On Solving Some Classes of Second Order ODEs

R. AlAhmad∗and M. Al-Jararha†

Department of Mathematics, Yarmouk University, Irbid, Jordan, 21163.

Abstract

In this paper, we introduce some analytical techniques to solve some classes of second order differential equations. Such classes of differential equations arise in describing some mathematical problems in Physics and Engineering.

AMS Subject Classification: 34A25, 34A30.

Key Words and Phrases: Chebyshev’s Differential Equation, Hypergeometric Differential Equation, Cauchy-Euler’s Differential Equation, Exact Second Order Differential Equations, Nonlinear Second Order Differential Equations.

1 Introduction

One of the most important applications in the calculus of variation is to maximize (minimize) the functional

\[Q[y] = \int_{a}^{b} \left(\sqrt{p(x)}(y'(x))^2 + \frac{h(y(x))}{\sqrt{p(x)}} \right) \, dx, \quad (1.1) \]

where \(p(x) \) is a positive and differentiable function on some open interval \((a, b) \subset \mathbb{R}\), and \(h(x) \) is a differentiable function. In fact, the functional \n
\[Q[y] = \int_{a}^{b} \left(\sqrt{p(x)}(y'(x))^2 + \frac{h(y(x))}{\sqrt{p(x)}} \right) \, dx \quad (1.2) \]

attains its extreme values at a function \(y(x) \in C^2(a, b) \) that \(y(x) \) satisfies the Euler’s-Lagrange differential equation [5, 7, 10],

\[\frac{\partial F}{\partial y}(x, y, y') - \frac{d}{dx} \left(\frac{\partial F}{\partial y'}(x, y, y') \right) = 0, \quad (1.3) \]

∗rami_thenat@yu.edu.jo
†mohammad.ja@yu.edu.jo
where
\[F(x, y, y') := \sqrt{p(x)}(y'(x))^2 + \frac{h(y(x))}{\sqrt{p(x)}}. \]

(1.4)

Therefore, the problem of maximizing (minimizing) \(Q[y] \) is reduced to solve the differential equation (1.3), i.e., to solve
\[p(x)y''(x) + \frac{1}{2}p'(x)y'(x) = \frac{1}{2}h'(y(x)). \]

(1.5)

Hence, it is a matter to solve such differential equations. In the first part of this paper, we solve the following class of second order differential equation:
\[p(x)y''(x) + \frac{1}{2}p'(x)y'(x) + f(\sqrt{p(x)} y'(x), y(x)) = 0 \]

(1.6)

which generalizes the differential equation (1.5). Here, we assume that \(p(x) \) is a positive and differentiable function on some open interval \((a, b) \subset \mathbb{R}\), and \(f(\sqrt{p(x)} y'(x), y(x)) \) is continuous function on some domain \(D \subset \mathbb{R}^2 \). In fact, equation (1.6) not only generalizes (1.5), but also it generalizes many of well known differential equation. For example,

1. the Chebyshev’s Differential Equation [5] [12],
\[(1 - x^2)y''(x) - x y'(x) + n^2 y(x) = 0, \quad |x| < 1, \]

2. the Cauchy-Euler’s Differential Equation [6] [8] [11],
\[a x^2 y''(x) + a x y'(x) + b y(x) = 0, \quad x > 0, \]

3. the Nonlinear Chebyshev’s Equation,
\[(1 - x^2)y''(x) + \left(a \sqrt{1 - x^2} - x \right) y'(x) + f(y(x)) = 0, \quad |x| < 1, \]

4. the Hypergeometric Differential Equation [3] [12],
\[x(1 - x)y''(x) + [c - (a + b + 1)x] y'(x) - a b y(x) = 0, \quad 0 < x < 1, \quad \text{with } c = 1/2, a = -b, \]

and

5. the Nonlinear Hypergeometric Differential Equation,
\[x(1 - x)y''(x) + \left(\frac{1}{2} - x + \alpha \sqrt{x(1 - x)} \right) y'(x) + f(y(x)) = 0, \quad 0 < x < 1. \]

Throughout this paper, we call the class of differential equation in (1.6) by Chebyshev’s-type of differential equations.

