Treatment of young patients with lupus nephritis using calcineurin inhibitors

Hiroshi Tanaka, Kazushi Tsuruga, Tomomi Aizawa-Yashiro, Shojiro Watanabe, Tadaatsu Imaizumi

Hiroshi Tanaka, Department of School Health Science, Faculty of Education, Hirosaki University, Hirosaki 036-8562, Japan
Hiroshi Tanaka, Kazushi Tsuruga, Tomomi Aizawa-Yashiro, Shojiro Watanabe, Department of Pediatrics, Hirosaki University Hospital, Hirosaki 036-8562, Japan
Tadaatsu Imaizumi, Department of Vascular Biology, Hirosaki University Graduate School of Medicine, Hirosaki 036-8562, Japan

Author contributions: All authors contributed to this manuscript.
Correspondence to: Hiroshi Tanaka, MD, PhD, Department of School Health Science, Faculty of Education, Hirosaki University, Hirosaki 036-8560, Japan. hitotana@cc.hirosaki-u.ac.jp
Telephone: +81-172-395070
Received: October 9, 2011 Revised: August 13, 2012 Accepted: September 25, 2012 Published online: December 6, 2012

Abstract
Recent advances in the management of lupus nephritis, together with earlier renal biopsy and selective use of aggressive immunosuppressive therapy, have contributed to a favorable outcome in children and adolescents with systemic lupus erythematosus (SLE). Nevertheless, we believe that a more effective and less toxic treatment is needed to attain an optimal control of the activity of lupus nephritis. Recent published papers and our experiences regarding treatment of young patients with lupus nephritis using calcineurin inhibitors are reviewed. Although it has been reported that intermittent monthly pulses of intravenous cyclophosphamide (IVCY) are effective for preserving renal function in adult patients, CPA is a potent immunosuppressive agent that induces severe toxicity, including myelo- and gonadal toxicity, and increases the risk of secondary malignancy. Thus, treatment for controlling lupus nephritis activity, especially in children and adolescents, remains challenging. Cyclosporine A (CsA) and tacrolimus (Tac) are T-cell-specific calcineurin inhibitors that prevent the activation of helper T cells, thereby inhibiting the transcription of the early activation genes of interleukin (IL)-2 and suppressing T cell-induced activation of tumor necrosis factor-α, IL-1β, and IL-6. Therefore, both drugs, which we believe may be less cytotoxic, are attractive therapeutic options for young patients with lupus nephritis. Recently, a multidrug regimen of prednisolone (PDN), Tac, and mycophenolate mofetil (MMF) has been found effective and relatively safe in adult lupus nephritis. Since the mechanisms of action of MMF and Tac are probably complementary, multidrug therapy for lupus nephritis may be useful. We propose as an alternative to IVCY, a multidrug therapy with mizoribine, which acts very similarly to MMF, and Tac, which has a different mode of action, combined with PDN for pediatric-onset lupus nephritis. We also believe that a multidrug therapy including CsA and Tac may be an attractive option for young patients with SLE and lupus nephritis.
gressive immunosuppressive therapy, have contributed to a favorable outcome in children and adolescents with systemic lupus erythematosus (SLE). Since SLE is a chronic disease associated with frequent disease flares, effective and safe maintenance therapy is needed to reduce the risk of such flares. Thus, treatment for lupus nephritis in adolescents remains challenging. Intermittent monthly pulses of intravenous cyclophosphamide (IVCY) have been reported to be effective even for patients with pediatric-onset SLE; however, CY is a potent immunosuppressive agent associated with myelotoxicity, gonadal toxicity, and an increased risk of secondary malignancy. Since therapy-related adverse events are a major therapeutic risk of immunosuppressive treatment in patients with SLE, selecting a safe and effective treatment protocol poses a major dilemma for physicians treating young patients. Cyclosporine A (CsA) and tacrolimus (Tac) are expected to be effective in patients with SLE and lupus nephritis, because of their strong suppressive effects on activated T cells. Indeed, CsA and Tac have been found useful to treat difficult cases of adult lupus nephritis. These studies found that both CsA and Tac ameliorated the clinical activity of SLE and exerted an anti-proteinuric effect in lupus nephritis. Therefore, we hypothesized that calcineurin inhibitors might be a feasible alternative for maintenance treatment, and sometimes for induction treatment, in young patients with lupus nephritis. Recently, a multidrug regimen comprising prednisolone (PDN), Tac, and mycophenolate mofetil (MMF) was found safe and effective in adult lupus nephritis. In this mini review, we would like to discuss the efficacy and safety of treatment using a relatively low-dose of CsA and Tac in young patients with lupus nephritis. Furthermore, we would like to discuss the potential usefulness of a multidrug therapy consisting of mizoribine (MZR), a selective inhibitor of inosine monophosphate dehydrogenase in the de novo pathway of purine nucleotides that acts very similar to MMF; and Tac, which has a different mode of action, combined with PDN, in the treatment of pediatric-onset SLE.

