Prevalence, Placenta Development, and Perinatal Outcomes of Women with Hypertensive Disorders of Pregnancy at Komfo Anokye Teaching Hospital

S. P. Awuah¹, I. Okai², E. A. Ntim¹, and K. Bedu-Addo¹*

¹Department of Physiology, School of Medicine and Dentistry, KNUST, Kumasi, Ghana.
²Department of Anatomy, School of Medicine and Dentistry, KNUST, Kumasi, Ghana.
*Corresponding author

Email: kwekuba@yahoo.com (KBA)

All author contributed equally to the work.
Abstract

Background: One of the most common medical problems associated with pregnancy is hypertension. Hypertensive disorders of pregnancy (HDP), which has been attributable to abnormal placentation may have adverse effects on both mother and foetus if left unchecked. The objective of this study was to determine the prevalence of Hypertensive Disorders of Pregnancy (HDP), the morphological variations of human placenta in HDP, and maternal and perinatal outcomes in HDP.

Materials and Methods: This was a prospective case-control study, conducted at Komfo Anokye Teaching Hospital (KATH), Ghana. The progression of pregnancy in normotensive and hypertensive pregnant women, and the eventual perinatal outcomes were closely followed. Statistical analysis was performed using IMB-SPSS version 23. Associations were considered significant at p values of \(\leq 0.05 \).

Results: From a total of 214 deliveries recorded during the period of study, 84 (39.25%) were hypertensives. Forty four (52%) of the hypertensives had preeclampsia, 28 (33.3%) had gestational hypertension, 6 (7.1%) had eclampsia, 4 (4.8%) had chronic hypertension, and 2 (2.4%) had preeclampsia superimposed on chronic hypertension. The frequency of placental haematoma, placental infarction, and placental calcification in the normotensives were significantly (p=0.001) lower than that of the hypertensives. The mean placental weight (p = 0.01), placental volume (p = 0.001), placental diameter (p = 0.03), and placental thickness (p = 0.001) of the normotensives were significantly higher than those of the hypertensives. The number of normotensives in whom labour was induced, who had their babies delivered by caesarean section, and who were admitted after they had given birth were significantly (p=0.001) lower than that of hypertensives who underwent similar procedures. No stillbirths were recorded in the normotensives compared with four in the hypertensives. The number of babies delivered to the
normotensives who were admitted to the NICU was significantly (p=0.001) lower than those delivered by hypertensives.

Conclusion: There was a high prevalence of hypertensive disorders of pregnancy in the study site. The condition adversely affected placental development and perinatal outcomes. These adverse effects can be curtailed by embarking on a vigorous health education drive.

Key Words: Hypertensive Disorders of Pregnancy; Maternal outcome; Placento-Foetal outcomes
Introduction

Physiological changes occur in almost every pregnancy to aid in the nourishment and survival of the foetus. Biochemical parameters are good indicators of these adaptive changes in most organ systems and have shown to be different from the non-pregnant state [1]. These changes become very significant during complications of pregnancy. Hypertension is one of the medical problems that mostly affect pregnant women and it remains an important cause of both maternal and foetal morbidity/mortality. Studies show that 10-15% of pregnancies will be complicated by high blood pressure [2,3]. Up to about one-quarter of all antenatal admissions will be hypertensive related cases [2]. In developed countries, 16.1% of maternal deaths are as a result of hypertensive disorders and they are regarded as major risk factors for global maternal mortality [4]. Every year about 70,000 women die and there are half a million stillbirths or neonatal deaths owing to hypertensive disorders of pregnancy – the vast majority being in the developing world [5]. The identification of the disorder and its effective treatment play a beneficial role in pregnancy outcomes for the mother and the foetus, and hence a reduction in both maternal and perinatal mortality. Hypertensive disorder of pregnancy (HDP) has strong association with foetal growth retardation and preterm delivery, leading to perinatal morbidity or mortality. The placenta has been a valuable indicator for maternal and foetal diseases [6].

Many pregnancy complications which are associated with high foetal morbidity and mortality have shown gross deviations from the normal placenta morphology and anatomy [7]. Abnormal placenta adversely affects foetal outcome [8]. With the placenta serving as the image for the health status of the mother and foetus, complications like hypertension in pregnancy has reflected in the placenta in a significant way, either microscopically or macroscopically [9,10].

Pregnancies that are complicated by hypertension have been known to record higher incidence of neonatal morbidity compared to pregnancies with normal blood pressure. Pregnancies with hypertensive disorders are prone to a higher risk of preterm deliveries and low birth weights.
compared to healthy pregnancies [11]. Many investigators have reported that HDP has an adverse effect on newborn babies. The risk of HDP occurs mostly among mothers affected with severe chronic hypertension as well as those with superimposed preeclampsia on chronic hypertension [12]. The objective of this was to determine the prevalence of HDP, the morphological variations of human placenta in HDP, maternal and neonatal outcomes in HDP.

Materials and methods

This was a prospective case-control study, conducted at the maternity block of Komfo Anokye Teaching Hospital (KATH) in Kumasi, Ghana, during the period of February 2018 to July 2018. Samples for the study were collected following approval from the Research and Development Unit, KATH and the Committee on Human Research, Publication and Ethics (CHRPE)-KNUST. Informed patient consent was obtained from all the participants after explaining the study in detail to them and ensuring confidentiality. Patients’ obstetric history were reviewed and those with hypertensive disorders of pregnancy were included in the study. Mothers with associated medical problems other than hypertension and those without antenatal records were excluded from the study.

