REMARKS ON SESHAĐRI CONSTANTS

Andreas Steffens

March 19, 2022

Abstract. Given a smooth complex projective variety \(X \) and an ample line bundle \(L \) on \(X \). Fix a point \(x \in X \). We consider the question, are there conditions which guarantee the maxima of the Seshadri constant of \(L \) at \(x \), i.e \(\varepsilon(L, x) = \sqrt[1]{L^n} \)? We give a partial answer for surfaces and find examples where the answer to our question is negative. If \((X, \Theta)\) is a general principal polarized abelian surface, then \(\varepsilon(\Theta, x) = \frac{4}{3} < \sqrt{\frac{2}{3}} = \sqrt{\Theta^2} \) for all \(x \in X \).

Introduction

Let \(X \) be a smooth projective variety and let \(L \) be a line bundle on \(X \). Fix a point \(x \in X \). Demailly [D] introduced a very interesting measure of the local positivity at a point \(x \) of \(L \), namely the real number

\[
\varepsilon(L, x) = \inf_{C \ni x} \frac{L.C}{m_x(C)},
\]

which is called the Seshadri constant of \(L \) at \(x \). Here the infimum is taken over all irreducible curves \(C \) passing through \(x \) and \(m_x(C) \) is the multiplicity of \(C \) at \(x \). For example, if \(L \) is very ample then \(\varepsilon(L, x) \geq 1 \).

There has been recent interest in trying to give lower bounds for this invariant at a general point. Ein and Lazarsfeld [EL] show that if \(X \) is a surface, then \(\varepsilon(L, x) \geq 1 \) for very general \(x \in X \). In higher dimension \((n \geq 3)\) Ein, Küchle and Lazarsfeld [EKL] prove that \(\varepsilon(L, x) \geq \frac{1}{n} \) for a very general point. We say that a point \(x \in X \) is very general if \(x \) is in the complement \(X \setminus Z \) of \(Z \) a countably union of proper subvarieties. Examples of Miranda show that \(\varepsilon(L, x) \) can take arbitrarily small values in codimension two (i.e. codim \(Z = 2 \)), even for an ample line bundle.

One may expect that this general bounds are not optimal. An elementary observation (see Remark 1 below for the proof) shows that \(\varepsilon(L, x) \leq \sqrt[n]{L^n} \). A natural question is, are there conditions which guarantee equality? Even in relative simple cases it turns out to be hard to give an answer.

Supported by Deutsche Forschungsgemeinschaft
Recently, Xu [Xu] improved the surface bound given by Ein and Lazarsfeld. He showed that if \(L^2 \geq \frac{1}{3}(4\alpha^2 - 4\alpha + 5) \) for a given integer \(\alpha > 1 \) and \(LC \geq \alpha \) for every irreducible curve \(C \subset X \), then \(\varepsilon(L, x) \geq \alpha \) for all but finitely many \(x \in X \).

The first result we have given a further improvement and gives a partial answer to the equality question.

Proposition 1. Let \(X \) be a surface with \(\rho(X) = \text{rk}(\text{NS}(X)) = 1 \) and let \(L \) be an ample generator of \(\text{NS}(X) \). Let \(\alpha \) be an integer with \(\alpha^2 \leq L^2 \).

If \(x \in X \) is a very general point, then \(\varepsilon(L, x) \geq \alpha \). In particular if \(\sqrt{L^2} \) is an integer, then \(\varepsilon(L, x) = \sqrt{L^2} \).

For example, if \((X, L)\) is a general polarized abelian surface of type \((1, 2d^2)\) for some \(d \geq 1 \), then \(\varepsilon(L, x) = 2d = \sqrt{L^2} \) for all \(x \in X \). Or if \(X \subset \mathbb{P}^3 \) is a general hypersurface of degree \(d^2 \geq 4 \), then \(\varepsilon(\mathcal{O}_X(1), x) = d \) for a very general \(x \in X \).

The proof uses essentially the fact that \(L \) is the generator and in a diophantine way that \(\alpha \) is an integer.

One might be tempted to suppose that the conclusion of Proposition 1 holds allowing \(\alpha \) to be a (possibly non-integral) real number. But the next result shows that the situation is more complicated.

Proposition 2. Let \(X \) be the Jacobian of a hyperelliptic curve of genus \(g \geq 2 \) with \(\text{rk}(\text{NS}(X)) = 1 \). And let \(\Theta \) be the theta divisor on \(X \).

