Nitroheterocyclic compounds are more efficacious than CYP51 inhibitors against Trypanosoma cruzi: implications for Chagas disease drug discovery and development

Carolina B. Moraes1,2, Miriam A. Giardini1, Hwayoung Kim1, Caio H. Franco2, Adalberto M. Araujo-Junior2, Sergio Schenkman3, Eric Chatelain4 & Lucio H. Freitas-Junior1,2

1Center for Neglected Diseases Drug Discovery (CND3), Institut Pasteur Korea, 696 Sampyeong-dong, Bundang-gu, Seongnam-si, South Korea, 2Laboratório Nacional de Bionanociências (LNBio), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Campinas, Brazil, 3Depto. de Microbiologia, Imunologia e Parasitologia, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil, 4Drugs for Neglected Diseases initiative (DNDi), Geneva, Switzerland.

Advocacy for better drugs and access to treatment has boosted the interest in drug discovery and development for Chagas disease, a chronic infection caused by the genetically heterogeneous parasite, Trypanosoma cruzi. In this work new in vitro assays were used to gain a better understanding of the antitrypanosomal properties of the most advanced antichagasic lead and clinical compounds, the nitroheterocyclics benznidazole, nifurtimox and fexinidazole sulfone, the oxaborole AN4169, and four ergosterol biosynthesis inhibitors – posaconazole, ravuconazole, EPL-BS967 and EPL-BS1246. Two types of assays were developed: one for evaluation of potency and efficacy in dose-response against a panel of T. cruzi stocks representing all current discrete typing units (DTUs), and a time-kill assay. Although less potent, the nitroheterocyclics and the oxaborole showed broad efficacy against all T. cruzi tested and were rapidly trypanocidal, whilst ergosterol biosynthesis inhibitors showed variable activity that was both compound- and strain-specific, and were unable to eradicate intracellular infection even after 7 days of continuous compound exposure at most efficacious concentrations. These findings contest previous reports of variable responses to nitroderivatives among different T. cruzi strains and further challenge the introduction of ergosterol biosynthesis inhibitors as new single chemotherapeutic agents for the treatment of Chagas disease.

Chagas disease or American trypanosomiasis is a neglected chronic tropical infectious disease endemic to Latin America. It is caused by the protozoan parasite Trypanosoma cruzi, found throughout the American continent in a variety of wild mammalian reservoirs and transmitted by the triatomine bug insect vector. Apart from vectorial transmission, humans can be infected by T. cruzi through ingestion of food and drinks contaminated with live parasites, from mother to child during pregnancy, and through contaminated blood transfusion or organ transplantation. The WHO estimates that approximately 10 million people are infected with T. cruzi worldwide, with the highest incidence in Latin America. In recent decades, massive migration of Latin Americans to developed countries has brought a significant number of infected individuals to non-endemic areas such as Europe, North America, Japan and Australia, where T. cruzi transmission can occur through the non-vectorial routes described.

Symptomatic Chagas disease is a leading cause of morbidity and loss of productivity due to infectious disease in Latin America. If not treated during the acute phase, Chagas disease develops into a chronic condition that can be either symptomatic or asymptomatic (also known as the indeterminate form), which is the most frequent clinical presentation. Symptomatic patients develop, usually decades after infection, either the cardiac form, characterized by progressive lesions in cardiac muscle, arrhythmias, and heart failure, in up to 30% of patients, or the digestive form, characterized by the enlargement of the esophagus and/or the colon. Some patients may develop a combination of both cardiac and digestive forms.
Current chemotherapy relies on antiparasitic treatment by either one of the only two registered drugs, benznidazole and nifurtimox. Both are oral nitroheterocyclic compounds that require prolonged treatment (usually 60 days) and are recognized as curative if administered during the acute phase, whereas their usefulness in the chronic phase is still under investigation. There is a consensus among the medical and scientific community that antiparasitic treatment is desirable and needed for Chagas disease, and the ongoing BENEFIT clinical trial aims at understanding whether benznidazole can improve prognosis and clinical outcome in Chagas cardiomyopathic patients. Nonetheless, both benznidazole and nifurtimox cause severe side effects and, consequently, are not well-tolerated and are associated with poor patient compliance with treatment. Additionally, they are contraindicated in some instances, such as during pregnancy. Therefore, as for other neglected diseases, new drugs with improved efficacy, tolerability, and safety are urgently needed.

Recent efforts have advanced several novel chemical entities (NCEs) for chemotherapy of Chagas disease. The triazoles posaconazole and ravuconazole, which target the sterol 14alpha-demethylase enzyme (also known as CYP51), require for ergosterol biosynthesis, are used to treat systemic fungal infections and have been extensively studied against Trypanosoma brucei. This drug is also active against Trypanosoma cruzi. Parallel efforts culminated in the discovery of the oxaborole class: AN4169 (SCYX-6759) is an oxaborole with curative antichagasic activity in a mouse model and is now an advanced lead for the treatment of Chagas disease. Other recently developed optimized leads are EPL-BS967 (also known as UDD), and EPL-BS1246 (also known as UDO). Both are derivatives of the herbicide fenarimol and have recently been shown to be non-azole inhibitors of T. cruzi CYP51. Despite these advances, other NCEs are still much needed due to the possibility of downstream failure of current leads, preclinical and clinical candidates.

Parallel to the ultimate goal of discovery and development of NCEs, there is also a need for a better-defined discovery process and screening sequence in which compounds can be prioritized based on previous supporting data. In this sense, secondary assays that provide data for compound prioritization are a desirable part of drug discovery programs as they may bring relevant biological and pharmacokinetic/pharmacodynamic (PK/PD) relationships, thus providing starting points for the design of in vitro therapy courses. The early identification of some biological characteristics such as lack of efficacy in some key models or unfavorable pharmacokinetics may help to more rapidly identify compounds likely to fail. This strategy would result in economic gains by avoiding expensive clinical trials. Such supporting assays, however, have not yet been established for T. cruzi.

