Microsatellite Instability and Frameshift Mutations in the \textit{Bax} Gene in Hereditary Nonpolyposis Colorectal Carcinoma

Yukinori Sakao,1, 4 Masahiro Noro,1 Shigeki Sekine,1 Mutsumi Nozue,2 Setsuo Hirohashi,3 Tsuyoshi Itoh4 and Masayuki Noguchi1, 5

1Department of Pathology, Institute of Basic Medical Sciences, 2Department of Surgery, Institute of Clinical Medical Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba-shi, Ibaraki 305-8575, 3Pathology Division, National Cancer Center Research Institute, 1-1 Tsukiji 5-chome, Chuo-ku, Tokyo 104-0024 and 4Department of Thoracic and Cardiovascular Surgery, Saga Medical School, 1-1 Nabeshima 5-chome, Saga 849-8501

We studied microsatellite instability (MI) and \textit{bax} gene abnormalities in colorectal carcinomas from 36 patients diagnosed as having hereditary nonpolyposis colorectal cancers (HNPCC) according to the clinical criteria (12 with confirmed HNPCC in group A and 24 at high risk of HNPCC in group B) and from 20 randomly selected patients with other colorectal cancers. MI was examined at 4 dinucleotide microsatellite loci and one mononucleotide locus. Frameshift mutations in the \textit{bax} gene were detected by polymerase chain reaction-single strand conformation polymorphism analysis. MI was detected in 7 of the 12 patients in group A and 12 of the 24 in group B. Three MI patterns were identified: type 1, MI in both mono- and dinucleotide repeats; type 2, MI only in mononucleotide repeats and type 3, MI only in dinucleotide repeats. Most MI-positive patients in group A showed type 1 MI, whereas in group B, 5 showed type 1, 3 showed type 2 and 4 showed type 3. Frameshift mutations in the \textit{bax} gene correlated strongly with type 1 and type 2 MI. These results indicate that mutations of different DNA mismatch repair genes may cause several types of MI and result in several different clinical phenotypes of HNPCC. The \textit{bax} gene may be one of the target genes which play a role in the tumorigenesis of HNPCC.

Key words: Hereditary nonpolyposis colorectal cancer — Microsatellite instability — \textit{Bax} gene — Frameshift mutation

Microsatellite instability (MI) or replication errors in simple repeated sequences have been reported in hereditary nonpolyposis colorectal cancers (HNPCC).	extsuperscript{1, 2} These are principally due to germ-line mutations of the mismatch repair (MMR) genes, which include \textit{hMSH2},	extsuperscript{3} \textit{hMLH1},	extsuperscript{4, 5} \textit{hPMS1} and \textit{hPMS2}.	extsuperscript{6} Recently, somatic or germline mutations in \textit{hMSH3}	extsuperscript{7, 8} and \textit{hMSH6} (\textit{GTBP})	extsuperscript{9–11} have been reported to be associated with HNPCC or HNPCC-like disease in patients.	extsuperscript{10} Mutations of these six MMR genes produce genetic instability, and are thought to reflect MI in mononucleotide, dinucleotide, and tri- or multinucleotide repetitive sequences, with different patterns occurring according to the particular gene mutation involved.	extsuperscript{8, 11}

Frameshift mutations in the small repeat sequences of the transforming growth factor-\(\beta\) type II receptor (TGF-\(\beta\) RII) have been reported to be closely associated with MI-positive colorectal cancers.	extsuperscript{6, 13, 14} These frameshift mutations have frequently been detected in both the carcinoma and adenoma types of HNPCC, and are suspected to be an early event in HNPCC carcinogenesis.	extsuperscript{15} Recently, frameshift mutations in the \textit{bcl-2} associated X protein (\textit{bax}) gene, which is involved in the \textit{p53} apoptotic pathway and has a (G)\textit{\textit{n}} tract in exon 3,16, 17 have been reported in the mutator phenotype of colorectal cancers or HNPCC.	extsuperscript{18, 19} \textit{Bax} was initially identified as a \textit{bcl-2}-associated 21-kDa protein, with extensive amino acid homology to the \textit{bcl-2} protein.	extsuperscript{16} It is believed to play a role in the activation of \textit{bcl-2} by forming \textit{bcl-2/bax} complex.	extsuperscript{20, 21} \textit{Bax} is also believed to be closely associated with drug resistance, oncogenic transformation and tumorigenesis due to the attenuation of \textit{p53}-dependent apoptosis.	extsuperscript{22, 23} In neuroendocrine lung carcinomas, immunohistochemical analysis indicated that \textit{p53} abnormalities were positively correlated with high \textit{bcl-2/bax} ratios.	extsuperscript{20}

