Efficacy of Different Formulation of Glyphosate Herbicide on Sorghum Weeds

Dawit Fisseha, Mizan Amare, Letemariam Desta, Zerabruk G/medhin

ABSTRACT

Background: Sorghum is susceptible to weed at its early growth stage. The aim of this efficacy trial was to ensure that efficacy of chemical Glyphosate-isopropylammonium 41% SL on sorghum weeds control non-selectively before sorghum sowing.

Methods: Thrice experiment was carried out in Humera area in Humera Agricultural Research Center, Semur farm and Desta Berhe farm during rainy growing season of 2019 using sorghum variety i.e. Brhan. Pre and post spray weed count were subjected to efficacy calculation.

Result: New product of herbicide, Glyphosate-isopropylammonium 41% SL (Gipho) at 3.00 lt a.i./ha was shown better performance than the standard check Glymax 48% SL (W/V). Therefore, the new Gipho product could be suggested as an alternative non-selective herbicide before sorghum sowing.

Key words: Efficacy, Herbicide, Sorghum, Spray, Weed.

INTRODUCTION

Sorghum [Sorghum bicolor (L.) Moench] is an important cereal crop belonging to family Poaceae. It is naturally self-pollinated monocotyledon crop with the degree of spontaneous cross-pollination, in some cases, reaching up to 30% depending on panicle type (Poehlman and Sleper, 1995). The annual domesticated sorghums are diploid (2n=2x=20) and tropical origin C4 crop (Dicko et al., 2006). Sorghum is fifth most important cereal crop globally after rice, wheat, barley and maize (FAO, 2012). It has been domesticated since approximately 3000 years B.C. in the Ethiopia region (Ayana and Bekele, 1998). Ethiopia has a wide range of geographical adaptation and the country is a center of diversity for the crop (Tesso et al., 2007). It is produced for its grain, which is used for food, feed and stalks for fodder and building materials in developing countries, while it is used primarily as animal feed and in sugar, syrup and molasses industry (Dahlberg et al., 2011). It is a major food and nutritional security crop to more than 100 million people in Eastern horn of Africa (Gudu et al. 2013) including Ethiopia, providing a principal source of energy (70% starch), proteins, vitamins and minerals (Duodu et al., 2003).

Ethiopia is the third largest producer of sorghum in Africa behind Nigeria and Sudan, which contributed about 12% of annual production (Wani et al., 2011) and the second after Sudan in the Common Market for Eastern and Southern Africa (COMESA) member countries (USAID, 2010). It is the third most important crop both in sown area (ha) and becoming third primary staple food crop in Ethiopia after teff and maize (CSA, 2015) and second most important crop for injera (common leavened flat bread) making next to teff (Adugna, 2012). Currently, sorghum is produced by 5 million small holders and its production is estimated to be 4.6 million metric tons from nearly 2 million hectares of land giving the national average grain yield of around 2.3 tons per hectare
Materials and Methods

Herbicide used

Glyphosate-isopropylammonium 41% SL (Glypho) applied before Sorghum sowing as foliar spray treatment 3 l/ha active ingredient using 300 liters of water per hectare and formulation of the chemical Soluble liquid (SL). The agro-chemical manufactured by: Yixing Yizhou Chemical Products Co.

Experimental design

The experiment was carried out in Humera area on three different farms (Semur Farm, Desta Farm and Humera Agricultural Research Center) during 2019 growing season, each experiment replicated thrice. A Sorghum variety, Bhran, was sown in rows on plots with spacing of 75 cm and 20 cm between rows and plants, respectively. The experiment was contained of in a single block plot size of 75 m² in each plot were demonstrated. Foliar spray was applied using manually operated knapsack sprayer with one hollow-cone nozzle for three treatments i.e. new product- Glyphosate-isopropylammonium 41% SL at 3.00 l/ha active ingredient, as standard check herbicide - Glymax 48% SL (W/V) at 3.50 l/ha active ingredient and untreated check. The application time was before the main crop was planted. The per treatment data were counted by randomly throwing the quadrant on dated 29/10/2011 E.C means one days before the treatment [Glypho and Glymax 48% SL (W/V)] herbicides spray. The post treatment data on weeds were collected 15 days after the treatment’s application by throwing quadrant randomly to the plots. Finally, pre and post spray weed count data were subjected to efficacy calculation using formula of (Fleming and Retnakaran 1985) as below:

% Efficacy = \[1 - \frac{(Ta \times Cb)}{(Tb \times Ca)}\] *100

Where,

- Ta=Post-treatment population in treatment, Cb= Pre-treatment population in check, Tb= Pre-treatment population in treatment, Ca= Post-treatment population in check. Data subject to excel analysis.
Efficacy of Different Formulation of Glyphosate Herbicide on Sorghum Weeds

RESULTS AND DISCUSSION

The treatments received only one spray before sorghum crop sowing. Efficacy of the candidate herbicide Glpho (Glyphosate-isopropylammonium 41% SL) was showed an excellent performance in controlling weeds before sowing a Sorghum crop as a non-selective weed control. The candidate Glpho efficacy showed a higher percentage than the check Glymax 48% SL (W/V) efficacy were recorded 93.50% and 82.0% respectively (Table 1 and Fig 1).

