ИЗУЧЕНИЕ ПРОЦЕССА УДАЛЕНИЯ ВОДОРОДА В ЦИРКУЛЯЦИОННОМ ВАКУУМАТОРЕ В УСЛОВИЯХ КЦ-2 ПАО «НЛМК»

К. Н. Плешивцев 1, О. Ю. Шешуков 2, 3, А. А. Метелкин 4, О. И. Шевченко 4

Hydrogen removal in circulating vacuum degasser under conditions of PJSC “NLMK”

1 PJSC “Novolipetsk Metallurgical Plant” (2 Metallurgov Sq., Lipetsk 398040, Russian Federation)
2 Ural Federal University named after the first President of Russia B.N. Yeltsin (19 Mira Str., Yekaterinburg 620002, Russian Federation)
3 Institute of Metallurgy, Ural Branch of the Russian Academy of Sciences (28 Mira Str., Yekaterinburg 620002, Russian Federation)
4 Nizhny Tagil Institute (Branch) of the Ural Federal University named after the first President of Russia B.N. Yeltsin (59 Krasnogvardeyskaya Str., Nizhny Tagil, Sverdlovsk Region 620301, Russian Federation)

Abstract. For high-quality steel smelting, stage-by-stage production is required, which has a complex of metallurgical units capable for producing products with high performance properties and low content of harmful impurities. One of the harmful impurities is hydrogen, so it is important to limit its content in the metal. To ensure the specified hydrogen content, the metal in the steel out-of-furnace treatment at Converter Shop No. 2 of PJSC “Novolipetsk Metallurgical Plant” (“NLMK”) is subjected to vacuum treatment in a circulating vacuum degasser. Despite the prevalence of circulating vacuum derassers, theoretically, mechanism of hydrogen removal in these metallurgical units has been insufficiently studied. To increase efficiency of hydrogen removal, theoretical calculations were performed to remove it from the metal. There are several mechanisms for hydrogen removal: direct transition of hydrogen from the metal to the surrounding space; formation of gas bubbles in the metal and their direct rise; formation of hydrogen bubbles at the boundary of the refractory lining with the metal; removal of hydrogen during the injection of a neutral gas (argon). It is shown that the main pathways for hydrogen removal in the circulating vacuum degasser are the direct transition of hydrogen from the metal to the surrounding space and the injection of a transporting gas. In Converter Shop No. 2 of PJSC “NLMK”, both pathways are realized. The vacuum pumps ensure pressure in the vacuum chamber below 101,3 Pa (0.001 atm.). This contributes to intensive removal of hydrogen from the metal surface. For the circulation of metal into the degasser RH, the transporting gas argon is injected, which also takes part in the removal of dissolved gases by forming gas bubbles of neutral gas. Additional calculations showed that the main pathway of degassing in the conditions of Converter Shop No. 2 of PJSC “NLMK” – is the removal of hydrogen in the bubbles of transporting gas.

Ключевые слова: удаление водорода, циркуляционный вакууматор, внепечная обработка стали, дегазация
Введение

В настоящее время современным металлургическим предприятиям необходимо решать задачи по выпуску качественной и конкурентоспособной продукции. Для выплавки высококачественной стали необходимо поэтапное производство – комплекс металлургических агрегатов [1, 2]. На каждом из этапов решается задача рафинирования металла, а также его подготовка к разливке.

Водород является вредной примесью, снижающей эксплуатационные свойства изделий [3 – 9], поэтому важно ограничить его содержание в металле не более 2 ppm [10, 11].

Для обеспечения заданного содержания водорода металл на участке внешней обработки стали КЦ-2 ПАО «Новолипецкий металлургический комбинат» его подвергают обработке вакуумом в установке циркуляционного вакуумирования.

Несмотря на распространенность циркуляционных вакууматоров, теоретически механизм удаления водорода в этих металлургических агрегатах изучен недостаточно [1, 12 – 14].

Исследовательская часть

Целью настоящей работы является определение основных путей удаления водорода из металла в условиях КЦ-2 ПАО «НЛМК».

