Not All That Glitters Is Gold: The Paradox of CO-dependent Hydrogenogenesis in *Parageobacillus thermoglucosidasius*

Habibu Aliyu1*, Pieter de Maayer2 and Anke Neumann1*

1 Institute of Process Engineering in Life Science 2 – Technical Biology, Karlsruhe Institute of Technology, Karlsruhe, Germany, 2 School of Molecular and Cell Biology, Faculty of Science, University of the Witwatersrand, Johannesburg, South Africa

The thermophilic bacterium *Parageobacillus thermoglucosidasius* has recently gained interest due to its ability to catalyze the water gas shift reaction, where the oxidation of carbon monoxide (CO) is linked to the evolution of hydrogen (H\(_2\)) gas. This phenotype is largely predictable based on the presence of a genomic region coding for a carbon monoxide dehydrogenase (CODH—Coo) and hydrogen evolving hydrogenase (Phc). In this work, seven previously uncharacterized strains were cultivated under 50% CO and 50% air atmosphere. Despite the presence of the coo—phc genes in all seven strains, only one strain, Kp1013, oxidizes CO and yields H\(_2\). The genomes of the H\(_2\) producing strains contain unique genomic regions that code for proteins involved in nickel transport and the detoxification of catechol, a by-product of a siderophore-mediated iron acquisition system. Combined, the presence of these genomic regions could potentially drive biological water gas shift (WGS) reaction in *P. thermoglucosidasius*.

Keywords: carbon monoxide, catechol degradation, genomic loci, nickel uptake, hydrogen production, *P. thermoglucosidasius*, water gas shift reaction

INTRODUCTION

The genus *Parageobacillus* comprises a phylogenetically coherent group of thermophilic (growth *T\(_{opt}\)* range of 50–65°C) and facultative anaerobes in the family Bacillaceae (Suzuki et al., 1983; Aliyu et al., 2016, 2018; Oren and Garrity, 2019). Although they share many features, including growth temperature requirement (obligate thermophiles) with their closest relatives in the genus *Geobacillus*, *Parageobacillus* species are distinguished by a characteristic low genomic G + C content and a distinct phylogenetic clustering among several other phyllogenomic features (Aliyu et al., 2016, 2018). At present, the genus comprises six species with taxonomic standing (Najar et al., 2020), including the type species of the genus, *Parageobacillus thermoglucosidasius* (Suzuki et al., 1983; Aliyu et al., 2016).

A search of the NCBI database (21.05.2021), revealed 28 (excluding anomalous) *Parageobacillus* genome assemblies, including 16 (~57%) assemblies of *P. thermoglucosidasius* strains isolated from distinct sources. The bias toward sequencing numerous strains could be associated with a greater interest in the biotechnological potential of this species. Due to its catabolic versatility (Hussein et al., 2015), *P. thermoglucosidasius* grows optimally on a range of carbohydrates, ranging...
from the complex hemicellulosic substrates (e.g., xylan) to sugar monomers (e.g., hexoses and pentoses), making it a suitable candidate for biomass degradation in ethanologenesis workstreams (De Maayer et al., 2014; Zeiger, 2014; Brumm et al., 2015a). Thus, the organism could be explored as a source of thermostable enzymes, including carbohydrate active enzymes such as amylases and xylanases, lipases and proteases (Zhu et al., 2015). The combination of the above properties has endeared the development of several strains for various biotechnological applications (Hussein et al., 2015; Wada et al., 2014; Jiang et al., 2015). The above combination of properties has prompted further investigations in members of this species. Various studies have reported the production of hydrogen (H₂) via carbon monoxide (CO) oxidation by \(P. \ thermoglucosidasius \) strains (Table 1), thereby expanding their metabolic versatility to include gaseous substrates and the range of potential biotechnological and industrial applications for this organism. Analyses of genomes of \(P. \ thermoglucosidasius \) strains showed that they harbor a unique fifteen gene genomic region, comprising the genes \(cooCSF-phcA-L \) which code for a CODH and Ni-Fe group 4α hydrogenase, respectively (Mohr et al., 2018a,b). CODH catalyzes the oxidation of carbon monoxide (CO) to CO₂ and electrons, while the Ni-Fe hydrogenase catalyzes the reduction of protons from H₂O (Henstra et al., 2007; Antonopoulou et al., 2011; Schoelmerich and Müller, 2019). Combined, these enzymes catalyze the water gas shift (WGS) reaction (\(CO + H₂O \rightarrow CO₂ + H₂ \ \Delta G^{\circ} = -20 \ \text{kJ/mol} \ CO \)), which forms the basis for the observed H₂ evolution in the presence of CO (Mohr et al., 2018a). The demonstration of this strictly anaerobic process, a first among facultative anaerobes (Mohr et al., 2018a,b), may provide additional insight into genomic evolution and dynamics of prokaryotic phenotypes.

Recent mutagenesis studies (Adachi et al., 2020), involving the knockout of the CODH and hydrogenases loci, individually and collectively, has conclusively shown that the predicted CODH and hydrogenase genes (above) code for the enzymes that catalyze WGS in \(P. \ thermoglucosidasius \). While the above studies have confirmed the functional role of the \(coo-phc \) locus, central questions on the regulation of the process remain unclear. One outstanding question relates to the observation that one strain \(P. \ thermoglucosidasius \) DSM 21625 isolated from plant fiber lacked WGS reaction function despite harboring the CODH-hydrogenase gene locus (Mohr et al., 2018b). The absence of the phenotype was attributed, partly, to the presence of two deletions, indel 1 (17 nt) and indel 2 (22 nt) upstream of \(cooC \) and in the region between \(cooC \) and \(cooS \), respectively. These indels were speculated to include regulatory signatures that potentially prevent the expression of the locus (Mohr et al., 2018b). Other genomic differences, including the occurrence of several non-synonymous substitutions within the \(coo-phc \) locus as well as the presence of unique gene complements of unknown function in both \(P. \ thermoglucosidasius \) DSM 21625 and the hydrogenogenic strains, have been suggested to play a potential role in shaping the hydrogenogenic phenotype (Mohr et al., 2018b).

