The Natural Killer Cell Receptor Specific for HLA-A Allotypes: A Novel Member of the p58/p70 Family of Inhibitory Receptors That Is Characterized by Three Immunoglobulin-like Domains and Is Expressed as a 140-kD Disulphide-linked Dimer

By Daniela Pende,* Roberto Biassoni,* Claudia Cantoni,* Simonetta Verdiani,* Michela Falco,* Carolina Di Donato,* Laura Accame,* Cristina Bottino,* Alessandro Morettay and Lorenzo Moretta*~

From the *Istituto Scientifico Tumori and Centro Biotecnologie Avanzate, 16132 Genova; ~Istituto di Patologia Generale, Università degli Studi di Genova; יIstituto di Istologia ed Embriologia Generale, Università di Genova, 16132 Genova; and ṊDipartimento di Scienze Biomediche e Biotecnologie, Università di Brescia, 25100 Brescia, Italy

Summary

Human natural killer (NK) cells express inhibitory receptors that are specific for different groups of HLA-C or HLA-B alleles. The majority of these receptors belong to the immunoglobulin (Ig) superfamily and are characterized by two or three extracellular Ig-like domains. Here we describe a novel inhibitory NK receptor that is specific for a group of HLA-A alleles. The HLA-A3–specific NK cell clone DP7 has been used for mice immunization. Two mAbs, termed Q66 and Q241, bound to the immunizing clone and stained only a subset of NK cell populations or clones. Among Q66 mAb-reactive clones, we further selected those that did not express any of the previously identified HLA-class I–specific NK receptors. These clones did not lyse HLA-A3* (or -A11*) target cells, but lysis of these targets could be detected in the presence of Q66 or Q241 mAbs. On the other hand, target cells expressing other HLA-A alleles, including -A1, -A2, and -A24, were efficiently lysed. Moreover, none of the HLA-C or HLA-B alleles that were tested exerted a protective effect. Q66 +, but not Q66- NK cell clones, expressed messenger RNA coding for a novel 3 lg domain protein homologous to the HLA-C (p58) and HLA-B (p70) receptors. The corresponding cDNA (c1.1.1) was used to generate transient and stable transfectants in COS7 and NIH3T3 cell lines, respectively. Both types of transfectants were specifically stained by Q66 and Q241 mAbs. Since the cytoplasmic tail of Q66-reactive molecules was at least 11 amino acid longer than the other known p58/p70 molecules, we could generate an antiserum specific for the COOH-terminus of Q66-reactive molecules, termed PGP-3. PGP-3 immunoprecipitated, only from Q66 + NK cells, molecules displaying a molecular mass of 140 kD, under nonreducing conditions, which resolved, under reducing conditions, in a 70-kD band. Thus, differently from the other p58/p70 receptors, Q66-reactive molecules appear to be expressed as disulphide-linked dimers and were thus termed p140. The comparative analysis of the amino acid sequences of p58, p70, and p140 molecules revealed the existence of two cysteins proximal to the transmembrane region, only in the amino acid sequence of p140 molecules.

NK cells are thought to play a relevant role in the host defenses because of their ability to kill certain tumor or virally infected cells (1). The molecular mechanisms that explain why NK cells do not kill indiscriminately but spare normal (self) cells have recently been elucidated. It reflects the expression of different specialized receptors that recognize allelic forms of MHC class I molecules expressed on normal cells. This interaction leads to the generation of an inhibitory signal that prevents target cell lysis (2–6). Accordingly, the lack of expression of one or more class I alleles (as it may occur in tumor or virally infected cells), leads to NK-mediated target cell lysis. So far, different
types of receptors specific for distinct groups of HLA-C (p58 molecules) or HLA-B (p70/NKB1 molecules) alleles have been identified (7–10). Thus, p58.1 molecules reactive with the EB6 mAb recognized a group of HLA-C alleles (HLA-Cw2, -Cw4, -Cw5, and -Cw6), characterized by the amino acid residues N77/K80 (4). p58.2 (reactive with GL183 mAb) recognized HLA-Cw1, Cw3, Cw7, and Cw8 alleles characterized by S77/N80 (4). p70/NKB1 recognized a group of HLA-B alleles belonging to the Bw4 supertypic specificity (e.g., HLA-B2705, -B51, -B58, and -B44) (9, 10). Cloning of these receptors revealed new members of the Ig superfamily, characterized by two (p58) or three (p70/NKB1) Ig-like domains in their extracellular portions and by a long cytoplasmic tail associated with a nonpolar transmembrane (11–13). The cytoplasmic tail is characterized by an immuno tyrosine-based activatory motif (ITAM)1-like sequence in which two YXXI amino acid motifs are spaced by 26 amino acids (instead of six to eight typical of ITAMs of CD3 molecules) (14). CD94, another putative receptor involved in HLA class I recognition, displays a different structure. Similar to Ly49, the mouse receptor for HLA class I molecules, it belongs to the type 2 transmembrane proteins containing a C-type lectin domain (15, 16). So far, only receptors for HLA-C or HLA-B alleles have been identified; however, for an NK-mediated recognition of HLA-A alleles has been provided both in fresh (17) and cloned NK cells (18).

In the present paper, we selected two mAbs that identify a receptor recognizing HLA-A3, but not -A1, -A2, and -A24 alleles. Similar to other HLA class I–specific NK receptors, this receptor is expressed on a subset of NK cells, and it inhibits the NK-mediated cytolysis upon interaction with its specific ligand. Different from the other NK receptors, Q66 is expressed at the NK cell surface as a disulphide–linked dimer of 140 kD (thus termed p140). In addition, molecular analysis revealed a new member of the Ig superfamily, characterized by three extracellular Ig-like domains and a nonpolar transmembrane portion associated with a 95–amino acid cytoplasmic tail containing an ITAM-like motif.

Materials and Methods

NK Clones and Populations. PBL derived from healthy donors were isolated on Ficoll-Hypaque gradients, and cells were then incubated with a mixture of Leu4, Leu3a, and Leu2a mAbs for 30 min at 4°C, followed by treatment with goat anti–mouse–coated Dynal beads (Dynal, Oslo, Norway) for 30 min at 4°C. Next, after immunomagnetic depletion, CD3+ 4–8+ cells were cloned under limiting dilution conditions in the presence of irradiated feeder cells, 0.1% (vol/vol) PHA (Gibico Ltd., Paisley, Scotland), and exogenous IL2 (rIL-2; Costar Corp., Cambridge, MA) were coated with 10 μg/ml (1 μl) XI-141 mAb (anti-p58) during overnight incubation at 4°C, as previously described (20). Cloned NK cells (105) were added to coated or uncoated wells and incubated for 18 h at 37°C. Cells were then washed twice and analyzed for indirect immunofluorescence on a flow cytometer by a FACSort.