In the second part of this paper, we introduce an approach to solve the differential equation
\[a_2 \left(f''(y)y'' + (y')^2 f''(y) \right) + a_1 f'(y)y' + a_0 f(y) = g(x), \]

(1.7)
where \(a_0, a_1 \) and \(a_2 \) are constants, and \(f \in C^2(a, b) \), for some open interval \((a, b) \subset \mathbb{R}\). We also give an approach to solve the differential equation

\[
p(x) \left(f'(y)y'' + (y')^2 f''(y) \right) + \frac{1}{2} p'(x) f'(y)y' + a_0 f(y) = 0,
\]

where \(p(x) \) is a positive and differentiable function on some open interval \((a, b) \subset \mathbb{R}\), and \(f \in C^2(c, d) \), for some open interval \((c, d) \subset \mathbb{R}\). Throughout this paper, we call these classes of second order differential equations by \(f \)-type second order differential equations.

In the third section, we solve Chebyshev’s-type of second order differential equations. The fourth section is devoted for the concluding remarks.

Throughout this paper, we call this class of differential equations by \(f \)-type second order differential equations that can be transformed into exact second order differential equations.

The approach is described in the following theorem:

\[
\int_{x_0}^x a_0(\alpha, z, z')d\alpha + \int_{z_0}^z a_1(x_0, \beta, z')d\beta + \int_{\gamma_0}^{z'} a_2(x_0, z_0, \gamma)d\gamma = c.
\]

Throughout this paper, we call this class of differential equations by \(f \)-type second order differential equations that can be transformed into exact second order differential equations.

The layout of the paper: In the first section, we solve Chebyshev’s-type of Second Order Differential Equations. In the second section, we solve the \(f \)-type of second order differential equations. In the third section, we solve \(f \)-type second order differential equation that can be transformed into exact second order differential equations. The fourth section is devoted for the concluding remarks.

2 Solving Chebyshev’s-type of Second Order Differential Equations

In this section, we present an approach to solve Chebyshev’s-type of second order differential equations

\[
p(x)y''(x) + \frac{1}{2} p'(x) y'(x) + f(\sqrt{p(x)} y'(x), y(x)) = 0,
\]

where \(p(x) \) is a positive and differentiable function on some open interval \((a, b) \in \mathbb{R}\), and \(f(\sqrt{p(x)} y'(x), y(x)) \) is continuous function on some domain \(D \subset \mathbb{R}^2 \). The approach is described in the following theorem:
Theorem 2.1. Assume that $p(x)$ be a positive and differentiable function on the open interval $(a,b) \subseteq \mathbb{R}$. Let x_0 be any point in the interval (a,b). Then

$$t = \int_{x_0}^{x} \frac{d\xi}{\sqrt{p(\xi)}}$$

transforms the differential equation (2.1) into the second order differential equation

$$y''(t) + f(y(t), y'(t)) = 0.$$ \hfill (2.2)

Proof. Let

$$t = \int_{x_0}^{x} \frac{d\xi}{\sqrt{p(\xi)}}.$$ \hfill (2.3)

Since,

$$\frac{dy}{dx} = \frac{dy}{dt} \frac{dt}{dx},$$

Hence,

$$\frac{dy}{dt} = \sqrt{p(x)} \frac{dy}{dx}. \hfill (2.4)$$

Therefore,

$$\frac{d^2y}{dt^2} = \frac{d}{dt} \left(\sqrt{p(x)} \frac{dy}{dx} \right) = \frac{d}{dx} \left(\sqrt{p(x)} \frac{dy}{dx} \right) \frac{dx}{dt} = p(x)y'' + \frac{1}{2}p'(x)y'.$$ \hfill (2.5)

By substituting (2.3) and (2.4) in Equation (1.6), we get the result. \hfill \blacksquare

Remark 2.1. The differential equation (2.2) is independent of the variable t, and so, it is easy to solve by setting $\eta(t) = y'(t)$. Hence, it reduces into the following first order differential equation:

$$\eta \frac{d\eta}{dy} + f(y, \eta) = 0.$$ \hfill (2.5)

In case that $f(\sqrt{p(x)} y', y) = f(y)$, we get

$$\eta^2(t) = -2 \int_{y}^{\eta} f(\xi)d\xi + c.$$ \hfill (2.6)

Hence,

$$y'(t) = \left(c - 2 \int_{y}^{\eta} f(\xi)d\xi \right)^{\frac{1}{2}}$$

where c is the integration constant.

