Fractal index, central charge and fractons

Wellington da Cruz and Rosevaldo de Oliveira

Departamento de Física,
Universidade Estadual de Londrina, Caixa Postal 6001,
Cep 86051-970 Londrina, PR, Brazil

(August 4, 2021)

Abstract

We introduce the notion of fractal index associated with the universal class h of particles or quasiparticles, termed fractons, which obey specific fractal statistics. A connection between fractons and conformal field theory (CFT)-quasiparticles is established taking into account the central charge $c[\nu]$ and the particle-hole duality $\nu \leftrightarrow \frac{1}{\nu}$, for integer-value ν of the statistical parameter. In this way, we derive the Fermi velocity in terms of the central charge as $v \sim \frac{c[\nu]}{\nu+1}$. The Hausdorff dimension h which labelled the universal classes of particles and the conformal anomaly are therefore related. Following another route, we also established a connection between Rogers dilogarithm function, Farey series of rational numbers and the Hausdorff dimension.

PACS numbers: 05.30.-d; 05.30.Ch; 05.70.Ce; 75.40.-s

Keywords: Fractons; Fractal index, Fractal statistics; Central charge; Conformal field theory

Typeset using REVTeX

E-mail: wdacruz@exatas.uel.br
We consider the conformal field theory (CFT)-quasiparticles (edge excitations) in connection with the concept of fractons introduced in [1]. These excitations have been considered at the edge of the quantum Hall systems which in the fractional regime assume the form of a chiral Luttinger liquid [2]. Beyond this, conformal field theories have been exploited in a variety of contexts, including statistical mechanics at the critical point, field theories, string theory, and in various branches of mathematics [3].

In this Letter, we suppose that the fractal statistics obeyed by fractons are shared by CFT-quasiparticles. Thus, the central charge, a model dependent constant is related to the universal class \(h \) of the fractons. We define the fractal index associated with these classes as

\[
if[h] = \frac{6}{\pi^2} \int_{0}^{1} \frac{d\xi}{\xi} \ln \{\Theta[Y(\xi)]\}
\]

(1)

and after the change of variable \(\xi = x^{-1} \), we obtain

\[
if[h] = \frac{6}{\pi^2} \int_{0}^{1} \frac{dx}{x} \ln \{\Theta[Y(x^{-1})]\}
\]

(2)

where in the Eq.(1)

\[
\Theta[Y] = \frac{Y[\xi] - 2}{Y[\xi] - 1}
\]

(3)

is the single-particle partition function of the universal class \(h \) and \(\xi = \exp \{(\epsilon - \mu)/KT\} \), has the usual definition. The function \(Y[\xi] \) satisfies the equation

\[
\xi = \{Y[\xi] - 1\}^{h-1} \{Y[\xi] - 2\}^{2-h}
\]

(4)

We note here that the general solution of the algebraic equation derived from this last one is of the form

\[
Y_h[\xi] = f[\xi] + \tilde{h}
\]

or

\[
Y_{\tilde{h}}[\xi] = g[\xi] + h,
\]
where $\tilde{h} = 3 - h$, is a duality symmetry between the classes. The functions $f[\xi]$ and $g[\xi]$ at least for third, fourth degrees algebraic equation differ by plus and minus signs in some terms of their expressions.

The particles within each class h satisfy specific fractal statistics

\[n = \xi \frac{\partial}{\partial \xi} \ln \Theta[Y] \]
\[= \frac{1}{Y[\xi] - h} \]

(5)

and the fractal parameter (or Hausdorff dimension) h defined in the interval $1 < h < 2$ is related to the spin-statistics relation $\nu = 2s$ through the fractal spectrum

\[h - 1 = 1 - \nu, \quad 0 < \nu < 1; \quad h - 1 = \nu - 1, \quad 1 < \nu < 2; \]

(6)

etc.

For $h = 1$ we have fermions, with $Y[\xi] = \xi + 2$, $\Theta[1] = \frac{\xi}{\xi+1}$ and $i_f[1] = \frac{6}{\pi^2} \int_1^\infty \frac{d\xi}{\xi} \ln \left\{ \frac{\xi}{\xi+1} \right\} = \frac{1}{2}$.

