Evaluation of different commercial feeds on grow-out silver black porgy, *Sparidentex hasta* (Valenciennes), for optimum growth performance, fillet quality, and cost of production

M.A. Hossain *, K.M. Al-Abdul-Elah, S. El-Dakour

*Corresponding author. Fax: +965 25711293.
E-mail addresses: hossain1958@yahoo.com, mhossain@kisr.edu.kw

Aquaculture Program, Environment and Life Sciences Research Center, Kuwait Institute for Scientific Research, P.O. Box 24885, Safat, Kuwait

Received 15 May 2015; revised 7 September 2015; accepted 9 September 2015
Available online 14 September 2015

KEYWORDS
Sobaity bream; Growth; Fillet quality; EPA; DHA

Abstract The objective of the study was to find a cost-effective feed from three commercial feeds, namely, Arasco (Saudi Arabia), Skretting (Turkey), and Biomar (Greece) for commercially producing silver black porgy (sobaity bream), *Sparidentex hasta* in Kuwait. For confidentiality, these feeds were randomly given code names, diets 1, 2, and 3, which were known only to the investigating staffs. The trash fish (diet 4) was used as the control. The experiment was conducted for 28 wk with grow-out sobaity bream (210.0 ± 0.51 g) using a flow-through system consisting of twelve 1-m³ tanks. There were three replicates for each treatment. Fish were fed two times daily at satiation level. The results showed that fish fed diet 2 resulted in significantly (*P* > 0.05) better growth performance, feed utilization, and higher fillet eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) content compared to other diets. A comparison of fillet quality of cultured and wild sobaity bream showed no significant (*P* > 0.05) difference between sensory attributes, except that of ‘flavor’ in cooked fillets of wild sobaity bream. A simple economic analysis showed that the cost per kilogram of fish production was significantly (*P* > 0.05) the lowest in diet 2 (USD4.13), followed by diet 1 (USD5.70), diet 4 (USD6.33), and diet 3 (USD6.92). Thus, based on growth performance, feed utilization, cost of production, and nutritional quality of fillet, it is concluded...
1. Introduction

Kuwait fisheries satisfy only 30% of the country’s demand for fish; while the other 70% is supplemented through imports. Despite management regulations, catches from the sea have continued to decline day by day. Fish importation is not a reliable solution, because it does not guarantee the sustainability of supply from regional countries, where supplier stock levels are decreasing as well. Therefore, aquaculture can play a major role in bridging the gap between demand and supply. The Aquaculture Program of the Environment and Life Sciences Research Center (EELSRC) of the Kuwait Institute for Scientific Research (KISR) has developed various technologies needed to culture silver black porgy, locally known as sobaity bream (*Sparidentex hasta*) from egg to a marketable size in tanks and cages (Teng et al., 1987; Abdullah et al., 1989). In the recent reorganization of KISR’s programs, emphasis was given to the commercialization of culture technology developed by the institute for private sector entrepreneurs. In this regard, sobaity was considered as the first candidate for commercialization due to the huge amount of research data available for its successful culture (Teng et al., 1987; Abdullah et al., 1989; Al-Abdul-Elah et al., 2010).

The sobaity bream is native to the Arabian Gulf, western Indian Ocean, and the coast of India (Yousif et al., 2003). Sobaity bream is a shoreline surface fish, feeding in the wild by hunting small pelagic fishes. It is a silvery fish with tender flesh and a rich flavor. Sobaity bream has been a table delicacy for the Arabs for more than a century (Kitto, 2004).

Since the KISR’s Aquaculture Program’s objective emphasized the commercialization of sobaity culture in Kuwait, conducting research aimed at evaluating commercial diets for growth, fillet quality, and cost of production of sobaity was given a top priority. However, for any commercial fish farming, feed is often the single largest operating cost item that diet 2 may be recommended for commercial culture of sobaity bream in Kuwait. However, future research should focus on how to improve fillet quality of the cultured fish at par with wild fish by manipulating the feed formulation.

© 2015 The Authors. Production and hosting by Elsevier B.V. on behalf of King Saud University. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

2. Materials and methods

2.1. Experimental system

The experiment was carried out in a flow-through system, consisting of twelve 1-m³ round fiberglass tanks, each containing approximately 800 l of water. The inside of the tanks was blue in color, and the bottom had a 2° slope toward a 5-cm diameter central drainage stand pipe, which provided water drainage from the bottom. The tanks were covered with nets to prevent the fish from jumping out. Filtered and ultraviolet (UV)-treated seawater and groundwater were mixed and flowed through the tanks of an open flow-through system at a rate of approximately 15 min⁻¹. A continuous oxygen supply in the experimental tanks was maintained through air stones. Fluorescent lights were used to provide a natural photoperiod of 12 h light and 12 h dark, which was maintained throughout the study period.

