Optimal Low-Degree Hardness of Maximum Independent Set

Alexander S. Wein

Department of Mathematics, Courant Institute of Mathematical Sciences, NYU

Abstract

We study the algorithmic task of finding a large independent set in a sparse Erdős–Rényi random graph with \( n \) vertices and average degree \( d \). The maximum independent set is known to have size \((2 \log d/d)n\) in the double limit \( n \to \infty \) followed by \( d \to \infty \), but the best known polynomial-time algorithms can only find an independent set of half-optimal size \((\log d/d)n\). We show that the class of low-degree polynomial algorithms can find independent sets of half-optimal size but no larger, improving upon a result of Gamarnik, Jagannath, and the author. This generalizes earlier work by Rahman and Virág, which proved the analogous result for the weaker class of local algorithms.

1 Introduction

We consider the problem of finding a large independent set (i.e., a set of vertices such that no two are adjacent) in the sparse Erdős–Rényi graph \( G(n, d/n) \) where each of the \( \binom{n}{2} \) potential edges on vertex set \([n]\) occurs independently with probability \( d/n \). In the double limit \( n \to \infty \) followed by \( d \to \infty \), the largest independent set \( S_{\text{max}} \) is known to have asymptotic size \((2 \log d/d)n\). More precisely, as \( n \to \infty \) with \( d > 0 \) fixed we have \( \frac{1}{n}|S_{\text{max}}| \to \alpha_d \) with high probability, for some \( \alpha_d \) satisfying \( \alpha_d = (1 + o_d(1))(2 \log d/d) \) as \( d \to \infty \) \([\text{Fri90, BGT10}]\). We will be interested in the associated algorithmic task: give a polynomial-time algorithm that takes as input a graph drawn from \( G(n, d/n) \) and outputs (with high probability) a large independent set. We assume \( d \) is known to the algorithm, although it can be estimated easily from the total number of edges. The influential work of Karp \([\text{Kar76}]\) showed that a simple greedy algorithm can find an independent set of asymptotic size \((\log d/d)n\), which is half of the optimum. Decades later, we still do not know a polynomial-time algorithm to find an independent set of size \((1 + \epsilon)(\log d/d)n\) for any fixed \( \epsilon > 0 \) (independent of both \( d \) and \( n \)). Moreover, evidence has emerged to suggest that no such algorithm exists. It was shown by Coja-Oghlan and Efthymiou \([\text{CE15}]\) (building on \([\text{AC08}]\)) that the independent sets of size larger than half-optimal are “clustered” in a way that implies slow mixing of the Metropolis process for sampling such sets. Furthermore, it was shown by Rahman and Virág \([\text{RV17}]\) (building on \([\text{LW07, GS17}]\)) that the class of local algorithms can find independent sets of half-optimal size and no larger. Here, a local algorithm (also called i.i.d. factors) allows each vertex to decide whether or not to include itself in the set based only on its local neighborhood in the graph (of constant radius) along with i.i.d. random variables attached to the vertices (see Section 3 for a formal definition).

The above results suggest that \((\log d/d)n\) may be the fundamental limit for polynomial-time algorithms. In this work we provide further evidence for this by showing that \((\log d/d)n\) is the fundamental limit for the class of low-degree polynomial algorithms (to be defined formally in the next section) where each vertex’s membership (or non-membership) in the independent set is determined by thresholding a low-degree multivariate polynomial of the edge-indicator variables that describe the input graph. This class of low-degree algorithms includes the class of local algorithms mentioned above (see Remark 3.2), and also (as discussed in Appendix A of \([\text{GJW20}]\)) includes other popular algorithmic paradigms such as approximate message passing.
(e.g. [DMM09, BM11, JM13, Mon19, EMS20]) and power iteration\textsuperscript{1}. Furthermore, starting from the influential line of work [BHK+19, HS17, HKP+17, Hop18], it has been established that low-degree algorithms (with degree logarithmic in the dimension) are precisely as powerful as the best known polynomial-time algorithms for a number of problems in high-dimensional statistics including planted clique, sparse PCA, community detection, tensor PCA, and many others [HS17, HKP+17, Hop18, BKW20, KWB19, DKWB19, CHK+20, BB20, LZ20, SW20, BBK+20, BBH+20]. Thus, failure of low-degree algorithms is a form of concrete evidence for computational hardness of statistical problems. For more on low-degree algorithms, we refer the reader to [KWB19] (for a survey on the setting of hypothesis testing), [SW20] (for the setting of estimation), or [GJW20] (for the setting of random optimization problems, which is the relevant setting for this work).

Most prior work on low-degree algorithms has focused on problems with a “planted” signal, in which case failure of low-degree algorithms can be shown via a direct linear-algebraic computation. This technique does not apply to “non-planted” problems such as the maximum independent set problem that we consider here, and so a different approach is needed which leverages structural properties of the solution space (see Section 1.2). For non-planted problems, the first results for low-degree algorithms were given by Gamarnik, Jagannath, and the author [GJW20] (building on [GJ19]), who showed that low-degree algorithms cannot find independent sets of size exceeding \((1 + 1/\sqrt{2})(\log d/d)n\) in \(G(n, d/n)\). Here we improve this to the optimal threshold \((\log d/d)n\). We also provide the matching positive result, showing that \((\log d/d)n\) is achievable by low-degree algorithms (following a proof sketch given in [GJW20]). This is the first non-planted problem for which matching upper and lower bounds have been obtained on the objective value attainable by low-degree algorithms (apart from trivial cases where the global optimum value can be reached). One conceptual advantage of our results over the existing results for local algorithms is that low-degree algorithms offer a unified framework to explain computational hardness in a wide variety of high-dimensional problems, whereas local algorithms are specific to problems involving sparse graphs. This is exemplified by the fact that our impossibility result can be extended to the case of dense graphs such as \(G(n, 1/2)\); see Section 1.3.

1.1 Main Results

We now formally define the problem setup, following [GJW20]. We say that a function \(f : \mathbb{R}^m \to \mathbb{R}^n\) is a polynomial of degree (at most) \(D\) if it may be written in the form

\[
f(Y) = (f_1(Y), \ldots, f_n(Y)),
\]

where each \(f_i : \mathbb{R}^m \to \mathbb{R}\) is a multivariate polynomial (in the usual sense) of degree at most \(D\) with real coefficients. We also define a random polynomial \(f : \mathbb{R}^m \to \mathbb{R}^n\) in the same way but where the coefficients may be random (but independent from the input \(Y\)): formally, for some probability space \((\Omega, \mathbb{P}_\omega)\), \(f\) is a map \(f : \mathbb{R}^m \times \Omega \to \mathbb{R}^n\) such that \(f(\cdot, \omega)\) is a degree-\(D\) polynomial for each “seed” \(\omega \in \Omega\). (We will see that randomness does not actually help; see Lemma 2.11.)

For our purposes, the input to \(f\) will be an \(n\)-vertex graph encoded as \(Y \in \{0, 1\}^m\) with \(m = \binom{n}{2}\), where each entry of \(Y\) is the indicator variable for the presence of a particular edge. We write \(Y \sim G(n, d/n)\) for an Erdős–Rényi graph, i.e., \(Y\) is i.i.d. Bernoulli\((d/n)\).

We need to define what it means for a polynomial \(f : \mathbb{R}^m \to \mathbb{R}^n\) to find an independent set in a graph \(Y\). Instead of asking \(f(Y)\) to be the indicator vector of an independent set, we relax this somewhat and ask only for a “near-indicator vector” of a “near-independent set”. More precisely, the following “rounding” procedure from [GJW20] will be used to extract an independent set from the output of \(f\).

**Definition 1.1.** Let \(f : \mathbb{R}^m \to \mathbb{R}^n\) be a random polynomial with \(m = \binom{n}{2}\). For \(Y \in \{0, 1\}^m\), and \(\eta \geq 0\), let \(V^\eta_f(Y, \omega)\) be the independent set in the graph \(Y\) obtained by the following procedure. Let

\[
A = \{i \in [n] : f_i(Y, \omega) \geq 1\},
\]

\[
\tilde{A} = \{i \in A : i \text{ has no neighbors in } A \text{ in the graph } Y\},
\]

and

\[
B = \{i \in [n] : f_i(Y, \omega) \in (1/2, 1)\}.
\]

\textsuperscript{1}Notably, low-degree algorithms capture power iteration on any matrix that is itself low-degree in the input. This allows for non-trivial spectral methods such as the tensor unfolding method for tensor PCA [RM14, HSS15], which outperforms more “standard” algorithms such as message passing and gradient descent [RM14, BGJ20].
Then define

$$V_f^\eta(Y, \omega) = \begin{cases} \tilde{A} & \text{if } |\tilde{A} \setminus \hat{A}| + |B| \leq \eta, \\ \emptyset & \text{otherwise}. \end{cases}$$

(2)

Informally speaking, $f_i$ should output a value $\geq 1$ to indicate that vertex $i$ is in the independent set and should output a value $\leq 1/2$ to indicate that it is not. We allow a small number of “errors”: there can be up to $\eta n$ vertices where either $f_i(Y) \in (1/2,1)$ or the independence constraint is violated. Vertices that violate the independence constraint are thrown out, and if too many errors are made then the output is the empty set $\emptyset$ (which is thought of as a “failure” event). While the choice of thresholds $1$ and $1/2$ is somewhat arbitrary, the interval $(1/2,1)$ of disallowed outputs is important for our impossibility result (Theorem 1.3), as this ensures that a small change in $f(Y, \omega)$ cannot induce a large change in the resulting independent set $V_f^\eta(Y, \omega)$ without encountering the failure event $\emptyset$. On the other hand, our achievability result (Theorem 1.4) will give a low-degree polynomial for which most outputs $f_i(Y)$ lie in $\{0,1\}$ exactly, i.e., it succeeds even under the more stringent definitions $A = \{i \in [n] : f_i(Y, \omega) = 1\}$ and $B = \{i \in [n] : f_i(Y, \omega) \notin \{0,1\}\}$.

