Acute myeloid leukemia (AML) is a malignant disorder derived from neoplastic myeloid progenitor cells characterized by abnormal proliferation and differentiation. Although novel therapeutics have recently been introduced, AML remains a therapeutic challenge with insufficient cure rates. In the last years, immune-directed therapies such as chimeric antigen receptor (CAR)-T cells were introduced, which showed outstanding clinical activity against B-cell malignancies including acute lymphoblastic leukemia (ALL). However, the application of CAR-T cells appears to be challenging due to the enormous molecular heterogeneity of the disease and potential long-term suppression of hematopoiesis. Here we report on the generation of CD33-targeted CAR-modified natural killer (NK) cells by transduction of blood-derived primary NK cells using baboon envelope pseudotyped lentiviral vectors (BaEV-LVs). Transduced cells displayed stable CAR-expression, unimpeded proliferation, and increased cytotoxic activity against CD33-positive OCI-AML2 and primary AML cells in vitro. Furthermore, CD33-CAR-NK cells strongly reduced leukemic burden and prevented bone marrow engraftment of leukemic cells in OCI-AML2 xenograft mouse models without observable side effects.

INTRODUCTION

Acute myeloid leukemia (AML) represents a devastating disease for which only limited therapeutic progress has been made in the last decades. Besides high-dose chemotherapy, allogeneic bone marrow transplantation currently constitutes the most effective therapy, which is not applicable for all patients, often not fully eliminates tumor cells, and harbors the significant risk of inducing a graft-versus-host disease. Overall, this results in poor prognosis especially for elderly patients [1–4]. In other hematological malignancies such as B-cell acute lymphoblastic leukemia (B-ALL) novel cellular therapies with chimeric antigen receptor (CAR)-modified T cells lead to striking results which culminated in the approval of multiple drugs by the U.S. Food & Drug Administration (FDA) and the European Medicines Agency (EMA) [5–9]. Nevertheless, treatment of AML with CAR-T cells appears to be complicated due to the lack of AML-specific antigens and the tremendous molecular heterogeneity of the disease [1, 10]. While for B-ALL CD19 is well known as a highly specific antigen for leukemic blasts [11, 12], in AML such an exclusive antigen still needs to be identified. As a promising target CD33 was shown to be expressed on leukemic blasts and leukemia-inducing cells in the majority (88%) of AML patients, but also on normal hematopoietic stem cells [10, 13]. Furthermore, preclinical results demonstrated increased anti-AML activity of CD33-specific CAR-T cells [14, 15]. However, clinical application of long-persistent CAR-T cells appears to be challenging due to potential long-term suppression of hematopoiesis. Moreover, CAR-T cells need to be generated from autologous sources, which is cost and time intensive and often not possible from heavily pre-treated patients. As adoptively transferred natural killer (NK) cells possess a shorter lifetime, are associated with fewer side effects, and hold an intrinsic CAR-independent killing capacity against AML, CD33-CAR-NK cells constitute a promising alternative [16–19]. The use of peripheral-blood-derived NK cells (PB-NK) also appears advantageous, since NK cell lines such as NK-92 need to be irradiated prior to infusion, which can limit the proliferation and killing capacity of applied cells [17]. In addition, NK cells do not induce graft-versus-host diseases. As a perspective, the allogeneic transfer of CAR-NK cells in combination with freezing of cells harbors the potential for a true “off-the-shelf” product, which could dramatically improve the availability and reduce the costs of such an immune-cell based therapy.
Here, we report on the generation of CD33-specific CAR-NK cells from peripheral blood using baboon envelope pseudo-typed lentiviral vectors (BaEV-LV). CD33-CAR-NK cells showed stable CAR-expression, functional proliferation, and significantly increased killing capacity against CD33-positive AML cells as well as primary AML cells in vitro. Furthermore, CD33-CAR-NK cells effectively eliminated all bone marrow- and spleen-engrafted, as well as the majority of peripheral AML cells in an OCI-AML2 xenograft mouse model without detectable side effects.

