Screening for iron deficiency in surgical patients based on noninvasive zinc protoporphyrin measurements

Christoph Füllenbach,1,† Philipp Stein,2,† Patricia Glaser,1 Chris Triphaus,1 Simone Lindau,1 Suma Choorapoikayil,1 Elke Schmitt,1 Kai Zacharowski,1 Gudrun Hintereder,3 Georg Hennig,4,5 Christian Homann,4,5 Herbert Stepp,4,5 Gabriela H. Spahn,2 Alexander Kaserer,2 Andreas Schedler,2 Patrick Meybohm1,1,6,‡ and Donat R. Spahn2,‡

BACKGROUND: Approximately every third surgical patient is anemic. The most common form, iron deficiency anemia, results from persisting iron-deficient erythropoiesis (IDE). Zinc protoporphyrin (ZnPP) is a promising parameter for diagnosing IDE, hitherto requiring blood drawing and laboratory workup.

STUDY DESIGN AND METHODS: Noninvasive ZnPP (ZnPP-NI) measurements are compared to ZnPP reference determination of the ZnPP/heme ratio by high-performance liquid chromatography (ZnPP-HPLC) and the analytical performance in detecting IDE is evaluated against traditional iron status parameters (ferritin, transferrin saturation [TSAT], soluble transferrin receptor [sTfR]–ferritin index [sTfR-F], soluble transferrin receptor [sTfR]), likewise measured in blood. The study was conducted at the University Hospitals of Frankfurt and Zurich.

RESULTS: Limits of agreement between ZnPP-NI and ZnPP-HPLC measurements for 584 cardiac and noncardiac surgical patients equaled 19.7 μmol/mol heme (95% confidence interval, 18.0–21.3; acceptance criteria, 23.2 μmol/mol heme; absolute bias, 0 μmol/mol heme). Analytical performance for detecting IDE (inferred from area under the curve receiver operating characteristics) of parameters measured in blood was: ZnPP-HPLC (0.95), sTfR (0.92), sTfR-F (0.89), TSAT (0.87), and ferritin (0.67). Noninvasively measured ZnPP-NI yielded results of 0.90.

CONCLUSION: ZnPP-NI appears well suited for an initial IDE screening, informing on the state of erythropoiesis at the point of care without blood drawing and laboratory analysis. Comparison with a multiparameter IDE test revealed that ZnPP-NI values of 40 μmol/mol heme or less allows exclusion of IDE, whereas for 65 μmol/mol heme or greater, IDE is very likely if other causes of increased values are excluded. In these cases (77% of our patients) ZnPP-NI may suffice for a diagnosis, while values in between require analyses of additional iron status parameters.

ABBREVIATIONS: ACD = anemia of chronic disease; AUCROC = area under the curve receiver operating characteristics; CRP = C-reactive protein; IDA = iron deficiency anemia; IDE = iron-deficient erythropoiesis; IL-6 = interleukin-6; LoAs = limits of agreement; MCH = mean corpuscular hemoglobin; MCV = mean corpuscular volume; ROC = receiver operating characteristics; sTfR = soluble transferrin receptor; sTfR-F = soluble transferrin receptor–ferritin index; TSAT = transferrin saturation; ZnPP = zinc protoporphyrin; ZnPP-NI = noninvasive zinc protoporphyrin; ZnPP-HPLC = high-performance liquid chromatography zinc protoporphyrin.

From the 1Department of Anaesthesiology, Intensive Care Medicine and Pain Therapy, University Hospital Frankfurt, Goethe University, the 3Central Laboratory, Center of Internal Medicine, University Hospital Frankfurt, Goethe University, Frankfurt, 4Laser-Forschungslabor, LIFE-Zentrum, Klinikum der Universität München, the 5Department of Urology, Klinikum der Universität München, Munich, 6Department of Anesthesiology, University Hospital Wuerzburg, Wuerzburg, Germany; and the 2Institute of Anaesthesiology, University and University Hospital of Zurich, Zurich, Switzerland.

Address reprint requests to: Prof. Dr. med. Patrick Meybohm, Department of Anaesthesiology, Intensive Care Medicine and Pain Therapy, University Hospital Frankfurt, Goethe University, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany. Department of Anesthesiology, University Hospital Wuerzburg, Obererwerdener Strasse 6, 97080 Wuerzburg, Germany. E-mail: patrick.meybohm@kgu.de.

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.

1CF and PS contributed equally to this study and are shared first author.
2PM and DRS contributed equally to this study and are shared last author.
This work was financially supported, in part, by EXIST Forschungstransfer by the German Federal Ministry for Economic Affairs and Energy (grant number: 03EFFB0109). The provider of financial support to this study had no role in the study design; in collecting, analyzing, and interpreting the data; in the writing of the report; and in the decision to submit the paper for publication.

The corresponding author had full access to all the data in the study and had final responsibility for the decision to submit for publication.

Received for publication April 16, 2019; revision received September 5, 2019, and accepted September 22, 2019.
DOI: 10.1111/trf.15577
© 2019 The Authors. Transfusion published by Wiley Periodicals, Inc. on behalf of AABB.

TRANSFUSION 2020;60:62–72
Iron is essential for an optimal erythropoiesis. Insufficiency results in iron-deficient erythropoiesis (IDE), which, if persistent, eventuates in iron deficiency anemia (IDA). In surgical patients, of which approximately one-third suffers from preoperative anemia, 23% to 72% of suboptimal hemoglobin (Hb) concentrations are associated with a shortage of erythropoietic iron supply. Preoperative anemia itself is an independent risk factor for a prolonged hospitalization, a higher need for allogeneic blood transfusions and increased morbidity and mortality. In iron-deficient patients, iron supplementation is a potent strategy to increase Hb levels and reduce transfusion requirements. Managing preoperative anemia by providing a pragmatic treatment within the often short time available to ensure optimal surgical preparation is an integral part of patient blood management, a multimodal clinical concept to improve patient safety.

