Clinical Group

Open Journal of Parkinson’s Disease and Treatment

Review Article

Restoration of Mitochondrial Dysfunction in 6-Hydroxydopamine Induced Parkinson’s disease: a Complete Review

Abstract

Parkinson’s disease (PD) is a progressive neurodegenerative disorder characterized by neuronal cell death in the specific brain region like basal ganglia, cerebral cortex and hippocampus. Symptoms associated with PD patients are rigidity, akathesia, tremor, postural imbalance, cognitive and memory dysfunctions. Pathological hallmarks are dopaminergic neuronal degeneration, neuro-inflammation, oxidative stress, free radical generation. In the typical Parkinson’s disease model, 6-Hydroxydopamine (6-OHDA) is delivered unilaterally by stereotactic injection into the SNc (substantia nigra pars-compacta) or the striatum mimics the PD symptoms. In addition, it has been shown that 6-OHDA is toxic to complex I & IV of the mitochondrial respiratory chain, leading to subsequent respiratory inhibition and further processed ATP depletion, oxidative stress and neuro-inflammation. Forskolin (FSK), a diterpene natural plant phytochemical obtained from (Coleus Forskohli), a potent direct activator of adenyl cyclase (AC) enzyme which further activates cAMP/PKA/CREB pathway. FSK mediated activation of AC/cAMP/PKA/CREB pathway is responsible for various neuroprotective mechanisms Based on important and versatile role of FSK, the present study has been designed to investigate the role of cAMP mediated CREB activation in 6-hydroxydopamine induced mitochondrial associated neurotoxicity in rats. Further the studies are extended to understand the disease pathogenesis and to investigate and discuss the various possible central mechanisms involved in the effect of such targets using behavioral paradigm and biochemical markers of neurodegeneration.

Introduction

Parkinson disease (PD) is a neurodegenerative disease characterized by manifestations of motor deficits such as tremors at rest, rigidity in muscles, akinesia and postural imbalance [1,2]. Brain pathology shows loss of neurons in the substantia nigra pars compacta (SNpc), with the presence of eosiophilic protein deposits (Lewy bodies) in the cytoplasm, and dopamine (DA) striatal depletion [3,4]. James Parkinson was first to describe the clinical pathological features of this disease as “shaking palsy” in his classic 1817 monograph as “Involuntary tremulous motion, with lessened muscular power, in parts not in action and even when supported; with a propensity to bend the trunk forwards, and to pass from a walking to a running pace: the senses and intellects being unimpaired” [5]. India with one of the world’s lowest incidence of PD (70 out of 100,000) [6]. Motor disabilities of PD associated with dopaminergic neuronal cell loss and resultant dysfunction of the basal ganglia (BG) where a cluster of deep nuclei that participate in the initiation and execution of movements [7]. Non-motor symptoms including impairments of memory and olfaction, disturbance sleep and neuropsychiatric manifestations like depression, hallucinations, and dementia become prominent, and these features are probably due to the spread of Parkinsonian pathology beyond the BG with the continued involvement of inflammation and oxidative stress [8-10]. Several genes that also involved in the progression of PD, are α-synuclein (SNCA), Parkin (PARK2), UCHL-1 (PARK5), DJ-1 (PARK7), PINK1 (PARK6), LRRK2 (PARK8), NR4A2 (NURR1), PARK3, PARK4, PARK9, PARK10 and PARK11 [11].

Neuropathological feature of PD includes degeneration of brain stem nuclei & loss of dopaminergic neurons, abnormalities in mitochondrial complexes I to V cellular protein transport, interaction between SNCA proteins & protein aggregation, excitotoxicity, oxidative stress and depletion of striatal DA levels, cholinergic deficit, presence of intra-neuronal proteinacious cytoplasmic inclusions, termed “lewy bodies”, are the main cause of neuronal cell death in PD [12,13]. The output projections of the striatum have been divided into
a direct and an indirect pathway. The direct pathway projects from the striatum to the GPI (globus pallidus internal) and SNpr (substantia nigra pars reticulata) and from there to the thalamus. The indirect pathway projects from the striatum to the GPe (globus pallidus external), which in turn projects to the GPI and the SNpr, further terminates in the thalamus [14]. Decreased levels of DA results in increased activity along the indirect pathway and decreased activity along the direct pathway together result in increased excitation of GPI and SNPr neurons, then to increased inhibition of thalamic neurons, and finally to decreased excitation of the cortex [15–17]. The indirect pathway normally excites the output nuclei which is inhibited in PD [18,19].

In addition, mitochondrial free radical theory also explains the mechanistic basis of aging. Dysfunction of mitochondria is well known to generate reactive oxygen species (ROS), reduce adenine-triphosphate (ATP) production, increased deoxyribonucleic acid (DNA) mutations as well as induces abnormal cristae structures and impairs intracellular calcium (Ca) levels ultimately affects neurons and accelerates neurodegenerative processes [20,21].

Furthermore, the link between oxidative stress and like dopaminergic neuronal degeneration, inhibition of mitochondrial complex I to V, Lewy Bodies (LB) protein aggregation, neuro–inflammation and defect in mitochondrial morphology & membrane potential is further supported by modeling the motor aspects of PD in animals with toxins that cause oxidative stress including 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), rotenone, 1,1′-dimethyl-4,4′-bipyridinium dichloride (paraquat), and 6-hydroxydopamine (6-OHDA) [22–31]. The characterization of the hydroxylated analogue of DA i.e. 6-OHDA, a toxin inducing degeneration of dopaminergic neurons in the nigrostriatal region of brain [32]. The administration of 6-OHDA into the striatum of mice at a dose of 0.5 µl/min into the right striatum (0.9 mm anterior and 1.8 mm lateral from bregma, 3.0 mm ventral from the dura) and in rat 8mg/2µl in 0.1% ascorbic acid–saline (anterior–posterior 0.5 mm, lateral 2.5 mm, 5mm dorso–ventral from dura) mimics PD’s like behavioral and biochemical alterations [33, 34]. 6-OHDA inside dopaminergic neuron destroys the dopaminergic nigrostriatal pathway by inducing oxidative stress, which can lead to the induction of inflammation, where neuro–inflammation lead to over activation of glial cell ultimately cause neuronal cell death [35–37]. The unilateral intra–striatal injection of 6-OHDA in rodents induces pronounced behavioral dysfunctions like aphagia, adipsia, paradoxical kinesia, tremulous jaw movement, epileptic seizures and biochemical damage of glutamatergic, cholinergic, tryptaminergic, GABAergic, noradrenergic and adrenergic alternation in various brain region i.e is similar to same as in PD [38–42].

cAMP (cyclic adenosine monophosphate) system is closely involved in the regulation of brain-derived neurotrophic factor (BDNF) plays an important role in the neuronal survival, neuronal proliferation and differentiation, synaptic plasticity, improvement in learning & memory, reduce excitotoxic damage and prevent amyloid-β (Aβ) toxicity, inhibit apoptotic and necrotic cell death [43–51]. Further elevation of cAMP levels is known to restore the energy levels, enhance biosynthesis & release of neurotransmitters in cholinergic, β-Adrenergic and dopaminergic neurons in specific brain regions like striatum, hypothalamus, nucleus basalis, substantia nigra (SN), locus ceruleus, dorsal raphe nucleus and dorsal vagal nucleus. Moreover, increase level of cAMP involved in the inhibition of apoptotic and necrotic cell death leads to improvement in cognitive functioning [52–61]. Elevation of cAMP is also responsible for both short and long–term enhancement in synaptic transmission and stimulates cholinergic cells to release acetylcholine in the proper initiation of memory formation [62–65].

Further, cAMP dependent CREB (cAMP responsive element binding protein) phosphorylation has too been reported to perform neuro–protective action such as long term memory potentiation (LTP), neuronal cell survival, proliferation, and differentiation in the developing brain, neuronal plasticity, regulate expression of neurotropic factors and anti–apoptotic genes, mitochondrial biogenesis, increase expression of BDNF, regulate levels of bc1–2, polysialylated neuronal cell adhesion molecule (PSA–NCAM), neuronal growth factor (NGF), cyclin D2 and controls the expression of both MeCP2 and miRNA participates in the neuronal morphogenesis, differentiation in response to neurotrophic factor NGF, BDNF, FGF (fibroblast growth factor), IGF–1 (insulin like growth factor) and regulates cognitive deficits [66–78]. However, agents that enhance cAMP/PK/A–CREB pathways have potential for the prevention of stroke and various neurological disorders like Depression, Schizophrenia, Alzheimer’s and Huntington disease (HD) [79–83]. Forskolin – FSK (Coleus Forskohlii, family Labiatae) used to treat heart and lung disease intestinal spasms, insomnia and convulsions [84–87]. FSK a labdane diterpenoid, is considered the active secondary metabolite because of its ability to directly activate the enzyme adenyl cyclase (AC) [88]. Recent research has shown that FSK has positive effects against a wide range of conditions such as asthma, glaucoma, hypertension, hair loss, cancer and obesity, cardiac remodeling and heart failure prevention, amelioration of mitochondrial dysfunction in cardiomyopathy, anti–platelet aggregation, hydrodynamic alterations in collecting tubule, anti–cystic fibrosis, diabetes, inflammation, glaucoma, smooth muscle relaxation [89–102].

Moreover, FSK can potentiate the absolute inhibition of striatal AC mediated by D–2 dopamine receptors and found that a little change in the percent D–2 inhibition in the presence of FSK, suggesting that its effects on inhibitory guanine nucleotide–binding (cGMP) subunit were minimal [103]. As FSK, a direct activator of AC is responsible for the activation of cAMP–dependent protein kinase (PK) mediated CREB performed neuro–protective functioning associate with mitochondrial dysfunctioning [104–106]. FSK, cAMP analogs, or neuropeptides effectively alleviated the mitochondrial neuronal impairment through PK mediated CREB activation [107]. FSK at the dose of 10–20µM in–vitra induces phosphorylation of CREB results in increase in level of CREB, involved in the amelioration of mitochondrial dysfunctioning [108,109]. Indeed, recent studies reported the beneficial effects
of natural AC activator Coleus Forskohliii (FSK), against various neurodegenerative abnormalities through the modulation of cAMP CREB, BDNF, Phosphoinositide 3-kinase (PI3K)/Akt and Mitogen–Activated Protein Kinase (ERK)/2 [90,110–113].

FSK has been shown to activate AC in various brain regions like striatum, concentrated in the hippocampus, cerebellum, neocortical areas and peripheral tissues [114–116]. Although the activation of FSK is commonly stated to be mediated primarily by a direct action on the catalytic subunit. A few reports suggest that its effects at the catalytic subunit may potentiate interactions of the catalytic subunit with the cAMP [88,117–118]. In brain, FSK has been reported to elicit the most marked stimulation (~15-fold) of AC activity in the striatum, frontal cortex, hippocampus and in some cases in the middle temporal gyrus, and also localized in pituitary and spinal cord [119,120]. FSK at submaximal doses increases the potency, efficacy, or both of the stimulatory hormones for AC in intact cells [121,122]. However, despite the significantly greater stimulation by FSK in this brain region, little is known concerning the effects of FSK on the stimulation of striatal enzyme activity mediated by cAMP or D-1 3,4 dihydroxyphenylethylamine (DA) receptors[103]. cAMP, mediated signaling of several neurotransmitters including serotonin, acetylcholine, glutamate & DA, plays an important role in the memory & cognitive functioning [123–126].

The activation of the cAMP/PKa/CREB pathway significantly inhibits inflammatory cytokines like tumor necrosis factor-α (TNF-α), interleukins (IL-1β, IL-6, and IL-8), i-NOS (inducible nitric oxide synthase), plasminogen activating factor (PAF), human basophils, mast cell degranulation and oxidative stress [127–131]. Mitochondrial dysfunctioning is associated with loss of ATP in the cell further leads to decrease in the level of cAMP which are implicated in various abnormalities [132]. This decrease in the level of cAMP could be overcome by the FSK administration [104]. Therefore, on the basis of above relative information the present review was designed to investigate the neuro–protective role of direct AC activator FSK through activation of cAMP/PKa mediated CREB pathway in 6-OHDA induced PD’s like symptoms in rats.

Parkinson disease (PD)

PD, the most common movement disorder is characterized by a progressive loss of DA releasing neurons in the SNpc, resulting in slowness of movement, rigidity, and tremor as well as the death of neurons in catecholaminergic and cholinergic nucleus [133–135]. PD is typically considered to be a motor disorder, through the clinical manifestations are highly variable. The etiology behind PD include excessive levels of SNCA, environmental toxicants and genetic factors leading to an atypically low number of dopaminergic neurons at birth and increased susceptibility to PD development [136,137]. The pathophysiology however is characterized by the degeneration of DA neuron in the SN, a region of the degeneration of the midbrain, and axon loss in the striatum, a region of the forebrain. The resulting DA deficiency leads to dysfunction in the BG network [138]. Moreover, serotonergic, noradrenergic, and cholinergic cells are lost [139].

Prevalence of PD

Parkinson’s disease is the second most prevalent neurodegenerative disorder after Alzheimer’s disease and is anticipated to impose an increasing social and economic burden on society as populations continue to age [142–145]. A report by the National Parkinson Foundation (NPF) in the United States (US) suggested that PD affects an estimated four to six million worldwide [146]. In the UK, PD is estimated to affect 100–180 people per 100,000 of the population and has an annual incidence of 4–20 per 100,000 [147]. The incidence of the disease rises with increasing age. One in seven are diagnosed before 50 years of age, with a fivefold increase in diagnosis in those aged over 65 [148,149]. India with one of the world’s lowest incidence of PD (70 out of 100,000) [6].

Genetics in PD

Over 20 loci and 15 disease–causing genes for Parkinsonism have been identified [150]. Mutations in seven genes are robustly associated with autosomal dominant (SNCA, LRRK2, EIF4G1, VPS35) or recessive (parkin/PARK2, PINK1, DJ1/PARK7) PD.

SNCA

SNCA encodes a 140 amino acid synaptic vesicle–associated protein that regulates synaptic vesicle exocytosis [151]. SNCA was identified as the main component of Lewy bodies and Lewy neurites in PD patients [152]. SNCA is a natively unfolded soluble protein that can aggregate to form oligomers or protofibrils, and eventually insoluble polymers or fibrils [153]. Oligomeric SNCA may mediate neurodegeneration by disrupting synaptic vesicles [154]. Mitochondrial dysfunction, axonal transport deficits, and SNCA aggregation may participate in a self-perpetuating cycle of neuron damage in PD [155].

