IMPLEMENTATION OF ENHANCED RECOVERY AFTER COLORECTAL SURGERY (ERAS) PROTOCOL: INITIAL RESULTS OF THE FIRST BRAZILIAN EXPERIENCE

ABSTRACT – Background: Guidelines for enhanced recovery after surgery have their bases in colonic surgery, through the first protocols published in 2012. Since then, this practice has spread throughout the world, mainly due to improvements in surgical outcomes associated with resource savings. Aim: To analyze the first prospective results after the implementation of the guidelines. Methods: Were retrospectively analyzed 48 patients operated in the institution prior to the standardization. This group was then compared with a series of 25 patients operated consecutively after the guidelines were implemented. Results: With a 68.6% compliance rate, hospital length of stay (p<0.002), use of abdominal drains (p<0.001) and mechanical bowel preparation (p<0.001) were reduced. Mortality rates, anastomotic fistula, abdominal abscesses and reoperations were also reduced, but without statistical significance. Conclusion: Enhanced recovery after surgery protocols benefit patients care, resulting in better outcomes and possibly resource savings. Even with some limitations, its implementation is feasible in the Brazilian Public Health System.

INTRODUCTION

The creation of the term ERAS (acronym for Enhanced Recovery After Surgery) and the basis for its development emerged in 2001, in London, when a group of European surgeons met to develop guidelines for perioperative management based on evidence from literature. At that time, H. Kehlet had already published a paper reporting the possibility of early hospital discharge in patients that underwent sigmoid colon resections, as opposed to the current scenario of the period. After the creation of an international medical society - ERAS Society - and the publication of the first recommendations dealing with colonic surgery by Gustafsson et al. in 2012, this new concept quickly aroused the interest of the international medical community. The proposal of reduction of surgical stress, maintenance of physiological functions and optimized recovery was materialized in a protocol with 23 items, encompassing the three phases of the surgical act itself: pre, intra and postoperative (Table 1).
Colorectal surgery represents a vast field, encompassing complex procedures. It is surrounded by dogmas that begin in the preoperative preparation, passing through intraoperative actions that have been historically reproduced between generations of surgeons, and culminating with imposed restrictions on the patients in the postoperative period, many of them lacking scientific evidence. Perhaps this is why it was chosen for the implementation of ERAS protocols, a paradigm shift that has greatly contributed to patient recovery. Several studies have shown satisfactory outcomes with the development of ERAS protocols in their institutions. In 2016, the ERAS team of Porto Alegre, Porto Alegre, RS, Brazil, completed the training stages and initiated the implementation of these guidelines in the assistance of patients of the public health system.

Thus, the present paper aims to report this first Brazilian experience applied to colorectal surgery.

METHODS

The implementation of the protocol had two phases. The first one was the retrospective evaluation of 50 patients operated in the institution’s public health system, using medical records data, from January to June 2016, submitted to elective colorectal surgery (group 1). Two patients that were operated on emergency situation were excluded from evaluation, thus leaving 48 patients for analysis.

The second phase took place between September 2016 and March 2017, and represents the implementation of the protocol itself. There were prospectively evaluated 25 consecutively operated patients by the same digestive surgery team (group 2). Table 2 shows the study groups.

Data were entered in the database of the platform provided by the ERAS Society, with the final outcome being the 30-day mortality rate. The results were generated by the audit platform itself.

Table 3 shows the results for both groups. It is observed that compliance rate to ERAS protocols in group 1 was 19.6% and 68.6% in group 2.

In group 1, the mean hospital stay was 11.5 days and the 30-day mortality rate was 6.25%. As the most feared complication after colorectal surgery, it was observed 12.5% of anastomotic fistulas and 12.5% of reoperations in this retrospective series.

In group 2, there was a three-day reduction in the length of hospital stay, a statistically significant result (eight days, p=0.002). There was also a decrease in the mortality rate (4%, p=0.56), anastomosis fistula (4%, p=0.23), and number of reoperations (8%, p=0.43), although without statistical significance. It is worth considering that these better outcomes occurred together with a significant reduction in the use of prophylactic abdominal drains (from 68.75% in group 1 to 16% in group 2, p<0.001) and in the rate of mechanical bowel preparation (87.5% to 16%, p<0.001).

