Research Article

Research on the Civic Policy Model and Reform Innovation of Intelligent Sensor Technology Course

Zheng Wan He

Public Foundation College, Anqing Medical College, Anqing, Anhui 246000, China

Correspondence should be addressed to Zheng Wan He; hzw@aqmc.edu.cn

Received 24 June 2022; Revised 19 July 2022; Accepted 25 July 2022; Published 21 August 2022

Academic Editor: Gengxin Sun

Copyright © 2022 Zheng Wan He. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Intelligent sensor technology is a professional course of communication, electronics, information, computer, and other related majors and is a course of expansion and extension of computer network (Ministry of Education of the People’s Republic of China, 2001). It is connected with the Internet by using information sensing device to realize the intercommunication of time and space, people, machines, and things. Intelligent sensor technology is an advanced subject; it contains a lot of ideological elements; in teaching, it should be according to the characteristics of the subject, set the goal of ideological education, to design the content of the ideological education, improve the ideological education, to carry on the course of the construction of the ideological practice and exploration, and guide students to set up the correct world outlook, the outlook on life, and values (The State Council of the Central Committee of the Communist Party of China, 2010). Integrating the elements of thinking and politics into the teaching of intelligent sensor technology and organically combining thinking and politics teaching with professional teaching is conducive to realizing the nurturing function of professional teaching and establishing an all-round curriculum system, so that professional and thinking and politics courses can go hand in hand and produce synergy. With the concept of “civic education as the soul, general education as the root, professional education as the foundation,” the strategy of integrating civic education from “point to surface (Wei, 2015), from history to the present, from inside to outside” is summarized, and a system of assessment, evaluation, and continuous improvement is established. It also establishes a system of assessment, evaluation, and continuous improvement. The strategy has proved to be effective in combining ideological and political education with moral education, enabling students to develop theoretical, institutional, and cultural confidence on the road to socialism with Chinese characteristics (Ministry of Education of the People’s Republic of China, 2004).

1. Introduction

With the full-scale development and expansion of the smart sensor industry, there are already a large number of companies under this concept, and the market demand is huge, while the supply of talents is relatively low and far away from it. And in the near future, intelligent sensors [1–4] will be applied to various industries, which will be divided into three major categories according to the needs of the industry: research-based, engineering-based, and skill-based [5]. In higher education institutions, the focus is on training a variety of intelligent sensor technology business operations management personnel, marketing personnel, business application personnel, customer service personnel, and system maintenance personnel. The service objects of the technical personnel are mainly for intelligent sensor technology service enterprises and users of intelligent sensor technology [6], for example, the operation enterprises of sensor technology services and the integration enterprises of sensor technology systems. The training of intelligent sensor technology skilled personnel requires a high level of comprehensive ability, therefore, in different institutions of higher education, to train with high skills in the basic knowledge of intelligent sensor technology [7], business knowledge, but also with the regional situation of the intelligent sensor technology industry, to train their technical application skills, communication skills, and management skills [8].

In the past few years, our school has opened one after another intelligent sensor technology and sensor technology-related majors, of which the number of courses in “Intelligent
Sensor Technology” is increasing, but because this new course was set up relatively late, our students will have to face work after graduation, so we have to make students familiar with and understand the talent needs of the industry of intelligent sensor technology during their university years [9], so that this will enable students to better adapt to the needs and development of the intelligent sensor technology industry after graduation and to meet the training of skilled talents in higher education, which requires our teachers to deeply analyze and study the characteristics of the emerging industry of intelligent sensor technology and job requirements. And in the teaching design of the smart sensor technology course, a scientific learning scenario [10], job requirements, and job tasks should be established. In the teaching design of the smart sensor technology course, a scientific learning scenario should be established, and good teaching methods should be used to change students’ learning and assessment methods, so that students can adapt to the needs and development of this industry in advance and be fully prepared for the future, not only to go to the workplace to prepare fully but also for the intelligent sensor technology industry talent needs to lay the foundation, so the intelligent sensor technology course thinking mode as well as curriculum reform and innovation research is particularly important [11].

