A FAST COMPUTATION OF DENSITY OF EXPONENTIALLY S-NUMBERS

VLADIMIR SHEVELEV

Abstract. The author [4] proved that, for every set \(S \) of positive integers containing 1 (finite or infinite) there exists the density \(h = h(E(S)) \) of the set \(E(S) \) of numbers whose prime factorizations contain exponents only from \(S \), and gave an explicit formula for \(h(E(S)) \). In this paper we give an equivalent polynomial formula for \(\log h(E(S)) \) which allows to get a fast calculation of \(h(E(S)) \).

1. Introduction

Let \(\mathbf{G} \) be the set of all finite or infinite increasing sequences of positive integers beginning with 1. For a sequence \(S = \{s(n)\}, n \geq 1, \) from \(\mathbf{G} \), a positive number \(N \) is called an exponentially \(S \)-number \((N \in E(S)) \), if all exponents in its prime power factorization are in \(S \). The author [4] proved that, for every sequence \(S \in \mathbf{G} \), the sequence of exponentially \(S \)-numbers has a density \(h = h(E(S)) \in [\frac{6}{\pi^2}, 1] \). More exactly, the following theorem was proved in [4]:

Theorem 1. For every sequence \(S \in \mathbf{G} \) the sequence of exponentially \(S \)-numbers has a density \(h = h(E(S)) \) such that

\[
1 = h(E(S))x + O \left(\sqrt{x} \log x e^{\frac{\sqrt{x}}{\log \log x}} \right),
\]

with \(c = 4\sqrt{\frac{2.4}{\log 2}} = 7.443083... \) and

\[
h(E(S)) = \prod_p \left(1 + \sum_{i \geq 2} \frac{u(i) - u(i-1)}{p^i} \right),
\]

where the product is over all primes, \(u(n) \) is the characteristic function of sequence \(S : u(n) = 1, \) if \(n \in S \) and \(u(n) = 0 \) otherwise.

In case when \(S \) is the sequence of square-free numbers (see Toth [6]) Arias de Reyna [5, A262276], using the Wrench method of fast calculation [7], did the calculation of \(h \) with a very high degree of accuracy. In this paper, using Wrench's method for formula [2], we find a general representation of \(h(E(S)) \) based on a special polynomial over partitions of \(n \) which allows to get a fast calculation of \(h(E(S)) \) for every \(S \in \mathbf{G} \). Note also that Wrench's
method was successfully realized in a special case by Arias de Reyna, Brent and van de Lune in [2].

Everywhere below we write \(\{ h(E(S)) \} \), understanding \(\{ h(E(S)) \}_{S \in \mathbb{G}} \).

2. A computing idea in Wrench’s style

Consider function given by power series

\[
F_S(x) = 1 + \sum_{i \geq 2} (u(i) - u(i - 1))x^i, \quad x \in (0, \frac{1}{2}).
\]

Since \(u(n) - u(n - 1) \geq -1 \), then \(F_S(x) \geq 1 - \frac{x^2}{1-x} > 0 \). By [2], we have

\[
h(E(S)) = \prod_{p} F_S \left(\frac{1}{p} \right).
\]

and

\[
\log h(E(S)) = \sum_{p} \log F_S(x)|_{x=\frac{1}{p}}.
\]

Let

\[
\log F_S(x) = \sum_{i \geq 2} \frac{f^{(S)}_i}{i} x^i.
\]

Since \(|u(n) - u(n - 1)| \leq 1 \), then by [3], \(F_S(x) \leq 1 + \frac{x^2}{1-x} \) and \(0 < \log F_S(x) \leq 2x^2 \), \(x \in (0, \frac{1}{2}] \). Thus the series (5) is absolutely convergent. Now, according to [3] - (6), we have

\[
\log h(E(S)) = \sum_{n=2}^{\infty} \frac{f^{(S)}_n}{n} P(n),
\]

where \(P(n) = \sum_p \frac{1}{p^n} \) is the prime zeta function. The series (7) is fast convergent and very suitable for the calculation of \(h(E(S)) \).