Diagnosing anemia based on Hb levels is straightforward, yet only allows identification of patients already compromised by a reduced hemoglobin mass. Screening for IDE to provide treatment to patients already or not yet anemic due to iron deficiency, however, is much more challenging despite a plethora of iron status parameters. This is especially true when inflammation or comorbidities are present. A proxy highly sensitive for the iron availability during erythropoiesis is zinc protoporphyrin (ZnPP), primarily forming when iron supply to the erythron is insufficient or functionally impaired. In fact, ZnPP has been suggested to detect inadequate iron supply in different populations and children. Hitherto, however, ZnPP measurements required blood sampling and, to provide reliable results, additional washing of erythrocytes. A novel analytical technique sets out not only to render cumbersome laboratory workup obsolete but also to enable the noninvasive quantification of ZnPP at the point of care without blood sampling and laboratory analysis.

In this prospective multicenter study, we compare noninvasive ZnPP measurements to reference measurements and evaluate the analytical performance of the novel technique and of standard iron status parameters to detect IDE in a heterogeneous cohort of cardiac and noncardiac surgical patients.

MATERIALS AND METHODS

Study design and patients
This multicenter study was conducted at the University Hospitals of Frankfurt (UKF) and Zurich (USZ) and is registered as NCT03071497 (UKF) and NCT03231865 (USZ). Ethics committees at both sites approved the study protocol. Patients (aged ≥ 18 y) undergoing major elective cardiac and noncardiac surgery between March 2017 and April 2018 were included. Recent blood transfusion (<8 wks before examination), pregnancy, or diagnosis of porphyria were exclusion criteria. Written informed consent was obtained from each participant. Blood samples (UKF: 1 × 2.6 mL ethylenediaminetetraacetic acid tube, 1 × 4 mL serum tube; USZ: 1 × 2.7 mL ethylenediaminetetraacetic acid tube, 1 × 10 mL serum tube; both Sarstedt AG & Co. KG) for analyses were collected preoperatively during clinical routine.

Assessments
At both sites, two aliquots of ethylenediaminetetraacetic acid blood (250 μL each) were stored at −80°C for reference determination of the ZnPP/heme ratio by high-performance liquid chromatography (ZnPP-HPLC), as previously described. Noninvasive ZnPP measurements (ZnPP-NI) were performed preoperatively at the study sites by various examiners with prototype devices (FIDscreen). Before study enrollment, the prototypes (one at each study site) were calibrated against an external optical standard, and the relative calibration factor between the two prototypes was fixed (for detailed description see Appendix S1 and Fig. S1, available as supporting information in the online version of this paper). The working principle of the prototypes is described elsewhere.

At the UKF, red blood cell (RBC) indices (Hb, mean corpuscular hemoglobin [MCH], mean corpuscular volume [MCV]) were measured using an analyzer (XN-9000, Sysmex). An analyzer (Cobas 8000, Roche Diagnostics) was used to measure serum iron (module c701), serum ferritin (module e602, electrochemiluminescence immunoassay), serum transferrin (module c502), soluble transferrin receptor (sTfR; module c502, Tina-quant Soluble Transferrin Receptor assay), C-reactive protein (CRP; module c701, latex-enhanced immunoturbidimetry), and interleukin-6 (IL-6; e602, electrochemiluminescence immunoassay). At the USZ, RBC indices (Hb, MCH, MCV) were measured using an analyzer (XE-5000, Sysmex). The Cobas 8000 was used to measure serum iron (module c502), serum ferritin (module e801, electrochemiluminescence immunoassay), serum transferrin (module c502, CRP, and IL-6 (module e801). sTfR was measured using a nephelometric analyzer (Atellica Nephe 630, Siemens Healthineers, immuno-nephelometry). Transferrin saturation (TSAT) was calculated as = (Serum iron [μg/dL] / Serum transferrin [mg/mL]) × 70.9. sTfR-F index (sTfR-F) was calculated as = sTfR [mg/L] / log (Serum ferritin) [ng/mL].

