Arbuscular mycorrhizal fungi and production of secondary metabolites in medicinal plants

YanYan Zhao · Annalisa Cartabia · Ismahen Lalaymia · Stéphane Declerck

Received: 9 February 2022 / Accepted: 28 April 2022 / Published online: 13 May 2022
© The Author(s) 2022

Abstract
Medicinal plants are an important source of therapeutic compounds used in the treatment of many diseases since ancient times. Interestingly, they form associations with numerous microorganisms developing as endophytes or symbionts in different parts of the plants. Within the soil, arbuscular mycorrhizal fungi (AMF) are the most prevalent symbiotic microorganisms forming associations with more than 70% of vascular plants. In the last decade, a number of studies have reported the positive effects of AMF on improving the production and accumulation of important active compounds in medicinal plants. In this work, we reviewed the literature on the effects of AMF on the production of secondary metabolites in medicinal plants. The major findings are as follows: AMF impact the production of secondary metabolites either directly by increasing plant biomass or indirectly by stimulating secondary metabolite biosynthetic pathways. The magnitude of the impact differs depending on the plant genotype, the AMF strain, and the environmental context (e.g., light, time of harvesting). Different methods of cultivation are used for the production of secondary metabolites by medicinal plants (e.g., greenhouse, aeroponics, hydroponics, in vitro and hairy root cultures) which also are compatible with AMF. In conclusion, the inoculation of medicinal plants with AMF is a real avenue for increasing the quantity and quality of secondary metabolites of pharmacological, medical, and cosmetic interest.

Keywords Arbuscular mycorrhiza fungi · Medicinal plants · Secondary metabolites · Hydroponics · Aeroponics · Hairy root cultures

Introduction
Medicinal plants have been a valuable source of therapeutic agents to treat various ailments and diseases such as diarrhea, fever, colds, and malaria since ancient times (Dambisya and Tindimwebwa 2003; Ghiaee et al. 2014; Mathens and Bellanger 2010; Titanji et al. 2008). Nowadays, they also represent a source for the development of new drugs to cure important diseases such as cancer (Newman and Cragg 2007; Beik et al. 2020). Their therapeutic value often is attributed to the presence and richness of active compounds belonging to the secondary metabolism, such as alkaloids, flavonoids, terpenoids, and phenolics (Hussein and El-Anssary 2018). Today, up to 80% of people in developing countries are totally dependent on herbal drugs for their primary healthcare (Ekor 2014), and over 25% of prescribed medicines in developed countries have been derived from plants collected in the wild (Hamilton 2004).

Numerous methods, such as isolation from plants and other natural sources, synthetic chemistry, combinatorial chemistry, and molecular modeling, have been used for drug discovery (Ley and Baxendale 2002; Geysen et al. 2003; Lombardino and Lowe 2004). However, natural products, and particularly medicinal plants, remain an important source of new drugs, new drug leads, and new chemical entities (Newman et al. 2000, 2003; Butler 2004) because of their cultural acceptability, high compatibility, and adaptability with the human body compared to synthetic chemicals (Garg et al. 2021). According to the International Union for Conservation of Nature and the World Wildlife Fund (Chen et al. 2016), an estimate of as many as 80,000 flowering plant species are used for medicinal purposes. For several thousands of plants worldwide, the activity or composition in bioactive compounds remains poorly documented,
requiring further in-depth analysis to fully exploit their medicinal potential (Ali 2019).

In nature, plants are associated with an overwhelming number of beneficial microorganisms (e.g., endophytic or symbiotic bacteria and fungi) that play a significant role in plant health, development, and productivity, and in the modulation of metabolite synthesis (Berendsen et al. 2012; Panke-Buisse et al. 2015; Mendes et al. 2011; Castrillo et al. 2017; de Vries et al. 2020; Brader et al. 2014; Compant et al. 2021). Among these are the arbuscular mycorrhizal fungi (AMF), a ubiquitous group of soil microorganisms, forming symbiosis with more than 70% of vascular plants (Brundrett and Tedersoo 2018). Arbuscular mycorrhizas are characterized by the formation of finely branched structures called arbuscules within root cortical cells of host plants (Coleman et al. 2004), which are the site of bidirectional transport, i.e., minerals from the fungal cell to the plant cell and carbon compounds in the opposite direction.

The establishment of the AMF symbiosis requires recognition between the two partners. Lipochitooligosaccharides, the so-called Myc factors, are perceived by the plant in response to signaling molecules (i.e., strigolactones) released by the roots (Akiyama and Hayashi 2006). After reciprocal recognition, AMF hyphae form a hyphopodium on the root epidermis and colonize the root cortex. At the same time, fungal hyphae spread into the surrounding soil as an extensive extraradical mycelium, representing 9 to 55% of the total soil microbial biomass (Olsson et al. 1999). This dense extraradical mycelium considerably enhances the access of roots to water and mineral nutrients (e.g., P, N, K, Ca, S, Zn, Cu), often increasing plant biomass (Smith and Read 2008; Bowles et al. 2016) and quality of crops (Baum et al. 2015; Bona et al. 2016; Noceto et al. 2021). Moreover, this extraradical mycelium modifies the soil structure (Chen et al. 2018), which improves soil quality and fertility (Zou et al. 2016; Thirkell et al. 2017). AMF also are well known to improve plant resistance or tolerance to stress conditions, such as drought, salinity, nutrient deprivation, extreme temperatures, heavy metals, pests, and diseases (Ahanger et al. 2014; Salam et al. 2017; Porcel et al. 2012; Cicatelli et al. 2014). In addition to these benefits, they also quantitatively and qualitatively could affect the production of secondary metabolites produced by their hosts (Ahanger et al. 2014; Salam et al. 2017; Porcel et al. 2012; Cicatelli et al. 2014; Kaur and Suseela 2020).

Taber and Trappe (1982) were the first to document the presence of AMF in a medicinal plant (in their study conducted on ginger growing in the Fiji Islands and Hawaii). Since then, most medicinal plants were found capable of associating with mycorrhizal fungi (Chen et al. 2014). Recently, single or combinations of AMF have been inoculated to various medicinal plants to investigate their impact on plant biomass as well as on phytochemical constituents in seeds, fruits, leaves, shoots, and roots (e.g., Rydlová et al. 2016; Kapoor et al. 2004; Selvaraj et al. 2009; Dave et al. 2011; Zubek et al. 2012). The majority of studies revealed that AMF were able to enhance plant biomass as well as to promote the accumulation of several active compounds. For example, Lazzara et al. (2017) reported an increased above- and belowground biomass in Hypericum perforatum associated with a mixture of nine different AMF species. Interestingly, the concentrations of pseudohypericin and hypericin, two anthraquinone derivatives that exhibit important photodynamic, antiviral, antiretroviral, antibacterial, antipsoriatic, antidepressant, and antitumoral biological activities (Zubek et al. 2012; Bombardelli and Morazzoni 1995; Gadzovska et al. 2005; Guedes and Eriksson 2005), were increased by 166.8 and 279.2% in the AMF-colonized plants as compared to non-mycorrhizal controls (Lazzara et al. 2017). However, these results should not obviate other studies in which no effects on biomass were reported. For instance, Nell et al. (2010) found that AMF colonization decreased the biomass of rhizomes and roots of Valeriana officinalis, while significantly increasing the levels of sesquiterpenic acids. Another study by Engel et al. (2016) reported an increased content of rosmarinic acid and lithospermic acid A isomer (two phenolic compounds) in Melissa officinalis, while both compounds were diminished in Majorana hortensis, in the presence of three mixtures of AMF. More recently, Duc et al. (2021) showed that a mixture of different AMF species improved the salt stress tolerance of Eclipta prostrata, inducing major changes in polyphenol profile.

In this publication, we provide a thorough review of the literature on AMF mediation of secondary metabolites production in medicinal plants. We also review the different methods that are used to increase/stabilize the production of secondary metabolites. Indeed, the quantity and quality of secondary metabolites obtained from plants grown in natural habitats are critically influenced by various abiotic and biotic stresses (e.g., drought, extreme temperatures, and pathogen attack). This results in high variability of bioactive substances and influences the metabolic pathways responsible for the accumulation of the related natural compounds (Dayani and Sabzialian 2017; Giurgiu et al. 2017; Ramakrishna and Ravishankar 2011). Therefore, we additionally review the most widely used methods of cultivation (i.e., greenhouse, hydroponics, aeroponics, in vitro and hairy root cultures (HRCs)) of medicinal plants, and we investigate their possible application to AMF to further increase the quantity and quality of secondary metabolites produced.

Effect of AMF on growth and secondary metabolite production of medicinal plants

Since the pioneer work of Wei and Wang (1989, 1991), reporting the positive effect of AMF inoculation of Datura stramonium and Schizonepeta tenuifolia on the production of active compounds, numerous studies have been conducted.
The literature focusing on AMF in medicinal plants involves 81 plant species belonging to 28 families (Table 1). These medicinal plants present different characteristics to be studied with AMF: important medicinal herbs to treat certain disease such as Artemisia annua producing artemisinin to treat malaria in developing countries (Domokos et al. 2018); important condiment plants such as Allium sativum in India (Borde et al. 2009); rare plant species difficult to culture such as Arnica montana (Jurkiewicz et al. 2011); aromatic plants to produce essential oil widely used in the pharmaceutical, cosmetic, and food industries such as most plant species from the Apiaceae (Anethum graveolens and Coriandrum sativum (Rydlová et al. 2016)) and the Lamiaceae (Origanum vulgare (Karagiannidis et al. 2012)) and health foods such as Dioscorea spp. yam (Lu et al. 2015). For the majority of these plants, studies were focused on the effects of AMF on biomass increase and production of bioactive compounds simultaneously (45 studies) or only focused on bioactive compound production (30 studies). For a few other studies, the attention was focused on AMF community composition (four studies) or on the effects of AMF on plant growth under different conditions (15 studies) (Table 1). Among the AMF species tested, Funneliformis mosseae is the most investigated one (25 studies), followed by Rhizophagus intraradices (16), Claroideoglomus etunicatum (14), Rhizophagus fasciculatus (14), Rhizophagus irregularis and Rhizophagus clarus (six studies each), and Gigaspora margarita (five studies) (Table 1). Only a few medicinal plant species were inoculated with AMF present in the soil native to those plants, while the vast majority were inoculated with commercial inoculants.

A direct relationship has been highlighted between the biomass of AMF-colonized plants and the concentration of secondary metabolites for several medicinal plants, such as Chlorophytum borivilianum, Dioscorea spp., Gymnema sylvestre, Glycyrrhiza uralensis, Libidibia ferrea, Ocimum basilicum, Satureja macrostema, and Salvia miltiorrhiza (Dave et al. 2011; Lu et al. 2015; Zimare et al. 2013; Chen et al. 2017; Silvia et al. 2014; Zolfaghari et al. 2013; Carreño-Abud et al. 2015; Yang et al. 2017). Conversely, in Cynara cardunculus colonized by R. intraradices and F. mosseae, a significant increase in yield was noticed, but the concentrations of phenolics decreased (Colonna et al. 2016). Other studies conducted with Hypericum perforatum inoculated with R. intraradices or a mixture of Funneliformis constrictum, Funneliformis geosporum, F. mosseae, and R. intraradices reported no increase in shoot biomass, while in Valeriana officinalis inoculated with R. intraradices or a mixture of six AMF species (F. mosseae, R. intraradices, Glomus cladoideum, Rhizoglomus microaggregatum, Funneliformis caledonium, and C. etunicatum) a negative effect on rhizome and root biomass was noticed (Zubek et al. 2012; Nell et al. 2010). However, an increased concentration of active compounds (e.g., hypericin and pseudohypericin and sesquiterpenic acids, respectively) was noticed for both plants (Zubek et al. 2012; Nell et al. 2010).

Another beneficial aspect of AMF is their capability to improve plant nutrient uptake (Bowles et al. 2016), influencing directly or indirectly the concentration of secondary metabolites (Yamawaki et al. 2013). For instance, F. mosseae improved shoot and root biomass, root system architecture, and flavonoid accumulation in Glycyrrhiza uralensis growing under P-deficient nutrient conditions (Chen et al. 2017).

A number of studies also have reported enhanced survival and increased growth of micropropagated medicinal plants at the transfer stage from in vitro to ex vivo conditions (Rai 2001). For instance, with F. mosseae, the survival rate of micropropagated Spilanthes acmella and Glycyrrhiza glabra plantlets was 100%, and plant growth and development were improved under greenhouse conditions (Yadav et al. 2012, 2013) while in the absence of AMF, the survival rate was only 60–70%. Similarly, height and fresh weight of shoots, roots, and seeds of Scutellera integrifolia seedlings inoculated with C. etunicatum were significantly increased in pots following micropropagation (Joshee et al. 2007).

These studies clearly evidenced the potential of using AMF inoculants for improving the yield of raw materials (e.g., roots, shoots) of medicinal plants, thus potentially increasing the quantity of active compounds.

Different groups of secondary metabolites whose production was enhanced by AMF inoculation are detailed below.

Alkaloids

Alkaloids are nitrogen-containing organic compounds produced by plants constitutively or in response to pests, diseases, or other external stimuli (Jan et al. 2021). They are found in different organs of important medicinal plants (Table 1) and are characterized by a diverse array of pharmacological properties including analgesia, local anesthesia, cardiac stimulation, respiratory stimulation and relaxation, vasoconstriction, muscle relaxation, antineoplastic, and hypertensive and hypotensive properties (Hussein and El-Ansary 2018).

Since Wei and Wang (1989) first observed that AMF symbiosis can increase the total content of hyoscyamine and scopolamine in Datura stramonium, numerous studies have reported a positive role of AMF in the accumulation of alkaloids. For example, a positive correlation was found between AMF colonization (a mixture of R. intraradices...
Table 1 Detailed summary of studies on the relationship between AMF and medicinal plants

