ON THE SPECTRUM OF THE PERIODIC DIRAC OPERATOR

L.I. DANILOV

ABSTRACT. The absolute continuity of the spectrum for the periodic Dirac operator
\[\hat{D} = \sum_{j=1}^{n} \left(-i \frac{\partial}{\partial x_j} - A_j \right) \hat{\alpha}_j + \hat{V}^{(0)} + \hat{V}^{(1)}, \quad x \in \mathbb{R}^n, \ n \geq 3, \]
is proved given that either \(A \in C(\mathbb{R}^n; \mathbb{R}^n) \cap H^{2q}_{\text{loc}}(\mathbb{R}^n; \mathbb{R}^n), 2q > n - 2 \), or the Fourier series of the vector potential \(A : \mathbb{R}^n \to \mathbb{R}^n \) is absolutely convergent. Here, \(\hat{V}^{(s)} = (\hat{V}^{(s)})^* \) are continuous matrix functions and \(\hat{\alpha}_j, \hat{\alpha}_2^{n+1} = \hat{I}, s = 0, 1 \).

In [1], the absolute continuity of the spectrum for the periodic Dirac operator
\[\hat{D} = \sum_{j=1}^{n} \left(-i \frac{\partial}{\partial x_j} - A_j \right) \hat{\alpha}_j + V \hat{I} + V_0 \hat{\alpha}_{n+1} \]
in \(\mathbb{R}^n, n \geq 2, \) was proved, where \(V, V_0 \in L^q_{\text{loc}}(\mathbb{R}^2; \mathbb{R}), A \in L^q_{\text{loc}}(\mathbb{R}^2; \mathbb{R}^2), q > 2, \) for \(n = 2 \) and \(V, V_0 \in C(\mathbb{R}^n; \mathbb{R}), A \in C^{2n+3}(\mathbb{R}^n; \mathbb{R}^n) \) for \(n \geq 3 \). Here, \(\hat{\alpha}_{n+1} \) is a Hermitian matrix anticommuting with the matrices \(\hat{\alpha}_j, j = 1, \ldots, n, \) and \(\hat{\alpha}_2^{n+1} = \hat{I}. \) For \(n = 2, \) the proof is based on the results in [2,3], where the two-dimensional periodic Schrödinger operator was considered. In [3], the absolute continuity of the spectrum for this operator was proved in the case of the scalar (electric) and the vector (magnetic) potentials \(V \) and \(A \) satisfying the conditions \(V \in L^q_{\text{loc}}(\mathbb{R}^2; \mathbb{R}) \) and \(A \in L^{2q}_{\text{loc}}(\mathbb{R}^2; \mathbb{R}^2), q > 1. \) For the periodic Dirac operator with \(n = 2, \) the same result as in [1] was independently obtained in [4]. However, it was assumed in [4] that \(V_0 \equiv m = \text{const}. \) But the functions \(V_0 \in L^q_{\text{loc}}(\mathbb{R}^2; \mathbb{R}), q > 2, \) can in fact be considered in this case as well without any significant changes. The proof in [4] used the method suggested in [5], where the absolute continuity of the spectrum was established for the two-dimensional Dirac operator with the periodic potential \(V \in L^q_{\text{loc}}(\mathbb{R}^2; \mathbb{R}), q > 2 \) (and \(A \equiv 0 \)). Sobolev’s results (see [6]) for the absolute continuity of the spectrum of the Schrödinger

\[^1 \text{In this version a few misprints have been corrected.} \]

2000 Mathematics Subject Classification. Primary 35P05.
operator with the periodic vector potential \(A \in C^{2n+3}(\mathbb{R}^n; \mathbb{R}^n) \) were used in [1] for the case \(n \geq 3 \). Sobolev later replaced the last condition with the weaker condition \(A \in H^q_{\text{loc}}(\mathbb{R}^n; \mathbb{R}^n) \), \(2q > 3n - 2 \), \(n \geq 3 \) (see the survey in [7]), which permitted changing the smoothness conditions on the vector potential \(A \) for the periodic Dirac operator [1,7] in an adequate manner. The absolute continuity of the spectrum for the Dirac operator in \(\mathbb{R}^n \), \(n \geq 3 \), with the periodic scalar potential \(V \) (for \(A \equiv 0 \)) was proved in [8–10] under various constraints on \(V \).

1. Let \(\mathcal{L}_M, M \in \mathbb{N} \), denote the linear space of complex \(M \times M \) matrices, let \(\mathcal{S}_M \) be the set of Hermitian matrices in \(\mathcal{L}_M \), and let the matrices \(\hat{\alpha}_j \in \mathcal{S}_M \), \(j = 1, \ldots, n \), satisfy the commutation relations \(\hat{\alpha}_j \hat{\alpha}_l + \hat{\alpha}_l \hat{\alpha}_j = 2 \delta_{jl} \hat{I} \), where \(\hat{I} \in \mathcal{L}_M \) is the identity matrix and \(\delta_{jl} \) is the Kronecker delta. We write
\[
\mathcal{L}_M^{(s)} = \{ \hat{L} \in \mathcal{L}_M : \hat{L} \hat{\alpha}_j = (-1)^s \hat{\alpha}_j \hat{L} \text{ for all } j = 1, \ldots, n \},
\]
\[
\mathcal{S}_M^{(s)} = \mathcal{L}_M^{(s)} \cap \mathcal{S}_M, \quad s = 0, 1.
\]

We consider the Dirac operator
\[
\hat{D} = \hat{D}_0 + \hat{V}^{(0)} + \hat{V}^{(1)} - \sum_{j=1}^{n} A_j \hat{\alpha}_j = \sum_{j=1}^{n} \left(-i \frac{\partial}{\partial x_j} - A_j \right) \hat{\alpha}_j + \hat{V}^{(0)} + \hat{V}^{(1)},
\]
where \(n \geq 3 \) (\(i^2 = -1 \)). The vector function \(A : \mathbb{R}^n \to \mathbb{R}^n \) and the matrix functions \(\hat{V}^{(s)} : \mathbb{R}^n \to \mathcal{S}_M^{(s)} \), \(s = 0, 1 \), are assumed to be periodic with a period lattice \(\Lambda \subset \mathbb{R}^n \). We set
\[
\hat{V} = \hat{V}^{(0)} + \hat{V}^{(1)} - \sum_{j=1}^{n} A_j \hat{\alpha}_j.
\]
The coordinates of the vectors in \(\mathbb{R}^n \) are set in an orthogonal basis \(\{ E_j \} \).

Here, \(E_j \) and \(E_j^* \) are the basis vectors in the lattice \(\Lambda \) and its reciprocal lattice \(\Lambda^* \), \((E_j, E_l^*) = \delta_{jl} \) (\(|.| \) and (\(., . \)) are the length and the inner product of vectors in \(\mathbb{R}^n \)),
\[
K = \left\{ x = \sum_{j=1}^{n} \xi_j E_j : 0 \leq \xi_j < 1, j = 1, \ldots, n \right\},
\]
\[
K^* = \left\{ y = \sum_{j=1}^{n} \eta_j E_j : 0 \leq \eta_j < 1, j = 1, \ldots, n \right\},
\]
and \(v(K) \) and \(v(K^*) \) are the volumes of the elementary cells \(K \) and \(K^* \).

The inner products and the norms in the spaces \(L^2(K; \mathbb{C}^M) \) and \(\mathbb{C}^M \) are introduced in the usual way with (as a rule) the usual notation (without
indicating the spaces themselves). The matrices in L_M are identified with the operators on the space \mathbb{C}^M (and their norm is defined as the norm of operators on \mathbb{C}^M). Let $H^q(\mathbb{R}^n; \mathbb{C}^d)$, $d \in \mathbb{N}$, be the Sobolev class of order $q \geq 0$, and let $\tilde{H}^q(K; \mathbb{C}^d)$ be the set of vector functions $\phi : K \to \mathbb{C}^d$ whose periodic extensions (with the period lattice Λ) belong to $H^q_{\text{loc}}(\mathbb{R}^n; \mathbb{C}^d)$. In what follows, the functions defined on the elementary cell K are identified with their periodic extensions throughout the space \mathbb{R}^n.

We let

$$\chi_N = v^{-1}(K) \int_K \chi(x) e^{-2\pi i (N, x)} \, d^n x, \quad N \in \Lambda^*, \tag{1}$$

denote the Fourier coefficients of the functions $\chi \in L^1(K, U)$, where U is the space \mathbb{C} or \mathbb{C}^M or L_M.