Modulation of Surface Molecules. Flat-bottomed plates (24 wells/plate; Costar Corp., Cambridge, MA) were coated with 10 μg/ml (1 μl) XI-141 mAb (anti-p58) during overnight incubation at 4°C, as previously described (20). Cloned NK cells (105) were added to coated or uncoated wells and incubated for 18 h at 37°C. Cells were then washed twice and analyzed for indirect immunofluorescence on a flow cytometer by a FACSort.

Cytolytic Assay. The cytolytic activity of cloned NK cells was measured in a 4-h 51Cr-release assay in which effector cells were tested against the CIR. B–LCL human cell line (5) (HLA-A–, -B55–, -C4–) and CIR transfecants expressing HLA-A1, -A2, -A3, -A24, -B51, -B7, and -B27 (kindly provided by P. Cresswell, Yale University, New Haven, CT; B. Biddison, National Institutes of Health, Bethesda, MD, and J.A. Lopez De Castro, Fundacion Jimenez Diaz, Madrid, Spain). Other target cells used in these studies were represented by the B–EBV cell lines HOM2 (homozygous haplotype: HLA-A3, -B27; -Cw1), SP0010 (homozygous haplotype: HLA-A2, -B44; -Cw5), and WT100BIS (homozygous haplotype: HLA-A1, -B35; -Cw4), provided by Dr. G.B. Ferrara (Istituto Scientifico Tumori, Genova, Italy) and the B–EBV A51 (haplotype: HLA-A2, -B18; 15; -Cw3,7) derived from a normal HLA-typed individual (Table 1) (4). All these target cells were used at 5 × 103/well at the final E/T ratio of 4:1. The percent of specific lysis was determined as previously described (4). mAbs were added at the onset of the cytolysis assay before adding target cells. The concentrations of Q66 and A6-220 (IgM anti-CD56) were obtained in our lab (7–9, 20–22).

Analysis of PBL or polyclonally activated NK cell populations for the distribution of the surface antigen recognized by the Q66 mAb, was performed using two-color fluorescence cytofluorometric analysis (FACSsort, Becton Dickinson), as previously described (8). Cells were stained with Q66 mAb, followed by PE-conjugated goat anti–mouse IgM antibodies (Southern Biotechnology Associates, Birmingham, AL), and the other mAb, either Leu4, c127, GL183 and EB6, or Z27 antibodies, followed by appropriate anti–IgG1–FITC antibodies.

Production of mAbs. 5–wk-old male BALB/c mice were immunized with the NK cell clone DP7 (surface phenotype: CD3–, CD16+CD56+GL183–EB6–Z27+) as previously described (7). The screening of hybridomas supernatants was based on the ability to reconstitute the cytolytic function of the DP7 clone against the CIR/A3 transfecant used as 51Cr-labeled target cells in a 4-h 51Cr release assay, as previously described in detail (7). According to this screening procedure, two hybridomas termed Q66 and Q241 were selected and further subcloned in limiting dilution. Both were of the IgM isotype.

mAbs and Flow Cytometry. In this study, the following mAbs were used: Leu4 (IgG, anti-CD3), Leu3a (IgG, anti-CD4), and Leu2a (IgG, anti-CD8), purchased by Becton Dickinson & Co. (Mountain View, CA). GL183 (IgG, anti-p58), EB6 (IgG, anti-p58), AX1-14 (IgM, anti-p58), c127 (IgG, anti-CD16), c218 (IgG, anti-CD56), A6-136 (IgM anti-HLA class I), Z27 (IgG, anti-p70/NKB1), XA185 (IgG, anti-CD94), and A6-220 (IgM anti-CD56) were obtained in our lab (7–9, 20–22).

Abbreviations used in this paper: ITAM, immuno tyrosine-based activatory domain; ORF, open reading frame; RACE, rapid amplification of cDNA ends.

506 The HLA-A–specific Natural Killer Receptor Is a 140-kD Dimer
fractionated using a 0.8% agarose gel. 12 different fractions were
fractionated using a 0.8% agarose gel. 12 different fractions were
HOM2* A3 B27 (Bw4)* Cw1 ($77/N80)5
WT100BIS* A11 B35 (Bw6) Cw4 (N77/K80)
SP00110* A2 B44 (Bw4) Cw5 (N77/K80)
A51 A2,A2 B18,B15, (Bw6) Cw3,7 (S77/N80)

*Homozygous B-EBV cell line.
Indicates the amino acid residues at positions 77 and 80 of the expressed
HLA-B allele.
Indicates the specificity of the expressed HLA-B allele.

| B-EBV cell line | HLA class I haplotype |
|-----------------|-----------------------|
| HOM2* A3 B27 (Bw4)* | Cw1(S77/N80)5 |
| WT100BIS* A11 B35 (Bw6) | Cw4 (N77/K80) |
| SP00110* A2 B44 (Bw4) | Cw5 (N77/K80) |
| A51 A2,A2 B18,B15, (Bw6) | Cw3,7 (S77/N80) |

Amplification of Specific cDNAs from NK Cell Clones. Total RNA was
Amplification of Specific cDNAs from NK Cell Clones. Total RNA was
extracted using RNAZol (Cinna/Biotex, Houston, TX) by standard
extracted using RNAZol (Cinna/Biotex, Houston, TX) by standard
procedure. cDNA was obtained by reverse transcription reaction using oligo dT priming. Primers used for cDNA amplification were 5’ ACAGTGTTCCATCTTCCATCGG (backward) and 5’ CGT(A/G)CAGGAGGTCG (forward). The set of primers (0.5 μM) was used in a 30 cycles PCR including 15 cycles at 30 s 94°C, 30 s 65°C, 30 s 72°C, and 15 cycles at 30 s 94°C, 30 s 65°C, 30 s 72°C followed by an extension of 7 min at 72°C. cDNA fragments were subcloned into pCR II vector (Invitrogen, San Diego, CA) and sequenced.

Dot Blot Hybridization. Amplified fragments were denaturated in 0.45 N NaOH, spotted onto nylon membrane (Gene-Screen Plus NEN DUPONT, Boston, MA), and hybridized with the following 32P-labeled oligonucleotides: 5’ CTG CAG ATG TTA TGG TTC TGT T (probe Q) and 5’ TAC AGA TGC TAC GGT TCT GT (probe Z). Hybridization was carried out for 4 h at 56°C in 0.1% SDS, 5X Denhardt’s solution, and 4X SSPE (27) (probe Q) or 5X SSPE (probe Z). Membranes were washed in 0.1% SDS and 0.1X SSPE for 10 min at room temperature and for 10 min at 42°C (probe Z) or 44°C (probe Q).