Next, we present some examples to explain this approach.

Example 2.1. Consider the nonlinear Chebyshev’s differential equation

$$\begin{cases}
(1 - x^2)y''(x) - xy'(x) + 4\sqrt{1 - x^2} y'y(x) = 0, \\
y(0) = \frac{1}{2}, \quad y'(0) = -\frac{1}{2}.
\end{cases} \hfill (2.6)$$
Then
\[t = \int^x \frac{d\xi}{\sqrt{1 - \xi^2}} = \arcsin(x) \]
transforms (2.6) into
\[y''(t) + 4y'(t)y(t) = 0. \]
Set \(\eta(t) = y'(t) \). The above equation becomes
\[\eta \frac{d\eta}{dy} + 4\eta y = 0. \]
The solution of this equation is \(y(t) = \frac{1}{2(t + 1)} \). Therefore, \(y(x) = \frac{1}{2(\arcsin(x) + 1)} \).

Example 2.2. Consider the initial value problem
\[\begin{cases} x^2y'' + xy' - 3y^2 = 0, \\ y(1) = 2, \\ y'(1) = 4. \end{cases} \tag{2.7} \]
Then
\[t = \int_1^x \frac{d\xi}{\phi(\xi)} = \ln(x) \]
transforms the (2.7) into
\[\begin{cases} y'' - 3y^2 = 0, \\ y(0) = 2, \\ y'(0) = 4. \end{cases} \tag{2.8} \]
The solution of the above differential equation is
\[y(t) = \frac{2}{(1 - t)^2}. \]
Hence,
\[y(x) = \frac{2}{(1 - \ln(x))^2}. \]

Example 2.3. Consider the linear form of (1.6)
\[\phi(x) y'' + \frac{1}{2} \phi'(x) y' + \lambda^2 y = 0, \tag{2.9} \]
where \(\lambda \in \mathbb{R} \), and \(\phi(x) \) is a positive and differentiable function on some open interval \((a, b) \subset \mathbb{R}\).
By applying the transformation
\[t = \int_{x_0}^x \frac{d\xi}{\sqrt{\phi(\xi)}}, \]
equation (2.9) can be transformed into the following second order differential equation:
\[\frac{d^2y}{dt^2} + \lambda^2 y = 0. \]
The solution of this differential equation is
\[y(t) = C_1 \sin(\lambda t) + C_2 \cos(\lambda t). \]
Hence, the general solution of equation (2.9) is

\[y(x) = C_1 \sin \left(\lambda \int_{x_0}^{x} \frac{d\xi}{\phi(\xi)} \right) + C_2 \cos \left(\lambda \int_{x_0}^{x} \frac{d\xi}{\phi(\xi)} \right). \]

Example 2.4. Consider the following second order linear differential equation (see Eq. 239, p. 335 in [11]):

\[4xy'' + 2y' + y = 0. \] (2.10)

From the previous example, the general solution of this equation is given by

\[y(x) = C_1 \sin \left(\int_{x_0}^{x} \frac{d\xi}{2\sqrt{\xi}} \right) + C_2 \cos \left(\int_{x_0}^{x} \frac{d\xi}{2\sqrt{\xi}} \right) \]

and so,

\[y(x) = C_1 \sin \left(\sqrt{x} \right) + C_2 \cos \left(\sqrt{x} \right). \]

Remark 2.2. Consider the second order linear differential equation

\[(\phi(x))^2 y''(x) + \phi(x)\phi'(x)y'(x) + \lambda y(x) = 0, \quad x \in (a, b), \] (2.11)

and assume that \(\phi(x) \) is a positive and differentiable function on an open interval \((a, b) \subset \mathbb{R}\). Moreover, assume that \(\phi(a) = \phi(b) = 0 \). Define the linear differential operator

\[L[y] := -((\phi(x))^2 y''(x) + \phi(x)\phi'(x)y'(x))) = \lambda y(x). \]

