Achillea eriophora DC.: An ethnobotanical, pharmacological and phytochemical review
Toktam Mohammadi, Atefeh Pirani, Hamid Moazzeni and Jamil Vaezi

Review

Abstract

Background: Achillea eriophora DC. (Asteraceae) is a less-known medicinal plant endemic to South and East Iran. It is traditionally used for treating a variety of health problems by local people. This review aims to provide up-to-date information on A. eriophora, including its traditional uses, phytochemistry, and pharmacological properties, in exploring future therapeutic and scientific potentials.

Methods: The information on ethnobotany, phytochemistry, and pharmacological aspects of A. eriophora was collected from the scientific literature databases, Iranian Pharmacopoeia, published books, Ph.D. and MS dissertations.

Results: Achillea eriophora is traditionally considered to have antipyretic, diuretic, and carminative effects. It is also used to treat digestive problems, diarrhea, fever, diabetes, bone pain, wounds, and insect bite. It has considerable pharmacological properties, including antimicrobial, hypotensive, wound healing, and antioxidant. A total of 128 compounds such as terpenes, sesquiterpenes, alcohols, esters, and phenols have been isolated from this species. Its major chemical components are 1,8-cineole and camphor.

Conclusions: The high number of isolated constituents signify considerable pharmacological properties of Achillea eriophora. The present pharmacological investigations of this plant are limited and often lack exact information on active compounds and their mechanisms of action. Most of the medicinal properties attributed to A. eriophora, such as healing digestive disorders, fever, and diabetes have not yet been investigated and proven under a scientific study. This highlights the importance of A. eriophora as a valuable candidate for future studies on medicinal plants. Due to its wide range of traditional uses, the whole plant parts of A. eriophora, including roots, are harvested by local communities. Therefore, a conservation planning for this threatened species is needed.

Keywords: Achillea, Asteraceae, digestive disorders, ethnobotany, Iran, phytochemistry, pharmacology

Correspondence

Toktam Mohammadi¹, Atefeh Pirani¹²*, Hamid Moazzeni², Jamil Vaezi¹

¹Department of Biology, Faculty of Sciences, Ferdowsi University of Mashhad, Mashhad, Iran
²Herbarium FUMH, Department of Botany, Research Center for Plant Sciences, Ferdowsi University of Mashhad, Mashhad, Iran

*Corresponding Author: apirani@um.ac.ir

Ethnobotany Research & Applications 21:03 (2021)

Background

The family Asteraceae includes a considerable number of genera traditionally used as herbal medicines (Saeidnia et al. 2011, Suntar 2014). Achillea L. is among the large genera of Asteraceae, best known for its nice fragrant smell (Misra & Misra 2017) and medicinal properties. It is distributed throughout the Mediterranean region and Eurasia. Achillea species inhabit various natural ecosystems, including deserts (A. tomentosa L., A. micrantha Willd.), wetland habitats (A. ageratum L., A. impatiens L., A. pyrenaica Sibth, ex Godr.), seashore (A. millefolium L.) and the sub-nival zone of high mountains (A. clusiana Tausch) (Ehrendorfer & Guo 2006, Misra & Misra 2017, Tutin et al. 1976). A high number of Achillea species are endemics restricted to certain geographical ranges (A. aucheri Boiss., A. eriophora DC., and A. pachycephala Rech.f. which
Achillea eriophora is endemic to the south and east of Iran. This species belongs to the Irano-Turanian and Sahara-Sindian floristic regions. It inhabits altitudinal ranges of 700 to 2000 m in Fars, Hormozgan, Khorassan, Khuzestan, Sistan and Baluchestan, and Yazd provinces (Fig. 1). Achillea eriophora is a perennial herb with woody branches at the base covered with dense woolly hairs. The stem is 25-55 cm high. Leaves are linear, pinnatipartite. The inflorescence is a dense corymb. Capitulescences are yellow, trilobate; disc flowers 4-9, 3-3.5 mm long (Fig. 2) (Mozaffarian 2008, Rechinger 1986). The flowering period of A. eriophora is from May to June (Ghahraman 1989). It prefers warm and sunny habitats (Ghani et al. 2008). Ploidy level of A. eriophora has been recorded as diploid (2n = 2x = 18) (Sheidai et al. 2009).

The genus Achillea is named after Achilles, the Greek hero of the Trojan War, as he used the leaves of Achillea to check the bloodstream and treat the wounds of his soldiers (Applequist & Moerman 2011, Chandler et al. 1982, Harvey 1982, Iranshahr 2007). The specific epithet “eriophora” comes from Greek origin. The prefix erio- in Greek means wool and the suffix -phorum or -phorus means carrying. So, “eriophorus” means wool-bearing (Stearn 2004), which refers to the tomentose-lanate appearance of A. eriophora.
Figure 1. Distribution map of *A. eriophora* (in red) and *A. santolinoides* subsp. *wilhelmsii* (in black) in Iran.

Figure 2. A-B: *Achillea eriophora*, A. habit, B. inflorescence. C-E. *A. santolinoides* subsp. *wilhelmsii*, C-D. habit. E. inflorescence.
Different species of Achillea are commonly called Bumadaran (bu mo daeæn) in Persian (Moein et al. 2015, Sadat-Hosseini et al. 2017, Zargari 1996). Achillea eriophora is known as Bumadaran-e Jonoubi, Bumadaran-e Shiraz or Sarzardou (Mozaffarian 1996), Berenjasf (Safa et al. 2013), Bozhana (Azizi & Keshavarzi 2015), Zanboul and/or Zamboul (Maleki & Akhani 2018) in different parts of South Iran. Moreover, People in Birjand and its adjacent villages (South Khorassan province), call Achillea eriophora as ‘Kalpoure’. Interestingly, ‘Kalpoure’ is used as the common name for Teucrium polium L. (Lamiaceae) in most parts of Iran. Although T. polium is a well-known medicinal plant, it is absent in South Khorassan province. The identical common name for these two species might have arisen from the similarity of their local uses (Mohammadi et al., in prep.). Table 1 lists all local names documented for A. eriophora.

Table 1. Vernacular names of Achillea eriophora in Iran.

Province/Area	Vernacular name(s)	Reference(s)
Kerman, Sirjan	Bumadaran	(Sharififar et al. 2011)
Bushehr, Helhe River	Sar-berenasf (berenjasf)	(Rastegar et al. 2012)
Hormozgan	Benjeraskas, Berenjasf, Sarzardu	(Safa et al. 2013)
North-east watershed of Persian Gulf	Bimadaroun	(Dolatkhahi & Nabipour 2014)
Kerman, Baft	Bumadaran-e-jonoubi, Berenjasf	(Mehrabani et al. 2014)
Kerman, Joupar	Bumadaran	(Sharififar et al. 2014)
Western Azerbaijan, Sarsasht	Bozhana	(Azizi & Keshavarzi 2015)
Fars, Darab	Bumadaran	(Moein et al. 2015)
Kerman, Khab and Rouchon region	Bumadaran	(Mohamadi et al. 2015)
Bushehr, Southwest Mand mountain	Sar-berenasf	(Lavari et al. 2017)
South of Kerman	Bumadaran	(Sadat-Hosseini et al. 2017)
Fars, Jahrom	Bumadaran-e Gol Sefidoo	(Khajoei Nasab & Esmaillpour 2018)
Sistan and Baluchestan, Mountain	Zanboul and/or Zamboul	(Maleki & Akhani 2018)
Taftan	Kalpoure	(Unpublished data, Mohammadi et al.)

Achillea eriophora is mostly misidentified with A. santolínoides subsp. wilhelmsii by local people. Achillea eriophora occurs only in Iran, while the latter has a broader distribution area ranging from North Africa and East Mediterranean to central Asia (POWO, 2019). Distribution ranges of A. eriophora and A. santolínoides subsp. wilhelmsii overlap in south of Iran (Fig. 1). They also have morphological similarities. Therefore, the local inhabitants of South Iran mostly attribute the same common name (Bumadaran, Berenjasf; see Table 1) to both species. Due to the nominal and morphological similarities between A. santolínoides subsp. wilhelmsii and A. eriophora (Fig. 2), and co-occurrence of both species in several parts of South Iran, local people usually do not distinguish between them and use both species for common purposes. Only practiced traditional healers recognize them as separate. This uncertainty has partly led A. eriophora to be underestimated by recent literature.

Traditional medicine and ethnobotany

The aerial part of Achillea eriophora (stem, leaf and flower) is considered as diuretic and antipyretic, and best known for healing digestive disorders in Iranian traditional medicine (Amin 1991). In the recent decade, a few numbers of ethnobotanical studies have been conducted in South Iran documenting new aspects of medicinal usage of A. eriophora. The results of these studies are summarized in Table 2. Based on these data, the mostly used plant part of A. eriophora is the aerial part (Khajoei Nasab & Esmaillpour 2018, Maleki & Akhani 2018, Sadat-Hosseini et al. 2017, Azizi & Keshavarzi 2015, Moein et al. 2015, Mohamadi et al. 2015, Dolatkhahi & Nabipour 2014, Mehrabani et al. 2014, Safa et al. 2013, Sharififar et al. 2011; 2014).