**Definition 1.2.** For parameters $k > 0$, $\delta \in [0,1]$, $\gamma \geq 1$, and $\eta > 0$, a random polynomial $f : \mathbb{R}^m \to \mathbb{R}^n$ is said to $(k, \delta, \gamma, \eta)$-optimize the independent set problem in $G(n,d/n)$ if the following are satisfied when $Y \sim G(n,d/n)$:

- $\mathbb{E}_{Y,\omega} [||f(Y,\omega)||^2] \leq \gamma k$, and
- $\mathbb{P}_{Y,\omega} [\lambda f(Y,\omega)] \geq k \geq 1 - \delta$.

Here, $k$ is the size of the independent set that is produced, $\delta$ is the algorithm’s failure probability, $\gamma$ is a normalization parameter, and $\eta$ is the error tolerance of the rounding procedure $V_f^\eta$.

We now state our main results. Theorem 1.3 shows that no low-degree polynomial can find an independent set of size $(1 + \epsilon)\log d/n$, while Theorem 1.4 shows that some low-degree polynomial can find an independent set of size $(1 - \epsilon)\log d/n$. The proofs are given in Sections 2 and 3, respectively. The results are interpreted in the remarks below.

**Theorem 1.3 (Impossibility).** For any $\epsilon > 0$ there exists $d^* > 0$ such that for any $d \geq d^*$ there exists $n^* > 0$, $\eta > 0$, $C_1 > 0$, and $C_2 > 0$ (depending on $\epsilon, d$) such that the following holds. Let $n \geq n^*$, $\gamma \geq 1$, and $1 \leq D \leq Cn^{\epsilon} \log n$, and suppose $\delta \geq 0$ satisfies

$$\delta \leq \exp(-C_2 \gamma D \log n).$$

Then for $k = (1 + \epsilon)\log d/n$, there is no random degree-$D$ polynomial that $(k, \delta, \gamma, \eta)$-optimizes the independent set problem in $G(n,d/n)$.

**Theorem 1.4 (Achievability).** For any $\epsilon > 0$ there exists $d^* > 0$ such that for any $d \geq d^*$ and any $\eta > 0$ there exists $n^* > 0$, $D > 0$, $\gamma \geq 1$, and $C > 0$ (depending on $\epsilon, d, \eta$) such that the following holds for all $n \geq n^*$. For $k = (1 - \epsilon)\log d/n$ and $\delta = \exp(-Cn^{1/3})$, there exists a (deterministic) degree-$D$ polynomial that $(k, \delta, \gamma, \eta)$-optimizes the independent set problem in $G(n,d/n)$.

A number of remarks are in order.

**Remark 1.5.** The results are non-asymptotic but can be thought of as capturing the double limit $n \to \infty$ followed by $d \to \infty$. In other words, $d$ is a large constant depending on $\epsilon$, and $n$ must then be chosen sufficiently large (where “sufficiently large” depends on $d$). In the sequel, asymptotic notation such as $O(\cdot)$ pertains to the limit $n \to \infty$ with all other parameters fixed; parameters not depending on $n$ are considered “constants”.

**Remark 1.6.** The “tolerance” parameter $\eta$ should be thought of as a small constant. The impossibility result shows that some $\eta > 0$ (depending on $\epsilon, d$) is not achievable, whereas the achievability result shows that any $\eta > 0$ is achievable. The “normalization” parameter $\gamma$ should be thought of as a large constant. The impossibility result shows that any $\gamma \geq 1$ is not achievable, whereas the achievability result shows that some $\gamma \geq 1$ (depending on $\epsilon, d, \eta$) is achievable.
Remark 1.7. Typically, when proving impossibility results for low-degree algorithms, the goal is to rule out any degree $D = O(\log n)$ because polynomials of this degree can capture the best known algorithms for a wide array of problems. In our case, a constant degree $D$ (depending on $\epsilon, d, \eta$) is sufficient for the achievability result. On the other hand, our impossibility result rules out a much wider range of $D$ values: $D \leq n/\log n$. However, the requirement (3) gives an additional tradeoff between $D$ and the failure probability $\delta$. This is present for technical reasons, and ideally we would replace (3) by a milder condition such as $\delta = o(1)$. Still, note that the parameters $D = O(1)$ and $\delta = \exp(-\Omega(n^{1/3}))$ in our achievability result lie well within the set of $(D, \delta)$ pairs ruled out by our impossibility result.

Remark 1.8. In the achievability result, the value of $\delta$ can likely be improved from $\exp(-Cn^{1/3})$ to $\exp(-Cn)$. This can perhaps be accomplished by using the powerful machinery of [BC15] in place of Corollary 3.5, but we do not attempt this here.

1.2 Proof Techniques

We now give an overview of the proof techniques and discuss their relation to prior work. We first discuss the achievability result (Theorem 1.4). It is known already that local algorithms can find independent sets of size $(1 - \epsilon)\log d n^{-1/2} n$ [RV17]. Our proof transfers this to a result about low-degree algorithms by showing that any local algorithm can be well-approximated by a constant-degree polynomial. A proof sketch of this reduction was given already in Appendix A of [GJW20], but here we give the full details and determine the values of the parameters $D, \delta, \gamma, \eta$. The main difficulty lies in establishing that the failure probability $\delta$ is very small; for this we appeal to a result of [BCN20] that gives tail bounds for certain “local” functions on sparse random graphs.

We now discuss the impossibility result (Theorem 1.3), which is our main contribution. This result falls into a line of work initiated by Gamarnik and Sudan [GS17], who showed that local algorithms fail to find independent sets larger than $(1 + 1/\sqrt{2})\log d n$. Their proof harnessed the so-called overlap gap property (OGP): in a typical graph drawn from $G(n, d/n)$, there are no two independent sets that each have size exceeding $(1 + 1/\sqrt{2})\log d n$ and have intersection size (“overlap”) roughly $\log d n$. They used an interpolation argument to show that if a hypothetical local algorithm were to succeed at finding independent sets larger than $(1 + 1/\sqrt{2})\log d n$, this could be used to construct two independent sets violating the OGP, leading to a contradiction. This proof technique was subsequently extended in two important ways. First, Rahman and Virág [RV17] improved the threshold for failure of local algorithms down to $\log d n$, which is optimal. The proof involves establishing a more intricate “forbidden” structure that involves many independent sets with a particular intersection pattern (in contrast to the OGP, which involves only two sets). Again, a hypothetical local algorithm can be used to construct this forbidden structure, leading to a contradiction. This idea inspired further work in the area of random constraint satisfaction problems [GS14, CHH17]. A separate line of work [CGPR19, GJ19, GJW20] extended the ideas of Gamarnik and Sudan [GS17] in a different direction: instead of the basic OGP discussed above, they consider an “ensemble” variant of OGP in which a particular overlap between two large independent sets is forbidden even when the independent sets do not come from the same graph but from two correlated random graphs. This variant of OGP can be used not only to rule out local algorithms, but also to rule out any sufficiently “stable” algorithm (which roughly means that a small change to the input only causes a small change to the output); this idea was first discovered by [GJ19] and was later used by [GJW20] to show that low-degree algorithms—which are stable—cannot find independent sets larger than $(1 + 1/\sqrt{2})\log d n$.

To prove our impossibility result, we combine the two main ideas discussed above: we consider a forbidden structure that involves many independent sets and also involves many correlated random graphs. The crux of the proof lies in the specific choice of this forbidden structure (see Proposition 2.3), which is carefully chosen so that (i) with high probability, no instance of this structure occurs, and (ii) a hypothetical stable algorithm can be used to construct an instance of this structure, leading to a contradiction. On a technical level, our forbidden structure is quite different from the one used by Rahman and Virág [RV17] in that theirs is highly symmetric, e.g., any two of the sets involved have the same intersection size. This is suitable for their purposes because due to special properties of local algorithms, a hypothetical local algorithm can be used to construct such a symmetric collection of sets. In our case, however, it is not clear that a hypothetical low-degree algorithm can be used to construct a symmetric collection of sets; we instead define a new class of forbidden structures that are not necessarily symmetric. Finally, we remark that the only property of
low-degree polynomials that we use is their “stability” (in the sense of Proposition 2.6), and so the proof actually rules out all “stable” algorithms.

1.3 Extensions and Future Directions

In this work we have given the first techniques for obtaining sharp impossibility results for low-degree algorithms in random optimization problems (with no planted signal). Hopefully these techniques can be adapted to other non-planted settings such as random constraint satisfaction problems (e.g. [AC08, GS14, CHH17]) and spin glass optimization problems [Sub18, Mon19, GJ19, EMS20, GJW20]. Low-degree algorithms are a promising candidate for a unified framework to explain computational hardness in a wide array of non-planted problems, analogous to the more established low-degree framework for planted problems.

One possible extension of our results is to consider the same independent set problem but in denser graphs. For instance, in $G(n, 1/2)$ the largest independent set has size $2 \log_2 n$, but the best known polynomial-time algorithm is a simple greedy algorithm which can find an independent set of half-optimal size $\log_2 n$ [Kar76]. An argument nearly identical to the proof of Theorem 1.3 yields the following result which shows that low-degree algorithms cannot improve upon this.

**Theorem 1.9.** For any $\epsilon > 0$ there exists $n^* > 0$, $\tilde{\eta} > 0$, $C_1 > 0$, and $C_2 > 0$ (depending on $\epsilon$) such that the following holds. Let $n \geq n^*$, $\gamma \geq 1$, and $1 \leq D \leq \frac{C_1 \log^2 n}{\gamma}$, and suppose $\delta \geq 0$ satisfies

$$\delta \leq \exp(-C_2 \gamma D - 2 \log n).$$

Then for $k = (1 + \epsilon) \log_2 n$ and $\eta = \tilde{\eta} \log_2 n/n$, there is no random degree-$D$ polynomial that $(k, \delta, \gamma, \eta)$-optimizes the independent set problem in $G(n, 1/2)$.

