MAGNETISM AND ROTATION IN HERBIG AE/BE STARS

E. Alecian1, G.A. Wade1, C. Catala2, C. Folsom1, J. Grunhut1, J.-F. Donati3, P. Petit3, S. Bagnulo4, T. Boehm3, J.-C. Bouret5 and J.D. Landstreet6

Abstract. Among the main sequence intermediate mass A and B stars, around 5\% host large-scale organized magnetic fields. Most of these stars are very slow rotators compared to their non-magnetic counterparts, and show photospheric abundance anomalies. They are referred to as the Ap/Bp stars. One of the greatest challenges, today is to understand the origin of their magnetic field and their slow rotation. The favoured hypothesis is a fossil origin of the magnetic field, in which the magnetic fields of Ap/Bp stars are relics of those which existed in the parental molecular clouds during the formation. This implies that the magnetic field must survive all the initial phases of the stellar evolution and especially the pre-main sequence (PMS) phase. This is consistent with the general belief that magnetic braking occurs during the PMS phase, which sheds angular momentum and slows the rotation of these stars. In this context, we proceeded with a survey of a sample of around 50 PMS Herbig Ae/Be stars, using the new spectropolarimeter ESPaDOnS at the CFHT, in order to study the magnetic field and the rotation velocity of these stars. This talk reviews the results of our survey, as well as their consequences for the origin of the magnetic fields and the evolution of the rotation of intermediate mass stars during the PMS phase.

1 Introduction

1.1 Magnetism and rotation in the main sequence A and B stars

Between about 1.5 and 10 M\textsubscript{\odot}, at spectral types A and B, about 5\% of main sequence (MS) stars have magnetic fields with characteristic strengths of about 1kG. Such stars also show important chemical peculiarities and are thus usually called the magnetic chemically peculiar Ap/Bp stars. The strength of the magnetic fields of these stars cannot be explained by an envelope dynamo as in the sun. Until now, the most reliable hypothesis has been to assume a fossil origin for these magnetic fields. This hypothesis implies that the stellar magnetic fields are relics from the field present in the parental interstellar cloud. It also implies that magnetic fields can (at least partially) survive the violent phenomena accompanying the birth of stars, and can also remain throughout their evolution and until at least the end of the MS, without regeneration.

According to the fossil field model, magnetic fields should reside in some pre-main sequence (PMS) stars of intermediate mass, the so-called Herbig Ae/Be stars. However no magnetic field was observed up to recently in these stars (except HD 104237, Donati et al. 1997). Can we obtain some observational evidence of the presence of magnetic fields during the PMS phase of evolution, as predicted by the fossil field hypothesis? If some Herbig Ae/Be stars are discovered to have magnetic fields, is the fraction of magnetic to non-magnetic Herbig stars the same as the fraction for main sequence stars? Is the magnetic field in Herbig stars strong enough to explain the strength of that of Ap/Bp stars?

Chemical peculiarities and magnetism are not the only characteristic properties observed in the Ap/Bp stars. Most magnetic MS stars have rotation periods (typically of a few days) that are several times longer than the...
rotation periods of non-magnetic MS stars (a few hours to one day). It is usually believed that magnetic braking,
in particular during PMS evolution, when the star can exchange angular momentum with its massive accretion
disk, is responsible for this low rotation (Stepień 2000, Stepień & Landstreet 2002). An alternative involves a
rapid dissipation of the magnetic field during the early stages of PMS evolution for the fastest rotators, due to
strong turbulence induced by rotational shear developed under the surface of the stars, as the convection do in
the solar-type stars (see e.g. Lignières et al. 1996). In this scenario, only slow rotators could retain their initial
magnetic fields, and evolve as magnetic stars to the main sequence. So the question to be addressed is the
following: does the magnetic field control the rotation of the star, or else does the rotation of the star control
the magnetic field? We propose that this question can be answered by studying rotation and magnetic fields in
Herbig Ae/Be stars.

1.2 The Herbig Ae/Be stars

The Herbig Ae/Be stars are intermediate-mass pre-main sequence stars, and therefore the evolutionary progen-
itors of the MS A and B stars. They are distinguished from the classical Be stars by their IR emission and the
association with nebulae, characteristics which are due to their young age.

