Target Specificity of an Autoreactive Pathogenic Human γδ-T Cell Receptor in Myositis

Jessica Bruder1, 5, Katherine Siewert1, 5, Birgit Obermeier1, 5, Joachim Malotka5, Peter Scheinert1, Josef Kellermann1, Takuya Ueda**, Reinhard Hohlfeld1, 5, and Klaus Dornmair§

From the 1Institute of Clinical Neuroimmunology, Ludwig Maximilians University, D-81377 Munich, Germany, the 2Department of Neuroimmunology, Max Planck Institute of Neurobiology, D-82152 Martinsried, Germany, the 3AmpTec GmbH, Koenigstrasse 4a, D-22767 Hamburg, Germany, the 4Department for Protein Analytics, Max Planck Institute of Biochemistry, D-82152 Martinsried, Germany, and the 5**Department of Medical Genome Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Building FSB-4015-1-5 Kashiwanoha, Kashiwa, Chiba Prefecture 277-8562, Japan

Received for publication, February 28, 2012 Published, JBC Papers in Press, May 1, 2012, DOI 10.1074/jbc.M112.356709

Background: In a rare case of human autoimmune myositis, muscle fibers are attacked by γδ-T cells.

Results: We identified several antigens recognized by the γδ-T cell receptor.

Conclusion: The γδ-T cell receptor recognized human tRNA synthetases known as antigens of autoantibodies in myositis.

Significance: This is the first report of an antigen recognized by human γδ-T cells in an autoimmune disease.

In polymyositis and inclusion body myositis, muscle fibers are surrounded and invaded by CD8-positive cytotoxic T cells expressing the αβ-T cell receptor (αβ-TCR) for antigen. In a rare variant of myositis, muscle fibers are similarly attacked by CD8-negative T cells expressing the γδ-T cell receptor (γδ-TCR) previously identified in an autoimmune tissue lesion of γδ-T cell-mediated myositis. We show that this Vγ1.3Vδ2-TCR, termed M88, recognizes various proteins from different species. Several of these proteins belong to the translational apparatus, including some bacterial and human aminoacyl-tRNA synthetases (AA-RS). Specifically, M88 recognizes histidyl-tRNA synthetase, an antigen known to be also targeted by autoantibodies called anti-Jo-1. The M88 target epitope is present on several species ranging from human muscle cells to bacteria. Moreover, we were unable to express M88 in the cytosol of any cell line, and we could not generate transgenic mice. Even bacteria stopped growing when M88 was induced in the cytosol. We therefore reasoned that M88 might bind to an intracellular proteinaceous motif that is essential for cell growth.

Here, we show that the target epitope of M88 is present on the surface of a T hybridoma cell line and as soluble single-chain Fv fragment excreted from COS-7 cells (11, 12). In earlier experiments, we found that presumably several target antigens may be recognized. All contain a protein component and a conformational rather than a linear epitope. Antigens were present in several species ranging from human muscle cells to bacteria. Moreover, we were unable to express M88 in the cytosol of any cell line, and we could not generate transgenic mice. Even bacteria stopped growing when M88 was induced in the cytosol. We therefore reasoned that M88 might bind to an intracellular proteinaceous motif that is essential for cell growth.
these are known targets of autoantibodies in several forms of human myositis (13, 14). Although it is still unknown how the B cell responses to AA-RS evolve during pathogenesis, these autoantibodies are used as diagnostic markers of myositis. Our observation that AA-RS are targeted by autoimmune γδ-T cells therefore reveals a surprising link between early, semi-nativ immune responses mediated by γδ-T cells, and late responses mediated by mature, complement-activating autoantibodies.

MATERIALS AND METHODS

Screening of cDNA Libraries—The host strain E. coli BL21-Star-DE3 (Invitrogen) was stably transfected with a described single chain Fv construct of our Vγ1.3Vδ2-TCR M88 (12) in the expression plasmid pET33b(+) (Novagen). The VN(D)NJ regions of the γ- and δ-chains were connected by a 15-amino acid linker, but the construct used here did not contain a signal sequence. Bacteria were grown in the presence of 2 mM glucose and 50 µg/ml kanamycin unless stated otherwise to suppress γδ-TCR expression. After washing the bacteria by centrifugation, they were resuspended in medium without glucose, and expression of M88 was induced by adding 2 mM isopropylthigalactoside (Merck). Growth curves were recorded by determining the optical density of the bacterial suspension culture at 600 nm.

A cDNA expression library was constructed from mRNA of E. coli MG1655 (ATCC) and inserted into the expression plasmid pET21c(+) (Novagen). To this end, we first replaced the Ndel restriction site of pET21c(+) with a SmaI site by amplifying the sequence between the BglII and the NheI sites using the primer pair pET-BglII (5’-TAGAGGATCGAGATCTC-3’) and pET-Sma-Mut-rev (5’-AGTCATGCTAGC-3’) and pET21c(+) as template for PCR. Then, the parent BglII-Nhel fragment was replaced by the new fragment, which contained the replacement Ndel to Sma1. This plasmid was digested with Sma1 and Not1, and the new fragment, which contained the replacement Nde1 to Sma1, was ligated with the fragment from pCR2.1 TOPO (Invitrogen), which served as a template for all further experiments. In addition, these primers contained silent nucleotide exchanges to introduce unique restriction sites at positions that closely flanked the desired mutation. Two fragments were amplified. For the first fragment we used the primer IF1wt-for and IF1wt-rev. Sequence between the BglII and the NheI sites using the primer pair pET-BglII (5’-TAGAGGATCGAGATCTC-3’) and pET-Sma-Mut-rev (5’-AGTCATGCTAGC-3’). This product was finally digested with Not1. Due to the enzymes contained in the amplification kit, the library construct contained a blunt end on the other side. It was finally inserted into the plasmid pET21c(+) digested previously with Sma1 and Not1.

