Cascode Cross-Coupled Stage High-Speed Dynamic Comparator in 65 nm CMOS

Komala Krishna, Graduate Student Member, IEEE and Nandakumar Nambath, Member, IEEE

Abstract—Dynamic comparators are the core of high-speed, high-resolution analog-to-digital converters (ADCs) used for communication applications. Most of the dynamic comparators attain high-speed operation only for sufficiently high input difference voltages. The comparators’ performance degrades at small input difference voltages due to a limited preamplifier gain, which is undesirable for high-speed, high-resolution ADCs. To overcome this drawback, a cascode cross-coupled dynamic comparator is proposed. The comparator improves the differential gain of the preamplifier and reduces the common-mode voltage seen by the latch, which leads to a much faster regeneration at small input difference voltages. The proposed comparator is designed, simulated, and compared with the state-of-the-art techniques in a 65 nm CMOS technology. The results show that the proposed comparator achieves a delay of 46.5 ps at 1 mV input difference, and a supply of 1.1 V.

Index Terms—Cascode cross-coupled pair, dynamic comparator, high-speed analog-to-digital converters (ADCs).

I. INTRODUCTION

Analog-to-digital converters (ADCs) are widely used in various applications due to the increased demand for mixed-signal systems [1]. The comparator, an essential block in ADCs, plays a vital role in determining the speed and accuracy of the ADCs. The performance of an ADC relies on the robustness of the comparator [2], especially for low noise, low-power, and high-speed operations. Dynamic comparators are preferred in low-power and high-speed designs due to their zero static power. They are classified as single-tail (ST) and double-tail (DT) topologies. Various ST circuits are reported to suffer from tradeoffs between energy consumption (EC), offset, and speed [3]. ST topology also suffers from large kickback (KB) noise and requires a large voltage headroom since the input transistors are directly stacked with the latch stage. Due to these drawbacks, the DT configuration is preferred for the design of high-speed comparators [4].

Designing a high-speed comparator that can resolve small input difference voltages while holding on to the high-speed capability over a wide range of common-mode voltage is challenging [5]. The conventional DT comparator reported in [6] has mitigated the drawbacks of the ST comparator. However, it fails to give valid outputs for small input difference voltages. This has a direct impact on the resolution of ADCs. Moreover, at higher common-mode levels, the performance of the conventional DT comparator degrades because the input pair enters the triode region without providing sufficient gain. A dynamic comparator resistant to common-mode variations with the delayed operation of the latch is presented in [7]. However, it requires a large area and suffers from increased KB noise. Furthermore, the insufficient preamplifier gain makes it impractical to use in high-precision ADCs. In the dynamic bias DT comparator presented in [8] the preamplifier partially discharges the drains of the input transistor pair to reduce EC. However, the speed is compromised to attain energy efficiency. To improve the latch regeneration time, a transconductance-enhanced latch stage is presented in [9]. It has the same drawback as the conventional DT comparator in its common-mode performance. Additionally, due to stacking in the latch stage, the delay increases swiftly for lower supply voltages.

Our work targets to reduce the comparator delay by enhancing the preamplifier gain compared to other high-speed DT architectures reported. The performance improvement is achieved by including a cascode cross-coupled pair in the preamplifier stage. The circuit is designed and implemented in a 65 nm CMOS technology with a 1.1 V supply. The proposed technique offers better delay performance throughout the input voltage range, especially at smaller input differences. Also, the cascode cross-coupled pair alleviates the delay degradation at higher common-mode voltages. These advantages make the proposed comparator suitable for high-speed, high-resolution ADCs.

This brief is organized as follows. Section II presents the conventional DT comparator and its operation. The proposed comparator and its delay analysis are provided in Section III. Simulation results and discussions are presented in Section IV, and the conclusion is given in Section V.

II. CONVENTIONAL DOUBLE TAIL DYNAMIC COMPARATOR

The conventional DT dynamic comparator has an input stage and a latch stage that have separate tail transistors. Two independent tail currents enable us to optimize the tradeoff between speed, offset, and EC. This topology has fewer transistors stacked [10], making it suitable for low-voltage applications. It also reduces the KB noise due to the isolation between the input transistors and the output nodes.

