In 2009, a novel phlebovirus, Heartland virus (HRTV), was identified as the cause of illness in 2 severely ill patients from Missouri, USA (1), after exposure to lone star ticks (Amblyomma americanum). HRTV, an RNA virus recently reclassified as belonging to the family Phenuiviridae and genus Bandavirus (2), is closely related to severe fever with thrombocytopenia syndrome virus (SFTSV), which is transmitted mainly by longhorned ticks (Haemaphysalis longicornis) and causes a hemorrhagic fever in Southeast and central Asia (3).

The ecology and natural history of HRTV remain largely unknown (4). The virus was isolated from the initial index cases in Missouri and from ticks collected at nearby sites (1,5). Viral RNA has been detected by molecular tools in immature and mature stages of A. americanum ticks from Missouri (5,6), Alabama (7), Illinois (8), Kansas (9), and New York (10). Antibodies reactive to HRTV have been identified in various wildlife species (11–13) that match the geographic distribution of A. americanum ticks in the United States (14), even in those areas where the presence of the tick is scarce. Nonetheless, viremia in a vertebrate species has not been detected (11,13) and attempts to induce viremia in experimental vertebrate hosts have been unsuccessful (15,16).

Since HRTV was identified in 2009, ≈40 additional human cases of HRTV disease have been identified in Missouri, Kansas, Oklahoma, Arkansas, Iowa, Illinois, Tennessee, Indiana, Georgia, and South Carolina (8,17–20). Most of these cases were reported in persons who had underlying conditions, and their illnesses were predominately severe or fatal (4,21). However, seroprevalence studies in wildlife suggest a broader range of distribution of HRTV than those states from which cases of human disease have been reported (13).

A second novel tickborne arbovirus, Bourbon virus (BRBV), was isolated from a fatal human case (22) and from field-collected arthropods (9) in Bourbon County, Kansas, USA, during 2014. BRBV has a negative-sense RNA genome of 6 segments and represents the only member of the genus Thogotovirus that causes human disease in the Western Hemisphere; a limited number of persons have been infected in the midwestern and southern United States. This virus was also linked to A. americanum ticks in Missouri (23) at a lower infection rate than that for HRTV infection. Wildlife seroprevalence studies suggest a wide distribution of BRBV in the southeastern United States (24), but human disease remains a rare event.

Although A. americanum ticks are widely distributed throughout the southeastern United States, only 1 study, in Alabama, has conclusively identified HRTV in lone star ticks in this region (7).
In Georgia, there is serologic evidence of HRTV infection in white-tailed deer (*Odocoileus virginianus*) dating back to 2001. A single human infection from 2005 was confirmed in 2015 (https://www.cdc.gov/heartland-virus/statistics/index.html). Because *A. americanum* ticks represent ticks most frequently associated with human bites in Georgia (25), we examined *A. americanum* ticks for arboviruses, and specifically for HRTV and BRBV, in a select area in Georgia to better assess the risk for human disease in the region and to increase knowledge of the ecology and genomics of these emerging human pathogens.

Materials and Methods

Study Area

The study area in Georgia was a 64 km² rural landscape located ≈130 km southeast of Atlanta and situated adjacent to the Piedmont National Wildlife Refuge (latitude 33.117934, longitude −83.413621). This area includes parts of Jones, Baldwin, and Putnam Counties in central Georgia and had a cumulative population of 93,180 inhabitants as of 2010 (US Census Bureau, https://www.census.gov/2010census/data). The area is part of the southern Piedmont ecoregion, comprising predominantly deciduous woodlands (Figure 1). The climate is humid subtropical, has a mean annual high temperature of 31°C and low temperature of 13°C, and has mean annual precipitation of 115 cm.

We selected this study area on the basis of data from a seroprevalence evaluation of white-tailed deer for antibodies to HRTV (12) and from its proximity to the only reported case of human HRTV infection (https://www.cdc.gov/heartland-virus/statistics/index.html) (Figure 1). During 2018, we collected samples from 26 different sites around the area to identify *A. americanum* tick productive sites. During 2019, we focused our efforts in the 2 sites that yielded the highest collections during 2018. All sites were favorable, on a visual inspection, for development of the different stages of *A. americanum* ticks (presence of deciduous forest, open access to diverse fauna, and grass cover). The 2 locations sampled during 2019 were a vacant lot (33.155975, −83.450516) and a private property (33.201552, −83.439257) (the collection activity was approved by their owners), which were 5.41 km apart (Figure 1).