Таким образом, цель работы – определение основных путей удаления водорода из стали в условиях КЦ-2 ПАО «НЛМК».

Keywords: hydrogen removal, circulating vacuum degasser, out-of-furnace steel treatment, degassing

For citation: Pleshivtsev K.N., Sheshukov O.Yu., Metelkin A.A., Shevchenko O.I. Hydrogen removal in circulating vacuum degasser under conditions of PJSC “NLMK”. Izvestiya. Ferrous Metallurgy. 2021, vol. 64, no. 8, pp. 543–549. (In Russ.).

https://doi.org/10.17073/0368-0797-2021-8-543-549

![Fig. 1. Ways of hydrogen removal from the metal](image-url)
Скорость удаления водорода в циркуляционном вакууматоре [6, 11] описывается следующим уравнением:

\[[H]_t = ([H]_0 - [H]_p)10^{-0.227n} + [H]_p, \quad (1) \]

где \([H]_t\) – конечное содержание водорода через время \(t\); \([H]_p = 0.64 \text{ ppm} – \text{равновесное содержание водорода при} \ P = 0.07 \text{ кПа (остаточное давление в вакуум-камере)}; \ ([H]_0) – начальное содержание водорода до обработки; \(n\) – кратность циркуляции; \(Q\) – количество металла, поступающего в вакуум-камеру (скорость циркуляции), т/мин; \(M\) – масса металла в сталеразливочном ковше, т.

Известно, что скорость удаления водорода зависит от скорости массопереноса металла во впускном патрубке вакуум-камеры. В работах [18 – 24] представлены различные эмпирические формулы, по которым рассчитывают скорость расплава во впускном патрубке в зависимости от различных технологических и конструкционных параметров металлургического агрегата. Наиболее удовлетворительно скорость металла во впускном патрубке циркуляционного вакууматора описывается уравнением, выведенным японскими учеными [25].

Представленное уравнение (1) учитывает различные технологические и конструкционные параметры циркуляционного вакууматора за счет коэффициента \(n\) кратности циркуляции.

Графически выражение (1) представлено на рис. 3 при начальном содержании водорода в металле 6 ppm. Удаление водорода в циркуляционном вакууматоре [12] описывается уравнением

\[\frac{c_E^{(t)}}{c_E^{(0)}} - c_p = e^{-\beta t}, \quad (2) \]

где \(c_E^{(t)}\) и \(c_E^{(0)}\) – концентрация газа в металле, втекающим в вакуум-камеру в начальный момент времени и \(t\); \(c_p\) – равновесная концентрация газа в металле в вакуум-камере.

Тогда конечное содержание \(c_E^{(t)}\) водорода будет равно

\[c_E^{(t)} = c_p + \left(c_E^{(0)} - c_p\right)e^{-\beta t}; \quad (3) \]
Используя уравнения (2), (4) и (5), можно определить количество удаляемого водорода с поверхности металла. Расчетные данные представлены на рис. 4, кривая I.

Дополнительно необходимо рассмотреть вопрос о возможном пределе удаления водорода по первому пути, то есть удаления с поверхности металла.

По данным работы [13] минимальное давление насыщения, при котором способны образовываться пузырьки водорода на поверхности металла, соответствуют концентрации водорода в расплаве, определяемые по следующему уравнению:

\[[H] = K_{H_2} \sqrt{\frac{P_{\text{нас min}}}{\rho_g}}, \]

где \(K_{H_2} = 28,55 \text{ см}^3/100 \text{ г} \) — константа растворимости водорода в железе при температуре 1600 °C [1]; \(P_{\text{нас min}} \) — минимальное давление насыщения, Па.