Chagas disease programs also face an additional challenge: T. cruzi is a genetically heterogeneous group of organisms and current its phylogenetic classification comprises six discrete typing units (DTUs). Although members of all DTUs are capable of causing Chagas disease, the DTUs I, II, V and VI are more often found in humans, while DTUs III and IV are associated with sylvatic cycles and less often responsible for causing human infections. Some degree of association between DTUs and different presentations of chronic disease has been previously observed, however this association might originate from a geographical overlap between specific T. cruzi DTUs and human populations.

It is well established that T. cruzi strains display differential levels of natural susceptibility (or resistance) to benznidazole and nifurtimox both in vitro and in vivo. However, more studies are needed for establishing to what extent the genetic variability of the parasite correlates to response to drugs and ultimately its impact on treatment outcome.

In order to understand whether current and future drugs and drug candidates are active against divergent T. cruzi stocks, we developed an in vitro assay for the evaluation and comparison of compound activity against T. cruzi strains and clones comprising all six DTUs. Three chemical classes with different mechanism of action were tested: the oxaborole AN4169; the broad class of nitroheterocyclic compounds: benznidazole, nifurtimox, and fexinidazole sulfone, the main metabolite of fexinidazole, a new clinical candidate issued from the DNDi pipeline; and two different scaffolds of CYP51 inhibitors, the triazoles posaconazole and ravuconazole, currently undergoing clinical trials for Chagas disease.

Recently, two different scaffolds of CYP51 inhibitors, the triazoles posaconazole and ravuconazole, currently undergoing clinical trials for Chagas disease, together with two fenarimol derivatives issued from the DNDi lead optimization program: EPL-BS967 and EPL-BS1246. To aid in the choice of the dosing regimen in vivo, as well as in preliminary PK/PD determination, a time-kill assay was developed to determine the compound concentration and incubation time needed to achieve maximum efficacy in vitro.

Results

Activity assay development with different T. cruzi DTUs. Trypanosoma cruzi is a highly heterogeneous group of organisms and, ideally, new chemotherapy developed for Chagas disease should be active against all circulating genotypes of the parasite. With this aim at least one member belonging to each T. cruzi DTU was adapted to a high content screening assay for assessment of antitrypanosomal activity of the compounds in vitro. The stocks available in our laboratory as epimastigotes, the stage of T. cruzi that multiplies in the gut of triatomine vectors and which are not infective to mammalian cells, were differentiated in vitro to the infective metacyclic trypomastigote form in Grace’s medium supplemented with 10% FBS as described in the Materials and Methods section. Metacyclics were used to infect LLC-MK2 cells to generate tissue culture-derived trypomastigotes that were kept cycling in vitro for 2 to 4 weeks prior to development of drug assays to improve the yield of trypomastigotes obtained in the supernatant of infected tissue cultures (data not shown).

The drug assay method consists of infecting the osteosarcoma-derived human cell line U2OS with tissue-derived trypomastigote forms of T. cruzi for 24 h prior to the addition of the compounds to 384-well plates. U2OS cells grow as a monolayer and present a large cytoplasm that allow for improved quantification of T. cruzi amastigotes in high content analysis. Infected cultures were exposed to compounds for 4 days, except for Dm28c, which were exposed to compounds for 3 days. Plates were processed for high content imaging and normalized compound activity was plotted as dose-response curves as described in the Materials and Methods section.

Compound activity against T. cruzi from all DTUs. The results are shown in Fig. 1, Supplementary Fig. S1 and in Tables 1 and 2. Figure 1 shows the normalized activity based on alternative measurement, the average parasite number per infected cell. The nitroheterocyclic compounds benznidazole, nifurtimox, and fexinidazole sulfone, while less potent when compared to other compounds tested, are consistently efficacious against strains and clones from all selected DTUs, reaching more than 90% of maximum activity against all T. cruzi tested. Despite this uniform efficacy, the nitroheterocyclics showed different levels of potency.
Figure 1 | The nitroheterocyclics benznidazole and nifurtimox are the most efficacious compounds against a phylogenetically broad panel of *Trypanosoma cruzi*. Tissue cultures in 384-well plates were infected with one of the following *T. cruzi* Dm28c (DTU I, purple), Y (DTU II, red), ARMA13 cl1 (DTU III, orange), ERA cl2 (DTU IV, light green), 92-80 cl2 (DTU V, light blue), CL Brener (DTU VI, dark blue), and Tulahuen (DTU VI, dark green). Compounds were 2-fold diluted and were added to infected cultures 24 h after *T. cruzi* plating and incubated for 72 (Dm28c) or 96 h (all others) prior to assessment of antiparasitic activity by high content analysis. Dose-response curves of compounds antiparasitic activity normalized to infected and non-infected controls are shown. The X-axis shows log of compound molar (M) concentrations and Y-axis shows the normalized activity, based on the measurement of ratio of infected cells. Data refers to mean values of at least two independent experiments.
against certain clones and strains, and the differences in EC$_{50}$ values between the most sensitive and most resistant strains were approximately 4-fold for benznidazole (Dm28c vs. Tulahuen) and 8-fold for nifurtimox (Dm28c vs. 92-80 cl2) and fexinidazole sulfone (Y vs. 92-80 cl2). The clone Dm28c and the Y, the two T. cruzi that are the most infective and proliferate faster in vitro among the strains and clones of this panel (data not shown), were less sensitive in terms of potency against the three nitroheterocyclic compounds, with EC$_{50}$s in the low micromolar range. However these strains could be efficaciously inhibited by all three compounds, with activities reaching more than 98%. Conversely, the other strains and clones (ARMA13 cl1, 92-80 cl2, Tulahuen, and CL Brener), which are less infective and grow slower than the Dm28c and Y stocks (data not shown), showed EC$_{50}$s in the high nanomolar range, suggesting that fast growing strains require higher concentrations of nitroheterocyclic compounds to be efficaciously inhibited. A similar pattern was observed with the oxaborole AN4169, which was active against all the strains and clones in the high nanomolar range, with EC$_{50}$s varying from 150 nM against the 92-80 cl2 to 440 nM against the Y strain (Table 1 and Fig. 1). Although it showed good efficacy against all the strains and clones, AN4169 was not as efficacious as the nitroheterocyclics.

