An Efficient and Sustainable Approach to Decarboxylative Cross-Coupling Using Silica Coated Magnetic Copper Nanocatalyst for the Synthesis of Internal Alkynes

Manavi Yadav1,2, Anju Srivastava2, Rashmi Gaur1, Radhika Gupta1, Gunjan Arora1 and Rakesh Kumar Sharma1*

1Green Chemistry Network Centre, Department of Chemistry, University of Delhi, New Delhi, India, 2Department of Chemistry, Hindu College, University of Delhi, Delhi, India

A highly efficient magnetically separable copper nanocatalyst has been developed for decarboxylative cross-coupling reaction for the alkylation of haloarenes using alkynoic acid as a reaction partner. The chemical nature, morphology, size, and magnetic properties of the prepared nanocatalyst were studied by SEM, TEM, EDS, FT-IR, VSM, and ICP techniques. Remarkably, this catalyst represents the first successful copper based heterogeneous system for this type of coupling that provides a low-cost, stable, and environmentally friendly magnetically recoverable entity that can be re-used for seven consecutive runs without appreciable loss in its catalytic performance.

Keywords: magnetic, copper, nanocatalyst, decarboxylative cross-coupling, heterogeneous catalyst

1 INTRODUCTION

Transition metal catalyzed cross-coupling reactions for the construction of carbon-carbon (C-C) bond are amongst the most powerful and efficient strategy for synthesizing essential organic compounds including bioactive compounds, natural products, and polymeric materials (Sonogashira, 2002; Tykwinski, 2003; Jutand, 2004). For this, various traditional cross-coupling reactions have been employed, however, these methods utilize organometallic compounds that bear Mg, Al, Zn, Sn, B, and Si, which create problem of metal contamination in the product. On comparison with the well-established cross-coupling reactions, decarboxylative cross-coupling reaction offers several benefits since it involves readily available carboxylic acid derivatives that do not encounter storage and handling difficulties and releases less-toxic carbon dioxide as the by-product that reduces the waste treatment costs. (Moon et al., 2008a; Moon et al., 2008b; Kim and Lee, 2009; Park et al., 2010; Zhang et al., 2010; Zhao et al., 2010; Li et al., 2011; Pan et al., 2011; Qu et al., 2011; Li et al., 2012; Tartaggia et al., 2012; Park and Lee, 2013; Reddy et al., 2013; Lee et al., 2016; Maaliki et al., 2016).

Due to the wide occurrence of alkyne moiety in natural products, pharmaceuticals, and molecular materials, enormous efforts have been devoted towards the synthesis of arylalkynes and conjugated enynes, (Brandsma, 2003; Negishi and Anastasia, 2003; Stang and Tykwinski, 2006; Chinchilla and Nájera, 2007). Of all, the Sonogashira coupling supersedes all the traditional methods for synthesizing internal alkynes from nucleophilic terminal acetylenes. (Nicolaou et al., 2005;
However, the formation of homo-coupled by-product and volatile liquid nature of terminal alkynes, are the major drawbacks which limit their utility in industrial applications. (Kolarovic et al., 2011). Therefore, the straightforward synthesis of arylalkynes with some other readily available substrates remained a practical challenge for many years. In recent times, decarboxylative cross-coupling of alkynoic acids with haloarenes emerged as an attractive and practical solution. (Siemsen et al., 2000; Das et al., 2005; Feng and Loh, 2010; Jia and Jiao, 2010; Park et al., 2011).

To date, a number of homogeneous catalytic systems using palladium, copper and nickel catalysts have been developed for the decarboxylative coupling of alkynoic acids with haloarenes. (Edwin Raja et al., 2016). However, most of them employ toxic phosphine ligands, and costly additives that are also air and moisture sensitive.

Despite tremendous success in the development of this methodology, till now, only few Pd-based heterogeneous catalysts have been reported for this reaction. (Pyo et al., 2013; Reddy et al., 2016). Moreover, these protocols have common problems associated with the palladium based catalysts, such as their high cost that limit their industrial applications. Nonetheless, exploring cost-effective methods to prepare highly stable, efficient, and recyclable heterogeneous catalysts still remain a challenging task in this field.