The presence of the co-localized genes coding for the CODH and hydrogen evolving Ni-Fe hydrogenase Phc, and the ability of strains that have been characterized to utilize CO and produce H₂ have, so far, led to the prediction of the latter phenotype in all studied \(P. \ thermoglucosidasius \) strains harboring these genes. For instance, in a recent review (Fukuyama et al., 2020), several strains, including the type species \(P. \ thermoglucosidasius \) DSM 2542₁ and Y4.1MC1 have been listed as potentially CO oxidizing and hydrogenogenic \(P. \ thermoglucosidasius \) strains. However, “not all that glitters is gold,” previous comparative studies have revealed that despite having the \(cooCSF-phcA-L \) genes as observed in three other \(P. \ thermoglucosidasius \) strains (DSM 2542₂, DSM 2543, and DSM 6285), DSM 21625 is incapable of catalyzing the WGS reaction (Mohr et al., 2018b). Therefore, to evaluate the extent of this seemingly interesting evolutionary pattern, that is the presence of the locus and absence of the phenotype among \(P. \ thermoglucosidasius \) strains, we characterized relevant genomic fragments and performed fermentation experiments among selected and diverse \(P. \ thermoglucosidasius \) strains (Table 1).

MATERIALS AND METHODS

Strain, Media, and Growth Condition

Seven \(P. \ thermoglucosidasius \), C56-Y593, Kp1012, Kp1013, Kp1019, M10EXG, M5EXG and Y4.1MC1, were obtained from the \(Bacillus \) genetic stock center (BGSC), United States, and stored as glycerol stock in a −80°C freezer. Each strain was revived via a 14 h pre-culture in a shake flask containing 20 mL modified Luria–Bertani (mLB) medium (10 g/L tryptone, 5 g/L yeast extract, 5 g/L NaCl, 1.25 mL/L of 10 g/L NaOH and 1 mL/L of each of the filter-sterilized stock solutions 1.05 M nitritriacetic acid, 0.59 M MgSO₄·7H₂O, 0.91 M CaCl₂·2H₂O and 0.04 M FeSO₄·7H₂O) incubated in a Thermotron (Infors, Switzerland) set at 120 rpm and 60°C. The same medium and incubation conditions were used for the main experiments. The strains were cultivated for 72 h in 250 mL serum bottles sealed with a rubber stopper (top: 18 mm, bottom 14 mm and height 20 mm, Rotilabo®, Carl Roth, Karlsruhe, Germany), containing 50 mL mLB and the 200 mL of headspace atmosphere reconstituted to a 50:50 ratio of CO to air. A second experiment was conducted under above condition using the ammonium salts medium ASM, pH 6.8 (Mohr et al., 2018b, 2019). ASM comprises 8.7 mM citric acid, 20.2 mM MgSO₄, 10 mM K₂SO₄, 22.6 mM NaH₂PO₄, 0.8 mM CaCl₂, 25 mM (NH₄)₂SO₄, 4.16 mM glucose and trace elements (0.012 mM H₂SO₄, 0.002 mM CuSO₄·5H₂O, 0.004 mM CoSO₄·H₂O, 0.010 mM ZnSO₄·H₂O, 0.046 mM FeSO₄·6H₂O, 0.006 mM NiSO₄·6H₂O, 0.018 mM MnSO₄ and 0.002 mM H₃BO₃).

At each sampling point ~3 mL gas samples were collected and analyzed using a 300 Micro GC gas analyser (Inficon, Switzerland) connected with 10 m Molsieve (channel 1) and 10 m PoraPLOT Q (channel 2) columns. Channel 1 detects CO, H₂ and N₂ with Ar used as carrier gas while channel 2 detects CO₂ with He used as carrier gas. Both channels are equipped with thermal conductivity detector and the column temperature.
was set at 80°C. Final gas composition was calculated using the ideal gas law as previously described (Mohr et al., 2018b, 2019). For each bottle, 1 mL liquid sample was analyzed for growth (OD600) and pH, using Ultrospec 1100 pro spectrophotometer (Amersham Biosciences, United States) and Profilab pH 597 (Xylem Analytics, Germany), respectively.

Phylogenetic Validation and Analyses

Genomic DNA was extracted from the seven strains and DSM 21625, DSM 2542^T, and DSM 6285 using Quick-DNA Fungal/Bacterial Miniprep Kit (Zymo Research). Partial gyrA, recN and rpoB, gene fragments of each strain were amplified by PCR using OneTaq Hot Start Quick-Load 2X Master Mix, Standard Buffer (New England Biolabs) with the amplified by PCR using OneTaq Hot Start Quick-Load 2X Master Mix, Standard Buffer (New England Biolabs) with the following primer pairs; gyrAf (GCCAACGGTATGAAACAGG) and gyrAr GTTCGACAAAGTCATCTTC, recNf (ACGCTTGTCGATATATGCCATTGTTTGTCCAGG) and recNr (CGCTAAGACGGCTTTCAAT), and rpoBf (GTGGCATCAGCGCTTGATG) and rpoBr (TCTTAAAA TGGCGGAACGAG). The predicted proteomes of the seven *P. thermoglucosidasius* strains were compared using Roary (Page et al., 2015) with minimum amino acid similarity threshold set at 90%. The unique proteome compliment of the hydrogen producing strains was identified using scoary (Brynildsrud et al., 2016). The predicted proteins of the compared strains were functionally annotated using BlastKOALA (Kanehisa et al., 2016) and KofamScan (Aramaki et al., 2019) (as implemented in https://github.com/takaram/kofam_scan), eggNOG v5.0 (Huerta-Cepas et al., 2018) and NCBI conserved domain (CD) search (Lu et al., 2019). KEGG Mapper (Kanehisa and Sato, 2020) was used to determine metabolic pathways associated with the unique genomic loci of the hydrogenogenic *P. thermoglucosidasius* strains.

