Monitoramento da qualidade da água utilizada nos serviços de diálise móvel em unidades de tratamento intensivo no município do Rio de Janeiro
Monitoring the quality of the water used in mobile dialysis services in intensive care units in the city of Rio de Janeiro

Autores
Priscila Rodrigues de Jesus¹
Joana Angélica Barbosa Ferreira¹
Juliana dos Santos Carmo¹
Sheila Regina Gomes Albertino¹
Santos Alves Vicentini Neto¹
Lisia Maria Gobbo dos Santos¹
Helena Pereira da Silva Zamith¹
¹ Fundação Oswaldo Cruz, Instituto Nacional de Controle de Qualidade em Saúde, Rio de Janeiro, RJ, Brasil.

Resumo
Introdução: Monitorar a qualidade da água nos serviços de diálise móvel (DM), avaliando os pontos críticos e caracterizando os riscos inerentes ao processo, é fundamental para evitar riscos à saúde do paciente. Este estudo avaliou a qualidade microbiológica da água na DM de 36 hospitais com tratamento intensivo no município do Rio de Janeiro. Métodos: Foram coletadas 204 amostras de água dos pontos de entrada da rede (REDE), pós-osmose (PO) e solução de diálise (SD). As amostras foram avaliadas quanto à contagem de bactérias heterotróficas, pesquisa de patógenos, presença de endotoxinas e teor de alumínio. Resultados: A contaminação bacteriana, em 3 pontos de coleta nos 36 hospitais, foi de 30% (32/108), sendo 42% provenientes da SD, 31% da PO e 17% da REDE, com presença de Pseudomonas aeruginosa, Stenotrophomonas maltophilia, Burkholderia cepacia e Ralstonia pickettii nos 3 pontos. Concentrações de endotoxina acima de 0,25 EU/mL ocorreram em 77% das amostras (17/22) analisadas na PO. No teor de alumínio, os valores acima de 0,01 mg/L foram apresentados em 47% (7/15) das amostras da PO e 27% (4/15) das amostras da REDE. Não existe uma legislação específica para água utilizada na DM; logo, foram utilizados os limites da RDC da Agência Nacional de Vigilância Sanitária (Anvisa) 11/2014, que regulamenta os serviços de hemodiálise convencional. Conclusão: Os resultados ressaltam a importância da avaliação da qualidade da água nos serviços de DM para garantir a segurança do paciente e subsidiar o monitoramento sanitário desse processo como um promotor de saúde.

Descritores: Soluções para Diálise; Microbiologia; Dialise Renal; Soluções para Hemodialise.

Abstract
Introduction: Monitoring water quality in mobile dialysis (MD) services, assessing critical points and characterizing the risks inherent in the process, is essential to avoid risks to the patient’s health. This study evaluated the microbiological quality of water in the MD of 36 hospitals with intensive treatment in the city of Rio de Janeiro. Methods: 204 water samples were collected from the points of entry to the network (NET), post-osmosis (PO) and dialysis solution (DS). The samples were evaluated for heterotrophic bacteria count, pathogen search, presence of endotoxins and aluminum content. Results: Bacterial contamination at 3 collection points in 36 hospitals was 30% (32/108); 42% from DS, 31% from PO and 17% from NET, with the presence of Pseudomonas aeruginosa, Stenotrophomonas maltophilia, Burkholderia cepacia and Ralstonia pickettii in the 3 points. Endotoxin concentrations above 0.25 EU/mL occurred in 77% of the samples (17/22) analyzed in the PO. In the aluminum content, values above 0.01 mg/L were presented in 47% (7/15) of PO samples and 27% (4/15) of NET samples. There is no specific legislation for water used in the MD; therefore, the limits of the RDC of the National Health Surveillance Agency (Anvisa) 11/2014 were used; which regulates conventional hemodialysis services. Conclusion: The results highlight the importance of evaluating water quality in MD services to ensure patient safety and support the sanitary monitoring of this process as a healthcare promoter.

