REAL EIGENVALUES OF A NON-SELF-ADJOINT PERTURBATION OF THE SELF-ADJOINT ZAKHAROV-SHABAT OPERATOR

K. HIROTA

ABSTRACT. We study the eigenvalues of the self-adjoint Zakharov-Shabat operator corresponding to the defocusing nonlinear Schrödinger equation in the inverse scattering method. Real eigenvalues exist when the square of the potential has a simple well. We derive two types of quantization condition for the eigenvalues by using the exact WKB method, and show that the eigenvalues stay real for a sufficiently small non-self-adjoint perturbation when the potential has some \mathcal{PT}-like symmetry.

1. INTRODUCTION

We consider the eigenvalue problem
\begin{equation}
Lu(x) = \lambda u(x),
\end{equation}
for the first order 2×2 differential system on the line:
\[
L := \begin{pmatrix}
 i\hbar \frac{d}{dx} & -iA(x) \\
 iA(x) & -i\hbar \frac{d}{dx}
\end{pmatrix},
\]
where \hbar is a small positive parameter, λ is a spectral parameter, $u(x)$ is a column vector, and $A(x)$ is a real-valued potential. This operator is called the Zakharov-Shabat operator, which is one of the two operators in the Lax pair for the defocusing nonlinear Schrödinger equation:
\[
\hbar \frac{d\psi}{dt} + \frac{\hbar^2}{2} \frac{d^2 \psi}{dx^2} - |\psi|^2 \psi = 0, \quad \psi = \psi(t, x),
\]
and the scattering theory of L plays an important role in the analysis of the solutions of the initial value problem for this equation.

The operator L is self-adjoint, and it is expected that L has real eigenvalues when $A(x)^2$ has a well. In the first part of our study, we derive the Bohr-Sommerfeld type quantization condition for the eigenvalues of L under the following assumption.

Assumption (A1). Let $A(x)$ be a real-valued function analytic in $D := \{z \in \mathbb{C}; |\text{Im}z| < \delta\}$ for some $\delta > 0$, and λ_0 a positive real number satisfying the following conditions:

Keywords: Zakharov-Shabat eigenvalue problem, exact WKB method, quantization condition.
There exist two real numbers, α_0 and β_0 ($\alpha_0 < \beta_0$) such that $|A(x)| = \lambda_0$, $x \in \mathbb{R}$ if and only if $x = \alpha_0$, β_0.

2. $A'(\alpha_0)A'(\beta_0) \neq 0$.

3. $|A(x)| < \lambda_0$ for $\alpha_0 < x < \beta_0$, and $|A(x)| > \lambda_0$ for $x < \alpha_0$ and $x > \beta_0$.

4. $\lim \inf_{|x| \to \infty} |A(x)| > \lambda_0$.

This assumption permits two types of potentials. One is a simple well type where $A(\alpha_0) = A(\beta_0)$, and the other is monotonic type where $A(\alpha_0) = -A(\beta_0)$. In both cases, $A(x)^2$ has a simple well, see Figure 1.

Figure 1. Examples of the potential $A(x)$.

For $\lambda \in \mathbb{R}$ close enough to λ_0, the function $\lambda^2 - A(x)^2$ has exactly two real zeros $\alpha(\lambda)$ and $\beta(\lambda)$, close to α_0 and β_0 respectively, and we define the action integral

$$I(\lambda) := \int_{\alpha(\lambda)}^{\beta(\lambda)} \sqrt{\lambda^2 - A(t)^2} dt.$$ \hfill (1.2)

Then, we obtain the following quantization conditions.

Theorem 1.1. Assume (A1). In the case $A(\alpha_0) = A(\beta_0)$, there exist positive constants δ and h_0, and a function $r_+(\lambda, h)$ bounded on $[\lambda_0 - \delta, \lambda_0 + \delta] \times (0, h_0]$ such that $\lambda \in [\lambda_0 - \delta, \lambda_0 + \delta]$ is an eigenvalue of L for $h \in (0, h_0]$ if and only if

$$I(\lambda) = \left(k + \frac{1}{2} \right) \pi h + h^2 r_+(\lambda, h)$$ \hfill (1.3)

holds for some integer k. In the case $A(\alpha_0) = -A(\beta_0)$, there exist positive constants δ and h_0, and a function $r_- (\lambda, h)$ bounded on $[\lambda_0 - \delta, \lambda_0 + \delta] \times (0, h_0]$ such that $\lambda \in [\lambda_0 - \delta, \lambda_0 + \delta]$ is an eigenvalue of L for $h \in (0, h_0]$ if and only if

$$I(\lambda) = k \pi h + h^2 r_- (\lambda, h)$$ \hfill (1.4)

holds for some integer k.

Next, we add a small complex perturbation to the potential $A(x)$:

$$A_\varepsilon(x) = A(x) + i\varepsilon B(x)$$
with a real-valued function $B(x)$ and a positive small parameter ε, and consider the eigenvalues of L_ε

$$L_\varepsilon := \begin{pmatrix}
 i\hbar \frac{d}{dx} & -iA_\varepsilon(x) \\
 iA_\varepsilon(x) & -i\hbar \frac{d}{dx}
\end{pmatrix}.$$

This operator is no longer self-adjoint, and eigenvalues become complex in general.

