Supporting Information

for

Copper-catalysed asymmetric allylic alkylation of alkylzirconocenes to racemic 3,6-dihydro-2H-pyran s

Emeline Rideau and Stephen P. Fletcher*

Address: Department of Chemistry, Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, UK, Fax: +44(1865)285002

Email: Stephen P. Fletcher - stephen.fletcher@chem.ox.ac.uk

*Corresponding author

Additional Material
Table of Contents

I. General Information S3

II. Chemicals S3

III. Synthesis of starting materials S4
1-(Allyloxy)pent-4-en-2-ol S4
3,6-Dihydro-2H-pyran-3-ol S5
3-Chloro-3,6-dihydro-2H-pyran (2a) S6
3-Bromo-3,6-dihydro-2H-pyran (2b) S7
3,6-Dihydro-2H-pyran-3-yl acetate (2c) S9
3,6-Dihydro-2H-pyran-3-yl diethyl phosphate (2d) S10

IV. General Procedures S1
Procedures of enantioenriched products from 2a S11
Procedures of enantioenriched products from 2d S12
Procedures of racemic products from 2a S12
Procedures of racemic products from 2d S13
Derivatisation of products to the corresponding epoxides for GC analysis S13

V. Design of experiments using 2d S13

VI. Specific Procedures S15
3-(4-Phenylbutyl)-3,6-dihydro-2H-pyran (5) S15
3-(3-(4-(Trifluoromethyl)phenyl)propyl)-3,6-dihydro-2H-pyran (6) S18
3-(6-Chlorohexyl)-3,6-dihydro-2H-pyran (7) S20
3-(2-Cyclohexylethyl)-3,6-dihydro-2H-pyran (8) S22
(3-(3,6-Dihydro-2H-pyran-3-yl)propyl)trimethylsilane (9) S24

VII. Side-product S26
3,3’,6,6’-Tetrahydro-2H,2’H-3,3’-bipyran (10) S27
Racemic synthesis of 3,3’,6,6’-tetrahydro-2H,2’H-3,3’-bipyran (10) S28

VIII. Mechanistic experiments S28
3-Chloro-3,6-dihydro-2H-pyran (2a) S29
Kinetic NMR S29
Kinetic ee S30
3,6-Dihydro-2H-pyran-3-yl diethyl phosphate (2d) S35
Kinetic NMR S35
Kinetic ee S36

IX. References S39
I. General Information

All reactions involving oxygen/moisture sensitive reagents were performed with anhydrous solvents in flame-dried glassware under a positive pressure of anhydrous argon, using standard Schlenk techniques. Cooling of reaction mixtures to –78 °C was effected using an acetone/dry ice bath; to 0 °C using an ice/water bath; to other temperatures using a Julabo FT902 immersion cooler. Heating was performed using Drysyn® heating blocks.

In the cases where silver salts were used, the resulting solutions were filtered using syringe filters PTFE (0.2 μm, 13 mm diameter) from Camlab.

Analytical thin-layer chromatography was performed on glass plates pre-coated with silica gel (Silica Gel 60 F254; Merck). Plates were visualised using UV light (λ = 254 nm) and then stained with either aqueous ceric ammonium molybdate (CAM), aqueous basic potassium permanganate (KMnO4) or anisaldehyde and developed upon heating.

Flash chromatography was performed using silica gel (Apollo Scientific 60 (40-63 μm), Sigma Aldrich (Davisil® grade 636, pore size 60 Å, 35-60 mesh), Merck 60 Å or VWR (40–63 μm)). Pressure was applied at the column head via a flow of nitrogen with the solvent system used in parentheses.

Nuclear magnetic resonance spectra were acquired in deuterated solvents at room temperature on Bruker: AVIIIHD 400 nanobay, AVIIIHD 500, AVII 500, AVII 500 with cryoprobe spectrometers. Chemical shifts (δ) are reported in ppm from the residual solvent. Coupling constants (J) are quoted in Hertz (Hz) and are recorded to the nearest 0.1 Hz. Resonances are described as singlet (s), doublet (d), triplet (t), quartet (q), quintet (quint), doublet of doublets (dd), doublet of doublets of doublets (ddd), doublet of triplets (dt), multiplet (m) and broad (br.). Labels Hb and Ha refer to diastereotopic protons attached to the same carbon and impart no stereochemical information. Assignments were made with the assistance of gCOSY, DEPT-Q, gHSQC and gHMBC NMR spectra.

Low resolution (LRMS) and high resolution (HRMS) mass spectral analyses were acquired by electrospray ionisation (ESI), electron impact (EI), Field Ionisation (FI). Low resolution ESI were recorded using an Agilent 6120 quadrupol LC/MS. High resolution accurate ESI were recorded using a Thermo Exactive 1.1 SP5 Benchtop orbitrap MS and EI/FI on a Waters GTC Temperature programmed solid probe inlet within the department of Chemistry, University of Oxford.

Infrared spectroscopy (IR) measurements (neat, thin film) were carried out using a Bruker Tensor 27 FT-IR with internal calibration in the range of 4000–600 cm⁻¹. Absorption maxima are reported as wavenumbers (cm⁻¹).

Optical rotations were recorded using a Schmidt Haensch Unipol L 2000 Polarimeter.

Chiral HPLC separations were achieved using an Agilent 1260 Infinity series normal phase HPLC unit and HP Chemstation software. Chiralpak® columns (250 × 4.6 mm), fitted with matching Chiralpak® Guard Cartridges (10 × 4 mm), were used as specified. Solvents used were of HPLC grade (Fisher Scientific, Sigma Aldrich or Rathburn). All eluent systems were isocratic.

II. Chemicals

WARNING: Perchlorates are explosive and should be handled with caution.

Chemicals and reagents were obtained from Sigma Aldrich, Alfa-Aesar, Apollo Scientific, Strem chemicals, Acros Organics, TCI UK and fluorochem, and were used as received unless otherwise stated. Deuterated solvents were purchased from Sigma-Aldrich (CDCl₃) and Fluorochem (CD₂Cl₂).
Dry dichloromethane (DCM), diethyl ether (Et₂O), tetrahydrofuran (THF), benzene and acetonitrile were collected fresh from a solvent purification system (MBraun, SPS-800) having been passed through anhydrous alumina columns. Chloroform (CHCl₃) was obtained by filtration through activated alumina (powder ~150 mesh, pore size 58 Å, basic, Sigma-Aldrich) columns. Dry tert-butyl methyl ether, 2-Me THF, acetone and MeOH were purchased from Acros Organics with an AcroSeal® or Sigma Aldrich with a similar sela as advertised dry solvent stored under inert atmosphere.

TMSCl was distilled before use and stored in Schlenk flasks under an argon atmosphere containing CaCl₂. Schwartz reagent was prepared according to a literature procedure from Cp₂ZrCl₂ provided by Strem Chemicals. (CuOTf)₂·PhH was synthesised using a modified literature procedure and carefully maintained under inter atmosphere. (CuOTf)₂·PhH should be a white or off-white powder. Phosphoramidite ligands were synthesised according to in-house procedures.