Application of roots is reported only in Taftan mts (Sistan and Baluchestan province) by Maleki and Akhani (2018). Moreover, these data indicate that digestive complaints and fever are the most common problems treated using A. eriophora by folk medicine. The other disorders include diabetes, menstrual cramps, bone pain, insect and snake bite, common cold, wound healing. Anti-epileptic and diuretic effects have been mentioned by single studies (Sadat-Hosseini et al. 2017, Mehrabani et al. 2014, respectively). The common modes of preparation of this species are decoction and powder, followed by maceration and bath and poultice. Administration of flowers’ smoke is reported only by Khajoei Nasab and Esmaillpour (2018). Although the preparation method(s) by Iranian traditional medicine is not mentioned in detail (Amin 1991), it seems that the administration mode of the plant is oral. Routes of administration have been recorded by few ethnobotanical studies documenting both oral and topical uses of the plant.
Table 2. Ethnobotanical uses regarding *Achillea eriophora* in Iran.

Plant part used	Preparation mode(s)	Medicinal uses	Routes of administration	Reference(s)
Stem	Maceration, decoction, baths, powder	Bellyache, stomach cramps, diarrhea, vomit, nausea, food poisoning, stomachache, fever, digestion, diabetes, bone pain	-	(Maleki & Akhani 2018)
Leaves	-	Anti-colic, anti-diarrhea, carminative, treatment of stomach problems, and treatment of menstrual cramping	-	(Sharififar et al. 2011)
Poultrice, powder	-	Anti-pyretic, treatment of insect bite, bee bite, snake bite, scorpions bite, and wound healing	-	(Safa et al. 2013)
Poultrice, powder	-	Anti-pyretic, treatment of insect bite, and bee bite	Powder (oral), poultice (topical)	(Dolatkhahi & Nabipour 2014)
Flower	Maceration, decoction, baths, powder	Bellyache, stomach cramps, diarrhea, vomit, nausea, food poisoning, stomachache, fever, digestion, diabetes, bone pain	-	(Maleki & Akhani 2018)
Flowering branches	-	Anti-colic, anti-diarrhea, carminative, treatment of stomach problems, and treatment of menstrual cramping	-	(Sharififar et al. 2011)
-	-	Treatment of digestive disorders, diuretic, and febrifuge	Oral	(Mehrabani et al. 2014)
Decoction	-	Anti-colic, anti-diarrhea and cramping, carminative, stomach problems, and menstrual cramping	-	(Mohamadi et al. 2015)
The aerial parts	-	Digestive pain treatment, and anti-diarrhea	-	(Sharififar et al. 2014)
Twig	Maceration	Anti-pyretic, common cold	-	(Moein et al. 2015)
-------	-----------------------------	---------------------------	---	---------------------
Latex	Maceration, decoction, baths, Powder	Bellyache, stomach cramps, diarrhea, vomit, nausea, food poisoning, stomachache, fever, digestion, diabetes, bone pain	-	(Maleki & Akhani 2018)
Root	Maceration, decoction, baths, powder	Bellyache, stomach cramps, diarrhea, vomit, nausea, food poisoning, stomachache, fever, digestion, diabetes, bone pain	-	(Maleki & Akhani 2018)
	-	Treatment of stomachache and anti-diabetes	-	(Rastegar et al. 2012)
	-	Treatment of stomachache and diarrhea	-	(Lavari et al. 2017)
Some of the mentioned medicinal properties of A. eriophora, e.g., wound healing effects, have been evaluated in recent pharmacological surveys (Khosravitabar et al. 2017), while others, e.g., healing digestive disorders, fever, diabetes and body pain have not been subjected to pharmacological studies yet.

Traditional and folklore medicine agree in application of A. eriophora for treatment of digestive disorders and fever. But using this species as diuretic by traditional medicine is reported only by a single ethnobotanical study conducted in Kerman province (Mehrabani et al. 2014). Folk medical administration of A. eriophora for diabetes, menstrual cramps, bone pain, insect and snake bite, common cold, wound healing, and epilepsy has not been considered by Iranian traditional medicine.

Phytochemistry

Phytochemical surveys have revealed that Achillea species possess highly bioactive compounds such as flavonoids, terpenoids, lignans, amino acid derivatives, fatty acids, and alkamides (Saeidnia et al. 2011). The first natural proazulene, achillicin III, among the mentioned compounds, monoterpenes (1,8-cineole and camphor; Fig. 3) are reported to be the main ingredients of essential oil in A. millefolium (Banhnhu et al. 1979, Falk et al. 1975).

Several phytochemical studies have been performed on chemical composition and essential oil of A. eriophora. Phytochemical analyses revealed about 128 compounds (Appendix 1).

The most abundant and important chemical components of the essential oil, analyzed by Head Space-Solid Phase Microextraction (HS-SPME), Gas Chromatography (GC), Gas Chromatography-Mass Spectrometry (GC-MS), Nuclear magnetic resonance (NMR) spectroscopy, can be listed as 1,8-cineole, α-pinene, β-pinene, camphor, camphene, linalool, α-terpineol, geranyl acetate, germacrene-D, bicyclogermacrene, borneol, spathulenol, bornyl acetate, β-phellandrene, δ-3-carene, artemisia ketone, α-thujone, and yomogi alcohol (see Table 3; Azizi et al. 2010, Dokhani et al. 2005, Doozandeh et al. 2015, Ghani et al. 2008; 2011, Gharibi et al. 2015, Ghasemi et al. 2008, Karami-Osboo et al. 2015, Mottaghipisheh et al. 2015, Oroojalian et al. 2010, Weyerstahl 1997). Among the mentioned compounds, monoterpenes (1,8-cineole and camphor; Fig. 3) are reported to be the main ingredients of essential oil in A. eriophora (Azizi et al. 2010, Karami-Osboo et al. 2015, Saeidnia et al. 2011). The results of these studies are summarized in Appendix 1.

Table 3. Main components of essential oils and extracts from Achillea eriophora.

Main components	Plant part(s)	References
1,8-Cineole and the pinenes	Leaves and flower	(Weyerstahl et al. 1997)
1,8-Cineole, α-pinene, and β-pinene	Leaves and flower	(Dokhani et al. 2005)
1,8-Cineole, camphor, and camphene	Aerial parts	(Ghani et al. 2008)
1,8-Cineole, linalool, α-terpineol, and geranyl formate	-	(Ghasemi et al. 2008)
1,8-Cineole, camphor, germacrene-D, bicyclogermacrene, borneol, spathulenol, and bornyl acetate	-	(Azizi et al. 2010)
1,8-Cineole	Leaves	(Azizi et al. 2010)
1,8-Cineole, camphor, camphene, α-pinene, β-pinene, and borneol	Aerial parts and flowers	(Oroojalian et al. 2010)
1,8-Cineole, camphor, and camphene	Flowering parts	(Ghani et al. 2011)
1,8-Cineole, camphor, borneol, β-phellandrene, α-pinene, 3-carene and β-pinene	Aerial parts	(Doozandeh et al. 2015)
Germacrene-D, camphor, and spathulenol	-	(Gharibi et al. 2015)
1,8-Cineole, camphor, camphene and germacrene-D	-	(Karami-Osboo et al. 2015)
Camphor, artemisia ketone, α-thujone, and yomogi alcohol	Aerial parts	(Mottaghipisheh et al. 2015)
Monoterpenes
Monoterpenes are the most generally reported ingredients in *A. eriophora* (about 90%); the amounts of oxygen-containing monoterpenes are higher than monoterpane hydrocarbons (Doozandeh et al. 2015, Ghani et al. 2008; 2011). Monoterpenes are economically important and mostly used in perfumes, fragrances, food, and medicine. Various pharmacological properties of monoterpenes can be listed as antimicrobial, antioxidant, antiarrhythmic, antidiabetics, local anesthetic, anti-inflammatory, antihistaminic, anti-spasmodic activities and insect repellants (Eggersdorfer 2012, Koziol et al. 2014).

Oxygenated monoterpenes
Camphor (Fig. 3) is an oxygenated monoterpene (Cooper & Nicola 2015, Karami-Osboo et al. 2015). It is a volatile oil and mostly used for its smell (Cooper & Nicola 2015). Camphor has many uses in the perfume industry, traditional and modern medicine (Donkin 1999). A wide range of pharmacological properties such as antimicrobial, analgesic, antioxidative have been reported for camphor (Doozandeh et al. 2015). The general effects of camphor are tachycardia (increased heart rate), slower breathing, reduced appetite, and increased secretions and excretions, such as perspiration and urination (Hempel et al. 2005, Smith & Margolis 1954). It should be considered that using high dosage of camphor can be toxic, especially for children (Zuccarini & Soldani 2009). Since camphor is one the major ingredients of *A. eriophora*, the use dosage should follow the prescriptions to avoid toxicity risk.

