Significance analysis for clustering with single-cell RNA-sequencing data

Isabella N. Grabski, Kelly Street & Rafael A. Irizarry

Unsupervised clustering of single-cell RNA-sequencing data enables the identification of distinct cell populations. However, the most widely used clustering algorithms are heuristic and do not formally account for statistical uncertainty. We find that not addressing known sources of variability in a statistically rigorous manner can lead to overconfidence in the discovery of novel cell types. Here we extend a previous method, significance of hierarchical clustering, to propose a model-based hypothesis testing approach that incorporates significance analysis into the clustering algorithm and permits statistical evaluation of clusters as distinct cell populations. We also adapt this approach to permit statistical assessment on the clusters reported by any algorithm. Finally, we extend these approaches to account for batch structure. We benchmarked our approach against popular clustering workflows, demonstrating improved performance. To show practical utility, we applied our approach to the Human Lung Cell Atlas and an atlas of the mouse cerebellar cortex, identifying several cases of over-clustering and recapitulating experimentally validated cell type definitions.

Received: 1 August 2022
Accepted: 1 June 2023
Published online: 10 July 2023

Unsupervised clustering is widely applied in single-cell RNA-sequencing (scRNA-seq) workflows. The goal is to detect distinct cell populations that can be annotated as known cell types or discovered as novel ones. A common claim from applying these workflows is that new cell subtypes or states have been discovered because a clustering algorithm divided a population associated with a known cell type into more than one group. But how do we know if this partition could have happened by chance, even with only one cell population being present? Current approaches do not consider this question. Furthermore, because the most popular clustering algorithms are heuristic and do not rely on underlying generative models, they are simply not designed for statistical inference.

As an example, consider the Louvain and Leiden algorithms as implemented by the widely used Seurat toolkit. A standard procedure is to (1) apply principal component analysis to the log-transformed and normalized counts, (2) compute the Euclidean distance between the first 30 principal components of each pair of cells, (3) find the 20 nearest neighbors for each cell, (4) specify a weight for each pair of cells based on the number of neighbors in common and use this to define weighted edges in a network, and (5) divide the network into clusters that maximize modularity. The number of clusters found is related to a tuning parameter called the resolution, the best value of which is typically selected by manual inspection of the clusters or by maximizing criteria related to clustering stability. Note that an underlying generative model is not provided to motivate any of these steps nor to assess how much the results can change due to natural uninteresting random variation. Hence, these and other similar algorithms do not examine the statistical possibility of under- or over-clustering, which leads to the failure to detect rare populations or the false discovery of novel populations, respectively.

Over-clustering can be particularly insidious because clustering algorithms will partition data even in cases where there is only uninteresting random variation present. Moreover, due to the data snooping bias, also known as double-dipping, cells that have been incorrectly clustered into two groups can have genes that appear to be differentially expressed with spuriously small \(P \) values. This is because, for

1Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, MA, USA. 2Division of Biostatistics, Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA. 3Department of Data Science, Dana-Farber Cancer Institute, Boston, MA, USA. e-mail: isabellagrabski@g.harvard.edu; kelly.street@usc.edu; rafael_irizarry@dfci.harvard.edu
using Seurat’s implementation of the Louvain algorithm at different resolution parameters, denoted by row. The number of circles in each row represents the number of clusters found with the respective resolution parameter, with the circle’s label and area denoting the number of cells in the cluster. The arrow widths and labels denote what proportion of the cells in each cluster came from the clusters at the previous resolution parameter.

example, if we force a single population into two clusters, the algorithm will assign cells that are more similar to each other to the same group, but the statistical test does not take this selection into account when considering the null hypothesis. As a result, if one does not account for this statistical reality, over-clustered output can appear to show convincing differences.

Statistical inference frameworks for clustering have been introduced in contexts other than cell population discovery with scRNA-seq data \(^{6,13}\). These assume an underlying parametric distribution for the data, specifically Gaussian distributions, where distinct populations have different centers. A given set of clusters can then be assessed in a formal and statistically rigorous manner by asking whether or not these clusters could have plausibly arisen under data from a single Gaussian distribution. If so, then the set of clusters probably indicates over-clustering. However, a limitation of many of these approaches in the context of scRNA-seq cell population discovery is that one can compare only one versus two clusters, rather than any number of clusters, and clustering cannot be done in a hierarchical fashion. Significance of hierarchical clustering (SHC) \(^{11}\) addresses this limitation by incorporating hypothesis testing within the hierarchical procedure. However, SHC is not directly applicable to scRNA-seq data due to the Gaussian distributional assumption, which is inappropriate for these sparse count data \(^{12,13}\).

In this Article, we extend the SHC approach to propose a model-based hypothesis testing framework embedded in hierarchical clustering for scRNA-seq data. Motivated by previous exploratory analyses \(^{11}\), we defined a parametric distribution to represent cell populations, and developed an approach implemented in two ways. First, like SHC, our approach can perform hierarchical clustering with built-in hypothesis testing to automatically identify clusters representing distinct populations. We refer to this self-contained method as single-cell SHC (sc-SHC). To permit significance analysis for datasets that have already been clustered, we developed a version that can be applied to any provided set of clusters. Our approach corrects for multiple, sequential hypothesis testing and controls the family-wise error rate (FWER), with interpretable summaries of clustering uncertainty. We also extend our approach to the setting with batch labels. We motivate the need for statistical inference in scRNA-seq clustering by incorporating hypothesis testing within the hierarchical procedure. However, SHC is not directly applicable to scRNA-seq data due to the Gaussian distributional assumption, which is inappropriate for these sparse count data \(^{12,13}\).

Results

Current clustering workflows over-cluster

To assess the performance of the clustering stability approach applied in current workflows to avoid over-clustering, we simulated scRNA-seq data from a single distribution representing one cell population (Fig. 1a). Because typical clustering workflows only consider a subset of high-variance genes, we simulated 5,000 cells with 1,000 genes each, intended to represent expressed genes, using a previously published model \(^{11}\) (‘Simulated study’ in Methods). The expression counts for each cell were drawn from the same joint distribution over all 1,000 genes, and thus an algorithm that reports more than one cluster in these data is over-clustering.

