Case Report

Aneurysm of lenticulostriate artery in a patient presenting with hemorrhage in the caudate nucleus and lateral ventricle - delayed appearance and spontaneous resolution

Motohiro Nomura, Eiichi Baba, Kazutaka Shirokane, Atsushi Tsuchiya

Departments of Neurosurgery and Neurology, Kanto Rosai Hospital, Kawasaki, Japan
E-mail: *Motohiro Nomura - nomura413jp@yahoo.co.jp; Eiichi Baba - b.eichi@hotmail.co.jp; Kazutaka Shirokane - kazutaka-shirokane@nifty.com; Atsushi Tsuchiya - a-t1@kantoh.johas.go.jp
*Corresponding author

Received: 23 April 18 Accepted: 02 August 18 Published: 21 September 18

Abstract

Background: An aneurysm of distal lenticulostriate artery is very rare. The natural course and management of this rare aneurysm are not clear.

Case Description: An 81-year-old woman developed consciousness disturbance. Computed tomography revealed hemorrhage in the right caudate nucleus and lateral ventricles. Three-dimensional computed tomographic angiography demonstrated only an aneurysm at the basilar artery. On angiography, on the sixth day, an aneurysm at the right lenticulostriate artery was demonstrated. Then, the aneurysm disappeared on three-dimensional computed tomographic angiography on the 15th day. Subsequent radiological examinations revealed no vascular anomaly in the right lenticulostriate artery.

Conclusion: An aneurysm at this location can show dynamic changes based on radiological findings. Close radiological observation is necessary.

Key Words: Cerebral aneurysm, delayed appearance, lenticulostriate artery, ruptured, spontaneous obstruction

INTRODUCTION

An aneurysm originating from the distal lenticulostriate artery is very rare, and it is difficult to treat by direct surgery or endovascular embolization due to its location. The natural course and management of this rare aneurysm have not been fully clarified. Recently, we encountered a patient with an aneurysm on the distal lenticulostriate artery presenting with intracerebral and intraventricular hemorrhage. The aneurysm was not detected on the initial radiological examinations. It was first demonstrated on the 6th day on angiography, and had disappeared on the following three-dimensional computed tomographic angiography (3D-CTA) on the 15th day. In this report, we present this case of distal lenticulostriate artery aneurysm, and discuss the clinical course and management of this rare aneurysm.

How to cite this article: Nomura M, Baba E, Shirokane K, Tsuchiya A. Aneurysm of lenticulostriate artery in a patient presenting with hemorrhage in the caudate nucleus and lateral ventricle-delayed appearance and spontaneous resolution. Surg Neurol Int 2018;9:192.

http://surgicalneurologyint.com/Aneurysm-of-lenticulostriate-artery-in-a-patient-presenting-with-hemorrhage-in-the-caudate-nucleus-and-lateral-ventricle-delayed-appearance-and-spontaneous-resolution/
CASE REPORT

An 81-year-old woman suddenly developed consciousness disturbance. She was brought to our hospital by ambulance. Computed tomography (CT) revealed hemorrhage in the right caudate nucleus and ventricles, and hydrocephalus [Figure 1a]. 3D-CTA on admission demonstrated an aneurysm on the basilar artery (BA) at the bifurcation of the left superior cerebellar artery, but not on the right lenticulostriate artery [Figure 1b]. Raw 3D-CTA images showed no enhancement adjacent to the hematoma [Figure 1c]. Although the BA aneurysm was detected, it was not considered to be the origin of hemorrhage. A drainage tube was inserted to the left lateral ventricle to control hydrocephalus. On the sixth day, angiography was performed to evaluate the BA aneurysm. The angiography additionally demonstrated an aneurysm located at the right lenticulostriate artery [Figure 2a]. The size of aneurysm was about 3 mm in diameter. Retention of contrast medium in the aneurysm was observed on CT obtained after angiography [Figure 2b]. On retrospective observation of the initial noncontrast and contrast-enhanced (CE) CT, a small low-density region was observed in the hematoma [Figure 1a and c]. This portion appeared to be identical to the enhanced portion on postangiography CT. It was revealed that the aneurysm was surrounded by a hematoma. This aneurysm was diagnosed as the cause of hemorrhage. On magnetic resonance angiography on the 13th day and 3D-CTA on the 15th day, the aneurysm was not opacified on the right lenticulostriate artery [Figure 3a]. Angiography performed on the 23rd day also showed the disappearance of the aneurysm [Figure 3b]. Follow-up 3D-CTA on the 42nd day demonstrated no aneurysm on the right lenticulostriate artery [Figure 3c]. On the 31st day, right ventriculo-peritoneal shunting was performed. After the operation, she gradually regained consciousness. She was transferred to another hospital for rehabilitation for disuse syndrome on the 67th day. 3D-CTA obtained 9 months after onset showed no recurrence of the aneurysm on the right lenticulostriate artery [Figure 3d]. Her activities of daily living normalized at 9 months after onset.

