Analysis of polypeptide expression in benign and malignant human breast lesions: down-regulation of cytokeratins

B Franzén¹, S Linder², AA Alaiya³, E Eriksson¹, K Uruy¹, T Hirano¹, K Okuzawa³ and G Auer¹

¹Unit of Cell and Molecular Analysis and ²Radiumhemmet’s Research Laboratory, Department of Oncology and Pathology, Karolinska Institute and Hospital, S-171 76 Stockholm, Sweden; ³Department of Surgery, Tokyo Medical College, Nishishinjuku, Shinjukuku, Tokyo, Japan.

Summary Malignant progression of tumour cells is caused by the accumulation of genetic defects, which when combined will generate a large phenotypic diversity. Simultaneous quantitation of a large number of gene products in tumour cells is desirable, but difficult to achieve. We have here quantitatively the levels of a number of abundant polypeptides in human breast carcinoma cells using two-dimensional gel electrophoresis (2-DE; PDQUEST). For this purpose, tumour cells were prepared from the tissue of 17 breast carcinomas. Fibroadenoma tissue was used as reference for benign cells. An increase of the spot density of the PCNA polypeptide was observed in rapidly proliferating tumour cells, confirming the validity of the procedures used. In the set of 24 polypeptide spots with known identity, decreases in cytokeratin and tropomyosin levels were observed. The levels of all cytokeratin forms resolved (CK7, CK8, CK15 and CK18) were significantly lower in carcinomas than in fibroadenomas. The levels of tropomyosin 2 and 3 were lower in carcinomas than in fibroadenomas. In contrast, the levels of some members of the stress protein family (pHSP60, HSP90 and calcitelin) were higher in carcinomas. Furthermore, changes in the expression of lactate dehydrogenase and GT-1, but not in nm23, were observed. We conclude that simultaneous analysis of multiple polypeptides in human carcinomas can be achieved by 2-DE and may be useful in prognostic studies, and that malignant progression of breast carcinomas results in the decreased expression of cytokeratin polypeptides. This phenomenon must be considered in studies where cytokeratins are used as markers to identify the epithelial cell compartment in breast carcinomas.

Keywords: two-dimensional gel electrophoresis; human breast tumour; cytokeratin

Breast cancer is both biologically and clinically a heterogeneous disease. Although presenting without evidence of disseminating cancer, a proportion of women will die rapidly in metastatic disease. In spite of enormous efforts in breast cancer research, three main problems remain: (1) to objectively and reliably select those premalignant lesions which, if untreated, will progress to invasive malignancy; (2) to objectively and reliably determine the aggressiveness of an individual tumour and (3) to analyse cellular properties which allow highly individualised tumour-specific treatment.

Two-dimensional gel electrophoresis (2-DE) is a technique which can be used to obtain qualitative and quantitative information on protein expression in cells. In a recent update of the two-dimensional protein database, 1082 proteins were reported to be identified by name (Celis et al., 1995). Identification is aided by recent progress in microsequencing, including mass spectrophotometry. We have here explored 2-DE to characterise polypeptide profiles in human breast carcinomas. Major polypeptides in the gel profiles were identified (mostly cytoskeletal and stress-related proteins) and quantified. We describe alterations in the expression of some of these polypeptides. We show that the levels of several cytokeratin polypeptides are lower in carcinomas than in fibroadenomas. These results suggest that 2-DE can be a valuable future tool for the characterisation of gene expression in human malignant tumours.

