Research Article
Control of Hopf Bifurcation Type of a Neuron Model Using Washout Filter

Chunhua Yuan and Xiangyu Li
School of Automation and Electrical Engineering, Shenyang Ligong University, Shenyang 110159, China

Correspondence should be addressed to Xiangyu Li; xyli@sylu.edu.cn

Received 24 March 2021; Accepted 28 June 2021; Published 7 July 2021

1. Introduction
Computational neuroscience emphasizes quantitative research methods and studies the nervous system at different levels through mathematical analysis and computer simulation [1]. Neuron is the smallest unit of the nervous system, and its structure and properties determine the functional characteristics of the neuron network [2]. Therefore, only by understanding the characteristics and activity of single neurons can we further understand the mystery of neuron networks and even the operation of the brain. For quantitative neuron models, it is necessary not only to include enough details to consider the dynamics of single neurons but also to minimize the complexity of the model so that the model calculation is convenient. The two-dimensional Prescott model provides a good compromise between the authenticity and computational efficiency of a neuron. The dynamic characteristics of the Prescott model under external electrical stimulation are studied by combining analytical and numerical methods in this paper. Through the analysis of the equilibrium point distribution, the influence of model parameters and external stimulus on the dynamic characteristics is described. The occurrence conditions and the type of Hopf bifurcation in the Prescott model are analyzed, and the analytical determination formula of the Hopf bifurcation type in the neuron model is obtained. Washout filter control is used to change the Hopf bifurcation type, so that the subcritical Hopf bifurcation transforms to supercritical Hopf bifurcation, so as to realize the change of the dynamic characteristics of the model.
parameters. Therefore, the research in this paper is based on the two-dimensional Prescott neuron model.

A neuron is a dynamic system [12]. And phase trajectory is a common method to study the dynamic system. Changing the amplitude of the external stimulus will change the phase trajectory and firing state of a neuron. The qualitative change of the phase trajectory of the system is due to the bifurcation process of neuron dynamics [13]. For example, the type of bifurcation determines the excitability of neurons [14]. The subcritical Hopf bifurcation is an unstable limit cycle shrinking to a stable equilibrium point and making it out of equilibrium. And the phase trajectory becomes a large value limit cycle attractor. Supercritical Hopf bifurcation is a stable equilibrium point that loses stability and produces a limit cycle attractor. Zhou et al. studied the local dynamic behaviors including stability and Hopf bifurcation of a four-dimensional hyperchaotic system with both analytical and numerical methods [17]. Bao et al. investigated the stability transitions of the stable and unstable equilibrium states via fold and Hopf bifurcations in a two-dimensional non-autonomous tabu learning neuron model [18]. However, few researchers have studied controlling of the bifurcation type of the two-dimensional Prescott model by means of Washout filter.

In summary, this paper uses the theoretical method of nonlinear dynamics to study the bifurcation characteristics of the Prescott model. First, the equilibrium point distribution and the occurrence conditions for Hopf bifurcation are analyzed. Then, the analytical determination formula for the Hopf bifurcation type is deduced, and the bifurcation type of the Prescott model is judged. Finally, the bifurcation characteristics of the model are controlled using Washout filter.

2. The Prescott Neuron Model and Its Equilibrium Points

Prescott et al. proposed a two-dimensional neuron model consisting of a fast variable V and a slow recovery variable w in 2008 [9]. The dynamic equations are as follows:

\[
\begin{align*}
\dot{V} &= I - g_L (V - E_L) - g_{Na} m_{\infty}(V)(V - E_{Na}) - g_K w(V - E_K) \\
\dot{w} &= \frac{\varphi_w(w_{\infty}(V) - w)}{\tau_w(V)},
\end{align*}
\]

where V is the neuron cell membrane voltage, w is the slow ion channel recovery variable, and I is the external stimulating current. g_{Na}, g_K, and g_L are the maximum conductance of sodium ion channel, the maximum conductance of potassium ion channel, and the leakage conductance, respectively. E_{Na}, E_K, and E_L are the corresponding back EMFs. c_m is the cell membrane capacitance of neurons. $m_{\infty}(V)$ is the steady state value of the sodium channel activation variable, $w_{\infty}(V)$ is the steady state value of the potassium channel recovery variable, and $\tau_w(V)$ is the time constant of the recovery variable. They are all functions of the neuron membrane voltage as follows:

\[
\begin{align*}
m_{\infty}(V) &= 0.5 \left(1 + \tanh\left(\frac{V - V_m}{\gamma_m}\right)\right), \\
w_{\infty}(V) &= 0.5 \left(1 + \tanh\left(\frac{V - V_m}{\gamma_m}\right)\right), \\
\tau_w(V) &= \frac{1}{\cosh\left((V - V_m)/2\gamma_w\right)},
\end{align*}
\]

where β_m and γ_m are the influencing factors of fast ion channel activation variable and β_w and γ_w are the influencing factors of slow ion channel recovery variable. Among them, β_w is the key parameter of the model because changing β_w can simulate various firing patterns of the model.

The values of the model parameters in this paper are as follows: $c_m = 2 \mu F/cm^2$, $\varphi_w = 0.15$, $g_L = 2 mS/cm^2$, $g_{Na} = 20 mS/cm^2$, $g_K = 20 mS/cm^2$, $E_L = -70 mV$, $E_{Na} = 50 mV$, $E_K = -100 mV$, $\beta_m = -1.2 mV$, $\gamma_m = 18 mV$, $\beta_w = -10 mV$, and $\gamma_w = 10 mV$.