DISCUSSION

An aneurysm arising from the distal lenticulostriate artery is very rare. The natural course and management of an aneurysm on the distal lenticulostriate artery have not been fully clarified. To our knowledge, 62 cases have been reported in the literature.[18,33,35] Among them, 52 cases of distal lenticulostriate artery aneurysms including our case are summarized in Table 1.[1‑27,31‑45] Patients’ ages varied from 2 months to 81 (average 41.9) years. Patients were relatively young compared to those of the cases with common saccular aneurysms. This might be due to difference in aneurysm characteristics. The nature of the lenticulostriate artery aneurysm is likely to be dissection or pseudoaneurysm rather than a true aneurysm. Seventeen cases (32.7%) were associated with cerebrovascular diseases such as moyamoya disease, middle cerebral artery occlusion, and arteriovenous malformation. Association with other vascular anomalies implies that hemodynamic stress might be one of the causes of lenticulostriate artery aneurysm. In fact, almost all the reported cases were ruptured ones, and only 1 case was unruptured.[46] The aneurysm size was described in 35 cases and 29 were less than 5 mm. The only one unruptured aneurysm was as large as 9 × 6 × 6 mm. The ruptured aneurysm size in this location seems to be smaller than that of common aneurysms. These observations suggest that dissection or pseudoaneurysm might be formed and developed due to hemodynamic stress in the lenticulostriate artery.

Regarding the natural course of the aneurysm on the distal lenticulostriate artery, there have been several
Table 1: Summary of cases of distal lenticulostriate artery aneurysms

