Background

Halitosis, also commonly known as “bad breath” is a condition characterized by unpleasant odors emanating timely from the oral cavity [1-3], and which affect more than 30% of the general population [4]. The etiology of halitosis involves many intra- and extra-oral factors such as gingivitis, periodontitis, nasal inflammation, chronic sinusitis, diabetes mellitus, liver insufficiency, cirrhosis, uremia, lung carcinoma, trimethylaminuria, and postnasal drip [5]. However, the most common source of halitosis is the oral cavity itself (90%) [6]. Indeed, bad breath derived from the mouth is mainly caused by volatile sulfur compounds including hydrogen sulfide, methyl mercaptan, and dimethyl sulfide, produced through the putrefaction activity of oral bacteria [7-9].

Managing the halitosis is based on one hand on good oral hygiene cleaning, that reduces by 25% the CSV rates present in the oral air [10,11], and on the other hand on the treatment of oral diseases when necessary. In some case, patients can also turn to “soft” medicine that offers a wide range of disciplines to treat bad breath; homeopathy, herbal medicine and aromatherapy as alternative treatments, or complementary to conventional medicine.

This traditional mode of treatment had always been used largely by Moroccans as Arabs and Africans. By its geographical and climate diversity, Morocco has a wide range of species of aromatic plants. There are about 800 species of medicinal and aromatic plants that are potentially exploitable. Taking into account this natural wealth, and especially for cultural...
and economic reasons, the use of medicinal plants is still widespread in the Moroccan society. According to the WHO 2003 statistics (World Health Organization [WHO]), in some developing countries in Asia, Africa, and Latin America, 80% of the population use traditional medicine to meet their needs for primary health care. WHO has established a list of herbal monograph classifying them into three categories: Plants whose use is supported by clinical data, those whose use is supported by pharmacopeia and traditional systems of medicine and those whose use is reported in the popular milieus, but not based by clinical and experimental studies [12].

The main objective of this study was to know the medicinal plants used by herbalists for treatment of halitosis.

METHODS

This is a cross-sectional study, conducted from November 2015 to May 2016, including all forms of traditional healers (TH) from five Moroccan cities: Rabat, Salé, Témara, Khémisset, and Tiflet.

The instrument used for this study was a questionnaire in which questions were either binary choice (yes/no) or multiple choices. The questionnaires were self-administered to TH to elicit information from them. Those TH who were unable to read or write were interviewed and their responses captured. Information elicted was demography of the TH, the local names of the medicinal plants/products used for the management of orofacial problems.

The questionnaire covers three parts: The first part treated the sociodemographic characteristics; the second part interested to the phytotherapeutic practices of patients; the third part concerned the names of prescribed medicinal plants used for the management of halitosis their routes of administration and methods of usage. The TH were also surveyed about their knowledge and practice regarding toxicities and contraindications of prescribed plants.

Herbalists were selected by convenience sampling. We asked all herbalists located in the five cities in their grocery stores, the first point of contact city officials was the herbalist’s representatives who communicate the contact details of all traditional practitioners.

The inclusion criteria were herbalists who prescribe herbs for dental and oral problems. The exclusion criteria were herbalists who are limited only to the sale of medicinal plants and herbalists who do not prescribe medicinal plants for oral pathologies.

Statistical Analysis

Data obtained were analyzed using the Statistical Package for Social Sciences (SPSS version 13.0, SPSS Inc., Chicago, IL, USA) and summarized using descriptive statistics and presented as frequencies and percentages.

RESULTS

A total of 171 questionnaires conducted among herbalists, were recovered and exploited. The mean age was 44.23 ± 7.4 years.

The majority 72 (42.1%) resided in Rabat. 139 (95%) were males. More than a half 86 (50.3%) had a primary school education, 61 (35.7%) informal, 18 (10.5%) secondary education, and 6 (3.5%) only university education. No statistical difference between age and educational level was found. The overage of years of experience in traditional therapeutics for TH was 15.84 ± 7.5 years. 138 (81.2%) reported that they had never received any training in their field [Table 1].

This study showed that 23 plants were used to treat bad breath [Table 2]. These plants were used alone or as a combination of two or more varieties in the same recipe [Table 3]. All TH have confirmed that patients use medicinal plants for the treatment of bad breath, and they have also quotes the most used plants by Moroccan patients [Table 4].

