Review

25 years of African trypanosome research: From description to molecular dissection and new drug discovery*,**

Keith R. Matthews*

Centre for Immunity, Infection and Evolution, Institute for Immunology and Infectious Research, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JT, UK

A R T I C L E I N F O

Article history:
Available online 28 February 2015

Keywords:
Trypanosoma brucei
Molecular parasitology
Trypanosome

A B S T R A C T

The Molecular Parasitology conference was first held at the Marine Biological laboratory, Woods Hole, USA 25 years ago. Since that first meeting, the conference has evolved and expanded but has remained the showcase for the latest research developments in molecular parasitology. In this perspective, I reflect on the scientific discoveries focussed on African trypanosomes (Trypanosoma brucei spp.) that have occurred since the inaugural MPM meeting and discuss the current and future status of research on these parasites.

© 2015 The Author. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Contents

1. Introduction .. 30
2. The genome .. 31
3. Antigenic variation ... 32
4. Human serum resistance and trypanolytic factors ... 32
5. Cell structure, cell cycle and life cycle .. 33
6. Life cycle ... 34
7. Post-transcriptional gene expression regulation .. 34
8. Genetic tools to understand gene function .. 35
9. Drug discovery .. 36
10. Future perspectives .. 36
Acknowledgements .. 37
References ... 37

1. Introduction

The Annual Molecular Parasitology Meeting started in Woods Hole on September 9th 1990 and, with the exception of the tragically disrupted conference in September 2001 (when a mini-meeting was held involving those able to attend), has hosted 300 or more delegates for 25 years. Woods Hole was the natural home for the conference, it being the base of the long running Biology of Parasitism Summer School, and has provided many young molecular parasitologists with their first exposure to a vibrant, sometimes intimidating, international research conference [1]. Although the emphasis of the conference has changed over the years, such that the early presence of (even then only a few) helminth molecular biologists diminished and apicomplexan biology has come to dominate, a core focus on trypanosomes and particularly African trypanosomes has remained. In this perspective, I reflect on the breath-taking developments in our knowledge of the biology and molecular biology of Trypanosoma brucei that have occurred over the last 25 years and highlight the discoveries, technologies and

* Tel.: +44 131 651 3639; fax: +44 131 651 3670.
E-mail address: keith.matthews@ed.ac.uk

http://dx.doi.org/10.1016/j.molbiopara.2015.01.006
0166-6851/© 2015 The Author. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
controversies that have made this conference such an exciting event in our scientific calendar (Fig. 1A). I also consider, almost certainly naively, how research into trypanosomes may develop in future. I emphasise also that this perspective is personal and not comprehensive; I have certainly omitted many key discoveries and debates either through poor recollection or through simply missing key sessions whilst in the Captain Kidd. Notably, I have focussed on the developments in the molecular and cellular biology of trypanosome parasites to the detriment of many of the biochemical processes that have proved so fascinating over the last 25 years.

2. The genome

Although not formally published as a draft genome until 2005 [2], sequencing efforts underpinned many of the discoveries in trypanosome biology far earlier. In the late 1980s the state of the art represented chromosome walking along VSG gene transcription units through the isolation of overlapping bacteriophage lambda clones, allowing a description of the architecture and gene composition of the telomeric expression sites [3–5]. Beyond this, gene sequence analysis involved cloning from plasmid and phage libraries after hybridisation with labelled cDNA or oligonucleotide probes and, from the late 1980s, exploitation of the recently-discovered PCR technology using (at the time expensive) oligonucleotide primers. Systematic genome sequencing efforts began with Chromosome Ia (funded initially by the WHO) and thereafter Chromosomes IX, X, XI and Chromosomes II–VIII, funded by the Wellcome Trust and NIAID respectively, with leadership from (among others) Sara Melville, Andy Tait and Keith Gull (in the UK) and Elisabetta Ullu, Ken Stuart, George Cross and John Donelson (in the US). These efforts focussed on T. brucei TREU 927/4, a strain competent for progression through the entire life cycle [6], though most lab research at the time and subsequently has focussed on T. brucei Lister 427, which compromises some biological characteristics (pleomorphism, efficient tsetse passage) for rapid growth in vivo and in vitro and a low frequency of antigen switching, this facilitating some studies on antigenic variation. Since the publication of the genome for T. brucei (coincidentally with Trypanosoma cruzi and Leishmania major), assemblies of several further trypanosome genomes have been generated, including
different strains and species (T. congolense, T. vivax, T. evansi, T. grayi; http://tritrypdb.org) whereas the difficult to clone and assemble telomeric sequences have been derived through TAR cloning, allowing expression site architectures to be compared across the genome and between species [7,8]. All of these efforts, of course, have made an enormous contribution to our ability to interrogate gene function, gene expression and genome regulation and almost every publication today in trypanosome molecular parasitology makes use in some way of the information generated, and made accessible through the efforts of the genome sequencers, curators and bioinformaticians.

3. Antigenic variation

Trypanosome populations escape immune clearance by antibody responses through their capacity for antigenic variation. The protein responsible, the variant surface glycoprotein, was well characterised in 1990, and the structure solved to 2.9-angstrom resolution [9]. The N- and C-terminal domains provide for antigenic diversity and membrane association, respectively, with antibodies being inaccessible to the more conserved membrane-proximal domain on live parasites [10]. The protein is anchored to the lipid membrane via the glycosylphosphatidylinositol (GPI) lipid anchor and the pathway of its assembly was established 25 years ago [11–13]. However, since then characterisation of the enzymes involved in the synthesis and addition of this essential component of the surface coat of the parasite has provided a detailed description of its assembly pathway, these steps also providing potentially excellent targets for drug development efforts [14–16]. The fluidity of the VSG on the parasite surface enabled by GPI anchoring and its rapid recycling by the parasite [17] also revealed a new facet of the VSG’s contribution to immune evasion, namely hydrodynamic flow [18]. Here, bound antibodies are swept towards the flagellar pocket of the parasite for endocytosis through the swimming action of the parasite in blood. Although this only delays the inevitable destruction of the parasite as antibody titres increase, the increased survival time of the parasite might provide a useful component of their infection dynamics immediately prior to clearance of a given variant type by the immune system. Hydrodynamic flow is particularly effective on transmission stage stumpy forms of the parasite, and its action might therefore prolong the lifespan of these irreversibly arrested parasites, increasing their probability of tsetse uptake.

In the late 1980s, a combination of run-on transcription analysis and analysis of the sensitivity of transcription units to UV-induced nucleotide dimerization demonstrated that VSG expression sites were polycistronic [3,5,19,20], with a distant upstream promoter driving transcription through a number of expression site associated genes (ESAGs) before reaching the telomere-proximal VSG gene itself. The polymerase responsible for transcription was known to be unusual, with RNA polymerase II (pol II) lacking the conventional C terminal extension [21], and inhibition studies using the RNA pol III inhibitor alphaamanitin having indicated that VSG expression site transcription was mediated by RNA polymerase I (pol I) [22–24]. Formal biochemical support for this using in vitro transcription assays and polymerase subunit depletion was provided in 2003 from the Gunzl lab [25], with the unusual nature of the pol complex being subsequently revealed by affinity purification [26].

The mechanism of antigen switching was also well characterised before 1990, with a classical cassette-based model for VSG switching, whereby intact antigen encoding genes were activated either by changes in the activity of an expression site (from around 15 to 20) or from translocation into an active expression site by gene conversion or reciprocal telomeric exchange [27,28]. With a large repertoire of VSG genes available in the trypanosome genome (>1000 based on hybridisation studies; [29]) this provided a significant pool of available antigen types to ensure long-term immune evasion. Although this model provided a textbook mechanistic basis for the gene rearrangements associated with antigen switching in trypanosomes, analysis of the genome revealed that it was an oversimplification. Rather than a pool of intact VSG genes, the genome was found to contain a majority of incomplete VSG genes that required to be assembled into functional mosaics [30,31]. This was a surprise, with immediate implications for the potential size of the available VSG repertoire (essentially infinite) and also the probability of VSG gene activation and the ordering of the appearance of new antigen types [32].