Leucine-rich repeat kinase 2 (LRRK2)

LRRK2 is a 2527 amino acid protein that contains functional kinase and guanosine triphosphate (GTP) as domains, and leucine–rich repeat and WD40 protein–interaction domains [156,157]. It is expressed throughout various brain regions, including SN, BG, cortex, hippocampus, and cerebellum [158,159]. Mutations in LRRK2 are the most common cause of familial PD and are linked to both autosomal dominant and sporadic forms [160].

Parkin (PARK2)

PARK2 acts as a regulator of protein breakdown [161]. Mutations in the parkin gene, which encodes for an E3 ubiquitin ligase, are the leading cause of early–onset, autosomal recessive Parkinsonism [162–163]. Parkin levels in neurons are associated with protection from cellular stress and cell–cycle regulation [164]. PARK2 pathological effects on mitochondria were Decrease electron transport chain (ETC) enzyme activities, decrease protein levels of several subunits of complexes I and IV decrease mitochondrial integrity, ubiquitin proteasome system (UPS) & autophagy lysosomal pathway (ALP) dysfunction [165–167].
PTEN-induced putative kinase 1 (PINK1)

PINK1 gene mutations represent the second most common cause of autosomal recessive PD. The gene encodes a 581-amino acid protein with a predicted N-terminal mitochondrial targeting sequence and a conserved serine/threonine kinase domain [168]. More than 40 PINK1 mutations have been identified in PD patients [169].

DJ-1

Point mutations (L166P, D149A) in DJ-1 cause rare autosomal recessive PD with early onset. DJ-1 is a redox-sensitive cytosolic chaperone protein that associates with mitochondria and the nucleus upon oxidation. Mutations cause a loss of function of DJ-1 by inducing instability of the dimeric, functional form of the protein, or lack of expression. Mutations also affect the serine protease activity of DJ-1, another crucial function of this protein [170]. DJ-1 seems to be an important redox-reactive signaling intermediate controlling oxidative stress associated with ischemia, neuroinflammation, and age-related neurodegeneration [171].

Neuropsychological & neuropsychiatric aspects of PD

Psychiatric syndromes as well as cognitive impairment frequently complicate PD, a neurodegenerative disorder defined by its movement abnormalities. Development of psychopathology in PD is attributed to a number of factors, including underlying disease processes related to PD, medication effects, and psychological reactions to the illness [5].

Motor features

The hallmark clinical signs of PD are its motor triad: a pill-rolling rest tremor, rigidity, bradykinesia/akinesia, internal tremor associated with anxiety, cramps, aches, pains, gait and postural disturbances with a loss of righting reflexes, unsteadiness, imbalance and falls, salivation, dysarthria, visual and genitourinary dysfunction, sleep disturbances, sweating, seborrhea, edema, constipation, paresthesias, fatigue, and a decreased sense of smell [172–175].

Cognitive Deficits

The cognitive features of PD are present to varying degrees in the early course of the disease and are multifactorial in origin, involving subcortical–frontal dopaminergic systems as well as extra striatal systems [174,175]. The various forms of executive dysfunction, visuospatial impairment, memory impairment, and attention deficits that occur in PD. The presence of a mood disorder, which can precede, accompany, or follow cognitive changes, may also confound assessment of cognitive impairment, intensify deficits, aphasia, apraxia, and memory deficits [176–179] (Table 1).

Psychiatric complications

Common psychiatric disturbances observed in PD subjects include: depression, apathy (i.e., lack of motivation), anxiety, sleep disturbances, psychoses, cognitive impairment, and impulse control disorders, with at least one neuropsychiatric symptom being reported in over 60% of patients [180–182]. Furthermore, several clinical features of PD and depression overlap, altered appetite or sleep, weight change, loss of libido, memory impairment, low energy, lack of facial expression and psychomotor retardation. Sleep disorders, such as insomnia, hypersomnia (excessive daytime sleepiness), restless leg syndrome, and rapid eye movement sleep behaviour disorder (RBD), affect the majority of PD patients. Psychosis manifests as hallucinations (visual, auditory or tactile), paranoid delusions or delirium [181,183–186].

Mood disturbances

Up to 90% of PD patients with idiopathic PD experience psychiatric complications, including major mood disorders (major depression, dysthymia, or bipolar disorder); adjustment disorders; disabling anxiety syndromes; drug-induced mood changes; pathological tearfulness; dementia; apathetic states; psychosis; or delirium [187].

Non–motor symptoms of PD

Recent reports in PD patients have confirmed the existence of a variety of non–motor symptoms. These include hyposmia (reported in 80% of the patients at the time of diagnosis), pain, cognitive deficits (about 50%; deficits in memory, attention, executive function and depression are reported), sleep disturbances, rapid eye movement (REM) behavior change, constipation and urinary problems, depression (10 – 40%), changes in aversion, fear and anxiety, compulsive behavior and lack of impulse control [33,188–191].

Pre–motor stages of PD

According to the Hoehn and Yahr scale for PD stages [192], PD patients go through five stages:

Stage 1: Very subtle, unilateral existence of one or more of the primary symptoms.
Stage II: Bilateral primary symptoms and additional secondary symptoms.

Stage III: Symptoms from stage two increases in severity, and problems with balance become prominent. At this stage, the person with Parkinson’s is still independent.

Stage IV: Motor symptoms result in disability, leading to the patient needing assistance in most daily activities.

Stage V: Patient is bed or wheelchair bound and needs complete assistance.

Neuropathology of PD

The pathology in PD is known to affect the central, peripheral, and the entric nervous systems [140]. It has been shown to cause substantial cytoskeletal alterations in various brain regions in a slow but persistent manner [42]. In addition to being a disorder of the DA projection system, glutamatergic, cholinergic, tryptaminergic, GABAergic, noradrenergic, and adrenergic damage has also been reported in PD [42,193]. Presence of Lewy bodies, Lewy neuritis, and dopaminergic degeneration are hallmarks of PD pathology, as was first demonstrated by F. Lewy in 1912 [194]. Lewy bodies are protein aggregates that, among other proteins contain ubiquitin and SNCA. These can proteins be found in cell bodies and neurites of certain neuronal populations including hypothalamus, nucleus basalis, substantia nigra, locus ceruleus, dorsal raphe nucleus and dorsal vagal nucleus [195-199].

Structural alteration in PD

Basal ganglia: Parkinsonism is considered to result primarily from abnormalities of BG function. The BG include the neostriatum (caudate nucleus and putamen), the GPe, GPI, subthalamic nucleus (STN), and the SN with its SNpr and SNpc. They participate in anatomically and functionally segregated loops that involve specific thalamic and cortical areas. These parallel circuits are divided into ‘motor’, ‘associative’ and ‘limbic’ loops, depending on the function of the cortical area involved [200-203]. Patterns of neuronal discharge within the basal ganglia are disturbed in PD [204]. The loss of DA in the SNpc increases the overall excitatory drive in the BG, disrupting voluntary motor control and causing the characteristic features of PD [205].

Striatum: The striatum, a part of the BG, which receives dopaminergic projections from the SN, is also significantly impacted in PD [206,207]. The striatal damage is more severe in the putamen than in the caudate nucleus. The ventral tegmental area is affected to a lesser extent as compared to the SN [208]. The loss of DA in the nucleus accumbens is to a much lesser extent, and the dopaminergic neurons in the hypothalamus appear to be spared in PD [209]. The association of SNCA and mitochondria was especially significant in PD-vulnerable brain regions that are SNpc and striatum [210].

Cerebral cortex: Decreased dopaminergic input to the striatum from the SNpc in PD results in a complex alteration in activity between input and output stations of the BG. Decreased levels of DA result in increased activity along the indirect pathway and decreased activity along the direct pathway, which together result in increased excitation of GPI and SNpr neurons, then to increased inhibition of thalamic neurons, and finally to decreased excitation of the cortex. [16-17].

Mechanism of PD pathogenesis

The first link between mitochondria and PD came with the identification of the deficiency of mitochondrial ETC (electron transport chain) protein complex I activity in SN from patients with PD [211-213]. The role of mitochondria in the pathogenesis of PD has been enhanced by the subsequent identification of mutations in genes encoding mitochondrial proteins like PINK1, DJ1, and parkin, environmental agents, increased intracellular Ca++, free radical-mediated damage to proteins, lipids, and DNA in SN of PD patients [214–217]. A defect of mitochondrial respiratory chain activity results in impaired oxidative phosphorylation and an increase in free radical generation and thus will affect UPS function by both limiting activity and increasing the substrate load of oxidized protein. (Figure 1) [218].

Oxidative stress & PD

The extensive production of ROS in the brain may provide an explanation for the magnitude of the role that these reactive molecules play in PD. The brain consumes about 20% of the oxygen supply of the body, and a significant portion of that oxygen is converted to ROS [219]. ROS can be generated in the brain from several sources, both in neurons and glia, with the ETC being the major contributor at the mitochondrial level, monoamine oxidase (MAO), NADPH oxidase (NOX) and other flavo–enzymes along with nitric oxide (NO) [219–221]. Oxidative stress have been found not only in brain tissues but also in peripheral tissues of individuals affected by PD, mild cognitive impairment (MCI) and other degenerative diseases, including HD, Alzheimer’s disease (AD), amyotrophic lateral sclerosis (ALS), and others [222].

Mitochondrial dysfunction & PD

![Figure 1: Intraventricular injection of 6-OHDA inducing neurotoxic effect in mitochondrial respiratory chain (ETC).](https://example.com/figure1.png)
Within the mitochondria, ROS is produced at several sites along the ETC, coupled with a process called oxidative phosphorylation via complex V i.e. ATP synthase. Direct and imprecise interactions of reduced nicotinamide adenosine dinucleotide phosphate (NADH) / reduced flavin adenine dinucleotide phosphate (FADH) derived electrons with molecular oxygen or any other electron acceptors lead to generation of ROS [22,223]. Major complexes of ETC indulged in generation of ROS include complex I and complex-III [224]. Figure 1 shows a schematic diagram of the flow of electrons across the ETC and the major sites involved in ROS production. Interestingly, uncoupling proteins (UCP) present in mitochondrial membranes have been found to minimize the generation of excessive ROS by leaking the protons inside mitochondria from the cytoplasm, thereby reducing the overall membrane potential [225]. Though mitochondria have been found to be the major contributors target site of cellular ROS, oxidative stress, inflammatory mediators and Ca²⁺ overload is the pathological hallmark for mitochondrial dysfunctioning [226]. The amount of ROS present inside a cell has phenomenal physiological significance. Increased levels of ROS lead to cellular damage and reduced levels result in impairment of various signaling pathways essential for cellular proliferation and operation of host defense mechanisms [227–228]. Therefore, a delicate balance between the levels of oxidants and antioxidants is essential to maintain the optimum levels of ROS [229]. An efficient antioxidant defense system which includes enzymes such as superoxide dismutase (SOD), catalase (CAT), total glutathione (GPx) and glutathione reductase (GRd) ensures the optimal level of cellular ROS and any imbalance or impairment in this system results in oxidative stress and its subsequent consequences (Figure 2) [230].

Excitotoxicity and PD

The concept of excitotoxicity has also been applied to PD. Various studies have demonstrated that Parkin regulates the function and stability of excitatory glutamatergic synapses [231,232]. Postsynaptic expression of Parkin dampens excitatory synaptic transmission and causes a marked loss of excitatory synapses in hippocampal neurons [233]. Conversely, knockdown of endogenous Parkin or expression of PD–linked Parkin mutants profoundly enhances synaptic efficacy and triggers a proliferation of glutamatergic synapses. This proliferation is associated with increased vulnerability to synaptic excitotoxicity [234]. The resulting excessive glutamatergic drive could be a source of excitotoxicity in the nigra and activation of NMDA receptor increases intracellular Ca²⁺ levels [12]. A role for elevated intracellular Ca²⁺ in the events leading to cell death in PD is supported by the observation that dopaminergic neurons expressing the Ca²⁺–binding protein calbindin may be selectively preserved in PD [235].

Neuro-inflammation and PD

In PD One of the first features of the inflammatory–associated modifications was the unregulated expression of major histocompatibility complex (MHC) molecules [236]. Whether a microglia T–cell dialogue exists and is important for local amplification of the proinflammatory immune response in PD remains to be determined [237]. Another main feature of inflammatory–related processes in PD is a marked increase in cytokine levels in the striatum and cerebrospinal fluid (CSF) of Parkinsonian patients compared with control subjects [238]. These include proinflammatory cytokines (TNF–α, IL–1β, IL–6), T–cell activation–associated cytokine (IL–2), anti-inflammatory cytokine (IL–4), and several growth factors like endothelial growth factor (EGF), transforming growth...
factor alpha (TGF-α), β-FGF, transforming growth factor beta1 (TGF-β) [239,240]. Because an increase in the level of cytokines was specific to the nigrostriatal pathway and is not observed in cortical regions, it has been suggested that cytokine production may be strictly confined to the sites of injury [241,242]. Cytokine-induced dopaminergic cell death may involve more direct cytotoxic mechanisms through direct activation of cytokine receptors localized on dopaminergic neurons and coupled to intracellular death–related signaling pathways [240].

Apoptosis/caspases & PD

A pathogenic role for apoptosis in PD is supported by findings of activated caspase-3, 8 and 9 and higher activities of caspases-1 and 3 in dopaminergic SN neurons in PD brain [241,242].

An oxidative mechanism for neuronal apoptosis has been suggested to involve ROS generation, inhibition of mitochondrial complex I activity, and caspase-3 activation, overexpression of mutant SNCA in association with elevated 8-hydroxyguanine, protein carbonyls, lipid peroxidation and 3-nitrotyrosine, consistent with oxidative stress [243-247] (Figure 2).

Neurochemistry of PD

DA in PD

There are two distinct populations of DA receptors, which differentially regulate second messenger pathways in the striatum. D1 receptor activation leads to stimulation of AC, the enzyme responsible for the synthesis of cAMP. D2 receptor activation inhibits AC, which results in decreased synthesis of cAMP. Levels of cAMP regulate the activity of cAMP/PKA, which plays an important role in cell phosphorylation events such as ion channel modulation and regulation of gene expression (Figure 3) [248,249]. DA differentially regulates the direct and indirect pathways. The direct and indirect pathways work together to balance the motor control mediated by the BG. While the direct pathway facilitates movement by means of decreases in tonic inhibition of BG output and disinhibition of thalamocortical and brainstem pathways, the indirect pathway suppresses movement by increasing the inhibitory BG output to the thalamus [58,59]. DA fibers have therefore an inhibitory action on the striatal GABAergic/enkephalinergic cells projecting to the GPe, but an excitatory action on the GABAergic/substance-P (SP) containing neurons projecting directly to the GPe (and the SNPr) [250-252].