We have previously reported the relationship between MI and clinicopathological features in HNPCC patients diagnosed according to clinical criteria (Table I).	extsuperscript{21} In this study, we analyzed MI using mono- and dinucleotide microsatellite loci, and found several different patterns of MI in HNPCC patients. We also analyzed frameshift mutations in the \textit{bax} gene including the (G)\textit{\textit{n}} tract, in addition to \textit{bax} and \textit{p53} protein expression, in order to clarify the role of the \textit{bax} gene in HNPCC carcinogenesis.

To whom correspondence should be addressed.
Table I. Criteria for Hereditary Nonpolyposis Colorectal Cancer

Minimum Criteria:
1. At least three relatives with histologically verified colorectal cancers; one of the relatives should be a first-degree relative of the other two (familial adenomatous polyposis should be excluded).
2. At least two successive generations should be affected.
3. In one of the relatives, colorectal cancers should have been diagnosed at below 50 years of age.

Clinical Criteria:
A. A patient with three or more first-degree relatives having colorectal cancers.
B. A patient with two first-degree relatives having colorectal cancers and with any of the following criteria:
 a) Age at onset of colorectal cancer(s) younger than 50 years
 b) Right colon involvement
 c) Synchronous or metachronous multiple colorectal cancers
 d) Association with extracolorectal malignancy (familial polyposis coli should be excluded)

Materials and Methods

Patients We studied 36 patients with colorectal cancer who underwent surgical resection between 1978 and 1995 at the National Cancer Center Hospital (Tokyo) or the University Hospital of Tsukuba (Ibaraki) and were diagnosed as having HNPCC according to clinical criteria (Table I). These included 12 patients with confirmed HNPCC (group A) (7 patients were within the Amsterdam criteria) and 24 patients at high risk for HNPCC (group B). A further 20 randomly selected colorectal cancer patients (group C) who underwent surgical resection during the same period were also examined. Genomic DNA was extracted from formalin-fixed, paraffin-embedded tissues using the ABC method. About 20 to 60 ng of DNA was used for each polymerase chain reaction (PCR) amplification.

Analysis of microsatellite instability Four dinucleotide (CA)n or (CT)n microsatellite loci, D1S158, D5S107, D8S119 and D18S39, were analyzed as previously reported. One poly(A) microsatellite locus, BAT 26, was also analyzed in all 56 patients as described previously. Briefly, PCR of BAT 26 was performed with the primers 5′-TGACTACTTTTGACTTCAGCC-3′ and 5′-AACCATTCAAACATTAAAACC-3′. PCR was carried out over 30 cycles, each comprising 30 s at 95°C, 30 s at 55°C and 60 s at 70°C, in the presence of 0.2 mCi of [γ-32P]dCTP. The PCR products were separated in 6% denaturing polyacrylamide gel. Electrophoresis was performed at 55 W for 1.5 h at room temperature. Homozygosity was defined as the absence of extra bands in the PCR products amplified from tumor DNA that were not visible in the products from corresponding noncancerous tissue.

PCR-single strand conformation polymorphism (SSCP) analysis of the bax gene PCR of the bax gene (including the (G)8 tract) was performed as described previously. Briefly, a 94-base pair region including the (G)8 tract was amplified by PCR with the primers 5′-ATCCAGGATC-GAGCAGGGCG-3′ and 5′-ACTCGCTAGCTTCTTG- GTG-3′. PCR was carried out over one cycle of 4 min at 94°C, followed by 30–35 cycles of 30 s at 94°C, 30 s at 55°C and 30 s at 72°C. Electrophoresis was performed using precast homogeneous 12% polyacrylamide gel (Toyobo Co., Tokyo) with 1× TBE (Tris-borate EDTA). After electrophoresis, the gel was stained with silver (Daiichi Co., Ltd., Tokyo). Abnormal bands observed during SSCP analysis were cut out and the DNA was extracted from the gel. The extracted DNA (20–50 ng) was reamplified by PCR under the conditions described above, and the products (200–250 ng) were sequenced directly using a Thermo Sequenase radiolabeled terminator cycle sequencing kit (Amersham International plc, Bucks, UK).

