Cancer chemoprevention and therapy using chinese herbal medicine

Lijing Jiao 1,2†, Ling Bi 2†, Yan Lu 2, Qin Wang 2, Yabin Gong 2, Jun Shi 2 and Ling Xu 2*

Abstract

Traditional Chinese medicine (TCM) plays an indispensable role in cancer prevention and treatment. Chinese herbal medicine (CHM) is a key component of TCM and has been practiced for thousands of years. A number of naturally occurring products from Chinese herbs extracts exhibit strong inhibitory properties against carcinogenesis, including CHM single-herb extracts, CHM-derived active components, and CHM formulas (the polyherbal combinations), which regulate JAK/STAT, MAPK, and NF-κB pathways. The present review aims to report the cancer-preventive effect of CHM with evidence from cell-line, animal, epidemiological, and clinical experiments. We also present several issues that have yet to be resolved. In the future, cancer prevention by CHM will face unprecedented opportunities and challenges.

Keywords: Cancer, Chemoprevention, Treatment, Chinese herbal medicine

Background

It is estimated that approximately 14.1 million new cancer cases and 8.2 million cancer deaths occurred in 2012 worldwide [1]. Although many significant advancements in cancer treatment have been applied clinically, the morbidity and mortality of cancer remain high. An important reason for this unsatisfactory situation is that less attention has been paid to cancer prevention than treatment. Cancer can be caused by a variety of factors and may develop over a long time period, even during treatment. Medications that interrupt or reverse precancerous changes would be appealing and cost-effective in the battle against cancer.

The molecular prevention of cancer can be defined as the use of natural or synthetic agents that interrupt the prime drivers, key derangements, or the context in which these drivers act and derangements occur, before invasion across the basement membrane [2]. Chemoprevention is one aspect of the molecular prevention of cancer and was first defined by Sporn in 1976 [3]. Chemoprevention has been defined as the use of specific natural or synthetic chemical agents to reverse, suppress or prevent carcinogenic development to a tumor, which involves natural drugs or micronutrients that inhibit cancer development either by blocking cancer initiation through DNA-damaging agents, or by arresting or reversing the progression of initiated cells, except for vaccines and therapeutic interventions against microbial related cancer by antimicrobial effects (e.g., Helicobacter pylori for gastric cancer) [4]. Plants and their effective ingredients account for a large proportion of natural agents that have been used for cancer prevention and treatment in traditional Chinese medicine (TCM) clinical practice for ages, and some naturally occurring products from Chinese herbal medicine (CHM) exert chemopreventive properties against carcinogenesis. Research regarding the anti-proliferative and cytotoxic effects of TCM is being pursued to develop evidence-based complementary and alternative medicine or drug discovery (Table 1), which indicates that TCM could be a potential approach for chemoprevention.

Preclinical Studies in Cancer Chemoprevention

In the initial search for chemopreventive agents, animal models have been used extensively in the efficacy testing of potential chemopreventive agents. CHM has shown efficacy against multiple types of cancer (Table 2). The chemopreventive effects of green tea intake have been shown in many in vivo studies. For the 7,12-
Chinese Drug name	Chemoprevention model in vitro	Traditional application	Potential Active Components
Green tea	DMBA or UVB-induced skin papillomas in CD-1 mice [5]	Traditional Chinese drinks	Epicatechin-3-gallate [83, 84]
	N-nitrosomethylbenzylamine (NMBzA) oesophageal tumor caused by in rats [6]		Epigallocatechin gallate [85, 86]
	N-nitrosodiethylyamine (NDEA)-induced forestomach and lung cancer in A/J mice [7]		Epigallocatechin-3-gallate [87, 88]
	UVB-induced skin tumor in SKH-1 mice 8 [89]		
	NNK induced lung cancer in A/J mice [90]		
	N-Methyl-N-nitrosourea-induced colon carcinogenesis in F344 rats [91]		
	B[a]P-induced lung cancer in A/J mice [8]		
	NDEA-induced lung tumorogenesis in A/J mice [7]		
	Transgenic adenocarcinoma of the mouse prostate (TRAMP) model [92, 93]		
	NNK-induced lung cancer in A/J mice [94]		
	N-ethyl-N'-nitro-N-nitrosoguanidine (ENNG)-induced duodenal tumors in C57BL/6 J mice [95]		
	UVB-induced skin tumors [94]		
Prunella vulgaris	B[a]P-induced lung cancer in A/J mice [10]	Diabetics	Quercetin [96]
	B[a]P, 1,6-dinitropyrene and 3,9-dinitrofluoranthene [97]		Ursolic acid [98]
Rosmarinic acid	DMBA-induced oral carcinogenesis in golden Syrian hamsters [12]	Coronary artery disease,	NA
(Effective Components extracted from **Salvia miltiorrhiza**)		gastric ulcer and tumor	
	DMBA-induced skin carcinogenesis in Swiss albino mice [13]		
Ginseng	B[a]P-induced lung cancer in A/J mice [8]	Chronic lung disease,	20(S)-Protopanaxadiol [100]
	DMBA, urethane, and aflatoxin B1-induced Lung cancer in ICR newborn mice [19]	antioxidant and tumor	Ginsenoside-Rh2 [101, 102]
	NTCU-induced lung SCC in Swiss mice [20]		Ginsenoside F2 [103]
	DMBA-induced chromosomal aberrations and micronuclei [21]		Ginsenoside-Rb1 [104]
Scutellaria barbata	DMBA and TPA-induced skin tumor in female (C57BL/6XC3H) F1 (B6C3F1) mice [22]	Tumor	Scutellaria barbata
			polysaccharide [106]
Curcumin	Azoxymethane-induced rat colen carcinogenesis [24]	Antioxidant and	NA
dimethylbenz(a)anthracene (DMBA) and 12-O-tetradecanoyl phorbol-13-acetate (TPA)-induced skin papillomas, partial tumor regression or >90% inhibition of tumor growth, and marked inhibition of tumor growth (46–89%) were observed by intervention with green tea [5]. The incidences of esophageal mucosa lesions and esophageal tumors were significantly lower in the tea-treated rats (16–59% and 42–67%, respectively), compared with the control group (100% and 90%) [6]. Moreover, aqueous extract of green tea inhibited carcinogen-induced lung tumorigenesis in mice by 63% [7]. Polyphenon E exhibited a significant reduction in both tumor multiplicity (by 46%) and tumor load (by 94%) [8], while Epigallocatechin-3-gallate (EGCG) and Poly E-EGCG did not significantly inhibit lung tumor multiplicity [9].

As an extract of Prunella vulgaris L (PV) with 60% ethanol, P-60 could be used to treat B[a]P-induced lung cancer and decrease the tumor multiplicity by 90.3% [10]. Rosmarinic acid (RA) is a caffeic acid-related compound abundant in PV [11], whose oral administration completely prevented tumor formation induced by DMBA in hamsters [12] and had potent anti-cancer, anti-lipid peroxidative, and apoptotic effects on DMBA-induced skin carcinogenesis [13].

Honokiol, a plant lignan isolated from bark and seed of the cones of Magnolia officinalis, has shown chemopreventive effects on chemically induced skin cancer.
It has been reported to delay the formation of papillomas with a 27–55% reduction in tumor multiplicity in mouse skin initiated by DMBA and promoted by TPA [15]. α-santalol combined with honokiol and magnolol as pretreatment decreased tumor multiplicity (up to 75%) on skin cancer in SKH-1 mice [16]. In an A549 lung cancer xenograft model, the combination of honokiol with cisplatin reduced the tumor volume (3.59-fold), compared with cisplatin alone [17]. Honokiol also reduced the percentage of bronchial disease exhibiting abnormal histology (squamous cell carcinoma, SCC) (from 24.4 to 11.0%, \(P = 0.01 \)) and protected normal bronchial histology (20.5% in the control group and 38.5% in the honokiol-treated group, \(P = 0.004 \)) [18].