Let $\mathcal{B}(\mathbb{R})$ be the set of Borel subsets $O \subseteq \mathbb{R}$, and let \mathcal{M}_h, $h > 0$, be the set of signed even Borel measures (charges) $\mu : \mathcal{B}(\mathbb{R}) \to \mathbb{R}$ such that

$$\hat{\mu}(p) = \int_{\mathbb{R}} e^{ipt} \, d\mu(t) = 1 \quad \text{for} \quad |p| \leq 2\pi h, \quad p \in \mathbb{R},$$

$$\|\mu\| = \sup_{O \in \mathcal{B}(\mathbb{R})} (|\mu(O)| + |\mu(\mathbb{R} \setminus O)|) < +\infty, \quad \mu \in \mathcal{M}_h. \tag{2}$$

For an arbitrary vector $\gamma \in \Lambda \setminus \{0\}$, an arbitrary measure $\mu \in \mathcal{M}_h$, $h > 0$, and any vector $\tilde{e} \in S_{n-2}(\gamma^{-1}\gamma) = \{e' \in S_{n-1} : (\gamma, e') = 0\}$, where S_{n-1} is the unit sphere in \mathbb{R}^n, we write

$$\tilde{A}(\gamma, \mu, \tilde{e}; x) = \int_{\mathbb{R}} d\mu(t) \int_0^1 A(x - \xi \gamma - t\tilde{e}) \, d\xi, \quad x \in \mathbb{R}^n. \tag{3}$$

In this paper, we consider continuous (periodic) functions $A : \mathbb{R}^n \to \mathbb{R}^n$ and $\hat{V}^{(s)} : \mathbb{R}^n \to S_M^{(s)}$, $s = 0, 1$. In this case, $\hat{D} = \hat{D}_0 + \hat{V}$ is a self-adjoint operator on the Hilbert space $L^2(\mathbb{R}^n; \mathbb{C}^M)$ with the domain $D(\hat{D}) = D(\hat{D}_0) = H^1(\mathbb{R}^n; \mathbb{C}^M)$.

Theorem 1. Let $A : \mathbb{R}^n \to \mathbb{R}^n$ and $\hat{V}^{(s)} : \mathbb{R}^n \to S_M^{(s)}$, $s = 0, 1$, be continuous periodic functions with the period lattice $\Lambda \subset \mathbb{R}^n$, $n \geq 3$. If

$$\max_{\tilde{e} \in S_{n-2}(\gamma^{-1}\gamma)} \|\tilde{A}(\gamma, \mu, \tilde{e}; .) - A_0\|_{L^\infty(\mathbb{R}^n)} < \pi |\gamma|^{-1} \tag{4}$$

for some vector $\gamma \in \Lambda \setminus \{0\}$ and a measure $\mu \in \mathcal{M}_h$, $h > 0$, where

$$A_0 = v^{-1}(K) \int_K A(x) \, d^n x,$$
then the spectrum of operator (1) is absolutely continuous.

The operator \(\hat{D} \) is unitarily equivalent to the direct integral

\[
\int \bigoplus_{2\pi K^*} \hat{D}(k) \frac{d^n k}{(2\pi)^n v(K^*)},
\]

where

\[
\hat{D}(k) = \hat{D}_0(k) + \hat{V}, \quad \hat{D}_0(k) = \sum_{j=1}^{n} \left(-i \frac{\partial}{\partial x_j} + k_j\right) \hat{\alpha}_j, \quad k_j = (k, \mathcal{E}_j),
\]

\[
D(\hat{D}(k)) = D(\hat{D}_0(k)) = \tilde{H}^1(K; \mathbb{C}^M) \subset L^2(K; \mathbb{C}^M).
\]

The vector \(k \in \mathbb{R}^n \) is called a quasimomentum. The unitary equivalence is established using the Gel’fand transformation [11] (also see [9] for the case of the periodic Dirac operator). The self-adjoint operators \(\hat{D}(k) \) have compact resolvents and hence discrete spectra. Let \(E_\nu(k), \nu \in \mathbb{Z}, \) be the eigenvalues of the operators \(\hat{D}(k) \). We assume that they are arranged in an increasing order (counting multiplicities). The eigenvalues can be indexed for different \(k \) such that the functions \(\mathbb{R}^n \ni k \to E_\nu(k) \) are continuous.

Let \(e \in S_{n-1}. \) For \(k \in \mathbb{R}^n \) and \(\varkappa \geq 0, \) we write

\[
\hat{D}_0(k + i\varkappa e) = \hat{D}_0(k) + i\varkappa \sum_{j=1}^{n} e_j \hat{\alpha}_j, \quad e_j = (e, \mathcal{E}_j),
\]

\[
\hat{D}(k + i\varkappa e) = \hat{D}_0(k + i\varkappa e) + \hat{V}, \quad D(\hat{D}(k + i\varkappa e)) = D(\hat{D}_0(k + i\varkappa e)) = \tilde{H}^1(K; \mathbb{C}^M).
\]

Proof of Theorem 1. We use the Thomas method [12]. Because it is well known [4,9] (see [2,13] for the case of the periodic Schrödinger operator), we present only a brief scheme of the method. The decomposition of the operator \(\hat{D} \) into direct integral (3) and the piecewise analyticity of the functions \(\mathbb{R} \ni \xi \to E_\nu(k + \xi e), \nu \in \mathbb{Z}, k \in \mathbb{R}^n, \) imply (see Theorems XIII.85 and XIII.86 in [13]) that to prove the absolute continuity of the spectrum of operator (1), it suffices to show that the functions \(\xi \to E_\nu(k + \xi e) \) are not constant (for some unit vector \(e \)) on every interval \((\xi_1, \xi_2) \subset \mathbb{R}. \) But if we suppose that \(E_\nu(k + \xi e) \equiv E \) for all \(\xi \in (\xi_1, \xi_2), \xi_1 < \xi_2, \) then it follows from the analytic Fredholm theorem that \(E \) is an eigenvalue of \(\hat{D}(k + (\xi + i\varkappa)e) \) for all \(\xi + i\varkappa \in \mathbb{C}. \) Consequently, it suffices to prove the invertibility of the operators \(\hat{D}(k + (\xi + i\varkappa)e) - E, k \in \mathbb{R}^n, E \in \mathbb{R}, \) for some \(\xi + i\varkappa \in \mathbb{C}. \) Theorem 1 is therefore a consequence of the following assertion.
Theorem 2. Let \(\gamma \in \Lambda \setminus \{0\} \), \(e = |\gamma|^{-1}\gamma \), \(\mu \in M_h \), \(h > 0 \). Let \(A : \mathbb{R}^n \to \mathbb{C}^n \) and \(\tilde{V}(s) : \mathbb{R}^n \to \mathcal{L}_M^{(s)} \), \(s = 0,1 \), be continuous periodic functions with the period lattice \(\Lambda \subset \mathbb{R}^n \), \(n \geq 3 \). If \(A_0 = 0 \) and

\[
\max_{\bar{\epsilon} \in S_{n-2}(|\gamma|^{-1}\gamma)} \| (\tilde{A}(\gamma, \mu, \bar{\epsilon};.), \bar{\epsilon}) + i(\tilde{A}(\gamma, \mu, \bar{\epsilon};.), e) \|_{L^\infty(\mathbb{R}^n)} = \tilde{\theta}_0|\gamma|^{-1},
\]

where \(\tilde{\theta} \in [0,1) \), then for any \(\theta \in (0,1-\tilde{\theta}) \), there exists a number \(\varkappa_0 = \varkappa_0(\gamma, h, \mu; \tilde{V}, \theta) > 0 \) such that the inequality

\[
\| \tilde{D}(k + i\varepsilon e)\phi \| \geq \theta\pi|\gamma|^{-1}\exp(-4C\|\mu\| \max\{|\gamma|, h^{-1}\} \|A\|_{L^\infty(\mathbb{R}^n;\mathbb{C}^n)} \|\phi\|
\]

holds for all \(k \in \mathbb{R}^n \) with \((k, \gamma) = \pi \), all \(\varkappa \geq \varkappa_0 \), and all vector functions \(\phi \in \tilde{H}^1(K;\mathbb{C}^M) \), where \(C > 0 \) is a universal constant to be defined in Lemma 1.

Theorem 2 is proved in Section 3. The following theorem is a consequence of Theorem 1.

Theorem 3. Let \(A : \mathbb{R}^n \to \mathbb{R}^n \) and \(\tilde{V}(s) : \mathbb{R}^n \to S_M^{(s)} \), \(s = 0,1 \), be continuous periodic functions with the period lattice \(\Lambda \subset \mathbb{R}^n \), \(n \geq 3 \). If at least one of the conditions

1. \(A \in H^q_{loc}(\mathbb{R}^n;\mathbb{R}^n), \quad 2q > n - 2 \), or
2. \(\sum_{N \in \Lambda^*} \|A_N\|_{\mathbb{C}^n} < +\infty \)

holds, then the spectrum of operator (1) is absolutely continuous.

Theorem 4 is used to prove Theorem 3.

Theorem 4. Let \(\Lambda \) be a lattice in \(\mathbb{R}^n \), \(n \geq 2 \). There are positive constants \(c_1 \) and \(c_2 \) depending on \(n \) and \(\Lambda \) such that for any nonnegative Borel measure \(\mu \) on the unit sphere \(S_{n-1} \subset \mathbb{R}^n \), any \(h > 0 \), and any \(R_0 \geq \min_{\gamma \in \Lambda \setminus \{0\}} |\gamma| \), there exists a vector \(\gamma \in \Lambda \setminus \{0\} \) such that

1. \(|\gamma| \leq R_0 \),
2. if \((\gamma, \gamma') = 0\) for some vector \(\gamma' \in \Lambda \setminus \{0\}\), then \(|\gamma'| > c_1 R_0^{1/(n-1)} \) (\(\Lambda^* \) is the reciprocal lattice of \(\Lambda \)),
3. \(\mu\{e' \in S_{n-1} : |(e', \gamma)| \leq h\} \leq c_2|\gamma|^{-1}\max\{h, R_0^{-1/(n-1)}\} \mu(S_{n-1}) \).

