Intervenções farmacêuticas no diabetes mellitus tipo 2: uma revisão sistemática e metanálise de ensaios clínicos randomizados

Pharmaceutical care-based interventions in type 2 diabetes mellitus: a systematic review and meta-analysis of randomized clinical trials

Marcel Nogueira¹, Leonardo Jun Otuyama¹, Priscilla Alves Rocha¹, Vanusa Barbosa Pinto¹

¹ Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brasil.

DOI: 10.31744/einstein_journal/2020RW4686

Resumo

Objetivo: Identificar o impacto das intervenções providenciadas pelo cuidado farmacêutico no diabetes mellitus tipo 2. Métodos: Buscas por ensaios clínicos randomizados controlados foram realizadas nas bases PubMed®, Cochrane e Web of Science. Foram incluídos estudos publicados entre 2012 e 2017, que avaliaram o impacto do cuidado farmacêutico no diabetes mellitus tipo 2. A hemoglobina glicada foi o desfecho primário, e os secundários foram pressão arterial, triglicérides e colesterol. O modelo de efeitos aleatórios foi utilizado na metanálise. Resultados: Foram incluídos 15 estudos envolvendo 2.325 participantes. A metanálise demonstrou heterogeneidade elevada (I²>97%; p<0,001), redução nos níveis de hemoglobina glicada (-1,07%; IC95%: -1,32; -0,83; p<0,001), glicose (-29,91mg/dL; IC95%: -43,2; -16,6; p<0,001), triglicérides (19,8mg/dL; IC95%: -36,6; -3,04; p=0,021), pressão arterial sistólica (-4,65mmHg; IC95%: -8,9; -0,4; p=0,032) e aumento do colesterol HDL (4,43mg/dL; IC95%; 0,16; 8,70; p=0,042). Conclusão: As intervenções clínicas e educacionais providenciadas pelo cuidado farmacêutico têm impacto significativo no diabetes mellitus tipo 2. Ferramentas como o Summary of Diabetes Self-Care Activities e a Morisky Medication Adherence Scale podem ser úteis no acompanhamento dos pacientes.

Descritores: Diabetes mellitus tipo 2; Assistência farmacêutica; Serviço de farmácia hospitalar; Farmacêuticos

ABSTRACT

Objective: To investigate the impact of pharmaceutical care-based interventions on type 2 diabetes mellitus. Methods: PubMed®, Cochrane and Web of Science data bases were searched for randomized controlled clinical trials. Studies evaluating pharmaceutical care-based interventions in type 2 diabetes mellitus published between 2012 and 2017 were included. Glycated hemoglobin was defined as the primary endpoint; blood pressure, triglycerides and cholesterol as secondary endpoints. The random effects model was used in meta-analysis. Results: Fifteen trials involving 2,325 participants were included. Meta-analysis revealed considerable heterogeneity (I²>97%; p<0.001), reduction in glycated hemoglobin (-1.07%; 95%CI: -1.32; -0.83; p<0.001), glucose (-29.91mg/dL; 95%CI: -43.2; -16.6; p<0.001), triglycerides (19.8mg/dL; 95%CI: -36.6; -3.04; p=0.021), systolic blood pressure (-4.65mmHg; 95%CI: -8.9; -0.4; p=0.032) levels, and increased HDL levels (4.43mg/dL; 95%CI: 0.16; 8.70; p=0.042). Conclusion: Pharmaceutical care-based clinical and education...
interventions have significant impact on type 2 diabetes mellitus. The tools Summary of Diabetes Self-Care Activities and the Morisky Medication Adherence Scale may be useful to monitor patients.

Keywords: Diabetes mellitus, type 2; Pharmaceutical services; Pharmacy service, hospital; Pharmacists

INTRODUÇÃO

O diabetes mellitus tipo 2 (DMT2) é caracterizado por hiperglycemia pré e pós-prandial, com insuficiência insulínica relativa, tendo origem na secreção inadequada de insulina com sensibilidade reduzida.É uma doença crônica, que cresce de forma alarmante em diversos países, e deve ser considerado um grave problema de saúde nas próximas décadas. O tipo 2 é a forma mais comum do diabetes e tem aumentado em paralelo às mudanças culturais e sociais. Mundialmente estima-se que 415 milhões de pessoas tenham diabetes, com prevalência de 8,3% entre adultos, e estima-se que este número alcance 592 milhões em 2035. No Brasil, existem 14,3 milhões de adultos com diabetes. Além dos gastos do indivíduo com diabetes, devido ao custo da terapia medicamentosa, a doença também gera impacto econômico aos países e a seus respectivos sistemas de saúde, devido às complicações causadas pela doença.

A educação contínua é útil aos pacientes, já que o manejo do diabetes é complexo e requer esforços que envolvem o monitoramento glicêmico, a adesão ao tratamento, atividade física e mudanças na dieta. Para avaliar a efetividade do tratamento, a hemoglobina glicada (HbA1c) é um biomarcador utilizado como padrão-ouro para o controle do diabetes, pois reflete os níveis glicêmicos dos últimos 120 dias, sendo preditor de complicações crônicas severas. As diretrizes recomendam que os níveis glicêmicos estejam próximos dos níveis normais, para prevenir ou retardar complicações. Contudo, a não adesão ao tratamento é comum, pode impactar no controle glicêmico e aumentar a mortalidade. Um controle glicêmico inadequado aumenta o risco de doenças cardiovasculares, neuropatia, nefropatia e hospitalizações. A adesão ao tratamento é um passo crucial para o benefício completo do regime terapêutico. Sabe-se que aproximadamente 20% a 50% dos pacientes com doenças crônicas relatam não ter adesão adequada aos medicamentos, o que compromete a efetividade do tratamento. Além disso, aqueles que não demonstram adesão apresentam níveis glicêmicos elevados.

Existem muitos fatores envolvidos na não adesão ao tratamento, incluindo aspectos sociais e econômicos, a complexidade da farmacoterapia e problemas relacionados às crenças do paciente sobre os medicamentos. Como especialista em farmacoterapia, o farmacêutico clínico contribui para o cuidado ao paciente, auxiliando-o individualmente ou com outros profissionais de saúde, na projeção e no monitoramento de planos terapêuticos, para melhorar o estado patológico, o tratamento e a adesão, por meio de um processo chamado “cuidado farmacêutico”. O cuidado farmacêutico pode ser definido como “a provisão responsável da farmacoterapia a fim de alcançar resultados que melhorem a qualidade de vida dos pacientes”.

Também como parte do cuidado farmacêutico, a identificação de problemas relacionados aos medicamentos (drug-related problems) é essencial para evitar eventos que podem afetar o resultado do tratamento, por exemplo, a efetividade da farmacoterapia, as reações adversas e a polifarmácia, que frequentemente são comuns em pacientes com diabetes. O cuidado farmacêutico também providencia informações sobre os medicamentos, fazendo com que o paciente entenda os riscos e os benefícios da farmacoterapia, melhorando a adesão e o desfecho clínico do tratamento.

