Association of MYO9B gene polymorphisms with inflammatory bowel disease in Chinese Han population

Jing Hu, Qiao Mei, Jian Huang, Nai-Zhong Hu, Xiao-Chang Liu, Jian-Ming Xu

AIM: To explore the association of MYO9B gene polymorphisms with inflammatory bowel disease (IBD) in China.

METHODS: A total of 442 IBD patients and 402 healthy volunteers were genotyped for two single nucleotides (rs962917 and rs1545620) using the ligase detection reaction and polymerase chain reaction. Allelic and genotype frequency analyses were performed for the two groups. Intestinal permeability was evaluated using lactulose (L) and mannitol (M) excretion. The association of MYO9B gene polymorphisms with intestinal permeability between the normal and high intestinal permeability groups was analyzed.

RESULTS: Overall, there was no significant difference in the genotypic and allelic frequencies of MYO9B between IBD patients and controls. Although no association was found with ulcerative colitis in the comparison between the subgroups, the frequencies of rs962917 and rs1545620 were different in the Crohn’s disease (CD) subgroup with ileocolitis (CC vs CT and TT, P = 0.014; and AA vs AC and CC, P = 0.022, respectively). rs1545620 variants appear to be the genetic susceptibility factor for perianal disease in CD patients (AA vs AC CC, P = 0.029). In addition, the L/M ratio was significantly higher in IBD patients than in controls (0.065 ± 0.013 vs 0.020 ± 0.002, P = 0.02), but no association was found between the MYO9B gene and the L/M ratio in IBD patients.

CONCLUSION: MYO9B gene polymorphisms may influence the sub-phenotypic expression of CD in China. No association between these MYO9B polymorphisms and intestinal permeability in IBD patients was found.

© 2014 Baishideng Publishing Group Inc. All rights reserved.

Key words: Inflammatory bowel disease; Crohn’s disease; Ulcerative colitis; MYO9B; Genetic susceptibility; Intestinal permeability

Core tip: An association between MYO9B gene polymorphisms and inflammatory bowel disease (IBD) in the Chinese Han population has not yet been confirmed. The authors aimed to explore the association of MYO9B gene polymorphisms with the clinical phenotypes and intestinal permeability of IBD in China. The results suggested that MYO9B gene polymorphisms may influence the sub-phenotypic expression of Crohn’s disease but failed to confirm an association between the MYO9B polymorphisms and intestinal permeability in Chinese Han IBD. These findings indicate that the MYO9B gene may differ among IBD patients of various races from various regions.
INTRODUCTION

Inflammatory bowel disease (IBD), which includes Crohn’s disease (CD) and ulcerative colitis (UC), is a chronic recurrent inflammation of the gastrointestinal tract of unknown origin. Environmental influences, immunological factors, and genetic background may play important roles in its etiopathogenesis. Since the initial identification of CARD15 as a CD susceptibility gene in 2001, genetic studies have shown that there are numerous genetic susceptibility factors for IBD. The genetic background of IBD may be different in Asian individuals compared with Western populations. For example, variations in OCTN or CARD15 are generally accepted to be associated with susceptibility to CD in Western populations. However, these associations have not been confirmed in Chinese individuals.

Studies have provided evidence that IBD may result from a genetic predisposition that leads to defects in mucosal immune regulatory cells, barrier leakage, and susceptibility to environmental triggers, including luminal bacteria and specific antigens. The complex interaction of genetic, microbial, and environmental factors may result in continuous activation of the mucosal immune system, leading to IBD. MYO9B variants have been reported to potentially be involved in IBD pathogenesis. The MYO9B gene, encoding myosin IXB, was first identified as a susceptibility gene for celiac disease in a Dutch cohort study. This gene is a single motor protein with a Rho GTPase activating domain, and is involved in epithelial cell tight junction assembly and cytoskeletal remodeling. Recently genotyped 8 MYO9B single nucleotide polymorphisms (SNPs) in 652 CD patients, 650 UC patients, and 1190 controls and reported a significant association between genetic variants in MYO9B and IBD, which indicated that MYO9B variants may be involved in IBD pathogenesis. This involvement may be due to defects in MYO9B-dependent intestinal epithelial cells because IBD is often characterized by increased permeability of the intestinal epithelium.