Materials and methods

Tumour tissue samples

All samples, described in Table I, were obtained shortly after resection and processed essentially as described below (Franzén et al., 1993). Cells were purified from non-necrotic tumour tissue within 40 min after resection, and all steps were performed on ice in the presence of protease inhibitors. Each resected tumour was placed on ice, cut in the middle and one (or two) macroscopically representative and non-necrotic area was selected for extraction of cells. The surface of a freshly cut tumour was scraped with the dry blade of a sharp scalpel. As previously discussed, tumour cells are more loosely attached to the extracellular matrix than normal cells and will be preferentially extracted. Cells were collected in 1–2 ml of ice-cold medium (RPMI-1640) supplemented with 5% calf serum/protease inhibitors (0.2 mM phenylmethylsulphonil fluoride and 0.83 mM benzamidine). Cell suspensions were first filtered using a 250 μm filter directly followed by a 100 μm nylon mesh to remove tissue fragments. Cell suspensions were then collected in new tubes and carefully underlaid with 1.0–1.5 ml of ice-cold Percoll phosphate-buffered saline (PBS) solution (54.7%, density 1.07 g ml⁻¹) and finally centrifuged for 10 min at 1000 g and 4°C. The interface cell layers were washed with PBS and pelleted. The wet weight of each cell pellet was recorded and cells were then stored at −80°C. The final preparation of cell pellets was performed according to Linder et al. (1979) and Garrel et al. (1979), with some modifications (Franzén et al., 1993). Adjacent material was fixed in 4% buffered formalin and embedded in paraffin.

Characterisation of formalin-fixed specimens

Malignant tumours were subdivided into two subgroups on the basis of proliferative index and DNA ploidy assessments. Proliferation index was determined by immunohistochemical staining using the MIB-1 antibody (Immunotech). The fraction of positive cells was scored and classified as 'low' (<20%), 'intermediate' (20–50%) and 'high' (>50%). Histopathology (using haematoxylin–eosin-stained sections) was performed by one experienced pathologist and classified according to WHO. The nuclear DNA content was assessed using image cytometric analysis of Feulgen-stained

Correspondence: B Franzén
Received 18 March 1996; revised 14 June 1996; accepted 2 July 1996

© 1996 Stockton Press All rights reserved 0007-0920/96 $12.00
cells. Tumours with a single stem cell in the diploid region were classified as diploid, and tumours with pronounced scattered DNA values exceeding the tetraploid region were classified as aneuploid (Auer et al., 1980). Normal lymphocytes were used as internal 2c reference cells. Tumours with unclear classification were excluded from the study (12 cases).

Electrophoresis

2-DE was performed by standard procedures as described previously (Franzén et al., 1993; Anderson et al., 1992). Resolyte (2%, pH 4–8; BDH) was used for isoelectric focusing, and 10–13% linear gradient sodium dodecyl sulphate (SDS) polyacrylamide gels in the second dimension. Gels were stained with silver nitrate according to standard procedures.

Identification of polypeptides

A number of polypeptide spots were identified by matching with published maps and/or exchanging samples with other investigators. A rat embryonal fibroblast cell line WT2 (a kind gift from Drs J.P. Garrels and S. Patterson, Cold Spring Harbor, NY, USA) was used for the identification of a number of heat shock and structural proteins. 2-DE maps were prepared from WT2 cells and matched with the REFS2 database (Garrels et al., 1989). 2-DE maps were prepared from pre-B-ALL cells (clinical sample of acute lymphatic leukaemia) and subsequently analysed by Dr. SM Hanash (University of Michigan, Ann Arbor, MI, USA). In addition, 2-DE maps were prepared from MRC-5 cells (cell lysate provided by JE Celis) and analysed by JE Celis (Aarhus University, Denmark).

The identity of some polypeptides was confirmed by purification–enrichment. Troponysin was purified as described by Matsumura et al. (1985) from W138 fibroblasts. The identification of GT(9) was confirmed by an in vitro drug resistance experiment, where vincristine-resistant human K562 cells (cell pellets provided by S Vitols, Karolinska Institutet, Stockholm) were found to overexpress the polypeptide which had tentatively been identified as GT(9). Cytokeratins were extracted from MCF-7 cell lysates (Paulin et al., 1980). Proliferating cell nuclear antigen (PCNA) was identified by immunoblotting (PC10 MAb, Dakopatt) using a semi-dry system (Multiphor II Nova Blot, Pharmacia Biotech AB) and electrochemiluminescence detection (Amersham).