Presence or absence orthologs of the unique protein sets along with those within the same genomic regions were confirmed using BlastP, BlastN and tBlastN analyses against the genome sequences. The loci were subsequently mapped against the respective genomic regions of the compared genomes using SimpleSynteny (Veltri et al., 2016).

Analysis of the *cooCSF-phcA-L* Locus and the Unique Genome Fragments of H₂ Producing Strains

Prokka v 1.14.6 (Seemann, 2014) was used to annotate the available genomes of seven strains (Table 1) and those of three closely related *Parageobacillus* species. The *cooCSF-phcA-L* gene loci were mapped against the genomes of the seven strains using SimpleSynteny (Veltri et al., 2016). To identify putative transcription factors binding sites (TFBs) associated with the previously reported deletion fragments within the *coo—phc* locus (Mohr et al., 2018b), 749 and 680 bp from -1 position upstream of *cooC* and the region between *cooC* and *cooS*, respectively, which encompass the positions of two deletions were extracted from the genome of *P. thermoglucosidasius* DSM 2542^T (used as reference) and analyzed using BPROM (Solovyev and Salamov, 2011) and CNNPromoter_b (Umarov and Solovyev, 2017). Finally, the position of the deletions were amplified by PCR using OneTaq Hot Start Quick-Load 2X Master Mix, Standard Buffer (New England Biolabs) and based on the following primer pairs; I1bf (TGTTCGGCTTTTCTCAGGT) and I1br (ATGCCATTGTGTGTCCAGGT) and I2bf (CATGGACCTTGCAAAACAGTG) and I2br (CGGGAATTGAACACTTGACCTTGAC). I1bf/r and I2bf/r primer pairs amplify 622 and 609 bp encompassing the positions of the first and second deletions, respectively.

The predicted proteomes of the seven *P. thermoglucosidasius* strains were compared using Roary (Page et al., 2015) with minimum amino acid similarity threshold set at 90%. The unique proteome compliment of the hydrogen producing strains was identified using scoary (Brynildsrud et al., 2016). The predicted proteins of the compared strains were functionally annotated using BlastKOALA (Kanehisa et al., 2016) and KofamScan (Aramaki et al., 2019) (as implemented in https://github.com/takaram/kofam_scan), eggNOG v5.0 (Huerta-Cepas et al., 2018) and NCBI conserved domain (CD) search (Lu et al., 2019). KEGG Mapper (Kanehisa and Sato, 2020) was used to determine metabolic pathways associated with the unique genomic loci of the hydrogenogenic *P. thermoglucosidasius* strains.

RESULTS

Taxonomic Evaluation

Phylogenetic analysis based on the concatenated alignment of PCR amplified partial sequences of gyrA, recN and rpoB

TABLE 1 | Features of *Parageobacillus thermoglucosidasius* strains included in this study.

Strain	Isolation source	Genome accession	Assembly size	# proteins	# genes unique to H₂ producers	WGS references
TG4	marine sediment	GCF_003865195.2	3,948,523	3909	20	Adachi et al., 2020
Y4.1MC1	Hot spring	GCF_000166075.1	3,911,947	3842	0	This study
DSM 2542^T	Soil	GCF_001295365.1	3,873,116	3889	20	Mohr et al., 2018a
DSM 21625	Flax plant	GCF_014218665.1	4,006,039	3909	0	Mohr et al., 2018b
C56-YS93	Hot spring	GCF_000178935.2	3,993,793	3966	0	This study
M10EXG	Compost	IMG_2501416905	3,772,252	3727	0	This study
DSM 6285	River sediment	GCF_014218645.1	3,967,726	3888	20	Mohr et al., 2018b
Water Gas Shift Reaction and H₂ Production Among Parageobacillus thermoglucosidasius Strains

The ability (or lack thereof) of *P. thermoglucosidasius* DSM 2542T, DSM 6285, and DSM 21625 to catalyze the WGS reaction has been reported previously (Mohr et al., 2018b). To evaluate the hydrogenogenic capacity of seven *P. thermoglucosidasius* strains, for which no data on hydrogenogenesis is available, we cultivated in 250 ml serum bottles containing 50 ml mLB and initial headspace gas composition of 50% CO and 50% air for a duration of 70 h. Our analysis showed that, of the seven strains, only Kp1013 could utilize CO to yield H₂ (Figure 2). The strain showed growth dynamics under 50% CO similar to *P. thermoglucosidasius* DSM 2542T and DSM 6285 (Mohr et al., 2018b), with initial aerobic growth to a maximum OD₆₀₀ value of ~0.54 after 29 h cultivation. This was followed by a prolonged lag phase prior to the commencement of the WGS reaction, during which the OD₆₀₀ value dropped to a minimum of ~0.38 (Figure 2). The first indication of WGS was recorded around 47 h (0.03 mmol H₂) and the maximum of 2.7 mmol H₂ was observed at 70 h. This corresponds to the observed CO consumption from an initial value of 3.19–0.40 mmol (Figure 2).

By contrast, gas composition analysis over the duration of 70 h revealed that *P. thermoglucosidasius* C56-YS93, M5EXG, M10EXG, Kp1012, Kp1019 and Y4.1MC1 did not utilize CO and no H₂ was detected throughout the cultivation period under the set conditions (Supplementary Figure 1). In all instances, the strain showed rapid initial aerobic growth (based on OD₆₀₀) in the presence of CO, which suggests a general tolerance to the gas by *P. thermoglucosidasius* strains. However, the absorbance (OD₆₀₀) values of the strains steadily declined after O₂ depletion. Compared to *P. thermoglucosidasius* Kp1013 (Figure 2), four of the non-hydrogenogenic strains, *P. thermoglucosidasius* C56-YS93, M5EXG, M10EXG and Kp1012 (Supplementary Figures 1A–D) showed higher absorbance of ~0.58, 0.76, 0.83, and 0.64, respectively, in the aerobic growth phase. Conversely, *P. thermoglucosidasius* Kp1019 showed the least growth among the cultivated organisms with a maximum OD₆₀₀ value of ~0.31 (Supplementary Figure 1E).