These findings have not been confirmed in China. Therefore, it is necessary to explore the association of MYO9B gene polymorphisms with IBD in the Chinese Han population and to assess the impact of MYO9B genetic variations on intestinal permeability in IBD. Most studies on the MYO9B gene polymorphisms associated with intestinal permeability mainly investigated rs962917 and rs1545620. Therefore, our study genotyped these two MYO9B SNPs to investigate the association of MYO9B gene polymorphisms with IBD clinical features and with the permeability of the intestinal mucosa in the Chinese Han population.

Table 1 Demographic and clinical characteristics of inflammatory bowel disease patients and controls, n (%)

CD	UC	Controls	
Total (n)	207	235	402
Sex (M/F)	91/116	106/129	196/206
Age at diagnosis	Mean age	40.21 ± 5.37	
A1 (< 16 yr)	10 (4.8)	4 (1.7)	
A2 (17-40 yr)	133 (64.3)	127 (54.0)	
A3 (> 40 yr)	64 (30.9)	104 (44.3)	
Disease location, CD			
L1 (terminal ileum)	75 (36.2)	Proctitis 71 (30.2)	
L2 (colonic location)	42 (20.3)	Left-sided 103 (43.8)	
L3 (ileocolitis)	90 (43.5)	Extensive 61 (26.0)	
L4 (upper gastrointestinal tract)	18 (8.7)		
Disease behavior, CD			
B1 (inflammatory disease)	63 (30.4)		
B2 (structuring disease)	85 (41.1)		
B3 (penetrating disease)	59 (28.5)		
P (perianal disease)	47 (22.7)		

L4 is a modifier that can be added to L1-L3 when concomitant upper gastrointestinal disease is present; P represents perianal disease.

MATERIALS AND METHODS

Patients and controls

IBD patients were consecutively recruited from the Department of Gastroenterology, the First Affiliated Hospital of Anhui Medical University between February 2006 and May 2012. Diagnosis of IBD was based on established clinical, endoscopic, radiological, and histological criteria. The study cohort consisted of 235 UC patients (129 men; mean age: 42.14 ± 10.69 years) and 207 CD patients (116 men; mean age: 37.15 ± 9.25 years). The phenotype of these patients was classified based on age at diagnosis, location, and behavior of disease according to the Montreal classification of IBD. Demographic and clinical characteristic data are presented in Table 1. The control group (206 men; mean age: 40.21 ± 5.37 years) was recruited from healthy individuals from the medical examination center. There were no significant differences between the case and control groups with respect to age or sex. The Han ethnic group, with a population of 1225932641 (according to the 6th Population Survey of China in 2010), lived in most provinces of China. In this study, both patients and controls were of Han ancestry and were unrelated inhabitants in Anhui province. Approval of the protocol was obtained from the Ethics Committee of the First Affiliated Hospital of Anhui Medical University.

