LIMITING FRACTIONAL AND LORENTZ SPACES ESTIMATES OF DIFFERENTIAL FORMS

JEAN VAN SCHAFTINGEN

Abstract. We obtain estimates in Besov, Lizorkin-Triebel and Lorentz spaces of differential forms on \(\mathbb{R}^n \) in terms of their \(L^1 \) norm.

1. Introduction

The classical Hodge theory states that if \(u \in C_c^\infty(\mathbb{R}^N; \bigwedge^\ell \mathbb{R}^n) \), if \(1 < p < \infty \), one has

\[
\|Du\|_{L^p} \leq C(\|du\|_{L^p} + \|\delta u\|_{L^p})
\]

where \(du \) is the exterior differential and \(\delta u \) the exterior codifferential. This estimate is known to fail when \(p = 1 \) or \(p = \infty \).

When \(p = 1 \), J. Bourgain and H. Brezis [2, 3], and L. Lanzani and E. Stein [5] have obtained for \(2 \leq \ell \leq n - 2 \) the estimate

\[
\|u\|_{L^{n/(n-1)}} \leq C(\|du\|_{L^1} + \|\delta u\|_{L^1}),
\]

which would be the consequence that would follow by the Sobolev embedding from (1) with \(p = 1 \). When \(\ell = 1 \) or \(\ell = n - 1 \) one has to assume that \(du \) or \(\delta u \) vanishes.

I. Mitrea and M. Mitrea [6] have in a recent work extended these estimates to homogeneous Besov spaces. Using interpolation theory, they could replace the norm \(\|u\|_{L^{n/(n-1)}} \) by \(\|u\|_{\dot{B}^s_{p,q}} \) with \(\frac{1}{p} - \frac{s}{n} = 1 - \frac{1}{n} \) and \(q = \frac{2}{1+q} \). The goal of the present paper is to improve the assumption on \(q \) by relying on previous results and methods.

We follow H. Triebel [10] for the definitions of the function spaces. The first result is the estimate for the Besov spaces \(\dot{B}^s_{p,q}(\mathbb{R}^n) \):

Theorem 1. For every \(s \in (0, 1) \), \(p > 1 \) and \(q > 1 \), if

\[
\frac{1}{p} - \frac{s}{n} = 1 - \frac{1}{n},
\]

then there exists \(C > 0 \) such that for every \(u \in C_c^\infty(\mathbb{R}^n; \bigwedge^\ell \mathbb{R}^n) \), with moreover, \(\delta u = 0 \) if \(\ell = 1 \) and \(du = 0 \) if \(\ell = n - 1 \), one has

\[
\|u\|_{\dot{B}^s_{p,q}} \leq C(\|du\|_{L^1} + \|\delta u\|_{L^1}).
\]

In particular, since \(\|u\|_{W^{s,p}} = \|u\|_{\dot{B}^s_{p,p}} \), one has the estimate

\[
\|u\|_{W^{s,p}} \leq C(\|du\|_{L^1} + \|\delta u\|_{L^1}).
\]

In Theorem \(\square \) we assume that \(q > 1 \). If it held for some \(q \in (0, 1] \), then the embedding of \(F_{1,2}^1(\mathbb{R}^n) \subset \dot{B}^{0}_{n/(n-1),q}(\mathbb{R}^n) \) would hold. This can only be the case

2000 Mathematics Subject Classification. 35B65 (26D10; 35F05; 42B20; 46E30; 46E35; 58A10).

Key words and phrases. Differential forms, div-curl system, Hodge decomposition, exterior differential, Besov spaces, Lizorkin-Triebel spaces, Lorentz-Sobolev spaces, regularity, limiting embedding.

The author is supported by the Fonds de la Recherche Scientifique–FNRS.
when \(q \geq 1 \). Therefore, the only possible improvement of Theorem 1 would be the limiting case \(q = 1 \):

Open problem 1. Does Theorem 1 hold for \(q = 1 \)?