III. Synthesis of starting materials

1-(Allyloxy)pent-4-en-2-ol

\[
\begin{align*}
\text{CH₂=CHCH₂CH₂CH₂CH₂OH} \\
\text{OH} \\
\text{CH₂=CHCH₂CH₂CH₂OH}
\end{align*}
\]

In analogy to a published procedure, prop-2-en-1-ol (3.4 mL, 50 mmol, 2.0 equiv) was added to a solution of butadiene monoxide (2.0 mL, 25 mmol, 1.0 equiv) in DMF (50 mL). Sodium hydride (2.00 g, 60% w/w in mineral oil, 50 mmol, 2.0 equiv) was added in 1 g portions at 0 °C. The resulting mixture was stirred for an additional 30 min at 0 °C, and then overnight at 50 °C. The reaction mixture was quench at 0 °C with HCl (aq) (100 mL, 1 M) and stirred for 1 h to cool down. The resulting orange aqueous layer was extracted with ether (3 × 50 mL). The combined organic layers were washed with LiCl (10% w/w, 100 mL), brine (100 mL), dried over MgSO₄, filtered and concentrated under reduced pressure to afford the crude product as a yellow oil. Purification by flash column chromatography (SiO₂, Et₂O:pentane 30:70) yielded the title product as a yellow oil (2.1 g, 16.4 mmol, 66%).

\(^1\text{H NMR}\) (400 MHz, CDCl₃) δH /ppm 5.97-5.78 (m, 2H), 5.36 (d, 17.0 Hz, 1H), 5.28 (d, 17.0 Hz, 1H), 5.20 (d, 10.9 Hz, 2H), 4.32 (br. s, 1H), 4.04 (d, 5.8 Hz, 2H), 3.51 (dd, 9.6, 3.3 Hz, 1H), 3.33 (dd, 9.8, 8.2 Hz, 1H), 2.44 (br s, 1H).
$^{13}\text{C NMR}$ (100 MHz, CDCl$_3$) δ /ppm 136.7, 134.5, 117.6, 116.6, 74.0, 72.4, 71.6.

HRMS (ESI) m/z calcd for C$_7$H$_{12}$O$_2$Na [M+Na]$^+$: 151.07295, found: 151.07286.

IR (ATR) (ν_{max}/cm$^{-1}$) 3422, 2924, 2857, 2360, 1424, 1104, 992, 927.

3,6-Dihydro-2H-pyran-3-ol

In analogy to a published procedure4, Grubbs catalyst 1st generation (310 mg, 0.37 mmol, 0.02 equiv) was added to a solution of 1-(allyloxy)pent-4-en-2-ol (2.0 g, 15.6 mmol, 1.0 equiv) in DCM (150 mL) at room temperature and stirred overnight. The resulting reaction mixture was concentrated under reduced pressure to obtain the crude product as a brown oil. Purification by
flash column chromatography (SiO₂, Et₂O 50 → 100% in pentane) yielded the title product as a brown oil (1.4 g, 14.3 mmol, 92%).

¹H NMR (400 MHz, CDCl₃) δ / ppm 5.98-5.83 (m, 2H), 4.11 (d, 16.6 Hz, 1H), 4.00 (dd, 16.6 Hz, 2.0 Hz, 1H), 3.91 (dd, 6.1 Hz, 3.2 Hz, 1H), 3.79 (dd, 11.7 Hz, 2.6 Hz, 1H), 3.68 (dd, 11.7 Hz, 3.2 Hz, 1H), 1.86-1.79 (m, 1H).

¹³C NMR (100 MHz, CDCl₃) δ / ppm 130.0, 126.7, 70.8, 65.4, 62.7.

HRMS (ESI) m/z calcd for C₅H₈O₂Na [M+Na]⁺: 123.04165, found: 123.04143.

IR (ATR) (ν max/cm⁻¹) 3381, 2846, 1226, 1086, 1064, 1014, 937, 835, 817, 695.

3-Chloro-3,6-dihydro-2H-pyran (2a)

![Image of 3-Chloro-3,6-dihydro-2H-pyran (2a)]
Based on a modified procedure [4], PCl₃ (1.6 mL, 18.5 mmol, 0.37 equiv) was added dropwise to a mixture of 3,6-dihydro-2H-pyran-3-ol (5.0 g, 49.9 mmol, 1 equiv) and pyridine (0.4 mL, 5.0 mmol, 0.1 equiv) at 0 °C. After stirring for 30 min at 0 °C, the reaction mixture was allowed to warm up to room temperature and stirred overnight. The non-viscous organic layer of the resulting mixture was removed by pipette and the bottom layer was rinsed with pentane (3 × 1 mL). The combined organic material was concentrated under reduced pressure and purified by Kugelrohr distillation (20 mbar, 100 °C) to afford the title product as a very pale yellow liquid (4.1 g, 34.6 mmol, 69%)

1H NMR (400 MHz, CDCl₃) δH /ppm 5.97-5.88 (m, 2H), 4.52-4.45 (m, 1H), 4.23 (ddd, J = 16.8, 3.8, 2.2 Hz, 1H), 4.12 (ddd, J = 16.8, 3.8, 1.9 Hz, 1H), 4.04 (dd, J = 12.1, 4.0 Hz, 1H), 3.84 (dd, J = 12.1, 5.0 Hz, 1H).

![1H NMR spectrum](attachment:image1)

13C NMR (100 MHz, CDCl₃) δC /ppm 129.8, 126.0, 70.1, 65.1, 51.0.

![13C NMR spectrum](attachment:image2)

HRMS (EI/Fl) m/z calcd for C₅H₇OCl [M]+:118.0185, found:118.0185.

IR (ATR) (vmax/cm⁻¹) 2833, 1289, 1114, 1094, 997, 829, 735.

![IR spectrum](attachment:image3)
Spectral data was in accordance with literature\(^4\).

3-Bromo-3,6-dihydro-2\textit{H}-pyran (2b)

\[\text{Br} \]

In analogy to the 3-chloro-3,6-dihydro-2\textit{H}-pyran procedure, PBr\(_3\) (180 \(\mu\)L, 1.89 mmol, 0.37 equiv) was added dropwise to a mixture of 3,6-dihydro-2\textit{H}-pyran-3-ol (0.5 g, 4.99 mmol, 0.98 equiv) and pyridine (41 \(\mu\)L, 0.50 mmol, 0.1 equiv) at 0 °C. After stirring for 30 min at 0 °C, the reaction mixture was allowed to warm to room temperature and stirred overnight. The non-viscous organic layer of the resulting mixture was removed by pipette and the bottom layer was rinsed with pentane (3 \(\times\) 1 mL). The combined organic materials was concentrated under reduced pressure and purified by Kugelrohr distillation (57 mbar, 140 °C) to afford the title product as an orange oil (296 mg, 1.81 mmol, 36%)

\(^1\text{H} \text{NMR} \) (400 MHz, CDCl\(_3\)) \(\delta\) \(\text{H} /\text{ppm} 6.07-6.00 \) (m, 1H), 5.90-5.83 (m, 1H), 4.63 (br s, 1H), 4.31 (ddd, 17.3, 4.4, 2.2 Hz, 1H), 4.20 (ddd, 17.3, 4.6, 2.4 Hz, 1H), 4.07 (dd, 12.2, 3.9, 1H), 3.98 (dd, 12.2, 4.6, 1H).
According to a modified procedure[5], 6-dihydro-2H-pyran-3-ol (0.20 g, 2.0 mmol, 1.0 equiv) was dissolved in Et₂O (2.0 mL). Pyridine (0.2 mL, 3.0 mmol, 1.5 equiv) DMAP (243 mg, 2.0 mmol, 1.0 equiv) and then acetic anhydride (380 µL, 4.0 mmol, 2.0 equiv) were added dropwise to the stirring yellow solution. The reaction mixture was stirred overnight. The reaction was diluted in Et₂O (10 mL) and quenched with H₂O (2 × 15 mL). The mixture was partitioned and the aqueous phase was extracted with Et₂O (3 × 10 mL). The combined organic extracts were washed with brine (20 mL), dried over MgSO₄, filtered and concentrated under reduced pressure. Purification by flash column chromatography (SiO₂, Et₂O 20% in petrol) yielded the title product as a yellow oil (106 mg, 0.746 mmol, 37%)

3,6-dihydro-2H-pyran-3-yl acetate (2c)

\[\text{\includegraphics{3,6-dihydro-2H-pyran-3-yl acetate (2c).png}}\]

1H NMR (400 MHz, CDCl₃) δ_H /ppm 6.10-6.04 (m, 1H), 5.96-5.89 (m, 1H), 5.11-5.06 (m, 1H), 4.22 (d, 16.9 Hz, 1H), 4.08 (ddd, 16.9, 5.4, 2.2 Hz, 1H), 3.92 (dd, 12.5, 2.5 Hz, 1H), 3.80 (dd, 12.5, 3.4 Hz, 1H), 2.09 (s, 3H).
13C NMR (100 MHz, CDCl$_3$) δ/ppm 170.8, 132.2, 122.5, 67.7, 65.0, 64.8, 21.2.