Ginseng is another well-studied herb that shows strong chemopreventive activities. In a lung adenoma model induced by 48 weeks of DMBA, it decreased the average diameter of the largest lung adenomas by 23% and the

Table 2 Mechanism of Action of Herbal Mixtures

Name	Botanical Origin	Biological/Pharmacological Activity	Potential Active Components
Single Herbs			
Green tea	Lv Cha	Apoptosis, cell cycle arrest, growth inhibition, antiangiogenesis, and inhibition of metastasis [87]	Epicatechin, Epigallocatechin, Epigallocatechin-3-gallate, Epigallocatechin-3-gallate [87],
Panax ginseng C. A. Mey.	Ren Shen	Apoptosis [125], cell cycle arrest, growth inhibition, antiangiogenesis, anti-tumor [125, 126]	EFLA400 [21]
Prunella vulgaris L.	Xia Ku Cao	Immune modulatory [52, 127], antiestrogenic [128], antiestrogen receptor [51], anti-tumor [127]	Rosmarinic, ellagic and caffeic acids [129], Phenolic acids, flavonoids, coumarins, triterpene, volatile oil, polysaccharides [50, 127]
Scutellaria barbata D. Don	Ban Zhi Lian	Anti-inflammatory and anti-tumor [22]	BZL101 [22, 130]
Magnolia officinalis	Hou Pu	Anti-inflammatory [131], anti-gastric ulcer, anti-allergic, antibacterial, and anti-thrombotic properties [110],	Honokiol and magnolol [132, 133], Rosmarinic acid
Curcuma longa L.	Jiang Huang	Anti-inflammatory, antioxidant [134, 135]	Curcumin [23], α-pinene, β-pinene, γ-terpinene, p-cymene, cuminaldehyde, carvone, 1,8-cineole, β-carotene, β-sitosterol, caffeic acid, carvacrol, carvaol, geranial, kaempferol, limonene, p-coumaric acid, quercetin, tannin, thymol [135]

Formula

Name	Botanical Origin	Biological/Pharmacological Activity	Potential Active Components
Anti-tumor B (ATB), also known as Zeng Sheng Ping(增生平)	Zeng Sheng Ping Plan	Anti-tumor [29]	NA
BaoFei Decoction	Bao Fei Yin	Anti-tumor [136, 137]	NA
Liu-Wei-Di-Huang Wan	Liu Wei Di Huang Wan	Immune modulatory, anti-tumor [34, 35]	NA
incidence of diffuse pulmonary infiltration by 63%. In the Ginseng treatment group sacrificed 56 weeks after birth (aflatoxin B1 combined with Ginseng), the incidence of lung adenoma (29%) and hepatoma (75%) was decreased [19]. Oral administration of aqueous extract of red Ginseng decreased tumor multiplicity by 36% and the tumor load by 70% [8]. *Korea White Ginseng* (KWG) significantly reduced the percentage of SCC to 9.1%, compared with 26.5% in the control group. KWG also significantly reduced the squamous cell lung tumor area to an average of 1.5%, compared with 9.4% in the control group [20].

EFLA400 is a standardized *Panax ginseng* extract containing a high titre of ginsenoside Rg3 (>3.0% w/w). Oral administration of EFLA400 at pre-, peri-, and post-initiation phases showed reductions in tumor incidence (71.41 ± 6.73%, 72.19 ± 4.54%, and 70.46 ± 0.38% at 1, 3, and 10 mg/kg body weight, respectively), compared with 100% tumor incidence in the control group [21].

Scutellaria barbata D. Don (Lamiaceae) (SB) is known in CHM as Ban-Zhi-Lian. It has been used as an anti-inflammatory and anti-tumor agent. During an 18-week study, mice treated with DMBA plus TPA developed 3.5 tumors per mouse with a 34% tumor incidence on average. The application of 5, 10, 100, and 200 mg of SB extracts together with TPA reduced the number of skin tumors by 35%, 43%, 50%, and 55%, respectively, and the percentage of mice with tumors were lowered by 45%, 55%, 60%, and 65%, respectively [22].

Curcumin (Diferuloylmethane) is the most important component of the spice turmeric and is derived from the rhizome of the East Indian plant *Curcuma longa* [23]. Curcumin in the diet of male F344 rats was shown to decrease the incidence of azoxymethane (AOM)-induced colon cancer, from 81% to 47% [24]. The combination of tea and curcumin significantly decreased the visible oral tumor incidence from 92.3% (24/26) to 69.2% (18/26) and the SCC incidence from 76.9% (20/26) to 42.3% (11/26). The combination also decreased the number of visible tumors and tumor volume by 52.4% and 69.8% and decreased the number of SCCs, dysplasic lesions, and papillomas by 62.0%, 37.5%, and 48.7%, respectively. Curcumin decreased the number of visible tumors (by 39.6%), the tumor volume (by 61.3%), and the number of SCCs (by 51.3%). Only the combination treatment decreased the proliferation index in SCCs [25]. Another study found that oral administration of curcumin during the initiation and postinitiation phases, as well as hesperidin at the initiation stage, caused a significant reduction in the incidence of tongue carcinoma (41–91% reduction, *P < 0.05*), and the order of chemopreventive efficacy was curcumin > β-carotene > hesperidin. The incidence of oral preneoplasia in rats fed with these compounds was also decreased (*P < 0.05* [26].

Anti-tumor B (ATB), also called Zeng-Sheng-Ping, is a Chinese herbal mixture composed of six plants that has shown an anticancer effect in mouse models of bladder cancer [27], lung cancer [28, 29], and oral cancer [30]. Preclinical studies have shown that ATB could reduce the incidence of N-butyl-(4-hydroxybutyl) nitrosamide (BBN)-induced bladder cancer by 90.7% [27]. ATB caused a significant reduction in lung tumor multiplicity and tumor load (40% and 70%, respectively) [31]. In an oral SCC model, ATB decreased the incidence and multiplicity by 59.19% and 64.81%, respectively [30]. Both the ATB n-butanol fraction and water fraction significantly reduced the tumor volume by 32.6% (*P < 0.01*) and 22.9% (*P < 0.01*) in DMBA-induced buccal pouch carcinogenesis in hamsters [32]. Anti-tumor B inhibited 4-nitroquinoline-1-oxide (4NQO)-induced oral cancer development by 65% [30]. In a mouse model of 4NQO-induced oro-esophageal cancer, ATB (10% in diet) also significantly reduced the incidence of tongue SCC from 55.2% (16/29) to 22.2% (6/27) (*P < 0.05*) and slightly reduced the incidence of esophageal SCC from 34.5% (10/29) to 22.2% (6/27) [33]. In B[a]P-induced mouse lung adenomas, ATB reverted 40% of gene expression changes to normal levels [31], and most of these ATB-modulated genes were involved in cell proliferation. ATB is a potential agent for human lung adenocarcinoma carrying common genetic alterations.

Liu-Wei-Di-Huang-Wan (LP) is an ancient Chinese prescription consisted of six herbs: *Rehmannia glutinosa*, *Cornus officinalis Sieb*, *Common Yam Rhizome*, *Alisma orientalis*, *Tree Peony Bark*, and *Poria cocos*. It could inhibit the incidence of theurethan-induced lung pulmonary adenomas by 50–56% [34, 35]. To our knowledge, no relevant studies on LP in chemoprevention have been published in the last 20 years.

These results suggest that CHM could be a potential chemopreventive agent for cancer. Moreover, the findings from the in vivo studies have shown that CHM can exert potent chemopreventive effects against many types of cancer.