Isolation of Full-length cDNAs. The sequences of the forward primers used to obtain complete open reading frame (ORF) amplification products were 5’ CATG T(CT)GCTCA(CT)GGTGTC (Ig3Up forward), and 5’ GTTGGTGAAGAAGCCTG (Ig3Down backward). The PCR cycling condition used was 15 cycles at 20 s 94°C, 30 s 65°C, 30 s 72°C, and 15 cycles at 20 s 94°C, 30 s 65°C, 30 s 72°C followed by an extension of 7 min at 72°C. The 5’ end nucleotide sequences of cl17.1, cl1.1, and clAMC5 cDNAs were checked by RACE (28). cDNA fragments were subcloned into pCR vector (Invitrogen) and sequenced.

Transient Transfectants. The monkey COS7 cell line (5 × 105/plate) was transfected by the DEAE-dextran method with pCR3-cl1.1.1 and pCR3-AMC5 cDNA constructs. In particular, 5 × 105 COS7 cells were incubated in DMEM/0.1 mM chloroquine phosphate/0.5 mg/ml DEAE-dextran in the presence of 10 μg of plasmid DNA at 37°C. After 3 h, the transfection mixture was replaced by DMEM/10% FCS. After 48 h, transfectants were trypan blue stained, washed with Q66, Q241, Z27, EB6, and GL183 mAbs, followed by a PE-conjugated goat antibodies to mouse IgM or IgG, and analyzed by a FACSort.

Stable Transfectants. Subconfluent NIH3T3 cells were transfectected by the calcium phosphate technique with the cDNA construct pCR3-cl1.1.1, as already described (27). 48 h after transfection, the cells were selected in G418 (1 mg/ml). 2 wk later, cells were analyzed for cell-surface expression with Q66 and Q241 mAbs, sorted, and subcloned.

Western Blot Analysis. Cells were lysed for 30 min on ice in a
buffer containing 1% NP40, 50 mM Tris-HCl, pH 7.5, 0.3 M NaCl, 1 mM PMSF, 10 mM iodoacetamide. Lysates were run on a 8.5% polyacrylamide gel under reducing (5% 13-mercaptoethanol) or nonreducing conditions. Gel was blotted in transfer buffer (25 mM Tris-HCl, pH 8.3/0.2 M glycine in 20% vol/vol methanol) on a polyvinyldifluoride membrane (Immobilon-P; Millipore Corp., Bedford, MA) at 125 mA for 1 h. The blot was saturated with TBS (0.15 M NaCl/20 mM Tris-HCl, pH 7.5)/5% nonfat dried milk overnight at 4°C. The blot was incubated with PGP3 antiserum (1:200 dilution) for 2 h followed by a 1-h incubation with a 1:10,000 dilution of a goat anti-rabbit IgG conjugated to alkaline phosphatase (Tropix Inc., Bedford, MA). Chemiluminescent detection was performed using CSPD substrate (Tropix) following the manufacturer’s instructions. X-ray films were exposed at room temperature for some minutes to detect the chemiluminescence.

PGP3 Polyclonal Antiserum. A 2.5-kg HY/Cr male rabbit (Charles River Laboratories, Wilmington, MA) was immunized with 100 μg/100 μl of the 15-amino acid peptide VSCPRA-PQQSLEGV (MedProbe, Oslo, Norway) conjugated with KLH. Four treatments were performed at 1-wk intervals; the first one was in association with 100 μl CFA, the other ones in association with 100 μl IFA. After 1 wk from the last treatment, 10 ml of blood was drawn and the serum was tested and titered with ELISA against the immunizing peptide and irrelevant ones. Other immunizations followed at 2-wk intervals.

ELISA. The peptide used for immunization and two nonrelevant peptides were diluted in 10 mM phosphate buffer, pH 7.0 (5 μl/ml and attached to a polystyrene microtiter plate (50 μl/well) overnight at 4°C. The plate was saturated with 3% BSA/PBS and incubated with 50 mL of dilutions of the detecting antibodies in PBSGLEFGV (MedProbe, Oslo, Norway). After 1 h at room temperature, the plate was washed and incubated with scalar dilutions of prediluted sera or PGP3 antiserum, followed by a horseradish peroxidase-labeled goat anti-rabbit IgG antibody (1:5,000). Positivity was detected after incubation with ABTS substrate (Boehringer Mannheim, GmbH, Mannheim, Germany) and reading of the plate at 405 nm.

Results

Selection of mAbs Identifying an HLA-A3–specific NK Receptor. In an attempt to identify NK cell clones specific for HLA-A molecules, we analyzed a large panel of clones derived from different individuals for their cytolitic activity against target cells transfected with different HLA class I al-
Figure 1. Cell distribution of Q66 mAb-reactive molecules. (A) Two-color cytofluorimetric analysis of the distribution of Q66-reactive molecules in PBL. Cells were stained with Q66 mAb followed by PE-conjugated goat anti-mouse IgM and with anti-CD3 (Leu4 mAb, IgG1) or anti-CD16 (c127 mAb, IgG0) followed by FITC-conjugated goat anti-mouse IgG1. The contour plots were divided into quadrants representing unstained cells (lower left), cells with only red fluorescence (upper left), cells with red and green fluorescence (upper right), and cells with only green fluorescence (lower right). (B) Two-color cytofluorimetric analysis of the distribution of Q66 mAb-reactive molecules in a cultured CD3+ 56*16* bulk population. Cells were stained with Q66 mAb followed by PE-conjugated goat anti-mouse IgM and with a mixture of GL183 and EB6 (anti-p58.2 + anti-p58.1, both IgG0) or Z27 (anti-p70, IgG1) mAbs followed by FITC-conjugated goat anti-mouse IgG1.

