Prevalence and factors related to sleep apnoea in ankylosing spondylitis

Adrian Wiginder1 · Carin Sahlin-Ingridsson1 · Mats Geijer2,3,4 · Anders Blomberg1 · Karl A. Franklin5 · Helena Forsblad-d’Elia1,6

Received: 22 May 2021 / Revised: 29 August 2021 / Accepted: 14 September 2021 / Published online: 28 September 2021
© The Author(s) 2021, corrected publication 2022

Abstract
An increased prevalence of obstructive sleep apnoea (OSA) has been suggested in patients with ankylosing spondylitis (AS) in a few controlled studies. We aimed to study the prevalence of OSA compared to controls and to investigate if disease-related and non-disease-related factors were determinants of OSA in AS patients. One hundred and fifty-five patients with AS were included in the Backbone study, a cross-sectional study that investigates severity and comorbidities in AS. Controls were recruited from the Swedish CArdioPulmonary bioImage Study. To evaluate OSA, the participants were asked to undergo home sleep-monitoring during one night’s sleep. For each AS patient 45–70 years old, four controls were matched for sex, age, weight, and height. OSA was defined as an apnoea-hypopnoea index (AHI) ≥ 5 events/hour. Sixty-three patients with AS were examined with home sleep-monitoring, and 179 controls were matched with 46 patients, 45–70 years. Twenty-two out of 46 (47.8%) patients with AS vs. 91/179 (50.8%) controls had OSA (AHI ≥ 5 events/hour), \(P = 0.72 \). No differences in the sleep measurements were noted in AS patients vs. controls. In logistic regression analysis adjusted for age and sex, higher age, higher BMI, and lesser chest expansion were associated with the presence of OSA in the 63 AS patients. In the current study, patients with AS did not have a higher prevalence of OSA compared to matched controls. AS patients with OSA had higher BMI, were older, and had lesser chest expansion because of more severe AS compared to patients without OSA.

Key points
- Patients with ankylosing spondylitis did not have a higher prevalence of obstructive sleep apnoea versus matched controls.
- Patients with ankylosing spondylitis and obstructive sleep apnoea were older and had higher body mass index versus patients without obstructive sleep apnoea.
- Patients with ankylosing spondylitis and obstructive sleep apnoea had lesser chest expansion versus patients without obstructive sleep apnoea.

Keywords Ankylosing spondylitis · Observational study · Risk factors · Sleep apnoea

Introduction
Ankylosing spondylitis (AS) is associated with an increased risk of several comorbidities [1]. Also, the patients often have sleeping problems, depending on pain, or on other causes [2] resulting in fatigue that may be a major problem for the patients but sometimes ignored [3, 4]. Obstructive sleep apnoea (OSA) is related to fatigue, and some small studies have suggested a link between AS and OSA [5, 6]. These studies found OSA to be more frequent in patients with AS compared to the reported prevalence in the general population [7, 8]. Recently, Walsh et al. reported the comorbidity burden using a large US administrative claims database and found the prevalence of OSA in AS patients to be higher versus controls (8.8% vs 5.1%, \(P < 0.001 \)) [1]. We reported a similar OSA
prevalence of 8.7% in a medical record-based study on AS patients in Northern Sweden [9]. Obstructive sleep apnoea is a condition with episodes of upper airway collapse, resulting in periods of apnoea and hypopnoea during sleep. The definition of OSA is a so-called apnoea-hypopnoea index (AHI) ≥ 5 events/h. When OSA is combined with significant daytime sleepiness evaluated by the Epworth sleepiness scale (ESS), the disorder is called OSA syndrome (OSAS) [10–12]. Furthermore, OSA is linked to obesity and cardio- and metabolic diseases and is therefore recognised as an important cause of morbidity and mortality [13].