A strikingly different pattern of T. cruzi response to drugs was observed with the other classes of compounds, the triazoles posaconazole and ravuconazole, and the fenarimol derivatives EPL-BS967 and EPL-BS1246. These compounds all inhibit the ergosterol biosynthesis pathway by targeting the sterol 14 alpha-demethylase, also known as CYP51 15,17,29,49. As expected these compounds had EC$_{50}$s in the range of low nanomolar against some of the stocks was due to pre-existing resistant organisms within the parasite population, as in several cases EPL-BS967, EPL-BS1246, posaconazole and ravuconazole were partially active against some of the stocks – see for instance maximum activity against CL Brener, ranging from approximately 47% to 57% (Fig. 1).

Table 1 | EC$_{50}$ of compounds against tested Trypanosoma cruzi strains and clones

	Dm28c	Y	ARMA13 cl1	ERA cl2	92-80 cl2	CL Brener	Tulahuen
	DTU I	DTU II	DTU III	DTU IV	DTU V	DTU VI	DTU VI
Benznidazole	2.5 x 10$^{-4}$	2.4 x 10$^{-6}$	7.3 x 10$^{-7}$	1.1 x 10$^{-6}$	7.0 x 10$^{-7}$	1.6 x 10$^{-6}$	6.3 x 10$^{-7}$
Nifurtimox	1.5 x 10$^{-5}$	1.4 x 10$^{-6}$	1.9 x 10$^{-7}$	2.3 x 10$^{-7}$	1.9 x 10$^{-7}$	3.5 x 10$^{-7}$	2.4 x 10$^{-7}$
Fexi. Sulfone	7.5 x 10$^{-6}$	1.1 x 10$^{-5}$	1.9 x 10$^{-6}$	2.4 x 10$^{-7}$	1.4 x 10$^{-6}$	1.3 x 10$^{-6}$	3.0 x 10$^{-6}$
AN4169	3.7 x 10$^{-7}$	4.4 x 10$^{-7}$	2.1 x 10$^{-7}$	2.8 x 10$^{-7}$	1.5 x 10$^{-7}$	1.9 x 10$^{-7}$	2.8 x 10$^{-7}$
Posaconazole	5.3 x 10$^{-9}$	1.1 x 10$^{-8}$	-	9.1 x 10$^{-9}$	-	1.2 x 10$^{-9}$	1.0 x 10$^{-9}$
Ravuconazole	3.6 x 10$^{-6}$	1.1 x 10$^{-9}$	8.7 x 10$^{-10}$	2.2 x 10$^{-9}$	-	7.4 x 10$^{-10}$	6.2 x 10$^{-10}$
EPL-BS967	2.2 x 10$^{-4}$	1.8 x 10$^{-7}$	-	8.2 x 10$^{-9}$	1.0 x 10$^{-7}$	-	5.2 x 10$^{-8}$
EPL-BS1246	2.7 x 10$^{-7}$	6.1 x 10$^{-8}$	-	1.4 x 10$^{-7}$	6.1 x 10$^{-7}$	2.1 x 10$^{-8}$	1.9 x 10$^{-8}$

All values refer to compound molarity (M); in cases denoted by ‘-’, the maximum activity of the compound was below 50% at the highest concentration tested and thus EC$_{50}$ could not be determined; see also Table 2. Data obtained from at least two independent experiments.
Table 2 Efficacy of compounds against tested Trypanosoma cruzi strains and clones

	Dm28c Dm28c	Y Y	ARMA13 d1 ARMA13 d1	ERA d2 ERA d2	92-80 d2 92-80 d2	CL Brener CL Brener	Tulahuen Tulahuen	Fold Diff Max/Min
Benznidazole	101	99.61	99.13	101	104.1	107	102.7	**1.17**
	(94.17–105.1)		(99.13–101.9)	(99.13–105.1)	(80.07–105.5)	(95.03–102.6)	(95.98–118.5)	
Nifurtimox	101	103.2	106.4	101	101.2	107	101.3	**1.09**
	(97.66–107.1)		(96.22–105.4)	(101.1)	(96.63–106.5)	(95.97–104.6)	(98.24–105.0)	
Fex. Sulfone	101	98.31	101.1	101	101.1	107	103.2	**1.18**
	(90.32–106.3)		(97.58–117.3)	(101.1)	(96.22–105.4)	(95.98–114.9)	(102.3)	
AN4169	101	81.59	94.69	101	104.1	107	100.2	**1.34**
	(76.52–86.66)		(74.92)	(101.1)	(85.77–94.47)	(95.78–108.9)		
Posaconazole	101	66.2	74.94	101	101.3	107	92.68	**3.43**
	(55.95–76.45)		(55.72–113.3)	(101.1)	(85.77–94.47)	(93.87–106.5)		
Ravuconazole	101	52.9	79.49	101	101.6	107	96.6	**4.26**
	(48.82–56.98)		(46.67–73.58)	(101.1)	(85.77–94.47)	(86.12–100.2)		
EPL-B5967	101	83.41	89.57	101	101.6	107	96.6	**3.67**
	(71.77–95.05)		(54.56–76.58)	(101.1)	(85.77–94.47)	(86.12–100.2)		
EPL-B51246	101	60.02	91.02	101	101.6	107	90.97	**2.14**
	(51.56–68.48)		(81.82–100.2)	(101.1)	(85.77–94.47)	(93.87–106.5)		

Efficacy is defined as maximum activity, derived from fitted curves. Numbers in brackets represent 95% confidence intervals. Data refer to at least two independent experiments.

*Mean value of maximum activity observed in the experiments.

To estimate for how long the amastigotes should be exposed to efficacious compound concentrations in in vitro assay in order to reduce cellular infection to undetectable levels, a time-kill assay was developed using phenotypic readout and in vitro infection conditions similar to the ones described above. The Y strain was one of the strains most sensitive to all compounds tested, providing the optimal combination of growth rate and sensitivity, thus enabling testing of whether prolonged exposure to efficacious concentrations of compounds was necessary to eliminate T. cruzi from the cells and led to an infection ratio of between 4.0–5.4%. Whether a longer exposure would lead to further reduction of the residual infection remains to be determined.

