Hierarchical self-assembly and emergent function of densely glycosylated peptide nanofibers

Antonietta Restuccia¹, Dillon T. Seroski¹, Karen L. Kelley², Christopher S. O’Bryan³, Justin J. Kurian⁴, Kevin R. Knox¹, Shaheen A. Farhadi¹, Thomas E. Angelini³ & Gregory A. Hudalla¹

Glycosylation alters protein form and function by establishing intermolecular forces that mediate specific interactions while preventing non-specific aggregation. Self-assembled peptide nanofibers modified with carbohydrates are increasingly used as biomaterials to mimic glycosylated protein function, yet the influence of carbohydrate conjugates on nanofiber structure remains poorly defined. Here we show that a dense carbohydrate surface layer can facilitate hierarchical organization of peptide nanofibers into anisotropic networks. Glycosylated peptide nanofibers remain dispersed in dilute conditions, whereas non-glycosylated nanofibers tend to aggregate. In crowded conditions, some glycosylated nanofibers laterally associate and align. This behavior depends on carbohydrate chemistry, particularly hydroxyls, suggesting involvement of short-range attractive forces. Macroscopic gels fabricated from densely glycosylated peptide nanofibers are resistant to non-specific interactions with proteins, mammalian cells, and bacteria, yet selectively bind lectins, analogous to natural low-fouling mucosal barriers. Collectively, these observations demonstrate that glycosylation can inform structure in addition to endowing function to peptide-based supramolecular biomaterials.
Sequential self-assembly of proteins over multiple length scales underlies formation of countless structural and functional biomaterials throughout living systems. For example, the cytoskeleton is a dynamic network of anisotropic protein filaments that rearranges to give cells their shape, facilitate their movement, direct intracellular traffic, and regulate signal transduction. Likewise, organization of proteins and proteoglycans into the extracellular matrices of multicellular organisms guides all aspects of cell physiology by engaging cell surface receptors, non-covalently regulating the transport of extracellular signals, and providing physical cues. Inspired by these observations, synthetic supramolecular biomaterials assembled from peptides and peptide analogs are becoming increasingly more common. However, encoding hierarchical self-assembly into these systems remains a challenge, despite established sequence-structure guidelines that have informed design of hundreds of peptide-based molecules that can form fibers with nano-scale features (i.e., “nanofibers”).

Achieving hierarchical order requires self-assembly pathways that minimize entropic kinetically trapped structures. In natural fibrillar protein networks, this is facilitated by fine balances of attractive and repulsive forces that establish checkpoints in the free energy landscape. For example, collagen fibril assembly is activated by enzymatic removal of globular N- and C-terminal propeptides from pro-collagen triple helices, while microtubule assembly is regulated by GTP/GDP binding to β-tubulin. In contrast, synthetic peptides and their analogs tend to assemble into nanofibers that subsequently aggregate into random entangled networks because non-specific inter-fiber attractive forces outweigh repulsive forces. Manipulating system temperature or pH can promote hierarchical order among synthetic nanofibers by balancing intermolecular forces. For example, collagen fibril assembly is regulated by GTP/GDP binding to β-tubulin. Alternatively, amino acid sequences can be tailored to promote nanofiber lateral association over several microns.

Here we demonstrate that a dense carbohydrate surface layer facilitates hierarchical organization of β-sheet peptide nanofibers into anisotropic networks that are aligned over multiple length scales. Further, these nanofibrous networks resist non-specific cell, bacteria, and protein interactions, yet selectively recognize lectins, due to the collective activity of carbohydrates assembled into a highly ordered supramolecular architecture.

Results

Glycosylated peptide nanofiber alignment in the gel state. QQKFQFQFEQQ (“Q11”) is a synthetic peptide that self-assembles into β-sheet nanofibers in aqueous media, which entangle into self-supporting gels at high (~mM) concentrations. We observed that a variant of Q11 terminated with asparagine-linked N-acetylglucosamine (“GQ11”, Fig. 1a) formed birefringent gels that subsequently aggregated into random entangled networks because non-specific inter-fiber attractive forces outweigh repulsive forces. Manipulating system temperature or pH can promote hierarchical order among synthetic nanofibers by balancing intermolecular forces.

Fig. 1 Glycosylation facilitates organization of β-sheet peptide nanofibers into anisotropic networks. a Chemical structure of GQ11 and b self-assembly of GQ11 into gels of aligned β-sheet nanofibers. GQ11 forms c self-supporting hydrogels that were d birefringent when viewed between cross-polarizers. e, f GQ11 hydrogels consisted of directionally oriented nanofibers when viewed using field-emission scanning electron microscopy (scale bar = 1 μm in e and 0.5 μm in f). g Small-angle X-ray scattering two-dimensional diffraction pattern and h radial intensity profile suggested anisotropic nanofiber orientation within GQ11 gels.
compared nano
fi
To gain mechanistic understanding of GQ11 alignment, we
Glycosylated peptide nano
albumin (BSA), suggesting carbohydrates were on the nano
GlcNAc-binding lectin, but not Concanavalin A (ConA) or bovine serum
f
GQ11 nano
nano
a
microscopy in
GQ11 nano
nano
i
bs
j
BSA, ConA WGA
+ Ficoll
+ BSA
+ ConA
+ Ficoll
GQ11 fibers estimated from the reciprocal of the half-width at half
maximum, \(\Gamma \), was \(-5\) nm (Fig. 1h). This suggested that GQ11 \(\beta \)-sheet nanofibers aligned via lateral association rather than
entwining, where the latter is the more common morphology for
 hierarchically ordered \(\beta \)-sheet peptide nanofibers.

indicating a high degree of fiber alignment across the 1 mm beam
diameter. The characteristic fiber–fiber correlation length within
GQ11 gels estimated from the reciprocal of the half-width at half
maximum, \(\Gamma \), was \(-5\) nm (Fig. 1h). This suggested that GQ11 \(\beta \)-sheet nanofibers aligned via lateral association rather than
entwining, where the latter is the more common morphology for
 hierarchically ordered \(\beta \)-sheet peptide nanofibers.

Glycosylated peptide nanofiber alignment in crowded systems.
To gain mechanistic understanding of GQ11 alignment, we
compared nanofiber morphology at sub-gelling (~\(\mu \)M)
concentrations under dilute and crowded conditions. Non-
adsorbing macromolecular crowders establish depletion forces that
increase effective concentration, which were used here to
mimic the environment of GQ11 nanofibers in the concentrated
gel state. GQ11 nanofibers under dilute conditions were dispersed
and randomly oriented, with no obvious aggregation or lateral
association (Fig. 2a, b and Supplementary Fig. 2a). In contrast,
GQ11 nanofibers formed aligned bundles in the presence of Ficoll
and poly(ethylene glycol) (PEG) (Fig. 2c, d and Supplementary
Fig. 2b–e). GQ11 nanofibers did not laterally associate or align in
the presence of sucrose, the carbohydrate monomer unit of Ficoll
(Supplementary Fig. 2f), suggesting that the observed morpho-
logical changes were due to depletion forces induced by the
presence of a macromolecule in solution. Although kinetics of
nanofiber lateral association and alignment were not investigated
explicitly, all transmission electron microscopy (TEM) samples
were prepared within 5 min of introducing the crowding agent,
suggesting that formation of inter-fiber contacts was rapid. The
drying required to visualize nanofibers with TEM could induce
structural artifacts, such as lateral association and alignment, which
can not be observed in solution. To characterize the
morphology of GQ11 nanofibers in the presence of a crowder in
native conditions, we visualized samples with cryo-electron
microscopy (cryo-EM) (Fig. 2e and Supplementary Fig. 3).
Similar to samples visualized with TEM, GQ11 nanofibers were
laterally associated and highly aligned when viewed with cryo-EM
in the presence of Ficoll, demonstrating that the alignment
observed in samples viewed using TEM was not a drying artifact.
Interestingly, though, aligned GQ11 nanofibers viewed with cryo-
EM in the presence of Ficoll appeared twisted, as indicated by
periodically alternating light and dark regions (Fig. 2e), whereas
aligned GQ11 nanofibers viewed after drying with TEM appeared
straighter (Fig. 2c, d). This suggested that drying may have an
effect on the morphology of individual nanofibers.

