Adiponectin
Just Along for the Ride?

Aslan T. Turer, Philipp E. Scherer

Adiponectin is the most adipocyte-specific of all secretory factors described to date. Despite its exclusive expression at the level of the fat cell, adiponectin concentrations in plasma are generally inversely proportional to fat mass. More detailed studies reveal that it is not fat mass, but rather fat quality that is the driving force for adiponectin expression. Comparing metabolically healthy and metabolically unhealthy obese individuals, the metabolically healthy individuals display higher levels of adiponectin despite identical body mass indices. This reflects the close relationship between adiponectin and insulin sensitivity. Mouse models that maintain high adiponectin levels similar to lean mice, despite gaining weight, retain full metabolic flexibility. Positive changes in adiponectin levels are also a reflection of therapeutic improvements in systemic insulin sensitivity, such as on exposure to a PPARγ agonist. We and many others concluded, therefore, that adiponectin levels are excellent integrators of adipose tissue health and systemic metabolic flexibility, including as a direct driving force for positive effects exerted on cardiovascular disease states.

The authors present a conservative analysis—consisting of single nucleotide polymorphisms (SNPs) just within the gene encoding adiponectin (ADIPOQ) itself—and a liberal analysis—consisting of other SNPs across the genome highly associated with adiponectin levels. Given that many of the SNPs in the liberal analysis are also associated with significant differences in other well-established risk factors for coronary heart disease (CHD), it seems potentially misleading to use them in the analysis in the first place because they likely reflect SNPs with broader effects on metabolism or anthropomorphics. We agree with the authors that this analysis is dangerously vulnerable to horizontal pleiotropy.

The authors found that each adiponectin-increasing allele was associated with a significant decrease in CHD risk. Although this suggests that adiponectin is actually cardio-metabolically protective, the authors go on to adjust for the glycemic and lipid covariates they had access to and noted no independent effect of adiponectin in protecting against CHD. One wonders whether such adjustments are necessary and indeed correct to do from a biological standpoint, given that adiponectin’s biological action is played by improving insulin sensitivity while decreasing hepatic glucose output and triglyceride accumulation. This also begs the question of how well the Mendelian randomization worked to achieve an even balance of cardiovascular risk factors across allelic groups if additional adjustment was performed.

The issue of whether the randomization was successful in achieving a balance of demographic (age, race, sex) and clinical characteristics (diabetes mellitus, smoking, hypertension, hyperlipidemia, prior CHD) germane to a CHD-outcome analysis is critical in this case, and we are not given the data to make this conclusion. Otherwise, it is not clear that any conclusions can be drawn at all. For example, adiponectin concentrations are highly related to age, race, and sex, 3 of the most important nonmodifiable CHD risk factors. It is possible, for example, that the adiponectin-increasing alleles were associated with differences in male:female ratios or different ages at CHD presentation, which would underscore a potentially protective effect that the summary data presented in the present analysis cannot discern. Further, although >90% of the study population was white, potential confounding from population stratification is still possible, and it is unclear whether any adjustment for race was performed.

As mentioned by the authors, the inability to test for the effect of prior CHD is problematic because of the well-described adiponectin paradox, whereby increasing serum adiponectin concentrations are associated with increased cardiovascular mortality among patients with existing CHD or heart failure. This poses a problem insofar as the effect of...
adiponectin on CHD outcome may be influenced by duration or severity of pre-existing CHD in an opposite way to incident cases. Ma and colleagues recently presented strong evidence for adiponectin resistance under those conditions, providing a molecular mechanism for the events taking place during heart failure.\(^1\)

One important assumption of the Mendelian randomization is that the risk allele(s) can explain a reasonable amount of the variation in the intermediate factor—that is, these SNPs significantly influence the levels of adiponectin. Several ADIPOQ polymorphisms have been variably reported to influence serum adiponectin concentrations, but it is not obvious from the present analysis to what degree these polymorphisms influence adiponectin levels in circulation to a biologically meaningful degree. With the large cohorts under investigation here, even small, but perhaps clinically irrelevant, differences in adiponectin levels may be detected.

Finally, the details of adiponectin quantification are not provided. Because there is no standard assay for adiponectin (as compared with, eg, low-density lipoprotein and glucose), the values from individual cohorts generally cannot simply be joined. How statistically the authors dealt with this is not stipulated, and it is not clear whether this would have potentially influenced their findings.

We think, therefore, that the conclusions reported by Borges et al should be interpreted with great caution. The combined clinical correlational data along with strong preclinical evidence continue to support an involvement of adiponectin as a direct driving force to sustain (cardio)metabolic health.

