SUPPORTING INFORMATION

H-Bond Surrogate-Stabilized Shortest Single-turn α-Helices: sp² Constraints and Residue Preferences for the Highest α-Helicities

Sunit Pal, Shreya Banerjee, Ankur Kumar, and Erode N. Prabhakaran*
Department of Organic Chemistry, Indian Institute of Science, Bangalore 560012, Karnataka, India.
Table of Contents	Page No.
1. Materials	S6
2. Methods	S6-S9
3. Nomenclature of HBS-constrained cyclic peptides	S9-S10
4. Experimental	S11-S94
4.1 Synthesis	S11-S42
4.2 NMR analysis	S43-S64
4.3 Circular Dichroism analysis	S65-S73
4.4 FTIR analysis of 2a-c	S74
4.5 Theoretical calculation	S75-S78
4.6 Supporting pictures of 1H and 13C NMR	S79-S96
List of Abbreviations

1. Structure
- **Ala, A**: alanine
- **Gly, G**: glycine
- **Moc**: methyloxycarbonyl
- **Phe, F**: phenylalanine
- **Prp**: propyl linker
- **HBS**: hydrogen bond surrogate

2. Synthesis
- **ACN**: acetonitrile
- **anhyd.**: anhydrous
- **aq.**: aqueous
- **Bn**: benzyl
- **Boc**: tert-butyloxycarbonyl
- **Boc$_2$O**: Di-tert-butyldicarbonate
- **Cbz, Z**: benzyloxycarbonyl
- **CH$_3$CN**: acetonitrile
- **DCM**: dichloromethane
- **DIAD**: diisopropyl azodicarboxylate
- **DMF**: dimethyl formamide
- **DIPEA**: N,N-Diisopropylethylamine
- **ECF**: ethylchloroformate
- **EDC**: 1-[3-(dimethylamino)propyl]-3-ethylcarbodiimide hydrochloride
- **eq. or equiv.**: equivalent
- **EtOAc**: ethyl acetate
- **H$_2$**: hydrogen gas
- **HOBt**: 1-hydroxybenzotriazole
- **K$_2$CO$_3$**: potassium carbonate
- **LiOH**: lithium hydroxide
- **Me**: methyl
- **MeOH**: methyl alcohol
- **mg**: milligram(s)
- **ml**: milliliter
- **mM**: millimole(s)
- **Moc**: methyloxycarbonyl
- **μl**: microliter
- **Na$_2$SO$_4$**: sodium sulphate
- **NaHCO$_3$**: sodium bicarbonate
- **NMM**: N-methylmorpholine
Ns : 2-Nitrobenzenesulphonyl chloride
Pd-C : palladium on carbon
Ph : phenyl
PhSH : thiophenol
PPh₃ : triphenylphosphine
Qu. : quantitative
Rᵣ : retardation factor (in TLC)
TEA : triethylamine
THF : tetrahydrofuran
TFA : trifluoroacetic acid
TLC : thin layer chromatography

3. Characterization
Å : angstrom
Calcd. : calculated
CDCl₃ : deuterated chloroform
CD₃CN : deuterated acetonitrile
cm : centimeter
nm : nanometer
d : doublet
dm : decimolar
DMSO-d₆ : hexadeuterated dimethyl sulfoxide
dd : doublet of a doublet
dt : doublet of a triplet
g : gram(s)
h : hour(s)
HRMS : High resolution mass spectrum
HSQC : Heteronuclear Single Quantum Coherence
Hz : Hertz
K : Kelvin (temperature)
m : multiplet
MHz : mega hertz
μM : micromolar
mM : millimolar
¹³J : through bond scalar coupling constant
MHz : mega hertz
min : minute(s)
nm : nanometers (wavelength)
NMR : nuclear magnetic resonance
pH : -log₁₀c (c is proton concentration in molar units)
ppm : parts per million
quin : quintet
q : quartet
RT or rt : room temperature
ROESY : Rotating-frame nuclear overhauser effect correlation spectroscopy
s : singlet
sec : secondary
t : triplet
td : triplet of doublet
TOCSY : Total Correlation Spectroscopy
θ : (Theta) ellipticity (deg·cm²·dmol⁻¹)
φ : (phi) C'i-1-Ni-Cαi-C'i dihedral angle of an amino acid residue
ψ : (psi) Ni-Cαi-C'i-Ni+1 dihedral angle of an amino acid residue
π→π* : (pi to pi*) electronic transition from bonding π to anti-bonding π* orbital in the peptide motif
n→π* : (non-bonding to pi*) electronic transition from non-bonding n to anti-bonding π* orbital in the peptide motif
λ (nm) : (lambda) wavelength in nanometers (nm)
1. Materials

All reactions were performed in oven-dried apparatus and were stirred using magnetic stir-bars. Column chromatography was performed on silica gel (100-200 mesh) (Acme's) purchased from S D Fine chem Ltd, India. Thin Layer Chromatography (TLC) was carried out on Merck DC Kieselgel 60 F254 aluminum sheets. Compounds were visualized by one (or all of the) following methods: (1) fluorescence quenching, (2) spraying with a 0.2% (w/v) ninhydrin solution in absolute ethanol, (3) spraying with 1% H₂SO₄ solution in EtOH/H₂O (1:5 v/v), (4) charring on hot plate. Ethyl acetate and hexanes (or low boiling fractions of petroleum ether) were obtained from SD-fine chemicals, India and were fractionally distilled at their respective boiling points, before use. Dichloromethane (DCM) was dried by distillation over phosphorus pentoxide (P₂O₅). N-methyl morpholine (NMM) was distilled over calcium hydride (CaH₂). Nuclear Magnetic Resonance (NMR) spectra of compounds were recorded on BRUKER-AV400 spectrometer (Bruker Co., Faellanden, Switzerland). Chemical shifts are expressed as δ values in parts per million (ppm) from the residual non-deuterated chloroform in CDCl₃ (δH = 7.26 ppm, δC = 77.00 ppm). ¹,³JH,H coupling constant values are expressed in hertz (Hz). Multiplicities are indicated using the following abbreviations: s (singlet), d (doublet), dd (doublet of doublets), dt (doublet of triplet), t (triplet), q (quartet), quin (quintet), sext (sextet), hept (heptet), m (multiplet), bs (broad singlet). Mass spectra were obtained with Micromass Q-Tof (ESI-HRMS). Melting points (m.p.) analyses were performed in VEEGO melting point apparatus (VEEGO Inst. Co., Mumbai, India). Far-UV CD spectra were recorded using a JASCO CD spectrometer (model No - J-815) equipped with a peltier temperature-controlled cell holder using a 0.1 cm path length Suprasil quartz cell (Hellma, Forest Hills, NY, USA).

2. Methods:

Nuclear Magnetic Resonance (NMR) spectroscopy Experiments:

¹H and 2D NMR spectra were recorded on a Bruker Avance (Bruker Co., Faellanden, Switzerland) 400 MHz spectrometer. 2D NMR spectra were recorded in phase sensitive mode using time-proportional phase incrementation for quadrature detection in the t₁ dimension. ¹H, ¹³C NMR experiments of molecules (except macrocyclic peptides) were performed typically at 10 mM sample and 60 mM concentrations respectively. ¹H, ¹³C and
2D NMR experiments of molecules were performed (for macrocyclic 13\textsubscript{7}3 and 13\textsubscript{6}3 peptides) in 3.8-5.0 mM solutions. The solvents used were CDCl\textsubscript{3}, 40% CDCl\textsubscript{3} in CD\textsubscript{3}CN or 10% D\textsubscript{2}O in H\textsubscript{2}O.

Heteronuclear Single Quantum Correlation (HSQC) Experiment:

The HSQC spectra were recorded at 298 K with a mixing time of 200 ms using the hsqctgpsi2 pulse sequence. An HSQC continuous wave spin-lock of 1.5 KHz was used to collect 2K points in the f_2 domain and 512 points in the f_1 domain. The data were processed using Bruker TOPSPIN 3.6 version software.

Total Correlation Spectroscopy (TOCSY) Experiment:

The TOCSY spectra were recorded at 298 K with mixing time of 200 ms using the MLEVPH pulse sequence. A TOCSY continuous wave spin-lock of 1.5 KHz was used to collect 2K points in the f_2 domain and 512 points in the f_1 domain. The data were processed using Bruker TOPSPIN 3.6 version software. A 90° sine-squared window function was applied in both directions.

Rotating Frame Nuclear Overhauser Effect Correlation Spectroscopy (ROESY) Experiment:

The ROESY spectra were recorded at 298 K with mixing time of 300 ms using ROESYPH pulse sequence. A ROESY continuous wave spin-lock of 1.5 KHz was used to collect 2K points in the f_2 domain and 512 points in the f_1 domain. The data were processed using Bruker TOPSPIN 3.6 version software. A 90° sine-squared window function was applied in both directions.

CD spectroscopic analyses:

CD spectra were recorded in the far-UV range, from 185 nm to 270 nm at 295 K with scan speed of 50 nm/min and with each reading averaged over 3 scans. Spectral baselines were obtained under conditions analogous as those for the samples. The blank solvent spectra for each solution were recorded under the same conditions. Solutions were prepared by weighing out the peptide in a volumetric flask and adding the solvent for dilution up to the marks, ensuring the dissolving of the peptide, followed by filtering of the solution through a 0.2 micron polyvinylidene Difluoride (PVDF) membrane filter (Pall India
All the spectra are baseline corrected and θ values were recorded in mdeg units. Each data point was then converted to uniform scale molar ellipticity θ (deg cm² dmol⁻¹) values. The corresponding mean molar residue ellipticity (θMRE) values were then calculated by the equation θ/n (where n = the number of peptide bonds in the peptide) and the θMRE (deg cm² dmol⁻¹) values were plotted as a function of corresponding λnm. Temperature-dependent CD experiments were performed by varying the temperature of the samples using JASCO peltier instrument, allowing 15 min equilibration time at each temperature before recording each data point.

FTIR spectroscopic analyses:

IR spectra were recorded by using a Bruker spectrophotometer. Cell with path length 0.1 cm (with KCl window) was used for the solution measurements. All the spectra were baseline corrected with respect to the blank solvent (Spectrograde CH₃CN purchased from Merck) with minimum of 16 scans were signal-averaged. For acquiring the FTIR for the deuterated analogues of 1a,b the peptides were dissolved (5 mM concentration) in 100% CD₃OD (99.8 % deuterated) and kept standing for 1 h and ¹H NMR were taken to ensure the complete exchange of NHs to NDs. Then CD₃OD was removed under reduced pressure until complete dryness. Further the peptides were redissolved in CH₃CN (2 mM concentration) and recorded the spectra.

Procedure for Energy minimization.

Energy minimization was carried out on all the three 13γ3 analogues 1a-c, starting from the structure which is built based on the 2D ROESY constraints. The interproton distances are taken care of based on the ROE intensities. The molecule was then uploaded into ATB topology builder to generate the initial optimized geometry using semi empirical QM theory (SCF level of theory) and MOPAC charges. Bonded and van der Waals parameters were taken from the GROMOS 54A7 parameter set. All the three molecules were then placed in a suitable cubic box with the box edge adjusted to 1 Å from the peptide’s periphery. The box was filled with suitable number of pre-equilibrated SPC water molecules. Then the energy minimization was done using steep (steepest descent minimization) algorithm for all the three molecules, were restrained to its initial coordinates with a force constant of 100 kJ mol⁻¹.
3. Nomenclature of HBS-constrained cyclic peptides:

a) [JLA]-GAEAAKA-NH₂
 J = 5-imino-1-oxo-pentan
 i+1st residue absent
 Satterthwait et al.
 J. Am. Chem. Soc., 1999, 121, 3862

b) [H₄eQV]-ARQLAQY-NH₂
 H₄eQV = 4-ene-1-oxo-hexanopic
 \(\theta_H = -29 \times 10^3 \) (deg cm² dmol⁻¹)
 i+1st residue absent
 Arora et al.
 J. Am. Chem. Soc., 2008, 130, 14343
 Acc. Chem. Res., 2008, 41, 1289

c) [XQE]-GFSDLWKLLS-NH₂
 X = -(CH₂)₂-S-S-(CH₂)₂-CO-
 \(\theta_H = -14 \times 10^3 \) (deg cm² dmol⁻¹)
 i+1st residue absent
 Arora et al.
 Tetrahedron, 2012, 68, 4434

d) [YLL]-G-OMe
 YLL = 4-ene-1-oxo-hexanoic
 \(\theta_H = -22 \times 10^3 \) (deg cm² dmol⁻¹)
 ALL residues retained
 Alewood et al.
 Angew. Chem. Int. Ed., 2009, 48, 5675
 Helix propagation at both N- and C-termini

e) Natural Single α-Helical Turn
 ALL residues retained

f) Predominant single α-helical turn
 Moc-(GFA)G-OMe
 HBS = propyl + N-Moc
 \(\theta_H = -25.3 \times 10^3 \) (deg cm² dmol⁻¹) (pH - 7)
 ALL residues retained
 Prabhakaran et al.
 present work
 Most stable single turn α-helix
Figure S1. The nomenclature presented in current work for hydrogen bonded e) or HBS-constrained cyclic peptides – a) Satterthwait et al., b) Arora et al., c) Arora et al., d) Alewood et al., f) Prabhakaran et al. g) Broussy et al., h) Prabhakaran et al., i) Prabhakaran et al.. Numbers written along the outside of the backbone, in black color, indicate the total number of atoms present in the macrocyclic ring. Numbers written along the inside of the backbone in red color represent the number of sp² atoms in the macrocyclic ring. The backbone bonds of residues that are directly bonded to the HBS group and hence are in an unnatural environment are shown in bold bonds. The i+1^{st} residues are shown in red in order to highlight the HBS models that retain this residue. The application of current HBS model in constraining short peptides in 3_{10}-helical conformation is also shown.
4. Experimental

4.1. Synthesis

Scheme S1. Synthesis of Boc-Gly-Phe-OMe ((S)-methyl 2-(2-((tert-butoxycarbonyl) amino)acetamido)-3-phenylpropanoate) (a):

![Diagram of Scheme S1]

To a cold (-15°C) stirring solution of Boc-Gly-OH (10.0 g, 57.08 mmol) in dry tetrahydrofuran (THF) (190.0 ml) was added N-methyl morpholine (NMM) (9.39 ml, 85.62 mmol) and ethyl chloroformate (ECF) (5.62 ml, 58.79 mmol) and stirred until TLC indicated that all the acid had been consumed to form corresponding mixed anhydride (4 min). To this was added a solution of HCl-Phe-OMe (14.77 g, 68.49 mmol) in dry dimethylformamide (DMF) (25.0 ml) and NMM (15.66 ml, 142.70 mmol). After 2 h the icesalt bath was removed and the mixture was stirred at room temperature until TLC indicated the complete consumption of the mixed anhydride. Removal of solvent under vacuum resulted in a residue which was dissolved in ethyl acetate (EtOAc) (60.0 ml), washed with water (2 X 25.0 ml), 1N HCl (2 X 25.0 ml) and saturated NaHCO₃ (2 X 25.0 ml). The organic layer was dried over anhydrous sodium sulphate (anhyd. Na₂SO₄) and concentrated to get a residue which was subjected to purification by silica gel flash column chromatography (EtOAc:Hexane – 1:3) to yield the desired product as a viscous liquid (15.36 g, 45.66, mmol, 80% yield); (TLC- EtOAc:Hexane (1:1) – Rₜ = 0.2); ^1H NMR (400 MHz, CDCl₃, 60 mM) δ ppm: 7.32 – 7.22 (m, 3H, HₐPhe), 7.09 (d, J = 6.98, 2H, HₐPhe), 6.52 (d, J = 7.19 Hz, 1H, H₉Phe), 5.08 (s, 1H, H₈Gly), 4.89 (q, J = 5.76 Hz, 1H, H₆Phe), 3.84 (dd, J = 16.64, 4.62 Hz, 1H, H₅Gly), 3.76 (d, J = 5.85 Hz, 1H, H₄Gly), 3.72 (s, H₂OMe), 3.17 – 3.08 (m, 2H, H₆Phe), 1.44 (s, 9H, HMeBoc); ^13C NMR (100 MHz, CDCl₃, 60 mM) δ ppm: 171.7, 169.1, 155.9, 135.6, 129.2, 128.7, 127.2, 80.4, 60.4, 53.1, 52.4, 44.3, 38.9, 14.2; HRMS m/z Calculated for C₁₇H₂₄N₂O₅Na 359.1583, Found 359.1584.