Therefore, employment of an economic and greener first row transition metal heterogenized catalyst is highly desirable. In this respect, copper-catalyzed systems have gained tremendous progress due to their economic attractiveness and good functional group tolerance (Ley and Thomas, 2003; Evano et al., 2008; Monnier and Taillefer, 2009). However, copper mediated synthesis of internal alkynes via decarboxylative coupling reaction is still less explored (Shang et al., 2009).

In line with current challenges arising from the demands of industrial and fine chemistry, an ideal catalyst should not only possess high activity and selectivity towards the targeted products but should be stable, environmentally friendly, recyclable, and must be easy to recover from the reaction mixture. In view of these requirements, silica coated magnetic nanoparticles (SMNPs) appear to be an ideal solution as solid supports due to their chemical inertness, robustness, easy magnetic recovery, recyclability, and environmentally benign nature (Rossi et al., 2014; Wang and Astruc, 2014; Sharma et al., 2016b).

Thus, in continuation of our ongoing research work on the development of nanocatalysts, and their applications in various organic transformations, (Sharma et al., 2015a; Sharma et al., 2015b; Sharma et al., 2016a; Sharma et al., 2016c; Arora et al., 2017; Gupta et al., 2017; Sharma et al., 2018), we herein describe the fabrication of a novel copper nanocatalyst with modified silica magnetic core-shell support for efficiently catalyzing decarboxylative coupling of alkynoic acid with haloarenes.

2 MATERIALS AND METHODS

3-aminopropyltriethoxysilane (APTES), tetraethoxyorthosilicate (TEOS), and 4, 5-diazafluoren-9-one were procured from Sigma Aldrich. Ferric sulphate hydrate and ferrous sulphate heptahydrate were obtained from Sisco Research Laboratory (SRL). copper(I) iodide, Cs₂CO₃, and toluene were purchased from Merck.

The prepared nanocatalyst was characterized using several techniques. X-ray diffraction (XRD) patterns were obtained from a D8 Discover Bruker AXS (Karlsruhe, Bundesland, Germany) diffractometer in the 2θ range of 10–80. For uniformity and morphology HR-TEM, FEI TECNAIF 30 transmission electron microscope was used and operated at 300 kV. In order to study the chemical composition of the catalyst, X-ray energy dispersive spectroscopy (EDS) was carried out using Ametek EDAX system. Carl Zeiss India scanning electron microscope was used to investigate for analyzing the structural properties of prepared nanocomposites. EV-9, Microsense, ADE vibrating sample magnetometer was used to conduct magnetization measurements. The Fourier transform infrared spectra (FT-IR) of NPs were collected at every stage of synthesis using Perkin-Elmer Spectrum 2000. For the estimation of amount of copper in the catalyst and in the supernatant inductively coupled plasma (ICP) of PerkinElmer Optima 2100 DV was used. The products were confirmed by making use of Agilent gas chromatography-
mass spectrometer with a HP-5MS 5% phenyl methyl siloxane capillary column (30.0 m × 0.25 mm × 0.25 μm) using helium as a carrier gas.

2.1 Synthesis of Cu-DF@ASMNPs

Firstly, MNPs were synthesized by co-precipitation technique. (Polshettiwar and Varma, 2009). For this, ferric sulphate (6.0 g) and ferrous sulphate (4.2 g) were dissolved in 250 ml distilled water and stirred at 60 C. To the obtained orange solution, 25% of NH₄OH (15 ml) was added dropwise and the solution was stirred vigorously for 30 min. The obtained black precipitates of MNPs were separated with external magnet and thoroughly washed with water and ethanol and finally dried under vacuum.

On to this, silica coating was performed via sol-gel approach to form SMNPs, (Zhang et al., 2011), which was further functionalized with the NH₂ linker, APTES. For silica coating, 0.5 g of MNPs were dissolved in 2.2 ml of 0.1 M HCl and dispersed in 200 ml ethanol and 50 ml water under sonication. Further, 5 ml NH₄OH was added followed by addition of 1 ml of TEOS under constant stirring at 60 C for 6 h to give SMNPs. These SMNPs were washed with ethanol and water. The functionalization with NH₂ linker was performed by adding 0.5 ml of APTES to the dispersed solution of 0.1 g of SMNPs in 100 ml of ethanol under constant stirring at 50 C for 6 h. 1 g of resulting APTES functionalized SMNPs (ASMNPs) were further reacted with a 0.75 mmol of bidentate ligand, 4, 5-diazafluoren-9-one (DF) in acetone at

![Scheme 1](image1.png)

SCHEME 1 | Scheme for the fabricating Cu-DF@ASMNPs core-shell nano-catalyst.