2.2. Source of fish and acclimation and sampling

Uniform-sized grow-out sobaity bream (210.0 ± 0.51 g) were obtained from KISR’s hatchery at Salmiya, Kuwait. There were three replicates for each treatment and the stocking density was 20 fish per tank. Before the start of the experiment, fish were acclimated to the experimental system for 1 wk. At the start of the experiment, individual fish in each tank was measured for length and weight. The experiment was conducted for 28 wk during the months from April to November 2013. Four-week bulk sampling was done using an electronic balance to monitor fish growth. During the sampling period, the water in each tank was reduced, and quinaldine was used to anesthetize the fish. All of the fish in each tank were bulk weighed using an electronic balance. During sampling, fish in the tanks were counted numerically, and each tank was cleaned and washed before the fish were released back into the tanks. Any mortality of fish was recorded. At the beginning of the experiment, five fish from the stock were collected as initial sample, and at the end of the experiment, three fish from each replicate tank were collected as final sample for proximate and fatty acid composition analysis. The skin and boneless fillets from both sides of the fish were separated, pooled, ground, and freeze-dried for chemical analysis. The rest of the fish were kept in their respective tanks, and feeding was continued until the organoleptic test was done to evaluate the fillet quality compared to that of the wild sobaity.
2.3. Experimental feeds and feeding

Three different commercial feeds such as Biomar (3.0 mm), Skretting (4.00 mm), and Arasco (1.9 mm) were procured from Greece, Turkey, and Saudi Arabia, respectively. For confidentiality, these commercial feeds were randomly given the code names diet 1, diet 2, and diet 3, and were weighed only to the investigating staffs. Since the feed pellet sizes were smaller compared to the fish size, they were repelleted to a size of 4.5 mm using a meat mincer with a 4.5-mm die. The trash fish was used as the control. The gizzard shad (Nematoïdosa nasus), locally known as ‘youaf’, was selected on the basis of availability and price and used as trash fish (diet 4). The trash fish were bought in bulk and kept deep frozen. Before being used as feed, the trash fish were thawed, beheaded, tail and fin removed, and cut into pieces using a sharp knife. The fish were hand-fed twice daily at 0900 and 1400 h at satiation level. Feed pellets were dropped slowly from the surface so that the fish could easily eat the pellets. Care was taken to ensure that all fish were sufficiently fed, and that no feed was left uneaten at the bottom of the tank.

2.4. Water quality parameters

The water quality parameters, such as water temperature, pHe, and dissolved oxygen, were monitored daily throughout the experimental period. Total ammonia and salinity were measured weekly. All the parameters are found to be suitable for fish growth and survival. The ranges were: temperature 24.0–28.5 °C, pHe 6.8–7.7, dissolved oxygen 5.8–7.0 mg L−1, salinity 4.0–4.2 g L−1, and total ammonia 0.040–0.071 mg L−1.

2.5. Organoleptic test

The organoleptic test was performed at the end of the growth trial. The organoleptic properties of fish fillets of both wild and cultured sobaity bream from different treatments were evaluated for color, flavor, or odor, texture, and taste by a simple ‘ten-member panel’. Both fresh and cooked fillets were evaluated organoleptically. The panel was a non-professional’ panel formed by researchers and KISR personnel, who were familiarized with the procedure before the final evaluation. The session was conducted in the meeting room at KISR, Salmiya. Samples were given secret code numbers and served simultaneously. Similar-sized wild sobaity bream were procured from Sharq fish market, Kuwait. Skinless dorsal fillets from both sides of the fish were used for sensory evaluation. For the cooked samples, fillets were individually wrapped in an aluminum foil and cooked in an electric oven for 10 min. The sensory evaluation was performed according to the Torry Scheme (Howgate, 1982). Different parameters, such as color, flavor, or odor, texture, and taste, were assigned different attributes with numerical scores (1–5) in a questionnaire supplied to each panelist. The overall acceptance of the fillet quality was evaluated by numerical scores of up to 5, where score 1 = very bad, 2 = bad, 3 = average, 4 = good, and 5 = very good. The scores of the ten panelists were averaged to get a mean score of the panel. Data obtained were subjected to a one-way analysis of variance (ANOVA, Duncan, 1955) followed by Tukey’s test to see the significance (P > 0.05) between treatment means.

2.6. Economic analysis

A simple economic analysis was performed to estimate the cost of production and net profit in different treatments. The production cost was based on the 2013 market price of the inputs used. The initial cost of fish was considered at USD1.50 each. The sale price of sobaity bream was considered at USD14.00 kg−1. The capital cost, including the cost of electricity and water, was not included. An additional 7.5% on total cost was included as operational cost (ADCP, 1983).

2.7. Analytical methods and statistical analysis

The proximate composition of commercial feeds, trash fish, and fish samples were analyzed in triplicates according to the standard procedure (AOAC, 2000). Lipid content of samples for fatty acid analysis was extracted by the Bligh and Dyer (1959) method. Fatty acid composition was determined by preparing methyl esters and analyzing them by gas chromatography (AOCS, 1992). An HP 6890 gas chromatograph (Hewlett-Packard, Palo Alto, CA, USA) equipped with a Chrompack column (CP-Sil 88 50 m, ID 0.25 mm, Varian Inc, Palo Alto, CA, USA) was used for the analysis.