DISCUSSION

In this study, more than two-thirds of TH was older than 40 years. The most senior of them were illiterate, and <32% had formal training. It can be noticed that there was no significant difference between age and education level (P = 0.88). Furthermore, the training was not standardized, as most were trained by fathers, uncles, and other senior TH. The average duration of experience was 16 years depending on the ability of the apprentice. It can be suggested that because of their longer training, herbalists have good knowledge and skills to treat the patient by medicinal plants. There is a long and venerable history of the use of medicinal plants to treat wide varieties of oral diseases. Indeed, plants contain phytochemicals such as alkaloids, tannin, essential oils, and flavonoids that could have a high antimicrobial and anti-inflammatory efficacy.
Table 2: Medicinal plants used for the treatment of halitosis by traditional healers

Family scientific name	Local name	Common name	Part used	Form of preparation	Method of administration	Frequency of citation by traditional healers (n, %)	Recorded literature for odontological uses	
Apiaceae	*Foeniculum vulgare*	El besbas	Fennel	Leaves/seeds/ root	Infusion	Mouthwash	20 (11.7)	Not found
	Pimpinell anisium	Nafae	Anise	Seeds	Infusion	Mouthwash	12 (7)	Antibacterial effect of hydroalcoholic extract [13]
Apocynaceae	*Nerium oleander*	Ddeflia	Oleander	Stem	Infusion	Massage/friction	10 (5.8)	Gingivitis [14,15]
Asteraceae	*Tanacetum cinerariifolium*	Taghen test	pyrethrum	Whole/leaves	Infusion/decoction/ Grinding	Mouthwash	16 (9.4)	Not found
Juglandaceae	*Juglans regia*	Guaraguato	Walnut	Bark/leaves	Infusion	Mouthwash/Brushing	38 (22.2)	Antibacterial against oral pathologic bacteria [16]
Lamiaceae	*Ajugaiva*	Chendgora	Mariout	Stem/leaves	Infusion	Mouthwash	9 (5.3)	Not found
	Marrubium vulgare	Naanaa	Abdi	Whole	Infusion	Mouthwash	4 (2.3)	Toothache [14,15,17]
	Mentha piperita	Fliyou	Pennyroyal	Whole	Infusion	Mouthwash	39 (22.8)	Halitosis [14,18,15]
	Origanum vulgare	Yazir	Rosemary	Whole	Infusion	Mouthwash	16 (9.4)	Anti-inflammatory and antimicrobial potential therapy for oral opportunistic microorganisms [19]
	Rosmarinus officinalis	Salmiya	Sage	Whole	Infusion/decoction/paste	Mouthwash/Friction/direct application	40 (23.4)	Oral mucositis, dental pains, gingivitis [18,20,21]
	Salvia officinalis	Galima	Thyme	Whole	Infusion	Mouthwash	31 (18.1)	Gingivitis [14,24]
	Thymus vulgaris	Ziitra	Thyme	Whole	Infusion	Mouthwash	40 (23.4)	Periodontitis [25]
Lauracées	*Cinnamomum zylanicum*	Karfa	Cinnamon	Bark	Infusion/decoction	Mouthwash	23 (13.5)	Induction of oral erythema multiforme like sensitivity reaction [23]
	Laurus nobilis	Wrap sidna moussa	Noble laurel	Leaves	Infusion	Mouth rinse	7 (4.1)	Not found
	Lycraeae	*Punica granatum*	Roummane	Pomegranate	Flower	Gringing/Paste	4 (2.3)	Gingivitis [14,24]
Magnoliaceae	*Illicium verum*	Badiane	Badian	Fruits	Infusion/decoction	Mouthwash	52 (30.4)	Not found
Myristicaceae	*Myristica fragrans*	Lgouza	Nutmeg	Fruits	Mouthwash	20 (11.7)	Gingivitis [21], stomatitis [26]	
Myrtaceae	*Syzygium aromaticum*	Krounfei	Clove will	Flower	Infusion	Mouthwash/Direct application	30 (17.5)	Dental pain [27]
Oleaceae	*Ole europaea*	Zaytoune	Olive tree	Whole	Infusion	Mouth rinse	39 (22.8)	Aphthous, stomatites, toothaches [26,28]
Salvadoraceae	*Salvadora persica*	Miswak	Miswak	Bark	Infusion	Brushing	102 (59.6)	Oral hygiene [29]
Verbenaceae	*Aloysia citrodora*	Lwiza	Odorous vervain	Whole	Infusion/gringing	Mouthwash/direct application	12 (7)	Toothache, tooth cleaning [30-32]

