Headspace Volatile Compounds of Steamed Liriopis Tuber Tea Affected by Steaming Frequency

Jin-Yong Park¹, So-Hae Park², Heeseob Lee², and Yang-Bong Lee³

¹Department of Food Science and Technology, Graduate School, Pukyong National University, Busan 608-737, Korea
²Department of Food Science and Nutrition, Pusan National University, Busan 609-735, Korea

ABSTRACT: Flavor quality of Liriopis tuber tea that was made using a steaming process was studied by measuring changes in headspace volatile compounds. Headspace volatile compounds of the prepared samples were isolated, separated and identified by the combined system of purge & trap, automatic thermal desorber, gas chromatography, and mass selective detector. As steaming frequencies were increased, the area percent of aldehydes decreased from 32.01% to 3.39% at 1 and 9 steaming frequency times, respectively. However, furans and ketones increased from 18.67% to 33.86% and from 9.60% to 17.40% at 1 and 9 times, respectively. The savory flavor of Liriopis tuber tea was due to a decrease in aldehydes contributing a fresh flavor at the 1st steaming process and newly generated furans from nonenzymatic browning with repeated steaming frequencies. These results will provide basic information for quality control of the newly developed Liriopis tuber tea.

Keywords: Liriopis tuber tea, headspace volatile compound, steaming frequency

INTRODUCTION

Liriopis tuber is a perennial plant of Liliaceae, which is similar to barley in roots and to glutinous millet in leaves. It is used as ornamental plants due to its beautiful flowers and as medicinal resources for roots. Traditional uses of Liriopis tuber include calming cough, removing phlegm, bringing stamina, improving diuresis, stopping thirst and others in oriental medicine (1). Based on these traditional uses, it has been studied and reported as blood sugar depressing, antidiabetes, antiinflammation, immunodulatory, liver protection, anticancer, and brain cell protection/enhancement (1,2). However, there are few studies about use of Liriopis tuber in food like tea.

Tea originated from China and later distributed to Korea and Japan. Nowadays, it is used worldwide. Tea is sometimes made using a steaming process. The steaming process prevents destruction of active components and makes new compounds by changing components via the indirect thermal treatment (3). Particularly, “Gujeung-Gupo” is the traditional steaming process that passes through a steaming and drying process 9 times. This is usually used for the processing of medicinal herbs such as red ginseng (4,5) and Rehmannia glutinosa (6). The reason for short steaming hours and fewer steaming times is to minimize loss of effective components that occur during long time steaming. Also, another result of steaming time and frequency is to increase Maillard reaction products by the repetitive process of steaming and drying (4). However, there are few papers on flavor quality of Liriopis tuber tea according to steaming process.

Flavor quality of tea is different depending on aromatic compounds in its final product. Aromatic compounds of green tea are numerous and volatile compounds of a complex flavor such as tea are affected by the process method (7). Comparison of aromatic compounds between green tea and roasted green tea showed 10 species of volatile compounds such as leaf alcohol, and leaf aldehyde are decreased, but species of ester, ketone, and nitrogenous compounds are increased. Delicate flavor compounds were identified from Maillard reaction products that are caused by heat treatment (7). Also, Liriopis tuber composition is reported by several studies to change in general components and physicochemical characters after heat treatment methods like steaming or roasting (1,8,9). However, reports lack analysis data of volatile aromatic compounds. Therefore, changes of volatile compounds of Liriopis tuber according to steaming frequency were investigated.
MATERIALS AND METHODS

Preparation of steamed *Liriopis* tuber powder

Liriopis tuber harvested in the early spring of 2010 was purchased in Miryang, Korea. Tuber was kept at −40°C before sample treatment. *Liriopis* tuber sample was made using different steaming conditions. Dried *Liriopis* tuber (200 g) was steamed with 150 mL distilled water at 99°C for 3 h and dried at 70°C for 21 h using hot air. This process was repeated 1, 3, 5, 7, and 9 times. Then, samples were dried at 70°C for 51 h using hot air. Samples were then freeze-dried for 48 h. The dried samples were crushed and filtered using a 50 mesh sieve.