Tick Collection Strategy and Entomologic Identification

We collected ticks approximately each week during April–October in 2018 and 2019. We collected host-seeking adults and nymphal ticks by using flannel
flags and transported them alive to the laboratory, where we identified them microscopically on a chilled table for sex, species, and life stage by using taxonomic keys (26,27).

Tick Processing
We surface disinfected live ticks by sequential immersion for 5 min in cold solutions of 70% ethanol, 10.5% sodium hypochlorite, and 3% hydrogen peroxide, and then rinsed them in distilled water (28). We pooled live specimens by species, collection site, and stage in groups of ≤5 adults and ≤25 nymphs. We added 1 mL of BA-1 diluent (1× medium 199 with Hanks balanced salt solution, 0.05 μmol/L Tris buffer [pH 7.6], 1% bovine serum albumin, 0.35 μg/L streptomycin, 1 μg/mL amphotericin B) to each pool (29) before grinding the pools thoroughly by using a 7-mL glass TenBroeck grinder (Fisher Scientific, https://www.fishersci.com) with alundum Bedding material (Fisher Scientific) as an abrasive. We transferred each homogenate to a sterile 2-mL cryotube and stored the tubes at −80°C for future analysis.

Molecular Detection and Cell Culture Isolation
We thawed tick homogenates and centrifuged them at 14,000 rpm for 10 min to clarify before proceeding. We extracted total RNA from each homogenate by using a QIAmp RNA Extraction Kit (QIAGEN, https://www.qiagen.com). We performed a quantitative real-time PCR with a final reaction volume of 25 μL and 1 μL of template by using a Quantitect Probe PCR Kit (QIAGEN), with primer-probe set 1, which was designed for the small segment of the HRTV genome, as described by Savage et al. (6) under the following cycling conditions: 50°C for 30 min; 95°C for 10 min; and 45 cycles with 1 cycle consisting of 95°C for 15 s and 60°C for 1 min. We performed BRBV screening in a separate quantitative real-time PCR by using the primer-probe set NPI, as described (9).

We attempted viral isolation in Vero E6 cells with each tick homogenate pool that yielded a positive result by real-time PCR. We inoculated 100 μL of an undiluted sample into a 12-well tissue culture plate and incubated it at 37°C. We monitored cells daily for cytopathic effect; when noted, we removed 140 μL of medium and processed for RNA extraction. We subcultured and monitored cultures with no demonstrable cytopathic effect by day 11 daily for an additional 7 days for cytopathic effect; if no cytopathic effect was noted, we performed a final subculture and monitored for an additional 11 days. We tested RNA extracted from cell culture supernatants (1 μL) by using a real-time PCR specific for HRTV to confirm viral infection.

HRTV Genome Sequencing and Analysis
Extracted RNA underwent heat-labile, dsDNase treatment (ArcticZymes, https://arcticzymes.com), random primer cDNA synthesis (New England Biolabs, https://www.neb.com), Nextera XT tagmentation (Illumina, https://www.illumina.com), and sequencing (Illumina). We obtained 3.9–5.6 million reads/sample (Appendix Table 1, https://wwwnc.cdc.gov/EID/article/28/4/21-1540-App1.pdf). We performed reference-based assembly by using viral-ngs version 2.1.19 (https://viral-ngs.readthedocs.io/en/latest), using GenBank reference sequences NC_024496 for the small gene segment, NC_024494 for the medium segment, and NC_024495 for the large segment. A minimum of 3 reads was required to call a consensus nucleotide. We aligned the consensus HRTV genomes from each sample with all available reference sequences by using Geneious Prime version 2021.1.1 (https://www.geneious.com). We constructed maximum-likelihood phylogenetic trees by using PhyML (30) and visualized trees by using FigTree (http://tree.bio.ed.ac.uk/software/figtree). Assembled HRTV genomes are available in GenBank (accession nos. MZ617368–76).

Infection Prevalence Estimation
We estimated the HRTV infection rate in ticks by study site and overall. We calculated this rate by using the minimum infection rate (MIR) per 1,000 ticks (31).