The study participants were divided into four groups of hypertensive women according the classification system developed by the Working Group of the national high blood pressure education program [13]. These are *chronic hypertension*, *gestational hypertension*, *preeclampsia*, *eclampsia*, and *preeclampsia superimposed on chronic hypertension*.

Maternal parameters recorded/measured included the age of participants, body mass index, the final blood pressure reading before and after delivery, parity, occupation and level of income, educational level, ethnicity, other previous obstetric medical history, and booking status. Blood pressure of participants were recorded as a clinical routine using either a digital-portable automated blood pressure recorder or a standard mercury sphygmomanometer with the woman’s
legs resting on a flat surface. The mode of delivery (vaginal or caesarean section), maternal presentation, and the degree of tear of maternal perineum were also recorded.

All the parameters of placenta were determined accurately using freshly delivered placentae from both the HDP group (hypertensive mothers) and the control group (normotensive mothers) at the labour ward, A1 HDU, and the theatre. Placentae were examined for haematomas, calcification or infarcts. The placental parameters measured included the weight, volume, diameter, and thickness, and shape. The umbilical cord insertion types, length, and the number of vessels in the umbilical cords were noted, along with any umbilical cord abnormalities.

Gestational age was expressed as beginning from the last date of menstruation proven by preliminary examination with ultrasound scan. On the basis of gestational age, the infants were categorized into 3 groups: Term infants were those with gestational age between 37 to 42 weeks, preterm babies included infants with gestational age <37 weeks and post term babies had gestational age >42 weeks. Low birth weight (LBW) was specified for birth weight (BW) <2.5 kg, very low birth weight (VLBW) as BW <1.5 kg, and extremely low birth weight (ELBW) as BW <1 kg [14]. The standard body length was defined as length of baby ranging from 46.9 to 54.9 cm [15]. The standard head circumference was defined as circumference of the head of baby ranging from 33 to 37 cm [16]. The standard abdominal circumference was defined as the circumference of the abdomen of baby ranging from 31 to 33 cm [14].

Data was analyzed using Statistical Package for Social Sciences (SPSS) version 23.0. Statistical analysis was performed with student t-test, and chi-square test. P value equal to or less than 0.05 was considered statistically significant.

Results

Eighty four (39.25%) out of the 214 participants, had hypertensive disorders of pregnancy (HDP). Of the 84 deliveries with hypertensive disorders of pregnancy, 28 (33.3%) were
gestational hypertension, 44 (52.4%) had preeclampsia, 6 (7.1%) had eclampsia, 4 (4.8%) had chronic hypertension, and 2 (2.4%) had preeclampsia superimposed on chronic hypertension (Fig. 1).

Figure 1: Distribution of cases HDP group according to type of hypertension

The mean age of the hypertensives was 29.85 years. Among the hypertensives, 31 (36.9%) were in the age group 30-34 years, and 25 (29.8%) were in the age group 25-29 years. There was a significant difference in weight (p = 0.001) and height (p = 0.025) between the hypertensives and normotensives, but the difference in BMI observed between them was not significant (p = 0.090) (Table 1). The study showed that 57 (43.8%) normotensives and 42 (50.0%) of the hypertensives were obese.

Variable	Frequency	Mean±SD	‘t’	df	p-value		
Age (years)							
≤19	13	2					
20-24	19	13					
25-29	41	25					
30-34	36	31	28.31±0.54	29.85±0.61	1.845	212	0.067
35-39	15	7					
≥40	6	6					
MW (kg)	130	84	72.79±13.10	78.84±12.46	3.368	212	0.001
MH (m)	130	84	1.58±0.08	1.60±0.07	2.255	212	0.025
BMI (kg/m²)	130	84	29.34±6.22	30.74±5.30	1.705	212	0.090

MW=Maternal Weight, MH=Maternal Height, BMI=Body Mass Index, SD=Standard Deviation, p=the p-value.

Forty-eight (57.2%) of the hypertensives were multiparous, 19 (22.6%) primiparous and the remaining 17 (20.2%) were nulliparous. There was no significant difference in maternal parity between the normotensives and hypertensives (p = 0.324) (Table 2).
Majority of the hypertensives presented at the hospital (KATH) with headache as the chief complaint. During their hospitalization, the increases in diastolic blood pressure (DBP) corresponded with the systolic blood pressure (SBP) for both groups. The SBP was used as the major preliminary criteria for identifying the HDP group. There was a significant difference in the mean systolic BP (p = 0.001) and pulse rate (p = 0.001) of the normotensives and hypertensives before and after delivery (Table 3).

Table 2: Maternal parity

Parity	Frequency	Percentage	Sum of Frequencies	χ^2	df	p-value
	Control	HDP	Control	HDP		
Para-0	39	17	30.0	20.2	56	
Para-1	32	19	24.6	22.6	51	
Para-2	29	22	22.3	26.2	51	3.476
Para>3	30	26	23.1	31.0	56	
Total	130	84	100.0	100.0	214	

SBP=Systolic Blood Pressure, DBP=Diastolic Blood Pressure.

