Odd Scalar Curvature in Anti-Poisson Geometry

IGOR A. BATALIN
I.E. Tamm Theory Division
P.N. Lebedev Physics Institute
Russian Academy of Sciences
53 Leninsky Prospect
Moscow 119991
Russia

and

KLAUS BERING
Institute for Theoretical Physics & Astrophysics
Masaryk University
Kotlářská 2
CZ-611 37 Brno
Czech Republic

April 11, 2008

Abstract

Recent works have revealed that the recipe for field-antifield quantization of Lagrangian gauge theories can be considerably relaxed when it comes to choosing a path integral measure ρ if a zero-order term ν_ρ is added to the Δ operator. The effects of this odd scalar term ν_ρ become relevant at two-loop order. We prove that ν_ρ is essentially the odd scalar curvature of an arbitrary torsion-free connection that is compatible with both the anti-Poisson structure E and the density ρ. This extends a previous result for non-degenerate antisymplectic manifolds to degenerate anti-Poisson manifolds that admit a compatible two-form.

PACS number(s): 02.40.-k; 03.65.Ca; 04.60.Gw; 11.10.-z; 11.10.Ef; 11.15.Bt.
Keywords: BV Field-Antifield Formalism; Odd Laplacian; Anti-Poisson Geometry; Semi-density; Connection; Odd Scalar Curvature.

1E-mail: batalin@lpi.ru 2E-mail: bering@physics.muni.cz
1 Introduction

The main purpose of this Letter is to report on new geometric insights into the field-antifield formalism. In general, the field-antifield formalism \[1, 2, 3\] is a recipe for constructing Feynman rules for Lagrangian field theories with gauge symmetries. The field-antifield formalism is in principle able to handle the most general gauge algebra, \textit{i.e.} open gauge algebras of reducible type. The input is usually a local relativistic field theory, formulated via a classical action principle in a geometric configuration space. In the field-antifield scheme, the original field variables are extended with various stages of ghosts, antighosts and Lagrange multipliers — all of which are then further extended with corresponding antifields; the gauge symmetries are encoded in a nilpotent Fermionic BRST symmetry \[4, 5\]; and the original action is deformed into a BRST-invariant master action, whose Hessian has the maximal allowed rank. The full quantum master action

\[W = S + \sum_{n=1}^{\infty} \hbar^n M_n \]

is determined recursively order by order in \(\hbar \) from a consistent set of quantum master equations

\[
\begin{align*}
(S, S) &= 0 , \\
(M_1, S) &= i(\Delta_{\rho} S) , \\
(M_2, S) &= i(\Delta_{\rho} M_1) + \nu_\rho - \frac{1}{2}(M_1, M_1) , \\
(M_n, S) &= i(\Delta_{\rho} M_{n-1}) - \frac{1}{2} \sum_{r=1}^{n-1}(M_r, M_{n-r}) , \quad n \geq 3 .
\end{align*}
\]

Here \((\cdot, \cdot)\) is the antibracket (or anti-Poisson structure), \(\Delta_{\rho}\) is the odd Laplacian and \(\nu_\rho\) is an odd scalar, which become relevant in perturbation theory at loop order 0, 1, and 2, respectively. It has only recently been realized that the field-antifield formalism can consistently accommodate a non-zero \(\nu_\rho\) term, thereby providing a more flexible framework for field-antifield quantization \[6, 7, 8\].

