A renormalization group approach to crowd psychology and inter-group coupling in social many-body systems

KIM Chul Koo¹, LEE Kong-Ju-Bock² & CHUNG Myung-Hoon³*

¹Institute of Physics and Applied Physics, Yonsei University, Seoul 120-749, Korea;
²Department of Physics, Ewha Woman’s University, Seoul 120-750, Korea;
³Department of Physics, Hongik University, Jochiwon, Chungnam 339-701, Korea

Received May 10, 2011; accepted July 10, 2011

By adopting majority rule within a renormalization group approach, we can show that the strength of inter-group interaction in a social system either grows or shrinks monotonically with increasing group size, depending on the initial coupling strength of individuals in the group. This contrasts with the findings of previous studies in which the strength of the interaction grows with group size regardless of the initial strength. Our approach clearly demonstrates that the phenomena of crowd psychology, such as an extreme anti-reaction between different ethnic or ideological groups, could be a consequence of the many-particle nature of social systems when the initial strength of the interaction is larger than a critical value. The effect of neutral opinion holders is critically examined using the spin-one Ising model. The critical size of the population of neutral opinion holders, that can prevent crowd polarization, depends on the block spin rule.

renormalization, crowd psychology, block spin

Citation: Kim C K, Lee K, Chung M. A renormalization group approach to crowd psychology and inter-group coupling in social many-body systems. Chin Sci Bull, 2012, 57: 247–252, doi: 10.1007/s11434-011-4882-4

Crowds are known to act differently from individuals within the crowd. Several social science theories have been developed to explain crowd psychology. Although communities of people are extremely complex systems, they are expected to exhibit characteristics of many-body systems similar to other systems in nature. There have been many attempts by physicists to explain social phenomena using many-body theories in or out of the context of socio-physics [1–12]. One of the more fundamental problems is crowd psychology that results in extraordinary inter-community conflicts [13–19]. Because of this, studying the dependence of the coupling strength between different groups on the size of each group is interesting. These different groups could be characterized by different ideologies, religions, races, or opinions.

To describe interactions among individuals with the same or opposite opinions, the Ising model has been widely used [3,7–9]. More detailed analysis of social dynamics have been shown to lead to models that are qualitatively similar to the two dimensional Ising model [20]. Because we are interested in variation of the inter-group attitude, it is necessary to consider a consensus-making process and a leading opinion of the community. The renormalization group (RG) approach, which is widely used in many-body problems, offers a natural theoretical framework for this purpose, because the two main concepts of the RG, the coarse graining and the block spin [21–23], can map onto the two social aspects, consensus-making and leading opinion. In this paper, we adopt the RG approach to understand crowd psychology and inter-group conflicts by considering generalized Ising models.

1 Model

To simulate a group of individuals using a minimal model, we first assume that each individual holds one of two contrasting opinions and that the opinion of the individual i as
Our simple system in [21], the fixed points are obtained as $S_I = 1$ or $S_I = -1$. More complicated situations for reaching consensus in general models have been recently discussed in the literature [29, 30]. Following the perturbation calculation for our simple system in [21], the fixed points are obtained as $K^* = 0, \infty, 0.34$. The extremely weak (strong) coupling corresponds to a paramagnetic (ferromagnetic) fixed point. These results are in good agreement with Onsager’s exact result, yielding a correct flow diagram for the two-dimensional Ising model. The result of this RG calculation can be interpreted in terms of crowd psychology as follows.

In the external social field, $h = 0$, there exists a critical $K_c = 0.34$ that determines whether the coupling strength between groups either grows or shrinks when the group size grows. However, the coupling strength will never reach
extreme fixed points, ∞ or 0 because of the finite size effect. When the initial coupling strength $K = \beta J$ for a particular ideology is smaller than the critical value, the intergroup coupling strength will decrease as the group size increases. By contrast, when the initial coupling strength is greater than the critical value, the coupling strength will increase with group size. This interpretation reflects aspects of crowd psychology that are seldom observed in individual psychology and arise from the many-body nature of social systems, especially when the initial coupling strength is greater than the critical value. We note that it is difficult to clearly define the coupling strength in social systems because there could be many factors affecting the coupling between individuals in crowds. In this sense, the above RG approach might contribute to determining the significance of the coupling strength by investigating whether any specific phenomenon is strengthened by an increase in group size.

