Supplementary data

N-doped pinecone-based carbon with hierarchical porous pie-like structure: A long-cycle-life anode material for potassium-ion batteries

Jian-Fang Lua,b, Ke-Chun Lic, Xiao-Yan Lvd, Fu-Hou Leib, Yan Mib,

Yan-Xuan Wena,e*,

aSchool of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, Guangxi, China.

bSchool of Chemistry and Chemical Engineering, Guangxi MINZU University, Nanning 530006, Guangxi, China.

cSchool of Materials and Environment, Guangxi MINZU University, Nanning 530006, Guangxi, China.

dThe New Rural Development Research Institute, Guangxi University, Guangxi University, Nanning 530004, Guangxi, China.

eGuangxi Key Laboratory of Processing for Non-ferrous Metallic and Featured Materials, Guangxi University, Nanning 530004, Guangxi, China.

*Corresponding author. School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, Guangxi, China.

E-mail address: wenyanxuan@vip.163.com (X.Y. Wen).
Figure S1. (a) element mapping of PC and (b) high-resolution TEM images of PC

Figure S2. High-resolution N 1s spectra of NPC.

Figure S3. Electrochemical performance of nitrogen-doped without ZnCl2 (nPC) pinecone-based carbon: (a) cyclic-voltammetry curves at 0.1 mV s\(^{-1}\) (b) galvanostatic charge/discharge profiles of first cycle at 50 mA g\(^{-1}\)
Figure S4. Electrochemical performances of commercial graphite (CG) and nitrogen-doped pinecone-based carbon (NPC): (a) cycle stability at 50 mA g$^{-1}$; (b) rate performance.

Figure S5. (a) SEM images of nPC in the fresh state and (b) in the 1000th cycle.