Table 2. Alternatively, it could be argued that amastigotes should not be exposed to compounds over a sufficient duration to avoid in vitro selection. Moreover, in Table 2, the Y strain was relatively sensitive to all compounds tested, providing the optimal combination of growth rate and sensitivity, thus enabling testing of whether prolonged exposure to efficacious concentrations of compounds was necessary to eliminate T. cruzi from the cells and led to an infection ratio of between 4.0–5.4%. Whether a longer exposure would lead to further reduction of the residual infection remains to be determined.

Time-kill assays. To estimate for how long the amastigotes should be exposed to efficacious compound concentrations in in vitro assay in order to reduce cellular infection to undetectable levels, a time-kill assay was developed using phenotypic readout and in vitro infection conditions similar to the ones described above. The Y strain was one of the strains most sensitive to all compounds tested, providing the optimal combination of growth rate and sensitivity, thus enabling testing of whether prolonged exposure to efficacious concentrations of compounds was necessary to eliminate T. cruzi from the cells and led to an infection ratio of between 4.0–5.4%. Whether a longer exposure would lead to further reduction of the residual infection remains to be determined.

Table 2. Alternatively, it could be argued that amastigotes should not be exposed to compounds over a sufficient duration to avoid in vitro selection. Moreover, in Table 2, the Y strain was relatively sensitive to all compounds tested, providing the optimal combination of growth rate and sensitivity, thus enabling testing of whether prolonged exposure to efficacious concentrations of compounds was necessary to eliminate T. cruzi from the cells and led to an infection ratio of between 4.0–5.4%. Whether a longer exposure would lead to further reduction of the residual infection remains to be determined.

Table 2. Alternatively, it could be argued that amastigotes should not be exposed to compounds over a sufficient duration to avoid in vitro selection. Moreover, in Table 2, the Y strain was relatively sensitive to all compounds tested, providing the optimal combination of growth rate and sensitivity, thus enabling testing of whether prolonged exposure to efficacious concentrations of compounds was necessary to eliminate T. cruzi from the cells and led to an infection ratio of between 4.0–5.4%. Whether a longer exposure would lead to further reduction of the residual infection remains to be determined.
Figure 2 | Benznidazole, nifurtimox, fexinidazole sulfone, and AN4169 are fast trypanocidal compounds that can eliminate intracellular *T. cruzi* within 96 h of continuous exposure *in vitro*. U2OS cells tissue cultures in 384-well plates were infected with the Y strain for 24 hours prior to addition of compounds in serial dilution by the factor of 2-fold, as indicated the by colors according to the compound gradient (right, top). The following concentrations are shown: 400, 200, 100, 50, 25, 12.5, 6.25, 3.125, 1.56, 0.78 M for benznidazole and fexinidazole sulfone; 100, 50, 25, 12.5, 6.25, 3.125, 1.56, 0.78, 0.39, and 0.20 M for nifurtimox; and 40, 20, 10, 5, 2.5, 1.25, 0.625, 0.31, 0.16 and 0.078 M for AN4169. Antiparasitic activity was analyzed every 24 h, starting right after compound addition (time point 0 h), up to 96 h. Data points are means and standard deviations of at least two independent experiments.

| Table 3 | Efficacious compound concentrations and average normalized infection ratio (%) at 72-, 96-, and 144-h of continuous compound exposure |
Compound	Concentration	72 h	96 h	144 h	
Benznidazole	2.0 x 10^-6 M	-1.4	±3.1	0.2	±3.1
	1.0 x 10^-6 M	0.8	±5.1	0.8	±3.0
	5.0 x 10^-6 M	-1.5	±3.5	-1.0	±1.4
	2.5 x 10^-5 M	0.5	±2.1	-1.0	±1.4
	1.25 x 10^-5 M	0.5	±0.7	0.0	±1.4
Nifurtimox	2.0 x 10^-4 M	0.0	±5.6	-0.5	±2.1
	1.0 x 10^-4 M	0.0	±4.2	1.5	±0.7
Fexi. Sulfone	2.0 x 10^-4 M	9.0	±4.2	4.5	±0.7
	1.0 x 10^-4 M	9.5	±3.5	4.0	±2.8
	5.0 x 10^-6 M	35.0	±7.9	19.3	±13.2
	2.5 x 10^-6 M	38.3	±15.0	33.0	±34.8
	8.0 x 10^-5 M	32.7	±10.0	15.0	±10.5
AN4169	2.0 x 10^-4 M	28.3	±8.7	12.3	±7.6
	1.0 x 10^-4 M	18.0	±7.0	8.3	±6.5
Posaconazole	8.0 x 10^-6 M	19.3	±9.0	10.0	±7.2
	4.0 x 10^-6 M	22.3	±10.1	9.7	±6.5
Ravoconazole	2.0 x 10^-6 M	24.7	±7.2	10.3	±6.4
EPL-BS967	1.0 x 10^-6 M	24.7	±7.2	10.3	±6.4
EPL-BS1246	2.0 x 10^-6 M	22.3	±10.1	9.7	±6.5
	1.0 x 10^-6 M	19.3	±9.0	10.0	±7.2

Data refer to means and standard deviations obtained from at least two independent experiments.
variability in efficacy and were not capable of reducing infection to undetectable levels in all experiments (Table 3), the slow killing triazoles and fenarimols presented in general higher variability in activity levels and therefore were not as efficacious.

Discussion

Innovation on processes and assays for successful drug discovery and development for neglected tropical infectious diseases is crucial. A translational platform composed of in vitro and in vivo preclinical assays that can predict with more confidence the efficacy of drug candidates in clinical trials, thus allowing early termination of compounds that do not meet certain criteria, is a real need in Chagas disease drug discovery programs. To achieve this aim, this study reports new assays using a high content screening technology to assist the drug discovery and development process. The first of these assays allowed for sensitive and unbiased detection of compound antiparasitic properties and the systematic comparison of compound activity against divergent T. cruzi clones and strains. The choice of T. cruzi integrating the panel was pragmatic and based on stocks available at the time the study started. While strains presumably reflect the genetic diversity of a parasite population found in natural T. cruzi infections, competition between clones and clone selection is known to occur in polyclonal populations, suggesting that clones, as more homogenous populations, are less prone to phenotypic changes such as variability in response to drugs. Therefore, a T. cruzi panel composed of both strains and clones is not biased towards one or another type of population and is not detrimental to the objectives of this study.

