On the Cauchy problem of a periodic 2-component \(\mu \)-Hunter-Saxton system

Jingjing Liu\(^*\)
Department of Mathematics, Sun Yat-sen University, 510275 Guangzhou, China

Zhaoyang Yin\(^†\)
Department of Mathematics, Sun Yat-sen University, 510275 Guangzhou, China

Abstract
In this paper, we study the Cauchy problem of a periodic 2-component \(\mu \)-Hunter-Saxton system. We first establish the local well-posedness for the periodic 2-component \(\mu \)-Hunter-Saxton system by Kato’s semigroup theory. Then, we derive the precise blow-up scenario for strong solutions to the system. Moreover, we present some blow-up results for strong solutions to the system. Finally, we give a global existence result to the system.

2000 Mathematics Subject Classification: 35G25, 35L05
Keywords: A periodic 2-component \(\mu \)-Hunter-Saxton system, blow-up scenario, blow-up, strong solutions, global existence.

1 Introduction
Recently, a new 2-component system was introduced by Zuo in [23] as follows:

\[
\begin{aligned}
\mu(u)_t - u_{txx} &= 2\mu(u)u_x - 2u_xu_{xx} - uu_{xxx} + \rho \rho_x - \gamma_1 u_{xxx}, \\
\rho_t &= (\rho u)_x + 2\gamma_2 \rho_x, \\
u(0, x) &= u_0(x), \\
\rho(0, x) &= \rho_0(x), \\
u(t, x + 1) &= u(t, x), \\
\rho(t, x + 1) &= \rho(t, x),
\end{aligned}
\]

(1.1)

where \(\mu(u) = \int_S u dx \) with \(S = \mathbb{R}/\mathbb{Z} \) and \(\gamma_i \in \mathbb{R} \), \(i = 1, 2 \). By integrating both sides of the first equation in the system (1.1) over the circle \(S = \mathbb{R}/\mathbb{Z} \) and using the periodicity of \(u \), one obtain

\[
\mu(u_t) = \mu(u)_t = 0.
\]

\(^*\)e-mail: jingjing830306@163.com
\(^†\)e-mail: mcsyzy@mail.sysu.edu.cn
This yields the following periodic 2-component μ-Hunter-Saxton system:

\[
\begin{cases}
-u_{txx} = 2\mu(u)u_x - 2u_xu_{xx} - uu_{xxx} + \rho \rho_x - \gamma_1 u_{xxxx}, \\
\rho_t = (\rho u)_x + 2\gamma_2 \rho_x, \\
\rho(0, x) = \rho_0(x), \\
u(0, x) = u_0(x), \\
u(t, x + 1) = u(t, x), \\
\rho(t, x + 1) = \rho(t, x),
\end{cases} \quad t > 0, \ x \in \mathbb{R}, \quad x \in \mathbb{R}, \quad x \in \mathbb{R}, \quad t \geq 0, \ x \in \mathbb{R}, \quad t \geq 0, \ x \in \mathbb{R},
\] (1.2)

with $\gamma_i \in \mathbb{R}, \ i = 1, 2$. This system is a 2-component generalization of the generalized Hunter-Saxton equation obtained in [16]. The author [23] shows that this system is both a bihamiltonian Euler equation and a bivariational equation.

Obviously, (1.1) is equivalent to (1.2) under the condition $\mu(u_i) = \mu(u)_i = 0$. In this paper, we will study the system (1.2) under the assumption $\mu(u_i) = \mu(u)_i = 0$.

For $\rho \equiv 0$ and $\gamma = 0$, and replacing t by $-t$, the system (1.2) reduces to the generalized Hunter-Saxton equation (named μ-Hunter-Saxton equation or μ-Camassa-Holm equation) as follows:

\[-u_{txx} = -2\mu(u)u_x + 2u_xu_{xx} + uu_{xxx}, \] (1.3)

which is obtained and studied in [16]. Moreover, the periodic μ-Hunter-Saxton equation and the periodic μ-Degasperis-Procesi equation have also been studied in [10, 17] recently. It is worthy to note that the μ-Hunter-Saxton equation has a very closed relation with the periodic Hunter-Saxton and Camassa-Holm equations. For $\mu(u) = 0$, the equation (1.3) reduces to the Hunter-Saxton equation [11]

\[u_{txx} + 2u_xu_{xx} + uu_{xxx} = 0, \] (1.4)

modeling the propagation of weakly nonlinear orientation waves in a massive nematic liquid crystal. Here, $u(t, x)$ describes the director field of a nematic liquid crystal, x is the space variable in a reference frame moving with the linearized wave velocity, t is a slow time variable. The orientation of the molecules is described by the field of unit vectors $(\cos u(t, x), \sin u(t, x))$. [22]. The single-component model also arises in a different physical context as the high-frequency limit [7, 12] of the Camassa-Holm equation, which is a model for shallow water waves [2, 13] and a re-expression of the geodesic flow on the diffeomorphism group of the circle [5] with a bi-Hamiltonian structure [9] which is completely integrable [6]. The Hunter-Saxton equation also has a bi-Hamiltonian structure [13, 19] and is completely integrable [11, 12]. The initial value problem for the Hunter-Saxton equation (1.4) on the line (nonperiodic case) and on the unit circle $S = \mathbb{R}/\mathbb{Z}$ were studied by Hunter and Saxton in [11] using the method of characteristics and by Yin in [22] using Kato semigroup method, respectively.

For $\rho \not\equiv 0, \ \gamma_i = 0, \ i = 1, 2$, $\mu(u) = 0$ and replacing t by $-t$, peakon solutions of the Cauchy problem of the system (1.2) have been analysed in [4]. Moreover, the Cauchy problem of 2-component periodic Hunter-Saxton system has been discussed in [18, 20]. However, the Cauchy problem of the system (1.2) has not been studied yet. The aim of this paper is to establish the local well-posedness for the system (1.2), to derive the precise blow-up scenario, to prove that the system (1.2) has global strong solutions and also finite time blow-up solutions.