Entretanto, ainda é necessário compreender as tomadas de decisões no cuidado dos pacientes com diabetes. Existe a necessidade de identificar quais intervenções farmacêuticas são aplicáveis à prática clínica atualmente. Além disso, há somente uma metanálise sobre o cuidado farmacêutico no DMT2. A hipótese do nosso estudo é que o cuidado farmacêutico contribui significativamente para o controle do DMT2, reduzindo principalmente a HbA1c dos pacientes.

OBJETIVO

Avaliar o impacto das intervenções farmacêuticas no controle glicêmico de pacientes com diabetes mellitus tipo 2 e outros desfechos, como pressão arterial, triglicerídeos e colesterol.

MÉTODOS

Estratégia de busca

Inicialmente, uma revisão sistemática de ensaios clínicos randomizados controlados sobre o impacto das intervenções farmacêuticas no manejo do DMT2 foi utilizada como referência para inclusão de alguns estudos e, para encontrar novos estudos, também foi adotada a mesma estratégia de busca utilizada pela referida revisão sistemática. Foram realizadas buscas nas bases de dados PubMed®, Cochrane Central Register of Controlled Trials e Web of Science. A estratégia de busca encontra-se disponível no apêndice A.
Intervenções farmacêuticas no diabetes mellitus tipo 2: uma revisão sistemática e metanálise de ensaios clínicos randomizados

Data de publicação
Foram selecionados estudos publicados entre janeiro de 2012 e dezembro de 2014. Os resultados das novas buscas foram limitados a publicações de janeiro de 2015 a outubro de 2017.

Seleção dos estudos
A recomendação *Preferred Reporting Items for Systematic Reviews and Meta-Analyses* (PRISMA) foi utilizada para conduzir a revisão sistemática e metanálise. Foram selecionados estudos com as seguintes características: com população correspondente a participantes com idade maior ou igual a 18 anos, diagnosticados com DMT2; em que o farmacêutico estivesse inserido na equipe de saúde e apto a realizar o cuidado farmacêutico com intervenções clínicas e/ou educacionais no manejo de participantes com DMT2; que comparassem cuidados usuais da equipe médica, da enfermagem e de farmácias comunitárias; cujo desfecho primário tivesse sido a HbA1c e os secundários pressão arterial sistólica (PAS) e diastólica (PAD), triglicérides (TG), colesterol (LDL e HDL); os resultados foram apresentados com medidas tradicionais: percentagem para HbA1c; mmHg para PAS e PAD; e mg/dL para TG, LDL e HDL. Os estudos foram excluídos para os ensaios clínicos prospectivos, publicados em inglês.

Foram excluídos estudos que envolveram exclusivamente participantes com diabetes mellitus tipo 1, diabetes insipidus e diabetes gestacional; tiveram intervenções baseadas apenas em programas educacionais ou no uso de folhetos; cujo desfecho primário foi a glicose (glicemia de jejum); e estudos retrospectivos e ensaios clínicos não randomizados controlados.

Avaliação do risco de viés
Foi utilizada a ferramenta de colaboração Cochrane, para avaliar o risco de viés de seleção, performance, detecção, atrito, relato e outros viéses. Os estudos selecionados foram classificados como com baixo risco de viés, alto risco de viés e risco de viés incerto.

Extração dos dados
Os estudos incluídos foram avaliados individualmente por um único autor. Os dados foram extraídos em formato padrão no Microsoft Excel e consistem em características dos estudos, características dos participantes, intervenções farmacêuticas realizadas e as medidas de desfecho.

Análise estatística
Todas as análises estatísticas foram realizadas usando o software STATA 13 (Statacorp, Texas, EUA). Devido à heterogeneidade dos estudos incluídos na metanálise, o modelo de efeitos aleatórios (*random-effects model*) foi selecionado. O I² foi calculado para avaliar a magnitude entre os estudos, sendo que I² > 50% indica heterogeneidade substancial e > 75%, heterogeneidade considerável. O teste χ² foi utilizado para avaliar a significância da heterogeneidade (p < 0,10).

Medidas de desfecho
Os resultados das medidas de desfecho foram as alterações entre o grupo intervenção e o controle. A diferença média e o intervalo de confiança de 95% (IC95%) foram utilizados para o desfecho primário (HbA1c) e secundários – glicose (glicemia de jejum), PAS, PAD, TG, colesterol (LDL e HDL). Os resultados foram apresentados com as medidas tradicionais: percentagem para HbA1c; mmHg para PAS e PAD; e mg/dL para TG, LDL e HDL. O nível de significância estatística foi considerado como 5%. Resultados extraídos dos estudos selecionados expressos em mmol/L foram convertidos para mg/dL.

RESULTADOS

Seleção dos estudos
Foram extraídos da revisão sistemática utilizada como referência para este estudo 36 ensaios clínicos. A partir dessa revisão sistemática, 25 ensaios foram excluídos, pois estavam fora do período referido de publicação, sendo 11 elegíveis. Dos estudos elegíveis, quatro não apresentaram HbA1c como desfecho primário. Ao final, sete estudos foram incluídos.

A estratégia de busca utilizada nas bases de dados resultou em 185 resultados. Na triagem, sete duplicadas foram removidas. Após a análise dos títulos e dos resumos de 161 artigos, 17 foram selecionados. Destes estudos, cinco foram excluídos, pois os artigos não estavam disponíveis na íntegra; dois não apresentaram a HbA1c como desfecho primário; e dois não foram específicos para DMT2. As buscas nas bases de dados resultaram em oito artigos incluídos. No total, 15 artigos foram incluídos na revisão sistemática e 10 na metanálise (Figura 1).
Características dos estudos
Os estudos incluídos na revisão sistemática foram conduzidos em clínicas ambulatoriais e farmácias comunitárias de diferentes países, sendo três realizados no Brasil, três na China, um na Malásia, um no Reino Unido, um em Singapura, um em Taiwan, um no Iraque, dois na Jordânia e um na República Turca de Chipre do Norte. O desenho dos estudos incluídos foi randomizado controlado e um multicêntrico. A duração do acompanhamento variou entre 3 a 12 meses, com média de 7,9 meses. Os ensaios clínicos incluíram participantes com HbA1c entre 6,5% a 9%. A descrição detalhada dos estudos incluídos está representada na tabela 1.