Data were processed to calculate the growth and feed utilization parameters according to Castell and Tiews (1980), as follows:

- Weight gain (WG) = final mean weight (g) – initial mean weight (g).
- Daily weight gain (DWG, g/fish/d) = total weight gain/ number of fish/day.
- Specific growth rate (%/d) = [100 × (in (final body weight) – in (initial body weight)/experimental period (d)].
- Condition factor (CF) = (W/L3), where W = weight (g) and L = length (g) of fish.
- Hepatosomatic index (HSI) = (liver weight/fish weight) × 100
- Daily feed intake (%) = feed intake (dry matter) × 100/ ([initial fish weight + final fish weight] × days fed/2).
- Feed conversion ratio (FCR) = dry feed fed/live weight gain.

| Table 1 Proximate composition of the experimental diets (% dry matter basis) |
|-----------------------------|-----------------------------|-----------------------------|-----------------------------|
| Parameter | Diet 1 | Diet 2 | Diet 3 | Diet 4 |
| Dry matter | 95.72 | 95.39 | 95.99 | 27.99 |
| Protein | 49.42 | 48.88 | 47.37 | 59.04 |
| Lipid | 13.74 | 14.01 | 13.88 | 20.70 |
| Ash | 6.54 | 10.49 | 6.90 | 10.02 |
| Crude fiber | 4.42 | 4.51 | 4.12 | 1.01 |
| NFE1 | 25.88 | 22.11 | 27.73 | 10.24 |
| Gross energy (kJ g−1)3 | 21.54 | 20.87 | 21.43 | 23.87 |
| P:E ratio3 | 22.94 | 23.41 | 22.10 | 24.73 |

1 Nitrogen-free extract (NFE) calculated as 100 − % (protein + lipid + ash + crude fiber).
2 Estimated according to NRC (1993) using the values of 23.6, 39.5, and 17.2 kJ g−1 for protein, lipid, and total carbohydrate, respectively.
3 Protein to energy ratio (P:E) in mg protein kJ−1 of gross energy.
Protein efficiency ratio (PER) = live weight gain/crude protein fed.

Apparent net protein utilization (ANPU %) = (final fish body protein/initial fish body protein)/(total protein fed) × 100.

Lipid retention (LR %) = 100 × (lipid gain/lipid intake).

Energy retention (ER %) = 100 × (energy gain/energy intake).

Data were tested for statistical significance using a one-way ANOVA (Duncan, 1955) followed by Tukey’s test to see the significance difference between treatment means.

3. Results

The analyzed proximate composition of the experimental diets is presented in Table 1. The results showed almost similar values of protein and lipid levels of commercial diets, which varied between 47.37% and 49.42%, and 13.74% and 14.01%, respectively. However, the protein (59.04%) and lipid (20.70%) content (% dry matter basis) of the trash fish was very high compared to that of the commercial diets. The gross energy contents of the three commercial diets were almost iso-energetic, which ranged between 20.87 and 21.54 kJ g⁻¹, but the gross energy value in trash fish diet was slightly higher (23.87 kJ g⁻¹) than the rest.

The analyzed fatty acid composition of the experimental diets is shown in Table 2. Among the saturated fatty acids (SFA), palmitic acid (C16) was the most dominant fatty acid ranging from about 14% to 34%, whereas, C18:1n-9 was the most dominant monounsaturated fatty acid (MUFA), accounting for 13–33% of the total fatty acids. Trash fish had the highest level of SFA and the lowest level of MUFA. On the other hand, the commercial diets had higher levels of polyunsaturated fatty acids (PUFA), which ranged between 23% and 34%, whereas it was only about 6% in the trash fish feed. Among the experimental diets, diet 2 had the highest levels of eicosapentaenoic acid (EPA, 7.56%) and docosahexaenoic acid (DHA, 7.48%), whereas trash fish had the lowest levels of EPA (1.26%) and DHA (1.20%). The n-3/n-6 ratio ranged between 1.04 and 1.70, with diet 2 showing the highest, and diet 3 showing the lowest value.

The average final weight of fish in different treatments ranged between 471.93 g and 701.07 g (Table 3). Fish fed with diet 2 showed significantly (P < 0.05) the highest final weight, weight gain, and specific growth rate (SGR) among all the dietary treatments. There were no significant (P > 0.05) differences between the final weight, weight gain, and SGRs of fish fed diet 1 and diet 4, but these values were significantly (P < 0.05) higher than those of diet 3. Fish fed diet 2 had significantly (P < 0.05) the highest condition factor (CF). There was no significant (P > 0.05) difference between the