The different firing characteristics of neurons are related to the type and stability of the equilibrium point of the model. The type of equilibrium point can be judged by the eigenvalues of the model equation. Let

\[
\begin{align*}
f_1 &= \frac{I - g_L (V - E_L) - g_{Na} m_{\infty}(V)(V - E_{Na}) - g_K w(V - E_K)}{c_m}, \\
f_2 &= \frac{\varphi_w(w_{\infty}(V) - w)}{\tau_w(V)}.
\end{align*}
\]

Then, the eigenvalue λ of the neuron dynamic equations can be obtained from $|A - \lambda I| = 0$ and written as a polynomial of $\lambda^2 + p\lambda + q = 0$, where A is the linearized matrix at the equilibrium point of the equation and I is the identity matrix:

\[
\begin{align*}
f_1 &= \frac{I - g_L (V - E_L) - g_{Na} m_{\infty}(V)(V - E_{Na}) - g_K w(V - E_K)}{c_m}, \\
f_2 &= \frac{\varphi_w(w_{\infty}(V) - w)}{\tau_w(V)}.
\end{align*}
\]
The two solutions of the polynomial \(\lambda^2 + p \lambda + q = 0 \) are the eigenvalues of the characteristic equation as follows:

\[
\lambda_{1,2} = \frac{1}{2} \left[-p \pm \sqrt{p^2 - 4q} \right],
\]

where \(p = -(a + d) \) and \(q = ad - bc \).

According to the eigenvalues of the equilibrium point of the model, the type of the equilibrium point can be judged and the influence on the firing behavior of neurons can be further analyzed.

Figure 1 shows the equilibrium bifurcation diagram of the Prescott model, in which the pink circle, the black dot, the blue intersection, and the black cross represent the unstable focus, the stable focus, the saddle, and the stable node, respectively. When the stimulation current is between \(I \approx 32.78 \) \(\mu A/cm^2 \) \(\sim 33.2 \) \(\mu A/cm^2 \), the model has three equilibrium points.

3. Hopf Bifurcation Analysis of the Prescott Model

When a certain parameter in the system changes, the stability of the equilibrium point of the nonlinear system changes. The stable focus turns into an unstable focus and a limit cycle is generated near it, and the Hopf bifurcation phenomenon occurs. At this time, the equilibrium point becomes the center point, and its eigenvalues become pure imaginary number. When the bifurcation parameter changes to the bifurcation value, the unstable limit cycle shrinks to a stable equilibrium point and turns it into an unstable equilibrium point.

It can be seen from the above that the conditions for the occurrence of Hopf bifurcation in a two-dimensional nonlinear system are (1) \(p = 0 \) and (2) \(q > 0 \). The eigenvalues are pure imaginary numbers at this time, and the equilibrium point is the center point.

For the Prescott model,

\[
(1) \quad p = 0; \text{ Because } p = -(a + d), \text{ it can be seen from formula (5):}
\]

\[
p = \frac{[g_L + g_{Na}m'_\infty(V - E_{Na})] + g_{Na}m_\infty(V) + g_Kw]}{c_m} + \frac{\varphi_w \cosh \left(\frac{V - \beta_w}{2Y_w} \right)}{2Y_w} = 0.
\]

Therefore,

\[
w = \frac{-c_m \varphi_w \cosh \left(\frac{V - \beta_w}{2Y_w} \right) - g_L - g_{Na}m'_\infty(V)(V - E_{Na}) - g_{Na}m_\infty(V)}{g_K}.
\]
4. The Type of Hopf Bifurcation in the Prescott Model

Suppose the nonlinear system equation of the two-dimensional Prescott model is

\[\dot{x} = f(x, \mu), \]

where \(x = [x_1, x_2]^T \) and \(f = [f_1, f_2]^T \). The equilibrium point \(x_0(\mu_0) = [x_{10}(\mu_0), x_{20}(\mu_0)]^T \) is obtained from the equilibrium equation \(\dot{x} = f(x, \mu) = 0 \). And the linear part of the model is extracted and rewritten as follows:

\[\dot{x} = f(x, \mu) = Ax + g(x), \]

where \(A \) is the Jacobian matrix at the equilibrium point and \(g(x) \) is the nonlinear term as follows:

\[
A = \begin{bmatrix} \frac{\partial f_1}{\partial x_1} & \frac{\partial f_1}{\partial x_2} \\ \frac{\partial f_2}{\partial x_1} & \frac{\partial f_2}{\partial x_2} \end{bmatrix} ,
\]

\[
g(x) = f(x, \mu) - Ax.
\]

A linear transformation is performed on the two-dimensional system: \(x = Py + x_0(\mu_0) \), where \(P = [\text{Re}(\lambda_i) \quad \text{Im}(\lambda_i)] \) is a two-dimensional real number matrix composed of the real and imaginary parts of the eigenvector corresponding to the eigenvalue \(\lambda_i = i\omega_0(\mu) \) of the Jacobian matrix \(A \). So,

\[\dot{x} = P\dot{y} = A(Py + x_0(\mu_0)) + g(Py + x_0(\mu_0)). \]

Substituting formulae (2)–(27) into (2)–(28), we get

(2) \(q > 0 \):

According to condition (1), \(p = a + d = 0 \), so \(q = ad - bc = -a^2 - bc > 0 \), that is, \(a^2 + bc < 0 \). Therefore, this condition is equivalent to \(\Theta bc < 0 \); that is, \(b \) and \(c \) are opposite signs and \(\Theta |bc| > a^2 \) or \(|bc| > d^2 \).