Risco de viés
Sobre o viés de seleção, a geração de sequência aleatória foi considerada adequada na maioria dos estudos (10/15; 66,7%). Quatro (4/15; 26,7%) não reportaram como os participantes foram randomizados. Houve alto risco de viés em um estudo (1/15; 6,7%), no qual os participantes foram randomizados usando o número de registro do prontuário. O método utilizado para ocultar a sequência aleatória de randomização não foi descrito em 14 estudos (14/15; 93,4%) e apenas um relatou que auditorias foram realizadas para garantir a ocultação de alocação, pois tratava-se de estudo multicêntrico.
Tabela 1. Características dos estudos incluídos

Referência	Cenário	População	Caracterização da amostra	Tempo de acompanhamento	Intervalo de intervenção	Intervenções farmacêuticas	Controle	Medidas de desfecho clínico
Mahwi et al.(21)	Centro de diabetes no Iraque	Diabéticos tipo 2, com idade entre 30 e 80 anos	n=65/65*	3 meses	Mensal	Adesão, drug-related problems	Cuidados usuais da equipe médica	HbA1c, glicemia de jejun e drug-related problems, adesão
Jarab et al.(26)	Ambulatório de diabetes de um hospital escolar na Jordânia	Diabéticos tipo 2, com idade ≥ 18 anos, HbA1c ≥ 7,5%	n=85/68*	6 meses	8 semanas	Educação do paciente, drug-related problems, acompanhamento telefônico, autocuidado	Cuidados usuais da equipe médica/enfermagem	HbA1c, adesão, pressão arterial, CT, HDL, LDL, TG, IMC, glicemia de jejun, autocuidado (SDSCA)
Wishah et al.(27)	Ambulatório de diabetes de um hospital escolar na Jordânia	Diabéticos tipo 2, com idade ≥ 18 anos, HbA1c ≥ 6,5%, em uso de hipoglicemiante oral	n=52/54*	6 meses	Não informado	Educação do paciente, drug-related problems, autocuidado	Cuidados usuais da equipe médica/enfermagem	HbA1c, pressão arterial, CT, HDL, LDL, TG, IMC, glicemia de jejun, autocuidado (SDSCA)
Chung et al.(28)	Hospital escolar na Malásia	Diabéticos tipo 2, com idade ≥ 21 anos e < 75 anos, HbA1c ≥ 8%, em uso de hipoglicemiante oral	n=120/121*	12 meses	3 a 4 meses com acompanhamento telefônico mensal	Revisão da medicina, educação em diabetes	Serviços usuais de farmácias	HbA1c, glicemia de jejun, adesão
Ali et al.(29)	Farmácias comunitárias do Reino Unido	Diabéticos tipo 2, com idade ≥ 18 anos, HbA1c ≥ 7%, em uso de hipoglicemiante oral	n=25/22*	12 meses	Mensal pelos 2 primeiros meses e, após, a cada 3 meses	Revisão da medicina, educação do paciente, encaminhamento para outros profissionais de saúde	Cuidados usuais da equipe médica/enfermagem e farmácias comunitárias	HbA1c, glicemia de jejun, pressão arterial, LDL, HDL, TG, IMC, DOxL, HRQoL, adesão, conhecimentos em diabetes (DKT), SIMS
Mourão et al.(29)	Unidades Básicas de Saúde no Brasil	Diabéticos tipo 2, com idade ≥ 18 anos, HbA1c ≥ 7%, glicemia pós-prandial ≥ 180mg/dL, em uso de hipoglicemiante oral	n=65/64*	12 meses	Mensal	Drug-related problems, educação em diabetes	Cuidados usuais da equipe médica	HbA1c, pressão arterial, LDL, HDL, TG, IMC, drug-related problems
Chan et al.(31)	Clínica de diabetes de um hospital público de Hong Kong	Diabéticos tipo 2, com idade ≥ 18 anos, HbA1c ≥ 8%, polifarmacia, em uso de hipoglicemiante oral	n=51/54*	9 meses	Não reportado	Educação do paciente, drug-related problems	Cuidados usuais da equipe médica	HbA1c, pressão arterial, LDL, HDL, TG, IMC, adesão, risco cardiovascular, custo-efetividade
Korregez et al.(32)	Ambulatório de diabetes de um hospital público da República Turca de Chipre do Norte	Diabéticos tipo 2, com diagnóstico há pelo 6 meses, HbA1c > 7% e uso de hipoglicemiante oral	n = 75/77*	12 meses	2 meses	Educação do paciente, drug-related problems, autocuidado	Cuidados usuais da equipe médica/enfermagem	HbA1c, pressão arterial, CT, HDL, LDL, TG, IMC, glicemia de jejun, circunferência abdominal, autocuidado (SDSCA)

continua...
Tabela 1. Características dos estudos incluídos

Referência	Cenário	População	Caracterização da amostra	Tempo de acompanhamento	Intervalo de intervenção	Intervenções farmacêuticas	Controle	Medidas de desfecho clínico
Saw et al.	Hospital universitário secundário em São Paulo	Diabéticos tipo 2	com diagnóstico há pelo menos 6 meses, HbA1c ≥7%, idade entre 40 e 79 anos, em uso de antidiabético oral	6 meses	Não informado	Educação do paciente, drug-related problems, técnica de aplicação de insulina	Cuidados usuais da equipe médica	HbA1c, pressão arterial sistólica, LDL, TG, qualidade de vida (PAID), serviço de saúde, análise econômica
Aguiar et al.	Hospital universitário secundário em São Paulo	Diabéticos tipo 2	com idade ≥65 anos, com HbA1c ≥9%	6 meses	Acompanhamento telefônico mensal	Educação do paciente, drug-related problems, técnica de aplicação de insulina	Cuidados usuais da equipe médica	HbA1c, glicemia de jejum, percentagem de hospitalizações, análise econômica
Chen et al.	Hospital universitário secundário em São Paulo	Diabéticos tipo 2	com idade ≥18 anos, com HbA1c ≥9%, polifarmácia e múltiplas comorbidades	6 meses	Não informado	Educação do paciente, drug-related problems, técnica de aplicação de insulina	Cuidados usuais da equipe médica	HbA1c, pressão arterial, LDL, adesão, autocuidado (SDSCA)
Jahanbarg-Rafsanjani et al.	Farmácia comunitária na Teerã, Irã	Diabéticos tipo 2	com HbA1c ≥7% e uso de hipoglicemiantes orais	5 meses	Mensal	Educação do paciente, drug-related problems, acompanhamento telefônico	Cuidados usuais da equipe médica	HbA1c, IMC, pressão arterial, adesão, autocuidado (SDSCA)
Xin et al.	Hospital universitário na província de Hangzhou, China	Diabéticos tipo 2	com idade ≥18 anos, com HbA1c ≥7%, polifarmácia e múltiplas comorbidades	6 meses	Não informado	Educação do paciente, técnica de aplicação de insulina, acompanhamento telefônico	Cuidados usuais da equipe médica	HbA1c, adesão, pressão arterial, CT, HDL, LDL, TG, IMC, glicemia de jejum

*relação entre grupo intervenção e grupo controle; † idade em anos (média±desvio padrão). HbA1c: hemoglobina glicada; CT: colesterol total; HDL: lipoproteína de alta densidade; LDL: lipoproteína de baixa densidade; TG: triglicérides; IMC: Índice de massa corporal; SDSCA: Summary of Diabetes Self-Care Activities Questionnaire; NR: não reportado; QoL: Quality of Life Brief Clinical Inventory; HRQoL: Health-Related Quality of Life; DKT: Diabetes Knowledge Test; SIMS: Satisfaction with Information Received About Medicines; PAID: Problem Areas in Diabetes Questionnaire; DTSQ: Diabetes Treatment Satisfaction Questionnaire; GQ: Quality of Life.
Já com relação ao viés de performance, em nenhum estudo houve cegamento das atividades do farmacêutico. Além disso, em 14 estudos, existiu a possibilidade de troca de informações entre os participantes, porque os ensaios foram conduzidos em um único cenário, exceto o estudo multicêntrico de Siaw et al. Trata-se de um ensaio que considerou alto risco de viés de cegamento de participantes e profissionais, pois os participantes do Grupo Controle poderiam solicitar informações ao farmacêutico, quando necessário.