GABA in PD

Gamma-aminobutyric acid (GABA), a putative inhibitory neurotransmitter, is distributed throughout the brain and spinal cord [253]. GABA is the main inhibitory neurotransmitter within the central, peripheral and enterinal nervous systems [254,255]. Recent studies indicate a possible diagnostic value of plasma glial cell derived neurotropic factor (GDNF) levels in depression, but whether GDNF and related Ca2+/GABA mechanisms may play prominent role in the development and progression of PD-related depression is unclear at the moment [256]. SNpc DAergic efferents project to GABAergic cells in the striatum these connections can be excitatory & inhibitory mediated by D1 & D2 DA receptors respectively. DAergic neuron loss in the SNpc cause the net inhibition thalamic output to the cortex through both the direct and indirect pathway of the BG, are parallel pathway from the striatum to the BG output nuclei–GPI & SNpr that mediate thalamocortical activity. The direct pathway normally provides inhibition to the output nuclei which is disinhibited in PD as well as indirect pathway normally exits the output nuclei also disturbed in PD [18,19].

Glutamate in PD

Glutamate is also the predominant excitatory neurotransmitter in the BG, is the seat of the motor deficits seen in PD [257]. In addition to sending glutamatergic projections to the striatum, the cortex also sends projections to the STN, thalamus, and SNpc, in addition to other nuclei in the brainstem and spinal cord. The SNpc receives further glutamatergic innervation from the STN in the indirect basal ganglia pathway. Evidence has supported that the dopaminergic projection from the SNpc to various nuclei in the BG circuit exerts an important regulatory function on the firing pattern of certain glutamatergic pathways (Figure 4) [258]. Glutamate release can be regulated by GABA receptors located on corticostriatal terminals activation of these receptors exerts a significant inhibitory effect [259]. Glutamate systems are extensively distributed throughout the brain and have been implicated in the central control of many physiological functions. As a consequence, disturbance in glutamatergic activity may underlie many psychological and neurodegenerative disorders including AD, HD, ALS, AIDS dementia complex, and PD [260]. Excessive stimulation of glutamate receptors can have numerous detrimental effects such as Ca2+ homeostasis dysfunction, increased NO production, activation of proteases, an increase in cytotoxic transcription factors, and increased free radicals [261]. Glutamate receptor over-stimulation leads to excessive influx of Ca2+ (and Na+) through glutamate receptor–gated ion channels, followed passively by movements.
of chloride (Cl-) and water. It causes postsynaptic neurons to be overloaded by extracellular Ca\(^{2+}\) and Na\(^+\) as well as intracellular Ca\(^{2+}\) via release from mitochondria. The resulting combination of increased intracellular volume and Ca\(^{2+}\) overload induces various lethal metabolic derangements, internal organelle swelling, and plasma membrane failure leads to necrosis [262].

Acetylcholine in PD

Ach is a prominent neurotransmitter of the peripheral and the central nervous system (CNS). In the CNS, Ach is involved in attention, learning, memory, consciousness, sleep, and control of voluntary movements [263]. In the brain, Ach mediates distant signaling through projection neurons and local signaling via interneurons; the type of message conveyed by Ach depends on a variety of factors, including site of release, the localization of the target neurons, the target receptor subtypes, and the status of the target cells at the time of release [264]. Furthermore, Ach signaling may be circumscribed to the synapse or result from the delocalized diffusion of the neurotransmitter in the extracellular milieu and binding to nonsynaptic sites [265,266]. Among brain structures, the striatum contains some of the highest levels of Ach and DA. The two neurotransmitter systems interact extensively in a bidirectional manner, both at the presynaptic and postsynaptic levels, mediating cognitive mechanisms, the selection of motor responses, and reward [267,268]. In a recent study in 137 PD patients, cholinergic denervation could be related to REM behavior disorder, fall history, gait disorders, and cognitive dysfunction [269].

Adenosine receptors in PD

Adenosine receptors have a unique cellular and regional distribution in the BG and are particularly concentrated in caudate, putamen and the GP areas, which are richly innervated by DA [270]. In the BG, A2A receptors are prevalently and selectively localised in dendrites, dendritic spines and axons of GABAergic neurons of the indirect pathway projecting from the caudate putamen to the GPe [271,272]. Adenosine influences striatal output pathways known to be involved in motor symptoms and the onset of dyskinesia in PD. Therefore, inhibition of A2A receptors seems to be a potential target for neuroprotection in PD [273,274]. Indeed, in rodent models of PD, A2A antagonism exerts Anti-parkinsonian actions [272,275,276]. The highest expression of adenosine A2A receptors is found in the BG, particularly in the corpus striatum, which is involved in controlling complex motor activities by specific motivational stimuli as well as in habit formation [277]. Evidence for presynaptic localization of A1 receptors on DA axons is indirect, with confirmed absence of A2A receptors [271,278–281]. Nevertheless, both regulate striatal DA release, likely indirectly, with inhibition by A1–receptor activation and enhancement by A2A receptors activation [282–284].

Cannabinoid receptors in PD

Cannabinoids mainly act through two types of receptors, CB1 (present in CNS and to a lesser extent in the peripheral nervous system) and CB2 (present outside the CNS, preferentially in the immune system). The hypokinetic effect associated with the activation of CB1 receptors located in different neuronal subpopulations within the BG [285]. It is reasonable to expect that the cannabinoid signaling system, and particularly this receptor type, would experience an up regulatory response in PD or other hypokinetic disorders [286]. A therapy with cannabinoids in PD would imply the use of CB1 receptor antagonists for the alleviation of motor inhibition but also the use of different types of cannabinoids, preferably antioxidant cannabinoids, for the control of disease progression [285,287–289].

Neuropeptides in PD

Neuropeptides are found in many mammalian CNS neurons where they play key roles in modulating neuronal activity [290]. Other peptides such as neuropeptide Y (NPY) are synthesized throughout the brain, and neurons that synthesize the peptide in one region have no anatomical or functional connection with NPY neurons in other brain regions [291]. Neuropeptides are thought to modulate the excitability of dopaminergic neurons in the extrapyramidal system [206,292]. NPY–medulla; neuronal loss was found in PD patient. Damage to multiple neuronal systems causing complex biochemical changes and pathophysiological disturbances may represent the basis for the variable clinical picture of PD including motor, vegetative, behavioral, and cognitive dysfunctions, depression, pharmacotoxic psychoses, and other symptoms that usually increase with progressive stages of the disease [293,294].

SP and Enkephalin (Enk) in PD

SP that is highly concentrated in SN and the inner pallidum and neurons of the ponto mesencephalic tegmentum have an excitatory effect on dopaminergic neurons [58]. The PD brains shows a 30–40% decrease in SP in SN and pallidum without essential changes in cortex, hippocampus, striatum, and hypothalamus [295]. There is reduction of SP-immunoreactivity in SN or pallidum was observed in PD, AD, and Guam–PDC but significant reduction of SP was observed.
immunoreactivity in GPi, in SNpr and SNpc, and in the NBM in PD [206,290,296,297].

Animal models for PD

Mitochondrial complex I and IV toxin PD models (6-OHDA)

The characterization of the hydroxylated analogue of DA, 6-OHDA, as a toxin-inducing degeneration of dopaminergic neurons in the nigro–striatal tract has led to it being a widely used tool to induce Parkinsonism in rodents [32,34, 35, 298]. 6-OHDA is injected into the nigro–striatal tract at one of three locations: into the SNpc where the A9 dopaminergic cell bodies are located; into the median forebrain bundle (mfb), through which the dopaminergic nigro–striatal tract ascends; or into the terminal region, the striatum [299–301]. Current understanding behind 6-OHDA mechanism is that, once inside dopaminergic neurons, 6-OHDA initiates degeneration through a combination of oxidative stress and mitochondrial respiratory dysfunction [32,302]. Certainly, 6-OHDA readily oxidizes to form ROS, to reduce striatal levels of antioxidant enzymes, elevate levels of iron in the SN and to interact directly with complexes I and IV of the mitochondrial respiratory chain, leading to subsequent respiratory inhibition [35,303–306] (Figure 5). The 6-OHDA model also mimics many of the biochemical features of PD, including reduced levels of striatal DA and tyrosine hydroxylase (TH; rate-limiting step of DA biosynthesis), increased firing of the STN parallelly increase in glutamate levels and firing within the BG output regions (entopeduncular nucleus and SNpr), elevated striatal Enk levels or depressed striatal SP and dynorphin levels, increased firing in the GPi in PD patients and Parkin-containing aggregate formation in 6-OHDA–lesioned rat (Figure 6). [307–316].

(Complex I: NADH dehydrogenase; Complex III: Cytochrome bcox or cytochrome c reductase; Complex IV: Cytochrome c oxidase; Complex V: ATP synthase)

6-OHDA activates inflammatory features including NF-κB-mediated responses accompanied by inhibition of antioxidant systems regulated by Nrf2, TNF-α, complement component 1q subcomponent– binding protein, increases the expression levels of neuroinflammation markers such as TNF-α, IL-1b, and IL-6 and in astrocytes increases pro-inflammatory cytokine TNF-α, nitric oxide synthase (iNOS) and NO, cyclooxygenase–2 (COX–2), and PGE2 [244,317–319].

(That exhibit nigro–striatal tract degeneration. *Indicates those agents that are administered directly into the brain; all other agents are delivered systemically. Maneb is believed to inhibit complex III of the mitochondrial respiratory chain, whilst the other mitochondrial toxins mainly inhibit complex I. This activity leads to the generation of ROS or reduced ATP production, which lead to apoptosis and the cells demise. 6-OHDA and MPP+ may also induce the production of ROS directly within the cytoplasm. LPS–activates microglial cells to stimulate the release of inflammatory mediators, which in turn produce reactive nitrogen species (RNS). Inhibition of proteasome activity allows a build up damaged proteins that through DNA damage (not shown for clarity), and other processes can lead to cell death. Cell death is most likely apoptotic in nature, though this remains controversial for some agents)

Cyclic Nucleotides

The cyclic nucleotides 3–5–cAMP and 3–5–cyclic GMP are diffusible intracellular second messengers that act as critical modulators of neuronal function [320]. cAMP is generated in response to binding of a number of neurotransmitters to G–protein coupled receptors (GPCRs) and subsequent activation of AC [321]. Serotonin, adrenergic, dopaminergic, adenosine, vasoactive intestinal peptide, muscarinic, GABA, and opioid receptors, among others, signal through the cAMP cascade via specific heterotrimeric G proteins [322]. Through these effectors cAMP controls a bewildering number of neuronal functions, ranging from regulation of ion channel activity and, consequently, neuronal excitability, to cell volume control and axon guidance; from metabolism and transcription to neurotransmitter release and learning and memory formation [323].

Cyclic adenosine monophosphate (cAMP)

cAMP is synthesized from ATP by AC located on the inner side of the plasma membrane and anchored at various locations in the interior of the cell [324]. The brain contains a large number of different GPCRs. Each individual neuron can express at its...
plasma membrane a number of these receptors, each of which will generate a cAMP signal upon binding to its ligand [322]. In addition, glutamatergic stimulation can generate both cAMP and cGMP signals in response to Ca2+ influx [325]. The second messenger concept of signaling was developed with the finding of cAMP and its ability to influence metabolism, cell shape and gene transcription (via reversible protein phosphorylations) [326]. cAMP exerts an important role as second messenger molecule controlling multiple cellular processes in the brain [327]. Elevation of cAMP causes both short and long-term increase in synaptic strength and stimulates cholinergic cells to release Ach [63–65,328]. However, the levels of cAMP are reported to be decreased in neuropathological conditions [50,329]. Further, cAMP dependent CREB phosphorylation has too been reported to induce LTP by the action of an enzyme AC in response to a variety of extracellular signals such as hormones, growth factors and neurotransmitters [66,67,330]. cAMP controls a bewildering number of neuronal functions ranging from regulation of ion channel activity, neuronal excitability, control cell volume and axon guidance; from metabolism and transcription to neurotransmitter release, regulate BDNF, improve learning and memory, restore energy levels, reduce excitotoxic damage, inhibit apoptotic and necrotic cell death, regulate synaptic ef

activity, including cAMP and Ca2+ (Figure 3) [349].

CREB activation

CREB is one of the most well-characterized transcription factors in learning and memory [66]. It was originally described due to its association with the cAMP response element (CRE) DNA sequence, and widely expressed throughout the brain, playing a critical role in plasticity in many brain regions, including hippocampus [336,337]. CREB increases the synaptic availability of DA and induces many DA dependent adaptive responses culminating in the transcription of striatal CRE-1 dependent genes, such as the immediate early gene c-fos and the neuropeptides dynorphin, SP, and Enk's. CREB phosphorylation, initially thought to be mediated exclusively by the cAMP/PK, pathway, is also induced by Ca2+ -dependent signal transduction pathways [338]. Two members of the Ca2+/calmodulin-dependent kinase family (CaMK), CaMKII and CaMKIV, are activated by Ca2+ entry through an L-type voltage-sensitive Ca2+ channel or glutamate N-methyl-D-aspartic acid (NMDA) receptors and induce CREB phosphorylation [339–342]. There are a number of signaling cascades upstream of CREB phosphorylation, such as the cAMP/PK, CaMKII and IV) [68,336].

Cyclic nucleotide mediated CREB activation. GDP: Guanosine diphosphate, GTP : Guanosine Triphosphate, AC : Adenylyl Cyclase, GC : Guanylyl cyclase, ATP : Adenosine Triphosphate, cAMP : Cyclic Adenosine monophosphate, 5 AMP : 5 Adenosine monophosphate, PDE : Phosphodiesterase, cGMP : Cyclic Guanosine monophosphate, 5 GMP : 5 Guanosine monophosphate, EPAC : Exchange protein activated cAMP, ERK : Extracellular signal- regulated Kinase, PKA :

Protein Kinase A, PKG : Protein Kinase G, CREB : Cyclic AMP Response element binding Protein, BDNF : Brain Derived Neurotrophic Factor, NGF : Nerve Growth Factor.