Figure 2. (A) Expression of Q66 mAb-reactive molecules in NK cell clones. Four different Q66+ clones were analyzed by indirect immunofluorescence for the expression of the NK receptors recognized by EB6 (p58.1), GL183 (p58.2), and Z27 (anti-p70) (9), and XA185 (anti-CD94) (22) did not restore lysis of CI1R-A3 target cells. To facilitate the identification of the receptor molecule(s) involved in HLA-A3 recognition, we selected NK clones displaying specificity only for HLA-A3 molecules. Among these NK clones, the DP7 clone was further expanded and used for mouse immunization. The hybridoma supernatants were first screened for their ability to reconstitute lysis of CI1R-A3 by the immunizing DP7 clone. Selected mAbs were further analyzed for their pattern of reactivity with DP7 clone, CI1R-A3 target cells, as well as other NK cell clones specific or not for the HLA-A3 allele. mAbs Q66 (IgM) and Q241 (IgM) specifically reacted with the immunizing DP7 clone. In addition, they were found to selectively stain NK clones (derived from different individuals) displaying HLA-A3 specificity.

Analysis of the cell distribution of the surface molecules...
recognized by Q66 and Q241 mAbs revealed an identical pattern of reactivity both in polyclonal NK cell populations and NK cell clones. Since Q66 mAb consistently gave a brighter staining than Q241 mAb, immunofluorescence studies were carried out primarily with this mAb. Fig. 1A shows the pattern of reactivity of Q66 mAb with fresh PBL: it is evident that Q66 + cells represent a subset of CD16 + NK cells. In addition, a small but sizeable fraction of CD3 + cells coexpressed Q66. This type of distribution is similar to that of previously described HLA class I–specific NK receptors, including p58.1, p58.2, p70/NKBl, and CD94 molecules (7–10, 23–25). Fig. 1B shows a cultured polyclonal population enriched in CD3 + cells. Q66 + cells stained only a fraction of the cell population analyzed; moreover, these cells could be distinguished from cells expressing p58 molecules (as revealed by staining with a mixture of EB6 and GL183 mAbs) or p70/NKBl (as revealed by staining with Z27 mAb). Fig. 2A shows four representative CD3 + p66 + NK cell clones. Clone DP7 (i.e., the immunizing clone) reacted with Q66 mAb, but not with mAbs specific for other NK receptors. Clone M56 coexpressed p70/NKBl, while clones DA8 and DA35 coexpressed p58.1 or both p58.1 and p58.2 receptors, respectively. In Fig. 2B we further analyzed whether, in clone DA8, Q66 and p58.1 molecules were associated at the cell surface. TheXA141 mAb (anti-p58.1, IgM) induced surface modulation of p58.1 molecules, as revealed by the sharp reduction in fluorescence intensity (using either EB6 or XA141 mAb). In contrast, the surface expression of Q66-reactive molecules was unchanged. These data indicate that the two molecules are not physically associated at the cell surface.

Q66 + NK Clones Display Specificity for the HLA-A3 Allele. The following experiments have been designed to define whether the Q66 mAb–reactive molecules indeed represented the NK receptor for the HLA-A3 allele. In a first group of experiments, NK clones that did not recognize HLA-C or HLA-B alleles (and did not express p58 or p70 molecules) were analyzed for their reactivity with Q66 mAb. Q66 + and Q66 + clones that belong to this selected group were first analyzed for their ability to lyse four B-EBV cell lines, selected among 15 cell lines characterized by either homozygous or heterozygous HLA class I haplotypes. Selection was based on the expression of appropriate combination of HLA-A, -B, and -C alleles. It is evident (Fig. 3A) that two cell lines (HOM2 and WT100B1S) were resistant to lysis by Q66 + clones, while the other two (SP0010 and A51) were efficiently lysed. According to the HLA haplotype of the four B-EBV target cell lines (see Table 1), it is possible to conclude that neither HLA-C nor HLA-B alleles are involved in the protective effect. Indeed, the two protected cell lines expressed CW1 or CW4, respectively, belonging to the NK-defined HLA-C specificities, characterized by S77/N80 and N77/K80, respectively (4, 29); moreover, they expressed HLA-B27 or -B35, which belonged to the Bw4 or Bw6 supertypic specificities, respectively. The analysis of the expressed HLA-A alleles suggested that HLA-A3 and HLA-A11 conferred protection.

The target cell lines that were susceptible to lysis expressed HLA-C and HLA-B alleles belonging to the same groups of the protected targets, but lacked HLA-A3 or -A11 (they were both homozygous for HLA-A2). These data suggest that the HLA-A3 and -A11, but not -A2, are recognized by Q66 + clones. The Q66 + clones lysed, with similar efficiency, HOM2 and SP0010 cell lines, expressing HLA-A3 and -A2, respectively (Fig. 3B). To further document the specificity of Q66 + clones, they were analyzed for the ability to lyse C1R cells transfected with different HLA-A alleles, including -A1, -A2, -A3, and -A24 (-A11 was not available). Q66 + clones efficiently lysed C1R cells uninfected or transfected with HLA-A1, -A2 (Fig. 3C), and -A24 (not shown). In contrast, the expression of HLA-A3 conferred protection from lysis (>50% inhibition of lysis). On the other hand, Q66 + clones (Fig. 3D) efficiently lysed all the above transfected target cells. Although not shown, C1R cells transfected with HLA-B7 or HLA-B2705 alleles or 221 cells transfected with CW3 or CW4 alleles were efficiently lysed by all Q66 + clones used above (not shown). Thus, the cell distribution of Q66-reactive molecules, together with the pattern of cytolysis of Q66 + versus Q66 + NK clones, strongly suggested that Q66 mAb–reactive molecules represent the receptor for the HLA-A3 allele.

We further analyzed whether the addition of Q66 mAb to the cytolytic assay could restore lysis of HLA-A3–protected targets by Q66 + NK cell clones. Table 2 shows the cytolytic activity of a group of representative Q66 + clones against HLA-A3 + (C1R-A3 and HOM2) or HLA-A11 + (WT100B1S) target cells (the HLA-A2 + SP0010 target cells lacking A3 and A11 alleles were used as control). It is evident that addition of Q66 mAb resulted in target cell lysis. As a control, we used the anti-class I mAb A6-136 (IgM) previously shown to efficiently interfere with the interaction between HLA class I molecules and NK receptor (21) and the anti-CD56 mAb A6-220 (IgM). While the A6-136 mAb restored lysis of protected target cells (Table 2), A6-220 mAb had no effect (not shown). These data support the notion that Q66 mAb–defined molecules represent inhibitory NK receptors specific for HLA-A3 and -A11 alleles. To further investigate the HLA-A allelic specificity of Q66 + clones, as well as the possible functional relationship with other HLA class I–specific NK receptors, we analyzed clones coexpressing Q66 and Z27 (Bw4–specific) mAb–reactive molecules. In Table 3, the representative clones A15 and A31 were tested against target cells expressing appropriate class I alleles. Thus, while lysis of C1R-A3 was reconstituted by the addition of the Q66 mAb alone, Z27 mAb alone was sufficient to reconstitute lysis of C1R-B51 and SP0010 B-EBV cell line. On the other hand, the B-EBV cell line HOM-2, expressing both HLA-A3 and HLA-B27 (Bw4), could be efficiently lysed only in the presence of both mAbs. These data indicate that the two receptors function independently.