In general, Glyphosate-isopropylammonium 41% SL showed excellent performance in controlling weed as Table 1. The differences in absorption and translocation of the herbicide are responsible for the fluctuation in glyphosate efficacy and the variations in glyphosate tolerance among weed species (D’Anieri et al., 1990). Concerning formulation of glyphosate products, the responses of various weed species vary among the different formulations (Ilias et al., 2017). The increased efficacy of Glyphosate-isopropylammonium 41% SL versus Glyphosate 48% EC on Sorghum weeds may be due to the greater rate of absorption and subsequent translocation of Glyphosate-isopropylammonium 41% SL.

CONCLUSION

The new product of herbicide, Glpho, shown better performance than the standard check Glymax 48% SL (W/V). Therefore, the new Glpho herbicide product could be suggested as an alternative non-selective herbicide to destroy the weeds in sorghum before sowing. However, further research needs to be done to determine the actual mechanism of Glpho for increasing efficacy.

REFERENCE

Adugna, A. (2007). The Role of Introduced Sorghum and Millet in Ethiopian Agriculture, Melkassa Agricultural Research Center, Nazareth, Ethiopia. SAT Journal e journal. icrisat. org. 3(1).

Adugna, A. (2012). Population genetics and ecological studies in wild sorghum [Sorghum bicolor (L.)] in Ethiopia: Implications for germplasm conservation, PhD Thesis. Addis Ababa University, Addis Ababa, Ethiopia. P5.

Akobundu, I.O. (1987). Weed Science in the Tropics, Principles and Practices. John Wiley and Sons, Chichester. 522 pp.19.

Ayana, A. and Bekele, E. (1998). Geographical patterns of morphological variation in sorghum [Sorghum bicolor (L.) Moench] germplasm from Ethiopia and Eritrea: Qualitative characters. Hereditas. 129: 195-205.

Baird, D., Upchurch, R., Homesley, W. and Franz, J. (1971). Introduction of a new broadspectrum postemergence herbicide class with utility for herbaceous perennial weed control. In Proceedings of the 26h North Cental Weed Control Conference, Kansas City, MO, USA, 7-9 December; pp. 64-68.

Benbrook, C.M. (2016). Trends in glyphosate herbicide use in the United States and globally. Environ. Sci. Eur. 28 (3). https://doi.org/10.1186/s12302-016-0070-0

Combellack, J.H., McShane, A. and Richardson, R.G. (1992). The influence of adjuvants on the performance of a glyphosate-2,4-D mixture, in Adjuvants for agrichemicals, ed by Foy CL, CRC Press, Boca Raton, FL, pp 303-310.

CSA (Central Statistics Agency for Ethiopia) (2014/2015). Agricultural sample survey of area and production of major crops. (1): 10-14.

D’Anieri, P., Zedaker, S.M., Seiler, J.R. and Kreh, R.E. (1990). Glyphosate translocation and efficacy relationships in red maple, sweetgum and loblolly pine seedlings. For. Sci. 36: 438-447.

Treatment No	Products trade name	Common Pre-spray name	Post spray mean	% efficacy	Yield (Q/ha)	
1	Glpho	Glyphosate-isopropylammonium 41% SL	138	9	93.64	18.6
2	Glymax 48% SL (W/V)	Glyphosate 48% EC	122	22	82.00	17.0
3	Untreated Check	-	118	121	-	-

Table 1: Mean Efficacy of Glyphosate 41 % SL on weed before Sorghum sowing 2019.

Fig 1: The candidate Glyphosate non-selective herbicide Glpho Efficacy verification % on weed control in Sorghum crop across the standard check and untreated Bar chart.
Efficacy of Different Formulation of Glyphosate Herbicide on Sorghum Weeds

Dahlberg, J., Berenji, J., Sikora, V. and Latković, D. (2011). Assessing sorghum [Sorghum bicolor (L.) Moench] germplasm for new traits: food, fuels and unique uses. Maydica. 56: 85-92.

Dicko, M.H., Gruppen, H., Traore, A.G.Y., Voragen, W.J. and Berkel, H. (2006). Sorghum grain ashuman food in Africa: relevance of content of starch and amylase activities. African Journal of Biotechnology. 5(5): 384-395.

