Implementation of real-time energy management strategy based on reinforcement learning for hybrid electric vehicles and simulation validation

Zehui Kong, Yuan Zou*, Teng Liu

National Engineering Laboratory for Electric Vehicles, School of Mechanical Engineering, Institute of Technology, Beijing, China

* zouyuan@bit.edu.cn

Abstract

To further improve the fuel economy of series hybrid electric tracked vehicles, a reinforcement learning (RL)-based real-time energy management strategy is developed in this paper. In order to utilize the statistical characteristics of online driving schedule effectively, a recursive algorithm for the transition probability matrix (TPM) of power-request is derived. The reinforcement learning (RL) is applied to calculate and update the control policy at regular time, adapting to the varying driving conditions. A facing-forward powertrain model is built in detail, including the engine-generator model, battery model and vehicle dynamical model. The robustness and adaptability of real-time energy management strategy are validated through the comparison with the stationary control strategy based on initial transition probability matrix (TPM) generated from a long naturalistic driving cycle in the simulation. Results indicate that proposed method has better fuel economy than stationary one and is more effective in real-time control.

1. Introduction

The hybrid electric vehicles (HEVs) are booming rapidly as a solution to the depletion of fossil fuel and severe pollution of air condition. Due to the cooperation of a battery pack and the internal combustion engine, the vehicle powertrain allows the engine to avoid operating at low load with poor efficiency, and the fuel economy and emission can be improved significantly. However, the flexibility of power split also makes energy management problem more challenging.

Energy management strategy (EMS) plays a crucial role in trade-off among performance, fuel economy and emission of HEVs. Numerous studies have been conducted in the energy management of HEVs [1]. Generally, energy management strategies of HEVs are classified into rule-based and optimization-based control strategy [2,3]. The rule-based strategy is widely used in practice due to the straightforward implementation and high computation efficiency. Jalil proposed a rule-based energy management strategy to determine the power split between the engine and battery by setting thresholds [4]. Trovão presented a new rule-based energy
management strategy integrating meta-heuristic optimization for a multilevel EMS in an electric vehicle [5]. To further improve the performance of energy management system, an adaptive fuzzy logic controller was used to calibrate the operating points and key parameters to minimize the fuel consumption according to the driving cycles [6]. However, the performance of any rule-based strategy is highly dependent on the proper design of the control rules, which usually depends on the engineering experience. Therefore, many researchers make more efforts to optimization-based energy strategy.

With a prior knowledge of the driving cycles, dynamic programming (DP) receives a optimal result and determines the best fuel economy. However, the real-time and robust performance of this strategy cannot be guaranteed [7]. Instead, DP is implemented offline and served as a benchmark to explore the potential of fuel economy [8]. To make on-line optimization possible, equivalent consumption minimization strategy (ECMS) and model predictive control (MPC) have been adopted to develop energy management [9,10]. ECMS is calculated based on the assumption that the variation of SOC (state of charge of the battery) is negligible due to the slow dynamics compared to other dynamics in HEV [11]. The equivalence factor of ECMS has an important effect on the control performance. However, the optimal value should be determined offline according to a specific cycle [12]. MPC is a promising method for dynamic model due to the prediction ability in a finite future time-horizon. A MPC-based strategy is developed by predicting the road slope. The results show that the method not only maintains the battery SOC within its boundary, but also achieves better fuel economy [13]. A Pontryagin’s minimum principle (PMP) is used to find the optimal energy management strategy through combining the power prediction based on the traffic information, such as the maximum acceleration, average velocity and maximum velocity [14]. However, the performance of MPC depends on the prediction accuracy heavily, and varying weather conditions and driving styles make it difficult to guarantee the accuracy.

