CASE REPORT

A Review Nutraceuticals with Antihypertensive Properties

Kate Levenberg1*, David Proctor2, Michael Flanagan3, Yasina Somani2 and Faisal Aziz4

1College of Medicine, Penn State University College of Medicine, State College, USA
2Department of Kinesiology, Penn State University, State College, USA
3Family Medicine, Penn State University College of Medicine, State College, USA
4Vascular Surgery, Penn State University College of Medicine, Hershey, USA

*Corresponding author: Kate Levenberg, College of Medicine, Penn State University College of Medicine, State College, USA, Tel: 610-945-7667

Abstract

Supplementation with key nutrients that favorably influence vascular health is a promising integrative intervention in the management of hypertension. Thus far, the clinical use of such adjuncts has been limited due to a history of minimal regulatory standards for supplements. In recent years, clinical trials researching the impact of supplements on hypertension has begun to catch up to the marketplace, which may promote increased use of supplements to more effectively control hypertension. The following review aims to facilitate informed use of supplements as pharmaceutical agents, termed nutraceuticals, by summarizing the current knowledge on commonly used supplements with antihypertensive effects. The nutraceuticals Coenzyme Q10, Vitamin C, L-arginine, magnesium and potassium are reviewed. What is known about dosage, pharmacokinetics, pharmacodynamics, adverse effects, and nutraceutical-drug interactions are discussed in order to summarize the clinically relevant information.

Keywords

Hypertension, Preventative medicine, Cardiovascular disease, Nutraceuticals

Introduction

Hypertension a prominent risk factor for mortality, and is ranked in the top three most common causes for disability-adjusted life years [1]. Hypertension affects nearly all individuals, with the lifetime risk for development in all persons being 90% [2]. In the coming years, this problem will be even further amplified as new data has prompted the American Heart Association (AHA) to modify guidelines, defining hypertension at even lower blood pressures. Due to these newly accepted values for what qualifies as hypertension, an additional 31 million patients will need treatment, and 29 million patients currently being treated will need to improve their current treatment plan [3]. For this reason, adjunctive therapies that are accessible and attainable for patients are needed.

The pathophysiology of hypertension is complex and multifactorial, and includes atherosclerotic changes to blood vessels, arterial stiffening, and over-activation of both the sympathetic nervous system and the rennin-angiotensin-aldosterone pathway [4]. Atherosclerotic changes that occur during the genesis of hypertension are accelerated in the setting of high sugar and high fat diets [5]. Furthermore, high salt intake leads to endothelial dysfunction, which accelerates atherosclerotic changes and the development of hypertension [6]. For these reasons, dietary interventions for hypertension are commonly recommended, and can be very effective. For example, the DASH (Dietary Approaches to Stop Hypertension) diet advises high intake of fruits, vegetables and whole grains while limiting the intake of sweets, surgery beverages, and red meat [7]. In large clinical trials, the DASH diet has been shown to decrease blood pressure by 5-6 mmHg systolic, and by 3 mmHg diastolic. Other studies have reported even larger drops in blood pressure due to the DASH diet, with one recent trial demonstrating a drop in 12-11 mmHg systolic and 6-7 mmHg diastolic relative to the control diet [8].

Unfortunately, even though dietary approaches are effective, long-term changes in dietary habits are very hard for patients to adopt. In a recent study following...
4386 patients attempting to follow the DASH diet, only 22 percent of patients were able to adhere [7]. Similarly, studies encouraging lower salt intake as a means to reduce BP have found that only 20-40% of patients are able to reduce their intake below the maximum recommended limit of 2,300 mg/day, even with proper education and access to healthier options [9-11].

Rather than fully altering their diet, many patients may find it more attainable to add nutrients to their diet that promote vascular health. Supplementation with a nutraceutical is a comparatively easy intervention to adopt. This concept is supported by a cross-sectional study involving 343 patients with cardiovascular disease, which found that 82.5% of patients regularly used supplements for various health conditions [12]. Several nutraceuticals, dietary components with pharmacologically active properties, have been repeatedly shown to reduce blood pressure to a degree that is comparable to the entirety of the DASH diet [13].

Despite the potential role for nutraceuticals as adjunctive hypertensive therapies, implementation into clinical practice is uncommon. This may stem from a lack of clinical practice guidelines for usage, and limited education of practitioners on what is safe. Ultimately, this is likely a result of poor regulatory standards for supplements. Since the Dietary Supplement Health and Education Act was signed into law in 1994, it is the supplement manufacturers, rather than the FDA (Food and Drug Administration) that has responsibility for ensuring the composition of their products [14]. This has allowed some supplements to be placed on the market without prior clinical trial testing. Public concern for this matter has caused the advent of third party companies, such as the Natural Products Association (NPA, formerly NNFA) and NSF (National Sanitation Foundation International), which certifies companies as having “good manufacturing practices”. These third party companies run toxicology testing, assessing for potential contaminants, and testing to verify that products correspond to their label [14]. Therefore, recommending supplements from reputable companies to use in treatment regimens is safer now than in the past.

The following review aims to facilitate the use of antihypertensive nutraceuticals in clinical practice by summarizing clinically relevant information, including dosage, pharmacokinetics, pharmacodynamics, adverse effects, and nutraceutical-drug interactions. Due to information from meta-analyses and common usage, as well as an understanding of their antihypertensive properties, the nutraceuticals Co-Enzyme Q-10, L-arginine, Vitamin C, Magnesium, and Potassium are reviewed.

Methods

Searches on PubMed, Micromedex, Lexicomp, and the Natural Medicines Comprehensive Database were used to gather relevant articles. In order to ensure generalizability, the effectiveness and dosages reported all come from randomized controlled trials and meta-analyses of randomized controlled trial’s. Case reports were also included for adverse effects, and nutraceutical-drug interactions. All information comes from human trials, unless otherwise noted.

The Use of L-Arginine

Dosage

A recent review of 7-meta analyses revealed that 8-11 g/d of L-arginine supplementation is associated with a 2.2 to 5.4 mmHg decrease in SBP and 2.7 to 3.1 decrease in DBP [15]. A separate meta-analysis containing 11 randomized, double-blind, placebo-controlled trials involving 387 participants with oral L-arginine intervention ranging from 4 to 24 g/d, showed an average drop in systolic BP by 5.39 mmHg and diastolic BP by 2.66 mmHg [16]. A third review concluded that oral arginine at 6 g/d was comparable to the DASH diet, however while study found that supplemental arginine was effective in lowering blood pressure in salt sensitive hypertensives, it was less effective in essential hypertension [17]. A summary of the meta-analyses included can be seen in Table 1.

Pharmacology

L-arginine and related endogenous methyl-arginine’s are the primary precursors for the production of the endothelium-derived relaxant factor, nitric oxide, NO [18]. Formation of NO depends on exogenous L-arginine intake, despite normally sufficient plasma and extracellular arginine concentrations [19]. This phenomenon is known as the arginine paradox. Furthermore, exogenous arginine can increase renal vascular and tubular NO bioavailability, thereby influencing renal perfusion and function, in addition to arterial pressure [20].