The proof of Theorem 4 for the lattice \(\Lambda = \mathbb{Z}^n \) and for \(h = c_3 R_0^{-1/(n-1)} \) (where \(c_3 = c_3(n) > 0 \)) is presented in [14] (see [15] for \(n = 3 \)). The proof in the general case follows the one suggested in [14] with some slight changes.

Proof of Theorem 3. It can be assumed that \(A_0 = 0 \). We write

\[
F(A; \gamma, \mu) = \max_{\bar{\epsilon} \in S_{n-2}(|\gamma|^{-1}\gamma)} |\gamma| \|\tilde{A}(\gamma, \mu, \bar{\epsilon};.)\|_{L^\infty(\mathbb{R}^n;\mathbb{R}^n)}, \quad \gamma \in \Lambda \setminus \{0\}, \quad \mu \in M_h. \]
Let condition 1 hold. We define the measure
\[
\mu^{(1)}(.) = \sum_{N \in \Lambda^* \setminus \{0\}} |N|^{2q} \|A\|_{C^n}^2 \delta_{N/|N|}(.)
\]
on the unit sphere S_{n-1}, where $\delta_{e'}(.)$ is the Dirac measure concentrated at the point $e' \in S_{n-1}$. From Theorem 4 (applied to the measure $\mu^{(1)}$), it follows that for any $R_0 \geq \min_{\gamma \in \Lambda \setminus \{0\}} |\gamma|$ there is a vector $\gamma \in \Lambda \setminus \{0\}$ such that $|\gamma| \leq R_0$,
\[
\sum_{N \in \Pi(\gamma)} |N|^{2q} \|A_N\|_{C^n}^2 \leq c_2 |\gamma|^{-1} R_0^{-(n-1)} \sum_{N \in \Lambda^*} |N|^{2q} \|A_N\|_{C^n}^2,
\]
and $|\gamma'| > c_1 R_0^{1/(n-1)}$ for all $\gamma' \in \Pi(\gamma) \cap \{\gamma' \in \Lambda^* \setminus \{0\} : (\gamma, \gamma') = 0\}$. We take a measure $\mu \in \mathcal{M}_h$ (for some $h > 0$) such that $|\hat{\mu}(p)| \leq 1$ for all $p \in \mathbb{R}$ and $\hat{\mu}(p) = 0$ if $|p| \geq 2\pi h > 2\pi h$. For a vector $\tilde{e} \in S_{n-2}(|\gamma|^{-1} \gamma)$, we write $\Pi(\gamma, \tilde{e}) = \{\gamma' \in \Pi(\gamma) : |(\gamma', \tilde{e})| \leq h_1\}$. Because $2q > n - 2$, we have
\[
\sum_{N \in \Pi(\gamma, \tilde{e})} |N|^{-2q} \leq c_4 R_0^{-2q/(n-1)}
\]
for all $\tilde{e} \in S_{n-2}(|\gamma|^{-1} \gamma)$, where the constant $c_4 > 0$ depends on n, Λ, q, and h_1. Consequently,
\[
F(A ; \gamma, \mu) \leq \sup_{\tilde{e} \in S_{n-2}(|\gamma|^{-1} \gamma)} |\gamma| \sum_{N \in \Pi(\gamma, \tilde{e})} \|A_N\|_{C^n} \leq (4)
\]
\[
|\gamma| \left(\sup_{\tilde{e} \in S_{n-2}(|\gamma|^{-1} \gamma)} \sum_{N \in \Pi(\gamma, \tilde{e})} |N|^{-2q} \right)^{1/2} \left(\sum_{N \in \Pi(\gamma)} |N|^{2q} \|A_N\|_{C^n}^2 \right)^{1/2} \leq \sqrt{c_2 c_4 R_0^{(n-2-2q)/(2(n-1))} \left(\sum_{N \in \Lambda^*} |N|^{2q} \|A_N\|_{C^n}^2 \right)^{1/2}}.
\]
The right-hand side of (4) becomes arbitrarily small if a sufficiently large number R_0 is chosen (and inequality (2) consequently holds). Case 2, for which the Dirac measure $\mu = \delta$ is chosen, is considered in a similar (slightly simpler) way. Theorem 3 is proved.

2. We fix a vector $\gamma \in \Lambda \setminus \{0\}$ and a measure $\mu \in \mathcal{M}_h$, $h > 0$, $e = |\gamma|^{-1} \gamma$. In what follows, the constants we introduce can depend on γ, h, and μ, but we do not indicate this dependence explicitly (until Theorem 8 below).

Let \hat{P}^c, where $C \subseteq \Lambda^*$, denote the orthogonal projection on $L^2(K; \mathbb{C}^M)$ that takes a vector function $\phi \in L^2(K; \mathbb{C}^M)$ to the vector function
\[
\hat{P}^c \phi = \phi^c = \sum_{N \in C} \phi_N e^{2\pi i (N,x)}
\]
and $\hat{\phi} \equiv 0$). We introduce the notation $\mathcal{H}(\mathcal{C}) = \{ \phi \in L^2(K; \mathbb{C}^M) : \phi_N = 0$ for $N \notin \mathcal{C} \}$.

Let $\mathcal{P}(e) = \{ \tau e : \tau \in \mathbb{R} \}$. For the vectors $x \in \mathbb{R}^n \setminus \mathcal{P}(e)$, we write

$$\widehat{e}(x) = (x - (x, e)e) |x - (x, e)e|^{-1} \in S_{n-2} (e),$$

where $S_{n-2} (e) = \{ \widehat{e} \in S_{n-1} : (e, \widehat{e}) = 0 \}$; we also write $\sigma_{n-2} = \text{mes} (S_{n-2})$, where $\text{mes} (\cdot)$ is the standard measure ('surface area') on the unit sphere $S_{n-2} = S_{n-2} (e)$. For $\beta > 0$ and $\varkappa > \beta$, we write

$$\mathcal{O}_\beta = \mathcal{O}_\beta (\varkappa) = \{ x \in \mathbb{R}^n : |(x, e)| < \beta \text{ and } |\varkappa - |x - (x, e)e|| < \beta \},$$

$$\mathcal{K}_\beta = \mathcal{K}_\beta (k; \varkappa) = \{ N \in \Lambda^* : k + 2\pi N \in \mathcal{O}_\beta \}, \quad k \in \mathbb{R}^n.$$

We set

$$\hat{P}^\pm_{\varepsilon} = \frac{1}{2} \left(\hat{T} \mp i \left(\sum_{j=1}^n e_j \hat{\alpha}_j \right) \left(\sum_{j=1}^n \tilde{e}_j \hat{\alpha}_j \right) \right),$$

for all $\tilde{e} \in S_{n-2} (e)$, where $\hat{P}^\pm_{\varepsilon}$ are orthogonal projections on \mathbb{C}^M.

For $k \in \mathbb{R}^n$, $\varkappa \geq 0$, and $N \in \Lambda^*$, we introduce the notation

$$\hat{D}_N (k; \varkappa) = \sum_{j=1}^n (k_j + 2\pi N_j + i \varkappa e_j) \hat{\alpha}_j,$$

$$G^\pm_N (k; \varkappa) = \left((k + 2\pi N, e)^2 + (\varkappa \pm \sqrt{|k + 2\pi N|}^2 - (k + 2\pi N, e)^2) \right)^{1/2},$$

and $G_N (k; \varkappa) = G_N^- (k; \varkappa)$. The inequalities

$$G_N (k; \varkappa) \| u \| \leq \| \hat{D}_N (k; \varkappa) u \| \leq G_N^+ (k; \varkappa) \| u \|, \quad u \in \mathbb{C}^M,$$

hold. If $(k, \gamma) = \pi$, then $G_N (k; \varkappa) \geq |(k + 2\pi N, e)| \geq \pi |\gamma|^{-1}$. For all vector functions $\phi \in \tilde{H}^1 (K; \mathbb{C}^M)$,

$$\hat{D}_0 (k + i \varkappa e) \phi = \sum_{N \in \Lambda^*} \hat{D}_N (k; \varkappa) \phi_N e^{2\pi i (N,x)}.$$

In this case (for all $\varkappa \geq 0$ and $k + 2\pi N \notin \mathcal{P}(e)$), we have

$$\| \hat{D}_N (k; \varkappa) \hat{P}^\pm_{\varepsilon(k+2\pi N)} \phi_N \| = G_N^\pm (k; \varkappa) \| \hat{P}^\pm_{\varepsilon(k+2\pi N)} \phi_N \|,$$

and

$$\hat{P}^\pm_{\varepsilon(k+2\pi N)} \hat{D}_N (k; \varkappa) \hat{P}^\pm_{\varepsilon(k+2\pi N)} = \hat{O},$$

where $\hat{O} \in \mathcal{L}_M$ is the zero matrix.

We let $\hat{P}^\pm = \hat{P}^\pm (k)$, where $k \in \mathbb{R}^n$, denote the operators on $L^2 (K; \mathbb{C}^M)$ that take vector functions $\phi \in L^2 (K; \mathbb{C}^M)$ to the vector functions $\hat{P}^\pm \phi \in L^2 (K; \mathbb{C}^M)$.
$L^2(K; \mathbb{C}^M)$ with the Fourier coefficients $(\hat{P}^\pm \phi)_N = \hat{P}_{\epsilon(k+2\pi N)}^\pm \phi_N$ if $k + 2\pi N \notin \mathcal{P}(e)$ and $(\hat{P}^\pm \phi)_N = 0$ otherwise.