Plant family	Plant species	AMFa	Secondary metabolites group and active ingredients	Medicinal value of the plant	Plant organ studied	Change in secondary metabolite production	Change in plant growth/biomass	Reference
Alliaceae	Allium sativum	Rhizophagus fasciculatus	Alliin	Antibacterial, antifungal, antiviral, antiprotozoal, antioxidative, and anticancerogenic properties; against atherosclerosis and high blood pressure	Leaves, flowers, and cloves	Significant increase	Increase in plant height, total biomass and bulb diameters, bulb weight, and yield	Borde et al. (2009)
Amaranthaceae	Achyranthes aspera	Rhizophagus fasciculatus	Flavonoids	Treatment of cough, bronchitis, rheumatism, malarial fever, dysentery, asthma, hypertension and diabetes (Bhosale et al. 2012)		Positive effect on plant growth parameters		Tejavathi and Jayashree (2011)
Anacardiaceae	Myrocaro dron urandeva	Acaulospora longula	Total phenols and flavonoids	Anti-inflammatory, anti-ulcer, astringent, anti-allergic, and antidiarrheal activities (Teixeira et al. 2020)	Leaves	81.03% increased	Promote plant growth	Oliveira et al. (2013)
Apiaceae	Angelica dahurica	Glomus spp.	Imperatorin and total coumarins	Treatment for colds, headache, dizziness, toothache, supraborbital pain, nasal congestion, acne, ukele, carbuncle, and rheumatism (Lee et al. 2015)	Root, seed, and fruit	Significant increase	Plant growth and biomass promoted	Zhao and He (2011)
Angelica archangelica	Funneliformis mossea	Monoterpenoid and coumarin	Dyspeptic complaints such as mild gastrointestinal spasms, sluggish digestion, flatulence and feeling of fullness, loss of appetite, anorexia and bronchitis	Rhizome and roots	A marked increase in yield	Biomass increased		Zitterl-Eglseer et al. (2015)
Anethum graveolens	Glomus macrocarpum, Rhizophagus fasciculatus	Anethole	Treatment for abdominal discomfort and colic and also for promoting digestion	Seed	90% increased	Improved the growth		Kapoor et al. (2002)
Bupleurun scorzonerafolium		Flavonoids	Treating cold, fever, chest pain, irregular menstruation, uterine fall off and rectocele					Teng and He (2005)
Coriandrum sativum	Glomus hoi	β-Caryophyllene, p-cymene, geraniol	Antioxidant, antidiabetic, hepatoprotective, antibacterial, and antifungal activities (Asgarpanah and Kazernivash 2012)	Seeds or leaves	Significant improvement			Rydlová et al. (2016)
Plant family	Plant species	AMPs	Secondary metabolites group and active ingredients	Medicinal value of the plant	Plant organ studied	Change in secondary metabolite production	Change in plant growth/biomass	Reference
--------------	---------------	------	---	-----------------------------	-------------------	--------------------------------	----------------------------------	-----------
Foeniculum vulgare	Glomus macrocarpum and Rhizophagus fasciculatus	Essential oil concentration	Used for digestive, endocrine, reproductive, and respiratory systems (Badgujar et al. 2014)	Seeds	Significantly increased	Improved plant growth	Kapoor et al. (2004)	
Trachyspermum ammi	Rhizophagus fasciculatus	Thymol	Antifungal, antioxidant, antimicrobial properties and used for antinociceptive, hypolipidemic, antihypertensive, antispasmodic, broncho-dilating actions, antilithiasis, and diuretic (Bairwa et al. 2012)	Fruits	72% increased		Kapoor et al. (2002)	
Apocynaceae	Catharanthus roseus	Glomus spp.	Vinblastine and vincristine, rutin, quercetin, and kaempferol	Aerial part	Significant increase		Andrade et al. (2013)	
Gymnema sylvestre	Rhizophagus fasciculatus and Funneliformis mosseae	Gymnemic acid	Control diabetes mellitus	Shoots and leaves	Positive increased	Higher shoot and root length and fresh and dry weight	Zimare et al. (2013)	
Araliaceae	Panax ginseng		Reinforcing vital energy and restoring physiological weakness and possess antioxidant, anti-inflammatory, antiallergic, antidiabetic, and anticancer properties (Kim et al. 2018)	Plant seedlings		Plant seedlings biomass Significantly increased	Cho et al. (2009)	
	Panax notoginseng			Roots	Increased total content		Tian et al. (2019)	
Araceae	Pinellia ternate	Rhizophagus intraradices, Funneliformis mosseae	l-Ephedrine and guanosine	Tubers	Significant increase	Increasing fresh weight and dry weight	Guo et al. (2010)	
Plant family	Plant species	AMP*	Secondary metabolites group and active ingredients	Medicinal value of the plant	Plant organ studied	Change in secondary metabolite production	Change in plant growth/biomass	Reference
-------------	--------------	------	--	----------------------------	---------------------	---	-------------------------------	-----------
Acorus calamus	Funneliformis mosseae and Acaulospora laevis	______	Anti-spasmodic and anti-anthelmintic properties and also used for treatment of epilepsy, mental ailments, chronic diarrhea, dysentery, bronchial catarrh, intermittent fevers, and tumors	______	______	Significant increase in plant height, plant spread, number of leaves per plant, and leaf area	Yadav et al. (2011)	
Asteraceae	Atractylodes macrocephala	Funneliformis mosseae	Atractylol	Strengthening the spleen, benefiting vital energy, eliminating dampness, hidroschesis, and soothing fetuses	Rhizome	Significant increase	______	La and He (2005)
Atractylodes lancea	Funneliformis mosseae	______	Used to treat rheumatic diseases, digestive disorders, night blindness, and influenza and also exert anti-cancer, anti-obesity, and anti-inflammatory effects	______	No effect on essential oil contents	Improved plant growth	Guo et al. (2006)	
Chroodoceoglomus etunicatum, Glomus tortuosum, and Funneliformis mosseae	Essential oils, kinesol, β-eudesmol, and atracylodin	______		Increased	Increased the survival rate of seedlings, plant height, root length, and leaf number significantly increased	Liang et al. (2018)		
Artemisia annua	Rhizophagus irregularis	Artemisinin content	Treat fever, inflammation, malaria, cough, stomach and intestinal upset	Leaves	17% increased	Significant increase in fresh and dry plant biomass	Domokos et al. (2018)	
Arnica montana	Funneliformis geosporum, Funneliformis constrictum, several Glomus strains	Sesquiterpene lactones	Stimulate blood flow, promote healing, and soothe arthritic pains	Fresh or dried flower	Significant increase	______	Jurkiewicz et al. (2011)	
		Phenolic acids		Roots	Increased concentration	______	Jurkiewicz et al. (2011)	
Plant family	Plant species	AMF group and active ingredients	Change in secondary metabolism production	Change in plant growth/biomass	Medicinal value of the plant	Plant organ studied	Reference	
--------------	--------------	----------------------------------	--	-----------------------------	-----------------------------	-------------------	-----------	
Artemisia	*Artemisia vulgaris*	Planticonsortium tenue, *Rhizophagus intraradices*, *Claroideoglomus claroideum* etunicatum, and a new Acaulospora species	Essential oil E-β-ocimene	Significantly increased	Essential oil E-β-ocimene	Essential oil E-β-ocimene	Binet et al. (2011)	
Baccharis	*Baccharis trimera*	*Rhizophagus clarus*	Phenolics	Marked increases	Antioxidant, anti-microbial, anti-inflammatory properties, and used for gastric and hepatic-protector	Roots and leaves	Freitas et al. (2004)	
Cynara	*Cynara cardunculus*	*Rhizophagus intraradices* and *Funneliformis mosseae*	Phenolics	Marked increases	Prevent carcinogenesis and antioxidant properties	Leaves and flowers	Ceccarelli et al. (2010)	
Echinacea	*Echinacea purpurea*	*Rhizophagus intraradices*	Phenolics and cichoric acid	Marked increases	Treatment of toothache, bowel pain, snake bite, skin disorders, seizure, chronic arthritis, and cancer	Root and aerial parts	Arai et al. (2009)	
Eclipta	*Eclipta alba*	*Glomus aggregatum*, *Funneliformis mosseae*, and *Rhizophagus fasciculatus*	Flavonoids	Increased	Treatment of gastrointestinal disorders, respiratory tract disorders (including asthma), fever, hair loss and graying of hair, liver disorders (including jaundice), skin disorders, spleen enlargement, and cuts and wounds	Total phenolic content	Tejavathi and Jayashree (2011)	
Plant family	Plant species	AMP*	Secondary metabolites group and active ingredients	Medicinal value of the plant	Plant organ studied	Change in secondary metabolite production	Change in plant growth/biomass	Reference
-------------	--------------	------	---	-----------------------------	---------------------	--	-----------------------------	-----------
Eclipta prostrata	*Rhizophagus irregularis,* *Funneliformis mosseae,* *Claroideoglomus etunicatum,* *Claroideoglomus claroideum,* *Rhizoglomus microaggregatum,* and *Funneliformis geosporum*	Scopolamine	treatment of diabetes type II, dizziness, hemoptysis, and liver diseases	Leaves	0.34% increased			Vo et al. (2019)
Inula ensifolia	*Rhizophagus clarus*	Thymol derivatives	Possess antiproliferative activity against human cancer	Roots	Increased			Zubek et al. (2010)
Stevia rebaudiana	*Rhizophagus fasciculatus*	Stevioside, rebaudioside-A	Used as a substance strengthening the heart, the circulatory system, and regulating blood pressure (Marcinek and Krejpcio 2016)	Leaves	Significant increase			Mandal et al. (2013)
Spilanthes acmella	*Funneliformis mosseae* and *Acaulospora laevis*		Antiseptic, antibacterial, antifungal, and antimarial properties and used as remedy for toothache, flu, cough, rashes diseases, and tuberculous					Yadav et al. (2012)
Tagetes erecta			Used as antiseptic and in kidney troubles, muscular pain, and pikes, and applied to boils and carbuncles (Singh et al. 2020)					Asrar and Elhindi (2010)
Wedelia chinensis	*Rhizophagus fasciculatus*	Total phenols, ortho dihydroxy phenols, flavonoids, alkaloids, taminis, and saponins	Treatment of bites, stings, fever, infection, kidney dysfunction, cold, wounds, and amenonrhea problems (Rehana and Nagarajan 2018)	Seedlings	Increased			Nisha and Kumar (2010)
Burseraceae	*Gigaspora albida* and *Claroideoglomus etunicatum* (native)	Total phenols and taminis	Treatment of bronchitis, cough, renal problems, general inflammation, and stomachache	Seedling, leaves	Significant increased			Lima et al. (2017)
Plant family	Plant species	AMP*	Secondary metabolites group and active ingredients	Medicinal value of the plant species	Plant organ studied	Change in secondary metabolite production	Change in plant growth/biomass	Reference
---------------------	--------------	---------------------------	---	-------------------------------------	---------------------	--	--------------------------------	-------------------------------------
Caprifoliaceae	Valeriana jatamansi	*Rhizophagus intraradices*	Gallic acid, chlorogenic acid, catechin, hydroxyl benzoic acid	Possess sedative, neurotoxic, cytotoxic, antidepressant, and antimicrobial activities (Jugran et al. 2019)	Rhizome and root	Significant increase	Significant increase in aboveground fresh and dry weight, and belowground fresh and dry weight	Jugran et al. (2015)
	Valeriana officinalis	*Rhizophagus intraradices*	Valerenic acid	Possess sedative and antispasmodic and sleep-inducing effects (Mungali and Tripathi 2021)	Roots	Relative increasing	Biomass of rhizomes and roots negatively affected	Nell et al. (2010)
Colchicaceae	Gloriosa superba	*Funneliformis mosseae, Rhizophagus fasciculatus, Gigaspora margarita, and Gigaspora gilmorei*	Colchicine content	Treatment of gout, rheumatic arthritis, diseases of the skin and liver	Tubers	Increased	Improved plant growth	Pandey et al. (2014)
Dioscoreaceae	Dioscorea spp. yam	*Rhizophagus clarus, Claroideoglomus etunicatum, Rhizophagus fasciculatus, Gigaspora sp., Funneliformis mosseae, and Acaulospora sp.*	Polyphenols, flavonoids, and anthocyanin	Anti-oxidative property to inhibit lipid peroxidation, resist the attack of free radicals, diminish low-density lipoproteins (LDLs), and reduce the occurrence of cardiovascular diseases	Bulbils	Significantly increased	Tube weights significantly increased	La et al. (2015)
Euphorbiaceae	Euphorbia hirta	*Funneliformis mosseae*	Phenols, flavonoids, alkaloids, and terpenoids	Treatment for respiratory ailments (cough, coryza, bronchitis, and asthma), worm infestations in children, dysentery, jaundice, pimples, gonorrhea, digestive problems, and tumors (Kumar et al. 2010)		Increased	Positive effect on plant growth parameters	Tejavathi and Jayashree (2011)
Plant family	Plant species	AMF*	Secondary metabolites group and active ingredients	Medicinal value of the plant	Plant organ studied	Change in secondary metabolite production	Change in plant growth/biomass	Reference
--------------	---------------	------	---------------------------------	---------------------------	--------------------	--------------------------	-----------------------------	----------
Fabaceae	Astragalus membranaceus	______	______	Increasing telomerase activity and posing antioxidant, anti-inflammatory, immunoregulatory, anticancer, hypolipidemic, antihyperglycemic, hepatoprotective, expectorant, and diuretic effects	______	______	AMF community study	Liu and He (2008)
Anadenanthera colubrina	Acaulospora longula and Gigaspora albida	Catechin	Treatment for respiratory problems and inflammations	Bark and leaves	Significant increase	Proteins and carbohydrates were significantly increased	Pedone-Bonfim et al. (2013)	
Castanospermum austral	Rhizophagus intraradices and Gigaspora margarita	Castanospermine	Possess anti-cancer and anti-inflammatory properties and as HIV inhibitors and treatment of AIDS	Seeds	Significant increase with R. intraradices	Increased the growth and P contents	Abu-Zeyad et al. (1999)	
Glycyrrhiza inflata	______	______	Clearing away toxic materials, eliminating phlegm, and relieving cough	______	______	Study under water stress	Liu and He (2009)	
Glycine max	Funneliformis mosseae	Isoflavonoids	Reduction of different types of cancer, cardiovascular diseases, postmenopausal problems, diabetes, and some neurodegenerative disorders	Roots, seeds, leaves, and flowers	Significant increase	______	Morandi and Bailey (1984)	
Glycyrrhiza glabra	Glomus hoi, Clovioideoglomus etunicatum, Clovioideoglomusidae, Rhizophagus irregularis, and Acaulospora delicata	Glycyrrhizic acid	Antiviral effects and act as a multifunctional drug carrier	Roots	Increased	______	Johny et al. (2021)	
Glycyrrhiza uralensis	Funneliformis mosseae	Contents of glycyrrhizic acid, liquiritin, isoliquiritin, and isoliquiritigen	Having immune-modulating and anti-tumor potential	Roots	Significantly enhanced	Significantly increased the shoot and root biomass	Chen et al. (2017)	
Plant family	Plant species	AMF*	Secondary metabolites group and active ingredients	Medicinal value of the plant	Plant organ studied	Change in secondary metabolite production	Change in plant growth/biomass	Reference
------------------	---------------	--------------------------------	---	-----------------------------	--------------------	--	-------------------------------	-----------------------------------
Libidibia ferrea	Claroideoglomus etunicatum	**Total flavonoids**	Posing antilulcerogenic, anti-inflammatory, anti-cancerogenic, anti-histaminic, antimicrobial, anti-coagulant, and cicatrizing properties	Leaves	Increased	Improving the production of seedlings, a larger stem diameter, higher chlorophyll a leaf content	Silvia et al. (2014)	
	Claroideoglomus etunicatum and **Acaulospora longula**	**Flavonoids**	Stems, bark, and leaves	significantly increased			Dos Santos et al. (2017)	
	Acaulospora longula	**Tannins**					Dos Santos et al. (2017)	
Medicago sativa	**Rhizophagus intraradices**	**Formononetin**	Antioxidant, anti-inflammatory, immunomodulatory, and anticancer properties	Roots	Significant increase		Volpin et al. (1994)	
Prosopis laevigata	**Gigaspora rosea**	**Trigonelline**	Cardioprotection potential and treatment of heart diseases, throat infections, dysentery, and eye inflammations	Roots and leaves	1.8-fold increase in roots		Rojas-Andrade et al. (2003)	
Ginkgoaceae	**Ginkgo biloba**	**Funneliformis mosseae, Rhizophagus intraradices, and Diversispora epigea**	Regulating cerebral blood flow, protection against free radicals, and delaying the progress of dementia and diabetes			Plant seedling growth significantly increased	Qi et al. (2002, 2003)	
Hypericaceae	**Hypericum perforatum**	**Rhizophagus intraradices alone or mixture of Funneliformis constrictum, Funneliformis geosporum, Funneliformis mosseae, and Rhizophagus intraradices**	Naphthodianthrone-ES, hypericin, and pseudohypericin	Shoots	Higher concentration	No impact on shoot biomass	Zubek et al. (2012)	
Plant family	Plant species	AMP*	Secondary metabolites group and active ingredients	Medicinal value of the plant	Plant organ studied	Change in secondary metabolite production	Change in plant growth/biomass	Reference
--------------	---------------	------	---	-----------------------------	------------------	---------------------------------	-------------------------------	---------
Hypoxidaceae	Curculigo orchioides	Crude consortium of AMF spores isolated from rhizosphere soil of C. orchioides	______	Anticancerous properties	______	______	Increase biomass production, number of leaves and roots per plant, and higher concentrations of photosynthetic pigments as well as minerals	Sharma et al. (2008)
Lamiaceae	Coleus forskohlii	Glomus bagyarajii and Scutellospora calospora	Forskolin	Treatment of eczema, asthma, psoriasis, cardiovascular disorders, and hypertension (Kavitha et al. 2010)	Roots	Increased	Positive effect on plant growth	Sailo and Bagyaraj (2005)
	Leucas aspera	Funneliformis mosseae	Alkaloids	Carminative, antihistaminic, antipyretic, and antiseptic properties to treat jaundice, anorexia, dyspepsia, fever, helminthic manifestation, respiratory and skin diseases (Nirmala and Kanchana 2018)	______	Increased	Enhanced growth and total biomass	Tejavathi and Jayashree (2011)
Mentha arvensis	Rhizophagus fasciculatus	Terpenes content	Used for stomach problems, allergy, liver and spleen disease, asthma, and jaundice (Thawkar et al. 2016)	Aerial parts	Significantly increased	Significantly increasing plant height, fresh herbage and dry matter yield	Gupta et al. (2002)	
Mentha spicata	Commercial AMF consortium “Rhizagold”	______	Antiseptic, restorative, carminative, and antispasmodic properties	______	______	Significantly positive effect of increasing various plant growth parameters	Birje and Golatkar (2016)	
Melissa officinalis	Clarioideoglomus etunicatum, Clarioideoglomus eukroideum, and Rhizophagus intraradices	Citronellal and neral	To treat nervous disturbances (anxiety, insomnia, and stress) and gastrointestinal disorders and possess sedative, spasmytic, antimicrobial, antioxidant, and antitumoral actions	Leaves	Increased	No impact	Engel et al. (2016)	
Plant family	Plant species	AMP*	Secondary metabolites group and active ingredients	Medicinal value of the plant	Plant organ studied	Change in secondary metabolite production	Change in plant growth/biomass	Reference
--------------	---------------	------	--	-----------------------------	---------------------	--	-------------------------------	-----------
Ocimum basilticum	Gigaporpa margartika and Gigaspora rosea	Linalool and geraniol	Treatment for headaches, coughs, diarrhea, constipation, warts, worms, and kidney malfunctions (Joshi 2014)	Seeds	Significant increase	Plant growth parameters and yield increased	Ravouli-Sadaghian et al. (2010)	
Funneliformis caledonium	Rosmarinic and caffeic acids			Shoots	Increased		Toussaint et al. (2007)	
Origanum onites	Clainideoglomus etunicatum	Total essential oil production	Treatment of indigestion, coughs, and toothache, and to stimulate menstruation	Leaves	Increased	Significantly higher shoot and root dry weight	Karagiannidis et al. (2012)	
Origanum vulgare	Clainideoglomus etunicatum	Essential oil composition of p-cymene, and γ-terpinene	Treatment for indigestion, coughs, and toothache, and to stimulate menstruation	Leaves	Increased	Significantly higher shoot and root dry weight	Karagiannidis et al. (2012)	
Plectranthae amboinicus	Rhizophagus cerasus	Carvacrol, trans-caryophyllene, α-Bergamotene, and γ-humulene	Possess digestive, expectorant, antispasmodic, healing, and antiseptic actions	Shoots	Significant improvement	Improved shoot dry matter, root dry matter and total dry matter	Merlin et al. (2020)	
Pogostemen cablin	Clainideoglomus etunicatum	Essential oils	Used to treat nausea, diarrhea, colds, and headaches					
Acdakospora laevis, Funneliformis mosseae, and Scutellospora calaspora	Patchoukol			Leaves	Significant Improvement		Singh et al. (2012)	
Satureja macrostema	Rhizophagus irregularis	β-Linalool, menthone, pulegone, and verbensol acetate	Antimicrobials	Aerial parts	Significantly increased	Significantly increased biomass, shoot and root length	Carreón-Abud et al. (2015)	
Salvia officinalis	Rhizophagus cerasus	Essential oil camphor, α-humulene, viridiflorol, manool, α-thujone, and β-thujone	Treatment of different kinds of disorders including seizure, ulcers, gout, rheumatism, inflammation, dizziness, tremor, paralysis, diarrhea, and hyperglycemia (Ghorbani and Esmaeilizadeh 2017)	Shoots	Increased	Plant biomass increased	Sete da Cruz et al. (2019)	
Plant family	Plant species	AMF	Secondary metabolites group and active ingredients	Medicinal value of the plant	Plant organ studied	Change in secondary metabolite production	Change in plant growth/biomass	Reference
--------------	---------------	-----	---	-----------------------------	---------------------	--	--------------------------------	-----------
Salvia miltiorrhiza	*Funnelliformis geosporum* or *Acaulospora laevis*	Total phenolic acids	Treatment of menstrual disorders, cardiovascular, and cerebrovascular disease	Roots	Significant increase	Roots biomass, fresh and dry weight of the plant effectively increased	Wu et al. (2021)	
Scutellaria integrifolia		A strong emmenagogue and as a female medicinal herb				Positive effects on micropropagated plantlet growth, particularly root development	Joshee et al. (2007)	
Schizonepeta tenuifolia		Essential oil	Used for headaches, colds, allergies, and eczema (Jeon et al. 2019)		Increased		Wei and Wang (1991)	
Thymus daenensis	*Funnelliformis mosseae* and *Rhizophagus intraradices*	Essential oils	Possess digestive, carminative, antitussive, antispasmodic, and expectorant attributes (Elahian et al. 2021)				Arpanahi et al. (2020)	
Thymus vulgaris	*Funnelliformis mosseae*	Thymol, p-cymene, and γ-terpinene	Possess antiseptic, antibiotic, antifungal, antispasmodic, expectorant, and analgesic properties		Increased	Improved yield under drought condition	Machiani et al. (2021)	
Leguminosae	*Pueraria lobata*		To relieve body heat, eye sore, dry mouth, headache associated with high blood pressure, and stiff neck problems (Liu et al. 2019)				Wang et al. (2006)	
Oleaceae	*Forsythia suspense*	*Rhizophagus fasciculatus* and *Funnelliformis construectum*	Anti-inflammatory, antioxidant, antibacterial, anti-cancer, anti-virus, anti-allergy, and neuroprotective effects (Wang et al. 2018)			Strengthen the anti-drought of the seeding	Zhao et al. (2007)	
Poaceae	*Cymbopogon citratus*	*Funnelliformis mosseae* Essential oils Geranial, neral, and β-pinene	To treat cough, cold, rheumatism, digestive problems, bladder issues, toothache, and swollen gums	Aerial Parts	Enhanced		Mirzaie et al. (2020)	
Plant family	Plant species	AMP*	Secondary metabolites group and active ingredients	Medicinal value of the plant	Plant organ studied	Change in secondary metabolite production	Change in plant growth/biomass	Reference
--------------	---------------	------	--	-----------------------------	-------------------	---------------------------------	-----------------------------	-----------
Coix lachrymal-jobi	__________	__________	__________	__________	__________	__________	__________	Li (2003)
Passifloraceae	Passiflora alata	__________	__________	__________	__________	__________	__________	Riter et al. (2014)
Rutaceae	Phellodendron amurense	__________	__________	__________	__________	__________	__________	Fan et al. (2006)
Phellodendron chinense	__________	__________	__________	__________	__________	__________	__________	Zhou and Fan (2007)
Citrus aurantium	__________	__________	__________	__________	__________	__________	__________	Wu et al. (2010)
Solanaceae	Datura stramonium	__________	__________	__________	__________	__________	__________	Wei and Wang (1989)
Plant family	Plant species	AMF*	Secondary metabolites group and active ingredients	Medicinal value of the plant	Plant organ studied	Change in secondary metabolite production	Change in plant growth/biomass	Reference
-------------	--------------	------	--	-----------------------------	----------------------	---	-----------------------------	-----------
Solanum viarum	*Glomus aggregatum and bacteria Bacillus coagulans and Trichoderma harzianum*	Flavonoids	Used for cancer, patients with Addison’s disease and rheumatic arthritis treatment	Seedlings	Increased			Hemashenpagam and Selvaraj (2011)
Withania somnifera	*Rhizophagus irregularis*	Withaferin-A	Treatment of cancer	Root	Significantly increased			Johny et al. (2021)
Taxaceae	Taxus chinensis		Anticancer effect (Jian et al. 2016)					Ren et al. (2008)
Violaceae	Viola tricolor	*Rhizophagus irregularis*	Caffeic acid concentration	Aerial part	Significant increase	No impact on root mass and negative impact on shoot biomass		Zubek et al. (2015)
Zingiberaceae	Curcuma longa	*Glomus, Gigaspora, and Acaulospora sp.*	Curcumin	Rhizomes	Increased			Dutta and Neog (2016)
	Gigaspora margarita	Curcumin			No impact on curcumin content (field)	No impact on plant growth parameters, biomass production, nutrient uptake		Yamawaki et al. (2013)
	Gigaspora margarita	Curcumin			Concentration of curcumin increased (greenhouse)	Higher biomass production and nutrient uptake		Yamawaki et al. (2013)

