M&m Strings and Modular Forms

Stefan Hohenegger*, Amer Iqbal†, Soo-Jong Rey‡

* Université Claude Bernard (Lyon 1)
UMR 5822, CNRS/IN2P3, Institut de Physique Nucléaire, Bat. P. Dirac
4 rue Enrico Fermi, F-69622-Villeurbanne, FRANCE

† Department of Physics & Department of Mathematics
LUMS School of Science & Engineering, U-Block, D.H.A, Lahore, PAKISTAN

‡ Center of Mathematical Sciences and Applications
Harvard University, Cambridge, MA 02138 USA

§ School of Physics and Astronomy & Center for Theoretical Physics
Seoul National University, Seoul 151-747 KOREA

‖ Fields, Gravity & Strings, Center for Theoretical Physics of the Universe
Institute for Basic Sciences, Daejeon 305-811 KOREA

Abstract

We study relations between M-strings (one-dimensional intersections of M2-branes and M5-branes) in six dimensions and m-strings (magnetically charged monopole strings) in five dimensions. For specific configurations, we propose that the counting functions of BPS bound-states of M-strings capture the elliptic genus of the moduli space of m-strings. We check this proposal for the known cases, the Taub-NUT and Atiyah-Hitchin spaces for which we find complete agreement. Furthermore, we analyze the modular properties of the M-string free energies, which do not transform covariantly under $SL(2,\mathbb{Z})$. However, for a given number of M-strings, we find that there exists a unique combination of unrefined genus-zero free energies that transforms as a Jacobi form under a congruence subgroup of $SL(2,\mathbb{Z})$. These combinations correspond to summing over different numbers of M5-branes and make sense only if the distances between them are all equal. We explain that this is a necessary condition for the m-string moduli space to be factorizable into relative and center-of-mass parts.
Contents

1 Introduction and Summary .. 3

2 Brane Configurations .. 7
 2.1 Supersymmetry .. 7
 2.2 Omega Background 9
 2.3 Nekrasov-Shatashvili Limit 10
 2.4 Refined Topological Strings in the Nekrasov-Shatashvili Limit 11

3 M-strings and $\mathcal{N} = 1^*$ Theory 13
 3.1 Refined Topological String Partition Function 13
 3.2 Modular Properties of $Z_{k_1\ldots k_{N-1}}$ 16

4 BPS Degeneracies of M-Strings 18
 4.1 M-String Free Energy 18
 4.2 Modular Transformations and Theta Decomposition 19
 4.3 Single M2-Brane 20
 4.3.1 Configuration $(k_i) = (1)$ 20
 4.3.2 Configuration $(k_i) = (1, 1)$ 22
 4.3.3 Configuration $(k_i) = (1, 1, \ldots, 1)$ 24
 4.3.4 Comparison with single-particle indices 27
 4.4 Two M2-branes 28
 4.5 Three M2-branes 30

5 BPS Degeneracies of m-Strings 31
 5.1 m-String Free Energies 32
 5.2 Modular Transformations 34
 5.3 m-String Elliptic Genera from $\tilde{F}(k_1k_2\ldots k_{N-1})$ 34
 5.3.1 Regularized elliptic genera 34
 5.3.2 Comparison with other BPS bound-state problems 36
 5.3.3 Elliptic genera of m-string moduli spaces 37
 5.4 Charge $(1, 1, \ldots, 1)$ Configurations 38
 5.4.1 $\tilde{F}^{(1)}$ and $\mathbb{R}^3 \times S^1$ elliptic genus 38
 5.4.2 $\tilde{F}^{(1,1)}$ and Taub-NUT elliptic genus 38
 5.4.3 $\tilde{F}^{(1,1,\ldots,1)}$, bound-states of fundamental monopoles and Sen’s S-duality 39
 5.5 $\tilde{F}^{(2)}$ and Atiyah-Hitchin Elliptic Genus 40
 5.6 $\chi_y(\tilde{M}_{k_1k_2\ldots k_{N-1}})$ Genus from $\tilde{F}(k_1k_2\ldots k_{N-1})$ 41

6 M5-brane Ensemble and Holomorphic Jacobi Forms 41
 6.1 What Is Special of Equal Kähler Parameters? 41
 6.2 Explicit Examples 45
 6.2.1 Index $K = 1$ 46
1 Introduction and Summary

The dynamics of six dimensional quantum field theories has a very rich structure since they contain not only particles but also string degrees of freedom. Yet they give rise to consistent superconformal field theories (SCFTs) at the conformal fixed points, with well-defined local
energy-momentum tensors. Using F-theory \cite{1} on elliptically fibered Calabi-Yau three-folds (CY3folds), such SCFTs have recently been classified \cite{2}-\cite{6}. In this framework, the strings \cite{7} arise from D3-branes wrapping a \mathbb{P}^1 inside the base of the elliptically fibered CY3fold, while in the corresponding M-theory description (i.e. once compactified to a five-dimensional space-time) they correspond to M5-branes wrapping a divisor \cite{8}.

In this paper we study these string degrees of freedom more carefully, focusing on two different incarnations that are related by U-duality: The first one was pioneered in \cite{9} where the one-dimensional intersection of an M2-brane ending on an M5-brane was dubbed \textit{M-string}. In the higher-dimensional F-theory description this corresponds to a D3-brane wrapping a \mathbb{P}^1 with normal bundle $\mathcal{O}(-2)$ inside the base of the elliptically fibered CY3fold. Replacing the \mathbb{P}^1 by a chain of \mathbb{P}^1’s corresponds to configurations of multiple parallel M5-branes with M2-branes suspended between them. The corresponding CY3fold is an elliptic fibration over a resolved A_{N-1} surface blown up at N points, which can also be realized as an A_{N-1} fibration over \mathbb{T}^2. In the latter case, the M-theory compactification gives rise to five-dimensional $\mathcal{N} = 1^*$ $SU(N)$ gauge theory. Upon further compactification on a circle, we obtain the four-dimensional $\mathcal{N} = 2^*$ gauge theory, whose (complexified) gauge coupling corresponds to the area of the base \mathbb{T}^2. The partition function of the Bogomol’nyi-Prasad-Sommerfield (BPS) excitations of the M-strings was worked out in an infinite class of configurations in \cite{9} \cite{10} \cite{11} and related to the gauge theory partition function.

Another incarnation of string degrees of freedom in the five-dimensional theories can be obtained in a dual formulation. The five-dimensional S-duality maps (electrically charged) particle states to (magnetically charged) \textit{monopole string} (m-string) states. The details of this map and in particular the BPS spectra are rather involved \cite{12}-\cite{13}. The S-duality then implies that degeneracies of the BPS m-string states can be extracted from the five-dimensional $\mathcal{N} = 1^*$ partition function \cite{14}. In \cite{15} \cite{16}, the elliptic genus (see \cite{17} for the definition) for the m-strings was directly studied by the path integral approach. For example, the elliptic genus of the Taub-NUT space as the moduli space of charge $(1, 1)$ monopoles in $SU(3)$ gauge theory \cite{18} was computed in \cite{16} \cite{15} and found to agree with the index computed in \cite{14} for all instances where they are comparable.

In this paper, we show that there exists a natural and direct correspondence between the M-strings and the m-strings and propose that the BPS degeneracies of bound-state of M-strings provide the elliptic genus of the moduli space of corresponding m-strings. More concretely, if we denote the relative moduli space of m-strings of charge (k_1, \cdots, k_{N-1}) as $\widehat{\mathcal{M}}_{k_1, \cdots, k_{N-1}}$ and the corresponding (equivariantly regularized) elliptic genus $\phi_{\widehat{\mathcal{M}}_{k_1, \cdots, k_{N-1}}} (\tau, m, \epsilon_1)$, we propose

$$\lim_{\epsilon_2 \to 0} \frac{\tilde{F}(k_1, \cdots, k_{N-1}) (\tau, m, \epsilon_1, \epsilon_2)}{\tilde{F}(1) (\tau, m, \epsilon_1, \epsilon_2)} = \phi_{\widehat{\mathcal{M}}_{k_1, \cdots, k_{N-1}}} (\tau, m, \epsilon_1) \quad \text{for} \quad \gcd(k_1, k_2, \cdots, k_{N-1}) = 1.$$

(1.1)
Here $\widetilde{F}^{(k_1,\cdots,k_{N-1})}$ is the counting-function of M-string bound states of configurations with k_i ($i = 1, \cdots, N - 1$) M2-branes connecting the i-th and $(i+1)$-th M5-brane. The parameters $\epsilon_{1,2}$ are equivariant deformation parameters and from the point of view of $\widetilde{M}^{k_1,\cdots,k_{N-1}}$, ϵ_1 corresponds to the action of a $U(1)$ isometry, which is used to equivariantly regularize the elliptic genus. We first confirm (1.1) for the case of the charge $(1,1)$ m-string for $SU(3)$ gauge group whose relative moduli space is known to be the Taub-NUT space. The elliptic genus of the latter was recently calculated in [16, 15] and we will see that the universal part of the Taub-NUT elliptic genus which does not depend on the size of the asymptotic circle is precisely given by $\frac{\widetilde{F}^{(1,1)}}{\widetilde{F}^{(1)}}$.

We also consider the case of Atiyah-Hitchin space whose elliptic genus was calculated in [15]. We show that part of its elliptic genus, which counts states in the neutral sector, is precisely calculated in [16, 15] and we will see that the universal part of the Taub-NUT elliptic genus which does not depend on the size of the asymptotic circle is precisely given by $\frac{\widetilde{F}^{(1,1)}}{\widetilde{F}^{(1)}}$.

The functions $\widetilde{F}^{(k_1,\cdots,k_{N-1})}$ can be determined from the M-string partition functions for N parallel M5-branes $Z_N(\tau, m, t_{f_a}, \epsilon_1, \epsilon_2)$ (see [9] [11] [10]) for given Kähler parameters $t_{f_a}(a = 1, \cdots, N-1)$, which can be interpreted as the grand-canonical counting function. Furthermore, τ corresponds to the complex structure of a torus \mathbb{T}^2 on which the M5-branes are compactified and $\epsilon_{1,2}$ are equivariant deformation parameters. Specifically, we have

$$\widetilde{F}^{(k_1,\cdots,k_{N-1})}(\tau, m, \epsilon_1, \epsilon_2) = \text{coefficient of } Q_f^1 \cdots Q_{f_{N-1}}^{k_{N-1}} \text{ in } \sum_{\ell=1}^{\infty} \frac{\mu(\ell)}{\ell} \log Z_N(\ell\tau, \ell m, \ell t_{f_a}, \ell \epsilon_1, \ell \epsilon_2).$$

Here, $Q := (Q_{f_1}, \cdots, Q_{f_{N-1}})$ denote the fugacities $(e^{2\pi i t_{f_1}}, \cdots, e^{2\pi i t_{f_{N-1}}})$ where the Kähler parameters $(t_{f_1}, \cdots, t_{f_{N-1}})$ act as the respective chemical potentials.

From the viewpoint of the M-string partition function $Z_N(\tau, m, t_{f_a}, \epsilon_1, \epsilon_2)$, the limit $\epsilon_2 \to 0$ in (1.1) corresponds to the Nekrasov-Shatashvili (NS) limit [19, 20], which is required for the five-dimensional S-duality correspondence to the m-strings to work. Put differently, the aforementioned five-dimensional S-duality transformation is only possible for certain values of the Ω-deformation parameters (ϵ_1, ϵ_2). Indeed, the m-string in five dimensions is an extended object and hence should possess ISO(2) boost isometry. From the viewpoint of the M-string configuration, this isometry is in general absent. To restore it, the NS-limit needs to be taken.

Another hint for the necessity of the NS-limit comes from the modular properties of the free energies $\widetilde{F}^{(k_1,\cdots,k_{N-1})}(\tau, m, \epsilon_1, \epsilon_2)$. For general (k_1, \cdots, k_{N-1}), the latter do not have any particular modular properties, not even under some congruence subgroup Γ of $SL(2, \mathbb{Z})$. This means they do not transform in a nice way under the transformations

$$(\tau, m, \epsilon_1, \epsilon_2) \mapsto \left(\frac{a\tau + b}{c\tau + d}, \frac{m}{c\tau + d}, \frac{\epsilon_1}{c\tau + d}, \frac{\epsilon_2}{c\tau + d}\right) \quad \text{where} \quad \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma \subset SL(2, \mathbb{Z}).$$

Note that we should require covariance under this transformations if we are to identify them
with the elliptic genus of a hyperkähler manifold of complex dimension $2K$ (see e.g. [21]).

However, in the NS limit $\epsilon_2 \to 0$, the function $\epsilon_2 F^{(k_1, \ldots, k_{N-1})}(\tau, m, \epsilon_1)$ behaves almost like a Jacobi form of weight -1 and index $K = \sum_{a=1}^{N-1} k_a$ with respect to the variables (τ, m). Indeed, if in addition we also send $\epsilon_1 \to 0$, they become quasi-modular functions: while not being fully covariant as they stand, modular covariance can be restored at the expense of making them non-holomorphic functions. Furthermore, for a given integer K, there exists a function $T^{(K)}(\tau, m)$, which is a unique linear combination of all $F^{(k_1, \ldots, k_{N-1})}(\tau, m)$ with $\sum_a k_a = K$ in the limit $\epsilon_1, \epsilon_2 \to 0$. This function turns out to be a holomorphic modular form. We find a general pattern concerning how to express all $T^{(K)}(\tau, m)$. They are weak Jacobi forms of weight -2 and index K under some particular congruence subgroup of $SL(2, \mathbb{Z})$.

Physically, an important aspect of the $T^{(K)}(\tau, m)$ is that they combine free energies of all possible connected configurations for a fixed number K of constituent M-strings. In order to render a physical meaning to such combinations, we have to work at a point where all Kähler moduli t_f in the M-strings setting are set equal (i.e. the distances of all M5-branes are equal). It is unclear what such combinations refer to in the M-string framework. We suggest that such a prescription is more naturally interpretable in the U-dual configuration of the m-strings. Indeed, recalling that K m-string moduli space is given by

$$
\mathcal{M}(K) = \mathbb{R}^3 \times (S^1_{\text{com}} \times \hat{\mathcal{M}}_{\text{rel}}(K))/\mathbb{Z}_K,
$$

we see that the \mathbb{Z}_K acts on S^1 (corresponding to the center of mass moduli) as well as the moduli space of the relative motion $\hat{\mathcal{M}}_{\text{rel}}(K)$. It only becomes factorized in the limit that the m-string tensions are all set equal. Moreover, only in this limit, the level-matching condition for the m-string elliptic genus is obeyed.

The rest of this paper is organized as follows. In section 2, we recapitulate the brane configuration relevant for the description of the M-strings. We generalize the discussion of [15] and explain various deformations while interpolating between the M-string and the monopole string (m-string). In section 3, we review the construction of the M-string partition function. In section 4, we analyze the modular properties of the M-string free energy and give some explicit examples for the simplest configurations with the lowest number of stretched M2-branes. In section 5, we study the properties of the M-string free energy in the NS limit. We study the charge $(1, 1)$ and charge (2) configurations in detail and relate the corresponding M-string partition functions to the elliptic genus of Taub-NUT and Atiyah-Hitchin space, respectively. In section 6, we study combinations of free energies corresponding to different M-string configurations and study the modular properties of the genus-zero part. In appendix A and B, we recapitulate relevant aspects of the magnetic monopoles and of the noncompact hyperkähler

[1] In fact, in order to be identified with an elliptic genus, we require $\Gamma = SL(2, \mathbb{Z})$, which is the reason for the restriction to $\gcd(k_1, \ldots, k_{N-1}) = 1$ in [11], as we shall discover.
geometries that we use in this paper. In appendix C, we collect the general expression for the free energy. In appendix D, we collect explicit expressions of free energies for some of the lower charge configurations. In appendix E, we review modular objects. In appendix F, we collect lengthy expressions of the free energies for higher charge configurations.

Note added: While this paper was being completed, the paper [22] appeared on the ArXiv, which has partial overlap with the ideas in sections 2 and 3.

2 Brane Configurations

The problem of counting BPS states in $\mathcal{N} = 1^*$ theories can be formulated using configurations in M-theory and their Type IIA reductions, the first equivariantly deformed versions of which were first given in [9] for M-strings. Here, we consider another equivariant configuration that allows an interpretation in terms of m-strings. Indeed, depending on U-duality frames chosen for the Type IIA reduction, the BPS states can be interpreted as arising either from M-strings or m-strings. In this section, we elaborate on this point and explain different hyperkähler geometries of the moduli space of the BPS states that result from different U-duality frames.

2.1 Supersymmetry

We study brane configurations in M-theory, consisting of N parallel M5-branes with a number of K different M2-branes stretched between them, in addition to a number M of M-waves in $\mathbb{R}^{1,10}$. The world-volumes of multiple M5-branes are oriented along the directions (012345). When the branes coincide, the spacetime (Poincaré) symmetry $ISO(1,10)$ is broken to $ISO(1,5) \times Spin_R(5)$, which is further broken to $Spin_R(4)$ when the branes are split linearly along the (6) direction. We consider a split by a finite distance and place the N parallel M5-branes at $-\infty < a_1 \leq a_2 \leq \cdots \leq a_N < +\infty$. The moduli space and R-symmetry then become

$$
\frac{(\mathbb{R}^5)^N}{S_N} \to \frac{(\mathbb{R}^4)^N}{S_N} \quad \text{and} \quad Spin_R(4) \to Spin_R(4).
$$

The M5-brane preserves the supersymmetry generated by the 32-component spinor ϵ satisfying

$$
\Gamma^0 \Gamma^1 \Gamma^2 \Gamma^3 \Gamma^4 \epsilon = \epsilon,
$$

where $\Gamma^I, I = 0,1, \cdots, 10$ are 32×32 Dirac matrices. In the signature convention $(\Gamma^0)^2 = -\mathbb{I}, (\Gamma^I)^2 = \cdots = (\Gamma^{10})^2 = +\mathbb{I}$, they obey $\Gamma^0 \Gamma^1 \cdots \Gamma^{10} = \mathbb{I}$. The BPS excitations on the
M5-brane worldvolume are provided by other M-branes.

The world-volumes of the M2-branes are oriented along the directions $(0, 1, 6)$. They are distributed among $N - 1$ intervals formed by separated M5-branes along the (6)-direction with multiplicity $k = \{k_i|i = 1, \cdots, N - 1\}$. They break the worldvolume Poincare symmetry $ISO(1,5)$ to $ISO(1,1) \times Spin(4)$. The R-symmetry $Spin_R(4)$ of the M5-brane worldvolume theory remains intact. The M2-branes break supersymmetry further to those components satisfying the projection condition

$$\Gamma^0 \Gamma^1 \Gamma^6 \epsilon = \epsilon. \quad (2.3)$$

The worldvolume of the multiple M-waves are oriented along the $(0, 1)$ directions. They are distributed among N M5-branes, with multiplicity $m = \{m_i|i = 1, \cdots, N - 2\}$. They preserve the $ISO(1,1) \times Spin(4)$ worldvolume symmetry as well as the $Spin_R(4)$ R-symmetry. The M-waves break supersymmetry further to those components satisfying the projection condition

$$\Gamma^0 \Gamma^1 \epsilon = \epsilon. \quad (2.4)$$

The brane complex (N,K,M) is a 1/8-BPS configuration. It then follows that these residual supercharges form a $(4,0)$ supermultiplet of $ISO(1,1)$. To see this, we combine the projection conditions and the relation $\Gamma^0 \cdots \Gamma^{10} = \mathbb{I}$ and

$$\Gamma^2 \Gamma^3 \Gamma^4 \Gamma^5 = \Gamma^0 \Gamma^1 = \epsilon, \quad \Gamma^7 \Gamma^8 \Gamma^9 \Gamma^{10} \epsilon = \Gamma^0 \Gamma^1 \epsilon = \epsilon. \quad (2.5)$$

The space transverse to the M2 branes and M-waves is spanned by $(2,3,4,5,7,8,9,10)$ directions, exhibiting $Spin(8)$ rotational symmetry. Introducing M5-branes breaks this further to $Spin_{\parallel}(4) \times Spin_{\perp}(4)$. Decomposing each $Spin(4)$ to chiral $SU(2)$ and anti-chiral $SU(2)$, respectively, the 1/8-BPS supercharges form the representation:

$$Spin_{\parallel}(4) \times Spin_{\perp}(4) \times Spin(1,1) : \ (2,1,2,1)^{+1/2}. \quad (2.6)$$

We shall compactify the (1) direction to a circle of radius R_1 so that both M2-branes and M-waves have finite energies. To unambiguously count these energies, we also compactify the (0) direction to a circle of radius R_0. Transverse to the M2-branes and M-waves, the $(2,3,4,5)$ directions and the $(7,8,9,10)$ directions are \mathbb{R}^4_{\parallel} and \mathbb{R}^4_{\perp}, respectively. See figure 1 for schematics of the brane configuration.
To count the BPS states in the M-strings frame, it is necessary to remove contributions due to the noncompact flat directions. This is achieved by formulating the theory on the generalized Ω-background [23] together with an addition $U(1)_m$ corresponding to the mass deformation in the $\mathcal{N} = 2^*$ gauge theory, which rotates \mathbb{R}^4_\parallel and \mathbb{R}^4_\perp simultaneously by a $U(1)_{\epsilon_1} \times U(1)_{\epsilon_2} \times U(1)_m$ action with respect to the (0)-direction [9]: If we denote the complex coordinates on \mathbb{R}^4_\parallel by $(z_1, z_2) = (x_2 + ix_3, x_4 + ix_5)$ and \mathbb{R}^4_\perp by $(w_1, w_2) = (x_7 + ix_8, x_9 + ix_{10})$, then

$$U(1)_{\epsilon_1} \times U(1)_{\epsilon_2} \times U(1)_m : \begin{align*}
(z_1, z_2) &\rightarrow (e^{2\pi i \epsilon_1} z_1, e^{2\pi i \epsilon_2} z_2) \\
(w_1, w_2) &\rightarrow (e^{2\pi i m - \pi i (\epsilon_1 + \epsilon_2)} w_1, e^{-2\pi i m - \pi i (\epsilon_1 + \epsilon_2)} w_2).
\end{align*}$$

The corresponding brane configuration in the M-theory frame is given by

	(0)	(1)	2	3	4	5	6	7	8	9	10
$M5$	$=$	$=$	$=$	$=$	$=$	$=$	$=$	$=$	$=$	$=$	$=$
$M2$	$=$	$=$	$=$	$=$	$=$	$=$	$=$	$=$	$=$	$=$	$=$
$M \sim$	$=$	$=$	$=$	$=$	$=$	$=$	$=$	$=$	$=$	$=$	$=$

ϵ_1	$=$	$=$	$=$	$=$	$=$	$=$	$=$	$=$	$=$	$=$	$=$
ϵ_2	$=$	$=$	$=$	$=$	$=$	$=$	$=$	$=$	$=$	$=$	$=$
m	$=$	$=$	$=$	$=$	$=$	$=$	$=$	$=$	$=$	$=$	$=$

We put parentheses on the (0), (1) directions to emphasize that these directions are compactified on circles of radii R_0, R_1 respectively, which together form a torus \mathbb{T}^2. The circles denote the planes that are twisted by the Ω-deformation when we go around the (0)-direction.

We remark that at the outset the mass deformation m was associated with the twist around the (1)-direction while the Ω deformation parameters (ϵ_1, ϵ_2) were associated with the twist around the (0)-direction. Here we have implicitly included an appropriate action of the mapping
class group $SL(2, \mathbb{Z})$ of the torus \mathbb{T}^2 so that both twists act in the (0)-direction. This is always possible and in fact corresponds to the Type IIA frame.

Wrapped around the (0)-direction, all M5-branes are at the fixed point in \mathbb{R}^4_\perp, and the M2-branes and M-waves are at the fixed point in \mathbb{R}^4_\parallel. They can be interpreted as multi-instantons on \mathbb{R}^4_\parallel and, roughly speaking, their configurations are described by the Hilbert scheme of points. With these deformations, it follows that the $\mathcal{N} = 1^*$ partition function becomes equal to the elliptic genus of the $(4,0)$ supersymmetric nonlinear sigma model whose target space is the noncompact hyperkähler manifold of the multi-instanton moduli space with a suitable choice of vector bundle.

2.3 Nekrasov-Shatashvili Limit

Our goal is to map the counting of BPS states in the six-dimensional M-strings picture to the counting of BPS states of m-strings in five dimensions. We will achieve this by first taking the NS limit and then taking an appropriate S-duality action $S \in SL(3, \mathbb{Z})$ that maps the compactified M-string to the compactified m-string and vice versa.

The (0)-circle is twisted by the Ω-rotation as well as the mass deformation. On the other hand, the (1)-direction is an untwisted Kaluza-Klein circle, which the M-string wraps. By the S-duality action, we would like to map this M-string configuration, which is a particle state on \mathbb{R}^4_\parallel, to an m-string configuration, which is a string state on \mathbb{R}^4_\parallel.

With the two-parameter Ω-background, however, there is an obstruction to perform the S-duality action. The S-duality action requires a transitive S^1 action, which means that the deformed background has to have the isometry $ISO(2) \times U_{\epsilon_2}(1) \subset ISO(4)_\parallel$. This is precisely achieved by the NS limit in which ϵ_2 is set to zero while ϵ_1 is finite. With the transitive isometry restored, we can now compactify the (5)-direction to a circle of radius R_5 and wrap the M-strings and M-waves around it. This is depicted by the following brane configuration in the M-theory frame:

\[
\begin{array}{cccccccc}
(0) & (1) & 2 & 3 & 4 & (5) & 6 & 7 & 8 & 9 & 10 \\
M5 & = & = & = & = & = & 4 & 8 & 9 & 10 & \\
M2 & = & (\pm) & (\pm) & & = & & & & \\
M \sim & = & (\pm) & (\pm) & & & & & & & \\
\epsilon_1 & \circ & \\
m & & & & \circ & \circ & \circ & \circ & \circ & \circ \\
\end{array}
\]

The 3-torus \mathbb{T}^3 formed by the Euclidean (0), (1), (2) circles is invariant under the action of

\footnote{This was also independently observed in \cite{22}.}
\footnote{When computing an index or the elliptic genus, we also take the time (0) to be compactified on a circle with radius β.}
the mapping class group $SL(3, \mathbb{Z})$ if all directions were untwisted. In the present case, the (0)-circle is twisted by the Ω-background rotation, thus breaking the full $SL(3, \mathbb{Z})$ to $SL(2, \mathbb{Z})$ corresponding to the automorphism group of T^2 formed by the directions (1, 2).

Since both the (1) – and (5) – directions are compactified, the orientation of the M2-branes and M-waves within this two-dimensional subspace must be specified. Here we consider wrapping/propagation of the M2-brane and M-wave along the (1)-circle direction. However, since the (5) direction is also compactified, the M2-branes and M-waves can also wrap/propagate along the (5)-circle direction. Consequently, the M2-brane and M-wave wrap/propagates on a commensurate cycle (w_2, w_5) of the (1,5) torus. This is illustrated in figure 2.

2.4 Refined Topological Strings in the Nekrasov-Shatashvili Limit

In section 6, we will be taking the NS limit ($\epsilon_2 \rightarrow 0$) of the free energy which computes the degeneracies of M-string BPS configurations suspended between the M5-branes. This free energy is obtained from the topological string partition function of a CY3fold. Here we briefly study the effect of this limit on a topological string partition function of a generic toric CY3fold.

Denote by $Z_X(\omega, \epsilon_1, \epsilon_2)$ be the refined topological string partition function of a CY3fold X and let $F_X(\omega, \epsilon_1, \epsilon_2) = \ln Z_X$ be the free energy. For any toric CY3fold Z_X can be written in terms of degeneracies of BPS states coming from M2-branes wrapping the holomorphic cycles in X [24, 25, 26]. These degeneracies $N_{\beta}^{j_L,j_R}$ are labeled by the charge $\beta \in H_2(X, \mathbb{Z})$ of the curve on which the M2-brane is wrapped and the $SU(2)_L \times SU(2)_R$ (the little group) spins. The free energy and the partition function in terms of $N_{\beta}^{j_L,j_R}$ are given by

$$F_X(\omega, \epsilon_1, \epsilon_2) = \sum_{\beta \in H_2(X, \mathbb{Z})} \sum_{n=1}^{\infty} \frac{1}{n} \sum_{j_L,j_R} e^{-n \int_{S^2} \omega N_{\beta}^{j_L,j_R} \langle -1 \rangle^{2j_L+2j_R} \mathrm{Tr}_{j_L}((\sqrt{q})^{n j_L} \mathrm{Tr}_{j_R}((\sqrt{q/t})^{n j_R})}{(q^{\frac{n}{2}} - q^{-\frac{n}{2}})(t^{\frac{n}{2}} - t^{-\frac{n}{2}})}$$

(2.9)
and

\[
\mathcal{Z}_X(\omega, \epsilon_1, \epsilon_2) = \prod_{\beta \in H_2(X, \mathbb{Z})} \prod_{jL, jR, m_1, m_2 = 1}^{\infty} \left(1 - e^{-\int_\omega q^{jL, jR}(\omega, \epsilon_1, \epsilon_2)} \right) K_{\beta}^{jL, jR},
\]

respectively, where \(K_{\beta}^{jL, jR} = (-1)^{2jL + 2jR} N_{\beta}^{jL, jR} \), while \(q = e^{2\pi i \epsilon_1} \) and \(t = e^{-2\pi i \epsilon_2} \).

The free energy is a sum over both single-particle and multi-particle states from the space-time viewpoint and can be written as

\[
F_X(\omega, \epsilon_1, \epsilon_2) = \sum_{n=1}^{\infty} \frac{\Omega(\omega, n\epsilon_1, n\epsilon_2)}{n}.
\]

The function \(\Omega(\omega, \epsilon_1, \epsilon_2) \) computes the multiplicities of single particle bound states and can be obtained from the partition function using the plethystic logarithm:

\[
\Omega(\omega, \epsilon_1, \epsilon_2) = \sum_{\beta \in H_2(X, \mathbb{Z})} e^{-\int_\omega H_\beta^0 \frac{1}{n} \sum_j (-1)^{2j} n_{\beta}^j \langle \omega \rangle \left(q^j - q^{-j} \right)^n}
\]

where \(\mu(k) \) is the Möbius function and \(\Omega(\omega, \epsilon_1, \epsilon_2) \) computes the multiplicities of single particle bound states. This is the function we will study in the next sections for the case of M-strings and m-strings.

