Cross Section and Parity Violating Spin Asymmetries of W^\pm Boson Production in Polarized $p + p$ Collisions at $\sqrt{s} = 500$ GeV

A. Adare,11 S. Afanasiev,25 C. Aidala,34 N.N. Ajitanand,56 Y. Akiba,50,51 R. Akimoto,10 J. Alexander,56 H. Al-Taani,44 K.R. Andrews,1 A. Angerami,12 K. Aoki,56 N. Apadula,57 E. Appelt,51 Y. Aramaki,10 R. Armendariz,6 E.C. Aschenauer,5 T.C. Awes,46 B. Aymonin,5 V. Babin,21 M. Bai,5 B. Bannier,55 K.N. Barish,6 B. Bassalleck,43 A.T. Bayse,1 S. Bathe,51 V. Baublis,49 C. Baumann,39 A. Bazilevsky,5 R. Belmont,61 R. Bennett,57 A. Berdnikov,53 Y. Berdnikov,53 D.S. Blau,30 J.S. Bok,63 K. Boyle,51 M.L. Brooks,34 H. Buesching,5 V. Bunazhnikov,21 G. Bunce,5,51 S. Butsky,34 S. Campbell,57 A. Caringi,30 C.-H. Chen,57 C.Y. Chi,12 M. Chiu,5 I.J. Choi,25,63 J.B. Choi,8 S.K. Choudhury,3 P. Christiansen,30 T. Chui,60 O. Chvala,6 V. Cianciolo,49 Z. Citron,57 B.A. Cole,12 Z. Conesa del Valle,32 M. Connors,57 M. Csanád,15 T. Csörgő,28 S. Dairaku,31,50 A. Datta,38 G. David,5 M.K. Dayananda,18 A. Denisov,21 A. Deshpande,51,57 E.J. Desmond,5 K.V. Dharmawardane,44 O. Dietzsch,54 A. Dion,64 M. Donadelli,54 L. D'Orazio,37 O. Drapier,32 A. Drees,57 K.A. Drees,4 J.M. Durham,57 A. Durum,21 Y.V. Efremenkov,46 T. Engelmore,12 A. Enokizono,46 H. Enyo,50,51 S. Esumi,60 B. Fedam,40 D.E. Fields,43 M. Finger, Jr.,7 M. Finger,7 F. Fleuret,32 S.L. Fokin,30 J.E. Franz,45 A. Franz,5 A.D. Frawley,17 Y. Fukuda,50 T. Fusayasu,42 I. Garishvili,58 A. Glenn,33 M. Gonin,32 Y. Goto,50,51 R. Granier de Cassagnac,32 N. Gran,12 S.V. Greene,61 M. Grossi Perdekamp,22 T. Gunji,10 L. Guo,34 H.-A. Gustafsson,36 J.S. Haggerty,5 K.I. Hahn,16 H. Hamagaki,10 J. Hambleton,57 J. Hanks,12 R. Han,48 K. Hashimoto,52,50 E. Hashum,36 R. Hayano,10 T.K. Hemmick,57 T. Hester,6 X. He,18 J.C. Hill,64 R.S. Hollis,9 W. Holzmann,12 K. Homma,20 B. Hong,29 T. Horaguchi,60 Y. Hori,30 D. Hornback,46 S. Huang,61 T. Ichihara,50,51 R. Ichimichi,50 H. Ifu,27 Y. Ikeda,50,52,60 K. Inami,31,50 M. Inaba,60 A. Iordanova,6 I. Ishihara,50 M. Issah,61 A. Isupov,25 D. Ivanichev,49 Y. Iwanaga,20 B.V. Jacak,57 J. Jia,5,56 X. Jiang,34 B.M. Johnson,5 T. Jones,1 K.S. Joo,41 D. Jouan,47 J. Kamin,57 S. Kaneti,57 B.H. Kang,4 J.H. Kang,6 J. Kapustin,34 K. Karatsu,31,50 M. Kasai,52,50 D. Kawall,38,51 A.V. Kazantsev,30 T. Kempel,64 A. Khanzadeev,49 K.M. Kijima,20 B.I. Kim,29 D.J. Kim,26 E.J. Kim,8 J.S. Kim,19 Y.