Softly broken lepton number $L_e - L_\mu - L_\tau$
with non-maximal solar neutrino mixing

Walter Grimus*
Institut für Theoretische Physik, Universität Wien
Boltzmanngasse 5, A–1090 Wien, Austria

Luís Lavoura**
Universidade Técnica de Lisboa and Centro de Física Teórica de Partículas
Instituto Superior Técnico, P–1049-001 Lisboa, Portugal

20 October 2004

Abstract

We consider the most general neutrino mass matrix which leads to $\theta_{13} = 0$, and present the formulae needed for obtaining the neutrino masses and mixing parameters in that case. We apply this formalism to a model based on the lepton number $\bar{L} = L_e - L_\mu - L_\tau$ and on the seesaw mechanism. This model needs only one Higgs doublet and has only two right-handed neutrino singlets. Soft \bar{L} breaking is accomplished by the Majorana mass terms of the right-handed neutrinos; if the \bar{L}-conserving and \bar{L}-breaking mass terms are of the same order of magnitude, then it is possible to obtain a consistent \bar{L} model with a solar mixing angle significantly smaller than 45°. We show that the predictions of this model, $m_3 = 0$ and $\theta_{13} = 0$, are invariant under the renormalization-group running of the neutrino mass matrix.

*E-mail: walter.grimus@univie.ac.at
**E-mail: balio@cfif.ist.utl.pt
1 Introduction

In recent times there has been enormous experimental progress in our knowledge of the mass-squared differences and of the mixing of light neutrinos—for a review see, for instance, [1]. Unfortunately, to this progress on the experimental and phenomenological—i.e. neutrino oscillations [2] and the MSW effect [3]—fronts there has hardly been a counterpart in our theoretical understanding of neutrino masses and lepton mixing—for a review see, for instance, [4].

It has been conclusively shown that the lepton mixing matrix is substantially different from the quark mixing matrix. Whereas the solar mixing angle, θ_{12}, is large—$\theta_{12} \sim 33^\circ$—and the atmospheric mixing angle, θ_{23}, could even be maximal, the third mixing angle, θ_{13}, is small—there is only an upper bound on it which, according to [1], is given at the 3σ level by $\sin^2 \theta_{13} < 0.047$. The true magnitude of θ_{13} will be crucial in the future experimental exploration of lepton mixing, and it is also important for our theoretical understanding of that mixing—see, for instance, [5].

In this letter we contemplate the possibility that at some energy scale a flavour symmetry exists such that θ_{13} is exactly zero. It has been shown [6] that, in the basis where the charged-lepton mass matrix is diagonal, the most general neutrino mass matrix which yields $\theta_{13} = 0$ is given, apart from a trivial phase convention [6], by

$$
M_\nu = \begin{pmatrix}
X & \sqrt{2}A \cos (\gamma/2) & \sqrt{2}A \sin (\gamma/2) \\
\sqrt{2}A \cos (\gamma/2) & B + C \cos \gamma & C \sin \gamma \\
\sqrt{2}A \sin (\gamma/2) & C \sin \gamma & B - C \cos \gamma
\end{pmatrix},
$$

(1)

with parameters X, A, B, and C which are in general complex. The mass matrix M_ν, but not necessarily the full Lagrangian, enjoys a \mathbb{Z}_2 symmetry [6, 7]—see also [8]—defined by

$$
S(\gamma) M_\nu S(\gamma) = M_\nu,
$$

(2)

with an orthogonal 3×3 matrix

$$
S(\gamma) = \begin{pmatrix}
1 & 0 & 0 \\
0 & \cos \gamma & \sin \gamma \\
0 & \sin \gamma & -\cos \gamma
\end{pmatrix}
$$

(3)

which satisfies $S(\gamma) = [S(\gamma)]^T$ and $[S(\gamma)]^2 = 1$. We may remove two unphysical phases from M_ν, e.g. by choosing X and A to be real, and then there are seven real parameters in that mass matrix. Those seven parameters correspond to the following seven physical quantities: the three neutrino masses $m_{1,2,3}$, the solar and atmospheric mixing angles, and two Majorana phases. The only prediction of the mass matrix M_ν is $\theta_{13} = 0$; however, that prediction entails the non-observability of the Dirac phase in lepton mixing—in general there are nine physical quantities in the neutrino masses and mixings.