Hydrocarbonic monoterpenes
1,8-cineole (Fig. 3), also called eucalyptol, is a cyclic ether and monoterpenoid, which reduces germination and strongly inhibits mitosis in plants (Osborn & Lanzotti 2009). 1,8-cineole represents one of the main aroma components of *Achillea eriophora* (Dokhani et al. 2005). Brown et al. (2017) reported 1,8-cineole has a range of pharmacological activities including anti-inflammatory, anti-microbial and anti-oxidant. Moreover, 1,8-cineole has been reported to be an important ulcer healing compound with gastroprotective effect by Cladas et al. (2015). The healing effect on digestive disorders, attributed to *A. eriophora* by Iranian traditional and folk medicine, might be related to its 1,8-cineole content.

α-Pinene and β-pinene are monoterpenes that represent two isomers of pinene (Budavari 1989, Cooper & Nicola 2015). Both these pinenes are among the major aroma components of *A. eriophora* (Dokhani et al. 2005). α-Pinene has anti-inflammatory effects and seems to be an antimicrobial agent (Nissen et al. 2010, Russo 2011). β-Pinene has a pine-like smell and demonstrates moderate in vitro antitumoral activity (Tisserand & Young 2013).

Camphene, as one of the minor aroma components of *A. eriophora*, is a bicyclic monoterpenoid with a spicy odor (Budavari 1989, Dokhani et al. 2005). A hypolipidemic effect of camphene and its mechanism of action has been reported by Vallianou and Hadzopoulou-Cladaras (2016).

Linalool is a fragrant monoterpenoid present in many plants. It has a range of different activities such as antimicrobial, antioxidant, anti-inflammatory, as well as spasmyloytic effects (Peana et al. 2002).

α-terpineol is a monoterpenoid alcohol (Budavari 1989, Khaleel et al. 2018). It has a pleasant odor and
Borneol is a bicyclic monoterpane alcohol with anti-nociceptive and anti-inflammatory activity (Almeida et al. 2013) and improves drug delivery to the brain (Zhang et al. 2017).

Bornyl acetate is a monoterpane compound reported to have analgesic, anti-inflammatory, and sedative effect as well as antitumor activity (Wu et al. 2004, Yang et al. 2014). Analgesic effect of borneol and bornyl acetate might provide a pharmacological evidence for folklore use of A. eriophora for treating body pains.

Geranyl acetate is a fragrant monoterpane with antifungal activity and hepatoprotective, insecticidal, and antinociceptive anti-inflammatory effects (Ali et al. 2013, Budavari 1989, Quintans- Júnior et al. 2013, Rath et al. 2005).

As a cyclic monoterpane, β-phellandrene is one of the minor aroma components of A. eriophora (Dokhani et al., 2005). Different biological properties such hyperthermic, irritant, spasmodic and tumor-promoter have been reported for α-phellandrene (Doozandeh et al. 2015).

δ-3-Carene is a bicyclic monoterpane. Pharmacological properties or potential toxicology of this compound were not found by our literature survey.

α-Thujone is a ketone and a monoterpane with psychoactive and neurotoxic effects (Mojarrab et al. 2012, Pelkonen et al. 2013, Szopa et al. 2020).

Yomogi alcohol is a monoterpenoid compound with antioxidant potential (Muselli et al. 2007).

Sesquiterpenes
Germacrene-D is a sesquiterpene (Osborn & Lanzotti 2009) with cytotoxic, antimicrobial and insecticidal properties (Adio 2009, Da Silva et al. 2013, Xiong et al. 2013).

Bicyclogermacrene is a sesquiterpene derived from germacrene (Yang et al. 2005). This compound has cytotoxic and fungitoxic activities (Da Silva et al. 2007, Da Silva et al. 2013).

Spathulenol is a tricyclic sesquiterpene alcohol, which is a colorless and viscous compound with an earth-aromatic smell and bitter-spicy flavor (Juell et al. 1976, Lou et al. 2019). It possesses antibacterial and antifungal properties as well as anti-inflammatory and anticancer activity (Ghavam et al. 2020).

Phenolic compounds
Phenolic compounds possess a hydroxyl group (-OH) bonded directly to an aromatic hydrocarbon group. One of the most prevalent subgroups of phenolic compounds are Flavonoids that ubiquitously present in plants (Kumar & Pandey 2013). Phenolic compounds are natural antioxidants with variety of biological activities such as analgesic, cytotoxic, cardioprotective, neuroprotective, anti-diabetic, antiviral, anti-inflammatory, anti-cancer, anti-proliferative and antimicrobial (Mahdi et al. 2013, Tanase et al. 2019, Tungmunnithum et al. 2018).

Pharmacological activities
Antimicrobial activity
Ethanol extract of A. eriophora has inhibitory effect against the growth of pathogenic microorganisms, and its essential oil presents antimicrobial effect (Ghasemi et al. 2008). Antimicrobial activity of A. eriophora could partly be due to its monoterpane compounds such as 1,8-cineole, camphor, α-pinene, α-terpineol. The folklore application of A. eriophora for treating common cold might be attributed to its antimicrobial activity.

Antioxidant activity
Achillea eriophora has notable antioxidant properties, especially on Human Foreskin Fibroblast (HFF3) cells (Varasteh-Kojourian et al. 2017). Alizadeh et al. (2012) reported a good correlation between the total phenolic content and antioxidant activity in A. eriophora and some other taxa of the family Asteraceae. The antioxidant activity of A. eriophora could be attributed to its phenolic and flavonoid content (Procházková et al. 2011, Varasteh-Kojourian et al. 2017).

Hypotensive effect
The hydroethanolic extract of the leaves and flowers of A. eriophora has hypotensive effects on rats (Anvari et al. 2016, Anvari et al. 2017). The hypotensive effect of the plant might be attributed to its 1,8- cineole (Lahlou et al. 2002) and flavonoid content (De Souza et al. 2011, Jiang et al. 2005, Morello et al. 2006).

Wound healing potentials
Khosravitabar et al. (2017) showed that methanolic extract of the leaves of A. eriophora improves the wound healing activity in Human Foreskin Fibroblast (HFF3) cells. They suggested the flavonoid content of the extract as a potential component responsible for this improved wound healing effect.

Cytotoxic effect
Methanolic extract of the leaves of A. eriophora has cytotoxic effects on Human Foreskin Fibroblast (HFF3) cells (Varasteh-kojourian et al. 2017). Cytotoxic effect of A. eriophora could possibly be ascribed to its sesquiterpene derivatives such as germacrene-D and bicyclogermacrene (Da Silva et al. 2013).

Conclusions
Achillea eriophora is a valuable medicinal plant that is used for different purposes by Iranian traditional and folk medicine. Regarding the considerable number of isolated constituents and highly variable ethnobotanical uses of the plant, pharmacological studies on this species seem poor. Moreover, the present pharmacological data lack detailed information on active compounds and their mechanisms of action. We suggest digestive disorders, fever and diabetes as future fields of study on A. eriophora to evaluate the pharmacological evidence for traditional and folklore claim of this species to be used as gastroprotective, antipyretic and antidiabetic.

The whole aerial parts of Achillea eriophora are widely harvested for medicinal purposes by local people. In Sistan and Baluchestan province roots are also used. Therefore, a conservation planning for this threatened endemic species is needed.

Declarations

Ethics approval and consent to participate: Not applicable

Consent for publication: Not applicable

Availability of data and materials: The data was not deposited in public repositories.

Competing interests: The authors declare no conflict of interest.

Funding: This research was supported by Ferdowsi University of Mashhad (Grant no. 46314-3).

Authors’ contributions: Toktam Mohammadi prepared the first draft of the manuscript; Atefeh Pirani supervised the study and contributed to the manuscript preparation; Hamid Moazzeni supervised the study and contributed to the manuscript preparation; Jamil Vaezi advised the study and revised the manuscript.

Acknowledgments
We are grateful to Kh. Motahhari (Ferdowsi University of Mashhad) for her help in the preparation of the distribution maps.

Literature cited
Adio AM. 2009. Germacrenes A-E and related compounds: thermal, photochemical and acid induced transannular cyclizations. Tetrahedron 65:1533-1552.

Ali A, Murphy C, Demirci B, Wedge D, Sampson B, Khan I, Tabanca N. 2013. Insecticidal and biting deterrent activity of rose-scented Geranium (Pelargonium spp.) essential oils and individual compounds against Stephanits pyrioiodes and Aedes aegypti. Pest Management Science 69(12):1385-1392.