MATERIALS AND METHODS

Primary AML cells. Frozen primary AML cells were thawed and cultivated in DMEM medium supplemented with 15% FBS, 50 μM β-Mercaptoethanol, 1% Pen/Strep, 100 ng/mL stem cell factor (SCF), 10 ng/mL IL-3, 20 ng/mL IL-6, 10 ng/mL thrombopoietin (TPO) and 10 ng/mL FMS-like tyrosine kinase 3 ligand (FLT3L). Cells were seeded with 700,000 cells in 3 ml per well of a six-well plate and 1 μg/mL f.c. DNAse was added. The usage of primary patient material was approved by the Ethics Committee of the University Hospital Frankfurt, Germany (approval no. 274/18). All participants gave written informed consent in accordance with the Declaration of Helsinki. NK cells were isolated from buffy coats of fresh blood from healthy, anonymous donors provided by the German Red Cross Blood Donation (DRK-Blutspendedienst Baden-Württemberg-Hessen, Frankfurt am Main, Germany) or from whole peripheral blood, acquired from healthy volunteer donors at Miltenyi Biotec (Bergisch-Gladbach, Germany). Peripheral blood mononuclear cells (PBMCs) were isolated by Ficol density gradient centrifugation (Biocoll, Biochrom, Berlin, Germany). Subsequently, NK cell enrichment was performed by immunomagnetic selection of either CD3 depleting followed by an CD56 enrichment using Microbeads (Miltenyi Biotec) or utilizing the EasySep™ Human NK Cell Enrichment Kit (StemCell, Vancouver, Canada) according to the manufacturer’s instructions. NK cell purity was determined by flow cytometry using fluorochrome-conjugated antibodies anti-CD56-APC (clone REA196, Miltenyi Biotec) or anti-CD56- BV421 (clone NCAM16.2, BD Biosciences, Franklin Lakes, New Jersey, USA), anti-CD33-BUV395 (clone SK7, BD Biosciences), anti-CD19-APC-Vio770 (clone REA205), anti-NKG2A-PE-Vio770 (clone REA110), anti-CD57-APC (clone NCAM16.2), anti-CD16-PE-CF594 (clone 3G8), anti-CD3-BUV395 (clone SK7) (all BD Biosciences) were used. CD33-CAR expression was analyzed with a CD33-CAR Detection Reagent, containing a recombinantly expressed CD33-CAR transmembrane, stimulatory domain, and CD3ζ activation domain. A leader peptide derived from CD8α was included to facilitate CAR cell surface expression. Third-generation self-inactivating baboon envelope-pseudotyped lentiviral vectors (BaEV-LVs) were produced by transient transfection into HEK293T cells using MACSfectin (Miltenyi Biotec) or polyethyleneimine (PEI) [23].

Transduction of NK cells. On day two post NK cell isolation NK cells were transduced with lentiviral particles.

Flow cytometry analysis of transduced NK cells. CAR- and CD16 expression on gene-modified NK cells as well as the possible contamination with CD3-positive cells were analyzed every 3–7 days post transduction using flow cytometry. For NK and CAR-NK cell phenotyping, fluorochrome-conjugated antibodies anti-κIgD-VioBlue (clone REA1042), anti-CD16-VioGreen (clone REA423), anti-CD33-PE (clone REA205), anti-CD52-PE-Vio770 (clone REA110), anti-CD57-APC-Vio770 (clone REA769), anti-CD56-APC (clone REA 196), anti-Nkp44-PE (clone REA 1163), anti-Nkp30-PE-Vio770 (clone REA 203), anti-CD33-VioBright515 (clone REA775) (all Miltenyi Biotec), anti-DNAM-1-BV421 (clone REA118), anti-NKG2D-BV510 (clone 1D11), anti-CD56-BV786 (clone NCAM16.2), anti-CD16-PE-CFS94 (clone 3G8), anti-CD33-BUV395 (clone SK7) (all BD Biosciences) were used. CD33-CAR expression was analyzed with a CD33-CAR Detection Reagent, containing a recombinantly expressed fluorescence reporter consisting of FRET-Pequitorin-545 extracellular domain and a specifically mutated human IgG1 Fc region (Miltenyi Biotec) and secondary addition of anti-biotin-PE antibody (clone REA746) (Miltenyi Biotec).

CD33-expression analysis. CD33 expression on AML cell lines as well as primary AML and NK cells were analyzed by flow cytometry using anti-CD33-PE (clone REA775, Miltenyi Biotec) or –BV421 (clone W6/32, BD Bioscience).

CAR-NK cell functional assay. Four hours or 24 h endpoint cytotoxicity of CAR- and UTD-NK cells was analyzed by flow cytometry. Target cells either expressing GFP or stained with Cell Trace CFSE proliferation kit (Invitrogen) were co-cultured with effector cells at various effector-target (E:T)-ratios for the indicated time period at 37 °C and 5% CO₂. Afterwards, cells were stained with 4′,6-diamidino-2-phenylindole (DAPI) (AppliChem), or propidium iodide (PI) (Miltenyi Biotec), and viability of target cells was analyzed using a BD FACScelesta (BD Biosciences) or MACSquant Analyzer 10 (Miltenyi Biotec).