We clustered these simulated expression counts using the most popular clustering algorithm, Seurat’s implementation of the Louvain algorithm” (for details, see ‘Simulated study’ in Methods). We compared results obtained using different resolution parameters used to control the final number of clusters. The number of clusters found varied from two to eight, with the default resolution parameter resulting in five clusters, demonstrating substantial over-clustering (Fig. 1b).
Furthermore, as the resolution parameter increased, most clusters represented increasing subdivisions of previous cluster output, indicating a high degree of stability (Fig. 1c). This demonstrates that clustering stability does not necessarily provide a useful statistical assessment. Moreover, applying the standard approach of visualizing the clusters with uniform manifold approximation and projection (UMAP) plots provided further confirmation bias (Fig. 1b). The current approach is therefore prone to over-clustering with no tools provided for detecting the problem.

Significance analysis can both identify and assess clusters

We introduce a model-based hypothesis testing framework that can be applied to any provided set of clusters to determine which, if any, should be merged due to over-clustering. The approach can also be built into hierarchical clustering to produce a self-contained clustering pipeline that identifies clusters with statistical evidence that they represent distinct populations. The key idea is to define a realistic parametric distribution to represent a cell population, and then assess whether a separation into two clusters, proposed by the algorithm, could have arisen by chance from cells belonging to only one population. We use a parametric joint distribution that takes into account natural and technical variability, as well as correlation between genes (details in Methods).

To illustrate the foundational concepts of our framework, we first describe the simplest case. Suppose we have a dataset that has been clustered into two groups, and we want to evaluate whether these two clusters should be just one. Specifically, we want to evaluate whether the clustering algorithm could have found such clustering structure, by chance, from data generated by a single distribution. To answer this question, we first computed a quality assessment metric for the clusters, specifically the Ward linkage, which we denote with w. The Ward linkage finds the difference between the expected sum of squares of the data when the two clusters are merged, and the expected sum of squares when the two clusters are separate. Hence, larger values suggest greater separation of the two clusters.

We then fit our parametric model, assuming just one population, to the data to obtain a null model. We used this model to perform a parametric bootstrap procedure (Fig. 2a) and form a null distribution for the Ward linkage. With a null distribution in place, we can estimate a P value: the probability of observing a Ward linkage for two clusters as high as or higher than w when only one population is present.

Fig. 2 Schematic illustrating our approach to significance analysis for clustering. **a**, Schematic of the test used by our approach to decide whether a proposed two-way split is significant. We show two examples, one in which two distinct populations were simulated (top) and one in which only one population was simulated (bottom). The schematics show how we use hierarchical clustering to divide the data into two, fit a single parametric model to the data, simulate 100 datasets under that model, and cluster each simulated dataset and compute the Ward linkage. We then compare the Ward linkage of the observed clusters to this empirical null distribution to decide whether to reject the null hypothesis. **b**, Schematic of our approach. We hierarchically cluster all the cells (or pre-computed clusters), and carry out significance analysis to decide whether to split the root node into the two clusters denoted by blue and red. We stop if we fail to reject the null hypothesis, and otherwise recursively continue performing tests to decide if we split each node or not.
To develop a clustering pipeline, we extended SHC\(^1\) for scRNA-seq. Specifically, we applied hierarchical clustering to distances computed using a method developed for scRNA-seq (Methods). This resulted in a tree where the root node divided the cells into two groups, and each successive node encoded a further two-way split, all the way down to leaf nodes representing the individual cells. Note that we can obtain several different clustering results by merging branches\(^3\). To decide what branches to merge, we recursively applied the statistical test, described above, at each node, adjusting the significance threshold each time to control the FWER. After running this full procedure, we had a final set of clusters that have been determined by hypothesis testing to represent cells from distinct distributions (Fig. 2B). We also provide a useful uncertainty summary for each cluster by adapting the concept of an adjusted \(P\) value. Specifically, we run the pipeline using a FWER considered to be the highest tolerable false positive rate, then, for each split in the tree, we define an adjusted \(P\) value as the infimum of FWER thresholds that would have permitted this particular split to be considered statistically significant. Full details are in the Methods.

To apply our significance analysis framework to any given set of pre-computed clusters produced by any algorithm, we modified our approach as follows. We first hierarchically clustered the centers of the provided clusters, such that each leaf of the tree represents one of the original clusters, and then again recursively applied our statistical test at each node. After running this procedure, we obtained a final, possibly merged set of clusters to correct for any potential over-clustering. Full details are in the Methods.

Finally, when the data have known batch structure, we altered our approach in two ways. First, the batch effects were accounted for in the distance computation (‘Accounting for batch effects’ in Methods). Second, when evaluating each tree split, we computed the test statistic separately for each batch and reported the median of these values, and correspondingly fit and simulated the null model separately for each batch. Further details are in the Methods.

Significance analysis improves current clustering approaches

To benchmark our method against current clustering workflows, we constructed three datasets with known ground truth: a one-population dataset, a five-populations dataset and a five-similar-populations dataset. Specifically, we constructed our datasets using 2,885 cells from the 293T cell line\(^4\). Because these cells are all from the same cell line, they represent a single, well-defined population. The one-population dataset consists of these 2,885 cells, completely unaltered. The five-populations dataset consists of these same 2,885 cells, but modified to create five different populations of equal size, with up to 100 genes permuted to create differing gene expression levels across populations. Finally, the five-similar-populations dataset was modified in the same way except that the fourth and fifth populations differ by only 10 genes, instead of 100 (for details, see ‘Benchmark data’ in Methods).

We ran our clustering pipeline on each of these three datasets, as well as four popular existing clustering workflows for comparison: Seurat’s implementation of the Louvain algorithm (denoted here as Seurat-Louvain), Seurat’s implementation of the Leiden algorithm (denoted here as Seurat-Leiden)\(^5\), Monocle’s cluster_cells function\(^6\) and SC3’s consensus clustering algorithm\(^7\). Both Monocle and SC3 have built-in mechanisms to choose the number of clusters, but both Seurat-Louvain and Seurat-Leiden require the user to specify the resolution parameter, which is related to the number of clusters. We thus ran these latter algorithms in two ways: using the default resolution parameter, and using clustree to guide the choice of resolution parameter (‘Benchmark data’ in Methods). We then also applied our significance analysis to the clustering outputs produced by each of these methods.