The paper is organized as follows. In Section 2, we establish the local well-posedness of the initial value problem associated with the system (1.2). In Section 3, we derive the precise
Moreover, the solution depends continuously on the initial data, i.e., the mapping $z_0 \rightarrow z(\cdot, z_0) : H^s \times H^{s-1} \rightarrow C([0, T]; H^s \times H^{s-1}) \cap C^1([0, T]; H^{s-1} \times H^{s-2})$ is continuous.
Recall that the periodic 2-component Hunter-Saxton system discussed in [18] only has local existence but not local well-posedness because of the lack of uniqueness. The ambiguity disappears in the case of the periodic 2-component μ-Hunter-Saxton system from the Theorem 2.1. This is a very important difference between the 2-component Hunter-Saxton system and the 2-component μ-Hunter-Saxton system.

Consequently, we will give another equivalent form of (1.2). Integrating both sides of the first equation in (1.2) with respect to x, we obtain

$$u_{tx} = \frac{1}{2} u_t^2 + uu_{xx} u - \frac{1}{2} \rho^2 + \gamma_1 u_{xx} + a(t),$$

where

$$a(t) = \mu(u)^2 + \frac{1}{2} \int \rho dx.$$

Using the system (1.2), we have

$$\frac{d}{dt} \int S (u_x^2 + \rho^2) dx = \int (u_t u_{xt} + \rho \rho_t) dx$$

$$= \int (2u_{xt} u_t - \int u_{xx} dx - \int u_{xxxx} dx + \int \rho \rho_t dx$$

$$= \int (2\mu u u_{xt} dx - 2 \int u_{xx} dx - \int u_{xxxx} dx + \int \rho \rho_t dx$$

$$= \int u_{x} dx + \int \rho (u \rho) _{x} dx + 2 \gamma_2 \int \rho \rho_t dx$$

$$= \int u_{x} dx + \int \rho (u \rho) _{x} dx = 0.$$

By $\mu(t) = \mu(t) = 0$, we have

$$\frac{d}{dt} a(t) = 0.$$

For convenience, we let

$$\mu_0 := \mu(u_0) = \mu(u) = \int S u(t, x) dx,$$

$$\mu_1 := \left(\int S (u_x^2 + \rho^2) dx \right)^{\frac{1}{2}} = \left(\int S (u_{0,x}^2 + \rho_0^2) dx \right)^{\frac{1}{2}}$$

and write $a := a(0)$ henceforth. Thus,

$$u_{tx} = \frac{1}{2} u_t^2 + uu_{xx} u - \frac{1}{2} \rho^2 + \gamma_1 u_{xx} + a$$

is a valid reformulation of the first equation in (1.2). Integrating (2.3) with respect to x, we get

$$u_t - (u + \gamma_1) u_x = \partial_x^{-1}(-2\mu u - \frac{1}{2} u_x^2 - \frac{1}{2} \rho^2 + a) + h(t),$$

where $\partial_x^{-1} g(x) = \int_0^x g(y) dy$ and $h(t) : [0, \infty) \rightarrow \mathbb{R}$ is a continuous function. For the 2-component Hunter-Saxton system, if we follow the above same procedure, then the arbitrariness
of continuous function $h(t)$ will lead to the non-uniqueness of solution to (1.2). In this paper, the condition $\mu(u_t) = 0$ implies that $h(t)$ is unique. Consequently, the solution to (1.2) will be unique.

Thus we get another equivalent form of (1.2)

\[
\begin{cases}
 u_t - (u + \gamma_1)u_x = \partial_x^{-1}(-2\mu_0 u - \frac{1}{\tau}u_x^2 - \frac{1}{2}\rho^2 + a) + h(t), & t > 0, x \in \mathbb{R}, \\
 \rho_t - (u + 2\gamma_2)\rho_x = u_x\rho, & t > 0, x \in \mathbb{R}, \\
 u(0, x) = u_0(x), & x \in \mathbb{R}, \\
 \rho(0, x) = \rho_0(x), & x \in \mathbb{R}, \\
 u(t, x + 1) = u(t, x), & t \geq 0, x \in \mathbb{R}, \\
 \rho(t, x + 1) = \rho(t, x), & t \geq 0, x \in \mathbb{R},
\end{cases}
\]

where $\partial_x^{-1}g(x) = \int_0^x g(y)dy$ and $h(t) : [0, \infty) \to \mathbb{R}$ is a continuous function.

3 The precise blow-up scenario

In this section, we present the precise blow-up scenario for strong solutions to the system (1.2).

We first recall the following lemmas.

Lemma 3.1 [15] If $r > 0$, then $H^r \cap L^\infty$ is an algebra. Moreover

\[\|fg\|_{H^r} \leq c(\|f\|_{L^\infty}\|g\|_{H^r} + \|f\|_{H^r}\|g\|_{L^\infty}),\]

where c is a constant depending only on r.

Lemma 3.2 [15] If $r > 0$, then

\[\|\Lambda^r f \|_{L^2} \leq c(\|\partial_x f\|_{L^\infty}\|\Lambda^{r-1}g\|_{L^2} + \|\Lambda^r f\|_{L^2}\|g\|_{L^\infty}),\]

where c is a constant depending only on r.

Next we prove the following useful result on global existence of solutions to (1.2).

Theorem 3.1 Let $z_0 = \left(\begin{array}{c}
u_0 \\
\rho_0 \end{array}\right) \in H^s \times H^{s-1}$, $s \geq 2$, be given and assume that T is the maximal existence time of the corresponding solution $z = \left(\begin{array}{c}u \\
\rho \end{array}\right)$ to (2.4) with the initial data z_0. If there exists $M > 0$ such that

\[\|u_x(t, \cdot)\|_{L^\infty} + \|\rho(t, \cdot)\|_{L^\infty} + \|\rho_x(t, \cdot)\|_{L^\infty} \leq M, \quad t \in [0, T),\]

then the $H^s \times H^{s-1}$-norm of $z(t, \cdot)$ does not blow up on $[0, T)$.

Proof Let $z = \left(\begin{array}{c}u \\
\rho \end{array}\right)$ be the solution to (2.4) with the initial data $z_0 \in H^s \times H^{s-1}$, $s \geq 2$, and let T be the maximal existence time of the corresponding solution z, which is guaranteed
by Theorem 2.1. Throughout this proof, $c > 0$ stands for a generic constant depending only on s.