CAR construction and lentiviral vector production. Second-generation CD33-CAR incorporating the My96 scFv sequence was constructed as described earlier [22]. Briefly, the My96 scFv was combined in frame with CD8 hinge and transmembrane domain, 4-1BB/CD137 co-stimulatory domain, and CD3ζ activation domain. A leader peptide derived from CD8α was included to facilitate CAR cell surface expression. Therefore, 0.5 × 10⁶ cells per well were seeded in a flat bottomed 48-well plate. Subsequently, lentiviral particles and Vectofusion-1 (Miltenyi Biotec; 2.5 μg/mL final concentration per well) were mixed in identical volumes, incubated at room temperature for 7 min, and added to the cells, to reach a final cell concentration of 1 × 10⁵ cells/ml. All previous steps were performed in serum-free NK-MACS® medium supplemented with 1% NK-MACS® Supplements, 100 ng/mL IL-3 (Miltenyi Biotec), 500 IU/mL IL-2 (Miltenyi Biotec or Novartis). Finally, 10 ng/ml IL-15 (Miltenyi Biotec or Peprotech) or 50 ng/ml IL-15 (CellGenix) was added. Subsequently, the plate was centrifuged at 400 × g for 2 h at 32 °C. Twenty-four hours post-transduction half of the medium was replaced by fresh medium containing 5% human plasma and a combination of IL-2 and IL-15 [24].

In vivo functional studies of CD33-CAR-NK cells in xenografted mice. NOD.Cg-Pkrdc^{scid}Il2rg^{tm1Wjl}Tg(CMV-IL3,CSF2,KITLG)1Eav/MloySzJ (NSG-SGM3) mice were obtained from The Jackson Laboratory, Bar Harbor, ME, USA (JAX stock No.: #013062 (NSG-SGM3)) [25]. Mice were held under standardized pathogen free conditions with adequate access to food and water. Experiments were approved by the Regierungspräsidium.
Fig. 1 CD33-CAR-NK cells display robust in vitro effector function against CD33-positive AML cells that are partially resistant to natural cytotoxicity. A Schematic representation and surface expression of the CD33-directed second-generation CAR used in this study. Expression was analyzed by flow cytometry 12 days after transgene transfer into primary NK cells. B Time-lapsed expansion of CAR-transduced (CD33-CAR) and untransduced (UTD)-NK cells in the presence of IL-2 (500 IU/mL) and IL-15 (140 IU/mL) (n = 5). C Expanded NK cells show high cytotoxic activity against various AML cell lines except OCI-AML2. On day 14 of expansion, NK cells were co-incubated with various AML target cells at indicated E:T-ratios. After 24 h, the fraction of viable target cells was quantified by flow cytometry. Data shown are representative of results from two independent experiments. D The AML cell line OCI-AML2 displays high CD33 surface expression. E, F NK cells equipped with a CD33-CAR become highly cytotoxic against OCI-AML2 and CD33-positive primary AML cells. Cells were co-cultivated for 4 h and the viability of target cells was quantitated by flow cytometry. Two representative experiments are shown. G Dynamic monitoring of CAR-NK cell-mediated cytotoxicity. On day 12 after transduction, CAR-NK cells were co-cultured with (GFP+) OCI-AML2 cells and fluorescence emission was measured in the IncuCyte S3 imaging platform over 4 days. Shown is one representative from three separate experiments with a total of 5 donors. H Repetitive tumor-challenge assay revealed superior serial killing capacity of CD33-CAR-NK cells compared to UTD-NK cells. Expanded NK cells at day 12 post transduction were co-cultured with OCI-AML2 cells at an E:T-ratio of 1:1 and re-challenged with AML cells every other day. Shown is one representative experiment with a total of two donors. All graphs show mean of replicated ± SD.
To engraft tumor cells, 0.5 × 10^6 OCI-AML2 (GFP^+\), Luc^+) cells were injected via the tail vein into NSG-SGM3 mice (≤ 15 weeks old, male or female depending on the experiment). At day 2 post tumor cell application, mice were injected with luciferin subcutaneously and the bioluminescence signal was analyzed using an IVIS® Lumina II Multispectral Imaging System (PerkinElmer, Waltham, MA, USA) to assess the tumor cell engraftment. On the following day, 1 × 10^7 CD33-CAR-NK cells or UTD-NK cells were administered via the tail vein and a daily subcutaneous injection of 25,000 IU IL-2 was started. As a control for tumor cell growth in vivo, one group of mice did not receive any treatment post tumor cell injection. The appearance, behavior, and weight of the animals were monitored every 2–3 days and the tumor load was assessed via bioluminescence imaging.
in vivo evaluation of a single treatment with CD33-CAR-NK cells (1 × 107 intravenously) followed by subcutaneous treatment with IL-2 in OCI-AML2 (Luc+) xenograft NSG-SGM3 mice. B Total flux analysis as well as representative BLI images of differently treated OCI-AML2 (Luc+) engrafted NSG-SGM3 mice over time (d7 n = 7; d14 n = 6; d21 n = 5 per group). Mice received a single dose of 1 × 107 NK cells day 3 post AML cell injection. At day 21, 4 out of 5 mice (80%) that were treated with CD33-CAR-NK cells show severely reduced leukemic burden compared to untreated mice (40%) or mice which received untransduced (UTD)-NK cells. C Cytometric analysis of blood day 2 before AML injection and day 1 post first NK cell application shows significantly increased levels of GM-CSF as well as INF-γ for mice that had received CD33-CAR-NK cells (n = 3). Mean ± SD. D Total flux analysis of femurs/tibiae and spleens, as well as flow cytometry analysis of isolated cells from BMs or spleens at day 7, 14, and 21 post tumor cell injection, revealed the absence of GFP-positive tumor cells in CD33-CAR-NK-treated mice as well as increased NK cell infiltration (day 7/14 n = 1; day 21 n = 2 per group). Values of zero were set to 1 for total flux analysis. Median ± range. Flow cytometry-based CAR expression analysis of BM- (E) or spleen- (F) infiltrating NK cells at day 14 and 21 revealed the presence of mainly CAR-positive cells (day 14 n = 1; day 21 n = 2 per group). Mean ± SD. G Confocal microscopy imaging shows GFP-positive leukemia cells in BM of UTD-nKt treated NSG-SGM3 mice at day 21 while absent in mice that received CD33-CAR-NK cells. Images from one representative animal are shown. Statistical analysis was performed by Student’s t test (∗p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001).