In the conventional DT, at smaller input difference voltages (ΔV_{IN}), the latch is unable to sense the differential voltage due to the limited differential gain of the preamplifier. The proposed comparator mitigates this drawback by lowering the common-mode voltage and improving the differential voltage at the preamplifier output. This helps the latch to regenerate faster even at smaller ΔV_{IN}.

III. PROPOSED CASCODE CROSS-COUPLED DYNAMIC COMPARATOR

A PMOS cross-coupled pair is employed to increase the differential gain of the preamplifier in [11]. To enhance the performance further, the proposed topology, shown in Fig. 1, introduces a cascode cross-coupled pair made up of M_1, M_4, M_{c1}, and M_{c2}. As a result, a higher difference voltage, ΔV_{IN}, is observed by the latch. This helps to reduce latch regeneration time and to resolve for smaller ΔV_{IN}.

Operation: During the reset phase ($\text{CLK} = 0$), the tail transistors M_{T1} and M_{T2} are off along with the cascode transistors M_{c1} and M_{c2}. The switching transistors M_{s1} and M_{s4} charge the f_n and f_p nodes to V_{DD}. Similarly, M_{s2} and M_{s3} charge the drain nodes of M_3 and M_4 to V_{DD}. Therefore, M_3 and M_4 are off. The transistors M_{R1} and M_{R2} ensure a proper start condition for the comparator. During the comparison phase ($\text{CLK} = V_{DD}$), M_{T1} and M_{T2} are on, and M_{s1}–$s4$ are off. At the beginning of this phase, the pMOS cascode cross-coupled pair is still inactive, and the transistors M_{sw1}...
The proposed comparator achieves both with the help of the cascode ing a higher common-mode voltage seen by the latch, and performance.

Subsequently, the initial voltage difference sensed by the latch before the pMOS cascode cross-coupled structure increases the differential voltage $\Delta V_{fn,fp}$. Consequently, the initial voltage difference sensed by the latch before regeneration, ΔV_O, is improved as demonstrated below. nMOS transistor switches M_{sw1} and M_{sw2} take care of the static power dissipation in the preamplifier. They also contribute to the increased $\Delta V_{fn,fp}$ by manifesting another nMOS cascode cross-coupled pair with the input transistors M_1 and M_2. As a result, the latch regeneration time is decreased.

To demonstrate the enhanced $\Delta V_{fn,fp}$, the procedure used in [5] is adopted. The delay analysis of the conventional DT comparator holds for the proposed comparator as well except for calculating the gain from input to the fn and fp nodes.

Delay Analysis: The delay of the proposed comparator is the sum of amplification time, t_{amp}, and the latch delay time, t_{latch}. The latch delay is given by [5]

$$t_{latch} = t_{inv} \times \ln \frac{V_{DD}/2}{\Delta V_O} + \frac{C_L}{K_{5,7}(V_{DD}-V_{CM})^2 - V_{Thp}} \times V_{Thn}$$

(1)

where $t_{inv} = C_L/(G_m5.6 + G_m7.8 + G_mR12)$. V_{CM} is the common-mode voltage seen by the latch, and $K_{5,7} = 0.5 \times \mu_pC_ox(W/L)_{5,7}$. This equation indicates that a higher ΔV_O, implying a higher $\Delta V_{fn,fp}$, and a lower V_{CM} provide a smaller delay. The proposed comparator achieves both with the help of the cascode cross-coupled pair.

To demonstrate the efficacy of the proposed comparator, the half-circuit analysis can be used. Here, transistors M_3 and M_4 are modeled as current sources as they operate in the saturation region in the initial stages of the comparison phase. Transistors M_{c1} and M_{c2} are in the saturation region as their gate terminals are at ground potential.

