Short communication

Graphene-based contrast agents for photoacoustic and thermoacoustic tomography

Gaurav Lalwani a,1, Xin Cai b,1, Liming Nie b, Lihong V. Wang b,2,*, Balaji Sitharaman a,3,**

a Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794-5281, USA
b Optical Imaging Laboratory, Department of Biomedical Engineering, Washington University in St. Louis, Campus Box 1097, One Brookings Drive, St. Louis, MO 63130, USA

1. Introduction

Hybrid imaging modalities, such as photoacoustic (PA) tomography (PAT) [1] and thermoacoustic (TA) tomography (TAT) [2], have been developed for different applications. PAT/TAT combines advantages of pure ultrasound and pure optical imaging/radio frequency (rf), providing good spatial resolution, good penetration depth, and high soft-tissue contrast. These imaging modalities are based on detection of acoustic waves from an object that absorbs electromagnetic (EM) energy (laser in PAT and microwave in TAT). Endogenous molecules, such as hemoglobin, melanin, and water/iodine, can absorb EM energy, producing acoustic waves. High resolution PAT and/or TAT enable functional brain imaging [3], breast cancer detection [4], melanoma detection [5], tumor angiogenesis [6], and functional molecular imaging [2]. However, in cases when endogenous molecules are insufficient, exogenous contrast agents (CAs) are developed and administered. Contrast-enhanced PAT has been applied in lymph node mapping [7], multiscale imaging of tissue engineering scaffolds [8,9], and molecular, cellular, and functional imaging [10,11]. A variety of CAs for PAT have been reported, such as, carbon nanoparticles [7,12–14], metallic nanoparticles [11,15–17], and organic dyes [18]. In comparison to PAT, fewer reports have focused on development of CAs for TAT. Superparamagnetic iron oxide nanoparticles, single- and multi-walled carbon nanotubes (SWCNT and MWCNT), and air-filled microbubbles have been investigated as CAs for TAT [2,13,19,20].

In this work, we investigate efficacy of graphene nanoparticles, prepared by two widely used methods ((1): longitudinal unzipping method [21], (2): modified Hummer’s method of oxidation [22]) as CAs for PAT and TAT. We compare PA and TA signal amplitudes of oxidized single- and multi-walled graphene oxide nanoribbons (O-SWGNRs and O-MWGNRs), and oxidized graphene nanoplatelets (O-GNPs) to pristine SWCNTs, pristine MWCNTs, pristine graphite microparticles (GMPs), and oxidized graphite microparticles (O-GMP).
were used as starting materials in the preparation of O-SWGNRs, O-MWGNRs, and O-GNPs, respectively. O-GMPs are intermediate product formed during the synthesis of O-GNPs. These nanomaterials were characterized by Raman spectroscopy and electron microscopy (EM). Raman spectroscopic characterization of SWCNTs, MWCNTs, O-SWGNRs, O-MWGNRs, GMPs, O-GMPs, and O-GNPs has been reported previously [22,24–26]. Table 1 lists the size distribution of various nanomaterials. Fig. 1 shows representative transmission EM (TEM) images of all nanomaterials used in the study (scanning EM (SEM) for GMPs). SWCNTs (Fig. 1A) and MWCNTs (Fig. 1B) were nanotubes of lengths \(\approx 3–30 \) \(\mu \)m and 0.5–200 \(\mu \)m, and diameters \(\approx 1–2 \) \(\text{nm} \) and \(\approx 20–30 \) \(\text{nm} \), respectively. O-SWGNRs (Fig. 1C) and O-MWGNRs (Fig. 1D) possessed lengths \(\approx 0.5–1 \) \(\mu \)m and 0.5–1.5 \(\mu \)m, and diameters of \(\approx 3–6 \) \(\text{nm} \) and \(\approx 60–90 \) \(\text{nm} \), respectively, confirming complete unzipping of SWCNTs and MWCNTs \((\pi^*\text{diameter}) \). Pristine GMPs were \(<45 \) \(\mu \)m in size (Fig. 1E). O-GMPs (Fig. 1F) were loosely arranged sheets of a few layered graphene \((\approx 8 \) sheets, size \(>1 \) \(\mu \)m) whereas O-GNPs (Fig. 1G) had \(\approx 2–4 \) graphene sheets and diameters of \(\approx 5–15 \) \(\text{nm} \).