*The column “AMF” shows the current names, not the one at the time of publication

*There are no studies or available data found online
and *G. margarita* of *Castanospermum australe* tree and the castanospermine content (which was reported to inhibit the HIV virus) of leaves (Abu-Zeyad et al. 1999). The contents of some commonly used “heat-clearing” herb compounds, such as berberine, jatrorrhizine, and palmatine, were increased in seedlings of *Phellodendron amurense* inoculated with AMF (Fan et al. 2006). Other active compounds were increased in the presence of AMF: trigonel-line in roots and leaves of *Prosopis laevigata* colonized by *Gigaspora rosea* (Table 1). For instance, the production of these compounds was increased in seedlings of *Coleus forskohlii* inoculated with *Glomus bagyarajii* growing under greenhouse conditions (Sailo and Bagyaraj 2005). Similarly, Singh et al. (2013) reported an increased content of forskolin in tubers of *Coleus forskohlii* associated with *R. fasciculatus* growing under organic field conditions.

Researchers also have studied the impact of AMF symbiosis on medicinal plants derived from tissue cultures. An example is the increased content of the essential oil carvacrol, a phenolic monoterpenoid with antimicrobial, antioxidant, and anticancer activities (Sharifi-Rad et al. 2018) in micropropagated *Origanum vulgare* subsp. *hirtum* after association with the AMF *Septoglomus viscosum* (Morone Fortunato and Avato 2008).

Phenolics

Phenolics represent a wide group of compounds, sharing one or more phenol groups (Hussein and El-Ansary 2018), among which are flavonoids, curcuminoids, coumarins, tannins, stilbenes, lignans, phenolic acids, and quinones (Cosme et al. 2020).

Arbuscular mycorrhizal fungi have been shown to increase the content of phenols in medicinal plants (Table 1). For instance, the production of formononetin (an antimicrobial, antioxidative, antilipidemic, antidiabetic, antioxidant, and neuroprotective compound) (Vishnuvathan et al. 2016), was increased in *Medicago sativa* grown in the presence of *R. intraradices* (Volpin et al. 1994). The production of curcumin (an anti-inflammatory, antioxidant, anticancer, antiseptic, antiplasmodial, astrigent, digestive, diuretic compound) (an anti-inflammatory, antioxidant, anticancer, antiseptic, antiplasmodial, astrigent, digestive, diuretic compound) of *Curcuma longa* colonized by AMF species belonging to the genera *Glomus/Rhizophagus, Gigaspora,* and *Acaulospora* sp., under greenhouse conditions (Dutta and Neog 2016). The concentration of total tannins, used to treat tonsillitis, pharyngitis, hemorrhoids, and skin eruptions (Britannica 2021), was increased by 40% in the fruits of *Lilabida ferrea* inoculated with *Acaulospora longula* under field conditions (Santos et al. 2020). Additionally, the concentrations of cichoric acid in *Echinacea purpurea* colonized by *R. intraradices* (Araim et al. 2009) and p-hydroxybenzoic acid in *Viola tricolor* colonized by *R. irregularis* (Zubek et al. 2015), and the total content of flavonoids in *Libidibia ferrea* colonized by *Gigaspora albida* and gallic acid in *Valeriana fujumansi* colonized by a consortium of three different isolates of *R. intraradices* spp. (Silvia et al. 2014; Jugran et al. 2015) were increased by the AMF symbiosis.

Saponins

Saponins are characterized by a polycyclic aglycone moiety with either a steroid (steroidal saponins) or triterpenoid (triterpenoidal saponins) attached to a carbohydrate unit (a...
monosaccharide or oligosaccharide chain) (Hussein and El-Anssary 2018). Among these compounds, a few have demonstrated pharmacological properties, such as antitumor, sedative, expectorant, analgesic, and anti-inflammatory (Hussein and El-Anssary 2018). Arbuscular mycorrhizal fungi were reported to enhance the production of saponins in medicinal plants (Table 1). For instance, the content of glycyrrhizic acid, a triterpenoid saponin used to alleviate bronchitis, gastritis, and jaundice (Pastorino et al. 2018), was increased by 0.38–1.07-fold and by 1.34–1.43-fold after 4 and 30 months, respectively, in Glycyrrhiza glabra (liquorice) plants colonized by F. mosseae and D. epigaea alone or in combination, grown in sand under greenhouse conditions (Liu et al. 2007). Similarly, Johny et al. (2021) reported an increase of glycyrrhizic acid concentration in Glycyrrhiza glabra inoculated with C. etunicatum under greenhouse conditions.

Other chemical compounds

Hypericin and pseudohypericin are naphthodianthrones (anthraquinone derivatives) mainly extracted from Hypericum species (Ayan and Cirak 2008). They have many pharmacological properties, such as sedatives, antiseptics, and antispasmodics (Baytop 1999). Zubek et al. (2012) reported an increased content of hypericin and pseudohypericin in Hypericum perforatum colonized by R. intraradices alone or by a mixture of F. constrictum, F. geosporum, F. mosseae, and R. intraradices, under greenhouse conditions.

Withaferin-A, a steroidal lactone, traditionally used in ayurvedic medicine (Mirjalili et al. 2009), has a wide range of pharmacological activities including cardioprotective, anti-inflammatory, immuno-modulatory, anti-angiogenesis, anti-metastasis, and anti-carcinogenic properties. Johny et al. (2021) reported that association between the medicinal plant Withania somnifera and R. irregularis increased the concentration of withaferin-A as compared to non-inoculated plants under greenhouse conditions.

It should be noted, however, that AMF showed a neutral or decreased effect on the production of certain secondary metabolites. For example, Nell et al. (2010) found that F. mosseae has no effect on the total concentrations of phenolic and rosmarinic acid in the roots of Salvia officinalis; and Geneva et al. (2010) showed that R. intraradices decreased total phenol and flavonoid contents in the leaves of Salvia officinalis. Similarly, Zubek et al. (2010) reported significant differences in the effectiveness of different AMF species tested in Inula ensifolia. An increased production of thymol derivatives was found in plant roots inoculated with Rhizophagus clarus, while a decreased production of these metabolites was reported in roots inoculated with R. intraradices under greenhouse conditions (Zubek et al. 2010). Moreover, changes in secondary metabolite composition have been observed in medicinal plants inoculated with AMF. For instance, Geneva et al. (2010) observed a modified composition of essential oils and promotion of the relative quantities of bornylacetate, 1,8-cineole, α-thujones, and β-thujones in Salvia officinalis associated with R. intraradices. Similarly, Artemisia umbelliformis inoculated with an alpine microbial community containing Planticonsortium tenue (formerly Glomus tenue), R. intraradices, G. clarodendrum/etunicatum, and a new Acaulospora species showed a significant increase of E-ocimene concomitant with a decrease of E-2-decenal and (E, E)-2–4-decadial (Binet et al. 2011). Therefore, the selection of the most effective AMF strains for improving the accumulation of desirable active compounds needs to be taken into account.

Effect of AMF on biomass and production of secondary metabolites in medicinal plants under biotic and abiotic stress conditions

Drought, salinity, heavy metals, pests, and diseases can impact plant growth, reducing their biomass (Hashem et al. 2014; Alwibi et al. 2017) and consequently affecting the production of secondary metabolites. Arbuscular mycorrhizal fungi can increase the tolerance/resistance of plants against those abiotic and biotic stresses, potentially influencing secondary metabolites production (Hashem et al. 2018).

Several studies have shown that AMF symbiosis can improve the growth and secondary metabolite production of medicinal plants under water deficit conditions. For example, a recent study by Machiani et al. (2021) showed that inoculation with F. mosseae significantly improved biomass and essential oil content (mainly thymol, p-cymene and γ-terpinene) of Thymus vulgaris plants grown in a 2-year field experiment in intercropping with soybean under water deficit conditions. Similarly, Mirzaie et al. (2020) reported that inoculation with F. mosseae significantly increased geraniol and β-pinene (both belong to oxygenated monoterpene essential oils) yields of Cymbopogon citratus grown in a greenhouse pot experiment under moderate water stress conditions (50% field capacity).

Salt stress stimulates the accumulation of phenolic compounds in plants as a general defense mechanism to stress (Parvaiz and Satyawati 2008). Intriguingly, this abiotic stress is a principal elicitor influencing synthesis of compounds in many herbs (e.g., cinnamic, gallic, and rosmarinic acids in Thymus vulgaris; glycyrrhizin in Glycyrrhiza glabra; quinic, gallic, and protocatechuic acids in Polygonum equisetiforme) (Bistgani et al. 2019; Behdad et al. 2020; Boughalleb et al. 2020). A recent study by Amanifar and Toghranegar (2020) reported that moderate salt stress stimulated higher production of valerenic acid in Valeriana officinalis than a situation...
without salt stress. Interestingly, this increase was significant when the plants were colonized by *F. mosseae*. Duc et al. (2021) found that a mixture of six AMF species (*C. etunicatum*, *C. claroideum*, *F. mosseae*, *Rhzoglonus microaggregatum*, and *R. intraradices*) increased the tolerance of *Eclipta prostrata* under moderate salt stress in a pot experiment under controlled conditions, inducing major changes in its polyphenol profile.

Minerals, such as cadmium (Cd) and zinc (Zn), also were reported to impact secondary metabolite production in medicinal plants colonized by AMF. For instance, Hashem et al. (2016) observed that an AMF mixture comprising *C. etunicatum*, *F. mosseae*, and *R. intraradices* enhanced the chlorophyll and protein content and considerably reduced lipid peroxidation in *Cassia italica* plants under Cd stress in a pot experiment. Moreover, AMF inoculation caused a further increase in proline and phenol content ensuring improved plant growth under stress conditions.

Arbuscular mycorrhizal fungi symbiosis improved the disease tolerance of medicinal plants through the mediation of secondary metabolites. For instance, Jaiti et al. (2007) reported that a complex of native AMF species increased the tolerance of *Phoenix dactylifera* (a plant characterized by high nutritional and therapeutic value of its fruits (Al-Alawi et al. 2017)) against bayoud disease (the most damaging vascular disease of date palm caused by *Fusarium oxysporum* sp. genotypes colonized by *F. mosseae*, while the levels of essential oils in plants treated with P did not change. This suggests that the increased concentration of essential oils in AMF-colonized *Origanum* sp. plants may directly depend on the association with the fungus. In another study by Zubek et al. (2012), AMF colonization improved hypericin and pseudohypericin concentrations in *Hypericum perforatum*, probably because of an improved plant P and/or N nutrition in presence of the fungi. The increased growth through improved nutrients and water uptake of AMF-colonized plants also explains the enhanced production of these compounds in plants. It is well known that the AMF symbiosis increases shoot biomass, shoot length, and number of nodes in *Ocimum basilicum* (Gupta et al. 2002; Khaosaad et al. 2008; Rasouli-Sadaghiani et al. 2010; Copetta et al. 2006). Elevated leaf biomass results in increased photosynthetic capacity (Dave et al. 2011; Zubek et al. 2010), thus increasing the production of total photosynthates (e.g., ATP, carbon substrate, glyceraldehyde-3-phosphate, pyruvate, phosphoenolpyruvate, or erythrose-4-phosphate) required for terpenoids, phenolics, and alkaloid biosynthesis (Cao et al. 2008; Hofmeyer et al. 2010; Niinemets et al. 2002). Regarding non-nutritional factors, alterations in the levels of phytohormones in AMF-colonized plants may reflect their enhanced production (Mandal et al. 2013, 2015a; Zubek et al. 2012). Indeed, it has been shown that the AMF symbiosis changes the concentrations of

Mechanisms by which AMF symbiosis promotes secondary metabolism in medicinal plants

It is often considered that the increased concentrations of various secondary metabolite groups (e.g., flavonoids, phenolics) in AMF-colonized plants are a result of the elicitation of several defense response pathways as reviewed by Zeng et al. (2013). For instance, terpenoids in the carotenoid pathway, flavonoids, phenolic compounds, and some alkaloids (such as hyoscyamine and scopolamine) in the phenylpropanoid pathway are often increased in AMF-colonized plants (Kaur and Suseela 2020). These pathways play different roles in the plant-AMF symbiosis, such as signaling, stress tolerance, nutrient uptake, and resistance against biotic and abiotic stresses. However, it is still not totally clear how AMF trigger changes in the concentrations of phytochemicals in plant tissues (Toussaint et al. 2007).

Many studies have focused on the mechanisms by which AMF modulate the production of terpenoids, phenolic compounds, and alkaloids in plants. Terpenoids are synthesized from isoprene units in the methyleritrophosphate (MEP) and the mevalonic acid (MVA) pathways (Zhi et al. 2007). Phenolic compounds (e.g., phenols, flavonoids, protanthocyanidins, tannins) are synthesized in the shikimic acid pathway where phenylpropanoids are formed and in the malonic acid pathway (Oksana et al. 2012). Most of the alkaloids are synthesized from various biological precursors (most amino acids) such as tyrosine and tryptophan in the shikimic acid pathway (Facchini 2001).

