Hadwiger’s Conjecture for ℓ-Link Graphs

Bin Jia¹ and David R. Wood²

¹DEPARTMENT OF MATHEMATICS AND STATISTICS
THE UNIVERSITY OF MELBOURNE
MELBOURNE, AUSTRALIA
E-mail: jiabinqq@gmail.com

²SCHOOL OF MATHEMATICAL SCIENCES
MONASH UNIVERSITY
MELBOURNE, AUSTRALIA
E-mail: david.wood@monash.edu

Received February 27, 2014; Revised January 23, 2016

Published online 24 February 2016 in Wiley Online Library (wileyonlinelibrary.com).
DOI 10.1002/jgt.22035

Abstract: In this article, we define and study a new family of graphs that generalizes the notions of line graphs and path graphs. Let G be a graph with no loops but possibly with parallel edges. An ℓ-link of G is a walk of G of length ℓ ⩾ 0 in which consecutive edges are different. The ℓ-link graph Lℓ(G) of G is the graph with vertices the ℓ-links of G, such that two vertices are joined by μ ⩾ 0 edges in Lℓ(G) if they correspond to two subsequences of each of μ (ℓ + 1)-links of G. By revealing a recursive structure, we bound from above the chromatic number of ℓ-link graphs. As a corollary, for a given graph G and large enough ℓ, Lℓ(G) is 3-colorable. By investigating the shunting of ℓ-links in G, we show that the Hadwiger number of a nonempty Lℓ(G) is greater or equal to that of G. Hadwiger’s conjecture states that the Hadwiger number of a graph is at least the chromatic number of that graph. The conjecture has been proved by Reed and

¹Contract grant sponsor: The University of Melbourne; Contract grant sponsor: Australian Research Council.

Journal of Graph Theory
© 2016 Wiley Periodicals, Inc.
460
Seymour (Eur J Combin 25(6) (2004), 873–876) for line graphs, and hence 1-link graphs. We prove the conjecture for a wide class of ℓ-link graphs.

Keywords: ℓ-link graph; path graph; chromatic number; graph minor; Hadwiger’s conjecture

1. INTRODUCTION AND MAIN RESULTS

We introduce a new family of graphs, called ℓ-link graphs, which generalizes the notions of line graphs and path graphs. Such a graph is constructed from a certain kind of walk of length $\ell \geq 0$ in a given graph G. To ensure that the constructed graph is undirected, G is undirected. To avoid loops, G is loopless, and the consecutive edges in each walk are different. Such a walk is called an ℓ-link. For example, a 0-link is a vertex, a 1-link is an edge, and a 2-link consists of two distinct edges with an end vertex in common. An ℓ-path is an ℓ-link without repeated vertices. We use $L_\ell(G)$ and $P_\ell(G)$ to denote the sets of ℓ-links and ℓ-paths of G, respectively. There have been a number of families of graphs constructed from ℓ-links. For example, the line graph $L(G)$, introduced by Whitney [23], is the simple graph with vertex set $E(G)$, in which two vertices are adjacent if their corresponding edges are incident to a common vertex. More generally, the ℓ-path graph $P_\ell(G)$ is the simple graph with vertex set $P_\ell(G)$, where two vertices are adjacent if the union of their corresponding ℓ-paths forms a path or a cycle of length $\ell + 1$. Note that an ℓ-path contains ℓ distinct edges and $\ell + 1$ distinct vertices. So $P_\ell(G)$ is the $P_{\ell+1}$-graph of G introduced by Broersma and Hoede [4]. Inspired by these graphs, we define the ℓ-link graph $L_\ell(G)$ of G to be the graph with vertex set $L_\ell(G)$, in which two vertices are joined by $\mu \geq 0$ edges in $L_\ell(G)$ if they correspond to two subsequences of each of μ ($\ell + 1$)-links of G. More strict definitions can be found in Section 2, together with some other related graphs.

This article studies the structure, coloring, and minors of ℓ-link graphs including a proof of Hadwiger’s conjecture for a wide class of ℓ-link graphs. By default $\ell \geq 0$ is an integer. And all graphs are finite, undirected, and loopless. Parallel edges are admitted unless we specify the graph to be simple.

1.1. Graph Coloring

Let $t \geq 0$ be an integer. A t-coloring of G is a map $\lambda : V(G) \rightarrow [t] := \{1, 2, \ldots, t\}$ such that $\lambda(u) \neq \lambda(v)$ whenever $u, v \in V(G)$ are adjacent in G. A graph with a t-coloring is t-colorable. The chromatic number $\chi(G)$ is the minimum t such that G is t-colorable. Similarly, a t-edge-coloring of G is a map $\lambda : E(G) \rightarrow [t]$ such that $\lambda(e) \neq \lambda(f)$ whenever $e, f \in E(G)$ are incident to a common vertex in G. The edge-chromatic number $\chi'(G)$ of G is the minimum t such that G admits a t-edge-coloring. Let $\chi_\ell(G) := \chi(L_\ell(G))$, and $\Delta(G)$ be the maximum degree of G. Brooks’ theorem [5] states that, the chromatic number of a connected graph G equals $\Delta(G) + 1$ if G is an odd cycle or a complete graph with at least one vertex, and is at most $\Delta(G)$ otherwise. Shannon [18] proved that $\chi_1(G) = \chi'(G) \leq \frac{\Delta}{2} \Delta(G)$. We prove a recursive structure for ℓ-link graphs, which leads to the following upper bounds for $\chi_\ell(G)$.

Theorem 1.1. Let G be a graph, $\chi := \chi(G)$, $\chi' := \chi'(G)$, and $\Delta := \Delta(G)$.

- (1) If $\ell \geq 0$ is even, then $\chi_\ell(G) \leq \min\{\chi, \lfloor (\frac{\ell}{2})^{\ell/2} (\chi - 3) \rfloor + 3\}$.

Journal of Graph Theory DOI 10.1002/jgt
(2) If $\ell \geq 1$ is odd, then $\chi_\ell(G) \leq \min\{\chi', \lfloor \frac{1}{2} (\chi' - 3) \rfloor + 3\}.$

(3) If $\ell \not= 1$, then $\chi_\ell(G) \leq \Delta + 1.$

(4) If $\ell \geq 2$, then $\chi_\ell(G) \leq \chi_{\ell-2}(G).$

Theorem 1.1 implies that $\mathbb{L}_\ell(G)$ is 3-colorable for large enough $\ell.$

Corollary 1.2. For each graph G, $\mathbb{L}_\ell(G)$ is 3-colorable in the following cases:

1. $\ell \geq 0$ is even, and either $\chi(G) \leq 3$ or $\ell > 2 \log_{1.5}(\chi(G) - 3).$
2. $\ell \geq 1$ is odd, and either $\chi'(G) \leq 3$ or $\ell > 2 \log_{1.5}(\chi'(G) - 3) + 1.$

As explained in Section 2, this corollary is related to and implies a result by Kawai and Shibata [15].

1.2. Graph Minors

A connected graph with two or more vertices is *biconnected* if it cannot be disconnected by removing a vertex. By contracting an edge we mean identifying its end vertices and deleting possible resulting loops. A graph H is a *minor* of a graph G if H can be obtained from a subgraph of G by contracting edges. An H-minor is a minor of G that is isomorphic to $H.$ The *Hadwiger number* $\eta(G)$ of G is the maximum integer t such that G contains a K_t-minor. Denote by $\delta(G)$ the minimum degree of $G.$ The *degeneracy* $d(G)$ of G is the maximum $\delta(H)$ over the subgraphs H of $G.$ We prove the following.

Theorem 1.3. Let $\ell \geq 1,$ and G be a graph such that $\mathbb{L}_\ell(G)$ contains at least one edge. Then $\eta(\mathbb{L}_\ell(G)) \geq \max\{\eta(G), d(G)\}.$

By definition $\mathbb{L}(G)$ is the underlying simple graph of $\mathbb{L}_1(G).$ And $\mathbb{L}_\ell(G) = \mathbb{P}_\ell(G)$ if $girth(G) > \lfloor \ell, 2 \rfloor.$ Thus Theorem 1.3 can be applied to path graphs.

Corollary 1.4. Let $\ell \geq 1,$ and G be a graph of girth at least $\ell + 1$ such that $\mathbb{P}_\ell(G)$ contains at least one edge. Then $\eta(\mathbb{P}_\ell(G)) \geq \max\{\eta(G), d(G)\}.$

As a far-reaching generalization of the four-color theorem, in 1943, Hugo Hadwiger [10] conjectured the following.

Hadwiger’s conjecture: $\eta(G) \geq \chi(G)$ for every graph $G.$

Hadwiger’s conjecture was proved by Robertson, Seymour, and Thomas [17] for $\chi(G) \leq 6.$ The conjecture for line graphs, or equivalently for 1-link graphs, was proved by Reed and Seymour [16]. We prove the following.

Theorem 1.5. Hadwiger’s conjecture is true for $\mathbb{L}_\ell(G)$ in the following cases:

1. $\ell \geq 1$ and G is biconnected.
2. $\ell \geq 2$ is an even integer.
3. $d(G) \geq 3$ and $\ell > 2 \log_{1.5}(\Delta(G) - 2)/2 + 3.$
4. $\Delta(G) \geq 3$ and $\ell > 2 \log_{1.5}(\Delta(G) - 2) - 3.83.$
5. $\Delta(G) \leq 5.$

The corresponding results for path graphs are listed below.

Corollary 1.6. Let G be a graph of girth at least $\ell + 1.$ Then Hadwiger’s conjecture holds for $\mathbb{P}_\ell(G)$ in the cases of Theorem 1.5 (1)–(5).
2. DEFINITIONS AND TERMINOLOGY

We now give some formal definitions. A graph G is null if $V(G) = \emptyset$, and non-null otherwise. A non-null graph G is empty if $E(G) = \emptyset$, and nonempty otherwise. A unit is a vertex or an edge. The subgraph of G induced by $V \subseteq V(G)$ is the maximal subgraph of G with vertex set V. And in this case, the subgraph is called an induced subgraph of G. We may not distinguish between V and its induced subgraph. For $\emptyset \neq E \subseteq E(G)$, the subgraph of G induced by $E \cup V$ is the minimal subgraph of G with edge set E, and vertex set including V. The diameter $\text{diam}(G)$ of G is $+\infty$ if G is disconnected, and the maximum distance between two vertices of G otherwise.

