Star-Formation Rates of Galaxies

Star-formation is one of the key processes that shape the current state and evolution of galaxies. This volume provides a comprehensive presentation of the different methods used to measure the intensity of recent or ongoing star-forming activity in galaxies, discussing their advantages and complications in detail. It includes a thorough overview of the theoretical underpinnings of star-formation rate indicators, including topics such as stellar evolution and stellar spectra, the stellar initial mass function, and the physical conditions in the interstellar medium. The authors bring together in one place detailed and comparative discussions of traditional and new star-formation rate indicators, star-formation rate measurements in different spatial scales, and comparisons of star-formation rate indicators probing different stellar populations, along with the corresponding theoretical background. This is a useful reference for students and researchers working in the field of extragalactic astrophysics and studying star-formation in local and higher-redshift galaxies.

Andreas Zezas is Professor at the University of Crete. He studies the X-ray emission from galaxies and its connection with their current and past star-forming activity. He has co-authored over 200 refereed publications and has been awarded an ERC Consolidator grant.

Véronique Buat is Professor of Astrophysics at Aix-Marseille University and Senior Member of the Academic Institute of France (IUF). She works on large multi-wavelength galaxy surveys and develops models to study star formation and interstellar obscuration from the local to the distant universe.
Star-Formation Rates of Galaxies

Edited by

ANDREAS ZEZAS
University of Crete

VÉRONIQUE BUAT
Aix-Marseille University
Contents

List of Figures ix
List of Tables xii
List of Contributors xiii
Preface xv

Part I Background 1

1 Introduction 3
SAMUEL BOISSIER AND GIULIA RODIGHIERO
1.1 Star Formation in the Context of Galaxy Evolution 3
1.2 Definitions 4
1.3 Measuring Star-Formation Rates 5
1.4 Star-Formation ‘Laws’ 7
1.5 The Star-Formation Rate History of Galaxies 13

2 The Initial Mass Function of Stars and the Star-Formation Rates of Galaxies 25
PAVEL KROUPA AND TEREZA JERABKOVA
2.1 Introduction 25
2.2 Can the Initial Mass Function Be Measured? 27
2.3 What Is the Shape of the Initial Mass Function? 28
2.4 What Is the Mathematical Nature of the Initial Mass Function? 29
2.5 Does the Initial Mass Function Vary? 36
2.6 Is the Initial Mass Function of a Simple Stellar Population Equal to That of a Composite Population? 40
2.7 Implications for the SFRs of Galaxies 50
2.8 Conclusion 53

3 Stellar Populations, Stellar Evolution, and Stellar Atmospheres 67
J. J. ELDREDGE AND E. R. STANWAY
3.1 Introduction 67
3.2 Stellar Evolution 67
Contents

3.3 Stellar Atmospheres 74
3.4 Principles of Stellar Population and Spectral Synthesis 77
3.5 Existing Population Synthesis Models 83
3.6 Further Considerations 85
3.7 Looking to the Future . . . 88

4 Dust Extinction, Attenuation, and Emission 96
KARL D. GORDON
4.1 Introduction 96
4.2 Extinction 96
4.3 Attenuation 100
4.4 Emission 104
4.5 Recommendations – Resolved Stellar Populations 107
4.6 Recommendations – Integrated Observations 107

Part II SFR Measurements 113

5 Star-Formation Rates from Resolved Stellar Populations 115
JOHN. S. GALLAGHER III, ANDREW COLE, AND ELENA SABBI
5.1 Introduction 115
5.2 Brief Historical Overview 116
5.3 Star-Formation Rates 118
5.4 Lifetime Star-Formation Histories 127
5.5 Future Work 134

6 Star-Formation Measurements in Nearby Galaxies 145
DANIELA CALZETTI
6.1 Conditions for a Reliable Star-Formation Rate Indicator 145
6.2 Star-Formation Rates of Star-Forming Regions 146
6.3 Star-Formation Rates within Galaxies 154
6.4 Summary 155

7 Continuum and Emission-Line Star-Formation Rate Indicators 159
MÉDÉRIC BOQUIEN AND DANIEL DALE
7.1 Observing Star Formation in Galaxies 159
7.2 Theoretical Considerations 161
7.3 Observational Constraints 176
7.4 Summary 179