Applying Kirchhoff’s current law (KCL) at nodes fn and fp gives the following expressions:

$$V_{fn} = (A_I g_{m3} V_{fp} - I_1) t_{amp}/C_P$$

$$V_{fp} = (A_I g_{m4} V_{fn} - I_2) t_{amp}/C_P$$

(2)

where C_P is the parasitic capacitance at nodes fn and fp. $g_{m3} = g_{m4} = g_m$. I_1 and I_2 are the drain currents of M_1 and M_2, respectively. A_I is the current gain provided by the common gate stage formed by the cascode transistors M_{c1} and M_{c2}, which is less than unity. Using the small signal analysis A_I can be expressed as

$$A_I = -\frac{1/[r_{c1,2} + (g_{mcl1,2} + g_{mbc1,2})r_s]}{1 + I/r_{c1,2} + (g_{mcl1,2} + g_{mbc1,2})r_s}$$

(3)

where $r_{c1,2}$ and $g_{mcl1,2}$ are the channel resistance and transconductance of cascode transistors, respectively, and r_s is the source resistance.

By solving the linear equations (2), we get

$$V_{fn} = \frac{t_{amp}/C_P[g_m I_2(t_{amp}/C_P) + I_1]}{1 - A_I g_m(t_{amp}/C_P)^2}$$

$$V_{fp} = \frac{t_{amp}/C_P[g_m I_1(t_{amp}/C_P) + I_2]}{1 - A_I g_m(t_{amp}/C_P)^2}.$$

(4)

The common-mode voltage at the preamplifier output is given by

$$V_{CM,fn,fp} = (V_{fn} + V_{fp})/2.$$

By substituting (4) in $V_{CM,fn,fp}$, we get

$$V_{CM,fn,fp} = \frac{I(t/C_P)}{1 - A_I g_m(t/C_P)}$$

(5)

where $I = I_1 + I_2$.

The differential voltage at the preamplifier output nodes is expressed as

$$\Delta V_{fn,fp} = V_{fn} - V_{fp}$$

and is given by

$$\Delta V_{fn,fp} = \frac{\Delta I(t/C_P)}{1 - A_I g_m(t/C_P)}$$

(6)

where $\Delta I = I_1 - I_2$.

From (5) and (6), the factor $A_I(< 1)$ obtained due to the cascode cross-coupled pair reduces the common-mode voltage and improves the differential voltage at fn and fp nodes. This helps the latch to regenerate faster than the other comparator architectures. Reducing the g_m of M_3 and M_4 will also achieve the same result but at the cost of an increased offset voltage.

IV. RESULTS AND DISCUSSION

The performance metrics of analog circuits, in general, are technology-dependent. Dynamic comparators are no exception and are prone to both analog and digital nonidealities. Therefore, to make a fair comparison between the proposed and the reported dynamic comparator topologies, all the comparators are simulated in 65 nm technology with a minimum channel length of 60 nm, load capacitance of 2 fF, CLK of 5 GHz, V_{DD} of 1.1 V, and V_{CM} of 0.77 V. It is also ensured that all the comparators are designed and optimized to obtain a similar offset standard deviation, σ_{os}.

Schematic level transient analysis results of the comparator are shown in Fig. 2. The reference input, V_p, is fixed at 0.77 V to attain the optimum performance [11]. The voltages at the output nodes, Outp and Outn, and the intermediate nodes are shown at a ΔV_{IN} of 10 mV. The delay is evaluated when the output node voltages attain a difference of $V_{DD}/2$. The delay of the proposed comparator is found to be 33.3 ps whereas, it is 39.3 ps for the conventional one.

Fig. 1. Schematic of the proposed double tail comparator with cascode cross-coupled pair to enhance preamplifier gain. The cascode cross-coupled pair made up of M_3, M_4, M_{c1}, and M_{c2} improves the preamplifier performance.
Fig. 2. Transient analysis results of the proposed comparator in comparison with the conventional one when $\Delta V_{IN} = 10$ mV, $V_{CM} = 0.77$ V: (a) output nodes and (b) intermediate nodes.

Fig. 3. Delay variation with ΔV_{IN} of the proposed comparator. Inset shows the improved delay for small values of ΔV_{IN}.

