Three-particle coincidence of the long range pseudorapidity correlation in high energy nucleus-nucleus collisions

B. I. Abelev, M. M. Aggarwal, Z. Ahammed, A. V. Alakhverdyants, B. D. Anderson, D. Arkhipkin, G. S. Averichev, J. Balewski, O. Barannikova, L. S. Barnby, S. Baumgart, D. R. Beavis, R. Bellwied, M. J. Betancourt, R. R. Betts, A. Bhasin, A. K. Bhati, H. Bichsel, J. Bielcik, J. Bielcikova, B. Birgit, L. C. Bland, T. Bnazarov, B. E. Bonner, J. Bouchet, E. Braidot, A. V. Brandin, A. Bridgeman, E. Bruna, S. Bueltmann, T. P. Burton, Z. C. Cai, H. Caines, M. Calderón de la Barca Sánchez, O. Catu, D. Cebra, R. Cendelas, M. C. Cervantes, Z. Chajecki, P. Chaloupka, S. Chattopadhyay, H. F. Chen, J. H. Chen, Y. J. Chen, J. Cheng, M. Cherney, A. Chikanian, K. E. Choi, W. Christie, P. Chung, R. F. Clarke, M. J. M. Codrington, R. Corllis, J. G. Cramer, H. J. Crawford, D. Das, S. Dash, A. Davila Leyva, C. L. C. de Silva, R. R. Debe, T. G. Dedovich, M. DePhillips, A. A. Derevschikov, R. Derradi de Souza, L. Didenko, P. Djawotho, S. M. Dogra, X. Dong, J. L. Drachenberg, J. E. Draper, J. C. Dunlop, M. R. Dutta Mazumdar, G. L. Efimov, E. Elhaliuli, M. Elminir, J. Engelgele, G. Eppley, B. Erazmus, E. Estienne, L. Eun, P. Fachi, R. Fatemi, J. Fedorinski, R. G. Fersch, P. Filip, E. Finch, V. Fine, F. Fisyak, C. A. Gagliardi, D. R. Gangadharan, M. S. Ganti, J. E. Garcia-Solis, A. Geromitsos, F. Estem, V. Ghazakhian, P. Ghosh, Y. N. Gorbunov, A. Gordon, G. Grebenyuk, B. Grosnick, B. Grube, S. M. Guertin, A. Gupta, N. Gupta, W. Guryn, B. Haag, T. J. Hallman, A. Hamed, L.-X. Han, J. W. Harris, J. P. Hays-Wehle, M. Heinz, S. Heppelman, A. Hirsch, E. Hjort, A. M. Hoffman, G. W. Hoffmann, D. J. Hofman, R. S. Hollis, H. Z. Huang, T. J. Humman, L. Hua, P. Jacobs, W. W. Jacobs, P. Jakl, J. C. Jena, J. Jin, C. L. Jones, P. J. Jones, K. Kang, J. Kapitan, D. Keane, A. Kechechyan, D. Kettler, V. Yu. Khodyrev, D. P. Kiloka, J. K. Kiryluk, A. Kisiel, A. G. Knospe, A. Kocolics, D. D. Koetke, T. Kollegger, J. Konzer, M. Kopystine, I. Koralt, W. Korsch, L. Kotchpil, V. Kouchpil, P. Kravtsov, V. I. Kravtsov, K. Krueger, M. Krus, L. Kurnar, M. A. C. Lamont, J. M. Landgraf, S. LaPointe, J. C. Lauret, A. Lebedev, R. Lednicky, C.-H. Lee, J. H. Lee, W. Leight, M. J. LeVine, C. Li, R. Li, N. Li, W. Li, L. Li, X. Li, J. Li, Y. Li, Z. Li, M. Lin, S. J. Lindenbaum, M. A. Lisa, F. Liu, H. Liu, J. Liu, T. Ljubicic, W. J. Llope, R. S. Longacre, W. A. Love, Y. Lu, T. Ludlam, G. L. Ma, Y. G. Ma, D. P. Mahapatra, R. Majka, O. I. Malt, L. K. Mangotra, R. Manweiler, S. Margetis, C. Markert, H. Masui, H. S. Mats, Yu. A. Matuleenko, D. McDonald, T. S. McShane, A. Meschankin, R. Milner, N. G. Minarev, S. Mioduszewski, A. Mischke, M. K. Mitrovolc, B. Mohanty, D. A. Morozov, M. G. Munhoz, B. K. Nandi, C. Nattrass, T. K. Nakay, J. M. Nelson, P. K. Netrakanti, M. M. N., L. V. Nogach, S. B. Nurushev, G. Odyneie, A. Ogawa, H. Okada, V. Okorokov, D. Olson, M. Pachr, B. S. Page, S. K. Pal, Y. Pandit, Y. Panebratsev, T. Pawlak, T. Peitzmann, V. Perevozchikov, C. Perkins, W. Peryt, S. C. Pile, M. Pliance, M. A. Ploskon, J. Pluta, D. Plik, N. Poljak, A. M. Poskanzer, B. V. K. S. Potukuchi, C. B. Powell, D. Prindle, C. Pruneau, N. K. Pruthi, P. R. Pujahari, T. Putschke, R. Raniwal, S. Raniwal, R. L. Ray, R. Redwine, R. Reed, J. M. Rehberg, H. G. Ritter, J. B. Roberts, O. V. Rogachevskiy, J. L. Romero, A. Rose, C. Roy, L. Ruan, S. Sakai, I. Sakrejda, T. Sakuma, S. Salur, J. Sandweiss, E. Sangaline, J. Schambach, R. P. Scharenberg, N. Schmitz, T. R. Schuster, J. Seedle, J. Seger, I. Selyuzhenkov, P. Seyboth, E. Shahaliev, M. Shao, M. Sharma, S. S. Shi, E. P. Sichtermann, J. Simon, R. N. Singaraju, M. J. Skoby, S. Smirnov, P. Sorensen, J. Sovinski, H. M. Spinka, B. Srivastava, T. D. S. Stanislav, D. Stasik, J. R. Stevens, R. Stock, M. Strikhanov, B. Stringfellow, A. A. P. Suáide, M. C. Suarez, N. L. Subba, M. Sunther, Y. Sun, Z. Sun, B. Surrow, T. J. Symons, A. Szanto de Toledo, J. Takahashi, A. H. Tang, Z. Tang, L. H. Tarini, T. Tarnowsky, D. Thein, J. H. Thomas, J. Tian, A. R. Timmins, T. Timoshenko, D. Thust, M. Tokarev, V. N. Tram, S. Trentalange, R. E. Tribble, O. D. Tsai, J. Ullery, T. Ullrich, D. G. Underwood, G. Van Buren, G. van Nieuwenhuizen, M. van Leeuwen, J. A. Vanfossen, R. Varma, G. M. S. Vasconcelos, A. N. Vasilsiev, F. Videbaek, Y. P. Viyogi, S. Vokal, M. Wada, M. Walker, F. Wang, G. Wang, H. Wang, J. S. Wang, Q. Wang, X. Wang, L. Wang, Y. Wang, G. Webb, J. C. Webb.
We report the first three-particle coincidence measurement in pseudorapidity ($\Delta \eta$) between a high transverse momentum (p_\perp) trigger particle and two lower p_\perp associated particles within azimuth
Di-hadron coincidence measurements provide a powerful tool to study the properties of the medium created in ultra-relativistic heavy-ion collisions. The observation of the long range pseudorapidity correlation in central Au+Au collisions [1], called the ridge [2], where hadrons are correlated with a high transverse momentum (p_{\perp}) trigger particle in azimuth ($\Delta \phi \sim 0$) but extended to large relative pseudorapidity ($\Delta \eta$), has generated great interest. Various theoretical models are proposed to explain this phenomenon, including (i) longitudinal flow push [3], (ii) broadening of quenched jets in turbulent color fields [4], (iii) recombination between thermal and shower partons [5], (iv) elastic collisions between hard and medium partons (momentum kick) [6], and (v) particle excess due to QCD bremsstrahlung or color flux tube fluctuations focused by transverse radial flow [7–11]. Models (i)-(iv) attribute the ridge to jet-medium interactions; particles from jet fragmentation in vacuum result in a peak at $\Delta \eta \sim 0$ and those affected by the medium are diffused broadly in $\Delta \eta$ forming the ridge. Model (v) attributes the ridge to the medium itself, and its correlation with high p_{\perp} particles is due to the transverse radial flow.