Sobre o viés de detecção, apenas um estudo relatou que os avaliadores foram cegados e, dessa forma, não tiveram conhecimento de qual grupo avaliou os desfechos. Os demais estudos permaneceram com risco de viés incerto, por não descreverem as medidas utilizadas para avaliação dos desfechos clínicos.

VIÉS DE ATRITO E VIÉS DE RELATO: ENCONTROS EM APENAS UM ESTUDO, QUE PERMANECÊRAM COM ALTO RISCO DE VIÉS INCERTO, POR NÃO DESCREVEREM AS MEDIDAS UTILIZADAS PARA AVALIAÇÃO DOS DESFECHOS CLÍNICOS.

Sobre outros viéses, consideramos apenas dois estudos livres de outras fontes de viés (2/15; 13,4%). Treze estudos incluídos nessa revisão sistemática e metanálise (13/15; 86,7%) foram classificados como risco de viés incerto, pois as limitações apresentadas pelos autores foram insuficientes para julgar se um importante risco de viés poderia impactar nos desfechos dos participantes (Figura 2 e Apêndice B).

Figura 2. Risco de viés

Características da população

Foram envolvidos nos estudos incluídos nessa revisão sistemática 2.325 participantes. A amostra variou de 36 a 214 participantes. A proporção de participantes do sexo masculino variou de 22% a 75%. A média da idade variou de 52 a 72 anos. A média basal de HbA1c foi de 9,06% no Grupo Intervenção e 8,79% no Grupo Controle. Além do DMT2, a maior parte dos estudos incluídos enfatizou múltiplas comorbidades no desfecho clínico secundário, como dislipidemia, hipertensão e obesidade (Tabela 1).

Intervenções farmacêuticas

As intervenções foram conduzidas em consultas farmacêuticas presenciais e em alguns estudos, também por acompanhamento telefônico (7/15; 46,7%). Entretanto, nem todos os estudos esclareceram as intervenções realizadas no acompanhamento telefônico. Todos os ensaios incluídos tiveram foco em ações educacionais com o paciente (15/15; 100%), além de ações colaborativas com a equipe médica (14/15; 93,4%). Porém, quando os termos “drug-related problems” (12/15; 80,0%) ou “medication review” (2/15; 26,7%) foram utilizados, não houve explicações claras de quais instrumentos foram aplicados. Dois estudos (29,36) consideraram a frequência de drug-related problems como desfecho clínico dos participantes, e apenas dois (30,35) descreveram que o Pharmacotherapy WorkUp foi utilizado como ferramenta para tal finalidade.

No acompanhamento dos participantes, as ferramentas “drug related problems” e “medication review” foram utilizadas para identificar e solucionar problemas relacionados aos medicamentos. Tais ferramentas incluem componentes-chave de intervenções farmacêuticas como: Feedback – recomendações sobre o tratamento farmacológico foram direcionadas à equipe médica com o objetivo de solucionar os problemas identificados e otimizar a farmacoterapia (adicionar, substituir ou suspender medicamentos, além de ajustar doses). Acompanhamento telefônico – orientação farmacêutica por telefone e avaliação de eventos adversos. Educação do paciente – intervenções educacionais sobre o diabetes e o tratamento também foram realizadas para melhorar a adesão dos participantes, como o fornecimento de informações sobre os medicamentos, reações adversas, forma de administração e armazenamento (especialmente de insulina), treinamento no reconhecimento e na correção de hipoglicemia, alterações no estilo de vida (cessação do tabagismo, etilismo, dieta adequada e inspeção dos pés), promoção ao autocuidado (monitoramento glicêmico). Todos os pacientes receberam instruções verbais e, em alguns casos, também foram utilizados materiais educativos, como folhetos. Em um estudo, o farmacêutico clínico teve autonomia para realizar ajustes nas doses de insulina em pacientes virgens de tratamento, baseando-se em sinais/sintomas de hipoglicemia. Para isso, um algoritmo foi validado.

Em dois estudos (29,36) (2/15, 26,7%), os participantes foram encaminhados a outros profissionais de saúde como nutricionistas e enfermeiros.
O Grupo Controle consistiu nos cuidados usuais realizados apenas pelas unidades ambulatoriais e farmácias comunitárias, sem as intervenções do farmacêutico clínico ou educação em diabetes providenciada por outros profissionais de saúde, como médicos e enfermeiros (Tabela 1).

Adesão
A adesão ao tratamento foi considerada um desfecho clínico em dez estudos. Para avaliar a adesão dos participantes, foi utilizada a Morisky Medication Adherence Scale (MMAS-8 e MMAS-4) na linha de base do início do estudo e no final do acompanhamento. Em todos os estudos, foram reportadas melhorias significativas da adesão no Grupo Intervenção versus Grupo Controle (p<0,05).

Metanálise
Análise da heterogeneidade
Dez estudos foram incluídos na metanálise (21,27-29,32-34,36-39). Todos apresentaram heterogeneidade elevada, com o I² entre 97% e 99% (p<0,001) para todos os desfechos. Mesmo com a considerável heterogeneidade, os resultados demonstraram que o cuidado farmacêutico é eficaz em reduzir os níveis de HbA1c, glicose (glicemia de jejum), TG e PAS, e, também, de elevar o HDL. Entretanto, não houve diferenças estatisticamente significativas nos desfechos de LDL e PAD.

Níveis de hemoglobina glicada
Para o desfecho de HbA1c, foram selecionados dez estudos (21,27-29,32-34,36-39) que incluíram 715 participantes com média basal de 9,0%, e a metanálise resultou em diferença média de -1,07% (IC95%: -1,32; -0,83; p<0,001). O impacto das intervenções farmacêuticas comparado ao Grupo Controle na redução de HbA1c é demonstrado no gráfico de floresta da figura 3.

Glicose (glicemia de jejum)
Seis estudos (21,27-29,32-34,36) realizados em um total de 457 participantes demonstraram redução média de -29,91mg/dL (IC95%: -43,2; -16,6; p<0,001).

Triglicérides
Foram incluídos quatro estudos (27,29,32-34) conduzidos em 272 participantes, e houve redução média de -19,8mg/dL (IC95%: -36,6; -3,04; p=0,021).

LDL e HDL
Houve aumento médio de 4,43mg/dL (IC95%: 0,16; 8,70; p=0,042) para o HDL, e, para o desfecho de LDL, observou-se redução média de -5,26mg/dL (IC95%: -10,7; 0,18; p=0,058), não sendo estatisticamente significativo (27,29,32,33).