The knowledge about OSA and OSAS in AS is scarce, and we therefore intended to study these conditions in well-characterised AS patients. We hypothesised that patients with AS have an increased prevalence of OSA compared with controls and that patients with more severe AS have an increased risk of OSA. The aims of this study were (1) to investigate the prevalence of OSA and explore the sleeping patterns in patients with AS compared to matched controls and (2) to determine factors associated with OSA/OSAS in AS patients.

Materials and methods

Patients and controls

Patients with AS, in Västerbotten County, Northern Sweden, between 18 and 70 years of age, without known dementia, with knowledge of the Swedish language, not being pregnant, and fulfilling criteria for AS [14] were asked to take part in the Backbone study that investigates comorbidities and severity of AS, previously described in detail [15]. The flow chart of the inclusion process of the 155 patients included in Backbone and in the current study is described in Supplementary Fig. 1. Spinal radiographic alterations were scored according to the modified Stoke Ankylosing Spondylitis Spinal Score (mSASSS) that ranges from 0 to 72 [17]. The Bath Ankylosing Disease Spondylitis Activity Index (BASDAI), Ankylosing Spondylitis Disease Activity Score with C-reactive protein (ASDAS-CRP), Bath Ankylosing Spondylitis Functional Index (BASFI), Bath Ankylosing Spondylitis Metrology Index (BASMI), and presence of metabolic syndrome [16] were assessed and chest expansion was measured at the 4th intercostal level [18]. High-sensitivity C-reactive protein (hsCRP), erythrocyte sedimentation rate (ESR), and blood lipids were analysed consecutively.

The control group comprised individuals in Västerbotten County from the nationwide Swedish CARDioPulmonary bioImage Study (SCAPIS). Overall, 30,000 men and women between 50 and 64 years of age, randomly selected from the Swedish population register, are included in SCAPIS [19]. It was voluntary both for the 155 patients with AS in the Backbone study and the 2,500 SCAPIS individuals from the Västerbotten County to evaluate signs of OSA. Sixty-three of the patients with AS and 1,011 of the SCAPIS individuals fully completed home sleep-monitoring (63/155, 40.6% vs 1011/2500, 40.4%; \(P = 0.97 \)). Up to four controls (\(n = 179 \)) to each of the 46 AS patients in the same age-span as SCAPIS individuals were matched for sex, age, weight, and length (Supplementary Fig. 1).

Home sleep-monitoring device

The participants were examined during one night’s sleep with a home sleep-monitoring device (ApneaLink Air®, ResMed, CA, USA), which uses the same algorithm as its predecessor ApneaLink® [20]. Participants were provided with structured oral and the same written instruction on how to use the device. Apnoea is defined as a decrease in the airflow by ≥ 90% for at least 10 s and hypopnoea as a decrease in the airflow by > 30% for at least 10 s, combined with desaturation of ≥ 4% compared to the pre-event value. The frequency of obstructive sleeping events is reported as an Apnoea-Hypopnoea Index (AHI), the average number of apnoeas and hypopnoeas per hour of sleep. An AHI ≥ 5 events/h is defined as OSA and classified as mild (AHI ≥ 5 events/h and < 15 events/h), moderate (AHI ≥ 15 events/h and < 30 events/h), or severe (AHI ≥ 30 events/h) [11, 12].

Sleep apnoea questionnaire

The participants answered the ESS [10] that rates (ranges 0–24) the risk of falling asleep in different everyday situations, and OSAS is defined as an AHI ≥ 5 events/h in combination with ESS ≥ 10 [11].

Statistics

Results are expressed as mean ± standard deviation (SD), median (quartile 1 (Q1), quartile 3 (Q3)), or number and percentage (%), and comparisons between groups were performed with a \(t \)-test or the Mann–Whitney \(U \)-test as appropriate. Categorical parameters were compared with the Chi-square test or Fisher’s exact test. Based on a previous study [6], a power calculation was conducted showing that a sample size of at least 46 patients with AS and 184 controls would be needed to achieve a power of 80%, using a one-sided Fisher’s exact test at a 0.05 significance level. The matching of controls to the patients with AS was made by propensity score matching on sex, age, weight, and length.
Univariable and age- and sex-adjusted logistic regression analyses were performed to identify variables associated with OSA. Odds ratios (OR) and 95% confidence intervals (CI) are given. Variables with $P \leq 0.05$ in the comparative analyses were included in the logistic regression analyses. Statistics were performed using SPSS version 24 (SPSS Inc., IBM, Chicago, IL, USA). $P \leq 0.05$ was considered statistically significant.