Duke, S.O. and Powles, S.B. (2009). Glyphosate-resistant crops and weeds: Now and in the future. AgBioForum 12: 346-357.

Duodu, K.G., Taylor, J.R., Belton, P.S. and Hamaker, B.R. (2003). Factors affecting sorghum protein digestibility. Journal of Cereal Science. 38(2): 117-131. DOI: 10.1016/S0733-5210(03)00016-X.

Ethiopian Institute of Agricultural Research (EIAR) (2014). Ethiopian Strategy for Sorghum 2014-2024. Pp 1-10.

FAO (Food and Agriculture Organization). (2012). Database of Agricultural Production. FAO Statistical Databases (FAOSTAT). 2012. http://faostat.fao.org/default.aspx.

Fleming, R. and Retnakaran, A. (1985). Evaluating Single treatment Data using Abbot’s formula with modification. J. Econ. Entomol. 78: 1179-1181.

Franz, J.E. (1985). Discovery, development and chemistry of glyphosate. In Herbicide Glyphosate, [Grossbard, E., Atkinson, D., (Eds.)]. Butterworth and Co. Ltd.: Toronto, ON, USA.

Goffnett, A.M., Sprague, C.L., Mendoza, F. and Cichy, K.A. (2016). Preharvest herbicide treatments affect black bean desiccation, yield and canned bean color. Crop Sci. 56: 1962-1969.

Gudu, S., Ouma, E.O., Onkware, A.O., Too, E.J., Were, B.A., Ochuuodho, J.O. Othieno, C.O., Okalebo, J.R. and Agalo, J. (2013). Preliminary Participatory On-farm Sorghum Variety Selection for Tolerance to drought, Soil Acidity and Striga in Western Kenya. Maina Moi University, Kenya First Bio-Innovate. Regional Scientific Conference United Nations Conference Centre (UNCC-ECA) Addis Ababa, Ethiopia.

Hess, F.D. and Foy, C.L. (2000). Interaction of surfactants with plant cuticles. Weed Technol. 14: 807-813.

Ilias, T., Nikola, C. and Dimitrios, B. (2017). Glyphosate efficacy of different salt formulations and adjuvant additives on various weeds. Agronomy. 7(3): 60.

Li, J. Smeda, R.J., Sellers, B.A. and Johnson, W.G. (2005). Influence of formulation and glyphosate salt on absorption and translocation in three annual weeds. Weed Sci. 53: 153-159.

Miller, T., Hanson, B., Peachey, E., Boydston, R., Al-Khatib, K. (2013). Glyphosate Stewardship: Keeping an Effective Herbicide Effective; University of California: Davis, CA, USA, 2013.

Nordby, D.E. and Hager, A.G. (2011). Herbicide Formulations and Calculations: Active Ingredient or Acid Equivalent, a Weed Fact Sheet. In Integrated Pest Management Handbook; University of Illinois: Champaign, IL, USA, 2011.

Poehlman, J.M. and Sieper, D.A. (1995). Breeding Field Crops. 4th ed, Iowa State University Press, Ames, Iowa. 494p.

SPL (Scientific Phyto-pathological Laboratory) (1987/88). Progress report for 1987/88. Ambo, Ethiopia. 198821.

Stroud, A. (1989). Weed Management in Ethiopia: An Extension and Training Manual. FAO, Rome.

Tao, B. and Hu, F. (2009). In The practical Technology of Weed Chemical Control. Beijing: Chemical Industry Press. 3-18p.

Tesso, T., Gutema, Z., Deressa, A. and Ejeta, G. (2007). An Integrated Striga Management Option Offers Effective Control of Striga in Ethiopia. In Integrating New Technologies for Striga control: Towards Ending the Witch-Hunt. (pp. 199-212).

Travlos, I.S. and Chachalis, D. (2010). Glyphosate-resistant hairy fleabane (Conyza bonariensis) is reported in Greece. Weed Technol. 24: 569-573.

Travlos, I.S. and Chachalis, D. (2013). Relative competitiveness of glyphosate-resistant and glyphosate-susceptible populations of hairy fleabane, Conyza bonariensis. J. Pest Sci. 86: 345-351.

USAID (United State Agency for International Development) (2010). Staple Food Value Chain Analysis. Country Report, Ethiopia.

Wani, S.P., Albrizio, R. and Vaija, N.R. (2011). Sorghum: Crop Yield Response to Water. FAO, Rome Italy. P32.

Zhang, T., Johnson, E.N., Mueller, T.C. and Willenborg, C.J. (2017). Early application of harvest aid herbicides adversely impacts lentil. Agron. J. 109: 239-248.