Keywords: Dialysis Solutions; Microbiology; Renal Dialysis; Hemodialysis Solutions.
INTRODUÇÃO

A hemodiálise (HD) é um tratamento essencial a pacientes com doença renal crônica (DRC) ou insuficiência renal aguda (IRA), que ocorre quando os rins são incapazes de remover os resíduos provenientes do metabolismo celular ou de realizar suas funções reguladoras. Em geral, pacientes acometidos por IRA ou nos casos de DRC com necessidade de internação são submetidos a diálise móvel (DM), que ocorre no ambiente intra-hospitalar.

A DM é um processo feito numa máquina de HD ligada a um aparelho de osmose portátil, que pode ser direcionada às enfermarias ou unidades de terapia intensiva. A máquina é ligada à distribuição de água da rede do hospital para que seja realizado o procedimento.

Durante o processo, a máquina de HD recebe, por um acesso vascular, o sangue do paciente, que é impulsionado por uma bomba até o dialisador, onde é exposto à solução de diálise (SD) em fluxo contra paralelo por meio de uma membrana semipermeável que remove o líquido e as toxinas em excesso por difusão e devolve o sangue depurado para o paciente, além de restaurar o equilíbrio ácido-base sanguíneo e hidroeletrolítico.

A água é essencial na HD para diluição do concentrado polieletrolítico para hemodiálise (CPHD) e obtenção da SD. Em uma sessão de HD convencional, utiliza-se aproximadamente 120 L de água purificada misturados em proporções adequadas ao CPHD para depuração do sangue.

A abordagem microbiológica da água foi considerada, quando demonstrado que os altos níveis de bactérias Gram-negativas na SD eram também responsáveis pelas reações pirogênicas e casos de bacteremia em pacientes, sendo as espécies da classe Pseudomonadales as de maior ocorrência, pois podem crescer nos circuitos de água e nas máquinas de HD, e subsequentemente contaminar a SD. Além disso, as endotoxinas provenientes de bactérias Gram-negativas podem penetrar na membrana semipermeável do dialisador.

Os serviços de HD convencional são regulamentados pela Agência Nacional de Vigilância Sanitária (Anvisa) por meio da Resolução da Diretoria Colegiada (RDC) nº 11, de 13 de março 2014, que dispõe sobre os Requisitos de Boas Práticas de Funcionamento para os Serviços de Diálise e trata da atenção ao paciente, da estrutura necessária para a boa realização do serviço e define os parâmetros de qualidade a serem cumpridos para água tratada para HD.

Os serviços de DM não têm uma legislação federal específica que oriente o monitoramento da qualidade do serviço prestado. Consequentemente, os parâmetros descritos na Farmacopeia Brasileira para água purificada podem ser utilizados. A Gerência Geral de Tecnologia e Serviços de Saúde (GGTES) da Anvisa publicou a Nota Técnica n° 006/2009, que tem por objetivo estabelecer parâmetros para a execução de procedimentos dialíticos em ambiente hospitalar fora dos serviços de diálise e preconiza a utilização de água tratada em conformidade com os parâmetros de potabilidade estabelecidos pela legislação vigente.

O controle da composição química da água para HD faz-se necessário devido a intercorrências associadas à intoxicação dos pacientes com compostos de cálcio e magnésio, flúor, cloro, alumínio entre outros presentes na água, podendo ocasionar efeitos colaterais como náuseas, vômitos e tonturas durante o processo de HD.

Os critérios de qualidade referentes ao monitoramento da água tratada estão relacionados à prevenção da ocorrência de bacteremias e reações pirogênicas. É necessário aprimorar o monitoramento da água tratada para DM a fim de conhecer possíveis contaminações microbiológicas e químicas e estabelecer estratégias de controle específicas em relação à contaminação do sistema.

Muitos esforços têm sido realizados no Brasil a fim de nortear a qualidade do serviço de DM prestado, até que haja a elaboração de uma legislação que regulamente esse serviço.

Estudos com a finalidade de avaliar a qualidade da água em serviços de DM são essenciais para subsidiar na Anvisa a definição de parâmetros específicos para o controle da qualidade da água utilizada, pois uma regulamentação ampla e aplicável a todo o território nacional tornaria mais eficaz o trabalho realizado pelos órgãos sanitários de fiscalização.