![Figure 1](image2.png)

FIGURE 1 | FT-IR spectra of (A) MNPs, (B) SMNPs, (C) ASMNPs, (D) DF@ASMNPs, and (E) Cu-DF@ASMNPs.

![Figure 2](image3.png)

FIGURE 2 | XRD patterns of (A) MNPs and (B) SMNPs.
70°C for 3 h. The resulting DF@ASMNPs were washed with ethanol and dried under vacuum. To 1 g of DF@ASMNPs, 1.5 mmol of copper iodide was added and the solution was stirred for 3 h using acetone as solvent. The resulting nanocatalyst was magnetically recovered and thoroughly washed with deionized water and dried under vacuum to obtain the final catalyst Cu-DF@ASMNPs. (Scheme 1).

2.2 Cu-DF@ASMNPs Catalyzed Internal Alkynes Synthesis
For this, 10 ml of round bottom flask was flushed with nitrogen and to this, haloarene (0.5 mmol), alkynoic acid (0.6 mmol), Cu-DF@ASMNPs (25 mg), and Cs₂CO₃ (1.0 mmol) were added. Again, nitrogen was flushed, and toluene (2 ml) was added at room temperature. The temperature was raised to 100 °C with continuous stirring for 12 h. On bringing to room temperature, the mixture was extracted with ethyl acetate. The reaction was monitored and analyzed by GC-MS.

3 RESULTS AND DISCUSSION
3.1 Characterization of Catalyst
3.1.1 FT-IR Spectroscopy
In order to analyze parent nanocomposite and its further functionalization, FT-IR spectroscopy was employed. A band was observed at 585 cm⁻¹ in the IR-spectrum of MNPs depicting the Fe-O stretching absorption (Figure 1A). The intensity of this band reduced on silica-coating with the appearance of three new sharp bands in the region of 806, 957 and 1,099 cm⁻¹, corresponding to the symmetric Si-O-Si, symmetric Si-O(H) and asymmetric Si-O-Si stretching vibrations respectively (Figure 1B) (Kooti and Afshari, 2012). Further functionalization of SMNPs with APTES resulted in absorption at 2,924 cm⁻¹ and 1,644 cm⁻¹, which corresponds to CH₂ and NH₂ from aminopropyl moiety of APTES (Figure 1C) (Yamaura et al., 2004) The immobilization of ligand DF onto ASMNPs was confirmed by the band at 1,662 cm⁻¹ accredited to C=N stretching frequency (Figure 1D) and to this, metal was immobilized using CuI which shifted the prominent band at 1,662 cm⁻¹ to a lower wavenumber indicating strong metal-ligand interaction (Figure 1E). (Masteri-Farahani and Tayyebi, 2011; Esmaeilpour et al., 2012).

3.1.2 XRD Studies
To assess the crystalline nature of synthesized MNPs and SMNPs, powder X-Ray diffraction measurements were carried out. For MNPs (Figure 2A), six characteristic peaks were observed at 2θ: 30.366°, 35.663°, 43.024°, 53.6°, 57.299°, and 62.865° corresponding to the (220), (311), (400), (422), (511) and (440) crystallographic faces of magnetite (Abu-Reziq et al., 2006). The average crystallite size of the MNPs was calculated by the Scherrer equation {D hkl = κλ/((β hklcosθ))}, where D hkl represents the size of the axis parallel to the (hkl) plane, κ is a constant with a common value of 0.89 for spherical particles, λ is the wavelength of radiation, β hkl is the full-width at half-maximum (FWHM) in radians, and θ is the diffraction angle. The mean crystallite size was found to be ~10.6 nm for the (311) reflection. Besides these six diffraction peaks, a weak
FIGURE 4 | TEM images of the nanoparticles obtained at different stages of synthesis: (A) MNPs, (B) SAED pattern of MNPs, (C) HR-TEM image of MNPs, (D) SMNPs, (E) Fresh Cu-DF@ASMNPs, and (F) Recovered Cu-DF@ASMNPs.