Pressão arterial sistólica e pressão arterial diastólica
Em quatro estudos incluídos, houve diferença estaticisticamente significativa apenas para o desfecho de PAS, com redução média de -4,65mmHg (IC95%: -8,9; -0,4; p =0,032). Para o desfecho de PAD, foi observada redução de -1,81mmHg (IC95%: -3,7; 0,1; p=0,065), não sendo estatisticamente significativo (27-29,32,33).

Frequência de intervenções
Foram analisados seis estudos que fizeram intervenções frequentes (mensais ou a cada dois meses), com média de HbA1c basal de 8,9% (21,29,32,36,37,39). Houve uma redução média de -1,01% (p<0,001) IC95% (-1,2; -0,7). Também observamos uma redução média de -1,17% (p<0,001) IC95% (-1,4; -0,8) para quatro estudos que não especificaram o intervalo de intervenções ou que foram realizadas a cada três meses (27,28,34,38). Porém, a média de HbA1c basal neste grupo foi de 9,48%.

I DISCUSSÃO
Os resultados da metanálise demonstraram que todas as intervenções farmacêuticas reduziram de forma significativa os níveis de HbA1c, glicemia de jejum, TG, PAS e HDL, não tendo impacto na LDL e nem na PAD. Santschi et al., (41) realizaram metanálise de 39 ensaios clínicos randomizados com 14,224 participantes com risco cardiovascular elevado (hipertensão, dislipidemia, diabetes, tabagismo e obesidade) e observou-se que as intervenções farmacêuticas, como educação do paciente, feedback à equipe médica e identificação de problemas relacionados aos medicamentos reduziram...
Intervenções farmacêuticas no diabetes mellitus tipo 2: uma revisão sistemática e metanálise de ensaios clínicos randomizados

a PAS (−7,6mmHg; IC95%: -9,0; -6,3; I^2=67%) e PAD (−3,9mmHg; IC95%: -5,1; -2,8; I^2=83%). Porém Santschi et al.,(41) também realizaram análise de subgroup que verificou se houve diferença estatisticamente significativa entre grupos de estudos de participantes com diabetes versus estudos com participantes sem diabetes. O resultado não revelou diferença estatisticamente significativa entre os dois grupos de estudos: PAS -6,4mmHg (IC95%: -7,8; -5,1; p=0,37) e PAD -4,5mmHg (IC95%: -6,3; -2,8; p=0,51). Corroboramos o que foi apresentado por Santschi et al.,(41) pois também observamos redução estatisticamente significativa na PAS, mesmo sem impacto na redução da PAD em nossa metanálise.

Deters et al.,(42) incluíram seis estudos em metanálise de 640 participantes de ensaios clínicos randomizados em diabetes tipos 1 e 2, que avaliou o impacto do cuidado farmacêutico. Houve diferença média de HbA1c de -0,66% (IC95%: -0,86; -0,45) com heterogeneidade insignificante (I^2=7,9%; p=0,3659). Uma análise do efeito metaanalítico das intervenções farmacêuticas também foi executada por Deters et al.,(42) que, além de avaliarem a diferença média de HbA1c relacionada ao drug-related problems/medication review (-0,79%) e ao feedback à equipe médica (-0,81%), especificaram o impacto de cada intervenção realizada no componente educacional: complicações relacionadas ao diabetes (-0,60%); conhecimentos sobre os medicamentos (-0,74%); dieta, exercícios físicos e cessação do tabagismo (-0,66%); análise do automonitoramento glicêmico (-0,74%); definição de metas individuais (-0,81%); adesão (-0,60%); e conhecimento em diabetes (-0,54%). Não realizamos metanálise por intervenções farmacêuticas, pois nem todos os ensaios clínicos incluídos em nosso estudo especificaram os componentes detalhadamente, como o número de pacientes submetidos a tipos de intervenções, especialmente as educacionais. Apenas três estudos incluídos(23,32,37) utilizaram o Summary of Diabetes Self-Care Activities (SDSCA) para mensurar o impacto do cuidado farmacêutico no autocuidado dos participantes em componentes como dieta, prática de exercícios físicos, automonitoramento glicêmico, cuidados com os pés e cessação do tabagismo.

Aguiar et al.,(23) conduziram metanálise de 22 ensaios clínicos randomizados em 1.382 participantes com DMT2, que revelou redução média para HbA1c de -0,85% (IC95%: -1,06; -0,65; p<0,0001) e heterogeneidade significativa (p<0,0001) e substancial (I^2=67,3%). Para explorar as causas de heterogeneidade, análises de subgrupos foram executadas da seguinte forma: país em que o estudo foi conduzido; forma de contato com o paciente; estudos que utilizaram o medication review; frequência de intervenções, entre outras. Foi observado que não houve heterogeneidade elevada (0% a 40%) e não significativa (p>0,10) nos estudos com as seguintes características: ensaios clínicos conduzidos nos Estados Unidos; participantes com HbA1c basal ≤9%; farmácias comunitárias como cenário; sem uso de materiais de suporte educacional fornecidos pelo farmacêutico; farmacêutico com autonomia para alterar a prescrição de medicamentos; frequência de intervenções mais de uma vez ao mês e processo de randomização adequado. Aguiar et al.,(23) também observaram que as diferenças médias nos níveis de HbA1c aumentam com HbA1c basal elevado. Nossos resultados demonstraram também maior redução de HbA1c em estudos que tiveram intervalo de tempo mais longo nas intervenções farmacêuticas. Entretanto, esses estudos apresentaram média basal de HbA1c de 9,48%, e, por esse motivo, podemos supor que um maior intervalo de intervenções não está associado com maior redução de HbA1c. Com isso, assim como Aguiar et al.,(23) afirmamos que pacientes com níveis basais elevados de HbA1c podem ter melhores benefícios do cuidado farmacêutico, já que a média basal de HbA1c dos participantes incluídos em nossa metanálise foi de 9,0%.