3. A recursion for coefficients

Denoting

\[
v_n = u(n) - u(n - 1), \quad n \geq 2,
\]

by [3] and (6), we have

\[
F_S(x) = 1 + \sum_{n \geq 2} v_n x^n,
\]

\[
\log(1 + \sum_{n \geq 2} v_n x^n) = \sum_{i \geq 2} \frac{f^{(S)}_i}{i} x^i.
\]

Lemma 1. Coefficients \(\{ f^{(S)}_n \} \) satisfy the recurrence
(11) \(f_{n+1}^{(S)} = (n + 1)v_{n+1} - \sum_{i=1}^{n-2} v_{n-i} f_{i+1}^{(S)}, \quad n \geq 1. \)

Proof. Differentiating (10), we have
\[
\frac{\sum_{n \geq 2} n v_n x^{n-1}}{F_S(x)} = \sum_{j=1}^{n+1} f_j^{(S)} x^j.
\]
Hence,
\[
\sum_{n \geq 2} n v_n x^{n-1} = (1 + \sum_{n \geq 2} v_n x^n)(\sum_{j=1}^{n+1} f_j^{(S)} x^j).
\]
Equating the coefficients of \(x^n \) in both sides, we get
\[
(n + 1)v_{n+1} = f_{n+1}^{(S)} + \sum_{j=1}^{n-2} v_{n-j} f_{j+1}^{(S)}
\]
and the lemma follows. \(\square \)

Corollary 1. All \(\{ f_n^{(S)} \} \) are integers.

Proof. For \(n=1,2,3 \), by the recurrence (11), we have
\[
f_2^{(S)} = 2v_2, \quad f_3^{(S)} = 3v_3, \quad f_4^{(S)} = 4v_4 - 2v_2^2, \]
now the corollary follows by induction. \(\square \)

4. Explicit polynomial formula

To apply (10) we need a fast way to generate the coefficients \(f_i^{(S)} \). Since, for \(x \in (0, \frac{1}{2}) \), \(\sum_{n \geq 2} v_n x^n \leq \frac{x^2}{1-x} \leq \frac{1}{2} \), then
\[
(12) \quad \log(1 + \sum_{n \geq 2} v_n x^n) = \sum_{m \geq 1} \frac{(-1)^{m-1}}{m} (\sum_{n \geq 2} v_n x^n)^m.
\]
Expanding these powers, we get a great sum of terms of type
\[
(13) \quad t_{\lambda_1, s_1} (v_{\lambda_1} x^{\lambda_1})^{s_1} \ldots t_{\lambda_r, s_r} (v_{\lambda_r} x^{\lambda_r})^{s_r}, \quad s_i \geq 1, \quad \lambda_i \geq 2.
\]
When we collect all the terms with a fixed sum of exponents of \(x \), say, \(n \), we get a sum of terms (13) with \(\lambda_1 s_1 + \ldots + \lambda_r s_r = n \), i.e., we have \(s_i \) parts \(\lambda_i \) in partition of \(n \). Therefore, the considered expansion has the form
\[
\log(1 + \sum_{n \geq 2} v_n x^n) = \sum_{n \geq 2} \left(\sum_{\sigma \in \Sigma_n} t_\sigma v_\sigma \right) \frac{x^n}{n} = \sum_{n \geq 2} \frac{f_n^{(S)}}{n} x^n,
\]
where \(\Sigma_n \) is the set of the partitions \(\{ \sigma \} \) of \(n \) with parts \(\lambda_i \geq 2 \) and \(t_\sigma, v_\sigma \) are functions of partitions \(\sigma \) defined by (13) such that with every partition \(\sigma \) of \(n \) we associate the monomial
(14) \[v_{\sigma} = \prod_{i=1}^{r} v_{\lambda_i}^{s_i} \ (\lambda_1 s_1 + ... + \lambda_r s_r = n, \ \lambda_i \geq 2). \]

So

(15) \[f_n^{(S)} = \sum_{\sigma \in \Sigma_n} t_{\sigma} v_{\sigma}. \]

Substituting (15) in equation (11), we get

\[
\sum_{\sigma \in \Sigma_{n+1}} t_{\sigma} v_{\sigma} = (n + 1)v_{n+1} - \sum_{i=1}^{n-2} v_{n-i} \sum_{\sigma \in \Sigma_{i+1}} t_{\sigma} v_{\sigma} =
\]

(16) \[(n + 1)v_{n+1} - \sum_{j=2}^{n-1} v_j \sum_{\sigma \in \Sigma_{n+1-j}} t_{\sigma} v_{\sigma}. \]

Note that, using (16), one can proved that all coefficients \(t_{\sigma} \) are integer numbers. Let partition \(\sigma = (b_2, ..., b_{n+1}) \in \Sigma_{n+1} \) contains \(b_2 \) elements 2, ..., \(b_{n+1} \) elements \(n + 1 \) such that \(2b_2 + ... + (n + 1)b_{n+1} = n + 1, \ b_i \geq 0 \). In particular, evidently, \(b_{n+1} = 0 \) or 1 and in the latter case all other \(b_i = 0 \).

We shall write \(v_{\sigma} = v_{b_2}^{b_2} ... v_{b_{n+1}}^{b_{n+1}} \) and \(t_{\sigma} = t(v_{b_2}^{b_2} ... v_{b_{n+1}}^{b_{n+1}}) \). According to (16), the coefficient of the monomial \(v_{n}^{0} ... v_{n+1}^{0} v_{n+1}^{1} \) equals \(n + 1 \), i.e., for partition of \(n + 1 \) with only part we have \(t(\sigma) = n + 1 \). We agree that \(0^0 = 1 \).

