Fracture of the Wrist and Incidence of the Complex Regional Pain Syndrome Type 1: A Case Series Study

Payam Vezvaei, Sorooosh Alizadeh, Saeed Reza Mehrpour and Leila Oryadi-Zanjani

1 Medical Doctor, Sina Trauma and Surgery Research Center, Tehran University of Medical Sciences, Tehran, Iran
2 Associate Professor, Department of Orthopedics, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
3 Assistant Professor, Department of Orthopedics, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran

*Corresponding author: Leila Oryadi-Zanjani; Assistant Professor, Department of Orthopedics, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran. Tel: +989124837488, Email: leila.zanjani123@gmail.com

Received 2018 March 15; Revised 2018 July 23; Accepted 2018 August 19

Keywords: Complex Regional Pain Syndrome; Upper Extremity; Incidence

Abstract

Background: Complex regional pain syndrome (CRPS) is a painful syndrome with signs such as swelling, restriction of motion, and discoloration of the skin and bone. CRPS is divided into two types based on neurological injuries. Type 1 CRPS (CRPS-I), which is more common, has no nerve damage. In this study, we used the Budapest Criteria to investigate the incidence of CRPS. We also evaluated the risk factors for the incidence of CRPS.

Methods: A single-center case series study was performed at Shariati Hospital of Tehran University of Medical Sciences, Tehran, Iran, during 2018-2019. We evaluated CRPS-I, two and six weeks after treatment based on Budapest Criteria. The inclusion criteria included distal radius fracture confirmed by clinical and radiographic investigations. The exclusion criteria were patients with fractures in another part of the body, associated nerve damage, vascular injury, and an open fracture.

Results: Sixty-two patients with distal radius fracture who underwent casting or surgical treatment enrolled in the study. A total of 9 (14.5%) patients had CRPS-I after distal radius fracture. In 5 (8.1%) patients, CRPS-I occurred within two weeks after fracture. Also, 4 (6.5%) patients had CRPS-I after six weeks from fracture. There was no significant difference between the two sex groups in terms of CRPS-I (P = 0.345). This complication was significantly higher in the surgical group than in the casting group (P = 0.004).

Conclusions: Given the significant incidence of CRPS and its impact on patient’s quality of life, further studies are recommended to explore solutions to reduce this complication.

Citation: Vezvaei P, Alizadeh S, Mehrpour SR, Oryadi-Zanjani L. Fracture of the Wrist and Incidence of the Complex Regional Pain Syndrome Type 1: A Case Series Study. J Orthop Spine Trauma 2018; 4(4): 71-3.

We aimed to evaluate the incidence of this syndrome following distal radius fracture according to different gender and treatment groups.

Methods

This single-center case series study was performed at Shariati Hospital of Tehran University of Medical Sciences, Tehran, Iran, during 2018-2019. Patients with distal radius fracture confirmed by clinical and radiographic investigations, who underwent casting or surgery treatment, were included in this study. The exclusion criteria included patients with fractures in another part of the body, associated nerve damage, vascular injury, and open fracture. Budapest Criteria as valid criteria for diagnosis of CRPS-I were used to evaluate the patients two and six weeks after treatment (Table 1) [9]. This study was conducted by following the Declaration of Helsinki and was approved by the Ethics Committee of Tehran University of Medical Sciences. The ethical registration code of the study is IR.TUMS.MEDICINE.REC.1397.219.

Statistical analysis was performed using SPSS software (version 24, IBM Corporation, Armonk, NY, USA). Qualitative variables were shown by number and percentage and quantitative variables were demonstrated by mean and standard deviation (SD). Fisher’s exact test was used to compare the significant difference of CRPS-I between different gender and treatment groups.
Results

Sixty-two patients with distal radius fracture between August 2018 and August 2019, who underwent casting or surgical treatment, enrolled in the study. The mean and SD of the patient’s age was 44.08 ± 21.13 years. 34 (54.8%) patients were male and 28 (45.2%) were female. Non-invasive treatment (casting) was performed on 35 (56.5%) patients and surgical treatment was performed on 27 (43.5%) patients.

A total of 3 (14.5%) patients had CRPS-I after distal radius fracture. 5 (8.1%) patients experienced CRPS-I within two weeks after fracture. Also, 4 (6.5%) patients had CRPS-I after six weeks from fracture.