CYCLOSPORINE A TREATMENT

CsA has been reported to selectively inhibit the nuclear factor of activated T cell signaling, and thereby reduce (interleukin) IL-2 synthesis and suppress lymphocyte proliferation. These immunosuppressive effects result in the decrease of autoantibody-mediated production and glomerular deposition of immune complexes. Furthermore, it has been shown recently that CsA stabilizes the podocyte actin cytoskeleton leading to maintenance of the integrity of the glomerular filtration barrier. This mechanism reasonably explains the strong anti-proteinuric effect of CsA. Thus, CsA is expected to suppress lupus nephritis activity, decrease urinary protein excretion and preserve renal function. Recently, Zavada et al. performed a prospective randomized trial of CsA compared to IVCY in 40 adults patients with proliferative lupus nephritis, and concluded that treatment with CsA (the initial dose of the drug, 4-5 mg/kg per day) was as effective as IVCY concerning sequential induction, maintenance treatment, and preservation of renal function. In their study, adverse events were infrequent, but transient increases in serum creatinine, hypertension and generalized seizures were noted in some patients. Thus, although CsA-related clinical toxicities, such as hypertension, hypertrichosis, gingival hyperplasia, posterior reversible encephalopathy syndrome and nephrotoxicity remain therapeutic risks, these were less severe than those observed with IVCY. More recently, treatment with a relatively low dose of CsA of approximately 2.5 mg/kg per day and a blood trough level of around 100 ng/mL was found effective and safe for patients with SLE and lupus nephritis. Interestingly, it has lately been reported that both CsA and Tac may overcome treatment unresponsiveness through a blockade of the drug exclusion effect of P-glycoprotein (P-gp), leading to restoration of the intracellular therapeutic levels of corticosteroids and clinical improvement. In order to inhibit P-gp, even low-dose CsA could competitively inhibit the excretion of intracellular corticosteroids through P-gp on lymphocytes, thus overcoming corticosteroid resistance and leading to improvement of the clinical features of SLE. These laboratory observations have suggested that CsA, even at a low dose, might have other useful mechanisms of action besides its immunosuppressive effects. This would warrant its use in patients with active and steroid-resistant SLE with lupus nephritis.

Concerning CsA treatment for young patients with lupus nephritis, several reports of single cases or case series have been published to date. Baca et al. reported that low-dose CsA (2-4 mg/kg per day with a median trough level of the drug 57 ng/mL) was effective and safe in 7 children with proliferative lupus nephritis resistant to cytotoxic therapy; however, relapses were common after discontinuation of treatment with CsA for one year. Aragon et al. reported on the efficacy of CsA (3-6 mg/kg per day with a blood trough level of the drug 100-200 ng/mL) in their retrospective cohort of 13 children with severe lupus nephritis following intravenous high-dose methylprednisolone pulse therapy (MPT) combined with MMF. They found a significant anti-proteinuric effect of CsA as well as suppression of the disease activity. Regarding histologic changes, Kawasaki et al. reported that treatment with low-dose CsA for 24 mo (2-2.5 mg/kg per day with a blood trough level of the drug 60-75 ng/mL) was effective and safe in a 17-year-old Japanese patient with diffuse proliferative lupus nephritis [World Health Organization (WHO) class IV lupus nephritis]. Repeat renal biopsy confirmed histological improvement (WHO class II lupus nephritis) without CsA-related renal toxicities. We reported successful treatment with very low-dose CsA in a 6-year-old Japanese girl with WHO class III lupus nephritis resistant to IVCY. In our patient, CsA at a dose of 1.8 mg/kg per day was administered once daily and resulted in a sufficient 0.4 h area under
the time concentration curve (AUC₀₋₄, approximately 2000 ng x h/mL), comparable with the results in stable renal transplant patients receiving the drug in the maintenance phase, without any adverse events. These clinical observations suggested the potential usefulness of CsA administered at a relatively low dose to young patients with lupus nephritis. Since therapy-related clinical toxicities remain a major concern, we think that an optimal CsA treatment strategy for lupus nephritis, using the lowest possible dose of CsA to minimize treatment toxicity, while maintaining its efficacy, has been long desired. In this context, we suggest that once-daily administration of CsA prevented progression of chronic CsA nephrotoxicity, and that the administration of low doses of CsA following a once-daily protocol shortened the exposure to the drug. Concerning AUC₀₋₄ values of CsA, it has been reported that around 2000 ng x h/mL might be appropriate for renal transplant patients in the maintenance phase, although the most appropriate target AUC₀₋₄ value of CsA to treat lupus nephritis remains speculative. These clinical observations show that CsA could be an attractive alternative to classic cytotoxic agents. However, there is no data regarding long-term results of treatment with CsA in young patients with lupus nephritis. Thus, further studies involving a larger number of young patients with lupus nephritis would be needed to confirm the efficacy and safety of CsA in the treatment of pediatric-onset lupus nephritis.