In the case of Schrödinger operator, \mathcal{PT}-symmetry has been expected to be an alternative to the self-adjointness in order to have real eigenvalues. In recent studies, Boussekkine and Mecherout considered in for the Schrödinger operator with \mathcal{PT}-symmetry

$$P_\varepsilon := -\hbar^2 \frac{d^2}{dx^2} + V(x) + i\varepsilon W(x),$$
where $V(x)$ is a simple well even function and $W(x)$ is an odd function, and showed that reality of eigenvalues also holds for sufficiently small ε and \hbar. After that, Boussekkine, Mecherout, Ramond and Sjöstrand studied in [8] the double well case with \mathcal{PT}-symmetry, and found that the eigenvalues stay real only for exponentially small ε with respect to \hbar.

In this paper, we continue in this direction and prove that a sufficiently small complex perturbation of the self-adjoint Zakharov-Shabat operator L_ε has real eigenvalues when $A(x)$ and $B(x)$ have some \mathcal{PT}-like symmetry in the case where $A(x)^2$ has a simple well, even though the perturbed operator L_ε is non-self-adjoint. Recalling that the condition where P_ε is \mathcal{PT}-symmetric is equivalent to one where $V(x)$ is an even function and $W(x)$ is an odd function (see [4] or [8]), we assume the following symmetry properties for $A(x)$ and $B(x)$.

Assumption (A2). Let $B(x)$ be real-valued, analytic and bounded on \mathbb{R}. $A(x)$ and $B(x)$ satisfy for $x \in \mathbb{R}$ either

$$A(x) = A(-x), \quad B(x) = -B(-x),$$

(1.5) or

$$A(x) = -A(-x), \quad B(x) = B(-x).$$

(1.6)

The following theorem shows that the eigenvalues of L_ε are real for sufficiently small ε and \hbar.

Theorem 1.2. Assume (A1) and (A2). Then there exist positive constants ε_0 and h_0 such that $\sigma(L_\varepsilon) \cap \{ \lambda \in \mathbb{C} : |\lambda - \lambda_0| < \varepsilon_0 \} \subset \mathbb{R}$ when $0 < \varepsilon \leq \varepsilon_0$ and $0 < h \leq h_0$.

To prove Theorem 1.1 and 1.2, we use the exact WKB method. In Section 2, we mention the exact WKB solutions for $\langle 1 \rangle$ and introduce three important properties. These exact WKB solutions are used in Section 3 to derive the quantization conditions $\langle 3 \rangle$ and $\langle 4 \rangle$. After that, we consider the perturbed case, and give the proof for Theorem 1.2 in Section 4.
2. Exact WKB solutions

We construct solutions to (1.1) by the exact WKB method. This method was proposed by Gérard and Grigis in [7], and extended to 2×2 systems by Fujiié, Lasser and Nédélec in [5].

Before the construction, we assume that Ω is a simply connected open subset of D, where $A(x)^2 - \lambda^2$ does not vanish. Following [5], we can construct exact WKB solutions for (1.1) in the form

$$u^\pm(x, h; \gamma, x_0) = \left(\frac{1}{-i} \ i \right) e^{\pm z(x; \gamma)/h} Q(x) \left(\begin{array}{c} 0 \\ 1 \end{array} \right) \frac{dz}{\lambda},$$

with base points $\gamma \in D$ and $x_0 \in \Omega$. Here, $z(x; \gamma)$ is a phase function

$$z(x; \gamma) := \int_\gamma^x \sqrt{A(t)^2 - \lambda^2} dt,$$

$Q(x)$ is a 2×2 matrix function

$$Q(x) = \begin{pmatrix} H(x)^{-1} & H(x)^{-1} \\ iH(x) & -iH(x) \end{pmatrix}, \quad H(x) = \begin{pmatrix} A(x) + \lambda & \frac{1}{2} \\ A(x) - \lambda & \frac{1}{2} \end{pmatrix},$$

and $w^\pm(x, h; x_0)$ are the series

$$w^\pm(x, h; x_0) = \left(\begin{array}{c} w^\pm_{\text{even}}(x, h; x_0) \\ w^\pm_{\text{odd}}(x, h; x_0) \end{array} \right) := \sum_{n=0}^{\infty} \left(\begin{array}{c} w^\pm_{2n}(x, h) \\ w^\pm_{2n-1}(x, h) \end{array} \right)$$

constructed by the recurrence equations

$$w^\pm_{-1} = 0, \quad w^\pm_0 = 1,$$

$$\frac{d}{dx} w^\pm_{2n} = c(x) w^\pm_{2n-1}, \quad c(x) = \frac{H'(x)}{H(x)},$$

and the initial conditions

$$w^\pm_{2n-1} \big|_{x=x_0} = 0 \quad (n \geq 1).$$

These solutions constructed above formally satisfy (1.1). We recall here the following three propositions. The proofs are found in [5] or [7]. The first is about the convergence of series.

Proposition 2.1. Two series $w^\pm_{\text{even}}(x, h; x_0)$ and $w^\pm_{\text{odd}}(x, h; x_0)$ are absolutely convergent in a neighborhood of x_0. Furthermore, $w^\pm_{\text{even}}(x, h; x_0)$ and $w^\pm_{\text{odd}}(x, h; x_0)$ are analytic functions in Ω.