M88-transfected E. coli BL21-Star-DE3 cells were super-transfected by electroporation at 2.5 kV, 200 ohm, 25 µF in 2-mm electrode gap cuvettes with the cDNA library in pET21c(+) and grown for 30 min in LB medium with 2 mM glucose. Then ampicillin was added to a final concentration of 100 µg/ml. After 20 min, kanamycin was added to a final concentration of 50 µg/ml. After another 30 min, the bacteria were washed by centrifugation, resuspended in LB medium without glucose, and grown for a further 30 min. Then, expression was induced by adding isopropylthigalactoside to a final concentration of 1 mM. After 30 min, bacteria were grown on agar plates that contained 100 µg/ml ampicillin, 50 µg/ml kanamycin, and 1 mM isopropyl thiogalactoside. After incubation for 40 h at 37 °C, the biggest colonies were picked and grown in suspension cultures in the presence of ampicillin and glucose, and plasmids were prepared and sequenced by standard methods. As a control experiment, we plated the bacteria on plates that contained 1% glucose, 500 µg/ml ampicillin, and 50 µg/ml kanamycin, without isopropyl thiogalactoside to shut down the promoter. Colonies of similar size became visible already after 18 h at 37 °C.

Peptides, Proteins, and Antibodies—The synthetic peptide EcIF1(33–46), which represents amino acids 33–46 of EcIF1, was synthesized by solid phase peptide synthesis and purified by reversed phase HPLC. Its correct sequence was verified by mass spectrometry. The purified recombinant human proteins His-, Thr-, and Ala-tRNA synthetases hH-RS (Jo-1), hT-RS (PL-7), hA-RS (PL-12), human formimidoyltransferase-cyclo-deaminase (hLC1) and human proliferating cell nuclear antigen (hPCNA) were purchased from Diarect (Freiburg). All human proteins were produced identically in a baculovirus expression system and purified by immobilized metal affinity chromatography (IMAC). The polyclonal anti-Jo-1 human Ig fraction BP2040 was purchased from Acris, the monoclonal mouse α-Jo-1 IgG1 antibody HARS6 was from GenWay, and the iso-type control monoclonal mouse IgG1 Pure antibody X40 was from BD Biosciences. The anti-mouse CD3ε antibody 145–2C11 (BD Biosciences) was used as control for γδ-TCR activation. All bacterial proteins are contained in the PUREexpress in vitro translation kit (New England Biolabs). They were expressed in the cytosol of E. coli and purified by IMAC as described (15). In contrast to the kit, where the proteins are pooled, here, all proteins were expressed and tested individually.

Cloning, Expression, and Purification of Wild-type and Mutated EcIF1—Total RNA from E. coli SG13009 (Qiagen) was isolated using the RNeasy mini kit and RNase-free DNase Set (Qiagen). cDNA was prepared using the clone-specific primer IF1wt-rev and SuperScript III reverse transcriptase (Invitrogen). E. coli IF1 wild-type cDNA was amplified using the primers IF1wt-for and IF1wt-rev. See supplemental Table S1 for all primer sequences. The PCR reaction was carried out for 40 cycles at 94 °C, 56 °C, and 72 °C for 1 min each. The PCR product was cloned into pCR2.1. TOPO (Invitrogen), which served as a template for all further experiments.

Site-directed mutagenesis was performed using a PCR-based method: nucleotides coding for the amino acid of choice were introduced into forward (Mut-for) and reverse (Mut-rev) PCR primers (supplemental Table S1) that span the selected positions. In addition, these primers contained silent nucleotide exchanges to introduce unique restriction sites at positions that closely flanked the desired mutation. Two fragments were amplified. For the first fragment we used the primer IF1-wt-for-BamHI together with one of the reverse primers IF-X-rev-Y,
where X denoted the amino acid to be exchanged, and Y denoted the restriction site to be inserted. For the second fragment, we used the primer IF1-wt-rev-HindIII together with one of the forward primers IF-X-for-Y. The conditions of the PCR reactions were as described above. The PCR fragments were digested with the restriction enzymes Y, purified, and ligated, and a second PCR was performed using primers IF1wt-for-BamHI and IF1wt-rev-HindIII only.

The PCR products encoding the full-length sequences of IF1 wild-type and mutants were cloned into the plasmid pCR2.1-TOPo, digested with the restriction enzymes BamHI and HindIII and cloned into the BamHI and HindIII sites of expression plasmid pQE30 (Qiagen), which carries a sequence coding for a Histag at the N terminus. Therefore, the expressed proteins are extended for the N-terminal sequence, MRGS-His6-GS. Plasmids were transfected into E. coli strain DH5α-F’1Q (Invitrogen). As negative control, we used E. coli DH5α-F’IQ transfected with myelin oligodendrocyte glycoprotein (16). Bacteria were grown in LB containing 100 μg/ml ampicillin (Sigma).