Several common nutritional and non-nutritional factors have been proposed to explain the increased production of secondary metabolites in AMF-colonized plants (Kapoor et al. 2017; Sharma et al. 2017; Dos Santos et al. 2021). For example, the role of phosphorus in the synthesis of terpenoids precursors via the MVA (acetyl-CoA, ATP, and NADPH) as well as the MEP (glyceraldehyde phosphate and pyruvate) pathways is widely recognized (Kapoor et al. 2017). Phosphorus enhances terpenoid biosynthesis by increasing the concentration of pyrophosphate compounds, such as isopentenyl pyrophosphate (IPP) and dimethylallyl pyrophosphate (DMAPP) (Kapoor et al. 2002, 2004; Zubek et al. 2010), which contain high-energy phosphate bonds. However, Khaosaad et al. (2006) found that the concentration of essential oils significantly increased in two *Origanum* sp. genotypes colonized by *F. mosseae*, while the levels of essential oils in plants treated with P did not change. This suggests that the increased concentration of essential oils in AMF-colonized *Origanum* sp. plants may directly depend on the association with the fungus. In another study by Zubek et al. (2012), AMF colonization improved hypericin and pseudohypericin concentrations in *Hypericum perforatum*, probably because of an improved plant P and/or N nutrition in presence of the fungi. The increased growth through improved nutrients and water uptake of AMF-colonized plants also explains the enhanced production of these compounds in plants. It is well known that the AMF symbiosis increases shoot biomass, shoot length, and number of nodes in *Ocimum basilicum* (Gupta et al. 2002; Khaosaad et al. 2008; Rasouli-Sadaghiani et al. 2010; Copetta et al. 2006). Elevated leaf biomass results in increased photosynthetic capacity (Dave et al. 2011; Zubek et al. 2010), thus increasing the production of total photosynthates (e.g., ATP, carbon substrate, glyceraldehyde-3-phosphate, pyruvate, phosphoenolpyruvate, or erythrose-4-phosphate) required for terpenoids, phenolics, and alkaloid biosynthesis (Cao et al. 2008; Hofmeyer et al. 2010; Niinemets et al. 2002). Regarding non-nutritional factors, alterations in the levels of phytohormones in AMF-colonized plants may reflect their enhanced production (Mandal et al. 2013, 2015a; Zubek et al. 2012). Indeed, it has been shown that the AMF symbiosis changes the concentrations of
phytohormones, such as jasmonic acid (JA), gibberellic acid (GA$_3$), and cytokinins (Allen et al. 1980, 1982; Hause et al. 2002; Shaul-Keinan et al. 2002) in plants. Moreover, it has been reported that phytohormones play a role in the secondary metabolism of plants (An et al. 2011; Maes and Goossens 2010; Maes et al. 2008). For instance, JA has been reported to coordinate transcriptional activation of sesquiterpenoid biosynthetic gene expression in Artemisia annua (Maes et al. 2011). Furthermore, the phytohormonal alterations of GA$_3$, BAP (6-benzylaminopurine), and JA have been reported to promote the formation of glandular trichomes (Maes et al. 2011) which is positively correlated with an enhanced concentration of terpenoids in plant leaves. Glandular trichomes are the epidermal secretory structures in which terpenoids are synthesized and stored in plants (Covello et al. 2007). The enhanced concentration of terpenoids (essential oils) and increased glandular trichome density has been observed in a number of plants (e.g., Mentha x piperita, Phaseolus lunatus, and Lavandula angustifolia) (Ringer et al. 2005; Bartram et al. 2006; Behnam et al. 2006). Thus, an increase in trichome density upon mycorrhization often has been linked with an enhanced concentration of terpenoids (Copetta et al. 2006; Kapoor et al. 2007; Morone-Fortunato and Avato 2008). The modification of these secondary metabolite concentrations in AMF-plants also may be due to signaling mechanisms between host plants and the fungi (Larose et al. 2002; Rojas-Andrade et al. 2003; Xie et al. 2018). For example, Zhang et al. (2013) have reported that F. mosseae associated with Trifolium repens promoted changes in the concentration of signaling molecules, such as nitric oxide, salicylic acid (SA), and hydrogen peroxide, which influence the activation of key enzymes in phenolics biosynthesis (e.g., l-phenylalanine ammonia lyase (PAL), and chalcone synthase (CHS)). Moreover, AMF may increase the expression of genes encoding enzymes leading to the biosynthesis of these compounds in mycorrhizal plants (Andrade et al. 2013; Battini et al. 2016; Mandal et al. 2015a, b; Xie et al. 2018). For example, induction of terpene synthase (TPS) family genes TPS31, TPS32, and TPS33 has been observed in AMF-colonized tomato plants and probably can explain the changes in their terpenoid profile (Zouari et al. 2014). Mandal et al. (2015a) reported the increase of artemisinin in leaves of Artemisia annua inoculated with R. intraradices. This result was correlated with a higher expression of key biosynthesis genes (such as an allene oxidase synthase gene encoding one of the key enzymes for JA production) via enhanced JA levels. In addition, AMF may enhance the biosynthesis of these compounds either by increasing the production of precursors through the induction of metabolic biosynthetic pathways (Lohse et al. 2005; Zimare et al. 2013; Dos Santos et al. 2021) and/or by induction of key synthase enzymes (Mandal et al. 2013; Shrivastava et al. 2015; Sharma et al. 2017). The modification of these secondary metabolite concentrations in AMF-plants also may be due to signaling mechanisms between host plants and the fungi (Larose et al. 2002; Rojas-Andrade et al. 2003; Xie et al. 2018). For example, Zhang et al. (2013) have reported that F. mosseae associated with Trifolium repens promoted changes in the concentration of signaling molecules, such as nitric oxide, salicylic acid (SA), and hydrogen peroxide, which influence the activation of key enzymes in phenolics biosynthesis (e.g., l-phenylalanine ammonia lyase (PAL), and chalcone synthase (CHS)). Moreover, AMF may increase the expression of genes encoding enzymes leading to the biosynthesis of these compounds in mycorrhizal plants (Andrade et al. 2013; Battini et al. 2016; Mandal et al. 2015a, b; Xie et al. 2018). For example, induction of terpene synthase (TPS) family genes TPS31, TPS32, and TPS33 has been observed in AMF-colonized tomato plants and probably can explain the changes in their terpenoid profile (Zouari et al. 2014). Mandal et al. (2015a) reported the increase of artemisinin in leaves of Artemisia annua inoculated with R. intraradices. This result was correlated with a higher expression of key biosynthesis genes (such as an allene oxidase synthase gene encoding one of the key enzymes for JA production) via enhanced JA levels. In addition, AMF may enhance the biosynthesis of these compounds either by increasing the production of precursors through the induction of metabolic biosynthetic pathways (Lohse et al. 2005; Zimare et al. 2013; Dos Santos et al. 2021) and/or by induction of key synthase enzymes (Mandal et al. 2013; Shrivastava et al. 2015; Sharma et al. 2017).
Mycorrhiza (2022) 32:221–256

Fig. 2 Non-nutritional and nutritional factors influencing the production of secondary metabolites (i.e., terpenoids, phenolics, and flavonoids) in AMF-colonized plants. Non-nutritional factors (left side in orange): AMF colonization results in the activation of plant defense mechanisms with the production of phenolics and flavonoids. Change in phytohormone levels, such as jasmonic acid (JA), gibberellic acid (GA$_3$), and 6-benzylaminopurine (BAP), increases the number and size of glandular trichomes and leads to transcriptional activation of sesquiterpenoid biosynthetic gene expression. AMF induce the production of signaling molecules, such as nitric oxide, salicylic acid (SA), and hydrogen peroxide, which influence the activation of key enzymes such as l-phenylalanine ammonia lyase (PAL) and chalcone synthase (CHS), for the biosynthesis of phenolic compounds. Nutritional factors (right side in blue): AMF colonization increases plant nutrients and water uptake leading to increased plant growth and leaf biomass. This results in enhanced plant photosynthetic capacity and increased production of photosynthates which are precursors of different secondary metabolites. Increased leaf biomass leads to an increased density of glandular trichomes in which terpenoids are synthesized and stored. This figure is adapted with permission from Springer Nature Customer Service Centre GmbH: Springer Nature, Phytochemistry Reviews. Insight into the mechanisms of enhanced production of valuable terpenoids by arbuscular mycorrhiza (Kapoor et al. 2017). We thank Evangelia Tsiokanou (National and Kapodistrian University of Athens, Greece) for graciously providing the picture of the plant used in this figure.

Various studies have reported increased production of alkalinin/shikonin and their derivatives (A/S) in cell cultures of Boragenaceous plants (e.g., Lithospermum erythrorhizon, Alkanna tinctoria, and Arnebia euchroma) after applying exogenous jasmonate (Gaisser and Heide 1996; Urbanek et al. 1996; Bychkova et al. 1993). Alkalinin/shikonin are naphthoquinone compounds with a broad spectrum of biological activities, such as wound healing, anti-inflammatory, and anti-cancer (Kheiri et al. 2017; Kourounakis et al. 2002; Andújar et al. 2013). Interestingly, AMF colonization of various other plants, such as Hordeum vulgare, Cucumis sativus, Medicago truncatula, and Glycine max, has resulted in the increase of endogenous levels of jasmonates within roots (Hause et al. 2002; Vierheilig and Piché 2002; Stumpe et al. 2005; Meixner et al. 2005). Jasmonic acid and its derivatives, commonly termed jasmonates, are hormonal regulators involved in plant responses to abiotic and biotic stresses as well as in plant development (Creelman and Mullet 1997; Wasternack 2007).

2017; Dos Santos et al. 2021). For example, mycorrhizal colonization (R. intraradices) has been found to elevate the transcript levels of two of the pivotal enzymes of the MEP pathway, 1-deoxy-D-xylulose 5-phosphate synthase (DXS), and 1-deoxy-D-xylulose 5-phosphate reductoisomerase (DXR) in wheat roots (Walter et al. 2000). DXS is an enzyme that catalyzes the initial step of the MEP pathway, where many isoprenoids are biosynthesized, and DXR is an enzyme that is immediately downstream from DXS in the MEP pathway (Walter et al. 2000). In another study by Walter et al. (2002), DXS2 transcript levels were strongly stimulated in Medicago truncatula roots upon colonization by AMF (a mixture of F. mosseae and R. intraradices), and were correlated with the accumulation of carotenoids and apocarotenoids. Finally, alterations in these secondary metabolites’ production also can result from plant defense responses to AMF colonization (Mechri et al. 2015; Zubek et al. 2012, 2015; Torres et al. 2015).
The level of endogenous jasmonate was shown to increase after wounding or pathogen attack. There is no direct study on the effects of AMF on A/S production in these Boraginaceae medicinal plants. However, these findings suggest that AMF could be a potential factor enhancing A/S production in mycorrhizal Boraginaceae plants through the regulation of jasmonate.

Cultivation techniques for secondary metabolite production in mycorrhiza-associated medicinal plants

Plant secondary metabolites are often extracted from individuals grown in nature. For instance, around 95% of the medicinal plants used in the Indian herbal industry today are collected from the wild (Lakshman 2016). However, the quantity and quality of secondary metabolites from plants grown in nature are erratic, often influenced by abiotic and biotic factors, such as extreme temperatures, drought, alkalinity, salinity, and plant pathogens, impacting the metabolic pathways responsible for the accumulation of bioactive substances (Dayani and Sabzalian 2017; Giurgiu et al. 2017; Ramakrishna and Ravishankar 2011). Furthermore, overharvesting of medicinal plant species in nature could place them at a high risk of extinction (Roberson 2008). Finally, growing medicinal plants under field conditions may be time consuming, especially for woody plants (e.g., *Taxus brevifolia* and *Lithospermum erythrorhizon*) and slow-growing perennial plants (e.g., *Panax ginseng*), which can take several years to reach the desired metabolites production (Malik et al. 2011; Chandran et al. 2020; Yazaki 2017; Murthy et al. 2014). Therefore, there is a need for alternative production systems.

Production of medicinal herbs in controlled environments provides opportunities for improving the quality, purity, consistency, bioactivity, and biomass production of the raw material (Hayden 2006). In order to secure the commercial production of secondary metabolites, several cultivation techniques have been developed, potentially compatible with AMF application.

Substrate-based cultivation systems

Greenhouse cultivation

Greenhouses are widely used for crop production all-year round. Environmental parameters (e.g., temperature, humidity) are controlled, providing optimal growth conditions to the target crop or plant, favoring development, and thus safeguarding the yield and consistent production of high-quality bioactive compounds (Panwar et al. 2003). Many medicinal plant species, such as *Echinacea angustifolia*, *Echinacea purpurea*, *Ocimum basilicum*, *Withania somnifera*, and *Psoralea corylifolia*, have been grown under greenhouse conditions (Zheng et al. 2006; Panwar et al. 2003). Similarly, many, such as *Artemisia annua*, *Curcuma longa*, *Colesus forskohlii*, *Glycyrrhiza glabra*, and *Gloriosa superba*, have been associated with AMF under greenhouse conditions with high production of bioactive compounds reported (Huag et al. 2011; Dutta and Neog 2016; Sailo and Bagyaraj 2005; Liu et al. 2007; Pandey et al. 2014). Therefore, growing medicinal plants in association with AMF under greenhouse conditions could represent a suitable method for improving the quality and production of bioactive compounds at large scale.

Substrate-free cultivation systems

Aeroponics

In the aeroponics cultivation system, the roots of plants are hung inside a sealed container in darkness and exposed to a water nutrient-rich spray through atomizers (Lakhair et al. 2018) (Fig. 3a). This technique has been developed for the cultivation of many different plants, such as horticultural crops (e.g., *Lactuca sativa*, *Cucumis sativus*, and *Solannum lycopersicum*) (Movahedi and Rostami 2020), medicinal herbs (e.g., *Anemopsis californica*, *Crocus sativus*, and *Valeriana officinalis*) (Hayden 2006; Souret and Weathers 2000; Tabatabaei 2008), and medicinal crops (e.g., *Arctium lappa* and *Zingiber officinale*) used to extract secondary metabolites from their roots (Hayden et al. 2004a, b). It has been reported that *Ocimum basilicum* grown under aeroponic conditions had a higher yield, comparable phenolic and flavonoid contents, and antioxidant properties compared to plants grown in a solid substrate (Chandra et al. 2014). Similarly, *Cichorium intybus*, *Withania coagulans*, and *Echinacea* sp. grown in an aeroponic system had higher yields compared to the same plants grown in soil (Movahedi and Rostami 2020). This system was efficient for the production of bioactive molecules from roots of medicinal crops, such as chlorogenic acid in *A. lappa* and β-sitosterol in *Cannabis sativa* (Hayden 2006; Ferrini et al. 2021). For various medicinal plants, root apices constitute the main sites where active substances are produced and stored (Watson et al. 2015). However, these active substances are almost impossible to harvest through conventional farming methods. By using the Plant Milking Technology (Plant milking®) (https://www.plantadvanced.com/home) for *Morus alba* (an emblematic tree of traditional Chinese medicine, rich in alkaloids and flavonoids), Chajra et al. (2020) obtained an extract enriched...
in prenylated flavonoids that was 18-fold higher than commercial root extracts (Fig. 3a, b).

Interestingly, aeroponic cultivation systems also have been developed and used for the production of AMF inoculum in which roots (and AMF) were bathed in a nutrient solution mist (Zobel et al. 1976; Hung and Sylvia 1988). For the production of AMF, plants are precolonized prior to their introduction into the system, through preculturing plant seedlings and AMF propagules (both preferably surface-sterilized) in pots containing a substrate (e.g., mixture of sand and perlite). Then the precolonized plants are transferred to the aeroponic container where the roots (and AMF) develop. The container is usually protected from light to prevent the development of algae (Jarstfer and Sylvia 1995). The mist can be applied by various techniques that differ mainly in the size of the fine droplets produced (e.g., atomizing disk, pressurized spray through a microirrigated nozzle, an ultrasonically generated fog of nutrient solution with droplets of 3–10-μm diameter, and ultrasonic nebulizer technology resulting into microdroplets of 1 μm in diameter) (Ildo et al. 2011; Jarstfer and Sylvia 1995; Mohammad et al. 2000). Mohammad et al. (2000) reported a high number of viable AMF propagules obtained in aeroponic culture, and such inoculum was used in a field experiment (Mohammad et al. 2004). Thus, aeroponic systems could potentially be used for growing medicinal plants associated with their AMF partners in order to obtain substantial biomass and production of secondary metabolites.

Hydroponics

Hydroponic systems include all systems that deliver nutrients in liquid, with or without a solid medium to anchor plant roots (Hayden 2006) (Fig. 3c). Such systems have been applied to several medicinal plants, such as *Echinacea angustifolia*, *Ocimum basilicum*, *Leonurus quinquelobatus*, *Mentha piperita*, *Salvia officinalis*, *Achillea millefolium*, *Bidens tripartite*, *Leonurus sibiricus*, *Linum usitatissimum*, *Hypericum perforatum*, and *Tanacetum parthenium* (Maggini et al. 2012; Mairapetyan et al. 2018; Simeunovic 2002). Thanks to these systems, the biosynthesis of active compounds, such as tropane alkaloids in
Datura innoxia, total phenols and rosmarinic acid in Ocimum basilicum, and oil production in Valeriana officinalis, has been obtained (Gontier et al. 2002; Sgherri et al. 2010; Tabatabaei 2008).

Different hydroponic culture systems also exist for the mass production of AMF. They mainly differ in the mode of aeration and application of the nutrient solution (IJdo et al. 2011). For instance, in the static hydroponic culture system, the nutrient solution is not flowing and needs to be aerated via an aeration pump to prevent roots of mycorrhizal plants from suffering oxygen deprivation (IJdo et al. 2011). Via this system, Dugassa et al. (1995) obtained large quantities of mycorrhizal Linum usitatissimum plant roots as well as extramatrical mycelium and chlamydospores free of residues from solid substrate components. In another nutrient film technique (NFT) hydroponic system, a thin nutrient solution (i.e., film) flows into inclined channels (also called gulls) where the plant roots and AMF develop (IJdo et al. 2011). This technique has been used to culture AMF since the 1980s with the production of many sporocarps by F. mosseae (Elmes and Mosse 1984). Later, IJdo et al. (2011) developed an innovative low-cost in vitro plant-based bioreactor system for the mass production of AMF. In this system, Medicago truncatula roots and AMF (Glomus sp.) were grown in a sterilized tube connected at both extremities to a reservoir containing sterilized liquid culture medium. This nutrient solution circulates across the mycorrhizal root system, feeding the plant/fungus associates, while the plant shoot develops in open-air conditions inside a controlled growth chamber (Fig. 3e). The hydroponic system also has been developed for studying the effect of the AMF symbiosis (e.g., P uptake) on maize plants (Garcés-Ruiz et al. 2017). Therefore, hydroponic or semi-hydroponic systems could potentially be combined with medicinal plants and AMF in order to obtain increased production of secondary metabolites. In a recent study, Cartabia et al. (2021) showed how the R. irregularis modified the primary and secondary metabolism and the root exudates of the medicinal plant Anchusa officinalis growing under a semi-hydroponic cultivation system (Fig. 3c). Moreover, permeabilization treatments can be conducted in these cultivation systems, in order to extract the compounds exuded by roots in a non-destructive process that “milks” the same plants several times a year. For example, in the study by Gontier et al. (2002), Datura innoxia plants were cultivated in hydroponic conditions (no AMF were involved) and the plant roots subsequently permeabilized with Tween 20. As a result, a high concentration of tropane alkaloids (TA) (e.g., hyoscyamine and scopolamine) was detected in the nutrient solution. Interestingly, all the plants were able to survive after being rinsed and replaced in the hydroponic system. This approach allows the permeabilization of the plant multiple times without loss of viability (Gontier et al. 2002). Moreover, different permeabilization treatments (e.g., doses and duration of Tween 20, addition of TA precursors) can be chosen to release additional bioactive compounds in the nutrient solution (i.e., TA precursors (phenylalanine and ornithine) leading to 10–80 mg/l TA in the nutrient solution) (Gontier et al. 2002). This study, however, did not include association with AMF.

In vitro production systems

Micropropagation or in vitro propagation is the clonal propagation of plants by tissues, cells, or organs. It involves the aseptic culture of explants of tissues or organs in closed vessels using defined culture media in a controlled environment (Debnath and Arigundam 2020).

Whole plant in vitro culture

In vitro cultivation of whole plants is widely used for mass propagation, conservation of germplasm, production of bioactive compounds, and genetic improvement of a large number of medicinal plant species (Nalawade and Tsay 2004). For instance, protocols have been developed for the in vitro mass propagation of Limonium wrightii, Adenophora triphylla, Gentiana davidii, Anoectochilus formosanus, Scrophularia yoshimurae, Pinellia ternata, Bupleurum falcatum, Zingiber zerumbet, Dendrobium linawianum, and Fritillaria hupehensis via shoot morphogenesis, for Angelica sinensis and Corydalis yanhusuo via somatic embryogenesis, and for Taxus mairei, Angelica dahurica, Angelica sinensis, Dioscorea doryophora, Gentiana davidii, and Bupleurum falcatum via cell suspension cultures (Nalawade and Tsay 2004).