Pharmacokinetics

L-Arginine is moderately absorbed from the GI tract, with 20% becoming bioavailable about an hour after ingestion [21]. It is metabolized mainly in the liver by arginase to form urea and ornithine, which will be excreted and used as a substrate for gluconeogenesis respectively [22]. Clearance of L-arginine appears to be biphasic, with rapid renal excretion followed by slower metabolism, giving L-arginine a half-life of approximately 80 minutes [21,23].

Adverse effects

In general, oral L-arginine appears to be well tolerated with minimal side effects [24-26]. However, abdominal cramps, bloating and weight loss have been reported [27,28]. Additionally, L-arginine supplementation has been associated with headache development in some cases [28-30]. Notably, in one study of breast cancer patient [31]. L-arginine supplementation stimulated tumor protein synthesis, suggesting that it may stimulate
tumor growth. As a precaution, therefore, L-arginine should be avoided in the patient sub-population.

Nutraceutical-drug interactions

L-arginine may induce an extracellular shift of potassium from cells and should therefore be avoided in combination with potassium sparing diuretics, such as amiloride, spironolactone, and triamterene [32]. Concomitant use with diabetic drugs should also be closely monitored, as research has shown L-arginine’s use may decrease blood glucose levels in type II diabetics [33]. Finally, L-arginine induces production of nitric oxide, leading to vasodilation that is theoretically additive to other blood pressure lowering medications, and should therefore be closely monitored when used in combination of anti-hypertensives, nitric oxide donors, and phosphodiesterase inhibitors to avoid hypotension [34,35].

Rigor of the Included meta-analyses

The review by McRae, et al., [15] combined the evidence of 7 meta-analyses. All of the meta-analyses were assessed for their disclosure of quality, statistical heterogeneity (Cochran Q test and I² statistic), and publication bias (inspection of funnel plots and the Egger or Begg regression test). The meta-analysis by Dong, et al., [16] included 11 randomized double blind controlled trials, which were assessed for quality using the 5 point Jadad scale, which includes criteria surrounding randomization, blinding and withdrawals. Therefore, the research determining the impact of L-arginine on hypertension has a high level of rigor.

The Use of Vitamin C

Dosage

A meta-analysis of 29 randomized controlled trials found that a dose of 500 mg/d for an average of 8 weeks corresponded to a decrease in SBP by 4.85 mmHg and DBP - 1.67 mmHg (P < 0.01) in hypertensive individuals [36]. Similarly, a separate meta-analysis of thirteen clinical trials found that 500 mg/day for 6 weeks corresponds to a systolic blood pressure decrease of 3.9 mmHg, and a decrease of 2.1 mmHg for diastolic pressure [37]. This combined data suggests for a dosage of 500 mg/d for anti-hypertensive usage. A summary of this information, as well as other details, can be seen in Table 1.

Pharmacology

Multiple mechanisms have been proposed for vitamin C’s effect on BP [2]. Importantly, Vitamin C is used as a cofactor in NO and PGI₂ (prostacyclin) production, therefore its’ bioavailability leads to smooth muscle dilation and reduced total peripheral resistance [38]. Furthermore, vitamin C appears to decrease the binding affinity of Angiotensin II Type I (AT1) receptor for Angiotensin II by disrupting receptor disulfide bridges [39]. Vitamin C has also been shown to decrease adrenergic-steroid production, which leads to more favorable sympatho-vagal balance [40].

Pharmacokinetics

Vitamin C is absorbed from the intestine with a saturable transporter, making its' absorption lower at higher doses [41]. At a 500 mg dose, 63% is absorbed. Vitamin C is primarily excreted by the kidneys, with a half-life of about 7.4 hours [42].

Adverse effects

Vitamin C is well tolerated with adverse effects, such as nausea, vomiting, abdominal cramps, headache and fatigue, occurring at intake above 2000 mg/day [43]. Chewable forms of Vitamin C may lead to dental erosion, therefore tablets may be preferred [44]. In certain patients, urine acidification due to Vitamin C intake may cause cysteine, urate or oxalate stones to precipitate [45], and should therefore be avoided for any patient with a history of stone formation.

Nutraceutical-drug interactions

Vitamin C has anti-oxidant properties, therefore it could theoretically reduce the effectiveness of free-radical generating chemotherapeutics, such as cyclophosphamide, doxorubicin, chlorambucil and busulfan [46]. However this view is controversial, and more evidence is needed to fully elucidate these effects [47]. Vitamin C’s antioxidant properties may also allow it to regenerate oxidized estrogen, which could increase plasma estrogen concentrations when taken in combination with oral contraceptives or hormone replacement therapy, however this affect appears to be only in previously Vitamin C deficient patients [48,49]. Vitamin C may attenuate the HDL lowering effects of combined niacin and simvastatin therapy [50]. Finally, use of calcium channel blockers such as nicardipine, felodipine, isradipine, and nisoldipine may inhibit the uptake of Vitamin C [51].

Rigor of the Included meta-analyses

The review by McRae, et al. [37] included thirteen trials and a total of 284 participants. Their analysis weighted the results found in each trial based on the population size to calculate their recommended dose. Six of the 13 trials used randomized double blind placebo controlled trials, 2 single-blind placebo controlled parallel designs, one single blind placebo crossover design, and one randomized double-blind cross over design with magnesium as the other arm of the trial. The review by Juraschek, et al. [36] included 29 randomized controlled trials, which were assessed for quality of randomization, blinding of participants and investigators, methods for assessing participant compliance, and a description of adverse events.

The Use of Co-enzyme Q

Dosage
A meta-analysis of randomized, placebo-controlled clinical trials suggested that oral treatment of 100 mg of CoQ10 resulted in mean decreases of 11 mmHg SBP and 7 mmHg BDP after four weeks of

