Supplementary Materials

Acceleroetrometry-based digital gait characteristics for classification of Parkinson’s disease: what counts?

Rana Zia Ur Rehman†, Christopher Buckley†, Maria Encarna Micó-Amigo, Cameron Kirk, Michael Dunne-Willows, Claudia Mazzà, Jian Qing Shi, Lisa Alcock, Lynn Rochester, and Silvia Del Din*
Member, IEEE

S1: Motivation to Use the PLS-DA

Typically, to achieve data reduction, principal component analysis (PCA) is performed prior to classification [1]. However, while PCA only takes into account independent variables and generates new components containing high variance without losing information, its major drawback is the potential loss of important information about how independent variables (e.g. gait characteristics) are related to the dependent variables (e.g. groups being classified) [2]. Other techniques like Partial least square discriminant analysis (PLS-DA) can help to tackle this downside as it can deal with situations in which we have a higher number of multi-collinear independent variables compared to the number of subjects in the study and their relation with dependent variables (e.g. groups to classify (PD vs. CL)) [3].

Method (PLS-DA) Detail

PLS-DA is used for the data reduction and to classify the subjects with Parkinson’s disease from controls based on the latent variables (capturing high variance) used as training data in discriminant analysis for classification. This method can provide the contribution of the independent variables (gait characteristics) in the classification modeling based on the variable importance in the projection (VIP) [4], which is calculated with the following equation 1.

$$
VIP_j = \sqrt{p \sum_{k=1}^{N} \left[SS_k \left(\frac{w_{kj}}{||w_k||^2} \right) \right]}
$$

(1)

p is a total number of gait characteristics in the model. N is the number of latent variables in the PLS-DA model. SS_k is the sum of variance of the latent variable. w_{kj} quantify the contribution of gait characteristics j according to the kth latent variable. w_k is the contribution of the kth latent variable. If the VIP is above 1 then the particular gait characteristic is highly influential in the model and higher VIP value indicates the higher contribution of the gait characteristic.

The model quality is based on the standard goodness of fit indices such as Q2, R2X and R2Y (Figure S1). Number of components (latent variables) in the PLS-DA are based on these indices. Q2 explains the predictive capability of the model, and with its value the suitable number of components in the PLS-DA can be identified. If the value of Q2 is higher than 0 then model prediction capability is better, if its value is below 0 then model performance will be poor. Therefore, based on its value we selected the number of components in the PLS-DA. Other indices, such as R2X and R2Y explain the captured variance by independent and dependent variables respectively.
MODEL QUALITY

![Graphs showing model quality based on Axivity - Spatial Temporal, Axivity - Signal Characteristics, Axivity - Spatial Temporal and signal characteristics, Axivity - ST + Demographics, Axivity - SC + Demographics, and overall dataset (ST + SC + Dem).]

Fig. S1. PLS-DA models quality based on the number of components

Domain	Variable	Comp 1	Comp 2	Comp 3	Comp 4	Comp 5	Average
Spatial Temporal	Step Velocity	1.840	1.398	1.217	1.096	1.071	1.325
	Step Length	1.705	1.313	1.119	1.188	1.175	1.300
	Step Length Coefficient of Variation (CV)	1.556	1.183	1.113	1.073	1.231	1.231
	Swing Time Variability	1.463	1.118	1.232	1.171	1.126	1.222
	Cadence	1.010	1.120	1.144	1.437	1.360	1.214
	Step Velocity (CV)	1.499	1.141	1.136	1.066	1.020	1.172
	Step Time Variability	1.362	1.085	1.156	1.042	1.071	1.143
	Swing Time (CV)	1.312	1.004	1.144	1.137	1.101	1.139
	Stride Time Variability	1.372	1.068	1.106	0.996	1.043	1.117
	Stride Time (CV)	1.324	1.029	1.089	1.014	1.060	1.103
	Step Length Variability	1.382	1.051	0.965	0.966	1.119	1.097
	Step Time (CV)	1.248	1.003	1.110	1.028	1.059	1.09
	Stance Time Variability	1.056	0.818	1.231	1.164	1.135	1.081
	Stance Time (CV)	0.937	0.724	1.189	1.153	1.128	1.026
	Stride Time	1.093	0.831	0.774	1.130	1.091	0.984
	Swing Time	1.267	0.963	0.866	0.933	0.883	0.982
Signals power spectral density	1.089	0.828	0.772	1.131	1.091	0.982	
------------------------------	-------	-------	-------	-------	-------	-------	
Step Time	0.728	0.571	1.160	1.054	1.002	0.903	
Swing Time Asymmetry	0.852	0.668	0.667	1.185	1.129	0.900	
Stance Time	0.973	0.742	0.827	0.751	1.029	0.864	
Step Length Asymmetry	0.948	0.786	0.869	0.786	0.771	0.832	
Step Time Asymmetry	0.908	0.690	0.761	0.901	0.857	0.823	
Step Velocity Variability	0.574	0.487	1.091	0.993	0.939	0.817	
Stance Time Asymmetry	0.451	0.347	0.713	1.130	1.069	0.742	
Stride Time Asymmetry	0.331	0.252	0.593	0.547	0.537	0.452	

Power spectral density (PSD) Amplitude (ML)

Harmonic Ratio (AP)	1.337	1.181	1.619	1.553	1.479	1.561
Slope of dominant peak of PSD (ML)	1.712	1.607	1.370	1.286	1.426	1.480
Index of Harmonicity (ML)	1.243	1.673	1.470	1.460	1.393	1.448
Normalized amplitude of dominant peak of PSD (ML)	1.666	1.418	1.342	1.270	1.201	1.379
Range of dominant peak of PSD (AP)	1.150	1.608	1.411	1.372	1.334	1.375
PSD Normalized Range (AP)	1.808	1.374	1.317	1.186	1.133	1.364
PSD Amplitude (R)	1.486	1.405	1.300	1.190	1.190	1.314
Slope of dominant peak of PSD (R)	1.469	1.376	1.296	1.184	1.181	1.301
PSD Normalized Slope (ML)	1.065	1.475	1.279	1.296	1.263	1.276
Harmonic Ratio (V)	1.596	1.405	1.211	1.091	1.033	1.267
Harmonic Ratio (ML)	1.394	1.388	1.191	1.104	1.127	1.241
PSD Amplitude (V)	1.251	1.181	1.114	1.145	1.142	1.167
Range of dominant peak of PSD (ML)	1.435	1.098	1.194	1.080	1.021	1.166
PSD Normalized Range (ML)	1.435	1.098	1.194	1.080	1.021	1.166
Slope of dominant peak of PSD (V)	1.236	1.152	1.110	1.139	1.133	1.154