8 Star-Formation Rates from Spectral Energy Distributions of Galaxies 184
DENIS BURGARELLA
8.1 Introduction 184
8.2 Why Spectral Energy Distributions to Estimate the Star-Formation Rate? 185
Contents

8.3 What Information Can Be Extracted from the Spectral Energy Distribution? 189
8.4 How to Estimate the Quality of the Fits and the Physical Parameters Associated to the Star Formation? 193
8.5 What Kind of Star-Formation History? 195
8.6 Codes and Ingredients 197

9 Modelling the Spectral Energy Distribution of Star-Forming Galaxies with Radiative Transfer Methods 204
Cristina Popescu
9.1 Introduction 204
9.2 The Propagation of Starlight in Star-Forming Galaxies 206
9.3 Main Ingredients 207
9.4 Geometries for Stars and Dust 208
9.5 Calculating the SED of Galaxies 210
9.6 Applications of Radiative-Transfer Modelling: Fitting the SEDs of Galaxies and Measuring Their SFRs 212
9.7 Comparison between Radiative-Transfer Models and Phenomenological Models 218
9.8 Conclusion 219

10 Measuring the Star-Formation Rate in Active Galactic Nuclei 225
Brent Groves
10.1 Introduction 225
10.2 The Physics of an AGN and Its Emission 226
10.3 X-ray Identification 228
10.4 Ultraviolet and Optical Continuum 228
10.5 Emission Lines 229
10.6 Mid-Infrared Emission 232
10.7 Far-Infrared Emission 234
10.8 Radio Continuum 235
10.9 Summary 236

11 High-Energy Star-Formation Rate Indicators 243
Andreas Zezas
11.1 Introduction 243
11.2 X-ray Emission from Galaxies 243
11.3 Scaling Relations between X-ray Emission and Stellar Populations 247
11.4 X-ray Binary Luminosity Functions 254
11.5 Age and Metallicity Dependence of X-ray Binary Formation Efficiency and Luminosity Functions 255
11.6 X-ray Binary Population Synthesis Models 259
11.7 X-ray Emission as SFR Indicator: Promise and Complications 260
viii

Contents

11.8 Supernovae and Supernova Remnants
11.9 γ-ray Emission and Star Formation
11.10 γ-ray Bursts as Star-Formation Rate Probes
11.11 Gravitational Waves as Star-Formation Rate Probes
11.12 Summary

Index
Figures

Colour versions of many figures can be found in the ‘Resources’ tab for this book on the publisher’s website, www.cambridge.org/galaxies.

1.1 Classical and dynamical Schmidt law (slope 1.4) obtained by combining entire galaxies, centers of galaxies, and circumnuclear starbursts
1.2 Local star-formation laws observed in few 100-parsec pixel scales for the HI, H\textsubscript{2}, and total gas
1.3 Compilation of published star-formation laws at low and high redshifts
1.4 Top panel: SFR–M\textsubscript{star} plane for three galaxy modes: quenched galaxies, main-sequence galaxies, and starburst galaxies
 Bottom panel: Evolution of sSFR as a function of redshift
1.5 Summary of the episodes that a galaxy could experience along its evolution on the M\textsubscript{star}–SFR plane
1.6 The history of cosmic star formation
2.1 The m\textsubscript{max}, M\textsubscript{fcl} data
2.2 \(\alpha_3\) as a function of density and metallicity
2.3 IGIMF in dependence of the SFR
2.4 \(\alpha_3\) as a function of the SFR
2.5 The IGIMF correction factor to SFR_{H\alpha}
3.1 Hertzsprung-Russel diagrams showing the evolutionary tracks for different mass stars and how adding new physics changes these models
3.2 Schematic map of the relationship between stellar mass and lifetime, indicating SFR indicator contributions from different single-star populations
3.3 The timescales required for the flux in selected SFR indicators to reach a steady state in the binary population synthesis case, assuming a constant SFR and at four different metallicities
4.1 \(R(V)\) and \(f_A\) dependent extinction curve model
4.2 Mixture of two stars with different optical depths
4.3 DIRTY attenuation curves with Calzetti law
4.4 Greyer attenuation curves with increasing amounts of dust
List of Figures