The second property is about the Wronskian for two different types of exact WKB solutions.

Proposition 2.2. Let $\gamma, x_0, x_1 \in \Omega$ be the base points. Then, the exact WKB solutions $u^\pm(x, h; \gamma, x_0)$ and $u^\pm(x, h; \gamma, x_1)$ satisfy

$$\mathcal{W} (u^\pm(x, h; \gamma, x_0), u^\pm(x, h; \gamma, x_1)) = \pm 4w^\pm_{\text{even}}(x_1, h; x_0),$$

where $\mathcal{W}(f, g) := \det(f, g)$. This is called the Wronskian formula.
The final proposition is about the asymptotic property of the exact WKB solution. Let $x_0 \in \Omega$ be fixed.

Definition 2.3. We denote by Ω_{\pm} the subset of all $x \in \Omega$ such that there exists a path in Ω from x_0 to x along which $\pm \text{Re} z(x; x_0)$ is strictly increasing.

Theorem 2.4. The functions $w_{\text{even}}^\pm (x, h; x_0)$ and $w_{\text{odd}}^\pm (x, h; x_0)$ have the asymptotic expansions as $h \to 0$:

$$w_{\text{even}}^\pm (x, h; x_0) - \sum_{n=0}^{N} w_{2n}^\pm (x, h; x_0) = O(h^{N+1}),$$

$$w_{\text{odd}}^\pm (x, h; x_0) - \sum_{n=0}^{N} w_{2n-1}^\pm (x, h; x_0) = O(h^{N+1}),$$

in all compact subsets of Ω_{\pm}.

To find the domain Ω_{\pm}, we usually consider the Stokes lines, which are level curves of the real part of $z(x; \gamma)$. In particular, the Stokes lines passing through the point $\gamma_0 \in D$ are defined as the set

$$\left\{ x \in D; \text{Re} z(x; \gamma_0) = \text{Re} \int_{\gamma_0}^{x} \sqrt{A(t)^2 - \lambda^2} dt = 0 \right\}.$$

Along a path which intersects transversally with the Stokes lines, $\text{Re} z(x)$ or $-\text{Re} z(x)$ is strictly increasing.

3. **Quantization Condition for the Eigenvalues of L**

Here we find the quantization condition under Assumption (A1). This is derived from the connection problem of the solutions near the points $\alpha(\lambda)$ and $\beta(\lambda)$ which are zeros of $A(x)^2 - \lambda^2$.

Now, we choose $\alpha(\lambda)$ and $\beta(\lambda)$ for base points of the phase function $z(x)$, and consider the Stokes lines which pass through $\alpha(\lambda)$ and $\beta(\lambda)$. By a simple calculation, we see that the Stokes lines emanate from α at angles of $0, 2\pi/3$ and $4\pi/3$, and emanate from β at angles of $\pi/3, \pi$ and $5\pi/3$.

![Figure 2. The Stokes lines and base points](image-url)
Those Stokes lines separate the complex plane into four sectors as in Figure 2. As $\sqrt{A(x)^2 - \lambda^2}$ and $H(x)$ are multi-valued functions on the complex plane with singularities at α and β, we set branch cuts emanating at an angle of $2\pi/3$ from α and an angle of $5\pi/3$ from β respectively. We choose the branches such that $\text{Re}\sqrt{A(x)^2 - \lambda^2}$ and $H(x)$ are positive on a part of the real axis $\text{Re}(x) > \beta$.

We take base points for $w^\pm(x, h)$ in each sector as in Figure 2 and define the exact WKB solutions:

$$
\begin{align*}
& u_1 = u^+(x, h; \alpha, x_1) \\
& u_2 = u^+(x, h; \alpha, x_2), \quad \tilde{u}_2 = u^+(x, h; \beta, x_2), \\
& u_3 = u^-(x, h; \alpha, x_3), \quad \tilde{u}_3 = u^-(x, h; \beta, x_3), \\
& u_4 = u^-(x, h; \beta, x_4).
\end{align*}
$$

(3.1)

Then, we represent u_1 as a linear combination of u_2 and u_3:

$$
u_1 = c_2 u_2 + c_3 u_3,$$

and u_4 as

$$
u_4 = \tilde{c}_2 \tilde{u}_2 + \tilde{c}_3 \tilde{u}_3,$$

where each coefficient depends on h and λ. We calculate those coefficients by using Theorems 2.2 and 2.4 and obtain the following.

Lemma 3.1. Assume (A1). In the two cases $A(\alpha) = \pm A(\beta)$, the connection coefficients c_i and \tilde{c}_i ($i, j \in \{2, 3\}$) satisfy

$$
c_2 \tilde{c}_3 = 1 + O(h), \quad \tilde{c}_2 c_3 = \mp 1 + O(h).
$$

as $h \to 0$.