To determine whether GlcNAc groups were accessible on the
nanofiber surface, we characterized GQ11 binding to lectin and
non-lectin proteins. GQ11 nanofibers bound wheat germ agglutinin
(WGA), a GlcNAc-binding lectin, but not Concanavalin A (ConA) or bovine serum
albumin (BSA), suggesting carbohydrates were on the nanofiber surface
and accessible to the surrounding aqueous environment. Data presented as
mean ± standard deviation (n = 3). Inset: Co-localization of GQ11 nanofibers
and WGA-coated gold beads (scale bar = 50 nm). GQ11 nanofibers were
also aligned in the presence of BSA, ConA, and j trifluoroethanol
(TFE) when viewed using TEM (scale bar = 100 nm)

Fig. 2 GQ11 nanofibers laterally associate and align in crowded conditions. GQ11 nanofibers were dispersed when viewed using transmission electron microscopy in a water and b phosphate-buffered saline (PBS). GQ11 nanofibers were aligned in the presence of Ficoll when viewed using c, d transmission electron microscopy and e cryo-electron microscopy. f GQ11 nanofibers selectively bound wheat germ agglutinin (WGA), a GlcNAc-binding lectin, but not Concanavalin A (ConA) or bovine serum albumin (BSA), suggesting carbohydrates were on the nanofiber surface and accessible to the surrounding aqueous environment. Data presented as mean ± standard deviation (n = 3). Inset: Co-localization of GQ11 nanofibers and WGA-coated gold beads (scale bar = 50 nm). GQ11 nanofibers were also aligned in the presence of BSA, ConA, and j trifluoroethanol (TFE) when viewed using TEM (scale bar = 100 nm)
Role of hydroxyls on GQ11 nanofiber association and alignment. Carbohydrates interact strongly with water via their multiple hydroxyl moieties. We studied the role of GlcNAc hydroxyl moieties in GQ11 hierarchical self-assembly by characterizing the morphology of nanofibers formed from a Q11 variant terminated with peracetylated GlcNAc ("AcGQ11"). Self-supporting AcGQ11 gels were weakly birefringent (Fig. 3a, b) and consisted of randomly organized fibers (Fig. 3c and Supplementary Fig. 5). AcGQ11 produced a 2D SAXS scatter plot characteristic of a nearly isotropic sample (Fig. 3d), and SAXS intensity decay in the low q range was consistent with the predicted profile for a collection of randomly oriented rigid rods (Fig. 3e). Likewise, SAXS spectra angular profiles for GQ11 and AcGQ11 were significantly different (Fig. 3f) and represent a substantial decrease in the degree of alignment as evident by the reduction in the spectral order parameter from $S = 0.83$ to $S = 0.53$, respectively. At sub-gelling conditions, AcGQ11 nanofibers were dispersed in phosphate-buffered saline (PBS), similar to GQ11, but did not align in the presence of Ficoll or TFE (Fig. 3g and Supplementary Fig. 6). Taken together, these data demonstrated an important role for hydroxyl moieties in GQ11 nanofiber lateral association and alignment.

To determine whether a single hydroxyl group appended onto Q11 was sufficient to facilitate alignment, we characterized the morphology of nanofibers formed from Q11 variants terminated with threonine and serine (i.e., "TQ11" and "SQ11", respectively). TQ11 and SQ11 nanofibers demonstrated a tendency to aggregate in PBS and did not align in the presence of Ficoll. Hence, we investigated the role of GlcNAc hydroxyl moieties in GQ11 hierarchical self-assembly by characterizing the morphology of nanofibers formed from a Q11 variant terminated with peracetylated GlcNAc ("AcGQ11"). Self-supporting AcGQ11 gels were weakly birefringent (Fig. 3a, b) and consisted of randomly organized fibers (Fig. 3c and Supplementary Fig. 5). AcGQ11 produced a 2D SAXS scatter plot characteristic of a nearly isotropic sample (Fig. 3d), and SAXS intensity decay in the low q range was consistent with the predicted profile for a collection of randomly oriented rigid rods (Fig. 3e). Likewise, SAXS spectra angular profiles for GQ11 and AcGQ11 were significantly different (Fig. 3f) and represent a substantial decrease in the degree of alignment as evident by the reduction in the spectral order parameter from $S = 0.83$ to $S = 0.53$, respectively. At sub-gelling conditions, AcGQ11 nanofibers were dispersed in phosphate-buffered saline (PBS), similar to GQ11, but did not align in the presence of Ficoll or TFE (Fig. 3g and Supplementary Fig. 6). Taken together, these data demonstrated an important role for hydroxyl moieties in GQ11 nanofiber lateral association and alignment.

To determine whether a single hydroxyl group appended onto Q11 was sufficient to facilitate alignment, we characterized the morphology of nanofibers formed from Q11 variants terminated with threonine and serine (i.e., "TQ11" and "SQ11", respectively). TQ11 and SQ11 nanofibers demonstrated a tendency to aggregate in PBS and did not align in the presence of Ficoll (Fig. 3h, i and Supplementary Fig. 7). These observations suggested that either the number of hydroxyl groups or their arrangement on GlcNAc were important for GQ11 hierarchical assembly. We further interrogated the influence of hydroxyls on nanofiber alignment by synthesizing Q11 variants terminated with the disaccharides Gal-β1,4-GlcNAc ("LacNAc", 6 OH groups) or GalNAc-β1,4-GlcNAc ("LacDiNAc", 5 OH groups) (Supplementary Fig. 8a, b). LacNAcQ11 and LacDiNAcQ11 nanofibers were dispersed in PBS; however, only LacNAcQ11 nanofibers aligned in the presence of Ficoll (scale bar = 100 nm in g-k).

Influence of glycan density on GQ11 nanofiber alignment. The observed hydroxyl dependence of GQ11 hierarchical assembly suggested that nanofiber lateral association and alignment may be...
mediated by hydrogen bonding. Carbohydrate hydrogen bond lengths are typically 1–2 nm, which is comparable to the distance between N-termini of anti-parallel β-strands in peptide nanoﬁbers. To probe relationships between inter-carbohydrate distance and nanoﬁber alignment, we ﬁrst co-assembled GQ11 peptide with a non-glycosylated control peptide, NQ11, at different molar ratios (χ) (Supplementary Fig. 9). Nanoﬁbers with low carbohydrate density ($\chi_{GQ11} = 0–0.25$) were prone to aggregation in PBS, whereas those with higher carbohydrate density ($\chi_{GQ11} \geq 0.5$ GQ11) remained dispersed (Fig. 4a, left). Nanoﬁbers with a high carbohydrate density aligned in crowded environments, while nanoﬁbers with a low carbohydrate density aggregated (Fig. 4a, right).