The NS limit of the free energy with well-defined modular properties is given by

\[
\lim_{\epsilon_2 \to 0} \frac{\partial}{\partial \epsilon_2} F_X(\omega, \epsilon_1, \epsilon_2) = -\sum_{\beta \in H_2(X, \mathbb{Z})} \sum_{jL, jR} \frac{1}{n} \sum_j (-1)^{2j} \langle \omega \rangle \left(q^j - q^{-j} \right)^n
\]

where

\[
\sum_j (-1)^{2j} n_{\beta}^j \langle \omega \rangle = \sum_{jL, jR} N_{\beta}^{jL, jR} (-1)^{2jL + 2jR} \langle \omega \rangle \left(q^{jL, jR} - q^{-jL, jR} \right)
\]

and

\[
H_\beta^0 = \frac{\partial}{\partial \epsilon_2} \left(\int_\omega \langle \omega \rangle \right) \in \mathbb{Z}_{\geq 0}.
\]

Recall that \(n_{\beta}^j \) is the number of particles with spin \(j \) with respect to the diagonal \(SU(2) \subset SU(2)_L \times SU(2)_R \) and charge \(\beta \). Hence, they count the physical states.
The topological string partition function in the NS limit becomes

\[
Z_X^\text{a}(\omega, \epsilon_1) = \exp\left(\lim_{\epsilon_2 \rightarrow 0} \frac{\partial}{\partial t_a} \epsilon_2 F_X\right) = \prod_{\beta \in H_2(X, \mathbb{Z})} \prod_{j,j=3}^{\infty} \prod_{m=1}^{\infty} \left(1 - e^{-\int_{\beta} q^j j = 3 + m - 1/2}\right)^{(-1)^{j}H_3(X)^j}. \tag{2.15}
\]

Thus, for each Kähler parameter \(t_a\), we have an NS limit partition function \(Z_X^\text{a}\).

In section 6, we study the NS limit of the BPS counting function of configurations of M2-branes suspended between M5-branes, \(\tilde{F}(k_1, \ldots, k_{N-1})\). Since we will not be looking at the total partition functions but only a fixed subsector of it, in the rest of this paper, we will regard the NS limit to be simply \(\epsilon_2 \rightarrow 0\) without any accompanying derivative.

3 M-strings and \(\mathcal{N} = 1^*\) Theory

The partition function of five-dimensional \(\mathcal{N} = 1^*\) gauge theory on \(S^1 \times \mathbb{R}^4\) corresponds to an index that counts the degeneracies of BPS bound-states of W-bosons with instanton particles. In [14], this index was computed. After the five-dimensional S-duality, the partition function can also be interpreted as counting the degeneracies of BPS bound-states of m-strings with winding modes. This S-dual description was further studied in [15], order by order in the \(Q_\tau = e^{2\pi i \tau}\) expansion, and it was shown that this index can be related to the elliptic genus of Atiyah-Hitchin and Taub-NUT spaces. We will recapitulate this in detail in section 5 and will see that in precise manner the M-strings free energy, in the NS limit, captures the elliptic genus of the Atiyah-Hitchin and Taub-NUT spaces to all orders in \(Q_\tau = e^{2\pi i \tau}\).

3.1 Refined Topological String Partition Function

Certain five-dimensional gauge theories can be geometrically engineered by M-theory compactified on elliptic CY3fold. The latter, called \(X_N\) in the following, is given by a resolved \(A_{N-1}\) singularity fibered over a genus-one curve of complex structure \(\tau\). The toric diagram of \(X_N\) is shown in Fig. 3.

The duality between toric CY3folds and \((p,q)\) 5-brane webs in type IIB string theory [27] therefore maps the CY3fold \(X_N\) to a \((p,q)\) 5-brane web which in turn is dual, after compactification on \(S^1\), to the brane setup discussed in the last section.

The full partition function of the gauge theory, which consists of a perturbative and an instanton part, is given by the refined topological string partition function of \(X_N\) and can be calculated using the topological vertex [26, 9]. In the refined topological vertex formalism, a preferred direction in the toric diagram needs to be chosen such that edges oriented in the preferred direction cover all the vertices of the toric diagram. In the associated gauge theory, this preferred direction corresponds to the curve whose Kähler parameter is identified with the
gauge coupling. Hence, different choices of the preferred direction correspond to dual gauge theories geometrically engineered by the same CY3fold. In Fig. 3 we indicated the preferred direction with red color (horizontal in Fig. 3(a) and vertical in Fig. 3(b)).

A deformation of the \((p,q)\) 5-brane web in \(X_N\) corresponds to a deformation of the five-dimensional theory. In particular, the mass deformation in the five-dimensional theory corresponds to the choice given by Fig. 3(a) and the corresponding refined topological string partition function is given by

\[
Z_N := Z_N^{\text{classical}} Z_N^0 \sum_{k \geq 0} Q_k^N \prod_{n=1}^N \sum_{|\nu_n| = k} \prod_{\alpha, \beta = 1}^{N} \left[\prod_{(i,j) \in \nu_\alpha} \frac{1 - y Q_{\alpha \beta} q^{-\nu_{i,j} + i t - \nu_{i,j} + j - 1}}{1 - Q_{\alpha \beta} q^{-\nu_{i,j} + i t - \nu_{i,j} + j - 1}} \times \prod_{(i,j) \in \nu_\beta} \frac{1 - y Q_{\alpha \beta} q^{-\nu_{i,j} + j - 1}}{1 - Q_{\alpha \beta} q^{-\nu_{i,j} + j - 1}} \right] . \tag{3.1}
\]

We organized the topological string partition function in a way to make contact with the partition function of the five-dimensional \(\mathcal{N} = 1^*\) gauge theory. Here, \(Z_N^{\text{classical}}\) is the classical part of the gauge theory, \(Z_N^0\) is the perturbative part

\[
Z_N^0 := \{Q_m\}_N^{\sum_{1 \leq \alpha < \beta \leq N} \frac{Q_{\alpha \beta} Q^{-1}_m}{Q_{\alpha \beta} \sqrt{q} \{Q_{\alpha \beta} \sqrt{\frac{2}{q}}\}} } , \quad \{x\} = \prod_{i,j=1}^{\infty} \left(1 - x q^{i-\frac{1}{2} j^{-\frac{1}{2}}} \right) , \tag{3.2}
\]

and rest is the instanton part, in which \(\tau\) is interpreted as the four-dimensional gauge coupling constant, \(Q_\tau = e^{2\pi i \tau}\). The \(\Omega\)-deformation is to regularize the instanton moduli space, so only the instanton part depends on \(\epsilon_1, \epsilon_2\). The factor \(Q_m = e^{2\pi i m}\) is the mass-deformation parameter of the hypermultiplet. The factors \(Q_{\alpha \beta} = e^{2\pi i t_{\alpha \beta}} (\alpha, \beta = 1, \cdots, N)\) are the moduli parameters of the \((N-1)\) vector multiplets in the Coulomb branch. Recall that, in the \((p,q)\)-web description in Fig. 3(a), \(t_{\alpha \beta} = (b_\alpha - b_\beta)\) measures the distance between the \(\alpha\)-th and \(\beta\)-th horizontal
branes. After the U-duality map to M5-brane gauge theory description, the parameters \(b_\alpha \), with \(\sum_{\alpha=1}^{N} b_\alpha = 0 \), become the Coulomb branch parameters breaking \(SU(N) \rightarrow U(1)^{N-1} \).

The partition function \(Z_N \) is a holomorphic function of the moduli parameters but is in general not modular invariant. It can be made modular invariant at the expense of introducing a holomorphic anomaly [9], meaning that the partition function cannot be refined while maintaining both the modular symmetry and the holomorphy. In constructing various counting functions, we will be primarily guided by their modular properties and will discuss them in more detail in the following sections.

The dual description of the same partition function can be obtained by choosing the preferred direction (vertical) as shown in Fig. 3(b). In the topological string description, this corresponds to the exchange of the fiber and the base of the CY3fold \(X_N \) through flop transitions. In this case, the refined topological string partition function can be written as:

\[
Z_N = (Z_1(\tau, m, \epsilon_1, \epsilon_2))^N \cdot \tilde{Z}_N(\tau, m, t_f, \epsilon_1, \epsilon_2),
\]

where

\[
Z_1(\tau, m, \epsilon_1, \epsilon_2) = \frac{1}{\eta(\tau)} \prod_{i,j,k=1}^{\infty} \frac{(1 - Q_1^k Q_1^{m-1} q^{i-\frac{1}{2}} t^{j-\frac{1}{2}})(1 - Q_1^{k-1} Q_1^{m} q^{i-\frac{1}{2}} t^{j-\frac{1}{2}})}{(1 - Q_1^k q^{i-1} t^{j})(1 - Q_1^{k} q^{i} t^{j-1})}, \tag{3.4}
\]

and

\[
\tilde{Z}_N(\tau, m, t_f, \epsilon_1, \epsilon_2) = \sum_{k_1, \ldots, k_{N-1} \geq 0} Q_{f_{k_1}}^{k_1} \cdots Q_{f_{k_{N-1}}}^{k_{N-1}} Z_{k_1 \cdots k_{N-1}}(\tau, m, \epsilon_+, \epsilon_-), \tag{3.5}
\]

Here, we introduced (anti)self-dual combinations of the \(\Omega \)-deformation parameters:

\[
\epsilon_+ = \frac{\epsilon_1 + \epsilon_2}{2}, \quad \text{and} \quad \epsilon_- = \frac{\epsilon_1 - \epsilon_2}{2}. \tag{3.6}
\]

We can express the coefficients in \(\tilde{Z}_N \) in terms of (products of) Jacobi theta functions. The expansion given in (3.5) corresponds to an instanton expansion in a dual theory which is engineered by the same CY3fold \(X_N \) but in which the base curves are chosen to be the \((-2)\)-curves of the resolved \(A_{N-1} \) fiber with an elliptic fibration over them. In this dual description, \(Q_{f_a} = e^{2\pi i t_{f_a}} (a = 1, \ldots, N - 1) \) where \(t_{f_a} = b_a - b_{a+1} \) (with \(a = 1, \ldots N - 1 \)) are the gauge couplings of the quiver \(U(1)^{N-1} \) gauge theories. The partition function with this choice of preferred direction is given by [9]

\[
\tilde{Z}_N(\tau, m, t_{f_a}, \epsilon_1, \epsilon_2) = \sum_{\nu_1, \ldots, \nu_{N-1}} \left(\prod_{a=1}^{N-1} (-Q_{f_a})^{\nu_a} \right) \prod_{a=1}^{N-1} \prod_{(i,j) \in \nu_a} \frac{\theta_1(\tau; z_{ij}^a) \theta_1(\tau; v_{ij}^a)}{\theta_1(\tau; u_{ij}^a) \theta_1(\tau; v_{ij}^a)}, \tag{3.7}
\]
where
\[e^{2 \pi i z_{ij}^a} = Q_m^{-1} q^{\nu_{a,i,j} - \frac{i}{2} \tau + \frac{i}{2} j} e^{2 \pi i v_{ij}^a}, \]
\[e^{2 \pi i w_{ij}^a} = q^{\nu_{a,i,j} + \frac{i}{2} \tau + \frac{i}{2} j}, \]
\[e^{2 \pi i u_{ij}^a} = q^{\nu_{a,i,j} - \frac{i}{2} \tau - \frac{i}{2} j}. \]

In this expression, \(\theta_1(\tau; z) \) is one of the Jacobi theta functions defined in the appendix [D.1]

Again the partition function \(\tilde{Z}_N \) is holomorphic in the moduli but not modular invariant in \(\tau \), because the instanton expansion coefficients, the ratios of the Jacobi theta function \(\theta_1(\tau; z) \), involve the second Eisenstein series \(E_2(\tau) \). It can be made modular invariant if \(E_2(\tau) \) is replaced by the non-holomorphic second Eisenstein series \(\tilde{E}_2(\tau, \tau) \) (see [D.14] for the definition).

The nonperturbative partition function (3.7) was also interpreted as the partition function of a configuration of M2-branes suspended between \(N \) M5-branes [9]. These M2-branes would also wrap around \(S^1 \), and the winding numbers are dual to the M-waves studied in section 2. The term \(Z_{k_1 \cdots k_{N-1}} \) is the contribution of a configuration in which \(k \) M-strings are stretched between the \(i \)-th and the \((i+1) \)-th M5-branes. In [10], it was argued that \(Z_{k_1 \cdots k_{N-1}} \) is the elliptic genus of a two-dimensional quiver gauge theory that captures the M-string worldsheet dynamics.

3.2 Modular Properties of \(Z_{k_1 \cdots k_{N-1}} \)

The M-string partition function given by (3.7) sets the starting point of our investigation of modular properties of the free energy in the next section. The free energy for a particular configuration of M-strings is a combination of different \(Z_{k_1 \cdots k_{N-1}} \) and hence its modular transformation properties will depend on how \(Z_{k_1 \cdots k_{N-1}} \) transform. So let us first consider how

\[Z_{k_1 \cdots k_{N-1}}(\tau, m, \epsilon_+, \epsilon_-) = (-1)^{k_1 + \cdots + k_{N-1}} \sum_{\nu_a | \nu_b | k_a} \prod_{a=1}^{N-1} \prod_{(i,j) \in e_a} \frac{\theta_i(\tau; z_{ij}^a) \theta_i(\tau; v_{ij}^a)}{\theta_1(\tau; w_{ij}^a) \theta_1(\tau; u_{ij}^a)} \]

transforms under an \(SL(2, \mathbb{Z}) \) action given by

\[(\tau, m, \epsilon_1, \epsilon_2) \mapsto \left(\frac{a \tau + b}{c \tau + d}, \frac{m}{c \tau + d}, \frac{\epsilon_1}{c \tau + d}, \frac{\epsilon_2}{c \tau + d} \right), \quad \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in SL(2, \mathbb{Z}). \]

Since \(Z_{k_1 \cdots k_{N-1}} \) is a ratio of products of theta functions therefore its transformation properties follow from those of \(\theta_1(\tau, z) \) (with \(\begin{bmatrix} a & b \\ c & d \end{bmatrix} \in SL(2, \mathbb{Z}), m, n \in \mathbb{Z} \)):

\[
\theta_1 \left(\frac{a \tau + b}{c \tau + d}, \frac{z}{c \tau + d} \right) = \psi(a, b, c, d)^3 (c \tau + d)^{\frac{i}{2}} e^{\frac{c z^2}{2 c \tau + d}} \theta_1(\tau, z) \]

\[
\theta_1(\tau, z + n \tau + m) = (-1)^{m+n} e^{-i \pi n^2 \tau - 2i \pi m z} \theta_1(\tau, z). \]
The multiplier $\psi(a, b, c, d)$ in this equation is a 24-th root of unity whose explicit form will not be needed since it cancels in the homogeneous ratio among the Jacobi elliptic function $\theta_1(\tau, z)$ of $Z_{k_1\cdots k_{N-1}}$. From (3.8) and (3.10), it then follows that for $\ell, r \in \mathbb{Z}$

$$Z_{k_1\cdots k_{N-1}}(\tau + 1, m, \epsilon_+, \epsilon_-) = Z_{k_1\cdots k_{N-1}}(\tau, m, \epsilon_+, \epsilon_-), \quad (3.11)$$

$Z_{k_1\cdots k_{N-1}}(-\frac{1}{2}, m, \epsilon_+, \epsilon_-) = e^{2\pi i f_k(m, \epsilon_+, \epsilon_-)} Z_{k_1\cdots k_{N-1}}(\tau, m, \epsilon_+, \epsilon_-),$

$Z_{k_1\cdots k_{N-1}}(\tau, m + \ell \tau + r, \epsilon_+, \epsilon_-) = e^{-2\pi i K \ell^2 \tau + 4\pi i \epsilon \tau} Z_{k_1\cdots k_{N-1}}(\tau, m, \epsilon_+, \epsilon_-),$

where

$$f_k(m, \epsilon_+, \epsilon_-) = K m^2 + Q_\epsilon e_+^2 + Q_\epsilon e_-^2, \quad (3.12)$$

in terms of the shorthand notations:

$$K = \sum_{a=1}^{N-1} k_a, \quad Q_\epsilon := \pm \left(\sum_{a=1}^{N-1} k_a (k_a - \frac{1}{2}) + \sum_{a=1}^{N-2} k_a k_{a+1} \right) - \frac{K}{2}. \quad (3.13)$$

With respect to the variables (τ, m), $Z_{k_1\cdots k_{N-1}}$ is a Jacobi form with index K. With respect to the variables ϵ_\pm, it also has properties very similar to a meromorphic Jacobi form with index matrix in the basis $m, \epsilon_+, \epsilon_-$ given by:

$$\begin{bmatrix}
K & 0 & 0 \\
0 & Q_- & 0 \\
0 & 0 & Q_+
\end{bmatrix}. \quad (3.14)$$

However, $Z_{k_1\cdots k_{N-1}}$ fails to be a multi-variable Jacobi form, since the shift property (third property in (3.11)) that is present for m is not present for ϵ_\pm:

$$Z_{k_1\cdots k_{N-1}}(\tau, m, \epsilon_+ + a \tau + b, \epsilon_-) = (-1)^{k_1 + \cdots + k_{N-1}} \sum_{\nu_a, |\nu_a| = k_a} (-1)^{(a+b)+a} e^{-2\pi i Q_- a^2 \tau + 2\pi i a \epsilon_+ \nu_a \nu_a}$$

$$\times \prod_{a=1}^{N-1} \prod_{(i,j) \in \nu_a} \frac{\theta_1(\tau; z_{ij}^{a}) \theta_1(\tau; v_{ij}^{a})}{\theta_1(\tau; w_{ij}^{a}) \theta_1(\tau; u_{ij}^{a})},$$

$$Z_{k_1\cdots k_{N-1}}(\tau, m, \epsilon_+, \epsilon_- + a \tau + b) = (-1)^{k_1 + \cdots + k_{N-1}} \sum_{\nu_a, |\nu_a| = k_a} (-1)^{(a+b)+b} e^{-2\pi i Q_- a^2 \tau + 2\pi i \epsilon_+ b \nu_a \nu_a}$$

$$\times \prod_{a=1}^{N-1} \prod_{(i,j) \in \nu_a} \frac{\theta_1(\tau; z_{ij}^{a}) \theta_1(\tau; v_{ij}^{a})}{\theta_1(\tau; w_{ij}^{a}) \theta_1(\tau; u_{ij}^{a})},$$

$$\theta_1(\tau; x) := e^{-\pi i \tau x} \theta_1(\tau; x),$$

$$\theta_1(\tau; x) := e^{-\pi i \tau x} \theta_1(\tau; x).$$
where the short-hand notations are

\[\kappa(\vec{\nu}) = \sum_{a=1}^{N-1} (||\nu_a||^2 - ||\nu'_a||^2), \quad h(\vec{\nu}) = \sum_{a=1}^{N-1} (||\nu_a||^2 + ||\nu'_a||^2). \]

(3.15)

If we combine various \(Z_{k_1 \cdots k_{N-1}} \) for different values of \(K = (k_1, \cdots, k_{N-1}) \), then the index matrices do not simply add up since the \(Q_{\pm} \) are quadratic in \(k_i \) (see (3.13)). However, this situation changes if we take the NS limit \(\epsilon_2 \to 0 \), since in this case the index with respect to the remaining parameter \(\epsilon_1 \) is \(Q_- + Q_+ = K \) which is linear in \(k_i \). So, in the NS limit \(\epsilon_2 \to 0 \), the index with respect to \((m, \epsilon_1)\) depends only on the total number of M2-branes \(K \) and this remains true for the product of \(Z_{k_1 \cdots k_{N-1}} \) for different \(k_i \)’s.

4 BPS Degeneracies of M-Strings

We shall first analyze in detail the BPS degeneracies of M-strings.

4.1 M-String Free Energy

The function \(\Omega_X(\omega, \epsilon_1, \epsilon_2) \), discussed in Section 2, counts the degeneracies of single-particle BPS states in the five-dimensional \(\mathcal{N} = 1^* \) gauge theory, which descends from M-theory compactified on a CY3fold \(X \). For the particular CY3fold \(X_N \) discussed in section 3, we have

\[\Omega_N(\tau, m, t_{f_a}, \epsilon_1, \epsilon_2) = \underbrace{\text{PLog} Z_N(\tau, m, t_{f_a}, \epsilon_1, \epsilon_2)}_{\Omega_1} + \underbrace{\text{PLog} \tilde{Z}_N}_{\Omega_N}. \]

(4.1)

Here, the second term, \(\tilde{\Omega}_N(\omega, \epsilon_1, \epsilon_2) \), defines the free energy for counting BPS states of the M-strings and can be written as

\[
\tilde{\Omega}_N(t_{f_a}, \tau, m, \epsilon_1, \epsilon_2) = \sum_{\{k_i\} = 1}^{\infty} {Q^k_{f_1} \cdots Q^{k_{N-1}}_{f_{N-1}}} \tilde{F}(k_1, k_2, \cdots, k_{N-1})(\tau, m, \epsilon_1, \epsilon_2).
\]

(4.2)

In this section, we aim to study the modular and other properties of the function \(\tilde{F}(k_1, \cdots, k_{N-1}) \) which counts the degeneracies of the bound-states of multiple M-strings in configurations where \(k_i \) \((i = 1, \cdots, N-1)\) M2-branes are stretched between the \(i \)-th and \((i+1)\)-th M5-branes

\[
\tilde{F}(k_1, \cdots, k_{N-1})(\tau, m, \epsilon_1, \epsilon_2) = \oint \frac{dQ_{f_1}}{2\pi i Q_{f_1}^{k_{f_1}+1}} \cdots \frac{dQ_{f_{N-1}}}{2\pi i Q_{f_{N-1}}^{k_{f_{N-1}}+1}} \tilde{\Omega}_N(t_{f_a}, \tau, m, \epsilon_1, \epsilon_2)
\]

\[
= \left(\sqrt{q} - \sqrt{q}^{-1} \right)^{-1} \left(\sqrt{t} - \sqrt{t}^{-1} \right)^{-1} \sum_{n, \ell} Q^n_{\tau} Q^\ell_{m} C_{n, \ell}(\epsilon_1, \epsilon_2).
\]

(4.3)
As can be seen from Fig. 3, the fugacities are related by \(Q_{\tau} = Q_n Q_1 \). Since the topological string free energy is an expansion in non-negative powers of \(Q_{\ell_1}, Q_{\ell_2} \) and \(Q_1 \), the coefficient \(C_{n,\ell}(\epsilon_1, \epsilon_2) \) must vanish for \(n < |\ell| \).

In the next section, we will consider the NS limit \(\epsilon_2 \to 0 \) and then further take the limit \(\epsilon_1 \to 0 \). In this limit, \(\tilde{F}^{(k_1, \cdots, k_{N-1})}(\tau, m, \epsilon_1, \epsilon_2) \) behaves as

\[
\tilde{F}^{(k_1, \cdots, k_{N-1})}(\tau, m, \epsilon_1, \epsilon_2) = \frac{1}{\epsilon_1 \epsilon_2} \left(\sum_{n, \ell} Q^\epsilon_{\tau} Q^\ell_{\ell_1} C_{n, \ell}(0, 0) \right) + \cdots
\]

(4.4)

where

\[
C_{n,\ell}(0, 0) = \sum_{jL, jR} N_{n, \ell}^{jL, jR} (-1)^{2jL+2jR} (2j_L + 1)(2j_R + 1).
\]

(4.5)

We can express \(\tilde{F}^{(k_1, \cdots, k_{N-1})} \) in terms of \(Z_{k_1, \cdots, k_{N-1}} \) (given in (3.8)) as follows:

\[
\tilde{F}^{(k_1, \cdots, k_{N-1})} = \sum_{d|s} \frac{\mu(d)}{d} \frac{G_{k_1, \cdots, k_{N-1}}(d\tau, dm, d\epsilon_1, d\epsilon_2)}{\text{gcd}(k_1, k_2, \cdots, k_{N-1})}, \quad s = \text{gcd}(k_1, k_2, \cdots, k_{N-1}),
\]

(4.6)

where we introduced

\[
G_{r_1, r_2, \cdots, r_{N-1}} = (-1)^{\sum_s r_s} \sum_{\ell_1, \cdots, \ell_{N-1}} \frac{1}{\ell!} (-1)^\ell \prod_{i=1}^{\ell} \prod_{k_i = 0}^{r_i} Z_{k_1^1, k_2^1, \cdots, k_{N-1}^1}.
\]

(4.7)

4.2 Modular Transformations and Theta Decomposition

In section 3.2, we found that \(Z_{k_1, \cdots, k_{N-1}} \) is a Jacobi form of weight zero and index \(K \) with respect to the variables \((\tau, m) \) and transforms as:

\[
Z_{k_1, k_2, \cdots, k_{N-1}}(\tau, m) = e^{2\pi i f_{k}(m, \epsilon, \epsilon)} Z_{k_1, k_2, \cdots, k_{N-1}}(\tau, m, \epsilon, \epsilon).
\]

(4.8)

As the function \(f_{k}(m, \epsilon, \epsilon) \) is quadratic in \(k_a \), linear combinations of products of \(Z_{k_1, k_2, \cdots, k_{N-1}} \) with different charges \(k_a \) will not transform with just an overall phase-factor. This implies that \(\tilde{F}^{(k_1, k_2, \cdots, k_{N-1})} \) given in (4.6) will not in general transform nicely under the \(S \)-transformation of \(SL(2, \mathbb{Z}) \). However, if we consider the expansion in \(\epsilon_1 \) and \(\epsilon_2 \) (the genus expansion), then coefficients of \(\epsilon_1^{n_1} \epsilon_2^{n_2} \) will transform as Jacobi forms of weights \((n_1 + n_2) \) and index \(K \) under \(\Gamma_0(s) \subset SL(2, \mathbb{Z}) \), where \(s = \text{gcd}(k_1, k_2, \cdots, k_{N-1}) \). Here, the subgroup \(\Gamma_0(s) \) is defined as

\[
\Gamma_0(s) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL(2, \mathbb{Z}) \middle| c \equiv 0 \mod s \right\}.
\]

(4.9)
Index K implies that we can decompose both $Z_{k_1 \cdots k_N}$ and $\tilde{F}^{(k_1 \cdots k_{N-1})}$ in terms of index K theta functions defined in section (D.3):

$$Z_{k_1 \cdots k_{N-1}}(\tau, m, \epsilon_+, \epsilon_-) = \sum_{\ell=0}^{2K-1} R^{(k_1 \cdots k_{N-1})}_\ell(\tau, \epsilon_1, \epsilon_2) \vartheta_{K, \ell}(\tau, m), \quad (4.10)$$

$$\tilde{F}^{(k_1 \cdots k_{N-1})}(\tau, m, \epsilon_1, \epsilon_2) = \sum_{\ell=0}^{2K-1} H^{(k_1 \cdots k_{N-1})}_\ell(\tau, \epsilon_1, \epsilon_2) \vartheta_{K, \ell}(\tau, m).$$

Since $Z_{k_1 \cdots k_{N-1}}$ and $\tilde{F}^{(k_1 \cdots k_{N-1})}$ are both invariant under $m \mapsto -m$, it follows that

$$R^{(k_1 \cdots k_{N-1})}_\ell(\tau, \epsilon_1, \epsilon_2) = R^{(k_1 \cdots k_{N-1})}_{2K-\ell}(\tau, \epsilon_1, \epsilon_2), \quad (4.11)$$

$$H^{(k_1 \cdots k_{N-1})}_\ell(\tau, \epsilon_1, \epsilon_2) = H^{(k_1 \cdots k_{N-1})}_{2K-\ell}(\tau, \epsilon_1, \epsilon_2).$$

Another basis of index K theta functions is given by $\vartheta_{1,0}(\tau, m)^a \vartheta_{1,1}(\tau, m)^{K-a}$. In this basis,

$$\tilde{F}^{(k_1 \cdots k_{N-1})}(\tau, m, \epsilon_1, \epsilon_2) = \sum_{a=0}^{K} L^{(k_1 \cdots k_{N-1})}_a(\tau, \epsilon_1, \epsilon_2) \vartheta_{1,0}(\tau, m)^a \vartheta_{1,1}(\tau, m)^{K-a}, \quad (4.12)$$

where the $(K + 1)$ coefficient functions $L^{(k_1 \cdots k_{N-1})}_a$ are independent of each other.

In the following subsections, we will decode the structure of $\tilde{F}^{(k_1 \cdots k_{N-1})}(\tau, m, \epsilon_1, \epsilon_2)$ for several configurations with lower $\{k_i\}$ charges. In all these cases, \tilde{F} is not modular invariant but holomorphic. We will also present the physical spin contents of a few low-lying states for each charge configuration discussed.

4.3 Single M2-Brane

We begin with configurations in which a single M2-brane is stretched between every pair of consecutive M5-branes. Depending on the number of M5-branes, we have various possibilities.

4.3.1 Configuration $(k_i) = (1)$

The simplest configuration arise when a single M2-brane is stretched between two M5-branes. For this configuration,

$$\tilde{F}^{(1)}(\tau, m, \epsilon_1, \epsilon_2) := -\frac{\theta_1(\tau, m + \epsilon_+) \theta_1(\tau, m - \epsilon_+)}{\theta_1(\tau, \epsilon_1) \theta_1(\tau, \epsilon_2)}. \quad (4.13)$$
As we discussed before, \(\tilde{F}^{(1)} \) has index one with respect to \(m \) and therefore it can be decomposed in the following form:

\[
\tilde{F}^{(1)}(\tau, m, \epsilon_1, \epsilon_2) = H_0^{(1)}(\tau, \epsilon_1, \epsilon_2) \vartheta_{1,0}(\tau, m) + H_1^{(1)}(\tau, \epsilon_1, \epsilon_2) \vartheta_{1,1}(\tau, m).
\] (4.14)

Here, \(\vartheta_{1,0} \) and \(\vartheta_{1,1} \) are index 1 theta functions defined in appendix D.3. The coefficient functions \(H_0^{(1)}(\tau, \epsilon_1, \epsilon_2) \) and \(H_1^{(1)}(\tau, \epsilon_1, \epsilon_2) \) are residues of \(\tilde{F}^{(1)} \) and its first derivative \(^4\)

\[
H_0^{(1)} = \oint \frac{dQ_m}{2\pi i} Q^{-1}_m \tilde{F}^{(1)}, \quad \quad H_1^{(1)} = Q^{-1}_m \oint \frac{dQ_m}{2\pi i} \tilde{F}^{(1)}.
\] (4.15)

Using (4.13), we get

\[
H_0^{(1)}(\tau, \epsilon_1, \epsilon_2) = -\frac{\theta_2(2\tau, 2\epsilon_+)}{\theta_1(\tau, \epsilon_1)} \quad \text{and} \quad H_1^{(1)}(\tau, \epsilon_1, \epsilon_2) = \frac{\theta_3(2\tau, 2\epsilon_+)}{\theta_1(\tau, \epsilon_1)}.
\] (4.16)

The pair \((H_0^{(1)}, H_1^{(1)}) \) forms a vector-valued modular form of weight \(-\frac{1}{2}\) which transforms as:

\[
H_0^{(1)}(-\frac{1}{\tau}, \frac{\epsilon_1}{\tau}, \frac{\epsilon_2}{\tau}) = \sqrt{\frac{i}{2\pi}} e^{-2\pi \gamma i} (H_0^{(1)}(\tau, \epsilon_1, \epsilon_2) + H_1^{(1)}(\tau, \epsilon_1, \epsilon_2))
\]

\[
H_1^{(1)}(-\frac{1}{\tau}, \frac{\epsilon_1}{\tau}, \frac{\epsilon_2}{\tau}) = \sqrt{\frac{i}{2\pi}} e^{-2\pi \gamma i} (H_0^{(1)}(\tau, \epsilon_1, \epsilon_2) - H_1^{(1)}(\tau, \epsilon_1, \epsilon_2)).
\] (4.17)

These functions are the fundamental building blocks of distinct M-string configurations: We will soon find that degeneracies of M2-brane configurations of type \((k_i) = (1,1,\ldots,1) \) are completely determined by \(H_0^{(1)} \) and \(H_1^{(1)} \).