Proof. Each coefficient is represented in terms of the Wronskians as

$$
\begin{align*}
& c_2 = \frac{\mathcal{W}(u_1, u_3)}{\mathcal{W}(u_2, u_3)}, \quad c_3 = \frac{\mathcal{W}(u_4, u_2)}{\mathcal{W}(u_3, u_2)}, \\
& \tilde{c}_2 = \frac{\mathcal{W}(u_4, \tilde{u}_3)}{\mathcal{W}(u_2, \tilde{u}_3)}, \quad \tilde{c}_3 = \frac{\mathcal{W}(u_1, \tilde{u}_2)}{\mathcal{W}(u_3, \tilde{u}_2)}.
\end{align*}
$$

For c_2 and \tilde{c}_3, we see that

$$
c_2 = \frac{w^+_{\text{even}}(x_3, h; x_1)}{w^+_{\text{even}}(x_3, h; x_2)}, \quad \tilde{c}_3 = \frac{w^+_{\text{even}}(x_4, h; x_2)}{w^+_{\text{even}}(x_3, h; x_2)},
$$

by Theorem 2.2.

Let $\Gamma(x_i, x_j)$ denote a path from x_i to x_j. We take $\Gamma(x_1, x_3)$, $\Gamma(x_2, x_3)$ and $\Gamma(x_2, x_4)$, and then notice that they intersect the Stokes lines, see Figure 3. Moreover, $\text{Re}z(x, \cdot)$ increases as $\text{Re}(x)$ increases, or $\text{Im}(x)$ decreases. Therefore, $\text{Re}z(x, \cdot)$ is strictly increasing along those paths.

According to Theorem 2.4, we obtain

$$
\begin{align*}
& w^+_{\text{even}}(x_3, h; x_1) = 1 + O(h), \quad w^+_{\text{even}}(x_3, h; x_2) = 1 + O(h), \\
& w^+_{\text{even}}(x_4, h; x_2) = 1 + O(h).
\end{align*}
$$
as \(h \to 0 \), and we see that
\[
c_{2}\tilde{c}_{3} = \frac{1 + \mathcal{O}(h)}{1 + \mathcal{O}(h)} = 1 + \mathcal{O}(h) \quad (h \to 0)
\]
from (3.4). This holds in both cases \(A(\alpha) = \pm A(\beta) \).

To calculate the Wronskian \(W(u_1, u_2) \), we recall that there exists a branch cut between \(x_1 \) and \(x_2 \). For this, we have to represent \(u_1 \) or \(u_2 \) by different branches. Let \(\hat{x} \) denote a point obtained by rotating \(x \) by the angle of \(-2\pi\) around \(\alpha \), that is,
\[
\hat{x} - \alpha = e^{-2\pi i}(x - \alpha).
\]
Then, we rewrite \(u_2 \) in terms of \(\hat{x} \). When \(A(\alpha) = \lambda \),
\[
\sqrt{A(x) - \lambda} = \sqrt{e^{2\pi i}(A(\hat{x}) - \lambda)} = -\sqrt{(A(\hat{x}) - \lambda)}.
\]
On the other hand, when \(A(\alpha) = -\lambda \),
\[
\sqrt{A(x) + \lambda} = \sqrt{e^{2\pi i}(A(\hat{x}) + \lambda)} = -\sqrt{(A(\hat{x}) + \lambda)}.
\]
Therefore, there is a sign change
\[
(3.5) \quad +z(x; \alpha) = -z(\hat{x}; \alpha)
\]
in both cases \(A(\alpha) = \pm \lambda \). Since the sign of \(z(x) \) changes and \(c(x) = c(\hat{x}) \), we find from the recurrence equation (2.3) that
\[
(3.6) \quad w^{+}(x, h; x_2) = w^{-}(\hat{x}, h; \hat{x}_2).
\]

The representation of the function \(H(x) \) is different in the cases where \(A(\alpha) = \lambda \) or \(A(\alpha) = -\lambda \). When \(A(\alpha) = \lambda \),
\[
H(x) = \left(\frac{A(x) + \lambda}{A(x) - \lambda} \right)^{\frac{i}{4}} = \left(\frac{1}{e^{2\pi i}} \frac{A(\hat{x}) + \lambda}{A(\hat{x}) - \lambda} \right)^{\frac{i}{4}} = e^{-\frac{\pi i}{2}} \left(\frac{A(\hat{x}) + \lambda}{A(\hat{x}) - \lambda} \right)^{\frac{i}{4}}.
\]
By contrast, when $A(\alpha) = -\lambda$,

$$H(x) = \left(\frac{A(x) + \lambda}{A(x) - \lambda}\right)^{\frac{1}{4}} = e^{\frac{i2\pi x}{A(x) - \lambda}} = e^{\frac{i2\pi x}{A(x) - \lambda}}.$$

That is, $H(x) = \mp iH(\hat{x})$ holds with $A(\alpha) = \pm \lambda$. In addition, this leads to (3.7)

$$Q(x) = \pm iQ(\hat{x}) \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}.$$

From (8.30), (8.60), and (8.77), we can rewrite u_2 as

$$u_2 = \pm iu^-(\hat{x}, h; \alpha, \hat{x}_2),$$

and obtain

$$\mathcal{W}(u_1, u_2) = \mathcal{W}(u^+(x, h; x_1), \pm iu^-(\hat{x}, h; \alpha, \hat{x}_2))$$

in each case $A(\alpha) = \pm \lambda$.