Clinical definitions
Evaluating the analytical performance of iron status parameters to detect IDE requires an a priori identification of affected patients. Bone marrow aspiration, the gold standard to estimate the body iron stores, is highly invasive and not routinely performed at the study sites. As using a single iron status parameter for diagnosing IDE might result in an under- or overestimation of the incidence rate, a multiparameter index test was applied. Patients were assigned to the “IDE group” if at least two of three parameters (TSAT, sTfR, ZnPP-HPLC) indicated IDE, or the “no
IDE group if none or only one parameter was positive. All three parameters were chosen for the initial identification, as they provide information on the availability of iron for erythropoiesis.14,25,26 Cutoff values of TSAT (<20%) and sTfR (women >4.4 mg/L, men >5 mg/L) are inferred from a consensus statement,27 national guidelines,28,29 and recommendations by the manufacturer and central laboratories at both sites. The cutoff value of ZnPP (>40 μmol/mol heme, applied for both ZnPP-HPLC and ZnPP-NI) is inferred from the literature,12,13,16,30 matching recommendations of the laboratory conducting the reference measurements. Cutoff values indicating reduced iron stores for ferritin (<100 ng/mL), MCH (<27 pg), and MCV (<80 fl) are inferred from recommendations by the central laboratories and the literature.27 Although a lower ferritin cutoff (<30 ng/mL) is more specific for absolute iron deficiency,31 we preferred a higher cutoff (<100 ng/mL) suggested as indicative for low iron stores in surgical patients.27 The reasoning here is that only replete iron stores (>100 ng/mL) ensure a supply sufficient for an optimal perioperative erythropoiesis even during major surgical blood loss. Furthermore, this cutoff was suggested as an indicator for iron deficiency in nonanemic patients with various comorbidities (e.g., chronic kidney disease, inflammatory bowel disease).32 Cutoff values of sTfR-F (women >2.2, men >2.5) were calculated as follows: women = 4.4 [mg/L] / log(100) [ng/mL]; men = 5 [mg/L] / log(100) [ng/mL]. To decide upon copresence of inflammation, we used CRP cutoff values greater than 5 mg/dL and/or IL-6 levels greater than 7 pg/mL, as recommended by the central laboratories (if both were available, CRP was preferred). Anemia, defined by the World Health Organization as Hb less than 12 g/dL in women and less than 13 g/dL in men, respectively,33 was not used to divide the study population for further subgroup analyses, as IDE can be present irrespective of anemia. Nonetheless, as prevalence of IDA, anemia of chronic disease (ACD), a combination of both or other causes of anemia within the study groups (”no IDE” and ”IDE”) might be of interest for some readers, we used a modified version of an algorithm published by Skikne et al.34 (for details see Fig. S2, available as supporting information in the online version of this paper) to provide these numbers within the Appendix S1.

Statistical analysis

Because all analyzed parameters were not normally distributed (Shapiro-Wilk-test; p < 0.05 considered significant), data are given as medians (interquartile range [IQR], Q1–Q3). Accordingly, differences between two groups were tested with the Mann-Whitney U test (p <0.05 considered significant). To evaluate the analytical performance of iron status parameters to detect IDE, receiver operating characteristics (ROC) including area under the curve (AUCROC) and contingency tables were computed based on cutoffs listed in Clinical Definitions.

For direct comparison of noninvasive and reference ZnPP measurements (ZnPP-NI vs. ZnPP-HPLC), noninvasive values were scaled to the reference HPLC determination by a linear fit with zero offset (see Appendix S1 and Fig. S1, available as supporting information in the online version of this paper). For quantitative comparison of both methods, limits of agreement (LoAs) as well as absolute and relative biases were calculated using the robust τ-estimate of the differences between the two. The 95% confidence intervals (CIs) were calculated by bootstrapping. The LoAs were considered acceptable if they did not exceed the LoAs of repeated determinations of ZnPP by HPLC by more than 20%. All calculations were done with computer software (MATLAB R2014b, The MathWorks Inc.), with exception of the LoAs (95% CI), for which another software (R version 3.2.2, functions scaleTau2, boot, boot.ci) was used.

RESULTS

Initially, 649 patients undergoing major elective surgery were included, 65 of which were excluded because at least one measuring parameter was missing (n = 44), there were issues with the hardware or software of the noninvasive device (n = 14), the patient had received a blood transfusion less than 8 weeks before examination (n = 6), or for other reasons (n = 1; Fig. 1). The median age was 65 (IQR, 54–73; range, 18–91) years and 34.8% (n = 203) were female. Included patients were scheduled for cardiac (n = 260), general (n = 39), gynecologic (n = 2), hepatopancreatobiliary (n = 68), maxillofacial (n = 3), plastic (n = 14), rectal (n = 15), thoracic (n = 7), transplantation (n = 43), trauma (n = 5), upper gastrointestinal (n = 40), urological (n = 25), vascular (n = 31), or other (n = 32) surgery.

The LoAs between noninvasive and HPLC reference ZnPP measurements for n = 584 patients equaled 19.7 μmol/mol heme (95% CI, 18.0–21.3) with no bias (Fig. 2). For comparison, LoAs between ZnPP values of repeated HPLC measurements were 19.3 μmol/mol heme (95% CI, 17.8–20.6) for 583 patients with an absolute bias of −2.8 μmol/mol heme and a relative bias of −7.3% (for Bland-Altman plot see Fig. S3, available as supporting information in the online version of this paper). Hence, LoAs between noninvasive and HPLC reference ZnPP measurements were within the predefined acceptance criteria (23.2 μmol/mol heme = 1.2 × 19.3 μmol/mol heme).

In total, 447 patients were assigned to the no IDE group (no [n = 265] or only one [n = 182] parameter indicating IDE; Fig. 1), in which medians of RBC indices, iron status parameters, and inflammation markers did not exceed or fall below respective cutoff values (Table 1). Twelve of those with only one parameter indicating IDE had ferritin values less than 30 ng/mL. In contrast, medians of RBC indices (except for MCH and MCV) and iron status parameters in the IDE group (n = 137), exceeded or were below cutoff
Fig. 1. Flowchart showing the study population. Parameters (and cutoffs) used for multiparameter index test to detect IDE: transferrin saturation (<20%), soluble transferrin receptor (>4.4 mg/L in women, >5 mg/L in men), and ZnPP measured with HPLC (>40 \mu mol/mol heme). Patients were assigned to the no IDE group, if none or only one index parameter was positive or to the IDE group, if at least two index parameters were positive. IDE = iron-deficient erythropoiesis. *Blood sample likely contaminated, as it was taken through the same peripheral venous catheter previously used for intravenous iron supplementation.