(Contd...)
Table 2: (Continued)

Family scientific name	Local name	Common name	Part used	Form of preparation	Method of administration	Frequency of citation by traditional healers (n, %)	Recorded literature for odontological uses
Elettaria cardamomum	Kaakella	Cardamom	Seeds	Infusion/grinding/hydroalcoholic extracts	Mouthwash/direct application	130 (76)	

Table 3: The most important associations of medicinal plants used in the treatment of halitosis by traditional healers

Associations no	Plants	Frequency of citation by traditional healers (n, %)
1	Cinnamomum zylanicum, Mentha piperita, Mentha pulegium, Origano vulgare, Salvia officinalis	139 (81.3)
2	Juglands regia, Marrubium vulgare, Origano vulgare, Syzygium aromaticum	122 (71.3)
3	Elettaria cardamomum, Pimpinella anisium	113 (66.1)
4	Cinnamomum zylanicum, Illicium verum, Syzygium aromaticum, Tanacetum cinerariifolium	113 (66.1)
5	Aloysia citrodora, Cinnamomum zylanicum, Foeniculum vulgare, Laurus nobilis, Mentha piperita, Myristica fragrans, Pimpinella anisium, Syzygium aromaticum, Thymus vulgaris	69 (40.4)
6	Juglands regia, Oleo europaea, Syzygium aromaticum	49 (28.7)

Table 4: The most researched plants by Moroccan patients according to traditional healers

Plants	Frequency of citation by traditional healers (n, %)
Elettaria cardamomum	111 (64.9)
Illicium verum	58 (33.9)
Cinnamomum zylanicum	44 (25.7)

The results of this survey revealed the use of 23 major plants belonging to 14 families in managing halitosis [Table 2].

Ethnobotany analysis of plant prescribed by herbalists and used by the patients in this study showed that they mainly belong to the family of Lamiaceae including eight species [Table 2]. This plant family is known for its wide global distribution, with over 7200 species across 240 genera [33]. In the studied region, “Kénitra-Rabat-Temara” it had been shown a predominance of species of the family Lamiaceae [34] which can explain its large use, as a local product, by the TH. However, when considered as a plant the most prescribed ones were; Elettaria cardamomum, Salvadora persica, Illicium verum, and Origano vulgare.

E. cardamomum was widely used by TH (76%), and it was also the most researched plant by patients (64.9%) to treat halitosis. Although we did not found a literature data on its use in managing halitosis or oral diseases, we think that this plant could be useful as it has been proven to be active against many pathogenic Gram-positive and Gram-negative bacteria [35-37]. Its association with Pimpinella anisium was also prescribed by more than half of TH (66.1%). It was shown that hydroalcoholic extracts from P. anisium have an antibacterial effect on cariogenic bacteria [38].

S. persica (Miswak) was widely used (59.6%) to treat halitosis. This plant is known for its anti-inflammatory effect [39], it also contains vitamin C that helps in healing gingival edema and bleeding [14]. In a study comparing the Miswak (S. persica) with the effect of the conventional toothbrush on the periodontal health of users, Darout et al. 2003 [40] showed better results for this plant in the reduction of dental plaque and the resolution of gingivitis. Many studies showed the significant effect of Miswak as an antibacterial agent. The inhibitory role of this plant on both Gram-positive and Gram-negative bacteria and fungi residing in the oral cavity has been demonstrated both clinically and experimentally. It contains salvadoreine and trimethylamine, that exhibit antibacterial effects on cariogenic bacteria such as Streptococcus mutans and that reduces the accumulation of biofilm supporting, therefore, periodontal health [14].

I. verum (Badian) was prescribed by 52% by TH and used by 58% of patients to treat halitosis. It had been shown that this plant possesses a potent antimicrobial property due to the presence of anethole. Studies with isolated anethole from I. verum indicated that it is effective against bacteria, yeast, and fungal strains (Feng et al., 2010) [42]. It had been reported also, that this plant seems to have a good activity against Eikenella corrodens, but less active against Porphyromonas gingivalis, Porphyromonas asaccharolityca, Prevotella melaninogenicca, Prevotella intermedia, Fusobacterium nucleatum, Capnocytophaga gingivalis, Veillonella parvula, E. corrodens, Peptostreptococcus micros, and Actinomyces odontolitycus (Iauk et al., 2003) [43].