Nutraceutical	Meta-analysis & Number of randomized clinical trials included	BP lowering affects (mmHg)	Length of time & Dosage	Common adverse effects	Potential herb-Drug interactions
Magnesium	Dibaba, et al. [76]; Meta-analysis of 11 RCT's	SBP = -4.2(-0.4, -0.03); p < 0.05 DBP = -0.3; (-0.5, -0.03); p < 0.5	380 mg/d 3 months	-Nausea, -Vomiting,	Anticoagulants -Anti-platelets
	Zhang, et al. [74]; Meta-analysis of 34 RCT's	SBP = -2.0(-0.4, -3.6); p < 0.05 DBP = -1.8 (-0.7, -2.8); p < 0.05	365-450 mg/d 1-6 months	-Diarrhea	Bisphosphonates -Digoxin -Gabapentin -Sulfonylurea’s
	Kass, et al. [75]; Meta-analysis of 22 RCT’s	SBP = Reported range of -3 to -4 DBP = Reported range of -2 to -3	Mean of 410 mg/d 3-24 weeks	-Impacts cardiac conduction at Toxic doses	-Impacts cardiac conduction at Toxic doses
	Jee, et al. [77]; Meta-analysis of 20 RCT’s	SBP = -4.3(-6.3, -2.2); p < 0.001 DBP = -2.3(-4.9 ,0.0); p = 0.09	10-40 mmol/day 3-24 weeks	-Nausea, -Vomiting, -Heartburn	-Bisphosphonates -Digoxin -Gabapentin -Sulfonylurea’s
Coenzyme Q10	Ho, Bellusci Wright; Meta-analysis of 3 RCT’s	SBP = -11(-8, -14); p < 0.00001 DBP = -7(-5, -8); p < 0.00001	100-120 mg/d 3 weeks	-Nausea, -Vomiting, -Heartburn	-Warfarin Chemotherapeutic agents
	Rosenfeldt, et al. [53]; Meta-analysis of 12 RCT’s	SBP = -16.6 (-12.6, -20.6); p < 0.001 DBP = -8.2(-6.2, -10.2); p < 0.001	76-360 mg/d 8-12 weeks	-Nausea, -Vomiting, -Heartburn	-Bisphosphonates -Digoxin -Gabapentin -Sulfonylurea’s
Potassium	Filippini [108]; Meta-analysis of 18 RCT’s	SBP = -4.5(- 3.1, -5.9) DBP = -2.9 (- 1.1, 4.8)	> 90 mmol/day > 4 weeks	Gastrointestinal upset	-Angiotensin converting enzyme inhibitors -Angiotensin receptor blockers -Potassium sparing diuretics -Anti-cholinergic medications
	Whelton [109]; Meta-analysis of 33 RCT’s	SBP = -3.1(-1.9, -4.3); p < 0.001 DBP = -1.9 (-0.5, -3.4); p < 0.001	60-200 mmol/ day 5 weeks (median)	-Paresthesias, Generalized Weakness, Hypotension, and Cardiac arrhythmias at Toxic levels	-Paresthesias, Generalized Weakness, Hypotension, and Cardiac arrhythmias at Toxic levels
	Binia, et al., [110]; Meta-analysis of 15 RCT’s	SBP = - 4.7(-2.4, -7.0); p < 0.05 DBP = -6.8(-4.3, -9.3); p < 0.001	60-100 mmol/d (median) 4 weeks	-Rare esophageal stricture when using sustained-release tablets	-Rare esophageal stricture when using sustained-release tablets
Vitamin C	Juraschek, et al. [36]; Meta-analysis of 15 RCT’s	SBP = -4.8p = 0.01 DBP = -1.7 p = 0.17	500 mg/d 8 weeks (median)	-Nausea, Vomiting, and Abdominal cramps when taken in surplus (> 2000 mg/day) -May increase risk of kidney stones in susceptible individuals	-Chemotherapeutic agents -Estrogen and oral contraceptives -Simvastatin -Calcium channel blockers
	McCrae [37]; Meta-analysis of 13 RCT’s	SBP = -3.9 (-3.6, -0.3); p = 0.04 DBP = -2.1 (-3.1, 1.1); not significant	500 mg/d 6 weeks (mean)	-Nausea, Vomiting, and Abdominal cramps when taken in surplus (> 2000 mg/day) -May increase risk of kidney stones in susceptible individuals	-Chemotherapeutic agents -Estrogen and oral contraceptives -Simvastatin -Calcium channel blockers
treatment in hypertensive patients [52]. A separate meta-analysis with twelve clinical trials concluded that CoQ10 has the potential to lower systolic blood pressure by up to 17 mmHg and diastolic blood pressure by up to 10 mmHg without significant side effects, with the greatest effects occurring for patients with higher blood pressures at a dose ranging from 76-360 mg/d [53]. A summary of the meta-analyses included can be seen in Table 1.

Pharmacology

Co-Enzyme Q10, also known as Ubiquinone, is an antioxidant, free radical scavenger that reduces oxidation of LDL and also acts as a coenzyme in oxidative phosphorylation [2]. It is theorized that its’ main anti-hypertensive effects stem from a CoQ10 deficiency seen in the majority of hypertensive patients [54]. While the exact mechanism remains unclear, CoQ10 serum and tissue levels are seen to decrease with age, and there is evidence of deficiency at the population level in hypertension, heart failure, and statin-treated hypercholesterolemic patients [53].

Pharmacokinetics

CoQ10 is a large molecule that is poorly absorbed, leading to its’ high recommended dosages [55,56]. Some research suggests that emulsified CoQ10 may improve absorption [2]. Peak levels of CoQ10 occur about 5-10 hours after ingestion [57]. It appears to be distributed to the inner mitochondrial membrane, with a demonstrated effect in cardiac tissue, platelets, lipoproteins, and sperm cells [58-61]. CoQ10 is mainly metabolized in the liver and distributed in VLDL packaging [62].

Adverse effects

CoQ10 is generally well tolerated; in numerous clinical trials, there were no reports of significant adverse events [58], [63-66]. However less than 1% of patients may experience gastrointestinal side effects such as nausea, vomiting, diarrhea, appetite suppression, heartburn, and epigastric discomfort [58,67,68].

Nutraceutical-drug interactions

Coenzyme Q10 is chemically similar to K-vitamins, therefore it theoretically can interfere with warfarin; an affect that has been reported in several individuals [69,70]. However preliminary research suggests that CoQ10 might not significantly decrease the effects of warfarin in patients with a stable INR [71]. Additionally, the anti-oxidant properties of CoQ10 may lower the effectiveness of chemotherapeutic agents that work through oxidative stress, such as cyclophosphamide and cytoxin [72,73].

Rigor of the included meta-analyses

The meta-analysis by Rosenfeldt, et al., [53] included 12 clinical trials and a total of 362 patients. The trials included three randomized controlled trials, one crossover study, and eight open label studies. The analysis by Ho, et al. [52] used only double-blind, randomized, placebo-controlled trials with parallel or crossover designs. Their criteria led to a total inclusion of three clinical trials with 96 participants in total.

The Use of Magnesium

Dosage and meta-analyses

The most recent meta-analysis included 34 randomized double-blind clinical trials. This study found that magnesium (Mg) supplementation of 380 mg/day over three months reduced SBP by 2.0 mmHg (95% confidence interval, 0.4-3.6) and DBP by 1.8 mmHg (95% confidence interval, 0.3-2.8) [74]. Similar results were observed in a separate analysis of 22 trials with a mean supplementation of 410 mg/day for 3-24 weeks, which resulted in blood pressure decreases of 3-4 mmHg systolic/2-3 mmHg diastolic [75]. An analysis specifically examining magnesium’s effect on blood pressure in patients with insulin resistance found 365-450 mg/d of magnesium for 1-6 months reduced blood pressure by 4.18/2.27 mmHg; SBP (SMD: -0.20; 95% CI: -0.37, -0.03) and DBP (SMD: -0.27; 95% CI: -0.52, -0.03) [76]. Some evidence suggests that BP lowering effects of magnesium may be dose-dependent. A review including 20 randomized clinical trials (n = 1220) found a reduction in SBP of 4.3 mmHg (p < 0.001) and in DBP 2.3 mmHg (p = 0.09) for every 10 mmol increase in daily magnesium intake ranging from 10-40 mmol/day for 3-24 weeks [77]. The daily intakes reported in the above reviews (365-450 mg/d) are comparable to the usual dose recommended for magnesium deficiency prophylaxis, which is 400 mg/day [78]. A summary of this information can be seen in Table 1.