The exiting methods mostly considered a single objective to optimize, such as fuel consumption, while disregarding many other concerns. The convex multicriteria optimization approach was recently harnessed to optimize multiple objectives of plug-in hybrid electric vehicles, including the battery sizing, charging and on-road power management [15]. Ref. [16] studied the optimal tradeoff between the fuel-cell durability and hydrogen economy for a fuel-cell hybrid bus. Ref. [17] investigates the interactions among three control tasks, such as charging, on-road power management and battery degradation mitigation in smart grid environment, aiming to minimize the daily operational expense of a PHEV. A high-efficiency convex programming framework is harnessed to minimize daily CO₂ emissions through integrating renewable energy and system-level hybrid powertrain optimization [18].

Several novel algorithms for energy management of HEVs have been developed to realize online optimization for multiple types of HEVs, such as the game theory [19], stochastic dynamic programming (SDP) [20], and reinforcement learning (RL) [21]. Wang optimized the power management problem for a hybrid electric vehicle based on SDP algorithm. However, heavy computation burden makes it difficult to implement online [22]. In numerous areas, RL is a heuristic learning method. Ref. [23] applied RL in the energy management strategy for an electric hybrid tracked vehicle, and compared the performance of RL and SDP. The results indicate that RL algorithm has a better performance and a shorter computation time. However, the RL doesn’t update online and fails to maintain the optimal performance when the driving cycles vary.

This paper proposes a real-time energy management strategy for a small series hybrid electric tracked vehicle. A recursive algorithm is developed to compute the transition probability matrix (TPM) of power-request when the new statistical characteristics of online driving cycle are considered. RL algorithm is applied to obtain the optimal control policy based on updating TPM of power-request at the regular intervals. A facing-forward simulation model is
established to evaluate RL-based real-time energy management strategy through the comparison with RL-stationary control strategy. Simulation results show that the proposed method achieves better fuel economy than RL-stationary one and is feasible for real-time control.

2. Modelling of hybrid electric tracked vehicle

2.1 Vehicle configuration and parameters

The structure of the hybrid electric tracked vehicle is illustrated in Fig 1. An engine-generator-rectifier set (EGS) and a battery pack supply the electricity to dual motors, propelling the sprocket independently. The engine gives 50 kW maximum power and 93 Nm maximum torque within the speed range from 1200 r/min to 6200 r/min. The generator offers 107 Nm maximum torque within the speed range from 0 r/min to 6400 r/min and 40 kW maximum power. The 37.6 Ah lithium-ion phosphate battery pack gives 307 rated voltage. The essential parameters of the major sub-systems are listed in Table 1.

2.2 Vehicle and powertrain modelling

The vehicle is taken as a concentrated mass. The dynamical equation of the vehicle is expressed as

\[ma = F_{TR} - (mgsin\theta + mgf\cos\theta + C_dA\frac{v_{ave}^2}{21.15}) \]

where \(F_{TR} \) means the tractive force; \(m \) is the curb weight, and \(a \) is the vehicle acceleration; \(g \) represents the gravity acceleration; \(\theta \) means the road slope angle; \(f \) is the rolling resistance coefficient; \(A \) represents the front area of the vehicle; \(v_{ave} \) means the average speed of the two tracks and is determined by \(v_{ave} = (v_1 + v_2)/2 \); \(v_1, v_2 \) are the speed of the two tracks, respectively.

The demand power to propel the vehicle, denoted by \(P_{dem} \), is calculated by

\[
P_{dem} = F_{TR} \cdot v_{ave} + M \cdot \omega
\]

\[
M = \frac{1}{4} u_t mgL
\]

\[
u_t = \frac{u_{max}}{0.15R/B} \cdot (0.925 + 0.15R/B)^{-1}
\]

\[
R = \frac{v_{ave}}{\omega}
\]

\[
\omega = \frac{v_1 - v_2}{B}
\]

where \(P_{dem} \) consists of two parts, straight power and steering power. \(M \) is the resisting yaw moment; \(\omega \) represents the rotational speed; \(u_t \) is the lateral resistance coefficient; \(R \) is the turning radius; \(L \) is behalf of the contacting track width, and \(B \) means the tread of the vehicle; \(u_{max} \) is the maximum steering resistance coefficient with the radius of braking steering, \(R = B/2 \).