In the same way, we represent \tilde{u}_3 by the other branch to calculate $\mathcal{W}(u_4, \tilde{u}_3)$. Let \bar{x} denote a point obtained by rotating x by the angle of -2π around β. When $A(\beta) = \pm \lambda$, \tilde{u}_3 is rewritten as

$$\tilde{u}_3 = \pm iu^+(\bar{x}, h; \beta, \bar{x}_3).$$

Therefore, $\mathcal{W}(u_4, \tilde{u}_3)$ is calculated as

$$\mathcal{W}(u_4, \tilde{u}_3) = -\mathcal{W}(\pm iu^+(x, h; \beta, \bar{x}_3), u^-(\hat{x}, h; \beta, x_4))$$

as $h \to 0$.

We can find $\Gamma(x_1, \tilde{x}_2)$ and $\Gamma(\bar{x}_3, x_4)$ along which $\text{Re}x(\cdot)$ strictly increasing, and obtain

$$w_{\text{even}}^+(\bar{x}_2, h; x_1) = 1 + O(h), \quad w_{\text{even}}^+(x_4, h; \bar{x}_3) = 1 + O(h)$$

as $h \to 0$.

As a result, we obtain that when $A(\alpha)A(\beta) > 0$,

$$c_3^\beta = \frac{i^2 w_{\text{even}}^+(\bar{x}_2, h; x_1) w_{\text{even}}^+(x_4, h; \bar{x}_3)}{w_{\text{even}}^+(x_3, h; x_2) w_{\text{even}}^+(x_3, h; x_2)} = -1 + O(h)$$

as $h \to 0$. In the case $A(\alpha)A(\beta) < 0$,

$$c_3^\beta = -\frac{i^2 w_{\text{even}}^+(\bar{x}_2, h; x_1) w_{\text{even}}^+(x_4, h; \bar{x}_3)}{w_{\text{even}}^+(x_3, h; x_2) w_{\text{even}}^+(x_3, h; x_2)} = 1 + O(h)$$

as $h \to 0$.

Here we return to equation (1.1). The spectral parameter λ near λ_0 is an eigenvalue of L if and only if u_1 and u_4 are linearly dependent, since $u_1 \in L^2(\mathbb{R})$ and $u_4 \in L^2(\mathbb{R}_+)$. That is, we consider the condition (3.8)

$$\mathcal{W}(u_1, u_4) = 0.$$
From (3.2) and (3.3), we know that the Wronskian $W(u_1, u_4)$ is expressed in terms of u_j and \tilde{u}_j ($j, k \in \{2, 3\}$) as

$$W(u_1, u_4) = c_2c_3W(u_2, \tilde{u}_3) - c_2c_3W(\tilde{u}_2, u_3).$$

Since u_j and \tilde{u}_j are linearly dependent and satisfy

$$\tilde{u}_2 = e^{-iI(\lambda)/\hbar}u_2, \quad \tilde{u}_3 = e^{iI(\lambda)/\hbar}u_3,$$

condition (3.8) is equivalent to

$$c_2c_3e^{iI(\lambda)/\hbar} - c_2c_3e^{-iI(\lambda)/\hbar} = 0.$$ That is, $I(\lambda)$ satisfies

$$I(\lambda) + \frac{h}{2i} \log \left(\frac{c_2c_3}{\tilde{c}_2c_3} \right) = \left(k + \frac{1}{2} \right) \pi \hbar$$

for some integer k.

From Lemma 3.1, when $A(\alpha)A(\beta) > 0$,

$$\log \left(\frac{c_2c_3}{\tilde{c}_2c_3} \right) = \log (1 + O(h)) = O(h) \quad (h \to 0).$$

On the other hand, when $A(\alpha)A(\beta) < 0$,

$$\log \left(\frac{c_2c_3}{\tilde{c}_2c_3} \right) = \log (-1 + O(h)) = \pi i + O(h) \quad (h \to 0).$$

In conclusion, the quantization condition for eigenvalues λ is given by

$$I(\lambda) = \left(k + \frac{1}{2} \right) \pi \hbar + O(h^2) \quad (h \to 0),$$

in the case $A(\alpha)A(\beta) > 0$. Similarly, we obtain

$$I(\lambda) = k \pi \hbar + O(h^2) \quad (h \to 0),$$

in the case $A(\alpha)A(\beta) < 0$.

4. Eigenvalue Problem for the Non-Self-Adjoint Case

In this section, we consider the eigenvalue problem:

$$L_\varepsilon u(x) = \lambda u(x), \quad L_\varepsilon := \begin{pmatrix} i\hbar \frac{d}{dx} & -iA_\varepsilon(x) \\ iA_\varepsilon(x) & -i\hbar \frac{d}{dx} \end{pmatrix},$$

for $A_\varepsilon(x) = A(x) + i\varepsilon B(x)$ with $\varepsilon > 0$. First we consider the quantization condition for the eigenvalues. Here we assume that $A(x)$ satisfies Assumption (A1) and $B(x)$ is real-valued, analytic and bounded on \mathbb{R}.