HRMS (ESI) m/z calcd for C$_7$H$_{10}$O$_3$Na [M+Na]$^+$: 165.05222, found: 165.05219;

IR (ATR) (ν_{max}/cm$^{-1}$) 1727, 1371, 1227, 1188, 1097, 1063, 1020, 896, 846.

Spectral data is in accordance with literature6.

3,6-Dihydro-2H-pyran-3-yl diethyl phosphate (2d)

According to a modified procedure7, diethyl chlorophosphate (2.4 mL, 16.5 mmol, 1.03 equiv) was added dropwise to a mixture of 6-dihydro-2H-pyran-3-ol (1.6 g, 16.0 mmol, 1.0 equiv) and pyridine (6.7 mL, 83.1 mmol, 5.2 equiv) in DCM (15 mL) at 0 °C. After stirring for 10 min at 0 °C, DMAP (0.39 g, 0.32 mmol, 0.02 equiv) was added to the reaction mixture. The reaction mixture was allowed to warm up to room temperature and stirred overnight. The reaction was diluted in DCM (10 mL) and quenched with H$_2$O (2 × 15 mL). The mixture was partitioned and the aqueous phase was extracted with DCM (3 × 10 mL). The combined organic extracts were washed with brine (20 mL), dried over MgSO$_4$, etc.
filtered and concentrated under reduced pressure. Purification by flash column chromatography (SiO₂, Et₂O 100% and then 10% MeOH in CHCl₃) yielded the title product as a yellow oil (3.39 mg, 14.4 mmol, 90%)

¹H NMR (400 MHz, CDCl₃) δH /ppm 6.07-6.02 (m, 1H), 6.01-5.95 (m, 1H), 4.87-4.71 (m, 1H), 4.30-4.21 (m, 1H), 4.20-4.07 (m, 5H), 3.95 (dd, 12.5, 3.4 Hz, 1H), 3.85 (dd, 12.1, 3.6 Hz, 1H), 1.34 (tdd, 7.2, 1.3, 1.2 Hz, 6H).

¹³C NMR (100 MHz, CDCl₃) δC /ppm 131.9, 123.6 (d, J = 4.8 Hz), 68.5 (d, J = 5.6 Hz), 68.2 (d, J = 5.6 Hz), 65.1, 64.0 (d, J = 6.3 Hz), 16.2 (d, J = 7.3 Hz).
\(^{31}P \text{ NMR} \) (200 MHz, CDCl\(_3\)) \(\delta_{C}/ppm = -0.01 \) (s, 1P).

HRMS (ESI) \(m/z \) calcd for C\(_9\)H\(_{18}\)O\(_5\)P [M]\(^+\): 237.08864, found: 237.08840.

IR (ATR) (\(\nu_{\text{max}}/\text{cm}^{-1} \)) 2984, 1262, 1006, 974, 800.

IV. General Procedures

Procedures of enantioenriched products from 2a

In a flame-dried flask under inert atmosphere, Cp\(_2\)ZrHCl (2.0 equiv) was added to a solution of alkene (2.5 equiv) in CH\(_2\)Cl\(_2\) under an argon atmosphere and stirred vigorously until a clear yellow solution was obtained (20–40 min). Simultaneously, in another flask under inert atmosphere, CuCl (0.1 equiv) and (\(R \))-D (0.1 equiv) were dissolved in CH\(_2\)Cl\(_2\) and stirred for 1 h at room temperature. AgClO\(_4\) (0.11 equiv *Perchlorates are explosive and should be handled with caution*) was added to the freshly formed Cu-ligand complex solution and stirred for 15 min. The resulting catalyst complex mixture was filtered into the freshly prepared alkylzirconocene species. After 10 min, 3-chloro-3,6-dihydro-2H-pyran (1.0 equiv) was added dropwise via a microsyringe to the resulting black solution followed by the dropwise addition of B(OiPr)\(_3\) (1.0 equiv). The reaction mixture was stirred overnight. The reaction mixture was diluted with Et\(_2\)O (2 mL) and quenched with NH\(_4\)Cl (3 mL, 1 M). The mixture was partitioned and the aqueous phase was extracted with Et\(_2\)O (3 \(\times \) 10 mL). The combined organic extracts were washed with NaHCO\(_3\) (aq., sat., 30 mL), dried over MgSO\(_4\), filtered and concentrated under reduced pressure. Purification by flash column chromatography (SiO\(_2\), Et\(_2\)O 0→2% in pentane) yielded the enantioenriched products.

Procedures of enantioenriched products from 2d

In a flame-dried flask under inert atmosphere, Cp\(_2\)ZrHCl (2.0 equiv) was added to a solution of alkene (2.5 equiv) in CH\(_2\)Cl\(_2\) under an argon atmosphere and stirred vigorously until a clear yellow solution was obtained (20–40 min).
Simultaneously, in another flask under inert atmosphere, CuCl (0.1 equiv) and (S, S)-A (0.1 equiv) were dissolved in CH$_2$Cl$_2$ and stirred for 1 h at room temperature. AgOTf (0.11 equiv) was added to the freshly formed Cu-ligand complex solution and stirred for 15 min. The resulting catalyst complex mixture was filtered into the freshly prepared alkylzirconocene species. After 10 min, 3,6-dihydro-2H-pyran-3-yl diethyl phosphate (1.0 equiv) was added dropwise via a microsyringe to the resulting black solution and stirred overnight. The reaction mixture was diluted with Et$_2$O (2 mL) and quenched with NH$_4$Cl (3 mL, 1 M). The mixture was partitioned and the aqueous phase was extracted with Et$_2$O (3 × 10 mL). The combined organic extracts were washed with NaHCO$_3$ (aq., sat., 30 mL), dried over MgSO$_4$, filtered and concentrated under reduced pressure. Purification by flash column chromatography (SiO$_2$, Et$_2$O 0-2% in pentane) yielded the enantioenriched products.

Procedures of racemic products from 2a

In a flame-dried flask under inert atmosphere, Cp$_2$ZrHCl (2.0 equiv) was added to a solution of alkene (2.5 equiv) in CH$_2$Cl$_2$ under an argon atmosphere and stirred vigorously until a clear yellow solution was obtained (20-40 min). Simultaneously, in another flask under inert atmosphere, CuCl (0.1 equiv) and (S, S)-Feringa ligand (0.05 equiv) and (R, R, R)-Feringa ligand (0.05 equiv) were dissolved in CH$_2$Cl$_2$ and stirred for 1 h at room temperature. AgClO$_4$ (0.11 equiv *Perchlorates are explosive and should be handled with caution*) was added to the freshly formed Cu-ligand complex solution and stirred for 15 min. The resulting catalyst complex mixture was filtered into the freshly prepared alkylzirconocene species. After 10 min, 3-chloro-3,6-dihydro-2H-pyran (1.0 equiv) was added dropwise via a microsyringe to the resulting black solution followed by the dropwise addition of B(OiPr)$_3$ (1.0 equiv). The reaction mixture was stirred overnight. The reaction mixture was diluted with Et$_2$O (2 mL) and quenched with NH$_4$Cl (3 mL, 1 M). The mixture was partitioned and the aqueous phase was extracted with Et$_2$O (3 × 10 mL). The combined organic extracts were washed with NaHCO$_3$ (aq., sat., 30 mL), dried over MgSO$_4$, filtered and concentrated under reduced pressure. Purification by flash column chromatography (SiO$_2$, Et$_2$O 0-2% in pentane) yielded the racemic products.