For the matrix function $\hat{V} = \hat{V}^{(0)} + \hat{V}^{(1)} - \sum_{j=1}^{n} A_j \hat{\alpha}_j$, where $\hat{V}^{(s)} : \mathbb{R}^n \rightarrow \mathcal{L}^{(s)}_M$, $s = 0, 1$, and $A : \mathbb{R}^n \rightarrow \mathbb{C}^n$ are continuous periodic functions with the period lattice Λ, we write
\[
W = W(\hat{V}) = n \|A\|_{L^\infty(\mathbb{R}^n; \mathbb{C}^n)} + \sum_{s=0,1} \|\hat{V}^{(s)}\|_{L^\infty(\mathbb{R}^n; \mathcal{L}_M)}.
\]

We set $c_5(A) = c_5(A; \gamma, h, \mu) = \exp \left(-4C \|\mu\| \max \{1, \theta^{-1}\} \|A\|_{L^\infty(\mathbb{R}^n; \mathbb{C}^n)} \right)$, where $C > 0$ is a universal constant to be defined in Lemma 1.

Theorem 5. Let $\tilde{\theta} \in [0, 1)$, $\theta \in (0, 1 - \tilde{\theta})$, $W_0 \geq 0$, $R \geq 1$, $\beta > 0$, and $a \in (0, 1]$. Also, let us fix a vector $\gamma \in \Lambda \setminus \{0\}$, a number $h > 0$, and a measure $\mu \in \mathcal{M}_2$; $e = |\gamma|^{-1} \gamma$. Then there are numbers $b = b(\tilde{\theta}, \theta, W_0; a) > 0$ and $\varkappa = \varkappa(\theta, \theta, W_0, R, \beta; a) > 4\beta + R$ such that the inequality
\[
\|\hat{P}^+(k) \hat{D}(k + i\varepsilon e) \phi\|^2 + a^2 \|\hat{P}^-(k) \hat{D}(k + i\varepsilon e) \phi\|^2 \geq c_5^2(A) \left(\left(\frac{\theta \pi}{|\gamma|} \right)^2 \|P^-(k) \phi\|^2 + \left(\frac{b \varkappa}{\beta + R} \right)^2 \|P^+(k) \phi\|^2 \right)
\]
holds for all vectors $k \in \mathbb{R}^n$ with $(k, \gamma) = \pi$, all $\varkappa \geq \varkappa_0$, all continuous periodic functions $\hat{V}^{(s)} : \mathbb{R}^n \rightarrow \mathcal{L}^{(s)}_M$, $s = 0, 1$, and $A : \mathbb{R}^n \rightarrow \mathbb{C}^n$ (with the period lattice $\Lambda \subset \mathbb{R}^n$, $n \geq 3$) such that $A_0 = 0$,
\[
W(\hat{V}) \leq W_0, \quad (5)
\]
\[
\max_{\varepsilon \in S_{n-2}(e)} \|((\tilde{A}(\gamma, \mu, \tilde{\varepsilon}; e)) + i(\tilde{A}(\gamma, \mu, \tilde{\varepsilon}; e), e))\|_{L^\infty(\mathbb{R}^n)} \leq \tilde{\theta} \pi |\gamma|^{-1}, \quad (6)
\]
\[
\hat{V}_N = 0 \text{ for } 2\pi |N| > R, \quad (7)
\]
and all vector functions $\phi \in \mathcal{H}(\mathcal{K}_\beta(k; \varkappa))$.

Proof. Without loss of generality we assume that the basis vector \mathcal{E}_2 coincides with e. We fix some numbers $\theta < \theta_4 < \theta_3 < \theta_2 < \theta_1 < 1 - \theta$ and write $\delta = 1 - \theta_4^2 \theta_3^2$ and $c_5' = \exp \left(-4C \|\mu\| \max \{|\gamma|, \theta^{-1}\} W_0 \right)$. We choose a number $\tilde{\varepsilon} \in (0, 1)$ proceeding from the condition $(c_5')^2 \left((1 - \tilde{\varepsilon})^2 \delta \right)^2 \geq 2\delta^2 W_0^2 \tilde{\varepsilon}$. Lower bounds for the constant \varkappa_0 are specified in the course of the proof. We first suppose that $\varkappa_0 > 4\beta + R$. In this case, if $N \in \mathcal{K}_\beta(k; \varkappa)$, $k \in \mathbb{R}^n$, $\varkappa \geq \varkappa_0$, and $2\pi |N| \leq R$ (where $N' \in \Lambda^*$), then $|\tilde{e}(k + 2\pi (N + N')) - \tilde{e}(k + 2\pi N)| < 2\pi N|N|$. There is a number $c_6 = c_6(\tilde{\varepsilon}) > 0$ such that for all $\varkappa \geq \varkappa_0$, there are nonintersecting (nonempty)
We introduce the notation \(\rho = \tilde{\rho} + 2R/\varkappa, \rho' = \tilde{\rho} + 4R/\varkappa \). Let \(\Omega_\lambda = \left\{ \tilde{e} \in S_{n-2} : |\tilde{e} - \tilde{e}'| < \frac{2R}{\varkappa} \text{ for some } \tilde{e}' \in \tilde{\Omega}_\lambda \right\} \);

\(\tilde{\Omega}_\lambda \subset \Omega_\lambda \), and \(|\tilde{e}' - \tilde{e}''| > 4R/\varkappa \) for all \(\tilde{e}' \in \Omega_{\lambda_1}, \tilde{e}'' \in \Omega_{\lambda_2}, \lambda_1 \neq \lambda_2 \).

Property 3 implies that for any \(\phi \) any \(\varkappa = 1 \lambda = 1, \ldots, \lambda(R, \varkappa) \), such that

1. \(|\tilde{e} - E^\lambda| \leq \tilde{\rho} = c_6 R/\varkappa \) for all \(\tilde{e} \in \tilde{\Omega}_\lambda \);
2. \(|\tilde{e}' - \tilde{e}''| > 8R/\varkappa \) for all \(\tilde{e}' \in \tilde{\Omega}_{\lambda_1}, \tilde{e}'' \in \tilde{\Omega}_{\lambda_2}, \lambda_1 \neq \lambda_2 \);
3. \(\text{mes} \left(S_{n-2} \setminus \bigcup_{\lambda} \tilde{\Omega}_\lambda \right) < (1/2) \tilde{\varepsilon} \sigma_{n-2} \).

We write

\[\tilde{e}^\lambda = \tilde{S}(k, \varkappa; \phi) E^\lambda, \]

\(\tilde{\mathcal{K}}^\lambda_\beta = \tilde{\mathcal{K}}^\lambda_\beta(k, \varkappa; \phi) = \{ N \in \mathcal{K}_{\beta}(k; \varkappa) : \tilde{e}(k + 2\pi N) \in \tilde{S}\tilde{\Omega}_\lambda \}, \)

\(\mathcal{K}^\lambda_\beta = \mathcal{K}^\lambda_\beta(k, \varkappa; \phi) = \{ N \in \mathcal{K}_{\beta}(k; \varkappa) : \tilde{e}(k + 2\pi N) \in \tilde{S} \Omega_\lambda \}, \quad \tilde{\mathcal{K}}^\lambda_\beta \subset \mathcal{K}^\lambda_\beta. \)

The choice of the orthogonal transformation \(\tilde{S} \) means that

\[\left\| \left(\hat{P}^\pm \phi \right)^{\mathcal{K}^\lambda_\beta \cup \tilde{\mathcal{K}}^\lambda_\beta} \right\|^2 \leq \tilde{\varepsilon} \left\| \hat{P}^\pm \phi \right\|^2. \] (8)

For each index \(\lambda \) (and for all already chosen \(k, \varkappa, \) and \(\phi \)), we take an orthogonal system of vectors \(\mathcal{E}^{(\lambda)}_j \in S_{n-1}, j = 1, \ldots, n \), such that \(\mathcal{E}^{(\lambda)}_1 = \tilde{e}^\lambda \) and \(\mathcal{E}^{(\lambda)}_2 = \mathcal{E}_2 = e \). We let \(x^{(\lambda)}_j = (x, \mathcal{E}^{(\lambda)}_j) \) denote the coordinates of the vectors \(x = \sum_{j=1}^n x_j \mathcal{E}_j \in \mathbb{R}^n \) (and also of the vectors in \(\mathbb{C}^n \)). Let

\[\mathcal{E}^{(\lambda)}_j = \sum_{l=1}^n T^{(\lambda)}_{lj} \mathcal{E}_l. \]

Then \(A^{(\lambda)}_j = \sum_{l=1}^n T^{(\lambda)}_{lj} A_l \) (where \(A_l = (A, \mathcal{E}_l) \) and \(A^{(\lambda)}_j = (A, \mathcal{E}^{(\lambda)}_j) \)), \(\tilde{A}^{(\lambda)}_j = \tilde{A}^{(\lambda)}_j(\gamma, \mu, \tilde{e}^\lambda; \cdot) = \sum_{l=1}^n T^{(\lambda)}_{lj} \tilde{A}_l \), and \(\tilde{A}_l = \tilde{A}_l(\gamma, \mu, \tilde{e}^\lambda; \cdot) \). We introduce the notation \(\tilde{\alpha}^{(\lambda)}_j = \sum_{l=1}^n T^{(\lambda)}_{lj} \tilde{\alpha}_l, j = 1, \ldots, n \). For the Fourier coefficients \((\tilde{A}^{(\lambda)}_j)_N \) of the functions \(\tilde{A}^{(\lambda)}_j, j = 1, \ldots, n \), we have \((\tilde{A}^{(\lambda)}_j)_N = \)
\[\mu (2\pi N_1^{(\lambda)}) (A_j^{(\lambda)})_N \text{ if } N_2 = 0 \text{ and } (\tilde{A}_j^{(\lambda)})_N = 0 \text{ if } N_2 \neq 0. \] (Here, \((A_j^{(\lambda)})_N\) are the Fourier coefficients of \(A_j^{(\lambda)}\), \(N \in \Lambda^*\).)