Scanning and image analysis

2-DE gels were scanned at 100 μm resolution using Molecular Dynamics laser densitometer. Data were analysed using the PDQuest software (Garrels et al., 1994) (Pharmacia Biotech, Uppsala, Sweden). A synthetic 'identification reference pattern' including at least all identified spots was constructed. In subsequent analyses, polypeptide spots were matched to spots in the reference pattern using the PDQuest software (construction of a 'matchset'). Background was subtracted, peaks located and the individual polypeptide quantities were expressed as p.p.m. of the total integrated optical density. Three groups were constructed within the matchset: benign lesions, DNA-diploid/low-proliferative tumours and DNA-aneuploid/high-proliferative tumours. The level of polypeptide expression in each group was calculated as the mean value (±standard deviation) of normalised p.p.m. values. We used the Mann–Whitney non-parametric test for determination of significant differences at the levels of \(P<0.05 \).

Results

Analysis of polypeptide expression in breast cancer lesions

A total of 23 lesions were examined. Of these, six cases were non-malignant (four fibroadenomas) and 17 cases were

Table I Clinical data and characteristics of the samples analysed

Case No.	Histopathological Diagnosis	Patient age (years)	Size (mm)	Histopathological Differentiation*	Proliferation (MIB-1) †	Lymph nodes positive/total
Non-malignant lesions						
141	Normal	–	–	–	ND	–
122	Fibroadenoma	21	20	–	L	–
124	Fibroadenoma	20	20	–	IM	–
127	Hamartoma	32	25	–	L	–
128	Fibroadenoma	32	7	–	L	–
139	Fibroadenoma	20	17	–	IM	–
140	Fibroadenoma	20	50	–	ND	–
DNA-diploid and low-proliferative invasive carcinomas						
012		78	22	M	L	0/4
071		66	14	P	L	0/3
088		78	27	M	L	0/4
119		82	20	W	L	0/11
135		43	16	M	L	0/8
022		49	40	W	L	1/7
065		69	18	M	L	1/9
066		74	17	W	L	1/9
093		72	20	P	L	2/9
DNA-aneuploid and intermediate/high-proliferative invasive carcinomas						
123		41	24	P	H	0/12
126		84	18	P	H	0/7
135		36	25	P	H	0/8
053 #		86	47	P	IM	6
060		78	70	P	H	7/7
080		73	15	P	H	1/4
083		81	20	P	H	4/6
116		78	110	P	IM	8/10

*Histopathological differentiation: P, poor; M, moderate; W, well. †Proliferation (MIB-1): L, low (0–20% positive tumour cells); IM, intermediate (20–50%); H, high (>50%). #Mixed type, mucinous. Distant metastases in the skeleton found. ND = not determined.
Polypeptide expression in human breast lesions
B Franzen et al

Figure 1 Reference 2-DE gel profile assembled from breast carcinomas and MDA-MB-231 breast cells. Acidic polypeptides are to the left. Polypeptides with known identity are encircled. Polypeptides with names within brackets were tentatively identified.

Evaluation of 2-DE gels from non-malignant and malignant breast lesions

Figure 2 shows representative examples of gels derived from a fibroadenoma, a slowly proliferating carcinoma and a rapidly proliferating carcinoma. A 'window' of neutral to acidic proteins in the 25–100 kDa range is shown. Differences in polypeptide expression will be discussed below for various polypeptides of which the identities are known (encircled in Figures 1 and 2). Mean values of spot intensities in different groups of lesions are presented in Table II.

Cell cycle-related proteins

The recorded spot intensity of PCNA (proliferating cell nuclear antigen) was found to reflect the proliferative status of the tumours. PCNA levels were 4.3-fold higher (significant, see Materials and methods) in highly malignant tumours than in non-malignant cells (Table II). The distribution of PCNA levels...
in various samples is shown in Figure 3. Op18 (oncoprotein 18/ stathmin) is a phosphoprotein believed to have a regulatory role in the cell cycle. Op18 could not be detected in eight out of nine slowly proliferating/diploid tumours, but was detected in five out of eight rapidly proliferating/anaploid tumours (Figure 3). Higher Op18 levels were found in non-malignant lesions than in slowly proliferating carcinomas (Table II).