Let G be a graph, and H be a subgraph of G. Let Q be a partition of $V(H)$ such that every $V \in Q$ induces a connected subgraph of H. Let M be the graph obtained from H by contracting each $V \in Q$ into a vertex. Then M is a minor of G. And V is called a branch set of M.

For more accurate analysis, we need to define ℓ-arcs. An ℓ-arc (or $*\text{-arc}$ if we ignore the length) of G is an alternating sequence $\overrightarrow{L} := (v_0, e_1, \ldots, e_\ell, v_\ell)$ of units of G such that the end vertices of $e_i \in E(G)$ are v_{i-1} and v_i for $i \in [\ell]$, and that $e_i \neq e_{i+1}$ for $i \in [\ell - 1]$. The direction of \overrightarrow{L} is its vertex sequence $(v_0, v_1, \ldots, v_\ell)$. In algebraic graph theory, ℓ-arcs in simple graphs have been widely studied [3, 19, 20, 22]. Note that \overrightarrow{L} and its reverse $\overrightarrow{-L} := (v_\ell, e_\ell, \ldots, e_1, v_0)$ are different unless $\ell = 0$. The ℓ-link (or $*\text{-link}$ if the length is ignored) $L := [v_0, e_1, \ldots, e_\ell, v_\ell]$ is obtained by taking \overrightarrow{L} and $\overrightarrow{-L}$ as a single object. For $0 \leq i \leq j \leq \ell$, the $(j - i)$-arc $\overrightarrow{L}(i, j) := (v_i, e_{i+1}, \ldots, e_j, v_j)$ and the $(j - i)$-link $\overrightarrow{L}[i, j] := [v_i, e_{i+1}, \ldots, e_j, v_j]$ are called segments of \overrightarrow{L} and L, respectively. We may write $\overrightarrow{L}(j, i) := -\overrightarrow{L}(i, j)$, and $\overrightarrow{L}[j, i] := \overrightarrow{L}[i, j]$. These segments are called middle segments if $i + j = \ell$. L is called an ℓ-cycle if $\ell \geq 2$, $v_0 = v_\ell$, and $\overrightarrow{L}[0, \ell - 1]$ is an $(\ell - 1)$-path.

Denote by $\mathcal{L}(G)$ and $\mathcal{C}_\ell(G)$ the sets of ℓ-arcs and ℓ-cycles of G, respectively. Usually, $\overrightarrow{L}(v_0, v_\ell)$ is called an arc for short. In particular, $v_0, v_\ell, e_1, e_\ell, \overrightarrow{e_1}$, and $\overrightarrow{e_\ell}$ are called the tail vertex, head vertex, tail edge, head edge, tail arc, and head arc of \overrightarrow{L}, respectively.

Godsil and Royle [9] defined the ℓ-arc graph $\mathcal{A}_\ell(G)$ to be the digraph with vertex set $\mathcal{L}(G)$, such that there is an arc, labeled by \overrightarrow{Q}, from $\overrightarrow{Q}(0, \ell)$ to $\overrightarrow{Q}(1, \ell + 1)$ in $\mathcal{A}_\ell(G)$ for every $\overrightarrow{Q} \in \mathcal{L}_{\ell+1}(G)$. The t-dipole graph D_t is the graph consists of two vertices and $t \geq 1$ edges between them. (See Figure 1 for D_3, and Figure 1 b the 1-arc graph of D_3.)
The ℓth iterated line digraph $A_\ell^{\ell}(G)$ is $A_1(G)$ if $\ell = 1$, and $A_1(A_{\ell-1}(G))$ if $\ell \geq 2$ (see [2]). Examples of undirected graphs constructed from ℓ-arcs can be found in [12, 13].

Shunting of ℓ-arcs was introduced by Tutte [21]. We extend this notion to ℓ-links. For $\ell, s \geq 0$, and $\vec{Q} \subseteq L_{\ell+s}(G)$, let $L_i := \vec{Q}[i, \ell + i]$ for $i \in [s] \cup \{0\}$, and $Q_i := \vec{Q}[i - 1, \ell + i]$ for $i \in [s]$. Let $Q^{\ell} := \{L_0, Q_1, L_1, \ldots, L_{s-1}, Q_s, L_s\}$. We say L_0 can be **shunted** to L_s through \vec{Q} or $\vec{Q}' := \{L_0, L_1, \ldots, L_s\}$ is the set of **images** during this shunting. For $L, R \in L_\ell(G)$, we say L can be shunted to R if there are ℓ-links $L = L_0, L_1, \ldots, L_s = R$ such that L_{i-1} can be shunted to L_i through some ℓ-arc \vec{Q}_i for $i \in [s]$. In Figure 2, $[u_0, f_0, v_0, e_0, v_1]$ can be shunted to $[v_1, e_0, v_0, e_1, v_1]$ through $(u_0, f_0, v_0, e_0, v_1, f_1, u_1)$ and $(u_1, f_1, v_1, e_0, v_0, e_1, v_1)$.

For $L, R \in L_\ell(G)$ and $Q \subseteq L_{\ell+1}(G)$, denote by $Q(L, R)$ the set of $Q \subseteq Q$ such that L can be shunted to R through Q. We show in Section 3 that $|Q(L, R)|$ is 0 or 1 if G is simple, and can be up to 2 if $\ell \geq 1$ and G contains parallel edges. A more formal definition of ℓ-link graphs is given below.

Definition 2.1. Let $L \subseteq L_\ell(G)$, and $Q \subseteq L_{\ell+1}(G)$. The partial ℓ-link graph $L(L, \ell, Q)$ of G, with respect to L and Q, is the graph with vertex set L, such that $L, R \in L$ are joined by exactly $|Q(L, R)|$ edges. In particular, $L(L, \ell, Q) = L(L, \ell, Q)$ is the ℓ-link graph of G.

Remark. We assign exclusively to each edge of $L(L, \ell, Q)$ between $L, R \in L_\ell(G)$ a $Q \subseteq L_{\ell+1}(G)$ such that L can be shunted to R through Q, and refer to this edge simply as Q. In this sense, $Q^{\ell} := [L, Q, R]$ is a 1-link of $L(L, \ell, Q)$.

For example, the 1-link graph of D_3 can be seen in Figure 1 c. A 2-link graph is given in Figure 2 b, and a 2-path graph is depicted in Figure 2 d.

Reed and Seymour [16] pointed out that proving Hadwiger’s conjecture for line graphs of multigraphs is more difficult than for that of simple graphs. This motivates us to work on the ℓ-link graphs of multigraphs. Diestel [7, page 28] explained that, in some situations, it is more natural to develop graph theory for multigraphs. We allow parallel edges in ℓ-link graphs in order to investigate the structure of $L(L, \ell, Q)$ by studying the shunting of
\(\ell\)-links in \(G\) regardless of whether \(G\) is simple. The observation below follows from the definitions.

Observation 2.2. \(\mathbb{L}_0(G) = G\), \(\mathbb{P}_1(G) = \mathbb{L}_1(G)\), and \(\mathbb{P}_\ell(G)\) is the underlying simple graph of \(\mathbb{L}_\ell(G)\) for \(\ell \in \{0, 1\}\). For \(\ell \geq 2\), \(\mathbb{P}_\ell(G) = \mathbb{L}_\ell(G)\), \(\mathbb{P}_{\ell+1}(G) \cup \mathcal{E}_{\ell}(G)\) is an induced subgraph of \(\mathbb{L}_\ell(G)\). If \(G\) is simple, then \(\mathbb{P}_\ell(G) = \mathbb{L}_\ell(G)\) for \(\ell \in \{0, 1, 2\}\). Further, \(\mathbb{P}_\ell(G) = \mathbb{L}_\ell(G)\) if \(\text{girth}(G) > \max\{\ell, 2\}\).

Let \(\tilde{Q} \in \mathcal{L}_{\ell+1}(G)\), and \([L_0, Q_1, L_1, \ldots, L_{\ell-1}, Q_{\ell}, L_{\ell}] := Q^{[\ell]}\). From the remark above, for \(i \in [s]\), \(Q_i\) is an edge of \(H := \mathbb{L}_\ell(G)\) between \(L_{i-1}, L_i \in V(H)\). So \(Q^{[\ell]}\) is an \(s\)-link of \(H\). In Figure 2 b, \([u_0, f_0, v_0, e_0, v_1, e_1, v_0, e_0, v_1]\) is a 2-path of \(H\).

We say \(H\) is homomorphic to \(G\), written \(H \rightarrow G\), if there is an injection \(\alpha : V(H) \cup E(H) \rightarrow V(G) \cup E(G)\) such that for \(w \in V(H), f \in E(H)\) and \([u, e, v] \in \mathcal{L}_1(H)\), their images \(w^\alpha \in V(G), f^\alpha \in E(G)\) and \([u^\alpha, e^\alpha, v^\alpha] \in \mathcal{L}_1(G)\). In this case, \(\alpha\) is called a homomorphism from \(H\) to \(G\). The definition here is a generalisation of the one for simple graphs by Godsil and Royle [9, page 6]. A bijective homomorphism is an isomorphism. By Hell and Nešetřil [11], \(\chi(H) \leq \chi(G)\) if \(H \rightarrow G\). For instance, \(\tilde{L} \mapsto L\) for \(\tilde{L} \in \mathcal{L}_\ell(G)\) and \(L \in \mathcal{L}_\ell(G)\) can be seen as a homomorphism from \(\mathbb{A}_\ell(G)\) to \(\mathbb{L}_\ell(G)\). By Bang-Jensen and Gutin [1], \(\mathbb{A}_\ell(G)\) is isomorphic to \(\mathbb{A}^\ell(G)\). So \(\chi(\mathbb{A}^\ell(G)) = \chi(\mathbb{A}_\ell(G)) \leq \chi(\mathbb{L}_\ell(G)) = \chi_\ell(G)\). We emphasize that \(\chi(\mathbb{A}^\ell(G))\) might be much less than \(\chi_\ell(G)\). For example, as depicted in Figure 1, when \(t \geq 3\), \(\chi(\mathbb{A}^\ell(D_t)) = 2 < t = \chi_\ell(D_t)\). Kawai and Shibata proved that \(\mathbb{A}^\ell(G)\) is 3-colorable for large enough \(\ell\). By the analysis above, Corollary 1.2 implies this result.