Reference	Author, year	Age (years), sex	Associated disease	CT findings	Size of aneurysm (mm)	Treatment	Time of follow-up	Outcome of follow-up radiological examinations	Outcome of follow-up	Pathology	Others
26	Murakami et al. 1984	33, M	Moyamoya, epilepsy	ICH, IVH	Small	VED	NA	NA	Death	True aneurysm	
10	Grabel et al. 1989	60, M	Moyamoya	ICH	NA	Hematoma evacuation	3 weeks	Near disap.	GR	Near disap.	
11	Gupta et al. 1989	36, F	Moyamoya	ICH	NA	Conservative	2 months	Disap.	GR		
3	Albert et al. 1997	8, NA	AVM	ICH	NA	Excision					
16	Kaptain et al. 2001	2 months, M	Moyamoya	ICH, IVH	NA	Excision	_	_	MD	Absence of elastic laminae, no infection	
22	Larrazabal et al. 2001	57, F	Moyamoya	ICH, IVH	4	Endovascular, NBCA	NA	Disap.	SD		
42	Vates et al. 2001	35, M	Neurocytoma	IVH	7	Excision of aneurysm and tumor	NA	Disap.	SD	True aneurysm	
23	Lehmann et al. 2003	26, M	Moyamoya	ICH	NA	Conservative	3 months	Disap.	GR		
		26, M	Moyamoya	ICH, SAH	NA	Conservative	26, M	Disap.	GR		
		59, F	Moyamoya	ICH	NA	Conservative	3 weeks	Disap.	MD		
		2.5, F	Moyamoya	ICH, HCP	NA	Excision	NA	NA	SD		
14	Horn et al. 2004	44, F	Moyamoya	ICH	2	Clipping	NA	Near disp.	GR		
27	Narayan et al. 2004	69, F	Moyamoya	ICH, IVH, HCP	3 → 4	Clipping	NA	Obliteration	GR	Growth on angiography (day 14)	
34	Sakai et al. 2005	61, F	Moyamoya-like	ICH	Small	Clipping	NA	Obliteration	SD		
2	Ahn et al. 2007	49, M	Moyamoya	ICH, IVH	3	Excision	4 weeks	Obliteration	MD	True aneurysm	Aneurysm detected on angiography on day 14
24		24, M	Moyamoya	ICH, IVH, SAH	4	Conservative	_	_	Death		
25	Matushita et al. 2007	5, M	Moyamoya	ICH, IVH	4	Excision	NA	NA	GR	Thin arterial wall, no inflammation	
Reference	Author, year	Age (years), sex	Associated disease	CT findings	Size of aneurysm (mm)	Treatment	Time of follow-up	Outcome of follow-up radiological examinations	Outcome of follow‑up	Pathology	Others
-----------	--------------	------------------	--------------------	-------------	----------------------	-----------	------------------	---	---------------------	-----------	--------
9	Gandhi et al. 2008	53, M	HT	ICH, SAH	2	NA	Postoperative	No residual aneurysm	mRS: 2		
	59, M	Moyamoya	ICH, SAH, IVH, HCP	4	Proximal clipping	Postoperative	Obliteration	mRS: 1			
	41, M	Cocaine abuse	ICH	4	Resection	Postoperative	Obliteration	mRS: 1			
	37, F	Moyamoya	ICH, SAH	3	NA	Postoperative	Small residual aneurysm	No residual aneurysm	mRS: 4		
	31, F	Moyamoya	ICH, SAH	3	Proximal clipping	Postoperative		mRS: 2			
38	Takeuchi et al. 2009	59, M	HT	ICH, IVH	NA	Conservative	9 weeks	Disap. (all 3 aneurysms)	VS	2 aneurysms (lt)	
								1 aneurysm (rt LSA)			
43	Wong et al. 2009	39, M	MCA narrowing	ICH	Small	Conservative	2 years	Disap.	GR		
19	Kochar et al. 2010	50, M	SAH	2	Trapping	3D after operative	No residual aneurysm	GR			
8	Ellis et al. 2011	71, F	HT, Af on warfarin, HL, FMD	IVH	4 × 2.6	Conservative	5 days	Disap.	GR	Spontaneous resolution (day 5)	
12	Harrel and Zomorodi 2011	35, F	Moyamoya, ruptured aneurysm	Clipped rt pericallosal aneurysm	3 → 4.2 x 3.9 x 3.8 (1 month)	Endovascular, NBCA		GR			
40	Tsai et al. 2011	71, F	_	ICH, IVH	4	Embolization, NBCA	1 year	No recurrence	GR		
4	Bhat et al. 2012	39, M	_	SAH	NA	Trapping excision	NA	NA	GR	Fusiform aneurysm	
21	Lan et al. 2012	21, F	_	ICH, IVH	5	Gamma knife radiosurgery	22 months	Disap.	GR		
45	Yasher et al. 2012	66, F	HT, Moyamoya, HL	Unruptured	9 × 6 × 6	2 attempts of embolization → proximal clipping	1 day after operative	Complete resolution	GR		
5	Cai et al. 2013	41, F	HL	ICH	3	Clipping	3 months	Obliteration	MD		
6	Chalouhi et al. 2013	49, M	_	ICH	3 × 3	Embolization with onyx LSA occlusion	NA	Complete resolution	MD	Delayed appearance (day 4)	
Table 1: Contd...