To analyze and evaluate the EGS’s fuel economy, the equivalent electric circuit is established in Fig 2, which consists of the diesel engine, permanent magnet generator, and rectifier. The output voltage and electromagnetic torque, \(U_g \) and \(T_g \) of the generator are determined as [24]

\[
\begin{align*}
U_g &= K_e \omega_g - K_x o_x I_g \\
T_g &= K_x I_g - K_r I_g^2
\end{align*}
\]

where \(\omega_g \) is the angular velocity; \(K_e \omega_g \) represents the electromotive force; \(K_x \) is the equivalent resistance coefficient and \(K_x = 3PLf/\pi; L^2 \) is the synchronous inductance of the armature, and \(P \) is the number of poles; \(I_g \) and \(U_g \) are the current and output voltage of the generator.
The fuel consumption of the vehicle is determined by the engine torque T_{eng} and speed n_{eng}. The speed of the engine is determined as follows.

\begin{equation}
\left\{ \begin{array}{l}
(J_{\text{eng}} + J_g) \frac{dn_g}{dt} = T_{\text{eng}} - T_g \\
n_{\text{eng}} = n_g
\end{array} \right.
\end{equation}

(4)

where n_g, n_{eng} denote the rotational speed of the generator and engine, respectively; J_{eng} and J_g are the moments of inertia for the engine and generator; T_{eng} is the torque of engine and T_g is the electromagnetic torque of the generator.

An internal-resistance model is used to reflect SOC dynamics as [25]

\begin{equation}
\left\{ \begin{array}{l}
d\text{SOC} \\
SOC_{\text{min}} \leq \text{SOC}(t) \leq SOC_{\text{max}}
\end{array} \right.
\end{equation}

(5)

where C_b is the battery capacity; I_b means the battery current which is calculated by

\begin{equation}
\left\{ \begin{array}{l}
I_b = \left(\frac{V_{\text{OC}} - \sqrt{V_{\text{OC}}^2 - 4R_{\text{int}}P_b}}{2R_{\text{int}}} \right) \\
I_{b,\text{min}} \leq I_b(t) \leq I_{b,\text{max}}
\end{array} \right.
\end{equation}

(6)

Symbol	Parameter Description	Value
m	Curb Weight	2500kg
r	Sprocket radius	0.15m
f	Rolling coefficient	0.05
A	Front area	0.7m2
C_D	Air drag coefficient	0.6
i_0	Ratio from motors to sprockets	41/6
B	Tread of the vehicle	1.1m
K_e	Electromotive force parameter	0.887V$_{aard}$
Kx	Equivalent resistance coefficient	0.00105NmA$^{-2}$
where V_{OC} is the open circuit voltage; R_{int} means the internal resistance of battery and P_b is the output power of the battery.

2.3 Optimal energy management problem formulation

Cost function is the trade-off of the fuel consumption and SOC variation, ensuring that the final SOC of battery stays at the same level of the initial value, expressed as follows

$$J = \int_{t_0}^{t_f} (fuel(t) + \beta(SOC(t) - SOC_{ref})^2) dt$$

where β represents the penalty factor, which is a positive weighting factor; $fuel$ is the fuel consumption at time t. The rate of flowing fuel mass $fuel(t)$ is determined by engine torque T_{eng} and rotational speed n_{eng} based on BSFC (braked specific fuel consumption) map, typically obtained through a bench test. The engine’s torque is used to regulate the power split between the EGS and battery to minimize the total fuel consumption.