Results

Comparison between patients with AS and matched controls

The 46 patients with AS were slightly shorter and had somewhat higher BMI, whereas weight and sex distribution did not differ vs. controls (Table 1). The 46 patients displayed similar clinical characteristics to the rest of the 109 patients in Backbone (Supplementary Table 1). Out of these 46 patients, 22 had OSA vs. 91/179 controls, had OSA (47.8% vs 50.8%; $P = 0.717$). Eighteen (39.1%) AS patients had mild, four (8.7%) moderate, and none severe OSA, while 69 (38.5%) controls had mild, 17 (9.5%) moderate, and five (2.8%) severe OSA ($P > 0.5$).

Comparison between 63 patients with AS that completed home sleep-monitoring and 92 patients not fully completing

There was no significant difference in sex distribution, age, and BMI between the 63 patients that completed and the 92 patients who did not fully complete the home sleep-monitoring (Table 2). One of the 63 patients had been told by a doctor to have sleep apnoea and reported treatment for sleep apnoea, while 16 patients among those who were not assessed (1.6% vs 14.4%; $P = 0.002$) had been told to have sleep apnoea, out of which nine reported treatment.

OSA in patients with AS

Twenty-five (39.7%) of the 63 patients with AS who fully completed the home sleep-monitoring had OSA and nine (14.3%) had OSAS. Twenty patients (31.7%) had mild OSA, five (7.9%) moderate, and none severe. The patients with OSA were significantly older, had a higher BMI and weight, had a longer duration of AS symptoms and more often had metabolic syndrome and ≥ 1 syndesmophyte, had a higher mSASSS, BASMI, BASFI, and ESS score, and lesser chest expansion, compared with patients without OSA (Table 3). Logistic regression

Variables	Patients with AS	SCAPIS-persons	P-value
General characteristics			
Male sex, n	30 (65.2)	123 (68.7)	0.65
Age, years	57.2 (7.5)	57.2 (4.5)	0.98
Weight, kg	81.1 (15.4)	79.5 (14.5)	0.56
Length, cm	169.8 (8.6)	172.3 (8.1)	0.031
BMI, kg/m²	28.1 (4.8)	26.6 (3.8)	0.025
Home sleep-monitoring			
AHI, events/h †	6.5 (6.4)	7.1 (7.4)	
Apnoea Index, events/h †	2.3 (4.1)	4.9 (1.7, 9.9)	0.60
Hypopnea index, events/h †	1.0 (0.2, 2.8)	1.2 (0.3, 3.7)	0.36
Average saturation, % O₂	93.1 (1.7)	93.0 (1.6)	0.87
Lowest desaturation, % O₂	84.9 (4.1)	85.2 (5.0)	0.79
Lowest saturation, % O₂	83.7 (4.5)	83.4 (6.4)	0.75
Base saturation, % O₂	95.4 (1.7)	95.4 (2.1)	0.91
Average pulse, beats per minute	62.3 (8.7)	61.9 (7.6)	0.76

Values are mean (SD) or number of patients (%) unless otherwise indicated
†Values are also given as median (quartile 1, quartile 3)

BMI body mass index, AHI Apnoea-Hypopnoea Index
analyses adjusted for sex and age revealed that higher BMI (OR 1.6, 95% CI 1.2–2.2), higher age (OR 1.1, 95% CI 1.0–1.2), and lesser chest expansion (OR 0.6, 95% CI 0.4–0.9) were determinants for OSA (Table 4). Supplementary Fig. 2 shows the correlation between AHI and age, $r_s = 0.44, P < 0.001$; AHI and BMI, $r_s = 0.49, P < 0.001$; and AHI and chest expansion $r_s = -0.51, P < 0.001$.

