Supplementary Materials

Swapping the Positions in a Cross Strand Lateral Ion Pairing Interaction between Ammonium- and Carboxylate-Containing Residues in a β-Hairpin

Cheng-Hsin Huang, Tong Wai Wong, Chen-Hsu Yu, Jing-Yuan Chang, Shing-Jong Huang, Shou-Ling Huang, Richard P. Cheng*

Tables

Tables S1~S36. The 1H Chemical Shift Assignments for the Peptides S2~S19
Tables S37~S45. The $^3J_{NH\alpha}$ Values of the Peptides S20~S24

Figures

Figure S1. The Hα chemical shift deviations for the residues in the experimental HPTXaaZbb peptides. S25
Figure S2. The Hα chemical shift deviations for the residues in the fully folded reference HPTFXaaZbb peptides. S26
Figures S3~S38. The NOEs observed involving the side chains of the peptides. S27~S38
Figures S39~S50. Wüthrich diagrams of the backbone NOE connectivities involving the α-protons and amide protons for the peptides. S39~S50
Figure S51. The fraction folded of the residues in the peptides. S51
Figure S52. The ΔG$^{\text{fold}}$ of the residues in the peptides. S52
Figure S53. The low energy conformations for peptide HPTAadDab. S53
Figure S54. The low energy conformations for peptide HPTDabAad. S54

Material and Methods S55~S66

References S67
Table S1. The 1H Chemical Shift Assignments for Peptide HPTDapAsp

Residue	HN	α	β	Others
Ac-				2.028
Arg1	8.297	4.399	1.749, 1.832	γ: 1.607, 1.652; δ: 3.201; HNt: 7.195
Thr2	8.280	4.724	4.023	γ: 1.092
Val3	8.684	4.354	2.035	γ: 0.897
Dap4	8.859	5.320	3.261, 3.371	
Val5	8.920	4.595	2.011	γ: 0.916
dPro6				
Gly7	8.650	3.829	4.005	
Thr2	7.946	4.566	1.779, 1.847	γ: 1.686; δ: 3.007; HNt: 7.603
Asp9	8.536	5.209	2.410, 2.545	
Ile10	8.670	4.353	1.848	γ: 1.114, 1.377, 0.870 (Me); δ: 0.811
Leu11	8.421	4.476	1.591	γ: 1.591; δ: 0.837, 0.884
Gly7	8.559	4.329	1.926, 2.079	γ: 2.296, 2.322; HNt: 6.872, 7.399
NH$_2$	7.134, 7.659			γ: 1.597; δ: 0.849, 0.902

aSignal for the terminal HN not observed. bThe assignments for the minor Arg1 spin system are 8.351(HN), 4.288(α), 1.757, 1.841(β), 1.598, 1.662(γ), 3.200(δ); cThr2 spin system are 8.250(HN), 4.412(α), 4.211(β); dVal3 spin system are 8.210(HN), 4.173(α), 2.082(β), 0.930(γ); eVal5 spin system are 8.115(HN), 1.880(β), 0.896(γ); fGln12 spin system are 8.247(HN), 4.281(α), 1.974, 2.124(β), 2.363(γ).

Table S2. The 1H Chemical Shift Assignments for Peptide HPTDabAsp

Residue	HN	α	β	Others
Ac-				2.030
Arg1	8.306	4.381	1.749, 1.836	γ: 1.612, 1.657; δ: 3.204; HNt: 7.195
Thr2	8.232	4.643	4.065	γ: 1.113
Val3	8.519	4.252	2.015	γ: 0.893
Dab4	8.633	4.879	2.986, 3.028	γ: 2.041, 2.112
Val5	8.595	4.532	1.996	γ: 0.921
dPro6				
Gly7	8.595	4.413	1.978, 2.327	γ: 2.038, 2.084; δ: 3.812
Thr2	8.047	4.531	1.789, 1.867	γ: 1.706; δ: 3.011; HNt: 7.615
Asp9	8.529	4.917	2.493, 2.543	
Ile10	8.575	4.285	1.878	γ: 1.172, 1.394, 0.884 (Me); δ: 0.820
Leu11	8.399	4.418	1.597	γ: 1.597; δ: 0.849, 0.902
Gln12	8.457	4.308	1.936, 2.092	γ: 2.316, 2.335; HNt: 6.877, 7.428
NH$_2$	7.120, 7.618			

aSignal for the terminal HN not observed. bThe assignments for the minor Val3 spin system are 8.188(HN), 4.120(α), 2.051(β), 0.915(γ); cVal5 spin system are 8.107(HN), 4.125(α), 1.868(β), 0.890(γ); dGly7 spin system are 8.608(HN), 3.943, 4.024(α); eGln12 spin system are 8.247(HN), 4.390(α), 1.973, 2.120(β), 2.365(γ).
Residue	HN	Hα	Hβ	Others
Ac-	2.042			
Arg1^b	8.310	4.382	1.833, 1.745	Hy: 1.655, 1.605; Hō: 3.202; HNt: 7.205
Thr2	8.236	4.637	4.074	Hy: 1.115
Val3^c	8.505	4.243	2.009	Hy: 0.892
Orn4^a	8.455	4.766	1.728	Hy: 1.636; Hō: 2.925, 2.873
Val5^d	8.654	4.533	2.004, 1.969	Hy: 0.924
Pro6^d	8.403			
Gly7^e	8.525		3.944, 3.889	
Orn8	8.046	4.539	1.858, 1.789	Hy: 1.699; Hō: 3.010; HNt: 7.615
Asp9	8.510	4.851	2.549, 2.499	
Ile10	8.626	4.275	1.891	Hy: 1.401, 1.201, 0.880 (Me); Hō: 0.812
Leu11	8.399	4.412	1.627, 1.597	Hy: 0.902; Hō: 0.853
Gln12^f	8.459	4.305	2.094, 1.941	Hy: 2.327; HNt: 7.435
NH2	7.620, 7.122			

^aSignal for the terminal HN not observed.
^bThe assignments for the minor Arg1 spin system are 8.334(HN), 4.348(Hα), 1.837(Hβ), 1.751, 1.633(Hγ);
^cVal3 spin system are 8.188(HN), 4.116(Hα), 2.048(Hβ), 0.916(Hγ);
^dVal5 spin system are 8.113(HN), 4.126(Hα), 1.879(Hβ), 0.893(Hγ);
^eGly7 spin system are 8.606(HN), 4.308, 3.946(Hα);
^fGln12 spin system are 8.255(HN), 4.380(Hα), 1.977, 2.129(Hβ), 2.361(Hγ).

Residue	HN	Hα	Hβ	Others
Ac-	2.029			
Arg1^a	8.322	4.375	1.748, 1.834	Hy: 1.612, 1.656; Hō: 3.202; HNt: 7.216
Thr2	8.254	4.606	4.079	Hy: 1.125
Val3^b	8.486	4.231	2.026	Hy: 0.890
Lys4	8.385	4.682	1.678	Hy: 1.323; Hō: 1.575; Hα: 2.929 HNt: 7.571
Val5^c	8.632	4.522	1.999	Hy: 0.932
Pro6^d	8.400		1.974, 2.340	Hy: 2.043, 2.096; Hō: 3.773, 3.792
Gly7^e	8.464	3.840, 3.967		
Orn8^f	8.056	4.527	1.791, 1.868	Hy: 1.702; Hō: 3.012; HNt: 7.621
Asp9^f	8.503	4.772	2.541	
Ile10	8.593	4.260	1.897	Hy: 1.214, 1.409, 0.888 (Me); Hō: 0.819
Leu11	8.396	4.406	1.633	Hy: 1.596; Hō: 0.856, 0.906
Gln12^g	8.439	4.302	1.947, 2.101	Hy: 2.323, 2.344; HNt: 6.891, 7.462
NH2	7.130, 7.617			

^aThe assignments for the minor Arg1 spin system are 8.345(HN), 4.341(Hα), 1.749, 1.835(Hβ), 1.618(Hγ);
^bVal3 spin system are 8.128(HN), 4.129(Hα), 1.882(Hβ), 0.897(Hγ);
^cVal5 spin system are 8.675(HN), 4.524(Hα), 1.997(Hβ), 0.926(Hγ);
^dGly7 spin system are 8.614(HN), 3.946, 4.037(Hα);
^fGln12 spin system are 7.8387(HN), 4.006(Hα), 1.848(Hβ), 1.589(Hγ);
^gGln12 spin system are 8.313(HN), 4.293(Hα), 1.977, 2.123(Hβ), 2.346(Hγ).
Table S5. The 1H Chemical Shift Assignments for Peptide HPTUDapAsp

Residue	HN	Ha	Hb	Others
Ac-	2.043			
Arg1	8.348	4.339	1.757, 1.843	Hγ: 1.6281, 1.669; Hο: 3.207; HNt: 7.207
Thr2	8.247	4.406	4.204	Hγ: 1.192
Val3	8.224	4.174	2.076	Hγ: 0.931
Dap4	8.859	4.815	3.260, 3.431	
Val5	8.474	4.449	2.080	Hγ: 0.919, 0.979
Pro6	4.409	1.936, 2.314	Hγ: 1.995, 2.080; Hο: 3.698, 3.887	
Gly7	8.493	3.970		
Orn8	8.224	4.386	1.885	Hγ: 1.697, 1.761; Hο: 3.003; HNt:
Asp9	8.441	4.616	2.591, 2.698	
Ile10	8.082	4.137	1.887	Hγ: 1.191, 1.443, 0.900 (Me); Hο: 0.861
Leu11	8.302	4.349	1.683	Hγ: 1.585, 1.619; Hο: 0.868, 0.929
Gln12	8.266	4.287	1.977, 2.215	Hγ: 2.354, 2.375; HNt: 6.852, 7.543
NH2	7.103, 7.526			

*aSignal for the terminal HN not observed. bThe assignments for the minor Gly7 spin system are 8.620(HN), 3.901, 4.036(Ha), Ile10 spin system are 8.144(HN), 4.139(Ha), 1.883, 1.200, 1.442(Hb), 0.898(Hγ). |

Table S6. The 1H Chemical Shift Assignments for Peptide HPTUDabAsp

Residue	HN	Ha	Hb	Others
Ac-	2.040			
Arg1	8.337	4.341	1.751, 1.839	Hγ: 1.623, 1.666; Hο: 3.204; HNt: 7.208
Thr2	8.243	4.379	4.177	Hγ: 1.185
Val3	8.197	4.118	2.407	Hγ: 0.914
Dab4	8.637	4.512	3.015, 3.054	Hγ: 2.048, 2.116
Val5	8.419	4.420	2.079	Hγ: 0.934, 0.980
Pro6	4.402	1.939, 2.314	Hγ: 1.996, 2.078; Hο: 3.703, 3.886	
Gly7	8.468	3.972		
Orn8	8.241	4.379	1.887	Hγ: 1.700, 1.762; Hο: 3.003
Asp9	8.437	4.596	2.584, 2.692	
Ile10	8.079	4.132	1.886	Hγ: 1.185, 1.442, 0.901 (Me); Hο: 0.859
Leu11	8.297	4.345	1.685	Hγ: 1.583, 1.620; Hο: 0.867, 0.930
Gln12	8.265	4.284	1.976, 2.125	Hγ: 2.352, 2.376; HNt: 6.877, 7.428
NH2	7.103, 7.524			

*aSignal for the terminal HN not observed. bThe assignments for the minor Val5 spin system are 8.132(HN), 4.241(Ha), 1.996(Hb), 0.897(Hγ); cGly7 spin system are 8.604(HN), 3.895, 4.048(Ha).
Table S7. The 1H Chemical Shift Assignments for Peptide HPTUOrnAsp

Residue	HN	Hα	Hβ	Others
Ac-	2.041			
Arg1	8.332	4.344	1.749, 1.835	Hγ: 1.622, 1.660; Hδ: 3.205; HNt: 7.210
Thr2	8.249	4.374	4.172	Hγ: 1.184
Val3	8.185	4.115	2.041	Hγ: 0.913
Orn4	8.493	4.400	1.741,1.813	Hγ: 1.657; Hδ: 3.004
Val5	8.373	4.420	2.077	Hγ: 0.939, 0.976
Orn	8.249	4.373	1.883	Hγ: 1.710, 1.758; Hδ: 3.003; HNt: 7.613
Asp9	8.449	4.598	2.589, 2.700	
Ile10	8.077	4.135	1.889	Hγ: 1.183, 1.442, 0.904 (Me); Hδ: 0.862
Leu11	8.298	4.348	1.687	Hγ: 0.934, 0.968
Gln12	8.262	4.285	1.979, 2.128	Hγ: 2.353, 2.378; HNt: 6.852, 7.545
NH$_2$	7.103, 7.524			

*aSignal for the terminal HN not observed. **The assignments for the minor Gly7 spin system are 8.597(HN), 3.893, 4.044(Hα) |

Table S8. The 1H Chemical Shift Assignments for Peptide HPTULysAsp

Residue	HN	Hα	Hβ	Others
Ac-	2.306			
Arg1	8.327	4.344	1.748, 1.832	Hγ: 1.619, 1.660; Hδ: 3.203; HNt: 7.209
Thr2	8.257	4.367	4.165	Hγ: 1.179
Val3	8.184	4.115	2.307	Hγ: 0.911
Lys4	8.423	4.351	1.719, 1.766	Hγ: 1.343, 1.418; Hδ: 1.667
Val5	8.339	4.419	2.066	Hγ: 0.934, 0.968
Pro6	8.457	3.972		
Gly7	8.457	3.972		
Orn8	8.243	4.390	1.883	Hγ: 1.706, 1.766; Hδ: 3.005
Asp9	8.449	4.596	2.583, 2.697	
Ile10	8.072	4.135	1.886	Hγ: 1.178, 1.443, 0.904 (Me); Hδ: 0.860
Leu11	8.301	4.345	1.684	Hγ: 1.585, 1.619 Hδ: 0.865, 0.928
Gln12	8.263	4.284	1.977, 2.126	Hγ: 2.354, 2.375; HNt: 6.852, 7.544
NH$_2$	7.104, 7.525			

*aSignal for the terminal HN not observed. **The assignments for the minor Val5 spin system are 7.983(HN), 4.257(Hα), 1.980(Hβ), 0.882(Hγ); *Gly7 spin system are 8.580(HN), 3.883, 4.025(Hα); Ile11 spin system are 8.129(HN), 4.137(Hα), 1.883 (Hβ), 1.139, 1.443, (Hγ); 0.897(Hδ) |
Table S9. The 1H Chemical Shift Assignments for Peptide HPTFDapAsp

Residue	HN	H_α	H_β	Others
Ac-		2.078		
Cys1	8.455	5.231	2.646, 3.169	
Arg2	8.764	4.659	1.826	H_γ: 1.607, 1.652; H_δ: 3.182; HNt: 7.195
Thr3	8.647	4.911	3.903	H_γ: 1.026
Val4	9.202	4.469	2.006	H_γ: 0.840
Dap5a	8.886	5.587	3.226, 3.343	
Val6	9.194	4.639	1.989	H_γ: 0.901
dPro7	4.347	1.965, 2.363		H_γ: 2.073; H_δ: 3.793, 3.845
Gly8	8.800	3.765, 4.035		
Orn9	7.821	4.826	1.774, 1.827	H_γ: 1.672; H_δ: 3.005; HNt: 7.602
Asp10	8.519	5.552	2.240, 2.513	
Ile11	9.088	4.482	1.824	H_γ: 1.074, 1.344, 0.855 (Me); H_δ: 0.798
Leu12	8.464	4.732	1.641	H_γ: 1.496; H_δ: 0.781, 0.811
Gln13	9.233	4.665	1.884, 2.078	H_γ: 2.296, 2.322; HNt: 6.832, 7.333
Cys14	9.009	5.093	3.007, 3.129	
NH$_2$	7.242, 7.597			

aSignal for the terminal HN not observed.