Reference	Author, year	Age (years), sex	Associated disease	CT findings	Size of aneurysm (mm)	Treatment	Time of follow-up	Outcome of follow-up radiological examinations	Outcome Pathology	Others	
17	Kim et al. 2013	28, M	Bipolar disorder on lithium	IVH	7.5 x 4.5 → 4.0 x 4.2 → 4.2 x 3.2 (1 month) on	VED, clipping → resection, postoperative day 4, residual sac → removed	Postoperative	No evidence of aneurysm	GR	Pseudoaneurysm	Size change (+) Shape change (+)
37	Srivastava et al. 2013	14, F	AVM	IVH, HCP	NA	Conservative	NA	NA	GR	CTA: not detected angiography: detected	
45, F											
1	Agarwalla et al. 2014	41, F	Chronic pain syndrome	ICH	Outpouching → 3	Conservative	NA	NA	GR	Delayed enlargement on day 4	
13	Heck et al. 2014	29, M		ICH	1 → 2 (day 80) → slight decrease in size (3 m)	Conservative	NA	Enlarge → decrease in size	mRS: 2		
63, M			HT, polycystic kidney	ICH, IVH, SAH	2, fusiform aneurysm	Conservative	17 months	Disap.	mRS: 1	Spontaneous obliteration of aneurysm and feeding artery	
32, F			HT, alcoholism	ICH, IVH, SAH	2	Conservative	4 months	Disappeared on CTA	mRS: 3	Spontaneous occlusion	
15	Hwang et al. 2014	53, F	Moyamoya	ICH, IVH	NA	Embolization, NBCA	1 year	No recurrence	GR		
44, F			Moyamoya, contralateral intracerebral hemorrhage	ICH, IVH	NA	Embolization, NBCA	1 year	No recurrence	GR		
20	Lama et al. 2014	50, M		ICH, IVH	3	Conservative	10 days	Disap.	mRS: 1		
39	Tan et al. 2014	81, M	HT	ICH	5.2	Clipping	NA	Cured	NA		
7	Choo et al. 2015	15, M		ICH	1.94 x 2.03	Conservative	2 weeks	Complete disap.	GR	CTA (day 0): no aneurysm, angiography (day 2): LSA aneurysm complete disappearance	
52, M			Twig-like MCA	ICH, IVH, SAH	2.16-2.27	Clipping	2 weeks	Enlargement	GR	Outpouching → 3 mm aneurysm	

Contd...
Reference	Author, year	Age (years), sex	Associated disease	CT findings	Size of aneurysm (mm)	Treatment	Time of follow-up	Outcome of follow-up radiological examinations	Outcome of follow-up	Pathology	Others
44	Yap et al. 2015	8, F	ICH, IVH, HCP	2	VED	15 weeks	Obliteration	MD	Complete resolution (15 weeks)		
18	Kinoshita et al. 2016	59, F	IVH	3.8	VED	28 days	Disap.	GR	Spontaneous disap. (day 28)		
33	Saito et al. 2016	66, F	SAH, IVH	3	VED resection	NA	Disap.	GR	Dissecting aneurysm		
35	Sato et al. 2017	61, F	IVH	8.0 × 9.0	Proximal clipping, resection	Cured	Partially organized thrombus pseudoaneurysm formation	Detected on angiography (day 22)			
Present case	81, F	ICH, IVH	3	VED	15 days	Disap.	GR	Delayed appearance spontaneous resolution			

Af: Atrial fibrillation, AVM: Arteriovenous malformation, CTA: Computed tomographic angiography, Disap: Disappeared, F: Female, FMD: Fibromuscular dysplasia, GR: Good recovery, HCP: Hydrocephalus, HL: Hyperlipidemia, HT: Hypertension, ICA: Internal carotid artery, ICH: Intracerebral hemorrhage, IVH: Intraventricular hemorrhage, LSA: Lenticulostriate artery, lt: Left, M: Male, MCA: Middle cerebral artery, MD: Moderately disabled, mRS: modified Rankin Scale, NA: Not available, NBCA: n-butyl-2-cyanoacrylate, rt: Right, SAH: Subarachnoid hemorrhage, SD: Severely disabled, VED: Ventriculo-external drainage, VS: Vegetative state
A pseudoaneurysm without a vascular

