PULMONARY REHABILITATION

Pulmonary Rehabilitation Programmes Within Three Days of Hospitalization for Acute Exacerbation of Chronic Obstructive Pulmonary Disease: A Systematic Review and Meta-Analysis.
Zhang D, Zhang H, Li X, Lei S, Wang L, Guo W, Li J.
Int J Chron Obstruct Pulmon Dis. 2021 Dec 24;16:3525-3538. doi: 10.2147/COPD.S338074. eCollection 2021.
https://pubmed.ncbi.nlm.nih.gov/34992360/

Barriers and Facilitators in Rehabilitation in Chronic Diseases and After Surgery: Is It a Matter of Adherence?
Sanches EE, Aupers E, Sakran N, Navalta J, Kostka T, Pouwels S.
Cureus. 2021 Dec 5;13(12):e20173. doi: 10.7759/cureus.20173. eCollection 2021 Dec.
https://pubmed.ncbi.nlm.nih.gov/35003999/

Effect of a New Tele-Rehabilitation Program versus Standard Rehabilitation in Patients with Chronic Obstructive Pulmonary Disease.
Cerdán-de-Las-Heras J, Balbino F, Løkke A, Catalán-Matamoros D, Hilberg O, Bendstrup E.
J Clin Med. 2021 Dec 21;11(1):11. doi: 10.3390/jcm11010011.
https://pubmed.ncbi.nlm.nih.gov/35011755/

Tailored patient self-management and supervised, home-based, pulmonary rehabilitation for mild and moderate chronic obstructive pulmonary disease.
Paolucci T, Pezzi L, Bellomo RG, Spacone A, Giannandrea N, Di Matteo A, Prosperi P, Bernetti A, Mangone M, Agostini F, Saggini R.
J Phys Ther Sci. 2022 Jan;34(1):49-59. doi: 10.1589/jpts.34.49. Epub 2022 Jan 12.
https://pubmed.ncbi.nlm.nih.gov/35035080/

An evaluation of factors that influence referral to pulmonary rehabilitation programs among people with COPD.
Hug S, Cavalheri V, Gucciardi DF, Hill K.
Chest. 2022 Jan 12:S0012-3692(22)00037-X. doi: 10.1016/j.chest.2022.01.006. Online ahead of print.
https://pubmed.ncbi.nlm.nih.gov/35032478/

Effect of pulmonary rehabilitation in patients with chronic obstructive pulmonary disease: a systematic review and meta-analysis of randomized controlled trials.
Investigating primary healthcare practitioners' barriers and enablers to referral of patients with COPD to pulmonary rehabilitation: a mixed-methods study using the Theoretical Domains Framework.
Watson JS, Jordan RE, Adab P, Vlaev I, Enocson A, Greenfield S.
BMJ Open. 2022 Jan 19;12(1):e046875. doi: 10.1136/bmjopen-2020-046875.
https://pubmed.ncbi.nlm.nih.gov/35045995/

Impact of Pulmonary Rehabilitation Services in Patients with Different Lung Diseases.
Sanchez-Ramirez DC.
J Clin Med. 2022 Jan 14;11(2):407. doi: 10.3390/jcm11020407.
https://pubmed.ncbi.nlm.nih.gov/35054101/

Physical and affective components of dyspnoea are improved by pulmonary rehabilitation in COPD.
Grosbois JM, Gephine S, Kyheng M, Henguelle J, Le Rouzic O, Saey D, Maltais F, Chenivesse C.
BMJ Open Respir Res. 2022 Jan;9(1):e001160. doi: 10.1136/bmjresp-2021-001160.
https://pubmed.ncbi.nlm.nih.gov/35078826/

Barriers and Enablers to Pulmonary Rehabilitation in Low- and Middle-Income Countries: A Qualitative Study of Healthcare Professionals.
Bickton FM, Shannon H.
Int J Chron Obstruct Pulmon Dis. 2022 Jan 13;17:141-153. doi: 10.2147/COPD.S348663. eCollection 2022.
https://pubmed.ncbi.nlm.nih.gov/35046649/

Predictors of premature discontinuation and prevalence of dropouts from a pulmonary rehabilitation program in patients with chronic obstructive pulmonary disease.
Yohannes AM, Casaburi R, Dryden S, Hanania NA.
Respir Med. 2022 Jan 20;193:106742. doi: 10.1016/j.rmed.2022.106742. Online ahead of print.
https://pubmed.ncbi.nlm.nih.gov/35091205/

Effect of pulmonary rehabilitation nursing model on pulmonary function and quality of life in patients with stable chronic obstructive pulmonary disease (COPD).
Jiang Y, Liu L, Jiang M.
Minerva Surg. 2022 Jan 28. doi: 10.23736/S2724-5691.21.09390-4. Online ahead of print.
https://pubmed.ncbi.nlm.nih.gov/35088995/

Protocol for a single-centre mixed-method pre-post single-arm feasibility trial of a culturally appropriate 6-week pulmonary rehabilitation programme among adults with functionally limiting chronic respiratory diseases in Malawi.
Early Pulmonary Rehabilitation in Acute Exacerbation of Chronic Obstructive Pulmonary Disease: A Meta-Analysis of Randomized Controlled Trials.
Du Y, Lin J, Wang X, Zhang Y, Ge H, Wang Y, Ma Z, Zhang H, Liu J, Wang Z, Lin M, Ni F, Li X, Tan H, Tan S.
COPD. 2022 Jan 31:1-12. doi: 10.1080/15412555.2022.2029834. Online ahead of print.
https://pubmed.ncbi.nlm.nih.gov/35099336/

Exercise and Quality-of-Life Outcomes of Two Versus Three Weekly Sessions of Pulmonary Rehabilitation.
Li G, Roberts M, Wheatley J, Leung W, Harding E, Liu A, Boehm C, Sausa C, Cho JG.
J Cardiopulm Rehabil Prev. 2022 Feb 1. doi: 10.1097/HCR.0000000000000664. Online ahead of print.
https://pubmed.ncbi.nlm.nih.gov/35121702/

Photovoice exploration of physical activity norms and values among rural and remote pulmonary rehabilitation participants in British Columbia, Canada.
Turner J, Maiwald K, Winter A, Simms A, Bendall C, Camp PG.
Disabil Rehabil. 2022 Feb 9:1-12. doi: 10.1080/09638288.2021.2018052. Online ahead of print.
https://pubmed.ncbi.nlm.nih.gov/35138962/

Hypnosis for the management of COPD-related anxiety and dyspnoea in pulmonary rehabilitation: rationale and design for a cluster-randomised, active-control trial (HYPNOBPCO_2).
Anlló H, Herer B, Delignières A, Ghergan A, Bocahu Y, Segundo I, Moulin C, Larue F.
ERJ Open Res. 2021 Feb 7;8(1):00565-2021. doi: 10.1183/23120541.00565-2021. eCollection 2022 Jan.
https://pubmed.ncbi.nlm.nih.gov/35141317/

The Effects of an Acceptance and Commitment-Informed Interdisciplinary Rehabilitation Program for Chronic Airway Diseases on Health Status and Psychological Symptoms.
Giusti EM, Papazian B, Manna C, Giussani V, Perotti M, Castelli F, Battaglia S, Galli P, Rossi A, Re V, Goulene K, Castelnuovo G, Stramba-Badiale M.
Front Psychol. 2022 Jan 27;12:818659. doi: 10.3389/fpsyg.2021.818659. eCollection 2021.
https://pubmed.ncbi.nlm.nih.gov/35153934/

Functional Status Following Pulmonary Rehabilitation: Responders and Non-Responders.
Souto-Miranda S, Mendes MA, Cravo J, Andrade L, Spruit MA, Marques A.
J Clin Med. 2022 Jan 20;11(3):518. doi: 10.3390/jcm11030518.
https://pubmed.ncbi.nlm.nih.gov/35159970/
Multidimensional outcome assessment of pulmonary rehabilitation in traits-based clusters of COPD patients.
Augustin IML, Franssen FME, Houben-Wilke S, Janssen DJA, Gaffron S, Pennings HJ, Smeenk FWJM, Pieters WR, Hoogerwerf A, Michels AJ, van Merode F, Wouters EFM, Spruit MA.
PloS One. 2022 Feb 17;17(2):e0263657. doi: 10.1371/journal.pone.0263657. eCollection 2022.
https://pubmed.ncbi.nlm.nih.gov/35176055/

How is the organisational settings, content and availability of comprehensive multidisciplinary pulmonary rehabilitation for people with COPD in primary healthcare in Norway: a cross-sectional study.
Frisk B, Sundør IE, Dønåsen MR, Refvem OK, Borge CR.
BMJ Open. 2022 Feb 17;12(2):e053503. doi: 10.1136/bmjopen-2021-053503
https://pubmed.ncbi.nlm.nih.gov/35177448/

Culturally adapted pulmonary rehabilitation for adults living with post-tuberculosis lung disease in Kyrgyzstan: protocol for a randomised controlled trial with blinded outcome measures.
Akylbekov A, Orme MW, Jones AV, Mademilov M, Muratbekova A, Aidaralieva S, Mirzalieva G, Oleinik A, Magdieva K, Taalaibekova A, Rysbek Kyzy Y, Yusuf ZK, Rupert J, Barton A, Miah RB, Manise A, Matheson JA, Malcolm D, Free RC, Steiner MC, Sooronbaev T, Singh SJ.
BMJ Open. 2022 Feb 21;12(2):e048664. doi: 10.1136/bmjopen-2021-048664.
https://pubmed.ncbi.nlm.nih.gov/35190411/

EXERCISE TESTING AND TRAINING

Impact of Resistance Training on FEV1 and Functional Exercise Capacity among COPD Patients: A Meta-analysis.
Hashmi MA, Kazmi SAM, Ali S.
J Coll Physicians Surg Pak. 2022 Jan;32(1):68-74. doi: 10.29271/jcpsp.2022.01.68.
https://pubmed.ncbi.nlm.nih.gov/34983151/

Comparison between 20 and 30 meters in walkway length affecting the 6-minute walk test in patients with chronic obstructive pulmonary disease: A randomized crossover study.
Saiphoklang N, Pugongchai A, Leelasittikul K.
PloS One. 2022 Jan 7;17(1):e0262238. doi: 10.1371/journal.pone.0262238. eCollection 2022.
https://pubmed.ncbi.nlm.nih.gov/34995334/

Effects of neuromuscular electrical stimulation on exercise capacity, muscle strength and quality of life in COPD patients: A Systematic Review with Meta-Analysis.
Alves IGN, da Silva E Silva CM, Martinez BP, de Queiroz RS, Gomes-Neto M. Clin Rehabil. 2022 Jan 11:2692155211067983. doi: 10.1177/02692155211067983. Online ahead of print. https://pubmed.ncbi.nlm.nih.gov/35014892/

