Characterization of Carbapenemase Genes in Enterobacteriaceae Species Exhibiting Decreased Susceptibility to Carbapenems in a University Hospital in Chongqing, China

Yun Xia, Ph.D., Zhenzhen Liang, M.D., Xiaoyan Su, M.D., and Ying Xiong, M.D.
Department of Clinical Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China

Background: Our study was to investigate the prevalence of carbapenemase genes in strains of Enterobacteriaceae species exhibiting decreased susceptibility to carbapenems in our hospital.

Methods: The carbapenemase producing Enterobacteriaceae species were confirmed by modified Hodge test (MHT) and EDTA-disc synergy test which indicating the production of class B carbapenemases. PCR and sequencing analysis were used to identify the drug-resistant genes. DNA fingerprinting based on enterobacterial repetitive intergenic consensus (ERIC)-PCR was applied to investigate the homology of Enterobacteriaceae species.

Results: From a collection of 1,472 Enterobacteriaceae species, 18 isolates with decreased susceptibility to carbapenem treatment were identified and 9 of which were positive by MHT, and 6 of which produced class B carbapenemases. PCR and sequencing analysis of the 18 isolates revealed 4 different carbapenemase genes (blaIMP-8, blaoxa-1, blaIMP-26, and blaoxa-47) in 10 isolates, with the blaIMP-8 and blaoxa-1 genes being the most common (60-70% prevalence). ERIC-PCR showed 5, 2, and 2 unique genotypes for Enterobacter cloacae, Escherichia coli, and Klebsiella pneumoniae, respectively. Three E. coli strains isolated from different patients from the urologic surgery department exhibited the same DNA banding pattern, suggesting a possible clonal dissemination. Majority (17/18) of the carbapenem-unusceptible Enterobacteriaceae species isolates was obtained from the surgery department of our hospital.

Conclusions: The main carbapenemase genes of Enterobacteriaceae species in our hospital were blaIMP-8 and blaoxa-1. Prevalence of carbapenem resistance may be existed in surgery department and infection control should be taken for preventing further dissemination of drug-resistant strains.

Key Words: Enterobacteriaceae species, Carbapenemases, Carbapenems

INTRODUCTION

Enterobacteriaceae species are among the most common nosocomial pathogens, causing serious infections in various organs and tissues. Currently, carbapenems are the most potent agents prescribed for the treatment of serious infections caused by Enterobacteriaceae species because of their broad spectra of antibacterial activity and their excellent stability to hydrolysis by most β-lactamases, including extended-spectrum β-lactamases (ESBLs) and AmpC cephalosporinases. However, the wide-
spread use of carbapenems has led to the emergence of carbapenem-resistant Enterobacteriaceae species in diverse geographic locations worldwide, and this is becoming an important therapeutic challenge in the clinic setting [1-3].

The main mechanisms of carbapenem resistance in Enterobacteriaceae species include the acquisition of carbapenemases and hyperproduction of AmpC cephalosporinas, in combination with porin loss [4]. Carbapenemases are members of the molecular class A, B, and D β-lactamases, which have the ability to hydrolyze penicillins, cephalosporins, monobactams, and carbapenems [4]. Class A serine carbapenemases include 3 major families of NMC/IMI, SME, and KPC enzymes and can be inhibited by clavulanic acid and tazobactam [5]. Among the class A carbapenemases, KPC-2 is the most common type reported in China [6, 7]. Class B carbapenemases, also called metallo-β-lactamases (MBLs), are resistant to the commercially available β-lactamase inhibitors, such as clavulanic acid, sulbactam, and tazobactam, but susceptible to inhibition by metal ion chelators, such as EDTA, a chelator of Zn²⁺ and other divalent cations [8]. In the past decade, a number of acquired MBLs have been identified and categorized into 2 major groups: IMP- and VIM-type enzymes. IMP-4 and IMP-8 carbapenemases have been detected in China, and these have led to a low to moderate level of carbapenem resistance in strains of Enterobacteriaceae species [9]. The hydrolysis of carbapenems by the class D oxacillinase family is weak and leads to reduced susceptibility to imipenem and meropenem but with the minimal inhibitory concentration (MIC) still in the susceptible range, thus potentially causing detection failures [10].