2. Introduction to Related Technologies

2.1. Theory of Intelligent Sensor Technology. Conventional sensors can only play a sensitive role and need to be combined with inverters to detect changes in physical, chemical, and other quantities. With the rapid development of industry and the continuous improvement of automation and intelligence, higher requirements are placed on the accuracy, reliability, stability, and improved data processing capability of sensors. Traditional sensors are no longer able to meet this demand. The use of advanced material technology and techniques, especially computer technology, has led to a radical change in sensing technology [12].

In the 1980s, the core of intelligent measurement and control systems was the microcomputer [13], which integrated sensor signal conditioning circuits, microcontrollers, memory, and interface circuits, thus realizing the intelligence of the sensor. The main functions of the system include signal conversion, data acquisition, data processing, core control, and data transmission. The block diagram of the components is shown in Figure 1.

- (1) The function of the signal conversion circuit is to convert the corresponding physical quantity into a voltage signal, which is then amplified and filtered. This method outputs it to the data acquisition circuit [14].
- (2) The main function of the data acquisition circuit is to convert the analogue signal from the signal converter into a digital signal (data string) and output it to the CPU so that it performs the corresponding processing [15].
- (3) In intelligent data processing sensors, there is usually no unified data processing function. Usually, only digital filtering is required. Some smart sensors also need to handle other processing of the signal, such as identifying the amplitude of the signal, extracting signal characteristics, display processing, etc. In short, the data processing requirements are different in different applications [16].
- (4) The core control part of the system is done through the software and hardware of the microcontroller, which is called “intelligent.” The microcontroller is able to control relevant parameters such as time intervals and rates; it can also perform data processing such as temperature compensation and nonlinear correction and control the data transmission.
- (5) Data transmission in the control system is collected and processed by intelligent sensors and then transmitted to a central controller or other control device. Due to the nature of the control system itself, data is usually transmitted over certain distances, so special lines and methods must be used for the transmission of data. For example, methods such as current loops or RS232 are used for this purpose when going through the encoding process. Most of the current control systems are implemented by means of wired transmission.

In the 1990s, intelligent measurement and control technology was developed again with the addition of an integrated data module (which stores the raw data, various common data and parameters of the intelligent sensor) and a reasoning machine (which uses the knowledge in the knowledge base to think, judge, reason, correct, and amend the parameters of the intelligent sensor based on the sensor and the integrated data), making the intelligent sensor have all or some of the following characteristics [17]:

- (1) the ability to make logical judgements and statistical processing functions
- (2) self-diagnosis and self-calibration functions
(3) self-adaptive and self-adjusting functions
(4) configuration functions
(5) with storage and storage functions
(6) with the ability to communicate with data

As mentioned above, most of the current control systems are implemented by means of wired transmission. Traditional data collection systems have to bundle various types of sensors and multiple signal lines, which is not only costly and time consuming but also very inconvenient and inflexible to add multiple sensors to the network. This method not only limits the lightness of the sensors but also requires the storage of calibration information and the use of engineering units in the form of nonstandard outputs [18].

In larger, more meaningful applications, each sensor is individually wired to some data monitoring/acquisition/control device, which is often temporary and disassembled or reassembled once a particular test has been completed. The wired connections of conventional sensors are inconvenient for communication between such temporary devices. In particular, wireless communication is necessary for non-human onsite monitoring in the field, in mines [19, 20], in toxic and hazardous areas, in disaster relief, and when moving the operating conditions of rotating devices. Under usual conditions, wireless transmission technology can reduce plant wiring and avoid undesirable industrial site environments such as humidity, vibration, dust, and grid interference [21].

2.2. Theory of Professional Thinking and Politics. “Professional thinking and politics” refers to taking “profession” as the carrier, combining the characteristics of “profession” and the needs of “vocational ability” from the perspective of “profession” [22], distilling the “core values” required by “profession” and integrating them into “vocational education.” The “core values” required by “profession” are extracted from the perspective of “profession” and integrated into the whole process of “vocational education.” The “core values” required by the “profession” are distilled and integrated into the whole process of “vocational education” [23]. The systemic and standardized design of the civic education is organically integrated into the systemic and standardized design of the professional education and becomes the main logical line of education that guides the civic education of each course and each teaching link within the profession, with the characteristics of systemic, specialization, and organic integration [24].