Of 34 male patients, 18 (52.9%) had a casting and 16 (47.1%) had surgical treatment. In the male population, 2 (5.9%) had CRPS-I within two weeks after fracture. Also, 4 (11.8%) had this complication in the sixth week after the fracture. Of 28 female patients, 17 (60.7%) had a casting and 11 (39.3%) had surgical treatment. In the female population, 3 (10.7%) experienced CRPS-I within two weeks. However, none of the patients had CRPS-I in the sixth week after the fracture. The mean age in the female group was 46.32 ± 21.79 years and in the male group was 42.24 ± 20.72 years. There was no significant difference between the two sex groups (P = 0.345) and treatment modalities (P = 0.111).

Table 2 shows the incidence of CRPS-I by gender groups.

Incident of CRPS-I by gender groups	Male	Female	P-value
CRPS-I in two weeks after fracture	2	3	
CRPS-I in six weeks after fracture	4	0	
Total	6	3	0.345

A total of 35 patients received non-invasive treatment (casting). None of these patients had complications within two weeks after fracture. However, in one case (2.9%), this complication was found within six weeks after fracture. 27 patients underwent surgical treatment. In the surgical treatment group, 5 patients (18.5%) developed CRPS-I in two weeks after fracture and 3 patients (11.1%) developed this complication in the sixth week.

The mean age in the casting group was 47.71 ± 23.21 and in the surgical group was 39.37 ± 17.39. There was no significant difference in age between the two groups (P = 0.043) and treatment modalities (P = 0.36).

Table 3 shows the incidence of CRPS-I by treatment groups.

Incident of CRPS-I by treatment groups	Male	Female	P-value
CRPS-I in two weeks after fracture	0	5	
CRPS-I in six weeks after fracture	1	3	
Total	1	8	0.004

The incidence of CRPS-I was not significantly different between the two sex groups (P = 0.345). This complication was significantly higher in the surgical group than in the casting group (P = 0.004).

Discussion

Although several studies have evaluated the incidence of CRPS-I (10-12), a comprehensive study in Iran has not been conducted to determine the incidence of this complication. The incidence of CRPS-I in different studies has been in the range of 1% to 37% (13, 14). In our study, the incidence rate was 14.5%.

Most studies have reported a higher incidence of CRPS-I in the female population than in men (15-17). Our study showed that this value was not significantly different between the two sex groups (P = 0.345), which may be due to the greater use of the surgical approach in men and the use of different diagnostic criteria in this study.

In our study, the incidence of CRPS-I was significantly higher in patients who underwent surgery than in the casting group (P = 0.004). Given the greater use of the surgical technique in more severe injuries, it can be predicted that severe fractures and high-energy injuries increase the risk of this complication. The results of previous studies were similar in terms of differences in the incidence of CRPS-I in different treatment modalities (12, 18).

Budapest Criteria that have the highest specificity for CRPS-I diagnosis were used in our study (9).

Conclusion

Based on the high incidence rate of CRPS-I after fracture of the distal radius, multi-center studies with a larger sample size are recommended for investigating the exact incidence rates and risk factors.
Conflict of Interest

The authors declare no conflict of interest in this study.

Acknowledgments

We acknowledge Dr. Mohammad Hossein Nabian for his scientific support in this research. This article is the result of a thesis (Registration code: 23560) on general medicine in the orthopedic ward of Shariati Hospital, Tehran University of Medical Sciences.