These cascades are activated by stress, inflammatory cytokine MAPK or PI3/Akt pathways, growth factor/receptor tyrosine kinase activity (Ras/Erk/RSK2 pathway), and phospholipase C (PLC)–PKC signaling [68,343]. All these cascades have been shown to induce CREB phosphorylation [331,344] (Figure 3). CREB phosphorylation is facilitated by membrane-bound NMDA receptors, the non-receptor tyrosine protein kinase c-Src, fibroblast growth factor receptor1 (FGFR1), and estrogen receptors, all of which are part of distinct intracellular cascades [345–348]. The molecules involved in the modulation of CREB phosphorylation include several neurotransmitters DA, glutamate, serotonin, GABA, growth factors like IGF-1; vascular endothelial growth factor, VEGF, and neurotrophins BDNF [68]. However, CREB also regulated by multiple signaling cascades downstream of neuronal activity, including cAMP and Ca2+ at various stages of memory consolidation, which requires protein synthesis [66,335].

Role of CREB in neuronal functioning

CREB regulates a wide range of neuroprotective processes, including the expression of trophic factors, antiapoptotic genes, detoxifying enzymes, mitochondrial biogenesis, as a regulator of cell survival, proliferation, and differentiation in the developing brain, whereas its roles in the adult brain include learning, memory, neuronal plasticity [68–70,350,351]. Among the molecules related to adult neurogenesis that are also affected by CREB signaling, BDNF expression, prolactin release, bcl-2 activation, PSA–NCAM, NGF, cyclin D2, MeCP2 and mirRNA–132, participates in neuronal morphogenesis, and regulates cognitive capacity [71–78,319,352]. A number of more recent studies have demonstrated that CREB is the main element underlying the conversion of short term memory (STM) to long term memory (LTM) [353–355]. In addition, some neuropsychiatric or neurodegenerative diseases such as depression, schizophrenia, HD and AD are associated with memory loss. In this regard, CREB has been postulated to change the sensitivity of the nucleus accumbens to rewarding and aversive drugs [80–83,356,357]. Moreover CREB modulates adult neurogenesis through the control of other adult neurogenesis regulators such as neurotransmitters, steroid hormones, or cytokines (Figure 6) [358].

Forskolin

Biological source

FSK, a labdane diterpene, is a major active compound isolated from tuberous roots of Coleus forskohlii Briq. (Labiatae) (Figure 5) [359]. C. forskohlii has been used as an important folk medicine in India. Further, FSK has been found to be a potent activator of AC, leading to an increase in levels of cAMP dependent PK, mediated CREB activation [360]. The presence of yellowish to reddish brown cytoplasmic vesicles in cork cells of C. forskohlii tubers is unique character of this plant and these vesicles store secondary metabolites i.e. FSK [361]. It grows wild in arid and semi-arid regions of India, Nepal and...
Thailand and the plant is found mostly on the dry and barren hills [362].

Ethnopharmacological profile of FSK

The genus Coleus of the family Lamiaceae (Labiatea) comprises a number of herbaceous medicinal plants which are particularly employed in home remedies for various ailments. Three species are most popular and commonly cultivated. They are Coleus aromaticus, C. vettiveroides and C. forskohlii. Long slender raceme [363]. Fruits are orbicular or ovoid nutlets. The leaves are useful cephalgia, otalgia, anorexia, dyspepsia, flatulence, colic, diarrhoea and cholera especially in children, halitosis, convulsions, epilepsy, cough, chronic asthma, high cough, bochitis, renal and vesical calculi, stranguary, hepatopathy, malarial fever, antispasmodic and cathartic [87,364,365]. The whole plant is useful in hyperpiesia, vitiated conditions of pitta, burning sensation, stranguary, leprosy, skin diseases, leucoderma, fever, vomiting, diarrhoea, and ulcers and as hair tonic [302,366,367]. FSK is also used as a condiment in India and the tubers are prepared as pickle and eaten [368]. The roots are used in treatment of worms, festering boils, and eczema and skin infections [369,370,371]. The leaves are bitter, acrid, thermogenic, aromatic, anodyne, appetizing, digestive, carminative, stomachic, anthelmintic, constipating, deodorant, expectorant, lithotritypic, diuretic and liver tonic [363,372,373]. Coleus forskohlii has been used to treat hypertension, congestive heart failure, eczema, colic, respiratory disorders, painful urination, insomnia, and convulsions. Clinical studies of the plant and the FSK constituent support these traditional uses, but also indicate that it may have therapeutic benefit in asthma, angina, psoriasis, and prevention of cancer metastases [87,302,363]. In traditional Indian systems of medicine, the roots of Coleus forskohlii are used as a tonic as well as used for veterinary purposes [374]. FSK is also used in the preparation of medicines preventing hair greying and restoring grey hair to its normal colour [375]. Forskolin is also a potent vasodilatory, hypotensive and inotropic agent [117].

Pharmacokinetic profile

FSK ability to inhibit platelet aggregation is of additional benefit in cardiovascular disease [376,377]. FSK also demonstrates a direct effect on cerebrovascular vasodilatation via cAMP activation [378]. Asthma and other allergic conditions are characterized by decreased cAMP levels in bronchial smooth muscle, as well as high levels of plasminogen activating factor. In response to allergen stimuli, mast cells degranulate, histamine is released, and bronchial smooth muscle contracts. FSK activation of cAMP inhibits human basophilia and mast cell degranulation, resulting in subsequent bronchodilation [131]. Research has demonstrated aerosolized dry FSK powder results in significant relaxation of bronchial muscles and relief of asthma symptoms [379,380]. In one randomized, double-blind, placebo-controlled trial, 16 asthma patients were given a single inhaled (aerosolized) 10-mg dose of dry FSK powder, an asthma medication (0.4 mg fenoterol), or placebo [380]. The ability of FSK to regulate cAMP levels in skin cells has been shown to have therapeutic benefit for sufferers of psoriasis [87]. A significant decrease in intraocular pressure (IOP) in rabbits, monkeys, and humans administered a topical FSK suspension (1% FSK). This effect was present at one hour post application and remained significant for at least five hours [381]. In vitro and animal studies demonstrate lipolysis in fat cells is stimulated by FSK via activation of AC and increased levels of cAMP antioxidant status of different parts of Coleus forskohlii including roots, stem, leaves and tubers shows the activities of SOD, peroxidase, polyphenol oxidase and CAT were significantly higher (P < 0.05) in tubers than in the leaves, roots and stem [369,382].

Pharmacological action of FSK (Table 2)

FSK and Brain

FSK Binding sites

There is increasing evidence of neurotropic effects of FSK. Specific binding sites for FSK have been shown in rat brain membranes and visualized by quantitative in vitro autoradiography in rat CNS [397,398]. FSK exhibits marked stimulatory effects on striatal AC activity [88]. Direct binding studies with a suitable, labelled derivative of FSK may be useful in determining the site of its action. Accordingly [3H] 14,15-dihydroforskolin as a ligand of binding sites in membranes of rat liver and rat brain [399]. 14,15-Dihydroforskolin has been reported to activate AC, FSK binds in frontal cortex as well as in hippocampus and in some cases in the middle temporal gyrus, striatum and also localized in pituitary and spinal cord [400]. High densities of binding sites were observed, particularly in the limbic system and the basal ganglia [119,120]. The highest density of binding was in the corpus striatum, in which AC is particularly sensitive to stimulation by FSK [103].

Role of FSK in brain

Several co-activators that influenced the DAergic differentiation have been reported. These co-activators are DA, cAMP, phorbol 12-myristate 13-acetate (TPA), isobutylmethylxanthine (IBMX) and FSK [401,402]. The percentage of DAergic neurons in the present conditions indeed needs to be modulated to further increase the DAergic neuron population, however FSK plays the co-activator role on growth factors and these extrinsic cues may be crucially effective in promoting the differentiation of a DAergic phenotype in human–derived NPCs [403].

GPCR and FSK

DA signaling is mediated by two major classes of DA receptors. D1 type receptors activate AC through coupling to Gs/Go G–proteins whereas D2 type receptors inhibit AC through Gi/Go G–proteins [404–406]. AC, the mutual target of both D1 and D2 like receptor signaling pathways, is a membrane bound protein which catalyzes the conversion of ATP to cAMP. The patterns of alteration of AC and the regional selectivity are both of particular interest. In the midbrain plus brainstem, nicotine initially enhanced basal AC activity; inferences about the underlying mechanism for this alteration can be drawn from the fact that FSK stimulation of AC was also increased. FSK also suggests that neuroprotective effects through the activation of
Table 2: Various pharmacological action of FSK

S. No	Pharmacological Activity	Mechanism of action	Dose & route	Ref. No.
01.	Cardiovascular system			
		Cardiac remodelling and Heart Failure prevention	10 μM, in-vitro (Cardiomyocytes)	[94]
			5 μM, in-vitro (mice ventricular myocytes)	[95]
			0.1, 0.3, 1 mg/kg p.o. in dogs, cats, rabbits, and rats	[91]
02.	Haematopoietic system	Reduction in the extent of platelet aggregation	2.5 μM, 100 μM, in-vitro (human blood platelet)	[96]
		Induced a partial deaggregation of ADP- or collagen-aggregated human platelets	0.1 mM, in-vitro (human blood platelet)	[383]
		Inhibition of human neutrophil degranulation	50-75 μM, in-vitro (Human neutrophil)	[384]
03.	Central nervous system	Huntington's disease	10, 20, 30 mg/kg p.o. in rat (3-nitroproponic acid)	[87]
		Alzheimer's disease	in-vitro (Normal and Alzheimer's Disease Human Fibroblasts cells) 5 μM, in-vitro (human pluripotent stem cells)	[384, 385]
		Antidepressant	0.01-0.1 mg/kg, p.o. in rat (forced swimming method)	[386]
		Antistress activity	25, 50, 100 mg/kg p.o. (in-vivo) in mice (Elevated plus maze test, Forced swim)	[387]
04.	Gastro-intestinal system	Inflammatory bowel disease (IBD)	10 μM mucosal and serosal in vitro	[92]
05.	Cancer Metastases	block platelet aggregation via its	82 μg forskolin to mice 30-60 minutes prior to injection with a highly metastatic melanoma	[92]
		Stimulation of platelet adenylate cyclase and increase of intracellular cAMP, Enhances Protein phosphatase-2A (PP2A) activity in leukemia cells	40 μM, in-vitro (human PCA cell lines)	[95]
06.	Eye	Intraocular pressure and open angle glaucoma, Retinal ischemic injury via upregulation of phosphoinositide 3-kinase (PI3K)/Akt pathway	0.15% w/v intravitreal administration 0.6–6 nmol/eye intravitreal administration	[101]
07.	Endocrine system	Downregulation of the renal parathyroid hormone (PTH)-via cAMP increase intracellular cAMP, which, together with the increase in ATP, enhance the priming of insulin granules	0.1, 1, 10 μm in chicken kidney slices 10 μM, in-vitro in rat	[390]
08.	Renal system	Hydrodynamic alterations in collecting tubule	50 μM, in-vitro (rabbit cortical collecting tubules)	[97]
09.	Urinary system	Uterine smooth muscle relaxant	20 μM, in-vitro (uterus smooth muscle)	[392]
10.	Hepatic system	Hepatoprotective activity through Regeneration of hepatocytes, normalization of inflammatory hepatic and necrosis	500 mg/kg, intra-gastrically (i.g.) 10^{-7} mol/L in-vitro (cell culture of bile duct)	[393]
				[394]
11.	Anti-inflammatory activity	Reduction in the level of Interleukin-1β, 6 and 8 Inhibit mast cell degranulation	0.5 μg/kg/min (Intra-operative) 10 μm, in-vitro (human mast cell culture media)	[100]
				[395]
12.	Respiratory system	Asthma	(dose range 7-10 μM) in vitro & in vivo (ovalbumin-sensitized guinea pigs, intravenously and intraduodenally administered forskolin significantly reduced the bronchospasm due to aerosol administration of ovalbumin)	[396]

AC mediated cAMP activation are obtained in the presence of Gs [407].

Acetylcholine and FSK

The increase in the level of acetylcholinesterase (AChE) in FSK treated cells could be also an indirect effect of cAMP. cAMP is a second messenger and modulates a plethora of other factors within the cell [20,408–410]. The release of Ach from the presynaptic nerve terminal of nicotinic synapses and subsequent binding to recognition sites located on the subunits of the Ach receptor-ion channel complex (AChR) results in conformational changes of the AChR which yield
FSK and Cognitive dysfunctions

The various forms of executive dysfunction, visuospatial impairment, memory impairment, and attention deficits that occur in PD can render patients less able to accomplish familiar tasks or make them feel overwhelmed in situations that were not previously challenging \([21,222] \). The presence of a mood disorder which can precede, accompany or follow cognitive changes may also confound assessment of cognitive impairment and intensify deficits \([142,177] \). Like most mental disorders, cognitive disorders are caused by a variety of factors. Some are due to hormonal imbalances in the womb, others to genetic predisposition and still others to environmental factors \([423] \). FSK 5 mg/kg, i.p. is able to activating CAMP/CREB in the hippocampal region responsible for memory improvement \([424] \). Moreover FSK 50 μM direct potentiates synaptic response and induced LTP \([425,426] \).

Possible involvement of FSK in 6-OHDA induced PD

Summarizing the whole information given above, FSK confirmed a versatile role in PD where it activates the AC/cAMP mediated PKA/CREB activation (Figure 7) Moreover, on other side FSK act as a coactivator in brain that follows the G_{i} pathway through the activation of D_{1} receptor. There is least availability of selective AC activation and so far only limited reports suggest beneficial effect of FSK in neurodegeneration animal model.

Thus, combined with all information given above on the basis of review and research papers, it was first effort by us to explore the restorative and symptomatic profile of FSK through the activation of cAMP/PKA/CREB pathway in 6-OHDA induced neurotoxic PD’s like behavioral and biochemical parameters in rats.

Conclusion

Thus in conclusion neuroprotective and neurorestoration effects of FSK may be due to favorable modulation of CREB
mediated signaling and direct D1 activation in the striatum. The involvement of cAMP/PKα/CREB pathway, anti-oxidant, anti-inflammatory and neuro-modulatory effect of test drug FSK may be the possible mechanisms at least in part underlying the observed effects.

Based on important and versatile role of cAMP/PKα/CREB signaling in regulation of neuronal functioning, essential to investigate the role of cAMP mediated CREB activation in 6-OHDA induced experimental PD in rats and to find out if cAMP mediated CREB pathway is equally implicated in the disease pathogenesis or progression. It may perhaps be safe to further conclude that the beneficial effects of the investigated test drug FSK may be due to its combined improved motor functions, pro-cognitive and to restore the energy levels as well as antioxidant and anti-inflammatory defense system in 6-OHDA model.