The existence of several expression sites raised the question of how exclusive activation of only one expression site at a time was achieved, and also why more than one expression site was necessary. The first of these questions was resolved by the discovery of an extranucleolar RNA polymerase I transcription factory, termed the expression site body (ESB) [33]. This provided a positional and structural entity where monoallelic exclusion could be achieved through the restricted association of only one telomeric expression site to the ESB at any one time, with control being assisted by epigenetic mechanisms. Recently regulators of the telomere silencing machinery have been uncovered, bringing molecular understanding of the long-recognised stringent control of ES repression [34–37]. Although both VSG and procyclins, the surface proteins expressed on the procyclic stage of the parasite, are both pol II transcribed, the ESB was bloodstream form specific, with telomeric association with the nuclear periphery being lost during differentiation from the bloodstream to the procyclic forms.

In procyclic forms procyclin transcription is nucleolar [38]. A potential answer to the second question, a reason for the existence of more than one expression site, was suggested after the discovery that the promoter-proximal expression site associated genes, ESAG6 and 7, encoded a heterodimeric receptor, responsible for the uptake of iron from the host bloodstream in the form of transferrin [39]. The existence of microheterogeneity in the ESAG6 and 7 sequences from different expression sites led to the hypothesis that different expression sites might be optimised for transferrin uptake in different hosts [40], which exhibit subtly different transferrins. This attractive model proposed that the activity of different ES would provide a growth advantage in different host sera, but experimental support remains equivocal [41]. A second expression site associated gene, ESAG4, was known to encode an adenylate cyclase activity [5,42] although its function was unclear until recently. Studies focussed on the early infection of parasites expressing a dominant negative form of ESAG4 (necessary because the large number of ESAG4 genes in the genome precluded either gene knockout or gene silencing approaches) revealed that parasites were less able to establish infection in a mouse model [43]. This was proposed to be due to the effect of the ESAG4 activity on macrophages when trypanosomes were phagocytosed, the consequence of which was to inhibit macrophage activation and so promote the survival of parasites still circulating in the bloodstream. Other expression site associated genes remain of cryptic function although three (ESAGs 1, 2 and 8) have been reported to be involved in the developmental capacity of parasites undergoing VSG switching [44], with one of these (ESAG8), proposed to be nucleolar, also being potentially involved in translational regulation through the action of Puf proteins [45,46].

4. Human serum resistance and trypanolytic factors

Although the function of many ESAGs remains unclear, one ESAG, found only in T. brucei rhodesiensis, has a confirmed role in the resistance of these parasites to human serum trypanolytic factors. Raymond Hamers identified mRNAs associated with parasites
that were resistant to human serum lysis [47,48] and after involve-
ment with Patrick De Baetselier, Etienne Pains demonstrated the gene responsible for conferring resistance was an expression site
associated gene apparently derived from a VSG sequence, termed
serum resistance associated (SRA) [49]. SRA was found in a trun-
cated expression site and its expression was directly linked to
serum resistance, both in parasites that fluctuated in their serum
resistance phenotype (due to different expression site usage, where
only one expression site contained SRA) and in transgenic T. brucei
engineered to express SRA. Indeed, SRA was found to be diagnos-
tic for T. b rhodesiense providing a key field tool to identify human
inf ective parasites circulating in a zoonotic infection cycle [50,51].

The mechanism of SRA action and the trypanolytic components
of human serum have been controversial over the last 25 years,
but a consensus has emerged. Human serum contains trypanolytic
activities within high density lipoprotein (TLF1) and IgM complexes
(TLF2). TLF1, which contains haptoglobin-related protein (HPR) in
complex with haemoglobin, is taken up by trypanosomes through
their haptoglobin/haemoglobin receptor (TbHpHbr) [52]. TLF2, in
contrast, does not enter the trypanosome via the TbHpHbr but
instead seems to be internalised after relatively non specific inter-
action, possibly with the VSG at the parasite surface. This pathway
is more relevant at physiological concentrations of HPR, where
haptoglobin concentrations render the TLF1 pathway likely inop-
erative through receptor competition [53,54]. Both TLF1 and TLF2
mediate trypanosome killing through the action of Apol1 [55,56],
which inserts in the endosomal membrane and, upon entering the
lysosome permeabilizes the membrane causing swelling through
chloride ion influx and then osmotic lysis. Resistance in T. b rhode-
siense is mediated through SRA binding to Apol1 during trafficking
to the lysosome, which inactivates its lysosomal pore forming capa-
bilities [57,58].

The SRA gene is absent in T. b gambiense, where human serum
resistance is mediated by an alternative protein also apparently
derived from a VSG sequence [59,60]. This molecule, TgsGP, acts
to rigidify the lysosomal membrane, rendering it less susceptible
to permeabilization by Apol1, thereby preventing parasite lysis
[60]. Uptake of TLF1 is also limited in T. b gambiense parasites
by inactivation of the TbHpHbr, which prevents parasite killing
under conditions of hypohaptoglobinanaemia, common in malaria
endemic regions through selection for the sickle cell trait. Recep-
tor inactivation was necessary because affected individuals release
haemoglobin reducing the abundance of haemoglobin-haptoglobin
complexes [61], favouring the TLF1 pathway.

As well as parasite adaptive mechanisms, trypanosome hosts
have also evolved effective countermeasures to protect them-
selves from parasite infection. The evolution of APOL1 in old world
monkeys conferred resistance to Trypanosoma brucei spp., whereas
in baboons the Apol1 C-terminal sequence enables trypanolytic
activity even in the presence of SRA [62]. This represents an inter-
esting potential response to the evolution of trypanosomes able
to escape Apol1 mediated lysis, a phenomenon also detected in
human populations where two mutations in Apol1 are enriched
in populations of recent African origin, albeit with a concomitantly
increased risk of kidney disease [63,64].

5. Cell structure, cell cycle and life cycle

The first quantitative temporal descriptions of the trypanosome
cell cycle were published in 1989 [65], with the kinetoplast and
nuclear replication and division cycles being described in 1990 [66].
These have provided the template for many analyses of pheno-
types generated upon gene deletion by RNAi and gene knock out.
For the complex network of kinetoplast DNA, minicircle replica-
tion has been found to involve detachment from the compacted
kDNA network, replication at antipodal replication sites, followed
by reinserter into the network [67,68]. The kDNA is itself seg-
regated through attachment to the basal body via a filamentous
network, the tripartite attachment complex [69], that spans from
the kinetoplast DNA, through the mitochondrial membrane, attach-
ing ultimately to the basal body of the trypanosome flagellum.
The molecular components of this machinery have started to be
identified [70–72], with one component, AEP1, apparently being
generated by the alternative RNA editing of COXIII transcripts [73].
Failure to successfully replicate or segregate the kDNA results
in the generation of dyskinetoplastid (DK) parasites, lacking a mito-
chondrial genome. Although these are inviable in the insect vector,
DK parasites can survive in the bloodstream in the presence of a
mutation in the F1F0 ATPase gamma subunit that allows them to
generate a mitochondrial membrane potential in the absence of
kDNA-encoded factors [74,75].

For nuclear DNA, early pulsed field gel electrophoresis stud-
ies of the chromosome events associated with antigenic variation
had revealed the existence of large numbers of minichromosomes,
as well as the 11 diploid chromosomes [76,77]. The minichromi-
osomes apparently increase the pool of telomeric VSG genes for
antigenic variation, but necessitate a distinct spindle apparatus to
that of higher eukaryotes to allow chromosome segregation in the
absence of a kinetochore and microtubule structure for each and
eyery chromosome. This is achieved through microtubules that
r un pole–pole, allowing 50–150 kB minichromosomes to be segre-
gated with fidelity [78]. For the megabase chromosomes, the site of
kinetochore binding at centromeres was unclear until a recent
iterative immunoprecipitation process allowed the isolation of a
coherent kinetochore protein complex unlike that identified in any
eukaryote to date [79]. The replication machinery for nuclear DNA
is also unusual, particularly in the formation of the early replication
complex. Nonetheless, the components are beginning to be eluci-
dated and this reveals features in common with other eukaryotes,
including the presence of multiple, albeit widely spaced, origins
perhaps to avoid interference with the transcription machinery
operating on the long polycistronic transcription units that char-
acterise gene organisation in kinetoplastid parasites [80,81].