A graph homomorphism from \(H\) is usually represented by a vertex partition \(\mathcal{V}\) and an edge partition \(\mathcal{E}\) of \(H\) such that (a) each part of \(\mathcal{V}\) is an independent set of \(H\), and (b) each part of \(\mathcal{E}\) is incident to exactly two parts of \(\mathcal{V}\). In this situation, for different \(U, V \in \mathcal{V}\), define \(\mu(U, V)\) to be the number of parts of \(\mathcal{E}\) incident to both \(U\) and \(V\). The quotient graph \(H_{(\mathcal{V}, \mathcal{E})}\) of \(H\) is defined to be the graph with vertex set \(\mathcal{V}\), and for every pair of different \(U, V \in \mathcal{V}\), there are exactly \(\mu(U, V)\) edges between them. To avoid ambiguity, for \(V \in \mathcal{V}\) and \(E \in \mathcal{E}\), we use \(V_V\) and \(E_E\) to denote the corresponding vertex and edge of \(H_{(\mathcal{V}, \mathcal{E})}\), which defines a graph homomorphism from \(H\) to \(H_{(\mathcal{V}, \mathcal{E})}\). Sometimes, we only need the underlying simple graph \(H_V\) of \(H_{(\mathcal{V}, \mathcal{E})}\).

For \(\ell \geq 2\), there is a natural partition in an \(\ell\)-link graph. For each \(R \in \mathcal{L}_{\ell-2}(G)\), let \(\mathcal{L}_{\ell}(G, R)\), or \(\mathcal{L}_0(R)\) for short, be the set of \(\ell\)-links of \(G\) with middle segment \(R\). Clearly, \(\mathcal{V}_0(G) := \{\mathcal{L}_0(R) \neq \emptyset | R \in \mathcal{L}_{\ell-2}(G)\}\) is a vertex partition of \(\mathcal{L}_{\ell}(G)\). And \(\mathcal{E}_0(G) := \{\mathcal{L}_{\ell+1}(R) \neq \emptyset | R \in \mathcal{L}_{\ell-1}(G)\}\) is an edge partition of \(\mathcal{L}_{\ell}(G)\). Consider the 2-link graph \(H\) in Figure 2 b. The vertex and edge partitions of \(H\) are indicated by the dotted rectangles and ellipses, respectively. The corresponding quotient graph is given in Figure 2 c.

Special partitions are required to describe the structure of \(\ell\)-link graphs. Let \(H\) be a graph admitting partitions \(\mathcal{V}\) of \(V(H)\) and \(\mathcal{E}\) of \(E(H)\) that satisfy (a) and (b) above. \((\mathcal{V}, \mathcal{E})\) is called an *almost standard partition of \(H* if further:

1. Each part of \(\mathcal{E}\) induces a complete bipartite subgraph of \(H\),
2. Each vertex of \(H\) is incident to at most two parts of \(\mathcal{E}\),
3. For each \(V \in \mathcal{V}\), and different \(E, F \in \mathcal{E}\), \(V\) contains at most one vertex incident to both \(E\) and \(F\).

Journal of Graph Theory DOI 10.1002/jgt
If \(\ell \geq 2 \) is an even integer, and \(G \) is a simple graph, then \(\mathbb{L}_\ell(G) \) is isomorphic to the \((2, \ell/2)\)-double star graph of \(G \) introduced by Jia [12]. While this article focuses on the combinatorial properties including connectedness, coloring, and minors of \(\mathbb{L}_\ell(G) \), a series of companion papers have been composed to contribute to the recognition and determination problems and algorithms. For example, a joint work by Ellingham and Jia [8] shows that, for a given graph \(H \), there is at most one pair \((G, \ell)\), where \(\ell \geq 2 \), and \(G \) is a simple graph of minimum degree at least 3, such that \(\mathbb{L}_\ell(G) \) is isomorphic to \(H \). Moreover, such a pair can be determined from \(H \) in linear time.

3. GENERAL STRUCTURE OF \(\ell \)-LINK GRAPHS

We begin by determining some basic properties of \(\ell \)-link graphs, including their multiplicity and connectedness. The work in this section forms the basis for our main results on coloring and minors of \(\ell \)-link graphs.

Let us first fix some concepts by two observations.

Observation 3.1. The number of edges of \(\mathbb{L}_\ell(G) \) is equal to the number of vertices of \(\mathbb{L}_{\ell+1}(G) \). In particular, if \(G \) is \(r \)-regular for some \(r \geq 2 \), then this number is \(|E(G)|(r-1)^\ell \). If further \(\ell \geq 1 \), then \(\mathbb{L}_\ell(G) \) is \(2(r-1) \)-regular.

Proof. Let \(G \) be \(r \)-regular, \(n := |V(G)| \) and \(m := |E(G)| \). We prove that \(|\mathcal{L}_{\ell+1}(G)| = m(r-1)^\ell \) by induction on \(\ell \). It is trivial for \(\ell = 0 \). For \(\ell = 1 \), \(|\mathcal{L}_2(v)| = \binom{n}{2} \), and hence \(|\mathcal{L}_2(G)| = \binom{n}{2} n = m(r-1) \). Inductively assume \(|\mathcal{L}_{\ell+1}(G)| = m(r-1)^{\ell-2} \) for some \(\ell \geq 2 \). For each \(R \in \mathcal{L}_{\ell+1}(G) \), we have \(|\mathcal{L}_{\ell+1}(R)| = (r-1)^2 \) since \(r \geq 2 \). Thus \(|\mathcal{L}_{\ell+1}(G)| = |\mathcal{L}_{\ell-1}(G)|(r-1)^3 = m(r-1)^{\ell} \) as desired. The other assertions follow from the definitions.

Observation 3.2. Let \(n, m \geq 2 \). If \(\ell \geq 1 \) is odd, then \(\mathbb{L}_\ell(K_{n,m}) \) is \((n+m-2)\)-regular with order \(nm[(n-1)(m-1)]^{\ell-1} \). If \(\ell \geq 2 \) is even, then \(\mathbb{L}_\ell(K_{n,m}) \) has average degree \(\frac{2nm(n+m-2)(n-1)(m-1)}{n+m-2} \), and order \(\frac{1}{2} nm(n+m-2)(n-1)(m-1)^{\ell-1} \).

Proof. Let \(\ell \geq 1 \) be odd, and \(L \) be an \(\ell \)-link of \(K_{n,m} \) with middle edge incident to a vertex \(u \) of degree \(n \) in \(K_{n,m} \). It is not difficult to see that \(L \) can be shunted in one step to \(n-1 \) \(\ell \)-links whose middle edge is incident to \(u \). By symmetry, each vertex of \(\mathbb{L}_\ell(K_{n,m}) \) is incident to \((n-1)+(m-1) = n+m-2 \) edges. Now we prove \(|\mathcal{L}_\ell(K_{n,m})| = nm[(n-1)(m-1)]^{\ell-1} \) by induction on \(\ell \). Clearly, \(|\mathcal{L}_1(K_{n,m})| = |E(K_{n,m})| = nm \). Inductively assume \(|\mathcal{L}_{\ell+2}(K_{n,m})| = nm[(n-1)(m-1)]^{\ell-1} \) for some \(\ell \geq 3 \). For each \(R \in \mathcal{L}_{\ell+2}(K_{n,m}) \), we have \(|\mathcal{L}_3(R)| = (n-1)(m-1) \). So \(|\mathcal{L}_\ell(K_{n,m})| = |\mathcal{L}_{\ell-2}(K_{n,m})|(n-1)(m-1) = nm[(n-1)(m-1)]^{\ell-1} \) as desired. The even \(\ell \) case is similar.

3.1. Loops and Multiplicity

Our next observation is a prerequisite for the study of the chromatic number since it indicates that \(\ell \)-link graphs are loopless.

Observation 3.3. For each \((\ell+1)\)-arc \(\bar{Q} \), we have \(\bar{Q}[0, \ell] \neq \bar{Q}[1, \ell+1] \).

Journal of Graph Theory DOI 10.1002/jgt
Let \(G \) be a graph, and \(\tilde{Q} := (v_0, e_1, \ldots, e_{\ell+1}, v_{\ell+1}) \in \mathcal{L}_{\ell+1}(G) \). Since \(G \) is loopless, \(v_0 \neq v_1 \) and hence \(\tilde{Q}(0, 0) \neq \tilde{Q}(1, 1) \). So the statement holds for \(\ell = 0 \). Moreover, \(\tilde{Q}(0, \ell) \neq \tilde{Q}(1, \ell + 1) \). Now let \(\ell \geq 1 \). Suppose for a contradiction that \(\tilde{Q}(0, \ell) = -\tilde{Q}(1, \ell + 1) \). Then \(v_i = v_{i+1} \) and \(e_{i+1} = e_{\ell+1-i} \) for \(i \in \{0, 1, \ldots, \ell\} \).

If \(\ell = 2s \) for some integer \(s \geq 1 \), then \(v_s = v_{s+1} \), contradicting that \(G \) is loopless. If \(\ell = 2s + 1 \) for some integer \(s \geq 0 \), then \(e_{s+1} = e_{s+2} \), contradicting the definition of a \(*\)-arc.

The following statement indicates that, for each \(\ell \geq 1 \), \(\mathbb{L}_\ell(G) \) is simple if \(G \) is simple, and has multiplicity exactly \(2 \) otherwise.

Observation 3.4. Let \(G \) be a graph, \(\ell \geq 1 \), and \(L_0, L_1 \in \mathcal{L}_\ell(G) \). Then \(L_0 \) can be shunted to \(L_1 \) through two \((\ell + 1)\)-links of \(G \) if and only if \(G \) contains a 2-cycle \(O := [v_0, e_0, v_1, e_1, v_0] \), such that one of the following cases holds:

1. \(\ell \geq 1 \) is odd, and \(L_i = [v_i, e_i, v_{i-1}, e_{i-1}, \ldots, v_{i-j}, e_{i-j}] \in \mathcal{L}_\ell(O) \) for \(i \in \{0, 1\} \). In this case, \([v_i, e_i, v_{i-1}, e_{i-1}, \ldots, v_{i-j}, e_{i-j}] \in \mathcal{L}_{\ell+1}(O) \), for \(i \in \{0, 1\} \), are the only two \((\ell + 1)\)-links available for the shunting.
2. \(\ell \geq 2 \) is even, and \(L_i = [v_i, e_i, v_{i-1}, e_{i-1}, \ldots, v_{i-j}, e_{i-j}] \in \mathcal{L}_\ell(O) \) for \(i \in \{0, 1\} \). In this case, \([v_i, e_i, v_{i-1}, e_{i-1}, \ldots, v_{i-j}, e_{i-j}] \in \mathcal{L}_{\ell+1}(O) \), for \(i \in \{0, 1\} \), are the only two \((\ell + 1)\)-links available for the shunting.