Let \(\Phi^{(s,\lambda)} : \mathbb{R}^n \to \mathbb{C}, s = 1, 2\), be periodic trigonometric polynomials with the period lattice \(\Lambda\) and the Fourier coefficients \(\Phi_N^{(1,\lambda)} = \Phi_N^{(2,\lambda)} = 0\) if \(N_1^{(\lambda)} = 2\) and

\[\begin{align*}
\Phi_N^{(1,\lambda)} &= (2\pi i ((N_1^{(\lambda)})^2 + N_2^2))^{-1} (N_1^{(\lambda)} (A_1^{(\lambda)} - \tilde{A}_1^{(\lambda)})_N + N_2 (A_2 - \tilde{A}_2)_N), \\
\Phi_N^{(2,\lambda)} &= - (2\pi i ((N_1^{(\lambda)})^2 + N_2^2))^{-1} (N_2 (A_1^{(\lambda)} - \tilde{A}_1^{(\lambda)})_N - N_1^{(\lambda)} (A_2 - \tilde{A}_2)_N)
\end{align*} \]

otherwise. We have

\[\frac{\partial \Phi^{(1,\lambda)}}{\partial x_1^{(\lambda)}} - \frac{\partial \Phi^{(2,\lambda)}}{\partial x_2^{(\lambda)}} = A_1^{(\lambda)} - \tilde{A}_1^{(\lambda)}, \quad \frac{\partial \Phi^{(1,\lambda)}}{\partial x_2^{(\lambda)}} + \frac{\partial \Phi^{(2,\lambda)}}{\partial x_1^{(\lambda)}} = A_2 - \tilde{A}_2. \]

Lemma 1. There is a universal constant \(C > 0\) such that

\[\|\Phi^{(s,\lambda)}\|_{L^\infty(\mathbb{R}^n)} \leq C \|\mu\| \max \{|\gamma|, h^{-1}\} \|A\|_{L^\infty(\mathbb{R}^n; \mathbb{C})}, \quad s = 1, 2. \]

Proof. Let \(\eta(.) \in C^\infty(\mathbb{R}; \mathbb{R}), \eta(\tau) = 0\) for \(\tau \leq \pi, 0 \leq \eta(\tau) \leq 1\) for \(\pi < \tau \leq 2\pi\), and \(\eta(\tau) = 1\) for \(\tau > 2\pi\). For \(x, y \in \mathbb{R}\) (and \(x^2 + y^2 > 0\)), we set

\[G(x, y) = \frac{x}{x^2 + y^2} \int_0^\infty \frac{\partial \eta(\tau)}{\partial \tau} J_0(\tau \sqrt{x^2 + y^2}) \, d\tau, \]

where \(J_0(.)\) is the Bessel function of the first kind of order zero; \(G(., .) \in L^q(\mathbb{R}^2), q \in [1, 2]\). We write \(G_1(t; x, y) = t^{-1} G(t^{-1} x, t^{-1} y), t > 0, \) and \(G_2(t; x, y) = G_1(t; y, x); \|G_s(t; ., .)\|_{L^1(\mathbb{R}^2)} = t \|G(., .)\|_{L^1(\mathbb{R}^2)}, s = 1, 2\). For arbitrary continuous periodic functions \(\mathcal{F} : \mathbb{R}^n \to \mathbb{C}\) with the period lattice \(\Lambda\), we set

\[(\mathcal{F} \ast_{\lambda} G_s(t; ., .))(x) = \iint_{\mathbb{R}^2} G_s(t; \xi_1, \xi_2) \mathcal{F}(x - \xi_1 e^\lambda - \xi_2 e) \, d\xi_1 d\xi_2, \quad x \in \mathbb{R}^n. \]

In this case, \((\mathcal{F} \ast_{\lambda} G_s(t; ., .))_N = 0\) if \(N_1^{(\lambda)} = N_2 = 0\) and

\[(\mathcal{F} \ast_{\lambda} G_s(t; ., .))_N = - \frac{i N_s^{(\lambda)}}{(N_1^{(\lambda)})^2 + N_2^2} \eta \left(2\pi t \sqrt{(N_1^{(\lambda)})^2 + N_2^2}\right) \mathcal{F}_N \]

otherwise, \(s = 1, 2\). Let \(t = \max \{|\gamma|, h^{-1}\}\). Because \((A - \tilde{A})_N = 0\) for \(N_2 = 0, |N_1^{(\lambda)}| \leq h, \) and \(|N_2| = |\gamma|^{-1} |(N, \gamma)| \geq |\gamma|^{-1}\) for \(N_2 \neq 0\), we have

\[2\pi \Phi^{(1,\lambda)} = (A_1^{(\lambda)} - \tilde{A}_1^{(\lambda)}) \ast_{\lambda} G_1(t; ., .) + (A_2 - \tilde{A}_2) \ast_{\lambda} G_2(t; ., .), \]
\[2\pi \Phi^{(2,\lambda)} = -(A_1^{(\lambda)} - \tilde{A}_1^{(\lambda)}) *_\lambda G_2(t, \ldots) + (A_2 - \tilde{A}_2) *_\lambda G_1(t, \ldots).\]

Using the inequalities \(\|\tilde{A}\|_{L^\infty(\mathbb{R}^n; \mathbb{C}^n)} \leq \|\mu\| \|A\|_{L^\infty(\mathbb{R}^n; \mathbb{C}^n)}\) and \(\|\mu\| \geq 1\), and taking the constant \(C = 2\pi^{-1} \|G(\cdot, \cdot)\|_{L^1(\mathbb{R}^2)}\), we complete the proof of the lemma.

We introduce the notation

\[\hat{D}_0^{(\lambda)} = \left(-i \frac{\partial}{\partial x_1^{(\lambda)}} + k_1^{(\lambda)}\right) \hat{\alpha}_1^{(\lambda)} + \left(-i \frac{\partial}{\partial x_2^{(\lambda)}} + k_2 + i\chi\right) \hat{\alpha}_2^{(\lambda)} ,\]

\[\hat{D}^{(\lambda)} = \hat{D}_0^{(\lambda)} - \tilde{A}_1^{(\lambda)} \hat{\alpha}_1^{(\lambda)} - \tilde{A}_2 \hat{\alpha}_2^{(\lambda)} ,\]

\[\hat{D}^{(\lambda)}(k + i\chi) = e^{-i\hat{\alpha}_1^{(\lambda)} \hat{\Phi}^{(2,\lambda)} e^{i\hat{\alpha}_1^{(\lambda)} \hat{\Phi}^{(1,\lambda)}} e^{-i\hat{\alpha}_1^{(\lambda)} \hat{\Phi}^{(2,\lambda)^*} \hat{\Phi}^{(1,\lambda)^*}} ,\]

\[\hat{\nabla}^{(\lambda)} = \hat{\nabla}^{(0)} + \hat{\nabla}^{(1)} + \sum_{j=3}^{n} \left(-i \frac{\partial}{\partial x_j^{(\lambda)}} + k_j^{(\lambda)} - A_j^{(\lambda)}\right) \hat{\alpha}_j^{(\lambda)} ,\]

\[\hat{D}(k + i\chi) = \hat{D}^{(\lambda)}(k + i\chi) + \hat{\nabla}^{(\lambda)} .\]

If \(N \in K^\lambda_{\beta}\), then \(|\bar{c}(k + 2\pi N) - \bar{e}^{\lambda}| < \rho\) and therefore

\[|k + 2\pi N - (k_2 + 2\pi N_2) + \chi| < \beta + \rho \chi .\]

It follows that

\[\sum_{j=3}^{n} \left(k_j^{(\lambda)} + 2\pi N_j^{(\lambda)}\right) E_j^{(\lambda)} < \beta + \rho \chi , \quad |k_1^{(\lambda)} + 2\pi N_1^{(\lambda)} - \chi| < \beta + \rho \chi , \quad (9)\]

and

\[\|\hat{\nabla}^{(\lambda)} \phi K^\lambda_{\beta}\| \leq \left(\beta + (c_6 + 2)R + W\right) \|\phi K^\lambda_{\beta}\| .\]

We use the brief notation \(\hat{P}_\lambda^{\pm} = \hat{P}_\mp = (1/2)(\hat{I} \pm i\hat{\alpha}_1^{(\lambda)} \hat{\alpha}_2^{(\lambda)}\). We set \(\chi^{(\lambda)} = e^{-i\hat{\Phi}^{(1,\lambda)} \hat{\Phi}^{(2,\lambda)} \phi K^\lambda_{\beta}}\). The relation

\[\hat{D}_0^{(\lambda)} \hat{P}_\lambda^{\pm} \chi^{(\lambda)} = \sum_{N \in \Lambda^*} \left(k_2 + 2\pi N_2 + i(k_1^{(\lambda)} + 2\pi N_1^{(\lambda)}\right) \hat{\alpha}_2^{(\lambda)} \hat{P}_\lambda^{\pm} \chi^{(\lambda)} e^{2\pi i(Nx)} \quad (10)\]

holds.