Cytoskeletal proteins

A number of cytoskeletal proteins were identified in the polypeptide maps. These include actin, tropomyosin 1–5, α-actinin, α- and β- tubulin and cytokeratins 7, 8, 15 and 18. Some of these proteins were not well resolved from neighbouring spots, others could not be quantified because of overstaining. The identity of cytokeratin 8 and 18 could be confirmed by extracting cytoskeletal polypeptides from MCF-7 breast carcinoma cells (Figure 4). Cytokeratins 7 and 15 were tentatively identified by their (1) migration properties

Table II Polypeptide expression in breast lesions. The levels of individual polypeptides are expressed as p.p.m. of total polypeptides

Polypeptide	Benign lesions Mean ± s.d. (n = 6)	Levels Diploid/low proliferative lesions Mean ± s.d. (n = 9)	Anaploid/high proliferative lesions Mean ± s.d. (n = 8)
PCNA	90 ± 59	328 ± 218 (1.73)*	821 ± 341 (4.32)*
Op18	77	21 (0.27)	238 (3.09)
Tropomyosin 1 (TM1)	747 ± 285	172 ± 152 (0.23)	503 ± 395 (0.71)
Tropomyosin 2 (TM2)	485 ± 135	50 (0.10)	149 (0.30)
Tropomyosin 3 (TM3)	1419 ± 385	476 ± 251 (0.33)	638 ± 449 (0.45)
Cytokeratin 8 (CK8)	6158 ± 4088	1895 ± 1142 (0.21)	1107 ± 1004 (0.18)
Cytokeratin 18 (CK18)	3685 ± 1603	681 ± 682 (0.18)	751 ± 794 (0.20)
Heat shock protein 27 (hsp27)	1687 ± 828	954 ± 386 (0.56)	2002 ± 1042 (1.19)
Heat shock protein 60 (hsp60)	4120 ± 1111	5068 ± 1498 (1.23)	5574 ± 1521 (1.35)
Hsp60, phosphorylated (phsp60)	1669 ± 750	2401 ± 958 (1.44)	3618 ± 1085 (2.17)
Heat shock protein 73 (hsp73)	3422 ± 936	4473 ± 1998 (1.41)	4964 ± 385 (1.45)
Heat shock protein 90 (hsp90)	658 ± 423	1198 ± 1211 (1.82)	1303 ± 770 (1.98)
Calreticulin (CALR)	7104 ± 2356	7569 ± 3080 (1.07)	11961 ± 7143 (1.68)
Micron-3	3462 ± 855	3769 ± 1830 (1.09)	3313 ± 2196 (0.96)
elf5 A	1027 ± 596	958 ± 1637 (0.93)	946 ± 785 (0.92)
EF1 β	2325 ± 609	2265 ± 801 (0.97)	1604 ± 720 (0.69)
LDH	1622 ± 639	1881 ± 915 (1.16)	1661 ± 710 (1.02)
Annexin V	4005 ± 1013	3320 ± 1767 (0.83)	5051 ± 3566 (1.26)
nm 23	711 ± 159	1008 ± 416 (1.42)	814 ± 391 (1.14)
SOD	1316 ± 857	2074 ± 999 (1.58)	1777 ± 1031 (1.35)
GT(s)	2381 ± 1106	1679 ± 2191 (0.70)	1460 ± 1127 (0.61)

*Fold change relative to the mean value level of benign lesions.
Malignant Overexpression fold increase the material studied genase (1.7-fold) weak, the material GT-7r has been resistance (less than 50%) different in highly malignant cancers. HSP27 levels did not, in contrast, differ between carcinomas and non-malignant cells.

Whereas the levels of HSP60 showed small variations (1.3-fold higher in rapidly proliferating carcinomas), the levels of the phosphorylated form of this gene product, pHSP60, were 2.2-fold increased in rapidly proliferating carcinomas. This increase was statistically significant.

nm23

nm23 (Nucleotide diphosphate kinase) levels have been reported to be low in metastatic cells (Steeg et al., 1993). A weak, but not significant, increase in nm23 levels was preferentially recorded in slow proliferating carcinomas. In the material analysed here, we could not find any association with lymph node status.

Glutathione S-transferase π

GT-π has been implicated in tumour progression and in resistance to chemotherapy (Daniel et al., 1993). In the material studied here, GT-π levels were somewhat lower in malignant cells than in fibroadenomas. This difference was not statistically significant.