In this group, only one patient developed colonic fistula; he was doing good on the 3th postoperative day, was discharged from hospital, but was readmitted on the 6th day with abdominal sepsis. He was reoperated and a dehiscence of the anastomosis in the left colon was observed. Peritoneal cleaning, resection of the affected area and completion of a Hartmann colostomy were performed, but the patient died, being the responsible for the mortality in this series.

It should be remembered that 92% of patients in the ERAS group were operated on for malignant colon and rectal neoplasms. The R0 resection rate was 100%, with the mean number of resected lymph nodes being 22 (15-42).

RESULTS

Table 3 shows the results for both groups. It is observed that compliance rate to ERAS protocols in group 1 was 19.6% and 68.6% in group 2.

In group 1, the mean hospital stay was 11.5 days and the 30-day mortality rate was 6.25%. As the most feared complication after colorectal surgery, it was observed 12.5% of anastomotic fistulas and 12.5% of reoperations in this retrospective series.

In group 2, there was a three-day reduction in the length of hospital stay, a statistically significant result (eight days, p=0.002). There was also a decrease in the mortality rate (4%, p=0.56), anastomosis fistula (4%, p=0.23), and number of reoperations (8%, p=0.43), although without statistical significance. It is worth considering that these better outcomes occurred together with a significant reduction in the use of prophylactic abdominal drains (from 68.75% in group 1 to 16% in group 2, p<0.001) and in the rate of mechanical bowel preparation (87.5% to 16%, p<0.001).

In this group, only one patient developed colonic fistula; he was doing good on the 3th postoperative day, was discharged from hospital, but was readmitted on the 6th day with abdominal sepsis. He was reoperated and a dehiscence of the anastomosis in the left colon was observed. Peritoneal cleaning, resection of the affected area and completion of a Hartmann colostomy were performed, but the patient died, being the responsible for the mortality in this series.

It should be remembered that 92% of patients in the ERAS group were operated on for malignant colon and rectal neoplasms. The R0 resection rate was 100%, with the mean number of resected lymph nodes being 22 (15-42).

TABLE 1 – Highlights of ERAS protocol

ERAS Protocol
1. Preadmission information, education and counseling
2. Preoperative optimization (stop smoking and alcohol consumption)
3. Preoperative bowel preparation
4. Preoperative fasting
5. Preoperative carbohydrate treatment
6. Preeanesthetic medication
7. Prophylaxis against thromboembolism
8. Antimicrobial prophylaxis and skin preparation
9. Perioperative fluid management
10. Laparoscopy and modifications of surgical access
11. Standard anesthetic protocol
12. Reduction of opioid use
13. Postoperative nausea and vomiting prophylaxis
14. Nasogastric intubation
15. Preventing intraoperative hypothermia
16. Drainage of the peritoneal cavity after colonic anastomosis
17. Urinary drainage
18. Prevention of postoperative ileus
19. Postoperative analgesia
20. Perioperative nutritional care
21. Perioperative control of glucose
22. Early mobilization
23. Audit

TABLE 2 - Comparison between groups

BEFORE ERAS (48)	ERAS (25)	
Age (years)	60 (20-85)	62 (36-81)
Gender (%)	female	
Male	28 (58%)	14 (56%)
Female	20 (42%)	11 (44%)
Anatomical Site (%)	p=0.24	
Right Colon	20 (42%)	10 (40%)
Left Colon	28 (58%)	13 (52%)
Laparoscopic (%)	p=0.12	
Yes	5 (10.4%)	5 (20%)
No	43 (89.6%)	20 (80%)
Prophylactic drainage (%)	p=0.001	
Yes	33 (68.8%)	4 (16%)
No	15 (31.2%)	21 (84%)
Mechanical bowel preparation (%)	p=0.001	
Yes	42 (87.5%)	4 (16%)
No	6 (12.5%)	21 (84%)

Statistical analysis

It was performed in the SPSS program version 22.0.0, through the chi-square test of homogeneity and Mann-Whitney test, the latter for comparison of hospitalization times. A level of significance of 5% was used.