Screening of a cDNA Library and Isolation of Genes Encoding NK Receptors Characterized by Three Extracellular Ig Domains. Since repeated attempts to immunoprecipitate Q66-reactive surface molecules have failed (possibly related
to the IgM isotype of Q66 and Q241 mAbs), we attempted to identify these molecules by isolating the cDNA encoding for Q66 molecules in Q66+ cell populations or clones. Since Q66-reactive molecules function as receptors for HLA class I molecules, we speculated that a possible candidate could be represented by a novel member of the p58 family (11). In an attempt to isolate these molecules, a 403-bp probe derived from the 5' end of the 183 cl.6 sequence (nucleotides 88–491) was used to screen a cDNA library generated from the Q66+ polyclonal CD3-16+ NK cell population derived from a healthy donor. Numerous cDNA clones were isolated; whereas most encoded for GL183/EB6-reactive molecules, two were found to encode for different molecules (cl.17.1 and cl.8.11). The hypothetical ORF of both cl.17.1 and cl.8.11 cDNAs encoded for molecules belonging to the Ig superfamily with three Ig-like domains. Although the cl.17.1 and cl.8.11 sequences were highly homologous, there was a single amino acid difference (I in pos.252 instead of T) and, more importantly, a 17 amino acid deletion in the extracellular portion proximal to the transmembrane region of cl.8.11-encoded protein. Both cDNAs lacked the first ATG initiation codon. Therefore, to obtain a complete coding sequence, we applied the 5' RACE procedure, by using the same RNA used for preparation of the cDNA library. A full-length cDNA (cl.17.1C) that corresponded to cl.17.1 cDNA (Fig. 4) was obtained. The ORF of cl.17.1C cDNA encoded for a 455–amino acid type I transmembrane pro-
Table 2.  

**Q66 mAb Selectively Restores Lysis of Target Cells Expressing HLA-A3 or -A11 Alleles**

| Target cell | C1R-A3 | HOM2 | WT100BIS | SP0010 |
|-------------|--------|------|----------|--------|
| Added mAb   |        |      |          |        |
| Clone       | Q66    | Q66  | Q66      | Q66    |
| DP7         | 33     | 64   | 70       | 80     |
| DP4         | 29     | 54   | 91       | 74     |
| DP3         | 27     | 54   | 72       | 65     |
| DP11        | 16     | 54   | 60       | 80     |

*The anti-HLA class I mAb used was the A6-136 previously described (21).

The results are expressed as the percentage of specific lysis in cytolytic assays at an E/T ratio of 4:1.

Table 3.  

**Independent Function of HLA-A3- and Bw4-specific receptors in Q66+ Z27+ NK Cell Clones**

| Target Cell | C1R-A3 | C1R-B51 | HOM2 | SP0010 |
|-------------|--------|---------|------|--------|
| Added mAb   | Q66    | Q66     | Q66  | Q66    |
| Clone       |        |         |      |        |
| A15         | 27     | 55      | 53   | 40     |
| A31         | 40     | 72      | 43   | 86     |

*The results are expressed as the percentage of specific lysis in cytolytic assays at an E/T ratio of 4:1.

The HLA-A-specific Natural Killer Receptor Is a 140-kD Dimer
The amino acid sequences of Q66 and Q241 mAbs-reactive molecules encoded by AMC5 and c1.1.1 cDNA clones are compared with sequences encoded by homology with c1.17.1C protein, displaying only three connected by a hinge. Cysteines that are possibly involved in disulfide bridge formation are indicated by arrows. cDNA sequences have been submitted by dots. The signal peptide and the transmembrane region in the consensus sequence are underlined; pairs of cysteines predicted to form Ig domains are not shown.

**Figure 4.** Alignment of the amino acid sequences coding for either Q66 and Q241 mAbs-reactive molecules or other 3 Ig domain NK receptors. The amino acid sequences of Q66 and Q241 mAbs-reactive molecules encoded by AMC5 and c1.1 cDNA clones are compared with sequences encoded by cl.17.1C, NKB1- and AMB11-encoded proteins (Fig. 4). Conversely, a probe specifically designed on the basis of the known cDNA sequences encoding for p70/NKB1 receptor (probe Z) did not hybridize with cDNA fragments amplified from Z27- Q66+ clones. On the other hand, it did hybridize with cDNA from Z27+ clones (not shown).

### Figures

- **Fig. 4.** Alignment of the amino acid sequences coding for either Q66 and Q241 mAbs-reactive molecules or other 3 Ig domain NK receptors. The amino acid sequences of Q66 and Q241 mAbs-reactive molecules encoded by AMC5 and c1.1 cDNA clones are compared with sequences encoded by cl.17.1C, NKB1- and AMB11-encoded proteins (amino acids longer than that of NKB1- and AMB11-encoded protein for ~50 amino acids in sequences of AMC5 and c1.1.1 differed from the NKB1- and AMB11-encoded protein for ~50 amino acids in sequences of AMC5 and c1.1.1).

### Tables

| Consensus | Amino Acid Sequence | Accession Number |
|-----------|---------------------|------------------|
| pL 7.1C   | ...L...R...S...R... | 505               |
| p 7.1C    | ...L...R...S...R... | 505               |
| pQ       | ...L...R...S...R... | 505               |
| pM       | ...L...R...S...R... | 505               |
| pMATA4   | ...L...R...S...R... | 505               |
| pMBA11   | ...L...R...S...R... | 505               |
| pLBA1a   | ...L...R...S...R... | 505               |

### Notes

- **Correlation between the Surface Expression of Q66-reactive Molecules and the Presence of Defined Sequences Encoding for a Group of Three Ig-like Domains Receptors.** To establish whether a correlation existed between the expression of Q66-reactive surface molecules and the presence of AMC5, cl.17.1C and cl.11.1 cDNA sequences (i.e., those exclusively amplified from Q66+ clones), an appropriate oligonucleotide probe (probe Q) has been designed. This probe was specific for the nucleotide sequences of AMC5, cl.1.1, and cl.17.1C and was used to hybridize amplified PCR products from a large panel of Q66+ and Q66- NK cell clones. Notably, these Q66+ clones belong to the same group of those selected for the analysis of HLA class I allele specificity in cytolytic assay, i.e., those lacking other known NK receptors for HLA class I molecules (see above). As shown in Fig. 5, the probe Q hybridized with cDNA fragments amplified from Q66+, but not from Q66- NK cell clones. Conversely, a probe specifically designed on the basis of the known cDNA sequences encoding for p70/NKB1 receptor (probe Z) did not hybridize with cDNA fragments amplified from Z27- Q66+ clones. On the other hand, it did hybridize with cDNA from Z27+ clones (not shown).