Applying the operator Λ^s to the first equation in (2.4), multiplying by $\Lambda^s u$, and integrating over \mathcal{S}, we obtain

$$\frac{d}{dt} \|u\|_{H^s}^2 = 2(u u_x, u) + 2(u, \partial_x^{-1}(-2\mu_0 u - \frac{1}{2}u^2 - \frac{1}{2}\rho^2 + a) + h(t)), \quad (3.1)$$

Let us estimate the first term of the right-hand side of (3.1).

$$|(u u_x, u)| = |(\Lambda^s (u \partial_x u), \Lambda^s u)|$$

$$= |(\Lambda^s u \partial_x u, \Lambda^s u) + (u \Lambda^s \partial_x u, \Lambda^s u)|$$

$$\leq \|[(\Lambda^s u \partial_x u)_{L}, \Lambda^s u]_{L^2} + \frac{1}{2}(u \Lambda^s \partial_x u, \Lambda^s u)|$$

$$\leq (c \|u_x\|_{L^\infty} + \frac{1}{2} \|u_x\|_{L^\infty}) \|u\|_{H^s}^2$$

$$\leq c \|u_x\|_{L^\infty} \|u\|_{H^s}^2,$$

where we used Lemma 3.2 with $r = s$. Let $f \in H^{s-1}, s \geq 2$. We have

$$|\partial_x^{-1} f| = |f |_{L^2} \leq \int_{\mathcal{S}} |f| dx \leq \|f\|_{L^2}$$

and

$$\|\partial_x^{-1} f\|_{L^2} = \left(\int_0^1 (\partial_x^{-1} f)^2 dx\right)^{1/2} \leq \left(\int_0^1 \|f\|_{L^2}^2 dx\right)^{1/2} = \|f\|_{L^2}.$$

Thus

$$\|\partial_x^{-1} f\|_{H^{s}} \leq \|\partial_x^{-1} f\|_{L^2} + \|f\|_{H^{s-1}} \leq 2\|f\|_{H^{s-1}}.$$}

Then, we estimate the second term of the right-hand side of (3.1) in the following way:

$$|(\partial_x^{-1}(-2\mu_0 u - \frac{1}{2}u^2 - \frac{1}{2}\rho^2 + a) + h(t), u)|$$

$$\leq \|\partial_x^{-1}(-2\mu_0 u - \frac{1}{2}u^2 - \frac{1}{2}\rho^2 + a) + h(t)||u||_{H^s}$$

$$\leq (\|\partial_x^{-1}(-2\mu_0 u - \frac{1}{2}u^2 - \frac{1}{2}\rho^2 + a)||u||_{H^s} + \|h(t)||H^s\|)||u||_{H^s}$$

$$\leq (2\| - 2\mu_0 u - \frac{1}{2}u^2 - \frac{1}{2}\rho^2 + a)||u||_{H^{s-1}} + \|h(t)||H^s\|)||u||_{H^s}$$

$$\leq (4\mu_0||u||_{H^s} + ||u_x||_{H^{s-1}} + \|\rho||_{H^{s-1}} + 2\|a||_{H^{s-1}} + \|h(t)||H^s\|)||u||_{H^s}$$

$$\leq c(||u||_{H^s} + ||u_x||_{L^\infty} + ||u||_{H^{s-1}} + ||\rho||_{H^{s-1}} + ||a||_{H^{s-1}} + \max_{t\in[0,T]} |h(t)||u||_{H^s}$$

$$\leq c(||u_x||_{L^\infty} + ||\rho||_{H^{s-1}} + 1)(||u||_{H^s}^2 + \|\rho\|_{H^{s-1}}^2 + 1),$$

where we used Lemma 3.1 with $r = s - 1$. Combining (3.2) and (3.3) with (3.1), we get

$$\frac{d}{dt} \|u\|_{H^s}^2 \leq c(||\rho||_{L^\infty} + ||u_x||_{L^\infty} + 1)(||u||_{H^s}^2 + \|\rho\|_{H^{s-1}}^2 + 1). \quad (3.4)$$

In order to derive a similar estimate for the second component ρ, we apply the operator Λ^{s-1} to the second equation in (2.4), multiply by $\Lambda^{s-1} \rho$, and integrate over \mathcal{S}, to obtain

$$\frac{d}{dt} \|\rho\|_{H^{s-1}}^2 = 2(u \rho_x, \rho)_{s-1} + 2(u_x \rho, \rho)_{s-1}. \quad (3.5)$$
Let us estimate the first term of the right hand side of (3.5)

\[|(u \rho_x, \rho)_{s-1}| \]
\[= |(\Lambda^{s-1}(u \partial_x \rho), \Lambda^{s-1} \rho)| \]
\[= |(u \Lambda^{s-1} \partial_x \rho, \Lambda^{s-1} \rho)| \]
\[\leq \frac{1}{2} |(u \Lambda^{s-1} \rho, \Lambda^{s-1} \rho)| \]
\[\leq c(u_{xL} \| \rho \|_{H^{s-1}} + \| \rho_x \|_{L^\infty} \| u \|_{H^{s-1}}) \| \rho \|_{H^{s-1}} + \frac{1}{2} \| u_x \|_{L^\infty} \| \rho \|_{H^{s-1}}^2 \]

where we applied Lemma 3.2 with \(r = s - 1 \). Then we estimate the second term of the right hand side of (3.5). Based on Lemma 3.1 with \(r = s - 1 \), we get

\[\|(u_x \rho, \rho)_{s-1}\| \leq \|u_x \rho\|_{H^{s-1}} \| \rho \|_{H^{s-1}} \]
\[\leq c(u_{xL} \| \rho \|_{H^{s-1}} + \| \rho_x \|_{L^\infty} \| u \|_{H^{s-1}}) \| \rho \|_{H^{s-1}} \]
\[\leq c(u_{xL} \| \rho \|_{L^\infty} + \| \rho \|_{L^\infty})(\| \rho \|_{H^{s-1}}^2 + \| u \|_{H^s}^2). \]

Combining the above two inequalities with (3.5), we get

\[\frac{d}{dt} \| \rho \|_{H^{s-1}}^2 \leq c(u_{xL} \| \rho \|_{L^\infty} + \| \rho \|_{L^\infty} + \| \rho_x \|_{L^\infty})(\| u \|_{H^s}^2 + \| \rho \|_{H^{s-1}}^2 + 1). \] (3.6)

By (3.4) and (3.6), we have

\[\frac{d}{dt}(\| u \|_{H^s}^2 + \| \rho \|_{H^{s-1}}^2 + 1) \]
\[\leq c(u_{xL} \| \rho \|_{L^\infty} + \| \rho \|_{L^\infty} + \| \rho_x \|_{L^\infty} + 1)(\| u \|_{H^s}^2 + \| \rho \|_{H^{s-1}}^2 + 1). \]

An application of Gronwall’s inequality and the assumption of the theorem yield

\[(\| u \|_{H^s}^2 + \| \rho \|_{H^{s-1}}^2 + 1) \leq \exp(c(M + 1)t)(\| u_0 \|_{H^s}^2 + \| \rho_0 \|_{H^{s-1}}^2 + 1). \]

This completes the proof of the theorem.