Proof. \((\Leftarrow)\) is trivial. For \((\Rightarrow)\), since \(L_0 \) can be shunted to \(L_1 \), there exists \(\tilde{L} := (v_0, e_0, v_1, e_1, \ldots, e_{\ell}, v_{\ell+1}) \in \mathcal{L}_{\ell+1}(G) \) such that \(L_i = \tilde{L}[i, \ell + i] \) for \(i \in \{0, 1\} \). Let \(\tilde{R} \in \mathcal{L}_{\ell+1}(G) \setminus \{\tilde{L}\} \) such that \(L_i = \tilde{R}[i, \ell + i] \). Then \(\tilde{L}(i, \ell + i) \) equals \(\tilde{R}(i, \ell + i) \) or \(\tilde{R}(\ell + i, i) \). Suppose for a contradiction that \(\tilde{L}(0, \ell) = \tilde{R}(0, \ell) \). Then \(\tilde{L}(1, \ell) = \tilde{R}(1, \ell) \). Since \(\tilde{\ell} \neq \tilde{R} \), we have \(\tilde{L}(1, \ell + 1) \neq \tilde{R}(1, \ell + 1) \). Thus \(\tilde{L}(1, \ell + 1) = \tilde{R}(\ell + 1, 1) \), and hence \(\tilde{L}(2, \ell + 1) = \tilde{R}(\ell, 1) = \tilde{L}(\ell, 1) \), contradicting Observation 3.3. So \(\tilde{L}(0, \ell) = \tilde{R}(0, \ell) \).

Similarly, \(\tilde{L}(1, \ell + 1) = \tilde{R}(\ell + 1, 1) \). Consequently, \(\tilde{L}(0, \ell - 1) = \tilde{R}(\ell, 1) = \tilde{L}(2, \ell + 1) \); that is, \(v_j = v_0 \) and \(e_j = e_0 \) if \(j \in [0, \ell) \) is even, while \(v_j = v_1 \) and \(e_j = e_1 \) if \(j \in [0, \ell + 1) \) is odd.

3.2. Connectedness

This subsection characterizes when \(\mathbb{L}_\ell(G) \) is connected. Let \(L := [v_0, e_1, \ldots, e_\ell, v_\ell] \) be an \(\ell \)-link of \(G \), and \(m := \lceil \frac{\ell}{2} \rceil \). The middle unit \(c_L \) of \(L \) is defined to be \(v_m \) if \(\ell \) is even, and \(e_m \) if \(\ell \) is odd. Denote by \(G(\ell) \) the subgraph of \(G \) induced by the middle units of \(\ell \)-links of \(G \).

The lemma below is important in dealing with the connectedness of \(\ell \)-link graphs. Before stating it, we define a conjunction operation, which is an extension of an operation by Biggs [3, Chapter 17]. Let \(\tilde{L} := (v_0, e_1, v_1, \ldots, e_\ell, v_\ell) \in \mathcal{L}_\ell(G) \) and \(\tilde{R} := (u_0, f_1, u_1, \ldots, f_s, u_s) \in \mathcal{L}_s(G) \) such that \(v_\ell = u_0 \) and \(e_\ell \neq f_1 \). The conjunction of \(\tilde{L} \) and \(\tilde{R} \) is \((\tilde{L} \tilde{R}) := (v_0, e_1, \ldots, e_\ell, v_\ell = u_0, f_1, \ldots, f_s, u_s) \in \mathcal{L}_{\ell+s}(G) \) or \([\tilde{L} \tilde{R}] := [v_0, e_1, \ldots, e_\ell, v_\ell = u_0, f_1, \ldots, f_s, u_s] \in \mathcal{L}_{\ell+s}(G) \).

Lemma 3.5. Let \(\ell, s \geq 0 \), and \(G \) be a connected graph. Then \(G(\ell) \) is connected. And each \(s \)-link of \(G(\ell) \) is a middle segment of a \((2\lceil \frac{\ell}{2} \rceil + s)\)-link of \(G \). Moreover, for \(\ell \)-links \(L \) and \(R \) of \(G \), there is an \(\ell \)-link \(L' \) with middle unit \(c_{L'} \), and an \(\ell \)-link \(R' \) with middle unit \(c_R \), such that \(L' \) can be shunted to \(R' \).

Journal of Graph Theory DOI 10.1002/jgt
Proof. For \(\ell \in \{0, 1\} \), since \(G \) is connected, \(G(\ell) = G \) and the lemma holds. Let \(\ell := 2m \geq 2 \) be even. Then for \(u, v \in V(G(\ell)) \) if and only if they are middle vertices of some \(\vec{L}, \vec{R} \in \bar{L}_\ell(G) \), respectively. Since \(G \) is connected, there exists some \(\vec{P} := (u = v_0, e_1, \ldots, e_s, v_s = v) \in \bar{L}_\ell(G) \). By Observation 3.3, \(\bar{L}[m - 1, m] \neq \bar{L}[m, m + 1] \). For such an \(s \)-arc \(\vec{P} \), without loss of generality, \(e_1 \neq \bar{L}[m - 1, m] \), and similarly, \(e_s \neq \bar{R}[m, m + 1] \). Then \(\vec{P} \) is a middle segment of \(\vec{Q} := (\bar{L}(0, m).\vec{P}.\bar{R}(m, 2m)) \in \bar{L}_{\ell+s}(G) \). So \(L' := \bar{Q}[0, \ell] \) can be shunted to \(R' := \bar{Q}[s, \ell + s] \) through \(\bar{Q} \). Moreover, for each \(i \in \{0, \ldots, s\} \), \(v_i \) is the middle vertex of \(\bar{Q}[i, \ell + i] \in \bar{L}_\ell(G) \). Hence \(\bar{P} \) is an \(s \)-arc of \(G(\ell) \) from \(u \) to \(v \). So \(G(\ell) \) is connected. The odd \(\ell \) case is similar.

Sufficient conditions for \(\mathbb{A}_\ell(G) \) to be strongly connected can be found in [9, page 76]. The following corollary of Lemma 3.5 reveals a strong relationship between the shunting of \(\ell \)-links and the connectedness of \(\ell \)-link graphs.

Corollary 3.6. For a connected graph \(G \), \(\mathbb{L}_\ell(G) \) is connected if and only if every pair of \(\ell \)-links of \(G \) with the same middle unit can be shunted to each other.

Proof. On the one hand, if \(\mathbb{L}_\ell(G) \) is connected, then every pair of \(\ell \)-links of \(G \) can be shunted to each other. On the other hand, let \(L \) and \(R \) be two \(\ell \)-links of \(G \). Since \(G \) is connected, by Lemma 3.5, there are \(\ell \)-links \(L' \) and \(R' \) with \(c_L = c_L' \) and \(c_R = c_R' \) such that \(L' \) can be shunted to \(R' \). Hence if \(L \) can be shunted to \(L' \) and \(R \) can be shunted to \(R' \), then \(L \) can be shunted to \(R \). So if every pair of \(\ell \)-links of \(G \) with the same middle unit can be shunted to each other, then \(\mathbb{L}_\ell(G) \) is connected.

We now present our main result of this section, which plays a key role in dealing with the graph minors of \(\ell \)-link graphs in Section 5.

Lemma 3.7. Let \(G \) be a graph, and \(X \) be a connected subgraph of \(G(\ell) \). Then for every pair of \(\ell \)-links \(L \) and \(R \) of \(X \), \(L \) can be shunted to \(R \) under the restriction that in each step, the middle unit of the image of \(L \) belongs to \(X \).

Proof. First we consider the case that \(c_L \) is in \(R \). Then there is a common segment \(Q \) of \(L \) and \(R \) of maximum length containing \(c_L \). Without loss of generality, assign directions to \(L \) and \(R \) such that \(\bar{L} = (\bar{L}_0.\bar{Q}1,\bar{L}_1) \) and \(\bar{R} = (\bar{R}_0.\bar{Q}1,\bar{R}_0) \), where \(\bar{L}_i \in \bar{L}_\ell(X) \) and \(\bar{R}_i \in \bar{L}_\ell(X) \) for \(i \in \{0, 1\} \) such that \(s_1 \geq s_0 \). Then \(\ell \geq \ell_0 + \ell_1 = s_0 + s_1 \geq s_1 \). Let \(x \) be the head vertex and \(e \) be the head edge of \(\bar{L} \). Since \(c_L \) is in \(Q \), \(\ell_0 \leq \ell/2 \). Since \(X \) is a subgraph of \(G(\ell) \), by Lemma 3.5, there exists \(\bar{L}_2 \in \bar{L}_{\ell_0}(G) \) with tail vertex \(x \) and tail edge different from \(e \). Let \(y \) be the tail vertex and \(f \) be the tail edge of \(\bar{R} \). Then there exists \(\bar{R}_2 \in \bar{L}_{\ell_0}(G) \) with head vertex \(y \) and head edge different from \(f \). We can shunt \(L \) to \(R \) first through \((\bar{L}1.\bar{L}_2) \in \bar{L}_{\ell_0+\ell_1}(G) \), then \((\bar{R}_2.\bar{R}_1.\bar{Q}1.\bar{Q}_1.\bar{L}_1.\bar{L}_2) \in \bar{L}_{\ell_0+\ell_0+\ell_1}(G) \), and finally \((\bar{R}_2.\bar{R}) \in \bar{L}_{\ell_0+\ell_1}(G) \). Since \(\ell_0 \leq \ell/2 \) and \(s_0 \leq s_1 \leq \ell/2 \), the middle unit of each image is inside \(L \) or \(R \).