Pharmacology

Magnesium concentrations affect calcium, sodium and potassium concentrations through the renal Mg-
ATP driven sodium-potassium pump, and Mg-calcium pump [79]. The effect on calcium concentrations appears to significantly impact BP by altering vascular smooth muscle intracellular calcium concentrations [80]. Here, magnesium driven reduction of calcium concentration results in the release of prostacyclin, an endothelium-derived vasodilator [81,82]. Magnesium is also thought to be an antagonist of Angiotensin II’s pressor and steriodogenic effects by blunting its’s signaling via the Ca++ messenger system [81]. Further, vascular remodeling in hypertension is slightly blunted by magnesium due to a reduction in free radical generation through modulation of glutathione and thioredoxin synthesis. Vascular remodeling is additionally affected via a regulatory effect on cell growth by magnesium activation of tyrosine kinases, phosphoinositide 3-kinase, Rho/Rho kinase and mitogen-activated protein kinases [80]. For these reasons, small changes in Mg++ concentrations have been demonstrated to have major effects on vascular tone.

Pharmacokinetics

Magnesium is absorbed through the jejenum and ileum by active and passive transport, and requires both parathyroid hormone and vitamin D for absorption [83,84]. Its’ bioavailability after absorption is about 33% [81]. Magnesium is largely free floating, with only 33% protein bound. In contrast, half of absorbed calcium (50%) is distributed to bone, and half into tissues, where 45% is located in intracellular fluid and 5% remains in extracellular fluid [84]. Magnesium is excreted entirely by the kidneys at a rate that is directly proportional to the plasma concentration and glomerular filtration rate. It is thought to undergo a filtration-reabsorption process; there is reabsorption in the proximal tubule, and loop of Henle, resulting in 3-5% of the filtered load being excreted [85,86].

Adverse effects

Magnesium is generally well tolerated at appropriate doses, with clinical research indicating no substantial differences in adverse effects when compared to controls [87-89]. However, gastrointestinal discomfort, nausea, vomiting and diarrhea have been reported [87,90]. At toxic doses, above 9.7 mg/dL, magnesium impacts cardiac conduction time by lengthening P-R and QRS intervals, and slowing the SA nodal impulse [84,91,92]. Patients with hyper-magnesemia will present with muscle weakness, electrocardiogram changes, sedation, hypotension, and confusion, which may progress to absent deep-tendon reflexes, respiratory paralysis, and heart block [84]. Patients with renal failure, or metabolic derangements may develop magnesium toxicity at lower concentrations [93,94].

Nutraceutical-drug interactions

Magnesium appears to have an additive effect on calcium channel blockers due to inhibition of calcium movement into smooth muscle cells [95-97]. While this may produce a desirable effect in some patients, caution should be used to avoid hypotension. In addition, the hypotensive effects may be more severe with concomitant use of nifedipine, potentially leading to neuromuscular weakness, although the evidence for this is unclear [98]. There is some evidence to suggest that magnesium sulfate inhibits platelet functioning and increases bleeding time [99,100]. The degree to which this happens is not fully defined, however caution should be used with concomitant use of anti-coagulants or anti-platelets. Magnesium, and other cations, can decrease bisphosphonate absorption, and should therefore be taken at least two hours apart [101]. Magnesium similarly reduces absorption of digoxin [102,103] as well as gabapentin [104], and tetracycline antibiotics [105]. In contrast, magnesium increases the absorption of sulfonylureas, potentially leading to a risk of hypoglycemia [106]. Theoretically, potassium sparing diuretics may increase levels of magnesium, and should therefore be used with caution in combination with magnesium [107].

Rigor of the included meta-analyses

The FDA categorizes magnesium as an anti-hypertensive with a Class Iib recommendation, which means it is recommended in some cases, but not most cases. It also states that the evidence for magnesium as an anti-hypertensive is Category A, meaning evidence is based on data derived from meta-analyses of randomized controlled trials with homogeneity of results and involving large numbers of patients [78]. This is supported by the meta-analyses above that report doses in a comparable range (365-450 mg/d), producing similar responses. The exclusion criteria of the review by Zhang Xi, et al., in 2016 [74] was the most rigorous and had the following exclusion criteria: (1) Studies including pregnant or lactating women; (2) Studies including patients with malignancy, severe infectious disease, active liver or renal disease, or other severe illnesses; (3) Supplements combined with other minerals that affect BP and duration of Mg supplementation ≤ 1 week; and (4) Non-random, open-label, or self-controlled trials. The review by Kass, et al., [75] in 2012 included placebo-controlled, randomized trials with either parallel or cross-over designs. Of these, 21/23 were double-blind, one included trial was single-blinded, and one was not blinded at all. Similarly, 16/20 trials included in the review by Jee, et al. [77], in 2002 were double-blind; all trials included were randomized, controlled, and had sufficient statistical power.

The Use of Potassium

Dosage and meta-analyses

The most recent meta-analysis of 18 randomized controlled trials included a total of 1,163 participants,
and found 30-120 mmol/day for 4 to 15 weeks’ decreases blood pressure by 4.5 mmHg systolic, and 2.9 mmHg diastolic [108]. A review of 33 randomized clinical trials with a dosage of 60-200 mmol/day for a median of 5 weeks reduced BP by 3.11 mmHg/1.97 mmHg [109]. Potassium supplementation was seen to have a larger effect in trials that included only hypertensive patients. Binia, et al. found that potassium supplementation at 60-65 mg/day for 4 to 24 weeks reduced BP by a mean of 6.8/4.6 mmHg [110]. A summary of the included studies can be seen in Table 1.

Pharmacology

Potassium likely exerts its’ anti-hypertensive effects through several mechanisms [82]. Potassium has been shown to act as a diuretic by reducing proximal tubule sodium reabsorption, and increasing glomerular filtration rate through reduced renal vascular resistance [111]. Potassium reduces renal vascular resistance, and systemic resistance, by causing endothelial cell hyperpolarization through stimulation of the sodium-potassium pump and activation of plasma membrane potassium channels, resulting in endothelium-dependent dilation [112]. Potassium may also impact blood pressure through sympatholytic actions by influencing noradrenaline turnover [113]. Finally, potassium may also have some anti-oxidant effects [114].

Pharmacokinetics

Oral potassium is well absorbed, and equivalent in both slow release and liquid preparations [115]. Total body concentration is regulated tightly by renal excretion, and is also buffered by skeletal muscle and liver. Once distributed, potassium largely remains intracellular [116]. Potassium is filtered and excreted by the kidneys, with 80% of filtered potassium being recovered from the urine [111].

Adverse effects

Oral potassium can cause gastrointestinal upset in some cases [109,117,118]. However, newer formulations with liquid/rapid-release tablets or wax-matrix tablets are less likely to cause gastrointestinal upset [119,120]. At high concentrations, above 5 mEq/L, hyperkalemia can cause paresthesia’s, generalized weakness, flaccid paralysis, confusion, hypotension, cardiac arrhythmias, and heart block [109,121]. ECG changes are the most important indicator of potassium toxicity, which could appear as peaked T-wave, ST depressions, disappearance of the P wave, prolongation of the Q-T interval, or widening of the QRS complex [122]. Extremely high plasma potassium concentrations (8 to 11 mEq/L) may cause death from cardiac depression, arrhythmias or arrest [123]. There have also been several reports of esophageal ulceration and stricture associated with continuous use of sustained-release potassium chloride tablets [123-125].