- **Transient Transfections in COS7 Cell Lines.** COS7 cells were transfected with AMC5 or cl.1.1 cDNAs inserted in the pCR3 expression vector. After 48 h, cells were stained with Q66, Q241, Z27, EB6, and GL183 mAbs or with additional control mAbs of IgM isotype. COS7 cells transfected with AMC5 or cl.1.1 cDNAs were reproducibly stained by Q66 and Q241 mAbs, but not by the other mAbs (data not shown).

- **Generation of a Polydonal Antiserum against Peptides Corresponding to Sequences Unique of AMC5cl.1.1 and cl.17.1C.** Based on the known amino acid sequences of NK receptors displaying three Ig-like domains, we synthetized a specific peptide corresponding to the COOH-terminal sequence of AMC5, cl.1.1, and cl.17.1 proteins (amino acids

---

513  Pende et al.
441–455). Remarkably, NKB1 and NKAT3 protein sequences are characterized by a cytoplasmic tail shorter than that of AMC5, cl.1.1 and cl.17.1, which stops at amino acid 444. The 441–455 peptide was used to immunize a rabbit. The antiserum obtained (termed PGP3) was found to react with the immunizing peptide but not with irrelevant peptides (not shown). PGP3 was used to analyze, in Western blot, a panel of Q66+ or Q66− NK cell lines; under nonreducing conditions, Q66+ NK cells displayed 140-kD molecules that resolved in a single band of 70 kD under reducing conditions (molecules were therefore termed “p140”). No p140 molecules could be detected in Q66− NK cells (independent of the expression of p140 molecules as disulfide-linked dimers). This finding is consistent with the presence, in the corresponding sequences, of two cysteins at positions 302 and 336, respectively (see Fig. 4).

**Discussion**

In the present study, we identified a novel surface molecule expressed by a subset of human NK cells that functions as receptor specific for defined HLA-A alleles. Molecular cloning revealed a high degree of homology with the p58/p70 family of NK receptors for HLA class I molecules (11–13). This receptor is characterized by three Ig-like extracellular domains, a transmembrane portion of 20 nonpolar residues and a 95-amino acid tail containing an ITAM-like motif. Remarkably, different from the previously identified p58/p70 receptors, it can be expressed as a disulfide-linked dimer of ~140 kD (“p140”).

NK receptors specific for different groups of HLA-C and HLA-B alleles have recently been described and cloned. They function as inhibitory receptors which, upon binding their appropriate HLA class I ligand, transduce a negative signal to the NK cell, thus inhibiting target cell lysis (2, 11, 12). An activatory form of HLA-C–specific receptor has
recently been described (14, 30). However, this receptor is expressed only by certain individuals, and it differs from conventional inhibitory receptors in the transmembrane and cytoplasmic portions.

Litwin et al. (10) have previously described clones specific for different HLA-A alleles, including -A1, -A3, and -A69. Our present study provides the first molecular evidence for the existence of defined receptors for HLA-A alleles. Similar to the other HLA class I–specific receptors, the NK receptor for HLA-A3 is expressed by a subset of NK cells, functions as an inhibitory receptor, and may be coexpressed with other NK receptors at the single-cell level. Although present in all donors tested, its level of expression may be low. It should be noted that an unequivocal HLA-A3 specificity could be detected only in clones brightly stained by Q66 mAb. This finding is in line with data on other NK receptors, e.g., it has been shown that a critical number of p58.1 (EB6) molecules is needed to provide an efficient inhibitory signal to NK cells (5).

The specificity of p140 molecules for HLA-A3 or -A11 alleles has been clearly demonstrated by a number of experiments performed on C1R cells transfected with different HLA class I alleles or B-EBV cell lines expressing an informative HLA class I haplotype. It should be stressed that we selected Q66+ NK cell clones displaying specificity only for HLA-A3 molecules. Consistently, these clones did not express p58 or p70/NKB1 molecules but did express CD94 molecules. In these clones, however, anti-CD94 mAb did not restore lysis of HLA-A3+ target cells. These selected Q66+ clones did not lyse cells expressing HLA-A3 or -A11, but lysed cells lacking these alleles. In all instances, target cells transfected with different HLA-C or -B alleles were efficiently lysed by Q66+ clones. The specificity of p140 molecules for HLA-A3 or -A11 alleles was further substantiated by the ability of Q66 mAb to selectively restore lysis of HLA-A3+ target cells by Q66+ clones. Analysis of clones coexpressing p140 and p58 or p70/NKB1 receptors indicated that p140 molecules were not physically associated to any of these receptors. For example, mAb-induced modulation of p58.1 molecules did not affect the surface expression of p140 molecules. In addition, the receptors for Bw4 (p70/NKB1) and those for HLA-A3 (p140) were functionally independent as shown by the analysis of Z27+Q66+ clones. Thus, when tested against target cells coexpressing HLA-Bw4 and HLA-A3 alleles (see, for example, the cell line HOM-2), lysis was achieved only by
mAb-mediated masking of both receptors (Table 3). Similar results were obtained by the analysis of cell transfectants. Thus, Q66 mAb could restore lysis only when tested against C1R-A3, but not against C1R-B27. Restoration of lysis of C1R-B27 required the addition of Z27 mAb. A similar functional independence was observed in clones co-expressing p140 and p58 receptors (not shown). Taken together, these data indicate that p140 functions as an inhibitory receptor for HLA-A3 or -A11 alleles, but not for HLA-C or -B alleles. In addition, the finding that at least three different HLA-A alleles (-A1, -A2, and -A24) did not confer protection from Q66+ clones clearly indicates that p140 receptor discriminates among HLA-A alleles. In this context, comparative analysis of the sequences of HLA-A alleles indicates that HLA-A3 and -A11 molecules display the highest homology in the amino acid sequences corresponding to the a1 domain (i.e., a region known to be involved in the NK-mediated recognition of HLA-C or -B alleles). Remarkably, -A3 and -A11 alleles did not differ from the -A2 allele in the amino acid positions 77 and 80, despite the different ability to provide target cell protection from Q66+ clones. Thus, the amino acid positions 77 and 80 are not crucial for the NK-mediated recognition, as it occurs for HLA-C alleles.