Given \(z_0 \in H^s \times H^{s-1} \) with \(s \geq 2 \), Theorem 2.1 ensures the existence of a maximal \(T > 0 \) and a solution \(z = \begin{pmatrix} u \\ \rho \end{pmatrix} \) to (2.4) such that

\[z = z(\cdot, z_0) \in C([0, T]; H^s \times H^{s-1}) \cap C^1([0, T]; H^{s-1} \times H^{s-2}). \]

Consider now the following initial value problem

\[\begin{cases} q_t = u(t, -q) + 22, & t \in [0, T), \\ q(0, x) = x, & x \in \mathbb{R}, \end{cases} \] (3.7)

where \(u \) denotes the first component of the solution \(z \) to (2.4). Then we have the following two useful lemmas.

Similar to the proof of Lemma 4.1 in [21], applying classical results in the theory of ordinary differential equations, one can obtain the following result on \(q \) which is crucial in the proof of blow-up scenarios.
Theorem 3.2
This proves (3.8). By Lemma 3.3, in view of (3.8) and the assumption of the lemma, we obtain existence time of the corresponding solution

Lemma 3.3 Let \(u \in C([0, T); H^s) \cap C^1([0, T); H^{s-1}), s \geq 2 \). Then Eq.(3.7) has a unique solution \(q \in C^1([0, T) \times \mathbb{R}; \mathbb{R}) \). Moreover, the map \(q(t, \cdot) \) is an increasing diffeomorphism of \(\mathbb{R} \) with

\[
q_x(t, x) = \exp \left(- \int_0^t u_x(s, -q(s, x)) \, ds \right) > 0, \quad (t, x) \in [0, T) \times \mathbb{R}.
\]

Lemma 3.4 Let \(z_0 = \left(\begin{array}{c} u_0 \\ \rho_0 \end{array} \right) \in H^s \times H^{s-1}, s \geq 2 \) and let \(T > 0 \) be the maximal existence time of the corresponding solution \(z = \left(\begin{array}{c} u \\ \rho \end{array} \right) \) to (1.2). Then we have

\[
\rho(t, -q(t, x)) q_x(t, x) = \rho_0(-x), \quad \forall (t, x) \in [0, T) \times \mathbb{S}.
\]

Moreover, if there exists \(M > 0 \) such that \(u_x \leq M \) for all \((t, x) \in [0, T) \times \mathbb{S} \), then

\[
\|\rho(t, \cdot)\|_{L^\infty} \leq e^{MT} \|\rho_0(\cdot)\|_{L^\infty}, \quad \forall t \in [0, T).
\]

Proof Differentiating the left-hand side of the equation (3.8) with respect to \(t \), and applying the relations (2.4) and (3.7), we obtain

\[
\frac{d}{dt} \rho(t, -q(t, x)) q_x(t, x)
\]

\[
= (\rho_t(t, -q) - \rho_x(t, -q) q_t(t, x)) q_x(t, x) + \rho(t, -q(t, x)) q_{xx}(t, x)
\]

\[
= (\rho_t - (u(t, -q) + 2\gamma_2) \rho_x) q_x(t, x) - u_x \rho q_x(t, x)
\]

\[
= (\rho_t - (u + 2\gamma_2) \rho_x - u_x \rho) q_x(t, x) = 0
\]

This proves (3.8). By Lemma 3.3, in view of (3.8) and the assumption of the lemma, we obtain

\[
\|\rho(t, \cdot)\|_{L^\infty(\mathbb{S})} = \|\rho(t, \cdot)\|_{L^\infty(\mathbb{R})}
\]

\[
= \|\rho(t, -q(t, \cdot))\|_{L^\infty(\mathbb{R})}
\]

\[
= \|\exp \left(\int_0^t u_x(s, -q(s, x)) \, ds \right) \rho_0(-x)\|_{L^\infty(\mathbb{R})}
\]

\[
\leq e^{MT} \|\rho_0(\cdot)\|_{L^\infty(\mathbb{R})} = e^{MT} \|\rho_0(\cdot)\|_{L^\infty(\mathbb{S})}, \quad \forall t \in [0, T).
\]

Our next result describes the precise blow-up scenario for sufficiently regular solutions to (1.2).

Theorem 3.2 Let \(z_0 = \left(\begin{array}{c} u_0 \\ \rho_0 \end{array} \right) \in H^s \times H^{s-1}, s > \frac{5}{2} \) be given and let \(T \) be the maximal existence time of the corresponding solution \(z = \left(\begin{array}{c} u \\ \rho \end{array} \right) \) to (2.4) with the initial data \(z_0 \). Then the corresponding solution blows up in finite time if and only if

\[
\limsup_{t \to T} \sup_{x \in \mathbb{S}} \{u_x(t, x)\} = +\infty \quad \text{or} \quad \limsup_{t \to T} \{\|\rho_x(t, \cdot)\|_{L^\infty}\} = +\infty.
\]
Proof By Theorem 2.1 and Sobolev’s imbedding theorem it is clear that if
\[
\limsup_{t \to T} \sup_{x \in S} \{u_x(t, x)\} = +\infty \quad \text{or} \quad \limsup_{t \to T} \{\|\rho_x(t, \cdot)\|_{L^\infty}\} = +\infty,
\]
then \(T < \infty \).