However, the matching achievability result remains open: it is not clear how to write the greedy algorithm as a low-degree polynomial or otherwise give a low-degree algorithm that finds an independent set of size $(1 - \epsilon) \log_2 n$. We expect that it should be possible to obtain such a low-degree algorithm (perhaps of degree $D = O(\log n)$ and failure probability $\delta = \exp(-\Omega(\log^2 n))$) via the approximate message passing framework, which has been successful in other non-planted settings [MR15, Mon19, EMS20, ES20].

**Notation**

Asymptotic notation such as $o(1)$ or $\Omega(n)$ pertains to the limit $n \to \infty$ with all other parameters (such as $d$) held fixed; in other words, parameters not depending on $n$ are considered “constants” and may be hidden by this notation. On the other hand, $o_d(1)$ denotes a quantity that depends on $d$ but not $n$, and tends to 0 as $d \to \infty$ (with all other parameters held fixed).

Throughout, we will use the shorthand $m = \binom{n}{2}$ and $\Phi = \log d n$. We define $[n] = \{1, 2, \ldots, n\}$ and use $\| \cdot \|$ for the $\ell^2$-norm of a vector. All logarithms use the natural base unless stated otherwise. All graphs are assumed to have no self-loops nor parallel edges.

2 Proof of Impossibility

In this section we prove our main impossibility result (Theorem 1.3) which shows that low-degree algorithms cannot find independent sets of size $(1 + \epsilon) \log_d n$.

2.1 Interpolation Path

Here we define a sequence of correlated random graphs that will be central to the argument. We will represent a graph on vertex set $[n]$ by $Y \in \{0, 1\}^m$ where $m = \binom{n}{2}$. Here $Y_1, \ldots, Y_m$ are indicator variables for the edges (where 0 indicates a non-edge and 1 indicates an edge), listed in some fixed but arbitrary order.

**Definition 2.1.** For $T \in \mathbb{N}$, consider the length-$T$ interpolation path $Y^{(0)}, \ldots, Y^{(T)}$ sampled as follows. First, $Y^{(0)} \sim G(n, d/n)$. Then for $1 \leq t \leq T$, $Y^{(t)}$ is obtained from $Y^{(t-1)}$ by resampling coordinate $\sigma(t) \in [m]$ from Bernoulli$(d/n)$. Here $\sigma(t) = t - k_t m$ where $k_t$ is the unique integer for which $1 \leq \sigma(t) \leq m$. 


2.2 Forbidden Structures

The proof will hinge on the non-existence of certain structures (primarily the one defined in Proposition 2.3) with high probability over the interpolation path. The following standard bounds will be used repeatedly:

\[
\binom{n}{k} \leq \left( \frac{en}{k} \right)^k \quad \text{for all integers } 1 \leq k \leq n, \quad (4)
\]

\[
(1-x)^r \leq \exp(-rx) \quad \text{for all } x \in \mathbb{R}, \ r > 0. \quad (5)
\]

We start with a well-known upper bound on the size of the maximum independent set in \(G(n, d/n)\).

**Lemma 2.2.** Fix \(\epsilon > 0\). If \(d > 0\) is a sufficiently large constant (depending on \(\epsilon\)), then with probability \(1 - \exp(-\Omega(n))\) there is no independent set in \(G(n, d/n)\) of size exceeding \((2 + \epsilon)^{\log_d n}\).

**Proof.** Let \(\Phi = \frac{\log d}{d} n\) and define \(a \geq 2 + \epsilon\) so that \(a\Phi = \lceil (2 + \epsilon) \Phi \rceil\). Let \(N\) denote the number of independent sets of size exactly \(a\Phi\); our goal is to show \(N = 0\) with high probability. The proof will use a simple first moment method: we compute \(\mathbb{E}[N]\) and show that it is exponentially small. We have

\[
\mathbb{E}[N] = \binom{n}{a\Phi} (1 - d/n)^{(a^{\Phi})}
\]

\[
\leq \left( \frac{en}{a\Phi} \right)^{a\Phi} \exp \left( -\frac{d}{n} \frac{a\Phi}{2} \right) \quad \text{using (4) and (5)}
\]

\[
= \exp \left[ a\Phi \log \left( \frac{ed}{a \log d} \right) - \frac{da^2 c^2}{2n} + O(1) \right]
\]

\[
= \exp \left[ \Phi \log d \left( a - \frac{a^2}{2} + o(1) + o_d(1) \right) \right]
\]

\[
\leq \exp \left[ \Phi \log d \left( -\epsilon + o(1) + o_d(1) \right) \right]
\]

\[
= \exp(-\Omega(n))
\]

for sufficiently large \(d\). The result follows by Markov’s inequality. \(\square\)

The forbidden structure defined in the following result will be the crux of the proof.

**Proposition 2.3.** Fix constants \(\epsilon > 0\) and \(K \in \mathbb{N}\) with \(K \geq 1 + 5/\epsilon^2\). Consider the interpolation path \(Y^{(0)}, \ldots, Y^{(T)}\) from Definition 2.1, of any length \(T = n^{O(1)}\). If \(d > 0\) is a sufficiently large constant (depending on \(\epsilon, K\)), then with probability \(1 - \exp(-\Omega(n))\) there does not exist a sequence of sets \(S_1, \ldots, S_K \subseteq [n]\) satisfying the following properties:

(i) for each \(k \in [K]\) there exists \(0 \leq t_k \leq T\) such that \(S_k\) is an independent set in \(Y^{(t_k)}\),

(ii) \(|S_k| \geq (1 + \epsilon) \frac{\log_d n}{d} n\) for all \(k \in [K]\),

(iii) and \(|S_k \setminus (\cup_{\ell < k} S_{\ell})| \in \left[ \frac{\log_d n}{d}, \frac{\log_d n}{2} \right]\) for all \(2 \leq k \leq K\).

**Proof.** Let \(N\) denote the number of sequences \((S_1, \ldots, S_K)\) satisfying the properties (i)-(iii). The proof will use the first moment method: we compute \(\mathbb{E}[N]\) and show that it is exponentially small. Let \(\Phi = \frac{\log_d n}{d}\). Let \(a_k\) and \(b_k\) be defined by \(|S_k| = a_k \Phi\) and \(|S_k \setminus (\cup_{\ell < k} S_{\ell})| = b_k \Phi\), and note that (ii) and (iii) state that \(a_k \geq 1 + \epsilon\) and \(b_k \in \left[ \frac{\log_d n}{d}, \frac{\log_d n}{2} \right]\). Also let \(c\) be defined by \(|\cup_{\ell \leq K} S_{\ell}| = c\Phi\), and note that (iii) implies \(c \leq a_1 + (K-1)\Phi\).

By Lemma 2.2, we can assume \(a_k \leq 2 + \epsilon\). Thus, \(c\) is upper-bounded by a constant \(C(\epsilon, K)\) that does not depend on \(d\). We need to count the number of sequences \((S_1, \ldots, S_K)\). There are at most \(n^{2K}\) choices for
the values \( \{a_k\} \) and \( \{b_k\} \). Once \( \{a_k\} \) and \( \{b_k\} \) are fixed, the number of ways to choose \( \{S_k\} \) is at most
\[
\left( \frac{n}{a_1 \Phi} \right) \prod_{k=2}^{K} \left( \frac{n}{b_k \Phi} \right) \left( \frac{\Phi}{(a_k - b_k) \Phi} \right) \leq \left( \frac{en}{a_1 \Phi} \right) \prod_{k=2}^{K} \left( \frac{en}{b_k \Phi} \right) \left( \frac{ec}{a_k - b_k} \right)^{(a_k - b_k) \Phi}
\]
using (4)
\[
= \exp \left\{ a_1 \Phi \log \left( \frac{ed}{a_1 \log d} \right) + \sum_{k=2}^{K} b_k \Phi \log \left( \frac{ed}{b_k \log d} \right) + (a_k - b_k) \Phi \log \left( \frac{ec}{a_k - b_k} \right) \right\}
\]
\[
= \exp \left\{ \Phi \log d \left( a_1 + \sum_{k=2}^{K} b_k + o_d(1) \right) \right\}
\]
where we have used \( a_k \in [1 + \epsilon, 2 + \epsilon], b_k \in \left[ \frac{\epsilon}{2}, \frac{\epsilon}{2} \right], \) and \( c \leq C(\epsilon, K) \) to conclude that certain terms are \( o_d(1) \).

Now for a fixed \( \{S_k\} \) satisfying (ii) and (iii), we need to upper-bound the probability that (i) is satisfied. Let \( E \) be the number of edges \( j \in \left( \frac{n}{2} \right) \) of the complete graph such that there exists \( k \) such that both endpoints of \( j \) lie within \( S_k \). For fixed \( \{S_k\} \) and \( \{t_k\} \), property (i) occurs iff a certain collection of (at least) \( E \) independent non-edges occur in the sampling of \( \{Y^{(t)}\} \); this happens with probability at most \((1 - d/n)^E \leq \exp(-Ed/n) \). Furthermore, we have
\[
E \geq \left( \frac{a_1 \Phi}{2} \right) + \sum_{k=2}^{K} b_k (a_k - b_k) \Phi^2 = \frac{\Phi^2}{2} - O(n) + \sum_{k=2}^{K} b_k (a_k - b_k) \Phi^2
\]
\[
= \frac{n}{d} \cdot \Phi \log d \left( \frac{a_1}{2} + \sum_{k=2}^{K} b_k (a_k - b_k) - o(1) \right),
\]
where in the first step, the first term counts edges within \( S_1 \) and the \( k \)th term of the sum counts edges within \( S_k \) that have exactly one endpoint in \( \cup_{k<\ell} S_\ell \). (Note that no edges are double-counted here.)