A Conceptual Framework for Use of Increased Endurance Time During Constant Work Rate Cycle Ergometry as a Patient-Focused Meaningful Outcome in COPD Clinical Trials. Casaburi R, Merrill DD, Harding G, Leidy NK, Rossiter HB, Tal-Singer R, Hamilton A; CBQC Constant Work Rate Exercise Working Group. Chronic Obstr Pulm Dis. 2022 Jan 10. doi: 10.15326/jcopdf.2021.0258. Online ahead of print. https://pubmed.ncbi.nlm.nih.gov/35018752/

Practical guide to cardiopulmonary exercise testing in adults. Glaab T, Taube C. Respir Res. 2022 Jan 12;23(1):9. doi: 10.1186/s12931-021-01895-6. https://pubmed.ncbi.nlm.nih.gov/35022059/

Quadriceps physiological response during the 1-min sit-to-stand test in people with severe COPD and healthy controls. Gephine S, Mucci P, Bielmann M, Martin M, Bouyer L, Saey D, Maltais F. Sci Rep. 2022 Jan 17;12(1):794. doi: 10.1038/s41598-022-04820-z. https://pubmed.ncbi.nlm.nih.gov/35039600/

The effect of lung-conduction exercise in chronic obstructive pulmonary disease: Randomized, assessor-blind, multicenter pilot trial. Lee SW, Park JJ, Lyu YR, Lee EJ, Kim SY, Kang W, Son JW, Jung IC, Park YC. Medicine (Baltimore). 2022 Jan 21;101(3):e28629. doi: 10.1097/MD.00000000000028629. https://pubmed.ncbi.nlm.nih.gov/35060543/

Test of incremental respiratory endurance as home-based, stand-alone therapy in chronic obstructive pulmonary disease: A case report. Dosbaba F, Hartman M, Batalik L, Brat K, Plutinsky M, Hnatiak J, Formiga MF, Cahalin LP. World J Clin Cases. 2022 Jan 7;10(1):353-360. doi: 10.12998/wjcc.v10.i1.353. https://pubmed.ncbi.nlm.nih.gov/35071539/

Effectiveness of upper limb exercises and breathing exercises in COPD stable patients during COVID-19 pandemic era. Tarigan AP, Pandia P, Tarigan AH, Eyanoer PC. Adv Respir Med. 2022 Jan 27. doi: 10.5603/ARM.a2022.0010. Online ahead of print. https://pubmed.ncbi.nlm.nih.gov/35084727/

Efficacy of Liuzijue Qigong in Patients With Chronic Obstructive Pulmonary Disease: A Systematic Review and Meta-analysis. Xu S, Zhang D, He Q, Ma C, Ye S, Ge L, Zhang L, Liu W, Chen Z, Zhou L. Complement Ther Med. 2022 Jan 27:102809. doi: 10.1016/j.ctim.2022.102809. Online ahead of print. https://pubmed.ncbi.nlm.nih.gov/35093513/
Stimulation of both inspiratory plus expiratory muscles versus diaphragm-only paradigm for rehabilitation in severe COPD patients: a randomised controlled pilot study.
Zhao Z, Sun W, Zhao X, Wang X, Lin Y, Zhang S, Li Z, Lu Y, Gong J, Yu Y, Li B, Hu X, Li Y, Tong Z.
Eur J Phys Rehabil Med. 2022 Feb 1. doi: 10.23736/S1973-9087.22.07185-4. Online ahead of print.
https://pubmed.ncbi.nlm.nih.gov/35102732/

Responses to incremental exercise and the impact of the coexistence of HF and COPD on exercise capacity: a follow-up study.
Dos Santos PB, Simões RP, Goulart CL, Arêas GPT, Marinho RS, Camargo PF, Roscani MG, Arbex RF, Oliveira CR, Mendes RG, Arena R, Borghi-Silva A.
Sci Rep. 2022 Jan 31;12(1):1592. doi: 10.1038/s41598-022-05503-5.
https://pubmed.ncbi.nlm.nih.gov/35102201/

Can Non-invasive Ventilation Modulate Cerebral, Respiratory, and Peripheral Muscle Oxygenation During High-Intensity Exercise in Patients With COPD-HF?
Goulart CDL, Caruso FR, de Araújo ASG, de Moura SCG, Catai AM, Agostoni P, Mendes RG, Arena R, Borghi-Silva A.
Front Cardiovasc Med. 2022 Jan 31;8:772650. doi: 10.3389/fcvm.2021.772650. eCollection 2021.
https://pubmed.ncbi.nlm.nih.gov/35174218/

The relationship between peak inspiratory flow and hand grip strength measurement in men with mild chronic obstructive pulmonary disease.
Tsuburai T, Komase Y, Tsuruoka H, Oyama B, Muraoka H, Hida N, Kobayashi T, Matsushima S.
BMC Pulm Med. 2022 Feb 17;22(1):65. doi: 10.1186/s12890-022-01858-7.
https://pubmed.ncbi.nlm.nih.gov/35177056/

Network Meta-Analysis of the Effects of Different Types of Traditional Chinese Exercises on Pulmonary Function, Endurance Capacity and Quality of Life in Patients With COPD.
Li L, Huang H, Song J, Yu Y, Jia Y, Wang Y, Dang X, Huang L, Liu X.
Front Med (Lausanne). 2022 Feb 2;9:806025. doi: 10.3389/fmed.2022.806025. eCollection 2022.
https://pubmed.ncbi.nlm.nih.gov/35186994/

Tai Chi for anxiety and depression symptoms in cancer, stroke, heart failure, and chronic obstructive pulmonary disease: A systematic review and meta-analysis.
Cai Q, Cai SB, Chen JK, Bai XH, Jing CX, Zhang X, Li JQ.
Complement Ther Clin Pract. 2022 Feb;46:101510. doi: 10.1016/j.ctcp.2021.101510. Epub 2021 Nov 2.
https://pubmed.ncbi.nlm.nih.gov/34749040/

Balance Function in Patients With COPD: A Systematic Review of Measurement Properties.
Wang C, Chen H, Qian M, Shi Y, Zhang N, Shang S.
Clin Nurs Res. 2022 Feb 24:10547738221078902. doi: 10.1177/10547738221078902. Online ahead of print.
Increased Oxygen Extraction by Pulmonary Rehabilitation Improves Exercise Tolerance and Ventilatory Efficiency in Advanced Chronic Obstructive Pulmonary Disease.
Miyazaki A, Miki K, Maekura R, Tsujino K, Hashimoto H, Miki M, Yanagi H, Koba T, Nii T, Matsuki T, Kida H.
J Clin Med. 2022 Feb 12;11(4):963. doi: 10.3390/jcm11040963.
https://pubmed.ncbi.nlm.nih.gov/35207235/

Balance impairment and lower limbs strength in patients with COPD who fell in the previous year.
Porto EF, Castro AAM, Fausto DM, Kümpel C, Brandão AD, De Lima PB, Fagundes JC, Zozimo B.
Monaldi Arch Chest Dis. 2022 Feb 25. doi: 10.4081/monaldi.2022.1204. Online ahead of print.
https://pubmed.ncbi.nlm.nih.gov/35225440/

PHYSICAL ACTIVITY

What Are the Experiences of People with COPD Using Activity Monitors?: A Qualitative Scoping Review.
Wilde LJ, Sewell L, Percy C, Ward G, Clark C.
COPD. 2022 Feb 8:1-11. doi: 10.1080/15412555.2022.2033192. Online ahead of print.
https://pubmed.ncbi.nlm.nih.gov/35132933/

Unsupervised physical activity interventions for people with COPD: A systematic review and meta-analysis.
Paixão C, Rocha V, Brooks D, Marques A.
Pulmonology. 2022 Feb 9:S2531-0437(22)00016-2. doi: 10.1016/j.pulmoe.2022.01.007. Online ahead of print.
https://pubmed.ncbi.nlm.nih.gov/35151622/

The Association of Health-Related Factors with Leisure-Time Physical Activity among Adults with COPD: A Cross-Sectional Analysis.
Chen ML, Chen LS, Chen YT, Gardenhire DS.
Healthcare (Basel). 2022 Jan 28;10(2):249. doi: 10.3390/healthcare10020249.
https://pubmed.ncbi.nlm.nih.gov/35206864/

Experiences of physical activity and exercise among women with obstructive pulmonary disease.
Papp ME, Berg C, Lindfors P, Wändell PE, Nygren-Bonnier M.
Physiother Theory Pract. 2022 Feb 28:1-11. doi: 10.1080/09593985.2022.2045658. Online ahead of print.
https://pubmed.ncbi.nlm.nih.gov/35225744/

TELEMEDICINE*

[*Note: The asterisk (*) indicates a potential error in the metadata.]*
*Composed in collaboration with Dr. Vitalii Poberezhets (Chair of Group 01.04 - m-Health/e-health)

Patients’ and healthcare providers' perceptions and experiences of telehealth use and online health information use in chronic disease management for older patients with chronic obstructive pulmonary disease: a qualitative study.
Jiang Y, Sun P, Chen Z, Guo J, Wang S, Liu F, Li J.
BMC Geriatr. 2022 Jan 3;22(1):9. doi: 10.1186/s12877-021-02702-z.
https://pubmed.ncbi.nlm.nih.gov/34979967/

Web Portals for Patients With Chronic Diseases: Scoping Review of the Functional Features and Theoretical Frameworks of Telerehabilitation Platforms.
Morimoto Y, Takahashi T, Sawa R, Saitoh M, Morisawa T, Kagiyama N, Kasai T, Dinesen B, Hollingdal M, Refsgaard J, Daida H.
J Med Internet Res. 2022 Jan 27;24(1):e27759. doi: 10.2196/27759.
https://pubmed.ncbi.nlm.nih.gov/35084355/

Efficacy of respiratory tele-rehabilitation in COPD patients: Systematic review and meta-analysis.
Ora J, Prendi E, Attinà ML, Cazzola M, Calzetta L, Rogliani P.
Monaldi Arch Chest Dis. 2022 Jan 27. doi: 10.4081/monaldi.2022.2105. Online ahead of print.
https://pubmed.ncbi.nlm.nih.gov/35086329/

Evaluation of myCOPD Digital Self-management Technology in a Remote and Rural Population: Real-world Feasibility Study.
Cooper R, Giangreco A, Duffy M, Finlayson E, Hamilton S, Swanson M, Colligan J, Gilliatt J, McIvor M, Sage EK.
JMIR Mhealth Uhealth. 2022 Feb 7;10(2):e30782. doi: 10.2196/30782.
https://pubmed.ncbi.nlm.nih.gov/35129453/

Implementation of an internet-based asthma patient education program in primary care: Results of a single-arm trial.
Kellerer C, Schultz K, Linde K, Kohler B, Hapfelmeier A, Schneider A.
J Asthma. 2022 Feb 7:1-11. doi: 10.1080/02770903.2022.2040027. Online ahead of print.
https://pubmed.ncbi.nlm.nih.gov/35129399/