Although, WGR reaction was initially demonstrated using the complex mLB medium (Mohr et al., 2018a,b), the strains were screened in ASM medium for a duration of 337 h under the conditions described above. As observed with the mLB medium, all *P. thermoglucosidasius* strains were capable of growth in the presence of CO (Supplementary Figure 2). However, only Kp1013 consumed CO and produced H₂ (Supplementary Figure 2A), thereby providing further support for the absence of WGS reaction phenotype among six additional *P. thermoglucosidasius* strains under 50% CO and 50% air. It is noteworthy, however, that the actual maximum OD₆₀₀ values during the initial aerobic growth phase could not be estimated reliably due to the extended duration of the initial sampling intervals. However, the goal of the study was to ascertain if the investigated strains have the capacity to utilize CO to generate H₂.
FIGURE 1
Phylogenetic analysis of ten *P. thermoglucosidasius* strains included in this study with *P. thermantarcticus* DSM 9572\(^\top\) used as outgroup. (A) Maximum likelihood tree of concatenated nucleotide alignment (1,851 characters) of PCR amplified gyrA, recN and rpoB partial sequences. The ML tree was inferred using IQ-TREE (Schmidt et al., 2014). (B) Identity matrices of the individual alignments of gyrA, recN and rpoB.

FIGURE 2
Gas composition and growth of *P. thermoglucosidasius* Kp1013 cultivated under 50% carbon monoxide and 50% air in 250 ml serum bottles containing 50 ml of mLB medium.
Additionally, TFBs for the genes of *irp* (ATTTTTTT) and *lexA* (TTTTTTTA) were predicted in the vicinity of indel 1 and *tyrR* (TGTAATT) up and downstream of indel 2 genomic regions. However, none of the latter predictions is associated with the deleted fragments.

Hydrogenogenic Parageobacillus thermoglucosidasius Harbor Two Unique Genetic Loci

Evaluation of the predicted protein sequences of seven *P. thermoglucosidasius* and related *Parageobacillus* spp., using Roary and Scoary (Page et al., 2015; Brynildsrud et al., 2016) showed that twenty distinct proteins are unique to the three CO oxidizing strains (*P. thermoglucosidasius* DSM 2542T, DSM 6285, and TG4) among the analyzed *P. thermoglucosidasius* strains (Supplementary Table 2). Using the *P. thermoglucosidasius* DSM 2542T genome as reference, the analysis showed that fifteen of the above proteins are notably associated with two genomic regions on the chromosome and plasmid 1 (Mohr et al., 2018b), respectively.

The first locus (hydrogenogenic strain unique locus; HSUL 1), located between 1,007,746–1,017,231 bp on the chromosome of *P. thermoglucosidasius* DSM 2542T, comprises four genes, *nikABCD*, that code for orthologs of ABC-type dipeptide/oligopeptide/nickel transport system proteins (Eitinger and Mandrand-Berthelot, 2000; Mohr et al., 2018b) flanked by genes coding for a serine esterase and haloacid dehalogenase (HAD) hydrolase (*cocE* and *had*) at the 5’ end and a gene coding for O-acetylhomoserine/O-acetylserine sulfhydrylase (*metY*) at the 3’ end (Figure 5). The five ABC-type dipeptide/oligopeptide/nickel transport system proteins comprise a substrate-binding protein (NikA), two permeases (NikB and NikC) and two ATP-binding proteins (NikD and
FIGURE 4 | Alignment of PCR amplified deletions adjacent to the cooC reading frame among ten P. thermoglucosidasius strains characterized for hydrogenogenesis. (A) Indel 1 upstream of cooC and associated transcription factor binding sites (TFBs), (B) Indel 2 between cooC and cooS and associated TFBs. ArcA and IHF are the aerobic respiration control protein and integration host factor, respectively.

NikE (Figure 5). Similar nickel permease systems have been described in several bacterial taxa (Eitinger and Mandrand-Berthelot, 2000; Hebbeln and Eitinger, 2004). The fifth gene in the HUSL1 locus, nikE is shared by all the strains except

TABLE 2 | Putative promoters and transcription factor binding sites (TFBs) upstream of cooC and cooS.

Promoter	Position	TBS	−10 box	−35 box	Gene/protein	Scores
1	−75 cooC					LDF~ 14.4
	−114	TATACTTT			ihf	15
	−109	TTTAATTA			phoB	11
	−108	TTAATTTA			arcA	13
	−107	TTTTTTTT			arcA	11
	−97	AAAATTTA			fis	9
	−95	AAAATTTT			rpoD16	15
	−88	TTTTTTTT			gcvA	11
	−85	TATTAAAA			sp	11
	−83	TTTTATTT			argR1	13
	−82	TTTTATTT			argR2	13
	−81	TTTTATTT			argR2	13
	−80	TTTTATTT			argR2	7
	−72	AACAAAAA			ihf	9
	−66	AATTTGAG			gprR	6
2	−54 cooS					LDF~ 4.87
	−101	TTAATTTA			ArcA	13
	−100	TTTTTTTT			ArcA	11
	−79	TTTTTTTT			ArcA	13
	−78	TTTTTTTT			ArcA	11

Promoters and TFBs were predicted using BPROM on 749 and 680 bp sequences starting from −1 position upstream of cooC and cooS including the genomic positions of two distinct indels.

MX10EXG, where only a 46 nt fragment, matching (100%) the end (position: 885–930) of DSM 2542 transposes and diketoesters remains (Figure 5). In addition, MX10EXG and the other strains that are incapable of WGS reaction, harbor only 166 nt fragment of the 1,734 nt coxE gene of P. thermoglucosidasius DSM 2542T (Figure 5). Combined, the absence of coxE and nikABCD among the non-hydrogenogenic strains, as well as the presence of only partial copies of coxE and nikE in P. thermoglucosidasius MX10EXG strongly suggest the loss of HSUL 1 among the non-hydrogenogenic strains.