The classical master equation (1.2) is a generalization of Zinn-Justin’s equation \[9\], which allows to set up consistent renormalization (if the field theory is renormalizable). If the theory is not anomalous at the one-loop level, there will exist a local solution \(M_1\) to the next equation (1.3), and so forth. Although the field-antifield formalism in its basic form is only a formal scheme — \textit{i.e.} particularly, it assumes that results from finite dimensional analysis are directly applicable to field theory, which has infinitely many degrees of freedom — it has nevertheless been successfully applied to a large variety of physical models. It has mainly been used in a truncated form of the full set of quantum master eqs. (1.2) – (1.5), where all the following quantities

\[
(S, S), \ (\Delta_{\rho} S), \ \nu_\rho, \ M_1, \ M_2, \ M_3, \ldots ,
\]

are set identically equal to zero. One can for instance mention the AKSZ paradigm \[10, 11\] as a broad example that uses the truncated field-antifield formalism (1.6) to quantize supersymmetric topological field theories \[12, 13, 14, 15\]. Currently, very few scientific works describe solutions with non-zero \(M_n\)’s, primarily due to the singular nature of the odd Laplacian \(\Delta_{\rho}\) in field theory (again because of the infinitely many degrees of freedom). Nevertheless, it should be fruitful to study generic solutions of the full quantum master equation. See the original paper \[1\] for an interesting solution with \(M_1 \neq 0\). Finally, it has in many cases been explicitly checked that the field-antifield formalism produces the same result as the Hamiltonian formulation \[16, 17, 18\]. The formalism has also influenced work in closed string field theory \[19\] and several branches of mathematics. The geometry behind the field-antifield formalism was further clarified in Ref. \[20, 21, 22, 23\].

2
In this Letter we shall only explicitly consider the case of finitely many variables. Our main result concerns the odd scalar ν^ρ, which is a certain function of the anti-Poisson structure E^{AB} and the density ρ, cf. eq. (6.1) below. It turns out that ν^ρ has a geometric interpretation as (minus 1/8 times) the odd scalar curvature R of any connection ∇ that satisfies three conditions; namely that ∇ is 1) anti-Poisson, 2) torsion-free and 3) ρ-compatible. This is a rather robust conclusion as we shall prove in this Letter that it even holds for degenerate antibrackets. (Degenerate anti-Poisson structures appear naturally from for instance the Dirac antibracket construction for antisymplectic second-class constraints [7, 21, 24, 25].)

2 Anti-Poisson structure E^{AB}

An anti-Poisson structure is by definition a possibly degenerate $(2,0)$ tensor field E^{AB} with upper indices that is Grassmann-odd

$$\varepsilon(E^{AB}) = \varepsilon_A + \varepsilon_B + 1,$$

(2.1)

that is skewsymmetric

$$E^{AB} = -(-1)^{(\varepsilon_A+1)(\varepsilon_B+1)}E^{BA},$$

(2.2)

and that satisfies the Jacobi identity

$$\sum_{\text{cycl. } A,B,C} (-1)^{\varepsilon_A+1}(\varepsilon_C+1) E^{AD}(\partial_D E^{BC}) = 0.$$

(2.3)

3 Compatible two-form E_{AB}

In general, an anti-Poisson manifold could have singular points where the rank of E^{AB} jumps, and it is necessary to impose a regularity criterion to proceed. We shall here assume that the anti-Poisson structure E^{AB} admits a compatible two-form field E_{AB}, i.e. that there exists a two-form field E_{AB} with lower indices that is Grassmann-odd

$$\varepsilon(E_{AB}) = \varepsilon_A + \varepsilon_B + 1,$$

(3.1)

that is skewsymmetric

$$E_{AB} = -(-1)^{\varepsilon_A\varepsilon_B}E_{BA},$$

(3.2)

and that is compatible with the anti-Poisson structure in the sense that

$$E^{AB}E_{BC}E^{CD} = E^{AD},$$

(3.3)

$$E_{AB}E^{BC}E_{CD} = E_{AD}.$$

(3.4)

This is a relatively mild requirement, which is always automatically satisfied for a Dirac antibracket on antisymplectic manifolds with antisymplectic second-class constraints [7, 21, 24, 25]. Note that the two-form E_{AB} is neither unique nor necessarily closed. One can define a $(1,1)$ tensor field as

$$P^A_C \equiv E^{AB}E_{BC},$$

(3.5)

or equivalently,

$$P^A_C \equiv E_{AB}E^{BC} = (-1)^{\varepsilon_A(\varepsilon_C+1)}P^C_A.$$

(3.6)

