Circadian Mutant Mice with Obesity and Metabolic Syndrome are Resilient to Cardiovascular Disease

Cristine J. Reitz¹, Faisal J. Alibhai¹, Bruna Gazzi de Lima Seolin², Ashley Nemec-Bakk², Neelam Khaper², and Tami A. Martino¹*

¹Centre for Cardiovascular Investigations, Department of Biomedical Sciences, University of Guelph, Ontario, Canada, N1G2W1
²Medical Sciences Division, Northern Ontario School of Medicine, Lakehead University, Thunder Bay, Ontario, Canada, P7B5E1

*Corresponding author at: Centre for Cardiovascular Investigations, Biomedical Sciences/OVC Room 1646B, University of Guelph, Guelph, Ontario N1G2W1, Canada.
E-mail address: tmartino@uoguelph.ca

Running title: Circadian mechanism and resilience to cardiovascular disease
ABSTRACT

Obesity and metabolic syndrome commonly underly cardiovascular disease. Clock$^{Δ19/Δ19}$ mice fed a normal diet develop obesity and metabolic syndrome; however, it is not known whether they develop or are resilient to cardiovascular disease. We found that Clock$^{Δ19/Δ19}$ mice do not develop cardiac dysfunction, despite their underlying conditions. Moreover, in contrast to wildtype controls fed a high-fat diet (HFD), Clock$^{Δ19/Δ19}$ HFD mice still do not develop cardiovascular disease. Indeed, Clock$^{Δ19/Δ19}$ HFD mice have preserved heart weight despite their obesity, no cardiomyocyte hypertrophy, and preserved heart structure and function, even after 24-weeks of a HFD. To determine why Clock$^{Δ19/Δ19}$ mice are resilient to cardiac dysfunction despite their underlying obesity and metabolic conditions, we examined global cardiac gene expression profiles by microarray and bioinformatics analyses, revealing that oxidative stress pathways were involved. We examined the pathways in further detail and found 1) SIRT-dependant oxidative stress pathways were not directly involved in resilience. 2) Increased 4-hydroxynonenal (4-HNE) in wildtype HFD but not Clock$^{Δ19/Δ19}$ mice, suggesting less reactive oxygen species in Clock$^{Δ19/Δ19}$ mice. 3) Increased cardiac catalase (CAT) and glutathione peroxidase (GPx) suggesting strong antioxidant defences in Clock$^{Δ19/Δ19}$ hearts. 4) Upregulation of Pparγ in Clock$^{Δ19/Δ19}$ hearts; this circadian-regulated gene drives transcription of CAT and GPx, providing a molecular basis for resilience in the Clock$^{Δ19/Δ19}$ mice. These findings shed new light on the circadian regulation of oxidative stress, and demonstrate an important role for the circadian mechanism in resilience to cardiovascular disease.

KEYWORDS

Circadian, Cardiovascular, Resilience, Obesity, High-fat diet, Oxidative stress
NEW & NOTEWORTHY

We examined whether obesity and metabolic syndrome underlie the development of cardiac
dysfunction in circadian mutant $Clock^{Δ19/Δ19}$ mice. Surprisingly, we demonstrate that although
$Clock^{Δ19/Δ19}$ mice develop metabolic dysfunction, they are protected from cardiac hypertrophy, left
ventricular remodeling, and diastolic dysfunction, in contrast to wild type controls, even when
challenged with a chronic high-fat diet. These findings shed new light on the circadian regulation
of oxidative stress pathways which can mediate resilience to cardiovascular disease.
INTRODUCTION

Adverse dietary choices can lead to chronic long-term health conditions such as cardiovascular disease. One of the most commonly cited examples is the diet-heart hypothesis proposed by Dr. Ancel Keys in the 1950s, which causally relates high dietary saturated fat to increased risk of cardiovascular disease (26). This hypothesis subsequently led to the creation of numerous nutritional guidelines and practices over many decades, to reduce fat and increase carbohydrate intake. However, this approach has generated considerable controversy, including possibly inadvertently leading to our current epidemic of obesity and metabolic syndrome, and it seems no longer tenable (66). In addition, decades of promoting a low-fat diet have had negative implications for other clinical cohorts as well, for example in obscuring the benefits of isocaloric substitution of fats for carbohydrates to better control blood sugar levels in patients with type 2 diabetes (7). Moreover, despite meaningful dietary interventions aimed at reducing fat intake to improve heart health, cardiovascular disease remains a leading cause of morbidity and mortality worldwide (41). New understanding of the interplay between diet and obesity and metabolic syndrome is clearly warranted, and especially identifying key factors that contribute to the development of, or resilience to, cardiovascular disease.

The discovery of the circadian mechanism was recognized by the Nobel Prize in Physiology or Medicine in 2017 (57). Research is now focussed on translation of circadian biology to clinical medicine (e.g. (10)), and we and others are especially interested in how circadian biology can benefit patients with cardiovascular disease (4, 19, 35, 37, 38, 48, 50, 53, 58). The circadian mechanism is a molecular transcription/translation feedback loop driven by complex 24 h oscillations between CLOCK and BMAL1 (positive arm), PERIOD and CRYPTOCHROME (negative arm), and others (as reviewed in (30, 51)). CLOCK is a key component of this molecular mechanism (63) and has been demonstrated to regulate rhythms in cardiac metabolism (8), gene and protein expression (45), and play a role in heart disease outcomes, including age-related cardiovascular dysfunction (1, 2) and healing responses following myocardial infarction (3).
Interestingly, previous studies have suggested that the circadian mechanism gates diet related cardiometabolic outcomes. For example, time-of-day restricted feeding or intermittent fasting (e.g. circadian strategies) can improve cardiac metabolic homeostasis (28, 55). Conversely, food intake at the wrong time of day can exacerbate cardiometabolic dysfunction (9, 59). The latter findings are especially a caveat for shift workers, who frequently eat meals during the night shift (11), and for whom there is an increased risk of obesity, metabolic disorders, and cardiovascular disease (25, 56, 64). Intriguingly, CLOCK mutant mice (Clock^Δ19/Δ19) develop obesity and metabolic syndrome (61), which are underlying risk factors for cardiovascular disease. However, it’s not known whether or not the Clock^Δ19/Δ19 mice actually develop or are resilient to obesity induced cardiovascular disease.

To investigate, we used circadian mutant Clock^Δ19/Δ19 mice, which have profoundly disrupted metabolic energy balance and significant body weight gain (61). We found that despite this underlying phenotype, the Clock^Δ19/Δ19 mice did not develop cardiac dysfunction. We next used a high-fat diet (HFD) to see if this in combination would precipitate the development of heart disease. As expected in wild type (WT) controls, the HFD led to obesity, metabolic syndrome, and cardiac dysfunction with cardiac hypertrophy and compensatory adverse structural and functional remodeling. However, in contrast, the Clock^Δ19/Δ19 mice fed a HFD remained resilient to cardiovascular disease. At a molecular level, we found that the Clock^Δ19/Δ19 mice had reduced oxidative stress and increased antioxidant responses under circadian regulatory control, which help explain their better cardiac outcomes. Thus, these findings reveal that Clock^Δ19/Δ19 mice do not develop cardiac remodeling and contractile dysfunction despite the underlying obesity and metabolic disorder, and they continue to be resilient even when fed a HFD. These studies shed new light on CLOCK, identifying it as a target that mediates resilience to obesity or HFD induced cardiovascular disease.
MATERIALS AND METHODS

Mice

Male ClockΔ19/Δ19 mice (63) on a C57Bl/6 background, bred at the University of Guelph Central Animal Facilities, and wild type (WT) controls were housed in a 12 h light (L): 12 h dark (D) environment, with food and water provided ad libitum. ClockΔ19/Δ19 mice are homozygous for the CLOCK point mutation, an A-T transversion mutation resulting in the deletion of exon 19 and a 51 amino acid deletion in the CLOCK protein (29). ClockΔ19/Δ19 mice were genotyped by allele-specific polymerase chain reaction (PCR) and phenotyped for circadian locomotor activity using running wheel actigraphy, as described previously (1, 49, 61). Starting at 8 weeks of age, the mice were fed either a HFD (45% fat, 20% protein, and 35% carbohydrate, TD.06415, Envigo Teklad Diets), or a normal standard chow (SC) diet (10% fat, 20% protein, and 70% carbohydrates, TD.08806, Envigo Teklad Diets), as described (61). All animals were weighed weekly, for up to 24 weeks on the HFD or SC diet. All experiments were performed in accordance with the Canadian Council on Animal Care, and were approved by the University of Guelph Institutional Animal Care and Use Committee.

Comprehensive lab animal monitoring system (CLAMS)

The non-invasive CLAMS (Columbus Instruments) was used to monitor food intake and metabolic parameters in ClockΔ19/Δ19 and WT mice after 24 weeks on either a HFD or SC diet, using methods previously described (1, 2, 6). Animals were individually housed and acclimatized for 48 h in the CLAMS unit under normal L:D conditions. Activity, food intake, oxygen consumption (VO\textsubscript{2}), whole body substrate utilization (respiratory exchange ratio; RER), and energy expenditure were measured every 15 min over a 24 h period. 24 mice were used, n=6 mice/group.

Metabolic measurements
After 24 weeks of HFD or SC, mice were fasted for 6 h, and blood was collected at zeitgeber time (ZT) 0. For glucose, cholesterol, and triglyceride measurements, nonterminal blood collection was performed from manually restrained, non-anesthetized mice via the saphenous vein. Fasted blood glucose levels were measured from a drop of blood from the saphenous vein using a hand-held glucometer (Freestyle Lite, Abbott). Cholesterol and triglyceride levels were assessed from ~200 µl of blood collected from the saphenous vein into a microvette capillary tube with clotting activator (Sarstedt), clotted on ice for 1 h, centrifuged at 10,000xg for 5 min at room temperature, and serum was aliquoted and stored at -80°C until use. From these serum samples, triglyceride levels were determined using the IDEXX Rodent Lipid Panel (IDEXX BioAnalytics). Serum cholesterol levels were measured using a commercially available kit, according to the manufacturer's instructions (Cholesterol E kit, Wako Diagnostic). 27 mice were used, \(n = 6-7 \) mice/group. For non-fasted insulin measurements, another set of \(\text{Clock}^{419/419} \) and WT mice on a standard \textit{ad libitum} diet were used. The mice were anesthetized with 4% isoflurane and euthanized at 4 h intervals over one 24 h period (ZT03, 07, 11, 15, 19, 23). Approximately 1 mL of blood was collected at each timepoint, via cardiac puncture into EDTA-treated microcentrifuge tubes (Sarstedt), and centrifuged at 1,500xg for 10 min at 4°C, and plasma was pooled and stored at -80°C until use. Insulin levels were determined by ELISA (Crystal Chem), according to the manufacturer's instructions, as described (61). 36 mice were used, \(n = 18 \) mice per genotype, \(n = 3 \) mice/timepoint.