The goals of this study were to investigate the prevalence of carbapenemase genes in clinical strains of Enterobacteriaceae species isolated from a university hospital, and to explore the main mechanisms of decreased susceptibility to carbapenems in these clinical strains.

METHODS

1. Bacterial strains and susceptibility tests
All patient specimens utilized in this study were from The First Affiliated Hospital of Chongqing Medical University, which has 2,500 inpatient beds and is one of the largest hospitals in the southwest of China. Samples were collected from November 2009 to December 2010. The clinical isolates were identified and the susceptibility tests were performed by using the Vitek2 Compact System with GN card and ASTGN13 card (bioMérieux, Marcy l’Etoile, France). Strains of Enterobacteriaceae species with decreased susceptibility to carbapenems (MIC of imipenem, meropenem, or ertapenem ≥2 μg/mL) were consecutively collected and confirmed by the agar dilution method, according to the guidelines of the CLSI [11].

2. Detection of carbapenemases
Modified Hodge Tests (MHT) were carried out according to CLSI recommendations for phenotypic screening of carbapenemase producers among species of Enterobacteriaceae [11]. Escherichia coli ATCC 25922 and Klebsiella pneumoniae ATCC BAA-1705 were used as negative and positive controls, respectively. The class A and B carbapenemases were screened by clavulanic acid-disc synergy tests and EDTA-disc synergy tests, respectively, as previously described [12, 13].

3. PCR amplification and DNA sequencing
Total DNA was extracted from all strains by 10 min boiling of bacterial culture, followed by 1 min centrifugation at 15,000 rpm. The supernatant was collected and used for PCR amplification. The main class A, class B, and class D carbapenemase genes were amplified using the primers and conditions described in the references listed in Table 1 [14-19]. In addition, 3 ESBL genes (blaSHV, blaTEM, and blaCTX-M) and 5 plasmid-mediated AmpC cephalosporinase genes (blaCYM-2, blaACT-1, blaACC-1, blaDHA-1, and blaFOX-1) were amplified by PCR as previously described [20, 21], and all PCR products were sequenced directly in an ABI PRISM 3730XL sequencer (Applied Table 1. Oligonucleotides used as primers for PCR and sequencing in this study

Class	Target	Sequence (5'-3')	Amplicon size (bp)	Reference
Class A	SME	Forward: AAGCGGCTCATTITTTTGTAG	820	14
		Reverse: GCTTCCGCAATAGTTTTATCA		
	KPC	Forward: ATGTCACTGTATCGCCGTCT	892	15
		Reverse: TTTTCAGAGCCTTACTGCC		
Class B	IMP	Forward: CATGGTTGTGGTGTTCTTGT	488	16
		Reverse: AATATTGGCCGAGTCTGAC		
	VIM	Forward: AGTGTAGATACGCAGAC	287	17
		Reverse: ATGAAATGGCTGGAGAC		
	NDM-1	Forward1: GGGCGAATGCCGAATACAGCA	287	18
		Reverse1: CGCAACAGCGCTGACCTTC		
		Forward2: CAGCAACACTTCTATCTC	293	18
		Reverse2: CGCAACATCATCCCTTCTT		
Class D	OXA	Forward: TTTCTGTGTGTGGGTGT	519	19
		Reverse: TTTCTGTGTGTGGGTGT		

http://dx.doi.org/10.3343/alm.2012.32.4.270
Biosystems, Foster City, CA, USA). DNA sequences were compared with known sequences in GenBank.

4. Strain genotyping
We performed genotyping on all isolates, except for Enterobacter amnigenus, by using enterobacterial repetitive intergenic consensus (ERIC)-PCR with primers ERIC1R (5′-ATGTAAGCTCGGGATTACAC-3′) and ERIC2 (5′-AAGTAAGTGAAGGATCGGGATTACAC-3′) as previously described [22]. Electrophoretic banding patterns were compared by visual inspection. Isolates were considered different if their profiles differed by 2 or more bands [23].

RESULTS

1. Identification of Enterobacteriaceae species with decreased susceptibility to carbapenems
From a collection of 1,472 isolates of Enterobacteriaceae species, we identified 18 isolates with decreased susceptibility to carbapenem treatment, including 8 isolates of Enterobacter cloacae, 5 isolates of E. coli, 4 isolates of K. pneumoniae, and 1 isolate of E. amnigenus (Table 2). The rate of non-susceptibility to carbapenems was 1.22%. Fifteen of the 18 isolates (83.3%) were resistant to ertapenem (≥8 mg/L) and only 2 of the 18 isolates (11.1%) were resistant to imipenem (≥16 mg/L). All of the isolates exhibited multidrug-resistance to the antibiotics tested (data not shown).