**TACROLIMUS TREATMENT**

Like CsA, Tac is a T cell-specific calcineurin inhibitor that prevents activation of helper T cells, thereby inhibiting the transcription of the early activation genes of IL-2 and suppressing the production of tumor necrosis factor (TNF-α, IL-1β, and IL-6). Considering its effects, Tac is also expected to be effective in patients with active SLE and lupus nephritis. To date several papers have described the efficacy and safety of Tac combined with PDN, administered without showing serious adverse effects, as induction and maintenance therapy to patients with proliferative and membranous lupus nephritis. The safety of Tac treatment is important because of its potent nephrotoxicity. Although these patients did not necessarily have permanently high blood levels of Tac, the development of an optimal Tac treatment strategy for lupus nephritis, with a dose as low as possible, is sought to minimize treatment toxicity while maintaining treatment efficacy. In this context, in Japan, Tac is usually administered once daily to patients with rheumatoid arthritis (RA) or lupus nephritis since once-daily administration of Tac is the governmental approved protocol. It has been reported that Tac administered at a dose of 1.5-3.0 mg once daily for the treatment of RA is safe even in the elderly. Although further studies, including a histologic evaluation following Tac treatment, are needed, we consider that a once-daily regimen could shorten the exposure to Tac, would be more cost-beneficial than the conventional twice-daily protocol, and might result in better treatment compliance. Interestingly, Tac has been reported to stimulate glucocorticoid receptor (GR) transactivity through its ligand, which may explain the tendency to exacerbate glucose intolerance in selected patients. However, some patients who had experienced new flares of SLE while receiving CsA were successfully treated with Tac. Differential control of the GR hormone-binding function by immuno-suppressive ligands, such as Tac, reportedly stimulates GR transactivity beyond the effect of the ligand on hormone retention although this is not the case with CsA. These laboratory observations may explain the superior effect of Tac to that of CsA in selected patients with lupus, although this hypothesis remains speculative. Furthermore, it has been reported that Tac reduces proteinuria and mesangial alterations due to its suppressive effects on glomerular expression of IFN-γ mRNA in rat models. In addition, it has lately been reported that Tac, as well as CsA, may overcome treatment unresponsiveness through the blockade of the drug exclusion effect of P-gp, leading to restoration of the intracellular therapeutic levels of corticosteroids and clinical improvement. These observations suggest that Tac might have other useful mechanisms of action besides its immunosuppressive effects, which would warrant its use in patients with active and steroid-resistant SLE with lupus nephritis.