Results
We collected 2,960 ticks during 10 collections during April–October 2018, comprising 2,265 nymphs and 646 adults of A. americanum ticks, 30 adults of A. maculatum ticks, 14 adults of Dermacentor variabilis ticks, and 5 adults of Ixodes scapularis ticks. We collected 6,470 ticks during 10 collections during April–October 2019, comprising 4,853 nymphs and 1,530 adults of A. americanum ticks, 74 adults of D. variabilis ticks, 3 adults of I. scapularis ticks, and 10 adults of A. maculatum ticks. We sorted specimens into 283 pools during 2018 and 677 pools during 2019, by species, stage, sex, and collection site (Table 1). We detected 3 A. americanum tick HRTV PCR-positive pools: 1 pool of 5 females (pool 23, cycle threshold [Ct] 25.9), 1 pool of 5 males (pool 504, C. 29.9), and 1 pool of 25 nymphs (pool 26, C. 25.6). Two positive pools originated from site 1 and the third pool from site 2 (Figure 1, Table 2).
We performed virus isolation in Vero E6 cells on aliquots of each real-time PCR–positive homogenate. Pool 26 showed cytopathic effect of Vero E6 cells on day 3 and was passaged again on day 4. Pools 23 and 504 did not show cytopathic effect after the primary passage (P1) or 2 successive subcultures (P2 and P3). However, the supernatant was positive by real-time PCR for P1 of pools 26 and 504, P2 of pools 26 and 504, and P3 of pool 504. C values for pool 504 were increasing between P1 (C, 26), P2 (C, 20), and P3 (C, 16); C was 22 for the positive controls. BRBV real-time PCR results were negative for all samples from 2018 and 2019. The MIR of *A. americanum* ticks from site 1 was 0.35/1,000 ticks during 2019; the MIR for adults of nymphs and 1.26/1,000 ticks for adults of *A. americanum* during 2019. No. pools Collection date Site Adult Nymph Total Pools HRTV real-time PCR result for homogenate P1 P2 P3 Vero E6 cells CPE PCR CPE PCR CPE PCR CPE PCR

No. pools	Collection date	Site	No. specimens in pool	HRTV real-time PCR result for homogenate	P1	P2	P3
23	Apr 28	1	5	+	-	-	-
26	Apr 28	1	25	+	+	+	-
504	Jun 14	2	5	+	-	+	+

CPE, cytopathic effect; HRTV, Heartland virus; P1, primary passage; P2, subculture 2; P3, subculture 3. – negative; +, positive.
Our sampling effort focused on 2 areas that had high tick density and occurred during the peak of seasonal tick activity to ensure sufficient sample size to enable virus detection. Positive samples were detected in mid-April at site 1 and in mid-June at site 2. Adult and nymph specimens of *A. americana* ticks were found to be infected, consistent with previous reports that showed that both mature and immature stages of the ticks are infected and competent vectors (5,6). The finding of infected adults and nymphs in April, early during *A. americanum* tick seasonality, also suggests that HRTV might be overwintering in these ticks. Estimates of MIR are highly variable between regions, years, and season, but are characteristically low, similar to infection prevalence of the closely related tickborne SFTSV in Asia (36). Our calculated infection rate is among the lowest in the spectrum reported in other states, which coincides with the rarity of the occurrence of clinical cases, although the possibility of underdiagnoses caused by low awareness of the disease must also be considered; studies from Missouri showed an overall MIR of 1.7/1,000 ticks (6), and others from Illinois reported 9.46/1,000 ticks (8). A recent study in New York reported MIRs ≤1.1% (10).

Two of 3 samples that had homogenates positive for HRTV by PCR were successfully isolated in cell lines. The complete lysis of the monolayer was observed only in the first culture (P1) of 1 pool (pool 26). The virus was successfully detected in a subculture (P2) but could not be maintained after subsequent passages. In another pool (pool 504), although no cytopathic effect was seen, the virus was detected in the supernatant of 3 consecutive cell line passages in increasing quantities, suggesting successful viral amplification. One positive homogenate was not detected in culture, which was consistent with the slightly decreased sensitivity of virus isolation compared with molecular methods, although it could also correspond to the presence of nonviable virus. Our quantification of C_t values throughout passages confirmed viral RNA replication without the need to conduct assays such as immunofluorescent antibody assay or Western blotting. Whereas some investigators might see this result as a limitation, multiple studies confirm the validity of C_t values for quantifying virus replication (e.g., 37,38). We emphasize the need for attempting viral isolation, which provides a unique source for phenotypic characterization and pathogenesis studies. Detection of HRTV in ticks to confirm virus circulation in an area has the limitation of low sensitivity because of a low prevalence of infection, as reported in other studies showing low infection rate in ticks (6,8,10). Use of complementary tools, such as serosurveys for...
vertebrate hosts, could enhance the efficiency in detecting risk areas for human exposure.