3. Real-time energy management strategy

3.1 Online updating transition probability matrix (TPM)

The power-request of the vehicle is calculated according to the Eq (2). Using the maximum likelihood estimation and nearest method, the transition probability matrix of the power-request is described as

$$P_y = \frac{N_y}{N_o} = \frac{N_y(k)/k}{N_o(k)/k} = \frac{F_y(k)}{F_o(k)}$$

where N_y denotes the transition numbers from state x_i to state x_j, and N_o is the total transition numbers initiated from state x_i; k means the number of transition; F_y is the total frequency rate of transition event f_y from state x_i to state x_j and F_o is the frequency rate of transition event f_i.
implemented from state \(x_i, f_j(t) = 1 \) if a transition is occurred from \(x_i \) to \(x_j \) at time instant \(t; f_j(t) = 1 \) if there occurs a transition initiated from \(x_i \) at time instant \(t \), otherwise, these take zero values. Then \(\sum_{t=1}^{k} f_j(t) = N_y(k) \) and \(\sum_{t=1}^{k} f(t) = N_y(k) \). The frequency rate \(F_y \) and \(F_i \) are calculated as follows:

\[
\begin{align*}
F_y(k) &= \frac{N_y(k)}{k} = \frac{1}{k} \sum_{t=1}^{k} f_j(t) \\
F_i(k) &= \frac{N_i(k)}{k} = \frac{1}{k} \sum_{t=1}^{k} f(t)
\end{align*}
\]

and the recursive expressions are deduced [26].

\[
\begin{align*}
F_y(k) &= \frac{1}{k} \sum_{t=1}^{k} f_j(t) = \frac{1}{k} [(k - 1)F_y(k - 1) + f_j(k)] \\
&= F_y(k - 1) + \frac{1}{k} [f_j(k) - F_y(k - 1)] \\
F_i(k) &= \frac{1}{k} \sum_{t=1}^{k} f(t) = \frac{1}{k} [(k - 1)F_i(k - 1) + f(t)] \\
&= F_i(k - 1) + \frac{1}{k} [f(t) - F_i(k - 1)]
\end{align*}
\]

where \(1/k \) is replaced by a constant \(\psi \) ranging from 0 to 1, namely forgetting factor to determine the effective memory depth of historic driving cycle, and the forgetting factor \(\psi \) is set to be 0.01 in this paper.

By substituting the expression (10) into (8), the recursive algorithm of TPM is derived for online learning as follows:

\[
p_y = \frac{F_y(k)}{F_i(k)} = \frac{F_y(k - 1) + \psi f_j(k) - F_y(k - 1)}{F_i(k - 1) + \psi f(t) - F_i(k - 1)}
\]

3.2 RL-based real-time energy management strategy

The driving schedule is considered as a finite Markov decision process, which comprises a set of state variables \(s_t \in S = \{SOC(t), n_{eng}(t)\mid 0.6 \leq \text{SOC}(t) \leq 0.9, 0 \leq n_{eng}(t) \leq 6400\} \), a set of actions \(a_t \in A = \{T_{eng}(t)\mid 0 \leq T_{eng}(t) \leq 93\} \), a reward function \(r_t \in \text{Reward} = \{\text{fuel}(s_t, a_t)\} \).

Corresponding to the state \(s_t \) and action \(a_t \), the optimal value of the state \(s_t \) is defined as the expected finite discounted sum of the rewards, as follows [27]:

\[
V^*(s_t) = \min_{\pi} E(\sum_{t=t_0}^{T} \gamma^t r_t) = \min_{a_t} (r_t(s_t, a_t) + \gamma \sum_{s'_t \in S} p_{s_t, a_t, s'_t} V^*(s'_t)) \quad \forall s_t \in S
\]

where \(\pi \) is a control policy, \(\gamma \in [0, 1] \) is a discount factor; \(p \) means the probability of the occurrence of a transition from state \(s_t \) to \(s'_t \) under action \(a_t \). And the optimal control policy can be
decided by the function

\[\pi^*(s_t) = \arg \min_{a_t} \mathbb{E}[\sum_{t=0}^{\infty} \gamma^t r_t] = \arg \min_{a_t} (r_t(s_t, a_t) + \gamma \sum_{s' \in S} p_{s'_t|s_t, a_t} V^*(s')) \]