In this regard, we have used Tac monotherapy at a relatively low dose for disease flare that was effective and safe. A 38-year-old woman with a 24-year history of SLE and lupus nephritis suddenly presented significant proteinuria, arthralgia, hypocomplementemia and elevation of serum anti-dsDNA antibody titers. She had already shown active SLE with nephrotic-range proteinuria when she was 14 years old. Percutaneous renal biopsy revealed WHO class IV lupus nephritis. After induction therapy consisting of MPT and oral CY, the disease activity, both clinical and serological, had been under reasonably good control during maintenance therapy. After a 2-year treatment, PDN was successfully discontinued, and she had remained free of SLE/lupus nephritis signs for over 20 years without medication. Although she had normal blood pressure and normal renal function at the flare, significant proteinuria associated with hypocomplementemia and elevation of serum anti-dsDNA antibody titers occurred. Nevertheless, the patient strongly refused to take PDN, mainly because of the risk of cosmetic adverse effects. Thus, we decided to treat her with Tac monotherapy. After obtaining written informed consent, Tac was administered at a dose of 3 mg/d (0.06 mg/kg) once daily after the evening meal. One month after the start of the protocol, a significant decrease in the European Consensus Lupus Activity Measurement (ECLAM) index was noted. After 3 mo of treatment, the improvement in the ECLAM index was associated with a significant decrease in the urinary protein excretion and marked recovery of hypocomplementemia. After 6 mo of treatment, the serum anti-dsDNA antibody titer showed a marked
tendency towards a decrease, with the serum creatinine level remaining unchanged. The blood levels of Tac were maintained relatively low at < 5.0 ng/mL. No adverse reaction to Tac treatment was observed. At present, after 14 mo of treatment, she is free from SLE/lupus nephritis and frequently used for patients subjected to solid organ transplantation. The efficacy of multidrug therapy using tacrolimus and calcineurin inhibitors is useful for patients with severe active conditions. Thus, this controversy remains to be clarified in future studies. Table 1 shows recent published reports of calcineurin inhibitor therapy in pediatric-onset lupus nephritis.

### Table 1 Published reports of calcineurin inhibitor therapy in pediatric-onset lupus nephritis

| Authors (Ref.) | Drugs | Cases | Nephritis class | Dose of the drug | Follow-up period | Efficacy | Adverse effects |
|----------------|-------|-------|-----------------|------------------|-----------------|----------|----------------|
| Sakano et al[20]| CsA   | 1     | WHO class V     | 1.6 mg/kg with the 4 h area under the time concentration curve of the drug 554.5 ng × h/mL. | 12 mo | SLEDAI depression, Serological improvement and concomitantly administered PDN reduction | None |
| Baca et al[21]  | CsA   | 7     | WHO class IV and V | 1.5-3 mg/kg with a mean trough blood level of the drug 57.1 ng/mL. | 12 mo | SLEDAI depression and urinary protein excretion decrease | Hypertension, hypertension, gingival hyperplasia |
| Suzuki et al[22] | CsA   | 1     | WHO class II    | 1.8 mg/kg with area under the time concentration curve of the drug approximately 2000 ng × h/mL. | 3 mo | Serum improvement and concomitantly administered PDN reduction | None |
| Kawasaki et al[23] | CsA   | 1     | WHO class IV    | 2-2.5 mg/kg with trough blood level of the drug 60-75 ng/mL. | 24 mo | Histological improvement (WHO class II) and extrarenal signs improvement | None |
| Aragon et al[24] | CsA   | 13    | WHO class II and IV | 3-6 mg/kg with trough blood level of the drug, 100-200 ng/mL. | 12 mo | SLEDAI depression, Serological improvement and urinary protein excretion decreases | Minor infections and herpes zoster |
| Tanaka et al[25] | Tac   | 6     | WHO class II, IV and V | 3 mg/d with trough blood level of approximately 5 ng/mL. | 6 mo | ECLAM depression, Serological improvement and concomitantly administered PDN reduction | None |
| Tanaka et al[26] | Tac   | 11    | WHO class II, IV and V | 3 mg/d with trough blood level of approximately 5 ng/mL. | Up to 24 mo | ECLAM depression, Serological improvement and concomitantly administered PDN reduction | Minor infections and herpes zoster |

CsA: Cyclosporine A; Tac: Tacrolimus; WHO: World Health Organization; PDN: Prednisolone; SLEDAI: Systemic lupus erythematosus disease activity index; ECLAM: European consensus of lupus activity measurement index.