2. Screening of carbapenemases
Of the 18 carbapenem-resistant isolates, 9 tested positive in MHT and 6 positive in the EDTA-disc synergy tests, indicating the production of class B carbapenemases in these strains (Table 2). None of the strains without any carbapenemase genes tested positive in MHT. The sensitivity and specificity of MHT were 90% and 100%, respectively. Six of 7 strains of Enterobacteriaceae species with class B carbapenemase tested positive in the EDTA-disc synergy tests, while none of the strains without class B carbapenemase genes tested positive in the EDTA-disc synergy tests. The sensitivity and specificity of the EDTA-disc synergy tests for MBLs detection were 85.7% and 100%, respectively.

3. PCR amplification and sequence analysis
Carbapenemase genes were detected in 10 of the 18 carbapenem-resistant isolates; the genes included the blaIMP-8 gene from 4 E. cloacae isolates and 2 K. pneumoniae isolates; the blaIMP-26 gene from 1 E. cloacae isolate; the blaOXA-1 gene from 5 E. cloacae isolates and 2 E. coli isolates; and the blaOXA-47 gene from 2 K. pneumoniae isolates (Table 2). We failed to detect blaOXA, blaVIM, or blaIMP type carbapenemase genes in these 18 isolates. ESBL genes were found in all the isolates except for the 2 E. cloacae isolates that harbored the blaIMP-8 gene. AmpC cephalosporinase genes were detected in 7 of the 18 isolates; including the blaDHA-1 gene from 2 K. pneumoniae isolates; the blaACT-1 gene from 1 E. cloacae isolate and 1 E. amnigenus isolate; and the blaNDM-1 gene from 3 E. coli isolates. All the AmpC-positive strains, except for 1 E. cloacae strain (No. 1), did not harbor carbapenemase genes.

4. Strain genotyping and epidemiological association
Genetic relatedness of all the isolates, except for E. amnigenus, was investigated by ERIC-PCR typing. Five distinct ERIC profiles were observed amongst 8 strains of E. cloacae, and no obvious clonal association was observed within these strains. Five strains of E. coli exhibited 2 distinct ERIC profiles, and the 3 strains presenting the same profile, i.e. showing clonal association, were all isolated from the urologic surgery department. Four strains of K. pneumoniae showed 2 ERIC profiles and an epidemiological relationship was not found (Fig. 1). However, the 2 strains with identical carbapenemase genes, ESBL and AmpC cephalosporinase, exhibited the same ERIC profile.

DISCUSSION

Since the widespread use of carbapenems in the clinic, carbapenem-resistant Enterobacteriaceae species have been detected increasingly worldwide, and a similar trend has been observed in China [9]. Effective and accurate screening for Enterobacteriaceae species with decreased susceptibility to carbapenems is important in routine clinical microbiology tests. In this study, we found that the resistance rate of ertapenem was much higher than that of imipenem (83.3% vs. 11.1%, P <0.01) in the Enterobacteriaceae species isolates studied, indicating that ertapenem was more sensitive than imipenem in the screening of carbapenem-unsusceptible Enterobacteriaceae species isolates [11]. Nine of 10 strains of Enterobacteriaceae species with carbapenemase genes tested positive in MHT, while none of the strains without any carbapenemase genes tested positive in MHT. The sensitivity and specificity of MHT were 90% and 100%, respectively. Six of 7 strains of Enterobacteriaceae species with class B carbapenemase tested positive in the EDTA-disc synergy tests, while none of the strains without class B carbapenemase genes tested positive in the EDTA-disc synergy tests. The sensitivity and specificity of the EDTA-disc synergy tests for MBLs detection were 85.7% and 100%, respectively.

In the 10 strains of Enterobacteriaceae species with carbapenemase genes, 4 strains harbored the blaIMP-8 and blaOXA-1 genes, 2 strains harbored the blaIMP-8 and blaOXA-47 genes, and 3 strains harbored the blaOXA-1 gene alone. These results suggest that the
most common carbapenemase-type genes in our hospital were blaIMP-8 (6/9) and blaOXA-1 (7/9). Class A carbapenemase genes and VIM and NDM-1 β-lactamase genes were not detected in our hospital.