Measurements gene determination method

Venous blood (5 mL) was collected from each patient and control. DNA was extracted in accordance with the kit’s instructions (Axxygen Corp., CA, United States) and...
preserved at -20 °C. Two mononucleotide polymorphic sites of the MYO9B gene, rs962917 and rs1545620, were detected by polymerase chain reaction (PCR)/ligase detection reaction (LDR). Primers and probes were synthesized by Shanghai Biotech Corp. (Shanghai, China). For rs962917, the sequence of the forward primer was 5'-CTTCTGCATACCTCCGTA-3', and the sequence of the reverse primer was 5'-AATCTCAGGTACGAGAC-3'; the LDR probe set included a fluorescein probe (P-CGATCCTGTTTGTTGTTTGTATTGCTGGCTGTACCTCCCG-3') and a pair of detection probes (5'-TTTTCGAGGCTAGCAGTCTCAGGACTCCCG-3' and 5'--TTTTTTTTTTTTTTTTTTTG CAGGGCTCAGCGACTCCCTCCG-3'). For rs1545620, the sequence of the forward primer was 5'-GGAGATGATGCTCTCTGTTTCTTACCCAGCT-3'; the LDR probe set included a fluorescein probe (P-CGATCCTGTTTGTTGTTTGTATTGCTGGCTGTACCTCCCG-3') and a pair of detection probes (5'-TTTTCGAGGCTAGCAGTCTCAGGACTCCCG-3' and 5'--TTTTTTTTTTTTTTTTTTTG CAGGGCTCAGCGACTCCCTCCG-3'). Then, 20 μL of the multiple PCR mixture was prepared for multiple PCR amplification, which included 2 μL of 1× buffer solution, 3.0 mmol/L MgCl₂, 2 mmol/L dNTPs, 0.4 μL each of the positive and negative primers, 0.4 μL of Taq polymerase 1U (Qiagen Corp., Hilden, Germany), 4 μL of 1× Q-solution, and 50 ng of genomic DNA. Double distilled water was added to the final volume. Then we performed initial denaturation at 95 °C for 2 min, 35 cycles of 94 °C for 30 s, 62 °C for 90 s, and 72 °C for 60 s, and final extension at 72 °C for 10 min. 3% agarose gel electrophoresis was used to detect the PCR products.

In addition, 10 μL of multiple LDR mixture was prepared for the multiple LDR, which included 1 μL of 1× buffer solution, 1 μL of the probe mix (0.05 pmol/μL each), 0.05 μL of Taq DNA ligase (NEB Corp., Beijing, China), and 2 μL of the PCR products (50 ng/μL). Double distilled water was added to the final volume. After sufficient mixing, the solution was centrifuged for the LDR, which consisted of the following steps: initial denaturation at 95 °C for 2 min, followed by 30 cycles of denaturation at 94 °C for 15 s and annealing at 50 °C for 25 s. The LDR product was sequenced with a 377 DNA Sequencer (ABI Corp., United States).

Evaluation of intestinal permeability

Intestinal permeability was evaluated using the lactulose (L) and mannitol (M) excretion test in all patients and healthy controls. After an overnight fast, the subjects drank 100 mL of the test solution containing 10 g of L and 5 g of M. No food or drink other than water was allowed until completion of the test. Urine samples over the following 6 h were collected in a plastic tube containing 2% thimerosal as a preservative. The total volume was recorded, and 20 mL of each sample was stored at -20 °C until analysis. The urinary concentrations of L and M were measured by high-pressure liquid chromatography with pulsed electrochemical detection (HPLC-PED) [26]. Intestinal permeability was evaluated based on the ratio of the concentrations of L and M (L/M) in the urine [27]. As previously described, intestinal permeability was considered normal when the L/M ratio was less than 0.03 [23].

Statistical analysis

SPSS 13.0 (SPSS Inc., Chicago, IL, United States) statistical software was used for data analysis. Qualitative variables are expressed as percentages, and quantitative variables are calculated as the means. To compare groups, we used χ² tests. Haplovie Software ver. 3.2 (http://www.broad.mit.edu/mpg/haplovie) was used for testing the Hardy-Weinberg equilibrium, linkage disequilibrium, and transmission disequilibrium. Logistic regression was applied to model the association of SNPs with the sub-phenotypes. Odds ratios (OR) with 95%CIs were determined. For all allelic and genotype analyses, Bonferroni’s correction for the number of SNPs tested was used to correct for multiple testing and a P value < 0.05 indicated statistical significance.

RESULTS

Demographics and clinical features

A total of 442 patients (245 male, 197 female) with IBD and 402 healthy controls, all of Han ancestry from China and none with a positive family history of IBD, were enrolled. There were no significant differences in age and sex between the two groups (Table 1). The age at diagnosis, disease location, and the behavior of IBD disease are shown in Table 1. According to the Montreal classification [29], the most frequent disease location in our UC patients was the left side of the colon (43.8%), followed by the rectum (30.2%) and extensive colon (26.0%). In the CD patients, 43.5% exhibited ileocolitis, 36.2% exhibited pure ileitis, 20.3% had disease in the colon region, and only 8.7% had upper intestinal tract involvement. In addition, 41.1% of the CD patients had stricture disease, 30.4% had nonstricturing nonpenetrating disease, and 28.5% had a penetrating phenotype, with concomitant perianal disease in 22.7% patients.