We also characterized the morphology of glycosylated nanoﬁbers assembled from a pair of charge-complementary Q11 variants (i.e., QQKFKFKFQKQQ (“CATCH+”) and QQEFEEFEQQ (“CATCH−”)). CATCH peptides co-assemble into β-sheets when mixed at an equimolar ratio. Nanoﬁbers assembled from a variant of CATCH+ terminated with Asn-linked GlcNAc and non-glycosylated CATCH− were dispersed in neutral aqueous buffer, similar to GQ11/NQ11 nanoﬁbers where $\chi_{GQ11} = 0.5$. However, glycosylated CATCH nanoﬁbers did not laterally associate or align in the presence of Ficoll (Supplementary Fig. 10a, b), in contrast to GQ11/NQ11 nanoﬁbers where $\chi_{GQ11} = 0.5$. These observations suggested that lateral association and alignment of glycosylated peptide nanoﬁbers depends on the peptide itself. This may be due to differences in nanoﬁber morphology. Compared to GQ11 nanoﬁbers, CATCH nanoﬁbers are often much more twisted and tortuous when viewed with TEM (Supplementary Fig. 10c).

Based on these observations, we further characterized relationships between physical aspects of GlcNAc display and hierarchical assembly of GQ11 nanoﬁbers in crowded conditions using TEM. First, we decreased inter-carbohydrate distance along the nanoﬁber by synthesizing a Q11 variant modiﬁed with asparagine (GlcNAc) at both the N- and C-termini ("GQ11G"). GQ11G nanoﬁbers were dispersed in PBS and aligned in the presence of Ficoll (Fig. 4b and Supplementary Fig. 11a–c), similar to GQ11. Finally, we varied the distance between the nanoﬁber and carbohydrate by synthesizing GQ11 variants with amino acid linkers separating asparagine (GlcNAc) from Q11 that were either half or twice the length of the parent GQ11 molecule (i.e., “2aaGQ11” or “8aaGQ11”, respectively). 2aaGQ11 nanoﬁbers aggregated in PBS and did not align in crowded environments (Fig. 4c and Supplementary Fig. 11d, e), whereas 8aaGQ11 nanoﬁbers were dispersed in PBS and aligned under crowded conditions (Fig. 4d and Supplementary Fig. 11f, g).

Molecular interactions mediating GQ11 nanoﬁber alignment. To characterize the molecular interactions involved in the lateral association and alignment of GQ11 nanoﬁbers, we ﬁrst analyzed 100% GQ11 and 100% NQ11 (i.e., 0% GQ11) nanoﬁbers using circular dichroism (CD) and Fourier-transform infrared spectroscopy (FTIR). In solution, GQ11 and NQ11 nanoﬁbers adopted similar structures that were rich in β-sheets, as indicated by their comparable CD and FTIR spectra (Fig. 5a, b), which suggested that glycosylation did not induce signiﬁcant changes in the structure of Q11 nanoﬁbers. In the gel state, however, FTIR spectra of GQ11 had a new peak at ~1668 cm$^{-1}$ that was absent in FTIR spectra of NQ11 (Fig. 5c and Supplementary Fig. 12). A similar peak is seen in samples of α-chitin and has been assigned to stretching of GlcNAc carbonyl groups of one chitin polymer that are hydrogen bonded to amine groups on a neighboring chitin polymer. These observations suggested the formation of

Fig. 4 Spatial aspects of carbohydrate presentation govern nanoﬁber lateral association and alignment. a Nanoﬁbers of GQ11 and NQ11 co-assembled at different molar ratios transitioned from a tendency to non-speciﬁcally aggregate toward alignment with increasing GQ11 mole fraction. b GQ11G nanoﬁbers were dispersed in phosphate-buffered saline (PBS) and aligned in the presence of Ficoll. GQ11 nanoﬁbers with c a short, 2 amino acid linker (2aaGQ11) tended to aggregate in PBS and did not align in the presence of Ficoll, whereas GQ11 nanoﬁbers with d a longer, 8 amino acid linker (8aaGQ11) were dispersed in PBS and aligned in the presence of Ficoll, similar to GQ11 having a 4 amino acid linker. Scale bar = 100 nm in a–d.
hydrogen bonds involving GlcNAc groups on GQ11 nanofibers upon transition from the solution to the gel state.

Next, we analyzed GQ11 and NQ11 in dilute and crowded conditions using CD. Ellipticity at 203 nm significantly increased in CD spectra of GQ11 with increasing Ficoll concentration (Fig. 5d), whereas NQ11 spectra remained unchanged (Fig. 5e). This increase in ellipticity for GQ11 nanofibers in crowded conditions was suggestive of interactions involving carbonyl groups in either the peptide backbone or GlcNAc. Taken together with the FTIR spectra of GQ11 gels, we inferred that this change in ellipticity was due to intermolecular interactions involving the GlcNAc carbonyl groups. However, this interpretation was further complicated by reports that anisotropic samples can distort CD spectra due contributions from linear birefringence and linear dichroism, as seen previously with aligned amyloid protofilaments. Thus these solution-phase spectroscopic changes may be attributable to the lateral association and alignment of GQ11 nanofibers observed in crowded conditions using TEM. To account for this possibility, we analyzed samples containing either GQ11 or NQ11 nanofibers with or without soluble GlcNAc using CD. We observed increases in ellipticity at 203 nm for samples of GQ11 plus soluble GlcNAc (Fig. 5f, g and Supplementary Fig. 13a), whereas ellipticity was unchanged for samples of NQ11 plus soluble GlcNAc (Fig. 5h, i and Supplementary Fig. 13b). N,N',N triacetylchitotriose, a GlcNAc oligomer, did not induce lateral association or alignment of GQ11 nanofibers (Supplementary Fig. 14), suggesting that the changes in ellipticity observed for GQ11 in crowded conditions were due to interactions involving carbonyl groups, not linear birefringence or linear dichroism. Further, the observation that GlcNAc interacted with GQ11 but not NQ11, which only differ in having GlcNAc or not, strongly suggests that nanofiber lateral association involves carbohydrate–carbohydrate interactions (CCI). CCI are weak and stabilized by multivalent avidity effects, as demonstrated previously with glycopylomer, glycomicelles, and glyconanoparticles characterized with analytical techniques such

![Fig. 5](https://example.com/fig5.png)