The blaIMP-8 gene, first found in K. pneumoniae in 2001, is very closely related to blaIMP-2 in DNA sequence, with only 4 nucleotide

Table 2. Distribution and drug-resistant mechanisms of 18 strains of Enterobacteriaceae species

No.	Bacteria (isolation date)	Distribution	Sample	ETP (mg/L)	IMP (mg/L)	MHT	Carbenapenemase genes	ESBLs genes	AmpC genes
1	E. cloacae (11/4/09)	Neurosurgery	Blood	≥8	2	+	IMP-8	CTX-M14	Act-1
2	E. amnigenus (12/15/09)	Center ICU	Secretion	≥8	8	-	Negative	CTX-M14	Act-1
3	E. cloacae (02/11/10)	Hepatobiliary surgery	Blood	≥8	≤1	+	IMP-8, TEM	Negative	Negative
4	E. cloacae (04/23/10)	Center ICU	Urine	4	≤1	+	IMP-8	Negative	Negative
5	E. cloacae (05/17/10)	Outpatient	Secretion	≥8	8	-	Negative	CTX-M3	Negative
6	E. cloacae (06/09/10)	Orthopaedics	Tissue	>8	≤1	+	OXA-1	Negative	Negative
7	E. cloacae (07/22/10)	Surgery ICU	Bile	≥8	≤1	+	IMP-8	CTX-M14	Negative
8	E. cloacae (10/26/10)	Hepatobiliary surgery	Secretion	≥8	2	+	IMP-26	Negative	Negative
9	E. cloacae (11/20/10)	Center ICU	Urine	≥8	≤1	-	Negative	Negative	Negative
10	E. coli (04/15/10)	Urologic surgery	Calculus	≥8	≤1	-	Negative	CTX-M14	CYM-2
11	E. coli (04/27/10)	Urologic surgery	Urine	≥8	2	-	Negative	CTX-M14	CYM-2
12	E. coli (06/15/10)	Emergency medicine	Secretion	≥8	≥16	+	OXA-1	CTX-M14	Negative
13	E. coli (06/19/10)	Urologic surgery	Urine	≥8	≤1	-	Negative	CTX-M14	CYM-2
14	E. coli (03/24/10)	Orthopaedics	Secretion	4	≤1	-	OXA-1	Negative	Negative
15	K. pneumoniae (12/08/09)	Urologic surgery	Urine	4	2	+	IMP-8	CTX-M14, SHV11	Negative
16	K. pneumoniae (03/14/10)	Gastrointestinal surgery	Ascites	≥8	≤1	-	Negative	SHV11	DHA-1
17	K. pneumoniae (08/19/10)	Surgery ICU	Urine	≥8	≥16	+	IMP-8	CTX-M14, SHV11	Negative
18	K. pneumoniae (12/06/10)	Ophthalmology	Secretion	≥8	≤1	-	Negative	CTX-M14, SHV11	DHA-1

Abbreviations: E. cloacae, Enterobacter cloacae; E. amnigenus, Enterobacter amnigenus; E. coli, Escherichia coli; K. pneumoniae, Klebsiella pneumoniae; ETP, Ertapenem; IMP, Imipenem; MHT, modified Hodge test; ICU, intensive care unit.
differences between them. This results in 2 amino acid changes. In contrast to the blaIMP-2 gene, which is located on the chromosome, the blaIMP-8 cassette is located on the plasmid, which would facilitate the spread of the resistance gene [24] and infection outbreak [25, 26]. Like blaIMP-8, class D carbapenemase can only weakly hydrolyze imipenem. All strains with blaOXA carbapenemase genes in our study were susceptible to imipenem except for one E. coli isolate (No.12), suggesting that this strain might have other drug-resistant mechanisms, such as loss or lower expression of major porins. In this study, we simultaneously detected blaIMP-8 and blaOXA-1 in 4 strains of E. cloacae. This observation has not been previously reported in China.