Table 2	Clinical characteristics of 63 patients with ankylosing spondylitis (AS) assessed with home sleep-monitoring device and of 92 patients that not fully completed the examination		
	AS sleep-monitoring $n = 63$	AS no sleep-monitoring $n = 92$	P-value
General characteristics			
Male sex, n	43 (68.2)	64 (69.6)	0.86
Age, years	55.4 (11.9)	55.6 (11.2)	0.92
Weight, kg	80.8 (14.8)	84.8 (21.5)	0.21
Length, cm	171.1 (9.1)	173.3 (9.6)	0.15
BMI, kg/m²	27.6 (4.4)	28.1 (5.9)	0.55
Ever smoker, n	31 (49.2)	40 (43.5)	0.48
Walk ≥ 10 min, days/week, n	4.5 (2.0, 7.0)*	5.0 (3.0, 7.0)*	0.39
AS-related variables			
Duration of symptoms, years	31.0 (11.2)	32.3 (12.4)	0.50
ESR, mm/h †	15.7 (14.4)	12.6 (9.4)	0.97
hsCRP, mg/L †	12.0 (5.0; 23.0)	10.0 (5.0; 18.8)	0.31
BASDAI, score	5.3 (7.4)	4.1 (4.9)	0.43
BASDAI fatigue, score	3.7 (1.7)	3.7 (2.0)	0.72
ASDAS-CRP, score	4.6 (2.2)	4.6 (2.6)	0.97
BASMI, score	1.8 (0.7)	1.8 (0.7)	0.63
BASFI, score	4.2 (1.5)	4.1 (1.6)	0.35
Chest expansion, cm	4.6 (1.9)	4.5 (1.9)	0.62
NSAID regular usage, n	35 (55.6)	60 (65.3)	0.23
csDMARD and/or bDMARD, n	17 (27.0)	21 (22.8)	0.55
≥ 1 syndesmophyte, n	34 (54.0)**	52 (56.5)	0.92
mSASSS, score	18.7 (21.2)	17.5 (20.5)	0.73
Comorbidities			
Asthma, n	7 (11.1)*	13 (14.1)	0.61
Diabetes, n	6 (9.5)	7 (7.6)	0.67
Metabolic syndrome, n	28 (44.4)	30 (32.6)	0.095
Hyperlipidemia, n	20 (30.3)*	21 (23.6)*	0.34
Sleep apnoea, n	1 (1.6)	16 (14.4)	0.002
ESS, score	6.6 (4.2)	7.1 (4.9)	0.51
Laboratory values			
LDL, mmol/L	3.4 (1.0)	3.2 (0.8)	0.19
HDL, mmol/L	1.5 (0.4)	1.6 (0.51)	0.44
Cholesterol, mmol/L	5.5 (1.2)	5.5 (1.0)	0.59

Values are mean (SD) or numbers of patients (%)

† Values are also given as median (quartile 1, quartile 3)

Number of missing data: * = 1 ** = 2

BMI body mass index, ESR erythrocyte sedimentation rate, hsCRP high-sensitivity C-reactive protein, BASDAI Bath Ankylosing Disease Activity Index, ASDAS Ankylosing Spondylitis Disease Activity Score, BASMI Bath Ankylosing Spondylitis Metrology Index, BASFI Bath Ankylosing Spondylitis Functional Index, NSAID non-steroidal anti-inflammatory drug, csDMARD conventional synthetic disease modifying anti-rheumatic drug, b DMARD conventional synthetic disease modifying anti-rheumatic drug, b DMARD

Copyright © 2021. Springer
Discussion

In this study, we have investigated the prevalence of OSA and other measurements reflecting sleeping patterns assessed by a home sleep-monitoring device in a group of well-characterised patients with AS in comparison with matched controls. In addition, we have searched for AS-disease-related and non-disease-related factors associated with OSA in patients with AS. We found no difference in the prevalence of OSA between patients with AS and controls. About half of the AS patients and controls fulfilled the criteria of OSA. Furthermore, the most important determinants for OSA in patients with AS were higher age and BMI and lesser chest expansion, reflecting more severe AS disease.