As well as the as DNA containing organelles, there has been
considerable focus over the last 25 years on the structure of the
other single copy organelles within the trypanosome cell. A partic-
ular focus has been on the flagellum, where the genetic tractability
of trypanosomes has provided an excellent model for eukaryotic
flagellar biology, an area of significant and widespread interest
through the role of flagellar and cilia defects in several human
diseases [82–84]. The flagellum comprises the conventional 9 + 2
axoneme plus an associated paraflagellar rod structure that assists
parasite swimming [85]. In the procyclic forms of the parasite, posi-
tional information for flagellar duplication is provided by a flagellar
connector structure that ensures that the new flagellum tracks
along the path of the old flagellum [86] with a subpellicular flagel-

am attachment zonezippering the flagellum along the cell body.
While fundamental, the absence of an easily recognisable flagellum
connector in bloodstream form parasites [87] remains a conun-
drum. Protein trafficking along the flagellum during its growth and
only established is achieved via intraflagellar trafficking similar
to the process seen in other eukaryotes [82]. This is accompanied
during outgrowth of a daughter flagellum by detailed positional
restructuring as the flagellum emerges from the parasite’s flagellar
pocket, a precisely organised invagination of the cell surface that
controls membrane recycling and exchange with the environment
[88]. This establishes the correct cellular architecture necessary for
the production of a viable daughter cell [89].

The same problem accompanies the replication and segregation of
other single copy organelles. The Golgi, for example, is segre-
gated in association with a bilobe structure [90,91] located close
to the mouth of the flagellar pocket and aligned with the flagellar
attachment zone. This complex is replicated with fidelity in procyclic forms, but less so in bloodstream forms. The secretory path is also similar to that of other eukaryotes but tuned for efficient VSG trafficking in the bloodstream forms [92]. Indeed, endocytosis is far more active in bloodstream forms than procyclic forms, with Rab11 apparently being a key player in the process, acting in concert with other conserved and evolutionarily divergent components of the endocytic apparatus to enable VSG recycling and the removal of VSG associated immunoglobulins via the lysosome [93]. The mitochondrion also requires replication and segregation of its genome, as well as duplication and segregation of the organelle itself. Both processes depend on import of nuclearily encoded mitochondrial proteins. The import machinery is not well conserved with respect to other eukaryotic organisms and instead the basic outer membrane import protein was suggested to be of bacterial origin [94]. A further organelle type linking eukaryotic and prokaryotic cellular evolution was the discovery of acidocalcisomes in T. cruzi by Roberto DoCampo [95]. These provide an acidic calcium store enriched in Pi, PPI and polyphosphate and have been found in other kinetoplastids, but also apicomplexans, Chlamydomonas, bacteria and also metazoa – suggesting their origins prior to the divergence of eukaryotic and prokaryotic cells [96]. These appear to have shared functions to control osmotic balance as well as cation and phosphate stores, with the discovery of IP₃R in the acidocalcisomes of trypomosones also indicating a role in cell signalling [97,98].

6. Life cycle

Life cycle events differ importantly between different African trypanosome species, but most understanding and progress has been made with T. brucei. In the 1980s almost all laboratory work focussed on laboratory-adapted bloodstream form lines, termed monomorphs, and long-term cultured procyclic forms. However, in 1990 Ziegelbauer and colleagues [99] described the synchronous differentiation of bloodstream to procyclic forms using pleomorphic parasites (i.e. those capable of generating transmissible stumpy forms, a trait reduced in laboratory-adapted monomorphic lines) stimulated by the differentiation triggers citrate and cis-aconitate. This enabled the tractable dissection, in vitro, of developmental events as parasites differentiated from arrested bloodstream stumpy forms, which accumulate at peak of parasitaemic waves in rodent infections, to procyclic forms. Early studies established that stumpy forms were uniformly arrested in their cell cycle in G1 [100,101] and underwent a simultaneous cell cycle re-entry and differentiation within a matter of hours in vitro, with differentiation competence proposed to be linked to cell cycle arrest in G1/G0 [101]. Soon after differentiation the parasites express different isoforms of the procyclic form surface coat, initially EP and GPEET procyclin (early procyclic forms) but then only EP procyclin (late procyclic forms) [102–104]. In the fly’s salivary glands, the insect forms undergo further development to epimastigote forms after an asymmetric division, where they express a new surface protein BARP, this eventually being replaced by VSG upon differentiation to metacyclic forms [105]. The physiological stimuli for the various developmental events during the life cycle remain unclear in most cases, though the production of stumpy forms seems to be stimulated by a parasite-derived signal termed stumpy induction factor [106]. Whatever the specific molecular trigger, numerous components of the signalling response pathway required for slender-to-stumpy differentiation have recently been characterised [107]. Once generated, stumpy forms are able to perceive entry into the tsetse fly through their expression of the surface PAD family of proteins that convey the citrate/cis-aconitate signal [108], to which they are hypersensitive at low temperature [109]. Signalling upon entry into the tsetse fly is mediated by a phosphatase-signalling cascade that is trafficked to the glycosomes [110–112].

After differentiation from early to late procyclic forms, an event promoted by hypoxia and/or glycerol exposure in vitro [102], procyclic forms multiply until passage through to the salivary glands, where epimastigotes form after an asymmetric division [113,114]. The journey to the salivary glands represents a strong bottleneck in the life cycle of the parasite [115], after which epimastigotes multiply whilst attached to the salivary gland wall. Some of these cells then undergo meiosis and sexual exchange, these events having been visualised by the expression of conserved meiosis specific proteins [116] and the appearance of fused cells after dual infection of tsetse flies with parasites expressing either red or green marker proteins, generating yellow cells [117].

Finally metacyclic forms are produced, which are arrested in division and re-express the VSG in preparation for infection of new mammalian hosts. Recapitulating in vitro the generation of metacyclic forms in the salivary glands from epimastigote forms has recently been achieved for T. brucei, this being driven, albeit inefficiently, by the overexpression of a small RNA binding protein, RBP6 [118]. This highlights that single protein expression changes can drive surprisingly complex developmental events, an observation reinforced by the morphological events induced by perturbed expression of the ALBA 3 and 4 proteins [119] and a calpain-like protein [120] and gene regulatory changes linked to perturbing the RNA helicase DHH1[121].

7. Post-transcriptional gene expression regulation

The organisation of the trypanosome genome into polycistronic transcription units was established in the late 1980s, reflecting that it was not only the VSG gene transcription unit that contained multiple genes but that this was a general genome-wide phenomenon [122,123]. Despite this multi-gene organisation, there remains little evidence for co-regulated operons such that the emphasis in gene regulation in trypanosomes is post-transcriptional. Transcription is initiated at the boundary of, and in some cases within, monodirectional gene clusters from ill-defined polymerase II promoter sequences marked by an enrichment of the histone variants H4K10ac, H2AZ, H2BV, H3 V and H4 V and the bromodomain protein BDF3 [124]. The transcription complex and the structure of individual transcription factors is unusual [125–127], with the primary transcripts from polycistronic transcription units being co-transcriptionally processed by trans splicing at the 5' end of each mRNA and polyadenylated at the 3' end, in a mechanistically coupled process [128]. The paradigm that there is an absence of cis-splicing still holds true for almost all genes in the trypanosome genome, although two genes have been discovered that exhibit cis-splicing [129], and the importance of alternative splicing to create distinct protein products, or proteins with altered localisation signals is becoming apparent [130,131]. Transcription termination at the boundaries of polycistronic transcription units appears to be associated with an accumulation of the Base J [132], a novel nucleotide produced in trypanosomes by the action of two biosynthetic enzymes [133].