Let \(T < \infty \). Assume that there exists \(M_1 > 0 \) and \(M_2 > 0 \) such that
\[
u_x(t, x) \leq M_1, \quad \forall (t, x) \in [0, T) \times S,
\]
and
\[
\|\rho_x(t, \cdot)\|_{L^\infty} \leq M_2, \quad \forall t \in [0, T).
\]
By Lemma 3.4, we have
\[
\|\rho(t, \cdot)\|_{L^\infty} \leq e^{M_1 T} \|\rho_0\|_{L^\infty}, \quad \forall t \in [0, T).
\]

By (2.2) and the first equation in (2.4), a direct computation implies
\[
\frac{d}{dt} \int_S u^2(t, x)dx = 2 \int_S u \left((u + \gamma_1)u_x + \partial_x^{-1}(-2\mu_0 u - \frac{1}{2}u_x^2 - \frac{1}{2}\rho^2 + a) + h(t) \right) dx \\
\leq \int_S u^2 dx + \int_S \left(\int_0^x (-2\mu_0 u - \frac{1}{2}u_x^2 - \frac{1}{2}\rho^2 + a) dy \right)^2 dx + 2|h(t)| \int_S |u(t, x)| dx \\
\leq \int_S u^2 dx + 8\mu_0^2 \left(\int_S |u| dx \right)^2 + 2 \left(\int_S (\frac{1}{2}u_x^2 + \frac{1}{2}\rho^2 + a) dx \right)^2 \\
+ \max_{t \in [0, T]} |h(t)| + \max_{t \in [0, T]} |h(t)| \int_S u^2(t, x) dx \\
= (1 + 8\mu_0^2 + \max_{t \in [0, T]} |h(t)|) \int_S u^2 dx + \frac{1}{2} \left[\int_0^1 (u_{0,x}^2 + \rho_0^2 + 2a) dx \right]^2 + \max_{t \in [0, T]} |h(t)|
\]
for \(t \in (0, T) \).

Multiplying the first equation in (1.2) by \(m = u_{xx} \) and integrating by parts, we find
\[
\frac{d}{dt} \int_S m^2 dx = -4\mu \int_S m u_x dx + 4 \int_S u_x m^2 dx + 2 \int_S umm_x dx = 3 \mu m^2 dx - 2 \int_S m \rho \rho_x dx \\
\leq 3M_1 \int_S m^2 dx + \|\rho\|_{L^\infty} \int_S m^2 + \rho_x^2 dx \\
\leq (3M_1 + \|\rho\|_{L^\infty}) \int_S m^2 dx + \|\rho\|_{L^\infty} \int_S \rho_x^2 dx.
\]
Differentiating the first equation in (1.2) with respect to x, multiplying the obtained equation by $m_x = u_{xxx}$, integrating by parts and using Lemma 3.4, we obtain
\[
\frac{d}{dt} \int_S m_x^2 dx = 3 \int_S u_x m_x dx + 2 \int_S m_x^2 dx + \int_S m_x u_{xxx} dx + \int_S m_x^2 m_x dx\]
\[
= -4 \mu \int_S m m_x + 4 \int_S m^2 m_x dx + 6 \int_S u_x m_x^2 + 2 \int_S u m_x m_x dx + 2 \int_S \rho_x m_x m_x dx + 2 \gamma_1 \int_S m_x m_x dx\]
\[
= 5 \int_S u_x m_x^2 dx - 2 \int_S \rho_x m_x dx - 2 \int_S \rho_x m_x m_x dx\]
\[
\leq 5M_1 \int_S m_x^2 dx + 2 \int_S m_x |dx| + \int_S |\rho_x| L^2 \int_S (\rho_x^2 + m_x^2) dx\]
\[
\leq 5M_1 \int_S m_x^2 dx + \int_S (\rho_x^2 + m_x^2) dx + 2 \int_S |\rho_x| L^2 \int_S m_x^2 dx\]
\[
\leq 5M_1 + \int_S |\rho_x| L^2 + 2M_2^2 \int_S m_x^2 dx + \int_S m_x^2 dx\].

Differentiating the second equation in (1.2) with respect to x, multiplying the obtained equation by ρ_x and integrating by parts, we obtain
\[
\frac{d}{dt} \int_S \rho_x^2 dx = 3 \int_S u_x \rho_x^2 dx + 2 \int_S m \rho_x dx\]
\[
= 3M_1 \int_S \rho_x^2 dx + \int_S (m^2 + \rho_x^2) dx\]
\[
\leq 3M_1 + \int_S \rho_x^2 dx + \int_S m^2 dx\].

Differentiating the second equation in (1.2) with respect to x twice, multiplying the obtained equation by ρ_{xx}, integrating by parts and using Lemma 3.4, we obtain
\[
\frac{d}{dt} \int_S \rho_{xx}^2 dx = 5 \int_S u_x \rho_{xx}^2 dx + \int_S u_{xxx} (2 \rho_{xx} - 3 \rho_x^2) dx\]
\[
\leq 5M_1 \int_S \rho_{xx}^2 dx + \int_S m_x (2 \rho_{xx} - 3 \rho_x^2) dx\]
\[
\leq 5M_1 \int_S \rho_{xx}^2 dx + 3 \int_S \rho_x^2 dx + \int_S m_x |dx| + \int_S m_x^2 m_x dx\]
\[
\leq 5M_1 + \int_S \rho_x^2 + (3M_2^2 + \int_S m_x^2 dx + 3M_2^2\].

Summing (2.2) and (3.9)-(3.13), we have
\[
\frac{d}{dt} \int_S (u^2 + u_x^2 + m^2 + m_x^2 + \rho^2 + \rho_x^2 + \rho_{xx}^2) dx\]
\[
\leq K_1 \int_S (u^2 + u_x^2 + m^2 + m_x^2 + \rho^2 + \rho_x^2 + \rho_{xx}^2) dx + K_2,
\]
where
\[K_1 = 1 + 8\mu_0^2 + \max_{t \in [0,T]} |h(t)| + 8e^{M_1T}\|\rho_0\|_{L^\infty} + 16M_1 + 5M_2^2, \]
\[K_2 = \frac{1}{2} \left[\int_S (u_0^2 x + \rho_0^2 + 2a) dx \right]^2 + \max_{t \in [0,T]} |h(t)| + 5M_2^2. \]

By means of Gronwall’s inequality and the above inequality, we deduce that
\[\|u(t, \cdot)\|_{H^3}^2 + \|\rho(t, \cdot)\|_{H^2}^2 \leq e^{K_1 t} \left(\|u_0\|_{H^3}^2 + \|\rho_0\|_{H^2}^2 + \frac{K_2}{K_1} \right), \quad \forall \ t \in [0, T]. \]

The above inequality, Sobolev’s imbedding theorem and Theorem 3.1 ensure that the solution \(z \) does not blow-up in finite time. This completes the proof of the theorem.