Protein expression was induced at a cell density of 0.4–0.5 A600 nm by adding isopropylthiogalactoside to a final concentration of 2 mM. Bacteria were harvested after 4 h by centrifugation for 5 min at 15,000 x g.

Bacterial pellets from a 250-ml culture were resuspended in 70 ml of lysis buffer (50 mM sodium phosphate buffer, 300 mM NaCl, 10 mM imidazole, 0.05 mg/ml DNase (Sigma) 10 mM MgCl2, 5 μg/ml aprotinin (Sigma), 0.1 mM PMSF, 1 mg/ml lysozyme (Sigma), pH 8.0) and lysed by sonication on ice for 15 min at 30 W using a Branson 450 sonifier. After centrifugation for 10 min at 15,000 x g the supernatants were purified by IMAC. The supernatants were loaded at a flow rate of 1 ml/min onto 5-ml nickel-nitrilotriacetic acid-agarose columns (Qiagen) equilibrated with lysis buffer. The columns were washed with 10–15 column volumes of 50 mM sodium phosphate buffer, 300 mM NaCl, 50 mM imidazole, pH 8.0, and eluted with 50 mM sodium phosphate buffer, 300 mM NaCl, 250 mM imidazole, pH 8.0. Purified proteins were dialyzed against 100 mM sodium phosphate buffer, pH 7.4, 150 mM NaCl, or 50 mM sodium phosphate buffer, 300 mM NaCl, pH 7.8, and stored at −80°C. Bacteria expressing myelin oligodendrocyte glycoprotein were treated identically. Because this protein precipitates during growth of 2 mM. Bacteria were harvested after 4 h by centrifugation for 5 min at 15,000 x g.

For some experiments, proteins were further purified by size exclusion chromatography. We used a 7.8 mm x 30 cm TSK-Gel G2000SWXL 5–150 kDa column with a particle size of 5.0 μm (Tosoh Bioscience) and HP1100 HPLC equipment (Agilent). Chromatography was performed in 200 mM sodium phosphate buffer, 200 mM NaCl, pH 6.8, at a flow rate of 0.8 ml/min. 27–30 μg of protein were injected, and >12 fractions in a time range of 5–21 min were collected.

Cloning, Expression, and Activation of Wild-type and Mutated γδ-TCR Molecules—The cDNAs of M88 wild-type chains and chains carrying a set of mutated γ- and δ-chains with altered V-, N(D)N(J)-, or Cγ- regions were cloned into expression plasmids, and expressed on the surface of the T hybridoma cell line 58α β’ (19), which lacks endogenous TCR chains, as described (11, 12). 58α β’ cells express the CD3 complex and the downstream signaling machinery for secreting mouse interleukin-2 (IL-2) after TCR activation by antigens. Individual clones were picked and analyzed independently. All selected clones expressed the heterodimeric γδ-TCR on their surface and were capable of IL-2 secretion after TCR activation by antigens.

For all T cell activation experiments, the candidate and control proteins were coated to flat-bottomed 96-well tissue culture plates (Costar). Ecz-RS and the anti-CD3ε control antibody 145-2C11 were coated for 3 h at 37°C at 20 μg/ml and 1 μg/ml, respectively, in 10 mM sodium phosphate buffer, pH 7.4, 150 mM NaCl. Samples from the HPLC columns were coated directly in HPLC buffer and incubated for 3 h at 37°C. For testing antigen recognition of wild-type M88-transfectants or mutants with altered TCR γ- or δ-chains, 10 μg/well wild-type EcI1 was coated for 3 h at 37°C.

To detect direct M88 activation by human recombinant proteins and for the antibody blocking assay, the candidate proteins were coated at 0.5 μg/well in 50 μl of 10 mM sodium phosphate buffer, 150 mM NaCl, pH 7.4, for 2 h at 37°C. Then, the plates were washed with buffer. For the antibody blocking assay, 50 μl of antibody solution in RPMI 1640 medium (Invitrogen) supplemented with 5 to 10% heat-inactivated fetal bovine serum (lot 075K3398 (Sigma)), 1.5 mg/ml genetin (Invitrogen) and 0.3 mg/ml hygromycin B (Invitrogen) were incubated for 30 min at 37°C with the coated candidate proteins. The polyclonal anti-Jo-1 human Ig fraction BP2040 was used at dilutions of 1:10 and 1:100, and the monoclonal mouse α-Jo-1 IgG1 antibody HARSA6 at 10 μg/ml final concentration. The monoclonal mouse IgG1 Pure antibody X40 served as isotype control at 10 μg/ml.

To test recognition of the synthetic peptide EcI1F33–46, it was coated at concentrations between 5.0 × 10⁻² and 5.0 × 10⁻⁵ μg/well for 3 h at 37°C in 10 mM sodium phosphate buffer, pH 7.4, 150 mM NaCl. To test competition of EcI1F33–46 with wild-type EcI1, EcI1F1 was coated at 0.5 μg/well for 3 h at 37°C in 10 mM sodium phosphate buffer, pH 7.4, 150 mM NaCl. After washing the wells with buffer, EcI1F1(33–46) was added at concentrations between 666.0 and 3.3 × 10⁻⁴ μg/ml together with M88 transfected hybridoma cells.