Then the boundary value problem

\[
\begin{cases}
L[y] = -((\phi(x))^2 y''(x) + \phi(x)\phi'(x)y'(x))) = \lambda y(x), & a < x < b, \\
\phi(a) = \phi(b) = 0,
\end{cases}
\] (2.12)

satisfies the Lagrange Identity \(\int_a^b \phi L[\psi]dx = \int_a^b \psi L[\phi]dx \), where \(\phi \) and \(\psi \) satisfy the above boundary value problem. Therefore, the boundary value problem (2.12) has an orthogonal set of eigenfunctions \(\{\phi_n(x)\}_{n=1}^{\infty} \) with corresponding eigenvalues \(\{\lambda_n\}_{n=1}^{\infty} \). Since the above boundary value problem is a special case of (1.6). Then, by using the approach described in Theorem 2.1, it is easy to find its orthogonal set of eigenfunctions.

By using the same approach described in Theorem 2.1. We can solve the following class of second order linear differential equations:

\[[P(x)]^2 y''(x) + P(x) \left[\alpha + P'(x) \right] y'(x) + \beta y(x) = 0, \] (2.13)

where \(P(x) > 0, \ P(x) \in C^1(a, b) \), and \(\alpha \) and \(\beta \) are constants. In fact, the transformation

\[t = \int_{x_0}^{x} \frac{d\xi}{P(\xi)}, \] (2.14)

where \(x_0, \ x \in (a, b) \), transforms Eq. (2.13) into the following second order differential equation:

\[y''(t) + \alpha y'(t) + \beta y(t) = 0. \]

This differential equation is with constant coefficients which can be solved by using the elementary techniques of solving second order differential equations. For illustration, we present the following examples:
Example 2.5. Consider the well-known Cauchy-Euler’s Equation

\[x^2y''(x) + (\alpha + 1)xy'(x) + \beta y = 0, \quad x > 0. \]

Then \(P(x) = x \), and the \(t \)–transformation is \(t = \ln(x) \), which transforms the equation into

\[y''(x) + \alpha y'(x) + \beta y = 0. \]

Example 2.6. Consider the Chebyshev’s Equation

\[[1 - x^2] y''(x) - 2xy'(x) + n^2y = 0, \quad |x| < 1. \]

Then \(P(x) = \sqrt{1 - x^2} \), and the \(t \)–transformation is \(t = \sin^{-1}(x) \), which transforms the equation into

\[y''(x) + n^2y = 0. \]

Using this transformation, the solution of Chebyshev’s Equation is given by

\[y(x) = A \cos(n \sin^{-1}(x)) + B \sin(n \sin^{-1}(x)). \]

Example 2.7. Consider the Hypergeometric Equation

\[x(1-x)y''(x) + \frac{1}{2}(1-2x)y'(x) + a^2y = 0, \quad x \in (0, 1). \tag{2.15} \]

Then \(P(x) = \sqrt{x(1-x)} \), and the \(t \)–transformation is \(t = \sin^{-1}(2x - 1) \). This transforms the equation into

\[y''(t) + a^2y(t) = 0. \]

Hence, the solution of (2.15) is given by

\[y(x) = A \cos(a \sin^{-1}(2x - 1)) + B \sin(a \sin^{-1}(2x - 1)). \]

For certain functions, \(h(x) \in C(a, b) \), for some open interval \((a, b) \in \mathbb{R}\), we can solve the nonhomogeneous second order differential equation

\[[P(x)]^2 y''(x) + P(x) [\alpha + P'(x)] y'(x) + \beta y = h(x). \tag{2.16} \]

Particularly, when \(h(x) \) can be written in the form \(H(t) \), where \(t = \int_{x_0}^{x} \frac{d\xi}{P(\xi)} \). The following example shows this idea:

Example 2.8. Consider the nonhomogeneous differential equation

\[x(1-x)y''(x) + \frac{1}{2}(1-2x)y'(x) + a^2y = 2x, \quad x \in (0, 1). \tag{2.17} \]