Expressed in terms of the parameters1 of M_ν, one obtains masses given by [6, 10]

$$
m_3 = |B - C|
$$

(4)

1The procedure for obtaining the neutrino masses and the lepton mixing matrix from the parameters of a fully general neutrino mass matrix has been given in [9].
and

\[m_{1,2}^2 = \frac{1}{2} \left[|X|^2 + |D|^2 + 4|A|^2 \mp \sqrt{(|X|^2 + |D|^2 + 4|A|^2)^2 - 4|XD - 2A^2|^2} \right], \tag{5} \]

with

\[D \equiv B + C; \tag{6} \]

while the mixing angles are given by

\[\theta_{23} = |\gamma/2| \tag{7} \]

and

\[
\begin{align*}
\left(m_2^2 - m_1^2\right) \sin 2\theta_{12} &= 2\sqrt{2} |X^* A + A^* D|, \\
\left(m_2^2 - m_1^2\right) \cos 2\theta_{12} &= |D|^2 - |X|^2. \tag{8-9}
\end{align*}
\]

The only Majorana phase which—for \(\theta_{13} = 0 \)—plays a role in neutrinoless \(\beta \beta \) decay is the phase \(\Delta = \arg \left[(U_{e2}/U_{e1})^2 \right] \), where \(U_{e1} \) and \(U_{e2} \) are matrix elements of the lepton mixing (PMNS) matrix \(U \). The phase \(\Delta \) is given by \(\tag{12} \)

\[8 \text{Im} \left(X^* D^* A^2 \right) = m_1 m_2 \left(m_1^2 - m_2^2\right) \sin^2 2\theta_{12} \sin \Delta. \tag{10} \]

The other Majorana phase is practically unobservable \(\tag{13} \).

In specific models with \(\theta_{13} = 0 \), the neutrino mass matrix \(\tag{11} \) is further restricted:

- The \(\mathbb{Z}_2 \) model of \(\tag{10} \), which is based on the non-Abelian group \(O(2) \) \(\tag{14} \), yields maximal atmospheric neutrino mixing, i.e. \(\gamma = \pi/2 \), and has six physical parameters.

- The \(D_4 \) model of \(\tag{15} \), which is based on the discrete group \(D_4 \), also has \(\gamma = \pi/2 \) and, in addition, it predicts \(XC = A^2 \). The number of parameters is four—\(\)in that model the Majorana phases are expressible in terms of the neutrino masses and of the solar mixing angle.

- The softly-broken-\(D_4 \) model of \(\tag{7} \) is a generalization of the \(D_4 \) model: the atmospheric mixing angle is undetermined, but \(XC = A^2 \) still holds.

- The seesaw model of the first line of Table I of \(\tag{16} \), which is based on the Abelian group \(\mathbb{Z}_4 \), reproduces matrix \(\tag{11} \) without restrictions.

In this letter we consider the \(U(1) \) symmetry generated by the lepton number \(\bar{L} \equiv L_e - L_\mu - L_\tau \) \(\tag{17} \). It is well known that exact \(\bar{L} \) symmetry enforces \(\theta_{13} = 0 \) (with \(X = B = C = 0 \) in \(\tag{11} \)), while an approximate \(\bar{L} \) symmetry tends to produce either a solar mixing angle too close to 45° or a solar mass-squared difference too close to the atmospheric mass-squared difference \(\tag{18} \). A possible way out of this dilemma is to assume a significant contribution to \(U \) from the diagonalization of the charged-lepton mass matrix \(\tag{19} \); another possibility is a significant breaking of \(\bar{L} \) \(\tag{20} \). Here we discuss a \(\bar{L} \)

\[\text{When } |X| = |D| \text{ and } X^* A = -A^* D \text{ one should use, instead of (5) and (8–10), } m_1 = m_2 = \sqrt{|X|^2 + |A|^2}, \Delta = \pi, \text{ and } \cos 2\theta_{12} = |X|/m_1. \]
model, first proposed in [21], which makes use of the seesaw mechanism [22] with only two right-handed neutrino singlets ν_R. The $U(1)_L$ symmetry is softly broken in the Majorana mass matrix of the ν_R, but—contrary to what was done in [21]—the soft breaking is assumed here to be rather ‘strong’, in order to achieve a solar mixing angle significantly smaller than 45°. The model presented in Section 2 predicts a mass matrix (11) with $B = C$, i.e. it predicts $m_3 = 0$ together with $\theta_{13} = 0$. We will show in Section 3 that these predictions are stable under the renormalization-group running from the seesaw scale down to the electroweak scale. Next, we show in Section 4 that our model does not provide enough leptogenesis to account for the observed baryon-to-photon ratio of the Universe. We end in Section 5 with our conclusions.