Scheme S2. Synthesis of Boc-Ala-Gly-OMe ((S)-methyl 2-(2-((tert-butoxycarbonyl) amino)acetamido)-3-phenylpropanoate) (b):
To a cold (0°C) stirring solution of Boc-Ala-OH (10.0 g, 52.85 mmol) and HCl-Gly-OMe (7.96 g, 63.42 mmol), in dry CH$_3$CN (ACN) (176.5 ml) was added ethylcarbodiimide hydrochloride (EDC) (15.19 g, 79.27 mmol), 1-hydroxybenzotriazole (HOBT) (1.4 g, 79.27 mmol) and N,N-diisopropylethylamine (DIPEA) (36.82 ml, 211.40 mmol). After 30 mins the ice-salt bath was removed, and the mixture was stirred at ambient conditions for further 10 hrs, when TLC indicated complete consumption of the acid. Removal of solvent resulted in a residue which was dissolved in EtOAc (70.0 ml), washed with water (2 X 25.0 ml), 1N HCl (2 X 25.0 ml) and saturated NaHCO$_3$ (2 X 25.0 ml). The organic layer was dried over anhyd. Na$_2$SO$_4$ and concentrated to get a residue which was subjected to purification by silica gel flash column chromatography (EtOAc : Hexane – 1:3) to yield the desired product as a viscous liquid (9.62 g, 36.99 mmol, 70% yield); (TLC- EtOAc:Hexane (1:1) – R_f = 0.2); 1H NMR (400 MHz, CDCl$_3$) δ ppm: major: 6.70 (s, 0.9 H, H$_N$Gly), 5.02 (bs, 0.9H, H$^\alpha$Ala), 4.05 (t, J = 4.78 Hz, 2H, H$^\alpha$Gly), 3.76 (s, 3H, H$^\beta$OMe), 1.45 (s, 9H, HMeBoc), 1.38 (d, J = 7.08 Hz, 3H, H$^\beta$Ala); minor: 6.89 (s, J = 0.37 Hz, H$_N$Gly), 5.14 (bs, 0.25 H, H$^\alpha$Ala); 13C NMR (100 MHz, CDCl$_3$, 60 mM) δ ppm: 173.3, 170.2, 155.6, 80.3, 52.4, 50.0, 41.2, 28.3, 18.2; FT-IR ($\bar{\nu}$ cm$^{-1}$): 3581, 3371, 3303, 2980, 2936, 1755, 1710, 1660, 1528, 1449, 1368, 1298, 1252, 1214, 1168, 1069, 1027; HRMS m/z Calculated for C$_{11}$H$_{20}$N$_2$O$_5$Na 283.1271, Found 283.1271.

Scheme S3. Synthesis of Boc-Ala-Phe-OMe ((S)-methyl 2-((S)-2-((tert-butoxycarbonyl) amino)propanamido)-3-phenylpropanoate) (c):

(i) HCl-Phe-OMe (63.42 mmol, 1.2 eq.)
(ii) ECF (54.43 mmol, 1.03 eq.), NMM (211.40 mmol, 4.0 eq.)
(iii) Dry THF:DMF (0.3 M), -15°C, Yield 75%
To a cold (-15°C) stirring solution of Boc-Ala-OH (10.0 g, 52.85 mmol) in dry THF (176.0 ml) was added NMM (8.70 ml, 79.27 mmol) and ECF (5.20 ml, 54.43 mmol) and stirred until TLC indicated that all the acid had been consumed to form corresponding mixed anhydride (4 min). To this was added a solution of HCl-Phe-OMe (13.67 g, 63.42 mmol) in dry dimethylformamide (DMF) (10.0 ml) and NMM (14.50 ml, 132.12 mmol). After 2 h the ice-salt bath was removed and the mixture was stirred at room temperature until TLC indicated the complete consumption of the mixed anhydride. Removal of solvent under vacuum resulted in a residue which was dissolved in EtOAc (65.0 ml), washed with water (2 × 25.0 ml), 1N HCl (2 × 25.0 ml) and saturated NaHCO₃ (2 × 25.0 ml). The organic layer was dried over anhyd. Na₂SO₄ and concentrated to get a residue which was subjected to purification by silica gel flash column chromatography (EtOAc : Hexane – 1:4) to yield the desired product as a white solid (13.88 g, 39.63 mmol, 75% yield); (TLC-EtOAc:Hexane (1:1) – Rf = 0.6); ¹H NMR (400 MHz, CDCl₃, 10 mM) δ ppm: 7.30 – 7.22 (m, 3H), 7.10 (d, J = 6.9 Hz, 2H), 6.51 (d, J = 7.3 Hz, 1H), 4.92 (bs, 1H), 4.85 (q, J = 6.0, 13.3 Hz, 1H), 4.13 (s, 1H), 3.71 (s, 3H), 3.17 (dd, J = 13.86, 5.8 Hz, 1H), 3.08 (dd, J = 13.86, 5.8 Hz, 1H), 1.44 (s, 9H), 1.31 (d, J = 6.9 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃, 60 mM) δ ppm: 172.2, 171.7, 155.3, 135.7, 129.3, 128.6, 127.2, 80.2, 53.2, 52.3, 50.1, 37.9, 28.3, 18.3; FT-IR (ṽ cm⁻¹): 3407, 3338, 3306, 3066, 3030, 2979, 2933, 1727, 1662, 1632, 1531, 1500, 1450, 1398, 1368, 1332, 1286, 1250, 1164, 1112, 1051, 1027; HRMS m/z Calculated for C₁₈H₂₆N₂O₅Na 373.1739, Found 373.1739.

Scheme S4. Synthesis of Boc-Gly-Phe-Ala-Gly-OMe ((9S,12S)-methyl 9-benzyl-2,2,12-trimethyl-4,7,10,13-tetraoxo-3-oxa-5,8,11,14-tetraazaheptadecan-16-oate) (3a):

To a solution of Boc-Gly-Phe-OMe (5.0 g, 14.86 mmol) in methanol (33.04 ml) was added a solution of LiOH (0.92 g, 22.29 mmol) in H₂O (16.50 ml) and stirred for 30 mins, at which point TLC indicated the complete consumption of the methyl ester. Methanol was evaporated and the resulting aqueous solution was acidified with 1N HCl (20.0 ml) to pH
1, followed by the extraction with dichloromethane (DCM) (2 X 25.0 ml) to get Boc-Gly-Phe-OH (4.59 g, 14.26 mmol, 96% yield) which was used without further purification.

To a cold (-15°C) stirring solution of Boc-Gly-Phe-OH (4.59 g, 14.23 mmol) in dry THF (47.0 ml) was added NMM (2.34 ml, 21.35 mmol) and ECF (1.40 ml, 14.66 mmol) and stirred until TLC indicated that all the acid had been consumed to form corresponding mixed anhydride (4 min). To this was added a solution of TFA.H-Ala-Gly-OMe (4.29 g, 15.66 mmol) in dry DMF (12.0 ml) and NMM (3.90 ml, 35.59 mmol). After 2 h the ice-salt bath was removed, and the mixture was stirred at room temperature until TLC indicated the complete consumption of the mixed anhydride. Removal of solvent resulted in a residue which was dissolved in EtOAc (70.0 ml), washed with water (2 X 20.0 ml), 1N HCl (2 X 20.0 ml) and saturated NaHCO₃ (2 X 20.0 ml). The organic layer was dried over anhyd. Na₂SO₄ and concentrated to get a residue which was subjected to purification by silica gel flash column chromatography (EtOAc: Methanol – 9:1) to yield the desired product as a white solid (4.96 g, 10.67 mmol, 75% yield); (TLC - EtOAc:Hexane (1:0) – Rₛ = 0.1); ¹H NMR (400 MHz, DMSO-d₆, 10 mM) δ ppm: 8.28 (d, J = 7.25 Hz, 1H), 8.21 (t, J = 5.25 Hz, 1H), 7.93 (d, J = 8.25 Hz, 1H), 7.26 – 7.17 (m, 5H), 6.91 (t, J = 5.91 Hz, 1H), 4.54 (td, J = 9.17, 3.27 Hz, 1H), 4.32 (quin, J = 7.25 Hz, 1H), 3.90 – 3.78 (m, 2H), 3.63 (s, 3H), 3.54 (dd, J = 16.99, 5.91 Hz, 1H), 3.40 (dd, J = 16.62, 5.66 Hz, 1H), 3.00 (dd, J = 13.83, 4.10 Hz, 1H), 2.76 (dd, J = 13.83, 9.44 Hz, 1H), 1.36 (s, 9H), 1.24 (d, J = 7.04 Hz, 3H); ¹³C NMR (100 MHz, DMSO-d₆, 60 mM) δ ppm: 172.6, 170.6, 170.1, 169.1, 155.7, 137.7, 129.2, 128.0, 126.2, 78.0, 53.5, 51.7, 47.9, 43.0, 40.5, 37.6, 28.1, 18.2; FT-IR (Ṽ cm⁻¹): 3418, 3279, 3248, 3089, 3061, 2973, 2924, 2364, 2330, 1751, 1719, 1662, 1510, 1450, 1400, 1366, 1297, 1248, 1209, 1163, 1029; HRMS m/z Calculated for C₂₂H₃₂N₄O₇Na 487.2169, Found 487.2168.

Scheme S5. Synthesis of Boc-Ala-Phe-Ala-Gly-OMe ((6S,9S,12S)-methyl 9-benzyl-2,6,12-tetramethyl-4,7,10,13-tetraoxo-3-oxa-5,8,11,14-tetraazaheaddacan-16-oate) (3b):

\[
\text{Boc-Ala-Phe-OMe} \xrightarrow{\text{LiOH (21.40 mmol, 1.5 eq.), } \text{H}_2\text{O:MeOH (1:2) (0.3 M), Yield Qu.}} \xrightarrow{(i) \text{TFA.H-Ala-Gly-OMe (15.66 mmol, 1.1 eq.)}} \xrightarrow{(ii) \text{ECF (14.66 mmol, 1.03 eq.)}} \xrightarrow{(iii) \text{NMM (56.95 mmol, 4.0 eq.)}} \text{Boc-Ala-Phe-Ala-Gly-OMe (3b)}
\]
S15

To a solution of Boc-Ala-Phe-OMe (5.0 g, 14.26 mmol) in methanol (32.0 ml) was added a solution of LiOH (0.88 g, 21.40 mmol) in H₂O (16.0 ml) and stirred for 30 mins. Most of the methanol was evaporated and the resulting aqueous solution was acidified with 1N HCl (20 ml) (pH 1) followed by the extraction with dichloromethane (DCM) (2 X 25.0 ml) to get Boc-Ala-Phe-OH (4.79 g, 14.26 mmol, quantitative yield) which was used without further purification.

To a cold (-15°C) stirring solution of Boc-Ala-Phe-OH (4.79 g, 14.23 mmol) in dry THF (47.0 ml) was added NMM (2.34 ml, 21.35 mmol) and ECF (1.40 ml, 14.66 mmol) and stirred until TLC indicated that all the acid had been consumed to form corresponding mixed anhydride (4 min). To this was added a solution of TFA.H-Ala-Gly-OMe (4.29 g, 15.66 mmol) in dry DMF (12.0 ml) and NMM (3.90 ml, 35.59 mmol). After 2 h the ice-salt bath was removed and the mixture was stirred at room temperature until TLC indicated the complete consumption of the mixed anhydride. Removal of solvent resulted in a residue which was dissolved in EtOAc (60.0 ml), washed with water (2 X 25.0 ml), 1N HCl (2 X 25.0 ml) and saturated NaHCO₃ (2 X 25.0 ml). The organic layer was dried over anhyd. Na₂SO₄ and concentrated to get a residue which was subjected to purification by silica gel flash column chromatography (EtOAc : Methanol – 4:1) to yield the desired product as a white solid (5.79 g, 12.09 mmol, 85% yield); (TLC - EtOAc:Hexane (1:0) – Rf = 0.1); ¹H NMR (400 MHz, DMSO-d₆, 10 mM) δ ppm: 8.35 (d, J = 5.19 Hz, 1H), 7.86 (d, J = 7.99 Hz, 1H), 7.25 – 7.13 (m, 5H), 6.93 (d, J = 7.59 Hz, 1H), 4.51 (td, J = 9.06, 3.76 Hz, 1H), 4.30 (quin, J = 7.25 Hz, 1H), 3.90 – 3.78 (m, 3H), 3.62 (s, 3H), 3.02 (dd, J = 13.98, 4.37 Hz, 1H), 2.79 (dd, J = 13.57, 9.15 Hz, 1H), 1.36 (s, 9H), 1.22 (d, J = 7.03 Hz, 3H), 1.07 (d, J = 7.18 Hz, 3H); ¹³C NMR (100 MHz, DMSO-d₆, 60 mM) δ ppm: 172.6, 172.4, 170.4, 170.1, 154.9, 137.6, 129.3, 127.9, 126.1, 78.1, 53.4, 51.6, 48.0, 40.5, 37.4, 28.1, 24.5, 18.2, 18.1; FT-IR (ν cm⁻¹): 3625, 3584, 3506, 3452, 3420, 3313, 3263, 3084, 2979, 2931, 2365, 1755, 1674, 1636, 1556, 1529, 1449, 1400, 1365, 1269, 1216, 1170, 1110, 1073, 1051, 1020; HRMS m/z Calculated for C₂₃H₃₄N₄O₇Na 501.2325, Found 501.2321.

Scheme S6. Synthesis of Boc-Ala-Ala-OMe ((S)-methyl 2-((S)-2-((tert butoxy carbonyl) amino) propanamido) propanoate) (d):
To a cold (-15°C) stirring solution of Boc-Ala-OH (10.0 g, 52.85 mmol) in dry THF (176.0 ml) was added NMM (8.70 ml, 79.27 mmol) and ECF (5.30 ml, 55.49 mmol) and stirred until TLC indicated that all the acid had been consumed to form corresponding mixed anhydride (4 min). To this was added a solution of HCl-Ala-OMe (8.85 g, 63.42 mmol) in dry DMF (15.0 ml) and NMM (14.50 ml, 132.12 mmol). After 2 h the ice-salt bath was removed and the mixture was stirred at room temperature until TLC indicated the complete consumption of the mixed anhydride. Removal of solvent resulted in a residue which was dissolved in ethyl acetate (EtOAc) (60.0 ml), washed with water (2 X 25.0 ml), 1N HCl (2 X 25.0 ml) and saturated NaHCO₃ (2 X 25.0 ml). The organic layer was dried over anhyd. Na₂SO₄ and concentrated to get a residue which was subjected to purification by silica gel flash column chromatography (EtOAc : Hexane – 1:2) to yield the desired product as a white solid (11.59 g, 42.25 mmol, 80% yield); (TLC- EtOAc:Hexane (1:1) – Rₛ = 0.5); ¹H NMR (400 MHz, CDCl₃, 10 mM) δ ppm: 6.62 (s, 1H), 4.99 (s, 1H), 4.57 (quin, J = 7.28 Hz, 1H), 4.17 (bs, 1H), 3.75 (s, 3H), 1.45 (s, 9H), 1.41 (d, J = 6.9 Hz, 3H), 1.36 (d, J = 6.69 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃, 60 mM) δ ppm: 173.2, 172.2, 155.4, 80.2, 52.5, 50.1, 48.0, 28.3, 18.4, 18.3; FT-IR (υ cm⁻¹): 3583, 3305, 3080, 2981, 2936, 2878, 2365, 1749, 1711, 1662, 1530, 1502, 1452, 1393, 1367, 1317, 1249, 1213, 1166, 1105, 1061, 1020; HRMS m/z Calculated for C₁₂H₂₂N₂O₅Na 274.1529, Found 274.1531.

Scheme S7. Synthesis of Boc-Phe-Ala-Ala-OMe ((6S,9S)-methyl 6-benzyl-2,2,9,12-tetramethyl-4,7,10-trioxo-3-oxa-5,8,11-triazatridecan-13-oate) (e):

To a cold (-15°C) stirring solution of Boc-Phe-OH (5.52 g, 20.81 mmol) in dry THF (58.0 ml) was added NMM (2.85 ml, 26.02 mmol) and ECF (1.82 ml, 19.02 mmol) and stirred
until TLC indicated that all the acid had been consumed to form corresponding mixed anhydride (4 min). To this was added a solution of TFA.H-Ala-Ala-OMe (5.0 g, 17.34 mmol) (TFA is trifluoroacetic acid) in dry THF (15.0 ml) and NMM (4.75 ml, 43.36 mmol). After 2 h the ice-salt bath was removed and the mixture was stirred at room temperature until TLC indicated the complete consumption of the mixed anhydride. Removal of solvent resulted in a residue which was dissolved in EtOAc (60.0 ml), washed with water (2 X 25.0 ml), 1N HCl (2 X 25.0 ml) and saturated NaHCO₃ (2 X 25 ml). The organic layer was dried over anhyd. Na₂SO₄ and concentrated to get a residue which was subjected to purification by silica gel flash column chromatography (EtOAc:Hexane – 1:1) to yield the desired product as a white solid (6.58 g, 15.61 mmol, 90% yield); (TLC - EtOAc:Hexane (3:1) – Rf = 0.5);

¹H NMR (400 MHz, CDCl₃, 10 mM) δ ppm: 7.34 – 7.16 (m, 5H), 6.64 (d, J = 6.24 Hz, 1H), 6.52 (d, J = 7.40 Hz, 1H), 4.95 (bs, 1H), 4.51 (quin, J = 7.35 Hz, 1H), 4.44 (quin, J = 7.06 Hz, 1H), 4.36 (d, J = 4.47 Hz, 1H), 3.75 (s, 3H), 3.13 – 3.01 (m, 2H), 1.40 (s, 9H), 1.38 (3H, merged), 1.32 (d, J = 6.99 Hz, 3H);

¹³C NMR (100 MHz, CDCl₃, 60 mM) δ ppm: 173.1, 171.4, 171.2, 155.5, 136.4, 129.3, 128.7, 127.1, 80.4, 55.7, 52.5, 48.9, 48.2, 38.2, 28.3, 18.2, 18.1;

FT-IR (ν cm⁻¹): 3300, 3277, 3066, 2980, 2932, 2365, 1748, 1694, 1646, 1549, 1530, 1498, 1451, 1392, 1367, 1249, 1214, 1167, 1052, 1019;

HRMS m/z Calculated for C₂₁H₃₁N₃O₆Na 471.2213, Found 471.2210.

