Biofilm and fluoroquinolone resistance of canine *Escherichia coli* uropathogenic isolates

Manuela Oliveira*, Filipa Rocha Dias and Constança Pomba

Abstract

Background: *Escherichia coli* is the most common uropathogen involved in urinary tract infection (UTI). Virulence of strains may differ, and may be enhanced by antimicrobial resistance and biofilm formation, resulting in increased morbidity and recurrent infections. The aim of this study was to evaluate the *in vitro* biofilm forming capacity of *E. coli* isolates from dogs with UTI, by using fluorescent *in situ* hybridization, and its association with virulence genes and antimicrobial resistance.

Findings: The proportion of biofilm-producing isolates significantly increased with the length of incubation time ($P < 0.05$). Biofilm production was significantly associated with fluoroquinolone resistance at all incubation time points and was independent of the media used ($P < 0.05$). Biofilm production was not associated with *cnf1*, *hly*, *pap* and *sfa* genes ($P > 0.05$), but was significantly associated with *afa*, *aer* and the β-lactamase genes ($P < 0.05$).

Conclusions: To the best of our knowledge, this is the first report showing significant association between biofilm production and fluoroquinolone resistance in *E. coli* isolates from dogs with UTI. Biofilm formation may contribute to UTI treatment failure in dogs, through the development of bacterial reservoirs inside bladder cells, allowing them to overcome host immune defenses and to establish recurrent infections.

Keywords: Biofilm, Dogs, *Escherichia coli*, Fluoroquinolone resistance, Urinary tract infection

Findings

Escherichia coli is the most common uropathogen in urinary tract infections (UTI) of humans and animals, being responsible for high morbidity and increased health care costs [1-3]. These infections are usually considered acute and self-limiting, but recurrent clinical signs are often observed [3]. *E. coli* UTI pathogenesis is similar in dogs and humans, and dogs may serve as reservoirs of uropathogenic *E. coli* (UPEC) strains that can be transmitted to humans and other animals [2,4]. In fact, the human highly virulent O25:ST131 uropathogenic clone was recently found in a dog with chronic cystitis [5,6]. This fact suggests a possible human-to-animal transmission.

In humans, it is well established that UPEC are able to form biofilm structures within the bladder, forming bacterial reservoirs that allow infection persistence [7-10]. These structures are highly organized multicellular complexes, characterised by adherent colonies surrounded by a large exopolysaccharide matrix. Biofilm structures protect bacteria against high antimicrobial concentrations and phagocytosis, allowing their survival in hostile environments within the host [10]. Detection of biofilm-producer strains is therefore relevant for the design of adequate control measures for UPEC infections. Fluoroquinolones are extensively used for UTI treatment, due to the high concentration levels reached in the urinary tract and good tissue concentrations [11]. The aim of this study was to evaluate the *in vitro* biofilm-forming ability of *E. coli* isolates from dog urinary tract infections, and its association with virulence and β-lactamase antimicrobial resistance genes, and with 2nd generation quinolones resistance.

Sixty-six *E. coli* isolates were used, from a collection of bacterial isolates from dogs with UTI belonging to the Faculty of Veterinary Medicine, University of Lisbon. Isolates virulence factors had already been determined by multiplex PCR and described by us: 57.6% (n = 38) were positive for *S* fimbriae gene *sfa*; 1.5% (n = 1) for afimbrial adhesion I gene *afaI*; 42.4% (n = 28) for haemolysin gene *hly*; 42.4% (n = 28) for pyelonephritis-associated pil gene *pap*...
Table 1 Biofilm production and virulence and β-lactamase genes presence in 66 E. coli isolates from dogs with urinary infections*