What is the connection between curriculum thinking and professional thinking? Course thinking is the ideological and political education carried out with the carrier of professional courses; therefore, course thinking is both the cornerstone and the inevitability of professional thinking. Professional thought politics establishes the objectives of thought politics from the perspective of the profession, integrates them into the cultivation process, assimilates all aspects of thought politics with curriculum thought politics, and promotes the teaching of curriculum thought politics in its own way and orderly implementation; thus, professional thought politics is the deepening of curriculum thought politics and the systematic upgrading of curriculum thought politics. They are closely related to and mutually supportive of each other, and they run through the whole process of university education and teaching, forming an organic whole of university moral education work [25].

Professional thinking politics takes the profession as the main line and carries out systematic and full-factor thinking politics from the profession as a whole, which is an inevitable requirement for the high-quality promotion of curriculum thinking politics in colleges and universities in the new era and is also an essential demand for the in-depth strengthening of the organic integration of professional education and thinking politics education, which has a realistic value for the overall improvement of the quality of curriculum education and the formation of synergistic effect, and for ensuring the political direction of professional talents training and answering the question of the fundamental question of “what kind of people to train, how to train people and for whom to train people” is of great significance.

2.3. Basic Knowledge of Smart Sensor Technology Courses. This course will focus on introducing basic knowledge related to the Internet of Things, so that students can understand the concept and needs of “things,” so as to have a clear understanding of the real development of the Internet of Things and the future development trend. In addition, this course clearly divides the architecture of the Internet of Things (perception layer, network layer, and application layer) and focuses on the development trend of the Internet of Things in China and the industry development trend.

In recent years, with the rapid development of network technology, such as intelligent sensor technology, big data technology, cloud computing technology, and other new technologies are gradually known by people and are widely used in real life. The combination of RFID, sensors, intelligent services, and many other new technologies provides technical support for the development of the Internet of Things. RFID technology is the core technology of intelligent sensor technology, which can collect standardized and interconnected data to the central information system through the network for identification. Sensor technology can obtain information from natural information, process, transform, and identify information, including sensors, information processing and identification, design, development, manufacturing, and testing. Intelligent service technology can learn from computers and simulate human thought and behavior.

As a key link in modern information technology, the development of intelligent sensor technology cannot do without powerful technical support. The knowledge system of smart sensor technology involves Internet of Things devices, Internet, Internet platform, cloud computing, big data, artificial intelligence, and other fields. Therefore, the teaching of smart sensor technology must start from the knowledge structure of the discipline and the ability characteristics of students. For beginners who do not have a solid foundation, start by learning about IoT devices and then
expand to networks and platforms, including programming techniques like C and Python.

3. Curriculum Reform Ideas Design

3.1. The Basic Principles of Curriculum Reform

(1) The basic principle of linking theory with practice

As the curriculum reform focuses on cultivating students’ professional ability in the simulated working environment, so that they can acquire knowledge and skills in the workplace, therefore, the teaching content should dilute the boundary between theory and practical knowledge, so that students can organize theoretical knowledge in a purposeful and systematic way, which fully reflects the modern vocational education concept of “learning by doing.”

(2) Combine the content of teaching with the basic principles of learning scenario simulation

From the point of view of professional competence, it is important to create a learning environment that is as much as possible in line with the actual working environment and has certain paradigmatic features. It cannot be limited to a specific work task, but the two must be combined in order to enable students to be competent in complex tasks.

(3) Linking vocational qualifications and learning content

The quality of the students’ qualifications is determined by the quality of their work and the time they spend in the workplace.

It is therefore important that the content of the course is structured in such a way that it is integrated with the relevant vocational entry standards, so that students are fully competent to work in the relevant professions after their studies.

(4) The importance of the “adult education” principle

While the fundamental task of vocational education is to develop the ability to survive, the more important task at the university level is to make students ‘human,’ i.e., ‘adult education.’ The Xinhua dictionary originally interpreted the word ‘adult’ as ‘a person of talent,’ ‘to be a teacher, therefore to teach’ and ‘to teach all, to teach people to seek truth.’ These all indicate that ‘edification’ is the fundamental purpose of education. From the point of view of university educators, the “adulthood” of university students should include life values, laws, professional ethics, and other factors in the teaching content of the courses, so that they can receive “adulthood” education consciously or unconsciously, thus helping them. This will help them to develop a correct world view and approach.