Соответственно при давлениях насыщения меньше величины \(P_{\text{нас min}} \) устойчивые, способные к росту газовые пузырьки не зарождаются. Из работы [7] этот параметр определяется по формуле

\[P_{\text{нас min}} = P + 4\sqrt{\sigma \rho_g}, \]

Общее удаление водорода и удаление водорода с поверхности расплава в зависимости от кратности циркуляции металла (\(\eta \)) в циркуляционном вакууматоре

\(\eta \)	Общее удаление водорода, ppm	Удаление водорода с поверхности расплава, ppm
0	6,00	6,00
0,5	4,77	5,56
1,0	3,82	5,20
1,5	3,09	4,89
2,0	2,52	4,63
2,5	2,09	4,41
3,0	1,76	4,22
3,5	1,50	4,05
4,0	1,30	3,91
4,5	1,15	3,78
5,0	1,03	3,66
5,5	0,94	3,56
6,0	0,87	3,50
6,5	0,82	3,50
7,0	0,78	3,50
7,5	0,75	3,50
8,0	0,72	3,50

где \(V \) — объем металла в сталеразливочном ковше; \(V^* \) и \(\dot{V}^* \) — объем металла, находящегося в вакуум-камере и протекающего в единицу времени через вакуум-камеру; \(k^* \) — коэффициент массопереноса; \(F^* \) — поверхность дегазации порций металла.

По данным работы [12] соотношение \(\frac{V^*}{\kappa^* F^*} \) соответствует значению 0,1 С\(^{-1}\).

Если принять, что \(\dot{V} \) — объем металла, протекающего в единицу времени, будет соответствовать объему металла, из которого удаляется водород с поверхности расплава в единицу времени, то получим уравнение удаления водорода с поверхности металла в единицу времени.

Для определения поверхностного объема металла в вакуум-камере, из которого происходит удаление водорода, необходимо знать глубину зарождения пузырьков газа. Если площадь поверхности постоянна и составляет 5,2 м\(^2\) для условий агрегата циркуляционного вакуумирования ПАО «НЛМК», то глубина зарождения пузырьков газа зависит от концентрации водорода в металле и определяется уравнением [1, 12, 26]:

\[h = 142 \left(\frac{[H]^2}{738,87} - P \right); \]

где \(P \) — давление в вакуум-камере, атм.; \(H \) — концентрация водорода в металле в единицу времени, ppm.

В условиях промышленного вакуумирования достигаются давления \(P \) менее 0,001 атм., что обеспечивает удаление водорода с поверхности расплава при его концентрации в стали не менее 3,5 ppm.
Для условий работы ПАО «НЛМК» и по данным работ [1, 27] этот показатель будет соответствовать 1539 Па.

Минимальное содержание водорода в стали, удаление которого возможно путем зарождения с поверхности металла, будет соответствовать значению 3,5 ppm. При содержании водорода менее 3,5 ppm его удаление возможно только по пути взаимодействия с пузырьками транспортирующего газа.

Объединяя расчетные показатели общего удаления водорода из металла и показатели удаления водорода путем образования пузырьков на поверхности расплава с пределом удаления по рассматриваемому пути, получим значения, представленные в таблице и на рис. 4.

Выводы

Удаление водорода с поверхности расплава не является основным механизмом дегазации. При концентрации водорода в стали менее 3,5 ppm образование пузырьков водорода с поверхности металла прекращается. Основной путь дегазации в условиях КЦ-2 ПАО «НЛМК» — это удаление водорода в пузырьки транспортирующего газа.