FIGURE 5 | EDS pattern of Cu-DF@ASMNPs.
broad hump at $2\theta = 20-24^\circ$ is observed in the XRD pattern of SMNPs showed in Figure 2B, which is attributed to amorphous silica (Zhang et al., 2012).

3.1.3 SEM Analysis

To investigate the topography of the synthesized nanoparticles, scanning electron microscopic (SEM) analysis was performed and it was found that the smooth surface of MNP (Figure 3A) turns spongy on silica coating (Figure 3B). The spherical morphology of the final Cu-DF@ASMNPs catalyst was seen with slight agglomeration and appears the same as that of SMNP (Figure 3C). This suggested that the surface modification methods did not alter the morphology of the nanocatalyst. Besides this, the SEM image of the recovered catalyst (Figure 3D) also indicates that the reaction did not affect the morphology of the catalyst.

3.1.4 TEM Analysis

TEM studies were performed to study the morphological changes of the synthesized nanomaterials, Figure 4A depicts that MNPs are polydisperse in nature and display slight agglomeration (Wang et al., 2010; Wang et al., 2013). An array of bright diffraction rings was observed in the selected area electron diffraction pattern (SAED) (Figure 4B) which confirmed the crystalline nature of these nanocomposites and also in accordance with the resultant XRD pattern. The average interplanar distance of the MNPs was measured from a high-resolution transmission electron microscopy (HR-TEM) image and was found to be ~ 0.20 nm, which correlates with the (311) plane of inverse spinel Fe$_3$O$_4$ structure (Figure 4C).

A dark core-shell of MNP with an almost uniform silica coat of 4–5 nm thickness, was observed in the TEM image of SMNP (Figure 4D). TEM images of final catalyst and recovered catalyst are shown in Figure 4E and Figure 4F respectively, which further confirm that the structural morphology remain unchanged after the coupling reaction. In order to find the average particle size of MNPs, 52 colloidal aggregates were analyzed and it was found to be in the range of 10–11 nm (Supplementary Figure S1) which is in well accordance with the XRD results.

3.1.5 EDS Analysis and Metal Content Determination

Energy dispersive X-ray analysis was performed to detect the composition of the synthesized nanocomposites, and the EDS results are shown in Figure 5. The presence of copper, iron, and oxygen indicates the successful synthesis of Cu-DF@ASMNPs. The metal content determination is shown in Figure 6, where the amount of copper in the nanocomposite is close to the theoretical value, suggesting that the coupling reaction was successful.

FIGURE 6 | Magnetization curves for (A) MNPs, (B) SMNPs, (C) ASMNPs, (D) Cu-DF@ASMNPs and (E) inset: enlarged image near the coercive field.

FIGURE 7 | Effect of base and solvent on synthesis of internal alkynes [Reaction conditions: iodobenzene (0.5 mmol), phenylpropionic acid (0.6 mmol), Cu-DF@ASMNPs (25 mg), base (1.0 mmol), solvent (2 ml), 100°C, 12 h, under N$_2$.]
Entry	Haloarenes	Product Yield (%)	TON
1	I Ph	3a 92	115
2	I PhMe	3a 90	113
3	I Ph-OMe	3b 88/82	110
4	I Ph	3c 94/90	118
5	I PhNO2	3d 95	119
6	I PhCl	3e 89/85	111
7	Br Ph	3f 84	105
8	Br PhMe	3a 86	108
9	Br Ph-OMe	3b 80	100

(Continued on following page)
spectrum displayed well-defined peaks of copper, silicon and iron (Figure 5) that substantiate the effective grafting of copper on the Cu-DF@ASMNPs. Moreover, to determine the amount of copper present in the final catalyst, ICP analysis was conducted and the metal loading was found to be 0.3217 mmolg$^{-1}$.

