Agroclimatic zoning for the incidence of brown eye spot on coffee under climate change scenarios

Rafael Fausto de Lima¹ · Lucas Eduardo de Oliveira Aparecido²✉ · Guilherme Botega Torsoni¹ · Alisson Gaspar Chiquitto¹ · José Reinaldo Moraes¹ · Glauco de Souza Rolim³

Received: 24 January 2022 / Accepted: 13 June 2022 / Published online: 23 June 2022
© The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature 2022

Abstract
Brown eye spot (Cercospora coffeicola) is one of the main fungal diseases of coffee, leading to a significant drop in crop productivity and beverage quality in Brazil. The identification of potential risk areas for the development of the disease provides promising information for the management of the pathogen. This study aimed to elaborate an agroclimatic zoning for the incidence of brown eye spot on coffee under climate change scenarios, as suggested by IPCC (IPCC-AR5), in the main coffee-growing regions. Climate data of air temperature, precipitation, and relative humidity were collected from the National Aeronautics and Space Administration/Prediction of Worldwide Energy Resources (NASA/POWER) platform from 1989 to 2020 for 46 municipalities in the states of Paraná, São Paulo, Minas Gerais, Espírito Santo, Goiás, and Bahia. The ideal climate for brown eye spot occurrence consists of an air temperature (Tmean) between 18 and 30 °C, relative humidity (RHmean) > 90%, and leaf wetness duration (LWD) > 9 h. The number of hours of leaf wetness was determined by the sum of hours with relative humidity > 90%. Relative humidity was estimated for each hour of the day using air temperature and estimated data of mean dew point temperature, maximum relative humidity, and minimum relative humidity. Climate change scenarios were designed based on sets of climate simulations for the twenty-first century. Scenario S1 is the current scenario without changes, while scenarios S2 and S3 show Tmean + 1.5 °C and 3.0 °C, respectively, with RHmean without changes. Scenarios S4 and S5 present RHmean varying from −30% to +30%, respectively, with Tmean unchanged. In the current scenario (S1), Minas Gerais presented a predominance of 100% for low climate risk to brown eye spot in September. Paraná presented a medium risk in 76.15% of the state in April. Scenarios S2 and S3 showed significant changes, increasing the average fitness class in the study region, mainly in the states of São Paulo, Minas Gerais, Rio de Janeiro, and Paraná. Scenario S4 showed 100% predominance of the low-risk class. In contrast, S5 showed the occurrence of the high-risk class for the study region with a ±30% increase in relative humidity. Minas Gerais presented a predominance of the high-risk class for the development of C. coffeicola in 76%, 100%, 97.83%, 89.30%, 93.46%, 80.64%, and 57.77% from November to May, respectively. The presence of high relative humidity represents the main factor for the expansion of the high-risk class for the development of C. coffeicola. Producers knowing the months of the year and the places in Brazil with the highest incidence of brown eye spot will be able to prevent the disease in a more sustainable way, using more ecological products, such as the early application of copper.

1 Introduction
Coffee is a beverage that has been gaining more consumers over the years, with its production being expanded and quality improved (Ferrão et al. 2019). It is a commodity of great importance in the global market, with a large share in the generation of employment in many countries (Vegro and Almeida 2020). Among the 124 listed coffee species, Arabian coffee (Coffea arabica L.) and robusta coffee (Coffea canephora P.) are responsible for almost all the coffee consumed in the world (Davis et al. 2011). In Brazil, coffee is

✉ Lucas Eduardo de Oliveira Aparecido
lucas.aparecido@muz.ifmsuldeminas.edu.br; ledoap@gmail.com

¹ Science and Technology of Mato Grosso Do Sul - Campus of Naviraí, IFMS – Federal Institute of Education, Naviraí, Brazil
² Professor at the Federal Institute of Sul de Minas Gerais (IFSULDEMINAS) – Campus Muzambinho, Minas Gerais, Brazil
³ State University of Sao Paulo (FCAV/UNESP) - Jaboticabal, Sao Paulo, Brazil
grown on more than 2 million hectares (Hinnah et al. 2018), representing a strategic commodity for its economy (Souza et al. 2011), standing out as the world’s largest producer and exporter of Arabian coffee (Silva et al. 2019a, b). Currently, Brazilian coffee production is 63.08 million bags of coffee, with emphasis on the states of Minas Gerais (34.65 million) and Espírito Santo (13.96 million) as the largest producers (CONAB CNDAC 2020).

Coffee production can be affected by many factors, especially diseases, including brown eye spot, caused by the fungus *Cercospora coffeicola*. The fungus attacks from the planting of seedlings in the nursery to the field, leading to production losses ranging from 15 to 30% and beverage quality reduction (Azevedo de paula et al. 2016). In Brazil, the increase in the incidence of brown eye spot in coffee plantations in the late 2000s coincided with the expansion of coffee production from traditional areas to other regions with different environmental conditions (Vale et al. 2021). In addition to coffee, fungi of the genus *Cercospora* cause leaf spots on several crops such as corn, beet, rice, banana, and soybean (Gunasinghe et al. 2016).

Growth, sporulation, and germination of fungi are influenced by environmental variables (Silva et al. 2016). Agrometeorological elements such as air temperature, relative humidity, and leaf wetness duration favor the increased incidence of diseases (Paiva et al. 2013), due to changes in the microclimate. Leaf wetness duration is defined as the time of accumulation of water on the plant tissue surface (Shin et al. 2021) and is directly related to the rate of infection and pathogen development (Jian et al. 2020).

The development of *C. coffeicola* is more favored with air temperatures between 17 and 22 °C (Zambolim et al. 2005), associated with relative humidity above 90% (Vale et al. 2019). In addition, factors such as rainfall periods followed by dry spells or intense solar radiation and water deficit may favor the occurrence of brown eye spot (Patricio and Oliveira 2013). At the time of infection, the germ tubes tend to develop in several directions on the leaf; however, on the abaxial surface, they are directed towards the stomatal openings (Andrade et al. 2021).