Let $D(\lambda_0, \varepsilon_0) = \{ x \in \mathbb{C}; |x - \lambda_0| < \varepsilon_0 \}$ for a positive ε_0. Under Assumption (A1), for all $\lambda \in D(\lambda_0, \varepsilon_0)$ and $\varepsilon \in (0, \varepsilon_0]$, there exist zeros of $A_\varepsilon(x)^2 - \lambda^2$, $\alpha(\lambda, \varepsilon)$ and $\beta(\lambda, \varepsilon)$ such that $\alpha(\lambda_0, 0) = \alpha_0$ and $\beta(\lambda_0, 0) = \beta_0$. We simply write them as α_ε and β_ε, and define the action integral $I(\lambda, \varepsilon)$:

$$I(\lambda, \varepsilon) = \int_{\alpha_\varepsilon(\lambda)}^{\beta_\varepsilon(\lambda)} \sqrt{A_\varepsilon(t)^2 - \lambda^2} dt.$$
In addition, the exact WKB solutions for (4.1) are given by replacing \(A(x) \) with \(A_\varepsilon(x) \) in (2.1), and we denote those solutions by \(u^\pm(x, h; \varepsilon; \gamma, x_0) \).

We choose \(\alpha_\varepsilon \) and \(\beta_\varepsilon \) for the base points of the phase function \(z(x, \varepsilon) \). The Stokes lines which pass through the points \(\alpha_\varepsilon \) and \(\beta_\varepsilon \) are drawn in Figure 4.

![Stokes Lines](image)

Figure 4. The Stokes lines for a sufficiently small \(\varepsilon \). \(S^{(\alpha_\varepsilon)}_j \) and \(S^{(\beta_\varepsilon)}_k \) indicate the sector which is generated by the Stokes lines emanating from \(\alpha_\varepsilon \) and \(\beta_\varepsilon \) respectively.

The Stokes lines continuously change with respect to \(\varepsilon \) from the case of \(\varepsilon = 0 \), since \(\alpha_\varepsilon, \beta_\varepsilon \) and \(z(x, \varepsilon) \) are continuous with respect to \(\varepsilon \). Here, we assume that \(\varepsilon \) is sufficiently small, and take base points as in Figure 4. Then, we can derive the quantization conditions for eigenvalues of \(L_\varepsilon \) in the same way as the previous section.

Lemma 4.1. Assume (A1), and let \(B(x) \) be real-valued, analytic and bounded on \(\mathbb{R} \). In the case \(A(\alpha_0) = A(\beta_0) \), there exist positive constants \(\varepsilon_0 \) and \(h_0 \), and a function \(r_+(\lambda, \varepsilon, h) \) bounded on \(D(\lambda_0, \varepsilon_0) \times (0, \varepsilon_0] \times (0, h_0] \) such that \(\lambda \in D(\lambda_0, \varepsilon_0) \) is an eigenvalue of \(L_\varepsilon \) for \(\varepsilon \in (0, \varepsilon_0] \) and \(h \in (0, h_0] \) if and only if

\[
I(\lambda, \varepsilon) = \left(k + \frac{1}{2} \right) \pi h + h^2 r_+(\lambda, \varepsilon, h)
\]

holds for some integer \(k \). In the case \(A(\alpha_0) = -A(\beta_0) \), there exist positive constants \(\varepsilon_0 \) and \(h_0 \), and a function \(r_- (\lambda, \varepsilon, h) \) bounded on \(D(\lambda_0, \varepsilon_0) \times (0, \varepsilon_0] \times (0, h_0] \) such that \(\lambda \in D(\lambda_0, \varepsilon_0) \) is an eigenvalue of \(L_\varepsilon \) for \(\varepsilon \in (0, \varepsilon_0] \) and \(h \in (0, h_0] \) if and only if

\[
I(\lambda, \varepsilon) = k\pi h + h^2 r(\lambda, \varepsilon, h)
\]

holds for some integer \(k \).

Now, we assume Assumption (A2) for \(A_\varepsilon(x) \), which results in a symmetry of the action integral \(I(\lambda, \varepsilon) \) and the exact WKB solutions \(u^\pm(x, h; \varepsilon; \gamma, x_0) \) with respect to complex conjugation.
Lemma 4.2. Under Assumption (A2), the action integral \(I(\lambda, \varepsilon) \) is equal to the complex conjugate of \(I(\overline{\lambda}, \varepsilon) \):

\[
I(\overline{\lambda}, \varepsilon) = I(\lambda, \varepsilon).
\]

Proof. By a simple calculation, we find that \(-\beta \varepsilon\) and \(-\alpha \varepsilon\) are zeros of \(A_{\varepsilon}(x)^2 - \lambda^2 \) under Assumption (A2). That is, \(I(\lambda, \varepsilon) \) is represented as

\[
I(\lambda, \varepsilon) = \int_{-\beta \varepsilon}^{-\alpha \varepsilon} \sqrt{\lambda^2 - A_{\varepsilon}(t)^2} \, dt.
\]

We take the complex conjugate of this, and obtain that

\[
I(\overline{\lambda}, \varepsilon) = \int_{-\beta \varepsilon}^{-\alpha \varepsilon} \sqrt{\lambda^2 - A_{\varepsilon}(\bar{t})^2} \, d\bar{t}.
\]

Then, we change the variable from \(t \) to \(-\bar{t} \),

\[
I(\overline{\lambda}, \varepsilon) = -\int_{-\alpha \varepsilon}^{-\beta \varepsilon} \sqrt{\lambda^2 - A_{\varepsilon}(\bar{t})^2} \, d\bar{t} = \int_{-\alpha \varepsilon}^{\beta \varepsilon} \sqrt{\lambda^2 - A_{\varepsilon}(t)^2} \, dt.
\]

This is just the action integral. \(\square \)

We denote the exact WKB solutions for the equation

(4.5) \[L_{\varepsilon} v(x) = \lambda \bar{\varepsilon} v(x) \]

by \(v^\pm \). Then, \(v^\pm \) is obtained by replacing \(\lambda \) with \(\overline{\lambda} \). Under Assumption (A2), \(u^\pm \) and \(v^\pm \) also have the following symmetry relations.