Analysis of the molecular structure of the p140 molecule revealed a new member of the p58/p70 family of NK receptors displaying three extracellular Ig-like domains. However, this receptor is expressed as a disulphide-linked dimer of 140 kD. This suggests that recognition of HLA-A3 molecules may be mediated by the receptor in its dimeric form. Analysis of the amino acid sequences deduced from the cDNA nucleotide sequences showed two cysteines in the extracellular portion of p140 molecules proximal to the transmembrane region, thus differing from the other p58/p70 members. These cysteines may explain the expression of p140 as a disulphide-linked dimer. Notably, the p140 form is the prevalent or the exclusive form detectable in Q66+ polyclonal NK cell population, while both p140 and p70 are well represented in NIH3T3 cells transfected with cDNA cl.1.1. This could reflect a less efficient assembly of monomers in cell transfectants. Interestingly, the ORF of cl.8.11C and cl.17.1C differed by a deletion of 17 amino acids in the extracellular portion proximal to the transmembrane region of cl.8.11C. A similar deletion has been described by D'Andrea et al. in the NKB1/NKB1B molecules (12). The mechanism involved in this deletion occurring in three Ig-like domains receptors remains to be defined, although a possible explanation could be a mechanism involving an alternative splicing. The isolation of different cDNAs for highly homologous proteins, all reactive with Q66 and Q241 mAbs, is compatible with the existence of allelic forms of the receptors. Notably, the existence of multiple homologous forms of receptors has been described also for p58 and p70/NKB1 (31).

In the present study, we describe only the inhibitory form of the receptor specific for HLA-A3 or -A11. We cannot exclude the existence of an activatory form of this receptor, as was recently shown for the HLA-C-specific receptors. We did not address this issue in the present study because of the IgM isotype of Q66 and Q241 mAbs, which could not be tested in a redirected killing assay. We are presently investigating whether sequences typical of the activatory forms of the NK receptors are present in a panel of Q66+ clones from different individuals.

Interestingly, similar to p58 or p70, the HLA-A3–specific receptors are also expressed in a small fraction of T cells. It is likely that they could exert an inhibitory function on TCR-mediated T cell activation, as previously documented for both p58 or p70 (23–25).

We thank Dr. Michele Cilli and Mrs. Romana Conte for suggestions and technical help.

This work was supported by grants awarded by the Associazione Italiana per la Ricerca sul Cancro (A.I.R.C.), Istituto Superiore di Sanita (I.S.S.), Consiglio Nazionale delle Ricerche (C.N.R.), and Progetto Finalizzato A.C.R.O. to R. Biasoni, A. Moretta, and L. Moretta. S. Verdiani and L. Accame are recipients of a fellowship awarded by AIRC. C. Cantoni is recipient of a fellowship awarded by I.S.S. M. Falco is the recipient of a postdoctoral fellowship awarded by the Ministero dell’Universita e della Ricerca Scientifica.

Address correspondence to Lorenzo Moretta, Istituto Scientifico Tumori and Centro Biotechnologie Avanzate, Largo Rozanna Benzi, 10, 16132 Genova, Italy.

Received for publication 22 January 1996 and in revised form 15 May 1996.

References
1. Trinchieri, G. 1990. Biology of natural killer cells. Adv. Immunol. 47:187–376.
2. Moretta, A., C. Bottino, M. Vitale, D. Pende, R. Biassoni, M.C. Mingari, and L. Moretta. 1996. Receptors for HLA-class I-molecules in human natural killer cells. Annu. Rev. Immunol. 14:619–648.
3. Moretta, L., E. Ciccone, A. Moretta, P. Hoglund, C. Ohlen, and K. Karre. 1992. Allorecognition by NK cells: nonself or no self? Immunol. Today 13:300–306.
4. Ciccone, E., D. Pende, O. Viale, C. Di Donato, A.M.
Orengo, R., Biassoni, S., Verdiani, A., Amoroso, A., Moretta, and L. Moretta. 1992. Involvement of HLA class I alleles in NK cell specific function: expression of HLA-Cw3 confers selective protection from lysis by alloreactive NK clones displaying a defined specificity (specificity 2). J. Exp. Med. 176: 963–971.

5. Moretta, A., M. Vitale, C. Bottino, A.M. Orengo, L. Moretta, R. Augugliaro, M. Barbarei, E. Ciccone, and L. Moretta. 1993. p58 molecules as putative receptor for MHC class I molecules in human natural killer (NK) cells. Anti-p58 antibodies reconstitute lysis of MHC class I-protected cells in displayin different specificities. J. Exp. Med. 178:597–604.

6. Colonna, M., T. Spiess, J.L. Strominger, E. Ciccone, A. Moretta, L. Moretta, D. Pende, and O. Viale. 1992. Alloantigen recognition by two human natural killer cell clones is associated with HLA-C or a closely linked gene. Proc. Natl. Acad. Sci. USA. 89:7983–7985.

7. Moretta, A., G. Tambussi, C. Bottino, G. Tripodi, A. Merli, E. Ciccone, G. Panteleo, and L. Moretta. 1990. A novel surface antigen expressed by a subset of human CD3–CD16+ natural killer cells. Role in cell activation and regulation of cytolytic function. J. Exp. Med. 171:695–714.

8. Moretta, A., C. Bottino, D. Pende, G. Tripodi, G. Tambussi, O. Viale, A. Orengo, M. Barbarei, A. Merli, E. Ciccone, and L. Moretta. 1990. Identification of four subsets of human CD3–CD16+ NK cells by the expression of clonally distributed functional surface molecules. Correlation between subset assignment of NK clones and ability to mediate specific alloantigen recognition. J. Exp. Med. 172:1589–1598.

9. Viale, M., S. Sivori, D. Pende, R. Augugliaro, C. Di Donato, A. Amoroso, M. Malnati, C. Bottino, L. Moretta, and A. Moretta. 1996. Physical and functional independency of p70 and p58 NK cell receptors for HLA-class I. Their role in the definition of different groups of allorreactive NK cell clones. Proc. Natl. Acad. Sci. USA. 183:1453–1457.

10. Litwini, V., J.E. Gumperz, P. Parham, J.H. Phillips and L.L. Lanier. 1994. NKBI: a natural killer cell receptor involved in the recognition of polymorphic HLA-B molecules. J. Exp. Med. 180:537–543.