Table S10. The 1H Chemical Shift Assignments for Peptide HPTFDabAsp

Residue	HN	H_α	H_β	Others
Ac-		2.077		
Cys1	8.684	5.214	2.053, 2.095	
Arg2	8.761	4.670	1.833	H_γ: 1.533, 1.680; H_δ: 3.181; HNt: 7.132
Thr3	8.610	4.932	3.907	H_γ: 1.033
Val4	9.159	4.397	1.961	H_γ: 0.821, 0.856
Dab5a	8.468	5.235	3.166	H_γ: 2.642, 2.664
Val6	8.830	4.585	1.940	H_γ: 0.886, 0.901
dPro7	4.375	1.962, 2.342		H_γ: 2.038, 2.127; H_δ: 3.754, 3.867
Gly8	8.786	3.894, 3.969		
Orn9	7.864	4.688	1.793, 1.844	H_γ: 1.690 ; H_δ: 3.006; HNt: 7.623
Asp10	8.546	5.305	2.263, 2.486	
Ile11	9.191	4.463	1.868	H_γ: 1.143, 1.350, 0.858 (Me); H_δ: 0.797
Leu12	8.466	4.706	1.651	H_γ: 1.492; H_δ: 0.781, 0.816
Gln13	9.225	4.659	1.882, 2.074	H_γ: 2.219, 2.280; HNt: 6.845, 7.310
Cys14	9.005	5.080	3.001, 3.006	
NH$_2$	7.253, 7.613			

aSignal for the terminal HN not observed.
Table S11. The 1H Chemical Shift Assignments for Peptide HPTFOrnAsp

Residue	HN	Hα	Hβ	Others
Ac-				
Cys1	8.449	5.216	3.161, 2.661	
Arg2b	8.759	4.660	1.819	Hγ: 1.683, 1.531; Hδ: 3.180; HNt: 7.123
Thr3	8.581	4.950	3.901	Hγ: 1.034
Val4	9.143	4.410	1.972	Hγ: 0.855, 0.815
Orn5a	8.464	5.097	1.738	Hγ: 1.597; Hδ: 2.885, 2.826
Val6	8.919	4.594	1.963, 1.923	Hγ: 0.910, 0.890
DPro7		4.366	2.346, 1.961	
Gly8	8.689	3.945, 3.871		
Orn9	7.897	4.667	1.829, 1.791	Hγ: 1.686; Hδ: 3.007; HNt: 7.164
Asp10	8.465	5.129	2.520, 2.270	
Ile11	9.260	4.438	1.891	Hγ: 1.364, 1.180, 0.789 (Me); Hδ: 0.855
Leu12	8.432	4.697	1.655	Hγ: 1.491; Hδ: 0.817, 0.78
Gln13c	9.219	4.666	2.074, 1.890	Hγ: 2.283, 2.217; HNt: 7.289
Cys14	8.978	5.081	3.132, 3.002	
NH$_2$				7.604, 7.240

aSignal for the terminal HN not observed.

Table S12. The 1H Chemical Shift Assignments for Peptide HPTFLysAsp

Residue	HN	Hα	Hβ	Others
Ac-				
Cys1	8.464	5.212	2.665, 3.165	
Arg2a	8.766	4.668	1.683, 1.833	Hγ: 1.531; Hδ: 3.178; HNt: 7.129
Thr3	8.586	4.972	3.910	Hγ: 0.809, 0.854
Val4	9.118	4.415	1.978	Hγ: 0.814, 0.855
Lys5	8.385	5.012	1.671	Hγ: 1.508, 1.570; Hδ: 1.266, 1.329; Hε: 2.903
Val6	8.953	4.591	1.955	Hγ: 0.874, 0.903
DPro7		4.355	1.959, 2.365	Hγ: 2.045, 2.141; Hδ: 3.809, 3.868
Gly8	8.635			
Orn9	7.917	4.650	1.790, 1.839	Hγ: 1.682; Hδ: 3.007; HNt: 7.615
Asp10	8.450	5.011	2.277, 2.520	
Ile11	9.289	4.444	1.909	Hγ: 1.218, 1.367, 0.859 (Me); Hδ: 0.794
Leu12	8.419	4.692	1.659	Hγ: 1.489; Hδ: 0.783, 0.816
Gln13b	9.226	4.657	1.892, 2.072	Hγ: 2.218, 2.283; HNt: 6.844, 7.300
Cys14	8.991	5.075	3.000, 3.134	
NH$_2$				7.250, 7.614

aThe assignments for the minor Arg2 spin system are 8.841(HN), 4.681(Hα), 1.701, 1.835(Hβ), 1.525(Hγ), 3.168(Hδ); bCys14 spin system are 8.948(HN), 5.054(Hα), 2.993, 3.143(Hβ).
Table S13. The 1H Chemical Shift Assignments for Peptide HPTDapGlu

Residue	HN	Ha	Hβ	Others
Ac-				
Arg1	8.304	4.390	1.757, 1.847	Hγ: 1.619, 1.670; Hδ: 3.211; HNt: 7.203
Thr2	8.180	4.484	4.075	Hγ: 1.085
Val3	8.784	4.390	2.015	Hγ: 0.894
Dap4a	8.790	5.116	3.300, 3.393	
Val5	8.858	4.599	1.966	Hγ: 0.879, 0.899
DPro6		4.371	1.979, 2.354	Hγ: 2.062; Hδ: 3.794, 3.818
Gly7b	8.710		3.842, 4.021	
Orn8	7.988	4.603	1.801, 1.833	Hγ: 1.698; Hδ: 3.008; HNt: 7.609
Glu9	8.490	4.420	1.828, 1.885	Hγ: 2.189, 2.239
Ile10	8.819	4.390	1.851	Hγ: 1.144, 1.371, 0.867 (Me); Hδ: 0.787
Leu11	8.487	4.419	1.599	Hγ: 1.599; Hδ: 0.846, 0.889
Gln12	8.541	4.307	1.908, 2.062	Hγ: 2.288, 2.311; HNt: 6.874, 7.364
NH$_2$	7.128	7.666		

aSignal for the terminal HN not observed. bThe assignments for the minor Gly7 spin system are 8.629(HN), 3.947, 4.044(Hα)

Table S14. The 1H Chemical Shift Assignments for Peptide HPTDabGlu

Residue	HN	Ha	Hβ	Others
Ac-				
Arg1	8.311	4.383	1.754, 1.842	Hγ: 1.618, 1.662; Hδ: 3.206; HNt: 7.206
Thr2	8.230	4.649	4.106	Hγ: 1.133
Val3b	8.517	4.263	2.023	Hγ: 0.894
Dab4a	8.644	4.814	2.058, 2.105	Hγ: 2.972, 2.995
Val5c	8.497	4.527	1.989	Hγ: 0.918
DPro6		4.416	1.984, 2.329	Hγ: 2.038, 2.086; Hδ: 3.810
Gly7d	8.549	3.921, 3.979		
Orn8	8.092	4.525	1.876, 1.805	Hγ: 1.715; Hδ: 3.016; HNt: 7.624
Glu9	8.599	4.557	1.916	Hγ: 2.169, 2.277
Ile10	8.596	4.293	1.853	Hγ: 1.160, 1.410, 0.869 (Me); Hδ: 0.812
Leu11	8.408	4.436	1.602	Hγ: 1.602; Hδ: 0.850, 0.899
Gln12c	8.492	4.311	1.936, 2.086	Hγ: 2.316, 2.336; HNt: 6.870, 7.431
NH$_2$	7.118	7.636		

aSignal for the terminal HN not observed. bThe assignments for the minor Val3 spin system are 8.267(HN), 4.127(Hα), 1.849(Hβ), 0.882(Hγ); cVal5 spin system are 8.366(HN), 4.116(Hα), 2.008(Hβ), 0.881, 0.898(Hγ); dGly7 spin system are 8.614(HN), 3.957, 4.040(Hα); eGln12 spin system are 8.340(HN), 4.298(Hα), 1.974, 2.115(Hβ), 2.367(Hγ)
Table S15. The 1H Chemical Shift Assignments for Peptide HPTOrnGlu

Residue	HN	Ha	Hβ	Others
Ac-	2.032			
Arg1	8.305	4.386	1.752, 1.840, Hγ: 1.616, 1.661; Hδ: 3.206; HNt: 7.205	
Thr2	8.231	4.663	4.099	Hγ: 1.128
Val3b	8.530	4.262	2.013	Hγ: 0.889
Orn4a	8.477	4.704	1.758	Hγ: 1.588, 1.656; Hδ: 2.943
Val5c	8.590	4.526	1.984	Hγ: 0.917
DPro6	4.409	1.980, 2.329	Hγ: 2.038, 2.096; Hδ: 3.810	
Gly7d	8.545	3.933		
Orn8	8.071	4.542	1.806, 1.874	Hγ: 1.711; Hδ: 3.016; HNt: 7.619
Glu9	8.565	4.558	1.910	Hγ: 2.159, 2.257
Ile10	8.651	4.305	1.860	Hγ: 1.163, 1.400, 0.869 (Me); Hδ: 0.810
Leu11	8.403	4.443	1.599	Hγ: 1.599; Hδ: 0.849, 0.898
Gln12e	8.504	4.315	1.934, 2.085	Hγ: 2.310, 2.335; HNt: 6.873, 7.426
NH$_2$	7.118, 7.643			

aSignal for the terminal HN not observed. bThe assignments for the minor Val3 spin system are 8.268(HN), 4.122(Ha), 1.845(Hβ), 0.882(Hγ); cVal5 spin system are 8.321(HN), 4.099(Ha), 2.013(Hβ), 0.808, 0.903(Hγ); dGly7 spin system are 8.610(HN), 3.955, 4.033(Hα); eGln12 spin system are 8.338(HN), 4.346(Hα), 1.977, 2.114(Hβ), 2.364(Hγ)

Table S16. The 1H Chemical Shift Assignments for Peptide HPTLysGlu

Residue	HN	Ha	Hβ	Others
Ac-	2.032			
Arg1	8.303	4.382	1.748, 1.836	Hγ: 1.612, 1.656; Hδ: 3.204; HNt: 7.206
Thr2	8.237	4.633	4.094	Hγ: 1.128
Val3a	8.511	4.248	2.017	Hγ: 0.888
Lys4	8.404	4.687	1.674	Hγ: 1.20, 1.345; Hδ: 1.599; Hε: 2.921; HNt: 7.553
Val5b	8.570	4.520	1.990	Hγ: 0.923
DPro6	4.398	1.972, 2.335	Hγ: 2.042, 2.101; Hδ: 3.822	
Gly7c	8.496	3.867, 3.967		
Orn8	8.041	4.543	1.797, 1.878	Hγ: 1.715; Hδ: 3.017; HNt: 7.616
Glu9	8.616	4.511	1.903	Hγ: 2.138, 2.241
Ile10	8.648	4.296	1.861	Hγ: 1.173, 1.409, 0.873 (Me); Hδ: 0.808
Leu11	8.392	4.438	1.598	Hγ: 1.598; Hδ: 0.849, 0.897
Gln12d	8.496	4.310	1.934, 2.086	Hγ: 2.315, 2.335; HNt: 6.872, 7.438
NH$_2$	7.114, 7.631			

aThe assignments for the minor Val3 spin system are 8.177(HN), 4.107(Hα), 2.041(Hβ), 0.907(Hγ); bVal5 spin system are 8.268(HN), 4.122(Hα), 1.848(Hβ), 0.880(Hγ); cGly7 spin system are 8.606(HN), 3.955, 4.038(Hα); dGln12 spin system are 8.344(HN), 4.293(Hα), 1.973, 2.113(Hβ), 2.365(Hγ)
Table S17. The 1H Chemical Shift Assignments for Peptide HPTUDapGlu

Residue	HN	Hα	Hβ	Others
Ac-		2.044		
Arg1	8.347	4.337	1.753, 1.842	Hγ: 1.625, 1.665; Hδ: 3.205; HNt: 7.208
Thr2	8.246	4.409	4.204	Hγ: 1.191
Val3	8.225	4.173	2.076	Hγ: 0.931
Dap4^a	8.856	4.807	3.257, 3.430	
Val5	8.422	4.453	2.098	Hγ: 0.914, 0.977
^bPro6	4.416	1.939, 2.320	Hγ: 1.998, 2.076; Hδ: 3.693, 3.881	
Gly7^b	8.253	3.962, 4.000		
Orn8^a	8.246	4.379	1.892	1.706, 1.756; Hδ: 3.009
Glu9^c	8.594	4.291	1.931, 2.020	Hγ: 2.246, 2.295
Ile10	8.234	4.136	1.856	Hγ: 1.188, 1.477, 0.891 (Me); Hδ: 0.859
Leu11	8.321	4.379	1.654	Hγ: 1.596; Hδ: 0.861, 0.924
Gln12	8.347	4.292	1.971, 2.112	Hγ: 2.352, 2.376; HNt: 6.855, 7.532
NH2	7.100, 7.566			

^aSignal for the terminal HN not observed. ^bThe assignments for the minor Val5 spin system are 8.141(HN), 4.250(Hα), 1.996(Hβ), 0.900(Hγ); ^cGly7 spin system are 8.637(HN), 3.908, 4.409(Hα).