Alizadeh M, Firuzi O, Albadi S, Javidnia K, Miri R. 2012. Study of antioxidant activity and total phenolic content of 22 plants from Compositae family. Research in Pharmaceutical Sciences 7(5).

Almeida JRGS, Souza GR, Silva JC, Lima-Saraiva SRG, Oliveira-Júnior RG, Quintans JSS, Barreto RSS, Bonjardim LR, Cavalcanti SCH, Quintans-Júnior LJ. 2013. Bomeol, a bicyclic monoterpenic alcohol, reduces nociceptive behavior and inflammatory response in mice. The scientific world journal 2013: 1-5.

Amin GR. 1991. Popular Medicinal Plants of Iran. Iranian Research Institute of Medicinal Plants, Tehran, Iran. (in Persian)

Anvari S, Khoshnam S, Bahaoddini A, Moein M. 2017. Study of the effect of hydro-alcoholic extract of Achillea eriophora on cardiovascular system of male rats. Journal of Babol University of Medical Sciences 19(8):33-40.

Anvari S, Bahaoddini A, Moein M, Khosravi A. 2016. The effect of hydroalcoholic extract of Achillea eriophora DC. on blood pressure of anaesthetized male rat. EXCLI Journal 15:797-806.

Applequist WL, Moerman DE. 2011. Yarrow (Achillea millefolium L.): A neglected panacea? a review of ethnomotany. Economic Botany 65(2):209-225.

Azizi M, Chizzola R, Ghani A, Oroojalian F. 2010. Composition at different development stages of the essential oil of four Achillea species grown in Iran. Natural Product Communications 5(2):283-290.

Azizi H, Keshavarzi M. 2015. Ethnobotanical study of medicinal plants of Sardasht, Western Azerbaijan, Iran. Journal of Herbal Drugs 6(2):113-119.

Banh-nhu C, Gacs-Baitz E, Radics L, Tamas J,
Uszaszy K, Verzar-Petri G. 1979. Achillein, the first proazulene from *Achillea millefolium*. Phytochemistry 18:331-332.

Barbour E, Al-Sharif M, Sagherian V, Habre A, Talhouk R, Talhouk S. 2004. Screening of selected indigenous plants of Lebanon for antimicrobial activity. Journal of Ethnopharmacology 93(1):1-7.

Benedek B, Rozema E, Gjoncaj N, Reznicek G, Jurenitsch J, Kopp B, Giasi S. 2008. Yarrow (*Achillea millefolium* L.): Pharmaceutical quality of commercial samples. Pharmazie 63. doi: https://doi.org/10.1691/ph.2008.7646

Brown SK, Garver WS, Orlando RA. 2017. 1,8-cineole: An underappreciated anti-inflammatory therapeutic. Journal of Biomolecular Research & Therapeutics 6(1). doi: 10.4172/2167-7956.1000154

Budavari S. 1989. Merk Index, Eleventh ed. Merck & Co., USA.

Cakilcioglu U, Khatun S, Turkoglu I, Hayta S. 2011. Ethnopharmacological survey of medicinal plants in Maden (Elazig-Turkey). Journal of Ethnopharmacology 137(1):469-486.

Chandler RF, Hooper SF, Harvey MJ. 1982. Ethnobotany and Phytochemistry of Yarrow, *Achillea millefolium*, Compositae I. Economic Botany 36(2):203-223.

Rocha Caldas GF, Oliveira ARdS, Araújo AV, Lafayette SSL, Albuquerque GS, Silva-Neto JdC, Costa-Silva JH, Ferreira F, da Costa JGM, Wanderley AG. 2015. Gastroprotective Mechanisms of the Monoterpene 1,8-Cineole (Eucalyptol). PLoS ONE 10(8): e0134558. doi:https://doi.org/10.1371/journal.pone.0134558

Cooper R, Nicola G. 2015. Natural products chemistry, Sources, Separations, and Structures. CRC Press, USA. doi: https://doi.org/10.1016/S0031-9422(00)88992-X

Da Silva L, Oniki GH, Agripino DG, Moreno PRH, Young MCM, Mayworm MAS, Ladeira AM. 2007. Bicilogermacrino, reseratrol and atividade antifúngica em extratos de folhas de *Cissus verticillata* (L.) Nicolson & Jarvis (Vitaceae). Brazilian Journal of Pharmacognosy 17:361-367.

Da Silva EBP, Matsuo AL, Figueiredo CR, Chaves MH, Sartorelli P, Lago JHG. 2013. Chemical Constituents and Cytotoxic Evaluation of Essential Oils from Leaves of *Porcellia macrocarpa* (Annonaceae). Natural Product Communications 8(2):277-279.

De Souza P, Gasparotto AJ, Crestani S, Stefanello M, Marques M, da Silva-Santos J, Kassuya C. 2011. Hypotensive mechanism of the extracts and artemin isolated from *Achillea millefolium* L. (Asteraceae) in rats. Phytomedicine 18(10):819-825.

Dokhani S, Cottrell T, Khaheedj A, Mazza G. 2005. Analysis of aroma and phenolic components of selected *Achillea* species. Plant Foods for Human Nutrition 60:55-62. doi: https://doi.org/10.1007/s11130-005-5100-9

Dolatkhahi M, Nabipour I. 2014. Ethnobotanical study of medicinal plants used in the northeast watershed of Persian Gulf. Journal of Medicinal Plants Research. 13(50):129-144.

Donkin R. 1999. Dragon's brain perfume, An historical geography of camphor, Vol. 14. Brill, Leiden, Netherlands.

Doozandeh K, Dejam M, Mohajeri F, Mohebbi GH, Abadi F, Talebi H. 2015. Chemical composition of the essential oils of *Achillea eriophora* DC. growing wild in Iran. Journal of Chemical and Pharmaceutical Research 7(2):748-754.

Eggersdorfer M. 2012. Ullmann’s encyclopedia of industrial chemistry, Vol. 36. John Wiley & Sons Publication, Weinheim, Germany.

Ehrendorfer F, Guo YP. 2006. Multidisciplinary studies on *Achillea* sensu lato (Compositae-Achmamiteae): new data on systematics and phylogeography. Willdenowia 36:69-87.

ESRI, 2011. ArcGIS Desktop: Release 10.3. Redlands, CA: Environmental Systems Research Institute.

Falk AJ, Smolenski SJ, Bauer L, Bell CL. 1975. Isolation and identification of three new flavones from *Achillea millefolium* L. Journal of Pharmaceutical Sciences 64(11):1838-1842. doi: https://doi.org/10.1002/jps.2600641119

Ghavam M, Manca ML, Manconi M, Bacchetta G. 2020. Chemical composition and antimicrobial activity of essential oils obtained from leaves and flowers of *Salvia hydrangea* DC. ex Benth. Scientific reports 10:15647.

Ghahraman A. 1989. A color atlas of Flora Iranica. Forest and rangeland research institute publication, Tehran, Iran.

Ghahremaninejad S, Cottrell T, Sedighi M, Sharif M, Sagherian V, Habre A, Talhouk R, Talhouk S. 2004. Antifungal activity in selected medicinal plants of Lebanon for the treatment of athlete's foot. Journal of Chemical and Pharmaceutical Research 7(2):748-754.

Ghahremaninejad S, Cottrell T, Sedighi M, Sharif M, Sagherian V, Habre A, Talhouk R, Talhouk S. 2004. Antifungal activity in selected medicinal plants of Lebanon for the treatment of athlete's foot. Journal of Chemical and Pharmaceutical Research 7(2):748-754.
Ghani A, Azizi M, Hassanzadeh-Khayyat M, Pahlavanpour AA. 2011. Comparison of chemical composition of Achillea eriophora and A. wilhelmsii grown in wild and cultivated conditions in Iran. Journal of Essential Oil Bearing Plants 14(5). doi: https://doi.org/10.1080/0972060X.2011.10643980

Gharibi S, Tabatabaei BES, Saeidi G. 2015. Comparison of essential oil composition, flavonoid content and antioxidant activity in eight Achillea species. Journal of Essential Oil Bearing Plants 18(6):1382-1394. doi: https://doi.org/10.1080/0972060X.2014.981600

Ghasemi Y, Khalaj A, Mohagheghzadeh A, Khosaravi A. 2008. Composition and in vitro antimicrobial activity of the essential oil of Achillea eriophora. Chemistry of Natural Compounds 44(5):663-665. doi: https://doi.org/10.1007/s10600-008-9160-6

Ghorbani A. 2005. Studies on pharmaceutical ethnobotany in the region of Turkmen Sahra, north of Iran (Part 1): General results. Journal of Ethnopharmacology 102:58-68.

Giorgi A, Bombelli R, Luini A, Speranza G, Cosentino A, Bombelli R, Luini A, Speranza G, Cosentino A, Bombelli R, Luini A, Speranza G, Cosentino A. 2018. Achillea coarctata L. subsp. sipylea (O. Schwarz) Bässler on the rat isolated duodenum. Journal of Ethnopharmacology 84(2-3):175-179.