To achieve differential mRNA abundance for transcripts derived from the same transcription unit, differential mRNA stability seems to be the dominant mechanism of control. The most definitive early studies focused on the procyclin mRNAs, where the focus of regulation operates through the 3' UTR (though transcriptional control also contributes to this RNA poll transcribed gene family) [134]. Both positive and negative elements were mapped using reporter assays, suggesting the existence of regulatory loops controlling mRNA stability/instability and translational efficiency. For GPEET procyclin, environmental factors were also able to
regulate developmental expression, such that the 3' UTR contained sequence motifs responsive to the presence of environmental glycerol or hypoxia [102]. The focus of gene regulation on the 3' UTR of regulated genes has remained a common theme through the analysis of many differentially expressed genes and gene families, but the identification of conserved linear or obvious secondary structural motifs has remained challenging. This partly reflects the difficulties in accurately predicting folding profiles for mRNA sequences by computational means alone, but also is a likely consequence of the use of multiple combinations of different regulatory RNA binding proteins to achieve complex regulatory events for co-regulated gene products.

Consistent with the post-transcriptional focus of gene regulation in trypanosomes, the parasite genome encodes a large repertoire of potential RNA regulators, some with confirmed functions in the control of stage-regulated genes [135]. After 15 years effort, regulators of procyclin mRNAs have emerged [136,137], and more recently a regulatory factor controlling many membrane-associated proteins has been identified [138], as has a stem-loop structure present on purine responsive genes [139]. In addition to these specific regulatory factors and sequences, more general regulatory factors have been characterised in detail. Hence, the core machinery linked to mRNA decay has been characterised and conserved components of the translational apparatus have been described [140,141]. As well as these machineries, the molecular cartography of gene expression and protein expression changes associated with different tractable parasite life cycle stages has been achieved, starting with differential display and subtractive hybridisation approaches, and thereafter by genomic arrays and microarrays, SAGE and RNA-Seq [142] and, most recently, SILAC proteomics and phosphoproteomics [143,144], ribosome profiling [145] and description of the small proteome [146]. These have led to increasingly detailed descriptions of the molecular profile of trypanosome developmental forms such that published differences are now less due to differences in methodology and resolution and more due to biological differences (media, isolation procedures, strains, growth characteristics, etc).

Whether specific genes are perturbed or not, these outputs all provide data resources that will hopefully allow interconnected regulatory events to be understood, clarifying how transcriptional, mRNA processing, mRNA turnover, translational and post translational regulatory events are integrated to generate a physiological response. This kind of integrated modelling at the biochemical level was pioneered in the trypanosome system through the genetic and biochemical analysis of glycolytic compartmentation in specialised glycosomes, the glycosomes [147–149]. This revealed that compartmentation of the glycolytic enzymes within the glycosomes was a key parameter to prevent glycolysis running out of control through the turbo design of the process, given the lack of feedback control mechanisms typical for other eukaryotes. This iterative interaction between mathematical prediction and experimental observation provided one of the earliest examples of a systems approach to understand biological networks [150], and has considerable potential to identify vulnerable biochemical control points to target pharmacologically. Many of these have been identified over the last 25 years, highlighting that trypanosomes exhibit extreme biochemical diversity as well as molecular and cellular diversity between life cycle stages and between different trypanosome species [151,152]. Highlighting these distinctions, bloodstream forms of the parasite use acetate produced in the mitochondrion via an ‘acetate shuttle’ and threonine to generate fatty acids, a process which is lethal if inhibited [153]. Similarly lipid biosynthesis in trypanosomes differs from mammalian hosts, offering targets for chemotherapy [154,155].

As well as nuclear gene expression, mitochondrial gene expression has remained an area of intense research activity. In 1990 the phenomenon of RNA editing was well established, with the role of the guide RNAs as templates of the process, and minicircles as the source of gRNA genes being reported in that year [156,157]. The mechanistic details of the process have been filled in considerably since then, with components of the editing machinery (the editosome) being identified, and uridine insertion and deletion activities characterised [158]. When combined with the RNA components, the 20S editosome protein complex – which contains the reaction centre that achieves mRNA cleavage, U insertion or deletion and relocation – has been proposed to form a 35–40S complex [158]. Whilst this description of the components and action of the different subunits of the editosome has advanced significantly, providing potentially important drug targets [159], it emerged that editing is but one component of a complex mitochondrial gene expression network, with pentatricopeptide repeat-containing proteins assuming a key role [160]. A clear hypothesis for the function of the energetically expensive editing process remains elusive, although intriguing possibilities for how and why it might have evolved have been proposed [161,162].

8. Genetic tools to understand gene function

The rapid experimental advances over the last 25 years detailed above have been enabled by a series of technical breakthroughs such that trypanosomes now represent one of the most tractable microbial eukaryotes. In 1990, transient transfection of trypanosomes was possible [163,164] and the first MPM meeting reported homologous recombination of constructs into the trypanosome genome allowing the selection of the stable transgenic parasite lines needed for biochemical and molecular analysis. This was a key breakthrough since prior to that point the sophisticated molecular analyses of trypanosomes were necessarily descriptive. However, with gene knockout feasible through efficient homologous recombination, the ability to create null mutants, or to ectopically overexpress genes allowed experimental intervention and phenotypic analysis to uncover novel biology. Key to these early analyses was the development in the Clayton and Cross laboratories of inducible expression systems based on the incorporation of tetracycline operator sequences into the identified procyclin gene promoter, and subsequently T7 RNA polymerase promoter, such that expression could be regulated by tetracycline in a cell line expressing the tetracycline repressor protein [165–167]. Although this allowed the development of conditional knockout out approaches to analyse gene function, the diploid genome of the parasite in both bloodstream and procyclic forms, and the relative inefficiency of stable transfection (particularly in the bloodstream form) meant that the analysis of genes was laborious and low throughput.

In 1998 a dramatic technical development was achieved through the identification by Elisabetta Ullu’s laboratory of an active RNA interference pathway in T. brucei, essentially contemporaneously with its discovery in other systems [168]. Initially discovered through the cytoskeletal perturbation generated (‘FAT’ phenotype) after the expression of a double stranded RNA segment derived from the tubulin gene locus, the ability to effectively silence gene expression in trypanosomes by the expression of double stranded RNA derived from a target gene of interest (generated either as two complementary transcripts from opposing promoters [169,170] or as a single ‘stem loop’ transcript [171,172]) has revolutionised gene function analysis. In a single round of transfection into a cell line already expressing the tetracycline repressor, genes could be silenced or not by the inclusion or absence of tetracycline in culture medium, or doxycycline in the water of infected rodents. Importantly, the organelle and cell structural markers characterised earlier provided the simple phenotypic assays to monitor effects on cell shape and cell cycle progression, providing
rapid visual clues to the function of silenced genes. Since its discovery, over 500 papers have described the use of RNAi to analyse gene function in trypanosomes [173], reflecting the rapid application of this important tool in trypanosome cell molecular biology, this being assisted by many improvements and refinements in the sophistication of constructs used for transfection and the increasing availability of selectable markers.

As well as using RNAi for reverse genetic analysis of gene function, it is increasingly used as a tool for forward genetic selection. The first genome wide RNAi library was created in Paul Englund’s lab, which applied concanavalin A binding selection to isolate parasites unable to produce EP procyolin [174]. This identified hexokinase silencing as an unexpected regulator of procyolin expression but was laborious, requiring 5 × 10⁶ parasites to be transfected in 50 transfections to provide sufficient genome coverage.