3.2. Theoretical Basis of Curriculum Civics. Under the guidance of Xi Jinping’s thought of the new era of socialism with Chinese characteristics, the construction of the ideological politics of college curriculum should focus on the three aspects of “how to cultivate, how to cultivate and for whom to cultivate.” General Secretary Xi Jinping emphasized that we should insist on establishing moral education, integrate ideological and political work into the whole process of education and teaching, educate people in all aspects, and strive to create a new situation for the development of higher education in China. Under the guidance of General Secretary Xi Jinping’s important discourse on “Curriculum Civics,” the basic task of “educating people with moral character” is put in the first place.

3.3. Strategies for the Integration of the Ideology of Intelligent Sensor Technology Courses. Intelligent sensor technology is a science-based discipline, according to the Ministry of Education’s “Guideline for the Construction of Civic Politics in Higher Education Courses,” the education of Marxist positions, views, and methods is unified with the spirit of science, emphasizing scientific thinking and engineering ethics, in order to improve the dedication of college students and inspire them to serve their country with science and technology and take up the mission. Under this guidance, combined with years of teaching practice, the author puts forward the undergraduate education concept of “thinking and political education as the soul, general education as the root, professional education as the basis.” On this basis, how to cultivate students’ correct worldview, outlook on life, and values in teaching is a question we constantly think about. Through years of teaching practice, we have gradually worked out a way to combine comprehensive ideology and politics with professional education from point to point, from history to the present, and from the middle to the outside.

In the teaching process, the author applies it to teaching. First of all, using the idea of “from point to surface,” from the concept of infrastructure to the construction of high-speed railways in China, the national concerted efforts to combat the new pneumonia epidemic, “One Belt, One Road,” China’s economic take-off and a series of other major events, hot events, and significant achievements. These events fully illustrate the unique advantage of China’s socialist system in concentrating its efforts on major issues.

Secondly, using the research method of “from history to the present,” a horizontal comparison of China’s scientific and technological development and defence strength in the early years of the country and the modern period was made from a historical perspective. By looking back at the past, students will learn how our scientific researchers and researchers, at the beginning of our country, sacrificed themselves for others and worked hard to build up a nuclear umbrella for our country so that the Western powers would not dare to invade again, thus allowing students to remember history and pay tribute to their heroes. By reviewing the glorious performance and hard times of the two founding fathers, and telling the story of the day of the Martyrs’ Memorial Day on 30 September 2020, when the country brought back the remains of the fallen soldiers who fought against the United States and supported the DPRK to the motherland, students will deeply appreciate how hard it is to live a happy life today, thus truly forming the idea of
“feeling the grace of the country and the love of the family.” This will help them to develop a patriotic mindset and a national sentiment of remembering history and martyrdom.

Finally, using the method of “from the middle to the outside,” we compare the level of science and technology between China and the Western countries in various aspects and show the students how China has made great progress in the fields of communication, navigation, aerospace, and equipment manufacturing in just 70 years. In 70 years, from lagging far behind the Western powers at the beginning of our nation, to catching up, catching up, and surpassing the glorious achievements made, he told the students in practical terms how our scientists and technicians have strived to be strong, innovated and seized the high ground in science and technology, so as to enhance students’ self-esteem, self-confidence, and self-assurance and sense of honor, and also greatly motivated their determination and belief to study hard and serve the motherland.

During the lecture, he also cited many examples, including Deng Jiaxian, the lifeblood of the country, Huawei, Datang Telecom, high-speed rail, and New Crown Pneumonia. Some students were familiar with them, some were not, while others used examples to illustrate the advantages of the socialist system, using facts to make students feel the grace of the country and the love of home, thus realizing that values are guided in the teaching of knowledge and the cultivation of abilities, and helping students to establish a correct world view, outlook on life, and values.