For initial data \(z_0 = \begin{pmatrix} u_0 \\ \rho_0 \end{pmatrix} \in H^2 \times H^1 \), we have the following precise blow-up scenario.

Theorem 3.3 Let \(z_0 = \begin{pmatrix} u_0 \\ \rho_0 \end{pmatrix} \in H^2 \times H^1 \), and let \(T \) be the maximal existence time of the corresponding solution \(z = \begin{pmatrix} u \\ \rho \end{pmatrix} \) to (2.4) with the initial data \(z_0 \). Then the corresponding solution blows up in finite time if and only if
\[\limsup_{t \to T} \sup_{x \in S} \{|u_x(t, x)|\} = +\infty. \]

Proof Let \(z = \begin{pmatrix} u \\ \rho \end{pmatrix} \) be the solution to (2.4) with the initial data \(z_0 \in H^2 \times H^1 \), and let \(T \) be the maximal existence time of the solution \(z \), which is guaranteed by Theorem 2.1.

Let \(T < \infty \). Assume that there exists \(M_1 > 0 \) such that
\[u_x(t, x) \leq M_1, \quad \forall \ (t, x) \in [0, T] \times S. \]

By Lemma 3.4, we have
\[\|\rho(t, \cdot)\|_{L^\infty} \leq e^{M_1 T} \|\rho_0\|_{L^\infty}, \quad \forall \ t \in [0, T]. \]

Combining (2.2), (3.9)-(3.10) and (3.12), we obtain
\[\frac{d}{dt} \int_S (u^2 + u_x^2 + m^2 + \rho^2 + \rho_x^2) dx \leq K_3 \int_S (u^2 + u_x^2 + m^2 + \rho^2 + \rho_x^2) dx + K_4, \]
where
\[K_3 = 1 + 8\rho_0^2 + \max_{t \in [0,T]} |h(t)| + 6M_1 + 4e^{M_1 T} \|\rho_0\|_{L^\infty}, \]
\[K_4 = \frac{1}{2} \left[\int_0^1 (u_{0,x}^2 + \rho_0^2 + 2a) dx \right]^2 + \max_{t \in [a,T]} |h(t)|. \]
By means of Gronwall’s inequality and the above inequality, we get
\[\|u(t, \cdot)\|^2_{H^2} + \|\rho(t, \cdot)\|^2_{H^1} \leq e^{K_3 t}(\|u_0\|^2_{H^2} + \|\rho_0\|^2_{H^1} + \frac{K_4}{K_3}). \]

The above inequality ensures that the solution \(z\) does not blow-up in finite time.

On the other hand, by Sobolev’s imbedding theorem, we see that
\[\limsup_{t \to T} \sup_{x \in S} \{|u_x(t, x)|\} = +\infty, \]
then the solution will blow up in finite time. This completes the proof of the theorem.

Remark 3.1 Note that Theorem 3.2 shows that
\[T(\|z_0\|_{H^s \times H^{s-1}}) = T(\|z_0\|_{H^{s'} \times H^{s'-1}}), \quad \forall s, s' > \frac{5}{2}, \]
while Theorem 3.3 implies that
\[T(\|z_0\|_{H^s \times H^{s-1}}) \leq T(\|z_0\|_{H^2 \times H^1}), \quad \forall s, s' \geq 2. \]

4 Blow-up

In this section, we discuss the blow-up phenomena of the system (1.2) and prove that there exist strong solutions to (1.2) which do not exist globally in time.

Lemma 4.1 ([13 [14] If \(f \in H^1(S) \) is such that \(\int_S f(x) dx = 0 \), then we have
\[\max_{x \in S} f^2(x) \leq \frac{1}{12} \int_S f_x^2(x) dx. \]

Note that \(\int_S (u(t, x) - \mu_0) dx = \mu_0 - \mu_0 = 0 \). By Lemma 4.1, we find that
\[\max_{x \in S} [u(t, x) - \mu_0]^2 \leq \frac{1}{12} \int_S u_x^2(t, x) dx \leq \frac{1}{12} \mu_1^2. \]

So we have
\[\|u(t, \cdot)\|_{L^\infty(S)} \leq |\mu_0| + \frac{\sqrt{3}}{6} \mu_1. \quad (4.1) \]

Theorem 4.1 Let \(z_0 = \left(\begin{array}{c} u_0 \\ \rho_0 \end{array} \right) \neq 0 \in H^s \times H^{s-1}, s \geq 2 \), and \(T \) be the maximal time of the solution \(z = \left(\begin{array}{c} u \\ \rho \end{array} \right) \) to (1.2) with the initial data \(z_0\). If \(\gamma_1 = 2\gamma_2 \), \(\mu_0 = 0 \) and there exists a point \(x_0 \in S \), such that \(\rho_0(-x_0) = 0 \), then the corresponding solution to (1.2) blows up in finite time.
Proof Let \(m(t) = u_x(t, -q(t, x_0)) \), \(\gamma(t) = \rho(t, -q(t, x_0)) \), where \(q(t, x) \) is the solution of Eq.(3.7). By Eq.(3.7) we can obtain

\[
\frac{dm}{dt} = (u_t - (u + \gamma_1)u_{xx})(t, -q(t, x_0)).
\]

Evaluating the integrated representation (2.3) at \((t, -q(t, x_0))\) with the assumption \(\mu_0 = 0 \), we get

\[
\frac{d}{dt}m(t) = \frac{1}{2}m(t)^2 - \frac{1}{2}\gamma(t)^2 + a.
\]

Since \(\gamma(0) = 0 \), we infer from Lemmas 3.3-3.4 that \(\gamma(t) = 0 \) for all \(t \in [0, T) \). Note that \(a = 2\mu(u)^2 + \frac{1}{2}\int_S(u_x^2 + \rho^2)dx > 0 \). (Indeed, if \(a(t) = 0 \), then \((u, \rho) = (0, 0) \). This contradicts the assumption of the theorem.) Then we have \(\frac{d}{dt}m(t) \geq a > 0 \). Thus, it follows that \(m(t_0) > 0 \) for some \(t_0 \in (0, T) \). Solving the following inequality yields

\[
\frac{d}{dt}m(t) \geq \frac{1}{2}m(t)^2.
\]

Therefore

\[
0 < \frac{1}{m(t)} \leq \frac{1}{m(t_0)} - \frac{1}{2}(t - t_0), \quad t \in [t_0, T).
\]

The above inequality implies that \(T < t_0 + \frac{2}{m(t_0)} \) and \(\lim_{t \to T} m(t) = +\infty \). In view of Theorem 3.2, this completes the proof of the theorem.