Normalized amplitude of dominant peak of PSD (R)

Harmonic Ratio (V)	1.260	1.111	1.172	1.087	1.078	1.142
PSD Mean Power (V)	0.889	1.204	1.271	1.151	1.176	1.138
PSD Integrated Power (V)	0.889	1.204	1.271	1.151	1.176	1.138
Range of dominant peak of PSD (R)	1.262	1.089	1.134	1.121	1.061	1.133
PSD Normalized Range (R)	1.262	1.089	1.134	1.121	1.061	1.133
PSD Normalized Slope (R)	1.229	1.073	1.168	1.082	1.069	1.124
Index of Harmonicity (AP)	1.083	0.913	1.112	1.241	1.195	1.109
Index of Harmonicity (R)	1.360	1.104	1.097	0.990	0.937	1.098
Range of dominant peak of PSD (V)	1.161	1.042	1.089	1.113	1.071	1.095
PSD Normalized Range (V)	1.161	1.042	1.089	1.113	1.071	1.095
Harmonic Ratio (R)	1.312	1.078	1.014	0.897	0.968	1.072
Normalized amplitude of dominant peak of PSD (V)	1.026	0.894	1.013	1.070	1.064	1.013
PSD Normalized Slope (V)	1.000	0.860	1.015	1.065	1.056	0.999
PSD Mean Power (R)	0.714	1.101	1.077	1.020	1.096	0.983
PSD Integrated Power (R)	0.714	1.101	1.077	1.020	1.096	0.983
Dominant Frequency (V)	0.321	0.598	1.169	1.064	1.024	0.835
Index of Harmonicity (V)	0.877	0.676	0.834	0.801	0.758	0.789
PSD Mean Power (ML)	0.555	0.651	0.748	0.755	1.065	0.755
PSD Integrated Power (ML)	0.555	0.651	0.748	0.755	1.065	0.755
Width of dominant peak of PSD (V)	0.073	0.441	1.021	0.970	1.095	0.720
PSD Normalized Width (V)	0.073	0.441	1.021	0.970	1.095	0.720
PSD Amplitude (AP)	0.460	0.558	0.824	0.847	0.860	0.710
Slope of dominant peak of PSD (AP)	0.432	0.558	0.829	0.842	0.861	0.704
PSD Normalized amplitude (AP)	0.380	0.493	0.859	0.806	0.853	0.678
PSD Normalized Slope (AP)	0.352	0.494	0.857	0.799	0.851	0.670
PSD Median Power (ML)	0.01	0.235	0.518	1.312	1.246	0.664
PSD Median Power (AP)	0.087	0.427	0.649	1.080	1.024	0.653
Width of dominant peak of PSD (R)	0.148	0.437	0.816	0.790	0.98	0.634
PSD Normalized Width (R)	0.148	0.437	0.816	0.790	0.98	0.634
Width of dominant peak of PSD ML	0.154	0.299	0.733	0.996	0.976	0.632
PSD Normalized Width (ML)	0.154	0.299	0.733	0.996	0.976	0.632
PSD Median Power (R)	0.120	0.370	0.682	0.965	0.928	0.613
PSD Median Power (AP)	0.087	0.427	0.649	1.080	1.024	0.653
Width of dominant peak of PSD (AP)	0.559	0.582	0.538	0.632	0.674	0.597
PSD Normalized Width (AP)	0.559	0.582	0.538	0.632	0.674	0.597
PSD Mean Power (AP)	0.463	0.352	0.428	0.843	0.862	0.590
PSD Integrated Power (AP)	0.463	0.352	0.428	0.843	0.862	0.590
PSD Median Power (V)	0.124	0.493	0.719	0.777	0.737	0.570
Dominant Frequency (ML)	0.364	0.471	0.401	0.389	0.763	0.477
Dominant Frequency (R)	0.017	0.103	0.688	0.707	0.675	0.438
Dominant Frequency (AP)	0.239	0.377	0.386	0.372	0.36	0.347