The number of normotensives in whom labour was induced, who had their babies delivered by caesarean section, and who were admitted after they had given birth were significantly (p=0.001) lower than that of hypertensives who underwent similar procedures (Table 4). No stillbirths were recorded in the normotensives compared with four in the hypertensives. The number of babies delivered by the normotensives who were admitted to the NICU was significantly (p=0.001) lower than those delivered by hypertensives. There was however, no
significant differences in preterm deliveries, foetal presentation, and degree of maternal tear, between the two groups (Table 4).

Table 4: Delivery outcomes of study participants

Delivery outcome	Component	Control n	Control %	HDP n	HDP %	χ²	df	p-value
Induction of labour	Yes	55	42.3	84	100.0	74.610	1	0.001
	No	75	57.7	0	0.0			
Term of baby	Pre-term	36	27.7	26	31.0	0.264	1	0.608
	Term	94	72.3	58	69.0			
Mode of delivery	Vaginal	128	98.5	37	44.0	85.581	1	0.001
	C/S	2	1.5	47	56.0			
Presentation	Cephalic	126	96.9	8	92.9	1.894	1	0.169
	Breech	4	3.1	6	7.1			
Perineum of mothers	Intact	74	57.4	47	56.0	0.020	1	0.886
	Tear	55	42.6	37	44.0			
Type of birth	Live	130	100.0	80	95.2	6.308	1	0.012
	IUFD	0	0.0	4	4.8			
NICU admissions	Yes	27	20.8	37	44.0	13.191	1	0.001
	No	103	79.2	47	56.0			
Maternal admissions after delivery	Yes	1	0.8	84	100.0	209.856	1	0.001
	No	129	99.2	0	0.0			

NICU=Neonatal Intensive Care Unit, C/S=Caesarean Section, IUFD=Intrauterine Foetal Death, p=the p value.

The frequency of placental haematoma, placental infarction, and placental calcification in the normotensives were significantly (p=0.001) lower than that of the hypertensives. One hundred and three (79.2%) of the placentae of the normotensives were oval shaped, compared to 30 (35.7%) of the hypertensives. Sixteen (12.3%) of the placentae of normotensives were oval compared to 41 (48.8%) for the hypertensives. The number of irregular shaped placentae was 11 (8.5%) and 13 (15.5%) for the normotensives and hypertensives respectively (Table 5).
Table 5: Gross morphology of Placenta of Study Participants

Parameter	Control	HDP	p-value		
	Frequency	%	Frequency	%	
Haematoma					
Yes	5	3.8	28	33.3	
No	125	96.2	56	66.7	0.001
Infarction					
Yes	12	9.2	30	35.7	
No	118	90.8	54	64.3	0.001
Calcification					
Yes	43	33.1	51	60.7	
No	87	66.9	33	39.3	0.001
Placental Shape					
Round	103	79.2	30	35.7	
Oval	16	12.3	41	48.8	0.01
Irregular	11	8.5	13	15.5	

The mean placental weight (p = 0.01), placental volume (p = 0.001), placental diameter (p = 0.03), and placental thickness (p = 0.001) of normotensives were significantly higher than those of the hypertensives (Table 6).

Table 6: Placental Indices of the participants

Variable	Minimum Control	Maximum Control	Mean±SD Control	t'	df	p-value		
PW (kg)	0.20	0.74	0.60	0.56±0.13	0.49±0.18	3.518	212	0.01
PV (L)	0.22	0.77	0.65	0.54±0.11	0.46±0.15	4.577	212	0.001
PD (cm)	15.00	26.00	23.00	20.01±1.95	19.23±1.96	3.012	212	0.03
PT (cm)	1.10	2.70	2.30	2.09±0.29	1.88±0.33	4.834	212	0.001

Eighty five (65.4%) of the placentae of the normotensives had eccentric cord insertion, 21 (16.2%) were central, 22 (16.9%) were marginal and 2 (1.5%) were velamentous. Thirty one (36.9%) placentae of the hypertensives had central insertion, 28 (33.3%) were eccentric, 23 (27.4%) were marginal, and 2 (2.4%) were velamentous. Although majority of the umbilical cords
from both groups had 3 vessels, the mean number of umbilical cords that had 3 vessels were significantly (p = 0.001) higher in the normotensives, compared to the hypertensives (Table 7). Majority (61.5%) of the umbilical cords of the normotensives had normal lengths whiles majority (53.6%) of the cords hypertensives were short. The mean cord length of the hypertensives (39.11±13.05 cm) was significantly lower than that of the normotensives (51.01±16.13 cm) (p = 0.001) (Table 7).