2 The model

The lepton number $\bar{L} = L_e - L_\mu - L_\tau$ has a long history in model building [17, 18]. In this letter we rediscuss the model of [21], which has only one Higgs doublet, ϕ, and two right-handed neutrinos, ν_{R1} and ν_{R2}, with the following assignments of the quantum number \bar{L}:

$$\begin{array}{cccccc}
\nu_e, e & \nu_\mu, \mu & \nu_\tau, \tau & \nu_{R1} & \nu_{R2} & \phi \\
1 & -1 & -1 & 1 & -1 & 0.
\end{array}$$

This model is a simple extension of the Standard Model which incorporates the seesaw mechanism [22]. The right-handed neutrino singlets have a Majorana mass term

$$\mathcal{L}_M = -\frac{1}{2} \bar{\nu}_R M_R C \bar{\nu}^T_R + \text{H.c.},$$

(12)

(where C is the charge-conjugation matrix in spinor space) with

$$M_R = \begin{pmatrix} R & M \\ M & S \end{pmatrix}.$$
(13)

The elements of the matrix M_R are of the heavy seesaw scale. The entry M in M_R is compatible with \bar{L} symmetry, while the entries R and S break that lepton number softly. The breaking of \bar{L} is soft since the Majorana mass terms have dimension three. Because of the $U(1)$ symmetry associated with \bar{L}, the neutrino Dirac mass matrix has the structure [21]3

$$M_D = \begin{pmatrix} a & 0 & 0 \\ 0 & b' & b'' \end{pmatrix}.$$
(14)

Then the effective Majorana mass matrix of the light neutrinos is given by the seesaw formula

$$\mathcal{M}_\nu = -M_D^T M_R^{-1} M_D = \frac{1}{M^2 - RS} \begin{pmatrix} a^2 & -Ma' & -Mab'' \\ -Ma' & Rb^2 & Rb'b'' \\ -Mab'' & Rb'b'' & Rb''^2 \end{pmatrix}.$$
(15)

3We are assuming, without loss of generality, the charged-lepton mass matrix to be already diagonal.
In the case of L conservation, i.e. when $R = S = 0$, we have $m_1 = m_2$ and θ_{12} is 45°; this is a well known fact. Non-zero mass parameters R and S induce $\Delta m^2_\odot \equiv m^2_2 - m^2_1 \neq 0$ and allow a non-maximal solar mixing angle.\footnote{The case of non-zero R and S has also been considered in \cite{23}.} The phases of a, b', and b'' are unphysical; in the following we shall assume those parameters to be real and positive. The only physical phase is $\alpha \equiv \arg \left(R^* S^* M^2 \right)$.\footnote{21}

$$\alpha \equiv \arg \left(R^* S^* M^2 \right).$$

CP conservation is equivalent to α being a multiple of π. Defining $d \equiv M^2 - RS$ and $b \equiv \sqrt{b'^2 + b''^2}$, we see that (15) has the form (1) with $X = S a^2 / d$, $A = -M a b / \sqrt{2d}$, $B = C = R b^2 / 2d$, and

$$\cos \frac{\gamma}{2} = \frac{b'}{b}, \quad \sin \frac{\gamma}{2} = \frac{b''}{b}. \quad (18)$$

As advertised in the introduction, $C = B$ and therefore $m_3 = 0$, while X, A, and B are independent parameters. Since $m_3 = 0$ the neutrino mass spectrum displays inverted hierarchy. The present model has five real parameters—$|X|$, $|A|$, $|B|$, γ, and α—which correspond to the physical observables $m_{1,2}$, θ_{12}, θ_{23}, and the Majorana phase Δ (the second Majorana phase is unphysical in this case because $m_3 = 0$).