The assay utilizes a customized high content analysis algorithm that distinguishes intra and extracellular parasites, thus bypassing the need for laborious steps (such as washes) and consequently increasing the speed and throughput of the assay. Normalization of infection ratios (defined as the ratio between the number of infected cells to the number of total cells) against positive (noninfected) and negative (infected, not treated) controls within each plate allowed for quantitative comparison of EC_{50} values for compounds against the same or across different strains and clones of T. cruzi. We found this type of data analysis advantageous in computer-aided analysis because infection ratios are percentages, and thus can be easily normalized to intraplates positive and negative controls and, in this study, data normalization was necessary to ensure proper comparison of efficacy against the different T. cruzi tested. This point is more easily illustrated by the dose-response curves from raw data of average parasite number per infected cells, as seen in Supplementary Fig. S1: activity measurements based on the average number of T. cruzi per infected cell correlates well with the measurements based on infection ratios (normalized activity, seen in Fig. 1). However, due to intrinsic differences on growth rates among the clones and strains, it is difficult to conclude, from the dataset shown in Supplementary Fig. S1, which compound(s) is(are) more efficacious and which strains and clones are more sensitive or resistant to the compounds.

A few studies have found a lack of correlation between T. cruzi DTUs and susceptibility to benznidazole. To our knowledge this is the first study to compare concomitantly the activity of benznidazole and other clinically relevant compounds against members of all
DTUs. Unfortunately, as our study was restricted to only one *T. cruzi* member of DTUs I – V, or two in the case of DTU VI, it is not possible to conclude whether or not DTUs are linked to susceptibility phenotypes. However, as a different susceptibility profile was observed for CYP51 inhibitors between CL Brener and the Tulahuen strain, both belonging to DTU VI, it is possible to speculate that indeed specific DTUs might not be directly correlated to a specific drug resistance pattern *in vitro*. Alternatively, the differences observed between these two *T. cruzi* might be attributed to the fact that one (CL Brener) is a clone and the other is a strain, and is therefore possibly more heterogeneous.

Contrary to most published reports, we did not find major differences in the susceptibility or resistance of strains and clones to nitroheterocyclics. Although there were differences in EC50 values – up to 8-fold – compounds consistently reached over 90% efficacy in all cases and therefore none of these strains or clones should be considered intrinsically resistant to nitroheterocyclic compounds. Several reasons for the differences in susceptibility to nitroheterocyclics observed in this study and others reported in the literature can be speculated. First and most common are differences in assay methodology including, but not restricted to, the life cycle stage of the parasite used in the assay. For instance, variation in strain population composition among different labs – one cannot rule out that the differences in susceptibility to compounds observed in lab-adapted and widely available strains such as Y, CL Brener, and Tulahuen are due to variations in the genotypes found among different labs. Additionally, some studies are performed with epimastigotes, while in this study tests were performed with amastigotes. To our knowledge, the issue of whether epimastigotes and amastigotes originating from the same *T. cruzi* stock differ in their susceptibility to drugs has not been thoroughly addressed; differences were reported in the activity of several drugs, including nifurtimox and benznidazole, against intracellular amastigotes growing in macrophages *in vitro* and axenic forms (which included amastigotes and/or epimastigotes) growing in Schneider’s medium. Another and related issue is the comparison of *in vitro* assays and *in vivo* models: most reports are based on mouse models, and it is not possible to affirm that therapeutic failure is due to “natural”, intrinsic *T. cruzi* resistance as *in vivo* chemotherapy involves several parameters – that very often are uncontrolled even in experimental models – such as the relationship between exposure and cure, route of administration, time of treatment, treatment regimen and length, mouse lineage, and type of immune response, in addition to other Chagas disease related challenges such as definitions of cure criteria and disease stage. All of these factors might interfere with treatment outcome and therefore one should be cautious in attributing therapeutic failure to lack of *T. cruzi* susceptibility to the drug tested.

Variation in susceptibility to nitroheterocyclics can also be due to emergence of resistance within a population; indeed, it is well known that drug-resistant *T. cruzi* can be easily generated in the laboratory, and a recent study proposed that *T. cruzi* genome plasticity underlies quick selection of phenotypes resistant to benznidazole. However, the most important point may be the way resistance is defined: if one considers EC50 – defined as the compound concentration that reduces infection by 50% – as a parameter to measure resistance, our study confirms findings that there are differences in susceptibility to benznidazole, nifurtimox, and fexinidazole sulfone (Table 1 and Fig. 1). However, if the efficacy of the compound, here defined as the maximum activity observed, is considered in the evaluation of resistance, then none of the *T. cruzi* stocks could be considered intrinsically resistant to nitroheterocyclics. We propose that *in vitro* compound efficacy should be determined in drug assays under controlled conditions and from normalized data, and that it should be considered as the primary parameter for determining the level of susceptibility of a *T. cruzi* strain or clone to a compound, as efficacy is also a parameter that is analyzed in *in vivo* models assessed by incidence of cure; EC50 should be used as a secondary factor only for potency comparison of equally or similarly efficacious compounds.

The oxaborole AN4169, an advanced lead candidate for Chagas disease and recently shown to be curative in a mouse model, also had broad spectrum activity against all the strains and clones tested. These data represent an important proof-of-principle for the potential of the oxaborole class as antichagasic drugs. It should however be emphasized that AN4169 was not as efficacious as the nitroheterocyclics in eliminating *T. cruzi* amastigotes from cells under the conditions tested. The target(s) and antichagasic mechanism of action (MoA) of these oxaboroles are currently unknown and should be determined, as it is desirable to develop drugs with new targets and MoA for Chagas disease treatment. Members of the oxaboroles, a new drug class, have been shown to selectively inhibit Rho-activated kinases in lymphocytes and are promising new antibacterials that inhibit leucyl-tRNA synthetase (S. L. Scy, SCY-7158 being currently in clinical trials for the treatment of human African trypanosomiasis).