Table S18. The 1H Chemical Shift Assignments for Peptide HPTUDabGlu

Residue	HN	Hα	Hβ	Others
Ac-		2.043		
Arg1	8.336	4.341	1.750, 1.838	Hγ: 1.623, 1.665; Hδ: 3.206; HNt: 7.195
Thr2	8.243	4.378	4.179	Hγ: 1.186
Val3	8.194	4.120	2.047	Hγ: 0.923
Dab4^a	8.634	4.511	2.047, 2.114	Hγ: 3.013, 3.054
Val5^b	8.384	4.425	2.081	Hγ: 0.934, 0982
^bPro6	4.410	1.942, 2.321	Hγ: 1.998, 2.078; Hδ: 3.703, 3.882	
Gly7^c	8.501	3.959, 4.011		
Orn8^a	8.260	4.378	1.765, 1.896	Hγ: 1.709; Hδ: 3.013
Glu9	8.605	4.283	1.933, 2.020	Hγ: 2.238, 2.287
Ile10	8.228	4.135	1.858	Hγ: 1.190, 1.481, 0.889 (Me); Hδ: 0.855
Leu11	8.320	4.377	1.654	Hγ: 1.593; Hδ: 0.864, 0.925
Gln12	8.347	4.294	1.977, 2.115	Hγ: 2.356, 2.379; HNt: 6.857, 7.534
NH2	7.101, 7.567			

^aSignal for the terminal HN not observed. ^bThe assignments for the minor Val5 spin system are 8.141(HN), 4.250(Hα), 1.996(Hβ), 0.900(Hγ); ^cGly7 spin system are 8.637(HN), 3.908, 4.409(Hα).
Table S19. The 1H Chemical Shift Assignments for Peptide HPTUOrnGlu

Residue	HN	Hα	Hβ	Others
Ac-	2.043			
Arg1	8.330	4.344	1.838, 1.750	δ: 3.205; δN: 7.206
Thr2	8.249	4.377	4.175	δ: 1.183
Val3b	8.184	4.116	2.044	δ: 0.919
Orn4a	8.488	4.398	1.740, 1.816	δ: 1.656; δN: 3.008
Val5	8.330	4.424	2.076	δ: 0.938, 0.978
Pro6		4.409	1.943, 2.317	δ: 1.998, 2.072; δN: 3.706, 3.879
Gly7c	8.476	4.353	1.894	δ: 1.702, 1.768; δN: 3.015; δNt: 7.624
Orn8	8.262	4.373		
Val3	8.181	4.115	2.040	δ: 0.914
Lys4a	8.418	4.350	1.714	7.536
Val5	8.290	4.419	2.068	δ: 0.934, 0.970
Pro6		4.396	1.945, 2.311	δ: 1.988, 2.072; δN: 3.707, 3.872
Gly7b	8.486	3.960	1.895	δ: 1.711, 1.769; δN: 3.015; δNt: 7.618
Orn8	8.261	4.370		
Glu9	8.604	4.287	2.256, 2.277	δ: 1.935, 2.022
Ile10	8.228	4.135	1.857	δ: 1.477, 1.181, 0.891 (Me); δ: 0.861
Leu11	8.320	4.379	1.573	δ: 1.592; δN: 0.863, 0.927
Gln12	8.344	4.294	1.970, 2.116	δ: 2.355, 2.379; δNt: 6.857, 7.533
NH$_2$	7.103	7.569		

aSignal for the terminal HN not observed. bThe assignments for the minor Val3 spin system are 8.069(HN), 4.258(Hα), 1.994(Hβ), 0.903(Hγ); cGly spin system are 8.621(HN), 3.907, 4.046(Hα)

Table S20. The 1H Chemical Shift Assignments for Peptide HPTULysGlu

Residue	HN	Hα	Hβ	Others
Ac-				
Arg1	8.324	4.343	1.749, 1.833	δ: 1.620, 1.659; δN: 3.202; δNt: 7.206
Thr2	8.258	4.370	4.166	δ: 1.180
Val3a	8.181	4.115	2.040	δ: 0.914
Val5	8.290	4.419	2.068	δ: 0.934, 0.970
Lys4a	8.418	4.350	1.714	7.536
Pro6		4.396	1.945, 2.311	δ: 1.988, 2.072; δN: 3.707, 3.872
Gly7b	8.486	3.960	1.895	δ: 1.711, 1.769; δN: 3.015; δNt: 7.618
Orn8	8.261	4.370		
Glu9	8.604	4.287	2.256, 2.277	δ: 1.935, 2.022
Ile10	8.228	4.135	1.857	δ: 1.477, 1.181, 0.891 (Me); δ: 0.861
Leu11	8.320	4.379	1.573	δ: 1.592; δN: 0.863, 0.927
Gln12	8.344	4.294	1.970, 2.116	δ: 2.355, 2.379; δNt: 6.857, 7.533
NH$_2$	7.102	7.568		

aThe assignments for the minor Val3 spin system are 7.985(HN), 4.261(Hα), 1.990(Hβ), 0.903(Hγ); bGly7 spin system are 8.607(HN), 3.902, 4.039(Hα),
Table S21. The 1H Chemical Shift Assignments for Peptide HPTFDapGlu.

Residue	HN	H_α	H_β	Others
Ac-	2.083			
Cys1	8.446	5.219	2.678, 3.168	
Arg2	8.752	4.688	1.830, 1.860	H_Y: 1.535, 1.686; H_δ: 3.185; H_{Nt}: 7.131
Thr3	8.558	5.017	3.948	H_Y: 1.077
Val4	9.223	4.475	2.000	H_Y: 0.846
Dap5	8.875	5.287	3.309, 3.371	
Val6	9.035	4.638	1.941	H_Y: 0.866, 0.890
DPro7	4.344	1.974, 2.367	H_Y: 2.050, 2.093; H_δ: 3.771, 3.848	
Gly8	8.381	3.804, 4.041		
Orn9	7.908	4.690	1.811	H_Y: 1.688; H_δ: 3.006; H_{Nt}: 7.610
Glu10	8.423	5.038	1.745, 1.879	H_Y: 2.142, 2.191
Ile11	9.078	4.470	1.832	H_Y: 1.111, 1.337, 0.866 (Me); H_δ: 0.777
Leu12	8.508	4.655	1.685	H_Y: 1.496; H_δ: 0.787, 0.828
Gln13	9.225	4.664	1.887, 2.067	H_Y: 2.220, 2.278; H_{Nt}: 6.825, 7.303
Cys14	8.974	5.083	3.006, 3.134	
NH$_2$	7.242, 7.605			

aSignal for the terminal HN not observed.

Table S22. The 1H Chemical Shift Assignments for Peptide HPTFDabGlu

Residue	HN	H_α	H_β	Others
Ac-	2.083			
Cys1	8.450	5.215	2.657, 3.168	
Arg2	8.758	4.683	1.825, 1.852	H_Y: 1.544, 1.685; H_δ: 3.186; H_{Nt}: 7.195
Thr3	8.583	4.950	3.948	H_Y: 1.069
Val4	9.120	4.445	1.985	H_Y: 0.815, 0.854
Dab5	8.710	5.130	2.074, 2.101	H_Y: 2.931, 2.966
Val6	8.599	4.586	1.913	H_Y: 0.870, 0.899
DPro7	4.380	1.969, 2.347	H_Y: 2.043, 2.133; H_δ: 3.744, 3.867	
Gly8	8.775	3.906, 3.994		
Orn9	7.938	4.703	1.823, 1.869	H_Y: 1.705; H_δ: 3.011; H_{Nt}: 7.624
Glu10	8.567	4.910	1.998, 2.228	H_Y: 1.783, 1.878
Ile11	9.052	4.492	1.834	H_Y: 1.094, 1.329, 0.851 (Me); H_δ: 0.789
Leu12	8.450	4.715	1.658	H_Y: 1.499 H_δ: 0.785, 0.820
Gln13	9.207	4.660	1.879, 2.078	H_Y: 2.214, 2.272; H_{Nt}: 6.826, 7.320
Cys14	8.989	5.083	3.006, 3.134	
NH$_2$	7.241, 7.605			

aSignal for the terminal HN not observed.
Table S23. The 1H Chemical Shift Assignments for Peptide HPTFOrnGlu

Residue	HN	Hα	Hβ	Others
Ac-	2.077			
Cys1	8.468	5.213	2.649, 3.167	
Arg2	8.770	4.679	1.824	Hy: 1.687; Hδ: 3.182; HNt: 7.134
Thr3	8.599	4.946	3.939	Hy: 1.060
Val4	9.137	4.423	1.971	Hy: 0.814, 0.851
Orn5	8.555	4.954	1.753, 1.807	Hy: 1.580, 1.653; Hδ: 2.933
Val6	8.767	4.571	1.924	Hy: 0.870, 0.895
DPro7	4.376	1.969, 2.335		Hy: 2.036, 2.134; Hδ: 3.724, 3.864
Gly8	8.754	3.934		
Orn9	7.953	4.688	1.817, 1.862	Hy: 1.698; Hδ: 3.008; HNt: 7.603
Glu10	8.515	4.947	1.778, 1.877	Hy: 2.000, 2.208
Ile11	9.103	4.496	1.844	Hy: 1.109, 1.324, 0.848 (Me); Hδ: 0.789
Leu12	8.447	4.725	1.653	Hy: 1.492; Hδ: 0.780, 0.814
Gln13	9.220	4.659	1.872, 2.072	Hy: 2.212, 2.269; HNt: 6.840, 7.329
Cys14	9.008	3.001, 3.133		

NH$_2$ 7.254, 7.615

aSignal for the terminal HN not observed.

Table S24. The 1H Chemical Shift Assignments for Peptide HPTFLysGlu

Residue	HN	Hα	Hβ	Others
Ac-	2.080			
Cys1	8.449	5.211	2.656, 3.170	
Arg2	8.758	4.682	1.837	Hy: 1.541, 1.683; Hδ: 3.182; HNt: 7.128
Thr3	8.575	4.953	3.941	Hy: 1.061
Val4	9.083	4.420	1.975	Hy: 0.814, 0.853
Lys5a	8.462	4.947	1.670, 1.708	Hy: 1.225, 1.313; Hδ: 1.606; Hϵ: 2.906
Val6	8.758	4.575	1.937	Hy: 0.878, 0.903
DPro7	4.368	1.959, 2.350	Hy: 2.041, 2.139; Hδ: 3.767, 3.857	
Gly8	8.672	3.855, 3.970		
Orn9	7.938	4.674	1.810, 1.868	Hy: 1.691; Hδ: 3.011; HNt: 7.615
Glu10	8.555	4.817	1.781, 1.871	Hy: 1.982, 2.191
Ile11	8.398	4.492	1.851	Hy: 1.120, 1.341, 0.854 (Me); Hδ: 0.789
Leu12	8.398	4.724	1.650	Hy: 1.495; Hδ: 0.782, 0.817
Gln13	9.203	4.662	1.875, 2.075	Hy: 2.209, 2.272; HNt: 6.829, 7.321
Cys14	8.986	5.076	3.004, 3.131	

NH$_2$ 7.238, 7.603
Table S25. The 1H Chemical Shift Assignments for Peptide HPTDapAad

Residue	HN	α	β	Others
Ac-	8.328	4.376	1.757, 1.844	γ: 1.665; δ: 3.207; HNt: 7.207
Thr2	8.246	4.606	4.119	γ: 1.155
Val3a	8.464	4.290	2.077	γ: 0.912
Dap4b	8.872	5.001	3.269, 3.418	
Val5c	8.543	4.555	2.025	γ: 0.912
dPro6	4.423	1.597, 2.330	γ: 1.986, 2.049; HNt: 3.790, 3.836	
Gly7d	8.508	3.922, 3.954		
Orn8e	8.120	4.488	1.799, 1.874	γ: 1.710; δ: 3.017; HNt:
Aad9	8.475	4.512	1.612, 1.697	γ: 2.191; δ: 1.490
Ile10	8.451	4.258	1.835	γ: 1.154, 1.418, 0.869(Me); δ: 0.820
Leu11	8.397	4.428	1.596	γ: 1.831; δ: 0.850
Gln12f	8.470	4.302	1.944, 2.083	γ: 2.337; HNt: 6.867
NH$_2$	7.118	7.635		

aThe assignments for the minor Val3 spin system are 8.128(HN), 4.178 (α), 2.080(β), 0.931(γ); bSignal for the terminal HN not observed; cVal5 spin system are 8.279(HN), 4.127(α), 1.833(β), 0.879(γ); dGly7 spin system are 8.613(HN), 3.926, 4.029(δ); eOrn8 spin system are 8.361(HN), 4.193(α), 1.753, 1.855(β), 1.677(γ); fGln12 spin system are 8.357(HN), 4.344(α), 1.975, 2.111(β), 2.365(γ).

Table S26. The 1H Chemical Shift Assignments for Peptide HPTDabAad

Residue	HN	α	β	Others
Ac-	8.309	4.394	1.754, 1.842	γ: 1.614, 1.659; δ: 3.207; HNt: 7.206
Arg1a	8.248	4.681	4.077	γ: 1.133
Thr2	8.547	4.287	2.013	γ: 0.890
Val3b	8.667	4.887	2.964	γ: 2.021, 2.108
Dab4c	8.527	4.544	2.068	γ: 0.918
Val5d	8.409	4.436	1.593	γ: 1.706; δ: 0.845, 0.894
dPro6	4.409	1.980, 2.330	γ: 2.041, 2.098; δ: 3.206, 3.815	
Gly7e	8.569	3.943		
Orn8f	8.060	4.558	1.806, 1.870	γ: 1.711; δ: 3.015; HNt: 7.622
Aad9	8.529	4.597	1.633, 1.696	γ: 2.174; δ: 1.450
Ile10	8.606	4.313	1.841	γ: 1.139, 1.399, 0.865(Me); δ: 0.807
Leu11	8.409	4.453	1.593	γ: 1.706; δ: 0.845, 0.894
Gln12g	8.529	4.306	1.940, 2.085	γ: 2.321; HNt: 6.872, 7.428
NH$_2$	7.126	7.656		

aThe assignments for the minor Arg1 spin system are 8.337(HN), 4.358(α), 1.757, 1.843(β), 1.579, 1.653(γ), 3.212(δ).bVal3 spin system are 8.275(HN), 4.128 (α), 1.838(β), 0.877(γ); cSignal for the terminal HN not observed; dVal5 spin system are 8.194(HN), 4.124(α), 2.054(β), 0.921(γ); eGly7 spin system are 8.606(HN), 4.024(α); fOrn8 spin system are 8.364(HN), 4.360(α), 1.880(β), 1.755(γ); gGln12 spin system are 8.359(HN), 4.295(α), 1.975 (β), 2.369(γ).
Table S27. The 1H Chemical Shift Assignments for Peptide HPTOrnAad

Residue	HN	H^α	H^β	Others
Ac-				
Arg1	8.302	4.401	1.751, 1.840	H$_\gamma$: 1.610, 1.659; H$_\delta$: 3.205; HN$_{t}$: 7.201
Thr2	8.243	4.728	4.057	H$_\gamma$: 1.118
Val3a	8.587	4.295	2.005	H$_\gamma$: 0.880
Orn4b	8.493	4.766	1.719, 1.770	H$_\gamma$: 1.570, 1.646; H$_\delta$: 2.933
Val5b	8.663	4.544	1.975	H$_\gamma$: 0.913
dPro6				
Gly7	8.583	4.582	1.805, 1.863	H$_\gamma$: 1.703; H$_\delta$: 3.012; HN$_{t}$: 7.618
Aad9	8.507	4.639	1.611, 1.684	H$_\gamma$: 2.165; H$_\delta$: 1.432
Ile10	8.702	4.336	1.848	H$_\gamma$: 1.145, 1.390, 0.863(Me); H$_\delta$: 0.799
Leu11	8.409	4.461	1.589	H$_\gamma$: 1.711; H$_\delta$: 0.845, 0.886
Gln12c	8.547	4.310	1.921, 2.075	H$_\gamma$: 2.312; HN$_{t}$: 6.876, 7.406
NH$_2$	7.128	7.665		

aThe assignments for the minor Val3 spin system are 8.189(HN), 4.114(H$_\alpha$), 2.047(H$_\beta$), 0.914(H$_\gamma$); bSignal for the terminal HN not observed; cThe assignments for the minor Gln12 spin system are 8.358(HN), 4.295(H$_\alpha$), 1.974(H$_\beta$), 2.364(H$_\gamma$).