Analysis of HRTV genome sequences showed a relatively high degree of conservation between the 3 samples in this study, which were obtained within 2 months of each another and from sites 5 km apart. Because sequencing was performed from pooled tick samples, it is possible that each consensus sequence reflects >1 infected tick. The HRTV genome sequences generated in this study were 2%–5% different from the only 3 other available complete HRTV genome sequences sampled from humans across different states over the preceding decade. This finding reflects a degree of genetic diversity similar to that described for the related Bandavirus SFTSV in South Korea (39). However, further work is needed to characterize the full spectrum of diversity of HRTV in the United States, and in particular to assess whether there are viral genetic features associated with human infection. Our results demonstrate the feasibility of sequencing complete HRTV genomes directly from tick samples, which enables molecular characterization, a critical step in understanding the diversity, evolution, and pathogenesis of the virus.

Our findings confirm the ongoing circulation of HRTV in Georgia. Major knowledge gaps in the biology and epidemiology of HRTV require further efforts to understand which vertebrates or secondary tick species might play a role in the maintenance of the virus in nature. For instance, the presence and ongoing range expansion of the Asian longhorned tick, *H. longicornis*, in the United States (40) could lead to major changes in the transmission ecology of HRTV in areas where this species overlaps with *A. americanum*. Therefore, assessing the current and future risk for HRTV transmission and spillover becomes relevant for disease ecologists and public health practitioners. In the immediate term, knowledge about the presence of HRTV in local ticks would enable improved preventive strategies to mitigate human exposure to ticks, as well as alerting physicians about the presence of this emerging tick-borne virus.

Acknowledgments
We thank undergraduate and graduate students from Environmental Sciences Department at Emory University who collaborated in field activities, and the Arboviral Diseases Branch, Division of Vector-Borne Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, for providing a positive control for a BRBV PCR.

This study was supported by a grant from the Emory University Research Council (project ID 00097272) to G.M.V.-P.

About the Author
Dr. Romer is an infectious disease clinician and microbiologist in the Department of Environmental Sciences, Emory University, Atlanta, GA. Her primary research interest is arthropod-borne diseases.