Procedures of racemic products from 2d

In a flame-dried flask under inert atmosphere, Cp$_2$ZrHCl (206.0 mg, 0.8 mmol, 2.0 equiv) was added to a solution of alkene (1.0 mmol, 2.5 equiv) in CH$_2$Cl$_2$ (0.40 mL) under an argon atmosphere and stirred vigorously until a clear yellow solution was obtained (20-40 min). The hydrozirconated mixture was dissolved in DCM (2.0 mL) and then CuBr.DMS (82 mg, 0.4 mmol, 1.0 equiv) was added. After 10 min, 3,6-dihydro-2H-pyran-3-yl diethyl phosphate (94.5 mg, 0.4 mmol, 1.0 equiv) was added dropwise via a microsyringe to the resulting black solution and stirred overnight. The reaction mixture was diluted with Et$_2$O (2 mL) and quenched with NH$_4$Cl (3 mL, 1 M). The mixture was partitioned and the aqueous phase was extracted with Et$_2$O (3 × 10 mL). The combined organic extracts were washed with NaHCO$_3$ (aq., sat., 30 mL), dried over MgSO$_4$, filtered
and concentrated under reduced pressure. Purification by flash column chromatography (SiO₂, Et₂O 0→2% in pentane) yielded the racemic products.

Derivatisation of products to the corresponding epoxides for GC analysis

In a flame-dried flask, the isolated product (1.0 equiv) was dissolved in CH₂Cl₂ (6 mL, for 0.4 mmol scale reaction) under an argon atmosphere. m-CPBA (2.0 equiv) and Na₂HPO₄ (3.0 equiv) were added at room temperature and the reaction mixture was stirred arbitrarily for 3 h before being diluted and quenched by addition of Et₂O (10 mL) and an aqueous solution of saturated Na₂S₂O₃ (10 mL). The organic layer was washed with NaOH (1 M aq., 3 × 5mL), dried over MgSO₄, filtered and concentrated under vacuum. The crude mixture of diastereoisomeric epoxides was directly analyzed by GC chromatography using a chiral non-racemic stationary phase.

V. **Design of experiments using 2d**

Table S1. Design of experiments using 2d

2d	3	4
![2d](image1.png)	![3](image2.png)	![4](image3.png)

CuX, L*, solvent, additive
Entry	Ligand	CuX	Solvent	ee
1	A	CuClO₄	Et₂O	1%
2	A	CuI	CH₂Cl₂	29%
3	G	CuOTf	CH₂Cl₂	83%
4	G	CuClO₄	TBME	26%
5	B	CuClO₄	CH₂Cl₂	40%
6	C	CuOTf	Et₂O	56%
7	F	CuI	Et₂O	1%
8	F	CuClO₄	TBME	2%
9	B	CuI	TBME	7%
10	A	CuOTf	TBME	19%
11	F	CuOTf	CH₂Cl₂	74%
12	C	CuOTf	CH₂Cl₂	63%
13	G	CuI	Et₂O	13%
14	B	CuClO₄	Et₂O	43%
15	C	CuI	TBME	4%
16	C	CuClO₄	CH₂Cl₂	43%
17	B	CuOTf	Et₂O	51%

2nd wave

Entry	Ligand	CuX	Solvent	TMSCl (equiv)	ee
18	I	CuOTf	CHCl₃	5	49%
19	G	CuOTf	CH₂Cl₂	1	83%
20	I	CuNTf₂	Et₂O	1	70%
21	H	CuOTf	Et₂O	0	29%
22	H	CuNTf₂	CHCl₃	5	41%
23	J	CuNTf₂	CH₂Cl₂	5	35%
24	G	CuNTf₂	CHCl₃	0	40%
25	I	CuOTf	CH₂Cl₂	0	65%
26	G	CuOTf	Et₂O	5	78%
27	J	CuOTf	CHCl₃	1	29%
28	H	CuNTf₂	CH₂Cl₂	1	53%
29	J	CuNTf₂	Et₂O	0	59%
30	G	CuI	CH₂Cl₂	1	42%

3rd wave

Entry	Ligand	CuX	Solvent	TMSCl (equiv)	B(OiPr)₃ (equiv)	ee
31	G	CuOTf	CH₂Cl₂	5	0	60%
32	G	CuOTf	CH₂Cl₂	1	0	81%
33	G	CuOTf	CH₂Cl₂	0	1	44%
34	G	CuNTf₂	Et₂O	0	0	67%
35	G	CuNTf₂	Et₂O	1	0	73%
36	G	CuNTf₂	Et₂O	5	0	74%
37	G	CuNTf₂	CH₂Cl₂	5	0	72%
38	G	CuNTf₂	CH₂Cl₂	0	1	57%

Conditions: 4-phenyl-1-butene (2.5 equiv), Cp₂ZrHCl (2.0 equiv), 2d (1.0 equiv), CuL* complex as specified (0.1 equiv), additive as specified (1.0 equiv), in specified solvent (2.0 equiv).
In a flame-dried flask under inert atmosphere, Cp₂ZrHCl (309 mg, 1.2 mmol, 2.0 equiv) was added to a solution of 4-phenyl-1-butene (220 μL, 1.5 mmol 2.5 equiv) in CH₂Cl₂ (0.6 mL) under an argon atmosphere and stirred vigorously until a clear yellow solution was obtained (20–40 min). Simultaneously, in another flask under inert atmosphere, CuCl (5.7 mg, 0.06 mmol, 0.1 equiv) and (R)-D (36.0 mg, 0.06 mmol, 0.1 equiv) were dissolved in CH₂Cl₂ (3.0 mL) and stirred for 1 h at room temperature. AgClO₄ (13.8 mg, 0.066 mmol, 0.11 equiv) was added to the freshly formed Cu-ligand complex solution and stirred for 15 min. The resulting catalyst complex mixture was filtered into the freshly prepared alkylzirconocene species. After 10 min, 3-chloro-3,6-dihydro-2H-pyran (71 mg, 0.6 mmol, 1.0 equiv) was added dropwise via a microsyringe to the resulting black solution and stirred overnight. The reaction mixture was diluted with Et₂O (2 mL) and quenched with NH₄Cl (3 mL, 1 M). The mixture was partitioned and the aqueous phase was extracted with Et₂O (3 × 10 mL). The combined organic extracts were washed with NaHCO₃ (aq., sat., 30 mL) and dried over MgSO₄, filtered and concentrated under reduced pressure. Purification by flash column chromatography (SiO₂, Et₂O 0→2% in pentane) yielded the title product as a colourless oil (30.2 mg, 0.14 mmol, 25% yield, 100% conversion, 83% ee).