Figure	Description	Page
4.5	Equilibrium and non-equilibrium emission example	105
4.6	DirtyGrid SEDs	106
5.1	*Top:* An example of the age layering of composite stellar population derived from isochrones.	
 Right: Example of an observed Hess diagram | 122 |
5.2	Hess diagrams from HST/LEGUS stellar photometry of the Magellanic galaxy NGC 4449	125
5.3	Diagrams illustrating results from SFHs derived by fitting models to Hess diagrams obtained with HST	132
5.4	SFR versus time for the wider 30 Doradus region in the Large Magellanic Cloud based on a spectroscopic survey of massive stars	135
6.1	SFR calibration as a function of the size of the region over which the SFR indicator has been calibrated	150
6.2	Spectral energy distribution of a representative ∼500 parsec region with a SFR of 1 M⊙ yr⁻¹	151
7.1	Evolution with time of the logarithmic ratio of Hα-to-FUV flux as a function of IMF slope	163
7.2	Cumulative fraction of the emission in star-formation tracing bands contributed by stars younger than a certain age	169
7.3	Evolution with time of the luminosity at different wavelengths and for different metallicities normalized to the luminosity at Z = 0.02 as a function of time	174
7.4	Evolution with time of the ratio of the luminosity at different wavelengths with and without rotation of a quasi-instantaneous burst	175
7.5	Evolution with time of the ratio of the luminosity with and without binary evolution of a single stellar population	176
8.1	Illustration of physical processes contributing in galaxy SEDs	186
8.2	Fit of the SED of the M82 galaxy showing the contribution of the different emission components	188
8.3	Compilation of galaxy SEDs	189
8.4	Comparison of SFRs of star-forming galaxies derived from SED fitting to hybrid SFRs	190
8.5	Age-dust degeneracy when using broad-band data	191
8.6	Comparison between SFRs from hydrodynamical simulations and SFR estimations using single photometric bands	192
8.7	Comparison of parameters estimated by SED fitting for a catalogue of artificial galaxies	194
8.8	Variation of the SFR with time for galaxies of type E, S0, and Sa	196
8.9	Main Sequence relation from data in the GOODS-South field	197
8.10	Flowchart of CIGALE	199
8.11	SED fit of the M82 galaxy SED with CIGALE	200
9.1	The observed and modelled SED of the edge-on spiral galaxy NGC891	214
List of Figures

9.2 Examples of model fits of the Andromeda galaxy to observations in selected wavebands 216
9.3 Examples of model dust and PAH SEDs 217
10.1 The mean spectral energy distribution of X-ray selected Type-I AGN from the COSMOS field along with the Radio Loud and Radio Quiet Quasars 227
10.2 The BPT line ratio diagnostic diagram of SDSS galaxies and individual 1-arcsec regions of the Seyfert-II galaxy NGC 5728 231
11.1 Top panel: Scaling relation between X-ray luminosity in the 0.5–8.0 keV and SFR. Bottom panel: Scaling relation between the hard X-ray luminosity (12–25 keV) per SFR against the specific SFR 251
11.2 Redshift evolution of the X-ray luminosity – SFR scaling relation 252
11.3 X-ray scaling relations with SFR and sSFR in sub-galactic scales 254
11.4 Evolution of the X-ray luminosity of a population of X-ray binaries formed in an instantaneous burst of star-formation as a function of time since their formation 256
11.5 The evolution of the formation rate of HMXBs in the Small Magellanic Cloud as function of time 257
11.6 The evolution of the X-ray luminosity per unit (parent) stellar mass in M51 258
11.7 Scaling relation between the γ-ray burst and total-IR emission (or SFR) for a sample of nearby galaxies. 265
Tables

5.1 Basic stellar star-formation rate/history tracers
6.1 Non-linear infrared SFR indicator calibrations
6.2 Linear infrared SFR indicator calibrations
6.3 Multi-band SFR indicator calibrations
7.1 Calibration coefficients k to estimate the SFR with a relation of the form $\log SFR = \log L + k$
11.1 Scaling relations between X-ray emission, SFR, and stellar mass
Contributors

Samuel Boissier
Laboratoire d’Astrophysique de Marseille (LAM), CNRS, Aix-Marseille University, France

Médéric Boquien
Astronomy Centre (CITEVA), University of Antofagasta, Chile

Denis Burgarella
Laboratoire d’Astrophysique de Marseille (LAM), CNRS, Aix-Marseille University, France