(13)

In addition, the Q value \(Q(s_t, a_t) \) and optimal value \(Q^* \) corresponding to state \(s_t \) and action \(a_t \) are defined as follows:

\[
\begin{align*}
Q(s_t, a_t) &= r_t(s_t, a_t) + \gamma \sum_{s' \in S} p_{s'_t|s_t, a_t} Q(s'_t, a'_t) \\
Q^*(s_t, a_t) &= r_t(s_t, a_t) + \gamma \sum_{s' \in S} p_{s'_t|s_t, a_t} \min_{a'_t} Q(s'_t, a'_t)
\end{align*}
\]

(14)

Finally, the updating rule of Q-learning and optimal control strategy are defined as [28, 29]:

\[
\begin{align*}
Q(s_t, a_t) &= Q(s_t, a_t) + \alpha (r_t + \gamma \min_{a'_t} Q(s'_t + a'_t) - Q(s_t, a_t)) \\
\pi^*(s_t) &= \arg \min_{a_t} Q^*(s_t, a_t)
\end{align*}
\]

(15)

where \(\gamma \in [0, 1] \), \(\alpha \in [0, 1] \) are respectively discount factor and decayed factor in Q-learning. The computational flowchart of RL is listed in the pseud code format as shown in Fig 3.

Through adopting Q-learning algorithm above, the stationary control policy is derived based on initial TPM generated from a long naturalistic driving cycle as shown in Fig 4. This paper proposes a real-time energy management strategy, aiming at improving the adaptability to change of power-request characteristics. Firstly, the updating TPM of power-request is acquired according to Eq (11) in real-time. Then at set intervals, the control policy is

Initialize \(Q(s, a) \) arbitrarily

Repeat (for each episode):

Initialize \(s \)

Repeat (for each step of episode)

Choose \(a \) from \(s \) using policy derived from \(Q \) (\(\varepsilon \)-greedy)

Take action \(a \), observe \(r, s' \)

\[
Q(s, a) = Q(s, a) + \alpha \left(r + \gamma \min_{a'} Q(s' + a') - Q(s, a) \right)
\]

\(s = s' \)

until \(s \) is terminal

Fig 3. The pseud code of Q-learning.

https://doi.org/10.1371/journal.pone.0180491.g003
recalculated by using Q-learning algorithm, adapting the controller to the varying driving schedules. Table 2 lists the fuel consumption and calculation time in cases of choosing different time interval. The results show that the fuel consumptions have no big difference, with 50 s, 100 s, 200 s and 300 s selected as the time interval. When fuel consumptions are similar, the case of longer time interval can reduce the updating number of control policy and calculation time. Therefore, the time interval of updating control policy is set to be 300 s in this paper. And the design process of the real-time energy management strategy is depicted in Fig 5.

4. Simulation and validation

The simplified electric coupling model of powertrain for hybrid electric tracked vehicle is given in Fig 6, where the power provided from EGS and battery should keep balance with the power-request of two driving motors. Based on the electric coupling model and powertrain model in Section 2, a facing-forward detailed model for the hybrid electric tracked vehicle is established in the Simulink environment, consisting of the engine-generator model, power battery pack, two motors, vehicle dynamic model and controller as shown in Fig 7. The proportional-integral driver model is adopted to adjust the toques of both motors to follow the target driving cycles. The controller determines the throttle according to the control map obtained through RL algorithm when the states of vehicle feedbacks to the controller. The RL-based real-time energy management strategy and stationary energy management strategy are applied into the facing-forward simulation model for the same driving cycle, respectively. The control map remains unchanged in the case of stationary strategy while the control map is updated every 300s in the case of real-time strategy. The initial values of the state variables \(n_g \) and \(\text{SOC} \) are taken as 1200 rpm and 0.75, respectively.