NEW MULTIDRUG THERAPY USING TACROLIMUS AND MILLBINE

Combination therapy consisting of two immunosuppressive agents with different modes of action is useful and frequently used for patients subjected to solid organ transplantation. The efficacy of multidrug therapy us-

WJN | www.wjgnet.com

December 6, 2012 | Volume 1 | Issue 6 |
ing MMF and Tac as induction therapy in patients with WHO class V + IV lupus nephritis has been reported[25]. This multidrug therapy resulted in less cytotoxicity than IVCY therapy; the authors concluded that multidrug therapy using MMF and Tac was superior to IVCY for inducing remission in their patients and was well tolerated. Lanata et al[25] reported the usefulness of adding Tac to the MMF plus PDN regimen in 7 patients with diffuse proliferative lupus nephritis resistant to MMF and PDN, although clinical toxicity, such as ketoacidosis, infections and muscle pain, limited the use of this combination therapy. Since the mechanisms of action of MMF and Tac are probably complementary, these clinical observations suggested the potential usefulness of multidrug therapy to treat lupus nephritis. However, therapy-related adverse events remain a major therapeutic risk of the immunosuppressive treatment for patients with lupus nephritis.

The mode of action of MZR is very similar to that of MMF, that is, a selective inhibition of inosine monophosphate dehydrogenase in the de novo pathway of purine nucleotide synthesis. MZR inhibits T cell and B cell proliferation[41]. MZR reportedly exhibits relatively low clinical toxicity in patients with lupus nephritis[42,43]. Moreover, aside from its immunosuppressive effect, MZR also appears to have a beneficial effect against the adverse effects of calcineurin inhibitors, such as the CsA-induced intimal hyperplasia and perivascular inflammatory cell infiltration observed in rat models[44,45]. We have documented a significant suppression of intraglomerular and interstitial macrophage infiltration accompanied by significant suppression of chronicity indices following MZR treatment in patients with lupus nephritis[46]. Thus, we speculate that these histological observations may further support the use of MZR to treat selected patients with glomerular diseases, especially those treated with calcineurin inhibitors, such as CsA or Tac. Moreover, we hypothesized that combination therapy using low-dose Tac administered once-daily plus MZR instead of MMF might be a useful alternative for the treatment of pediatric-onset refractory renal diseases including lupus nephritis[33,47].

Next, we present a typical case of pediatric-onset lupus nephritis in which our novel multidrug therapy proved effective and safe[40]. The patient was a 14-year-old Japanese girl who was treated with PDN because of hemophagocytic syndrome that she had developed 6 mo earlier. When PDN was tapered, she developed malar rash, significant proteinuria and hematuria, hypocoomplementemia and elevation of serum anti-dsDNA antibody titers. Percutaneous renal biopsy revealed International Society of Nephrology/Renal Pathology Society (ISN/RPS) class Ⅲa lupus nephritis (activity index, 8; chronicity index, 2). She was administered 2 courses of MPT following by multidrug therapy consisting of Tac, MZR and PDN. Because she was of pubertal age, the PDN dose was reduced to a minimum at a relatively early stage. Her clinical and laboratory signs improved, and the second renal biopsy performed 12 mo after the initial biopsy, revealed marked improvement to ISN/RPS class Ⅱ lupus nephritis (activity index, 4; chronicity index, 1) without any significant increase in the number of chronic lesions. At present, 36 mo after the start of the administration of this therapy, she is free of SLE signs and symptoms without therapy-related clinical toxicity. Although the optimal treatment strategy for managing long-standing SLE, especially in pediatric patients, remains controversial, we believe that our treatment protocol is both effective and safe, and also easy to comply with for patients with pediatric-onset lupus. However, the long-term efficacy and safety of this regimen remains unclear. Further studies in a larger number of young patients with lupus nephritis are necessary to confirm the long-term efficacy and safety of our current protocol.

Further detailed studies involving a larger number of patients are needed to draw a conclusion. We believe that CsA, Tac and multidrug therapy including MZR are attractive treatments for young patients with lupus nephritis because of presumed less clinical toxicities than classical cytotoxic agents. Furthermore, MZR may attenuate histologic progression resulting from a suppressed accumulation of activated macrophages in the glomeruli and calcineurin inhibitor-related renal toxicities. From the view point of the balance between suppression of disease activity and the adverse effects of treatment, we believe that these treatments, including combination with MZR, may become the new treatment of choice for young patients with lupus nephritis.