They display many observational phenomena often associated with magnetic activity. First, high ionised
lines are observed in the spectra of some stars (e.g. Bouret et al. 1997, Roberge et al. 2001), and X-ray
emission have been detected, coming from some Herbig stars (e.g. Hamaguchi et al. 2005). In active cool stars,
many of these phenomena are produced in hot chromospheres or coronae. Some authors mentioned rotational
modulation of resonance lines which they speculate may be due to rotation modulation of winds structured by
magnetic field (Praderie et al. 1986, Catala et al. 1989, Catala et al. 1991, Catala et al. 1999).

In the literature we find many clues of the presence of circumstellar disks around these stars, from spectro-
scopic data showing strong emission, and also from photometric data (e.g. Mannings & Sargent 1997, Mannings
& Sargent 2000). Recently, using coronagraphic data and interferometric data, some authors have also found
direct evidence of circumstellar disks around these stars (Grady et al. 1999, Grady et al. 2000, Eisner et al.
2003). A careful study of these disks shows that they have similar properties to the disk of their low mass
counterpart (Natta et al. 2001), the T Tauri stars, whose the emission lines are explained by magnetospheric
accretion models (Koenigl 1991, Muzerolle et al. 1998, Muzerolle et al. 2001). Finally Muzerolle et al. (2004)
have successfully applied their magnetospheric accretion model to Herbig stars to explain the emission lines in
their spectra.

For all these reasons we suspect that the Herbig stars may host large-scale magnetic fields that should
be detectable with current instrumentation. However, many authors tried to detect such fields without much
success (Catala et al. 1993, Catala et al. 1999, Donati et al. 1997, Hubrig et al. 2004, Wade et al. 2007). But
in 2005, a new high-resolution spectropolarimeter, ESPaDOnS, has been installed at the canada-france-hawaii
telescope (CFHT). We therefore decided to proceed to survey many Herbig stars in order to investigate rotation
and magnetism in the pre-main sequence stars of intermediate mass.

2 Observations and reduction

2.1 Our sample

We have selected Herbig stars in the catalogues from Thé et al. (1994) and Vieira et al. (2003) with a visual
magnitude brighter than 12. Our sample contain 55 stars which have masses ranging from 1.5 \(M_\odot \) to 15 \(M_\odot \)
with all ages between the birthline and the zero-age main sequence (ZAMS). In Fig. 1 are plotted the stars of
our sample in an HR diagram, as well as the evolutionary tracks computed with the CESAM code (Morel 1997),
and the birthlines computed by Palla & Stahler (1993) with two mass accretion rates during the protostellar
phase : \(10^{-5} M_\odot \cdot \text{yr}^{-1} \) and \(10^{-4} M_\odot \cdot \text{yr}^{-1} \).

2.2 Observations and reduction

Our data were obtained using the high resolution spectropolarimeter ESPaDOnS installed on the 3.6 m Canada-
France-Hawaii Telescope (Donati et al. 2007, in preparation) during many scientific runs.

We used this instrument in polarimetric mode, generating spectra of 65000 resolution. Each exposure was
divided in 4 sub-exposures of equal time in order to compute the optimal extraction of the polarisation spectra
Fig. 1. Herbig stars plotted in a HR diagram. The red squares are the magnetic Herbig stars. The PMS evolutionary tracks are plotted for different masses (full lines). The birthline for 10^{-5} and $10^{-4} \, M_\odot\cdot\text{yr}^{-1}$ mass accretion rate are plotted in dashed line (Palla & Stahler 1993). The dash-dotted line is the ZAMS. (Donati et al. 1997, Donati et al. 2007 in prep.). We recorded only circular polarisation, as the Zeeman signature expected in linear polarisation is about one order of magnitude lower than circular polarisation. The data were reduced using the "Libre ESpRIT" package especially developed for ESPaDOnS, and installed at the CFHT (Donati et al. 1997, Donati et al. 2007, in preparation). After reduction, we obtained the intensity Stokes I and the circular polarisation Stokes V spectra of the stars observed.