Putting it all together, we have
\[
\mathbb{E}[N] \leq n^{2K} (T + 1)^K \sup_{\{a_k\}, \{b_k\}} \exp \left\{ \Phi \log d \left( a_1 + \sum_{k=2}^{K} b_k + o_d(1) \right) \right\} \exp \left( -\frac{d}{n} E \right)
\]
where \( \{a_k\} \) and \( \{b_k\} \) are subject to the constraints \( a_k \geq 1 + \epsilon \) and \( b_k \in \left[ \frac{\epsilon}{2}, \frac{\epsilon}{2} \right] \)
\[
\leq n^{2K} (T + 1)^K \sup_{\{a_k\}, \{b_k\}} \exp \left\{ \Phi \log d \left( a_1 + \sum_{k=2}^{K} b_k - \frac{a_1^2}{2} - \sum_{k=2}^{K} b_k (a_k - b_k) + o(1) + o_d(1) \right) \right\}
\]
\[
= n^{2K} (T + 1)^K \sup_{\{a_k\}, \{b_k\}} \exp \left\{ \Phi \log d \left( a_1 - \frac{a_1^2}{2} - \sum_{k=2}^{K} b_k (a_k - b_k - 1) + o(1) + o_d(1) \right) \right\}
\]
\[
\leq n^{2K} (T + 1)^K \exp \left\{ \Phi \log d \left( \frac{1}{2} - \sum_{k=2}^{K} \frac{\epsilon^2}{8} + o(1) + o_d(1) \right) \right\}
\]
where we have used the fact \( \sup_{a \in \mathbb{R}} \left( a - \frac{a^2}{2} \right) = \frac{1}{2} \) along with \( a_k \geq 1 + \epsilon \) and \( b_k \in \left[ \frac{\epsilon}{2}, \frac{\epsilon}{2} \right] \)
\[
\leq n^{2K} (T + 1)^K \exp \left\{ \Phi \log d \left( \frac{1}{8} + o(1) + o_d(1) \right) \right\}
\]
where we have used \( K \geq 1 + 5/\epsilon^2 \)
\[
= \exp(-\Omega(n))
\]
for sufficiently large \( d \). The result follows by Markov’s inequality. \( \square \)
Finally, we will need the following simple result which states that no independent set of $G(n, d/n)$ has large intersection with a fixed set of vertices.

**Lemma 2.4.** Fix constants $\epsilon > 0$ and $a > 0$. Fix $S \subseteq [n]$ with $|S| \leq a \frac{\log d}{d} n$. If $d > 0$ is a sufficiently large constant (depending on $\epsilon, a$), then with probability $1 - \exp(-\Omega(n))$ there is no independent set $S'$ in $G(n, d/n)$ satisfying $|S \cap S'| \geq \epsilon \frac{\log d}{d} n$.

**Proof.** The proof is similar to that of Lemma 2.2. As usual, define $\Phi = \frac{\log d}{d} n$. We again use the first moment method. Let $N$ be the number of subsets $U \subseteq S$ such that $|U| = \lceil c \Phi \rceil = b \Phi$ and $U$ is an independent set in $G(n, d/n)$; it is sufficient to show $N = 0$ with high probability. We have

$$\mathbb{E}[N] = \left( \frac{|S|}{b \Phi} \right) \left( 1 - \frac{d}{n} \right)^{\lceil c \Phi \rceil} \leq \left( \frac{e a}{b^2} \right) \exp \left( - \frac{d}{n} \left( \frac{b}{2} \right)^2 \right)$$

$$= \exp \left( b \Phi \log \left( \frac{e a}{b} \right) - \frac{d b^2 \Phi^2}{2n} + O(1) \right)$$

$$= \exp \left( \Phi \log d \left( - \frac{b^2}{2} + o(1) + o_d(1) \right) \right)$$

using $b \in [\epsilon, a]$ for sufficiently large $d$. The result follows by Markov’s inequality. 

\[\square\]

### 2.3 Stability of Low-Degree Polynomials

The main result of this section (Proposition 2.6) states that the output of a low-degree polynomial is resilient to changes in the input, in a particular sense. Throughout this section we will use the shorthand $p := d/n$. We think of $Y \sim G(n, p)$ as simply $Y \in \{0, 1\}^m$ with i.i.d. Bernoulli(p) coordinates; the graph structure will not be used in this section. We consider the hypercube graph with vertex set $\{0, 1\}^m$ and an edge $(y, y')$ whenever $y, y'$ differ on exactly one coordinate.

**Definition 2.5.** Let $f : \{0, 1\}^m \to \mathbb{R}^n$ and let $c > 0$. An edge $(y, y')$ of the hypercube $\{0, 1\}^m$ is said to be $c$-bad for $f$ if

$$\| f(y) - f(y') \| \geq c \mathbb{E}_{Y \sim G(n, p)} \| f(Y) \|^2.$$ 

Also, for $y \in \{0, 1\}^m$, let $B_i(y)$ denote the event that the edge traversed by flipping the $i$th coordinate of $y$ is $c$-bad for $f$.

The interpolation path (Definition 2.1) can be thought of as a random walk on the hypercube graph (which is allowed to either remain in place or traverse an edge at each step). The following main result of this section shows that with non-trivial probability, this walk encounters no bad edges. This result is similar to Theorem 4.2 of [GJW20] (which corresponds to the case $L = 1$).

**Proposition 2.6.** Let $L \in \mathbb{N}$ and $c > 0$. Consider the interpolation path $Y^{(0)}, \ldots, Y^{(T)}$ from Definition 2.1 of length $T = Lm$, with $p := d/n \leq 1/2$. Let $f : \{0, 1\}^m \to \mathbb{R}^n$ be a degree-$D$ polynomial. Then

$$\mathbb{P} \left[ \text{no edge of } Y^{(0)}, \ldots, Y^{(T)} \text{ is } c\text{-bad for } f \right] \geq p^{4LD/c}.$$ 

The proof will follow from the following two lemmas. The first is essentially an upper bound on the total number (weighted by the measure $G(n, p)$) of bad edges that a low-degree polynomial can have. This was proved in [GJW20] based on standard facts about the total influence of low-degree polynomials.

**Lemma 2.7 ([GJW20] Lemma 4.3).** If $p \leq 1/2$ and $f : \{0, 1\}^m \to \mathbb{R}^n$ is a degree-$D$ polynomial then

$$\frac{c p}{2} \sum_{i=1}^{m} \mathbb{P}_{Y \sim G(n, p)} \left[ B_i(Y) \right] \leq D,$$ 

where $B_i(y)$ is defined in Definition 2.5.
The next lemma gives an inequality that can be interpreted as follows. Roughly speaking, the right-hand side is large if there are many bad edges, and the left-hand side is large if the probability of having no bad edges on the interpolation path is small. Therefore, the inequality tells us that if the total number of bad edges is small then it is likely for the interpolation path to have no bad edges.

**Lemma 2.8.** Consider the interpolation path $Y^{(0)}, \ldots, Y^{(T)}$ and the associated function $\sigma : [T] \to [m]$ from Definition 2.1. Let $q(y)$ denote the probability that no edge of the interpolation path is bad, conditioned on the starting point $Y^{(0)} = y$. Then

$$-\mathbb{E}_{Y \sim G(n,p)} \log q(Y) \leq H(p) \sum_{i=1}^{T} \mathbb{P}_{Y \sim G(n,p)}[B_{\sigma(i)}(Y)]$$

where $H$ is the binary entropy function $H(p) = -p \log p - (1-p) \log(1-p)$.

**Remark 2.9.** The proof of Lemma 2.8 does not make use of the specific notion of c-bad from Definition 2.5. The result still holds if any arbitrary subset of the hypercube edges are designated “bad” (so long as $q(y)$ and $B_i(y)$ both use the same notion of “bad”).

**Remark 2.10.** Lemma 2.8 holds not just for the specific choice of $\sigma$ from Definition 2.1 but for any sequence $\sigma : [T] \to [m]$ of coordinates to resample. (In fact, this level of generality will be important for the inductive argument in the proof.)

**Proof.** Proceed by induction on $T$. The base case $T = 0$ is immediate. For the case $T \geq 1$, define $\tilde{q}(y)$ to be the probability that the sub-walk $Y^{(1)}, \ldots, Y^{(T)}$ never traverses a bad edge, conditioned on the starting point $Y^{(1)} = y$. Write $y_{-i}$ for the all-but-$i$th coordinates of $y$, and write $y_{-i}[b] \in \{0, 1\}^m$ to denote the vector obtained from $y_{-i}$ by setting coordinate $i$ to the value $b \in \{0, 1\}$. Note that the event $B_i(y)$ does not depend on $y_i$, so we can write $B_i(y_{-i}) := B_i(y)$. Let $j = \sigma(1)$ be the coordinate resampled in the first step. For any fixed value of $y_{-j}$, we will consider

$$\varphi(y_{-j}) := -(1-p) \log q(y_{-j}[0]) - p \log q(y_{-j}[1]),$$

which can be thought of as the contribution from $y_{-j}$ to the left-hand side of (7). If the event $B_j(y_{-j})$ holds then

$$\varphi(y_{-j}) = -(1-p) \log ([1-p] \tilde{q}(y_{-j}[0]) - p \log[p \tilde{q}(y_{-j}[1])]$$

$$= H(p) - (1-p) \log \tilde{q}(y_{-j}[0]) - p \log \tilde{q}(y_{-j}[1]),$$

and if the complement event $\overline{B_j(y_{-j})}$ holds then

$$\varphi(y_{-j}) = - \log([1-p] \tilde{q}(y_{-j}[0]) + p \tilde{q}(y_{-j}[1])$$

$$\leq -(1-p) \log \tilde{q}(y_{-j}[0]) - p \log \tilde{q}(y_{-j}[1])$$

where we have used convexity of $x \mapsto -\log x$. Therefore in general we have

$$\varphi(y_{-j}) \leq H(p) 1_{B_j(y_{-j})} - (1-p) \log \tilde{q}(y_{-j}[0]) - p \log \tilde{q}(y_{-j}[1]).$$