Fig. 2. Bland–Altman plots for the comparison of ZnPP measured in blood samples using high-performance liquid chromatography (ZnPP-HPLC) and noninvasively by fluorescence analysis (ZnPP-NI). (A) gives the complete data set, (B) depicts a magnification of (A). Solid blue lines indicate robust limits of agreement (equaling 1.96 times of the robust SD). Bias (equal to zero) is indicated by blue dashed line. Acceptance criteria are shown in red and are defined as 1.2 times the robust limits of agreement of repeated ZnPP determinations by HPLC.
values, consistently indicating iron deficiency and IDE, respectively. The median of CRP (7.9 mg/dL; IQR, 2.0–18.4) also exceeded cutoff, indicating a higher prevalence of inflammation in this group. Ferritin values of both groups showed considerable overlap, whereas values of sTfR, ZnPP-HPLC, and ZnPP-NI allowed a slightly better visual separation (Fig. 3). For results of additional screening for anemia (and potential causes) within the study groups based on a modified version of an algorithm published elsewhere, see Table S1, available as supporting information in the online version of this paper.

Iron status parameters differed markedly regarding their analytical performance to detect IDE (Table 2). For the total population, overall analytical performance (inferred from AUCROC) declined from ZnPP-HPLC (0.95), to sTfR (0.92), to ZnPP-NI (0.90), to sTfR-F (0.89), to TSAT (0.87), and to ferritin (0.63; for ROC curves see Fig. S4, available as supporting information in the online version of this paper). Based on predefined cutoffs (see Clinical Definitions), ferritin revealed lowest sensitivity (51%) and specificity (72%). Highest specificities were achieved by sTfR (99%) and sTfR-F (95%), with both accompanied by low sensitivities (61% for both). Highest equally balanced sensitivity (94%) and specificity (87%) were achieved by ZnPP-HPLC. ZnPP-NI likewise revealed balanced values for sensitivity (81%) and specificity (84%). Computed optimal cutoff values for the
To evaluate potential effects of inflammation on iron status parameters, the study population was separated into four subgroups, based on sTfR levels and probability of inflammation inferred from CRP and IL-6 (Table 3). sTfR was explicitly chosen as differentiator for the state of erythropoiesis, as it is suggested to be the parameter least influenced by inflammation.23,34,35 Corroborating these findings, medians of sTfR in the group with normal sTfR differed only slightly between subgroups with (3.0 mg/L) and without inflammation (2.9 mg/L). For ZnPP-HPLC and ZnPP-NI, medians were lower in the subgroup with inflammation (1.8 and 2.1 mg/L) compared to the subgroup without (2.4 and 2.2 mg/L), although remaining within normal range (≤ 4.4 mg/L for women and ≤ 5 mg/L for men). Ferritin and TSAT displayed large differences, with ferritin levels being higher (201 ng/mL vs. 150 ng/mL) and TSAT being lower (20.0% vs. 24.1%) in the subgroup with inflammation. In the group with elevated sTfR, ferritin was again higher by approximately 50 ng/mL in the subgroup with inflammation (97 ng/mL vs. 49 ng/mL), whereas TSAT was again lower in this subgroup (10.8% vs. 11.7%). In the subgroup with inflammation, sTfR, ZnPP-HPLC, and ZnPP-NI were lower compared to the subgroup without. Aside from sTfR-F, differences between medians of iron status parameters in the larger group with sTfR normal (n = 496) were significant, whereas those in the smaller group with sTfR elevated (n = 88) were not. Additionally, for all iron status parameters besides sTfR, a smaller AUCROC for the detection

| TABLE 2. Analytical performance of iron status parameters to detect patients with IDE depending on the probability of copresence of inflammation |
|-----------------|---|---|---|---|---|---|
| | Ferritin | TSAT | sTfR-F | sTfR | ZnPP-HPLC | ZnPP-NI |
| All patients (n = 584) | | | | | | |
| Sens 51% | 89% | 61% | 61% | 94% | 81% |
| Spec 72% | 73% | 95% | 99% | 87% | 84% |
| PPV 36% | 51% | 80% | 94% | 69% | 61% |
| NPV 83% | 96% | 89% | 89% | 98% | 94% |
| False neg 67 | 15 | 54 | 54 | 8 | 26 |
| False pos 126 | 119 | 21 | 5 | 58 | 72 |
| True neg 321 | 328 | 426 | 442 | 389 | 375 |
| True pos 70 | 122 | 83 | 83 | 219 | 111 |
| AUCROC 0.63 | 0.88 | 0.89 | 0.92 | 0.90 | 0.90 |
| Cutoff 101 ng/mL | 19.0% | 1.7 | 3.8 mg/L | 40.0 μmol/mol heme | 39.6 μmol/mol heme |
| Patients without inflammation (n = 359) | | | | | | |
| Sens 59% | 84% | 68% | 60% | 95% | 83% |
| Spec 70% | 79% | 96% | 99% | 88% | 88% |
| PPV 30% | 46% | 77% | 95% | 63% | 59% |
| NPV 89% | 96% | 93% | 92% | 99% | 96% |
| False neg 26 | 10 | 20 | 25 | 3 | 11 |
| False pos 88 | 62 | 13 | 2 | 35 | 36 |
| True neg 208 | 234 | 283 | 294 | 261 | 260 |
| True pos 37 | 53 | 43 | 38 | 60 | 52 |
| AUCROC 0.68 | 0.87 | 0.90 | 0.92 | 0.96 | 0.91 |
| Cutoff 85 ng/mL | 19.8% | 2.1 | 3.4 mg/L | 40.0 μmol/mol heme | 39.4 μmol/mol heme |
| Patients with inflammation (n = 225) | | | | | | |
| Sens 45% | 93% | 54% | 61% | 93% | 80% |
| Spec 75% | 62% | 95% | 98% | 85% | 76% |
| PPV 46% | 55% | 83% | 94% | 75% | 62% |
| NPV 73% | 95% | 81% | 84% | 96% | 88% |
| False neg 41 | 5 | 34 | 29 | 5 | 15 |
| False pos 38 | 57 | 8 | 3 | 23 | 36 |
| True neg 113 | 94 | 143 | 148 | 128 | 115 |
| True pos 33 | 69 | 40 | 45 | 69 | 59 |
| AUCROC 0.61 | 0.86 | 0.88 | 0.92 | 0.94 | 0.86 |
| Cutoff 122 ng/mL | 17.1% | 1.8 | 4.0 mg/L | 40.0 μmol/mol heme | 40.1 μmol/mol heme |