The main symptoms for brown eye spot are lesions on leaves and fruits, characterized by yellowish halos surrounded by brown and necrotic rings with light-colored spots in the center (Souza et al. 2015; Botelho et al. 2019; Pereira et al. 2019), resulting in defoliation and decreased productivity and coffee quality (Martins et al. 2008; Botelho et al. 2017). The disease causes premature drop and emptying of the attacked fruits (Costa et al. 2011), being more frequent when they are close to the ripening period (Fernandes and Vieira Junior 2015). *Cercospora* spp. fungi produce a photoactive toxin called cercosporin, responsible for destroying host cell membranes (Souza et al. 2019).

Brown eye spot is commonly controlled with the use of fungicides and nutritional management, as the disease benefits from nitrogen and calcium deficiency and potassium excess (Patricio and Oliveira 2013). In addition, the development of disease-tolerant or resistant coffee cultivars is important to reduce production costs and increase productivity (Pereira et al. 2019). Recurrent losses occur in coffee plantations due to the difficulties reported in the control and prevention of the disease (Belan et al. 2015; Waller 1985).

Climate changes can lead to increases or decreases in the occurrence of brown eye spot in coffee plantations depending on the Brazilian region. In this sense, evaluating the projections of the Intergovernmental Panel on Climate Change (IPCC), created in 1988 by the World Meteorological Organization (WMO) and the United Nations Environment Programme (UNEP) (Hulme 2017), is fundamental to carry out periodic assessments of scientific knowledge on climate change (Minx et al. 2017). Reports containing emission scenarios based on variable thermal indexes and changes in the concentration of greenhouse gases are issued periodically (IPCC 2014). The fifth IPCC report (AR5) showed an increase of 0.85 °C in the mean air temperature since 1880 over land areas (O’Neill et al. 2016).

Climate change is a phenomenon that includes rising atmospheric CO₂, higher temperatures, more severe droughts, and more frequent storms (Jactel et al. 2019). Climate changes will have far-reaching impacts on agricultural, livestock, and fisheries production, altering the prevalence of agricultural pests and diseases (Campbell et al. 2016; Durand-bessart et al. 2020). Agricultural productivity can be affected directly and indirectly through impacts on crop diseases (Newbery et al. 2016). A reduction of 1% to 5% in global agricultural production has been estimated per decade over the last 30 years, which is related to climate variations (Field et al. 2014). According to Pham et al. (2019), future coffee priorities should focus on growing regions that are not affected by climate change.

Several studies have related climate change with pests and diseases in agriculture, including *Phakopsora pachyrhizi* and *Spodoptera exigua* in common bean (Ramirez-cabral et al. 2019), wheat stem rust (Prank et al. 2019), coffee rust (Alfonsi et al. 2019), and corn rust (Ramirez-cabral et al. 2017). However, few studies have evaluated *C. coffeicola* under climate change scenarios, focusing mainly on Brazil.

Therefore, this study aimed to elaborate an agroclimatic zoning for the incidence of brown eye spot on coffee under climate change scenarios in the main coffee-growing regions of Brazil. Knowing the months of the year/places in Brazil with the highest incidence of brown eye spot and the most promising scenarios of the disease, producers will be able to use ecological methods to avoid brown eye spot, making coffee growing more ecologically correct.
2 Material and methods

The study was carried out in traditional areas of coffee cultivation, as well as those with fitness for coffee cultivation, corresponding to the states of Paraná (PR), São Paulo (SP), Rio de Janeiro (RJ), Espírito Santo (ES), Minas Gerais (MG), Goiás (GO), and Bahia (BA). The predominant climate in the study region comprises the tropical and subtropical climate classes, according to the climate classifications by Holdridge (1967), tropical premontane moist forest, subtropical premontane moist forest, and tropical basal forest; and Köppen (1936), Aw, Cfa, Cwa, and Cwb (Alvares et al. 2013a).

Climate data of mean (Tmean in °C), maximum (Tmax in °C), and minimum (Tmin in °C) air temperature, precipitation (Pmean in mm), and mean relative humidity (RHmean in %) were collected daily by the National Aeronautics and Space Administration/Prediction of Worldwide Energy Resources (NASA/POWER) platform during the period from 1989 to 2020 for 46 municipalities of the study region (Fig. 1). The NASA/POWER platform provides agrometeorological data in cell grid coverage, with a spatial resolution of 1° latitude-longitude (Zhang et al. 2010; Stackhouse et al. 2015) and a high potential for modeling agricultural crops (Monteiro et al. 2018).

The daily maximum (RHmax) and minimum (RHmin) relative humidity values were estimated following FAO-56 Crop evapotranspiration – Guidelines for computing crop water requirements (Allen et al. 1998), using the dew point temperature (Tdew) associated with estimated saturation vapor pressure data at maximum (esTmax) and minimum (esTmin) air temperatures. Qiu et al. (2021) also used this method.

The dew point temperature was estimated through the saturation vapor pressure at mean temperature (esTmean) and actual vapor pressure (eaTmean), derived from mean relative humidity (RHmean) and mean air temperature, as adopted by Paredes et al. (2018). The data of daily mean relative

Fig. 1 Location of the largest coffee-producing region in Brazil

Holdridge (1967) life zones
- Tropical basal dry forest
- Tropical basal moist forest
- Tropical basal very dry forest
- Tropical lower montane moist forest
- Tropical premontane dry forest
- Tropical premontane moist forest
- Tropical premontane thorn woodland
- Tropical premontane wet forest
humidity and daily mean (T$_{\text{mean}}$), maximum (T$_{\text{max}}$), and minimum air temperature (T$_{\text{min}}$) allowed calculating the daily leaf wetness duration (Fig. 2).

The hourly air temperature (T$_{\text{air.hr}}$) values were estimated as established by Campbell (1985), in which the temperature variation is driven by solar irradiance, providing a smooth transition from the daily minimum air temperature to the daily maximum air temperature (Bregaglio et al. 2010; Roy et al. 2021). RH$_{\text{max}}$, RH$_{\text{min}}$, T$_{\text{max}}$, and T$_{\text{min}}$ were used as input data to estimate the relative humidity for each hour of the day (RH$_{\text{hr}}$), using the equation proposed by Waichler and Wigmosta (2003).

The leaf wetness duration (LWD) was calculated using the method proposed by Monteith (1957), in which the number of hours with relative humidity $\geq 90\%$ corresponds to the number of hours of leaf wetness (Fig. 2). Beruski et al. (2019) highlighted the accuracy and precision of this model in determining leaf wetness duration, being
indicated for entry into the Asian rust alert system in traditional regions for soybean cultivation in Brazil. The increase in LWD favors germination and fungal infection processes for *Cercospora coffeicola*, increasing the rate of disease progress and consequently reducing the productivity of coffee plantations, as evidenced by Silva et al. (2019a, b).