Table 7: Umbilical Cord Indices

Parameter	Control	HDP	p-value		
	Frequency	%	Frequency	%	
Umbilical Cord Insertion					
Velamentous	2	1.5	2	2.4	0.001
Central	21	16.2	31	36.9	
Eccentric	85	65.4	28	33.3	
Marginal	22	16.9	23	27.4	
Umbilical Cord Vessel Number					
Three	121	93.1	59	70.2	
Two	8	6.2	21	25.0	0.001
One	1	0.8	4	4.8	
Umbilical Cord Length (cm)					
Short	31	23.9	45	53.6	
Normal	80	61.5	37	44.0	0.001
Long	19	14.6	2	2.4	

The mean birth weights, birth lengths, head circumferences, and abdominal circumferences of the neonates of the normotensives were significantly higher than that of the neonates of the hypertensives (p = 0.001) (Table 8). Additionally, the Apgar score at the 5th minute of birth of neonates of the normotensives was significantly higher than that of the neonates of the hypertensives (p = 0.001) (Table 8).
Table 8: Neonatal Indices of Study participants

Parameter	Minimum Control	Maximum Control	Mean±SD Control	HDP	‘t’	‘df’	p-value		
BW (kg)	0.90	0.72	4.41	3.80	3.07±0.55	2.70±0.75	4.197	212	0.001
BL (cm)	38.0	33.0	57.0	53.0	48.27±4.46	45.18±4.42	4.976	212	0.001
HC (cm)	28.0	24.0	41.0	40.0	34.68±2.45	33.14±3.81	3.594	212	0.001
AC (cm)	37.0	20.0	40.0	21.0	32.60±3.11	30.76±3.90	3.814	212	0.001
AS	3/10	0/10	10/10	9/10	8.40±1.19	7.70±1.75	3.472	212	0.001

BW=Birth Weight, BL=Baby Length, HC=Head Circumference, AC=Abdominal Circumference, AS=Apgar Score, SD=Standard Deviation, p=the p value.

Discussion

HDP has become a major health issue worldwide, and the prevalence varies from one country to another as well as in different institutions. This study showed a HDP prevalence of 39.25% at Komfo Anokye Teaching Hospital (KATH) during the study period. There has been a reported incidence of 1.5% to 22% of all pregnancies, which is dependent upon the population sampled and the definitions used [17,18,19,20,21]. The variation may be due to differences in genetic factors, socioeconomic status, racial differences, and some other demographic features such as maternal age and parity [19,20,21]. Another reason might be the differences in terminologies used in the study methodologies. Pregnancy Induced Hypertension (PIH) for instance, has led to a significant debate with misleading account in HDP prevalence, rendering the term PIH obsolete and no longer recommended in literature [17]. The prevalence of HDP with respect to age-group distribution was at its peak in women between 30-34 years, many of whom were diagnosed with either gestational hypertension or preeclampsia. The lowest number was recorded for mothers who were ≤19 years, followed by women who were ≥40 years (many of them being chronic hypertensives). Other studies found the highest proportion and lowest proportion of women with HDP between 25-29 years and ≥40 years [22], results inconsistent with that of the present study. Other researchers have reported an increased risk of HDP like preeclampsia in younger women who are 21 years or below [23,24].
Most of the women with hypertensive disorders of pregnancy in this study were multiparous (parity of 3 or more), followed by primiparous women. This is similar to some studies which found a higher prevalence of HDP among women with grand multiparity (5 or more) [22,23]. The mean Systolic BP before and after delivery of normotensives were significantly (p = 0.001) lower than that of the hypertensives, a result similar to findings of other studies [26,27]. Some investigators have found that women with HDP had a mid-trimester decrease, which was followed by a progressive rise in both systolic BP and diastolic BP between 30-45 days postpartum [28,29]. The factors influencing the development of high blood pressure may differ depending on the particular type of hypertensive disorder, the study population (ethnicity or race), family history of the individual [30], life style and eating habit of the individual [31], and most importantly the age and parity of the pregnant woman [32]. From the antenatal history, mothers who had higher BMI at the beginning of pregnancy or were overweight or obese during gestation, showed higher SBP and DBP values in all gestational trimesters until delivery.

Contrary to the findings of this study, some previous studies have found underweight pregnant women to be at risk of hypertension development which result in delivery of preterm infants [33,34]. Indeed, pregnant women who are underweight or overweight are often at high risk, and therefore women who are thin or underweight are sometimes encouraged to put on weight before conception [35].

In this study, most of the placentae (48.8%) of the hypertensives were oval in shape, while most of the placentae (79.2%) of the normotensives were round in shape, a finding similar to that of other studies [36,37,10]. The outcome of the placental shapes in this study is different from that of other studies which found that the shape of placentae from both hypertensives and normotensives were either oval or round [38], or no significant difference (p > 0.05) in the number of different placental shapes of the normotensives and hypertensives [39]. The present study found a significantly high incidence of placental haematoma in hypertensives compared...
with the normotensives, a finding consistent with the findings of other studies [46,47]. A study
has found an association between placental haematoma and low Apgar score and also an
association between larger haematomas and IUFD, due in part to separation of a considerable
part of the villi from the utero placental circulation [41]. The frequency of placental infarction
between hypertensives and normotensives was significant (p = 0.001) in this study. This is
consistent with the results obtained by other studies [36,42,43]. Placental infarcts are known to
have an adverse effect on growth and development of the newborns [43]. The present study also
observed a significantly high placental calcification in the hypertensives compared to the
normotensives. This is similar to the findings of a study which concluded that the foetal outcome
in terms of birth weight of newborns to mothers having PIH and calcification of placentae was
poor when compared to the control group [44]. Another study found that the incidence of
calcification was equal in the control and hypertensive groups [45]. It is noteworthy that
calcification that is seen in the placenta shows an evidence of placental senescence or
degeneration [46].