Morphometry and Histology

\(\text{Clock}^{419/419} \) and WT mice fed a HFD or SC for 24 weeks were euthanized with 4% isoflurane and cervical dislocation at ZT07. Upon sacrifice, body weight (BW), heart weight (HW), epididymal white adipose tissue weight (eWAT), and tibia length (TL), were collected from each mouse. A total of 27 mice were used, with \(n = 6-7 \) mice/group. Hearts were collected for histopathology, as previously described (1, 3, 49). Briefly, hearts were removed, perfused with 1 M KCl to arrest in
diastole, and fixed in 10% neutral buffered formalin for 24 h. Formalin fixed hearts were processed, embedded, and 5 μm sections were collected at the mid-papillary level. Sections were stained with Masson’s trichrome for quantification of myocyte cross sectional area (MCSA) from at least 100 cardiomyocytes/heart, over at least 3 sections, with \(n = 3 \) hearts/group. Images were taken using Q-Capture (QImaging) and analyzed in Image J 1.46 (NIH).

Echocardiography

At baseline (8 weeks of age, SC) and after 4, 8, 12, 16, and 24 weeks of HFD or SC, cardiac structure and function were assessed under light anesthesia (1.5% isoflurane) using a GE Vivid 7 Dimension ultrasound machine (GE Medical Systems) with a i13L 14MHz linear-array transducer, as described previously (3, 17, 49). All echocardiography assessments were performed between ZT07 - ZT09. Measurements were taken at the mid-papillary level from at least 5 images per mouse. End diastolic (EDV) and systolic (ESV) volumes were calculated using the cube formula, stroke volume (SV) was calculated as EDV-ESV, and cardiac output (CO) was calculated as SV x heart rate (HR). A total of 24 mice were used, \(n = 6 \) mice/group.

In vivo hemodynamics

At the 24 week endpoint, *in vivo* hemodynamics measurements were collected in animals anesthetized with 4% isoflurane, intubated, and ventilated (Harvard Apparatus model 687), using our described methods (1-3, 5, 49). The right carotid artery was isolated and a 1.2Fr pressure catheter (Transonic) was advanced through the ascending aorta into the left ventricle (LV). *In vivo* LV and aortic pressure measurements were recorded with ADInstruments PowerLab and analyzed using Lab Chart 7 (Colorado Creeks). Following hemodynamic recordings, mice were euthanized with 4% isoflurane and cervical dislocation. 24 mice were used, \(n = 6 \) mice/group.

RNA isolation, microarray, and bioinformatics analyses
ClockΔ19/Δ19 and WT mice fed a HFD or SC for 24 weeks were euthanized with 4% isoflurane and cervical dislocation at ZT07. Hearts were collected, snap frozen in liquid nitrogen, and stored at -80°C until use. RNA isolation, microarray, and bioinformatics analyses were performed as described previously (6, 33, 36, 60). Briefly, total RNA was isolated from hearts using TRIZOL (Invitrogen). RNA quantity and quality were assessed by Nanodrop (Thermo Scientific) and Agilent 2100 Bioanalyzer (Agilent Technologies Inc.). Whole genome microarray experiments were performed using the Affymetrix GeneChip Mouse Gene 2.0 ST array (GEO Accession: GSE110245). Bioinformatics analyses were performed using GeneSpring GX v14.8 (Agilent Technologies Inc.). Data were normalized from raw fluorescence values using the exon robust multiarray algorithm and significant differences were determined for genes with a \textgreater 1.35-fold change in expression. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses were performed using the Database for Annotation, Visualization, and Integrated Discovery Functional Annotation Tool (DAVID Bioinformatics 6.8, NIAID/NIH) (22). Circos plots were generated using Circos v.0.69-9 (32). A total of 16 mice were used, with \(n = 4 \) mice/group.

Real time polymerase chain reaction (RT-PCR)

To validate selected microarray expression profiles, RT-PCR was performed using the Power SYBR Green RNA-to-Ct one step kit (Life Technologies) on a ViiA7 real time PCR system (Applied Biosystems), as previously described (3, 6, 17, 49). The primers used were: \textit{peroxisome proliferator activated receptor gamma (Ppar)} forward 5\textquoteleft -ccagtttcgatcgtagaag-3' and reverse 5\textquoteleft -cttgagcagagtcacttgg-3', and \textit{histone} forward 5\textquoteleft -gcaagagtgcgccctctactg-3' and reverse 5\textquoteleft -ggcctcacttgctcctgcaa-3'. Relative gene expression was normalized to \textit{histone} using the \(\Delta \Delta CT \) method. 16 mice were used, \(n = 4 \) mice/group.

Protein isolation and immunoblotting
Proteins in oxidative stress or antioxidant pathways were investigated by Western blotting, as described previously (1, 2, 46). Tissues were homogenized at 20 Hz for 2 min (TissueLyser; Qiagen) with PathScan Lysis Buffer (25 mM Tris pH 7.5, 150 mM NaCl, 1 mM EDTA, 1% Triton, 20 mM sodium fluoride, 1 mM Na3VO4) containing protease inhibitor cocktail (Sigma-Aldrich). Sedimentation was pelleted by centrifugation at 8,000xg for 10 min at 4°C, and the supernatant collected for subsequent experiments. Protein from liver (15 µg) or heart (30 µg) was subjected to sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and transferred to nitrocellulose membranes. Membranes were blocked with 5% non-fat milk in Tris-buffered saline (containing 0.1% Tween-20) for 1 h at room temperature and incubated overnight at 4°C with the following primary antibodies: rabbit anti-mouse manganese-dependent superoxide dismutase (Mn-SOD; Millipore) (1:2000), rabbit anti-mouse 4-hydroxynonenal (4-HNE; Abcam) (1:1000), rabbit anti-mouse catalase (CAT; Millipore) (1:2000), rabbit anti-mouse glutathione peroxidase (GPx; Abcam) (1:1000), and mouse anti-mouse monoclonal to GADPH (1:2000; Santa Cruz Biotechnology) was used as a loading control. Blots were then incubated with anti-rabbit (1:1000) or anti-mouse (1:5000) horseradish peroxidase-conjugated secondary antibodies for 2 hours, washed with tris-buffered saline, and proteins were visualized by chemiluminescence and densitometry was analyzed using ImageJ software (NIH). A total of 16 mice were used, with n=4 mice/group.

Statistics

All values are mean ± SEM. Statistical comparisons were made using an unpaired Student’s t-test or two-way analysis of variance (ANOVA) followed by Tukey post-hoc test for multiple comparisons, as applicable. All analyses were performed using GraphPad Prism 8 (GraphPad Software) or Excel (Microsoft). Results of P≤0.05 are considered statistically significant. Statistical parameters, including n-values, are noted in the figure legends.
RESULTS

ClockΔ19/Δ19 mice develop obesity and metabolic dysfunction.

First, we confirmed the adverse metabolic effects of circadian disruption in ClockΔ19/Δ19 mice, so we could next investigate the effects on cardiac structure and function. To characterize the phenotype of the ClockΔ19/Δ19 mice, we first examined 24 h locomotor running wheel activity under standard L:D conditions (Fig. 1A). The ClockΔ19/Δ19 mice actigraphy was as expected, with less activity in the dark phase as compared to WT controls (Fig. 1B). We also analyzed whole-body metabolism by indirect calorimetry using CLAMS metabolic cages. Both genotypes exhibited the anticipated diurnal rhythm in locomotor activity, however, the ClockΔ19/Δ19 mice showed significantly blunted (P<0.001) wake time activity, along with increased (P<0.001) activity in the light (sleep time) phase, as compared to WT controls (Fig. 1C). Moreover, ClockΔ19/Δ19 mice showed a loss of diurnal feeding rhythms, with an average of 47% of food intake occurring in the light phase, as compared to only 29% for WT mice during this time (P<0.001) (Fig. 1D). Similarly, the ClockΔ19/Δ19 mice exhibited a significantly attenuated (P<0.05) daily rhythm in oxygen consumption as compared to WT controls (Fig. 1E). The ClockΔ19/Δ19 mice also showed a loss of rhythmic substrate utilization, as measured by respiratory exchange ratio (RER) (Fig. 1F). Finally, ClockΔ19/19 mice develop hypercholesterolemia, hyperglycemia, and hypoinsulinemia, as anticipated (Table 1). Together these results confirm that disrupted ClockΔ19/Δ19 mice have underlying metabolic syndrome.

Next, we characterized the development of obesity in ClockΔ19/Δ19 and WT mice, in groups of animals fed SC, and also in groups fed a HFD for 24 weeks. We found greater body weight in the WT mice on the HFD (Fig. 2A), increasing significantly (P<0.0001) over the 24-week period, as compared to WT SC controls (Fig. 2B, C, Table 2). Increased body weight occurred more rapidly in the ClockΔ19/Δ19 mice on the HFD (Fig. 2D), and persisted (P<0.0001) over 24 weeks, as compared to ClockΔ19/Δ19 SC controls (Fig. 2E, F, Table 2). Moreover, the HFD fed mice had increased (P<0.001) epididymal white adipose tissue (eWAT) weight, suggesting that the body
weight gain was likely due in part to an increase in visceral fat (Fig. 2G, Table 3). Interestingly, overall daily caloric intake was similar for both genotypes (Fig. 2H), despite greater weight gain in the ClockΔ19/Δ19 mice. We also found that HFD fed mice had a similar rise in serum cholesterol levels regardless of genotype (Fig. 2I), however, only the WT mice showed elevated fasting glucose levels under the HFD conditions (Fig. 2J). Together these findings confirm that at baseline the ClockΔ19/Δ19 mice have obesity and metabolic dysfunction, but not WT mice, as anticipated. Moreover, they show that both genotypes respond to a HFD with obesity and metabolic dysfunction.

ClockΔ19/Δ19 mice with obesity and metabolic dysfunction do not develop cardiac hypertrophy.