Table 1 Optimal climate characteristics and incidence of *Cercospora coffeicola*. Source: Synthesis of several authors

Characteristic	Value
Mean air temperature	18–30 °C (1, 2)
Relative humidity	>90% (3)
LWD	>9 h (4, 5)

(1) Souza et al. (2012); (2) Vale et al. (2019); (3) Souza et al. (2011); (4) Santos et al. (2008); (5) de Carvalho Alves et al. (2009)

Fig. 3 Flowchart of the used methodology
The development of *C. coffeicola* was determined using the agrometeorological variables T_{mean}, RH_{mean}, and LWD, designed to correspond to the favorable range of pathogen development (Table 1). The developmental classes of brown eye spot were determined by combining the necessary variables, as follows: high for T_{mean}, RH_{mean}, and LWD in the appropriate range; medium for T_{mean}, RH_{mean}, or LWD out of the appropriate range; and low for the set of two or more variables, limiting the pathogen development.

Climate change scenarios were devised based on sets of climate simulations for the twenty-first century, varying the mean relative humidity -30% and $+30\%$ and increasing the mean air temperature by $1.5\,$°C and $3\,$°C, as applied by Pirttioja et al. (2015), to simulate future projections of the fifth report issued by IPCC (IPCC-AR5) (Pachauri et al. 2014). The current scenario (S1) corresponds to the current data, with an increase of $0\,$°C in the mean temperature and $+0\%$ in the relative humidity. Scenarios S2 and S3 correspond to an increase of $1.5\,$°C and $3.0\,$°C in the mean temperature, respectively, but keeping the relative humidity unchanged. Moreover, scenarios S4 and S5 had a -30% reduction and a $+30\%$ increase for relative humidity, respectively, but keeping the mean temperature unchanged, identical to the current scenario.

Spatial interpolation was performed for all climate elements at all locations using a geographic information system (GIS) by the kriging method (Krige 1951), with the spherical model, one neighbor, and a spatial resolution of $0.25\,$°. The delimitation for developmental classes of brown eye spot was obtained by superimposing maps of meteorological elements. All the steps for designing the project are shown in Fig. 3.

3 Results and discussion

The state of Goiás presented the highest mean annual precipitation, with $1700\,\pm\,115$ mm, $300\,$mm more than that recorded by Pena et al. (2016). The state of Bahia recorded $995\,\pm\,27$ mm per year; the lowest values recorded among the other states. Paraná, São Paulo, Espírito Santo, Minas Gerais, Rio de Janeiro, and the Federal District presented means of $1588\,\pm\,36$ mm, $1388\,\pm\,73$ mm, $1242\,\pm\,57$ mm, $1388\,\pm\,91$ mm, $1351\,\pm\,66$ mm, and $1532\,\pm\,106$ mm, respectively (Fig. 4). These results are in accordance with Alves et al. (2013b).

May to September is the period with the lowest water supply among the Arabian coffee-producing regions. Monthly precipitation of less than $50\,$mm is observed between the regions of Minas Gerais, Goiás, DF, and northern and western Bahia from May to August. Eastern Bahia presents values above $50\,$mm in the period of lowest precipitation, as observed for the state of Paraná (Fig. 5). Aparecido et al. (2020) found a variation from $476.6\,$to $638.1\,$mm in the summer for the state of Paraná.

December has the highest precipitation rates in the entire study region, with means between 200 and $250\,$mm in northern Paraná, São Paulo, Rio de Janeiro, southern Minas Gerais, and Goiás. Few locations have precipitation higher than $250\,$mm, such as western Goiás and extreme southern Minas Gerais. According to Reboita et al. (2015), the state of Minas Gerais can reach precipitation of $900\,$mm in the central-south in the summer.

The mean annual temperature showed higher values for the states of Bahia and Goiás, with values of $23.61\,\pm\,1.39\,$°C and $22.96\,\pm\,1.58\,$°C, respectively. Espírito Santo, Paraná, São Paulo, Rio de Janeiro, Minas Gerais, and the Federal District showed annual means of $21.52\,\pm\,2.14\,$°C, $19.80\,\pm\,2.80\,$°C, $20.63\,\pm\,2.36\,$°C, $20.96\,\pm\,2.39\,$°C, $20.08\,\pm\,2.04\,$°C, and $20.98\,\pm\,1.51\,$°C, respectively (Fig. 6). These values were corroborated by Casaroli et al. (2018).

May to August is the period that shows a reduction in the mean temperature (Fig. 7), with values lower than $15\,$°C observed in southern Paraná. Southern Minas Gerais and western São Paulo have a mean temperature between 18 and $21\,$°C. Aparecido et al. (2019) observed thermal and water variations in the Southeast from $16.5\,$°C to $22.6\,$°C and $800\,$mm to $2,800\,$mm, respectively.

February has the highest mean temperature in the region, with a value between 24 and $27\,$°C, observed in Rio de Janeiro, Bahia, Espírito Santo, western Goiás, and the north of the states of Paraná, São Paulo, and Minas Gerais. Indices above $27\,$°C were recorded only in northern Bahia.
Fig. 5 Spatial representation of the mean monthly precipitation for Arabian coffee-producing regions in Brazil
Medauar et al. (2020) also found a mean air temperature of 25.3 °C in February for the state of Bahia.

All regions presented higher relative humidity between November and May, with indices above 60%, except for the extreme northern Minas Gerais and northern Bahia, which presented values below 60% (Fig. 8). March presented relative humidity above 80% in the Federal District, Espírito Santo, western São Paulo and Paraná, and the entire southern region of Minas Gerais.

The period of lowest relative humidity is between June and October, with values below 40% in western Bahia and northern Goiás for July, August, and September. However, the humidity remained high along the entire coastline, with 70% and 80% due to moisture coming from the sea. Few locations had indices above 80%, as observed in São Paulo, Minas Gerais, Paraná, and Bahia. These results corroborate with Alvares et al. (2015).