For $h = 2$ we have bosons, with $Y[\xi] = \xi + 1$, $\Theta[2] = \frac{\xi-1}{\xi}$ and $i_f[2] = \frac{6}{\pi^2} \int_1^\infty \frac{d\xi}{\xi} \ln \left\{ \frac{\xi-1}{\xi} \right\} = 1$.

On the other hand, for the universal class $h = \frac{3}{2}$, we have fractons with $Y[\xi] = \frac{3}{2} + \sqrt{\frac{1}{4} + \xi^2}$, $\Theta\left[\frac{3}{2}\right] = \frac{\sqrt{1+4\xi^2-1}}{\sqrt{1+4\xi^2+1}}$, and $i_f\left[\frac{3}{2}\right] = \frac{6}{\pi^2} \int_1^\infty \frac{d\xi}{\xi} \ln \left\{ \frac{\sqrt{1+4\xi^2-1}}{\sqrt{1+4\xi^2+1}} \right\} = \frac{3}{5}$.

The distribution function for each class h above, as we can check, are given by

\[n[1] = \frac{1}{\xi + 1}, \]

(7)

\[n[2] = \frac{1}{\xi - 1}, \]

(8)

\[n\left[\frac{3}{2}\right] = \frac{1}{\sqrt{\frac{1}{4} + \xi^2}}, \]

(9)

1This means that fermions($h = 1$) and bosons($h = 2$) are dual objects. As a result we have a fractal supersymmetry, since for the particle with spin s within the class h, its dual $s + \frac{1}{2}$ is within the class \tilde{h}.

2In fact, we have here fractal functions as discussed in [4].

3This parameter describes the properties of the path (fractal curve) of the quantum-mechanical particle.
i.e. we have the Fermi-Dirac distribution, the Bose-Einstein distribution and the fracton
distribution of the universal class \(h = \frac{3}{2} \), respectively. Thus, our formulation generalizes
\textit{in a natural way} the fermionic and bosonic distributions for particles assuming rational or
irrational values for the spin quantum number \(s \). In this way, our approach can be understood
as a \textit{quantum-geometrical} description of the statistical laws of Nature. This means that the
(Eq. 5) captures the observation about the fractal characteristic of the \textit{quantum-mechanical}
path, which reflects the Heisenberg uncertainty principle.

The fractal index as defined has a connection with the central charge or conformal
anomaly \(c[\nu] \), a dimensionless number which characterizes conformal field theories in two
dimensions. This way, we verify that the conformal anomaly is associated with universal-
ity classes, i.e. universal classes \(h \) of particles. Now, we consider the particle-hole duality
\(\nu \leftrightarrow \frac{1}{\nu} \) for integer-value \(\nu \) of the statistical parameter in connection with the universal
class \(h \). For bosons and fermions, we have

\[
\{0, 2, 4, 6, \cdots\}_{h=2}
\]

and

\[
\{1, 3, 5, 7, \cdots\}_{h=1}
\]

such that, the central charge for \(\nu \text{ even} \) is defined by

\[
c[\nu] = i_f[h, \nu] - i_f \left[h, \frac{1}{\nu} \right]
\]

and for \(\nu \text{ odd} \) is defined by

\[
c[\nu] = 2 \times i_f[h, \nu] - i_f \left[h, \frac{1}{\nu} \right],
\]

where \(i_f[h, \nu] \) means the fractal index of the universal class \(h \) which contains the statistical
parameter \(\nu = 2s \) or the particles with distinct spin values which obey specific fractal
statistics. We assume that the fractal index \(i_f[h, \infty] = 0 \) (the class \(h \) is undetermined) and
we obtain, for example, the results
\[c[0] = i_f[2, 0] - i_f[h, \infty] = 1; \]
\[c[1] = 2 \times i_f[1, 1] - i_f[1, 1] = \frac{1}{2}; \]
\[c[2] = i_f[2, 2] - i_f \left[\frac{3}{2}, \frac{1}{2} \right] = 1 - \frac{3}{5} = \frac{2}{5}; \]
\[c[3] = 2 \times i_f[1, 3] - i_f \left[\frac{5}{3}, \frac{1}{3} \right] = 1 - 0.656 = 0.344; \]

