Measurement of inclusive $\nu^c$ production in the Charged-Current Interactions of Neutrinos in a 1.3-GeV wide band beam

C. Mariani, T. A. Tornero-Lopez, J. L. Alcaraz, S. Andringa, S. Aoki, Y. Aoyama, J. Argyriades, K. Asakura, R. Ashie, F. Berghaus, H. Berns, H. Bhang, A. Blondel, S. Borghi, J. Bouchez, J. Burguet-Castell, D. Casper, J. Catala, C. Cavata, A. Cervera, S. Chen, K. Cho, J. H. Choi, U. Dore, X. Espinal, F. Fernandez, Y. Fuji, Y. Fukuda, J. Gomez-Cadenas, R. Gran, T. Har, M. Hasegawa, T. Hasegawa, Y. Hayato, R. L. Helmer, K. Hirai, J. Hosaka, A. I. Ichikawa, M. Inuma, A. Ikeda, T. Ishida, K. Ishihara, T. Ishii, M. Ishitsuka, Y. Itow, T. Ishiwata, H. I. Jang, E. J. Jeon, I. S. Jeong, K. J. Joo, G. Jover Manas, C. K. Jung, T. Kajita, J. Kameda, K. Kaneyuki, E. Kearns, O. Kim, M. Khabibullin, A. Khotjantsev, D. Kielczewska, J. Y. Kim, S. B. Kim, P. Kitching, K. Kobayashi, T. Kobayashi, A. Konaka, Y. Koshi, W. Kropp, Y. Kudenko, Y. Kuno, Y. Kurimoto, T. Kutter, J. Learned, S. Likhoded, I. T. Lim, P. F. Loverre, L. Ludovici, H. Maesaka, J. Mallet, S. Matsuno, V. Matveev, K. McConnel, C. McGrew, S. Mikheyev, A. Mine, O. Mineev, C. Mitsuda, M. Miura, Y. Moriguchi, S. Moriyama, T. Nakadaira, M. Nakahata, K. Nakamura, I. Nakano, T. Nakaya, S. Nakayama, T. Namba, R. Nambu, S. Nawang, N. Nishiikawa, K. Nitta, F. Nova, P. Novella, Y. Obayashi, A. Okada, K. Okumura, S. M. Oser, Y. Oyama, M. Y. Pac, F. Pierre, A. Rodriguez, C. Saji, M. Sakuda, F. Sanchez, K. Scholberg, R. Schroeter, M. Sekiguchi, M. Shiozawa, K. Shiraishi, G. Sitjes, M. Smy, H. Sobel, M. Sorel, J. Stone, L. Sulak, A. Suzuki, Y. Suzuki, M. Tada, T. Takahashi, Y. Takenaga, Y. Takeuchi, K. Taki, Y. Takubo, N. Tamura, M. Tanaka, R. Terri, S. T’Jampens, Y. Totsuka, M. Vagins, C. W. Walter, W. Wang, R. J. Wilkes, L. Whitehead, S. Yamada, Y. Yamada, Y. Yama, S. Yamamoto, C. Yanagisawa, N. Yershov, H. Yokoyama, Y. Moriguchi, N. Yershov, H. Yokoyama, J. Yoo, M. Yoshida, J. Zalipska

(The K2R Collaboration)

1 Institut de Fisica d’Altes Energies, Universitat Autonoma de Barcelona, E-08193 Bellaterra (Barcelona), Spain
2 Department of Physics, Boston University, Boston, Massachusetts 02215, USA
3 Department of Physics & Astronomy, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
4 Department of Physics and Astronomy, University of California, Irvine, Irvine, California 92697-4575, USA
5 Commissariat à l’Énergie Atomique et aux Énergies Alternatives, Centre de Saclay, IRFU/SPP, 91191 Gif-sur-Yvette, France
6 Department of Physics, Chonnam National University, Kwangju 500-757, Korea
7 Department of Physics, Chonnam National University, Kwangju 500-757, Korea
8 Department of Physics, Dongguk University, Naju 520-714, Korea
9 Department of Physics, Duke University, Durham, North Carolina 27708, USA
10 Department of Physics and Astronomy, University of Hawaii, Honolulu, Hawaii 96822, USA
11 Institute of Nuclear Research, Moscow 117312, Russia
12 Kobe University, Kobe, Hyogo 657-8501, Japan
13 Department of Physics, Kyoto University, Kyoto 606-8502, Japan
14 Department of Physics, Kyushu University, Fukuoka 812-8581, Japan
15 Department of Physics, Kwansei Gakuin University, Hyogo 675-0101, Japan
16 Department of Physics and Astronomy, Louisiana State University, Baton Rouge, Louisiana 70803-4001, USA
17 Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
18 Department of Physics, Miyagi University of Education, Sendai 980-0845, Japan
19 Department of Physics, Nagoya University, Nagoya, Nagoya 556-8255, Japan
20 Department of Physics, Tohoku University, Sendai 980-0435, Japan
21 Department of Physics, Tohoku University, Sendai 980-0435, Japan
22 Department of Physics, Tohoku University, Sendai 980-0435, Japan
23 Department of Physics, Tohoku University, Sendai 980-0435, Japan
24 Department of Physics, Tohoku University, Sendai 980-0435, Japan
25 Department of Physics, Tohoku University, Sendai 980-0435, Japan
26 Department of Physics and Astronomy, State University of New York, Stony Brook, New York 11794-3800, USA
27 Department of Physics, Tokyo University of Science, Noda, Chiba 278-8582, Japan
28 Kamioka Observatory, Institute for Cosmic Ray Research, University of Tokyo, Kamioka, Gifu 500-1205, Japan
29 Research Center for Cosmic Neutrinos, Institute for Cosmic Ray Research, University of Tokyo, Kamioka, Gifu 500-1205, Japan
30 TRIUMF, Vancouver, British Columbia V6T 2A3, Canada
31 Instituto de Fisica Corpuscular, E-46071 Valencia, Spain
32 Department of Physics, University of Washington, Seattle, Washington 98195-1560, USA
In this paper we report on the measurement of the rate of inclusive \( \pi^0 \) production induced by charged-current neutrino interactions in a \( \text{C}_{22} \text{H}_6 \) target at a mean energy of 1.3 GeV in the K2K near detector. Out of a sample of 11,606 charged current neutrino interactions, we select 479 \( \pi^0 \) events with two reconstructed photons. We find that the cross section for the inclusive \( \pi^0 \) production relative to the charged-current quasi-elastic cross section is

\[
\frac{\sigma_{\text{CC}^0}}{\sigma_{\text{CCQE}}} = 0.426 \pm 0.032(\text{stat.}) \pm 0.035(\text{syst.})
\]

The energy dependent cross section ratio is also measured. The results are consistent with previous experiments for exclusive channels on different targets.

PACS numbers: 13.85.Ni,13.85.Qk

I. INTRODUCTION

After the observation of solar neutrino and atmospheric neutrino oscillations and their confirmation respectively at reactors and accelerators, the primary aim of current and future neutrino experiments is to measure the \( \theta_{13} \) mixing angle, and to improve accuracy in the measurement of oscillation parameters. One of the largest limitations of accelerator-based neutrino experiments comes from the poor experimental knowledge of neutrino cross sections in the GeV energy range. Concerning the measurement of \( \theta_{13} \) via sub-leading \( \nu_\mu \rightarrow \nu_e \) oscillation searches, one of the main backgrounds to the \( \nu_e \) signal comes from \( \nu_\mu \) neutral-current (NC) interactions producing \( \pi^0 \)'s. Experimental input on the rate of the related charged-current (CC) channel, which is the focus of this paper, and measurement of the \( \pi^0 \) production momentum spectrum, allows better understanding of this background. Concerning the improvements in the measurement of oscillation parameters, and in particular of the atmospheric mixing angle \( \theta_{23} \) and mass-squared difference \( \Delta m^2_{23} \) via the measurement of the distortion of the neutrino energy spectrum induced by neutrino oscillations, knowledge of the overall yield and interaction type composition of CC inelastic interactions is crucial.

This is because the reconstruction of neutrino energy in CC interactions via kinematic means is less accurate in inelastic interactions, compared to quasi-elastic (CCQE) interactions. Charged-current inclusive \( \pi^0 \) production (CC\( \pi^0 \)) constitutes a large component of all CC inelastic interactions. In addition, since uncertainties in the nuclear models play a significant role in the neutrino-nucleus cross section, it is important to have measurements on different target materials.

Although there are several theoretical approaches to model these processes, the experimental constraints are rather weak. Very little data exists in the few GeV neutrino energy range. Experimental measurements of neutral pion production via CC interactions of few-GeV neutrinos on deuterium have been collected in the past for single pion \(^[10,13]\) and two pion \(^[14]\) final states. At higher energies, CC single \( \pi^0 \) production cross sections have been measured on deuterium \(^[10]\) and heavy freon \(^[10]\) targets.