Fig. 5 Characterization of molecular interactions mediating association and alignment of GQ11 nanofibers. GQ11 and NQ11 nanofibers adopted similar secondary structures under dilute conditions when analyzed with a Fourier-transform infrared spectroscopy and b circular dichroism. c In the gel state, GQ11 had a peak at 1668 cm⁻¹ attributed to the GlcNAc C=O group that was absent in NQ11 gels, whereas peaks at 1620 cm⁻¹ related to the peptide backbone were unchanged. d GQ11 nanofibers demonstrated a strong increase in ellipticity at 203 nm as a function of Ficoll concentration, whereas NQ11 ellipticity at 203 nm remained unchanged in the presence of Ficoll. When compared to GQ11 nanofibers alone (f), GQ11 nanofibers also demonstrated an increase in ellipticity at 203 nm in the presence of soluble GlcNAc (g). In contrast, when compared to NQ11 alone (h), ellipticity of NQ11 was unchanged in the presence of soluble GlcNAc (i). In g and i, “Obs.” denotes the observed spectrum for a sample of nanofiber-i-GlcNAc, whereas “Exp.” denotes the expected spectrum based on the sum of the nanofiber and GlcNAc spectra shown under “Individual”. Note that in both f and h, the same representative spectrum is used for the GlcNAc sample.
as Langmuir monolayers, modified enzyme-linked immunosorbent assay, surface plasmon resonance, quartz crystal microbalance, and calorimetry. Here the smaller change in ellipticity observed for GQ11 nanofibers mixed with soluble GlcNAc (Fig. 5d) vs. nanofibers in crowded conditions (Fig. 5d) could be due in part to weaker affinity between GlcNAc immobilized in a multivalent configuration, such as on a peptide nanofiber, and monovalent GlcNAc in solution. However, further studies are needed to quantitatively measure the affinity of intermolecular interactions between carbohydrates on β-sheet peptide nanofibers.

Non-fouling properties of GQ11 hydrogels. Within living systems, carbohydrates assembled into multivalent configurations demonstrate emergent functional properties that are not shared by their monovalent counterparts. For example, dense carbohydrate presentation at biological interfaces, such as the glyocalyx and secreted mucinous layers, confers resistance to non-specific biological interactions while encoding selective biomolecule recognition. Resistance is often attributed to a combination of carbohydrate hydrophilicity and steric repulsion, while recognition is enabled by carbohydrate clustering and multivalency. Here we characterized protein interactions with GQ11 and NQ11 gels by analyzing the release of encapsulated BSA and WGA into bulk aqueous media. Nearly all encapsulated BSA was released from GQ11 gels, whereas a significant fraction of encapsulated WGA was retained (Fig. 6a, b). In contrast, NQ11 gels released nearly all encapsulated BSA and WGA (Fig. 6a, b). Together, these data demonstrated that glycosylation endowed peptide nanofiber gels with selective recognition of a GlcNAc-binding lectin, where high binding affinity likely resulted from assembling carbohydrates into a multivalent configuration.

We also characterized GQ11 gel resistance to non-specific mammalian cell adhesion. Both macrophages and fibroblasts attached to the surface of NQ11 gels in the presence of serum, whereas significantly fewer cells attached to GQ11 gels (Fig. 6c–h and Supplementary Fig. 15). Regions of glass slides coated with GQ11 had few adherent fibroblasts, whereas regions coated with NQ11 were fouled (Fig. 6i–l and Supplementary Fig. 16). Collectively, these observations suggested that NQ11 gels were susceptible to non-specific adsorption of serum proteins that mediate cell adhesion, while GQ11 gels were more resistant to non-specific protein adsorption. This was likely due to steric repulsion and hydrophilicity endowed by GlcNAc monosaccharides organized into a dense layer on the surface of the nanofiber network. Further, these results suggested that GlcNAc-binding receptors expressed by macrophages or fibroblasts, such as Endo180 or CD206, do not interact with GlcNAc groups on GQ11 gels in a manner that enables cell adhesion.

Fig. 6 GQ11 gels selectively recognized a GlcNAc-binding protein but otherwise resisted non-specific biological interactions. **a** Bovine serum albumin rapidly released from NQ11 and GQ11 hydrogels, whereas **b** wheat germ agglutinin was selectively retained by GQ11 hydrogels. Dashed lines in **a** and **b** represent mass of protein encapsulated within the gel. GQ11 hydrogels were more resistant to non-specific RAW264.7 macrophage adhesion than NQ11 hydrogels in the presence of serum as determined **c** quantitatively via metabolic activity and **d**, **e** qualitatively via light microscopy. **f–h** GQ11 hydrogels were also more resistant to non-specific NIH3T3 fibroblast adhesion in the presence of serum than NQ11 hydrogels. **i** Glass surfaces coated with GQ11 hydrogels resisted non-specific NIH3T3 fibroblast adhesion. **j** Region of GQ11 hydrogel represented by white box in **i**. In contrast, **k** regions of glass coated with NQ11 hydrogels were fouled by NIH3T3 fibroblasts. **l** Region of NQ11 hydrogel represented by white box in **k**. **m** GQ11 hydrogels were also more resistant to E. coli adhesion than NQ11 hydrogels. In **i–l**, nanofibers were stained green with Thioflavin T (ThT) and cells were stained red with CellTracker®. Scale bar = 100 μm in **d**, **e**, **g–i**, and **k**. Data presented as mean ± standard deviation in **a–c**, **f**, and **m**. *p < 0.005, and **p < 0.0005 using Student’s t test (n = 3).
To characterize the biodegradability of GQ11 and NQ11 hydrogels, we treated each with trypsin, a protease that was expected to cleave both peptides at the amide linkage C-terminal to the Lys residue of Q11 (QQK*FQFQFEQQ). Mass spectra for each gel before and after trypsin treatment demonstrated that both peptides were digested (Supplementary Fig. 17), indicating that both NQ11 and GQ11 hydrogels are biodegradable.

Finally, we evaluated GQ11 gel resistance to bacterial adhesion. Compared to control surfaces, GQ11 gels reduced the number of viable adherent *Escherichia coli* to <10%, whereas NQ11 gels only reduced bacteria colonization to ~40% (Fig. 6m). Interestingly, AcGQ11 gels demonstrated comparable resistance to *E. coli* adhesion as GQ11 gels, whereas their resistance to fibroblast and macrophage adhesion was weaker (Supplementary Fig. 18). These observations suggested that both glycosylation and nano-fiber alignment may contribute to GQ11 resistance to mammalian cell adhesion, while only glycosylation is necessary to prevent *E. coli* adhesion. Previous reports have demonstrated that chitin nanocrystals embedded within electrospun polymer membranes can confer non-fouling properties through a combination of increased hydrophilicity that prevents cell adhesion and the antimicrobial properties of deacetylated glucosamine groups (i.e., chitosan) produced via acid hydrolysis during chitin nanocrystal extraction. Here we propose that resistance to *E. coli* adhesion on GQ11 gels primarily results from the increased hydrophilicity established by nanofiber glycosylation because our materials are devoid of deacetylated glucosamine units having antimicrobial properties.

Discussion

Here we show that glycosylation facilitates hierarchical assembly of β-sheet peptide nanofibers into anisotropic networks that are ordered over multiple length scales. Lateral association and alignment of glycosylated peptide nanofibers is dependent on both carbohydrate chemistry and density. The data in Figs. 4 and 5 support a role for short-range hydrogen bonding between GQ11 nanofibers as a mediator of lateral association. The low energy and reversibility of hydrogen bonding affords a key advantage over longer range and omnidirectional interactions in hierarchical self-assembly. Namely, weak interactions that can be stabilized by near-neighbor cooperativity may extend inter-fiber contact time while also permitting nanofiber rotation and sliding, which together have been theorized to facilitate fiber alignment.