Biochemical analysis showed that CMY-2 and ACT-1 β-lactamases had a high catalytic efficiency towards imipenem, with low observed Km values. CMY-2, ACT-1, and DHA-1 β-lactamases conferred a high level of resistance to ceftazidime and cefotaxime and significantly reduced the susceptibility to imipenem once expressed in E. coli HB4, whilst FOX-1 and ACC-1 enzymes did not confer resistance to imipenem [21]. In our study, 6 of the 9 MHT-negative strains expressed AmpC cephalosporinase genes, including blaACT-1 in 1 E. cloacae strain, blaOXA-2 in 3 E. coli strains, and blaDHA-1 in 2 K. pneumoniae strains. The blaFOX-1 and blaACC-1 genes were not found. This observation suggests that AmpC cephalosporinase hyperproduction may contribute to the resistance observed in these isolates [4]. Five strains were not found to contain any carbapenemase or AmpC cephalosporinase genes, implying that resistance in these strains may involve other mechanisms not investigated in this study.

ERIC-PCR studies demonstrated that the infections caused by 8 strains of E. cloacae were spontaneous, because of the absence of genetic relatedness between these strains. Three of 5 E. coli strains isolated from the urologic surgery ward showed the same genotype, suggesting a possible clonal dissemination of 1 strain. Although we did not find an obvious clonal association among 4 strains of K. pneumoniae, the finding of 2 strains with completely identical ERIC profile and drug-resistant gene profile suggests there is a possibility for these to become a clonal prevalence.

Interestingly, strains expressing the blaIMP carbapenemase genes were not isolated from patients hospitalized in any department in the hospital except the department of surgery, and all the patients with positive of blaIMP carbapenemase genes had received surgery. Surgery has been reported to be an important risk factor for the acquisition of MBL producers [25]. The finding of carbapenem-resistant isolates only in the department of surgery in our hospital may have important implications for the prevention and dissemination control of these drug-resistant pathogens. Because it is likely that the strains of Enterobacteriaceae species with decreased susceptibility to carbapenems might be prevalent in the department of surgery in our hospital, strict infection control measures should be implemented in order to prevent infection dissemination.
Carbapenemase genes in *Enterobacteriaceae* species

Antimicrobial inactivation, and down-regulation of the phosphate transport por-in phoe. Antimicrob Agents Chemother 2006;50:396-406.

3. VATopoulos A. High rates of metallo-β-lactamase-producing *Klebsiella pneumoniae* in Greece–a review of the current evidence. Euro Surveill 2008;13 pii:8023.

4. Queenan AM and Bush K. Carbapenemases: the versatile β-lactamases. Curr Opin Infect Dis 2001;14:137-143.

5. Ambler RP, Coulson AF, Frère JM, Ghuysen JM, Joris B, Forsman M, et al. A standard numbering scheme for the class A β-lactamases. Biochem J 1991;276:269-270.

6. Cai JC, Zhou HW, Zhang R, Chen GX. Emergence of *Serratia marcescens*, *Klebsiella pneumoniae*, and *Escherichia coli* isolates possessing the plasmid-mediated carbapenem-hydrolyzing β-lactamase KPC-2 in intensive care units of a Chinese hospital. Antimicrob Agents Chemother 2008;52:2014-8.

7. Wei ZQ, Du XX, Yu YS, Shen P, Chen YG, Li LJ. Plasmid-mediated KPC-2 in a *Klebsiella pneumoniae* isolate from China. Antimicrob Agents Chemother 2007;51:763-5.

8. Walsh TR. The emergence and implications of metallo-β-lactamases in Gram-negative bacteria. Clin Microbiol Infect 2005;11(S6):2-9.

9. Yang Y, Wang H, Sun H, Chen H, Xu Y, Chen M. Phenotypic and genotypic characterization of *Enterobacteriaceae* with decreased susceptibility to carbapenems: results from large hospital-based surveillance studies in China. Antimicrob Agents Chemother 2010;54:573-7.

10. Cuzon G, Naas T, Biaoaerts P, Glupczynski Y, Huang TD, Nordmann P. Plasmid-encoded carbapenem-hydrolyzing β-lactamase OXA-48 in an imipenem-susceptible *Klebsiella pneumoniae* strain from Belgium. Antimicrob Agents Chemother 2008;52:3463-4.

11. Clinical and Laboratory Standards Institute. Performance standards for antimicrobial susceptibility testing; 21st Informational supplement, M100-S21. Wayne, PA: Clinical and Laboratory Standards Institute, 2011.