Histological and immunohistochemical analyses The tumors were histologically classified according to the criteria set by the World Health Organization. Bax, p53 and bcl-2 immunostaining was performed on formalin-fixed, paraffin-embedded tissues using the ABC method. After heat treatment by microwaving at 90°C for 10 min, non-specific IgG binding and endogenous peroxidase activity were suppressed with 5% normal swine serum and 0.8% hydrogen peroxide, respectively. The primary antibodies were applied to the slides and incubated at 4°C overnight. Bax protein was detected with the N-20 rabbit polyclonal antibody, which was raised against a peptide corresponding to amino acids 11–30 mapping at the amino terminus of human bax and does not cross-react with bcl-2 or bcl-1 (1/200; Santa Cruz Biotechnology, Santa Cruz, CA). p53 was detected using the rabbit polyclonal antibody, RSP-53 (Nichirei Co., Tokyo). Bcl-2 protein was detected with a mouse monoclonal antibody (1/100; Dako Japan Co., Ltd., Kyoto). For bax, positive staining was defined as an intensity equal to or greater than that of the apical portions of normal colonic epithelial cells present on the same slide. The immunostaining score for bax was graded as 1+: less than 10% of the cancer cells were stained positively; 2+: 10 to 50% of the cancer cells were stained positively; 3+: over 50% of the cancer cells were stained positively. P53 immunostaining was considered positive when stained tumor cells were distributed zonally. For bcl-2, specimens containing more than 10% stained cells were defined as positive.

Statistical analysis The two-tailed Fisher’s exact test was used to analyze the significance of differences between the patient groups for each analysis. The Scheffe
F test was used in the analysis of the association between MI and frameshift mutations in the \textit{bax} gene.

RESULTS

Microsatellite instability in colorectal cancers The result of the MI analysis is summarized in Table II. The proportion of patients with MI was higher ($P<0.01$) in both HNPCC groups (group A: 58.3%, B: 50.0%) than in group C (5.0%). Three MI patterns were identified: type 1, MI only in both mono- and dinucleotide repeats; type 2, MI only in mononucleotide repeats and type 3, MI only in dinucleotide repeats (Fig. 1). In group A, 6 of the 7 patients with MI met the Amsterdam minimum criteria and all 6 showed MI in both mono- and dinucleotide repeats (type 1). In group B, 7 of the 12 patients positive for MI were classified as having either type 2 or 3 MI. Patients with type 2 MI were found only in group B. In group C, one MI patient showed type 1 MI.

type 1 (A1)	type 2 (B9)	type 3 (B19)			
BAT 26	D18S39	BAT 26	D18S39	BAT 26	D18S39
N	T	N	T	N	T

PCR-SSCP and sequencing analysis of the \textit{bax} gene

Representative results from the SSCP analysis of the \textit{bax} gene, including the (G)8 tract, are shown in Fig. 2. Extra bands were observed in 5 of the 12 specimens from group A, 6 of the 24 specimens from group B and 1 of the 20 from group C, and all these extra bands showed the same mobility shift pattern. To confirm the results of the SSCP analysis, the extra bands from 3 randomly selected specimens were cut out of the gel and sequenced. All three were revealed to have one base deletion in the (G)8 tract (Fig. 3).