Daniela Calzetti
Department of Astronomy, University of Massachusetts, Amherst, USA

Andrew Cole
School of Natural Sciences, University of Tasmania, Hobart, Australia

Daniel Dale
Department of Physics and Astronomy, University of Wyoming, Laramie, USA

J. J. Eldridge
Department of Physics, University of Auckland, New Zealand

John. S. Gallagher III
Department of Astronomy, University of Wisconsin–Madison, USA

Karl D. Gordon
Space Telescope Science Institute, Baltimore, USA
Sterrenkundig Observatorium, Ghent University, Ghent, Belgium

xiii
List of Contributors

Brent Groves
International Centre for Radio Astronomy Research, University of Western Australia, 7 Fairway, Crawley, WA 6009, Australia

Tereza Jerabkova
ESTEC/SCI-S
Keplerlaan 1
2200 AG Noordwijk
Netherlands

Pavel Kroupa
Helmholtz Institute for Radiation and Nuclear Physics, Bonn, Germany
Faculty of Mathematics and Physics, Astronomical Institute, Charles University, Prague, Czech Republic

Cristina Popescu
Jeremiah Horrocks Institute, University of Central Lancashire, Preston, UK
Astronomical Institute of the Romanian Academy, Bucharest, Romania

Giulia Rodighiero
Department of Physics and Astronomy “G. Galilei”, University of Padova, Italy

Elena Sabbi
Space Telescope Science Institute, Baltimore, USA

E. R. Stanway
Department of Physics, University of Warwick, Coventry, UK

Andreas Zezas
Department of Physics, University of Crete, Heraklion, Greece
Institute of Astrophysics, Foundation for Research and Technology–Hellas, Heraklion, Greece
Preface

Star formation is one of the main mechanisms of energy production in the universe and one of the key processes that are linked to the evolution of galaxies. Over the past two decades we have witnessed an explosion of data from local and distant galaxies across the entire electromagnetic spectrum. These observations gave us an unprecedented picture of the star-forming activity in galaxies, the parameters it depends on (e.g. gas content, physical conditions in the interstellar medium, dynamical state of galaxies), and its evolution over cosmic time. The common denominator in all these studies is the use of diverse techniques for quantifying the recent star-forming activity in the different environments.

Indeed, the availability of a wealth of data in combination with advances in stellar astrophysics, astrophysics of the interstellar medium and radiative transfer modelling, and numerical simulations has led to the development of a variety of methods for measuring the intensity of star-forming activity using proxies such as direct detection of stars or their remnants, direct measurement of their stellar light, and measurements of the reprocessed stellar emission by the interstellar medium.

The purpose of this book is to provide an up-to-date and comprehensive review of the methods used to measure the intensity of star-forming activity in galaxies (their star-formation rates). However, a presentation of these relevant methods would be incomplete without discussing their astrophysical foundation, and the different factors that affect their precision and accuracy.

Therefore, in Part I of this book we present a detailed account of the stellar Initial Mass Function, stellar populations and their evolution, and absorption of stellar radiation by the interstellar medium. Special care is taken to discuss how these factors influence our measurements of star-formation rates. In Part II of this volume, we present the different methods for measuring star-formation rates: resolved stellar populations, broad-band photometry, emission lines, spectral energy distributions, and emerging indicators such as high-energy emission and gravitational-wave sources. Special care is taken to discuss the advantages and limitations of different indicators, as well as their cross-calibration in galaxy-wide and sub-galactic scales.

Although the subject of this volume is rather technical (but relevant to most aspects of extragalactic astrophysics), we tried to give an overview of the latest advances in the field,
xvi

Preface

while providing the relevant introductory material. The book is written at the advanced undergraduate/starting graduate level, expecting from the reader familiarity with astrophysics terminology, and at least basic knowledge of stellar evolution and astrophysics of the interstellar medium and galaxies. We hope that this volume will be a useful resource for graduate students and researchers who would like to learn more about how we can measure one of the most characteristic properties of galaxies, and the factors affecting these measurements.

We would like to thank all the contributors in this volume for their excellent presentation of the different topics relevant to the measurement of star-forming activity in galaxies. Also, we would like to thank the Cambridge University Press editorial staff for their help in the preparation of the manuscript and their patience during the lengthy editing process.