A different scenario emerged with the ergosterol biosynthesis inhibitors. Although all compounds have the same molecular target, TcCYP51, they displayed variable activity across the panel, suggesting that the clones and strains tested may have CYP51s that differ in sequence and thus in compound affinity to target; alternatively, CYP51 copy number and/or expression might be higher in the resistant stocks. Indeed, Lepesheva and colleagues have shown that posaconazole may induce overexpression of CYP51 and this might constitute a possible resistance mechanism.

It could be argued that suboptimal activity of triazoles and fenarimol derivatives was due to short compound exposure time as the trypanocidal activity of ergosterol biosynthesis inhibitors is time-dependent and result from the depletion of ergosterol pools in order to be effective and cited references. We attempted to perform time-kill experiments with the triazole-resistant 92-80 cl2; however this clone grows very slowly, hampering the quantitative analysis of initial time points of time-kill experiments (data not shown). However the Y strain, used here in the time-kill experiments (Figs. 2 and 3 and Table 3), can complete its intracellular cycle within 4 days under the experimental conditions of the assay (data not shown). Thus considering that the trypanocidal activity of all CYP51 inhibitors tested against the Y strain could be detected after 48 h of exposure, it is likely that an exposure of 144 h (7 days) was sufficient time to observe compounds maximum activity *in vitro*. And even if longer exposures are considered – which could not be tested due to the experimental assay limitations – it should be questioned whether it is desirable to have an antichagasic agent that requires a longer time to achieve efficacy when compared to benznidazole, as this may lead to drug resistance, as discussed above. Indeed, our data does not support the choice of CYP51 inhibitors over nitroheterocyclics as antichagasic drugs. It seems rather that there is a correlation between activity against phylogenetically diverse *T. cruzi* strains and the time a compound needs to exert trypanocidal effects: fast killing compounds – all three nitroheterocyclics and AN4169 – were more efficacious than slow killing CYP51 inhibitors across the *T. cruzi* panel tested. Posaconazole and ravuconazole were the first NCEs to enter clinical trials for Chagas disease and the publication of results is highly anticipated; however preliminary data points to clinical failure and a performance inferior to benznidazole for both posaconazole and ravuconazole/E1224, probably due to lack of efficacy (I. Molina, personal communication; and DNDI/Eisai E1224 phase 2 trial – site presentation at the ASTMH Symposium November 14, 2013, Washington, DC). The results of our study might partly help to explain these preliminary clinical findings.

Overall, triazoles have been reported to be superior to benznidazole for antiparasitic treatment of *T. cruzi*-infected mice (as reviewed by), although treatment outcome depends on many parameters such as treatment length and dose, disease stage, mouse and *T. cruzi*.
strain, amount of parasites and life stage of the parasite in the inoculum, route of infection, type of cure tests performed, and other relevant parameters.22,23 Accordingly, posaconazole, ravoconazole, benzimidazole and nifurtimox performance as single chemotherapeutic agents in murine models of Chagas disease vary when different in vivo studies are compared, and at current stages there is not enough data to support the choice of any of the available mouse models as the most predictive of the performance of drug candidates during clinical trials — or, for the purpose of this study, to correlate the results here reported with those observed in murine models. Ideally, when more clinical data is available and the determinants of antischagasic treatment failure or success are better understood, the knowledge should be applied to the development of "gold standard[s]" for in vivo models (a challenging and time-consuming work, given the current limitations in the field such as the lack of known biomarkers predictive of disease progress and lack of accurate and precise tests to determine parasitological cure of treated patients). Until then, we propose the use of in vitro tests as a first assessment of compound efficacy against different T. cruzi and of intrinsic parasite resistance to compounds in development, as well as determination of compound speed of killing — apparently an important factor to observe.

Time-kill assays are often performed to assist in the design of in vivo therapeutic protocols by determining the pharmacodynamics of compound concentration versus the total time of exposure needed to achieve efficacy and thereby establish in vitro pharmacokinetic/pharmacodynamic correlation with efficacy.24,25 Additionally it offers information on the compound mechanism(s) of action, regarding whether the compound activity is concentration- or time-dependent. Our data suggest that benzimidazole, as well as nifurtimox and fexinidazole sulfone, are concentration-dependent trypanocidal drugs and therefore more efficacious at higher doses (above 100 μM, or 26 μg/mL, in the case of benzimidazole). A recent study has determined the serum concentration of benzimidazole in patients with chronic Chagas disease treated with 5 mg/kg/day for 60 days to range from 5 to 6.5 μg/mL on average.26 This range is equivalent to 20–25 μM benzimidazole, which was a suboptimal concentration (according to time-kill data in this study) against the Y strain for up to 96 h. These results highlight the urgent need for a deeper understanding of how and when benzimidazole and other compounds are curative, because only then this knowledge can be applied to the development of in vitro and in vivo assays that can accurately predict clinical performance of new drug candidates.

Altogether these results demonstrate that nitroderivatives are, among the current antischagasic drugs and drug candidates, the compounds with most breadth of activity across multiple divergent T. cruzi genotypes, as well as the fastest T. cruzi killing compounds available, both desirable characteristics if the potential for the development of resistance of T. cruzi to such a drug is considered. The oxaborole AN4169 follows as a candidate with the potential for both broad-spectrum activity and favorable trypanocidal kinetics. The oxaborole AN4169 follows as a candidate with the potential for both broad-spectrum activity and favorable trypanocidal kinetics.

In vitro culture of mammalian cells. The human osteosarcoma cell line U2OS and the Macaca mulatta kidney epithelial cell LLC-MK2 were previously available at our laboratory.27 All mammalian cells were cultured in DMEM high glucose medium supplemented with 10% heat-inactivated fetal bovine serum (FBS), 100 U/mL penicillin and 100 μg/mL streptomycin in a humid atmosphere of 5% CO₂ at 37°C. LLC-MK2 tissue cultures were used to support the mammalian cycle of T. cruzi in vitro.