In a flame-dried flask under inert atmosphere, Cp₂ZrHCl (309 mg, 1.2 mmol, 2.0 equiv) was added to a solution of 4-phenyl-1-butene (220 μL, 1.5 mmol, 2.5 equiv) in CH₂Cl₂ (0.6 mL) under an argon atmosphere and stirred vigorously until a clear yellow solution was obtained (20–40 min). Simultaneously, in another flask under inert atmosphere, CuCl (5.7 mg, 0.06 mmol, 0.1 equiv) and (S,S)-A (29.7 mg, 0.06 mmol, 0.1 equiv) were dissolved in CH₂Cl₂ (3.0 mL) and stirred for 1 h at room temperature. AgOTf (17.1 mg, 0.066 mmol, 0.11 equiv) was added to the freshly formed Cu-ligand complex solution and stirred for 15 min. The resulting catalyst complex mixture was filtered into the freshly prepared alkylzirconocene species. After 10 min, 3,6-dihydro-2H-pyran-3-yl diethyl phosphate (142 mg, 0.6 mmol, 1.0 equiv) was added dropwise via a microsyringe to the resulting black solution and stirred overnight. The reaction mixture was diluted with Et₂O (2 mL) and quenched with NH₄Cl (3 mL, 1 M). The mixture was partitioned and the aqueous phase was extracted with Et₂O (3 × 10 mL). The combined organic extracts were washed with NaHCO₃ (aq., sat., 30 mL), dried over MgSO₄, filtered and concentrated under reduced pressure.
pressure. Purification by flash column chromatography (SiO$_2$, Et$_2$O 0→2% in pentane) yielded the title product as a colourless oil (22.5 mg, 0.10 mmol, 17% yield, 31% conversion, 83% ee).

1H NMR (400 MHz, CDCl$_3$) δ /ppm 7.36-7.30 (m, 2H), 7.26-7.21 (m, 3H), 5.82 (ddd, 10.4 Hz, 4.7 Hz, 2.2 Hz, 1H), 5.75 (ddd, 10.1 Hz, 4.2 Hz, 2.2 Hz, 1H), 4.17-4.13 (m, 2H), 3.90 (dd, 10.9 Hz, 4.7 Hz, 1H), 3.45 (dd, 11.1 Hz, 6.7 Hz, 1H), 2.67 (t, 7.7 Hz, 2H), 2.28-2.17 (m, 1H), 1.73-1.62 (m, 2H), 1.46-1.35 (m, 4H).

13C NMR (100 MHz, CDCl$_3$) δ /ppm 142.6, 129.3, 128.4, 128.3, 125.8, 125.7, 69.3, 65.6, 35.9, 34.6, 32.4, 31.7, 26.5.

HRMS (CI GCMS) m/z calcd for C$_{15}$H$_{20}$O [M+H]$^+$: 217.1587, found: 217.1586.

IR (ATR) (ν_{max}/cm$^{-1}$) 3027, 2929, 2856, 1496, 1454, 1117, 1087, 746, 699;

$[\alpha]_{20}^{589} = -46.3$ (c = 0.97 in CHCl$_3$, 80% ee). (From phosphate)

The enantiomeric excess of 83% was determined by HPLC [Chiralpak® IB; hexane:iPrOH 99.2:0.8; 1.0 ml.min$^{-1}$, $\lambda = 210$ nm, $t_R = 5.67$ min (minor enantiomer), $t_R = 6.07$ min (major enantiomer)].
From phosphate (83% ee) (R)- 3-(4-phenylbutyl)-3,6-dihydro-2H-pyran

From chloride (83% ee) (S)- 3-(4-phenylbutyl)-3,6-dihydro-2H-pyran

Racemic

3-(3-(4-(trifluoromethyl)phenyl)propyl)-3,6-dihydro-2H-pyran (6)

In a flame-dried flask under inert atmosphere, Cp₂ZrHCl (309 mg, 1.2 mmol, 2.0 equiv) was added to a solution of 1-allyl-4-((trifluoromethyl)benzene (250 µL, 1.5 mmol 2.5 equiv) in CH₂Cl₂ (0.6 mL) under an argon atmosphere and stirred vigorously until a clear yellow solution was obtained (20–40 min). Simultaneously, in another flask under inert atmosphere, CuCl (5.7 mg, 0.06 mmol, 0.1 equiv) and (R)-D (36.0 mg, 0.06 mmol, 0.1 equiv) were dissolved in CH₂Cl₂ (3.0 mL) and stirred for 1 h at room temperature. AgClO₄ (13.8 mg, 0.066 mmol, 0.11 equiv Perchlorates are explosive and should be handled with caution) was added to the freshly formed Cu-ligand complex solution and stirred for 15 min. The resulting catalyst complex mixture was filtered into the freshly
prepared alkylzirconocene species. After 10 min, 3-chloro-3,6-dihydro-2H-pyran (71 mg, 0.6 mmol, 1.0 equiv) was added dropwise via a microsyringe to the resulting black solution followed by the dropwise addition of B(OiPr)_3 (140 μL, 0.6 mmol, 1.0 equiv). The reaction mixture was stirred overnight. The reaction mixture was diluted with Et_2O (2 mL) and quenched with NH_4Cl (3 mL, 1 M). The mixture was partitioned and the aqueous phase was extracted with Et_2O (3 × 10 mL). The combined organic extracts were washed with NaHCO_3 (aq., sat., 30 mL), dried over MgSO_4, filtered and concentrated under reduced pressure. Purification by flash column chromatography (SiO_2, Et_2O 0→2% in pentane) yielded the title product as a colourless oil (28.5 mg, 0.11 mmol, 18% yield, 75% ee).

^1H NMR (400 MHz, CDCl_3) δH/ppm 7.54 (d, 8.3 Hz, 2H), 7.29 (d, 7.9 Hz, 2H), 5.82-5.69 (m, 2H), 4.16-4.05 (m, 2H), 3.86 (dd, 11.4 Hz, 4.8 Hz, 1H), 3.43 (dd, 11.4 Hz, 6.5 Hz, 1H), 2.68 (t, 7.6 Hz, 2H), 2.27-2.17 (m, 1H), 1.76-1.65 (m, 2H), 1.45-1.35 (m, 2H).

^13C NMR (100 MHz, CDCl_3) δC/ppm 146.4, 129.3, 128.8, 128.7, 126.2, 125.3, 125.2, 69.1, 65.6, 35.9, 34.5, 32.1, 28.4.
19F NMR (377 MHz, CDCl$_3$) δ_F/ppm -62.28 (1F, s).

HRMS (EI/FI) m/z calcd for C$_{15}$H$_{17}$OF$_3$ [M]$^+$:270.1231, found:270.1232.

IR (ATR) (ν_{\max}/cm$^{-1}$) 2933, 1326, 1164, 1122, 1068, 1019, 908, 733.

$[\alpha]_{20}^{\text{D}}$ = +30.6 (c=0.78 in CHCl$_3$, 75% ee).

GC analysis of the crude mixture of epoxides derived from 6 indicated an enantiomeric excess of 75% (Hydrodex 6-TBDM, 60–170 °C at 1 °C/min, 170 °C for 100 min, 10 psi); major enantiomer t_R = 135.5, 149.8 min; minor enantiomer t_R = 133.4, 164.8 min.