In this paper we present the measurement of inclusive CC neutrino interactions with a \( \pi^0 \) in the final state made with the K2K SciBar/EC detector system. The measurement presented here is the first result on a carbon target in the few-GeV neutrino energy range, and improves the precision of previous results on different targets. First, we obtain the cross section for this process with respect to the cross section for both CC QE and inelastic interactions. We quote our result as a cross section ratio rather than as an absolute cross section in order to reduce the impact of large uncertainties in the estimation of the K2K neutrino flux affecting the SciBar detector. Second, by reconstructing the neutrino energy of CC interactions resulting in inclusive \( \pi^0 \) production, we present the energy dependence of this cross section ratio. Third, by using previous K2K experimental input on CC single pion production \(^[17]\), we interpret our result as a measurement of the CC deep inelastic cross section, relative to the CC QE cross section. Fourth, we present relevant \( \pi^0 \) production kinematic distributions of our CC\( \pi^0 \) candidate events.

The paper is organized as follows: Section II describes the experimental setup; the neutrino beam and the neutrino near detector at KEK; Section III describes the simulation of the experiment, focusing on the neutrino interaction simulation. In Section IV we discuss the ingredi-
ents of our main cross section analysis, describing the experimental signature, the CC event selection, the photon selection, the $\pi^0$ mass and the neutrino energy reconstruction; Section V describes our likelihood fit method; Section VI describes the systematic uncertainties affecting our measurement; Section VII presents the energy-dependent and energy independent cross section results, and the comparison with the neutrino interaction simulation and with existing results are given in Section VII A. Conclusions are given in Section VIII.

II. EXPERIMENTAL SETUP

A. Neutrino Beam

The KEK to Kamioka (K2K) experiment \cite{9,18-20} is a long baseline neutrino oscillation experiment in which a beam of muon neutrinos created at KEK is detected 250 km away in the Super-Kamiokande detector, located in Kamioka, Japan. To produce the neutrino beam, protons are accelerated by the KEK proton synchrotron to a kinetic energy of 12 GeV and then extracted every 2.2 s in a single turn to the neutrino beam line. The duration of an extraction, or spill, is 1.1 $\mu$s and each spill contains 9 bunches of protons at a 125 ns time interval. The protons are steered to the neutrino beam line to strike an aluminum target, producing secondary particles. Two toroidal magnetic horns focus the positively charged particles, mainly $\pi^+$'s, in the forward direction. The focused positive pions are allowed to decay into a 200 m long tunnel where they produce neutrinos via $\pi^+ \rightarrow \mu^+ \nu_\mu$. A beam absorber made of iron, concrete, and soil is located at the end of the decay volume to stop all particles except neutrinos. The direction and intensity of the neutrino beam are checked spill-by-spill by monitoring the muons produced by pion decay. The energy spectrum of the neutrino beam is checked by occasionally monitoring the muons produced by the horn magnets.

Over the duration of the K2K experiment, a total of $9.2 \times 10^{19}$ protons were delivered to the target to generate the neutrino beam. The SciBar and EC detectors took data from October 2003 until November 2004; $2.02 \times 10^{19}$ protons on target were accumulated during this time.

A Monte Carlo (MC) simulation is used to predict the properties of the neutrino beam. According to the simulation, the beam at the near detector is about 97.3% pure $\nu_\mu$ with a mean energy of 1.3 GeV. A fit of data of neutrino interactions in all the near detectors is used to fine-tune the simulated neutrino energy spectrum \cite{9}. Figure 1 shows the energy spectrum for all muon neutrino interactions in the SciBar fiducial volume. The gray boxes correspond to the shape systematic uncertainty.

B. Neutrino Detectors at KEK

The near detector system is located 300 m downstream of the proton target. The purpose of the near detector is to measure the direction, flux and energy spectrum of neutrinos at KEK before oscillation. The near detector is also used for measurements of neutrino cross sections.

A schematic view of the near detector is shown in Fig. 2. The near detector consists of a one kiloton water Čerenkov detector (1KT) \cite{21}, a scintillating-fiber/water target tracker (SciFi) \cite{22}, a fully active scintillator-bar tracker (SciBar) complemented by a lead and fibers electron catcher (EC) and a muon range detector (MRD). In this section we describe the SciBar, EC and MRD since data taken from these detectors are used in the present analysis. A full description of the K2K near detectors can be found in \cite{9}.

FIG. 1. The energy spectrum for all muon neutrino interactions in the SciBar fiducial volume. The gray boxes correspond to the shape systematic uncertainty.

FIG. 2. Schematic view of the near neutrino detector.
1. Scintillator Bar detector (SciBar)

The SciBar detector acts as a fully active neutrino target and its primary role is to reconstruct the neutrino interaction vertex and detect the final state charged particles.

SciBar consists of 14,848 extruded scintillator bars of $1.3 \times 2.5 \times 300 \text{ cm}^3$. Groups of 116 bars are arranged horizontally or vertically to make one plane. The planes are arranged in 64 layers orthogonal to the beam, each consisting of one horizontal and one vertical plane. The total volume is $3 \text{ m} \times 3 \text{ m} \times 1.7 \text{ m}$, for a total mass of $\sim 15 \text{ tons}$. Figure 3 shows a diagram of the SciBar detector.

![Diagram of SciBar and of the Electron Catcher (EC).](image)

The extruded scintillator bars are produced by FNAL. The bars are made of polystyrene (C$_8$H$_{8}$), PPO (1%), and POPOP (0.03%). Each bar is $1.3 \text{ cm} \times 2.5 \text{ cm} \times 300 \text{ cm}$ and has a 0.25 mm thick reflective coating made of TiO$_2$. The peak of the emission spectrum for the scintillator is at 420 nm. A 1.5 mm diameter wavelength shifting (WLS) fiber (Kuraray Y11(200)MS) is inserted in a 1.8 mm hole in each bar to guide the scintillation light to multi-anode photomultiplier tubes (MAPMTs). The average attenuation length of the WLS fibers is approximately 350 cm. The absorption peak for the fibers is at 430 nm (matching the emission peak for the scintillator), and the emission peak is at 476 nm. The scintillation light produced is detected by Hamamatsu H8804 MAPMTs. Each MAPMT has 64 channels arranged in an 8×8 array. Each pixel is 2 mm × 2 mm. The cathode material is Bialkali, with a quantum efficiency of 21% at a wavelength of 390 nm. The cathode is sensitive to wavelengths between 300 and 650 nm. A typical channel gain is $6 \times 10^5$ at a supply voltage of 800-900 V. The basic properties such as gain and linearity are measured for each channel before installation. The non-linearity of the output signal vs. input charge is 5% at 200 photo electrons (p.e.) at a gain of $5 \times 10^5$. Crosstalk in the MAPMT is approximately 3% in neighboring channels. Groups of 64 fibers are bundled together and glued to an attachment to be precisely aligned with the pixels of the MAPMT. SciBar’s readout system consists of a front-end electronics board (FEB) attached to each MAPMT and a back-end VME module. The front-end electronics uses VA/TA ASICs. The VA is a 32-channel pre-amplifier chip with a shaper and multiplexer. The TA provides timing information by taking the “OR” of 32 channels. Each FEB uses two VA/TA packages to read 64 analog signals and two timing signals for each MAPMT. Each back-end VME board controls the readout of eight FEBs. Flash ADCs are used to digitize the charge information, and TDCs are used to process the timing information. The pedestal width is approximately 0.3 p.e., and the timing resolution is 1.3 ns. In order to monitor and correct for gain drift during operation, SciBar is equipped with a gain calibration system using LEDs. The system shows that the gain is stable within 5% for the entire period of operation. Cosmic ray data collected between beam spills are used to calibrate the light yield of each channel. The average light yield per bar is approximately 20 p.e. for a minimum ionizing particle. The light yield is stable within 1% for the whole period of operation. Pedestal, LED, and cosmic-ray data are taken simultaneously with beam data. A crosstalk correction is applied to both data and MC before event reconstruction. After the crosstalk correction, scintillator strips with a pulse height larger than two p.e.(corresponding to about 0.2 MeV) are selected for tracking. Charged particles are reconstructed by looking for track projections in each of the two-dimensional views ($x$-$z$ and $y$-$z$) using a cellular automaton algorithm. Three-dimensional tracks are reconstructed by matching the $z$-edges and timing information of the 2D tracks. Reconstructed tracks are required to have hits in at least 3 consecutive layers. The minimum length of a reconstructible track is, therefore, 8 cm, which corresponds to a momentum threshold of 450 MeV/c for protons. The reconstruction efficiency for an isolated track longer than 10 cm is 99%. The efficiency is lower for multiple track events due to overlapping of tracks in one or both views.