Root mean square (RMS) of Straight Walk (ML)	2.115	1.663	1.642	1.500	1.431	1.670
RMS Stride (ML)	2.078	1.632	1.63	1.489	1.420	1.650
RMS Step (ML)	2.076	1.619	1.598	1.451	1.385	1.626
RMS Stride (R)	2.092	1.592	1.389	1.251	1.186	1.502
RMS of Straight Walk (AP)	2.044	1.559	1.345	1.241	1.216	1.481
RMS Straight Walk (R)	2.053	1.567	1.35	1.219	1.162	1.470
RMS Stride (AP)	2.021	1.540	1.337	1.225	1.216	1.468
RMS Step (R)	2.032	1.551	1.359	1.224	1.159	1.465
Signal Magnitude						
RMS Step (AP)	1.877	1.427	1.237	1.137	1.139	1.363
RMS Stride (V)	1.669	1.331	1.132	1.039	1.053	1.245
RMS Straight Walk (V)	1.585	1.302	1.113	1.009	1.057	1.214
RMS Step (V)	1.589	1.293	1.100	1.009	1.022	1.202
RMS Ratio Step (ML)	0.659	0.758	0.947	1.092	1.035	0.898
RMS Ratio Straight Walk (V)	0.205	0.716	0.843	1.130	1.297	0.838
RMS Ratio Step (V)	0.417	0.701	0.742	1.098	1.197	0.831
RMS Ratio Straight Walk (ML)	0.323	0.650	0.983	1.108	1.068	0.826
RMS Ratio Stride (ML)	0.331	0.582	0.873	1.105	1.050	0.788
Signal Complexity	RMS Ratio Stride (V)	0.177	0.634	0.719	1.129	1.246
	RMS Ratio Step (AP)	0.379	0.293	0.340	0.535	0.917
	RMS Ratio Stride (AP)	0.275	0.318	0.302	0.487	1.011
	RMS Ratio Straight Walk (AP)	0.182	0.360	0.313	0.470	1.027
	Step Regularity (ML)	1.722	1.747	1.487	1.376	1.314
	Stride Harmonic Ratio (ML)	1.678	1.652	1.411	1.321	1.269
	Stride Harmonic Ratio (AP)	1.671	1.381	1.174	1.112	1.078
	Stride Regularity (ML)	1.504	1.163	1.137	1.100	1.049
	Step Regularity (V)	0.969	0.760	1.295	1.176	1.158
	Stride Harmonic Ratio (V)	1.240	1.014	0.996	0.897	0.903
	Stride Regularity (V)	0.858	0.663	1.244	1.149	1.094
	Symmetry Autocorrelation Difference (ML)	0.458	1.144	1.112	1.041	1.036
	Symmetry Autocorrelation Difference (AP)	0.946	0.719	1.105	1.019	0.979
	Step Regularity (AP)	0.800	0.638	1.138	1.038	1.009
	Step Regularity (R)	1.072	0.814	0.843	0.904	0.870
	Stride Regularity (R)	0.986	0.789	0.799	0.772	0.731
	Symmetry Autocorrelation Ratio (ML)	0.141	0.898	1.068	0.974	0.946
	Gait Symmetry Index	0.266	0.293	1.054	1.017	0.964
	Symmetry Autocorrelation Difference (V)	0.789	0.600	0.668	0.652	0.631
	Symmetry Autocorrelation Difference (AP)	0.299	0.393	0.774	0.717	0.739
	Symmetry Autocorrelation Ratio (V)	0.542	0.444	0.657	0.596	0.673
	Symmetry Autocorrelation Ratio (AP)	0.361	0.359	0.704	0.635	0.620
	Symmetry Autocorrelation Difference (R)	0.407	0.318	0.422	0.543	0.546
	Symmetry Autocorrelation Ratio (R)	0.435	0.384	0.386	0.480	0.475
Signal Complexity	Jerk RMS of Straight walk (AP)	1.353	1.213	1.051	1.083	1.024
	Jerk RMS of Straight walk (R)	1.012	1.336	1.144	1.052	0.997
	Jerk RMS of Straight walk (ML)	1.137	1.114	1.002	0.924	0.881
	Jerk RMS of Straight walk (V)	1.021	1.318	1.128	1.016	0.967
	Jerk RMS of Stride (AP)	1.360	1.204	1.053	1.080	1.022
	Jerk RMS of Stride (R)	1.053	1.308	1.128	1.035	0.983
	Jerk RMS of Stride (ML)	1.134	1.096	0.999	0.925	0.881
	Jerk RMS of Stride (V)	1.042	1.302	1.120	1.008	0.958
	Jerk RMS of Step (AP)	1.355	1.228	1.058	1.090	1.030
	Jerk RMS of Step (R)	1.021	1.346	1.148	1.066	1.009
	Jerk RMS of Step (ML)	1.132	1.107	0.999	0.918	0.871
	Jerk RMS of Step (V)	0.994	1.337	1.140	1.027	0.981
	Jerk Mean Ratio of Straight Walk (AP)	0.783	0.844	0.827	0.857	0.916
	Jerk Mean Ratio of Straight Walk (ML)	0.636	0.832	0.816	0.762	0.724
	Jerk Mean Ratio of Straight Walk (V)	0.716	0.702	0.608	0.550	0.556
	Jerk Mean Ratio of Stride (AP)	0.341	0.373	0.463	0.528	0.512
Metric	AP Mean	ML Mean	V Mean
Jerk Mean Ratio of Stride (ML)	0.018	0.152	0.448
Jerk Mean Ratio of Stride (V)	0.260	0.222	0.204
Jerk Mean Ratio of Step (AP)	0.441	0.376	0.378
Jerk Mean Ratio of Step (ML)	0.370	0.285	0.355
Jerk Mean Ratio of Step (V)	0.410	0.363	0.606
Jerk Mean Log Ratio of Straight Walk (AP)	0.114	0.973	0.934
Jerk Mean Log Ratio of Straight Walk (ML)	0.183	0.569	0.568
Jerk Mean Log Ratio of Step (AP)	0.569	0.523	0.495
Jerk Mean Log Ratio of Step (ML)	0.569	0.523	0.495
Jerk Max of Straight Walk (AP)	0.832	0.829	0.791
Jerk Max of Straight Walk (R)	0.483	1.152	1.041
Jerk Max of Straight Walk (ML)	0.672	0.879	0.834
Jerk Max of Straight Walk (V)	0.778	1.091	1.102
Jerk Max of Stride (AP)	0.989	0.860	0.815
Jerk Max of Stride (R)	0.585	1.031	1.031
Jerk Max of Stride (ML)	0.789	0.888	0.912
Jerk Max of Stride (V)	0.841	1.096	1.045
Jerk Min of Straight Walk (AP)	0.546	1.052	1.081
Jerk Min of Straight Walk (R)	0.615	1.104	0.993
Jerk Min of Straight Walk (ML)	0.516	0.921	0.919
Jerk Min of Straight Walk (V)	0.572	1.063	0.996
Jerk Min of Stride (AP)	0.698	1.072	1.130
Jerk Min of Stride (R)	0.635	1.119	1.006
Jerk Min of Stride (ML)	0.740	0.873	0.895
Jerk Min of Stride (V)	0.656	1.047	0.997
Jerk Min of Step (AP)	0.836	1.097	1.151
Jerk Min of Step (R)	0.558	1.101	1.047
Jerk Min of Step (ML)	0.825	0.970	0.830
Jerk Min of Step (V)	0.694	1.058	1.102
Jerk Range of Straight Walk (AP)	0.721	1.091	1.032
Jerk Range of Straight Walk (R)	0.560	1.051	1.046
Jerk Range of Straight Walk (ML)	0.609	0.912	0.870
Jerk Range of Straight Walk (V)	0.705	1.114	1.103
Supplementary Materials

Table S2.

Difference between people with PD and CL based on the independent samples t-test

Domain	Variable	CL (n=61) Mean ± SD	PD (n=81) Mean ± SD	Normality test - Mann Whitney	Non-Parametric t-test	Parametric t-test
Supplementary Materials