Concerning the mouse in vivo-experiments also a normal distribution can be assumed. Accordingly, data were analyzed by two-tailed, unpaired Student’s t-test or Mann-Whitney-test and defined as significant when p < 0.05. Statistical analysis was performed using GraphPad Prism version 6–8 (GraphPad Software, Inc., San Diego, CA, USA) for experiments with three or more donors/animals.

RESULTS

CD33-CAR-NK cells demonstrate potent in vitro activity against AML

Aiming to enhance the anti-leukemic activity of NK cells towards AML, primary NK cells derived from peripheral blood (PB) were genetically modified by lentiviral transduction to express a second-generation CD33-CAR using a single-chain variable fragment (scFv) derived from the clinically tested antibody-conjugate AVE9633 (Fig. 2A) [28]. Transgene integration by BaEV-LVs resulted in transduction rates between 35 and 60% and no severe impairment of expansion was observed during ex vivo cultivation, although CD33 has been reported to be upregulated on activated lymphocytes (Fig. 2A, B) [29]. For functional in vitro analysis, OCI-AML2 was selected as target-AML cell line, which showed relative insensitivity to natural cytotoxicity of NK cells and expressed CD33 (Fig. 1C, D). CD33-CAR-NK cells were more potent in eliminating OCI-AML2 and CD33-positive primary AML cells in a short-term killing assay compared to UTD-NK cells (Fig. 1E, F; Supplementary Fig. 1A), while killing of the CD33-dim KG1a cell line was not improved (Supplementary Fig. 1B). When the cytolytic activity was evaluated longitudinally by dynamic monitoring using IncuCyte, UTD-NK cells exhibited AML control at best, while CD33-CAR-NK cells efficiently eradicated OCI-AML2 cells even at the unfavorable E:T-ratio of 1:5 (Fig. 1G). Importantly, the sustained serial killing capacity of CD33-CAR-NK cells was also observed when the immune cells were re-challenged with AML cells supplied with fresh medium, indicating that the tumor cell death was not mediated by secondary mechanisms (for example increased levels of INF-γ or TNF-α) but by sustained CAR-directed cytotoxic activity (Fig. 1H). Cytokine secretion and phenotypical analysis revealed no major differences between UTD and CD33-CAR-NK cells, again pointing towards a CAR-dependent killing mechanism (Supplementary Fig. 1C, D).

A single dose of CD33-CAR-NK cells shows effective clearance of leukemic cells in the majority of OCI-AML2-engrafted NSG-SGM3 mice

With robust in vitro data in hand, the anti-leukemic effect of a single dose of CD33-CAR-NK cells was further analyzed in a humanized OCI-AML2 xenograft NOD.Cg–Prkdc^{scid} Il2rg^{tm1Wjl} ^{Tg} (CMV-IL3,CSF2,KITLG)1Eav/MloySzJ (NSG-SGM3) mouse model (Fig. 2A). This model was chosen, as NSG-SGM3 mice constitutively produce IL-3, GM-CSF, and stem cell factor (SCF), which reflects physiological conditions of a human host and promotes the engraftment of AML cells [25, 30]. NSG-SGM3...
A. Daily IL-2 support + Weekly tumor burden analysis (IVIS)

B. Total flux [p/s] vs days after tumor cell injection

C. Pre-peritoneal - total flux

D. BM - GFP

E. BM - CD33

F. Human DNA in blood [%]

G. CD33-CAR vs UTD

** UT UTD CD33-CAR

10^0 10^1 10^2 10^3 10^4 10^5 10^6 10^7 10^8 10^9 10^10

Spleen - total flux

To tal flux [p /s]