Mechanisms of Action

Considering the complicated factors of tumorigenesis, several pathways are believed to play an important role in chemoprevention. For example, the aberrant activation of intracellular signaling pathways confers malignant properties on cancer cells via the JAK/STAT and MAPK pathways [36, 37]. Chronic inflammation or tissue damage resulting in persistent inflammation promotes cell transformation through genetic damage or pro-inflammatory cytokines, thereby inducing chronic inflammation and tumorigenesis, which is activated by the NF-B pathway [38]. Moreover, physiological cellular signaling mechanisms normally tightly regulate the
ability of cells to gain access to and utilize nutrients, posing a fundamental barrier to transformation, which is abolished by the PI3K-Akt-mTOR pathway and then causes tumorigenesis [39].

Recent preclinical studies have improved our understanding of the mechanisms of CHM for chemoprevention (Table 2). In vitro studies, have demonstrated that green tea and EGCG could block carcinogenesis by affecting a wide range of signal transduction pathways: JAK/STAT [40], MAPK [41], PI3K/AKT [42], Wnt [43], NF-κB [44], Notch [45], and STAT3 [46]. The results demonstrated the beneficial effects of quercetin and EGCG on the suppression of the JAK/STAT cascade of CCA cells [40]. One study suggested that EGCG could suppress the proliferation and induced apoptosis of PANC-1 cells. Moreover, EGCG could upregulate PTEN expression and downregulate the expression of pAKT and p-mTOR to modulate the PI3K/AKT/mTOR signaling pathway [42]. EGCG exerts its cancer-preventive or anticancer activity against colon cancer cells by promoting the phosphorylation and proteasomal degradation of β-catenin through a mechanism independent of GSK-3 and PP2A [43]. The EGCG-induced apoptosis of HCCLM6 cells has been associated with a significant decrease in Bcl-2 and NF-kappaB expression. In addition, the expression of Bax, P53, caspase-9, and caspase-3 were increased, and Cytochrome C was released. These results suggest that EGCG inhibits the progression of cancer through cytocidal activity, and it is a potential therapeutic compound for hepatocellular carcinoma (HCC) [44]. EGCG has also been found to inhibit colorectal cancer by inhibiting HES1 and Notch2 [45]. Evidence shows that Polyphenol A(Poly E) treatment inhibits migration of MDA-MB231 breast cancer and human dermal microvascular endothelial (HMVEC) cells as well as the expression of VEGF and MMP9 through STAT3 [46]. Recent observations that β-catenin is upregulated in skin tumors suggests the possibility that the anti-inflammatory effects of EGCG are mediated, at least in part, through its effects on β-catenin signaling. It was found that the EGCG treatment on the A431 and SCC13 human skin cancer cell lines resulted in reduced cell viability and increased cell death, and these cytotoxic effects were associated with the inactivation of β-catenin signaling [47]. EGCG inhibited the proliferation of Eca-109 and Te-1 cells in a time- and dose-dependent manner. Tumor cells were arrested in the G1 phase, and apoptosis was induced by ROS production and caspase-3 cleavage [48].

Prunella vulgaris (PV) extract and Rosmarinic acid (RA) also significantly reduced ROS production and diminished IL-6 release to prevent UVB-caused DNA damage and oxidative stress to HaCaT keratinocytes [49]. RA inhibited TNF-α-induced ROS generation and NF-κB activation and enhanced TNF-α-induced apoptosis [50]. RA also suppressed the expression of MMP-9 by inhibiting NF-κB via the ERK1/2 signaling pathway as well as MMP-9 activity [51]. In addition, PV induced gene expression and the production of macrophage-related cytokines, such as TNF-α, IL-1b, and IL-6. PV stimulated macrophage activation via NF-κB transactivation and Mitogen-activated protein (MAP) kinase activation [52].

Multiple mechanisms have been implicated in the chemopreventive action of ginsenosides. One study showed that KWG functions as a chemopreventive agent through pathways involving AP-1, and KWG may partially depend on AP-1 for its chemopreventive function, possibly through the inhibition of JNK phosphorylation [20]. Ginsenoside Rg3, one of the major ingredients of heat-processed Ginseng, has been reported to inhibit the growth of various cancer cells. Rg3 induced apoptosis in MDA-MB-231 cells by blocking the NF-κB signaling pathway via the inactivation of ERK and Akt as well as the destabilization of mutant P53 [53].

BZL101, as an aqueous extract from SB, exhibits selective cytotoxicity through strong induction of ROS in tumor cells, leading to the hyperactivation of poly (ADP-ribose) polymerase, followed by a sustained decrease in the levels of NAD and the depletion of ATP [54]. Anti-tumor and anti-angiogenic activities of SB extracts in LoVo and human umbilical vein endothelial cells are partially mediated by the inhibition of Akt/protein kinase B. This inhibition was Akt kinase-specific, as it had no effect on PI3K, the upstream kinase of Akt, whereas the levels of phosphorylated Bad and FHKR, the two downstream targets of Akt, changed as the levels of Akt changed [55].

Curcumin has also been shown to exert significant growth inhibitory effects on pre-cancerous and carcinoma cell lines, such as epithelial breast cell lines MCF-10A, MCF-7, BT-474, SK-BR-3-h, and MDA-MB-231 [56], and lung cancer cell lines, such as A549, PC-9, H1975, and H1650 [23]. A number of studies have suggested that curcumin has the potential to target cancer stem cells through the regulation of self-renewal pathways (Wnt/beta-catenin, Notch, sonic hedgehog) and specific microRNAs involved in the acquisition of the epithelial-mesenchymal transition [57]. A recent study also demonstrated that curcumin and its analogues (PGV-0 and PGV-1) enhance the doxorubicin cytotoxicity to MCF-7 cells by inhibiting HER2 activity and activating NF-κB [58]. Other recent findings incite that curcumin may subvert the TGF-β signaling to an alternative adipogenic differentiation program in addition to the previously established interference with the osteoinductive properties, thus inhibiting the bone metastatic processes in a chemopreventive as well as therapeutic setting [59].

A number of findings have suggested that honokiol targets multiple signaling pathways, including NF-κB, STAT3, epidermal growth factor receptor (EGFR), and mammalian target of rapamycin (m-TOR), which play
an important role in cancer initiation and progression [60]. A recent study showed that honokiol inhibited lung SCC cells’ proliferation, arrested cells at the G1–S cell-cycle checkpoint, and induced apoptosis. By interfering with mitochondrial respiration, honokiol changed the redox status in the mitochondria, triggered apoptosis, and finally led to the inhibition of lung SCC [18].

Previous findings showed that ATB modulated the expression of genes on multiple signaling pathways, such as the Notch and Ras-MAPK pathways [29]. The number of BrdU-labeled positive cells in the oral precancerous tissues was significantly decreased after treatment with ATB butanol or water fractions, which inhibited oral tumor cell growth and reduced the expression of MAPK. In addition, ATB promoted tumor cell apoptosis by increasing Caspase-3 expression but decreasing Bcl-2 protein production [32]. Cell proliferation, silver stained nucleolar organizer region (AgNOR), and proliferating cell nuclear antigen (PCNA)-labeling index were also significantly suppressed by ATB treatment [33]. The expression of EGFR and phosphorylated EGFR (Tyr1173) was also down-regulated by ATB [30].

Pharmacokinetics Studies
Pharmacokinetic (PK) data are important for understanding the interactions between Chinese herbs and cancer prevention. Satisfactory PK information on Chinese herbs is not available due to the low quantity and quality of relevant studies. However, there have been some PK analyses of green tea [61], Ginseng [62], and curcumin [63]. In a PK model for curcumin, the area under the curve for 10 and 12 g doses was estimated (mean +/- SE) to be 35.33 +/- 3.78 and 26.57 +/- 2.97 mug/mL x h, respectively, and C(max) was 2.30 +/- 0.26 and 1.73 +/- 0.19 mug/mL. The T(max) and T(1/2) were estimated to be 3.29 +/- 0.43 and 6.77 +/- 0.83 h. The ratio of glucuronide to sulfate was 1.92:1. The curcumin conjugates were present as either glucuronide or sulfate or mixed conjugates [63].