We next looked at whether the obesity and metabolic dysfunction in the ClockΔ19/Δ19 mice was associated with the development of heart disease. We found that even though the ClockΔ19/Δ19 mice had greater heart weight (HW) than the WT mice at baseline (Fig. 3A), their HW:BW (Fig. 3B) and HW:TL (Fig. 3C) ratios were proportionate, suggesting that any increase in HW was a normal physiological response to increased BW. Furthermore, as shown in Figure 3A-C and Table 3, even when fed a HFD, the ClockΔ19/Δ19 mice showed no significant increase in HW as compared to ClockΔ19/Δ19 SC controls, despite the HFD induced BW gain. In contrast, the WT HFD mice had a significant increase in HW disproportionate to their BW gain, suggestive of pathological remodeling in this group. The adverse cardiac remodeling was also evident on histological analyses, as the WT HFD mice exhibited cardiomyocyte hypertrophy (Fig. 3D, left) and increased myocyte cross-sectional area (Fig. 3D, right), as compared to WT SC controls. In contrast the ClockΔ19/Δ19 hearts showed no change in cardiomyocyte hypertrophy under SC or HFD conditions (Fig. 3E), consistent with these animals being resistant to obesity induced cardiac remodeling.
ClockΔ19/Δ19 mice with obesity and metabolic dysfunction are resilient to cardiovascular disease.

Given that ClockΔ19/Δ19 mice showed resilience to cardiomyocyte hypertrophy, we next examined whether this correlated with cardiac structure and function, by echocardiography. Representative M-mode echocardiography images after 24 weeks of diet are shown in Figure 4A. The time-series data are illustrated in Figure 4B. We found that the ClockΔ19/Δ19 mice maintained normal cardiac structure and function, consistent with the lack of pathological findings in the heart (Fig. 4B, Table 2). Moreover, the ClockΔ19/Δ19 mice showed normal physiological cardiac adaptations to a HFD, with increased end diastolic volume (EDV), end systolic volume (ESV), stroke volume (SV), and cardiac output (CO), while maintaining normal cardiac function, by 24 weeks (Fig. 4B, Table 2). In contrast, the WT HFD mice developed significant pathophysiologic changes in structure and function by echocardiography, consistent with the earlier findings of cardiac hypertrophy in these animals (Fig. 4B, Table 2). The WT HFD hearts also exhibited significantly impaired contractility by in vivo hemodynamics (Fig. 5A). Moreover, although systolic function was preserved in the WT HFD mice (Fig. 5B), there was significant (P<0.005) diastolic dysfunction indicated by an impaired relaxation rate (Fig. 5A), increased LVEDP (Fig. 5C), and an increase (P<0.005) in the LV diastolic time constant tau (Fig. 5D). Together these data show that WT mice exhibit a number of cardiometabolic risk responses to a HFD, which are associated with left ventricular remodeling and diastolic dysfunction. The ClockΔ19/Δ19 mice also develop cardiometabolic risk profiles, on either SC or HFD, however surprisingly, they are resilient to cardiac dysfunction.

Cardiac transcriptional analyses and oxidative stress pathways.

To investigate the underlying gene expression patterns driving adverse cardiac remodeling in WT mice and, in parallel, the resilience observed in ClockΔ19/Δ19 mice, we performed genome-wide microarray analysis. First, we examined transcriptional changes driven by HFD in WT hearts. A
total of 174 transcripts (≥1.35-fold change) showed differential expression in WT HFD versus WT
SC hearts (Fig. 6A, Supplemental Table 1; see https://doi.org/10.6084/m9.figshare.12855530). Further Gene Ontology (GO) analysis revealed that the differentially regulated genes in WT HFD hearts mapped to functional biological categories of stress, growth/remodeling, transcription, and metabolism (Fig. 6B). In contrast, differential expression of these same cardiac remodeling genes were not found in the hearts of the ClockΔ19/Δ19 mice, consistent with their resilience to cardiovascular disease (Table 4). Ontological mapping further revealed a role for the circadian mechanism in driving these transcriptional responses (Fig. 6C, Supplemental Table 1; available at https://doi.org/10.6084/m9.figshare.12855530), as the ClockΔ19/Δ19 hearts showed the anticipated blunted expression of core circadian mechanism genes (Fig. 6D), and KEGG analysis revealed a link with the oxidative stress and antioxidant pathways (Supplemental Table 2; available at https://doi.org/10.6084/m9.figshare.12855530).

SIRT-dependent oxidative stress pathways.

In terms of mechanism, we interrogated the oxidative stress gene data in more detail. Our microarray data showed significantly increased nicotinamide phosphoribosyltransferase (Nampt) expression only in WT HFD hearts, but not in WT SC, nor ClockΔ19/Δ19 SC nor ClockΔ19/Δ19 HFD mice (Fig. 7A). Since NAMPT enhances susceptibility to oxidative stress via the sirtuin (SIRT) dependent oxidative stress pathway, we next investigated this pathway. However, we found no differences for any groups in the expression of downstream Sirt1, Sirt2, Sirt3, Sirt4, and Sirt6 genes (Fig. 7B), nor for downstream Foxo1 and Foxo3 genes (Fig. 7C), nor did we observe differences in the abundance of the downstream antioxidant protein manganese-dependent superoxide dismutase (MnSOD) which mitigates oxidative stress (Fig. 7D). Thus, while WT HFD are susceptible to cardiac dysfunction, and ClockΔ19/Δ19 mice are resilient, that protection does not appear to be mediated by changes in the overall gene and protein expression of the SIRT-dependent oxidative stress pathways.
H₂O₂-dependent antioxidant signaling.

Next, we investigated the H₂O₂-dependent antioxidant signaling pathways. First, we found that 4-hydroxynonenal (4-HNE) was increased only in the WT HFD mice (Fig. 8A), but not in the ClockΔΙ9/ΔΙ9 mice (Fig. 8B), suggesting increased activation of oxidative stress driving cardiovascular disease in the WT mice. Second, we found that catalase (CAT) protein levels were increased in both the WT HFD heart (Fig. 8C) and ClockΔΙ9/ΔΙ9 HFD heart (Fig. 8D), consistent with there being activation of antioxidant pathways in response to HFD in both genotypes. Third, we found that glutathione peroxidase (GPx) protein levels were increased only in the ClockΔΙ9/ΔΙ9 HFD mice (Fig. 8E), suggesting better antioxidant protection in the hearts of these mice. Finally, in order to better understand the molecular drivers, we next evaluated Pparγ mRNA levels, a transcription factor that underlies GPx production. We found that that peroxisome proliferator-activated receptor gamma (Pparγ) was significantly (P<0.005) upregulated in ClockΔΙ9/ΔΙ9 hearts (Fig. 8F), consistent with the finding that GPx is upregulated and protective. Taken together, these data demonstrate that ClockΔΙ9/ΔΙ9 mice are resilient to cardiovascular disease, even though they have underlying obesity and metabolic syndrome, concurrent with reduced oxidative stress and increased antioxidant protection in the heart (Fig. 9).
DISCUSSION

In this study, we demonstrate that ClockΔ19/Δ19 mice have obesity and metabolic syndrome – well known risk factors for cardiovascular disease – yet they do not develop cardiac dysfunction. Moreover, even when fed a HFD that normally precipitates obesity, metabolic syndrome and cardiovascular disease (as in WT mice) the ClockΔ19/Δ19 mice continue to be resilient to heart disease. That is, WT mice fed a HFD develop cardiac hypertrophy with compensatory cardiac remodeling and diastolic dysfunction, but in contrast the ClockΔ19/Δ19 HFD mice have cardiac physiology similar to healthy controls. We used microarrays and bioinformatics analyses to investigate underlying mechanisms for resilience. We found that SIRT-dependant oxidative stress pathways did not appear to be directly involved in resilience. However, the H2O2-dependant pathways involving 4-HNE, CAT, and GPx revealed that the ClockΔ19/Δ19 hearts had reduced oxidative stress and better antioxidant responses. Both genetics and lifestyle contribute to serious chronic health conditions such as obesity, metabolic syndrome and the subsequent development of cardiovascular disease. Notably, these findings shed new light on how the circadian mechanism is an important player in mediating resilience to the cardiovascular disease outcomes.

One of the important foundations of our study is that ClockΔ19/Δ19 mice have underlying obesity and metabolic syndrome. This is consistent with earlier studies that showed that the circadian clock is an important regulator of mammalian energy balance, and that disruptions to the circadian mechanism can impair metabolic homeostasis (61). However, even though the ClockΔ19/Δ19 mice have obesity and metabolic syndrome, which are risk factors for cardiovascular disease, they do not develop heart disease. Moreover, even when challenged with a HFD the ClockΔ19/Δ19 mice exhibit normal physiologic cardiac adaptations associated with obesity, yet are resilient to pathological cardiac remodeling and contractile dysfunction, in contrast to their WT littermates. Thus, these studies shed new light on a role for the circadian mechanism, that is, as a factor that mediates resilience to cardiovascular disease.
An intriguing outcome of this study, however, is that by revealing a cardioprotective role in Clock mutant mice, our findings appear counter-intuitive to earlier reports that an intact circadian mechanism is needed to benefit the heart (e.g. (1, 3, 8, 17-19, 36, 39, 68)). Collectively, the message has long been that maintaining circadian rhythms promotes heart health, and disruption causes or exacerbates disease. Why then are the circadian mutant mice resilient to heart disease? In this study, the protective outcomes relate to the underlying condition. That is, diet, obesity, and metabolic dysfunction trigger adverse oxidative stress pathways that are modifiable by products of the circadian mechanism. Previous studies also strongly support this notion, and our findings, that cardiac remodeling can be improved on even in the absence of an intact circadian mechanism; the circadian mechanism remains fundamentally important because the genes and proteins that drive the outcome are under circadian mechanism transcriptional control.