Despite very different physics mechanisms, all models [3 [11] give qualitatively similar distributions of correlated hadrons with a high-p_{\perp} trigger particle. Some of these model ambiguity can be lifted by 3-particle coincidence measurements. We analyze the hadron pair densities from 3-particle coincidence measurements in ($\Delta \eta_1, \Delta \eta_2$), the pseudorapidity differences between two associated particles and a trigger particle. We exploit charge combinations in an attempt to separate the jet-like and ridge components and study their distributions, without assuming the $\Delta \eta$ shape of the ridge. Jet fragmentation in vacuum should give a peak at $(\Delta \eta_1, \Delta \eta_2) \sim (0,0)$, while particles from the ridge would produce structures that depend on its physics mechanism. Correlation between particles from jet fragmentation and the ridge would generate horizontal or vertical stripes ($\Delta \eta_1 \sim 0$ or $\Delta \eta_2 \sim 0$) in the 3-particle coincidence measurement.

Results are reported for minimum bias d+Au, peripheral 40-80% and central 0-12% Au+Au collisions at $\sqrt{s_{NN}} = 200$ GeV from the STAR experiment [12]. The 40-80% data are from the minimum bias sample, and the 0-12% data are triggered by the Zero Degree Calorimeters (ZDC) in combination with the Central Trigger Barrel (CTB). This analysis uses 6.5×10^6 d+Au events taken in 2003, and 6.0×10^6 peripheral and 1.9×10^7 central Au+Au events taken in 2004. The data are analyzed in finer centrality bins for Au+Au collisions [12] and are combined for better statistics.

The reconstructed event vertex is restricted within $|z_{vtx}|<30$ cm along the beam line from the center of the STAR Time Projection Chamber (TPC) [14], which sits in a uniform 0.5 T magnetic field. The data were taken with both magnetic field polarities. The trigger and associated particles are restricted to $|\eta|<1$ and their p_{\perp} ranges are $3<p_{\perp}^{(t)}<10$ GeV/c and $1<p_{\perp}^{(a)}<3$ GeV/c, respectively. The correlated single and pair densities with trigger particle are corrected for the centrality-, p_{\perp}-dependent reconstruction efficiency for associated particles and the ϕ-dependent efficiency for trigger particles, and are normalized per corrected trigger particle.

Due to the high TPC occupancy of Au+Au events, track pairs close in η and ϕ can be merged and reconstructed as single tracks. This results in deficits in pair density at $\Delta \eta \sim 0$ and at small, but non-zero, $\Delta \phi$ whose value depends on p_{\perp}, charge combination and magnetic field polarity. To reduce this effect, we apply cuts to exclude close track pairs in real and mixed events. Losses due to those cuts are compensated for by the acceptance correction obtained from mixed events. To ensure the mixed events have similar characteristics as the real events, we mix events from the same centrality bin without requiring a trigger particle and with the same magnetic field polarity and nearly identical z_{vtx} position, referred to hereon as inclusive events.

![FIG. 1: Correlated hadron distribution in (a) $\Delta \phi (|\eta|<1)$, and (b) $\Delta \eta (|\Delta \phi|<0.7)$ with a high-p_{\perp} trigger particle in 0-12% Au+Au collisions for $3<p_{\perp}^{(t)}<10$ GeV/c and $1<p_{\perp}^{(a)}<3$ GeV/c. The ZYA1-normalized flow background is shown in (a) by the curve. The $\Delta \eta$ distributions in (b) are background subtracted and corrected for $\Delta \eta$ acceptance, and are for like- and unlike-sign pairs separately. The curves in (b) are Gaussian fits. Errors are statistical.](image-url)
Figure 1(a) shows the hadron $\Delta \phi$ distributions relative to the trigger particle in 0-12% Au+Au collisions. Also shown is the background $B(\Delta \phi) = aF(\Delta \phi) \int_{-2}^{2} B_{\text{inc}}(\Delta \eta, \Delta \phi) \, d\Delta \eta$ where B_{inc} is constructed by mixing a trigger particle with associated particles from a different and inclusive event. The flow contribution

$$F(\Delta \phi) = 1 + 2v_2^{(1)} v_2^{(a)} \cos(2\Delta \phi) + 2v_4^{(1)} v_4^{(a)} \cos(4\Delta \phi)$$ \hspace{1cm} (1)$$

is added to mixed events using the measured, η-independent, v_2 and a parameterization of $v_4 = 1.15v_2^2$. A normalization factor, a, is applied to match the distributions in $0.8<\Delta \phi<1.2$, assuming zero yield at $\Delta \phi \sim 1$ radian (ZYA1). The near-side ($|\Delta \phi|<0.7$) correlated hadron yield in $\Delta \eta$ is $Y(\Delta \eta) = Y(\Delta \eta) - B(\Delta \eta)$, where $Y(\Delta \eta)$ and $B(\Delta \eta) = a \int_{-0.7}^{0.7} B_{\text{inc}}(\Delta \eta, \Delta \phi) F(\Delta \phi) \, d\Delta \phi$ are the signal and background distributions, respectively. Figure 1(b) shows the $Y(\Delta \eta)$ distribution, after 2-particle $\Delta \eta$ acceptance correction, for the like- and unlike-sign trigger-correlated particle pairs. Jet-like peaks at $\Delta \eta \sim 0$ are observed, atop a broad, charge-independent pedestal (the ridge). A Gaussian fit to the peak yields $\sigma = 0.50 \pm 0.04$ for the like-sign and $\sigma = 0.41 \pm 0.01$ for the unlike-sign pairs in $\Delta \eta$.