Functionality and Quality of Asthma mHealth Apps and Their Consistency With International Guidelines: Protocol for a Systematic Search and Evaluation of Mobile Apps.
Robinson B, Gong E, Oldenburg B, See K.
JMIR Res Protoc. 2022 Feb 9;11(2):e33103. doi: 10.2196/33103.
https://pubmed.ncbi.nlm.nih.gov/35138257/

Multisensory Home-Monitoring in Individuals With Stable Chronic Obstructive Pulmonary Disease and Asthma: Usability Study of the CAir-Desk.
Kohlbrener D, Clarenbach CF, Ivankay A, Zimmerli L, Gross CS, Kuhn M, Brunschwiler T.
JMIR Hum Factors. 2022 Feb 16;9(1):e31448. doi: 10.2196/31448.
Usability of Wearable Multiparameter Technology to Continuously Monitor Free-Living Vital Signs in People Living With Chronic Obstructive Pulmonary Disease: Prospective Observational Study.
Hawthorne G, Greening N, Esliger D, Briggs-Price S, Richardson M, Chaplin E, Clinch L, Steiner MC, Singh SJ, Orme MW.
JMIR Hum Factors. 2022 Feb 16;9(1):e30091. doi: 10.2196/30091.
https://pubmed.ncbi.nlm.nih.gov/35171101/

PATIENT REPORTED OUTCOME MEASURES

Higher COPD Assessment Test Score Associated With Greater Exacerbations Risk: A Post Hoc Analysis of the IMPACT Trial.
Thomashow B, Stiegler M, Criner GJ, Dransfield MT, Halpin DMG, Han MK, Lange P, Martinez FJ, Midwinter D, Singh D, Tabberer M, Wise RA, Lipson DA, Jones P.
Chronic Obstr Pulm Dis. 2021 Dec 22. doi: 10.15326/jcopdf.2021.0259. Online ahead of print.
https://pubmed.ncbi.nlm.nih.gov/34972260/

Reliability, Validity, and Responsiveness of the DEG, a Three-Item Dyspnea Measure.
Ha DM, Deng LR, Lange AV, Swigris JJ, Bekelman DB.
J Gen Intern Med. 2022 Jan 3. doi: 10.1007/s11606-021-07307-1. Online ahead of print.
https://pubmed.ncbi.nlm.nih.gov/34981344/

Chronic obstructive pulmonary disease assessment test for the measurement of deterioration and recovery of health status of patients undergoing lung surgery.
Huang CY, Hsieh MS, Wu YK, Hsieh PC, Yang MC, Tzeng IS, Lan CC.
Thorac Cancer. 2022 Jan 6. doi: 10.1111/1759-7714.14306. Online ahead of print.
https://pubmed.ncbi.nlm.nih.gov/34989126/

Discriminative Accuracy of Chronic Obstructive Pulmonary Disease Screening Instruments in 3 Low- and Middle-Income Country Settings.
Siddharthan T, Pollard SL, Quaderi SA, Rykiel NA, Wosu AC, Alupo P, Barber JA, Cárdenas MK, Chandyo RK, Flores-Flores O, Kirenga B, Miranda JJ, Mohan S, Ricciardi F, Sharma AK, Das SK, Shrestha L, Soares MO, Checkley W, Hurst JR; GECo Study Investigators.
JAMA. 2022 Jan 11;327(2):151-160. doi: 10.1001/jama.2021.23065.
https://pubmed.ncbi.nlm.nih.gov/35015039/

Physical Tests Are Poorly Related to Patient-Reported Outcome Measures during Severe Acute Exacerbations of COPD.
Quadflieg K, Machado A, Haesevoets S, Daenen M, Thomeer M, Ruttens D, Spruit MA, Burtin C.
J Clin Med. 2021 Dec 28;11(1):150. doi: 10.3390/jcm11010150.
https://pubmed.ncbi.nlm.nih.gov/35011892/

Changes in health-related quality of life as a marker in the prognosis in COPD patients.
Esteban C, Arostegui I, Aramburu A, Moraza J, Aburto M, Alzpiri S, Chasco L, Quintana JM.
Validity and reliability of the Turkish version of breathlessness beliefs questionnaire.
Gurses HN, Saka S, Zeren M, Bayram M.
Physiother Theory Pract. 2022 Jan 18;1-6. doi: 10.1080/09593985.2022.2027586. Online ahead of print.
https://pubmed.ncbi.nlm.nih.gov/35042443/

Optimism is associated with respiratory symptoms and functional status in chronic obstructive pulmonary disease.
Koo HK, Hoth KF, Make BJ, Regan EA, Crapo JD, Silverman EK, DeMeo DL.
Respir Res. 2022 Jan 29;23(1):19. doi: 10.1186/s12931-021-01922-6.
https://pubmed.ncbi.nlm.nih.gov/35093071/

Linguistic Validation of the Japanese Version of the Multidimensional Dyspnea Profile and Relation to Physical Activity in Patients with COPD.
Kanezaki M, Tamaki A, Terada K, Ebihara S.
Int J Chron Obstruct Pulmon Dis. 2022 Jan 21;17:223-230. doi: 10.2147/COPD.S339285. eCollection 2022.
https://pubmed.ncbi.nlm.nih.gov/35087271/

Accuracy of Six Chronic Obstructive Pulmonary Disease Screening Questionnaires in the Chinese Population.
Zhou J, Yu N, Li X, Wang W.
Int J Chron Obstruct Pulmon Dis. 2022 Feb 10;17:317-327. doi: 10.2147/COPD.S341648. eCollection 2022.
https://pubmed.ncbi.nlm.nih.gov/35177900/

Psychometric properties of the Arabic version of Duke Activity Status Index in patients with chronic obstructive pulmonary disease.
Albarrati A, Hazazi I, Alnahdi AH, Taher M, Nazer R, Alrefaee H.
Disabil Rehabil. 2022 Feb 27:1-6. doi: 10.1080/09638288.2022.2037748. Online ahead of print.
https://pubmed.ncbi.nlm.nih.gov/35225135/

INTERSTITIAL LUNG DISEASE

Telehealth for patients with interstitial lung diseases (ILD): results of an international survey of clinicians.
Althobiani M, Alqahtani JS, Hurst JR, Russell AM, Porter J.
BMJ Open Respir Res. 2021 Dec;8(1):e001088. doi: 10.1136/bmjresp-2021-001088.
https://pubmed.ncbi.nlm.nih.gov/34969772/

Feasibility and efficacy of a multidisciplinary palliative approach in patients with advanced interstitial lung disease. A pilot randomised controlled trial.
Bassi I, Guerrieri A, Carpano M, Gardini A, Prediletto I, Polastri M, Curtis JR, Nava S. Pulmonology. 2021 Dec 27:S2531-0437(21)00223-3. doi: 10.1016/j.pulmoe.2021.11.004. Online ahead of print.
https://pubmed.ncbi.nlm.nih.gov/34969647/

Does inspiratory muscle training provide additional benefits during pulmonary rehabilitation in people with interstitial lung disease? A randomized control trial. Zaki S, Moiz JA, Mujaddadi A, Ali MS, Talwar D. Physiother Theory Pract. 2022 Jan 10:1-11. doi: 10.1080/09593985.2021.2024311. Online ahead of print.
https://pubmed.ncbi.nlm.nih.gov/35001815/

Comparison of forehead and finger oximetry sensors during the six minute walk test. Robertson L, Lowry R, Sylveste K, Parfrey H, Moseley B, Sheares K, Oates K. Chron Respir Dis. 2022 Jan-Dec;19:147997312111070844. doi: 10.1177/147997312111070844.
https://pubmed.ncbi.nlm.nih.gov/35045761/

Prescribing walking training in interstitial lung disease from the 6-minute walk test. Nakazawa A, Dowman LM, Cox NS, Brazzale DJ, McDonald CF, Hill CJ, Lee A, Holland AE. Physiother Theory Pract. 2022 Jan 24:1-5. doi: 10.1080/09593985.2022.2029992. Online ahead of print.
https://pubmed.ncbi.nlm.nih.gov/35073825/

A New Tool to Assess Quality of Life in Patients with Idiopathic Pulmonary Fibrosis or Non-specific Interstitial Pneumonia. Kirsten D, de Vries U, Costabel U, Koschel D, Bonella F, Günther A, Behr J, Claussen M, Schwarz S, Prasse A, Kreuter M. Pneumologie. 2022 Jan;76(1):25-34. doi: 10.1055/a-1579-7618. Epub 2021 Sep 14.
https://pubmed.ncbi.nlm.nih.gov/34521147/

The 1-minute sit-to-stand test to detect desaturation during 6-minute walk test in interstitial lung disease. Oishi K, Matsunaga K, Asami-Noyama M, Yamamoto T, Hisamoto Y, Fujii T, Harada M, Suizu J, Murakawa K, Chikumoto A, Matsuda K, Kanasada H, Kikuchi Y, Hamada K, Uehara S, Suetake R, Ohata S, Murata Y, Yamaji Y, Sakamoto K, Ito K, Osoreda H, Edakuni N, Kakugawa T, Hirano T, Yano M. NJ Prim Care Respir Med. 2022 Jan 27;32(1):5. doi: 10.1038/s41533-022-00268-w.
https://pubmed.ncbi.nlm.nih.gov/35087054/

Communicating with patients with idiopathic pulmonary fibrosis: can we do it better? Wijsenbeek MS, Bonella F, Orsatti L, Russell AM, Valenzuela C, Wuyts WA, Baile WF. ERJ Open Res. 2022 Jan 24;8(1):00422-2021. doi: 10.1183/23120541.00422-2021. eCollection 2022 Jan.
https://pubmed.ncbi.nlm.nih.gov/35083325/

A comparative study of the sarcopenia screening in older patients with interstitial lung disease.
Hanada M, Sakamoto N, Ishimoto H, Kido T, Miyamura M, Nagura H, Takeuchi R, Kawazoe Y, Sato S, Hassan SA, Ishimatsu Y, Takahata H, Mukae H, Kozu R. BMC Pulm Med. 2022 Jan 25;22(1):45. doi: 10.1186/s12890-022-01840-3. https://pubmed.ncbi.nlm.nih.gov/35078452/

The role of precision medicine in interstitial lung disease.
Maher TM, Nambiar AM, Wells AU. Eur Respir J. 2022 Feb 3:2102146. doi: 10.1183/13993003.02146-2021. Online ahead of print. https://pubmed.ncbi.nlm.nih.gov/35115344/

The prevalence and burden of interstitial lung diseases in the USA.
Jeganathan N, Sathananthan M. ERJ Open Res. 2021 Feb 7;8(1):00630-2021. doi: 10.1183/23120541.00630-2021. eCollection 2022 Jan. https://pubmed.ncbi.nlm.nih.gov/35141319/