Список литературы

1. Бигеев А.М., Бигеев В.А. Металлургия стали. Теория и технология плавки стали. Магнитогорск: МГТУ, 2000. 544 с.
2. Дюкин Д.А., Кисilenко В.В. Производство стали. Т. 3. Внепечная металлургия стали. М.: Теплотехник, 2008. 544 с.
3. Шаповалов В.И., Трофименко В.В. Флокены и контроль водорода в стале. М.: Металлургия, 1987. 160 с.
4. Арделиан Е., Гепуц Т., Вăтăсescu М., Криșan Е. Резерчээс реґардэд вээшээ гээдэл эсэхийг нэрээний нь галуу шатуу агаар хувийн тэжээлэн. / Solid State Phenomena. 2014. Vol. 216. P. 273–278.
5. Сокоалиця А., Попа Е., Гепуц Т., Грешо Т. Резерчээс реґардэд гээдэл агаарын тэжээлэн. / Solid State Phenomena. 2014. Vol. 216. P. 273–278.
6. Yu S., Miettinen J., Louhenkilpi S. Numerical study on the removal of hydrogen and nitrogen from the melt of medium carbon steel in vacuum tank degasser // Materials Science Forum. 2013. Vol. 762. P. 253–260. https://doi.org/10.4028/www.scientific.net/MSF.762.253
7. Stenholm K., Andersson M., Tilliander A. Jönsson P.G. Removal of hydrogen, nitrogen and sulphur from tool steel during vacuum degassing // Ironmaking & Steelmaking. 2013. Vol. 40. No. 3. P. 199–205. https://doi.org/10.1179/1743281212Y.0000000029
8. Fábian E.R., Děvényi L. Hydrogen in the plastic deformed steel // Materials Science Forum. 2007. Vol. 537-538. P. 33–40. https://doi.org/10.4028/0-87849-426-x.33
9. Baranikova S.A., Lunee A.G., Nadezhkin M.V., Zuev L.B. Effect of hydrogen on plastic strain localization of construction steels // Advanced Materials Research. 2014. Vol. 880. P. 42–47. http://doi.org/10.4028/www.scientific.net/AMR.880.42
10. Morozov A.H. Водород и азот в стали. М.: Металлургия, 1968. 283 с.
11. Efimov S.V. Technological aspects of hydrogen removal using a ladle vacuum degasser for steel. In: Converter Steelmaking. Coll.

References

1. Bigeev A.M., Bigeev V.A. Metallurgy of Steel. Theory and Technology of Steel Smelting. Magnitogorsk: MSTU, 2000, 544 p. (In Russ.).
2. Dyudkin D.A., Kislennikov V.V. Production of Steel. Vol. 3. Out-of-Furnace Metallurgy of Steel. Moscow: Tepletokhnik, 2008, 544 p. (In Russ.).
3. Shapovalov V.I., Trofimenkov V.V. Flakes and Hydrogen Control in Steel. Moscow: Metallurgiya, 1987, 160 p. (In Russ.).
4. Ardelean E., Gepuć T., Vătășescu M., Crișan E. Researches regarding the influence of vacuum parameters on the efficiency of gas removal from the liquid steel. Solid State Phenomena. 2016, vol. 254, pp. 218–223. https://doi.org/10.4028/www.scientific.net/SSP.254.218
5. Socalici A., Popa E., Gepuć T., Drăgoi F. Researches regarding the improvement of the steel quality. Solid State Phenomena. 2014, vol. 216, pp. 273–278. https://doi.org/10.4028/www.scientific.net/SSP.216.273
6. Yu S., Miettinen J., Louhenkilpi S. Numerical study on the removal of hydrogen and nitrogen from the melt of medium carbon steel in vacuum tank degasser // Materials Science Forum. 2013. Vol. 762. P. 253–260. https://doi.org/10.4028/www.scientific.net/MSF.762.253
7. Stenholm K., Andersson M., Tilliander A., Jönsson P.G. Removal of hydrogen, nitrogen and sulphur from tool steel during vacuum degassing // Ironmaking & Steelmaking. 2013. Vol. 40. No. 3. P. 199–205. https://doi.org/10.1179/1743281212Y.0000000029
8. Fábian E.R., Děvényi L. Hydrogen in the plastic deformed steel // Materials Science Forum. 2007. Vol. 537-538. P. 33–40. https://doi.org/10.4028/0-87849-426-x.33
9. Baranikova S.A., Lunee A.G., Nadezhkin M.V., Zuev L.B. Effect of hydrogen on plastic strain localization of construction steels // Advanced Materials Research. 2014. Vol. 880. P. 42–47. http://doi.org/10.4028/www.scientific.net/AMR.880.42
10. Morozov A.H. Водород и азот в стали. М.: Металлургия, 1968, 283 p. (In Russ.).
11. Efimov S.V. Technological aspects of hydrogen removal using a ladle vacuum degasser for steel. In: Converter Steelmaking. Coll.
14. Метелкин А.А., Шеурашов И.В., Шевченко О.И., Корогодский А.Ю. К вопросу удаления водорода из металла в вакууматоре циркуляционного типа // Теория и технология металлургического производства. 2016. № 1 (18). С. 29–33.