Parameter	Value			
Step Length	0.708 ± 0.077			
Step Velocity	1.324 ± 0.164			
Step Time	0.539 ± 0.045			
Stride Time	1.078 ± 0.090			
Swing Time	0.384 ± 0.041			
Cadence	67.161 ± 7.902			
Step Length Variability	0.044 ± 0.017			
Step Velocity Variability	0.097 ± 0.046			
Step Time Variability	0.024 ± 0.015			
Stride Time Variability	0.019 ± 0.007			
Swing Time Variability	0.022 ± 0.016			
Stance Time Variability	0.026 ± 0.015			
Step Length Asymmetry	0.041 ± 0.019			
Step Velocity Asymmetry	0.099 ± 0.062			
Step Time Asymmetry	0.024 ± 0.015			
Stride Time Asymmetry	0.015 ± 0.008			
Swing Time Asymmetry	0.029 ± 0.028			
Stance Time Asymmetry	0.029 ± 0.026			
Step Length Coefficient of variation (CV)	0.065 ± 0.032			
Step Velocity (CV)	0.076 ± 0.040			
Step Time (CV)	0.045 ± 0.029			
Stride Time (CV)	0.018 ± 0.007			
Swing Time (CV)	0.057 ± 0.041			
Stance Time (CV)	0.037 ± 0.025			
Dominant Frequency (AP)	1.879 ± 0.385			
Dominant Frequency (R)	1.886 ± 0.171			
Dominant Frequency (ML)	4.269 ± 1.724			
Dominant Frequency (V)	1.986 ± 0.575			
Normalized Amplitude of dominant peak of PSD (AP)	0.035 ± 0.007			
Normalized Amplitude of dominant peak of PSD (R)	0.044 ± 0.007			
Normalized Amplitude of dominant peak of PSD (ML)	0.020 ± 0.008			
Normalized Amplitude of dominant peak of PSD (V)	0.041 ± 0.009			
Width of dominant peak of PSD (AP)	0.481 ± 0.005			
Width of dominant peak of PSD (R)	0.482 ± 0.005			
Width of dominant peak of PSD (ML)	0.510 ± 0.038			
Width of dominant peak of PSD (V)	0.483 ± 0.005			
Slope of dominant peak of PSD (AP)	0.073 ± 0.015			
Slope of dominant peak of PSD (R)	0.092 ± 0.015			
Slope of dominant peak of PSD (ML)	0.041 ± 0.017			
Slope of dominant peak of PSD (V)	0.085 ± 0.019			
Parameter	AP	R	ML	V
---	-----------------	-----------------	-----------------	-----------------
Range of dominant peak of PSD (AP)	0.918 ± 0.223	0.780 ± 0.204	0.004	0.001
Range of dominant peak of PSD (R)	1.263 ± 0.348	1.120 ± 0.306	< 0.001	0.015
Range of dominant peak of PSD (ML)	0.991 ± 0.303	0.843 ± 0.264	< 0.001	0.005
Range of dominant peak of PSD (V)	1.191 ± 0.328	1.065 ± 0.296	< 0.001	0.030
PSD Amplitude (AP)	1.068 ± 0.215	1.102 ± 0.221	0.318	0.313
PSD Amplitude (R)	1.394 ± 0.226	1.255 ± 0.289	0.011	0.004
PSD Amplitude (ML)	0.608 ± 0.231	0.515 ± 0.170	< 0.001	0.016
PSD Amplitude (V)	1.281 ± 0.278	1.156 ± 0.292	0.078	0.010
PSD Mean Power (AP)	0.020 ± 0.001	0.021 ± 0.001	0.001	0.534
PSD Mean Power (R)	0.021 ± 0.001	0.021 ± 0.001	0.005	0.094
PSD Mean Power (ML)	0.020 ± 0.001	0.020 ± 0.002	0.013	0.213
PSD Mean Power (V)	0.021 ± 0.001	0.021 ± 0.001	0.006	0.045
PSD Median Power (AP)	0.001 ± 0.001	0.001 ± 0.001	0.001	0.534
PSD Median Power (R)	0.001 ± 0.001	0.001 ± 0.001	0.005	0.094
PSD Median Power (ML)	0.001 ± 0.001	0.001 ± 0.001	0.013	0.213
PSD Median Power (V)	0.001 ± 0.001	0.001 ± 0.001	0.006	0.045
PSD Normalized Width (AP)	0.481 ± 0.005	0.482 ± 0.005	0.204	0.403
PSD Normalized Width (R)	0.482 ± 0.005	0.482 ± 0.010	< 0.001	0.561
PSD Normalized Width (ML)	0.510 ± 0.038	0.512 ± 0.05	< 0.001	0.419
PSD Normalized Width (V)	0.483 ± 0.005	0.483 ± 0.012	< 0.001	0.662
PSD Normalized Slope (AP)	0.073 ± 0.015	0.075 ± 0.015	0.264	0.360
PSD Normalized Slope (R)	0.092 ± 0.015	0.085 ± 0.019	0.013	0.004
PSD Normalized Slope (ML)	0.041 ± 0.017	0.035 ± 0.013	< 0.001	0.021
PSD Normalized Slope (V)	0.085 ± 0.019	0.078 ± 0.020	0.064	0.010
PSD Normalized Range (AP)	0.918 ± 0.223	0.780 ± 0.204	0.004	0.001
PSD Normalized Range (R)	1.263 ± 0.348	1.120 ± 0.306	< 0.001	0.015
PSD Normalized Range (ML)	0.991 ± 0.330	0.843 ± 0.264	< 0.001	0.005
PSD Normalized Range (V)	1.191 ± 0.328	1.065 ± 0.296	< 0.001	0.030
PSD Integrated Power (AP)	30.610 ± 1.321	30.906 ± 2.177	0.001	0.534
PSD Integrated Power (R)	31.438 ± 1.559	30.944 ± 2.282	0.005	0.094
PSD Integrated Power (ML)	30.285 ± 1.767	29.851 ± 2.585	0.013	0.213
PSD Integrated Power (V)	31.458 ± 1.523	30.857 ± 2.224	0.006	0.045
Harmonic Ratio (AP)	3.502 ± 1.248	2.836 ± 0.949	0.146	0.001
Harmonic Ratio (R)	3.829 ± 1.173	3.287 ± 1.18	0.015	0.005
Harmonic Ratio (ML)	2.360 ± 0.862	1.994 ± 0.642	< 0.001	0.006
Harmonic Ratio (V)	3.760 ± 1.214	3.110 ± 1.091	0.017	0.001
Index of Harmonicity (AP)	0.630 ± 0.143	0.683 ± 0.136	< 0.001	0.010
Index of Harmonicity (R)	0.747 ± 0.103	0.678 ± 0.171	< 0.001	0.011
Index of Harmonicity (ML)	0.136 ± 0.166	0.243 ± 0.189	< 0.001	< 0.001
Index of Harmonicity (V)	0.719 ± 0.143	0.670 ± 0.177	< 0.001	0.061