Prevalence of idiopathic pulmonary fibrosis in Japan based on a claims database analysis.
Kondoh Y, Suda T, Hongo Y, Yoshida M, Hiroi S, Iwasaki K, Takeshima T, Homma S. Respir Res. 2022 Feb 8;23(1):24. doi: 10.1186/s12931-022-01938-6. https://pubmed.ncbi.nlm.nih.gov/35135550/

Validity and reliability of the Glittre-ADL test in individuals with idiopathic pulmonary fibrosis.
Reinaldo GP, Araújo CLP, Schneider B, Florian J, Machado SC, Hochhegger B, Dal Lago P. Physiother Theory Pract. 2022 Feb 12:1-9. doi: 10.1080/09593985.2022.2032510. Online ahead of print. https://pubmed.ncbi.nlm.nih.gov/35152825/

The Burden of Progressive-Fibrosing Interstitial Lung Diseases.
Cottin V, Teague R, Nicholson L, Langham S, Baldwin M. Front Med (Lausanne). 2022 Feb 1;9:799912. doi: 10.3389/fmed.2022.799912. eCollection 2022. https://pubmed.ncbi.nlm.nih.gov/35178411/

ASTHMA

Reduction of Physical Activity Due to the COVID-19 Pandemic in Adults With Asthma.
de Oliveira JM, Alves TB, Puzzi VC, Hernandes NA, Pitta F, Furlanetto KC. J Cardiopulm Rehabil Prev. 2022 Jan 1;42(1):66-68. doi: 10.1097/HCR.0000000000000670. https://pubmed.ncbi.nlm.nih.gov/34979000/

The effect of the socioeconomic status on the measurement of asthma control.
Ganti P, Suman A, Chaudhary S, Sangha B, David L, Sekhsaria S. Allergy Asthma Proc. 2022 Jan 1;43(1):e11-e16. doi: 10.2500/aap.2022.43.210103. https://pubmed.ncbi.nlm.nih.gov/34983718/
Asthma Management Using the Mobile Asthma Evaluation and Management System in China.
Lin J, Wang W, Tang H, Huo J, Gu Y, Liu R, Chen P, Yuan Y, Yang X, Xu J, Sun D, Li N, Jiang S, Chen Y, Wang C, Yang L, Liu X, Yang D, Zhang W, Chen Z, Lin Q, Liu C, Zhou J, Zhou X, Hu C, Jiang P, Zhou W, Zhang J, Cai S, Qiu C, Huang M, Huang Y, Liu H; China Asthma Research Collaboration Network.
Allergy Asthma Immunol Res. 2022 Jan;14(1):85-98. doi: 10.4168/aair.2022.14.1.85. https://pubmed.ncbi.nlm.nih.gov/34983109/

Association of quality of life and disease control with cigarette smoking in patients with severe asthma.
Santos VCHD, Moreira MAF, Rosa AVD, Sobragi SM, Silva CAJD, Dalcin PTR.
Braz J Med Biol Res. 2022 Jan 5;55:e11149. doi: 10.1590/1414-431X2021e11149. eCollection 2022. https://pubmed.ncbi.nlm.nih.gov/35019032/

Asthma control and its predictors in Ethiopia: Systematic review and meta-analysis.
Mulugeta T, Ayele T, Zeleke G, Tesfay G.
PLoS One. 2022 Jan 13;17(1):e0262566. doi: 10.1371/journal.pone.0262566. eCollection 2022. https://pubmed.ncbi.nlm.nih.gov/35025962/

Misperception of poor asthma control in the outpatients clinic of a tertiary hospital in Rio de Janeiro.
Pessôa CLC, Martins IA, Rodrigues GG, Carvalho Júnior IJ, Oliveira EA, Momenté RF, Baldon LV.
Einstein (Sao Paulo). 2022 Jan 5;19:eAO6259. doi: 10.31744/einstein_journal/2021AO6259. eCollection 2022. https://pubmed.ncbi.nlm.nih.gov/35019036/

Association between illness perception and clinical control, quality of life, physical activity, and psychosocial status in subjects with moderate to severe asthma: A cluster analysis.
Silva STC, Freitas PD, Lunardi AC, Xavier RF, Barbosa RCC, Stelmach R, Carvalho CRF.
J Asthma. 2022 Jan 21:1-13. doi: 10.1080/02770903.2022.2032136. Online ahead of print. https://pubmed.ncbi.nlm.nih.gov/35060439/

Asthma management updates.
Galante CM.
Nursing. 2022 Feb 1;52(2):25-34. doi: 10.1097/01.NURSE.0000806156.52958.3c. https://pubmed.ncbi.nlm.nih.gov/35085192/

Using Telemedicine to Care for the Asthma Patient.
Persaud YK.
Curr Allergy Asthma Rep. 2022 Feb 2:1-10. doi: 10.1007/s11882-022-01030-5. Online ahead of print. https://pubmed.ncbi.nlm.nih.gov/35107807/
Hospitalization and mortality for acute exacerbation of asthma: an Italian population-based study.
Para O, Montagnani A, Guidi S, Bertù L, Manfelliotto D, Campanini M, Fontanella A, Dentali F; FADOI-Epidemiological Study Group.
Intern Emerg Med. 2022 Feb 1. doi: 10.1007/s11739-021-02923-5. Online ahead of print. https://pubmed.ncbi.nlm.nih.gov/35103927/

Alpine Altitude Climate Treatment for severe and uncontrolled asthma: an EAACI Position Paper.
Fieten KB, Drijver-Messelink MT, Cogo A, Charpin D, Sokolowska M, Agache I, Taborda-Barata L, Egiluz-Gracia I, Braunstahl GJ, Seys SF, van den Berge M, Bloch KE, Ulrich S, Cardoso-Vigueros C, Kappen JH, Brinke AT, Koch M, Traidl-Hoffmann C, da Mata P, Prins DJ, Pasmans SGMA, Bendien S, Rukhadze M, Shamji MH, Couto M, Elberink HO, Peroni DG, Piacentini G, Weersink EJM, Bonini M, Rijsenbeek-Nouwens LHM, Akdis CA. https://pubmed.ncbi.nlm.nih.gov/35113452/

Mental health in patients with asthma: A population-based case-control study.
Ji Z, López-de-Andrés A, Jiménez-García R, Maestre-Miquel C, Zamorano-León JJ, Scarano-Pereira JP, Fuentes-Alonso M, Girón-Matute WI, de Miguel-Díez J.
Respir Med. 2022 Jan 31;193:106758. doi: 10.1016/j.rmed.2022.106758. Online ahead of print. https://pubmed.ncbi.nlm.nih.gov/35123357/

Assessing Construct Validity of the Asthma Impairment and Risk Questionnaire Using a 3-month Exacerbation Recall.
Chipps BE, Murphy KR, Wise RA, McCann WA, Beuther DA, Reibman J, George M, Gilbert I, Eudicone JM, Gandhi HN, Harding G, Ross M, Zeiger RS.
Ann Allergy Asthma Immunol. 2022 Feb 2:S1081-1206(22)00081-3. doi: 10.1016/j.anai.2022.01.035. https://pubmed.ncbi.nlm.nih.gov/35123077/

Impact of rapid correction of vitamin D deficiency in asthmatic patients.
Einisadr A, Rajabi M, Moezzi H, Bakhshandeh H.
Wien Klin Wochenschr. 2022 Jan;134(1-2):18-23. doi: 10.1007/s00508-021-01975-z. Epub 2021 Nov 24. https://pubmed.ncbi.nlm.nih.gov/34817666/

Socioeconomic inequalities in asthma and respiratory symptoms in a high-income country: changes from 1996 to 2016.
Schyllert C, Lindberg A, Hedman L, Stridsman C, Andersson M, Andersén H, Piirilä P, Nwaru BI, Krokstad S, Rönmark E, Backman H.
J Asthma. 2022 Feb 15:1-14. doi: 10.1080/027770903.2022.2039937. Online ahead of print. https://pubmed.ncbi.nlm.nih.gov/35167415/

Obesity and Asthma.
Dixon AE, Que LG.
Semin Respir Crit Care Med. 2022 Feb 17. doi: 10.1055/s-0042-1742384. Online ahead of print.
https://pubmed.ncbi.nlm.nih.gov/35176784/

Should we apply a treatable traits approach to asthma care?
Melhorn DJ, Howell DI, Pavord PID.
Ann Allergy Asthma Immunol. 2022 Feb 13:S1081-1206(22)00098-9. doi: 10.1016/j.anai.2022.02.005. Online ahead of print.
https://pubmed.ncbi.nlm.nih.gov/35172180/

Impact of lifetime body mass index trajectories on the incidence and persistence of adult asthma.
Ali GB, Lowe AJ, Perret JL, Walters EH, Lodge CJ, Johns D, James A, Erbas B, Hamilton GS, Bowatte G, Wood-Baker R, Abramson MJ, Bui DS, Dharmage SC.
Eur Respir J. 2022 Feb 24:2102286. doi: 10.1183/13993003.02286-2021. Online ahead of print.
https://pubmed.ncbi.nlm.nih.gov/35210325/

Relationship between asthma and sarcopenia in the elderly: a nationwide study from the KNHANES.
Won HK, Kang Y, An J, Lee JH, Song WJ, Kwon HS, Cho YS, Moon HB, Jang IY, Kim TB.
J Asthma. 2022 Feb 28:1-18. doi: 10.1080/02770903.2022.2047716. Online ahead of print.
https://pubmed.ncbi.nlm.nih.gov/35225127/

Reproducibility, validity, and reliability of the incremental step test for subjects with moderate to severe asthma.
Barbosa RCC, Silva RA, Lunardi AC, Silva STC, Corso SD, Fonseca AJ, Stelmach R, Carvalho CRF.
Pulmonology. 2022 Feb 24:S2531-0437(22)00029-0. doi: 10.1016/j.pulmoe.2022.02.002. Online ahead of print.
https://pubmed.ncbi.nlm.nih.gov/35221263/

NUTRITION AND NUTRITIONAL STATUS

Dietary advice with or without oral nutritional supplements for disease-related malnutrition in adults.
Baldwin C, de van der Schueren MA, Kruizenga HM, Weekes CE.
Cochrane Database Syst Rev. 2021 Dec 21;12(12):CD002008. doi: 10.1002/14651858.CD002008.pub5.
https://pubmed.ncbi.nlm.nih.gov/34931696/