Scheme S8. Synthesis of Boc-Gly-Phe-Ala-Ala-OMe ((9S,12S,15S)-methyl 9-benzyl-2,2,12,15-tetramethyl-4,7,10,13-tetraoxo-3-oxa-5,8,11,14-tetraazahexadecan-16-oate) (3c):

To a cold (-15°C) stirring solution of Boc-Gly-OH (2.1 g, 13.78 mmol) in dry THF (30.0 ml) was added NMM (1.89 ml, 17.22 mmol) and ECF (1.20 ml, 12.63 mmol) and stirred until TLC indicated that all the acid had been consumed to form corresponding mixed anhydride (4 min). To this was added a solution of TFA.H-Phe-Ala-Ala-OMe (5.0 g, 11.48 mmol) in dry THF (8.0 ml) and NMM (3.15 ml, 28.70 mmol). After 2 h the ice-salt bath was removed and the mixture was stirred at room temperature until TLC indicated the
complete consumption of the mixed anhydride. Removal of solvent resulted in a residue which was dissolved in EtOAc (70.0 ml), washed with water (2 X 20.0 ml), 1N HCl (2 X 20.0 ml) and saturated NaHCO₃ (2 X 20.0 ml). The organic layer was dried over anhyd. Na₂SO₄ and concentrated to get a residue which was subjected to purification by silica gel flash column chromatography (EtOAc:Hexane – 3:1) to yield the desired product as a white solid (5.11 g, 10.67 mmol, 93% yield); (TLC- EtOAc:Hexane (3:1) – Rf = 0.4); ¹H NMR (400 MHz, CDCl₃, 10 mM) δ ppm: 7.33 – 7.21 (m, 2H), 7.2 – 7.14 (d, J = 7.12 Hz, 3H), 6.92 (d, J = 5.78 Hz, 1H), 6.82 (d, J = 7.16 Hz, 1H), 5.21 (s, 1H), 4.70 (q, J = 6.53 Hz, 1H), 4.51 (quin, J = 7.40 Hz, 1H), 3.77 – 3.72 (m, 5H), 3.16 (dd, J = 14.19, 6.54 Hz, 1H), 3.05 (dd, J = 13.82, 6.29 Hz, 1H), 1.42 – 1.38 (m, 12H), 1.32 (d, J = 7.12 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃, 60 mM) δ ppm: 173.2, 171.8, 170.5, 169.4, 156.2, 136.2, 129.3, 128.6, 127.1, 80.2, 54.2, 52.4, 48.8, 48.1, 42.2, 38.8, 28.3, 18.7, 18.0; FT-IR (Ṽ cm⁻¹): 3294, 3078, 2979, 2930, 2365, 1748, 1639, 1545, 1500, 1451, 1394, 1367, 1283, 1247, 1215, 1166, 1053; HRMS m/z Calculated for C₂₃H₃₄N₄O₇Na 501.2325, Found 501.2326.
Scheme S9. Synthesis of Hydrogen Bond Surrogate (HBS) constrained α-turns (1a-e):

1,3-propane diol, PPh₃, DIAD, Dry THF (0.3 M), 45 mins, r.t.

PhSH, K₂CO₃, CH₃CN (0.3 M), 18 hrs.

(Boc)₂O, K₂CO₃, H₂O:Dioxane (1:1), 12 hrs.

N₃-G/A-OBn, PPh₃, DIAD, Dry THF (0.3 M), 15 mins, -15°C-r.t.

PhSH, K₂CO₃, ACN (0.3 M), 8 hrs.

Moc-Cl, H₂O:dioxane (1:1), 12 hrs.

TFA (20% DCM), DCM (0.3 M), 2.5 h.

Cbz-R₂R₃-OH, ECF, NMM, Dry THF (0.3 M), -15°C, 1.5 hrs.

Cbz-N₃-R₂R₃-OH, Acetic acid, 30 hrs.

Methanol (0.3 M), 20 mins.

EDC, HOBT, DIPEA, Dry ACN (1 mM), 7 - 8 hrs.

Pd-C/H₂ (0.1 mol%), 20 mins.
Scheme S10. Synthesis of Ns-Gly-OMe (methyl 2-(2-nitrophenylsulfonamido)acetate) (4a):

To a cold (0°C) stirring mixture of methylglycinate hydrochloride (5.0 g, 39.82 mmol) and o-nosyl chloride (NsCl) (9.26 g, 41.81 mmol) in DCM (133.0 ml) was added triethylamine (TEA) (11.12 ml, 79.64 mmol) drop-wise and the mixture was stirred at room temperature until TLC indicated the complete consumption of the starting material. Removal of solvent resulted in a residue which was dissolved in EtOAc (70.0 ml), washed with water (2 x 20.0 ml) and 1N HCl solution (2 X 20.0 ml). The organic layer was dried over anhyd. Na₂SO₄ and concentrated to get a residue which was subjected to purification by silica gel flash column chromatography (EtOAc:Hexane -2:3) to yield the desired product (Ns-Gly-OMe, 4a) as a white solid (9.82 g, 35.84 mmol, 90% yield); m.p. 110°C; (TLC- EtOAc:Hexane (1:1) – Rₜ = 0.5); ¹H NMR (400 MHz, CDCl₃, 10 mM) δ ppm: 8.11-8.08 (m, 1H, H_AroNs), 7.95-7.93 (m, 1H, H_AroNs), 7.76-7.73 (m, 2H, H_AroNs), 6.03 (s, 1H, H_NGly), 4.02 (d, J = 5.86 Hz, 2H, H_αGly), 3.61 (s, 3H, H_MeOMe); ¹³C NMR (100 MHz, CDCl₃, 60 mM) δ ppm: 169.2, 148.0, 134.2, 133.9, 133.1, 130.8, 125.8, 52.7, 45.0; FT-IR (Ṽ cm⁻¹): 3324, 3099, 1754, 1639, 1593, 1537, 1465, 1417, 1358, 1335, 1257, 1239, 1160, 1126, 1056, 1008; HRMS m/z Calculated for C₉H₁₀N₂O₆SNa 297.0157, Found 297.0161.

Scheme S11. Synthesis of Ns-Ala-OMe ((S)-methyl 2-(2-nitrophenylsulfonamido)propanoate) (4b):

To a cold (0°C) stirring mixture of methyl alaninate hydrochloride (5.0 g, 35.82 mmol) and NsCl (8.33 g, 37.61 mmol) in DCM (120.0 ml) was added TEA (10.00 ml, 71.64 mmol) dropwise and the mixture was stirred at room temperature until TLC indicated the complete consumption of the starting material. Removal of solvent resulted in a residue...
which was dissolved in EtOAc (70.0 ml), washed with water (2 x 25.0 ml) and 1N HCl solution (2 X 25.0 ml). The organic layer was dried over anhyd. Na₂SO₄ and concentrated to get a residue which was subjected to purification by silica gel flash column chromatography (EtOAc:Hexane -2:3) to yield the desired product (Ns-Ala-OMe, 4b) as a white solid (8.88 g, 30.80 mmol, 86% yield); m.p. 110°C; (TLC- EtOAc:Hexane (1:1) – Rf = 0.6); ¹H NMR (400 MHz, CDCl₃, 10 mM) δ ppm: 8.10-8.08 (m, 1H, H⁴AroNs), 7.94-7.92 (m, 1H, H⁴AroNs), 7.75-7.72 (m, 2H, H⁴AroNs), 6.10 (d, J = 8.25, 1H, H³Ala), 4.26 (d, J = 7.59 Hz, 2H, HaAla), 3.53 (s, 3H, H³MeOMe); ¹³C NMR (100 MHz, CDCl₃, 60 mM) δ ppm: 171.9, 147.7, 134.3, 133.6, 132.9, 130.5, 125.6, 52.5, 52.47, 19.7; FT-IR (Ṽ cm⁻¹): 3461, 3302, 3099, 3015, 2995, 2956, 2887, 1738, 1594, 1543, 1443, 1419, 1382, 1357, 1333, 1299, 1217, 1171, 1055; HRMS m/z Calculated for C₁₀H₁₂N₂O₆SNa 311.0314, Found 311.0313.

Scheme S12. Synthesis of Cbz-Phe-OH (2-(((benzyloxy)carbonyl)amino)-3-phenylpropanonic acid) (f):

![Scheme S12](image)

To a cold (0°C) stirring mixture of phenylalanine (8.0g, 48.42 mmol) and K₂CO₃ (13.36 g, 96.84 mmol) in water (80.0 ml) was added drop wise as solution of benzyl chloroformate (7.60 ml, 53.27 mmol) in dioxane (80.0 ml). The mixture was stirred at 0°C for 1 h and warmed to stir at ambient conditions until TLC indicated the complete consumption of starting material (12 h). The dioxane was removed under vacuum to get an aqueous solution which was extracted with EtOAc (2 X 30.0 ml) and the organic layer was acidified with 1N HCl solution and extracted with EtOAc (3 X 20.0 ml). The organic layer was dried over anhyd. Na₂SO₄ and the solvent was removed under vacuum to get a hygroscopic white solid (13.47 g, 93 %), which was used for further reaction without any purification.
Scheme S13. Synthesis of Cbz-Phe-Ala-OMe ((S)-methyl 2-((S)-2-(((benzyloxy)carbonyl)amino)-3-phenylpropanamido)propanoate) (g):

To a cold (-15°C) stirring solution of Cbz-Phe-OH (f) (5.0 g, 16.70 mmol) in dry THF (40 ml) was added NMM (2.74 ml, 25.05 mmol) and ECF (1.67 ml, 17.53 mol) and stirred until TLC indicated that all the acid had been consumed to form corresponding mixed anhydride (4 min). To this was added a solution of HCl-Ala-OMe (2.79 g, 20.04 mmol) in dry DMF (15.0 ml) and NMM (4.58 ml, 41.75 mmol). After 2 h the ice-salt bath was removed and the mixture was stirred at ambient conditions for further 5 h. Removal of solvent resulted in a residue which was dissolved in ethyl acetate (EtOAc) (60.0 ml), washed with water (2 X 25.0 ml), 1N HCl (2 X 25.0 ml) and saturated NaHCO₃ (2 X 25.0ml). The organic layer was dried over anhyd. Na₂SO₄ and concentrated to get a residue which was subjected to purification by silica gel flash column chromatography (EtOAc:Hexane – 2:3) to yield the desired product as a white solid (3.66 g, 9.52 mmol, 57% yield); m.p. – 134°C; (TLC- EtOAc:Hexane (1:1) – Rf = 0.6); ^1H NMR (400 MHz, CDCl₃, 10 mM) δ ppm: 7.39 – 7.15 (m,10H, H^Aro Cbz & H^Aro Phe), 6.28 (d, J = 5.85 Hz, 1H, H^NAla), 5.29 (d, J = 6.67 Hz, 1H, H^Nphe), 4.50 (quin, J = 7.16 Hz, 1H, H^OAla), 4.42 (q, J = 7.57 Hz, 1H, H^Phe), 3.71 (s, 3H, H^MeOMe), 3.13 (dd, J = 13.76 Hz, 6.43 Hz, 1H, H^Phe), 3.04 (dd, J = 13.83 Hz, 6.92 Hz, 1H, H^Phe), 1.33 (d, J = 7.06 Hz, 3H, H^βAla); ^13C NMR (100 MHz, CDCl₃, 60 mM) δ ppm: 172.9, 170.4, 156.0, 136.3, 129.5, 128.9, 128.7, 128.4, 128.2, 127.3, 67.3, 56.3, 52.7, 48.4, 38.7, 18.5; FT-IR (ν cm⁻¹): - 3778, 3778, 3582, 3298, 3065, 3031, 2950, 2364, 2331, 1746, 1706, 1659, 1544, 1497, 1451, 1382, 1264, 1217, 1148, 1051; HRMS m/z Calculated for C₂₁H₂₄N₂O₅Na 407.1583, Found 407.1582.
Scheme S14. Synthesis of methyl 2-((tert-butyloxycarbonyl)(3-hydroxypropyl)amino) acetate (7a):

To a cold (0°C) stirring mixture of Ns-Gly-OMe (4a) (7.5 g, 27.34 mmol) and triphenylphosphine (PPh₃) (10.74 g, 41.02 mmol) in dry THF (91.0 ml) under N₂ atmosphere was added 1,3-propane diol (3.95 ml, 54.69 mmol) drop-wise followed by diisopropyl azodicarboxylate (DIAD) (8.12 ml, 41.02 mmol). After 15 mins of stirring the ice bath was removed and the reaction was continued at ambient conditions until TLC indicated the complete consumption of the starting material. Removal of solvent resulted in a residue which was dissolved in (EtOAc (50.0 ml) and washed with water (2 X 25.0 ml). The organic layer was concentrated to get a residue which was immediately subjected to denosylation reaction conditions by the addition of thiophenol (4.2 ml, 41.02 mmol) and K₂CO₃ (7.54 g, 54.68 mmol) in CH₃CN (91.0 ml). The reaction was continued at ambient conditions until TLC indicated the complete consumption of the starting material. After that the solvent was removed and the resulting residue was acidified using 1N HCl (50.0 ml). The aqueous mixture was thoroughly washed with diethyl ether (3 x 20.0 ml) to remove all the water-insoluble organic impurities.

The resulting aqueous solution was then treated with K₂CO₃ until it reaches a pH of 10. and di-tert-butyl dicarbonate (6.90 ml, 30.07 mmol) was added and the reaction mixture was stirred at ambient conditions until TLC indicated the complete consumption of the starting material. Removal of the solvent resulted in a residue which was dissolved in EtOAc (70.0 ml) and the organic layer was washed with water (3 x 20 ml) and dried over anhyd. Na₂SO₄ and concentrated to get a residue which was subjected to purification by silica gel flash column chromatography (EtOAc:Hexane -1:10) to yield the desired product as a viscous oil (4.73g, 19.12 mmol, 70% yield); (TLC- EtOAc:Hexane (1:0) – Rf = 0.5);¹H NMR (400 MHz, CDCl₃, 10 mM) δ ppm: (mixture of two rotamers) 3.86 (s) & 3.96 (s) (2H, HαGly), 3.74 (s, 3H, HMeOMe), 3.65, (t, J = 5.3 Hz), & 3.71-3.68 (m), (2H, HPrpc);
3.45 (t, J = 6.0 Hz) & 3.41-3.38 (m), (2H, HPrp$_a$); 1.66-1.64 (m) & 1.77-1.74 (m) (2H, HPrp$_b$); 1.48 (s) & 1.42 (s), (9H, HMeBoc); 13C NMR (100 MHz, CDCl$_3$, 60 mM) δ ppm: (mixture of two rotamers) 170.8, 170.6, 156.7, 155.9, 81.2, 80.9, 60.0, 58.6, 52.2, 49.8, 49.2, 45.5, 44.8, 31.4, 30.8, 28.5, 28.3; FT-IR ($\tilde{\nu}$ cm$^{-1}$): 3413, 2974, 2956, 2875, 1753, 1682, 1479, 1437, 1406, 1368, 1313, 1250, 1210, 1061; HRMS m/z Calcd for C$_{11}$H$_{21}$NO$_5$Na 270.1317, Found 270.1320.

Scheme S15. Synthesis of methyl 2-((tert-butyloxycarbonyl)(3-hydroxypropyl)amino)acetate (7c):

To a cold (0°C) stirring mixture of Ns-Ala-OMe (4c) (7.5 g, 26.03 mmol) and PPh$_3$ (10.22 g, 39.02 mmol) in dry THF (87.0 ml) under N$_2$ atmosphere was added 1,3-propane diol (3.76 ml, 52.03 mmol) drop-wise followed by DIAD (7.72 ml, 39.02 mmol). After 15 mins of stirring the ice bath was removed and the reaction was continued at ambient conditions until TLC indicated the complete consumption of the starting material. Removal of solvent resulted in a residue which was dissolved in EtOAc (40.0 ml) and washed with water (2 X 20.0 ml). The organic layer was concentrated to get a residue which was immediately subjected to denosylation reaction conditions by the addition of thiophenol (4.00 ml, 39.02 mmol) and K$_2$CO$_3$ (7.18 g, 52.03 mmol) in CH$_3$CN (87.0 ml). The reaction was continued at ambient conditions until TLC indicated the complete consumption of the starting material. After that the solvent was removed and the resulting residue was acidified using 1N HCl (50.0 ml). The aqueous mixture was thoroughly washed with diethyl ether (3 x 20.0 ml) to remove all the water-insoluble organic impurities.