Isolate	Biofilm production	Virulence genes	Multiplex-PCR
	TSB, 24 hours	pap sfa afa hly cnf1 aer	TEM SHV OXA AMP C CTX-M
5	Negative	- + - - - -	- - - - -
13	Negative	- + - - - -	- - - - -
21	Negative	+ + + + + -	- - - - -
34	Negative	- - - - - -	- - - - -
36	Positive	- - - - - -	- - - - -
43	Negative	- - - - - -	- - - - -
78	Positive	+ - - - - -	+ - - - -
84	Positive	- + + + + -	- - - - -
88	Negative	+ + + + + -	- - - - -
91	Negative	- - - - - -	+ - - - -
95	Negative	- - - - - -	+ - - - -
99	Positive	- - - - - -	- - - - -
109	Positive	+ + - - - -	- - - - -
115	Positive	- + - - - -	- - - - -
125	Positive	- - - - - -	- - - - -
128	Negative	- - - - - -	- - - - -
133	Positive	- + - - - -	- - - - -
134	Positive	- + - - - -	- - - - -
138	Positive	+ - - - - -	- - - - -
174	Negative	- - - - - -	- - - - -
179	Negative	- + - - - -	- - - - -
188	Negative	- - - - - -	- - - - -
194	Negative	- - - - - -	- - - - -
207	Negative	+ + - - - -	- - - - -
209	Negative	+ + - - - -	- - - - -
224	Negative	- - - - - -	- - - - -
226	Negative	- - - - - -	- - - - -
227	Positive	- + - - - -	- - - - -
237	Negative	+ + - - - -	- - - - -
238	Positive	+ + - - - -	- - - - -
239	Positive	+ + - - - -	- - - - -
250	Negative	+ - - - - -	- - - - -
251	Positive	+ + - - - -	- - - - -
257	Negative	+ + - - - -	- - - - -
258	Negative	- - - - - -	+ - - - -
271	Positive	- - - - - -	- - - - -
274	Positive	- - - - - -	- - - - -
291	Positive	+ + - - - -	- - - - -
304	Positive	- + - - - -	- - - - -
320	Negative	- - - - - -	+ - - - -
325	Positive	+ + - - - -	- - - - -
327	Positive	+ - - - - -	- - - - -
Detection of genes related with β-lactamase resistance has also been previously described by us: 19 isolates were positive for \(\text{bla}^{\text{TEM}} \) (28.8%), three for \(\text{bla}^{\text{SHV}} \) (4.5%), two for \(\text{bla}^{\text{OXA-1}} \) (3.0%) and six for \(\text{ampC} \) (9.1%) [13].

Minimum inhibitory concentrations (MIC) of ciprofloxacin (CIP, Laboratório Atral-Cipan, Portugal), enrofloxacin (ENR, Bayer, Germany), marbofloxacin (MAR, Vétoquinol, France) and orbifloxacin (OBX, Schering-Plough, USA) were determined by broth microdilution, following Clinical and Laboratory Standards Institute guidelines [14,15]. E. coli ATCC 25922 was used as a reference control for MIC testing. Dilution range for all antimicrobial compounds tested was from 256 to 0.00003 \(\mu \text{g/mL} \).

Biofilm production was tested by fluorescent in situ hybridization, as previously described [16], in two broth media, TSB (Tryptic Soy Broth, Oxoid, CM0129B) and BHIB (Brain Heart Infusion Broth, Oxoid, CM0225), using the universal bacterial probe, Eub338, labelled with fluorescein (Stabvida, Portugal). Wilcoxon signed ranks test was applied for statistical purposes.

From the 66 UPEC dog isolates evaluated, 31 isolates were biofilm-positive in BHIB at 24 hours, 51 at 48 hours, and 59 at 72 hours. In TSB, a higher number of biofilm-producing isolates was observed at all incubation times: 35 isolates at 24 hours; 52 at 48 hours; 62 at 72 hours.

No significant differences (\(P > 0.05 \)) were found between biofilm formation in the two culture media, but significant differences were found between biofilm production between 24 and 48 hours, 48 and 72 hours, and 24 and 72 hours (\(P < 0.05 \)).

Association between biofilm formation in TSB at 24 hours and the presence of \(\text{cnf1} \), \(\text{hly} \), \(\text{pap} \) and \(\text{sfa} \) was not significant (\(P > 0.05 \)), whilst there was a significant association between biofilm and \(\text{afa} \) and \(\text{aer} \) (\(P < 0.05 \)) (Table 1). Biofilm production was also associated to the

Total (n=)	35	28	38	1	28	27	23	20	3	2	25	0
%	53.0	42.4	57.6	1.5	42.4	40.9	34.8	30.3	4.5	3.0	37.9	0

*Virulence and β-lactamase genes results are adapted from Féria et al. [12] and Pomba et al. [13]; + PCR positive result; − PCR negative result.
presence of the β-lactam genes blaTEM, blaOXA-1, blaSHV and ampC (P < 0.05) (Table 1).