Then \(P(x) = \sqrt{x(1-x)} \). The \(t \)–transformation is \(t = \sin^{-1}(2x - 1) \). This transforms the equation into

\[y''(t) + a^2y(t) = 1 + \sin(t). \]

Hence, the solution of equation (2.17) is given by

\[
y(x) = \begin{cases}
A \cos(a \sin^{-1}(2x - 1)) + B \sin(a \sin^{-1}(2x - 1)) + \frac{2x - 1}{a^2 - 1} + \frac{1}{a^2}, & \text{if } a \neq \pm 1, \\
A \cos(\sin^{-1}(2x - 1)) + B(2x - 1) + \frac{1}{2}(1 - 2x) \sin^{-1}(2x - 1) + 1, & \text{if } a = \pm 1.
\end{cases}
\]
3 Solving f-type Second Order Differential Equations

In this section, we solve the following class of second order nonlinear differential equation

$$a_2 \left(f'(y)y'' + (y')^2 f''(y) \right) + a_1 f'(y)y' + a_0 f(y) = g(x), \quad (3.1)$$

where a_2, a_1 and a_0 are constants, and $f \in C^2(a, b)$, for some open interval $(a, b) \subset \mathbb{R}$. In this section, we also solve the following class of second order nonlinear differential equation:

$$p(x) \left(f'(y)y'' + (y')^2 f''(y) \right) + \frac{1}{2} p'(x)f'(y)y' + a_0 f(y) = 0, \quad (3.2)$$

where $p(x)$ is a positive and differentiable function on an open interval $(a, b) \subset \mathbb{R}$, and $f \in C^2(c, d)$, for some open interval $(c, d) \subset \mathbb{R}$. To solve (3.1), let $z = f(y)$. Hence, $z' = f'(y)y'$, and $z'' = f'(y)y'' + (y')^2 f''(y)$. Substitute z, z' and z'' in equation (3.1), we get

$$a_2 z'' + a_1 z' + a_0 z = g(x), \quad (3.3)$$

Similarly, equation (3.2) becomes

$$p(x) z'' + \frac{1}{2} p'(x)z' + a_0 z = 0, \quad (3.4)$$

which is the linear form of (1.6). Therefore, it can be solved by using the technique described in Example 2.3. To illustrate the procedure of solving (3.1) and (3.2), we present the following examples:

Example 3.1. Consider Langumir Equation, with a slightly modification,

$$3yy'' + 3(y')^2 + 4yy' + y^2 = 1. \quad (3.5)$$

The original Langumir Equation is given by

$$3yy'' + (y')^2 + 4yy' + y^2 = 1$$

which originally appears in connection with the theory of current flow from hot cathode to an anode in a high vacuum [3, 9]. To solve (3.5), we let $z = \frac{y^2}{2}$. Then $z' = yy'$ and $z'' = yy'' + (y')^2$. Hence, equation (3.5) becomes

$$3z'' + 4z' + 2z = 1.$$

The solution of this equation is

$$z(x) = e^{-\frac{x}{2}} \left(A \cos \left(\frac{\sqrt{2}}{3} x \right) + B \sin \left(\frac{\sqrt{2}}{3} x \right) \right) + \frac{1}{2}.$$

Hence, the solution of (3.5) is given by

$$y^2 = 2e^{-\frac{x}{2}} \left(A \cos \left(\frac{\sqrt{2}}{3} x \right) + B \sin \left(\frac{\sqrt{2}}{3} x \right) \right) + 1.$$
Example 3.2. Consider the initial value problem
\[
\begin{cases}
 y'' + (y')^2 + 1 = (\cos \omega x)e^{-y}, & \omega \neq \pm 1, \\
 y(0) = y'(0) = 0.
\end{cases}
\]

This problem is equivalent to
\[
\begin{cases}
 (y'' + (y')^2)e^y + e^y = (\cos \omega x), & \omega \neq \pm 1, \\
 y(0) = y'(0) = 0.
\end{cases}
\]