In vitro culture of T. cruzi. Different T. cruzi parasite clones and strains representing each of the six discrete typing units (DTUs) were used in this study (Supplementary Table S1 and Table 1). The DTU classification was based on the current consensus T. cruzi nomenclature.28 Clone Dm28c and the Y strain were obtained by A. Avila (Instituto Carlos Chagas, Fiocruz, Curitiba, Brazil). Cl. Brener is a clone obtained from the Y strain and was provided by J. F. Silveira (Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil). The clones 92-80 and ERA cl2 were also provided by M. Miles, London (University of Washington, Seattle, WA, USA) and the clone ARMA13 cl1 was donated by M. Miles (London School of Hygiene and Tropical Medicine, LSHTM, London, UK). The clones 92-80 and ERA cl2 were also provided by M. Miles, London (University of Washington, Seattle, WA, USA) and the clone ARMA13 cl1 was donated by M. Miles, London (University of Washington, Seattle, WA, USA).

Compound preparation. Standardized parasite cultures diluted either to 8 mM (AN4169, ravoconazole, posaconazole), 10 mM (EPL-BS967 and EPL-BS1246), or 40 mM (benzimidazole, nifurtimox, and fexinidazole sulfone) in 100% DMSO and stocked at −80°C. Compound solutions at 100 μM were prepared by serial dilution in DMSO to achieve the desired concentration.

Antiparasitic activity assays. U2OS cells at 1.75–2.5×10⁵ cells/ml of complete media were seeded in 384-well, black, flat-bottomed plates, at 40 μL/well, and infected 24 h later with 10 μL of supernatant of T. cruzi trypomastigote cultures at a ratio of 4 (Dm28c and Y), 15 (Tulahuen), 20 (ERA cl2, 92-80 cl2 and Cl. Brener), or 40 (ARMA 13 cl1) trypomastigotes to 1 U2OS cell seeded 24 h earlier. The trypomastigotes were transferred to mammalian tissue cultures and maintained in vitro up to 10 infection cycles, at which point cultures were discarded and restarted from a frozen trypanostigmate stock.
PBS using a Biotek EL402 washer (Biotek, Seoul, South Korea) and DNA staining with DRAQ5® for microscopy imaging. Images were acquired in Operetta® Confocal Microscope (Perkin Elmer, USA) using a 2X objective in the non-confocal mode. Experiments were performed in at least duplicate (i.e., two independent tests performed on different days).

Time-kill assay. U2OS cells were seeded per well in 40 µL complete media at 700 cells per well in 384-well black, flat-bottom 96-well plates (Greiner Bio-One). At day 2, 2.8 × 10^5 Y strain trypomastigotes were added per well (ratio of 4 parasites/cell) for a total volume of 50 µL/well, followed by compound plating 24 h later as described above. Final volume in the well was 60 µL. Several replicate plates were prepared in each experiment and at each time point (starting right after the plating of compounds and repeated every 24 h, i.e., cultures exposed to compound for 0, 24, 48, 72, 96, 120, or 144 h); one plate was fixed, stained, and imaged as described above. Experiments were performed at least in duplicates.

Data analysis. All the images acquired in the activity assays were analyzed by the Institut Pasteur Korea’s proprietary software for high content analysis that had a built-in T. cruzi infection analysis algorithm, which is able to accurately detect host cell boundary as well as host cell nucleus and T. cruzi nuclear and kinetoplast DNA (both appear as a contiguous structure at 20X magnification). These parameters are quantified to determine, for each well, the total number of cells, the number of infected cells, the ratio of infected cells, and the average number of parasites per infected cells, as well as only intracellular parasites are scored in the analysis. The values for the ratio of infected cells, or infection ratio, are normalized to the average ratio of infected cells from all negative (1% DMSO) and positive controls (non-infected cells) wells from the same plate to obtain the normalized activity, following the equation W_{IR,IA} = 100 × [1 − (IR_{IRNeg} − IR_{IRPos})/(IR_{IRNeg} − IR_{IRPos})], where W_{IR,IA} is the normalized activity for a well, IR_{IRNeg} is the average infection ratio of negative control wells; and IR_{IRPos} is the average infection ratio of the positive control wells. As mentioned above, each tested compound concentration was assayed in three wells per plate, and the average value was calculated from the normalized data for each concentration-point well to result in the normalized activity for that compound concentration in one particular replicate.

Dose-response curves were fitted and 95% confidence intervals were calculated using the sigmoidal dose–response – variable slope function from the GraphPad Prism version 6.00 for Windows, GraphPad Software, La Jolla California USA, www.graphpad.com. EC50s and maximum activity values (see below) were determined from fitted curves from normal activity datasets.

Definitions. For the purposes of this study, i) EC_{50} is defined as the compound concentration capable of reducing the infection in 50% (i.e., inhibiting growth by 50%) as compared to non-treated infected controls and were determined by interpolation from the fitted dose-response curve; ii) potency is defined as the compound ability to reduce infection in a given compound concentration, usually considering the concentration that corresponds to the EC_{50} and iii) efficacy is defined as the maximum activity (i.e., reduction in infection) observed for a compound regardless of the compound concentration.