Table 2	Fatty acid composition (% of total fatty acids) of experimental diets.			
Fatty acid	Diet 1	Diet 2	Diet 3	Diet 4
C14	4.7 ± 0.11	5.60 ± 0.09	3.12 ± 0.12	10.49 ± 0.14
C15	0.28 ± 0.04	0.52 ± 0.05	0.24 ± 0.02	5.08 ± 0.08
C16	16.21 ± 0.34	18.04 ± 0.54	13.80 ± 0.36	34.02 ± 0.48
C17	0.45 ± 0.03	0.72 ± 0.05	0.36 ± 0.02	1.62 ± 0.06
C18	2.66 ± 0.07	4.2 ± 0.08	2.68 ± 0.06	5.65 ± 0.12
C20	0.32 ± 0.03	0.59 ± 0.05	0.36 ± 0.02	0.44 ± 0.03
C16:1	4.02 ± 0.09	6.48 ± 0.13	4.44 ± 0.10	18.02 ± 0.13
C17:1	0.32 ± 0.2	0.49 ± 0.04	1.02 ± 0.04	2.24 ± 0.07
C18:1n-9	31.02 ± 0.26	23.64 ± 0.32	33.08 ± 0.44	13.42 ± 0.23
C20:1	ND	ND	ND	0.40 ± 0.04
C22:1n-9	5.48 ± 0.08	4.96 ± 0.11	4.87 ± 0.09	ND
C24:1	0.40 ± 0.02	0.26 ± 0.01	0.28 ± 0.03	ND
C18:2n-6	12.96 ± 0.12	11.60 ± 0.13	16.54 ± 0.15	2.36 ± 0.06
C18:3n-3	8.24 ± 0.09	4.48 ± 0.07	8.10 ± 0.11	0.36 ± 0.03
C18:3n-6	0.18 ± 0.02	0.22 ± 0.03	0.16 ± 0.03	0.13 ± 0.02
C20:3n-3	0.62 ± 0.03	0.96 ± 0.07	0.44 ± 0.02	0.38 ± 0.03
C20:3n-6	0.18 ± 0.01	0.16 ± 0.02	0.20 ± 0.02	0.14 ± 0.01
C20:5n-3, EPA²	4.60 ± 0.09	7.56 ± 0.11	3.48 ± 0.08	1.26 ± 0.05
C22:6n-3, DHA³	6.48 ± 0.10	7.48 ± 0.09	4.98 ± 0.07	1.20 ± 0.02
∑SFA⁴	24.03	29.67	20.56	58.20
∑MUFA⁵	41.84	35.38	43.69	34.08
∑PUFA⁶	33.26	32.38	34.40	5.83
∑n-3	19.94	20.40	17.50	3.2
∑n-6	13.32	11.98	16.90	2.63
n-3/n-6 ratio	1.50	1.70	1.04	1.22
DHA/EPA ratio	1.40	0.99	1.43	0.95

¹ ND = not detected.
² EPA = eicosapentaenoic acid.
³ DHA = docosahexaenoic acid.
⁴ SFA = saturated fatty acid.
⁵ MUFA = mono-saturated fatty acid.
⁶ PUFA = polyunsaturated fatty acids.
Among the diets, fish fed diet 3 had the lowest fillet moisture content (Table 4). There was no significant (P > 0.05) difference between the fillet moisture content of the fish fed diets 1 and 2, and these values were significantly lower than those fed diet 4. There were no significant (P > 0.05) differences between the fillet protein content of the fish fed different experimental diets, which ranged between 20.31% and 20.73%. There was no significant (P > 0.05) difference between the fillet lipid contents of fish fed diets 1, 2, and 3, but these values were significantly (P < 0.05) higher than those fed diet 4.

Palmitic acid was the dominant SFA amounting to about 23–31% of total fatty acids (Table 5). Fish fed diet 4 had significantly (P < 0.05) higher C16 than those fed other diets. Among the MUFA, C18:1n-9 was the most dominant MUFA ranging from 19% to 29% with fish fed diet 1, having significantly (P < 0.05) higher C18:1n-9 than those fed other diets. Among the PUFAs, C18:2n-6 was the dominant fatty acid, significantly (P < 0.05) higher than those fed diet 4. There were no significant (P > 0.05) differences between the fillet lipid contents of fish fed diets 1, 2, and 3, but these values were significantly (P < 0.05) higher than those fed diet 4.

Table 6 shows the mean sensory evaluation scores of the raw fillets of cultured and wild sobaity bream. Statistically, there were no significant (P > 0.05) differences between the mean scores of different attributes. However, in general, fillets from fish fed diet 2 and the wild sobaity bream had higher sensory scores for most attributes.

Table 3 Growth performance and feed utilization in sobaity bream fed experimental diets.¹