For example, 1) homozygote tau/tau (casein kinase-1ε mutant) hamsters are unable to synchronize with the 24 h period, yet they do not develop cardiovascular dysfunction like their heterozygote tau/+ littermates do (34). 2) Ex-vivo hearts from cardiomyocyte specific CLOCK mutant mice (CCM) fed a HFD exhibit normal contractility on Langendorff perfusion, maintaining baseline levels of cardiac power and efficiency as compared to WT (59). 3) Cardiac specific circadian mechanism transcriptional outputs can change with aging, and sex hormones, and thus resilience may change to susceptibility in old ClockΔ19/Δ19 mice (1, 2). 4) Disruption of CLOCK is cardioprotective in the myocardial infarction ischemia reperfusion (mi/R) model, with reduced infarct size in CCM mice versus WT controls (18). 5) Also, pharmacologically targeting the circadian mechanism with the repressive REV-ERB agonist SR9009, temporarily holding back the clock, improves outcomes post-mi/R in mice (49). Importantly suspending the circadian mechanism in a manner in which it can mitigate outcomes is driven by the changes in output genes and proteins under its regulatory control, including outputs involved in cardiac remodeling. That is, perhaps what we think of as desynchrony should not be so much about the circadian clock being “broken” – but rather we should consider how it works differently, and how those
changes in controlled output genes can improve outcome. Thus, the message remains that the circadian mechanism is important for cardiovascular health, but one must also consider the circadian mechanism regulated outputs that are specific to the disease process, and that those can directly influence outcome.

Mechanistically, in this study, resilience of the \(\text{Clock}^{\Delta 19/\Delta 19} \) mice was mediated through oxidative stress pathways. We found that \(\text{Clock}^{\Delta 19/\Delta 19} \) mice have less 4-HNE response to HFD, as compared to the WT mice, and consistent with their better outcomes. 4-HNE is a product of lipid peroxidation with well-known adverse oxidative stress responses \textit{in vitro} \cite{13, 62}, and elevated 4-HNE corresponds with adverse cardiac remodeling in human heart failure \cite{42}. We also found greater antioxidant (CAT, GPx) responses in the \(\text{Clock}^{\Delta 19/\Delta 19} \) HFD hearts, as compared to WTs, and consistent with their resilience to HFD induced cardiovascular disease. These antioxidant enzymes are involved in detoxification of \(\text{H}_2\text{O}_2 \), with cardioprotective benefits as shown in experimental heart failure models \textit{in vivo} \cite{24, 47}. Importantly, the increased antioxidant protection may be driven by its transcription regulator PPAR\(\gamma \) \cite{12, 14, 21}, which is a circadian mechanism regulated product \cite{67}. The \(\text{Clock}^{\Delta 19/\Delta 19} \) hearts have increased \(\text{Ppar}_\gamma \) expression, thus providing a molecular explanation for the improved outcomes in these animals.

It has long been known that oxidative stress pathways underlie cardiac dysfunction, and that strategies aimed at reducing damage could be beneficial \cite{43}. However it is only recently that these oxidative stress pathways have been linked to the circadian mechanism in the cardiovascular system \cite{16, 23, 27, 44, 52}. Together, our findings demonstrate that the circadian mechanism drives oxidative stress and antioxidant pathways and in doing so it acts as a driver modulating resilience to cardiovascular disease.

\section*{Conclusions}

In this study we show that \(\text{Clock}^{\Delta 19/\Delta 19} \) mice develop obesity and metabolic syndrome, yet remarkably they are protected from cardiac dysfunction, even when fed a HFD. Resilience
appears to be mediated by down regulating adverse oxidative stress pathways and up regulating beneficial antioxidant pathways that are under circadian regulatory control. It is worth noting that these studies were done in mice, which raises some caveats with regards to translation to humans. Interestingly though, our findings reflect the common observation that although many individuals in contemporary society have obesity and metabolic syndrome, only some will develop cardiovascular disease. Additional studies in humans also support the notion that the circadian mechanism mediates resilience to cardiovascular disease. For example, minor allele carriers for the CLOCK polymorphism rs4580704 have a significantly lower risk of developing hypertension versus non-carriers (20). Also, circadian manipulations through time-restricted-feeding can improve cardiometabolic health in humans (40, 65). Pharmacologic targeting of the circadian mechanism might also be useful in mitigating cardiovascular disease outcomes; indeed, small molecule inhibitors are currently being developed for a wide variety of human clinical uses (15, 31, 49, 54). In conclusion, cardiovascular disease remains a leading cause of morbidity and mortality worldwide. New insights into protection against cardiovascular disease are clearly warranted. These findings highlight the important role of the circadian mechanism, in promoting resilience to cardiovascular disease.

GRANTS

This work is supported by grants from the Canadian Institute for Health Research (CIHR) and the Heart and Stroke Foundation of Canada (HSFC) to T.A.M. and a CIHR Canada Graduate Scholarship Doctoral Award to C.J.R.

DISCLOSURES

No conflicts of interest, financial or otherwise, are declared by the authors.
AUTHOR CONTRIBUTIONS

C.J.R. and T.A.M. conceptualized the study and designed the experiments. C.J.R., F.J.A., B.G.D.L.S., A.N.B., N.K., and T.A.M. conducted the experiments. All authors analyzed and/or interpreted the experimental results. C.J.R. and T.A.M. drafted the paper. All authors have read and give permission to the paper.

ACKNOWLEDGEMENTS

We thank Dr. David Wright for the use of the CLAMS and for his technical expertise regarding the plasma metabolic measures.
REFERENCES

1. Alibhai FJ, LaMarre J, Reitz CJ, Tsimakouridze EV, Kroetsch JT, Bolz SS, Shulman A, Steinberg S, Oudit GY, and Martino TA. Disrupting the key circadian regulator CLOCK leads to age-dependent cardiovascular disease. J Mol Cell Cardiol 105: 24-37, 2017.

2. Alibhai FJ, Reitz CJ, Peppler WT, Basu P, Sheppard P, Choleris E, Bakovic M, and Martino TA. Female ClockDelta19/Delta19 mice are protected from the development of age-dependent cardiomyopathy. Cardiovasc Res 114: 259-271, 2018.

3. Alibhai FJ, Tsimakouridze EV, Chinnappareddy N, Wright DC, Billia F, O'Sullivan ML, Pyle WG, Sole MJ, and Martino TA. Short-term disruption of diurnal rhythms after murine myocardial infarction adversely affects long-term myocardial structure and function. Circ Res 114: 1713-1722, 2014.

4. Alibhai FJ, Tsimakouridze EV, Reitz CJ, Pyle WG, and Martino TA. Consequences of Circadian and Sleep Disturbances for the Cardiovascular System. Can J Cardiol 31: 860-872, 2015.

5. Basu P, Alibhai FJ, Tsimakouridze EV, Singh RK, Paglialunga S, Holloway GP, Martino TA, and Bakovic M. Male-Specific Cardiac Dysfunction in CTP:Phosphoethanolamine Cytidyllyltransferase (Pcyt2)-Deficient Mice. Mol Cell Biol 35: 2641-2657, 2015.

6. Bennardo M, Alibhai F, Tsimakouridze E, Chinnappareddy N, Podobed P, Reitz C, Pyle WG, Simpson J, and Martino TA. Day-night dependence of gene expression and inflammatory responses in the remodeling murine heart post-myocardial infarction. Am J Physiol Regul Integr Comp Physiol 311: R1243-R1254, 2016.

7. Boden G, Sargrad K, Homko C, Mozzoli M, and Stein TP. Effect of a low-carbohydrate diet on appetite, blood glucose levels, and insulin resistance in obese patients with type 2 diabetes. Ann Intern Med 142: 403-411, 2005.

8. Bray MS, Shaw CA, Moore MW, Garcia RA, Zanquetta MM, Durgan DJ, Jeong WJ, Tsai JY, Bugger H, Zhang D, Rohrwasser A, Rennison JH, Dyck JR, Litwin SE, Hardin PE, Chow CW, Chandler MP, Abel ED, and Young ME. Disruption of the circadian clock within the cardiomyocyte influences myocardial contractile function, metabolism, and gene expression. American journal of physiology Heart and circulatory physiology 294: H1036-1047, 2008.

9. Bray MS, Tsai JY, Villegas-Montoya C, Boland BB, Blasier Z, Egbejimi O, Kueht M, and Young ME. Time-of-day-dependent dietary fat consumption influences multiple cardiometabolic syndrome parameters in mice. Int J Obes (Lond) 34: 1589-1598, 2010.

10. Cederroth CR, Albrecht U, Bass J, Brown SA, Dyhrfjeld-Johnsen J, Gachon F, Green CB, Hastings MH, Helfrich-Forster C, Hogenesch JB, Levi F, Loudon A, Lundkvist GB, Meijer JH, Rosbath M, Takahashi JS, Young M, and Canlon B. Medicine in the Fourth Dimension. Cell Metab 30: 238-250, 2019.

11. Centofanti S, Dorrian J, Hilditch C, Grant C, Coates A, and Banks S. Eating on nightshift: A big vs small snack impairs glucose response to breakfast. Neurobiol Sleep Circadian Rhythms 4: 44-48, 2018.

12. Chung SS, Kim M, Youn BS, Lee NS, Park JW, Lee IK, Lee YS, Kim JB, Cho YM, Lee HK, and Park KS. Glutathione peroxidase 3 mediates the antioxidant effect of peroxisome proliferator-activated receptor gamma in human skeletal muscle cells. Mol Cell Biol 29: 20-30, 2009.

13. Dalleau S, Baradat M, Gueraud F, and Huc L. Cell death and diseases related to oxidative stress: 4-hydroxynonenal (HNE) in the balance. Cell Death Differ 20: 1615-1630, 2013.

14. Ding G, Fu M, Qin Q, Lewis W, Kim HW, Fukai T, Bacinamwo M, Chen YE, Schneider MD, Mangelsdorf DJ, Evans RM, and Yang Q. Cardiac peroxisome proliferator-activated receptor gamma is essential in protecting cardiomyocytes from oxidative damage. Cardiovasc Res 76: 269-279, 2007.
15. Dong Z, Zhang G, Qu M, Gimple RC, Wu Q, Qiu Z, Prager BC, Wang X, Kim LJY, Morton AR, Dixit D, Zhou W, Huang H, Li B, Zhu Z, Bao S, Mack SC, Chavez L, Kay SA, and Rich JN. Targeting Glioblastoma Stem Cells through Disruption of the Circadian Clock. Cancer Discov 9: 1556-1573, 2019.

16. Douma LG, and Gumz ML. Circadian clock-mediated regulation of blood pressure. Free Radic Biol Med 119: 108-114, 2018.

17. Duong ATH, Reitz CJ, Louth EL, Creighton SD, Rasouli M, Zwaiman A, Kroetsch JT, Bolz SS, Winters BD, Bailey CDC, and Martino TA. The Clock Mechanism Influences Neurobiology and Adaptations to Heart Failure in Clock(19/19) Mice With Implications for Circadian Medicine. Sci Rep 9: 4994, 2019.