The association of AMF with whole plants in vitro has been described in several studies (e.g., Dupré de Boulois et al. 2006; Voets et al. 2005; Lalayma and Declerck 2020). For instance, using the mycorrhizal donor plant in vitro cultivation system, Voets et al. (2009) obtained fast and homogenous mycorrhization of Medicago truncatula seedlings by placing the plantlets in an actively growing mycelial network arising from a mycorrhizal donor plant (Fig. 4a). In another system, called the half-closed arbuscular mycorrhizal plant in vitro culture system, roots of micropropagated potato plantlets were associated with actively growing AMF propagules, while the shoots developed in open-air conditions (Voets et al. 2005) (Fig. 4c). Applying both systems, several thousand spores of R. intraradices were produced on an extensive extraradical mycelium and abundant root colonization has been obtained. Hence, they could be extended to medicinal plants to enhance secondary metabolite production (Fig. 4).
Fig. 4 (a) A 145-mm mycorrhizal donor plant in vitro culture system. (i) The donor plant is *Crotalaria spectabilis* growing in a root compartment (RC) in close association with the arbuscular mycorrhizal fungus *Rhizophagus irregularis* MUCL 41833 and (ii) the receiver plants are *Alkanna tinctoria* growing under a lid in a hyphal compartment (HC) in which only a profuse, active extraradical mycelium network proliferates; (b) close-up view of extensive development of extraradical mycelium and spores in the HC; (c) a 90-mm half-closed arbuscular mycorrhizal plant in vitro culture system allowing the growth of the roots of *Lithospermum erythrorhizon* in close association with *R. irregularis* MUCL 41833; (d) close-up view of the red dish roots due to shikonin production; (e) a 90-mm root organ culture in vitro system allowing the growth of Ri T-DNA transformed *A. tinctoria* hairy root (Rat et al. 2021) in association with *R. irregularis* MUCL 41833 in the RC; (f) close-up view of the red AMF spores produced in the RC (arrows). We thank Alicia Varela Alonso (Institut für Pflanzenkultur, Germany) for graciously providing the pictures c and d and Angélique Rat (Ghent University, Belgium) for providing the *A. tinctoria* plants used in this figure. The system (a) starts with a donor plant (*Crotalaria spectabilis*) introduced into the RC of a bi-compartmented system (a small Petri dish indicated by a dashed circle (RC) (90 mm diameter)) placed in a large Petri dish (HC) (145 mm diameter). A hole is made in both Petri dishes allowing the shoot to extend outside the system. Approximately 500 spores from an AMF in vitro culture are placed in contact with the roots. The roots and AMF are kept in the dark during the whole growth period, while shoots remain under light. Once the donor plant is well colonized, the extraradical mycelium starts to cross the partition wall separating the RC from the HC, developing profusely in the HC. At that time, one or several receiver micropropagated plants (*Alkanna tinctoria*) are placed in the HC with their roots in contact with the extraradical mycelium. The plants are planted inside the HC under a lid. Briefly, the base of a cylinder (150 mm high, 100 mm diameter) matches a hole made in the lid of the 145-mm Petri dish. The cylinder top is glued to a 100-mm Petri dish lid. The culture dishes containing the *A. tinctoria* plants are sealed and covered, up to the base of the cylinder, by black plastic bags. The systems are incubated in a growth chamber to allow plant and AMF growth (detailed procedures of this system can be found in Lalaymia and Declerck (2020)). For system (e), homogenously chopped agar containing AMF propagules from an AMF in vitro culture is inoculated to the newly growing roots of *Lithospermum erythrorhizon*. After a few days, the new hyphae growing from the spores colonize the roots of *L. erythrorhizon*. In system (f), fine root structures of Ri T-DNA transformed *A. tinctoria* hairy roots are cut and placed in the HC part of a bi-compartmental Petri dish. Chopped agar containing AMF propagules is spread on the young parts of the hairy roots. After a few days, new hyphae growing from spores colonize the *A. tinctoria* hairy root, producing new spores and extensive mycelium after several months. All these three techniques should be conducted under a laminar flow hood with sterilized laboratory materials.
Hairy root cultures (HRCs)

Hairy root cultures are cultures raised after the infection of explants/cultures by the gram-negative soil bacterium *Agrobacterium rhizogenes* (Tepfer and Casse-Delbart 1987). This bacterium leads to the neoplastic growth of roots which are characterized by high growth rates in hormone-free media and genetic stability (Pistelli et al. 2010). Ri T-DNA transformed hairy roots grow faster than adventitious roots, or even conventional cultures in which plants are growing in soil or substrate (Paek et al. 2009; Yu et al. 2005). For instance, *Panax ginseng*, a valuable medicinal plant originating from Asia, has been used as a healing drug and health tonic since ancient times (Tang and Eisenbrand 1992) due to its production of triterpene saponins, collectively called ginsenosides (Dewick 1997; Huang 1999). However, it generally takes 5 to 7 years in the field to attain maturity and to reach the harvesting stage for extraction of bio-active compounds (Murthy et al. 2014). To solve this problem, many different techniques have been explored, such as culture of callus tissues, suspended cells, adventitious roots, and HRCs (Furuya et al. 1973, 1983; Paek et al. 2009; Shi et al. 2021). It has been reported that HRCs grow more rapidly and produce a higher level of ginsenosides than the suspended cells and adventitious root cultures (Inomata et al. 1993; Yoshikawa and Furuya 1987). Moreover, HRCs produce the same phytochemical patterns as the wild-type root organs and accumulate higher levels of certain valuable compounds compared with adventitious roots and native-grown plant roots (Kai et al. 2011; Hao et al. 2020; Miao et al. 2017). For instance, the total tanshinone content reached 15.4 mg/g dry weight (DW) in transgenic *Salvia miltiorrhiza* hairy roots, while only 1.7–9.7 mg/g DW tanshinone was produced in roots of field-grown plants (Kai et al. 2011; Hao et al. 2020). High stability and productivity, high biomass production, and efficient biosynthetic capacity make HRCs valuable biotechnological tools for the production of plant secondary metabolites (Pistelli et al. 2010; Gutierrez-Valdes et al. 2020). Some examples of metabolites produced using HRCs are tropane alkaloids, such as scopolamine and hyoscyamine (Jouhiainen et al. 1999; Häkkinen et al. 2016; Guo et al. 2018; Khezerloo et al. 2018), catharanthine (Hanafy et al. 2016), ginsenosides (Woo et al. 2004; Ha et al. 2016), solanoside (Putalun et al. 2004), and anthraquinones (Perassolo et al. 2017). The studies mentioned here, however, did not involve inoculation with AMF.

In order to upscale production and commercialize secondary metabolites, various conventional bioreactors, broadly classified as liquid phase, gas phase, or hybrid reactors, have been employed for the mass production of HRCs, which permit the growth of interconnected tissues normally unevenly distributed throughout the vessel. For instance, increased production of terpenoid indole alkaloid and artemisinin was obtained with HRCs of *Rauwolfia serpentina* and *Artemisia annua* grown in different reactors (no AMF involved) (Mehrotra et al. 2015; Patra and Srivastava 2014). Interestingly, the in vitro large-scale production of AMF is mostly based on HRCs (Declerck et al. 1996; Declerck 2006) which involve the association of AMF propagules with transformed hairy roots on synthetic mineral media. Arbuscular mycorrhizal fungi species grown in HRCs produce viable and contaminant-free spores (Fortin et al. 2005) (Fig. 4e). From these studies, we can suggest HRCs of medicinal plants associated with AMF in bioreactors for the commercial production of secondary metabolites.

Conclusions

Arbuscular mycorrhizal fungi may confer several benefits to medicinal plants, such as growth promotion and improved tolerance to stress conditions. Interestingly, AMF also may enhance the accumulation of active substances in those plants. This makes mycorrhizal technology a potential and sustainable tool for improving the growth and secondary metabolite production of medicinal plants. Factors such as light, temperature, humidity, soil fertility, and cultivation techniques also could influence secondary metabolite production by medicinal plants (Szakiel and Paźczkowski 2011a, b). It is thus essential to consider these parameters in fine-tuning the conditions for optimal production of plants and associated secondary metabolites. In order to guarantee the quality of the bioactive substances produced by mycorrhizal medicinal plants, different substrate or substrate-free systems were described: aeroponic and hydroponic or semi-hydroponic systems, micropropagated medicinal plants in half-closed arbuscular mycorrhizal-plant or mycorrhizal donor-plant in vitro culture systems, and HRCs. These systems may provide adequate environmental conditions to the plants, resulting in improved crop yield and production of bioactive compounds (Nazari Deljou et al. 2014; Dayani and Sabzalian 2017).

Whatever the system considered, high yields of secondary metabolites are dependent on the AMF strain, the plant, and the environmental growth conditions. Arbuscular mycorrhizal fungi are not host specific, but their affinity to a particular host can be preferential (Cesaro et al. 2008). Early studies have documented that different AMF species may induce differences in secondary metabolite production in the same host or genotype (Zeng et al. 2013). For example, *Glomus caledonium* increased rosmarinic acid and caffeic acid production in *Ocimum basilicum*, whereas *F. mosseae* enhanced only caffeic acid production (Toussaint et al. 2007). In a recent study, Frew (2020) showed that inoculation with four

2 Now called *Rhizobium rhizogenes*.

© Springer
commercial AMF species (C. etunicatum, Funneliformis coronatum, F. mosseae, and R. irregularis) had stronger effects on cereal crop plant allometric partitioning, foliar nutrient, and phenolic concentrations than inoculation with a single commercial AMF species (R. irregularis). Interestingly, the results also showed that the effects of inoculating with these four commercial AMF species were not different from the effects of applying a native AMF inoculant extracted from field soil, suggesting that commercial AMF assemblages may provide little to no additional benefit compared with a resident AMF community (Frew 2020). Thus, a thorough study of AMF species native to medicinal plants should be conducted before choosing the most effective AMF species (native or not; single or combinations of different AMF strains) to inoculate target plant species.

The use of commercial inoculants is an option which should be considered with caution. Indeed, a number of studies have shown that the absence of a regulatory context for the industry of AMF inoculants may have contributed to inoculants of questionable quality. For instance, Salomon et al. (2022) reported that over 80% of tested commercial inoculants contained no viable propagules when screened in sterilized soil. Moreover, when preparing AMF inoculum, adequate phytosanitary controls must be implemented to avoid proliferation of unwanted microbes which may subsequently contaminate plant production. The use of root organs in vitro may provide a solution by avoiding the presence of such contaminants. However, genetically modified plants may represent a drawback for field application and thus for commercial mass production, and the number of species grown in this system remains limited (Ijdo et al. 2011).

Finally, whatever system is used, environmental parameters should be considered seriously. For instance, light intensity is known to strongly impact the development of AMF. Konvalinková and Jansa (2016) reported that a sudden decrease of light availability to an AMF-colonized plant resulted in a rapid decrease of P transfer from the AMF to the plant, and when arbuscular mycorrhizal plants were exposed to long-periods of shading (weeks to months), positive mycorrhizal growth responses often declined. Ballhorn et al. (2016) also reported that under light limited conditions, vegetative and reproductive traits were inhibited in AMF inoculated Phaseolus lunatus plants relative to non-colonized plants. Thus, in controlled conditions, light intensity and quality (e.g., blue/red ratio) should be modulated to improve and guarantee the symbiosis between AMF and plants of interest (Konvalinková and Jansa 2016). Adequate timing and harvestable plant parts also are crucial factors to increase the production of secondary metabolites. The best time to harvest (quality peak season/time of day) should be determined according to the quality and quantity of biologically active constituents rather than the total vegetative yield of targeted medicinal plant parts. Taking into consideration all these environmental factors would help optimize plant-AMF associations, increasing biomass and secondary metabolite production.

Funding This project has received funding from the European Union’s Horizon 2020 Research and Innovation Programme under the Marie Sklodowska-Curie grant agreement No 721635.

Declarations

Conflict of interest The authors declare no competing interests.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Abu-Zeyad R, Khan A, Khoo C (1999) Occurrence of arbuscular mycorrhiza in Castanospermum australe A. Cunn. & C. Fraser and effects on growth and production of castanospermine. Mycorrhiza 9:111–117

Ahanger MA, Tyagi SR, Wani MR, Ahmad P (2014) Drought tolerance: role of organic osmolytes, growth regulators, and mineral nutrients. In: Ahmad P, Wani MR (eds) Physiological mechanisms and adaptation strategies in plants under changing environment. Springer, New York, NY, pp 25–55

Ahmad A, Hayat I, Arif S, Masud T, Khalid N, Ahmed A (2014) Mechanisms involved in the therapeutic effects of soybean (Glycine Max). Int J Food Prop 17:6

Akiyama K, Hayashi H (2006) Strigolactones: chemical signals for fungal symbionts and parasitic weeds in plant roots. Ann Bot (lond) 97:925–931

Al-Alawi RA, Al-Mashiqi JH, Al-ナダ비 JSM, Al-Shihi BI, Baqi Y (2017) Date palm tree (Phoenix dactyliferaL.); natural products and therapeutic options. Front Plant Sci 8:845

Ali HM (2019) Importance of medicinal plants. Res Pharm Heal Sci 5(2):151

Allen MF, Moore TS Jr, Christensen M (1980) Phytohormone changes in Bouteloua gracilis infected by vesicular-arbuscular mycorrhizae. I. Cytokinin increases in the host plant. Can J Bot 58(3):371–374

Allen MF; Moore TS Jr, Christensen M (1982) Phytohormone changes in Bouteloua gracilis infected by vesicular-arbuscular mycorrhiza. II. Altered levels of gibberellin-like substances and abscisic acid in the host plant. Can J Bot 58(3):468–471

Alwihi MS, Hashem A, Abd-Allah EF, Alqarawi AA, Soliman DWK, Wirth S, Egamberdieva D (2017) Increased resistance of drought by Trichoderma harzianum fungal treatment correlates with increased secondary metabolites and proline content. J Integ Agri 16(8):1751–1757

Amanifar S, and Toghranegar Z (2020) The efficiency of arbuscular mycorrhiza for improving tolerance of Valeriana officinalis L. and...
enhancing valerenic acid accumulation under salinity stress. Ind. Crops Prod. 147:112234

An L, Zhou Z, Yan A, Gan Y (2011) Progress on trichome development regulated by phytohormone signaling. Plant Signal Behav 6(12):1959–1962

Andrade SAL, Malik S, Sawaya ACHF, Bottcher A, Mazzafera P (2013) Association with arbuscular mycorrhizal fungi influences alkaloid synthesis and accumulation in Catharanthus roseus and Nicotiana tabacum plants. Acta Physiol Plant 35:867–880

Andújar I, Recio MD, Giner RM, Rios JL (2013) Traditional Chinese medicine remedy to jury: the pharmacological basis for the use of shikimic as an anticancer therapy. Curr Med Chem 20:2892–2898

Aram G, Saleem A, Arnason JT, Charest C (2009) Root colonization by an arbuscular mycorrhizal (AM) fungus increases growth and secondary metabolism of purple coneflower, Echinacea purpurea (L.) Moench. J Agric Food Chem 57(6):2255–2258

Arpana J, Bagyarat DJ, Prakasa Rao EVS, Parameswaran TN, Abdul Rahiman BA (2008) Symbiotic response of patchouli [Pogostemon cablin (Blanco) Benth.] to different arbuscular mycorrhizal fungi. Adv Environ Biol 2(1):20–24

Arpanahi AA, Feizian M, Mehdipourian G, Khojasteh DN (2020) Role bioinoculant (AM fungi) and product quality of vegetable crops using arbuscular mycorrhizal fungi: a review. Sci Hortic 187:131–141

Ayan AK, Cirak C (2009) Root colonization of some Hypericum species growing in Turkey. Pharm Biol 46(4):288–291

Ayeka PA, Bian Y, Mwitari PG, Zang Y, Otachi E, Bian YH, Chu A (2012) Hypericin and pseudohypericin contents in Hypericum perforatum L. under field conditions. Eur J Soil Biol 100:103217

Aykarov A, Bandivdekar AH (2014) Ayeka PA, Bian Y, Mwitari PG, Zhang Y, Otachi E, Bian YH, Chu A (2012) Hypericin and pseudohypericin contents in Hypericum perforatum L. under field conditions. Eur J Soil Biol 100:103217

Behnam S, Farzaneh M, Ahmadzadeh M, Tehrani AS (2006) Composition and antifungal activity of essential oils of Mentha piperita and Lavandula angustifolia on post-harvest phytopathogens. Commun Agric Appl Biol Sci 71(3 Pt B):1321–1326

Beik A, Joukar S, Najafipour H (2020) A review on plants and herbal components with antiaarrhythmic activities and their interaction with current cardiac drugs. J Tradit Complement Med 10(3):275–287

Bereiendsen RL, Pieterse CM, Bakker PA (2012) The rhizosphere microbiome and plant health. Trends Plant Sci 17(8):478–486

Bhosale UA, Yegnanarayan R, Pophale P, Somani R (2012) Effect of aqueous extracts of Achyrantes aspera Linn. on experimental animal model for inflammation. Ancient Sci Life 31:202–206

Binet MN, van Tuinen D, Deprétre N, Koszela N, Chambon C, Gianazzi S (2011) Arbuscular mycorrhizal fungi associated with Artemisia umbelliformis Lam., an endangered aromatic species in Southern French Alps, influence plant P and essential oil contents. Mycorrhiza 21:523–535

Birje R, Golatkar VV (2016) Effect of AM fungi on Mentha spicata L. Int J Life Sciences Special Issue A7:33–40

Bistgani ZE, Hashemib M, DaCostab M, Crakerb L, Maggic F, Morshedloo MR (2019) Effect of salinity stress on the physiological characteristics, phenolic compounds and antioxidant activity of Thymus vulgaris L. and Thymus daenensis Celak. Ind Crops Prod 135:311–320

Bombardelli E, Morazzoni P (1995) Hypericum perforatum. Fitoterapia 66:43–68

Bona E, Lingua G, Todeschini V (2010) Effect of bioinoculants on the quality of crops. In: Arora NK, Mehnaz S, Balestrini R (eds) Bioformulations: for sustainable agriculture. Springer India, New Delhi, pp 93–124

Borde M, Dudhane M, Jite PK (2009) Role bioinoculant (AM fungi) increasing in growth, flavor content and yield in Allium sativum L. under field condition. Notulae Botanicae Horti Agrobotanici Cluj-Napoca 37(2):124–128

Boughalleb F, Abdellauoi R, Mahmoudi M, Bakhshehande E (2020) Changes in phenolic profile, soluble sugar, proline, and antioxid- dant enzyme activities of Polygonum equestriforme in response to salinity. Turk J Bot 44:25–35

Bowles TM, Barrios-Masias FH, Carlisle EA, Cavagnaro TR, Jackson LE (2016) Effects of arbuscular mycorrhizae on tomato yield, nutrient uptake, water relations, and soil carbon dynamics under deficit irrigation in field conditions. Sci Total Environ 566–567:1223–1234

Braconnier G, Comps J, Mutter B, Trogneux F (2014) Metabolic potential of endophytic bacteria. Curr Opin Biotechnol 27:30–37

Britannica (2021) The editors of encyclopaedia. Tannin. Britannica. Britannica. Encyclopaedia Britannica. 27 Jan, 2021. https://www.britannica.com/science/tannin. Accessed 9 May 2022

Brundrett MC, Tedersoo L (2018) Evolutionary history of mycorrhizal symbioses and global host plant diversity. New Phytol 202:1108–1115

