Data Article

Covid-19 risk data during lockdown-like policy in Indonesia

Khreshna Syuhada*, Aqilah Wibisono, Arief Hakim, Fida Addini

Statistics Research Division, Institut Teknologi Bandung, 40132, Indonesia

ARTICLE INFO

* Article history:
 Received 9 October 2020
 Revised 22 January 2021
 Accepted 25 January 2021
 Available online 28 January 2021

* Keywords:
 Covid-19 pandemic
 Risk data
 Risk measure
 Stochastic forecast, Value-at-risk

ABSTRACT

Covid-19 pandemic has spread fast almost all countries in the world including Indonesia. In order to slow such pandemic confirmed cases, Indonesian local and central governments apply a lockdown-like policy. We call this Large-Scale Social Restriction (Pembatasan Sosial Berskala Besar, known as PSBB) and PSBB-variant that is Expanded and Tightened Social Restriction or Pembatasan Sosial yang Diperluas dan Diperketat (PSDD). In this paper, we present number of cases and case fatality rate before, during and after such lockdown-like policy. This article contains Covid-19 risk data of several cities and provinces in Indonesia. We have used central and local government Covid-19 tracking sites to determine the daily risks for several cities and provinces in Indonesia. All data were extracted on August 22, 2020. We developed these data and calculated daily rate of confirmed and active cases, case fatality rate and rate of case fatality rate before, during and after lockdown-like policy. Furthermore, such risk modeling is used to forecast of what so-called Value-at-Risk (VaR).

© 2021 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/)

* Corresponding author.
 E-mail address: khreshna@math.itb.ac.id (K. Syuhada).

https://doi.org/10.1016/j.dib.2021.106801
2352-3409/© 2021 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/)
Specifications Table

Subject	Public Health and Health Policy
Specific subject area	Health Risk and Health Forecast
Type of data	Table
	Figure
	Raw data
How data were acquired	By using central and local government Covid-19 tracking sites, we extracted the number of confirmed Covid-19 cases, the number of active cases and the number of deaths. We then calculated daily rate of confirmed and active cases, case fatality rate and rate of case fatality rate. All data were extracted on August 22, 2020.
Data format	Raw
	Analyzed
	Excel file of the daily data are presented in Supplementary Data. The data were analyzed using the statistical software of R.
Parameters for data collection	Provinces and cities included in these data are located in major islands in Indonesia. In addition, provinces included in these data are among the top ten provinces with most confirmed Covid-19 cases in Indonesia. Cities included in these data are cities with daily data available on the local government Covid-19 tracking site.
Description of data collection	We developed these data and calculated daily rate of confirmed cases, rate of active cases, case fatality rate and rate of case fatality rate. The Covid-19 risks are grouped according to lockdown-like policy.
Data source location	Country: Indonesia
	Raw data can be retrieved from https://covid19.go.id/peta-sebaran, https://pikobar.jabarprov.go.id, https://covid19.papua.go.id, https://covid19.pemkomedan.go.id, https://covid19.kaltimprov.go.id.
Data accessibility	Summary data are available with this article. Raw data including R code used for analysis are available in Mendeley Data (https://data.mendeley.com/datasets/stksys9c3r/1).

Value of the Data

- Daily Covid-19 risk data of confirmed cases, active cases and case fatality rate are presented during lockdown-like policy to provide information related to the increase or decrease of the risk, i.e., to carry out a risk modeling.
- These data may be used by policy makers to make decision whether to continue lockdown-like policy or not and to forecast future cases.
- The Covid-19 risk data may increase people awareness in making social or physical distancing to slow pandemic spread.