Constitutively expressed proteins

The levels of a number of identified proteins did not differ (less than 50% change) between groups. Mitcon3 (mitochondrial), eIF5A (initiation factor 5A), LDH (lactate dehydrogenase form M), annexin V and EF1b (elongation factor 1β) belonged to this category.

Discussion

Analysis of polypeptide profiles in human tumours is not a trivial task. Samples may contain relatively large amounts of protein from other cell types present in the tumours, such as stromal fibroblasts and lymphocytes. Furthermore, massive contamination by serum proteins may preclude large areas of the maps. These problems can be circumvented by purifying viable tumour cells from freshly excised tumours (Franzén et al., 1993). We have studied here the expression of 24 polypeptides with known identity (by name) in breast carcinomas and show that changes in the levels of some of these polypeptides can be demonstrated. As more than 1000 polypeptides have been identified in the human 2-DE map (Celis et al., 1995), it will be possible to make detailed characterisations of changes in gene expression in tumours in the future.

Tumours were classified as slowly proliferating/diploid or rapidly proliferating/aneuploid. Using this classification, we were convinced that the procedures used were sufficiently accurate to detect changes in the levels of proliferation markers. The levels of the PCNA polypeptide were found to increase in parallel with progression from non-malignant lesions to slowly proliferating and then to rapidly proliferating carcinomas. Similarly, oncoprotein 18 levels were 3-fold higher in rapidly growing tumours than in fibroadenomas.

Trask et al. (1990) reported that normal cultured breast epithelial cells produce cytokeratin 5, 6, 7, 14 and 15, whereas tumour cells produce mainly cytokeratin 8, 18 and...
19. We found cytokeratins 7, 8, 15 and 18 to be expressed in fibroadenomas. This result suggests that alterations in cytokeratin expression occur early during neoplastic transformation and is consistent with the finding of low levels of cytokeratin 5 and high levels of cytokeratin 18 in immortalised breast cell lines (Trask et al., 1990). The levels of cytokeratin 7, 8, 15 and 18 were significantly lower in carcinomas than in fibroadenomas. Decreases in cytokeratin immunostaining in breast cancer have been previously described (Wada et al., 1991; Takei et al., 1995; Heatley et al., 1995). Takei et al. (1995) reported that cytokeratin 8 (CK8) staining was negative in 35% of invasive breast carcinomas examined, and that the absence of CK8 correlated with oestrogen receptor negativity. Similarly, Heatley et al. (1995) reported that some carcinomas are negative for cytokeratins 7, 8 or 18. Painé et al. (1992) showed that in vitro transformation of MCF-10A cells with ras-oncogenes decreased the levels of cytokeratin 7, 8, 15 and 16. Our data extend previous reports, as we can demonstrate decreases in cytokeratins in ex vivo tumour cells by measurements of polypeptide levels. We can exclude the possibility that previously reported decreases in immunostaining could be explained by the masking of epitopes or as the result of immunohistochemical artifacts.

Cytokeratins are used as markers to identify breast carcinoma cells in various situations (for a review, see Moll et al., 1991). In two colour multiparametric flow cytometry analyses, the epithelial cell compartment is identified by cytokeratin antibodies, and DNA histograms can be specifically obtained from these cells (Ramaekers et al., 1984; Wingren et al., 1994). MAbs to cytokeratins have been used to detect epithelial tumour cells that have metastasised from primary adenocarcinomas to secondary sites since the bone marrow (Pantel et al., 1993; Harbeck et al., 1994). Pantel et al. (1993) reported that the incidence of metastatic cells in bone marrow was 74% in breast cancer patients known to have macroscopical metastases. Decrease or loss of cytokeratins in carcinomas can potentially be a problem in these types of studies, as the most malignant cells may escape detection.

Deregulation of tropomyosin expression has been shown to contribute to morphological transformation in experimental systems. It was recently suggested that Fos oncoproteins induce deregulation of genes encoding cytoskeleton-associated proteins (Jooss et al., 1995). We have previously observed down-regulation of tropomyosin 1–3 in breast carcinoma tissue (Franzén et al., 1996). In the present study, significant down-regulation was observed for tropomyosin 2 and 3. In one of the tumours, high tropomyosin expression was observed (see Figure 3). Whether tropomyosin in these cells was due to contaminating, non-malignant cells or due to expression in tumour cells is not clear.