15. Селиванов В.Н., Буданов Б.А., Аланкин Д.В. Кинетическая модель удаления водорода из металла при циркуляционном вакуумировании стали // Теория и технология металлургического производства. 2013. № 1 (13). С. 31–33.

16. Минаев Ю.А., Яковлев В.В. Физико-химия в металлургии. (Термодинамика. Гидродинамика. Кинетика). М.: МИСИ, 2001. 320 с.

17. Гизатуллин Р.А., Дмитриенко В.И. Внепечные и ковшевые процессы обработки стали. Новокузнецк: изд. СибГИУ, 2006. 181 с.

18. Hupfer P., Abratis H., Maas H., Manfred M. Strömungsmechanische und reaktionskinetische Vorgänge bei der Vakuumbehandlung von flüssigem Stahl nach dem Umlaufverfahren // Archiv für das Eisenhüttenwesen. 1971. Bd. 42. Nb. 11. S. 761–767. https://doi.org/10.1002/ain.197102663

19. Yamaguchi K., Kishimoto Y., Sakuraya T., Fuji T., Aratani M., Ni-shikawa H. Effect of refining conditions for ultra low carbon steel on decarburization reaction in RH degasser // ISIJ International. 1992. Vol. 32. No. 1. P. 126–135. https://doi.org/10.2355/isijinternational.32.126

20. Young-Geun Park, Won-Chul Doo, Kyung-Woo Yi, Sang-Bok An. Numerical calculation of circulation flow rate in the degassing rheinstahl-heraeus process // ISIJ International. 2000. Vol. 40. No. 8. P. 749–755. https://doi.org/10.2355/isijinternational.40.749

21. Young-Geun Park, Kyung-Woo Yi, Sang-Bog Ahn. The effect of operating parameters and dimensions of the RH system on melt circulation using numerical calculations // ISIJ International. 2001. Vol. 41. No. 5. P. 403–409. https://doi.org/10.2355/isijinternational.41.403

22. Kato Y., Fuji T., Suetsugu S., Ohmiya S., Aizawa K. Effect of geometry of vacuum vessel on decarburization rate and final carbon content in RH degasser // Tetsu-to-Hagane. 1993. Vol. 79. No 11. P. 1248–1253. https://doi.org/10.2355/tetsutohagane1955.79.11_1248

23. Takahashi M., Matsumoto H., Saito T. Mechanism of decarburization in RH degasser // ISIJ International. 1995. Vol. 35. No. 12. P. 1452–1458. https://doi.org/10.2355/isijinternational.35.1452

24. Kitamura T., Miyamoto K., Tsujino R., Mizoguchi S., Kato K. Mathematical model for nitrogen in vacuum degasser desorption and decarburization reaction in vacuum degasser // ISIJ International. 1996. Vol. 36. No. 4. P. 395–401. https://doi.org/10.2355/isijinternational.36.395

25. Ono K., Yanagida M., Katoh T., Miwa M., Okamoto T. The Circulation Rate of RH-Degassing Process by Water Model Experiment // Denki Seiko. 1981. Vol. 56. No. 7. P. 149–157.

26. Tembergen D., Devort R., Robert R. Treatment of steel in a ladle using technology of circulating vacuum degassing. Metallurgicheskoe proizvodstvo i tekhnologiya. 2007. No. 2, pp. 12–16. (In Russ.)

27. Kudrin V.A. Theory and Technology of Steelmaking. Moscow: Mir, 2003. 528 p. (In Russ.).
Hydrogen removal in circulating vacuum degasser under conditions ...