Para explorar as possíveis causas da heterogeneidade elevada entre os estudos, reproduzimos análise semelhante à realizada por Aguiar et al.,(23) não realizamos metarregressão por conta do número pequeno de estudos (menos que dez) e, dessa forma, conduzimos novamente a análise de subgrupos usando o modelo de efeitos aleatórios, de acordo com as características de cada ensaio: participantes com valores basais de HbA1c <9%,(27,32,34,36,37) intervenções como drug-related problems,(27,32,34,37,40) e medication review,(28,29) intervenções frequentes (mensais ou a cada 2 meses);(21,26,29,30,32,35,40,42) por cenários ambulatorial(21,26,27,30-35) e da farmácia comunitária;(29,37) por sexo, ou seja, estudos com maior proporção de homens(29,34,41,42) contra estudos com maior proporção de mulheres.(21,27,28,32,37,39) Todas as análises demonstraram heterogeneidade elevada e significativa (I^2>98%; p<0,001). Realizamos também análises por exclusão de estudos. Um dos ensaios incluiu apenas idosos (≥65 anos)(38) e levantando a hipótese de que isso poderia ter relação com a heterogeneidade elevada e significativa, a análise de sensibilidade também foi executada sem a inclusão desse estudo e não mostrou resultado diferente: I^2=99,2% (p<0,001). Também não encontramos resultados diferentes ao excluir estudos que tiveram curto período de acompanhamento(21,37) e processo de randomização inadequado.(32) Não foi possível identificar se a ausência de uma ferramenta específica, como o Pharmacotherapy WorkUp, utilizada para drug-related problems, poderia contribuir para a
heterogeneidade, pois somente dois ensaios clínicos declararam utilizá-la para essa finalidade. (30,35) Mesmo se os 15 estudos selecionados para revisão sistemática fossem incluídos em nossa metaanálise, provavelmente, não encontrariamos resultado diferente. Entre as prováveis causas da heterogeneidade significativa, estão os diferentes critérios de inclusão dos ensaios conduzidos. Os níveis de HbA1c exigidos para inclusão dos participantes nos estudos incluídos foi de 6,5% a 9%. Isso resultou em variação média de HbA1c basal de 9,0% no Grupo Intervenção e 8,7% no Grupo Controle. O uso de insulina (34,36,38) também pode ser considerado provável causa, assim como a proporção de idade e sexo, o período curto de acompanhamento (21,37) e o número pequeno de participantes. (29,34)

Devido ao multiculturalismo dos estudos incluídos em nossa revisão sistemática com metaanálise, é possível que as diferenças culturais e étnicas também tenham influenciado no desfecho clínico, além das diferenças entre os sistemas de saúde, nível educacional e socioeconômico dos participantes. Incluímos estudos de diferentes países e regiões do mundo (América do Sul, Europa, Mediterrâneo Oriental, Oriente Médio e Ásia), como, por exemplo, os estudos de Chung et al., (28) e Siaw et al., (33) realizados na Malásia e Cingapura, respectivamente. Esses ensaios envolveram participantes de três grupos étnicos diferentes (chineses, malaís e indianos). Também é necessário considerar possíveis obstáculos sob a aceitação das intervenções, que podem variar em países onde o cuidado farmacêutico não é bem aceito. Somente Aguiar et al., (35) descreveram a participação dos profissionais de saúde no Grupo Controle. Por exemplo, em um ensaio, o farmacêutico clínico estava disponível para orientar pacientes do grupo controle, se necessário. (34) Poucos autores descreveram claramente o cuidado farmacêutico recebido pelos participantes do Grupo Intervenção. Também, poucos ensaios utilizaram o SDSCA no componente-chave educacional. Por isso, não foi possível executar análise estatística específica por componente-chave, contribuindo com os resultados apresentados por Deters et al. (42) No geral, todos os estudos incluídos na metaanálise declararam que os farmacêuticos envolvidos nos ensaios clínicos eram especialistas em farmacoterapia e receberam treinamento para serem educadores em diabetes. Portanto, nem todos especificaram a duração do treinamento (em horas) e qual profissional de saúde foi providenciado para treinar os farmacêuticos. Também não realizamos metaanálise de desfeitos dos participantes, pois a ampla variabilidade de métodos utilizados para mensurar os resultados e a falta de medidas padronizadas entre os estudos não permitiram avaliação. Isso demonstra que é necessário padronizar os instrumentos utilizados para avaliar a adesão e, dessa forma, possibilitar a comparação dos resultados de diferentes estudos. Nosso resultado também não permitiu concluir com qual frequência as intervenções farmacêuticas devem ser realizadas, pois nem todos os autores reportaram com clareza essas informações. Foi observado que o grupo de estudos que realizou intervenções a cada 3 meses (ou que não relatou o intervalo de intervenções) apresentou maior redução nos níveis de HbA1c. Porém, a média basal nesse grupo foi maior que 9% e a do grupo de estudos que realizou intervenções mensais, menor que 9%. Portanto, é provável que um maior efeito na redução de HbA1c não tenha relação direta com intervalo maior de intervenções, pois, assim como Aguiar et al., (23) corroboramos que os pacientes com maiores níveis basais de HbA1c terão melhor benefício do cuidado farmacêutico.

As diretrizes da American Diabetes Association (ADA) e da Sociedade Brasileira de Diabetes (SBD) afirmam que o processo terapêutico no diabetes mellitus deve ser estabelecido por equipe multiprofissional ativa, capacitada para providenciar educação contínua, além de assistência de qualidade. (1,43) No âmbito farma-
cêutico, a SBD cita a Resolução da Diretoria Colegiada (RDC) 44/2009 da Agência Nacional de Vigilância Sanitária (Anvisa), que normatizou a prestação de serviços farmacêuticos – entre eles, o cuidado farmacêutico e a glicemia capilar.\(^{(43)}\) Por outro lado, as diretrizes da ADA recomendam a garantia do uso racional de insulina e da supervisão meticulosa do farmacêutico sobre a dose administrada.\(^{(1)}\) Entretanto, essas diretrizes não especificam outros componentes necessários para prestar o cuidado ao paciente no âmbito multiprofissional.\(^{(1,44)}\) Os resultados da nossa metanálise sugerem que componentes-chave, como drug-related problems/medication review (incluindo o feedback à equipe médica), educação do paciente e acompanhamento telefônico são intervenções que demonstraram desfecho clínico satisfatório na redução de HbA1c dos participantes. O uso de ferramentas que avaliam o autocuidado, como o SDSCA,\(^{(45)}\) a adesão, como o MMAS-8,\(^{(46)}\) e que ajudam a identificar problemas relacionados aos medicamentos (drug-related problems) podem ser úteis no acompanhamento dos pacientes.

Nosso estudo também apresenta algumas limitações. Nem todos os ensaios clínicos selecionados para a revisão sistemática foram incluídos na metanálise, por apresentarem diferentes medidas nos relatos de desfecho clínico (média, desvio padrão, mediana, IQR e IC95%). Por esse motivo, incluímos apenas estudos cujas medidas foram descritas como média e desvio padrão. Além disso, nosso objetivo foi identificar evidências mais recentes das intervenções farmacêuticas no DMT2 e avaliar seu impacto. Por isso, selecionamos estudos publicados nos entre 2012 e 2017. Um período de referência maior permitiria incluir mais ensaios clínicos randomizados. Porém, provavelmente, a inclusão de estudos anteriores ao ano de 2012 não refletiria a prática farmacêutica atual. Ainda que apenas um único autor tenha extraido, revisado e analisado todos os dados, garantimos a integridade dos dados apresentados nessa revisão sistemática com metanálise.

CONCLUSÃO

Embora nossa metanálise tenha demonstrado heterogeneidade elevada e significativa, nossos resultados sugerem que as intervenções providenciadas pelo cuidado farmacêutico têm impacto significativo na redução de hemoglobina glicada, glicemia de jejum, triglicérides, pressão arterial sistólica e no aumento dos níveis do HDL. Nossos resultados também sugerem que essas intervenções não geram impacto na pressão arterial diastólica e na LDL. Além disso, pacientes com níveis baixos elevados de hemoglobina glicada devem ter maiores benefícios do cuidado farmacêutico. No entanto, mais ensaios clínicos randomizados devem ser realizados, com melhor delineamento metodológico, para que seja possível reportar com maior clareza as intervenções farmacêuticas.