The resulting aqueous solution was then treated with K$_2$CO$_3$ until it reaches a pH of 10, and di-tert-butyl dicarbonate (6.11 ml, 26.63 mmol) was added and the reaction mixture was stirred at ambient conditions until TLC indicated the complete consumption of the starting material. Removal of the solvent resulted in a residue which was dissolved in
EtOAc (70.0 ml) and washed with water (3 x 20 ml) and the organic layer was dried over anhyd. Na₂SO₄ and concentrated to get a residue which was subjected to purification by silica gel flash column chromatography (EtOAc:Hexane -1:4) to yield the desired product as a viscous oil (3.80g, 14.56 mmol, 56% yield); (TLC- EtOAc:Hexane (1:0) – Rₜ = 0.4);

¹H NMR (400 MHz, CDCl₃, 10 mM) δ ppm: (mixture of two rotamers) 4.45 (m) & 3.93 (q, J = 7.09) (2H, H₅Ala), 3.72 (s, 3H, HMeOMe), 3.70 – 3.59, & 3.32 – 3.20 (m, (4H, HPrpᵣ & HPrpᵝ), 3.45 (t, J = 7.0 Hz), 1.75-1.66 (m) (2H, HPrpᵯ), 1.50 – 1.44 (m, H⁶Ala), 1.43 (s), (9H, HMeBoc); ¹³C NMR (100 MHz, CDCl₃, 60 mM) δ ppm: (only one rotamer found) 172.4, 156.1, 81.1, 58.3, 56.1, 52.0, 43.2, 31.4, 28.2, 15.7; FT-IR (Ṽ cm⁻¹): 3451, 2978, 2949, 2882, 1747, 1689, 1478, 1456, 1433,1368, 1297, 1255, 1222, 1164, 1103, 1056, 1013; HRMS m/z Calcd for C₁₂H₂₃NO₅Na 284.1474, Found 284.1471.

Scheme S16. Synthesis of (S)-benzyl 2-((3-((tert-butyloxy carbonyl)(2-methoxy-2-oxoethyl) amino) propyl) (methoxycarbonyl)amino)propanoate (10a):

To a cold (0°C) stirring mixture of Ns-Gly-OBn (2.0 g, 5.70 mmol) and PPh₃ (2.24 g, 8.56 mmol) in dry THF (19.0 ml) under N₂ atmosphere was added N-Boc-(3-hydroxypropyl) benzylglycinate (7a) (2.11 gm, 8.56 mmol) dissolved in THF followed by DIAD (1.69 ml, 8.56 mmol). After 15 minutes the ice bath was removed, and the mixture was continued to stir at ambient conditions until TLC indicated the complete consumption of the starting material. Removal of solvent resulted in a residue which was dissolved in EtOAc (30.0 ml) and washed with water (2 X 15.0 ml). The organic layer was dried over anhyd. Na₂SO₄ and concentrated to get a residue which was subjected to denosylation reaction by the addition of thiophenol (0.87 ml, 8.56 mmol) and K₂CO₃ (1.57g, 11.40 mmol) in CH₃CN (19.0 ml). The mixture was continued to stir at ambient conditions until TLC indicated the complete consumption of the starting material. The solvent was removed followed by acidification using 1N HCl (20.0 ml). The aqueous mixture was washed with diethyl ether to remove all the water-insoluble organic impurities.

S25
The aqueous solution was then treated with K$_2$CO$_3$ until the pH became 10.0. This was followed by the addition of methylchloroformate (MCF) (1.10 ml, 14.25 mmol) to the reaction mixture. The mixture was continued to stir at ambient conditions until TLC indicated the complete consumption of the starting material. Removal of solvent resulted in a residue which was dissolved in EtOAc (30.0 ml), washed with water (2 X 10.0 ml) and the organic layer was dried over anhyd. Na$_2$SO$_4$ and concentrated to get a residue which was subjected to purification by silica gel flash column chromatography (EtOAc:Hexane -1:5) to yield the desired product as a viscous oil (2.26 g, 4.99 mmol, 88% yield); (TLC- EtOAc:Hexane (1:1) – R_f = 0.4); 1H NMR (400 MHz, CDCl$_3$, 10 mM) δ ppm: (mixture of four rotamers) 7.40-7.30 (m, 5H, H$_{Aro}$Bn), 5.16 (s, 2H, H$_{CH2Bn}$), 4.055 (d, J = 4.08 Hz, 1H, H$_{Gly}$), 3.99 (d, J = 11.65 Hz, 1H, H$_{Gly}$), 3.93 (s, 1H, H$_{Gly}$), 3.84 (d, J = 13.15, 1H, H$_{Gly}$), 3.75 – 3.70 (m), 3.64 – 3.59 (m) (H$_{MeOMe}$ & H$_{MeMoc}$), 3.36 – 3.25 (m, 4H, H$_{Prp}^c$ & H$_{Prp}^a$), 1.77 – 1.71 (m, 2H, H$_{Prp}^b$), 1.45 (s) & 1.40 (s) (9H, H$_{MeBoc}$); 13C NMR (100 MHz, CDCl$_3$, 60 mM) δ ppm: (mixture of four conformers) 170.8, 170.7, 170.6, 169.9, 169.7, 157.1, 156.6, 155.7, 155.2, 135.5, 135.4, 128.6, 128.5, 80.52, 80.46, 80.37, 80.26, 66.94, 66.86, 66.81, 53.0, 52.8, 52.0, 49.4, 49.3, 49.2, 49.0, 48.9, 46.8, 46.7, 46.4, 46.3, 45.9, 28.34, 28.20, 27.5, 27.2, 27.1, 26.7, ; FT-IR ($\tilde{\nu}$ cm$^{-1}$): 3583, 2975, 2954, 1752, 1703, 1476, 1403, 1367, 1245, 1209, 1175, 1143, 1070, 1012; HRMS m/z Calculated for C$_{23}$H$_{34}$N$_2$O$_8$K 491.1796, Found 491.1796.

Scheme S17. Synthesis of (S)-benzyl 2-(((3-((tert-butyloxycarbonyl)(2-methoxy-2-oxoethyl)amino)propyl)(methoxycarbonyl)amino)propionate (10b):

To a cold (0°C) stirring mixture of Ns-Ala-OBn (3) (2.0 g, 5.48 mmol) and PPh$_3$ (2.15 g, 8.23 mmol) in dry THF (18.0 ml) under N$_2$ atmosphere was added N-Boc-(3-hydroxypropyl) benzylglycinate (7a) (2.03 g, 8.23 mmol) dissolved in THF followed by DIAD (1.62 ml, 8.23 mmol). After 15 minutes the ice bath was removed, and the mixture was continued to stir at ambient conditions until TLC indicated the complete consumption of the starting material. Removal of solvent resulted in a residue which was dissolved in
EtOAc (30.0 ml) and washed with water (2 X 15.0 ml). The organic layer was dried over anhyd. Na₂SO₄ and concentrated to get a residue which was subjected to denosylation reaction by the addition of thiophenol (0.842 ml, 8.23 mmol) and K₂CO₃ (1.51g, 10.96 mmol) in CH₃CN (18.0 ml). The mixture was continued to stir at ambient conditions until TLC indicated the complete consumption of the starting material. The solvent was removed followed by acidification using 1N HCl (20.0 ml). The aqueous mixture was washed with diethyl ether to remove all the water-insoluble organic impurities. The aqueous solution was then treated with K₂CO₃ until the medium became basic (pH – 10.0). This was followed by the addition of MCF (1.06 ml, 13.72 mmol) to the reaction mixture. The mixture was continued to stir at ambient conditions until TLC indicated the complete consumption of the starting material. Removal of solvent resulted in a residue which was subjected to purification by silica gel flash column chromatography (EtOAc:Hexane -1:4) to yield the desired product as a viscous oil (2.17 g, 4.66 mmol, 85% yield); (TLC-EtOAc:Hexane (1:1) – Rf = 0.5); ¹H NMR (400 MHz, CDCl₃, 10 mM) δ ppm: (mixture of four cis/trans rotamers) 7.38-7.33 (m, 5H, H_AroBn), 5.19-5.11 (m, 2H, H_CH₂Bn), 4.51 – 4.23 (m, 1H, H^αAla), 3.96 – 3.80 (m, 2H, H^αGly), 3.71 (m, 3H, H^MeOMe), 3.71 (m, 3H, H^MeMoc), 3.53 – 3.42 (m, 2H, HPrp_b), 3.30 – 3.23 (m, 2H, HPrp_a), 1.80 (m, 2H, HPrp_b), 1.48 – 1.45 (m, 9H, H^βPhe), 1.41 (s, 3H, H^βAla); ¹³C NMR (100 MHz, CDCl₃, 60 mM) δ ppm: (mixtures of four rotamers) 171.8, 170.6, 156.3, 155.7, 155.2, 135.8, 128.6, 128.2, 128.1, 80.4, 55.7, 55.5, 52.8, 52.6, 52.0, 51.9, 49.3, 48.8, 46.4, 46.0, 44.0, 28.4, 15.9, 15.3; FT-IR (ν cm⁻¹): 2977, 2955, 2874, 1748, 1703, 1547, 1478, 1459, 1405, 1301, 1251, 1211, 1153, 1084, 1062, 1028; HRMS m/z Calculated for C_{23}H_{34}N_{2}O_{8}K 505.1952, Found 505.1951.

Scheme S18. Synthesis of (S)-benzyl 2-(((tert-butyloxycarbonyl)(2-methoxy-2-oxoethyl) amino) propyl) (methoxycarbonyl)amino)propanoate (10c):
To a cold (0°C) stirring mixture of Ns-Gly-OBn (2.0 g, 5.70 mmol) and PPh₃ (2.24 g, 8.56 mmol) in dry THF (19.0 ml) under N₂ atmosphere was added N-Boc-(3-hydroxypropyl) benzylalaninate (7c) (2.23 g, 8.56 mmol) dissolved in THF followed by DIAD (1.69 ml, 8.56 mmol). After 15 minutes the ice bath was removed, and the mixture was continued to stir at ambient conditions until TLC indicated the complete consumption of the starting material. Removal of solvent resulted in a residue which was dissolved in ethyl acetate (EtOAc) (30.0 ml) and washed with water (2 X 15.0 ml). The organic layer was dried over anhyd. Na₂SO₄ and concentrated to get a residue which was subjected to denosylation reaction by the addition of thiophenol (0.876 ml, 8.56 mmol) and K₂CO₃ (1.57 g, 11.40 mmol) in CH₃CN (19.0 ml). The mixture was continued to stir at ambient conditions until TLC indicated the complete consumption of the starting material. The solvent was removed followed by acidification using 1N HCl (20.0 ml). The aqueous mixture was washed with diethyl ether to remove all the water-insoluble organic impurities. The aqueous solution was then treated with K₂CO₃ until the medium became basic (pH – 10.0). This was followed by the addition of MCF (1.10 ml, 14.25 mmol) to the reaction mixture. The mixture was continued to stir at ambient conditions until TLC indicated the complete consumption of the starting material. Removal of solvent resulted in a residue which was dissolved in EtOAc (30.0 ml), washed with water (2 X 15.0 ml) and the organic layer was dried over anhyd. Na₂SO₄ and concentrated to get a residue which was subjected to purification by silica gel flash column chromatography (EtOAc:Hexane - 1:3) to yield the desired product as a viscous oil (1.86 g, 3.98 mmol, 70% yield); (TLC - EtOAc:Hexane (1:1) – Rₜ = 0.4); ¹H NMR (400 MHz, CDCl₃, 10 mM) δ ppm: (mixture of four rotmers) 7.45-7.33 (m, 5H, H₅AroBn), 5.20 (s, 2H, CH₂Bn), 4.47 – 4.33 (m) & 3.99 – 3.88 (m) (1H, HαAla) 4.07 (d, J = 19.79 Hz, 2H, HαGly), 3.76 (s) & 3.66 (s) (3H, HMeMoc), 3.71 (m, 3H, HMeOMe), 3.51 – 3.31 (m) & 3.27 – 3.15 (m) (4H, HPrpa & HPrpc), 1.92 – 1.76 (m, 2H, HPrpb), 1.55 – 1.37 (m) (12H, HMeBoc & HβAla); ¹³C NMR (100 MHz, CDCl₃,
60 mM) δ ppm: 172.7, 169.7, 157.1, 156.5, 135.5, 128.6, 128.4, 128.2, 80.3, 66.9, 55.9, 52.9, 52.8, 49.2, 46.7, 46.2, 45.0, 28.3; FT-IR (\(\tilde{\nu}\) cm\(^{-1}\)): 2975, 2952, 2360, 1748, 1700, 1473, 1410, 1367, 1306, 1248, 1168, 1087, 1010; HRMS m/z Calculated for C\(_{23}\)H\(_{34}\)N\(_2\)O\(_8\)K 505.1952, Found 505.1952.

Scheme S19. Synthesis of precursor of cyclization (12a):

To a cold (0°C) solution of 10a (2.0 g, 4.41 mmol) in DCM (11.76 ml) was added trifluoroacetic acid (TFA) (2.94 ml) dropwise and the mixture was allowed to stir for 2 hrs by which time TLC indicated the complete consumption of the starting material. Removal of solvent resulted in the Boc-deprotected product 11a as a liquid (2.06 g, 4.41 mmol, quantitative yield) which was used for further reaction as it is.

To a cold (-15°C) solution of Cbz-Phe-Ala-OH (1.96 g, 5.30 mmol) in dry THF (12.7 ml) and NMM (0.726 ml, 6.61 mmol) was added ECF (0.463 ml, 4.85 mmol). The mixture was stirred for (4 min) when TLC indicated that all the acid was consumed to form the corresponding mixed anhydride. To this mixture was added a solution of 11a (2.06 g, 4.41 mmol) in dry THF (2.0 ml) followed by NMM (1.21 ml, 11.02 mmol). After 2 h of vigorous stirring, the mixture was warmed and stirred until TLC indicated the complete consumption of starting material. Removal of solvent resulted in a residue which was dissolved in EtOAc (40.0 ml), washed with water (2 X 20.0 ml) and 1N HCl (2 X 20.0 ml) and saturated NaHCO\(_3\) (2 X 20.0 ml). The organic layer was dried over anhyd. Na\(_2\)SO\(_4\) and concentrated to get a residue which was subjected to purification by silica gel flash column chromatography (EtOAc:Hexane – 1:1) to yield the desired product as a liquid (2.48 g, 3.51 mmol, 80% yield); (TLC- EtOAc:Hexane (1:0) – \(R_f\) = 0.6); \(^1\)H NMR (400 MHz, CDCl\(_3\), 10 mM) δ ppm: (mixture of four rotamers) 7.40 – 7.09 (m, 15H, H\(^{\text{AroPhe}}\), H\(^{\text{AroBn}}\), H\(^{\text{AroCbz}}\), 6.89 (bs, 1H, H\(^{\text{NAla}}\)), 5.34 (d, J = 6.83 Hz, 1H, H\(^{\text{NPH}}\)), 5.16 (d, J = 6.83 Hz, 2H) & 5.06 (t, J = 13.65 Hz, 2H) (H\(^{\text{CH}_2\text{Bn}}\), H\(^{\text{CH}_2\text{Cbz}}\), can't distinguish between benzyl
protons of Cbz and Bn groups), 4.86 (quin, J = 7.06 Hz) & 4.59 (quin, J = 6.85 Hz) (1H, H^αAla), 4.50 – 4.41 (1H, H^αPhe); 4.40 – 4.32 (m) & 3.89 (d, J = 17.77 Hz) (2H, H^αGly), 4.22 (d, J = 16.88 Hz) & 3.85 (d, J = 16.88) (2H, H^αGly), 3.76 (s) & 3.62 (d, J = 10.66) (3H, H^MeMoc), 3.71 (s, H^MeOMe), 3.42– 3.28 (m) (4H, HPrp^c & HPrp^a), 3.08 – 3.01 (m, 2H, H^βPhe), 1.91 – 1.79 (m) & 1.78 – 1.66 (m) (2H, HPrp^b). 1.31 (d, J = 6.51 Hz) & 1.24 (d, J = 6.51 Hz) (3H, H^βAla); \[^{13}\text{C}\text{NMR}\] (100 MHz, CDCl\(_3\), 60 mM) δ ppm: (mixtures of four conformers) 174.6, 173.1, 172.9, 170.3, 170, 169.8, 169.5, 157.0, 156.9, 156.0, 136.4, 136.3, 135.6, 135.55, 129.5, 128.8, 128.7, 128.5, 128.4, 128.3, 128.2, 127.2, 126.7, 56.1, 53.3, 53.2, 53.1, 52.8, 52.3, 49.9, 49.6, 49.2, 48.1, 47.9, 46.9, 46.8, 46.6, 46.3, 45.9, 45.7, 45.5, 45.3, 38.7, 28.0, 27.8, 25.9, 20.7, 19.0, 18.7; \[^{FT}\text{IR}\] (ν cm\(^{-1}\)): 3397, 2951, 2929, 2361, 2341, 1748, 1706, 1642, 1539, 1475, 1455, 1368, 1255, 1218, 1132, 1066; \[^{HRMS}\] m/z Calculated for C\(_{37}\)H\(_{44}\)N\(_4\)O\(_{10}\)Na 727.2955, Found 727.2958.