We then applied the Least Squares Deconvolution procedure to all spectra (Donati et al. 1997), in order to increase our signal to noise ratio. This method assumes that all lines of the intensity spectrum have a profile of similar shape. Hence, this supposes that all lines are broadened in the same way. We can therefore consider that the observed spectrum is a convolution between a profile (which is the same for all lines) and a mask including all lines of the spectrum. We therefore apply a deconvolution to the observed spectrum using the pre-computed mask, in order to obtain the average photospheric profiles of Stokes I and V. In this procedure, each line is weighted by its signal to noise ratio, its depth in the unbroadened model and its Landé factor. For each star, we used a mask computed using “extract stellar” line lists obtained from the Vienna Atomic Line Database (VALD\footnote{http://www.astro.univie.ac.at/~vald/}, with effective temperatures and $\log g$ suitable for each star (Wade, Alecian et al. 2007, in prep.). We excluded from this mask hydrogen Balmer lines, strong resonance lines, lines whose Landé factor is unknown and emission lines. The results of this procedure are the mean Stokes I and Stokes V LSD profiles (Fig. 2).

3 Results

3.1 Discovery of magnetic fields in Herbig stars

Thanks to the high performance of the instrument ESPaDOnS and to the LSD method, we have discovered four new magnetic Herbig Ae/Be stars (Wade et al. 2005, Catala et al. 2006, Alecian et al. 2007). In Fig. 2 is plotted the Stokes I and V profiles of each new discovered magnetic Herbig Ae/Be star: HD 200775, HD 72106, V380 Ori and HD 190073, and of four stars in which a magnetic field has not been detected (the undetected stars, hereafter). Contrary to the undetected stars, the Stokes V profiles of the magnetic stars are not null and display a strong Zeeman signature, of the same width of the photospheric I profile, characteristic of the presence of a magnetic field in the stars.
Fig. 2. Stokes I (bottom) and Stokes V (up) LSD profiles plotted for the 4 magnetic stars (right and middle) and two undetected stars (left). Note the amplification factor in V.

Table 1. Fundamental, geometrical and magnetic parameters of the magnetic Herbig Ae/Be stars. References: 1: Alecian et al. (2007), 2: Folsom et al. (2007), in prep., 3: Alecian et al. (2007), in prep., 4: Catala et al. (2006).

Star	S.T.	$v \sin i$ (km.s$^{-1}$)	age (Myr)	P (d)	B_P (kG)	β ($^\circ$)	i ($^\circ$)	d_{dip}	$B_{P(ZAMS)}$ (kG)	Ref.
HD 200775	B2	26	0.1	4.328	1	78	13	0.1	3.6	1
HD 72106	A0	41	10	0.63995	1.5	58	23	0	1.5	2
V380 Oria	A2	9.8	2.8	7.6, 9.8	1.4	90, 85	36, 49	0	2.4	3
HD 190073	A2	8.5	1.5	[0.1, 1]	[0.9, 0.90]	[0.9, 0.90]	[0.3, 3]			4
HD 130614										
HD 142666										
HD 169142										

aWork in progress. We need more data of V380 Ori to choose between the 7.6 and the 9.8 periods. Therefore two solutions are possible for β and i.

Although we have observed HD 190073 over more than 2 years, no variation of the Stokes V profile has yet been detected.

These 4 detections among our sample of 55 stars lead to the conclusion that **7% of Herbig Ae/Be stars** are magnetic. The projection of the distribution of magnetic and non-magnetic main sequence A and B stars on the pre-main sequence phase, assuming a fossil field hypothesis, predict that between 5 and 10 % of Herbig stars should be magnetic, which is consistent with our observations. We therefore bring a new strong argument in favour of the fossil field hypothesis (Wade, Alecian et al. 2007, in prep.).

3.2 Topology and intensity of the magnetic fields

We determined the topology and the intensity of the magnetic fields of the four magnetic Herbig stars in order to compare them to the magnetic MS A and B stars. With this aim, we used the oblique rotator model described by Stift (1975). We consider a dipole placed at a distance d_{dip} on the magnetic axis of a spherical rotating star with a magnetic intensity at the pole B_P. The rotation axis of the star is inclined at an angle i with respect to the line of sight and makes an angle β with the magnetic axis.