Root Mean Square (RMS) of Straight Walk (AP) 0.163 ± 0.035 0.136 ± 0.036 0.003 < 0.001 < 0.001
Signal Magnitude	RMS Straight Walk (R)	0.325 ± 0.067	0.271 ± 0.076	0.001	< 0.001	< 0.001
	RMS Straight Walk (ML)	0.154 ± 0.049	0.123 ± 0.032	< 0.001	< 0.001	< 0.001
	RMS Straight Walk (V)	0.231 ± 0.052	0.197 ± 0.068	< 0.001	< 0.001	0.001
	RMS Stride (AP)	0.159 ± 0.035	0.133 ± 0.035	0.001	< 0.001	0.001
	RMS Stride (R)	0.302 ± 0.067	0.265 ± 0.075	0.001	< 0.001	< 0.001
	RMS Stride (ML)	0.151 ± 0.050	0.119 ± 0.032	< 0.001	0.001	< 0.001
	RMS Stride (V)	0.228 ± 0.052	0.193 ± 0.066	< 0.001	< 0.001	< 0.001
	RMS Step (AP)	0.143 ± 0.033	0.120 ± 0.033	0.001	< 0.001	< 0.001
	RMS Step (R)	0.293 ± 0.063	0.243 ± 0.070	0.001	< 0.001	< 0.001
	RMS Step (ML)	0.142 ± 0.049	0.111 ± 0.033	< 0.001	0.001	< 0.001
	RMS Step (V)	0.206 ± 0.046	0.175 ± 0.060	< 0.001	< 0.001	0.001
	RMS Ratio Straight Walk (AP)	0.504 ± 0.062	0.509 ± 0.070	0.595	0.319	0.713
	RMS Ratio Straight Walk (ML)	0.469 ± 0.088	0.460 ± 0.072	0.150	0.689	0.515
	RMS Ratio Straight Walk (V)	0.712 ± 0.076	0.717 ± 0.067	0.070	0.970	0.680
	RMS Ratio Stride (AP)	0.501 ± 0.063	0.507 ± 0.069	0.514	0.234	0.580
	RMS Ratio Stride (ML)	0.466 ± 0.092	0.457 ± 0.072	0.309	0.764	0.505
	RMS Ratio Stride (V)	0.714 ± 0.079	0.718 ± 0.067	0.062	0.866	0.721
	RMS Ratio Step (AP)	0.493 ± 0.068	0.502 ± 0.071	0.520	0.319	0.444
	RMS Ratio Step (ML)	0.479 ± 0.094	0.460 ± 0.074	0.571	0.317	0.183
	RMS Ratio Step (V)	0.701 ± 0.078	0.711 ± 0.067	0.158	0.604	0.401
	Step Regularity (AP)	0.761 ± 0.191	0.712 ± 0.169	< 0.001	0.001	0.105
	Step Regularity (R)	0.595 ± 0.145	0.541 ± 0.148	< 0.001	0.012	0.029
	Step Regularity (ML)	0.541 ± 0.144	0.456 ± 0.135	0.087	0.001	0.001
	Step Regularity (V)	0.796 ± 0.143	0.741 ± 0.177	< 0.001	0.004	0.049
	Stride Regularity (AP)	0.835 ± 0.077	0.804 ± 0.105	< 0.001	0.049	0.055
	Stride Regularity (R)	0.688 ± 0.100	0.652 ± 0.110	0.001	0.032	0.045
	Stride Regularity (ML)	0.688 ± 0.121	0.616 ± 0.145	0.001	0.005	0.002
	Stride Regularity (V)	0.847 ± 0.115	0.813 ± 0.117	< 0.001	0.011	0.082
	Symmetry Autocorrelation Ratio (AP)	0.013 ± 0.029	0.016 ± 0.024	< 0.001	0.043	0.466
	Symmetry Autocorrelation Ratio (R)	0.016 ± 0.022	0.019 ± 0.023	< 0.001	0.139	0.380
	Symmetry Autocorrelation Ratio (ML)	0.174 ± 0.215	0.189 ± 0.382	< 0.001	0.247	0.777
	Symmetry Autocorrelation Ratio (V)	0.009 ± 0.011	0.012 ± 0.023	< 0.001	0.876	0.274
	Symmetry Autocorrelation Difference (AP)	0.099 ± 0.157	0.114 ± 0.132	< 0.001	0.036	0.547
	Symmetry Autocorrelation Difference (R)	0.121 ± 0.110	0.137 ± 0.110	< 0.001	0.149	0.411
	Symmetry Autocorrelation Difference (ML)	0.171 ± 0.105	0.189 ± 0.122	< 0.001	0.484	0.355
	Symmetry Autocorrelation Difference (V)	0.067 ± 0.058	0.095 ± 0.126	< 0.001	0.235	0.110
	Gait Symmetry Index	0.644 ± 0.083	0.637 ± 0.077	< 0.001	0.162	0.592
	Stride Harmonic Ratio (AP)	2.332 ± 0.552	2.049 ± 0.406	0.529	0.001	0.001
	Stride Harmonic Ratio (ML)	1.843 ± 0.510	1.584 ± 0.365	0.005	0.001	0.001
	Stride Harmonic Ratio (V)	2.280 ± 0.478	2.088 ± 0.416	0.107	0.003	0.011
	Jerk RMS of Straight walk (AP)	5.638 ± 1.900	4.802 ± 1.642	< 0.001	0.008	0.006
Jerk RMS of Straight Walk