A link between AS and OSA has been suggested, but knowledge has been limited. Prior small studies have reported a higher prevalence of OSA in patients with AS, in indirect comparisons with the prevalence in the general population [5, 6]. Furthermore, an elevated prevalence of

Table 3	Comparison between 25 patients with ankylosing spondylitis (AS) with obstructive sleep apnoea (OSA) and 38 patients with AS without OSA		
General characteristics	OSA n=25	No OSA n=38	P-value
Male sex, n	15 (60.0)	28 (73.7)	0.25
Age, years	61.6 (7.8)	51.2 (12.4)	<0.001
Length, cm	168.1 (8.4)	173.0 (9.1)	0.034
Weight, kg	85.6 (16.5)	77.7 (12.9)	0.038
BMI, kg/m²	30.3 (5.2)	25.8 (2.5)	<0.001
Smoking ever, n	10 (40.0)	15 (39.5)	0.20
Walk ≥ 10 min, days/week, n	4.0 (2.0, 7.0)	5.0 (2.5, 7.0)*	0.96
Metabolic syndrome, n	16 (66.7)*	12 (31.6)	0.009
AS-related variables			
Duration of symptoms, years	34.8 (10.0)	28.4 (11.3)	0.023
ESR, mm/h †	15.7 (13.2)	15.7 (15.4)	0.58
hsCRP, mg/L †	4.8 (4.4)	5.7 (8.9)	0.17
BASDAI, score	4.0 (1.7)	3.5 (1.8)	0.29
BASDAI fatigue, score	5.0 (2.0)	4.4 (2.3)	0.31
ASDAS-CRP, score	1.8 (0.6)	1.8 (0.7)	0.99
BASMI, score	5.0 (1.4)	3.7 (1.4)	0.001
BASFI, score	3.4 (1.9)	2.4 (1.5)	0.028
Chest expansion, cm	3.7 (1.5)	5.2 (1.8)	0.001
NSAID regular usage n	14 (56.0)	21 (55.2)	0.95
csDMARD and/or bDMARD, n	5 (20.0)	12 (31.6)	0.39
≥ 1 syndesmophyte, n	18 (75.0)*	16 (43.2)*	0.019
mSASSS, score	25.6 (24.5)	14.2 (17.7)	0.039
Laboratory values			
LDL, mmol/L	3.3 (0.8)	3.4 (1.2)	0.86
HDL, mmol/L	1.6 (0.4)	1.5 (0.4)	0.95
Cholesterol, mmol/L	5.6 (0.9)	5.5 (1.4)	0.69
ESS, score	8.1 (4.2)	5.6 (3.9)	0.018

Values are mean (SD) or numbers of patients (%)

†Values are also given as median (quartile 1, quartile 3)

Number of missing data: * = 1

BMI body mass index, ESR erythrocyte sedimentation rate, hsCRP high-sensitivity C-reactive protein, BASDAI Bath Ankylosing Disease Activity Index, ASDAS Ankylosing Spondylitis Disease Activity Score, BASMI Bath Ankylosing Spondylitis Metrology Index, BASFI Bath Ankylosing Spondylitis Functional Index, NSAID non-steroidal anti-inflammatory drug, csDMARD; conventional synthetic disease modifying anti-rheumatic drug, b; biologic, mSASSS Modified Stroke Ankylosing Spondylitis Score, HDL high-density lipoprotein, LDL low-density lipoprotein, ESS Epworth sleeping scale
sleep apnoea was reported in AS patients compared with controls in a large US administrative claims database [1]. In contrast, we did not find a higher prevalence of OSA in AS patients in the current controlled study. The discrepancy between our and previous findings might be explained by the disparate methods used in these studies, such as different ways of recruiting the patients, diverse devices to assess OSA, and indirect comparisons with controls versus direct comparison in our study.