Now, with $Y \sim G(n,p)$, we can write

$$-\mathbb{E} \log q(Y) = \mathbb{E} \varphi(Y_{-j})$$

$$\leq \mathbb{E}[H(p) 1_{B_j(Y_{-j})} - (1-p) \log \tilde{q}(Y_{-j}[0]) - p \log \tilde{q}(Y_{-j}[1])]$$

$$= H(p) \mathbb{P}[B_j(Y)] - \mathbb{E} \log \tilde{q}(Y).$$

By the inductive hypothesis,

$$-\mathbb{E} \log \tilde{q}(Y) \leq H(p) \sum_{i=2}^{T} \mathbb{P}[B_{\sigma(i)}(Y)],$$

so this completes the proof. \qed
Define $q(y)$ as in Lemma 2.8. The probability that no edge of the interpolation path is $c$-bad is $\mathbb{E} q(Y)$ where $Y \sim G(n, p)$. We have

\[
-\log \mathbb{E} q(Y) \leq -\mathbb{E} \log q(Y) \quad \text{by Jensen’s inequality}
\]

\[
\leq H(p) \sum_{i=1}^{T} \mathbb{P}[B_{\sigma(i)}(Y)] \quad \text{by Lemma 2.8}
\]

\[
= H(p) \cdot L \sum_{i=1}^{m} \mathbb{P}[B_i(Y)] \quad \text{by Definition 2.1}
\]

\[
\leq H(p) \cdot L \cdot \frac{2D}{cp} \quad \text{by Lemma 2.7}
\]

\[
\leq -4c^{-1}LD\log p \quad \text{by (8)}
\]

which can be rearranged to yield the result. \hfill \square

### 2.4 Putting it Together

As in [GJW20], we start by observing that a random polynomial can be converted to a deterministic polynomial that works almost as well.

**Lemma 2.11.** Suppose $f$ is a random degree-$D$ polynomial that $(k, \delta, \gamma, \eta)$-optimizes the independent set problem in $G(n, d/n)$. Then for any $c > 2$ there exists a deterministic degree-$D$ polynomial that $(k, c\delta, c\gamma, \eta)$-optimizes the independent set problem in $G(n, d/n)$.

**Proof.** By definition, we have $\mathbb{E}_{Y, \omega}[||f(Y, \omega)||^2] \leq \gamma k$ and $\mathbb{P}_{Y, \omega}[|V_f^\eta(Y, \omega)| < k] \leq \delta$. By Markov’s inequality,

\[
\mathbb{P} \left[ \mathbb{E}_Y [||f(Y, \omega)||^2] \geq c\gamma k \right] \leq \frac{1}{c} \quad \text{and} \quad \mathbb{P} \left[ \mathbb{P}_Y [|V_f^\eta(Y, \omega)| < k] \geq c\delta \right] \leq \frac{1}{c}
\]

and so there exists a seed $\omega^* \in \Omega$ for which the resulting deterministic polynomial $f(\cdot) = f(\cdot, \omega^*)$ satisfies

\[
\mathbb{E}_Y [||f(Y)||^2] \leq c\gamma k \quad \text{and} \quad \mathbb{P}_Y [|V_f^\eta(Y)| < k] \leq c\delta
\]

as desired. \hfill \square

We now prove our main impossibility result.

**Proof of Theorem 1.3.** For any given $\epsilon > 0$, set $K = \lceil 1 + 5/\epsilon^2 \rceil$, $T = (K - 1)m$, and $\eta = \frac{2 \log d}{\text{mix}}$. The constant $d^* = d^*(\epsilon) \geq 1$ will be chosen so that $d$ is sufficiently large to apply Lemma 2.2, Proposition 2.3, and Lemma 2.4 in the sequel. Let $\Phi = \frac{\log d}{n}$.

Assume on the contrary that the random polynomial that we wish to rule out, exists. By Lemma 2.11, there exists a deterministic degree-$D$ polynomial $f$ that satisfies

\[
\mathbb{E}_Y [||f(Y)||^2] \leq 3\gamma (1 + \epsilon)\Phi \quad \text{and} \quad \mathbb{P}_Y [|V_f^\eta(Y)| < (1 + \epsilon)\Phi] \leq 3\delta. \quad (9)
\]

Sample the interpolation path $Y^{(0)}, \ldots, Y^{(T)}$ as in Definition 2.1, and let $U_t = V_f^\eta(Y^{(t)})$ be the resulting independent sets. Consider the following process to construct a sequence of sets $S_1, \ldots, S_K \subseteq [n]$. Let $S_1 = U_0$. Then for $k = 2, 3, \ldots, K$, let $S_k = U_t_k$ where $t_k \in [T]$ is the minimum $t$ for which $|U_t \setminus \cup_{k < k} S_t| \geq \frac{\epsilon}{2}\Phi$; if no such $t$ exists then the process fails. We will show that with positive probability (over the interpolation path), the following events all occur simultaneously:

(i) $|U_t| \geq (1 + \epsilon)\Phi$ for all $0 \leq t \leq T$, and the process $S_1, \ldots, S_K$ succeeds,
(ii) no edge on the interpolation path is $c$-bad for $f$, where $c = \frac{\epsilon}{96\gamma(1+\gamma)}$, 

(iii) the conclusion of Proposition 2.3 holds (i.e., no instance of the forbidden structure exists).

We will first show that events (i)-(iii) occur simultaneously with positive probability, and then we will show that this yields a contradiction. By Proposition 2.6, event (ii) occurs with probability at least $(d/n)^{4(K-1)/d/c}$.

To complete the proof, it remains to show that if events (i)-(iii) occur simultaneously, this results in a contradiction. We will first show $|U_t \triangle U_{t-1}| \leq \frac{c}{4}\Phi$ for all $1 \leq t \leq T$, where $\triangle$ denotes symmetric difference. From (i) we know that the failure event in $V_f^\gamma$ (the second case of (2)) does not occur on any of the inputs $Y^{(t)}$. Therefore, the definition of $V_f^\gamma$ (Definition 1.1) implies that there are at least $|U_t \triangle U_{t-1}| - 2\eta n$ coordinates $i \in [n]$ for which $|f_i(Y^{(t)}) - f_i(Y^{(t-1)})| \geq 1/2$. To see this, note that $1_{i \in U_t}$ can only differ from $1_{i \in U_{t-1}}$ if either

- $i$ lies in the set $(A \setminus \tilde{A}) \cup B$ (see Definition 1.1) for either $V_f^\gamma(Y^{(t)})$ or $V_f^\gamma(Y^{(t-1)})$, or
- among the values $f_i(Y^{(t)})$ and $f_i(Y^{(t-1)})$, one is $\geq 1$ and the other is $\leq 1/2$.

This means

$$\frac{1}{4}|U_t \triangle U_{t-1}| - 2\eta n \leq \|f(Y^{(t)}) - f(Y^{(t-1)})\|^2 \leq c\mathbb{E}_{Y \sim G(n,d/n)} [\|f(Y)\|^2] \leq 3c\gamma(1+\epsilon)\Phi$$

where we have used event (ii) along with the definition of $c$-bad (Definition 2.5) and the first property of $f$ from (9). Rearranging this yields

$$|U_t \triangle U_{t-1}| \leq 12c\gamma(1+\epsilon)\Phi + 2\eta n = \frac{c}{4}\Phi$$

as desired, where we have used $c = \frac{\epsilon}{96\gamma(1+\gamma)}$ and $\eta = \frac{c\log d}{16\gamma}$. 

Recall that $S_k$ is the first $U_t$ for which $|U_t \setminus (\cup_{j<k} S_j)| \geq \frac{c}{4}\Phi$. Using the fact $|U_t \triangle U_{t-1}| \leq \frac{c}{4}\Phi$ from above, this means $|S_k \setminus (\cup_{j<k} S_j)| \leq \frac{c}{4}\Phi$. Combining this with event (i) and the fact that $S_k$ is an independent set in $Y^{(t_k)}$, we have that $S_1, \ldots, S_K$ satisfies the properties of the forbidden structure from event (iii). This yields a contradiction and completes the proof. \qed
3 Proof of Achievability

In this section we prove our main achievability result (Theorem 1.4) which shows that low-degree algorithms can find independent sets of size \((1 - \epsilon)\frac{\log^2 d}{n}\). We begin by defining some terminology pertaining to local algorithms on graphs. Throughout this section we will consider graphs \(G = (V, E)\) with possibly-infinite vertex set \(V\), but which are locally finite, i.e., each vertex has a finite number of neighbors. We will consider functions that take as input \((G, v)\) where \(G = (V, E)\) is a graph and \(v \in V\) is a designated “root” vertex; let \(\Lambda\) denote the set of such \((G, v)\) pairs. We will also consider functions that take as input \((G, v, X)\) where \(G\) and \(v\) are as before and \(X : V \rightarrow [0, 1]\) is a labelling of the vertices; let \(\hat{\Lambda}\) denote the set of such \((G, v, X)\) pairs.