For each approach and dataset, we reported the number of clusters found and the Adjusted Rand Index (ARI), a metric of cluster accuracy where values closer to 1 indicate higher accuracy\(^8\). To compute the ARI, we compared the outputted cluster labels to the ground-truth population labels. In the one-population dataset, our clustering pipeline was the only method that correctly found just one cluster; other approaches found anywhere from 2 to 15 clusters. While applying stability analysis (clustree) resulted in much improved performance compared to default parameters, these other algorithms still overestimated the number of clusters. However, applying our significance analysis improved the performance of all other algorithms and correctly combined all outputs into a single cluster (Table 1).

In the five-populations dataset, our approach again found the correct number of clusters (five) with perfect correspondence to the ground-truth labels. Seurat-Louvain with clustree also found the correct number of clusters, with just seven cells incorrectly partitioned. All other approaches found between 6 and 11 clusters. Applying significance analysis improved the performance of these methods. Specifically, the output of Seurat-Louvain under the default settings was merged into five clusters with near-perfect correspondence to the ground-truth labels, limited only by mistakes from the original clustering. Both Seurat-Leiden outputs were pruned from eight to six clusters, with an increase in ARI from 0.88 to 0.93. In each case, the sixth cluster consisted of eight cells across four of the ground-truth populations, and hence could not be correctly merged with any of the other clusters. For Monocle, no clusters were merged. As with the Seurat-Leiden outputs, the Monocle cluster outputs were not perfectly subdivided from the ground-truth labels, and further merges from the six-cluster solution would have mixed together cells from different populations. Finally, the output of SC3 was pruned from 11 to 8 clusters, improving

Table 1 | Number of clusters (\(k\)) and ARI, comparing outputted cluster labels to the ground-truth population labels, when our clustering pipeline, sc-SHC, as well as existing methods, are applied to three datasets. We also applied our significance analysis on top of each existing method

Dataset	One-population	Five-populations	Five-similar-populations									
	Original	With significance analysis	Original	With significance analysis	Original	With significance analysis						
sc-SHC	k	ARI										
One-population	1	1.00	N/A	N/A	5	1.00	N/A	N/A	5	0.99	N/A	N/A
Five-populations	6	0.00	1	1.00	5	0.99	5	0.99	4	0.78	4	0.78
Five-similar-populations	9	0.00	1	1.00	7	0.89	5	0.99	8	0.67	4	0.78
Monocle	4	0.00	1	1.00	8	0.88	6	0.93	4	0.78	4	0.78
SC3	9	0.00	1	1.00	8	0.88	6	0.93	10	0.59	4	0.78

To apply our significance analysis framework to any given set of pre-computed clusters produced by any algorithm, we modified our approach as follows. We first hierarchically clustered the centers of the provided clusters, such that each leaf of the tree represents one of the original clusters, and then again recursively applied our statistical test at each node. After running this procedure, we obtained a final, possibly merged set of clusters to correct for any potential over-clustering. Full details are in the Methods.

Finally, when the data have known batch structure, we altered our approach in two ways. First, the batch effects were accounted for in the distance computation (‘Accounting for batch effects’ in Methods). Second, when evaluating each tree split, we computed the test statistic separately for each batch and reported the median of these values, and correspondingly fit and simulated the null model separately for each batch. Further details are in the Methods.

Significance analysis improves current clustering approaches

To benchmark our method against current clustering workflows, we constructed three datasets with known ground truth: a one-population dataset, a five-populations dataset and a five-similar-populations dataset. Specifically, we constructed our datasets using 2,885 cells from the 293T cell line\(^4\). Because these cells are all from the same cell line, they represent a single, well-defined population. The one-population dataset consists of these 2,885 cells, completely unaltered. The five-populations dataset consists of these same 2,885 cells, but modified to create five different populations of equal size, with up to 100 genes permuted to create differing gene expression levels across populations. Finally, the five-similar-populations dataset was modified in the same way except that the fourth and fifth populations differ by only 10 genes, instead of 100 (for details, see ‘Benchmark data’ in Methods).

We ran our clustering pipeline on each of these three datasets, as well as four popular existing clustering workflows for comparison: Seurat’s implementation of the Louvain algorithm (denoted here as Seurat-Louvain), Seurat’s implementation of the Leiden algorithm (denoted here as Seurat-Leiden)\(^5\), Monocle’s cluster_cells function\(^6\) and SC3’s consensus clustering algorithm\(^7\). Both Monocle and SC3 have built-in mechanisms to choose the number of clusters, but both Seurat-Louvain and Seurat-Leiden require the user to specify the resolution parameter, which is related to the number of clusters. We thus ran these latter algorithms in two ways: using the default resolution parameter, and using clustree to guide the choice of resolution parameter (‘Benchmark data’ in Methods). We then also applied our significance analysis to the clustering outputs produced by each of these methods.

For each approach and dataset, we reported the number of clusters found and the Adjusted Rand Index (ARI), a metric of cluster accuracy where values closer to 1 indicate higher accuracy\(^8\). To compute the ARI, we compared the outputted cluster labels to the ground-truth population labels. In the one-population dataset, our clustering pipeline was the only method that correctly found just one cluster; other approaches found anywhere from 2 to 15 clusters. While applying stability analysis (clustree) resulted in much improved performance compared to default parameters, these other algorithms still overestimated the number of clusters. However, applying our significance analysis improved the performance of all other algorithms and correctly combined all outputs into a single cluster (Table 1).