Table S28. The 1H Chemical Shift Assignments for Peptide HPTLysAad

Residue	HN	H^α	H^β	Others
Ac-				
Arg1	8.350	4.388	1.748, 1.831	H$_\gamma$: 1.608, 1.655; H$_\delta$: 3.202; HN$_{t}$: 7.226
Thr2	8.306	4.698	4.063	H$_\gamma$: 1.122
Val3a	8.599	4.273	2.008	H$_\gamma$: 0.879
Lys4b	8.461	4.770	1.653	H$_\gamma$: 1.200, 1.303; H$_\epsilon$: 2.894
Val5c	8.678	4.540	1.978	H$_\gamma$: 0.922
dPro6				
Gly7d	8.580	4.386	1.970, 2.346	H$_\gamma$: 2.042, 2.111; H$_\delta$: 3.834
Orn8	8.020	4.591	1.795, 1.867	H$_\gamma$: 1.694; H$_\delta$: 3.010; HN$_{t}$: 7.158
Aad9	8.610	4.556	1.617, 1.690	H$_\gamma$: 2.152, 2.186; H$_\delta$: 1.444
Ile10e	8.747	4.317	1.857	H$_\gamma$: 1.168, 1.394, 0.864(Me); H$_\delta$: 0.796
Leu11	8.452	4.451	1.589	H$_\gamma$: 0.842, 0.891
Gln12f	8.581	4.303	1.932, 2.080	H$_\gamma$: 2.318; HN$_{t}$: 6.920
NH$_2$	7.703			

aThe assignments for the minor Val3 spin system are 8.208(HN), 4.038(H$_\alpha$), 2.034(H$_\beta$), 0.955(H$_\gamma$); bSignal for the terminal HN not observed; cThe assignments for the minor Val5 spin system are 8.243(HN), 4.104(H$_\alpha$), 2.034(H$_\beta$), 0.913(H$_\gamma$); dThe assignments for the minor Gly7 spin system are 8.644(HN), 3.929, 4.017(H$_\alpha$); eThe assignments for the minor Ile10 spin system are 8.374(HN), 4.075(H$_\alpha$), 1.744(H$_\beta$), 0.798, 0.902(H$_\gamma$); fThe assignments for the minor Gln12 spin system are 8.422(HN), 4.302(H$_\alpha$), 1.971, 2.113(H$_\beta$), 2.369(H$_\gamma$).
Table S29. The 1H Chemical Shift Assignments for Peptide HPTUDapAad

Residue	HN	Hα	Hβ	Others
Ac			2.039	
Arg1	8.365	4.336	1.756, 1.843	Hy: 1.628, 1.670; Hδ: 3.207; HNt: 7.216
Thr2	8.264	4.405	4.204	Hy: 1.193
Val3	8.237	4.171	2.075	Hy: 0.932
Dap4a	8.873	4.805	3.256, 3.429	
Val5	8.455	4.452	2.098	Hy: 0.915, 0.982
Pro6		4.412	1.937, 2.318	Hy: 2.001, 2.078; Hδ: 3.697, 3.883
Gly7	8.479	3.927, 3.997		
Orn8	8.234	4.391	1.878	Hy: 1.707, 1.751; Hδ: 3.011;
Aad9c	8.406	4.288	1.704, 1.751	Hy: 1.535, 1.619; Hδ: 2.205, 2.245
Ile10d	8.269	4.122	1.840	Hy: 1.185, 1.489, 0.882 (Me); Hδ: 0.851
Leu11	8.356	4.376	1.648	Hy: 1.574; Hδ: 0.860, 0.923
Gln12	8.379	4.288	1.975, 2.112	Hy: 2.352, 2.381; HNt: 6.875, 7.555
NH₂			7.114, 7.595	

aSignal for the terminal HN not observed; bThe assignments for the minor Gly7 spin system are 8.638(HN), 3.893, 4.022(Hα); cAad9 spin system are 8.450(HN), 4.281(Hα), 1.721(Hβ), 1.536, 1.624(Hγ); dIle10 spin system are 8.313(HN), 4.131(Hα), 1.834(Hβ), 1.190, 1.484(Hγ); 0.879(Me(Hγ)); 0.879(Hδ).

Table S30. The 1H Chemical Shift Assignments for Peptide HPTUDabAad

Residue	HN	Hα	Hβ	Others
Ac			2.040	
Arg1	8.353	4.338	1.748, 1.835	Hy: 1.619, 1.665; Hδ: 3.203; HNt: 7.215
Thr2	8.258	4.377	4.178	Hy: 1.184
Val3	8.213	4.116	2.044	Hy: 0.919
Dab4ab	8.657	4.509	3.009, 3.054	Hy: 2.048, 2.116;
Val5c	8.403	4.426	2.086	Hy: 0.933, 0.980
Pro6		4.406	1.964, 2.314	Hy: 2.072; Hδ: 3.702, 3.879
Gly7d	8.457	3.923, 3.999		
Orn8	8.244	4.387	1.875	Hy: 1.707, 1.761; Hδ: 3.011; HNt: 7.627
Aad9e	8.407	4.289	1.704, 1.751	Hy: 1.541, 1.618; Hδ: 2.216, 2.255
Ile10f	8.274	4.123	1.838	Hy: 1.486, 1.184, 0.881 (Me); Hδ: 0.848
Leu11	8.354	4.375	1.648	Hy: 1.571; Hδ: 0.857, 0.924
Gln12	8.376	4.288	1.976, 2.109	Hy: 2.353, 2.380; HNt: 6.875, 7.554
NH₂			7.114, 7.595	

aSignal for the terminal HN not observed. bThe assignments for the minor Dab4 spin system are 8.602(HN), 4.483(Hα), 3.040(Hβ), 2.039, 2.130(Hγ); cVal5 spin system are 8.158(HN), 4.246(Hα), 1.997(Hβ), 0.901(Hγ); dGly7 spin system are 8.662(HN), 3.882, 4.034(Hα); eAad9 spin system are 8.450(HN), 4.280(Hα), 1.718(Hβ), 1.536, 1.620(Hγ), 2.232(Hδ); fIle10 spin system are 8.311(HN), 4.129(Hα), 1.833(Hβ), 1.482, 1.182(Hγ), 0.879(Me(Hγ)).
Table S31. The 1H Chemical Shift Assignments for Peptide HPTUO

Residue	HN	Ha	Hβ	Others
Ac-	2.039			
Arg1	8.347	4.341	1.750, 1.834	Hγ: 1.619, 1.663; Hδ: 3.204; HNt: 7.215
Thr2	8.266	4.375	4.171	Hγ: 1.183
Val3b	8.206	4.112	2.041	Hγ: 0.917
Orn4a,c	8.513	4.396	1.815	Hγ: 1.654, 1.739; Hδ: 3.007
Val5	8.360	4.425		Hγ: 0.937, 0.978
Pro6		4.403	1.939, 2.317	Hγ: 1.998, 2.072; Hδ: 3.701, 3.879
Gly7	8.447	3.922	4.003	
Orn8	8.248	4.337	1.877	Hγ: 1.697, 1.757 ; Hδ: 3.011; HNt: 7.624
Aad9	8.414	4.289	1.706, 1.745	Hγ: 1.536, 1.624; Hδ: 2.214, 2.253
Ile10	8.278	4.122	1.840	Hγ: 1.493, 1.184, 0.881 (Me); Hδ: 0.853
Leu11	8.356	4.376	1.648	Hγ: 1.574; Hδ: 0.862, 0.924
Gln12	8.380	4.289	1.971, 2.113	Hγ: 2.352, 2.382; HNt: 6.874, 7.555
NH$_2$	7.115			

aSignal for the terminal HN not observed; bThe assignments for the minor Val3 spin system are 8.094(HN), 4.250(Ha), 1.994(Hβ), 0.900(Hγ); cOrn4 spin system are 8.464(HN), 4.370(Ha), 1.829(Hβ), 1.662, 1.737(Hγ), 3.009(Hδ).

Table S32. The 1H Chemical Shift Assignments for Peptide HPTULysAad

Residue	HN	Ha	Hβ	Others
Ac-	2.042			
Arg1	8.327	4.343	1.748, 1.883	Hγ: 1.618, 1.659; Hδ: 3.204; HNt: 7.208
Thr2	8.257	4.369	4.165	Hγ: 0.923
Val3a	8.183	4.116	2.039	Hγ: 0.912
Lys4	8.424	4.349	1.759	Hγ: 1.343, 1.417; Hδ: 1.719; He: 2.976; HNt: 7.541
Val5	8.285	4.423	2.072	Hγ: 0.932, 0.967
Pro6		4.392	1.945, 2.310	Hγ: 1.985, 2.069; Hδ: 3.701, 3.879
Gly7	8.437	3.926	3.994	
Orn8	8.228	4.391	1.880	Hγ: 1.710, 1.768 ; Hδ: 3.013; HNt: 7.617
Aad9	8.395	4.292	1.706, 1.752	Hγ: 1.535, 1.623; Hδ: 2.210, 2.247
Ile10	8.252	4.126	1.840	Hγ: 1.477, 1.180, 0.881 (Me); Hδ: 0.855
Leu11	8.334	4.375	1.649	Hγ: 1.574; Hδ: 0.863, 0.922
Gln12	8.357	4.292	1.974, 2.112	Hγ: 2.355, 2.375; HNt: 6.874, 7.555
NH$_2$	7.102			

aThe assignments for the minor Val3 spin system are 7.984(HN), 4.257(Ha), 1.994(Hβ), 0.905(Hγ).
Table S33. The 1H Chemical Shift Assignments for Peptide HPTFDapAad

Residue	HN	Hα	Hβ	Others
Ac-	2.082			
Cys1	8.450	5.220	2.661, 3.168	
Arg2	8.765	4.690	1.840	Hγ: 1.547, 1.683; Hδ: 3.186; HNt: 7.316
Thr3	8.583	4.974	3.946	Hγ: 1.085
Val4	9.161	4.502	2.035	Hγ: 0.849, 0.874
Dap5	8.911	5.299	3.310, 3.390	
Val6	8.780	4.632	1.936	Hγ: 0.870, 0.901
DPro7	4.368	1.969, 2.367		Hγ: 2.044, 2.106; Hδ: 3.776, 3.850
Gly8	8.783	3.859, 3.999		
Orn9	7.946	4.673	1.845	Hγ: 1.701; Hδ: 3.007; HNt: 7.618
Aad10	8.513	4.960	1.583, 1.705	Hγ: 1.400, 1.522; Hδ: 2.099
Ile11	8.899	4.491	1.809	Hγ: 1.096, 1.323, 0.845 (Me); Hδ: 0.785
Leu12	8.479	4.708	1.667	Hγ: 1.493; Hδ: 0.781, 0.820
Gln13	9.205	4.643	1.857, 2.074	Hγ: 2.210, 2.267; HNt: 6.822, 7.334
Cys14	8.991	5.085	3.066, 3.133	
NH$_2$	7.242	7.607		

*aSignal for the terminal HN not observed.

Table S34. The 1H Chemical Shift Assignments for Peptide HPTFDabAad

Residue	HN	Hα	Hβ	Others
Ac-	2.082			
Cys1	8.449	5.223	2.654, 3.170	
Arg2	8.763	4.693	1.842	Hγ: 1.542, 1.688; Hδ: 3.185 HNt: 7.128
Thr3	8.594	4.976	3.945	Hγ: 1.080
Val4	9.103	4.460	1.988	Hγ: 0.814, 0.855
Dab5	8.747	5.172	2.013, 2.122	Hγ: 2.910, 2.942
Val6	8.619	4.604	1.918	Hγ: 0.874, 0.903
DPro7	4.378	1.968, 2.348		Hγ: 2.041, 2.134; Hδ: 3.754, 3.867
Gly8	8.768	3.905, 3.992		
Orn9	7.940	4.711	1.847	Hγ: 1.703 ; Hδ: 3.013; HNt: 7.623
Aad10	8.575	4.926	1.602, 1.694	Hγ: 1.373, 1.499; Hδ: 2.082, 2.102
Ile11	9.019	4.497	1.823	Hγ: 1.083, 1.328, 0.850 (Me); Hδ: 0.795
Leu12	8.448	4.713	1.661	Hγ: 1.488; Hδ: 0.782, 0.817
Gln13	9.215	4.663	1.877, 2.075	Hγ: 2.210, 2.269; HNt: 6.863, 7.544
Cys14	8.990	5.085	3.066, 3.131	
NH$_2$	7.240	7.606		

aSignal for the terminal HN not observed.
Table S35. The 1H Chemical Shift Assignments for Peptide HPTFOrN Aad

Residue	HN	Hα	Hβ	Others
Ac-	2.078			
Cys	8.455	5.221	2.643	3.169
Arg1	8.760	4.687	1.841	Hγ: 1.539, 1.684; Hδ: 3.186; HNt: 7.125
Thr2	8.585	4.985	3.939	Hγ: 1.076
Val3	9.102	4.434	1.969	Hγ: 0.815
Orn4	8.555	4.951	1.711	Hγ: 1.554, 1.622; Hδ: 2.916
Val5	8.827	4.577	1.936	Hγ: 0.885
D-Pro6	4.375		1.970	Hγ: 2.035, 2.137; Hδ: 3.731, 3.864
Gly7	8.729		3.930	
Orn8	7.938	4.710	1.835	Hγ: 1.695; Hδ: 3.009; HNt: 7.614
Aad9	8.507	4.909	1.587	Hγ: 2.081; Hδ: 1.358, 1.486
Ile10	9.084	4.493	1.842	Hγ: 1.108, 1.330, 0.852(Me); Hδ: 0.785
Leu11	8.434	4.710	1.846	Hγ: 1.657; Hδ: 0.781, 0.815
Gln12	9.219	4.660	2.214	Hγ: 1.875, 2.074; HNt: 6.829, 7.316
Cys	8.995	5.086	3.001	
NH2	7.242	7.605		

aSignal for the terminal HN not observed.