For a graph \(G = (V, E)\) and a vertex \(v \in V\), the \(r\)-neighborhood of \(v\), denoted \(N_r(G, v)\), is the rooted graph with root \(v\) that contains all vertices reachable from \(v\) by a path of length \(\leq r\), along with all edges on such paths. We will use \(|N_r(G, v)|\) to denote the number of edges in the \(r\)-neighborhood. Two rooted graphs are said to be isomorphic if there is a root-preserving graph isomorphism between them. A function \(g\) with domain \(\Lambda\) is said to be \(r\)-local if \(g(G, v)\) depends only on the isomorphism class of \(N_r(G, v)\). (Informally, \(g\) has access to the “shape” of the \(r\)-neighborhood but not the identity of the specific vertices.)

In the presence of vertex labels \(X : V \rightarrow [0, 1]\), we generalize the above notions as follows. The labeled \(r\)-neighborhood of \(v\) in \(G\), denoted \(\hat{N}_r(G, v, X)\), is the \(r\)-neighborhood along with the vertex labels given by \(X\) (restricted to the \(r\)-neighborhood). Two rooted labeled graphs are said to be isomorphic if there is a root-preserving and label-preserving graph isomorphism between them. A function \(h\) with domain \(\hat{\Lambda}\) is said to be \(r\)-local if \(h(G, v, X)\) depends only on the isomorphism class of \(\hat{N}_r(G, v, X)\).

The Poisson Galton–Watson tree with parameter \(d > 0\), denoted \(\text{PGW}(d)\), is the distribution over rooted (possibly-infinite) trees \((T, o)\) generated as follows:

- Start with a root vertex \(o\) at level 0.
- For \(\ell = 0, 1, 2, \ldots\), each vertex at level \(\ell\) independently spawns \(\text{Pois}(d)\) child vertices at level \(\ell + 1\).
- Every vertex (except the root) is connected to its parent by an edge.

It is well-known that the distribution of the \(r\)-neighborhood of any fixed vertex in \(G(n, d/n)\) converges to the \(r\)-neighborhood of the root in \(\text{PGW}(d)\) as \(n \rightarrow \infty\) with \(r\) held fixed (as discussed in e.g. [RV17]); see Lemma 3.3 below for one precise sense in which this convergence holds.

An \(r\)-local algorithm for the maximum independent set problem is an \(r\)-local function \(h : \hat{\Lambda} \rightarrow \{0, 1\}\) with the property that \(\{v \in V : h(G, v, X) = 1\}\) is an independent set for any graph \(G = (V, E)\) with any vertex labels \(X\). A line of prior work [LW07, HLS14, GS17, RV17] has considered the problem of choosing \(h\) to maximize the expected size of the independent set when \(G \sim G(n, d/n)\) and \(X\) is i.i.d. \(\text{Unif}([0, 1])\). Due to the convergence of local neighborhoods to \(\text{PGW}(d)\), this task is equivalent (up to sub-leading terms in \(n\)) to maximizing the probability that \(h(T, o, X) = 1\) when \((T, o) \sim \text{PGW}(d)\) and \(X\) is again i.i.d. \(\text{Unif}([0, 1])\).

The following result of [RV17] shows that local algorithms can produce large independent sets in \(\text{PGW}(d)\) as discussed in Section 4 of [RV17], this implies that local algorithms can produce independent sets of expected size \((1 - \epsilon)\frac{\log^2 d}{n}\) in \(G(n, d/n)\).

**Theorem 3.1** ([RV17] Theorem 4.1). For any \(\epsilon > 0\) and any sufficiently large \(d\) (depending on \(\epsilon\)), there exists \(r = r(\epsilon, d)\) and an \(r\)-local function \(h : \hat{\Lambda} \rightarrow \{0, 1\}\) satisfying the following. If \((T, o) \sim \text{PGW}(d)\) and vertex labels \(\{X_v\}_{v \in V(T)}\) are drawn i.i.d. from the uniform distribution on \([0, 1]\), then

- the vertex set \(\{v \in V(T) : h(T, o, X) = 1\}\) is an independent set in \(T\) with probability 1, and
- \(\mathbb{E}[h(T, o, X)] \geq (1 - \epsilon)\frac{\log d}{n}\).

**Remark 3.2.** Our proof of Theorem 1.4 will show how to approximate the local algorithm from Theorem 3.1 by a low-degree algorithm. We will not use any specifics of the local algorithm, and so our proof actually shows how to approximate any local algorithm by a low-degree algorithm. More precisely: for any fixed \(\epsilon > 0\), \(\eta > 0\), and \(d \geq 1\), if we are given an \(r\)-local algorithm \(h\) for independent sets with \(\mathbb{E}[h(T, o, X)] \geq \alpha\), then for any \(n \geq n^*(\epsilon, \eta, d, r, \alpha)\) we can produce a deterministic degree-\(D\) polynomial that \((k, \delta, \gamma, \eta)\)-optimizes the independent set problem in \(G(n, d/n)\) with parameters \(k = (1 - \epsilon)\alpha n\) and \(\delta = \exp(-Cn^{1/3})\) where \(D > 0, \gamma \geq 1, C > 0\) are constants depending on \(\epsilon, \eta, d, r, \alpha\).
The next result, which is a special case of Lemma 12.4 of [BCN20], quantifies the convergence of local neighborhoods of \(G(n, d/n)\) to PGW\((d)\).

**Lemma 3.3** (see [BCN20] Lemma 12.4). Let \(G \sim G(n, d/n)\), and let \((T, o) \sim \text{PGW}(d)\). Let \(g : \Lambda \rightarrow [-1, 1]\) be an \(r\)-local function. For all sufficiently large \(n\) (depending on \(d, r\)) and for any \(v \in [n]\),

\[
|\mathbb{E}[g(G, v)] - \mathbb{E}[g(T, o)]| \leq cn^{-1/4} \log n
\]

where \(c > 0\) is a universal constant.

The next result is a special case of (the first statement in) Proposition 12.3 of [BCN20].

**Proposition 3.4** (see [BCN20] Proposition 12.3). Let \(G \sim G(n, d/n)\) with \(d \geq 1\). Let \(g : \Lambda \rightarrow [-1, 1]\) be an \(r\)-local function. For all \(p \geq 2\),

\[
\mathbb{E} \left[ \left\| \sum_{v \in [n]} g(G, v) - \mathbb{E} \sum_{v \in [n]} g(G, v) \right\|^p \right] \leq \left( c \sqrt{np^{3/2}}(2d)^r \right)^p
\]

where \(c > 0\) is a universal constant.

A simple consequence of the above moment inequality is a tail bound for local functions.

**Corollary 3.5.** Let \(G \sim G(n, d/n)\) with \(d \geq 1\). Let \(g : \Lambda \rightarrow [-1, 1]\) be an \(r\)-local function. For a universal constant \(c > 0\) and for all \(t \geq (2e)^{3/2}c \sqrt{n}(2d)^r\),

\[
\mathbb{P} \left[ \left\| \sum_{v \in [n]} g(G, v) - \mathbb{E} \sum_{v \in [n]} g(G, v) \right\| \geq t \right] \leq \exp \left( -\frac{3t^{2/3}}{2ce^{2/3}n^{1/3}(2d)^{2r/3}} \right),
\]

**Proof.** Let \(c\) be the constant from Proposition 3.4. Choosing \(p = e^{-1}[c \sqrt{n}(2d)^r/t]^{-2/3} \geq 2\),

\[
\mathbb{P} \left[ \left\| \sum_{v \in [n]} g(G, v) - \mathbb{E} \sum_{v \in [n]} g(G, v) \right\| \geq t \right] = \mathbb{P} \left[ \left\| \sum_{v \in [n]} g(G, v) - \mathbb{E} \sum_{v \in [n]} g(G, v) \right\|^p \geq t^p \right]
\]

\[
\leq t^{-p} \mathbb{E} \left[ \left\| \sum_{v \in [n]} g(G, v) - \mathbb{E} \sum_{v \in [n]} g(G, v) \right\|^p \right]
\]

\[
\leq t^{-p} \left( c \sqrt{np^{3/2}}(2d)^r \right)^p
\]

\[
= \exp \left( -\frac{3}{2} t^{2/3} \right)
\]

\[
= \exp \left( -\frac{3t^{2/3}}{2ce^{2/3}n^{1/3}(2d)^{2r/3}} \right)
\]

as desired. \(\square\)

We will also need the following standard multiplicative version of the Chernoff bound [UM05].

**Proposition 3.6.** Suppose \(Z_1, \ldots, Z_n\) are independent, taking values in \(\{0, 1\}\). Let \(Z = \sum_i Z_i\) and \(\mu = \mathbb{E}[Z]\). For any \(0 \leq \delta \leq 1\),

\[
\mathbb{P}[Z \leq (1 - \delta)\mu] \leq \exp \left( -\frac{\delta^2 \mu}{2} \right).
\]

Also, for any \(\delta \geq 0\),

\[
\mathbb{P}[Z \geq (1 + \delta)\mu] \leq \exp \left( -\frac{\delta^2 \mu}{2 + \delta} \right),
\]

and so for \(\delta \geq 1\),

\[
\mathbb{P}[Z \geq (1 + \delta)\mu] \leq \exp \left( -\frac{\delta \mu}{3} \right).
\]
Proof of Theorem 1.4. Given $\epsilon > 0$, apply Theorem 3.1 (with $\epsilon/5$ in place of $\epsilon$) to obtain $d^*(\epsilon) > 1$, $r = r(\epsilon, d)$ and an $r$-local function $h : \hat{A} \rightarrow \{0, 1\}$ that outputs independent sets with $\mathbb{E}[h(T, o, X)] \geq (1 - \epsilon/5) \log d$ when $(T, o) \sim \text{PGW}(d)$ and $X$ is i.i.d. Unif([0, 1]).