Ghasemi Y, Khalaj A, Mohagheghzadeh A, Khosaravi A. 2008. Composition and in vitro antimicrobial activity of the essential oil of Achillea eriophora. Chemistry of Natural Compounds 44(5):663-665. doi: https://doi.org/10.1007/s10600-008-9160-6

Hamzelo-Moghadam M, Khalaj A, Malekmohammadi M, Mosaddegh M. 2015. Achillea vermicularis a medicinal plant from Iranian Traditional Medicine induces apoptosis in MCF-7 cells. Research Journal of Pharmacognosy 2(1):1-5.

Harvey MJ. 1982. Achillea millefolium, Compositae I. in Bajaj, T.P.S. (ed.), Biotechnology in Agriculture and Forestry 33, Medicinal and Aromatic Plants, Springer, New York.

Hegazy M, Abdel-Lateff A, Gamal-Eldeen A, Turky F, Hirata T, Pare P, Karchesy J. 2008. Anti-inflammatory activity of new guaiac acid derivatives from Achillea coarctata. Natural Product Communications 3:851-856.

Hempe B, Kroll M, Schneider B. 2005. Efficacy and safety of herbal drug containing hawthorn berries and D-camphor in hypotension and orthostatic circulatory disorders: results of a retrospective epidemiologic cohort study [in German], Arzneimittelforschung 55(8):443-450.

Honda G, Yesilada E, Tabata M, Sezik E, Fujita T, Takeda Y, Toshihiro T. 1996. Traditional medicine in Turkey VI. Folk medicine in West Anatolia: Afyon, Kiitahya, IPNI. 2019. "International Plant Names Index (IPNI). Facilitated by the Royal Botanic Gardens, Kew. Published on the Internet; https://www.ipni.org/ (Accessed 11 July 2019)."

Iranshahr M. 2007. Acquaintance with Latin language and its botanical applications. Tehran University, Tehran, Iran.

Jiang H, Xia Q, Wang X, Song J, Bruce I. 2005. Luteolin induces vasorelaxation in rat thoracic aorta via calcium and potassium channels. Pharmazie 60(6):444-447.

Juell SM, Hansen R, Jork H. 1976. Neue Substanzen aus ätherischen Ölen verschiedener Artemisia-Species, 1. Mitt.: Spathulene, ein azulenogener Sesquiterpenalkohol. Archiv der Pharmazie 309(6):458-466.

Karamenderes C, Apaydin S. 2003. Antispasmodic effect of Achillea nobilis L. subsp. sipylea (O. Schwarz) Bässler on the rat isolated duodenum. Journal of Ethnopharmacology 84(2-3):175-179.

Karami-Osboo R, Mri R, Jassbi AR. 2015. Comparative study of the volatiles in the essential oils of Achillea wilhelmsii, A. verniculouris and A. eriophora by hydrodistillation and head space-solid phase microextraction (HS-SPME) gas chromatography-mass spectroscopy (GC-MS) analyses. Journal of Essential Oil Bearing Plants 18(6):1433-1440. doi: https://doi.org/10.1080/0972060X.2014.958568

Khajoei-Nasab F, Khosravi AR. 2014. Ethnobotanical study of medicinal plants of Sirjan in Kerman Province, Iran. Journal of Ethnopharmacology 154(1):190-197. doi: https://doi.org/10.1016/j.jep.2014.04.003

Khajoei-Nasab F, Esmaeilpour M. 2018. Ethnomedical survey on weed plants in agro-ecosystems: a case study in Jahrom, Iran. Environment, Development and Sustainability 21:2145-2164. doi: https://doi.org/10.1007/s10668-018-0128-9

Khaleel C, Tabanca N, Buchbauer G. 2018. α-Terpineol, a natural monoterpene: a review of its biological properties. Open Chemistry, 16(1):349-361. doi: doi.org/10.1515/chem-2018-0040.

Khosravitabar A, Abrishamchi P, Bahrami AR, Matin MM, Etehadi H, Varasteh-Kojourian M. 2017. Enhanced cutaneous wound healing by the leaf extract of Achillea eriophora D.C. using the in vitro scratch assay. Journal of Sciences, Islamic Republic of Iran 28(4):305-312.

Kindlovits S, Nemeth E. 2012. Sources of variability of Yarrow (Achillea spp.) essential oil. Acta
Konyalioglu S, Karamenderes C. 2005. The protective effects of Achillea L. species native in Turkey against H2O2-induced oxidative damage in human erythrocytes and leucocytes. Journal of Ethnopharmacology 102(2):221-227.

Koziol A, Stryjewska A, Librowski T, Salat K, Gawel M, Moniczewski A, Lochynski S. 2014. An overview of the pharmacological properties and potential applications of natural monoterpenes. Mini-Reviews in Medicinal Chemistry 14:1156-1168. doi: https://doi.org/10.2174/138955751466614127145820

Kumar S, Pandey AK. 2013. Chemistry and biological activities of flavonoids: an overview. The scientific world journal 2013:162750.

Lahlou S, Figueiredo A, Magalhães P, Leal-Cardoso J. 2002. Cardiovascular effects of 1,8-cineole, a terpenoid oxide present in many plant essential oils, in normotensive rats. Canadian Journal of Physiology and Pharmacology 80(12):1125-1131.

Lavari N, Ghasemi M, Nabipour I. 2017. Ethnopharmacology of medicinal plants in the Southwest Mand mountain. Iranian South Medical Journal 20(4):380-398.

Lietava J. 1992. Medicinal plants in a Middle Paleolithic grave Shanidar IV? Journal of Ethnopharmacology 35(3):263-266. doi: https://doi.org/10.1016/0378-8741(92)90023-K

Lou L, Li W, Zhou B, Chen L, Weng H, Zou Y, Yin S. 2019. (±)-Isobicyclogermacrenal and spathulenol from Aristolochia yunnanensis alleviate cardiac fibrosis by inhibiting transforming growth factor β/smal mother against decapentaplegic signaling pathway. Phytotherapy Research 33(1):214-223.

Maggi F, Bramucci M, Cecchini C, Coman MM, Cresci A, Cristalli G, Lupidi G, Papa F, Quassinti L, Sagratini G, Vittori S. 2009. Composition and biological activity of essential oil of Achillea ligustica All. (Asteraceae) naturalized in central Italy: ideal candidate for anti-cariogenic formulations. Fitoterapia 80(6):313-319.

Mahdi J, Al-Musayeb N, Mahdi E, Pepper C. 2013. Pharmacological importance of simple phenolic compounds on inflammation, cell proliferation and apoptosis with a special reference to β-D-salicin and hydroxy benzoic acid. European journal of inflammation 11(2):327-336.

Maleki T, Akhani H. 2018. Ethnobotanical and ethnomedicinal studies in Baluchi tribes: A case study in Mt. Taftan, southeastern Iran. Journal of Ethnopharmacology 217:163-177. doi: https://doi.org/10.1016/j.jep.2018.02.017

Mehrabani M, Mahdavi-Meymand Z, Mirtajadini M. 2014. Collection and identification of some selected plants of Baft (Kerman province) and the study of their traditional usage. Journal of Islamic and Iranian Traditional Medicine 4(3):275-285.

Misra R, Misra S. 2017. Commercial ornamental crops: Cut flowers. Kruger Brentt Publishers, Edgware, UK.

Moein M, Zarshenas MM, Khademian S, Razavi AD. 2015. Ethnopharmacological review of plants traditionally used in Darab (south of Iran). Trends in Pharmaceutical Sciences 1(1):39-43.

Mojarrab M, Delazar A, Esnaashari S, Heshmati Afshar F. 2012. Chemical composition and general toxicity of essential oils extracted from the aerial parts of Artemisia ammniaca Lam. and A. incana (L.) Duce growing in Iran. Research in Pharmaceutical Sciences 8(1):65-69.

Mohamadi N, Sharififar F, Koohpayeh A, Daneshpajouh M. 2015. Traditional and Ethnobotanical uses of medicinal plants by ancient populations in Kabhr and Rouchon of Iran. Journal of Applied Pharmaceutical Science 5(11):101-107. doi: https://doi.org/10.7324/JAPS.2015.501117

Mohammadhosseini M, Sarker SD, Akbarzadeh A. 2017. Chemical composition of the essential oils and extracts of Achillea species and their biological activities: A review. Journal of Ethnopharmacology 199:257-315. doi: https://doi.org/10.1016/j.jep.2017.02.010

Morello S, Vellecco V, Alfieri A, Mascolo N, Cicala C. 2006. Vasorelaxant effect of the flavonoid galangin on isolated rat thoracic aorta. Life Sciences 78(8):825-830.