Nutraceutical-drug interactions

Angiotensin-Converting Enzyme (ACE) inhibitors lower aldosterone levels, leading to potassium retention. Therefore, concomitant use of potassium supplements with ACE inhibitors may result in hyperkalemia, with subsequent arrhythmias [126,127]. This may be especially important for patients that have renal dysfunction in addition to ACE inhibitor therapy [128]. Hyperkalemia may also occur with angiotensin-receptor blockers, and potassium sparing diuretics [129,130]. Finally, concurrent administration of potassium with anticholinergic drugs, such as atropine, may amplify anti-cholinergic effects, leading to slow gastric motility and potentially leading to GI lesions [109].

Rigor of the Included meta-analyses

Filippini, et al., included 18 randomized placebo-controlled trials, however only 9/18 were double-blinded, and 4/18 were single-blinded [108]. This review assessed quality of study and bias risk with the Cochrane assessment tool. The review by Whelton, et al., [109] contained randomized, controlled trials; 23/33 were double-blind, 3/33 were single-blind, and 7/33 were open-label studies. Binia, et al., [110] had the most rigorous analysis, reviewing only randomized, double-blind, controlled trials greater than four weeks in duration, and assessed for bias using the Cochrane classification scheme. Importantly, this review found BP reductions similar to other, less-rigorous reviews.

Conclusion

The inability of nearly half of hypertensive patients to keep their blood pressure under control indicates the need for adjunctive antihypertensive therapies. Adding dietary supplements that are beneficial to vascular health may be an attainable intervention for patients. The nutraceuticals presented above have been shown to improve BP to a clinically relevant degree in controlled trials. Based on the above data, CoQ10 appears to be the nutraceutical with the largest impact on blood pressure, with a reported ability to lower BP by 11/7 mmHg with supplementation of 100 mg/d [52], and some accounts recording BP drops of up to 17/10 mmHg. However, CoQ10 has the least rigorous trials, and the least data as compared to the other nutraceuticals reviewed. Randomized controlled trials involving L-arginine and potassium show BP lowering effects at 8-24 mg/day and over 90 mmol/day, respectively, and follow as the second most efficacious nutraceuticals. Both L-arginine and potassium have been more highly evaluated with meta-analyses of double-blind randomized controlled trials. Magnesium produces BP lowering effects above 350 mg/day and is categorized as an anti-hypertensive agent by the FDA with a Class Iib recommendation, which means it is recommended in some but not all cases.
Importantly, both magnesium and potassium can cause cardiac arrhythmias at toxic dosages. Finally, some analyses have found that Vitamin C produces blood pressure lowering effects above 500 mg/day, however this association has not been found to be significant in all analyses.

Ultimately, this guide is intended to help individuals tailor their supplement use based on reported adverse events, preference, and nutraceutical-drug interactions. Future work should continue to research the implications of nutraceutical use, as the above report reviews only the current data available. Longitudinal trials evaluating long-term safety is particularly needed, as well as a pharmaco-economic analysis for each supplement. Further, as nutraceuticals are still under the less stringent guidelines of the DSHEA, rather than the FDA, more work should be done to assess the integrity of each nutraceutical company involved in supplement production.

References

1. PM Kearney, M Whelton, K Reynolds, P Muntner, PK Whelton, et al. (2005) Global burden of hypertension: Analysis of worldwide data. Lancet 365: 217-223.
2. C Borghi, AFG Cicero (2017) Nutraceuticals with a clinically detectable blood pressure-lowering effect: A review of available randomized clinical trials and their meta-analyses. Br J Clin Pharmacol 83: 163-171.
3. JPA Ioannidis (2018) Diagnosis and Treatment of hypertension in the 2017 ACC/AHA guidelines and in the real world. JAMA 319: 115.
4. G Beeveres, GYH Lip, E O'Brien (2001) The pathophysiology of hypertension. BMJ 322: 912-916.
5. VG DeMarco, AR Aroor, JR Sowers (2014) The pathophysiology of hypertension in patients with obesity. Nat Rev Endocrinol 10: 364-376.
6. X Zhao, Yang X, Zhang X, Li Y, Zhao X, et al. (2014) Dietary salt intake and coronary atherosclerosis in patients with prehypertension. J Clin Hypertens 16: 575-580.
7. M Mitka (2007) DASH dietary plan could benefit many, but few hypertensive patients follow it. JAMA 298: 164-165.
8. L Azadbakht, P Mirmiran, A Esmaillzadeh, T Azizi, F Azizi (2005) Beneficial effects of a dietary approach to stop hypertension eating plan on features of the metabolic syndrome. Diabetes Care 28: 2823-2831.
9. MP Rodrigues, LKJ Dos Santos, FD Fuchs, SC Fuchs, LB Moreira (2017) The effectiveness of an educational intervention for sodium restriction in patients with hypertension: Study protocol for a randomized controlled trial. Trials 18: 347.
10. LJ Appel, Champagne CM, Harsha DW, Cooper LS, Obarzanek E, et al. (2003) Effects of comprehensive lifestyle modification on blood pressure control: Main results of the PREMIER clinical trial. JAMA 289: 2083-2093.
11. SK Kumanyika, Hebert PR, Cutler JA, Lasser VI, Sugars CP, et al. (1993) Feasibility and efficacy of sodium reduction in the trials of hypertension prevention, phase I. Trials of hypertension prevention collaborative research group. Hypertension 22: 502-512.
12. DA Aykan, AC Aykan (2018) Factors associated with the concomitant use of cardiovascular drugs and dietary herbal products: A cross-sectional study. J Cardiovasc Pharmacol Ther.
13. J Wilburn, DS King, J Glisson, RW Rockhold, MR Wofford (2004) The natural treatment of hypertension. J Clin Hypertens (Greenwich) 6: 242-248.
14. JT Dwyer, MJ Smith (2018) Dietary supplements: Regulatory challenges and research resources. Nutrients 10.
15. MP McRae (2016) Therapeutic benefits of L-arginine: An umbrella review of meta-analyses. J Chiropr Med 15: 184-189.
16. YJ Dong, Qin LQ, Zhang Z, Zhao Y, Wang J, et al. (2011) Effect of oral L-arginine supplementation on blood pressure: A meta-analysis of randomized, double-blind, placebo-controlled trials. Am Heart J.
17. S Vasdev, V Gill (2008) The antihypertensive effect of arginine. Int J Angiol 17: 7-22.
18. DL Michell, KL Andrews, JPF Chin-Dusting (2011) Endothelial dysfunction in hypertension: The role of arginase. Front Biosci Sch Ed 3: 946-960.
19. M Houston (2014) The role of nutrition and nutraceutical supplements in the treatment of hypertension. World J Cardiol 6: 38-86.
20. NW Rajapakse, DL Mattson (2009) Role of L-arginine in nitric oxide production in health and hypertension. Clin Exp Pharmacol Physiol 36: 249-255.
21. Tangphao, M Grossmann, S Chalon, BB Hoffman, TF Blaschke (1999) Pharmacokinetics of intravenous and oral L-arginine in normal volunteers. Br J Clin Pharmacol 47: 261-266.
22. SM Morris (2004) Enzymes of arginine metabolism. J Nutr 134: 2743S-2747S.
23. SM Bode-Boger, RH Boger, A Galland, T Tsikas, JC Frolich (1998) L-arginine-induced vasodilation in healthy humans: Pharmacokinetic-pharmacodynamic relationship. Br J Clin Pharmacol 46: 489-497.
24. J Chen, Y Wollman, T Chernichovsky, A Iaina, M Sofer, et al. (1999) Effect of oral administration of high-dose nitric oxide donor L-arginine in men with organic erectile dysfunction: Results of a double-blind, randomized, placebo-controlled study. BJU Int 83: 269-273.
25. L Ceremuzynski, T Chamiiec, K Herbaczynska-Cedro (1997) Effect of supplemental oral L-arginine on exercise capacity in patients with stable angina pectoris. Am J Cardiol 80: 331-333.
26. M Baligan, A Giardina, G Giovannini, MG Laghi, G Ambrosioni (1997) L-arginine and immunity. Study of pediatric subjects. Minerva Pediatr 49: 537-542.
27. EE Camarena Pulido, Garcia Benavides L, Panduro Baron JG, Pascoe Gonzalez S, Madrigal Saray AJ (2016) Efficacy of L-arginine for preventing preeclampsia in high-risk pregnancies: A double-blind, randomized, clinical trial. Hypertens Pregnancy 35: 217-225.
28. F Khan, SJ Litchfield, M McLaren, DJ Veale, RC Littleford, et al. (1997) Oral L-arginine supplementation and cutaneous vascular responses in patients with primary Raynaud’s phenomenon. Arthritis Rheum 40: 352-357.
29. JK Mansoor, Morrissey BM, Walby WF, Yoneda KY, Juarez M, et al. (2005) L-arginine supplementation enhances exhaled NO, breath condensate VEGF, and headache at 4,342 m. High Alt Med Biol 6: 289-300.
30. JJ Cartledge, AM Davies, I Eardley (2000) A randomized double-blind placebo-controlled crossover trial of the efficacy of L-arginine in the treatment of interstitial cystitis. BJU Int 85: 421-426.