Table

Sato

Table

[28‑30]

[39]

In our case, 3 cases were diagnosed

[17,33,35]

1]. Among them, 3 cases were diagnosed

[2,26,42]

However, the lenticulostriate artery is

Pathological findings were reported in

[28,30]

reported a case of growing distal medial

lenticulostriate artery aneurysm. (d) Three‑dimensional computed tomographic angiography on the 42nd day also showing no lenticulostriate artery aneurysm. (c) Three‑dimensional computed tomographic angiography on the 15th day showing no aneurysm on the right lenticulostriate artery. (b) Day also showing no aneurysm on the right lenticulostriate artery. (a) Three‑dimensional computed tomographic angiography on the 23rd day showing no aneurysm on the right lenticulostriate artery.

Figure 3: Three‑dimensional computed tomographic angiography reports describing the spontaneous disappearance of the lesion. Nearly half of the reported cases showed obstruction in their natural courses. Seventeen cases showed spontaneous disappearance or near disappearance in 20 cases of lenticulostriate artery aneurysms which were not radically treated [Table 1]. In our case, the aneurysm disappeared 13 days after onset. Previous reports described that spontaneous obstruction was observed between 5 days and 2 years. [7,8,13,15,45,44] In our case, the aneurysm disappeared in a relatively early period compared with previously reported cases. The aneurysm was located at the distal portion of this thin artery, and blood flow in the artery might be weak compared with that of the main arteries. Therefore, the aneurysm might be compressed by a surrounding hematoma, resulting in thrombosis at onset. After the resolution of compression by hematoma, the aneurysm recanalized and appeared on radiological examinations or cavity mimicking aneurysm was formed in the hematoma. Subsequently, spontaneous disappearance of the aneurysm occurred due to weak blood flow in the affected artery and aneurysm.

This aneurysm may be a dissection or pseudoaneurysm rather than a saccular aneurysm on a main artery in other locations. [17,20,33] Pathological findings were reported in 8 cases [Table 1]. Among them, 3 cases were diagnosed as true aneurysm, [2,26,42] whereas 3 cases were diagnosed as pseudoaneurysm or dissection. [17,33,35] The incidence of pseudoaneurysm or dissection in this artery is higher than that of aneurysm in other locations. These characteristics might also contribute to spontaneous obstruction. [17] A pseudoaneurysm without a vascular wall might sometimes be formed in the hematoma or thick subarachnoid hemorrhage. [28‑30] If the blood flow in a pseudoaneurysm is weak, it might show a delayed appearance after pseudoaneurysm formation and then spontaneous obstruction.

If the aneurysm is not obstructed, the lesion is still associated with a risk of reperfusion. In such a case, radical treatment should be considered. As for radical treatment, clipping, trapping, or resection was performed in 22 cases, and endovascular embolization in 6. For 1 case, stereotactic radiosurgery was performed, and the lesion disappeared. [21] In our case, we initially planned to clip or trap the aneurysm via the lateral ventricle. As for the treatment of an aneurysm at this location, transcortical transventricular and transsulcal transventricular approaches have been reported as surgical management. [13] Sato et al. [35] reported a case of growing distal medial lenticulostriate artery pseudoaneurysm detected on angiography on day 22. For this case, the lesion was resected via the trans‑sulcal transventricular approach. Pathological examination revealed that the main part was fresh clots with partially organized thrombus. The lesion is deeply located, and so an approach to the aneurysm is difficult. The most suitable approach should be selected for each case. There are some reports describing endovascular embolization of the aneurysm. [15,40] However, the lenticulostriate artery is thin, and insertion and advancement of a microcatheter to the parent artery and aneurysm might be difficult. Therefore, endovascular embolization of the aneurysm at this location might be challenging.