2. Electron Catcher (EC)

The EC detector is an electromagnetic calorimeter installed just downstream of SciBar as shown in Fig. 3. The main purpose of the EC is the longitudinal containment of the electromagnetic showers since the whole SciBar corresponds to only 4 radiation lengths. The EC provides 11 radiation lengths and has 85% energy containment at 3 GeV. The EC consists of one plane of 30 horizontal
modules and one plane of 32 vertical modules. The two planes have a cross sectional area of $2.7 \times 2.6$ m and $2.6 \times 2.5$ m, respectively. The modules were originally made for the CHORUS neutrino experiment at CERN [29]. Each module is a sandwich of lead and scintillating fibers, built by piling up extruded sheets of grooved lead with scintillating fibers positioned in the grooves. A module consists of a stack of 21 lead sheets, 2650 mm long, and 740 fibers of 1 mm diameter and 3050 mm long. The groove diameter is 1.1 mm and the sheet thickness is 1.9 mm. The sheets material is 99% lead with 1% antimony content to improve its mechanical properties. The stack is kept together by a welded steel case. An overall thickness non-uniformity of less than 2% was achieved through the extrusion process. At both ends fibers are bundled in two independent groups, defining two different readout cells of about $42 \times 42$ mm$^2$ transverse cross section. The fibers are manufactured by Kuraray (type SCSF81) and consist of a polystyrene core surrounded by a 30 $\mu$m thick acrylic cladding, with an emission maximum in the blue, around 420 nm. To improve the light collection uniformity, an acrylic black paint is applied on the surface of the last 5 cm of fibers on each side. This has the effect of reducing the light coming from the cladding, which has a smaller attenuation length. In addition, in order to select the spectral component with a larger attenuation length, a yellow filter (Kodak Wratten No.3) is used. The attenuation length was measured to be $(462 \pm 53)$ cm when the modules were built [29] and was recently measured to be $(400 \pm 12)$ cm. At both ends of the readout cell, fibers are grouped into two bundles of hexagonal cross-section (22.2 mm apex to apex) and are coupled to a Plexiglas light guide, also with hexagonal cross section (24 mm apex to apex). The hexagonal shape and the length of the light guide were chosen to reduce disuniformities in the mixing of the light coming out of the individual fibers [30]. The light guides are coupled to 1-1/8 inch diameter photomultipliers, type R1355/SM from Hamamatsu, with a special green extended photocathode, of 25 mm effective diameter. The cathode material is Bialkali, with a quantum efficiency of 27% in the wavelength range 350-450 nm. The cathode is sensitive to wavelengths from 300 nm to 650 nm. A typical current amplification is $2.1 \times 10^6$ at the supply voltage of 1600 V. The anode dark current is 10 nA. The PMT gain of each channel was measured after installation. The non-linearity of the output signal vs input charge is 2% at 60 mA (corresponding to 600 photo electrons) at a gain of $2 \times 10^6$. The PMT produces a differential signal using the outputs of the cathode and the last dynode. Signals are read via multipolar differential screened cables, 100 m long. The readout system consists of 8 QDC VME (CAEN V792) with 32-channel 12-bit ADC. Impedance matching cards (CAEN A992 custom modified) are used to convert the differential signals into single ended signals and to decouple the PMT’s and the QDC grounds. Cosmic rays measured during normal data taking in between the neutrino spills are used to calibrate the detector and to monitor the gain stability. After the calibration the spread in the individual channel response was stable within 1%. The pedestal width is approximately 0.7 photo electrons and the energy resolution was measured in a test beam as $14\%/\sqrt{E(GeV)}$. The energy deposited is reconstructed by searching for clusters of nearby hits above threshold. In this analysis clusters are reconstructed searching for hits with more than 20 MeV in the vertical plane and 10 MeV in the horizontal plane. Hits in the nearest counters are iteratively added to the cluster if their energy is greater than 10 MeV (5 MeV) for the vertical (horizontal) plane. The cluster position is the energy weighted average of the positions of the counters belonging to the cluster.

3. Muon range detector (MRD)

The MRD [31] is the most downstream detector. It consists of 12 layers of iron between 13 layers of vertical and horizontal drift-tubes. Each layer is approximately $7.6 \times 7.6$ m. To have good energy resolution over the entire energy spectrum, the four upstream iron layers are each 10 cm thick, while the other eight planes are 20 cm thick. The total iron thickness of 2 m covers muon energies up to 2.8 GeV, which corresponds to 95% of all the muons produced by neutrino interactions in K2K. There are 6,632 aluminum drift tubes filled with P10 gas (Ar:CH$_4$ = 90:10%). The total mass of the iron is 864 tons, and the mass of the drift tubes is 51 tons. The MRD is used to monitor the stability of the neutrino beam direction, profile and spectrum by measuring the energy, angle and production point of muons produced by CC neutrino interactions in the iron target. The MRD is also used to identify muons produced in the upstream detectors. The energy and angle of the muon can be measured by the combination of the MRD and the other fine-grained detectors. It is necessary to measure the muon energy and direction in order to reconstruct the energy of the incident neutrino for CC events. The MRD tracking efficiency is 66%, 95%, and 97.5% for tracks that traverse one, two and three iron layers, respectively; for longer tracks, the efficiency approaches 99%. A track that hits less than three layers of MRD is called “one layer hit” (MRD1L), while a track that hits more than three iron layers will be reconstructed as a 2D track in xz or yz planes. The 2D-tracks pair which has the longest overlap is taken as a 3D-track (MRD3D). The range of a track is estimated using the path length of the reconstructed track in iron. The muon energy is calculated by the range of the track. The uncertainty in the muon energy due to differences among various calculations of the relationship between muon energy and range is 1.7%. The uncertainty in the weight of the iron is 1%. Thus, the systematic error in the MRD energy scale is quoted as the sum of these uncertainties, 2.7%. The energy resolution is estimated by Monte Carlo simulation to be 0.12 GeV for forward-going muons. The angular resolution is about 5 degrees.
III. SIMULATION

A. Neutrino Interactions

The neutrino interaction simulation plays an important role for estimating the event yields, and the topological and kinematical properties, for CC neutrino interactions in SciBar producing neutral pions, as well as for background processes. We use the NEUT program library to simulate neutrino interactions with protons and carbon nuclei within the SciBar detector material. NEUT[32] simulates neutrino interactions over a wide energy range, from $\sim 100$ MeV up to TeV neutrino energies, and on different nuclear targets.

In the simulation program, the following CC and NC neutrino interactions are considered: QE scattering ($\nu N \rightarrow l N'$), single pion production ($\nu N \rightarrow l' n' \pi^0$), coherent $\pi$ production ($\nu^{12}C \rightarrow l \pi^{12}C$), and deep inelastic scattering (DIS, $\nu N \rightarrow l N' hadrons$). In these reactions, $N$ and $N'$ are the nucleons (proton or neutron), $l$ is the lepton (either a charged lepton or a neutrino), and $m$ is a meson. If the neutrino interaction occurs in a carbon nucleus, the interactions of the generated particles with the remaining nucleons of the nucleus are also simulated.

The total charged-current cross section predicted by NEUT, together with the QE scattering, single pion production and deep inelastic scattering contributions, are shown in Fig. 4 overlaid with data from several experiments.

Given the K2K beam neutrino energy spectrum, Table I shows the fraction of interactions in SciBar that are expected to be QE, single pion, etc. according to the simulation.

| Interaction type | Percent of Total |
|-----------------|------------------|
| Charged-current (CC) | 71.8% |
| $\nu_e n \rightarrow \mu^- p$ (QE) | 32.2% |
| $\nu_e p \rightarrow \mu^- p\pi^+$ | 18.0% |
| $\nu_e n \rightarrow \mu^- n\pi^+$ | 6.2% |
| $\nu_e n \rightarrow \mu^- p\pi^0$ | 5.0% |
| DIS | 6.8% |
| others (K and $\eta$) | 3.6% |
| Neutral-current (NC) | 28.2% |

TABLE I. Expected neutrino interactions in SciBar.

1. $\pi^0$-producing charged-current neutrino interactions

For the simulation of CC neutrino interactions resulting in inclusive $\pi^0$ production, we adopt distinct models, depending on the invariant mass $W$ of the hadronic system in the final state, and on the pion multiplicity. A summary of the models used to simulate the cross section and the final state kinematics is given in Table II while more details are given in the text below.

For $W < 2$ GeV, and production of single $\pi^0$'s and no other pions (charged or neutral), we use the resonance-mediated Rein-Sehgal model[14]. In this model, the interaction simulation is performed via a two-step process. First, the neutrino-induced excitation of the baryon resonance $N^*$ is modeled:

$$\nu_\mu + n \rightarrow \mu^- + N^*,$$

which is then followed by the resonance decay to a pion-nucleon final state:

$$N^* \rightarrow \pi^0 + p.$$
The same $\pi^0$-$p$ final state can be fed by several resonances. All baryon resonances with $W < 2$ GeV/$c^2$ are taken into account with their corresponding resonance width and including possible interferences among them. Single $K$ and $\eta$ productions are simulated by using the same framework as for the dominant single $\pi$ production processes. The model contains a phenomenological parameter (the single pion axial vector mass, $M_A$), that must be determined experimentally. As the value of $M_A$ increases, interactions with higher $Q^2$ values (and therefore larger scattering angles) are enhanced. The $M_A$ parameter in our resonance-mediated Rein-Sehgal model is set to 1.1 GeV/$c^2$. To determine the final state kinematics in the decay of the dominant resonance $P_{33}(1232)$, Rein's method $^{15}$ is used to generate the pion angular distribution in the resonance rest frame. For the other resonances, the directional distribution of the generated pion is set to be isotropic in the resonance rest frame. The pion angular distribution for the related $\nu p \rightarrow \mu^- p \pi^+$ mode has been measured $^{12}$, and the results agree well with our model. To describe nucleons bound in carbon nuclei, nucleons are treated as quasi-free particles in motion using a relativistic Fermi gas model $^{47, 51}$ with 225 MeV/$c$ Fermi surface momentum, and assuming a nuclear binding energy of 27 MeV. The Pauli blocking effect in the decay of the baryon resonance is taken into account by requiring that the momentum of the nucleon should be larger than the Fermi surface momentum. In addition, pion-less decay for the dominant $\Delta$ resonance ($\Delta N \rightarrow NN$) is considered. In this case, which is expected to occur with a 20% probability, no pion is present in the final state; only a lepton and a nucleon are emitted $^{52}$.