We write \(O^{(\lambda)}(\tau) = \{N \in \Lambda^* : |k_1^{(\lambda)} + 2\pi N_1^{(\lambda)} - \chi| < 2\tau\}, \tau > 0\).

Inequalities (9) imply that there is a constant

\[c_7 = c_7(\tilde{\theta}, \theta, W_0, R, \beta) > \frac{1}{2} \left(\beta + (c_6 + 2)R\right)\]

such that (for all \(\lambda\))

\[\left\|\sum_{N \in \Lambda^* \setminus O^{(\lambda)}(c_7)} \hat{P}_\lambda^{\pm} \chi^{(\lambda)} e^{2\pi i(Nx)}\right\| \leq \frac{1}{2} \left\|\hat{P}_\lambda^{\pm} \chi^{(\lambda)}\right\| . \quad (11)\]
In what follows, we assume that \(\kappa_0 \geq c_7 \). As a consequence of (10) and (11), we obtain

\[
\| \hat{D}_0^{(\lambda)} \hat{P}_\lambda^+ \chi^{(\lambda)} \| \geq v^{1/2}(K) \left(\sum_{N \in \mathcal{O}(\lambda)} \| \kappa + (k_1^{(\lambda)} + 2\pi N_1^{(\lambda)}) \| \| \hat{P}_\lambda^+ \chi_N^{(\lambda)} \| \right)^{1/2} \geq \\
2 (\kappa - c_7) \left\| \sum_{N \in \mathcal{O}(\lambda)} \hat{P}_\lambda^+ \chi_N^{(\lambda)} e^{2\pi i (N, x)} \right\| \geq (\kappa - c_7) \| \hat{P}_\lambda^+ \chi^{(\lambda)} \| .
\]

On the other hand, we have \(|k_2 + 2\pi N_2| \geq \pi|\gamma|^{-1}\). Condition (6) implies that

\[
\| \tilde{A}^{(\lambda)} \tilde{\alpha}_1^{(\lambda)} + \tilde{A}_2 \tilde{\alpha}_2 \|_{L^\infty(\mathbb{R}^n; \mathcal{L}_M)} \leq \tilde{\theta}_1 \pi|\gamma|^{-1},
\]

and therefore (see (10))

\[
\| \hat{D}^{(\lambda)} \hat{P}_\lambda^- \chi^{(\lambda)} \| \geq \| \hat{D}_0^{(\lambda)} \hat{P}_\lambda^- \chi^{(\lambda)} \| - \tilde{\theta}_1 \pi|\gamma|^{-1} \| \hat{P}_\lambda^- \chi^{(\lambda)} \| \geq (1 - \tilde{\theta}_1) \pi|\gamma|^{-1} \| \hat{P}_\lambda^- \chi^{(\lambda)} \| .
\]

The operators \(\hat{P}_\lambda^\pm \) commute with the operators \(e^{\pm i\Phi^{(1, \lambda)}} \), \(e^{-i\tilde{\alpha}_1^{(\lambda)} \tilde{\alpha}_2 \Phi^{(2, \lambda)}} \), and \(\hat{V}^{(\lambda)} \), and we have \(\hat{P}_\lambda^\pm \hat{D}^{(\lambda)} = \hat{D}^{(\lambda)} \hat{P}_\lambda^\pm \). Consequently,

\[
\hat{P}_\lambda^\pm \hat{D}(k + i\kappa e) = \hat{D}^{(\lambda)}(k + i\kappa e) \hat{P}_\lambda^\mp + \hat{V}^{(\lambda)} \hat{P}_\lambda^\pm.
\]

Using the above estimates and also the inequality

\[
\| e^{\pm i\Phi^{(1, \lambda)}} e^{i\tilde{\alpha}_1^{(\lambda)} \tilde{\alpha}_2 \Phi^{(2, \lambda)}} \|_{L^\infty(\mathbb{R}^n; \mathcal{L}_M)} \leq c_5^{-1/2} (A),
\]

we derive

\[
\| \hat{P}_\lambda^+ \hat{D}(k + i\kappa e) \phi^\kappa_\beta \| \geq (1 - \tilde{\theta}_1) \pi|\gamma|^{-1} c_5 (A) \| \hat{P}_\lambda^- \phi^\kappa_\beta \| - \| \hat{V}^{(\lambda)} \hat{P}_\lambda^+ \phi^\kappa_\beta \| ,
\]

\[
(\kappa - c_7 - \pi|\gamma|^{-1}) c_5 (A) \| \hat{P}_\lambda^+ \phi^\kappa_\beta \| - \| \hat{V}^{(\lambda)} \hat{P}_\lambda^- \phi^\kappa_\beta \| .
\]

Let

\[
\sigma = \theta_2^2 \theta_3^{-2} - 1,
\]

\[
\tilde{a} = \min \{1, \sqrt{\sigma} a, (1 - \tilde{\theta} - \theta_1) \pi|\gamma|^{-1} c_5' (\beta + (c_6 + 2)R + W_0)^{-1} \},
\]

\[
b'' = \min \begin{cases}
1, \\
\sqrt{\sigma} a, \\
(1 - \tilde{\theta} - \theta_1) \pi|\gamma|^{-1} c_5' (c_6 + 2)^{-1} (1 + W_0)^{-1}, \\
2 (\theta_1 - \theta_2) \pi|\gamma|^{-1} (c_6 + 2)^{-1}.
\end{cases}
\]
Since \((\beta + R)^{-1} b'' < \tilde{a}\), we can pick a number \(\tilde{a}'\) such that \((\beta + R)^{-1} b'' \leq \tilde{a}' < \tilde{a}\). For an adequate choice of the number \(\kappa_0\) (and for \(\kappa \geq \kappa_0\)), inequalities (12) and (13) imply the estimate
\[
\| \hat{P}_\lambda^+ \hat{D}(k + i\varepsilon\varepsilon) \phi K_\beta^+ \| + \tilde{a} \| \hat{P}_\lambda^- \hat{D}(k + i\varepsilon\varepsilon) \phi K_\beta^- \| \geq \]
\[
c_5(A) \left(\theta_1 \pi |\gamma|^{-1} \| \hat{P}_\lambda^- \phi K_\beta^+ \| + \tilde{a}' \| \hat{P}_\lambda^+ \phi K_\beta^- \| \right).
\]
For all \(\tilde{e} \in \tilde{S}_\Omega \subset S_{n-2}(e)\), we have
\[
\| (\hat{P}_\lambda^\pm - \hat{P}_\lambda^\pm) \phi K_\beta^\pm \| \leq \frac{1}{2} |\tilde{e} - \tilde{e}^\lambda| \| \phi K_\beta^\pm \| \leq \frac{\rho}{2} \| \phi K_\beta^\pm \|. \tag{14}
\]
If \((\hat{D}(k + i\varepsilon\varepsilon) \phi K_\beta^\pm)_N \neq 0\) for some \(N \in \Lambda^*\), then \(k + 2\pi N \notin \mathcal{P}(e)\) and \(|\tilde{e}(k + 2\pi N) - \tilde{e}^\lambda| < \rho + 2R/\kappa = \rho'\). Therefore,
\[
\| (\hat{P}_\lambda^\pm - \hat{P}_\lambda^\pm) \hat{D}(k + i\varepsilon\varepsilon) \phi K_\beta^\pm \| \leq \frac{\rho'}{2} \| \hat{D}(k + i\varepsilon\varepsilon) \phi K_\beta^\pm \|.
\]
Consequently,
\[
\| \hat{P}_\lambda^+ \hat{D}(k + i\varepsilon\varepsilon) \phi K_\beta^+ \| + \tilde{a} \| \hat{P}_\lambda^- \hat{D}(k + i\varepsilon\varepsilon) \phi K_\beta^- \| \leq \]
\[
(1 + \rho' \tilde{a}^{-1}) \left(\| \hat{P}_\lambda^+ \hat{D}(k + i\varepsilon\varepsilon) \phi K_\beta^+ \| + \tilde{a} \| \hat{P}_\lambda^- \hat{D}(k + i\varepsilon\varepsilon) \phi K_\beta^- \| \right). \tag{15}
\]
Since \((\beta + R)^{-1} b'' \leq \tilde{a}'\) and \((c_6 + 2) b'' \leq 2 (\theta_1 - \theta_2) \pi |\gamma|^{-1}\), for an adequately chosen number \(\kappa_0\) (and for \(\kappa \geq \kappa_0\)) inequality (14) implies that
\[
\theta_1 \frac{\pi}{|\gamma|} \| \hat{P}_\lambda^- \phi K_\beta^+ \| + \frac{b'' \kappa}{\beta + R} \| \hat{P}_\lambda^+ \phi K_\beta^- \| \geq \]
\[
(1 + \rho' \tilde{a}^{-1}) \left(\theta_2 \frac{\pi}{|\gamma|} \| \hat{P}_\lambda^- \phi K_\beta^+ \| + \frac{b'' \kappa}{2(\beta + R)} \| \hat{P}_\lambda^+ \phi K_\beta^- \| \right). \tag{16}
\]
From (15) and (16), it follows that
\[
\| \hat{P}_\lambda^+ \hat{D}(k + i\varepsilon\varepsilon) \phi K_\beta^+ \| + \tilde{a} \| \hat{P}_\lambda^- \hat{D}(k + i\varepsilon\varepsilon) \phi K_\beta^- \| \geq \]
\[
c_5(A) \left(\theta_2 \frac{\pi}{|\gamma|} \| \hat{P}_\lambda^- \phi K_\beta^+ \| + \frac{b'' \kappa}{2(\beta + R)} \| \hat{P}_\lambda^+ \phi K_\beta^- \| \right).
\]
We write \(b' = (1/2)(1 + \sigma)^{-1/2} b''\). Then
\[
\| \hat{P}_\lambda^+ \hat{D}(k + i\varepsilon\varepsilon) \phi K_\beta^+ \|^2 + a^2 \| \hat{P}_\lambda^- \hat{D}(k + i\varepsilon\varepsilon) \phi K_\beta^- \|^2 \geq \]
\[
(1 + \sigma)^{-1} \left(\| \hat{P}_\lambda^+ \hat{D}(k + i\varepsilon\varepsilon) \phi K_\beta^+ \| + \tilde{a} \| \hat{P}_\lambda^- \hat{D}(k + i\varepsilon\varepsilon) \phi K_\beta^- \| \right)^2 \geq \]
\[
c_3^2(A) \left(\left(\theta_3 \frac{\pi}{|\gamma|} \right)^2 \| \hat{P}_\lambda^- \phi K_\beta^+ \|^2 + \left(\frac{b' \kappa}{2(\beta + R)} \right)^2 \| \hat{P}_\lambda^+ \phi K_\beta^- \|^2 \right). \tag{17}
\]
If $N \in \Lambda^*$ and $\lambda_1 \neq \lambda_2$, then either $2\pi|N-N'| > R$ for all $N' \in K^\lambda_{\beta}$ or $2\pi|N-N''| > R$ for all $N'' \in K^\lambda_{\beta}$. Therefore,