Let \(z = e^y \). Then \(z' = y'e^y \) and \(z'' = y''e^y + (y')^2e^y \). By substituting \(z, z' \) and \(z'' \) in the above initial value problem, we get
\[
\begin{cases}
 z'' + z = \cos \omega x, & \omega \neq \pm 1, \\
 z(0) = 1, z'(0) = 0.
\end{cases}
\]

The solution of this problem is \(z(x) = \frac{1}{1-\omega^2}(\cos \omega x - \omega^2 \cos x), \omega \neq \pm 1 \). Therefore, \(y(x) = \ln \left(\frac{1}{1-\omega^2}(\cos \omega x - \omega^2 \cos x) \right), \omega \neq \pm 1 \).

Example 3.3. Let \(\phi(x) \) be a positive and differentiable function on an open interval \((a,b) \subset \mathbb{R}\), and consider the differential equation
\[
\phi(x) (y'' + (y')^2) + \frac{1}{2} \phi'(x)y' + \lambda = 0.
\]

By multiplying this equation by \(e^y \), we get
\[
\phi(x) (y'' + (y')^2)e^y + \frac{1}{2} \phi'(x)y'e^y + \lambda e^y = 0.
\]

Let \(z = e^y \). Then \(z' = y'e^y \) and \(z'' = y''e^y + (y')^2e^y \). By substituting \(z, z' \) and \(z'' \) in the above differential equation, we get
\[
\phi(x)z'' + \frac{1}{2} \phi'(x)z' + \lambda z = 0.
\]

The solution of this equation is (see Example 2.3)
\[
z(x) = C_1 \sin \left(\lambda \int_{x_0}^{x} \frac{d\xi}{\sqrt{\phi(\xi)}} \right) + C_2 \cos \left(\lambda \int_{x_0}^{x} \frac{d\xi}{\sqrt{\phi(\xi)}} \right).
\]

Therefore,
\[
y(x) = \ln \left[C_1 \sin \left(\lambda \int_{x_0}^{x} \frac{d\xi}{\sqrt{\phi(\xi)}} \right) + C_2 \cos \left(\lambda \int_{x_0}^{x} \frac{d\xi}{\sqrt{\phi(\xi)}} \right) \right].
\]

4 Solving \(f \)-type Second Order Differential Equations that can be Transformed into Exact Second Order Differential Equations

In this section, we solve the following class of second order nonlinear differential equations:
\[
a_2(x, y, y') (f'(y)y'' + f''(y)(y')^2) + a_1(x, y, y')(f'(y)y') + a_0(x, y, y') = 0, \quad (4.1)
\]
where $f(y)$ is an invertible function and $f \in C^2(a, b)$. To solve this class of differential equations, we let $z = f(y)$. Then $z' = f'(y)y'$ and $z'' = f''(y)(y')^2 + f'(y)y''$. Moreover, we let $y = f^{-1}(z)$. Then $y' = \frac{z'}{f'(f^{-1}(z))}$.

Hence, equation (4.1) can be transformed into the following differential equation:

$$a_2 \left(x, f^{-1}(z), \frac{z'}{f'(f^{-1}(z))} \right) z'' + a_1 \left(x, f^{-1}(z), \frac{z'}{f'(f^{-1}(z))} \right) z' + a_0 \left(x, f^{-1}(z), \frac{z'}{f'(f^{-1}(z))} \right) = 0$$

Assume that (4.2) is exact, then it can be solved. To explain the procedure of solving such differential equations, we consider the following example:

Example 4.1. Consider the second order nonlinear differential equation

$$\begin{align*}
\left\{ \begin{array}{l}
e^y [y'' + (y')^2] + 12x e^y y' + (3e^y - 1) = 0, \\
y(0) = \ln 2, \ y'(0) = 0.
\end{array} \right. \\
\end{align*}$$

(4.3)

Let $z = e^y$. Then $z' = e^y y'$ and $z'' = e^y y'' + e^y (y')^2$. Hence, Eq. (4.3) becomes

$$\begin{align*}
\left\{ \begin{array}{l}
z'' + 12xz^3 z' + (3z^4 - 1) = 0, \\
z(0) = 2, \ z'(0) = 0.
\end{array} \right. \\
\end{align*}$$

