundance equals that from the electron captures during simmering for this maximal case. To the left of this curve, the linear correlation between 22Ne abundance and $\Delta m_{15}(B)$ will be masked by variations in the simmering of the white dwarf. For comparison, we also show the data from the compilation of Gallagher et al. (2005) and Hamuy et al. (2000), and plot the relation between $12 + \log(O/H)$ and $\Delta m_{15}(B)$ used by Gallagher et al. (2005; dotted line). This trend is much steeper than our finding. The difference is due to how the 56Ni mass was varied; whereas the models we use (Woosley et al. 2007) hold the kinetic energy and total mass of iron-peak ejecta fixed, Gallagher et al. (2005) based their peak brightness on delayed detonation models (Höflich et al. 2002), for which a variation in 56Ni also produced a change in the relative amounts of iron-peak and intermediate-mass elements, as well as a different explosion kinetic energy.

It is evident from Figure 6 that the scatter in the data points is larger than the expected trend due to progenitor composition, especially at subsolar metallicities. Both ΔY_{12} and dY_e/dY_{12} depend on the central density, which is not obviously correlated with metallicity, and hence the correlation between peak brightness and O/H will be masked by differences in the pre-explosion simmering. Indeed, if the variation in ΔY_e were as large as the two cases we plot in Figure 6, then variations in 56Ni would be determined more by ΔY_{12} than by stellar composition for galaxies with subsolar O/H. There is a general trend that SNe Ia are systematically brighter in galaxies with active star formation (Hamuy et al. 2000; Gallagher et al. 2005; Sullivan et al. 2006; Howell et al. 2007). Sullivan et al. (2006) showed that the SNe Ia rate increases linearly with the specific star formation rate, and that SNe Ia associated with actively star forming galaxies were intrinsically brighter than those associated with passive galaxies. Although many of these passive galaxies are more massive, and hence more metal-rich (Tremonti et al. 2004), the observed scatter in SNe Ia peak brightnesses remains much larger than the expected trend with metallicity (Piro & Bildsten 2008; D. A. Howell 2007, private communication). This suggests that the correlation with the chemical abundances of the host galaxy is a secondary effect in setting the peak brightness of SNe Ia.

We thank Tony Piro, Lars Bildsten, Andy Howell, and Craig Wheeler for many useful discussions, Francisco Förster and Philipp Podsiadlowski for a detailed comparison of reaction rate networks, Bill Paxton for creating Tioga (available at http://www.kitp.ucsb.edu/paxton/tioga.html), and Michele Berry for assistance with Figure 6. We especially thank Remco Zegers for computing the Gamow-Teller strengths for 13N and the referee for constructive comments. This work was supported by the National Science Foundation, grant AST05-07456, and by the Joint Institute for Nuclear Astrophysics at Michigan State University under NSF-PFC grant PHY02-16783. This research was also supported in part by the NSF under grant PHY05-51164 to the Kavli Institute for Theoretical Physics. Los Alamos National Laboratory is operated by the Los Alamos National Security, LLC for the National Nuclear Security Administration of the US Department of Energy under contract DE-AC52-06NA25396. Additional support was provided by the US Department of Energy via award KA1401020.

REFERENCES

Ajzenberg-Selove, F. 1991, Nucl. Phys. A, 523, 1
Anders, E., & Grevesse, N. 1989, Geochem. Cosmochim. Acta, 53, 197
Asplund, M., Grevesse, N., & Sauval, A. J. 2005, in ASP Conf. Ser. 336, Cosmic Abundances as Records of Stellar Evolution and Nucleosynthesis, ed. T. G. Barnes & F. N. Bash (San Francisco: ASP), 25
Badenes, C., Hughes, J. P., Bravo, E., & Langer, N. 2007, ApJ, 662, 472
Bao, Z. Y., & Kappeler, F. 1987, At. Data Nucl. Data Tables, 36, 411
Beccereil Reyes, A. D., Gupta, S., Kratz, K. L., Möller, P., & Schatz, H. 2006, in Nuclei in the Cosmos IX, ed. J. Cederkäll et al. (Trieste: SISSA)
Blondin, S., et al. 2006, AJ, 131, 1648
Brown, B. A., et al. 2004, OXBASH for Windows (Rept. 1289; Lansing: Michigan State Univ.-NSCL)