According to Landi degli Innocenti & Landi degli Innocenti (1973), in the weak field approximation, the Stokes V profile is proportional to the magnetic field projected onto the line of sight and integrated over the surface of the star (B_t, the longitudinal magnetic field, hereafter). As the star rotates, the visible magnetic changes, resulting in variation of B_t. Therefore the Stokes V profile changes with the rotation phase.

In order to determine the geometrical and magnetic parameters i, β, B_P and d_{dip}, as well as the rotation period P of the star, we observed the stars at different rotation phases and fit simultaneously all the Stokes V profiles observed for each star. With this aim we calculated a grid of V profiles, using the oblique rotator model, for each date of observations, varying the five parameters. Then, for each star, we applied a χ^2 minimisation
to find the best model which matches simultaneously all the V profiles observed. Fig. 3 shows the result of our fitting procedure for one star: HD 200775. The synthetic Stokes V are superimposed on the observed ones (Alecian et al. 2007).

The values of the geometrical and magnetic parameters are summarized in Table 1 for each stars. In the case of HD 190073, the topology and the intensity of its magnetic field are not constrained, because, during 2 years observations, the Stokes V profile has not been observed to vary. There are 3 possible explanations for this: the inclination i is very small, the obliquity angle β is very small, or the rotation period of the star is very long. More observations will allow us to discard two of these solutions. However the stability of the magnetic field over more than 2 years and the shape of the Stokes V profiles lead us to the conclusion that this star hosts a large-scale fossil magnetic field (Catala et al. 2006).

The success of our fitting procedure for the 3 stars HD 200775, HD 72106 and V380 ori, as well as our discussion on HD 190073, lead to the conclusion that the magnetic Herbig Ae/Be stars host globally dipolar magnetic fields, similar to the Ap/Bp stars.

Assuming the conservation of magnetic flux during the PMS evolution, and using the radius of the stars and their predicted radius on the ZAMS for the same mass, we can estimate the magnetic intensity at their surface they will have when they will reach the ZAMS (see Table 1). We found intensities ranging from 300 G to 3.6 kG, which is very close to what is observed in the Ap/Bp stars. Hence we bring 2 more new strong arguments in favour of the fossil field hypothesis.

4 Conclusions

We used the new spectropolarimeter ESPaDOnS installed at the CFHT to proceed in a survey of the Herbig stars, in order to investigate their rotation and magnetic field. We discovered four magnetic stars whose field topology is similar to the MS magnetic A-B stars. We also show that the magnetic intensities of these fields and the proportion of magnetic Herbig stars can explain the magnetic intensity and the proportion of magnetic fields among the MS stars, in the context of fossil field model. We therefore bring fundamental arguments in favour of this hypothesis.

The four magnetic Herbig stars are slow rotators ($v \sin i < 41 \text{ km.s}^{-1}$) which supports that magnetic Herbig Ae/Be stars are the progenitors of the magnetic Ap/Bp stars. Among these magnetic stars two have very low $v \sin i$ ($< 10 \text{ km.s}^{-1}$) and are very young (age< 2.8 Myr). Assuming these stars are true slow rotators, this implies that there exists a braking mechanism which acts very early during the PMS evolution of the intermediate mass stars. We could think that this braking mechanism has a magnetic origin, although among the undetected stars we also observe same stars with small $v \sin i$ ($\sim 15 \text{ km.s}^{-1}$). The nature of the braking
mechanism requires addition study.