Leaf wetness duration showed seasonality similar to the distribution of relative humidity and precipitation (Fig. 9). The longest leaf wetness durations were recorded from November to June, with indices above 6 h in most of the evaluated states, as observed by Alvares et al. (2015). Regions characterized by high relative humidity (Fig. 8), high precipitation (Fig. 5), and milder temperatures (Fig. 7) correspond to locations with a longer leaf wetness duration. Paraná had the longest leaf wetness durations, reaching values above 12 h in the extreme south of the state for June and July. On the other hand, northern Bahia presents values lower than 4 h, mainly from May to December. Urashima et al. (2018) reported a variation between the area of orange rust lesions on sugarcane with the leaf wetness duration.

The current scenario presented two climate risk classes (medium and low) for the occurrence of brown eye spot on coffee (Fig. 10). Low risk for brown eye spot was observed in all months of the year, except for eastern Bahia from May to June. Areas close to the coastline showed a medium risk only from April to August in up to 19.98% of the state of Bahia (Fig. 11A). Bigirimana et al. (2012) found a reduction in the incidence of coffee rust at high altitudes.

The north, northeast, and northwest of Minas Gerais, one of the main coffee-producing regions in Brazil, have a low risk of brown eye spot throughout the year. However, much of the west, south, and east of the state has a medium risk of the disease between December and April.

Paraná, São Paulo, Goiás, and DF presented the most critical periods between January and April, with a medium risk predominating in most states. Moreover, western Espírito Santo presented higher mean risks of brown eye spot. Tunwari and Nahunnaro (2012) observed a variation in the incidence of Cercospora sp. in sesame-producing regions in Nigeria, with the interactions between climate, cultivar, and the different techniques attributed to crop management adopted by local producers.

The Federal District showed a predominance from 91.7 to 100% of the medium-risk class for the period between December and April (Fig. 11B), while this class has a predominance lower than 50% in Espírito Santo, reaching 0% between August and October (Fig. 11C). The state of Goiás presented 100% of the territory covered by the low-risk class between June and November (Fig. 11D). Minas Gerais presented a predominance above 50% for low climate risk of brown eye spot, reaching 100% in September, but March presented a 56.9% predominance of the medium-risk class (Fig. 9E).

Paraná registered the highest intensity of medium risk of brown eye spot in April in 76.2% of the state and a low risk of 92.2% and 95.3% in July and August, respectively (Fig. 11F). The period from August to October in Rio de Janeiro represented a low-risk potential for the occurrence of brown eye spot in 100% of the state, while the period from December to June presented a medium intensity in 50% of the state, reaching 75.18% in March (Fig. 11G). The state of São Paulo, on the other hand, presented a low risk for the occurrence of brown eye spot from June to December, exceeding 70% of the territory (Fig. 11H).

The scenario with an increase of +1.5 °C in the mean temperature (S2) presented significant variations relative to the current scenario, with a reduction in areas with medium risk of the disease (Fig. 12). Bahia had a predominance of 0.03% for the medium risk zone in June (Fig. 13A). Espírito Santo also showed lower indices for the same class, with 2.62%, 2.26%, and 3.17% predominance in March, April, and December, respectively (Fig. 13C).

The states of Bahia, Federal District, Espírito Santo, Goiás, Minas Gerais, and Rio de Janeiro showed 100% prevalence for the low-risk zone of brown eye spot development between June and November. Changes in temperature patterns in the dynamics of the relationship between environment, pathogen, and host plant can directly influence the
Fig. 7 Spatial representation of the mean monthly air temperature for Arabian coffee-producing regions in Brazil
Fig. 8 Spatial representation of the mean monthly relative humidity for Arabian coffee-producing regions in Brazil
Fig. 9 Spatial representation of the mean monthly leaf wetness duration for Arabian coffee-producing regions in Brazil
Fig. 10 Spatial representation of the brown eye spot risk zoning for coffee-producing regions in the current scenario (S1)
number of cycles and the geographic distribution of pathogens during crop development (Angelotti et al. 2017).

Paraná (Fig. 13F) and São Paulo (Fig. 13H) presented, on average, reductions of -36.58% and -45.30% relative to the current scenario, respectively, corresponding to a predominance of less than 50% of the states for the low risk of brown eye spot development from January to April. Moraes et al. (2012) used future scenarios developed by IPCC and also found a reduction in climate favorability for the occurrence of phoma leaf spot on coffee in Brazil.
Fig. 12 Spatial representation of the brown eye spot risk zoning for coffee-producing regions under the scenario with an increase of +1.5 °C (S2)
Scenario S3, which has an increase in the mean temperature of +3.0 °C (Fig. 14), showed a reduction for the low climate risk zone in the state of Paraná relative to the current scenario, with values of −31.22%, −38.88%, −15.64%, −17.03%, and −15.21% from May to September, respectively (Fig. 15F). Goiás presented a reduction in the medium climate risk from December to May, with a predominance of 0.06%, 34.35%, 37.98%, 37.98%, 23.05%, and 0.02%, respectively (Fig. 15D), representing, on average, a
Fig. 14 Spatial representation of the brown eye spot risk zoning for coffee-producing regions under the scenario with an increase of +3.0 °C (S3)
reduction of −70.92% for the same period compared to the current scenario.

The variability of the mean temperature explored in scenarios S2 (Fig. 12) and S3 (Fig. 14) showed a significant reduction in the medium risk for the occurrence of brown eye spot on coffee in the entire study region. São Paulo, Minas Gerais, Rio de Janeiro, and mainly in Paraná were more susceptible to alterations due to the low mean temperature. Silva et al. (2018) reported a reduction in the area under the disease progress curve when evaluating Cercospora leaf

Fig. 15 Percentage of areas with low or medium climate risk for brown eye spot in each state according to the months of the year in the S3 scenario. S3 = Scenario with +3 °C increase in the mean temperature, BA = Bahia, DF = Federal District, ES = Espírito Santo, GO = Goiás, MG = Minas Gerais, PR = Paraná, RJ = Rio de Janeiro, SP = São Paulo
Fig. 16 Spatial representation of the brown eye spot risk zoning for coffee-producing regions under the scenario with – 30% relative humidity (S4)
spot on *Toona ciliata* with increased mean temperature, with higher results with indices between 23 °C and 24 °C associated with increased leaf wetness duration.