Mosaddeg M, Naghibi F, Moazzeni H, Pirani A, Esmaeili S. 2012. Ethnobotanical survey of herbal remedies traditionally used in Kohgiluyeh va Boyer Ahmad province of Iran. Journal of Ethnopharmacology 141:80-95. doi: https://doi.org/10.1016/j.jep.2012.02.004

Mottaghipisheh J, Hazeri N, Vaziehadeh J, Maghsoddouli MT, Arjomandi R. 2015. Constituents of the essential oil and antioxidant activity of extracts of Achillea eriophora from Iran. Journal of Essential Oil Bearing Plants 18(1):52-56. doi: https://doi.org/10.1080/0972060X.2014.935018

Mozaffarian V. 1996. A Dictionary of Iranian Plant Names. Farhang Moaser, Tehran, Iran.

Mozaffarian V. 2008. Flora of Iran, No. 59: Compositae: Anthemideae & Echinopeae tribes.
Forest and rangeland research institute, Tehran, Iran.

Muselli A, Rossi PG, Desjobert JM, Bernardini AF, Berti L, Costa J. 2007. Chemical composition and antibacterial activity of *Otanthus maritimus* (L.) Hoffmans. & Link essential oil from Corsica. Flavour and Fragrance Journal 22:217-223.

Nadaf M, Joharchi MR, Amiri MS. 2019. Ethnomedicinal uses of plants for the treatment of nervous disorders at the herbal markets of Bojnord, North Khorasan Province, Iran. Avicenna Journal of Phytomedicine 82(3):513-523.

Nissen L, Zatta A, Stefanini I, Grandi S, Sgorbati B, Biavati B, Monti A. 2010. Characterization and antimicrobial activity of essential oils of industrial hemp varieties (*Cannabis sativa* L.). Fitoterapia 81(5).

Oroojalian F, Kasra-Kermanshahi R. 2010. Study of phytochemical and antibacterial properties of *Achillea eriophora* essential oil by Microdilution method. Journal of Horticultural Science and Biotechnology 24(1):109-115.

Osborn AE, Lanzotti V. 2009. Plant-derived Natural Products, Synthesis, Function and application. Springer, New York, USA.

Ozlem B, Gulluce M, Sahin F, Ozer H, Klic H, Ozkan H, Sokmen M, Ozbek T. 2007. Biological activities of the essential oil and methanol extract of *Achillea biebersteinii* Afan. (Asteraceae). Turkish Journal of Biology 30:65-73.

Pelkonen O, Abbas K, Wiesner J. 2013. Thujone and thujone-containing herbal medicinal and botanical products: toxicological assessment. Regulatory toxicology and pharmacology 65(1):100-107.

Peana AT, D’Aquila PS, Panin F, Serra G, Pippia P, Moretti MDL. 2002. Anti-inflammatory activity of linalool and linalyl acetate constituents of essential oils. Phytomedicine 9(8):721-726.

POWO. 2019. "Plants of the World Online. Facilitated by the Royal Botanic Gardens, Kew. Published on the Internet; http://www.plantsoftheworldonline.org/ (Accessed 11 July 2019)."

Procházková D, Bousová I, Wilhelmová N. 2011. Antioxidant and prooxidant properties of flavonoids. Fitoterapia 82:513-523.

Quintans Júnior LJ, Moreira JCF, Pasquali MAB, Rabie SMS, Pires AS, SchrÖder R, Rabelo TK, Santos JPA, Lima PSS, Cavalcanti SCH, Araújo AAS, Quintans JSS, Gelain DP. 2013. Antinociceptive Activity and Redox Profile of the Monoterpene (+)-Camphene, p-Cymene, and Geranyl Acetate in Experimental Models. ISRN Toxicology 2013: 459530.

Rastegar M, Tavana Z, Khademi R, Nabipour I. 2012. Ethnopharmacology of the native plants of Helleh River (Bushehr Province). Iranian South Medical Journal 15(4):303-316.

Rath CC, Dash SK, Rajeswara Rao BR. 2005. Antifungal activity of rose-scented geranium (*Pelargonium* species) essential oil and its six constituents. Journal of Essential Oil Bearing Plants 8(2):218-222.

Rechinger KH. 1986. Flora Iranica, No. 158. Akademische Druck- und Verlagsanstalt, Graz, Austria.

Ross J. 2003. Combining Western Herbs and Chinese Medicine: Principles, Practice, and Materia Medica. Greenfield Press, New York, USA.

Russo E. 2011. Taming THC: potential cannabis synergy and phytocannabinoid-terpenoid entourage effects. British Journal of Pharmacology 163(7):1344-1364.

Sadat-Hosseini M, Farajpour M, Boroomand N, Solaimani-Sardou F. 2017. Ethnopharmacological studies of indigenous medicinal plants in the south of Kerman, Iran. Journal of Ethnopharmacology 199:194-204. doi: https://doi.org/10.1016/j.therpharm.2017.02.006

Saeidnia S, Gohari A, Mokhber-Dezfuli N, Kiuchi F. 2011. A review on phytochemistry and medicinal properties of the genus *Achillea*. Daru 19(3):173-186. doi: https://doi.org/10.1016/j.therpharm.2014.11.008

Safa O, Soltanipoor MA, Rastegar S, Kazemi M, Dehkordi KN, Ghannadi A. 2013. An ethnobotanical survey on Hormozgan province, Iran. Avicenna Journal of Phytomedicine 3(1):64-81.

Sharififar F, Kouhpaeah A, Mottaghi M, Amirkhosravi A, Pourmohseninasab E. 2011. Ethnobotanical study of medicinal plants in Sirjan, Kerman Province. Journal of Herbal Drugs 3:19-28.

Sharififar F, Moharramkhani M, Moattar F, Babakhanlou P, Khodami M. 2014. Ethnobotanical study of some medicinal plants in Joupar mountain District of Kerman Province. Journal of Kerman University of Medical Sciences 21(1):37-51.

Sheidai M, Azani N, Attar F. 2009. New chromosome number and unreduced pollen formation in *Achillea* species (Asteraceae). Acta Biologica Szegediensis 53(1):39-43.

Smith AG, Margolis G. 1954. Camphor poisoning; anatomical and pharmacologic study; report of a fatal
case; experimental investigation of protective action of barbiturate. The American Journal of Pathology 30(5):857-869.

Solecki RS. 1975. Shanidar IV, a Neanderthal flower burial in northern Iraq. Science 190:880-881.

Stearn WT. 2004. Botanical Latin. Timber Press, Portland, United States.

Suntar I. 2014. The medicinal value of Asteraceae family plants in terms of wound healing activity. FABAD Journal of Pharmaceutical Sciences 39:21-31. doi: https://doi.org/10.1136/bmj.38731.622975.3A

Szopa A, Pajor J, Rzepiela A, Elansary HO, Al-Mana FA, Mattar MA, Ekiert H. 2020. Artemisia absinthium L. -Importance in the history of medicine, the latest advances in phytochemistry and therapeutical, cosmetological and culinary uses. Plants 9:1063.

Tanase C, Cosaraca S, Muntean D. 2019. A critical review of phenolic compounds extracted from the bark of woody vascular plants and their potential biological activity. Molecules 24:1182.

Tisserand R. Young, R. 2013. Essential oil safety: A guide for health care professionals. Churchill Livingstone, London, UK.

Tungmunnithum D, Thongboonyou A, Pholboon A, Yangsabai A. 2018. Flavonoids and other phenolic compounds from medicinal plants for pharmaceutical and medical aspects: an overview. Medicines 5:93. doi:10.3390/medicines5030093.

Tutin T, Heywood V, Burges N, Moore D, Valentine D, Walters S, Webb D. 1976. Flora Europaea, Vol. 4. Athenaem Press, UK.

Vallianou I, Hadzopoulou-Cladaras, M. 2016. Camphene, a plant derived monoterpene, exerts its hypolipidemic action by affecting SREBP-1 and MTP expression. PLoS ONE 11(1): e0147117. doi: 10.1371/journal.pone.0147117.

Varasteh-kojournian M, Abrishamchi P, Matin MM, Asili J, Eejehadi H, Khosravatabar F. 2017. Antioxidant, cytotoxic and DNA protective properties of Achilles eriophora DC. and Achilles biebersteinii Afan. extracts: A comparative study. Avicenna Journal of Phytop Medicine 7(2):157-168.

Weyerstahl P, Marschall H, Seelmann I, Rustaiyan A. 1997. Constituents of the Essential Oil of Achillea eriophora DC. Flavour and Fragrance Journal 12:71-78.

Wu X, Li X, Xiao F, Zhang Z, Xu Z, Wang H. 2004. Studies on the analgesic and anti-inflammatory effect of bornyl acetate in volatile oil from Amomum villosum. Zhong Yao Cai 27(6):438-439.