Cutoff values used to compute sensitivity (sens), specificity (spec), positive predictive value (PPV), and negative predictive value (NPV) were ≤100 ng/mL for ferritin, ≤20% for TSAT, >4.4 mg/L for women and >5 mg/L for men for sTfR, >2.2 for women and >2.5 for men for sTfR-F, and ≥40 μmol/mol heme for ZnPP-HPLC and ZnPP-NI. Cutoffs for the patient group without inflammation were CRP ≤5 mg/dL and IL-6 ≤7 pg/mL, respectively. Cutoff values displayed in this table were computed using ROC analyses.

AUCROC = area under the curve receiver operating characteristics; IL-6 = interleukin-6; ROC = receiver operating characteristics; sTfR = soluble transferrin receptor; sTfR-F = soluble transferrin receptor-F index; TSAT = transferrin saturation; ZnPP-HPLC = high-performance liquid chromatography zinc protoporphyrin; ZnPP-NI = noninvasive zinc protoporphyrin.
of IDE is found in the group of patients with inflammation compared to the group without (Table 2).

DISCUSSION

In many surgical patients, anemia is associated with an impaired erythropoiesis due to iron deficiency, thus readily treatable if timely diagnosed. Data of this prospective multicenter study including 584 cardiac and noncardiac surgical patients demonstrate that a novel noninvasive technique to measure ZnPP allows detecting IDE with higher analytical performance compared to the frequently used iron status parameters ferritin and TSAT.

Of all investigated parameters, ferritin showed the poorest analytical performance in detecting IDE, for which there are likely several reasons. First, ferritin is not sensitive to IDE, as it reflects body iron stores. Hence, values below cutoff do not necessarily indicate IDE, as iron supply might still be adequate (e.g., through phagocytosis of old erythrocytes), potentially explaining the high number of patients with copresence of unspecific inflammation (39%), ferritin values might be falsely “normal” in many cases, potentially explaining the high number of 126 false-positive results for IDE. Second, due to its acute-phase reactant properties and (e.g., through phagocytosis of old erythrocytes), potentially affecting the routine use of sTfR due to analytical costs and the latter being an anti–acute-phase protein, both may affect TSAT values. Thus, although ferritin and TSAT are frequently recommended when screening for iron deficiency, diagnostic results might be affected by concomitant inflammation. A potential candidate to track erythropoetic iron demand independent from iron status is sTfR,34,35 This is supported by a good analytical performance even in the presence of inflammation observed here (AUCROC = 0.92 in patients with and without inflammation). The low sensitivity (61%) likely resulted from the diverging cutoffs recommended by the manufacturer (>4.4 mg/L women, >5 mg/L men) and optimal values computed by ROC analysis for the studied population (3.8 mg/L). Computing sTfR-F is suggested to further improve the analytical sensitivity,34,35 which was not observed here, however, likely due to the high number of ferritin values affected by inflammation. Despite good analytical results, hospitals may hesitate with the routine use of sTfR due to analytical costs (e.g., UKF = 14.57 €; USZ = 77.43 CHF) or different reference ranges of commercially available reagents.26

Another proxy for iron availability during erythropoiesis is ZnPP, primarily forming when iron supply to the erythron is insufficient or functionally impaired and divalent zinc instead of ferrous iron is incorporated into the heme scaffold.27–17 With changes in ZnPP becoming visible on the iron status—a fact that needs consideration when screening patients who recently received allogeneic blood, as donor ZnPP levels might affect measured values. Data presented here support the suggested good analytical performance of ZnPP to detect IDE, with ZnPP-HPLC yielding results at least equaling analytical performance of sTfR in the entire study population (AUCROC: ZnPP-HPLC = 0.95) as well as within the subgroup of patients suffering from inflammation (AUCROC ZnPP-HPLC = 0.94). Hitherto, ZnPP

TABLE 3. Iron status parameters in dependence on probability of inflammation

Parameter	sTfR normal (n = 496)	sTfR elevated (n = 88)	p value
	No inflammation	Inflammation	
	(n = 319)	(n = 177)	
Ferritin (ng/mL)	150 (79-266)	201 (94-358)	0.0034
TSAT (%)	24.1 (19.2-30.2)	20.0 (15.0-28.0)	<0.0001
sTfR-F	1.4 (1.0-1.7)	1.3 (1.0-1.8)	0.67
sTfR (mg/L)	2.9 (2.4-3.4)	3.0 (2.5-3.8)	0.02
ZnPP-HPLC (μmol/mol heme)	28.3 (21.5-36.3)	31.6 (23.9-42.6)	0.0011
ZnPP-NI (μmol/mol heme)	29.6 (23.3-36.1)	34.7 (26.1-45.0)	0.0004
CRP (mg/dL)	1.0 (1.0-2.2)	10.5 (6.5-24.0)	<0.0001
IL-6 (pg/mL)	3.0 (1.5-4.1)	12.9 (8.7-16.5)	<0.0001