Increases in various stress proteins were found in carcinomas, but these were less than 2-fold. HSP-27 has been reported to be overexpressed in 25% of invasive ductal carcinomas, and overexpression in early-stage breast cancer is associated with poor prognosis. In addition to being induced by heat shock, HSP90 may be induced by transformation by ras (Lebeau et al., 1991). HSP90 may also regulate DNA-binding activities of progesterone receptors in breast cancer cells. In previous studies, we observed elevated levels of HSP90 in potentially highly malignant breast tumours and in small-cell lung carcinomas (Okuzawa et al., 1994) using 2-DE.

We conclude from this study that 2-DE can be used to study complex changes in gene expression occurring in tumours. We believe that with the advent of standardised 2-DE techniques and 2-DE data bases, this approach may be a useful complement to other techniques, such as cDNA library screening.

Acknowledgements

We are grateful to Ann Ohlsson, Kicki Svanholm, Birgitta Sundelin and Inga Maurin for technical assistance and Martin Bäckdal, Göran Wallin and Eva Edholm for tumour material. We also thank Sixten Franzén for valuable help with cytological evaluations. This work was supported by Cancerföreningen i Stockholm and by Cancerfonden.

References

ANDERSON NL (1992). Two Dimensional Electrophoresis, Operation of the ISO-DALT System. Large Scale Biology Press: Washington DC.

ANDERSON P, CASPERSSON T AND WALLGREN A. (1980). DNA content and survival in mammmary carcinoma. Anal. Quant. Cytol. Histol., 3, 161 – 165.

CELIS JE, HOLM RASMUSSEN H, GROMOV P, OLSEN E, MADSEN P, LEFFERS H, HONORE B, DEJGAARD K, VORUM H, BACK KRISTENSEN D, OSTBERG M, HANSSØ A, AGARD JENSEN N, CELIS A, BASSE B, LAURIDSEN JB, RATZ GP, ANDERSEN AH, WALBUM E, KJAERGAARD I, ANDERSEN I, PUPPE M, VAN DAMME J AND VANDERKERRCKHOVE J. (1995). The human keratinocyte two-dimensional gel protein database (update 1995): mapping components of signal transduction pathways. Electrophoresis, 16, 2177 – 2240.

DANIEL V. (1993). Glutathione S-transferases: gene structure and regulation of expression. Crit. Rev. Biochem. Mol. Biol., 28, 173 – 207.

FRANZEN B, OKUZAWA K, LINDER S, KATO H AND AUER G. (1993). Non-enzymatic extraction of cells from clinical tumour material for analysis of gene expression by two-dimensional gel electrophoresis. Electrophoresis, 14, 382 – 390.

FRANZEN B, LINDER S, URYU K, ALAIYA AA, HIRANO T, KATO K AND AUER G. (1996). Expression of tropomyosin isoforms in benign and malignant human breast lesions. Br. J. Cancer, 73, 909 – 913.

GARRELS JI (1979). Two-dimensional gel electrophoresis and computer analysis of proteins synthesized by clonal cell lines. J. Biol. Chem., 254, 7961 – 7977.

GARRELS JI, FARRAR JT AND BURWELL CB. (1984). The QUEST system for computer-analyzed two-dimensional gel electrophoresis of proteins. In Two-Dimensional Gel Electrophoresis of Proteins: Methods and Applications. Celis JE and Bravo R. (eds) pp. 37 – 91. Academic Press: New York.

GARRELS JI AND FRANZA BJ. (1989). Transformation-sensitive and growth-related changes of protein synthesis in RFS52 cells. A two-dimensional gel analysis of SV40-, adeno-virus-, and Kirsten murine sarcoma virus-transformed rat cells using the RFS52 protein database. J. Biol. Chem., 264, 5299 – 5312.

HARBECK N, UNTCH M, PACHE L AND EIEMANN W. (1994). Tumour cell detection in the bone marrow of breast cancer patients at primary therapy: results of a 3-year median follow-up. Br. J. Cancer, 69, 566 – 571.