For investigating recognition of denatured EcI1F1, recombinant EcI1F1 was coated at 0.5 μg/well for 3 h at 37°C in 10 mM sodium phosphate buffer, pH 7.4, 150 mM NaCl. Then, the plates were incubated for 24 h at 37°C with 6 μg guanidine thiocyanate, 2 μg HCl, 5 μg
driving M88 expression was shut down in the presence of 2 mM glucose. All colonies were of approximately the same size. To prevent formation of a confluent layer of bacteria, colonies were grown for a shorter period of time. Indeed, after supertransfection with the Fv-M88 and the library and induction of M88 expression was shut down in the presence of 2 mM glucose. All colonies were of approximately the same size. To prevent formation of a confluent layer of bacteria, colonies were grown for a shorter period of time. Finally, 50 μl of supernatant was removed, and mouse IL-2 was measured by ELISA (eBioscience). Background signals from samples without antigens were subtracted, and absolute IL-2 concentrations were determined using a standard curve.

RESULTS

Hints from cDNA Library Screening—As an initial step toward identification of the target antigen of the γδ-TCR M88, we “rescued” E. coli cells from the growth-inhibiting effects of M88 by supertransflecting the bacteria with a cDNA library. Growth of bacteria was halted when the expression of a single-chain Fv construct (12) of M88 was induced in the cytosol of E. coli BL21 (Fig. 1A). Because there were no reasons to assume that M88 was toxic (the protein is not particularly hydrophobic or charged and presumably has no enzymatic activity), we surmised that M88 might bind and neutralize a bacterial compound that is essential for cell growth. We further knew from previous experiments that a protein moiety is at least part of the antigen (11). Therefore, we supertransfected M88-expressing bacteria with a cDNA library from E. coli to rescue them from growth inhibition by M88. Clones expressing library coded proteins that contain the antigen would be expected to bind to M88 and neutralize it. Such bacteria would grow in big colonies, whereas clones that contain irrelevant transcripts would yield small colonies or would not grow at all. Indeed, after supertransfection with the Fv-M88 and the library and induction of M88 expression, we observed many very small bacterial clones but also a few clones that grew to very big colonies (Fig. 1B). Under conditions where M88 expression was prevented, all colonies were of the same size (Fig. 1C). We picked some of the biggest colonies and sequenced the inserts of the plasmids coding for the library. In two clones, we identified E. coli lysyl-tRNA synthetase (EcK-RS) as a candidate antigen. To confirm that EcK-RS contains the antigenic epitope, we coated purified, recombinant EcK-RS (15) to a microtiter plate, added T hybridoma cells that expressed M88 (11), and measured secreted IL-2 in the supernatant. We found that M88 indeed recognizes EcK-RS (Fig. 1D).

γδ-TCR M88 Recognizes Several Bacterial Proteins—Because we surmised that M88 might recognize an epitope present on several proteins, we tested other proteins from the translation apparatus of E. coli (15). Several proteins were indeed recognized. Although all proteins were highly purified, some minor contaminations were detectable in some of the preparations (supplemental Fig. S1A). To exclude that such contaminations were recognized, we subjected some of the samples to size-exclusion HPLC and tested all eluted fractions for M88-activating capacity (Fig. 2). We found that in addition to EcK-RS, the E. coli AA-RS for asparagine (EcN-RS) and the EcIF1 1 (EcIF1 translation initiation factor) specifically activated M88 because M88 activation was observed only with fractions that contained the respective proteins. By contrast, AA-RS for aspartic acid (EcD-RS) was not recognized (Fig. 2). Together, these data show that M88 recognizes several functionally and structurally different bacterial proteins.

γδ-TCR M88 Recognizes Several Human Proteins—Because we knew that M88 may also recognize proteins from human muscle cell extracts (11), we tested recombinant human AA-RS for histidine and alanine (hH-RS, hA-RS), which are also known as myositis antigens “Jo-1” and “PL-12”. As above, we performed size-exclusion HPLC to exclude that contaminations were recognized (Fig. 3 and supplemental Fig. S1B). M88 activation was observed only in fractions containing hH-RS and hA-RS, providing evidence that these proteins were recognized directly. M88 activation was not limited to AA-RS because also hLC1 (20), a hepatitis antigen, was recognized. The control protein hPCNA, which was identically produced and purified, was not recognized.

Activation of hH-RS was specific, as it was blocked completely by a polyclonal anti-serum and by a monoclonal antibody against hH-RS (Fig. 4). Recognition of hA-RS and of the human AA-RS for threonine (hT-RS, synonym PL-7) could also be blocked by high concentrations of the polyclonal anti-serum but not by the monoclonal antibody. Thus, we showed by two independent experiments that hH-RS was recognized specifically. Furthermore, as expected, also other unrelated human proteins activated M88.