-J. Kim,22 Y.K. Kim,19 E. Kinney,11 A. Kiss,15 E. Kistenev,5 D. Kleinjan,5 P. Kline,57 L. Kochenda,49 B. Komsik,49 M. Konno,60 J. Koster,22 D. Kotov,49 A. Král,13 G.J. Kunde,34 K. Kurita,52,50 M. Kurosawa,50 Y. Kwon,63 G.S. Kyle,44 R. Lacey,56 Y.S. Lai,12 J.G. Lajoie,64 A. Lebedev,64 D.M. Lee,34 J. Lee,16 K.B. Lee,29 K.S. Lee,29 S.R. Lee,8 M.J. Leitch,34 M.A.L. Leite,54 P. Lichtenwalner,40 S.H. Lim,63 L.A. Linden Levy,4 A. Litvinenko,26 H. Liu,34 M.X. Liu,34 X. Li,9 B. Love,51 D. Lynch,5 C.F. Maguire,61 Y.I. Makdisi,4 A. Malakhov,25 V.I. Manko,30 E. Manning,12 Y. Mao,48,50 H. Masui,60 M. McCumber,57 P.L. McGaughey,34 D. McLincey,17 C. Mc Kinney,22 N. Means,57 M. Mendoza,8 B. Miao,60 T. Mibe,27 A.C. Mignerey,37 K. Miki,50 A. Milov,62 J.T. Mitchell,5 Y. Miyachi,50,59 A.K. Mohanty,3 H.J. Moon,41 Y. Morino,10 A. Morreale,6 D.P. Morrison,57 T.V. Moukanov,39 T. Murakami,31 J. Murata,52,50 S. Nagam,J,27 L.L. Nagle,13 M. Naglis,62 M.J. Nagy,28 I. Nakagawa,50,51 Y. Nakamukai,20 K.R. Nakamura,31,56 T. Nakamura,50 K. Nakano,50 J. Newby,33 M. Nguyen,57 M. Nishashi,20 R. Noi,37 A.S. Nyanin,30 C. Oakley,18 E. O'Brien,5 C.A. Ogilvie,64 K. Okada,51 M. Oka,60 A. Oskarsson,36 M. Ozawa,10 K. Ozawa,50 R. Pak,5 V. Pantuev,57 V. Papavassiliou,44 B.H. Park,19 I.H. Park,16 S.K. Park,29 S.F. Pate,44 H. Pei,44 J.-C. Peng,22 H. Pereira,14 V. Peresedov,25 D.Yu. Peressounko,30 R. Petti,57 C. Pinkenburg,5 R.P. Pisani,5 M. Plois,57 M.L. Purschke,5 H. Qu,18 J. Rak,20 I. Ravinovich,62 K.F. Read,46,58 K. Reygers,39 V. Ribakov,49 Y. Ribakov,49 E. Richardson,37 D. Roach,61 G. Roche,35 S.D. Rolnick,9 M. Rosati,64 S.S.E. Rosendahl,36 P. Rukoyatkin,25 B. Sahnhuebler,39 N. Saito,27 T. Sakaguchi,5 V. Samsonov,49 S. Sano,10 M. Sarsour,18 T. Sato,60 M. Savastio,57 S. Sawada,27 K. Sedgwick,6 R. Seidl,51 R. Seto,6 D. Sharma,62 I. Shein,21 T.-A. Shibata,50,59 K. Shigaki,20 H.H. Shim,29 M. Shimomura,60 K. Shoji,31,50 P. Shukla,3 A. Sickles,5 C.L. Silva,64 D. Silvermyr,46 C. Silvestre,14 K.S. Sim,29 B.K. Singh,2 C.P. Singh,2 V. Singh,2 M. Slonecka,7 R.A. Soltz,35 W.E. Sondheims,58 P.S. Sorensen,58 I.V. Sourkoumian,5 P.W. Stankus,46 E. Stenlund,36 S.P. Stoll,5 T. Sugitate,20 A. Sukhanov,5 J. Sun,37 J. Szilai,28 E.M. Takahashi,54 A. Takahara,10 A. Taketani,50,51 R. Tanabe,60 Y. Tanaka,42 S. Taneja,57 K. Tanida,31,50,51,55 M.J. Tannenbaum,5 S. Tarafdar,2 A. Tarakanyan,56 E. Tannent,44 H. Themann,57 D. Thomas,1 M. Togawa,51 L. Tomášek,23 M. Tomášek,23 H. Torii,90 R.S. Towell,1 I. Tsur,33 Y. Tsuchimoto,59 K. Utsunomiya,10 C. Vale,5 H.W. van Heecke,34 E. Vazquez-Zambrano,12 A. Veitch,12 J. Velkovska,61 R. Veresiti,28 M. Virius,13 A. Vossen,22 V. Vrba,23 E. Vznuzda,49 X.R. Wang,44 D. Watanabe,20 K. Watanabe,60 Y. Watanabe,10 Y. Watanabe,50,51 F. Wei,54 J. Wessels,39 S.N. White,9 D. Winter,12 C.L. Woody,5 R.M. Wright,1 M. Wysocki,11 Y.L. Yamaguchi,10 R. Yang,28 A. Yanovich,21 J. Ying,10 S. Yokkaichi,50,51 J.S. Yoo,16
G.R. Young, I. Younus, Z. You, I.E. Yushmanov, W.A. Zajc, A. Zelenski, S. Zhou, and L. Zolin