References

1. Donaldson I, Marsden CD, Schneider S, Bhatia K (2012) Marsden's book of movement disorders. Oxford University Press: Oxford. Link: https://goo.gl/KmNHkks
2. Goldman Jennifer G, and Postuma Ron (2014) Premotor and non-motor features of Parkinson’s disease. Curr Opin Neurol 27: 434–441. Link: https://goo.gl/N2znvZ
3. Kordower JH, Olanow CW, Dodiya HB, Chu Y, Beach TG, et al. (2013) Disease duration and the integrity of the nigrostriatal system in Parkinson’s disease. Brain 136: 2419–2431 Link: https://goo.gl/JEmeE9
4. Feamley JM, Lees AJ (1991) Ageing Parkinson’s disease: Substantia nigra regional selectivity. Brain 114: 2283–2301 Link: https://goo.gl/Ahwh-xK
5. Parkinson J (2002) An essay on the shaking palsy. 1817. J Neuropsychiatry. Link: https://goo.gl/0BUx3T
6. Tags Chris (2012) Who gets Parkinson’s disease? Link: https://goo.gl/4fKnL
7. Shuman JM, De Jager PL, Feany MB (2011) Parkinson’s disease: genetics and pathogenesis. Annu Rev Pathol 6: 193-222. Link: https://goo.gl/ykF-cnL
8. Schenck CH, Boeve BF, Mahowald MW (2013) Delayed emergence of a parkinsonian disorder or dementia in 81% of older males initially diagnosed with idiopathic REM sleep behavior disorder (RBD): 16 year update on a previously reported series. Sleep Med 14: 744-748. Link: https://goo.gl/1z2NYYM
9. Assal F, Jeffrey L. Cummings, Jeffrey L (2002) Neuropsychiatric symptoms in the dementias. Curr Opin Neurol 15: 445-450. Link: https://goo.gl/NrfmJh
10. Chaudhuri KR, Martinez-Martin P (2008) Quantitation of non-motor symptoms in Parkinson’s disease. Eur J Neurol 15: 2-7. Link: https://goo.gl/2zaHdZ
11. De Lau LM, Breteler MM (2006) Epidemiology of Parkinson’s disease. Lancet Neurol England 5: 525-535. Link: https://goo.gl/xIQK03N
12. Clobicca A, Paduraria M, Hritcu L (2012) The effect of short term nicotine administration on Behavioural & oxidative stress deficiencies induced in rat model of Parkinsons Disease. Psychiatria Danubina 24: 194-205. Link: https://goo.gl/n6HE4
13. Bhutada P, Mundhada Y, Bansod K, Tawari S, Patil S, et al. (2011) Protection of cholinergic and antioxidant system contributes to the effect of berberine ameliorating memory dysfunction in rat model of streptozotocin induced diabetes. Behav Brain 220: 30-41. Link: https://goo.gl/bimOK1
14. Mathai A, Smith Y (2011) The corticostriatal and corticosubthalamic pathways: two entries, one target. So what? Front Syst Neurosci 5: 64. Link: https://goo.gl/aATFHE
15. Raz A, Frechters-Mazar V, Feingold A, Abeles M, Vaadia E, et al. (2001) Activity of pallidal and striatal tonically active neurons is correlated in MPTP-treated monkeys but not in normal monkeys. J Neurosci 21: RC128. Link: https://goo.gl/W4s7Mr
16. Brown P, Oliviero A, Mazzone P, Insola A, Tonali P, et al. (2001) Dopamine dependency of oscillations between subthalamic nucleus and pallidum in Parkinson’s disease. J Neurosci 21: 1033–1038. Link: https://goo.gl/HfuOsv2
17. Foffani G, Priori A, Egidi M, et al. (2003) 300-Hz subthalamic oscillations in Parkinson’s disease. Brain 126: 2193–2163. Link: https://goo.gl/EsE5yb
18. Vila M, Herrero MT, Levy R, Faucheux B, Ruberg M, et al. (1996) Consequences of nigrostriatal denervation on the gamma-aminobutyric acidic neurons of substantia nigra pars reticulata and superior colliculus in parkinsonian syndromes. Neurology 46: 802-809. Link: https://goo.gl/OF4kqb
19. Levy R, Herrero MT, Ruberg M, Villares J, Faucheux B, et al. (1995) Effects of nigrostriatal denervation and L-dopa therapy on the GABAergic neuron in the striatum in MPTP-treated monkeys and Parkinson disease: an in situ hybridization study of GAD67 mRNA. Eur J Neuro Sci 7: 1199-1209 Link: https://goo.gl/bhWlNh
20. Reddy PH, Beal MF (2005) Are mitochondria critical in the pathogenesis of Alzheimer’s disease? Brain Res Rev 49: 618–632. Link: https://goo.gl/805OB5
21. Zeevalk GD, Bernard LP, Song C, Gluck M, Ehrtbart J (2005) Mitochondrial inhibition and oxidative stress: reciprocating players in neurodegeneration. Antioxid Redox Signal 7: 1117–1139. Link: https://goo.gl/olJ0z
22. Balaban RS, Nemoto S, Finkel T (2005) Mitochondria, oxidents, and aging. Cell 120: 483-495. Link: https://goo.gl/wDTSR5
23. Henry J, Smeyne RJ, Jang H, et al. (2010) Parkinsonism and neurological manifestations of influenza throughout the 20th and 21st centuries. Parkinsonism Relat Disord 16: 566–571. Link: https://goo.gl/emfDer
24. Irriech I, Aleyasin H, Seifert EL, et al. (2010) Loss of the Parkinson’s disease-linked gene DJ-1 perturbs mitochondrial dynamics. Hum Mol Genet 19: 3734–3746. Link: https://goo.gl/m2zLuIt
25. Shim JH, Yoon SH, Kim KH, Han JY, Ha JY, et al. (2011) The antioxidant Trolox helps recovery from the familial Parkinson’s disease-specific mitochondrial deficits caused by PINK1- and DJ-1- deficiency in dopaminergic neuronal cells. Mitochondrion 11:707-715. Link: https://goo.gl/De3X2Y
26. Heo JY, Park JH, Kim SJ, Seo KS, Han JS, et al. (2012) DJ-1 null dopaminergic neuronal cells exhibit defects in mitochondrial function and structure: involvement of mitochondrial complex I assembly 7: e32629. Link: https://goo.gl/wYrirQ
27. Richardson JR, Quan Y, Sherrer TB, Greenamyre JT, Miller GW (2005) Paroxaust neurotoxicity is distinct from that of MPTP and rotenone. Toxicol Sci 88:193– 201. Link: https://goo.gl/cRSR3R
28. Calio J, Oury T, Chu C (2005) Monganese superoxide dismutase protects against 6-hydroxydopamine injury in mouse brains. J Biol Chem 280: 18356–18542. Link: https://goo.gl/cFzw2t
29. Vila M, Przedborski S (2003) Targeting programmed cell death in neurodegenerative diseases. Nat Rev Neurosci 4: 365–375. Link: https://goo.gl/SMBNZ
30. Perier C, Bočán J, Vila M, Przedborski S (2003) The rotenone model of Parkinson’s disease. Trends Neurosci 26: 345–346. Link: https://goo.gl/3LSvDd
31. Fukushima T, Gao T, Tawara T, Hojo N, Isobe A, et al. (1997) Inhibitory effect of nicotinamide to paraquat toxicity and the reaction site on complex I. Arch Toxicol 71: 633–637. Link: https://goo.gl/udAex9
66. Carlezon WA, Duman RS, Nestler EJ (2005) The many faces of CREB. Trends in Neurosciences 28: 436–445. Link: https://goo.gl/oICTtY
67. Silva AJ, Kogan JH, Frankland PW, Kidd S (1998) CREB and memory. Annu. Rev Neurosci 21: 127–148. Link: https://goo.gl/iss51L
68. Yamashima T (2012) ‘PUF-A-GPR40-CREB signalling’ hypothesis for the adult primate neurogenesis. Prog Lipid Res 51: 221–231. Link: https://goo.gl/w0MTWw
69. Tao X, Finkbeiner S, Arnold DB, Shaywitz AJ, Greenberg ME (1998) Ca2+ influx regulates BDNF transcription by a CREB family transcription factor-dependent mechanism. Neuron 20: 709–726. Link: https://goo.gl/das20I
70. St-Pierre J, Drori S, Uldry M, Silivaggi JM, Rhee J, et al. (2006) Suppression of reactive oxygen species and neurodegeneration by the PGC-1 transcriptional coactivators. Cell 127: 397–408. Link: https://goo.gl/gu4Yab
71. Sable P, Kale A, Joshi A, Joshi S (2014) Maternal micronutrient imbalance alters gene expression of BDNF, NFG, TrkB and CREB in the offspring brain at an adult age. Int J Dev Neurosci 34: 24–32. Link: https://goo.gl/ntCe5N
72. Fujii M, Shcherpan C, Soejima Y, Hasegawa Y, Flores J, et al. (2014) Cannabinoid receptor type 2 agonist attenuates apoptosis by activation of phosphorylated CREB-βC12 pathway after subarachnoid hemorrhage in rats. Exp Neurol 261: 396–403. Link: https://goo.gl/fnMflq
73. Park C, Shin KS, Ryu JH, Kang K, Kim J, et al. (2004) The inhibition of nitric oxide synthase enhances PSA-NCAM expression and CREB phosphorylation in the rat hippocampus. Neuroreport 15: 231–234. Link: https://goo.gl/YAfDrI
74. Lim S, Moon M, Oh H, Kim HG, Kim SY, et al. (2014) Ginger improves cognitive function via NFκB-induced ERK/CREB activation in the hippocampus of the mouse. J Nutr Biochem 25: 1058–1065. Link: https://goo.gl/qBFbXv
75. Kowalczyk A, Filipkowski RK, Ryfski M, Wilczynski GM, Konopacki FA, et al. (2004) The critical role of cyclin D2 in adult neurogenesis. J Cell Biol 167: 209–213. Link: https://goo.gl/slSBSh
76. Chahrouh M, Jung SY, Shaw C, Zhou X, Wong ST, et al. (2008) MeCP2, a key contributor to neurological disease, activates and represses transcription. Science 320: 1224–1229. Link: https://goo.gl/zhKv9
77. François F, Godinho MJ, Grimes ML (2000) CREB is cleaved by caspases during neural cell apoptosis. FEBS Lett 486: 281-284. Link: https://goo.gl/ntSjYhO
78. Hansen C, Bjorklund T, Pettit GH, Lundblad M, Murmu RP, et al. (2013) A novel a-synuclein-GFP mouse model displays progressive motor impairment, olfactory dysfunction and accumulation of a-synuclein-GFP. Neurobiol Dis 56: 145–155. Link: https://goo.gl/Zdme9t
79. Mehan S, Nain VS, Meena H, Sharma D, Sankhla R, et al. (2010) Comparative Studies on coleonol, a hypotensive diterpene from Coleus forskohlii. J Ethnopharmacol 1–13. Link: https://goo.gl/SoKEKJ
80. Hansen C, Björklund T, Pettit GH, Lundblad M, Murmu RP, et al. (2013) A novel a-synuclein-GFP mouse model displays progressive motor impairment, olfactory dysfunction and accumulation of a-synuclein-GFP. Neurobiol Dis 56: 145–155. Link: https://goo.gl/Zdme9t
81. Mehan S, Kaur G, Dudi R, Rajput M, Kalra S (2017) Restoration of Mitochondrial Dysfunction in 6-Hydroxydopamine Induced Parkinson’s disease: a Complete Review. Open J Parkinsons Dis Treatm 1(1): 001-026. Link: https://goo.gl/5Z8ZUZ
82. Shaba P, Sidharth M, Gurpreet K, Umesh K (2015) Therapeutic potential of nature molecule "forskolin" mediated cycled AMP/CREB activation for the amelioration of neurodegenerative disorder like huntington’s. JRAPAR 5: 296-301
83. Mall M, Grubb BR, Harkema JR, O’Neal WK, Boucher RC (2004) Increased airway epithelial Na+ absorption produces cystic fibrosis-like lung disease in mice. Nat Med 10: 487-493 Link: https://goo.gl/IQ3eLU
84. Patel MB, Koichi T, Koichi S, Koichi M (2010) Forskolin: A Successful Therapeutic Phytomolecule: East and Central African. Journal of Pharmaceutical Sciences 13: 25–32 Link: https://goo.gl/94H00G
85. Souza NJ, De Dohadwalla AN, Reden J (1983) Forskolin: a labdane diterpenoid with antihypertensive, positive inotropic, platelet aggregation inhibitory, and adenylyl cyclase activating properties. Med Res Rev 3: 201-219. Link: https://goo.gl/WucMhL
86. Dubey MP, Rimal RC, Nityanand S, Dhanwan BN (1981) Pharmacological studies on coleonol, a hypotensive diterpene from Coleus forskohlii. J Ethnopharmacol 1–13. Link: https://goo.gl/JK5mBl
87. Seamon KB, Daly JW (1981) Forskolin: a unique diterpene activator of cyclic AMP-generating systems. J Cyclic Nucleotide Res 7: 201–224. Link: https://goo.gl/UBBndw
88. Rao BN, Rao BS (2010) Antagonistic effects of zingerone, a phenolic alkanone against radiation-induced cytotoxicity, genotoxicity, apoptosis and oxidative stress in Chinese hamster lung fibroblast cells grown in vitro. Mutagenesis 25: 577–587. Link: https://goo.gl/Tj3fRf
89. Russo R, Adornetto A, Cavaliere F, Varano GP, Rusciano D, et al. (2015) Intravitreal injection of forskolin, homotaurine, and L-carnosine affords neuroprotection to retinal ganglion cells following retinal ischemic injury. Molecular Vision 21:718-729. Link: https://goo.gl/7xZb1b
90. Simplicio JA, Simão MR, Ambrosio SR, Tirapelli CR (2016) The Labdane Ent-3-Acetoxy-Labda-8(17), 13-Dien-15-Oic decreases blood pressure in hypertensive rats. Arq Bras Cardiol 106: 481-490. Link: https://goo.gl/0uBDRs
91. Muchekehu RW, Quinton PM (2010) A new role for bicarbonate secretion in cervico-uterine mucus release. The Journal of Physiology 588: 2329-2342. Link: https://goo.gl/ztRfRI
92. Godard MP, Johnson BA, Richmond SR (2005) Body Composition and Hormonal Adaptations Associated with Forskolin Consumption in Overweight and Obese Men. Obes Res 13: 1335-1343 Link: https://goo.gl/vVUCFR
93. Hohenhanner F, Ljubojevic S, MacQuaide N, MacQuaide N, Sacherer M, et al. (2013) Intracellular Dysynchrony of Diastolic Cytosolic Ca2+ Decay in Ventricular Cardiomyocytes in Cardiac Remodeling and Human Heart Failure. Circ Res 113: 527-538. Link: https://goo.gl/SoKEKJ
94. Liu M, Gua L, Sulkin MS (2013) Mitochondrial dysfunction causing cardiac sodium channel downregulation in cardiomyopathy. J Mol Cell Cardiol 54: 25–34. Link: https://goo.gl/m48INl
95. Adnot S, Desnieres M, Ferry N, Hanoune J, Sevenet T (1982) Forskolin (a powerful inhibitor of human platelet aggregation). Biochem Pharmacol 31: 296-301. Link: https://goo.gl/8ehBE
96. Dillingham MA, Kim JK, Horster MF, Anderson RJ (1984) Forskolin Increases Osmotic Water Permeability of Rabbit Cortical Collecting Tubule. J Membrane Biol 80: 243-248. Link: https://goo.gl/WJKX2B
97. Liu H, Yang W, Mendes F, Amaral MD, Sheppard DN (2012) Impact of the cystic fibrosis mutation F508del-CFTR on renal cyst formation and growth. Am J Physiol Renal Physiol 303: 1176–1186. Link: https://goo.gl/108LwL
98. Rios-Silva M, Trujillo X, Trujillo-Hernandez B, Sanchez-Pastor E, Urzua Z, et al. (2014) Effect of Chronic Administration of Forskolin on Glycemia and Oxidative Stress in Rats with and without Experimental Diabetes. J Physiol: 74(13): 452-459. Link: https://goo.gl/5Q42kK
99. Hayashida N, Chihara S, Tayama E, Takaseya T, Enomoto N, et al. (2001) Forskolin: A Successful Therapeutic Phytomolecule; East and Central African. Journal of Pharmaceutical Sciences 13: 25-32 Link: https://goo.gl/9Q3eLU
100. Burton CZ, Twamley EW (2015) Neurocognitive insight, treatment utilization and cognitive training outcomes in schizophrenia. Schizophr Res 161: 399–402. Link: https://goo.gl/2vdD7G
101. Burton CZ, Twamley EW (2015) Neurocognitive insight, treatment utilization and cognitive training outcomes in schizophrenia. Schizophr Res 161: 399–402. Link: https://goo.gl/2vdD7G
102. Burton CZ, Twamley EW (2015) Neurocognitive insight, treatment utilization and cognitive training outcomes in schizophrenia. Schizophr Res 161: 399–402. Link: https://goo.gl/2vdD7G
103. Burton CZ, Twamley EW (2015) Neurocognitive insight, treatment utilization and cognitive training outcomes in schizophrenia. Schizophr Res 161: 399–402. Link: https://goo.gl/2vdD7G
171. Kahle P J, Waak J, Gasser T (2009) DJ-1 and prevention of oxidative stress in Parkinson’s disease and other age-related disorders. Free Radic Biol Med 47: 1354–1361. Link: https://goo.gl/F8H44a