Signal Complexity	AP	R	ML	V	P
	7.086 ± 2.622	6.198 ± 2.451	< 0.001	0.041	0.040
	6.354 ± 2.444	5.500 ± 1.907	< 0.001	0.025	0.021
	7.615 ± 2.696	6.659 ± 2.690	< 0.001	0.016	0.038
	5.656 ± 1.911	4.808 ± 1.658	< 0.001	0.007	0.005
	7.098 ± 2.613	6.178 ± 2.432	< 0.001	0.041	0.040
	6.341 ± 2.471	5.487 ± 1.896	< 0.001	0.030	0.021
	7.638 ± 2.731	6.660 ± 2.678	< 0.001	0.014	0.034
	5.571 ± 1.856	4.752 ± 1.610	< 0.001	0.041	0.041
	6.942 ± 2.486	6.095 ± 2.308	< 0.001	0.321	0.234
	6.228 ± 2.42	5.391 ± 1.865	< 0.001	0.133	0.083
	7.510 ± 2.657	6.596 ± 2.643	< 0.001	0.194	0.155
	-0.895 ± 4.075	0.215 ± 4.124	< 0.001	0.012	0.113
	-0.287 ± 4.151	0.476 ± 2.885	< 0.001	0.207	0.199
	-0.421 ± 5.235	0.584 ± 2.912	< 0.001	0.396	0.148
	0.361 ± 4.626	1.477 ± 11.974	< 0.001	0.951	0.491
	-0.507 ± 3.311	-0.532 ± 4.589	< 0.001	0.550	0.971
	1.265 ± 5.900	2.498 ± 17.561	< 0.001	0.561	0.600
	0.442 ± 5.292	-2.729± 27.314	< 0.001	0.846	0.373
	-2.303 ± 26.784	-20.711± 190.467	< 0.001	0.531	0.455
	-0.702 ± 9.174	-7.326 ± 61.82	< 0.001	0.443	0.408
	-1.305 ± 0.959	-1.344 ± 1.026	0.562	0.961	0.818
	-0.83 ± 1.021	-0.759 ± 1.212	0.402	0.872	0.712
	1073.052 ± 8391.063	-1.344 ± 1.015	< 0.001	0.869	0.251
	1073.497 ± 8391.007	-0.785 ± 1.208	< 0.001	0.977	0.251
	1073.065 ± 8391.063	-1.367 ± 0.997	< 0.001	0.683	0.251
	1073.488 ± 8391.008	-0.841 ± 1.205	< 0.001	0.817	0.251
	18.144 ± 7.931	16.159 ± 6.020	< 0.001	0.209	0.092
	27.934 ± 12.564	25.984± 11.126	< 0.001	0.426	0.330
	23.190 ± 9.934	21.202 ± 7.419	< 0.001	0.347	0.174
	29.193 ± 12.821	26.007± 11.094	< 0.001	0.178	0.116
	15.111 ± 6.843	13.057 ± 5.251	< 0.001	0.074	0.045
	23.495 ± 10.674	21.456 ± 9.727	< 0.001	0.252	0.238
	19.227 ± 8.738	17.197 ± 6.325	< 0.001	0.223	0.110
	24.484 ± 11.627	21.449 ± 9.446	< 0.001	0.135	0.088
	12.622 ± 5.227	10.849 ± 4.157	< 0.001	0.044	0.026
	20.046 ± 9.319	18.283 ± 7.951	< 0.001	0.315	0.227
	16.295 ± 7.623	14.373 ± 5.302	< 0.001	0.141	0.079
	20.481 ± 9.318	18.457 ± 8.286	< 0.001	0.199	0.174
Parameter	Mean ± Standard Deviation	t-Value	p-Value	Effect Size	Cohen’s d
--	---------------------------	---------	---------	-------------	-----------
Jerk Min of Straight Walk (AP)	-23.532 ± 9.171				
Jerk Min of Straight Walk (R)	-27.921 ± 11.039				
Jerk Min of Straight Walk (ML)	-23.272 ± 11.62				
Jerk Min of Straight Walk (V)	-27.322 ± 11.62				
Jerk Min of Stride (AP)	-20.382 ± 8.191				
Jerk Min of Stride (R)	-23.145 ± 9.566				
Jerk Min of Stride (ML)	-19.309 ± 8.436				
Jerk Min of Stride (V)	-23.15 ± 10.192				
Jerk Min of Step (AP)	-17.956 ± 7.244				
Jerk Min of Step (R)	-19.273 ± 7.817				
Jerk Min of Step (ML)	-16.095 ± 7.041				
Jerk Min of Step (V)	-19.874 ± 8.604				
Jerk Range of Straight Walk (AP)	41.676 ± 15.642				
Jerk Range of Straight Walk (R)	55.855 ± 23.125				
Jerk Range of Straight Walk (ML)	46.460 ± 18.960				
Jerk Range of Straight Walk (V)	56.515 ± 23.868				
Jerk Range of Stride (AP)	35.493 ± 13.622				
Jerk Range of Stride (R)	46.64 ± 19.846				
Jerk Range of Stride (ML)	38.536 ± 16.848				
Jerk Range of Stride (V)	47.634 ± 21.333				
Jerk Range of Step (AP)	-30.578 ± 11.385				
Jerk Range of Step (R)	39.318 ± 16.896				
Jerk Range of Step (ML)	32.389 ± 14.503				
Jerk Range of Step (V)	40.355 ± 17.546				
Lyapunov RC (AP)	1150.261 ± 8385.92				
Lyapunov RC (R)	0.619 ± 0.138				
Lyapunov RC (ML)	0.574 ± 0.117				
Lyapunov RC (V)	0.608 ± 0.142				
Lyapunov W (AP)	1.284 ± 0.265				
Lyapunov W (R)	1.083 ± 0.312				
Lyapunov W (ML)	1.806 ± 0.473				
Lyapunov W (V)	1.151 ± 0.377				
Full Orbit Eccentricity	0.991 ± 0.006				
Relative Orbit Inclination	6.315 ± 3.436				
Full Orbit Area	0.138 ± 0.105				
Full Orbit Minor axis SD	0.023 ± 0.016				
Full Orbit Major axis SD	0.089 ± 0.123				
Short Half Orbit Eccentricity Asymmetry	0.015 ± 0.018				
Supplementary Materials

Table S3.
Definitions of the gait characteristics used in the study

Domain	Feature	Definition
Spatial-temporal[5]	Step Length	Distance between two heel strikes
	Step Velocity	Step length/step time

Data Table

	Value 1	Value 2	p-value	Std. Error	Std. Error
Short Half Orbit Segment angle	4.942 ± 2.713	5.985 ± 3.99	< 0.001	0.025	0.006
Short Half Orbit Area Asymmetry	25.906 ± 136.824	47.472 ± 248.117	< 0.001	0.209	0.541
Long Half Orbit Eccentricity Asymmetry	0.016 ± 0.016	0.023 ± 0.021	< 0.001	0.024	0.038
Long Half Orbit Segment Angle	4.942 ± 2.713	5.985 ± 3.99	< 0.001	0.106	0.081
Long Half Orbit Area Asymmetry	160.622 ± 877.581	16.141 ± 30.027	< 0.001	0.323	0.141
Intra-Step Correlation	0.968 ± 0.022	0.934 ± 0.084	< 0.001	< 0.001	0.003
Step & Stride Time
- Time between two heel strikes & two consecutive heel strikes of same foot

Swing Time
- Time between toe-off to heel strike

Stance Time
- Time between heel strike to toe-off

Cadence
- Number of steps per minute

Variability (SD & CV)
- Standard deviation (SD) and coefficient of variation (CV:SD/mean) of the extracted mean spatial-temporal gait characteristics

Asymmetry
- Difference between the left and right feet of the extracted mean spatial-temporal gait characteristics

Dominant Frequency
- The inverse of the period at which the maximum spectral response is observed. [6, 7]

Normalized Amplitude of dominant peak of Power Spectral Density (PSD) in the three axes (V, AP, ML, & R)
- Estimated from each detrended acceleration signal (VT, ML, AP) as the magnitude of the PSD at the dominant peak, normalized by the total integrated PSD. This feature represents the relative strength of the signal at the most dominant frequency and reflects the periodicity of the signal. Larger values of this feature indicate a greater periodic gait pattern. [6, 7]

Width of dominant peak of PSD (V, AP, ML, & R)
- Estimated from each detrended acceleration signal (VT, ML, AP) as the width of the dominant peak of the PSD. This feature is a measure of frequency dispersion and is related to the variability of the dominant cycles of the signal (step cycles in VT and AP, stride cycles in ML). Larger values of this feature indicate a less consistent gait pattern. [7]

Slope of dominant peak of PSD (V, AP, ML, & R)
- Estimated from each detrended acceleration signal (VT, ML, AP) as the slope of the dominant peak of the PSD. [6]

Range of dominant peak of PSD (V, AP, ML, & R)
- Estimated from each detrended acceleration signal (VT, ML, AP) as the range of the dominant peak of the PSD. [6]

PSD Mean Power (V, AP, ML, & R)
- Estimated from each detrended acceleration signal (VT, ML & AP) as the mean power of the PSD. [8]

PSD Median Power (V, AP, ML, & R)
- Estimated from each detrended acceleration signal (VT, ML & AP) as the median power of the PSD. [8]

PSD Normalized Width (V, AP, ML, & R)
- Estimated from each detrended acceleration signal (VT, ML, AP) as the width of the dominant peak of the PSD, normalized by the total integrated PSD.