(4.4)

Therefore, $a_2(x, z, z') = 1$, $a_1(x, z, z') = 12xz^3$, and $a_0(x, z, z') = (3z^4 - 1)$. In addition, we have

$$\frac{\partial a_2}{\partial z} = \frac{\partial a_1}{\partial z'} = 0, \quad \frac{\partial a_2}{\partial x} = \frac{\partial a_0}{\partial z'} = 0, \quad \text{and} \quad \frac{\partial a_1}{\partial x} = \frac{\partial a_0}{\partial z} = 12z^3,$$

(4.5)

Therefore, equation (4.4) is exact differential equation. Hence, its first integral exists and it is given by

$$z' + 3xz^4 - x = 0.$$

For which an implicit solution of this equation can be obtained by separating the variables, and so, $y(x) = \ln(z(x))$.

Remark 4.1. Assume that (4.2) is not exact. Then an integrating factor of (4.2) could be exist. Hence, it can be transformed into an exact differential equation (see [1]). To explain the procedure of solving (4.2) in case it is not exact, we present the following example:

Example 4.2. Consider the second order nonlinear differential equation

$$xe^y (2x + e^y) (y'' + (y')^2) + x (x + e^y) y' + (3x + e^y) = 0.$$

(4.6)

By multiplying this equation by e^y, we get

$$xe^{2y} (2x + e^y) (y'' + (y')^2) + x (x + e^y) e^y y' + e^y (3x + e^y) = 0.$$

(4.7)

Let $z = e^y$. Then $z' = e^y y'$ and $z'' = e^y y'' + e^y (y')^2$. Hence, by substituting z, z' and z'' in (4.7), we get

$$xz(2x + z) z'' + x(x + z) z' + z(3x + z) = 0.$$

(4.8)
This equation is not exact since \(\frac{\partial a_2}{\partial z} = 2(x + z) \neq \frac{\partial a_1}{\partial z} \). An integrating factor of this second order nonlinear differential equation exists, and it is given by \(\mu(x, z) = \frac{1}{xz(2x + z)} \). Multiplying (4.8) by \(\mu(x, z) \), we get

\[
z'' + \frac{(x + z)}{z(2x + z)} z' + \frac{(3x + z)}{x(2x + z)} = 0.
\]

(4.9)

Clearly,

\[
\frac{\partial a_2}{\partial z} = \frac{\partial a_1}{\partial z'} = 0, \quad \frac{\partial a_2}{\partial x} = \frac{\partial a_0}{\partial z'} = 0, \quad \text{and} \quad \frac{\partial a_1}{\partial x} = \frac{\partial a_0}{\partial z} = \frac{-1}{(2x + z)^2}.
\]

(4.10)

Therefore, the differential equation (4.9) is exact, and its first integral is given by

\[
c = z' + \ln(xz\sqrt{2x + z}).
\]

(4.11)

This first order differential equation can be solved by using the elementary techniques of solving first order differential equations. Hence, \(y(x) = \ln(z(x)) \).

Finally, we consider the nonhomogeneous second order linear differential equation

\[
a_2(x)y'' + a_1(x)y' + a_0(x)y = h(x),
\]

where \(a_2(x) \neq 0, a_1(x), \) and \(a_0(x) \) are differentiable functions on an open interval \((a, b) \subset \mathbb{R}\). This equation admits an integrating factor \(\mu(x) = \frac{1}{a_2(x)} \) provided that \(W(a_2, a_1)(x) = a_0(x)a_2(x) \), where \(W(a_2, a_1)(x) = a_2(x)a'_1(x) - a_1(x)a'_2(x) \). For this case, we present the following example:

Example 4.3. Consider the second order linear differential equation

\[
e^x y'' + \cos xy' - (\cos x + \sin x)y = h(x).
\]

By multiplying this equation by the integrating factor \(e^{-x} \), we get

\[
y'' + e^{-x} \cos xy' - e^{-x}(\cos x + \sin x)y = h(x)e^{-x}.
\]