1. Data Description

The daily prevalence data of Covid-19 to August 22, 2020 were collected from central and local government Covid-19 tracking site (https://covid19.go.id/peta-sebaran, https://pikobar.jabarprov.go.id, https://covid19.papua.go.id, https://covid19.pemkomedan.go.id, https://covid19.kaltimprov.go.id) [1-5]. The starting dates for each city and province were as follows: City of Bandung: March 6, 2020, Province of West Java: March 2, 2020, Province of South Sulawesi: March 19, 2020, City of Jayapura: April 3, 2020, Province of Papua: March 22, 2020, City of Medan: March 27, 2020, Province of North Sumatera: March 17, 2020, City of Samarinda: April 4, 2020, and Province of East Kalimantan: March 14, 2020. It was known that the governments in the first three provinces and the corresponding capital cities applied lockdown-like policy called PSBB (Pembatasan Sosial Berskala Besar) or PSDD (Pembatasan Sosial yang Diperluas dan Diperketat). PSBB and PSDD are actually similar. The Health Minister regulated the former and several local governments then implemented it under his permission [6]. Meanwhile, the latter had been regulated only by the local government of Province of Papua [7] before the regulation
of PSBB was set up by the Health Minister. The dates of these lockdown-like policies were 6 May to 25 June (PSBB in Bandung/West Java), 24 April to 22 May (PSBB in South Sulawesi), 24 April to 22 August (PSDD in Jayapura), 24 April to 3 August (PSDD in Papua). The data for such three provinces and their capital cities were grouped according to the period of pre-, during

	Pre-PSBB	PSBB	Post-PSBB	
Bandung	Mean	0.1089	0.0137	0.0140
	Q1	0.0000	0.0000	0.0020
	Median	0.0000	0.0000	0.0059
	Q3	0.1329	0.0086	0.0277
	Min	0.0000	0.0000	0.0000
	Max	0.8267	0.1711	0.0775
West Java	Mean	0.1008	0.0167	0.0195
	Q1	0.0133	0.0076	0.0098
	Median	0.0508	0.0134	0.0142
	Q3	0.1367	0.0192	0.0213
	Min	0.0000	0.0000	0.0044
	Max	0.6931	0.0987	0.2219

	Pre-PSBB	PSBB	Post-PSBB	
Bandung	Mean	0.1200	0.1256	0.0920
	Q1	0.0000	0.1140	0.0757
	Median	0.1500	0.1209	0.0986
	Q3	0.2000	0.1339	0.1096
	Min	0.0000	0.1049	0.0588
	Max	0.2500	0.1733	0.1117
West Java	Mean	0.1345	0.0639	0.0368
	Q1	0.0904	0.0619	0.0305
	Median	0.1081	0.0635	0.0345
	Q3	0.1429	0.0657	0.0374
	Min	0.0000	0.0581	0.0271
	Max	0.5000	0.0734	0.0581

Table 1
Statistics of risks in the period of pre-, during and post-lockdown-like policy (PSBB) in City of Bandung and Province of West Java.

R_f	Pre-PSBB	PSBB	Post-PSBB	
Bandung	Mean	0.0108	0.0088	0.0059
	Q1	0.0000	0.0000	0.0000
	Median	0.0000	0.0000	0.0161
	Q3	0.1484	0.0120	0.0389
	Min	-0.3365	-0.4078	-0.6568
	Max	1.1137	0.2398	0.2079
West Java	Mean	0.0962	0.0061	0.0171
	Q1	0.0000	-0.0119	0.0033
	Median	0.0428	0.0052	0.0150
	Q3	0.1151	0.0174	0.0274
	Min	-0.6931	-0.0532	-0.1861
	Max	1.0986	0.1406	0.3971

CFR_f	Pre-PSBB	PSBB	Post-PSBB	
Bandung	Mean	-0.0122	0.1256	-0.0100
	Q1	-0.0269	-0.0078	-0.0150
	Median	0.0000	0.0000	0.0000
	Q3	0.0692	0.0000	0.0000
	Min	-0.8267	-0.1768	-0.0775
	Max	0.3254	0.1419	0.0473
West Java	Mean	-0.0306	-0.0032	-0.0126
	Q1	-0.0621	-0.0134	-0.0155
	Median	-0.0094	-0.0066	-0.0093
	Q3	0.0082	0.0037	0.0045
	Min	-0.6931	-0.0987	-0.2002
	Max	0.3494	0.0955	0.0221
Table 2
Statistics of risks in the period of pre-, during and post-lockdown-like policy (PSBB) in Province of South Sulawesi.