The second gene set unique to the hydrogenogenic strains occurs on plasmid 1 (position: 47,057–62,595) in P. thermoglucosidasius DSM 2542T (Figure 6). The locus (HSUL 2) comprises twelve genes that code for proteins in aromatic hydrocarbon degradation (Ghosal et al., 2016), flanked by two hypothetical proteins (Figure 6). Of these, nine genes occur uniquely among the CO-oxidizing strains while three genes, dmpD, “K06999” and dmpH are only present in P. thermoglucosidasius Y4.MC1 among the non-hydrogenogenic strains. The conservation of the above flanking genes suggests the loss of the genomic region among the non-hydrogenogenic strains.

KEGG Mapper (Kanehisa and Sato, 2020) analysis of the predicted proteins coded by genes in the HSUL 2 showed that five genes, dmpB, bphH, bphl, bphJ, and dmpD are linked to the conversion of catechol into intermediates of central carbon metabolism via catechol meta-cleavage (Figure 7). In this pathway (Harayama et al., 1989; Harayama and Rekik, 1990; Fuchs et al., 2011; Suenaga et al., 2014), catechol 2,3-dioxygenase (DmpB) cleaves the aromatic ring of catechol to 2-hydroxymuconate-semialdehyde, which is further hydroxylated to 2-oxopent-4-enoate by 2-hydroxymuconate-semialdehyde
FIGURE 5 | Organization of putative nickel transport locus (HSUL 1) present on hydrogen producing *P. thermoglucosidasius* strains, rendered with aid of SimpleSynteny. *coCE*, had, *nikA*, *nikBC*, *nikDE*, and *metY* code for putative cocaine esterase, putative hydrolase of the HAD superfamily, peptide/nickel transport system substrate-binding, permease, ATP-binding proteins, and *O*-acetylhomoserine (thiol)-lyase, respectively.

The plasmid-borne phenol catabolic HSUL 2 locus discussed above and the ability to metabolize phenol have been previously reported in *P. thermoglucosidasius* DSM 6285 (formerly reported as *G. stearothermophilus* DSM 6285) (Omokoko et al., 2008). However, the study could not identify *dmpD* and *dmpC* (Omokoko et al., 2008). The latter gene, however, is harbored by all *P. thermoglucosidasius* strains in a chromosomal phenol degradation locus (Duffner et al., 2000) (hereafter referred to as *P. thermoglucosidasius* phenol degradation locus PtPL) located between 907,961 and 924,476 bp on the chromosome of *P. thermoglucosidasius* DSM 2542\(^T\) (Figure 8). Furthermore, eight of the proteins (BphH-J, DmpB, D and H, PraC and SsgcE6) encoded on the PtPL locus share 58.4% (range: 40.6–73.2%) sequence identity among the respective orthologs in all strains with the corresponding proteins coded by HSUL 2 genes. The PtPL locus, previously characterized in *P. thermoglucosidasius* A7...
FIGURE 6 | Organization of a plasmid phenol degradation locus (HSUL 2) harboring a ferredoxin (petF) gene unique to hydrogen producing \textit{P. thermoglucosidasius} strains. repB, dmpB, praC, hsaA, sgcE6, petF, pucR, bphH, bphJ, bphI, dmpH, K06999, dmpD and hyp, which code for initiator replication protein, catechol 2,3-dioxygenase, 4-oxalocrotonate tautomerase, 3-hydroxy-9,10-secoandrosta-1,3,5(10)-trien-9,17-dione monooxygenase, flavin reductase, ferredoxin, purine catabolism regulatory protein, 2-oxopent-4-enoate hydratase, acetaldehyde/propanal dehydrogenase, 4-hydroxy-2-oxovalerate/4-hydroxy-2-oxohexanoate aldolase, 2-oxo-3-hexenedioate decarboxylase, phospholipase/carboxylesterase, 2-hydroxymuconate-semialdehyde hydrolase and proteins of unknown function, respectively.

(Suffner et al., 2000; Kirchner et al., 2003), harbors two genes, sgcE6 and hpaB (Figure 8), which code for a flavin reductase and a 4-hydroxyphenylacetate 3-monooxygenase, respectively. SgcE6 and HpaB from \textit{P. thermoglucosidasius} DSM 2542T, share 91.93 and 97.21% identity with PheA1 (AAF66547.1) and PheA2 (AAEF6546.1) of \textit{P. thermoglucosidasius} A7. The two proteins have been proposed to form a two-component phenol hydroxylase (PheA) which catalyzes the oxidation of phenol to catechol (Duffner et al., 2000; Xun and Sandvik, 2000; Dresen et al., 2010).

In addition to disparate gene order, PtPL and HSUL 2 differ by the incorporation of dmpC which codes for an aminomuconate-semialdehyde dehydrogenase, and petT which codes for a [2Fe-2S] ferredoxin, respectively (Figures 6, 8). DmpC catalyzes the first step of the 4-oxaloacetate route of catechol meta-cleavage (Figure 7) where 2-hydroxymuconate-semialdehyde is first converted to 2-oxopent-4-enoate via 2-hydroxymuconate and gamma-oxalocrotonate (Diaz and Timmis, 1995; Inoue et al., 1995).

RNA-seq Data Suggest Activity of HSUL 1 and 2 During Water Gas Shift Reaction in \textit{Parageobacillus thermoglucosidasius} DSM 6285

To speculate on the potential activity of the above genomic regions under WGS reaction conditions, we evaluated the previously reported \textit{P. thermoglucosidasius} DSM 6285 transcriptome data. Specifically, the data reported the expression profiles of genes showing significant differential gene expression during growth of \textit{P. thermoglucosidasius} DSM 6285 under 50% CO and 50% air atmosphere (Aliyu et al., 2020). The data revealed that nikABCDE were among genes that were generally downregulated (clusters 8 and 11) during the initial aerobic growth phase (8 h) in DSM 6285 and overexpressed during the WGS reaction (time points 27–44 h) (Figure 9). All five genes (nikABCDE) were significantly ($p < 0.05$) upregulated at 20 h (relative to 8 h) and at 27 h (relative to 20 h) but no significant differential genes expression was observed between 27 and 44 h post-inoculation (Supplementary Table 3).