From formula (5), \(b = [-g_K(V - E_K)]/c_m \). For the Prescott model, \(E_K = -100 \text{ mV} \), and usually the membrane voltage will not be less than \(-100 \text{ mV} \), so \(V > E_K \). At this time, if \(V > E_K \) is required, only let \(bc < 0 \), that is,

\[
c = \frac{w^2 - \omega^2}{\omega^2 + \Delta^2 - \beta w} - 1 > 0. \]

When the neuron model is at equilibrium, \(w = w_\infty(V) \); thus,

\[
f_w w_\infty(V) = 0. \]

Substituting \(w_\infty(V) = (0.5/\gamma_w)(1/cosh^2((V - \beta_w)/\gamma_w)) \) and \(\tau_w(V) = 1/cosh((V - \beta_w)/2\gamma_w) \), we get

\[
\frac{\varphi_w}{2\gamma_w} \frac{1}{cosh^2((V - \beta_w)/\gamma_w)} \cdot \cosh((V - \beta_w)/2\gamma_w) \]

is always greater than zero.

That is, when the neuron model is under given parameters and the coefficient of its characteristic equation \(p = 0 \), condition \(\Theta \) is automatically satisfied.

Condition \(\Xi \): \(|bc| > d^2 \), that is,

\[
\left| -g_K(V - E_K) \frac{w^2 - \omega^2}{c_m r_w(V)} \right| > \varphi_w^2 \cosh^2 \left(\frac{V - \beta_w}{2\gamma_w} \right). \]

The hyperbolic cosine function is a constant positive function, so we can get

\[
\left| -g_K(V - E_K) \frac{2c_m y_w \varphi_w \cosh((V - \beta_w)/\gamma_w)}{c_m r_w(V) \cosh((V - \beta_w)/2\gamma_w)} \right| > 1. \]

Therefore, when the equilibrium point of the Prescott model satisfies both formulae (8) and (13), Hopf bifurcation occurs in the Prescott model.

The local magnification near the Hopf bifurcation of the Prescott model is shown in Figure 2, and there is a very small range of stable focus between the unstable focuses and the saddles. When \(I = 33.1813 \mu A/cm^2 \), the Hopf bifurcation occurs in the model, and the membrane voltage is \(V = -39.1846 \text{ mV} \) at this time.

Figure 1: Distribution of equilibrium points of the Prescott model.
\[
\begin{align*}
\dot{y} &= \mathbf{P}^{-1} \mathbf{A}(\mathbf{Py} + \mathbf{x}_0(\mu_0)) + \mathbf{P}^{-1}[\mathbf{f}(\mathbf{Py} + \mathbf{x}_0(\mu_0)) - \mathbf{A}(\mathbf{Py} + \mathbf{x}_0(\mu_0))] \\
&= \mathbf{P}^{-1} \mathbf{APy} + \mathbf{P}^{-1} \mathbf{f}(\mathbf{Py} + \mathbf{x}_0(\mu_0)) - \mathbf{P}^{-1} \mathbf{APy} \\
&= \mathbf{Jy} + \mathbf{P}^{-1} \mathbf{f}(\mathbf{Py} + \mathbf{x}_0(\mu_0)) - \mathbf{Jy} \\
&= \mathbf{Jy} + \mathbf{F},
\end{align*}
\]

where \(\mathbf{J} = \mathbf{P}^{-1} \mathbf{AP} \) is the Jacobian matrix of the system and \(\mathbf{F} \) is the nonlinear term as follows:

\[
\mathbf{F} = \mathbf{P}^{-1} \mathbf{f}(\mathbf{Py} + \mathbf{x}_0(\mu_0)) - \mathbf{Jy}.
\]

Its component form is

\[
\begin{bmatrix}
F_1 \\
F_2
\end{bmatrix} = \mathbf{P}^{-1} \begin{bmatrix}
f_1(\mathbf{Py} + \mathbf{x}_0(\mu_0)) \\
f_2(\mathbf{Py} + \mathbf{x}_0(\mu_0))
\end{bmatrix} - \mathbf{J} \begin{bmatrix}
y_1 \\
y_2
\end{bmatrix}.
\]

On the basis of the Hopf bifurcation theory [19], the determination formula of Hopf bifurcation type is derived as follows:

\[
\beta_2 = 2\text{Re} \left\{ \frac{g_{20}g_{11} - 2|g_{11}|^2 - \left(1/3\right)|g_{02}|^2}{2\omega_0} i + \frac{g_{21}}{2} \right\}.
\]

It can be simplified to

\[
\beta_2 = \text{Re} \left\{ \frac{g_{20}g_{11}}{\omega_0} i + g_{21} \right\},
\]

where

\[
\begin{align*}
g_{20} &= \frac{1}{4} \left(\frac{\partial^2 F_1}{\partial y_1^2} - \frac{\partial^2 F_1}{\partial y_2^2} + 2 \frac{\partial^2 F_2}{\partial y_1 \partial y_2} + i \left(\frac{\partial^2 F_2}{\partial y_1^2} - \frac{\partial^2 F_2}{\partial y_2^2} - 2 \frac{\partial^2 F_1}{\partial y_1 \partial y_2} \right) \right), \\
g_{11} &= \frac{1}{4} \left(\frac{\partial^2 F_1}{\partial y_1^2} + \frac{\partial^2 F_1}{\partial y_2^2} + i \left(\frac{\partial^2 F_1}{\partial y_1^2} + \frac{\partial^2 F_2}{\partial y_2^2} \right) \right), \\
g_{21} &= G_{21} + \sum_{k=1}^{\infty} \left(2G_{110}w_{1k}^k + G_{101}w_{20}^k \right).
\end{align*}
\]
For two-dimensional nonlinear systems, \(n = 2 \); thus,
\(g_{21} = G_{21} \); therefore,