The incidence of frameshift mutations was significantly higher in group A ($P<0.05$) or in group A+B ($P<0.05$) than in group C. The relationship between MI and frameshift mutations in the \textit{bax} gene was significantly higher than that in MI-negative (MI(−)) patients with HNPCC ($P<0.05$ and 0.01, respectively). There were no patients with frameshift mutations in the \textit{bax} gene among the MI(+) patients (type 1 or 2), the incidence of frameshift mutations in the \textit{bax} gene was significantly higher than that in MI-negative (MI(−)) patients with HNPCC. In group C, one MI(+) patient (type 1) had a frameshift mutation in the \textit{bax} gene, while the other MI− patients had no frameshift mutations. The correlation between MI and the clinical characteristics of HNPCC in patients diagnosed according to clinical criteria was also

Table II. Microsatellite Instability in Colorectal Cancers

Microsatellite markers	type 1	type 2	type 3	Microsatellite instability		
	Dinucleotide	Mononucleotide				
Group	A (12)	6	0	1	5	7/12a
	B (24)	5	4	3	12	12/24a
	C (20)	1	0	0	19	1/20

MI, microsatellite instability; dinucleotide, \textit{D1S158}, \textit{D5S107}, \textit{D8S199}, \textit{D18S39}; mononucleotide, \textit{BAT 26}.

a Positive or negative for microsatellite instability.

a $P<0.01$, compared with group C determined by two-tailed Fisher’s exact test.

Fig. 1. Three types of microsatellite instability. Type 1: microsatellite instability in both mono- and dinucleotide repeats (case A1). Type 2: microsatellite instability only in mononucleotide repeats (case B9). Type 3: microsatellite instability only in dinucleotide repeats (case B19). N: non-cancer. T: cancer.

Fig. 2. PCR-SSCP analysis of the \textit{bax} gene. T: cancer. N: non-cancerous tissue. Arrowheads: extra bands.
examined. The incidence of multiple colorectal cancers was higher in type 1 patients (9/11, 81.8%) than in MI(−) patients (6/17, 35.3%).

Immunostaining of bax, p53 and bcl-2 proteins The results are summarized in Table IV and Fig. 4. All 12 patients who had frameshift mutations in the bax gene were graded 1+ for the immunostaining of bax protein. Two of the three diagnosed as having moderately differentiated adenocarcinoma showed heterogenous staining for bax protein in their tumor specimens. Histologically, in moderately differentiated adenocarcinoma, the tumors contained poorly differentiated areas, and no bax-positive cells were detected in these areas. Positive cells were however, detected in the main, moderately differentiated parts of the tumor (Fig. 5). Forty-four tumors were negative for frameshift mutations in the bax gene and 15 of these showed weak immunoreactivity for bax protein. Eleven of these 15 tumors were positive for p53 protein (Table IV). A decrease in bax protein expression was closely associated with bax gene or p53 abnormalities ($P<0.0001$). The proportion of p53-positive tumors was significantly higher in group C (10/20, 50%) than in group A (1/12, 8.3%) or B (4/24, 16.7%) ($P<0.05$). Over-expression of bcl-2 was observed in three tumors (two in group B and one in group C), but we could find no relationship between the expressions of bax protein and bcl-2, or p53 and bcl-2.

Histological differentiation and frameshift mutations in the bax gene in HNPCC patients Thirty-six tumors diagnosed as HNPC according to clinical criteria were histologically classified according to the criteria of the World Health Organizaton, and were analyzed with

Table IV. Frameshift Mutations and Immunohistochemical Staining of Bax Protein in Colorectal Cancers

Bax immunoreactivity	Frameshift mutation		
1+	positive	negative	total
12(0)	15(11)	27	
2+ or 3+	0	29(4)	29

Bax immunoreactivity 1+: the proportion of positively stained cells is less than 10% in a minimum of five high-power fields (HPFs) (40× objective lens), 2+: positively stained cells are 10% to 50%, 3+: positively stained cells are over 50%.

Parenthesis: number of cases positive for p53 protein immunostaining.

Table III. Microsatellite Instabilities and Frameshift Mutations in the Bax Gene in HNPCC

Microsatellite markers	Microsatellite instability	type 1	type 2	type 3	
Dinucleotide		+	−	+	
Mononucleotide		+	+	−	
FM positive	A (12)	5/6a	0	0/1	
	B (24)	3/5b	3/4ab	0/3	0/12
Total	8/11a	3/4ab	0/4	0/17	

Dinucleotide, D1S158, D5S107, D8S199, D1S39; mononucleotide, BAT 26. +, −: positive or negative for microsatellite instability.