Fig 8 shows the experimental driving schedule used in the simulation to validate the proposed method. The SOC trajectories and power split between EGS and battery for the experimental driving schedule are illustrated in Fig 9 and Fig 10. Final SOC of two methods were

Time interval (s)	Fuel consumption (g)	Relative increase	Calculation time (h)	Updating number
50	430.2	—	9.5	19
100	430.8	0.1%	4.5	9
200	432.0	0.4%	2	4
300	432.5	0.5%	1.5	3
400	445.8	3.6%	1	2

https://doi.org/10.1371/journal.pone.0180491.t002

Fig 4. A long naturalistic driving cycle.

https://doi.org/10.1371/journal.pone.0180491.g004
close to initial SOC value due to the final constraints for SOC value. During the first 300 seconds, two control strategies are based on the same TPM, so SOC trajectories change almost in the same way. However, when the driving condition changes, the control policy is recalculated at 300 s for real-time control strategy. And the same process is triggered at 600 s and 900 s. Similarly, the power split changes correspondingly as shown in Fig 10. For the sake of eliminating the influence of the deviation between the final SOC on fuel consumption, an SOC-correction method [30] is utilized to compensate for the fuel consumption. Table 3 shows the fuel consumption of two methods after SOC correction. The fuel consumption of RL-based real-time strategy is 6% lower than that of stationary strategy. Fig 11 depicts the working points of
the engine for the experimental driving schedule. There are more points in the optimal fuel consumption area in the real-time strategy than that of stationary one.

To further explore the adaptability and robustness of RL-based real-time strategy, the same procedure is performed for the validation driving schedule in the field test (shown in Fig 12). The SOC trajectories and working points of engine are shown in Fig 13 and Fig 14. Because of the constraint for SOC value, the final SOC values are close to the initial SOC value. Table 4 lists the fuel consumption after SOC correction. Due to utilizing the newest characteristics of driving schedule, the RL-based real-time control strategy can reduce about 8% fuel consumption than stationary one. The reason why the fuel improvement is bigger in the later simulation
than the former is that the driving condition during the whole validation driving schedule is similar, as presented in Fig 12, and the control policy based on updating TPM at 600 s has already included the statistical information of whole driving schedule. The results suggest that the real-time control strategy has a good performance of robustness and enable to adapt to different driving cycles better.

The three different driving schedules were adopted to validate the robustness of the RL-based real-time energy management strategy again, as shown in Fig 15. Table 5 lists the fuel consumption after SOC-correction. The real-time method, which utilizes the newest driving characteristics, gives superior fuel economy to the stationary one.

5. Conclusion

This paper proposes a real-time energy management strategy based on reinforcement learning for a hybrid electric tracked vehicle. A recursive algorithm for the transition probability matrix...
(TPM) is developed to make use of new statistical characteristics of online driving schedule. Based on the updating transition probability matrix (TPM), the control policy is calculated and updated at regular intervals to adapt to different driving conditions. A detailed facing-forward simulation model including the engine-generator model, battery model and vehicle

Algorithms	Fuel consumption(g)	Relative increase	Final SOC
RL online	430.856	—	0.7497
Stationary	456.707	6%	0.7522

Fig 11. Working points of the engine.

Fig 12. The validation driving schedule.
Fig 13. SOC trajectories for the validation driving schedule.

https://doi.org/10.1371/journal.pone.0180491.g013

Fig 14. Working points of the engine.

https://doi.org/10.1371/journal.pone.0180491.g014

Table 4. Fuel consumption for the validation driving schedule.

Algorithms	Fuel consumption(g)	Relative increase	Final SOC
RL online	584.275	—	0.7526
Stationary	635.865	8%	0.7493

https://doi.org/10.1371/journal.pone.0180491.t004
A dynamical model is built. In order to validate the effectiveness and adaptability of real-time control policy, the simulation for two driving schedules are operated. The results indicate that real-time energy management strategy has a superior fuel economy than stationary one, and is more effective in real-time control requirement.