Xiong L, Peng C, Zhou Q, Wan F, Xie X, Guo L, Li X, He C, Dai O. 2013. Chemical Composition and Antibacterial Activity of Essential Oils from Different Parts of Leonurus japonicus Houtt. Molecules 18: 963-973.

Yaessh S, Jamal Q, Khan A, Gilani A. 2006. Studies on hepatoprotective, antispasmodic and calcium antagonist activities of the aqueous-methanol extract of Achillea millefolium. Phytotherapy Research 20(7):546-551.

Yang F, Li S, Chen Y, Lao S, Wang Y, Dong T, Tsim K. 2005. Identification and quantitation of eleven sesquiterpenes in three species of Curcuma rhizomes by pressurized liquid extraction and gas chromatography-mass spectrometry. Journal of Pharmaceutical and Biomedical Analysis 39(3-4):552-558.

Yang H, Zhao R, Chen H, Jia P, Bao L, Tang H. 2014. Bornyl acetate has an anti-inflammatory effect in human chondrocytes via induction of IL-11. IUBMB Life 66(12):854-859.

Yao SS, Guo WF, Lu Y, Jiang YX. 2005. Flavor characteristics of lapsang souchong and smoked lapsang souchong, a special Chinese black tea with pine smoking process. Journal of Agricultural and Food Chemistry 53(22):8688-8693.

Zargari A. 1996. Medicinal plants, Vol. 3. Tehran University, Tehran, Iran.

Zhang QL, Fu BM, Zhang ZJ. 2017. Borneol, a novel agent that improves central nervous system drug delivery by enhancing blood-brain barrier permeability. Drug Delivery 24(1):1037-1044.

Zuccarini P, Soldani G. 2009. Camphor: benefits and risks of a widely used natural product. Acta Biologica Szegediensis 53(2):77-82.
Appendix 1. Chemical composition of *Achillea eriophora*.