For the production of $\pi^0$'s in association with other pions (charged or neutral), the deep inelastic scattering cross section formalism combined with GRV94 parton distribution functions $^{46}$ is used. Additionally, we have included the corrections in the small $Q^2$ region developed by Bodek and Yang $^{17}$. For the simulation of DIS final state kinematics in which the hadronic invariant mass, $W$, is larger than 2 GeV/$c^2$, we use the PYTHIA/JETSET library $^{49}$. For $W < 2$ GeV/$c^2$, we use a custom made program $^{48}$, based on data-driven average pion multiplicities and KNO scaling. In the latter case, the multiplicity of pions is required to be larger than one because single pion production is already taken into account by the resonance-mediated single pion production.

2. Other neutrino interactions

Resonance-mediated single pion production and deep inelastic scattering CC processes that do not result in the production of $\pi^0$'s, but possibly in the production of other mesons such as $\pi^\pm$, are also simulated according to the models described in Sec. III A 1. The same models are used as well to simulate the corresponding NC channels.

The formalism of CC and NC QE scattering off free nucleons used in the simulation is described by Llewellyn-Smith $^{53}$. There is only one parameter in the model to be determined experimentally, the QE axial vector mass, $M_A$. As for single pion production via baryon resonances, $M_A$ is set to 1.1 GeV/$c^2$ in our simulation, based on near detector data $^{19}$.

Coherent single pion production, that is the interaction between a neutrino and the entire carbon nucleus resulting in the production of single pions and no nuclear break-up, is simulated using the formalism developed by Rein and Sehgal $^{54}$. The coherent pion production axial vector mass is set to 1.0 GeV/$c^2$ in our model. Only neutral-current coherent pion production interactions are considered, because the cross section of the CC coherent pion production was found to be very small at K2K beam energies $^{55}$.

3. Intra-nuclear hadronic interactions

The intra-nuclear interactions of the mesons and nucleons produced in neutrino interactions with carbon nuclei are also important for this analysis. Due to the propagation in the nuclear matter of the target nucleus, the final state particles observed differ from the one produced at the weak interaction vertex. Particles absorption or production as well as changes in the direction or momentum affect the event classification. For example, $\pi^0$'s produced at the weak interaction vertex can be absorbed via intra-nuclear interactions within the target nucleus, therefore escaping direct detection. Likewise, intra-nuclear interactions can result in $\pi^0$ production within the target nucleus, even in the absence of $\pi^0$'s at the weak interaction vertex. Therefore, the interactions of pions, kaons, etas and nucleons are also taken into account. The meson and nucleon interactions are treated using a cascade model, and each of the particles is traced in the nucleus until escaping from it.

In our simulation, the following intra-nuclear pion interactions are considered: inelastic scattering, charge exchange and absorption. The actual procedure to simulate these interactions is the following: first, the generated position of the pion in the nucleus is set according to the Woods-Saxon nucleon density distribution $^{56}$. Then, the interaction mode is determined by using the calculated mean free path of each interaction. To calculate these mean free paths, we adopt the model described by Salcedo et al. $^{57}$. The calculated mean free paths depend not only on the momentum of the pion, but also on the position of the pion in the nucleus. If inelastic scattering or charge exchange occurs, the direction and momentum of the pion is determined by using the results of a phase shift analysis obtained from $\pi - N$ scattering experiments $^{58}$. When calculating the pion scattering amplitude, the Pauli blocking effect is also taken into account by requiring the nucleon momentum after the interaction to be larger than the Fermi surface momentum.
at the interaction point. This pion interaction simulation is tested by comparison with data, including $\pi^{12}\text{C}$ scattering and pion photo-production ($\gamma^{12}\text{C} \to \pi^- + X$) data.

Re-interactions of the nucleons (protons, neutrons) produced in the neutrino interaction are also important. Each nucleon-nucleon interaction modifies the nucleon momentum and direction, possibly causing the number of visible nucleons to be mismeasured if not properly modeled. Elastic scattering, single and two-pion production, are considered.

Our simulation predicts that in 26% of SciBar CC interactions with $\pi^0$ production at the primary neutrino-nucleon interaction vertex, the neutral pion(s) does not escape the target nucleus. On the other hand, 15% of the events with $\pi^0$ emerging from the target nucleus are produced in nuclear interactions.

B. Detector Response

The GEANT3 package is used to simulate the detector geometry and the interactions and tracking of particles. The CALOR program library is used to simulate the interactions of pions with the detector material for pions with momentum greater than 0.5 GeV/c. For lower energy pions, a custom library is used.

The energy loss of a particle in each single SciBar strip and each individual EC sensitive fiber is simulated. The energy deposition is converted in the detector response taking into account the Birk's saturation of the scintillator, the light attenuation along the fibers, the Poisson fluctuation of the number of photo electrons, the PMT resolution, and the electronic noise. The crosstalk in nearby SciBar channels is also taken into account.

In SciBar the timing of each hit is simulated from the true time of the corresponding energy deposition, corrected by the travel time of the light in the WLS fiber and smeared by the timing resolution.

The MRD simulation includes both ionisation and multiple scattering in the drift chambers.

The input parameters of the detector simulation are derived from laboratory measurements and calibration data. The features of the simulation have been systematically compared and tuned with cosmic ray and neutrino data.

IV. EXPERIMENTAL SIGNATURE

A. Definition of signal and background

In this analysis the process we want to measure is defined inclusively with respect to a $\pi^0$ produced in the target nucleus of the CC neutrino interaction. We call signal an event with one (or more) $\pi^0$ that comes from the neutrino interaction vertex or from a re-interaction inside the target nucleus. An event with an $\eta$ decaying into one or more $\pi^0$'s or into a $\gamma$ pair at the target nucleus is also considered a signal event. Events are considered background if the final state $\pi^0$ is only produced due to secondary interactions occurring outside of the target nucleus such as, for instance, charge exchange of a charged pion, or $\pi^0$ production in inelastic hadronic interactions. Another background category consists of the events selected accidentally where no $\pi^0$ was produced.

According to this definition, the CC$\pi^0$ fraction predicted by the neutrino Monte Carlo, integrated over the K2K energy spectrum, is 13.9% of the total number of neutrino CC interactions. The composition of the signal is the following:

- 6.5% is resonant production: 5% with a $\pi^0$ produced in the resonance decay and 1.5% with $\pi^0$ produced in a nuclear re-interaction in the target nucleus;
- 6.6% is non resonant production, mainly DIS: 6.0% with one or more $\pi^0$'s produced at the neutrino interaction vertex and 0.6% in nuclear re-interactions in the target nucleus;
- 0.8% comes from nuclear re-interactions, mostly CCQE, where a $\pi^0$ is produced in the re-interactions in the target nucleus.

The fraction of signal events with more than one $\pi^0$ is 43%.

The final state topology of the CC inclusive events is characterized by one muon and at least two electromagnetic showers, plus possibly other particles coming from the neutrino interaction vertex. If the photon converts in SciBar, the hit patterns of the low energy electromagnetic showers are reconstructed by the SciBar tracking algorithm and the direction of the photon is given by the corresponding track. The SciBar conversion length is about 40-50 cm (SciBar in fact corresponds to 4 $X_0$). If the photon converts in the EC, the energy is reconstructed by the EC cluster algorithm and the position of the photon conversion is the energy-weighted average hit position in the cluster. Therefore the experimental signature is given by one track originating in SciBar and reaching MRD, at least two photons reconstructed either as SciBar tracks disconnected and pointing to the neutrino interaction vertex or as clusters in the EC. To isolate a sample of events that satisfy the topology described above, we first select a clean sample of CC events, characterized by a SciBar track matched with an MRD track. In Sec. we describe the selection criteria to isolate the CC inclusive sample which is used for normalization. In the same section, we further classify CC events into sub-samples of varying CCQE purities, which are used to quote the CC$\pi^0$ production cross section relative to either the CCQE or the inelastic cross section. Out of the CC inclusive sample, we require further cuts to select photons and to separate the CC$\pi^0$ sample from other topologies. This is described in Secs. and
Section IV D describes the reconstruction of the incoming neutrino energy.

### B. CC event selection

The selection of a CC interaction requires a muon candidate in the event. A muon candidate is a reconstructed 3D track in the SciBar fiducial volume (FV) matching a reconstructed track in MRD. The FV is applied requiring the upstream edge of the track to be within ±135 cm in x and y, and -75 < z(cm) < 70 with respect to the center of SciBar. This corresponds to a 10.9 m$^3$ fiducial volume and 11.6 tons of fiducial mass. The track is also required to be in time with the neutrino beam, i.e. within ±50 ns with respect to the closest neutrino bunch. The extrapolation of the SciBar track is required to be matched with a track in MRD. The matching is with a MRD3D track or with a MRD1L hit, defined in Sec. II B 3.