Lemma 4.3. Under Assumption (A2), if \(\overline{A_{\varepsilon}(-\overline{x})} = A_{\varepsilon}(x) \), the exact WKB solutions \(u^\pm(x, h, \varepsilon; \gamma, x_0) \) and \(v^\pm(x, h, \varepsilon; \gamma, x_0) \) satisfy

\[
\begin{align*}
 u^\pm(x, h, \varepsilon; \gamma, x_0) &= \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} v^\mp(-\overline{x}, h, \varepsilon; -\overline{\gamma}, -\overline{x_0}), \\
 \pm u^\pm(x, h, \varepsilon; \gamma, x_0) &= \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} v^\mp(-\overline{x}, h, \varepsilon; -\overline{\gamma}, -\overline{x_0}).
\end{align*}
\]

Proof. Let \(\overline{A_{\varepsilon}(-\overline{x})} = A_{\varepsilon}(x) \). By taking the complex conjugate and changing the variable \(x \) to \(-\overline{x} \) for the functions \(z \) and \(w^\pm \) of the solutions \(v^\pm \), we obtain

\[
\overline{z(-\overline{x}, \varepsilon; -\overline{\gamma}; \overline{\lambda})} = -z(x, \varepsilon; \gamma; \lambda),
\]

and

\[
\overline{w^\pm(-\overline{x}, h, \varepsilon; -\overline{x_0}; \overline{\lambda})} = w^\mp(x, h, \varepsilon; x_0; \lambda).
\]

In the same way, for the matrix function \(Q(x, \varepsilon) \) of \(v^\pm \),

\[
\overline{Q(-\overline{x}, \varepsilon; \overline{\lambda})} = Q(x, \varepsilon; \lambda) \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}.
\]
Here, we recall that the solutions \(v^\pm \) is of the form
\[
v^\pm(x, h, \varepsilon; \gamma, x_0) = \begin{pmatrix} 1 & 1 \\ -i & i \end{pmatrix} e^{\pm i(x, \varepsilon; \gamma)/h} Q(x, \varepsilon) \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}^\pm w^\pm(x, h, \varepsilon; x_0).
\]
By taking the complex conjugate and changing the variable \(x \) to \(-\overline{\rho}\), and using above, we obtain the first relation
\[
\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} v^\overline{\pm}(\overline{\rho}, h, \varepsilon; \overline{\gamma}, \overline{x_0}) = u^\pm(x, h, \varepsilon; \gamma, x_0).
\]
If \(A_\varepsilon(\overline{\rho}) = -A_\varepsilon(x) \), then we find that
\[
\overline{z(\overline{\rho}, \varepsilon; \overline{\gamma}; \lambda)} = -z(x, \varepsilon; \gamma; \lambda),
\]
\[
\overline{w^\pm(\overline{\rho}, h, \varepsilon; \overline{x_0}; \lambda)} = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} w^\pm(x, h, \varepsilon; x_0; \lambda),
\]
and
\[
\overline{Q(\overline{\rho}, \varepsilon; \lambda)} = -i \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} Q(x, \varepsilon; \lambda) \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}.
\]
From this property, the second relation also follows.

Here we take the base points \(x_1 \in S_1^{(\alpha_\varepsilon)} \) and \(x_2 \in S_2^{(\alpha_\varepsilon)} \) so that \(-\overline{\rho} \in S_1^{(\beta_\varepsilon)} \) and \(-\overline{x_2} \in S_3^{(\beta)} \), and set the exact WKB solutions for \([4.1]\):
\[
\begin{cases}
 u_1 = u^+(x, h, \varepsilon; \alpha_\varepsilon, x_1), & u_2 = u^+(x, h, \varepsilon; \alpha_\varepsilon, x_2), \\
 u_3 = u^-(x, h, \varepsilon; \alpha_\varepsilon, -\overline{x_2}), & u_4 = u^-(x, h, \varepsilon; \beta_\varepsilon, -\overline{x_1}).
\end{cases}
\]
In addition, let us define a function \(W(\lambda, \varepsilon) \) by the Wronskian of \(u_1 \) and \(u_4 \), that is,
\[
W(\lambda, \varepsilon) := W(u_1, u_4).
\]
We also take the solutions for \([4.5]\) as
\[
\begin{cases}
 v_1 = v^+(x, h, \varepsilon; -\overline{\beta_\varepsilon}, x_1), & v_2 = v^+(x, h, \varepsilon; -\overline{\beta_\varepsilon}, x_2), \\
 v_3 = v^-(x, h, \varepsilon; -\overline{\alpha_\varepsilon}, -\overline{x_2}), & v_4 = v^-(x, h, \varepsilon; -\overline{\alpha_\varepsilon}, -\overline{x_1}).
\end{cases}
\]
Then, we see that
\[
W(\lambda, \varepsilon) = \pm W(\overline{\lambda}, \varepsilon),
\]
by the definition of \(W(\lambda, \varepsilon) \) and applying Lemma \(4.3 \). Here, the sign of \([4.6]\) is dependent on whether \(A_\varepsilon(x) = A(\overline{x}) \) or \(A_\varepsilon(x) = -A(\overline{x}) \).