	Pre-PSBB	PSBB	Post-PSBB
Mean	0.1512	0.0383	0.0243
Q1	0.0081	0.0261	0.0117
Median	0.0465	0.0383	0.0221
Q3	0.2131	0.0529	0.0325
Min	0.0000	0.0000	0.0023
Max	1.1787	0.1080	0.0841

	Pre-PSBB	PSBB	Post-PSBB
Mean	0.1595	0.0652	0.0360
Q1	0.0854	0.0574	0.0317
Median	0.0909	0.0658	0.0334
Q3	0.1091	0.0693	0.0384
Min	0.0426	0.0486	0.0294
Max	0.5000	0.0818	0.0515

and post-lockdown-like policy, where the period of pre-lockdown-like policy was defined from the above starting date to one day before lockdown-like policy. Meanwhile, the corresponding period of post-lockdown-like policy was from one day after lockdown-like policy to August 22, 2020. Note that the latter period was not defined in City of Jayapura since PSDD still applied in this city on August 22, 2020. Note also that, unlike the other three provinces, North Sumatera and East Kalimantan experienced the period of pre-lockdown-like policy only since they did not enforce the lockdown-like policy. The obtained data were then used to carry out a risk modeling based on daily rates and thus to forecast of what so-called Value-at-Risk (VaR).

We define several risks as follows. The first risk, called confirmed cases rate (R_t), is a natural logarithm of number of confirmed cases (C_t) up to time t over the one up to time $t-1$, $R_t = \ln(C_t/C_{t-1})$. The case fatality rate at time t, called CFR_t, is defined as (total) number of deaths up to time t, D_t, over (total) number of confirmed cases up to time t given by $CFR_t = D_t/C_t$ \[8\]. The active cases rate (RA_t) is a natural logarithm of number of active cases (A_t) up to time t over the one up to time $t-1$, $RA_t = \ln(A_t/A_{t-1})$, where the active cases provide information on number of confirmed cases subtracted by number of deaths and number of recoveries. The last risk is rate of case fatality rate ($RCFR_t$) defined as a natural logarithm of case fatality rate (CFR_t) at time t over the one up to time $t-1$, $RCFR_t = \ln(CFR_t/CFR_{t-1})$.

Number of confirmed cases, number of active cases and number of deaths defining the above risks are plotted in Fig. 1. Their plots show that number of confirmed cases and number of active cases are positively and strongly correlated which means that the increase of the former is followed by that of the latter. Furthermore, they are also correlated to number of deaths. The resulting risks are then displayed in Fig. 2.

Tables 1-3 summarize statistics of risks of confirmed cases rate, active case rate, case fatality rate and rate of case fatality rate in three provinces (West Java, South Sulawesi and Papua) along with their capital cities in the period of before, during and after lockdown-like policy. Meanwhile, statistics of such risks for the other provinces (North Sumatera and East Kalimantan) along with their capital cities are summarized in Table 4. Raw data and R code used for this analysis are available at https://data.mendeley.com/datasets/stksys9c3r/1.

2. Experimental Design, Materials and Methods

Using the local government sites, we extracted risk data of confirmed cases rate, active cases rate, case fatality rate and rate of case fatality rate. The data were collected before, during and
Table 3
Statistics of risks in the period of pre-, during and post-lockdown-like policy (PSDD) in City of Jayapura and Province of Papua.

	R_t	CFR_t		R_t	CFR_t		
	Pre-PSDD	PSDD	Post-PSDD	Pre-PSDD	PSDD	Post-PSDD	
Jayapura							
Mean	0.0755	0.0379		Mean	0.1059	0.0229	
Q1	0.0000	0.0013		Q1	0.0952	0.0130	
Median	0.0418	0.0170		Median	0.1036	0.0139	
Q3	0.0786	0.0418		Q3	0.1278	0.0224	
Min	0.0000	0.0000		Min	0.0000	0.0103	
Max	0.4796	0.3909		Max	0.1538	0.0789	
Papua							
Mean	0.1178	0.0311	0.0071	Mean	0.0432	0.0129	0.0018
Q1	0.0000	0.0108	0.0028	Q1	0.0000	0.0080	0.0105
Median	0.0484	0.0203	0.0061	Median	0.0544	0.0104	0.0106
Q3	0.1094	0.0402	0.0093	Q3	0.0648	0.0153	0.0108
Min	0.0000	0.0000	0.0000	Min	0.0000	0.0042	0.0104
Max	0.8473	0.1589	0.2228	Max	0.1154	0.0441	0.0119

Table 4
Statistics of risks in City of Medan, Province of North Sumatera, City of Samarinda and Province of East Kalimantan.