172. Gelb DJ, Oliver E, Gilman S (1999) Diagnostic criteria for Parkinson disease. Arch Neurol 56: 33–39. Link: https://goo.gl/i7C3Wn

173. Gonera EG, van’t Hof M, Berger JC, Weel CV, Horstink M (1997) Symptoms and duration of the prodromal phase in Parkinson’s disease. Mov Disord 12: 871–876. Link: https://goo.gl/1AHI9z

174. Levin BE, Katzen HL (1995) Early cognitive changes and nondementing behavioral abnormalities in Parkinson’s disease. Adv Neurol 65: 85–95. Link: https://goo.gl/y49MV2

175. Dubois B, Pillon B (1996) Cognitive deficits in Parkinson’s disease. J Neurol 244: 2–8. Link: https://goo.gl/cIE0VM

176. Mayeux R (1992) The mental state in Parkinson’s disease, in Handbook of Parkinson’s Disease, 2nd Edition. Edited by Koller WC. New York, Marcel Dekker 159–184.

177. Sano M, Stern Y, Williams J, Cote L, Rosenstein R, et al. (1989) Coexisting dementia and depression in Parkinson’s disease. Arch Neurol 46: 1284–1286. Link: https://goo.gl/Nwqy11

178. Mohr E, Litvan I, Williams J, et al. (1990) Selective deficits in Alzheimer and parkinsonian dementia: visuospatial function. Can J Neurol Sci 17: 292–297. Link: https://goo.gl/MFesXd

179. Mohr E, Mendis T,Grimes JD (1995) Late cognitive changes in Parkinson’s disease with an emphasis on dementia. Adv Neurol 65: 97–113. Link: https://goo.gl/qJCn9r

180. Chaudhuri KR, Healy DG, Schapira AH (2006) Non-motor symptoms of Parkinson’s disease. J Neurol Sci 247: 5–11. Link: https://goo.gl/LbW4nW

181. Aarsland D, Marsh L, Schrag A (2009) Neuropsychiatric symptoms in Parkinson’s disease. Mov Disord 24: 2175-2186. Link: https://goo.gl/Si34R0

182. Aarsland D, Larsen JP, Lim NG, Janvin C, Karlson K, et al. (1999) Range of neuropsychiatric disturbances in patients with Parkinson’s disease. J Neurol Neurosurg Psychiatry 67: 492-496. Link: https://goo.gl/Sq4bP1

183. Poewe W, Luginger E (1999) Depression in Parkinson’s disease: impediments to recognition and treatment options. Neurology 52: S2-6. Link: https://goo.gl/imQFDQ

184. Rickards H (2005) Depression in neurological disorders: Parkinson’s disease, multiple sclerosis, and stroke. J Neurol Neurosurg Psychiatry 76: 48-52. Link: https://goo.gl/ECDSrz

185. Ferreri F, Agboulo C, Gauthier S (2006) Recognition and management of neuropsychiatric complications in Parkinson’s disease. CMAJ 175: 1545-1552. Link: https://goo.gl/v1dI1l

186. Bonnet AM, Jutras MF, Czernecki V, Corvol JC, Vidaliheft M (2012) Nonmotor symptoms in Parkinson’s disease: relevant clinical aspects. Parkinson’s Dis 198316. Link: https://goo.gl/UF0DKY

187. Starkstein SE, Mayberg HS (1993) Depression in Parkinson’s disease, in Depression in Neurologic Disease, edited by Starkstein SE, Robinson RG. Baltimore, MD, Johns Hopkins University Press 97–116.

188. Bowers D, Miller K, Mikos A, Kirsch-Darrow L, Springer U, et al. (2006) Startling facts about emotion in Parkinson’s disease: blunted reactivity to aversive stimuli. Brain 129: 3356-3365. Link: https://goo.gl/SxRtDl

189. Cools R, Barker RA, Sahakian BJ, Robbins TW (2001) Mechanisms of cognitive set flexibility in Parkinson’s disease. Brain 124: 2503-2512. Link: https://goo.gl/o3gBU

190. Hawkes CH (2008) The prodromal phase of sporadic Parkinson’s disease: does it exist and if so how long is it? Mov Disord 23: 1799-1807. Link: https://goo.gl/xRNcWQ

191. Hawkes CH, Shephard BC, Daniel SE (1997) Offactory dysfunction in Parkinson’s disease. J Neurol Neurosurg Psychiatry 62: 436-446. Link: https://goo.gl/SCGm7y

192. Hoehn MM, Yahr MD (1967) Parkinsonism: onset, progression and mortality. Neurology 17: 427-442. Link: https://goo.gl/E5XIMW

193. Braak H, Braak E (2000) Pathogenesis of Parkinson’s disease. Adv Neurol 85: 119-146. Link: https://goo.gl/kWvz18

194. Wakabayashi K, Mori F, Takahashi H (2006) Progression patterns of neuronal loss and Lewy body pathology in the substantia nigra in Parkinson’s disease. Parkinsonism & Related Disorders 12: S92-S98. Link: https://goo.gl/F244zP

195. Lotharius J, Bundin P (2002) Pathogenesis of Parkinson’s disease: dopamine, vesicles and alpha-synuclein. Nat Rev Neurosci 3: 932-942. Link: https://goo.gl/CZs5JJ

196. Jager WA, Bethlem J (1960) The distribution of Lewy bodies in the central and autonomic nervous systems in idiopathic paralysis agitans. Journal of Neurology, Neurosurgery & Psychiatry 23: 283-290. Link: https://goo.gl/BlwRtm

197. Kakita A, Takahashi H, Homma Y, Ikuta F (1994) Lewy bodies in the cerebellar dentate nucleus of a patient with Parkinson’s disease. Pathology international 44: 878-880. Link: https://goo.gl/j3LQW5

198. Oyanagi K, Wakabayashi K, Ohama E, Takeda S, Horikawa Y, et al. (1990) Lewy bodies in the lower sacral parasympathetic neurons of a patient with Parkinson’s disease. Acta Neuropathologica 80: 558-559. Link: https://goo.gl/q4MgZ

199. Wakabayashi K, Takahashi H (1997) The intermediolateral nucleus and Clarke’s column in Parkinson’s disease. Acta Neuropathologica 94: 287-289. Link: https://goo.gl/4JzBG4

200. Alexander GE, DeLong MR, Strick PL (1986) Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Annu Rev Neurosci 9: 357-381. Link: https://goo.gl/AvwX8z

201. Alexander GE, Crutcher MD, DeLong MR (1990) Basal ganglia-thalamocortical circuits: parallel substrates for motor, oculomotor, ‘prefrontal’ and ‘limbic’ functions. Prog Brain Res 85: 119-146. Link: https://goo.gl/OwUqS2

202. Kelly RM, Strick PL (2004) Macro-architecture of basal ganglia loops with the cerebral cortex: use of rabies virus to reveal multisynaptic circuits. Prog Brain Res 143: 449-459. Link: https://goo.gl/Yh20sL

203. Middleton FA, Strick PL (2000) Basal ganglia and cerebellar loops: motor and cognitive circuits. Brain Res Brain Res Rev 31: 236-250. Link: https://goo.gl/ej7q7P

204. Widnell Katherine (2005) Pathophysiology of Motor Fluctuations in Parkinson’s disease. Movement Disorders 11: 17-22. Link: https://goo.gl/NiWTq3

205. Gasparini F, Di Paolo T, Gomez-Mancilla B (2013) Metabotropic glutamate receptors for Parkinson’s disease therapy. Parkinson’s disease 196028. Link: https://goo.gl/iZ9inP

206. Graybiel AM, Hirsch EC, Agid Y (1990) The nigrostriatal system in Parkinson’s disease with an emphasis on dementia. Arch Neurol 47: 1354-1361. Link: https://goo.gl/OwUqS2

207. Kish SJ, Shannak K, Hornykiewicz O (1988) Uneven patterns of dopamine, vesicles and alpha-synuclein. Nat Rev Neurosci 3: 932-942. Link: https://goo.gl/CZs5JJ

208. Gibb WR, Lees A (1991) Anatomy, pigmentation, ventral and dorsal subpopulations of the substantia nigra, and differential cell death in Parkinson’s disease. J Neurol Neurosurg Psychiatry 67: 492-496. Link: https://goo.gl/AvwX8z
224. Harper ME, Bevilacqua L, Hagopian K, Weindruch R, Ramsey JJ (2004) Preservation of hypothalamic dopaminergic neurons in Parkinson’s disease. Ann Neurol 18: 552-555. Link: https://doi.org/10.1002/ana.20095

216. McNaught KS, Belizaire R, Isacson O, Jenner P, Olanow CW (2003) Altered mitochondrial function, GSH and iron in Parkinson’s disease. J Biol Chem 283: 9089-9100. Link: https://doi.org/10.1074/jbc.M300177200

211. Schapira AHV, Cooper JM, Dexter DT, CLARK JB, JENNER, et al. (1989) Mitochondrial complex I deficiency in Parkinson’s disease. Ann Neuro 26: 122-123. Link: https://doi.org/10.1007/BF00181858

217. Gu M, Owen AD, Toffa SE, Cooper JM, Dexter DT, et al. (1998) Mitochondrial complex I deficiency in Parkinson’s disease. Lancet 1: 1269. Link: https://doi.org/10.1016/S0140-6736(97)0881-1

218. Hoglinger GU, Carrard G, Michel PP, Medja F, Lombès A, et al. (2003) Mitochondrial complex I dysfunction and neuronal necrosis in a cellular model of Parkinson’s disease. J Biol Chem 278: 32157-32163. Link: https://doi.org/10.1074/jbc.M304133200

219. Johnson WM, Wilson-Delfosse AL, Myleal JJ (2012) Dysregulation of glutathione homeostasis in neurodegenerative diseases. Nutrients 4: 1399-1440. Link: https://doi.org/10.3390/nu4091399

220. Dumont M, Beal MF (2011) Neuroprotective strategies involving ROS in Alzheimer’s disease. Free Radic Biol Med 51: 1014-1026. Link: https://doi.org/10.1016/j.freeradbiomed.2011.06.014

221. Yan MH, Wang X, Zhu X (2011) Mitochondrial defects and oxidative stress in Alzheimer disease and Parkinson’s disease. Free Radic Biol Med 62: 90-101. Link: https://doi.org/10.1016/j.freeradbiomed.2011.08.008

222. Thanan R, Oikawa S, Hiraku Y, Ohnishi S, Ma N, et al. (2014) Oxidative Stress and Its Significant Roles in Neurodegenerative Diseases and Cancer. Int J Mol Sci 16: 193-217. Link: https://doi.org/10.3390/ijms16010193

223. Schütt Claes WH (2008) Cadmium mediated changes in mitochondrial metabolic function of a renal epithelial cell line (A6), evaluated with the MTT-assay; Master project in Molecular Biology Institute for Nature, Systems and Metabolic function of a renal epithelial cell line (A6), evaluated with the MTT-assay; Master project in Molecular Biology Institute for Nature, Systems and Models Ro ‘skilde University (RUC). Link: https://doi.org/10.1007/s10570-007-9427-8

224. Harper ME, Bevilacqua L, Hagopian K, Weindruch R, Ramsey JJ (2004) Preservation of hypothalamic dopaminergic neurons in Parkinson’s disease. Ann Neurol 18: 552-555. Link: https://doi.org/10.1002/ana.20095

225. Echtay KS, Roussel D, St-Pierre J, Jekabsons MB, Cadenas S, et al. (2002) Superoxide activates mitochondrial uncoupling proteins. Nature 415: 96-99. Link: https://doi.org/10.1038/nature00610

226. Hernández-Aguilera A, Rull A, Rodríguez-Gallego E, Marta Riera-Borrull, Fedra Luciano-Mateo, et al. (2013) Mitochondrial Dysfunction: A Basic Mechanism in Inflammation-Related Non-Communicable Diseases and Therapeutic Opportunities. Mediators of Inflammation 2013: 1-13. Link: https://doi.org/10.1155/2013/742654

227. Yadav Renu, Chauhan S Idiyaasang, Raj Kritika, Sarkar Surajit (2013) Rises and Falls of Reactive Oxygen Species (ROS): Implications in Aging and Neurodegenerative Disorders. Cell Dev Biol 2: 4. Link: https://doi.org/10.1001/digital.s1.001

228. Starkov Anatoly A (2008) The Role of mitochondria in reactive oxygen species metabolism and signaling. Ann N Y Acad Sci 1147: 37–52. Link: https://doi.org/10.1196/annals.1430.005

229. Poljsak Borut, Šuput Dušan and Milisav Irina (2013) Achieving the Balance between ROS and Antioxidants: When to Use the Synthetic Antioxidants. Oxidative Medicine and Cellular Longevity. Link: https://doi.org/10.1155/2013/758042

230. Finkel T, Holbrook NJ (2000) Oxidants oxidative stress and the biology of ageing. Nature 408: 239-247. Link: https://doi.org/10.1038/35044570

231. Dong Xiao-xia, wang yan, zheng-hong qin (2009) Molecular mechanisms of excitotoxicity and their relevance to pathogenesis of neurodegenerative diseases. Acta pharmacol 30: 379–387. Link: https://doi.org/10.1007/s12203-009-0002-7

232. Kaur Gurpreet, Kukkar Umesh, Mehan Sidharth, Kalra Sanjeev (2015) Mitochondrial ETC Complex I & IV: Novel Destination Sites for Prevention of Neurodegenerative Disorders. IJRPR 5: 77-86.