REFERÊNCIAS

1. American Diabetes Association. Standards of medical care in diabetes – 2017. Diabetes Care. 2017;40(Suppl1):S4-S.
2. Chen L, Magliano DJ, Zimmert PZ. The worldwide epidemiology of type 2 diabetes mellitus–present and future perspectives. Nat Rev Endocrinol. 2011;8(4):228-36. Review.
3. Smith KB, Smith MS. Obesity statistics. Prim Care. 2016;43(1):121-35. Review.
4. International Diabetes Federation. IDF diabetes atlas. 7th ed. Brussels, Belgium: International Diabetes Federation; 2015.
5. Rubin RR, Peyrot M, Kruger DF, Travis LB. Barriers to insulin injection therapy: patient and health care provider perspectives. Diabetes Educ. 2009;35(6):1014-22.
6. Lai YR, Huang CC, Chiu WC, Liu RT, Tsai NW, Wang HC, et al. HbA1C Variability Is Strongly Associated With the Severity of Cardiovascular Autonomic Neuropathy in Patients With Type 2 Diabetes After Longer Diabetes Duration. Front Neurosci. 2019;13:458.
7. Lee WC, Balu S, Cobden D, Joshi AV, Pashos CL. Medication adherence and the associated health-economic impact among patients with type 2 diabetes mellitus converting to insulin pen therapy: an analysis of third-party managed care claims data. Clin Ther. 2006;28(10):1712-25; discussion 1710-1. Erratum in: Clin Ther. 2006;28(11):1968-9.
8. ADVANCE Collaborative Group, Patel A, MacMahon S, Chalmers J, Neal B, Billot I, Woodward M, Mane M, Cooper M, Glassiou F, Grobbee D, Hamet F, Harrap S, Heller S, Liu L, Mancia G, Mogensen CE, Pan C, Poulter N, Rodgers A, Williams B, Bonpoint S, de Galan BE, Joshi R, Travers F. Intensive blood glucose control and vascular outcomes in patients with type 2 diabetes. N Engl J Med. 2008;358(24):2560-72.
9. Butler RJ, Davis TK, Johnson WG, Gardner HH. Effects of nonadherence with prescription drugs among older adults. Am J Manag Care. 2011;17(2):153-60.
10. Foreman KF, Stocki KM, Le LB, Fisk E, Shah SM, Lew HC, et al. Impact of a text messaging pilot program on patient medication adherence. Clin Ther. 2012;34(5):1084-91.
11. Tan MY, Magarey J. Self-care practices of Malaysian adults with diabetes and sub-optimal glycaemic control. Patient Educ Couns. 2008;72(2):252-67.
12. Grant R, Adams AS, Trinacty CM, Zhang F, Kleinman K, Soumenai SB, et al. Relationship between patient medication adherence and subsequent clinical inertia in type 2 diabetes glycemic management. Diabetes Care. 2007;30(4):907-12.
13. Kozy MJ, van Geffen EC, Heerdink ER, van Dijk L, Bouvy ML. Effects of a Telephone Counselling Intervention by Pharmacist (TelCIP) on medication adherence, patient beliefs and satisfaction with information for patients starting treatment: study protocol for a cluster randomized controlled trial. BMC Health Serv Res. 2014;14:219.
14. Wubben DP, Vivian EM. Effects of pharmacist outpatient interventions on adults with diabetes mellitus: a systematic review. Pharmacotherapy. 2008;28(4):421-36. Review.
15. Toklu HZ, Hussain A. The changing face of pharmacy practice and the need for a new model of pharmacy education. J Young Pharm. 2013;5(2):38-40. Review.

16. Hepler CD, Strand LM. Opportunities and responsibilities in pharmaceutical care. Am J Hosp Pharm. 1990;47(3):533-43.

17. Zaman Huri H, Fun Wee H. Drug related problems in type 2 diabetes patients with hypertension: a cross-sectional retrospective study. BMC Endcr Disord. 2013;13:2.

18. Kaufmann CP, Stämpfli D, Hersberger KE, Lampt MR. Determination of risk factors for drug-related problems: a multidisciplinary triangulation process. BMJ Open. 2015;5(3):e006376.

19. Zaman Huri H, Chai Ling L. Drug-related problems in type 2 diabetes mellitus patients with dyslipidemia. BMC Public Health. 2013;13:1192.

20. Al-Taani GM, Al-Azam SF, Alzoubi KH, Darwish Elhajj FW, Scott MG, Alalfal H, et al. Prediction of drug-related problems in diabetic outpatients in a number of hospitals, using a modeling approach. Drug Healthc Patient Saf. 2017;9:65-70.

21. Mahwi TO, Obied KA. Role of the pharmaceutical care in the management of patients with type 2 diabetes mellitus. Int J Pharm Sci Res. 2013;4(4):1396-69.

22. Elissen AM, Steuten LM, Lemmens LC, Drewes HW, Lemmens KM, Meeuwsen JA, et al. Meta-analysis of the effectiveness of chronic care management for diabetes: investigating heterogeneity in outcomes. J Clin Pract. 2013;19(5):753-62.

23. Aguiar PM, Brito Gde C, Lima Tde M, Santos AP, Lyra DP Jr, Storpirtis S. Investigating Sources of Heterogeneity in Randomized Controlled Trials of the Effects of Pharmaceutical Interventions on Glycemic Control in Type 2 Diabetic Patients: A Systematic Review and Meta-Analysis. PLoS One. 2016;11(3):e0150999. Review.

24. Pouinho S, Morgado M, Falcão A, Alves G. Pharmacist interventions in the management of type 2 diabetes mellitus: a systematic review of randomized controlled trials. Int J Manag Care Pharm. 2016;22(5):493-515.

25. Liberati A, Altman DG, Tetzlaff J, Mulrow C, Gøtzsche PC, Ioannidis JP, et al. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate healthcare interventions: explanation and elaboration. BMJ. 2009;339:b2700.

26. Jarab AS, Alqudah SG, Mukattash TL, Shattat G, Al-Qirim T. Randomized controlled trial of clinical pharmacy management of patients with type 2 diabetes in an outpatient diabetes clinic in Jordan. J Manag Care Pharm. 2012;18(7):516-26.

27. Wishah RA, Al-Khawaldeh OA, Albsoul AM. Impact of pharmaceutical care interventions on glycemic control and other health-related clinical outcomes in patients with type 2 diabetes: Randomized controlled trial. Diabetes Metab Syndr. 2015;9(4):271-6.

28. Chung WW, Chua SS, Lai PS, Chan SP. Effects of a pharmaceutical care model on medication adherence and glycomic control of people with type 2 diabetes. Patient Prefer Adherence. 2015;9:797-802.