etc,

where the fractal index for \(h = \frac{5}{3} \) is obtained from

\[i_f \left[\frac{5}{3} \right] = \frac{6}{\pi^2} \int_1^{\infty} \frac{d\zeta}{\zeta} \times \ln \left\{ \frac{\sqrt{\frac{1}{2\pi} + \frac{\zeta^3}{2} + \frac{1}{18}\sqrt{12\zeta^3 + 81\zeta^6} + \frac{1}{9\sqrt{\frac{1}{2\pi} + \frac{\zeta^3}{2} + \frac{1}{18}\sqrt{12\zeta^3 + 81\zeta^6}}}}}{\sqrt{\frac{1}{2\pi} + \frac{\zeta^3}{2} + \frac{1}{18}\sqrt{12\zeta^3 + 81\zeta^6} + \frac{1}{9\sqrt{\frac{1}{2\pi} + \frac{\zeta^3}{2} + \frac{1}{18}\sqrt{12\zeta^3 + 81\zeta^6}}} + \frac{1}{3}} \right\} \]

\[= 0.656 \]

and for its dual we have

\[i_f \left[\frac{4}{3} \right] = \frac{6}{\pi^2} \int_1^{\infty} \frac{d\zeta}{\zeta} \times \ln \left\{ \frac{\sqrt{\frac{1}{2\pi} - \frac{\zeta^3}{2} + \frac{1}{18}\sqrt{-12\zeta^3 + 81\zeta^6} + \frac{1}{9\sqrt{\frac{1}{2\pi} - \frac{\zeta^3}{2} + \frac{1}{18}\sqrt{-12\zeta^3 + 81\zeta^6}}}}}{\sqrt{\frac{1}{2\pi} - \frac{\zeta^3}{2} + \frac{1}{18}\sqrt{-12\zeta^3 + 81\zeta^6} + \frac{1}{9\sqrt{\frac{1}{2\pi} - \frac{\zeta^3}{2} + \frac{1}{18}\sqrt{-12\zeta^3 + 81\zeta^6}}} + \frac{2}{3}} \right\} \]

\[= 0.56. \]

From the Table I we can observe the correlation between the classes \(h \) of particles and their fractal index, so our approach manifest a robust consistence in accordance with the unitary \(c[\nu] < 1 \) representations [3].
Table I

h	$i_f[h]$	Denomination	ν	s	$c[\nu] = i_f[h, \nu]$
2	1	bosons	0	0	1
...	...	fractons
$\frac{5}{3}$	0.656	fractons	$\frac{1}{3}$	$\frac{1}{5}$	0.656
...	...	fractons
$\frac{2}{3}$	0.6	fractons	$\frac{1}{2}$	$\frac{1}{3}$	0.6
...	...	fractons
$\frac{4}{3}$	0.56	fractons	$\frac{2}{3}$	$\frac{1}{3}$	0.56
...	...	fractons
1	0.5	fermions	1	$\frac{1}{2}$	0.5

Therefore, since h is defined within the interval $1 < h < 2$, the corresponding fractal index is into the interval $0.5 < i_f[h] < 1$. However, the central charge $c[\nu]$ can assumes values less than 0.5. Thus, we distinguish two concepts of central charge, one is related to the universal classes h and the other is related to the particles which belong to these classes. For the statistical parameter in the interval $0 < \nu < 1$ (the first elements of each class h), $c[\nu] = i_f[h, \nu]$, as otherwise we obtain different values.