References
1. McMullan LK, Folk SM, Kelly AJ, MacNeil A, Goldsmith CS, Metcalfe MG, et al. A new phlebovirus associated with severe febrile illness in Missouri. N Engl J Med. 2012;367:834–41.
2. Matsuno K, Weisend C, Travassos da Rosa AP, Anzick SL, Dahlstrom E, Porcella SF, et al. Characterization of the Bhanja serogroup viruses (Bunyaviridae): a novel species of the genus Phlebovirus and its relationship with other emerging tick-borne phleboviruses. J Virol. 2013;87:3719–28. https://doi.org/10.1128/JVI.02845-12
3. Liu Q, He B, Huang SY, Wei F, Zhu XQ. Severe fever with thrombocytopenia syndrome, an emerging tick-borne zoonosis. Lancet Infect Dis. 2014;14:763–72. https://doi.org/10.1016/S1473-3099(14)70718-2
4. Brault AC, Savage HM, Duggal NK, Eisen RJ, Staples JE. Heartland virus epidemiology, vector association, and disease potential. Viruses. 2018;10:498. https://doi.org/10.3390/v10090498
5. Savage HM, Godsey MS, Lambert A, Panella NA, Burkharter KL, Harmon JR, et al. First detection of heartland virus (Bunyaviridae: Phlebovirus) from field collected arthropods. Am J Trop Med Hyg. 2013;89:445–52. https://doi.org/10.4269/ajtmh.13-0209
6. Savage HM, Godsey MS Jr, Panella NA, Burkharter KL, Ashley DC, Lash RR, et al. Surveillance for Heartland virus (Bunyaviridae: Phlebovirus) in Missouri during 2013: first detection of virus in adults of *Anphlyssa americanum* (Acari: Ixodidae). J Med Entomol. 2016;53:607–12. https://doi.org/10.1093/jme/tjw028
7. Newman BC, Sutton WB, Moncayo AC, Hughes HR, Taheri A, Moore TC, et al. Heartland virus in Lone Star ticks, Alabama, USA. Emerg Infect Dis. 2020;26:1954–6.
8. Tuten HC, Burkharter KL, Noel KR, Hernandez EJ, Yates S, Wojnowski K, et al. Heartland virus in humans and ticks, Illinois, USA, 2018–2019. Emerg Infect Dis. 2020;26:1548–52. https://doi.org/10.3201/eid2607.200110
9. Savage HM, Godsey MS Jr, Tatman J, Burkharter KL, Hamm A, Panella NA, et al. Surveillance for Heartland and Bourbon Viruses in Eastern Kansas, June 2016. J Med Entomol. 2018;55:1613–6.
10. Dupuis AP II, Prusinski MA, O’Connor C, Maffei JG, Nge KA, Koetzner CA, et al. Heartland virus in adults of *Amblyomma americanum* (Acari: Ixodidae). J Med Entomol. 2013;50:1619–27. https://doi.org/10.1093/jme/tjt018
11. Bosco-Lauth AM, Panella NA, Root JJ, Gidleski T, Lash RR, Harmon JR, et al. Serological investigation of Heartland virus (Bunyaviridae: Phlebovirus) exposure in wild and domestic animals adjacent to human case sites in Missouri 2012–2013. Am J Trop Med Hyg. 2015;92:1163–7. https://doi.org/10.4269/ajtmh.14-0702
12. Clarke LL, Ruder MG, Mead DG, Howether EW. Heartland virus exposure in white-tailed deer in the southeastern United States, 2001–2015. Am J Trop Med Hyg. 2018;99:1346–9. https://doi.org/10.4269/ajtmh.18-0555
13. Riemersma KK, Komar N. Heartland virus neutralizing antibodies in vertebrate wildlife, United States, 2009–2014.
Emerg Infect Dis. 2015;21:1830–3. https://doi.org/10.3201/ eid2110.150380

14. Raghavan RK, Peterson AT, Cobos ME, Ganta R, Foley D. Current and future distribution of the Lone Star tick, *Amblyomma americanum* (L.) (Acari: Ixodidae) in North America. PLoS One. 2019;14:e0209082. https://doi.org/10.1371/journal.pone.0209082

15. Bosco-Lauth AM, Calvert AE, Root JJ, Gidlewski T, Bird BH, Bowen RA, et al. Vertebrate host susceptibility to Heartland virus. Emerg Infect Dis. 2016;22:2070–7. https://doi.org/10.3201/eid2212.160472

16. Clarke LL, Ruder MG, Mead D, Howerton EW. Experimental infection of white-tailed deer (*Odocoileus virginianus*) with Heartland virus. Am J Trop Med Hyg. 2018;98:1194–6. https://doi.org/10.4269/ajtmh.17-0963

17. Carlson AL, Pastula DM, Lambert AJ, Staples JE, Muehlenbachs A, Turabelidze G, et al. Heartland virus and hemophagocytic lymphohistiocytosis in immunocompromised patient, Missouri, USA. Emerg Infect Dis. 2018;24:893–7. https://doi.org/10.3201/eid2405.171802

18. Decker MD, Morton CT, Moncayo AC. One confirmed and 2 suspected cases of Heartland virus disease. Clin Infect Dis. 2020;71:3237–40. https://doi.org/10.1093/cid/ciaa467

19. Muehlenbachs A, Fata CR, Lambert AJ, Paddock CD, Vezel JO, Blau DM, et al. Heartland virus-associated death in Tennessee. Clin Infect Dis. 2014;59:845–50. https://doi.org/10.1093/cid/ciu434

20. Staples JE, Pastula DM, Panella AJ, Rabe IB, Kosoy OI, Walker WL, et al. Investigation of Heartland virus disease throughout the United States, 2013–2017. Open Forum Infect Dis. 2020;7:a125. https://doi.org/10.1093/ofid/ofaa125

21. Fill MA, Compton ML, McDonald EC, Moncayo AC, Dunn JR, Schaffner W, et al. Novel clinical and pathologic findings in a Heartland virus-associated death. Clin Infect Dis. 2017;64:510–2.