29. Xin C, Xia Z, Jiang C, Lin M, Li G. Effect of pharmaceutical care on medication adherence of patients newly prescribed insulin therapy: a randomized controlled study. Patient Prefer Adherence. 2015;5:127-35.

30. Thao H, Chen G, Zhu C, Chen Y, Liu Y, H, et al. Effect of pharmaceutical care on clinical outcomes of outpatients with type 2 diabetes mellitus. Patient Prefer Adherence. 2017;11:897-903.

31. Cipolle R, Strand L, Morley P. Pharmaceutical Care Practice: The Clinician’s Guide. 2nd ed. New York: McGraw-Hill; 2004.

32. Santshi V, Chiolelo A, Colosimo AL, Platt RW, Taffé P, Burnier M, et al. Improving blood pressure control through pharmacist interventions: a meta-analysis of randomized controlled trials. J Am Heart Assoc. 2014;3(2):e000718. Review.

33. Deters MA, Laven A, Castejon A, Doucette WR, Ev LS, Krass I, et al. Effective Interventions for Diabetes Patients by Community Pharmacists: A Meta-analysis of Pharmaceutical Care Components. Ann Pharmacother. 2018;52(2):198-211.

34. Sociedade Brasileira de Diabetes (SBD). Diretrizes da Sociedade Brasileira de Diabetes 2015-2016 [Internet]. São Paulo: A.C. Farmacêutica, 2016 [citado 2019 Abr 2]. Disponível em: https://www.diabetes.org.br/profissionais/images/docs/DIRETRIZES-SBD-2015-2016.pdf.
Apêndice A. Estratégia de busca

PubMed®	
1. *Diabetes mellitus*, type 2 [mh] (107.405)	
2. Type 2 diabetes (144.283)	
3. T2DM (13.054)	
4. Non insulin dependent diabetes mellitus (130.159)	
5. NIDDM (120.203)	
6. 1 OR 2 OR 3 OR 4 OR 5 (156.111)	
7. Pharmaceutical services [mh] (60.102)	
8. Pharmaceutical care (86.683)	
9. Clinical Pharmacy (71859)	
10. Community pharmacy (22.988)	
11. Pharmacist* (30.355)	
12. 7 OR 8 OR 9 OR 10 OR 11 (170.150)	
13. Randomized controlled trial [pt] (441.905)	
14. Random* AND Control* (797.089)	
15. 13 OR 14 (797.180)	
16. 6 AND 12 AND 15 (479)	
17. Filtro da Cochrane Central Register of Controlled Trials por data de publicação (57)	

Web of Science	
1. ts = Type 2 diabetes (153.853)	
2. ts = T2DM (13.045)	
3. ts = Non insulin dependent diabetes mellitus (10.421)	
4. ts = NIDDM (12.313)	
5. 1 OR 2 OR 3 OR 4 (168.261)	
6. ts = Pharmaceutical services (4.987)	
7. ts = Pharmaceutical care (13.954)	
8. ts = Clinical pharmacy (8.159)	
9. ts = Community pharmacy (6.730)	
10. ts = Pharmacist* (26.322)	
11.6 OR 7 OR 8 OR 9 OR 10 (47.569)	
12. ts = (Random* AND Control*) (586.584)	
13. 5 AND 11 AND 12 (211)	
14. Com filtro por data de publicação (59)	

Cochrane Central Register of Controlled Trials	
1. [mh Diabetes mellitus, type 2] (11.714)	
2. Type 2 Diabetes (28.274)	
3. T2DM (2.910)	
4. Non insulin dependent diabetes mellitus (11.653)	
5. NIDDM (1.115)	
6. 1 OR 2 OR 3 OR 4 OR 5 (29.876)	
7. [mh "Pharmaceutical services"] (1.698)	
8. Pharmaceutical care (4.673)	
9. Clinical pharmacy (10.716)	
10. Community pharmacy (1.874)	
11. Pharmacist* (4.188)	
12. 7 OR 8 OR 9 OR 10 OR 11 (16.839)	
13. 6 AND 12 (1.941)	
14. Trials com filtro por data de publicação (69)	
Apêndice B. Risco de viés

Referência	Viés de seleção	Geração de sequência aleatória	Ocultação de alocação	Cegamento de participantes e profissionais	Viés de detecção	Cegamento de avaliadores de desfecho	Desfechos incompletos	Relato de desfecho seletivo	Outras fontes de viés
Mahwi et al.(21)	Risco de viés incerto	Risco de viés incerto	Risco de viés incerto	Risco de viés incerto	Baixo risco	Baixo risco	Risco de viés incerto		
Jarab et al.(22)	Baixo risco	Risco de viés incerto	Risco de viés incerto	Risco de viés incerto	Baixo risco	Baixo risco	Risco de viés incerto		
Wishah et al. (23)	Baixo risco	Risco de viés incerto	Risco de viés incerto	Risco de viés incerto	Baixo risco	Baixo risco	Risco de viés incerto		
Chung et al.(24)	Risco de viés incerto	Risco de viés incerto	Risco de viés incerto	Risco de viés incerto	Baixo risco	Baixo risco	Risco de viés incerto		
Ali et al.(25)	Baixo risco	Risco de viés incerto	Risco de viés incerto	Risco de viés incerto	Baixo risco	Baixo risco	Risco de viés incerto		
Mourão et al. (26)	Baixo risco	Risco de viés incerto	Risco de viés incerto	Risco de viés incerto	Baixo risco	Baixo risco	Risco de viés incerto		
Chan et al. (27)	Baixo risco	Risco de viés incerto	Risco de viés incerto	Risco de viés incerto	Baixo risco	Baixo risco	Risco de viés incerto		
Korcegez et al.(28)	Alto risco	Risco de viés incerto	Risco de viés incerto	Risco de viés incerto	Baixo risco	Baixo risco	Risco de viés incerto		
Siaw et al.(29)	Baixo risco	Risco de viés incerto	Risco de viés incerto	Risco de viés incerto	Baixo risco	Baixo risco	Risco de viés incerto		
Cani et al.(30)	Baixo risco	Risco de viés incerto	Risco de viés incerto	Risco de viés incerto	Baixo risco	Baixo risco	Risco de viés incerto		
Aguiar et al.(31)	Baixo risco	Risco de viés incerto	Risco de viés incerto	Risco de viés incerto	Baixo risco	Baixo risco	Risco de viés incerto		
Chen et al.(32)	Baixo risco	Risco de viés incerto	Risco de viés incerto	Risco de viés incerto	Baixo risco	Baixo risco	Risco de viés incerto		
Jahangard-Rafsanjani et al.(33)	Baixo risco	Risco de viés incerto	Risco de viés incerto	Risco de viés incerto	Baixo risco	Baixo risco	Risco de viés incerto		
Xin et al.(34)	Risco de viés incerto	Risco de viés incerto	Risco de viés incerto	Risco de viés incerto	Baixo risco	Baixo risco	Risco de viés incerto		
Shao et al.(35)	Risco de viés incerto	Risco de viés incerto	Risco de viés incerto	Risco de viés incerto	Baixo risco	Baixo risco	Risco de viés incerto		