$$\widehat{V}_\phi \bigcup_{\lambda} K^\lambda_{\beta} = \sum_{\lambda} \widehat{V}_\phi K^\lambda_{\beta}, \quad \widehat{D}(k + i\varepsilon) \bigcup_{\lambda} K^\lambda_{\beta} = \sum_{\lambda} \widehat{D}(k + i\varepsilon) K^\lambda_{\beta}.$$

If $N \in \bigcup_{\lambda} K^\lambda_{\beta}$, then

$$(\widehat{D}(k + i\varepsilon) \bigcup_{\lambda} K^\lambda_{\beta})_N = \left(\widehat{D}(k + i\varepsilon) \bigcup_{\lambda} K^\lambda_{\beta}\right)_N + \left(\widehat{V}_\phi K^\lambda_{\beta} \bigcup_{\lambda} K^\lambda_{\beta}\right)_N.$$

If $N \in \Lambda^* \bigsetminus \bigcup_{\lambda} K^\lambda_{\beta}$, then

$$\left(\widehat{D}(k + i\varepsilon) \bigcup_{\lambda} K^\lambda_{\beta}\right)_N = \left(\widehat{V}_\phi K^\lambda_{\beta} \bigcup_{\lambda} K^\lambda_{\beta}\right)_N.$$

These relations (for each of the signs) imply the estimates

$$\|\widehat{P}^{\pm} \widehat{D}(k + i\varepsilon)\| \geq \sum_{N \in \bigcup_{\lambda} K^\lambda_{\beta}} v(K) \left\|\left(\widehat{P}^{\pm} \widehat{D}(k + i\varepsilon) \bigcup_{\lambda} K^\lambda_{\beta}\right)_N + \left(\widehat{V}_\phi K^\lambda_{\beta} \bigcup_{\lambda} K^\lambda_{\beta}\right)_N\right\| \geq$$

$$(1-\delta) \left\|\widehat{P}^{\pm} \widehat{D}(k + i\varepsilon) \bigcup_{\lambda} K^\lambda_{\beta}\right\|^2 - (1-\delta) \left\|\widehat{P}^{\pm} \widehat{V}_\phi K^\lambda_{\beta} \bigcup_{\lambda} K^\lambda_{\beta}\right\|^2 - (1-\delta) \delta^{-1} \left\|\widehat{P}^{\pm} \widehat{V}_\phi K^\lambda_{\beta} \bigcup_{\lambda} K^\lambda_{\beta}\right\|^2 \geq$$

$$(1-\delta) \left\|\widehat{D}(k + i\varepsilon) \bigcup_{\lambda} K^\lambda_{\beta}\right\|^2 - (1-\delta) \delta^{-1} \left\|\widehat{D}(k + i\varepsilon) \bigcup_{\lambda} K^\lambda_{\beta}\right\|^2 - \delta^{-1} W^2 \left\|\widehat{V}_\phi K^\lambda_{\beta} \bigcup_{\lambda} K^\lambda_{\beta}\right\|^2.$$
\[\frac{2}{\delta} W^2 \bar{\varepsilon} \| \phi \|^2 \geq (1 - \bar{\varepsilon}) c^2_\delta(A) \left(\left(\frac{\theta_4}{|\gamma|} \right)^2 \| \hat{P}^\pm \phi \|^2 + (1 - \delta) \left(\frac{b' \kappa}{2(\beta + R)} \right)^2 \| \hat{P}^\pm \phi \|^2 \right) - \frac{2}{\delta} W^2 \bar{\varepsilon} (\| \hat{P}^- \phi \|^2 + \| \hat{P}^+ \phi \|^2) \geq c^2_\delta(A) \left(\left(\frac{\theta}{|\gamma|} \right)^2 \| \hat{P}^- \phi \|^2 + (1 - \delta) \left(\frac{b \kappa}{\beta + R} \right)^2 \| \hat{P}^+ \phi \|^2 \right). \]

Theorem 5 is proved.

3. The following theorems are a consequence of Theorem 5. The proof of Theorem 6 is based on applying the relation
\[\hat{P}^\pm(k) \hat{D}_0(k + i\kappa \varepsilon) = \hat{D}_0(k + i\kappa \varepsilon) \hat{P}^\pm(k) \]
and on selecting an arbitrarily small number \(a \in (0, 1] \). The proof of Theorem 7 essentially uses the arbitrariness in the choice of the number \(\beta > 0 \) (see below). Theorem 6 is used to prove the absolute continuity of the spectrum of a periodic Schrödinger operator.

Theorem 6. Let \(\tilde{\theta} \in [0, 1) \), \(W_0 \geq 0 \), \(R \geq 1 \), and \(\beta > 0 \) (for a fixed vector \(\gamma \in \Lambda \setminus \{0\} \) and a fixed measure \(\mu \in \mathcal{M}_h \), \(h > 0 \); \(\varepsilon = |\gamma|^{-1} \gamma \)). Then there are numbers \(c_8 = c_8(\tilde{\theta}, W_0) > 0 \) and \(\kappa_0 = \kappa_0(\tilde{\theta}, W_0, R, \beta) > 4\beta + 5R \) such that for all vectors \(k \in \mathbb{R}^n \) with \((k, \gamma) = \pi \), all \(\kappa \geq \kappa_0 \), all continuous periodic functions \(\tilde{V}^{(s)} : \mathbb{R}^n \rightarrow \mathcal{L}^{(s)}_M \), \(s = 0, 1 \), and \(A : \mathbb{R}^n \rightarrow \mathbb{C}^n \) (with the period lattice \(\Lambda \subset \mathbb{R}^n \), \(n \geq 3 \)) for which \(A_0 = 0 \) and conditions (5) – (7) are satisfied, and all vector functions \(\phi \in \mathcal{H}(K; \kappa; \nu) \), the inequality
\[\| \hat{D}^2(k + i\kappa \varepsilon) \phi \| \geq \frac{c_8 \kappa}{\beta + R} \| \phi \| \]
holds.

Theorem 7. Let \(\tilde{\theta} \in [0, 1) \), \(\theta \in (0, 1 - \tilde{\theta}) \), \(W_0 \geq 0 \), \(R \geq 1 \), and \(\delta \in (0, 1] \) (for a fixed vector \(\gamma \in \Lambda \setminus \{0\} \) and a fixed measure \(\mu \in \mathcal{M}_h \), \(h > 0 \); \(\varepsilon = |\gamma|^{-1} \gamma \)). Then there are numbers \(\mathcal{D} = \mathcal{D}(\theta, W_0, \delta) \geq 1 \) and \(\kappa_0 = \kappa_0(\tilde{\theta}, \theta, W_0, R, \delta) > (4\mathcal{D} + 1)R \) such that for all vectors \(k \in \mathbb{R}^n \) with \((k, \gamma) = \pi \), all \(\kappa \geq \kappa_0 \), all continuous periodic functions \(\tilde{V}^{(s)} : \mathbb{R}^n \rightarrow \mathcal{L}^{(s)}_M \), \(s = 0, 1 \), and \(A : \mathbb{R}^n \rightarrow \mathbb{C}^n \) (with the period lattice \(\Lambda \subset \mathbb{R}^n \), \(n \geq 3 \)) for which \(A_0 = 0 \) and conditions (5) – (7) are satisfied, and all vector functions \(\phi \in \tilde{H}^1(K; \mathbb{C}^M) \), the inequality
\[\| \hat{D}(k + i\kappa \varepsilon) \phi \|^2 \geq \]
\[(1 - \delta) \left(c_2^2(A_\alpha \left(\theta \frac{\pi}{|\gamma|} \right)^2 \| \mathcal{K}_{\alpha} \|^2 + v(K) \sum_{N \in \Lambda^\ast \setminus \mathcal{K}_{\beta}} G_2^2(k; \mathcal{X}) \| \phi_N \|^2 \right) \]

holds.