The mean placental weight, volume, thickness, and diameter for hypertensives were significantly
lower than that of the control group in the present study (p < 0.05). Similar outcomes in placental
weight have been reported by other studies [37,10,47,49,50]. This study showed that placental
weight is a valuable parameter for predicting newborn weight, because a significant linear
correlation was observed for both the hypertensives (r = 0.579, p = 0.001) and the normotensives
(r = 0.630, p = 0.001). Similar relations have been shown by other researchers [51,7,52]. The
present study recorded a significant (p < 0.001) reduction in the mean central thickness of
placentae in the hypertensives compared to the normotensives. This finding is consistent with
that of other studies [53,54,55,56,57,58]. The results for placental volume obtained in this study
was similar to that obtained by other studies [59,60,61].
Majority of the umbilical cord lengths in the hypertensive mothers were significantly short compared to that of the normotensives in this study. Short umbilical cord lengths are associated with a high rate of foetal abnormalities, such as abdominal wall defects and defects in the extremities and spine [62]. They are also associated with unsatisfactory foetal state, central nervous system complications, and low Apgar and IQ scores [63]. A normal umbilical cord has two arteries and a vein and is covered by Wharton’s jelly. Changes may sometimes occur during pregnancy that result in abnormal number of umbilical cord vessels [64]. The number of umbilical cords with three vessels in the normotensives was significantly higher compared to the hypertensives in this study. Almost 30% of the umbilical cords of the hypertensives had less than 3 vessels compared to only 7% of the normotensives. The result of the present study is contrary to that of Saha et al. (2014) [65] who found 3 vessels in all their samples.

The umbilical cord insertion site to the placenta can be central, eccentric, marginal (battledore), or velamentous (membranous). More than 90% of term placentae insertions are central or eccentric. Marginal cord insertion (MCI) and velamentous cord insertions (VCI) are classified as abnormal placental cord insertions (PCI). VCI occurs in approximately 1% of singleton pregnancies and MCI in approximately 7% [62]. Central and eccentric cord insertions were the most common in both normotensives and hypertensives in the present study. Eighty one percent of the umbilical cord insertions in the normotensives in this study were either central or eccentric compared to 70.2% in the hypertensives. The frequency of marginal and velamentous cord insertions was higher in the hypertensives. This finding is similar but not to the same degree as that of other studies [66,67]. Abnormalities of the umbilical cord, related to morphology, placental insertion, number of vessels and primary tumors, can influence the perinatal outcome and may be associated with other fetal anomalies and aneuploidies [64].

The number of preterm deliveries for the normotensive and hypertensive mothers in the present study was not significantly different. A result contrary to that of Yadav et al. (1997) [68] who
recorded significantly high numbers of preterm deliveries among the hypertensives compared to the normotensives. The need to induce labour or perform a caesarean section on the mothers was significantly higher ($p = 0.001$) in the hypertensives than the normotensives. The still birth rate was also significantly higher ($p = 0.012$) in the hypertensives. These findings are similar to that of Yadav *et al.* (1997) [68]. The number of babies born to normotensives who needed NICU care was significantly lower compared to those of the hypertensives, results similar that of other studies [68,69,70]. It must be stated however that the frequencies in the present study were at times higher or lower than that of these studies.

The present study showed that the foetal development rate of the hypertensives were affected by adverse maternal and placental factors. The mean birth weight, baby length, abdominal circumference, and head circumference of neonates of the hypertensives were significantly ($p = 0.001$) lower compared to the normotensives in this study. Similar findings of LBW babies were observed in other studies [36,37,10,71]. The most significant determinant of foetal weight of the newborns from both the hypertensives and the normotensives in this study were the placental indices. The APGAR scores after five minutes of delivery was significantly ($p \geq 0.001$) higher in infants of the normotensives compared to the infants of the hypertensives. This is consistent with the findings of other studies [70,71].

Conclusion

The study found a high prevalence of hypertensive disorders of pregnancy at the study site. This was associated with adverse placental growth and development as well as poor maternal and perinatal outcomes.
Acknowledgements

The authors wish to appreciate the support of the Heads and nurses of various units of the Department of Obstetrics and Gynaecology of Komfo Anokye Teaching Hospital, Kumasi, Ashanti Region and all participants who voluntarily participated in the study.

References

1. Tran, H.A. (2005). Biochemical tests in pregnancy. Australian Prescriber, (28)98: 107.
2. Nelson, S. and Greer, I. (2006). Hypertensive disorders of pregnancy: preventative-, immediate- and long term management. Expert Review of Pharmacoeconomics & Outcomes Research, 6(5): 541-54.
3. Allen, V., Joseph, K. S., Murphy, K. E., Magee, L.A. and Ohlsson, A. (2004). The effect of hypertensive disorders in pregnancy on small for gestational age and stillbirth: a population based study. BMC Pregnancy and Childbirth 4: 17.
4. Rosenberg, T., Garbers, S., Lipkind, H. and Chiasson, M. (2005). Maternal Obesity and Diabetes as Risk Factors for Adverse Pregnancy Outcomes: Differences among 4 Racial/Ethnic Groups. Am J Public Health, 95(9): 1545–1551.
5. Arulkumaran, S (2016). Foreword: The Figo Textbook of Pregnancy Hypertension An evidence-based guide to monitoring, prevention and management. Eds: Magee, L.A., MD, von Dadelszen, P., Stones, W., and Mathai, M. Published by The Global Library of Women’s Medicine 9 Provost Court London NW3 4SR
6. Tangirala, S. and Kumari, D. (2015). Placental morphology in hypertensive disorders and its correlation to neonatal outcome. IAIM, 2(11): 35-38.
7. Udainia, A. and Jain, M.L. (2001). Morphological study of placenta in pregnancy induced hypertension with its clinical significance. J Anat. Soc. India, 50(1): 24-27.
8. Eskild, A. and Vatten, L.J. (2010). Do pregnancies with PE have small placentas? A population study of pregnancies with & without growth restriction in the offspring. *BJOG.* 117: 1521-1526

9. Kurdukar, M.D. and Deshpande, N.M. (2007). Placenta in Pregnancy induced Hypertension. *Indian J Pathol Mycrobiol.* 50: 493-497.