3.1.6 VSM Analysis

The field-dependent magnetization measurement of synthesized nanocomposites is provided in Figure 6. The superparamagnetic behaviour of these nanoparticles was confirmed by their magnetization curves which display no hysteresis at room temperature. This was further corroborated by the inset in Figure 6 where both coercivity and remanence were negligible in the absence of an externally applied magnetic field. The saturation magnetization value of MNPs, SMNPs, ASMNPs, and Cu-DF@ASMNPs were found to be 59 emu g$^{-1}$, 40 emu g$^{-1}$, 29 emu g$^{-1}$, and 19 emu g$^{-1}$ respectively. This decrease in the M_s value is due to the non-magnetic nature of the functionalizing groups. (Hu et al., 2005; Digigow et al., 2014). Despite of lower value of magnetization, the net magnetism of Cu-DF@ASMNPs was high enough for its effortless removal via an external magnet.

3.2 Catalytic Studies

3.2.1 Optimization of the Reaction Conditions

In order to test the efficacy of the prepared nano-catalyst, Cu-DF@ASMNPs and to discover the optimal reaction conditions, phenylpropiolic acid (0.6 mmol) and iodobenzene (0.5 mmol) were selected as the coupling partners. For the optimization of decarboxylative cross-coupling reaction, reaction parameters like solvent, base and catalytic amount were assessed. Figure 7 represent several combinations of base and solvent, and out of them highest yield was obtained when the base was Cs$_2$CO$_3$ (1 mmol), and toluene (2 ml) was the solvent. For the determination of the optimal catalytic amount, a blank test was carried out, where no significant yield was obtained. Although, the reaction gave product with 10 mg of catalyst and on increasing the amount of catalyst, significant increase in yield of the product was noticed. However, no noticeable increase in the product yield was found when 30 mg of catalyst was used and the best yield was achieved with 25 mg of catalyst (Supplementary Table S1). Also, the reaction was performed under diverse range of temperatures while keeping other parameters constant and 100°C was found to be the optimum temperature to carry out the coupling with 25 mg of synthesized catalyst (Supplementary Figure S2). Therefore, all the reactions were performed using toluene as the reaction solvent, Cs$_2$CO$_3$ as the base for 12 h at 100°C in the presence of 25 mg of Cu-DF@ASMNPs under N$_2$ atmosphere.

3.2.2 Catalytic Activity of Cu-DF@ASMNPs Catalyst for Decarboxylative Cross-Coupling of Alkynoic Acids With Haloarenes

To demonstrate the efficiency of this method, various haloarenes including iodo and bromo derivatives were coupled with phenylpropionic acid using the optimized reaction conditions (Table 1). To check the scope of this reaction, we initially examined a variety of iodoarenes possessing both activating and deactivating groups including methoxy, methyl, naphthyl, nitro, and chloro. It was observed that the reaction went smoothly for both electron donating and withdrawing groups on the

Entry	Haloarenes	Product	Yieldb (%)	TONc
10	\[\text{B}^+\text{NO}_2\]	3e	88/80e	110
11	\[\text{i}^-\]	3g	68	85

aReaction conditions: Haloarene (0.5 mmol), alkynoic acid (0.6 mmol), Cu-DF@ASMNP (25 mg), Cs$_2$CO$_3$ (1.0 mmol), toluene (2 ml), 100°C, 12 h, under N$_2$.

bGC-MS, yield.

cTON, Calculated using the 0.3217 mmolg$^{-1}$ copper.

eIsolated yield.

fReaction was performed on large scale: Haloarene (5 mmol), alkynoic acid (6 mmol), Cu-DF@ASMNP (0.25 g), Cs$_2$CO$_3$ (10.0 mmol), toluene (10 ml), 100°C, 12 h, under N$_2$.
TABLE 2 | A comparison of the obtained results with previous published work for the synthesis of internal alkynes.