The scenario of −30% reduction in relative humidity (S4) showed a predominance of the low-risk class for brown eye spot development on coffee in 100% of the study region during the 12 months evaluated (Figs. 16 and 17). It is due to the direct proportionality between relative humidity and leaf wetness duration. Thus, the reduction in relative humidity
promoted changes in the climate risk classes for brown eye spot on coffee.

As in scenario S1, scenarios S2, S3, and S4 do not present relative humidity above 90%, a determining factor for the development of fungi of the genus *Cercospora* (Lopes et al. 2012; Bublitz et al. 2019; Kumar et al. 2020). Kumar et al. (2011) observed the germination of *Cercospora canescens* conidia in mung beans with relative humidity above 92%.

Fig. 18 Spatial representation of the brown eye spot risk zoning for coffee-producing regions in the scenario with 30% relative humidity (S5)
Scenario S5, with an increase of +30% in relative humidity, showed higher variability, with the three climate risk classes for the brown eye spot occurrence in all months of the year (Fig. 18). High relative humidity represents a key climate attribute for the expansion of climate risk zones for coffee brown eye spot. Nega et al. (2016) found higher severity of the fungus *Cercospora zeae-maydis* in regions of intermediate annual humidity and precipitation.

The reduction in areas classified as low risk for brown eye spot was observed from November to April, being restricted to areas with low risk only northern Bahia and extreme northern Minas Gerais in April. The period from
July to October has a higher predominance of the low-risk class, except for locations close to the coastline, which are predominantly at high risk for brown eye spot development (Fig. 18). The state of Goiás and the Federal District
The state of Bahia showed predominance in locations close to the coastline and west, with values below 40% in the evaluated months (Fig. 19A). The Federal District presented well-defined periods, with 100% high risk of brown eye spot from November to May, 100% of medium risk from August to October, and 5.66% of low risk from June and July, a period with lower precipitation indices (Fig. 19B).

Only Espírito Santo and Paraná did not show the low-risk class in the S5 scenario. The medium-risk class in Paraná represents 4.18%, 66.54%, 98.04%, 98.04%, 86.71%, 69.4%, 14.93%, 12.23%, and 1.89% in the period from April to December, respectively (Fig. 19F). Espírito Santo showed a predominance of 2.91%, 2.91%, 27.56%, 55.45%, and 49.8% for the medium-risk class from June to October (Fig. 19C).

Goiás had 25.38%, 15.46%, 15.46%, 15.79%, and 5.74% of the state area with a predominance by the medium class of climate risk to brown eye spot in May, June, July, October, and November, respectively (Fig. 19D). In the state of Minas Gerais, the highest percentage of area covered by a high risk of brown eye spot was observed in the period from November to May, with 76%, 100%, 97.83%, 89.30%, 93.46%, 80.64%, and 57.77% of the territory, respectively (Fig. 19E).

The medium-risk class occurred only from May to October in Rio de Janeiro, reaching 4.51%, 22.36%, 22.36%, 25.04%, 39.08%, and 18.63% of the territory, respectively (Fig. 19G). The low-risk class in São Paulo corresponded to 86.17%, 86.17%, 54.62%, 52.9%, and 51.47% of the state in June, July, August, and November, respectively (Fig. 19H).

The annual mean of the data for the development potential of brown eye spot on coffee showed that all states had higher development of the low fitness class for scenarios S1, S2, S3, and S4 (Fig. 20A, B, C and D). All the analyzed states present a higher fitness for the development of the high-risk class in Scenario S5 (Fig. 20E), which has a higher increase in relative humidity, standing out Rio de Janeiro and Espírito Santo, with 88.8% and 88.45%, respectively.

4 Conclusions

With this work, we discovered in an unprecedented way the months of the year and the places in Brazil with the highest incidence of brown eye spot. In addition, it demonstrates that some climate change scenarios provided high incidences of the disease. Producers knowing the months of the year and the places in Brazil with the highest incidence of brown eye spot will be able to prevent the disease in a more sustainable way. This will provide a more ecologically correct coffee growing, since there will be a reduction in the application of agrochemicals.

The current scenario presents low and medium climate risk classes for brown eye spot on coffee, with the medium class being more intensified from December to April. The southern region of Minas Gerais shows medium risk between December and May. Paraná and Rio de Janeiro showed greater sensitivity to the development of the medium class, with an annual predominance of 42.22% and 44.92%, respectively.

The scenarios with an increase in the mean temperature (S2 and S3) showed significant changes in the states of São Paulo, Minas Gerais, Rio de Janeiro, and Paraná. The latter being considered the most susceptible to changes due to low mean temperatures, as can be evidenced by the development of the average class in scenarios S2 and S3 with 28.52% and 36.1%, respectively.

The reduction in relative humidity by – 30% in scenario S4 showed the development of the low-risk class for all states in all the evaluated months. On the other hand, the increase in relative humidity by + 30% in scenario S5 provided the development of all the three climate risk classes for brown eye spot on coffee (low, medium, and high). Mainly the upper class shows an average annual predominance of over 50% in most producing states.

Acknowledgements This work was done with financial support from Instituto Federal de Mato Grosso do Sul “IFMS”- Campus Naviraí and National Council for Scientific and Technological Development – CNPq.

Author contribution Rafael F. Lima: Formal analysis, conceptualization, methodology, investigation. Lucas E. O. Aparecido: Project administration; term; conceptualization; methodology; investigation; writing, original draft writing, review and editing. Guilherme Botega Torsoni: Term, funding acquisition, conceptualization, writing — review and editing. Alisson G. Chiquitto: Data curation, original draft, writing — review and editing. Glauco S. Rolim: Visualization, writing — original draft, writing — review and editing.

Funding We thank the “National Council for Scientific and Technological Development – CNPq” for the productivity grant of the 2nd author (process: 313342/2020-2).

Data Availability The data/material is opened.

Code availability The software used was python and scripts are available.

Declarations

Ethics approval It is not necessary.
Conflict of interest The authors declare no competing interests.