Table S36. The 1H Chemical Shift Assignments for Peptide HPTF Lys Aad

Residue	HN	Hα	Hβ	Others
Ac-	2.079			
Cys	8.445	5.221	2.655	3.168
Arg1	8.763	4.674	1.841	Hγ: 1.538, 1.687; Hδ: 3.182 HNt: 7.127
Thr2	8.577	4.991	3.941	Hγ: 1.079
Val3	9.067	4.430	1.975	Hγ: 0.811, 0.850
Lys4	8.470	4.957	1.599	Hγ: 1.193, 1.250; Hδ: 2.859, 2.899
Val5	8.805	4.580	1.937	Hγ: 0.880, 0.908
D-Pro6	4.364		1.959	Hγ: 2.040, 2.141; Hδ: 3.776, 3.861
Gly7	8.666	3.842	3.974	
Orn8	7.933	4.694	1.807	Hγ: 1.686; Hδ: 3.008; HNt: 7.618
Aad9	8.545	4.809	1.598	Hγ: 1.373, 1.487; Hδ: 2.073, 2.112
Ile10	9.139	4.479	1.850	Hγ: 1.128, 1.343, 0.851 (Me); Hδ: 0.787
Leu11	8.403	4.714	1.657	Hγ: 1.485; Hδ: 0.782, 0.817
Gln12	9.213	4.664	1.879	Hγ: 2.210, 2.268; HNt: 6.826, 7.312
Cys	8.981	5.084	2.999	3.132
NH2	7.238	7.606		

aSignal for the terminal HN not observed.
Table S37. The $^3J_{HN\alpha}$ (Hz) Values of the HPTXaaAsp Peptides

Residue	Xaa	Dap	Dab	Orn	Lys
Arg1	10	10	10	8.8	
Thr2	11	11	8.8	10	
Val3	9.4	10	11	8.8	
Xaa4	11	11	13	11	
Val5	10	12	8.9	11	
Gly7	10	9.2	10	10	
Orn8	12	11	7.6	10	
Asp9	9.2	11	10	11	
Ile10	9.2	11	8.8	11	
Leu11	12	11	10	8.8	
Gln12	10	10	10	10	

Table S38. The $^3J_{HN\alpha}$ (Hz) Values of the HPTXaaGlu Peptides

Residue	Xaa	Dap	Dab	Orn	Lys
Arg1	8.8	8.8	10	8.6	
Thr2	11	10	11	11	
Val3	9.9	9.8	10	8.4	
Xaa4	11	10	10	10	
Val5	10	9.4	10	10	
Gly7	8.4	8.8	12	8.8	
Orn8	10	10	10	10	
Glu9	9.2	9.6	10	10	
Ile10	9.0	11	11	11	
Leu11	8.8	9.9	8.6	10	
Gln12	8.6	9.0	7.7	8.6	
Table S39. The $^3J_{\text{HNN}}$ (Hz) Values of the HPTXaaAad Peptides.

Residue	Dap	Dab	Orn	Lys
Arg1	11	10	9.9	8.8
Thr2	11	11	10	11
Val3	11	10	8.6	10
Xaa4	12	10	11	8.1
Val5	12	11	11	11
Gly7	11	11	14	9.0
Orn8	11	11	10	11
Aad9	11	11	11	9.9
Ile10	10	10	11	9.4
Leu11	10	10	9.8	9.9
Gln12	9.0	10	8.4	9.8

Table S40. The $^3J_{\text{HNN}}$ (Hz) Values of the HPTUXaaAsp Peptides.

Residue	Dap	Dab	Orn	Lys
Arg1	9.8	9.8	8.8	8.6
Thr2	9.2	10	11	11
Val3	8.6	10	9.2	9.6
Xaa4	12	12	10	10
Val5	11	9.8	9.4	11
Gly7	6.8	7.7	15	7.9
Orn8	11	11	9.8	9.9
Asp9	9.8	9.4	9.8	9.8
Ile10	10	8.8	10	10
Leu11	10	9.2	9.8	9.9
Gln12	8.8	11	11	11
Table S41. The \(^3J_{HNa}\) (Hz) Values of the HPTUXaaGlu Peptides.

Residue	Dap	Dab	Orn	Lys
Arg1	9.4	10	9.2	9.0
Thr2	12	9.0	8.8	9.4
Val3	10	9.8	9.8	9.8
Xaa4	14	7.7	11	10
Val5	11	9.6	9.9	9.8
Gly7	15	9.8	9.0	8.8
Orn8	10	8.1	9.4	9.4
Glu9	9.9	9.9	8.6	8.8
Ile10	11	11	10	11
Leu11	9.9	8.2	9.9	9.9
Gln12	10	9.8	7.7	9.8

Table S42. The \(^3J_{HNa}\) (Hz) Values of the HPTUXaaAad Peptides.

Residue	Dap	Dab	Orn	Lys
Arg1	9.9	9.2	10	9.3
Thr2	13	7.3	10	10
Val3	9.8	11	11	10
Xaa4	12	11	10	9.0
Val5	8.9	11	9.9	9.8
Gly7	8.8	10	10	9.0
Orn8	9.6	9.0	8.8	9.6
Aad9	7.9	8.6	10	10
Ile10	10	10	10	11
Leu11	8.6	11	8.6	10
Gln12	9.4	10	8.8	9.9
Table S43. The $^3J_{HN\alpha}$(Hz) Values of the HPTFXaaAsp Peptides.

Residue	Xaa	Dap	Dab	Orn	Lys
Cys		9.4	11	10	10
Arg1		12	8.4	11	11
Thr2		11	11	11	11
Val3		10	12	11	11
Xaa4		11	10	13	12
Val5		12	10	11	12
Gly7		8.1	10	11	5
Orn8		12	10	11	11
Asp9		11	8.4	11	11
Ile110		10	11	11	10
Leu11		11	11	11	10
Gln12		11	11	11	10
Cys		11	11	11	12

Table S44. The $^3J_{HN\alpha}$(Hz) Values of the HPTFXaaGlu Peptides.

Residue	Xaa	Dap	Dab	Orn	Lys
Cys		11	11	10	11
Arg1		10	11	11	9.6
Thr2		11	10	9.4	11
Val3		11	12	11	12
Xaa4		12	12	11	12
Val5		11	10	11	11
Gly7		9.2	10	14	8.1
Orn8		10	11	11	12
Glu9		10	10	10	11
Ile110		11	11	11	11
Leu11		9.4	9.6	10	11
Gln12		10	12	11	10
Cys		10	11	11	12
Table S45. The $^3J_{HNa}$ (Hz) Values of the HPTFXaaAad Peptides.

Residue	Dap	Dab	Orn	Lys
Cys	12	10	10	10
Arg1	11	9.2	11	9.4
Thr2	12	10	10	11
Val3	11	10	10	11
Xaa4	11	9.6	9.2	10
Val5	10	11	10	11
Gly7	12	10	14	8.3
Orn8	12	11	11	11
Aad9	11	8.9	11	11
Ile110	12	12	10	12
Leu11	9.4	9.9	10	11
Gln12	13	11	10	10
Cys	10	12	11	11
Figure S1. The Hα chemical shift deviation for the residues in the experimental HPTXaaZbb peptides: HPTDapAsp (a), HPTDapGlu (b), HPTDapAad (c), HPTDabAsp (d), HPTDabGlu (e), HPTDabAad (f), HPTOrnAsp (g), HPTOrnGlu (h), HPTOrnAad (i), HPTLysAsp (j), HPTLysGlu (k), HPTLysAad (l).
Figure S2. The Hα chemical shift deviation for the residues in the fully folded reference HPTFxaaZbb peptides: HPTFDapAsp (a), HPTFDapGlu (b), HPTFDapAad (c), HPTFDabAsp (d), HPTFDabGlu (e), HPTFDabAad (f), HPTFOrnAsp (g), HPTFOrnGlu (h), HPTFOrnAad (i), HPTFLysAsp (j), HPTFLysGlu (k), HPTFLysAad (l).
Figure S3. The NOEs in the ROESY spectra of HPTDapAsp involving side chain protons.

Figure S4. The NOEs in the ROESY spectra of HPTFDapAsp involving side chain protons.

Figure S5. The NOEs in the ROESY spectra of HPTUDapAsp involving side chain protons.
Figure S6. The NOEs in the ROESY spectra of HPTDabAsp involving side chain protons.

Figure S7. The NOEs in the ROESY spectra of HPTFDabAsp involving side chain protons.

Figure S8. The NOEs in the ROESY spectra of HPTUDabAsp involving side chain protons.
Figure S9. The NOEs in the ROESY spectra of HPTOrnAsp involving side chain protons.

Figure S10. The NOEs in the ROESY spectra of HPTFOrnAsp involving side chain protons.

Figure S11. The NOEs in the ROESY spectra of HPTUOrnAsp involving side chain protons.
Figure S12. The NOEs in the ROESY spectra of HPTLysAsp involving side chain protons.

Figure S13. The NOEs in the ROESY spectra of HPTFLysAsp involving side chain protons.

Figure S14. The NOEs in the ROESY spectra of HPTULysAsp involving side chain protons.
Figure S15. The NOEs in the ROESY spectra of HPTDapGlu involving side chain protons.

Figure S16. The NOEs in the ROESY spectra of HPTFDapGlu involving side chain protons.

Figure S17. The NOEs in the ROESY spectra of HPTUDapGlu involving side chain protons.
Figure S18. The NOEs in the ROESY spectra of HPTDabGlu involving side chain protons.

Figure S19. The NOEs in the ROESY spectra of HPTFDabGlu involving side chain protons.

Figure S20. The NOEs in the ROESY spectra of HPTDabGlu involving side chain protons.
Figure S21. The NOEs in the ROESY spectra of HPTOrnGlu involving side chain protons.

Figure S22. The NOEs in the ROESY spectra of HPTFOrnGlu involving side chain protons.

Figure S23. The NOEs in the ROESY spectra of HPTUOrnGlu involving side chain protons.
Figure S24. The NOEs in the ROESY spectra of HPTLysGlu involving side chain protons.

Figure S25. The NOEs in the ROESY spectra of HPTFLysGlu involving side chain protons.

Figure S26. The NOEs in the ROESY spectra of HPTULysGlu involving side chain protons.
Figure S27. The NOEs in the ROESY spectra of HPTDapAad involving side chain protons.

Figure S28. The NOEs in the ROESY spectra of HPTFDapAad involving side chain protons.

Figure S29. The NOEs in the ROESY spectra of HPTUDapAad involving side chain protons.
Figure S30. The NOEs in the ROESY spectra of HPTDabAad involving side chain protons.

Figure S31. The NOEs in the ROESY spectra of HPTFDabAad involving side chain protons.

Figure S32. The NOEs in the ROESY spectra of HPTUDabAad involving side chain protons.
Figure S33. The NOEs in the ROESY spectra of HPTOrnAad involving side chain protons.

Figure S34. The NOEs in the ROESY spectra of HPTFOrnAad involving side chain protons.

Figure S35. The NOEs in the ROESY spectra of HPTUOrnAad involving side chain protons.
Figure S36. The NOEs in the ROESY spectra of HPTLysAad involving side chain protons.

Figure S37. The NOEs in the ROESY spectra of HPTFLysAad involving side chain protons.

Figure S38. The NOEs in the ROESY spectra of HPTULysAad involving side chain protons.
Figure S39. Wüthrich diagrams of the backbone NOE connectivities involving the α-protons and amide protons for peptides HPTDapAsp (a), HPTFDapAsp (b), and HPTUDapAsp (c). The line thickness reflects the NOE intensity and interproton distance; the thicker the line, the stronger the NOE intensity, the shorter the distance.
Figure S40. Wüthrich diagrams of the backbone NOE connectivities involving the α-protons and amide protons for peptides HPTDabAsp (a), HPTFDabAsp (b), and HPTUDabAsp (c). The line thickness reflects the NOE intensity and interproton distance; the thicker the line, the stronger the NOE intensity, the shorter the distance.
Figure S41. Wüthrich diagrams of the backbone NOE connectivities involving the α-protons and amide protons for peptides HPTOrnAsp (a), HPTFOrnAsp (b), and HPTUOrnAsp (c). The line thickness reflects the NOE intensity and interproton distance; the thicker the line, the stronger the NOE intensity, the shorter the distance.
Figure S42. Wüthrich diagrams of the backbone NOE connectivities involving the α-protons and amide protons for peptides HPTLysAsp (a), HPTFLysAsp (b), and HPTULysAsp (c). The line thickness reflects the NOE intensity and interproton distance; the thicker the line, the stronger the NOE intensity, the shorter the distance.
Figure S43. Wüthrich diagrams of the backbone NOE connectivities involving the α-protons and amide protons for peptides HPTDapGlu (a), HPTFDapGlu (b), and HPTUDapGlu (c). The line thickness reflects the NOE intensity and interproton distance; the thicker the line, the stronger the NOE intensity, the shorter the distance.
Figure S44. Wüthrich diagrams of the backbone NOE connectivities involving the α-protons and amide protons for peptides HPTDabGlu (a), HPTFDabGlu (b), and HPTUDabGlu (c). The line thickness reflects the NOE intensity and interproton distance; the thicker the line, the stronger the NOE intensity, the shorter the distance.
Figure S45. Wüthrich diagrams of the backbone NOE connectivities involving the α-protons and amide protons for peptides HPTOrnGlu (a), HPTFOrnGlu (b), and HPTUDrnGlu (c). The line thickness reflects the NOE intensity and interproton distance; the thicker the line, the stronger the NOE intensity, the shorter the distance.
Figure S46. Wüthrich diagrams of the backbone NOE connectivities involving the α-protons and amide protons for peptides HPTLysGlu (a), HPTFLysGlu (b), and HPTULysGlu (c). The line thickness reflects the NOE intensity and interproton distance; the thicker the line, the stronger the NOE intensity, the shorter the distance.
Figure S47. Wüthrich diagrams of the backbone NOE connectivities involving the α-protons and amide protons for peptides HPTDapAad (a), HPTFDapAad (b), and HPTUDapAad (c). The line thickness reflects the NOE intensity and interproton distance; the thicker the line, the stronger the NOE intensity, the shorter the distance.
Figure S48. Wüthrich diagrams of the backbone NOE connectivities involving the α-protons and amide protons for peptides HPTDabAad (a), HPTFDabAad (b), and HPTUDabAad (c). The line thickness reflects the NOE intensity and interproton distance; the thicker the line, the stronger the NOE intensity, the shorter the distance.
Figure S49. Wüthrich diagrams of the backbone NOE connectivities involving the α-protons and amide protons for peptides HPTOrnAad (a), HPTFOrnAad (b), and HPTUOrnAad (c). The line thickness reflects the NOE intensity and interproton distance; the thicker the line, the stronger the NOE intensity, the shorter the distance.
Figure S50. Wüthrich diagrams of the backbone NOE connectivities involving the α-protons and amide protons for peptides HPTLysAad (a), HPTFLysAad (b), and HPTULysAad (c). The line thickness reflects the NOE intensity and interproton distance; the thicker the line, the stronger the NOE intensity, the shorter the distance.
Figure S51. The fraction folded of the residues in HPTXaaZbb peptides. HPTDapAsp (a), HPTDapGlu (b), HPTDapAad (c), HPTDabAsp (d), HPTDabGlu (e), HPTDabAad (f), HPTOrnAsp (g), HPTOrnGlu (h), HPTOrnAad (i), HPTLysAsp (j), HPTLysGlu (k), HPTLysAad (l).
Figure S52. The ΔG_{fold} of the residues in HPTXaaZbb peptides. HPTDapAsp (a), HPTDapGlu (b), HPTDapAad (c), HPTDabAsp (d), HPTDabGlu (e), HPTDabAad (f), HPTOrnAsp (g), HPTOrnGlu (h), HPTOrnAad (i), HPTLysAsp (j), HPTLysGlu (k), HPTLysAad (l).
Figure S53. The low energy conformations for peptide HPTAadDab from the side chain conformational analysis by molecular mechanics calculations.
Figure S54. The low energy conformations for peptide HPTDabAad from the side chain conformational analysis by molecular mechanics calculations.
Material and Methods