10. Rosana, C.R.M., Gilio, D.B., Cavellani, C.L., Paschoini, M.C., Oliveira, F.A., Peres, L.C., Reis, M.A., Vicente, P.A., Teixeira, and Castro, E.C.C. (2008). Placental morphometrical and histopathology changes in the different clinical presentations of Hypertensive Syndromes in Pregnancy. *Arch Gynaecolobstr,* 277(1): 201-206.

11. Ferrazzani, S., Luciano, R., Garofalo, S., D'Andrea, V., De Carolis, S., De Carolis, M.P., Paolucci, V., Romagnoli, C. and Caruso, A. (2011). Neonatal outcome in hypertensive disorders of pregnancy. *Early Hum Dev,* 87(6): 445-9.

12. Martikainen, A.M., Heinonen, K.M. and Saarikoski, S.V. (1989). The effect of hypertension in pregnancy on foetal and neonatal condition. *Int J Gynaecol Obstet,* 30(3): 213-20.

13. NHBPEP, Working Group on High Blood Pressure in Pregnancy. (2000). Report of National High Blood Pressure Education Program, Working Group on High Blood Pressure in Pregnancy. *American Journal Obstetrics and Gynaecology,* 183: S1-S22.

14. Cunningham, F.G., Leveno, K.J. and Bloom, S.L. (2005). Implementation, embryogenesis and placental development. *Williams Obstetrics* (22nd edition), McGraw-Hill, New York, USA.

15. Valsamakis, G., Kanaka-Gantenbein, C., Malamitsi-Puchner, A. and Mastorakos, G. (2006). Causes of intrauterine growth restriction and postnatal development of the metabolic syndrome. *Annals of the New York Academy of Sciences,* 1092: 138-147.
16. Amiel-Tison, C., Gosselin, J. and Infante-Rivard, C. (2002). Head growth and cranial assessment at neurological examination in infancy. Developmental Medicine and Child Neurology, 44: 643-8.

17. ACOG. (2002). Diagnosis and management of preeclampsia and Eclampsia. American College of Obstetricians and Gynecologists, 99(1): 159-167.

18. Singh, S., Ahmed, E.B., Egondu, S.C. and Ikechukwu, N.E. (2014). Hypertensive disorders in pregnancy among pregnant women in a Nigerian Teaching Hospital. Niger Med J, 55(5): 384-388.

19. Al-Ghamdi, S.M., Al-Harbi, A.S., Khalil, A. and El-Yahyia, A.R. (1999). Hypertensive Disorders of Pregnancy: Prevalence, classification and adverse outcomes in Northwestern Saudi Arabia. Ann Saudi Med, 19(6): 557-560.

20. Ventura, S.J., Martin, J.A., Cortin, S.G., Mathews, T.J. and Park, M.M. (2000). Births: final data for 1998, national vital statistics Reports, CDC, 48(3): 1-21.

21. Gaio, D.S., Schmidt, M.I., Duncan, B.B., Nucci, L.B., Matos, M.C. and Branchtein, L. (2001). Hypertensive disorder in pregnancy: frequency, and associated factors in a cohort of Brazilian women. Hypertension in pregnancy, 20: 269-281.

22. Adu-Bonsaffoh, K., Oppong, S.A., Binlinla, G. and Obed, S.A. (2013). Maternal deaths attributable to hypertensive disorders in a tertiary hospital in Ghana. Int J Gynaecol Obstet, 123(2): 110-113.

23. Anorlu, R.I., Iwuala, N.C. and Odum, C.U. (2005). Risk factors for preeclampsia in Lagos, Nigeria. Aust N Z J Obstet Gynaecol, 45(4): 278-282.

24. Sibai, B.M. (1990b). Preeclampsia-eclampsia. Curr Prob Obstet Gynecol Fertil, 77: 514-519.

25. Ness, R.B., Scholtland, H.M., Flegal, K.M. and Shofer, F.S. (1994). Reproductive history and coronary heart disease risk in women. Epidemiol Rev, 16: 298-314
26. Silva, L.M., Steegers, E.A., Burdorf, A., Jaddoe, V.V., Arends, L.R., Hofman, A., Mackenbach, J.P. and Raat, H. (2008). No midpregnancy fall in diastolic blood pressure in women with a low educational level: the Generation R Study. Hypertension, 52(4): 645-51.

27. Nama, V., Antonios, T.F., Onwude, J. and Manyonda, I.T. (2011). Mid-trimester blood pressure drop in normal pregnancy: myth or reality? J Hypertens, 29(4): 763-768.