Fig. 4(a) depicts the simulated delay variation with V_{CM}. For a sufficiently large V_{CM}, the proposed comparator is faster than the state-of-the-art comparators. Conventional DT architectures enter the triode region and thus limit preamplifier gain. The proposed topology overcomes this problem to some extent by achieving higher V_O with the help of the cascode cross-coupled pair. Fig. 4(b) shows the simulation results of the delay versus the supply voltage. As expected, the delay performance worsens at lower V_{DD}. However, the plot shows that at lower V_{DD}, the speed of the proposed circuit is 30% faster than the conventional one.

To confirm the high-speed characteristic of the proposed comparator, a layout is drawn as shown in Fig. 5 with proper care to attain symmetry with equal capacitance at the differential nodes to steer off the aspects that increase the delay of the comparator. Monte-Carlo simulations of 200 runs were performed to observe the standard deviation of the offset voltage, σ_{os}. The results are shown in Fig. 6(a). σ_{os} of 11.38 mV is observed from the prelayout simulations and 11.52 mV is obtained from the postlayout simulations. The offset deviation is slightly more than [11] due to the mismatch contribution of M_{c1} and M_{c2}. The postlayout simulation results of

| Table I: Comparison Between the Proposed and Other Comparators Based on Authors’ Simulations |
|---------------------------------|-----------------|----------------|-----------------|-----------------|-----------------|
| $L = 60$ nm | Offset KB | E_C | RMS KB | Delay (ps) | PDP |
| $C_L = 2$ fF | σ_{os} | μ/bit | ΔV_{IN} | ΔV_{IN} |
| $V_{DD} = 1.1$ V | (mV) | (mV) | (mV) | (mV) |
| $V_{CM} = 0.77$ V | | | | |
| JSSC ’04 [14] | 9.9 | 2.8 | 27.4 | 1.3 | 46.8 | – |
| ISSCC ’07 [6] | 10.2 | 3.3 | 48.1 | 1.5 | 39.3 | – |
| ISSCC ’10 [15] | 9.5 | 7.9 | 82.9 | 0.16 | 52.6 | 67.9 | 6.9 |
| TVLSI ’13 [11] | 10.9 | 3.0 | 59.3 | 0.6 | 38.3 | 59.3 | 4.2 |
| EL’15 [7] | 13.6 | 3.3 | 44.9 | 2.6 | 36.7 | – |
| TVLSI ’18 [5] | 15.1 | 51.8 | 41.7 | 3.5 | 56.7 | – |
| JSSC ’18 [8]* | 8.9 | 2.4 | 32.9 | 0.5 | 119.8 | – |
| Access ’19 [9] | 11.5 | 3.7 | 83.3 | 0.5 | 38.1 | 53.9 | 4.98 |
| TCASII ’20 [16] | 8.4 | 15.4 | 135.9 | 0.7 | 46.8 | 70.4 | 10.3 |
| This Work | 11.38 | 5.99 | 80.8 | 0.75 | 33.3 | 46.5 | 3.8 |

* $CLK = 2.5$ GHz. † Comparator is not able to resolve the input.
Fig. 6. (a) Monte Carlo simulation results of the proposed comparator’s prelayout and postlayout offset voltages and (b) postlayout delay versus V_{IN} (top) and delay versus V_{CM} (bottom) of the proposed comparator.

noise, and preamplifier gain. Additionally, input-referred rms noise is calculated from the transient noise simulations as explained in [13]. Input is applied and incremented in steps of 10 μV to obtain the probability of error as 16% to get the total input-referred rms noise and is tabulated.

V. CONCLUSION

In this brief, we presented a novel DT comparator topology suitable for high-speed applications. It consists of a cascode cross-coupled pair, which increases the preamplifier gain in the comparison phase. Furthermore, the common-mode voltage at the preamplifier output is lowered by the cascode cross-couple pair. As a result, the latch regenerates quickly. Postlayout simulations in a 65 nm CMOS technology with a supply of 1.1 V confirmed that the delay is reduced considerably without much increase in the EC compared to the state-of-the-art architectures.

ACKNOWLEDGMENT

The authors would like to thank Dr. Naveen Kadayinti, Assistant Professor, IIT Dharwad, Ch. Muralidhar, an IIT Bombay alumnus, R. K. Siddharth, Research Fellow at NIT Goa, and Zeeshan Ali, Researcher at IIT Bombay, for helping with the simulations.