Malnutrition, Sarcopenia, and Malnutrition-Sarcopenia Syndrome in Older Adults with COPD.
Kaluźniak-Szymanowska A, Krzymińska-Siemaszko R, Deskur-Śmielecka E, Lewandowicz M, Kaczmarek B, Wieczorowska-Tobis K.
Nutrients. 2021 Dec 23;14(1):44. doi: 10.3390/nu14010044.
https://pubmed.ncbi.nlm.nih.gov/35010919/
Efficacy and safety of nitrate supplementation on exercise tolerance in chronic obstructive pulmonary disease: A systematic review and meta-analysis.
Yang H, He S, Chen F, Liang L, Pan J. Medicine (Baltimore). 2022 Jan 14;101(2):e28578. doi: 10.1097/MD.00000000000028578. https://pubmed.ncbi.nlm.nih.gov/35029233/

Optimal Assessment of Nutritional Status in Older Subjects with the Chronic Obstructive Pulmonary Disease - A Comparison of Three Screening Tools Used in the GLIM Diagnostic Algorithm.
Kaluźniak-Szymanowska A, Krzymińska-Siemaszko R, Wieczorowska-Tobis K, Deskur-Śmielecka E. Int J Environ Res Public Health. 2022 Jan 18;19(3):1025. doi: 10.3390/ijerph19031025. https://pubmed.ncbi.nlm.nih.gov/35162048/

Health-Related Quality of Life and Nutritional Status Are Related to Dietary Magnesium Intake in Chronic Obstructive Pulmonary Disease: A Cross-Sectional Study.
Ahmadi A, Eftekhari MH, Mazloom Z, Masoompour M, Fararoei M, Zare M, Hejazi N. Clin Nutr Res. 2022 Jan 31;11(1):62-73. doi: 10.7762/cnr.2022.11.1.62. eCollection 2022 Jan. https://pubmed.ncbi.nlm.nih.gov/35223682/

Do guidelines influence breathlessness management in advanced lung diseases? A multinational survey of respiratory medicine and palliative care physicians.
Krajnik M, Hepgul N, Wilcock A, Jassem E, Bandurski T, Tanzi S, Simon ST, Higginson IJ, Jolley CJ; BETTER-B research consortium. BMC Pulm Med. 2022 Jan 19;22(1):41. doi: 10.1186/s12890-022-01835-0. https://pubmed.ncbi.nlm.nih.gov/35045847/

Affective communication with patients with limited health literacy in the palliative phase of COPD or lung cancer: Analysis of video-recorded consultations in outpatient care.
Otte R, Roodbeen R, Boland G, Noordman J, van Dulmen S. PLoS One. 2022 Feb 10;17(2):e0263433. doi: 10.1371/journal.pone.0263433. eCollection 2022. https://pubmed.ncbi.nlm.nih.gov/35143534/

Existential suffering in the day to day lives of those living with palliative care needs arising from chronic obstructive pulmonary disease (COPD): A systematic integrative literature review.
Bolton LE, Seymour J, Gardiner C. Palliat Med. 2022 Feb 17:2692163221074539. doi: 10.1177/02692163221074539. Online ahead of print. https://pubmed.ncbi.nlm.nih.gov/35176924/

Patient-Centered Discussion on End-of-Life Care for Patients with Advanced COPD.
Mitzel H, Brown D, Thomas M, Curl B, Wild M, Kelsch A, Muskrat J, Hossain A, Ryan K, Babalola O, Burgard M, Mehedí M.
COMORBID CONDITIONS

Predictors and outcomes of obstructive sleep apnea in patients with chronic obstructive pulmonary disease in China.
Zhang P, Chen B, Lou H, Zhu Y, Chen P, Dong Z, Zhu X, Li T, Lou P.
BMC Pulm Med. 2022 Jan 4;22(1):16. doi: 10.1186/s12890-021-01780-4.
https://pubmed.ncbi.nlm.nih.gov/34983482/

Control of Cardiovascular Risk Factors in Patients with Chronic Obstructive Pulmonary Disease.
Hawkins NM, Peterson S, Ezzat AM, Vijn R, Virani SA, Gibb A, Mancini GBJ, Wong ST.
Ann Am Thorac Soc. 2022 Jan 10. doi: 10.1513/AnnalsATS.202104-463OC. Online ahead of print.
https://pubmed.ncbi.nlm.nih.gov/35007497/

Cardiovascular Morbidity in Individuals with Impaired FEV1.
Mathew J, Nickel NP.
Curr Cardiol Rep. 2022 Jan 17. doi: 10.1007/s11886-022-01636-1. Online ahead of print.
https://pubmed.ncbi.nlm.nih.gov/35038132/

Epidemiology of Chronic Obstructive Pulmonary Disease (COPD) Comorbidities in Lithuanian National Database: A Cluster Analysis.
Jurevičienė E, Burneikaitė G, Dambruškas L, Kasiulevičius V, Kazėnaitė E, Navickas R, Puronaitė R, Smailytė G, Visockienė Ž, Danila E.
Int J Environ Res Public Health. 2022 Jan 15;19(2):970. doi: 10.3390/ijerph19020970.
https://pubmed.ncbi.nlm.nih.gov/35055792/

The HUNT study: Association of comorbidity clusters with long-term survival and incidence of exacerbation in a population-based Norwegian COPD cohort.
Vikjord SAA, Brumpton BM, Mai XM, Romundstad S, Langhammer A, Vanfleteren L.
Respirology. 2022 Feb 10. doi: 10.1111/resp.14222. Online ahead of print.
https://pubmed.ncbi.nlm.nih.gov/35144315/

Restricted spirometry and cardiometabolic comorbidities: results from the international population based BOLD study.
Kulbacka-Ortiz K, Triest FJJ, Franssen FME, Wouters EFM, Studnicka M, Vollmer WM, Lamprecht B, Burney PGJ, Amaral AFS, Vanfleteren LEGW.
Respir Res. 2022 Feb 17;23(1):34. doi: 10.1186/s12931-022-01939-5.
https://pubmed.ncbi.nlm.nih.gov/35177082/

EXACERBATIONS / HOSPITALISATIONS / MORTALITY

Exacerbation history, severity of dyspnoea and maintenance treatment predicts risk of future exacerbations in patients with COPD in the general population.
The Impact of a Home Respiratory Therapist to Reduce 30 day Readmission Rates for Exacerbation of Chronic Obstructive Pulmonary Disease.
Truumees M, Kendra M, Tonzola D, Chiu S, Cerrone F, Zimmerman D, Mackwell C, Stevens C, Scannell K, Daley B, Markley D, Shah CV, Mansukhani R.
Respir Care. 2022 Jan 5:respcare.08125. doi: 10.4187/respcare.08125. Online ahead of print.
https://pubmed.ncbi.nlm.nih.gov/34987079/

Developing a Machine Learning Model to Predict Severe Chronic Obstructive Pulmonary Disease Exacerbations: Retrospective Cohort Study.
Zeng S, Arjomandi M, Tong Y, Liao ZC, Luo G.
J Med Internet Res. 2022 Jan 6;24(1):e28953. doi: 10.2196/28953.
https://pubmed.ncbi.nlm.nih.gov/34989686/

Diaphragm Ultrasound is an Imaging Biomarker that Distinguishes Exacerbation Status from Stable Chronic Obstructive Pulmonary Disease.
An TJ, Yoo YJ, Lim JU, Seo W, Park CK, Rhee CK, Yoon HK.
Int J Chron Obstruct Pulmon Dis. 2022 Jan 4;17:3-12. doi: 10.2147/COPD.S341484. eCollection 2022.
https://pubmed.ncbi.nlm.nih.gov/35018095/

Is the GOLD guideline for diagnosing obstruction in COPD discriminatory in predicting severe future COPD-related exacerbations and death?
McDonnell MJ, Harrison M, Rutherford RM.
Breathe (Sheff). 2021 Dec;17(4):210046. doi: 10.1183/20734735.0046-2021.
https://pubmed.ncbi.nlm.nih.gov/35035562/

Towards precision in defining COPD exacerbations.
Jenkins CR.
Breathe (Sheff). 2021 Sep;17(3):210081. doi: 10.1183/20734735.0081-2021.
https://pubmed.ncbi.nlm.nih.gov/35035551/

Early symptom recognition and symptom management among exacerbation COPD patients: A qualitative study.
Chatreewatanakul B, Othaganont P, Hickman RL.
Appl Nurs Res. 2022 Feb;63:151522. doi: 10.1016/j.apnr.2021.151522.
Development and validation of a prediction index for recent mortality in advanced COPD patients.
Tsai SH, Shih CY, Kuo CW, Liao XM, Lin PC, Chen CW, Hsiue TR, Chen CZ.
NPJ Prim Care Respir Med. 2022 Jan 13;32(1):2. doi: 10.1038/s41533-021-00263-7.
https://pubmed.ncbi.nlm.nih.gov/35027570/

"Can do, do do" quadrants and 6-year all-cause mortality in patients with COPD.
Vaes AW, Spruit MA, Koolen EH, Antons JC, de Man M, Djamin RS, van Hees HWH, van ’t Hul AJ.
Chest. 2022 Jan 10:S0012-3692(22)00019-8. doi: 10.1016/j.chest.2021.12.657. Online ahead of print.
https://pubmed.ncbi.nlm.nih.gov/35026297/

Optimizing quality of care in patients admitted with chronic obstructive pulmonary disease exacerbation.
Tsao M, Laikijrung C, Tran A, Pon T, Roach D, Liu B, Le K.
Chron Respir Dis. 2022 Jan-Dec;19:14799731211073348. doi: 10.1177/14799731211073348.
https://pubmed.ncbi.nlm.nih.gov/35041553/

Associated factors, assessment, management, and outcomes of patients who present to the emergency department for acute exacerbation of chronic obstructive pulmonary disease: A scoping review.
Phillips TM, Moloney C, Sneath E, Beccaria G, Issac H, Mullens AB, Gow J, Rana R, King A.
Respir Med. 2022 Jan 21;193:106747. doi: 10.1016/j.rmed.2022.106747. Online ahead of print.
https://pubmed.ncbi.nlm.nih.gov/35086024/

Disparities in Hospitalized Chronic Obstructive Pulmonary Disease Exacerbations Among American Indians and Non-Hispanic Whites.
Wu H, Rhoades DA, Chen S, Slief M, Guy CA, Warren A, Brown B.
Chronic Obstr Pulm Dis. 2022 Jan 27. doi: 10.15326/jcopdf.2021.0246. Online ahead of print.
https://pubmed.ncbi.nlm.nih.gov/35085432/

The experience of hospitalization in people with advanced chronic obstructive pulmonary disease: A qualitative, phenomenological study.
Bakthavatsalu B, Walshe C, Simpson J.
Chronic Illn. 2022 Feb 4:17423953211073580. doi: 10.1177/17423953211073580. Online ahead of print.
https://pubmed.ncbi.nlm.nih.gov/35118898/

