Link Identifiability with Two Monitors: Proof of Selected Theorems

Liang Ma‡, Ting He‡, Kin K. Leung‡, Ananthram Swami§, and Don Towsley*
‡IBM T. J. Watson Research Center, Hawthorne, NY, USA. Email: the@us.ibm.com
§Army Research Laboratory, Adelphi, MD, USA. Email: ananthram.swami.civ@mail.mil
*University of Massachusetts, Amherst, MA, USA. Email: towsley@cs.umass.edu

I. INTRODUCTION

Selected lemmas and theorems in [1] are proved in detail in this report. We first list the theorems in Section II and then give the corresponding proofs in Section III. See the original paper [1] for terms and definitions. Table I summarizes all graph-theoretical notions used in this report (following the convention in [2]).

II. THEOREMS

Lemma II.1. Let B be a biconnected component with monitoring agents m_1' and m_2'. The set of identifiable links in $L(B)$ does not depend on whether m_1' or m_2' are monitors or not, except for link $m_1'm_2'$ (if it exists). Link $m_1'm_2'$ is identifiable if and only if m_1' and m_2' are both monitors.

Theorem II.2. Algorithm DIL-2M, Determining Identifiable Links under Two Monitors, can determine all identifiable links in a network with given 2-monitor placement.

III. PROOFS

A. Proof of Lemma II.1

1) Let m_1' and m_2' be the two monitoring agents of biconnected component B in Fig. 1 and $m_1'(m_2')$ connects to the real monitor $m_1'(m_2')$ by path $P_1'(P_2')$, i.e., none of m_1' and m_2' are real monitors. In Fig. 1 it is impossible that P_1' and P_2' must have a common node; since otherwise m_1' and m_2' are not cut-vertices, contradicting the processing of localizing monitoring agents for a biconnected component (see DIL-2M). To identify link metrics in B, all measurement paths involving links in B are of the following form

$$W_{P_1} + W_{m_1'a_i} + W_{P_{ij}} + W_{b_im_2'} + W_{P_2} = c_{ij}' ,$$

assuming $P_1' (P_2')$ is always selected to connect m_1' and m_1' $(m_2'$ and $m_2')$. We know that if m_1' and m_2' are real monitors, then each measurement (except direct link $m_1'm_2'$) path is of form

$$W_{m_1'a_i} + W_{P_{ij}} + W_{b_im_2'} = c_{ij}.$$

Therefore, compared with (2), (1) is equivalent to abstracting each of P_1', P_2', and b_2 as a single link. By Theorem III.1 [1], we know that none of the exterior links are identifiable. Thus, the link metrics of exterior links do not affect the identification of interior links. Therefore, B can be visualized as a network with two monitors m_1' and m_2' but each exterior link in $\{m_1'a_i, m_2'b_j\}$ has an added weight from W_{P_1} or W_{P_2}. The above argument also holds when m_1' (m_2') chooses another path, say P_1' (P_2'), to connect to m_1' (m_2'), then it simply implies that different exterior links in $\{m_1'a_i, m_2'b_j\}$ in B may have different added path weights when regarding m_1' and m_2' as two monitors. Moreover, the above conclusion also applies to the case that one of m_1' and m_2' is a real monitor. Therefore, the identifiability of all links except for the direct link $l_d := m_1'm_2'$ (if any) remains the same regardless whether m_1', m_2' are monitors or not.

2) To identify direct link (if any) $l_d := m_1'm_2'$, all measurement paths traversing l_d must utilize unidentifiable links incident to m_1' or m_2'. To eliminate these unidentifiable links in linear equations, some other measurement paths in B must be used; however, each measurement path in B introduces two new uncomputable variables $W_{m_1'a}$ and $W_{b_im_2'}$, and thus each newly added path for identifying l_d involves new unknown variables. Therefore, l_d cannot be identified when one of m_1' and m_2' is not a real monitor, i.e., m_1' and m_2' must be both real monitors such that l_d is identifiable.

Fig. 1. Monitoring agents m_1' and m_2' wrt biconnected component B.