Dessa forma, o objetivo deste estudo foi avaliar a qualidade da água utilizada nos serviços de DM em unidades hospitalares de tratamento intensivo no município do Rio de Janeiro.

METODOLOGIA

Para a realização deste estudo, foram feitas visitas às unidades hospitalares em acompanhamento de inspeções realizadas por profissionais da Vigilância Sanitária (VISA) Estadual do Rio de Janeiro e do Instituto Nacional de Controle de Qualidade em Saúde (INCQS),
unidade integrante da Fundação Oswaldo Cruz (Fiocruz) localizada no Rio de Janeiro. A partir dessas visitas, foi possível coletar o material a ser analisado em laboratório. A participação nas inspeções e a coleta do material foram consentidas por todos os profissionais envolvidos no processo, e foram preservadas sua identidade e a localização das unidades hospitalares.

Foram coletadas 204 amostras de água em 36 unidades hospitalares localizadas no município do Rio de Janeiro no período de fevereiro de 2017 a outubro de 2018.

A manutenção das máquinas portáteis de osmose e de HD do serviço de DM realizado nas unidades hospitalares era terceirizada. A limpeza das máquinas ocorria semanalmente por empresa terceirizada e as membranas filtrantes utilizadas eram descartáveis. As máquinas de DM eram específicas de cada unidade hospitalar, no entanto poderiam transitar entre enfermarias e unidades de tratamento intensivo (UTIs) dentro da unidade.

Durante o processo de DM, o equipamento de osmose portátil era ligado a um ponto de água potável do hospital próximo ao paciente, e a água, após ser submetida ao tratamento de osmose reversa, era direcionada à máquina para solubilizar o CPHD e ser realizado o processo de HD.

As amostras para as análises microbiológicas foram provenientes de três pontos de coleta: 1) água da entrada da rede (água de distribuição do hospital); 2) pós-osmose (água após o tratamento por osmose reversa portátil); e 3) solução de diálise (solução pronta para uso). Para quantificação de alumínio, foram coletadas em tubos de fundo cônico previamente preparados com adição de ácido nítrico 1%.

As amostras foram transportadas em caixas térmicas com temperatura controlada e analisadas no mesmo dia da coleta.

ANÁLISE MICROBIOLÓGICA, QUANTIFICAÇÃO DE ENDO-TOXINAS E DO TEOR DE ALUMÍNIO DAS AMOSTRAS

Para a contagem de bactérias heterotróficas, foi realizado método de plaqueamento em profundidade (pour plate), com incubação por 48 h à temperatura de 32,5°C ± 2,5°C. Para a pesquisa de coliformes totais e *Escherichia coli*, foi utilizada incubação por até 48 h a 43°C ± 1°C em caldo Mac Conkey. A quantificação de endotoxinas foi realizada pelo teste *in vitro* do lisado de amebócitos de *Limulus* (LAL) pelo método de gelificação. Todos os ensaios realizados estão descritos na Farmacopeia Brasileira11.

A identificação fenotípica dos microrganismos isolados nas amostras de água foi realizada de acordo com a metodologia descrita por Jorgensen et al. (2015)9.

A quantificação do teor de alumínio foi realizada por espectrometria de absorção com forno de grafite, de acordo com a metodologia descrita pela American Public Health Association (APHA)16.

RESULTADOS

Foram monitoradas 36 unidades hospitalares, sendo 39% públicas e 61% privadas.

Nos ensaios microbiológicos, das 108 amostras coletadas nos três pontos (entrada da rede, pós-osmose e SD), 30% apresentaram contagem de bactérias heterotróficas acima dos limites preconizados pela RDC 11/2014 de 500 UFC/mL e teor máximo de alumínio de 0,01 mg/L10. Para a água de entrada da rede, os limites utilizados foram: ausência de *Escherichia coli* e coliformes totais em 100 mL, contagem de bactérias heterotróficas 500 UFC/mL e teor máximo de alumínio de 0,2 mg/L segundo a Portaria de Consolidação nº 5, de 28 de setembro de 201717.
Tabela 1: Contagem de bactérias heterotróficas nas amostras de água obtidas em 3 diferentes pontos de coleta em 36 unidades hospitalares do município do Rio de Janeiro nos serviços de diálise móvel nos anos de 2017 e 2018. Resultados expressos em número de unidades formadoras de colônia (UFC)/mL