References

Alfonsi WMV, Coltri PP, Zullo J, et al (2019) Geographical distribution of the incubation period of coffee leaf rust in climate change scenarios. Pesquisa Agropecuária Brasileira 54. https://doi.org/10.1590/S1678-3921.pab.2019.v54.0007

Allen RG, Pereira LS, Raes D, et al (1998) FAO Irrigation and drainage paper N° 56. Rome: Food and Agriculture Organization of the United Nations p.156

Alvares CA, Stape JL, Sentelhas PC, de Moraes Gonçalves JL (2013) Modeling monthly mean air temperature for Brazil. Theoret Appl Climatol 113:407–427. https://doi.org/10.1007/s00704-012-0796-6

Alvares CA, Stape JL, Sentelhas PC et al (2015) Köppen’s climate classification map for Brazil. Meteorol Z 22:711–728. https://doi.org/10.1127/0941-2948/2013/0507

Alvares CA, de Mattos EM, Sentelhas PC et al (2015) Modeling temporal and spatial variability of leaf wetness duration in Brazil. Theoret Appl Climatol 120:455–467. https://doi.org/10.1007/s00704-014-1182-3

Andrade CC, Resende MLV, Moreira SI et al (2021) Infection process and defense response of two distinct symptoms of Cercospora leaf spot in coffee leaves. Phytopatologia 49:727–737

Angelotti F, Ghini R, Bettiol W (2017) Como o aumento da temperatura interfere nas doenças de plantas? Embrapa Semiárido-Capítulo em livro científico (ALICE)

Aparecido LE de O, Batista RM, Moraes JR da SC de, et al (2019) Agricultural zoning of climate risk for Physalis peruviana cultivation in Southeastern Brazil. Pesquisa Agropecuária Brasileira 54.; https://doi.org/10.1590/S1678-3921.pab.2019.v54.00057

Azevedo da Paula PV, Pozza EA, Santos LA et al (2016) Diagrammatic scales for assessing brown eye spot (Cercospora coffeicola) in red and yellow coffee cherries. J Phytopathol 164:791–800. https://doi.org/10.1111/jph.12499

Belan LL, Pozza EA, de Freitas MLO et al (2015) Nutrients distribution in diseased coffee leaf tissue. Australas Plant Pathol 44:105–111. https://doi.org/10.1007/s13313-014-0329-0

Beruski GC, Gleason ML, Sentelhas PC, Pereira AB (2019) Leaf wetness duration estimation and its influence on a soybean rust warning system. Australas Plant Pathol 48:395–408. https://doi.org/10.1007/s13313-019-00641-3

Bigirimana J, Njorge K, Gahakwa D, Phiri NA (2012) Incidence and severity of coffee leaf rust and other coffee pests and diseases in Rwanda. Afr J Agric Res 7:3847–3852. https://doi.org/10.5897/AJAR11.955

Botelho DM, de Resende ML, Andrade VT et al (2017) Cercosporiosis resistance in coffee germplasm collection. Euphytica 213:1–12. https://doi.org/10.1007/s10681-017-1901-9

Botelho DM dos S, Resende MLV de, Resende JC de, et al (2019) Diferença entre isolados de lesões mancha de olho pardo e cercospora negra em cafeeiro. Pesq Agro Brasileira 54.; https://doi.org/10.1590/S1678-3921.pab.2019.v54.01423

Bregagli S, Donatelli M, Confalonieri R et al (2010) An integrated evaluation of thirteen modelling solutions for the generation of hourly values of air relative humidity. Theoret Appl Climatol 102:429–438. https://doi.org/10.1007/s00704-010-0274-y

Bublitz DM, Wilbur JR, Hanson LE (2019) Leaf spot detections in Michigan sugar beet fields, 2019

Campbell GS (1985) Soil physics with BASIC: transport models for soil-plant systems. Elsevier

Campbell BM, Vermeulen SJ, Aggarwal PK et al (2016) Reducing risks to food security from climate change. Glob Food Sec 11:34–43. https://doi.org/10.1016/j.gfs.2016.06.002

Carvalho V de, Cunha R da, Chalfoun S Manejo das doenças do cacaueiro para a cafeeicultura familiar. Informe Agropecuário, Epamig 26:86–101

Casaroli D, de Rosa FO, Alves Júnior J et al (2018) Aptidão edafoclimática para o mogno-africano no Brasil. Ciência Florestal 28:357–368. https://doi.org/10.5902/198059031606

CONAB CNDAC (2020) Acompanhamento safra brasileira: café. Costa BHG, Resende MLV de, Dias HCB, et al (2011) Manejo da cercosporiose do cafeeiro com produtos alternativos, fungicida e suas associações

dsantos FS, de Souza PE, Pozza EA et al (2008) Progress of brown eye spot (Cercospora coffeicola Berkeley & Cooke) in coffee trees in organic and conventional systems. Summa Phytopathologica 34:48–54

dasiva MG, Pozza EA, de Lima CVRV, Fernandes TJ (2016) Temperature and light intensity interaction on Cercospora coffeicola sporulation and conidia germination. Ciência e Agrotecnologia 40:198–204

Davis AP, Tosh J, Ruch N, Fay MF (2011) Growing coffee: Psilanthus (Rubiaeaceae) subsumed on the basis of molecular and morphological data: implications for the size, morphology, distribution and evolutionary history of Coffea. Bot J Linn Soc 167:357–377. https://doi.org/10.1111/j.1095-8339.2011.01177.x

d de Aparecido LEO, de Rolim GS, Moraes da de JRCST et al (2020) Acurácia da reanalise ERA-Interim do ECMWF e sua aplicação na estimativa da deficiência hídrica no estado do Paraná, Brasil. Rev Bras Meteorol 34:515–528. https://doi.org/10.1590/0102-77863404066
d de Carvalho AM, da Silva FM, Pozza EA, de Oliveira MS (2009) Modeling spatial variability and pattern of rust and brown eye spot in coffee agroecosystem. J Pest Sci 82:137–148. https://doi.org/10.1007/s10340-008-0232-y

Durand-Bessart C, Tixier P, Quinteros A et al (2020) Analysis of interactions amongst shade trees, coffee foliar diseases and coffee yield in multistrata agroforestry systems. Crop Prot 133:105137. https://doi.org/10.1016/j.cropro.2020.105137

Fernandes C de F, Vieira Junior JR (2015) Doenças do cafeeiro. Embrapa Rondônia-Capítulo em livro técnico (INFOTEC-CE)
do DE MUNER L, da FONSECA AFA, FERRÃO M (2019) Coffea canephora.
d Field CB, Barros VR, Dokken DJ, et al (2014) Impacts, adaptation, and vulnerability. Part A: global and sectoral aspects. Contribution of working group II to the fifth assessment report of the intergovernmental panel on climate change. Cambridge: Cambridge University Press