Importantly, the multiple co-localized hydrogen bonds afforded by a carbohydrate stabilized inter-fiber interactions to an extent that was not possible with mono-hydroxylated threonine and serine, yet were not so robust as to kinetically trap nanofibers as misaligned aggregates. Although beyond the scope of this report, elucidating specific inter-fiber interactions involved in GQ11 lateral association will likely open up new avenues to rationally design glycosylated peptides that hierarchically assemble into precise supramolecular architectures.

Our data demonstrate that anisotropic GQ11 networks resist non-specific cell, bacteria, and protein interactions, yet selectively recognize lectins, analogous to natural densely glycosylated materials. Compared to many previously reported glycoconjugates designed for low-fouling biomaterial applications, such as polysaccharides, peptoids, and alkanethiols, GQ11 is unique because it can physically crosslink into self-supporting gels. Given the important role of macrophages, fibroblasts, and bacteria in establishing the foreign body reaction to implants, these observations suggest that GQ11 gels may find use as either low-fouling biomaterials or surface coatings. This potential is further supported by the reported low immunogenicity of Q11, which suggests that GQ11 will demonstrate favorable immunological compatibility.

From our observations, we postulate that GQ11 hierarchical assembly proceeds through a sequential mechanism. First, GQ11 peptides self-assemble into nanofibers that resist non-specific aggregation due to water–carbohydrate interactions established by a dense surface glycan layer (Fig. 7a). Then, excluded volume effects drive nanofiber collapse into bundles, where relatively close carbohydrate非制約に沿って運動し、より長い範囲の相互作用に優る。したがって、間近の親和性を安定させることができる際には、お互いの間で互いに接触時間を延ばすことができ、さらにナノファイバーの回転とスライドを許容する。これは、ファイバーを配向化するのに必要な理論をもとに設計された。これにより、GQ11の側面親和性の役割が示唆される。複数の共存する水素結合が、糖鎖によって安定化された相互作用を可能にし、一方で水に対して抵抗性がある。この抵抗性は、モノヒドロキシル化のブラグニンとセリンではなく、より速く転移しないが、ナノファイバーの不整合な集合を形成することが可能であった。これについては、この報告の範囲を超えているが、GQ11の側面親和性の役割が示唆される。この役割は、開発する新しいアプローチをもたらす可能性を示唆する。これらの観察の一部は、GQ11のネックリーフィールドを示唆する。これにより、低汚着性のバイオマテリアル材料あるいは表面コーティングの可能性が示唆される。これには、報告されたQ11の低免疫原性が支持される。これは、GQ11の免疫学的適合性に示唆される。

観察から、我々はGQ11の階層的構造が経時的メカニズムを経て進行すると仮定する。まず、GQ11ペプチドが自立するためのナノファイバーを自立する。その後、側面親和性の抵抗性を示す。観察から、我々はGQ11の階層的構造が経時的メカニズムを経て進行すると仮定する。まず、GQ11ペプチドが自立するためのナノファイバーを自立する。その後、側面親和性の抵抗性を示す。
weak inter-fiber interactions mediate lateral association while facilitating nanofiber rotation and sliding to correct misalignments, ultimately resulting in system convergence on the most thermodynamically favorable state of aligned nanofibers (Fig. 7b). Nanofiber twisting due to amino acid chirality would lead to radial display of carbohydrates at a regular interval that provides inter-fiber contact points in all directions (Fig. 7c). Hierarchical assembly via lateral association rather than entwining would suggest that GQ11 nanofiber bundles can grow radially with no geometric constraint, because the entropic penalty resulting from untwisting of subsequent layers in entwined structures would be avoided35-37. Carbohydrates displayed on the outermost nanofibers of a network interact with water to endow resistance to non-repulsive forces that dictate intermolecular interactions, analogously demonstrating that glycosylation can alter the structure and function of supramolecular biomaterials by establishing attractive and repulsive forces that dictate intermolecular interactions, analogous to the influence of glycosylation on protein form and function.19 We envision that modifying self-assembling peptides with the diverse carbohydrate chemistries found throughout nature will lead to supramolecular biomaterials with a broad range of new emergent properties that are advantageous for various biomedical and biotechnological applications.

Methods

Peptide synthesis and purification. Amino acids and amide resin were purchased from Novabiochem. 2-(7-Aza-1H-benzotriazole-1-y1)-1,1,3,3-tetramethyluronium hexafluorophosphate (HATU), 1-hydroxy-7-azabenzotriazole (HOAt), N,N-diisopropylpropylamine (DIEA), dimethylformamide, trifluoroacetic acid (TFA), diethyl ether, and methanol were purchased from Fisher Scientific. Piperidine, 1,8-Diazabicyclo[5.4.0]undec-7-ene, triisopropylsilane (TIS), and sodium methoxide were purchased from Sigma-Aldrich. Peptides GQ11 (N(GlcNAc)SGCGSGQQKHFQFQFEQ), SQ11G (N(GlcNAc)SGCGSGQQKHFQFQFEQ), SQ11 (N(GlcNAc)SGCGSGQQKHFQFQFEQ), NQ11 (NSGCGSGQQKHFQFQFEQ), AcQG11 (N((Ac)-GlcNAc)SGCGSGQQKHFQFQFEQ), and SQ11 (NSGCGSGQQKHFQFQFEQ) were synthesized following standard Fmoc solid phase peptide synthesis protocols with DIEA/HOAt/HATU activation, according to previously reported methods.27 Peptides were cleaved with TFA/TIS/water (95:2.5:2.5) cocktail. Peptides were precipitated with diethyl ether, dried, resuspended in distilled water, and freeze dried. GQ11, GQ11G, 2aaGQ11, and SQ11 were further treated with sodium methoxide and precipitated in methanol for deacylation. All peptides were purified using an Ultimate 3000 HPLC equipped with a C18 column. Peptide molecular weight was assessed using matrix-assisted laser desorption/ionization- time of flight (MALDI-TOF) in a Bruker Microflex LRX system and a-cyano-4-hydroxycinnamic acid as the matrix (Supplementary Fig. 19). Peptide purity was >95% for all studies (Supplementary Fig. 20).

Nanofiber and gel preparation. To prepare nanofibers, lyophilized peptide powders were dissolved in ultrapure water at 5 mM, diluted to working concentration in 1× PBS (137 mM NaCl, 2.7 mM KCl, 10 mM Na2HPO4, 1.8 mM KH2PO4), and incubated overnight at room temperature. To prepare gels, peptides were dissolved in ultrapure water at 5 mM, diluted to 4.5 mM using 10× PBS, and incubated overnight at room temperature. Gels were either formed by placing ultrafilter membranes onto the bottom of a 2 ml scintillation vial or by placing between two glass slides rendered hydrophobic with Sigmacote (Sigma-Aldrich), which were separated with 3 mm spacers.

Birefringence. All gels were cast in 2 ml scintillation vials, placed in front of a linearly polarized light source, and imaged using a Nikon digital camera equipped with cross-polarizers.

Field-emission scanning electron microscopy. For visualization of gels using FESEM, gels were dehydrated in a series of ethanol/water solutions progressing from 30% to 100% ethanol. Dehydrated gels were critical point dried for 1 h in a Bal-tek critical point dryer. Specimens were sputter coated with 8 nm gold using a Denton Desk V Sputter System and imaged using a Hitachi SU5800 Schottky Field-Emission Variable Pressure SEM. Sample preparation and image collection were done on equipment maintained by the University of Florida Interdisciplinary Center for Biotechnology Research.