\[
\beta_2 = -\frac{1}{16\omega_0} \left[\left(\frac{\partial^2 F_1}{\partial y_1^2} + 2 \frac{\partial^2 F_1}{\partial y_1 \partial y_2} + \frac{\partial^2 F_2}{\partial y_1^2} \right) \left(\frac{\partial^2 F_2}{\partial y_1^2} + 2 \frac{\partial^2 F_2}{\partial y_1 \partial y_2} \right) + \left(\frac{\partial^2 F_1}{\partial y_2^2} - \frac{\partial^2 F_2}{\partial y_1 \partial y_2} \right) \left(\frac{\partial^2 F_2}{\partial y_2^2} - \frac{\partial^2 F_1}{\partial y_1 \partial y_2} \right) \right]
\]

\[+ \frac{1}{8} \left[\frac{\partial^3 F_1}{\partial y_1^2 \partial y_2} + \frac{\partial^3 F_1}{\partial y_1 \partial y_2^2} + \frac{\partial^3 F_2}{\partial y_1^2 \partial y_2} + \frac{\partial^3 F_2}{\partial y_1 \partial y_2^2} \right]. \tag{25} \]

That is,

\[
\beta_2 = \frac{1}{8\omega_0} \left[\frac{\partial^3 F_1}{\partial y_2^3} \cdot \frac{\partial^2 F_2}{\partial y_1^2} + \frac{\partial^3 F_1}{\partial y_2 \partial y_1^2} + \frac{\partial^3 F_2}{\partial y_2 \partial y_1^2} \cdot \frac{\partial^2 F_1}{\partial y_2^2} + \frac{\partial^3 F_2}{\partial y_2 \partial y_2^2} \cdot \frac{\partial^2 F_2}{\partial y_1^2} \right]
\]

\[+ \frac{1}{8} \left[\frac{\partial^3 F_1}{\partial y_2 \partial y_1 \partial y_2^2} + \frac{\partial^3 F_2}{\partial y_1 \partial y_2 \partial y_2^2} + \frac{\partial^3 F_2}{\partial y_2 \partial y_1 \partial y_2^2} + \frac{\partial^3 F_2}{\partial y_2 \partial y_1 \partial y_2^2} \right], \tag{26} \]

where \(\omega_0 \) is the imaginary part of the pure imaginary eigenvalues of the Jacobian matrix of the two-dimensional system and is greater than zero.

When \(\beta_2 > 0 \), the subcritical Hopf bifurcation occurs in the system, and the new equilibrium state branch is unstable when the bifurcation parameter is greater than the bifurcation value. When \(\beta_2 < 0 \), the system undergoes a supercritical Hopf bifurcation. When the bifurcation parameter changes to the bifurcation value, the corresponding equilibrium point becomes an unstable equilibrium point and a stable limit cycle is generated.

From formulae (1) and (21), the nonlinear term of the Prescott model equation can be derived as follows:

\[
f_1 = \frac{1}{c_m} \left[I - g_L (-E_L + x_{10} + P_{11} \cdot y_1 + P_{12} \cdot y_2) - g_K (-E_K + x_{10} + P_{11} \cdot y_1 + P_{12} \cdot y_2) (x_{20} + P_{21} \cdot y_1 + P_{22} \cdot y_2) \right.
\]

\[
-0.5g_{Na} (-E_{Na} + x_{10} + P_{11} \cdot y_1 + P_{12} \cdot y_2) \left(1 + \tanh \left(\frac{x_{10} + P_{11} \cdot y_1 + P_{12} \cdot y_2 - \beta_m}{\gamma_m} \right) \right),
\]

\[
f_2 = \cosh \left(\frac{x_{10} + P_{11} \cdot y_1 + P_{12} \cdot y_2 - \beta_m}{2\gamma_w} \right) \varphi_w \left[-(x_{20} + P_{21} \cdot y_1 + P_{22} \cdot y_2) + 0.5 \left(1 + \tanh \left(\frac{x_{10} + P_{11} \cdot y_1 + P_{12} \cdot y_2 - \beta_m}{\gamma_w} \right) \right) \right]. \tag{27} \]