UT UTD CD33- CAR

0 5 10 15

Spleen - GFP

GFP

ns

UT UTD CD33- CAR

0 10 20 30

Spleen - CD56

GFP-

CD56

UT UTD CD33- CAR

0.0 0.5 1.0 1.5 2.0

BM - GFP

GFP

**

UT UTD CD33- CAR

0 10 20 30

BM - CD56

GFP-

CD56

*

UT UTD CD33- CAR

0 5×10^8 1×10^9 1.5×10^9 2×10^9 3×10^10

CAR + NK cells [%]

14 15 16 17 18 19 20 21

days after tumor cell injection

UT UTD CD33- CAR

0 10 20 30

INF- [pg/ml]

d-3 pre tumor

d1 post NK

ns

UT UTD CD33- CAR

0 2000 4000 6000

GM-CSF [pg/ml]

d-3 pre tumor

d1 post NK

ns

UT UTD CD33- CAR

0 10 20 30

MIP-[pg/ml]

d-3 pre tumor

d1 post NK

**
mice (male, 9–13 weeks old) received 0.5 x 10^6 OCI-AML2 cells (GFP+, Luciferase (Luc)+) intravenously followed by a single administration of 1 x 10^7 CD33-CAR-NK cells at day 3 post tumor cell injection. Remarkably a nearly complete eradication of leukemic by day 21 post injection of AML cells could be observed in the majority of mice (4 out of 5 mice at day 21 (80%)) while only a deceleration of leukemic cell growth could be observed in mice treated with UTD-NK cells (day 7: n = 7, day 14: n = 6, day 21: n = 5 per group; Fig. 2B). Quality control of applied CD33-CAR-NK cells revealed sufficient expansion (approximately 200-fold by day 20), high CAR- (60–80%), and CD16- (40–80%) expression as well as improved cytotoxic efficacy of the CD33-CAR-NK product (Supplementary Fig. 2A–D). Analysis of peripheral blood from CD33-CAR-NK treated mice revealed significant increase of human INF-γ serum levels on day 1 after the first NK cell-application compared to mice that had received UTD-NK cells, while serum levels of MIP-1α, IL-6, IL-10, and TNF-α remained below physiological relevant concentrations (Fig. 2C; Supplementary Fig. 2E). BLI analysis of femur, tibia, and spleen of representative mice on day 7, 14, and 21 revealed impeded AML engraftment in CD33-CAR-NK treated animals which was confirmed by flow cytometry analysis of cells isolated from BM and spleen (Fig. 2D). Furthermore, CD33-CAR-NK cells showed increased BM- and spleen-enfiltration compared to UTD-NK cells. Therefore, the majority of NK cells could be identified as CAR-positive (BM: 89–95%; spleen: 78–90%; Fig. 2E, F). Consequently, BM- and spleen-infiltrating NK cells prevented engraftment of primary tumor cells and the successive alteration of the BM, which became evident not only by flow cytometry but also through histologic analysis of BM via confocal microscopy. Thereby, BM of untreated mice or mice which had received UTD-NK cells displayed an altered, pitted structure together with high GFP-positive AML cell infiltration, while a normal BM structure and no GFP signal could be observed for mice treated with CD33-CAR-NK cells (Fig. 2G).

Enhanced clearance of AML in OCI-AML2-engrafted NSG-SGM3 mice by repetitive injections of CD33-CAR-NK cells

With the aim of improving outcomes, following CAR-NK product characterization (Supplementary Fig. 3A–C), in total three doses of 1 x 10^7 CD33-CAR-NK cells were administered to a group of seven OCI-AML2-engrafted NSG-SGM3 mice (female, 9–13 weeks old) (Fig. 3A). This treatment resulted in strong reduction of AML burden by day 21 in all animals (Fig. 3B). BLI analysis of femurs, tibiae, and spleens on day 22 revealed impeded AML engraftment in CD33-CAR-NK-treated mice while the administration of UTD-NK cells did not have any effect. This was confirmed by flow cytometry analysis of cells isolated from BM and spleen. Here only a reduction of BM- and no changes for spleen-infiltrating AML cells could by observed in mice treated with UTD-NK cells, whereas CD33-CAR-NK cells were able to completely eradicate AML cells in both organs (Fig. 3C). Additionally, NK cell-infiltration in the BM or spleen on day 22 was significantly increased in mice treated with CD33-CAR-NK compared to UTD-NK cells, and the majority of NK cells were identified as CAR-positive (78–95%; Fig. 3F). Chimerism analysis of PB revealed high amounts of DNA from human NK cells (10–30%) without detectable DNA of AML in blood of mice, which were treated with CD33-CAR-NK cells. In contrast, only small amounts of human DNA were found in the blood samples of mice treated with UTD-NK cells which partially displayed AML cell DNA (Fig. 3D). Furthermore, serum levels on day 1 after the first NK cell-application could be observed in mice, which had received CD33-CAR-NK compared to UTD-NK cells, while serum levels of IL-6, IL-10, and TNF-α remained below physiological relevant concentrations (Fig. 3E; Supplementary Fig. 3E). Histologic analysis of BM by confocal microscopy of mice treated with CD33-CAR-NK cells revealed the presence of CAR-NK cells in an intact, AML-free BM, while UTD-NK-treated or untreated mice displayed an altered, pitted BM structure together with high GFP-positive AML cell infiltration (Fig. 3G; Supplementary Fig. 3D).