18. Durgan DJ, Pulinilkunnil T, Villegas-Montoya C, Garvey ME, Frangogiannis NG, Michael LH, Chow CW, Dyck JR, and Young ME. Short communication: ischemia/reperfusion tolerance is time-of-day-dependent: mediation by the cardiomyocyte circadian clock. Circ Res 106: 546-550, 2010.

19. Durgan DJ, and Young ME. The cardiomyocyte circadian clock: emerging roles in health and disease. Circ Res 106: 647-658, 2010.

20. Garaulet M, Lee YC, Shen J, Parnell LD, Arnett DK, Tsai MY, Lai CQ, and Ordovas JM. CLOCK genetic variation and metabolic syndrome risk: modulation by monounsaturated fatty acids. Am J Clin Nutr 90: 1466-1475, 2009.

21. Girnun GD, Domann FE, Moore SA, and Robbins ME. Identification of a functional peroxisome proliferator-activated receptor response element in the rat catalase promoter. Mol Endocrinol 16: 2793-2801, 2002.

22. Huang da W, Sherman BT, and Lempicki RA. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 4: 44-57, 2009.

23. Johnston JG, and Pollock DM. Circadian regulation of renal function. Free Radic Biol Med 119: 93-107, 2018.

24. Katunga LA, Gudimella P, Efird JT, Abernathy S, Mattox TA, Beatty C, Darden TM, Thayne KA, Alwair H, Kypson AP, Virag JA, and Anderson EJ. Obesity in a model of gpx4 haploinsufficiency uncovers a causal role for lipid-derived aldehydes in human metabolic disease and cardiomyopathy. Mol Metab 4: 493-506, 2015.

25. Kervezee L, Kosmadopoulos A, and Boivin DB. Metabolic and cardiovascular consequences of shift work: The role of circadian disruption and sleep disturbances. Eur J Neurosci 51: 396-412, 2020.

26. Keys A. Atherosclerosis: a problem in newer public health. J Mt Sinai Hosp N Y 20: 118-139, 1953.

27. Khaer N, Bailey CDC, Ghugre NR, Reitz C, Awosanmi Z, Waines R, and Martino TA. Implications of disturbances in circadian rhythms for cardiovascular health: A new frontier in free radical biology. Free Radic Biol Med 119: 85-92, 2018.

28. Kim KH, Kim YH, Son JE, Lee JH, Kim S, Cheo MS, Moon JH, Zhong J, Fu K, Lenglin F, Yoo JA, Bilan PJ, Klip A, Nagy A, Kim JR, Park JG, Hussein SM, Doh KO, Hui CC, and Sung HK. Intermittent fasting promotes adipose thermogenesis and metabolic homeostasis via VEGF-mediated alternative activation of macrophage. Cell Res 27: 1309-1326, 2017.

29. King DP, Zhao Y, Sangoram AM, Wilsbacher LD, Tanaka M, Antoch MP, Steeves TD, Vitaterna MH, Kornhauser JM, Lowrey PL, Turek FW, and Takahashi JS. Positional cloning of the mouse circadian clock gene. Cell 89: 641-653, 1997.

30. Ko CH, and Takahashi JS. Molecular components of the mammalian circadian clock. Hum Mol Genet 15 Spec No 2: R271-277, 2006.

31. Kojetin DJ, and Burris TP. REV-ERB and ROR nuclear receptors as drug targets. Nat Rev Drug Discov 13: 197-216, 2014.
32. Krzywinski M, Schein J, Birol I, Connors J, Gascoyne R, Horsman D, Jones SJ, and Marra MA. Circos: an information aesthetic for comparative genomics. *Genome Res* 19:1639-1645, 2009.

33. Martino T, Arab S, Strauma M, Belsham DD, Tata N, Cai F, Liu P, Trivieri M, Ralph M, and Sole MJ. Day/night rhythms in gene expression of the normal murine heart. *J Mol Med (Berl)* 82: 256-264, 2004.

34. Martino TA, Oudit GY, Herzenberg AM, Tata N, Koletar MM, Kabir GM, Belsham DD, Backx PH, Ralph MR, and Sole MJ. Circadian rhythm disorganization produces profound cardiovascular and renal disease in hamsters. *Am J Physiol Regul Integr Comp Physiol* 294:R1675-1683, 2008.

35. Martino TA, and Sole MJ. Molecular time: an often overlooked dimension to cardiovascular disease. *Circ Res* 105: 1047-1061, 2009.

36. Martino TA, Tata N, Belsham DD, Chalmers J, Strauma M, Lee P, Pribiag H, Khaper N, Liu PP, Dawood F, Backx PH, Ralph MR, and Sole MJ. Disturbed diurnal rhythm alters gene expression and exacerbates cardiovascular disease with rescue by resynchronization. *Hypertension* 49: 1104-1113, 2007.

37. Martino TA, and Young ME. Circadian Medicine. Available at: https://science.sciencemag.org/content/354/6315/986/tab-e-letters. *Science eLetters* 2017.

38. Martino TA, and Young ME. Influence of the cardiomyocyte circadian clock on cardiac physiology and pathophysiology. *J Biol Rhythms* 30: 183-205, 2015.

39. McGinnis GR, Tang Y, Brewer RA, Brahma MK, Stanley HL, Shanmugam G, Rajasekaran NS, Rowe GC, Frank SJ, Wende AR, Abel ED, Taegtmeyer H, Litovsky S, Darley-Usmar V, Zhang J, Chatham JC, and Young ME. Genetic disruption of the cardiomyocyte circadian clock differentially influences insulin-mediated processes in the heart. *J Mol Cell Cardiol* 110: 80-95, 2017.

40. Melkani GC, and Panda S. Time-restricted feeding for prevention and treatment of cardiometabolic disorders. *J Physiol* 595: 3691-3700, 2017.

41. Mozaffarian D, Benjamin EJ, Go AS, Arnett DK, Blaha MJ, Cushman M, de Ferranti S, Despres JP, Fullerton HJ, Howard VJ, Huffman MD, Judd SE, Kissela BM, Lackland DT, Lichtman JH, Lisabeth LD, Liu S, Mackey RH, Matchar DB, McGuire DK, Mohler ER, 3rd, Moy CS, Munter P, Mussolino ME, Nasir K, Neumar RW, Nichol G, Palaniyappan L, Pandey DK, Reeves MJ, Rodriguez CJ, Sorlie PD, Stein J, Towfighi A, Turan TN, Virani SS, Willey JZ, Woo D, Yeh RW, Turner MB, American Heart Association Statistics C, and Stroke Statistics S. Heart disease and stroke statistics–2015 update: a report from the American Heart Association. *Circulation* 131: e29-322, 2015.

42. Nakamura K, Kusano K, Nakamura Y, Kakishita M, Ohta K, Nagase S, Yamamoto M, Miyaji K, Saito H, Morita H, Emori T, Matsubara H, Toyokuni S, and Ohe T. Carvedilol decreases elevated oxidative stress in human failing myocardium. *Circulation* 105: 2867-2871, 2002.

43. Niemann B, Rohrbach S, Miller MR, Newby DE, Fuster V, and Kovacij JC. Oxidative Stress and Cardiovascular Risk: Obesity, Diabetes, Smoking, and Pollution: Part 3 of a 3-Part Series. *J Am Coll Cardiol* 70: 230-251, 2017.

44. Peliciari-Garcia RA, Darley-Usmar V, and Young ME. An overview of the emerging interface between cardiac metabolism, redox biology and the circadian clock. *Free Radic Biol Med* 119: 75-84, 2018.

45. Podobed P, Pyle WG, Ackloo S, Alibhai FJ, Tsimakouridze EV, Ratcliffe WF, Mackay A, Simpson J, Wright DC, Kirby GM, Young ME, and Martino TA. The day/night proteome in the murine heart. *Am J Physiol Regul Integr Comp Physiol* 307: R121-137, 2014.

46. Puukila S, Bryan S, Laakso A, Abdel-Malak J, Gurney C, Agostino A, Bello-Klein A, Prasad K, and Khaper N. Secoisolariciresinol diglucoside abrogates oxidative stress-induced damage in cardiac iron overload condition. *PLoS One* 10: e0122852, 2015.
47. Qin F, Lennon-Edwards S, Lancel S, Biolo A, Siwik DA, Pimentel DR, Dorn GW, Kang YJ, and Colucci WS. Cardiac-specific overexpression of catalase identifies hydrogen peroxide-dependent and -independent phases of myocardial remodeling and prevents the progression to overt heart failure in G(\alpha)q-overexpressing transgenic mice. Circ Heart Fail 3: 306-313, 2010.

48. Rabinovich-Nikitin I, Lieberman B, Martino TA, and Kirshenbaum LA. Circadian-Regulated Cell Death in Cardiovascular Diseases. Circulation 139: 965-980, 2019.

49. Reitz CJ, Alibhai FJ, Khattua TN, Rasouli M, Bridle BW, Burris TP, and Martino TA. SR9009 administered for one day after myocardial ischemia-reperfusion prevents heart failure in mice by targeting the cardiac inflammasome. Commun Biol 2: 353, 2019.

50. Reitz CJ, and Martino TA. Disruption of Circadian Rhythms and Sleep on Critical Illness and the Impact on Cardiovascular Events. Curr Pharm Des 21: 3505-3511, 2015.

51. Reppert SM, and Weaver DR. Coordination of circadian timing in mammals. Nature 418: 935-941, 2002.

52. Rodrigo GC, and Herbert KE. Regulation of vascular function and blood pressure by circadian variation in redox signalling. Free Radic Biol Med 119: 115-120, 2018.

53. Sole MJ, and Martino TA. Diurnal physiology: core principles with application to the pathogenesis, diagnosis, prevention, and treatment of myocardial hypertrophy and failure. J Appl Physiol (1985) 107: 1318-1327, 2009.

54. Sulli G, Manoogian ENC, Taub PR, and Panda S. Training the Circadian Clock, Clocking the Drugs, and Drugging the Clock to Prevent, Manage, and Treat Chronic Diseases. Trends Pharmacol Sci 39: 812-827, 2018.