This equation can be written as

\[
\frac{d}{dx} [y' + (e^{-x} \cos x)y] = h(x)e^{-x}
\]

Hence, its first integral is given by

\[
y' + (e^{-x} \cos x)y = \int h(\xi)e^{-\xi}d\xi + c_1
\]

which can be solved by using the elementary techniques of solving first order differential equations.
5 Concluding Remarks

In this paper, we solved some classes of second order differential equation. In fact, we solved the following classes of second order differential equations:

1. The Chebyshev’s type of second order differential equation

\[p(x)y''(x) + \frac{1}{2}p'(x)y'(x) + f(\sqrt{p(x)} y'(x), y(x)) = 0, \quad x \in (a, b), \]

(5.1)

where \(p(x) \) is a positive and differentiable function on an open interval \((a, b) \subset \mathbb{R}\), and \(f(\sqrt{p(x)} y'(x), y(x)) \) is a continuous function on some domain \(D \subset \mathbb{R}^2 \).

2. The \(f \)-type of second order differential equations

a) \[a_2 (f'(y)y'' + (y')^2 f''(y)) + a_1 f'(y)y' + a_0 f(y) = g(x), \]

(5.2)

where \(a_2, a_1 \) and \(a_0 \) are constants, and the function \(f(y) \) is of \(C^2 \)-class on some open interval \((a, b) \subset \mathbb{R}\), and

b) \[p(x) (f'(y)y'' + (y')^2 f''(y)) + \frac{1}{2} p'(x)f'(y)y' + a_0 f(y) = 0, \]

(5.3)

where \(p(x) \) is a positive and differentiable function on some open interval \((a, b) \subset \mathbb{R}\), and \(f \in C^2(c, d) \), for some open interval \((c, d) \subset \mathbb{R}\).

3. \(f \)-type second order differential equations that can be transformed into exact second order Differential Equations

\[a_2(x, y, y') (f'(y)y'' + (f'(y))^2) + a_1(x, y, y')(f'(y)y') + a_0(x, y, y') = 0, \]

(5.4)

where the function \(f(y) \) is an invertible function and \(f \in C^2(a, b) \), for some open interval \((a, b) \subset \mathbb{R}\).

Moreover, we presented some examples to explain our approach of solving the above classes of second order differential equation.

References

[1] AlAhmad R., Al-Jararha M., and Almefleh H. (2015) Exactness of Second Order Ordinary Differential Equations and Integrating Factors. JJMS 11(3), pp. 155-167.

[2] Al-Jararha M. (2015) Exactness of Higher Nonlinear Ordinary Differential Equations. Global Journal of Pure and Applied Mathematics, 11(3), pp. 1467-1473.

[3] Ames, W. F. (1968) Nonlinear ordinary differential equations in transport process. Vol. 42, Academic Press, NY.
[4] Anderws, L. C. (1998) *Special Functions of Mathematics for Engineers*. 2nd edition, Oxford University Press, Oxford.

[5] Arfken, G. (1985) *Mathematical Methods for Physicists*. 3rd edition, Academic Press, Orlando, FL.

[6] Boyce, W. E. and DiPrima, R. C. (1986) *Elementary Differential Equations and Boundary Value Problems*. 4th edition, Wiley, NY.

[7] Hand, L.N. and Finch, J.D. (1998) *Analytical Mechanics*. Cambridge University Press, Cambridge.

[8] Kreyszig, E. Kreyszig, H. and Norminton, E. J. (2011) *Advanced Engineering Mathematics*. 10th edition, Wiley, NY.

[9] Langmuir, I and Bolgett, K. B. (1923) Currents Limited by Space Charge between Coaxial Cylinders, Phys. Rev., 22(347).

[10] M. V. Makarets, M. V. and Reshetnyak, V. Y. (1995)*Ordinary differential equations and calculus of variations*. World Scientific Publishing Co. Inc., NJ.

[11] Murphy, G. M. (1960) *Ordinary Differential Equations and their Solutions*. Van Nostrand Reinhold Company, New York.

[12] Zwillinger, D. (1977) *Handbook of Differential Equations*. 3rd edition, Academic Press Boston, MA.