Proof of Theorem 2. Let \(\theta < \theta' < 1 - \tilde{\theta} \), \(\tilde{V}_{\nu}^{(s)} : \mathbb{R}^n \to \mathcal{L}_M^{(s)}, s = 0, 1 \), and \(A_\nu : \mathbb{R}^n \to \mathbb{C}^n, \nu \in \mathbb{N} \), be sequences of trigonometric polynomials with the period lattice \(\Lambda \) that uniformly converge as \(\nu \to +\infty \) to the functions \(\tilde{V}^{(s)} \) and \(A \), let \((A_\nu)_0 = 0 \) for all \(\nu \in \mathbb{N} \), and let \(\tilde{V}_{\nu} = \tilde{V}_{\nu}^{(0)} + \tilde{V}_{\nu}^{(1)} - \sum_{j=1}^{n} (A_\nu)_j \alpha_j \).

From Theorem 7 (because \(G_N(k; \mathcal{X}) \geq \pi |\gamma|^{-1}, N \in \Lambda^\ast \)) it follows that for all sufficiently large \(\nu \), there are numbers \(\mathcal{X}_0^{(\nu)} > 0 \) such that for all \(k \in \mathbb{R}^n \) with \((k, \gamma) = \pi \), all \(\mathcal{X} \geq \mathcal{X}_0^{(\nu)} \), and all vector functions \(\phi \in \tilde{H}^1(K; \mathbb{C}^M) \), the inequality
\[
\| \tilde{D}_0(k + i \mathcal{X} e) + \tilde{V}_{\nu} \| \phi \| \geq c_5 (A_\nu) \theta' \pi |\gamma|^{-1} \| \phi \|
\]
is valid. For a sufficiently large index \(\nu \) (and for \(\mathcal{X} \geq \mathcal{X}_0^{(\nu)} \)), it follows that the desired inequality holds. Theorem 2 is proved.

Theorem 8. Let \(\tilde{V}^{(s)} : \mathbb{R}^n \to \mathcal{L}_M^{(s)}, s = 0, 1 \), and \(A : \mathbb{R}^n \to \mathbb{C}^n \) be continuous periodic functions with the period lattice \(\Lambda \subset \mathbb{R}^n \), \(n \geq 3 \). If \(A_0 = 0 \) and condition (6) with \(\tilde{\theta} \in [0, 1) \) is satisfied for a vector \(\gamma \in \Lambda \setminus \{0\} \) \((e = |\gamma|^{-1} \gamma) \) and a measure \(\mu \in \mathcal{M}_h, h > 0 \), then for any \(\delta \in (0, 1) \), there are numbers \(\beta = \beta (\gamma, h, \mu; \tilde{V}, \delta) > 0 \) and \(\mathcal{X}_0 = \mathcal{X}_0 (\gamma, h, \mu; \tilde{V}, \delta) > 0 \) such that for all \(k \in \mathbb{R}^n \) with \((k, \gamma) = \pi \), all \(\mathcal{X} \geq \mathcal{X}_0 \), and all vector functions \(\phi \in \tilde{H}^1(K; \mathbb{C}^M) \), the inequality
\[
\| \tilde{D}(k + i \mathcal{X} e) \phi \|^2 \geq (1 - \delta) \left(c_5^2(A; \gamma, h, \mu) (1 - \tilde{\theta})^2 \left(\frac{\pi}{|\gamma|} \right) \| \phi_{\mathcal{K}_\beta} \|^2 + v(K) \sum_{N \in \Lambda^\ast \setminus \mathcal{K}_{\beta}} G_2^2(k; \mathcal{X}) \| \phi_N \|^2 \right)
\]
holds.

Theorem 8 also follows from Theorem 7 in view of the uniform approximation of the functions \(\tilde{V}^{(s)} \) and \(A \) by trigonometric polynomials with the period lattice \(\Lambda \).

Corollary. Let \(\tilde{V}^{(s)} : \mathbb{R}^n \to \mathcal{L}_M^{(s)}, s = 0, 1 \), and \(A : \mathbb{R}^n \to \mathbb{C}^n \) be continuous periodic functions with the period lattice \(\Lambda \subset \mathbb{R}^n \), \(n \geq 3 \), let \(A_0 = 0 \), and let condition (6) with \(\tilde{\theta} \in [0, 1) \) hold for some vector \(\gamma \in \Lambda \setminus \{0\} \) \((e = |\gamma|^{-1} \gamma) \) and a measure \(\mu \in \mathcal{M}_h, h > 0 \). Then there are numbers \(c_9 = c_9 (\gamma, h, \mu; \tilde{V}) > 0 \) and \(\mathcal{X}_0 = \mathcal{X}_0 (\gamma, h, \mu; \tilde{V}) > 0 \) such that for all \(k \in \mathbb{R}^n \)
with \((k, \gamma) = \pi\), all \(\kappa \geq \kappa_0\), and all vector functions \(\phi \in \tilde{H}^1(K; \mathbb{C}^M)\), the inequality
\[
\| \hat{D}(k + i\kappa e)\phi \|^2 \geq c_9 v(K) \sum_{N \in \Lambda^*} G_N^2(k; \kappa) \|\phi_N\|^2
\]
is fulfilled.

REFERENCES

[1] M. Sh. Birman and T. A. Suslina, The periodic Dirac operator is absolutely continuous, Integral Equations and Operator Theory 34 (1999), 377-395.
[2] M. Sh. Birman and T. A. Suslina, Two-dimensional periodic magnetic Hamiltonian is absolutely continuous, Algebra i Analiz 9 (1997), no. 1, 32-48; English transl., St. Petersburg Math. J. 9 (1998), no. 1, 21-32.
[3] M. Sh. Birman and T. A. Suslina, Absolute continuity of the two-dimensional periodic magnetic Hamiltonian with discontinuous vector-valued potential, Algebra i Analiz 10 (1998), no. 4, 1-36; English transl., St. Petersburg Math. J. 10 (1999), no. 4, 579-601.
[4] L. I. Danilov, On the spectrum of the two-dimensional periodic Dirac operator, Teoret. Mat. Fiz. 118 (1999), no. 1, 3-14; English transl., Theoret. and Math. Phys. 118 (1999), no. 1, 1-11.
[5] L. I. Danilov, The spectrum of the Dirac operator with periodic potential: III [in Russian], Deposited at VINITI 10 July 1992, No. 2252-B92, VINITI, Moscow (1992).
[6] A. V. Sobolev, Absolute continuity of the periodic magnetic Schrödinger operator, Invent. Math. 137 (1999), 85-112.
[7] M. Sh. Birman and T. A. Suslina, Periodic magnetic Hamiltonian with variable metric. The problem of absolute continuity, Algebra i Analiz 11 (1999), no. 2, 1-40; English transl., St. Petersburg Math. J. 11 (2000), no. 2, 203-232.
[8] L. I. Danilov, On the spectrum of the Dirac operator in \(\mathbb{R}^n\) with periodic potential, Teoret. Mat. Fiz. 85 (1990), no. 1, 41-53; English transl., Theoret. and Math. Phys. 85 (1990), no. 1, 1039-1048.
[9] L. I. Danilov, Resolvent estimates and the spectrum of the Dirac operator with a periodic potential, Teoret. Mat. Fiz. 103 (1995), no. 1, 3-22; English transl., Theoret. and Math. Phys. 103 (1995), no. 1, 349-365.
[10] L. I. Danilov, The spectrum of the Dirac operator with a periodic potential: VI [in Russian], Deposited at VINITI 31 December 1996, No. 3855-B96, VINITI, Moscow (1996).
[11] I. M. Gel’fand, Expansion in characteristic functions of an equation with periodic coefficients, Dokl. Akad. Nauk SSSR 73 (1950), no. 6, 1117-1120 [in Russian].
[12] L. Thomas, Time dependent approach to scattering from impurities in a crystal, Commun. Math. Phys. 33 (1973), 335-343.
[13] M. Reed and B. Simon Methods of Modern Mathematical Physics. Vol. 4, Analysis of Operators, Acad. Press, New York (1978).
[14] L. I. Danilov, The spectrum of the Dirac operator with a periodic potential: I [in Russian], Deposited at VINITI 12 December 1991, No. 4588-B91, VINITI, Moscow (1991).
[15] L. I. Danilov, A property of the integer lattice in \(\mathbb{R}^3\) and the spectrum of the Dirac operator with a periodic potential [in Russian], Preprint, Phys.-Tech. Inst., Ural Branch of the USSR Acad. Sci., Sverdlovsk (1988).

Physical-Technical Institute, Ural Branch of the Russian Academy of Sciences, Kirov Street 132, Izhevsk, 426000, Russia
E-mail address: danilov@otf.pti.udm.ru