In another way, the central charge $c[\nu]$ can be obtained using the Rogers dilogarithm function [6], i.e.

$$c[\nu] = \frac{L[x^\nu]}{L[1]},$$

with $x^\nu = 1 - x$, $\nu = 0, 1, 2, 3, etc.$ and

$$L[x] = -\frac{1}{2} \int_0^x \left\{ \frac{\ln(1 - y)}{y} + \frac{\ln y}{1 - y} \right\} dy, \ 0 < x < 1.$$

Thus, taking into account the Eqs. ([10][11]), we can extract the sequence of fractal indexes (Tables II and III).
Table II

h	ν	s	$i_f[h] = c[\nu]$	h	ν	s	$c[\nu]$
2	0	0	1	2	0	0	1
0.20	0.20	0.18	0.858	0.20	0.20	0.142	
0.17	0.17	0.15	0.854	0.19	0.19	0.146	
0.18	0.18	0.16	0.849	0.18	0.18	0.151	
0.17	0.17	0.14	0.845	0.17	0.17	0.155	
0.16	0.16	0.12	0.84	0.16	0.16	0.16	
0.15	0.15	0.10	0.834	0.15	0.15	0.166	
0.14	0.14	0.08	0.829	0.14	0.14	0.171	
0.13	0.13	0.06	0.822	0.13	0.13	0.178	
0.12	0.12	0.04	0.814	0.12	0.12	0.186	
0.11	0.11	0.02	0.806	0.11	0.11	0.194	

Table III

h	ν	s	$i_f[h] = c[\nu]$	h	ν	s	$c[\nu]$
0.20	0.20	0.18	0.797	0.20	0.20	0.203	
0.17	0.17	0.16	0.786	0.19	0.19	0.214	
0.16	0.16	0.14	0.774	0.18	0.18	0.226	
0.15	0.15	0.12	0.759	0.17	0.17	0.241	
0.14	0.14	0.10	0.742	0.16	0.16	0.258	
0.13	0.13	0.08	0.721	0.15	0.15	0.279	
0.12	0.12	0.06	0.693	0.14	0.14	0.307	
0.11	0.11	0.04	0.656	0.13	0.13	0.344	
0.10	0.10	0.02	0.6	0.12	0.12	0.4	
0.09	0.09	0.0	0.5	0.11	0.11	0.5	
On the one way, we can estimate the fractal index for the dual classes of h with rational values, considering a fitting of the graphics $i_f[h] \times h$ and $c[\nu] \times \nu$, plus the observation that the $i_f[h, \nu]$ diminishes in the sequence

\[
i_f[h, \nu] = i_f\left[\frac{3}{2}, \frac{1}{2}\right], \quad i_f\left[\frac{4}{3}, \frac{2}{3}\right], \quad i_f\left[\frac{5}{4}, \frac{3}{4}\right], \quad i_f\left[\frac{6}{5}, \frac{4}{5}\right], \quad i_f\left[\frac{7}{6}, \frac{5}{6}\right], \quad i_f\left[\frac{8}{7}, \frac{6}{7}\right], \quad i_f\left[\frac{9}{8}, \frac{7}{8}\right], \quad i_f\left[\frac{10}{9}, \frac{8}{9}\right], \quad i_f\left[\frac{11}{10}, \frac{9}{10}\right], \quad i_f\left[\frac{12}{11}, \frac{10}{11}\right], \quad i_f\left[\frac{13}{12}, \frac{11}{12}\right], \quad i_f\left[\frac{14}{13}, \frac{12}{13}\right], \quad i_f\left[\frac{15}{14}, \frac{13}{14}\right], \quad i_f\left[\frac{16}{15}, \frac{14}{15}\right], \quad i_f\left[\frac{17}{16}, \frac{15}{16}\right], \quad i_f\left[\frac{18}{17}, \frac{16}{17}\right], \quad i_f\left[\frac{20}{19}, \frac{18}{19}\right], \quad i_f\left[\frac{21}{20}, \frac{19}{20}\right], \quad i_f[1, 1].
\]

This way, we observe that our formulation to the universal class h of particles with any values of spin s establishes a connection between Hausdorff dimension h and the central charge $c[\nu]$, in a manner unsuspected till now. Besides this, we have obtained a connection between h and the Rogers dilogarithm function, through the fractal index defined in terms of the partition function associated with the universal class h of particles. Thus, considering the Eqs.(10, 11) and the Eq.(15), we have

\[
\frac{L[x]}{L[1]} = i_f[h, \nu] - i_f\left[h, \frac{1}{\nu}\right], \quad \nu = 0, 2, 4, etc. \quad (17)
\]

\[
\frac{L[x]}{L[1]} = 2 \times i_f[h, \nu] - i_f\left[h, \frac{1}{\nu}\right], \quad \nu = 1, 3, 5, etc. \quad (18)
\]