Association of MYO9B variants with IBD

A total of 442 IBD patients and 402 controls were genotyped for two MYO9B gene polymorphisms, rs962917 and rs1545620 (Tables 2 and 3). Both allelic and genotypic frequencies in the IBD and control groups were evaluated for Hardy-Weinberg equilibrium (P > 0.05). In the IBD patients, the rs962917 genotype frequencies of CC, CT, and TT were 8.6%, 36.9%, and 54.5%, respectively. For rs1545620, the genotype frequencies of AA, AC, and CC were 14.3%, 28.9%, and 56.8%, respectively. No significant differences in the allelic and genotypic frequencies were observed between the controls and IBD patients for either SNP. When the CD and UC patients were analyzed separately, no association was found.
for the two IBD phenotypes.

Association of MYO9B variants with disease phenotype

The contribution of the different genotypes of the two SNPs in IBD patients was investigated to verify whether the MYO9B variants affected the clinical features. In the CD patients, the genotype frequencies of rs962917 and rs1545620 appeared to be differently distributed in ileocolitis (CC vs CT and TT, \(P = 0.014 \); and AA vs AC and CC, \(P = 0.022 \), respectively). Of note, an association was identified between the rs1545620 genotypes and the subgroup of perianal disease (AA vs AC and CC, \(P = 0.029 \)) in CD (Table 4). However, in the UC patients, no significant association with any specific sub-phenotype was observed.

Association of MYO9B variants with intestinal permeability in IBD

The L/M ratio was significantly higher in IBD patients than in controls (0.065 ± 0.013 vs 0.020 ± 0.002, \(P = 0.006 \)). The IBD patients were divided into two groups according to intestinal permeability (L/M ≥ 0.03 or

Table 2 Allele and genotype frequencies of the MYO9B SNPs rs962917 in inflammatory bowel disease patients vs controls, \(n \) (%)

Control (\(n = 402 \))	IBD (\(n = 442 \)) OR (95%CI)	Pcorr	CD (\(n = 207 \)) OR (95%CI)	Pcorr	UC (\(n = 235 \)) OR (95%CI)	Pcorr				
GF										
CC	27 (6.6)	38 (8.6)	1.23 (0.79-1.65)	0.64	21 (10.1)	1.52 (0.63-2.17)	0.09	17 (7.2)	1.09 (0.82-1.40)	0.75
CT	173 (42.5)	163 (36.9)	0.87 (0.52-1.44)	0.26	79 (38.2)	0.81 (0.47-1.33)	0.24	84 (35.8)	0.83 (0.69-1.14)	0.31
TT	207 (50.9)	241 (54.5)	1.07 (0.82-1.41)	0.97	107 (51.7)	1.02 (0.85-1.24)	0.85	134 (57.0)	1.12 (0.67-1.46)	0.48
AF										
C	227 (27.9)	239 (27.0)	0.92 (0.66-1.71)	0.52	121 (29.2)	1.06 (0.75-1.41)	0.66	118 (25.1)	0.86 (0.67-1.35)	0.38
T	587 (72.1)	645 (73.0)	1.02 (0.81-1.39)	0.77	295 (70.8)	0.98 (0.61-1.59)	0.49	352 (74.9)	1.14 (0.82-1.33)	0.29

Table 3 Allele and genotype frequencies of the MYO9B SNPs rs1545620 in IBD patients vs controls, \(n \) (%)