No.	Compound	References
1	1,8-Cineole	(Azizi et al. 2010, Doozandeh et al. 2015, Ghani et al. 2008, 2011, Gharibi et al. 2015, Ghasemi et al. 2008, Karami-Osboo et al. 2015, Mottaghipisheh et al. 2015, Weyerstahl et al. 1997)
2	13-Tetradecanolide	(Weyerstahl et al. 1997)
3	13-Tetradecanolide	(Weyerstahl et al. 1997)
4	15-Hexadecanolide	(Weyerstahl et al. 1997)
5	2-Methylbutyl-3-phenyl-propionate	(Weyerstahl et al. 1997)
6	2,2,6-Trimethyl-6-vinyl dihydropyran-3-one	(Weyerstahl et al. 1997)
7	α-Bisabolol	(Doozandeh et al. 2015)
8	α-Campholenal	(Azizi et al. 2010, Doozandeh et al. 2015)
9	α-Campholene aldehyde	(Weyerstahl et al. 1997)
10	α-Eudesmol	(Ghani et al. 2008, 2011)
11	α-Fenchene	(Doozandeh et al. 2015)
12	α-Gurjunene	(Doozandeh et al. 2015)
13	α-Humulene	(Ghasemi et al. 2008, Karami-Osboo et al. 2015, Weyerstahl et al. 1997)
14	α-Phellandrene	(Doozandeh et al. 2015)
15	α-Pinene	(Azizi et al. 2010, Dokhani et al. 2005, Doozandeh et al. 2015, Ghani et al. 2008, 2011, Ghasemi et al. 2008, Karami-Osboo et al. 2015, Mottaghipisheh et al. 2015, Oroojalian & Kasra-Kermanshahi 2010, Weyerstahl et al. 1997)
16	α-Santalene	(Ghani et al. 2008, 2011)
17	α-Terpinene	(Azizi et al. 2010, Ghasemi et al. 2008, Oroojalian & Kasra-Kermanshahi 2010, Weyerstahl et al. 1997)
18	α-Terpineol	(Azizi et al. 2010, Dokhani et al. 2005, Doozandeh et al. 2015, Ghani et al. 2008, 2011, Ghasemi et al. 2008, Karami-Osboo et al. 2015, Mottaghipisheh et al. 2015, Oroojalian & Kasra-Kermanshahi 2010, Weyerstahl et al. 1997)
19	α-Thujene	(Azizi et al. 2010, Dokhani et al. 2005, Doozandeh et al. 2015, Ghani et al. 2008, 2011, Ghasemi et al. 2008, Karami-Osboo et al. 2015, Mottaghipisheh et al. 2015, Weyerstahl et al. 1997)
20	β-Caryophyllene	(Azizi et al. 2010, Ghani et al. 2011, Karami-Osboo et al. 2015, Weyerstahl et al. 1997)
21	β-Chamigrene	(Rahimmalek et al. 2009)
22	β-Eudesmol	(Ghani et al. 2008, Ghasemi et al. 2008, 2011, Karami-Osboo et al. 2015, Weyerstahl et al. 1997)
23	β-Pinene	(Azizi et al. 2010, Dokhani et al. 2005, Doozandeh et al. 2015, Ghani et al. 2008, 2011, Ghasemi et al. 2008, Karami-Osboo et al. 2015, Mottaghipisheh et al. 2015, Oroojalian & Kasra-Kermanshahi 2010, Weyerstahl et al. 1997)
24	β-Sabinene	(Weyerstahl et al. 1997)
25	β-Selinene	(Ghasemi et al. 2008, Weyerstahl et al. 1997)
26	β-Thujone	(Doozandeh et al. 2015 Mottaghipisheh et al. 2015, Weyerstahl et al. 1997)
27	γ -Cadinene	(Doozandeh et al. 2015)
28	γ-Terpinene	(Azizi et al. 2010, Doozandeh et al. 2015, Ghani et al. 2008, Ghasemi et al. 2008, Mottaghipisheh et al. 2015, Oroojalian & Kasra-Kermanshahi 2010, Weyerstahl et al. 1997)
29	γ-Terpineol	(Ghani et al. 2011, Karami-Osboo et al. 2015, Weyerstahl et al. 1997)
30	γ-Eudesmol	(Azizi et al. 2010)
31	δ-3-Carene	(Doozandeh et al. 2015, Ghani et al. 2011)
32	cis-p-Menth-2-en-1-ol	(Doozandeh et al. 2015)
33	cis-Chrysantheryl acetate	(Weyerstahl et al. 1997)
34	cis-p-Menth-1(7)-8-dien-2-ol	(Mottaghipisheh et al. 2015, Weyerstahl et al. 1997)
35	cis-p-Menth-2en-1-ol	(Azizi et al. 2010)
36	cis-Muurola-3,5-dien	(Doozandeh et al. 2015)
37	*cis*-Pinocamphone	(Karami-Osboo et al. 2015, Oroojalian & Kasra-Kermanshahi 2010)
37	*cis*-Piperitenol	(Weyerstahl et al. 1997)
39	*cis*-Sabinene hydrate	(Azizi et al. 2010, Doozandeh et al. 2015, Karami-Osboo et al. 2015, Weyerstahl et al. 1997)
40	*p*-Cymene	(Azizi et al. 2010, Dokhani et al. 2005, Doozandeh et al. 2015, Weyerstahl et al. 1997)
41	*p*-Cymen-9-ol	(Weyerstahl et al. 1997)
42	*p*-Mentha-2,4(8)-diene	(Doozandeh et al. 2015, Ghani et al. 2011)
43	trans-β-Farnesene	(Rahimmalek et al. 2009)
44	trans-Carveol	(Doozandeh et al. 2015, Ghani et al. 2011, Rahimmalek et al. 2009, Weyerstahl et al. 1997)
45	trans-Jasmone	(Ghani et al. 2008, 2011, Oroojalian & Kasra-Kermanshahi, 2010)
46	3trans-β-Mentha-1(7),8-dien-2-ol	(Weyerstahl et al. 1997)
47	trans-Pinocarveol	(Weyerstahl et al. 1997)
48	trans-Sabinene hydrate	(Azizi et al. 2010, Karami-Osboo et al. 2015, Weyerstahl et al. 1997)
49	trans-Verbenol	(Karami-Osboo et al. 2015, Weyerstahl et al. 1997)
50	Allo-Aromadendrene	(Ghasemi et al. 2008, Karami-Osboo et al. 2015, Weyerstahl et al. 1997)
51	Artemisia alcohol	(Mottaghipisheh et al. 2015)
52	Artemisia ketone	(Mottaghipisheh et al. 2015, Weyerstahl et al. 1997)
53	Artemisia triene	(Mottaghipisheh et al. 2015)
54	Benzene propanoic acid,2-pentyl ester	(Mottaghipisheh et al. 2015)
55	Bicyclogermacrene	(Ghani et al. 2008, Gharibi et al. 2015, Ghasemi et al. 2008, Karami-Osboo et al. 2015, Rahimmalek et al. 2009, Weyerstahl et al. 1997)
56	Bisabolene oxide A	(Weyerstahl et al. 1997)
57	Borneol	(Azizi et al. 2010, Doozandeh et al. 2015, Ghani et al. 2008, 2011, Gharibi et al. 2015, Karami-Osboo et al. 2015, Mottaghipisheh et al. 2015, Oroojalian & Kasra-Kermanshahi 2010, Weyerstahl et al. 1997)
58	Cabreuva oxide (A^d, B^d, C^d, D^d)	(Weyerstahl et al. 1997)
59	Camphene	(Azizi et al. 2010, Dokhani et al. 2005, Doozandeh et al. 2015, Ghani et al. 2011, Karami-Osboo et al. 2015, Karami-Osboo et al. 2015; Mottaghipisheh et al. 2015, Oroojalian & Kasra-Kermanshahi 2010, Weyerstahl et al. 1997)
60	Camphor	(Ghani et al. 2008, Ghasemi et al. 2008, Karami-Osboo et al. 2015, Mottaghipisheh et al. 2015, Rahimmalek et al. 2009, Weyerstahl et al. 1997)
61	Caryophylla-3,8(15)-dien-5-one	(Weyerstahl et al. 1997)
62	Caryophylla-3,8(15)-dien-5u-ol	(Weyerstahl et al. 1997)
63	Caryophylla-3,8(15)-dien-5β-ol	(Weyerstahl et al. 1997)
64	Caryophylla-4(14),8(15)-dien-5u-ol	(Weyerstahl et al. 1997)
65	Caryophylla-4(14),8(15)-dien-5β-ol	(Weyerstahl et al. 1997)
66	Caryophylla-4(14),8(15)-dien-5-one	(Weyerstahl et al. 1997)
67	Caryophyllene epoxide	(Weyerstahl et al. 1997)
68	Caryophyllene oxide	(Azizi et al. 2010, Doozandeh et al. 2015, Ghani et al. 2008, 2011, Ghasemi et al. 2008, Karami-Osboo et al. 2015, Mottaghipisheh et al. 2015)
69	Carvone	(Azizi et al. 2010, Doozandeh et al. 2015, Ghani et al. 2011, Weyerstahl et al. 1997)
70	Chamazulene	(Ghasemi et al. 2008, Weyerstahl et al. 1997)
71	Cumin aldehyde	(Doozandeh et al. 2015, Weyerstahl et al. 1997)
72	Cryptone	(Doozandeh et al. 2015)
73	Dehydro-1,8-cineole	(Karami-Osboo et al. 2015, Weyerstahl et al. 1997))
74	Dehydrocinone	(Azizi et al. 2010)
75	Dehydroasabinene	(Mottaghipisheh et al. 2015, Weyerstahl et al. 1997))
76	Dillapiole	(Ghani et al. 2011)
77	Eβ-3α,7β,11α-Epoxidodeca-2,5,11-trien-1-ol	(Weyerstahl et al. 1997)
78	E, E-3,7,11-Trimethyl-7,10-epoxypododeca-2,5,11-trien-1-ol	(Weyerstahl et al. 1997)
79	E, E-3,7,11-Trimethyl-7,10-epoxypododeca-2,5,11-trien-1-yl acetate	(Weyerstahl et al. 1997)
	Chemical Name	References
---	---	---
80	E, E-5-Hydroxy-3,7,11-trimethyldodeca-2,6,10-trien-1-yl acetate	(Weyerstahl et al. 1997)
81	E, E-Farnesol	(Ghani et al. 2011, Oroojalian & Kasra-Kermanshahi 2010)
82	epi-α-Cadinol	(Doozandeh et al. 2015)
83	Estragol	(Weyerstahl et al. 1997)
84	Eugenol	(Azizi et al. 2010, Ghani et al. 2008, 2011, Ghasemi et al. 2008, Mottaghipisheh et al. 2015, Weyerstahl et al. 1997)
85	Eugenol methyl ether	(Weyerstahl et al. 1997)
86	Geraniol	(Doozandeh et al. 2015, Weyerstahl et al. 1997)
87	Geranyl acetate	(Doozandeh et al. 2015)
88	Germacrene-B	(Ghani et al. 2008, 2011, Oroojalian & Kasra-Kermanshahi 2010)
89	Germacrene-D	(Dokhani et al. 2005, Karami-Osboo et al. 2015, Mottaghipisheh et al. 2015, Rahimmalek et al. 2009)
90	Hexyl tiglate	(Doozandeh et al. 2015)
91	Hotrienol	(Weyerstahl et al. 1997)
92	Isobornyl acetate	(Ghani et al. 2008, 2011, Oroojalian & Kasra-Kermanshahi 2010)
93	Isobornyl formate	(Doozandeh et al. 2015)
94	Isopinocamphone	(Weyerstahl et al. 1997)
95	Isopiperitenol	(Weyerstahl et al. 1997)
96	Isovaleryl-3-phenyl-proprionate	(Weyerstahl et al. 1997)
97	Jasnone	(Azizi et al. 2010)
98	Lavandulol	(Weyerstahl et al. 1997)
99	Lavandulyl acetate	(Weyerstahl et al. 1997)
100	Limonene	(Weyerstahl et al. 1997)
101	Linalol	(Weyerstahl et al. 1997)
102	Linalol oxide furanoid A, B	(Weyerstahl et al. 1997)
103	Linalol oxide pyranoid A	(Weyerstahl et al. 1997)
104	Longipinocarvone	(Azizi et al. 2010, Mottaghipisheh et al. 2015)
105	Methyl eugenol	(Azizi et al. 2010, Ghani et al. 2008, Ghasemi et al. 2008, Karami-Osboo et al. 2015, Oroojalian & Kasra-Kermanshahi 2010, Rahimmalek et al. 2009)
106	Methyl jasmonate	(Weyerstahl et al. 1997)
107	Myrtenal	(Azizi et al. 2010, Doozandeh et al. 2015, Ghani et al. 2008, 2011, Oroojalian & Kasra-Kermanshahi 2010, Weyerstahl et al. 1997)
108	Myrtenol	(Azizi et al. 2010, Ghani et al. 2008, 2011, Ghasemi et al. 2008, Karami-Osboo et al. 2015, Mottaghipisheh et al. 2015, Oroojalian & Kasra-Kermanshahi 2010, Weyerstahl et al. 1997)
109	Oxacyclo tetradecan-2-one,14-methyl	(Mottaghipisheh et al. 2015)
110	Perilla aldehyde	(Weyerstahl et al. 1997)
111	Pinocamphone	(Azizi et al. 2010)
112	Pinocarvone	(Azizi et al. 2010, Doozandeh et al. 2015, Ghani et al. 2008, 2011, Ghasemi et al. 2008, Karami-Osboo et al. 2015, Mottaghipisheh et al. 2015, Oroojalian & Kasra-Kermanshahi 2010, Weyerstahl et al. 1997)
113	Pinol	(Weyerstahl et al. 1997)
114	Piperitone	(Rahimmalek et al. 2009)
115	Sabinene	(Azizi et al. 2010, Doozandeh et al. 2015, Ghani et al. 2008, 2011, Karami-Osboo et al. 2015, Mottaghipisheh et al. 2015, Oroojalian & Kasra-Kermanshahi 2010)
116	Santolina alcohol	(Weyerstahl et al. 1997)
117	Santolina triene	(Weyerstahl et al. 1997)
118	Spathulenol	(Ghani et al. 2011, Ghariabi et al. 2015, Oroojalian & Kasra-Kermanshahi 2010, Rahimmalek et al. 2009)
119	T-Cadinol	(Ghani et al. 2008, 2011)
120	Terpinen-4-ol	(Azizi et al. 2010, Doozandeh et al. 2015, Ghani et al. 2008, Karami-Osboo et al. 2015, Mottaghipisheh et al. 2015, Oroojalian & Kasra-Kermanshahi 2010, Weyerstahl et al. 1997)
121	Terpinolene	(Azizi et al. 2010, Doozandeh et al. 2015, Ghani et al. 2011, Ghasemi et al. 2008, Karami-Osboo et al. 2015, Mottaghipisheh et al. 2015, Weyerstahl et al. 1997)
122	Thuj-3-en-10-al	(Karami-Osboo et al. 2015, Weyerstahl et al. 1997)
	Substance	References
---	--------------------	---
123	Thymol acetate	(Ghani et al. 2011, Oroojalian & Kasra-Kermanshahi 2010)
124	Tricyclene	(Azizi et al. 2010, Doozandeh et al. 2015, Ghani et al. 2008, 2011)
125	Verbenone	(Weyerstahl et al. 1997)
126	Yomogi alcohol	(Mottaghipisheh et al. 2015, Weyerstahl et al. 1997)
127	Z-β-Ocimene	(Doozandeh et al. 2015)
128	Z-Jasmone	(Ghasemi et al. 2008, Weyerstahl et al. 1997)