The neutrino interaction vertex is reconstructed as the upstream edge of the muon candidate track in SciBar. The resolution in x and y is symmetric with 0.9 cm RMS. The resolution in z has a 1.6 cm RMS and a small satellite peak one SciBar layer (2.6 cm) upstream of the true neutrino vertex, due to crosstalk between MAPMT channels.

We select 11,606 events in the data and 432,856 in the full MC sample (before normalization), with an estimated selection efficiency of 49.5% and a CC purity of 97.5%. The main background comes from the neutral current (NC) multi pion or single pion events in which a pion gives a signal in the MRD detector. The background induced from neutrons coming from the beam target is found to be negligible.

In this analysis we consider four CC sub-samples, shown in Table III which are characterized by different fractions of non-QE (nQE) and QE interactions. The first sample consists of events with a single reconstructed track and has 72.4% efficiency and 66% purity for QE events. For the events with two tracks, the direction of the second track is compared with the expected direction of the proton in the assumption of a CC QE interaction. If this angle $\Delta \theta_p$ is smaller than 20$^\circ$, the events are classified as "two tracks quasi-elastic". Events with $\Delta \theta_p > 20^\circ$ are further divided in two categories, depending on whether the dE/dx of the second track is consistent with a pion or with a proton. The Monte Carlo is normalised to data using the first two samples in Table III which have the largest quasi-elastic contribution. The same normalisation is used in all plots before the fit. In all plots signal and different background components are stacked. In order to extract the result in Sec. IV D we use the four samples described in Table III and we leave the data to MC normalization free in the fit to properly account for the overestimate between the normalization and the other sources of systematic error.

| CC sub-sample | $\epsilon_{QE}$% | $\eta_{QE}$% | Data | MC |
|---------------|-----------------|-------------|------|----|
| 1 track       | 72.4            | 66          | 6125 | 6080|
| 2 tracks QE   | 16.9            | 76          | 1262 | 1307|
| 2 tracks nQE  | 2.3             | 12          | 1048 | 960 |
| nQE p         | 7.3             | 27          | 1453 | 1220|

**TABLE III.** Efficiency ($\epsilon_{QE}$) relative to all QE events selected in the CC sample and purity ($\eta_{QE}$) for QE events, and number of events selected in MC and in data for the different QE and nQE samples

### C. Photon selection

All CC selected events are subject to further selection criteria to tag photons. A photon candidate can be either a SciBar track or an EC energy cluster. In order to be considered as a photon candidate a SciBar track should satisfy the following requirements. First, the timing of the track has to be within 10 ns with respect to the muon track; second, the track is required not to be matched with a MRD3D track. Third, the photon conversion point, defined as the track edge closest to the neutrino interaction vertex, is required to be within ±145 cm in x and y and ±80 cm in z with respect to the SciBar center. Fourth, in both projections the distance between the photon conversion point and the neutrino vertex has to be larger than 20 cm; and fifth, the track extrapolation to the Z position of the neutrino vertex should be within 25 cm from the neutrino vertex. The disconnection from the vertex of SciBar photon candidates, defined as the 3D distance between the reconstructed neutrino vertex and photon conversion point, is shown in Fig. 4. The shape of the disconnection is consistent with MC. A fit with an exponential function between 50 cm and 130 cm gives a value of $\lambda_{\text{disc}} = (51.8 \pm 5.4)$ cm for data, in good agreement with $\lambda_{\text{disc}} = (52.9 \pm 0.6)$ cm for MC. The result is consistent with the electromagnetic origin of the selected photon sample. In fact, according to MC, 82% of the background events also contain a genuine photon.

A fraction of photons converted in SciBar will have some energy leakage in the EC. Moreover, all the photons not converted in SciBar and pointing to the EC will convert in the upstream (vertical) EC plane. We consider only clusters with energy larger than 50 MeV for the vertical plane and 25 MeV for the horizontal plane. The energy of the SciBar photon candidates and the associated EC vertical and horizontal clusters are added together in order to reconstruct the photon energy. EC clusters that do not match any of the reconstructed SciBar tracks are considered isolated. Isolated vertical clusters are paired to isolated horizontal clusters according to their energy and they are considered as additional photon candidates.

Overall, 479 events with at least two photons are reconstructed in data and 380 in MC, with an overall efficiency of 7.6% and a purity of 59.2% (MC has been normalized to the data using the normalization factor described in
FIG. 5. Disconnection: distance \( L_{\text{disc}} \) between the reconstructed photon candidates conversion point and the neutrino interaction vertex.

Sec. [IV.B]. Figure 6 shows the multiplicity of photon candidates per event.

FIG. 6. Photon multiplicity of CC\( \pi^0 \) candidate events

The excess of data with respect to the MC is \( 26 \pm 6\% \) (statistical error only). In 74\% of the candidate events, all photons are converted and reconstructed in SciBar with possibly an energy leakage in EC. In 20\% of the candidate events, one of the photons is converted and reconstructed in EC, and in 6\% two or more photons are converted and reconstructed in EC. These relative fractions are well reproduced by the MC. It is worth noting that this strongly supports the hypothesis that the excess of photon candidates is due to physics and not to detection bias, since SciBar and EC are completely independent detectors, with different reconstruction efficiencies and systematics.

As a crosscheck, we eye-scanned 100 data and 100 MC events. Despite the limited statistics and the subjectivity in the eye-scan classification criteria, the result is that the main features of the selected sample are well reproduced by the MC simulation. In particular, the background coming from the secondary interactions in data and MC agrees within the statistical uncertainties of this eye-scan cross-check.

D. \( \pi^0 \) reconstruction

The \( \pi^0 \) mass is reconstructed from the energy and the direction of its two photon decay products:

\[
M_{\pi^0} = \sqrt{2 \cdot E_{\gamma_1} \cdot E_{\gamma_2} \cdot (1 - \cos(\theta_{\gamma_1,\gamma_2}))}
\]

where \( E_{\gamma_1} \) and \( E_{\gamma_2} \) are the reconstructed energies of the two photons, and \( \theta_{\gamma_1,\gamma_2} \) is the opening angle between them. If the photon converts in SciBar, the direction is reconstructed using the SciBar 3D reconstructed track. If the photon converts in EC, we take as photon direction the direction of the line connecting the reconstructed neutrino vertex and the center of the EC cluster. For the highest (lowest) energy photon reconstructed in SciBar, the energy and angular resolutions (FWHM) are 50 MeV (65 MeV) and 0.15 rad (0.18 rad), respectively.

As shown in Fig. 6 in 21.4\% of the selected events there are more than two photon candidates and therefore more than one \( \pi^0 \) candidate. For these events the photon pair corresponding to the best \( \pi^0 \) candidate is selected as the combination which has the reconstructed \( \pi^0 \) vertex closest to the neutrino interaction vertex. If there are one or more EC photon candidates (5.7\% of the total sample) the best combination is selected as the photon pair with the reconstructed invariant mass closest to the \( \pi^0 \) mass.

Figure 7 shows the reconstructed \( \pi^0 \) invariant mass for data and different MC contributions to signal and background. The signal contribution (according to the definition given in Sec. [IV.A]) is divided into \( \pi^0 \) from resonant and non-resonant production and CCQE, and the background is divided into resonant, non resonant production and CCQE plus neutral current (NC). It should be noted that most of the background contains a \( \pi^0 \) in the final state, so the shape of the invariant mass distribution for signal and background is similar.
E. Neutrino energy reconstruction

The neutrino energy in a CC interaction can be reconstructed from the measured muon energy and angle using the following formula, provided the invariant mass $W$ of the hadronic final state is known:

$$E_{\nu}^{\text{rec}} = \frac{(W^2 - m_{\mu}^2) + 2E_{\mu}(M_n - V) - (M_n - V)^2}{2 \times (-E_{\mu} + (M_n - V) + p_{\mu}\cos(\theta_{\mu}))}$$

where $V$ is the nuclear potential for carbon which is set to zero, and $p_{\mu}, E_{\mu}$ and $\theta_{\mu}$ are the muon momentum, energy and angle. For the QE final state, we have $W^2 = M_{\mu}^2$ and the formula used for neutrino energy reconstruction in the oscillation analyses. In the present analysis, 98\% of the selected sample is non-QE, mostly resonant single pion production and DIS, and it is characterized by a broad $W$ spectrum. We found $W = 1.483 \text{ GeV}$ the optimal value to reconstruct the neutrino energy in the MC sample of selected events. We use this value of $W$ to reconstruct the neutrino energy in data and Monte Carlo. The uncertainties on the values assumed for $W$ and for $V$ will be considered as a source of systematic errors and evaluated in Sec. VI. The resolution turns out to be $22\%/\sqrt{E(\text{GeV})}$ for the selected sample. The assumption of an average $W$ value is the largest effect in the reconstructed neutrino energy resolution. Using the true $W$ value in Eq. 2 the resolution is $15\%/\sqrt{E(\text{GeV})}$.

The reconstructed neutrino energy is shown in Fig. 8 for data and different MC signal and background components. The threshold at about 1 GeV is due to the fixed value assumed for $W$ in Eq. 2.