REFERENCES

1. Yang LY, Chen WP, Lin CY. Lupus nephritis in children—a review of 167 patients. Pediatrics 1994; 94: 335-340
2. Nlaudet P. Treatment of lupus nephritis in children. Pediatr Nephrol 2000; 14: 158-166
3. Lai KN, Tang SC, Mok CC. Treatment for lupus nephritis: a revisit. Nephrology (Carlton) 2005; 10: 180-188
4. Tanaka H, Oki E, Tsuruga K, Sato N, Matsuura H, Matsuura A, Kondo Y, Suzuki J. Miziornine treatment of young patients with severe lupus nephritis: a clinicopathologic study by the tohoku pediatric study group. Nephron Clin Pract 2008; 110: c73-c79
5. Lehman TJ, Onel K. Intermittent intravenous cyclophosphamide arrests progression of the renal chronicity index in childhood systemic lupus erythematosus. J Pediatr 2000; 136: 243-247
6. Chan TM, Li FK, Tang CS, Wong RW, Fang GX, Ji YL, Lau CS, Wong AK, Tong MK, Chan KW, Lai KN. Efficacy of mycophenolate moefil in patients with diffuse proliferative lupus nephritis. Hong Kong-Guangzhou Nephrology Study Group. N Engl J Med 2000; 343: 1156-1162
7. Moroni G, Doria A, Mosca M, Alberghi OD, Ferraccioli G, Todesco S, Manno C, Altieri P, Ferra R, Gasco S, Ponticelli C. A randomized pilot trial comparing cyclosporine and azathioprine for maintenance therapy in diffuse lupus nephritis over four years. Clin J Am Soc Nephrol 2006; 1: 925-932
8. Rihova Z, Vankova Z, Maixnerova D, Dostal C, Jancova E, Honsova E, Merta M, Rysava R, Tesar V. Treatment of lupus nephritis with cyclosporine - an outcome analysis. Kidney Blood Press Res 2007; 30: 124-128
9. Moroni G, Doria A, Ponticelli C. Cyclosporine (CsA) in
pus nephritis: assessing the evidence. *Nephrol Dial Transplant* 2009; 24: 15-20
10 Zavada J, Pesickova S, Rysava R, Olejarova M, Horak P, Hrncic Z, Rychlik I, Havzda M, Vitova J, Lukie J, Revonsky J, Tog佐va D, Behmova J, Zadrozni J, Hana J, Dota C, Tesar V. Cyclosporine A or intravenous cyclophosphamide for lupus nephritis: the Cyclofa-Lune study. *Lupus* 2010; 19: 1281-1289
11 Kamijo Y, Hashimoto K, Takahashi K, Ethra S, Shigematsu H, Higuchi M. Treatment with cyclosporine A improves SLE disease activity of Japanese patients with diffuse proliferative lupus nephritis. *Clin Nephrol* 2011; 76: 136-143
12 Mok CC, Tong KH, To CH, Syu PY, Au TC. Tacrolimus for induction therapy of diffuse proliferative lupus nephritis: an open-labeled pilot study. *Kidney Int* 2005; 68: 813-817
13 Maruyama M, Yamasaki S, Sada K, Sarai A, Ujike K, Maehshima Y, Nakamura Y, Sugiyama H, Makino H. Good response of membranous lupus nephritis to tacrolimus. *Clin Nephrol* 2006; 65: 276-279
14 Tse KC, Lam MF, Tang SC, Tang CS, Chan TM. A pilot study on tacrolimus treatment in membranous or quiescent lupus nephritis with proteinuria resistant to angiotensin inhibition or blockade. *Lupus* 2007; 16: 46-51
15 Szeto CC, Kwan BC, Lai FM, Tam LS, Li EK, Chow KM, Gang W, Li PK. Tacrolimus for the treatment of systemic lupus erythematosus with pure class V nephritis. *Rheumatology (Oxford)* 2008; 47: 1678-1681
16 Asamiya Y, Uchida K, Otsubo S, Takei T, Nitta K. Clinical assessment of tacrolimus therapy in lupus nephritis: one-year follow-up study in a single center. *Neprhon Clin Pract* 2009; 113: c330-c336
17 Lee T, Oh KH, Joo KW, Kim YS, Ahn C, Han JS, Kim S, Chin HJ. Tacrolimus is an alternative therapeutic option for the treatment of refractory lupus nephritis. *Lupus* 2010; 19: 974-980