By Lemma 2.11, it is sufficient to prove the result for a random polynomial instead of a deterministic one (up to a change in the constants $\tau, C$). We will construct a random polynomial $f : \{0, 1\}^2 \rightarrow \mathbb{R}^n$ as follows. The input $Y$ to $f$ encodes a graph on vertex set $[n]$. The internal randomness of $f$ samples vertex labels $\{X_v\}_{v \in [n]}$ i.i.d. from Unif([0, 1]). We will construct $f$ with the following property:

$$f_v(Y, X) = \frac{\left[ \sum_{G \in \mathcal{G}_{v,r,s}} \alpha(G, v, X) \prod_{e \in E(G)} Y_e \right]}{\left[ \sum_{G' \in \mathcal{G}_{v,r,s}} \prod_{E(G') \subseteq E(G)} \alpha(G', v, X) \right]}$$

where the coefficients $\alpha(G, v, X)$ are chosen so that (12) is satisfied, i.e., $\alpha(G, v, X)$ are defined recursively by

$$\alpha(G, v, X) = h(G, v, X) - \sum_{G' \in \mathcal{G}_{v,r,s}, E(G') \subseteq E(G)} \alpha(G', v, X).$$

Let $T$ be a set of rooted trees consisting of one representative from each isomorphism class of rooted trees of depth at most $2r$. Let $\mathcal{T}_s \subseteq T$ contain only those trees with at most $s$ edges. Let $Y \sim G(n, d/n)$, and for $T \in \mathcal{T}$, let $n_T$ denote the number of occurrences of the neighborhood $T$ in $Y$, i.e.,

$$n_T = |\{v \in [n] : N_2r(Y, v) \cong T\}|$$

where $\cong$ denotes isomorphism of rooted graphs. Also, for $T \in \mathcal{T}$, let $p_T$ denote the probability that $T$ occurs as the neighborhood of the root in PGW($d$), i.e.,

$$p_T = \frac{\mathbb{P}}{(u, o) \sim \text{PGW}(d)} [N_{2r}(U, o) \cong T].$$

Also, let $\phi_T$ denote the probability over $X$ that $h(Y, v, X) = 1$ conditioned on $N_{2r}(Y, v) \cong T$. (Note that the event $\{h(Y, v, X) = 1\}$ depends only on $X$ and $N_{r}(Y, v)$ since $h$ is r-local.)

By applying Lemma 3.3 to the function $g(G, v) = 1_{N_{2r}(G, v) \cong T}$, we have

$$|\mathbb{E}[n_T] - p_T n_T| \leq cn^{3/4} \log n$$

for sufficiently large $n$ (depending on $d, r$). By Corollary 3.5, for any $t \geq (2e)^{3/2}c \sqrt{n}(2d)^{2r}$,

$$\mathbb{P} \left[ |n_T - \mathbb{E}[n_T]| \geq t \right] \leq \exp \left( -\frac{3t^{2/3}}{2e^{2/3}n^{1/3}(2d)^{2r/3}} \right).$$

Combining (15) and (16) we have the following: for any $\tau > 0$ and for sufficiently large $n$ (depending on $d, r, \tau$),

$$\mathbb{P} \left[ |n_T - p_T n_T| \geq \tau n \right] \leq \exp(-Cn^{1/3})$$

for some $C = C(d, r, \tau) > 0$.

We will show that with high probability, the rounding procedure $V_f(Y, X)_{\tau}$ does not encounter the failure event (the second case of (2)). Suppose some vertex $v$ is such that $N_{2r}(Y, v)$ is a tree with $|N_{2r}(Y, v)| \leq s$. Then for all $u \in N_1(Y, v)$ we have that $N_r(Y, u)$ is a tree with $|N_r(Y, u)| \leq s$ and so by (12), $f_u(Y, X) = h(Y, u, X) \in \{0, 1\}$. Since $h$ outputs independent sets, it follows that $v$ is not in the “bad” set $(A \setminus \hat{A}) \cup B$ from the definition of $V_f$ (Definition 1.1). We have now shown that $(A \setminus \hat{A}) \cup B$ is disjoint from the set

$$V_s := \bigcup_{T \in \mathcal{T}_s} \{v \in [n] : N_{2r}(Y, v) \cong T\}.$$
For each $T \in \mathcal{T}$, we have from (17) that $|n_T - p_T n| \leq \eta n/2|\mathcal{T}|$ with probability $1 - \exp(-\Omega(n^{1/3}))$ where $\Omega(\cdot)$ hides a constant depending on $\epsilon, d, r, s, \eta$. Choose $s$ large enough so that $\sum_{T \in \mathcal{T}} p_T \geq 1 - \eta/2$. We now have
\[
|A \setminus \hat{A}| + |B| = |(A \setminus \hat{A}) \cup B| \leq n - |V_s| = n - \sum_{T \in \mathcal{T}} n_T \leq n - \sum_{T \in \mathcal{T}} \left( p_T n - \frac{\eta n}{2|\mathcal{T}|} \right) = \left( 1 - \sum_{T \in \mathcal{T}} p_T \right) n + \frac{\eta n}{2} \leq \eta n.
\]

In conclusion, $V_Y^\phi(Y, X)$ avoids the failure event with probability $1 - \exp(-\Omega(n^{1/3}))$.

Next we will show that the independent set $I := V_Y^\phi(Y, X)$ is large with high probability. From the guarantees on $h$,
\[
\left( 1 - \frac{\epsilon}{5} \right) \frac{\log d}{d} \leq \sum_{T \in \mathcal{T}} p_T \phi_T.
\]

Choose $s$ large enough so that $\sum_{T \in \mathcal{T}} p_T \geq 1 - \frac{s \log d}{d}$. Since $\phi_T \in [0, 1]$, this implies
\[
\sum_{T \in \mathcal{T}} p_T \phi_T \geq \left( \sum_{T \in \mathcal{T}} p_T \phi_T \right) - \frac{s \log d}{d} \geq \left( 1 - \frac{2s}{5} \right) \frac{\log d}{d}.
\]

Again using (17), with probability $1 - \exp(-\Omega(n^{1/3}))$ over $Y$,
\[
\sum_{T \in \mathcal{T}} n_T \phi_T \geq \sum_{T \in \mathcal{T}} \left( p_T n - \frac{\eta n}{2|\mathcal{T}|} \right) \phi_T \geq \left( \sum_{T \in \mathcal{T}} p_T \phi_T \right) n - \frac{s \log d}{d} n \geq \left( 1 - \frac{3s}{5} \right) \frac{\log d}{d} n. \tag{18}
\]

Now fix $Y$ satisfying (18) and consider the randomness of $X$. Recall from above that $(A \setminus \hat{A}) \cup B$ is disjoint from $V_s$. Thus, if $v$ satisfies $N_r(Y, v) \equiv T$ for some $T \in \mathcal{T}$ then $v$ will be included in the independent set $I := V_Y^\phi(Y, X)$ iff $h(Y, v, X) = 1$, which occurs with probability $\phi_v := \phi_T$ (over the randomness of $X$). We will partition the elements of $V_s$ into “bins” $W_1, \ldots, W_{s+1}$ such that for each bin $W_i$, the vertices in $W_i$ have disjoint $r$-neighborhoods and so the random variables $\{1_{v \in I}\}_{v \in W_i}$ are independent (conditioned on $Y$). Each vertex $v \in V_s$ has at most $s + 1$ vertices in its $2r$-neighborhood, and so there are at most $s$ vertices $u \in V_s$ such that $u \neq v$ and $N_r(Y, v) \cap N_r(Y, u) \neq \emptyset$. Since there are $s + 1$ bins, we can greedily assign vertices to bins in order to achieve the desired disjointness property. Now that the bins $\{W_i\}$ have been constructed, we have by the Chernoff bound (Proposition 3.6) that for each $i$,
\[
\mathbb{P}_X \left[ \sum_{v \in W_i} 1_{v \in I} \leq \left( 1 - \frac{\epsilon}{5} \right) \mu_i \right] \leq \exp \left( -\frac{1}{2} \left( \frac{\epsilon}{5} \right)^2 \mu_i \right) \tag{19}
\]

where
\[
\mu_i = \mathbb{P}_X \sum_{v \in W_i} 1_{v \in I} = \sum_{v \in W_i} \phi_v. \tag{20}
\]

Call a bin $W_i$ “large” if $\mu_i \geq \frac{\epsilon}{5(s+1)} \frac{\log d}{d} n$ and “small” otherwise. Using (19) and a union bound over $i$, we have with probability $1 - \exp(-\Omega(n))$ that every large bin $W_i$ satisfies $\sum_{v \in W_i} 1_{v \in I} \geq \left( 1 - \frac{\epsilon}{5} \right) \mu_i$. Provided this holds, we now have
\[
|I| \geq \sum_{v \in V_s} 1_{v \in I} \geq \sum_{i : W_i \text{ large}} \sum_{v \in W_i} 1_{v \in I} \geq \sum_{i : W_i \text{ large}} \left( 1 - \frac{\epsilon}{5} \right) \mu_i = \left( 1 - \frac{\epsilon}{5} \right) \left[ \sum_i \mu_i - \sum_{i : W_i \text{ small}} \mu_i \right]
\]
In order to bound the expectation of this quantity, we will need a tail bound for which is finite and independent of $n$

For each $G, \gamma = \text{fixed}$ and $v$, $|G| = \gamma$, let $m_i$ be the number of vertices whose distance in $G_v$ from $v$ is exactly $i$. Conditioned on $m_i$, we have that $m_{i+1}$ is stochastically dominated by $\text{Binomial}(m_i, n, d/n)$. Using the Chernoff bound (Proposition 3.6), for fixed $m_i \geq 1$ and any $\delta \geq 1$,

$$
\mathbb{P}[m_{i+1} \geq (1 + \delta)m_i] \leq \exp\left(-\frac{\delta dm_i}{3}\right) \leq \exp\left(-\frac{\delta d}{3}\right).
$$

Therefore, with probability at least $1 - r \exp(-\delta d/3)$, we have $m_i < [(1 + \delta)d]^i$ for all $0 \leq i \leq r$ and so

$$
N < \sum_{i=0}^{r} [(1 + \delta)d]^i \leq [(1 + \delta)d + 1]^r.
$$

For $\delta \geq 1$ and $d \geq 1$ we have $(1 + \delta)d + 1 \leq 2\delta d + 1 \leq 3\delta d$, so we can rewrite the above as

$$
\mathbb{P}[N \geq (3\delta d)^r] \leq r \exp(-\delta d/3).
$$

Letting $t = (3\delta d)^r$, we now have a tail bound for $N$: for all $t \geq (3d)^r$,

$$
\mathbb{P}[N \geq t] \leq r \exp(-t^{1/r}/9).
$$

Finally, combining this with (21), we have

$$
\mathbb{E}_{Y,X}[f_v(Y, X)^2] \leq \sum_{t=0}^{\infty} a^2(t + 1)^{2s} \mathbb{P}[N = t] \leq \sum_{t=[(3d)^r]}^{\infty} a^2(t + 1)^{2s} + \sum_{t=[(3d)^r]}^{\infty} a^2(t + 1)^{2s}r \exp(-t^{1/r}/9),
$$

which is finite and independent of $n$. This completes the proof.
Acknowledgments

The author is grateful to Charles Bordenave for helpful discussions regarding concentration of local functions on graphs (Proposition 3.4 and Corollary 3.5).