S.No	Acid	Coupling partner	Catalyst	Conditions	Yield (%)	Ref
1	![Acid 1](image1)	![Coupling partner 1](image2)	Pd$_2$dba$_3$ (5 mol%)	dppf (10 mol%), TBAF (6.0 equiv), NMP, 90°C, 1 h	88	Moon et al. (2008b)
2	![Acid 2](image3)	![Coupling partner 2](image4)	Pd$_2$dba$_3$ (2 mol%)	PPh$_3$ (16 mol%), Ag$_2$O (1–3 equiv), LiI (3–6 equiv), DMF	64	Kim and Lee, (2009)
3	![Acid 3](image5)	![Coupling partner 3](image6)	Pd (OAc)$_2$	XPhos, Cs$_2$CO$_3$, THF, 80°C	70–95	Zhang et al. (2010)
4	![Acid 4](image7)	![Coupling partner 4](image8)	Palladacycle (1 mol%)	Xphos (4 mol%), K$_2$CO$_3$ (2 equiv), xylenes/ H$_2$O 120°C, 3 h	94	Li et al. (2013)
5	![Acid 5](image9)	![Coupling partner 5](image10)	Pd (PPh$_3$)$_2$Cl$_2$ (1 mol%)	2 mol% of dppb, DMSO, 110°C, 2 h	96	Moon et al. (2008a)
6	![Acid 6](image11)	![Coupling partner 6](image12)	[PdCl(allyl)]$_2$ (2.5 mol%)	SPhos (7.5 mol%), TBAF (3.0 equiv), NMP/ H$_2$O, 80°C, 14 h	84	Tartaggia et al. (2012)

(Continued on following page)
iodoarene and excellent yields were obtained for various internal alkynes. For \(p \)-iodotoluene and \(p \)-iodoanisole the yield was similar, 90 and 88% respectively (entries 2 and 3). However, slight increase in yield was obtained when haloarene bearing electron withdrawing substituent was employed (entry 5).

To gauge the efficacy of reaction, more practical coupling partner aryl bromides were used. To our delight they also worked very well for this coupling reaction and both electron withdrawing as well as electron donating aryl bromides were efficiently converted into corresponding internal alkynes in excellent yields. To further assess the potential of the catalyst, an aliphatic alkynoic acid, 2-butynoic acid (entry 11) was tested for this reaction but this afforded slightly lower yield. Isolated yields were obtained for few selected reactions consisting of haloarene bearing electron donating group (entry 3), neutral group (entry 4), a halogen substituent (entry 6) to check for any kind of interference, and electron withdrawing group (entry 10).

3.2.3 Catalytic Stability and Reusability

To test the reusability of catalyst, after each experiment (conducted under optimized conditions), the catalyst was magnetically separated, washed with ethyl acetate and ethanol.
and dried under vacuum. This was then used to perform subsequent reactions. It was observed that the catalyst was active up to seven runs without any notable decrease in its performance (Figure 8). SEM and TEM images further confirmed the unaltered structure and morphology of the recovered catalyst (Figure 3D and Figure 4F).

3.2.4 Heterogeneity Test
In order to estimate the leaching rate and heterogeneous nature of the catalyst, two sets of corresponding experiments were conducted. A standard reaction was conducted for the first set where the catalyst was magnetically removed after completion of reaction, and filtrate was analyzed under ICP, which showed no leaching. A split test was performed with the second set, in which the standard reaction was conducted with catalyst for 2 hours, which roughly corresponds to 20% conversion by GC-MS. Afterwards, the nanocatalyst was magnetically separated from the reaction mixture and the reaction was further pursued. No coupling product in the reaction mixture was observed up to 10 hours under the same reaction conditions, which authenticate the truly heterogeneous nature of the nanocatalyst.

3.2.5 Plausible Mechanism
Figure 9 depicts the proposed mechanism that has been derived from earlier reports. (Okuro et al., 1993; Ray et al., 2008; Gonda et al., 2010; Lauterbach et al., 2010). The reaction between Cu-DF@ASMNPs A and alkyenic acid produces intermediate B, which undergoes decarboxylation to yield C, an alkyln copper intermediate. Further addition of haloarene results in the formation of another intermediate D, which then undergoes reductive elimination, to give the product while regenerating the catalyst A.

Finally, in order to show the superiority of the synthesized catalyst, we compared our obtained results with the previously reported work (Table 2) and found that our catalyst was far more efficient in terms of reaction conditions, reaction time and catalytic activity. Also, it is the first copper based heterogeneous system for synthesis of internal alkynes.

In summary, a highly effective palladium-free Cu-DF@ASMNPs nanocatalyst was fabricated successfully and applied towards the synthesis of internal alkynes via decarboxylative cross-coupling reaction. These nanocomposites endowed low metal loading, high stability, and good functional group tolerance with excellent yields and high turn-over numbers. It is noteworthy that this catalytic system is the first report of copper based magnetic nanocatalyst that represents a practical and low-cost route to prepare internal alkynes. In addition, the effortless magnetic recovery and reusability of the catalyst for at least seven runs without any marked loss in its performance makes it an efficient protocol to produce a wide variety of unsymmetrical alkynes.