We have estimated that future in vivo preclinical safety (acute toxicity) studies to establish the therapeutic dosages of graphene would require their administration at a range of dosages; from 50 mg/kg up to possibly \(>500 \) mg/kg body weight of the small animal [27]. If the graphene formulations are injected at a dose of 50 or 500 mg/kg body weight of a 250 g rat (total circulating blood volume 12–13 ml), its steady state blood concentration after the first pass would be \(\approx 1 \) or 10 mg/ml, respectively. Thus, a median concentration of 5 mg/ml was chosen for this study. Since

![Fig. 1. Representative transmission electron microscopy images of (A) single-walled carbon nanotubes (SWCNTs), (B) multi-walled carbon nanotubes (MWCNTs), (C) oxidized single-walled graphene nanoribbons (O-SWGNRs), (D) oxidized multi-walled graphene nanoribbons (O-MWGNRs), (F) oxidized graphite microparticles (O-GMP), and (G) exfoliated graphene nanoplatelets (O-GNP). Image (E) is a scanning electron micrograph of pristine GMPs.](image_url)
hemoglobin is a dominant optical absorber producing strong PA signal in human tissue, efficacy of these nanomaterials was compared with blood in the NIR wavelength window. Fig. 2A shows PA signal amplitudes obtained from a tygon tube (I.D. 250 μm, O.D. 500 μm) filled with SWCNT, MWCNT, O-SWGNR, O-MWGNR, micro-graphite flakes, O-GMP, O-GNP and lysed bovine blood (905–250, Quad Five), respectively. The signals were normalized to that for blood at 740 nm. At 755 nm excitation wavelength, peak-to-peak PA signal amplitudes obtained from micro-graphite flakes, O-GMPs, and O-GNPs were comparable to that from blood alone. In contrast, those from SWCNTs, MWCNTs, O-SWGNRs and O-MWGNRs were more than 5 times stronger than that from blood, in which, O-SWGNRs showed ~14 times stronger signal. At 5 mg/ml concentration, PA signal intensities obtained from gold nanoparticles were 3 times greater, and methylene blue dye were similar, compared to blood [28,29]. We detected a very high signal-to-noise ratio (SNR; ratio of the average signal to the standard deviation of the background) of O-SWGNRs at 5 mg/ml. The SNR was >170 and suggested that the concentration of the O-SWGNRs can be as low as 0.03 mg/ml using PAT. At this low O-SWGNR concentration, a 2-fold increase in PA signal was measured compared to background (1.2 mg/ml DSPE-PEG in DI water) (Fig. 2B). These results suggest that minimum detectable concentration of O-SWGNRs will be comparable to other PA contrast agents such as gold nanoparticles [17,30]. Furthermore, the results showed that PA signal obtained from these nanomaterials exceeded inherent blood signal over the investigated NIR bandwidth, suggesting their utility for in vivo imaging.

Water and ions are two well-known sources of microwave absorbers in human tissue, and they generate strong TA signals. Therefore, to show that nanomaterials can function as CAS for TAT, we compared TA signal of nanomaterials to that of DI water. Fig. 3B shows TA signals obtained from a low-density polyethylene (LDPE) vial (I.D. = 6 mm and 1.5 cc volume) filled with DI water, SWCNTs,

Table 1
Size distribution of various nanomaterials.

Nanomaterial	Length	Diameter
Single-walled carbon nanotubes (SWCNTs)	3–30 μm	1–2 nm
Multi-walled carbon nanotubes (MWCNTs)	0.5–200 μm	20–30 nm
Oxidized single-walled graphene nanoribbons (O-SWGNRs)	0.5–1 μm	3–6 nm
Oxidized multi-walled graphene nanoribbons (O-MWGNRs)	0.5–1.5 μm	60–90 nm
Pristine graphite microparticles (GMPs)		<45 μm
Oxidized graphite microparticles (O-GMPs)		>1 μm
Oxidized graphene nanoplatelets (O-GNP)		5–15 nm
MWCNTs, O-SWGNRs, O-MWGNRs, GMPs, O-GMPs, and O-GNPs, respectively. The signal amplitudes were normalized to DI water. Additionally, TA signal amplitude of DSPE-PEG was comparable to DI water (Fig. 3C), and LDPE vial does not generate any measurable TA signal [13]. At 3 GHz, the SNR of the nanomaterials was >170, and the nanomaterials exhibited ≈10–28% TA signal enhancement compared to DI water.