Toxicity Studies
Safety is as important as efficiency for chemoprevention agents. Green tea and curcumin are appealing for their low or non-toxicity. No pathologic changes in the liver, lungs, kidneys, etc., were found by microscopic examination after the administration of liposomal honokiol or liposomal honokiol plus cis-Dichlorodiamineplatinum (DDP). No adverse occurrences occurred in gross measures, such as weight loss, ruffling of fur, life span, behavior, or feeding [17]. No overt signs of the SB-induced toxicity were observed, as judged by visual inspection of skin, gross morphological examination of major organs, and changes in body weights [22].

Several studies have shown that CHM, e.g., ATB, may cause some degree of toxicity in animals and human beings. Experimental animal studies and epidemiological surveys have uncovered green tea polyphenols’ (GTPs) toxicity at high doses, presumably due to pro-oxidative properties. Recent studies have shown that unlike low and medium dosage, diets containing high doses (1%) of GTPs aggravated colitis and colon carcinogenesis, caused nephrotoxicity and hepatotoxicity in mice, and down-regulated expressions of anti-oxidant enzymes and molecular chaperones [64, 65]. In a phase I trial to find the maximum tolerated dose of GTE, the dose-limiting toxicities were tremors, cough, constipation, and headache, which were thought to be caused by caffeine in GTE [66]. Another phase II study showed that GTE was well tolerated, although higher doses (750 and 1000 mg/m2) increased insomnia/nervousness without grade 4 toxicity [67]. ATB was well tolerated in A/J mice with doses as high as 400 g/kg diet. By giving diets composed of AIN-76A with ATB at 800 g/kg diet, mice lost body weight (+20%) within the first 2 weeks. These results are consistent with the long history (>26 years) of its safety profile in clinical trials and usage as herbal supplements [29]. However, the oral administration of ATB tablets caused severe side effects, including hepatic damage [68, 69], diarrhea, nausea, and rash [70], which limited the long-term administration of ATB for humans.

Cancer Chemoprevention Clinical Trials with Chinese Herbs
Cancer chemoprevention clinical trials are vital for guiding the use of CHM in cancer prevention. Several clinical trials have shown benefits of CHM in cancer chemoprevention (Table 3). The treatment group by using green tea showed a 37.9% response rate after 6 months on human oral precancerous mucosa lesions, compared with the control arm. There were differences in the number and total volume of AgNOR and the proliferating index of PCNA in oral mucosa cell nuclei between the treated group and the control group [71]. A phase I study showed that a dose of 1.0 g/m(2) tid (equivalent to 7 to 8 Japanese cups [120 ml] of green tea three times daily) for at least 6 months is recommended for future studies [66]. A phase II study of GTE suggested that higher doses of GTE may improve short-term (12 weeks) oral premalignant lesions’ (OPLs) outcome [67]. Many epidemiologic studies have been conducted to investigate the association between tea consumption and cancer. One conducted on 396 head and neck cancer (HNC) cases and 413 controls indicated an inverse association between HNC risk and green tea consumption, which appeared to be modified by alcohol drinking status [72]. For patients with asymptomatic Rai stage 0 to II chronic
Reference	Chinese herbs	Tumor Types	Type of Study	Number of Patients	Administration Methods	Result	Conclusion	Adverse Events
Li N et al. (1999) [71]	Green tea	Oral leukoplakia	RCT double-blind	Tx = 29, Ctr = 30	Tx: Tea 3 g/day/Tea capsule 760 mg q.d.	Results provide some direct evidence on the protective effects of tea on oral cancer.	NA	
Ahn WS et al. (2003) [138]	Green tea	High-risk (HPV infected) cervical lesions	Pilot study	Tx1 = 51, Ctr = 39	Tx1: Poly E Ointment 200 mg twice weekly; Tx2: Poly E capsules 200 mg orally daily; Tx3: EGCG capsules 200 mg orally daily; Tx4: Poly E Ointment + Poly E capsules Ctr: nontreated	Overall 69% (55/51) in treatment arm vs 10% (4/39) patients in nontreated control (P < 0.05)	Green tea extracts can be a potential therapy regimen for patients with HPV-infected cervical lesions.	Hematological and non-hematological toxicities as well as adverse side effects in patients treated locally or systemically with poly E and EGCG were evaluated at 4-week intervals for 12 weeks.
Tsao AS et al. (2009) [67]	Green tea	High-risk oral pre-malignant lesions (OPLs)	Phase II RCT	Tx1 = 11, Tx2 = 11, Tx3 = 9, Ctr = 10	Tx1: GTE 500 mg/m^2; Tx2: GTE 750 mg/m^2; Tx3: 1000 mg/m^2; Ctr: placebo thrice daily for 12 weeks	Response rate: GTE arms (n = 28, 50%) vs placebo (n = 11, 18.2%; P = 0.09). Two higher-dose GTE arms: 58.8% (750 and 1000 mg/m2), 36.4% (500 mg/m2), and 18.2% in the placebo (P = 0.03)	The result suggested a dose-response effect; GTE may suppress OPLs, in part through reducing angiogenic stimulus (stromal VEGF).	Higher doses increased insomnia/nervousness but produced no grade IV toxicity
Yun TK et al. (2010) [70]	Red Ginseng	Chronic atrophic gastritis	RCT double-blind	Tx = 325, Ctr = 318	Tx1: red ginseng (1 g) per week Ctr: placebo for 3 years	Male red Ginseng group showed a relative cancer risk of 0.35 (95% CI, 0.13–0.96; P = 0.03) compared to the male placebo	Administration of red ginseng extract powder for 3 years exerted significant preventive effects on the incidence of non-organ-specific human cancers in males.	Many subjects complained of gastrointestinal symptoms: 55.6% in the placebo group and 57.3% in the red ginseng group (P > 0.05).
Rugo H et al. (2006) [130]	BZL101	Advanced breast cancer	Phase I study	N = 21	Tx: 350 ml per day	There were no grade III or IV adverse events (AEs).	BZL101 was safe and had a favorable toxicity profile.	Grade I and II AEs included: nausea (38%), diarrhea (29%), headache (19%), flatulence (14%), vomiting (10%), constipation (10%), and fatigue (10%).
Robert E et al. (2011)	Curcumin	Aberrant crypt foci (ACF) in smoker	Phase Ia	N = 41, Tx1 = 22, Tx2 = 19	Tx1: 1.2 g, Tx2: 4 g daily for 30 days	40% reduction in the ACF number occurred with the 4 g dose (P < 0.005), while ACF was not reduced in the 2 g group in plasma curcumin/conjugate levels pre-and post-treatment (5-fold increase; P = 0.009) in the 4 g group	Curcumin was well tolerated at both 2 g and 4 g, and it can decrease the ACF number.	6.1% had grade I–II toxicity, primarily gastrointestinal disturbances. The single grade-III toxicity was atrypical chest pain.
Lin PZ et al. (1990) [70]	ATB	Precancerous lesions of the esophagus	RCT Placebo	N = 25.23, Tx1 = 841, Tx2 = 841, Ctr = 841	Tx1: ATB 8 tablets q.d Tx2: retinamide 25 mg q.d (1–6 months) 50 mg q.d (7–12 months) 100 mg q.d (13 months) Ctr: placebo	3 and 5 years after, the incidence of esophageal cancer in the ATB group was reduced by 52.2% and 47.3%, respectively (P < 0.05)	This method needs further trial and study in high-risk areas of esophageal cancer. The reliability of the experimental results is critically discussed.	1.67% diarrhea 0.6% nausea, rash
Reference	Chinese herbs	Tumor Types	Type of Study	Number of Patients	Administration Methods	Result	Conclusion	Adverse Events
-----------	---------------	-------------	---------------	--------------------	------------------------	--------	------------	---------------
Wang J et al. (2000) [139]	ATB	Esophageal epithelial hyperplasia	Single-blind RCT placebo	Tx: 300 Ctr: 149	Tx: ATB 8 tablets b.i.d Ctr: placebo 8 tablets b.i.d	64.3% (193/300) response rate in treatment arm vs 22.8% (34/159) in control arm (P < 0.05)	ATB is an effective drug in treatment of esophageal epithelial hyperplasia.	Adverse effects are mild and well tolerated by patients.
Sun Z et al. (2010) [33]	ATB	Esophageal SCC in human patients with dysplasia	RCT	N = 112 Tx: 59 Ctr: 53	TX: ATB 4 tablets, 3 times per day for 8-12 months Ctr: placebo	Reduced the size of oral lesion in 67.8% (40/59) patients, whereas the placebo was effective in 17% (9/53) patients (P < 0.01).	ATB could prevent human patients with oral leukoplakia.	Drug toxicity was not monitored.