General Section

All reagents and solvents were used without purification. Diisopropylethylamine (DIEA), piperidine, trifluoroacetic acid (TFA), acetic anhydride (Ac₂O) were purchased from Acros. Nα-Fmoc-Nβ-Boc-L-2,3-diaminopropionic acid, Nα-Fmoc-Nγ-Boc-L-2,4-diaminobutyric acid, Nα-Fmoc-D-proline, dimethylformamide (DMF), methanol, and acetonitrile were purchased from Merck. Nα-Fmoc-aminoacidipic acid-δ-t-butyl ester was from BaChem. Nα-Fmoc-amino acids, 1-hydroxybenzotriazole (HOBt), 2-(1H-Benzotriazole-1-yl)-1, 3, 3-tetramethylyluronium hexafluorophosphate (HBTU), NovaSyn® TGR resin were from NovaBiochem. Hexanes were from Duksan. Analytical reverse phase (RP)-HPLC was performed on an Agilent 1200 series chromatography system using a Vydac C₁₈ column (4.6 mm diameter, 250 mm length). Preparative RP-HPLC was performed on Waters Breeze chromatography system using a Seppak® plus short tC₁₈ cartridges, Vydac C₄ or C₁₈ column (22 mm diameter, 250 mm length) Mass spectrometry of the peptides was performed on a matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) (Bruker BIFLEX) using α-cyano-4-hydroxycinnamic acid as the matrix. 2-Dimensional nuclear magnetic resonance spectroscopy experiments were performed on the Bruker AV III 800MHz spectrometer.

Peptide Synthesis

The peptides were synthesized by solid phase peptide synthesis using Fmoc-based chemistry [1, 2]. NovaSyn® TGR resin (0.050 mmol) was swollen in N, N-dimethylformamide (DMF, 3 mL) for 30 minutes. A mixture of 3 equivalents of the appropriately protected Fmoc-amino acid, HOBt, and HBTU was dissolved in DMF (1 mL). Diisopropylethylamine (DIEA, 8 equivalents) was then added to the solution and mixed thoroughly. The solution was then applied to the resin. The vial that contained the solution was rinsed with DMF (5 mL, 5x1 min). The Fmoc-group was then removed by 20% piperidine/DMF (5 mL, 3x8 min). After the final residue was coupled, a solution of acetic anhydride (20 equivalents), DIEA (20 equivalents), and DMF (3 mL) was added to resin for capping. The reaction was shaken for 2 hours.

Peptides were deprotected and cleaved off the resin by treating the resin with 5 mL 95:5 trifluoroacetic acid (TFA)/triisopropylsilane and shaken for 2 hours. For Cys-containing peptides, 5 mL 90:5:5 trifluoroacetic acid (TFA)/triisopropylsilane/ethanedithiol was used instead. The solution was then filtered through glass wool and the resin was washed with TFA (3x1.5 mL). The combined filtrate was evaporated gently by an air pump (nitrogen gas was used for the Cys-containing peptides). The resulting material was washed with hexanes
(3x3 mL), dissolved in water, and lyophilized. The peptide (1 mg/mL, aqueous solution) was
analyzed using analytical RP-HPLC on a 25 cm C18 column (dia 4.6 mm) with flow rate 1
mL/min, temperature 25°C, linear 1%/min gradient from 100% A to 0% A (solvent A: 99.9% water, 0.1% TFA; solvent B: 90% acetonitrile, 10% water, 0.1% TFA). The disulfide bond of the Cys-containing HPTFXaaZbb peptides were formed via charcoal mediated air
oxidation [3]. Peptides were purified to higher than 95% purity by Sep-Pak® Plus Short tC18
 cartridges using an appropriate percentage of B solvent and by reverse phase HPLC using a
preparative C4 and C18 columns with flow rate 10 mL·min⁻¹, temperature 25°C, linear 0.5
%·min⁻¹ gradient. Appropriate linear gradients of solvent A and solvent B were used for each
peptide to place the retention time for the desired peptide between 20 and 30 minutes. These
gradients are listed individually for each peptide (vide infra); for example, PLG15_25 was
used to purify HPTDapAsp using a C18 column, representing the linear gradient from 15 % B
to 25 % B (flow rate 10 mL·min⁻¹, temperature 25°C, linear 0.5 %·min⁻¹ gradient). The
identity of the peptide was confirmed by MALDI-TOF.

HPTDapAsp (Ac-Arg Thr Val Dap Val D-Pro Gly Asp Ile Leu Gln-NH₂)

The peptide was synthesized using 200.2 mg (0.050 mmol) of NovaSyn® TGR resin.
The synthesis gave 286.6 mg of resin (99.2% yield). The cleavage yielded 52.6 mg of crude
peptide (87.0% yield). The peptide was purified by preparative RP-HPLC using a C4
(PLG8_18) and a C18 column (PLG15_25) to give a 10.6 mg of pure peptide (96.9% purity).
Retention time on analytical RP-HPLC was 27.4 minutes. The identity of the peptide was
confirmed by MALDI-TOF mass spectrometry. Calculated for C₅₈H₁₀₃N₁₉O₁₇ [MH]⁺: 1338.785; observed: 1338.776. The concentration of the peptide for NMR analysis was 10.5
mM.

HPTDabAsp (Ac-Arg Thr Val Dab Val D-Pro Gly Orn Asp Ile Leu Gln-NH₂)

The peptide was synthesized using 203.9 mg (0.051 mmol) of NovaSyn® TGR resin.
The synthesis gave 293.0 mg of resin (99.2% yield). The cleavage yielded 55.3 mg of crude
peptide (88.0% yield). The peptide was purified by preparative RP-HPLC using a C4
(PLG7_17) and a C18 column (PLG15_25) to give a 12.3 mg of pure peptide (96.1% purity).
Retention time on analytical RP-HPLC was 27.4 minutes. The identity of the peptide was
confirmed by MALDI-TOF mass spectrometry. Calculated for C₅₉H₁₀₅N₁₉O₁₇ [MH]⁺: 1352.801; observed: 1352.822. The concentration of the peptide for NMR analysis was 10.5
mM.

HPTOrnAsp (Ac-Arg Thr Val Orn Val D-Pro Gly Orn Asp Ile Leu Gln-NH₂)

The peptide was synthesized using 204.8 mg (0.051 mmol) of NovaSyn® TGR resin.
The synthesis gave 291.8 mg of resin (87.8% yield). The cleavage yielded 57.3 mg of crude
peptide (75.8% yield). The peptide was purified by preparative RP-HPLC using a C4 column
to give a 18.9 mg of pure peptide (95.9% purity). Retention time on analytical RP-HPLC was 27.9 minutes. The identity of the peptide was confirmed by MALDI-TOF mass spectrometry. Calculated for C_{60}H_{107}N_{19}O_{17} [MH]^{+}: 1366.817; observed: 1367.091. The concentration of the peptide for NMR analysis was 9.9 mM.

HPTLysAsp (Ac-Arg Thr Val Lys Val ^D^Pro Gly Orn Asp Ile Leu Gln-NH_{2})

The peptide was synthesized using 200.0 mg (0.050 mmol) of NovaSyn^®^ TGR resin. The synthesis gave 291.6 mg of resin (>99% yield). The cleavage yielded 57.0 mg of crude peptide (83.0% yield). The peptide was purified by preparative RP-HPLC using a C4 (PLG7_17) and a C18 column (PLG16_26) to give 7.4 mg of pure peptide (96.0% purity). Retention time on analytical RP-HPLC was 27.9 minutes. The identity of the peptide was confirmed by MALDI-TOF mass spectrometry. Calculated for C_{60}H_{107}N_{19}O_{17} [MH]^{+}: 1366.817; observed: 1367.091. The concentration of the peptide for NMR analysis was 9.9 mM.

HPTDapGlu (Ac-Arg Thr Val Dap Val ^D^Pro Gly Orn Glu Ile Leu Gln-NH_{2})

The peptide was synthesized using 207.3 mg (0.052 mmol) of NovaSyn^®^ TGR resin. The synthesis gave 300.1 mg of resin (93.7% yield). The cleavage yielded 52.4 mg of crude peptide (80.0% yield). The peptide was purified by preparative RP-HPLC using a C4 (PLG6_16) and a C18 column (PLG15_25) to give 9.4 mg of pure peptide (97.2% purity). Retention time on analytical RP-HPLC was 26.7 minutes. The identity of the peptide was confirmed by MALDI-TOF mass spectrometry. Calculated for C_{59}H_{105}N_{19}O_{17} [MH]^{+}: 1352.801; observed: 1352.869. The concentration of the peptide for NMR analysis was 11.0 mM.

HPTDabGlu (Ac-Arg Thr Val Dab Val ^D^Pro Gly Orn Glu Ile Leu Gln-NH_{2})

The peptide was synthesized using 211.0 mg (0.053 mmol) of NovaSyn^®^ TGR resin. The synthesis gave 292.4 mg of resin (98.1% yield). The cleavage yielded 48.6 mg of crude peptide (85.0% yield). The peptide was purified by preparative RP-HPLC using a C4 (PLG6_16) and a C18 column (PLG15_25) to give 10.5 mg of pure peptide (95.7% purity). Retention time on analytical RP-HPLC was 26.9 minutes. The identity of the peptide was confirmed by MALDI-TOF mass spectrometry. Calculated for C_{60}H_{107}N_{19}O_{17} [MH]^{+}: 1366.817; observed: 1366.929. The concentration of the peptide for NMR analysis was 15.4 mM.

HPTOrnGlu (Ac-Arg Thr Val Orn Val ^D^Pro Gly Orn Glu Ile Leu Gln-NH_{2})

The peptide was synthesized using 200.5 mg (0.050 mmol) of NovaSyn^®^ TGR resin. The synthesis gave 293.4 mg of resin (99.6% yield). The cleavage yielded 52.8 mg of crude peptide (88.0% yield). The peptide was purified by preparative RP-HPLC using a C4
(PLG8_18) and a C18 column (PLG15_25) to give 9.1 mg of pure peptide (95.9% purity). Retention time on analytical RP-HPLC was 27.0 minutes. The identity of the peptide was confirmed by MALDI-TOF mass spectrometry. Calculated for C_{61}H_{109}N_{19}O_{17} [MH]^+: 1380.832; observed: 1381.082. The concentration of the peptide for NMR analysis was 13.2 mM.

HPTLysGlu (Ac-Arg Thr Val Lys Val DPro Gly Orn Glu Leu Gln-NH$_2$)

The peptide was synthesized using 207.2 mg (0.052 mmol) of NovaSyn® TGR resin. The synthesis gave 303.3 mg of resin (99.5% yield). The cleavage yielded 52.0 mg of crude peptide (76.0% yield). The peptide was purified by preparative RP-HPLC using a C4 (PLG5_15) and a C18 column (PLG15_25) to give 9.1 mg of pure peptide (95.9% purity). Retention time on analytical RP-HPLC was 27.6 minutes. The identity of the peptide was confirmed by MALDI-TOF mass spectrometry. Calculated for C_{60}H_{111}N_{19}O_{17} [MH]^+: 1394.848; observed: 1395.096. The concentration of the peptide for NMR analysis was 10.1 mM.

HPTDapAad (Ac-Arg Thr Val Dap Val DPro Gly Orn Aad Leu Gln-NH$_2$)

The peptide was synthesized using 200.9 mg (0.050 mmol) of NovaSyn® TGR resin. The synthesis gave 277.9 mg of resin (73.3% yield). The cleavage yielded 30.6 mg of crude peptide (51.0% yield). The peptide was purified by preparative RP-HPLC using Seppak® plus short tC$_{18}$ cartridges (35% B) and a C18 column (PLG17_27) to 96.0% purity (15.1 mg). Retention time on analytical RP-HPLC was 27.2 minutes. The identity of the peptide was confirmed by MALDI-TOF mass spectrometry. Calculated for C$_{60}$H$_{107}$N$_{19}$O$_{17}$ [MH]$^+$: 1366.817; observed: 1366.754. The concentration of the peptide for NMR analysis was 10.0 mM.

HPTDabAad (Ac-Arg Thr Val Dab Val DPro Gly Orn Aad Leu Gln-NH$_2$)

The peptide was synthesized using 200.5 mg (0.050 mmol) of NovaSyn® TGR resin. The synthesis gave 270.8 mg of resin (72.0% yield). The cleavage yielded 33.2 mg of crude peptide (56.0% yield). The peptide was purified by preparative RP-HPLC using Seppak® plus short tC$_{18}$ cartridges (35% B) and a C18 column (PLG17_27) to 96.5% purity (11.3 mg). Retention time on analytical RP-HPLC was 27.6 minutes. The identity of the peptide was confirmed by MALDI-TOF mass spectrometry. Calculated for C$_{61}$H$_{109}$N$_{19}$O$_{17}$ [MH]$^+$: 1380.832; observed: 1380.825. The concentration of the peptide for NMR analysis was 10.0 mM.

HPTOrnAad (Ac-Arg Thr Val Orn Val DPro Gly Orn Aad Leu Gln-NH$_2$)

The peptide was synthesized using 200.8 mg (0.050 mmol) of NovaSyn® TGR resin. The synthesis gave 271.5 mg of resin (71.8% yield). The cleavage yielded 37.3 mg of crude
The peptide (62.0% yield). The peptide was purified by preparative RP-HPLC using Seppak® plus short tC₁₈ cartridges (35% B) and a C4 column (PLG6_16) to give 8.0 mg of pure peptide (97.4% purity). Retention time on analytical RP-HPLC was 28.1 minutes. The identity of the peptide was confirmed by MALDI-TOF mass spectrometry. Calculated for C₆₂H₁₁₁N₁₉O₁₇ [MH]+: 1394.848; observed: 1395.037. The concentration of the peptide for NMR analysis was 10.4 mM.