18 Lee YH, Lee HS, Choi SJ, Dai Ji J, Song GG. Efficacy and safety of tacrolimus therapy for lupus nephritis: a systematic review of clinical trials. *Lupus* 2011; 20: 636-640
19 Suzuki K, Tanaka H, Tsugawa K, Ito E. Effective treatment with cyclosporine A of a child with systemic lupus erythematosus resistant to cyclophosphamide pulse therapy. *Tohoku J Exp Med* 2006; 208: 355-359
20 Tanaka H, Oki E, Tsugawa K, Nonaka K, Suzuki K, Ito E. Effective treatment of young patients with pediatric-onset, long-standing lupus nephritis with tacrolimus given as a single daily dose: an open-label pilot study. *Lupus* 2007; 16: 896-900
21 Tanaka H, Oki E, Tsuruga K, Yashiro T, Hanada L, Ito E. Management of young patients with lupus nephritis using tacrolimus administered as a single daily dose. *Clin Nephrol* 2009; 72: 430-436
22 Bao H, Liu ZH, Xie HL, Hu WX, Zhang HT, Li LS. Successful treatment of class IV lupus nephritis with multitarget therapy. *J Am Soc Nephrol* 2008; 19: 2001-2010
23 Lanata CM, Mahmood T, Fine DM, Petri M. Combination therapy of mycophenolate mofetil and tacrolimus in lupus nephritis. *Lupus* 2010; 19: 935-940
24 Cortés-Hernández J, Torres-Salido MT, Medrano AS, Tarres MV, Ordí-Ros J. Long-term outcomes--mycophenolate mofetil treatment for lupus nephritis with addition of tacrolimus for resistant cases. *Nephrol Dial Transplant* 2010; 25: 3939-3948
25 Iwata CM, S, Tsuruga K, Aizawa-Yashiro T, Oki E, Ito E, Tanaka H. Addition of mizoribine to the prednisolone plus tacrolimus treatment regimen in a patient with lupus flare. *Rheumatol Int* 2012; 32: 1099-1100
26 Faul C, Donnelly M, Merscher-Gomez S, Chang YH, Franz S, Delfgaauw J, Chang JM, Choi HY, Campbell KN, Kim K, Reiser J, Mundel P. The actin cytoskeleton of kidney podocytes is a direct target of the antiproteinuric effect of cyclosporine A. *Nat Med* 2008; 14: 931-938
27 Ogawa H, Kameda H, Amano K, Takeuchi T. Efficacy and safety of cyclosporine A in patients with refractory systemic lupus erythematosus in a daily clinical practice. *Lupus* 2010; 19: 162-169
28 Suzuki K, Saito K, Tsujimura S, Nakayamada S, Yamaoka K, Sawamukai N, Ivata S, Nawata M, Nakano K, Tanaka Y. Tacrolimus, a calcineurin inhibitor, overcomes treatment unresponsiveness mediated by P-glycoprotein on lymphocytes in refractory rheumatoid arthritis. *J Rheumatol* 2010; 37: 512-520
29 Tsujimura S, Tanaka Y. Treatment strategy based on targeting P-glycoprotein on peripheral lymphocytes in patients with systemic autoimmune disease. *Clin Exp Nephrol* 2012; 16: 102-108
30 Sakano T, Ohita T, Kinoshita Y, Fijimura M, Wakai M. Treatment of steroid-resistant systemic lupus erythematosus with extremely low dose of cyclosporine A. *Pediatr Int* 2004; 46: 468-470
31 Baca V, Catalan T, Villasis-Keever M, Ramon G, Morales AM, Rodriguez-Leyva F. Effect of low-dose cyclosporine A in the treatment of refractory proteinuria in childhood-onset lupus nephritis. *Lupus* 2006; 15: 490-495
32 Aragon E, Chan YH, Ng KH, Lau YW, Tan PH, Yap HK. Good outcomes with mycophenolate-cyclosporine-based induction protocol in children with severe proliferative lupus nephritis. *Lupus* 2010; 19: 965-973