An interesting example is provided by data collected from workers belonging to union shops of various sizes [27]. This study found a radical trend among workers by focusing on the proportion of workers saying that union policies are too extreme. This proportion increased from 64% to 81% as the average number of workers in the union shops increased from 60 to 1300. This supports the contention that workers in large union shops are more radical than those in small union shops. Hence the initial coupling strength between individual union members is expected to be larger than a critical value from the RG approach. Weakening of coupling strength with increasing group size has not drawn much attention among social scientists as such phenomena do not cause atypical collective phenomena as long as a coupling strength $k\beta T$ is expected that a strong coupling $k\beta T$ could always grow with increasing group size regardless of the initial phenomenological theories [27], the coupling strength always grows with increasing group size regardless of the initial strength.

A strong external social field h results in a completely polarized opinion within the social system. This phenomenon could be observed in a group or society governed by an absolute rule. Recall that in eq. (1) the coupling strength K and the social field h are defined as the relative coupling and the relative field to the social thermal-energy $k\beta T$. Any characteristics of society such as social culture, history, and customs could reflect the social thermal-energy although they are very difficult to define as measurable quantities. However, it is expected that a strong coupling J itself could not induce any atypical collective phenomena as long as a coupling K, relative to the social background energy $k\beta T$, is not sufficiently strong.

In the next subsection, we consider a group that could have members holding a neutral opinion and investigate the effect that neutral-opinion holders have in determining the coupling strength under majority rule.

2.2 With neutral opinion

The model considered in the previous subsection represents an idealized situation because only two opposing opinions were allowed. To simulate social systems more accurately, it is necessary to allow the presence of neutral opinions. In this subsection, we critically examine the effect that neutral opinion holders have on the coupling strength by allowing the Ising spin to have three options σ_i. This spin-one Ising model is described by the same Hamiltonian in eq. (1) with the modification of the possible spin values. Here, we assume that the site energies are equal for all possible spin values [31]. However, $S = 0$ corresponding to a neutral opinion in the model causes ambiguity in fixing the block spin as given in eq. (2). We define the block spins by adopting the majority rule as follows:

$$S_i = \begin{cases} 1 & \text{if } S_{\text{max}}/2 < \sum_{\text{site}} S_j < S_{\text{max}}, \\ 0 & \text{if } S_{\text{min}}/2 < \sum_{\text{site}} S_j < S_{\text{max}}/2, \\ -1 & \text{if } S_{\text{min}} < \sum_{\text{site}} S_j < S_{\text{min}}/2, \end{cases}$$

where $S_{\text{max}} = \sum_{\text{site}} 1$ is given by the number of sites inside the block, and $S_{\text{min}} = -S_{\text{max}}$. The majority rule is applied so that the block spin is neutral ($S_i = 0$) when neutral opinion holders form the majority in the block. Note that the block spin can also be zero when the numbers of polarized and anti-polarized opinion holders are equal. The equality signs for $S_i = 1$ and -1 indicate that polarized opinions have an advantage in representing the opinion of the block when the numbers of neutral and polarized opinion holders are equal, as occurs in reality. However, such cases do not occur for the triangular lattice that we are considering.

Now, we perform the perturbative RG using the above block spin definition. First, we find that possible configurations of the original spins $\sigma_I \equiv \{S^I_1, S^I_2, S^I_3\}$ in triangular block I can be classified by the block spin, S_I, and the number of neutral spins in the block, n_0, as listed in Table 1. We begin by considering the effective Hamiltonian $H'(S_I)$ given by

S_I	σ_I	n_0
1	000	1
1	010	2
-1	000	3

Table 1: Classification for all possible configurations of Spins σ_I in triangular block I in terms of the block spin S_I and the number of neutral spins n_0.

In the next subsection, we consider a group that could have members holding a neutral opinion and investigate the effect that neutral-opinion holders have in determining the coupling strength under majority rule.
\[
\exp(\mathcal{H}'(S_I)) = \sum_{\{\sigma_I\}} \exp(\mathcal{H}(S_I, \sigma_I)). \tag{7}
\]

We estimate \(\mathcal{H}'\) using perturbation theory for the case \(h = 0\). The Hamiltonian can be written as
\[
\mathcal{H} = \mathcal{H}_0 + \mathcal{V},
\]
where
\[
\mathcal{H}_0 = K \sum_I \sum_{i,j,d} S_i S_j,
\]
and the interaction between spins in different blocks is
\[
\mathcal{V} = K \sum_{I,J} \sum_{i,j,d} S_i S_j.
\]

Using the following definition of the average
\[
\langle A(S_I) \rangle_0 \equiv \frac{\sum_{\{\sigma_I\}} \exp(\mathcal{H}_0(S_I, \sigma_I)) A(S_I, \sigma_I)}{\sum_{\{\sigma_I\}} \exp(\mathcal{H}_0(S_I, \sigma_I))},
\]
we find
\[
\exp(\mathcal{H}'(S_I)) = \langle \exp(\mathcal{V}) \rangle \sum_{\{\sigma_I\}} \exp(\mathcal{H}(S_I, \sigma_I)). \tag{12}
\]