233. Blaylocka Russell l (2004) Excitotoxicity: A possible central mechanism in Fluoride neurotoxicity. Fluoride 37: 301–314. Link: https://doi.org/10.3141/37-03

234. Helton TD, Otsuka T, Lee MC, Mu YY, Ehlers MD (2008) Pruning and loss of excitatory synapses by the Parkin ubiquitin ligase. Proc Natl Acad Sci USA 105: 19492–19497. Link: https://doi.org/10.1073/pnas.0800358105

235. Lang AE, Lozano AM (1998) Parkinson’s disease-first of two parts. Med Prog 339: 1044–1053. Link: https://doi.org/10.1097/00002981-199809100-00002

236. McGeer PL, Itagaki S, Boyes BE, McGeer EG (1988) Reactive microglia are positive for HLA-DR in the substantia nigra of Parkinson’s and Alzheimer’s disease brains. Neurology 38: 1285–1291. Link: https://doi.org/10.1212/wnl.38.11.1285a

237. McGeer PL, McGeer EG, Itagaki S, Mizukawa K (1987) Anatomy and pathology of the basal ganglia. Can J Neurol Sci 14: 363–372. Link: https://doi.org/10.1016/0381-5073(87)90111-0

238. Nagatsu T, Mogi M, Ichinose H, Togari A (2000) Changes in cytokines and neurotrophins in Parkinson’s disease. J Neural Transm 60: 277–290. Link: https://doi.org/10.1007/s007020000008

239. Hunot Stepane, Hirsch EC (2003) Neuroinflammatory Processes in Parkinson’s disease. Ann Neurol 53: S49–S50. Link: https://doi.org/10.1002/ana.10593

240. Tansey Malú G, Frank-Cannon Tamy C, McCoy Melissa K, Lee Jae Kyung, Martinez Terina N, et al. (2008) Neuroinflammation in Parkinson’s disease: Is there sufficient evidence for mechanism-based interventional therapy?. Frontiers in Bioscience 13: 709-717. Link: https://doi.org/10.2741/640

241. Boka GP, Anglade D, Wallach F, Javoy-Agid Y, Agid EC, et al. (1994) Caspase-8 is an effector in apoptotic death of dopaminergic neurons in Parkinson’s disease. J Neurosci 14: 3440-3447. Link: https://doi.org/10.1523/jneurosci.14-10-03440.1994

242. Hunot SN, Dugas B, Faucheux A, Hartmann M, Tardieu P, et al. (1991) Fluoride neurotoxicity. Fluoride 37: 301–314. Link: https://doi.org/10.3141/37-03

243. Boka GP, Anglade D, Wallach F, Javoy-Agid Y, Agid EC, et al. (1994) Caspase-8 is an effector in apoptotic death of dopaminergic neurons in Parkinson’s disease. J Neurosci 14: 3440-3447. Link: https://doi.org/10.1523/jneurosci.14-10-03440.1994

244. Hunot SN, Dugas B, Faucheux A, Hartmann M, Tardieu P, et al. (1991) Fluoride neurotoxicity. Fluoride 37: 301–314. Link: https://doi.org/10.3141/37-03

245. Hunot SN, Dugas B, Faucheux A, Hartmann M, Tardieu P, et al. (1991) Fluoride neurotoxicity. Fluoride 37: 301–314. Link: https://doi.org/10.3141/37-03

246. Hunot SN, Dugas B, Faucheux A, Hartmann M, Tardieu P, et al. (1991) Fluoride neurotoxicity. Fluoride 37: 301–314. Link: https://doi.org/10.3141/37-03
244. Mogi MA, Kogari T, Kondo Y, Mizuno O, Komure S, et al. (2001) Caspase activities and tumor necrosis factor receptor R1 (g55) level are elevated in the substantia nigra from parkinsonian brain. J Neural Transm 107: 335-341. Link: https://goo.gl/s3c1WH

245. Cassarino DS, Halvorsen EM, Swerdlow RH, Abramova NN, Parker WD, et al. (2000) Interaction among mitochondria, mitogen-activated protein kinases, and nuclear factor-kappaB in cellular models of Parkinson's disease. J Neurochem 74: 1384-1392. Link: https://goo.gl/shb9cs

246. Zhou W, Schack J, Zawada WM, Freed CR (2002) Overexpression of human alpha-synuclein cause's dopamine neuron death in primary human mesencephalic culture. Brain Res 926: 42-50. Link: https://goo.gl/5SBypB

247. Alam ZI, Jenner A, Daniel SE, Lees AJ, Cairns N, et al. (1997) Oxidative DNA damage in the parkinsonian brain: an apparent selective increase in 8-hydroxyguanine levels in substantia nigra. J Neurochem 69: 1196-1203. Link: https://goo.gl/DpK5zo

248. Insel PA, Ostrom RS (2003) Forskolin as a Tool for Examining Adenylyl Cyclase Expression, Regulation, and G Protein Signaling. Cellular and Molecular Neurobiology 23: 305-314. Link: https://goo.gl/uJFrTu

249. Widnell Katherine (2005) Pathophysiology of Motor Fluctuations in Parkinson's disease. Movement Disorders. 20: S17–S22. Link: https://goo.gl/1Rqz2C

250. Freeman TB, Sanberg PR, Isacson O (1995) Development of the synapse organizer. Experimental & Molecular Medicine 47.

251. Mattson MP (2003) Excitotoxic and excitoprotective mechanisms: abundant targets for the prevention and treatment of neurodegenerative disorders. Neuromolec Med 3: 65-94. Link: https://goo.gl/Nx0l1q

252. Wang Y, Qin ZH (2010) Molecular and cellular mechanisms of excitotoxic neuronal death. Apoptosis 15: 1382-1402. Link: https://goo.gl/gblFTT

253. Choii Gayoung, Jaewon Ko Gephyrin (2015) A central GABAergic neuron synapse organizer Experimental & Molecular Medicine 47.

254. Petroff OA (2002) Book Review: GABA and glutamate in the human brain. https:// goo.gl/wh0MvY

255. Dal-Cim T, Molz S, Egea J, Parada E, Romero A, et al. (2012) Guanosine pathway. Neurochem Int 61: 397–404. Link: https://goo.gl/7DH5ZZ

256. Biatsig V, Steriade M (1997) Diffuse transmission by acetylcholine in the CNS. Prog Neurobiol 53: 603–625. Link: https:// goo.gl/8Zwjse

257. Ibanez CF, Andressoo JO (2016) Biology of GDNF and its receptors-Link: https://goo.gl/3jA9z2

258. Jenner P, Mori A, Hauser R, Morelli M, Fredholm BB, et al. (2009) Adenosine, adenosine A2A antagonists, and Parkinson's disease. Parkinsonism Relat Disord 15: 406-413. Link: https://goo.gl/I4G0SX

259. Mattson MP (2003) Excitotoxic and excitoprotective mechanisms: abundant targets for the prevention and treatment of neurodegenerative disorders. Neuromolec Med 3: 65-94. Link: https://goo.gl/Nx0l1q

260. Wang Y, Qin ZH (2010) Molecular and cellular mechanisms of excitotoxic neuronal death. Apoptosis 15: 1382-1402. Link: https://goo.gl/gblFTT

262. Mody I, Mac Donald JF (1995) NMDA receptor-dependent excitotoxicity: the role of intracellular Ca++ release. Trends in Pharmacological Sciences 16: 356–359. Link: https://goo.gl/kRud5k

263. Bundel D, Sarre S, Eekhaut A, Smolders I, Michotte Y (2008) Critical Evaluation of Acetylcholine Determination in Rat Brain Microdialysates using Ion-Pair Liquid Chromatography with Amperometric Detection. Sensors 8: 5171-5185. Link: https://goo.gl/04i96

264. Cassarino DS, Halvorsen EM, Swerdlow RH, Abramova NN, Parker WD, et al. (2000) Interaction among mitochondria, mitogen-activated protein kinases, and nuclear factor-kappaB in cellular models of Parkinson's disease. J Neurochem 74: 1384-1392. Link: https://goo.gl/shb9cs

265. Descaries L, Gisiger V, Steriade M (1997) Diffuse transmission by acetylcholine in the CNS. Prog Neurobiol 53: 603–625. Link: https:// goo.gl/8Zwjse

266. Descaries L, Parent M (2014) The Synapse. Academic Press, Boston 447–466.

267. Threlfell S, Cragg SJ (2011) Dopamine signaling in dorsal versus ventral striatum: the dynamic role of cholinergic interneurons. Front Syst Neurosci 5: 11. Link: https:// goo.gl/sO3Plk

268. Threlfell S, Lalic T, Platt NJ, Jennings KA, Deissertoth K, et al. (2012) Striatal dopamine release is triggered by synchronized activity in cholinergic interneurons. Neuron 75: 58–64. Link: https:// goo.gl/ut2Ddu

269. Muller ML, Nicolaas I Bohnen, Robert A Koepe, Vikas Kotagal, Peter JH Scott, et al. (2015) Clinical markers for identifying cholinergic deficits in Parkinson's disease. Mov Disord 30: 269–273. Link: https:// goo.gl/DhjaXH

270. Morelli M, Di Paolo T, Wardas J, Calon F, Xiao D, et al. (2007) Role of adenosine A2A receptors in Parkinsonian motor impairment and L-DOPA-induced motor complications. Prog Neurobiol 83: 293-309. Link: https://goo.gl/EY7TqL

271. Hettinger BD, Lee A, Linden J, Rosin DL (2001) Ultrastructural localization of adenosine A2A receptors suggests multiple cellular sites for modulation of GABAergic neurons in rat striatum. J Comp Neurol 431: 331-346. Link: https:// goo.gl/2sShBL

272. Jenner P, Mori A, Hauser R, Morelli M, Fredholm BB, et al. (2009) Adenosine, adenosine A2A antagonists, and Parkinson's disease. Parkinsonism Relat Disord 15: 406-413. Link: https://goo.gl/I4G0SX

273. Dal-Cim T, Molz S, Egea J, Parada E, Romero A, et al. (2012) Guanosine protects human neuroblastoma SH-SY5Y cells against mitochondrial oxidative stress by inducing heme oxigenase- 1 via PI3 K/Akt/GSK-3b pathway. Neurochem Int 61: 397–404. Link: https:// goo.gl/T0HSZZ

274. Schwarzschild MA, Xu K, Oztas E, Petzer JP, Castagnoli K, et al. (2003) Neuroprotection by caffeine and more specific A2A receptor antagonists in animal models of Parkinson's disease. Neurology 61: 555–61. Link: https:// goo.gl/J3A9z2

275. Shiozaki S, Ichikawa S, Nakamura J, Kitamura S, Yamada K, et al. (1999) Actions of adenosine A2A receptor antagonist KW-6002 on drug-induced catalepsy and hypokinesia caused by resepine or MPTP. Psychopharmacology (Berl) 147: 90-95. Link: https:// goo.gl/HigdPa

276. Hauber W, Neuscheler P, Nagel J, Muller CE (2001) Catalepsy induced by aminopyrine is mediated by adenosine A1 receptors. Brain Res 898: 137-147. Link: https:// goo.gl/1RgnZC

277. Yin HH, Knowlton BJ (2006) The role of the basal ganglia in habit Formation. Reviews 7: 464-476. Link: https:// goo.gl/OVhsT2

278. Glass M, Faull RL, Dragunow M (1996) Localisation of the adenosine uptake site in the human brain: a comparison with the distribution of adenosine A1 receptors. Brain Res 710: 79-91. Link: https:// goo.gl/kqYh3

Citation: Mehan S, Kaur G, Dudi R, Rajput M, Kalra S (2017) Restoration of Mitochondrial Dysfunction in 6-Hydroxydopamine Induced Parkinson’s disease: a Complete Review. Open J Parkinsons Dis Treatm 1(1): 001-026.
313. Nisbet AP, Foster OJ, Kingsbury A, Eve DJ, Daniel SE, et al. (1995) Proenkephalin and preprotachykinin messenger RNA expression in normal human basal ganglia and Parkinson’s disease. Neuroscience 66: 361–376. Link: https://goo.gl/X0egLZ

314. Henry B, Duty S, Fox SH, Crossman AR, Brotchie JM (2003) Increased striatal pro-enkephalin B expression is associated with dyskinesia in Parkinson’s disease. Exp Neurol 183: 458–468. Link: https://goo.gl/d2F8E

315. Fernandez A, De Ceballos ML, Jenner P, Marsden CD (1992) Striatal neuropeptide levels in Parkinson’s disease patients. Neurosci Lett 145: 171–174. Link: https://goo.gl/T7PD6M