Evaluation of the HSUL 2 genes revealed that all nine genes showed expression trajectories like the nik genes (Figure 9). However, no significant difference was observed in the expression of bphI between 20 and 27 h post-inoculation (Supplementary Table 3). Similarly, transcripts of four PtPL genes (dmpB, hpaB, gph and hyp) showed the general pattern of increased expression in the latter stages of \textit{P. thermoglucosidasius} DSM 6285 cultivation under an initial gas composition of 50% CO and 50% air (Figure 9). Unlike the plasmid-borne copy of dmpB, transcripts of its chromosomal orthologs did not show significant increase between 20 h and 27 h post-inoculation (Supplementary Table 3). By contrast, transcripts of seven PtPL genes showed the opposite trend (clusters 16; ddhD and praC and cluster 22; dmpC, dmpH, bphH-j; Figure 9), with overexpression during the initial aerobic growth phase and downregulation over the WGS reaction phase (Figure 9). However, no significant differences in
gene expression was observed between the late aerobic growth phase (20 h) and the later stages of the cultivation (27 and 44 h) for transcripts of cluster 22 while transcripts of ddhD and praC were significantly depleted at 27 and 44 h post-inoculation (Supplementary Table 3).

DISCUSSION

Cultivation experiments with *P. thermoglucosidasius* strains that have not been previously characterized for WGS reaction showed that the ability to oxidize CO is highly restricted in this species. Of the eleven *P. thermoglucosidasius* strains so far cultivated on CO, including the seven reported in this study, seven (∼63%) strains lack the capacity to catalyze the WGS reaction. Based on the reconstructed gyra-recN-rpoB and SCOs phylogenies it is deducible that the genetic events associated with this phenotype occurred independently in several lines after the acquisition of the genetic elements conferring the WGS reaction phenotype by the common ancestor of the strains. For instance, both indel 1 and 2 occur only in the *cooSF-phcA-L* regions of *P. thermoglucosidasius* DSM 21625 and C56-YS93 and only indel 1 and indel 2 are present in *P. thermoglucosidasius* Y4.1MC1 and Kp1012, respectively. However, the latter strain appears to incorporate a distinct genetic element in the position of indel 1, which suggest a possible progression of these evolution events in Kp1012 and perhaps other members of the species. These indels are however, absent in the *P. thermoglucosidasius* Kp1019, M10EXG and M5EXG, which nevertheless do not catalyze WGS reaction like the above strains.

Previous evaluation of the genetic region of the above deletions identified only a single TFB site for the transcriptional regulator Hpr (Mohr et al., 2018b), which is associated with regulation of several functions, such as antibiotic production, motility, and sporulation, upstream of indel 1 (Kallio et al., 1991; Mohr et al., 2018b). The current analysis, however, showed that although the genomic region surrounding these indels appears to contain several TFBs, only the TFB site of the aerobic respiration control protein ArcA is directly within the genetic elements in indel 2. ArcA regulates the ArcAB system linked to low O$_2$ (microaerobic) induced regulation of central metabolic pathways, including the suppression of TCA cycle and respiratory chains enzymes and induction of fermentative pathways in *E. coli* (Alexeeva et al., 2003; Nochino et al., 2020). The ArcAB system is also associated with resistance against reactive oxygen species during aerobic growth in bacteria (Louvi et al., 2009). While it is plausible that the ArcAB system is involved in modulating the WGS reaction, the genomic regions adjacent to these indels harbor several alternative putative ArcA binding sites (Table 2). Further complicating such speculation is the absence of both indel 1 and 2 in three strains incapable of hydrogen production under the above conditions.

Unlike the *cooSF-phcA-L* locus-associated deletions, our analysis revealed that genes coding for proteins involved in nickel and iron binding and transport are consistently present in genomes of strains with proven WGS reaction capability and missing in the strains without the phenotype. Nickel is an essential component of the WGS reaction enzymes, forming part of the metallocentre of both CODH and Phc (Eitinger and Mandrand-Berthelot, 2000; Mohr et al., 2018a,b). The absence of the putative nickel transporter (nikABCDE) locus could hinder nickel uptake and hence the function of these enzymes. In *E. coli*, it was demonstrated by mutagenesis studies that the nickel transporter operon was essential for nickel uptake and Ni-Fe hydrogenase activity (Cavazza et al., 2011). Similarly, hydrogenase activity was completely suppressed with the deletion of the *nikA* homolog *nikZ* in the *nik
FIGURE 8 | Organization of a chromosomal phenol degradation locus (PtPL) shared by all *P. thermoglucosidasius* strains. \(\text{K00666, pucR, ddhD, dmpC, praC, dmpH, bpH, bphH, bphI, bphJ, bphH, dmpD, dmpB, glcG, ribF, sgcE6, hpaB} \), and \(\text{gph} \) code for fatty-acyl-CoA synthase, purine catabolism regulatory protein, CDP-4-dehydro-6-deoxyglucose reductase, 3, aminomuconate-semialdehyde, 4-oxalocrotonate tautomerase, 2-oxo-3-hexenedioate decarboxylase, 4-hydroxy-2-oxovalerate/4-hydroxy-2-oxohexanoate aldolase, acetaldehyde/propanal dehydrogenase, 2-oxopent-4-enoate/cis-2-oxohex-4-enoate hydratase, 2-hydroxymuconate-semialdehyde hydrolase, catechol 2,3-dioxygenase, glc operon protein, riboflavin kinase/FMN adenylyltransferase, flavin reductase, 4-hydroxyphenylacetate 3-monooxygenase, and phosphoglycolate phosphatase.

operon of *Campylobacter jejuni* (Howlett et al., 2012). Our temporal RNA-seq study spanning the WGS reaction phase further showed that the putative nickel transport genes were among 1,317 genes downregulated during the initial aerobic growth and significantly upregulated during the anaerobic growth phase, including the WGS reaction phase (Aliyu et al., 2020). In addition to CODH and hydrogenases, which are associated with WGS reaction, nickel availability could influence the activity of other *P. thermoglucosidasius* nickel-containing enzymes. For instance, acireductone dioxygenase (WP_003252143.1) and urases (e.g., WP_003251018.1), involved in methionine salvage pathway and hydrolysis of urea, respectively, use nickel as a co-factor (Boer et al., 2014). Likewise, the potential nickel uptake role of other *P. thermoglucosidasius* predicted ABC transporters with substrate binding modules (e.g., WP_042385428.1) and associated permease proteins (e.g., WP_003252829.1) is subject for further investigation.