We also extracted the spin contents \(\text{i.e.}, \sum_{(j_L,j_R)} N_{\beta}^{(j_L,j_R)}(j_L,j_R) \) for some \(\beta \).

Spin Contents from \(H_0^{(1)} \):

The function \(H_0^{(1)}(\tau, \epsilon_1, \epsilon_2) \) contains the \(SU(2)_L \times SU(2)_R \) spin contents of the states corresponding to \(Q_f Q^n_p \). For some small values of \(n \) we list \(\sum_{(j_L,j_R)} N_{\beta}^{(j_L,j_R)}(j_L,j_R) \) below:

\[
\begin{align*}
n &= 0 : (0, \frac{1}{2}) \\
&= 1 : (\frac{1}{2}, 1) + (\frac{1}{2}, 0) + 2(0, \frac{1}{2}) \\
&= 2 : (1, \frac{3}{2}) + (1, \frac{1}{2}) + 3(\frac{1}{2}, 1) + 3(\frac{1}{2}, 0) + (0, \frac{3}{2}) + 5(0, \frac{1}{2}) \\
&= 3 : (\frac{3}{2}, 2) + (\frac{3}{2}, 1) + 3(1, \frac{3}{2}) + 4(1, \frac{1}{2}) + 9(\frac{1}{2}, 1) + (\frac{1}{2}, 2) + 8(\frac{1}{2}, 0) + 3(0, \frac{3}{2}) + 12(0, \frac{1}{2})
\end{align*}
\]

\(^4\)It was also noted \[14\] that the coefficients \(H_i^{(1)} \) can be computed by a contour integration.

21
Spin Contents from $H^{(1)}_1$:
The function $Q^1_\tau H^{(1)}_1(\tau, \epsilon_1, \epsilon_2)$ contains the $SU(2)_L \times SU(2)_R$ spin contents of the states corresponding to $Q_f Q_m Q^n_\tau$:

\[
\begin{align*}
n &= 0 : (0, 0) \\
n &= 1 : \left(\frac{1}{2}, \frac{1}{2}\right) + (0, 1) + (0, 0) \\
n &= 2 : (1, 1) + \left(\frac{1}{2}, \frac{3}{2}\right) + 3\left(\frac{1}{2}, \frac{1}{2}\right) + 2(0, 1) + 4(0, 0) \\
n &= 3 : \left(\frac{3}{2}, \frac{3}{2}\right) + (1, 2) + 3(1, 1) + 2(1, 0) + 3\left(\frac{1}{2}, \frac{3}{2}\right) + 9\left(\frac{1}{2}, \frac{1}{2}\right) + 7(0, 1) + 7(0, 0)
\end{align*}
\]

4.3.2 Configuration $(k_i) = (1, 1)$

The next simpler configuration arises when there are 3 parallel M5 branes ($M5_1, M5_2, M5_3$) and two M2 branes suspended between them: the first one stretches between $M5_1$ and $M5_2$ while the second one stretches between $M5_2$ and $M5_3$. The corresponding free energy is given by

\[
\tilde{F}^{(1,1)} = \frac{\theta_1(\tau, m + \epsilon_+) \theta_1(\tau, m - \epsilon_+) \theta_1(\tau, \epsilon_1) \theta_1(\tau, \epsilon_2)}{\theta_1(\tau, \epsilon_1)^2 \theta_1(\tau, \epsilon_2)^2} - \frac{\theta_1(\tau, m + \epsilon_+) \theta_1(\tau, m - \epsilon_+)}{\theta_1(\tau, \epsilon_1)^2 \theta_1(\tau, \epsilon_2)^2}.
\] (4.18)

As $\tilde{F}^{(1,1)}$ is of index 2, it must be decomposable as

\[
\tilde{F}^{(1,1)} = \sum_{\ell=0}^{3} H^{(1,1)}_{\ell}(\tau, \epsilon_1, \epsilon_2) \vartheta_{2,\ell}(\tau, Q_m),
\] (4.19)

The coefficients $(H^{(1,1)}_0, H^{(1,1)}_1, H^{(1,1)}_2, H^{(1,1)}_3)$ form a vector-valued modular form. They are given by

\[
\begin{align*}
H^{(1,1)}_0 &= \int \frac{dQ_m}{2\pi i} Q_m^{-1} \tilde{F}^{(1,1)} \\
H^{(1,1)}_1 &= Q^{\frac{1}{2}} \int \frac{dQ_m}{2\pi i} \tilde{F}^{(1,1)} = H^{(1,1)}_3 \\
H^{(1,1)}_2 &= Q^{\frac{1}{2}} \int \frac{dQ_m}{2\pi i} Q_m \tilde{F}^{(1,1)}.
\end{align*}
\] (4.20)

These coefficients $H^{(1,1)}_\ell$ contain information for degeneracies of the states corresponding to $Q_{f_1} Q_{f_2} Q^n_\tau$ for $n \geq 0$. As asserted above, they are completely determined by $H^{(1,1)}_0$ and $H^{(1,1)}_1$.

22
in (4.16). To see this, note from (4.18)

\[\tilde{F}^{(1,1)}(\tau, m\epsilon_1, \epsilon_2) = \tilde{F}^{(1)}(\tau, m, \epsilon_1, \epsilon_2) W(\tau, m, \epsilon_1, \epsilon_2). \]

(4.21)

Here,

\[
W(\tau, m, \epsilon_1, \epsilon_2) = \frac{\theta_1(\tau, m + \epsilon_+)\theta_1(\tau, m - \epsilon_+)}{\theta_1(\tau, \epsilon_1)\theta_1(\tau, \epsilon_2)} - \frac{\theta_1(\tau, m + \epsilon_-)\theta_1(\tau, m - \epsilon_-)}{\theta_1(\tau, \epsilon_1)\theta_1(\tau, \epsilon_2)}
= -\tilde{F}^{(1)}(\tau, m, \epsilon_1, \epsilon_2) - \tilde{F}^{(1)}(\tau, m, \epsilon_1, -\epsilon_2)
= W_0(\tau, \epsilon_1, \epsilon_2)\vartheta_{1,0}(\tau, m) + W_1(\tau, \epsilon_1, \epsilon_2)\vartheta_{1,1}(\tau, m)
\]

(4.22)

where we introduced

\[
W_0(\tau, \epsilon_1, \epsilon_2) = H_0^{(1)}(\tau, \epsilon_1, \epsilon_2) + H_0^{(1)}(\tau, \epsilon_1, -\epsilon_2),
\]
\[
W_1(\tau, \epsilon_1, \epsilon_2) = H_1^{(1)}(\tau, \epsilon_1, \epsilon_2) + H_1^{(1)}(\tau, \epsilon_1, -\epsilon_2).
\]

(4.23)

Therefore, \(\tilde{F}^{(1,1)} \) can be written as

\[
\tilde{F}^{(1,1)} = H_0^{(1)} W_0 \vartheta_{1,0}(\tau, m)^2 + (H_0^{(1)} W_1 + H_1^{(1)} W_0)\vartheta_{1,0}(\tau, m)\vartheta_{1,1}(\tau, m) + H_1^{(1)} W_1 \vartheta_{1,1}(\tau, m)^2.
\]

As claimed above, the coefficient functions \(H_{\ell=0,1,2}^{(1,1)} \) are completely determined by \(H_\ell^{(1)} \). Indeed, using the identities relating the index 2 and products of index 1 elliptic theta functions:

\[
\vartheta_{1,0}(\tau, m)^2 = \theta_3(4\tau, 0)\vartheta_{2,0}(\tau, m) + \theta_2(4\tau, 0)\vartheta_{2,2}(\tau, m),
\]
\[
\vartheta_{1,1}(\tau, m)^2 = \theta_2(4\tau, 0)\vartheta_{2,0}(\tau, m) + \theta_3(4\tau, 0)\vartheta_{2,2}(\tau, m),
\]
\[
\vartheta_{1,0}(\tau, m)\vartheta_{1,1}(\tau, m) = \theta_2(\tau, 0)(\vartheta_{2,1}(\tau, m) + \vartheta_{2,3}(\tau, m)),
\]

we obtain

\[
H_0^{(1,1)} = H_0^{(1)} W_0 \theta_3(4\tau, 0) + H_1^{(1)} W_1 \theta_2(4\tau, 0),
\]
\[
H_1^{(1,1)} = H_3^{(1,1)} = (H_0^{(1)} W_1 + H_1^{(1)} W_0)\theta_2(\tau, 0),
\]
\[
H_2^{(1,1)} = H_0^{(1)} W_0 \theta_2(4\tau, 0) + H_1^{(1)} W_1 \theta_3(4\tau, 0).
\]

This is the beginning of an emergent recursive structure, which we will fully explore in the next subsection.

We extracted the spin contents of low-lying states, as encoded by \(H_\ell^{(1,1)} \).

\footnote{For limiting values of \(m, \epsilon_1, \epsilon_2 \), this relation was also noted in [14] and more explicitly in [15].}
Spin contents from $H_0^{(1,1)}$: The function $H_0^{(1,1)}(\tau, \epsilon_1, \epsilon_2)$ contains the degeneracies of the states corresponding $Q_{f_i} Q_{f_2} Q_1^n$. For some small values of n these are listed below:

\[
\begin{align*}
 n = 0 & : 0 \\
 n = 1 & : 0 \\
 n = 2 & : 3(1, \frac{3}{2}) + 17(\frac{1}{2}, 1) + 5(0, \frac{3}{2}) + 9(1, \frac{1}{2}) + 21(\frac{1}{2}, 0) + 31(0, \frac{1}{2}) \\
 n = 3 & : 4(\frac{3}{2}, 2) + 14(\frac{3}{2}, 1) + 6(\frac{3}{2}, 0) + 10(\frac{1}{2}, 2) + 28(1, \frac{3}{2}) + 60(1, \frac{1}{2}) + 98(\frac{1}{2}, 1) \\
 & + 32(0, \frac{3}{2}) + 128(0, \frac{1}{2}) + 100(\frac{1}{2}, 0)
\end{align*}
\]

Spin contents from $H_2^{(1,1)}$: The function $H_2^{(1,1)}(\tau, \epsilon_1, \epsilon_2)$ contains the degeneracies of the states corresponding $Q_{f_i} Q_{f_2} Q_1^{-2} Q_1^n$. For some small values of n these are listed below:

\[
\begin{align*}
 n = 0 & : 0 \\
 n = 1 & : (\frac{1}{2}, 0) + 3(0, \frac{1}{2}) \\
 n = 2 & : 2(1, \frac{1}{2}) + 7(\frac{1}{2}, 1) + (0, \frac{3}{2}) + 9(\frac{1}{2}, 0) + 14(0, \frac{1}{2}) \\
 n = 3 & : 3(\frac{3}{2}, 1) + 11(1, \frac{3}{2}) + 2(1, 2) + 13(0, \frac{3}{2}) + 42(\frac{1}{1}, 1) + 24(1, \frac{1}{2}) + 49(\frac{1}{2}, 0) + 64(0, \frac{1}{2})
\end{align*}
\]

Spin content from $H_1^{(1,1)}$: The function $H_1^{(1,1)}(\tau, \epsilon_1, \epsilon_2)$ contains the degeneracies of the states corresponding $Q_{f_i} Q_{f_2} Q_1^{-1} Q_1^n$. For some small values of n these are listed below:

\[
\begin{align*}
 n = 0 & : (0, 0) \\
 n = 1 & : 3(\frac{1}{2}, \frac{1}{2}) + 2(0, 1) + 5(0, 0) \\
 n = 2 & : 4(\frac{1}{2}, \frac{3}{2}) + 5(1, 1) + 14(0, 1) + 4(1, 0) + 22(\frac{1}{2}, \frac{1}{2}) + 22(0, 0) \\
 n = 3 & : 7(\frac{3}{2}, \frac{3}{2}) + 8(\frac{3}{2}, \frac{1}{2}) + 6(1, 2) + 34(\frac{1}{2}, \frac{3}{2}) + 4(0, 2) + 42(1, 1) + 33(1, 0) \\
 & + 71(0, 1) + 110(\frac{1}{2}, \frac{1}{2}) + 86(0, 0)
\end{align*}
\]

4.3.3 Configuration $(k_i) = (1, 1, \cdots, 1)$

The configuration $(1, 1, \cdots, 1)$ is the generalization of the configuration studied above in which a single M2-brane traverse through the N many arrayed M5-branes. This should be thought of as a bound-state of a configuration of $(N - 1)$ M2-branes with a single M2-brane per each two consecutive M5-branes, with additional winding of M-strings on T^2 that each M5-brane wraps around. The corresponding BPS states are counted by $\tilde{F}^{(1,1,\cdots,1)}$, as defined in (4.2). Using
we can see that it is given by

\[
\tilde{F}^{(1,1,\ldots,1)} := \sum_{\ell=0}^{N-1} \sum_{(k_1,\ldots,k_\ell) \sum k_i = N-1} (-1)^{\ell-1} G_{k_1} G_{k_2} \cdots G_{k_\ell},
\]

where

\[
G_k := H_{01}(H_{11})^{k-1} H_{10},
\]

with the definitions

\[
H_{01} := \frac{\theta_1(\tau,m-\epsilon_+)}{\theta_1(\tau,-\epsilon_2)}, \quad H_{11} := \frac{\theta_1(\tau,m+\epsilon_-)\theta_1(\tau,m-\epsilon_-)}{\theta_1(\tau,\epsilon_1)\theta_1(\tau,-\epsilon_2)}, \quad H_{10} := \frac{\theta_1(\tau,m+\epsilon_+)}{\theta_1(\tau,\epsilon_1)}.
\]

Using (4.27), we get

\[
\tilde{F}^{(1,1,\ldots,1)} := \sum_{\ell=0}^{N-1} (-1)^{\ell-1} r_{N-1}(\ell) (H_{01})^\ell (H_{11})^{N-\ell-1} (H_{10})^{\ell},
\]

where \(r_{N}(\ell) \) is the number of \(\ell \)-tuples \((k_1, k_2, \ldots, k_\ell)\) such that \(\sum k_i = (N-1) \) and is given by \(r_{N}(\ell) = \frac{(N-1)!}{(\ell-1)! (N-\ell)!} \). In fact, this is the defining form of the free energy encoding the degeneracies for all “single M-string states”: it contains the combinatorics for placing one M-string in each of \((N-1) \) intervals.

The free energy \(\tilde{F}^{(1,1,\ldots,1)} \) obeys a number of remarkable recursive relations for any \((m, \epsilon_1, \epsilon_2)\).

Indeed, simplifying (4.28), we get

\[
\tilde{F}^{(1,1,\ldots,1)} = \tilde{F}^{(1)} W(\tau, m, \epsilon_1, \epsilon_2)^{N-2},
\]

where we used the ‘boundary condition’ \(\tilde{F}^{(1)} = H_{01} H_{10} \). Relation (4.29) between \(\tilde{F}^{(1,1,\ldots,1)} \) and \(\tilde{F}^{(1)} \) is a generalization of a relation observed in [15] for limiting situations to general nonzero values of \((m, \epsilon_1, \epsilon_2)\). Furthermore, (4.29) generalizes (4.21) to the case of \(N \) M5-branes.

We remark that \(H_{01}, H_{11}, H_{10} \) are also expressible in terms of the domain-wall partition function \(D_{\lambda\mu} \) introduced in [9].
with $W(\tau, m, \epsilon_1, \epsilon_2)$ defined as

$$W(\tau, m, \epsilon_1, \epsilon_2) = H_{11} - H_{01} H_{10}$$

$$= \frac{\theta_1(\tau, m + \epsilon_+) \theta_1(\tau, m - \epsilon_-) - \theta_1(\tau, m + \epsilon_-) \theta_1(\tau, m - \epsilon_+)}{\theta_1(\tau, \epsilon_1) \theta_1(\tau, \epsilon_2)}. \quad (4.30)$$

The observed recursive relations have a further generalization. Suppose an arbitrary number of M-strings is partitioned among the M5-brane intervals. If there are s ($s \geq 2$) consecutive intervals occupied by a single M-string, we conjecture that those intervals are further contractible down to a single interval. In appendix A, we present evidence that supports our conjecture, generalizing (4.29) to

$$\tilde{F}(k_1, k_2, \ldots, k_r, 1, 1, \ldots, k_{r+s+1}, \ldots, k_{N-1}) = \tilde{F}(k_1, k_2, \ldots, k_r, 1, 1, \ldots, k_{N-1}) (W(\tau, m, \epsilon_1, \epsilon_2))^{s-1} \quad (4.31)$$

Algorithmically, if we have an M5-brane with a pair of single M2-branes ending on it on both sides, we can join the two M2-branes by removing the bridging M5-brane such that the partition function of the old configuration is equal to the partition function of the new configuration times the factor $W(\tau, m, \epsilon_1, \epsilon_2)$ per each M5-brane removed, as indicated in Fig. 4.

![Figure 4](image-url)

Figure 4: An M5-brane is contractible whenever on both sides of it a single M2-brane ends. The contracted M5-brane contributes $W(\tau, m, \epsilon_1, \epsilon_2)$ to the free energy.

Here again, we tabulate the spin contents of low-lying states.
Spin contents: The spin content of the states corresponding to $Q_{f_1} \cdots Q_{f_{N-1}} Q^n_{\tau}$ for some lower values of n are listed below:

\[n = 0 : (0, \frac{1}{2}) \]
\[n = 1 : (N - 1)(\frac{1}{2}, 1) + (3N - 5)(\frac{1}{2}, 0) + (4N - 6)(0, \frac{1}{2}) \]
\[n = 2 : \left(\frac{N(N-1)}{2} \right)(1, \frac{3}{2}) + (4N^2 - 12N + 9)(1, \frac{1}{2}) + (6N^2 - 16N + 11)(\frac{1}{2}, 1) + \frac{3N^2 - 7N + 4}{2}(0, \frac{3}{2}) + (15N^2 + 43 - 49N)(0, \frac{1}{2}) + (12N^2 - 42N + 39)(\frac{1}{2}, 0) \]
\[n = 3 : \left(\frac{N(N^2-1)}{6} \right)(\frac{3}{2}, 2) + \left(\frac{N-1}{6} \right)(15N^2 - 39N + 24)(\frac{3}{2}, 1) + (N - 1)(4N^2 - 9N + 5)(1, \frac{3}{2}) + \frac{4N^3 - 12N^2 + 11N - 3}{3}(\frac{1}{2}, 2) + \frac{10N^3 - 54N^2 + 98N - 60}{3}(\frac{3}{2}, 0) \]
\[+ (20N^3 - 101N^2 + 181N - 114)(1, \frac{1}{2}) + (26N^3 - 123N^2 + 210N - 127)(\frac{1}{2}, 1) \]
\[+ (8N^3 - 36N^2 + 57N - 31)(0, \frac{3}{2}) + \frac{110N^3 - 609N^2 + 1231N - 882}{3}(\frac{1}{2}, 0) \]
\[+ \frac{124N^3 - 663N^2 + 1307N - 918}{3}(0, \frac{1}{2}) \]

Spin Contents: The spin content of the states corresponding to $Q_{f_1} \cdots Q_{f_{N-1}} Q_m Q^n_{\tau}$:

\[n = 0 : (0, 0) \]
\[n = 1 : (2N - 3)(\frac{1}{2}, 1) + (N - 1)(0, 1) + (4N - 7)(0, 0) \]
\[n = 2 : (N - 1)^2(\frac{3}{2}, 1) + \frac{3(N^2 - 7N + 4)}{2}(1, 1) + (3N^2 - 11N + 10)(1, 0) \]
\[+ (11N^2 - 36N + 31)(\frac{1}{2}, 1) + (6N^2 - 18N + 14)(0, 1) + \frac{25N^2 - 89N + 86}{2}(0, 0) \]
\[n = 3 : \left(\frac{N(N^2-9N+5)}{6} \right)(\frac{3}{2}, 2) + \frac{N(N-1)^2}{2}(1, 2) + \frac{6N^3 - 24N^2 + 30N - 12}{6}(0, 2) \]
\[+ \frac{14N^3 - 183N^2 + 265N - 132}{6}(\frac{3}{2}, 2) + \frac{6N^3 - 279N^2 + 432N - 234}{6}(1, 1) \]
\[+ \frac{20N^3 - 99N^2 + 163N - 90}{6}(\frac{3}{2}, 1) + \frac{132N^3 - 675N^2 + 1251N - 816}{6}(0, 1) \]
\[+ \frac{232N^3 - 1242N^2 + 2408N - 1650}{6}(\frac{1}{2}, \frac{1}{2}) + \frac{30N^3 - 169N^2 + 337N - 234}{2}(1, 0) \]
\[+ \frac{191N^3 - 1080N^2 + 2245N - 1656}{6}(0, 0) \]

4.3.4 Comparison with single-particle indices

Dual to the M-string picture, the BPS degeneracies of the configuration $(1, 1, \cdots, 1)$ can also be computed from the five-dimensional $\mathcal{N} = 1^*$ gauge theory. The multi-particle index $I_{SU(N)}$ of the $\mathcal{N} = 1^*$ theory can be extracted in terms of the single particle index $z_{sp}^{SU(N)}$:

\[I_{SU(N)}(Q_m, t, q) = \exp \left[\sum_{n=1}^{\infty} \frac{1}{n} z_{sp}^{SU(N)}(Q_m^n, t^n, q^n) \right] . \]
In the limit \(\epsilon_1 = -\epsilon_2 \to 0 \) and \(Q_m = -1 \) the single particle index \(z_{sp}^{U(N)} \) was computed in \([14]\) in the form of \(Q_\tau \)-expansions

\[
\begin{align*}
z_{sp}^{SU(2)} &= 1 + 8Q_\tau + 40Q_\tau^2 + 160Q_\tau^3 + 552Q_\tau^4 + 1712Q_\tau^5 + 4896Q_\tau^6 + \
z_{sp}^{SU(3)} &= 1 + 24Q_\tau + 264Q_\tau^2 + 2016Q_\tau^3 + 12264Q_\tau^4 + 63504Q_\tau^5 + 290976Q_\tau^6 + \
z_{sp}^{SU(4)} &= 1 + 40Q_\tau + 744Q_\tau^2 + 8992Q_\tau^3 + 82344Q_\tau^4 + 618864Q_\tau^5 + 4002336Q_\tau^6 + \
z_{sp}^{SU(5)} &= 1 + 56Q_\tau + 1480Q_\tau^2 + 25184Q_\tau^3 + 317288Q_\tau^4 + 3207888Q_\tau^5 + 27375520Q_\tau^6 + \ldots
\end{align*}
\]

They just correspond to the genus-zero of free energy \(F^{(1,1,\ldots,1)}(\tau, m, 0, 0)^{N-2} \).

It was also observed in \([14, 15]\) that the single particle indices are related as

\[
\frac{z_{sp}^{SU(N)}}{z_{sp}^{SU(2)}} = W(\tau, m, 0, 0)^{N-2}.
\]

This also corresponds to the genus-zero limit of our recursion relation (4.29) for the \(\epsilon_{1,2} \mapsto 0 \).

4.3.5 Properties of \(W(\tau, m, \epsilon_1, \epsilon_2) \)

We showed that the function \(W(\tau, m, \epsilon_1, \epsilon_2) \) defined in (4.30) appears whenever an M5-brane, with a single M2-brane ending on it from both sides, is removed. In the next section, we will be identifying this function in the NS limit with the refined elliptic genus of the Taub-NUT space.

Here, we collect relevant properties of this function: under the \(SL(2, \mathbb{Z}) \) modular transformation \((\tau, m, \epsilon_1, \epsilon_2) \mapsto (-\frac{1}{\tau}, \frac{m}{\tau}, \epsilon_1, \epsilon_2)\), the function \(W(\tau, m, \epsilon_1, \epsilon_2) \) transforms in the following way:

\[
W(-\frac{1}{\tau}, \frac{m}{\tau}, \epsilon_1, \epsilon_2) = e^{\frac{2\pi i}{m^2 - \epsilon_1^2}} \left[\frac{\theta_1(\tau, m + \epsilon_+)\theta_1(\tau, m - \epsilon_-) - e^{2\pi i(\epsilon_1^2 - \epsilon_1^2)}\theta_1(\tau, m + \epsilon_-)\theta_1(\tau, m - \epsilon_-)}{\theta_1(\tau, \epsilon_1)\theta_1(\tau, \epsilon_2)} \right]
\]

Due to the relative phase factor between the two terms in the numerator, the function \(W(\tau, m, \epsilon_1, \epsilon_2) \) transforms as a weight-zero Jacobi form if and only if \(\epsilon_+ = \pm \epsilon_- \). This is precisely the NS limit,
\(\epsilon_1 = 0 \) or \(\epsilon_2 = 0 \). In this NS limit \((\epsilon_2 \to 0)\), the function \(W(\tau, m, \epsilon_1, \epsilon_2) \) is reduced to
\[
W(\tau, m, \epsilon_1, 0) = i \theta_1'(\tau, m + \frac{\epsilon_1}{2}) \theta_1(\tau, m - \frac{\epsilon_1}{2}) - \theta_1'(\tau, m - \frac{\epsilon_1}{2}) \theta_1(\tau, m + \frac{\epsilon_1}{2}) \frac{\theta_1(\tau, \epsilon_1) \eta(\tau)^3}{\theta_1(\tau, \epsilon_1)} ,
\]
while in the genus-zero limit \((\epsilon_1, \epsilon_2 \to 0)\), the function \(W(\tau, m, \epsilon_1, \epsilon_2) \) is reduced to
\[
W(\tau, m, 0, 0) = \frac{\varphi_{0,1}(\tau, m)}{24} + \frac{E_2(\tau)}{12} \varphi_{-2,1}(\tau, m),
\]
where \(\varphi_{-2,1}(\tau, z) \) and \(\varphi_{0,1}(\tau, z) \) denote the weight \(-2\) index 1 and weight 0 index 1 Jacobi forms, respectively, defined in appendix [D.7].

4.4 Two M2-branes

More involved configurations arise when more than two M2-branes are stretched between any two M5-branes. Here, we consider the simplest such configuration, i.e. the configuration with \((k_i) = (2)\).

Following (4.2), we have
\[
\tilde{F}^{(2)} = \frac{\theta_1(\tau, m + \epsilon_+ \theta_1(\tau, m - \epsilon_+) \theta_1(\tau, \epsilon_1 - \epsilon_2)}{\theta_1(\tau, \epsilon_1) \theta_1(\tau, \epsilon_2) \theta_1(\tau, \epsilon_1 - \epsilon_2)}
\]
\[
\times \left[\frac{\theta_1(\tau, m + \epsilon_+ + \epsilon_2) \theta_1(\tau, m - \epsilon_+ - \epsilon_2)}{\theta_1(\tau, 2\epsilon_1)} \right] + \frac{\theta_1(\tau, m + \epsilon_+ + \epsilon_1) \theta_1(\tau, m - \epsilon_+ - \epsilon_1)}{\theta_1(\tau, 2\epsilon_1)}
\]
\[
- \frac{\theta_1(\tau, m + \epsilon_+)^2 \theta_1(\tau, m - \epsilon_+)^2}{2 \theta_1(\tau, \epsilon_1)^2 \theta_1(\tau, \epsilon_2)^2} + \frac{\theta_1(2\tau, 2m + 2\epsilon_+) \theta_1(2\tau, 2m - 2\epsilon_+)}{2 \theta_1(\tau, 2\epsilon_1) \theta_1(\tau, 2\epsilon_2)}. \tag{4.36}
\]

Since this is of index 2 with respect to \(m \), it is expandable in terms of index 2 theta functions \(\vartheta_{2,\ell}(\tau, m) \) defined in [D.9], with the explicit \(Q_\tau \)-expansion given in [D.12]:
\[
\tilde{F}^{(2)} = \sum_{\ell=0}^{3} H^{(2)}_{\ell}(\tau, \epsilon_1, \epsilon_2) \vartheta_{2,\ell}(\tau, m). \tag{4.37}
\]

Here, the coefficient functions are defined by
\[
H^{(2)}_0 := \int \frac{dQ_m}{2\pi i} Q_m^{-1} F^{(2)} ,
\]
\[
H^{(2)}_1 := Q_\tau^{-\frac{1}{2}} \int \frac{dQ_m}{2\pi i} F^{(2)} = H^{(2)}_3 ,
\]
\[
H^{(2)}_2 := Q_\tau^{-\frac{1}{2}} \int \frac{dQ_m}{2\pi i} Q_m F^{(2)} .
\]

29
In the genus-zero limit ($\epsilon_1, \epsilon_2 \to 0$), they have the Q_τ-expansions as follows:

$$\lim_{\epsilon_1, \epsilon_2 \to 0} \epsilon_1 \epsilon_2 H_0^{(2)}(\tau, \epsilon_1, \epsilon_2) = 24Q_\tau + 368Q_\tau^2 + 3376Q_\tau^3 + 23168Q_\tau^4 + 131248Q_\tau^5 + 645568Q_\tau^6 + 2845536Q_\tau^7 + 11477824Q_\tau^8 + 43006152Q_\tau^9 + 151352896Q_\tau^{10} + \cdots,$$

$$\lim_{\epsilon_1, \epsilon_2 \to 0} \epsilon_1 \epsilon_2 H_1^{(2)}(\tau, \epsilon_1, \epsilon_2) = -16Q_\tau - 272Q_\tau^2 - 2608Q_\tau^3 - 18432Q_\tau^4 - 106576Q_\tau^5 - 532480Q_\tau^6 - 2376304Q_\tau^7 - 9683120Q_\tau^8 - 36592880Q_\tau^9 - 129728864Q_\tau^{10} + \cdots,$$

$$\lim_{\epsilon_1, \epsilon_2 \to 0} \epsilon_1 \epsilon_2 H_2^{(2)}(\tau, \epsilon_1, \epsilon_2) = 40Q_\tau + 104Q_\tau^2 + 1168Q_\tau^3 + 9104Q_\tau^4 + 56276Q_\tau^5 + 295608Q_\tau^6 + 1372048Q_\tau^7 + 5772688Q_\tau^8 + 22406176Q_\tau^9 + 81266232Q_\tau^{10} + \cdots.$$

We tabulate the spin contents of the BPS states extracted for this M2-brane configuration.