Characterization of M88 Target Epitope by Site-directed Mutagenesis—To characterize the epitope, we used the small soluble protein EcfI1 as a paradigm. EcfI1 is composed of only 72 amino acids and carries no post-translational modifications. Its structure is known (Fig. 5A) (21), in contrast to the human AA-RS molecules, where no structural information of the complete proteins is available. EcfI1 was expressed in E. coli and purified to homogeneity. It is known that wild-type EcfI1 expressed by this method is functional (15), and we further

show here by circular dichroism spectroscopy that the purified EcfI1 adopts a native secondary structure (supplemental Fig. S2).
FIGURE 5. Amino acids of the target antigen EcIF1 recognized by M88. A, structural model of EcIF1 based on NMR spectroscopy (21). The entire molecule is shown in ribbon presentation. The five β-sheets that form a rigid β-barrel are shown in yellow. The amino acids Lys-39 (blue), Met-40 (gray), Arg-41 (red), and Lys-42 (blue) in the short helix, which is recognized by the γδ-TCR, are highlighted as stick models. We used Protein Data Bank code 1AH9 (no.11) and the program PyMOL for display. B, amino acid sequence of EcIF1 of E. coli. The structural elements shown in A are indicated: β-sheets are highlighted in yellow, and the α-helix is boxed in red. The 15 amino acids that were exchanged by site-directed mutagenesis are indicated by arrows. The most relevant amino acid, Arg-41, is indicated by a red arrow. The two other relevant amino acids, Lys-39 and Lys-42, are indicated by blue arrows. Other amino acids are indicated by gray arrows. Continuous arrows indicate amino acid exchanges where the data are shown in C (Asn-28, Val-31, His-35, Met-40). Dashed gray arrows indicate amino acids that were tested but without showing the data in C (His-30, Asn-43, Tyr-44, Tyr-60). C, activation of M88 transfectants by EcIF1 wild-type protein and by EcIF1 molecules carrying site-specific mutations. M88 transfectants were incubated with wild-type and mutated EcIF1 proteins, which were coated to microtiter plates at the indicated concentrations. TCR activation was determined by measuring the secreted IL-2 in the supernatant. EcIF1 wild-type data are shown in dark green. The color code for the different amino acid substitutions is given in the inset. It is identical to the color code used in B. Amino acid substitutions that are indicated with dashed gray arrows in B were also tested but are not shown here. They all showed no significant deviation from the data of the wild-type. We also include a mock control, i.e. bacteria that expressed myelin oligodendrocyte glycoprotein, which forms insoluble inclusion bodies. An identically prepared sample from these bacteria contains all bacterial contaminations. It did not activate M88 (black squares). Data were statistically significant with p values of < 0.05 according to a Student's two-tailed unpaired t test at protein concentrations of 1.1, 3.3, and 10 μg/well for the mutants R41A, R41Q, M40A/R41A, K42Q, and K39A, respectively. Data represent four independent experiments.
We probed the surface of EcIF1 for immunogenic regions by introducing 16 site-specific mutations (Fig. 5B). Wild-type and mutated proteins were expressed in E. coli, purified to homogeneity (supplemental Fig. S3), and M88 activation was measured (Fig. 5C). Only exchanges of the positively charged amino acids around position 40 (Fig. 5B) had significant effects. This short 3_10 α-helix is located in a loop that reaches out from the core of the protein (Fig. 5A). Other substitutions showed only minor differences to the wild-type EcIF1. We exchanged Lys-39, Met-40, Arg-41, and Lys-42 individually to alanine and to structurally related amino acids, i.e. Lys to Gln, Met to Leu, and Arg to Gln (Fig. 5B). We found that exchanges Arg-41 to Ala or Gln significantly decreased recognition. Met-40 is presumably irrelevant because it points to the opposite side of the epitope (Fig. 5A). Substitutions of Lys-39 and Lys-42 showed surprising effects: the exchange K39A diminished recognition, whereas K39Q was recognized like the wild-type, indicating that the aliphatic carbon atoms C3 and/or C4 are required. The substitution K42A activated better than K42Q. The bulky side chain may thus impose a steric hindrance, which may be compensated by introduction of a positive charge. These substitutions show that Lys-39, Arg-41, and Lys-42 are part of the epitope recognized by M88 but that the positive charges per se are not absolutely required. Furthermore, the mutagenesis experiments show that amino acids are recognized directly, excluding that post-translational modifications or non-covalently bound ligands are involved.

We confirmed that the surface-exposed epitope is not linear but rather conformational because a peptide representing amino acids 33 to 46 (EcIF1(33–46)) was not recognized directly by M88 (Fig. 6A), and EcIF1(33–46) was not able to compete with the correctly folded EcIF1 for M88 binding (Fig. 6B). Furthermore, denaturation of EcIF1 by acid or base treatment, unfolding of EcIF1 secondary structure by the chaotropic agent guanidinium thiocyanate, or destruction of the epitope by protease digestion, all abrogated EcIF1 recognition (Fig. 6C).

Specific Antigen Recognition through Complementarity Determining Regions of M88—To show that EcIF1 was recognized specifically by the complementarity determining regions (CDR) of M88, we employed γδ-TCR molecules with exchanged variable regions or with defined amino acid exchanges in the CDR3 loops of either chain (11, 12). All exchanges, including replacement of only few amino acids in the CDR3 loops of both chains, abolished recognition completely (Fig. 7), whereas exchange of the conserved region of the γ-chain showed no effect. This provides evidence that M88 recognizes EcIF1 specifically with its CDR loops and uses both chains for antigen binding, although it remains open whether each of the six CDR loops contributes equally significantly. This is similar to a prenyl-pyrophosphate-specific γδ-TCR (22) but different from γδ-TCRs that bind non-classical MHC molecules only by their CDR3β loop (23).