Now, we recall that \(W(\lambda, \varepsilon) \) is represented as
\[
W(\lambda, \varepsilon) = a(\lambda, \varepsilon, h)e^{iI(\lambda, \varepsilon)/h} + b(\lambda, \varepsilon, h)e^{-iI(\lambda, \varepsilon)/h},
\]
where \(a \) and \(b \) are some functions with \(a = 1 + \mathcal{O}(h) \) and \(b = 1 + \mathcal{O}(h) \) or \(-1 + \mathcal{O}(h) \) as \(h \to 0 \). In particular, \(a \) and \(b \) satisfy
\[
a(\lambda, \varepsilon, h) = \pm b(\overline{\lambda}, \varepsilon, h),
\]
since $W(\lambda, \varepsilon)$ satisfy (4.6), and $I(\lambda, \varepsilon)$ also satisfy Lemma 4.2. Moreover, (4.7) is rewritten as

$$W(\lambda, \varepsilon) = b(\lambda, \varepsilon, h) e^{-I(\lambda, \varepsilon)/h} \left(\exp \left(\frac{2i}{h} (I(\lambda, \varepsilon) + h^2 r(\lambda, \varepsilon, h)) \right) + 1 \right),$$

where

$$r(\lambda, \varepsilon, h) = \frac{1}{2i h} \log \frac{a(\lambda, \varepsilon, h)}{b(\lambda, \varepsilon, h)}.$$

Then, we use (4.8) and obtain that

$$r(\lambda, \varepsilon, h) = r(\lambda, \varepsilon, h).$$

Here we take $I(\lambda, \varepsilon, h)$ as

$$I(\lambda, \varepsilon, h) := I(\lambda, \varepsilon) + h^2 r(\lambda, \varepsilon, h).$$

This is a function from a neighborhood of λ_0 to one of $I(\lambda_0, 0)$. In particular, $r(\lambda, \varepsilon, h)$ is holomorphic near λ_0, and $I(\lambda, \varepsilon)$ satisfies $\frac{dI}{d\lambda}(\lambda_0, 0) \neq 0$. This implies that $I(\lambda, \varepsilon, h)$ has an inverse function $I^{-1}(\zeta, \varepsilon, h)$, and the eigenvalues of L_ε near λ_0 are given by

$$\lambda_{\varepsilon,k} = I^{-1}(c_k \pi h, \varepsilon, h), \quad k \in \mathbb{Z},$$

where $c_k = k$ or $k + 1/2$. In addition, we know that $I(\lambda, \varepsilon, h)$ is real for $\lambda \in \mathbb{R}$, since $r(\lambda, \varepsilon, h)$ and $I(\lambda, \varepsilon)$ is real for $\lambda \in \mathbb{R}$ by (4.9) and Lemma 4.2. That is, the eigenvalues near λ_0 are real.

References

[1] C.M. Bender: *Introduction to PT-symmetric Quantum Theory*, Contemporary Physics 46(4), 277-292 (2005).
[2] C.M. Bender and S. Boettcher: *Real Spectra in Non-Hermitian Hamiltonians Having PT Symmetry*, Physical Review Letters 80(24), (1998).
[3] C.M. Bender and H.F. Jones: *Wentzel-Kramers-Brillouin analysis of PT-Symmetric Sturm-Liouville problems*, Physical Review A 85(5), (2012).
[4] N. Boussekkine and N. Mecherout: *PT-symmetry and potential well. The simple well case*, Mathematische Nachrichten 289(1), 13-27 (2016).
[5] S. Fujiié, C. Lasser, and L. Nédélec: *Semiclassical resonances for a two-level Schrödinger operator with a conical intersection*, Asymptotic Analysis 65(1-2), 17-58 (2009).
[6] S. Fujiié and J. Wittsten: *Quantization conditions of eigenvalues for semiclassical Zakharov-Shabat systems on the circle*, preprint (2017), arXiv:1703.08352.
[7] C. Gérard and A. Grigis: *Precise estimates of tunneling and eigenvalues near a potential barrier*, Journal of differential equations 72(1), 149-177 (1988).
[8] N. Mecherout, N. Boussekkine, T. Ramond and J. Sjöstrand: *PT-symmetry and Schrödinger operators. The double well case*, Mathematische Nachrichten 289(7), 854-887 (2016).
[9] V.E. Zakharov and A.B. Shabat: *Exact Theory of Two-dimensional Self-focusing and One-dimensional Self-modulation of Wave in Nonlinear Media*, Journal of Experimental and Theoretical Physics 34(1), 62-69 (1972).