Scheme S20. Synthesis of precursor of cyclization (12b):

To a cold (0°C) solution of 10b (2.0 g, 4.28 mmol) in DCM (11.43 ml) was added TFA (2.85 ml) dropwise and the mixture was allowed to stir for 2 hrs by which time TLC indicated the complete consumption of the starting material. Removal of solvent resulted in the Boc-deprotected product 11b as a liquid (2.05 g, 4.28 mmol) which was used for further reaction as it is.

To a cold (-15°C) solution of Cbz-Phe-Ala-OH (1.90 g, 5.14 mmol) in dry THF (10.0 ml) and NMM (0.704 ml, 6.42 mmol) was added ECF (0.450 ml, 4.70 mmol). The mixture was stirred for (4 min) when TLC indicated that all the acid was consumed to form the corresponding mixed anhydride. To this mixture was added a solution of 11b (2.05 g, 4.28 mmol) in dry THF (2.0 ml) followed by NMM (1.17 ml, 10.71 mmol). After 2 h of vigorous stirring, the mixture was warmed and stirred until TLC indicated the complete consumption of starting material. Removal of solvent resulted in a residue which was
dissolved in EtOAc (40.0 ml), washed with water (2 X 20.0 ml) and 1N HCl (2 X 20.0 ml) and saturated NaHCO₃ (2 X 20.0 ml). The organic layer was dried over anhyd. Na₂SO₄ and concentrated to get a residue which was subjected to purification by silica gel flash column chromatography (EtOAc:Hexane – 1:1) to yield the desired product as a liquid (2.33 g, 3.24 mmol, 76% yield); (TLC- EtOAc:Hexane (1:0) – Rᵢ = 0.6); ¹H NMR (400 MHz, CDCl₃, 10 mM) δ ppm: 7.39 – 7.10 (m, 15H, HₐPhe, HₐBn, HₐCbz), 6.76 (d, J = 6.16, 1H, HⁿAla), 5.24 (d, J = 6.81 Hz, 1H, HⁿPhe), 5.16 (q, J = 12.33 Hz, 2H) & 5.07 (s, 2H) (H(CH₂)Bn, H(CH₂)Cbz, can’t distinguish between the benzyl protons of Cbz and Bn groups), 4.83 (quin, J = 7.01 Hz) & 4.58 (quin, J = 7.01 Hz) (1H, HⁿAla), 4.50 (quin, J = 6.70, 1H, HⁿPhe); 4.30 (d, J = 18.97 Hz) & 3.96 (d, J = 16.0 Hz) (1H, HⁿGly), 4.17 (d, J = 20.15 Hz) & 3.87 – 3.78 (m) (1H, HⁿGly), 3.76 (s) & 3.60 – 3.49 (m) (3H, HMeMoc), 3.71 (s, HMeOMe), 3.47– 3.43 (m) & 3.20 – 3.10 (m) (2H, HPpᵦ), 3.37 – 3.26 (m, 2H, HPpᵦ) 3.10 – 3.00 (m, 2H, HβPhe), 1.95 – 1.80 (m) & 1.79 – 1.73 (m) (2H, HPpᵦ), 1.48 (t, J = 6.87, HβAla), 1.31 (d, J = 6.43 Hz) & 1.24 (d, J = 6.58 Hz) (3H, HβAla); ¹³C NMR (100 MHz, CDCl₃, 60 mM) δ ppm: (mixtures of four conformers)172.5, 171.7, 169.9, 169.6, 169.3, 156.4, 155.8, 136.2, 136.1, 135.6, 129.4, 128.7, 128.6, 128.5, 128.2, 128.1, 127.1, 67.0, 66.9, 55.9, 55.6, 52.6, 52.2, 49.2, 47.6, 46.6, 45.3, 38.5, 18.9, 18.6; FT-IR (ν cm⁻¹): 3781, 3720, 3606, 3536, 3298, 3065, 3033, 2948, 2856, 2380, 2305, 1957, 1744, 1705, 1642, 1537, 1450, 1408, 1375, 1297, 1210, 1170, 1096, 1044; HRMS m/z Calculated for C₃₈H₄₆N₄O₁₀Na 741.3112, Found 741.3116.
Scheme S21. Synthesis of precursor of cyclisation (12c):

To a cold (0°C) solution of 10c (2.0 g, 4.28 mmol) in DCM (11.43 ml) was added TFA (2.85 ml) dropwise and the mixture was allowed to stir for 2 hrs by which time TLC indicated the complete consumption of the starting material. Removal of solvent resulted in the Boc-deprotected product 11c as a liquid (2.06 g, 4.28 mmol) which was used for further reaction as it is.

To a cold (-15°C) solution of Cbz-Phe-Ala-OH (1.90 g, 5.14 mmol) in dry THF (12.26 ml) and NMM (0.704 ml, 6.42 mmol) was added ECF (0.450 ml, 4.70 mmol). The mixture was stirred for (4 min) when TLC indicated that all the acid was consumed to form the corresponding mixed anhydride. To this mixture was added a solution of 11c (2.06 g, 4.28 mmol) in dry THF (2.0 ml) followed by NMM (1.17 l, 10.71 mmol). After 2 h of vigorous stirring, the mixture was warmed and stirred until TLC indicated the complete consumption of starting material. Removal of solvent resulted in a residue which was dissolved in EtOAc (40.0 ml), washed with water (2 X 20.0 ml) and 1N HCl (2 X 20.0 ml) and saturated NaHCO₃ (2 X 20.0 ml). The organic layer was dried over anhyd. Na₂SO₄ and concentrated to get a residue which was subjected to purification by silica gel flash column chromatography (EtOAc:Hexane – 3:2) to yield the desired product as a liquid (1.23g, 1.71 mmol, 40% yield); (TLC- EtOAc:Hexane (1:0) – Rf = 0.6); ¹H NMR (400 MHz, CDCl₃, 10 mM) δ ppm: (mixture of four rotamers) 7.44 – 7.09 (m, 15H, HₐAroPhe, HₐAroCbz, HₐAroCbz, 6.93 (bs), 6.81 (d, J = 5.08 Hz) & 6.64 – 6.56 (m) (1H, HₐAla), 5.34 – 5.23 (m, 1H, HₐPhe), 5.18 (s, 2H) & 5.06 (s, 2H) (HCH₂Bn, HCH₂Cbz, can’t distinguish between Cbz and Bn groups), 4.85 – 4.70 (m, 1H, HₐAla), 4.54 – 4.39 (m, 1H, HₐPhe), 4.13 – 3.93 (m, 2H, HₐGly), 3.74 (d, J = 7.90 Hz) & 3.64 – 3.59 (m, merged with the HMeOMe) (3H, HMeOMe), 3.66 (s, HMeOMe), 3.45– 3.27 (m, 4H, HPrpᵇ & HPrpᵃ), 3.06 (bs, 2H, HβPhe), 1.90 - 1.69 (m) (2H, HPrpᵇ merged with water signal), 1.43 (d, J = 5.38, 3H, HβAla), 1.27 (d, J = 8.60 Hz, 3H, HβAla); ¹³C NMR (100 MHz, CDCl₃) δ ppm: (mixtures of four
conformers) 172.1, 171.6, 169.8, 156.9, 155.9, 136.2, 136.1, 135.4, 129.4, 128.6, 128.5, 128.3, 128.1, 128.05, 127.1, 67.0, 54.9, 53.2, 53.04, 52.3, 49.2, 45.5, 38.4, 29.7, 28.9, 19.2, 18.9, 14.5; HRMS m/z Calcd for C₃₈H₄₆N₄O₁₀Na 741.3112, Found 741.3115.

Scheme S22. Synthesis of precursor of cyclization (12d):

To a cold (0°C) solution of 10a (2.0 g, 4.41 mmol) in DCM (11.76 ml) was added TFA (2.94 ml) dropwise and the mixture was allowed to stir for 2 hrs by which time TLC indicated the complete consumption of the starting material. Removal of solvent resulted in the Boc-deprotected product 11a as a liquid (2.06 g, 4.41 mmol, quantitative yield) which was used for further reaction as it is.

To a cold (-15°C) solution of Cbz-Phe-Gly-OH (1.88 g, 5.30 mmol) in dry THF (12.70 ml) and NMM (0.726 ml, 6.61 mmol) was added ECF (0.463 ml, 4.85 mmol). The mixture was stirred for (4 min) when TLC indicated that all the acid was consumed to form the corresponding mixed anhydride. To this mixture was added a solution of 11a (2.06 g, 4.41 mmol) in dry THF (2.0 ml) followed by NMM (1.21 ml, 11.02 mmol). After 2 h of vigorous stirring, the mixture was warmed and stirred until TLC indicated the complete consumption of starting material. Removal of solvent resulted in a residue which was dissolved in EtOAc (40.0 ml), washed with water (2 X 20.0 ml) and 1N HCl (2 X 20.0 ml) and saturated NaHCO₃ (2 X 20.0 ml). The organic layer was dried over anhyd. Na₂SO₄ and concentrated to get a residue which was subjected to purification by silica gel flash column chromatography (EtOAc:Hexane – 4:1) to yield the desired product as a liquid (2.35 g, 3.34 mmol, 76% yield); (TLC- EtOAc:Hexane (1:0) – Rₜ = 0.2); ¹H NMR (400 MHz, CDCl₃, 10 mM) δ ppm: 7.47 – 7.11 (m, 15H, H^AroPhe, H^AroBn, H^AroCbz), 6.82 (bs, 1H, H^NGly), 5.25 (d, J = 8.62 Hz, 1H, H^NPh), 5.21 – 5.15 (m, 2H) & 5.07 (dd, J = 21.20, 12.09 Hz, 2H) (H^CH₂Bn, H^CH₂Cbz, can’t distinguish between benzyl protons of Cbz and Bn groups), 4.86 (dd, J = 15.12, 9.48 Hz) (1H, H^αPhe), 4.09 – 4.03 (m, 3H), 3.98 (s, 2H),
3.76 (s, 3H), 3.72 (s, 3H), 3.63 (d, J = 10.29 Hz, 2H), 3.44 – 3.33 (m, 4H), 3.19 – 3.01 (m, 2H), 1.86 – 1.77 (m, 2H); \(^{13}\)C NMR (100 MHz, CDCl\(_3\), 60 mM) \(\delta\) ppm: (mixtures of four rotamers) 171.0, 169.8, 169.4, 168.4, 156.7, 155.9, 136.3, 136.2, 135.4, 135.3, 129.3, 128.7, 128.5, 128.4, 128.3, 128.1, 128.0, 127.0, 67.1, 67.0, 56.1, 53.1, 52.7, 52.3, 49.5, 49.2, 48.0, 46.7, 46.1, 45.8, 41.2, 41.1, 38.6, 27.5, 27.3; FT-IR (\(\nu\) cm\(^{-1}\)): 3302, 3064, 3032, 2958, 2924, 2848, 1751, 1708, 1646, 1529, 1476, 1443, 1405, 1375, 1323, 1254, 1212, 1181, 1135, 1084, 1051, 1014; HRMS \(m/z\) Calculated for C\(_{37}\)H\(_{44}\)N\(_4\)O\(_{10}\)Na 713.2799, Found 713.2795.

Scheme S23. Synthesis of precursor of cyclization (12e):

To a cold (0°C) solution of 10b (2.0 gm, 4.28 mmol) in DCM (11.43 ml) was added TFA (2.85 ml) dropwise and the mixture was allowed to stir for 2 hrs by which time TLC indicated the complete consumption of the starting material. Removal of solvent resulted in the Boc-deprotected product 11b as a liquid (2.06 g, 4.28 mmol, 100 yield) which was used for further reaction as it is.

To a cold (-15°C) solution of Cbz-Phe-Gly-OH (1.83 g, 5.13 mmol) in dry THF (12.26 ml) and NMM (0.704 ml, 6.42 mmol) was added ECF (0.450 ml, 4.70 mmol). The mixture was stirred for (4 min) when TLC indicated that all the acid was consumed to form the corresponding mixed anhydride. To this mixture was added a solution of 11b (2.06 g, 4.28 mmol) in dry THF (2.0 ml) followed by NMM (1.17 ml, 10.71 mmol). After 2 h of vigorous stirring, the mixture was warmed and stirred until TLC indicated the complete consumption of starting material. Removal of solvent resulted in a residue which was dissolved in EtOAc (40.0 ml), washed with water (2 X 20.0 ml) and 1N HCl (2 X 20.0 ml) and saturated NaHCO\(_3\) (2 X 20.0 ml). The organic layer was dried over anhyd. Na\(_2\)SO\(_4\) and concentrated to get a residue which was subjected to purification by silica gel flash column chromatography (EtOAc:Hexane – 4 :1) to yield the desired product as a liquid.
(2.26 g, 3.20 mmol, 75% yield); (TLC- EtOAc:Hexane (4:1) – Rf = 0.5); ¹H NMR (400 MHz, CDCl₃, 10 mM) δ ppm: 7.40 – 7.11 (m, 15H, H^AroPhe, H^AroBn, H^AroCbz), 6.85 (bs, 1H, H^N Gly), 5.26 (d, J = 6.78 Hz, 1H, H^N Phe), 5.22 – 5.12 (m, 2H) & 5.07 (dd, J = 21.43, 12.22 Hz, 2H) (H^CH₂Bn, H^CH₂Cbz, can’t distinguish between benzyl protons of Cbz and Bn groups), 4.51 (d, J = 5.91 Hz, 1H), 4.14 (d, J = 17.75, 1H), 4.09 – 3.90 (m, 4H), 3.76 (s, 2H) & 3.72 (s, 3H), 3.53 (d, J = 15.39, 2H), 3.47 – 3.26 (m, 4H), 1.48 (m, 3H); ¹³C NMR (100 MHz, CDCl₃, 60 mM) δ ppm: (mixtures of four rotamers) 171.7, 171.0, 169.4, 168.3, 168.2, 156.4, 156.0, 136.3, 136.2, 135.6, 129.2, 128.7, 128.62, 128.57, 128.5, 128.1, 128.0, 127.0, 67.1, 66.9, 56.1, 55.3, 52.3, 52.28, 48.6, 47.7, 46.0, 45.7, 41.2, 41.1, 38.5, 15.8, 15.3; FT-IR (Ṽ cm⁻¹): 3302, 3064, 3032, 2958, 2924, 2847, 1748, 1704, 1646, 1528, 1478, 1445, 1408, 1375, 1308, 1258, 1212, 1148, 1094, 1028; HRMS m/z Calculated for C₃₇H₄₄N₄O₁₀Na 727.2955, Found 727.2957.

Scheme S24. Synthesis of HBS-constrained single α-helical turn 13₃ analogue 1a:

MeOH (3.0 ml) was added to a mixture of 10a (300 mg, 0.43 mmol) and Pd-C (0.1 mol%) in a sealed round-bottom flask kept under H₂-atmosphere and stirred for 20 mins by which time TLC indicated the complete consumption of starting material. Filtering the mixture through Whatman-40 filter paper and concentration of the organic filtrate gave the N- and C-terminal double de-protected derivative of 10a as a viscous liquid 11a (208.8 mg, 0.43 mmol). Next 11a was dissolved in dry CH₃CN (1.0 mM) (420.0 ml) followed by addition of EDC (410.6 mg, 2.15 mmol), HOBT (174.1 mg, 1.29 mmol) and DIPEA (375.0 μl, 2.15 mmol) under N₂ atmosphere. The mixture was stirred for further 7 hrs. Removal of solvent resulted in a residue which was dissolved in DCM (30.0 ml) and washed with water (2 X 15.0 ml), 1N HCl (2 X 15.0 ml) and saturated NaHCO₃ (2 X 15.0 ml). The organic layer was dried over anhyd. Na₂SO₄ and concentrated to get a residue which was subjected to purification by silica gel flash column chromatography (EtOAc:Hexane – 9:1) to yield the
desired product as a white solid (89.35 mg, 0.19 mmol, 46% yield); (TLC-EtOAc:Methanol (9:1) – $R_f = 0.7$); 1H NMR (400 MHz, 40% CDCl$_3$ in CD$_3$CN, 5 mM) δ ppm: major conformation: 7.33 – 7.21 (m, 5H, H$_{Aro}$Phe), 6.61 (d, J = 9.29 Hz, 2H, H$_{N}$Phe+Ala), 4.75 (dt, J = 16.57, 10.07 Hz, 1H, H$_{a}$Ala$_3$), 4.50 (d, J = 15.11 Hz, 1H, H$_{a}$Gly$_1$), 4.44 (d, J = 19.05 Hz, 1H, H$_{a}$Gly$_4$), 4.31 (q, J = 6.12 Hz, 1H, H$_{a}$Phe$_2$), 4.11 (t, J = 13.52 Hz, 1H, Hprp$_c$), 3.77 (d, J = 19.12 Hz, 1H, H$_{a}$Gly$_4$), 3.71 (s, 3H, H$_{Me}$OMe), 3.66 (d, J = 9.27 Hz, 1H, H$_{Me}$Moc), 3.54 (d, J = 16.17 Hz, 1H, H$_{Me}$Moc), 3.45 – 3.32 (m, 1H, Hprp$_a$), 3.30 – 3.16 (m, 1H, Hprp$_a$), 3.04 – 2.96 (m, 2H, H$_{b}$Phe$_2$), 2.52 (d, J = 14.53 Hz, 1H, Hprp$_c$), 2.29 – 2.17 (m, 1H, Hprp$_b$), 1.87 – 1.74 (m, 1H, Hprp$_b$), 1.33 (d, J = 6.11 Hz, 1H, H$_{b}$Ala$_3$), 1.21 (d, J = 6.37 Hz, 3H, H$_{a}$Gly$_2$), 7.17 – 7.09 (m, 0.11H, H$_{N}$Phe$_2$), 7.07 – 6.98 (m, 0.19H, H$_{N}$Phe$_2$), 6.91 – 6.83 (m, 0.11H, H$_{N}$Ala$_3$), 6.76 – 6.67 (m, 0.19H, H$_{N}$Ala$_3$); 13C NMR (100 MHz, 40% CDCl$_3$ in CD$_3$CN, 5 mM) δ ppm: (mixtures of major and minor conformers) 173.2, 171.5, 170.9, 170.1, 136.7, 129.7, 129.1, 127.6, 58.1 (C$_{a}$Phe$_2$), 52.9 (C$_{Me}$Moc), 52.6 (C$_{Me}$OMe), 52.5 (C$_{a}$Gly$_1$), 48.2 (C$_{a}$Gly$_2$), 46.0 (Cprp$_a$), 44.4 (C$_{a}$Ala$_3$), 42.9 (Cprp$_c$), 36.8 (C$_{b}$Phe$_2$), 16.9 (C$_{b}$Ala$_3$); FT-IR (̅}$/ cm^{-1}$) (CH$_3$CN, 2mM): 2978, 2868, 2149, 1700, 1657, 1528, 1472, 1358, 1315, 1290, 1220; HRMS m/z Calcd for C$_{22}$H$_{30}$N$_4$O$_7$Na 481.2012, Found 481.2014.