Butler MS (2004) The role of natural product chemistry in drug discovery. J Nat Prod 67(12):2141–2153

Bychkova TP, Nanenina EB, Berzin VB, Miroshnikov AI (1993) Changes in phenolic profile, soluble sugar, proline, and antioxidant activities of Polygonum equestriforme in response to salinity. Turk J Bot 44:25–35

Cao B, Dang QL, Yu¨ X, Zhang S, (2008) Effects of [CO2] and nitro- gen on morphological and biomass traits of white birch (Betula papyrifera) seedlings. Forest Ecol Manag 254(2):217–224

Carreón-Abud Y, Torres-Martínez R, Farfán-Soto B, Hernández-García A, Ríos-Chávez P, BelloGonzález MA, Martínez-Trujillo M, Salgado-Garciglia R (2015) Arbuscular mycorrhizal symbioses increases the content of volatile terpenes and plant performance in Satureja macrostema (Benth.) Briq. Bol Latinoam Cièrbe Plant Med Aromat 14(4):273–279

© Springer

Mycorrhiza (2022) 32:221–256
Cortabia A, Tsiokanos E, Tsafantakis N, Lalaymia I, Termenzi A, Miguel M, Fokialakis N, Declerck S (2021) The arbuscular mycorrhizal fungus *Rhizosphagus irregularis* Mucl 41833 modulates metabolites production of *Anchusa officinalis* L. under semi-hydroponic cultivation. Front Plant Sci 12:724352

Castrillo G, Teixeira PJ, Paredes SH, Law TF, de Lorenzo L, Feltcher ME, Finkel OM, Breakfield NW, Mieczkowski P, Jones CD, Paz-Ares J, Dangl JL (2017) Root microbiota drive direct integration of phosphate stress and immunity. Nature 543:513–518

Cecarelli N, Curadi M, Martelloni L, Shrama C, Picciarelli P, Giovannetti M (2010) Mycorrhizal colonization impacts on phenolic content and antioxidant properties of artichoke leaves and flower heads two years after field transplant. Plant Soil 335:311–323

Cesaro P, van Tuien D, Copetta A, Chatagnier O, Berta G, Gianinazzi S, Lingua G (2008) Preferential colonization of *Solanum tuberosum* L. roots by the fungus *Glomus intraradices* in arable soil of a potato farming area. Appl Environ Microb 74(18):5776–5783

Chajra H, Salwinski A, Guillaumin A, Mignard B, Hannewald P, Duriot L, Warnault P, Guillet-Claude C, Fréchet M, Bourgaud F (2020) Plant milking technology—an innovative and sustainable process to produce highly active extracts from plant roots. Molecules 25(18):4162

Chandra S, Khan S, Avula B, Lata H, Yang MH, Elsohly MA, Khan IA (2018) Beneficial effects of *Artemisia annua* and *Artemisia herba-alba* on concentrations of essential oil and artemisinin in three accessions of *Artemisia annua*. Appl Soil Ecol 104:174–181

Chen ML, Yang G, Sheng Y, Li PY, Qiu HY, Zhou XT, Huang LQ, Chen SL, Yu H, Luo HM, Wu Q, Li CF, Steinmetz A (2016) Conservation of arbuscular mycorrhizal fungi services of arbuscular mycorrhizal fungi – from ecology to application. In: Asaduzzaman M (ed) Controlled environmental agriculture -production of specialty crops providing human health benefits through hydroponics. Nova Science, Inc., New York. Chapter 2, pp 33–53

Deans SG, Waterman PG (1993) Biological activity of volatile oils. In: Waterman PG (ed) Volatile Oil Crops: Their Biology, Biochemistry and Pro-duction (Hay RKM, Essex, England, Longman Scientific and Technical, pp 97–111

Dambisya YM, Tindimwebwa G (2003) Traditional remedies in children around Eastern Cape. South Africa East Afr Med J 80(8):402–405

Dave S, Das D, Tarafdar JC (2011) Effect of vesicular arbuscular mycorrhizae on growth and saponin accumulation in *Chlorophyllum borivilianum*. ScienceAsia 37(2):165–169

Dayani S, Sabzalian MR (2017) Production of secondary metabolites in medicinal plants through hydroponic system. In: Asaduzzaman M (ed) Controlled environmental agriculture -production of specialty crops providing human health benefits through hydroponics. Nova Science, Inc., New York. Chapter 2, pp 33–53

Debnath SC, Arigundam U (2020) In vitro propagation strategies of medicinal plants. In: Solaiman ZM, Abbott LK, Varma A (eds) Mycorrhizal fungi: use in sustainable agriculture and land restoration. Springer. Chapter 10, pp 171–187

Dewick PM (1997) Medicinal natural products. Wiley, West Sussex, UK. Communication

Debnet HC, Strullu DG, Plenchette C (1996) In vitro mass production of the arbuscular mycorrhizal fungus, *Glomus versiforme*, associated with Ri T-DNA transformed carrot roots. Myco Res 100:1237–1242

Declerck S, Ido M, Fernandez K, Voets L, de la Providencia I (2009) Method and system for in vitro mass production of arbuscular mycorrhizal fungi. WO/2009/090220

Declerck S, Strullu DG, Plenchette C (1996) In vitro mass production of the arbuscular mycorrhizal fungus, *Glomus versiforme*, associated with Ri T-DNA transformed carrot roots. Myco Res 100:1237–1242

Declerck S, Ido M, Fernandez K, Voets L, de la Providencia I (2009) Method and system for in vitro mass production of arbuscular mycorrhizal fungi. WO/2009/090220

Dewick PM (1997) Medicinal natural products. Wiley, West Sussex, UK. Communication

Domokos E, Jakab-Farkas L, Darkó B, Bíró-Janka B, Mara G, Albert C, Balog A (2018) Increase in *Artemisia annua* plant biomass artemisinin content and guaiacol peroxidase activity using the arbuscular mycorrhizal fungus *Rhizosphagus irregularis*. Front Plant Sci 9:478

Dos Santos EL, Alves da Silva F, Barbosa da Silva FS (2017) Arbuscular mycorrhizal fungi increase the phenolic compounds concentration in the bark of the stem of *Libidibia Ferrea* in field conditions. Open Microbiol J 11:283–291

Dewick PM (1997) Medicinal natural products. Wiley, West Sussex, UK. Communication

Dugassa DG, Grunewaldt-StOcker G, Schonbeck F (1995) Growth of *Glamora idaeana* and its effect on lineased (Limonium usitassium L.) in hydroponic culture. Mycorrhiza 5:279–282

Dupré de Boulois H, Voets L, Delvaux B, Jakobsen I, Declerck S (2006) Transport of radioacesium by arbuscular mycorrhizal...
fungi to Medicago truncatula under in vitro conditions. Environ Microbiol 8:1926–1934

Dutta SC, Neog B (2016) Accumulation of secondary metabolites in response to antioxidant activity of turmeric rhizomes co-inoculated with native arbuscular mycorrhizal fungi and plant growth promoting rhizobacteria. Sci Hortic 204:179–184

Ekor M (2014) The growing use of herbal medicines: issues relating to adverse reactions and challenges in monitoring safety. Front Pharmacol 4:177

Elahian F, Garshasbi M, Asiabar ZM, Dehkordi NG, Yazdinezhad E, Kor M (2014) The growing use of herbal medicines: issues relating to adverse reactions and challenges in monitoring safety. Front Pharmacol 4:177

Dutta SC, Neog B (2016) Accumulation of secondary metabolites in growth and polyphenol profile of marjoram, lemon balm, and marigold. J Agric Food Chem 64(19):3733–3742

Facchini PJ (2001) Alkaloid biosynthesis in plants: biochemistry, cell biology, molecular regulation, and metabolic engineering applications. Annu Rev Plant Physiol Plant Mol Biol 52:29–66

Fan JH, Yang GT, Mu LQ, Zhou JH (2006) Effect of AM fungi on the content of berberine, jatrorrhizine and palmatine of Phelologdon amurense seedlings. Prot Plant Sci Technol 5:24–26

Ferrini F, Fraternale D, Donati Zeppa S, Verardo G, Gorassini A, Carrabs V, Albertini MC, Sestili P (2021) Yield, characterization, and possible exploitation of Cannabis sativa L. roots grown under aero-ponics cultivation. Molecules 26:4889

Fortin JA, Declerck S, Strulhu DG (2005) In vitro culture of mycorrhizas. In: Declerck S, Fortin JA, Strulhu DG (eds) In vitro culture of mycorrhizas. Soil Biology, vol 4. Springer, Berlin, Heidelberg

Freitas MSM, Martins MA, Carvalho AJC, Carneio RFV (2004) Growth and production of total phenols in carqueja [Baccharis trimera (Less.) A.D.] in response to inoculation with arbuscular mycorrhizal fungi, in the presence and in the absence of mineral manuring. Rev Bras de Plantas Medicinais 6(3):30–34

Frew A (2020) Contrasting effects of commercial and native arbuscular mycorrhizal fungal inoculants on plant biomass allocation, nutrients and phenolics. Plants People Planet 001:1–5

Furuya T, Yoshikawa T, Orihara Y, Oda H (1983) Saponin production in cell suspension cultures of Panax ginseng. Plant Cell Tiss Organ Cult 126:93–103

Gadzovska S, Maury S, Ornmar S, Righezza M, Kascakova S, Refregiers M, Spasenoski M, Joseph C, Hagège D (2005) Identification and quantification of hypericin and pseudohypericin in different Hypericum species. Molecules 10(12):3275–3277

Gaisser S, Heide L (1996) Inhibition and regulation of shikonin biosynthesis in suspension cultures of Lithospermum. Phytochemistry 41(4):1065–1072

Garcés-Ruiz M, Calonne-Salmon M, Plouznikoff K, Misson C, Navarrete-Mier M, Cranenbruck S, Declerck S (2017) Dynamics of short-term phosphorus uptake by intact mycorrhizal and non-mycorrhizal maize plants grown in a circulatory semi-hydroponic cultivation system. Front Plant Sci 8:1471

Garg AK, Faheem M, Singh S (2021) Role of medicinal plant in human health disease. Asian J Plant Sci Res 11(1):19–21

Geneva MP, Stancheva IV, Boychinnova MM, Mincheva NH, Yonova PA (2010) Effects of foliar fertilization and arbuscular mycorrhizal colonization on Salvia officinalis L. growth, antioxidant capacity, and essential oil composition. J Sci Food Agric 90:696–702

Geyshen HM, Schoenen F, Wagner D, Wagner R (2003) Combinatorial compound libraries for drug discovery: an ongoing challenge. Nat Rev Drug Discov 2(3):222–230

Ghiaee A, Naghibi F, Esmaeili S, Mosaddegh M (2014) Herbal remedies connected to malaria like fever in Iranian ancient medicinal books. Iran J Parasitol 9(4):553–559

Ghorbani A, Esmaeilizadeh M (2017) Pharmacological properties of Salvia officinalis and its components. J Tradit Complement Med 7(4):433–440

Giurigli RM, Morar G, Dumirat A, Vlaseanu G, Dune A, Schroeder FG (2017) A study of the cultivation of medicinal plants in hydroponic and aeroponic technologies in a protected environment. Acta Hortic 1170:671–678

Gontier E, Clément A, Tran TLM, Gravot A, Liévre K, Guckert A, Bourgaud F (2002) Hydroponic combined with natural or forced root permeabilization: a promising technique for plant secondary metabolite production. Plant Sci 163(4):723–732

Grimm W, Muller HH (1999) A randomized controlled trial of the effect of fluid extract of Echinacea purpurea on the incidence and severity of colds and respiratory infections. Am J Med 106:138–143

Gu SH, Li L, Huang H, Wang B, Zhang T (2019) Antitumor, antiviral, and anti-inflammatory efficacy of essential oils from Atractylodes macrocephala Koidz produced with different processing methods. Molecules 24(16):2956

Guedes RC, Eriksson LA (2005) Theoretical study of hypericin. J Photochem Photobiol A Chem 172:293–299

Guo LP, Wang HG, Hang LQ (2006) Effects of arbuscular mycorrhizae on growth and essential oil of Atractylodes lancea. Chin J Chin Mater Med 31(8):1491–1495

Guo Q, Cheng L, Liu Z (2010) Study on influence of arbuscular mycorrhizal fungi Pinellia ternata yield and chemical composition. Zhongguo Zhong Yao Za Zhi 35(3):333–338

Guo ZY, Tan YX, Ly ZJ, Qi J, Huang YX, Liu JJ, Chen DD, Diao Y, Si JP, Zhang L (2018) Targeted expression of Vitisboscella hemoglobin improves the production of tropane alkaloids in Hycosyamus niger hairy roots. Sci Rep 8:1–12

Gupta ML, Prasad A, Ram M, Kumar S (2002) Effect of the vesicular arbuscular mycorrhizal (VAM) fungus Glomus fasciculatum on the essential oil yield related characters and nutrient acquisition in the crops of different cultivars of menthol mint (Mentha arvensis) under field conditions. Bioresearch Technol 81(1):77–79

Gupta M, Kaushik S, Tomar RS, Mishra RK (2017) An overview of Catharanthus roseus and medicinal properties of their metabolites against important diseases. Eur Acad Res 5(2):1237–1247

Gutiérrez-Valdes N, Hällklinen ST, Lemasson C, Guillet M, Oksman-Caldentey KM, Ritala A, Cardon F (2020) Hairy root cultures—a versatile tool with multiple applications. Front in Plant Sci 11:33

Ha LT, Pawlicki-Jullian N, Pillon-Lequart M, Boitel-Conti M, Duong CX, Gontier E (2016) Hairy root cultures of Panax vietnamensis, a promising approach for the production of ooctillitol-type ginsenosides. Plant Cell Tiss Organ Cult 126:93–103

Hällklinen ST, Moyoano E, Cusidó RM, Oksman-Caldentey KM (2016) Exploring the metabolic stability of engineered hairy roots after 16 years maintenance. Front Plant Sci 7:1486

Hamilton AC (2004) Medicinal plants, conservation and livelihoods. Biodivers Conserv 13:1477–1517

Hanafi MS, Matter MA, Askar MS, Rady MR (2016) Production of indole alkaloids in hairy root cultures of Catharanthus roseus L. and their antimicrobial activity. S Afr J Bot 105:9–18

Hao X, Pu Z, Cao G, You D, Zhou Y, Deng C, Shi M, Nile SH, Wang Y, Zhou W, Kai G (2020) Tanshinone and salvianolic acid biosynthesis are regulated by SmMYB98 in Salvia miltiorrhiza hairy roots. J Adv Res 23:1–12

Hashem A, Abd Allah EF, Alqarawi A, Egamberdieva D (2018) Arbuscular mycorrhizal fungi and plant stress tolerance. In: Egamberdieva