The estimate of Theorem 1 follows from the corresponding estimate for homogeneous Lizorkin–Triebel spaces \(F^s_{p,q}(\mathbb{R}^n) \):

Theorem 2. For every \(s \in (0,1), p > 1 \) and \(q > 0 \), if (2) holds, then there exists \(C > 0 \) such that for every \(u \in C^\infty_c(\mathbb{R}^n; \bigwedge^\ell \mathbb{R}^n) \), with moreover, \(\delta u = 0 \) if \(\ell = 1 \) and \(du = 0 \) if \(\ell = n-1 \), one has

\[
\|u\|_{F^s_{p,q}} \leq C(\|du\|_{L^1} + \|\delta u\|_{L^1}).
\]

Note that here there is no restriction on \(q > 0 \). Finally, the latter estimate has an interesting consequence for Lorentz spaces.

Theorem 3. For every \(q > 1 \), then there exists \(C > 0 \) such that for every \(u \in C^\infty_c(\mathbb{R}^n; \bigwedge^\ell \mathbb{R}^n) \), with moreover, \(\delta u = 0 \) if \(\ell = 1 \) and \(du = 0 \) if \(\ell = n-1 \), one has

\[
\|u\|_{L^{p+1-\frac{1}{q}}(\mathbb{R}^n)} \leq C(\|du\|_{L^1} + \|\delta u\|_{L^1}).
\]

In Theorem 3 the case \(q = 1 \) and \(\ell = 0 \) is equivalent to the embedding of \(W^{1,1}(\mathbb{R}^n) \) in \(L^{p+1-\frac{1}{q}}(\mathbb{R}^n) \) which was obtained by J. Peetre [8] (see also [15]). This raises the question

Open problem 2. Does Theorem 3 hold for \(q = 1 \) and \(\ell \geq 1 \)?

The proof of the theorems rely on the techniques developed by the author [11,12], and on classical embeddings and regularity theory in fractional spaces.

2. The main tool

Our main tool is a generalization of an estimate for divergence-free \(L^1 \) vector fields of the author [11]:

Proposition 2.1. For every \(s \in (0,1), p > 1 \) and \(q > 0 \) with \(sp = n \), there exists \(C > 0 \) such that for every \(f \in (C^\infty_c \cap L^1)(\mathbb{R}^n; \bigwedge^{n-1} \mathbb{R}^n) \) and \(\varphi \in C^\infty_c(\mathbb{R}^n; \bigwedge \mathbb{R}^n) \), with \(df = 0 \),

\[
\int_{\mathbb{R}^n} f \wedge \varphi \leq C\|f\|_{L^1}\|\varphi\|_{F^s_{p,q}}.
\]

The proof of this proposition follows the method introduced by the author [4, 11,12,14] and followed subsequently by L. Lanzani and E. Stein [5] and I. Mitrea and M. Mitrea [6]. The extension to the case \(q = p \) in a previous work of the author [11, Remark 5] (see also [14, Remark 2] and [4]); the proposition can be deduced therefrom by following a remark in a subsequent paper [13, Remark 4.2].

Proof. Write \(\varphi = \varphi_1 dx_1 + \varphi^n dx_n \) and \(f = f_1 dx_2 \wedge \ldots \wedge dx_n + \ldots + f_n dx_1 \wedge \ldots \wedge dx_{n-1} \).

Without loss of generality, we shall estimate

\[
\int_{\mathbb{R}^n} f_1 \varphi^1.
\]

Fix \(t \in \mathbb{R} \), and consider the function \(\psi : \mathbb{R}^{n-1} \to \mathbb{R} \) defined by \(\psi(y) = \varphi^1(t,y) \). Choose \(\rho \in C^\infty_c(\mathbb{R}^n) \) such that \(\int_{\mathbb{R}^{n-1}} \rho = 1 \) and set \(\rho_\varepsilon(y) = \frac{1}{\varepsilon^n} \rho(y/\varepsilon) \). For every \(\alpha \in (0,1) \), there is a constant \(C > 0 \) that only depends on \(\rho \) and \(\alpha \) such that

\[
\|\nabla \rho_\varepsilon \ast \psi\|_{L^\infty} \leq C\varepsilon^{\alpha-1}\|\psi\|_{C^{0,\alpha}(\mathbb{R}^{n-1})}
\]

and

\[
\|\psi - \rho_\varepsilon \ast \psi\|_{L^\infty} \leq C\varepsilon^\alpha\|\psi\|_{C^{0,\alpha}(\mathbb{R}^{n-1})},
\]
where \(|\psi|_{C^{0,\alpha}(\mathbb{R}^{n-1})} \) is the \(C^{0,\alpha} \) seminorm of \(\psi \), i.e.,

\[
|\psi|_{C^{0,\alpha}(\mathbb{R}^{n-1})} = \sup_{y, z \in \mathbb{R}^{n-1}} \frac{|\psi(z) - \psi(y)|}{|z - y|}.
\]