O. vulgare was prescribed by 35.1% of TH. This plant is widely studied for its antibacterial effect in many systemic diseases, and more recently Khan et al. (2017) [44] reported its effect on cariogenic bacteria because of the presence of carvacrol and thymol.

TH also prescribed Thymus vulgaris (Thyme) 31% and Syzygium aromaticum (Clove) 17.5%. These prescriptions are consistent
with the literature data. Indeed, in a survey of students from the Faculty of Pharmacy, Lamendin et al. 2009 [45] showed that S. aromaticum (Clove) and T. vulgaris (Thyme) were most used for diseases of the oral mucosa. S. aromaticum (Clove) being an anti-infective, antiseptic, analgesic, [39] and anti-inflammatory [46], has its indication in all oral disease including gingivitis [9,14,15,47]. Furthermore, T. vulgaris (Thyme), through its various antiseptic and antioxidant properties [48,49], is widely reported in gingivitis, stomatitis, and bad breath [6].

As halitosis is in most cases caused by bacteria colonizing mouth, thus using the above plants as antiseptics in treatment of oral diseases can help on resolving oral malodor. Indeed, the majority of the most used plants in this study exhibit some chemical compounds that can explain their effects [Table 5].

We asked TH also if they have knowledge about toxicity and counter-indications, less than 6% were aware of the related toxicity to the improper use of plants and a less than 10% were aware of against indications. Nevertheless, they insist especially regarding the side effect and adverse effect of this product [71].

ACKNOWLEDGMENTS

We acknowledge all the TH who kindly participated to this study.

REFERENCES

1. Gokdogan O, Catici T, Ileri F. Halitosis in otorhinolaryngology practice. Iran J Otorhinolaryngol 2015;27:145-53.
2. Bollen CM, Beikler T. Halitosis: The multidisciplinary approach. Int J Oral Sci 2012;4:55-63.
3. Basavaraj P, Nitin K. Halitosis. A review. Indian J Stomatol 2011;2:183-6.
4. Hughes FJ, McNab R. Oral malodour–a review. Arch Oral Biol 2008;53 Suppl 1:S1-7.
5. Nogueira-Filho GR, Duarte PM, Toledo S, Tabchoury CP, Cury JA. Effect of triclosan dentifrices on mouth volatile sulphur compounds and dental plaque trypsin-like activity during experimental gingivitis development. J Clin Periodontol 2002;29:1059-64.
6. Tonzeitch J. Oral malodor: An indicator of health status and oral cleanliness. Int Dent J 1978;28:309-19.
7. Armstrong BL, Sensat ML, Stoltzenberg JL. Halitosis: A review of current literature. J Dent Hyg 2010;84:65-74.
8. Sopapornamorn P, Ueno M, Shinada K, Yanagishita M, Kawaguchi Y. Relationship between total salivary protein content and volatile sulphur compounds levels in malodor patients. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2007;103:655-60.
9. Sanz M, Roldán S, Herrera D. Fundamentals of breath malodor. J Contemp Dent Pract 2001;2:1-17.
10. Aylikci BU, Colak H. Halitosis: From diagnosis to management. J Nat Sci Biol Med 2013;4:14-23.
11. van den Broek AM, Feenstra L, de Baat C. A review of the current literature on management of halitosis. Oral Dis 2008;14:30-9.
12. Zeggagh AA, Lahlou Y, Bousliman Y. Survey of toxicological aspects of herbal medicine used by a herbalist in Fes, Morocco. Pan Afr Med J 2013;14:125.
13. Kermanshah H, Kamangar SS, Arami S, Kamalinejad M, Karimi M, Mirsalehian A, et al. The effect of hydro alcoholic extract of seven untreated periodontal infection. Indeed, few are bibliographic data regarding the adverse effects of natural agents used in dentistry [66,67].

CONCLUSION

Considering the growing interest of natural plant molecules as efficacious and safe substances for oral health care when properly used, the preliminary results of this work allow knowing the plants used in this population. This data could be the base for experimental and clinical studies promoting the use of natural agents in the treatment of bad breath.