© Springer
D. Ahmad P (eds) Plant microbiome: stress response. Microorganisms for Sustainability, vol 5. Springer, Singapore. pp 81–103
Hashem A, Abd_Allah EF, Alqarawi AA, Egamberdieva D (2016) Bioremediation of adverse impact of cadmium toxicity on Cassia italica Mill by arbuscular mycorrhizal fungi. Saudi J Biol Sci 23(1):39–47
Hashem A, Abd-Allah EF, Alqarawi AA, El-Didamony G, Alwhabi Mona S, Egamberdieva D, Ahmad P (2014) Alleviation of adverse impact of salinity on faba bean (Vicia faba L.) by arbuscular mycorrhizal fungi. Pak J Bot 46:2003–2020
Hause B, Maier W, Miersch O, Kramell R, Strack D (2002) Induction of jasmonate biosynthesis in arbuscular mycorrhizal barley roots. Plant Physiol 130:1213–1220
Hayden AL (2004a) Aeroponic culture of VAM fungi. In: Varma ANethum graveolens: an Indian traditional medicinal herb and spice. Pharmacogn Rev 4(8):179–184
Jarstfer AG, Sylvia DM (1995) Aeroponic culture of VAM fungi. In: Varma ANethum graveolens: an Indian traditional medicinal herb and spice. Pharmacogn Rev 4(8):179–184
Jaiti F, Meddich A, Hock B (eds) Mycorrhiza. Springer, Heidelberg, pp 427–441
Johny L, Cahill DM, Adholeya A (2021) AMF enhance secondary metabolite production in ashwagandha, licorice, and marigold in a fungi-host specific manner. Rhizophore 17
Joshee N, Yadav AK, Mentreddy R (2007) Mycorrhizal fungi and growth and development of micropropagated Scutellaria integrifolia plants. Ind Crops Prod 25(2):169–177
Joshi RK (2014) Chemical composition and antimicrobial activity of the essential oil of Ocimum basilicum L. (sweet basil) from Western Ghats of Northwest Karnataka, India. Anc Sci Life 33(3):151–156
Joulhakinen K, Lindgren L, Jokelainen T, Hiltunen R, Teeri TH, Oksman-Caldentey KM (1999) Enhancement of scopolamine production in Hyoscyamus muticus L. hairy root cultures by genetic engineering. Planta 208:545–551
Jugran AK, Rawat S, Bhatt ID, Rainbeer S (2019) Valeriana jatamansi: an herbaceous plant with multiple medicinal uses. Phytother Res 33(3):482–503
Jugran AK, Bahukhandi A, Dhyani P, Bhatt ID, Rawal RS, Nandi SK, Palmi LM (2015) The effect of inoculation with mycorrhiza: AM on growth, phenolics, tannins, phenolic composition and antioxidant activity in Valeriana jatamansi Jones. J Soil Sci Plant Nutr 15(4):1036–1049
Jun X, Fu P, Lei Y, Cheng P (2018) Pharmacological effects of medicinal components of Atractylodes lancea (Thunb.). DC. Chin Med 13:59
Jurkiewicz A, Ryszka P, Anielska T, Waligórska D, Góralska K, Tsimili-Michael M, Kaï G, Xu H, Zhou C, Liao P, Xiao J, Luo X, You L, Zhang L (2011) Metabolic engineering tanshine bio-synthetic pathway in Salvia miltiorrhiza hairy root cultures. Metab Eng 13(3):319–327
Kai G, Xu H, Zhou C, Liao P, Xiao J, Luo X, You L, Zhang L (2011) Metabolic engineering tanshine biosynthetic pathway in Salvia miltiorrhiza hairy root cultures. Metab Eng 13(3):319–327
Kapoor R, Chaudhary V, Bhatnagar AK (2007) Effects of arbuscular mycorrhiza and phosphorus application on artemisinin concentration in Artemisia annua L. Mycorrhiza 17(7):581–587
Kapoor R, Giri B, Mukerji KG (2004) Improved growth and essential oil yield and quality in Foeniculum vulgare mill on mycorrhizal inoculation supplemented with P-fertilizer. Biore sourc Technol 93(3):307–311
Kapoor R, Giri B, Mukerji KG (2002) Glomus macrocarpum: a potential bioinoculant to improve essential oil quality and concentration in Dill (Anthemumgraveolens L.) and Carum (Trachyspermumammi (Linn.) Sprague). World J Microb Biot 18:459–463
Kapoor R, Anand G, Gupta P, Mandal S (2017) Insight into the mechanisms of enhanced production of valuable terpenoids by arbuscular mycorrhiza. Phytochem Rev 16:677–692
Karagiannidis N, Thomidis T, Panou-Filotheou E, Karagiannidou C (2012) Response of three mint and two oregano species to arbuscular mycorrhiza. Phytochem Rev 11(4):1036–1049
Kaur S, Suseela V (2020) Unraveling arbuscular mycorrhiza-induced changes in plant primary and secondary metabolome. Metabolites 10(8):335
Kaviitha C, Rajamani K, Vadivel E (2010) Coleus forskohlii: a comprehensive review on morphology, phytochemistry and pharmacological aspects. J Med Plant Res 4(4):278–285
Khasoosafad T, Kremen L, Medjakovic S, Ranner A, Lossl A, Nell M, Jungbauer A, Vierheilig H (2008) Effect of mycorrhization on the isoflavone content and the phytoestrogen activity of red clover. J Plant Physiol 165:1161–1167
Khasoosafad T, Vierheilig H, Nell M, Zitterl-Eglsseer K, Novak J (2006) Arbuscular mycorrhiza alter the concentration of essential oils in oregano (Origanum sp., Lamiaceae). Mycorrhiza 16(6):443–446
Kheiri A, Amini S, Javidan AN, Saghafi MM, Khorasani G (2017) The effects of Alkanna tinctoria Tausch on split-thickness skin graft donor site management: a randomized, blinded placebo-controlled trial. BMC Complement Altern Med 17:253
Khezelfu M, Hosseini B, Amiri J (2018) Sodium nitroprusside stimulated production of tropane alkaloids and antioxidant enzymes activity in hairy root culture of *Hyoscyamus reticulatus* L. Acta Biol Hung 69:437–448
Kim NH, Jayakodi M, Lee SC et al (2018) Genome and evolution of the shade-requiring medicinal herb *Panax ginseng* Plant Biotechnol J 16(11):1904–1917
Konvalínková T, Jansa J (2016) Lights off for arbuscular mycorrhiza: on its symbiotic functioning under light deprivation. Front Plant Sci 7:782
Kourounakis AP, Assimopoulou AAN, Papageorgiou AG, Gavalas A, Kourounakis PN (2002) Alkalin and shikonin effect on free radicle process and on inflammation—A preliminary pharmacological investigation. Arch Pharm 6:262–266
Krishna S, Bustamante L, Haynes RK, Staines HM (2008) Artemisinins: their growing importance in medicine. Trends Pharmacol Sci 29(10):520–527
Kuete V (2014) Health effects of alkaloids from African medicinal plants. In: Toxicological survey of African medicinal plants, pp 611–633
Kumar S, Malhotra R, Kumar D (2010) *Euphorbia hirta*: Its chemistry, traditional and medicinal uses, and pharmacological activities. Pharmacogn Rev 4(7):58–61
Lakhiar IA, Gao JM, Syed TN, Chandio FA, Buttar NA (2018) Modern plant cultivation technologies in agriculture under controlled environment: a review on aeroponics. J Plant Interact 13(1):338–352
Lakshman CD (2016) Biodiversity and conservation of medicinal and aromatic plants. Adv Plants Agric Res 5(4):561–566
Lalayimia I, Declerck S (2020) The mycorrhizal donor plant (MDP) in vitro culture system for the efficient colonization of whole plants. In: Ferrol N, Lanfranco L (eds) Arbuscular mycorrhiza fungi. Humana, New York, NY. Methods Mol Biol 2146:19–31
Larose G, Chênevert R, Moutoglis P, Gagné S, Piché Y, Vierheilig H (2002) Flavonoid levels in roots of *Medicago sativa* are modulated by the developmental stage of the symbiosis and the root colonizing arbuscular mycorrhizal fungus. J Plant Physiol 159:1329–1339
Lazzara S, Milletto M, Carrubba A, Napoli E, Saia S (2017) Arbuscular mycorrhizal fungi altered the hypericin, pseudohypericin, and laroid mycorrhizal fungi. J Plant Physiol 189:695–704
Lee K, Shin MS, Ham I, Choi HY (2015) Investigation of the mechanisms of *Angelica dahurica* root extract-induced vasorelaxation. J Plant Physiol 189:695–704
Liu J, Shi YC, Lee DY (2019) Applications of *Pueraria lobata* in treating diabetes and reducing alcohol drinking. Chin Herb Med 11(2):141–149
Liu P, Zhao H, Luo Y (2017) Anti-aging implications of *Astragalus Membranaceus* (Huangqi): a well-known Chinese tonic. Aging Dis 8(6):868–868
Liu JN, Wu LJ, Wei SL, Xiao X, Su CX, Jiang P, Song ZB, Wang T, Yu ZL (2007) Effects of arbuscular mycorrhizal fungi on the growth, nutrient uptake and glyccyrhizin production of licorice (*Glycyrrhiza uralensis* Fisch.). Plant Growth Regul 52:29–39
Lohse S, Schilemann W, Ammer C, Kopka J, Strack D, Thomas Fester T (2005) Organization and metabolism of plastids and mitochondria in arbuscular mycorrhizal roots of *Medicago truncatula*. Plant Physiol 139:329–340
Lombardino JG, Lowe JA III (2004) The role of the medicinal chemist in drug discovery—then and now. Nat Rev Drug Discov 3(10):853–862
Lu YQ, He XL (2005) Effects of AM fungi on the chemical composition and growth amount of *Atractylodes macrocephala* koidz. seedling on different N levels. J Hebei Unives 25(6):650–653
Lu FC, Lee CY, Wang CL (2015) The influence of arbuscular mycorrhizal fungi inoculation on yam (* Dioscorea spp. *) tuber weights and secondary metabolite content. Peer J 3:e1266
Machiani MA, Javanmard A, Marshedloo MR, Agheae A, Maggi F (2020) *Funnelformis mossee* inoculation under water deficit stress improves the yield and phytochemical characteristics of thyme in intercropping with soybean. Sci Rep 11:15279
Maes L, Goossens A (2010) Hormone-mediated promotion of trichome initiation in plants is conserved but utilizes species and trichome-specific regulatory mechanisms. Plant Signal Behav 5(2):205–207
Maes L, Inze D, Goossens A (2008) Functional specialization of the transparent testa glabal network allows differential hormonal control of laminal and marginal trichome initiation in *Arabidopsis* rosette leaves. Plant Physiol 148(3):1453–1464
Maes L, Van Nieuwerburgh FC, Zhang Y, Reed DW, Pollier J, Vande Casteele SR, Inze D, Covello PS, Deforce DL, Goossens A (2011) Dissection of the phytohormonal regulation of trichome formation and biosynthesis of the antimalarial compound artemisinin in *Artemisia annua* plants. New Phytopathol 189(1):176–189
Maggini R, Kiferle C, Guidi L, Pardossi A, Andrea R (2012) Growing medicinal plants in hydroponic culture. Acta Hort 952:697–704
Marchi B, Magrini S, Taddevosyan AH, Tovmasyan AH, Stepanyan BT, Galstyan HM, Daryidar MK (2018) The productivity of some valuable medicinal plants in conditions of water stream hydroponic. J Agri Sci Food Res 9:237
Malik S, Cusido RM, Mirjalili MH, Moyano E, Palazon J, Bonfill M (2011) Production of the anticancer drug taxol in *Taxus baccata* suspension cultures: a review. Process Biochem 46(1):23–34
Mandal S, Evelin H, Giri B, Singh VP, Kapoor R (2015a) Enhanced production of steviol glycosides in mycorrhizal plants: a concerted effect of arbuscular mycorrhizal symbiosis on transcription of biosynthetic genes. Plant Physiol Biochem 89:100–106
Mandal S, Evelin H, Giri B, Singh VP, Kapoor R (2013) Arbuscular mycorrhiza enhances the production of stevioside and rebaudioside-A in *Stevia rebaudiana* via nutritional and non-nutritional mechanisms. Appl Soil Ecol 72:187–194
Mandal S, Upadhyay S, Wajid S, Ram M, Jain DC, Singh VP, Abdin MZ, Kapoor R (2015b) Arbuscular mycorrhiza increase artemisinin accumulation in *Artemisia annua* by higher expression of key biosynthesis genes via enhanced jasmonic acid levels. Mycothecia 25:345–357
Marcinek K, Krecipio Z (2016) *Stevia rebaudiana* Bertoni: health promoting properties and therapeutic applications. J Verbr Lebensm 11:3–8
Mycorrhiza (2022) 32:221–256

Mendes R, Kruijt M, Bruijn I, Dekkers E (2011) Deciphering the Meixner C, Ludwig-Müller J, Miersch O, Gresshoff P, Staehelin C, Matta D, Nanda H, Mahalingam G (2017) Phytopharmaceutical potentials of Prospis laevigate, symplcios cochinchenis and nymphaea Alba: a review. Asian J Pharm Clin Res 10(10):63–68

Mechri B, Tekaya M, Cheheb H, Attia F, Hammami M (2015) Accumulation of flavonoids and phenolic compounds in olive tree roots in response to mycorrhizal colonization: a possible mechanism for regulation of defense molecules. J Plant Physiol 185:40–43

Mehrotra S, Goel M, Srivastava V, Rahman L (2015) Hairy root biotechnology of Rauwolfa serpentina: a potent approach for the production of pharmaceutically important terpenoid indole alkaloids. Biotechnol Lett 37:253–263

Meixner C, Ludwig-Müller J, Miersch O, Gresshoff P, Staehelin C, Vierheilig H, (2005) Lack of mycorrhizal autoregulation and phytohormonal changes in the supernodulating soybean mutant nts1007. Plantana 222:709–715

Mendes R, Kruit R, Bruijn I, Dekkers E (2011) Deciphering the rhizosphere microbiome for disease-suppressive bacteria. Science 322(6033):1097–1100

Merlin E, Melato E, Emerson LBL, Ezilda J, Arquimedes GJG, Rainey MSC, Joice KO, Camila S, Odair A (2020) Inoculation of arbuscular mycorrhizal fungi and phosphorus addition increase coarse mint (Plectranthus amboinicus Lour.) plant growth and essential oil content. Rhizosphere 15:100217

Miao GP, Han J, Zhang JF, Zhu CS, Zhang X (2017) A MDR transporter contributes to the different extracellular production of sesquiterpene pyridine alkaloids between adventitious root and hairy root liquid cultures of Tripterygium wilfordii Hook.f. Plant Mol Biol 95(1–2):51–62

Mirjalili MH, Moyeno E, Bondill M, Cusido RM, Palazón J (2009) Steroidal lactones from Withania somnifera, an ancient plant for novel medicine. Molecules 14(7):2373–2393

Mizraie M, Ladannoghdam A, Hakimi Leila and Danatee E (2020) Water stress modifies essential oil yield and composition, glandular trichomes and stomatal features of lemongrass (Cymbopogon citratus L.) inoculated with arbuscular mycorrhizal fungi. J Agric Sci Technol 22(7):1575–1585

Mohammad A, Khan AG, Kuek C (2000) Improved aeroenic culture of inocula of arbuscular mycorrhizal fungi. Mycorrhiza 9:337–339

Mohammad A, Mint A, Khan AG (2004) Effects of sheared-root inoculum of Glomus intraradices on wheat growth at different phosphorus levels in the field. Agric Ecosyst Environ 103:245–249

Monterio JM, De Almeida Cde F, De Albuquerque UP, De Lucena RF, Florentino AT, De Oliveira RL (2006) Use and traditional management of Anadenanthera colubrina (Vell.) Bremnan in the semi-arid region of northeastern Brazil. J Ethnobiol Ethnomed 2:6

Morandi D, Bailey JA (1984) Isolflavonoid accumulation in soybean root infected with vesicular-arbuscular mycorrhizal fungi. Phys Plant Path 24:357–364

Morone-Fortunato I, Avatto P (2008) Plant development and synthesis of essential oils in micropropagated and mycorrhiza inoculated plants of Origanum vulgare L. spp. hirtum (Link) Lextwaart. Plant Cell Tiss Organ Cult 93:139–149

Movahedi Z, Rostami M (2020) Production of some medicinal plants in aeroponic system. J Medicinal Plants by-Products 1:91–99

Mungal M, Tripathi A (2021) Valeriana officinalis (valerian) In book: naturally occurring chemicals against alzheimer's disease. pp. 283–291

Murthy HN, Kim YS, Jeong CS, Kim SJ, Zhong JJ, Paek KY (2014) Production of ginsenosides from adventitious root cultures of Panax ginseng In: Pack KY, Murthy H, Zhong JJ (eds) Production of biomass and bioactive compounds using bioreactor technology. Springer, Dordrecht, pp 625–651

Nalawade SM, Tsay HS (2004) In vitro propagation of some important Chinese medicinal plants and their sustainable usage. In Vitro Cell Dev Biol Plant 40:143–154

Nazar Deljou MJ, Marouf A, Jabarian Hamedan H (2014) Effect of inoculation with arbuscular mycorrhizal fungi (AMF) on gerbera cut flower (Gerbera Jamesonii) production in soilless cultivation. Acta Hortic 1034:417–422

Nell M, Wawrosch C, Steinkeller S, Vierheilig H, Kopp B, Lössl A, Franz C, Novak J, Zitterl-Egldser K (2010) Root colonization by symbiotic arbuscular mycorrhizal fungi increases sesquiterpenic acid concentrations in Valeriana officinalis L. Planta Med 76(4):393–398

Newman DJ, Cragg GM (2007) Natural products as sources of new drugs over the last 25 years. J Nat Prod 70:461–477

Newman DJ, Cragg GM, Snader KM (2000) The influence of natural products upon drug discovery. Nat Prod Rep 17(3):215–234

Newman DJ, Cragg GM, Snader KM (2003) Natural products as sources of new drugs over the period 1981–2002. J Nat Prod 66(7):1022–1037

Niinemets U, Seufert G, Steinbrecher R, Tenhunen JD (2005) A model coupling foliar monoterpen emissions to leaf photosynthetic characteristics in Mediterranean evergreen Quercus species. New Phytol 153(2):257–275

Nirmala KA, Kanchana M (2018) Leucas aspera – a review of its biological activity. Sys Rev Pharm 9(1):41–44

Nisha MC, Rajeshkumar S (2010) Effect of arbuscular mycorrhizal fungi on growth and nutrition of Walidia chinesis (Osbeck) Merrill. Indian J Sci Technol 3(6):676–678

Noceto PA, Bettenfeld P, Boussageon R, Hériché M, Sportes A, van Tuinen D, Courtley PE, Wipf D (2021) Arbuscular mycorrhizal fungi, a key symbiosis in the development of quality traits in crop production, alone or combined with plant growth-promoting bacteria. Mycorrhiza 31(6):655–669

Oksana S, Marian B, Mahendra R, Bo SH (2012) Plant phenolic compounds for food, pharmaceutical and cosmetics production. J Med Plant Res 6:2526–2539

Oliveira MS, Campos MAS, Silva FSB (2015) Arbuscular mycorrhizal fungi and vermicompost to maximize the production of foliar biomolecules in Passiflora alata Curtis seedlings. J Sci Food Agric 95:522–528

Oliveira M, Campos M, Albuquerque U, Fabio S (2013) Arbuscular mycorrhizal fungi (AMF) affects biomolecules content in Myracrodruon urundeuva seedlings. Ind Crops Prod 50:244–247

Olsson PA, Thangrub P, Jakobsen I, Baath E (1999) Estimation of the biomass of arbuscular mycorrhizal fungi in a linseed field. Soil Biol Biochem 31:1879–1887

Pack KY, Murthy HN, Hahn EJ, Zhong JJ (2009) Large scale culture of ginseng adventitious roots for production of ginsenosides. Adv Biochem Eng Biotechnol 113:151–176

Pandey DK, Malik T, Dey A, Singh J, Banki RM (2014) Improved growth and colchicine concentration in Gloriosa superba on mycorrhizal inoculation supplemented with phosphorus-fertilizer. Afr J Tradit Complement Altern Med 11(2):439–446

Panke-Buisse K, Poole A, Goodrich J, Ley RE, Kao-Kniffin J (2015) Selection on soil microbome reveals reproducible impacts on plant function. ISME J 9:980–989

Panwar NL, Kohar S, Rathore NS (2003) Sustainability of greenhouse cultivation of medicinal plants. Agr Eng Today 27(5–6):52–61

Parvai A, Satyawati S (2008) Salt stress and phyto-biochemical responses of plants—a review. Plant Soil Environ 54:89

Paschallino G, Cornara L, Soares S, Rodrigues F, Oliveira MBPP (2018) Liquorice (Glycyrrhiza glabra): a phytochemical and pharmacological review. Phytother Res 32(12):2323–2339

Patel B, Patel P, Shah S, Parmar S (2017) A review: Coix lacryma jobi L. Pharmacogn Phytochem 9(4):248–252
Patra N, Srivastava AK (2014) Enhanced production of artemisinin by hairy root cultivation of Artemisia annua in a modified stirred tank reactor. Appl Biochem Biotechnol 174(6):2209–2222

Pedone Bonfim MV, Lins MA, Coelho IR, Santana AS, Silva FS, Maia LC (2013) Mycorrhizal technology and phosphorus in the production of primary and secondary metabolites in cebil (Anadenanthera colubrina (Vell.) Brenan) seedlings. J Sci Food Agric 93(6):1479–1484

Perassolo M, Cardillo AB, Mugas ML, Montoya SN, Giulietti AM, Riter Netto AF, Freitas MSM, Martins MA, Carvalho AJC, Vitorazi CM, Papageorgiou VP, Assimopoulou AN, Tsafantakis Kafle A et al (2022) Global evaluation of commercial arbuscular mycorrhizal inoculants under greenhouse and field conditions. Appl Soil Ecol 169

Rojas-Andrade R, Cerda-García-Rojas C, Frías-Hernández J, Dendooven L, Olalde-Portugal V, Ramos-Valdivia A (2003) Changes in the concentration of trigonelline in a semi-arid leguminous plant (Prosopis laevigata) induced by an arbuscular mycorrhizal fungus during the presymbiotic phase. Mycorrhiza 13(1):49–52

Rylová J, Jelínková M, Dušek K, Dušková E, Vosátka M, Püschel D (2016) Arbuscular mycorrhiza differentially affects synthesis of essential oils in coriander and dill. Mycorrhiza 26(2):123–131

Sailo GS, Bagyaraj DJ (2005) Influence of different AM-fungi on the growth, nutrition and forskolin content of Coleus forskohlii Mycol Res 109(7):795–798

Salam EA, Alatar A, El-Sheikh MA (2017) Inoculation with arbuscular mycorrhizal fungi alleviates harmful effects of drought stress on damask rose. Saudi J Biol Sci 25(8):1772–1780