FM: frameshift mutations in the bax gene.

A, B: HNPCC patients diagnosed according to the clinical criteria.

a, b: P<0.05 and 0.01, compared with patients showing negative for microsatellite instability in the same group determined by two-tailed Fisher’s exact test.
respect to the relationship between their histological differentiation and the incidence of frameshift mutations in the \textit{bax} gene (Table V). There were no tumors with frameshift mutations among 7 well differentiated adenocarcinomas, and no marked correlations between histological differentiation and MI.

DISCUSSION

Mutations of \textit{hMSH2}, \textit{hMLH1} and \textit{hPMS2} induce genetic instability in both mono- and dinucleotide repeats.3-6, 32, 33 In the present study, three types of MI(+) patients were grouped as types 1, 2 and 3 (see “Results”).
Tumors with some specific MMR gene, such as abnormalities in these patients may have been related to only within dinucleotide repeats (type 3) (Table II). The repeats (type 2), while the other 3 patients showed MI in group B showed MI only within mononucleotide mutations in mononucleotide repeats. Reportedly, the recently, somatic mutation of one of the MMR genes, such as GTBP has been reported in a patient with hereditary colorectal cancer at 62 years of age. Somatic mutations of HNPCC is principally due to germ-line mutations of one of the MMR genes, such as hMSH2, hMLH1, hPMS1 and hMSH6. On the basis of these findings, we hypothesized that (a) a patient with hereditary colorectal cancer-like disease. The patient developed two colonic adenomas and one rectal cancer. MI was also detected within the rectal cancer, but not in the adenomas. These results are consistent with our hypothesis. Recently, it was reported that about 50% of colorectal cancers showing MI had frameshift mutations in the bax gene. In the present study, the incidences of frameshift mutations were 65% in MI(+) colorectal cancers and 31% in HNPCC patients diagnosed according to clinical criteria. In particular, frameshift mutations were observed in more than 71% of patients diagnosed according to minimum criteria. The nucleotides involved in frameshift mutations in the bax gene were almost the same as those involved in TGF-β RII alterations. These frameshift mutations in the bax gene were strongly associated with MI, especially MI in both mono- and dinucleotide repeats (type 1) or within mononucleotide repeats (type 2). MI only in mononucleotide repeats (type 2) is closely associated with single base deletions in the (G)8 tract of the bax gene as well as MI in both mono- and dinucleotide repeats (type 1) (Table III). These data suggest that the tumorigenesis of colorectal carcinomas with type 1 and 2 MI is closely associated with mutations in certain critical target genes with mononucleotide repetitive sequences, such as the bax gene. We could find no significant differences in clinical characteristics between the three types of MI in HNPCC patients, except for a higher incidence of multiple colorectal cancers in patients showing type 1 MI when compared with MI(−) patients. Decreases in bax protein, as detected by immunostaining were strongly correlated with frameshift mutations in the bax gene or abnormalities in p53 (P<0.0001) (Table V). This is compatible with the fact that the bax gene is a transcriptional target of p53 and is involved in the p53 apoptotic pathway. All 12 patients with frameshift mutations in the bax gene showed decreased bax protein expression. Two tumors with frameshift mutations showed heterogenous decreases in bax immunoreactivity, together with loss of histological differentiation. These heterogeneous alterations in bax protein expression may depend upon whether the abnormality of the bax gene is heterozygous or homozygous. Our genomic and immunohistochemical results indicated that bax gene alterations are associated with histological differentiation.

The negative correlation between abnormalities in p53 immunostaining and MI is in agreement with previous observations. Furthermore, none of the patients with p53 gene abnormalities as detected by immunostaining (n=12) showed frameshift mutations in the bax gene. These results suggest differences in the tumorigenic pathway between MI(+) and MI(−) patients.

Table V. Histological Differentiation and Frameshift Mutations in the Bax Gene in HNPCC

Differentiation	Frameshift mutation	
	positive	negative
W/D	0	7^a
M/D	7	15
P/D	3	2
MUC	1	1
total	11	25

HNPCC: diagnosed according to the clinical criteria. W/D: well differentiated, M/D: moderately differentiated, P/D: poorly differentiated, MUC: mucinous.