TABLE I. NOTATIONS IN GRAPH THEORY

Symbol	Meaning										
$V(\mathcal{G})$, $L(\mathcal{G})$	set of nodes/links in graph \mathcal{G}										
$	\mathcal{G}	$	degree of \mathcal{G}: $	\mathcal{G}	=	V(\mathcal{G})	$ (number of nodes)				
$		\mathcal{G}		$	order of \mathcal{G}: $		\mathcal{G}		=	L(\mathcal{G})	$ (number of links)
$\mathcal{G} \cup \mathcal{G}'$	union of graphs: $\mathcal{G} \cup \mathcal{G}' = (V \cup V', L \cup L')$										
\mathcal{H}	interior graph										
P	simple path										
m_i	$m_i \in V(\mathcal{G})$ is the i-th ($i = \{1, 2\}$) monitor in \mathcal{G}										
W_{l_i}, W_{l_j}	metric on link l_i and sum metric on path P										
m_1', m_2'	two monitoring agents in a biconnected component										
Fig. 2. Triconnected component \mathcal{T} in biconnected component \mathcal{B}, where \{a,b\} is the 2-vertex-cut, \mathcal{B}_T is the neighboring biconnected component connecting to \mathcal{T} via \{a,b\} and m'_1 is a monitoring agent.

Fig. 3. Triconnected component containing no monitoring agents.

Fig. 4. Virtual link replacement.

B. Proof of Theorem II.2

1) completeness of four categories. DIL-2M only processes the biconnected components with 2 monitoring agents as none of the links in biconnected components with 1 or 0 monitoring agent are identifiable. Since only 2 monitors are used in \mathcal{G}, the number of monitoring agents for each biconnected component cannot be greater than 2; therefore, it is correct for DIL-2M to only process the biconnected components with 2 monitoring agents. If a triconnected component contains only a single link, then this triconnected component is also a biconnected component, whose identifiability is determined by line 2-4 in DIL-2M based on Lemma II.1. Therefore, the four identifiability categories do not consider the case of a triconnected component which is a single link. Now we discuss triconnected components (with at least 3 nodes) as follows.

(i) A triconnected component \mathcal{T} containing only one monitoring agent. In this case, \mathcal{T} must contain one 2-vertex-cut as \mathcal{T} contains 2 monitoring agents otherwise. This case is illustrated in Fig. 2 where \{a,b\} is the 2-vertex-cut, \mathcal{T}_N is the neighboring biconnected component connecting to \mathcal{T} via \{a,b\} and m'_1 is a monitoring agent. Since the associated biconnected component contains two monitoring agents, the neighboring component \mathcal{T}_N must contain one monitoring agent, which cannot be the same as a or b as \mathcal{T} involves two monitoring agents otherwise. Thus, \{a,b\} is of Type-1-VC. If $m'_1 \not\in \{a,b\}$, then \mathcal{T} belongs to Category 1. If $m'_1 = a$ or $m'_1 = b$, then \mathcal{T} belongs to Category 2. If $m'_1 \in \{a,b\}$, the number of monitoring agents for each biconnected component \mathcal{T}' within the same parent biconnected component, thus resulting \mathcal{T} to be of Category 2. Fig. 3 b illustrates the case that each neighboring component (\mathcal{B}_{T1} and \mathcal{B}_{T2}) contains one monitoring agent. According to the connectivity of \mathcal{T} in Fig. 3 b, \mathcal{T} belongs to either Category 3 or 4.

Therefore, excluding the triconnected component containing a single link, Category 1-4 are complete to cover all cases of triconnected component within biconnected components with 2 monitoring agents.

2) identification of each category. In Theorem III.2 [1], the prerequisite for network identifiability is that all involved links can be used for constructing measurement paths. In DIL-2M, we sequentially consider each triconnected component which possibly contains virtual links (see [1]). These virtual links, however, do not exist in real networks. To tackle with this issue, we have the following Claim.

Claim 1. A triconnected component \mathcal{T} may contain multiple virtual links. For each involved virtual link whose end-points $\{v_1, v_2\}$ (the end-points of a virtual link must form a vertex cut) are neither Type-1-VC nor Type-2-VC (used to determine the category of \mathcal{T}) wrt \mathcal{T}, there exists a simple path \mathcal{P}_r with the same end-points in a neighboring biconnected component which connects to \mathcal{T} via $\{v_1, v_2\}$. \mathcal{P}_r can be used to replace the associated virtual link in \mathcal{T} if this virtual link is chosen to construct measurement paths for identifying real links in \mathcal{T}. This replacement operation does not affect all existing path construction policies or the identification properties of real links in \mathcal{T}.