For bloodstream forms, the lower transfec­tion efficiency precluded forward genetic approaches until higher efficiencies were achieved through the use of Amaxa nucleofector technology [175]. Integration efficiency was also improved by the creation of targeted double stranded breaks using a meganuclease that acts as a catalyst for homologous recombination at a specific target site [176–178]. Through these approaches genome-wide phenotypic approaches became feasible in the disease-relevant bloodstream form of the parasite, selections first being applied to drug resistance mechanisms. After exposure of RNAi libraries to different therapeutically important drugs, genes whose silencing allowed survival could be identified by isolation of the RNAi inserts enriched in the selected populations by PCR amplification. This resulted in the simultaneous confirmation of the AAT transporters as a resistance target for eflopronithine in the Horn and Roditi labs [179,180], with this being followed up by high throughput analysis of selected inserts by RIT-Seq analysis [181]. Application of this approach to identify essential genes [181], genes linked to drug resistance [182], and subsequently to genes associated with qurorn sensing pathways in the parasite [107], have provided detailed insight into important phenomena in the parasite unbiased by prior knowledge. This represents an enormously powerful benefit of this approach, which is able to associate genes of no known function with selectable phenotypes, providing a genome-wide annotation of hypothetic protein classes of otherwise unpredictable function.

9. Drug discovery

In the last 25 years there has been an explosion in research directly focused on therapies for African trypanosomiasis, with 21% of manuscripts in 1990 mentioning ‘drug + brucei’ vs. ‘brucei’ alone (89/418 papers) whilst in 2013, this had increased to 41% (275/666 papers). This effort has not been accompanied by the emergence of many new drugs to treat the disease, but very promising progress is being made (Fig. 1B). In 1996, eflopronithine was first licensed for use against T. b. gambiense, and since then NECT (nifurtimox eflopronithine combination therapy; launched in 2009) has also been applied successfully. This reduces the time needed for treatment from 14 to 10 days and the number of intravenous doses required is reduced by 75%, with an overall halving of the therapeutic cost [183]. Major effort has also been put in to the development of inhibitors for new targets identified as essential to the parasite after experimental validation, genome prediction of pathway dependencies or from cell based high throughput screening of drug libraries against parasites in culture. Target based approaches have identified N-myristoyl transferase as potentially suitable for therapeutic inhibition [184] but for other targets molecular or in vitro inhibition assays have not always proven reliable indicators of in vivo efficacy [185]. In consequence there has been some shift in focus away from molecular targets defined a priori towards high throughput phenotypic screening to rapidly identify cell permeable inhibitors that are toxic to the parasite but not host cells. This has been enabled by the development of robotic screening approaches and partnerships between academia and pharmaceutical companies allowing access to expertise, equipment and compound libraries not otherwise available or practicable in a university setting. Promising outcomes from this phenotypic screening approach have been development of the orally effective drugs fexinidazole, which is currently in phase III clinical trials and oxaborole SCYX-7158 in phase I clinical trials [186].

These efforts provide encouragement that effective new therapies will be delivered for human African trypanosomiasis, but major challenges to disease control remain. Firstly, drug development is enormously expensive yet trypanosomiasis therapy offers no prospect of a commercial return. This places the emphasis of drug development on governments, charities and industrial philanthropy, when other diseases demand greater attention or are more immediately pressing. This challenge has been met by the establishment of effect public–private partnerships, for example DNDi, bringing partners together to establish collaborations and accelerate drug development. Secondly, any developed therapies may be beyond the health budgets of afflicted regions, particularly those facing ongoing political and economic upheaval. Thirdly, due to a decrease in the number of cases of human African trypanosomiasis in recent years the impact of trypanosomiasis on humans is now largely indirect, through the effects of the parasite on livestock. However, the major livestock trypanosomatids, T. congolense and T. vivax, have not been the focus of most drug screening efforts and their biology and biochemistry may be sufficiently different to restrict drug efficacy, a point well illustrated by the relative insensitivity of T. b. rhodesiense to eflopronithine when compared to T. b. gambiense [187]. Moreover, the mode of action of drugs used against the livestock parasites is relatively unexplored with even ethidium bromide (a commonly used trypanocide in livestock) only being recently characterised [188]. Finally, the importance of trypanosomiasis as a zoonosis is often overlooked, such that preventing human infection requires animal infections to be specifically and actively targeted [50], a major challenge given the broad host range of human infecting trypanosomes.

Despite these challenges, molecular parasitology has offered direct opportunities for control, an example being the exploitation of the mechanism of human resistance to animal trypanosomes through the engineering of cattle expressing APOL1 [189]. Conversely, drug screening efforts have the potential to provide new biological insight, through the identification of tool compounds that assist the dissection of biological processes particularly when in combination with genome wide approaches to identify molecular pathways perturbed by particular inhibitors [190]. Hence, there is every prospect that brute force drug screening efforts will reap rewards not only in new therapies, but also through illuminating areas of parasite biology that would otherwise not be predicted through conventional hypothesis-driven research.

10. Future perspectives

The last 25 years of research into African trypanosomases has uncovered many key aspects of the parasite’s biology. During this time, the number of human cases of the disease have increased and then decreased again, such that current reported cases are less than 10,000 per year. Although this has raised hopes for the elimination of the disease, it is cautionary to note that the level of infections currently are still higher than in the 1960s and that the main foci of human infections, the Democratic Republic of Congo, Central African Republic and South Sudan are currently undergoing violent political unrest, conditions that are ideal for resurgence of trypanosomiasis in the coming years. Furthermore, the livestock
Acknowledgements

I am grateful to my colleagues Paul Michels and Achim Schanufer who provided invaluable comments and suggestions for improvement of this manuscript. Work in Keith Matthews’ laboratory is funded by the Wellcome Trust (WT088293 and WT103740) and is based in the Centre for Immunity, Infection, which is supported by the Wellcome Trust (WT095831). Keith Matthews is a Wellcome Trust Senior Investigator and a ‘Royal Society Wolfson Research Merit’ award holder.