Plants	Compounds	References
Cinnamomum zylanicum	(E)-cinnamaldehyde	Unlu et al. (2010) [51]
Illicium verum	(E)-anethole, anisyl acetone, anisyl alcohol and anisyl aldehyde	Yang et al. (2010) [42]
Mentha piperita	Menthol and menthone	Iscan et al. (2002) [51]
	Linalool	Kozlowska et al. (2002) [52]
		Kozlowska et al. (2015)[52]
		Ras et al. (2010) [53]
		Khadir et al. (2016) [54]
Mentha pulegium	Piperitone	Mahboubi and Haghi (2008) [55]
		Kozlowska et al. [52]
		Vieira et al. (2017) [56]
		Aires et al. (2016) [57]
Origanum vulgare	Polyphenols	De Martino et al. (2009) [58]
	Carvacrol and thymol	De Martino et al. (2009) [58]
		Kozlowska et al. [50]
		Khoury et al. (2016) [59]
Salvia officinalis	Thujone, 1,8-cineole and camphor	Delamare et al. (2007) [60]
		Jansenjak et al. (1987) [61]
		Sivropoulou et al. (1997) [62]
		Sur et al. (1991) [63]
plants on cariogenic bacteria - an in vitro evaluation. Oral Health Dent Manag 2014;14:3:295-401.
14. Hammamouchi M. Les Plantes Médicinales et Aromatiques Marocaines. Utilisations, Biologie, Ecologie, Chimie, Pharmacologie, Toxicologie et Lexiques Ed. Imprimerie Fédala. Morocco: Rabat-Instituts; 1999. p. 450.
15. Valnet J. Phytothérapie Traitement Des Maladies Par Les Plantes. Paris: LFS Livres Poche; 2001. p. 459.
16. Zakavi F, Golpasand Hagh L, Daraeighadikolie A, Farajzadeh Sheikh A, Daraeighadikolie A, Leilai Shoooshati Z. Antibacterial effect of *Juglans regia* bark against oral pathologic bacteria. Int J Dent 2013;2013:854769.
17. Little JW. Comparative and alternative medicine: Impact on dentistry. Oral Surg Oral Med Oral Pathal Oral Radiol Endoc 2004;98:137-45.
18. Mutluay YE, Izgu N, Ozdemir N, Erdem SA, Kartal M. Sage tea-thyme-peppermint hydrosol oral rinse reduces chemotherapy-induced oral mucositis: A randomized controlled pilot study. Complement Ther Med 2016;27:58-64.
19. Assaf AM, Amro BI, Mashallah S, Haddadin RN. Antimicrobial and anti-inflammatory potential therapy for opportunistic microorganisms. J Infect Dev Cities 2016;10:494-505.
20. Taheiri JB, Azimi S, Rafieian N, Zanjani HA. Herbs in dentistry. Int Dent J 2011;61:287-96.
21. Kumar G, Jalaludin M, Rout P, Mohanty R, Dileep CL. Emerging trends of herbal care in dentistry. J Clin Diagn Res 2013;7:1827-9.
22. Koch C, Reichling J, Schmele J, Schnitzler P. Inhibitory effect of essential oils against herpes simplex virus Type 2. Phytotherapy 2008;15:71-8.
23. Cohen DM, Bhatcharyaya I. Cinnamon-induced oral erythema multifomellelike sensitivity reaction. J Am Dent Assoc 2000;131:929-34.
24. Chonco WZ. The African Bantu traditional practice of medicine. Some preliminary observations, Soc Med 1972;6:283-322.
25. Ahuja S, Dodwad V, Kukreja BJ, Mehra P, Kukreja P. A comparative evaluation of efficacy of *Punica granatum* and chlorhexidine on plaque and gingivitis. J Int Clin Dent Res Organ 2011;13:29-32.
26. Sastravaha G, Yotuennguit P, Boonong C, Sangthatherpitikul P. Adjunctive periodontal treatment with *Centella asiatica* and *Punica granatum* extracts. A preliminary study. J Int Acad Periodontol 2003;5:106-15.
27. Sofrata A, Brito F, Al-Otaibi M, Gustafsson A. Short term clinical effect of *Salvadora persica* miswak on dental plaque and gingivitis. J Ethnopharmacol 2011;137:1130-4.
28. Raynaud J. Prescription et Conseil en Phytothérapie. Paris, France; Tec & Doc Lavoisier; 2006. p. 40.
29. Aytogianis I, Livore M, Skaltsounis AL, Argyropoulou A, Hellwig E, Aliaginis N, et al. High-level antimicrobial efficacy of representative Mediterranean natural plant extracts against oral microorganisms. Biomed Res Int 2014;2014:839019.