One has on the one hand

\[
\int_{\mathbb{R}^{n-1}} f_1(t, \cdot)(\psi - \rho_x \ast \psi) \leq C \|f_1(t, \cdot)\|_{L^1(\mathbb{R}^{n-1})} \varepsilon^{\alpha} |\psi|_{C^{0,\alpha}(\mathbb{R}^{n-1})}.
\]

On the other hand, by integration by parts, and since \(\sum_{i=1}^{n} \partial_i f_i = 0 \),

\[
\int_{\mathbb{R}^{n-1}} f_1(t, \cdot) \rho_x \ast \psi = - \sum_{i=2}^{n} \int_{\mathbb{R}^{n-1}} \int_{\mathbb{R}^+} f_i(t, y) \partial_i (\rho_x \ast \psi)(y) \, dt \, dy
\leq C \|f_1(t, \cdot)\|_{L^1(\mathbb{R}^{n-1})} \varepsilon^{\alpha-1} |\psi|_{C^{0,\alpha}(\mathbb{R}^{n-1})}.
\]

Taking \(\varepsilon = \|f\|_{L^1(\mathbb{R}^n)}/\|f(t, \cdot)\|_{L^1(\mathbb{R}^{n-1})} \), one obtains

\[
(4) \quad \int_{\mathbb{R}^{n-1}} f_1 \psi \leq C \|f\|_{L^1(\mathbb{R}^n)} \|f_1(t, \cdot)\|_{L^1(\mathbb{R}^{n-1})} |\psi|_{C^{0,\alpha}(\mathbb{R}^{n-1})}.
\]

Now, by the embedding theorem for Lizorkin–Triebel spaces, one has the estimate

\[
|\psi|_{C^{0,\alpha}} \leq C \|\psi\|_{F^{\alpha}_p,q(\mathbb{R}^{n-1})};
\]

with \(\alpha = \frac{1}{p} \); hence from (1) we deduce the inequality

\[
\int_{\mathbb{R}^{n-1}} f_1 \psi \leq C \|f\|_{L^1} \|f_1(t, \cdot)\|_{L^1}^{1 - \frac{1}{p}} \|\psi\|_{F^{\alpha}_p,q(\mathbb{R}^{n-1})}.
\]

Now, recalling that, as a direct consequence of the Fubini property that is stated in [10, Theorem 2.5.13] [1, Théorème 2], [9, Theorem 2.3.4/2]

\[
\left(\int_{\mathbb{R}} \|\varphi(t, \cdot)\|_{F^{\alpha,p}(\mathbb{R}^{n-1})}^p \, dt \right)^{\frac{1}{p}} \leq C \|\varphi\|_{F^{\alpha,p}(\mathbb{R}^n)}
\]

one concludes, using Hölder’s inequality that

\[
\int_{\mathbb{R}} f_1 u^1 \leq C \|f\|_{L^1} \left(\int_{\mathbb{R}} \left(\|f_1(t, \cdot)\|_{L^1}^{1 - \frac{1}{p}} \|\varphi(t, \cdot)\|_{F^{\alpha,p}(\mathbb{R}^{n-1})} \right) \, dt \right) \leq C' \|f\|_{L^1} \|\varphi\|_{F^{\alpha,p}(\mathbb{R}^n)}. \tag*{\Box}
\]