31. KG Park, Heys SD, Blessing K, Kelly P, McNurlan MA, et al. (1992) Stimulation of human breast cancers by dietary L-arginine. Clin Sci Lond Engl 82: 413-417.

32. DA Bushinsky, FJ Gennari (1978) Life-threatening hyperkalemia induced by arginine. Ann Intern Med 89: 632-634.

33. P Lucotti (2006) Beneficial effects of a long-term oral L-arginine treatment added to a hypocaloric diet and exercise training program in obese, insulin-resistant type 2 diabetic patients. Am J Physiol Endocrinol Metab 291: E906-E912.

34. JW Cheng, SN Baldwin, SN Balwin (2001) L-arginine in the management of cardiovascular diseases. Ann Pharmacother 35: 755-764.

35. W Wallace, WL Tom (2000) Interaction of L-arginine and phosphodiesterase inhibitors in vasodilation of the porcine internal mammary artery. Anesth Analg 90: 840-846.

36. SP Juraschek, E Guallar, LJ Appel, ER Miller (2012) Effects of vitamin C supplementation on blood pressure: A meta-analysis of randomized controlled trials. Am J Clin Nutr 95: 1079-1088.

37. MP McRae (2006) Is vitamin C an effective antihypertensive supplement? A review and analysis of the literature. J Chiropr Med 5: 60-64.

38. Y Plantinga, Ghiadoni L, Magagna A, Giannarelli C, Franzoni F, et al. (2007) Supplementation with vitamins C and E improves arterial stiffness and endothelial function in essential hypertensive patients. Am J Hypertens 20: 392-397.

39. PC Leclerc, Proulx CD, Aruguin G, Belanger S, Gobeil F Jr, et al. (2008) Ascorbic acid decreases the binding affinity of the AT1 receptor for angiotensin II. Am J Hypertens 21: 67-71.

40. JA Simon (1992) Vitamin C and cardiovascular disease: A review. J Am Coll Nutr 11: 107-125.

41. FE Harrison (2012) A critical review of vitamin C for the prevention of age-related cognitive decline and Alzheimer’s disease. J Alzheimers Di JAD 29: 711-726.

42. SJ Padayatty, M Levine (2001) New insights into the physiology and pharmacology of vitamin C, CMAJ Can Med Assoc JJ Assoc Medecine Can 164: 353-355.

43. M Levine, SC Rumsey, R Daruwala, JB Park, Y Wang, et al. (1999) Criteria and recommendations for vitamin C intake. JAMA 281: 1415-1423.

44. H Li, Y Zou, G Ding (2012) Dietary factors associated with dental erosion: A meta-analysis. PloS One 7.

45. Traxer, B Huet, J Poindexter, CYC Pak, MS Pearle (2003) Effect of ascorbic acid consumption on urinary stone risk factors. J Urol 170: 397-401.

46. D Labriola, R Livingston (1999) Possible interactions between dietary antioxidants and chemotherapy. Oncol Williston Park N 13: 1003-1008.

47. KN Prasad (2004) Rationale for using high-dose multiple antioxidant as an adjunct to radiation therapy and chemotherapy. J Nutr 134: 3182S-3183S.

48. DJ Back, AM Breckenridge, M Maclver, ML Orme, H Purba, et al. (1981) Interaction of ethyloleostriadiol with ascorbic acid in man. Br Med J Clin Res Ed 282.

49. T Vihtamaki, J Parantainen, AM Koivisto, T Metsa-Ketela, R Tuimala (2002) Oral ascorbic acid increases plasma oestradiol during postmenopausal hormone replacement therapy. Maturitas 42: 129-135.

50. G Brown, Zhao XQ, Chait A, Fisher LD, Cheung MC, et al. (2001) Simvastatin and niacin, antioxidant vitamins, or the combination for the prevention of coronary disease. N Engl J Med 345: 1583-1592.

51. SM Kuo, CP Lin, HF Morehouse (2001) Dihydropyridine calcium channel blockers inhibit ascorbic acid accumulation in human intestinal Caco-2 cells. Life Sci 68: 1751-1760.

52. MJ Ho, EC K Li, JM Wright (2016) Blood pressure lowering efficacy of coenzyme Q10 for primary hypertension. Cochrane Database Syst Rev 3.

53. FL Rosenfeldt, Haas SJ, Krum H, Hadj A, Ng K, et al. (2007) Coenzyme Q10 in the treatment of hypertension: A meta-analysis of the clinical trials. J Hum Hypertens 21: 297-306.

54. MC Houston (2010) The role of cellular micronutrient analysis, nutraceuticals, vitamins, antioxidants and minerals in the prevention and treatment of hypertension and cardiovascular disease. Ther Adv Cardiovasc Dis 4: 165-183.

55. SS Joshi, SV Sawant, A Shedede, AD Salpner (2003) Comparative bioavailability of two novel coenzyme Q10 preparations in humans. Int J Clin Pharmacol Ther 41: 42-48.

56. C Schulz, UC Obermuller-Jevic, O Hasselwender, J Bernhardt, HK Biesalski (2006) Comparison of the relative bioavailability of different coenzyme Q10 formulations with a novel solubilize (Solu Q10). Int J Food Sci Nutr 57: 7-8.