Parameter	Diet 1	Diet 2	Diet 3	Diet 4
Initial weight (g)	210.23 ± 0.28	209.93 ± 0.83	209.87 ± 0.60	209.83 ± 0.61
Final weight (g)	585.70 ± 24.36	701.07 ± 32.17	471.93 ± 15.81	564.27 ± 19.01
Weight gain (g)	375.47 ± 24.23	491.14 ± 28.17	262.06 ± 16.22	354.44 ± 19.09
DWG (g/fish/d)⁵	1.92 ± 0.12	2.50 ± 0.16	1.34 ± 0.08	1.81 ± 0.10
SGR (% d⁻¹)⁶	0.52 ± 0.02	0.62 ± 0.02	0.41 ± 0.02	0.51 ± 0.02
CF²	1.84 ± 0.03	1.96 ± 0.02	1.84 ± 0.06	1.69 ± 0.01
HSI²	1.29 ± 0.11	1.28 ± 0.02	1.46 ± 0.17	0.76 ± 0.06
DF1 (%)⁶	1.30 ± 0.10	1.27 ± 0.03	1.44 ± 0.02	1.23 ± 0.03
FCR⁴	2.23 ± 0.06	1.85 ± 0.04	3.19 ± 0.19	1.86 ± 0.05
PER⁴	0.89 ± 0.04	1.12 ± 0.05	0.63 ± 0.03	0.86 ± 0.04
ANPU⁹	20.40 ± 0.31	23.55 ± 0.43	13.97 ± 0.41	18.32 ± 0.57
LR¹⁰	20.95 ± 1.67	22.47 ± 1.89	16.97 ± 1.23	16.77 ± 1.12
ER¹¹	15.80 ± 0.83	18.89 ± 1.13	12.81 ± 0.49	15.00 ± 0.53
Survival (%)	98.3 ± 2.9	98.3 ± 2.9	100.0 ± 0.0	100.0 ± 0.0

¹ Values in a row with different superscripts are significantly different as determined by ANOVA followed by Tukey’s test (P < 0.05).
² DWG: daily weight gain (g/fish/d).
³ Specific growth rate (% d⁻¹) = 100 × ln (final body weight) – ln (initial body weight)/experimental period (d).
⁴ CF: condition factor = W/L³ where, W = weight of fish (g), L = length of fish (cm).
⁵ HSI: hepatosomatic index = (liver weight/fish weight) x 100.
⁶ DF1: daily feed intake (%) = feed intake (dry matter) × 100/[initial fish weight + final fish weight] × days fed/2.
⁷ FCR: feed conversion ratio = dry feed fed/live weight gain.
⁸ PER: protein efficiency ratio = live weight gain/crude protein fed.
⁹ ANPU: apparent net protein utilization (%) = (final fish body protein – initial fish body protein)/(total protein fed) × 100.
¹⁰ LR: lipid retention (%) = 100 × (lipid gain/lipid intake).
¹¹ ER: energy retention (%) = 100 × (energy gain, kJ/energy intake, kJ).
scores for color, texture, and overall acceptance than those fed other diets.

The scores for flavor of the cooked fillets fed diet 2 and wild sobaity bream were significantly \((P < 0.05) \) higher than those of fish fed diet 4 (Table 7). However, there were no significant \((P > 0.05) \) differences between the scores in the flavor of fillets from fish fed diets 1, 2, 3, and wild sobaity bream. No significant \((P > 0.05) \) differences were found between the respective texture, taste, and overall acceptance scores of cultured and wild sobaity bream fillets. However, in general, fillets from fish fed diet 2 and the wild sobaity bream had higher scores for texture, taste, and overall acceptance.

A simple economic analysis was performed based on the 2013 market price of the inputs used (Table 8). The costs per kilogram (kg\(^{-1}\)) of the feeds, including transport cost were USD\(1.87, 1.27, 1.77\), and 0.45 for diets 1, 2, 3, and 4, respectively. The total feed cost per tank in diets 1 and 3 were significantly \((P < 0.05) \) higher than those of diets 2 and 4. The feed cost (kg\(^{-1}\)) of fish production differed significantly \((P < 0.05) \) among treatments. The feed costs (kg\(^{-1}\)) of fish production were USD \(2.77, 1.67, 3.26\), and 2.55 for diets 1, 2, 3, and 4, respectively. Like the feed cost, the total production cost per tank in diets 1 and 3 were also significantly \((P < 0.05) \) higher than those of diets 2 and 4. The total fish production ranged

Table 4 Fillet proximate composition (% fresh matter basis) of sobaity bream at the start and at the end of the experiment.\(^1\)

Parameter	Initial (all fish)	Diet 1	Diet 2	Diet 3	Diet 4
Moisture	74.88	71.61\(^b\) ± 0.74	72.28\(^b\) ± 0.23	70.59\(^a\) ± 0.07	73.49\(^a\) ± 0.44
Protein	19.20	20.67\(^a\) ± 0.51	20.73\(^a\) ± 0.06	20.41\(^a\) ± 0.15	20.31\(^d\) ± 1.06
Lipid	3.05	5.38\(^a\) ± 0.56	5.02\(^b\) ± 0.52	5.81\(^a\) ± 0.25	3.64\(^b\) ± 0.53
Ash	1.61	1.57\(^c\) ± 0.12	1.47\(^b\) ± 0.11	1.81\(^a\) ± 0.18	1.58\(^c\) ± 0.11

\(^1\) Values (mean ± SD) in rows with different superscripts are significantly different as determined by ANOVA, followed by Tukey’s test \((P < 0.05)\).
between 9.03 and 13.78 kg tank\(^{-1}\), with diet 2 producing significantly \((P < 0.05)\) the highest yield, and diets 3 and 4, the lowest. The total cost (kg\(^{-1}\)) of fish production was significantly \((P < 0.05)\) the highest in diets 3 and the lowest in diet 2. The result showed that diet 2 generated significantly the highest net profit per tank (i.e., m\(^{-1}\) in diet 2. The result showed that diet 2 generated significantly \((P < 0.05)\) higher (1.28–1.24) HSI compared to those of fish fed the trash fish diet (0.76). In general, the FCR values in the present study were seen to be higher than those obtained with sobaity bream fry (Hossain et al., 2014).

