Bound state in the vector channel of the extended Nambu-Jona-Lasinio model at fixed f_π

V. Dmitrašinović
Department of Physics and Astronomy,
University of South Carolina, Columbia, SC 29208, USA
(August 9, 2018)

Abstract

We show that, as a consequence of fixing $f_\pi = 93$ MeV: (1) a bound state pole in the the $J^P = 1^-$ scattering amplitude of the ENJL model exists for arbitrarily weak (positive) vector coupling G_2 so long as the constituent quark mass is sufficiently large; (2) there is a bound state for any quark mass when $G_2 \geq 0.6/(8f_\pi^2)$; (3) this bound state becomes massless at $G_2 = 1/(8f_\pi^2)$ and a tachyon for G_2 exceeding it. We show by way of an example that the model has no trouble fitting the ρ meson mass simultaneously with other observables.

PACS numbers: 11.10.St, 11.30.Rd, 11.10.Lm
Introduction. Extension of the Nambu and Jona-Lasinio [NJL] model to include vector and axial-vector mesons can be traced back to the original paper [1]. The results of this extension concerning vector mesons have undergone considerable change with time: it has long been understood that bound states exist for sufficiently strong vector coupling G_2, but it is also believed that such high values of G_2 are incompatible with the phenomenology. In the early 90’s Takizawa et al. [2] found a new solution to the Bethe-Salpeter (BS) equation at lower values of G_2, that lay, however, on the the second lower Riemann sheet of the $J^\pi = 1^-$ elastic scattering matrix element. This pole was interpreted as a “virtual bound state”, in analogy with the nonrelativistic situation, which, however, involves only two Riemann sheets vs. ∞ many present here. The extended Nambu-Jona-Lasinio [ENJL] model and its solutions have recently come under renewed scrutiny [3,4]. In these papers, however, the solutions to the BS equation at different values of G_2 have different values of the pion decay constant f_π.

It is the purpose of this Letter to show that the ENJL model results regarding the vector- and axial-vector states undergo a drastic change when the “sliding” pion decay constant f_π is replaced by a fixed one. In particular, we show that, as a consequence of keeping f_π fixed, there is a bound state pole in the the $J^P = 1^-$ scattering amplitude of the ENJL model for any vector coupling $G_2 \geq 0$, so long as the constituent quark mass m is large enough. We exhibit the dependence of the minimal necessary quark mass m_{min} on the vector coupling G_2. When G_2 exceeds $0.6/(8f_\pi^2)$ the vector bound state exists for all values of the quark mass. This bound state becomes massless at $G_2 = 1/(8f_\pi^2)$ and a tachyon for G_2 exceeding this value. We find no other “resonances” in this or the axial-vector channel [4]. Our results ought to have significant consequences in ENJL-based models of electroweak interactions, such as “technicolour, top-colour” etc., since there also the scalar bilinear v.e.v. must be kept fixed.

Conventions and preliminaries We shall work in the chiral limit throughout this letter for the sake of clarity. Both vector and axial-vector (isovector) currents are conserved in the chiral limit and the pion is massless. The extension to the nonchiral case is straightforward. The chirally symmetric field theory described by L_{NJL}

\[
L_{\text{NJL}} = \bar{\psi} [i \not\partial + G_1 (\bar{\psi}\psi)^2 + (\bar{\psi}i\gamma_5 \tau \psi)^2] - G_2 [(\bar{\psi}\gamma_{\mu} \tau \psi)^2 + (\bar{\psi}\gamma_\mu \gamma_5 \tau \psi)^2] ;
\]

in both its original ($G_2 = 0$) and extended versions ($G_2 \neq 0$) exhibits spontaneous symmetry breakdown into a nontrivial ground state with constituent quark mass generation and a finite quark condensate, when dealt with non-perturbatively. The non-perturbative dynamics of the model to leading order in $1/N_c$ are described by two Schwinger-Dyson [SD] equations: the gap equation and the BS equation.

The original NJL model has two free parameters: the positive coupling constant G_1 of dimension (mass)$^{-2}$ and a regulating cutoff Λ that determines the mass scale. The gap equation establishes a relation between the constituent quark mass m and the two free parameters G_1 and Λ. This relation is not one-to-one, however: there is a (double) continuum of allowed G_1 and Λ values that yield the same nontrivial solution m to the gap equation. Even under the assumption that we know the precise value of m, which we don’t, there is still a great deal of freedom left in the (G_1, Λ) parameter space.
Blin, Hiller and Schaden [5] showed how one can eliminate one of the two continuum degeneracies by fixing the $G_2 = 0$ value of the pion decay constant $f_\pi = f_\pi(G_2 = 0)$ at the observed value 93 MeV. Starting from the Goldberger-Treiman (GT) relation $f_\pi g_\rho = m$ one finds