TABLE 3 – Outcomes: comparison between groups

BEFORE ERAS (48)	ERAS (25)	
Length of hospital stay (days)	11.5 (4-38)	8 (3-26)
Abcess (%)	p=0.002	
Yes	4 (8.3%)	1 (4%)
No	44 (91.7%)	24 (96%)
Fistula (%)	p=0.23	
Yes	6 (12.5%)	1 (4%)
No	42 (87.5%)	24 (96%)
Reoperation (%)	p=0.43	
Yes	6 (12.5%)	2 (8%)
No	42 (87.5%)	23 (92%)
Mortality Rate (%)	p=0.57	
Yes	3 (6.25%)	1 (4%)
No	45 (93.75%)	24 (96%)
cavity after colorectal surgery. The fear of the occurrence of fistulas or collections in the postoperative period of these patients diffused, among surgeons, the practice of prophylactic peritoneal drainage. However, several studies in recent years have found that drains do not reduce the occurrence of fistulas, nor the incidence of abdominal collections or reoperations. \(^6\)\(^18\) In this series, omitting the use of drains did not increase the incidence of these complications; on the contrary, mortality rate and the occurrence of fistulas were reduced in the ERAS group. It should be recalled that of the six patients reoperated in group 1, five (83.3%) had abdominal drains. In addition, of the three that evolved to death in this same group, two (66.6%) had prophylactic drains.

The third topic, still controversial, concerns preoperative bowel preparation. When used alone, several studies have shown that the mechanical preparation with laxatives, in order to reduce the amount of residues, showed no benefit in reducing infectious complications and mortality, compared to patients in whom this preparation was not performed. \(^6\)\(^19\). This result was observed in this study. However, some recent papers have brought to the foreground the association of colonic mechanical preparation with enteral antibiotics aiming to reduce colonic bacterial flora. This association, in these studies, has been shown to decrease the occurrence of surgical site infections and abdominal collections due to anastomoses fistulas. \(^3\)\(^11\). The recommendation of the ERAS Society (conducted prior to publication of these results) is opposed to the mechanical preparation, but does not address its association with antibiotics. It is possible that this topic will be reviewed in future protocol updates.

This paper has some limitations. First, the use of retrospective data for group 1 assessment limits the quality of these results. In this group of 48 patients, the operations were performed by two different teams, which denote a global result for the institution, but interfere with their comparison with group 2, in which only a specialized team was responsible for the operations. In addition, there are still a small number of cases, despite being fairly controlled and prospective. In this way, it is necessary to wait for the outcomes in a more representative population, so that the real size of the changes can be verified.

The implementation of the ERAS protocol is feasible and beneficial for health institutions and patients, bringing on advances in care. Looking for a better compliance to the recommendations proposed by these guidelines should be the way to improve outcomes. Paradigm shifts for better results.

REFERENCES

1. Abraham NS, Young JM, Solomon MJ. Meta-analysis of short-term outcomes after laparoscopic resection for colorectal cancer. Br J Surg. 2004; 91: 1111–1124.
2. Fonseca AZ, Uramoto E, Santos-Rosa OM, Santin S, Ribeiro M Jr. Colostomy closure: risk factors for complications. Arq Bras Cir Dig. 2017 Oct-Dec;30(4):231-234
3. Garfinkele R, Abou-Khalil J, Morin N et al. Is There a Role for Oral Antibiotic Preparation Alone Before Colorectal Surgery? ACS-NSQIP Analysis by Coarsened Exact Matching. Dis Colon Rectum. 2017;60(7):729-737.
4. Gillissen F, HoffC, Maessen JM, et al. Structured synchronous implementation of an enhanced recovery program in elective colorectal surgery in 33 hospitals in the Netherlands.World J Surg. 2013;37 (5):1082-1093.
5. Gotlib Conn L, McKenzie M, Pearsall EA, McLeod RS. Successful implementation of an enhanced recovery after surgery programme for elective colorectal surgery: a process evaluation of champions’ experiences. Implement Sci. 2015;10:99.
6. GuenagaKF, MatosD, Castro AA, AtalahAN, Wille-Jorgensen P. Mechanical bowel preparation for elective colorectal surgery. (CD001544) Cochrane Database Syst Rev. 2003.
7. Gustafsson UO, Scott MJ, Schwenk W, et al. Enhanced Recovery After Surgery Society. Guidelines for perioperative care in elective colorectal surgery: Enhanced Recovery After Surgery (ERAS) Society recommendations. Clin Nutr. 2012;31(6):783-800.