30. Bellahkdar J. La Pharmacie Marocaine Traditionnelle: Médecine Arabe Ancienne et Saviors Populaires. France: Ibis Press; 1987.
31. Aliakbari AK, Hadiabi S, Arbour T, Khairallah K, Al-Haddi N. GC-MS analysis and antimicrobial activity of the essential oil from the stem of the Jordanian toothbrush tree *Salvadora persica*. Pharm Biol 2004;42:577-80.
32. Khalessi AM, Pack AR, Thomson WM, Tompkins GR. An in vivo study of the plaque control efficacy of *Persica*: A commercially available herbal mouthwash containing extracts of *Salvadora persica*. Int Dent J 2004;54:279-83.
33. Raina R, Kumar V, Krishna M, Raina S, Jaiswal A, Selvan A, et al. A comparison of antibacterial efficacy of 0.5% sodium fluoride impregnated miswak and plain miswak sticks on *Streptococcus mutans* - A randomized controlled trial. J Clin Diagn Res 2017;11:2C01-4.
34. González-Tejeiro MR, Casares-Porcel M, Sánchez-Rojas CP, Ramiro-Gutierrez JM, Molero-Mesa J, Pironi A, et al. Medicinal plants in the Mediterranean area: Synthesis of the results of the project Rubia. J Ethnopharmacol 2008;116:341-57.
35. Chow JW. Aminoglycoside resistance in enterococci. Clin Infect Dis 2000;31:595-6.
36. Mandal S, DebMandal M, Saha K, Pal NK. *In vitro* antibacterial activity of three Indian spices against meticillin-resistant *Staphylococcus aureus*. Oman Med J 2011;26:319-23.
37. Ali SM, Khan AA, Ahmed I, Musaddiq M, Ahmed KS, Polaha H, et al. Antimicrobial activities of eugenol and cinnamaldehyde against the human gastric pathogen *Helicobacter pylori*. Ann Clin Microbiol Antimicrob 2005;20:4-20.
38. Ahmad M, Imran H, Yaqeen Z, Rehman Z, Rahman A, Fatima N, et al. Pharmacological profile of *Salvadora persica*. Pak J Pharm Sci 2011;24:323-30..
60. Delamare AP, Moschen-Pistorello I, Artico L, Atti-Serafini L, Echeverrigaray S. Antibacterial activity of the essential oils of Salvia officinalis L. and Salvia triloba L. Cultivated in South Brazil. J Food Chem 2007;100:603-8.
61. Jalsenjak V, Pelinjak S, Kustrak D. Microcapsules of sage oil: Essential oils content and antimicrobial activity. Pharmazie 1987;42:19-20.
62. Sivropoulou A, Nikolaou C, Papanikolaou E, Kokkini S, Lanaras T, Arsenakis M. Antimicrobial, cytotoxic, and antiviral activities of Salvia fruticose essential oil. J Agric Food Chem 1997;45:3197-201.
63. Sur SV, Tuljupa F, Sur LI. Gas chromatographic determination of monoterpenes in essential oil medicinal plans. J Chromatogr 1991;542:451-8.
64. Newall CA, Anderson LA, Phillipson JD. Herbal Medicines. A Guide for Health-Care Professionals. London: The Pharmaceutical Press; 1996. p. 256-7.
65. Sarrami N, Pemberton MN, Thornhill MH, Theaker ED. Adverse reactions associated with the use of eugenol in dentistry. Br Dent J 2002;193:257-9.
66. Groppo FC, Bergamaschi Cde C, Cogo K, Franz-Montan M, Motta RH, de Andrade ED. Use of phytotherapy in dentistry. Phytother Res 2008;22:993-6.
67. Palombo EA. Traditional plant extracts and natural products with activity against oral bacteria: Potential application in the prevention and treatment of oral diseases. Evid Based Complement Altern Med 2011;1:1-15.
68. Chambial S, Bhardwaj P, Mahdi AA, Sharma P. Lead poisoning due to herbal medications. Indian J Clin Biochem 2017;32:246-7.
69. Poivre M, Duez P. Biological activity and toxicity of the Chinese herb Magnolia officinalis Rehder & E. Wilson (Houpo) and its constituents. J Zhejiang Univ Sci B 2017;18:194-214.
70. Alempijevic T, Zec S, Milosavljevic T. Drug-induced liver injury: Do we know everything? World J Hepatol 2017;9:491-502.
71. Conover EA. Herbal agents and over-the-counter medications in pregnancy. Best Pract Res Clin Endocrinol Metab 2003;17:237-51.