V. LIKELIHOOD FIT

From our sample of selected events we measured the ratio of the inclusive $CC\pi^0$ cross section to the CCQE cross section. The uncertainties in the absolute neutrino flux cancel out in the ratio with respect to an independent and relatively well known process like the CCQE interaction.

We performed a maximum likelihood fit of the reconstructed neutrino energy distribution of the $CC\pi^0$ sample shown in Fig. 8. At the same time we fit the number of events in the different CC sub-samples described in Sec. IV.\textsuperscript{B} The likelihood function is defined as

$$L = L_{\pi^0} \cdot L_{CC} = \prod_{k} P(n_k, \mu_k) \cdot \prod_{s} P(n_s, \mu_s)$$

where $P(n, \mu)$ is the Poisson probability for $n$ observed events with expectation value $\mu$. The maximum likelihood fit is calculated by minimizing the log-likelihood function $F = -2\log(L)$ which follows a $\chi^2$ distribution.

The index $s$ labels the 4 CC sub-samples in Table III and the index $k$ labels 50 bins spanning the range 0-5 GeV of the reconstructed neutrino energy.

The expected events $\mu_s$ in each CC sub-sample (1-track, 2-track QE, 2-track nonQE pion and 2-track nonQE proton) are defined as:

$$\mu_s = f_n \{ S_{CC,s}^{QE} + R_{res} S_{CC,s}^{res} + R_{nres} S_{CC,s}^{nres} + B_{NC, s} \}$$

where the number of Monte Carlo events contributing to signal ($S_{CC}$) and background ($B_{CC}$) are divided into
quasi elastic (QE), resonances production (res), non resonant production (nres) and neutral current processes (NC). The non resonant production includes all CC non-QE processes different from resonant production, mainly deep inelastic scattering.

The parameters \( R_{res} \) and \( R_{nres} \) are free in the fit in order to independently re-weight the corresponding Monte Carlo contributions relative to the quasi elastic process.

All the MC distributions are normalized as described at the end of section [IV B]. An additional overall normalization parameter \( f_n \) is left free in the fit.

The number of expected events \( \mu_k \) in Eq. 3 is given by:

\[
\mu_k = f_n \times \left\{ \sum_j R_{CC\pi^0}(E_j^\nu) F_j \left[ S_k^{QE}(E_j^\nu) + R_{res} S_k^{res}(E_j^\nu) + R_{nres} S_k^{nres}(E_j^\nu) \right] + B_k^{QE} + R_{res} B_k^{res} + R_{nres} B_k^{nres} + B_k^{NC} \right\}
\]

(5)

\( S_k \) and \( B_k \) are the Monte Carlo events, respectively signal and background, contributing to the final CC\( \pi^0 \) sample in each bin \( k \) of reconstructed neutrino energy. The Monte Carlo signal events are further divided in 4 bins \( E_j^\nu \) according to their true neutrino energy: 0-1.5 GeV, 1.5-2.0 GeV, 2.0-2.5 GeV and greater than 2.5 GeV. The factors \( F_j \) are defined as:

\[
F_j = \frac{\sum_k \left[ S_k^{QE}(E_j^\nu) + S_k^{res}(E_j^\nu) + S_k^{nres}(E_j^\nu) \right]}{\sum_k \left[ S_k^{QE}(E_j^\nu) + R_{res} S_k^{res}(E_j^\nu) + R_{nres} S_k^{nres}(E_j^\nu) \right]}
\]

in order to keep the normalization of the signal events independent from \( R_{res} \) and \( R_{nres} \).

The fitting parameters are \( R_{CC\pi^0}(E_j^\nu) \) (\( j = 1, 4 \)), \( R_{res} \), \( R_{nres} \) and \( f_n \). The best fit of \( R_{CC\pi^0}(E_j^\nu) \) gives the double ratio data over Monte Carlo between the number of inclusive CC\( \pi^0 \) events and the number of CCQE events, as a function of the true neutrino energy:

\[
R_{CC\pi^0}(E_j^\nu) = \frac{N_{true}^{CC\pi^0}(E_j^\nu)/N_{true}^{CCQE}}{N_{MC}^{CC\pi^0}(E_j^\nu)/N_{MC}^{CCQE}}
\]

(6)

The scaling of the inclusive CC\( \pi^0 \) contribution in the fit is energy dependent while the energy dependence of the CCQE is fixed to the Monte Carlo prediction since it has been accurately measured by previous experiments [33, 35, 37]. The corresponding uncertainty is considered a source of systematic error. We also performed an energy independent fit of the CC\( \pi^0 \) to CCQE ratio, following the same approach as Eq 6 but with a single fit parameter \( R_{CC\pi^0} \) rescaling the CC\( \pi^0 \) contribution regardless of the true neutrino energy.

Table IV. Energy dependent and independent fit results for \( R_{CC\pi^0}(E_j^\nu) \).

Table IV shows the best fit values of \( R_{CC\pi^0} \) for the energy-independent fit and the the four parameters \( R_{CC\pi^0}(E_j^\nu) \) for the energy-dependent fit.

The \( \chi^2/d.o.f. \) before the fit is 7135/44 = 162.1. The \( \chi^2/d.o.f. \) for the best fit is 40.2/37 = 1.095 for the energy-dependent fit and 43.8/40 = 1.089 for the energy independent fit.

The errors quoted for \( R_{CC\pi^0} \) are purely statistical. The error induced on \( R_{CC\pi^0} \) by the absolute normalization \( f_n \) and by \( R_{res} \) and \( R_{nres} \) is evaluated in the fit in order to take in to account correlations but it is considered a systematic error and reported in the first row of Table VI together with the other sources of systematic in Sec. VII.

Figures 9 and 10 show the reconstructed \( \pi^0 \) momentum and angle with respect to the beam direction in the laboratory frame, with the inclusive CC\( \pi^0 \) production in the Monte Carlo rescaled to the best fit value for both signal and backgrounds.

The fit results in Table IV show an excess of CC\( \pi^0 \) production with respect to our reference MC model. The energy dependent fit shows that the excess increases with the neutrino energy. The data to MC ratio for the non resonant processes \( R_{nres} \) is larger than one while the ratio for the resonant contribution \( R_{res} \) is consistent with one within the statistical uncertainty only. The resonant production with respect to the CCQE cross section was measured by the K2K collaboration in the CC1\( \pi^+ \) channel [14] and found to be: 0.734\( \pm \)0.013 in very good agreement with the MC prediction (0.740 \( \pm \)0.002(stat)). According to our reference MC model, 50% of the non resonant events have one or more \( \pi^0 \) in the final state and 44% of the selected CC\( \pi^0 \) sample is produced in non resonant processes. Constraining the resonance production to the experimental value and uncertainty given above, we can use our CC\( \pi^0 \) sample to measure the non resonant contribution.

We define CC\( \nu_{\mu \tau} \) (the CC non-resonant cross section) as the difference between the total CC cross section and...
the sum of quasi elastic and resonance production. Using the CCπ⁰ sample we perform an energy dependent and an energy independent fit of the CCnres to CCQE ratio, following the same approach as Eq. 5 but with $R_{CC\pi^0}$ and the normalization factors $F_j$ fixed to one. The fit parameter $R_{nres}$ rescaling the CC non resonant contribution in the energy independent fit (the parameters $R_{nres}(E_j)$ in the energy dependent fit) and the overall normalization $f_n$ were left free in the fit. The parameter $R_{res}$ was also free and the experimental constraint was incorporated in the fit by adding the term $\frac{(R_{res} - 0.99)^2}{0.21}$ to the Log-likelihood function derived from Eq. 3.

Table V shows the best fit values for the energy independent fit of $R_{nres}$ and for the energy dependent fit of $R_{nres}(E_j)$.

The $\chi^2$/d.o.f. for the best fit is 41.8/39 = 1.07 for the energy dependent fit and 75.5/42 = 1.80 for the energy independent fit. The value of the $\chi^2$/d.o.f. for the energy independent fit shows that a three parameters fit of signal and background, not taking into account the energy dependence of the non-resonant contributions, gives a poor description of our data.

This result is obtained assuming that $\pi^0$ and $\pi^+$ production from resonances are constrained by the same parameter within the Rein-Sehgal model. As a consistency check we repeated the fit without constraint to the CC$\pi^+$ measurement and the results are consistent within 3% with the results in Table V. This difference is accounted by the systematic due to the uncertainty in the non-QE composition evaluated in Sec. VI.

The errors quoted for $R_{nres}$ are purely statistical. The error induced on $R_{nres}$ by the normalization $f_n$ and by $R_{res}$ is evaluated in the fit in order to take in to account correlations but it is considered a systematic error and reported in the first row of Table V. The full systematic error is evaluated in Sec. VI.

**VI. SYSTEMATIC ERROR STUDY**

In this section we discuss the sources of systematic error. The contributors to the systematic error on the energy independent results CC$\pi^0$ and CCnres are summarized in Table VI. The systematic errors for the energy dependent results in Tables VII and VIII are calculated following the same approach.
The uncertainties in the measurement reported in [62] are taken into account assigning a weight factor $W$ to each non-QE selected event. The non-QE CC cross section has been estimated repeating the corresponding fit while varying the value of $W$ from 0 to 27 MeV. The Neyman constraint, adding the corresponding term to the Log-likelihood derived from Eq. 3:

$$F_{syst} = \sum_i (W_i - 1)^2 \sigma_{W_i}^2$$

where $\sigma_W = 30\%$. The double ratio data to Monte Carlo of the NC to CC processes is also left free in the fit with a 20% constraint, adding the corresponding term to $F_{syst}$ described in Eq. 2. The total systematic error listed in the second row of Table VI takes into account the correlation between the different sources above.