Concerning the non-AS-disease-related factors, we found, in the adjusted logistic regression analyses, that OSA was related to higher BMI and age, in line with findings in the general population [21, 22]. Regarding the AS-related characteristics, various factors were related to the presence of OSA in the non-adjusted logistic regression analyses, while most of the associations, except lesser chest expansion, disappeared when adjusting for age and sex. Not surprisingly, we showed a significantly higher ESS-score among the AS patients with OSA compared to those without OSA. This suggests that ESS may be used as a screening tool for OSA in patients with AS.

The latest guidelines from the American Academy of Sleep Medicine (AASM) recommend treatment for sleep apnoea in patients with AHI ≥ 15 events/h and/or AHI ≥ 5 events/h with symptoms [12]. Thus, according to the AASM guidelines, 13/63 (20.6%) of the investigated patients with AS qualified for treatment. For biological DMARDs, the literature shows conflicting results about the association between TNF-inhibitors and OSA, one study found a lower frequency of OSA among TNF-inhibitor-treated patients, while two other studies did not, in line with our findings [23–25].

There are some limitations to be acknowledged. Only 63 (40.6%) of 155 patients with AS were completely assessed with the home sleep-monitoring device, which means that one may not draw too strong conclusions in sub-group analyses. The golden standard, polysomnography for diagnosing sleeping disorders, was not performed, but a simplified home sleep-monitoring device was used. The strengths of this study are the use of a matched control group, the systematic use of the same validated device [20] in both the patients and the controls, and the very well-characterised patients with AS. Although only 40.6% of the AS patients completed the assessment, the 63 examined patients did not differ in any clinical characteristics compared to the 92 patients not examined with the device. Furthermore, the 46 patients with AS who were compared with the matched controls from SCAPIS did not differ in AS-related characteristics from the 109 patients with AS that were not compared with the SCAPIS controls. Thus, we believe that the studied patients with AS quite well represent patients with AS followed at a university hospital in northern Sweden.

In conclusion, the prevalence of OSA in patients with AS was not higher than in matched controls. The AS patients with OSA had more daytime sleepiness, had a higher BMI, were older, and, importantly, had also lesser chest expansion, which reflects a more severe AS disease, compared with patients without OSA. These are the most important factors to consider when trying to identify OSA in patients with AS.

Supplementary Information

The online version contains supplementary material available at https://doi.org/10.1007/s10067-021-05924-z.

Acknowledgements

We wish to thank the research nurses at the University Hospital at Umeå, Viktoria von Zweigbergk and Jeanette Beckman Rehnman, for assisting with the project. We also want to acknowledge all participants in the study.

Table 4 Univariable and age- and sex-adjusted logistic regression analyses with obstructive sleep apnoea (OSA) as dependent variable in 63 patients with ankylosing spondylitis (AS)

Variables	Odds ratio (95% CI)	P-value	Odds ratio (95% CI)	P-value
Sex, male	1.9 (0.6–5.5)	0.25	1.5 (0.4–4.8)	0.53
Age, years	1.1 (1.0–1.2)	0.002	1.1 (1.0–1.2)	0.002
BMI, kg/m²	1.4 (1.1–1.7)	0.001	1.6 (1.2–2.2)	0.001
Duration of symptoms, years	1.1 (1.0–1.1)	0.028	1.0 (0.9–1.1)	0.79
BASMI score	1.9 (1.2–2.9)	0.002	1.5 (0.9–2.5)	0.87
BASFI score	1.4 (1.0–2.0)	0.038	1.3 (0.9–2.0)	0.88
Chest expansion, cm	0.6 (0.4–0.8)	0.002	0.6 (0.4–0.9)	0.007
≥ Syndesmophyte, n	3.9 (1.3–12.2)	0.017	3.0 (0.8–11.3)	0.1
mSASSS score	1.0 (1.0–1.1)	0.047	1.0 (0.98–1.05)	0.25
Metabolic syndrome, n	4.3 (1.5–12.9)	0.008	1.4 (0.3–6.6)	0.69
ESS, score	1.2 (1.0–1.3)	0.023	1.2 (1.0–1.4)	0.29