DATA AVAILABILITY STATEMENT
The original contributions presented in the study are included in the article/Supplementary Material, further inquiries can be directed to the corresponding author.

AUTHOR CONTRIBUTIONS
MY conceived the original idea. MY carried out the experiment and wrote the manuscript with support from AS, RG, GA, and RS supervised the work.

ACKNOWLEDGMENTS
One of the authors MY thanks USIC, University of Delhi, Delhi, India, for providing instrumentation facilities. MY is immensely grateful to ACS GCI for recognizing part of this work as best poster at the 21st Green Chemistry and Engineering Conference in Reston, VA.

SUPPLEMENTARY MATERIAL
The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fchem.2021.773855/full#supplementary-material

REFERENCES
Abu-Rezieq, R., and Alper, H. (2012). Magnetically Separable Base Catalysts: Heterogeneous Catalysis vs. Quasi-Homogeneous Catalysis. Appl. Sci. 2 (2), 260–276. doi:10.3390/app2020260
Abu-Rezieq, R., Alper, H., Wang, D., and Post, M. L. (2006). Metal Supported on Dendronized Magnetic Nanoparticles: Highly Selective Hydroformylation Catalysts. J. Am. Chem. Soc. 128 (15), 5279–5282. doi:10.1021/ja056140u
Arora, G., Yadav, M., Gaur, R., Gupta, R., and Sharma, R. K. (2017). A Novel and Template-free Synthesis of Multifunctional Double-Shelled Fe3O4–C Nanoreactor as an Ideal Support for Confined Catalytic Reactions. ChemistrySelect 2 (33), 10871–10879. doi:10.1002/slct.201701765
Brandsma, L. (2003). Best Synthetic Methods: Acetylenes, Allenes and Cumulenes. Elsevier.
Sharma, R. K., Gaur, R., Yadav, M., Rathi, A. K., Pechousek, J., Petr, M., et al. (2015a). Maghemite-Copper Nanocomposites: Applications for Ligand-free Cross-Coupling (C–O, C–S, and C–N) Reactions. ChemCatChem 7 (21), 3495–3502. doi:10.1002/cctc.201500546

Sharma, R. K., Yadav, M., Gaur, R., Gupta, R., Adholeya, A., and Gawande, M. B. (2016a). Synthesis of Iron Oxide Palladium Nanoparticles and Their Catalytic Applications for Direct Coupling of Acyl Chlorides with Alkenes. ChemPlusChem 81 (12), 1312–1319. doi:10.1002/cplu.201600321

Sharma, R. K., Yadav, M., Gaur, R., Monga, Y., and Adholeya, A. (2015b). Magnetically Retrievable Silica-Based Nickel Nanocatalyst for Suzuki-Miyaura Cross-Coupling Reaction. Catal. Sci. Technol. 5 (5), 2728–2740. doi:10.1039/c4cy01736f

Sharma, R. K., Yadav, M., Gaur, R., Monga, Y., and Adholeya, A., (2015b). Silica-coated Magnetic Nano-Particles: Application in Catalysis, in "Ferrites and Ferrates: Chemistry and Applications in Sustainable Energy and Environmental Remediation (ACS Publications), 1–38. doi:10.1021/bk-2016-1238.ch001

Sharma, R. K., Yadav, M., Monga, Y., Gaur, R., Adholeya, A., Zboril, R., et al. (2016c). Silica-Based Magnetic Manganese Nanocatalyst - Applications in the Oxidation of Organic Halides and Alcohols. ACS Sustain. Chem. Eng. 4 (3), 1123–1130. doi:10.1021/acssuschemeng.5b01183

Siemens, P., Livingston, R. C., and Diederich, F. (2000). Acetylenic Coupling: a Powerful Tool in Molecular Construction. Angew. Chem. Int. Ed. 39 (15), 2632–2657. doi:10.1002/1521-3773(20000804)39:15<2632::AID-anie2632>3.0.CO;2-f

Sonogashira, K. (2002). Development of Pd-Cu Catalyzed Cross-Coupling of Terminal Acetylenes with Sp2-Carbon Halides. J. Organomet. Chem. 653 (1-2), 46–49. doi:10.1016/S0022-328X(02)01158-0

Stang, P. J. (2008). Metal-catalyzed Cross-Coupling Reactions. John Wiley & Sons.