HPTLysAad (Ac-Arg Thr Val Lys Val^DPro Gly Orn Aad Ile Leu Gln-NH₂)

The peptide was synthesized using 211.1 mg (0.053 mmol) of NovaSyn® TGR resin. The synthesis gave 301.9 mg of resin (86.3% yield). The cleavage yielded 58.2 mg of crude peptide (81.5% yield). The peptide was purified by preparative RP-HPLC using Seppak® plus short tC₁₈ cartridges (40% B) and a C18 column (PLG17_27) to give 26.5 mg of pure peptide (97.4% purity). Retention time on analytical RP-HPLC was 27.4 minutes. The identity of the peptide was confirmed by MALDI-TOF mass spectrometry. Calculated for C₆₃H₁₁₃N₁₉O₁₇ [MH]+: 1408.863; observed: 1409.219. The concentration of the peptide for NMR analysis was 10.0 mM.

HPTUDapAsp (Ac-Arg Thr Val Dip Val^LPro Gly Orn Asp Ile Leu Gln-NH₂)

The peptide was synthesized using 202.8 mg (0.051 mmol) of NovaSyn® TGR resin. The synthesis gave 299.5 mg of resin (>99% yield). The cleavage yielded 72.7 mg of crude peptide (85.0% yield). The peptide was purified by preparative RP-HPLC using Seppak® plus short tC₁₈ cartridges (25% B) and a C18 column (PLG16_26) to give 4.4 mg of pure peptide (96.9% purity). Retention time on analytical RP-HPLC was 27.9 minutes. The identity of the peptide was confirmed by MALDI-TOF mass spectrometry. Calculated for C₅₈H₁₀₃N₁₉O₁₇ [MH]+: 1338.785; observed: 1338.740. The concentration of the peptide for NMR analysis was 9.1 mM.

HPTUDabAsp (Ac-Arg Thr Val Dip Val^LPro Gly Orn Asp Ile Leu Gln-NH₂)

The peptide was synthesized using 207.6 mg (0.052 mmol) of NovaSyn TGR® resin. The synthesis gave 304.8 mg of resin (99.8% yield). The cleavage yielded 82.3 mg of crude peptide (96.0% yield). The peptide was purified by preparative RP-HPLC using Seppak® plus short tC₁₈ cartridges (25% B) and a C18 column (PLG16_26) to give 4.3 mg of pure peptide (95.7% purity). Retention time on analytical RP-HPLC was 28.0 minutes. The identity of the peptide was confirmed by MALDI-TOF mass spectrometry. Calculated for C₅₉H₁₀₅N₁₉O₁₇ [MH]+: 1352.801; observed: 1352.826. The concentration of the peptide for NMR analysis was 9.3 mM.

HPTUOrnAsp (Ac-Arg Thr Val Orn Val^LPro Gly Orn Asp Ile Leu Gln-NH₂)

The peptide was synthesized using 206.8 mg (0.052 mmol) of NovaSyn® TGR resin. The synthesis gave 303.2 mg of resin (99.8% yield). The cleavage yielded 82.2 mg of crude peptide (96.0% yield). The peptide was purified by preparative RP-HPLC using Seppak® plus short tC₁₈ cartridges (25% B) and a C18 column (PLG16_26) to give 4.3 mg of pure peptide (95.7% purity). Retention time on analytical RP-HPLC was 28.0 minutes. The identity of the peptide was confirmed by MALDI-TOF mass spectrometry. Calculated for C₅₉H₁₀₅N₁₉O₁₇ [MH]+: 1352.801; observed: 1352.826. The concentration of the peptide for NMR analysis was 9.3 mM.
The synthesis gave 303.2 mg of resin (99.7% yield). The cleavage yielded 47.6 mg of crude peptide (56.0% yield). The peptide was purified by preparative RP-HPLC using Seppak® plus short tC18 cartridges (25% B) and a C18 column (PLG15_25) to give 3.8 mg of pure peptide (95.2% purity). Retention time on analytical RP-HPLC was 26.4 minutes. The identity of the peptide was confirmed by MALDI-TOF mass spectrometry. Calculated for C_{60}H_{107}N_{19}O_{17} [MH]⁺: 1366.817; observed: 1366.801. The concentration of the peptide for NMR analysis is 9.3 mM.

HPTULysAsp (Ac-Arg Thr Val Lys Val ¹-Pro Gly Orn Asp Ile Leu Gln-NH₂)

The peptide was synthesized using 210.8 mg (0.053 mmol) of NovaSyn® TGR resin. The synthesis gave 313.7 mg of resin (>99.9% yield). The cleavage yielded 60.9 mg of crude peptide (67.0% yield). The peptide was purified by preparative RP-HPLC using Seppak® plus short tC18 cartridges (25% B) and a C18 column (PLG16_26) to give 5.2 mg of pure peptide (95.0% purity). Retention time on analytical RP-HPLC was 27.7 minutes. The identity of the peptide was confirmed by MALDI-TOF mass spectrometry. Calculated for C_{61}H_{109}N_{19}O_{17} [MH]⁺: 1380.833; observed: 1366.880. The concentration of the peptide for NMR analysis was 8.0 mM.

HPTUDapGlu (Ac-Arg Thr Val Dap Val ¹-Pro Gly Orn Glu Ile Leu Gln-NH₂)

The peptide was synthesized using 213.8 mg (0.053 mmol) of NovaSyn® TGR resin. The synthesis gave 303.8 mg of resin (>99% yield). The cleavage yielded 72.7 mg of crude peptide (85.0% yield). The peptide was purified by preparative RP-HPLC using a C4 column (PLG5_15) to give 11.6 mg of pure peptide (95.7% purity). Retention time on analytical RP-HPLC was 26.1 minutes. The identity of the peptide was confirmed by MALDI-TOF mass spectrometry. Calculated for C_{59}H_{103}N_{19}O_{17} [MH]⁺: 1352.801; observed: 1353.004. The concentration of the peptide for NMR analysis was 10.2 mM.

HPTUDabGlu (Ac-Arg Thr Val Dab Val ¹-Pro Gly Orn Glu Ile Leu Gln-NH₂)

The peptide was synthesized using 211.7 mg (0.053 mmol) of NovaSyn® TGR resin. The synthesis gave 308.1 mg of resin (>99% yield). The cleavage yielded 72.7 mg of crude peptide (85.0% yield). The peptide was purified by preparative RP-HPLC using a C4 column (PLG15_25) to give 12.0 mg of pure peptide (96.8% purity). Retention time on analytical RP-HPLC was 26.2 minutes. The identity of the peptide was confirmed by MALDI-TOF mass spectrometry. Calculated for C_{60}H_{107}N_{19}O_{17} [MH]⁺: 1366.817; observed: 1366.909. The concentration of the peptide for NMR analysis was 9.7 mM.

HPTUOrnGlu (Ac-Arg Thr Val Orn Val ¹-Pro Gly Orn Glu Ile Leu Gln-NH₂)

The peptide was synthesized using 213.1 mg (0.053 mmol) of NovaSyn® TGR resin. The synthesis gave 312.9 mg of resin (>99% yield). The cleavage yielded 72.7 mg of crude peptide (85.0% yield). The peptide was purified by preparative RP-HPLC using a C4 column (PLG15_25) to give 12.0 mg of pure peptide (96.8% purity). Retention time on analytical RP-HPLC was 26.2 minutes. The identity of the peptide was confirmed by MALDI-TOF mass spectrometry. Calculated for C_{60}H_{107}N_{19}O_{17} [MH]⁺: 1366.817; observed: 1366.909. The concentration of the peptide for NMR analysis was 9.7 mM.
peptide (85.0% yield). The peptide was purified by preparative RP-HPLC using a C4 column (PLG4_14) to give 15.4 mg of pure peptide (97.2% purity). Retention time on analytical RP-HPLC was 25.9 minutes. The identity of the peptide was confirmed by MALDI-TOF mass spectrometry. Calculated for C_{61}H_{109}N_{19}O_{17}[MH]^+: 1380.832; observed: 1380.929. The concentration of the peptide for NMR analysis was 13.2 mM.

HPTULysGlu (Ac-Arg Thr Val Lys Val Pro Gly Orn Glu Ile Leu Gln-NH₂)

The peptide was synthesized using 210.0 mg (0.053 mmol) of NovaSyn® TGR resin. The synthesis gave 304.3 mg of resin (>99% peptide). The cleavage yielded 72.7 mg of crude peptide (85.0% yield). The peptide was purified by preparative RP-HPLC using a C4 column (PLG4_14) to give 18.6 mg of pure peptide (96.6% purity). Retention time on analytical RP-HPLC was 25.9 minutes. The identity of the peptide was confirmed by MALDI-TOF mass spectrometry. Calculated for C_{62}H_{111}N_{19}O_{17}[MH]^+: 1394.848; observed: 1394.983. The concentration of the peptide for NMR analysis was 13.2 mM.

HPTUDapAad (Ac-Arg Thr Val Dap Val Pro Gly Orn Aad Ile Leu Gln-NH₂)

The peptide was synthesized using 202.8 mg (0.051 mmol) of NovaSyn® TGR resin. The synthesis gave 291.7 mg of resin (>99% yield). The cleavage yielded 72.7 mg of crude peptide (85.0% yield). The peptide was purified by preparative RP-HPLC using a C4 column (PLG4_14) to give 4.1 mg of pure peptide (95.7% purity). Retention time on analytical RP-HPLC was 26.2 minutes. The identity of the peptide was confirmed by MALDI-TOF mass spectrometry. Calculated for C_{60}H_{107}N_{19}O_{17}[MH]^+: 1366.817; observed: 1366.897. The concentration of the peptide for NMR analysis was 6.0 mM.

HPTUDabAad (Ac-Arg Thr Val Dab Val Pro Gly Orn Aad Ile Leu Gln-NH₂)

The peptide was synthesized using 202.8 mg (0.051 mmol) of NovaSyn® TGR resin. The synthesis gave 299.5 mg of resin (>99% yield). The cleavage yielded 72.7 mg of crude peptide (85.0% yield). The peptide was purified by preparative RP-HPLC using a C4 column (PLG4_14) to give 7.8 mg of pure peptide (95.2% purity). Retention time on analytical RP-HPLC was 26.0 minutes. The identity of the peptide was confirmed by MALDI-TOF mass spectrometry. Calculated for C_{61}H_{109}N_{19}O_{17}[MH]^+: 1380.832; observed: 1380.958. The concentration of the peptide for NMR analysis was 11.0 mM.

HPTUOrnAad (Ac-Arg Thr Val Orn Val Pro Gly Orn Aad Ile Leu Gln-NH₂)

The peptide was synthesized using 202.8 mg (0.051 mmol) of NovaSyn® TGR resin. The synthesis gave 299.5 mg of resin (>99% yield). The cleavage yielded 72.7 mg of crude peptide (85.0% yield). The peptide was purified by preparative RP-HPLC using a C4 column (PLG3_13) to give 6.7 mg of pure peptide (95.8% purity). Retention time on analytical RP-HPLC was 26.0 minutes. The identity of the peptide was confirmed by MALDI-TOF mass spectrometry. Calculated for C_{61}H_{109}N_{19}O_{17}[MH]^+: 1380.832; observed: 1380.958. The concentration of the peptide for NMR analysis was 11.0 mM.
mass spectrometry. Calculated for $\text{C}_{62}\text{H}_{111}\text{N}_{19}\text{O}_{17} [\text{MH}]^+ : 1394.848$; observed: 1395.985. The concentration of the peptide for NMR analysis was 9.6 mM.

HPTULysAad (Ac-Arg Thr Val Lys Val Pro Gly Orn Aad Ile Leu Gln-NH$_2$)

The peptide was synthesized using 202.8 mg (0.051 mmol) of NovaSyn® TGR resin. The synthesis gave 299.5 mg of resin (>99% yield). The cleavage yielded 72.7 mg of crude peptide (85.0%). The peptide was purified by preparative RP-HPLC using a C4 (PLG4_14) to give 8.6 mg of pure peptide (96.7% purity). Retention time on analytical RP-HPLC was 26.2 minutes. The identity of the peptide was confirmed by MALDI-TOF mass spectrometry. Calculated for $\text{C}_{63}\text{H}_{113}\text{N}_{19}\text{O}_{17} [\text{MH}]^+: 1408.863$; observed: 1408.902. The concentration of the peptide for NMR analysis was 12.2 mM.

HPTFDapAsp (Ac-Cys Arg Thr Dap Val Pro Gly Orn Asp Ile Leu Gln Cys-NH$_2$)

The peptide was synthesized using 204.9 mg (0.051 mmol) of NovaSyn® TGR resin. The synthesis gave 351.1 mg of resin (>99% yield). The cleavage yielded 98.7 mg of crude peptide (>99% yield). Retention time on analytical RP-HPLC was 29.8 minutes. The identity of the peptide was confirmed by MALDI-TOF mass spectrometry. Calculated for $\text{C}_{64}\text{H}_{115}\text{N}_{21}\text{O}_{19}\text{S}_2 [\text{MH}]^+: 1544.802$; observed: 1544.820. The peptide was dissolved in 1 mM pH 8 phosphate, citrate, and borate buffer at a concentration of 0.1 mg/mL (~0.1 mM). Granulated charcoal was added to the peptide solution, using up to 10:1 (w/w) ratio of charcoal to peptide [3]. After stirring over air for 4 hours, the cyclized peptide was purified by preparative RP-HPLC using Seppak® plus short tC$_{18}$ cartridges (25% B) and a C18 column (PLG16_26) to give 1.6 mg of pure peptide (95.5% purity). Retention time on analytical RP-HPLC was 26.7 minutes. The identity of the peptide was confirmed by MALDI-TOF mass spectrometry. Calculated for $\text{C}_{65}\text{H}_{115}\text{N}_{21}\text{O}_{19}\text{S}_2 [\text{MH}]^+: 1542.788$; observed: 1542.886. The concentration of the peptide for NMR analysis was 2.1 mM.

HPTFDabAsp (Ac-Cys Arg Thr Dab Val Pro Gly Orn Asp Ile Leu Gln Cys-NH$_2$)

The peptide was synthesized using 203.7 mg (0.051 mmol) of NovaSyn® TGR resin. The synthesis gave 330.1 mg of resin (99.6% yield). The cleavage yielded 93.3 mg of crude peptide (>99% yield). Retention time on analytical RP-HPLC was 30.1 minutes. The identity of the peptide was confirmed by MALDI-TOF mass spectrometry. Calculated for $\text{C}_{65}\text{H}_{115}\text{N}_{21}\text{O}_{19}\text{S}_2 [\text{MH}]^+: 1558.818$; observed: 1558.629. The peptide was dissolved in 1 mM pH 8 phosphate, citrate, and borate buffer at a concentration of 0.1 mg/mL (~0.1 mM). Granulated charcoal was added to the peptide solution, using up to 10:1 (w/w) ratio of charcoal to peptide [3]. After stirring over air for 4 hours, the cyclized peptide was purified by preparative RP-HPLC using Seppak® plus short tC$_{18}$ cartridges (25% B) and a C18 column (PLG16_26) to give 2.2 mg of pure peptide (95.3% purity). Retention time on analytical RP-HPLC was 26.8 minutes. The identity of the peptide was confirmed by
MALDI-TOF mass spectrometry. Calculated for $\text{C}_{65}\text{H}_{113}\text{N}_{21}\text{O}_{19}\text{S}_2$ [MH]$: 1556.804$; observed: 1556.703. The concentration of the peptide for NMR analysis was 2.8 mM.