55. Sutton EF, Beyl R, Early KS, Cefalu WT, Ravussin E, and Peterson CM. Early Time-Restricted Feeding Improves Insulin Sensitivity, Blood Pressure, and Oxidative Stress Even without Weight Loss in Men with Prediabetes. Cell Metab 27: 1212-1221 e1213, 2018.

56. Szosland D. Shift work and metabolic syndrome, diabetes mellitus and ischaemic heart disease. Int J Occup Med Environ Health 23: 287-291, 2010.

57. TheNobelFoundation. The Nobel Prize in Physiology or Medicine 2017. https://www.nobelprize.org/prizes/medicine/2017/press-release/. 2017.

58. Thosar SS, Butler MP, and Shea SA. Role of the circadian system in cardiovascular disease. J Clin Invest 128: 2157-2167, 2018.

59. Tsai JY, Kienesberger PC, Puliniilkunnal T, Sailors MH, Durgan DJ, Villegas-Montoya C, Jahoor A, Gonzalez R, Garvey ME, Boland B, Blasier Z, McElfresh TA, Nannegari V, Chow CW, Heird WC, Chandler MP, Dyck JR, Bray MS, and Young ME. Direct regulation of myocardial triglyceride metabolism by the cardiomyocyte circadian clock. J Biol Chem 285: 2918-2929, 2010.

60. Tsimakouridze EV, Straume M, Podobed PS, Chin H, LaMarre J, Johnson R, Antenos M, Kirby GM, Mackay A, Huether P, Simpson JA, Sole M, Gadal G, and Martino TA. Chronomics of pressure overload-induced cardiac hypertrophy in mice reveals altered day/night gene expression and biomarkers of heart disease. Chronobiol Int 29: 810-821, 2012.

61. Turek FW, Joshi C, Kohsaka A, Lin E, Ivanova G, McDearmon E, Laposky A, Losee-Olson S, Easton A, Jensen DR, Eckel RH, Takahashi JS, and Bass J. Obesity and metabolic syndrome in circadian Clock mutant mice. Science 308: 1043-1045, 2005.

62. Uchida K. 4-Hydroxy-2-nonenal: a product and mediator of oxidative stress. Prog Lipid Res 42: 318-343, 2003.

63. Vitaterna MH, King DP, Chang AM, Kornhauser JM, Lowrey PL, McDonald JD, Dove WF, Pinto LH, Turek FW, and Takahashi JS. Mutagenesis and mapping of a mouse gene, Clock, essential for circadian behavior. Science 264: 719-725, 1994.

64. Vyas MV, Garg AX, Iansavichus AV, Costella J, Donner A, Laugsand LE, Janszky I, Mrkobrada M, Parraga G, and Hackam DG. Shift work and vascular events: systematic review and meta-analysis. BMJ 345: e4800, 2012.
65. Waldman HS, Renteria LI, and McAllister MJ. Time-restricted feeding for the prevention of cardiometabolic diseases in high-stress occupations: a mechanistic review. *Nutr Rev* 78: 459-464, 2019.

66. Weinberg SL. The diet-heart hypothesis: a critique. *J Am Coll Cardiol* 43: 731-733, 2004.

67. Yang X, Downes M, Yu RT, Bookout AL, He W, Straume M, Mangelsdorf DJ, and Evans RM. Nuclear receptor expression links the circadian clock to metabolism. *Cell* 126: 801-810, 2006.

68. Young ME, Razeghi P, and Taegtmeyer H. Clock genes in the heart - Characterization and attenuation with hypertrophy. *Circulation Research* 88: 1142-1150, 2001.
FIGURE LEGENDS

Fig. 1. Metabolic dysfunction and obesity in Clock$^{Δ19/Δ19}$ mice at baseline. A) Representative running wheel actigraphy of WT and Clock$^{Δ19/Δ19}$ mice under diurnal (12 h light: 12 h dark) conditions, and B) quantification of 24 h locomotor activity, n=14 days of analyses per genotype. C) Diurnal rhythms in activity; D) food intake; E) oxygen consumption (VO$_2$); and F) respiratory exchange ratio (RER) in WT vs. Clock$^{Δ19/Δ19}$ mice, quantified over the light (L) versus dark (D) phase by CLAMS, *$P<0.05$, n=6 mice/group. Data are presented as mean ± SEM.

Fig. 2. Metabolic dysfunction and obesity in Clock$^{Δ19/Δ19}$ mice in response to HFD. A) WT mice have increased body size in response to HFD, representative images; B) body weight tracking over the 24 week period; and C) quantification at the 24 week endpoint, and D) Clock$^{Δ19/Δ19}$ mice; E) tracking over 24 weeks; and F) quantification at the 24 week endpoint, *$P<0.01$ SC vs. HFD, #$P<0.05$ Clock$^{Δ19/Δ19}$ HFD vs. WT HFD, n$≥6$ mice/group. G) Increased epidydimal white adipose tissue (eWAT) in response to HFD, H) no change in daily caloric intake, and I) increased serum cholesterol and J) fasting blood glucose in response to 24 weeks HFD, serum samples taken at ZT0, *$P<0.05$, n$≥6$ mice/group. Data are presented as mean ± SEM. See Tables 2 and 3 for all morphometry values.

Fig. 3. Clock$^{Δ19/Δ19}$ mice are protected from cardiac hypertrophy. A) Clock$^{Δ19/Δ19}$ mice have larger hearts than WT mice at baseline, yet B) even after 24 weeks of HFD they maintain proportionate HW:BW, and C) HW:TL, suggesting physiologic growth but not pathologic hypertrophy, *$P<0.05$, n$≥6$ mice/group. See Table 3 for all morphometry values. D) Cardiomyocyte hypertrophy in WT HFD but not in E) Clock$^{Δ19/Δ19}$ mice, Masson’s trichrome stain (left), and quantification of cardiomyocyte cross sectional area (MCSA; right), *$P<0.05$, n=3 hearts/group with 100 cardiomyocytes quantified per heart. Data are presented as mean ± SEM.
Fig. 4. *Clock*Δ19/Δ19* mice are resilient to cardiac dysfunction, by echocardiography. A) Representative M-mode echocardiography images, and B) time series data, showing that *Clock*Δ19/Δ19* mice maintain normal left ventricular internal diastolic (LVIDd) and systolic (LVIDs) dimensions, and conserved % ejection fraction (EF) and % fractional shortening (FS) at baseline, 4, 8, 12, 16 and 24 weeks of study. *P*<0.05 WT HFD vs. WT SC, #*P*<0.05 *Clock*Δ19/Δ19* HFD vs. *Clock*Δ19/Δ19* SC, n=6 mice/group. Data are presented as mean ± SEM. See Table 2 for all echocardiography values.

Fig. 5. *Clock*Δ19/Δ19* mice are resilient to cardiac dysfunction, by *in vivo* hemodynamics. A) The *Clock*Δ19/Δ19* mice maintain normal contractility parameters (dP/dt_{max}, dP/dt_{min}), and maintain B) left ventricular end systolic (LVESP), C) diastolic (LVEDP) pressure, and D) LV diastolic time constant tau, whereas the WT HFD mice develop diastolic dysfunction. *P*<0.05, n=6 mice per group except n=5 for WT SC controls. Data are presented as mean ± SEM. See Table 3 for all hemodynamics values.

Fig. 6. Cardiac transcriptomics identifies oxidative stress pathways involved in resilience to cardiovascular disease. A) Heat map illustrating the 174 genes that changed in WT HFD versus *Clock*Δ19/Δ19* hearts (fold change ≥ 1.35; ZT07; see Table 4 and Supplemental Table S1, available at https://doi.org/10.6084/m9.figshare.12855530 for data values); B) gene ontology (GO) biological analysis; C) Circos mapping of links between the differentially regulated genes in the WT vs. *Clock*Δ19/Δ19* hearts in response to HFD, where red = up regulated and blue = down regulated with HFD in both genotypes; and D) *Clock*Δ19/Δ19* hearts show blunted expression of core circadian clock mechanism genes, as expected. *P*<0.001 genotype effect by two-way ANOVA, n=4 hearts/group. Data are presented as mean ± SEM.
Fig. 7. SIRT-dependent oxidative stress pathways and cardiac remodeling. **A)** Analysis of the SIRT-dependent oxidative stress pathway reveals increased cardiac *Nampt* expression in WT HFD mice, but no change in downstream pathway **B)** sirtuin (*Sirt*) or **C)** forkhead box (*Foxo*) genes or in **D)** manganese-dependent superoxide dismutase (*MnSOD*) protein abundance, ZT07, *P*<0.005, *n*=4 hearts/group. Data are presented as mean ± SEM.

Fig. 8. H$_2$O$_2$-dependent oxidative stress pathways and cardiac remodeling. **A)** 4-HNE shows increased abundance in WT HFD heart and liver by 24 weeks, but **B)** not in *Clock*$_{Δ19/Δ19}$ mice, whereas **C)** CAT is increased in both WT and **D)** *Clock*$_{Δ19/Δ19}$ hearts in response to HFD, but **E)** GPx is increased only in the *Clock*$_{Δ19/Δ19}$ HFD hearts, by Western blot analyses, ZT07, *P*<0.05, *n*=4 hearts/group. **F)** *Pparγ* mRNA expression is increased in *Clock*$_{Δ19/Δ19}$ hearts, by RT-PCR, ZT07, *P*<0.005, *n*=4 hearts/group. Data are presented as mean ± SEM.