Unidade hospitalar	Entrada da rede	Pós-osmose	Solução de diálise
1	<10	<10	1,5 x 10³
2	<10	<10	1,0 x 10³
3	<10	<10	<10
4	1,9 x 10³	2,3 x 10⁴	2,0 x 10³
5	<10	1,0 x 10⁵	1,2 x 10³
6	<10	<10	<10
7	3,6 x 10²	1,5 x 10³	1,0 x 10³
8	<10	1,0 x 10³	1,2 x 10³
9	<10	<10	<10
10	<10	<10	<10
11	<10	<10	<10
12	<10	1,1 x 10³	2,5 x 10⁴
13	<10	<10	<10
14	<10	<10	<10
15	<10	<10	<10
16	<10	<10	<10
17	<10	<10	<10
18	<10	<10	<10
19	<10	<10	<10
20	<10	<10	<10
21	1,9 x 10³	2,3 x 10⁴	2,0 x 10³
22	<10	<10	<10
23	2,6 x 10³	1,2 x 10³	1,6 x 10³
24	1,5 x 10⁴	2,1 x 10³	2,5 x 10³
25	<10	<10	<10
26	<10	<10	<10
27	1,6 x 10⁴	2,1 x 10³	3,0 x 10⁴
28	<10	<10	<10
29	<10	<10	<10
30	1,0 x 10⁴	1,2 x 10⁴	1,4 x 10⁴
31	<10	<10	<10
32	3,3 x 10³	1,0 x 10³	1,5 x 10³
33	<10	<10	<10
34	<10	<10	<10
35	<10	<10	<10
36	1,0 x 10³	1,2 x 10⁴	1,4 x 10⁴

Os valores de contagem de bactérias acima dos limites preconizados pela RDC 11/2014 de 500 UFC/mL para as amostras de entrada da rede, de 100 UFC/mL para as amostras de pós-osmose e de 200 UFC/mL para solução de diálise foram destacados em negrito 10,17.

Os valores de contagem de bactérias acima dos limites preconizados pela RDC 11/2014 de 500 UFC/mL para as amostras de entrada da rede, de 100 UFC/mL para as amostras de pós-osmose e de 200 UFC/mL para solução de diálise foram destacados em negrito 10,17.

No Gráfico 1 está demonstrado o percentual de amostras de água coletadas em 36 unidades hospitalares por ponto de coleta que apresentaram contaminação microbiana acima do limite preconizado pela legislação 10,17, na água da rede 6/36 (17%), 11/36 (31%) na pós-osmose e 15/36 (42%) de SD. Além disso, mostra a presença dos microrganismos, *Pseudomonas aeruginosa*, *Stenotrophomonas*
maltophilia, *Ralstonia pickettii* e *Burkholderia cepacia* isolados das amostras. Os pontos de pós-osmose e de SD foram considerados os mais críticos no processo, principalmente quanto à contaminação por *Pseudomonas aeruginosa*.

Com relação à quantificação de endotoxinas, foram analisadas 66 amostras provenientes de 22 unidades hospitalares (Tabela 2), sendo que, no ponto de coleta pós-osmose, para o qual é preconizado o valor limite de 0,25 EU/mL, 77% apresentaram valores maiores que 0,5 EU/mL.

Apesar de a legislação não preconizar a quantificação de endotoxinas na SD, isso foi realizado em nosso estudo, para permitir a comparação entre os pontos.

No ensaio de quantificação de alumínio, foram analisadas amostras de água nos pontos de entrada da rede e pós-osmose coletadas de 22 unidades hospitalares apenas no ano de 2017. A Tabela 3 mostra os resultados obtidos nas análises de alumínio no total de 44 amostras coletadas, das quais 32% (14/44) não puderam ser analisadas, o que foi considerada uma limitação. Das 30 amostras restantes, 37% (11/30) apresentaram-se não conformes, com valores de alumínio acima dos limites preconizados pela RDC 11/2014.