CI confidence interval, BMI body mass index, BASMI Bath Ankylosing Spondylitis Metrology Index, BASFI Bath Ankylosing Spondylitis Functional Index, mSASSS Modified Stroke Ankylosing Spondylitis Score, ESS Epworth sleeping scale.
Author contribution The study design was performed by AB, KF, and HFdE. Patient and controls-related data collection was done by CSI, MG, AB, and HFdE. Statistical analyses were performed by AW and HFdE. Interpretation of data was done by AW, CSI, MG, AB, KF, and HFdE. Writing of the manuscript by AW and HFdE. All authors approved the final version and agree to be accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved.

Funding Open access funding provided by University of Gothenburg. Stiftelsen Konung Gustaf V:s 80-årsfond, Västerbottens läns landsting (ALF), The Swedish Research Council, The Swedish Rheumatism Association, Västerbotten’s Association Against Rheumatism, The Norrland Heart Foundation and Mats Kleberg’s Foundation.

The funders had no impact on the design or interpretation of the study or its results.

Data availability The data sets analysed during the current study are not publicly available due to the Swedish legislation (the Personal Data Act), but a limited and fully anonymised data set that supports the main analyses is available from the corresponding author on request.

Declarations

Ethics approval and consent to participate The study was approved by the Ethics Review Board at Umeå University, Umeå, Sweden (2016/208–31, and 2016/148-31 M), and carried out following the Helsinki declaration. Written consent was obtained from all participants before their inclusion.