Fig. 9. Schematic illustration showing that *Clock*$_{Δ19/Δ19}$ mice have obesity and metabolic syndrome, but reduced activation of adverse free radical pathways and increased antioxidant protection underlying their resilience to cardiovascular disease.
Table 1. Metabolic parameters in WT and ClockΔ19/Δ19 mice

Metabolic Parameter	WT	ClockΔ19/Δ19	P value
Triglyceride (mg/dl)	76.83±4.46	77.33±3.59	n.s.
Cholesterol (mg/dl)	135.25±10.31	171.29±7.98*	<0.05
Fasting glucose (mg/dl)	76.96±5.42	97.30±3.09*	<0.01
Insulin (ng/mL) – sleep time	0.75±0.11	1.18±0.38	n.s.
Insulin (ng/mL) – wake time	4.63±0.72	1.05±0.23*	<0.005

WT and ClockΔ19/Δ19 mice on an ad libitum standard chow diet (n=6-7/group), by Student’s t-test.
Fasting blood glucose was measured at ZT0. Triglycerides and cholesterol were determined from blood serum samples collected at ZT0. Insulin was measured from blood plasma samples collected at 4 h intervals over one 24 h period. Values are mean ± SEM.
Table 2. ClockΔ19/Δ19 mice are protected from cardiac remodeling following 24 weeks of HFD, by echocardiography analyses

	Wild type SC	Wild type HFD	ClockΔ19/Δ19 SC	ClockΔ19/Δ19 HFD
Echocardiography - Baseline (8 weeks of age)				
LVIDd (mm)	3.88±0.04	3.96±0.04	3.91±0.03	3.88±0.05
LVIDs (mm)	2.30±0.03	2.38±0.03	2.23±0.06	2.25±0.05
EF (%)	77.84±0.63	76.90±0.28	79.92±1.07	79.05±1.22
FS (%)	40.75±0.58	39.89±0.25	43.13±1.04	42.22±1.37
IVSd (mm)	0.78±0.01	0.78±0.01	0.77±0.01	0.77±0.02
LVPWd (mm)	0.74±0.02	0.74±0.01	0.73±0.02	0.74±0.01
LV mass (mg)	83.22±2.84	86.25±2.28	82.63±1.61	82.21±3.00
BW (g)	22.07±0.36	23.32±0.80	24.33±0.40	24.72±0.56
HR (bpm)	470±10	484±10	467±5	454±3
4 weeks on diet (3 months of age)				
LVIDd (mm)	3.97±0.03	3.94±0.04	3.94±0.04	3.89±0.02
LVIDs (mm)	2.35±0.03	2.39±0.05	2.25±0.04	2.25±0.03
EF (%)	77.84±0.38	76.47±0.58	79.96±0.75	79.19±0.54
FS (%)	40.78±0.32	39.56±0.50	42.82±0.73	42.06±0.54
IVSd (mm)	0.78±0.01	0.79±0.01	0.78±0.01	0.79±0.01
LVPWd (mm)	0.76±0.01	0.76±0.01	0.76±0.01	0.76±0.01
LV mass (mg)	87.71±1.07	87.61±1.42	87.11±2.79	85.49±1.03
BW (g)	24.17±0.36	26.43±0.56**	26.78±0.42	31.60±0.99##
HR (bpm)	472±13	505±11	460±14	455±12
8 weeks on diet (4 months of age)				
LVIDd (mm)	3.98±0.01	4.08±0.03*	4.00±0.02	3.99±0.03
LVIDs (mm)	2.37±0.02	2.56±0.03*	2.36±0.03	2.37±0.05
EF (%)	77.33±0.57	73.57±0.79*	78.26±0.40	77.47±1.06
FS (%)	40.44±0.45	37.09±0.63*	41.14±0.37	40.50±0.96
IVSd (mm)	0.78±0.01	0.80±0.01	0.79±0.01	0.80±0.01
LVPWd (mm)	0.76±0.01	0.77±0.01	0.76±0.01	0.77±0.01
LV mass (mg)	88.10±0.59	93.71±1.73*	89.29±1.14	90.57±1.24
BW (g)	26.43±0.71	31.62±0.83***	29.55±0.17	36.15±1.48##
HR (bpm)	479±8	497±7	456±6	478±8
12 weeks on diet (5 months of age)				
LVIDd (mm)	4.00±0.02	4.12±0.06*	4.04±0.02	4.06±0.04
LVIDs (mm)	2.39±0.04	2.62±0.08*	2.40±0.03	2.41±0.05
EF (%)	77.22±0.89	72.63±1.33*	77.49±0.44	77.57±0.89
FS (%)	40.29±0.81	36.56±1.05*	40.49±0.39	40.16±0.62
IVSd (mm)	0.79±0.01	0.80±0.01	0.79±0.01	0.80±0.01
LVPWd (mm)	0.76±0.01	0.77±0.01	0.76±0.01	0.78±0.01
LV mass (mg)	89.66±0.87	95.68±2.37*	91.19±0.76	93.54±1.36
BW (g)	28.03±0.89	34.97±1.04***	31.67±0.62	40.93±1.65###
HR (bpm)	484±9	487±7	472±7	464±12
16 weeks on diet (6 months of age)

Variable	WT HFD	WT SC	ClockΔ19/Δ19 HFD	ClockΔ19/Δ19 SC
LVIDd (mm)	4.05±0.03	4.34±0.08**	4.13±0.02	4.17±0.02
LVIDs (mm)	2.45±0.04	2.86±0.09**	2.51±0.02	2.57±0.02
EF (%)	76.09±0.84	69.46±1.49**	75.82±0.52	74.89±0.62
FS (%)	39.36±0.73	34.16±1.12**	39.16±0.43	38.42±0.53
IVSd (mm)	0.78±0.01	0.80±0.01	0.79±0.01	0.80±0.01
LVPWd (mm)	0.76±0.01	0.78±0.01	0.78±0.01	0.78±0.01
LV mass (mg)	91.21±1.22	104.60±3.26**	95.64±0.57	98.10±1.32
BW (g)	29.45±0.89	38.45±0.81***	35.35±0.79	44.78±1.79###
HR (bpm)	495±7	499±3	478±9	488±8

24 weeks on diet (8 months of age)

Variable	WT HFD	WT SC	ClockΔ19/Δ19 HFD	ClockΔ19/Δ19 SC
LVIDd (mm)	4.09±0.03	4.57±0.05***	4.17±0.04	4.35±0.04#
LVIDs (mm)	2.48±0.04	3.12±0.05***	2.53±0.05	2.74±0.04#
EF (%)	76.40±0.82	66.27±0.99***	76.09±0.87	73.12±1.04
FS (%)	39.53±0.72	31.76±0.69***	39.32±0.75	36.92±0.83
IVSd (mm)	0.78±0.01	0.81±0.01***	0.81±0.01	0.82±0.01
LVPWd (mm)	0.76±0.01	0.79±0.01***	0.78±0.01	0.80±0.01
LV mass (mg)	92.38±0.98	116.65±1.90***	100.00±1.41	108.88±1.85#
EDV (µl)	68.63±1.26	95.32±3.00***	72.43±1.87	82.35±2.55#
ESV (µl)	15.22±0.69	30.47±1.47***	16.26±0.98	21.15±1.06#
SV (µl)	53.41±0.91	64.85±2.04**	56.17±1.07	61.20±1.79#
CO (mL/min)	26.11±0.89	31.14±1.32**	26.12±0.55	29.08±1.13#
BW (g)	32.57±1.36	45.25±1.32***	37.13±0.97	51.38±1.67###
HR (bpm)	488±9	480±8	465±10	477±11

LVIDd, left ventricle (LV) internal diastolic dimension; LVIDs, LV systolic dimension; % EF, % ejection fraction; % FS, % fractional shortening; IVSd, interventricular septal wall at diastole; LVPWd, left ventricular posterior wall at diastole; BW, body weight; HR, heart rate; EDV, end diastolic volume; ESV, end systolic volume; SV, stroke volume; CO, cardiac output. n=6/group.
P<0.05, **P<0.01, ***P<0.001 WT HFD vs. WT SC, #P<0.05, ##P<0.01, ###P<0.001 ClockΔ19/Δ19 HFD vs. ClockΔ19/Δ19 SC by Student’s t-test. Values are mean±SEM.
Table 3. ClockΔ^{19/Δ^{19}} mice are protected from cardiac remodeling following 24 weeks of HFD, by hemodynamics and morphometry analyses

	Wild type SC	Wild type HFD	ClockΔ^{19/Δ^{19}} SC	ClockΔ^{19/Δ^{19}} HFD
In vivo hemodynamics (24 weeks on diet)				
HR (bpm)	567±17	521±20	571±10	543±27
SBP (mmHg)	97.70±1.19	97.76±0.80	96.60±0.78	98.05±0.61
DBP (mmHg)	66.56±0.94	63.78±1.13	65.00±0.66	65.54±1.43
MAP (mmHg)	76.17±0.78	74.36±0.79	74.78±0.50	75.62±1.11
LVESP (mmHg)	98.27±0.87	98.45±1.33	100.84±0.73	100.27±1.60
LVEDP (mmHg)	-0.42±0.44	2.59±0.56**	0.01±0.37	1.36±0.63
+dP/dt_{max} (mmHg/s)	10626±380	7756±287***	10042±527	9135±353
-dP/dt_{min} (mmHg/s)	-9789±231	-7911±221***	-9184±253	-9234±500
Tau (ms)	7.13±0.32	10.94±0.88**	7.33±0.41	8.54±0.50
Morphometry (24 weeks on diet)				
BW (g)	32.57±1.36	45.25±1.32***	37.13±0.97	51.38±1.67###
HW (mg)	132.71±3.50	145.57±2.66*	150.83±2.12	156.14±3.73
HW:BW (mg/g)	4.12±0.13	3.36±0.15**	4.23±0.10	3.17±0.07###
HW:TL (mg/mm)	6.63±0.16	7.26±0.13**	7.46±0.11	7.73±0.18
eWAT (g)	1.10±0.08	1.93±0.15***	1.63±0.07	2.39±0.10###

HR, heart rate; SBP, systolic blood pressure; DBP, diastolic blood pressure; MAP, mean arterial pressure; LVESP, LV end systolic pressure; LVEDP, LV end diastolic pressure; dP/dt_{max} and dP/dt_{min}, maximum and minimum first derivative of LV pressure; Tau, LV diastolic time constant; HW, heart weight; TL, tibia length; eWAT, epididymal white adipose tissue weight. n=5-7/group. *P<0.05, **P<0.01, ***P<0.001 WT HFD vs. WT SC, #P<0.05, ##P<0.01, ###P<0.001 ClockΔ^{19/Δ^{19}} HFD vs. ClockΔ^{19/Δ^{19}} SC by Student’s t-test. Values are mean±SEM.
Table 4. ClockΔ19/Δ19 mice are resilient to HFD-induced changes in cardiac gene expression