In the five-populations dataset, our approach again found the correct number of clusters (five) with perfect correspondence to the ground-truth labels. Seurat-Louvain with clustree also found the correct number of clusters, with just seven cells incorrectly partitioned. All other approaches found between 6 and 11 clusters. Applying significance analysis improved the performance of these methods. Specifically, the output of Seurat-Louvain under the default settings was merged into five clusters with near-perfect correspondence to the ground-truth labels, limited only by mistakes from the original clustering. Both Seurat-Leiden outputs were pruned from eight to six clusters, with an increase in ARI from 0.88 to 0.93. In each case, the sixth cluster consisted of eight cells across four of the ground-truth populations, and hence could not be correctly merged with any of the other clusters. For Monocle, no clusters were merged. As with the Seurat-Leiden outputs, the Monocle cluster outputs were not perfectly subdivided from the ground-truth labels, and further merges from the six-cluster solution would have mixed together cells from different populations. Finally, the output of SC3 was pruned from 11 to 8 clusters, improving
the ARI from 0.91 to 0.96, although it would have been technically possible to prune down to 6 without making mistakes (Table 1). Thus, in all but one case, significance analysis merged the clustering outputs as much as possible without creating additional clustering errors.

In the five-similar-populations dataset, our approach once again found the correct number of clusters (five), with an ARI of 0.99. No other approach found the correct number of clusters, and instead found either too few (4) or too many (between 8 and 11). Regardless of the number of clusters, all except SC3 combined the two similar populations into one. Applying significance analysis pruned SC3’s 11-cluster output down to 7 clusters with an ARI of 0.97. For all other methods, significance analysis resulted in a four-cluster solution, either by maintaining the original output or pruning down, which represents the best that could have been found from those outputs (Table 1).

To assess our approach’s ability to detect clusters in settings with uneven cluster sizes, for example in the presence of rare cell populations, we created additional versions of the five-populations and the five-similar-populations dataset in which the size of the fifth population was varied from 50 to 550 cells (Fig. 3). Under the five-populations dataset, the correct number of clusters and maximum possible ARI were found in all cases. Under the five-similar-populations dataset, the fifth population was combined with the fourth at the two smallest sizes (50 and 100 cells), but then the correct solution was found at all other sizes.

Finally, we assessed the computational time of sc-SHC on subsets of a mouse cerebellum dataset ranging from 1,000 to 100,000 cells, and the computational time of our significance analysis on pre-computed clusters for subsets of the Human Lung Cell Atlas (lung), ranging from 1,000 to 65,000 cells.

Our method corrects over-clustering in Human Lung Cell Atlas

To demonstrate how our approach provides different results in real-world data, we applied our significance analysis to clusters reported by the Human Lung Cell Atlas. This atlas consists of 65,662 cells from 3 patients; we treated patient labels as batch effects, as described in the Methods. The original study identified 57 clusters, some of which were interpreted as novel cell types. Our approach merged these clusters into 45, indicating over-clustering in the original project. Specifically, 38 of the 45 clusters found to be statistically significant corresponded exactly to 38 of the original clusters. The remaining 7 were combinations of 2 to 4 of the originally reported clusters.

To illustrate one of the examples of over-clustering, we consider what the original study reported as three clusters: capillary aerocytes, capillary and capillary intermediate 1. Applying significance analysis did not find evidence of the presence of the capillary intermediate 1 subpopulation and merged it with the capillary cluster, while the capillary aerocytes were found to be a distinct population. An scRNA-seq gating plot (described in ‘scRNA-seq gating plots’ in Methods), comparing cells in the capillary aerocyte cluster to cells reported to be in the other two, shows strong evidence of two distinct modes, which was consistent with capillary aerocytes being a distinct population (Fig. 4a). However, an scRNA-seq gating plot comparing the reported capillary and capillary intermediate 1 clusters did not show evidence of two distinct populations (Fig. 4b).

Many of the other clusters that were merged were similar examples where gating plots did not show evidence of more than one mode. Like the capillary and capillary intermediate 1 clusters, these were often subpopulations that might be interpreted as belonging to a trajectory. For example, the alveolar epithelial type 2 cluster and signaling alveolar epithelial type 2 cluster were merged, as were the ciliated and proximal ciliated clusters, and the macrophage and proliferating macrophage clusters. One of the largest merges combined the basal, differentiating basal, proliferating basal and proximal basal clusters together. By contrast, there were other instances in which related subpopulations were still found to belong to distinct clusters and represent multiple modes, such as the myeloid dendritic type 1 and myeloid dendritic type 2 clusters, or the classical monocyte and OLR1+ classical monocyte clusters. Examples of these clustering results are visualized in
Supplementary Fig. 1 to show the contrast between the original clusters and those obtained after significance analysis.

Our method identifies populations in the mouse cerebellum
We also applied our clustering pipeline to a mouse cerebellum dataset\(^{20}\). In particular, we examined 133,858 nongranule cells from six mouse cerebellar cortices, treating the mouse labels as batch effects, and found a total of 23 clusters. The original study clustered and annotated the data in an iterative process using both Seurat’s implementation of the Louvain algorithm\(^2\) and LIGER\(^22\). They reported the resulting annotations at two levels of granularity—high-level major cell types, of which there are 17, and finer-level subclusters, of which there are 46. The ARI comparing our reported clusters with the major cell type level was 0.95, and the ARI with the subcluster level was 0.70, demonstrating the substantial improvements provided by our approach when compared with other methods only in reducing over-clustering, not in fixing incorrect interpretations. While stability analyses such as cluster tree yield notable improvement, they do not completely alleviate the problem of over-clustering. By contrast, in our simulations, sc-SHC found the correct number of clusters, with ARIs above 0.99. We also showed that our approach prevented over-clustering without being overly conservative—even when two distinct populations differed only by the expression of ten genes, our approach still correctly separated them. Our post hoc approach also performed favorably, reducing over-clustering in nearly every instance. However, we note that this post hoc approach is limited by the accuracy of the original clustering: our approach can improve other methods only in reducing over-clustering, not in fixing incorrect annotations.

Finally, to demonstrate that our approach makes a difference on published datasets, we applied this framework to the Human Lung Cell Atlas and a mouse cerebellum dataset, explicitly accounting for the multi-sample structure, to correct over-clustering. In the Human Lung Cell Atlas, we found 12 fewer clusters than were originally reported.
Reducing over-clustering can prevent incorrectly interpreting certain clusters as novel cell types, and can also improve power in differential expression analyses by not unnecessarily over-partitioning the data. In addition, several sets of clusters that our approach merged appear to indicate continuous, rather than discrete, cell states, the determination of which can inform the appropriate downstream analyses to apply. In the mouse cerebellum dataset, our results demonstrate how our approach can immediately, directly and rigorously obtain clusters that required substantial additional post hoc, downstream computational and experimental analyses in the original study.