Cutoffs for “sTfR normal” were ≤4.4 mg/L in women and ≤5 mg/L in men. Cutoffs for “no inflammation” were CRP ≤5 mg/dL and IL-6 ≤7 pg/mL, respectively. Results are median (IQR). In the patient group with normal sTfR values, Mann-Whitney U tests revealed significant differences in the medians of all parameters, expect the sTfR-F index, between the subgroup of patients with and without inflammation. In the group of patients with elevated sTfR values, there were no statistical differences for the medians of all parameters, expect for CRP and IL-6, between the subgroup of patients with and without inflammation. CRP = C-reactive protein; IL-6 = interleukin-6; sTfR = soluble transferrin receptor; sTfR-F = soluble transferrin receptor–F index; TSAT = transferrin saturation; ZnPP-HPLC = high-performance liquid chromatography zinc protoporphyrin; ZnPP-NI = noninvasive zinc protoporphyrin.
is rarely found in clinical routines, potentially because results of the most prevalent analytical technique (front-face fluorometry on a drop of blood) can be falsely increased by simultaneously detecting background signals of other fluorophores (e.g., bilirubin) if blood samples are measured unwashed.18,19 A novel analytical technique circumvents these issues by means of dual-wavelength excitation allowing the noninvasive quantification of ZnPP at the point of care without extensive laboratory equipment or blood sampling.20,21 An optical fiber probe illuminates the patient’s lower lip and acquires fluorescence emission intensity of erythrocyte bound ZnPP, based on which information on the erythropoietic iron supply is available within minutes.21 Corroborating previous findings, the LoAs between ZnPP-HPLC reference measurements in blood and ZnPP-NI in the more heterogeneous collective studied here (19.7 μmol/mol heme) equaled results of the group of postpartum women of a previous study (19.0 μmol/mol heme).21 Analytical performance of ZnPP-NI (AUCROC = 0.90) in detecting IDE compared well to standard iron status parameters measured in blood (AUCROC of ZnPP-HPLC = 0.95; sTfR = 0.92; sTfR-F = 0.89; TSAT = 0.87; ferritin = 0.62). When analysis was focused on patients with high probability of inflammation, analytical performance of ZnPP-NI to detect IDE remained good (AUCROC = 0.86). However, in iron-replete patients (based on sTfR), ZnPP-NI values were increased in the subgroup with higher probability of inflammation (34.7 vs. 29.6 μmol/mol heme, p <0.05; Table 3). This might partly be explained by ZnPP not only being increased by absolute iron deficiency but also by impaired iron bioavailability during ACD, including chronic inflammation.13 With differences between both subgroups being relatively small and both medians remaining below cutoff, however, a major impact of chronic inflammatory disorders on the measured ZnPP-NI in the studied cohort seems rather unlikely. In iron-replete patients, raised ZnPP values can also result from lead exposure or genetic/acquired disorders including myelodysplastic syndrome,36 α- and β-thalassemia traits,38 hemoglobinopathies, porphyrias, and sideroblastic/inherited microcytic anemias,21 with strongly varying prevalence depending on the patient group in focus. When these diagnoses are known, other, less affected iron status parameters should be consulted. Especially in populations with patients from Africa, the Mediterranean, and Southeast Asia, mild and undiagnosed hemoglobinopathies should be considered.

To minimize risk of potential misdiagnosis due to slightly elevated values when using ZnPP-NI as initial screening parameter for IDE (e.g., as part of preoperative anemia management programs) we suggest a transition zone, in which ZnPP-NI diagnoses are largely indefinite and should thus be verified by other parameters (TSAT and sTfR). The lower limit of this transition zone (40 μmol/mol heme) represents the mean cutoff calculated by ROC analysis (corresponding well with the literature12,13,16,30). A reasonable definition of the upper limit is 65 μmol/mol heme, including more than 95% of false-positive identified patients in the transition zone. Values outside of the transition zone are either indicative for IDE unlikely (≤40 μmol/mol heme) or IDE likely (≥65 μmol/mol heme). When putting this algorithm to a test in the heterogeneous study population, diagnoses based on noninvasive ZnPP values outside the transition zone were largely corroborated by results of the multiparameter index test (Fig. 4). In fact, of the 401 patients with ZnPP-NI of 40 μmol/mol heme or less, 94% (n = 375) were likewise diagnosed as not suffering from IDE by the multiparameter index test (i.e., part of the “no IDE” group), whereas for the 47 patients with ZnPP-NI of 65 μmol/mol heme or greater, 96% (n = 45) were likewise classified as suffering from IDE (IDE group). That implies that in 77% (n = 448) of the study population, additional blood drawings and laboratory work to diagnose IDE might have been unnecessary, as largely coinciding results can be achieved noninvasively, quicker, and at the point of care. ZnPP-NI values in the transition zone (>40 and <65 μmol/mol heme, n = 136; 23%) were clearly indefinite regarding IDE (no IDE, n = 70; 51% vs. IDE, n = 66; 49%, following multiparameter test) and should thus be verified by other parameters (TSAT and sTfR). We furthermore emphasize that when treatment is provided for IDE diagnosed by ZnPP-NI, potential confounding factors must be excluded.

This study has some limitations that should be mentioned. First, patients who received iron supplementation less than 8 weeks before examination were not excluded. With iron status parameters naturally changing following iron supplementation and some responding earlier than others, this might have affected the presented results. With the low number of patients potentially affected by intravenous iron supplementation (UKF = 6; USZ = 16), the impact on the overall cohort is presumably small. Second, no details on comorbidities or chronic underlying diseases besides inflammation are provided. Third, no in-depth differential diagnosis of patients suffering from IDA or ACD was performed for the study population, which is part of an optimal patient blood management. Fourth, the suggested IDE screening algorithm was tested on the same population used for its compilation and not on an independent validation cohort. Hence, future studies should test if the cutoffs suggested in the algorithm remain valid in other populations.