It then follows from either of the compatibility relations (3.3) and (3.4) that P^A_B is an idempotent

$$P^A_B P^B_C = P^A_C.$$

(3.7)
4 The Δ_E Operator

An anti-Poisson structure with a compatible two-form field E_{AB} gives rise to a Grassmann-odd, second-order Δ_E operator that takes semidensities to semidensities. It is defined in arbitrary coordinates as [7]

$$\Delta_E \equiv \Delta_1 + \frac{\nu^{(1)}}{8} - \frac{\nu^{(2)}}{24} + \frac{\nu^{(3)}}{24} + \frac{\nu^{(4)}}{12} + \frac{\nu^{(5)}}{12}, \quad (4.1)$$

where Δ_1 is the odd Laplacian

$$\Delta_1 \equiv \left(-1 \right)^{A} \varepsilon_B \partial_A \rho E^{AB} \partial_B \rho , \quad (4.2)$$

with $\rho = 1$, and where

$$\begin{align*}
\nu^{(1)} &\equiv \left(-1 \right)^{\varepsilon_A} \partial_B E^{AB} \varepsilon_B , \\
\nu^{(2)} &\equiv \left(-1 \right)^{\varepsilon_A \varepsilon_C} \partial_D E^{AB} E_{BC} \partial_A E^{CD} , \\
\nu^{(3)} &\equiv \left(-1 \right)^{\varepsilon_B} \partial_C E^{BC} E^{CD} \partial_A E^{BA} , \\
\nu^{(4)} &\equiv \left(-1 \right)^{\varepsilon_B} \partial_D E^{BC} E^{CD} \partial_D E^{BF} P_F A , \\
\nu^{(5)} &\equiv \left(-1 \right)^{\varepsilon_A \varepsilon_C} \partial_D E^{AB} E_{BC} \partial_D E^{CF} P_F D \\
&= \left(-1 \right)^{\left(\varepsilon_A +1 \right) \varepsilon_B} E^{AD} \partial_D E^{BC} \partial_D E^{AF} P_F B . \quad (4.7)
\end{align*}$$

It is shown in Ref. [7] that the Δ_E operator defined in eq. (4.1) does not depend on the choice of local coordinates, it does not depend on the choice of compatible two-form field E_{AB}, and it does map semidensities into semidensities. Moreover, the Jacobi identity (2.3) precisely ensures that Δ_E is nilpotent

$$\Delta_E^2 = \frac{1}{2} \left[\Delta_E, \Delta_E \right] = 0 . \quad (4.8)$$

Earlier works on the Δ_E operator include Ref. [6, 25, 26, 27, 28, 29].

5 The Δ Operator

Classically, the field-antifield formalism is governed by the anti-Poisson structure E^{AB}, or equivalently, the antibracket

$$(f, g) \equiv \left(f \partial_A \right) E^{AB} \left(\partial_B \rho g \right) = - \left(-1 \right)^{\left(\varepsilon_f +1 \right) \left(\varepsilon_g +1 \right)} (g, f) . \quad (5.1)$$

Quantum mechanically, the field-antifield recipe instructs one to choose an arbitrary path integral measure ρ, and to use it to build a nilpotent, Grassmann-odd, second-order Δ operator that takes scalar functions into scalar functions. It is natural to build the Δ operator by conjugating the Δ_E operator (4.1) with appropriate square roots of the density ρ as follows:

$$\Delta \equiv \frac{1}{\sqrt{\rho}} \Delta_E \sqrt{\rho} . \quad (5.2)$$

In this way the Δ operator trivially inherits the nilpotency property from the Δ_E operator,

$$\Delta^2 = \frac{1}{\sqrt{\rho}} \Delta_E^2 \sqrt{\rho} = 0 . \quad (5.3)$$

In physical applications the nilpotency (5.3) of Δ is important for the underlying BRST symmetry of the theory.
6 The Odd Scalar ν_ρ