Adsorption and desorption of headspace volatile compounds

The 5 g of five *Liriopis* tuber samples of 1, 3, 5, 7, and 9 times steaming frequencies were put into each 250 mL dark brown bottle (Supelco Inc., Bellefonte, PA, USA) and sealed. The sealed serum bottles were put in a dry oven at 60°C for 30 min. After they were cooled at room temperature for 30 min. A syringe was connected with a thin tube placed in a silicon septum and other side of the tube was connected to an adsorption pipe. Head-space volatile compounds created in the dark brown bottle were adsorbed in the stainless steel adsorption pipe (Agilent Technologies Inc., Santa Clara, CA, USA) of 90 cm length packed with Tenax-TA for 5 min using a VPC-10 vacuum pump (Shimadzu Corporation, Kyoto, Japan) and mass flow controller (Fig. 1). The stainless steel adsorption pipe was installed in an automated thermal desorber (ATD 400, PerkinElmer, Inc., Waltham, MA, USA) and desorbed in the opposite direction of adsorption direction. The desorption temperature conditions had the first desorption at 350°C for 4 min. Then, the second desorption took place at 350°C for 1 min. Desorb flow was maintained at 50.2 mL/min.

GC-MS analysis

A Tenax adsorption column was used with an automatic thermal desorber (ATD 400, PerkinElmer, Inc.) and the headspace volatile compounds were automatically injected into the GC-2010 Gas Chromatograph (Shimadzu Corporation). Volatiles were separated with a GC-column and identified through Shimadzu QP-2010 Plus mass selective detector (Shimadzu Corporation). The GC column used was an AT-1 (60 m×0.32 mm×1.0 μm, Alltech, Nicholasville, KY, USA). The temperature conditions of the GC oven were divided into 4 steps. First, the temperature was kept at 35°C for 10 min and in the second step, it was increased up to 120°C at the rate of 8°C/min and then maintained for 10 min. In the third one, it was increased up to 180 at the rate of 12°C/min and kept for 7 min. Finally, it was increased until 230°C at the rate of 15°C/min and then maintained for 10 min. The temperature of GC interface was kept at 230°C. Carrier gas was helium gas of purity 99.9999 percent.

The temperature of MSD was 250°C, mass range was set to 20~350 m/z, ionization voltage was 70 eV. The identification of each peak in the total ion chromatogram was carried out by comparing its mass spectrum with Wiley 211 or Nist 107 mass spectral databases (John Wiley & Sons, Inc., Hoboken, NJ, USA). Then, it was positively identified by comparing with Kovats retention index. The quantitative analysis of identified volatile compounds was shown in relative area percent with the total peak area equaling 100 percent.

RESULTS AND DISCUSSION

Total ion chromatograms of headspace volatile compounds isolated from *Liriopis* tuber according to steaming frequency are shown in Fig. 2. Their identified volatile compounds are represented in Table 1. The volatile compounds in 5, 8, 11, 16, 20, 22, and 24 retention time (min) were decreased with the increased steaming frequencies. These volatile compounds were 2-methyl propanal, 3-methyl butanal, 3-hydroxy-2-butanone, n-hexanal, 2,6-dimethyl pyrazine, 2-pentyl furan, and D-limonene. These were thought not to relate to savory flavors of *Liriopis* tuber. Pyrazine is a typical roasted flavor (10). 2,6-Dimethyl pyrazine was thought not to relate with savory flavor of *Liriopis* tuber.

In Table 1, the total numbers of identified volatile compounds were 74, 49, 48, 41, and 51 from 1, 3, 5, 7, and 9 frequencies, respectively. As the steaming frequencies increased, the volatile compound species of the samples decreased, except for the 9th steaming sample. Five aldehydes, 2 alcohols, 10 furans, 3 aromatic compounds, 3 acids, 3 esters, 2 ketones, and 2 aliphatic...
compounds were identified from all the samples of 1 to 9 frequencies.