A redução de amostras para quantificação de endotoxinas ocorreu devido ao atraso na aquisição dos *kits* para o ensaio do LAL. No caso da quantificação de alumínio, a redução foi decorrente de problemas no equipamento de análise no período da realização do estudo.

Discussão

A ausência de uma legislação específica para o monitoramento da DM é um fator complicador, visto que o controle que deveria ser realizado de forma periódica pelos órgãos de fiscalização sanitária não tem a mesma eficiência como no procedimento de HD convencional, regulamentado pela RDC nº 11 de 2014. No entanto, essa RDC não é a melhor referência, visto que o tratamento realizado para a água nos serviços de DM é diferente e menos controlado do que nos serviços de HD convencional.

Esforços estão sendo realizados a fim de nortear os serviços de DM no país, um exemplo é a Resolução da Secretaria da Saúde (SESA) nº 437/2013 do governo do estado do Paraná, que dispõe sobre as condições para realização de DM em unidades intra-hospitalares fora da unidade de diálise, por meio de serviços próprios ou terceirizados. No entanto, essa Resolução é de abrangência apenas estadual e não estabelece parâmetros específicos para monitoramento da qualidade da água.

Os resultados obtidos possibilitaram avaliar diferentes aspectos em relação aos estudos nesta área, na qual pouco se discute sobre as questões estruturais dos serviços, como pontos críticos do processo e a proposição de outros aspectos a serem analisados.
Monitoramento da qualidade da água em serviços de diálise móvel de UTIs no município do Rio de Janeiro

O controle da qualidade da água utilizada no processo de HD é um problema de saúde pública em escala mundial, sendo preconizados padrões de qualidade em todos os países. A Associação Renal Europeia recomenda, na água para HD, o limite de contagem total de bactérias heterotróficas de 100 UFC/mL, e de 0,25 EU/mL para a quantificação de endotoxina bacteriana\(^9\). Já a Sociedade Japonesa para Terapia de Diálise recomenda contagem de bactérias heterotróficas abaixo de 100 UFC/mL, e no máximo 0,05 EU/mL de endotoxina\(^8\). Nos Estados Unidos da América (EUA), o limite máximo de contagem de bactérias heterotróficas é 100 UFC/mL, e 0,25 EU/mL de endotoxina em todos os pontos, exceto para a SD, para a qual o limite é de 0,5 EU/mL\(^\)\(^2^\). Nos EUA, a preocupação com a ocorrência de bacteremias em pacientes submetidos ao procedimento de HD tem estimulado políticas de melhoria de processos com uso de SD ultrapuro, com tratamento da água feito por ultrassom e limite máximo de 0,1 UFC/mL para contagem de bactérias heterotróficas. No entanto, esse tipo de tratamento da água ainda não é obrigatório, e ainda vem sendo estudado\(^2^\).

Tabela 2

Unidades hospitalares	Pré-osmose	Pós-osmose	Solução de diálise
1	> 0,5	> 0,5	> 0,5
2	> 0,5	> 0,5	> 0,5
3	< 0,125	< 0,125	> 0,5
4	> 0,5	> 0,5	> 0,5
5	> 0,5	> 0,5	> 0,5
6	> 0,5	> 0,5	> 0,5
7	> 0,5	> 0,5	> 0,5
8	≤ 0,25	> 0,5	> 0,5
9	> 0,5	> 0,5	> 0,5
10	< 0,125	< 0,125	< 0,125
11	> 0,5	> 0,5	> 0,5
12	< 0,125	> 0,5	> 0,5
13	> 0,5	> 0,5	> 0,5
14	< 0,125	< 0,125	< 0,125
15	> 0,5	> 0,5	> 0,5
16	> 0,5	> 0,5	> 0,5
17	< 0,125	< 0,125	> 0,5
18	< 0,125	< 0,125	< 0,125
19	> 0,5	> 0,5	> 0,5
20	> 0,5	> 0,5	> 0,5
21	> 0,5	> 0,5	> 0,5
22	≤ 0,25	> 0,5	> 0,5