HEATLEY M, MAXWELL P, WHITESIDE C AND TONER P. (1995). Cytokeratin intermediate filament expression in benign and malignant breast disease. J. Clin. Pathol., 48, 26 – 32.

JOOSS KU AND MULLER R. (1995). Deregulation of genes encoding microfilm-associated proteins during Fos-induced morphological transformation. Oncogene, 10, 603 – 608.

LEBEAU J, LE CHALONY C, PROSPERI MT AND GOUBIN G. (1991). Constitutive overexpression of a 89 kDa heat shock protein gene in the HBL100 human mammary cell line converted to a tumorigenic phenotype by the EJ/T24 Harvey-ras oncogene. Oncogene, 6, 1125 – 1132.

LINDER S, BRESKI H AND RINGERTZ NR. (1979). Phenotypic expression in cybrids derived from teratocarcinoma cells fused with myoblast cytoplasts. Exp. Cell Res., 129, 1 – 14.
Polypeptide expression in human breast lesions

B. Franzen et al.

MATSUMURA F AND YAMASHIRO-MATSUMURA S. (1985). Purification and characterization of multiple isoforms of tropomyosin from rat cultured cells. J Biol. Chem., 260, 13851–13859.

MOLL R. (1992). Molecular diversity of cytokeratins: significance for cell and tumor differentiation. Acta Histochem., 41 (Suppl.), 117–127.

OKUZAWA K, FRANZÉN B, LINDHOLM J, LINDER S, HIRANO T, BERGMAN T, EBIHARA Y, KATO H AND AUER G. (1994). Characterization of gene expression in clinical lung cancer materials by two-dimensional polyacrylamide gel electrophoresis. Electrophoresis, 15, 382–390.

PAINE TM, FONTANINI G, BASOLO F, GERONIMO I, ELLIOTT JW AND RUSSO J. (1992). Mutated c-Ha-ras oncogene alters cytokeratin expression in the human breast epithelial cell line MCF-10A. Am. J. Pathol., 140, 1483–1488.

PANTEL K, SCHLIMOK G, BRAUN S, KUTTER D, LINDEMANN F, SCHALLER G, FUNKE I, IZBICKI JR AND RIETHMULLER G. (1993). Differential expression of proliferation-associated molecules in individual micrometastatic carcinoma cells. J. Natl Cancer Inst., 85, 1419–1424.

PAULIN D, FOREST N AND PERREAU J. (1980). Cytoskeletal proteins used as marker of differentiation in mouse teratocarcinoma cells. J. Mol. Biol., 144, 95–101.

RAMAEKERS FC, BECK H, VOOUS GP AND HERMAN CJ. (1984). Flow-cytometric analysis of mixed cell populations using intermediate filament antibodies. Exp. Cell Res., 153, 249–253.

STEEG PS, DE LA ROSA A, FLATOW U, MACDONALD NJ, BENEDICT M AND LEONE A. (1993). Nm23 and breast cancer metastasis (Review). Breast Cancer Res. Treat., 25, 175–187.

TAKEI H, JINO Y, HORIGUCHI J, KANOH T, TAKAO Y, OYAMA T AND MORISHITA Y. (1995). Immunohistochemical analysis of cytokeratin 8 as a prognostic factor in invasive breast carcinoma. Anticancer Res., 15, 1101–1105.

TRASK DK, BAND V, ZAJCHOWSKI DA, YASWEN P, SUH T AND SAGER R. (1990). Keratins as markers that distinguish normal and tumor-derived mammary epithelial cells. Proc. Natl Acad. Sci. USA, 87, 2319–2323.

WADE T, YASUTOMI M, YAMADA K, HASHIMURA K, KUNIKATA M, TANAKA T, HUANG JW AND MORI M. (1991). Heterogeneity of keratin expression and actin distribution in benign and malignant mammary diseases. Anticancer Res., 11, 1983–1993.

WINGREN SÖS AND NORDENSKJÖLD B. (1994). Flow cytometric analysis of S-phase fraction in breast carcinomas using gating on cells containing cytokeratin. South East Sweden Breast Cancer Group. Br. J. Cancer, 69, 546–549.