Racemic
3-(6-chlorohexyl)-3,6-dihydro-2H-pyran (7)

In a flame-dried flask under inert atmosphere, Cp₂ZrHCl (309 mg, 1.2 mmol, 2.0 equiv) was added to a solution of 6-chlorohex-1-ene (200 μL, 1.5 mmol 2.5 equiv) in CH₂Cl₂ (0.6 mL) under an argon atmosphere and stirred vigorously until a clear yellow solution was obtained (20-40 min). Simultaneously, in another flask under inert atmosphere, CuCl (5.7 mg, 0.06 mmol, 0.1 equiv) and (R)-D (36.0 mg, 0.06 mmol, 0.1 equiv) were dissolved in CH₂Cl₂ (3.0 mL) and stirred for 1 h at room temperature. AgClO₄ (13.8 mg, 0.066 mmol, 0.11 eq Perchlorates are explosive and should be handled with caution) was added to the freshly formed Cu-ligand complex solution and stirred for 15 min. The resulting catalyst complex mixture was filtered into the freshly prepared alkylzirconocene species. After 10 min, 3-chloro-3,6-dihydro-2H-pyran (71 mg, 0.6 mmol, 1.0 equiv) was added dropwise via a microsyringe to the resulting black solution followed by the dropwise addition of B(OiPr)₃ (140 μL, 0.6 mmol, 1.0 equiv). The reaction mixture was stirred overnight. The reaction mixture was diluted with Et₂O (2 mL) and quenched with NH₄Cl (3 mL, 1M). The mixture was partitioned and the aqueous phase was extracted with Et₂O (3 × 10 mL). The combined organic extracts were washed with NaHCO₃ (aq., sat, 30 mL), dried over MgSO₄, filtered and concentrated under reduced pressure. Purification by flash column chromatography (SiO₂, Et₂O 0→2% in pentane) yielded the title product as a colourless oil (40.5 mg, 0.20 mmol, 33% yield, 77% ee).

¹H NMR (400 MHz, CDCl₃) δH /ppm 5.80-5.73 (m, 1H), 5.73-5.67 (m, 1H), 4.16-4.05 (m, 2H), 3.87 (dd, 10.9 Hz, 6.6 Hz, 1H), 3.54 (t, 6.8 Hz, 2H), 3.41 (dd, 11.1 Hz, 4.9 Hz, 1H), 2.24-2.15 (m, 1H), 1.78 (tt, 14.8 Hz, 6.9 Hz, 2H), 1.50-1.40 (m, 2H), 1.39-1.30 (m, 6H).
\textbf{13C NMR} (100 MHz, CDCl$_3$) δ/ppm 129.2, 125.8, 69.3, 65.6, 45.1, 34.6, 32.6, 32.4, 29.1, 26.8, 26.7.

\textbf{HRMS (ESI)} m/z calcd for C$_{11}$H$_{19}$OClNa [M+Na]$^+$: 225.10166, found: 225.10132.

\textbf{IR (ATR)} (ν_{max}/cm$^{-1}$) 2928, 2855, 1458, 1142, 1088.

$[\alpha]_{20}^{2589} = +46.6$ (c=1.11 in CDCl$_3$, 77% ee)

GC analysis of the crude mixture of epoxides derived from 7 indicated an enantiomeric excess of 77\% (Hydrodex 6-TBDM, 60–170 °C at 1 °C/min, 170 °C for 70 min, 10 psi); major enantiomer t_R = 114.8, 122.9 min; minor enantiomer t_R = 115.9, 126.2 min.

\textbf{Racemic}
3-(2-cyclohexylethyl)-3,6-dihydro-2H-pyran (8)

In a flame-dried flask under inert atmosphere, Cp₂ZrHCl (309 mg, 1.2 mmol, 2.0 equiv) was added to a solution of vinylcyclohexane (210 μL, 1.5 mmol 2.5 equiv) in CH₂Cl₂ (0.6 mL) under an argon atmosphere and stirred vigorously until a clear yellow solution was obtained (20-40 min). Simultaneously, in another flask under inert atmosphere, CuCl (5.7 mg, 0.06 mmol, 0.1 equiv) and (R)-D (36.0 mg, 0.06 mmol, 0.1 equiv) were dissolved in CH₂Cl₂ (3.0 mL) and stirred for 1 h at room temperature. AgClO₄ (13.8 mg, 0.066 mmol, 0.11 equiv) was added to the freshly formed Cu-ligand complex solution and stirred for 15 min. The resulting catalyst complex mixture was filtered into the freshly prepared alkylzirconocene species. After 10 min, 3-chloro-3,6-dihydro-2H-pyran (71 mg, 0.6 mmol, 1.0 equiv) was added dropwise via a microsyringe to the resulting black solution followed by the dropwise addition of B(OiPr)₃ (140 μL, 0.6 mmol, 1.0 equiv). The reaction mixture was stirred overnight. The reaction mixture was diluted with Et₂O (2 mL) and quenched with NH₄Cl (3 mL, 1 M). The mixture was partitioned and the aqueous phase was extracted with Et₂O (3 × 10 mL). The combined organic extracts were washed with NaHCO₃ (aq., sat., 30 mL), dried over MgSO₄, filtered and concentrated under reduced pressure. Purification by flash column chromatography (SiO₂, Et₂O 0→2% in pentane) yielded the title product as a colourless oil (23.8 mg, 0.12 mmol, 20% yield, 88% ee)

¹H NMR (400 MHz, CDCl₃) δH/ppm 5.71 (ddd, 10.3 Hz, 5.5 Hz, 2.3 Hz, 1H), 5.62 (ddd, 10.3 Hz, 5.2 Hz, 2.2 Hz, 1H), 4.04-4.00 (m, 2H), 3.79 (ddd, 11.0 Hz, 4.8 Hz, 0.4 Hz, 1H), 3.31 (dd, 11.3 Hz, 6.9 Hz, 1H), 2.14-2.03 (m, 1H) 1.69-1.52 (m, 4H), 1.31-1.06 (m, 9H), 0.88-0.73 (m, 2H).
13C NMR (100 MHz, CDCl$_3$) δC /ppm 129.4, 125.7, 69.4, 65.6, 37.9, 34.9, 34.5, 33.4, 29.8, 26.7, 26.4.

HRMS (Cl GCMS) m/z calcd for [M]$^+$: 194.1671, found: 194.1668.

IR (ATR) (ν_{max}/cm$^{-1}$) 3029, 2919, 2850, 1448, 1224, 1089, 886, 701, 686.

[α]$^20_{589} = +55.6$ (c = 1.07 in CHCl$_3$, 88% ee).

GC analysis of the crude mixture of epoxides derived from 8 indicated an enantiomeric excess of 88% (Hydrodex 6-TBDM, 60–165 °C at 1 °C/min, 165 °C for 70 min, 10 psi); major enantiomer t_R = 100.8, 105.2 min; minor enantiomer t_R = 100.2, 109.1 min.
In a flame-dried flask under inert atmosphere, Cp₂ZrHCl (412 mg, 1.6 mmol, 2.0 equiv) was added to a solution of allyltrimethylsilane (320 µL, 2.0 mmol 2.5 equiv) in CH₂Cl₂ (0.8 mL) under an argon atmosphere and stirred vigorously until a clear yellow solution was obtained (20-40 min). Simultaneously, in another flask under inert atmosphere, CuCl (7.6 mg, 0.08 mmol, 0.1 equiv) and (R)-D (48.0 mg, 0.08 mmol, 0.1 equiv) were dissolved in CH₂Cl₂ (4.0 mL) and stirred for 1 h at room temperature. AgClO₄ (18.2 mg, 0.088 mmol, 0.11 equiv) was added to the freshly formed Cu-ligand complex solution and stirred for 15 min. The resulting catalyst complex mixture was filtered into the freshly prepared alkylzirconocene species. After 10 min, 3-chloro-3,6-dihydro-2H-pyran (95 mg, 0.8 mmol, 1.0 equiv) was added dropwise via a microsyringe to the resulting black solution followed by the dropwise addition of B(OiPr)₃ (180 µL, 0.8 mmol, 1.0 equiv). The reaction mixture was stirred overnight. The reaction mixture was diluted with Et₂O (2 mL) and quenched with NH₄Cl (3 mL, 1 M). The mixture was partitioned and the aqueous phase was extracted with Et₂O (3 × 10 mL). The combined organic extracts were washed with NaHCO₃ (aq., sat., 30 mL), dried over MgSO₄, filtered and concentrated under reduced pressure. Purification by flash column chromatography (SiO₂, Et₂O) yielded the title product as a volatile colourless oil (13.1 mg, 0.066 mmol, 8% yield, 93% ee).