References

[1] Borst P, Nussenzweig V. Molecular parasitology at Woods Hole. Cell 1992;71(6):895–9.
[2] Berriman M, Ghesdi E, Hertz-Fowler C, Blandin G, Renaud H, Bartholomeu DC, et al. The genome of the African trypanosome Trypanosoma brucei. Science 2005;309(5733):416–22.
[3] Kooter JM, van d-S-JH, Wagner R, d’Oliveira CE, van d-H-F, Johnson PJ, et al. The anatomy and transcription of a telomeric expression site for variant surface antigens in T. brucei. Cell 1987;51(2):261–72.
[4] Cully DF, Ip HS, Cross GA. Coordinate transcription of variant surface glycoprotein genes and an expression site associated gene family in Trypanosoma brucei. Cell 1985;42(1):173–82.
[5] Pays E, Teblabi D, Pays A, Coquelet H, Revelard P, Salmon D, et al. The genes and transcripts of an antigen gene expression site from T. brucei. Cell 1989;57(3):835–45.
[6] van Deursen FJ, Shahi SK, Turner CM, Hartmann C, Guerra-Giraldez C, Matthews KR, et al. Characterisation of the growth and differentiation in vivo and in vitro of bloodstream Trypanosoma brucei brucei strain TREU 927. Mol Biochem Parasitol 2001;112(2):163–71.
[7] Becker M, Aitchinson N, Byles E, Wickstead B, Louis E, Rudenko G. Isolation of the repertoire of VSG expression site containing telomeres of Trypanosoma brucei 427 using transcription-associated recombination in yeast. Genome Res 2004;14(11):2319–29.
[8] Young R, Taylor JE, Kurioka A, Becker M, Louis EJ, Rudenko G. Isolation and analysis of the genetic diversity of repertoires of VSG expression site containing telomeres from Trypanosoma brucei gambiense, T. b. brucei and T. equiperdum. BMC Genomics 2008;9:385.
[9] Freymann D, Down J, Carrington M, Roditi I, Turner M, Wiley D. 2.9 A resolution structure of the N-terminal domain of a variant surface glycoprotein from Trypanosoma brucei. J Mol Biol 1990;216(1):141–60.
[10] Schwede A, Jones N, Engstler M, Carrington M. The VSG C-terminal domain is inaccessible to antibodies live trypanosomes. Mol Biochem Parasitol 2011;175(2):201–4.
[11] Fergusson MA, Homans SW, Dwek RA, Rademacher TW. Glycosylphosphatidylinositol moiety that anchors Trypanosoma brucei variant surface glycoprotein to the membrane. Science 1988;239(4841):753–9.
[12] Masterson WJ, Raper J, Doering TL, Hart GW, Englund PT. Fatty acid remodeling: a novel reaction sequence in the biosynthesis of trypanosome glycosylphosphatidylinositol membrane anchors. Cell 1990;62(1):73–80.
[13] Masterson WJ, Doering TL, Hart GW, Englund PT. A novel pathway for glyco-assembly: biosynthesis of the glycosylphosphatidylinositol anchor of the trypanosome variant surface glycoprotein. Cell 1989;56(5):793–800.
[14] Ferguson MA, Brimacombe JS, Brown JR, Crossman A, Dix A, Field RA, et al. The GPI biosynthetic pathway: an alternative surface target for African sleeping sickness. Biochim Biophys Acta 1999;1455(2-3):327–40.
[15] Smith TK, Sharma DK, Crossman A, Brimacombe JS, Fergusson MA. Selective inhibitors of the glycosylphosphatidylinositol biosynthetic pathway of Trypanosoma brucei. EMBO J 1999;18(21):5922–30.
[16] Martin KI, Smith TK. The glycosylphosphatidylinositol (GPI) biosynthetic pathway of bloodstream-form Trypanosoma brucei is dependent on the de novo synthesis of inositol. Mol Microbiol 2006;61(1):89–105.
[17] Engstler M, Thilo L, Weise F, Grunfelder CC, Schwarz H, Bishart M, et al. Kinetics of endocytosis and recycling of the GPI-anchored variant surface glycoprotein in Trypanosoma brucei. J Cell Sci 2004;117(Pt 7):1105–15.
[18] Engstler M, Pohl P, Herrnhaus S, Bishart M, Wiegertjes G, Heddergott N, et al. Hydrodynamic flow-mediated protein sorting on the cell surface of trypanosomes. Cell 2007;131:505–15.
[19] Zomerdjik J, Ouelllette M, Ten Asphoek A, Kieft R, Bommer AMM, Clayton CE, et al. The promoter for the variant surface glycoprotein gene expression site in Trypanosoma brucei. EMBO J 1990;9(9):2791–801.
[20] Johnson PJ, Kooter JM, Borst P. Inactivation of transcription by UV irradiation of T. brucei provides evidence for a multicistronic transcription unit including a VSG gene. Cell 1987;51(2):273–81.
[21] Evers R, Hammer A, Kock J, Jess W, Borst P, Memet S, et al. Trypanosoma brucei contains two RNA polymerase II largest subunits genes with an altered C-terminal domain. Cell 1989;56(4):585–97.
[22] Kooter JM, Borst P. Alpha-amanitin-insensitive transcription of variant surface glycoprotein genes provides further evidence for discontinuous transcription in trypanosomes. Nucleic Acids Res 1984;12(24):9457–72.
[23] Rudenko K, Bishop D, Gottesdiener K, Van d-P-H. Alpha-amanitin resistant transcription of protein coding genes in insect and bloodstream form Trypanosoma brucei. EMBO J 1989;8(13):4259–63.
[24] Zomerdjik J, Kieft R, Shiels PG, Borst P. Alpha-amanitin-resistant transcription units in trypanosomes: a comparison of promoter sequences for a VSG gene expression site and for the ribosomal RNA genes. Nucleic Acids Res 1991;13(3):5153–8.
Taylor JE, Rudenko G. Switching trypanosome coats: what's in the wardrobe? Trends Parasitol 2006;22(1):614–6.

Gerrits M, Vanhollebeke B, Uzureau P, Lecordier L, Fontaine F, Tefabch, Hombre F, et al. Mechanism of Trypanosoma brucei gambiense resistance to human serum. Nature 2013;501(7467):430–4.

Pays E, Vanhollebeke B, Uzureau P, Lecordier L, Perez-Morga D, Taylor JE, and Perez-Morga D. The molecular arms race between African trypanosomes and humans. Nat Rev Microbiol 2008;6(12):575–84.

Thomson R, Molina-Portela P, Mott H, Carrington M, Raper J. Hydrodynamic gene delivery of baoboo trypanosome lytic factor eliminates both animal and human-infective African trypanosomes. Proc Natl Acad Sci U S A 2009;106(14):5710–5.

Woodward R, Gull K. Timing of nuclear and kinetoplast DNA replication and early morphological events in the cell cycle of Trypanosoma brucei. J Cell Sci 1990;95(Pt 1):49–57.

Ferguson ML, Torri AF, Perez-M D, Ward DC, Englund PT. Kinetoplast DNA replication: mechanistic differences between Trypanosoma brucei and human Trypanosoma cruzi. FASEB J 2006;20(13):2531–3.

Ogbadoyi EO, Robinson DR, Gull K. A high-order trans-membrane structural linkage is responsible for mitochondrial genome positioning and segregation by flagellar basal bodies in trypanosomes. Mol Cell Biol 2003;15(4):1769–79.

Schwanholz F, Niemann M, Doren N, Harsman A, Kasner S, Mani J, et al. Trypanosomal TAC40 constitutes a novel subclass of mitochondrial beta-barrel proteins specialized in mitochondrial genome inheritance. Proc Natl Acad Sci U S A 2014;111(21):7624–9.

Clain AM, Guer J, Pouwels ML, Gluenz E, Gull K, Smith TK, et al. Depletion of mitochondrial acyl carrier protein in bloodstream-form Trypanosoma brucei causes a kinetoplast segregation defect. Eukaryot Cell 2011;10(3):286–92.

ZHao Z, Lindsay ME, Roy Chandes R, Bull MR, Englund PT. p166: a link between the trypanosome mitochondrial flagellum and mediates the kinetoplast. EMBIO J 2008;27(1):143–54.

Ochsenreiter T, Hajduk SL. Alternative editing of cytochrome c oxidase III mRNA in trypanosome mitochondria generates protein diversity. EMBO Rep 2006;7(11):1288–33.

Dean S, Gould MK, Dewar CE, Schnaier AC. Single point mutations in ATP synthase compensate for mitochondrial genome loss in trypanosomes. Proc Natl Acad Sci U S A 2010;107(36):14741–6.

Lai DH, Hashimi H, Lun ZR, Ayala FJ, Lukes J. Adaptations of Trypanosoma brucei to gradual loss of kinetoplast DNA: Trypanosoma equiperdum and Trypanosoma evansi are partial mutants of T. brucei. Proc Natl Acad Sci U S A 2008;105(6):1999–2004.

van der Kloet LH, Schwartz DC, Cantor CR, Borst P. Antigenic variation in Trypanosoma brucei analyzed by electrophoretic separation of chromosome-sized molecules. Cell 1984;37(1):77–84.

van der Kloet LH, Smith CS, Polvere RL, Gottesdien RIM. Improved separation of chromosome-sized DNA from Trypanosoma brucei: stock 427–60. Nucleic Acids Res 1989;17(8):3217–27.

Erfeld K, Gull K. Particles. Nat Rev Microbiol 2008;6(12):867–71.

Akiyoshi B, Gull K. Discovery of unconventional kinetochore molecules in Trypanosoma brucei. Cell 2014;156(6):1229–31.

Tiengwe C, Marques MA, McCulloch R. Nuclear DNA replication initiation in kinetoplastid parasites: new insights into an ancient process. Trends Parasitol 2014;30(1):27–36.

Tiengwe C, Marcello F, Fari H, Dickens N, Kelly S, Swiderski M, et al. Genome-wide analysis reveals extensive functional interaction between DNA replication initiation and transcription in the genome of Trypanosoma brucei. Cell Rep 2012;2(1):185–97.
differentiation of flagellar cell lineages in Trypanosoma brucei. Genes 2013;126(Pt 5):757–9.

Bonhivers O, Lichtlé P, Lacombe S, O'Toole ET, Hoenger A, McIntosh JR, Kuhn M. Modes of flagellar assembly in Chlamydomonas reinhardtii and Trypanosoma brucei. Elife 2013:e001479.