Controls (\(n = 402 \))	IBD (\(n = 442 \)) OR (95%CI)	Pcorr	CD (\(n = 207 \)) OR (95%CI)	Pcorr	UC (\(n = 235 \)) OR (95%CI)	Pcorr				
GF										
AA	42 (10.4)	63 (14.3)	1.47 (0.95-2.28)	0.12	26 (12.6)	2.01 (0.71-6.60)	0.31	37 (15.7)	1.26 (0.31-5.25)	0.61
AC	135 (33.6)	128 (28.9)	0.86 (0.62-1.19)	0.29	63 (30.4)	0.91 (0.27-2.49)	0.07	65 (27.7)	0.82 (0.57-2.61)	0.37
CC	225 (56.0)	251 (56.8)	1.03 (0.75-1.41)	0.71	118 (57.0)	1.35 (0.93-2.37)	0.37	133 (56.6)	1.14 (0.61-2.17)	0.84
AF										
A	219 (27.2)	254 (25.9)	0.96 (0.44-2.13)	0.61	115 (27.8)	1.09 (0.39-2.46)	0.37	139 (29.6)	1.16 (0.57-2.14)	0.57
C	585 (72.8)	727 (74.1)	1.07 (0.56-2.28)	0.77	299 (72.2)	0.92 (0.49-1.37)	0.42	331 (70.4)	0.92 (0.77-1.25)	0.39

Table 4 Genotype frequency of rs962917 and rs1545620 SNPs in Crohn’s disease phenotypes, \(n \) (%)

CD (\(n = 207 \))	rs962917	rs1545620
CC (21)	CT (79)	TT (107)
AA (26)	AC (63)	CC (118)

Age, CD

- A1 (< 16 yr): 1 (4.7) < 4 (5.1), 5 (4.7) 1 (3.9) 3 (4.7) 6 (5.1)
- A2 (17-40 yr): 14 (66.7) 51 (64.6) 68 (63.6) 16 (61.5) 41 (65.3) 78 (64.4)
- A3 (> 40 yr): 6 (26.6) 24 (30.3) 34 (31.7) 9 (34.6) 19 (30.2) 36 (30.5)

Disease location, CD

- L1: 9 (42.8) 28 (35.4) 38 (35.5) 11 (42.3) 22 (34.9) 42 (35.6)
- L2: 6 (26.8) 15 (19.0) 21 (19.6) 7 (26.9) 12 (19.0) 24 (20.3)
- L3: 6 (26.8) 36 (45.6) 48 (44.9) 8 (30.8) 29 (46.0) 52 (44.1)
- L4: 2 (9.5) 7 (8.9) 9 (8.4) 2 (7.7) 6 (9.5) 10 (8.5)

Disease behavior, CD

- B1: 6 (26.8) 24 (30.4) 33 (30.8) 8 (30.8) 19 (30.2) 36 (30.5)
- B2: 9 (42.8) 32 (40.5) 44 (41.1) 11 (42.3) 26 (41.2) 48 (40.7)
- B3: 6 (26.8) 23 (29.1) 30 (28.1) 7 (26.9) 18 (28.6) 34 (28.8)
- P: 5 (23.8) 18 (22.9) 24 (22.4) 3 (11.5) 16 (25.3) 28 (23.7)

Genotype frequencies in patients and controls were compared using the \(\chi^2 \) test; \(P_{corr} \): Corrected \(P \) value.
null
genotype frequency and allele frequency distributions of rs962917 and rs1545620 between IBD patients and normal controls. rs962917 and rs1545620 gene polymorphisms were not distributed differently in the UC clinical subgroup in our study. Furthermore, the study by Amundsen et al. failed to support the notion that MYO9B is a susceptibility gene in UC.

An association study of the MYO9B gene in Italian patients with IBD reported that the allele frequencies of MYO9B SNPs were different in CD subgroups according to disease location, with a trend towards an increased frequency of upper gastrointestinal involvement (P = 0.057) and perianal disease (P = 0.042). Our research also found that the frequencies of rs962917 and rs1545620 were significantly different in the CD subgroups according to disease location.

Whether MYO9B gene polymorphisms affect intestinal permeability remains unknown. Latiano et al. reported that MYO9B gene polymorphisms were not significantly related to intestinal mucosal permeability. We used L and M to evaluate intestinal mucosal permeability. These sugars are not involved in metabolism and are urinated in prototype. Their excretion rate in the urine can reflect changes in intestinal mucosal permeability. HPLC-PED, which was adopted to detect the concentrations of L and M, is highly efficient and sensitive. This study confirmed that patients with IBD have markedly higher L/M ratios than controls, indicating increased intestinal permeability in IBD patients. However, we failed to find a correlation of MYO9B genotypes with intestinal permeability.