(phenix Collaboration)

1 Abilene Christian University, Abilene, Texas 79699, USA
2 Department of Physics, Banaras Hindu University, Varanasi 221005, India
3 Bhabha Atomic Research Centre, Bombay 400 085, India
4 Collider-Accelerator Department, Brookhaven National Laboratory, Upton, New York 11973-5000, USA
5 Physics Department, Brookhaven National Laboratory, Upton, New York 11973-5000, USA
6 University of California - Riverside, Riverside, California 92521, USA
7 Charles University, Ovocny trh 5, Praha 1, 116 36, Prague, Czech Republic
8 Chonbuk National University, Jeonju, 561-756, Korea
9 China Institute of Atomic Energy (CIAE), Beijing, People's Republic of China
10 Center for Nuclear Study, Graduate School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-0033, Japan
11 University of Colorado, Boulder, Colorado 80309, USA
12 Columbia University, New York, New York 10027 and Nevis Laboratories, Irvington, New York 10533, USA
13 Czech Technical University, Zikova 4, 166 33 Prague 6, Czech Republic
14 Dapnia, CEA Saclay, F-91191, Gif-sur-Yvette, France
15 ELTE, Eötvös Loránd University, H - 1117 Budapest, Pázmány P. s. 1/A, Hungary
16 Ewha Womans University, Seoul 120-750, Korea
17 Florida State University, Tallahassee, Florida 32306, USA
18 Georgia State University, Atlanta, Georgia 30303, USA
19 Han Yang University, Seoul 133-792, Korea
20 Hiroshima University, Kagamiyama, Higashi-Hiroshima 739-8526, Japan
21 IHEP Protvino, State Research Center of Russian Federation, Institute for High Energy Physics, Protvino, 142281, Russia
22 University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
23 Institute of Physics, Academy of Sciences of the Czech Republic, Na Slovance 2, 182 21 Prague 8, Czech Republic
24 Iowa State University, Ames, Iowa 50011, USA
25 Joint Institute for Nuclear Research, 141980 Dubna, Moscow Region, Russia
26 Helsinki Institute of Physics and University of Jyväskylä, P.O.Box 35, FI-40014 Jyväskylä, Finland
27 KEK, High Energy Accelerator Research Organization, Tsukuba, Ibaraki 305-0801, Japan
28 KFKI Research Institute for Particle and Nuclear Physics of the Hungarian Academy of Sciences (MTA KFKI RMKI), H-1525 Budapest 114, POBox 49, Budapest, Hungary
29 Korea University, Seoul, 136-701, Korea
30 Russian Research Center “Kurchatov Institute”, Moscow, Russia
31 Kyoto University, Kyoto 606-8502, Japan
32 Laboratoire Leprince-Ringuet, Ecole Polytechnique, CNRS-IN2P3, Route de Saclay, F-91128, Palaiseau, France
33 Lawrence Livermore National Laboratory, Livermore, California 94550, USA
34 Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
35 LPC, Université Blaise Pascal, CNRS-IN2P3, Clermont-Fd, 63177 Aubiere Cedex, France
36 Department of Physics, Lund University, Box 118, SE-221 00 Lund, Sweden
37 University of Maryland, College Park, Maryland 20742, USA
38 Department of Physics, University of Massachusetts, Amherst, Massachusetts 01003-9337, USA
39 Institut fur Kernphysik, University of Muenster, D-48149 Muenster, Germany
40 Muhlenberg College, Allentown, Pennsylvania 18104-5586, USA
41 Myongji University, Yongin, Kyonggido 449-728, Korea
42 Nagasaki Institute of Applied Science, Nagasaki-shi, Nagasaki 851-0193, Japan
43 University of New Mexico, Albuquerque, New Mexico 87131, USA
44 New Mexico State University, Las Cruces, New Mexico 88003, USA
45 Department of Physics and Astronomy, Ohio University, Athens, OH 45701, USA
46 Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
47 IPN-Orsay, Universite Paris Sud, CNRS-IN2P3, BP1, F-91406, Orsay, France
48 Peking University, Beijing, People’s Republic of China
49 PNPI, Petersburg Nuclear Physics Institute, Gatchina, Leningrad region, 188300, Russia
50 RIKEN Nishina Center for Accelerator-Based Science, Wako, Saitama 351-0198, JAPAN
51 RIKEN BNL Research Center, Brookhaven National Laboratory, Upton, New York 11973-5000, USA
52 Physics Department, Rikkyo University, 3-34-1 Nishi-Ikebukuro, Toshima, Tokyo 171-8501, Japan
53 Saint Petersburg State Polytechnical University, St. Petersburg, Russia
54 Universidade de Sao Paulo, Instituto de Fisica, Caixa Postal 66318, Sao Paulo CEP05315-970, Brazil
55 Seoul National University, Seoul, Korea
56 Chemistry Department, Stony Brook University, SUNY, Stony Brook, New York 11794-3400, USA
57 Department of Physics and Astronomy, Stony Brook University, Stony Brook, New York 11794-3400, USA
58 University of Tennessee, Knoxville, Tennessee 37996, USA
59 Department of Physics, Tokyo Institute of Technology, Oh-okayama, Meguro, Tokyo 152-8551, Japan
60 Institute of Physics, University of Tsukuba, Tsukuba, Ibaraki 305, Japan
Large parity violating longitudinal single-spin asymmetries $A_L^{+} = -0.86^{+0.30}_{-0.14}$ and $A_L^{-} = 0.85^{+0.12}_{-0.71}$ are observed for inclusive high transverse momentum electrons and positrons in polarized $p+p$ collisions at a center of mass energy of $\sqrt{s} = 500$ GeV with the PHENIX detector at RHIC. These e^\pm come mainly from the decay of W^\pm and Z^0 bosons, and their asymmetries directly demonstrate parity violation in the couplings of the W^\pm to the light quarks. The observed electron and positron yields were used to estimate W^\pm boson production cross sections for the e^\pm channels of $\sigma(pp \to W^+X) \times BR(W^+ \to e^+\nu_e) = 141.1 \pm 21.2 (\text{stat})^{+13.4}_{-10.3} (\text{syst}) \pm 15\% (\text{norm}) \text{ pb}$, and $\sigma(pp \to W^-X) \times BR(W^- \to e^-\bar{\nu}_e) = 31.7 \pm 12.1 (\text{stat})^{+8.2}_{-5.9} (\text{syst}) \pm 15\% (\text{norm}) \text{ pb}$.