Then \(\varepsilon(\Theta) = \varepsilon(\Theta, x) \leq \frac{2g}{g+1} < \sqrt{g!} = \sqrt{\Theta^g} \).

In particular if \(X \) is an irreducible principal polarized abelian surface, then

\[\varepsilon(\Theta) = \varepsilon(\Theta, x) = \frac{4}{3} < \sqrt{2} = \sqrt{\Theta^2} \]

Proposition 2 gives an example that the bound \(\varepsilon(L, x) \geq \lfloor \sqrt{L^2} \rfloor \) does not hold for an arbitrarily line bundle \(L \), where \(\lfloor r \rfloor \) denotes the integer part of an real number \(r \). In fact, if \(X \) is the Jacobian of a very general curve of genus two, than \(\text{rk}(\text{NS}(X)) = 1 \). And if \(L = \nu \Theta \) then \(\varepsilon(L, x) = \nu \varepsilon(\Theta, x) \leq \nu \frac{4}{3} < \lfloor \nu \sqrt{2} \rfloor \) for all \(\nu \geq 8 \).

The arguments in the proof of Proposition 2 works more general to show:

Proposition 3. Let \(X \) be a general principal polarized abelian variety of dimension \(g \) with theta divisor \(\Theta \). Then

\[\varepsilon(\Theta) = \varepsilon(\Theta, x) \leq \sqrt[2g-3]{\frac{g!}{(2g-1)}} < \sqrt{g!} = \sqrt{\Theta^g}. \]

In the case of surface, the following result shows that if \(\varepsilon(L, x) \) is non-maximal (i.e. \(\varepsilon(L, x) < \sqrt{L^2} \)) then it is rational. There seems to be no examples known where \(\varepsilon(L, x) \) is irrational.
Proposition 4. In dimension n, if the Seshadri constant is non-maximal, then it is a d-th root of a rational number for some $1 \leq d \leq n - 1$.

Acknowledgment. The author is grateful to R. Lazarsfeld for his great hospitality, warm encouragements and introducing me to interesting mathematical question, helpful suggestions and very useful discussions.

1. PROOFS AND FURTHER REMARKS

Proof of Proposition 1. Suppose to the contrary that there exists a reduced irreducible curve $C \subset X$ through a general point $x \in X$, such that $C.L > \alpha m_x(C)$. Then by the arguments of [EL] it follows that:

\[(*) \quad C^2 \geq m_x(C)(m_x(C) - 1).\]

To see this we follow [EL]. We may assume that (C, x) moves in a non-trivial continuous family $\{ C_t \ni x_t \}_{t \in \Delta}$ of reduced irreducible curves $C_t \subset X$, plus points $x_t \in C_t$, with

\[m_t = m_{x_t}(C_t) > \alpha C_t.L \quad \text{for all } t \in \Delta.\]

The precise statement we need is:

Proposition [EL]. Let $\{ C_t \ni x_t \}_{t \in \Delta}$ be a 1-parameter family of reduced irreducible curves on a smooth projective surface X, such that $m_t = m_{x_t}(C_t) \geq m$ for all $t \in \Delta$.

Then

\[(C_t)^2 \geq m(m - 1).\]

Now back to the proof of Proposition 1. By the condition $\rho(X) = 1$ there exist an integer d, such that C is numerically equivalent to dL. Since $L^2 \geq \alpha^2$, the assumption that $C.L > \alpha m_x(C)$ gives

\[(**) \quad \alpha d < m_x(C).\]

So it follow from the fact that α is an integer that

\[(***) \quad \alpha d \leq m_x(C) - 1.\]

Hence by $(*)$, $(**)$ and $(***)$

\[m_x(C)(m_x(C) - 1) \leq C^2 = C.(dL) < \alpha d m_x(C) \leq m_x(C)(m_x(C) - 1),\]

a contradiction. \square
Proof of Proposition 2. Let \(C \) be a hyperelliptic curve of genus \(g \geq 2 \). Then \(C \) has \(2g + 2 \) Weierstrass points \(p_1, \ldots, p_{2g+2} \), with \(2p_1 \sim 2p_2 \sim \cdots \sim 2p_{2g+2} \). In terms of the Jacobian \((X, \Theta) = (J(C), \Theta_C)\) of \(C \) this has the following interpretation:

Let \(\mathfrak{W}_C : C \to X \simeq \text{Pic}^1(C) \) be the Abel-Jacobi map and \(2_X : X \to X \) the multiplication by two, the map determine by the map \(X \simeq \text{Pic}^1(C) \to X \simeq \text{Pic}^2(C) \), \(\eta \to \text{cl}(\eta^{\otimes 2}) \).