Supporting information

S1 Dataset. The data for long naturalistic driving schedule. (MAT)

S2 Dataset. The data for experimental driving schedule. (MAT)

S3 Dataset. The data for validation driving schedule. (MAT)
S4 Dataset. The data for another three driving schedules.

(RAR)

Acknowledgments
This work was supported by the National Nature Science Foundation of China (Grant 51375044), University Talent Introduction 111 Project (B12022), and Defense Basic Research Project (B20132010).

Author Contributions
Conceptualization: ZHK YZ TL.
Funding acquisition: YZ.
Methodology: ZHK YZ TL.
Project administration: ZHK YZ.
Software: ZHK YZ TL.
Supervision: ZHK YZ.
Validation: ZHK YZ TL.
Visualization: ZHK YZ.
Writing – original draft: ZHK YZ.
Writing – review & editing: ZHK YZ.

References
1. Castaings A, Lhomme W, Trigui R, Bouscayrol A. Comparison of energy management strategies of a battery/supercapacitors system for electric vehicle under real-time constraints. Appl Energy. 2016; 163:190–200.
2. Panday A, Bansal HO. A Review of Optimal Energy Management Strategies for Hybrid Electric Vehicle. Int J Vehicular Technol. 2014; 2014:1–19.
3. Hou C, Ouyang M, Xu L, Wang H. Approximate Pontryagin’s minimum principle applied to the energy management of plug-in hybrid electric vehicles. Appl Energy. 2014; 115:174–189
4. Jalil N, Kheir NA, Salman M. A rule-based energy management strategy for a series hybrid vehicle. In: Proceedings of the 1997 American Control Conference (Cat. No.97CH36041); 1997; 1:689–693.
5. Trovão JP, Pereirinha PG, Jorge HM, Antunes CH. A multi-level energy management system for multi-source electric vehicles–An integrated rule-based meta-heuristic approach. Appl Energy. 2013; 105:304–318.
6. John R. I., Hissel D. A survey-based type-2 fuzzy logic system for energy management in hybrid electrical vehicles. Inf Sci. 2012; 190(3):192–207.
7. Lin CC, Peng H, Grizzle JW, Kang JM. Power management strategy for a parallel hybrid electric truck. IEEE Trans Control Syst Technol. 2003; 11(6):839–849.
8. Delprat S, Lauber J, Guerra TM, Rimaux J. Control of a parallel hybrid powertrain: Optimal control. IEEE Trans Vehicular Technol. 2004; 53(3):872–881.
9. Bassam A., Phillips A., Turnock S., Wilson P. An improved energy management strategy for a hybrid fuel cell/battery passenger vessel. Int J Hydrogen Energy, 2016 Aug. https://doi.org/10.1016/j.ijhydene.2016.08.049
10. Xiang C. L., Feng D., Wang W. D., He W., Qi Y. L. MPC-based energy management with adaptive Markov-chain prediction for a dual-mode hybrid electric vehicle. Sci China Technol Sci, 2017:1–12.
11. Hemi H, Ghouili J, Cheriti A. A real time energy management for electrical vehicle using combination of rule-based and ECMS. IEEE Electrical Power Energy Conf (EPEC) 2014; p. 1–6.
12. Zhang P, Yan F, Du C. A comprehensive analysis of energy management strategies for hybrid electric vehicles based on bibliometrics. Renewable Sustainable Energy Rev. 2015; 48:88–104.
13. Zeng X, Wang J. A Parallel Hybrid Electric Vehicle Energy Management Strategy Using Stochastic Model Predictive Control With Road Grade Preview. IEEE Trans Control Syst Technol. 2015; 23 (6):2416–2423.