Let us now perform a consistency check by using all the available input from the neutrino sector. We have the following observables at our disposal: the effective Majorana mass in neutrinos decay $m_{\beta\beta}$, the solar mass-squared difference Δm^2_\odot, the atmospheric mass-squared difference Δm^2_{atm}, the solar mixing angle θ_{12}, and the atmospheric mixing angle θ_{23}. In a three-neutrino scenario the definition of Δm^2_{atm} is not unique; we define $\bar{m}^2 \equiv (m^2_1 + m^2_2) / 2$ and use $\Delta m^2_{\text{atm}} \simeq \bar{m}^2$, which is valid in this model because of the inverted mass hierarchy. The relation $\gamma = 2\theta_{23}$ plays no role in the following discussion, which consists in determining the four parameters $|X|$, $|A|$, $|D| = 2 |B|$, and α as functions of the four observables $m_{\beta\beta}$, Δm^2_\odot, Δm^2_{atm}, and θ_{12}. We note that, because of (16) and (17), $\alpha = \arg \left(D^* X^* A^2 \right)$.

We first note that, in (11), $m_{\beta\beta}$ is just given by $|X|:

$$|X| = m_{\beta\beta}. \quad (19)$$

We then use (10) to write

$$|D|^2 = m_{\beta\beta}^2 + \Delta m^2_\odot \cos 2\theta_{12}. \quad (20)$$

From (15), $\bar{m}^2 = 2 |A|^2 + (|X|^2 + |D|^2) / 2$, hence

$$|A|^2 = \frac{1}{2} \left(\bar{m}^2 - m_{\beta\beta}^2 - \frac{1}{2} \Delta m^2_\odot \cos 2\theta_{12} \right). \quad (21)$$

Since $|A| \geq 0$ we have the bound

$$m_{\beta\beta}^2 \leq \bar{m}^2 - \frac{1}{2} \Delta m^2_\odot \cos 2\theta_{12}. \quad (22)$$
In order to find α we start from (8), writing
\[
\left(\Delta m^2_\odot\right)^2 \sin^2 2\theta_{12} = 8 |A|^2 \left(|X|^2 + |D|^2 + 2 |X| |D| \cos \alpha \right). \tag{23}
\]
We define
\[
p \equiv \frac{2m^2_{\beta\beta}}{\Delta m^2_\odot \cos 2\theta_{12}}, \tag{24}
\]
\[
\rho \equiv \frac{2\bar{m}^2}{\Delta m^2_\odot \cos 2\theta_{12}}, \tag{25}
\]
and obtain
\[
\cos \alpha = \left[- (1 + p) + \frac{\tan^2 2\theta_{12}}{2 (\rho - 1 - p)} \right] \frac{1}{\sqrt{p (p + 2)}}. \tag{26}
\]
Thus we have expressed all the parameters of the model in terms of physical quantities.

The parameter ρ is known and it is quite large: using the mean values of the mixing parameters $\Delta m^2_\odot \sim 8.1 \times 10^{-5} \text{eV}^2$, $\Delta m^2_{\text{atm}} \sim 2.2 \times 10^{-3} \text{eV}^2$, and $\sin^2 \theta_{12} \sim 0.30$, we find $\rho \sim 136$. The parameter p, on the other hand, is unknown. Equation (26) requires that a non-zero range $[p_-, p_+]$ for p exists for which the right-hand side of that equation lies in between -1 and $+1$. One finds that
\[
p_{\pm} = \frac{p}{2} \left(1 + \cos^2 2\theta_{12} \pm \sin^2 2\theta_{12} \sqrt{1 - \frac{1}{\rho^2 \cos^2 2\theta_{12}}} \right) - 1. \tag{27}
\]
Since ρ is large this can be approximated by
\[
p_- \simeq \rho \cos^2 2\theta_{12} - 1, \quad p_+ \simeq \rho - 1, \tag{28}
\]
or
\[
\bar{m}^2 \cos^2 2\theta_{12} - \frac{\Delta m^2_\odot \cos 2\theta_{12}}{2} \lesssim m^2_{\beta\beta} \lesssim \bar{m}^2 - \frac{\Delta m^2_\odot \cos 2\theta_{12}}{2}. \tag{29}
\]
In this approximation, the upper bound on $m_{\beta\beta}$ coincides with the one in (22). With good accuracy we have in this model
\[
\sqrt{\Delta m^2_{\text{atm}} \cos 2\theta_{12}} \lesssim m_{\beta\beta} \lesssim \sqrt{\Delta m^2_{\text{atm}}}. \tag{30}
\]
This is one of the predictions of the model. Thus, if the claim $m_{\beta\beta} > 0.1 \text{eV}$ of [24] is confirmed, then the present model will be ruled out since $\sqrt{\Delta m^2_{\text{atm}}} \sim 0.047 \text{eV}$.