Fluoroquinolones resistance is summarized in Table 2. Resistance was found in 13.6% of the uropathogenic isolates (n = 9) towards ciprofloxacin, enrofloxacin, marbofloxacin and orbifloxacin. One additional isolate was resistant to orbifloxacin. All E. coli isolates were simultaneously resistant to all the fluoroquinolones tested.

Biofilm formation has been described as an important E. coli virulence factor in human UTI. In this study, biofilm-forming ability of 66 UPEC dog isolates was evaluated. Previous works showed that isolates ability to form biofilm depends upon the medium used and time of observation [16-19]. In our study, no differences were found regarding biofilm production in BHIB and TSB. Almost half of the isolates were able to form biofilm at 24 hours in both media, and this percentage significantly increased with incubation time.

Association between biofilm and other virulence factors has already been studied [18]. In this work, biofilm was not associated to toxin production (hly and cnfI), or to filamentous adhesions involved in host specific adhesion (sfa and pap). Nevertheless, associations between biofilm and afa and aer were significant. These results may indicate that adhesive non-fimbrial adhesions are important for the initial steps of biofilm formation and that the aerotaxis receptor may be involved in the oxygenation of these structures. Biofilm production was also associated to the presence of the β-lactamase genes. Our results are not in accordance with previous works [18,20] that stated that E. coli strains that are β-lactamase producers may not be able to form biofilms.

Regarding fluoroquinolones resistance, compounds tested showed an in vitro efficacy of more than 80%, as already observed by other authors [11,21]. It is important to refer that although these broad-spectrum antibiotics are extensively used for treatment of animal related infections, their efficacy remains high [11]. Biofilm structures are believed to impair antimicrobial compounds action [10,22]. Association between biofilm and fluoroquinolone resistance was considered significant in all time points, independently of the media, which is in agreement with previous human UTI studies [9]. Biofilm formation by UPEC may contribute for UTI treatment failure in dogs, since these structures are responsible for the establishment of bacterial reservoirs inside the bladder cells, allowing them to overcome the host immune defences and to establish recurrent infections [9].

To our knowledge, this is the first report of the association between biofilm formation and fluoroquinolone resistance in E. coli dog UTI isolates, representing an important novelty. This fact is relevant for biofilm and antimicrobial resistance control in veterinary medicine and the establishment of more adequate therapeutic protocols.

Animal ethics
No experimental research on vertebrates or any regulated invertebrates were performed in this study.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
MO participated in the study conception and design, carried out the biofilm studies and drafted the manuscript. CP participated in the study conception and design, carried virulence and antimicrobial resistance genes studies and minimum inhibitory concentration determinations and helped to draft the manuscript. FRO participated in the biofilm studies. All authors read and approved the final manuscript.

Acknowledgements
This work was supported by CISA (‘Centro de Investigação Interdisciplinar em Sanidade Animal’) from the Faculty of Veterinary Medicine, University of Lisbon, Project Pest-OE/AGR/UI0127/6/2014, funded by FCT and by CISA/82/2005 grant from ‘Fundação para a Ciência e Tecnologia’ (FCT), Lisbon, Portugal.

Received: 9 January 2014 Accepted: 31 July 2014
Published: 7 August 2014

References
1. Arisoy M, Rad AY, Akin A, Akar N. Relationship between susceptibility to antimicrobials and virulence factors in paediatric Escherichia coli isolates. Int J Antimicrob Ag 2008, 315:S4–S8.
2. Johnson JR, Owens K, Gajewski A, Clabots C: Escherichia coli colonization patterns among human household members and pets.
with attention to acute urinary tract infection. J Inf Dis 2008, 197:218–224.

3. Justice SS, Hung C, Theriot JA, Fletcher DA, Anderson GG, Footer MJ, Hultgren SJ. Differentiation and developmental pathways of uropathogenic Escherichia coli in urinary tract pathogenesis. PLoS Pathog 2004, 101:1923–1938.

4. Johnson JR, Kaster N, Kuskowski MA, Ling Gv. Identification of urovirulence traits in Escherichia coli by comparison of urinary and rectal E. coli isolates from dogs with urinary tract infection. J Clin Microbiol 2003, 41:337–345.