In our case, initial radiological examination as 3D‑CTA on admission failed to demonstrate the lenticulostriate artery aneurysm. Angiography might not be commonly performed for cases with simple hemorrhage in the caudate nucleus, or intraventricular hemorrhage. We performed angiography for the purpose of evaluating a coincidentally developing BA aneurysm. As a result, the lenticulostriate artery aneurysm was unexpectedly identified. There is a possibility that a distal artery aneurysm such as a lenticulostriate artery aneurysm exists in cases of hemorrhage around the lateral ventricles. In fact, raw images of 3D‑CTA obtained on admission showed a small low‑density area in the hematoma. It was not clear whether this low‑density area represented the obstructed aneurysm. Tan et al. [39] reported the spot sign in a case of lenticulostriate artery aneurysm on CE‑CT or CE magnetic resonance imaging. The spot sign may be an extravasation of contrast medium into the hematoma. The existence of the contrast medium outside the artery is opacified, revealing a pseudoaneurysm, on radiological examinations such as 3D‑CTA and angiography. [28,30] Although hemorrhage in the caudate nucleus due to the rupture of a lenticulostriate artery aneurysm is not common, there is a possibility of the existence of
a lenticulostriate artery aneurysm. Therefore, careful radiological examinations focusing on the presence of a distal artery aneurysm is necessary for cases presenting with simple hemorrhage in a region close to the ventricles.

CONCLUSION

An aneurysm originating from the lenticulostriate artery is rare. This aneurysm may show a delayed appearance and spontaneous resolution. Therefore, serial radiological examinations are mandatory. Also, radiological examinations focusing on a lenticulostriate artery aneurysm are necessary in cases with hemorrhage around the lateral ventricles, although the incidence is low, even though the hemorrhage is considered to be simple.

Declararion of patient consent

The authors certify that they have obtained all appropriate patient consent forms. In the form the patient(s) has/have given his/her/their consent for his/her/their images and other clinical information to be reported in the journal. The patients understand that their names and initials will not be published and due efforts will be made to conceal their identity, but anonymity cannot be guaranteed.

Financial support and sponsorship

This study was supported by research funds to promote the hospital functions of Japan Organization of Occupational Health and Safety.

Conflicts of interest

There are no conflicts of interest.