Hospital Readmission Due to Chronic Obstructive Pulmonary Disease: A Longitudinal Study.
Njoku CM, Wimmer BC, Peterson GM, Kinsman L, Berezniicki BJ.
Int J Health Policy Manag. 2022 Jan 9. doi: 10.34172/ijhpm.2022.5770. Online ahead of print.
https://pubmed.ncbi.nlm.nih.gov/35120405/
Effectiveness of Peri-Discharge Complex Interventions for Reducing 30-Day Readmissions among COPD Patients: Overview of Systematic Reviews and Network Meta-Analysis. Zhong CCW, Wong CHL, Cheung WKW, Yeoh EK, Hung CT, Yip BHK, Wong ELY, Wong SYS, Chung VCH. Int J Integr Care. 2022 Feb 3;22(1):7. doi: 10.5334/ijic.6018. eCollection 2022 Jan-Mar. https://pubmed.ncbi.nlm.nih.gov/35136388/

A Risk Prediction Model for Prolonged Length of Stay in Patients with Acute Exacerbations of Chronic Obstructive Pulmonary Disease: A Retrospective Study of 225 Patients in a Single Center in Kunming, China. Yang L, Li M, Shu J, Yang Y, Huang Q. Med Sci Monit. 2022 Feb 9;28:e934392. doi: 10.12659/MSM.934392. https://pubmed.ncbi.nlm.nih.gov/35136009/

The long-term clinical impact of COPD exacerbations: a 3-year observational study (SHERLOCK). Haughney J, Lee AJ, Nath M, Müllerová H, Holmgren U, Nigris E, Ding B. Ther Adv Respir Dis. 2022 Jan-Dec;16:17534666211070139. doi: 10.1177/17534666211070139. https://pubmed.ncbi.nlm.nih.gov/35156488/

Care-seeking and delay of care during COPD exacerbations. Locke ER, Young JP, Battaglia C, Simpson TL, Trivedi R, Simons C, Fortney JC, Hebert P, Swenson ER, Edelman J, Fan VS. NPJ Prim Care Respir Med. 2022 Feb 15;32(1):7. doi: 10.1038/s41533-022-00269-9. https://pubmed.ncbi.nlm.nih.gov/35169140/

A Pandemic Lesson for Global Lung Diseases: Exacerbations are Preventable. Cookson W, Moffatt M, Rapeport G, Quint J. Am J Respir Crit Care Med. 2022 Feb 22. doi: 10.1164/rccm.202110-2389CI. Online ahead of print. https://pubmed.ncbi.nlm.nih.gov/35192447/

Hospital Frailty Risk Score Predicts Outcomes in Chronic Obstructive Pulmonary Disease Exacerbations. Ushida K, Shimizu A, Hori S, Yamamoto Y, Momosaki R. Arch Gerontol Geriatr. 2022 Feb 11;100:104658. doi: 10.1016/j.archger.2022.104658. Online ahead of print. https://pubmed.ncbi.nlm.nih.gov/35190332/

Patients' perspectives on point-of-care diagnostics and treatment by emergency medical technicians in acute COPD exacerbations: A qualitative study. Christensen HM, Pietersen PI, Laursen CB, Wittrock D, Nadim G, Jørgensen G, Nielsen LB, Sørensen MK, Titlestad IL, Lassen AT, Mikkelsen S. Scand J Trauma Resusc Emerg Med. 2022 Feb 19;30(1):11. doi: 10.1186/s13049-022-00999-2. https://pubmed.ncbi.nlm.nih.gov/35183239/
Comparison of peak expiratory Flow (PEF) and COPD assessment test (CAT) to assess COPD exacerbation requiring hospitalization: A prospective observational study.
Cen J, Weng L.
Chron Respir Dis. 2022 Jan-Dec;19:14799731221081859. doi: 10.1177/14799731221081859.
https://pubmed.ncbi.nlm.nih.gov/35209726/

What Are the Most Effective Factors in Determining Future Exacerbations, Morbidity Weight, and Mortality in Patients with COPD Attack?
Koç Ç, Şahin F.
Medicina (Kaunas). 2022 Jan 21;58(2):163. doi: 10.3390/medicina58020163.
https://pubmed.ncbi.nlm.nih.gov/35208487/

COVID-19
Composed in collaboration with Dr. Vitalii Poberezhets (Chair of Group 01.04 - m-Health/e-health)

Progression to a severe form of COVID-19 among patients with chronic respiratory diseases.
Basin S, Valentin S, Maurac A, Poussel M, Pequignot B, Brindel A, Poupet G, Robert C, Baumann C, Luc A, Soler J, Chabot F, Chaouat A.
Respir Med Res. 2021 Dec 30;81:100880. doi: 10.1016/j.resmer.2021.100880. Online ahead of print.
https://pubmed.ncbi.nlm.nih.gov/34974204/

Social distancing in relation to severe exacerbations of COPD - a nationwide semi-experimental study during the COVID-19 pandemic.
Saeed MI, Sivapalan P, Eklöf J, Ulrik CS, Browatzki A, Weinreich UM, Jensen TT, Biering-Sørensen T, Jensen JS.
Am J Epidemiol. 2022 Jan 5:kwab292. doi: 10.1093/aje/kwab292. Online ahead of print.
https://pubmed.ncbi.nlm.nih.gov/34999742/

Mask Use Experiences, COVID-19, and Adults with Asthma: A Mixed-Methods Approach.
Polivka BJ, Eldeirawi K, Huntington-Moskos L, Nyenhuis SM.
J Allergy Clin Immunol Pract. 2022 Jan;10(1):116-123. doi: 10.1016/j.jaip.2021.10.071. Epub 2021 Nov 14.
https://pubmed.ncbi.nlm.nih.gov/34785392/

Impact of Allergic Rhinitis and Asthma on COVID-19 Infection, Hospitalization, and Mortality.
Ren J, Pang W, Luo Y, Cheng D, Qiu K, Rao Y, Zheng Y, Dong Y, Peng J, Hu Y, Ying Z, Yu H, Zeng X, Zong Z, Liu G, Wang D, Wang G, Zhang W, Xu W, Zhao Y.
J Allergy Clin Immunol Pract. 2022 Jan;10(1):124-133. doi: 10.1016/j.jaip.2021.10.049. Epub 2021 Oct 30.
https://pubmed.ncbi.nlm.nih.gov/34728408/
Risk of serious COVID-19 outcomes among adults with asthma in Scotland: a national incident cohort study.
Shi T, Pan J, Vasileiou E, Robertson C, Sheikh A; Public Health Scotland and the EAVE II Collaborators.
Lancet Respir Med. 2022 Jan 13:S2213-2600(21)00543-9. doi: 10.1016/S2213-2600(21)00543-9. Online ahead of print.
https://pubmed.ncbi.nlm.nih.gov/35033224/

Impact of COVID-19 on people with asthma: a mixed methods analysis from a UK wide survey.
Philip KEJ, Buttery S, Williams P, Vijayakumar B, Tonkin J, Cumella A, Renwick L, Ogden L, Quint JK, Johnston SL, Polkey MI, Hopkinson NS.
BMJ Open Respir Res. 2022 Jan;9(1):e001056. doi: 10.1136/bmjresp-2021-001056.
https://pubmed.ncbi.nlm.nih.gov/35027428/

COPD in SARS-CoV-2 pandemic. Baseline characteristics related to hospital admissions.
Esteban C, Villanueva A, García-Gutierrez S, Aramburu A, Gorordo I, Quintana JM, Working Group TC.
Expert Rev Respir Med. 2022 Jan 21. doi: 10.1080/17476348.2022.2031985. Online ahead of print.
https://pubmed.ncbi.nlm.nih.gov/35060833/

Impact of COVID-19 on Hospital Admissions for COPD Exacerbation: Lessons for Future Care.
Lawless M, Burgess M, Bourke S.
Medicina (Kaunas). 2022 Jan 1;58(1):66. doi: 10.3390/medicina58010066.
https://pubmed.ncbi.nlm.nih.gov/35056374/

Asthma Phenotypes and COVID-19 Risk: A Population-based Observational Study.
Bloom CI, Cullinan P, Wedzicha JA.
Am J Respir Crit Care Med. 2022 Jan 1;205(1):36-45. doi: 10.1164/rccm.202107-1704OC.
https://pubmed.ncbi.nlm.nih.gov/34669568/

Disproportionate decline in admissions for exacerbated COPD during the COVID-19 pandemic.
Berghaus TM, Karschnia P, Haberl S, Schwaiblmair M.
Respir Med. 2022 Jan;191:106120. doi: 10.1016/j.rmed.2020.106120. Epub 2020 Aug 14.
https://pubmed.ncbi.nlm.nih.gov/32839072/

Pandemic preparedness and COVID-19: an exploratory analysis of infection and fatality rates, and contextual factors associated with preparedness in 177 countries, from Jan 1, 2020, to Sept 30, 2021.
COVID-19 National Preparedness Collaborators.
Lancet. 2022 Feb 1:S0140-6736(22)00172-6. doi: 10.1016/S0140-6736(22)00172-6. Online ahead of print.
https://pubmed.ncbi.nlm.nih.gov/35120592/
The relationship between frailty, nutritional status, co-morbidity, CT-body composition and systemic inflammation in patients with COVID-19.
McGovern J, Al-Azzawi Y, Kemp O, Moffitt P, Richards C, Dolan RD, Laird BJ, McMillan DC, Maguire D.
J Transl Med. 2022 Feb 21;20(1):98. doi: 10.1186/s12967-022-03300-2.
https://pubmed.ncbi.nlm.nih.gov/35189900/

LONG-TERM IMPACT OF COVID-19

Fatigue and Cognitive Impairment in Post-COVID-19 Syndrome: A Systematic Review and Meta-Analysis.
Ceban F, Ling S, Lui LMW, Lee Y, Gill H, Teopiz KM, Rodrigues NB, Subramaniapillai M, Di Vincenzo JD, Cao B, Lin K, Mansur RB, Ho RC, Rosenblat JD, Miskowiak KW, Vinberg M, Maletic V, McIntyre RS.
Brain Behav Immun. 2021 Dec 29:S0889-1591(21)00651-6. doi: 10.1016/j.bbi.2021.12.020. Online ahead of print.
https://pubmed.ncbi.nlm.nih.gov/34973396/

Decreased Fatty Acid Oxidation and Altered Lactate Production during Exercise in Patients with Post-acute COVID-19 Syndrome.
de Boer E, Petrache I, Goldstein NM, Olin JT, Keith RC, Modena B, Mohning MP, Yunt ZX, San-Millán I, Swigris JJ.
Am J Respir Crit Care Med. 2022 Jan 1;205(1):126-129. doi: 10.1164/rccm.202108-1903LE.
https://pubmed.ncbi.nlm.nih.gov/34665688/

Chronic Fatigue and Postexertional Malaise in People Living with Long COVID: An Observational Study.
Twomey R, DeMars J, Franklin K, Culos-Reed SN, Weatherald J, Wrightson JG.
Phys Ther. 2022 Jan 13:pzac005. doi: 10.1093/ptj/pzac005. Online ahead of print.
https://pubmed.ncbi.nlm.nih.gov/35079817/