Of note, following both single and repetitive CD33-CAR-NK cell injections, the animals did not show any clinical signs of cytokine release syndrome (CRS), weight reduction, altered appearance or behavior, or graft-versus-host-disease (GVHD), in line with histologic analysis of lung, liver, and colon.

DISCUSSION

In the rapidly moving field of CAR-immune cell therapies, recent studies have shown that primary CAR-NK cells are safe and can be highly effective [31]. With the aim of developing NK cell therapy concepts that address malignant diseases beyond CD19-expressing B cell neoplasms, which are still difficult to treat, research on primary CAR-NK cells targeting AML is urgently required. Our study showed that CD33-CAR-NK cells exhibit stable CAR expression and maintained a high proliferation rate, although fratricide of CD33-positive NK cells was observed in different donors (Supplementary Fig. 1E, F). Importantly, CD33-CAR-NK cells efficiently eliminated AML cells in vitro and eradicated all BM- and spleen-infiltrating as well as the majority of peripheral AML cells in NSG-SGM3 mice without observable side effects. Significantly higher numbers of BM-, spleen- as well as PB-NK cells were detected in mice treated with CD33-CAR-NK cells. Additionally, while the CAR-expression rates of the applied NK cells reached between 30 and 50%, the...
majority (>80%) of BM- and spleen-infiltrating NK cells could be identified as CAR-positive. This indicates increased survival or improved BM homing of CAR-NK cells. Latter constitutes a particularly desirable feature as the density of BM located NK cells following adoptive NK cell-transfer was shown to correlate with clinical response [32]. The increased persistence of CD33-CAR-NK cells compared to UDT-NK cells without endogenous cytokine-production might also constitute a clinical advantage, as recent studies showed that CAR-NK cells constitutively secreting IL-15 can cause severe toxicities in animal models [33]. Additionally, increased but still moderate values of pro-inflammatory cytokines in mice treated with CD33-CAR-NK cells could fortify a systemic immune response against AML, which might further improve outcomes. While donor-dependent heterogeneity in terms of CAR-expression and proliferation constitutes a known hurdle in vitro, we could also observe strong donor-dependent differences in anti-leukemic effects of UDT-NK cells in vivo, which was mostly abrogated by introducing a CAR-dependent killing mechanism. Nevertheless, donor-dependent characteristics of allogeneic applied NK cells need to be carefully monitored and require further investigations to maximize outcomes and avoid unwanted side effects. While in recent studies with CD33-CAR-T cells, certain constructs such as Gemtuzumab-based CARs were shown to induce in vivo toxicities, the AVE9633-derived CAR deployed in this study might pose a promising option for AML therapy [34]. Overall, these data clearly suggest that CD33-CAR-NK cells might be suitable for the treatment of AML, due to their strong anti-tumor efficacy and highly improved presence in BM, spleen, and PB compared to normal NK cells. In particular, for cases in which the generation of autologous CAR-immune cells from heavily pre-treated AML patients appears to be difficult, CAR-NK products from third-party donors may be considered a clinically important advantage.