DISCUSSION

We investigated the target specificity of the autoreactive human γδ-TCR M88 that was initially isolated from muscle lesions of a patient with autoimmune γδ T cell-mediated myositis (8, 10). We expressed M88 on the surface of a T hybridoma cell line and as soluble single-chain Fv fragment and used these constructs for preliminary antigen searches (11, 12). Hints from cDNA library screening experiments helped us to identify several proteins that were able to stimulate M88. Extensive mutagenesis of a paradigmatic protein allowed us to identify several distinct features of the target antigen(s). Specifically, our results suggest that the target epitope of M88 is (a) present on, but not exclusive to, several proteins of the translational apparatus including several human AA-RS; (b) strictly conformational; (c) independent of post-translational modification; (d) exposed on the protein surface; (e) partly represented by the short α-helical loop of region 39–42 of EcIF1; and (f) contacted by the CDR3 regions of both the γ- and δ-chain of M88.

So far, only very few γδ-TCR epitopes have been resolved at the molecular level (1–4). γδ-T cells recognize their antigens, like antibodies, in an MHC-non-restricted way, but, similar to

![FIGURE 6. M88 recognizes a conformational epitope.](image-url)
Figure 7. Specific recognition of the paradigmatic antigen EcF1 by the CDR loops of the γδ-TCR. We compared the recognition of EcF1 by the wild-type M88 and M88 molecules that contained mutations in the variable (V) and/or CDR3 regions of either chain. CDR3 regions are composed of random nucleotides (N), diversity (D), and joining (J) elements. The first row lists the wild-type γδ-TCR M88 (Vγ1.3-Vδ2γ2), and the TCR transfectants with mutated γ- or δ-chains: two mutants had altered VDJ regions of either chain (Vγγ2/αγ2-Vδ2γ2, Vγ1.3-Vδ1γ1), three mutants had amino acid exchanges in the γδ-combining sites (Vγ1.3/Vδ1γδ, Vγ1.3/Vδ1γδ2), the δ-NDN (Vγ1.3, Vδ2, or CDR3), or δ-NDN regions (Vγ1.3-Vδ2, or CDR3). One mutant had wild-type VDJ regions, but an altered constant region of the γ-chain (Vγ1.3-Vδ1γ2). The second and third rows illustrate these changes. We list the variable and joining families of the γ- and δ-chains (V-region nomenclature according to Arden et al. (50)), and show the amino acids of the N- or DND regions in the single amino acid code. Wild-type regions and amino acids are highlighted in green, and exchanges of entire regions or amino acids are highlighted red. On the right panel, we show the activation of γδ-TCR transfectants by EcF1. EcF1 was adsorbed to microtiter plates, incubated with γδ-TCR transfectected hybridoma cells, and secreted IL-2 was measured by ELISA. Only the wild-type Vγ1.3Vδ2-TCR M88 and the mutant with altered γ- and δ-chain constant region recognized EcF1. All other mutants with altered V- and/or CDR3 regions were not activated. This provides evidence that EcF1 is recognized specifically by the complementarity determining regions. Data represent two independent experiments.

αβ-TCRs, they have comparably low affinities to their antigens (1, 23–27). Thus, the dissociation constants of wild-type αβ- and γδ-TCRs are rarely below 10⁻⁷ M (28), whereas antibodies or receptors and their ligands often show dissociation constants in the picomolar range. This makes it difficult to investigate their antigen recognition properties because many biochemical techniques rely on high affinity interactions. Although it is known that γδ-TCRs may recognize a wide variety of antigens ranging from unmodified proteins to low molecular mass ligands (1–4), the molecular details of epitope recognition are largely unknown. Even for the common human Vγ9Vδ2-TCR cells, which recognize prenyl-pyrophosphates, it is still unknown how these small ligands are presented (29). So far, only few structures of γδ-TCRs have been resolved (27, 30–32), whereas the structures and antigen recognition properties of many αβ-TCR molecules are well characterized (33–36).

We used extensive site-directed mutagenesis of both the target antigen and the M88 TCR for characterizing their interaction. However, we are well aware that full structural characterization will require co-crystallization of M88 and its antigenic target. From our mutagenesis experiments, we can conclude that the target epitope of M88 is relatively "broad" because M88 recognizes different proteins and because certain non-conservative amino acid substitutions in the target antigen(s) are tolerated. Such broad recognition specificities are reminiscent of both the pattern recognition features of innate immune receptors (37) and "polyspecificity" of αβ-TCR molecules (34).

M88 recognized several functionally and structurally unrelated proteins from evolutionarily very diverse species. Because the epitope is conformational rather than sequential, sequence comparison of candidate proteins would not allow prediction of their immunogenicity. It is therefore possible, or even likely, that the epitope is present in additional, as yet undefined proteins, which also might have the capacity to activate M88. To be recognized by M88, the epitope must be exposed on the surface of the target protein. This may not be the case for all proteins carrying a compatible amino acid sequence. Therefore, only detailed structural data of the candidate proteins may allow predictions. High resolution structures are so far available only for two of the eight proteins investigated here: Ec-IF1 (21) and Eck-RS (38). Interestingly, Eck-RS expresses the sequence KTRR (amino acids 20 to 23) in a surface-exposed α-helix. This is similar to the sequence KMRK at positions 39 to 42 in the 310 α-helix of EcF1 and may hint to a common recognition motif. For the other six proteins, structural data are not available or only from domains that do not contain the candidate epitope region.