Spin contents: The degeneracies of the states corresponding $Q_{f_1}^2 Q_{m}^n$. For some lower values of n, they are listed below:
$n = 0 : 0$
$n = 1 : (\frac{1}{2}, 2) + (\frac{1}{2}, 1) + 2(0, \frac{3}{2})$
$n = 2 : (\frac{3}{2}, 3) + (\frac{1}{2}, 3) + 3(1, \frac{5}{2}) + (\frac{3}{2}, 2) + 3(0, \frac{5}{2}) + 8(1, \frac{3}{2}) + 4(1, \frac{5}{2}) + 10(0, \frac{1}{2}) + 8(\frac{1}{2}, 1)$
$\quad\quad +(\frac{1}{2}, 2) + 5(0, \frac{1}{2}) + (\frac{1}{2}, 0)$

Spin Contents for $Q_{f_1}^2 Q_{m}^n$:
$n = 0 : 0$
$n = 1 : (\frac{1}{2}, \frac{3}{2}) + (0, 2) + (0, 1)$
$n = 2 : (\frac{3}{2}, \frac{5}{2}) + (1, 3) + 3(\frac{1}{2}, \frac{5}{2}) + 3(1, 2) + 6(0, 2) + 8(\frac{1}{2}, \frac{3}{2}) + 2(1, 1) + 7(0, 1)$
$\quad\quad +3(\frac{1}{2}, \frac{1}{2}) + (0, 0)$

4.5 Three M2-branes

We can repeat the analysis for the case of three M2-branes suspended between two M5-branes, corresponding to the partition $(k_i) = (3)$. Due to the complexity of $\tilde{F}^{(3)}$, however, here we only
present the expression in the particular case $\epsilon_1 = -\epsilon_2 = \epsilon$,

$$3\tilde{F}^{(3)}(\tau, m, \epsilon, -\epsilon) = -\frac{3\theta_1(\tau, m)^2\theta_1(\tau, m + \epsilon)\theta_1(\tau, m - \epsilon)}{\theta_1(\tau, \epsilon)^4}\frac{\theta_1(\tau, 2\epsilon)^2}{\theta_1(\tau, 3\epsilon)^2} + \frac{\theta_1(3\tau, 3m)^2}{\theta_1(3\tau, 3\epsilon)^2} - \frac{6\theta_1(\tau, m)^4\theta_1(\tau, m + \epsilon)\theta_1(\tau, m - \epsilon)}{\theta_1(\tau, \epsilon)^4}\frac{\theta_1(\tau, 2\epsilon)^2}{\theta_1(\tau, 3\epsilon)^2} \quad \text{(4.38)}$$

Once again, this function is expandable in term of ϑ functions in the form

$$\tilde{F}^{(3)} = \sum_{\ell=0}^5 H^{(3)}_{\ell}(\tau, \epsilon_1, \epsilon_2) \vartheta_{3,\ell}(\tau, Q_m). \quad \text{(4.39)}$$

We also tabulate the spin content of low-lying BPS states for this M2-brane configuration.

Spin contents: The degeneracies of the states corresponding $Q_1^3 Q_n^6$. For some small values of n are listed below:

| n | $0 : 0$ | $1 : (\frac{1}{2}, 3) + (\frac{1}{2}, 2) + 2(0, \frac{5}{2})$ | $2 : 4(\frac{3}{2}, 3) + 17(\frac{1}{2}, 3) + 10(1, \frac{5}{2}) + (\frac{3}{2}, 2) + 20(0, \frac{5}{2}) + 17(\frac{1}{2}, 2) + 5(1, \frac{3}{2}) + 11(0, \frac{3}{2}) + 6(\frac{1}{2}, 1) + (1, \frac{1}{2}) + 5(0, \frac{1}{2}) + 3(\frac{1}{2}, 0) + (2, \frac{3}{2}) + (1, \frac{3}{2}) + 3(\frac{3}{2}, 4) + (2, \frac{7}{2}) + 3(\frac{1}{2}, 4) + 9(1, \frac{7}{2}) + 6(0, \frac{5}{2})$ |

Spin Contents for $Q_1^4 Q_m Q_n^2$:

| n | $0 : 0$ | $1 : (\frac{1}{2}, \frac{3}{2}) + (0, 3) + (0, 2)$ | $2 : (\frac{3}{2}, 3) + 3(2, 4) + 3(\frac{3}{2}, \frac{5}{2}) + 2(\frac{3}{2}, \frac{5}{2}) + 2(\frac{3}{2}, 4) + 9(1, 3) + 16(\frac{1}{2}, \frac{5}{2}) + 5(1, 2) + 15(0, 2) + 8(\frac{1}{2}, \frac{7}{2}) + 9(\frac{1}{2}, \frac{3}{2}) + 2(1, 1) + 4(0, 1) + 3(\frac{1}{2}, \frac{1}{2}) + (0, 4) + 11(0, 3) + 4(0, 0)$ |

5 BPS Degeneracies of m-Strings

Based on the information of the BPS degeneracies of M-strings, we now study the BPS degeneracies of m-strings.
5.1 m-String Free Energies

In section 4 we discussed the free energies $\tilde{F}^{k_1,\ldots,k_{N-1}}$, which capture degeneracies of M-strings, for generic values of $\epsilon_{1,2}$ as well as m. However, as explained in section 2, in order to interpret them in terms of degeneracies of m-strings, it is necessary to take the NS-limit, sending $\epsilon_2 \to 0$. This yields

$$\lim_{\epsilon_2 \to 0} \epsilon_2 \tilde{F}^{(k_1,\ldots,k_{N-1})}(\tau, m, \epsilon_1, \epsilon_2),$$

where the parameter ϵ_1 is kept finite. In this section, we shall study the leading term in their series expansions and learn about BPS states of m-strings. In particular, we aim to understand their modular properties in detail.

Before considering the limit $\epsilon_1 = -\epsilon_2 = 0$ let us try to understand the modular properties of the NS limit of $\tilde{F}^{(k_1,k_2,\ldots,k_{N-1})}$. Recall from section 4.2 that $\tilde{F}^{(k_1,k_2,\ldots,k_{N-1})}$ do not transform covariantly under the $SL(2,\mathbb{Z})$. Since $\tilde{F}^{(k_1,k_2,\ldots,k_{N-1})}$ is made up of product of different $Z_{r_1,\ldots,r_{N-1}}$: different pieces transform with different phase-factors. For example, consider $\tilde{F}^{(1,2)},$

$$\tilde{F}^{(1,2)} = Z_{12} - Z_{1}Z_{11} - Z_{2}Z_{1} + Z_{1}^3.$$ \hfill (5.1)

Under $(\tau, m, \epsilon_\pm) \mapsto (-\frac{1}{\tau}, \frac{m}{\tau}, \epsilon_\pm)$, $\tilde{F}^{(1,2)}$ transforms as

$$\tilde{F}^{(1,2)}(-\frac{1}{\tau}, \frac{m}{\tau}, \epsilon_\pm) = e^{\frac{2\pi i}{\tau}f_{12}}Z_{12} - e^{\frac{2\pi i}{\tau}(f_1 + f_{11})}Z_{1}Z_{11} - e^{\frac{2\pi i}{\tau}(f_1 + f_2)}Z_{2}Z_{1} + e^{\frac{2\pi i}{\tau}f_1}Z_{1}^3,$$ \hfill (5.2)

where

$$f_{12}(m, \epsilon_+, \epsilon_-) = 3m^2 - \frac{15}{2}\epsilon_+^2 + \frac{9}{2}\epsilon_-^2, \quad f_1(m, \epsilon_+, \epsilon_-) = m^2 - \epsilon_+^2, \quad f_{11}(m, \epsilon_+, \epsilon_-) = 2m^2 - 3\epsilon_+^2 + \epsilon_-^2, \quad f_2(m, \epsilon_+, \epsilon_-) = 2m^2 - 4\epsilon_+^2 + 2\epsilon_-^2.$$ \hfill (5.3)

One readily sees that f_{12}, $f_1 + f_{11}$, $f_1 + f_2$ and $3f_1$ are not equal even pairwise. So the four terms in (5.2) have different phase factors. However, notice that for $\epsilon_+^2 = \epsilon_-^2$ the phase factors are precisely the same and hence $\tilde{F}^{(1,2)}$ transforms covariantly under $SL(2,\mathbb{Z})$. The condition $\epsilon_+^2 = \epsilon_-^2$ is precisely the NS limit. This is essentially due to the fact that $f_{\pm}(m, \epsilon_+, \epsilon_-)$ given in (3.12) which are quadratic in k_a for generic $\epsilon_{1,2}$ become linear in k_a in the NS limit.

Let’s introduce

$$J_{k_1,\ldots,k_{N-1}}(\tau, m, \epsilon_1) := \lim_{\epsilon_2 \to 0} \frac{\tilde{F}^{(k_1,k_2,\ldots,k_{N-1})}(\tau, m, \epsilon_1, \epsilon_2)}{\tilde{F}^{(1)}(\tau, m, \epsilon_1, \epsilon_2)}.$$ \hfill (5.4)
From the above discussion and \((3.11)\), it follows that for \(\gcd(k_1, k_2, \cdots, k_{N-1}) = 1\):

\[
\begin{align*}
J_{k_1 \cdots k_{N-1}}(\tau + 1, m, \epsilon_1) &= J_{k_1 \cdots k_{N-1}}(\tau, m, \epsilon_1), \\
J_{k_1 \cdots k_{N-1}}(-\frac{1}{\tau}, m, \epsilon_1) &= e^{2\pi i (K-1)(m^2-\tau^2)} J_{k_1 \cdots k_{N-1}}(\tau, m, \epsilon_1), \\
J_{k_1 \cdots k_{N-1}}(\tau, m + \ell \tau + r, \epsilon_1) &= e^{-2\pi i K \ell^2 \tau + 4\pi i m K} J_{k_1 \cdots k_{N-1}}(\tau, m, \epsilon_1).
\end{align*}
\]

(5.5)

If we further consider the genus-zero limit \(\epsilon_1 \to 0\), then from the above equations it is clear that \(J_{k_1 \cdots k_{N-1}}(\tau, m, 0)\) has the same modular transformation properties as the elliptic genus of a manifold with dimension \(4(K-1)\).

We consider the properties of individual \(\tilde{F}^{(k_1, \cdots, k_{N-1})}(\tau, m, \epsilon_1, \epsilon_2)\) in the limit \(\epsilon_1 = -\epsilon_2 = 0\) i.e., studying the leading order in the NS-limit. Since \(\tilde{F}^{(k_1 k_2 \cdots k_{N-1})}\) captures all single-string bound-states, by extensiveness, it should be proportional to the volume of \(\mathbb{R}^4\). This infinite volume is regularized by the \(\Omega\)-background parameters \(\epsilon_1, \epsilon_2\).

\[
\text{Vol}(\mathbb{R}^4) \to \frac{1}{\epsilon_1 \epsilon_2}.
\]

(5.6)

Details of proportionality constant does not matter us since we will be always taking ratios of free energies that are always regular in this limit. Indeed, for \(\epsilon_1 = -\epsilon_2 = 0\), the residue of the free energy,

\[
\hat{F}^{(k_1, \cdots, k_{N-1})}(\tau, m) = \lim_{\epsilon_1 \to 0} \epsilon_1 \epsilon_2 \hat{F}^{(k_1, \cdots, k_{N-1})}(\tau, m, \epsilon_1, \epsilon_2),
\]

(5.7)

is nothing but the genus-zero contribution to the partition functions defined in \((4.2)\) in section 4. These residues can be written in the form

\[
\hat{F}^{(k_1, \cdots, k_{N-1})}(\tau, m) = \varphi_{-2,1}(\tau, m) \sum_{a=0}^{s-1} \frac{g_{2a}^{(k_1, \cdots, k_{N-1})}(\tau)}{2a^{12s-1}} (\varphi_{0,1}(\tau, m))^{s-1-a} (\varphi_{-2,1}(\tau, m))^a.
\]

(5.8)

Here, \(\varphi_{-2,1}(\tau, m)\) and \(\varphi_{0,1}(\tau, m)\) are the standard Jacobi forms of \(SL(2, \mathbb{Z})\) with index 1 and weights \(-2\) and 0, respectively, as introduced in \((D.7)\) in appendix D.2. Note that, because of the overall \(\varphi_{-2,1}(\tau, m)\) factor, the residue vanishes in the limit the hypermultiplet mass is tuned to 0:

\[
\lim_{m \to 0} \hat{F}^{(k_1, \cdots, k_{N-1})}(\tau, m) = 0.
\]

(5.9)

The functions \(g_{2a}^{(k_1, \cdots, k_{N-1})}\) in \((5.8)\) are anomalous modular forms. More precisely, they can be written as polynomials in the Eisenstein series (see appendix E for explicit examples) that

\footnote{The first Chern class of \(\mathbb{R}^4\) also gets deformed to \((\epsilon_1 + \epsilon_2)\).}
include $E_2(\tau)$ as well. Upon replacing the latter by non-holomorphic $\hat{E}_2(\tau, \bar{\tau})$, defined in (D.14), $g_{2a}(k_1,\ldots,k_{N-1})(\tau, \bar{\tau})$ transforms with weight $2a$ under modular transformations of a congruence subgroup Γ of $SL(2,\mathbb{Z})$. Finally, the numerical factors in (5.8) are purely for convenience.

5.2 Modular Transformations

With the definitions given above, it can be seen that $\hat{F}(k_1,\ldots,k_{N-1})$ transforms as

$$\hat{F}(k_1,\ldots,k_{N-1})(a\tau + b, c\tau + d, m) = (c\tau + d)^w e^{2\pi is \frac{m^2}{c\tau + d}} \hat{F}(k_1,\ldots,k_{N-1})(\tau, m)$$

$$\hat{F}(k_1,\ldots,k_{N-1})(\tau, m + \ell\tau + \ell') = e^{-2\pi is(\ell^2\tau + 2\ell m)} \hat{F}(k_1,\ldots,k_{N-1})(\tau, m)$$

for $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma \subset SL(2,\mathbb{Z})$ and $\ell, \ell' \in \mathbb{Z}$, (5.10)

with weight $w(k_1, \ldots, k_{N-1})$ and index $s(k_1, \ldots, k_{N-1})$ given by

$$w(k_1, \ldots, k_{N-1}) = -2 \quad \text{and} \quad s(k_1, \ldots, k_{N-1}) = \sum_{a=1}^{N-1} k_a. \quad (5.11)$$

Due to the τ_2 dependence of $\hat{E}_2(\tau, \bar{\tau})$ induced by the replacement (D.14), $\hat{F}(k_1,\ldots,k_{N-1})$ is no longer holomorphic, but it is a so-called quasi-holomorphic modular object. However, this prescription is not the only way to obtain modular objects. We will discover in section 6 that, for a given index s, there always exist specific combinations of $\hat{F}(k_1,\ldots,k_{N-1})(\tau, m)$ (unique up to certain identities) for which the holomorphic anomaly cancels, thus yielding (holomorphic) weak Jacobi forms.

5.3 m-String Elliptic Genera from $\hat{F}(k_1k_2\cdots k_{N-1})$

5.3.1 Regularized elliptic genera

In [15], it was shown that elliptic genera of the Atiyah-Hitchin and Taub-NUT space were captured by the five-dimensional $\mathcal{N} = 1^*$ gauge theory. Since the M-strings point of view is natural for counting M2-branes, the M-string free energy captures the elliptic genera of monopole moduli spaces in the NS limit to all orders in $Q_\tau = e^{2\pi i \tau}$. Consequently, it must be that the reduced free energy $\hat{F}(k_1\cdots k_{N-1})$ defined in the previous section are related to the elliptic genera of the m-string moduli space of charge $(k_1, k_2, \ldots, k_{N-1})$. In the subsequent sections, we provide evidence for this, along the lines of [15].

We first recall a number of facts about elliptic genera on compact and non-compact hy-
perkähler manifolds. For a compact manifold \mathcal{M}, the elliptic genus can be defined as

$$\phi_{\mathcal{M}}(\tau, m) = \int_{\mathcal{M}} \prod_i x_i \frac{\theta_1(\tau, x_i + m)}{\theta_1(\tau, x_i)},$$

(5.12)

where x_i are the Chern roots of the tangent bundle on \mathcal{M}. Physically, the elliptic genus can be computed by the path integral over the loop space configurations:

$$\phi_{\mathcal{M}}(\tau, m) = \sum_{\mathcal{H}_{RR}} (-1)^{F + \bar{F}} e^{2\pi imJ_0} Q_{\tau}^{L_0 - \frac{\tau}{2\pi}} \bar{Q}_{\tau}^{\bar{L}_0 - \frac{\tau}{2\pi}},$$

(5.13)

where the sum is over the Hilbert space of the Ramond-Ramond sector of the two-dimensional supersymmetric sigma-model with target space \mathcal{M}. This Hilbert space consists of countably many normalizable states. Furthermore, F (\bar{F}) is the left- (right) moving fermion number and L_0 and J_0 are generators of the $\mathcal{N} = 2$ superconformal algebra of the sigma model. The elliptic genus encodes important information about the spectrum of the sigma-model which are intimately linked to topological properties and data of the target manifold \mathcal{M}. Moreover, as was discussed in [28, 29], if the first Chern class of \mathcal{M} vanishes ($c_1(\mathcal{M}) = 0$), the elliptic genus $\phi_{\mathcal{M}}$ is a weak Jacobi form of weight 0 and index $\dim_{\mathbb{C}}(\mathcal{M})/2$. Physically, this is a consequence of the $\mathcal{N} = 2$ superconformal invariance of the sigma-model, as discussed in [21].

In the case that \mathcal{M} is non-compact, the definitions (5.12) and (5.13) need to be modified: from the geometric point of view, the integral in (5.12) becomes ill-defined and needs to be suitably regularized. For example, in [30] it was proposed to perform the integration equivariantly and it was argued that the corresponding equivariantly regularized elliptic genus still transforms nicely under the modular transformations. Physically, besides well localized bulk states entering in (5.13), sigma-models with non-compact target spaces generically also contain delocalized boundary modes whose spectrum overlaps with the continuum scattering states, which also need to be taken into account (see for example [31]). In both cases, the modification requires introducing an additional parameter (which we call μ in the following), either in the form of a regularization parameter or in the form of the quantum numbers that label the delocalized states contributing to boundary part.

More specifically, for noncompact \mathcal{M}, we can define a regularized elliptic genus $\phi_{\text{reg}}(\tau, Q_m, \mu)$ with the following properties [30]:

- For generic values of μ, the regularized elliptic genus $\phi_{\text{reg}}(\tau, Q_m, \mu)$ transforms as a Jacobi form of weight 0 under the full modular group $SL(2, \mathbb{Z})$.

- Upon removing the parameter μ, the genus $\phi_{\text{reg}}(\tau, Q_m, \mu = 0)$ must be well-defined for $Q_m = \pm 1$ and has to reproduce correctly the topological data of the target space manifold,
\[\phi_{\text{reg}}(\tau, Q_m = 1, \mu = 0) = \chi_M, \quad \phi_{\text{reg}}(\tau, Q_m = -1, \mu = 0) = \sigma_M, \quad (5.14) \]

where \(\chi_M \) is the Euler characteristic and \(\sigma_M \) the signature of \(M \).

5.3.2 Comparison with other BPS bound-state problems

In a variety of cases in string and field theories, it was observed that multi-instanton bound-state effects in \(d \) dimensions encode part of multi-particle bound-state effects in \((d+1)\)-dimensions for reasons that have to do with non-compact configuration spaces and their continuous spectra \cite{32}. Here, we recall some examples of this type and compare with the M & m-string bound-state problem at hand.

One instance in string theory concerns the M-theory conjecture \cite{33} that multiple D0-particles in Type IIA string theory form a unique bound-state that builds the M-theory Kaluza-Klein tower. The bound-state is at threshold and so the relative moduli space is noncompact. The \(L^2 \)-class Witten index for zero-energy, which counts BPS ground-states, is then calculated from the multi-D0-particle dynamics on \(\mathbb{R}^9 \times S^1_\beta \) in the limit of the radius \(\beta \to 0 \). It consists of two parts: a so-called bulk part and a so-called boundary part \cite{34}. If the IIA theory is compactified to \(\mathbb{R}^8 \times T^1 \times S^1_{R} \), the D0-particle circulating around \(S^1_{R} \) can be interpreted as an instanton in \(\mathbb{R}^{8,1} \). It was then observed \cite{35} that the bulk part of the index can be extracted from the coefficient of an operator induced by the D0-particle instanton.

Another instance from field theory concerns Sen’s S-duality conjecture \cite{36} that multiple monopoles in \(\mathcal{N} = 4 \) super Yang-Mills theory \cite{39} form a unique bound-state that forms a unique bound-state that builds the Montonen-Olive \cite{39} duality tower. Again, the relative moduli space is non-compact and the \(L^2 \)-class Witten index is captured by the multi-monopole dynamics on \(\mathbb{R}^3 \times S^1_\beta \) in the limit \(\beta \to 0 \). Once more, it consists of a bulk part and a boundary part. Upon compactifying \(\mathcal{N} = 4 \) super Yang-Mills theory on \(\mathbb{R}^{2,1} \times S^1_{R} \), the monopole circulating around \(S^1_{R} \) is interpretable as an instanton in \(\mathbb{R}^{2,1} \). It was observed in \cite{40} that the bulk part of the index can be extracted from coefficient of an operator induced by the monopole instanton.

In both situations, the \(S^1_{R} \)-compactification has the effect of converting bulk part of the \(L^2 \)-class Witten index to the coefficient of the instanton-induced operator, while the boundary part of the index is not related to the compactified theory in any obvious way. Let us compare them with the situation at hand: on the one hand, an M-string bound-state wraps around \(T^2 \) and behaves as a point like particle configuration on \(\mathbb{R}^4 \). On the other hand, the m-string lives on \(T^2 \times (\mathbb{R}^3 \times S^1_{R}) \). We can view an m-string bound-state winding around the \(S^1_{R} \) as an Euclidean point like particle circulating around it. Therefore, drawing parallels to the above

\footnote{The S-duality conjecture in string theory dates earlier and was first conjectured in \cite{37} and \cite{38}.}
situations, one would expect that the BPS counting function for m-strings only accounts for the bulk contribution, whereas the BPS counting function for M-strings would contain both bulk and boundary contributions. It is interesting that the two counting problems are related by the NS limit. A seeming difference that the nature of the constituents, as particles (M-string) and instantons (m-string), are reversed compared to the above two examples. What is more important, however, is which constituents live in a space with S^1_R compactification and which ones live in space without. In this regard, our situation is essentially the same as the above two examples.

5.3.3 Elliptic genera of m-string moduli spaces

We now would like to interpret the (refined) $\hat{F}^{(k_1 k_2 \cdots k_{N-1})}$ as regularized elliptic genera for moduli spaces of m-strings with fixed charges. More precisely, we denote by \mathcal{M}_k the moduli space of monopoles of charge $\vec{k} = (k_1, k_2, \cdots, k_{N-1})$ and by $\hat{\mathcal{M}}_k$ the relative part of the monopole moduli space. Then, we propose

$$J_{k_1 k_2 \cdots k_{N-1}}(\tau, m, 0) = \phi_{\hat{\mathcal{M}}_k}(\tau, m), \quad \text{for} \quad \gcd(k_1, \cdots, k_{N-1}) = 1,$$

where the function $J_{k_1 k_2 \cdots k_{N-1}}(\tau, m, \epsilon_1)$ was defined in (5.4).

From (5.5), it follows that

- $\phi_{\hat{\mathcal{M}}_k}(\tau, m)$ has zero weight under transformations with respect to full $SL(2, \mathbb{Z})$

- the index of $\phi_{\hat{\mathcal{M}}_k}(\tau, m)$ is $K = (\sum_{a=1}^{N-1} k_a) - 1 = \frac{1}{2}\dim_{\mathbb{C}} \hat{\mathcal{M}}_k$.

We then expect that

$$\phi_{\hat{\mathcal{M}}_k}(\tau, m, \epsilon_1) = J_{k_1 k_2 \cdots k_{N-1}}(\tau, m, \epsilon_1) \quad \text{for} \quad \gcd(k_1, \cdots, k_{N-1}) = 1,$$

is the regularized elliptic genus obtained by the insertion of $U(1)$ current corresponding to the $U(1)$ symmetry with parameter ϵ_1.

On the other hand, for $\gcd(k_a) > 1$, $J_{k_1 k_2 \cdots k_{N-1}}(\tau, m, \epsilon_1)$ transforms covariantly not under the full $SL(2, \mathbb{Z})$ but only under a subgroup of $SL(2, \mathbb{Z})$. Therefore, we would expect that it only captures the universal (regularization independent) bulk part of the elliptic genus of the corresponding m-string moduli space. To restore covariance under the full $SL(2, \mathbb{Z})$, as discussed in subsection 5.1, we would need to add regularization-specific, boundary contribution coming from boundary contribution of delocalized states. Below, we will see this explicitly for the case of charge 2.
5.4 Charge \((1,1,\cdots,1)\) Configurations

Let us look at the simplest configuration with all distinct magnetic charges equal to 1.

5.4.1 \(\tilde{F}^{(1)}\) and \(\mathbb{R}^3 \times S^1\) elliptic genus

The moduli space of charge 1 m-string in \(SU(2)\) gauge group is given by \(\mathbb{R}^3 \times S^1\). This factor is common in all m-string moduli spaces. So, to get the elliptic genus of the relative m-string moduli space, we quotient by the elliptic genus of this common factor. In the NS limit, we get

\[
\lim_{\epsilon_2 \to 0} \epsilon_2 \tilde{F}^{(1)}(\tau, m, \epsilon_1, \epsilon_2) = \frac{\theta_1(\tau, m + \epsilon_1^2)\theta_1(\tau, m - \epsilon_1^2)}{\theta_1(\tau, \epsilon_1)\eta(\tau)^3}.
\]

As mentioned in [22], the factor \(\theta_1(\tau, \epsilon_1)\eta(\tau)\) in the denominator corresponds to four bosonic modes in which two of them are charged with charge \(\pm \epsilon_1\). The remaining factor corresponds to the four fermionic zero modes. The left hand side above is the elliptic genus obtained after dividing by the volume of the transverse \(\mathbb{R}^3\). Due to this regularization, the weight of the left hand side in the equation above is \(-1\).

5.4.2 \(\tilde{F}^{(1,1)}\) and Taub-NUT elliptic genus

The relative moduli space for the charge \((1,1)\) m-string in \(SU(3)\) gauge group is the four-dimensional Taub-NUT space. The elliptic genus of the Taub-NUT space was calculated in [16] and its dependence on the size of the asymptotic circle was studied in detail. The universal part of the elliptic genus of the Taub-NUT space, which does not depend on the size of the Taub-NUT circle was shown to be

\[
\phi_{\tilde{M}_{1,1}}(\tau, m, \epsilon_1) := \int_0^1 \frac{\theta_1(\tau, m + \gamma)\theta_1(\tau, m - \gamma)}{\theta_1(\tau, \epsilon_1^2 + \gamma)\theta_1(\tau, \epsilon_1^2 - \gamma)} = 1 + A_1(\tau, m, \epsilon_1)Q_\tau + A_2(\tau, m, \epsilon_1)Q_\tau^2 + A_3(\tau, m, \epsilon_1)Q_\tau^3 + A_4(\tau, m, \epsilon_1)Q_\tau^4 \cdots,
\]

where

\[
\begin{align*}
A_1(\tau, m, \epsilon_1) &= q^{-1}(1 - Q_m\sqrt{q})^2(1 - Q_m^{-1}\sqrt{q})^2, \\
A_2(\tau, m, \epsilon_1) &= (1 - Q_m\sqrt{q})^2(1 - Q_m^{-1}\sqrt{q})^2(1 + 4q^{-1} + q^{-2})Q_\tau^2, \\
A_3(\tau, m, \epsilon_1) &= (1 - Q_m\sqrt{q})^2(1 - Q_m^{-1}\sqrt{q})^2 \left[q + 4 + 10q^{-1} + 4q^{-2} + q^{-6} - 2(Q_m + Q_m^{-1})(q^{-\frac{1}{2}} + q^{-\frac{3}{2}}) \right], \\
A_4(\tau, m, \epsilon_1) &= (1 - Q_m\sqrt{q})^2(1 - Q_m^{-1}\sqrt{q})^2 \left[q^2 + 4q + 14 + 28q^{-1} + 14q^{-2} + 4q^{-3} + q^{-4} - 2(Q_m + Q_m^{-1})(q^\frac{1}{2} + 4q^{-\frac{1}{2}} + 4q^{-\frac{3}{2}} + q^{-\frac{5}{2}}) + q^{-1}(Q_m^2 + Q_m^{-2}) \right].
\end{align*}
\]
etc. In the genus-zero limit \(\epsilon_1 \to 0 \), we can write the above as

\[
\phi_{\mathcal{M}_{1,1}}(\tau, m, 0) = \frac{\theta''_1(\tau, m) \theta_1(\tau, m) - \theta'_1(\tau, m)^2}{\eta(\tau)^6} \tag{5.20}
\]

\[
= \phi_{-2,1}(\tau, m) \left[\frac{\theta''_1(\tau, m)}{\theta_1(\tau, m)} - \frac{\theta'_1(\tau, m)^2}{\theta_1(\tau, m)^2} \right].
\]

Recall that, in section (4.2.2), we studied the M-string configuration \((1, 1)\) and obtained

\[
\tilde{F}^{(1,1)}(\tau, m, \epsilon_1, \epsilon_2) = \tilde{F}^{(1)} W(\tau, m, \epsilon_1, \epsilon_2), \tag{5.21}
\]

where

\[
W(\tau, m, \epsilon_1, \epsilon_2) = \frac{\theta_1(\tau + \epsilon_1) \theta(\tau, m - \epsilon_1) - \theta_1(\tau, m + \epsilon_2) \theta_1(\tau, m - \epsilon_2)}{\theta_1(\tau, \epsilon_1) \theta_1(\tau, \epsilon_2)} \tag{5.22}
\]

It is straightforward to show that, in the limit \(\epsilon_{1,2} \to 0 \), this is reduced to

\[
W(\tau, m, 0, 0) = \frac{\theta''_1(\tau, m) \theta_1(\tau, m) - \theta'_1(\tau, m)^2}{\eta(\tau)^6} \tag{5.23}
\]

and therefore

\[
\phi_{\mathcal{M}_{1,1}}(\tau, m, 0) = W(\tau, m, 0, 0). \tag{5.24}
\]

While not evident from (5.18) and (5.22), one can check that

\[
\phi_{\mathcal{M}_{1,1}}(\tau, m, \epsilon_1) = \lim_{\epsilon_2 \to 0} W(\tau, m, \epsilon_1, \epsilon_2) = J_{1,1}(\tau, m, \epsilon_1). \tag{5.25}
\]

We thus confirm that the NS limit relates the M-string free energies to the elliptic genus of m-string moduli space, which in this case is the Taub-NUT space.