57. E Burke, R Neuenschwander, RD Olson (2001) Randomized double-blind, placebo-controlled trial of coenzyme Q10 in isolated systolic hypertension. South Med J 94: 1111-1117.

58. S Greenberg, WH Frishman (1990) Co-enzyme Q10: A new drug for cardiovascular diseases. J Clin Pharmacol 30: 596-608.

59. MV Miles, PH Tang, L Miles, PE Steele, MJ Moje, et al. (2008) Validation and application of an HPLC-EC method for analysis of coenzyme Q10 in blood platelets. Biomed Chromatogr BCM 2212: 1403-1408.

60. G Balercia, Buldreghini E, Vignini A, Bianco L, Paggi F, et al. (2009) Coenzyme Q10 treatment in infertile men with idiopathic asthenozoospermia: A placebo-controlled, double-blind randomized trial. Fertil Steril 91: 1785-1792.

61. Mohr, VW Bowry. R Stocker (1992) Dietary supplementation with coenzyme Q10 results in increased levels of ubiquinol-10 within circulating lipoproteins and increased resistance of human low-density lipoprotein to the initiation of lipid peroxidation. Biochim Biophy Acta 1126: 247-254.

62. Y Tomono, J Hasegawa, T Seki, K Motegi, T Seki, et al. (1992) Ubiquinone (coenzyme Q10) in the long-term treatment of idiopathic dilated cardiomyopathy. Eur Heart J 13: 1528-1533.

63. PS Watson, GM Scalia, A Galbraith, DJ Burstow, N Bett, et al. (1999) Coenzyme Q10 treatment in patients with congestive heart failure. J Am Coll Cardiol 33: 1549-1552.

64. B Permanetter, W Rossy, G Klein, F Weingartner, KF Seidl, et al. (1999) Criteria and recommendations for vitamin C intake. J Am Coll Nutr 11: 107-125.

65. MR Safarinejad (2009) Efficacy of coenzyme Q10 on semen parameters, sperm function and reproductive hormones in infertile men. J Urol 182: 237-248.
66. Huntington Study Group (2001) A randomized, placebo-controlled trial of coenzyme Q10 and ranolazine in Huntington’s disease. Neurology 57: 397-404.

67. Hofman-Bang, N Rehnqvist, K Swedberg, I Wiklund, H Aström (1995) Coenzyme Q10 as an adjunctive in the treatment of chronic congestive heart failure. The Q10 Study Group. J Card Fail 1: 101-107.

68. W Shults (2002) Effects of coenzyme Q10 in early Parkinson disease: Evidence of slowing of the functional decline. Arch Neurol 59: 1541-1550.

69. C Landbo, TP Almdal (1998) Interaction between warfarin and coenzyme Q10. Ugeskr Laeger 160: 3226-3227.

70. M Heck, BA DeWitt, AL Lukes (2000) Potential interactions between alternative therapies and warfarin. Am J Health-Syst Pharm AJHP Off J Am Soc Health-Syst Pharm 57: 1221-1227.

71. J Engelsen, JD Nielsen, K Winther (2002) Effect of coenzyme Q10 and Ginkgo biloba on warfarin dosage in stable, long-term warfarin treated outpatients. A randomised, double blind, placebo-crossover trial. Thromb Haemost 87: 1075-1076.

72. Portakal, O Ozkaya, M Erdem Inal, B Bozan, M Kosan, et al. (2000) Coenzyme Q10 concentrations and antioxidant status in tissues of breast cancer patients. Clin Biochem 33: 279-284.

73. L Lund, B Quistorff, M Spang-Thomsen, PE Kristjansen (1998) Effect of radiation therapy on small-cell lung cancer is reduced by ubiquinone intake. Folia Microbiol 43: 505-506.

74. Zhang Xi, Li Y, Del Gobbo LC, Rosanoff A, Wang J, et al. (2016) Effects of magnesium supplementation on blood pressure. Hypertension 68: 324-333.

75. L Kass, J Weekes, L Carpenter (2012) Effect of magnesium supplementation on blood pressure: A meta-analysis. Eur J Clin Nutr 66: 411-418.

76. T Dibaba, P Xun, Y Song, A Rosanoff, M Shechter, et al. (2005) Magnesium sulphate versus diazepam for eclampsia. Cochrane Database Syst Rev.

77. SH Jee, ER Miller, E Guallar, VK Singh, LJ Appel, et al. (2002) The effect of magnesium supplementation on blood pressure: A meta-analysis of randomized clinical trials. Am J Hypertens 15: 691-696.

78. https://ods.od.nih.gov/factsheets/Magnesium-HealthProfessional/

79. Rosanoff (2005) Magnesium and hypertension. Clin Calcium 15: 255-260.

80. R Touyz (2001) Magnesium and hypertension. Ovid.

81. RK Rude (1989) Physiology of magnesium metabolism and the important role of magnesium in potassium deficiency. Am J Cardiol 63.

82. M Houston (2011) The Role of Magnesium in Hypertension and Cardiovascular Disease. J Clin Hypertens 13: 843-847.

83. S Johnson (2001) The multifaceted and widespread pathology of magnesium deficiency. Med Hypotheses 56: 163-170.

84. https://www.ncbi.nlm.nih.gov/nlmcatalog/101708739

85. A Quamme (1986) Renal handling of magnesium: Drug and hormone interactions. Magnesium 5: 248-272.

86. M Barbagallo (2003) Role of magnesium in insulin action, diabetes and cardio-metabolic syndrome. X Mol Aspects Med 24: 39-52.

87. L Duley, DJ Henderson-Smart, GJ Walker, D Chou (2010) Magnesium sulphate versus diazepam for eclampsia. Cochrane Database Syst Rev.

88. SE Lakhan, KF Vieira (2010) Nutritional and herbal supplements for anxiety and anxiety-related disorders: systematic review. Nutr J 9: 42.

89. Johansson, U Backman, BG Danielson, B Fellistrom, S Ljunghall, et al. (1980) Biochemical and clinical effects of the prophylactic treatment of renal calcium stones with magnesium hydroxide. J Urol 124: 770-774.

90. Peikert, C Willimzig, R Kohnne-Volland (1996) Prophylaxis of migraine with oral magnesium: Results from a prospective, multi-center, placebo-controlled and double-blind randomized study. Cephalalgia 16: 257-263.

91. JM Topf, PT Murray (2003) Hypomagnesemia and hypermagnesemia.

92. WK Jhang, YJ Lee, YA Kim, SJ Park, YS Park (2013) Severe hypermagnesemia presenting with abnormal electrocardiographic findings similar to those of hyperkalemia in a child undergoing peritoneal dialysis. Korean J Pediatr 56: 308-311.

93. J Gren, A Woolf (1989) Hypermagnesemia associated with catharsis in a salicylate-intoxicated patient with anorexia nervosa. Ann Emerg Med 18: 200-203.

94. Spital, R Greenwell (1991) Severe hyperkalemia during magnesium sulfate therapy in two pregnant drug abusers. South Med J 84: 919-921.

95. SL Koontz, SA Friedman, ML Schwartz (2004) Symptomatic hypocalcemia after tocolytic therapy with magnesium sulfate and nifedipine. Am J Obstet Gynecol 190: 1773-1776.