Transmission electron microscopy. For visualization of nanofibers with TEM, nanofiber solutions in PBS were prepared as described above. Nanofibers were diluted to 250 μM in 1× PBS or 1× PBS with macromolecular crowder. Crowders included: bovine serum albumin (10 μM, Fisher Scientific); ConA (10 μM, Fisher Scientific); PM70 Ficol (100 mg/mL, GE Healthcare); PEG (MW = 2000) 40% (w/v), Alfa Aesar); D-sucrose (100 mg/mL, Fisher Scientific); N,N,N-triacetyltetrachitosone (200 μM, Sigma Aldrich); or TFE (Acros Organics). Within 5 min, solutions of nanofibers + macromolecular crowder were adsorbed onto Formvar/ carbon grids (FCF400-CU-UB, Electron Microscopy Sciences) by placing liquid sample on top of the grid for 1 min. Grids were dried by tilting onto a Kimwipe (Kimberly-Clark) and negatively stained with 2% aqueous solution of uranyl acetate. For WGA-gold labeling of nanofibers, samples adsorbed on grids were placed upside-down on top of a 20 μl drop of gold-conjugated WGA (EY Laboratories, Inc., GP-2101-15, 10 mg/ml) for 5 min prior to negative staining with 2% uranyl acetate. Samples were washed 3x with 1× PBS prior to negative staining to remove any loosely adsorbed background WGA-gold. Samples were imaged using a Hitachi 7900 TEM housed in the University of Florida Interdisciplinary Center for Biotechnology Research.

Cryo-electron microscopy. All sample preparation for cryo-EM was performed by the University of Florida Interdisciplinary Center for Biotechnology Research EM Core Facility. Three-microliter aliquots of 1× PBS containing GQ11 (250 μM) and Ficol (100 mg/mL) were applied to flat holey carbon grids (Protocups, Inc.) and vitrified using a Vitrobot Mark IV (FEI Co.) operated at 4°C and with ~90% humidity in the control chamber. The vitrified sample was stored under liquid nitrogen and transferred into a Gatan cryo-holder (Model 626/70) for imaging. The sample was examined using a 4 k x 4 k CCD camera (Gatan, Inc.) on a Tecnai G2 F20-TWIN Transmission Electron Microscope (FEI Co.) operated at a voltage of 200 kV using low-dose conditions (~20 eÅ2). Images were recorded with a defocus of approximately 3 μm to improve contrast.

Small angle X-ray scattering. To quantify the average fiber orientation over macroscopic scales within self-assembled peptide nanofiber hydrogels, we performed SAXS measurements, samples of approximately 1 mm³. Hydrogels were prepared in aqueous buffer, pipetted into thin-walled amorphous quartz capillaries (10 μm wall thickness), and flame sealed. SAXS data were collected with a 2D wire detector (Bruker Nanostar) for approximately 18 h and analyzed using a combination of Fit2D software and custom written analysis code. The scattering patterns lay on a coordinate system of wave-vectors in reciprocal space, given by

\[q = 4\pi/\lambda \sin(\theta) \]

where \(\lambda = 1.54 \text{ Å} \) is the Cu Kα X-ray wavelength and 2θ is the scattering angle. Sample anisotropy can be quantified by measuring the nematic order parameter from these data, given by24,

\[S = \int_{\phi_1}^{\phi_2} \left(\frac{1}{2} \cos^2 \phi - 1\right) \sin(\theta) d\phi \]

Here \(\phi \) is the azimuthal angle in reciprocal space and \(f(\phi) \) is the orientational distribution function, which is determined by fitting a Gaussian line-shape to the relative intensity at a fixed q as a function of the azimuthal angle20. We average over a narrow q-range (0.13 < q < 0.5) to determine \(f(\phi) \) for each sample.

Fourier transform infrared spectroscopy. Peptide secondary structure was characterized using attenuated total reflectance FTIR. A 3 μl nanofiber solution in water or PBS (4.5 mg/ml) was deposited onto a diamond-coated ZnSe crystal and dried at room temperature. Spectra were collected with a PerkinElmer Spectrum 100 spectrometer equipped with a KBr beam splitter. The data presented corresponds to the average of 4 scans at a resolution of 4 cm⁻¹.

Circular dichroism. Peptide secondary structure was characterized under dilute and crowded conditions using CD on an Aviv Model 430 spectrometer or an Applied Photophysics Chiroscan V100 spectrophotometer. For analysis of peptide secondary structure and characterization of peptides in crowded conditions, nano- fibers were prepared by dissolving lyophilized peptide powders in ultrapure water at 5 mM and diluting to 0.15 mM in 1× CD potassium phosphate buffer (10 mM Na2HPO4, 1.8 mM KH2PO4, 2.7 mM KCl, 137 mM KF, pH 7.4). Here sodium chloride was substituted with potassium fluoride due to strong absorbance by Cl⁻ ions in the ultraviolet range. For analysis of nano-fiber binding to GlcNAc, nano-fibers were prepared by dissolving lyophilized peptide powders in water at 10 mM and then diluting ten-fold in 1× CD potassium phosphate buffer. Samples were then diluted to 0.25 mM in 1× CD potassium phosphate buffer containing 0.6 mM GlcNAc. Spectra reported correspond to the average of 3 runs after baseline subtraction and with dynode values <500 V.

Protein binding to nanofibers. Nanofibers (1 mM) in PBS were incubated for 1 h at room temperature with 10 μM of WGA (Sigma-Aldrich L9640), ConA (MP Biomedicals 15074001), or BSA (MP Biomedicals). Nanofibers were sedimented by centrifugation at 11,300 x g for 5 min, and supernatant was analyzed for unbound
protein by measuring tryptophan fluorescence (excitation 280 nm, emission 345 nm) using a SpectraMax M3 spectrophotometer (Molecular Devices), similar to previously reported methods. \[\text{Eq. 1}\]

Protein release from hydrogels. PBS 70 μL solution containing 4.5 mM peptide plus 10 μM BSA or WGA was added to the bottom of 96-well plates and allowed to gel overnight. Protein release was initiated by adding 200 μL of fresh 1× PBS on top of the gels. For all groups at each time point, 100 μL of supernatant was transferred into a black 96-well, glass-bottom plate, and protein concentration was measured via tryptophan fluorescence (excitation λ = 280 nm, emission λ = 345 nm) using a SpectraMax M3 spectrophotometer (Molecular Devices). After fluorescence measurements, supernatants were transferred back to the corresponding well containing gels until the following time point. Fluorescence measurements were performed 0.5, 1, 2, 4, 8, and 24 h.