	R_t	RA_t	CFR_t	$RCFR_t$	R_t	RA_t	CFR_t	$RCFR_t$	
	Pre-PSDD	PSDD	Post-PSDD	Pre-PSDD	PSDD	Post-PSDD	Pre-PSDD	PSDD	Post-PSDD
Medan									
Mean	0.0430	0.0397	0.0810	-0.0069	Mean	0.0381	0.0299	0.0213	0.0010
Q1	0.0060	0.0000	0.0527	-0.0196	Q1	0.0000	0.0000	0.0000	-0.0301
Median	0.0230	0.0133	0.0753	0.0000	Median	0.0037	0.0000	0.0233	0.0000
Q3	0.0523	0.0537	0.1024	0.0088	Q3	0.0502	0.0978	0.0342	0.0000
Min	0.0000	-0.1989	0.0489	-0.3054	Min	0.0000	-0.5390	0.0000	-0.1975
Max	0.9985	1.1632	0.1875	0.2589	Max	0.4055	0.7621	0.0575	0.6790
North Sumatera									
Mean	0.0420	0.0377	0.0940	-0.0064	Mean	0.0386	0.0346	0.0168	-0.0029
Q1	0.0071	0.0000	0.0525	-0.0205	Q1	0.0083	-0.0020	0.0101	-0.0341
Median	0.0203	0.0152	0.0884	-0.0027	Median	0.0236	0.0139	0.0133	-0.0130
Q3	0.0523	0.0610	0.1230	0.0037	Q3	0.0460	0.0751	0.0231	0.0000
Min	0.0000	-0.1744	0.0432	-0.7492	Min	-0.0109	-0.2048	0.0000	-0.2288
Max	0.7492	0.8675	0.2500	0.6931	Max	0.3747	0.4418	0.0526	0.6425

Samarinda									
Mean	0.0410	0.0397	0.0810	-0.0069	Mean	0.0381	0.0299	0.0213	0.0010
Q1	0.0060	0.0000	0.0527	-0.0196	Q1	0.0000	0.0000	0.0000	-0.0301
Median	0.0230	0.0133	0.0753	0.0000	Median	0.0037	0.0000	0.0233	0.0000
Q3	0.0523	0.0537	0.1024	0.0088	Q3	0.0502	0.0978	0.0342	0.0000
Min	0.0000	-0.1989	0.0489	-0.3054	Min	0.0000	-0.5390	0.0000	-0.1975
Max	0.9985	1.1632	0.1875	0.2589	Max	0.4055	0.7621	0.0575	0.6790
East Kalimantan									
Mean	0.0420	0.0377	0.0940	-0.0064	Mean	0.0386	0.0346	0.0168	-0.0029
Q1	0.0071	0.0000	0.0525	-0.0205	Q1	0.0083	-0.0020	0.0101	-0.0341
Median	0.0203	0.0152	0.0884	-0.0027	Median	0.0236	0.0139	0.0133	-0.0130
Q3	0.0523	0.0610	0.1230	0.0037	Q3	0.0460	0.0751	0.0231	0.0000
Min	0.0000	-0.1744	0.0432	-0.7492	Min	-0.0109	-0.2048	0.0000	-0.2288
Max	0.7492	0.8675	0.2500	0.6931	Max	0.3747	0.4418	0.0526	0.6425
Fig. 2. Scatter plots of confirmed cases rate against active cases rate (and rate of case fatality rate) and active cases rate against rate of case fatality rate for cities and provinces in Indonesia.

Table 5
Value-at-Risk forecast of Covid-19 risks in the period of pre-, during and post-lockdown-like policy (PSBB) in City of Bandung and Province of West Java at 0.95 level of confidence and the corresponding coverage probability (in parentheses).