Effects of exercise rehabilitation in patients with long COVID-19.
Barbara C, Clavario P, De Marzo V, Lotti R, Guglielmi G, Porcile A, Russo C, Griffo R, Mäkikallio T, Hautala AJ, Porto I.
Eur J Prev Cardiol. 2022 Jan 25:zwac019. doi: 10.1093/eurjpc/zwac019. Online ahead of print.
https://pubmed.ncbi.nlm.nih.gov/35078233/

Post-sequelae one year after hospital discharge among older COVID-19 patients: A multi-center prospective cohort study.
Fang X, Ming C, Cen Y, Lin H, Zhan K, Yang S, Li L, Cao G, Li Q, Ma X.
J Infect. 2022 Feb;84(2):179-186. doi: 10.1016/j.jinf.2021.12.005. Epub 2021 Dec 10.
https://pubmed.ncbi.nlm.nih.gov/34902448/

COVID-19 Post-Acute Sequela Rehabilitation: A look to the future through the lens of COPD and Pulmonary Rehabilitation.
Gore S, Keysor J.
Age, gender, neck circumference, and epworth sleepiness scale do not predict obstructive sleep apnea (OSA) in moderate to severe chronic obstructive pulmonary disease (COPD): the challenge to predict OSA in advanced COPD.
Catalan Serra P.
Sleep Med. 2021 Dec 21;89:130-131. doi: 10.1016/j.sleep.2021.12.005. Online ahead of print.
https://pubmed.ncbi.nlm.nih.gov/34974307/

Recommendations for COPD management in Central and Eastern Europe.
Valipour A, Aisanov Z, Avdeev S, Koblizek V, Kocan I, Kopitovic I, Lupkovics G, Man M, Bukovskis M, Tudorin N, Vukoja M, Naumnik W, Yanev N.
Expert Rev Respir Med. 2022 Jan 10. doi: 10.1080/17476348.2021.2023498. Online ahead of print.
https://pubmed.ncbi.nlm.nih.gov/35001780/

ERS clinical practice guidelines on treatment of sarcoidosis.
Baughman RP, Valeyre D, Korsten P, Mathioudakis AG, Wuyts WA, Wells A, Rottoli P, Nunes H, Lower EE, Judson MA, Israel-Biet D, Grutters JC, Drent M, Culver DA, Bonella F, Antoniou K, Martone F, Quadder B, Spitzer G, Nagavci B, Tonia T, Rigau D, Ouellette DR.
Eur Respir J. 2021 Dec 16;58(6):2004079. doi: 10.1183/13993003.04079-2020. Print 2021 Dec.
https://pubmed.ncbi.nlm.nih.gov/34140301/

Women's COPD.
Zysman M, Raherison-Semjen C.
Front Med (Lausanne). 2022 Jan 3;8:600107. doi: 10.3389/fmed.2021.600107. eCollection 2021.
https://pubmed.ncbi.nlm.nih.gov/35047517/

Point-of-care COPD diagnostics: biomarkers, sampling, paper-based analytical devices, and perspectives.
He G, Dong T, Yang Z, Branstad A, Huang L, Jiang Z.
Analyst. 2022 Feb 3. doi: 10.1039/d1an01702k. Online ahead of print.
https://pubmed.ncbi.nlm.nih.gov/35113085/

European Respiratory Society Statement on Long COVID-19 Follow-Up.
Antoniou KM, Vasarmidi E, Russell AM, Andrejak C, Crestani B, Delcroix M, Dinh-Xuan AT, Poletti V, Sverzellati N, Vitacca M, Witzenrath M, Tonia T, Spanevillo A.
Eur Respir J. 2022 Feb 10:2102174. doi: 10.1183/13993003.02174-2021. Online ahead of print.
https://pubmed.ncbi.nlm.nih.gov/35144991/
COPD Exacerbations: Do All Roads Lead to Rome?
Ramakrishnan S, Gyselinck I, Bafadhel M, Janssens W.
Am J Respir Crit Care Med. 2022 Feb 23. doi: 10.1164/rccm.202112-2717LE. Online ahead of print.
https://pubmed.ncbi.nlm.nih.gov/35196480/

Rome Criteria for E-COPD: Not Built In A Day.
Bhatt SP.
Am J Respir Crit Care Med. 2022 Feb 23. doi: 10.1164/rccm.202110-2253LE. Online ahead of print.
https://pubmed.ncbi.nlm.nih.gov/35196475/

Level of Knowledge About COPD Among Patients and Caregivers.
Raptis DG, Rapti GG, Papathanasiou IV, Papagiannis D, Gourgoulianis KI, Malli F.
Adv Exp Med Biol. 2021;1337:299-305. doi: 10.1007/978-3-030-78771-4_33.
https://pubmed.ncbi.nlm.nih.gov/34972917/

A personalized biomedical risk assessment infographic for people who smoke with COPD: a qualitative study.
Gupta S, Panchal P, Sadatsafavi M, Ghanouni P, Sin D, Pakhale S, To T, Zafari Z, Nimmon L; Canadian Respiratory Research Network.
Addict Sci Clin Pract. 2022 Jan 6;17(1):1. doi: 10.1186/s13722-021-00283-1.
https://pubmed.ncbi.nlm.nih.gov/34991699/

Quality of life of patients and caregivers in southern Spain: Living with the Obstructive pulmonary disease and after a stroke.
Ibâñez-Davó M, Balanza-Galindo S, Gómez-Díaz M, Morales-Moreno I.
Health Soc Care Community. 2022 Jan 8. doi: 10.1111/hsc.13706. Online ahead of print.
https://pubmed.ncbi.nlm.nih.gov/34997793/

The Air We Breathe: Respiratory Impact of Indoor Air Quality in COPD.
Mkorombindo T, Balmes JR, Custovic A, Dransfield MT.
Am J Respir Crit Care Med. 2022 Jan 10. doi: 10.1164/rccm.202112-2822ED. Online ahead of print.
https://pubmed.ncbi.nlm.nih.gov/35007496/

Self-management for people with chronic obstructive pulmonary disease.
Schrijver J, Lenferink A, Brusse-Keizer M, Zwerink M, van der Valk PD, van der Palen J, Effing TW.
Cochrane Database Syst Rev. 2022 Jan 10;1(1):CD002990. doi: 10.1002/14651858.CD002990.pub4.
https://pubmed.ncbi.nlm.nih.gov/35001366/
Effectiveness of individualized inhaler technique training on low adherence (LowAd) in ambulatory patients with COPD and asthma.
Sánchez-Nieto JM, Bernabeu-Mora R, Fernández-Muñoz I, Carrillo-Alcaraz A, Alcántara-Fructuoso J, Fernández-Alvarez J, Vera-Olmos JC, Martínez-Ferre MJ, Olea MG, Valenciano MJC, Martínez DS.
NPJ Prim Care Respir Med. 2022 Jan 10;32(1):1. doi: 10.1038/s41533-021-00262-8. doi: 10.1038/s41533-021-00262-8.
https://pubmed.ncbi.nlm.nih.gov/35013343/

Self-perceived quality of sleep among COPD patients in Greece: the SLEPICO study.
Koulouris N, Dimakou K, Gourgoulianis K, Tzanakis N, Rapti A, Gaga M, Georgatou N, Steiropoulos P, Karachristos C, Gogali A, Kalafatakis K, Kostikas K.
Sci Rep. 2022 Jan 11;12(1):540. doi: 10.1038/s41598-021-04610-z. https://pubmed.ncbi.nlm.nih.gov/35017591/

The use of treatable traits to address COPD complexity and heterogeneity and to inform the care.
Duszyk K, McLoughlin RF, Gibson PG, McDonald VM.
Breathe (Sheff). 2021 Dec;17(4):210118. doi: 10.1183/20734735.0118-2021. https://pubmed.ncbi.nlm.nih.gov/35035572/

Four different frailty models predict health outcomes in older patients with stable chronic obstructive pulmonary disease.
Zhang D, Tang W, Dou LY, Luo J, Sun Y.
BMC Geriatr. 2022 Jan 16;22(1):57. doi: 10.1186/s12877-022-02750-z. https://pubmed.ncbi.nlm.nih.gov/35034605/

Effectiveness of patient activation interventions on chronic obstructive pulmonary disease self-management outcomes: A systematic review.
Shnaigat M, Downie S, Hosseinzadeh H.Aust J Rural Health. 2022 Jan 16. doi: 10.1111/ajr.12828. Online ahead of print. https://pubmed.ncbi.nlm.nih.gov/35034409/

Subgroup analysis reveals higher reliability of the new comprehensive evaluation of Global Initiative for Chronic Obstructive Lung Disease 2019.
Dai Z, Zeng H, Cui Y, Chen P, Chen Y.
Sci Rep. 2022 Jan 14;12(1):757. doi: 10.1038/s41598-021-04756-w. https://pubmed.ncbi.nlm.nih.gov/35031681/

Just breathe: a review of sex and gender in chronic lung disease.
Somayaji R, Chalmers JD.
Eur Respir Rev. 2022 Jan 12;31(163):210111. doi: 10.1183/16000617.0111-2021. Print 2022 Mar 31.
https://pubmed.ncbi.nlm.nih.gov/35022256/

Sarcopenia, systemic immune-inflammatory index and all-cause mortality in middle-aged and older people with COPD and asthma: a population-based study.
Sleep problems and associations with cardiovascular disease and all-cause mortality in asthma-COPD overlap: analysis of the National Health and Nutrition Examination Survey (2007-2012).