\(^1\)Lisado de amebócitos de Limulus. Limite máximo de endotoxina bacteriana para água tratada para hemodiálise (ponto de coleta: pós-osmose) é de 0,25 EU/mL\(^8\). Os valores acima desse limite estão destacados em negrito.
No ano de 2014, foi realizado um monitoramento nos serviços de DM do estado do Rio de Janeiro pelo projeto CNPq/INCQS, Chamada CNPq/Anvisa nº 05/2014 - Pesquisas em Vigilância Sanitária, por meio do qual foram contempladas 25 unidades hospitalares com DM. Os resultados da pesquisa mostraram a necessidade da continuação do monitoramento desse serviço, uma vez que o número de bactérias aeróbias, a presença de endotoxinas e alumínio foram elevados em comparação aos estabelecidos pela RDC nº 11 de 2014. Dentre os microrganismos pesquisados, a espécie mais encontrada foi *Pseudomonas aeruginosa*, seguida de *Escherichia coli*, *Stenotrophomonas maltophilia*, *Ralstonia pickettii* e *Burkholderia cepacia*, e em menor quantidade as espécies *Pseudomonas stutzeri*, *Acinetobacter anitratus*, *Acinetobacter baumannii*, *Acinetobacter calcoaceticos* sp. *lowffii*, *Sphingomonas paucimobilis*, *Brevundimonas diminuta*, *Moraxella osloensis*, *Moraxella lacunata*, *Moraxella henylpyruvica*, *Moraxella atlantae*, *Achromobacter xylosoxidans*, que comumente são encontradas em amostras de água. Bactérias dos gêneros *Pseudomonas* e *Sphingomonas* são comumente encontradas em amostras de água de sistemas de tratamento destinadas a HD. Especial atenção deve ser dada a *Pseudomonas aeruginosa*, um patógeno oportunista que ocorre em pacientes hospitalizados, particularmente em pessoas com estado de saúde debilitado. Sua capacidade de formar biofilmes ao longo dos ductos do sistema é uma importante especificidade que possibilita contaminações recorrentes em tubulações e em equipamentos de uso hospitalar com difícil controle.

A pesquisa de *Pseudomonas aeruginosa* no monitoramento da água tratada para HD já é preconizada pela Farmacopeia Americana e pela Farmacopeia Brasileira nas águas ultrapuras. Dessa forma, seria importante sua inserção nas normativas da legislação brasileira vigente, para o controle da qualidade da água em serviços de diálise móvel de UTIs no município do Rio de Janeiro.

Tabela 3

Unidades hospitalares	Entrada da rede	Pós-osmose
1	> 0,27	> 0,27
2	< 0,01	< 0,01
3	< 0,01	> 0,27
4	> 0,27	> 0,27
5	0,3 ± 0,04	0,2 ± 0,04
6	NR	NR
7	< 0,01	> 0,27
8	NR	NR
9	< 0,01	< 0,01
10	< 0,01	< 0,01
11	NR	NR
12	NR	NR
13	< 0,01	< 0,01
14	NR	NR
15	< 0,01	> 0,27
16	< 0,01	< 0,01
17	NR	NR
18	< 0,01	< 0,01
19	< 0,01	< 0,01
20	NR	NR
21	> 0,27	> 0,27
22	< 0,01	> 0,27

Valor limite de alumínio de 0,2 mg/L para água de rede e de 0,01 mg/L para pós-osmose. Valores acima desses limites destacados em negrito correspondem a amostras em desacordo com o preconizado pela RDC 11/2014. NR: não realizada a análise.
Monitoramento da qualidade da água em serviços de diálise móvel de UTIs no município do Rio de Janeiro

As infeções por *Pseudomonas aeruginosa* frequentemente adquirem um caráter de persistência, e as cepas podem sofrer uma mudança fenotípica, adquirindo capacidade de aderência, pela formação de biofilmes, que torna mais difícil sua erradicação. As endotoxinas bacterianas podem atravessar a membrana do dializador que apresente mínimas rupturas ou até através de membranas intactas, determinando os sintomas nos pacientes.