3.4. Instructional Design for Curriculum Reform

(1) Nature of the course

In course orientation, this course lays a solid foundation for the study of the Internet of Things for students of this major and also lays a solid foundation for the teaching content of “microcontroller technology and applications,” “automatic identification technology and applications,” “sensor technology and applications,” “wireless sensor network,” and other related professions. This course is based on the teaching and learning reform, combined with the latest concepts of curriculum development and the theory of curriculum development throughout the work process, to lay the foundation for systematic learning of courses in the professional field of intelligent sensor technology.

In course content, through this course, students will be interested in intelligent sensor technology, mainly including introduction to the Internet of Things, key technologies of the Internet of Things sensing layer, network architecture, network management services, integrated applications of the Internet of Things, and other basic knowledge, understanding of modern applications of the Internet of Things, and training skilled professionals in intelligent sensor technology for the Internet of Things.

(2) Course training objectives

The construction objectives of “smart sensor technology” course are as follows: for the builders and successors of socialist cause; cultivate professional and technical personnel who love the country, love the school, love the profession, and have socialist core values; and to cultivate interdisciplinary and comprehensive talents with professional quality, good moral quality, and willing to serve the people and the society. In addition, according to the characteristics of smart sensor technology, college students are required to have a rigorous way of thinking, excellent thinking ability, rigorous scientific attitude and strong team spirit, and strive to become practical, brave practice, and brave innovation smart sensor technology professionals.

(3) Analysis of curriculum reform strategies

Intelligent sensor technology is a “task-driven” teaching method, which consists of nine major topics, each of which is divided into several tasks, starting with simple tasks, in which students actively participate in the relevant research using their own experience and best thinking. This way, students are able to learn from the past and are guided to discover some of the new problems and apply the methodology to their studies, so that they can learn and solve new problems on their own, and finally, develop their original motivation and initiative to learn, and gradually train them in the basic skills of building, operating, and maintaining the Internet of Things. In the end, students will be able to identify new problems and deal with them with the assistance of the teacher.

In the classroom, group learning is a common way of learning. In accordance with the principle of “homogeneity and heterogeneity,” each group consists of four to six people, and each group has a leader who is responsible for directing and coordinating the work of the group. Group work enhances students’ cooperative and organizational skills, makes full use of their expertise, and stimulates their enthusiasm for learning and problem-solving skills through group discussion and division of labor.

4. Smart Sensor Technology Civics Model Case

4.1. Case Entry Process. The entry process of this case study on the civic model of smart sensor technology is shown in Figure 2, which is divided into four main points to describe the case study (course content, civic entry point, integration model, and teaching effect).

4.2. Civic Case 1. For course introduction, the development history of wireless self-assembling network.

The main theme is “love for the party, love for the country, love for socialism, love for the people, and love for the collective,” focusing on national righteousness and family sentiment and cultivating students’ outlook on life and values.

For the integration model, from a military perspective, it provides reliable support for the defence industry. The development of wireless self-assembling networks was introduced, enabling students to understand that many advanced technologies were born from the military and have been widely used in the defence industry. Then, using the “two
For the teaching effect, the students will be able to feel the emotional resonance of "feeling the grace of the country and the love of the family" for the revolutionary martyrs and national defence workers who have thrown their heads and blood to bear the great justice of the country and cultivate their patriotic thoughts and national sentiments.

4.3. Civics Case 2. For course content, core technologies of sensor networks.

In a civic and political entry point, to address the curriculum characteristics of communication majors, scientifically and reasonably broaden the breadth, depth, and temperature of the majors; increase knowledge and humanity; enhance leadership, modernity, and openness; and firmly establish students' self-esteem, self-confidence, and sense of honor towards the country and the nation from the perspectives of majors, industry, country, international, culture, and history.

In integration methods, by introducing the rapid development of science and technology in China, especially information technology, students will have self-respect, self-confidence, pride, and pride in their country and nation. For example, Beidou (national lifeline under their own control), Huawei (national pillar), quantum communication and quantum code (bravely standing at the forefront of science and technology and leading the way), Datang (TDS-CDMA), and national business cards (high-speed rail, aerospace, the eye in the sky, etc.).