Then \(C' = 2_X(\mathfrak{W}_C(C)) \) has a point \(x \) with \(m_x(C') = 2g + 2 \). And \(C \to C' \) is birational.

Assume in contrary that the map \(f = 2_X \mathfrak{W}_C : C \to C' \) is not birational and say has degree \(n \geq 2 \). Let \(\nu : \tilde{C} \to C' \) the normalization of \(C' \). Then \(f \) factors through \(\nu \). By the universal property of the Jacobian, there is a map \(\tilde{f} : X = J(C) \to J(\tilde{C}) \). Since \(rk(\text{NS}(X)) = 1 \) it follows that \(g = \dim X = \dim J(\tilde{C}) = g(\tilde{C}) \). Hence we find by the Riemann-Hurwitz formula
\[
2g - 2 \geq n(2g(\tilde{C}) - 2) > 2g - 2,
\]
a contradiction.

Since \(2^*_X \Theta \sim 4\Theta \) \cite[II-3 Proposition 3.6]{LB}, we find that
\[
(\Theta, C') = (2^*_X \Theta, \mathfrak{W}_C(C)) = (4\Theta, \mathfrak{W}_C(C)) = 4g.
\]
Hence, we get
\[
\varepsilon(\Theta, x) \leq \frac{2g}{g + 1} < \sqrt[3]{g} = \sqrt[3]{4g}.
\]

Now let \(g = 2 \) and suppose to the contrary that \(\varepsilon(\Theta, x) < \frac{4}{3} \). Then there exists a reduced irreducible curve \(\tilde{C} \) with \(\tilde{C} = aC \) and \(m_x(\tilde{C}) = b \) such that

\[
(*) \quad \frac{a}{b} < \frac{2}{3};
\]

Let \(\varphi : \mathcal{B}_x(X) \to X \) the blow-up of \(X \) at \(x \) with exceptional divisor \(E \). Since \(C' \) and \(\tilde{C} \) have no common components, it follows

\[
(**) \quad 0 \leq (\varphi^*C' - 6E).((\varphi^*C - bE) = 8a - 6b.
\]
Combining (*) and (**) we find \(9a < 6b \leq 8a \) the desired contradiction. \(\square \)

Sometimes it is useful to use an alternative definition of the Seshadri constant of \(L \) at a point \(x \in X \). If \(\varphi : \mathcal{B}_x(X) \to X \) is the blow-up of \(X \) at \(x \) with exceptional divisor \(E \), then
\[
\varepsilon(L, x) = \sup \{ \delta \in \mathbb{R} \mid \varphi^*L - \delta E \text{ is nef} \}
\]

Remark 1. Let \(Y \subset \mathcal{B}_x(X) \) be a subvariety of dimension \(s = \dim Y \) and \(\delta \leq \varepsilon(L, x) \). Then by Kleiman’s theorem \cite{Kl} we have \((\varphi^*L - \delta E)^s.Y \geq 0 \). In particular, \((\varphi^*L - \delta E)^n \geq 0 \). Hence it follows that \(\varepsilon(L, x) \leq \sqrt[n]{L^n} \).

Let us recall the Nakai-Moishezon criterion for ampleness, which was extended to the case of real divisors by Campana and Peternell. We say that a \(\mathbb{R} \)-divisor is ample if its corresponding real point in the Néron-Severi space \(N^1(X) \) lies in the interior of the ample cone of \(X \).
Nakai-Moishezon criterion for \mathbb{R}-Cartier divisors [CP].

Let $D = \sum a_i D_i$ be a \mathbb{R}-Cartier divisor on a variety X.

Then D is ample if and only if $D^s.Y > 0$ for any s-dimensional subvariety $Y \subset X$. In particular if D is numerically effective but not ample, then there exist an irreducible subvariety $Y \subset X$, say of dimension s, such that $D^s.Y = 0$.