In the present study, fish fed diet 2 with low intake of protein, in terms of per unit body weight, resulted in the highest ANPU and energy retention. It is generally observed in fish that protein retention efficiency increases with low protein intake (Cho et al., 2001), so less of the dietary protein is either excreted or used as energy substrate. High dietary lipid level in diet 4 (20.70%) did not improve protein retention, indicating that no protein sparing effect occurred. Similarly, no protein sparing by dietary lipid was also reported in gilthead sea bream (Company et al., 1999) and white sea bream (Ozorio et al., 2006).

The proximate composition of fish is affected by the composition of their food (Orban et al., 2007). In the present study, there were no significant \((P > 0.05)\) differences between the fillet protein levels of fish fed different experimental diets. The muscle protein level (20.3–20.73%) in the present study was found slightly higher than those (19.20–19.59%) found in sobaity fry (Hossain et al., 2014). The fillet lipid levels in fish fed commercial diets were significantly higher than those fed trash fish. The lipid levels (3.64–5.81%) in the present study were higher than those reported for sobaity bream fry (2.40–3.42%) by Hossain et al. (2014).

Marine fish generally show a good growth when EPA and DHA are supplied at a combined rate of between 0.8 and 2.0% (NRC, 1993). In the present study, the combined absolute dietary level of EPA and DHA in diets 1, 2, and 3 were 1.52%, 2.11%, and 1.17%, respectively, which are within the reported requirement level for marine fishes. The fillet fatty acid composition reflected the dietary fatty acid content, particularly EPA and DHA, which were significantly \((P < 0.05)\) higher in fish fed diet 2, followed by diets 3, 1, and 4. Nonetheless, the DHA levels (3.12% to 6.43%) in cultured sobaity bream fillet were significantly \((P < 0.05)\) lower than those of wild sobaity bream (10.64%). Compared to initial muscle composition, the deposits of DHA in fish fed commercial diets were higher than EPA. Similar results of higher incorporation of DHA into body lipid have been reported in gilthead bream (Kalogeropoulos et al., 1992).

In general, wild fish are characterized by higher n-3/n-6 ratios (van Vliet and Katan, 1990; George and Bhopal, 1995). In contrast, Orban et al. (2003) and Mnari et al. (2007) reported a higher n-3/n-6 ratio in cultured gilthead bream compared to that of the wild. In the present study, n-3/n-6 ratios in wild sobaity muscle were significantly \((P < 0.05)\) higher than those of the cultured. Hossain et al. (2012) also obtained a higher n-3/n-6 ratio in wild sobaity bream compared to the cultured ones, although the contribution of DHA as n-3 PUFA was much higher in the cultured fish. The higher n-3/n-6 ratio in wild sobaity bream might be related to the health status of the fish, as it was collected during the pre-spawning season when the fish have the highest level of fat. The lower level of n-3/n-6 ratio in cultured sobaity bream fillet might be due to the higher proportion of n-6 fatty acids present in the fillet, in particular C18:2n-6.

Table 6

Treatment	Sensory attributes\(^1\)	Flavor (1–5)	Odor (1–5)	Overall acceptance (1–5)
Diet 1	4.0\(^{a}\) ± 0.5	3.8\(^{a}\) ± 0.9	4.0\(^{a}\) ± 0.5	4.1\(^{a}\) ± 0.7
Diet 2	4.0\(^{a}\) ± 0.4	4.2\(^{a}\) ± 0.6	4.6\(^{a}\) ± 0.5	4.3\(^{a}\) ± 0.5
Diet 3	3.9\(^{a}\) ± 0.6	4.0\(^{a}\) ± 0.9	4.0\(^{a}\) ± 0.9	4.0\(^{a}\) ± 0.7
Diet 4	3.8\(^{a}\) ± 0.4	3.7\(^{a}\) ± 0.5	3.5\(^{a}\) ± 0.6	3.7\(^{a}\) ± 0.5
Wild sobaity	4.0\(^{a}\) ± 0.5	4.0\(^{a}\) ± 0.8	4.3\(^{a}\) ± 0.8	4.3\(^{a}\) ± 0.8

\(^1\) Score ranges as follows: score 1 = very bad, 2 = bad, 3 = average, 4 = good, and 5 = very good.