PSD Normalized Slope (V, AP, ML, & R)
- Estimated from each detrended acceleration signal (VT, ML, AP) as the slope of the dominant peak of the PSD, normalized by the total integrated PSD.

PSD Normalized Range (V, AP, ML, & R)
- Estimated from each detrended acceleration signal (VT, ML, AP) as the range of the dominant peak of the PSD, normalized by the total integrated PSD.

PSD Integrated Power (V, AP, ML, & R)
- Estimated from each detrended acceleration signal (VT, ML & AP) as the total integration of the PSD. [9]

Harmonic Ratio Straight walk (V, AP, ML, & R)
- Estimated for each direction as described by Menz et al., 2003 [10, 11]. Harmonic ratios of acceleration signals in VT and AP directions were calculated as the sum of even harmonics divided by the sum of odd harmonics, since these signals have two phases per stride. Harmonic ratios from ML acceleration were calculated as the sum of odd harmonics divided by the sum of even harmonics, since acceleration signals in mediolateral (ML) direction are monophasic per stride. This measurement reflects the rhythmicity of periodic patterns and relates to gait symmetry [12]. Thus, higher values of this feature are related to more rhythmic, paced and symmetric gait patterns [13].

Harmonic Ratio
- Stride Harmonic Ratio (V, ML, & AP)
- The step-to-step symmetry within a stride from calculating a ratio of the odd and even harmonics of a signal following fast Fourier transformation [10].
Supplementary Materials

Supplemental Metrics	Description
Index of Harmonicity (V, AP, ML, & R)	Estimated for each direction as the PSD of the fundamental frequency (first harmonic) divided by the cumulative sum of the power spectral density of the first six harmonics [13, 14]. This measure, proposed by Lamoth et al., 2002 reflects gait smoothness [13]. Thus, values approaching the maximum value of 1.0 indicate a smoother gait pattern, which may reflect a less vigorous/more cautious movement pattern, whereas smaller values might indicate movements that are more erratic.
Root Mean Square (RMS)	Acceleration RMS: The calculation of the Root mean square of the acceleration signal [15].
RMS of Straight Walk (V, AP, ML, & R)	Jerk RMS: The calculation of the root mean square of the first time derivative of the acceleration signal (jerk) [16].
RMS Stride (V, AP, ML, & R)	Jerk ratio: A logarithmic ratio of either the AP or ML acceleration RMS over the V acceleration RMS [16, 17].
RMS Step (V, AP, ML, & R)	
RMS Ratio Straight Walk (V, AP, ML)	
RMS Ratio Stride (V, AP, & ML)	
RMS Ratio Step (V, AP, & ML)	
Jerk	
RMS of Straight Walk (V, AP, ML, & R)	
RMS of Stride (V, AP, ML, & R)	
RMS of Step (V, AP, ML, & R)	
- Mean Ratio of Straight Walk (V, AP, & ML)	
- Mean Ratio of Stride (V, AP, & ML)	
- Mean Ratio of Step (V, AP, & ML)	
- Mean Log Ratio of Straight Walk (AP, & ML)	
- Mean Log Ratio of Stride (AP, & ML)	
- Mean Log Ratio of Step (AP, & ML)	
- Max of Straight Walk (V, AP, ML, & R)	
- Max of Stride (V, AP, ML, & R)	
- Max of Step (V, AP, ML, & R)	
- Min of Straight Walk (V, AP, ML, & R)	
- Min of Stride (V, AP, ML, & R)	
- Min of Step (V, AP, ML, & R)	
- Range of Straight Walk (V, AP, ML, & R)	
- Range of Stride (V, AP, ML, & R)	
- Range of Step (V, AP, ML, & R)	
Signal Magnitude	
Signal Regularity	
Step Regularity (V, AP, ML & R)	Estimated as the normalized unbiased auto-covariance for a lag of one step time [17]. This feature thus reflects the similarity between subsequent steps of the acceleration pattern over a step. Values of this feature close to 1.0 (maximum possible value) reflect repeatable patterns between subsequent steps.
Stride Regularity (V, AP, ML, & R)	Estimated as the normalized unbiased auto-covariance for a lag of one stride time [17]. This feature thus reflects the similarity between subsequent strides of the acceleration pattern over a stride cycle.
Symmetry Autocorrelation Ratio (V, AP, ML, & R)	A ratio between step and stride regularity designed to quantify the level of symmetry between them and indicative of symmetry during a straight walk [17].
Symmetry Autocorrelation Difference (V, AP, ML, & R)	Difference between step and stride regularity designed to quantify the level of symmetry between them and indicative of symmetry during a straight walk [17].
Gait Symmetry Index	Calculated based upon the concept of the summation of the biased autocorrelation from all three components of movement and a subsequent calculation of step and stride timing asymmetry [18].
Lyapunov exponent | Estimated as the exponential rate of divergence or convergence after a small disturbance of nearby orbits in state space. Since nearby orbits correspond to nearly identical states, a positive value indicates that systems with initial differences will soon behave quite differently, and stability is low [19]. The Lyapunov exponent was calculated using the Rostein and Wolf method [20] for each detrended acceleration signal (VT, ML & AP). We used an embedding dimension of 5 and a delay of 12 samples [21]. As local dynamic stability estimates based on a 6D and 12D state space correlated highly with those of the employed 9D state space in a previous study [22] (respectively r≥0.94 and r≥0.81), the number of embedding dimensions has been considered to have minor effects [22]. Thus, to reduce computational cost, we explored the use of a 5D state reconstruction (with two less dimensions than used in the reference) [23].