References

Alecian, E., Catala, C., Donati, J.-F., Petit, P., Wade, G. A., Landstreet, J. D., Böhm, T., Bouret, J.-C., Bagnulo, S., Folsom, C., Silvester, J., 2007, *MNRAS*, submitted

Bouret, J.-C., Catala, C., Simon, T., 1997, *A&A*, 328,606

Catala, C., Alecian, E., Donati, J.-F., Wade, G.A., Landstreet, J.D., Böhm, T., Bouret, J.-C., Bagnulo, S., Folsom, C., Silvester, J., 2006, *A&A*, 462, 293

Catala, C., Bohm, T., Donati, J.-F., Semel, M., 1993, *A&A*, 278, 187

Catala, C., Czarny, J., Felenbok, P., Talavera, A., Thé, P. S., 1991, *A&A*, 244, 166

Catala, C., Donati, J. F., Böhm, T., Landstreet, J., Henrichs, H. F., Unruh, Y., Hao, J., Collier Cameron, A., et al., 1999, *A&A*, 345, 884

Catala, C., Simon, T., Praderie, F., Talavera, A., Thé, P. S., Tjin A Djie, H. R. E., 1989, *A&A*, 221, 273

Donati, J.-F., Semel, M., Carter, B. D., Rees, D. E., Collier Cameron, A., 1997, *MNRAS*, 291, 658

Eisner, J. A., Lane, B. F., Akeson, R. L., Hillenbrand, L. A., Sargent, A. I., 2003, *ApJ*, 588, 360

Grady, C. A., Devine, D., Woodgate, B., Kimble, R., Bruhweiler, F. C., Bogess, A., Linsky, J. L., Plait, P., Clampin, M., Kalas, P., 2000, *ApJ*, 544, 895

Grady, C. A., Woodgate, B., Bruhweiler, F. C., Bogess, A., Plait, P., Lindler, D. J., Clampin, M., Kalas, P., 1999, *ApJL*, 523, L151

Hamaguchi, K., Yamauchi, S., Koyama, K., 2005, *ApJ*, 618, 360

Hubrig, S., Schöller, M., Yudin, R. V., 2004, *A&A*, 428, L1

Koenigl, A., 1991, *ApJL*, 370, L39

Landi degl’Innocenti, E., Landi degl’Innocenti, M., 1973, *Sol. Phys.*, 31, 299

Lignières, F., Catala, C., Mangeney, A., 1996, *A&A*, 314, 465

Mannings, V., Sargent, A. I., 1997, *ApJ*, 490, 792

Mannings, V., Sargent, A. I., 2000, *ApJ*, 529, 391

Morel, P., 1997, *A&AS*, 124, 597

Muzerolle, J., Calvet, N., Hartmann, L., 1998, *ApJ*, 492, 743

Muzerolle, J., Calvet, N., Hartmann, L., 2001, *ApJ*, 550, 944

Muzerolle, J., D’Alessio, P., Calvet, N., Hartmann, L., 2004, *ApJ*, 617, 406

Natta, A., Prusti, T., Neri, R., Wooden, D., Grinin, V. P., Mannings, V., 2001, *A&A*, 371, 186

Palla, F., Stahler, S. W., 1993, *ApJ*, 418, 414

Praderie, F., Catala, C., Simon, T., Boesgaard, A. M., 1986, *ApJ*, 303, 311

Roberge, A., Lecavelier des Etangs, A., Grady, C. A., Vidal-Madjar, A., Bouret, J.-C., Feldman, P. D., Deleuil, M., Andre, M., Bogess, A., Bruhweiler, F. C., Ferlet, R., Woodgate, B., 2001, *ApJL*, 551, L97

Stępień, K., 2000, *A&A*, 353, 227

Stępień, K., Landstreet, J. D., 2002, *A&A*, 384, 554

Stift, M. J., 1975, *MNRAS*, 172, 133

Thé, P. S., de Winter, D., Perez, M. R., 1994, *A&AS*, 104, 315

Vieira, S. L. A., Corradi, W. J. B., Alencar, S. H. P., Mendes, L. T. S., Torres, C. A. O., Quast, G. R., Guimarães, M. M., da Silva, L., 2003, *ApJ*, 126, 2971

Wade, G. A., Bagnulo, S., Drouin, D., Landstreet, J. D., Monin, D., 2007, *MNRAS*, 376, 1145

Wade, G. A., Drouin, D., Bagnulo, S., Landstreet, J. D., Mason, E., Silvester, J., Alecian, E., Böhm, T., Bouret, J.-C., Catala, C., Donati, J.-F., 2005, *A&A*, 442, L31