The fact that the M88 epitope is present in human and microbial proteins raises the possibility of molecular mimicry (39) in the pathogenesis of γδ-TCR-mediated myositis. In retrospect, it must remain open how the break in tolerance may have occurred in the meanwhile deceased index patient, considering that the influence of the microbial environment on autoimmunity is complex (40). In the muscle tissue of the patient, γδ-T cells surrounded, invaded, and destroyed skeletal muscle fibers as demonstrated by immunohistochemistry and electron microscopy (8). An analogous type of T cell-mediated lesion occurs in other forms of myositis in which CDB⁺ αβ-T cells invade and destroy muscle fibers in a very similar way (9, 41–45). In αβ-T cell-mediated myositis, it is assumed that the attacked muscle fibers express unknown MHC class 1-bound peptides on their surface. By analogy, one may assume that a surface-exposed antigen is recognized in γδ-T cell-mediated myositis. It remains speculative whether an intracellular antigen such as AA-RS can reach the muscle surface under pathological conditions. Some targets of lupus autoantibodies are indeed accessible on the cell surface (46), and human lysyl-RS may be excreted from intact human cells after induction by TNF-α (47). Interestingly, several AA-RS, including histidyl-tRNA synthetase, were shown to attract lymphocytes and dendritic cells by activating CCR5 and CCR3 chemokine receptors, suggesting that AA-RS liberated from damaged myofibers might recruit immune cells that induce and perpetuate adaptive and innate immune responses in myositis (48).

Autoantibodies against nuclear or cytoplasmic antigens, including anti-AA-RS antibodies, are found in ~20% of patients with myositis (13, 14, 49). Although it is unknown whether these antibodies play a direct pathogenic role, they serve as clinical markers. Antibodies against histidyl-tRNA synthetase, also called anti-Jo-1, account for the majority of the anti-synthetase antibodies. In γδ-TCR-mediated myositis, the pathogenic γδ-T cells target the same antigen that is recognized by antibodies in other forms of myositis. Although we could block M88 recognition of histidyl-tRNA synthetase with human anti-histidyl-tRNA synthetase antibody, this does not necessarily imply that the γδ-T cell and B cell epitopes are identical. Regardless of epitope location, recognition of AA-RS by both γδ-T cells and autoantibodies reveals an intriguing link between T and B cell responses in autoimmune myositis.
Targets of an Autoreactive Human γδ-TCR

Acknowledgments—We thank Hartmut Wekerle for support and valuable comments, Stephan Luebel for peptide synthesis, Friedrich Lottspeich for permission to use his HPLC apparatus, Dieter Jenne and Naoto Kawakami for comments, and Elisabeth Weyer and Reinhard Mentele for expert technical assistance with circular dichroism spectroscopy and protein characterization.