From (8), (9), and (17) we find the following expression for the solar mixing angle:
\[
\tan 2\theta_{12} = \frac{2 |M| ab}{|R| b^2 - |S| \alpha^2} \frac{||R| b^2 + |S| \alpha^2 e^{i\alpha}|}{|R| b^2 + |S| \alpha^2}. \tag{31}
\]
This equation shows that non-maximal solar neutrino mixing is easily achievable when $|R|$ and $|S|$ are of the same order of magnitude as $|M|$. This is what we mean with ‘strong’
soft \bar{L} breaking, namely that the Majorana mass terms which violate \bar{L} softly (i.e. R and S) and the one which conserves \bar{L} (i.e. M) are of the same order of magnitude.\footnote{In \cite{21} we assumed $|R|, |S| \ll |M|$ and ended up with almost-maximal solar mixing, which was still allowed by the data at that time.}

One may ask whether it is possible to evade this feature and assume $|R|, |S| \ll |M|$. In that case, since experimentally $\tan 2\theta_{12} \simeq 2.3$, and since the second fraction in the right-hand side of \eqref{31} cannot be larger than 1, we would conclude that $b/a \sim |M/R|$. But then $|R|b^2$ would be much larger than $|S|a^2$ and therefore $|D| \gg |X|$ which, from \eqref{19} and \eqref{20}, means that $m_{3\beta}^2 \ll \Delta m_{2\nu}^2 \cos 2\theta_{12}$. This contradicts our previous finding that $m_{3\beta}^2$ must be of the order of magnitude of $\Delta m_{2\nu}^2$. We thus conclude that the hypothesis $|R|, |S| \ll |M|$ is incompatible with the experimental data.

\section{Radiative corrections}

We have not yet taken into account the fact that the energy scale where \bar{L}-invariance holds and the mass matrices M_D and M_ν have the forms \eqref{14} and \eqref{15}, respectively, is the seesaw scale. Since our model has only one Higgs doublet, the relation between the mass matrix $M_\nu^{(0)}$ at the seesaw scale and the mass matrix M_ν at the electroweak scale is simply given by \cite{25}

$$M_\nu = I M_\nu^{(0)} I,$$

where I is a diagonal, positive, and non-singular matrix, since the charged-lepton mass matrix is diagonal. Now, suppose there is a vector $u^{(0)}$ such that $M_\nu^{(0)} u^{(0)} = 0$. Then the vector $u \equiv I^{-1} u^{(0)}$ is an eigenvector to M_ν with eigenvalue zero.\footnote{This statement would still be true for a non-diagonal matrix I.} Moreover, if one entry of $u^{(0)}$ is zero, then the corresponding entry of u is zero as well, due to I being diagonal. We stress that these observations only hold for eigenvectors with eigenvalue zero.

Applying this to the present model, we find that $m_3 = 0$ together with $\theta_{13} = 0$ are predictions \textit{stable under the renormalization-group evolution}. The matrices M_ν and $M_\nu^{(0)}$ are related through $M_D = M_D^{(0)} I$, where $M_D^{(0)}$ is the neutrino Dirac mass matrix at the seesaw scale; again, due to I being \textit{diagonal}, both Dirac mass matrices have the same form \eqref{14}. Therefore, all our discussions in the previous section hold for the physical quantities at the low (electroweak) scale.

\section{Leptogenesis}

The model in this letter has very few parameters and only one Higgs doublet. Therefore, it allows clear-cut predictions for leptogenesis—for reviews see, for instance, \cite{26}. It turns out that the computations for this model resemble closely the ones for the \mathbb{Z}_2 model \cite{10}, which were performed in a previous paper \cite{12}. We give here only the gist of the argument.