To the best of our knowledge, this is the first study exploring and comparing efficacy of graphene nanoparticles prepared via longitudinal “unzipping” method and Hummer’s method as CAs for multimodal PAT and TAT. These results indicate that O-GNRs could be used for multimodal PAT and TAT applications, and O-GNPs are suitable CAs for TAT. Bulk of the work performed towards developing CAs for PAT has been focused on metallic nanoparticles,
organic dye molecules, and carbon nanotubes. In comparison to those CAs, graphene possesses several benefits: (1) Compared to carbon nanotubes, graphene possesses larger surface area, lower aspect ratio, and better dispersibility in most biological media. These properties are important, for most in vivo applications. Furthermore, colloidal dispersions (with high stability and less aggregation) of graphene sheets can be achieved without impurities that may be harmful in biological systems [31,32]. (2) The sp² bonded carbon sheets of graphene can be directly functionalized for targeting and drug delivery [33]. For other PAT/TAT CAs, such as gold nanoparticles and organic dye molecules, to disperse and stabilize gold nanoparticles in solution or embed organic dye molecules, functionalization is performed on the biocompatible coating/capping agent. (3) O-GNPs and O-GNRs have been reported as CAs for other whole-body imaging applications such as magnetic resonance imaging [22] and nuclear imaging [34]. Therefore, they can be developed as multimodal CAs that provide complementary information at micro- to macroscopic length scales. (4) Graphene can be developed as theragnostic (simultaneous therapy and diagnostics) agent combining PAT/TAT molecular imaging and NIR-induced hyperthermia [33]. Due to these unique features, graphene may serve as a platform for the design of multi-modal imaging and multi-therapeutic approaches. Indeed, several in vitro and in vivo safety and efficacy studies on these graphene nanoparticles have been reported for various biomedical applications [23,35].

3. Materials and methods

3.1. Synthesis and characterization of nanomaterials

SWCNTs (Cheap Tubes Inc., VT, USA) and MWCNTs (Sigma Aldrich, NY, USA) were used as received. O-SWGNRs, O-MWGNRs, O-GMPs, and O-GNPs were synthesized and characterized as reported previously [22–24]. All nanomaterials were dispersed at 5 mg/ml in DSPE-PEG for PA and TA measurements.

3.2. Photoacoustic (PA) imaging

A deep reflection-mode PA imaging system was used (Scheme 1 in Ref. [36]) for PA tests of graphene samples. A tunable Ti:sapphire laser (LT-2211A; Lotis TII, Minsk, Belarus) pumped by a Q-switched Nd:YAG (LS-2137; Lotis TII) laser was used for PA excitation (pulse width: 5 ns, pulse repetition rate: 10 Hz). A 5-MHz central frequency, spherically focused ultrasonic transducer (V308; Panametrics-NDT, Waltham, MA, USA), low-noise amplifier (5072PR: Panametrics-NDT), a digital oscilloscope (TDS 5054; Tektronix, Beaverton, OR, USA) were used to acquire, amplify, and record signals. The reported PA signal amplitudes have been normalized for laser fluence at their corresponding wavelengths.

3.3. Thermacoustic (TA) imaging

Fig. 3A is a schematic depiction of the experimental setup for TA measurements. TA results were obtained from a TAT system with a 3.0-GHz microwave generator (pulse width = 0.6 μs, repetition rate = 10 Hz) and a 20 dB amplifier. The pulses (average power density = 4.5 mW/cm², within safety standard) were guided toward the target through a horn antenna (11 cm × 7 cm) [37]. A 1-MHz spherically focused transducer with a bandwidth of 70% (V314, Panametrics, Olympus) was used to receive TA signals from samples placed in a plastic tank filled with mineral oil for ultrasound coupling. The received TA signals were amplified and stored by a data-acquisition (DAQ) card (CS 14200; Gage Applied, IL) [38]. The microwave generator simultaneously triggered data acquisition.

Conflict of interest statement

The authors declare no conflict of interest.

Acknowledgments

We are grateful to Sandra Matteucci for proof reading of the manuscript. Our work was sponsored by NIH Director’s New Innovator Award 1DP2OD007394-01 (to S.B.), Wallace H. Coulter Foundation (S.B.), and NIH grants RO1 EB08085, R01 CA140220, R01 CA157277, R01 CA159959, U54 CA36398, and DP1 EB016986 – NIH Director’s Pioneer Award (to L.V.W.). L.V.W. has a financial interest in Microphotoacoustics, Inc. and Endra, Inc., which, however, did not support this work.