Also in [1] we have established a connection between the fractal parameter h and the Farey series of rational numbers, therefore once the classes h satisfy all the properties of these series we have an infinity collection of them. In this sense, we clearly establish a connection between number theory and Rogers dilogarithm function. Given that the fractal parameter is an irreducible number $h = \frac{p}{q}$, the classes satisfy the properties [4]

P1. If $h_1 = \frac{p_1}{q_1}$ and $h_2 = \frac{p_2}{q_2}$ are two consecutive fractions $\frac{p_1}{q_1} > \frac{p_2}{q_2}$, then $|p_2q_1 - q_2p_1| = 1$.

P2. If $\frac{p_1}{q_1}, \frac{p_2}{q_2}, \frac{p_3}{q_3}$ are three consecutive fractions $\frac{p_1}{q_1} > \frac{p_2}{q_2} > \frac{p_3}{q_3}$, then $\frac{p_2}{q_2} = \frac{p_1 + p_3}{q_1 + q_3}$.
P3. If \(\frac{p_1}{q_1} \) and \(\frac{p_2}{q_2} \) are consecutive fractions in the same sequence, then among all fractions between the two, \(\frac{p_1+p_2}{q_1+q_2} \) is the unique reduced fraction with the smallest denominator.

For example, consider the Farey series of order 6, denoted by the \(\nu \) sequence

\[
(h, \nu) = \left(\frac{11}{6}, \frac{1}{6} \right) \rightarrow \left(\frac{9}{5}, \frac{1}{5} \right) \rightarrow \left(\frac{7}{4}, \frac{1}{4} \right) \rightarrow \left(\frac{5}{3}, \frac{1}{3} \right) \rightarrow \left(\frac{8}{5}, \frac{2}{5} \right) \rightarrow \left(\frac{3}{2}, \frac{1}{2} \right) \rightarrow \left(\frac{7}{5}, \frac{2}{5} \right) \rightarrow \left(\frac{4}{3}, \frac{2}{3} \right) \rightarrow \left(\frac{5}{3}, \frac{3}{3} \right) \rightarrow \ldots.
\]

(19)

Using the fractal spectrum (Eq.6), we can obtain other sequences which satisfy the Farey properties and for the classes

\[
h = \frac{11}{6}, \frac{9}{5}, \frac{7}{4}, \frac{8}{5}, \frac{3}{2}, \frac{5}{3}, \frac{4}{3}, \frac{5}{4}, \frac{6}{5}, \frac{7}{6}, \ldots,
\]

and (note that these ones are dual classes, \(\tilde{h} = 3 - h \)) we can calculate the fractal index taking into account the Rogers dilogarithm function or the partition function associated with each \(h \).

Now, in [1] we also considered free fractons and an equation of state at low temperatures was obtained

\[
P = \frac{h \rho^2}{2\gamma} + \gamma (KT)^2 C_1(h),
\]

(20)

where \(\gamma = \frac{m(\nu+1)}{4\pi h^2} \) (\(h \) is the Planck constant), \(\rho \) is the particle density and

\[
C_1(h) = -\int_{1(T=0)}^{\infty(T=\infty)} \frac{d\gamma'}{(\gamma'-1)(\gamma'-2)} \ln \left\{ \frac{\gamma'-1}{\gamma'-2} \right\} = \frac{\pi^2}{6}.
\]

(21)

Thus, for the fracton systems we obtain the specific heat \(C \) as

\[
\frac{C}{L^2} = \frac{m}{4\pi h^2} K^2 (\nu + 1) \frac{\pi^2}{3}.
\]

(22)

On the other hand, the specific heat of a conformal field theory is given by [3]

\[
\frac{C}{L} = \frac{1}{2\pi h \nu} K^2 T \frac{\pi^2}{3} c[\nu].
\]

(23)

Comparing the expressions, we obtain the Fermi velocity as...
\[v \sim \frac{c[\nu]}{\nu + 1}, \]

so for \(\nu = 0 \), \(c[0] = 1 \), \(v \sim 1 \); \(\nu = 1 \), \(c[1] = \frac{1}{2} \), \(v \sim 0.25 \); \(\nu = 2 \), \(c[2] = \frac{2}{5} \), \(v \sim 0.133 \); \(\nu = 3 \), \(c[3] = 0.344 \), \(v \sim 0.086 \); etc. We observe that fractons are objects defined in 2+1-dimensions (see [1] for more details).