^a P=0.078, compared with positive for frameshift mutations determined by two-tailed Fisher’s exact test.

Most of the patients with MI in group A had alterations in both mono- and dinucleotide repeats (type 1). In particular, seven patients diagnosed according to the minimum criteria showed a high incidence (6/7, 86%) of MI and all had alterations in both mono- and dinucleotide repeats. These data are consistent with previous reports that HNPCC is principally due to germ-line mutations of MMR genes, such as hMSH2. Tumors with GTBP mutations primarily showed alterations in mononucleotide repeats. Reportedly, the hMSH2-hMSH3 complex recognizes certain single or multiple nucleotide insertion/deletion loops, while the hMSH2-hMSH6 (GTBP) complex recognizes G/T mismatches and some +1 nucleotide insertion/deletion loops. On the basis of these findings, we hypothesized that (a) the 4 patients in group B with type 2 MI may have had (germ-line) mutations of one of the MMR genes, such as GTBP; and (b) the 3 patients in group B and one patient in group A with type 3 MI may have had (germ-line) mutations of one of the MMR genes, such as hMSH3. Recently, somatic mutation of GTBP has been reported in a patient with hereditary colorectal cancer-like disease. The patient developed two colonic adenomas and one rectal cancer at 62 years of age. Somatic mutations of GTBP were detected in all three tumors and somatic mutation of hMSH3 was also detected within the rectal cancer. MI was detected in mononucleotide repeats in all three tumors, and MI in dinucleotide or other repeats were detected within the rectal cancer, but not in the adenomas. These results are consistent with our hypothesis. Decreases in bax protein, as detected by immunostaining were strongly correlated with frameshift mutations in the bax gene or abnormalities in p53 (P<0.0001) (Table V). This is compatible with the fact that the bax gene is a transcriptional target of p53 and is involved in the p53 apoptotic pathway. All 12 patients with frameshift mutations in the bax gene showed decreased bax protein expression. Two tumors with frameshift mutations showed heterogenous decreases in bax immunoreactivity, together with loss of histological differentiation. These heterogeneous alterations in bax protein expression may depend upon whether the abnormality of the bax gene is heterozygous or homozygous. Our genomic and immunohistochemical results indicated that bax gene alterations are associated with histological differentiation.

The negative correlation between abnormalities in p53 immunostaining and MI is in agreement with previous observations. Furthermore, none of the patients with p53 gene abnormalities as detected by immunostaining (n=12) showed frameshift mutations in the bax gene. These results suggest differences in the tumorigenic pathway between MI(+) and MI(−) patients.

(Received May 29, 1998/Revised August 3, 1998/Accepted August 6, 1998)
REFERENCES

1) Aaltonen, L. A., Peltomaki, P., Leach, F. S., Sistonen, P., Pyllkenen, L., Mecklin, J.-P., Jarvinen, H., Powell, S. M., Jen, J., Hamilton, S. R., Petersen, G. M., Kinzler, K. W., Vogelstein, B. and de la Chapelle, A. Clues to the pathogenesis of familial colorectal cancers. Science, 260, 812–816 (1993).

2) Muta, H., Noguchi, M., Perucchini, M., Ushio, K., Sugihara, K., Ochiai, A., Nawata, H. and Hirohashi, S. Clinical implications of microsatellite instability in colorectal cancers. Cancer, 77, 265–270 (1996).

3) Fishel, R., Lescocq, M. K., Rao, M. R. S., Copeland, N. G., Jenkins, N. A., Garber, J., Kane, M. and Kolodner, R. The human mutator gene homolog MSH2 and its association with hereditary nonpolyposis colon cancer. Cell, 75, 1027–1038 (1993).

4) Bronner, C. E., Baker, S. M., Morisson, P. T., Warren, G., Smith, L. G., Lescocq, M. K., Kane, M., Earabino, C., Lipford, J., Lindblom, A., Tannergard, P., Bollag, R. J., Godwin, A. R., Ward, D. C., Nordskjoeld, M., Fishel, R., Kolodner, R. and Liskay, R. M. Mutation in the DNA mismatch repair gene homologue hMLH1 is associated with hereditary non-polyposis colon cancer. Nature, 368, 258–261 (1994).