Baniak LM, Scott PW, Chasens ER, Imes CC, Jeon B, Shi X, Strollo PJ, Luyster FS.
J Clin Sleep Med. 2022 Jan 19. doi: 10.5664/jcsm.9890. Online ahead of print.
https://pubmed.ncbi.nlm.nih.gov/35040430/

Mapping of Modifiable Factors with Interdisciplinary Chronic Obstructive Pulmonary Disease (COPD) Guidelines Adherence to the Theoretical Domains Framework: A Systematic Review.
Issac H, Moloney C, Taylor M, Lea J.J
Multidiscip Healthc. 2022 Jan 10;15:47-79. doi: 10.2147/JMDH.S343277. eCollection 2022.
https://pubmed.ncbi.nlm.nih.gov/35046662/

Stable Chronic Obstructive Pulmonary Disease (COPD) Management Under a Tiered Medical System in China.
Mao R, Liu Z, Zhao Y, Du C, Zhou J, Wang Q, Lu J, Gao L, Cui B, Ma Y, Sun T, Zhu L, Chen Z.
Int J Chron Obstruct Pulmon Dis. 2022 Jan 14;17:181-194. doi: 10.2147/COPD.S333274. eCollection 2022.
https://pubmed.ncbi.nlm.nih.gov/35058691/

Clinical characterization and possible pathophysiological causes of the Deventilation Syndrome in COPD.
Schellenberg MD, Imach S, Iberl G, Kirchner M, Herth F, Trudzinski F.
Sci Rep. 2022 Jan 20;12(1):1099. doi: 10.1038/s41598-022-05118-w.
https://pubmed.ncbi.nlm.nih.gov/35058534/

Outcomes after Prolonged Weaning in Chronic Obstructive Pulmonary Disease Patients: Data from the German WeanNet Initiative.
Wollsching-Strobel M, Freundt T, Hämäläinen N, Suchi S, Windisch W, Schönhofer B.
Respiration. 2022 Jan 27:1-8. doi: 10.1159/000521681. Online ahead of print.
https://pubmed.ncbi.nlm.nih.gov/35086108/

Chronic obstructive pulmonary disease combined with interstitial lung disease.
Choi JY, Song JW, Rhee CK.
Tuberc Respir Dis (Seoul). 2022 Jan 27. doi: 10.4046/trd.2021.0104. Online ahead of print.
https://pubmed.ncbi.nlm.nih.gov/35081692/

Symptom clusters, associated factors and health-related quality of life in patients with chronic obstructive pulmonary disease: A structural equation modelling analysis.
Fei F, Siegert RJ, Zhang X, Gao W, Koffman J.
The Importance of Self-Management in the Context of Personalized Care in COPD.
Cravo A, Attar D, Freeman D, Holmes S, Ip L, Singh SJ.
Int J Chron Obstruct Pulmon Dis. 2022 Jan 22;17:231-243. doi: 10.2147/COPD.S343108. eCollection 2022.
https://pubmed.ncbi.nlm.nih.gov/35095272/

Psycho-cognitive assessment and quality of life in older adults with chronic obstructive pulmonary disease-carrying the rs4713916 gene polymorphism (G/A) of gene FKBP5 and response to pulmonary rehabilitation: a proof of concept study.
Marcolongo F, Scarlata S, Tomino C, De Dominicis C, Giacconi R, Malavolta M, Bonassi S, Russo P, Prinzi G.
Psychiatr Genet. 2022 Jan 31. doi: 10.1097/YPG.0000000000000308. Online ahead of print.
https://pubmed.ncbi.nlm.nih.gov/35102127/

Forced Expiratory Flow at 25%-75% Links COPD Physiology to Emphysema and Disease Severity in the SPIROMICS Cohort.
Ronish BE, Couper DJ, Barjaktarevic IZ, Cooper CB, Kanner RE, Pirozzi CS, Kim V, Wells JM, Han MK, Woodruff PG, Ortega VE, Peters SP, Hoffman EA, Buhr RG, Dolezal BA, Tashkin DP, Liou TG, Bateman LA, Schroeder JD, Martinez FJ, Barr RG, Hansel NN, Comellas AP, Rennard SI, Arjomandi M, Paine Iii R.
Chronic Obstr Pulm Dis. 2022 Feb 2. doi: 10.15326/jcopdf.2021.0241. Online ahead of print.
https://pubmed.ncbi.nlm.nih.gov/35114743/

The coexistence of asthma and COPD: some considerations about prevalence and lung function decline.
Marcon A, Locatelli F, Accordini S.
Eur Respir J. 2022 Feb 3:2200096. doi: 10.1183/13993003.00096-2022. Online ahead of print.
https://pubmed.ncbi.nlm.nih.gov/35115342/

A Polygenic Risk Score and Age of Diagnosis of Chronic Obstructive Pulmonary Disease.
Zhang J, Xu H, Qiao D, DeMeo DL, Silverman EK, O'Connor GT, Hobbs BD, Dupuis J, Cho MH, Moll M.
Eur Respir J. 2022 Feb 3:2101954. doi: 10.1183/13993003.01954-2021. Online ahead of print.
https://pubmed.ncbi.nlm.nih.gov/35115341/

Cardiorespiratory fitness does not offset the increased risk of chronic obstructive pulmonary disease attributed to smoking: a cohort study.
Kunutsor SK, Jae SY, Mäikikallio TH, Laukkanen JA.
Eur J Epidemiol. 2022 Feb 5. doi: 10.1007/s10654-021-00835-4. Online ahead of print.
https://pubmed.ncbi.nlm.nih.gov/35122562/
Performance of bioelectrical impedance analysis compared to dual X-ray absorptiometry (DXA) in Veterans with COPD.
Cruz Rivera PN, Goldstein RL, Polak M, Lazzari AA, Moy ML, Wan ES.
Sci Rep. 2022 Feb 4;12(1):1946. doi: 10.1038/s41598-022-05887-4.
https://pubmed.ncbi.nlm.nih.gov/35121763/

Cardiorespiratory Fitness, Inflammation, and Risk of Chronic Obstructive Pulmonary Disease in Middle-Aged Men: A COHORT STUDY.
Kunutsor SK, Jae SY, Mäkikallio TH, Laukkanen JA.
J Cardiopulm Rehabil Prev. 2022 Feb 1. doi: 10.1097/HCR.0000000000000674. Online ahead of print.
https://pubmed.ncbi.nlm.nih.gov/35121704/

Smoking Cessation Among U.S. Adult Smokers With and Without Chronic Obstructive Pulmonary Disease, 2018.
Liu Y, Greenlund KJ, VanFrank B, Xu F, Lu H, Croft JB.
Am J Prev Med. 2022 Feb 1:S0749-3797(22)00001-0. doi: 10.1016/j.amepre.2021.12.001. Online ahead of print.
https://pubmed.ncbi.nlm.nih.gov/35120768/

Physical and mental health profile of patients with the early-onset severe COPD phenotype: A cross-sectional analysis.
Beijers RJHCG, Franssen FME, Groenen MTJ, Spruit MA, Schols AMWJ.
Clin Nutr. 2022 Jan 29;41(3):653-660. doi: 10.1016/j.clnu.2022.01.015. Online ahead of print.
https://pubmed.ncbi.nlm.nih.gov/35131718/

Associations of residential greenness with lung function and chronic obstructive pulmonary disease in China.
Xiao Y, Gu X, Niu H, Meng X, Zhang L, Xu J, Yang L, Zhao J, Zhang X, Bai C, Kang J, Ran P, Shen H, Wen F, Huang K, Chen Y, Sun T, Shan G, Lin Y, Wu S, Zhu J, Wang R, Shi Z, Xu Y, Ye X, Song Y, Wang Q, Zhou Y, Ding L, Li D, Yao W, Guo Y, Xiao F, Lu Y, Peng X, Zhang B, Xiao D, Wang Z, Zhang H, Bu X, Zhang X, An L, Zhang S, Cao Z, Zhan Q, Yang Y, Liang L, Cao B, Dai H, Wu T, He J, Kan H, Chen R, Yang T, Wang C.
Environ Res. 2022 Feb 4:112877. doi: 10.1016/j.envres.2022.112877. Online ahead of print.
https://pubmed.ncbi.nlm.nih.gov/35131324/

Challenges and Strategies for Improving COPD Primary Care Services in Quebec: Results of the Experience of the COMPAS+ Quality Improvement Collaborative.
Vachon B, Giasson G, Gaboury I, Gaid D, Noël De Tilly V, Houle L, Bourbeau J, Pomey MP.
Int J Chron Obstruct Pulmon Dis. 2022 Feb 2;17:259-272. doi: 10.2147/COPD.S341905. eCollection 2022.
https://pubmed.ncbi.nlm.nih.gov/35140460/

Treatable Traits in Misdiagnosed Chronic Obstructive Pulmonary Disease: Data from the Akershus Cardiac Examination 1950 Study.
Caspersen NF, Søyseth V, Lyngbakken MN, Berge T, Ariansen I, Tveit A, Røsjø H, Einvik G.
Chronic Obstr Pulm Dis. 2022 Feb 14. doi: 10.15326/jcopdf.2021.0265. Online ahead of print.
Brown adipose tissue activation is not related to hypermetabolism in emphysematous chronic obstructive pulmonary disease patients. Sanders KJC, Wierts R, van Marken Lichtenbelt WD, de Vos-Geelen J, Plasqui G, Kelders MCJM, Schrauwen-Hinderling VB, Bucerus J, Dingemans AC, Mottaghy FM, Schols AMWJ. J Cachexia Sarcopenia Muscle. 2022 Feb 15. doi: 10.1002/jcsm.12881. Online ahead of print. https://pubmed.ncbi.nlm.nih.gov/35166050/

COPD profiles and treatable traits using minimal resources: identification, decision tree and stability over time. Marques A, Souto-Miranda S, Machado A, Oliveira A, Jácome C, Cruz J, Enes V, Afreixo V, Martins V, Andrade L, Valente C, Ferreira D, Simão P, Brooks D, Tavares AH. Respir Res. 2022 Feb 14;23(1):30. doi: 10.1186/s12931-022-01954-6. https://pubmed.ncbi.nlm.nih.gov/35164762/

Sexual Health in COPD: A Systematic Review and Meta-Analysis. Farver-Vestergaard I, Frederiksen Y, Zachariae R, Rubio-Rask S, Løkke A. Int J Chron Obstruct Pulmon Dis. 2022 Feb 9;17:297-315. doi: 10.2147/COPD.S347578. eCollection 2022. https://pubmed.ncbi.nlm.nih.gov/35173430/

Association between very to moderate preterm births, lung function deficits, and COPD at age 53 years: analysis of a prospective cohort study. Bui DS, Perret JL, Walters EH, Lodge CJ, Bowatte G, Hamilton GS, Thompson BR, Frith P, Erbas B, Thomas PS, Johns DP, Wood-Baker R, Hopper JL, Davis PG, Abramson MJ, Lowe AJ, Dharmage SC. Lancet Respir Med. 2022 Feb 18:S2213-2600(21)00508-7. doi: 10.1016/S2213-2600(21)00508-7. Online ahead of print. https://pubmed.ncbi.nlm.nih.gov/35189074/

Integrated Disease Management for Chronic Obstructive Pulmonary Disease in Primary Care, from the Controlled Trial to Clinical Program: A Cohort Study. Hussey AJ, Wing K, Ferrone M, Licskai CJ. Int J Chron Obstruct Pulmon Dis. 2021 Dec 22;16:3449-3464. doi: 10.2147/COPD.S338851. eCollection https://pubmed.ncbi.nlm.nih.gov/35221683/

Risk/benefit tradeoff of habitual physical activity and air pollution on chronic pulmonary obstructive disease: findings from a large prospective cohort study. Chen L, Cai M, Li H, Wang X, Tian F, Wu Y, Zhang Z, Lin H. BMC Med. 2022 Feb 28;20(1):70. doi: 10.1186/s12916-022-02274-8. https://pubmed.ncbi.nlm.nih.gov/35220974/