12. Radice M, Power P, Gultkind G, Fernández K, Vay C, Famiglietti A, et al. First class A carbapenemase isolated from enterobacteriaceae in Argentina. Antimicrob Agents Chemother 2004;48:1068-9.

13. Lee K, Chong Y, Shin HB, Kim YA, Yong D, Yum GH. Modified Hodge and EDTA-disk synergy tests to screen metallo-beta-lactamase-producing strains of *Pseudomonas* and *Acinetobacter* species. Clin Microbiol Infect 2001;7:881-91.

14. Queenan AM, Torres-Viera C, Gold HS, Carmeli Y, Eliopoulos GM, Moelling RC Jr, et al. SME-type carbapenem-hydrolyzing class A β-lactamas from geographically diverse *Serratia marcescens* strains. Antimicrob Agents Chemother 2000;44:3035-9.

15. Bratu S, Tolaney P, Karumudi U, Quale J, Mooty M, Nichani S, et al. Carbapenemase-producing *Klebsiella pneumoniae* in Brooklyn, NY: molecular epidemiology and in vitro activity of polymyxin B and other agents. J Antimicrob Chemother 2005;56:128-32.

16. Qi C, Malczynski M, Parker M, Scheetz MH. Characterization of genetic diversity of carbapenem-resistant *Acinetobacter baumannii* clinical strains collected from 2004 to 2007. J Clin Microbiol 2008;46:1106-9.

17. Tsakris A, Pourneras S, Woodford N, Palepou MF, Babini GS, Douboyas J, et al. Outbreak of infections caused by *Pseudomonas aeruginosa* producing VIM-1 carbapenemase in Greece. J Clin Microbiol 2000;38:1290-2.

18. Yong D, Toleman MA, Giske CG, Cho HS, Sundman S, Lee K, et al. Characterization of a new metallo-β-lactamase gene, blaNDM-1, and a novel erythromycin esterase gene carried on a unique genetic structure in *Klebsiella pneumoniae* sequence type 14 from India. Antimicrob Agents Chemother 2009;53:5046-54.

19. Poirel L, Héritier C, Tolün V, Nordmann P. Emergence of oxacillinase-mediated resistance to imipenem in *Klebsiella pneumoniae*. Antimicrob Agents Chemother 2004;48:15-22.

20. Manoharan A, Premalatha K, Chatterjee S, Mathai D; SARI Group. Correlation of TEM, SHV and CTX-M extended-spectrum beta lactamases among *Enterobacteriaceae* with their in vitro antimicrobial susceptibility. Indian J Med Microbiol 2011;29:161-4.

21. Mammeri H, Guillon H, Eb F, Nordmann P. Phenotypic and biochemical comparison of the carbapenem-hydrolyzing activities of five plasmid-borne AmpC β-lactamases. Antimicrob Agents Chemother 2010;54:4556-60.

22. Smith JL, Drum DJ, Dai Y, Kim JM, Sanchez S, Mauer JJ, et al. Impact of antimicrobial usage on antimicrobial resistance in commensal *Escherichia coli* strains colonizing broiler chickens. Appl Environ Microbiol 2007;73:1404-14.

23. Khan AA, McCarthy S, Wang RF, Cemignla CE. Characterization of United States outbreak isolates of *Vibrio parahaemolyticus* using enterobacterial repetitive intergenic consensus (ERIC) PCR and development of a rapid PCR method for detection of O3:K6 isolates. FEMS Microbiol Lett 2002;206:209-14.

24. Yan JJ, Ko WC, Wu JJ. Identification of a plasmid encoding SHV-12, TEM-1, and a variant of IMP-2 metallo-β-lactamase, IMP-8, from a clinical isolate of *Klebsiella pneumoniae*. Antimicrob Agents Chemother 2001;45:2368-71.

25. Yan JJ, Ko WC, Tsai SH, Wu HM, Wu JJ. Outbreak of infection with multidrug-resistant *Klebsiella pneumoniae* carrying bla(IMP-8) in a university medical center in Taiwan. J Clin Microbiol 2001;39:4433-9.

26. Yan JJ, Ko WC, Chuang CL, Wu JJ. Metallo-β-lactamase-producing *Enterobacteriaceae* isolates in a university hospital in Taiwan: prevalence of IMP-8 in Enterobacter cloacae and first identification of VIM-2 in Citrobacter freundii. J Antimicrob Chemother 2002;50:503-11.