The changes of area percentages of volatile compound classes are shown Fig. 3. As steaming frequency increased, the area percentage of aldehydes, aliphatic compounds, sulfur-containing compounds, terpenes, and pyrazines were decreased, but furans, acids, ketones, esters, and aromatic compounds were increased.

Aldehyde, the most abundant class among total volatile compounds of *Liriopis* tube, respectively was 32.01%, and 33.41% at steaming 1st and 3rd times. Then, they decreased to 9.96%, 4.12%, and 3.39% in 5, 7, and 9 frequencies, respectively. Because aldehydes such as 2-methyl propanal, 3-methyl butanal, and 2-methyl butanal had low boiling points, they disappeared as the steaming process was repeated (11). 3-Methyl butanal and 2-methyl butanal were identified compounds from tea such as green tea, and semi-fermented tea, and are known to contribute to their sweet flavor (10,12). C6-aldehydes like hexanal, and 2-hexenal contribute to a fresh flavor of tea. Hexanal was identified in Chinese-fermented tea like Liu Bao tea. 2-Hexenal was found from black tea (10), and is known to be created by reaction of unsaturated fatty acids such as linoleic acid (C18:2) and linolenic acid (C18:3), and enzymes such as lipoxygenase, hydroperoxylyase and isomerase (7). Nonanal, with a strong sweet and flower aroma and benzaldehyde with a roasted almond aroma decreased with the increased steaming frequencies (14).

Alcohols, which were the second in area percentage among the identified total volatile compounds of *Liriopis* tube, were 28.16% at steaming 1 time. The area percentage of alcohols increased to 38.30% at the 5th steaming time, to 42.54% at the 7th steaming time, but the alcohol percentage of the final product decreased to 29.75%. This was largely on account of changes of ethanol which had the highest area percentage among alcohols. However, it has been reported that alcohols don't greatly affect food flavor unless high concentrations of alcohol were present because alcohols have high odor detection threshold values (15).

Furan contents were 18.67%, 26.03%, 29.71%, 27.75%, and 33.86% from 1, 3, 5, 7, and 9 frequencies, respectively. As the frequencies increased, furan amounts were
Table 1. Volatile compounds in steamed *Liriope tuber* powder according to different steaming frequencies (times)

Compounds	RT¹	RT²	Area (%)	Rf³				
	1	3	5	7	9			
Aromatic compound (6)								
Benzene	9.11	658	0.58	0.94	0.17	0.78	0.25	b, c
Methyl benzene	14.90	771	0.27	0.80	0.34	0.21	0.35	b, c
Ethyl benzene	18.60	864	0.07	0.24	0.18	0.11	0.17	b, c
1,2-Dimethyl benzene	18.86	872	0.07	0.24	0.48	0.48	b, c	c
Styrene	19.55	890	0.99	1.47	1.81	1.10	3.32	b
(1-Methylbutenyl) benzene	22.41	972	0.27	0.80	0.34	0.21	0.35	b, c
Alcohol (14)								
Methanol	3.32	<500	1.79	1.76	0.84		0.82	c
Ethanol	3.74	<500	20.24	15.92	37.00	38.83	28.77	c
2-Propanol	4.25	504	3.44	4.47	2.04			c
2,5-Dimethyl pentanal^T	7.97	636	0.37					a, c
2,4-Undecadienal^T	10.25	678	0.31	0.14	0.11	1.36	0.15	c
2-Methyl-3-butenol^T	14.68	767	0.13		0.23			a, c
2-Methyl-1-butanol^T	15.40	781	0.42					a, c
2,4-Undecadienal^T	15.40	781	0.42					a, c
2,7-Dimethyl-1-octanol^T	26.40	1088	0.19		0.07			a, c
Subtotal	28.16	22.54	38.30	42.54	29.75			