REFERENCES

1. Agarwalla PK, Walcott BP, Dunn IF, Thiex R, Frerichs K, Narang S, et al. Fusiform aneurysms of the lenticulostriate artery. J Clin Neurosci 2014;21:373-7.
2. Atn JY, Cho JH, Lee JW. Distal lenticulostriate artery aneurysm in deep intracerebral haemorrhage. J Neurol Neurosurg Psychiatry 2007;78:1401-3.
3. Albert FK, Wirtz CR, Forsting M, Jansen O, Polarz H, Mittemeier G, et al. Image guided excision of a ruptured feeding artery "pedicle aneurysm" associated with an arteriovenous malformation in a child: Case report. Comput Aided Surg 1997;2:5-10.
4. Bhat DI, Shukla DP, Somanna S. Subarachnoid hemorrhage from a ruptured proximal lenticulostriate artery aneurysm. Neurol India 2012;60:128-9.
5. Cai X, Han S, Feske SK, Chou SH. Pearls and oy‑sters: Small but consequential: A case report. J Neurosurg 2014;120:426-33.
6. Horn RM, Zabramski JM, Feiz‑Erfan I, Lanzino G, McDougall CG. Distal lenticulostriate artery aneurysm rupture presenting as intraparenchymal hemorrhage: Case report. Neurosurgery 2004;55:708.
7. Harreld JH, Zomorodi AR. Embolization of an unruptured distal lenticulostriate artery aneurysm associated with moyamoya disease. AJNR Am J Neuroradiol 2011;32:E42-3.
8. Heck O, Anzioon R, Lacour JC, Derelie AL, Ducrocq X, Richard S, et al. Rupture of a lenticulostriate artery aneurysm. J Neurosurg 1989;70:802-3.
9. Gupta AK, Rao VR, Mandalam KR, Kumar S, Joseph S, Unni M, et al. Thrombosis of multiple aneurysms of a lateral lenticulostriate artery. An angiographic follow‑up. Neuoradiology 1989;31:193-5.
10. Grabel JC, Levine M, Hollis P, Ragland R. Moyamoya-like disease associated with a lenticulostriate region aneurysm. Case report. J Neurosurg 1989;70:802-3.
11. Harreld JH, Zomorodi AR. Embolization of an unruptured distal lenticulostriate artery aneurysm associated with moyamoya disease. AJNR Am J Neuroradiol 2011;32:E42-3.
12. Heeck O, Anziehung R, Lacour JC, Derelie AL, Ducrocq X, Richard S, et al. Rupture of a lenticulostriate artery aneurysm. J Neurosurg 1989;70:802-3.
13. Horberg NJ, Zomorodi AR. Embolization of an unruptured distal lenticulostriate artery aneurysm associated with moyamoya disease. AJNR Am J Neuroradiol 2011;32:E42-3.
14. Kornamam B, Jiang J, Yang XJ, Ojap D, Jia W. Endovascular coiling for a ruptured proximal lenticulostriate artery aneurysm. Chin Med J (Engl) 2016;129:606-8.
15. Kornamam B, Jiang J, Yang XJ, Ojap D, Jia W. Endovascular coiling for a ruptured proximal lenticulostriate artery aneurysm. Chin Med J (Engl) 2016;129:606-8.
16. Lan Z, Li J, You C, Chen J. Successful use of gamma knife surgery in a distal lenticulostriate artery aneurysm intervention. Br J Neurosurg 2012;26:89-90.
17. Larrazabal R, Pela D, Findlay JM. Endovascular treatment of a lenticulostriate artery aneurysm presenting with an intraventricular hemorrhage. J Neurosurg 2016;125:252-7.
18. Kochar PS, Morrish WF, Hudson ME, Wong JH, Goyal M. Fusiform lenticulostriate artery aneurysm with subarachnoid hemorrhage. The role for super selective angiography in treatment planning. Interv Neuroradiol 2010;16:259-63.
19. Kornamam B, Jiang J, Yang XJ, Ojap D, Jia W. Endovascular coiling for a ruptured proximal lenticulostriate artery aneurysm. Chin Med J (Engl) 2016;129:606-8.
20. Kornamam B, Jiang J, Yang XJ, Ojap D, Jia W. Endovascular coiling for a ruptured proximal lenticulostriate artery aneurysm. Chin Med J (Engl) 2016;129:606-8.
21. Lan Z, Li J, You C, Chen J. Successful use of gamma knife surgery in a distal lenticulostriate artery aneurysm intervention. Br J Neurosurg 2012;26:89-90.
22. Larrazabal R, Pela D, Findlay JM. Endovascular treatment of a lenticulostriate artery aneurysm presenting with an intraventricular hemorrhage. J Neurosurg 2016;125:252-7.
23. Lemmann P, Toussaint P, Depriester C, Legars D, Deramond H. Lenticulostriate artery aneurysms. Radioclinical study. J Neuroradiol 2003;30:115-20.