Theorem 4.2 Let \(z_0 = \begin{pmatrix} u_0 \\ \rho_0 \end{pmatrix} \in H^s \times H^{s-1}, s \geq 2 \), and \(T \) be the maximal time of the solution \(z = \begin{pmatrix} u \\ \rho \end{pmatrix} \) to (1.2) with the initial data \(z_0 \). If \(\gamma_1 = 2\gamma_2, \mu_0 \neq 0, |\mu_0| + \frac{\sqrt{a}}{6}\mu_1 < \frac{a}{2|\mu_0|} \) and there exists a point \(x_0 \in S \), such that \(\rho_0(-x_0) = 0 \), then the corresponding solution to (1.2) blows up in finite time.

Proof Let \(m(t) = u_x(t, -q(t, x_0)) \), \(\gamma(t) = \rho(t, -q(t, x_0)) \), where \(q(t, x) \) is the solution of Eq.(3.7). By Eq.(3.7) we can obtain

\[
\frac{dm}{dt} = (u_t - (u + \gamma_1)u_{xx})(t, -q(t, x_0)).
\]

Evaluating the integrated representation (2.3) at \((t, -q(t, x_0))\) we have

\[
\frac{d}{dt}m(t) = \frac{1}{2}m(t)^2 - \frac{1}{2}\gamma(t)^2 + a - 2\mu_0 u.
\]

Since \(\gamma(0) = 0 \), we infer from Lemmas 3.3-3.4 that \(\gamma(t) = 0 \) for all \(t \in [0, T) \). In view of (4.1) and the condition \(|\mu_0| + \frac{\sqrt{a}}{6}\mu_1 < \frac{a}{2|\mu_0|} \), we have \(a - 2\mu_0 u \geq a - 2|\mu_0|u > 0 \). Then we have \(\frac{d}{dt}m(t) \geq a - 2\mu_0 u > 0 \). The left proof is the same as that of Theorem 4.1, so we omit it here.
5 Global Existence

In this section, we will present a global existence result. Firstly, we give two useful lemmas.

Theorem 5.1 Let \(z_0 = \left(\begin{array}{c} u_0 \\ \rho_0 \end{array} \right) \in H^2 \times H^1 \), and \(T \) be the maximal time of the solution \(z = \left(\begin{array}{c} u \\ \rho \end{array} \right) \) to (1.2) with the initial data \(z_0 \). If \(\gamma_1 = 2 \gamma_2 \), \(\rho_0(x) \neq 0 \) for all \(x \in S \), then the corresponding solution \(z \) exists globally in time.

Proof By Lemma 3.3, we know that \(q(t, \cdot) \) is an increasing diffeomorphism of \(\mathbb{R} \) with \(q_x(t, x) = \exp \left(-\int_0^t u_x(s, -q(s, x))ds \right) > 0 \), \(\forall (t, x) \in [0, T) \times \mathbb{R} \).

Moreover,
\[
\sup_{y \in S} u_y(t, y) = \sup_{x \in \mathbb{R}} u_x(t, -q(t, x)), \quad \forall t \in [0, T). \tag{5.1}
\]

Set \(M(t, x) = u_x(t, -q(t, x)) \) and \(\alpha(t, x) = \rho(t, -q(t, x)) \) for \(t \in [0, T) \) and \(x \in \mathbb{R} \). By \(\gamma_1 = 2 \gamma_2 \), (1.2) and Eq.(3.7), we have
\[
\frac{\partial M}{\partial t} = (u_t - (u + \gamma_1)u_{xx})(t, -q(t, x)) \quad \text{and} \quad \frac{\partial \alpha}{\partial t} = \alpha M. \tag{5.2}
\]

Evaluating (2.3) at \((t, -q(t, x)) \) we get
\[
\partial_t M(t, x) = \frac{1}{2} M(t, x)^2 - \frac{1}{2} \alpha(t, x)^2 + a - 2 \mu_0 u(t, -q(t, x)). \tag{5.3}
\]

Write \(f(t, x) = a - 2 \mu_0 u(t, -q(t, x)) \). By (4.1) we have
\[
|f(t, x)| \leq a + 2|\mu_0||u||_{L^\infty} \leq a + 2|\mu_0|(|\mu_0| + \sqrt{\frac{3}{6}} \mu_1) = 4 \mu_0^2 + \frac{1}{2} \mu_1^2 + \sqrt{\frac{3}{3}} |\mu_0| \mu_1
\]
and
\[
\partial_t M(t, x) = \frac{1}{2} M(t, x)^2 - \frac{1}{2} \alpha(t, x)^2 + f(t, x). \tag{5.4}
\]

By Lemmas 3.3-3.4, we know that \(\alpha(t, x) \) has the same sign with \(\alpha(0, x) = \rho_0(-x) \) for every \(x \in \mathbb{R} \). Moreover, there is a constant \(\beta > 0 \) such that \(\inf_{x \in \mathbb{R}} |\alpha(0, x)| = \inf_{x \in S} |\rho_0(-x)| \geq \beta > 0 \) since \(\rho_0(x) \neq 0 \) for all \(x \in S \) and \(S \) is a compact set. Thus,
\[
\alpha(t, x)\alpha(0, x) > 0, \quad \forall x \in \mathbb{R}.
\]

Next, we consider the following Lyapunov function first introduced in [4].
\[
w(t, x) = \alpha(t, x)\alpha(0, x) + \frac{\alpha(0, x)}{\alpha(t, x)}(1 + M^2), \quad (t, x) \in [0, T) \times \mathbb{R}. \tag{5.4}
\]
By Sobolev’s imbedding theorem, we have
\[
0 < w(0, x) = \alpha(0, x)^2 + 1 + M(0, x)^2
\]
\[
= \rho_0(x)^2 + 1 + u_{0,x}(x)^2
\]
\[
\leq 1 + \max_{x \in \mathbb{S}}(\rho_0(x)^2 + u_{0,x}(x)^2) := C_1.
\]
Differentiating (5.4) with respect to \(t\) and using (5.2)-(5.3), we obtain
\[
\frac{\partial w}{\partial t}(t, x) = \frac{\alpha(0, x)}{\alpha(t, x)} M(t, x)(2f - 1)
\]
\[
\leq |f - \frac{1}{2}\frac{\alpha(0, x)}{\alpha(t, x)}(1 + M^2)
\]
\[
\leq (4\mu_0^2 + \frac{1}{2}\mu_1^2 + \frac{\sqrt{3}}{3}|\mu_0|\mu_1 + \frac{1}{2})w(t, x).
\]