Disclosures None.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Walsh JA, Song X, Kim G, Park Y (2018) Evaluation of the comorbidity burden in patients with ankylosing spondylitis using a large US administrative claims data set. Clin Rheumatol 37(7):1869–1878
2. Merceiec C, van der Horst-Bruinsema IE, Borg AA (2014) Pulmonary, renal and neurological comorbidities in patients with ankylosing spondylitis; implications for clinical practice. Curr Rheumatol Rep 16(8):434
3. Jones SD, Koh WH, Steiner A, Garrett SL, Calin A (1996) Fatigue in ankylosing spondylitis; its prevalence and relationship to disease activity, sleep, and other factors. J Rheumatol 23(3):487–490
4. Calin A, Edmunds L, Kennedy LG (1993) Fatigue in ankylosing spondylitis—why is it ignored? J Rheumatol 20(6):991–995
5. Erb N, Karokis D, Delamere JP, Cusheley MJ, Kitsa GD (2003) Obstructive sleep apnoea as a cause of fatigue in ankylosing spondylitis. Ann Rheum Dis 62(2):183–184
6. Solak O, Fidan F, Dundar U, Turel A, Ayiccek A, Kavuncu V et al (2009) The prevalence of obstructive sleep apnea syndrome in ankylosing spondylitis patients. Rheumatology (Oxford) 48(4):433–435
7. Odens ML, Fox CH (1995) Adult sleep apnea syndromes. Am Fam Physician. 52(3):859–66 (71-2)
8. Punjabi NM (2008) The epidemiology of adult obstructive sleep apnea. Proc Am Thorac Soc 5(2):136–143
9. Ljung L, Sundstrom B, Smeds J, Ketonen M, Forsblad-d’Elia H (2018) Patterns of comorbidity and disease characteristics among patients with ankylosing spondylitis—a cross-sectional study. Clin Rheumatol 37(3):647–653
10. Johns MW (1991) A new method for measuring daytime sleepiness: the Epworth sleepiness scale. Sleep 14(6):540–545
11. Sleep-related breathing disorders in adults (1999) recommendations for syndrome definition and measurement techniques in clinical research. The Report of an American Academy of Sleep Medicine Task Force. Sleep 22(5):667–89
12. Berry RB, Budhiraja R, Gottlieb DJ, Gozal D, Iber C, Kapur VK et al (2012) Rules for scoring respiratory events in sleep: update of the 2007 AASM Manual for the Scoring of Sleep and Associated Events. Deliberations of the Sleep Apnea Definitions Task Force of the American Academy of Sleep Medicine. J Clin Sleep Med JCSM Off Publ Am Acad Sleep Med 8(5):597–619
13. Lavie P, Herer P, Peled R, Berger I, Yoffe N, Zomer J et al (1995) Mortality in sleep apnea patients: a multivariate analysis of risk factors. Sleep 18(3):149–157
14. van der Linden S, Valkenburg HA, Cats A (1984) Evaluation of diagnostic criteria for ankylosing spondylitis. A proposal for modification of the New York criteria. Arthritis Rheum 27(4):361–8
15. Forsblad-d’Elia H, Law L, Bengtsson K, Smeds J, Ketonen M, Sundstrom B et al (2021) Biomechanical properties of common carotid arteries assessed by circumferential 2D strain and beta stiffness index in patients with ankylosing spondylitis. J Rheumatol 48(3):352–360
16. Alberti KG, Zimmet P, Shaw J, Group IDFETFC (2005) The metabolic syndrome—a new worldwide definition. Lancet 366(9491):1059–62
17. Creemers MC, Franssen MJ, van’t Hof MA, Griibnau FW, van de Putte LB, van Riel PL (2005) Assessment of outcome in ankylosing spondylitis: an extended radiographic scoring system. Ann Rheum Dis 64(1):127–9
18. Sieper J, Rudwaleit M, Baraliakos X, Brandt J, Braun J, Burgos-Vargas R et al (2009) The Assessment of SpondyloArthritis international Society (ASAS) handbook: a guide to assess spondyloarthritis. Ann Rheum Dis 68(Suppl 2):i1–i4
19. Bergstrom G, Berglund G, Blomberg A, Brandberg J, Engstrom G, Engvall J et al (2015) The Swedish CARDioPulmonary BioImage Study: objectives and design. J Intern Med 278(6):645–659
20. Erman MK, Stewart D, Einhorn D, Gordon N, Casal E (2007) Validation of the ApneaLink for the screening of sleep apnea: a novel and simple single-channel recording device. J Clin Sleep Med JCSM Off Publ Am Acad Sleep Med 3(4):387–392
21. Resta O, Foschino-Barbaro MP, Legari G, Talamo S, Bonfitto P, Palumbo A et al (2001) Sleep-related breathing disorders, loud snoring and excessive daytime sleepiness in obese subjects. Int J Obes Relat Metab Disord 25(5):669–675
22. Ernst G, Mariani J, Blanco M, Finn B, Salvado A, Borsini E (2019) Increase in the frequency of obstructive sleep apnea in elderly people. Sleep Sci 12(3):222–226
23. Walsh JA, Song X, Kim G, Park Y (2018) Evaluation of the comorbidity burden in patients with ankylosing spondylitis treated with tumour necrosis factor inhibitors using a large administrative claims data set. J Pharm Health Serv Res 9(2):115–121
24. In E, Turgut T, Gulkesen A, Yolbas S, Akgol G, Koca SS (2016) Sleep quality is related to disease activity in patients with ankylosing spondylitis: a polysomnographic study. J Clin Rheumatol 22(5):248–252
25. Karatas G, Bal A, Yuceege M, Firat H, Gurcay E, Ardic S et al (2018) Evaluation of sleep quality in patients with ankylosing spondylitis and efficacy of anti-TNF-alpha therapy on sleep problems: a polysomnographic study. Int J Rheum Dis 21(6):1263–1269

Publisher's note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.