Gamelin FX, Baquet G, Berthoin S et al (2009) Effect of high intensity rainfall on coffee rust apparent infection rate modeling. Int J Biometeorol 53:363–375. https://doi.org/10.1007/s10972-013-9777-7

Gunasinghe N, You MP, Barbetti MJ (2016) Phenotypic and phylogenetic studies associated with the crucifer white leaf spot pathogen, Pseudocercospora capsellae, in Western Australia. Plant Pathol 65:205–217. https://doi.org/10.1111/pan.12402

Haddad F, Maffia LA, Mizubuti ES, Teixeira H (2009) Biological control of coffee rust by antagonistic bacteria under field conditions in Brazil. Biol Control 49:114–119. https://doi.org/10.1016/j.biocontrol.2009.02.004

Hinnah FD, Sentelhas PC, Meira CAA, Paiva RN (2018) Weather-based coffee leaf rust apparent infection rate modeling. Int J Biometeorol 62:1847–1860. https://doi.org/10.1007/s00484-018-1587-2
Agroclimatic zoning for the incidence of brown eye spot on coffee under climate change scenarios

Hulme M (2017) Climate change. concept of. International Encyclopedia of Geography: People, the Earth, Environment and Technology 1–6

IPCC (2014) Summary for policymakers. In: Climate Change 2014. Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Edenhofer OR, Pichs-Madruga Y, SokonaE, Farahani S, Kadner K, Seyboth A, Adler I, Baum S, BrunnerP, Eickenbeiner M, Kriemann J, Savolainen S, Schlömer C, von Stechow, T Zwickel and JC Minx (eds.)). Cambridge University Press. Cambridge. United Kingdom and New York. NY. USA

Jactel H, Koricheva J, Castagneyrol B (2019) Responses of forest insect pests to climate change: not so simple. Curr Opin Insect Sci 35:103–108. https://doi.org/10.1016/j.coisch.2019.07.010

Jian LIU, Aixin REN, Ran LIU, et al (2020) Estimation model of cucumber leaf wetness duration considering the spatial heterogeneity of solar greenhouse. Smart Agric 2:135. https://doi.org/10.1213/j.smartag.2020.2.2.202001-SA003

Kriger DG (1951) A statistical approach to some basic mine valuation problems on the Witwatersrand. J South Afr Inst Min Metall 52:119–139

Kumar R, Pandey M, Chandra R (2011) Effect of relative humidity, temperature and fungicide on germination of conidia of Cercospora canecens caused the Cercospora leaf spot disease in mungbean. Arch Phytopathol Plant Protect 44:1635–1645. https://doi.org/10.10032/3235408.2010.549868

Kumar N, Kumar S, Prajapati S, Maurya S (2020) Cercospora leaf spot disease of green gram and its management: a review. J Pharma Phytochem 9:1574–1576

Lopes PR, Ferraz JMG, Theodoro VC, Lopes IM (2012) Evolução da ferrugem (Hemileia vastatrix) e da cercosporiose (Cercospora coffeicola) em agroecossistemas cafeeiros convencionais, orgânicos e ecológicas. Rev Bras Agroclimatologia 7:160–168

Martins RB, Maffia LA, Mizubuti ESG (2008) Genetic variability of Cercospora coffeicola from organic and conventional coffee plantings, characterized by vegetative compatibility. Phytopathology 98:1205–1211. https://doi.org/10.1094/PHYTO-98-11-1205

Meduaur CC, Silva SA, Carvalho LCC, et al (2020) Spatial-temporal variability of rainfall and mean air temperature for the state of Bahia, Brazil. An Acad Bras Ciênc 92:. https://doi.org/10.1590/010001-3765202020181283

Minx JC, Callaghan L, Lamb W (et al) (2017) Learning about climate change solutions in the IPCC and beyond. Environ Sci Policy 77:252–259. https://doi.org/10.1016/j.envsci.2017.05.014

Monteiro LA, Sentelhas PC, Pedra GU (2018) Assessment of NASA/POWER satellite-based weather system for Brazilian conditions and its impact on sugarcane yield simulation. Int J Climatol 38:1571–1581. https://doi.org/10.1002/joc.5282

Moraes WB, de Jesus Junior WC, de Azevedo Peixoto L, et al (2012) Impact of climate change on the phoma leaf spot of coffee in Brazil. Interciencia 272–278

Nega A, Lemessa F, Berecha G (2016) Distribution and importance of maize grey leaf spot Cercospora zeae-maydis (Tehon and Daniels) in south and southwest Ethiopia. J Plant Pathol Microbiol 7:2. https://doi.org/10.4172/2157-7471.1000362

Newbery F, Qi A, Fitt BD (2016) Modelling impacts of climate change on arable crop diseases: progress, challenges and applications. Curr Opin Plant Biol 32:101–109. https://doi.org/10.1016/j.pbi.2016.07.002

O’Neill BC, Teganti C, Van Vuuren DP et al (2016) The scenario model intercomparison project (ScenarioMIP) for CMIP6. Geosci Model Dev 9:3461–3482

Pachauri RK, Allen MR, Barros VR, et al (2014) Climate change 2014:synthesis report. Contribution of Working Groups I. II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. IPCC. Geneva. Switzerland

Paiva BRTL, Souza PE de, Scalco MS, Monteiro FP (2013) Progresso da cercosporiose do cafeeiro sob diferentes manejo de irrigação e densidades de plantio

Paredes P, Fontes JC, Azevedo EB, Pereira LS (2018) Daily reference crop evapotranspiration in the humid environments of Azores islands using reduced data sets: accuracy of FAO-PM temperature and Hargreaves-Samani methods. Theor Appl Climatol 134:595–611. https://doi.org/10.1007/s00704-017-2295-2

Patricio FRA, Oliveira EG (2013) Desafios do manejo no controle de doenças do café. Visão Agrícola. Piracicaba 12:51–54

Pena DS, Evangelista AWP, Casaroli JAJ (2016) Agroclimatic zoning for jatroph crop (Jatropha curcas L.) in the State of Goiás. Acta Sci Agron 38:329–335. https://doi.org/10.4025/actasciagron.v38i3.28224