The second unique set of genes, which demonstrate an expression trajectory similar to the nickel transport genes, occur on the plasmid of the *P. thermoglucosidasius* DSM 2542\(^1\) and the other hydrogenogenic *P. thermoglucosidasius* strains. The plasmid region incorporates genes that encode enzymes which catalyze the complete module for the degradation of phenol to acetyl-CoA via the catechol meta-cleavage pathway (Phale et al., 2019). In *B. subtilis*, the synthesis of catechol 2,3-dioxygenase (DmpB), a major enzyme in this pathway, was reported to be induced under iron limitation in anticipation of the accumulation of catechol by-product of ferric-bacillibactin complex hydrolysis (Pi et al., 2018). Hydrolysis of ferric-bacillibactin by ferric-bacillibactin esterase BesA releases iron, thereby making it available for incorporation into the metallocentres of several
Aliyu et al. Hydrogenogenic Parageobacillus thermoglucosidasius Strains

FIGURE 9 | DP_GP_cluster trajectory of P. thermoglucosidasius DSM 6285 differentially expressed genes placed in clusters 8, 11, 13 and 19. The strain was cultivated under an initial gas atmosphere of 50% CO and 50% air and samples were taken for expression analysis using RNA-seq over four time points (Aliyu et al., 2020). Green box indicates genes placed in HSUL 1 and black box highlights plasmids genes of HSUL 2 and PtPL. Blue and orange fonts indicate PtPL and HSUL 2 genes, respectively.

enzymes (Mortensen and Skaar, 2013; Harwood et al., 2018; Pi et al., 2018).

Although siderophore-dependent iron acquisition is well known among bacteria (Raymond et al., 2003; Miethke et al., 2011), this system has not been demonstrated in P. thermoglucosidasius. However, P. thermoglucosidasius genomes harbor putative genes that code for iron-siderophore transport system ATP-binding protein (e.g., WP_003249888.1) and iron-siderophore transport system permease proteins (e.g., WP_003249886.1 and WP_003249886.1). Similarly, P. thermoglucosidasius harbor genes which code for proteins involved in siderophore biosynthesis. For instance, the dimodular non-ribosomal peptide synthetase (DhbF) from P. thermoglucosidasius Y4.1MC1 was used to demonstrate the organization of non-ribosomal peptide synthetases (NRPS), associated with synthesis of siderophore (Felnagle et al., 2008;
Tarry et al., 2017). Moreover, CO induced iron starvation and the corresponding increased synthesis of siderophores have been demonstrated in bacteria (Wareham et al., 2016).

Of note, both the plasmid (HSUL 2) and P. thermoglucosidasius chromosome harbor genes that code for enzymes associated with degradation of aromatic compounds, including phenol (and catechol). Previous studies have reported the ability of P. thermoglucosidasius strain to catabolize phenol, putatively via the action of enzymes encoded on either of the plasmid and chromosomal loci (Duffner et al., 2000; Kirchner et al., 2003; Omokoko et al., 2008). However, transcriptome analysis with P. thermoglucosidasius DSM 6285 showed an increased genetic activity in the HSUL 2 locus over the transition between aerobic growth and WGS reaction phase. At the same time, expression of PtPL genes associated with metabolism of the by-product of catechol cleavage (dmpCH and bphH-1) was suppressed. The significance of the differences observed in the expression of phenol catabolic genes of the two loci is a subject for further investigation. It could be speculated, however, The HSUL2 locus gene petF, which codes for a 2Fe-2S ferredoxin and is unique to the hydrogenogenic P. thermoglucosidasius strains, plays a central role in modulating catechol degradation over the period prior to WGS reaction. Previous studies have demonstrated the role of PetF in stabilizing or reactivating DmpB by reducing the iron atom in the active site of the enzyme to its ferrous state (Polissi and Harayama, 1993; Hugo et al., 1998; Armengaud et al., 2000).

In conclusion, this study revealed that the majority of the P. thermoglucosidasius strains hitherto analyzed are unable to catalyze the WGS reaction under the described conditions. Apparent gene loss events, involving genes linked to intracellular detoxification as well as nickel and iron availability, likely play a central role in shaping the observed differences in the hydrogenogenic abilities of P. thermoglucosidasius strains. However, these do not preclude the ability of the non-CO oxidizers to catalyze the WGS reaction under modified cultivation conditions, for instance supplementation with optimal amounts of nickel and iron. Further characterization of both nickel and iron uptake systems of P. thermoglucosidasius may provide clearer insight into their roles in modulating WGS reaction.

REFERENCES

Abdel-Fattah, Y. R., and Gaballa, A. A. (2008). Identification and over-expression of a thermostable lipase from Geobacillus thermoleovorans toshki in Escherichia coli. Microbiol. Res. 163, 13–20.

Adachi, Y., Inoue, M., Yoshida, T., and Sako, Y. (2020). Genetic engineering of carbon monoxide-dependent hydrogen-producing machinery in Parageobacillus thermoglucosidasius. Microbes Environ. 35, ME20101. doi: 10.1264/jseme2.ME20101

Alexeeva, S., Hellingwerf, K. J., and Mattos, M. J. T. D (2003). Requirement of ArcA for redox regulation in Escherichia coli under microaerobic but not anaerobic or aerobic conditions. J. Bacteriol. 185, 204–209. doi: 10.1128/JB.185.1.204-209.2003

Aliyu, H., Lebre, P., Blom, J., Cowan, D., and De Maayer, P. (2016). Phylogenomic re-assessment of the thermophilic genus Geobacillus. Syst. Appl. Microbiol. 39, 527–533.

