Buttazzo, Giuseppe; Pratelli, Aldo

An application of the continuous Steiner symmetrization to Blaschke-Santaló diagrams.

ESAIM, Control Optim. Calc. Var. 27, Paper No. 36, 13 p. (2021).

Summary: In this paper we consider the so-called procedure of Continuous Steiner Symmetrization, introduced by F. Brock [Proc. Indian Acad. Sci., Math. Sci. 110, No. 2, 157–204 (2000; Zbl 0965.49002); Math. Nachr. 172, 25–48 (1995; Zbl 0886.49010)]. It transforms every open set \(\Omega \subset \subset \mathbb{R}^d \) into the ball keeping the volume fixed and letting the first eigenvalue and the torsional rigidity respectively decrease and increase. While this does not provide, in general, a \(\gamma \)-continuous map \(t \mapsto \Omega_t \), it can be slightly modified so to obtain the \(\gamma \)-continuity for a \(\gamma \)-dense class of domains \(\Omega \), namely, the class of polyhedral sets in \(\mathbb{R}^d \). This allows to obtain a sharp characterization of the Blaschke-Santaló diagram of torsion and eigenvalue.

MSC:

49Q10 Optimization of shapes other than minimal surfaces
49J45 Methods involving semicontinuity and convergence; relaxation
49R05 Variational methods for eigenvalues of operators
35P15 Estimates of eigenvalues in context of PDEs
35J25 Boundary value problems for second-order elliptic equations
26D10 Inequalities involving derivatives and differential and integral operators

Keywords:

Blaschke-Santaló diagrams; continuous Steiner symmetrization; torsional rigidity; principal eigenvalue; 0886.49010

Full Text: DOI arXiv

References:

[1] A. Alvino, P.L. Lions and G. Trombetti, Comparison results for elliptic and parabolic equations via symmetrization: a new approach. Differ. Integral Equations 4 (1991) 25-50. - Zbl 0735.35003
[2] M. van den Berg and G. Buttazzo, On capacity and torsional rigidity. Bull. Lond. Math. Soc. 53 (2021) 347-359.
[3] M. van den Berg, G. Buttazzo and A. Pratelli, On the relations between principal eigenvalue and torsional rigidity. To appear in: Commun. Contemp. Math. (2020). https://doi.org/10.1142/S0219199720500935.
[4] M. van den Berg, G. Buttazzo and B. Velichkov, Optimization problems involving the first Dirichlet eigenvalue and the torsional rigidity, in New Trends in Shape Optimization. Birkhäuser Verlag, Basel (2015) 19–41. - Zbl 1329.49095
[5] M. van den Berg, V. Ferone, C. Nitsch and C. Trombetti, On Pólya’s inequality for torsional rigidity and first Dirichlet eigenvalue. Integral Equations Oper. Theory 86 (2016) 579-600. - Zbl 1388.49012
[6] H.J. Brascamp, L. Lieb and J.M. Luttinger, general rearrangement inequality for multiple integrals. J. Funct. Anal. 17 (1974) 227-237. - Zbl 0286.26005
[7] L. Brasco, On torsional rigidity and principal eigenvalues: an invitation to the Kohler-Jobin rearrangement technique. COCV 20 (2014) 315-338. - Zbl 1290.35160 · doi:10.1051/cocv/2013065
[8] L. Brianzi, G. Buttazzo and F. Prinari, Some inequalities involving perimeter and torsional rigidity. To appear in: Appl. Math. Optim. (2020). https://doi.org/10.1007/s00245-020-09727-7.
[9] F. Brock, Continuous Steiner-symmetrization. Math. Nachr. 172 (1995) 25-48. - Zbl 0886.49010
[10] F. Brock, Continuous rearrangement and symmetry of solutions of elliptic problems. Proc. Indian Acad. Sci. 110 (2000) 157-204. - Zbl 0965.49002
[11] D. Bucur, G. Buttazzo and I. Figueiredo, On the attainable eigenvalues of the Laplace operator. SIAM J. Math. Anal. 30 (1999) 527-536. - Zbl 0920.35099
[12] D. Bucur and G. Buttazzo, Variational methods in shape optimization problems. Prog. Nonlinear Differ. Equations 65 (2005). - Zbl 1117.49001
[13] D. Bucur and A. Henrot, Stability for the Dirichlet problem under continuous steiner symmetrization. Potential Anal. 13 (2000) 127-145. - Zbl 0977.31007
[14] I. Fhoui and J. Lamboley, Blaschke-Santaló diagram for volume, perimeter, and first Dirichlet eigenvalue. Preprint https://hal.archives-ouvertes.fr. · Zbl 1460.49033

[15] B. Kawohl, Rearrangements and convexity of level sets in PDE. Springer Lecture notes Math. 1150 (1985) 7-44.

[16] I. Lucardesi and D. Zucco, On Blaschke-Santaló diagrams for the torsional rigidity and the first Dirichlet eigenvalue. Preprint arxiv1910.04454.

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.