Pereira FAC, Carvalho SP de, Viana MTR, et al (2019) Selection of coffee progenies with large beans resistant to rust and cercospora leaf spot

Prittojoa N, Carter TR, Fronzek S et al (2015) Temperature and precipitation effects on wheat yield across a European transect: a crop model ensemble analysis using impact response surfaces. Climate Res 65:87–105. https://doi.org/10.3354/cr01322

Prank M, Kenaley SC, Bergstrom GC et al (2019) Climate change impacts the spread potential of wheat stem rust, a significant crop disease. Environ Res Lett 14:124053. https://doi.org/10.1088/1748-9326/ab57de

Qi R, Li L, Kang S et al (2021) An improved method to estimate actual vapor pressure without relative humidity data. Agric for Meteorol 298:108306. https://doi.org/10.1016/j.agrformet.2020.108306

Ramirez-Cabral NYZ, Kumar L, Shabani F (2017) Global risk levels for corn rusts (Puccinia sorghi and Puccinia polystora) under climate change projections. J Phytopathol 165:563–574. https://doi.org/10.1111/jph.12593

Ramirez-Cabral NYZ, Kumar L, Shabani F (2019) Suitable areas of Phakopsora pachyrhizi, Spodoptera exigua, and their host plant Phaseolus vulgaris are projected to reduce and shift due to climate change. Theor Appl Climatol 135:409–424. https://doi.org/10.1007/s00704-018-2385-9

Reboita MS, Rodrigues M, Silva LF, Alves MA (2015) Aspectos climáticos do estado de minas gerais (climate aspects in minas gerais state). Rev Bras Climatologia 17:. https://doi.org/10.5308/abriclima.v17i0.41493

Roy B, Dubey S, Ghosh A et al (2021) Simulation of leaf curl disease dynamics in chili for strategic management options. Sci Rep 11:1–12. https://doi.org/10.1038/s41598-020-79937-0

Shin J-Y, Park J, Kim KR (2021) Emulators of a physical model for estimating leaf wetness duration. Agronomy 11:1216. https://doi.org/10.3390/agronomy11020126

Silva HR, Pozza EA, de Souza PE et al (2018) Cercospora leaf spot in Toona ciliata: Epidemiology and infection process of Cercospora cf alchemilllicola. For Pathol 48:e12451. https://doi.org/10.1111/efp.12451

Silva MG, Pozza EA, Chaves E et al (2019) Spatio-temporal aspects of brown eye spot and nutrients in irrigated coffee. Eur J Plant Pathol 153:931–946. https://doi.org/10.1007/s10658-018-01611-z

Silva ACA, Caixeta ET, Oliveira ACB de, et al (2019a) Incidência de ferrugem e cercosporiose em populações de café arábica nos anos de 2018 e 2019a

Souza AGC, Rodrigues FÁ, Maffia LA, Mizubuti ESG (2011) Infection process of Cercospora coffeicola on coffee leaf. J Phytopathol 159:6–11. https://doi.org/10.1111/j.1439-0434.2010.01710.x

Souza AG, Maffia LA, Mizubuti ES (2012) Cultural and aggressiveness variability of Cercospora coffeicola. J Phytopathol 160:540–546. https://doi.org/10.1111/j.1439-0434.2012.01947.x

Souza AGC, Maffia LA, Silva FF et al (2015) A time series analysis of brown eye spot progress in conventional and organic coffee...
production systems. Plant Pathol 64:157–166. https://doi.org/10.1111/ppa.12250
Souza AGC, Herrero S, Daub ME (2019) The toxin cercosporin is a virulence factor for infection of coffee by Cercosporacoffeicola. BioRxiv 818328. https://doi.org/10.1101/818328
Stackhouse PW, Westberg D, Hoell JM, et al (2015) Prediction of Worldwide Energy Resource (POWER)-Agroclimatology methodology-(1.0 latitude by 1.0 longitude spatial resolution). Predict. Worldw. Energy Resour. POWER-Agroclimatol. Meth-odol.-10 Latit. 10 Longit. Spat Resolut
Tunwari BA, Nahunnaro H (2012) Prevalence of Cercospora leaf spot induced by Cercospora sp in major sesame growing regions of Taraba State, Nigeria. FUW Trends Sci Tech J 1:395–398
Urashima AS, Bombecini J, Uzan J, Gazaffi R (2018) Effect of pathogen concentrations and period of leaf wetness on orange rust severity in Brazilian sugarcane cultivars. Trop Plant Pathol 43:506–513. https://doi.org/10.1007/s40858-018-0239-8
Vale PAS, de Resende MLV, dos Botelho DMS et al (2019) Temperature, incubation time and virulence of Cercospora coffeicola in the production of cercosporin. J Phytopathol 167:371–379. https://doi.org/10.1111/jph.12802
Vale PAS, de Resende MLV, dos Santos Botelho DM et al (2021) Epi-typification of Cercospora coffeicola and its involvement with two different symptoms on coffee leaves in Brazil. Eur J Plant Pathol 159:399–408. https://doi.org/10.1007/s10658-020-02170-y
Vegro CLR, de Almeida LF (2020) Global coffee market: socio-economic and cultural dynamics. In: Coffee consumption and industry strategies in Brazil. Elsevier, pp 3–19
Waichler SR, Wigmosta MS (2003) Development of hourly meteorological values from daily data and significance to hydrological modeling at HJ Andrews Experimental Forest. J Hydrometeorol 4:251–263. https://doi.org/10.1175/1525-7541(2003)4%3C251:DOHMVF%3E2.0.CO;2
Waller JM (1985) Control of coffee diseases. In: Coffee. Springer, pp 219–229
Zambolim L, Vale FXR, Zambolim EM (2005) Doenças do cafeeiro (C. arabica e C. canephora). In: Kimati H, Amorim L, Rezende JAM; Filho AF, Camargo LEA (ed) Manual de Fitopatologia: doenças das plantas cultivadas, 4rd. Agronômica Ceres, São Paulo, pp 165–180
Zhang T, Stackhouse Jr PW, Chandler W, et al (2010) A global assessment of solar energy resources: NASA’s Prediction of Worldwide Energy Resources (POWER) project. In: AGU Fall Meeting Abstracts. pp U23A-0017
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.