Let the matrix M_R in \eqref{15} be diagonalized by the 2×2 unitary matrix

$$V = \begin{pmatrix} c'e^{i\omega} & s'e^{i\sigma} \\ -s'e^{i\tau} & c'e^{i(\sigma+\tau-\omega)} \end{pmatrix}$$

\begin{equation}
\label{33}
\end{equation}
as

\[V^T M_R V = \text{diag}(M_1, M_2), \]

(34)

with real, non-negative \(M_1 \) and \(M_2 \). We assume \(M_1 \ll M_2 \). In (33), \(c' \equiv \cos \theta' \) and \(s' \equiv \sin \theta' \), where \(\theta' \) is an angle of the first quadrant. Defining the Hermitian matrix

\[H \equiv V^T M_D M_D^* V, \]

(35)

the relevant quantity for leptogenesis is [26]

\[Q \equiv \frac{\text{Im} \left[(H_{12})^2 \right]}{(H_{11})^2}. \]

(36)

One may use as input for leptogenesis the heavy-neutrino masses \(M_{1,2} \) together with \(m_{1,2}, \theta_{12} \), and the Majorana phase \(\Delta \). One can demonstrate that \(a \) and \(b = \sqrt{b'^2 + b''^2} \) satisfy

\[a^2 b^2 = m_1 m_2 M_1 M_2 \]

(37)

and

\[\left| s_{12}^2 m_1 + c_{12}^2 m_2 e^{i\Delta} \right|^2 a^4 + \left| c_{12}^2 m_1 + s_{12}^2 m_2 e^{i\Delta} \right|^2 b^4 \]

\[= m_1^2 m_2^2 \left(M_1^2 + M_2^2 \right) - 2m_1 m_2 M_1 M_2 c_{12}^2 s_{12}^2 \left| m_1 - m_2 e^{i\Delta} \right|^2, \]

(38)

where \(c_{12} \equiv \cos \theta_{12} \) and \(s_{12} \equiv \sin \theta_{12} \). By using (37) and (38), one finds the values of \(a \) and \(b \) from the input, with a twofold ambiguity only. Then \(\theta' \) is given by

\[c'^2 - s'^2 = \frac{1}{m_1^2 m_2^2 (M_1^2 - M_2^2)} \left(\left| s_{12}^2 m_1 + c_{12}^2 m_2 e^{i\Delta} \right|^2 a^4 - \left| c_{12}^2 m_1 + s_{12}^2 m_2 e^{i\Delta} \right|^2 b^4 \right). \]

(39)

With \(a \) and \(b \) known, \(Q \) is found as a function of the input by use of

\[H_{11} = a^2 c'^2 + b^2 s'^2, \]

(40)

\[\text{Im} \left[(H_{12})^2 \right] = \left(b^2 - a^2 \right)^2 \frac{M_1 M_2}{M_2^2 - M_1^2} \frac{m_2^2 - m_1^2}{m_1 m_2} c_{12}^2 s_{12}^2 \sin \Delta. \]

(41)

Equations (37)–(41) are identical with those of the \(\mathbb{Z}_2 \) model, derived in [12]. In order to compute the baryon-to-photon ratio of the Universe, \(\eta_B \), one must [12] multiply \(Q \) by (i) \(M_1 / (10^{11} \text{GeV}) \), (ii) a numerical factor of order \(10^{-9} \), (iii) a function of \(M_2 / M_1 \), and (iv) \((\ln K_1)^{-3/5} \), where \(K_1 \propto H_{11} / M_1 \). (All these factors are given and explained in [12], together with references to the original papers.) One may then compute \(\eta_B \) as a function of the input.

Most crucial is the behaviour of \(\eta_B \) as a function of \(m_1 \) when \(m_2^2 - m_1^2 = \Delta m_2^2 \) is kept fixed. One finds that \(\eta_B \) grows with \(m_1 \), finding a maximum for \(m_1 \sim 4 \times 10^{-3} \text{eV} \), afterwards decreasing rapidly for a larger \(m_1 \). Now, the present model—contrary to what happened in the model treated in [12], wherein \(m_1 \) was free—has \(m_3 = 0 \) and, therefore, \(m_1 \simeq \sqrt{\Delta m_{\text{atm}}^2} \sim 0.05 \text{eV} \). For such a high value of \(m_1 \) the baryon-to-photon ratio turns out to be hopelessly small. Thus, in the present model, contrary to what happened in the \(\mathbb{Z}_2 \) model [10] worked out in [12], leptogenesis is not a viable option for explaining the baryon asymmetry of the Universe.
5 Conclusions