Proof: Fig. 4 illustrates a triconnected component \mathcal{T} with two Type-1-VCs $\{a,b\}$ and $\{c,d\}$. For vertex cut $\{v_1, v_2\}$ (which is neither $\{a,b\}$ nor $\{c,d\}$), there exists a simple path \mathcal{P}_r, connecting v_1 and v_2 in the neighboring biconnected component $\mathcal{B}_{\mathcal{T}}$ of \mathcal{T} as $\mathcal{B}_{\mathcal{T}}$ contains at least 3 nodes. We know that $\mathcal{B}_{\mathcal{T}}$ connects to the \mathcal{T}-involved component by only $\{v_1, v_2\}$; therefore, \mathcal{P}_1, \mathcal{P}_2, \mathcal{P}_3 and \mathcal{P}_4 do not have common nodes with $\mathcal{B}_{\mathcal{T}}$ except a which is equal to v_1 or v_2. Hence, for virtual link v_1v_2, if it is used for identifying real links in \mathcal{T} based on Theorem III.2 [1], it can be replaced by \mathcal{P}_r which is a simple path and can be abstracted as a real link in \mathcal{T}.
Thus, it is equivalent to the case in Fig.1. We also have that T is a triconnected component. Therefore, for T, all real links incident to a and b are unidentifiable and the rest links are identifiable. On top of the discussed scenario shown in Fig.6 now we consider the case that there exists real link ab in T, i.e., ab is a real link in Fig.6. Since $\{a,b\}$ is a Type-2-VC wrt T and none of a or b are monitoring agents, $\{a,b\}$ is not a Type-1-VC or Type-2-VC or two monitoring agents wrt the neighboring components connecting to T via $\{a,b\}$. Thus, in those neighboring components, ab is only an ordinary link (not incident to the two vertices of a Type-1-VC or Type-2-VC), the identifiability of which can be determined in identifying the neighboring components. Therefore, we do not need to consider the identifiability of ab in the current triconnected component T.

Suppose T contains one Type-2-VC and one monitoring agent, i.e., $a = m'_1$ or $b = m'_2$. Then it is still equivalent to the case in Fig.11 for identifying links (except direct link ab) in T. Since one of a or b is a monitoring agent, the link ab incident to this monitoring agent is unidentifiable according to Theorem III.1 [1] unless both end-points of ab are monitoring agents (Lemma III.1), which contradicts the assumption that T contains only one monitoring agent.

Suppose T contains two monitoring agents. Then T itself satisfies the interior graph identifiability conditions (Theorem III.2 [1]) and exterior link unidentifiability conditions (Theorem III.1 [1]). For the direct link connecting to these two monitoring agents, the identifiability is already determined by line 2-4 of DIL-2M.

In sum, for Category 2, the effective interior (exterior) links are identifiable (unidentifiable) and the effective direct link is determined in the identification of other triconnected components.

(iii) Category 3.

Category 3 is illustrated in Fig.4. Due to the 2-vertex-connectivity of the corresponding biconnected component, there exist pairwise internally vertex disjoint paths P_1, P_2, P_3 and P_4. Then similar arguments for discussing Category 1 can be applied. Therefore, T is the effective interior graph of $T \cup P_1 \cup P_2 \cup P_3 \cup P_4$ and thus all involved links in T are identifiable when T is 3-vertex-connected.

