Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Presentation, Management and Outcomes of COVID-19 Patients with Sickle Cell Disease

Nwabundo Anusim, MBBS,1 Ruby Gupta, MD,1,2 Hycienth O Ahaneku, MD MPH, PhD,1 Candace Franklin, DO,1,2 Savitha Balaraman, MD,1,1
Marianne Terese Huben, DO,1,1 Ishmael Jaiyesimi, DO, MS1
1Oakland University / William Beaumont Hospital, Royal Oak, MI
2Oakland University / William Beaumont Hospital, Royal Oak, MI

Background

Sickle cell disease (SCD) is an inherited disorder of red blood cell (RBC) caused by a mutation in the beta-globin gene resulting in abnormal hemoglobin known as hemoglobin S (HbS) or the sickle hemoglobin. Several clinical variants of SCD have been elucidated, all driven by two fundamental pathophysiologic processes: RBC hemolysis and intermittent vaso-occlusive vasculopathy resulting in tissue ischemia/infarction. These two processes underscore the many complications and eventual multi-organ damage that may develop in patients with the most severe types of SCD.

Cardiopulmonary complications including heart failure, pulmonary hypertension and acute chest syndrome (ACS) are major drivers of morbidity and mortality among patients with SCD. With regards to ACS, patients often present with fever, cough and shortness of breath caused by vaso-occlusive crisis affecting the lungs. This is particular concerning in view of its similar features to symptomatic COVID-19 infection.

Methods

We retrospectively identified SCD patients with COVID-19 infection admitted to Beaumont hospitals in Michigan between March 1st 2020 and July 1st 2020. Data was abstracted using the ICD 10 code of U07.1 for COVID-19, ICD 9 and 10 codes of 282.60 and D57 for sickle cell disease. We excluded patients
with sickle cell trait. Data regarding the demographics, presentation, management and outcomes were abstracted.

Results

A total of eleven patients with sickle cell disease were identified as having a positive SARS-CoV19 polymerase chain reaction test (Table I). All were African American and predominantly female (64%) with a mean age of 44 (22-60) years and mean BMI of 30.2 kg/m2. Genotypes identified were HbSS in 5 (45%) patients, HbSC in 4 (36%), HbS/beta-thalassemia in 1 (9%) and HbS/alpha-thalassemia in 1 (9%). All of the patients had seen a haematologist since their diagnosis but none of the patients were on hydroxyurea, voxeloter, L-glutamine or crizanlizumab at admission. The predominant clinical presentation was fever, chest pain, chills, exertional shortness of breath and cough but this was not consistent across all patients. All the patients were managed with intravenous hydration, pain management as well as hydroxychloroquine/azithromycin per institutional guideline at that time. Three patients (cases 1-3) had recurrent visits to the hospital for similar symptoms and new bone pain crises. Case 1 had a pulmonary embolus which was evident on re-admission. Two patients (cases 3 and 10) succumbed to COVID-19. Two patients (cases 5 and 7) presented with bone pain crisis and no respiratory symptoms, but chest imaging was suggestive of COVID-19 infection necessitating treatment with antibiotics, possibly indicating that the virus can trigger vaso-occlusive crises without respiratory symptoms. Case 8 had a high Charlson comorbidity index and age over 60, had the lengthiest hospital stay complicated by renal failure and polyneuropathy, and was discharged to a long-term acute care facility: an outcome which is consistent with current data showing that the elderly and unfit patients are more likely to have a higher morbidity and mortality with COVID-19.

Conclusion

To date, there no compelling evidence to provide guidelines for the management of SCD patients with COVID-19. However, following existing recommendations in managing acute chest syndrome and those for COVID-19 symptomatic infection, is a good place to start. We continue to seek to improve
management of these patients as new evidence of successful treatment emerges, and also encourage patients to participate in clinical trials.

TABLE I: Baseline Characteristics and Outcomes of Sickle cell patients with Confirmed COVID-19

Case	Sex	Age	Genotype	Body Mass Index (BMI)	Sickles cell complications	ICU care	Transfusion	Management	Length of stay (days)	Discharge Status
#1	M	48	SC	30.9	2 VOCs in 10 years, splenectomy	-	-	Pain medication, doxycycline, cefepime, anticoagulation, and IVF	2 admissions over 16 days	Home
#2	F	48	SS	22.8	2 VOCs in 5 years	-	Exchange	Pain medication, IVF, azithromycin, hydroxychloroquine, Solu-medrol	2 admissions over 25 days	Home
#3	F	22	SC	24.03	4 VOCs in 3 years	-	-	Pain medication, IVF, azithromycin, Tamiflu and ibuprofen	3 presentations over 7 days, no admissions	Deceased
#4	F	23	SS	40.6	ACS 10 years prior, splenectomy, multiple VOC, AVN of hip, AVN, iron overload	-	-	Pain medication, anticoagulation, azithromycin, hydroxychloroquine, IVF, Solu-medrol, ceftriaxone	10	Home
#5	F	43	SS	25.34	None	-	Simple	Pain medication, IVF, azithromycin	3	Home
#6	M	54	S/alpha thalassemia	36.4	None	-	-	Pain medication, IVF, azithromycin, ceftriaxone, hydroxychloroquine	9	Home
#7	F	51	SC	26.4	AVN of hip and shoulder, multiple PE on amputation	-	-	Pain medication, IVF, azithromycin	2	Home
#8	F	60	SS	43.85	None	Y	Exchange/Simple	Pain medication, IVF, azithromycin, ceftriaxone, hydroxychloroquine, renal dialysis	39	LTACH
#9	F	36	SS	25.34	None	-	Simple	Pain medication, IVF, azithromycin	5	Home
#10	M	58	S/beta thalassemia	29.18	Ischemic CVA x 3 with residual left hemiparesis, chronic debility	Y	Exchange	Pain medication, IVF, azithromycin, hydroxychloroquine, Solu-medrol	9	Deceased
#11	M	43	SC	28.45	None	-	-	Pain medication, azithromycin and hydroxychloroquine	4	Home

Abbreviations: ACS, acute chest syndrome; AVN, avascular necrosis; CT, computed tomography scan; CVA, cerebrovascular accident; CXR, chest X-ray; IVF, intravenous fluids; LTACH, long-term assisted care hospital; PE, pulmonary embolism; SpO2, oxygen saturation; VOC, vaso-occlusive crisis.

Disclosures

No relevant conflicts of interest to declare.

Author notes

* Asterisk with author names denotes non-ASH members.

© 2020 by the American Society of Hematology