$$\left(\frac{f_\pi}{m}\right)^2 = g_\rho^2 = \frac{3}{(2\pi)^2} \sum_{s=0}^{2} C_s \log(M_s^2/m^2), \quad (2)$$

where the C_s and $M_s^2 = m^2 + \alpha_s \Lambda^2$ are the standard parameters of the Pauli-Villars (PV) regularization scheme [6]. The result of solving the constraint Eq. (2) is a quark mass m vs. cutoff Λ curve, shown in Fig. 1, all points on which satisfy $f_\pi = 93$ MeV. One can now select a single point on this curve by calculating an observable that is sensitive to the quark mass m, but not very sensitive to non-chiral corrections, and then fitting the aforementioned observable to its experimental value. One such calculation was carried out in Ref. [7] with the result $m = 225$ MeV. Such a procedure completely determines the free parameters of the NJL model.

Now let $G_2 \neq 0$: This implies a finite renormalization of the “bare” ($G_2 = 0$) pion decay constant f_π to f_π and of the constituent quark axial coupling g_A [3] according to

$$g_A = \left(1 + 8G_2 f_\pi^2\right)^{-1} = \left(\frac{f_\pi}{f_\rho}\right)^2. \quad (3)$$

This leads to the relation

$$g_A = 1 - 8G_2 f_\pi^2 \quad (4)$$

between g_A and G_2 and f_π, the last of which is kept constant. An f_π-fixing procedure analogous to the one described above now yields a separate m vs. Λ curve for every value of g_A, see Fig. 1. An important consequence of the relation (4) and of the second line of Eq. (3) is the inequality $0 \leq g_A \leq 1$. This imposes a new upper bound on G_2: $G_2 \leq 1/(8f_\pi^2)$, (5)

apart from the trivial lower bound $G_2 \geq 0$. G_2 values exceeding the bound imply imaginary values of g_ρ and f_ρ, which in turn imply complex cutoff Λ and/or mass m. Physical interpretation of such complex objects is lacking.

We see from Eq. (4) that G_2 can be determined from the value of the constituent quark axial coupling constant g_A, at constant f_π. One common prescription for estimating g_A is based on the SU(6) symmetric nucleon wave function and impulse approximation result for the nucleon axial coupling

$$g_A^N = \frac{5}{3} g_A = 1.25|_{\text{expt.}}, \quad (6)$$

which yields $g_A = 0.75$. This procedure is subject to the assumption that there are no two-quark axial current contributions to the nucleon axial current matrix element, which assumption is known, however, to be in conflict with the chiral symmetry of the model [8]. Hence we shall use $g_A = 0.75$ only as an order of magnitude guide.
Perhaps the most important consequence of the fixed \(f_\pi \) is the fact that the unrenormalized pseudoscalar \(\pi qq \) coupling \(g_p \) is a function of \(G_2 \):

\[
\left(\frac{g_p}{g_\pi} \right)^2 = \left(\frac{f_\pi}{f_p} \right)^2 = g_A = 1 - 8G_2f_\pi^2.
\] (7)

This fact is the source of the changes in the vector-channel spectrum of the ENJL model, to be discussed next.

Solutions to the BS equation

The BS equation in the vector/axial-vector channel reads

\[
1 + 2G_2\Pi_{V,A}(s_{V,A}) = 0
\] (8)

In order to find the bound state roots \(0 \leq s_{V,A} \leq 4m^2 \) to these equations we require the polarization functions \(\Pi_{V,A} \) [3]

\[
\Pi_V(s) = -\frac{2}{3}g_p^{-2} \left[2m^2[F(s) - 1] + sF(s) \right]
\]

\[
\Pi_A(s) = \Pi_V(s) + 4f_p^2F(s)
\] (9)

where

\[
F(s) = 1 - \frac{3g_p^2}{2\pi^2} \{ \sqrt{-f}\text{Arccot}\sqrt{-f} - 1 \} \text{PV}
\] (10)

and \(f = 1 - 4m^2/s \). Pauli-Villars (PV) regularization of \(F(s) \) has been used. These \(\Pi_{V,A} \) are appropriate when \(m \) and \(\Lambda \), and hence also \(f_p \) and \(g_p \) are fixed. That is the parameter-fixing procedure that was used in previous solutions of the vector BS Eq. extant in the literature. But, then Eq. (3) implies that the physical pion decay constant \(f_\pi \) changes with varying \(G_2 \), as noticed in Ref. [4].