In this letter we have discussed an extension of the lepton sector of the Standard Model with two right-handed neutrino singlets and the seesaw mechanism. The model, which was originally proposed in [21], is based on the lepton number $\bar{L} = L_e - L_\mu - L_\tau$. Zeros in the 2×3 neutrino Dirac mass matrix are enforced by \bar{L} invariance, and as a consequence the model features the predictions $\theta_{13} = 0$ and a hierarchical neutrino mass spectrum with $m_3 = 0$.\(^7\) The lepton number \bar{L} is softly broken in the 2×2 Majorana mass matrix M_R of the right-handed neutrino singlets, by the two entries R and S in (13) which would be zero in the case of exact \bar{L} invariance. One obtains $\Delta m^2_\odot \neq 0$ and $\theta_{12} \neq 45^\circ$ from that soft breaking. However, $\theta_{12} \sim 33^\circ$ requires the soft breaking to be ‘strong’, which means that R and S are of the same order of magnitude as the element M in M_R which is allowed by \bar{L} invariance. Thus the model discussed here has the property that in M_R there is no trace of \bar{L} invariance, whereas the form of the Dirac mass matrix is completely determined by that invariance.

We have argued that, for models with one Higgs doublet like the present one, the configuration $m_3 = 0$ together with $\theta_{13} = 0$ is stable under the renormalization-group evolution.

A further prediction of our model is the range for the effective mass in neutrinoless $\beta\beta$ decay, in particular the lower bound given by (30); the order of magnitude of that effective mass is the square root of the atmospheric mass-squared difference.

Since there is only one CP-violating phase in our model, we have also considered the possibility of thermal leptogenesis; however, it turns out that this mechanism is unable to generate a realistic baryon asymmetry of the Universe. This is because in our model the neutrino mass m_1 is too large, due to the inverted mass hierarchy.

In summary, we have shown by way of a very economical example that—contrary to claims in the literature—models based on the lepton number $L_e - L_\mu - L_\tau$ are not necessarily incompatible with the solar mixing angle being significantly smaller than 45°.

Acknowledgements: The work of L.L. has been supported by the Portuguese Fundação para a Ciência e a Tecnologia under the project U777–Plurianual.

\(^7\)These predictions are common with other models based on \bar{L} invariance [27].
References

[1] M. Maltoni, T. Schwetz, M. Tórtola, J.W.F. Valle, New. J. Phys. 6 (2004) 122, focus issue on Neutrino Physics edited by F. Halzen, M. Lindner, A. Suzuki [hep-ph/0405172].

[2] S.M. Bilenky, B. Pontecorvo, Phys. Rep. 41 (1978) 225.

[3] L. Wolfenstein, Phys. Rev. D 17 (1978) 2369; Phys. Rev. D 20 (1979) 2634; S.P. Mikheyev, A.Yu. Smirnov, Yad. Fiz. 42 (1985) 1441 [Sov. J. Nucl. Phys. 42 (1985) 913]; S.P. Mikheyev, A.Yu. Smirnov, Il Nuovo Cim. C 9 (1986) 17.

[4] G. Altarelli, F. Feruglio, New. J. Phys. 6 (2004) 106, focus issue on Neutrino Physics edited by F. Halzen, M. Lindner, A. Suzuki [hep-ph/0405048].

[5] S.M. Barr, I. Dorsner, Nucl. Phys. B 585 (2000) 79 [hep-ph/0003058].

[6] W. Grimus, A.S. Joshipura, S. Kaneko, L. Lavoura, H. Sawanaka, M. Tanimoto, [hep-ph/0408123].

[7] W. Grimus, A.S. Joshipura, S. Kaneko, L. Lavoura, M. Tanimoto, JHEP 0407 (2004) 078 [hep-ph/0407122].

[8] W. Grimus, L. Lavoura, Acta Phys. Polon. B 32 (2001) 3719 [hep-ph/0110041].

[9] I. Aizawa, M. Yasu`e, [hep-ph/0409331].

[10] W. Grimus, L. Lavoura, JHEP 0107 (2001) 045 [hep-ph/0105212].

[11] Z. Maki, M. Nakagawa, S. Sakata, Prog. Theor. Phys. 28 (1962) 870.

[12] W. Grimus, L. Lavoura, J. Phys. G 30 (2004) 1073 [hep-ph/0311362].

[13] See for instance M. Flanz, W. Rodejohann, K. Zuber, Eur. J. Phys. C 16 (2000) 453 [hep-ph/9907203]; W. Rodejohann, K. Zuber, Phys. Rev. D 63 (2001) 054031 [hep-ph/0011050].