In summary, we have obtained a connection between fractons and CFT-quasiparticles. This was implemented with the notion of the fractal index associated with the universal class \(h \) of the fractons. This way, fractons and CFT-quasiparticles satisfy a specific fractal statistics. We also have obtained an expression for the Fermi velocity in terms of the conformal anomaly and the statistical parameter [8]. A connection between the Rogers dilogarithm function, Farey series of rational numbers and Hausdorff dimension \(h \) also was established. The idea of fractons as quasiparticles has been explored in the contexts of the fractional quantum Hall effect [1], Luttinger liquids [8] and high-\(T_c \) superconductivity [9]. Finally, a connection between fractal statistics and black hole entropy also was exploited in [10] and a fractal-deformed Heisenberg algebra for each class of fractons was introduced in [11].

ACKNOWLEDGMENTS

We would like to thank an anonymous referee by the comments.
REFERENCES

[1] W. da Cruz, Int. J. Mod. Phys. A15 3805 (2000);
 W. da Cruz, Mod. Phys. Lett. A14 1933 (1999).

[2] X. G. Wen, Phys. Rev. B41 12838 (1990), Int. J. Mod. Phys. B6 1711 (1991), Adv.
 Phys. 44 405 (1995);
 K. Schoutens, Phys. Rev. Lett. 79 2608 (1997);
 A. M. M Pruisken, B. Skorić and B. M. Baranov, Phys. Rev. B60 16838 (1999);
 B. Skorić and A. M. M Pruisken, Nucl. Phys. B559[FS] 637 (1999);
 R. van Elburg and K. Schoutens, Phys. Rev. B58 15704 (1998);
 P. Bouwknegt, L. H. Chin and D. Ridout, Nucl. Phys. B572 574 (2000);
 S. Dasmahapatra, R. Kedem, T. Klassen, B. McCoy and E. Melzer, Int. J. Mod. Phys.
 B7 3617 (1993);
 A. Berkovich and B. McCoy, hep-th/9808013.
 A. Berkovich, B. McCoy and A. Schilling, Commun. Math. Phys. 191 325 (1998);
 See [3]; and references therein.

[3] P. Di Francesco, P. Mathieu and D. Sénéchal, Conformal Field Theory (Springer-Verlag,
 New York, 1997); Conformal Invariance and Applications to Statistical Mechanics, ed.
 by C. Itzykson, H. Saleur and J-B. Zuber (World Scientific, Singapore, 1988);
 C. J. Efthimiou and D. A. Spector, hep-th/0003190. The literature on CFT is vast,
 these sources can help us to looking for papers of some specific interest.

[4] A. Rocco and B. J. West, Physica A265 535 (1999).

[5] H. W. J. Blöte, J. L. Cardy and M. P. Nightingale, Phys. Rev. Lett. 56 742 (1986);
 I. Affleck, Phys. Rev. Lett. 56 746 (1986).

[6] W. Nahm, A. Recknagel and M. Terhoeven, Mod. Phys. Lett. A8 1835 (1993);
 M. Terhoeven, Mod. Phys. Lett. A9 133 (1994);
K. Hikami, Phys. Lett. A205 364 (1995); A. N. Kirillov, Prog. Theor. Phys. Suppl. 118, 61 (1995) and references therein.

[7] M. Schroeder, *Number Theory in Science and Communication* (Springer Verlag, Berlin, 1997).

[8] W. da Cruz, J. of Physics: Cond. Mat. 12 L1 (2000).

[9] W. da Cruz and M. P. Carneiro, cond-mat/9912459.

[10] W. da Cruz, hep-th/0007123.

[11] W. da Cruz, hep-th/0008171.