Sources of Funding

The authors were supported by US National Institutes of Health grants R01-DK55758, R01-DK099110, and P01-DK088761 (to P.E. Scherer) and Cancer Prevention Research Institute of Texas grant RP140412.

Disclosures

None.

References

1. Arita Y, Kihara S, Ouchi N, et al. Paradoxical decrease of an adipose-specific protein, adiponectin, in obesity. *Biochem Biophys Res Commun*. 1999;257:79–83.

2. Turer AT, Khera A, Ayers CR, Turer CB, Grundy SM, Vega GL, Scherer PE. Adipose tissue mass and location affect circulating adiponectin levels. *Diabetologia*. 2011;54:2515–2524. doi: 10.1007/s00125-011-2252-z.

3. Ahl S, Guenther M, Zhao S, James R, Marks J, Szabo A, Kidambi S. Adiponectin levels differentiate metabolically healthy vs unhealthy among obese and nonobese white individuals. *J Clin Endocrinol Metab*. 2015;100:4172–4180. doi: 10.1210/jc.2015-2765.

4. Aguilar-Salinas CA, García EG, Robles L, Riaño D, Ruiz-Gomez DG, García-Ulloa AC, Melgarejo MA, Zamora M, Guillen-Pineda LE, Mehta R, Canizales-Quinteros S, Tusie Luna MT, Gómez-Pérez FJ. High adiponectin concentrations are associated with the metabolically healthy obese phenotype. *J Clin Endocrinol Metab*. 2008;93:4075–4079. doi: 10.1210/jc.2007-2724.

5. Kim JY, van de Wall E, Laplante M, et al. Obesity-associated improvements in metabolic profile through expansion of adipose tissue. *J Clin Invest*. 2007;117:2621–2637. doi: 10.1172/JCI31021.

6. Kasiminski CM, Holland WL, Sun K, Park J, Spurgin SB, Lin Y, Askew GR, Simcox JA, McClain DA, Li C, Scherer PE. MitoNEET-driven alterations in adipocyte mitochondrial activity reveal a crucial adaptive process that preserves insulin sensitivity in obesity. *Nat Med*. 2012;18:1539–1549. doi: 10.1038/nm.2899.

7. Pajvani UB, Hawkins M, Combs TP, Rajala MW, Doebber T, Berger JP, Wagner JA, Wu M, Knopps A, Xiang AH, Utschneider KM, Kahn SE, Olefsky JM, Buchanan TA, Scherer PE. Complex distribution, not absolute amount of adiponectin, correlates with thiazolidinedione-mediated improvement in insulin sensitivity. *J Biol Chem*. 2004;279:12152–12162. doi: 10.1074/jbc.M31113200.

8. Asterholm IW, Scherer PE. Enhanced metabolic flexibility associated with elevated adiponectin levels. *Am J Pathol*. 2010;176:1364–1376. doi: 10.2353/ajpath.2010.090647.

9. Turer AT, Hill JA, Elmquist JK, Scherer PE. Adipose tissue biology and cardiomyopathy: translational implications. *Circ Res*. 2012;111:1565–1577. doi: 10.1161/CIRCRESAHA.111.262493.

10. Borges MC, Lawlor DA, de Oliveira C, White J, Horta BL, Barros AJD. Role of adiponectin in coronary heart disease risk: a mendelian randomization study. *Circ Res*. 2016;119:491–499. doi: 10.1161/CIRCRESAHA.116.308716.

11. Wang Y, Gao E, Lau WB, Wang Y, Liu G, Li JJ, Wang X, Yuan Y, Koch WJ, Ma XL. G-protein-coupled receptor kinase 2-mediated desensitization of adiponectin receptor 1 in failing heart. *Circulation*. 2015;131:1392–1404. doi: 10.1161/CIRCULATIONAHA.114.015248.

Key Words: Editorials ■ acute heart failure ■ adiponectin ■ adipose tissue ■ genome-wide association scan
Adiponectin: Just Along for the Ride?
Aslan T. Turer and Philipp E. Scherer

Circ Res. 2016;119:407-408
doi: 10.1161/CIRCRESAHA.116.309226

Circulation Research is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2016 American Heart Association, Inc. All rights reserved.
Print ISSN: 0009-7330. Online ISSN: 1524-4571

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circres.ahajournals.org/content/119/3/407

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in _Circulation Research_ can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to _Circulation Research_ is online at:
http://circres.ahajournals.org/subscriptions/