Since \(Jy \) is a first-order function of \(y \), while in the following calculations, at least the second derivative of \(y \) is calculated. So, only \(F = P^{-1} f (Py + x_0 (\mu_0)) \) is needed to be calculated as follows:
\[
F_1 = \frac{P_{22}}{c_m(P_{11}P_{22} - P_{12}P_{21})} \left[I - g_L \left(-E_L + x_{10} + P_{11} \cdot y_1 + P_{12} \cdot y_2 \right) - g_K \left(-E_K + x_{10} + P_{11} \cdot y_1 + P_{12} \cdot y_2 \right) \right. \\
\left. - 0.5g_{Na} \left(-E_{Na} + x_{10} + P_{11} \cdot y_1 + P_{12} \cdot y_2 \right) \left(1 + \tanh \left(\frac{x_{10} + P_{11} \cdot y_1 + P_{12} \cdot y_2 - \beta_m}{\gamma_m} \right) \right) \right] \\
- \frac{P_{21}}{P_{11}P_{22} - P_{12}P_{21}} \cosh \left(\frac{x_{10} + P_{11} \cdot y_1 + P_{12} \cdot y_2 - \beta_w}{2\gamma_w} \right) \phi_w \left(x_{20} + P_{21} \cdot y_1 + P_{22} \cdot y_2 + 0.5 \left(1 + \tanh \left(\frac{x_{10} + P_{11} \cdot y_1 + P_{12} \cdot y_2 - \beta_w}{\gamma_w} \right) \right) \right),
\]
\[
F_2 = \frac{-P_{12}}{c_m(P_{11}P_{22} - P_{12}P_{21})} \left[I - g_L \left(-E_L + x_{10} + P_{11} \cdot y_1 + P_{12} \cdot y_2 \right) - g_K \left(-E_K + x_{10} + P_{11} \cdot y_1 + P_{12} \cdot y_2 \right) \right. \\
\left. - 0.5g_{Na} \left(-E_{Na} + x_{10} + P_{11} \cdot y_1 + P_{12} \cdot y_2 \right) \left(1 + \tanh \left(\frac{x_{10} + P_{11} \cdot y_1 + P_{12} \cdot y_2 - \beta_m}{\gamma_m} \right) \right) \right] \\
+ \frac{P_{11}}{P_{11}P_{22} - P_{12}P_{21}} \cosh \left(\frac{x_{10} + P_{11} \cdot y_1 + P_{12} \cdot y_2 - \beta_w}{2\gamma_w} \right) \phi_w \left(x_{20} + P_{21} \cdot y_1 + P_{22} \cdot y_2 + 0.5 \left(1 + \tanh \left(\frac{x_{10} + P_{11} \cdot y_1 + P_{12} \cdot y_2 - \beta_w}{\gamma_w} \right) \right) \right).
\]
(28)

The relevant derivatives of each nonlinear term, the parameters of the model, and the Hopf bifurcation parameter are substituted into formula (26) to calculate the bifurcation type determination formula \(\beta_2 \). If \(\beta_2 < 0 \), a supercritical Hopf bifurcation occurs at this equilibrium point; if \(\beta_2 > 0 \), a subcritical Hopf bifurcation occurs at this equilibrium point.

It is shown in Section 3 that when \(I_o = 33.1813 \, \mu A/cm^2 \), the Prescott model has Hopf bifurcation at the equilibrium point \(V_0 = -39.1842 \, mV \) and \(w_0 = 0.002961 \). The corresponding eigenvalues are \(\lambda_1 = 0.06583i \) and \(\lambda_2 = -0.06583i \). So, the matrix \(P \) corresponding to the eigenvalue of the linearized matrix of the system here is as follows:

\[
P = \begin{bmatrix}
P_{11} & P_{12} \\
\frac{1}{P_{12}} & P_{22}
\end{bmatrix} = \begin{bmatrix}
0.99999984 & 0 \\
0.00005926742 & 0.00010825119
\end{bmatrix}.
\]

Substituting the equilibrium point value \((V_0, w_0) \), the bifurcation parameter \(I_o \), and the eigenvector \(P \) at the bifurcation into the bifurcation type determination formula (26), \(\beta_2 = 0.05306736 > 0 \) is obtained, indicating that the Prescott model has a subcritical Hopf bifurcation at \((V_0, w_0) \), and the new equilibrium state branch is unstable.

The firing response curve of the Prescott model at \((V_0, w_0) = (-39.1842, 0.002961) \) is shown in Figure 3. The model is disturbed by the external simulation, and the stable equilibrium point loses its stability, resulting in a large-scale limit cycle. At the same time, the system produces a large-amplitude oscillation.

5. Hopf Bifurcation Type Control Based on Washout Filter

The subcritical Hopf bifurcation will cause the new equilibrium state of the system to lose stability. In order to avoid this situation, this section designs a controller based on the Washout filter to control the subcritical Hopf bifurcation caused by the bifurcation parameter \(I \). The Washout filter is selected because it does not change the equilibrium point position of the system after adding the controller so as not to
change the operating state of the system and avoid the waste of energy. Therefore, the Washout filter is used to change the Hopf bifurcation type of the neuron model. The dynamic equations of the system after adding the controller are as follows:

\[
\begin{align*}
\dot{x} &= f(x, \mu) = 0, \\
\dot{z} &= V - \zeta z, \\
\dot{u} &= k(V - \zeta z)^3,
\end{align*}
\]

(29)

where \(\mu \) is the Washout nonlinear controller, \(z \) is the state variable of the controller, \(k \) is the gain of the Washout filter, and \(\zeta \) is the reciprocal of the time constant of the filter, which is 0.5 in this paper.

The controlled Prescott model constitutes a three-dimensional nonlinear system, and its Hopf bifurcation stability needs to be determined according to the high-dimensional Hopf bifurcation theory. Suppose the nonlinear equation of the three-dimensional system is as follows:

\[
\dot{\mathbf{x}} = \mathbf{f}(\mathbf{x}, \mu), \quad \mathbf{x} = [x_1, x_2, x_3]^T
\]

and \(\mathbf{f} = [f_1, f_2, f_3]^T \).