Bastin P, Sherwin T, Kuhn K. Paraglottagal rod is vital for trypanosome motility. Nature 1998;391(6667):548.

Moreira-Leite FF, Sherwin T, Kuhn K, L. A trypanosome structure involved in transmitting cytoplasmic information during cell division. Science 2010;329(5993):619–22.

Wheeler RJ, Scheumann N, Wickstead B, Kuhn K. Voltage-sensitive nitric oxide synthase (VSN) of Trypanosoma brucei differs between bloodstream and tsetse trypanomastigote forms: implications for microtubule-based morphogenesis and nutrient feeding. Mol Microbiol 2013;90(4):1339–55.

Bonhivers M, Nowacki S, Landrein N, Robinson DR. Biogenesis of the trypanosome endo-exocytic organelle is cytoskeleton mediated. PLoS Biol 2008;6(5):e105.

Hughes L, Towers K, Starborg T, Kuhn K, Vaughan S. A cell-body groove housing the new flagellum tip suggests an adaptation of cellular morphogenesis for parasitism in the bloodstream form of Trypanosoma brucei. J Cell Sci 2013;126(Pt 24):5748–57.

He CY, Pyaartsev M, Warren G. Golgi duplication in Trypanosoma brucei requires Centrin2. Science 2005;309(5731):1196–9.

He CY, Ho HH, Maland J, Chalouni C, West CM, Ulloa E, et al. Golgi duplication in Trypanosoma brucei requires Kbm1 expression. J Biol Chem 2004;279(53):53313–22.

Silverman JS, Bants JD. Form and function in the trypanosomatid secretory pathway. Curr Top Microbiol Immunol 2012;354(4):463–8.

Manna PT, Boehm C, Leung KF, Natesan SN, Field MC. Life and times: synthesis, transport, and evolution of VSG. Trends Parasitol 2013;29(10):525–31.

Pusnik M, Schmidt O, Perry AJ, Oeljeklaus S, Niemann M, Warscheid B, et al. Mitochondrial preprotein translocase of trypanosomatids has a bacterial origin. J Biol Chem 2011;286(10):7376–83.

Docampo R, Scott DA, Veresic AE, Moreno SN. Intracellular Ca2+ storage in acidocalcisomes of Trypanosoma cruzi. Biochem J 1995;310(3 Pt 3):1005–12.

Docampo R, Jimenez V, Landers N, Li ZH, Niogro S. New insights into roles of acidocalcisomes and contractile vacuole complex in osmoregulation in protists. Int Rev Cell Mol Biol 2013:305:69–113.

Docampo R, Jimenez V, King-Keller S, Li ZH, Moreno SN. The role of acidocalcisomes in the stress response of Trypanosoma cruzi. Adv Parasitol 2012;75:307–24.

Huang G, Bartlett PJ, Thomas AP, Moreno SN, Docampo R. Acidocalcisomes of Trypanosoma brucei have an inositol 1,4,5-trisphosphate receptor that is required for growth and infectivity. Proc Natl Acad Sci U S A 2011;108(5):1887–92.

Zieglerbauer K, Quinten M, Schwarz H, Pearson TW, Overath P. Synchronous differentiation of Trypanosoma brucei from bloodstream to procyclic forms in vitro. J Biol Chem 1999;274(2):373–8.

Shapiro ZS, Naessens J, Liebescheg B, et al. Analysis by flow cytometry of DNA synthesis during the life cycle of African trypanosomes. Acta Trop 1984;41(4):313–23.

Matthews KR, Gull K. Evidence for an interplay between cell cycle progression and the initiation of differentiation between life cycle forms of African trypanosomes. J Cell Biol 1994;125(5):1147–56.

Vassella E, Den Abbeele JV, Buttikofer P, Renggli CK, Forger A, Brun R, et al. A new surface organelle of Trypanosoma brucei is expressed transiently during development and can be regulated post-transcriptionally by glycerol or hypoxia. Genes Dev 2000;14(5):615–26.

Acosta-Serrano A, Vassella E, Luscher M, Kunz Renggli C, Brun R, Roditi I, et al. The surface coat of procyclic Trypanosoma brucei: programmed expression and proteolytic cleavage of procyclin in the tsetse fly. Proc Natl Acad Sci U S A 2001;98(4):1513–8.

Vassella E, Acosta-Serrano A, Studer E, Lee SH, Englund PT, Roditi I. Multiple procyclin isoforms are expressed differentially during the development of insect forms of Trypanosoma brucei. J Mol Biol 2001;312(4):597–607.

Roditi I, Luscher M. Dressed for success: the surface coats of insect-borne protozoan parasites. Trends Microbiol 2002;10(3):128–34.

Vassella E, Reuner B, Yutzey B, Boshart M. Differentiation of African trypanosomes is controlled by a density sensing mechanism which signals cell cycle arrest via the CAM-1 pathway. J Cell Sci 1997;110(Pt 21):2661–71.

Mony BM, MacGregor P, Ivens A, Rosas AF, Cowton J, Young J, et al. Genome-wide dissection of the quorum sensing signalling pathway in Trypanosoma brucei. Nature 2014;508(7485):681–5.

Dean S, Marchetti R, Kulk K, Matthews KR. A surface transporter family conveys the trypanosome differentiation signal. Nature 2009;459(7244):213–7.

Engstler M, Boshart M. Cold shock and regulation of surface protein trafficking convey sensitivity to inducers of stage differentiation in Trypanosoma brucei. Genes Dev 2004;18(22):2798–811.

Szoor B, Wilson J, McChinnney H, Tabernero L, Matthews KR. Protein tyrosine phosphatase TpTPT1: a molecular switch controlling life cycle differentiation in Trypanosoma brucei. J Cell Sci 2005;175(2):293–303.

Szoor B, Ubarto I, Burchmore R, Matthews K. A novel phosphatase cascade regulates differentiation in trypanosomes via a glycosylating signaling pathway. Genes Dev 2010;24:1306–16.

[112] Szoor B, Dyer NA, Ruberto I, Acosta-Serrano A, Matthews KR. Independent pathways can transfer Trypanosoma brucei signal transduction to mRNAs of trypanosomatid proteins. PLoS Pathog 2013;9(10):e1003689.

[113] Van Den Abbeele J, Claes Y, van Bockstaele D, Le Ray D, Coosmans M. Trypanosoma brucei spc. development in the tsetse fly: characterization of the post-metacyclic stages in the foregut and proventriculus. Parasitology 1990;118(Pt 4):469–78.

[114] Sharma R, Peacock L, Gluezer E, Kuhn K, Gibson W, Carrington M. Asymmetric cell division as a route to reduction in cell length and change in cell morphology in trypanosomes. Protist 2008;159(1):137–51.

[115] Oberle M, Balmer O, Brun R, Roditi I. Bottlenecks and the maintenance of minor genotypes during the life cycle of Trypanosoma brucei. PLoS Pathog 2010;6(7):e1000123.

[116] Peacock I, Ferris V, Sharma R, Sunter J, Bailey M, Carrington M, et al. Identification of the meiotic life cycle stage of Trypanosoma brucei in the tsetse fly. Proc Natl Acad Sci U S A 2011;108(3):1367–6.

[117] Peacock I, Bailey M, Carrington M,Rowsell H, M., et al. Identification of the meiotic life cycle stage of Trypanosoma brucei in the tsetse fly. Proc Natl Acad Sci U S A 2011;108(3):1367–6.

[118] Peacock I, Bailey M, Carrington M, Rowsell H, M., et al. Identification of the meiotic life cycle stage of Trypanosoma brucei in the tsetse fly. Proc Natl Acad Sci U S A 2011;108(3):1367–6.

[119] Peacock I, Bailey M, Carrington M, Rowsell H, M., et al. Identification of the meiotic life cycle stage of Trypanosoma brucei in the tsetse fly. Proc Natl Acad Sci U S A 2011;108(3):1367–6.