[14] W. Grimus, L. Lavoura, Eur. J. Phys. C 28 (2003) 123 [hep-ph/0211334].

[15] W. Grimus, L. Lavoura, Phys. Lett. B 572 (2003) 189 [hep-ph/0305046].

[16] C.I. Low, [hep-ph/0404017].

[17] S.T. Petcov, Phys. Lett. B 110 (1982) 245; C.N. Leung, S.T. Petcov, Phys. Lett. B 125 (1983) 461; G.C. Branco, W. Grimus, L. Lavoura, Nucl. Phys. B 312 (1989) 492.
See for instance R. Barbieri, L.J. Hall, D. Smith, A. Strumia, N. Weiner, JHEP 9812 (1998) 017 [hep-ph/9807235];
A.S. Joshipura, S.D. Rindani, Eur. J. Phys. C 14 (2000) 85 [hep-ph/9811252];
R.N. Mohapatra, A. Pérez-Lorenzana, C.A. de S. Pires, Phys. Lett. B 474 (2000) 355 [hep-ph/9911395];
Q. Shafi, Z. Tavartkiladze, Phys. Lett. B 482 (2000) 145 [hep-ph/0002150];
T. Kitabayashi, M. Yasuè, Phys. Rev. D 63 (2001) 095002 [hep-ph/0010087];
A. Aranda, C.D. Carone, P. Meade, Phys. Rev. D 65 (2002) 013011 [hep-ph/0109120];
K.S. Babu, R.N. Mohapatra, Phys. Lett. B 532 (2002) 77 [hep-ph/0201176];
H.J. He, D.A. Dicus, J.N. Ng, Phys. Lett. B 536 (2002) 83 [hep-ph/0203237];
G.K. Leontaris, J. Rizos, A. Psallidas, Phys. Lett. B 597 (2004) 182 [hep-ph/0404129];
S.T. Petcov, W. Rodejohann, [hep-ph/0409135].

M. Frigerio, A.Yu. Smirnov, Phys. Rev. D 67 (2003) 013007 [hep-ph/0207366].

L. Lavoura, W. Grimus, JHEP 0009 (2000) 007 [hep-ph/0008020].

P. Minkowski, Phys. Lett. B 67 (1977) 421;
T. Yanagida, in Proceedings of the workshop on unified theories and baryon number in the universe (Tsukuba, Japan, 1979), edited by O. Sawada, A. Sugamoto (Tsukuba: KEK report 79-18, 1979);
S.L. Glashow, in Quarks and leptons, Proceedings of the advanced study institute (Cargèse, Corsica, 1979), edited by J.-L. Basdevant et al. (Plenum, New York 1981);
M. Gell-Mann, P. Ramond, R. Slansky, in Supergravity, edited by D.Z. Freedman, F. van Nieuwenhuizen (North Holland, Amsterdam 1979);
R.N. Mohapatra, G. Senjanović, Phys. Rev. Lett. 44 (1980) 912.

H.S. Goh, R.N. Mohapatra, S.-P. Ng, Phys. Lett. B 542 (2002) 116 [hep-ph/0205131].

H.V. Klapdor-Kleingrothaus, A. Dietz, H.L. Harney, I.V. Krivosheina, Mod. Phys. Lett. A 16 (2001) 2409 [hep-ph/0201231].

P.H. Chankowski, Z. Pluciennik, Phys. Lett. B 316 (1993) 312 [hep-ph/9306333];
K.S. Babu, C.N. Leung, J. Pantaleone, Phys. Lett. B 319 (1993) 191 [hep-ph/9309223];
S. Antusch, M. Drees, J. Kersten, M. Lindner, M. Ratz, Phys. Lett. B 519 (2001) 238 [hep-ph/0108005];
P.H. Chankowski, S. Pokorski, Int. J. Mod. Phys. A 17 (2002) 575 [hep-ph/0110249].

A. Pilaftsis, Int. J. Mod. Phys. A 14 (1999) 1811 [hep-ph/9812256];
W. Buchmüller, M. Plümacher, Int. J. Mod. Phys. A 5 (2000) 5047 [hep-ph/0007176];
E.A. Paschos, Pramana 62 (2004) 359 [hep-ph/0308261].

L. Lavoura, Phys. Rev. D 62 (2000) 093011 [hep-ph/0005321];
W. Grimus, L. Lavoura, Phys. Rev. D 62 (2000) 093012 [hep-ph/0007011].