11. Wagtmann, N., R. Biassoni, C. Cantoni, S. Verdiani, M.S. Malnati, B. Vitale, C. Bottino, L. Moretta, A. Moretta, and E.O. Long. 1995. Molecular clones of the p58 NK cell receptor reveal immunoglobulin related molecules with diversity in both the extra- and intracellular domains. Immunity. 2: 439–449.

12. D'Andrea, A., C. Chang, K. Franz-Bacon, T. McClanahan, J.H. Phillips, and L.L. Lanier. 1995. Molecular cloning of NKB1. A natural killer cell receptor for HLA-B allotypes. J. Immunol. 155:2306–2310.

13. Colonna, M., and J. Samaridis. 1995. Cloning of immunoglobulin-superfamily members associated with HLA-C and HLA-B recognition by human natural killer cells. Science (Wash. DC). 268:405–408.

14. Biassoni, R., C. Cantoni, M. Falco, S. Verdiani, C. Bottino, M. Vitale, R. Conte, A. Poggi, A. Moretta, and L. Moretta. 1996. The HLA-C-specific “activatory” or “inhibitory” natural killer cell receptors display highly homologous extracellular domains but differ in their transmembrane and intracytoplasmic portions. J. Exp. Med. 183:645–650.

15. Chang, C., A. Rodriguez, M. Carretero, M. Lopez-Botet, J.H. Phillips, and L.L. Lanier. 1995. Molecular characterization of human CD94: a type II membrane glycoprotein related to the C-type lectin superfamily. Eur. J. Immunol. 25: 2433–2437.

16. Yokoyama, W.M., and W.E. Seaman. 1993. The Ly-49 and NKR-P1 gene families encoding lectin-like receptors on natural killer cells: the NK gene complex. Annu. Rev. Immunol. 11:613–635.

17. Storkus, W.J., R.D. Salter, and J. Alexander. 1991. Class I induced NK resistance in human B cell targets: identification of non-permissive residues in HLA-A2. Proc. Natl. Acad. Sci. USA. 88:5989–5993.

18. Litwini, V., J. Gumperz, P. Parham, J.H. Phillips, and L.L. Lanier. 1993. Specificity of HLA class I antigen recognition by human NK clones: evidence for clonal heterogeneity, protection by self and non-self alleles, and influence of the target cell type. J. Exp. Med. 178:1321–1336.

19. Ciccone, E., D. Pende, O. Viale, G. Tambussi, S. Ferrini, R. Biassoni, A. Longo, J. Guardiola, A. Moretta, and L. Moretta. 1990. Specific recognition of human CD3–CD16+ NK cells requires the expression of an autosomal recessive gene on target cells. J. Exp. Med. 172:47–52.

20. Bottino, C., M. Vitale, L. Olcese, S. Sivori, L. Morello, R. Augugliaro, E. Ciccone, L. Moretta, and A. Moretta. 1994. The human natural killer cell receptor for major histocompatibility complex class I molecules. Surface modulation of p58 molecules and their linkage to CD3ζ chain, Fc receptor chain and the p56lx kinase. Eur. J. Immunol. 24:2527–2534.

21. Ciccone, E., D. Pende, M. Vitale, L. Nanni, C. Di Donato, C. Bottino, L. Morelli, O. Viale, A. Amoroso, A. Moretta, and L. Moretta. 1994. Self class I molecules protect normal cells from lysis mediated by autologous natural killer cells. Eur. J. Immunol. 24:1003–1006.

22. Moretta, A., M. Vitale, S. Sivori, C. Bottino, L. Morello, R. Augugliaro, M. Barbarei, D. Pende, E. Ciccone, M. Lopez-Botet, and L. Moretta. 1994. Human natural killer cell receptors for HLA-class I molecules. Evidence that the Kp43 (CD94) molecule functions as a receptor for HLA-B alleles. J. Exp. Med. 180:545–555.

23. Ferrini, S., A. Cambiaggi, R. Meazza, S. Sforzini, S. Marci, M.C. Miganari, and L. Moretta. 1994. T cell clones expressing the NK-related p58 receptor molecule display heterogeneity in phenotypic properties and p58 function. Eur. J. Immunol. 24:2294–2298.

24. Miganari, M.C., C. Vitale, A. Cambiaggi, F. Schiavetti, G. Melioli, S. Ferrini, and A. Poggi. 1995. Cytolytic T lymphocytes displaying natural killer (NK)-like activity: expression of NK-related functional receptors for HLA class I molecules (p58 and CD94) and inhibitory effect on the TCR-mediated target cell lysis or lymphokine production. Int. Immunol. 7: 697–703.

25. Phillips, J.H., J.E. Gumperz, P. Parham and L.L. Lanier. 1995. Superantigen-dependent, cell-mediated cytoxicity inhibited by MHC class I receptor on T lymphocytes. Science (Wash. DC). 128:403–405.

26. Biassoni, R., S. Verdiani, A. Cambiaggi, P.H. Romeo, S. Ferrini, and L. Moretta. 1993. Human CD3 ‘CD16’ natural killer cells express the hGATA-3 T cell transcription factor and an unarranged 2.3 kb TcR-β transcript. Eur. J. Immunol. 23:1083–1087.

27. Sambrook, J., E.F. Fritsch, and T. Maniatis. 1989. Molecular Cloning: A Laboratory Manual. 2 ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.

28. Frohman, M.A., M.K. Dush, and G.R. Martin. 1988. Rapid production of full-length cDNAs from rare transcripts: amplification with the reverse transcriptase-PCR. Science (Wash. DC). 242:417–419.

517 Pende et al.
fication using a single gene-specific oligonucleotide primer. Proc. Natl. Acad. Sci. USA. 85:8998–9002.
29. Biassoni, R., M. Falco, A. Cambiaggi, P. Costa, S. Verdiani, D. Pende, R. Conte, C. Di Donato, P. Parham, and L. Moretta. 1995. Amino acid substitutions can influence the NK-mediated recognition of HLA-C molecules. Role of serine-77 and lysine-80 in the target cell protection from lysis mediated by “group 2” or “group 1” NK clones. J. Exp. Med. 182:605–609.
30. Moretta, A., S. Sivori, M. Vitale, D. Pende, L. Morelli, R. Augugliaro, C. Bottino, and L. Moretta. 1995. Existence of both inhibitory (p58) and activatory (p50) receptors for HLA-C molecules in human natural killer cells. J. Exp. Med. 182:875–884.
31. Cantoni, C., S. Verdiani, M. Falco, R. Conte, and R. Biassoni. Molecular structures of HLA-specific human NK cell receptors. Chem. Immunol. In press.