The electromagnetic calorimeter, located at a radial distance of ~ 5 m from the beam line, is used to measure the energy, position, and time of flight of electrons. In this analysis, the p_T dependence of the reconstructed π^0 and η mass peaks was used to confirm the energy scale and linearity to within 2.5%. The p_T dependence of the peak widths was used to determine the energy resolution $\sigma_E/E = 8.1/\sqrt{E(\text{GeV})} \oplus 5.0\%$.

A trigger with a nominal 10 GeV threshold in the electromagnetic calorimeter selected events for this analysis. This trigger was fully efficient for e^\pm with transverse momentum p_T above 12 GeV/c. Charged tracks reconstructed in the drift chambers and the pad chambers which match the calorimeter cluster with $|\Delta\phi| < 0.01$ were used to reconstruct the z position of the event vertex. Only events with $|z| < 30$ cm that are well within the acceptance of the central arm spectrometers were analyzed. Loose cuts on the time of flight measured by the calorimeter and energy-momentum matching suppressed accidental matches and cosmic rays.

The analyzed data sample corresponds to an integrated luminosity of 8.6 pb$^{-1}$, which was determined from beam-beam counter coincidences and corrected for a small (6%) effect from multiple collisions per beam crossing. The beam-beam counters are two 64 channel quartz Čerenkov counters ± 1.44 m from the center of the detector and cover a pseudorapidity range of $3.1 < |\eta| < 3.9$. The cross section for coincidences within $|z| \lesssim 30$ cm was found to be 32.5 ± 3.2 mb from the van der Meer scan technique.