5.4.3 \(\tilde{F}^{(1,1,\cdots,1)} \), bound-states of fundamental monopoles and Sen’s S-duality

Consider the gauge group \(SU(N) \). The charge \((1, 1, \cdots, 1)\) monopole is the bound-state of \((N - 1)\) distinct fundamental monopoles, which is S-dual to the bound-state of \((N - 1)\) distinct W-bosons. In this case, we have

\[
\phi_{\mathcal{M}_{1,1,\cdots,1}}(\tau, m, \epsilon_1) = J_{1,1,\cdots,1}(\tau, m, \epsilon_1) = J_{1,1}(\tau, m, \epsilon_1)^{N-2}. \tag{5.26}
\]

Let us take the limit \(\tau \to i\infty \). In this limit, the elliptic genus is reduced to the \(\chi_y \)-genus,

\[\text{We have checked this up to order } Q^3.\]
which is just to take the leading part of the Q expansion. In this limit, it also follows that $W \to 1$. Therefore, we find that χ_y-genus is given by

$$\chi_y(\hat{M}_{1,1,\ldots,1}) = 1. \quad (5.27)$$

This then implies that

$$\sum_q (-1)^q \dim H^{p,q}(\hat{M}_{1,1,\ldots,1}) = \begin{cases} 0 & \text{for } p \neq \frac{1}{2} \dim \hat{M}_{1,1,\ldots,1} \\ 1 & \text{for } p = \frac{1}{2} \dim \hat{M}_{1,1,\ldots,1}. \end{cases} \quad (5.28)$$

We thus proved higher-rank generalization of the Sen’s S-duality conjecture [36] from the regularized elliptic genus, starting from the M-string free energies and then taking the NS limit.

5.5 $\tilde{F}^{(2)}$ and Atiyah-Hitchin Elliptic Genus

For the charge (2) m-string in a setting with $N = 2$ M5-branes, the relative part of the moduli space is the four-dimensional Atiyah-Hitchin space. In [15], the contribution of bulk contribution from localized states to the elliptic genus of the Atiyah-Hitchin space was derived directly from the path integral over the Atiyah-Hitchin space. It takes the form

$$\phi_{\text{AH}}(\tau, m, \mu) = \frac{1}{2} \left[\frac{\theta_3(\tau, m + \mu)\theta_3(\tau, m - \mu)}{\theta_3(\tau, \mu)^2} + \frac{\theta_4(\tau, m + \mu)\theta_4(\tau, m - \mu)}{\theta_4(\tau, \mu)^2} \right], \quad (5.29)$$

where μ is a regularization parameter corresponding to the Cartan of the $SO(3)$ action on the Atiyah-Hitchin space, as discussed in section (5.2). The charge 2 m-string moduli space has a \mathbb{Z}_2 grading associated with the parity action with respect to which the elliptic genus can be decomposed into irreducible building blocks [15]. The even part of this is the elliptic genus of the moduli space of electrically neutral monopoles of charge 2. This even part is given by

$$\phi_{\text{AH, even}}(\tau, m, \mu) := 2\phi_{-2,1}(\tau, m) \left[\frac{\theta_1'(2\tau, \mu + \tau)}{\theta_1(2\tau, \mu + \tau)} - \frac{\theta_1'(2\tau, \mu + \tau)^2}{\theta_1(2\tau, \mu + \tau)^2} \right]. \quad (5.30)$$

It is straightforward to show in the Q_τ expansion that [15]

$$\phi_{\text{AH, even}}(\tau, m, 0) = J_2(\tau, m, 0). \quad (5.31)$$

This duality does not extend to non-zero μ. As such, although both μ and ϵ_1 regularization parameters retain the same Cartan of the $SO(3)$ action on the Atiyah-Hitchin space, the grading provided by μ for $\phi_{\text{AH, even}}(\tau, m, \mu)$ and the grading provided by ϵ_1 for $\tilde{F}^{(2)}$ in the NS limit are

\[\text{Incidentally, we can express it also in the form } \phi_{\text{AH, even}}(\tau, m, \mu) = 2\phi_{-2,1}(\tau, m) \frac{W(2\tau, 2\mu + \tau, 0, 0)}{\phi_{-2,1}(2\tau, 2\mu + \tau)}.\]
different. Nevertheless, curiously, if we expand them in powers of μ and ϵ_1, we found that

\[
\begin{align*}
\phi_{AH,even}(\tau,m,\mu) &= \phi_{AH,even}(\tau,m,0) + \mu^2 R_1(\tau,m,0) + \cdots \\
J_2(\tau,m,\epsilon_1) &= J_2(\tau,m,0) + \epsilon_1^2 K_1(\tau,m) + \cdots
\end{align*}
\]

where it also turned out $R_1(\tau,0) = K_1(\tau,0)$. This leads us to conclude that perhaps the duality in (5.31) extends to non-zero μ but with the regularization parameters corresponding to the action of various $U(1)$'s on both sides identified in some non-trivial way.

5.6 $\chi_y(\widehat{M}_{k_1,k_2,\cdots,k_{N-1}})$ Genus from $\widehat{F}(k_1,k_2,\cdots,k_{N-1})$

For arbitrary charge (k_1,k_2,\cdots,k_{N-1}), we found that the function $\widehat{F}(k_1,\cdots,k_{N-1})$ vanishes in the limit $Q_{\tau} \mapsto 0$ if any of the $k_i > 1$. From (5.16), it follows that for $\gcd(k_1,\cdots,k_{N-1}) = 1$ and some $k_i > 1$ the χ_y genus is given by

\[
\chi_y(\widehat{M}_{k_1,\cdots,k_{N-1}}) = 0,
\]

Recalling the definition of the χ_y genus, this yields

\[
\sum_q (-1)^q \dim H^{p,q}(\widehat{M}_{k_1,k_2,\cdots,k_{N-1}}) = 0 \quad \text{for all } p.
\]

6 M5-brane Ensemble and Holomorphic Jacobi Forms

The free energies $\widehat{F}(k_1,k_2,\cdots,k_{N-1})$ we discussed in the previous sections behave very similar to multi-variable Jacobi forms under transformations with respect to congruent subgroups of $SL(2,\mathbb{Z})$. In the last section, we saw that the NS limit of these free energies is related to the elliptic genera of m-string moduli spaces. If we further take the genus-zero limit $\epsilon_1 \mapsto 0$, then we are considering the genus-zero part of the free energy, which suffers from the so-called modular anomaly. We explained that they can be made into covariant objects by using the $\widehat{E}_2(\tau,\tau)$ function at the expense of rendering them non-holomorphic functions. In the following section, we will however show that there exist unique linear combinations of various $\widehat{F}(k_i)$ (in the genus-zero limit $\epsilon_1 = -\epsilon_2 = 0$) which are holomorphic and Jacobi forms of a particular congruence subgroup of $SL(2,\mathbb{Z})$. In other words, the modular anomaly cancels out in these linear combinations, which are unique, all the while retaining the holomorphy as well.

6.1 What Is Special of Equal Kähler Parameters?

Before explaining the details of this observation, we would like to point out that, in general, linear combinations of different free energies $\widehat{F}(k_i)$ do not make sense. Firstly, although $K =$
\[\sum_i k_i \]
is held fixed, different m-string configurations necessitate different number of M5-branes and hence different gauge groups. So, roughly speaking, summing over different free energies amount summing over different rank of the gauge group. Secondly, these free energies are the coefficients of different monomials of the Kähler parameters \(Q_{f_i} \), as can be seen from the expansion (4.2), and hence ought not to be bundled together in any straightforward manner in any sensible BPS state counting. However, at the particular point in the Kähler parameter space where

\[Q_{f_1} = Q_{f_2} = \cdots = Q_f, \quad (6.1) \]
it is meaningful to consider a linear combination of all possible \(\tilde{F}(k_i) \) of fixed \(K = \sum_i k_i \). We can view them as m-string configurations in the M5-brane ensemble, in which the number of M5-branes is freely varied or freely adjusted to fit to the m-string configurations of fixed \(K \). This is the prescription we shall consider hereafter. Here we explain why (6.1) is in fact imperative to interpret the \(\tilde{F}(k_i) \) (or their linear combinations) precisely as the elliptic genera of the relative moduli space of m-strings.

The special limit (6.1) corresponds to a configuration in which all M5-branes are separated by equal distances. Furthermore, since all the Kähler parameters are equal, the \(\tilde{F}(k_i) \) only count the total number of M-strings, irrespective of the M5-branes they are attached to. We can gain a very intuitive picture of this setup by first compactifying the \(x_6 \)-direction of the brane configuration on a circle with radius \(R_6 \) and then take the decompactification limit \(R_6 \to \infty \) in the end. On the circle, the M5-branes are spread out at equal distances. This corresponds to the configuration (6.1). Due to the compactification, this configuration can be interpreted as the Dynkin diagram of the affine extension \(a_{N-1}^+ \) of the Lie algebra \(a_{N-1} \) and indeed, the M5-branes can be thought of being dual to Dynkin roots of \(a_{N-1}^+ \). The M-strings are distributed with multiplicities \(K = (k_1, k_2, \cdots, k_N) \) associated with these roots. Note that here we consider all configurations of \(k_a \geq 0 \). The decompactification limit is obtained from removing any one of the Dynkin roots by making the distance between any two adjacent M5-branes infinitely large. As the M5-branes are symmetrically distributed around the circle, equivalently, as the distance between two adjacent M5-branes are all equal according to (6.1), we can decompactify democratically any one of the intervals. Although there are \(N \) independent ways of doing this, all of them reproduce the Dynkin diagram of the Lie algebra \(a_{N-1} \). From the M-strings point of view, we obtain all possible configurations over the remaining \((N-1) \) intervals (up to appropriate Weyl reflections), i.e. the remaining \((N-1) \) Dynkin nodes. Here, we make no distinction between M-strings at different Dynkin nodes and the only meaningful quantity is the total M-string number. For this arrangement to function as desired, it is necessary to start first with M5-branes as many as the total number of M2-branes under consideration. This then also explains why, after the decompactification, brane configurations with different number of
M5-branes are taken all at equal footings.

Let us now consider this configuration from the point of view of m-strings by studying the simplest non-trivial case: we take \(N = 3 \) with three M5-branes separated by distances \(a_{1,2} \) respectively, with a single M2-brane stretched between each of them (i.e. \(K = (1,1) \)). The monopole moduli space can be separated into a center-of-mass and a relative parts,

\[
\mathcal{M}_{\text{com}} \times \mathcal{M}_{\text{rel}} = \mathbb{R}^4 \times \mathcal{M}_{TN},
\]

which represents 2 magnetic monopoles of distinct U(1) charges \([18]\). We are interested in their electric charge excitations, corresponding to putting F1 strings \((n_1, n_2)\) on top of the M2-branes \([11]\). The F1 string charge is quantized in the Dynkin basis discussed above, and should be interpreted as “momentum” for rotational excitations around the \(S^1 \) part of the moduli space. However, from the viewpoint of \((6.2)\), we expect the interpretation to be more subtle, since the Taub-NUT space is a non trivially curved manifold, i.e. its sigma model is an interacting two-dimensional conformal field theory. Indeed, the \((n_1, n_2)\) are quantized F1 string charges and hence correspond to momenta conjugate to the \(S^1 \)'s of a single monopole moduli space \(\mathbb{R}^3 \times S^1 \). The corresponding Hamiltonian is given by

\[
\mathcal{H} = a_1 \sqrt{g^{-2} + n_1^2} + a_2 \sqrt{g^{-2} + n_2^2} + E_{\text{int}}(n_1, n_2) \\
= \left[\frac{a_1}{g} + \frac{a_2}{g} \right] + \left[\frac{1}{2} (ga_1)n_1^2 + \frac{1}{2} (ga_2)n_2^2 \right] + E_{\text{int}}(n_1 - n_2) + \cdots
\]

(6.3)

The first bracket is the sum of two monopole masses, while the second bracket is the kinetic energy of electric charge excitations, where \(ga_1 = m_{W_1} \) and \(ga_2 = m_{W_2} \) are the W-boson masses for two independent Cartan subalgebras. Note that, modulo the gauge coupling constant \(g \), they are proportional to the M5-brane separations \((a_1, a_2)\). The interaction energy between the two M2-branes depends only on the relative orientation of F1-strings attached to the middle M5-brane. This explains the dependence of \(E_{\text{int}} \) on \((n_1 - n_2)\).

The key idea is now that the electric charge excitations cannot be separated into a center of mass and a relative motion component, unless we set the masses of the two distinct W-bosons to be equal. To see this, let us quantize the charge excitations. The relevant quantum Hamiltonian is

\[
H_{\text{total}} = \frac{1}{2} m_{W_1} n_1^2 + \frac{1}{2} m_{W_2} n_2^2 + H_{\text{rel}}(n_1 - n_2),
\]

(6.4)

\[11\] These F1 strings are additional M2-branes stretched along another orthogonal direction.
where \(n_1, n_2 \) are momenta conjugate to \(S^1(\phi_1), S^1(\phi_2) \) of \((\mathbb{R}^3 \times S^1)^2\):

\[
n_1 := p_{\phi_1} \quad \text{and} \quad n_2 := p_{\phi_2} \quad \text{for} \quad 0 \leq \phi_{1,2} \leq 2\pi. \tag{6.5}
\]

The novel feature of (6.4) is that the masses \(m_{W_1}, m_{W_2} \), not their inverses, appear in front of the squares of the momenta. In order to decompose the Hamiltonian into the center-of-mass and the relative motion part, we define

\[
N \equiv \frac{m_{W_1} n_1 + m_{W_2} n_2}{m_{W_1} + m_{W_2}} := p_{\Phi_{\text{COM}}} \quad \text{and} \quad n \equiv \frac{1}{2}(n_1 - n_2) := p_{\varphi_{\text{rel}}}, \tag{6.6}
\]

which satisfy

\[
n_1 = N + \frac{m_{W_2}}{m_{W_1} + m_{W_2}} n \quad \text{and} \quad n_2 = N - \frac{m_{W_1}}{m_{W_1} + m_{W_2}} n. \tag{6.7}
\]

In terms of the moduli coordinates of electric charge excitation, we have the relations

\[
\Phi_{\text{COM}} = \phi_1 + \phi_2 \quad \text{and} \quad \varphi_{\text{rel}} = 2 \frac{m_{W_2} \phi_1 - m_{W_1} \phi_2}{m_{W_1} + m_{W_2}} \tag{6.8}
\]

as well as

\[
\phi_1 = \frac{m_{W_1}}{m_{W_1} + m_{W_2}} \Phi_{\text{COM}} + \frac{1}{2} \varphi_{\text{rel}} \quad \text{and} \quad \phi_2 = \frac{m_{W_2}}{m_{W_1} + m_{W_2}} \Phi_{\text{COM}} - \frac{1}{2} \varphi_{\text{rel}}. \tag{6.9}
\]

These relations are very different from the standard situation, due to the reason stressed already – the W-boson masses appear in the numerator of the charge excitation kinetic energies, which also affects the charge lattices \((N, n)\). The moduli coordinates \(\phi_1, \phi_2\) take values over \([0, 2\pi]\).

The momenta \(n_1, n_2\) conjugate to them are integrally quantized, i.e. \(n_1, n_2 \in \mathbb{Z}\). However, when computing the elliptic genus of the relative moduli space, we are required to take the decoupling conditions, \(N = 0\) and \(n \in \mathbb{Z}\). We now would like to see under what conditions these conditions are satisfied.

Consider first the shift

\[
\phi_1 \rightarrow \phi_1 + 2\pi \mathbb{Z} \quad \text{and} \quad \phi_2 \rightarrow \phi_2 - 2\pi \mathbb{Z}, \tag{6.10}
\]

which corresponds to

\[
\Phi_{\text{COM}} \rightarrow \Phi_{\text{COM}} \quad \text{and} \quad \varphi_{\text{rel}} \rightarrow \varphi_{\text{rel}} + 4\pi \mathbb{Z}, \tag{6.11}
\]

under which the spectrum of each individual electric charge excitations is invariant. This implies that the momentum \(n\) conjugate to \(\varphi_{\text{rel}}\) must be \(\mathbb{Z}/2\)-quantized.
Consider next the situation that we shift
\[\phi_1 \rightarrow \phi_1 + 2\pi \mathbb{Z} \quad \text{and} \quad \phi_2 \rightarrow \phi_2. \] (6.12)

This amounts to
\[\Phi_{\text{COM}} \rightarrow \Phi_{\text{COM}} + 2\pi \mathbb{Z} \quad \text{and} \quad \varphi_{\text{rel}} \rightarrow \varphi_{\text{rel}} + 4\pi \frac{m_{W_2}}{m_{W_1} + m_{W_2}} \mathbb{Z}. \] (6.13)

Therefore, the moduli space is not quite factorized. The charge excitation part is given by
\[\mathcal{M}_{\text{charge}} = [\mathbb{R}_{\text{COM}} \times S^1(\text{Taub} - \text{NUT})]/2\pi \mathbb{Z}, \] (6.14)
and we see that the decomposition is problematic. For generic \(m_{W_1}, m_{W_2} \) we require
\[0 = N = m_{W_1}n_1 + m_{W_2}n_2 \quad \text{and} \quad n = \frac{1}{2}(n_1 - n_2) \in \mathbb{Z} \] (6.15)

These conditions cannot be satisfied for generic \(m_{W_1}, m_{W_2} \) since
\[n_1 = 2 \frac{m_{W_2}}{m_{W_1} + m_{W_2}} \mathbb{Z} \quad \text{and} \quad n_2 = 2 \frac{m_{W_1}}{m_{W_1} + m_{W_2}} \mathbb{Z}. \] (6.16)

They are integer-valued only for \(m_{W_1} = m_{W_2} \neq 0 \)\(^{12}\). The upshot of this intuitive analysis is that, in order to be able to interpret the counting functions \(\hat{F}^{(k_i)} \) in terms of elliptic genera of the relative moduli spaces of \(m \)-strings, we are forced to take \(m_{W_1} = m_{W_2} \), which corresponds to configurations in which the M5-branes are separated by equal distances. But then, by the argument given at the beginning of this section, one needs to sum over all possible configurations of \(m \)-strings in so far as they all have the same value of \(K = \sum_i k_i \).

6.2 Explicit Examples

It now remains to identify the pertinent M5-brane ensembles once a total number \(K = \sum_i k_i \) of M-string is given. In this and subsection, we will present the unique combinations which lead to holomorphic Jacobi forms in the genus-zero limit. We tabulate \(\hat{F}^{(k_1, \ldots, k_{N-1})}(\tau, m) \) ordered by their index \(K = \sum_i k_i \).

\(^{12}\)The possibility \(m_{W_1} = 0 \) or \(m_{W_2} \) would imply that gauge symmetry is restored and the \(m \)-strings are replaced by magnetic charge cloud.
6.2.1 Index $K = 1$

In the configuration of index $K = 1$, there is only a single $\hat{F}^{(k_1, \ldots, k_{N-1})}(\tau, m)$

\[
\hat{F}^{(1)}(\tau, m) = \varphi_{-2,1}(\tau, Q_m), \tag{6.17}
\]

which indeed is a Jacobi form of weight $w = -2$ and index 1 under the full group $SL(2, \mathbb{Z})$. In this case, we do not encounter an anomaly. The Fourier expansion of $\hat{F}^{(1)}$ is given by

\[
\hat{F}^{(1)} = \sum_{n=0}^{\infty} \sum_{\ell \in \mathbb{Z}} c^{(1)}(n, \ell) Q^n_m \tau^{\ell} = \sum_{n=0}^{\infty} \sum_{\ell \in \mathbb{Z}} c^{(1)}(4n - \ell^2) Q^n_m \tau^{\ell} = \\
2 - Q_m - \frac{1}{Q_m} + Q_\tau \left(2Q^2_m + \frac{2}{Q^2_m} - 8Q_m + \frac{8}{Q_m} + 12 \right) + Q^2_\tau \left(-Q^3_m - \frac{1}{Q^3_m} + 12Q^2_m - 39Q_m - \frac{39}{Q_m} + 56 \right) - Q^3_\tau \left(-8Q^3_m - \frac{8}{Q^3_m} + 56Q^2_m + \frac{56}{Q^2_m} - 152Q_m - \frac{152}{Q_m} + 208 \right) + Q^4_\tau \left(2Q^4_m + \frac{2}{Q^4_m} - 39Q^3_m - \frac{39}{Q^3_m} + 208Q^2_m + \frac{208}{Q^2_m} - 513Q_m - \frac{513}{Q_m} + 684 \right) + O(Q^5_\tau) \tag{6.18}
\]

As for the theta-function decomposition (4.14), the functions $H_{0, 1}$ defined in (4.16) behave in the following way in the genus-zero limit $\epsilon_1, \epsilon_2 \to 0$:

\[
\lim_{\epsilon_1,\epsilon_2 \to 0} \epsilon_1 \epsilon_2 H_0(\tau, \epsilon_1, \epsilon_2) = 2 + 12Q_\tau + 56Q^2_\tau + \cdots = -\sum_{m=0}^{\infty} c^{(1)}(4m)Q^m_\tau \]
\[
\lim_{\epsilon_1,\epsilon_2 \to 0} \epsilon_1 \epsilon_2 H_1(\tau, \epsilon_1, \epsilon_2) = -1 - 8Q_\tau - 39Q^2_\tau + \cdots = -Q^1_\tau \frac{\eta(2\tau)^5}{\eta(\tau)^3\eta(4\tau)^2} = -\sum_{m=0}^{\infty} c^{(1)}(4m - 1)Q^m_\tau \tag{6.19}
\]

6.2.2 Index $K = 2$

In the configurations of $K = 2$, we have two different $\hat{F}^{(k_1, \ldots, k_{N-1})}(\tau, m)$

\[
\hat{F}^{(2)}(\tau, m), \quad \hat{F}^{(1,1)}(\tau, m). \tag{6.20}
\]

Their explicit forms are given in (E.4) in appendix E.1.

Concerning their modular properties of (6.20), we stress that both $\hat{F}^{(2)}(\tau, m)$ and $\hat{F}^{(1,1)}(\tau, m)$
are holomorphic, however, suffer from an anomaly under modular transformations. However, we found that there is a unique combination of these two objects, for which the anomaly cancels. Indeed, upon forming the sum
\[T^{(2)}(\tau, m) = \hat{F}^{(2)}(\tau, m) + \hat{F}^{(1,1)}(\tau, m) = \frac{\varphi_{-2,1}}{12} \left[\varphi_{0,1} - (E_2(\tau) - 2E_2(2\tau)) \varphi_{-2,1} \right], \tag{6.21} \]
we notice that the Eisenstein series \(E_2 \) only appear in the combination \(E_2(\tau) - 2E_2(2\tau) \), which is the particular case \(N = 2 \) of the generalized Eisenstein series introduced in \((D.17)\)
\[\psi^{(2)}(\tau) = E_2(\tau) - 2E_2(2\tau). \tag{6.22} \]
This transforms under the congruence subgroup \(\Gamma_0(2) \). Therefore, \(T^{(2)}(\tau, m) \) in \((6.21)\) is a (holomorphic) Jacobi form of weight \(-2\) and index \(2\) under \(\Gamma_0(2) \). We also remark that \((6.21)\) can also be written as
\[T^{(2)}(\tau, m) = \frac{\varphi_{-2,1}}{2} \left[\left(\frac{\theta_3(\tau, m)}{\theta_3(\tau, 0)} \right)^2 + \left(\frac{\theta_4(\tau, m)}{\theta_4(\tau, 0)} \right)^2 \right]. \tag{6.23} \]
We now display another interesting property of \(T^{(2)} \). Comparing the Fourier expansion
\[T^{(2)}(\tau, Q_m) = \sum_{n=0}^{\infty} \sum_{\ell} c^{(2)}(n, \ell) Q^n Q_\ell \]
\[= 2 - Q_m - \frac{1}{Q_m} + Q_\tau \left(-Q_3^2 - \frac{1}{Q_m^2} + 12Q_m^2 + \frac{12}{Q_m^2} - 39Q_m - \frac{39}{Q_m} + 56 \right) \]
\[+ Q_\tau \left(2Q_4^2 + \frac{2}{Q_m} - 39Q_3^2 - \frac{39}{Q_m^2} + 208Q_4^2 + \frac{208}{Q_m^2} - 513Q_m - \frac{513}{Q_m} + 684 \right) + O(Q_\tau^3) \tag{6.24} \]
with \((6.18)\), we notice that
\[c^{(2)}(n, \ell) = c^{(1)}(2n, \ell) \quad \text{for} \quad n \in \mathbb{N} \quad \text{and} \quad \forall \ell \in \mathbb{Z}. \tag{6.25} \]
This means all the information encoded in \(T^{(2)} \) can already be extracted from \(T^{(1)} \).

6.2.3 Index \(K = 3 \)

For the configurations of \(K = 3 \), there are three different \(\hat{F}^{(k_1, \ldots, k_{N-1})}(\tau, m) \):
\[\hat{F}^{(3)}(\tau, m), \quad \hat{F}^{(2,1)}(\tau, m), \quad \hat{F}^{(1,1,1)}(\tau, m), \tag{6.26} \]

\[^{13} \text{As we already remarked, in both cases, this anomaly can be removed by the replacement \((D.14)\), at the cost of turning \(\hat{F}^{(2)}(\tau, m) \) and \(\hat{F}^{(1,1)}(\tau, m) \) into quasi-holomorphic objects.} \]

\[^{14} \text{More precisely,} \psi^{(2)}(\tau) \text{ is a holomorphic function which transforms with weight 2 under} \ \Gamma_0(2). \]
where we used $\hat{F}^{(2,1)}(\tau, m) = \hat{F}^{(1,2)}(\tau, m)$. The explicit expressions are written in (E.7) in appendix [E.2]. Each of these functions suffers from a modular anomaly. However, we would expect that there are again possible combinations for which the anomalies cancel out. We will now show that there is indeed (up to overall normalization) a unique such combination. To this end, we replace each $E_2(n)$ for $n > 1$ in (E.7) by

$$E_2(n) = \frac{E_2(1) - \psi(n)}{n}$$

for all $n > 1$, (6.27) and form the combination

$$a_1 \hat{F}^{(1,1,1)}(\tau, m) + a_2 \hat{F}^{(2,1)}(\tau, m) + a_3 \hat{F}^{(3)}(\tau, m) = \frac{\varphi_{-2,1}}{2880}$$

$$\times \left[20a_1(\varphi_{0,1})^2 + 2(\varphi_{-2,1})^2 (15a_2 E_4(1) + 7a_3 E_4(1) - 27a_3 E_4(3)) - 20a_3 \psi^{(3)} \varphi_{0,1} \varphi_{-2,1} \right] + \frac{a_1 - a_3}{72} E_2(1)(\varphi_{-2,1})^2 \varphi_{0,1} + \frac{2a_1 - 3a_2 + 4a_3}{288} E_2(1)^2(\varphi_{-2,1})^3$$

(6.28)

for some numerical coefficients $a_{1,2,3}$. The only source of anomaly in this expression are the $E_2(1)$ in the last line. Since the two terms are linearly independent, in order for the anomalies to cancel, we have to impose

$$a_1 - a_3 = 0 \quad \text{and} \quad 2a_1 - 3a_2 + 4a_3 = 0.$$

(6.29)

The solution is $a_2 = 2a_1$ and $a_3 = a_1$. Therefore, up to a overall normalization, the unique anomaly-free combination is

$$T^{(3)} = \hat{F}^{(3)}(\tau, m) + 2 \hat{F}^{(2,1)}(\tau, m) + \hat{F}^{(1,1,1)}(\tau, m)$$

$$= \frac{1}{2880} \left(\varphi_{-2,1} \left[2 (37E_4(1) - 27E_4(3)) (\varphi_{-2,1})^2 - 20 \psi^{(3)} \varphi_{0,1} \varphi_{-2,1} + 20 (\varphi_{0,1})^2 \right] \right).$$

(6.30)

This is a (holomorphic) Jacobi form of weight -2 and index 3 under $\Gamma_0(3)$.

We now analyze the Fourier expansion of $T^{(3)}$, along with the first few terms

$$T^{(3)} = \sum_{n=0}^{\infty} \sum_{\ell} c^{(3)}(n, \ell) Q^n \tau^{\ell}$$

$$= \left(2 - Q_m - \frac{1}{Q_m} \right) + Q_\tau \left(-8Q_m^3 - \frac{8}{Q_m^3} + 56Q_m^2 + \frac{56}{Q_m^2} - 152Q_m - \frac{152}{Q_m} + 208 \right)$$

$$+ \mathcal{O}(Q_\tau^2).$$

(6.31)

15The first line in (6.28) only contains holomorphic modular forms, which are also anomaly-free.
Comparing the coefficients $c^{(3)}$ with (6.18), we find the relation
\[c^{(3)}(n, \ell) = c^{(1)}(3n, \ell) \quad \text{for all} \quad n \in \mathbb{N} \quad \text{and} \quad \forall \ell \in \mathbb{Z}. \]
(6.32)

This again indicates that $T^{(3)}$ can be fully reconstructed from $T^{(1)}$.

6.2.4 Index $K = 4$

For the configurations of $K = 4$, we have six distinct $\hat{F}^{(k_1, \ldots, k_N)}(\tau, m)$ with $\sum_i k_i = 4$:
\[\hat{F}^{(1,1,1,1)}, \quad \hat{F}^{(2,1,1)}, \quad \hat{F}^{(1,2,1)}, \quad \hat{F}^{(3,1)}, \quad \hat{F}^{(2,2)}, \quad \hat{F}^{(4)}, \]
(6.33)

where we have already made use of relations of the form $\hat{F}^{(3,1)}(\tau, m) = \hat{F}^{(1,3)}(\tau, m)$, etc. The explicit expressions are given in (E.8) in appendix E.3. Each of these functions suffers from a modular anomaly, however, we expect that there are again possible combinations for which the latter cancel out.