Denote by \(\Sigma'_{n+1} \) the set of partitions of \(n + 1 \) with parts \(\geq 2 \) and \(\leq n \).

Then, by (16), we have

(17) \[\sum_{\sigma \in \Sigma_{n+1}} t_{\sigma} v_{\sigma} = - \sum_{j=2}^{n-1} v_j \sum_{\sigma \in \Sigma'_{n+1-j}} t_{\sigma} v_{\sigma}. \]

For every partition \((b_2, ..., b_{n+1}) \in \Sigma'_{n+1} \) we have \(b_{n+1} = 0 \) and \(b_n = 0 \) (the latter since all parts \(\geq 2 \)). Then (17) leads to the formula:

\[
t(v_{b_2}^{b_2} ... v_{b_{n-1}}^{b_{n-1}} v_{b_{n+1}}^{0} v_{n+1}^{0}) = -t(v_{b_2}^{b_2-1} v_{b_3}^{b_3} ... v_{b_{n-1}}^{b_{n-1}} v_{n}^{0} v_{n+1}^{0}) -
\]

(18) \[t(v_{b_2}^{b_2} v_{b_3}^{b_3} ... v_{n-1}^{b_{n-1}} v_{n+1}^{0} v_{n+1}^{0}) - ... - t(v_{b_2}^{b_2} v_{b_3}^{b_3} ... v_{n-1}^{b_{n-1}-1} v_{n}^{0} v_{n+1}^{0}). \]

Using (18), we find an explicit formula for \(f_n^{(S)} \).

Lemma 2. Let, for \(n \geq 3 \), \((b_2, ..., b_{n-1}, 0, 0) \in \Sigma'_{n+1} \). Then

(19) \[t(v_{b_2}^{b_2} ... v_{b_{n-1}}^{b_{n-1}} v_{n}^{0} v_{n+1}^{0}) = (-1)^{b_{n-1}-1} \frac{(B_{n-1}-1)!}{b_2! ... b_{n-1}!} (n + 1), \]

where \(B_{n-1} = b_2 + ... + b_{n-1} \).

Proof. Let \(n = 3 \). We saw that \(f_4^{(S)} = 4v_4 - 2v_2^2 \). So, \(t(v_2^{b_2}) = -2 \) with
$b_2 = 2$ and, by \eqref{eq:20}, we also obtain $t(v_2^{b_2}) = -2$. Let the lemma holds for $t(v_2^{b_2} \ldots v_{n-1}^{b_{n-1}})$, $n \geq 3$, where all $c_i \leq b_i$ such that not all equalities hold. Then, by the relation \eqref{eq:18} and the induction supposition, we have

$$t(v_2^{b_2} \ldots v_{n-1}^{b_{n-1}}) = -(-1)^{B_{n-1}}(B_{n-1} - 2)!/(b_2 - 1)!b_3! \ldots b_{n-1}!(n + 1 - 2) +$$

$$\frac{(B_{n-1} - 2)!}{b_2!(b_3 - 1)! \ldots b_{n-1}!}(n + 1 - 3) + \ldots + \frac{(B_{n-1} - 1)!}{b_2!b_3! \ldots (b_{n-1} - 1)!}(n + 1 - (n - 1)) =$$

$$(-1)^{B_{n-1}-1}(B_{n-1} - 2)!/b_2! \ldots b_{n-1}!(b_2(n + 1 - 2) + b_3(n + 1 - 3) + \ldots +$$

$$b_{n-1}(n + 1 - (n - 1)) = (-1)^{B_{n-1}-1}(B_{n-1} - 2)!/b_2! \ldots b_{n-1}!(B_{n-1}(n + 1) -$$

$$(2b_2 + 3b_3 + \ldots + (n - 1)b_{n-1})$$

and, since $2b_2 + 3b_3 + \ldots + (n - 1)b_{n-1} = n + 1$, the lemma follows. \hfill \Box

Corollary 2. Let, for $n \geq 3$, $(b_2, \ldots, b_{n+1}) \in \Sigma_{n+1}$. Then

$$t(v_2^{b_2} \ldots v_{n+1}^{b_{n+1}}) = (\delta(b_{n+1}, 1) + (-1)^{B_{n+1}}(B_{n+1} - 1)!/b_2! \ldots b_{n+1}!)(n + 1),$$

where $B_{n+1} = b_2 + \ldots + b_{n+1}$.