HPTFOrnAsp (Ac-Cys Arg Thr Orn Val $^\text{D}$Pro Gly Orn Asp Ile Leu Gln Cys-NH$_2$)

The peptide was synthesized using 209.5 mg (0.052 mmol) of NovaSyn$^\text{®}$ TGR resin. The synthesis gave 325.5 mg of resin (84.4% yield). The cleavage yielded 88.1 mg of crude peptide (>99% yield). Retention time on analytical RP-HPLC was 30.1 minutes. The identity of the peptide was confirmed by MALDI-TOF mass spectrometry. Calculated for $\text{C}_{66}\text{H}_{117}\text{N}_{21}\text{O}_{19}\text{S}_2$ [MH]$: 1572.835$; observed: 1573.083. The peptide was dissolved in 1 mM pH 8 phosphate, citrate, and borate buffer at a concentration of 1 mg/mL (~1 mM). Granulated charcoal was added to the peptide solution, using up to 10:1 (w/w) ratio of charcoal to peptide [3]. After stirring over air for 6 hours, the cyclized peptide was purified by preparative RP-HPLC using a C4 column (PLG8_18) to give 88.1 mg of pure peptide (95.9% purity). Retention time on analytical RP-HPLC was 27.2 minutes. The identity of the peptide was confirmed by MALDI-TOF mass spectrometry. Calculated for $\text{C}_{66}\text{H}_{115}\text{N}_{21}\text{O}_{19}\text{S}_2$ [MH]$: 1570.819$; observed: 1571.151. The concentration of the peptide for NMR analysis was 5.9 mM.

HPTFLysAsp (Ac-Cys Arg Thr Lys Val $^\text{D}$Pro Gly Orn Asp Ile Leu Gln Cys-NH$_2$)

The peptide was synthesized using 201.1 mg (0.050 mmol) of NovaSyn$^\text{®}$ TGR resin. The synthesis gave 329.9 mg of resin (99.8% yield). The cleavage yielded 94.6 mg of crude peptide (>99% yield). Retention time on analytical RP-HPLC was 30.6 minutes. The identity of the peptide was confirmed by MALDI-TOF mass spectrometry. Calculated for $\text{C}_{67}\text{H}_{119}\text{N}_{21}\text{O}_{19}\text{S}_2$ [MH]$: 1586.849$; observed: 1586.813. The peptide was dissolved in 1 mM pH 8 phosphate, citrate, and borate buffer at a concentration of 0.1 mg/mL (~0.1 mM). Granulated charcoal was added to the peptide solution, using up to 10:1 (w/w) ratio of charcoal to peptide [3]. After stirring over air for 4 hours, the cyclized peptide was purified by preparative RP-HPLC using Seppak$^\text{®}$ plus short tC$_{18}$ cartridges (25% B) and a C18 column (PLG16_26) to give 2.8 mg of pure peptide (95.9% purity). Retention time on analytical RP-HPLC was 26.9 minutes. The identity of the peptide was confirmed by MALDI-TOF mass spectrometry. Calculated for $\text{C}_{66}\text{H}_{117}\text{N}_{21}\text{O}_{19}\text{S}_2$ [MH]$: 1584.835$; observed: 1584.713. The concentration of the peptide for NMR analysis was 3.5 mM.

HPTFDapGlu (Ac-Cys Arg Thr Dap Val $^\text{D}$Pro Gly Orn Glu Ile Leu Gln Cys-NH$_2$)

The peptide was synthesized using 204.2 mg (0.051 mmol) of NovaSyn$^\text{®}$ TGR resin. The synthesis gave 315.4 mg of resin (98.7% yield). The cleavage yielded 79.5 mg of crude peptide (>99% yield). Retention time on analytical RP-HPLC was 29.2 minutes. The identity of the peptide was confirmed by MALDI-TOF mass spectrometry. Calculated for $\text{C}_{65}\text{H}_{115}\text{N}_{21}\text{O}_{19}\text{S}_2$ [MH]$: 1558.818$; observed: 1558.841. The peptide was dissolved in 1 mM...
pH 8 phosphate, citrate, and borate buffer at a concentration of 0.1 mg/mL (~0.1 mM). Granulated charcoal was added to the peptide solution, using up to 10:1 (w/w) ratio of charcoal to peptide [3]. After stirring over air for 4 hours, the cyclized peptide was purified by preparative RP-HPLC using Seppak® plus short tC₁₈ cartridges (25% B) and a C₁₈ column (PLG16_26) to give 7.4 mg of pure peptide (96.6% purity). Retention time on analytical RP-HPLC was 25.9 minutes. The identity of the peptide was confirmed by MALDI-TOF mass spectrometry. Calculated for C₆₅H₁₁₃N₂₁O₁₉S₂ [MH]+: 1556.804; observed: 1556.972. The concentration of the peptide for NMR analysis was 9.9 mM.

HPTFDabGlu (Ac-Cys Arg Thr Dab Val DPro Gly Orn Glu Ile Leu Gln Cys-NH₂)

The peptide was synthesized using 204.2 mg (0.051 mmol) of NovaSyn® TGR resin. The synthesis gave 313.7 mg of resin (98.6% yield). The cleavage yielded 74.7 mg of crude peptide (>99% yield). Retention time on analytical RP-HPLC was 29.4 minutes. The peptide was dissolved in 1 mM pH 8 phosphate, citrate, and borate buffer at a concentration of 0.1 mg/mL (~0.1 mM). Granulated charcoal was added to the peptide solution, using up to 10:1 (w/w) ratio of charcoal to peptide [3]. After stirring over air for 4 hours, the cyclized peptide was purified by preparative RP-HPLC using Seppak® plus short tC₁₈ cartridges (25% B) and a C₁₈ column (PLG16_26) to give 4.0 mg of pure peptide (96.7% purity). Retention time on analytical RP-HPLC was 25.9 minutes. The identity of the peptide was confirmed by MALDI-TOF mass spectrometry. Calculated for C₆₆H₁₁₅N₂₁O₁₉S₂ [MH]+: 1570.819; observed: 1571.019. The concentration of the peptide for NMR analysis was 5.3 mM.

HPTFOrnGlu (Ac-Cys Arg Thr Val Orn Val DPro Gly Orn Glu Ile Leu Gln Cys-NH₂)

The peptide was synthesized using 205.1 mg (0.049 mmol) of NovaSyn® TGR resin. The synthesis gave 312.7 mg of resin (82.8% yield). The cleavage yielded 91.4 mg of crude peptide (>99.9% yield). Retention time on analytical RP-HPLC was 29.5 minutes. The identity of the peptide was confirmed by MALDI-TOF mass spectrometry. Calculated for C₆₇H₁₁₉N₂₁O₁₉S₂ [MH]+: 1583.835; observed: 1585.075. The concentration of the peptide for NMR analysis was 6.4 mM.
HPTFLysGlu (Ac-Cys Arg Thr Lys Val D-Pro Gly Orn Glu Ile Leu Gln Cys-NH₂)

The peptide was synthesized using 200.0 mg (0.050 mmol) of NovaSyn® TGR resin. The synthesis gave 349.8 mg of resin (>99% yield). The cleavage yielded 76.2 mg of crude peptide (70.0% yield). Retention time on analytical RP-HPLC was 30.1 minutes. The identity of the peptide was confirmed by MALDI-TOF mass spectrometry. Calculated for C₆₈H₁₂₁N₂₁O₁₉S₂ [MH]+: 1600.865; observed: 1600.896. The peptide was dissolved in 1 mM pH 8 phosphate, citrate, and borate buffer at a concentration of 0.1 mg/mL (~0.1 mM). Granulated charcoal was added to the peptide solution, using up to 10:1 (w/w) ratio of charcoal to peptide [3]. After stirring over air for 4 hours, the cyclized peptide was purified by preparative RP-HPLC using a C₄ (PLG8_18) and a C18 column (PLG15_25) to give 2.0 mg of pure peptide (96.5% purity). Retention time on analytical RP-HPLC was 26.75 minutes. The identity of the peptide was confirmed by MALDI-TOF mass spectrometry. Calculated for C₆₈H₁₁₉N₂₁O₁₉S₂ [MH]+: 1598.851; observed: 1599.250. The concentration of the peptide for NMR analysis was 2.5 mM.

HPTFDapAad (Ac-Cys Arg Thr Dap Val D-Pro Gly Orn Aad Ile Leu Gln Cys-NH₂)

The peptide was synthesized using 203.8 mg (0.051 mmol) of NovaSyn® TGR resin. The synthesis gave 333.1 mg of resin (99.8% yield). The cleavage yielded 84.6 mg of crude peptide (>99% yield). Retention time on analytical RP-HPLC was 29.9 minutes. The identity of the peptide was confirmed by MALDI-TOF mass spectrometry. Calculated for C₆₆H₁₁₇N₂₁O₁₉S₂ [MH]+: 1572.834; observed: 1572.528. The peptide was dissolved in 1 mM pH 8 phosphate, citrate, and borate buffer at a concentration of 0.1 mg/mL (~0.1 mM). Granulated charcoal was added to the peptide solution, using up to 10:1 (w/w) ratio of charcoal to peptide [3]. After stirring over air for 4 hours, the cyclized peptide was purified by preparative RP-HPLC using Seppak® plus short tC₁₈ cartridges (25% B) and a C18 column (PLG16_26) to give 7.3 mg of pure peptide (96.5% purity). Retention time on analytical RP-HPLC was 27.0 minutes. The identity of the peptide was confirmed by MALDI-TOF mass spectrometry. Calculated for C₆₆H₁₁₅N₂₁O₁₉S₂ [MH]+: 1570.819; observed: 1570.923. The concentration of the peptide for NMR analysis was 9.3 mM.

HPTFDabAad (Ac-Cys Arg Thr Dap Val D-Pro Gly Orn Aad Ile Leu Gln Cys-NH₂)

The peptide was synthesized using 201.8 mg (0.050 mmol) of NovaSyn® TGR resin. The synthesis gave 322.4 mg of resin (99.3% yield). The cleavage yielded 80.7 mg of crude peptide (>99% yield). Retention time on analytical RP-HPLC was 29.8 minutes. The identity of the peptide was confirmed by MALDI-TOF mass spectrometry. Calculated for C₆₇H₁₁₉N₂₁O₁₉S₂ [MH]+: 1586.849; observed: 1586.415. The peptide was dissolved in 1 mM pH 8 phosphate, citrate, and borate buffer at a concentration of 0.1 mg/mL (~0.1 mM). Granulated charcoal was added to the peptide solution, using up to 10:1 (w/w) ratio of charcoal to peptide [3]. After stirring over air for 4 hours, the cyclized peptide was purified...
by preparative RP-HPLC using Seppak® plus short tC_{18} cartridges (25% B) and C_{18} column and (PLG16_26) to give 6.6 mg of pure peptide (96.7% purity). Retention time on analytical RP-HPLC was 27.1 minutes. The identity of the peptide was confirmed by MALDI-TOF mass spectrometry. Calculated for C_{67}H_{117}N_{21}O_{19}S_{2} [MH]⁺: 1584.835; observed: 1585.058. The concentration of the peptide for NMR analysis was 8.3 mM.

HPTFOrnAad (Ac-Cys Arg Thr Orn Val^{D}Pro Gly Orn Aad Ile Leu Gln Cys-NH₂)

The peptide was synthesized using 201.6 mg (0.050 mmol) of NovaSyn® TGR resin. The synthesis gave 307.7 mg of resin (80.0% yield). The cleavage yielded 69.1 mg of crude peptide (92.0% yield). Retention time on analytical RP-HPLC was 31.4 minutes. The identity of the peptide was confirmed by MALDI-TOF mass spectrometry. Calculated for C_{68}H_{121}N_{21}O_{19}S_{2} [MH]⁺: 1600.865; observed: 1601.087. The peptide was dissolved in 1 mM pH 8 phosphate, citrate, and borate buffer at a concentration of 1 mg/mL (~1 mM). Granulated charcoal was added to the peptide solution, using up to 10:1 (w/w) ratio of charcoal to peptide [3]. After stirring over air for 4 hours, the cyclized peptide was purified by preparative RP-HPLC using Seppak® plus short tC_{18} cartridges (35% B) and a C_{4} column (PLG8_{18}) to give 3.1 mg of pure peptide (96.8% purity). Retention time on analytical RP-HPLC was 28.4 minutes. The identity of the peptide was confirmed by MALDI-TOF mass spectrometry. Calculated for C_{68}H_{119}N_{21}O_{19}S_{2} [MH]⁺: 1598.851; observed: 1599.270. The concentration of the peptide for NMR analysis was 3.5 mM.

HPTFLysAad (Ac-Cys Arg Thr Lys Val^{D}Pro Gly Orn Aad Ile Leu Gln Cys-NH₂)

The peptide was synthesized using 205.4 mg (0.051 mmol) of NovaSyn® TGR resin. The synthesis gave 333.4 mg of resin (99.5% yield). The cleavage yielded 101.6 mg of crude peptide (>99% yield). Retention time on analytical RP-HPLC was 30.5 minutes. The identity of the peptide was confirmed by MALDI-TOF mass spectrometry. Calculated for C_{69}H_{121}N_{21}O_{19}S_{2} [MH]⁺: 1614.881; observed: 1614.778. The peptide was dissolved in 1 mM pH 8 phosphate, citrate, and borate buffer at a concentration of 0.1 mg/mL (~0.1 mM). Granulated charcoal was added to the peptide solution, using up to 10:1 (w/w) ratio of charcoal to peptide [3]. After stirring over air for 4 hours, the cyclized peptide was purified by preparative RP-HPLC using Seppak® plus short tC_{18} cartridges (25% B) and a C_{18} column (PLG16_26) to give 2.7 mg of pure peptide (96.9% purity). Retention time on analytical RP-HPLC was 26.9 minutes. The identity of the peptide was confirmed by MALDI-TOF mass spectrometry. Calculated for C_{69}H_{119}N_{21}O_{19}S_{2} [MH]⁺: 1612.866; observed: 1612.696. The concentration of the peptide for NMR analysis was 2.0 mM.
References

1. Atherton, E.; Fox, H.; Harkiss, D.; Logan, C. J.; Sheppard, R. C.; Williams, B. J., A mild procedure for solid phase peptide synthesis: use of fluorenylmethoxycarbonylamino-acids. *J. Chem. Soc., Chem. Commun.* 1978, 537-539.

2. Fields, G. B.; Noble, R. L., Solid phase peptide synthesis utilizing 9-fluorenylmethoxycarbonyl amino acids. *Int. J. Pept. Protein Res.* 1990, 35, 161-214.

3. Volkmer-Engert, R.; Landgraf, C.; Schneider-Mergener, J., Charcoal surface-assisted catalysis of intramolecular disulfide bond formation in peptides. *J. Pept. Res.* 1998, 51, 365-369.