Proof of Proposition 4. Let $\delta = \varepsilon(L,x) < \sqrt[n]{n}$. Then $\varphi^* L - \delta E$ is numerically effective, but not ample. Hence by the real Nakai-Moishezon criterion, there exist a subvariety $Y \subset \text{Bl}_x(X)$ with $(\varphi^* L - \delta E)^d.Y = 0$, $d = \dim Y$. Since $(\varphi^* L - \delta E)^n > 0$ it follows that $1 \leq d \leq n - 1$. Finally by noting that all mixed terms $\varphi^* L^i.E^{d-i}$ are zero for $1 \leq i \leq d - 1$ we find that δ^d is rational number. \square

Proof of Proposition 3. The general ideology behind the proof is as follows. It might be difficult to bound $\varepsilon(L,x)$ only by using curves, because singular curves are invisible. Nevertheless, any subvariety $Y \subset X$ with high multiplicity $m_x(Y)$ at x forces $\varepsilon(L,x)$ to be small. The precise statement is (c.f.[De, Remark 6.7]): If Y is a p-dimensional subvariety of X passing through x then $L^p.Y \geq \varepsilon(L,x)^p m_x(Y)$.

Let X be a principal polarized abelian variety of dimension g and let $2X$ be the multiplication by two. On X there are $2^{g-1}(2^g - 1)$ odd theta characteristics such that Θ passe through $2^{g-1}(2^g - 1)$ two torsion points ([Mu, Corollary 3.15 in Appendix to II-3]). So there is a divisor $\Theta' = 2X(\Theta)$ with a point x having multiplicity $m = m_x(\Theta') \geq 2^{g-1}(2^g - 1)$ at x. And note for late use that Θ' is numerically equivalent to 4Θ, since $2X(\Theta) \sim 4\Theta$ [LB, II-3 Proposition 3.6].

Claim. $2X$ maps Θ generically 1:1 to its image.

Assume to the contrary that multiplication by two is not generically 1:1 over Θ'. Then for general $x \in \Theta$, there is a $y = y(x) \neq x$ such that $2(x - y) = 0$. Then there is a two torsion point $\eta \in X$ such that $(x - y) = \eta$ for all $x \in X$. But then $\Theta - \eta = \Theta$. But a theta divisor is not invariant under any translations.

Now we are in position to compute an upper bound for $\varepsilon(\Theta,x)$, using the notation before Remark 1. Put $\varepsilon = \varepsilon(\Theta,x)$ and let $\hat{\Theta} = \varphi^* \Theta' - mE$ be the strict transform of Θ' on $\text{Bl}_x(X)$. Then by the remark at the beginning we find:

$$0 \leq (\varphi^* \Theta - \varepsilon E)^{g-1}.\hat{\Theta} = (\varphi^* \Theta - \varepsilon E)^{g-1}.(4\varphi^* \Theta - mE) = 4(g!) - \varepsilon^{g-1}m.$$

Hence

$$\varepsilon \leq \sqrt[2^{g-1}(2^g - 1)]{\frac{4(g!)}{2^{g-1}(2^g - 1)}} = \sqrt[2^{g-3}(2^g - 1)]{\frac{g!}{2^{g-3}(2^g - 1)}} \leq \sqrt[2^{g-3}]{{g!}}.$$

\square
References

[CP] F. Campana and T. Peternell, Algebraicity of the ample cone of projective varieties, J. reine angew. Math. 404 (1990), 160–166.

[De] J.-P. Demailly, Singular Hermitian metrics on positive line bundles, Complex Algebraic Varieties (Hulek, Peternell, Schneider and Schreyer, eds.), Proceedings, Bayreuth 1990, Lect. Notes in Math 1507, 1992, pp. 87–104.

[EL] L. Ein and R. Lazarsfeld, Seshadri constants on smooth surfaces, Astérisque 218, 1993, pp. 177–185.

[EKL] L. Ein, O. Küchle and R. Lazarsfeld, Local positivity of ample line bundles, preprint (1994).

[Kl] S. Kleiman, Towards a numerical theory of ampleness, Ann. Math 84 (1966), 293–344.

[LB] H. Lange and Ch. Birkenhake, Complex Abelian Varieties, Grundlehren der mathematischen Wissenschaften 302, Springer-Verlag, 1992.

[Mu] D. Mumford, Tata Lectures on Theta I, Bikhäuser, Boston-Basel-Stuttgart, 1983.

[Xu] G. Xu, Ample line bundles on smooth surfaces, preprint (1994).

Andreas Steffens
Department of Mathematics
University of California
Los Angeles, CA 90024

E-mail address: steffens@math.ucla.edu