Second, we consider the case that \(c_L \) is not in \(R \). Then there exists a segment \(Q \) of \(L \) of maximum length that contains \(c_L \), and is edge-disjoint with \(R \). Since \(X \) is connected, there exists a shortest \(\ell \)-arc \(\bar{P} \) from a vertex \(v \) of \(R \) to a vertex \(u \) of \(L \). Then \(\bar{P} \) is edge-disjoint with \(Q \) because of its minimality. Without loss of generality, assign directions to \(L \) and \(R \) such that \(u \) separates \(\bar{L} \) into \((\bar{L}_0.\bar{L}_1) \) with \(c_L \) on \(\bar{L}_1 \), and \(v \) separates \(\bar{R} \) into \((\bar{R}_1.\bar{R}_0) \), where \(\bar{L}_i \) is of length \(\ell_i \) while \(R_i \) is of length \(s_i \) for \(i \in \{0, 1\} \), such that \(s_1 \geq s_0 \). Then \(\ell_0, s_0 \leq \ell/2 \). Let \(x \) be the head vertex and \(e \) be the head edge of \(\bar{L} \). Since \(\ell_0 \leq \ell/2 \) and \(X \) is a subgraph of \(G(\ell) \), by Lemma 3.5, there exists an \(\ell_0 \)-arc \(\bar{L}_2 \) of \(G \) with tail vertex \(x \)

\[
Journal of Graph Theory DOI 10.1002/jgt
\]
and tail edge different from \(e \). Let \(y \) be the tail vertex and \(f \) be the tail edge of \(\tilde{R} \). Then there exists an \(s_0 \)-arc \(\tilde{R}_2 \) of \(G \) with head vertex \(y \) and head edge different from \(f \). Now we can shunt \(L \) to \(R \) through \((L,\tilde{L}_2), (\tilde{R}_2,\tilde{R}_1,\tilde{P},\tilde{L}_1,\tilde{L}_2)\) and \((\tilde{R}_2,\tilde{R})\) consecutively. One can check that in this process the middle unit of each image belongs to \(L, P, \) or \(R \). ■

From Lemma 3.7, the set of \(\ell \)-links of a connected \(G(\ell) \) serves as a “hub” in the shunting of \(\ell \)-links of \(G \). More explicitly, for \(L, R \in \mathcal{L}_\ell(G) \), if we can shunt \(L \) to \(L' \in \mathcal{L}_\ell(G(\ell)) \), and \(R \) to \(R' \in \mathcal{L}_\ell(G(\ell)) \), then \(L \) can be shunted to \(R \) since \(L' \) can be shunted to \(R' \). Thus we have the following corollary that provides a more efficient way to test the connectedness of \(\ell \)-link graphs.

Corollary 3.8. Let \(G \) be a graph such that \(G(\ell) \) contains at least one \(\ell \)-link. Then \(\mathbb{L}_\ell(G) \) is connected if and only if \(G(\ell) \) is connected, and each \(\ell \)-link of \(G \) can be shunted to an \(\ell \)-link of \(G(\ell) \).

4. CHROMATIC NUMBER OF \(\ell \)-LINK GRAPHS

In this section, we reveal a recursive structure of an \(\ell \)-link graph \(H \), which leads to an upper bound for the chromatic number of \(H \). To achieve this, we need to show that when \(\ell \geq 2 \), \(H \) admits an almost standard partition defined in Section 2.

Lemma 4.1. Let \(G \) be a graph and \(\ell \geq 2 \) be an integer. Then \((V, E) := (V(\ell)(G), E(\ell)(G))\) is an almost standard partition of \(H := \mathbb{L}_\ell(G) \). Further, \(H(V, E) \) is isomorphic to an induced subgraph of \(\mathbb{L}_{\ell-2}(G) \).

Proof. First we verify that \((V, E)\) satisfies conditions (a)–(e) in the definition of an almost standard partition in Section 2.

(a) We prove that, for each \(R \in \mathcal{L}_{\ell-2}(G) \), \(V := \mathcal{L}_\ell(R) \in V \) is an independent set of \(H \). Suppose not. Then there are \(\tilde{L}, \tilde{L}' \in \tilde{\mathcal{L}}_\ell(G) \) such that \(L, L' \in V \), and \(L \) can be shunted to \(L' \) in one step. Then \(R = \tilde{L}[1, \ell - 1] \) can be shunted to \(R = \tilde{L}'[1, \ell - 1] \) in one step, contradicting Observation 3.3.

(b) Here we show that each \(E \in E \) is incident to exactly two parts of \(V \). By definition there exists \(P \in \mathcal{L}_{\ell-1}(G) \) with \(\mathcal{L}_{\ell+1}(P) = E \). Let \(\{L, R\} := P^{(\ell-2)} \). Then \(\mathcal{L}_\ell(L) \) and \(\mathcal{L}_\ell(R) \) are the only two parts of \(V \) incident to \(E \).

(c) We explain that each \(E \in E \) is the edge set of a complete bipartite subgraph of \(H \). By definition there exists \(\tilde{P} \in \tilde{\mathcal{L}}_{\ell-1}(G) \) with \(\tilde{\mathcal{L}}_{\ell+1}(P) = E \). Let \(A := \{[\tilde{e}, \tilde{P}] \in \tilde{\mathcal{L}}_\ell(G)\} \) and \(B := \{[\tilde{e}, \tilde{P}] \in \tilde{\mathcal{L}}_\ell(G)\} \). One can check that \(E \) induces a complete bipartite subgraph of \(H \) with bipartition \(A \cup B \).

(d) We prove that each \(v \in V(H) \) is incident to at most two parts of \(E \). By definition there exists \(Q \in \mathcal{L}_{\ell}(G) \) with \(Q = v \). Then the set of edge parts of \(E \) incident to \(v \) is \(\mathcal{L}_{\ell+1}(L) = \emptyset \) or \(L \in \mathcal{L}(\ell-1)[L] \) with cardinality at most 2.

(e) Let \(v \) be a vertex of \(V \in V \) incident to different \(E, F \in E \). We explain that \(v \) is uniquely determined by \(V, E, \) and \(F \).

By the analysis above, \((V, E)\) is an almost standard partition of \(H \).

By definition there exists \(\tilde{P} \in \tilde{\mathcal{L}}_{\ell-2}(G) \) such that \(V = \mathcal{L}_\ell(P) \). There also exists \(Q := [\tilde{e}, \tilde{P}, \tilde{e}] \in \tilde{\mathcal{L}}_\ell(P) \) such that \(v = Q \). Besides, there are \(L, R \in \mathcal{L}_{\ell-1}(G) \) such that \(E = \mathcal{L}_{\ell+1}(L) \) and \(F = \mathcal{L}_{\ell+1}(R) \). Then \(\{L, R\} = Q^{(\ell-1)} \) since \(L \neq R \). Note that \(Q \) is uniquely determined by \(V, E, \) and \(F \).
determined by \(\mathcal{Q}(k-1) \) and \(c_Q = c_P \). Thus it is uniquely determined by \(E = \mathcal{L}_{l+1}(L), F = \mathcal{L}_l(R), \) and \(V = \mathcal{L}_l(P) \).

Now we show that \(H(\mathcal{V}, \mathcal{E}) \) is isomorphic to an induced subgraph of \(\mathbb{I}_{l-2}(G) \). Let \(X \) be the subgraph of \(\mathbb{I}_{l-2}(G) \) of vertices \(L \in \mathbb{I}_{l-2}(G) \) such that \(\mathcal{L}_l(L) \neq \emptyset \), and edges \(Q \in \mathbb{L}_{l-1}(G) \) such that \(\mathcal{L}_{l+1}(Q) \neq \emptyset \). One can check that \(X \) is an induced subgraph of \(\mathbb{I}_{l-2}(G) \). An isomorphism from \(H(\mathcal{V}, \mathcal{E}) \) to \(X \) can be defined as the injection sending \(\mathcal{L}_l(L) \neq \emptyset \) to \(L \), and \(\mathcal{L}_{l+1}(Q) \neq \emptyset \) to \(Q \).

Below we give an interesting algorithm for coloring a class of graphs.

Lemma 4.2. Let \(H \) be a graph with a \(t \)-coloring such that each vertex of \(H \) is adjacent to at most \(r \) differently colored vertices. Then \(\chi(H) \leq \left\lfloor \frac{t}{r+1} \right\rfloor + 1 \).

Proof. The result is trivial for \(t = 0 \) since, in this case, \(\chi(H) = 0 \). If \(r + 1 \geq t + 1 \), then \(\left\lfloor \frac{t}{r+1} \right\rfloor = \left\lfloor \frac{t}{r+1} \right\rfloor = t - 1 \), and the lemma holds since \(t \geq \chi(H) \).

Now assume \(t \geq r + 2 \). Let \(U_1, U_2, \ldots, U_t \) be the color classes of the given coloring. For \(i \in [t] \), denote by \(i \) the color assigned to vertices in \(U_i \). Run the following algorithm: For \(j = 1, \ldots, t \), and for each \(u \in U_{i-j} \), let \(s \in [t] \) be the minimum integer that is not the color of a neighbor of \(u \) in \(H \); if \(s < t - j + 1 \), then recolor \(u \) by \(s \).

In the algorithm above, denote by \(C_i \) the set of colors used by the vertices in \(U_i \) for \(i \in \{1, \ldots, t\} \). Let \(k := \left\lfloor \frac{t}{r+1} \right\rfloor \). Then \(t - 1 \geq k(r + 1) \geq k \geq 1 \). We claim that after \(j \in [0, k] \) steps, \(C_{i+1} \subseteq [r+1] \) for \(i \in [j] \), and \(C_i = \{i\} \) for \(i \in [t - j] \). This is trivial for \(j = 0 \).

Inductively assume it holds for some \(j \in [0, k-1] \). In the \((j+1) \)-th step, we change the color of each \(u \in U_{i-j} \) from \(t - j \) to the minimum \(s \in [t] \) that is not used by the neighborhood of \(u \). It is enough to show that \(s \leq (j + 1)r + 1 \).

First suppose that all neighbors of \(u \) are in \(\bigcup_{i \in [t-j-1]} U_i \). By the analysis above, \(t - j - 1 \geq r - k \geq kr + 1 \geq r + 1 \). So at least one part of \(S := \{U_i | i \in [t-j-1]\} \) contains no neighbor of \(u \). From the induction hypothesis, \(C_i = \{i\} \) for \(i \in [t-j-1] \).

Hence at least one color in \([r+1]\) is not used by the neighborhood of \(u \); that is, \(s \leq r + 1 \leq (j+1)r + 1 \).

Now suppose that \(u \) has at least one neighbor in \(\bigcup_{i \in [t-j+1]} U_i \). By the induction hypothesis, \(\bigcup_{i \in [t-j+1]} C_i \subseteq [r+1] \). At the same time, \(u \) has neighbors in at most \(r - 1 \) parts of \(S \). So the colors possessed by the neighborhood of \(u \) are contained in \([jr + 1 + r - 1] = (j+1)r \). Thus \(s \leq (j+1)r + 1 \). This proves our claim.

The claim above indicates that, after the \(k \)-th step, \(C_{i+1} \subseteq [r+1] \) for \(i \in [k] \), and \(C_i = \{i\} \) for \(i \in [t-k] \). Hence we have a \((r-k)\)-coloring of \(H \) since \(t - k \geq kr + 1 \).