If, on the other hand, we insist on keeping \(m \) and \(f_\pi \) (hence also \(g_\pi \)) fixed, then \(\Pi_{V,A}(s), F(s) \) in Eqs. (3), (10) are implicit functions of \(G_2 \). This implicit \(G_2 \) dependence can be easily made explicit by using Eq. (3):

\[
\Pi_V(s,G_2) = -\frac{2}{3g_A}g_\pi^{-2} \left[s + (s + 2m^2)[F(s) - 1] \right]
\]

\[
\Pi_A(s,G_2) = \Pi_V(s) + 4f_\pi^2F(s)
\]

\[
F(s,G_2) = 1 - \frac{3g_Ag_\pi^2}{2\pi^2} \{ \sqrt{-f}\text{Arccot}\sqrt{-f} - 1 \} \text{PV}
\] (11)

where we kept \(g_A \) as an abbreviation for \(1 - 8G_2f_\pi^2 \), for the sake of conciseness. These \(\Pi_{V,A} \) lead to solutions to the BS Eq. (3) that are rather different from what they were with a sliding \(f_\pi \).

In Fig. 2 we show the numerical solutions to the vector channel BS Eq. (8) on the physical sheet of the S-matrix for both sliding- and fixed- \(f_\pi \). There we also show the Takizawa-Kubodera-Myhrer (TKM) “virtual bound state” mass, for both the fixed- and the sliding- \(f_\pi \). One sees that: (a) the onset of the vector bound state is at substantially lower values of \(G_2 \) than with a sliding \(f_\pi \); (b) the bound state mass drops sharply with increasing
In Fig. 2 we have also shown the analytic approximation to the vector bound state mass

\[m_V^2 = \frac{3g_AG^2}{4G_2} = 6m^2 \left(\frac{g_A}{1 - g_A} \right) . \]

(12)

It is manifest from Fig. 2 that Eq. (12) is a good approximation to the exact result as \(g_A \to 0 \), i.e., as \(G_2 \to (8f_\pi^2)^{-1} \), but otherwise consistently overestimates the bound state mass. According to Eq. (12) the bound state ought to dissolve for \(g_A \geq 0.4 \), but the exact solution shows that the bound state may exist at even higher values of \(g_A \), i.e., at lower values of \(G_2 \), depending on the value of the constituent quark mass \(m \). In the next section we shall find the range of values of \(m = m(\Lambda) \) in which a bound state exists for a given \(G_2 \).

But first, for the sake of completeness we discuss the properties of the solutions to the axial-vector BS Eq. (8). There is only one solution to this equation, at \(G_2 = 1/(8f_\pi^2) \), on the physical sheet, and none on the “second” lower sheet. The reason for this is that \(F(s) \), and hence also \(\Pi_A(s) \) has an imaginary part that does not vanish in the region of interest, i.e., for \(s \geq 4m^2 \). Solutions to the real part of the axial-vector BS Eq. (8) are plotted in Fig. 2, together with the analytic approximation

\[m_A^2 = m_V^2 + 6m^2 = \frac{6m^2}{1 - g_A} . \]

(13)

This \(m_A^2 \) must not be interpreted as the real part of the resonance pole position, because the imaginary part of \(1 + 2G_2\Pi_A(s) \) does not vanish anywhere in the mentioned quadrant of the complex \(s \) plane, i.e., there is actually no pole in the S-matrix element. It is curious that although the axial-vector BS equation does not have the “virtual bound state” solution on the second lower sheet, there is one such solution on the second-, as well as on each of infinitely many upper Riemann sheets. \[\text{[The branch point } s = 4m^2 \text{ is a logarithmic one.]} \]

Physical interpretation of these solutions, if it exists at all, remains obscure. We have not found any other solutions either in the vector- or in the axial-vector channels, in particular we have not found the new “resonance solutions” of Ref. [4]. Our present results do not change the results and conclusions of Ref. [3] regarding the spectral sum rules.

Minimal quark mass necessary for a vector bound state
In order to determine the values of \(G_2, m \) for which the vector-channel BS Eq. (8) has bound state solutions it is sufficient to consider the inequality

\[1 + 2G_2\Pi_V(4m^2) \leq 0 . \]

(14)

Using Eq. (11) to find

\[\Pi_V(4m^2) = \frac{4f_\pi^2}{3g_A} \left[3F(4m^2) - 1 \right] \]

\[= - \frac{8f_\pi^2}{3g_A} \left[1 + g_A \left(\frac{3g_\pi}{2\pi} \right)^2 \right] . \]

(15)

This and the inequality (14) lead to

\[\left(\frac{3g_\pi}{2\pi} \right)^2 \geq \frac{5g_A - 2}{2g_A(1 - g_A)} , \]