1H NMR (400 MHz, CDCl₃) δH/ppm 5.77(ddd, 10.3, 4.5, 2.1 Hz, 1H), 5.69 (ddd, 10.3, 4.5, 2.2 Hz, 1H), 4.13-4.08 (m, 2H), 3.86 (dd, 10.9, 4.8 Hz, 1H), 3.39 (dd, 10.9, 6.9 Hz, 1H), 2.26-2.18 (br. m, 1H), 1.38-1.32 (m, 4H), 0.53-0.45 (m, 2H), -0.02 (s, 9H).

13C NMR (100 MHz, CDCl₃) δC/ppm 129.5, 125.8, 69.4, 65.8, 21.3, 17.0, -1.5.
HRMS (EI/FI) \(m/z \) calc. for \(\text{C}_{11}\text{H}_{22}\text{O}_5\text{Si}[M]^+ \): 198.1440, found: 198.1446.

IR (ATR) (\(\nu_{\text{max}}/\text{cm}^{-1} \)) 2953, 2920, 2856, 1248, 1109, 1089, 861, 836.

\[\alpha \]^{20}_{589} = +33.3 (c=1.01 in CDCl\(_3\), 93\% ee).

GC analysis of the crude mixture of epoxides derived from 9 indicated an enantiomeric excess of 93\% (Hydrodex 6-TBDM, 60–170 °C at 1 °C/min, 170 °C for 50 min, 10 psi); major enantiomer \(t_R = 76.6, 81.6 \text{ min} \); minor enantiomer \(t_R = 75.7, 86.2 \text{ min} \).
VII. Side-product

3,3',6,6'-tetrahydro-2H,2'H-3,3'-bipyran (11)

In a flame-dried flask under inert atmosphere, Cp₂ZrHCl (309 mg, 1.2 mmol, 2.0 equiv) was added to a solution of 4-phenyl-1-butene (230 μL, 1.5 mmol 2.5 equiv) in CH₂Cl₂ (0.6 mL) under an argon atmosphere and stirred vigorously until a clear yellow solution was obtained (20-40 min). Simultaneously, in another flask under inert atmosphere, CuCl (5.7 mg, 0.06 mmol, 0.1 equiv) and (R)-D (36.0 mg, 0.06 mmol, 0.1 equiv) were dissolved in CH₂Cl₂ (3.0 mL) and stirred for 1 h at room temperature. AgClO₄ (13.8 mg, 0.066 mmol, 0.11 equiv) was added to the freshly formed Cu-ligand complex solution and stirred for 15 min. The resulting catalyst complex mixture was filtered into the freshly prepared alkylzirconocene species. After 10 min, 3-chloro-3,6-dihydro-2H-pyran (71 mg, 0.6 mmol, 1.0 equiv) was added dropwise via a microsyringe to the resulting black solution followed by the dropwise addition of B(OiPr)₃ (140 μL, 0.6 mmol, 1.0 equiv). The reaction mixture was stirred overnight. The reaction mixture was diluted with Et₂O (2 mL) and quenched with NH₄Cl (3 mL, 1 M). The mixture was partitioned and the aqueous phase was extracted with Et₂O (3 × 10 mL). The combined organic extracts were washed with NaHCO₃ (aq., sat., 30 mL), dried over MgSO₄, filtered and concentrated under reduced pressure. Purification by flash column chromatography (SiO₂, Et₂O 0→2% in pentane) yielded the enantioenriched product as a colourless oil (30.2 mg, 0.14 mmol, 23%) and the title dimer side-product (SiO₂, Et₂O 20% in pentane) as a yellow oil (30.0 mg, 0.36 mmol, 60% yield)

¹H NMR (400 MHz, CDCl₃) δH /ppm 5.84-5.75 (m, 4H), 4.12-4.06 (m, 4H), 3.84 (dd, J= 11.5, 4.3 Hz, 1H), 3.75(dd, J= 11.5, 4.4 Hz, 1H), 3.68 (dd, J= 11.2, 4.7 Hz, 1H), 3.64 (dd, J= 11.5, 5.6 Hz, 1H), 2.35-2.25 (m, 2H).
\(^{13}\text{C NMR}\) (100 MHz, CDCl\(_3\)) \(\delta_c/\text{ppm}\) 127.7, 127.3, 126.8, 67.4, 67.0, 66.2, 65.8, 37.5, 37.2.

HRMS (ESI) \(m/z\) calcd for C\(_{10}\)H\(_{15}\)O\(_2\) [M+H]+: 167.10666, found: 167.10675.

IR (ATR) \(\nu_{\text{max}}/\text{cm}^{-1}\): 3031, 2963, 2929, 2855, 2820, 1087, 1047, 1017.

\([\alpha]^{20}_{D} = -1.8\) (c = 1.02 in CHCl\(_3\)).

Racemic synthesis of \((3R,3'R)-3,3',6,6'-tetrahydro-2H,2'H-3,3'-bipyran\) (11)

In a flame-dried flask under inert atmosphere, Cp\(_2\)ZrHCl (206 mg, 0.7 mmol, 2.0 equiv) was added to a solution of alkene (150 \(\mu\)L, 1.0 mmol 2.5 equiv) in CH\(_2\)Cl\(_2\) (0.4 mL) under an argon atmosphere and stirred vigorously until a clear yellow solution was obtained (20-40 min). Simultaneously, in another flask under inert atmosphere, CuCl (47 mg, 0.4 mmol, 0.1 equiv) and \((S,S,S)\)-Feringa Ligand (10.8 mg, 0.02 mmol, 0.05 equiv) and \((R,R,R)\)-Feringa Ligand (10.8 mg, 0.02 mmol, 0.05 equiv) were dissolved in CH\(_2\)Cl\(_2\) (2.0 mL) and stirred for 1 h at room temperature. AgClO\(_4\) (9.1 mg, 0.044 mmol, 0.11 equiv Perchlorates are explosive and should be handled with caution) was added to the freshly formed Cu-ligand complex solution and stirred for 15 min. The resulting catalyst complex mixture was filtered into the freshly prepared alkylzirconocene species. After 10 min, 3-chloro-3,6-dihydro-2\(H\)-pyran (47 mg, 0.4 mmol, 1.0 equiv) was added dropwise via a microsyringe to the resulting black solution followed by the dropwise addition of B(OiPr)\(_3\) (92 \(\mu\)L, 0.4 mmol, 1.0 equiv). The reaction mixture was stirred overnight. The reaction mixture was diluted with Et\(_2\)O (2 mL) and quenched with NH\(_4\)Cl (3 mL, 1 M). The mixture was partitioned and the aqueous phase was extracted with Et\(_2\)O (3 \(\times\) 10 mL). The combined organic extracts were washed with NaHCO\(_3\) (aq., sat., 30 mL), dried over MgSO\(_4\), filtered and concentrated under reduced pressure. Purification by flash column chromatography (SiO\(_2\), Et\(_2\)O 20% in pentane) yielded the racemic title product.
VIII. Mechanistic experiments

NMR experiments were carried out on Bruker AVB400 (400/100 MHz), DRX500 (500/125 MHz), AVB500 (500/125 MHz) or AVC500 (500/125 MHz) spectrometers. Processing was performed on Topspin 3.2. Kinetic NMR experiments were performed by pre-tuning, locking and shimming the NMR sample before adding the substrate. No re-locking and re-shimming was performed after the addition of the substrate to facilitate fast data collection. Kinetics integrations were calibrated on the assumption that at any time, the sum of starting material and products was 100%. All solvents were dried and distilled if necessary (CDCl₃) as well as degassed under a flow of argon for a minimum of 30 min. The solvents were stored at 0 °C, in a schlenk on molecular sieves, protected from light.