Note: Rf values are given for compounds identified by retention indices (RT) and area percentages.
Table 1. Continued

Compounds	RT¹⁾	RI²⁾	Area (%)³	Rf³⁾				
			1	3	5	7	9	
Acetate (6)								
Acetic acid^T	8.10	639	3.64	4.37	9.48	6.79	7.82	
Propanoic acid^T	12.93	730	0.20	0.24	0.44	0.44	0.44	
2-Propenoic acid	13.29	738	—	—	—	0.01	0.03	b
2-Methyl propanoic acid^T	15.60	785	0.14	0.12	0.06	0.03	0.05	
2-Methyl butanoic acid^T	18.80	870	0.29	0.25	—	—	—	
Benzoic acid^d	31.81	1193	—	—	—	—	0.47	
Subtotal			4.26	4.98	9.98	7.26	8.81	
Ester (11)								
Formic acid, methyl ester^T	3.46	<500	0.79	0.78	0.81	2.31	2.06	
Formic acid, ethyl ester	4.43	514	0.39	2.02	0.10	0.12	0.11	
Acetic acid, methyl ester	4.67	526	0.41	—	0.34	—	0.37	c
Sulfurous acid, dimethyl ester^T	5.24	553	—	—	—	—	0.07	
Acetic acid, ethyl ester	7.01	614	0.38	0.17	0.20	0.14	0.23	a, b
2-Hydroxy-propanoic acid, methyl ester^T	13.97	752	—	—	0.03	0.04	—	
1-Methoxy-2-propyl acetate^T	18.83	871	—	0.45	0.02	0.24	0.27	
Pentanoic acid, ethyl ester	19.70	894	0.28	—	—	—	—	b
Hexanoic acid, methyl ester	20.47	917	0.02	—	—	—	—	
Oxalic acid, 2-ethylhexyl ester	23.42	998	0.18	0.12	0.09	—	—	
Octanoic acid, ethyl ester	31.85	1193	0.07	—	—	—	—	a
Subtotal			2.51	3.54	1.56	2.84	3.15	
Ketone (13)								
2-Propanone	4.01	<500	5.53	4.93	3.08	4.45	4.34	c
2,3-Butanedione	5.14	574	0.62	—	2.83	5.21	7.39	c
2-Butanone	6.14	589	0.60	0.25	0.14	0.26	—	c
2-Pentanone^T	10.60	684	0.05	—	—	—	—	
2,3-Pentanedione	10.73	686	0.76	1.24	2.06	4.18	5.53	a
3-Hydroxy-2-butanone	11.74	702	1.44	0.53	0.21	—	—	a
4-Methyl-2-pentanone^T	13.64	745	—	—	—	0.03	0.03	
1-Hydroxy-2-butanone^T	14.72	768	—	—	—	—	0.08	
2-Hexanone	15.75	787	0.06	—	—	—	—	
2-Heptanone	19.32	884	0.44	—	—	—	—	
3-Octanol	20.80	927	0.02	—	—	—	—	
2,6-Dimethyl-3-heptanone^T	20.98	932	0.02	0.01	—	—	—	a
2-Octanol	22.21	966	0.07	—	—	—	—	
Subtotal			9.60	6.96	8.31	14.13	17.40	
Aliphatic compound (9)								
n-Pentane	4.17	500	1.10	—	—	—	—	a
n-Hexane	6.43	600	0.15	—	—	—	—	a
2,3,4-Trimethyl pentane^T	14.46	762	0.11	0.14	0.05	0.10	0.03	
2,3,3-Trimethyl pentane^T	14.66	766	0.16	—	—	—	—	
2,2,3,3-Tetramethyl pentane^T	14.73	768	—	—	—	—	0.09	
2-Octene	16.48	801	0.11	—	—	—	—	b
3,5-Dimethyl heptane	17.89	844	0.02	—	—	—	—	b
n-Nonane	19.91	900	0.07	—	—	—	—	
Dodecane	32.25	1200	0.08	0.20	0.21	0.13	0.17	a
Subtotal			1.81	0.33	0.26	0.23	0.29	
Others (5)								
Diacetyl sulfide^T	12.61	723	—	—	—	—	—	0.01
Dimethyl disulfide	13.53	743	0.14	0.11	—	0.03	0.02	c
2,6-Dimethyl pyrazine	20.29	911	0.77	0.47	0.02	—	—	c
α-Pinene	21.20	938	0.11	—	—	—	—	a
o-Limonene	24.55	1024	0.97	0.16	0.09	—	—	
Subtotal			1.99	0.74	0.11	0.03	0.03	
Total			100.00	100.00	100.00	100.00	100.00	