The odd scalar function ν_ρ is defined as

$$\nu_\rho \equiv (\Delta 1) = \frac{1}{\sqrt{\rho}} (\Delta E \sqrt{\rho}) = \nu_\rho^{(0)} + \frac{\nu^{(1)}}{8} - \frac{\nu^{(2)}}{8} - \frac{\nu^{(3)}}{24} + \frac{\nu^{(4)}}{24} + \frac{\nu^{(5)}}{12}, \quad (6.1)$$

where $\nu^{(1)}$, $\nu^{(2)}$, $\nu^{(3)}$, $\nu^{(4)}$, $\nu^{(5)}$ are given in eqs. (4.3)–(4.7), and the quantity $\nu_\rho^{(0)}$ is given as

$$\nu_\rho^{(0)} \equiv \frac{1}{\sqrt{\rho}} (\Delta_1 \sqrt{\rho}). \quad (6.2)$$

The second-order Δ operator (5.2) decomposes as

$$\Delta = \Delta_\rho + \nu_\rho, \quad (6.3)$$

where Δ_ρ is the odd Laplacian (4.2). The nilpotency of Δ implies that

$$\Delta_\rho^2 = (\nu_\rho, \cdot), \quad (6.4)$$

$$\Delta_\rho \nu_\rho = 0. \quad (6.5)$$

The possibility of a non-trivial ν_ρ has only recently been observed, cf. Ref. [6, 7, 8]. In the past, the odd scalar term ν_ρ was not present due to a certain compatibility relation between E and ρ, which was unnecessarily imposed, and which (using our new terminology) made ν_ρ vanish. In terms of the quantum master equation

$$\Delta e^{\frac{i}{\hbar} W} = 0, \quad (6.6)$$

the odd scalar ν_ρ enters at the two-loop order $O(\hbar^2)$

$$\frac{1}{2}(W, W) = i\hbar \Delta_\rho W + \hbar^2 \nu_\rho, \quad (6.7)$$

which in turn leads to the set of eqs. (1.2) – (1.5).

7 Connection

In the next two Sections 7 and 8 we will briefly state our sign conventions and definitions for the covariant derivative and the curvature in the presence of Fermionic degrees of freedom. A more complete treatment can be found in Ref. [8, 30]. Other references include Ref. [31]. Our convention for the left covariant derivative $(\nabla_A X)^B$ of a left vector field X^A is [30]

$$(\nabla_A X)^B \equiv (\partial_A X)^B + (-1)^{\varepsilon_X(\varepsilon_B + \varepsilon_C)} \Gamma^B_{AC} X^C, \quad \varepsilon(X^A) = \varepsilon_X + \varepsilon_A. \quad (7.1)$$

A connection Γ^B_{AC} is called anti-Poisson if it preserves the anti-Poisson structure E^{AB}, i.e.

$$0 = (\nabla_A E)^{BC} \equiv (\partial_A E)^{BC} + (\Gamma^B_{AD} E^{DC} - (-1)^{(\varepsilon_B + 1)(\varepsilon_C + 1)}(B \leftrightarrow C)). \quad (7.2)$$

It is useful to define a reordered Christoffel symbol Γ^A_{BC} as

$$\Gamma^A_{BC} \equiv (-1)^{\varepsilon_A \varepsilon_B} \Gamma^B_{AC}. \quad (7.3)$$
A torsion-free connection Γ^{A}_{BC} has the following symmetry in the lower indices:

$$
\Gamma^{A}_{BC} = -(-1)^{(\varepsilon_B+1)(\varepsilon_C+1)}\Gamma^{A}_{CB} .
$$