REFERENCES

1. Chien, Y. H., and Konigshofer, Y. (2007) Antigen recognition by γδ T cells. *Immunol. Rev.* **215**, 46–58
2. Beetz, S., Wesch, D., Marischen, L., Welte, S., Oberg, H. H., and Kabelitz, D. (2008) Innate immune functions of human γδ T cells. *Immunobiology* **213**, 173–182
3. Hayday, A. C. (2009) γδ T cells and the lymphoid stress-surveillance response. *Immunity* **31**, 184–196
4. Bonneville, M., O’Brien, R. L., and Born, W. K. (2010) γδ T cell effector functions: A blend of innate programming and acquired plasticity. *Nat. Rev. Immunol.* **10**, 467–478
5. Wucherpfennig, K. W., Newcombe, J., Li, H., Keddy, C., Cuzner, M. L., and Hafler, D. A. (1992) γδ T-cell receptor repertoire in acute multiple sclerosis lesions. *Proc. Natl. Acad. Sci. U.S.A.* **89**, 4588–4592
6. Blink, S. E., and Miller, S. D. (2009) The contribution of FAS and FASL to the innate immune system. *Semin. Immunol.* **21**, 153–165
7. Xu, B., Pizarro, J. C., Holmes, M. A., McBeth, G., Groh, V., Spies, T., and Strong, R. K. (2011) Crystal structure of a gd T-cell receptor specific for the human MHC class I homolog MICA. *Proc. Natl. Acad. Sci. U.S.A.* **108**, 2414–2419
8. Stone, J. D., Chervin, A. S., and Kranz, D. M. (2009) γδ T-cell receptor binding affinities and kinetics: Impact on T-cell activity and specificity. *Immunol. Rev.* **126**, 165–176
9. Sarikonda, G., Wang, H., Puan, K. J., Liu, H. K., Song, Y., Distefano, M. D., Oldfield, E., Prestwich, G. D., and Morita, C. T. (2008) Photoaffinity antigens for human gd T cells. *J. Immunol.* **181**, 7738–7750
10. Li, H., Lebedeva, M. I., Llera, A. S., Fields, B. A., Brenner, M. B., and Mariuzza, R. A. (1998) Structure of the Vβ domain of a human gd T-cell antigen receptor. *Nature* **391**, 502–506
11. Allison, T. J., Winter, C. C., Fournié, J. J., Bonneville, M., and Garboczi, D. N. (2001) Structure of a human gd T-cell antigen receptor. *Nature* **411**, 820–824
12. Adams, E. J., Chien, Y. H., and Garcia, K. C. (2005) Structure of a gd T-cell receptor in complex with the nonclassical MHC T22. *Science* **308**, 227–231
13. Rudolph, M. G., Stanfield, R. L., and Wilson, I. A. (2006) How TCRs bind MHCs, peptides, and coreceptors. *Annu. Rev. Immunol.* **24**, 419–466
14. Wucherpfennig, K. W., Allen, P. M., Celada, F., Cohen, I. R., De Boer, R., Garcia, K. C., Goldstein, B., Greenspan, R., Hafler, D., Hodgkin, P., Huseby, E. S., Krakauer, D. C., Nemazee, D., Perelson, A. S., Pinilla, C., and Sercarz, E. E. (2007) Polyspecificity of T cell and B cell receptor recognition. *Semin. Immunol.* **19**, 216–224
15. Ishizuka, J., Stewart-Jones, G. B., van der Merwe, A., Bell, J. I., McMichael, A. J., and Jones, E. Y. (2008) The structural dynamics and energetics of an immunodominant T cell receptor are programmed by its Vβ domain. *Immunity* **28**, 171–182
16. Garcia, K. C., Adams, J. J., Feng, D., and Ely, L. K. (2009) The molecular basis of TCR germ line bias for MHC is surprisingly simple. *Nat. Immunol.* **10**, 143–147
17. Iwasaki, A., and Medzhitov, R. (2010) Regulation of adaptive immunity by the innate immune system. *Science* **327**, 291–295
18. Onesti, S., Desogus, G., Brevet, A., Chen, J., Plateau, P., Blanquet, S., and Brick, P. (2000) Structural studies of lysyl-tRNA synthetase: Conformational changes induced by substrate binding. *Biochemistry* **39**, 12853–12861
19. Oldstone, M. B. (1987) Molecular mimicry and autoimmune disease. *Cell* **50**, 819–820
20. Chervonsky, A. V. (2010) Influence of microbial environment on autoimmunity. *Nat. Immunol.* **11**, 28–35
21. Arakata, K., and Engel, A. G. (1988) Monoclonal antibody analysis of mononuclear cells in myopathies. IV: Cell-mediated cytotoxicity and...
muscle fiber necrosis. *Ann. Neurol.* 23, 168–173

42. Hohlfeld, R., and Engel, A. G. (1994) The immunobiology of muscle. *Immunol. Today* 15, 269–274

43. Bender, A., Ernst, N., Iglesias, A., Dornmair, K., Wekerle, H., and Hohlfeld, R. (1995) T cell receptor repertoire in polymyositis: clonal expansion of autoaggressive CD8\(^+\) T cells. *J. Exp. Med.* 181, 1863–1868

44. Goebels, N., Michaelis, D., Engelhardt, M., Huber, S., Bender, A., Pongratz, D., Johnson, M. A., Wekerle, H., Tschopp, J., Jenne, D., and Hohlfeld, R. (1996) Differential expression of perforin in muscle-infiltrating T cells in polymyositis and dermatomyositis. *J. Clin. Invest.* 97, 2905–2910

45. Seitz, S., Schneider, C. K., Malotka, J., Nong, X., Engel, A. G., Wekerle, H., Hohlfeld, R., and Dornmair, K. (2006) Reconstitution of paired T cell receptor \(\alpha\)- and \(\beta\)-chains from microdissected single cells of human inflammatory tissues. *Proc. Natl. Acad. Sci. U.S.A.* 103, 12057–12062

46. Casciola-Rosen, L. A., Anhalt, G., and Rosen, A. (1994) Autoantigens targeted in systemic lupus erythematosus are clustered in two populations of surface structures on apoptotic keratinocytes. *J. Exp. Med.* 179, 1317–1330

47. Park, S. G., Kim, H. J., Min, Y. H., Choi, E. C., Shin, Y. K., Park, B. J., Lee, S. W., and Kim, S. (2005) Human lysyl-tRNA synthetase is secreted to trigger proinflammatory response. *Proc. Natl. Acad. Sci. U.S.A.* 102, 6356–6361

48. Howard, O. M., Dong, H. F., Yang, D., Raben, N., Nagaraju, K., Rosen, A., Casciola-Rosen, L., Härtillein, M., Kron, M., Yang, D., Yiadom, K., Dwivedi, S., Plotz, P. H., and Oppenheim, J. J. (2002) Histidyl-tRNA synthetase and asparaginyl-tRNA synthetase, autoantigens in myositis, activate chemokine receptors on T lymphocytes and immature dendritic cells. *J. Exp. Med.* 196, 781–791

49. Dalakas, M. C. (2010) Immunotherapy of myositis: Issues, concerns, and future prospects. *Nat. Rev. Rheumatol.* 6, 129–137

50. Arden, B., Clark, S. P., Kablettz, D., and Mak, T. W. (1995) Human T-cell receptor variable gene segment families. *Immunogenetics* 42, 455–500