Let \(\dot{\mathbf{x}} = \mathbf{f} \) and find the equilibrium point \(\mathbf{x}_0 = [x_{01}(\mu), x_{02}(\mu), x_{03}(\mu)]^T \). Extract the linear part of the equation and rewrite it as \(\dot{\mathbf{x}} = \mathbf{A}\mathbf{x} + \mathbf{g}(\mathbf{x}) \), where \(\mathbf{A} \) is the Jacobian matrix at the equilibrium point and \(\mathbf{g}(\mathbf{x}) \) is the nonlinear term as follows:

\[
\mathbf{A} = \frac{\partial \mathbf{f}}{\partial \mathbf{x}}|_{\mathbf{x}=\mathbf{x}_0} = \begin{bmatrix}
\frac{\partial f_1}{\partial x_1} & \frac{\partial f_1}{\partial x_2} & \frac{\partial f_1}{\partial x_3} \\
\frac{\partial f_2}{\partial x_1} & \frac{\partial f_2}{\partial x_2} & \frac{\partial f_2}{\partial x_3} \\
\frac{\partial f_3}{\partial x_1} & \frac{\partial f_3}{\partial x_2} & \frac{\partial f_3}{\partial x_3}
\end{bmatrix}, \quad \mathbf{g}(\mathbf{x}) = \mathbf{f}(\mathbf{x}, \mu) - \mathbf{A}\mathbf{x}.
\]

A linear transformation is performed on the three-dimensional system: \(\mathbf{x} = \mathbf{P} \mathbf{y} + \mathbf{x}_0(\mu_0) \), where the first two columns of \(\mathbf{P} = \left[\begin{array}{c} \text{Re}(\lambda_1) \\ \text{Im}(\lambda_1) \\ \lambda_3 \end{array} \right] \) are the real and imaginary parts of the eigenvector corresponding to the real eigenvalue \(\lambda_1 = i\omega_0(\mu) \) of the Jacobian matrix \(\mathbf{A} \), and the third column is the eigenvector corresponding to the real eigenvalue \(\lambda_3 \). It can be seen from formulae (19) and (20) that \(\dot{\mathbf{y}} = \mathbf{Jy} + \mathbf{P}^{-1}\mathbf{f}(\mathbf{P} \mathbf{y} + \mathbf{x}_0(\mu_0)) - \mathbf{Jy} = \mathbf{Jy} + \mathbf{F} \), where \(\mathbf{J} = \mathbf{P}^{-1}\mathbf{AP} \) is the Jordan matrix of the system and \(\mathbf{F} \) is the nonlinear term: \(\mathbf{F} = \mathbf{P}^{-1}\mathbf{f}(\mathbf{P} \mathbf{y} + \mathbf{x}_0(\mu_0)) - \mathbf{Jy} \). Its component form is as follows:

\[
\begin{bmatrix}
F_1 \\
F_2 \\
F_3
\end{bmatrix} = \mathbf{P}^{-1} \begin{bmatrix}
f_1(\mathbf{P} \mathbf{y} + \mathbf{x}_0(\mu_0)) \\
f_2(\mathbf{P} \mathbf{y} + \mathbf{x}_0(\mu_0)) - \mathbf{J} y_1 \\
f_3(\mathbf{P} \mathbf{y} + \mathbf{x}_0(\mu_0)) - \mathbf{J} y_2
\end{bmatrix}.
\]

(31)

The basic formula for determining the Hopf bifurcation type of a three-dimensional nonlinear system is still formula (22), which is obtained from formula (24), when \(n = 3 \) as follows:

\[
g_{21} = G_{21} + 2C_{110}^1 w_{11}^1 + G_{101}^1 w_{20}^1.
\]

(32)

Therefore,

\[
\beta_2 = \text{Re} \left[\frac{g_{20} g_{11}^* i + G_{21}}{\omega_0} \right] + \text{Re} \left[2C_{110}^1 w_{11}^1 + G_{101}^1 w_{20}^1 \right].
\]

(33)
\[G_{110}^1 = \frac{1}{2} \left(\frac{\partial^2 F_1}{\partial y_1 \partial y_3} + \frac{\partial^2 F_2}{\partial y_2 \partial y_3} + i \left(\frac{\partial^2 F_2}{\partial y_1 \partial y_3} - \frac{\partial^2 F_1}{\partial y_2 \partial y_3} \right) \right), \]

\[G_{101}^1 = \frac{1}{2} \left(\frac{\partial^2 F_1}{\partial y_1 \partial y_3} - \frac{\partial^2 F_2}{\partial y_2 \partial y_3} + i \left(\frac{\partial^2 F_2}{\partial y_1 \partial y_3} + \frac{\partial^2 F_1}{\partial y_2 \partial y_3} \right) \right). \]

\[\omega_{11}^1 = \frac{1}{4\lambda_3} \left(\frac{\partial^2 F_3}{\partial y_1^2} + \frac{\partial^2 F_3}{\partial y_2^2} \right), \]

\[\omega_{20}^1 = \frac{1}{4(\lambda_3^2 + 4\omega_0^2)} \left[\lambda_3 \left(\frac{\partial^2 F_3}{\partial y_1^2} - \frac{\partial^2 F_3}{\partial y_2^2} \right) + 4\omega_0 \frac{\partial^2 F_3}{\partial y_1 \partial y_2} \right] \]

\[- \frac{i}{2(\lambda_3^2 + 4\omega_0^2)} \left[\omega_0 \left(\frac{\partial^2 F_3}{\partial y_1^2} - \frac{\partial^2 F_3}{\partial y_2^2} \right) - \lambda_3 \frac{\partial^2 F_3}{\partial y_1 \partial y_2} \right]. \]