A connection Γ^{A}_{BC} is called ρ-compatible if

$$
\Gamma^{B}_{BA} = (\ln \rho \leftarrow \partial^A_\rho) .
$$

There are in principle two definitions for the divergence $\text{div}X$ of a Bosonic vector field X with $\varepsilon_X = 0$. The first divergence definition depends on the density ρ

$$
\text{div}_\rho X \equiv (-1)^{\varepsilon_A} \rho^{-\varepsilon_A} \partial^A_\rho (\rho X^A) ,
$$

while the second definition depends on the connection ∇

$$
\text{div}_\nabla X \equiv \text{str}(\nabla X) \equiv (-1)^{\varepsilon_A} (\nabla_A X)^A = ((-1)^{\varepsilon_A} \partial^A_\rho + \Gamma^{B}_{BA})X^A .
$$

The ρ-compatibility condition (7.5) precisely ensures that the two definitions (7.6) and (7.7) coincide, and hence that there is a unique notion of volume [32]. We shall only consider torsion-free connections ∇ that are anti-Poisson and ρ-compatible, i.e.

connections that satisfy the above three conditions (7.2), (7.4) and (7.5). Then the odd Laplacian Δ_ρ can be written on a manifestly covariant form

$$
\Delta_\rho = \frac{(-1)^{\varepsilon_A}}{2} \nabla_A E^{AB} \nabla_B = \frac{(-1)^{\varepsilon_B}}{2} E^{BA} \nabla_A \nabla_B .
$$

8 Curvature

The Riemann curvature tensor is

$$
R^{A}_{BCD} \equiv (-1)^{\varepsilon_A}\varepsilon_B (\partial^D_\rho \Gamma^{A}_{CD}) + \Gamma^{A}_{BE} \Gamma^{E}_{CD} - (-1)^{\varepsilon_B}\varepsilon_C (B \leftrightarrow C) .
$$

(Note that the ordering of indices on the Riemann curvature tensor is slightly non-standard to minimize appearances of sign factors.) The Ricci tensor is

$$
R_{AB} \equiv R^{C}_{AB} = \frac{(-1)^{\varepsilon_C}}{\rho} (\partial^D_\rho \Gamma^{C}_{AB}) - (\partial^D_\rho \ln \rho \partial^B_\rho) - \Gamma^{C}_{AD} \Gamma^{D}_{CB} = -(-1)^{(\varepsilon_A+1)(\varepsilon_B+1)}R_{BA} .
$$

9 Odd Scalar Curvature

The odd scalar curvature R is defined as the Ricci tensor R_{AB} contracted with the anti-Poisson tensor E^{AB},

$$
R \equiv R_{AB} E^{BA} = E^{AB} R_{BA} , \quad \varepsilon(R) = 1 .
$$

We now assert that the odd scalar curvature

$$
R = -8\nu_\rho
$$

of an arbitrary connection ∇ that is anti-Poisson, torsion-free and ρ-compatible, is equal to (minus eight times) the odd scalar ν_ρ. In particular one sees that the odd scalar curvature R carries no information about the connection ∇ used, and it depends only on E and ρ. Equation (9.2) was proven for the non-degenerated case in Ref. [8]. The degenerated case is proven in Appendix A.
ACKNOWLEDGEMENT: We would like to thank P.H. Damgaard for discussions. K.B. thanks the Lebedev Physics Institute and the Niels Bohr Institute for warm hospitality. The work of I.A.B. is supported by grants RFBR 05-01-00996, RFBR 05-02-17217 and LSS-4401.2006.2. The work of K.B. is supported by the Ministry of Education of the Czech Republic under the project MSM 0021622409.