28. Thompson, M.L., Williams, M.A. and Miller, R.S. (2009). Modelling the association of blood pressure during pregnancy with gestational age and body mass index. Paediatr Perinat Epidemiol, 23(3): 254-63.

29. Grindheim, G., Estensen, M., Langesaeter, E., Rosseland, L.A. and Toska, K. (2012). Changes in blood pressure during healthy pregnancy: a longitudinal cohort study. J Hypertens, 30(2): 342-50.

30. Cincotta, R.B. and Brennecke, S.P. (1998). Family history of preeclampsia as a predictor for preeclampsia in primigravidas. Int J Gynaecol Obstet, 60: 23-7.

31. Fedrick, J. and Adelstein, P. (1978). Factor associated with low birth weight of infants delivered at rest. Br. J. Obstet. Gynaecol, 85: 1-7.

32. Cramer, J.C. (1995). Racial and ethnic difference in birth weight: The role of income and financial assistance. Demography, 32: 231-247.

33. Wolfe, H.M., Zador, I.E., Gross, T.L., Martier, S.S. and Sokol, R.J. (1991). The clinical utility of maternal body mass index in pregnancy. Am J Obstet Gynecol, 164(5 Pt 1): 1306-1310.

34. Sebire, N.J., Jolly, M., Harris, J., Regan, L. and Robinson, S. (2001). Is maternal underweight really a risk factor for adverse pregnancy outcome? A population-based study in London. BJOG, 108(1): 61-66.

35. Cnattingius, S., Bergstrom, R., Lipworth, L. and Kramer, M.S., (1998). Prepregnancy weight and the risk of adverse pregnancy outcomes. N Engl J Med, 338(3): 147-152.
36. Udainia, A., Bhagwat, S.S. and Mehta, C.D. (2004). Relation between placental surface area, infarction and foetal distress in pregnancy induced hypertension with its clinical relevance, *Journal of Anatomical Society of India*, **53**(1): 27-30.

37. Majumdar, S., Dasgupta, H., Bhattacharya, K. and Bhattacharya, A. (2005). A Study of Placenta in Normal and Hypertensive Pregnancies. *J Anat Soc India*, **54**(2): 1-9.

38. Ashfaq, M., Janjua, M.Z. and Channa, M.A. (2005). Effect of gestational diabetes and maternal hypertension on gross morphology of placenta. *J Ayub Med Coll Abbottabad*, **17**(1): 44-47.

39. Navbir, P. (2014). Placental morphology and its co-relation with foetal outcome in pregnancy induced hypertension. *International Journal of Basic and Applied Medical Sciences*, **2**(3): 120-125.

40. Macpherson, T. (1991). Fact and Fancy. *Arch Pathol Lab Med*, **115**: 672-679.

41. Das, B., Dutta, D., Chakraborthy, S. and Nath, P. (1996). Placental morphology in hypertensive disorders of pregnancy and its correlation with foetal outcome. *J Obstet Gynecol India*, **46**(1): 40-46.

42. Masodkar, A.R., Kalamkar, L.R. and Patki, P.S. (1985). Histopathology of placenta and its correlation with foetal outcome, *J Obstet Gynaecol India*, **35**: 294.

43. Salgado, S.S. and Pathmeswaran, A. (2008). Effects of placental infarctions on the foetal outcome in pregnancies complicated by hypertension. *J Coll Physicians Surg Pak*, **18**(4): 213-216.

44. Goswami, P., Lata, H., Memon, S. and Khaskhelli, L.B. (2011). Excessive placental calcification observed in PIH patients and its relation to foetal outcome. *JLUMHS*, **11**: 143-8.

45. Harsh, M., Sodhi, S. and Mohan, P.S. (1989). Foetal correlation with placental pathology in toxaemia of pregnancy. *J Obstet Gynaecol India*, **39**: 170-5.
46. Ezeigwe C.O., Okafor, C.I., Eleje, G.U., Udigwe, G.O. and Anyiam, D.C. (2018).
 Placental Peripartum Pathologies in Women with Preeclampsia and Eclampsia. Obstetrics
 and Gynecology, 8.

47. Kotgirwar, S., Mohd, I., Gupta, V. and Trivedi, S. (2009). Morphology of placenta in
 pregnancy induced hypertension and its foetal outcome. Journal of Advance Researches in
 Biological Sciences, 1(2): 109-114.

48. Barker, D.J.P., Thornburg, K.L., Osmond, C., Kanjantie, E. and Eriksson, J.G. (2010).
 The surface area of the placenta and hypertension in the offspring in later life. Int. J. Dev.
 Biol, 54: 525-530.

49. Pradeep, S., Londhe, A. and Mane, B. (2011). Morphometric study of placenta and its
 correlation in normal and hypertensive pregnancies. International Journal of Pharma and Bio
 Sciences, 2(4): 975-6299.

50. Abhilasha, D., Sushma, K.K., Kushal, R.K. and Pushpa, P. (2012). Study of effect of
 eclampsia and chronic hypertension on gross morphology of placenta. Int J Biol Med Res.,
 3(2):1771-1773.

51. Laurini, R., Laurin, J. and Marskar, K. (1994). Placenta in Preeclamptic toxemia. Acta
 Obstet Gynecol Scand, 73: 529-34.

