Supporting information

A two-step Chemical Vapor Deposition process for the growth of continuous vertical heterostructure WSe$_2$/h-BN and its optical properties

M. Alahmadi, ab F. Mahvash,ac T. Szkopek and M. Siaj a *

aNanoQAM, Quebec Center for Functional Materials, Department of Chemistry, University of Quebec in Montreal, Succ CentreVille, CP8888, Montreal, Quebec H3C 3P8, Canada.
bDepartment of Chemistry, College of Science, Taibah University, Al-Madinah Al-Munawarah 41321, Saudi Arabia
cDepartment of Electrical and Computer Engineering, McGill University, Montréal, H3A 2A7, Quebec, Canada

E-mail: siaj.mohamed@uqam.ca

Figure S1. a) Large scale growth of hBN on quartz and SiO$_2$. b) Optical images of hBN on top of SiO$_2$/Si. c) energy dispersive X-ray (EDX) elemental mapping of Bron (B) and Nitrogen (N). d) SEM image of hBN on substrate.
TEM and SAED data:

Figure S2. a) TEM image of a suspended hBN monolayer edge over Cu foil. b) The selected area electron diffraction (SAED) pattern with the expected hexagonal lattice structure of hBN monolayer.

RAMAN mapping hBN/SiO$_2$:

Figure S3. a) Peak intensity map of E_{12g} (~1369 cm$^{-1}$) Raman mode of hBN film grown on top of SiO$_2$/Si substrate.
Figure 4S: XPS investigation of the WSe$_2$/hBN heterostructure. The XPS spectroscopic analysis of the WSe$_2$/hBN heterostructure shows (a) B 1s, (b) N 1s (c) W 4f, and (d) Se 1s.