¹RT and RI stand for retention time and Kovat retention index, respectively.

²Rf is references. a is Flavornet.org, b is Pherobase.com, c is Makkhen’s thesis

³The superscript of “T” of the compounds means tentatively identified compound by matching mass spectrum data of sample with reference one. The other compounds are positively identified by using MS and RI.
Headspace Volatile Compounds of *Liriopis Tuber*

Fig. 3. The changes of ratios of volatile compounds according to different steaming frequencies.

	Aldehyde	Alcohol	Furan
Frequency	1 3 5 7 9	1 3 5 7 9	1 3 5 7 9
Aldehyde	7 (4.12%)	9 (29.75%)	9 (33.86%)
	5 (9.96%)	1 (28.16%)	1 (18.67%)
	3 (3.39%)	3 (22.54%)	3 (26.03%)
	1 (32.01%)	7 (42.54%)	5 (29.71%)
	3 (33.41%)	5 (38.30%)	

	Ketone	Aromatic compound	Esler
Frequency	1 3 5 7 9	1 3 5 7 9	1 3 5 7 9
Ketone	9 (17.40%)	9 (3.32%)	9 (3.15%)
	7 (14.13%)	7 (1.10%)	7 (2.84%)
	5 (8.31%)	5 (1.81%)	5 (1.56%)
			3 (3.54%)

	Acid	Aliphatic compound	Others
Frequency	1 3 5 7 9	1 3 5 7 9	1 3 5 7 9
Acid	9 (8.81%)	7 (0.23%)	5 (0.11%)
	7 (7.26%)	9 (0.29%)	7 (0.03%)
	5 (9.98%)	1 (1.81%)	3 (0.74%)
			9 (0.03%)

- Acid area percents were 4.26%, 4.98%, 9.98%, 7.26%, and 8.81% from 1, 3, 5, 7, and 9 frequencies, respectively. They were increased until 5 frequencies and then their amounts fluctuated. The reason was thought that acetic acid was the most abundant acid was the main factor of these changes.

- Ketone area percents were 9.60%, 6.96%, 8.31%, 14.13%, and 17.40% from 1, 3, 5, 7, and 9 frequencies, respectively. In the third frequency, they were a little decreased, but after the third one, they were consistently increased in Fig. 3. The amounts of 2,3-butanedione and 2,3-pentanedione were increased according to the increased steaming frequencies. Sour taste was evaluated to be high among other tastes in sensory evaluation results of hot water extract from *Liriopis tuber* (9). Also, 2,3-pentanedione was identified from buckwheat-green tea (10).

- Sulfur-containing compounds, terpenes, and pyrazines were identified in low amounts. Dimethyl disulfide is known to have an onion, cabbage, and putrid flavor (18). But as frequency was increased, these compounds dis-
appeared. Terpenes are known to have forest or green aromas (14). These compounds disappeared with increased steaming frequencies.

Esters, other aliphatic compounds, and other aromatic compounds were found in small area percentages among total volatile compounds. Moreover, most of the aliphatic compounds disappeared after the first steaming frequency.