(16)
which is our vector bound state criterion. For $g_A \leq 0.4$ the r.h.s. of this inequality is non-positive, i.e., the inequality is trivially satisfied and there is a vector bound state for all real values of m. For $g_A \geq 0.4$ this turns into a lower bound on the constituent quark mass m:

$$m \geq m_{\text{min}}(g_A) = f_\pi \frac{2\pi}{3} \sqrt{\frac{5g_A - 2}{2g_A(1 - g_A)}}, \quad (17)$$

which for $g_A = 0.75$ yields the minimal constituent quark mass of 420 MeV. That, in turn gives $m_\rho \simeq 840$ MeV, not far from the empirical 770 MeV. Fig. 1 then determines the cutoff $\Lambda = 750$ MeV. This example shows that the ENJL model can easily accomodate a bound $q\bar{q}$ state in the ρ channel with realistic constituent quark mass and reasonable g_A.

Conclusion We have shown that the ENJL model binds $q\bar{q}$ states in the vector channel for arbitrarily small positive values of the coupling constant G_2 provided the constituent quark mass m is large enough, and for all values of m with $G_2 \geq 0.6(8f_\pi^2)^{-1}$, as a consequence of keeping f_π consistently fixed at 93 MeV. This implies that bound vector states can be found at substantially lower values of G_2 than previously believed and the ρ meson mass easily reproduced. The axial-vector state remains unbound for all allowed values of G_2.

Further, we have found that G_2 must not exceed $(8f_\pi^2)^{-1}$ if the vector bound state is not to become a tachyon. This “critical” value of the coupling constant determines a phase transition point, the nature of the “second” phase being unclear at the moment. The “first” phase, with vector coupling below the critical one, corresponds to a gauged chiral linear sigma model with massive gauge bosons ρ, A_1 [9]. The exact local gauge symmetry is recovered at the critical point at which the vector gauge boson (ρ) becomes massless, whereas A_1 keeps a mass of $\sqrt{6}m$ due to the Higgs mechanism.

Acknowledgements The author would like to thank K. Kubodera and F. Myhrer for discussions and comments on the manuscript, and R. H. Lemmer for interesting him in this topic.
REFERENCES

[1] Y. Nambu, Phys. Rev. Lett. 4, 380 (1960); Y. Nambu and G. Jona-Lasinio, Phys. Rev. 122, 345 (1961); Phys. Rev. 124, 246 (1961).
[2] M. Takizawa, K. Kubodera and F. Myhrer, Phys. Lett. B 261, 221 (1991).
[3] V. Dmitrašinović, S.P. Klevansky and R. H. Lemmer, Phys. Lett. B 386, 45 (1996); S.P. Klevansky and R. H. Lemmer, hep-ph/9707206.
[4] V. Bernard, et al., Phys. Lett. B 409, 483 (1997).
[5] A. H. Blin, B. Hiller and M. Schaden, Z. Phys. A 331, 75 (1988).
[6] C. Itzykson and J. B. Zuber, Quantum Field Theory, (McGraw-Hill, New York, 1980).
[7] V. Dmitrašinović, R. H. Lemmer and R. Tegen, Phys. Lett. B284, 201 (1992); Comments Nucl. Part. Phys. 21 No. 2, 71 (1993); V. Dmitrašinović, H.-J. Schulze, R. Tegen and R. H. Lemmer, Phys. Rev. D 52, 2855 (1995).
[8] V. Dmitrašinović and T. Sato, Phys. Rev. C 58, 1937 (1998).
[9] S. Gasiorowicz and D. A. Geffen, Rev. Mod. Phys. 41, 531 (1969); G. Prézeau, nucl-th/9812010.
FIG. 1. The constituent quark mass m as a function of the Pauli-Villars [PV] cutoff Λ (in units of MeV) in the NJL ($g_A = 1$ - the far left h.s. curve), and ENJL models for $g_A = 3/4, 2/5$, (the middle and the far right h.s. curves, respectively) at fixed $f_\pi = 93$ MeV.
FIG. 2. Solutions to the BS equation [vector-, or axial-vector state mass squared $m_{V,A}^2$ rescaled by the constituent quark mass squared m^2] as functions of the rescaled vector interaction coupling constant G_2m^2, with $m = 313$ MeV in the ENJL model. [The continuum threshold is at 4.] (1) vector bound state with sliding f_π [solid line denoted by ρ_{old}] continuing into the Takizawa-Kubodera-Myhrer [TKM] “virtual bound state” [long dashes] at lower values of G_2; (2) vector bound state with fixed $f_\pi = 93$ MeV [lower solid line denoted by ρ] continuing into the TKM “virtual bound state” with fixed f_π [short dashes] at lower values of G_2; (3) root of the real-part of the axial-vector BS Eq. with fixed f_π [solid line denoted by A_1]; (4) analytic approximations to the vector bound state, and the axial-vector state at fixed f_π [dot-dashes].