By Gronwall’s inequality, the above inequality and (5.5), we have
\[
w(t, x) \leq w(0, x)e^{(4\mu_0^2 + \frac{1}{2}\mu_1^2 + \frac{\sqrt{3}}{3}|\mu_0|\mu_1 + \frac{1}{2})t} \leq C_1 e^{(4\mu_0^2 + \frac{1}{2}\mu_1^2 + \frac{\sqrt{3}}{3}|\mu_0|\mu_1 + \frac{1}{2})t}
\]
for all \((t, x) \in [0, T) \times \mathbb{R}\). On the other hand,
\[
w(t, x) \geq 2\sqrt{\alpha^2(0, x)(1 + M^2)} \geq 2\beta |M(t, x)|, \quad \forall \ (t, x) \in [0, T) \times \mathbb{R}.
\]

Thus,
\[
|M(t, x)| \leq \frac{1}{2\beta} w(t, x) \leq \frac{1}{2\beta} C_1 e^{(4\mu_0^2 + \frac{1}{2}\mu_1^2 + \frac{\sqrt{3}}{3}|\mu_0|\mu_1 + \frac{1}{2})t}
\]
for all \((t, x) \in [0, T) \times \mathbb{R}\). Then by (5.1) and the above inequality, we have
\[
\limsup_{t \to T} \sup_{y \in \mathbb{S}} u_y(t, y) = \limsup_{t \to T} \sup_{x \in \mathbb{R}} u_x(t, -q(t, x)) \leq \frac{1}{2\beta} C_1 e^{(4\mu_0^2 + \frac{1}{2}\mu_1^2 + \frac{\sqrt{3}}{3}|\mu_0|\mu_1 + \frac{1}{2})t}.
\]

This completes the proof by using Theorem 3.3.

Acknowledgments This work was partially supported by NNSFC (No. 10971235), RFDP (No. 200805580014), NCET-08-0579 and the key project of Sun Yat-sen University.

References

[1] R. Beals, D. Sattinger and J. Szmigielski, Inverse scattering solutions of the Hunter-Saxton equations, *Appl. Anal.*, 78 (2001), 255-269.

[2] R. Camassa and D. Holm, An integrable shallow water equation with peaked solitons, *Phys. Rev. Lett.*, 71 (1993), 1661-1664.

[3] A. Constantin, On the Blow-up of solutions of a periodic shallow water equation, *J. Nonlinear Sci.*, 10 (2000), 391-399.

[4] A. Constantin and R. I. Ivanov, On an integrable two-component Camass-Holm shallow water system, *Phys. Lett. A*, 372 (2008), 7129–7132.
A. Constantin and B. Kolev, On the geometric approach to the motion of inertial mechanical systems, *J. Phys. A*, 35 (2002), R51-R79.

A. Constantin and H. P. McKean, A shallow water equation on the circle, *Comm. Pure Appl. Math.*, 52 (1999), 949-982.

H. H. Dai and M. Pavlov, Transformations for the Camassa-Holm equation, its high-frequency limit and the Sinh-Gordon equation, *J. P. Soc. Japan*, 67 (1998), 3655-3657.

J. Escher, O. Lechtenfeld and Z. Yin, Well-posedness and blow-up phenomena for the 2-component Camassa-Holm equation, *Discrete Contin. Dyn. Syst.*, 19 (2007), 493-513.

A. Fokas and B. Fuchssteiner, Symplectic structures, their Backlund transformations and hereditary symmetries, *Phys. D*, 4 (1981/1982), 47-66.

Y. Fu, Y. Liu and C. Qu, On the blow up structure for the generalized periodic Camassa-Holm and Degasperis-Procesi equations, arXiv:1009.2466.

J. K. Hunter and R. Saxton, Dynamics of director fields, *SIAM J. Appl. Math.*, 51 (1991), 1498-1521.

J. K. Hunter and Y. Zheng, On a completely integrable nonlinear hyperbolic variational equation, *Phys. D*, 79 (1994), 361-386.

R. S. Johnson, Camassa-Holm, Korteweg-de Vries and related models for water waves, *J. Fluid. Mech.*, 455 (2002), 63-82.

T. Kato, Quasi-linear equations of evolution, with applications to partial differential equations, in "Spectral Theory and Differential Equations", Lecture Notes in Math., Vol. 448, Springer Verlag, Berlin, (1975), 25-70.

T. Kato and G. Ponce, Commutator estimates and Navier-Stokes equations, *Comm. Pure Appl. Math.*, 41 (1988), 203–208.

B. Khesin, J. Lenells and G. Misiolek, Generalized Hunter-Saxton equation and the geometry of the group of circle diffeomorphisms, *Math. Ann.*, 342 (2008), 617-656.

J. Lenells, G. Misiolek and F. Tiğlay, Integrable evolution equations on spaces of tensor densities and their peakon solutions, *Commun. Math. Phys.*, 299 (2010), 129-161.

J. Liu and Z. Yin, Blow-up phenomena and global existence for a periodic two-component Hunter-Saxton system, arXiv:1012.5448.

P. Olver and P. Rosenau, Tri-Hamiltonian duality between solitons and solitary wave solutions having compact support, *Phys. Rev. E*(3), 53 (1996), 1900-1906.

M. Wunsch, On the Hunter-Saxton system, *Discrete Contin. Dyn. Syst. B*, 12 (2009), 647-656.

Z. Yin, Global existence for a new periodic integrable equation, *J. Math. Anal. Appl.*, 283, (2003), 129-139.

Z. Yin, On the structure of solutions to the periodic Hunter-Saxton equation, *SIAM J. Math. Anal.*, 36 (2004), 272-283.

D. Zuo, A 2-component \(\mu\)-Hunter-Saxton Equation, *Inverse Problems*, 26 (2010), 085003 (9pp).