In teaching effect, to make students realize that our country's scientific and technological progress is unprecedented, not only the distance with the world powers is greatly reduced but also to catch up and walk in the forefront, so that students' self-confidence is improved and they can better serve the country.

4.4. Assessment and Evaluation of Civic Education and Continuous Improvement. Establishing scientific and reasonable evaluation methods is the best way to evaluate students' achievements. Scientific and reasonable evaluation system can make teachers better understand students' learning situation and learning results and timely adjust the teaching content and teaching methods and improve the teaching quality. The assessment content mainly includes (1) the assessment of the completion of students' homework after class. The completion of homework can well reflect students' understanding of this course, and teachers should timely check and master it. The second is to test the application of students in experimental teaching. On the basis of the Internet of things, students' experimental operations can be analyzed through the analysis of experimental operations, instrument operations, and experimental reports. Third, the final assessment. The score of the final exam can comprehensively reflect students' understanding and mastery of the basic knowledge of the Internet of Things.

In order to achieve the established purpose of "thinking and educating people," and according to the differences between thinking and professional education, in the teaching of thinking and political science, we should break through the traditional examination-based single assessment mode and organically incorporate the course thinking and political science into the comprehensive assessment of the course and establish a diversified assessment system for the course thinking and political science. In the teaching, we have explored "book report," "history and sea search," "case study," "programme design," "research report," "group discussion," "speech contest," "role introduction," and other forms, transforming the traditional benchmark for evaluating learning outcomes, which is mainly based on examination papers, into a multidimensional outcome output and assessment object with reference to notes, assignments, reports, and cases, and transforming the traditional assessment mechanism, which is mainly based on teachers' marks, into a diverse assignment mechanism in the form of teachers' comments, students' mutual evaluation, group marking, and knowledge competitions.

The process of implementing curriculum thinking should and should be a process of continuous improvement and refinement. Firstly, the elements and cases of civics in each course should be continuously updated, expanding and self-improving like a snowball. In addition, the excellent civics cases developed or designed by students in the classroom should also be included in the civics case bank; secondly, the proposed curriculum ideas and integration strategies, as well as the Civics cases designed, although based on the Internet of Things, are also applicable to electronics, communications, computers, and other related disciplines and are not It is not completely closed. By applying the "integration of thinking and politics" strategy
proposed in this study, the thinking and politics elements can be fully explored and the thinking and politics cases can be designed for each professional course, so as to achieve a seamless connection with the teaching of the disciplines. In thinking and political elements, thinking and political cases should be combined and constantly improved; at the same time, the assessment and evaluation mechanisms and methods of ideological and political education objectives of universities will be constantly innovated and improved, and the successful experiences of other disciplines will be constantly learned, so that education and teaching will no longer be rigid.

5. Conclusion

Curriculum ideology and politics play an important role in the basic mission of moral education. Intelligent sensing technology is one of the most advanced technologies in the world in recent years. It must be regarded as an important research topic in colleges and universities. By introducing ideological and political elements into the teaching of smart sensor technology, students’ political and professional literacy can be effectively improved through online and offline synchronous teaching. The ideological and political education concept of “ideological and political as the soul, general knowledge as the root, professional education as the foundation,” from “point to surface, from history to the present, from the middle to the outside” curriculum ideological and political integration methods and strategies. Using this teaching strategy, based on the “Internet of Things,” a detailed analysis is made on the teaching content, integration points, integration methods, and teaching effects of the three cases. Through the practice of ideological and political education to students, students have formed the confidence of the road, theory, system, and culture of socialism with Chinese characteristics. Finally, the paper evaluates and evaluates the ideological and political work in colleges and universities and constantly improves it. In the future, the author will continue to extend the teaching concept of ideological and political teaching and ideological and political integration to other majors and other courses, so as to accumulate more ideological and political elements, explore more effective integration approaches, and design more ideological and political cases.

Data Availability

The datasets used in this paper are available from the corresponding author upon request.

Conflicts of Interest

The author declared that he/she has no conflicts of interest regarding this work.

References

[1] Ministry of Education of the People’s Republic of China, “Outline of curriculum reform in basic education (for trial implementation),” China Education News, vol. 27, no. 2, 2001.