Salomon MJ, Demareels R, Watts-Williams SJ, Malaughlin MJ, Kafle A et al (2022) Global evaluation of commercial arbuscular mycorrhizal inoculants under greenhouse and field conditions. Appl Biochem Biotechnol 24(7):1468–1473

Ren JH, Liu RX, Li YL (2007) Study on arbuscular mycorrhizae of Panax notoginseng. Microbiology 34(2):224–227

Renger KL, Davis EM, Croteau R (2005) Monoterpen metabolism. Cloning, expression, and characterization of (-)-isopentenol/(-)-carvuel dehydrogenase of peppermint and spearmint. Plant Physiol 137(3):863–872

Riter Netto AF, Freitas MSM, Martins MA, Carvalho AJC, Vitortazi CM, Papageorgiou VP, Assimopoulou AN, Tsafantakis Kafle A et al (2022) Global evaluation of commercial arbuscular mycorrhizal inoculants under greenhouse and field conditions. Appl Soil Ecol 169

Sharma D, Kapoor R, Bhatnagar AK (2008) Arbuscular mycorrhizal (AM) technology for the conservation of Curculigo orchioides Gaertn: an endangered medicinal herb. World J Microbiol Biotechnol 24:395–400

Sharma E, Anand G, Kapoor R (2017) Terpenoids in plant and arbuscular mycorrhiza-reinforced defence against herbivorous insects. Ann Bot 119:791–801

Shaul-Keinan O, Gadkar V, Ginzberg I, Grunzweig JM, Chet I, Elad Y, Winering S, Belausov E, Eshed Y, Atzmon N, Ben Tal Y (2002) Hormone concentrations in tobacco roots change during the presymbiotic phase. Mycorrhiza 13(1):49–52

Silva FA, Silva FSB, Maia LC (2014) Biotechnological application of arbuscular mycorrhizal fungi used in the production of foliar biomolecules in ironwood seedlings [Libidibia ferrea (Mart. ex Tul.) L.P. Queiroz var. ferrea]. J Med Plant Res 8(20):814–819

Santos EL, Ferreira MRA, Soares LAL, Sampaio EVSB, Silva WAV, Silva FA (2020) Acaulospora longula increases the content of phenolic compounds and antioxidant activity in fruits of Libidibia ferrea Open Microbiol J 14(1):132–139

Sharma D, Kapoor R, Bhatnagar AK (2008) Arbuscular mycorrhizal (AM) technology for the conservation of Curculigo orchioides Gaertn: an endangered medicinal herb. World J Microbiol Biotechnol 24:395–400

Sharma E, Anand G, Kapoor R (2017) Terpenoids in plant and arbuscular mycorrhiza-reinforced defence against herbivorous insects. Ann Bot 119:791–801

Shaul-Keinan O, Gadkar V, Ginzberg I, Grunzweig JM, Chet I, Elad Y, Winering S, Belausov E, Eshed Y, Atzmon N, Ben Tal Y (2002) Hormone concentrations in tobacco roots change during the presymbiotic phase. Mycorrhiza 13(1):49–52

Silva FA, Silva FSB, Maia LC (2014) Biotechnological application of arbuscular mycorrhizal fungi used in the production of foliar biomolecules in ironwood seedlings [Libidibia ferrea (Mart. ex Tul.) L.P. Queiroz var. ferrea]. J Med Plant Res 8(20):814–819
Simao MJ, Barboza TJS, Vianna MG, Garcia R, Mansur E, Ignacio ACPR, Pacheco G (2018) A comparative study of phytoconstituents and antibacterial activity of in vitro derived materials of four Passiflora species. An Acad Bras Cienc 90(3):2805–2813

Simeunovic D (2002) Cultivation of medicinal plants in greenhouse hydroponics. Electronic Theses and Dissertations 1594. https://scholar.uwindsor.ca/etd/1594

Singh R, Soni SK, Kalra A (2013) Synergy between Glomus fasciculatum and a beneficial Pseudomonas in reducing root diseases and improving yield and forskolin content in Colocasia esculenta Briq. under organic field conditions. Mycorrhiza 23(1):35–44

Singh Y, Gupta A, Kanjooja P (2020) Togetes erecta (marigold) - a review on its phytochemical and medicinal properties. Curr Med Drug Res 4(1):1–14

Singh R, Divya S, Awasthi A, Kalra A (2012) Technology for efficient and successful delivery of vermicompost colonized bioinoculants in Pogostemon cablin (patchouli) Benth. World J Microbiol Biotechnol 28(1):323–333

Smith S, Read D (2008) Mycorrhizal Symbiosis, 3rd edition. Academic Press, Cambridge, pp 1–787

Soni P, Siddiqui AA, Dwivedi J, Soni V (2012) Pharmacological properties of Datura stramonium L as a potential medicinal tree: an overview. Asian Pac J Trop Biomed 2(12):1002–1008

Souret FF, Weathers PJ (2000) The growth of saffron (Crocus sativus L.) in aeroponics and hydroponics. J Herbs Spices Med Plants 7:25–35

Stupme M, Carsjens JG, Stenzel I, Gobel C, Lang I, Pawlowski K, Hause B, Feussner I (2005) Lipid metabolism in arbuscular mycorrhizal roots of Medicago truncatula. Phytobiology 66:781–791

Suryawanshi JAS (2011) An overview of Citrus aurantium used in treatment of various diseases. Afr J Plant Sci 5(7):390–395

Szaikiel A, Pęczkowski HM (2011) Influence of environmental biotic factors on the content of saponins in plants. Phytochem Rev 10:493–502

Szaikiel A, Pęczkowski H (2011) Influence of environmental abiotic factors on the content of saponins in plants. Phytochem Rev 10:471–491

Tabatabaei SJ (2008) Effects of cultivation systems on the growth, and essential oil content and composition of Valerian. J Herbs Spices Med Plants 14:54–67

Taber RA, Trappe JM (1982) Vesicular-arbuscular mycorrhiza in rhizomes, scale-like leaves, roots, and xylem of ginger. Mycologia 74(1):156–161

Tang W, Eisenbrand G (1992) Panax ginseng C. A. Mey.. In: Tang W, Eisenbrand G (eds) Chinese Drugs of Plant Origin. Springer, Berlin, Heidelberg, pp 711–737

Tavarini S, Passera B, Martini A, Avio L, Sbrana C, Giovannetti M, Angelini LG (2018) Plant growth, steviol glycosides and nutrient uptake as affected by arbuscular mycorrhizal fungi and phosphorus fertilization in Stevia rebaudiana Bert. Ind Crops Prod 111:899–907

Teixeira MC, Lopes MJP, de Sousa-Júniior DL et al (2020) Evaluation of the healing potential of Myrciocrinum urundeuva in wounds induced in male rats. Rev Bras Farmacogn 30:214–223

Tejavathi DH, Jayashree D (2011) Effect of AM fungal association on root border cells. Plant Physiol 104(2):683–689

Teng HR, He X (2005) Effects of different AM fungi and N levels on the flavonoid content of Bupleurum scorzonerifolium Willd. J Shanxi Agr Sci 4:53–54

Tepler M, Casse-Delbart F (1987) Agrobacterium rhizogenes as a vector for transforming higher plants. Microbiological Sci 4:24–28

Thawkar BS, Jawarkar AG, Kalamkar PV, Pawar KP, Kale MK (2016) Phytochemical and pharmacological review of Mentha arvensis Int J Green Pharm 10(2):71

Thirkell TJ, Charters MD, Elliott AJ, Sait SM, Field KJ (2017) Are mycorrhizal fungi our sustainable savours considerations for achieving food security. J Ecol 105:921–929

Tian L, Shi SH, Ma LN, Zhou X (2019) The effect of Glomus intraradices on the physiological properties of Panax ginseng and on rhizospheric microbial diversity. J Ginseng Res 43(1):77–85

Tianji VP, Zoufou D, Ngemena MN (2008) The antimarial potential of medicinal plants used for the treatment of malaria in Cameroonian folk medicine. Afr J Tradit Complement Altern Med 5(3):302–321

Torres N, Goicoechea N, Antolín MC (2015) Antioxidant properties of leaves from different accessions of grapevine (Vitis vinifera L.) cv. Tempranillo after applying biotican/for environmental modulator factors. Ind Crops Prod 76:77–85

Toussaint JP, Smith FA, Smith SE (2007) Arbuscular mycorrhizal fungi can induce the production of phytochemicals in sweet basil irrespective of phosphorus nutrition. Mycorrhiza 17(4):291–297

Urbanek H, Katarzyna Bergier K, Marian Saniewski M, Patykowski J (1996) Effect of jasmonates and exogenous polysaccharides on production of alkannin pigments in suspension cultures of Alkanna tinctoria. Plant Cell Rep 15(8):637–641

Vierheilig H, Piche Y (2002) Signalling in arbuscular mycorrhiza: facts and hypothesis. In: Buslig BS, Manthey JA (eds) Flavonoids in cell function. Advances in experimental medicine and biology, vol 505. Springer, Boston, MA, pp 23–39

Vishnuvathan VJ, Lakshmi KS, Srividya AR (2016) Medicinal uses of formononetin- a review. J Ethnobiol Ethnomedicine 126:1197–1209

Vo AT, Haddi I, Daoed H, Mayer Z, Posta K (2019) Impact of arbuscular mycorrhizal inoculation and growth substrate on biomass and content of polyphenols in Eclipta prostrata. Hortic Science 54(11):1976–1983

Voets L, de Boulois HD, Renard L, Struull DG, Declerck S (2005) Development of an autotrophic culture system for the in vitro mycorrhization of potato plantlets. FEMS Microb Lett 248(1):111–118

Voets L, de la Providencia IE, Fernandez K, Ildo M, Cranenbrouck S, Declerck S (2009) Extraradical mycelium network of arbuscular mycorrhizal fungi allows fast colonization of seedlings under in vitro conditions. Mycorrhiza 19(5):347–356

Volpin H, Elkind Y, Okon Y, Kapulnik Y (1994) A vesicular arbuscular mycorrhizal fungus (Glomus intraradices) induces a defense response in alfalfa roots. Plant Physiol 104(2):683–689

Walter MH, Fester T, Strack D (2000) Arbuscular mycorrhizal fungi induce the non-mevalonate methylethrythritol phosphate pathway of isoprenoid biosynthesis correlated with accumulation of the ‘yellow pigment’ and other apocarotenoids. Plant J 21:571–578

Walter MH, Hans J, Strack D (2002) Two distantly related genes encoding 1-deoxy-d-xylulose 5-phosphate synthases: differential regulation in shoots and apocarotenoid-accumulating mycorrhizal roots. Plant J 31:243–254

Wang Q, He XL, Chen TS, Dou WF (2006) Ecological research of arbuscular mycorrhizal fungi in rhizosphere of Puercaria lobata. J Hebei Univ 26(4):420–425

Wang Z, Xia Q, Liu X, Liu W, Huang W, Mei X, Luo J, Shan M, Lin R, Zou D, Ma Z (2018) Phytochemistry, pharmacology, quality control and future research of Forsythia suspensa (Thunb.) Vahl: a review. J Ethnopharmacol 210:318–339

Wasternack C (2007) Jasmonates: an update on biosynthesis, signal transduction and action in plant stress response, growth and development. Ann Bot 100(4):681–697

Watson BS, Bedair MF, Urbanczyk-Wochniak E, Huhman DV, Yang DS, Allen NS, Li W, Tang Y, Sumner LW (2015) Integrated metabolomics and transcriptomics reveal enhanced specialized metabolism in Medicago truncatula root border cells. Plant Physiol 167:1699–1716
Wei GT, Wang HG (1989) Effects of VA mycorrhizal fungi on growth, nutrient uptake and effective compounds in Chinese medicinal herb Datura stramonium L. Sci Agr Sin 22(5):56–61

Wei GT, Wang HG (1991) Effect of vesicular-arbuscular mycorrhizal fungi on growth, nutrient uptake and synthesis of volatile oil in Schizonepeta tenuifolia. Chin J Chin Mater Med 16(3):139–142

Woo SS, Song JS, Lee JY, In DS, Chung HJ, Liu JR, Choi DW (2004) Selection of high ginsenoside producing ginseng hairy root lines using targeted metabolic analysis. Phytochemistry 65:2751–2761

Wu QS, Liu W, Zhai HF, Ye XF, Zhao LJ (2010) Influences of AM fungi on growth and root antioxidative enzymes of Trifoliate orange seedlings under salt stress. Acta Agr Univ Jiangxiensis 32(4):759–762

Wu YH, Wang H, Liu M, Li B, Chen X, Ma YT, Yan ZY (2021) Effects of native arbuscular mycorrhiza isolated on root biomass and secondary metabolites of Salvia miltiorrhiza Bge. Front Plant Sci 12

Xie W, Hao Z, Zhou X, Jiang X, Xu L, Wu S, Zhao A, Zhang X, Chen B (2018) Arbuscular mycorrhiza facilitates the accumulation of glycyrrhizin and liquiritin in Glycyrrhiza uralensis under drought stress. Mycorrhiza 28:285–300

Yadav K, Aggarwal A, Singh N (2013) Arbuscular mycorrhizal fungi induced acclimatization and growth enhancement of Glycyrrhiza glabra L.: a potential medicinal plant. Agric Res 2:43–47

Yadav K, Singh N, Aggarwal A (2012) Arbuscular mycorrhizal technology for the growth enhancement of micropropagated Spilanthes acmella Murr. Plant Protect Sci 48:31–36

Yadav K, Singh N, Aggarwal A (2011) Influence of arbuscular mycorrhizal (AM) fungi on survival and development of micropropagated Acorus calamus L. during acclimatization. J Agric Sci Technol 7(3):775–781

Yamawaki K, Matsumura A, Hattori R, Tarui A, Hessain M, Ohashi Y, Daimon H (2013) Effect of inoculation with arbuscular mycorrhizal fungi on growth, nutrient uptake and curcumin production of turmeric (Curcuma longa L.). Agric Sci 4(2):66–71

Yang X, Xiong X, Wang H, Wang J (2014) Protective effects of Panax notoginseng saponins on cardiovascular diseases: a comprehensive overview of experimental studies. Evid Based Complement Alternat Med 2014

Yang Y, Ou XH, Yang G, Xia YS, Chen ML, Guo LP, Liu DH (2017) Arbuscular mycorrhizal fungi regulate the growth and phytotoxic compound of Salvia miltiorrhiza seedlings. Appl Sci 7(1):68

Yazaki K (2017) Lithospermum erythrorhizon cell cultures: present and future aspects. Plant Biotechnol (Tokyo) 34(3):131–142

Yoshikawa T, Furuya T (1987) Saponin production by cultures of Panax ginseng transformed with Agrobacterium rhizogenes. Plant Cell Rep 6:449–453

Yu KW, Murthy HN, Hahn EJ, Paek KY (2005) Ginsenoside production by hairy root cultures of Panax ginseng: influence of temperature and light quality. Biochem Eng J 23(1):53–56

Zagórska-Dziok M, Ziemlewska A, Nizioł-Lukaszewska Z, Bujak T (2020) Antioxidant activity and cytotoxicity of Medicago sativa L. seeds and herb extract on skin cells. Biore Open Access 9(1):229–242

Zeng Y, Guo LP, Chen BD, Hao ZP, Wang JY, Huang LJ, Yang G, Cui XM, Yang L, Wu ZX, Chen ML, Zhang Y (2013) Arbuscular mycorrhizal symbiosis and active ingredients of medicinal plants: current research status and prospectives. Mycorrhiza 23(4):253–265

Zhang RQ, Zhu HH, Zhao HQ, Yao Q (2013) Arbuscular mycorrhizal fungal inoculation increases phenolic synthesis in clover roots via hydrogen peroxide, salicylic acid and nitric oxide signaling pathways. J Plant Physiol 170(1):74–79

Zhao JL, He XL (2011) Effects of AM fungi on drought resistance and content of chemical components in Angelica dahurica. Acta Agr Bor Occi Sin 20(3):184–189

Zhao PJ, An F, Tang M (2007) Effects of arbuscular mycorrhiza fungi on drought resistance of Forsythia suspensa. Acta Bot Bor Occi Sin 27(2):396–399

Zeng Y, Dixon M, Saxena P (2006) Greenhouse production of Echinacea purpurea (L.) and E. angustifolia using different growing media, NO3 --/NH4 + ratios and watering regimes. Can J Plant Sci 86:809–815

Zhi LY, Chuan CD, Lian QC (2007) Regulation and accumulation of secondary metabolites in plant-fungus symbiotic system. Afr J Biotechnol 6:1266–1271

Zhou JH, Fan JH (2007) Effects of AM fungi on the berberine content in Phellodendron chinense seedlings. North Hortic 12:25–27

Zimare S, Borde M, Jite PK, Malpathak N (2013) Effect of AM fungi (Gf, Gm) on biomass and gynemic acid content of Gymnema sylvestre (Retz.). Biol Sci 83(3):439–445

Zitterl-Eglseer K, Nell M, Lamien-Meda A, Steinkellner S, Wawrosch C, Kopp B, Zitterl W, Vierheilig H, Novak J (2015) Effects of root colonization by symbiotic arbuscular mycorrhizal fungi on the yield of pharmacologically active compounds in Angelica archangelica L. Acta Physiol Plant 37:21

Zobel RW, Del Tredici P, Torrey JG (1976) Method for growing plants aeroponically. Plant Physiol 57:344–346

Zolghafari M, Nazeri V, Sefidkon F, Rejali F (2013) Effect of arbuscular mycorrhizal fungi on plant growth and essential oil content and composition of Ocimum basilicum L. Iran J Plant Physiol 3:643–650

Zou YN, Srivastava AK, Wu QS (2016) Glomaln: a potential soil conditioner for perennial fruits. Int J Agric Biol 18:293–297

Zouari I, Salvioi A, Chialva M, Novero M, Miozzi L, Tenore GC, Bagnaresi P, Bonfante P (2014) From root to fruit: RNA-Seq analysis shows that arbuscular mycorrhiza symbiosis may affect tomato fruit metabolism. BMC Genomics 15:2215

Zubek S, Mielcarek S, Turnau K (2012) Hypericin and pseudohypericin concentrations of a valuable medicinal plant Hypericum perforatum L. are enhanced by arbuscular mycorrhizal fungi. Mycorrhiza 22:149–156

Zubek S, Stojakowska A, Anielska T, Turnau K (2010) Arbuscular mycorrhizal fungi alter thymol derivative contents of Inula ensifolia L. Mycorrhiza 20(7):497–504

Zubek S, Rola K, Zubek S, Stojakowska A, Anielska T (2015) Enhanced concentrations of elements and secondary metabolites in Viola tricolor L. induced by arbuscular mycorrhizal fungi. Plant Soil 390:129–142

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.