ACKNOWLEDGEMENTS

This work was supported by a Research Grant of Pukyong National University (granted in 2014).

AUTHOR DISCLOSURE STATEMENT

The authors declare no conflict of interest.

REFERENCES

1. Bae KM, Park SH, Jung KH, Kim MJ, Hong SH, Song YO, Lee HS. 2010. Effects of roasting conditions on physicochemical properties and sensory properties of Liriopis tuber. J Korean Soc Food Sci Nutr 39: 1503-1508.
2. Kim JE, Hwang IS, Goo JS, Nam SH, Choi SI, Lee HR, Lee YJ, Kim YH, Park SJ, Kim NS, Choi HY, Hwang DY. 2012. LP9M80-H isolated from Liriope platyphylla could help alleviate diabetic symptoms via the regulation of glucose and lipid concentration. J Life Sci 22: 634-641.
3. Song CH, Seo YC, Choi WY, Lee CG, Kim DU, Chung JY, Chung HC, Park DS, Ma CJ, Lee HY. 2012. Enhancement of antioxidative activity of Codonopsis lanceolata by stepwise steaming process. Korean J Medicinal Crop Sci 20: 238-244.
4. Hong HD, Kim YC, Rho JH, Kim KT, Lee YC. 2007. Changes on physicochemical properties of Panax ginseng C. A. Meyer during repeated steaming process. J Ginseng Res 31: 222-229.
5. Lee JS. 2010. Effect of repeated heat-process on content of arginyl-fructose (AF), arginyl-fructosyl-glucose (AFG) and bioactivities of Korean red ginseng extract. MS Thesis. Hannam University, Daejeon, Korea.
6. Ma JY, Ha CS, Sung HJ, Zee OP. 2000. Hemopoietic effects of Rhizoma Rehmanniae preparata on cyclophosphamide-induced pernicious anemia in rats. Korean J Pharmacogn 31: 325-334.
7. Lee SI. 2011. Analysis of volatile flavor components in fresh and roasted green tea. MS Thesis. Chosun University, Gwangju, Korea.
8. Park SH. 2013. Studies on bioactive compounds and biological activities of steamed Liriope platyphylla and its application on beverage products. PhD Dissertation. Pusan National University, Busan, Korea.
9. Kim SD, Ku YS, Lee IZ, Kim ID, Youn KS. 2001. General components and sensory evaluation of hot water extract from Lirioptis tuber. J Korean Soc Food Sci Nutr 30: 20-24.
10. Choi SH. 2007. Volatile flavor components of backwheat-green tea. J Life Sci 17: 1111-1114.
11. Jeon JY, Choi SH. 2011. Aroma characteristics of dried citrus fruits-blended green tea. J Life Sci 21: 739-745.
12. Choi SH. 2001. Volatile aroma components of Korean semi-fermented teas. Korean J Food Sci Technol 33: 529-533.
13. Jeon JY, Choi SH. 2010. Volatile flavor components in a mixed tea of Pueraria radix and green tea. J Life Sci 20: 350-355.
14. Jeon JY. 2011. Volatile flavor compounds of green tea by the addition of Puerariae radix, adlay, naked barley and Cynanchi radix. MS Thesis. Dong-Eui University, Busan, Korea.
15. Lee JS, Joo DS, Kim H, Jang SM, Choi HG, Cho SY, Cha YJ, Lee EH. 1997. Flavor compounds in commercial Toha-jeot. J Korean Soc Food Sci Nutr 26: 222-228.
16. Jeon SY, Jeong EJ, Baek JH, Cha YJ. 2011. Comparison of volatile flavor compounds in commercial black onion extracts. J Life Sci 21: 1740-1745.
17. Makkhen K. 2012. Development of seafood flavor using glucosamine and other precursors and its application to teriyaki sauce. MS Thesis. Pukyong National University, Busan, Korea.
18. Acree T, Arn H. 2004. Kovats RI. http://www.flavornet.org/flavornet.html (accessed May 2014).