Tx: Treatment group; Ctr: Control group; RCT: Randomized, placebo-controlled trial; NA: not applicable
lymphocytic leukemia, studies showed that twice daily EGC G (2000 mg per dose) administration resulted in a 31% sustained reduction of ≥20% in the absolute lymphocyte count, and 69% of patients with palpable adenopathy experienced a ≥50% reduction in the sum of the products of all lymph node areas, which could be correlated with reductions in lymphadenopathy (correlation co-efficient, 0.44; \(P = 0.02 \)) [73, 74]. Another phase II trial is ongoing to study how green tea extract works in preventing breast cancer compared to a placebo in 1084 cases of postmenopausal women by evaluating its effects on breast cancer biomarkers, including mammographic density, plasma insulin-like growth factor 1, IGF binding protein 3, and estrone (ClinicalTrials.gov Identifier: NCT00917735).

CHM is very effective in the chemoprevention of upper aerodigestive tract tumors. ATB has a long history of safe usage in thousands of patients for more than 30 years. One clinical study showed an approximately 50% reduction in the cancerization rate of marked esophageal dysplasia with ATB [70]. In this clinical trial, more than 2500 cases of marked esophageal dysplasia were randomly divided into an ATB group and a placebo control group [70]. After 3 or 5 years of treatment, the progression of esophageal dysplasia to esophageal cancer was inhibited remarkably by 52.2% and 47.3%, respectively [70]. After 9 years, the inhibition rate was 42.1% [75]. Previous studies have suggested ATB to be a promising chemopreventive agent in smokers with bronchial dysplasia (Steve Lam, Professor, British Columbia Cancer Agency, Vancouver, Canada. slam@interchange.ubc.ca; personal communication). In a pilot study of ATB in smokers with bronchial dysplasia, 20 current and former smokers with a smoking history of approximately 30 pack-years and one or more sites of bronchial dysplasia identified by fluorescence bronchoscopy-directed bronchial biopsies were treated with ATB for 6 months. Using combined histopathology and nuclear morphometry as the primary end point, site-specific analysis showed a complete regression rate of 64% in the ATB group and 26% in the placebo group (\(P = 0.002 \)). The corresponding progressive disease rates were 9% and 12% respectively. In a randomized clinical trial on 112 patients with oral leukoplakia, ATB (4 tablets, 3 times per day for 8–12 months) reduced the size of oral lesion in 67.8% (40/59) patients, whereas the placebo was effective in 17% (9/53) patients (\(P < 0.01 \)) [33].

In a clinical trial of chronic atrophic gastritis patients, the administration of red ginseng extract powder for 3 years exerted significant preventive effects on the incidence of non–organ-specific human cancers in males [76]. The maximum dose of BZL101 (40 g/day) was safe, well tolerated, and showed promising anticancer activity in heavily pretreated population of women with metastatic breast cancer [77]. Curcumin is still lacking evidence of chemopreventive activity in humans. All 5 patients received more than 6 months of curcumin and quercetin, and the mean percent of decrease in the number and size of polyps from baseline was 60.4% (\(P < 0.05 \)) and 50.9% (\(P < 0.05 \)), respectively. Minimal adverse effects and no laboratory abnormalities were noted [78]. A phase II chemoprevention study of curcumin was conducted to examine the effect of oral curcumin on various putative biomarkers of colonic tumorigenesis in smokers and found that curcumin can decrease the aberrant crypt foci number [79].

Perspectives and Conclusions
Cancer prevention by Chinese herbs is supported by studies from animal, cell culture, epidemiological, and clinical trials. However, Cancer prevention by Chinese herbs still a long way from clinical translation. More efforts are required for CHM standardization to ensure reproducibility, and the compatibility of different active compounds should be clarified, especially for the Chinese compound formula. In addition, with a more in-depth understanding of cross-reactivities and unintended consequences between CHM and other treatment, we could make better use of CHM in chemoprevention and treatment. Meanwhile, the increasing use of Chinese herbs around the world requires more scientific evidence for their putative harmlessness. The art of herbal medicine is to dissect pharmacologically and therapeutically valuable herbal drugs from harmful and toxic ones, and to develop combinations of medicinal plants as safe and efficient herbal remedies [80]. At this moment, the best way to ascertain the mechanism of chemopreventive agents on a molecular level is by using relevant biomarkers. Molecular markers can help in effectively determining the biological activity in a chemopreventive setting [81]. One review found that although 51 studies with more than 1.6 million participants have been done on cancer prevention, there is still limited evidence that green tea could reduce the incidence of liver cancer. The evidence for esophageal, gastric, colon, rectum, and pancreatic cancer remains conflicting [82]. Therefore, high methodological quality for clinical research is the key for clinical research to ascertain the cancer-preventive effect of Chinese herbs for cancer chemoprevention. Further research is expected to be done on developing agents with lower toxicity and higher efficacy for specific biomarkers and pathways, and targeting these therapies to individuals with specific genetic signatures should help to increase the utility of CHM in chemoprevention and treatment.

Abbreviations
4NQO: 4-nitroquinoline-1-oxide; AgNOR: Silver stained nucleolar organizer region; AOM: Azoxymethane; AP-1: Activator protein-1; ATB: Anti-tumor B; BBN: N-butyl-(4-hydroxybutyl) nitrosamide; CH: Chinese herbs; CHM: Chinese herbal medicine; DDP: Cis-Dichlorodiamineplatinum; DMBA: 7,12-Dimethylbenz[a]anthracene; EGCG: (-)-Epigallocatechin-3-gallate; EP: Estrogen; IGF: Insulin-like growth factor; IGF-1R: Insulin-like growth factor 1 receptor; MGMT: O6-Methylguanine-DNA methyltransferase; NTRK2: Neurotrophic tyrosine receptor kinase 2; PAX6: Paired box 6; PHD3: Plant homeodomain 3; RBD: Retinoic acid-binding domain; RAS: Rat sarcoma; ROS: Reactive oxygen species; SIRT1: Sirtuin 1; TLR4: Toll-like receptor 4; TIMP-3: Tissue inhibitor of metalloproteinase 3; TNFSF11: Tumor necrosis factor superfamily member 11; VEGF: Vascular endothelial growth factor; Wnt: Wingless type MMTV integration site family member; XPD: Xeroderma pigmentosum complementation group D; XPC: Xeroderma pigmentosum complementation group C; XPA: Xeroderma pigmentosum complementation group A.
dimethylbenz(a)anthracene; EGCG: Epigallocatechin-3-gallate; EGFR: Epidermal growth factor receptor; ENNG: N-ethyl-N-nitro-N-nitrosoguanidine; GSK-3β: Glycogen synthase kinase-3β; GTE: Green tea extract; GTPs: Green tea polyphenols; HCC: Hepatocellular carcinoma; HMVEC: Human dermal microvascular endothelial cell; HNC: Head and neck cancer; IAK/STAT: Janus kinase/signal transducer and activator of transcription; KGW: Korea white ginseng; LP: Liu wei di huang Wan; MAP: Mitogen-activated protein; MAPK: Mitogen-activated protein kinase; MMPs: Matrix metalloproteinase; NDAE: N-nitrosodiethylamine; NMBsA: N-nitrosomethylbenzylamine; NKK: 4-(methylthio)-s-amino-1-(3-pyridyl)-1-butanol group; NTCU: N-nitroso-trichloro-ethyurea; OPL: Oral pre-malignant lesions; PCNA: Proliferating cell nuclear antigen; PP2A: Phospho-protein phosphatase 2A; PTEN: Phosphatase and tensin homolog deleted on chromosome ten; PV: Prunella vulgaris; RA: Rosmarinic acid; ROS: Reactive oxygen species; SB: Scutellaria baicala; SCC: Squamous cell carcinoma; TCM: Traditional Chinese medicine; TNF-α: Tumor necrosis factor-α; TPA: 12-O-tetradecanoyl phorbol-13-acetate; VEGF: Vascular endothelial growth factor