Using the cumulant expansion, we obtain
\[
\mathcal{H}'(S_I) = M \log Z_0(K) + \langle V \rangle_0 + \mathcal{O}(V^2),
\]
where \(M\) is the total number of blocks in the system and \(Z_0(K)\) is the partition function for one block subject to a given value of \(S_I\),
\[
Z_0(K) = \sum_{\{S\}} \exp(K(S^2_1 S^2_2 + S^2_2 S^2_3 + S^2_3 S^2_1)). \tag{14}
\]

From eqs. (6)–(14), we obtain
\[
\mathcal{H}'(S_I) = M \log Z_0(K) + K' \sum_{I,J} S_I S_J + \mathcal{O}(V^2). \tag{15}
\]

With the configurations as listed in Table 1, the partition functions are written as
\[
Z_0(K, S_I = \pm 1) = 3 \exp(-K) + 3 \exp(K) + \exp(3K), \tag{16}
\]
and
\[
Z_0(K, S_I = 0) = 6 \exp(-K) + 7. \tag{17}
\]

As can easily be seen from Figure 1, the interaction between spins in different blocks is given by
\[
V = \sum_{I,J} V_{IJ},
\]
\[
V_{IJ} = KS_I S_J.
\]

Therefore, we obtain
\[
\langle V_{IJ} \rangle_0 = 2K \langle S^2_1 \rangle_0 \langle S^2_1 \rangle_0. \tag{19}
\]
shown in Figure 2(a). The probability for a block up-spin is given by

\[p' = p^3 + 3p^2(1 - p). \]

(26)

This recursion relation has two trivial fixed points at \(p = 0 \) and \(p = 1 \) and a nontrivial value at \(p_c = 0.5 \). The understanding is that the system does not flow toward mass polarization as a whole when more than half of the population are neutral agents, \(n > 0.5 \). Hence the neutral opinion holders first increase the critical coupling strength \(K_c \) and eventually disrupt the mass polarization completely when the population of neutral opinion holders reaches the critical value, \(n_c \).

In social systems, unlike physical systems such as alloys, block spin can be determined using various different rules [29, 30]. To investigate whether different rules for defining block spins change the critical population size, we now adopt eq. (2) to determine block spins as shown in Figure 2(b). Carrying out the RG calculation as above, we obtain

\[p' = p^3 + 3p^2(1 - p) + 3p(1 - p)^2. \]

(27)

This recursion relation has two trivial fixed points at \(p = 0 \) and \(p = 1 \) and a nonphysical value of \(p = 2 \). It shows that the rule of eq. (2) for block spins, the system flows to the ferromagnetically fixed point regardless of the population of neutral agents only if \(K \) is larger than \(K_c \). This rather unrealistic situation originates from the peculiar nature of eq. (2). Eq. (2) stipulates that the presence of even a single polarized opinion holder can dominate over any number of neutral opinion holders. This situation could be equivalent to an absolute dictatorship and explains why a small indoctrinated group can dominate over a much larger indifferent majority. It is interesting to note that eq. (2), a reasonable block spin rule for the Ising model describing many physical systems, becomes a dictatorial rule in social systems.

3 Discussion

Social phenomena of crowd psychology were analyzed using the renormalization group approach motivated from the many-body nature of social systems. We first allowed each individual in the social group to choose one opinion among two opposing positions. Next, we extended the analysis to three opinions to include a neutral opinion. For the RG approach, majority rule is adopted to define block spins using the Ising model. Our main result is that the inter-group interaction in social systems could grow or shrink as the size of group changes depending on the initial coupling strength of individual in the group relative to critical value. This result is different from those of previous studies in which the coupling strength grows regardless of the initial strength. If the initial coupling of the individuals is weaker than the critical value, then the inter-group interaction shrinks resulting in no radical reaction of the social group. The critical population size of neutral opinion holders which can prevent mass polarization is also obtained using a real space renormalization approach and is shown to depend on the block spin rule.

The present theory can be used to test whether a newly emerging ideology or belief will grow stronger. In social systems, the absolute comparison of the coupling strength \(K \) with \(K_c \) is impossible and maybe meaningless. A useful test method might be to compare the coupling strength at different group sizes. The ‘soft’ or ‘rigid’ behavior indicates the evolution of a new ideology. Small or medium scale persuasions or incentives to change beliefs or ideology can be used as a gauge to test the flow.