Following a strategy parallel to subsection 6.2.3, we consider the most general linear combination of these six functions
\[
\begin{align*}
 &a_1 \hat{F}^{(1,1,1,1)} + a_2 \hat{F}^{(2,1,1)} + a_3 \hat{F}^{(1,2,1)} + a_4 \hat{F}^{(3,1)} + a_5 \hat{F}^{(2,2)} + a_6 \hat{F}^{(4)} = -\frac{\varphi_{-2,1}}{1451520} \\
 &\times \left[-840a_1 \varphi_{0,1}^3 - 84 \varphi_{0,1} \varphi_{-2,1}^2 \left((15a_2 + 25a_4 + 18a_5 + 28a_6)E_4(1) - 48(a_5 + a_6)E_4(2) \right) \\
 &+ 8 \varphi_{-2,1}^3 \left((420a_3 + 280a_4 + 181a_5 + 174a_6)E_6(1) - 608a_6E_6(2) - 832a_5E_6(2) \right) \\
 &+ 42\psi^{(2)} \varphi_{-2,1} (64E_4(2)\varphi_{-2,1}^2 (a_6 - a_5) + 20 \varphi_{0,1}^2 (2a_6 + a_5)) + 1680(\psi^{(2)})^2 \varphi_{0,1} \varphi_{-2,1}^2 (a_6 - a_5) \right] \\
 &- \frac{\varphi_{-2,1}^2 E_4(1)}{34560} \left[20 \varphi_{0,1}^2 (-3a_1 + a_5 + 2a_6) + 2 \varphi_{-2,1}^2 \left((-15a_2 - 60a_3 + 15a_4 + 8a_5 + 52a_6)E_4(1) \\
 &+ 32(a_5 - a_6)E_4(2) \right) - 80(\psi^{(2)}) \varphi_{0,1} \varphi_{-2,1} (a_6 - a_5) \right] \\
 &+ \frac{1}{3456} \left(E_2(1)^2 \varphi_{0,1} \varphi_{-2,1}^3 (6a_1 - 3a_2 - 5a_4 - 6a_5 + 16a_6) \right) \\
 &+ \frac{1}{10368} \left(E_2(1)^3 \varphi_{-2,1}^4 (6a_1 - 9a_2 - 12a_3 + 25a_4 + 6a_5 - 32a_6) \right).
\end{align*}
\]

We have replaced all $E_2(n)$ with $n > 1$ by (6.27). In order to form an anomaly-free combination (i.e. a holomorphic modular form), we need to make sure that all terms proportional to (a power of) $E_2(1)$ vanish. Since $E_4(1)$ and $E_4(2)$ as well as $\varphi_{0,1}$ and $\varphi_{-2,1}$ are linearly independent, we
find the following five conditions on the coefficients a_i,

\begin{align*}
-3a_1 + a_5 + 2a_6 &= 0, \\
-15a_2 - 60a_3 + 15a_4 + 8a_5 + 52a_6 &= 0, \\
a_5 - a_6 &= 0, \\
6a_1 - 3a_2 - 5a_4 - 6a_5 + 16a_6 &= 0, \\
6a_1 - 9a_2 - 12a_3 + 25a_4 + 6a_5 - 32a_6 &= 0. \\
\end{align*}

(6.34)

The solution is

\begin{align*}
a_2 &= 2a_1, \\
a_3 &= a_1, \\
a_4 &= 2a_1, \\
a_5 &= a_1, \\
a_6 &= a_1. \\
\end{align*}

(6.35)

Therefore, modulo overall normalization, we find a unique linear combination of the $\tilde{F}^{(k_1, \ldots, k_{N-1})}(\tau, m)$ with index 4 which is a holomorphic modular form of $\Gamma_0(2)$ with weight -2 and index 4

\begin{equation}
T^{(4)} = \tilde{F}^{(1,1.1,1)} + 2 \tilde{F}^{(2,1,1)} + \tilde{F}^{(1,2,1)} + 2 \tilde{F}^{(3,1)} + \tilde{F}^{(2,2)} + \tilde{F}^{(4)} \\
= \frac{\varphi_{-2,1}}{483840} \left[40 (96E_6(2) - 89E_6(1)) \varphi_{-2,1}^3 + 84 (21E_4(1) - 32E_4(2)) \varphi_{0,1} \varphi_{2,1}^2 - 840 \psi(2) \varphi_{2,0,1}^2 + 280 \varphi_{0,1}^3 \right] \\
+ O(Q^2_\tau), \\
\end{equation}

(6.36)

Again, comparing the coefficient $c^{(4)}$ in the Fourier expansion

\begin{align*}
T^{(4)} &= \sum_{n=0}^\infty \sum_\ell c^{(4)}(n, \ell) Q^n_\tau Q^\ell_m \\
&= \left(2 - Q_m - \frac{1}{Q_m} \right) \\
&\quad + Q_\tau \left(2Q_m^4 + \frac{2}{Q_m^2} - 39Q_m^2 - 39 \cdot \frac{3}{Q_m^3} \right) \\
&\quad + \left(208Q_m^2 - 513Q_m - \frac{513}{Q_m} + 684 \right) + O(Q^2_\tau), \\
\end{align*}

(6.37)

with (6.18), we find the relation

\begin{equation}
c^{(4)}(n, \ell) = c^{(1)}(4n, \ell) \quad \text{for all} \quad n \in \mathbb{N} \quad \text{and} \quad \ell \in \mathbb{Z}. \\
\end{equation}

(6.38)

This means that $T^{(4)}$ can be fully reconstructed from $T^{(1)}$.

50
6.2.5 Index $K = 5$

For the configurations of $K = 5$, we have ten distinct $\hat{F}^{(k_1, \ldots, k_{N-1})}(\tau, m)$ with $\sum_i k_i = 5$:

$$
\hat{F}^{(1,1,1,1)} , \hat{F}^{(2,1,1,1)} , \hat{F}^{(1,2,1,1)} , \hat{F}^{(3,1,1)} , \hat{F}^{(1,3,1)} , \hat{F}^{(2,2,1)} , \hat{F}^{(4,1)} , \hat{F}^{(3,2)} , \hat{F}^{(5)} .
$$

(6.39)

Here, we have already used relations of the form $\hat{F}^{(2,1,1,1)}(\tau, m) = \hat{F}^{(1,1,2)}(\tau, m)$, etc. The explicit expressions are given in (E.9) in appendix E.4. In contrast to $K < 4$, however, we find additional relations among the functions (6.39):

$$
3\hat{F}^{(1,3,1)} + 6\hat{F}^{(2,1,1,1)} = 4\hat{F}^{(2,1,2)} + 6\hat{F}^{(2,2,1)} ,
$$
$$
3\hat{F}^{(1,3,1)} = 6\hat{F}^{(1,2,1,1)} + 16\hat{F}^{(2,1,2)} ,
$$
$$
\hat{F}^{(1,3,1)} = 20\hat{F}^{(2,1,2)} + 2\hat{F}^{(2,2,1)} + 34\hat{F}^{(3,1,1)} - 36\hat{F}^{(3,2)} + 16\hat{F}^{(4,1)} .
$$

(6.40)

Let us analyze the modular properties. Each of the functions (6.39) suffers from a modular anomaly. However, we expect that there are again possible combinations for which the anomaly cancels out. Indeed, following the pattern discussed for $K < 5$, we find that the combination

$$
T^{(5)} = \hat{F}^{(1,1,1,1)} + 2\hat{F}^{(2,1,1,1)} + 2\hat{F}^{(1,2,1,1)} + 2\hat{F}^{(3,1,1)} + \hat{F}^{(1,3,1)} + 2\hat{F}^{(2,2,1)} + \hat{F}^{(2,1,2)}
$$
$$
\quad + 2\hat{F}^{(4,1)} + 2\hat{F}^{(3,2)} + \hat{F}^{(5)}
$$

(6.41)

is a holomorphic modular form of weight -2 and index 5 of $\Gamma_0(5)$. This combination is unique up to the identities (6.40) and an overall normalization.

From the Fourier expansion of $T^{(5)}$

$$
T^{(5)} = \sum_{n=0}^{\infty} \sum_{\ell} c^{(5)}(n, \ell) Q^n Q^\ell ,
$$

(6.42)

we again notice the relation

$$
c^{(5)}(n, \ell) = c^{(1)}(5n, \ell) \quad \text{for all} \quad n \in \mathbb{N} \quad \text{and} \quad \ell \in \mathbb{Z} .
$$

(6.43)

Since $c^{(1)}$ is given by the expansion of $T^{(1)}$ in (6.18), this relation implies that $T^{(5)}$ is reconstructable entirely from $T^{(1)}$.

16We have checked that these relations are an accident at the genus-zero limit and do not hold for the full (ϵ_-)-dependent $F^{(k_i)}(\tau, m, \epsilon_-)$.
6.2.6 Index $K = 6$

For the configurations of $K = 6$, we have the following 20 distinct $\hat{F}^{(k_1,...,k_{N-1})}(\tau, m)$ for which $\sum_i k_i = 6$:

$$
\hat{F}^{(1,1,1,1,1,1)}, \hat{F}^{(2,1,1,1,1)}, \hat{F}^{(1,2,1,1,1)}, \hat{F}^{(1,1,2,1,1)}, \hat{F}^{(3,1,1,1)}, \hat{F}^{(1,3,1,1)}, \hat{F}^{(2,2,1,1)}, \\
\hat{F}^{(2,1,2,1)}, \hat{F}^{(2,1,1,2)}, \hat{F}^{(1,2,2,1)}, \hat{F}^{(3,2,1)}, \hat{F}^{(2,3,1)}, \hat{F}^{(3,1,2)}, \hat{F}^{(2,2,2)}, \\
\hat{F}^{(4,1,1)}, \hat{F}^{(1,4,1)}, \hat{F}^{(3,3)}, \hat{F}^{(4,2)}, \hat{F}^{(5,1)}, \hat{F}^{(6)} ,
$$

(6.44)

where we have already made use of relations of the form $\hat{F}^{(2,1,1,1,1)}(\tau, m) = \hat{F}^{(1,1,1,1,1,2)}(\tau, m)$, etc. The explicit expressions are given in (E.10) in appendix E.5. As in the case $K = 5$, we find relations among the functions (6.44)

$$
3\hat{F}^{(1,3,1,1)} + 6\hat{F}^{(2,1,1,1,1)} = 4\hat{F}^{(2,1,1,2)} + 6\hat{F}^{(2,2,1,1)}, \\
6\hat{F}^{(1,2,1,1,1)} + 16\hat{F}^{(2,1,2,1,1)} = 3\hat{F}^{(1,3,1,1)}, \\
\hat{F}^{(1,1,2,1,1)} = \hat{F}^{(1,2,1,1,1)}, \\
18\hat{F}^{(1,3,1,1)} + 6\hat{F}^{(1,4,1)} + 64\hat{F}^{(2,1,1,2,1)} = 24\hat{F}^{(2,1,2,1,1)} + 27\hat{F}^{(3,2,1)}, \\
\hat{F}^{(2,1,1,2)} + 9\hat{F}^{(2,3,1)} = 9\hat{F}^{(1,3,1,1)} + 3\hat{F}^{(1,4,1)} + 6\hat{F}^{(2,1,2,1)}, \\
9\hat{F}^{(1,3,1,1)} + 24\hat{F}^{(2,1,2,1,1)} + 54\hat{F}^{(3,3,2)} = 6\hat{F}^{(1,4,1)} + 10\hat{F}^{(2,1,1,2,1)} .
$$

(6.45)

As in the previous cases, each individual function in (6.44) suffers from a modular anomaly. However, repeating the above constructions, we find that the combination

$$
T^{(6)} = \hat{F}^{(1,1,1,1,1,1)} + 2\hat{F}^{(2,1,1,1,1)} + 2\hat{F}^{(1,2,1,1,1)} + \hat{F}^{(1,1,2,1,1)} + 2\hat{F}^{(3,1,1,1)} + 2\hat{F}^{(1,3,1,1)} + 2\hat{F}^{(2,1,1,1)} + 2\hat{F}^{(2,2,1,1)} + \hat{F}^{(2,1,2,1)} + \hat{F}^{(2,1,1,2)} + 2\hat{F}^{(3,2,1)} + 2\hat{F}^{(2,3,1)} + 2\hat{F}^{(3,1,2)} + 2\hat{F}^{(2,2,2)} + 2\hat{F}^{(4,1,1)} + \hat{F}^{(1,4,1)} + \hat{F}^{(3,3)} + 2\hat{F}^{(4,2)} + 2\hat{F}^{(5,1)} + \hat{F}^{(6)}
$$

(6.46)

is a holomorphic modular form of weight -2 and index 6 of $\Gamma_0(6)$. This combination is unique up to the identities (6.45) and an overall rescaling.

From the Fourier expansion of $T^{(6)}$

$$
T^{(6)} = \sum_{n=0}^{\infty} \sum_{\ell} c^{(6)}(n, \ell) Q_n^\tau Q_m^\ell ,
$$

(6.47)

we also found the relation

$$
c^{(6)}(n, \ell) = c^{(1)}(6n, \ell) , \quad \forall n \in \mathbb{N} \quad \text{and} \quad \forall \ell \in \mathbb{Z} ,
$$

(6.48)
where $c^{(1)}$ is again given by the expansion of $T^{(1)}$ in (6.18). We can reconstruct $T^{(6)}$ entirely from $T^{(1)}$.

6.3 Conjecture for the General Structure

Built upon the emerging patterns we discovered in the previous subsections, we now put forward the following conjecture:

The unique combination

$$T^{(K)}(\tau, m) = \sum_{\{k_i\} : \sum k_i = K} a_{\{k_i\}} \tilde{T}^{(k_i)},$$ \hspace{1cm} (6.49)

with the coefficients $a_{\{k_i\}}$:

$$a_{\{k_i\}} = \begin{cases} 1 & \text{if } (k_1, k_2, \ldots, k_{N-1}) = (k_{(N-1)}, \ldots, k_2, k_1) \\ 2 & \text{if } (k_1, k_2, \ldots, k_{N-1}) \neq (k_{(N-1)}, \ldots, k_2, k_1) \end{cases} \hspace{1cm} (6.50)$$

can be expressed in terms of Hecke transforms as

$$T^{(K)}(\tau, m) = \sum_{a | K} \frac{\mu(a)}{a^3} T_{\frac{K}{a}}(\varphi_{-2,1}(a\tau, am)).$$

Therefore, they transform as a weak Jacobi form of index K and weight -2 under a congruent subgroup Γ of $SL(2, \mathbb{Z})$:

$$T^{(K)} \left(\frac{a\tau + b}{c\tau + d}, \frac{m}{c\tau + d} \right) = (c\tau + d)^{-2} e^{2\pi i K \frac{am^2}{c^2}} T^{(K)}(\tau, m),$$

$$T^{(K)}(\tau, m + \ell\tau + \ell') = e^{-2\pi i K (\ell'^2 + 2\ell m)} T^{(K)}(\tau, m)$$

for $\left(\begin{array}{cc} a & b \\ c & d \end{array} \right) \in \Gamma \subset SL(2, \mathbb{Z})$ and $\ell', \ell \in \mathbb{Z},$ \hspace{1cm} (6.51)

Denote the Fourier expansion of $T^{(K)}$ as

$$T^{(K)}(\tau, m) = \sum_{n=0}^{\infty} \sum_{\ell} c^{(K)}(n, \ell) Q_n^\tau Q_m^\ell. \hspace{1cm} (6.52)$$

Then we have the relation

$$c^{(K)}(n, \ell) = c^{(1)}(nK, \ell) \text{ for all } n \in \mathbb{N} \text{ and } \ell \in \mathbb{Z}, \hspace{1cm} (6.53)$$
where the $c^{(1)}$ are given by the expansion of $T^{(1)}$ in (6.18). This implies that we can express $T^{(K)}$ in terms of $T^{(1)}$ as

$$T^{(K)}(\tau, m) = \frac{1}{K} \sum_{r=0}^{K-1} T^{(1)}(\frac{\tau + r}{K}, m). \tag{6.54}$$

The modular transformation properties of $T^{(K)}(\tau, Q_m)$ can be determined by expressing it in terms of the Hecke transform of $T^{(1)}$. The Hecke transform of a weak Jacobi form $\phi(\tau, m)$ of weight w is defined as

$$T_K(\phi(\tau, m)) \equiv K^{w-1} \sum_{\substack{a \equiv b \mod d \atop ad = K}} \frac{1}{d^w} \phi \left(\frac{a \tau + b}{d}, am \right). \tag{6.55}$$

So, T_K maps a weak Jacobi form of $SL(2, \mathbb{Z})$ of index r into a weak Jacobi form of $SL(2, \mathbb{Z})$ of index Kr. In terms of the Hecke transform, $T^{(K)}$ is given by

$$T^{(K)}(\tau, m) = \sum_{a \mid K} \mu(a) a^3 T_\frac{K}{a}(T^{(1)}(a\tau, am)). \tag{6.56}$$

Given a prime factor decomposition

$$K = \prod_{i=1}^{r} p_i^{m_i} \quad \text{where} \quad m_i \geq 1, \tag{6.57}$$

we introduce the congruence subgroup

$$\Gamma = \Gamma_0(p) \subset SL(2, \mathbb{Z}) \quad \text{with} \quad p = \prod_{i=1}^{r} p_i. \tag{6.58}$$

As $T^{(1)}$ transforms covariantly under $\Gamma_0(1)$ and the largest a that occurs in (6.56) is p, $T^{(K)}$ transforms covariantly under $\Gamma_0(p)$.

6.4 $T^{(K)}$ and m-String Moduli Spaces

In the previous section, we found that the genus-zero part of the free energy for various m-string configurations can be combined to form holomorphic Jacobi forms that can be expressed in terms of Hecke transforms of $\varphi_{-2,1}(\tau, m)$.

These combinations are not arbitrary. They arise when we consider the grand canonical ensemble summing over the number of M5-branes in the equal Kähler parameter configurations.
\(G(\tau, m, \epsilon_1, \epsilon_2, Q) = 1 + \sum_{N=2}^{\infty} Z_N(\tau, m, t, \epsilon_1, \epsilon_2) \), \hspace{1cm} (6.59)

where we have taken \(t_a = M \) for all \(a \) and \(Q = e^{-t} \). The free energy associated with \(G(\tau, m, \epsilon_1, \epsilon_2) \) naturally combines \(\tilde{F}(\kappa_1, \kappa_2, \ldots, \kappa_{N-1}) \) for various \((\kappa_1, \kappa_2, \ldots, \kappa_{N-1}) \) in exactly such a way that the genus-zero part is a holomorphic Jacobi form as discussed in the last subsection.

Recall that the free energy, after subtracting multi-coverings, is given by

\[F(\tau, m, \epsilon_1, \epsilon_2, Q) = \sum_{\ell=1}^{\infty} \mu(\ell) G(\ell \tau, \ell m, \ell \epsilon_1, \ell \epsilon_2, Q^\ell), \]

(6.60)

In terms of \(F \), we can write \(T^{(K)} \) as

\[\sum_{K=1}^{\infty} Q^K T^{(K)} = \lim_{\epsilon_1, \epsilon_2 \to 0} \epsilon_1 \epsilon_2 F(\tau, m, \epsilon_1, \epsilon_2, Q), \]

(6.61)

where by \(T^{(1)} \) we mean the elliptic genus of \(\mathbb{R}^3 \times S^1 \) in the limit \(\epsilon_1 \to 0 \). This is not surprising given that \(\tilde{F}^{(1)} \) in the NS limit is the elliptic genus of \(\mathbb{R}^3 \times S^1 \). However, what is surprising is that \(T^{(2)} \) is also related to the elliptic genus of the Atiyah-Hitchin space.

Recall from the discussion of the last section that the contribution of bulk states to the elliptic genus of the Atiyah-Hitchin space is given by \[\phi_{AH}(\tau, m) := \frac{1}{2} \left[\left(\frac{\theta_3(\tau, m)}{\theta_3(\tau, 0)} \right)^2 + \left(\frac{\theta_4(\tau, m)}{\theta_4(\tau, 0)} \right)^2 \right]. \]

(6.62)

Note that we refer to the full elliptic genus, not just the even part. It was also observed in \[\phi_{AH}(\tau, m) = J_{(1,1)}(\tau, m, 0) + J_{(2)}(\tau, m, 0). \]

(6.63)

Notice that \(T^{(2)} \) is precisely the genus-zero limit of \(\tilde{F}^{(1,1)} + \tilde{F}^{(2)} \) and therefore

\[\phi_{AH}(\tau, m) = \frac{T^{(2)}(\tau, m)}{T^{(1)}(\tau, m)}. \]

(6.64)

Thus \(T^{(2)} \) is the elliptic genus of the magnetic charge-2 m-string for \(N = 2 \).

We believe the above relation is not just a coincident and that higher \(T^{(K)} \), being holomorphic Jacobi forms, are also related to higher monopole charge m-string moduli spaces. Indeed,
a natural guess would be that they capture the elliptic genus of charge-K m-string moduli spaces for $N = 2$. If this holds for any K and N, then the χ_y genus would be

$$\chi_y(\hat{M}_K) = 1 \quad \text{for all} \quad K > 1.$$ \hspace{1cm} (6.65)

Attentive readers might have noticed that the above considerations left out m-string configurations with mixed (i.e. multiple identical plus multiple distinct) magnetic charges for which $\gcd(k_1, \ldots, k_{N-1})$ is greater than unity. For those, we have a natural extrapolation of the constructions we have taken so far: build a new class of holomorphic Jacobi forms by taking multiple products of $J_{k_1,\ldots,k_{N-1}}(\tau, m, \epsilon_1)$ functions. We conjecture that suitable linear combinations of them capture the elliptic genus of m-string moduli space for the situations $\gcd(k_1, \ldots, k_{N-1}) > 1$. Since the combinatorics are more involved and since they have further distinguishing features, we will relegate their detailed construction to [41].

7 Summary and Further Remarks

In this paper, we have studied the correspondence between M-strings and m-strings. We proposed that the degeneracies of BPS bound-states of M-strings for certain configurations of M2-branes (denoted as (k_1, \ldots, k_{N-1})) capture the regularized elliptic genus of the relative moduli space $\hat{M}_{k_1,\ldots,k_{N-1}}$ of m-strings of magnetic charges (k_1, \ldots, k_{N-1}). Specifically, we proposed (see equation (5.16))

$$\phi_{\hat{M}_{k_1,\ldots,k_{N-1}}} (\tau, m, \epsilon_1) = \lim_{\epsilon_2 \to 0} \frac{\tilde{F}^{(k_1,\ldots,k_{N-1})}(\tau, m, \epsilon_1, \epsilon_2)}{\tilde{F}^{(1)}(\tau, m, \epsilon_1, \epsilon_2)} \quad \text{for} \quad \gcd(k_1, \ldots, k_{N-1}) = 1. \hspace{1cm} (7.1)$$

The NS limit ($\epsilon_2 \to 0$) is crucial in this correspondence, since it restores the requisite $ISO(2)$ boost isometry of the m-strings in this setup. Furthermore, the parameter ϵ_1, from the point of view of the elliptic genus, corresponds to an equivariant regularization using an $U(1)$ isometry of the relative moduli space $\hat{M}_{k_1,\ldots,k_{N-1}}$. In the simplest non-trivial case, corresponding to the charge configuration $(1,1)$, the relative moduli space $\hat{M}_{1,1}$ is the Taub NUT space. Its elliptic genus was recently computed in [16] and the universal part of their result (i.e. the contribution independent of the size of the asymptotic circle) agrees with our (5.16).

Concerning the M-strings free energies $\tilde{F}^{(k_1,\ldots,k_{N-1})}$ for generic configurations with $\gcd(k_1, \ldots, k_{N-1}) \neq 1$, we have conducted an in-depth analysis of their (modular) properties. We have studied a number of interesting iterative relations among different $\tilde{F}^{(k_1,\ldots,k_{N-1})}$ corresponding to configurations containing M5-branes that only have one M2-brane ending and beginning on them. Furthermore, we have extracted the explicit spin contents for the M-string BPS-states. In the limit $\epsilon_1 \to 0$, we gave their explicit forms for all configurations up to $\sum_i k_i = 6$ and
expressed them in a way which allows to study their modular properties: while generically individual $\tilde{F}(k_1,\ldots,k_{N-1})$ have a modular anomaly, a unique combination $T^{(K)}$, defined in (6.49), of all configurations with $\sum_i k_i = K$, is a weak Jacobi form of weight -2 and index K of the congruence subgroup $\Gamma_0(p)$ defined in (6.58). While combinations of $\tilde{F}(k_1,\ldots,k_{N-1})$ in general do not make sense from a physics point of view, they are admissible at the point in moduli space where all Kähler moduli take an equal value. We gave a physical interpretation of this fact from the viewpoint of m-strings, arguing that only at this point in the moduli space the factorization of electric excitations over the total moduli space into that of center-of-mass and of relative parts become possible.

It would be fruitful to further study and compare properties of the M&m-string partition functions. Firstly, it is an interesting problem to elucidate the parallels of the BPS state counting in M&m-strings with a variety of BPS bound-state counting problems in field and string theories. We recalled two situations in section 5.3.2. A new aspect of M&m-strings, as compared to those situations, is that the BPS counting functions must exhibit modular covariance and that the modularity would impose additional constraints on the functions. Indeed, we were able to construct holomorphic Jacobi forms at least under particular congruence subgroup of $SL(2,\mathbb{Z})$. There is a priori no reason why the equivariantly regularized elliptic genus exhibit such modularity. While the parallels with other BPS bound-state problems suggest that this is the best we could get, it would still be useful to try to construct other modular covariant functions and, if not possible, to understand more precisely why the equivariantly regularised elliptic genus exhibits so. In [15] it was suggested that a refined version of this quotient also captures additional contribution that would restore the full modular covariance under the $SL(2,\mathbb{Z})$. It would be very interesting to understand the refinement of [15] from the viewpoint of the Ω-deformations we used for equivariant regularization. Secondly, the M-string configurations in which a direction transverse to M5-branes is compactified to a circle are related to m-string configurations in which calorons and Kaluza-Klein monopoles also contribute as new constituents. This will certainly entail new features to the BPS bound-state counting of M&m-strings and poses an interesting new direction for building additional holomorphic Jacobi forms and corresponding elliptic genera. We will report our results on these research programs in a separate work [41].

Acknowledgment

We would like to thank Jinbeom Bae, Dongsu Bak, Michele Del Zotto, Andreas Gustavsson, Babak Haghighat, Can Kozcaz, Guglielmo Lockhart, Sameer Murthy, Dario Rosa and Cumrun Vafa for many helpful discussions. SH is grateful to the Asia-Pacific Center for Theoretical Physics and Seoul National University for warm hospitality and for creating a stimulating re-
search environment while part of this work was being done. AI thanks the Center for Mathematical Sciences and Applications at Harvard university for support and a stimulating environment. AI acknowledges the support of Higher Education Commission through grant HEC-2487. SJR acknowledges the support of the National Research Foundation of Korea(NRF) grant funded by the Korea government(MSIP) through Seoul National University with grant numbers 2005-0093843, 2010-220-C00003 and 2012K2A1A9055280.

A Relevant Monopole Physics

For $\mathcal{N} = 4, 2$ super Yang-Mills with gauge group $G = SU(N)$, the Coulomb branch is parametrized by the asymptotic value of the Higgs field. Take the diagonal gauge in which all off-diagonal entries of the Higgs field are zero. Set the Cartan basis

$$H_1 = (1, 0, 0, \cdots, 0), \quad H_2 = (0, 1, 0, \cdots, 0), \quad \ldots \quad H_N = (0, 0, 0, \cdots, 1). \quad (A.1)$$

In this basis, the Higgs field reads

$$\phi = \text{diag}(v_1, \cdots, v_N) = \sum_{a=1}^{N} v_a H_a \quad (A.2)$$

where the asymptotic value of the Higgs field v's are subject to the SU(N) condition $v_1 + \cdots + v_N = 0$. By Weyl symmetry, we can always order the asymptotic Higgs fields in the positive Weyl chamber as

$$v_1 \leq v_2 \leq \cdots \leq v_N. \quad (A.3)$$

The 2nd homotopy group of the coset $SU(N)/(U(1))^{N-1}$ yields $(N-1)$ species of magnetic monopoles. In the Cartan basis, the asymptotic magnetic field reads

$$B_a = g \hat{r}_a \frac{\dot{r}}{4\pi r^2}, \quad \text{where} \quad g = \sum_{a=1}^{N} g_a H_a. \quad (A.4)$$

The g_1, \cdots, g_N are magnetic charges subject to the SU(N) condition $g_1 + \cdots + g_N = 0$. The SU(N) condition is automatically satisfied in the Weyl basis

$$\alpha_1 = (1, -1, 0, 0, \cdots, 0), \quad \alpha_2 = (0, 1, -1, 0, \cdots, 0), \quad \ldots, \quad \alpha_{N-1} = (0, \cdots, 0, 1, -1). \quad (A.5)$$
The asymptotic Higgs field and the magnetic charge are expanded as
\[\phi = \sum_{a=1}^{N-1} \mu_a \alpha_a, \quad \text{and} \quad g = \sum_{a=1}^{N-1} k_a \alpha_a. \]
(A.6)

The magnetic charge components can be related between the two bases:
\[
(v_1, \cdots, v_N) = (\mu_1, \mu_2 - \mu_1, \cdots, \mu_{N-1} - \mu_{N-2}, -\mu_{N-1})
\]
\[
(g_1, \cdots, g_N) = (k_1, k_2 - k_1, \cdots, k_{N-1} - k_{N-2}, -k_{N-1}). \]
(A.7)

The BPS configuration has the mass
\[M_m = |g \cdot \phi| = \left| \sum_{a=1}^{N-1} n_a \mu_a \right|. \]
(A.8)

The total moduli space of magnetic charge \(g \) monopoles is a noncompact hyperkähler space, whose topology is given by
\[\mathcal{M}_g = \bigotimes_{a=1}^{N-1} (\mathbb{R}^3 \times S^1_k)^{k_a}/\Gamma_g \]
(A.9)

Here, \(\Gamma_g \) is the permutation group of \((k_1, \cdots, k_{N-1})\). It has the real dimension
\[\dim \mathcal{M}_g = 4 \sum_{a=1}^{N-1} k_a. \]
(A.10)

\section*{B Noncompact Hyperkähler Geometry}

In this appendix we summarize some basics on hyperkähler geometry, relevant for the discussions in the main part of this paper. We first recall that the holonomy group \(H \) of a simply connected manifold \(M \) must belong to the following Berger’s classification:

\[
\begin{array}{lll}
H & \text{Dim}(M) & \text{manifold class} \\
SO(n) & n \ (n \geq 1) & \text{Riemannian} \\
U(n) & 2n \ (n \geq 1) & \text{Kähler} \\
SU(2n) & 2n \ (n \geq 1) & \text{Calabi-Yau} \\
Sp(n) & 4n \ (n \geq 1) & \text{hyperkähler} \\
Sp(n) \times Sp(1)/\mathbb{Z}_2 & 4n \ (n \geq 2) & \text{quaternionic Kähler} \\
G_2 & 7 & G_2 \\
Spin(7) & 8 & \text{Spin}(7)
\end{array}
\]
(B.1)
in which M is assumed to be a non-symmetric and irreducible space. This means that the holonomy group h acts as an irreducible representation on tangent bundle TM.

B.1 Hyperkähler Manifolds

A hyperkähler manifold is a Riemannian manifold (M, g) with three complex structures $I_a : TM \to TM$, ($a = 1, 2, 3$, $I_a^2 = -1$) that commute with parallel transport. They satisfy

$$ I_a I_b = \epsilon_{abc} I_c. \quad (B.2) $$

Accordingly, at any point on M, there is an $SO(3)$ family of skew-symmetric and closed Kähler 2-forms, $(\omega_a, a = 1, 2, 3)$:

$$ \omega_a(u, v) = g(I_a u, v) \quad \text{for all } u, v \in TM. \quad (B.3) $$

The holonomy group of hyperkähler manifold is contained in $Sp(n)$, i.e. the group of orthogonal transformation of $\mathbb{R}^{4n} = \mathbb{H}^n$. They are linear with respect to I_a and I_a’s are parallel and make $TM |_x$ a quaternionic vector space. Conversely, if a $4n$-dimensional manifold M has holonomy group contained in $Sp(n)$, the complex structures $I_a |_x$ can be chosen on $TM |_x$ and render $TM |_x$ a quaternionic vector space. Parallel transport of $I_a |_x$ furnishes three complex structures on M, so M is a hyperkähler manifold.