REFERENCES

1. Döhner H, Weisdorf DJ, Bloomfield CD. Acute myeloid leukemia. N Engl J Med. 2015;373:1136–52.
2. Döhner H, Ertex E, Grimwade D, Amadori S, Appelbaum FR, Büchner T, et al. Diagnosis and management of AML in adults: 2017 ELN recommendations from an international expert panel. Blood. 2017;129:424–47.
3. Hahn T, McCarthy, Philip LR, Zhang M-J, Wang D, Arora M, et al. Risk factors for acute graft-versus-host disease after human leukocyte antigen-identical sibling transplants for adults with leukemia. J Clin Oncol. 2008;26:5728–34.
4. Kanate AS, Pasquini MC, Hari PN, Hamadani M. Allogeneic hematopoietic cell transplantation for acute myeloid leukemia: Current state in 2013 and future directions. World J Stem Cells. 2014;6:69–81.
5. Maude SL, Fayer N, Shaw PA, Aplenc R, Barrett DM, Bunin NJ, et al. Chimeric antigen receptor T cells for sustained remissions in leukemia. N Engl J Med. 2014;371:1507–17.
6. Albingser N, Hartmann J, Ullrich E. Current status and perspective of CAR-T and CAR-NK cell therapy trials in Germany. Gene Therapy. 2021;28:513–527.
7. Lee DW, Kochenderfer JN, Stetler-Stevenson M, Cui YK, Delbrook C, Feldman SA, et al. T cells expressing CD19 chimeric antigen receptors for acute lymphoblastic leukemia in children and young adults: A phase 1 dose-escalation trial. Lancet. 2015;385:517–28.
8. Davila ML, Riviere I, Wang X, Bartido S, Park J, Curran K, et al. Efficacy and toxicity management of 19-28z CAR T cell therapy in B cell acute lymphoblastic leukemia. Sci Transl Med. 2014;6:224ra25.
9. Qasim W, Zhan H, Samarasinge S, Adams S, Amrollia P, Stafford S, et al. Molecular remission of infant 8-ALL after infusion of universal TALEN gene-edited CAR T cells. Sci Transl Med. 2017;9eaaj2013.
10. Haubner S, Perna F, Köhnke T, Schmidt C, Bereman S, Ausgaberger C, et al. Coexpression profile of leukemic stem cell markers for combinatorial targeted therapy in AML. Leukemia. 2019;33:64–74.
11. LeBlon TW, Tedder TF. B lymphocytes: How they develop and function. Blood. 2008;112:1570–80.
12. Schueermann RH, Racila E. CD19 antigen in leukemia and lymphoma diagnosis and immunotherapy. Leuk Lymphoma. 1995;18:385–97.
13. Ehninger A, Kramer M, Röllig C, Thiede C, Bornhäuser M, Bonin Mvon, et al. Distribution and levels of cells surface expression of CD33 and CD123 in acute myeloid leukemia. Blood Cancer J. 2014;4:e218–e218.
14. Dutour A, Marin V, Pizzolita I, Valsesia-Wittmann S, Lee D, Yoon E, et al. In vivo and in vivo antitumor effect of anti-CD33 chimeric receptor-expressing EBV-CTL against CD33 acute myeloid leukemia. Adv Hematol. 2012;2012:683065.
15. Kumar B, Rishi K, Kenderian SS, Ruella M, Chen S, Shih T-H, et al. Genetic inactivation of CD33 in hematopoietic stem cells to enable CAR T cell immunotherapy for acute myeloid leukemia. Cell. 2018;173:1439–e19.
16. Szczepanski MJ, Szajnik M, Welsh A, Foon KA, Whiteside TL, Boyiadzis M. Interleukin-15 enhances natural killer cell cytotoxicity in patients with acute myeloid leukemia by upregulating the activating NK cell receptors. Cancer Immunol Immunother. 2010;59:73–9.
17. Reinid LM, Albingser N, Bexte T, Muller S, Hartmann J, Ulrich E. Immunotherapy with NK cells: Recent developments in gene modification open up new avenues. Oncoimmunology. 2020;9:1777651.
18. Rubnitz JE, Inaba H, Ribeiro RC, Pounds S, Rooney B, Bell T, et al. NKAML: A pilot study to determine the safety and feasibility of haploidentical natural killer cell transplantation in childhood acute myeloid leukemia. J Clin Oncol. 2010;28:895–9.
19. Romee R, Rosario M, Berrien-Elliott MM, Wagner JA, Jewell WA, Schappe T, et al. Cytokine-induced memory-like natural killer cells exhibit enhanced responses against myeloid leukemia. Sci Transl Med. 2016;8:357ra123.
20. Henney CS, Kurniabayashi K, Kern DE, Gillis S. Interleukin-2 augments natural killer cell activity. Nature. 1981;293:335–8.
21. Koehl U, Sörensen J, Esser R, Zimmermann S, Grütter HP, Tonn T, et al. IL-2 activated NK cell immunotherapy of three children after haploidentical stem cell transplantation. Blood Cells, Mol. Dis. 2004;33:261–6.
22. Schneider D, Xiong Y, Hu P, Wu D, Chen W, Ying T, et al. A unique human immunoglobulin heavy chain variable domain-only CD33 CAR for the treatment of acute myeloid leukemia. Front Oncol. 2018;8:539.
23. Calamartino ABL, Lemieux W, Bifsha P, Nicolleti S, Chakravarti N, Sanz J, et al. Efficient and robust NK-cell transduction with baboon envelope pseudotyped lentivector. Front Immunol. 2019;10:2873.
24. Bari R, Granzin M, Tsang KS, Roy A, Krueger W, Orentas R, et al. A distinct subset of highly proliferative and lentiviral vector (LV)-transducible NK cells define a readily engineered subset for adoptive cellular therapy. Front Immunol. 2019;10:2001.
25. NOD.Cg-PkdCl−/−IcSki−/−Mx1Cre+EGFP+Tg(CMV-IL-3,CSF2,FLT3LG18)1Eav/MioyS2z 2021 (cited 2021 August 26.) https://www.jax.org/strain/013062.
26. Pongers-Willemsen MJ, Verhagen OJ, Tibbe JG, Wijkhuis AJ, Haas Vde, Roovers E, et al. Real-time quantitative PCR for the detection of minimal residual disease in acute lymphoblastic leukemia using junctional region specific TaqMan probes. Leukemia. 1998;12:2006–14.
27. Lion T, Watzinger F, Preuner S, Kreyenhoff T, Pelan T, Weger RE, et al. The EuroChimerism concept for a standardized approach to chimerism analysis after allogeneic stem cell transplantation. Leukemia. 2012;26:1821–28.
28. Deslandes A. Comparative clinical pharmacokinetics of antibody-drug conjugates in first-in-human Phase 1 studies. mAbs. 2014;6:859–70.
29. Hernandez-Caselles T, Martinez-Esparza M, Perez-Oliva AB, Quintanilla-Ceccon AM, Garcia-Alonso A, Alvarez-Lopez DMR, et al. A study of CD33 (SIGLEC-3) antigen expression and function on activated human T and NK cells. Two isoforms of CD33 are generated by alternative splicing. J Leukoc Biol. 2006;79:46–58.
30. Wunderlich M, Chou F-S, Link KA, Mizukawa B, Perry RL, Carroll M, et al. AML xenograft efficiency is significantly improved in NOD/SCID/iIL-2RG mice constitutively expressing human SCF, GM-CSF, and IL-3. Leukemia. 2010;24:1785–8.
31. Liu E, Marin D, Banerjee P, Macapinlac HA, Thompson P, Basar R, et al. Use of CAR-transduced natural killer cells in CD19-positive lymphoid tumors. N Engl J Med. 2020;382:54–53.
32. Grzywacz B, Moench L, McKenna DJ, Tesser KM, Bachanova V, Cooley S, et al. Natural killer cell homing and persistence in the bone marrow after adoptive immunotherapy correlates better with leukemia control. J Immunother. 2019;42:65–72.
33. Christodoulou I, Ho WJ, Marple A, Ravich JW, Tam A, Rahnama R, et al. Engineering CAR-NK cells to secrete IL15 sustains their anti-AML functionality, but is associated with systemic toxicities. J Immunother Cancer. 2021;9:e003894. https://doi.org/10.1136/jitc-2021-003894.
34. Qin H, Yang L, Chukinas JA, Shah N, Tarun S, Pouzolles M, et al. Systematic preclinical evaluation of CD33-directed chimeric antigen receptor T cell immunotherapy for acute myeloid leukemia defines optimized construct design. J Immunother Cancer. 2021;9:e003149.
assistance. This work was supported by the German Research Foundation (Project Number 318346496, SFB1292/2 TP12) (to EU, JC, MWMK, and NA), the Alfred and Angelika Gutermuth Foundation, the Jose Carreras Leukemia Foundation (to EU and OP), and by Miltenyi Biotec. Figures 2A and 3A have been created using BioRender.