The QE axial mass is varied by $\pm 10\%$ (according to the uncertainties in the measurement reported in [62]) and the Bodek and Yang corrections to DIS events by $\pm 30\%$ [17]. The resulting systematic errors are added in quadrature in the total interaction model uncertainty.

The uncertainty in the shape of the neutrino energy spectrum shown in Fig. 4 is considered by changing the flux in each bin, taking into account their errors and the correlations between them (see Ref. [9] for details).

The uncertainty on the values assumed for the neutrino energy reconstruction parameters in Eq. 2 is evaluated by changing the value of $W=1.483$ GeV by $\pm 15\%$, corresponding to assume that all non-QE selected events are from $\Delta(1232)$ rather than from an average $W=1.483$ GeV.

The nuclear potential $V$ is varied by $\pm 15\%$ considering the uncertainty in the pion interaction length. The uncertainty in the pion interaction length is considered by changing its value by $\pm 20\%$. The overall uncertainty on the MC model is calculated considering the uncertainty in the pion interaction length fully correlated to the pion inelastic cross section above.

## B. Nuclear model

Nuclear effects alter the composition and kinematics of the particles produced in neutrino interactions in nuclei.

Pion absorption and inelastic scattering processes, in particular pion charge exchange, modify the $\pi^0$ yield. To account for the uncertainty in the Monte Carlo modeling of these effects, the pion absorption and pion inelastic scattering cross sections are varied by $\pm 30\%$ [63]. The proton rescattering is changed by $\pm 10\%$ according to the uncertainties derived from cross section measurements [63] [64]. The systematic errors in Table VI are calculated by repeating the analysis for each variation of the corresponding source. The uncertainty in the pion interaction length is considered by changing its value by $\pm 20\%$. The overall uncertainty on the MC model is calculated considering the uncertainty in the pion interaction length fully correlated to the pion inelastic cross section above.

## C. Detector effects

The SciBar hit threshold, set at 2 photo-electrons, is changed by $\pm 30\%$ and the corresponding variation of the result is quoted as a systematic error.

The model for the cross-talk in SciBar takes into account the second neighboring pixel and has a single free parameter $n$ corresponding to the fraction of charge given by cross-talk in the adjacent pixel. The best fit obtained comparing data and Monte Carlo is $n = (3.25 \pm 0.01) \times 10^{-2}$. The same model is used for the cross-talk simulation in Monte Carlo and for the correction of the cross-talk effect both in Monte Carlo and data. To evaluate the systematic due to the cross-talk, we changed the cross-talk parameter $n$ in the simulation in the range from 3.0% to 3.5%, corresponding to the uncertainty in the cross-talk modeling [17].

Smaller systematic detector effects are induced by the uncertainties in the single photo-electron PMT resolution and the scintillator quenching (Birk’s saturation) in SciBar. The SciBar PMT’s resolution in the Monte Carlo is set at 40% [27]. This value was chosen by tuning the dE/dx per plane for muons in Monte Carlo to match the

| Source | $\frac{\sigma_{CC\pi^0}}{\sigma_{CCQE}}$ [%] | $\frac{\sigma_{Corex}}{\sigma_{CCQE}}$ [%] |
|--------|---------------------------------|---------------------------------|
| Normalization and fit | -1.8 $\pm$ 1.8 | -3.5 $\pm$ 3.5 |
| non-QE CC cross sections | -3.4 $\pm$ 3.3 | -3.1 $\pm$ 3.7 |
| Bodek&Yang corr. | -4.3 $\pm$ 3.5 | -8.3 $\pm$ 7.8 |
| CCQE $M_A$ | -1.3 $\pm$ 2.4 | -0.8 $\pm$ 1.4 |
| NC/CC ratio | -0.5 $\pm$ 0.5 | -0.8 $\pm$ 0.8 |
| $\nu$ flux | -0.1 $\pm$ 0.1 | -0.4 $\pm$ 0.4 |
| $E_\nu$ reco. parameters | +0.2 $\pm$ 0.2 | +0.3 $\pm$ 0.3 |
| Int. model/flux | -5.9 $\pm$ 5.7 | -9.6 $\pm$ 9.5 |
| $\pi$ absorption | -2.0 $\pm$ 2.1 | -1.8 $\pm$ 2.0 |
| $\pi$ inelastic | -3.0 $\pm$ 1.8 | -2.2 $\pm$ 1.5 |
| Proton rescattering | -1.9 $\pm$ 0.3 | -2.8 $\pm$ 2.6 |
| Pion inter. length | -1.5 $\pm$ 1.5 | -2.9 $\pm$ 2.4 |
| Nucl. model | -4.1 $\pm$ 2.8 | -4.9 $\pm$ 4.3 |
| PMT resolution | -0.5 $\pm$ 0.5 | -0.6 $\pm$ 0.7 |
| Scintillator quench. | -0.1 $\pm$ 0.1 | -0.4 $\pm$ 0.4 |
| Cross-talk | +1.2 $\pm$ 2.8 | +1.4 $\pm$ 2.3 |
| PMT threshold | -1.7 $\pm$ 2.0 | -1.6 $\pm$ 2.2 |
| Detector effects | -1.8 $\pm$ 3.3 | -2.2 $\pm$ 3.5 |
| Fiducial Volume | -2.6 $\pm$ 2.5 | -3.3 $\pm$ 3.2 |
| Vertex disc. | -1.9 $\pm$ 2.4 | -3.2 $\pm$ 2.6 |
| Vertex pointing | -1.0 $\pm$ 1.8 | -1.4 $\pm$ 1.9 |
| EC cluster energy | -0.4 $\pm$ 1.2 | -0.4 $\pm$ 1.1 |
| Selection cuts | -3.4 $\pm$ 4.1 | -4.8 $\pm$ 4.7 |

**Total** | -8.1 $\pm$ 8.2 | -12.0 $\pm$ 12.0 |
response to cosmic ray data. The uncertainty is evaluated to be 10% and the corresponding systematic errors are listed in Table VII. The scintillator quenching in SciBar was measured in a beam test and is well reproduced by Birk’s equation [27]. The systematic error is evaluated by varying the Birk’s parameter within its uncertainty. Other detector effects were found to give negligible contributions to the systematic error.

D. Selection cuts

In order to evaluate the systematic uncertainties due to the selection, in Table VII we quote the dependence of the result to variations of the cuts.

We change the fiducial volume by changing (simultaneously in data and Monte Carlo) one at the time the fiducial volume cuts in the three coordinates according to the resolution for reconstructing the neutrino vertex: 0.8 cm for both X and Y, and 1.6 cm for the Z. Then we add in quadrature the three corresponding variations of the result.

The systematic uncertainty on the cut requiring the photon track to be disconnected from the vertex has been assessed by looking at the resolution on the neutrino vertex reconstruction and adding in quadrature the resolution on the photon conversion point. We assumed the resolution on the photon conversion point to be equal to the resolution on the muon vertex.

The cut on the photon track pointing to the vertex is applied to the distance by which the photon candidate track misses the vertex when extrapolated to the vertex plane. We take 0.14 rad for the 2D angle resolution (0.12 rad and 0.14 rad, respectively, for the most energetic photon and the least one). The cut is applied on photons disconnected by more than 20 cm from the vertex. They have on average a 50 cm distance from the vertex. We set the variation as 50 cm.

The cut misses the vertex when extrapolated to the vertex plane. We take 0.14 rad for the 2D angle resolution (0.12 rad and 0.14 rad, respectively, for the most energetic photon and the least one). The cut is applied on photons disconnected by more than 20 cm from the vertex. They have on average a 50 cm distance from the vertex. We set the variation as 50 cm.

In the cut region (25 cm), agreement between MC and data is quite satisfactory.

VII. RESULTS

Under the assumption that the detection efficiency are the same in data and Monte Carlo, the ratio between the inclusive \( \frac{\sigma_{CC\pi}^{0}}{\sigma_{CCQE}} \) cross section and the CCQE cross section can be calculated from Eq. (6) multiplying the best fit values of \( R_{CC\pi\nu} \) given in Table VII by the MC prediction for the cross section ratio in each neutrino bin \( E_{\nu} \):

\[
\frac{\sigma_{CC\pi}^{0}(E_{\nu})}{\sigma_{CCQE}(E_{\nu})} = R_{CC\pi\nu}(E_{\nu}) \times \left[ \frac{\sigma_{CC\pi}^{0}(E_{\nu})}{\sigma_{CCQE}(E_{\nu})} \right]_{MC} \quad (8)
\]

Table VII shows the \( CC\pi^{0} \) cross section ratio to CCQE, integrated over all energies and as a function of the four neutrino energy bins. Figure 11 shows the result as a function of neutrino energy. The vertical bars are the statistical errors, the height of the filled areas corresponds to the statistical and systematic errors added in quadrature and the data points in each bin are set at the weighted averages of the true neutrino energy for the selected CCQE events. Figure 11 also shows the CC\( \pi^{0} \) over CCQE ratio and the two largest contributions, single pions from resonances and pions produced in DIS, as they are predicted by our reference MC. According to our reference MC the average true neutrino energy for the selected CCQE events is 1.1 GeV. The average true neutrino energy for our selected \( \pi^{0} \) sample is 1.3 GeV and 2.5 GeV for the fraction of \( \pi^{0} \) produced in DIS events.