Scheme S25. Synthesis of HBS-constrained single α-helical turn 13γ3 analogue 1b:

\[
\begin{align*}
\text{Cbz-N} & \xrightarrow{\text{Pd-C/H$_2$ (0.1 mol%)}} \text{N} & \xrightarrow{\text{MeOH (0.3 M)}} \text{N} & \xrightarrow{\text{Yield Qu.}} \text{N} & \xrightarrow{\text{EDC (2.10 mmol, 5.0 eq.), \text{HOBT (1.26 mmol, 3.0 eq.), \text{DIPEA (2.10 mmol, 5.0 eq.)}}} \text{N} & \xrightarrow{\text{Dry CH$_3$CN}} \text{N} & \xrightarrow{\text{very dilute condition (1.0 mM)}} \text{N} & \xrightarrow{\text{Yield 38%}} \text{N} & \xrightarrow{\text{X = Moc \text{=}}} \text{N} \\
10b & \xrightarrow{\text{Yield 38%}} 11b & \xrightarrow{\text{X = Moc \text{=} \text{MeCN}}} 1b
\end{align*}
\]

MeOH (3.0 ml) was added to a mixture of 10b (300.0 mg, 0.42 mmol) and Pd-C (0.1 mol%) in a sealed round-bottom flask kept under H$_2$-atmosphere and stirred for 20 mins by which time TLC indicated the complete consumption of starting material. Filtering the mixture through Whatman-40 filter paper and concentration of the organic filtrate gave the N- and C-terminal double de-protected derivative of 10b as a viscous liquid 11b (208.0 mg, 0.42 mmol). Next 11b was dissolved in dry CH$_3$CN (1.0 mM) (420.0 ml) followed by addition of EDC (401.1 mg, 2.10 mmol), HOBT (170.1 mg, 1.26 mmol) and DIPEA (365.0
μl, 2.10 mmol) under N₂ atmosphere. The mixture was stirred for further 8 hrs. Removal of solvent resulted in a residue which was dissolved in DCM (10 ml) and washed with water (2 X 15.0 ml), 1N HCl (2 X 15.0 ml) and saturated NaHCO₃ (2 X 15.0 ml). The organic layer was dried over anhyd. Na₂SO₄ and concentrated to get a residue which was subjected to purification by silica gel flash column chromatography (EtOAc:Hexane – 2:3) to yield the desired product as a white solid (77.6 mg, 0.16 mmol, 38% yield); (TLC- EtOAc:Methanol (9:1) – R_f = 0.8); ¹H NMR (400 MHz, 40% CDCl₃ in CD₃CN, 5 mM) δ ppm: major conformation: 7.36 – 7.20 (m, 5H, HᴺPhe), 6.68 (d, J = 9.86 Hz, 1H, H¹Ala), 6.51 (s, 1H, HᴺPhe), 4.78 (dt, J = 17.02, 6.70 Hz, 1H, H¹Ala), 4.69 – 4.62 (m, 1H, H¹Ala), 4.58 (d, J = 19.13 Hz, 1H, H²Gly), 4.25 – 4.17 (m, 1H, H²Phe), 4.1 (t, J = 13.63 Hz, 1H), 3.76 (d, J = 18.99 Hz, 1H, H²Gly), 3.71 (s, 3H, HMeOMe), 3.29 – 3.19 (m, 1H, Hprp), 3.21 – 3.17 (m, 1H, Hprp), 3.07 – 2.97 (m, 2H, H²Phe), 1.76 – 1.66 (m, 1H, Hprp), 1.28 (d, J = 7.07 Hz, 3H, H²Ala), 1.24 (d, J = 6.27 Hz, 3H, H²Ala); minor conformation: 7.17 – 7.12 (m, 0.36H, HᴺPhe), 7.12 – 7.07 (m, 0.36H, H¹Ala); ¹³C NMR (100 MHz, 40% CDCl₃ in CD₃CN, 5 mM) δ ppm: (mixtures of major and minor conformers) 174.3, 172.0, 171.8, 170.9, 138.3, 137.6, 130.6, 130.5, 130.3, 130.9, 129.8, 129.7, 128.4, 128.2, 59.2 (C²Phe), 58.3 (C¹Ala), 53.5 (CMeMoc), 53.4 (CMeOMe), 48.9 (C²Gly), 45.0 (C³Ala), 43.5 (Cprp), 41.4 (Cprp), 37.6 (C¹Phe), 28.9 (Cprp), 17.4 (C³Ala), 15.9 (C³Ala); FT-IR (ν cm⁻¹) (CH₃CN, 2 mM): 2992, 2946, 1750, 1691, 1657, 1527, 1507, 1472, 1440, 1402, 1375, 1302, 1210, 1112, 1059, 1003; HRMS m/z Calcd for C₂₃H₃₂N₄O₇Na 499.2169, Found 499.2166.
Scheme S26. Synthesis of HBS-constrained single α-helical turn 13:3 analogue 1c:

MeOH (3.0 ml) was added to a mixture of 10c (300.0 mg, 0.42 mmol) and Pd-C (0.1 mol%) in a sealed round-bottom flask kept under H₂-atmosphere and stirred for 20 mins by which time TLC indicated the complete consumption of starting material. Filtering the mixture through Whatman-40 filter paper and concentration of the organic filtrate gave the N- and C-terminal double de-protected derivative of 10c as a viscous liquid 11c (208.0 mg, 0.42 mmol). Next 11c was dissolved in dry CH₃CN (1.0 mM) (420.0 ml) followed by addition of EDC (401.1 mg, 2.10 mmol), HOBT (170.1 mg, 1.26 mmol) and DIPEA (365.0 μl, 2.10 mmol) under N₂ atmosphere. The mixture was stirred for further 8 hrs. Removal of solvent resulted in a residue which was dissolved in DCM (10 ml) and washed with water (2 X 15.0 ml), 1N HCl (2 X 15.0 ml) and saturated NaHCO₃ (2 X 15.0 ml). The organic layer was dried over anhyd. Na₂SO₄ and concentrated to get a residue which was subjected to purification by silica gel flash column chromatography (EtOAc:Hexane – 2:3) to yield the desired product as a white solid (45 mg, 0.09 mmol, 22% yield); (TLC-EtOAc:Methanol (9:1) – Rf = 0.8); "H NMR (400 MHz, 40% CDCl₃ in CD₃CN, 5 mM) δ ppm: major conformation: 7.14 (d, J = 8.49 Hz, 1H, HᴺPhe₂), 7.35 – 7.23 (m, 5H, HᴬPhe), 7.16 (d, J = 9.49 Hz, 1H, HᴺAla₃), 4.76 (q, J = 6.72 Hz, 1H, HᴬAla₃), 4.65 (q, J = 7.90 Hz, 1H, H³Phe₂), 3.99 (d, J = 13.44 Hz, 1H, H⁵Gly₁), 3.86 (q, J = 6.88 Hz, H⁴Ala₄), 3.74 (s, 3H, H⁻MeOMe), 3.70 – 3.67 (m, 1H, H⁶Gly₁), 3.62 (s, 3H, H⁶Moc), 3.38 – 3.28 (m, 1H, Hprpₐ), 3.27 – 3.18 (m, 1H, Hprpₐ), 3.13 – 3.04 (m, 1H, H⁵Phe₂), 3.03 – 2.97 (m, 1H, Hprpₐ), 2.97 – 2.91 (m, 1H, H⁵Phe₂), 1.91 – 1.79 (m, 1H, Hprpₐ), 1.72 – 1.60 (m, 1H, Hprpₐ), 1.40 (d, J = 6.58 Hz, 3H, H⁷Ala₄), 0.94 (d, J = 6.49 Hz, 3H, H⁷Ala₃); minor conformation: 6.99 – 6.91 (m, H⁷Ala₃), 6.84 – 6.74 (m, H⁷Ala₃); "C NMR (100 MHz, 40% CDCl₃ in CD₃CN, 5 mM) δ ppm: (mixtures of major and minor conformers) 173.3, 172.0, 171.4, 171.3, 158.6, 138.3, 130.54, 130.48, 129.9, 129.7, 128.2, 128.0, 57.6 (C⁵Ala₄), 57.4, 56.0 (C⁷Phe₂), 54.3 (C⁵Gly₁ + C⁷MeOMe), 53.0 (C⁷Moc), 48.1 (Cprpₐ), 47.5 (Cprpₐ),
MeOH (3.0 ml) was added to a mixture of 12d (300.0 mg, 0.434 mmol) and Pd-C (0.1 mol%) in a sealed round-bottom flask kept under H₂-atmosphere and stirred for 20 mins by which time TLC indicated the complete consumption of starting material. Filtering the mixture through Whatman-40 filter paper and concentration of the organic filtrate gave the N- and C-terminal double de-protected derivative of 12d as a white solid 13d (200.5 mg, 0.43 mmol). Next 13d was dissolved in dry CH₃CN (1.0 mM) (420.0 ml) followed by addition of EDC (410.6 mg, 2.15 mmol), HOBT (174.1 mg, 1.29 mmol) and DIPEA (374.0 μl, 2.15 mmol) under N₂ atmosphere. The mixture was stirred for further 9 hrs. Removal of solvent resulted in a residue which was dissolved in DCM (30.0 ml) and washed with water (2 X 15.0 ml), 1N HCl (2 X 15.0 ml) and saturated NaHCO₃ (2 X 15.0 ml). The organic layer was dried over anhyd. Na₂SO₄ and concentrated to get a residue which was subjected to purification by silica gel flash column chromatography (EtOAc:Methanol – 9:1) to yield the desired product as a white solid (125.3 mg, 0.28 mmol, 65% yield); (TLC-EtOAc:Methanol (9:1) – Rₗ = 0.6); ¹H NMR (400 MHz, DMSO-d₆, 5 mM) δ ppm: 8.82 (t, J = 9.29 Hz, 2H), 7.28 (t, J = 7.74 Hz, 2H), 7.23 – 7.17 (m, 3H), 4.70 (q, J = 8.91 Hz, 1H), 4.54 (quin, J = 7.41 Hz, 1H), 3.82 (dd, J = 16.92, 6.18 Hz, 1H), 3.61 (s) & 3.57 (s) (6H), 3.51 (t, J = 12.51 Hz, 1H), 3.20 (t, J = 12.88 Hz, 1H), 3.02 – 2.89 (m, 2H), 2.88 – 2.66 (m, 3H), 1.96 – 1.76 (m, 1H), 1.40 (quin, J = 11.90 Hz, 1H); ¹³C NMR (100 MHz, DMSO-d₆) δ ppm: 170.3, 169.3, 169.0, 168.3, 168.1, 156.0, 155.3, 137.2, 128.8, 128.2, 126.3, 53.3, 52.6, 52.4, 51.6, 51.0, 47.3, 45.7, 44.4, 44.0, 42.9, 36.6, 27.3, 26.6; FT-IR (υ cm⁻¹): 3784, 3765, 3661, 3265, 3083, 2959, 2923, 2847, 1812, 1736, 1640, 1590, 1554, 1492, 1461.
1407, 1376, 1304, 1264, 1214, 1190, 1158, 1126, 1082, 1020; **HRMS** *m/z* Calcd for
$\text{C}_{21}\text{H}_{28}\text{N}_{4}\text{O}_{7}\text{H}$ 449.2036, Found 449.2039.

Scheme S28. Synthesis of HBS-constrained single α-helical turn 1373 analogue 1e:

MeOH (3.0 ml) was added to a mixture of 12e (300.0 mg, 0.43 mmol) and Pd-C (0.1 mol%) in a sealed round-bottom flask kept under H$_2$-atmosphere and stirred for 20 mins by which time TLC indicated the complete consumption of starting material. Filtering the mixture through Whatman-40 filter paper and concentration of the organic filtrate gave the N- and C-terminal double de-protected derivative of 1e as a white solid 13e (206.6 mg, 0.43 mmol). Next 13e was dissolved in dry CH$_3$CN (1.0 mM) (420.0 ml) followed by addition of EDC (410.6 mg, 2.15 mmol), HOBT (174.1 mg, 1.29 mmol) and DIPEA (374.0 μl, 2.15 mmol) under N$_2$ atmosphere. The mixture was stirred for further 8 hrs. Removal of solvent resulted in a residue which was dissolved in DCM (30.0 ml) and washed with water (2 X 15.0 ml), 1N HCl (2 X 15.0 ml) and saturated NaHCO$_3$ (2 X 15.0 ml). The organic layer was dried over anhyd. Na$_2$SO$_4$ and concentrated to get a residue which was subjected to purification by silica gel flash column chromatography (EtOAc:Hexane – 9:1) to yield the desired product as a white solid (111 mg, 0.24 mmol, 55% yield); (TLC-EtOAc:MeOH (9:1) – R_f = 0.5); **1H NMR** (400 MHz, DMSO-d$_6$, 5 mM) δ ppm: 8.80 (d, J = 6.02 Hz, 1H), 8.16 (d, J = 8.65 Hz, 1H), 7.28 (t, J = 7.09, 2H), 7.21 (d, J = 7.09 Hz, 3H), 4.63 (q, J = 7.42 Hz, 1H), 4.57 – 4.44 (m, 1H), 4.03 (d, J = 17.10 Hz, 1H), 3.78 (d, J = 17.10 Hz, 1H), 3.61 (s, 3H), 3.59 (s, 3H), 3.23 (t, J = 12.18 Hz, 2H), 2.99 (d, J = 7.68 Hz, 2H), 2.89 (t, J = 10.07 Hz, 1H), 2.77 (t, J = 13.03 Hz, 1H), 2.05 – 1.83 (m, 1H), 1.20 (d, J = 7.07 Hz, 3H); **13C NMR** (100 MHz, 40% CDCl$_3$ in CD$_3$CN, 5 mM) δ ppm: 170.4, 169.4, 169.01, 137.5, 129.0, 128.2, 126.4, 55.2, 54.3, 52.5, 51.6, 47.2, 45.4, 43.1, 36.4, 31.2, 28.9, 22.0, 13.9; **FT-IR** ($\tilde{\nu}$ cm$^{-1}$): 3289s, 3252, 3085, 2958, 2923, 2847, 1734, 1703,
Scheme S29. General procedure for N-Moc deprotection to synthesize the 13\textsubscript{6}3 analogues 2a-c from the 13\textsubscript{7}3 analogues 1a-c:

To a cold (0 °C) solution of 30 mg of 1a-c (~20 mg) in DCM (1 ml) was added 30% HBr in acetic acid (1 ml) dropwise and the mixture was allowed to stir for 30 hrs by which time TLC indicated the complete consumption of the starting material. Removal of solvent resulted in the corresponding Moc-deprotected product 2a-c as an oil in high yields.