Therefore, \(\chi(H) \leq t - k = \left\lfloor \frac{r}{r+1} \right\rfloor = \left\lfloor \frac{r}{r+1} \right\rfloor + 1 \).

Lemma 4.1 indicates that \(\mathbb{I}_{l+2}(G) \) is homomorphic to \(\mathbb{I}_{l-2}(G) \) for \(\ell \geq 2 \). So by [6, Proposition 1.1], \(\chi_l(G) \leq \chi_{l-2}(G) \). By Lemma 4.1, every vertex of \(\mathbb{I}_{l+2}(G) \) has neighbors in at most two parts of \(\mathcal{V}_l(G) \), which enables us to improve the upper bound on \(\chi_l(G) \).

Lemma 4.3. Let \(G \) be a graph, and \(\ell \geq 2 \). Then \(\chi_l(G) \leq \left\lfloor \frac{3}{2} \chi_{l-2}(G) \right\rfloor + 1 \).

Proof. By Lemma 4.1, \((\mathcal{V}, \mathcal{E}) := (\mathcal{V}_l(G), \mathcal{E}_l(G))\) is an almost standard partition of \(H := \mathbb{I}_{l+2}(G) \). So each vertex of \(H \) has neighbors in at most two parts of \(\mathcal{V} \). Further, \(H_V \) is a subgraph of \(\mathbb{I}_{l-2}(G) \). So \(\chi_l(G) \leq \chi := \chi(H_V) \leq \chi_{l-2}(G) \).

We now construct a \(\chi \)-coloring of \(H \) such that each vertex of \(H \) is adjacent to at most two differently colored vertices. By definition \(H_V \) admits a \(\chi \)-coloring with color classes \(K_1, \ldots, K_\chi \). For \(i \in [\chi] \), assign the color \(i \) to each vertex of \(H \) in \(U_i := \bigcup_{V \in K_i} V \). One
can check that this is a desired coloring. In Lemma 4.3, letting \(t = \chi \) and \(r = 2 \) yields that \(\chi_\ell(G) \leq \lfloor \frac{1}{3} \chi \rfloor + 1 \). Recall that \(\chi \leq \chi_{\ell-2}(G) \). Thus the lemma follows.

As shown below, Lemma 4.3 can be applied recursively to produce an upper bound for \(\chi_\ell(G) \) in terms of \(\chi(G) \) or \(\chi'(G) \).

Proof of Theorem 1.1. When \(\ell \in \{0, 1\} \), it is trivial for (1)(2) and (4). By [7, Proposition 5.2.2], \(\chi_0 = \chi \leq \Delta + 1 \). So (3) holds. Now let \(\ell \geq 2 \). By Lemma 4.1, \(H := \mathbb{L}_{\ell}(G) \) admits an almost standard partition \((V, E) := (V_\ell, E_\ell) \), such that \(H(V, E) \) is an induced subgraph of \(\mathbb{L}_{\ell-2}(G) \). By definition each part of \(V \) is an independent set of \(H \). So \(H \to \mathbb{L}_{\ell-2}(G) \), and \(\chi_\ell \leq \chi_{\ell-2} \). This proves (4). Moreover, each vertex of \(H \) has neighbors in at most two parts of \(V \). By Lemma 4.3, \(\chi_\ell := \chi_\ell(G) \leq \frac{2\chi_{\ell-2} + 1}{3} \). Continue the analysis, we have \(\chi_\ell \leq \chi_{\ell-2} \), and \(\chi_\ell - 3 \leq (\frac{2}{3})^i (\chi_{\ell-2i} - 3) \) for \(1 \leq i \leq \lceil \ell/2 \rceil \). Therefore, if \(\ell \) is even, then \(\chi_\ell \leq \chi_0 = \chi \leq \Delta + 1 \), and \(\chi_\ell - 3 \leq (\frac{2}{3})^{\lfloor \ell/2 \rfloor} (\chi - 3) \).

Thus (1) holds. Now let \(\ell \geq 3 \) be odd. Then \(\chi_\ell \leq \chi_1 = \chi' \), and \(\chi_\ell - 3 \leq (\frac{2}{3})^{\ell/2} (\chi' - 3) \).

This verifies (2). As a consequence, \(\chi_\ell \leq \chi_3 \leq \frac{2}{3} (\chi' - 3) + 3 = \frac{2}{3} \chi' + 1 \). By Shannon [18], \(\chi' \leq \frac{2}{3} \Delta \). So \(\chi_\ell \leq \Delta + 1 \), and hence (3) holds.

The following corollary of Theorem 1.1 implies that Hadwiger’s conjecture is true for \(\mathbb{L}_{\ell}(G) \) if \(G \) is regular and \(\ell \geq 4 \).

Corollary 4.4. Let \(G \) be a graph with \(\Delta := \Delta(G) \geq 3 \). Then \(\chi_\ell(G) \leq 3 \) for all \(\ell > 2 \log_{1.5}(\Delta - 2) + 3 \). Further, Hadwiger’s conjecture holds for \(\mathbb{L}_{\ell}(G) \) if \(\ell > 2 \log_{1.5}(\Delta - 2) - 3.83 \), or \(d := d(G) \geq 3 \) and \(\ell > 2 \log_{1.5} \frac{\Delta - 2}{d - 2} + 3 \).

Proof. By Theorem 1.1, for each \(t \geq 3 \), \(\chi_t := \chi_\ell(G) \leq t \) if \((\frac{2}{3})^{\ell/2} (\Delta - 2) < t - 2 \) and \((\frac{2}{3})^{\ell/2} \frac{(t - 2)}{3} < t - 2 \). Solving these inequalities gives \(\ell > 2 \log_{1.5}(\Delta - 2) - 2 \log_{1.5}(t - 2) + 3 \). Thus \(\chi_\ell \leq 3 \) if \(\ell > 2 \log_{1.5}(\Delta - 2) + 3 \). So the first statement holds.

By Robertson et al. [17] and Theorem 1.3, Hadwiger’s conjecture holds for \(\mathbb{L}_{\ell}(G) \) if \(\ell \geq 1 \) and \(\chi_\ell \leq \max\{6, d\} \). Letting \(t = 6 \) gives that \(\ell > 2 \log_{1.5}(\Delta - 2) - 4 \log_{1.5} 2 + 3 \). Letting \(t = d \geq 3 \) gives that \(\ell > 2 \log_{1.5} \frac{\Delta - 2}{d - 2} + 3 \). So the corollary holds since \(4 \log_{1.5} 2 - 3 > 3.83 \).

Proof of Theorem 1.5(3)(4)(5). (3) and (4) follow from Corollary 4.4. Now consider (5). By Reed and Seymour [16], Hadwiger’s conjecture holds for \(\mathbb{L}_1(G) \). If \(\ell \geq 2 \) and \(\Delta \leq 5 \), by Theorem 1.1(3), \(\chi_\ell(G) \leq 6 \). In this case, Hadwiger’s conjecture holds for \(\mathbb{L}_{\ell}(G) \) by Robertson et al. [17].

5. COMPLETE MINORS OF \(\ell \)-LINK GRAPHS

It has been proved in the last section that Hadwiger’s conjecture is true for \(\mathbb{L}_{\ell}(G) \) if \(\ell \) is large enough. In this section, we further investigate the minors, especially the complete minors, of \(\ell \)-link graphs. To see the intuition of our method, let \(v \) be a vertex of degree \(t \) in a graph \(G \). Then \(\mathbb{L}_1(G) \) contains a \(K_t \)-subgraph whose vertices correspond to the edges of \(G \) incident to \(v \). For \(\ell \geq 2 \), roughly speaking, we extend \(v \) to a subgraph \(X \) of diameter less than \(\ell \), and extend each edge incident to \(v \) to an \(\ell \)-link of \(G \) starting from a vertex of \(X \). By studying the shunting of these \(\ell \)-links, we find a \(K_t \)-minor in \(\mathbb{L}_{\ell}(G) \).

Let \(\{u, e, v\} \) be a 1-link of \(G \). Since \(G \) is undirected, \(e \) has no direction. But we can choose a direction, say \(u \) to \(v \), for \(e \) to get an arc \(e' := (u, e, v) \) of \(G \). For subgraphs \(X, Y \)
of G, let $E(X, Y)$ be the set of edges of G between $V(X)$ and $V(Y)$, and $\bar{E}(X, Y)$ be the set of arcs of G from $V(X)$ to $V(Y)$. Figure 3 illustrates the proofs of Lemmas 5.1 and 5.2.

Lemma 5.1. Let $\ell \geq 1$ be an integer, G be a graph, and X be a subgraph of G with $\text{diam}(X) < \ell$ such that $Y := G - V(X)$ is connected. If $t := |E(X, Y)| \geq 2$, then $L_t(G)$ contains a K_t-minor.

Proof. Let $\vec{e}_1, \ldots, \vec{e}_i$ be distinct arcs in $\bar{E}(Y, X)$. Say $\vec{e}_i = (y_i, e_i, x_i)$ for $i \in [t]$. Since $\text{diam}(X) < \ell$, there is a dipath P_{ij} of X from x_i to x_j of length $\ell_{ij} \leq \ell - 1$ such that $P_{ij} = P_{ji}$. Since Y is connected, it contains a dipath Q_{ij} from y_i to y_j. Since $t \geq 2$, $O_i := [\vec{P}_{ij} - \vec{e}_i, \vec{Q}_{ij}, \vec{e}_i]$ is a cycle of G, where $\vec{e}_i := (i \text{ mod } t) + 1$. Thus $H := L_t(G)$ contains a cycle $L_{ij}(O_i)$, and hence a K_t-minor. Now let $t \geq 3$, and $\vec{L}_i \in \mathcal{L}_t(O_i)$ with head arc \vec{e}_i. Then $[\vec{L}_i, \vec{P}_{ij}]^{[i]} \in \mathcal{L}_{\ell_t}(H)$. And the union of the units of $[\vec{L}_i, \vec{P}_{ij}]^{[i]}$ over $j \in [t]$ is a connected subgraph X_i of H. In the remainder of the proof, for distinct $i, j \in [t]$, we show that X_i and X_j are disjoint. Further, we construct a path in H between X_i and X_j that is internally disjoint with its counterparts, and has no inner vertex in any of $V(X_1), \ldots, V(X_t)$. Then by contracting each X_i into a vertex, and each path into an edge, we obtain a K_t-minor of H.