Estudos correlacionam a alta concentração de endotoxinás e a presença de bactérias na SD à ocorrência de sintomas típicos de reações pirogênicas (endotoxemia) nos pacientes, que pode ser embasada de que, em altas concentrações, as endotoxinas bacterianas podem atravessar a membrana do dializador que apresente mínimas rupturas ou até através de membranas intactas, determinando os sintomas nos pacientes.

As atividades fisiológicas do lipopolissacarídeo (LPS) são mediadas principalmente pelo lipídeo A, que causa uma potente resposta biológica modificadora estimulando o sistema imune de mamíferos. Porém, para induzir uma resposta sobre o organismo, o lipídeo A precisa ser liberado na forma solúvel in vivo a partir da lise celular.

No presente estudo, a maior parte das clínicas, ou seja, 17 em 22 unidades hospitalares, apresentou valores elevados de endotoxina bacteriana no teste do LAL. Os ensaios microbiológicos muitas vezes não detectam uma contagem de bactérias acima do limite preconizado pela legislação, porém, na quantificação das endotoxinas pelo teste do LAL, por ser um ensaio mais sensível aos produtos de degradação microbiana, pode-se perceber a presença do microrganismo, mesmo que não seja possível quantificá-lo.

As endotoxinas são contaminantes frequentes em soluções aquosas/fisiológicas. Devido aos diversos efeitos biológicos in vivo e in vitro, sua detecção e remoção são essenciais para a garantia da segurança do paciente durante o procedimento de HD.

Outra estratégia para detecção de contaminação é o uso de desvios de qualidade na água utilizada na DM, que é a utilização de metodologias moleculares como *real-time polymerase chain reaction* (PCR) ou qPCR e análise metagenômica, muito empregada em análises ambientais de água e se mostrando promissora em amostras de água tratada para HD por possibilitar a análise de microrganismos viáveis não cultiváveis.

O monitoramento da presença de elementos químicos na água para HD tem sua importância devido ao risco de intoxicação quando sua presença excede a concentração tolerada pelo organismo, principalmente quando se trata de pacientes submetidos à HD. O alumínio é um dos elementos mais abundantes da crosta terrestre, no entanto não é um elemento essencial ao corpo humano e sua importância à saúde reside no efeito tóxico e acumulativo no organismo.

Das fontes de contaminação por alumínio, a água potável é uma das mais significativas, devido ao contato com o solo, sendo sua concentração dependente do pH da água. Além disso, é utilizado no tratamento da água potável, como um quelante, reduzindo o número de partículas, para melhorar o aspecto da água.

O mecanismo de ação do alumínio não é bem compreendido, sendo considerado um agente químico neurotóxico, mas para o qual existem poucas informações documentadas quanto aos aspectos moleculares de sua citotoxicidade. O alumínio, ao se depositar nas junções dos ossos calcificados e não calcificados, torna-se um obstáculo à incorporação do cálcio para a hidroxiapatita.

A SD utilizada no processo de HD resulta da diluição do CPHD com a água tratada por osmose reversa. A contaminação da SD pode ter origem nas duas fontes. No entanto, a contaminação da água usada no tratamento para HD por alumínio foi sempre apontada como a principal responsável pela encefalopatia, anemia e osteodistrofia observada nos pacientes em diálise.

No ponto referente à SD, a ocorrência de contaminação pode estar associada à contaminação de todo o processo, pois o dializador utilizado por essas pacientes em DM é descartável. Além disso, nesse ponto de coleta deve ser considerada a contribuição do CPHD não estéril, que é diluído em água para HD na proporção de 4:1 durante o procedimento, podendo ser outro fator de contaminação, no entanto seu manuseio deve seguir critérios específicos, para evitar problemas.

O cloro adicionado à água de distribuição faz o ponto da rede ter menor ocorrência de contaminação, mesmo que a coleta seja realizada em frascos preparados com solução neutralizante de cloro, evitando resultados falso negativos. As contagens de bactérias heterotróficas acima do preconizado no ponto de pós-osmose podem ser decorrentes da água de distribuição, do aparelho de osmose portátil ou até mesmo do circuito por onde a água circula até o paciente.