From the viewpoint of Kähler geometry, we can think of the hyperkähler manifold M as a holomorphic symplectic manifold. Namely, choosing I_1 as the complex structure, (M, g, I_1) is a Kähler manifold equipped with an additional holomorphic symplectic form (viz. a closed and everywhere nondegenerate holomorphic 2-form) $\omega := \omega_2 + I_1 \omega_3$. Conversely, Yau’s theorem asserts that a holomorphic symplectic manifold M admits a Ricci flat metric for which the holomorphic symplectic form commutes with parallel transports. This implies that the holonomy group is contained in $Sp(n)$ and hence M is a hyperkähler manifold.

The minimal dimension for a hyperkähler manifold is 4. Since $Sp(1) \simeq SU(2)$, it is also a CY2fold. If M_4 is compact and simply connected, it is actually an irreducible symplectic manifold, i.e. a K3 surface. If not simply connected, M_4 could be a complex 2-torus $T^2_\mathbb{C}$ as well.

Hereafter, we summarize several constructions of noncompact hyperkähler manifolds that are relevant for the present work.

B.2 Cotangent Bundle of Kähler Manifold

A class of noncompact hyperkähler manifold is cotangent bundle T^*M_K of a Kähler manifold M_K. This is because the cotangent bundle can be canonically decomposed to Lagrangian
subspaces $T^*M_K \sim V \oplus V^*$ and the obvious pairing furnishes a holomorphic symplectic form ω. This implies that T^*M is holomorphic symplectic and hence hyperkähler. Its holomorphic form ω is in general defined patch wise with well-defined transition functions. Therefore, T^*M_K is a noncompact hyperkähler manifold.

B.3 Hilbert Scheme

The Hilbert schemes $X^{[K]}$ of $K(\geq 2)$ points on a four-dimensional hyperkähler manifold X are also hyperkähler. Blow-ups by deleting a suitable codimension-2 sets provides the Hilbert-Chow morphism $X^{[K]} \to S^K X = (X)^K / S_K$, the K-th symmetric product of X, and guarantees the existence of a holomorphic symplectic form ω. If X is (non)compact, $X^{[K]}$ is also (non)compact. In case $X = K3$, the moduli space $M_X(N, c_1, c_2)$ of rank-N sheaves with Chern class (c_1, c_2) is an irreducible symplectic manifold (assuming that the moduli space is compact). Via the Fourier-Mukai transformation, the moduli space is diffeomorphic to the Hilbert scheme $X^{[K]}$ of the same dimension. For example, by the result of Vafa and Witten [42]

$$\chi_E[M_{K3}(2, 0, 2K)] = \mathcal{E}[4K - 3] + \frac{1}{4} \mathcal{E}[K],$$

where $\mathcal{E}[K]$ is the Euler characteristic of the $X^{[K]}$ of K points on K3 manifold X.

B.4 Monopole Moduli Space

The noncompact hyperkähler space we consider as the target space of the m-string is the moduli space of magnetic monopoles on \mathbb{R}^4. It can be described by the data (A, Φ) that satisfies the BPS equation

$$\{(A, \Phi)|F_A = \star_3 d_A \Phi, \ F_A = d_A + A^2, \ d_A = d + A\}/G.$$

Here A is a connection on a principal $G = A_{N-1}$-bundle on \mathbb{R}^3 and Φ is a Lie algebra valued holomorphic Higgs form, both with appropriate fall-off conditions at spatial infinity. The magnetic charge is defined by the second Chern class of the data. The moduli space $\mathcal{M}_m(N, K)$ of BPS magnetic monopoles of charge K is the space of in equivalent data (A, Φ) modulo gauge equivalence. According to Donaldson’s theorem [43], this moduli space is isomorphic to the space of rational maps $h: \mathbb{P}^1 \to \mathbb{P}^{N-1}$ of degree-K with the boundary condition $h(\infty) = 0$. For example, for $G = A_1$,

$$\mathcal{M}(2, K) = \left\{ \frac{a_0 + a_1 z + \cdots + a_{K-1} z^{K-1}}{b_0 + b_1 z + \cdots + b_{K-1} z^{K-1} + z^K} \bigg| \Delta \neq 0 \right\} \subset \mathbb{C}^{2K} \simeq \mathbb{H}^K,$$
where Δ is the resultant of the numerator and the denominator. Being an open subset of \mathbb{H}^K, the moduli space $\mathcal{M}(2, K)$ is a noncompact hyperkähler manifold. One of spin-offs of this paper is that, utilizing the free energy $T^{(K)}$, we were able to extract topological information of the multi-monopole moduli space $\mathcal{M}(N, K)$.

B.5 Instanton Moduli Space

The hyperkähler manifold taken as the target space of the M-string is the moduli space of instantons on \mathbb{R}^4. It can be described by the data A that satisfies the anti-self-duality condition

$$\{A|F_A = -*_4 F_A, F_A = dA + A^2\}/G.$$

(B.7)

Here, A is a connection of $G = A_{N-1}$ bundle on \mathbb{R}^4, with appropriate fall-off conditions at spacetime infinity. The instanton charge is defined by the second Chern class of A. The moduli space $M_i(N, K)$ of anti-self-dual instantons of charge K is the space of inequivalent data A modulo gauge equivalence. This moduli space is diffeomorphic to the moduli space of rank N torsion-free sheaves E on \mathbb{P}^2 with the second Chern class K. Explicitly,

$$M_i(N, K) = \{(B_1, B_2, P, Q)|[B_1, B_2] + P^T Q = 0\}/GL(K, \mathbb{C})$$

(B.8)

where the matrices B_1, B_2 are $(K \times K)$ and P, Q are $(N \times K)$. So, $M_i(N, K)$ is the hyperkähler quotient by the $GL(K, \mathbb{C})$ action of the cotangent bundle $T^*\mathcal{M}$ of $\mathcal{M} = \text{Hom}(\mathbb{C}^K, \mathbb{C}^K) \times \text{Hom}(\mathbb{C}^N, \mathbb{C}^K)$.

C Relations among $\tilde{F}^{(k_1, \cdots, k_{N-1})}$

In this appendix, we explicitly show relations among different $\tilde{F}^{(k_1, k_2, \cdots, k_{N-1})}$ whose indices (k_1, \cdots, k_{N-1}) contain several consecutive entries of 1. Indeed, the upshot of our analysis is that these factors can be ‘compressed’ at the expense of additional factors of $W(\tau, m, \epsilon_1, \epsilon_2)$.

C.1 $\tilde{F}^{(1,1,\cdots,1,2)}$ and $\tilde{F}^{(1,2,1,\cdots,1)}$

We start by considering $\tilde{F}^{(1,1,\cdots,1,2)}$, i.e.

$$k_i = 1 \text{ for } i = 1, \cdots, N - 2 \text{ and } k_{N-1} = 2.$$

(C.1)
For this configuration, we have

\[
\tilde{F}^{(1,1,\cdots,1,2)} = (-1)^N \sum_{\ell=1}^{N} (-1)^\ell \sum_{k_1,\ldots,k_{N-1}\geq 0}^{\sum k_i = 1 + a_{N-1}} \prod_{i=1}^{\ell} Z_{k_i} \cdot W_{N-3}^{N-3}
\]

(C.2)

Since the term in the bracket is precisely \(\tilde{F}^{(1,2)}\) we have,

\[
\tilde{F}^{(1,1,\cdots,1,2)} = \tilde{F}^{(1,2)} W^{N-3} \quad (C.3)
\]

In a similar fashion we can treat

\[
\tilde{F}^{(1,2,1,\cdots,1)} = -2(H_{01}H_{10})^2 W^{N-2} + Z_2(H_{01}H_{10})^2 W^{N-4} - Z_{12} H_{01} H_{10} W^{N-4}
- Z_{21} H_{01} H_{10} W^{N-4} + Z_{121} W^{N-4}
\]

\[
= \left[-2(H_{01}H_{10})^2 W^2 + Z_2(H_{01}H_{10})^2 - Z_{12} H_{01} H_{10} - Z_{21} H_{01} H_{10} + Z_{121} \right] W^{N-4}
\]

Therefore, we find the relation

\[
\tilde{F}^{(1,2,1,\cdots,1)} = \tilde{F}^{(1,2,1)} W^{N-4}. \quad (C.4)
\]

In the same fashion we can treat any combination of \((k_i)\) which has only a single entry 2 and else only 1’s.

C.2 \(\tilde{F}^{(2,2,1,\cdots,1)}\) and \(\tilde{F}^{(2,1,\cdots,1,2)}\)

The next class of examples contains sets of \((k_i)\) with two entries equal to 2 and the remaining ones 1. *i.e.* the simplest example is

\[
\tilde{F}^{(2,2,1,\cdots,1)} = -(H_{01}H_{10})^2(3H_{01}H_{10} - H_{11})W^{N-2} - Z_{12} H_{01} H_{10}(3H_{01}H_{10} - H_{11}) W^{N-4}
+ Z_{121} H_{01} H_{10} W^{N-4} + Z_2(H_{01}H_{10})^2(3H_{01}H_{10} - H_{11}) W^{N-4} + Z_2 Z_{21} W^{N-4}
- Z_2^2(H_{01}H_{10}) W^{N-4} + Z_{22} H_{01} H_{10} W^{N-4} - Z_{221} W^{N-4} - Z_{12} W^{N-4} = \tilde{F}^{(2,2,1)} W^{N-4}
\]
In a similar fashion we can consider the case where the first and the last entry are 2 while the remaining ones are 1

\[
\tilde{F}^{(2,1,\ldots,1,2)} = \left[-Z_1^3W^3 - Z_1Z_{12}W^2 + 2Z_2^2Z_2W^2 + Z_2Z_{12}W - Z_2^2Z_1W - Z_1Z_{21}W^2 \right. \\
\left. - \frac{Z_{12}Z_{21}}{Z_1}W + Z_2Z_{21}W \right] W^{N-4} = \tilde{F}^{(2,1,2)} W^{N-4} \tag{C.5}
\]

C.3 \(\tilde{F}^{(3,1,\ldots,1)} \)

The next non-trivial example is to have \(k_1 = 3 \) and the remaining \(k_i = 1 \)

\[
\tilde{F}^{(3,1,\ldots,1)} = -(H_{01}H_{10})^3W^{N-2} + Z_2H_{01}H_{10}(2H_{01}H_{10} - H_{11})W^{N-3} - Z_{21}H_{01}H_{10}W^{N-3} \\
- Z_3H_{01}H_{10}W^{N-3} + Z_{31}W^{N-3} = \tilde{F}^{(3,1)} W^{N-3} \tag{C.6}
\]

C.4 \(\tilde{F}^{(3,1,1,2)} \)

The final example we consider is the case \(\tilde{F}^{(3,1,1,2)} \). As a preparation, we compute \(\tilde{F}^{(3,1,2)} \)

\[
\tilde{F}^{(3,1,2)} = -H_{11}^3Z_1^4 + 2H_{11}Z_1^3 - Z_1^6 + H_{11}Z_1^2Z_{12} - Z_1^3Z_{12} + H_{11}^2Z_1^2Z_2 - 4H_{11}Z_1^3Z_2 \\
+ 3Z_1^2Z_2 - H_{11}Z_{12}Z_2 + 2Z_1Z_{12}Z_2 + H_{11}Z_1Z_2^2 - 2Z_1^2Z_2^2 + H_{11}Z_1^2Z_{21} \\
- Z_1^3Z_{21} - Z_{12}Z_2 + Z_1Z_2Z_2 + H_{11}Z_1^2Z_3 - Z_1^3Z_3 - Z_{12}Z_3 + Z_1Z_2Z_3 \\
- H_{11}Z_1Z_{31} + Z_1^2Z_{31} + \frac{Z_{12}Z_{31}}{Z_1} - Z_2Z_{31}
\]

We compare this expression to

\[
\tilde{F}^{(3,1,1,2)} = H_{11}^3Z_1^4 - 3H_{11}^2Z_1^5 + 3H_{11}Z_1^6 - Z_1^7 - H_{11}^2Z_1^2Z_{12} + 2H_{11}Z_1^3Z_{12} - Z_1^4Z_{12} \\
- H_{11}^3Z_1^2Z_2 + 5H_{11}^2Z_1Z_2^2 - 7H_{11}Z_1^4Z_2 + 3Z_1^2Z_2^2 + H_{11}^3Z_{12}Z_2 - 3H_{11}Z_1Z_{12}Z_2 \\
+ 2Z_1^2Z_{12}Z_2 - H_{11}^2Z_1Z_2^3 + 3H_{11}Z_1^2Z_2^2 - 2Z_1^3Z_2^3 - H_{11}Z_1^2Z_2Z_{21} + 2H_{11}Z_1^3Z_{21} \\
- Z_1^4Z_{21} + H_{11}Z_1Z_{21Z_21} - Z_1Z_{12}Z_2Z_{21} - H_{11}Z_1Z_2Z_{21} + Z_1^2Z_2Z_{21} - H_{11}Z_1^2Z_3 \\
+ 2H_{11}Z_1^2Z_3 - Z_1^4Z_3 + H_{11}Z_1Z_{12}Z_3 - Z_1Z_{12}Z_3 - H_{11}Z_1Z_2Z_3 + Z_1^2Z_2Z_3 \\
+ H_{11}^2Z_1Z_{31} - 2H_{11}Z_1^2Z_{31} + Z_1^3Z_{31} + Z_{12}Z_{31} - (H_{11}Z_{12Z_{31}})/Z_1 + H_{11}Z_2Z_{31} \\
- Z_1Z_2Z_{31} = \tilde{F}^{(3,1,2)} W(\tau, m, \epsilon_1, \epsilon_2) \tag{C.7}
\]

D Modular Building Blocks

In this section, we compile a number of relevant definitions and useful relations of modular objects, which we will use throughout the paper. Our conventions follow mostly [14].
D.1 Jacobi Theta Functions

A class of functions used for the M-strings partition functions are the Jacobi theta functions, which are defined as follows:

\[
\begin{align*}
\theta_1(\tau, m) &= -iQ^{1/8}Q_m^{1/2}\prod_{n=1}^{\infty}(1 - Q^n\tau)\left(1 - Q_mQ^n\tau\right)\left(1 - Q_m^{-1}Q_n^{-1}\right), \\
\theta_2(\tau, m) &= 2Q^{1/8}\cos(\pi m)\prod_{n=1}^{\infty}(1 - Q^n\tau)\left(1 + Q_mQ^n\tau\right)\left(1 + Q_m^{-1}Q_n^{-1}\right), \\
\theta_3(\tau, m) &= \prod_{n=1}^{\infty}(1 - Q^n\tau)\left(1 + Q_mQ^n\tau^{-1/2}\right)\left(1 + Q_m^{-1}Q_n^{-1/2}\right), \\
\theta_4(\tau, m) &= \prod_{n=1}^{\infty}(1 - Q^n\tau)\left(1 - Q_mQ^n\tau^{-1/2}\right)\left(1 - Q_m^{-1}Q_n^{-1/2}\right).
\end{align*}
\]
(D.1)

Here, we use the notation

\[Q_\tau = e^{2\pi i \tau} \quad \text{and} \quad Q_m = e^{2\pi i m}.\]
(D.2)

Furthermore, we also introduce the Dedekind eta function

\[\eta(\tau) = Q^{1/24}\prod_{n=1}^{\infty}(1 - Q^n\tau).\]
(D.3)

D.2 Weak Jacobi Forms

In studying the M- and m-string partition functions, we encountered weak Jacobi forms of $SL(2, \mathbb{Z})$ and its subgroups. Here we outline the most important properties of these objects (a more complete treatment can be found in [44]). A weak Jacobi form $\phi_{w,s}$ of weight-w and index-s of $SL(2, \mathbb{Z})$ is the mapping function

\[
\phi_{w,s} : \mathbb{H} \times \mathbb{C} \rightarrow \mathbb{C} \quad \text{with} \quad (\tau, m) \mapsto \phi_{w,s}(\tau, m), \quad (a \ b \ c \ d) \in SL(2, \mathbb{Z})
\]
(D.4)

where \mathbb{H} is the upper half-plane. It satisfies

\[
\begin{align*}
\phi_{w,s}\left(\frac{a\tau + b}{c\tau + d}, \frac{m}{c\tau + d}\right) &= (c\tau + d)^w e^{2\pi is\frac{ad}{c\tau + d}} \phi_{w,s}(\tau, m), \\
\phi_{w,s}(\tau + \ell\tau, m + \ell^2\tau + 2\ell m) &= e^{-2\pi is(\ell^2\tau + 2\ell m)} \phi_{w,s}(\tau, m), \quad \ell, \ell' \in \mathbb{Z}.
\end{align*}
\]
(D.5)
It can be Fourier-expanded
\[
\phi_{w,s}(\tau, m) = \sum_{n \geq 0} \sum_{\ell \in \mathbb{Z}} c(n, \ell) Q^n_{\tau} Q^\ell_{m},
\] (D.6)
with the coefficients \(c(n, \ell) = (-1)^w c(n, -\ell)\).

The standard weak Jacobi-forms of \(SL(2, \mathbb{Z})\) of index 1 and weight 0 and \(-2\), respectively, are given by
\[
\varphi_{0,1}(\tau, m) = 4 \sum_{i=2}^{4} \frac{\theta_i(\tau, m)^2}{\theta_i(\tau, 0)} \quad \text{and} \quad \varphi_{-2,1}(\tau, m) = -\frac{\theta_2^2(\tau, m)}{\eta(\tau)^6}. \] (D.7)

In fact, we have the following structure theorem: every weak Jacobi form of index 1 and even weight \(w\) (of a congruence subgroup \(\Gamma \subset SL(2, \mathbb{Z})\)) can be expressed as a linear combination
\[
\phi_{w,1}(\tau, m) = g_w(\tau) \varphi_{0,1}(\tau, m) + g_w'(\tau) \varphi_{-2,1}(\tau, m),
\] (D.8)
where \(g_w(\tau)\) and \(g_w'(\tau)\) are modular forms of \(\Gamma\) with weights \(w\) and \(w + 2\), respectively.

D.3 Theta Functions of index \(k\)

We also define the following theta-functions of index \(k\):
\[
\vartheta_{k,\ell}(\tau, m) := \sum_{n \in \mathbb{Z}} Q^{k(n+\ell)}_{\tau} Q^{\ell+2kn}_{m}, \] (D.9)
where \(\ell\) takes values \(\ell = 0, \ldots, 2k - 1\). They exhibit the property
\[
\vartheta_{k,\ell}(\tau, m) = \vartheta_{k,2k-\ell}(\tau, -m). \] (D.10)

Explicitly, we find the series expansions for \(k = 1\)
\[
\vartheta_{1,0}(\tau, m) = 1 + Q_{\tau} \left(Q^2_m + Q^{-2}_m\right) + Q^4_{\tau} \left(Q^4_m + Q^{-4}_m\right) + Q^6_{\tau} \left(Q^6_m + Q^{-6}_m\right) + \ldots
\]
\[
\vartheta_{1,1}(\tau, m) = Q^{1/4}_{\tau} \left[Q_m + Q^{-1}_m + Q^2_{\tau} \left(Q^3_m + Q^{-3}_m\right) + Q^6_{\tau} \left(Q^5_m + Q^{-5}_m\right)\right] + \ldots, \] (D.11)
and for $k = 2$

\[\vartheta_{2,0}(\tau, m) = 1 + Q_2^2(Q_m^4 + Q_m^{-4}) + Q_2^8(Q_m^8 + Q_m^{-8}) + \ldots , \]
\[\vartheta_{2,1}(\tau, m) = Q_{1/8}^{1/2} \left[Q_m + Q_\tau Q_m^{-3} + Q_\tau^3 Q_m^5 + Q_\tau^6 Q_m^{-7} + \ldots \right] , \]
\[\vartheta_{2,2}(\tau, m) = Q_{1/2}^{1/2} \left[(Q_m^2 + Q_m^{-2}) + Q_\tau^4(Q_m^6 + Q_m^{-6}) + \ldots \right] , \]
\[\vartheta_{2,3}(\tau, m) = Q_{1/8}^{1/2} \left[Q_m^{-1} + Q_\tau Q_m^3 + Q_\tau^3 Q_m^{-5} + Q_\tau^6 Q_m^7 + \ldots \right] , \]

(D.12)

D.4 Modular Forms for $SL(2, \mathbb{Z})$ and Its Congruence Subgroups

In order to express weak Jacobi forms of congruence subgroups, we need a basis for modular forms of congruence subgroups of $SL(2, \mathbb{Z})$. Here we will only compile the forms relevant for us – essentially the Eisenstein series – and refer the interested reader to the original mathematics literature for the complete basis [45, 46] (see also [47] for a review).

D.4.1 Eisenstein Series of $SL(2, \mathbb{Z})$

The Eisenstein series of $SL(2, \mathbb{Z})$ are defined as

\[E_{2k}(\tau) := 1 + \frac{(2\pi i)^{2k}}{(2k - 1)!\zeta(2k)} \sum_{n=1}^{\infty} \sigma_{2k-1}(n) Q_\tau^n , \]

(D.13)

where $\sigma_k(n)$ is the divisor function. For $k > 1$ the function E_{2k} is a modular form of weight $2k$. Furthermore, every E_{2k} with $k > 3$ can be written as a polynomial in E_4 and E_6.

For $k = 2$ the function $E_2(\tau)$ is not a modular form, but transforms with an additional shift term. More precisely, only the combination

\[\tilde{E}_2(\tau, \bar{\tau}) = E_2(\tau) - \frac{3}{\pi \tau_2} , \]

(D.14)

transforms with weight 2 under transformations of $SL(2, \mathbb{Z})$. However, the latter is no longer a holomorphic function, but is called a quasi-holomorphic form.

D.4.2 Modular Forms of $\Gamma_0(N)$

In this section, we recall important modular forms for congruence subgroups $\Gamma_0(N)$ os $SL(2, \mathbb{Z})$. Our main references are [45, 46] (see also [47] for an overview).

The space $\mathcal{M}_{2k}(\Gamma_0(N))$ of weight $2k$ modular forms for $\Gamma_0(N)$ has the structure

\[\mathcal{M}_{2k}(\Gamma_0(N)) = \mathcal{E}_{2k}(\Gamma_0(N)) \oplus \mathcal{S}_{2k}(\Gamma_0(N)) , \]

(D.15)

where $\mathcal{E}_{2k}(\Gamma_0(N))$ is the subspace that is invariant under all Hecke operators, while $\mathcal{S}_{2k}(\Gamma_0(N))$
is the space of cusp forms. The latter will not be important for our current work and we therefore focus exclusively on the former. A basis for \(\mathcal{E}_k(\Gamma_0(N)) \) is given by (generalized) Eisenstein series of weight 2\(k \). This comprises the following objects

- **standard Eisenstein series of weight 2\(k \):**

 If \(k > 1 \) this comprises

 \[
 E_{2k}(n\tau), \quad \text{for} \quad n|N, \quad (D.16)
 \]

 with \(E_{2k} \) defined as in \(\text{(D.13)} \). For \(k = 1 \) we also have the combination

 \[
 \psi^{(N)}(\tau) = Q_\tau \frac{\partial}{\partial Q_\tau} \log \eta(N\tau) = E_2(\tau) - NE_2(N\tau) \quad (D.17)
 \]

 which is holomorphic, since the shift-term \(\text{(D.14)} \) precisely cancels out.

- **generalized Eisenstein series:**

 If \(N = m^2 \), we can define the generalized Eisenstein series as follows

 \[
 E_{2k}^{x_m}(\tau) = \sum_{n=1}^\infty \left(\sum_{d|n} \chi_m(d) \chi_m(n/d) d^{2k-1} \right) Q_n^\tau \quad (D.18)
 \]

 where \(\chi_m \) is a non-trivial Dirichlet character of modulus \(m \). We will not need these objects in the main part of this paper.

E Explicit Examples of \(\hat{F}^{(k_1,\ldots,k_{N-1})} \)

In this appendix we compile explicit expressions for the functions \(\hat{F}^{(k_1,\ldots,k_{N-1})} \) introduced in \(\text{(5.7)} \). We recall that they can be written in the form \(\text{(5.8)} \)

\[
\hat{F}^{(k_1,\ldots,k_{N-1})}(\tau, m) = \varphi_{2,1}(\tau, m) \sum_{a=0}^{K} g_{2a}^{(k_1,\ldots,k_{N-1})}(\tau) (2\varphi_{0,1}(\tau, m))^{K-a} (\varphi_{-2,1}(\tau, m))^a.
\]

In the following we will give explicit expressions for the modular forms \(g_{a}^{(k_1,\ldots,k_{N-1})} \) for \(K \geq 2 \).
E.1 Index $K = 2$

As explained in section 6.2.2 for $K = \sum_{a=1}^{N-1} k_a = 2$, there are two functions $\hat{F}^{(k_1, \ldots, k_{N-1})}(\tau, m)$, written in (6.20). Each of them can be written in the form

$$\hat{F}^{(K=2)}(\tau, m) = \varphi_{-2,1}(\tau, m) \left[\frac{g_0^{(k_i)}}{12} \varphi_{0,1}(\tau, m) + \frac{g_2^{(k_i)}}{24} \varphi_{-2,1}(\tau, m) \right], \quad (E.1)$$

where $\sum k_i = 2$ and $g_0^{(k_i)}$ are constants and $g_2^{(k_i)}(\tau)$ are modular objects subject to an anomaly. More precisely, when replacing

$$E_2(\tau) \longrightarrow \hat{E}_2(\tau, \bar{\tau}) = E_2(\tau) - \frac{3}{\pi \tau_2}, \quad (E.2)$$

$g_2^{(k_i)}(\tau, \bar{\tau})$ is a quasi-holomorphic modular form of weight 2 under $\Gamma_0(2) \subset SL(2, \mathbb{Z})$. Specifically we find

$$g_0^{(2)} = 0, \quad g_2^{(2)}(\tau) = 4(E_2(2\tau) - E_2(\tau)), \quad g_0^{(1,1)} = 1, \quad g_2^{(1,1)}(\tau) = 2E_2(\tau). \quad (E.3)$$

and thus

$$\hat{F}^{(2)}(\tau, m) = (\varphi_{-2,1}(\tau, m))^2 \frac{E_2(2\tau) - E_2(\tau)}{6}, \quad \hat{F}^{(1,1)}(\tau, m) = \frac{\varphi_{-2,1}(\tau, m)}{12} [\varphi_{0,1}(\tau, m) + E_2(\tau)\varphi_{-2,1}(\tau, m)]. \quad (E.4)$$

E.2 Index $K = 3$

The general form of the functions $\hat{F}^{(k_i)}(\tau, m)$ with $\sum k_a = K = 3$ is

$$\hat{F}^{(K=3)}(\tau, m) = \frac{\varphi_{-2,1}}{24} \left[g_0^{(k_i)} (2\varphi_{0,1})^2 + 2g_2^{(k_i)} \varphi_{0,1} \varphi_{-2,1} + g_4^{(k_i)} (\varphi_{-2,1})^2 \right] \quad (E.5)$$

where $\sum k_i = 3$ and $g_0^{(k_i)}$ is a constant, while $g_2^{(k_i)}$ and $g_4^{(k_i)}$ are anomalous modular quantities, i.e. under the change (D.14) they are quasi-holomorphic modular forms of weight 2 and 4 respectively, under $\Gamma_0(3)$. Specifically, we find

$$g_0^{(3)} = 0, \quad g_2^{(3)} = 6(E_2(3\tau) - E_2(\tau)), \quad g_4^{(3)} = \frac{2}{5} (20E_1(\tau)^2 + 7E_4(\tau) - 27E_4(3\tau)), \quad (E.6)$$

$$g_0^{(2,1)} = 0, \quad g_2^{(2,1)} = 0, \quad g_4^{(2,1)} = 6(E_4(\tau) - E_2(\tau)^2), \quad (E.6)$$

$$g_0^{(1,1,1)} = 1, \quad g_2^{(1,1,1)} = 4E_2(\tau), \quad g_4^{(1,1,1)} = 4E_2(\tau)^2.$$
And thus we have
\[
\hat{F}(3) = \varphi_{-2,1} \left[\frac{E_2(3) - E_2(\tau)}{48} \varphi_{0,1} + \frac{20E_1(1)^2 + 7E_4(1) - 27E_4(3)}{1440} \varphi_{-2,1} \right],
\]
\[
\hat{F}(2,1) = (\varphi_{-2,1})^3 \frac{E_4(\tau) - E_2(\tau)^2}{96},
\]
\[
\hat{F}(1,1,1) = \varphi_{-2,1} \left[\frac{(\varphi_{0,1})^2}{144} + \frac{E_2(1)}{72} \varphi_{-2,1} \varphi_{0,1} + \frac{E_2(1)^2}{144} (\varphi_{-2,1})^2 \right].
\]
(E.7)

where we introduced the shorthand notation \(E_m(n) := E_m(n\tau) \).

E.3 Index \(K = 4 \)

The general form of the functions \(\hat{F}(k_i)(\tau, m) \) with \(\sum k_i = K = 4 \) is
\[
\hat{F}(K=4) = \frac{\varphi_{-2,1}}{24^3} \left[g_0^{(k_1)} (2\varphi_{0,1})^3 + g_2^{(k_1)} (2\varphi_{0,1})^2 \varphi_{-2,1} + 2g_4^{(k_1)} \varphi_{0,1} (\varphi_{-2,1})^2 + g_6^{(k_1)} (\varphi_{-2,1})^3 \right]
\]
(E.8)

where \(\sum k_i = 4 \) and \(g_0^{(k_1)} \) is a constant, while \(g_2^{(k_1)}, g_4^{(k_1)}, g_6^{(k_1)} \) are anomalous modular quantities, \emph{i.e.} under the change (D.14) they are quasi-holomorphic modular forms of \(\Gamma_0(4) \) with weight 2, 4, 6 respectively. The explicit expressions we find are given in table 1 where we again used the shorthand notation \(E_m(n) = E_m(n\tau) \).

E.4 Index \(K = 5 \)

The general form of the functions \(\hat{F}(k_i)(\tau, m) \) with \(\sum k_i = K = 5 \) is
\[
\hat{F}(K=5) = \frac{\varphi_{-2,1}}{24^4} \sum_{a=0}^{4} g_{2a}^{(k_i)} (2\varphi_{0,1})^{4-a} (\varphi_{-2,1})^{a}
\]
(E.9)

where \(\sum k_i = 5 \) and \(g_0^{(k_i)} \) is a constant, while \(g_2^{(k_i)}, g_4^{(k_i)}, g_6^{(k_i)}, g_8^{(k_i)} \) are anomalous modular quantities, \emph{i.e.} under the change (D.14) they are quasi-holomorphic modular forms of \(\Gamma_0(5) \) with weight 2, 4, 6, 8 respectively. The explicit expressions are given in table 2.
\(g_0^{(4)} = 0 \), \(g_2^{(4)} = 8E_1^2 - 2E_2(1) \), \(g_4^{(4)} = \frac{8}{5}[2E_1^2 - 2E_2(1)] \), \(g_6^{(4)} = 8E_1^2 - 2E_2(1) \) + \(\sum_{k=1}^{K=4} 7E_1(1) \) + \(304E_2(2) \).