14. Feng T, Yang L, Gu Q, Hu Y, Yan T, Yan B. A Supervisory Control Strategy for Plug-In Hybrid Electric Vehicles Based on Energy Demand Prediction and Route Preview. IEEE Trans Vehicular Technol. 2015; 64(5):1691–1700.
15. Hu X., Moura S. J., Murgovski N., Bo E., Cao D. Integrated Optimization of Battery Sizing, Charging, and Power Management in Plug-In Hybrid Electric Vehicles. IEEE Trans Control Syst Technol. 2016; 24(3):1036–1043.
16. Hu X., Jiang J., Bo E., Cao D. Advanced Power-Source Integration in Hybrid Electric Vehicles: Multicriteria Optimization Approach. IEEE Trans Ind Electron. 2015; 62(12):7847–7858.
17. Hu X, Martinez C M, Yang Y. Charging, power management, and battery degradation mitigation in plug-in hybrid electric vehicles: A unified cost-optimal approach. Mech Syst Signal Process. 2017; 87:4–16.
18. Hu X, Zou Y, Yang Y. Greener plug-in hybrid electric vehicles incorporating renewable energy and rapid system optimization. Energy. 2016; 111:971–980.
19. Yin H, Zhao C, Li M, Ma C, Chow M. A Game Theory Approach to Energy Management of An Engine-Generator/Battery/Ultracapacitor Hybrid Energy System. IEEE Trans Industr Inform. 2016; 63(7):4266–4277.
20. Li L, Yan B, Yang C, Zhang Y, Chen Z, Jiang G. Application-Oriented Stochastic Energy Management for Plug-in Hybrid Electric Bus With AMT. IEEE Trans Vehicular Technol.2016; 65(6):4459–4470.
21. Lin X, Wang Y, Bogdan P, Chang N, Pedram M. Reinforcement Learning Based Power Management for Hybrid Electric Vehicles. I CCAD IEEE ACM Int Conf Comput Aided Des. 2014; p. 32–38.
22. Wang Y, Sun Z. SDP-based Extremum Seeking Energy Management Strategy for a Power-Split Hybrid Electric Vehicle. In: Proc Am Control Conf. 2012; p. 553–558.
23. Liu T, Zou Y, Liu D, Sun F. Reinforcement Learning of Adaptive Energy Management With Transition Probability for a Hybrid Electric Tracked Vehicle. IEEE Trans Ind Electron. 2015; 62(12):7837–7846.
24. Ryan MJ, Lorenz RD. A ‘power-mapping’ variable-speed control technique for a constant-frequency conversion system powered by a IC engine and PM generator. IEEE Ind Appl Soc. 2002; 4: 2376–2382.
25. Plett GL. Extended Kalman filtering for battery management systems of LiPB-based HEV battery packs —Part 2. Modeling and identification. J Power Sources. 2004; 134(2):262–276.
26. Filev DP, Kolmanovskiy I. Generalized Markov Models for Real-Time Modeling of Continuous Systems. IEEE Trans Fuzzy Syst. 2014; 22(4):983–998
27. Liu C, Murphey Y L. Power management for Plug-in Hybrid Electric Vehicles using Reinforcement Learning with trip information. IEEE Trans Electrification Conf Expo. 2014:1–6.
28. Fang, Y., Song, C., Xia, B., Song, Q. An energy management strategy for hybrid electric bus based on reinforcement learning. IEEE Conf Decis Contro 2015:4973–4977.
29. Qi X, Wu G, Boriboonsomsin K, Barth MJ. A Novel Blended Real-time Energy Management Strategy for Plug Hybrid Electric Vehicle Commute Trips. IEEE Int Conf Intell Trans Syst; 2015. p. 1002–1007.
30. Barillas J. K., Li J., Günther C., Danzer M. A. A comparative study and validation of state estimation algorithms for Li-ion batteries in battery management systems. Appl Energy 2015; 155:455–462.