52. Little, R.E., Zadorozhnaja, T.D., Hulchiy, O.P., Mendel, N.A., Shkyryak-Nyzhnyk, Z.A.,
 Chyslovskla, N., Gladan, B. C. (2003). Placental weight and its ratio to birthweight in a
 Ukrainian city. Early Hum Dev, 71: 117-27.

53. Kajantie, E., Thornburg, K.L., Eriksson, J.G., Osmond, C. and Barker, D.J.P., (2010).
 In preeclampsia, the placenta grows slowly along its minor axis. Int J Dev Biol, 54: 469-473.

54. Raghavendra, A.Y., Veena, P., Ramesh, S.T. and Vinay, K.K. (2013). Study of placental
 diameter and surface area in normal and hypertensive pregnancies. Anatomica Karnataka,
 7(3): 18-22.
55. Devishankar, K., Bhanu, P.S., Kiran, S., Ramakrishna, B.A. and Shanthi, V. (2012). Vasculo syncytial membrane in relation to syncytial knots complicates the placenta in preeclampsia: A histomorphometrical study. *Anat Cell Biol, 45*: 86-91.

56. Ahmed, M. and Daver, R.G. (2013). Study of placental changes in pregnancy induced hypertension. *Int J Reprod Contracept Obstet Gynecol, 2*(4): 524-527.

57. Zia-ur-rehman, M., Ullah, H.M.F., Taj, N., Malik, Z.I. and Ullah, E. (2013). Unfavourable effects of preeclampsia on the morphology of the placenta. *Pak J Med Health Sci, 7*(1): 207.

58. Gowda, P. and Jayanthi, K.S. (2014). Morphological and morphometrical study of placenta in normal and hypertensive pregnancies. *NJCA, 3*(1): 24-28.

59. Boyd, P.A. and Scott, A. (1985). Quantitative structural studies on human placentas associated with preeclampsia, essential hypertension and intrauterine growth retardation. *Br J Obstet Gynecol, 92*, 714-21.

60. Teasdale, F. (1987). “Histomorphometry of the human placentae in pre-eclampsia associated with severe intra-uterine growth retardation,” *Placenta, 8*(2): 119–128, 1987.

61. Aherne, W. and Dunnill, M.S. (1966). Quantitative aspects of placental structure. *J Pathol Bacteriol, 91*: 123-39.

62. Baergen RN. (2011). Pathology of the Umbilical Cord, in Manual of Pathology of the Human Placenta, Second edn. New York: Springer Science & Business Media; 2011.

63. Gilbert-Barness, E., Drut, R.M., Drut, R., Grange, D.K. and Opitz, J.M. (1993). Developmental abnormalities resulting in short umbilical cord. *Birth defects Orig, 29*(1): 113-40.

64. Vrabie, S. C., Novac, L., Manolea, M. M., Dijmarescu, L. A., Novac, M., and Siminel, M. A. (2018). Abnormalities of the Umbilical Cord. Congenital Anomalies - From the Embryo to the Neonate. IntechOpen 345-362.
65. Saha, R. R., Farhat, N., and Karmaker, M. (2014). Study of Umbilical Cord in Pregnancy Induced Hypertension with and without Diabetes Mellitus. Bangladesh J. Anat. 2014; 12(1) : 3-6

66. Mohol, F. M., Karim, M., Afroze, A., Haque, J., and Khatun, M., (2016). Insertion of Umbilical Cord on Placenta in Hypertensive Mother. Journal of National Institute of Neurosciences Bangladesh, 2(2): 89-93

67. Kaur, P., Kaushal, S., Sharma, A., and Singh, K. (2014). To Study Relationship of Umbilical Cord Insertion with Fetal Outcome in PIH and Normotensive Pregnancies. Int. J. Pure App. Biosci. 2 (6): 108-111

68. Yadav, S., Saxena, U., Yadav, R. and Gupta, S. (1997). Hypertensive disorders of pregnancy and maternal and foetal outcome: A case controlled study. J Indian Med Asoc, 95: 548-51.

69. Siromani, S.M., Varahala, A.M., Gopu, S. and Chidugull, S.K. (2015). Neonatal Outcome In Pregnancy Induced Hypertensive Mothers – A Tertiary Care Centre Experience. IOSR Journal of Dental and Medical Sciences, 14(11): 23-27.

70. Vats, K and Paul, M. (2016). Study of fetal outcome in hypertensive disorders of pregnancy in a tertiary care maternity hospital of Delhi. Int J Reprod Contracept Obstet Gynecol. 5(11):3773-3777

71. Abdul, H.B., Salma, F.M. and Asmat, K.A. (2012). Comparison of Placentae from Hypertension Associated Pregnancies and Normal Pregnancies. JLUMHS. 11(1).

72. Okoye, H. C., Nwogoh B., and Odetunde, O. I. (2017). Correlation of hematocrit and Apgar scores in newborns of women with hypertensive disorders in pregnancy. J Neonatal Perinatal Med., 10(4):387-392
Supporting information

Figure 1: Distribution of cases HDP group according to type of hypertension
Figure 1: Distribution of cases HDP group according to type of hypertension

- Preeclampsia: 52.4%
- Gestational hypertension: 33.3%
- Eclampsia: 7.1%
- Chronic Hypertension: 4.6%
- Preeclampsia superimposed on Chronic Hypertension: 2.4%

Hypertensive Disorders of Pregnancy