Phase plots features [24]:
Features from ellipses fitted to full cycles/orbits of phase plots:
Full orbit eccentricity
Relative orbit inclination
Full orbit area
Full orbit minor axis SD
Full orbit major axis SD

Signal Complexity

Features from ellipses fitted to half-cycles/orbits following ellipse segmentation along the minor (short) axis:
Short half orbit eccentricity asymmetry
Short half orbit segment angle
Short half orbit area asymmetry

Features from ellipses fitted to half-cycles/orbits following ellipse segmentation along the major (long) axis:
Long half orbit eccentricity asymmetry
Long half orbit segment angle
Long half orbit area asymmetry

Intra-step correlation | Average correlation of acceleration signal corresponding to step i with that of step i-1. I.e. a lag-1 autocorrelation where a single lag is one step cycle’s duration.
Fig. S2. Correlation among important characteristics having variable importance score above 1.5
REFERENCES

[1] C. Caramia et al., "IMU-Based Classification of Parkinson’s Disease From Gait: A Sensitivity Analysis on Sensor Location and Feature Selection," IEEE journal of biomedical and health informatics, vol. 22, no. 6, pp. 1765-1774, 2018.

[2] S. Maitra and J. Yan, "Principle component analysis and partial least squares: Two dimension reduction techniques for regression," Applying Multivariate Statistical Models, vol. 79, pp. 79-90, 2008.

[3] M. Fordellone, A. Bellincontro, and F. Mencarelli, "Partial least squares discriminant analysis: A dimensionality reduction method to classify hyperspectral data," arXiv preprint arXiv:1806.09347, 2018.

[4] L. Eriksson, T. Byrne, E. Johansson, J. Trygg, and C. Vikström, "One- and megavariable data analysis basic principles and applications," Umetrics Academy, 2013.

[5] S. Del Din, A. Godfrey, and L. Rochester, "Validation of an accelerometer to quantify a comprehensive battery of gait characteristics in healthy older adults and Parkinson’s disease: toward clinical and at home use," IEEE journal of biomedical and health informatics, vol. 20, no. 3, pp. 838-847, 2015.

[6] A. Weiss, S. Sharifi, M. Plotnik, J. P. van Vught, N. Giladi, and J. M. Hausdorff, "Toward automated, at-home assessment of mobility among patients with Parkinson disease, using a body-worn accelerometer," Neurorehabilitation and neural repair, vol. 25, no. 9, pp. 810-818, 2011.

[7] E. Micó-Amigo et al., "Potential markers of progression in idiopathic Parkinson’s disease derived from assessment of circular gait with a single body-fixed sensor: A 5-year longitudinal study," Frontiers in human neuroscience, vol. 13, p. 59, 2019.

[8] Q. W. Oung, M. Harilhan, H. L. Lee, S. N. Basah, M. Sarilée, and C. H. Lee, "Wearable multimodal sensors for evaluation of patients with Parkinson disease," in 2015 IEEE International Conference on Control System, Computing and Engineering (ICCSCE), 2015, pp. 269-274: IEEE.

[9] A. Mannini, M. Rosenberger, W. L. Haskell, A. M. Sabatini, and S. S. Intille, "Activity recognition in youth using single accelerometer placed at wrist or ankle," Medicine and science in sports and exercise, vol. 49, no. 4, p. 801, 2017.

[10] J. Bellanca, K. Lowry, J. VanSwearingen, J. Brach, and M. Redfern, "Harmonic ratios: a quantification of step to step symmetry," Journal of biomechanics, vol. 46, no. 4, pp. 828-831, 2013.

[11] H. B. Menz, S. R. Lord, and R. C. Fitzpatrick, "Acceleration patterns of the head and pelvis when walking on level and irregular surfaces," Gait & posture, vol. 18, no. 1, pp. 35-46, 2003.

[12] I. Pasciuto, E. Bergamini, M. Iosa, G. Vannozzi, and A. Cappozzo, "Overcoming the limitations of the Harmonic Ratio for the reliable assessment of gait symmetry," Journal of biomechanics, vol. 53, pp. 84-89, 2017.

[13] C. J. Lamoth, O. G. Meijer, P. I. Wuisman, J. H. van Dieën, M. F. Levin, and P. J. Beek, "Pelvis-thorax coordination in the transverse plane during walking in persons with nonspecific low back pain," Spine, vol. 27, no. 4, pp. E92-E99, 2002.

[14] S. M. Rispe, M. Pijnpellps, K. S. van Schooten, P. J. Beek, A. Daffertshofer, and J. H. van Dieën, "Consistency of gait characteristics as determined from acceleration data collected at different trunk locations," Gait & posture, vol. 40, no. 1, pp. 187-192, 2014.

[15] J. J. Kavanagh and H. B. Menz, "Accelerometry: a technique for quantifying movement patterns during walking," Gait & posture, vol. 28, no. 1, pp. 1-15, 2008.

[16] M. A. Brodie, H. B. Menz, and S. R. Lord, "Age-associated changes in head jerk while walking reveal altered dynamic stability in older people," Experimental brain research, vol. 232, no. 1, pp. 51-60, 2014.

[17] R. Moe-Nilssen and J. L. Helbostad, "Estimation of gait cycle characteristics by trunk accelerometer," Journal of biomechanics, vol. 37, no. 1, pp. 121-126, 2004.

[18] W. Zhang, M. Smuck, C. Legault, M. A. Ith, A. Muaremi, and K. Aminian, "Gait symmetry assessment with a low back 3d accelerometer in post-stroke patients," Sensors, vol. 18, no. 10, p. 3322, 2018.

[19] K. S. van Schooten et al., "Sensitivity of trunk variability and stability measures to balance impairments induced by galvanic vestibular stimulation during gait," Gait & posture, vol. 33, no. 4, pp. 650-660, 2011.

[20] A. Dupeyron, S. M. Rispe, C. Demattei, and J. H. van Dieën, "Precision of estimates of local stability of repetitive trunk movements," European Spine Journal, vol. 22, no. 12, pp. 2678-2685, 2013.

[21] S. M. Rispe, K. S. van Schooten, M. Pijnpellps, A. Daffertshofer, P. J. Beek, and J. H. van Dieën, "Identification of fall risk predictors in daily life measurements: gait characteristics’ reliability and association with self-reported fall history," Neurorehabilitation and neural repair, vol. 29, no. 1, pp. 54-61, 2015.

[22] K. S. van Schooten, S. M. Rispe, P. J. Elders, J. H. van Dieën, and M. Pijnpellps, "Towards ambulatory balance assessment: estimating variability and stability from short bouts of gait," Gait & posture, vol. 39, no. 2, pp. 695-699, 2014.

[23] P. Terrier and F. Reynard, "Maximum Lyapunov exponent revisited: Long-term attractor divergence of gait dynamics is highly sensitive to the noise structure of stride intervals," Gait & posture, vol. 66, pp. 236-241, 2018.

[24] M. Dunne-Willows, P. Watson, J. Shi, L. Rochester, and S. Del Din, "A Novel Parameterisation of Phase Plots for Monitoring of Parkinson’s Disease," in 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 2019, pp. 5890-5893: IEEE.