22. Kosoy OI, Lambert AJ, Hawkkinson DJ, Pastula DM, Goldsmith CS, Hunt DC, et al. Novel Thogotovirus associated with febrile illness and death, United States, 2014. Emerg Infect Dis. 2015;21:760–4. https://doi.org/10.3201/eid2105.150150

23. Savage HM, Burkhalter KL, Godsey MS Jr, Panella NA, Ashley DC, Nicholson WL, et al. Bourbon virus in field-collected ticks, Missouri, USA. Emerg Infect Dis. 2017;23:2017–22. https://doi.org/10.3201/eid2312.170532

24. Komar N, Hamby N, Palamar MB, Staples JE, Williams C. Indirect evidence of Bourbon virus (Thogotovirus, Orthonairovirus) infection in North Carolina. J Med Entomol. 2020;58:2505–14. https://doi.org/10.1093/jme/jtaa049

25. Davidson WR, Sieffken DA, Creekmore LH. Seasonal and annual abundance of *Amblyomma americanum* (Acari: Ixodidae) in central Georgia. J Med Entomol. 1994;31:67–71. https://doi.org/10.1093/jmedent/31.1.67

26. Keirans JE, Litwak TR. Pictorial key to the adults of hard ticks, family Ixodidae (Ixodida: Ixodoidea), east of the Mississippi River. J Med Entomol. 1989;26:435–48. https://doi.org/10.1093/jmedent/26.5.435

27. Keirans JE, Durden LA. Illustrated key to nematodes of the tick genus *Amblyomma* (Acari: Ixodidae) found in the United States. J Med Entomol. 1998;35:489–95. https://doi.org/10.1093/jmedent/35.4.489

28. Paddock CD, Fournier P-E, Sumner JW, Goddard J, Elshenawy Y, Metcalfe MG, et al. Isolation of *Rickettsia parkeri* and identification of a novel spotted fever group *Rickettsia* sp. from Gulf Coast ticks (*Amblyomma maculatum*) in the United States. Appl Environ Microbiol. 2010;76:2689–96. https://doi.org/10.1128/AEM.02377-09

29. Lanciotti RS, Kerst AJ, Nasci RS, Godsey MS, Mitchell CJ, Savage HM, et al. Rapid detection of West Nile virus from human clinical specimens, field-collected mosquitoes, and avian samples by a TaqMan reverse transcriptase-PCR assay. J Clin Microbiol. 2000;38:4066–71. https://doi.org/10.1128/JCM.38.11.4066-4071.2000

30. Guíndon S, Dufayard JF, Lefort V, Anisimova M, Hordijk W, Gascuel O. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol. 2010;59:307–21. https://doi.org/10.1093/sysbio/syq010

31. Bacon RM, Pilgard MA, Johnson BJ, Piesman J, Biggerstaff BJ, Quintana M. Rapid detection methods and prevalence estimation for *Borreliia lonestari* *glpQ* in *Amblyomma americanum* (Acari: Ixodidae) pools of unequal size. Vector Borne Zoonotic Dis. 2005;5:146–56. https://doi.org/10.1089/vbz.2005.5.146

32. Stepanoff P, Pfeffer M, Hellenbrand W, Rogalska J, Rihs F, Makówka A, et al. Virus detection in questing ticks is not a sensitive indicator for risk assessment of tick-borne encephalitis in humans. Zoonoses Public Health. 2013;60:215–26. https://doi.org/10.1111/j.1863-2378.2012.01517.x

33. Deble G. Zoonotic tick-borne flaviviruses. Vet Microbiol. 2010;140:221–8. https://doi.org/10.1016/j.vetmic.2009.08.024

34. Stefanoff P, Pfeffer M, Hellenbrand W, Rogalska J, Rihs F, Makówka A, et al. Virus detection in questing ticks is not a sensitive indicator for risk assessment of tick-borne encephalitis in humans. Zoonoses Public Health. 2013;60:215–26. https://doi.org/10.1111/j.1863-2378.2012.01517.x