8. Han-Geurts IJ, Hop WC, Kok NF, Lim A, Brouwer KJ, Jeekel J. Randomized clinical trial of the impact of early enteral feeding on postoperative ileus and recovery. Br J Surg. 2007; 94: 555–561.

9. Karliczek A, Jesus EC, Matos D, Castro AA, Atallah AN, Wiggers T. Drainage or nondrainage in elective colorectal anastomosis: a systematic review and meta-analysis. Colorectal Dis. 2006; 8: 259–265.

10. Kehlet H, Mogensen T. Hospital stay of 2 days after open sigmoidectomy with a multimodal rehabilitation programme. Br J Surg. 1999;86(2):227-230.

11. Kiran RP, Murray AC, Chiuzan C, Estrada D, Forde K. Combined preoperative mechanical bowel preparation with oral antibiotics significantly reduces surgical site infection, anastomotic leak, and ileus after colorectal surgery. Ann Surg. 2015;262(3):416-25.

12. Lewis SJ, Egger M, Sylvester PA, Thomas S. Early enteral feeding versus “nil by mouth” after gastrointestinal surgery: systematic review and meta-analysis of controlled trials. BMJ. 2001;323: 773–776.

13. Ljungqvist O, Scott M, Fearon KC. Enhanced Recovery After Surgery: A Review. JAMA Surg 2017;152(3):292-298.

14. Lopes LP, Menezes TM, Toledo DO, DE-Oliveira ATT, Longatto-Filho A, Nascimento JEA. Early oral feeding post-upper gastrointestinal tract resection and primary anastomosis in oncology. Arq Bras Cir Dig. 2018 Jun 21;31(1):e1359

15. Mahajna A, Krausz M, Rosin D et al. Bowel preparation is associated with spillage of bowel contents in colorectal surgery. Dis Colon Rectum. 2005; 48: 1626–1631.

16. Nelson G, Kalogera E, Dowdy SC. Enhanced recovery pathways in gynecologic oncology. Gynecol Oncol. 2014;135(3):586-594.

17. Nelson G, Kiyang LN, Crumley ET. Implementation of Enhanced Recovery After Surgery (ERAS) Across a Provincial Healthcare System: The ERAS Alberta Colorectal Surgery Experience. World J Surg 2016;40:1092–1103.

18. Ota H, Ikenaga M, Hasegawa J et al. Safety and efficacy of an “enhanced recovery after surgery” protocol for patients undergoing colon cancer surgery: a multi-institutional controlled study. Surg Today. 2017;47(6):668-675.

19. Petrowsky H, Demartines N, Rousson V, Clavien PA. Evidence-based value of prophylactic drainage in gastrointestinal surgery: a systematic review and meta-analyses. Ann Surg. 2004; 240: 1074–1084.

20. Souza GD, Souza LRQ, Cuenca RM, Vilela VM, Santos BEM, Aguiar FS. Pre- and postoperative imaging methods in colorectal cancer. Arq Bras Cir Dig. 2018;31(2):e1371.

21. Thiele RH, Rea KM, Turcintine FE. Standardization of Care: Impact of an Enhanced Recovery Protocol on Length of Stay, Complications, and Direct Costs after Colorectal Surgery. J Am Coll Surg 2015;220:430-443.

22. Tjandra JJ, Chan MK. Systematic review on the short-term outcome of laparoscopic resection for colon and rectosigmoid cancer. Colorectal Dis 2006;8(5):375-88.