REFERENCES

[1] M. Liu, K. Liu, Y. Huang, R. Ma, and Z. Zhu, “A 12-bit 200 MS/s pipeline ADC with 91 mW power and 66 dB SNDR,” Microelectron. J., vol. 63, pp. 104–111, May 2017.

[2] H. Hong et al., “A 2.6 b/cycle-architecture-based 10 b 1.7 GS/s 15.4 mW 4x-time-interleaved SAR ADC with a multistep hardware-retirement technique,” in IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, Feb. 2015, pp. 1–3.

[3] S. Devarajan et al., “A 12-b 10-GS/s interleaved pipeline ADC in 28-nm CMOS technology,” IEEE J. Solid-State Circuits, vol. 52, no. 12, pp. 3204–3218, Dec. 2017.

[4] Z. Li, W. He, F. Ye, and J. Ren, “A low-power low-noise dynamic comparator with latch-embedding floating amplifier,” in Proc. IEEE Asia Pacific Conf. Circuits Syst. (APCCAS), Dec. 2020, pp. 39–42.

[5] A. Khorami and M. Sharifkhani, “A low-power high-speed comparator for precise applications,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 26, no. 10, pp. 2038–2049, Oct. 2018.

[6] D. Schinkel, E. Mensink, E. Klumperink, E. van Tuijl, and B. Nauta, “A double-tail latch-type voltage sense amplifier with 18 ps setup-hold time,” in IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, Feb. 2007, pp. 314–605.

[7] J. Gao, G. Li, and Q. Li, “High-speed low-power common-mode insensitive dynamic comparator,” Electron. Lett., vol. 51, no. 2, pp. 134–136, Jan. 2015.

[8] H. S. Bindra, C. E. Lokin, D. Schinkel, A. Annema, and B. Nauta, “A 1.2-V dynamic bias latch-type comparator in 65-nm CMOS with 0.4-mV input noise,” IEEE J. Solid-State Circuits, vol. 53, no. 7, pp. 1902–1912, Jul. 2018.

[9] Y. Wang, M. Yao, B. Guo, Z. Wu, W. Fan, and J. J. Liu, “A low-power high-speed dynamic comparator with a transconductance-enhanced latching stage,” IEEE Access, vol. 7, pp. 93396–93403, 2019.

[10] X. Zhang, S. Li, R. Siferd, and S. Ren, “High-sensitivity high-speed dynamic comparator with parallel input clocked switches,” AEU-Int. J. Electron. Commun., vol. 122, Jul. 2020, Art. no. 153236.

[11] S. Babayan-Mashhadi and R. Lotti, “Analysis and design of a low-voltage low-power double-tail comparator,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 22, no. 2, pp. 343–352, Feb. 2014.

[12] P. M. Figueiredo and J. C. Vital, “Kickback noise reduction techniques for CMOS latched comparators,” IEEE Circuits Syst. II, Exp. Briefs, vol. 53, no. 7, pp. 541–545, Jul. 2006.

[13] B. Razavi, “The design of a comparator [the analog mind],” IEEE Solid State Circuits Mag., vol. 12, no. 4, pp. 8–14, Fall 2020.

[14] B. Wicht, T. Nirschl, and D. Schmitt-Landsiedel, “Yield and speed optimization of a latch-type voltage sense amplifier,” IEEE J. Solid-State Circuits, vol. 39, no. 7, pp. 1148–1158, Jul. 2004.

[15] M. van Elzakker, E. van Tuijl, P. Geraedts, D. Schinkel, A. M. Klumperink, and B. Nauta, “A 10-bit charge-redistribution ADC consuming 1.9 μW at 1 MS/s,” IEEE J. Solid-State Circuits, vol. 45, no. 5, pp. 1007–1015, May 2010.

[16] R. K. Siddharth, Y. J. Satyanarayana, Y. B. N. Kumar, M. H. Vasantha, and E. Bonizzoni, “A 1-V, 3-GHz strong-arm latch voltage comparator for high speed applications,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 67, no. 12, pp. 2918–2922, Dec. 2020.