[2] The State Council of the Central Committee of the Communist Party of China, “Outline of the national medium- and long-term education reform and development plan,” People’s Daily, vol. 30, no. 13, 2010.

[3] T. Wei, “Confronting the original sin of the system behind theses fraud,” Changsha Evening News, vol. 12, no. F02, 2015.

[4] Ministry of Education of the People’s Republic of China, Standards for the General High School Ideology and Politics Curriculum, People’s Education Press, Beijing, China, 2004.

[5] Ministry of Education of the People’s Republic of China, Introduction to the General High School Ideology and Politics Curriculum, People’s Education Publishing House, Beijing, China, 2007.

[6] S. Xiaohong, Reality-Oriented Educational Care, Anhui Education Publishing House, Hefei, China, 2008.

[7] J. E. Kemp and L. Rodriguez, “The basics of instructional design,” Journal of Continuing Education in Nursing, vol. 23, no. 6, pp. 282–284, 1992.

[8] L. Zhihou, “Current status and development trend of foreign research on instructional design,” Foreign Educational Research, vol. 1, p. 1, 1998.

[9] N. Yisha, Y. Mei, and W. Zidong, “A review of research on instructional design,” Journal of Southwest Jiaotong University (Social Science Edition), vol. 3, p. 2, 2013.

[10] Z. Kemin and Z. Jinliang, “Status of research on instructional design in China from 1994 to 2007 and its development trend,” China Medical Education Technology, vol. 4, p. 3, 2008.

[11] W. Lihua, “2003 review of domestic instructional design research,” Journal of Ningbo University (Education Science Edition), vol. 3, p. 2, 2004.

[12] L. Zhang and Y. H. Miao, “Teaching design of higher vocational mathematics in an information-based environment,” Education and Career, vol. 30, p. 1, 2014.

[13] Y. Xi, “An introduction to the teaching design of secondary professional courses in the context of informatization,” Vocational, vol. 11, p. 2, 2017.

[14] S. Jiong, Y. Yang, and F. Liang, “Exploration and practice of teaching ‘introduction to internet of things engineering’,” China Electricity Education, vol. 28, 2013.

[15] Z. R. Chen, “The use of task-driven method in teaching Internet of Things,” Information Technology and Informatization, vol. 8, 2014.

[16] W. Ying and S. Feng, “Reflections and discussion on the teaching of introduction to the Internet of Things,” China Modern Education Equipment, vol. 1, 2013.

[17] Q. Leihua, Z. Haizhen, S. Ke, and L. Fangming, “Exploration of experimental teaching in introduction to Internet of Things course,” Laboratory Research and Exploration, vol. 6, 2012.

[18] J. Fenghui, A Study on the Practical Development of IOT Curriculum for Secondary School Based on Work Process, Guangdong Technical Teachers College, Guangdong, China, 2015.

[19] F. Hao, “Thinking about the teaching of Internet of things technology in secondary schools,” Journal of Jilin Provincial College of Education, vol. 3, 2015.

[20] Z. Taozheng, D. Huacheng, and M. Fang, “A preliminary investigation on the teaching of “Internet of things technology and application” course,” Science and Technology Innovation Herald, vol. 5, no. 1, 2017.

[21] W. T. Rpl, “Routing protocol for low power and lossy networks,” Internet Engineering Task Force, vol. 3, no. 2, 2011.
[22] S. S. Xu and S. P. Hu, “Gateway design for wireless sensor networks to access the Internet,” *Journal of Instrumentation*, vol. 12, no. 4, 2007.

[23] B. Lei, L. Zhengdong, and L. Jingen, “Research on Zig Bee-based wireless intelligent home gateway control technology,” *Microcontroller and Embedded System Applications*, vol. 5, no. 6, 2010.

[24] H. Haifeng and X. Liming, “Exploration and practice of ideological and political construction of ‘introduction to the Internet of Things’ course,” *Computer Knowledge and Technology*, vol. 16, no. 5, pp. 118-119, 2020.

[25] T. Jiamei, L. Shangwang, and W. Peng, “Research on personalized thematic teaching mode of introduction to Internet of Things engineering,” *Computer Education*, vol. 7, no. 1, pp. 120–122, 2020.