(34)

\[\text{Re} \left(2G_{110}^1 \omega_{11}^1 + G_{101}^1 \omega_{20}^1 \right) = \frac{1}{4\lambda_3} \left[\left(\frac{\partial^2 F_2}{\partial y_2 \cdot \partial y_3} + \frac{\partial^2 F_1}{\partial y_1 \cdot \partial y_3} \right) \cdot \left(\frac{\partial^2 F_3}{\partial y_2^2} + \frac{\partial^2 F_3}{\partial y_1^2} \right) \right] \]

\[+ \frac{\omega_0}{4(\lambda_3^2 + 4\omega_0^2)} \left[\left(\frac{\partial^2 F_1}{\partial y_2 \cdot \partial y_3} + \frac{\partial^2 F_2}{\partial y_1 \cdot \partial y_3} \right) \cdot \left(\frac{\partial^2 F_3}{\partial y_2^2} - \frac{\partial^2 F_1}{\partial y_1^2} \right) \right] \]

\[- \frac{-\lambda_3}{4(\lambda_3^2 + 4\omega_0^2)} \left[\frac{\partial^2 F_3}{\partial y_1 \cdot \partial y_2} \left(\frac{\partial^2 F_1}{\partial y_2 \cdot \partial y_3} + \frac{\partial^2 F_2}{\partial y_1 \cdot \partial y_3} \right) \right] \]

\[- \frac{-\lambda_3}{8(\lambda_3^2 + 4\omega_0^2)} \left[\left(\frac{\partial^2 F_1}{\partial y_1 \cdot \partial y_3} - \frac{\partial^2 F_2}{\partial y_2 \cdot \partial y_3} \right) \cdot \left(\frac{\partial^2 F_3}{\partial y_1^2} - \frac{\partial^2 F_3}{\partial y_2^2} \right) \right] \]

\[- \frac{-\omega_0}{2(\lambda_3^2 + 4\omega_0^2)} \left[\frac{\partial^2 F_3}{\partial y_1 \cdot \partial y_2} \left(\frac{\partial^2 F_1}{\partial y_1 \cdot \partial y_3} - \frac{\partial^2 F_2}{\partial y_2 \cdot \partial y_3} \right) \right]. \]

(35)

It is known in Section 4 that

\[\text{Re} \left\{ \frac{\partial g_{20} g_{11} i}{\omega_0} + G_{21} \right\} = \frac{1}{8\omega_0} \left[\frac{\partial^2 F_1}{\partial y_2^3} + \frac{\partial^2 F_2}{\partial y_2^3} + \frac{\partial^2 F_3}{\partial y_1^3} + \frac{\partial^2 F_1}{\partial y_1 \partial y_2 \partial y_3} + \frac{\partial^2 F_2}{\partial y_2 \partial y_1 \partial y_3} + \frac{\partial^2 F_3}{\partial y_1 \partial y_2 \partial y_3} \right] \]

\[+ \frac{1}{8} \left[\frac{\partial^2 F_2}{\partial y_1 \partial y_2} + \frac{\partial^2 F_1}{\partial y_1 \partial y_2} + \frac{\partial^2 F_2}{\partial y_1 \partial y_2} + \frac{\partial^2 F_1}{\partial y_1 \partial y_2} \right]. \]

(36)

Therefore, the determination formula of the Hopf bifurcation type of the three-dimensional Prescott model is as follows:
A three-dimensional equation can be rewritten as follows: where

\[
\begin{align*}
\dot{V} &= f_1(V, w, z), \\
\dot{w} &= f_2(V, w, z), \\
\dot{z} &= f_3(V, w, z),
\end{align*}
\]

\[
\begin{align*}
f_1 &= \frac{1}{8\omega_0} \left[\frac{\partial^3 F_1}{\partial y^3_1} - \frac{\partial^3 F_1}{\partial y^3_1} \cdot \left(\frac{\partial^2 F_1}{\partial y_1 \partial y_1} - \frac{\partial^2 F_1}{\partial y_1 \partial y_2} \right) - \frac{\partial^2 F_2}{\partial y_1 \partial y_1} \right] \\
&\quad + \frac{\omega_0}{4(\lambda^3_3 + 4\omega^2_0)} \left[\frac{\partial^3 F_1}{\partial y_1 \partial y_3} \cdot \left(\frac{\partial^2 F_1}{\partial y_2^2} + \frac{\partial^2 F_1}{\partial y_3^2} \right) \right] \\
&\quad - \frac{\lambda_3}{8(\lambda^3_3 + 4\omega^2_0)} \left[\frac{\partial^3 F_1}{\partial y_1 \partial y_3} - \frac{\partial^3 F_2}{\partial y_1 \partial y_3} \right] \\
&\quad - \frac{\omega_0}{2(\lambda^3_3 + 4\omega^2_0)} \left[\frac{\partial^3 F_3}{\partial y_1 \partial y_2} \cdot \left(\frac{\partial^3 F_1}{\partial y_2^2} + \frac{\partial^3 F_2}{\partial y_3^2} \right) \right].
\end{align*}
\]

From formula (29), it can be seen that after the two-dimensional Prescott model is added to the controller, its three-dimensional equation can be rewritten as follows:

\[
\begin{align*}
\dot{V} &= f_1(V, w, z), \\
\dot{w} &= f_2(V, w, z), \\
\dot{z} &= f_3(V, w, z),
\end{align*}
\]

where

\[
\begin{align*}
f_1 &= \left[I - g_E (V - E_L) - g_{N_a} m_{\infty_0} (V - E_{Na}) - g_{K} w (V - E_K) + u \right] \frac{1}{c_m}, \\
f_2 &= \frac{\varphi_w (w_{\infty_0} (V) - w)}{\tau_w (V)}, \\
f_3 &= V - \xi z.
\end{align*}
\]