35. Brackney DE, Armstrong PM. Transmission and evolution of tick-borne viruses. Curr Opin Virol. 2016;21:67–74. https://doi.org/10.1016/j.coiviro.2016.08.005

36. Luo LM, Zhao L, Wen HL, Zhang ZT, Liu JW, Fang LZ, et al. *Haemaphysalis longicornis* ticks as reservoir and vector of severe fever with thrombocytopenia syndrome virus in China. Emerg Infect Dis. 2015;21:1770–6. https://doi.org/10.3201/eid2110.150126

37. Donaldson KA, Griffin DW, Paul JH. Detection, quantitation and identification of enteroviruses from surface waters and sponge tissue from the Florida Keys using real-time RT-PCR. Water Res. 2002;36:2505-14. https://doi.org/10.1016/S0043-1354(01)00479-1

38. Shema Mugisha C, Vuong HR, Puray-Chavez M, et al. A simplified quantitative real-time PCR assay for monitoring SARS-CoV-2 growth in cell culture. mSphere. 2020;5:e00658-20. https://doi.org/10.1128/mSphere.00658-20

39. Yun SM, Park SJ, Park SW, Choi W, Jeong HW, Choi YK, et al. Molecular genomic characterization of tick- and human-derived severe fever with thrombocytopenia syndrome virus isolates from South Korea. PLoS Negl Trop Dis. 2017;11:e0005893. https://doi.org/10.1371/journal.pntd.0005893

40. Egizi A, Bulaga-Seraphin L, Alt E, Bajwa WI, Bernick J, Bickerton M, et al. First glimpse into the origin and spread of the Asian longhorned tick, *Haemaphysalis longicornis*, in the United States. Zoonoses Public Health. 2020;67:637–50. https://doi.org/10.1111/zph.12743

Address for correspondence: Gonzalo Vazquez-Prokopec, Department of Environmental Sciences, Emory University, Mathematics and Science Center, 5th Fl, Ste E530, 400 Dowman Dr, Atlanta, GA 30322, USA; email: gmvazqu@emory.edu
Isolation of Heartland Virus from Lone Star Ticks, Georgia, USA, 2019

Appendix

Appendix Table 1. Sequencing metrics for 3 genome segments from 3 Heartland virus–positive pools collected in Georgia, USA, 2019

Sample no.	Total reads	Small coverage, %	Mean small depth	Medium coverage, %	Mean medium depth	Large coverage, %	Mean large depth
HRT23	3,908,804	98.3	21	99.3	52	96.7	24
HRT26	4,625,523	95.7	24	100.0	76	99.2	50
HRT504	5,575,666	85.1	8	99.5	40	88.8	7

Appendix Table 2. Pairwise nucleotide identity between 3 HRTV virus genomes sequenced in this study, Georgia, 2019, and the only 3 previously published HRTV genomes*

Sample	Location	Small segment, % nucleotide identity	Medium segment, % nucleotide identity	Large segment, % nucleotide identity											
	HRT23	HRT26	HRT 504	JX00584X	KJ74014X	HRT23	HRT26	HRT 504	JX00584X	KJ74014X	HRT23	HRT26	HRT 504	JX00584X	KJ74014X
HRT23	Site 1	/	/	/	/	/	/	/	/	/	/	/	/	/	/
HRT26	Site 1	100.0	/	/	/	/	/	/	/	/	/	/	/	/	/
HRT504	Site 2	97.6†	97.6†	95.1†	95.6	95.6	95.6	95.5	97.8	97.9	90.1†	90.4†	90.1†	98.0	98.1
JX00584X	Missouri 2009, human	97.6	97.4	95.2†	97.4	98.4	98.4	98.2	95.7	98.0	98.1	90.2†	98.1	98.0	98.0
KJ74014X	Tennessee 2013, human	97.6	97.4	95.2†	97.4	98.4	98.4	98.2	95.7	98.0	98.1	90.2†	98.1	98.0	98.0
NC_02449X	Missouri 2009, human	97.9	97.8	95.6†	98.3	97.9	98.2	98.1	95.5	97.9	98.0	90.2†	98.1	98.0	98.0

*HRTV, Heartland virus; † indicates that the percentage identity shown includes sequence ambiguities.
†For sample HRT504, only partial small and large segments were sequenced.