Stang, P. J., and Tykwinski, R. R. (2006). Acetylene Chemistry: Chemistry, Biology and Material Science. John Wiley & Sons.

Tartaglia, S., De Lucchi, O., and Gooßen, L. J. (2012). Practical Synthesis of Unsymmetrical Diarylacetylenes from Propiolic Acid and Two Different Aryl Bromides. Eur. J. Org. Chem. 2012 (7), 1431–1438. doi:10.1002/ ejoc.201101770

Tykwinski, R. R. (2003). Evolution in the Palladium-Catalyzed Cross-Coupling of Sp- and Sp2-Hybridized Carbon Atoms. Angew. Chem. Int. Ed. 42 (14), 1566–1568. doi:10.1002/anie.200201617

Wang, D., and Astruc, D. (2014). Fast-Growing Field of Magnetically Recyclable Nanocatalysts. Chem. Rev. 114 (14), 6949–6985. doi:10.1021/cr500134h

Wang, J., Zheng, S., Shao, Y., Liu, J., Xu, Z., and Zhu, D. (2010). Amino-functionalized Fe3O4@SiO2 Core-Shell Magnetic Nanomaterial as a Novel Adsorbent for Aqueous Heavy Metals Removal. J. Colloid Interf. Sci. 349 (1), 293–299. doi:10.1016/j.jcis.2010.05.010

Wang, S., Zhang, Z., Liu, B., and Li, J. (2013). Silica Coated Magnetic Fe3O4 Nanoparticles Supported Phosphotungstic Acid: A Novel Environmentally Friendly Catalyst for the Synthesis of 5-ethoxymethylfurural from 5-hydroxymethylfurfural and Fructose. Catal. Sci. Technol. 3 (8), 2104–2112. doi:10.1039/c3cy00223c

Wang, Z., Wang, X., Sun, H., Zhu, Z., Zhang, G., Zhang, W., et al. (2016). Triazine-Triazole Conjugates as Potent Ligands for Cu-Catalyzed Sonogashira Reaction. ChemistrySelect 1 (3), 391–395. doi:10.1002/slct.201600113

Yamaura, M., Camilo, R., Sampaio, L., Macedo, M., Nakamura, M., and Toma, H. (2004). Preparation and Characterization of (3-aminopropyl) Triethoxysilane-Coated Magnete Nanoparticles. J. Magn. Magn. Mater. 279 (2), 210–217. doi:10.1016/j.jmmm.2004.01.094

Zhang, Q., Su, H., Luo, J., and Wei, Y. (2012). A Magnetic Nanoparticle Supported Dual Acidic Ionic Liquid: a "Quasi-Homogeneous" Catalyst for the One-Pot Synthesis of Benzoxanthenes. Green. Chem. 14 (1), 201–208. doi:10.1039/C1GC16035A

Zhang, W.-W., Zhang, X.-G., and Li, J.-H. (2010). Palladium-catalyzed Decarboxylative Coupling of Alkynyl Carboxylic Acids with Aryl Halides or Aryl Halides. J. Org. Chem. 75 (15), 5259–5264. doi:10.1021/jo1010284

Zhang, Z., Zhang, F., Zhu, Q., Zhao, W., Ma, B., and Ding, Y. (2011). Magnetically Separable Polyoxometalate Catalyst for the Oxidation of Dibenzo thiophene with H2O2. J. Colloid Interf. Sci. 360 (1), 189–194. doi:10.1016/j.jcis.2011.04.045

Zhu, J., He, J., Du, X., Lu, R., Huang, L., and Ge, X. (2011). A Facile and Flexible Process of β-cyclodextrin Grafted on Fe3O4 Magnetic Nanoparticles and Host-Guest Inclusion Studies. Appl. Surf. Sci. 257 (21), 9056–9062. doi:10.1016/j.apsusc.2011.05.099

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

Copyright © 2022 Yadav, Srivastava, Gaur, Gupta, Arora and Sharma. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.