Proposition 2.2. For every \(s \in (0, 1) \), \(p > 1 \) with \(\frac{1}{p} + \frac{s}{n} = 1 \), \(q > 1 \) and \(1 \leq \ell \leq n-1 \), there exists \(C > 0 \) such that for every \(f \in C_c^\infty(\mathbb{R}^n; \bigwedge^\ell \mathbb{R}^n) \) with \(df = 0 \), one has

\[
\|f\|_{\dot{F}^{-s,p}_q} \leq C \|f\|_{L^1}.
\]

Proof. The proposition will be proved by downward induction. The proposition is true for \(\ell = n-1 \) by Proposition 2.1. Assume now that it holds for \(\ell + 1 \), and let \(f \in C_c^\infty(\mathbb{R}^n; \bigwedge^\ell \mathbb{R}^n) \). Since \(df \wedge dx_i = 0 \), Proposition 2.1 is applicable and

\[
\|f\|_{\dot{F}^{-s,p}_q} \leq \sum_{i=1}^{n} \|f \wedge dx_i\|_{\dot{F}^{-s,p}_q} \leq C \sum_{i=1}^{n} \|f\|_{L^1} = Cn \|f\|_{L^1}. \tag*{\Box}
\]

A useful corollary of the previous proposition is

Corollary 2.3. For every \(s \in (0, 1) \), \(p > 1 \) with \(\frac{1}{p} + \frac{s}{n} = 1 \), \(q > 1 \) and \(1 \leq \ell \leq n-1 \), there exists \(C > 0 \) such that for every \(f \in C_c^\infty(\mathbb{R}^n; \bigwedge^\ell \mathbb{R}^n) \) with \(df = 0 \), one has

\[
\|f\|_{B_q^{-s,p}} \leq C \|f\|_{L^1}.
\]

Proof. This follows from classical embeddings between Besov and Lizorkin–Triebel spaces; see the proof of Theorem 2.1 below. \(\Box \)
3. Proofs of the main results

We begin by proving Theorem 2:

Proof of Theorem 2: To fix ideas, assume that $2 \leq \ell \leq n - 1$. Recall that one has

$$u = d(K*(\delta u)) + \delta(K*(du)),$$

where the Newton kernel is defined by $K(x) = \frac{\Gamma(\frac{\ell}{2})}{2\pi^{\frac{n}{2}}|x|^{n-\ell}}$. By the classical elliptic estimates for Lizorkin–Triebel spaces,

$$\|K*(\delta u)\|_{\dot{F}^{s+1}_{p,q}} \leq C\|\delta u\|_{\dot{F}^{s-1}_{p,q}}$$

and

$$\|K*(\delta u)\|_{\dot{F}^{s+1}_{p,q}} \leq C\|\delta u\|_{\dot{F}^{s-1}_{p,q}}.$$

Now, since $d(\delta u) = 0$, Proposition 2.2 is applicable and yields

$$\|K*(du)\|_{\dot{F}^{s+1}_{p,q}} \leq C\|\delta u\|_{L^1}.$$

Since $\delta(\delta u) = 0$, one can by the Hodge duality between d and δ treat $\|K*(du)\|_{\dot{F}^{s+1}_{p,q}}$ similarly.

□

We can now deduce Theorem 1 from Theorem 2:

Proof of Theorem 1: First assume that $q \geq p$. Then one has

$$\|u\|_{\dot{B}^{s}_{r,q}} \leq C\|u\|_{\dot{F}^{s}_{p,q}},$$

and Theorem 1 follows from Theorem 2. Otherwise, if $q < p$, then by the embedding theorems of Besov spaces,

$$\|u\|_{\dot{B}^{s}_{r,q}} \leq C\|u\|_{\dot{B}^{r}_{q,q}} = C\|u\|_{\dot{F}^{r}_{q,q}}$$

with $r = s + n(\frac{1}{q} - \frac{1}{p})$ and Theorem 1 also follows from Theorem 2.