[120] Peacock I, Bailey M, Carrington M, Rowsell H, M., et al. Identification of the meiotic life cycle stage of Trypanosoma brucei in the tsetse fly. Proc Natl Acad Sci U S A 2011;108(3):1367–6.
Fernandez-Moya SM, Carrington M, Estevez AM. A short RNA stem-loop is necessary and sufficient for repression of gene expression during early logarithmic phase in trypanosomes. Nucleic Acids Res 2014;42(11):7201–9.

Clayton CE. Networks of gene expression regulation in Trypanosoma brucei. Mol Biochem Parasitol 2014;195(2):96–106.

Clayton CE, Shapira M. Post-transcriptional regulation of gene expression in trypanosomes and leishmanias. Mol Biochem Parasitol 2007;156(2):93–101.

Siegel TN, Gunasekera K, Cross GA, Ochsnerreiter T. Gene expression in Trypanosoma brucei: lessons from high-throughput RNA sequencing. Trends Parasitol 2011;27(10):434–41.

Urbaniai MD, Martin DM, Ferguson MA. Global quantitative SILAC phosphoproteomics reveals differential phosphorylation is widespread between the procyclic and bloodstream form lifecycle stages of Trypanosoma brucei. J Proteome Res 2013;12(5):2323–44.

Gunasekera K, Wurlich D, Braga-Lagache S, Heller M, Ochsnerreiter T. Proving the central metabolism of the bloodstream form of Trypanosoma brucei quantified by SILAC and mass spectrometry. BMC Genomics 2012;13(1):556.

Vasquez J, Hoon CC, Vannello JT, Schlosser A, Siegel TN. Comparative ribosome profiling reveals extensive translational complexity in different Trypanosoma brucei life cycle stages. Nucleic Acids Res 2014;42(6):3623–37.

Ericson M, Janes MA, Butter F, Mann M, Ullu E, Tschudi C. On the extent and role of the small proteome in the parasitic eukaryote Trypanosoma brucei. BMC Biol 2014;12:1.

Bakker BM, Michels PAM, Oppoerdoes FR, Westerhof HV. Glycolysis in bloodstream form Trypanosoma brucei can be understood in the terms of the kinetics of glycolytic pathway. J Biol Chem 1997;272(20):12007–14.

Bakker BM, Walsh MC, ter Kuile BH, Mondsien F, Michels PA, Oppoerdoes FR, et al. Contribution of glucose transport to the control of the glycolytic flux in Trypanosoma brucei. Proc Natl Acad Sci U S A 1999;96(18):10098–103.

Bakker BM, Michels PAM, Teusink V, van Hoek P, Michels PA, Westerhof HV. Compartmentation protects trypanosomes from the dangerous design of glycolysis. Proc Natl Acad Sci U S A 2000;97(5):2087–92.

Barker MP, Bakker BM, Breitling R. Metabolic systems biology of trypanosomes. Parasitology 2010;137(9):1285–90.

Tielens AG, van Hellemonde JJ. Surprising variety in energy metabolism within Trypanosomatidae. Trends Parasitol 2009;25(10):482–90.

Cingaud F, Rivier F, Courtois V. Energy metabolism of trypanosomatids: adaptation to available carbon sources. Mol Biochem Parasitol 2006;149(1):1–9.

Mazzet M, Morand P, Biran M, Bouyssou G, Coutrots P, Dauloude S, et al. Revisiting the central metabolism of the bloodstream form of Trypanosoma brucei: production of acetate in the mitochondrion is essential for parasite viability. PLoS Negl Trop Dis 2013;7(12):e2587.

Smith TK, Butikofer P. Lipid metabolism in Trypanosoma brucei. Mol Biochem Parasitol 2010;172(2):66–79.

Lee SH, Stephens JL, Paul KS, England PT. Fatty acid synthesis by elongases in trypanosomes. Cell 2006;126(4):691–9.

Sturm NR, Simpson L. Kinetoplast DNA minicircles encode guide RNAs for editing of cytochrome oxidase subunit III mRNA. Cell 1999;61(5):789–84.

Blum B, Bakalara N, Simpson L. A model for RNA editing in kinetoplast mitochondria: guide RNA molecules transcribed from maxicircle DNA provide the required information. Cell 2005;120(1):189–96.

Göring HU. ‘Gestalt,’ composition and function of the Trypanosoma brucei editosome. Annu Rev Microbiol 2012;66:65–82.

Schnaufer ten Hellemond JJ, MacGregor J, MacGregor Jr AL, Plasschaert C. Site-specific RNA editing: chemical screening for antivirulence developmental phenotypes in Trypanosoma brucei. Eukaryot Cell 2014;13(3):412–26.

Day RJ, Wheeler CR. The trypanolytic factor-mechanism: impacts and applications. Trends Parasitol 2010;26(9):457–64.

MacGregor P, Peers C, Shave S, Collie I, Gray D, Auer M, et al. High-throughput chemical screening for antivirulence developmental phenotypes in Trypanosoma brucei. Eukaryot Cell 2010;9(7):1146–79.

Fragoso M, Ngouama D, Ghorashian S, Arnold U, et al. Nirifurmitox-eftolvemibine combination therapy for second-stage African Trypanosoma brucei gambiense trypanosomiasis: a multicentre, randomised, phase III, non-inferiority trial. Lancet 2009;374(9683):56–64.

Knaus JA, Brand S, McElroy SP, Cleggorn LA, Smid O, Stojanovski L, et al. N-myristoyltransferase inhibitors as new leads to treat sleeping sickness. Nature 2010;464(7289):728–32.

Gilbert BH. Drug discovery for neglected diseases: molecular target-based and phenotypic approaches. J Med Chem 2013;56(20):7719–26.

Maser P, Wittingt S, Rottmann M, Wenzler T, Kaiser M, Brun R. Antiparasitic agents: new drugs on the horizon. Curr Opin Pharmacol 2012;12(5):679–84.

Iren M, Mett H, Evans A, Enyaru JC, Brun R, Kaminsky R. Alterations in ornithine decarboxylase characteristics account for tolerance of Trypanosoma brucei rhodesiens to l-o-alpha-difluoromethylornithine. Antimicrob Agents Chemother 1997;41(9):2223–9.

Roy Chowdhury A, Bakshi R, Wang J, Yadav S, Liu B, Pappas-Brown V, et al. The killing of African trypanosomes by ethidium bromide. PLoS Pathog 2010;6(12):e1001226.

Wheeler RJ. The trypanolytic factor-mechanism: impacts and applications. Trends Parasitol 2010;26(9):457–64.

MacGregor P, Peers C, Shave S, Collie I, Gray D, Auer M, et al. High-throughput chemical screening for antivirulence developmental phenotypes in Trypanosoma brucei. Eukaryot Cell 2010;9(7):1146–79.

Duffy CW, MacLean L, Sweeney L, Cooper A, Turner CM, Tait A, et al. Population genetics of Trypanosoma brucei rhodesiens: clonality and diversity within and between foci. PLoS Negl Trop Dis 2013;7(11):e2556.

MacLeod A, Tait A, Turner CM. The population genetics of Trypanosoma brucei and the origin of human infectivity. Philos Trans R Soc Lond B: Biol Sci 2001;356(1411):1035–44.

Goodleaf I, Canevel P, Bailey JW, Beament T, Chance M, Kay S, et al. Whole-genome sequencing of Trypanosoma brucei reveals introgression between subspecies that is associated with virulence. MBio 2013;4(4).

Obelhofer M, Lopez MA, McEland BT, Hill KL. Social motility in African trypanosomes. PLoS Pathog 2010;6(1):e1000739.

Lopez MA, Nguyen HT, Obelhofer M, Hill KL. Social parasites. Curr Opin Microbiol 2011;14(6):673–8.

MacGregor P, Szor B, Savill NJ, Matthews KR. Trypanosomal immune evasion, chronicity and transmission: an elegant balancing act. Nat Rev Microbiol 2012;10(6):431–8.