In conclusion, ZnPP-NI measurements allowed for detecting IDE in a large cohort of surgical patients. Analytical performance with and without concomitant inflammation was higher compared to the frequently used parameters ferritin and TSAT measured in blood. Contrasting traditional parameters, the novel technique provides point of care information on the erythropoiesis within minutes without the need for blood sampling and laboratory analyses. An additional advantage of the new technique is the low associated costs per measurement, as only a disposable plastic cover employed for hygienic reasons with manufacturing costs less than US$1 is needed, but no
chemicals or biologic assays. Hence, if other causes of increased values either have a low prevalence in the population in focus or can be excluded (e.g., via patient history), ZnPP-NI measurements seem well suited as an initial screening parameter for IDE. Potential fields of application might be the routine screening of surgical patients as part of patient blood management programs, out-of-hospital medical offices, or resource-limited settings.

ACKNOWLEDGMENTS

The authors thank Frank Zierfuß of the Central Laboratory at the University Hospital Frankfurt for realizing the blood measurements as well as for providing information on the analytical machinery in use at the UKF. The authors also thank Sabine Isik for her help in recruiting patients at the University Hospital Frankfurt. CF, PS, KZ, SC, ES, GHe, CH, HS, GHS, PM, and DRS designed the study and, based on input of all authors, wrote and revised the manuscript. All authors approved the final version of the manuscript. PG, CT, and SL recruited patients, performed noninvasive measurements and acquired data at the UKF; PS, GHS, AK, and AS recruited patients, performed noninvasive measurements, and acquired data at the USZ. CH, GHe, and HS developed the noninvasive ZnPP measuring device and provided service during the study. CH and GHe performed all statistical analyses. GHi realized blood measurements at the UKF.

CONFLICT OF INTEREST

PG, CT, SL, SC, ES, GHi, GHS, AK, and AS have disclosed no conflicts of interest. CF received honoraria for scientific lectures from Vifor Pharma. PS received honoraria for lecturing by Vifor Pharma (Munich, Germany). CH and GHe are cofounders of the start-up company FerroSens GmbH, which aims at commercializing the noninvasive iron deficiency detection technology. CH, GHe, and HS are applicants and coinventors of a pending patent PCT/EP2016/053389 “Apparatus and method for fluorescence measurements on tissue for the determination of blood fluorophores” and equivalents in the United States, China, and the Philippines. CH, GHe, and HS received a grant from the German Federal Ministry for Economic Affairs and Energy (EXIST Forschungstransfer [grant number 03EFFBY109]). PM and KZ received grants from B. Braun Melsungen, CSL Behring, Fresenius Kabi, and Vifor Pharma for the implementation of Frankfurt’s Patient Blood Management program and honoraria for scientific lectures from B. Braun Melsungen, Vifor Pharma, Ferring, CSL Behring, and Pharmacosmos. The academic department of DRS is receiving grant support from the Swiss National Science Foundation, Berne, Switzerland; the Ministry of Health (Gesundheitsdirektion) of the Canton of Zurich, Switzerland, for Highly Specialized Medicine;
REFERENCES

1. Muñoz M, Gómez-Ramírez S, Campos A, et al. Pre-operative anaemia: prevalence, consequences and approaches to management. Blood Transfus 2015;13:370-9.

2. Jans Ø, Nielsen CS, Khan N, et al. Iron deficiency and preoperative anaemia in patients scheduled for elective hip- and knee arthroplasty – an observational study. Vox Sang 2018;113:260-7.

3. Muñoz M, Laso-Morales MJ, Gómez-Ramírez S, et al. Preoperative haemoglobin levels and iron status in a large multicentre cohort of patients undergoing major elective surgery. Anaesthesia 2017;72:826-34.

4. Baron DM, Hochreiser H, Posch M, et al. Preoperative anaemia is associated with poor clinical outcome in non-cardiac surgery patients. Br J Anaesth 2014;113:416-23.

5. Beattie WS, Karkouli K, Wijesundera DN, et al. Risk associated with preoperative anaemia in noncardiac surgery: a single-center cohort study. Anesthesiology 2009;110:574-81.

6. Musallam KM, Tamim HM, Richards T, et al. Preoperative anaemia and postoperative outcomes in non-cardiac surgery: a retrospective cohort study. Lancet 2011;378:1396-407.

7. Meybohm P, Goehring MH, Choorapokiyil S, et al. Feasibility and efficiency of a preoperative anaemia walk-in clinic: secondary data from a prospective observational trial. Br J Anaesth 2017;118:625-6.

8. Theusinger OM, Leyvraz PF, Schanz U, et al. Treatment of iron deficiency anaemia in orthopedic surgery with intravenous iron: efficacy and limits: a prospective study. Anesthesiology 2007;107:923-7.

9. Froessler B, Palm P, Weber I, et al. The important role for intravenous iron in perioperative patient blood management in major abdominal surgery: a randomized controlled trial. Ann Surg 2016;264:41-6.

10. Muñoz M, Gómez-Ramírez S, Cuenca J, et al. Very-short-term perioperative intravenous iron administration and postoperative outcome in major orthopedic surgery: a pooled analysis of observational data from 2547 patients. Transfusion 2014;54:289-99.