References

[AC08] Dimitris Achlioptas and Amin Coja-Oghlan. Algorithmic barriers from phase transitions. In 2008 49th Annual IEEE Symposium on Foundations of Computer Science, pages 793–802. IEEE, 2008.

[BB20] Matthew Brennan and Guy Bresler. Reducibility and statistical-computational gaps from secret leakage. arXiv preprint arXiv:2005.08099, 2020.

[BBH+20] Matthew Brennan, Guy Bresler, Samuel B Hopkins, Jerry Li, and Tselil Schramm. Statistical query algorithms and low-degree tests are almost equivalent. arXiv preprint arXiv:2009.06107, 2020.

[BBK+20] Afonso S Bandeira, Jess Banks, Dmitriy Kunisky, Cristopher Moore, and Alexander S Wein. Spectral planting and the hardness of refuting cuts, colorability, and communities in random graphs. arXiv preprint arXiv:2008.12237, 2020.

[BC15] Charles Bordenave and Pietro Caputo. Large deviations of empirical neighborhood distribution in sparse random graphs. Probability Theory and Related Fields, 163(1-2):149–222, 2015.

[BCN20] Charles Bordenave, Simon Coste, and Raj Rao Nadakuditi. Detection thresholds in very sparse matrix completion. arXiv preprint arXiv:2005.06062, 2020.

[BGJ20] Gérard Ben Arous, Reza Gheissari, and Aukosh Jagannath. Algorithmic thresholds for tensor PCA. Annals of Probability, 48(4):2052–2087, 2020.

[BGT10] Mohsen Bayati, David Gamarnik, and Prasad Tetali. Combinatorial approach to the interpolation method and scaling limits in sparse random graphs. In Proceedings of the forty-second ACM symposium on Theory of computing, pages 105–114, 2010.

[BHK+19] Boaz Barak, Samuel B Hopkins, Jonathan Kelner, Pravesh K Kothari, Ankur Moitra, and Aaron Potechin. A nearly tight sum-of-squares lower bound for the planted clique problem. SIAM Journal on Computing, 48(2):687–735, 2019.

[BKW20] Afonso S Bandeira, Dmitriy Kunisky, and Alexander S Wein. Computational hardness of certifying bounds on constrained PCA problems. In 11th Innovations in Theoretical Computer Science Conference (ITCS 2020). Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2020.

[BM11] Mohsen Bayati and Andrea Montanari. The dynamics of message passing on dense graphs, with applications to compressed sensing. IEEE Transactions on Information Theory, 57(2):764–785, 2011.

[CE15] Amin Coja-Oghlan and Charilaos Efthymiou. On independent sets in random graphs. Random Structures & Algorithms, 47(3):436–486, 2015.

[CGPR19] Wei-Kuo Chen, David Gamarnik, Dmitry Panchenko, and Mustazee Rahman. Suboptimality of local algorithms for a class of max-cut problems. Annals of Probability, 47(3):1587–1618, 2019.

[CHH17] Amin Coja-Oghlan, Amir Hosqhesnas, and Samuel Hetterich. Walksat stalls well below satisfiability. SIAM Journal on Discrete Mathematics, 31(2):1160–1173, 2017.

[CHK+20] Yeshwanth Cherapanamjeri, Samuel B Hopkins, Tarun Kathuria, Prasad Raghavendra, and Nilesh Tripuraneni. Algorithms for heavy-tailed statistics: Regression, covariance estimation, and beyond. In Proceedings of the 52nd Annual ACM SIGACT Symposium on Theory of Computing, pages 601–609, 2020.
[DKWB19] Yunzi Ding, Dmitriy Kunisky, Alexander S Wein, and Afonso S Bandeira. Subexponential-time algorithms for sparse PCA. *arXiv preprint arXiv:1907.11635*, 2019.

[DMM09] David L Donoho, Arian Maleki, and Andrea Montanari. Message-passing algorithms for compressed sensing. *Proceedings of the National Academy of Sciences*, 106(45):18914–18919, 2009.

[EMS20] Ahmed El Alaoui, Andrea Montanari, and Mark Sellke. Optimization of mean-field spin glasses. *arXiv preprint arXiv:2001.00904*, 2020.

[ES20] Ahmed El Alaoui and Mark Sellke. Algorithmic pure states for the negative spherical perceptron. *arXiv preprint arXiv:2010.15811*, 2020.

[Fri90] Alan M Frieze. On the independence number of random graphs. *Discrete Mathematics*, 81(2):171–175, 1990.

[GJ19] David Gamarnik and Aukosh Jagannath. The overlap gap property and approximate message passing algorithms for $p$-spin models. *arXiv preprint arXiv:1911.06943*, 2019.

[GJW20] David Gamarnik, Aukosh Jagannath, and Alexander S Wein. Low-degree hardness of random optimization problems. *arXiv preprint arXiv:2004.12063*, 2020.

[GS14] David Gamarnik and Madhu Sudan. Performance of the survey propagation-guided decimation algorithm for the random NAE-K-SAT problem. *arXiv preprint arXiv:1402.0052*, 2014.

[GS17] David Gamarnik and Madhu Sudan. Limits of local algorithms over sparse random graphs. *The Annals of Probability*, 45(4):2353–2376, 2017.

[HKP+17] Samuel B Hopkins, Pravesh K Kothari, Aaron Potechin, Prasad Raghavendra, Tselil Schramm, and David Steurer. The power of sum-of-squares for detecting hidden structures. In *2017 IEEE 58th Annual Symposium on Foundations of Computer Science (FOCS)*, pages 720–731. IEEE, 2017.

[HLS14] Hamed Hatami, László Lovász, and Balázs Szegedy. Limits of locally–globally convergent graph sequences. *Geometric and Functional Analysis*, 24(1):269–296, 2014.

[Hop18] Samuel B Hopkins. *Statistical Inference and the Sum of Squares Method*. PhD thesis, Cornell University, 2018.

[HS17] Samuel B Hopkins and David Steurer. Efficient bayesian estimation from few samples: community detection and related problems. In *2017 IEEE 58th Annual Symposium on Foundations of Computer Science (FOCS)*, pages 379–390. IEEE, 2017.

[HSS15] Samuel B Hopkins, Jonathan Shi, and David Steurer. Tensor principal component analysis via sum-of-squares proofs. In *Conference on Learning Theory*, pages 956–1006, 2015.

[JM13] Adel Javanmard and Andrea Montanari. State evolution for general approximate message passing algorithms, with applications to spatial coupling. *Information and Inference: A Journal of the IMA*, 2(2):115–144, 2013.

[Kar76] Richard M Karp. The probabilistic analysis of some combinatorial search algorithms. 1976.

[KWB19] Dmitriy Kunisky, Alexander S Wein, and Afonso S Bandeira. Notes on computational hardness of hypothesis testing: Predictions using the low-degree likelihood ratio. *arXiv preprint arXiv:1907.11636*, 2019.

[LW07] Joseph Lauer and Nicholas Wormald. Large independent sets in regular graphs of large girth. *Journal of Combinatorial Theory, Series B*, 97(6):999–1009, 2007.

[LZ20] Yueting Luo and Anrui R Zhang. Tensor clustering with planted structures: Statistical optimality and computational limits. *arXiv preprint arXiv:2005.10743*, 2020.
[Mon19] Andrea Montanari. Optimization of the Sherrington-Kirkpatrick hamiltonian. In 2019 IEEE 60th Annual Symposium on Foundations of Computer Science (FOCS), pages 1417–1433. IEEE, 2019.

[MR15] Andrea Montanari and Emile Richard. Non-negative principal component analysis: Message passing algorithms and sharp asymptotics. IEEE Transactions on Information Theory, 62(3):1458–1484, 2015.

[RM14] Emile Richard and Andrea Montanari. A statistical model for tensor PCA. In Advances in Neural Information Processing Systems, pages 2897–2905, 2014.

[RV17] Mustazee Rahman and Bálint Virág. Local algorithms for independent sets are half-optimal. The Annals of Probability, 45(3):1543–1577, 2017.

[Sub18] Eliran Subag. Following the ground-states of full-RSB spherical spin glasses. arXiv preprint arXiv:1812.04588, 2018.

[SW20] Tselil Schramm and Alexander S Wein. Computational barriers to estimation from low-degree polynomials. arXiv preprint arXiv:2008.02269, 2020.

[UM05] Eli Upfal and Michael Mitzenmacher. Probability and computing. Cambridge University Press, 2005.