\(f(\textbf{Py} + x_0 (\mu_0))\) in the nonlinear term can be deduced (\(x_0 = (V_0, w_0, z_0), \mu_0 = I_0\)):
stable supercritical Hopf bifurcation. By applying a Washout filter to the Prescott model, the Hopf bifurcation type of the Prescott model is derived, and the Hopf bifurcation type of the model is judged according to β_2. By applying a Washout filter to the Prescott model, the Hopf bifurcation type of the model is changed, and the subcritical Hopf bifurcation is transformed into a supercritical Hopf bifurcation, thereby changing the firing characteristics of neurons. This can achieve the purpose of eliminating the hidden firing behavior of the system and further controlling the stable area of the neuronal system. The results obtained will help to study the pathogenesis of neuron-related diseases and hidden dynamic behavior, which is of great significance to the prevention and control of neuronal diseases.

Data Availability

The data used to support the findings of this study are available from the corresponding author upon request.

Conflicts of Interest

The authors declare that they have no conflicts of interest to this work.

Acknowledgments

This work was supported by the Scientific Research Fund of Liaoning Provincial Education Department (grant nos. LG202028 and LG201930).

References

[1] A. Jangid, L. Chaudhary, and K. Sharma, “Computational neuroscience and its applications: a review,” in *Intelligent Energy Management Technologies. Algorithms for Intelligent...*
[2] E. M. Izhikevich, *Dynamical Systems in Neuroscience: The Geometry of Excitability and Bursting*, MIT Press, Cambridge, MA, USA, 2007.

[3] X. Li, C. Yuan, and B. Shan, “System identification of neural signal transmission based on back propagation neural network,” *Mathematical Problems in Engineering*, vol. 2020, Article ID 9652678, 8 pages, 2020.

[4] A. V. M. Herz, T. Gollisch, C. K. Machens, and D. Jaeger, “Modeling single-neuron dynamics and computations: a balance of detail and abstraction,” *Science*, vol. 314, no. 5796, pp. 80–85, 2006.

[5] Q. Qin, Y. Liu, B. Shan et al., “Spike-sorting analysis of neural electrical signals evoked by acupuncture based on model,” *Cognitive Neurodynamics*, vol. 15, no. 3, pp. 1–10, 2020.

[6] Z. He and D. Fan, “A tunable magnetic skyrmion neuron cluster for energy efficient artificial neural network,” in *Proceedings of the Design, Automation & Test in Europe Conference & Exhibition*, Lausanne, Switzerland, March 2017.

[7] O. V. Maslennikov, D. S. Shchapin, and V. I. Nekorkin, “Transient sequences in a hypernetwork generated by an adaptive network of spiking neurons,” *Philosophical Transactions of the Royal Society a Mathematical Physical and Engineering Sciences*, vol. 375, no. 2096, 2017.

[8] Q. Jin, J. Wang, X. Wei et al., “Action potential initial dynamical control and analysis of a minimum neuron model,” *Acta Physica Sinica*, vol. 60, no. 9, pp. 774–782, 2011.

[9] S. A. Prescott, Y. De Koninck, and T. J. Sejnowski, “Biophysical basis for three distinct dynamical mechanisms of action potential initiation,” *PLoS Computational Biology*, vol. 4, no. 10, Article ID e1000198, 2008.

[10] O. A. Hafez and A. Gottschalk, “Altered neuronal excitability in a Hodgkin-Huxley model incorporating channelopathies of the delayed rectifier potassium channel,” *Journal of Computational Neuroscience*, vol. 48, no. 4, pp. 377–386, 2020.

[11] R. Cai, Y. Liu, J. Duan et al., “State transitions in the Morris-Lecar model under stable Lévy noise,” *The European Physical Journal B: Condensed Matter and Complex Systems*, vol. 93, 2020.

[12] Y. Liu, W.-J. Xu, J. Ma, F. Alzahrani, and A. Hobiny, “A new photosensitive neuron model and its dynamics,” *Frontiers of Information Technology & Electronic Engineering*, vol. 21, no. 9, pp. 1387–1396, 2020.

[13] S. Chen, Y. Zou, and X. Zhang, “An efficient method for Hopf bifurcation control in fractional-order neuron model,” *IEEE Access*, vol. 7, pp. 77490–77498, 2019.

[14] L. Gu, P. Gong, and H. Wang, “Hopf bifurcation and turing instability analysis for the gierer-meinhardt model of the depletion type,” *Discrete Dynamics in Nature and Society*, vol. 2020, Article ID 5293748, 10 pages, 2020.

[15] J. Wang, B. Lu, S. Liu et al., “Bursting types and bifurcation analysis in the pre-btzinger complex respiratory rhythm neuron,” *International Journal of Bifurcation and Chaos*, vol. 27, no. 1, Article ID 1750010, 2017.

[16] S. Shi, H. Wang, and M. Xiao, “PD control at the Hopf bifurcation point of a neuron system with inertia and delay,” in *Proceedings of the 3rd International Conference on Artificial Intelligence, Automation and Control Technologies*, Xi’an, China, April 2019.

[17] L. Zhou, Z. Zhao, and F. Chen, “Stability and Hopf bifurcation analysis of a new four-dimensional hyper-chaotic system,” *Modern Physics Letters B*, vol. 34, Article ID 2050327, 2020.