11. Althoff FC, Neb H, Herrmann E, et al. Multimodal patient blood management program based on a three-pillar strategy: a systematic review and meta-analysis. Ann Surg 2019;269:794-804.

12. Hastka J, Lasserre JJ, Schwarzbeck A, et al. Central role of zinc protoporphyrin in staging iron deficiency. Clin Chem 1994;40:768-73.

13. Hastka J, Lasserre JJ, Schwarzbeck A, et al. Zinc protoporphyrin in anemia of chronic disorders. Blood 1993;81:1200-4.

14. Labbé RF, Rettmer RL, Shah AG, et al. Zinc protoporphyrin. Past, present, and future. Ann N Y Acad Sci 1987;514:7-14.

15. Magge H, Sprinz P, Adams WG, et al. Zinc protoporphyrin and iron deficiency screening: trends and therapeutic response in an urban pediatric center. JAMA Pediatr 2013;167:361-7.

16. Metzgeroth G, Adelberger V, Dorn-Beineke A, et al. Soluble transferrin receptor and zinc protoporphyrin in anemia of chronic disorders. Blood 2003;81:1200-4.

17. Wong SS, Quitishat AS, Lange J, et al. Detection of iron-deficiency anemia in hospitalized patients by zinc protoporphyrin. Clin Chim Acta 2020;505:194-9.

18. Hastka J, Lasserre JJ, Schwarzbeck A, et al. Washing erythrocytes to remove interferents in measurements of zinc protoporphyrin by front-face hematofluorometry. Clin Chem 1992;38:2184-9.

19. Hinchliffe RF, Waddoups VR, Lenard L, et al. Observations on the measurement of zinc protoporphyrin in both whole blood and washed red cells in young children. Int J Lab Hematol 2010;32:375-9.

20. Hennig G, Gruber C, Vogeser M, et al. Dual-wavelength excitation for fluorescence-based quantification of zinc protoporphyrin IX and protoporphyrin IX in whole blood. J Biophotonics 2014;7:514-24.

21. Hennig G, Homann C, Teksan I, et al. Non-invasive detection of iron deficiency by fluorescence measurement of erythrocyte zinc protoporphyrin in the lip. Nat Commun 2016;7:10776.

22. Cook J, Skikne B, Lynch S, et al. Estimates of Iron Sufficiency in the US population. Blood 1986;68:726-31.
23. Worwood M. The laboratory assessment of iron status—an update. Clin Chim Acta 1997;259:3-23.
24. Mei Z, Flores-Ayala RC, Grummer-Strawn LM, et al. Is erythrocyte protoporphyrin a better single screening test for iron deficiency compared to hemoglobin or mean cell volume in children and women? Nutrients 2017;9:557.
25. WHO & CDC: assessing the iron status in populations. [cited 2019 Sept 3]. Available from: http://www.who.int/nutrition/publications/micronutrients/anaemia_iron_deficiency/9789241596107.pdf.
26. Labbé RF, Dewanjii A. Iron assessment tests: transferrin receptor vis-à-vis zinc protoporphyrin. Clin Biochem 2004;37:165-74.
27. Muñoz M, Acheson AG, Auerbach M, et al. International consensus statement on the peri-operative management of anaemia and iron deficiency. Anaesthesia 2017;72:233-47.
28. Kotzé A, Harris A, Baker C, et al. British Committee for Standards in Haematology Guidelines on the identification and management of pre-operative anaemia. Br J Haematol 2015;171:322-31.
29. German Society of Anaesthesiology and Intensive Care Medicine (DGAI). Diagnostics and therapie of preoperative anemia - S3 guideline. [cited 2019 Sept 3]. Available from: https://www.awmf.org/uploads/tx_szleitlinien/001-024l_S3_Praeoperative-Anaemie_2018-04.pdf.
30. Hastka J, Lasserre JJ, Schwarzbeck A, et al. Laboratory tests of iron status: correlation or common sense? Clin Chem 1996;42:718-24.
31. Mast AE, Blinder MA, Gronowski AM, et al. Clinical utility of the soluble transferrin receptor and comparison with serum ferritin in several populations. Clin Chem 1998;44:45-51.
32. Cappellini MD, Comin-Colet J, de Francisco A, et al. Iron deficiency across chronic inflammatory conditions: international expert opinion on definition, diagnosis, and management. Am J Hematol 2017;92:1068-78.
33. WHO. Haemoglobin concentrations for the diagnosis of anaemia and assessment of severity. [cited 2019 Sept 3]. Available from http://www.who.int/vmnis/indicators/haemoglobin.pdf.
34. Skikne BS, Punnonen K, Caldron PH, et al. Improved differential diagnosis of anemia of chronic disease and iron deficiency anemia: a prospective multicenter evaluation of soluble transferrin receptor and the sTfR/log ferritin index. Am J Hematol 2011;86:923-7.
35. Punnonen K, Iriala K, Rajamäki A. Serum transferrin receptor and its ratio to serum ferritin in the diagnosis of iron deficiency. Blood 1997;89:1052-7.
36. Nguyen LT, Buse JD, Baskin L, et al. Influence of diurnal variation and fasting on serum iron concentrations in a community-based population. Clin Biochem 2017;50:1237-42.
37. Szöke D, Panteghini M. Diagnostic value of transferrin. Clin Chim Acta 2012;413:1184-9.
38. Graham EA, Felgenhauer J, Detter JC, et al. Elevated zinc protoporphyrin associated with thalassemia trait and hemoglobin E. J Pediatr 1996;129:105-10.

SUPPORTING INFORMATION

Additional Supporting Information may be found in the online version of this article.

Appendix S1. Supplementary material.