A limitation of model-based approaches is that the definition of a distinct population depends on the appropriateness of the parametric model assumed to describe gene expression. Although extensive data exploration indicates that the model we used does in fact describe observed data from distinct populations, scenarios in which it is not appropriate should be considered. For example, we assumed a unimodal marginal distribution for gene expression within a population. This implies that, for cell populations in which some gene expression follows multi-modal distributions, our approach might also result in over-clustering as the incorrect assumption may lead to incorrectly rejecting the one population null hypothesis. Also note that, like all clustering algorithms, our approach identifies discrete populations of cells. Our model-based approach associates these discrete populations with different unimodal probability distributions. However, this does not preclude the presence of biologically meaningful variation within these populations. For example, a continuously varying gene expression level might be associated with different stages within a cell cycle. However, methods that partition cells into distinct groups, such as clustering, are not an appropriate tool for statistically describing these important sources of variability, although model-based approaches such as ours can be adapted to quantify this variation through a continuous parameter in the model. Finally, we note that as with all statistical approaches, any potentially novel discoveries from our method should still be carefully considered and explored before being accepted as fact.

Online content
Any methods, additional references, Nature Portfolio reporting summaries, source data, extended data, supplementary information, acknowledgements, peer review information; details of author contributions and competing interests; and statements of data and code availability are available at https://doi.org/10.1038/s41592-023-01933-9.

References
1. Waltman, L. & Van Eck, NeesJan A smart local moving algorithm for large-scale modularity-based community detection. Eur. Phys. J. B 86, 1–14 (2013).
2. Hao, Y. et al. Integrated analysis of multimodal single-cell data. Cell 184, 3573–3587 (2021).
3. Tang, M. et al. Evaluating single-cell cluster stability using the jaccard similarity index. Bioinformatics 37, 2212–2214 (2021).
4. Peyvandipour, A., Shafi, A., Saberian, N. & Draghici, S. Identification of cell types from single cell data using stable clustering. Sci. Rep. 10, 1–12 (2020).
5. Patterson-Cross, R. B., Levine, A. J. & Menon, V. Selecting single cell clustering parameter values using subsampling-based robustness metrics. BMC Bioinform. 22, 1–13 (2021).
6. Zappia, L. & Oshlack, A. Clustering trees: a visualization for evaluating clusterings at multiple resolutions. Gigascience 7, giy083 (2018).
7. Kiselev, VladimirYu, Andrews, T. S. & Hemberg, M. Challenges in unsupervised clustering of single-cell RNA-seq data. Nat. Rev. Genet. 20, 273–282 (2019).
8. Zhang, J. M., Kamath, G. M. & David, N. T. Valid post-clustering differential analysis for single-cell RNA-seq. Cell Syst. 9, 383–392 (2019).
9. McShane, L. M. et al. Methods for assessing reproducibility of clustering patterns observed in analyses of microarray data. Bioinformatics 18, 1462–1469 (2002).
10. Liu, Y., Hayes, DavidNeil, Nobel, A. & Marron, JamesStephen Statistical significance of clustering for high-dimension, low-sample size data. J. Am. Stat. Assoc. 103, 1281–1293 (2008).
11. Kimes, P. K., Liu, Y., Neil Hayes, D. & Marron, JamesStephen Statistical significance for hierarchical clustering. Biometrics 73, 811–821 (2017).
12. Townes, F. W., Hicks, S. C., Aryee, M. J. & Irizarry, R. A. Feature selection and dimension reduction for single-cell RNA-seq based on a multimodal model. Genome Biol. 20, 1–16 (2019).
13. Grabski, I. N. and Irizarry, R. A. A probabilistic gene expression barcode for annotation of cell types from single-cell RNA-seq data. Biostatistics https://doi.org/10.1093/biostatistics/kxac021 (2022).
14. Ward Jr, J. H. Hierarchical grouping to optimize an objective function. J. Am. Stat. Assoc. 58, 236–244 (1963).
15. Murtagh, F. & Contreras, P. Algorithms for hierarchical clustering: an overview. Wiley Interdiscip. Rev. Data Min. Knowl. Discov. 2, 86–97 (2012).
16. Zheng, GraceX. Y. et al. Massively parallel digital transcriptional profiling of single cells. Nat. Commun. 8, 1–12 (2017).
17. Qiu, X. et al. Reversed graph embedding resolves complex single-cell trajectories. Nat. Methods 14, 979–982 (2017).
18. Kiselev, VladimirYu et al. Sc3: consensus clustering of single-cell RNA-seq data. Nat. Methods 14, 483–486 (2017).
19. Santos, J. M. & Embrechts, M. in International Conference on Artificial Neural Networks (eds. Alippi, C. et al.) 175–184 (Springer, 2009).
20. Kozareva, V. et al. A transcriptomic atlas of mouse cerebellar cortex comprehensively defines cell types. Nature 598, 214–219 (2021).
21. Travaglini, K. J. et al. A molecular cell atlas of the human lung from single-cell RNA sequencing. Nature 587, 619–625 (2020).
22. Welch, J. D. et al. Single-cell multi-omic integration compares and contrasts features of brain cell identity. Cell 177, 1873–1887 (2019).

Publisher's note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

The Author(s), under exclusive licence to Springer Nature America, Inc. 2023
Methods
Significance hierarchical clustering for scRNA-seq

Our approach takes raw unique molecular identifier (UMI) counts as input. The first step in hierarchical clustering is computing a distance between each pair of cells. Because scRNA-seq data are characterized by small counts and high dimensionality, computing Euclidean distance is not appropriate nor computationally convenient. We therefore computed Euclidean distance on the latent variables estimated by the approximate generalized linear model–principal components analysis (GLM-PCA) procedure, that is, PCA on the Poisson deviance residuals, using the \(G = 2,500 \) genes with the largest deviance under a multinomial null model. We computed Euclidean distance on the first 30 latent variables to produce an \(N \times N \) distance matrix \(D \), with entries \(d_{ij} \) representing the distance between cells \(i \) and \(j \) and \(N \) the number of cells. We then applied hierarchical clustering to \(D \) using Ward’s criterion.