Proof. The statement follows from Lemma \eqref{Lemma2} and addition of the coefficient $n + 1$ of v_{n+1} in equation \eqref{eq:16} in case when $\delta(b_{n+1}, 1) = 1$. \hfill \Box

Now, using \eqref{eq:7}, \eqref{eq:15}, Corollary \eqref{Corollary2} and the initial values of the coefficients $f_2^{(S)} = 2v_2$, $f_3^{(S)} = 3v_3$, and changing n by $n - 1$, we get a suitable formula to compute $\log h(E(S))$.

Theorem 2. We have

$$\log h(E(S)) = P(2)v_2 + P(3)v_3 + \sum_{n=4}^{\infty} P(n)(v_n + M(v_2, \ldots, v_{n-2})),$$

where $P(n)$ is the prime zeta function, M is the polynomial defined as

$$M(v_2, \ldots, v_{n-2}) = \sum_{2b_2 + \ldots + (n-2)b_{n-2} = n} (-1)^{B_{n-2}}(B_{n-2} - 1)!/b_2! \ldots b_{n-2}! v_2^{b_2} \ldots v_{n-2}^{b_{n-2}},$$

where $B_{n-2} = b_2 + \ldots + b_{n-2}$, $b_i \geq 0$, $i = 2, \ldots, n - 2$, $n \geq 4$.

In particular, for $n = 4, 5, 6, \ldots$, we have

$$M(v_2) = -\frac{v_2^2}{2}, M(v_2, v_3) = -v_2v_3, M(v_2, v_3, v_4) = -v_2v_4 - \frac{v_3^2}{2} + \frac{v_4^2}{3}, \ldots$$

For example, in case $n = 6$ the diophantine equation $2b_2 + 3b_3 + 4b_4 = 6$ has 3 solutions.
a) $b_2 = 1, b_3 = 0, b_4 = 1$ with $B_4 = 2$;

b) $b_2 = 0, b_3 = 2, b_4 = 0$ with $B_4 = 2$;

c) $b_2 = 3, b_3 = 0, b_4 = 0$ with $B_4 = 3$.

Besides, using (11), for $M_n = M_n(v_2, ..., v_{n-2})$ we have the recursion

\[
M_2 = 0, M_3 = 0, M_n = -\frac{1}{n} \sum_{j=2}^{n-2} j v_{n-j}(v_j + M_j), \ n \geq 4
\]

which, possibly, more suitable for fast calculations by Theorem 2.

5. Examples

1) As we already mentioned, in case when S is the sequence of square-free numbers, Arias de Reyna [5,A262276] obtained

\[
h = \prod_p \left(1 + \sum_{i \geq 4} \frac{\mu(i)^2 - \mu(i-1)^2}{p^i} \right) = 0.95592301586190237688...
\]

By the results of [1], the coefficients $f_n^{(S)}$ [15] in this case (see A262400 [5]) have very interesting congruence properties.

2) The case of $S = 2^n$ was essentially considered by the author [3]. He found that $h = 0.872497...$ The author asked Arias de Reyna to get more digits. Using Theorem 2, he obtained

\[
h = 0.87249717935391281355...
\]

3) Among the other several calculations by Arias de Reyna, we give the following one. Let S be 1 and the primes (A008578 [5]). Then

\[
h = 0.9467193375527801046...
\]

6. Acknowledgement

The author is very grateful to Juan Arias de Reyna for an information of Wrench’s method, useful discussions and his calculations by the formula of Theorem 2.

References

[1] J. Arias de Reyna, Dynamical zeta functions and Kummer congruences, Acta Arith. 119, (2005), 39-52.

[2] J. Arias de Reyna, and R. P. Brent, and J. van de Lune, A note on the real part of the Riemann Zeta-Function, in book: Leven met getallen : liber amicorum ter gelegenheid van de pensionering van Herman te Riele, ed. J. A. J. van Vonderen, CWI 2012, pp. 30-36.

[3] V. Shevelev, Compact integers and factorials, Acta Arith. 126, no.3 (2007), 195-236.

[4] V. Shevelev, Exponentially S-numbers, arXiv:1510.05914 [math.NT], 2015.
[5] N. J. A. Sloane, *The On-Line Encyclopedia of Integer Sequences* http://oeis.org.

[6] L. Toth, On certain arithmetic functions involving exponential divisors, II., Annales Univ. Sci. Budapest., Sect. Comp., 27 (2007), 155-166.

[7] J. W. Wrench, *Evaluation of Artin’s constant and the twin prime constant*, Math. Comp. 15 (1961), 396-398.

DEPARTMENT OF MATHEMATICS, BEN-GURION UNIVERSITY OF THE NEGEV, BEER-SHEVA 84105, ISRAEL. E-MAIL:shevelev@bgu.ac.il