Funding
This study was sponsored by the Shanghai Municipality Science and Technology Commission Foundation Key Project (No.16401970701), the Shanghai Science and Technology Innovation Project of Traditional Chinese Medicine (No. ZYKC201601020), the National Science Foundation of China (No. 81703581373623), and the Special Scientific Research for Traditional Chinese Medicine (No.201307006).

Availability of data and materials
All data supporting the results are included in the article.

Authors’ contributions
LJJ and LX conceived and designed the experiments. LJJ and LB performed the experiments and wrote the paper. YL, YBG, JS, and QW provide assistance with revising this manuscript. All authors read and approved the manuscript.

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Author details
1 Institute of Clinical Immunology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China. 2 Department of Oncology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, No.110, Ganhe Road, Hongkou District, Shanghai 200437, China.

Received: 23 June 2017 Accepted: 20 December 2017 Published online: 08 January 2018

References
1. Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A. Global cancer statistics, 2012. CA Cancer J Clin. 2015;65:87–108.
2. Maresso KC, Tsai KY, Brown PH, Szabo E, Lippman S, Hawk ET. Molecular cancer prevention: current status and future directions. CA Cancer J Clin. 2015;65:345–83.
3. Spong M. Approaches to prevention of epithelial cancer during the preneoplastic period. Cancer Res. 1976;36:2699–702.
4. Ferguson LR. Prospects for cancer prevention. Mutat Res. 1999;428:329–38.
5. Wang ZY, Huang MT, Ho CT, Chang R, Ma W, Ferraro T, et al. Inhibitory effect of green tea on the growth of established skin papillomas in mice. Cancer Res. 1992;52:6657–65.
6. Han C, Xu Y. The effect of Chinese tea on occurrence of esophageal tumor induced by N-nitrosomethylbenzylamine in rats. Biomed Environ Sci. 1990;3:35–42.
7. Wang ZY, Hong JH, Huang MT, Reuhl KR, Conney AH, Yang CS. Inhibition of N-nitosodimethane- and 4-(methylthio)-s-amino-1-(3-pyridyl)-1-butanol-induced tumorigenesis in a/J mice by green tea and black tea. Cancer Res. 1992;52:1943–7.
8. Yan Y, Wang Y, Tan Q, Hara Y, Yun TK, Lubiect RA, et al. Efficacy of polyphenol E, red ginseng, and ramapycin on benzo(a)pyrene-induced lung tumorigenesis in a/J mice. Neoplasia. 2006;8:52–8.
9. Zhang Q, Fu H, Pan J, He J, Jyta S, Hara Y, et al. Effect of dietary Polyphenol E and EGCG on lung tumorigenesis in a/J mice. Pharm Res. 2010;27(1):661–71.
10. Feng L, Jia X, Zhu M, Chen Y, Shi F. Chemoprevention by Polyphenol E: a microRNA tool and the potential for future clinical applications. Cancer Prev Res (Phila). 2014;7(1):1149–59.
11. Yun TK, Yun YS, Han IW. Anticancer effect of long-term oral administration of red ginseng on newborn mice exposed to various chemical carcinogens. Cancer Detect Prev. 1983;6:155–25.
12. Pan J, Zhang Q, Liu Q, Komans SM, Kalyanaraman B, Lubiect RA, et al. Honokiol inhibits lung tumorigenesis through inhibition of mitochondrial function. Cancer Prev Res (Phila). 2014;7:1149–59.
13. Sharmila R, Manoharan S. Antitumor activity of rosmarinic acid in 7, 12-dimethylbenz(a)anthracene-induced hamster buccal pouch carcinogenesis. J Environ Pathol Toxicol Oncol. 2011;30:199–211.
14. Chilampalli S, Zhang X, Faehny H, Kauhisk R, Zeman D, Hildreth MB, et al. Chemopreventive effects of honokiol on UVB-induced skin cancer development. Anticancer Res. 2010;30:777–83.
15. Konoshima T, Kozaka M, Tokuda H, Nishino H, Ishiwana A, Haruna M, et al. Studies on inhibitors of skin tumor promotion, K. Neolignans from Magnolia Officinalis. J Nat Prod. 1991(54):816–22.
16. Chilampalli C, Zhang X, Kauhisk RS, Young A, Zemand D, Hildreth MB, et al. Chemopreventive effects of combination of honokiol and magnolol with alpha-santalol on skin cancer development. Drug Discov Ther. 2013;7(1):109–15.
17. Jiang Q, Fan L, Yang G, Guo WH, Hou WL, Chen LJ, et al. Improved therapeutic effectiveness by combining liposomal honokiol with cisplatin in lung cancer model. BMC Cancer. 2008;8:242.
18. Pan J, Zhang Q, Liu Q, Komans SM, Kalyanaraman B, Lubiect RA, et al. Honokiol inhibits lung tumorigenesis through inhibition of mitochondrial function. Cancer Prev Res (Phila). 2014;7:1149–59.
19. Yun TK, Yun YS, Han IW. Anticarcinogenic effect of long-term oral administration of red ginseng on established skin papillomas in mice exposed to various chemical carcinogens. Cancer Prev Res. 2013;6:350–9.
20. Han C, Xu Y. The effect of Chinese tea on occurrence of esophageal tumor induced by N-nitrosomethylbenzylamine in rats. Biomed Environ Sci. 1990;3:35–42.
21. Pan J, Zhang Q, Liu Q, Komans SM, Kalyanaraman B, Lubiect RA, et al. Honokiol inhibits lung tumorigenesis through inhibition of mitochondrial function. Cancer Prev Res (Phila). 2014;7:1149–59.
22. Suh SJ, Yoon JW, Lee TK, Jin LH, Kim SL, Kim MS, et al. Chemoprevention of Scutellaria bardinia on human cancer cells and tumorigenesis in skin cancer. PloS one. 2007;2:135–41.
23. Mehta HJ, Patel V, Sadikot RT. Curcumin and lung cancer-a review. Target Oncol. 2014;9:295.
24. Samaha HS, Kelloff GJ, Steele V, Rao CV, Reddy BS. Modulation of apoptosis by sulindac, curcumin, phenylethyl-3-methylcaffeate, and 6-phenylhexyl isothiocyanate: apoptotic index as a biomarker in colon cancer. Cancer Res. 1992;52:6657–65.
25. Li N, Chen X, Liao J, Yang G, Wang S, Josephson Y, et al. Inhibition of 7,12-dimethylbenz(a)anthracene (DMBA) induced oral carcinogenesis in hamsters by tea and curcumin. Carcinogenesis. 2002;23:307–13.
26. Tanaka T, Makita H, Onishi M, Hirose Y, Wang AL, Mori H, et al. Chemoprevention of 4-nitroquinoline 1-oxide-induced oral carcinogenesis by dietary curcumin and hesperidin: comparison with the protective effect of beta-carotene. Cancer Res. 1994;54:4653–9.
27. Fan X. Inhibitory effect of antitumor-B and retinamide on precancerous lesions of the bladder in rats. Zhongguo Yi Xue Ke Xue Yuan Xue Bao. 1993;15:17–13.
28. Wang Y, Zhang Z, Kastens E, Lubiect RA, You M. Mice with alterations in both p53 and Ink4a/Arf display a striking increase in lung tumor multiplicity and
progression: differential chemopreventive effect of budenoside in wild-type and mutant a/l mice. Cancer Res. 2003;63:4389–95.
29. Zhang Z, Wang Y, Yao R, Li J, Yan Y, La Regina M, et al. Cancer chemopreventive activity of a mixture of Chinese herbs (antitumor B) in mouse lung tumor models. Oncogene. 2004;23:3841–50.
30. Wang Y, Yao R, Gao S, Wen W, Du Y, Szabo E, et al. Chemopreventive effect of a mixture of Chinese herbs (antitumor B) on chemically induced oral carcinogenesis. Mol Carcinog. 2013;52:49–56.
31. Wang Y, Zhang Z, Garbow JR, Rowland DJ, Lubet RA, Sit D, et al. Chemoprevention of lung squamous cell carcinoma in mice by a mixture of Chinese herbs. Cancer Prev Res (Phila). 2009;2:634–40.
32. Guan XB, Sun Z, Chen XX, HR W, Zhang XY. Inhibitory effects of Zengshengping fractions on DMBA-induced buccal pouch carcinogenesis in hamsters. Chin Med J. 2012;125:332–7.
33. Sun Z, Guan X, Li N, Liu X, Chen X. Chemoprevention of oral cancer in animal models, and effect on leukoplasias in human patients with ZengShengPing, a mixture of medicinal herbs. Oral Oncol. 2010;46:105–10.