Expression and purification of β-1,4-galactosyltransferase 1. Human placental β-1,4-galactosyltransferase 1 Y284L (GalNAcT) mutant was previously reported. \[\text{Ref. 9}\]

Sequence can be found in Supplementary Data 1 and 2. GalNAcT gene (Genscript) was inserted into pET(−)(−)/21 vector between Ncol and Xhol sites, transformed into TOP 10 E. coli, and selected on lysogeny broth (LB) agar plates containing 100 μg/mL ampicillin. Positive clones were used to inoculate 5 mL of LB and culture was grown overnight at 37 °C on an orbital shaker (225 rpm). Bacteria were collected by centrifugation at 16,300 × g for 10 min and washed 3 times with PBS. Bacteria were lysed by being incubated with 10× BugBuster (EMD Millipore) diluted to working concentration containing protein was loaded into columns containing HisPurTM cobalt resin (Fisher), washed with 15 column volumes of HEPES buffer (50 mM), and eluted with an imidazole gradient. Imidazole was removed from the pure protein fractions by dialyzing against 2 L of HEPES buffer containing 10 mM of MnCl2. Protein electrophoresis gel stained with Coomassie Blue.

Carbosynth MU06699) were added in 20 mM HEPES buffer with 10 mM MnCl2 for 10 min and washed 3 times with PBS. Bacteria were lysed by being incubated with 10× BugBuster (EMD Millipore) diluted to working concentration containing protein was loaded into columns containing HisPurTM cobalt resin (Fisher), washed with 15 column volumes of HEPES buffer (50 mM), and eluted with an imidazole gradient. Imidazole was removed from the pure protein fractions by dialyzing against 2 L of HEPES buffer containing 10 mM of MnCl2. Protein electrophoresis gel stained with Coomassie Blue.

Enzymatic carbohydrate conversion. LacNAcQ11 and LacDiNAcQ11 were prepared following previously published methods. \[\text{Ref. 20}\]

LacNAcQ11, per 1 nmol of Q11, 1.5 μg of β-1,4-galactosyltransferase from bovine milk (β-1,4-GalT; Sigma–Aldrich G5207) and 5 nmol of uridine diphosphate galactose (UDP-Gal; Carbosynth MU04515) was added to 60 μL of fresh 1× PBS on top of the gels. For all groups at each time point, 100 μL of supernatant was transferred into a black 96-well, glass-bottom plate, and protein concentration was measured via tryptophan fluorescence (excitation λ = 280 nm, emission λ = 345 nm) using a SpectraMax M3 spectrophotometer (Molecular Devices). After fluorescence measurements, supernatants were transferred back to the corresponding well containing gels until the following time point. Fluorescence measurements were performed 0.5, 1, 2, 4, 8, and 24 h.

Bacterial cell adhesion to hydrogels. One ShotTOP10 Chemically Competent E. coli containing ampicillin-resistant pET(−)(−)/21 vector were grown in LB medium at 37 °C on an orbital shaker (225 rpm) until they reached an optical density of 0.1 (λ = 600 nm). Bacteria in LB media (100 μL) were added onto the top of QG11 and NQ11 gels (55 μL) cast on the bottom of 96-well plates, as described above. Samples were incubated at room temperature for 4 h, after which samples were washed 5 times with 1× PBS. Bound remaining bacteria were quantified with BacTiter-Glo™ (Promega) according to the manufacturer’s instructions.

Trypsin digest. Five microtiter of 5 mM NQ11 or QG11 gel was digested with 1 μL of 0.25% Trypsin at 37 °C for 24 h. Samples were mixed 1:1 with a cyano-4-hydroxyquinazinic acid (Sigma) (10 mg/mL) in 70% acetonitrile and 30% water (both containing 0.1% TFA). Two microtiter of sample was spotted and dried onto a MALDI-TOF plate and scanned. Samples were analyzed using MALDI-TOF in a Bruker Daltonics AutoFlex with a smart beam II UV laser.

Statistical analysis. Protein, bacteria, and cell experiments were conducted in triplicate. Statistical differences between groups were analyzed using an unpaired t test with a confidence interval of 95% or analysis of variance (ANOVA) with Tukey’s post hoc in the GraphPad Prism software.

T test comparing GQ11 and NQ11 only. All experimental and control groups were n = 3 for macrophage, fibroblast, and bacterial cell adhesion to bulk gels, and the data were reported as average ± standard deviation. Statistical differences between groups were analyzed using unpaired Student’s t test. In macrophage adhesion studies, p = 0.0004 and F value is 7.771. In fibroblast adhesion studies, p = 0.0002 and F value is 180. In bacteria adhesion studies, p = 0.0005 and F value is 3.073.

One-way ANOVA to include AcGQ11. All experimental and control groups were n = 3 for macrophage, fibroblast, and bacterial cell adhesion to bulk gels, and the data were reported as average ± standard deviation. Statistical differences between groups were analyzed using ANOVA with Tukey’s post hoc in the GraphPad Prism software. In macrophage adhesion studies, p = 0.002 for GQ11 vs. NQ11, p = 0.0027 for GQ11 vs. AcGQ11, and p = 0.0017 for GQ11 vs. AcQ11. F value is 24.17. In fibroblast adhesion studies, ***p < 0.0001 for GQ11 vs. NQ11, p = 0.0017 for GQ11 vs. AcQ11 and p = 0.003 for NQ11 vs. AcQ11. F value is 114.7. In bacteria adhesion studies, ***p < 0.0001 for GQ11 vs. NQ11 and NQ11 vs. AcQ11 and p = 0.0013 for GQ11 vs. AcQ11. F value is 127.

Data availability. All materials and raw data are available upon request from the corresponding author.

Received: 25 July 2018 Accepted: 11 April 2019
Published online: 06 May 2019

References.

1. Vignaud, T., Blanchion, L. & Thery, M. Directed cytoskeleton self-organization. Trends Cell Biol. 22, 671–682 (2012).
2. Muñozkie, L. D. & Keeley, F. W. Molecular assembly and mechanical properties of the extracellular matrix: a fibrous protein perspective. Biochim. Biophys. Acta 1832, 866–875 (2013).
3. Webber, M. J., Appel, E. A., Meijer, E. W. & Langer, R. Supramolecular assembly of peptide amphiphile. Nat. Mater. 15, 13–26 (2016).
4. Du, X., Zhou, J., Shi, I. & Xu, B. Supramolecular hydrogelators and hydrogels: from soft matter to molecular biomaterials. Chem. Rev. 115, 13165–131307 (2015).
5. Whiteman, S. Hierarchical assembly may be a way to make large information-rich structures. Soft Matter 11, 8252–8235 (2015).
6. Mouw, J. K., Ou, G. & Weaver, V. M. Extracellular matrix assembly: a multiscale deconstruction. Nat. Rev. Mol. Cell Biol. 15, 771–785 (2014).
7. Conde, C. & Caceres, A. Microtubule assembly, organization and dynamics in axons and dendrites. Nat. Rev. Neurosci. 10, 319–332 (2009).
8. Fantakitti, F. et al. Energy landscapes and functions of supramolecular systems. Nat. Mater. 15, 469–476 (2016).
9. Zhang, S. et al. A self-assembly pathway to aligned monodomain gels. Nat. Mater. 9, 594–601 (2010).
10. Chen, Y. R., Gan, H. X. & Tong, Y. W. pH-controlled hierarchical self-assembly of peptide amphiphile. Macromolecules 48, 2647–2653 (2015).
11. Huang, Z. et al. Responsive nematic gels from the self-assembly of aqueous nanofibers. Nat. Commun. 2, 459 (2011).
12. Lovik, D. W. P. M. et al. A highly ordered material from magnetically aligned peptide amphiphile nanofibers. Adv. Mater. 19, 1191–1195 (2007).