To identify clusters corresponding to distinct populations from this tree, we followed a procedure similar to SHC. We first decide on the number of clusters. We then applied hierarchical clustering to these data using Ward’s criterion and then computed 40 more only if this first estimate was between 0.1 and 10 \(\alpha \). Note that this assumption of normality can be avoided by obtaining a distribution. With this estimate in place, we computed a null distribution. To do this, we defined and fit a null parametric model to which latent state by testing for overdispersion. Specifically, we computed the dispersion parameter \(\alpha \) for each gene, then tested the null hypothesis, and concluded that all the data should belong to one cluster. Otherwise, we rejected the null hypothesis, and concluded that all the data should belong to one cluster. Otherwise, we rejected the null hypothesis, split the data into the two proposed clusters, and continued recursively down the tree. Specifically, in the next step, we examined the next highest nodes, which propose further binary splits within each of these two newly formed clusters. We applied the same hypothesis test as above to each of these proposed splits. Because these proposed splits, unlike the split at the root node, pertain to subsets of the total cells, we made two modifications to the test. First, we re-applied the dimension reduction procedure to the relevant cells and computed an updated distance matrix for the test statistic calculation. Second, to maintain the FWER at level \(a \), we accounted for the multiple, nested nature of this hypothesis testing by comparing the \(P \) value at a given node to \(\frac{N_j - 1}{N_j - a} \), with \(N_j \) the number of cells below that node. This approach to FWER control was first proposed by ref. 23 in the context of hierarchical variable selection, and was used by ref. 11 in SHC.

When we failed to reject the null hypothesis at any given node, we did not test any further nodes on that branch. Instead, the cells below that node are all considered to belong to one cluster. Otherwise, if we did reject the null hypothesis, we continued testing at subsequent nodes. By the end of the procedure, we had a set of nodes where we failed to reject the null hypothesis, which corresponds to the final set of clusters.

Parametric model of gene expression

Define the \(G \times N \) UMI counts matrix as \(Y \). Motivated by previous work, we assumed each gene \(g \) belongs to one of two latent states: unexpressed or expressed. If \(J_g \) is the set of indices corresponding to unexpressed genes and \(J_g \) is the set of indices corresponding to expressed genes, then

\[
Y_{g,n} \sim \prod_{g \in J_g} \text{Poisson}(\mu_g).
\]

This implies that unexpressed genes are described by independent Poisson distributions with means \(\mu_g \). The expressed genes were assumed to follow a Poisson log-MVN distribution:

\[
Y_{g,n} \sim \text{Poisson log-MVN}(\mu, \Sigma).
\]

with mean vector \(\mu \) of length \(|J_g| \) and \(|J_g| \times |J_g| \) covariance matrix \(\Sigma \), for all cells \(n = 1, \ldots, N \). When considering all \(G \) genes, this forms a joint distribution for the cell population, which we refer to as \(\mathcal{F} \).

Given observed \(Y \), we can fit \(\mathcal{F} \) in a computationally efficient way using Method of Moments. First, we determined which genes belong to which latent state by testing for overdispersion. Specifically, we computed the dispersion parameter \(\alpha \) for each gene, then tested the one-sided hypothesis \(\alpha = 0 \) versus \(\alpha > 0 \) at level 0.05. Genes that are overdispersed, which corresponds to rejecting this null hypothesis, were assumed to be expressed, and otherwise they were assumed to be unexpressed.

Next, we estimated the parameters of \(\mathcal{F} \) using expressions derived from the moment equations. For each unexpressed gene \(g \), we set

\[
\hat{\mu}_g = \frac{1}{N} \sum_{n=1}^{N} Y_{g,n}.
\]

For each expressed gene \(g \), we set

\[
\hat{\mu}_g = \log \left(\frac{\bar{y}_g - m_g}{m_g^2} + 1 \right)
\]

and

\[
\mu_g = \log m_g - \frac{1}{2} \hat{\mu}_g.
\]

where \(m_g \) and \(\bar{y}_g \) are the sample mean and variance, respectively, for gene \(g \). Then for any two genes \(g_1, g_2 \) such that \(g_1 \neq g_2 \), we set

\[
\Sigma_{g_1, g_2} = \log \left(\exp \left(\frac{a_{g_1 g_2}}{\hat{\mu}_{g_1} + \hat{\mu}_{g_2}} + \frac{a_{g_1 g_2}}{2(\hat{\Sigma}_{g_1} + \hat{\Sigma}_{g_2})} \right) + 1 \right),
\]

where \(a_{g_1 g_2} \) is the sample covariance between genes \(g_1 \) and \(g_2 \). Finally, because the resulting covariance matrix was not guaranteed to be positive definite, we approximated \(\Sigma \) by a close positive definite matrix. This was done by substituting any undefined values with a constant, reconstructing the matrix with only those eigenvectors with positive eigenvalues, fixing the variances to their previously computed values, and finally replacing any remaining negative or near-zero eigenvalues with small positive values as implemented in ref. 24.

Quantifying clustering quality with the Wald linkage

Given two clusters, we quantified the clustering quality by computing the Wald linkage, which is found as follows. If \(C_1 \) and \(C_2 \) denote the indices for the cells belonging to clusters 1 and 2, respectively, and if \(x_i \) represents the coordinates of cell \(i \) in principal component (PC) space, we compute...
The Ward linkage is then found as \(\text{ESS}(C_1) = \sum_{i \in C_1} \left| \frac{1}{|C_1|} \sum_{i \in C_1} x_i - x \right|^2 \)
\(\text{ESS}(C_2) = \sum_{i \in C_2} \left| \frac{1}{|C_2|} \sum_{i \in C_2} x_i - x \right|^2 \)
\(\text{ESS}(C_1, C_2) = \sum_{i \in C_1 \cup C_2} \left| \frac{1}{|C_1| + |C_2|} \sum_{i \in C_1 \cup C_2} x_i - x \right|^2 \).