316. Hutchison WD, Lozano AM, Davis KD, Saint-Cyr JA, Lang AE, et al. (1994) Differential neuronal activity in segments of globus pallidus in Parkinson’s disease patients. Neuroreport 5: 1533–1537. Link: https://goo.gl/jqB8tH

317. Um JW, Park HJ, Song J, Jeon I, Lee G, et al. (2010) Formation of parkin by distinct routes of protein kinase A. Physiol Rev 84: 137–167. Link: https://goo.gl/6JORd9

318. Tobón-Velasco JC, Limón-Pacheco JH, Orozco-Ibarra M, Macías-Silva M, Um JW, Park HJ, Song J, Jeon I, Lee G, et al. (2010) Formation of parkin mediated by early modulation of intracellular signals and interaction of Nrf2 and NF-κB factors. Toxicology 8: 109–119. Link: https://goo.gl/dDKUfO

319. Yan J, Sun J, Huang L, Fu Q, Du G (2014) Simvastatin prevents neuroinflammation by inhibiting N-methyl-D-aspartic acid receptor 1 in 6-hydroxydopamine-treated PC12 cells. J Neurosci Res 52: 624–640. Link: https://goo.gl/i7GCla

320. Wang HM, Zhang T, Li Q, Huang JK, Chen RF, et al. (2013a) Inhibition of 6-hydroxydopamine-induced apoptosis and mitochondrial dysfunction are facilitated by early modulation of intracellular signals and interaction of Nrf2 and NF-κB factors. Neurosci 23: 48–63. Link: https://goo.gl/zbXKcv

321. Threllfall Sarah and West Anthony R (2013) Review: Modulation of striatal neuron activity by cyclic nucleotide signaling and phosphodiesterase inhibition. Basal Ganglia 3: 137–146. Link: https://goo.gl/k2vouI

322. Zaccolo Manuela (2009) cAMP signal transduction in the heart: understanding spatial control for the development of novel therapeutic strategies. British Journal of Pharmacology 158: 50–60. Link: https://goo.gl/6JQRD9

323. Alberini Cristina M (2009) Transcription Factors in Long-Term Memory and Srynapctic Plasticity. Physiological Reviews 89: 121-145. Link: https://goo.gl/346oXn

324. Neves SR, Ram PT, Lyengar R (2002) G protein pathways. Science. 296: 323–324. Link: https://goo.gl/CRkWQd

325. Rahman N, Buck J, Levin LR (2013) pH sensing via bicarbonate regulates “soluble” adenylate cyclase (sAC). Front Physiol 4: 343. Link: https://goo.gl/JWgyjR

326. Tasken K, Aandahl EM (2004) Localized effects of cAMP mediated by distinct routes of protein kinase A. Physiol Rev 84: 137–167. Link: https://goo.gl/4xZmB1

327. Fajardo AM, Piazza GA, Tinsley HN (2014) The Role of Cyclic Nucleotide Signaling Pathways in Cancer: Targets for Prevention and Treatment. Cancers 6: 436-458. Link: https://goo.gl/ZmgNBK

328. Hofer AM, Lefkimmiatis K (2007) Extracellular Calcium and cAMP: Second Messengers as “Third Messengers”? Physiology 22: 320–327. Link: https://goo.gl/2LIVvo

329. Kendrick ER (2012) The molecular biology of memory: cAMP, PKA, CRE, CREB-1, CREB-2, and CPEB. Kandel Molecular Brain 5: 14. Link: https://goo.gl/hToQKe
383. Seto C, Eguchi S, Arai M, et al. (1986) Acute effects of topical forskolin on aqueous humor dynamics in man. Jpn J Ophthalmol 30: 238-244. Link: https://goo.gl/eQKcME
384. Kariya T, Morito F, Sakai T, Takahata K, Yamanaka M (1984) Effect of forskolin on platelet deaggregation and cyclic AMP generation. Arch Pharmacol 331: 119-121. Link: https://goo.gl/P5scDS
385. Nourshargh S, Hoult JR (1987) Divergent effects of co-carcinogenic phorbol esters and a synthetic diacylglycerol on human neutrophil chemokinesis and granular enzyme secretion. Br J Pharmac 91: 557-568. Link: https://goo.gl/wyTqN0
386. Vazin T, K. Ball KA, Luc H, et al. (2014) Efficient derivation of cortical glutamatergic neurons from human pluripotent stem cells: A model system to study neurotoxicity in Alzheimer’s disease. Neurobiology of Disease 62: 62–72. Link: https://goo.gl/ybGb5V
387. Maeda H, Ozawa H, Saito T, Irie T, Takahata N (2013) Potential antidepressant properties of forskolin and a novel water-soluble forskolin (nik6477) in the forced swimming test. Life Sciences. 1997; 61(25):2345-2442. Link: https://goo.gl/XPfORI
388. Morinobu S, Fujimaki K, Okuyama N, Takahashi M, Duman RS (1999) Stimulation of Adenylyl Cyclase and Induction of Brain-Derived Neurotrophic Factor and TrkB mRNA by NK477, a Novel and Potent Forskolin Derivative. J Neurochem 72: 2198-2205. Link: https://goo.gl/10lyRL
389. Tiwari Neha, Mishra Ashutosh, Bhatt Ganesh b, Chaudhary Anil (2014) Anti Stress Activity (in-vivo) of Forskolin Isolated from Coleus forskohlii. Int J Pharm Phytopharmacol Res 4: 201-204. Link: https://goo.gl/GMFyWy
390. Russo R, Ardenetto A, Cavaliere F, et al. (2015) Intravitreal injection of forskolin, homotaurine, and L-carnosine affords neuroprotection to retinal ganglion cells following retinal ischemic injury. Molecular Vision 21: 718-729. Link: https://goo.gl/pMy4zQ
391. Forte Leonard R (1983) Activation of Renal Adenylate Cyclase by Forskolin: Assessment of Enzymatic Activity in Animal Models of the Secondary Hyperparathyroid State. Archives of Biochem and Biophysics 225: 898-905. Link: https://goo.gl/IMpMzx
392. Edlund A, Esguerra JL, Wendt A, Flosdrom-Tullberg M, Eliasson L (2014) CFTR and Anoctamin 1 (ANO1) contribute to cAMP amplified exocytosis and insulin secretion in human and murine pancreatic beta-cells. Edlund et al. BMC Medicine 12: 1-12. Link: https://goo.gl/KGypfE
393. Krall JF (1984) A Kinetic Analysis of Activation of Smooth Muscle Adenylate Cyclase by Forskolin. Archives of Biochem and Biophys 229: 492-497. Link: https://goo.gl/Jyrbb
394. Geng D, Li C, Yi LT, Weng LJ, Han YY (2014) Hepatoprotective effects of Coleus forskohlii (wild) Briq. Against carbon tetrachloride-induced hepatotoxicity in mice. J Chem Pharm Res 6: 130-135. Link: https://goo.gl/fz3uh2
395. Maysyuk TV, Maysyuk AI, Torres VE, Harris PC, Larusso NF (2007) Octreotide Inhibits Hepatic Cytogenesis in a Rodent Model of Polycystic Liver Disease by Reducing Cholangiocyte Adenosine 3’,5’-Cyclic Monophosphate. Gastroenterology 132: 1104-1115. Link: https://goo.gl/7W88hu
396. Catalli A, MacDonald C, Pandir P, Kulka M (2012) Inhibitory effects of resveratrol on human mast cell degranulation, cytokine, chemokine and leukotriene release. Open Journal of Immunology 2: 187-194. Link: https://goo.gl/d4Kbzw
397. Chang Joseph, Hung James M (1984) Schwalm Susan, Dervinis Alphonse and Lewis Alan J. Bronchodilating activity of forskolin in vitro and in vivo. Eur J Pharmacol 101: 271-274. Link: https://goo.gl/8rkuau
398. Gehlert IR, Iason TM, Yan’Lamura HI, Warnsclay JK, (1984a) Localization of qtl forskolin binding sites in the rat brain using quantitative autoradiography. Eur J Pharmacol 106: 223-225.
399. Wachtel H, Loschmann PA, Schneider HH, Rettig KJ (1987) Effects of forskolin on spontaneous behavior, rectal temperature and brain cAMP levels of rats: interaction with rolipram. Neuroscience letters 76: 191-196. Link: https://goo.gl/uaUIA
400. Schmidt Kurt, Baer Hans P (1983) Forskolin binding sites in rat liver and brain membranes. EJ P 94: 337-340. Link: https://goo.gl/Tp2qzH
401. Seamon KB, JW Daly (1981a) Forskolin, a unique diterpene activator of cyclic AMP-generating systems. J Cycl Nucl Res 7: 201. Link: https://goo.gl/9xV5S1
402. X DU L (1997) Iacovitti. Multiple signaling pathways direct the initiation of tyrosine hydroxylase gene expression in cultured brain neurons. Mol Brain Res 50: 5420–5427. Link: https://goo.gl/Me4dHa
403. XDU(L1995)Iacovitti. Synergy between growth factors and neurotransmitters required for catecholamine differentiation in brain neurons. J Neurosci 15: 62-72. Link: https://goo.gl/10ryLk
404. Wang Xuan, Lib Xiaochia, Wang Kun a, Zou Huifang a, Xue Bing a, et al. (2004) Forskolin cooperating with growth factor on generation of dopaminergic neurons from human fetal mesencephalic neural progenitor cells. Neuroscience Letters 362: 117-121. Link: https://goo.gl/xStvaB
405. Sibley DR, Monsma FJ, Shen Y (1993) Molecular neurobiology of dopaminergic receptors. Int Rev Neurobiol 35: 391–415. Link: https://goo.gl/jkZOT
406. Stooj JC, Keabant EW (1981) Opposing-roles for D1 and D2 dopamine receptors in efflux of cyclic AMP from rat striatum. Nature 294: 366–368. Link: https://goo.gl/5s2ZSh
407. Zhuang X, Belluscio L, Hen R (2000) G Proteid mediates dopamine D1 receptor signaling. J Neurosci 20: 1–5. Link: https://goo.gl/hD6z6x
408. Seamon KB, Daly JW (1996) Forskolin: its biological and chemical properties. Adv Cyclic Nucleotide Ret 20: 1-150. Link: https://goo.gl/dm3h7
409. Zhao AZ (2005a) Control of food intake through regulation of cAMP. Curr Top Dev Biol 67: 207–224. Link: https://goo.gl/d6bShI
410. Johnnassens M, Delghandi MP, Moens U (2004) What turns CREB on? Cell Signal 16: 1211-1227. Link: https://goo.gl/Gz6rMw
411. Dumaz N, Marais R (2005) Integrating signals between cAMP and the RAS/ RAF/MEK/ERK signalling pathways. FEBS J 272: 3491–3504. Link: https://goo.gl/Tv903s
412. Albuquerque EX, Desphande SS, Aracava Y, Alkondon M, Daly JW (1986) A possible involvement of cyclic AMP in the expression of desensitization of the nicotinic acetylcholine receptor. Federation of European Biochemical Societies 199: 113-120. Link: https://goo.gl/Wpc4JP
413. Hoffman PW, Ravindran A, Huganir RL (1984) Role of phosphorylation in desensitization of acetylcholine receptors expressed in Xenopus oocytes. J Neurosci 14: 4152-4159. Link: https://goo.gl/d01lA
414. Caratsch CG, Grassi F, Eusebi F (1992) Functional regulation of nicotinic acetylcholine receptor-channels in muscle. In Narahashi T (Ed) Ion channels Plenum Press New York 3: 177-206. Link: https://goo.gl/BQln6G
415. Huganir R, Greengard P (1990) Regulation of transmitter desensitization by protein phosphorylation. Neuron 5: 555-567. Link: https://goo.gl/qUFb3G
416. Aylwin ML, White MM (1992) Forskolin acts as a non-competitive inhibitor of nicotinic acetylcholine receptors. Mol Pharmacol 41: 908-913. Link: https://goo.gl/g80Hy
417. Boarder MR, Plevin R, Marriott DB (1988) Angiotensin II potentiates prostaglandin stimulation of cyclic AMP levels in intact bovine adrenal medulla cells but not adenylate cyclase in permeabilised cells. J Biol Chem 263: 11273-11284. Link: https://goo.gl/xUP0nz
418. Sage SO, Rink TJ (1985) Inhibition by forskolin of cytosolic calcium rise, shape change and aggregation in quin2-loaded human platelets. FEBS Lett 188: 135–140. Link: https://goo.gl/L1wIDB

419. Loft S, Fischer-Nielsen A, Jeding IB, Vistisen K, Poulsen HE (1993) 8-Hydroxydeoxyguanosine as a urinary biomarker of oxidative DNA damage. Toxicol Environ Health 40: 391-404. Link: https://goo.gl/KzmAE9

420. Won JS, Lee JK, Suh HW (2001) Forskolin inhibits expression of inducible nitric oxide synthase mRNA via inhibiting the mitogen activated protein kinase in C6 cells. Molecular Brain Research 89: 1–10. Link: https://goo.gl/cH5RHF

421. Koh G, Suh KS, Chon S, Oh S, Woo JT, et al. (2005) Elevated cAMP level attenuates 2-deoxy-d-ribose-induced oxidative damage in pancreatic beta-cells. Arch Biochem Biophys 438: 70-79. Link: https://goo.gl/rXlZfB

422. Marsh Laura (2000) Neuropsychiatric Aspects of Parkinson’s disease. Psychosomatics 41: 15–23. Link: https://goo.gl/kqSkDU

423. Landsberg G (2005) Therapeutic agents for the treatment of cognitive dysfunction syndrome in senior dogs. Progress in Neuro-Psychopharmacology & Biological Psychiatry 29: 471–479. Link: https://goo.gl/KqgWV

424. Rutten A, Van Albada M, Silveira DC, et al. (2002) Memory Impairment Following Status Epilepticus in Immature Rats: Time-Course and Environmental Effects. Eur J Neurosci 16: 501–513. Link: https://goo.gl/ChrSfm

425. Yena TP, Khoia NN, Ana DP (2014) Down regulation of CREB expressions in trimethyltin-induced hippocampus caused memory dysfunction in mice. Bull. Env. Pharmacol Life Sci 3: 145-153. Link: https://goo.gl/xwKOUJ

426. Einstein EB, Patterson CA, Hon BJ (2010) Somatostatin Signaling in Neuronal Cilia Is Critical for Object Recognition Memory. The Journal of Neuroscience 30: 4306–4314. Link: https://goo.gl/8okOPD