Gene Symbol	Gene Description	WT HFD vs. SC (fold change, mean ± SEM)	P Value	ClockΔ19/Δ19 HFD vs. SC (fold change, mean ± SEM)	P Value
Circadian clock mechanism					
Per3	Period circadian clock 3	1.57 ± 0.10	0.017	1.07 ± 0.09	0.42
Nr1d2	Nuclear receptor subfamily 1, group D, member 2	1.47 ± 0.08	0.070	1.17 ± 0.04	0.027
Per2	Period circadian clock 2	1.44 ± 0.11	0.041	1.06 ± 0.07	0.75
Arntl	Aryl hydrocarbon receptor nuclear translocator-like	-2.70 ± 0.29	0.030	-1.18 ± 0.04	0.27
Npas2	Neuronal PAS domain protein 2	-1.40 ± 0.05	0.040	-1.23 ± 0.07	0.12
Cardiac genes					
Ces1d	Carboxylesterase 1D	1.76 ± 0.10	0.030	-1.08 ± 0.05	0.74
Wee1	WEE1 homolog 1 (S. pombe)	1.73 ± 0.18	0.0092	1.11 ± 0.05	0.24
Egln3	Egl-9 family hypoxia-inducible factor 3	1.45 ± 0.24	0.030	1.00 ± 0.09	0.61
Bmp4	Bone morphogenetic protein 4	1.45 ± 0.05	2.58E-04	-1.11 ± 0.13	0.91
Gpcpd1	Glycero-phosphocholine phosphodiesterase GDE1 homolog (S. cerevisiae)	1.42 ± 0.12	0.012	1.13 ± 0.01	0.029
Hdac4	Histone deacetylase 4	1.39 ± 0.08	0.033	1.06 ± 0.05	0.59
Xdh	Xanthine dehydrogenase	1.39 ± 0.17	0.050	1.23 ± 0.10	0.024
Me1	Malic enzyme 1, NADP(+) dependent, cytosolic	1.38 ± 0.10	1.55E-04	1.16 ± 0.03	0.037
Fmo2	Flavin containing monooxygenase 2	1.37 ± 0.15	0.022	1.15 ± 0.08	0.13
Aldh1a1	Aldehyde dehydrogenase family 1, subfamily A1	1.35 ± 0.13	0.016	1.16 ± 0.11	0.10
Cdkn1a	Cyclin-dependent kinase inhibitor 1A (P21)	-2.46 ± 0.20	0.0015	1.04 ± 0.05	0.63
Thbs1	Thrombospondin 1	-2.34 ± 0.36	0.0035	-1.03 ± 0.23	0.99
Nppb	Natriuretic peptide type B	-2.18 ± 0.24	2.87E-04	-1.19 ± 0.07	0.73
Sik1	Salt inducible kinase 1	-2.03 ± 0.23	0.011	-1.02 ± 0.18	0.92
Apold1	Apolipoprotein L domain containing 1	-1.99 ± 0.31	0.021	-1.06 ± 0.24	0.91
Errfi1	ERBB receptor feedback inhibitor 1	-1.89 ± 0.35	0.030	-1.01 ± 0.11	0.93
Nr4a2	Nuclear receptor subfamily 4, group A, member 2	-1.85 ± 0.18	0.0070	-1.23 ± 0.29	0.45
Nppa	Natriuretic peptide type A	-1.84 ± 0.21	0.013	-1.08 ± 0.08	0.93
Ugdh	UDP-glucose dehydrogenase	-1.82 ± 0.09	0.0023	1.05 ± 0.14	0.67
Microarray data of genes with ≥1.35-fold change in expression in WT HFD vs. WT SC hearts, yet showed conserved expression (<1.35-fold) in ClockΔ19/Δ19 HFD vs. SC.

Gene ID	Gene Name	Expression in WT HFD vs. WT SC	P-value HFD vs. SC	Expression in ClockΔ19/Δ19 HFD vs. SC	P-value ClockΔ19/Δ19 HFD vs. SC
Ccl7	Chemokine (C-C motif) ligand 7	-1.81 ± 0.08	0.018	-1.21 ± 0.20	0.31
Fosl2	Fos-like antigen 2	-1.80 ± 0.17	0.011	-1.09 ± 0.13	0.72
Bcl6b	B cell CLL / lymphoma 6, member B	-1.77 ± 0.04	0.0019	-1.22 ± 0.07	0.22
Ccl2	Chemokine (C-C motif) ligand 2	-1.75 ± 0.24	0.024	-1.13 ± 0.30	0.76
Cldn5	Claudin 5	-1.75 ± 0.14	1.51E-04	1.10 ± 0.14	0.34
Tnrsf10b	Tumor necrosis factor receptor superfamily, member 10b	-1.67 ± 0.09	0.0014	-1.07 ± 0.13	0.73
Wsb1	WD repeat and SOCS box-containing 1	-1.58 ± 0.13	0.015	-1.17 ± 0.06	0.091
Rcan1	Regulator of calcineurin 1	-1.54 ± 0.11	0.025	-1.18 ± 0.05	0.40
Il2rg	Interleukin 2 receptor, gamma chain	-1.53 ± 0.15	0.0056	-1.23 ± 0.05	0.032
Rhoj	Ras homolog gene family, member J	-1.50 ± 0.08	4.70E-04	-1.01 ± 0.04	0.73
Phlda1	Pleckstrin homology-like domain, family A, member 1	-1.48 ± 0.04	0.0030	-1.16 ± 0.10	0.34
Adamts9	A disintegrin-like and metalloproteinase with thrombospondin type 1 motif, 9	-1.48 ± 0.12	0.0077	1.04 ± 0.04	0.29
Lgals3bp	Lectin, galactoside-binding, soluble, 3 binding protein	-1.47 ± 0.12	0.048	-1.11 ± 0.08	0.33
Tuba4a	Tubulin, alpha 4A	-1.46 ± 0.14	0.0018	-1.22 ± 0.12	0.29
Cpxm2	Carboxypeptidase X2 (M14 family)	-1.46 ± 0.28	0.011	-1.05 ± 0.05	0.75
Dusp1	Dual specificity phosphatase 1	-1.45 ± 0.12	0.033	-1.06 ± 0.12	0.85
Ctxla2b	Cytotoxic T lymphocyte-associated protein 2	-1.44 ± 0.07	0.029	1.12 ± 0.15	0.61
Lirr4b	Leukocyte immunoglobulin-like receptor, subfamily B, member 4B	-1.44 ± 0.08	0.0028	-1.21 ± 0.05	0.18
Slc16a13	Solute carrier family 16 (monocarboxylic acid transporters), member 13	-1.43 ± 0.08	0.0016	-1.25 ± 0.07	0.015
Fgf18	Fibroblast growth factor 18	-1.42 ± 0.12	0.0055	-1.23 ± 0.08	0.17
Has2	Hyaluronan synthase 2	-1.42 ± 0.07	0.0041	1.00 ± 0.08	0.76
Egr2	Early growth response 2	-1.41 ± 0.03	0.0045	-1.11 ± 0.04	0.20
Gstp1	Glutathione S-transferase, pi1	-1.41 ± 0.10	5.65E-04	-1.21 ± 0.09	0.21
Reitz et al – Fig. 1

A

Wild type

ClockΔ19/Δ19

B

WT

ClockΔ19/Δ19

Activity, counts/h (x10^2)

ZT0 12 24

C

% Activity

L D L D

WT ClockΔ19/Δ19

D

% Food Intake

L D L D

WT ClockΔ19/Δ19

E

% VO2

L D L D

WT ClockΔ19/Δ19

F

RER

L D L D

WT ClockΔ19/Δ19
Reitz et al – Fig. 2

A

WT SC WT HFD
24 wks on Diet

B

![Graph showing body weight (g) vs diet (wks) and age (wks).](image)

C

WT

Body Weight (g) at 24 weeks on diet

D

ClockΔ19/Δ19

SC HFD
24 wks on Diet

E

ClockΔ19/Δ19

SC HFD
Body Weight (g) at 24 weeks on diet

F

ClockΔ19/Δ19

Body Weight (g) at 24 weeks on diet

G

eWAT (g)

	SC	HFD
WT		
ClockΔ19/Δ19		

H

Energy Intake (kcal/day)

	SC	HFD
WT		
ClockΔ19/Δ19		

I

Cholesterol (mg/dl)

	SC	HFD
WT		
ClockΔ19/Δ19		

J

Fasting glucose (mg/dl)

	SC	HFD
WT		
ClockΔ19/Δ19		

Downloaded from journals.physiology.org/journal/ajpheart at Univ of Guelph (131.104.023.189) on October 29, 2020.
Reitz et al – Fig. 3

A

B

C

D

Wild type

E

ClockΔ19Δ19

Downloaded from journals.physiology.org/journal/ajpheart at Univ of Guelph (131.104.023.189) on October 29, 2020.
A

Weeks

WT SC WT HFD ClockΔ19/Δ19 SC ClockΔ19/Δ19 HFD

LVID\textsubscript{d} LVID\textsubscript{s}

B

LVID\textsubscript{d} (mm) LVID\textsubscript{s} (mm) EF (%) FS (%)

ClockΔ19/Δ19 HFD ClockΔ19/Δ19 SC WT HFD WT SC

Weeks
Reitz et al – Fig. 5

A

\[
\frac{dP}{dt}_{\text{max}} \text{ (mmHg/s)} \times 10^3
\]

B

\[
\text{LVEDP (mmHg)}
\]

C

\[
\text{LVESP (mmHg)}
\]

D

\[
\text{Tau (msec)}
\]
Reitz et al – Fig. 6

A

	WT SC	ClockΔ19/Δ19 SC	HFD SC	HFD HFD
WT				
HFD				

B

GO Biological Function

Category	# of entities
Stress Remodeling	180
Transcription	90
Metabolism	0

C

WT HFD vs. SC (174 genes)

ClockΔ19/Δ19

HFD vs. SC (41 genes)

D

Normalized Fluorescence Intensity

Gene	Normalized Fluorescence Intensity
Arnt1	
Npas2	
Per2	
Per3	
Nr1d2	

Downloaded from journals.physiology.org/journal/ajpheart at Univ of Guelph (131.104.023.189) on October 29, 2020.
Reitz et al – Fig. 9

Wild type

- Normal cardiovascular structure/function
- Metabolic dysfunction
- Obesity
- Cardiovascular Disease
 - ↑ Cardiac hypertrophy
 - ↓ Cardiac function

Clock$^{Δ19/Δ19}$

- Metabolic dysfunction
- Obesity
- HFD
- No cardiovascular disease

- ↑ Antioxidant activity
- ↓ Oxidative stress

O$_2^-$ → H$_2$O$_2$ →CAT→ H$_2$O

↑ Ppara → PPRE → Catalase

↑ Ppara → PPRE → GPx

= 4-HNE

O$_2^-$ → SOD→ H$_2$O$_2$ → CAT→ H$_2$O

GPx → H$_2$O