The resulting yield of positive and negative electron candidates is shown in Fig. 1 where p_T has been determined from the calorimeter cluster energy. The charge sign is determined from the bend angle, α, measured in the drift chamber, and the nominal transverse beam position. The angular resolution and stability of beam position were monitored by frequent runs with no magnetic field. The resolution σ_α was typically about 1.1 mrad, to be compared to a 2.3 mrad bend angle for 40 GeV/c tracks. The variation in the average transverse beam po-
FIG. 1: (color online) The spectra of positive (upper panel) and negative (lower panel) candidates before (solid histogram) and after (dashed histogram) an isolation cut. The estimated background bands are also shown. The computation of the background before the isolation cut is described in the text. The background band after the isolation cut is computed by scaling the background before the isolation cut by the isolation cut efficiency measured in the background region (12 < \(p_T\) < 20 GeV/c).

FIG. 2: (color online) Background subtracted spectra of positron (upper panel) and electron (lower panel) candidates taken from all counts compared to the spectrum of \(W\) and \(Z\) decays from an NLO calculation [12, 13] (see text). The gray bands reflect the range of background estimates.
and $|\Delta\phi| < \pi$ is estimated to be $\sim 11\%$ of positrons from W^+ and $\sim 7.5\%$ of electrons from W^- from these calculations. The variation of the calculation is small compared to other sources of systematic uncertainty. With these corrections, $\sigma(pp \to W^+X) \times BR(W^+ \to e^+\nu_e) = 144.1 \pm 21.2 \text{(stat)}^{+3.4}_{-10.3} \text{(syst)} \pm 15\% \text{(norm)}$ pb, and $\sigma(pp \to W^-X) \times BR(W^- \to e^-\bar{\nu}_e) = 31.7 \pm 12.1 \text{(stat)}^{+10.1}_{-8.2} \text{(syst)} \pm 15\% \text{(norm)}$ pb, where BR is the branching ratio. These are shown in Fig. 3 and compared to published Tevatron and $SppS$ data.

In order to determine the longitudinal spin asymmetry with a sample of W decays with minimal background contamination, two additional requirements were imposed on the candidate events. An isolation cut requiring the sum of cluster energies in the calorimeter and transverse momenta measured in the drift chamber be less than 2 GeV in a cone with a radius in η and ϕ of 0.5 around the candidate track was used to remove remaining events with jets. About 80% of the signal is kept, while the background is reduced by a factor ~ 4 as shown in Fig. 1. The second cut is to reject tracks with $|a| < 1$ mr, which reduces charge misidentification to negligible levels. There are 42 candidate $W^+ + Z^0$ decays to positrons with a background of 1.7 ± 1.0 and 13 candidate $W^- + Z^0$ decays to electrons with a background of 1.6 ± 1.0 events within $30 < p_T < 50$ GeV/c after these two additional cuts.

The measured asymmetry is given by

$$\epsilon_L = \frac{N^+ - R \cdot N^-}{N^+ + R \cdot N^-}$$

where N^+ is the number of events from a beam of positive helicity and N^- is the number of events from a beam of negative helicity, and R is the ratio of the luminosity for the positive and the negative helicity beams. The longitudinal spin asymmetry is then calculated from the measured asymmetry according to

$$A_L = \epsilon_L \cdot \frac{D}{P}$$

where P is the beam polarization and D is a dilution correction to account for the remaining background in the signal region.

TABLE I: Comparison of measured cross sections for electrons and positrons with $30 < p_T < 50$ GeV/c from W and Z decays with NLO \([12]\) and NNLO \([20]\) calculations. The first error is statistical; the second error is systematic from the uncertainty in the background; the third error is a 15% normalization uncertainty due to the luminosity (10%), multiple collision (5%), and acceptance and efficiency uncertainties (10%).