The Ward linkage is then found as \(\text{ESS}(C_1, C_2) = (\text{ESS}(C_1) + \text{ESS}(C_2)) \). We normalize this value by the total number of cells \(|C_1| + |C_2| \), and the result is reported as our test statistic. Note that larger values correspond to a greater increase in variance if the two clusters were merged, and hence indicate better clustering quality for the two clusters.

Quantifying uncertainty

We summarized the uncertainty for each split in the hierarchical cluster using the adjusted \(P \)-value metric. Specifically, at each split, we can report the infimum of FWER thresholds such that the split would have been found to be statistically significant. Suppose the \(P \) value at node \(k \) is \(P_k \). To find the split statistically significant while controlling the FWER to level \(\alpha \), we require

\[
P_k < \frac{N_k - 1}{N - 1} \alpha.
\]

with \(N_k \) the number of cells below the node \(k \) and \(N \) the total number of cells, as described in 'Significance hierarchical clustering for scRNA-seq' in Methods. Hence, we would achieve significance at any \(\alpha \) belonging to the set

\[
\{ \alpha : \alpha > \frac{N - 1}{N_k - 1} P_k \},
\]

and we thus report the adjusted \(P \) value as the infimum of this set, that is \(\frac{N - 1}{N_k - 1} P_k \).

Significance analysis for pre-computed clusters

Although the pre-computed clusters can arise from any algorithm after any processing pipeline, we again require the raw UMI counts as input. We started by computing a tree-like hierarchy for any given set of clusters. Specifically, for each of \(K \) clusters, we computed the average expression for an informative subset of genes. These can either be the set of genes used in the clustering algorithm, if available, or they can be chosen as the \(G = 2,500 \) genes with the largest deviation under a multinomial null model. Because there are many cells per cluster and we have reduced our feature space to an informative subset of genes, the data are no longer small counts for these centers, and we applied Euclidean distance to obtain a \(K \times K \) distance matrix. This created a tree whose leaves are the cluster labels, and we followed a similar procedure as before.

In particular, we began at the root node and considered the two-way split dividing all cells into two clusters. As before, we applied the approximate GLM-PCA transformation, computed Euclidean distance using 30 latent factors, and computed the Ward linkage \(\omega \). We then fit the parametric model to the data and performed parametric bootstrap to generate counts for each cell under the null hypothesis. Because we rarely have access to the exact clustering algorithm used to produce the original clusters, we assigned the randomly generated cells to a cluster by first transforming them with the same GLM-PCA transformation applied to the observed data, computing a distance between each observed cell and each bootstrapped cell, and, for each bootstrapped cell, using majority voting from the \(k \)-nearest neighbor observed cells for \(k = 15 \). This provided cluster assignments for each bootstrapped sample, which in turn permitted us to compute a null distribution and proceed as in 'Significance hierarchical clustering for scRNA-seq' in Methods. If this \(k \)-nearest neighbor procedure only returned one cluster (which may happen if, for example, one of the original clusters is very tiny and/or highly dispersed), we instead used the clustering procedure in 'Significance hierarchical clustering for scRNA-seq' in Methods to cluster the bootstrapped cells. We then continued down the tree as before, considering at each node the cells belonging to the cluster labels of the leaves below that node. If we reached a leaf, we stopped and did not consider further splits within that cluster.

Accounting for batch effects

If the data contain batch effects, this can result in spurious clusters in which the same cell type is split by batch label. In settings where batch labels are known, we made several modifications to our procedure in order to mitigate these effects and ensure the null model accurately represents the data. First, when performing the approximate GLM-PCA procedure, we computed Poisson deviance residuals separately for each batch, and then applied PCA. Second, when testing a split of the clustering tree, we separately computed the Wald linkage for each batch, and reported the final test statistic as the median of these values. Analogously, to obtain the null distribution of test statistics, we fit the null model and generated data for each batch, again computed the Wald linkage in each case, and took the median of these values. Note that, by performing each of these steps within each batch, we avoid making any assumptions, for example linearity, on the parametric form of the batch effects. If a given batch was only minimally represented in a split being tested, specifically if it had fewer than 20 cells in at least one of the clusters, we excluded the cells of that batch from consideration. If this resulted in no cells remaining (for example, if the split perfectly separates by batch), then we automatically considered all cells under this split as belonging to one cluster.

scRNA-seq gating plots

To visualize differences at proposed splits in hierarchical clustering, we introduced scRNA-seq gating plots, inspired by the dot plots used in flow cytometry. At any given node, we first identified differentially expressed genes between cells in the two clusters in question. We used the findMarkers function implemented by scran25 and considered the set of genes with false discovery rate \(<0.05\) and absolute log fold change greater than 0.5. We split these genes into two sets: those that were more highly expressed in the first cluster and those that were more highly expressed in the second cluster. For each cell, we then computed the proportion of UMIs attributed to each of these two sets of genes. The scRNA-seq gating plots compare these two quantities for all cells, colored by cluster label, with density plots on the margins. If the two clusters in fact represent distinct populations, one should be able to visually see at least two clusters in this plot.

Simulated study

To investigate over-clustering in current clustering workflows, we simulated scRNA-seq data from a single distribution to represent one cell population. In particular, we simulated 5,000 cells with 1,000 genes each, representing expressed genes. Previous exploratory analyses found the Poisson log-normal distribution to be appropriate for expressed genes26, so counts for gene \(g \), where \(g = 1, \ldots, 1,000 \), were drawn from a Poisson log-normal(\(\mu_g, 3 \)) distribution. The parameters \(\mu_g \) were set by sampling from a Normal(0, 2) distribution and then fixing those values for all cells.

These data were clustered using Seurat's implementation of the Louvain algorithm27. We applied a standard workflow consisting of the following Seurat functions: NormalizeData, ScaleData, RunPCA, RunUMAP, FindNeighbors and FindClusters. All functions were run using default parameters, except for FindClusters, which we ran ten separate times with resolution parameters varying from 0.1 to 1, with
intervals of 0.1. Note that the default resolution parameter is 0.8. We then used a popular clustering stability analysis, clustree⁶, to visualize the results across these different parameter choices.