Table 7

Treatment	Sensory attributes	Taste (1–5)	Flavor (1–5)	Overall acceptance (1–5)
Diet 1	4.0\(^{a}\) ± 0.5	3.8\(^{a}\) ± 0.9	4.0\(^{a}\) ± 0.5	4.1\(^{a}\) ± 0.7
Diet 2	4.0\(^{a}\) ± 0.4	4.2\(^{a}\) ± 0.6	4.6\(^{a}\) ± 0.5	4.3\(^{a}\) ± 0.5
Diet 3	3.9\(^{a}\) ± 0.6	4.0\(^{a}\) ± 0.9	4.0\(^{a}\) ± 0.9	4.0\(^{a}\) ± 0.7
Diet 4	3.8\(^{a}\) ± 0.4	3.7\(^{a}\) ± 0.5	3.5\(^{a}\) ± 0.6	3.7\(^{a}\) ± 0.5
Wild sobaity	4.0\(^{a}\) ± 0.5	4.0\(^{a}\) ± 0.8	4.3\(^{a}\) ± 0.8	4.3\(^{a}\) ± 0.8

Values in a column with different superscripts are significantly different as determined by Tukey’s test \((P < 0.05)\).
Sensory evaluation scores of raw and cooked muscles of cultured and wild sobaity did not differ significantly except that of the ‘flavor’ of the cooked muscle. The panelists found significant difference only in the flavor of the cooked muscle from fish fed diet 2 and wild sobaity, which were significantly \(P < 0.05 \) better than those fed trash fish. Although there were reports that wild and cultured fish differ significantly in their organoleptic properties (Sylvia et al., 1995; Grigorakis et al., 2003), the average scores showed that the panelists in the present study could not find any significant difference between the cultured and wild muscles. However, the cultured fish were found to have slightly more whitish appearance compared to their wild counterpart. The impression of fillets originating from wild fish looked slightly darker, which might be related to the higher proportion of the dark muscle in them. The dark muscles are used for continuous swimming motion, whereas white muscles help rapid energy burst (Venugopal and Shahidi, 1996). This could explain why wild fish have a slightly darker appearance. Also, the higher fat content in cultured fish fillets may have contributed to its white appearance.

The total production of fish in different dietary treatments ranged between 9.03 and 13.78 kg m\(^{-2}\) and fish fed diet 2 resulted in significantly the highest total production (Table 8). A simple economic analysis showed that the cost of fish production (kg\(^{-1}\)) was significantly \(P < 0.05 \) the lowest in diet 2 (USD4.13), followed by diet 1 (USD5.70), diet 4 (USD6.33), and 3 (USD6.92). The estimated highest (USD135.99 m\(^{-2}\)) net profit generated in diet 2 clearly demonstrated that diet 2 is the best low-cost diet for the commercial culture of sobaity bream. In the present study, the better performance of diet 2 in sobaity growth might be related to its better nutritional composition of the diet, in particular, better EPA and DHA levels.

In the present study, the fatty acid profile comparisons showed that the proportion of DHA levels in wild sobaity were significantly higher than that of the cultured sobaity. Nonetheless, in the present study, wild sobaity used for comparison was collected during the pre-spawning season when the fish is in its best health condition, i.e., it contains the highest level of fat. But in the other seasons of the year, wild sobaity bream and gilthead bream contain less fat or lipid compared to the cultured ones (Hossain et al., 2012; Orban et al., 2003; Mnari et al., 2007). The lipid composition of farmed fish is more constant and less affected by seasonal variation than that of the wild fish, because it is largely dependent on the fatty acid composition of their diets. However, as farmed fish generally have higher total lipid levels than wild fish, 100 g of farmed fish fillet can provide a higher amount of n-3 PUFAs (especially EPA and DHA) than 100 g of wild fish.

Based on the growth performance, feed utilization, survival rate, cost of production, and nutritional quality of fish fillets, it is concluded that diet 2 in the present study may be recommended for the culture of sobaity in Kuwait. Future research should focus on improving fillet quality of the cultured fish at par with wild fish by manipulating the feed formulation.

Acknowledgments
The authors gratefully acknowledge the financial grant provided by KISR, Kuwait to carry out the research. Thanks are due to Ms. S.B. Yaseen and T. Al-Sharrah for their help with the proximate and fatty acid analysis of the samples.

References

Abdullah, M.A.S., Onn, W.T., Lennox, A., 1989. Culture of marketable sobaity. Kuwait Institute for Scientific Research, Report No. KISR3253, Kuwait.

ADCP, 1983. Fish feeds and feeding in developing countries. Aquaculture Development and Co-ordination Program, ADCP/REP/83/18. UNDP/FAO, Rome, Italy.

Al-Abdul-Elah, K., Al-Albani, S., Abu-Rezq, T., El-Dakour, S., Al-Marzouk, A., James, C., 2010. Effects of changing photoperiods and water temperature on spawning season of sobaity, Sparidenspectatrix. Kuwait Institute for Scientific Research, Report No. KISR10029, Kuwait.

AOAC, 2000. Official Methods of Analysis, 17th ed. Association of Official Analytical Chemists, Washington, D.C., USA.
AOCS, 1992. Fatty acid composition by GLC. Marine Oils. AOCS Official Methods Ce 1b-89, American Oil Chemists Society of Official Methods and Recommended Practices. AOCS Press, Champaign, IL, USA.

Bligh, E.C., Dyer, W.J., 1959. A rapid method of total lipid extraction and purification. Can J. Biochem. Physiol. 37, 911–917.

Castell, J.D., Tiews, K., (eds). 1980. Report on the EIFAC, IUNS and ICES working group on the standardization of methodology in fish nutrition research. EIFAC Technical Paper 36. Hamburg, Federal Republic of Germany. 36, 24p.