In summary, a significant association between genetic variants in MYO9B and IBD has been reported, which indicates that MYO9B variants may be involved in IBD pathogenesis in Western populations. However, our study suggested that MYO9B gene polymorphisms may influence the sub-phenotypic expression of CD but did not find an association between these MYO9B polymorphisms and intestinal permeability in IBD patients from a Han population in China. These findings indicate that MYO9B gene polymorphisms may play a small role in changing the intestinal mucosal permeability in Chinese Han IBD patients.

Applications

The conclusions of this study involving MYO9B gene polymorphisms in IBD patients from a Han population in China were different from those of studies in Western populations. Studies of the genetic background of IBD in different geographic areas or races may provide insights into possible etiologic factors.

Peer review

This is a study from China aiming to explore the association of MYO9B gene polymorphisms with the clinical phenotypes and intestinal permeability of IBD. The study, which possesses a logical presentation of facts with regard to the description of the patient cohort, the performance of experiments, and the analysis of data, will provide more information about MYO9B gene polymorphisms in IBD to other authors.

REFERENCES

1. Podolsky DK. Inflammatory bowel disease. *N Engl J Med* 2002; 347: 417-429 [PMID: 12167685 DOI: 10.1056/NEJMra020831]

2. Scaldaferr F, Fiocchi C. Inflammatory bowel disease: progress and current concepts of etiopathogenesis. *J Dig Dis* 2007; 8: 171-178 [PMID: 17979072 DOI: 10.1111/j.1751-2880.2007.00310.x]

3. Matrican J, Barnich N, Ardid D. Immunopathogenesis of inflammatory bowel disease. *Self Nonself* 2010; 1: 299-309 [PMID: 210487504 DOI: 10.4161/self.1.4.13560]

4. Siminovich KA. Advances in the molecular dissection of inflammatory bowel disease. *Semin Immunol* 2006; 18: 244-253 [PMID: 16697026 DOI: 10.1016/j.smim.2006.03.012]

5. Ogura Y, Bonen DK, Inohara N, Nicole L, Chen FF, Ramos L, Britton H, Morand T, Karaliukas R, Duerr RH, Achkar JP, Brant SR, Bayless TM, Kirscher BS, Hanauer SB, Nuez G, Cho JH. A frameshift mutation in NOD2 associated with susceptibility to Crohn’s disease. *Nature* 2001; 411: 603-606 [PMID: 11385577 DOI: 10.1038/sj.nature059114]

6. Hugot JP, Chamaillard M, Zouali H, Lesage S, Cezard JP, Belaiche J, Almer S, Tysk C, O’Morain CA, Gassull M, Binder V, Finkel Y, Cortot A, Modigliani R, Laurent-Puig P, Gower-Rousseau C, Macry J, Colombel JF, Sabatou M, Thomas A. Genetic variants of NOD2 lead to increased risk of disease in patients with Crohn’s disease. *Nature** 2001; 411: 599-603 [PMID: 11385576 DOI: 10.1038/sj.gut.33079107]

7. Duerr RH, Taylor KD, Brant SR, Rioux JD, Silverberg MS, Daly MJ, Steinhardt AH, Abraham C, Regueiro M, Griffiths A, Dassopoulos T, Bitton A, Yang H, Targan S, Datta LW, Kister EO, Schumm LP, Lee AT, Gregersen PK, Barnard MM, Rotter JI, Nicolae DL, Cho JH. A genome-wide association study identifies IL23R as an inflammatory bowel disease gene. *Science* 2006; 314: 1461-1463 [PMID: 17068223 DOI: 10.1126/science.1135245]

8. Wellcome Trust Case Control Consortium. Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. *Nature** 2007; 447: 661-678 [PMID: 17554300 DOI: 10.1038/nature05911]