2a: 1H NMR (400 MHz, 10% D\textsubscript{2}O in H\textsubscript{2}O, 5 mM) δ ppm (mixture of multiple conformation): 8.56 (t, J = 7.62 Hz, 0.36H), 8.39 (d, J = 7.39 Hz, 0.42H), 8.39 (d, J = 6.76 Hz, 0.36H), 8.27 (d, J = 6.56 Hz, 0.08H), 7.32 – 7.17 (m, 6H), 4.3 – 4.19 (m, 0.44H), 4.15 (t, J = 7.34 Hz, 0.31H), 4.01 (q, J = 6.59 Hz, 0.33H), 3.85 (d, J = 5.91 Hz, 3H), 3.83 – 3.77 (m, 1H), 3.77 – 3.69 (m, 1H), 3.18 – 3.12 (m, 1H), 3.12 – 3.03 (m, 3H), 3.01 – 2.89 (2H), 2.14 – 1.95 (m, 2H), 1.45 (d, J = 7.47 Hz, 1H), 1.28 (d, J = 7.47 Hz, 2H), 1.11 (d, J = 7.62 Hz, 0.4H); HRMS m/z Calcd for C\textsubscript{20}H\textsubscript{28}N\textsubscript{4}O\textsubscript{5}H 406.2216, Found 406.2212.

2b: 1H NMR (400 MHz, 10% D\textsubscript{2}O in H\textsubscript{2}O, 5 mM) δ ppm (mixture of multiple conformation): 8.81 (d, J = 8.50 Hz, 0.11H), 8.73 (d, J = 8.72 Hz, 0.63H), 8.44 (d, J = 6.66 Hz, 0.52H), 8.34 (d, J = 6.66 Hz), 7.44 – 7.29 (m, 5H), 3.98 (s, 5H), 3.23 (dd, J = 14.11, 5.83 Hz, 1H), 3.13 (quin, J = 8.47 Hz, 2H), 3.02 – 2.92 (m, 1H), 2.92 – 2.80 (m, 1H), 2.53 – 2.32 (m, 1H), 2.15 – 1.93 (m, 2H), 1.56 (d, J = 7.65 Hz, 0.38H), 1.49 (d, J = 7.29 Hz, 3H), 1.41 (d,
J = 7.29 Hz, 2H), 1.28 (d, J = 7.34 Hz, 0.54H): \textbf{HRMS} m/z Calcd for C$_{21}$H$_{30}$N$_4$O$_5$H 420.2373, Found 420.2370.

\textbf{2c:} 1H NMR (400 MHz, CDCl$_3$, 5 mM) δ ppm (mixture of multiple conformation): 7.36 – 7.16 (m, 6H), 7.10 (d, J = 5.78 Hz, 0.27H), 6.72 (d, J = 6.90 Hz, 0.66H), 4.68 (q, J = 6.98 Hz, 1H), 4.49 (quin, J = 7.05 Hz, 1H), 3.72 (s, 3H), 3.70 – 3.64 (m, 3H), 3.17 – 3.06 (m, 4H), 1.90 – 1.72 (m, 2H), 1.39 – 1.35 (m, 2H), 1.33 – 1.24 (m, 5H); \textbf{HRMS} m/z Calcd for C$_{21}$H$_{30}$N$_4$O$_5$H 420.2373, Found 420.2369.
4.2 NMR analyses

Figure S2. a), b) Portions of Total Correlation Spectroscopy (TOCSY) spectrum of major conformer of Moc[GFA]G-OMe (1a) (400 MHz, 5 mM, 40% CDCl$_3$ in CD$_3$CN, 22 °C). a) Showing the through bond coupling of all the four amino acids, b) showing the through bond coupling between the prp protons of HBS part.
Figure S3. Relevant portions of the TOCSY and HSQC spectra for a) H$_{a}^{G_{1}}$ and H$_{a}^{G_{4}}$ b) Hpr$_{b}$ c) Hpr$_{a}$ and Hpr$_{c}$ spin systems of major conformer of Moc[GFA]G-OMe (1a) (400 MHz, 5 mM, 40% CDCl$_{3}$ in CD$_{3}$CN, 22 °C).
Figure S4. Heteronuclear Single Quantum Coherence (HSQC) spectrum of major conformer of Moc[GFA]G-OMe (1a) (400 MHz, 5 mM, 40% CDCl₃ in CD₃CN, 22 °C):
Figure S5. Rotating Frame Overhauser Effect Spectroscopy (ROESY) spectrum of major conformer of Moc[GFA]G-OMe (1a) (400 MHz, 5 mM, 40% CDCl₃ in CD₃CN, 22 °C):
Figure S6. Total Correlation Spectroscopy (TOCSY) spectrum of minor conformer of Moc[GFA]G-OMe (1a) (400 MHz, 5 mM, 40% CDCl$_3$ in CD$_3$CN, 22 °C).

Figure S7. a) Expanded amide region of 1a indicating major and minor sets of signals. b) Conformational exchange (EXSY) crosspeaks between major and minor conformers in Moc[GFA]G-OMe (1a).
Figure S8. a) The NH region showing the major and minor peaks and their integrations of Moc[GFA]G-OMe (1a) (400 MHz, 5 mM, 40% CDCl3 in CD3CN, 22 °C). The ROEs for the minor peaks are shown in b), c) and d).

Table S1. The list of chemical shifts for the major and the minor peaks for the NH regions and their corresponding ROE cross peaks of Moc[GFA]G-OMe (1a).

	6.61 (F2)	7.01 (F2)	7.16 (F2)	6.61 (A3)	6.70 (A3)	6.87 (A3)	
Major	(1)	(0.19)	(0.11)	(1)	(0.19)	(0.11)	
Minor1							
Minor2							
(ROEs are discussed separately)	2.11 (Hprpb)	(ROE)	2.11 (Hprpb)	(ROE)	-	3.29 (Hprpa)	(ROE)

Ratio (major : minor\textsubscript{1} : minor\textsubscript{2}) – (1.00 : 0.19 : 0.11) = (77 : 15 : 8) (Based on HN proton)
Figure S9. a), b) Total Correlation Spectroscopy (TOCSY) spectrum of major conformer of Moc[AFA]G-OMe (1b) (400 MHz, 5 mM, 40% CDCl₃ in CD₃CN, 22 °C). a) Showing the through bond coupling of all the four amino acids, b) showing the through bond coupling between the prp protons of HBS part.
Figure S10. Relevant portions of TOCSY and HSQC spectra of a) HαG₄ b) Hprp c) Hprp and d) Hprp spin systems of major conformer of Moc[AFA]G-OMe (1b) (400 MHz, 5 mM, 40% CDCl₃ in CD₃CN, 22 °C).
Figure S11. Heteronuclear Single Quantum Coherence (HSQC) spectrum of Moc[AFA]G-OMe (1b) (400 MHz, 5 mM, 40% CDCl₃ in CD₃CN, 22 °C).
Figure S12. Rotating Frame Overhauser Effect Spectroscopy (ROESY) spectrum of major conformer of Moc[AFA]G-OMe (1b) (400 MHz, 5 mM, 40% CDCl₃ in CD₃CN, 22 °C):
Figure S13. Total Correlation Spectroscopy (TOCSY) spectrum of minor conformer of Moc[AFA]G-OMe (1b) (400 MHz, 5 mM, 40% CDCl₃ in CD₃CN, 22 °C).

Figure S14. a) The NH region showing the major and minor peaks and their integrations of Moc[AFA]G-OMe (1b) (400 MHz, 5 mM, 40% CDCl₃ in CD₃CN, 22 °C). The ROEs for the minor peaks are shown in b) and c).
Table S2. The list of chemical shifts for the major and the minor peaks for the NH regions and their corresponding ROE cross peaks of Moc[AFA]G-OMe (1b).

	6.53 (F₂)	7.14 (F₂)	6.66 (A₃)	7.11 (A₃)	
	(1.0)	(0.36)	(1.0)	(0.36)	
Major					
Minor	2.53 (HPrp₉)	(ROE)	(ROEs are discussed separately)	3.20 (HPrp₉)	(ROE)

Ratio (major : minor) – (1 : 0.36) = 74 : 26 (Based on H⁷ proton relative integrals)
Figure S15. a), b) Total Correlated Spectroscopy (TOCSY) spectrum of major conformer of Moc[GFA]A-OMe (1c) (400 MHz, 5 mM, 40% CDCl₃ in CD₃CN, 22 °C). a) Showing the through bond coupling of all the four amino acids, b) showing the through bond coupling between the prp protons of HBS part.
Figure S16. a), b) Heteronuclear Single Quantum Coherence (HSQC) spectrum of major conformer of Moc[GFA]A-OMe (1c) (400 MHz, 5 mM, 40% CDCl₃ in CD₃CN, 22 °C):
Figure S17. Relevant portions of TOCSY and HSQC spectra of a) HαG1 b) Hprp c) Hprp spin systems of major conformer of Moc[GFA]A-OMe (1c) (400 MHz, 5 mM, 40% CDCl₃ in CD₃CN, 22 °C).
Figure S18. ROESY spectrum of major conformer of Moc[GFA]A-OMe (1c) (400 MHz, 5 mM, 40% CDCl₃ in CD₃CN, 22 °C):
Figure S19. TOCSY spectrum of minor conformer of Moc[GFA]A-OMe (1c) (400 MHz, 5 mM, 40% CDCl₃ in CD₃CN, 22 °C).

Figure S20. Conformational exchange (EXSY) crosspeaks between major and minor conformers in Moc[GFA]A-OMe (1c).
Ratio (major : minor) – 0.522 : (0.028+0.036) = 0.522 : 0.064 = 89 : 11 (only the Ala NH shows the minor conformer, there is no trace of minor conformation for Phe)

Figure S21. The NH region showing the major and minor peaks and their integrations of Moc[GFA]A-OMe (1c) (400 MHz, 5 mM, 40% CDCl$_3$ in CD$_3$CN, 22 °C).
Figure S22. a) to c) shows the 1H NMR amide NH chemical shift regions of the $^{13}_3$ analogues 2a-c, showing their major and minor peaks. In d) the similar analysis from Broussy et al. (Org. Biomol. Chem., 2018, 16, 459) is reproduced. In the e) the relative peak integrals are tabulated.

* the integral ratio is reproduced from Org. Biomol. Chem., 2018, 16, 459

Table S3. Tabulation of the (major:minor) ratios of 1a-c and 2a-c analogues.

analogue	molecule	ratio (major:minor)
$^{13}_3$	Moc-[GFA]G-OMe (1a)	77:23
$^{13}_3$	Moc-[AFA]G-OMe (1b)	74:26
$^{13}_3$	Moc-[GFA]A-OMe (1c)	89:11
$^{13}_3$	H-[GFA]G-OMe (2a)	83:17
$^{13}_3$	H-[AFA]G-OMe (2b)	81:19
$^{13}_3$	H-[GFA]A-OMe (2c)	71:29
Table S4. Comparative a) 1H NMR and b) 13C chemical shift values of 1a, 1b and 1c.

a) 1H NMR

Label	Ratio	1a major	1a minor	A1 major	A1 minor	A4 major	A4 minor
1	CH$_3$(Moc)	3.66	3.66	3.65	3.65	3.62	3.62
2	H$^\alpha$(i+1)(A)	4.50	-	4.66	-	3.99	-
3	H$^\alpha$(i+1)(B)	3.54	-	NA	NA	3.69	-
4	H$^\beta$(i+1)	NA	NA	1.28	1.44	NA	NA
5	H$^\beta$(i+2)	6.51	7.13	6.51	7.42	7.41	-
6	7.03	6.02	6.10	7.10	-	-	
7	H$^\alpha$(i+2)	4.31	-	4.21	4.31	4.65	-
8	H$^\beta$(i+2)	3.04	-	3.07	-	3.13	-
9	H$^\alpha$(i+3)	6.51	6.87	6.68	7.91	7.16	6.95
10	6.72	5.97	6.88	7.15	6.79	6.79	
11	H$^\alpha$(i+3)	4.75	4.61	4.78	4.92	4.76	-
12	H$^\beta$(i+3)	1.21	1.33	1.24	1.17	0.94	0.92
13	H$^\beta$(i+4)(A)	4.44	-	4.59	-	3.86	-
14	H$^\beta$(i+4)(B)	3.77	-	3.76	-	NA	NA
15	H$^\beta$(i+4)	NA	NA	NA	NA	1.40	1.34
16	CH$_3$(MeO)	3.71	3.71	3.71	3.71	3.74	3.74

1a. Moc-[GFA]-G-OMe; 1b. Moc-[AFA]-G-OMe; 1c. Moc-[GFA]-A-OMe

b) 13C NMR

Label	Ratio	1a major	1a minor	A1 major	A1 minor	A4 major	A4 minor	
1	CH$_3$(Moc)	52.9	52.9	53.5	53.5	53.0	53.0	
2	C$^\alpha$(i+1)	52.5	-	58.3	-	46.9	-	
3	C$^\alpha$(i+1)	-	NA	NA	17.4	18.1	NA	NA
4	C$^\beta$(i+2)	58.1	-	59.2	59.5	56.3	-	
5	C$^\beta$(i+2)	36.8	-	37.6	-	38.6	-	
6	C$^\beta$(i+3)	44.4	56.5	45.0	50.4	46.9	-	
7	C$^\beta$(i+3)	16.9	17.5	15.9	18.3	18.3	18.0	
8	C$^\beta$(i+4)	48.2	-	48.9	-	57.6	-	
10	C$^\beta$(i+4)	NA	NA	NA	NA	16.0	15.2	
11	Me(Est)	52.6	52.6	53.4	53.4	54.3	54.3	

1a. Moc-[GFA]-G-OMe; 1b. Moc-[AFA]-G-OMe; 1c. Moc-[GFA]-A-OMe
Figure S23. Stacked H$^\alpha$ regions of NMR spectra of: a) 1a,b (40% CDCl$_3$ in CD$_3$CN, 5mM) and b) 2a,b (10% D$_2$O in H$_2$O) respectively. Please note that since 2c is sparingly soluble in water and forms aggregates (>2 mM), its 1H NMR spectrum is quite undiscernible, making the comparison between 1c (2/3 CDCl$_3$/CD$_3$CN) and 2c (10% D$_2$O/H$_2$O) not possible.

Note that the spread of chemical shifts in the H$^\alpha$ regions have been correlated with the presence or absence of conformational order in the peptides. (Nat. Commun., 2015, 6, 7160) In ordered peptides, H$^\alpha$ chemical shifts are more non-degenerate, while in less ordered or random coil structures the H$^\alpha$ chemical shifts tend to be time-averaged values and hence appear clustered together and are more degenerate (Nat. Commun., 2015, 6, 7160). We observe (in Figure S23) the chemical shifts in the 13β3 analogues are more degenerate and clustered together. On the other hand, despite the presence of just 4 residues in the 13γ3 analogues 1a-c there is greater non-degeneracy of chemical shifts. Please note however, that these spectra are presented as observations and no comparison is intended between the NMRs of 1a,b and 2a,b, since the solvent systems are different for these two sets of analogues.

Table S5. The list of current 13γ3 and 13β3 analogues and corresponding solvent systems for NMR study.

Compounds	Solvent*
Moc-[GFA]G-OMe (1a)	40 % CDCl$_3$/CD$_3$CN
Moc-[AFA]G-OMe (1b)	40 % CDCl$_3$/CD$_3$CN
Moc-[GFA]A-OMe (1c)	40 % CDCl$_3$/CD$_3$CN
H-[GFA]G-OMe (2a)	10 % D$_2$O/H$_2$O
H-[AFA]G-OMe (2b)	10 % D$_2$O/H$_2$O
	poor solubility in
H-[GFA]A-OMe (2c)	10 % D$_2$O/H$_2$O

*solubility greater than 2 mM.
4.3 Circular Dichroism (CD) spectral analyses

Figure S24. CD spectral plots of a), c) θ_{MRE} (mean molar residue ellipticity) vs λ_{nm} and b), d) $\theta_{n\rightarrow\pi^*\text{MRE}}$ vs concentration of (Moc[GFA]G-OMe, 1a) in CH$_3$CN (295 K) and water (295 K) respectively.
Figure S25. Temperature-dependent (278 – 343 K, CH₃CN, 100 μM) CD spectra of Moc[GFA]G-OMe, 1a: Plot of: a) θ_{MRE} vs λ; b) θ_{n→π* MRE} and θ_{π→π* MRE} vs temperature.

Figure S26. a) pH-dependent CD spectra of Moc[GFA]G-OMe, 1a. pH – 3 – 4 (30 mM acetate buffer, 295 K, 100 μM), pH – 5 - 7 (30 mM phosphate buffer, 295 K, 100 μM), pH – 8 - 10 (30 mM carbonate buffer, 295 K, 100 μM). b) Plot of θ_{n→π*MRE} vs pH.
Figure S27. CD spectral plots of a), c) θ_{MRE} (mean molar residue ellipticity) vs λ_{nm} and b), d) $\theta_{\text{n} \rightarrow \pi^* \text{MRE}}$ vs concentration of Moc[AFA]G-OMe, 1b in CH$_3$CN (295 K) and water (295 K) respectively.