The CC non resonant to CCQE ratio is obtained from the best fit values of \( R_{nres} \) in Table VII similarly to Eq. (8):

\[
\frac{\sigma_{CCnres}(E_{\nu})}{\sigma_{CCQE}(E_{\nu})} = R_{nres}(E_{\nu}) \times \left[ \frac{\sigma_{CCnres}(E_{\nu})}{\sigma_{CCQE}(E_{\nu})} \right]_{MC} \quad (9)
\]

The results for \( \frac{\sigma_{CCnres}}{\sigma_{CCQE}} \) are reported in Table VIII integrated over all energies and as a function of the four neutrino energy bins.

A. Comparison with other experiments

Past experimental results exist for the exclusive \( \nu_{\mu}n \rightarrow \mu^{-}p\pi^{0} \) cross sections on deuterium (Barish [10], Radecky [11] and Kitagaki [12]). There is also a published result for the exclusive cross section \( \nu + p \rightarrow \mu^{-}p\pi^{+}\pi^{0} \) (Day [14]). In order to compare with our result on \( C_{6}H_{2} \), cross sections on deuterium have been rescaled to the different number of protons and neutrons. The ratio between \( CC\pi^{0} \) and CCQE cross sections is computed by dividing the experimental results quoted above by the CCQE cross section.

### Table VII. Inclusive Cross Section Ratio \( \frac{\sigma_{CC\pi}^{0}}{\sigma_{CCQE}} \) as a function of the neutrino energy.

| Energy Range GeV | Cross Section Ratio \( \frac{\sigma_{CC\pi}^{0}}{\sigma_{CCQE}} \) |
|------------------|------------------------------------------|
| > 0.0            | 0.426 ± 0.032(stat.) ± 0.035(syst.)          |
| 0.0 - 1.5        | 0.155 ± 0.030(stat.) ± 0.010(syst.)          |
| 1.5 - 2.0        | 0.577 ± 0.062(stat.) ± 0.037(syst.)          |
| 2.0 - 2.5        | 0.861 ± 0.130(stat.) ± 0.067(syst.)          |
| ≥ 2.5            | 1.627 ± 0.138(stat.) ± 0.103(syst.)          |

### Table VIII. Cross Section Ratio \( \frac{\sigma_{CCnres}}{\sigma_{CCQE}} \) as a function of the neutrino energy.

| Energy Range GeV | Cross Section Ratio \( \frac{\sigma_{CCnres}}{\sigma_{CCQE}} \) |
|------------------|------------------------------------------|
| > 0.0            | 0.419 ± 0.034(stat.) ± 0.050(syst.)          |
| 0.0 - 1.5        | 0.010 ± 0.002(stat.) ± 0.002(syst.)          |
| 1.5 - 2.0        | 0.432 ± 0.125(stat.) ± 0.056(syst.)          |
| 2.0 - 2.5        | 1.304 ± 0.164(stat.) ± 0.117(syst.)          |
| ≥ 2.5            | 2.954 ± 0.309(stat.) ± 0.354(syst.)          |
cross section measured by Barish [33]. Below 1.5 GeV neutrino energy our result can be directly compared with the published single pion cross sections, since this is the main contribution to the inclusive cross section. The three points shown as diamond-shaped symbols at 1.07 GeV, 1.70 GeV and 3.0 GeV are obtained adding the two pion $\mu^- p \pi^+ \pi^0$ from [14] to the single pions $\mu^- p \pi^0$ taken from [12].

The MiniBooNE collaboration has recently published charged current $\pi^0$ production [65] at a slightly lower neutrino energy (between 0.5 GeV and 2 GeV) and their result is consistent with the one presented in this paper.

VIII. Conclusion

Out of a sample of 11,606 charged-current neutrino interactions in the K2K SciBar detector, we selected 479 inclusive $\pi^0$ events with an efficiency of 7.8% and a purity of 66.5%. The sample corresponds to $2.02 \times 10^{19}$ protons on target recorded with the SciBar+EC+MRD detectors at 1.3 GeV average beam neutrino energy. We measured the cross section for charged-current $\pi^0$ production relative to the charged-current quasi-elastic cross section to avoid the large uncertainties in the absolute neutrino flux determination. The result integrated over the neutrino energy spectrum is

$$\frac{\sigma_{CC\pi^0}}{\sigma_{CCQE}} = 0.426 \pm 0.032(\text{stat}) \pm 0.035(\text{syst})$$

higher than the prediction of our reference Monte Carlo. The energy dependent $CC\pi^0$ to CCQE cross section ratio is presented in Table VII and shown in Fig. 11. The results of the best fit for the composition of our $CC\pi^0$ sample show that the data excess comes from non resonant processes, mainly $\pi^0$ production in DIS, rather than from $\pi^0$ in resonance production. Using the measured CC single charged pion cross section [17] as a constraint for the resonant production, we measured the ratio between the CC non resonant and the CCQE cross section, integrated over the neutrino energy spectrum:

$$\frac{\sigma_{CCnres}}{\sigma_{CCQE}} = 0.419 \pm 0.034(\text{stat}) \pm 0.050(\text{syst})$$

For CC non resonant processes we define any charged current process except quasi elastic interaction and resonances production. The energy dependent cross section ratio is presented in Table VIII. The results presented here are the firsts for neutrinos of few-GeV energy on a C8H8 target material and improve the precision of previous results on different targets and therefore are a significant contribution to the knowledge of neutrino interaction processes relevant for several present and future oscillation experiments.

IX. ACKNOWLEDGMENT

We thank the KEK and ICRR directorates for their strong support and encouragement. K2K was made possible by the inventiveness and the diligent efforts of the KEK-PS machine group and beam channel group. We gratefully acknowledge the cooperation of the Kamioka Mining and Smelting Company. This work has been supported by the Ministry of Education, Culture, Sports, Science and Technology of the Government of Japan, the Japan Society for Promotion of Science, the U.S. Department of Energy, the Korea Research Foundation, the Korea Science and Engineering Foundation, NSERC Canada and Canada Foundation for Innovation, the Instituto Nazionale di Fisica Nucleare (Italy), the Ministerio de Educación y Ciencia and Generalitat Valenciana (Spain), the Commissariat à l’Energie Atomique (France), and Polish KBN grants: 1P03B08227 and 1P03B03826.

[1] Raymond Davis. Solar neutrinos. ii. experimental. Phys. Rev. Lett., 12(11):303–305, Mar 1964.
[2] Y. Fukuda et al. Solar neutrino data covering solar cycle 22. Phys. Rev. Lett., 77:1683–1686, 1996.
the 7-ft bubble chamber. *Phys. Rev.*, D25:617–623, 1982.

[44] Dieter Rein and Lalit M. Sehgal. Neutrino excitation of baryon resonances and single pion production. *Ann. Phys.*, 133:79, 1981.

[45] D. Rein. Angular distribution in neutrino induced single pion production processes. *Z. Phys.*, C35:43–64, 1987.

[46] M. Gluck, E. Reya, and A. Vogt. Dynamical parton distributions of the proton and small x physics. *Z. Phys.*, C67:433–448, 1995.

[47] A. Bodek and U. K. Yang. Modeling deep inelastic cross sections in the few GeV region. *Nucl. Phys. Proc. Suppl.*, 112:70–76, 2002.

[48] Masayuki Nakahata et al. Atmospheric neutrino background and pion nuclear effect for Kamioka nucleon decay experiment. *J. Phys. Soc. Jap.*, 55:3786, 1986.

[49] Torbjorn Sjostrand. High-energy physics event generation with PYTHIA 5.7 and JETSET 7.4. *Comput. Phys. Commun.*, 82:74–90, 1994.

[50] R. A. Smith and E. J. Moniz. Neutrino reactions on nuclear targets. *Nucl. Phys.*, B43:605, 1972.

[51] E. J. Moniz et al. Nuclear fermi momenta from quasielastic electron scattering. *Phys. Rev. Lett.*, 26:445–448, 1971.

[52] S. K. Singh, M. J. Vicente-Vacas, and E. Oset. Nuclear effects in neutrino production of Delta at intermediate energies. *Phys. Lett.*, B416:23–28, 1998.

[53] C. H. Llewellyn Smith. Neutrino Reactions at Accelerator Energies. *Phys. Rept.*, 3:261, 1972.

[54] Dieter Rein and Lalit M. Sehgal. Coherent $\pi^0$ Production in Neutrino Reactions. *Nucl. Phys.*, B223:29, 1983.

[55] M. Hasegawa et al. Search for coherent charged pion production in neutrino carbon interactions. *Phys. Rev. Lett.*, 95:252301, 2005.