A Proof of the Main Eq. (9.2)

Equation (C.9) in Ref. [8] yields that the odd scalar curvature R can be written as

$$R = -8\nu^{(0)}(\rho) - \nu^{(1)} - \frac{1}{2}R_I,$$

where $\nu^{(0)}(\rho)$, $\nu^{(1)}$ and R_I are defined in eqs. (6.2), (4.3) and (A.2), respectively. Since the expression (A.2) below for R_I only depends on the torsion-free part of the connection, one does in principle not need the torsion-free condition (7.4) from now on. The heart of the proof consists of the following ten "one-line calculations":

$$R_I \equiv \Gamma^A_{BC}(E^{CB}\partial_A^{-}) = \Gamma^A_{BC}((E^{CD}E_{DF}E^{FB})\partial_A^{-}) = 2R_{II} + R_{III},$$

$$R_{II} \equiv \Gamma^A_{BC}D^C_D(\partial^B_D E^{FB}) = -R_{IV} - \nu^{(2)},$$

$$R_{III} \equiv (-1)^{\varepsilon_A(\varepsilon_C + 1)} \Gamma^F_{AB}E^{BC}(\partial^A_D E^{CD})E^{DF} = 2R_{III} + R_V,$$

$$R_{IV} \equiv \Gamma^A_{BC}E^{CD}(\partial^D_D E^{BF})E^F_A = R_{VII} - R_{IV},$$

$$R_V \equiv -(1)^{\varepsilon_A(\varepsilon_C + 1)} \Gamma^F_{AB}P^B_C(\partial^A_D E^{CD})P^D_F = R_{VII} - \nu^{(5)},$$

$$R_{VII} \equiv \Gamma^A_{BC}(E^{CB}\partial_D)P^D_A = 2R_{VII} + R_{IX},$$

$$R_{VIII} \equiv -(1)^{\varepsilon_A(\varepsilon_C + 1)} \Gamma^F_{AB}E^{BC}(\partial^A_D E^{CD})P^D_F = R_{IV} - R_{VIII},$$

$$R_{IX} \equiv -(1)^{\varepsilon_A(\varepsilon_C + 1)} \Gamma^F_{AB}P^B_C(\partial^A_D E^{CD})P^D_F = -R_{X} - \nu^{(4)},$$

$$R_X \equiv -(1)^{\varepsilon_A(\varepsilon_C + 1)} \Gamma^F_{AB}E^{BC}(\partial^A_D E^{CD})E^{DF} = -R_{III} - \nu^{(3)}.$$

Here we have used the upper compatibility relation (3.3) for the two-form E_{AB} in the second equality of eqs. (A.2), (A.7), (A.8), (A.9) and (A.10); the lower compatibility relation (3.4) for the two-form E_{AB} in the second equality of eq. (A.4); the anti-Poisson property (7.2) for the connection ∇ in the second equality of eqs. (A.3), (A.6), (A.9), (A.10) and (A.11); and the Jacobi identity (2.3) in the second equality of eqs. (A.5) and (A.8). From these ten relations (A.2)–(A.11), the quantity R_{III} can be determined as follows:

$$-R_{III} = R_V = R_{VII} - \nu^{(5)} = (R_{IV} - R_{VIII}) + (R_{IV} + R_{VIII}) = 2R_{IV}$$

$$= R_{VII} = 2R_{VII} + R_{IX} = -2(R_{IV} + R_{VIII}) + (R_{III} + \nu^{(3)} - \nu^{(4)})$$

$$= 2R_{III} + (\nu^{(3)} - \nu^{(4)} - 2\nu^{(5)}),$$

so that

$$R_{III} = \frac{1}{3}(-\nu^{(3)} + \nu^{(4)} + 2\nu^{(5)}).$$

Next, R_I can be expressed in terms of R_{III}:

$$\frac{1}{2}R_I = R_{II} + \frac{1}{2}R_{III} = - (R_{IV} + \nu^{(2)}) + \frac{1}{2}R_{III} = R_{III} - \nu^{(2)}.$$
Inserting eqs. (A.13) and (A.14) into eq. (A.1) yields the main eq. (9.2):

$$
R = -8\nu^{(0)} - \nu^{(1)} - \frac{1}{2}R_I = -8\nu^{(0)} + \nu^{(1)} + \nu^{(2)} + \frac{1}{3}(\nu^{(3)} - \nu^{(4)} - 2\nu^{(5)}) = -8\nu^{(0)} .
$$

(A.15)

References

[1] I.A. Batalin and G.A. Vilkovisky, Phys. Lett. **102B** (1981) 27.