34. Li H, Jin YH, Jiang TL. Effect of Liuwei dihuang decoction on the expression of S3 gene in lung adenomas induced mice. Chinese Journal of experimental formulas of Chinese Med. 1997:317–9.
35. Jiang TL, Li XM, Shen JH. The inhibition of Liuwei dihuang decoction for urethane induced lung adenomas. J Tradit Chin Med. 1980;72:40.
36. Thomas SJ, Snowden JA, Zeidler MP, Danson SJ. The role of JAK/STAT signalling in the pathogenesis, prognosis and treatment of solid tumours. Br J Cancer. 2015;113:365–71.
37. Masliah-Planchon J, Garinet S, Pasmant E. RAS-MAPK pathway epigenetic suppression of JAK/STAT signaling pathway. Phytother Res. 2014;28:841–907.
38. Wang S, Liu Z, Wang L, Zhang X. NF-kappaB signaling pathway, inflammation and colorectal cancer. Mol Cell Immunol. 2009;5:327–34.
39. Lien EC, Lyssiotis CA, Cantley LC. Metabolic reprogramming by the P38-Akt-mTOR pathway in cancer. Recent Results Cancer Res. 2015;207:39–72.
40. Sengunpalam L, Kukongviriyapan V, Pranav A, Kukongviriyapan U. Quercetin and EGCG exhibit chemopreventive effects in cholangiocarcinoma cells via suppression of JAK/STAT signalling pathway. Phytother Res. 2014;28:841–8.
41. Gao Y, Li W, Jia L, Li B, Chen YC, Tu Y. Enhancement of (-)-epigallocatechin-3-gallate and theaflavin-3-3′-digallate induced apoptosis by ascorbic acid in human lung adenocarcinoma SPCA-1 cells and esophageal carcinoma Eca-109 cells via MAPK pathways. Biochem Biophys Res Commun. 2013;438:370–4.
42. Liu S, Wang XJ, Liu Y, Cui YF. P38/Akt/mTOR signaling is involved in (-)-epigallocatechin-3-gallate-induced apoptosis of human pancreatic cancer cells. Am J Chin Med. 2013;41:629–42.
43. Oh S, Gwak J, Park S, Yang CS. Green tea polyphenol EGCG suppresses Wnt-beta-catenin signaling by promoting GSK-3beta-and PP2A-independent beta-catenin phosphorylation/degradation. Biofactors. 2014;40:856–95.
44. Zhang Y, Duan W, Owusu L, Wu D, Xin Y. Epigallocatechin-3-gallate induces the apoptosis of hepatocellular carcinoma LM3 cells but not noncancerous liver cells. Int J Mol Med. 2015;35:117–24.
45. Jin H, Gong W, Zhang C, Wang S. Epigallocatechin gallate inhibits the proliferation of colorectal cancer cells by regulating notch signaling. Oncotarget. 2013;4:164–53.
46. Leong H, Mathur PS, Greene GL. Green tea catechins inhibit angiogenesis through suppression of STAT3 activation. Breast Cancer Res Treat. 2009;117:505–15.
47. Singh T, Katyar SK. Green tea polyphenol, (-)-epigallocatechin-3-gallate, induces toxicity in human skin cancer cells by targeting beta-catenin signaling. Toxicol Appl Pharmacol. 2013;273:418–24.
48. Liu H, Hou L, Gu S, Zuo X, Meng D, Luo M, et al. Molecular mechanism of epigallocatechin-3-gallate in human esophageal squamous cell carcinoma in vitro and in vivo. Oncol Rep. 2015;33:297–303.
49. Vostalova J, Zdarslova A, Svobodova A. Prunella Vulgaris extract and rosmarinic acid prevent LNI-induced DNA damage and oxidative stress in HaCaT keratinocytes. Arch Dermatol Res. 2010;302:171–81.
50. Moon DO, Kim MO, Lee JD, Choi YH, Kim GY. Rosmarinic acid sensitizes cell death through suppression of TNF-alpha-induced NF-kappaB activation and ROS generation in human leukemia U937 cells. Cancer Lett. 2010;288:183–91.
51. Choi JH, Han EH, Hwang YP, Choi JM, Choi CY, Chung YC, et al. Suppression of PMA-induced tumor cell invasion and metastasis by aqueous extract isolated from Prunella Vulgaris via the inhibition of NF-kappaB-dependent MMP-9 expression. Food Chem Toxicol. 2010;48:564–71.
52. Han EH, Choi JH, Hwang YP, Park HJ, Choi CY, Chung YC, et al. Immunostimulatory activity of aqueous extract isolated from Prunella Vulgaris. Food Chem Toxicol. 2005;43:62–9.
98. Liu T, Ma H, Shi W, Duan J, Wang Y, Zhang C, et al. Inhibition of STAT3
97. Horikawa K, Mohri T, Tanaka Y, Tokiwa H. Moderate inhibition of mutagenicity
96. Huang SP, Ho TM, Yang CW, Chang YJ, Chen JF, Shaw NS, et al. Green tea
(Camellia Sinensis) for the prevention of cancer. The Cochrane database of systematic reviews. 2009;CD005004.
95. Kang KA, Piao MJ, Ryu YS, Hyun YJ, Park JE, Shilnikova K, et al. Luteolin-3-
gallate reverses TGF-beta1-induced epithelial-to-mesenchymal transition and inhibits cell invasion and protease activities in human lung cancer cells. Food Chem Toxicol. 2016;94:1–10.
94. Klaunig JE, Kamendulis LM. Mechanisms of cancer chemoprevention in
93. Kim SJ, Amankwah E, Connors S, Park HY, Rincon M, Cornell H, et al. Safety
and carcinogenicity of benz[a]pyrene, 1,6-dinitropyrene and 3,9-
dinitrofluoranthene by Chinese medicinal herbs. Mutagenesis. 1994;9:523–530.
92. Gupta S, Hastak K, Ahmad N, Lewin JS, Mukhtar H. Inhibition of prostate
carcinogenesis process as molecular targets in cancer chemoprevention by epicatechin-3-gallate. Food Funct. 2011;2:101.
91. Narisawa T, Fukaura Y. A very low dose of green tea polyphenols in
feeding water prevents N-methyl-N-nitrosourea-induced colon
carcinogenesis in F344 rats. Jpn J Cancer Res. 1993;84:1007–9.
90. Kim JW, Amin AR, Shin DM. Chemoprevention of head and neck cancer with
green tea polyphenol. Cancer Prev Res (Phila). 2010;3:900–9.
89. Conney AH, Zhou S, Lee MJ, Xie JG, Yang CS, Lou YR, et al. Stimulatory
–
BZL101, a phytochemical extract from the Scutellaria Barbata plant, disrupts proliferation of human breast and prostate cancer cells through distinct mechanisms dependent on the cancer cell phenotype. Cancer Biol Ther. 2016;10:397–405.
88. Balakrishnan S, Manoharan S, Alias LM, Nirmal MR. Effect of curcumin and
ferulic acid on modulation of expression pattern of p53 and bcl-2 proteins
in 7,12-dimethylbenz[a]anthrancene-induced hamster buccal pouch
carcinogenesis. Indian journal of biochemistry & biophysics. 2010;47:7–12.
87. Hafrn ER, Arloti JA, Marynowski SW, Singh SW. Honokiol, a constituent of oriental medicinal herb magnolia officinalis, inhibits growth of PC-3 xenografts in vivo in association with apoptosis induction. Clin Cancer Res. 2008;14:2488–57.
86. Chilampalli C, Guillermo R, Zhang X, Kauhisk RS, Young A, Zeman D, et al. Effects of magnolol on UVB-induced skin cancer development in mice and its possible mechanism of action. BMC Cancer. 2011;11:456.
85. Liu W, Zhang B, Chen G, Wu W, Zhou L, Shi Y, et al. Targeting miR-21 with
Sophocarpus inhibits tumor progression and reverses epithelial-Mesenchymal transition in head and neck cancer. Mol Ther. 2015;23:2129–39.
84. Jung KH, Zhang J, Zhou C, Shen H, Gagea M, Rodriguez-Aguayo C, et al. Differentiation therapy for hepatocellular carcinoma: multifaceted effects of miR-148a on tumor growth and phenotype and liver fibrosis. Hepatology. 2016;63:864–79.
83. Moses MA, Henry EC, Ricke WA, Gasiewicz TA. The heat shock protein 90
inhibitor, (-)-epigallocatechin gallate, has anticancer activity in a novel human prostate cancer progression model. Cancer prevention research (Philadelphia, Pa). 2015;8:249–57.
82. Boehm K, Borrelli F, Ernst E, Habacher G, Hung SK, Milazzo S, et al. Moderate inhibition of mutagenicity of paeonol on human prostate cancer cell lines DU145 and PC-3. J Physiol Pharmacol. 2017;68:7/ADR cells. Mol Med Rep. 2016;13:4745–52.
81. Tang P, Jiang J, Zhao L, Gao J, Chen J, Liu Z, et al. Ginsenoside RDFs
antitumor effect via down-regulation of mTOR revealed by super-resolution imaging. Molecules. 2017;22 https://doi.org/10.3390/molecules22030486.
proinflammatory cytokines-mediated NF-kappaB and STAT3 pathways. IUBMB Life. 2015;67:778–88.