First of all, assume for a contradiction that there are different $i, j \in [t]$ such that X_i and X_j share a common vertex that corresponds to an ℓ-link R of G. Then by definition, there exists some $p \in [t]$ such that R can be obtained by shunting L_i along \bar{L}_i, \bar{P}_{ip} by some $s_i \leq \ell_{ip}$ steps. So $R = [\bar{L}_i(s_i), \ell] \bar{P}_{ip}(0, s_i)]$. Similarly, there are $q \in [t]$ and $s_j \leq \ell_{ij}$ such that $R = \bar{L}_j(s_j, \ell) \bar{P}_{jq}(0, s_j)]$. Recall that $E(X) \cap E(X, Y) = E(Y) \cap E(X, Y) = \emptyset$. So $e_i = \bar{L}_i[\ell - 1, \ell]$ and $e_j = \bar{L}_j[\ell - 1, \ell]$ belong to both L_i and L_j. By the definition of O_i, this happens if and only if $i = j'$ and $j = i'$, which is impossible since $t \geq 3$.

Journal of Graph Theory DOI 10.1002/jgt
Second, for distinct \(i, j \in [t] \), we define a path of \(H \) between \(X_i \) and \(X_j \). Clearly, \(L_q \) can be shunted to \(L_j \) through \(\tilde{R}_{ij} := \tilde{L}_q(\ell, \ell - L_j) \) in \(G \). In this shunting, \(L'_j := [\tilde{L}_j(\ell, \ell - L_j)] \) is the first image corresponding to a vertex of \(X_j \), while \(L'_j := [\tilde{R}_{ij}(\ell, \ell - L_j)] \) is the first image corresponding to a vertex of \(X_j \). Further, \(L'_i \) can be shunted to \(L'_j \) through \(\tilde{R}_{ij} := \tilde{L}_j(\ell, \ell - L_j) \) in \(\mathcal{L}_{2\ell-L_j}(G) \), which is a subsequence of \(R_{ij} \). Then \(R_{ij}^{(\ell)} \) is an \((\ell - \ell_i)\)-path of \(H \) between \(X_i \) and \(X_j \). We show that for each \(p \in [t] \), \(X_p \) contains no inner vertex of \(R_{ij}^{(\ell)} \). When \(\ell - \ell_i = 1 \), \(R_{ij}^{(\ell)} \) contains no inner vertex. Now assume \(\ell - \ell_i \geq 2 \). Each inner vertex of \(R_{ij}^{(\ell)} \) corresponds to some \(Q_{ij} \) \(\in \mathcal{L}_{2\ell-L_j}(G) \), where \(\ell_i + 1 \leq s_i \leq \ell - 1 \). Assume for a contradiction that for some \(p \in [t] \), \(X_p \) contains a vertex corresponding to \(Q_{ij} \). By definition there exists \(q \in [t] \) such that \(Q_{ij} = [\tilde{L}_p(s_p, \ell), \tilde{R}_{pq}(0, s_p)] \), where \(0 \leq s_p \leq \ell - p \). Without loss of generality,

\[
(\tilde{L}_i(s_i, \ell), \tilde{P}_{ij}(\ell, \ell + s_i - s_i)) = (\tilde{L}_p(s_p, \ell), \tilde{R}_{pq}(0, s_p)).
\]

Since \(e_p \) and \(e_q \) are not in \(\tilde{Q}_{pq} \), hence \(\tilde{c}_p \) belongs to \(-\tilde{L}_p \) and \(\tilde{c}_q \) belongs to \(-\tilde{L}_j \). By the definition of \(\tilde{L}_i \), this happens only when \(j = p' \) \(\text{ and } p = j' \), contradicting \(t \geq 3 \).

We now show that \(R_{ij}^{(\ell)} \) and \(R_{pq}^{(\ell)} \) are internally disjoint, where \(i \neq j \), \(p \neq q \) and \(\{i, j\} \neq \{p, q\} \). Suppose not. Then by the analysis above, there are \(s_i \) and \(s_p \) with \(\ell_i + 1 \leq s_i \leq \ell - 1 \) and \(\ell_p + 1 \leq s_p \leq \ell - 1 \) such that \(Q_{ij} = Q_{pq} \). Without loss of generality,

\[
(\tilde{L}_i(s_i, \ell), \tilde{P}_{ij}(\ell, \ell + s_i - s_i)) = (\tilde{L}_p(s_p, \ell), \tilde{R}_{pq}(0, s_p)).
\]

If \(s_i = s_p \), then \(\tilde{c}_i = \tilde{c}_p \) and \(\tilde{c}_q = \tilde{c}_p \) since \(E(X) \cap E(Y) = \emptyset \); that is, \(i = p \) and \(j = q \), contradicting \(\{i, j\} \neq \{p, q\} \). Otherwise, with no loss of generality, \(s_i > s_p \). Then \(\tilde{e}_q \) and \(\tilde{e}_i \) belong to \(\tilde{L}_i \) and \(\tilde{L}_p \), respectively; that is, \(i = p \) and \(j = q \), again contradicting \(\{i, j\} \neq \{p, q\} \).

In summary, \(X_1, \ldots, X_t \) are vertex-disjoint connected subgraphs, which are pairwise connected by internally disjoint \(\ast \)-links \(R_{ij}^{(\ell)} \) of \(H \), such that no inner vertex of \(R_{ij}^{(\ell)} \) is in \(V(X_1) \cup \cdots \cup V(X_t) \). So by contracting each \(X_i \) to a vertex, and \(R_{ij}^{(\ell)} \) to an edge, we obtain a \(K_{t+1} \)-minor of \(H \).

\textbf{Lemma 5.2.} Let \(\ell \geq 1 \), \(G \) be a graph, and \(X \) be a subgraph of \(G \) with \(\text{diam}(X) < \ell \) such that \(Y := G - V(X) \) is connected and contains a cycle. Let \(t := |E(X, Y)| \). Then \(\mathbb{L}_\ell(G) \) contains a \(K_{t+1} \)-minor.

\textbf{Proof.} Let \(O \) be a cycle of \(Y \). Then \(H := \mathbb{L}_\ell(O) \) contains a cycle \(\mathbb{L}_\ell(O) \) and hence a \(K_2 \)-minor. Now assume \(t \geq 2 \). Let \(\tilde{c}_1, \ldots, \tilde{c}_t \) be distinct arcs in \(\tilde{E}(Y, X) \). Say \(\tilde{c}_i = (y_i, e_i, x_i) \) for \(i \in [t] \). Since \(Y \) is connected, there is a dipath \(\tilde{P}_i \) of \(Y \) of minimum length \(s_i \geq 0 \) from some vertex \(y_i \) of \(O \) to \(y_j \). Let \(\tilde{Q}_i \) be an \(\ast \)-arc of \(O \) with head vertex \(y_i \). Then \(\tilde{L}_i := (\tilde{Q}_i, \tilde{P}_i, \tilde{c}_i)(s_i + 1, \ell + s_i + 1) \in \mathcal{L}_{2\ell}(G) \). Since \(\text{diam}(X) \leq \ell - 1 \), there is a dipath \(\tilde{P}_{ij} \) of \(X \) of length \(\ell - 1 \) from \(x_i \) to \(x_j \) such that \(P_{ij} = P_{ij} \).

Clearly, \([\tilde{L}_i, \tilde{P}_{ij}] \) \(\ell_i \)-link of \(H \). And the union of the units of \([\tilde{L}_i, \tilde{P}_{ij}] \) over \(j \in [t] \) induces a connected subgraph \(X_i \) of \(H \). For different \(i, j \in [t] \), let \(R_{ij} := [\tilde{L}_i(\ell, \ell - L_j), \tilde{P}_{ij}(\ell, \ell - L_j)] \in \mathcal{L}_{2\ell-L_j}(G) \). Then \(R_{ij}^{(\ell)} \) is an \((\ell - \ell_i, \ell - \ell_j)\)-path of \(H \) between \(X_i \) and \(X_j \). As in the proof of Lemma 5.1, it is easy to check that \(X_1, \ldots, X_t \) are vertex-disjoint connected subgraphs of \(H \), which are pairwise connected by internally disjoint paths \(R_{ij}^{(\ell)} \). Further, no inner vertex of \(R_{ij}^{(\ell)} \) is in \(V(X_1) \cup \cdots \cup V(X_t) \). So a \(K_{t+1} \)-minor of \(H \) is obtained accordingly.

Finally, let \(Z \) be the connected subgraph of \(H \) induced by the units of \(\mathbb{L}_\ell(O) \) and \([\tilde{Q}_i, \tilde{P}_j] \) over \(i \in [t] \). Then \(Z \) is vertex-disjoint with \(X_i \) and with the paths \(R_{ij}^{(\ell)} \). Moreover, \(Z \) sends an edge \((\tilde{Q}_i, \tilde{P}_j, \tilde{c}_i)(s_i + 1, \ell - s_i + 1) \) to each \(X_i \). Thus \(H \) contains a \(K_{t+1} \)-minor. \hfill \Box
In the following, we use the “hub” (described after Lemma 3.7) to construct certain minors in \(\ell \)-link graphs.

Corollary 5.3. Let \(\ell \geq 0 \), \(G \) be a graph, \(M \) be a minor of \(G(\ell) \) such that each branch set contains an \(\ell \)-link. Then \(\mathbb{L}_\ell(G) \) contains an \(M \)-minor.

Proof. Let \(X_1, \ldots, X_t \) be the branch sets of an \(M \)-minor of \(G(\ell) \) such that \(X_i \) contains an \(\ell \)-link for each \(i \in [t] \). For any connected subgraph \(Y \) of \(G(\ell) \) contains at least one \(\ell \)-link, let \(\mathbb{L}_\ell(G, Y) \) be the subgraph of \(H := \mathbb{L}_\ell(G) \) induced by the \(\ell \)-links of \(G \) of which the middle units are in \(Y \). Let \(H(Y) \) be the union of the components of \(\mathbb{L}_\ell(G, Y) \), which contains at least one vertex corresponding to an \(\ell \)-link of \(Y \). By Lemma 3.7, \(H(Y) \) is connected.

By definition each edge of \(M \) corresponds to an edge \(e \) of \(G(\ell) \) between two different branch sets, say \(X_i \) and \(X_j \). Let \(Y \) be the graph consisting of \(X_i, X_j \), and \(e \). Then \(H(X_i) \) and \(H(X_j) \) are vertex-disjoint since \(X_i \) and \(X_j \) are vertex-disjoint. By the analysis above, \(H(X_i) \) and \(H(X_j) \) are connected subgraphs of the connected graph \(H(Y) \). Thus there is a path \(Q \) of \(H(Y) \) joining \(H(X_i) \) and \(H(X_j) \) only at end vertices. Further, if \(\ell \) is even, then \(Q \) is an edge; otherwise, \(Q \) is a 2-path whose middle vertex corresponds to an \(\ell \)-link \(L \) of \(Y \) such that \(c_L = e \). This implies that \(Q \) is internally disjoint with its counterparts and has no inner vertex in any branch set. Then, by contracting each \(H(X_i) \) to a vertex, and \(Q \) to an edge, we obtain an \(M \)-minor of \(H \).