(iv) Category 4 (processed by auxiliary algorithm - Algo-
Let the two Type-1-VCs be \(\{v_1, v_2\} \) and \(\{v_1, v_3\} \) and \(S_1 \) (\(S_2 \)) the set of immediately neighboring triconnected components connecting to \(T \) via \(\{v_1, v_2\} \) (\(\{v_1, v_3\} \)), as illustrated in Fig. 7. Based on the above discussions for Category 1-3, we know that there exist internally vertex disjoint paths \(P_1, P_2, P_3 \) and \(P_4 \). If \(v_1v_2 \) (or \(v_1v_3 \)) is a real link, then \(v_1v_2 \) (or \(v_1v_3 \)) is known as a Cross-link [3] since \(v_2v_3 \) can be replaced by a path in neighboring biconnected component if \(v_2v_3 \) is virtual. Therefore, \(v_1v_2 \) (or \(v_1v_3 \)) is identifiable. Now we focus on the identification of \(v_2v_3 \) in \(T \) (when \(v_2v_3 \) is a real link). The conditions to guarantee the identifiability of \(v_2v_3 \) is:

- (link \(v_1v_2 \) is real OR \(|S_1| \geq 2 \)) OR one component in \(S_1 \) is 3-vertex-connected AND (link \(v_1v_3 \) is real OR \(|S_2| \geq 2 \)) OR one component in \(S_2 \) is 3-vertex-connected.

Suppose the above condition is not satisfied. Then we can prove \(v_2v_3 \) is unidentifiable as follows.

We first consider the condition: link \(v_1v_3 \) is real OR \(|S_2| \geq 2 \) OR one component in \(S_2 \) is 3-vertex-connected. If not satisfied, then it means there is no real link \(v_1v_3 \) and the only immediately neighboring triconnected component is a triangle, i.e., \(v_1a-a-v_3 \) in Fig. 8 (\(v_1a \) and \(v_3a \) can be virtual links as well).

(iv-a) If the monitoring agent \(m^1_1 \) is in the location shown in Fig. 8a, then all paths from \(m^1_1 \) to \(m^2_3 \) traversing \(v_2v_3 \) must use one simple path in \(D_1 \). Therefore, the best case is that we can compute the sum metric of link \(v_2v_3 \) and another link which is incident to \(v_3 \) in \(D_1 \), but cannot compute them separately.

(iv-b) If the monitoring agent \(m^2_3 \) is in the location shown in Fig. 8b, then \(P_3 \) and \(v_2v_3 \) become a “double bridge” connecting \(D_2 \) and \(D_1 \). Abstracting \(P_3 \) as a single link, [3] proves that none of the links in a double bridge is identifiable when constraining the measurement paths to simple paths. If we choose other paths as \(P_3 \) in \(D_3 \), then the same argument applies. Therefore, based on (iv-a) and (iv-b), \(v_2v_3 \) is unidentifiable.

Analogously, we can prove that \(v_2v_3 \) is unidentifiable when condition (link \(v_1v_2 \) is real OR \(|S_1| \geq 2 \) OR one component in \(S_1 \) is 3-vertex-connected) is not satisfied.

When the required conditions are satisfied, we can prove that \(v_2v_3 \) is identifiable as follows:

If \(v_1v_2 \) (or \(v_1v_3 \)) is a virtual link, then it can be replaced by a path in a neighboring component. For instance, if \(|S_1| \geq 2 \), then one replacement path can be found in one component of \(S_1 \). If one component in \(S_1 \) is 3-vertex-connected, then there exist 2 internally vertex disjoint paths (each with the order greater than 1) connecting \(v_1 \) and \(v_3 \). Thus, we can choose one of them as a replacement path. Note that the virtual links possibly involved in the replacement paths can be further replaced by the paths in their neighboring components recursively. After these replacement operations, \(v_2v_3 \) in Fig. 8 is a Shortcut (defined in [3]), which is proved to be identifiable in [3].

Therefore, the auxiliary algorithm (Algorithm 3) of DIL-2M can determine all identifiable/unidentifiable links in a triangle triconnected component.

Consequently, with the complete coverage of four categories and the identification efficacy of each category, DIL-2M can determine all identifiable/unidentifiable links. ■

REFERENCES

[1] L. Ma, T. He, K. K. Leung, A. Swami, and D. Towsley, “Link identifiability in communication networks with two monitors,” in *IEEE Globecom*, 2013.

[2] R. Diestel, *Graph theory*. Springer-Verlag Heidelberg, New York, 2005.

[3] L. Ma, T. He, K. K. Leung, A. Swami, and D. Towsley, “Identifiability of link metrics based on end-to-end path measurements,” in *ACM IMC*, 2013.