Benchmark data
To construct data for benchmarking, we used 2,885 cells from the 293T cell line. The one-population dataset consisted of these 2,885 cells with no changes. To construct the five-populations dataset, the first 20% of the cells were unaltered. Then, distinct permutations over a set of 100 genes, representing the 50 highest-expressing and 50 lowest-expressing genes, were applied to each successive 20% of the cells. The five-similar-populations dataset was created using this same process, except the permutation for the last 20% of the cells differs by only ten genes from the permutation used for the previous 20% of the cells.

When applying the Louvain and Leiden algorithms as implemented by Seurat, we ran these algorithms in two ways. First, we used the default resolution parameter of 0.8. Second, we used clustree to pick the optimal resolution parameter. This was done by varying the resolution parameter from 0.1 to 1 at intervals of 0.1, then choosing the largest parameter such that none of the clusters from the next resolution overlap by more than 25% of cells with two different clusters from the resulting output.

Reporting summary
Further information on research design is available in the Nature Portfolio Reporting Summary linked to this article.

Data availability
The datasets used in this work are publicly available and can be found as follows. The 293T cells are available at https://www.10xgenomics.com/resources/datasets/293-t-cells-1-standard-1-1-0. The Human Lung Cell Atlas is available at https://hlca.ds.czbiohub.org/. The mouse cerebellum atlas is available at the Broad Institute Single Cell Portal with study ID SCP795.

Code availability
The software developed in this work is publicly available as an R package at https://github.com/igrabski/sc-SHC ref. 26.

References
23. Meinshausen, N. Hierarchical testing of variable importance. *Biometrika* **95**, 265–278 (2008).
24. Maechler, M. sfsmisc: Utilities from ‘Seminar fuer Statistik’ ETH Zurich. R package version 1.1-14. https://CRAN.R-project.org/package=sfsmisc (2022).
25. Lun, A. T. L., McCarthy, D. J. & Marioni, J. C. A step-by-step workflow for low-level analysis of single-cell RNA-seq data with bioconductor. *F1000Res.* **5**, 2122 (2016).
26. Grabski, I. N. igrabski/sc-shc: v1.0.0. Zenodo https://doi.org/10.5281/zenodo.7834130 (2023).

Acknowledgements
Research supported by the National Science Foundation Graduate Research Fellowship under grant no. DGE1745303 (I.N.G.), and the National Institutes of Health under grant nos. R35GM131802 and R01HG005220 (R.A.I. and K.S.). Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation or National Institutes of Health.

Author contributions
I.N.G. and R.A.I. conceived the project. I.N.G., K.S. and R.A.I. developed the methods. I.N.G. implemented the methods and generated the figures. I.N.G. and R.A.I. wrote the paper.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains supplementary material available at https://doi.org/10.1038/s41592-023-01933-9.

Correspondence and requests for materials should be addressed to Isabella N. Grabski, Kelly Street or Rafael A. Irizarry.

Peer review information *Nature Methods* thanks the anonymous reviewers for their contribution to the peer review of this work. Primary Handling Editor: Lin Tang, in collaboration with the *Nature Methods* team.

Reprints and permissions information is available at www.nature.com/reprints.
Reporting Summary

Nature Portfolio wishes to improve the reproducibility of the work that we publish. This form provides structure for consistency and transparency in reporting. For further information on Nature Portfolio policies, see our Editorial Policies and the Editorial Policy Checklist.

Statistics

For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

- The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement
- A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly
- The statistical test(s) used AND whether they are one- or two-sided
 - Only common tests should be described solely by name; describe more complex techniques in the Methods section.
- A description of all covariates tested
- A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons
- A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)
- For null hypothesis testing, the test statistic (e.g., F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted
 - Give P values as exact values whenever suitable.
- For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings
- For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes
- Estimates of effect sizes (e.g., Cohen’s d, Pearson’s r), indicating how they were calculated

Our web collection on Statistics for Biologists contains articles on many of the points above.

Software and code

Policy information about availability of computer code

Data collection No software used.

Data analysis Custom software was used, described in the Methods section and made available at github.com/igrabski/sc-SHC. In addition, we used scran v 1.22.1, Seurat v 4.0.5, SC3 v 1.22.0, dustree v 0.4.4, and monocle3 v 1.0.0.

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and reviewers. We strongly encourage code deposition in a community repository (e.g., Github). See the Nature Portfolio guidelines for submitting code & software for further information.

Data

Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:
- Accession codes, unique identifiers, or web links for publicly available datasets
- A description of any restrictions on data availability
- For clinical datasets or third party data, please ensure that the statement adheres to our policy

Data from the Human Lung Cell Atlas was taken from here: https://hlda.cs.czbiohub.org/
Data from the mouse brain atlas was taken from here: https://singlecell.broad institute.org/single_cell/study/SCP795/a-transcriptomic-atlas-of-the-mouse-cerebellum
Human research participants

Policy information about studies involving human research participants and Sex and Gender in Research.

Reporting on sex and gender	N/A
Population characteristics	N/A
Recruitment	N/A
Ethics oversight	N/A

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Field-specific reporting

Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

- Life sciences
- Behavioural & social sciences
- Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-list.pdf

Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

- **Sample size**: We only used public data, so sample size determinations were not made in advance. We included all observations provided in the datasets relevant to our analysis.
- **Data exclusions**: Granule cells were excluded from the mouse cerebellum atlas in order to study clustering of non-granule cells.
- **Replication**: We did not generate any data, but all of our code is publicly available, and we only used public datasets, so all results are replicable.
- **Randomization**: No data were generated, so randomization was not relevant.
- **Blinding**: No data were generated, so blinding was not relevant.

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

Materials & experimental systems	Methods
n/a	n/a
• Involved in the study	Involved in the study
• Antibodies	
• Eukaryotic cell lines	
• Palaeontology and archaeology	
• Animals and other organisms	
• Clinical data	
• Dual use research of concern	
• ChIP-seq	
• Flow cytometry	
• MRI-based neuroimaging	