5) Papadopoulos, N., Nicolaides, N. C., Wei, Y.-F., Roben, S. N., Carter, K. C., Rosen, H., Haseltine, W. A., Breischmann, R. D., Fraser, C. M., Adams, M. D., Venter, J. C., Hamilton, S. R., Petersen, G. M., Watson, P., Lynch, H. T., Peltomaki, P., Mecklin, J. P., de la Capelle, A., Kinzler, K. W. and Vogelstein, B. Mutation of a mutL homolog in hereditary colon cancer. Science, 263, 1625–1629 (1994).

6) Markowitz, S., Wang, J., Myeroff, L., Parsons, R., Sun, L.-Z., Lutterbaugh, J., Fan, R. S., Zborowska, E., Kinzler, K. W., Vogelstein, B., Brattain, M. and Willson, J. K. V. Inactivation of the type II TGF-β receptor in colon cancer cells with microsatellite instability. Science, 268, 1336–1338 (1995).

7) Watanabe, A., Ikejima, M., Suzuki, N. and Shimada, T. Genomic organization and expression of the human MSH3 gene. Genomics, 11, 311–318 (1996).

8) Akiyama, Y., Tsubouchi, N. and Yuasa, Y. Frequent somatic mutations of hMSH3 with reference to microsatellite instability in hereditary nonpolyposis colorectal cancers. Biochem. Biophys. Res. Commun., 236, 248–252 (1997).

9) Drummond, J. T., Li, G., Longley, M. J. and Modrich, P. Isolation of an hMSH2/p160 heterodimer that restores DNA mismatch repair to tumor cells. Science, 268, 1909–1912 (1995).

10) Palombo, F., Gallinari, P., Jaccarino, L., Lettieri, T., Hughes, M. D. and Arriaga, A. GTBP a 160-kilodalton protein essential for mismatch-binding activity in human cells. Science, 268, 1912–1914 (1995).

11) Papadopoulos, N., Nicolaides, N. C., Liu, B., Parsons, R., Lengaer, C., Palombo, F. D., Arriaga, A., Markowitz, S., Willson, J. K. V., Kinzler, K. W., Jirnyc, J. and Vogelstein, B. Mutation of GTBP in genetically unstable cells. Science, 268, 1915–1917 (1995).

12) Akiyama, Y., Sato, H., Yamada, T., Nagasaki, H., Tsuchiya, A., Abe, R. and Yuasa, Y. Germ-line mutation of the hMSH6/GTBP gene in an atypical hereditary nonpolyposis colorectal cancer kindred. Cancer Res., 57, 3920–3923 (1997).

13) Lu, S.-L., Akiyama, Y., Nagasaki, H., Saitoh, K. and Yuasa, Y. Mutations of the transforming growth factor β type II receptor gene and genomic instability in hereditary nonpolyposis colon cancer. Biochem. Biophys. Res. Commun., 216, 452–457 (1995).

14) Parsons, R., Myeroff, L. L., Liu, B., Willson, J. K. V., Markowitz, S. D., Kinzler, K. W. and Vogelstein, B. Microsatellite instability and mutations of the transforming growth factor β type II receptor gene in colorectal cancer. Cancer Res., 55, 5548–5550 (1995).

15) Akiyama, Y., Iwanaga, R., Saitoh, K., Shibata, K., Ushio, K., Ikeda, E., Iwama, T., Nomizu, T. and Yuasa, Y. Transforming growth factor β type II receptor gene mutations in adenoma from hereditary nonpolyposis colorectal cancer. Gastroenterology, 112, 33–39 (1997).

16) Oltvai, Z. N., Milliman, C. L. and Korsmeyer, S. J. Bcl-2 heterodimerizes in vivo with a conserved homolog, Bax, that accelerates programed cell death. Cell, 74, 609–619 (1993).

17) Miyashita, T. and Reed, J.C. Tumor suppressor p53 is a direct transcriptional activator of the human bax gene. Cell, 80, 293–299 (1995).

18) Rampino, N., Yamamoto, H., Inoue, Y., Li, Y., Sawai, H., Reed, J. C. and Perucchini, M. Somatic frameshift mutations in the BAX gene in colon cancers of the microsatellite mutator phenotype. Science, 275, 967–969 (1997).