Os serviços de diálise convencional têm tratamento rigoroso da água, diferentemente da DM, em que não
Monitoramento da qualidade da água em serviços de diálise móvel de UTIs no município do Rio de Janeiro

De vida dos pacientes renais agudos. já existentes e os novos, contribuindo para a qualidade que atenda à necessidade e norteie os serviços de DM regiões do país e subsidiar a criação de uma legislação específica do serviço de DM e a necessidade de elaboração de uma norma específica para sua regulamentação, a fim de subsidiar as práticas dos órgãos de fiscalização vigentes e padronizar os serviços oferecidos aos pacientes, de forma a corrigir possíveis falhas do processo.

Espera-se que haja fomento a novas pesquisas na área para avaliar a realidade do serviço em diferentes regiões do país e subsidiar a criação de uma legislação que atenda à necessidade e norteie os serviços de DM já existentes e os novos, contribuindo para a qualidade de vida dos pacientes renais agudos.

CONCLUSÃO

Os resultados obtidos neste estudo ressaltam a importância de um monitoramento contínuo e específico do serviço de DM e a necessidade de elaboração de uma norma específica para sua regulamentação, a fim de subsidiar as práticas dos órgãos de fiscalização vigentes e padronizar os serviços oferecidos aos pacientes, de forma a corrigir possíveis falhas do processo.

REFERÊNCIAS

1. Sousa MRG, Silva AEB, Bezerra ALQ, Freitas JS, Miaso AI. Eventos adversos em hemodiálise: relatos de profissionais de enfermagem. Rev Esc Enferm. 2013 Fev;47(1):76-83. DOI: https://doi.org/10.1590/0080-62342013000100010
2. Siviero PCL, Machado CJ, Cherchiglia ML. Insuficiência renal crônica no Brasil segundo enfoque de causas múltiplas de morte. Cad Saúde Colet. 2014 Mar;22(1):75-85. DOI: https://doi.org/10.1590/1414-462X2014000100102
3. Sociedade Brasileira de Nefrologia (SBN). Insuficiência renal aguda [Internet]. São Paulo: SBN; 2007; Disponível em: https://sbn.org.br/publico/doencas-comuns/insuficiencia-renal-aguda/
4. Governo do Estado do Paraná (BR). Secretaria de Estado da Saúde (SESA). Resolução SESA nº 437, de 08 de agosto de 2013. Dispõe sobre as condições para realização de terapia renal substitutiva à beira do leito, em unidades intra-hospitalares fora da unidade de diálise, por meio de serviços de diálise móvel, próprios ou terceirizados [Internet]. Curitiba (PR): Governo do Estado do Paraná; 2013; . Disponível em: https://www.saude.pr.gov.br/sites/default/arquivos_restritos/files/documento/2020-05/resolucao4372013.pdf
5. Vasconcelos PDS. Monitoramento da água de diálise: um estudo de caso em uma clínica do município de Recife [dissertação na Internet]. Recife (PE): Fundação Oswaldo Cruz, Centro de Pesquisas Aggeu Magalhães; 2012; . Disponível em: https://www.arca.fiocruz.br/bitstream/science/30269/1/229.pdf
6. Romão Junior JE. Doença renal crônica: definição, epidemiologia e classificação. J Bras Nefrol [Internet]. 2004; ; 263 Supl 1:1-3. Disponível em: https://bipnephrology.org/article/doenca-renal-cronica-definicao-epidemiologia-classificacao/
7. Bommer J, Jaber BL. Unresolved issues in dialysis: ultrapure dialysate: facts and myths. Semin Dial. 2006 Mar;19(2):115-9. DOI: https://doi.org/10.1111/j.1525-139X.2006.00136.x
8. Lonnemann G. The quality of dialysate: an integrated approach. Kidney Int. 2000 Ago;58(Supl 76):S112-9. DOI: https://doi.org/10.1111/j.1523-1755.2000.07614.x
9. Jorgensen JH, Pfälzer MA, Carroll KG; American Society of Microbiology (ASM). Manual of clinical microbiology. 11th ed. Washington, DC: ASM Press; 2015.