AUTHOR CONTRIBUTIONS
Contribution: NA, RP, MN, SM, JC, MQ, and DS performed experiments; NA, MN, RP, OP, and MWMK analyzed data. EU, NM, and CZ designed and directed the study; NA performed statistical analysis; EU, NM, CZ, NA, MN, and RP discussed the results together with all co-authors. NA, NM, and EU wrote the manuscript with the contribution of RP, MN, and DS.

FUNDING
Open Access funding enabled and organized by Projekt DEAL.

COMPETING INTERESTS
RP, MN, MQ, CZ, and NM are employees of Miltenyi Biotec. DS is employee of Lentigen Technology, Inc., a Miltenyi Biotec Company. MWMK is a consultant for Pfizer and Abbvie and receives travel support from Celgene and Daiichi Sankyo. OP and EU have no COIs directly related to this manuscript. OP has received honoraria or travel support from Astellas, Gilead, Jazz, MSD, Neovii Biotech, Novartis, Pfizer, and Therakos. He has received research support from Gilead, Incyte, Jazz, Neovii Biotech, and Takeda and is member of advisory boards to Jazz, Gilead, MSD, Omeros, Priothera, Shionogi, and SOBI. EU has a sponsored research project with Gilead. Remaining authors declare no conflict of interest.

ADDITIONAL INFORMATION
Supplementary information The online version contains supplementary material available at https://doi.org/10.1038/s41408-022-00660-2.

Correspondence and requests for materials should be addressed to Evelyn Ullrich.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher's note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

© The Author(s) 2022