19) Yamamoto, H., Sawai, H. and Perucchini, M. Frameshift somatic mutations in gastrointestinal cancer of the microsatellite mutator phenotype. Cancer Res., 57, 4420–4426 (1997).

20) Yamamoto, H., Sawai, H., Weber, T. K., Miguel, A., Rodriguez-Bigas and Perucchini, M. Somatic frameshift mutations in DNA mismatch repair and proapoptotic gene in hereditary nonpolyposis colorectal cancer. Cancer Res., 58, 997–1003 (1998).

21) Yagi, O. K., Akiyama, Y., Nomizu, T., Iwama, T., Endo, M. and Yuasa, Y. Proapoptotic gene BAX is frequently mutated in hereditary nonpolyposis colorectal cancers but not in adenomas. Gastroenterology, 114, 268–274 (1998).

22) Korsmeyer, S. J., Shutter, J. R., Veis, D. J., Merry, D. E. and Oltvai, Z. N. Bcl-2/bax-A rheostat that regulates an anti-oxidant pathway and cell death. Semin. Cancer Biol., 4, 327–332 (1993).

23) Yin, X. M., Oltvai, Z. N. and Korsmeyer, S. J. BH1 and BH2 domains of Bcl-2 are required for inhibition of apoptosis and heterodimerization with Bax. Nature, 369, 321–
MI and RER of the Bax Gene in HNPCC

323 (1994).

24) McCurrach, M. E., Conner, T. M. F., Knudson, C. M., Korsmeyer, S. J. and Lowe, S. W. Bax-deficiency promotes drug resistance and oncogenic transformation by attenuating p53-dependent apoptosis. Proc. Natl. Acad. Sci. USA, 94, 2345–2349 (1997).

25) Yin, C., Knudson, C. M., Korsmeyer, S. J. and Dyke, T. V. Bax suppresses tumor genesis and stimulates apoptosis in vivo. Nature, 385, 637–640 (1997).

26) Brambilla, E., Negoescu, A., Gazzeri, S., Lantuejoul, S., Moro, D., Brambilla, C. and Coll, J. L. Apoptosis–related factors p53, Bcl-2, and Bax in neuroendocrine lung tumors. Am. J. Pathol., 149, 1941–1952 (1996).

27) Noguchi, M., Maezawa, N., Nakanishi, Y., Matsuno, Y., Shimosato, Y. and Hirohashi, S. Application of the p53 gene mutation pattern for differential diagnosis of primary versus metastatic lung carcinomas. Diagn. Mol. Pathol., 2, 29–35 (1993).

28) Hoang, J.-M., Cottu, P. H., Thuille, B., Salmon, R. J., Thomas, G. and Hamelin, R. BAT-26, an indicator of the replication error phenotype in colorectal cancers and cell lines. Cancer Res., 57, 300–303 (1997).

29) Vincent, F., Hagiwara, K., Ke, Y., Stoner, G. D., Demetrick, D. J. and Bennett, W. P. Mutation analysis of the transforming growth factor beta type II receptor in sporadic human cancers of the pancreas, liver, and breast. Biochem. Biophys. Res. Commun., 223, 561–564 (1996).

30) Jass, J. R. and Sobin, L. H. Collaboration with pathologists in 9 countries. In “Histological Typing of Intestinal Tumors,” 2nd Ed., pp.1–8 (1989). World Health Organization, Springer Verlag.

31) Kawasaki, M., Noguchi, M., Marikawa, A., Matusno, Y., Yamada, T. and Hirohashi, S. Nuclear p53 accumulation by small-sized adenocarcinoma of the lung. Pathol. Int., 46, 486–490 (1996).

32) Kinzler, K. W. and Vogelstein, B. Lessons from hereditary colorectal cancer. Cell, 87, 159–170 (1996).

33) Liu, B., Parsons, R., Papadopoulos, N., Nicolaides, N. C., Lynch, H. T. and Watson, P. Analysis of mismatch repair genes in hereditary non-polyposis colorectal cancer patients. Nat. Med., 2, 169–174 (1996).