33 Kawasaki Y, Haseo M, Takano K, Suyama K, Nozawa R, Isome M, Suzuki J, Suzuki H. Efficacy of cyclosporine therapy for systemic lupus erythematosus in childhood. *Pediatr Int* 2008; 50: 257-259
34 Uchida K, Tominaga Y, Haba T, Katayama A, Matsuoka S, Moto N, Ueki T, Kimata T, Takeda A, Morozumi K, Takagi H, Nakao K. Clinical success of Neoral absorption profile. *Transplant Proc* 2004; 36: 4615-4645
35 Ranchin B, Fargue S. New treatment strategies for proliferative lupus nephritis: keep children in mind! *Lupus* 2007; 16: 684-691
36 Kawai S, Yamamoto K. Safety of tacrolimus, an immunosuppressive agent, in the treatment of rheumatoid arthritis in elderly patients. *Rheumatology (Oxford)* 2006; 45: 441-444
37 Suzuki K, Kameda H, Amano K, Nagasawa H, Takehi H, Nishi E, Okuyama A, Tsuzaka K, Takeuchi T. Single center prospective study of tacrolimus efficacy and safety in the treatment of various manifestations in systemic lupus erythematosus. *Rheumatol Int* 2011; 31: 757-763
38 Davies TH, Ning YM, Sánchez ER. Differential control of glucocorticoid receptor hormone-binding function by tetratrico peptide repeat (TPR) proteins and the immunosuppressive ligand FK506. *Biochemistry* 2005; 44: 2030-2038
39 Ikezumi Y, Kanno K, Koike H, Tomita M, Uchiyama M, Shimizu F, Kawachi H. FK506 ameliorates proteinuria and glomerular lesions induced by anti-Thy 1.1 monoclonal antibody 1-22-3. *Kidney Int* 2002; 61: 1339-1350
40 Tanaka H, Tsuruga K, Watanabe S, Aizawa-Yashiro T, Chiba-Fukuda N, Ito E. Tacrolimus monotherapy in a patient with lupus flare using once-daily administration protocol. *NDT Plus* 2011; 4: 363-365
41 Yokota S. Mizoribine: mode of action and effects in clinical use. *Pediatr Int* 2002; 44: 196-198
42 Tanaka H, Tsugawa K, Tsuruga K, Suzuki K, Nakahata T, Ito E, Waga S. Mizoribine for the treatment of lupus nephritis in children and adolescents. *Clin Nephrol* 2004; 62: 412-417
43 Yumura W, Suzukuma S, Uchida K, Moriya T, Otsubo S, Takei T, Naito M, Koike M, Nitta K, Niihe H. Effects of long-term treatment with mizoribine in patients with proliferative lupus nephritis. *Clin Nephrol* 2005; 64: 28-34
44 Shimizu H, Takahashi M, Takeda S, Tahara K, Inoue S, Hakamata Y, Kaneko T, Takeyoshi I, Morishita Y, Kobayashi E. Effect of conversion from cyclosporine A to mizoribine on transplant arteriosclerosis in rat aortic allograft models. *Microsurgery* 2003; 23: 454-457
Tanaka H et al. Lupus nephritis and calcineurin inhibitors

45 Hara S, Umino D, Someya T, Fujinaga S, Ohtomo Y, Murakami H, Shimizu T. Protective effects of Mizoribine on Cyclosporine A nephropathy in rats. Pediatr Res 2009; 66: 524-527

46 Tanaka H, Oki E, Tsuruga K, Aizawa-Yashiro T, Ito Y, Sato N, Kawasaki Y, Suzuki J. Mizoribine attenuates renal injury and macrophage infiltration in patients with severe lupus nephritis. Clin Rheumatol 2010; 29: 1049-1054

47 Aizawa-Yashiro T, Tsuruga K, Watanabe S, Oki E, Ito E, Tanaka H. Novel multidrug therapy for children with cyclosporine-resistant or -intolent nephrotic syndrome. Pediatr Nephrol 2011; 26: 1255-1261

48 Aizawa-Yashiro T, Tsuruga K, Watanabe S, Echizenya T, Ito E, Tanaka H. Long-term multidrug therapy in an adolescent patient with proliferative lupus nephritis: a trial of less cytotoxic therapy. Clin Nephrol 2012; 78: 332-334

S- Editor Wang JL  L- Editor Hughes D  E- Editor Zheng XM