\(g_0^{(2)} = 16 \), \(g_2^{(2)} = -280E_1^3 - 27E_1(1) \) + \(36E_2(2) \), \(g_4^{(2)} = \frac{4}{5}[-25E_1^3 + 40E_2(2) + 9E_4(1) - 24E_2(2)] \), \(g_6^{(2)} = 16 \) + \(\sum_{k=1}^{K=4} 7E_1(1) \) + \(304E_2(2) \).

\(g_0^{(1)} = 0 \), \(g_2^{(1)} = 4E_1^2 - E_2(1) \), \(g_4^{(1)} = \frac{4}{5}[-25E_1^3 + 40E_2(2) + 9E_4(1) - 24E_2(2)] \), \(g_6^{(1)} = 16 \) + \(\sum_{k=1}^{K=4} 7E_1(1) \) + \(304E_2(2) \).

\(g_0^{(3)} = 0 \), \(g_2^{(3)} = 0 \), \(g_4^{(3)} = 10E_1^2 - E_2^2 \), \(g_6^{(3)} = 16 \) + \(\sum_{k=1}^{K=4} 7E_1(1) \) + \(304E_2(2) \).

\(g_0^{(2,1)} = 0 \), \(g_2^{(2,1)} = 0 \), \(g_4^{(2,1)} = 0 \), \(g_6^{(2,1)} = 16 \) + \(\sum_{k=1}^{K=4} 7E_1(1) \) + \(304E_2(2) \).

\(g_0^{(1,1)} = 0 \), \(g_2^{(1,1)} = 0 \), \(g_4^{(1,1)} = 0 \), \(g_6^{(1,1)} = 16 \) + \(\sum_{k=1}^{K=4} 7E_1(1) \) + \(304E_2(2) \).

\(g_0^{(3,1)} = 0 \), \(g_2^{(3,1)} = 0 \), \(g_4^{(3,1)} = 0 \), \(g_6^{(3,1)} = 16 \) + \(\sum_{k=1}^{K=4} 7E_1(1) \) + \(304E_2(2) \).

\(g_0^{(1,3,1)} = 0 \), \(g_2^{(1,3,1)} = 0 \), \(g_4^{(1,3,1)} = 0 \), \(g_6^{(1,3,1)} = 16 \) + \(\sum_{k=1}^{K=4} 7E_1(1) \) + \(304E_2(2) \).

\(g_0^{(1,1,1)} = 0 \), \(g_2^{(1,1,1)} = 0 \), \(g_4^{(1,1,1)} = 0 \), \(g_6^{(1,1,1)} = 16 \) + \(\sum_{k=1}^{K=4} 7E_1(1) \) + \(304E_2(2) \).

Table 1: Coefficients for \(\hat{F}^{(k)}(\tau, m) \) with \(\sum k_i = K = 4 \).
Table 2: Coefficients for $F(k, r, m)$ with $\Sigma k = K = 5$.

$g_{h}^{(5)}$	$g_{2}^{(5)}$	$g_{4}^{(5)}$	$g_{6}^{(5)}$
0	$10\{E_2(5) - E_2(1)\}$	$10\{7E_2(1)^2 + 10E_2(5)E_2(1) - 25E_2(5)^2 + 3E_4(1) + 5E_4(5)\}$	$\frac{8}{105}\{(3500E_2(1)^3 + 3633E_4(1)E_2(1) - 1365E_2(5)E_4(1) + 482E_6(1) - 6250E_6(5))\}$
$g_{1}^{(5)}$	$\frac{10}{21}\{560E_2(1)^4 + 1008E_4(1)E_2(1)^2 + 304E_6(1)E_2(1) + 3\{83E_4(1)^2 - 98E_4(1)E_2(1) - 625E_4(5)^2 + 16E_2(5)E_6(1)\}\}$		
$g_{2}^{(3,2)}$	0	$g_{2}^{(3,2)}$	0
$g_{4}^{(3,2)}$	$16\{E_4(1) - E_2(2)^2\}$	$g_{6}^{(3,2)}$	$\frac{16}{3}\{13E_2(1)^3 - 3E_4(1)E_2(1) - 10E_6(1)\}$
$g_{1}^{(3,2)}$	$\frac{32}{3}\{2E_2(1)^4 + 9E_4(1)E_2(2)^2 - 2E_6(1)E_2(1) - 9E_4(1)^2\}$		
$g_{2}^{(4,1)}$	0	$g_{2}^{(4,1)}$	0
$g_{4}^{(4,1)}$	$14\{E_4(1) - E_2(2)^2\}$	$g_{6}^{(4,1)}$	$\frac{56}{3}\{7E_2(1)^3 - 3E_4(1)E_2(1) - 4E_6(1)\}$
$g_{1}^{(4,1)}$	$\frac{2}{3}\{343E_2(1)^4 - 126E_4(1)E_2(2)^2 + 208E_6(1)E_2(1) + 261E_4(1)^2\}$		
$g_{2}^{(2,1,2)}$	0	$g_{2}^{(2,1,2)}$	0
$g_{4}^{(2,1,2)}$	0	$g_{6}^{(2,1,2)}$	0
$g_{8}^{(2,1,2)}$	$36\{E_2(1)^2 - E_4(1)^2\}$		
$g_{1}^{(2,2,1)}$	0	$g_{2}^{(2,2,1)}$	0
$g_{4}^{(2,2,1)}$	$6\{E_4(1) - E_2(2)^2\}$	$g_{6}^{(2,2,1)}$	$-8\{5E_2(1)^3 - 9E_4(1)E_2(1) + 4E_6(1)\}$
$g_{1}^{(2,2,1)}$	$8\{2E_2(1)^4 - 3E_4(1)E_2(2)^2 - 8E_6(1)E_2(1) + 9E_4(1)^2\}$		
$g_{2}^{(1,3,1)}$	0	$g_{2}^{(1,3,1)}$	0
$g_{4}^{(1,3,1)}$	0	$g_{6}^{(1,3,1)}$	0
$g_{8}^{(1,3,1)}$	$-32\{E_2(1)^3 - 3E_4(1)E_2(1) + 2E_6(1)\}$		
$g_{1}^{(1,3,1)}$	$64\{2E_2(1)^4 - 3E_4(1)E_2(2)^2 - 2E_6(1)E_2(1) + 3E_4(1)^2\}$		
$g_{2}^{(3,1,1)}$	0	$g_{2}^{(3,1,1)}$	0
$g_{4}^{(3,1,1)}$	$10\{E_4(1) - E_2(1)^2\}$	$g_{6}^{(3,1,1)}$	$\frac{8}{3}\{5E_2(1)^3 + 3E_4(1)E_2(1) - 8E_6(1)\}$
$g_{1}^{(3,1,1)}$	$\frac{8}{3}\{E_2(1)\{25E_2(1)^3 - 9E_4(1)E_2(1) - 16E_6(1)\}\}$		
$g_{2}^{(1,2,1,1)}$	0	$g_{2}^{(1,2,1,1)}$	0
$g_{4}^{(1,2,1,1)}$	0	$g_{6}^{(1,2,1,1)}$	0
$g_{8}^{(1,2,1,1)}$	$-32E_2(1)\{E_2(1)^3 - 3E_4(1)E_2(1) + 2E_6(1)\}$		
$g_{1}^{(1,2,1,1)}$	$-32E_2(1)\{E_2(1)^3 - 3E_4(1)E_2(1) + 2E_6(1)\}$		
$g_{2}^{(2,1,1,1)}$	0	$g_{2}^{(2,1,1,1)}$	0
$g_{4}^{(2,1,1,1)}$	$6\{E_4(1) - E_2(1)^2\}$	$g_{6}^{(2,1,1,1)}$	$24E_2(1)\{E_4(1) - E_2(1)^2\}$
$g_{1}^{(2,1,1,1)}$	$24E_2(1)^2\{E_4(1) - E_2(1)^2\}$		
$g_{2}^{(1,1,1,1)}$	0	$g_{2}^{(1,1,1,1)}$	0
$g_{4}^{(1,1,1,1)}$	$24E_2(1)^2$	$g_{6}^{(1,1,1,1)}$	$32E_2(1)^3$
$g_{1}^{(1,1,1,1)}$	1	$g_{1}^{(1,1,1,1)}$	$8E_2(1)$
$g_{2}^{(1,1,1,1)}$	$24E_2(1)^2$	$g_{6}^{(1,1,1,1)}$	$16E_2(1)^4$
The general form of the functions $\hat{F}^{(k_i)}(\tau, m)$ with $\sum k_i = K = 6$ is

$$
\hat{F}^{(K=6)} = \frac{\varphi_{-2,1}}{24^5} \sum_{a=0}^{5} g_{2a}^{(k_i)} (2\varphi_{0,1})^{5-a}(\varphi_{-2,1})^a
$$

(E.10)

where $\sum k_i = 6$ and $g_{0}^{(k_i)}$ is a constant, while $g_{2,4,6,8,10}^{(k_i)}$ are anomalous modular quantities, i.e. under the change (D.14) they are quasi-holomorphic modular forms of $\Gamma_0(6)$ with weight 2, 4, 6, 8, 10 respectively. The explicit expressions are given in tables 3, 4 and 5.
Table 3: Coefficients for \(F(k, \tau) \) with \(\sum k_i = K = 6 \)

\[
\begin{align*}
g^{(0)}_0 &= 0, & g^{(0)}_2 &= -12 [E_2(1) - E_2(2) - E_2(3) + E_2(6)], & g^{(0)}_3 &= \frac{4}{3} \left[260E_2(1)^2 - 180E_2(6)E_2(1) - 200E_2(2)^2 - 135E_2(3)^2 + 540E_2(6)^2 + 46E_2(1) - 88E_2(2) - 135E_2(3) - 108E_2(6) \right], \\
g^{(0)}_6 &= \frac{8}{35} \left[4400E_2(1)^3 + 3318E_4(1)E_2(1) - 22400E_2(2)^3 - 11314E_4(2)E_2(1) - 1134E_6(1)E_2(1) - 4032E_2(2)E_2(2) - 5103E_4(3)E_2(1) + 842E_2(1)^2 - 236E_2(2)^2 - 2673E_6(3) + 777E_6(6) \right], \\
g^{(0)}_8 &= \frac{10}{77} \left[83160E_2(1)^4 + 905\left(1239E_2(1) + 2612E_2(2) \right)E_2(1)^2 - 3499200E_6(6)E_2(1) + 428811E_2(1)^2 - 4188582E_2(3)^2 - 1418668E_4(6)^2 - 280665E_2(3)^2E_2(1)^2 - 11862480E_2(2)^2E_2(2)^2 - 63107E_4(1)^2 + 12884E_6(1)^2 + 73320E_2(2)^2E_2(1)^2 + 137700E_2(6)^2E_2(1) + 10104160E_2(2)^2E_2(2) - 180E_2(3)^2 \right] \left(2537E_2(1) + 8019E_2(3) + 20995200E_6(6)E_2(6) \right)E_2(2)^2E_2(2) + 259275E_2(6)(E_6(3))^2 + 540000E_2(1)^3E_2(1)^2 - 14E_2(1)(1893E_2(1)^2 + 7675E_2(2)^2)^2 + 101250E_2(1)^2E_2(1) - 31905000E_4(2)^2E_2(1)^3 + 7699312E_2(2)^3E_2(1)^3 + 947840E_4(3)E_2(1) + 802584E_4(6)E_2(1) + 10000E_2(2)^2(13E_4(1) - 121E_2(2) + 72429E_2(6)E_2(1)^2 + 230592E_2(3)E_2(1) - 12094720E_4(6)E_2(6)], \\
g^{(5)}_0 &= 0, & g^{(5)}_2 &= -18 \left[E_2(1)^2 - E_2(1) \right], & g^{(5)}_4 &= -\frac{108}{5} \left[15E_2(1)^2 - 7E_2(1)E_2(1) - 8E_2(1) \right], \\
g^{(5)}_6 &= \frac{30}{49}, & g^{(5)}_8 &= 1215E_2(1)^3 + 1350E_4(1)E_2(1)^3 - 400E_2(1)^2E_2(1)^2 - 1713E_2(3)^2E_2(1)^2 - 992E_2(1)^2E_2(1)], \\
g^{(4)}_0 &= 0, & g^{(4)}_2 &= 0, & g^{(4)}_4 &= -24 \left[E_2(1)^2 - 2E_2(2)^2 - E_2(1) + 2E_2(2) \right], \\
g^{(4)}_6 &= \frac{24}{315}, & g^{(4)}_8 &= 55E_2(1)^4 - 21E_2(1)^4E_2(1)^3 + 80E_2(1)^2E_4(2)^2 - 48E_2(2)^2E_2(2)^2 - 34E_2(1)^2 + 128E_2(2), \\
g^{(3)}_0 &= \frac{36}{77}, & g^{(3)}_2 &= -2 \left(157E_2(1)^4 + 1155E_2(1)^3 - 10\left(61E_2(1) + 17E_2(2) \right)E_2(1) - 24\left(280E_2(2)^2E_2(2)^2 - 80E_2(1)^2E_2(2)^2 + 83E_2(1)^2 + 72E_2(2)^3 \right) \right), \\
g^{(3)}_4 &= \frac{36}{35}, & g^{(3)}_8 &= \left(385 \left(63E_2(1) - 64E_2(2) \right)E_2(1)^2 + 17380E_2(1)^2E_2(1)^2 - 2656E_2(1)^2E_2(1)^2 + 2\left(8650E_2(2)^2E_2(2)^2 - 2048E_2(1)^2E_2(2)^2 \right) + 4224 \left(3E_2(1)^2 + 22E_2(2)^2 \right)E_2(2) - 9935E_2(1)^3 \right)E_2(1) + 14720E_2(2)^2E_2(2)], \\
g^{(3)}_6 &= 0, & g^{(3)}_2 &= 0, & g^{(3)}_4 &= 0, & g^{(3)}_6 &= \frac{4}{3} \left[50E_2(1)^3 - 135E_2(3)^2 - 23E_2(1) + 108E_2(3) \right], \\
g^{(3)}_8 &= \frac{24}{35}, & g^{(3)}_2 &= \left(245E_2(1)^3 - 7\left(14E_2(1) + 117E_2(3) \right)E_2(1) + 6\left(126E_2(3)E_2(2) \right)E_2(3) - 23E_2(1) + 9E_2(3) \right], \\
g^{(3)}_0 &= \frac{4}{175}, & g^{(3)}_2 &= -11025E_2(1)^4 - 21630E_2(1)^3E_2(1)^2 + 80 \left(167E_2(1) + 3024E_2(3) \right)E_2(1)^2 + 22319E_2(1)^2E_2(1)^2 + 271836E_2(3)^2 + 3200E_2(3)^2E_2(2)^2 - 55080E_3E_2(3)E_2(3), \\
g^{(3)}_6 &= \frac{8}{35}, & g^{(3)}_2 &= \left(315E_2(1)^3 + 3150E_2(1)^2E_2(1)^2 + 40 \left(28E_2(1) + 243E_2(3) \right)E_2(1)^2 - 3248E_2(1)^2E_2(1)^2 + 755377E_2(3)^2 \right)E_2(1) - 3\left(2160E_2(3)E_2(3)^2 - 3721E_2(1)^2 + 78309E_2(3)^2 \right)E_2(3) + 16 \left(17E_2(1)^3 + 3004E_2(3)E_2(3) \right), \\
g^{(3)}_8 &= 0, & g^{(3)}_2 &= 0, & g^{(3)}_4 &= 0, & g^{(3)}_6 &= \frac{48}{5} \left[E_2(1)^3 \right], \\
g^{(4)}_0 &= 192 \left[3E_2(1)^4 - 5E_2(1)^2E_2(1)^2 - 2E_2(1)^2E_2(1) + 4E_2(1)^2 \right], & g^{(4)}_4 &= 192 \left[-6E_2(1)^2 + 3E_2(1)^2E_2(1)^2 + 8E_2(1)^2E_2(1)^2 + 5E_2(1)^2E_2(1) - 10E_2(1)^2E_2(1) \right],
\end{align*}
\]
\[g_0^{(4,1,0)} = 0, \quad g_2^{(4,1,1)} = 0, \quad g_4^{(4,1,1)} = 0, \quad g_6^{(4,1,1)} = -14 [E_4(1)^2 - E_4(1)], \quad g_8^{(4,1,1)} = \frac{28}{3} [11E_4(1)^3 - 3E_4(1)E_2(1) - 8E_6(1)], \]
\[g_4^{(4,1,1)} = \frac{2}{3} [19E_4(1)^4 - 294E_4(1)E_2(1)^2 - 16E_4(1)E_2(1) + 261E_4(1)^2], \quad g_6^{(4,1,1)} = \frac{4}{3} E_2(1)^2 - 343E_4(1)^4 - 126E_4(1)E_2(1)^2 + 208E_4(1)E_2(1) + 261E_4(1)^2, \]
\[g_6^{(2,2,0)} = 0, \quad g_2^{(2,2,2)} = 4 [E_2(2) - E_2(1)], \quad g_4^{(2,2,2)} = -\frac{8}{3} [25E_2(1)^2 - 40E_2(2)^2 - 9E_2(1) + 24E_2(2)], \]
\[g_6^{(2,2,2)} = \frac{16}{9} [175E_4(1)^3 - 84E_4(1)E_2(1)^2 - 560E_4(2)E_2(1)^2 + 1008E_4(2)E_2(1) + 69E_6(1) - 608E_6(2)], \]
\[g_8^{(2,2,2)} = \frac{32}{175} [125E_4(1)^4 - 945E_4(1)E_2(1)^2 - 80(7E_4(1) + 16E_2(2))E_2(1) + 468E_4(1)^2 - 64 \{105E_2(2)E_2(2)^2 - 250E_2(2)E_2(2) + 117E_2(2)^2 \}], \]
\[g_{10}^{(2,2,2)} = \frac{32}{175} [5390 (21E_4(1) + 80E_4(2))E_2(1)^3 - 169400E_4(1)E_2(1)^2 - 171632E_4(1)^2E_2(1) + 59136E_2(2)E_2(1)^2 - 3449600E_2(2)^2E_2(1) + 227523E_1(1)E_6(1)] + 404960E_2(2)^2E_2(2) + 142560E_1(1)E_6(2)E_2(1), \]
\[g_6^{(3,1,0)} = 0, \quad g_2^{(3,1,2)} = 0, \quad g_4^{(3,1,2)} = 0, \quad g_6^{(3,1,2)} = 0, \quad g_8^{(3,1,2)} = 60 [E_2(1)^2 - E_2(1)]^2, \]
\[g_4^{(3,1,2)} = -8 \{E_2(1)^2 - E_4(1)\} (25E_2(1)^3 - 9E_2(1)E_2(1) - 16E_4(1)), \]
\[g_6^{(3,1,0)} = 0, \quad g_2^{(3,1,1)} = 0, \quad g_4^{(3,1,1)} = 0, \quad g_6^{(3,1,1)} = -8 \{E_2(1)^3 - 3E_2(1)E_2(1) + 2E_2(1)\}, \]
\[g_4^{(3,1,1)} = 12 \{21E_4(1)^4 - 26E_4(1)E_2(1)^2 - 32E_4(1)E_2(1) + 37E_6(1)\}, \]
\[g_6^{(3,1,1)} = -24 \{3E_2(1)^2 + 18E_2(1)E_2(1)^2 - 16E_4(1)E_2(1)^2 - 37E_2(1)^2E_2(1) + 32E_1(1)E_6(1)\}, \]
\[g_6^{(3,2,1)} = 0, \quad g_2^{(3,2,2)} = 0, \quad g_4^{(3,2,2)} = 0, \quad g_6^{(3,2,2)} = -32 \{E_2(1)^3 - 3E_2(1)E_2(1) + 2E_2(1)\}, \]
\[g_8^{(3,2,2)} = 128 \{2E_2(1)^4 - 3E_2(1)E_2(1)^2 - 2E_2(1)E_2(1)^2 + 3E_2(1)^2\}, \quad g_6^{(3,2,1)} = -128E_1(1) [E_2(1)^3 - 3E_2(1)E_2(1) + 2E_2(1)], \]
\[g_8^{(3,2,1)} = -16 \{7E_2(1)^4 - 30E_2(1)E_2(1)^2 + 32E_2(1)E_2(1) - 9E_2(1)^2\}, \quad g_6^{(3,2,2)} = -16 \{E_2(1)^3 - 3E_2(1)E_2(1) + 2E_2(1)\}, \]
\[g_8^{(3,1,1)} = 64 \{E_2(1)^3 - 4E_2(1)E_2(1)^2 + 3E_2(1)^2\}, \quad g_6^{(3,1,1)} = 128E_2(1) \{E_2(1)^4 - 3E_2(1)E_2(1)^2 - 2E_2(1)E_2(1)^2 + 3E_2(1)^2\}, \]
\[g_8^{(3,1,1)} = 0, \quad g_2^{(3,1,1)} = 0, \quad g_4^{(3,1,1)} = -10 \{E_2(1)^2 - E_4(1)\}, \quad g_6^{(3,1,1)} = -\frac{4}{3} [5E_2(1)^3 - 21E_2(1)E_2(1) + 16E_2(1)], \]
\[g_8^{(3,1,1)} = \frac{8}{3} E_2(1) \{35E_2(1)^4 - 3E_2(1)E_2(1) - 32E_2(1)^2\}, \quad g_6^{(3,1,1)} = \frac{16}{3} E_2(1)^2 \{25E_2(1)^3 - 9E_2(1)E_2(1) - 16E_2(1)\}, \]
\[g_8^{(3,1,1)} = 0, \quad g_2^{(3,1,1)} = 0, \quad g_4^{(3,1,1)} = 0, \quad g_6^{(3,1,1)} = 36 \{E_2(1)^2 - E_2(1)\}^2, \]
\[g_8^{(3,1,1)} = 72E_2(1) \{E_2(1)^2 - E_4(1)\}^2, \]

Table 4: Coefficients for \(F_0(\tau, m) \) with \(\sum \kappa_i = 6 \), \(K = 6 \) (continued).
Table 5: Coefficients for $\hat{F}^{(k_i)}(\tau, m)$ with $\sum k_i = K = 6$ (continued).

References

[1] C. Vafa, Evidence for F theory, Nucl. Phys. B 469 (1996) 403 [hep-th/9602022].

[2] J. J. Heckman, D. R. Morrison and C. Vafa, On the Classification of 6D SCFTs and Generalized ADE Orbifolds, JHEP 1405 (2014) 028 [arXiv:1312.5746 [hep-th]].

[3] M. Del Zotto, J. J. Heckman, A. Tomasiello and C. Vafa, 6d Conformal Matter, JHEP 1502 (2015) 054 [arXiv:1407.6359 [hep-th]].

[4] J. J. Heckman, More on the Matter of 6D SCFTs, arXiv:1408.0006 [hep-th].

[5] B. Haghighat, A. Klemm, G. Lockhart and C. Vafa, Strings of Minimal 6d SCFTs, arXiv:1412.3152 [hep-th].

[6] J. J. Heckman, D. R. Morrison, T. Rudelius and C. Vafa, Atomic Classification of 6D SCFTs, arXiv:1502.05405 [hep-th].

[7] O. J. Ganor and A. Hanany, Small $E(8)$ instantons and tensionless noncritical strings, Nucl. Phys. B 474 (1996) 122 [hep-th/9602120];
N. Seiberg and E. Witten, Comments on string dynamics in six-dimensions, Nucl. Phys.
B 471 (1996) 121 [hep-th/9603003];
J. Distler and A. Hanany, (0,2) Noncritical strings in six-dimensions, Nucl. Phys. B 490 (1997) 75 [hep-th/9611104].

[8] E. Witten, Phase transitions in M theory and F theory, Nucl. Phys. B 471 (1996) 195 [hep-th/9603150].

[9] B. Haghighat, A. Iqbal, C. Kozcaz, G. Lockhart and C. Vafa, M-Strings, arXiv:1305.6322 [hep-th].

[10] B. Haghighat, C. Kozcaz, G. Lockhart and C. Vafa, Orbifolds of M-strings, Phys. Rev. D 89, no. 4, 046003 (2014) [arXiv:1310.1185 [hep-th]].

[11] S. Hohenegger and A. Iqbal, M-strings, elliptic genera and $\mathcal{N} = 4$ string amplitudes, Fortsch. Phys. 62 (2014) 155 [arXiv:1310.1325 [hep-th]].

[12] M. R. Douglas, On D=5 super Yang-Mills theory and (2,0) theory, JHEP 1102 (2011) 011 [arXiv:1012.2880 [hep-th]].

[13] Y. Tachikawa, On S-duality of 5d super Yang-Mills on S^4, JHEP 1111 (2011) 123 [arXiv:1110.0531 [hep-th]].

[14] H. C. Kim, S. Kim, E. Koh, K. Lee and S. Lee, On instantons as Kaluza-Klein modes of M5-branes, JHEP 1112, 031 (2011) [arXiv:1110.2175 [hep-th]].

[15] D. Bak and A. Gustavsson, Elliptic genera of monopole strings, arXiv:1403.4297 [hep-th].

[16] J. A. Harvey, S. Lee and S. Murthy, Elliptic genera of ALE and ALF manifolds from gauged linear sigma models, arXiv:1406.6342 [hep-th].

[17] E. Witten, Elliptic Genera and Quantum Field Theory, Commun. Math. Phys. 109 (1987) 525;
A. N. Schellekens and N. P. Warner, Anomalies, Characters and Strings, Nucl. Phys. B 287 (1987) 317;
W. Lerche, B. E. W. Nilsson, A. N. Schellekens and N. P. Warner, Anomaly Cancelling Terms From the Elliptic Genus, Nucl. Phys. B 299 (1988) 91.

[18] S.A. Connell, The dynamics of the SU(3) charge (1,1) magnetic monopole, preprint (1994) ftp://maths.adelaide.edu.au/pure/mmurray/oneone.tex;
J. P. Gauntlett and D. A. Lowe, Dyons and S duality in N=4 supersymmetric gauge theory, Nucl. Phys. B 472 (1996) 194 [hep-th/9601085];
K. M. Lee, E. J. Weinberg and P. Yi, The Moduli space of many BPS monopoles for arbitrary gauge groups, Phys. Rev. D 54 (1996) 1633 [hep-th/9602167].
[19] N. A. Nekrasov and S. L. Shatashvili, *Quantization of Integrable Systems and Four Dimensional Gauge Theories*, arXiv:0908.4052 [hep-th].

[20] A. Mironov and A. Morozov, *Nekrasov Functions and Exact Bohr-Zommerfeld Integrals*, JHEP 1004 (2010) 040 arXiv:0910.5670 [hep-th].

[21] T. Kawai, Y. Yamada and S. K. Yang, *Elliptic genera and N=2 superconformal field theory*, Nucl. Phys. B 414 (1994) 191 [hep-th/9306096].

[22] B. Haghighat, *From strings in 6d to strings in 5d*, arXiv:1502.06645 [hep-th].

[23] N. A. Nekrasov, *Seiberg-Witten prepotential from instanton counting*, Adv. Theor. Math. Phys. 7 (2004) 831 [hep-th/0206161].

[24] R. Gopakumar and C. Vafa, *M theory and topological strings. 1.*, hep-th/9809187.

[25] R. Gopakumar and C. Vafa, *M theory and topological strings. 2.*, hep-th/9812127.

[26] T. J. Hollowood, A. Iqbal and C. Vafa, *Matrix models, geometric engineering and elliptic genera*, JHEP 0803, 069 (2008) [hep-th/0310272].

[27] N. C. Leung and C. Vafa, *Branes and toric geometry*, Adv. Theor. Math. Phys. 2, 91 (1998) [hep-th/9711013].

[28] E. Witten, *On the Landau-Ginzburg description of N=2 minimal models*, Int. J. Mod. Phys. A 9 (1994) 4783 [hep-th/9304026].

[29] T. Eguchi, H. Ooguri, A. Taormina and S. K. Yang, *Superconformal Algebras and String Compactification on Manifolds with SU(N) Holonomy*, Nucl. Phys. B 315 (1989) 193.

[30] V. Gritsenko, *Complex vector bundles and Jacobi forms*, math/9906191.

[31] J. Troost, *The non-compact elliptic genus: mock or modular*, JHEP 1006 (2010) 104 arXiv:1004.3649 [hep-th].

[32] C. Imbimbo and S. Mukhi, *Topological Invariance in Supersymmetric Theories With a Continuous Spectrum*, Nucl. Phys. B 242 (1984) 81.

[33] E. Witten, *String theory dynamics in various dimensions*, Nucl. Phys. B 443 (1995) 85 hep-th/9503124.

[34] S. Sethi and M. Stern, *D-brane bound states redux*, Commun. Math. Phys. 194 (1998) 675 hep-th/9705046; P. Yi, *Witten index and threshold bound states of D-branes*, Nucl. Phys. B 505 (1997) 307 hep-th/9704098.
[35] M. B. Green and M. Gutperle, *D Particle bound states and the D instanton measure*, JHEP 9801 (1998) 005 [hep-th/9711107].

[36] A. Sen, *Magnetic monopoles, Bogomolny bound and SL(2,Z) invariance in string theory*, Mod. Phys. Lett. A 8 (1993) 2023 [hep-th/9303057].

[37] S. J. Rey, *The Confining Phase of Superstrings and Axionic Strings*,” Phys. Rev. D 43 (1991) 526.

[38] A. Font, L. E. Ibanez, D. Lust and F. Quevedo, *Strong - weak coupling duality and nonperturbative effects in string theory*, Phys. Lett. B 249 (1990) 35.

[39] C. Montonen and D. I. Olive, *Magnetic Monopoles as Gauge Particles?*, Phys. Lett. B 72 (1977) 117.

[40] N. Dorey, *Instantons, compactification and S-duality in N=4 SUSY Yang-Mills theory. 1.*, JHEP 0104 (2001) 008 [hep-th/0010115]; N. Dorey and A. Parnachev, *Instantons, compactification and S duality in N=4 SUSY Yang-Mills theory. 2.*, JHEP 0108 (2001) 059 [hep-th/0011202].

[41] S. Hohenegger, A. Iqbal and S.-J. Rey, to appear (2015).

[42] C. Vafa and E. Witten, *A Strong coupling test of S duality*, Nucl. Phys. B 431 (1994) 3 [hep-th/9408074].

[43] S. K. Donaldson, *Nahm’s equations And The Classification Of Monopoles*, Commun. Math. Phys. 96 (1984) 387.

[44] M. Eichler and D. Zagier, ‘The Theory of Jacobi Forms’, Birkhäuser (1985).

[45] S. Lang, *Introduction to Modular Forms*, Grundlehren der Mathematischen Wissenschaften 222, Springer Verlag, Berlin (1995).

[46] W. Stein, *Modular Forms, a Computational Approach*, Graduate Studies in Mathematics 79, American Mathematical Society, Providence, RI (2007).

[47] M. R. Gaberdiel, S. Hohenegger and R. Volpato, *Mathieu Moonshine in the elliptic genus of K3*, JHEP 1010 (2010) 062 [arXiv:1008.3778 [hep-th]].