5. Nicolas-Chanoine MH, Blanco J, Leflon-Guibout V, Demarty R, Alonso MP, Caniça MM, Park YJ, Lavigne JP, Pfitzner J, Johnson JR. International emergence of Escherichia coli clone O25:H4-ST131 producing CTX-M-15. J Antimicrob Chemother 2007, 61:273–281.

6. Pomba C, Fonseca JD, Baptista BC, Correia JD, Martinez-Martinez L. Detection of the pandemic O25-ST131 human virulent Escherichia coli CTX-M-15-producer clone harbouring the qnrB2 and aac(6’)-Ib-cr genes in a dog. Antimicrob Ag Chemother 2009, 53:27–328.

7. Anderson GG, Martin SM, Hultgren SJ. Host subversion by formation of intracellular bacterial communities in the urinary tract. Microb Inf 2004, 6:1094–1101.

8. Soto SM, Smithson A, Horcajada JP, Martinez JA, Mensa JP, Vila J. Implication of biofilm formation in the persistence of urinary tract infection caused by uropathogenic Escherichia coli. Clin Microbiol Inf 2006, 12:1021–1045.

9. Sumran E, Jose J, Varghese S, Kotan MS. Study of biofilm production in Escherichia coli causing urinary tract infection. Indian J Med Microbiol 2005, 23:305–306.

10. Trautner BW, Darouiche RO. Role of biofilm in catheter-associated urinary tract infection. Am J Inf Control 2004, 32:177–183.

11. Cohn LA, Garoat AT, Fales WH, Madsen RW. Trends in fluoroquinolone resistance of bacteria isolated from canine urinary tracts. J Vet Diagn Invest 2003, 15:328–334.

12. Féria C, Machado J, Duarte Coreia J, Gonçalves J, Gaaster W. Virulence genes and P fimbriae PapA subunit diversity in canine and feline uropathogenic Escherichia coli. Vet Microbiol 2001, 82:81–89.

13. Pomba C, Mendonça N, Costa M, Louro D, Baptista B, Ferreira M, Duarte Coreia J, Caniça M. Improved multiplex PCR method for the rapid detection of β-lactamase genes in Escherichia coli of animal origin. Diagn Microbiol Infect Dis 2006, 56:103–106.

14. Clinical and Laboratory Standards Institute (CLSI). Performance standards for antimicrobial susceptibility testing: twenty-fourth informational supplement M100-S24. Edited by Clinical and Laboratory Standards Institute, 2014. http://clsi.org/blog/2014/01/27/m100-s24_em100_2014/.

15. Clinical and Laboratory Standards Institute (CLSI). Document VET01-S2: performance standards for antimicrobial disk and dilution susceptibility tests for bacteria isolated from animals; approved standard. In Second Informational Supplement. Edited by Clinical and Laboratory Standards Institute. 2013. http://shopping.netsuite.com/s.nl/c.1253739/it.A/id.1684/.f.

16. Oliveira M, Nunes SF, Carneiro C, Bexiga R, Bernardo F, Vilela CL. Time course of biofilm formation by Staphylococcus aureus and Staphylococcus epidermidis mastitis isolates. Vet Microbiol 2007, 124:187–191.

17. Camilli A, Basler BL. Bacterial small-molecule signalling pathways. Science 2006, 311:1113–1116.

18. Naves P, del Prado G, Huelves L, Gracia M, Ruiz V, Blanco J, Rodríguez-Cerrato V, Ponte MC, Soriano F. Measurement of biofilm formation by clinical isolates of Escherichia coli is method-dependent. J Appl Microbiol 2008, 105:585–590.

19. Skyberg JA, Seek KE, Doelkott C, Nolan LK. Biofilm formation by avian Escherichia coli in relation to media, source and phylogeny. J Appl Microbiol 2007, 102:548–554.

20. Gallant CV, Daniels C, Leung JM, Ghosh AS, Young KD, Kotra LP, Burrows LL. Common β-lactamases inhibit bacterial biofilm formation. Molec Microbiol 2005, 58:1012–1024.

21. Ogee-Gyles J, Mathews K, Weese JS, Prescott JF, Boerlin P. Evaluation of catheter-associated urinary tract infections and multi-drug-resistant Escherichia coli isolates from the urine of dogs with indwelling urinary catheters. J Am Vet Med Assoc 2006, 229:1584–1590.

22. del Pozo JL, Patel R. The challenge of treating biofilm-associated bacterial infections. Clin Pharmacol Therapeut 2007, 82:204–209.