[2] I.A. Batalin and G.A. Vilkovisky, Phys. Rev. **D28** (1983) 2567 [E: **D30** (1984) 508].

[3] I.A. Batalin and G.A. Vilkovisky, Nucl. Phys. **B234** (1984) 106.

[4] C. Becchi, A. Rouet and R. Stora, Phys. Lett. **B54** (1974) 344; Commun. Math. Phys. **42** (1975) 127; Ann. Phys. (NY) **98** (1976) 287.

[5] I.V. Tyutin, Lebedev Institute preprint 39 (1975).

[6] K. Bering, J. Math. Phys. **47** (2006) 123513, arXiv:hep-th/0604117.

[7] K. Bering, arXiv:0705.3440, to appear in J. Math. Phys.

[8] I.A. Batalin and K. Bering, J. Math. Phys. **49** (2008) 033515, arXiv:0708.0400.

[9] J. Zinn-Justin, in *Trends in elementary particle theory* (eds. H. Rollnik and K. Dietz), Lecture Notes in Physics **37** (1975).

[10] M. Alexandrov, M. Kontsevich, A. Schwarz and O. Zaboronsky, Int. J. Mod. Phys. **A12** (1997) 1405.

[11] D. Roytenberg, Lett. Math. Phys. **79** (2007) 143.

[12] N. Ikeda, Ann. Phys. **235** (1994) 435.

[13] P. Schaller and T. Strobl, Mod. Phys. Lett. **A9** (1994) 3129.

[14] A.S. Cattaneo and G. Felder, Comm. Math. Phys. **212** (2000) 591.

[15] I.A. Batalin and R. Marnelius, Phys. Lett. **B512** (2001) 225.

[16] G.V. Grigoryan, R.P. Grigoryan and I.V. Tyutin, Sov. J. Nucl. Phys. **53** (1991) 1058.

[17] A. Dresse, J. Fisch, P. Gregoire and M. Henneaux, Nucl. Phys. **B354** (1991) 191.

[18] F. De Jonghe, Phys. Lett. **B316** (1993) 503.

[19] B. Zwiebach, Nucl. Phys. **B390** (1993) 33.

[20] A. Schwarz, Commun. Math. Phys. **155** (1993) 249.

[21] I.A. Batalin and I.V. Tyutin, Int. J. Mod. Phys. **A8** (1993) 2333.

[22] O.M. Khudaverdian and A.P. Nersessian, Mod. Phys. Lett. **A8** (1993) 2377.

[23] H. Hata and B. Zwiebach, Ann. Phys. (N.Y.) **229** (1994) 177.

[24] I.A. Batalin, K. Bering and P.H. Damgaard, Phys. Lett. **B408** (1997) 235.

[25] I.A. Batalin, K. Bering and P.H. Damgaard, Nucl. Phys. **B739** (2006) 389.
[26] O.M. Khudaverdian, arXiv:math.DG/9909117.

[27] O.M. Khudaverdian and Th. Voronov, Lett. Math. Phys. 62 (2002) 127.

[28] O.M. Khudaverdian, Contemp. Math. 315 (2002) 199.

[29] O.M. Khudaverdian, Commun. Math. Phys. 247 (2004) 353.

[30] K. Bering, arXiv:physics/9711010.

[31] B. Geyer and P.M. Lavrov, Int. J. Mod. Phys. A19 (2004) 3195.

[32] Y. Kosmann-Schwarzbach and J. Monterde, Ann. Inst. Fourier (Grenoble) 52 (2002) 419.