96. SW Snyder, MS Cardwell (1989) Neuromuscular blockade with magnesium sulfate and nifedipine. Am J Obstet Gynecol 161: 35-36.

97. D Waisman, LM Mayorga, MI Vignolo, A Martinottii (1988) Magnesium plus nifedipine: Potentiation of hypotensive effect in preeclampsia?. Am J Obstet Gynecol 159: 308-309.

98. LA Magee, LM Mayorga, MI Vignolo, A Martinottii (1988) Magnesium plus nifedipine: Potentiation of hypotensive effect in preeclampsia?. Am J Obstet Gynecol 159: 308-309.

99. B Ravn, H Vissinger, SD Kristensen, SE Husted (1996) Magnesium inhibits platelet activity—an in vitro study. Thromb Haemost 76: 88-93.

100. M Shechter, Merz CN, Paul-Labrador M, Meisel SR, Rude RK, et al. (2000) Beneficial antithrombotic effects of the association of pharmacological oral magnesium therapy with aspirin in coronary heart disease patients. Magnes Res 13: 275-284.

101. J Dunn, KL Goa (2001) Risedronate: A review of its pharmacological and clinical use in resorptive bone disease. Drugs 61: 685-712.

102. SM Rodin, BF Johnson (1988) Pharmacokinetic interactions with digoxin. Clin Pharmacokinet 15: 227-244.

103. MD Allen, DJ Greenblatt, JS Harmatz, TW Smith (1981) The effect of magnesium supplementation on blood pressure in individuals with insulin resistance, prediabetes, or noncommunicable chronic diseases: A meta-analysis of randomized controlled trials. Am J Clin Nutr 106: 921-929.

104. LS Koontz, SA Friedman, ML Schwartz (2004) Symptomatic hypocalcemia after tocolytic therapy with magnesium sulfate and nifedipine. Am J Obstet Gynecol 190: 1773-1776.

105. SE Lakhan, KF Vieira (2010) Nutritional and herbal supplements for anxiety and anxiety-related disorders: systematic review. Nutr J 9: 42.

106. SE Lakhan, KF Vieira (2010) Nutritional and herbal supplements for anxiety and anxiety-related disorders: systematic review. Nutr J 9: 42.
104. T Yagi, T Naito, Y Mino, K Umemura, J Kawakami (2012) Impact of concomitant antacid administration on gabapentin plasma exposure and oral bioavailability in healthy adult subjects. Drug Metab Pharmacokinet 27: 248-254.

105. Sompolinsky, Z Samra (1972) Influence of magnesium and manganese on some biological and physical properties of tetracycline. J Bacteriol 110: 468-476.

106. PJ Neuvonen, KT Kivistö (1991) The effects of magnesium hydroxide on the absorption and efficacy of two glibenclamide preparations. Br J Clin Pharmacol 32: 215-220.

107. MP Ryan (1987) Diuretics and potassium/magnesium depletion. Directions for treatment. Am J Med 82: 38-47.

108. T Filippini, F Violi, RD’Amico, M Vinceti (2017) The effect of potassium supplementation on blood pressure in hypertensive subjects: A systematic review and meta-analysis. Int J Cardiol 230: 127-135.

109. PK Whelton, He J, Cutler JA, Brancati FL, Appel LJ, et al. (1997) Effects of oral potassium on blood pressure: Meta-analysis of randomized controlled clinical trials. JAMA 277: 1624-1632.

110. Bina, J Jaeger, Y Hu, A Singh, D Zimmermann (2015) Daily potassium intake and sodium-to-potassium ratio in the reduction of blood pressure: A meta-analysis of randomized controlled trials. J Hypertens 33: 1509-1520.

111. Treasure, D Ploth (1983) Role of dietary potassium in the treatment of hypertension. Hypertens 5: 864-872.

112. WF Jackson (2017) Potassium channels in regulation of vascular smooth muscle contraction and growth. Adv Pharmacol San Diego Calif 78: 89-144.

113. Ando K, H Matsui, M Fujita, T Fujita (2010) Protective effect of dietary potassium against cardiovascular damage in salt-sensitive hypertension: possible role of its antioxidant action. Curr Vasc Pharmacol 8: 59-63.

114. PM Suter (1998) Potassium and hypertension. Nutr Rev Oxf 56: 151-153.

115. P Melikian, LK Cheng, GJ Wright, A Cohen, RE Bruce (1988) Bioavailability of potassium from three dosage forms: Suspension, capsule, and solution. J Clin Pharmacol 28: 1046-1050.

116. RS Brown (1984) Potassium homeostasis and clinical implications. Am J Med 77: 3-10.

117. P Svetkey, WE Yarger, JR Feussner, E DeLong, PE Klotsman (1987) Double-blind, placebo-controlled trial of potassium chloride in the treatment of mild hypertension. Hypertens 9: 444-450.

118. PI Altieri, C Herrero, R Suero, A Ortiz (1977) Bleeding duodenal ulcer in a patient taking slow-releasing potassium tablets. Boletin Asoc Medica PR 69: 276.

119. E Leijonmarck, L Raf (1985) Ulceration of the small intestine due to slow-release potassium chloride tablets. Acta Chir Scand 151: 273-278.

120. G McMahon, JR Ryan, K Akdamar, A Ertan (1982) Upper gastrointestinal lesions after potassium chloride supplements: A controlled clinical trial. Lancet Lond Engl 2: 1059-1061.

121. O Dickinson, Nicolson DJ, Campbell F, Cook JV, Beyrer FR, et al. (2006) Magnesium supplementation for the management of essential hypertension in adults. Cochrane Database Syst Rev.

122. JJ Browning, KS Chanier (1981) Hyperkalaemic cardiac arrhythmia caused by potassium citrate mixture. Br Med J Clin Res.

123. Ben-Ishay, K Engelman (1973) Bioavailability of potassium from a slow-release tablet. Clin Pharmacol Ther 14: 250-258.

124. JR Lambert, A Newman (1980) Ulceration and stricture of the esophagus due to oral potassium chloride (slow release tablet) therapy. Am J Gastroenterol 73: 508-511.

125. J Riker, M Swanson, B Schweigert (1978) Esophageal ulceration caused by wax-matrix potassium chloride. West J Med 128: 542-543.

126. TYK Chan, JAJH Critchley (1992) Life-Threatening hyperkalaemia in an elderly patient receiving captopril, furosemide (frusemide) and potassium supplements. Drug Saf 7: 159-161.

127. Velkoska, FJ Warner, TJ Cole, I Smith, MJ Morris (2010) Metabolic effects of low dose angiotensin converting enzyme inhibitor in dietary obesity in the rat. Nutr Metab Cardiovasc Dis NMCD 20: 49-55.

128. TG Burnakis, HJ Mioduch (1984) Combined therapy with captopril and potassium supplementation. A potential for hyperkalemia. Arch Intern Med 144: 2371-2372.

129. V Yap, A Patel, J Thomsen (1976) Hyperkalemia with cardiac arrhythmia: Induction by salt substitutes. Spironolactone Azotemia. JAMA 236: 27752-27776.

130. V O’Reilly, DP Murnaghan, MB Williams (1974) Transvenous pacemaker failure induced by hyperkalemia. JAMA 228: 336-337.