	Pre-PSBB	PSBB	Post-PSBB	Pre-PSBB	PSBB	Post-PSBB
R_t						
Bandung						
QAR	0.6910	0.0784	0.0401			
	(0.9348)	(0.9231)	(0.9138)			
QARCH	1.8297	0.2718	0.1059			
	(1.0000)	(1.0000)	(1.0000)			
CFR_t						
Bandung						
QAR	0.2353	0.1121	0.0605			
	(0.9787)	(0.1692)	(0.0517)			
QARCH	0.4210	0.1367	0.0671			
	(1.0000)	(0.7692)	(0.1552)			
RA_t						
Bandung						
QAR	1.1546	0.0782	0.0397			
	(1.0000)	(0.9231)	(0.7414)			
QARCH	3.2396	0.3201	0.7640			
	(1.0000)	(1.0000)	(1.0000)			
RCFR_t						
Bandung						
QAR	0.0731	0.0466	0.0045			
	(0.7333)	(0.9385)	(0.9310)			
QARCH	1.3394	0.2357	0.0997			
	(1.0000)	(1.0000)	(1.0000)			
RA_t						
Bandung						
QAR	0.4397	0.0165	0.0620			
	(0.9692)	(0.7059)	(0.9310)			
QARCH	2.0909	0.1391	0.2985			
	(1.0000)	(0.9804)	(0.9828)			

after lockdown-like policy, i.e., pre-PSBB/PSDD, PSBB/PSDD, and post-PSBB/PSDD. We analyzed such daily data and constructed two stochastic models: one model with constant volatility and the other model known as heteroscedastic model (model with dynamic volatility). The former was called quantile autoregressive (QAR) model whilst the latter was quantile autoregressive conditional heteroscedastic (QARCH) model [9-11]. Covid-19 risk forecasting is conducted by using the risk measure concept commonly used in finance and insurance. In particular, we forecast future confirmed cases rate, active cases rate, case fatality rate and rate of case fatality rate by a what so-called Value-at-Risk (VaR). It is a maximum risk that can be tolerated at a certain level of confidence. Tables 5-7 display risk modeling of VaR forecast through the models of QAR and QARCH for West Java, South Sulawesi, Papua and their capital cities. Meanwhile, the VaR
QARCH	Value-at-Risk Table		
	Pre-PSBB	PSBB	Post-PSBB
	VaR	VaR	VaR
	0.1035	0.0208	0.0113
	0.9655	0.4783	(0.7778)
	1.0581	0.0949	0.2109
	0.9714	1.0000	(0.8333)

Papua	Value-at-Risk Table		
	Pre-PSBB	PSBB	Post-PSBB
	VaR	VaR	VaR
	0.0970	0.0655	0.2434
	0.9310	0.9022	(0.8857)
	1.2178	0.3249	0.9474
	1.0000	1.0000	(1.0000)

Table 7
Value-at-Risk forecast of Covid-19 risks in the period of pre-, during and post-lockdown-like policy (PSDD) in City of Jayapura and Province of Papua at 0.95 level of confidence and the corresponding coverage probability (in parentheses).

QARCH	Value-at-Risk Table		
	Pre-PSDD	PSDD	Post-PSDD
	VaR	VaR	VaR
	0.01589	0.0161	0.1531
	0.9439	0.8947	(0.6262)
	0.6107	0.0113	0.0241
	1.0000	1.0000	(0.7944)

Papua	Value-at-Risk Table		
	Pre-PSDD	PSDD	Post-PSDD
	VaR	VaR	VaR
	0.0329	0.0113	0.0841
	0.6667	0.9661	(0.8421)
	0.3510	0.0146	0.0132
	1.0000	1.0000	(0.7255)

Table 8
The accuracy of each VaR forecast is also provided in these tables in terms of coverage probability as in [12]. The VaR forecast obtained from the model with coverage probability whose value is closer to the 0.95 level of confidence shows the best accuracy and is presented in boldface. The best VaR forecasts for all regions are provided in Fig. 3 that represents the map of Indonesia. The forecasts for North Sumatera and East Kalimantan are provided in the period of pre-lockdown-like policy only since these provinces did not apply the lockdown-like policy as already stated before in the section of Data Description.
Fig. 3. Value-at-Risk forecast of Covid-19 risks with the best accuracy in the period of pre-, during and post-lockdown-like policy in all provinces according to the map of Indonesia.
Table 8
Value-at-Risk forecast of Covid-19 risks in City of Medan, Province of North Sumatera, City of Samarinda and Province of East Kalimantan at 0.95 level of confidence and the corresponding coverage probability (in parentheses).