9. Franke A, Balschun T, Karlsen TH, Sventoraite J, Nikolau S, Mayr C, Dominguez FS, Albrecht M, Nthaugel M, Ellingshaus D, Sina C, Onnie CM, Weersma RK, Stokkers PC, Wijmenga C, Gazoul C, Strachan D, McAnrdie WL, Vermeire S, Rutgeerts P, Rosenstiel P, Krawczak M, Vatn MH, Mathew CG, Schreiber S. Sequence variants in IL10, ARPC2 and multiple other loci contribute to ulcerative colitis susceptibility. *Nat Genet* 2008; 40: 1319-1323 [PMID: 18638448 DOI: 10.1038/ng.221]

10. Festen EA, Gayotte P, Scott R, Annes V, Zhenkakova A, Lian J, Leefhevre C, Brant SR, Cho JH, Silverberg MS, Taylor KD, de Jong DJ, Stokkers PC, Mcgovern D, Palmieri O, Achkar JP, Xavier RJ, Daly MJ, Duerr RH, Wijmenga C, Weersma RK, Rioux JD. Genetic variants in the region harbouring

COMMENTS

Background

Genetic variation in the MYO9B gene might predispose individuals to inflammatory bowel disease (IBD) according to studies performed in Western populations. Furthermore, IBD is often characterized by increased permeability of the intestinal epithelium.

Research fronts

The association of MYO9B gene polymorphisms with IBD has been studied in Western countries, but the conclusions from these studies have not been confirmed in China.

Innovations and breakthroughs

This study explored the association of MYO9B gene polymorphisms with the clinical phenotypes and intestinal permeability of IBD in China. This result suggested that MYO9B gene polymorphisms may influence the sub-phenotypic expression of Crohn’s disease but did not find an association between MYO9B polymorphisms and intestinal permeability in IBD patients from a Han population in China. These findings indicate that MYO9B gene polymorphisms may play a small role in changing the intestinal mucosal permeability in Chinese Han IBD patients.
Hu J et al. MYO9B gene polymorphisms and IBD

IL2/IL21 associated with ulcerative colitis. Gut 2009; 58: 799-804 [PMID: 19201773 DOI: 10.1136/gut.2008.166918]

Vermeire S, Rutgeerts P. Current status of genetics research in inflammatory bowel disease. Genes Immun 2005; 6: 637-645 [PMID: 16107869 DOI: 10.1038/sj.gene.6364257]

Cavanaugh JA, Adams KE, Quak EJ, Bryce ME, O’Callaghan NJ, Rodgers HJ, Magarry GR, Butler WJ, Eaden JA, Roberts-Thomson IC, Pavli P, Wilson SR, Callen DF. CARD15/ NOD2 risk alleles in the development of Crohn’s disease in the Australian population. Ann Hum Genet 2003; 67: 35-41 [PMID: 12556233 DOI: 10.1016/j.ajeghp.2003.05.008]

Li M, Gao X, Guo CC, Wu KC, Zhang X, Hu P. OCTN1 and CARD15 gene polymorphisms in Chinese patients with inflammatory bowel disease. World J Gastroenterol 2008; 14: 4923-4927 [PMID: 18756601 DOI: 10.3748/jwg.14.4923]

Baungart DC, Carding SR. Inflammatory bowel disease: cause and immunobiology. Lancet 2007; 369: 1627-1640 [PMID: 17496605 DOI: 10.1016/S0140-6736(07)60708-0]

Chichlowski M, Bale LP. Bacterial-mucosal interactions in inflammatory bowel disease: an alliance gone bad. Am J Physiol Gastrointest Liver Physiol 2008; 295: G1139-G1149 [PMID: 18927210 DOI: 10.1152/ajpgi.00516.2008]

Cooney R, Cummings JR, Pathan S, Beckly J, Geremia A, Hancock L, Guo C, Morris A, Jewell DP. Association between genetic variants in myosin IXB and Crohn’s disease. Inflamm Bowel Dis 2009; 15: 1014-1021 [PMID: 19239313 DOI: 10.1002/ibd.20836]