1. WHO. Working to overcome the global impact of neglected tropical diseases. Available from http://www.who.int/neglected_diseases/2010report/en/ (2010) (Accessed on 18/02/2014).
2. Gascon, J., Bern, C. & Pinazo, M.-J. Chagas disease in Spain, the United States and other non-endemic countries. Acta Trop. 115, 22–27 (2010).
3. Bern, C. & Montgomery, S. P. An estimate of the burden of Chagas disease in the United States and other non-endemic countries. Expert Rev. Anti Infect. Ther. 3, 749–759 (2005).
4. Gascon, J., Bern, C. & Pinazo, M.-J. Chagas disease in Spain, the United States and other non-endemic countries. Acta Trop. 115, 22–27 (2010).
5. Rassi, A. J., Rassi, A. & Marcondes de Rezende, J. American trypanosomiasis (Chagas disease). Mem. Inst. Oswaldo Cruz 97, 3–17 (2002).
6. Coura, J. R. & de Castro, S. L. A critical review on Chagas disease chemotherapy. Mem. Inst. Oswaldo Cruz 97, 3–17 (2002).
7. Coura, J. R. & Borges-Pereira, J. Chronic phase of Chagas disease: why should it be treated? A comprehensive review. Mem. Inst. Oswaldo Cruz 106, 641–645 (2011).
8. Marín-Neto, J. A. et al. Rationale and design of a randomized placebo-controlled trial assessing the effects of etiological treatment in Chagas’ cardiomyopathy: the BENznidazole Evaluation For Interrupting Trypanosomiasis (BENEFIT). Am. Heart J. 156, 37–43 (2008).
9. Marín-Neto, J. A. et al. The BENEFIT trial: testing the hypothesis that trypanocidal therapy is beneficial for patients with chronic Chagas heart disease. Mem. Inst. Oswaldo Cruz 104 Suppl 1, 319–324 (2009).
10. Castro, J. A., de Mecca, M. M. & Bartel, L. C. Toxic side effects of drugs used to treat Chagas’ disease (American trypanosomiasis). Hum. Exp. Toxicol. 25, 471–479 (2006).
11. Viotti, R. et al. Side effects of benznidazole as treatment in chronic Chagas disease: fears and realities. Expert Rev. Anti Infect. Ther. 7, 157–163 (2009).
12. Yun, O. et al. Feasibility, drug safety, and effectiveness of etiological treatment programs for Chagas disease in Honduras, Guatemala, and Bolivia: 10-year experience of Medicines Sans Frontieres. PLoS Negl. Trop. Dis. 3, e488 (2009).
38. Curt, C. I. et al. Trypanosoma cruzi discrete typing units in Chagas disease patients from endemic and non-endemic regions of Argentina. Parasitology 139, 516–521 (2012).
39. Filardi, L. S. & Brener, Z. Susceptibility and natural resistance of Trypanosoma cruzi strains to drugs used clinically in Chagas disease. Trans. R. Soc. Trop. Med. Hyg. 81, 755–759 (1987).
40. Neal, R. A. & van Bueren, J. Comparative studies of drug susceptibility of five strains of Trypanosoma cruzi in vivo and in vitro. Trans. R. Soc. Trop. Med. Hyg. 82, 709–714 (1988).
41. Veloso, V. M. et al. Variation in susceptibility to benznidazole in isolates derived from Trypanosoma cruzi parental strains. Mem. Inst. Oswaldo Cruz 96, 1005–1011 (2001).
42. Camandaroba, E. L. P., Reis, E. A. G., Gonçalves, M. S., Reis, M. G. & Andrade, M. G. &. Characterization of clones derived from chronic chagasic patients. II. Quantitative analysis of the intracellular cycle. J. Protozool. 32, 80–83 (1985).
43. Siqueira-Neto, J. L. et al. An image-based high-content screening assay for compounds targeting intracellular Leishmania donovani amastigotes in human macrophages. PLoS Negl. Trop. Dis. 6, e6171 (2012).
44. Villarreal, D., Barnabi, C., Sereno, D. & Tibayrenc, M. Lack of correlation between in vitro susceptibility to benznidazole and phylogenetic diversity of Trypanosoma cruzi, the agent of Chagas disease. Exp. Parasitol. 108, 24–31 (2004).
45. Buckner, F. S., Wilson, A. J., White, T. C. & Van Voorhis, W. C. Induction of resistance to azole drugs in Trypanosoma cruzi. Antimicrob. Agents Chemother. 42, 3245–3250 (1998).
46. Wilkinson, S. R., Taylor, M. C., Horn, D., Kelly, J. M. & Cheeseman, I. A. Detection of cross-resistance to nifurtimox and benznidazole in trypanosomatids. Proc. Natl. Acad. Sci. U.S.A. 105, 5022–5027 (2008).
47. Mejia, A. M. et al. Benznidazole-resistance in Trypanosoma cruzi is a readily acquired trait that can arise independently in a single population. J. Infect. Dis. 206, 220–228 (2012).
48. Akama, T. et al. Linking phenotype to kinase: Identification of a novel benzoazaborole binding hinge motif for kinase inhibition and the development of high potency rho-kinase inhibitors. J. Pharmacol. Exp. Ther. DOI:10.1124/jpet.111.207662 (2013).
49. Shapiro, A. B., Gao, N., Hajec, L. & McKinney, D. A. Time-dependent, reversible, oxaborole inhibition of Escherichia coli leucyl-tRNA synthetase measured with a continuous fluorescence assay. Anal. Biochem. 431, 48–53 (2012).
50. Hu, Q.-H. et al. Discovery of a potent benzoazaborole-based anti-pneumococcal agent targeting leucyl-tRNA synthetase. Sci. Rep. 3, 2475 (2013).
51. Benkovic, F. S. & Urbina, J. A. Recent developments in sterol 14-demethylase inhibitors for Chagas disease. Int. J. Parasitol. Drugs Drug Resist. 2, 236–242 (2012).
52. Lepesheva, G. I. et al. Structural characterization of CYP51 from Trypanosoma cruzi and Trypanosoma brucei bound to the antifungal drugs posaconazole and fluconazole. PLoS Negl. Trop. Dis. 4, e651 (2010).
53. Chem, C.-K. et al. Specific chemotherapy of Chagas disease: relevance, current limitations and new approaches. Acta Trop. 113, 55–68 (2010).
54. Buckner, F. S. Sterol 14-demethylase inhibitors for Trypanosoma cruzi infections. Adv. Exp. Med. Biol. 625, 61–80 (2008).
55. Jacobs, R. T. et al. SCYX-7158, an orally-active benzoazaborole for the treatment of stage 2 human African trypanosomiasis. PLoS Negl. Trop. Dis. 5, e1151 (2011).
56. Pinazo, M. J. et al. Benznidazole-related adverse drug reactions and their relationship in patients with chronic Chagas disease. Antimicrob. Agents Chemother. 57, 390–395 (2013).