	Medan	North Sumatera	Samarinda	East Kalimantan
	QAR	QARCH	QAR	QARCH
	(0.0714)	0.3194	(0.0961)	0.3633
	(0.8446)	(0.9932)	(0.9177)	(0.9873)
R_t	0.0530	0.0737	0.0463	0.0486
	(0.2770)	(0.4864)	(0.0886)	(0.1203)
CFR_t	0.1437	0.4977	0.1382	0.5372
	(0.9324)	(0.9932)	(0.9114)	(0.9873)
RA_t	0.0556	0.2855	0.1255	0.5099
	(0.9456)	(1.0000)	(0.9682)	(0.9937)
$RCFR_t$	0.1571	0.4454	0.1197	0.3425
	(0.9286)	(1.0000)	(0.9317)	(0.9938)
	0.0381	0.0538	0.0353	0.0424
	(0.8440)	(0.9858)	(0.9295)	(0.9691)
	0.2855	0.5372	0.2247	0.6725
	(0.9357)	(1.0000)	(0.9752)	(1.0000)
	0.1373	0.7554	0.2425	0.7755
	(0.9615)	(1.0000)	(0.9653)	(1.0000)

CRediT Author Statement

Khreshna Syuhada: Conceptualization, methodology, validation, formal analysis, writing original draft, writing review & editing, supervision; Aqilah Wibisono: Methodology, data curation, writing original draft, visualization; Arief Hakim: Methodology, validation, formal analysis, writing review & editing; Fida Addini: Methodology, writing review & editing.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships which have or could be perceived to have influenced the work reported in this article.

Acknowledgments

The authors thank Assoc Prof Dessie Wanda for thoughtful discussion on Covid-19 pandemic.

References

[1] Satuan Tugas Penanganan COVID-19. [https://covid19.go.id/peta-sebaran], 2020 (accessed August 22, 2020).
[2] Pusat Informasi dan Koordinasi COVID-19 Provinsi Jawa Barat. [https://pikobar.jabarprov.go.id/data], 2020 (accessed August 22, 2020).
[3] Covid-19 Provinsi Papua. [https://covid19.papua.go.id], 2020 (accessed August 22, 2020).
[4] MedanLawanCovid19. [https://covid19.pemkomedan.go.id], 2020 (accessed August 22, 2020).
[5] Kaltim Tanggap Covid-19. [https://covid19.kaltimprov.go.id/press-release], 2020 (accessed August 22, 2020).
[6] Peraturan Menteri Kesehatan Republik Indonesia Nomor 9 Tahun 2020 tentang Pedoman Pembatasan Sosial Berskala Besar dalam Rangka Percepatan Penanganan Corona Virus Disease 2019 (COVID-19). [https://covid19.go.id/p/regularis/permenkes-no-9-tahun-2020-tentang-pedoman-psbb-dalam-rangka-percepatan-penanganan-covid-19, 2020 (accessed January 20, 2021).
[7] Surat Edaran Gubernur Papua Nomor 445/5168/SET tentang Pencegahan, Pengendalian dan Penanggulangan Corona Virus Disease 2019 (COVID-19) di Provinsi Papua. [https://bappeda.papua.go.id/file/375947685.pdf], 2020 (accessed January 20, 2021).
[8] T. Kobayashi, S. Jung, N.M. Linton, et al., Communicating the risk of death from novel coronavirus disease (COVID-19). J. Clin. Med. 9 (2) (2020) 1–7, doi:10.3390/jcm9020580.
[9] M. Furno, D. Vistocco, Quatitle Regression: Estimation and Simulation, 2, John Wiley & Sons, New Jersey, 2018.
[10] R. Koenker, Q. Zhao, Conditional quantile estimation and inference for Arch models, Econ. Theory. 12 (5) (1996) 793–813, doi:10.1017/S0266466600007167.
[11] R. Koenker, Z. Xiao, Quantile autoregression, J. Am. Stat. Assoc. 101 (475) (2006) 980–990, doi:10.1198/016214506000000672.
[12] K. Syuhada, The improved Value-at-Risk for heteroscedastic processes and their coverage probability, J. Probab. Stat. Article ID 7638517 (2020). 10.1155/2020/7638517.