Although the present RG theory presents a consistent theoretical scheme for crowd psychology, several important refinements are needed to make the theory more realistic. One problem in the present theory is that the spins, which reflect personal opinions, are assumed quenched and thus time-independent. In reality, persuasion can change opinions. Another problem arises from the increasing sophistication of social networks [32–34] in an internet-connected world [6, 28]. Introduction of these factors in the model is expected to make the problem nonanalytic. However, we believe that it is imperative to include these aspects in future studies to better understand the complex nature of social systems.

Figure 2 The one-step renormalization procedure for the triangular lattice. Polarized agents (up-spins) are marked as filled dots and neutral agents (zero spin) as empty dots. (a) The block spins defined following the majority rule of eq. (6). (b) The block spins defined following eq. (2).
9 Meyer-Ortmanns H. Immigration, integration and ghetto formation. Int J Mod Phys C, 2003, 14: 311–319
10 Bordogna C, Alban E. Theoretical description of teaching-learning processes: A multidisciplinary approach. Phys Rev Lett, 2001, 87: 118701
11 Mobilia M. Does a single zealot affect an infinite group of voters? Phys Rev Lett, 2003, 91: 028701
12 Slomczynski W, Zyczkowski K. Penrose voting system and optimal quota. Acta Physica Polonica B, 2006, 37: 3133–3143
13 Levy S. Abstracts: Peace Science Society (International). In: Thirty-Fourth North American Meetings, New Haven, Connecticut, October 27–29, 2000. Peace Economics, Peace Science and Public Policy, 2001, 7: Article 3
14 Hewstone M, Rubin R, Willis H. Intergroup-bias. Annu Rev Psychol, 2002, 53: 575–604
15 Bar-Tal D, Labin D. The effect of a major event on stereotyping: terrorist attacks in Israel and Israeli adolescents’ perceptions of Palestinians, Jordanians and Arabs. Euro J Soc Psycho, 2001, 31: 265–280
16 Spriuél V. Crowd psychology and ideology: A psychoanalytic view of the reciprocal effects of folk philosophies and personal actions. Int J Psycho-Anal, 1988, 69: 171–178
17 Deffuant G, Ambillard F, Weisbuch G, et al. How can extremism prevail? A study based on the relative agreement interaction model. J Artificial Societies and Social Simulation, 2002, 5: http://jasss.soc.surrey.ac.uk/5/4/1.html
18 Hegselmann R, Krause U. Opinion dynamics and bounded confidence: Models, analysis and simulation. J Artificial Societies and Social Simulation, 2002, 5: http://jasss.soc.surrey.ac.uk/5/3/2.html
19 Nye R. The Origins of Crowd Psychology: Gustave Le Bon and the Crisis of Mass Democracy in the Third Republic. London: Sage, 1975
20 Schweitzer F. Brownian Agents and Active Particles. New York: Springer, 2003. 359–371
21 Goldenfeld N. Lectures on Phase Transitions and the Renormalization Group. New York: Addison-Wesley, 1992. 257–268
22 Plischke M, Berghersen B. Equilibrium Statistical Physics. 2nd ed. Singapore: World Scientific, 1994. 228–236
23 Galam S. Social paradoxes of majority rule voting and renormalization group. J Stat Phys, 1990, 61: 943–951
24 Kacperski K, Holyst J. Phase transitions and hysteresis in a cellular automata-based model of opinion formation. J Stat Phys, 1996, 84: 169–189
25 Insko C, Schopler J, Hoyle R, et al. Individual-group discontinuity as a function of fear and greed. J Personality Social Psychol, 1990, 58: 68–79
26 Schopler J, Insko C, In: Stroebe W, Hewstone M, eds. European Review of Social Psychol. Chichester: Wiley, 1992. 121–152
27 Coleman J. Introduction to Mathematical Sociology. London: Collier-Macmillan, 1964. 283–287
28 Wassermann S, Faust K. Social Network Analysis: Methods and Applications. Cambridge: Cambridge University Press, 1994
29 Stauffer D. The Monte Carlo method in the physical sciences: Celebrating the 50th anniversary of the metropolis algorithm. AIP Conf Proc, 2003, 690: 147–155
30 Sznajd-Weron K, Sznajd J. Opinion evolution in closed community. Int J Mod Phys C, 2000, 11: 1157–1165
31 Buyukkilic F, Demirhan D, Tirkeli U. Generalization of the mean-field Ising model within Tsallis thermostatistics. Physica A, 1997, 238: 285–294
32 Fu F, Chen X, Liu L, et al. Social dilemmas in an online social network: The structure and evolution of cooperation. Phys Lett A, 2007, 371: 58–64
33 Andrade R R S, Miranda J G V, Pinho S T R, et al. Measuring distances between complex networks. Phys Lett A, 2008, 372: 5265–5269
34 Hu H, Wang X. Evolution of a large online social network. Phys Lett A, 2009, 373: 1105–1110