122. Li Y, Gong L, Qi R, Sun Q, Xia X, He H, et al. Paenoniflorin suppresses pancreatic cancer cell growth by upregulating HTRA3 expression. Drug Des Devel Ther. 2017;11:2481–91.

123. Wen H, Wu Z, Hu H, Wu Y, Yang G, Lu J, et al. The anti-tumor effect of pachymic acid on osteosarcoma cells by inducing PTEN and Caspase 3/7-dependent apoptosis. J Nat Med. 2017;

124. Ma J, Liu J, Lu C, Cai D. Pachymic acid induces apoptosis via activating ROS-dependent JNK and ER stress pathways in lung cancer cells. Cancer Cell Int. 2015;15:78.

125. Surh YJ, Na HK, Lee JY, YS K: molecular mechanisms underlying anti-tumor promoting activities of heat-processed Panax Ginseng CA. Meyer. J Korean Med Sci. 2001;16:538–41.

126. Surh YJ, Lee JY, Choi KJ, SR K: effects of selected ginsenosides on phorbol ester-induced expression of cyclooxygenase-2 and activation of NF-kappaB and ERK1/2 in mouse skin. Ann N Y Acad Sci. 2002;973:396–401.

127. Feng L, Jia XB, Shi F, Chen Y. Identification of two polysaccharides from Prunella Vulgaris L. and evaluation on their anti-lung adenocarcinoma activity. Molecules. 2010;15:103.

128. Collins NH, Lessey EC, DuSell CD, McDonnell DP, Fowler L, Palomino WA, et al. Characterization of antitumor activity of the Chinese herb, prunella vulgaris, using in vitro and in vivo (mouse Xenograft) models. Biol Reprod. 2009;80:75–83.

129. Lamaison JL, Pettitjean-Freytet C, Carnat A. Medicinal Lamiaceae with antioxidant properties, a potential source of rosmarinic acid. Pharm Acta Helv. 1991;66:185–8.

130. Rugo H, Shitvelman E, Perez A, Vogel C, Franco S, Tan Chiu E, et al. Phase I trial and antitumor effects of BZL101 for patients with advanced breast cancer. Breast Cancer Res Treat. 2007;105:17–28.

131. Walker JM, Maizta A, Walker J, Ehrnhoefer-Ressler MM, Jinui T, Somozza V. Identification of Magnolia Officinalis L. bark extract as the most potent anti-inflammatory of four plant extracts. Am J Chin Med. 2013;41:531–44.

132. Tsai TH, Chou CJ, Chen CF. Disposition of magnolol after intravenous bolus and infusion in rabbits. Drug Metab Dispos. 1993;21:518–21.

133. Lee S, Khoo C, Halstead CW, Huynh T, Bensoussan A. Liquid chromatographic determination of honokiol and magnolol in hou po (Magnolia Officinalis) as the raw herb and dried aqueous extract. J AOAC Int. 2007;90:1210–8.

134. Ramadan G, AH-Kahtani MA, El-Sayed WM. Anti-inflammatory and antioxidant properties of Curcuma Longa (turmeric) versus Zingiber Officinale (ginger) rhizomes in rat adjuvant-induced arthritis. Inflammation. 2011;34:201–301.

135. Kaefer CM, Milner JA. The role of herbs and spices in cancer prevention. J Nutr Biochem. 2008;19:347–61.

136. Zhu KJ, Zhang YL, Ou, Yang. JH, Liu YL, Lu LS, Zhang LZ, et al. Protect lung drinks prevention clinical epidemiological study of lung cancer. Hunan Journal of Traditional Chinese Medicine. 1997;134–6.

137. K. J Z: The secondary prevention of traditional Chinese medicine of lung cancer. Journal of Hunan College of Traditional Chinese Medicine. 1997;42-3.

138. Ahn WS, Yoo J, Huh SW, Kim CK, Lee JM,Namkoong SE, et al. Protective effects of green tea extracts (polyphenon E and EGCQ) on human cerebral lesions. Eur J Cancer Prev. 2003;12:383–90.

139. Wang J. Collaborative group for phase III clinical trial of Zeng Sheng-ping Phase III study. Results of phase III clinical trial of zeng sheng-ping in the treatment of patients with esophageal epithelial hyperplasia. Chinese Journal of Oncology. 2000;22:510–12.