References

[1] Wang LV. Multiscale photoacoustic microscopy and computed tomography. Nat Photon 2009;3:503–9.
[2] Nie L, Ou Z, Yang S, Xing D. Thermacoustic molecular tomography with magnetic nanoparticle contrast agents for targeted tumor detection. Med Phys 2010;37:4191–200.
[3] Wang X, Pang Y, Ku G, Xie X, Stoica G, Wang LV. Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain. Nat Biotechnol 2003;21:803–6.
[4] Ermliev SV, Khamapirad T, Conjeuste A, Leonard MH, Lacewell R, Mehta K, et al. Laser optoacoustic imaging system for detection of breast cancer. J Biomed Opt 2009;14:024007.
[5] Zhang HF, Maslov K, Stoica G, Wang LV. Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging. Nat Biotechnol 2006;24:848–51.
[6] Siphalto RI, Thumma KK, Kolkman RG, van Leeuwen TG, de Mul FF, van Neck JW, et al. Serial noninvasive photoacoustic imaging of neovascularization in tumor angiogenesis. Opt Express 2005;13:89–95.
[7] De la Zerda A, Zavaleta C, Keren S, Vaithilingam S, Bodapati S, Liu Z, et al. Carbon nanotubes as photoacoustic molecular imaging agents in living mice. Nat Nanotechnol 2008;3:557–62.
[8] Cai X, Paratakal BS, Hu S, Sirtaraman B, Wang LV. Multiscale photoacoustic microscopy of single-walled carbon nanotube-incorporated tissue engineering scaffolds. Tissue Eng C Methods 2012;18:310–7.
[9] Arts PK, Hu S, Favaaza C, Mikos AG, Jansen JA, Shroyer KR, et al. Detection, mapping, and quantification of single walled carbon nanotubes in histological specimens with photoacoustic microscopy. PLoS One 2012;7:e35064.
[10] Malik S, Larson T, Aaron J, Sokolov K, Emelianov S. Molecular specific optoacoustic imaging with plasmonic nanoparticles. Opt Express 2007;15:6583–8.
[11] Agarwal A, Huang SW, O’Donnell M, Day KC, Day M, Kotov N, et al. Targeted gold nanorod contrast agent for prostate cancer detection by photoacoustic imaging. J Appl Phys 2007;102:64701–64704.
[12] Pramanik M, Song KH, Swierczewska M, Green D, Sirtaraman B, Wang LV. In vivo carbon nanotube-enhanced non-invasive photoacoustic mapping of the sentinel lymph node. Phys Med Biol 2009;54:3291–301.
[13] Pramanik M, Swierczewska M, Green D, Sirtaraman B, Wang LV. Single-walled carbon nanotubes as a multimodal-thermocoustic and photoacoustic contrast agent. J Biomed Opt 2009;14:034018.
[14] Wu L, Cai X, Nelson K, Xing W, Xia J, Zhang R, et al. A green synthesis of carbon nanoparticles from honey and their use in real-time photoacoustic imaging. Nano Res 2013;1–14.
[15] Pan D, Cai X, Yalaz C, Senapan A, Omanakuttan K, Wickline SA, et al. Photoacoustic sentinel lymph node imaging with self-assembled copper neodendron nanoparticles. ACS Nano 2012;6:1260–7.
[16] Cai X, Li W, Kim CH, Yuan Y, Wang LV, Xia Y. In vivo quantitative evaluation of the transport kinetics of gold nanocages in a lymphatic system by noninvasive photoacoustic tomography. ACS Nano 2011;5:9568–67.
[17] Pan D, Pramanik M, Senpan A, Yang X, Song KH, Scott MJ, et al. Molecular photoacoustic tomography with colloidal nanobeads. Angew Chem 2009;48:4170–3.
[18] Kim G, Huang SW, Day KC, O’Donnell M, Agaray RR, Day MA, et al. Indocyanine-greens-embedded PEBBELs as a contrast agent for photoacoustic imaging. J Biomed Opt 2007;12:044020.
[19] Jin X, Keoh A, Meissner K, Wang LV. Iron-oxide nanoparticles as a contrast agent in thermacoustic tomography. Proc SPIE 2007;6477.
[20] Mashal A, Booske JH, Harsless SC. Toward contrast-enhanced microwave-induced thermacoustic imaging of breast cancer: an experimental study of the effects of micromubbles on simple thermacoustic targets. Phys Med Biol 2009;54:5655–5671.
[21] Kosynkin DV, Higginbotham AL, Sinitskii A, Lomeda JR, Dimitiev A, Price BK, et al. Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons. Nature 2009;458:872–6.