References

1. Karl JW, Olson PR, Rosenwasser MP. The epidemiology of upper extremity fractures in the United States, 2009. J Orthop Trauma. 2015;29(8):e242-e244. doi: 10.1097/BOT.0000000000000312. [PubMed: 2574441].
2. Galer BS, Jensen M. Neglect-like symptoms in complex regional pain syndrome: Results of a self-administered survey. Pain. 1999;78(3):215-7. doi: 10.1016/S0304-3959(99)00076-7. [PubMed: 10517043].
3. de Mos M, Sturkenboom MC, Huygen PJ. Current understandings on complex regional pain syndrome. Pain Pract. 2009;9(2):86-99. doi: 10.1111/j.1533-2500.2009.00262.x. [PubMed: 19215592].
4. Galer BS, Henderson J, Perander J, Jensen MP. Course of symptoms and quality of life measurement in Complex Regional Pain Syndrome: A pilot survey. J Pain Symptom Manage. 2002;20(4):386-92. doi: 10.1016/s0885-3924(00)00183-4. [PubMed: 1102793].
5. Jeelad A, Salah S, Ben Salah FZ. Complex regional pain syndrome type I: Incidence and risk factors in patients with fracture of the distal radius. Arch Phys Med Rehabil. 2014;95(3):487-92. doi: 10.1016/j.apmr.2013.09.012. [PubMed: 24080349].
6. Harden RN, Bruehl S, Stanton-Hicks M, Wilson PR. Proposed new diagnostic criteria for complex regional pain syndrome. Pain Med. 2007;8(4):326-31. doi: 10.1011/j.1526-4637.2006.00169.x. [PubMed: 17600454].
7. Veldman PH, Reynen HM, Arntz IE, Goris RJ. Signs and symptoms of reflex sympathetic dystrophy: Prospective study of 829 patients. Lancet. 1993;342(8878):1012-6. doi: 10.1016/0140-6736(93)90287-v. [PubMed: 8105263].
8. Bruehl S, Harden RN, Galer BS, Salz S, Backonja M, Stanton-Hicks M. Complex regional pain syndrome: Are there distinct subtypes and sequential stages of the syndrome? Pain. 2002;95(2):193-24. doi: 10.1016/s0304-3959(01)00387-6. [PubMed: 11790474].
9. Harden RN, Bruehl S, Perez RS, Birklein F, Marinus J, Maihofner C, et al. Validation of proposed diagnostic criteria (the "Budapest Criteria") for Complex Regional Pain Syndrome. Pain. 2010;150(2):268-74. doi: 10.1016/j.pain.2010.04.010. [PubMed: 20493633]. [PubMed Central: PMC2914601].
10. Beertuizen A, Stronks DL, Van't Spijker A, Yaksh A, Hanraets BM, Klein J, et al. Demographic and medical parameters in the development of complex regional pain syndrome type I (CRPSI): Prospective study on 596 patients with a fracture. Pain. 2012;153(6):2087-92. doi: 10.1016/j.pain.2012.01.026. [PubMed: 22386473].
11. Zyluk A. Complex regional pain syndrome type I. Risk factors, prevention and risk of recurrence. J Hand Surg Br. 2004;29(4):334-7. doi: 10.1016/j.jhsb.2004.01.003. [PubMed: 15234496].
12. Roh YH, Lee BK, Noh JH, Baek JR, Oh JH, Gong HS, et al. Factors associated with complex regional pain syndrome type I in patients with surgically treated distal radius fracture. Arch Orthop Trauma Surg. 2014;134(12):1775-81. doi: 10.1007/s00402-014-2094-5. [PubMed: 2531811].
13. Dijkstra PJ, Grootenhoff JW, ten Duis HJ, Geertzen JH. Incidence of complex regional pain syndrome type I after fractures of the distal radius. Eur J Pain. 2003;7(7):545-62. doi: 10.1016/s1090-3801(01)00015-6. [PubMed: 12935798].
14. Zollinger PE, Kreis RW, van der Meulen HG, van der Elst M, Breederveld RS, Tuinebreijer WE. No higher risk of CRPS after external fixation of distal radial fractures-subgroup analysis under randomised vitamin C prophylaxis. Open Orthop J. 2010;4:7-5. doi: 10.2174/18743250010402007. [PubMed: 20309405]. [PubMed Central: PMC2842945].
15. Tajerian M, Salhaibe P, Sun Y, Leu D, Yang HY, Li W, et al. Sex differences in a Murine Model of Complex Regional Pain Syndrome. Neurobiol Learn Mem. 2015;123:100-9. doi: 10.1016/j.nlm.2015.06.004. [PubMed: 26070658]. [PubMed Central: PMC4530062].
16. de Mos M, de Bruijn AG, Huygen HJ, Dieleman JP, Stricker BH, Sturkenboom MC. The incidence of complex regional pain syndrome: A population-based study. Pain. 2007;129(1-2):20-20. doi: 10.1016/j.pain.2006.09.008. [PubMed: 17084977].
17. Sumitani M, Yasunaga H, Uchida K, Horiguchi H, Nakamura M, Ohe K, et al. Perioperative factors affecting the occurrence of acute complex regional pain syndrome following limb bone fracture surgery: Data from the Japanese Diagnosis Procedure Combination database. Rheumatology (Oxford). 2014;53(7):1186-93. doi: 10.1093/rheumatology/ket431. [PubMed: 24369418].
18. Ratti C, Nordio A, Resmini G, Murena L. Post-traumatic complex regional pain syndrome: Clinical features and epidemiology. Clin Cases Miner Bone Metab. 2015;12(Suppl 1):1-6. doi: 10.11138/cbmm/2015.12.31.001. [PubMed: 27134626]. [PubMed Central: PMC4832405].

http://jost.tums.ac.ir