□

We finish with the proof of Theorem 3. It relies on the

Lemma 3.1. For every $s > 0$, $p > 1$ and $q > 1$ with $sq < n$ and

$$\frac{1}{p} = \frac{1}{q} - \frac{s}{n},$$

there exists $C > 0$ such that for every $u \in C^\infty_c(\mathbb{R}^n)$,

$$\|u\|_{L^{p,s}} \leq C\|u\|_{\dot{F}^{s}_{p,q}}.$$

Proof. One has

$$u = I_s * ((-\Delta)^{\frac{s}{2}}u),$$

where the Riesz kernel I_s is defined for $x \in \mathbb{R}^n$ by

$$I_s(x) = \frac{\Gamma(\frac{n-s}{2})}{\pi^{\frac{n}{2}}2^s\Gamma(\frac{s}{2})|x|^{n-s}}.$$

One has then by Sobolev inequality for Riesz potentials in Lorentz spaces of R. O’Neil [7] (see also e.g. [15, Theorem 2.10.2]),

$$\|u\|_{L^{r,p}} \leq C\|(-\Delta)^{\frac{s}{2}}u\|_{L^p}.$$

One concludes by noting that $\|(-\Delta)^{\frac{s}{2}}u\|_{L^p}$ and $\|u\|_{\dot{F}^{s}_{p,q}}$ are equivalent norms [10, Theorem 2.3.8 and section 5.2.3].

□

Proof of Theorem 3: Choose s so that (5) holds with $p = \frac{n}{n-\frac{s}{n}}$. Since $\frac{1}{q} - \frac{s}{n} = 1 - \frac{1}{n}$, one can combine Theorem 2 and Lemma 3.1 to obtain the conclusion.

□
References

[1] G. Bourdaud, *Calcul fonctionnel dans certains espaces de Lizorkin-Triebel*, Arch. Math. (Basel) 64 (1995), no. 1, 42–47.
[2] J. Bourgain and H. Brezis, *New estimates for the Laplacian, the div-curl, and related Hodge systems*, C. R. Math. Acad. Sci. Paris 338 (2004), no. 7, 539–543.
[3] ______. *New estimates for elliptic equations and Hodge type systems*, J. Eur. Math. Soc. (JEMS) 9 (2007), no. 2, 277–315.
[4] S. Chanillo and J. Van Schaftingen, *Subelliptic bourgain-brezis estimates on groups*, to appear in Math. Res. Lett.
[5] L. Lanzani and E. M. Stein, *A note on div curl inequalities*, Math. Res. Lett. 12 (2005), no. 1, 57–61.
[6] I. Mitrea and M. Mitrea, *A remark on the regularity of the div-curl system*, Proc. Amer. Math. Soc. 137 (2009), 1729–1733.
[7] R. O'Neil, *Convolution operators and L(p, q) spaces*, Duke Math. J. 30 (1963), 129–142.
[8] J. Peetre, *Espaces d’interpolation et théorème de Soboleff*, Ann. Inst. Fourier (Grenoble) 16 (1966), no. fasc. 1, 279–317.
[9] T. Runst and W. Sickel, *Sobolev spaces of fractional order, Nemytskij operators, and nonlinear partial differential equations*, de Gruyter Series in Nonlinear Analysis and Applications, vol. 3, Walter de Gruyter & Co., Berlin, 1996.
[10] H. Triebel, *Theory of function spaces*, Monographs in Mathematics, vol. 78, Birkhäuser Verlag, Basel, 1983.
[11] J. Van Schaftingen, *Estimates for L¹-vector fields*, C. R. Math. Acad. Sci. Paris 339 (2004), no. 3, 181–186.
[12] ______. *A simple proof of an inequality of Bourgain, Brezis and Mironescu*, C. R. Math. Acad. Sci. Paris 338 (2004), no. 1, 23–26.
[13] ______. *Function spaces between BMO and critical Sobolev spaces*, J. Funct. Anal. 236 (2006), no. 2, 490–516.
[14] ______. *Estimates for L¹ vector fields under higher-order differential conditions*, J. Eur. Math. Soc. (JEMS) 10 (2008), no. 4, 867–882.
[15] W. P. Ziemer, *Weakly differentiable functions*, Graduate Texts in Mathematics, vol. 120, Springer-Verlag, New York, 1989, Sobolev spaces and functions of bounded variation.

Université Catholique de Louvain, Département de Mathématique, Chemin du Cyclotron 2, 1348 Louvain-la-Neuve, Belgium
E-mail address: Jean.VanSchaftingen@uclouvain.be