Communications Chemistry | https://doi.org/10.1038/s42004-019-0154-z | www.nature.com/commchem
Acknowledgements
This research was supported by NSF Career (DMR-1455201) to G.A.H. and NSF Career (DMR-1352043) to T.E.A. J.K was partially supported by an NIH T32 basic microbiology and infectious diseases training grant (ST32AI007110-34). The authors would like to acknowledge Dr. Mavis Agbandje-McKenna and Dr. Robert McKenna for providing access to the CD spectrometer in the UF Center for Structural Biology and to Dr. Michael Harris for access to the CD spectrometer in the UF Department of Chemistry. Cryo-EM samples were prepared and imaged by Rodolfo Alvarado at the University of Florida ICBR.

Author contributions
G.A.H. conceived the project, designed experiments, analyzed data, and contributed to the writing and editing of the manuscript. A.R. conducted most of the experiments, analyzed data, prepared figures, and contributed to writing and editing of the manuscript. D.T.S. conducted experiments, analyzed data, and prepared figures. K.K. contributed to FE-SEM experiments. C.S.O. conducted SAXS experiments and together with T.E.A. analyzed SAXS data. J.K.K contributed to CD experiments. K.R.K. contributed to data analysis. S.A.F. contributed to peptide synthesis.

Additional information
Supplementary Information accompanies this paper at https://doi.org/10.1038/s42004-019-0154-z.

Competing interests: The authors declare no competing interests.

Reprints and permission information is available online at http://npg.nature.com/reprintsandpermissions/

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2019
Supplementary Figure 1: FE-SEM of GQ11 hydrogel demonstrating long-range alignment of nanofibers.
Supplementary Figure 2: TEM images of GQ11 in a, PBS, or in the presence of b-c, Ficoll, d-e, PEG2000, and f, sucrose. Scale bar = 50 nm in a. Scale bar = 100 nm in b, d, and f. Scale bar = 2 µm in c. Scale bar = 1 µm in e.
Supplementary Figure 3: Cryo-TEM of GQ11 nanofibers in the presence of Ficoll. Scale bar = 1 µm in a and 100 nm in b.
Supplementary Figure 4: TEM images of GQ11 in a, ConA, b, BSA, and c, TFE. Scale bar = 100 nm in a, b, and c.
Supplementary Figure 5: FE-SEM of AcGQ11 hydrogel.
Supplementary Figure 6: TEM images of AcGQ11 in a, PBS, or in the presence of b, Ficoll, or c, TFE. Scale bar = 100 nm in a and c. Scale bar = 200 nm in b.
Supplementary Figure 7: TEM images of TQ11 in a, PBS and b, PBS + Ficoll. TEM images of SQ11 in c, PBS and d, PBS + Ficoll. Scale bar = 100 nm in a-d.
Supplementary Figure 8: MALDI-TOF spectra of a, LacNAcQ11 and b, LacDiNAcQ11 after enzymatic conversion. TEM images of LacNAcQ11 in c, PBS and d, PBS + Ficoll. TEM images of LacDiNAcQ11 in e, PBS and f, Ficoll. Scale bar = 100 nm in c, e, and f. Scale bar = 50 nm in d.
Supplementary Figure 9: Co-assembly of GQ11 and Q11 in nanofibers with tunable carbohydrate content. (a) HPLC traces of co-assembled GQ11:Q11 nanofibers. (b) Quantification of area under the peaks from HPLC traces demonstrates a linear relationship between peptide in the feed and peptide integrated into the nanofiber. Data reprinted from Restuccia, A., Tian, Y.F., Collier, J.H., Hudalla, G.A., Cellular and Molecular Bioengineering 8(3): 471-487, 2015.
Supplementary Figure 10: a, b TEM micrographs of glycosylated CATCH nanofibers in the presence of Ficol. c, non-glycosylated CATCH nanofibers in PBS. Scale bar = 100 nm in a and c. Scale bar = 1 µm in b.
Supplementary Figure 11: TEM images of GQ11G in a, PBS and b-c, PBS + Ficoll. TEM images of 2aaGQ11 in d, PBS and e, PBS plus Ficoll. TEM images of 8aaGQ11 in f, PBS and g, PBS + Ficoll. Scale bar = 100 nm in a, b, d, e, f, and g. Scale bar = 1 µm in c.
Supplementary Figure 12: FTIR spectra of GQ11 and NQ11 in PBS over the range of 4000-750 cm⁻¹.
Supplementary Figure 13: Independent biological replicates of samples of a, GQ11 + GlcNAc and b, NQ11 + GlcNAc analyzed with CD. “Obs” denotes the observed spectrum for a sample of nanofiber + GlcNAc, whereas “Exp” denotes the expected spectrum based on the sum of the nanofiber and GlcNAc spectra collected independently. Dashed line indicates 203 nm.
Supplementary Figure 14: a, b TEM micrographs of GQ11 nanofibers in 1x PBS plus N,N',N triacetylchitotriose. Scale bar = 100 nm in a and 1 µm in b.
Supplementary Figure 15: Bright-field images of RAW264.7 macrophage adhesion on a, GQ11 and b, NQ11 hydrogels. Bright-field images NIH3T3 fibroblast adhesion on c, GQ11 and d, NQ11 hydrogels. Scale bar = 100 µm.
Supplementary Figure 6: Fibroblast adhesion to hydrogel-coated glass surfaces. NIH3T3 fibroblasts a, did not adhere to GQ11-coated glass, but b, did adhere to NQ11-coated glass. Nanofibers were stained green with Thioflavin T dye (green) and cells were labeled with CellTracker (red). Scale bar 500 µm.
Supplementary Figure 1: MALDI-TOF mass spectra of a, GQ11 and b, NQ11 before (black) and after (red) digestion with trypsin. Table assigning peptide fragments to observed MALDI-TOF peaks.

Fragment	Peptide/Fragment	Molecular Weight
1	N(GlcNAc)SGSGQQKFQFQFEQQ	2090+Na
2	NSGSGQQKFQFQFEQQ	1186+Na
3	FQFQFEQQ	1101+Na
4	NSGSGQQQK	805
Supplementary Figure 18: Cell adhesion to AcGQ11 hydrogels. Quantitative comparison of a, Bacteria, b, RAW264.7 macrophages, and c, NIH3T3 fibroblast adhesion to AcGQ11, GQ11, and NQ11 hydrogels. Micrographs of d-e, macrophage and f-g, fibroblast adhesion onto AcGQ11 hydrogels. Scale bar = 100 µm in d-g. In a-c, data presented as mean ± standard deviation (n = 3). For a, * represents p<0.05. For b, ** represents p<0.01. For c, ** represents p<0.002 and **** p<0.0001.
Supplementary Figure 19: Peptide molecular weights determined using MALDI-TOF. a, GQ11. b, AcGQ11. c, TQ11. d, SQ11. e, NQ11. f, GQ11G. g, 2aaGQ11. h, 8aaGQ11.
Supplementary Figure 20: HPLC traces of Q11 peptide variants. a, GQ11. b, AcGQ11. c, TQ11. d, SQ11. e, NQ11. f, GQ11G. g, 2aaGQ11. h, 8aaGQ11. Peptide purity was greater than 90% for all experiments.