Now we are ready to give a lower bound for the Hadwiger number of \(\mathbb{L}_\ell(G) \).

Proof of Theorem 1.3. Since \(H := \mathbb{L}_\ell(G) \) contains an edge, \(t := \eta(H) \geq 2 \). We first show that \(t \geq d := d(G) \). By definition there exists a subgraph \(X \) of \(G \) with \(\delta(X) = d \). We may assume that \(d \geq 3 \) and \(\ell \geq 2 \). Then \(X \) contains an \((\ell - 1) \)-arc \(\tilde{P} := (u, e, \ldots, f, v) \).

Since the degree of \(u \) in \(X \) is at least \(d \), there are \(d - 1 \) distinct arcs \(\tilde{e}_1, \ldots, \tilde{e}_{d-1} \) of \(X \) with head vertex \(u \) such that \(e_i \neq e \) for \(i \in [d - 1] \). Similarly, there are \(d - 1 \) distinct arcs \(\tilde{f}_1, \ldots, \tilde{f}_{d-1} \) of \(X \) with tail vertex \(v \) such that \(f_j \neq f \) for \(j \in [d - 1] \). Then the \(\ell \)-link \(L \) can be shunted to the \(\ell \)-link \(R_j := [\tilde{P}, \tilde{f}_j] \) through the \((\ell + 1) \)-link \(Q_{ij} := [\tilde{e}_i, \tilde{P}, \tilde{f}_j] \).

So \(H \) contains a \(K_{d-1,d-1} \)-subgraph with bipartition \(\{L_j | j \in [d - 1]\} \cup \{R_j | j \in [d - 1]\} \) and edge set \(\{Q_{ij} | i, j \in [d - 1]\} \). By Zelinka [25], \(K_{d-1,d-1} \) contains a \(K_d \)-minor. Thus \(t \geq d \) as desired.

We now show that \(t \geq \eta := \eta(G) \). If \(\eta = 3 \), then \(G \) contains a cycle \(O \) of length at least \(3 \), and \(H \) contains a \(K_3 \)-minor contracted from \(\mathbb{L}_\ell(O) \). Now assume that \(G \) is connected with \(\eta \geq 4 \). Repeatedly delete vertices of degree 1 in \(G \) until \(\delta(G) \geq 2 \). Then \(G = G(\ell) \). Clearly, this process does not reduce the Hadwiger number of \(G \). So \(G \) contains branch sets of a \(K_\eta \)-minor covering \(V(G) \) (see [24]). If every branch set contains an \(\ell \)-link, then the statement follows from Corollary 5.3. Otherwise, there exists some branch set \(X \) with \(diam(X) < \ell \). Since \(\eta \geq 4 \), \(Y := G - V(X) \) is connected and contains a cycle. Thus by Lemma 5.2, \(H \) contains a \(K_\eta \)-minor since \(|E(X, Y)| \geq \eta - 1 \).

Here we prove Hadwiger’s conjecture for \(\mathbb{L}_\ell(G) \) for each \(\ell \geq 2 \).

Proof of Theorem 1.5(2). Let \(d := d(G) \), \(\ell \geq 2 \) be an even integer, and \(H := \mathbb{L}_\ell(G) \).

By [7, Proposition 5.2.2], \(\chi := \chi(G) \leq d + 1 \). So by Theorem 1.1, \(\chi(H) \leq \min\{d + 1, \frac{d}{2} + \frac{1}{2}\} \). If \(d \leq 4 \), then \(\chi(H) \leq 5 \). By Robertson et al. [17], Hadwiger’s conjecture holds for \(H \) in this case. Otherwise, \(d \geq 5 \). By Theorem 1.3, \(\eta(H) \geq d \geq \frac{d}{2} + \frac{5}{2} \geq \chi(H) \) and the statement follows.
We end this article by proving Hadwiger’s conjecture for \(\ell \)-link graphs of biconnected graphs for \(\ell \geq 1 \).

Proof of Theorem 1.5(1). By Reed and Seymour [16], Hadwiger’s conjecture holds for \(H := L_1(G) \) for \(\ell = 1 \). By Theorem 1.5(2), the conjecture is true if \(\ell \geq 2 \) is even. So we only need to consider the situation that \(\ell \geq 3 \) is odd. If \(G \) is a cycle, then \(H \) is a cycle and the conjecture holds [10]. Now let \(v \) be a vertex of \(G \) with degree \(\Delta := \Delta(G) \geq 3 \).

By Theorem 1.1, \(\chi(H) \leq \Delta + 1 \). Since \(G \) is biconnected, \(Y := G - v \) is connected. By Lemma 5.2, if \(Y \) contains a cycle, then \(\eta(H) \geq \Delta + 1 \geq \chi(H) \). Now assume that \(Y \) is a tree, which implies that \(G \) is \(K_4 \)-minor free. By Lemma 5.1, \(\eta(H) \geq \Delta + 1 \). By Theorem 1.1, \(\chi(H) \leq \chi' := \chi'(G) \). So it is enough to show that \(\chi' = \Delta \).

Let \(U := \{ u \in V(Y) | \deg_Y(u) \leq 1 \} \). Then \(|U| \geq \Delta(Y) \). Let \(\hat{G} \) be the underlying simple graph of \(G \), \(t := \deg_{\hat{G}}(v) \geq 1 \) and \(\hat{\Delta} := \Delta(\hat{G}) \geq t \). Since \(G \) is biconnected, \(U \subseteq N_G(v) \). So \(t \geq |U| \geq \Delta(Y) \). Let \(u \in U \). When \(|U| = 1 \), \(t = \deg_{\hat{G}}(u) = 1 \). When \(|U| \geq 2 \), \(\deg_{\hat{G}}(u) = 2 \leq |U| \leq t \). Thus \(t = \hat{\Delta} \). Juvan et al. [14] proved that the edge-chromatic number of a \(K_4 \)-minor free simple graph equals the maximum degree of this graph. So \(\hat{\chi}' := \chi'(\hat{G}) = \hat{\Delta} \) since \(\hat{G} \) is simple and \(K_4 \)-minor free. Note that all parallel edges of \(G \) are incident to \(v \). So \(\chi' = \hat{\chi}' + \deg_G(v) - t = \hat{\Delta} + \Delta - \hat{\Delta} = \Delta \) as desired. ■

REFERENCES

[1] Jørgen Bang-Jensen and Gregory Gutin, Digraphs. Theory, Algorithms and Applications, Springer Monographs in Mathematics, 2nd edn., Springer-Verlag London Ltd., London, 2009.
[2] Lowell W. Beineke and Robin J. Wilson, editors. Selected Topics in Graph Theory, Academic Press Inc. [Harcourt Brace Jovanovich Publishers], New York, 1978.
[3] Norman Biggs, Algebraic graph theory, 2nd edn., Cambridge University Press, Cambridge, 1993.
[4] Hajo Broersma and Cornelis Hoede, Path graphs, J Graph Theory 13(4) (1989), 427–444.
[5] R. Leonard Brooks, On colouring the nodes of a network, Proc Cambr Philos Soc 37 (1941), 194–197.
[6] P. J. Cameron, Combinatorics study group notes, September 2006.
[7] Reinhard Diestel, Graph Theory, Volume 173 of Graduate Texts in Mathematics, 4th edn., Springer, Heidelberg, 2010.
[8] Mark Ellingham and Bin Jia, Link graphs and an unexpected application of topological graph theory, In preparation.
[9] Chris Godsil and Gordon Royle, Algebraic Graph Theory, Volume 207 of Graduate Texts in Mathematics, Springer-Verlag, New York, 2001.
[10] Hugo Hadwiger, Über eine klassifikation der streckenkomplexe, Vierteljahrsschrift der Naturf, Gesellschaft in Zürich 88 (1943), 133–142.
[11] Pavol Hell and Jaroslav Nešetřil, Graphs and Homomorphisms, Volume 28 of Oxford Lecture Series in Mathematics and its Applications, Oxford University Press, Oxford, 2004.
[12] Bin Jia, A construction of imprimitive symmetric graphs which are not multicovert of their quotients, Discrete Math 311(22) (2011), 2623–2629.
[13] Bin Jia, Zai Ping Lu, and Gai Xia Wang, A class of symmetric graphs with 2-arc transitive quotients, J Graph Theory 65(3) (2010), 232–245.
[14] Martin Juvan, Bojan Mohar, and Robin Thomas, List edge-colorings of series-parallel graphs, Electron J Combin 6 (1999), R42.
[15] Hiroyuki Kawai and Yukio Shibata, The chromatic number and the chromatic index of de Bruijn and Kautz digraphs. In IEICE Transactions on Fundamentals, Volume E85 of Circuits/Systems, Computers and Communications, Tokyo, 2002, pp. 1352–1358.
[16] Bruce Reed and Paul Seymour, Hadwiger’s conjecture for line graphs, Eur J Combin 25(6) (2004), 873–876.
[17] Neil Robertson, Paul Seymour, and Robin Thomas, Hadwiger’s conjecture for K_6-free graphs, Combinatorica 13(3) (1993), 279–361.
[18] Claude E. Shannon, A theorem on coloring the lines of a network, J Math Physics 28 (1949), 148–151.
[19] William T. Tutte, A family of cubical graphs, Proc Cambr Philos Soc 43 (1947), 459–474.
[20] William T. Tutte, On the symmetry of cubic graphs, Can J Math 11 (1959), 621–624.
[21] William T. Tutte, Connectivity in Graphs, Mathematical Expositions, No. 15. University of Toronto Press, Toronto, Ont., 1966.
[22] Richard Weiss, The nonexistence of 8-transitive graphs, Combinatorica 1(3) (1981), 309–311.
[23] Hassler Whitney, Congruent graphs and the connectivity of graphs, Amer J Math 54(1) (1932), 150–168.
[24] David R. Wood, Clique minors in Cartesian products of graphs, New York J Math 17 (2011), 627–682.
[25] Bohdan Zelinka, Hadwiger numbers of finite graphs, Math Slovaca 26(1) (1976), 23–30.