24. Ma N, Tomancok B, Jiang J, Yang XJ, Ojap D, Jia W. Endovascular coiling for a ruptured proximal lenticulostriate artery aneurysm. Chin Med J (Engl) 2016;129:606-8.
25. Matsushita H, Amorim RL, Paiva WS, Cardeal DD, Pinto FC. Idiopathic distal lenticulostriate artery aneurysm in a child. J Neurosurg 2007;107:419-4.
26. Murakami H, Mine T, Nakamura T, Aiki T, Suzuki K. Intracerebral hemorrhage due to rupture of true aneurysms of the lenticulostriate artery in moyamoya disease. Case report. Neurol Med Chir (Tokyo) 1984;24:794‑9.
27. Narayan P, Barrow DL. Surgical treatment of a lenticulostriate artery aneurysm intervention. Br J Neurosurg 2012;26:89-90.
28. Nomura M, Tamase A, Kamide T, Mori K, Seki S, Iida Y, et al. Ruptured irregularly shaped aneurysms: Pseudoaneurysm formation in a thrombus located at the ruptured site. J Neurosurg 2000;93:998-1002.
29. Nomura M, Mori K, Tamase A, Kamide T, Seki S, Yamagato K. Pseudoaneurysm formation due to rupture of intracranial aneurysms: Case series and literature review. Neuroradiol J 2017;30:129-37.
30. Nomura M, Tamase A, Kamide T, Seki S, Yamagato K. Pseudoaneurysm formation in intracerebral hematoma due to ruptured middle cerebral artery aneurysm. Surg J (N Y) 2015;1:47-9.
31. Oku K, Maehara F, Tomonaga M. Aneurysm of the lenticulostriate artery – Report of four cases. Neurol Med Chir (Tokyo) 1991;31:582-5.
32. Petrela M, Xhumari A, Azdzian E, Vretto G. Aneurysm of the terminal part of the lenticulostriate artery. Neurochirurgie 1992;28:50-2.
33. Saito A, Kon H, Nakamura T, Tatsuki S. A dissecting aneurysm of the distal medial lenticulostriate artery: Case report. World Neurosurg 2016;89:725-7.
34. Sakai K, Mizumatsu S, Terasaka K, Sugihani T, Gigashi T. Surgical treatment of a lenticulostriate artery aneurysm. Case report. Neurol Med Chir (Tokyo) 2005;45:374-7.
35. Satoh Y, Ando K, Kawaguchi M, Kakinuma K. Successful resection of a growing distal medial lenticulostriate artery pseudoaneurysm presenting with isolated
intraventricular hemorrhage. J Stroke Cerebrovasc Dis 2017;26:e206-9.
36. Schürrmann K, Brock M, Samii M. Circumscribed hematoma of the lateral ventricle following rupture of an intraventricular saccular arterial aneurysm. Case report. J Neurosurg 1968;29:195-8.
37. Srivastava T, Sannegowda RB, Sharma B, Tejwani S. Lenticulostriate artery aneurysm presenting as primary intraventricular haemorrhage. BMJ Case Rep 2013;2013. pii: bcr2013009968.
38. Takeuchi S, Takasato Y, Masaoka H, Hayakawa T, Otani N, Yoshino Y, et al. Bilateral lenticulostriate artery aneurysms. Br J Neurosurg 2009;23:543-4.
39. Tan LA, Kasliwal MK, Johnson AK, Lopes DK. The “Spot sign” secondary to a ruptured lenticulostriate artery aneurysm. Clin Imaging 2014;38:508-9.
40. Tsai YH, Wang TC, Weng HH, Wong HF. Embolization of a ruptured lenticulostriate artery aneurysm. J Neuroradiol 2011;38:242-5.
41. Vargas J, Walsh K, Turner R, Chaudry I, Turk A, Spiotta A. Lenticulostriate aneurysms: A case series and review of the literature. J Neurointerv Surg 2015;7:194-201.
42. Vates GE, Arthur KA, Ojemann SG, Williams F, Lawton MT. A neurocytoma and an associated lenticulostriate artery aneurysm presenting with intraventricular hemorrhage: Case report. Neurosurgery 2001;49:721-5.
43. Wong GK, Chou HL, Poon WS, Zhu XL, Yu SC, Ahuja AT. Spontaneous resolution of an aneurysm arising from a penetrating branch of the middle cerebral artery. J Clin Neurosci 2009;16:601-2.
44. Yap L, Patankar T, Pysden K, Tyagi A, Goddard T. Spontaneous dissecting lenticulostriate artery aneurysm in children: Radiologic findings and clinical management. J Child Neurol 2015;30:1060-4.
45. Yasher M, Kalani MY, Martirosyan NL, Nakaji P, Spetzler RF. Microsurgical clipping of an unruptured lenticulostriate aneurysm. J Clin Neurosci 2012;19:1578-80.