Monsuur AJ, de Bakker PI, Alizadeh BZ, Zhernakova A, Liu XM, Zhou L, Zhernakova A, Qian J, Zhu F, Sun G, Zhu L, Wang F, Graham WV, Wang Y, Witkowski ED, Schwarz BT, Turner JR. Interferon-gamma and tumor necrosis factor-alpha synergize to induce intestinal epithelial barrier dysfunction by up-regulating myosin light chain kinase expression. Am J Pathol 2005; 166: 409-419 [PMID: 15681825 DOI: 10.1016/S0002-9440(10)62264-X]

van Bodegraven AA, Curley CR, Hunt KA, Monsuur AJ, Linkens RK, Onnie CM, Crustius JB, Annese V, Latiano A, Silverberg MS, Button A, Fisher SA, Steinhardt AH, Forbes A, Sanderson J, Prescott NJ, Strachan DP, Playford RJ, Mathew CG, Wijmenga C, Daly MJ, Rioux JD, van Heel DA. Genetic variation in myosin IXB is associated with ulcerative colitis. Gastroenterology 2006; 131: 1768-1774 [PMID: 17087940 DOI: 10.1053/j.gastro.2006.09.011]

Montreal classification of inflammatory bowel disease: scientific and clinical implications. Best Pract Res Clin Gastroenterol 2003; 17: 3-18 [PMID: 12617879 DOI: 10.1016/S0266-4106(02)00349-5]

Müller RT, Homnert U, Reinhard J, Bühler M. The rat myosin myr 5 is a GTPase-activating protein for Rho in vivo: essential role of arginine 1695. Mol Biol Cell 1997; 8: 2039-2053 [PMID: 93848541 DOI: 10.1091/mbc.8.10.2039]

Russo JM, Florian P, Shen L, Graham WV, Trettakova MS, Gitter AH, Mrsnj RJ, Turner JR. Distinct temporal-spatial roles for the kinase and myosin light chain kinase in epithelial purse-string wound closure. Gastroenterology 2005; 128: 987-1001 [PMID: 15825808 DOI: 10.1053/j.gastro.2005.01.004]

Macdonald TT, Monteleone G. Immunity, inflammation, and allergy in the gut. Science 2005; 307: 1920-1925 [PMID: 15790845 DOI: 10.1126/science.1106442]

Bünning C, Geissler N, Prager M, Sturm A, Baumgart DC, Büttner J, Bühner S, Haas V, Locs H. Increased small intestinal permeability in ulcerative colitis: rather genetic than environmental and a risk factor for extensive disease? Inflamm Bowel Dis 2012; 18: 1932-1939 [PMID: 22344599 DOI: 10.1002/ibd.21229]

Wang F, Graham WV, Wang Y, Witkowski ED, Schwarz BT, Turner JR. Interferon-gamma and tumour necrosis factor alpha synergize to induce intestinal epithelial barrier dysfunction by up-regulating myosin light chain kinase expression. Am J Pathol 2005; 166: 409-419 [PMID: 15681825 DOI: 10.1016/S0002-9440(10)62264-X]

van Bodegraven AA, Curley CR, Hunt KA, Monsuur AJ, Linkens RK, Onnie CM, Crustius JB, Annese V, Latiano A, Silverberg MS, Button A, Fisher SA, Steinhardt AH, Forbes A, Sanderson J, Prescott NJ, Strachan DP, Playford RJ, Mathew CG, Wijmenga C, Daly MJ, Rioux JD, van Heel DA. Genetic variation in myosin IXB is associated with ulcerative colitis. Gastroenterology 2006; 131: 1768-1774 [PMID: 17087940 DOI: 10.1053/j.gastro.2006.09.011]

Núñez C, Oliver J, Mendoza JL, Gómez-García M, Píñero A, Taxonera C, Díaz-Rubio M, López-Nevot MA, de la Concha Moro C, Liras J, Figueroa R. Haplotype-based analysis of ulcerative colitis risk loci. Gastroenterology 2006; 131: 1768-1774 [PMID: 17087940 DOI: 10.1053/j.gastro.2006.09.011]

Association analysis of MYO9B gene polymorphisms and inflammatory bowel disease in a Norwegian cohort. World J Gastroenterol 2006; 21: 249-252 [PMID: 16948647 DOI: 10.1136/jg.2006.090665]

P-Reviewer: M’Koma A S-Editor: Gou SX L-Editor: Cant MR E-Editor: Liu XM