Figure S28. Temperature-dependent (278 – 343 K, 100 μM) CD spectra of Moc[AFA]G-OMe, 1b in CH$_3$CN: a) θ_{MRE} vs λ; b) $\theta_{\text{n} \rightarrow \pi^* \text{MRE}}$ and $\theta_{\pi \rightarrow \pi^* \text{MRE}}$ vs temperature.
Figure S29. a) pH-dependent CD spectra of Moc[AFA]G-OMe, 1b. pH – 3 – 4 (30 mM acetate buffer, 295 K), pH – 5 - 7 (30 mM phosphate buffer, 295 K), pH – 8 - 10 (30 mM carbonate buffer, 295 K). b) Plot of $\theta_{n\rightarrow\pi^*}$MRE vs pH. The peptide concentration is 100 μM.

Figure S30. CD spectral plots of a), c) θ_{MRE} (mean molar residue ellipticity) vs λnm and b), d) $\theta_{n\rightarrow\pi^*}$MRE vs concentration of Moc[GFA]A-OMe, 1c in CH$_3$CN (295 K) and water (295 K) respectively.
Figure S31. Temperature-dependent (278 – 343 K, 100 μM) CD spectra of Moc[GFA]A-OMe, 1c (in CH₃CN): a) θ_{MRE} vs λ_{nm}; b) θ_{n→π^* MRE} and θ_{π→π^* MRE} vs temperature.

Figure S32. a) pH dependent CD spectra of Moc[GFA]A-OMe, 1c. pH – 3–4 (30 mM acetate buffer), pH – 5–7 (30 mM phosphate buffer), pH – 8–10 (30 mM carbonate buffer). b) Plot of θ_{n→π^* MRE} vs pH. The peptide concentration is 100 μM.
Figure S33. CD spectra of 1363 analogues a) 2a, b) 2b and c) 2c at 0-50% TFE in CH₃CN. Increasing the % of helix-inducing solvent TFE does not impose helicities, showing that these 1363 model peptides truly lack any helical order. The peptide concentration is 100 μM at 295 K.
Figure S34. CD spectra of acyclic linear tetrapeptide analogues a) 3a, b) 3b and c) 3c at 0-50% TFE in CH₃CN. Increasing the % of helix-inducing solvent TFE does not impose helicities, showing that these tetrapeptides truly lack any helical order. The peptide concentration is 100 μM at 295 K.

Table S6. Theoretical AGADIR helicity prediction of different sequences.

No	Sequence	AGADIR* predicted % helicities
1	GFAG	0.08
2	AFAG	0.38
3	GFAA	0.18
4	GFGG	0.01
5	AFGG	0.06

*Serrano et.al. Nat. Struct. Mol. Biol. 1994, 1, 399-409
Table S7. Comparison of $\theta_{n\to\pi^*}$ and thermal ellipticity coefficient ($\Delta \theta / \Delta K$) values of the current single α-helical turn models Moc[GFA]G-OMe (1a) and Moc[AFA]G-OMe (1b) with corresponding values for earlier reported models:

No	Sequence	Constraint	$\theta_{n\to\pi^*} \times 10^3$	$\Delta \theta / \Delta K$	Ref.
1	Moc-[GFA]G-OMe (1a)	HBS + Moc	-25.3	-48	a
2	Moc-[AFA]G-OMe (1b)	HBS + Moc	-16.9	-16	a
3	[YLL]G-OMe	HBS N- and C-terminal extended	~-22	-	b
3	EF-hand+La$^{3+}$	calmodulin + La$^{3+}$	~-22	~57	c
4	[KAAAD]lactam	SC-SC x covalent	~13.5	~144	d
5	[KARAD]lactam	SC-SC x covalent	~12.8	~150	e
5	Ala-rich	SC-SC x covalent	~16	-	f

References.

a. Prabhakaran et al. present work
b. Alewood et al. Angew. Chem. Int. Ed., 2009, 48, 5675.
c. Baldwin et al., Proc. Natl. Acad. Sci. U.S.A., 2002, 99, 15416.
d. Fairlie et al., J. Am. Chem. Soc., 2005, 127, 2974.
e. Fairlie et al., J. Am. Chem. Soc., 2005, 127, 2974.
f. Fairlie et al., Angew. Chem. Int. Ed., 2014, 53, 6965.

Table S8. The effect of solvent H-bonding interactions and ionic groups on the excitonic transition energies ($\lambda_{n\to\pi^*}$ and $\lambda_{\pi\to\pi^*}$ nm) of the peptide chromophores in 1a, 1b, 1c.

	1a	1b	1c							
	$\lambda_{\pi\to\pi^*}$	$\lambda_{\pi\to\pi^*}$	$\lambda_{n\to\pi^*}$	$\lambda_{n\to\pi^*}$	$\lambda_{n\to\pi^*}$	$\lambda_{n\to\pi^*}$				
CH$_3$CN	209.8	194.2	227.8	207.4	194.8	226.4	195.2	208.4	226.2	218.0
water	209.4	193.2	223.0	208.1	193.2	222.6	194.4	208.4	222.2	-
pH - 7	208.6	193	222.8	208.0	193.2	223.2	193.4	209.8	221.6	-

Note: the relatively large blue shifts in $\lambda_{n\to\pi^*}$ values upon H-bonding and ionic interactions with solvent.
Table S9. Comparison of $\theta_{n\rightarrow\pi^*}$MRE intensities for the α-helically coupled peptide transitions in the $13\gamma 3$ turn analogues (1a, 1b, 1c) and for their corresponding acyclic linear tetrapeptide analogues (3a, 3b, 3c).

cpd.	constraint	CH$_3$CN observed	water observed	pH 7 observed
1a	13γ3	-13.46	-22.95 (1.71)	-25.25 (1.88)
3a	acyclic	1.62	1.94 (1.2)	1.99 (1.23)
1b	13γ3	-8.30	-17.02 (2.05)	-16.91 (2.04)
3b	acyclic	-0.36	-0.74 (1.94)	1.06 (2.94)
1c	13γ3	-5.62	-9.02 (1.61)	-9.07 (1.61)
3c	acyclic	3.82	4.16 (1.09)	4.34 (1.14)

The $\theta_{n\rightarrow\pi^*}$MRE intensities consistently enhance upon H-bonding and ionic interactions of the ordered coupled peptide chromophores with solvents. **Numbers in parenthesis denote the x fold enhancement in $\theta_{n\rightarrow\pi^*}$MRE intensities upon solvent change.**
4.4. FTIR analysis of 2a-c:

![FTIR spectra](image)

Figure S35. The full-range FTIR spectra (H$_2$O, 2 mM, 295 K) of N-Moc deprotected analogues 2a-c.

Table S10. The list of peptides/proteins in literature with predominant α-helical conformations and their corresponding $\tilde{\nu}$C=O for the amide I region in different solvent systems.

peptides/proteins	medium	wave number (cm$^{-1}$)
Myoglobina	water	1653
	hydrated film	1648
Ac-AAKAAY-NH$_2$b	water	1650
	40% TFE	1650
Ac-AAAAKAAAAAKAAAAAKAAAAY-NH$_2$b	water	~1645
	40% TFE	~1645
Ac-AAAAKAAAAAKAAAAAY-NH$_2$b	water	~1647
	40% TFE	~1647
VRRFỂWWAFLRR-NH$_2$c	Ethanol	~1659
	DPC (dodecylphosphocholine)	~1650
VRRFPYYYPFLRR-NH$_2$c	Ethanol	~1659
	DPC (dodecylphosphocholine)	~1651

a - *Crit. Rev. Biochem. Mol. Biol.*, **1995**, 30, 95-120

b - *Biochemistry*, **2005**, 44, 369-376

c - *Biochim. Biophys. Acta*, **2006**, 1758, 1596-1608
4.5. Theoretical calculation:

4.5.1. Table S11. a) List of ROE cross peaks and their corresponding % intensities (40% CDCl₃ in CD₃CN) for the major conformers of Moc[GFA]G-OMe (1a), Moc[AFA]G-OMe (1b) and Moc[GFA]A-OMe (1c). b) Consideration of distance constraint based on the ROE intensities.

a) ROE cross peaks for the major conformers

	1a cross peaks	1b cross peaks	1c cross peaks	% intensities	% intensities	% intensities
	H³Ala₃...Hprp⁶	H³Ala₃...H⁶Phe₂	H³Ala₃...Hprp⁶	230		
	H³Gly₁...Hprp⁶	H³Ala₁...H⁶Phe₂	H³Ala₄...Hprp⁶	2	H³Ala₄...Hprp⁶	22
	H³Gly₄...Hprp⁶	H³Gly₄...Hprp⁶	H³Ala₄...Hprp⁶	33		
	H³Gly₄...Hprp⁶	H³Gly₄...Hprp⁶	H³Gly₁...H⁶Phe₂	16		
	H³Ala₃...H⁶Gly₄	H³Phe₂...H⁶Ala₃	H³Ala₃...Hprp⁶	14		
	H³Ala₃...H⁶Gly₄	H³Phe₂...H⁶Ala₃	H³Ala₃...Hprp⁶	17		
	H³Ala₃...H⁶Gly₄	H³Ala₃...Hprp⁶	H³Ala₁...Hprp⁶	24		
	H³Ala₃...H⁶Gly₄	H³Ala₃...Hprp⁶	H³Ala₁...Hprp⁶	9		
	H³Ala₃...H⁶Gly₄	H³Ala₃...Hprp⁶	H³Ala₁...Hprp⁶	21		

H³Ala₃...H⁶Ala₃ cross peak intensity is 100%

b) relative intensities	distance (Å)	types of interactions
40 - 100	3	strong
10 - 39	4	medium
9 - 1	5	weak
<1	6	very weak

Note: The % intensities were calculated relative to the H³Ala₃...H⁶Ala₃ TOCSY/ROE cross peak intensity, which was taken as 100%.

4.5.2. Explanation for the number of ROE crosspeaks observed in 1a and 1b:

The four ROE cross peaks that we have assigned for major conformers of 1b, but not for 1a, are all between Phe₂ and Ala₃. They are:

1. H⁶F₂...H⁴A₃,
2. H⁶A₃...H⁶F₂, H⁴A₃...H⁶F₂ and
3. H⁶F₂...H⁴A₁
Figure S36. a) The four distinct regions of ROESY spectra associated with the Phe\textsubscript{2} and Ala\textsubscript{3} present in 1a. b) The set of 4 ROEs associated with the Phe\textsubscript{2} and Ala\textsubscript{3} present in 1b. These ROE cross peaks are unambiguously observed in 1b. Hence, we report them for 1b, in the manuscript.

Indeed, all these 4 cross peaks are observed in 1a as well. But in 1a, the NH signals of Phe\textsubscript{2} and Ala\textsubscript{3} come merged at ~6.61 ppm (Supporting Information, page S48, Figure S8 a)) in the major conformer. So, their cross peaks also come merged together. Although we observe all these four cross peaks here also 1a (as in 1b), we consider it incorrect to unambiguously assign these cross peaks to the corresponding ROE cross peaks in 1a – because of the merger of the two NH signals of Phe\textsubscript{2} and Ala\textsubscript{3} in it. So, we abstained from assigning or reporting these ROE cross peaks for 1a.

So, we have been cautious in assigning ROE cross peaks and have not taken the benefit of doubt between TOCSY and the ROESY cross peaks for both the Phe\textsubscript{2} and Ala\textsubscript{3} spin systems in 1a. Hence, we do not include these cross peaks in the structure of 1a in the manuscript. Notice that the energy minimized structures are still identical despite the non-inclusion of this ROE for 1a.
4.5.3. **Table S12.** Comparison of inter-carbonyl orientations between peptide groups in HBS-constrained 1373 analogues (1a, 1b and 1c), with those in classical α-helices made from corresponding sequences (built with Discovery Studio).

	O⋯C'	O⋯C'≡O	C'≡O⋯C'=O
	(Å)	(deg)	torsion (deg)
Natural α-helix			
O_{i+1} → C'_{i+2}	2.78	98.65	-166.98
1a	3.50	105.32	-177.11
1b	3.68	127.26	-156.66
1c	3.54	112.89	-172.89
Natural α-helix			
O_{i+2} → C'_{i+3}	2.78	97.5	162.71
1a	3.41	101.69	-170.72
1b	3.82	98.70	166.52
1c	3.64	124.33	-154.77
Natural α-helix			
O_{i+1} → C'_{i+3}	3.98	131.83	-155.01
1a	5.15	133.86	-172.12
1b	5.41	125.19	-162.15
1c	5.32	159.29	175.94
4.5.4. Energy minimized structures of minor conformers of 1a,b:

Figure S37. Energy minimized structures of minor conformers of a) 1a and b) 1b. c) The list of (Φ, ψ) values from the energy-minimized structure of the minor conformers.

Note: 1a, which contains two highly flexible Gly residues (at i+1$^{\text{st}}$ and i+4$^{\text{th}}$ positions) has an additional such (third) conformer (8%) – whose structure we are unable to characterize due to its low relative population and hence the lack of any corresponding spectral signals, especially in the 2D NMR. It can at best be speculated that the third rotamer could be one of the kinetic minima reported by Broussy et al. (*Org. Biomol. Chem.* 2018, 16, 459-471; *Tetrahedron Lett.* 2015, 56, 2456-2459), where there is flipping of one or more of the peptide planes.
4.6 Supporting images of 1H and 13C NMR spectra.

Figure S38. 1H NMR (400 MHz) of Boc-Gly-Phe-Ala-Gly-OMe (3a) in DMSO-d_6 (10 mM).

Figure S39. 13C NMR (100 MHz) of Boc-Gly-Phe-Ala-Gly-OMe (3a) in DMSO-d_6 (60 mM).
Figure S40. 1H NMR (400 MHz) of Boc-Ala-Phe-Ala-Gly-OMe (3b) in DMSO-d$_6$ (10 mM).

Figure S41. 13C NMR (100 MHz) of Boc-Ala-Phe-Ala-Gly-OMe (3b) in DMSO-d$_6$ (60 mM).
Figure S42. 1H NMR (400 MHz) of Boc-Gly-Phe-Ala-Ala-OMe (3c) in CDCl$_3$ (10 mM).

Figure S43. 13C NMR (100 MHz) of Boc-Gly-Phe-Ala-Ala-OMe (3c) in CDCl$_3$ (60 mM).
Figure S44. 1H NMR (400 MHz) of 10a in CDCl$_3$ (10 mM).

Figure S45. 13C NMR (100 MHz) of 10a in CDCl$_3$ (60 mM).
Figure S46. 1H NMR (400 MHz) of 10b in CDCl$_3$ (10 mM).

Figure S47. 13C NMR (100 MHz) of 10b in CDCl$_3$ (60 mM).
Figure S48. 1H NMR (400 MHz) of 10c in CDCl$_3$ (10 mM).

Figure S49. 13C NMR (100 MHz) of 10c in CDCl$_3$ (60 mM).
Figure S50. 1H NMR (400 MHz) of 12a in CDCl$_3$ (10 mM).

Figure S51. 13C NMR (100 MHz) of 12a in CDCl$_3$ (60 mM).
Figure S52. 1H NMR (400 MHz) of 12b in CDCl$_3$ (10 mM).

Figure S53. 13C NMR (100 MHz) of 12b in CDCl$_3$ (60 mM).
Figure S54. 1H NMR (400 MHz) of 12c in CDCl$_3$ (10 mM).

Figure S55. 13C NMR (100 MHz) of 12c in CDCl$_3$ (60 mM).
Figure S56. 1H NMR (400 MHz) of 12d in CDCl$_3$ (10 mM).

Figure S57. 13C NMR (100 MHz) of 12d in CDCl$_3$ (60 mM).
Figure S58. 1H NMR (400 MHz) of 12e in CDCl$_3$ (10 mM).

Figure S59. 13C NMR (100 MHz) of 12e in CDCl$_3$ (60 mM).
Figure S60. 1H NMR (400 MHz) of 1a in 40% CDCl$_3$ in CD$_3$CN (5 mM).

Figure S61. 13C NMR (100 MHz) of 1a in 40% CDCl$_3$ in CD$_3$CN (5 mM).
Figure S62. 1H NMR (400 MHz) of 1b in 40% CDCl$_3$ in CD$_3$CN (5 mM).

Figure S63. 13C NMR (100 MHz) of 1b in 40% CDCl$_3$ in CD$_3$CN (5 mM).
Figure S64. 1H NMR (400 MHz) of 1c in 40% CDCl$_3$ in CD$_3$CN (5 mM).

Figure S65. 13C NMR (100 MHz) of 1c in 40% CDCl$_3$ in CD$_3$CN (5 mM).
Figure S6. 1H NMR (400 MHz) of 1d in DMSO-d$_6$ (5 mM)

Figure S7. 13C NMR (100 MHz) of 1d in DMSO-d$_6$ (5 mM)
Figure S68. 1H NMR (400 MHz) of 1e in DMSO-d$_6$ (5 mM).

Figure S69. 13C NMR (100 MHz) of 1e in DMSO-d$_6$ (5 mM).
Figure S70. 1H NMR (400 MHz) of 2a in 10% D$_2$O in H$_2$O (5 mM)

Figure S71. 1H NMR (400 MHz) of 2b in 10% D$_2$O in H$_2$O (5 mM)
Figure S72. 1H NMR (100 MHz) of 2c in 40% CDCl$_3$ in CD$_3$CN (5 mM)