Lepton	Data	NLO	NNLO
e^+	50.2 ± 7.2$^{+1.2}_{-1.1}$ ± 15%	43.2	46.8
e^-	9.7 ± 3.7$^{+1.2}_{-1.5}$ ± 15%	11.3	13.5
e^+ and e^-	59.9 ± 8.1$^{+3.1}_{-6.0}$ ± 15%	54.5	60.3
TABLE II: Longitudinal single-spin asymmetries

Sample	ϵ_L	$A_L^e(W + Z)$	68%CL	95%CL
Bkgrd +	-0.015 ± 0.04			
Signal +	-0.31 ± 0.10	-0.86	$[-1, -0.56]$	$[-1, -0.16]$
Bkgrd -	-0.025 ± 0.04			
Signal -	0.29 ± 0.20	$+0.88$	$[0.17, 1]$	$[-0.60, 1]$

FIG. 4: (color online) Longitudinal single-spin asymmetries for electrons and positrons from W and Z decays. The error bars represent 68% CL. The theoretical curves are calculated using NLO with different polarized PDFs [12].

upgrades in progress will make it possible in the future to significantly reduce the uncertainties for A_L and to extend the measurement to forward rapidity, which will improve our knowledge of flavor separated quark and antiquark helicity distributions.

We thank the Collider-Accelerator Department for developing the unique technologies enabling these measurements and the Physics Department staff at BNL for vital contributions. We also thank D. de Florian, B. Surrow, and J. Balewski for helpful discussions. We acknowledge support from the Office of Nuclear Physics in DOE Office of Science and NSF (U.S.A.), MEXT and JSPS (Japan), CNPq and FAPESP (Brazil), NSFC (China), MSMT (Czech Republic), IN2P3/CNRS and CEA (France), BMBF, DAAD, and AvH (Germany), OTKA (Hungary), DAE and DST (India), ISF (Israel), NRF (Korea), MES, RAS, and FFAE (Russia), VR and KAW (Sweden), U.S. CRDF for the FSU, Hungary-US HAESF, and US-Israel BSF.

* Deceased
† Spokesperson: jacak@skipper.physics.sunysb.edu
[1] R. L. Jaffe and A. Manohar, Nucl. Phys. B337, 509 (1990).
[2] E. Leader and M. Anselmino, Z. Phys. C41, 239 (1988).
[3] S. E. Kuhn, J. P. Chen, and E. Leader, Prog. Part. Nucl. Phys. 63, 1 (2009) and references therein.
[4] D. de Florian, R. Sassot, M. Stratmann, and W. Vogelsang, Phys. Rev. D80, 034030 (2009).
[5] M. G. Alekseev et al. (2010), 1007.4061.
[6] A. Airapetian et al., Phys. Rev. D71, 012003 (2005).
[7] B. Adeva et al., Phys. Lett. B420, 180 (1998).
[8] A. Adare et al., Phys. Rev. Lett. 103, 012003 (2009).
[9] B. I. Abelev et al., Phys. Rev. Lett. 100, 232003 (2008).
[10] G. Bunce, N. Saito, J. Soffer, and W. Vogelsang, Ann. Rev. Nucl. Part. Sci. 50, 525 (2000).
[11] C. Bourrely and J. Soffer, Phys. Lett. B314, 132 (1993).
[12] D. de Florian and W. Vogelsang, Phys. Rev. D81, 094020 (2010).
[13] P. M. Nadolsky and C. P. Yuan, Nucl. Phys. B666, 31 (2003).
[14] M. M. Aggarwal et al., arXiv:1009.0326 [hep-ex].
[15] K. Adcox et al., Nucl. Instrum. Meth. A499, 469 (2003).
[16] A. Adare et al., Phys. Rev. D79, 012003 (2009).
[17] M. Cacciari, P. Nason, and R. Vogt, Phys. Rev. Lett. 95, 122001 (2005); M. Cacciari, private communication.
[18] A. Adare et al., Phys. Rev. Lett. 97, 252002 (2006).
[19] T. Sjöstrand et al., Comput. Phys. Commun. 135, 238 (2001).
[20] K. Melnikov and F. Petriello, Phys. Rev. D74, 114017 (2006).
[21] A. D. Martin, R. G. Roberts, W. J. Stirling, and R. S. Thorne, Eur. Phys. J. C28, 455 (2003).
[22] A. D. Martin, W. J. Stirling, R. S. Thorne, and G. Watt, Eur. Phys. J. C63, 189 (2009).
[23] D. E. Acosta et al., Phys. Rev. Lett. 94, 091803 (2005).
[24] B. Abbott et al., Phys. Rev. D61, 072001 (2000).
[25] J. Alitti et al., Z. Phys. C47, 11 (1990).
[26] C. Albajar et al., Z. Phys. C44, 15 (1989).