Aliyu, H., Lebre, P., Blom, J., Cowan, D., and De Maayer, P. (2018). Coreg Reynolds to phylogenomic re-assessment of the thermophilic genus Geobacillus” Syst. Appl. Microbiol. 39 (2016) 527-533. Syst. Appl. Microbiol. 41:529.

Aliyu, H., Mohr, T., Cowan, D., de Maayer, P., and Neumann, A. (2020). Time-course transcriptome of Parageobacillus thermoglucosidasius DSM 6285 grown in the presence of carbon monoxide and air. Int. J. Mol. Sci. 21:3870.

Antonopoulou, G., Ntaikou, I., Stamatelatou, K., and Lyberatos, G. (2011). "Biological and fermentative production of hydrogen," in Handbook of Biofuels Production, eds R. Luque, J. Campelo, and J. Clark (The Netherlands: Elsevier), 305–346.

Aramaki, T., Blanc-Mathieu, R., Endo, H., Ohkubo, K., Kancheisa, M., Goto, S., et al. (2019). KofamKOALA: KEGG Ortholog assignment based on profile HMM and adaptive score threshold. Bioinformatics 36, 2251–2252. doi: 10.1093/bioinformatics/btz859

Armengaud, J., Gaillard, J., and Timmis, K. N. (2000). A second [2Fe-2S] ferredoxin from Sphingomonas sp. Strain RW1 can function as an electron donor for the dioxin dioxygenase. J. Bacteriol. 182, 2238–2244. doi: 10.1128/JB.182.8.2238-2244.2000

DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included in the article/Supplementary Material, further inquiries can be directed to the corresponding author/s.

AUTHOR CONTRIBUTIONS

HA, AN, and PM conceived the study and edited the manuscript. HA and AN designed the experiments. HA conducted the experiments, genomic analyses, and wrote the initial manuscript. All authors read and approved the final version of the manuscript.

FUNDING

This research was funded by Bundesministerium für Bildung und Forschung (BMBF) Bioökonomie International (Grant No. 031B1056).

ACKNOWLEDGMENTS

We would like to thank Clemens Hofsaß and David Nickel, who generated part of the data during their bachelor’s thesis work. We especially acknowledge Bernhard Schneider for collecting some of the data used in this study. We would also like to thank the support by Deutsche Forschungsgemeinschaft and the KIT-Publication Fund of the Karlsruhe Institute of Technology.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fmicb.2021.784652/full#supplementary-material
Hydrogenogenic Parageobacillus thermoglucosidasius Strains

Sologov, V., and Salamov, A. (2011). “Automatic annotation of microbial genomes and metagenomic sequences,” in Metagenomics And Its Applications In Agriculture, Biomedicine And Environmental Studies, ed. R. W. Li (New York, NY: Nova Science), 61–78.

Suena, H., Mizuta, S., Miyazaki, K., and Yaoi, K. (2014). Diversity of extradiol dioxygenases in aromatic-degrading microbial community explored using both culture-dependent and culture-independent approaches. FEBS Microbiol. Ecol. 90, 376–379. doi: 10.1111/1574-6941.12390

Suzuki, Y., Kishigami, T., Inoue, K., Mizoguchi, Y., Eto, N., Takagi, M., et al. (1983). Bacillus thermoglucosidasius sp. nov., a new species of obligately thermophilic bacilli. Syst. Appl. Microbiol. 4, 487–495. doi: 10.1016/s0723-2020(83)80006-x

Tarry, M. J., Haque, A. S., Bui, K. H., and Schmeing, T. M. (2017). X-Ray crystallography and electron microscopy of cross- and multi-module nonribosomal peptide synthetase proteins reveal a flexible architecture. Structure 25, 783.e–793.e. doi: 10.1016/j.str.2017.03.014

Umarov, R. K., and Sologov, V. V. (2017). Recognition of prokaryotic and eukaryotic promoters using convolutional deep learning neural networks. PLoS One 12:e0171410. doi: 10.1371/journal.pone.0171410

Velti, D., Wight, M. M., and Crouch, J. A. (2016). SimpleSynteny: a web-based tool for visualization of microsynteny across multiple species. Nucleic Acids Res. 44, W41–W45. doi: 10.1093/nar/gkw330

Wada, K., and Suzuki, H. (2020). “Chapter 15 - Biotechnological platforms of the moderate thermophiles, Geobacillus species: notable properties and genetic tools,” in Physiological and Biotechnological Aspects of Extremophiles, eds R. Salwan and V. Sharma (Cambridge, MA: Academic Press), 195–218.

Warsham, L. K., Begg, R., Jesse, H. E., Van Beilen, J. W. A., Ali, S., Svistunenko, D., et al. (2016). Carbon monoxide gas is not inert, but global, in its consequences for bacterial gene expression, iron acquisition, and antibiotic resistance. Antioxidants Redox Signal. 24, 1013–1028. doi: 10.1089/ars.2015.6501

Xun, L., and Sandvik, E. R. (2000). Characterization of 4-hydroxyphenylacetate 3-hydroxylase (hpab) of Escherichia coli as a reduced flavin adenine dinucleotide-utilizing monooxygenase. Appl. Environ. Microbiol. 66, 481–486. doi: 10.1128/AEM.66.2.481-486.2000

Zeigler, D. R. (2014). The Geobacillus paradox: why is a therophilic bacterial genus so prevalent on a mesophilic planet? Microbiology 160(Pt 1), 1–11.

Zhu, W., Cha, D., Cheng, G., Peng, Q., and Shen, P. (2007). Purification and characterization of a thermostable protease from a newly isolated Geobacillus sp. YMTC 1049. Enzyme Microb. Technol. 40, 1592–1597.

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

Copyright © 2021 Aliyu, de Maayer and Neumann. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.