3-chloro-3,6-dihydro-2H-pyran (2a)

Kinetic NMR

In a flame-dried flask under inert atmosphere, ethylene gas (1 atm) was bubble through a solution of Cp₂ZrHCl (103 mg, 0.4 mmol, 2.0 equiv) in CD₂Cl₂ (0.4 mL) under an argon atmosphere and stirred vigorously until a clear yellow solution was obtained (15 min). Simultaneously, in another flask under inert atmosphere, CuCl (1.9 mg, 0.02 mmol, 0.1 equiv) and (R)-D (12.0 mg, 0.02 mmol, 0.1 equiv) were dissolved in CD₂Cl₂ (1.0 mL) and stirred for 1 h at room temperature. AgClO₄ (4.6 mg, 0.022 mmol, 0.11 equiv) was added to the freshly formed Cu-ligand complex solution and stirred for 15 min. The resulting catalyst complex mixture was filtered into a flame-dried NMR tube adapted with an NMR septa and parafilmed. Then the freshly prepared alkylzirconocene species was added to the NMR tube and the tube was thoroughly shaken to obtain an homogenous black solution. 3-chloro-3,6-dihydro-2H-pyran 2a (24 mg, 0.2 mmol, 1.0 equiv) was added via a microsyringe to the NMR tube followed by B(OiPr)₃ (46 μL, 0.2 mmol, 1.0 equiv). The reaction mixture was shaken vigorously (upside-down mixing) and NMRs were recorded at regular intervals.
Kinetic ee

In a flame-dried flask under inert atmosphere, Cp₂ZrHCl (309 mg, 1.2 mmol, 2.0 equiv) was added to a solution of 4-phenyl-1-butene (230 μL, 1.5 mmol 2.5 equiv) in CH₂Cl₂ (0.6 mL) under an argon atmosphere and stirred vigorously until a clear yellow solution was obtained (20–40 min). Simultaneously, in another flask under inert atmosphere, CuCl (5.7 mg, 0.06 mmol, 0.1 equiv) and (R)-D (36.0 mg, 0.06 mmol, 0.1 equiv) were dissolved in
CH$_2$Cl$_2$ (3.0 mL) and stirred for 1 h at room temperature. AgClO$_4$ (13.8 mg, 0.066 mmol, 0.11 eq) was added to the freshly formed Cu-ligand complex solution and stirred for 15 min. The resulting catalyst complex mixture was filtered into the freshly prepared alkylzirconocene species. After 10 min, 3-chloro-3,6-dihydro-2H-pyran 2a (71 mg, 0.6 mmol, 1.0 equiv) was added dropwise via a microsyringe to the resulting black solution followed by the dropwise addition of B(OiPr)$_3$ (140 µL, 0.6 mmol, 1.0 equiv). The reaction mixture was stirred overnight. Aliquots were taken regularly and analysed by HPLC and GC to obtain the ee of product 5 and starting material 2a.

GC traces of 2a

The enantiomeric excess of 3-chloro-3,6-dihydro-2H-pyran 2a was determined by GC [Hydrodex 6-TBDM, 60–120 °C at 1 °C/min, 10 psi, injector temperature 250 °C, detector temperature 300 °C; t$_R$= 34.8 min (major enantiomer), t$_R$ = 39.0 min (minor enantiomer)].
Overnight

Racemic

HPLC traces of 5

The enantiomeric excess of the product 4 was determined by HPLC [Chiralpak® IB; hexane: iPrOH 99.2:0.8; 1.0 ml.min⁻¹, λ= 210 nm, tₚ = 5.67 min (minor enantiomer), tᵣ = 6.07 min (major enantiomer)].
3,6-dihydro-2H-pyran-3-yl diethyl phosphate (2d)

Kinetic NMR

![Chemical Structure](image)

In a flame-dried flask under inert atmosphere, ethylene gas (1 atm) was bubble through a solution of Cp₂ZrHCl (103 mg, 0.4 mmol, 2.0 equiv) in CD₂Cl₂ (0.4 mL) under an argon atmosphere and stirred vigorously until a clear yellow solution was obtained (15 min). Simultaneously, in another flask under inert atmosphere, CuCl (1.9 mg, 0.02 mmol, 0.1 equiv) and (S, S)-A (9.9 mg, 0.02 mmol, 0.1 equiv) were dissolve in CD₂Cl₂ (1.0 mL) and stirred for 1 h at room temperature. AgOTf (5.7 mg, 0.022 mmol, 0.11 equiv) was added to the freshly formed Cu-ligand complex solution and stirred for 15 min. The resulting catalyst complex mixture was filtered into a flame-dried NMR tube adapted with an NMR septa. Then the freshly prepared alkylzirconocene species was added to the NMR tube and the tube was thoroughly shaken to obtain a homogenous black solution. 3,6-dihydro-2H-pyran-3-yl diethyl phosphate 2d (27 μL, 0.2 mmol, 1.0 equiv) was added via a microsyringe to the NMR tube. The reaction mixture was shaken vigorously (upside-down mixing) and NMRs were recorded at regular intervals.
In a flame-dried flask under inert atmosphere, Cp$_2$ZrHCl (309 mg, 1.2 mmol, 2.0 equiv) was added to a solution of 4-phenyl-1-butene (230 μL, 1.5 mmol, 2.5 equiv) in CH$_2$Cl$_2$ (0.6 mL) under an argon atmosphere and stirred vigorously until a clear yellow solution was obtained (20–40 min). Simultaneously, in another flask under inert atmosphere, CuCl (5.7 mg, 0.06 mmol, 0.1 equiv) and (S,S)-A (29.7 mg, 0.06 mmol, 0.1 equiv) were dissolved in CH$_2$Cl$_2$ (3.0 mL) and stirred for 1 h at room temperature. AgOTf (17.1 mg, 0.066 mmol, 0.11 equiv) was added to the freshly formed Cu-ligand complex solution and stirred for 15 min. The resulting catalyst complex mixture was filtered into the freshly prepared alkylzirconocene species. After 10 min, 3,6-dihydro-2H-pyran-3-yl diethyl phosphate 2d (140 mg, 0.6 mmol, 1.0 equiv) was added dropwise via a microsyringe to the resulting black solution and stirred overnight. Aliquots were taken regularly and analysed by HPLC to obtain the ee of product 5.
HPLC traces of 5

The enantiomeric excess of the product was determined by HPLC [Chiralpak® IB; hexane:iPrOH 99.2:0.8; 1.0 ml.min⁻¹, λ= 210 nm, t_R = 5.67 min (minor enantiomer), t_R = 6.07 min (major enantiomer)].

10 min

30 min
1.2 h

2 h

3 h

5 h

6 h
7 h

8 h

9 h

Racemic

VI. References

[1] S. J. L. S. L. Buchwald, R. B. Nielsen, B. T. Watson, and S. M. King, *Org. Synth.* 1993, 71, 77-82.

[2] R. G. Salomon, J. K. Kochi, *J Am Chem Soc* 1973, 95, 3300-3310.

[3] P. M. C. Roth, University of Oxford 2014.

[4] M. H. Katcher, A. G. Doyle, *J Am Chem Soc* 2010, 132, 17402-17404.

[5] Y. Onishi, Y. Nishimoto, M. Yasuda, A. Baba, *Org Lett* 2011, 13, 2762-2765.
[6] H. Grugel, T. Minuth, M. M. K. Boysen, *Synthesis-Stuttgart* **2010**, 3248-3258.

[7] K. Yasui, K. Fugami, S. Tanaka, Y. Tamaru, *J Org Chem* **1995**, *60*, 1365-1380.