Company, R., Calduch-Giner, J.A., Perez-Sanchez, J., Kaushik, S.J., 1999. Protein sparing effect of dietary lipids in common dentex (Dentex dentex) and sea bass (Dicentrarchus labrax). Aquat. Living Resour. 12, 23–30.

Cho, S.H., Jo, J.Y., Kim, D.S., 2001. Effects of variable allowance with constant energy and ratio of energy to protein in a diet for constant protein input on the growth of common carp, Cyprinus carpio L. Aquacult. Res. 32, 394-356.

Duncan, D.B., 1955. Multiple ranges and multiple F-tests. Biometrics 11, 1–42.

El-Sayed, A.M., 1999. Alternative protein sources for farmed tilapia, Oreochromis spp. Aquaculture 179, 149–168.

George, R., Bhopal, R., 1995. Fat composition of free living and farmed sea species: Implication for human diet and sea-farming techniques. Br. Food J. 97 (8), 19–22.

Grigorakis, K., Taylor, K.D.A., Alexis, M.N., 2003. Organoleptic and volatile aroma compounds comparison of wild and cultured gilthead sea bream: sensory differences and possible chemical basis. Aquaculture 225, 109–119.

Hossain, M.A., Almatar, S.M., Al-Abdul-Elah, K.M., Yaseen, S.B., 2012. Comparison of proximate and fatty acid profiles in cultured and wild marine fishes in Kuwait. J. Appl. Aquacult. 24, 199–209.

Hossain, M.A., Al-Abdul-Elah, K., El-Dakour, S., Yaseen, S.B., Al-Sharrah, T., 2014. Evaluation of different commercial feeds on sobaity, Sparidentex hasta (Valenciennes) for optimum growth performance, muscle quality and cost of production. Kuwait Institute for Scientific Research, Final Report No. KISR12409, Kuwait.

Howgate, P.E., 1982. Quality assessment and quality control. In: Aitken, A., Mackie, I.M., Merrit, J.H., Windsor, M.L. (Eds.), Fish Handling and Processing. HMSO press, Edinburgh, pp. 177–186.

Kalogeropoulos, N., Alexis, M.N., Henderson, J.J., 1992. Effect of dietary essential fatty acids on growth, body composition and blood chemistry of juvenile starry flounder (Platichthys stellatus). Aquaculture 104, 293–308.

Kitto, M.R., 2004. Sobaity – the Arab’s choice. Fish Farming International, Nov/Dec, 24–25.

Mnari, A., Boulhei, I., Charaief, I., Hammami, M., Romdhane, M.S., El Cafi, M., Chaouch, A., 2007. Fatty acids in muscles and liver of Tunisian wild and farmed gilthead seabream, Sparus aurata. Food Chem. 100, 1393–1397.

NRC, 1993. Nutritional Requirements of Fish. National Research Council, National Academy Press, Washington D.C., USA.

Orban, E., Nevigato, T., Di Lena Casini, G., Marzetti, A., 2003. Differentiation in the lipid quality of wild and farmed sea bass (Dicentrarchus labrax) and gilthead seabream. Food Sci. 68 (1), 128–132.

Orban, E., Nevigato, T., Masci, M., Di Lina, G., Casini, I., Caproni, R., Gambelli, L., De Angeli, P., Rampacci, M., 2007. Nutritional quality and safety of European perch (Perca fluviatilis) from three lakes of central Italy. Food Chem. 100 (2), 482–490.

Ozorio, R.O.A., Valente, L.M.P., Pouso-Ferreira, P., Oliva-Teles, A., 2006. Growth performance and body composition of white seabream (Diplodus sargus) juveniles fed diets with different protein and lipid levels. Aquacult. Res. 37, 255–263.

Pyle, G.G., Rojotte, J.W., Couture, P., 2005. Effects of industrial metals on wild fish populations along a metal contamination gradient. Ecotoxicol. Environ. Safety 61, 287–312.

Sylvia, G., Morrissey, M.T., Graham, T., Garcia, S., 1995. Organoleptic qualities of farmed and wild salmon. J. Aquatic Food Prod. Technol. 4, 51–64.

Teng, S.K., James, C.M., Al-Ahmad, T., Rasheed, V., Shehadeh, Z., 1987. Development of technology for commercial culture of sobaity fish in Kuwait. Vol. III. Recommended technology for commercial application. Kuwait Institute for Scientific Research. Report No. KISR2259, Kuwait.

van Vliet, T., Katan, M.B., 1990. Lower ratio of n-3/n-6 fatty acids in cultured than in wild fish. Am. J. Clin. Nutr. 51, 1–2.

Venugopal, V., Shahidi, F., 1996. Structure and composition of fish muscle. Food Rev. Int. 12, 175–197.

Yousif, O.M., Ali, A.A., Kumar, K.K., 2003. Spawning and hatching performance of the silvery black porgy, Sparidentex hasta under hyper saline condition. NAGA WorldFish Centre Q. 26 (4), 13–15.