All triplets of one trigger particle and two associated particles from the same event within $|\Delta \phi_{1,2}|<0.7$ are analyzed. Combinatorial background B_1 (or B_2) arises where only one (or neither) of the two associated particles is correlated with the trigger particle besides flow correlation 16. The former cannot be readily obtained from the product of the event averaged $Y(\Delta \eta)$ and $B(\Delta \eta)$, because of the varying $\Delta \eta$ acceptance from event to event. Instead, we construct B_1 by mixing trigger-associated pairs from the real event with a particle from a different and inclusive event, namely,

$$B_1 = \left[aY(\Delta \eta_1) B_{\text{inc}}(\Delta \eta_2) (F^{(1,2)}(\Delta \phi_2) + F^{(1,2)}(\Delta \phi_2 - \Delta \phi) + F' - 1) \right] + \left[(1 \leftrightarrow 2) \right] - \left[2a^2 B_{\text{inc}}(\Delta \eta_1) B_{\text{inc}}(\Delta \eta_2) (F^{(1,1)}(\Delta \phi_1) + F^{(1,2)}(\Delta \phi_2) + F^{(1,2)}(\Delta \phi_2 - \Delta \phi) + F' - 2) \right].$$ \hspace{1cm} (2)$$

Here the last term is constructed by mixing the trigger particle with two different inclusive events to remove the uncorrelated part in the first two terms, and

$$F' = 2v_2^{(1)} v_2^{(2)} v_4^{(a)} \cos(2\Delta \phi_1 - \Delta \phi_2) + 2v_2^{(1)} v_2^{(2)} v_4^{(a)} \cos(4\Delta \phi_1 - \Delta \phi_2) + 2v_2^{(1)} v_2^{(2)} v_4^{(a)} \cos(2\Delta \phi_1 + \Delta \phi_2).$$ \hspace{1cm} (3)$$

The flow terms in $\langle \ldots \rangle$ are added in because they are lost in the event-mixing; their averages are taken within $|\Delta \phi_{1,2}|<0.7$. The superscripts represent the v_2 and v_4 for trigger and associated particles. To increase statistics, we mix each trigger particle with ten different inclusive events.

The second background (B_2) is constructed by mixing a trigger particle with associated particle pairs from inclusive events thereby preserving all correlations between the two associated particles (denoted by \otimes 16):

$$B_2 = a^2 b [B_{\text{inc}}(\Delta \eta_1) \otimes B_{\text{inc}}(\Delta \eta_2)]$$

$$\langle F^{(1,1)}(\Delta \phi_1) + F^{(1,2)}(\Delta \phi_2) + F' - 1 \rangle.$$ \hspace{1cm} (4)$$

The factor $a^2 b$ scales the number of associated hadron pairs in the inclusive event to that in the background underlying the triggered event: $b = (\langle N(N-1) \rangle/\langle N \rangle^2)_{\text{bkgd}}/((\langle N(N-1) \rangle/\langle N \rangle^2)_{\text{inc}}$ where N denotes the associated hadron multiplicity 16. If the associated hadron multiplicity distributions in both the inclusive event and the background are Poissonian, or deviate from it equally, then $b = 1$. We obtain b as follows. We scale the correlated hadron $\Delta \eta$ distribution such that there would be no ridge in 1.0<$\Delta \eta|<1.8$, and this gives a new value for a. We repeat our analysis with this new a, and obtain b by requiring the average correlated hadron pair density in 1.0<$\Delta \eta|<1.8 be zero. We use the obtained b with the default ZYA1 a to obtain the final 3-particle coincidence signal. The assumption in this procedure is:

$$\langle \langle N(N-1) \rangle/\langle N \rangle^2 \rangle_{\text{bkgd}} = \langle \langle N(N-1) \rangle/\langle N \rangle^2 \rangle_{\text{bkgd+ridge}},$$ \hspace{1cm} (5)$$

and is reasonable gauged from multiplicity distributions of inclusive and triggered events. The background-subtracted correlated pair density is corrected for 3-particle $\Delta \eta$ acceptance, which is obtained from event-mixing of a trigger particle with associated particles from two different inclusive events. We use ten pairs of inclusive events for each trigger particle in the mixing.

The main sources of systematic uncertainty in our results are those in a, b and v_2. These uncertainties are mostly correlated, therefore having insignificant effect on the shapes of our correlated density distributions. The a and b values for 0-12% Au+Au collisions are $0.9984_{-0.0002}^{+0.0002}$ (syst.) and $0.9986_{-0.0002}^{+0.0002}$ (syst.), respectively. The uncertainty on a is estimated by using the normalization ranges of 0.9<$\Delta \phi|<1.1 and 0.7<$\Delta \phi|<1.3. That on b is estimated by using the normalization ranges of 1.8<$\Delta \eta|<1.2 and 1.2<$\Delta \eta|<0.6. We note that the ridge is defined under the assumption of ZYA1 in $\Delta \phi$, by the factor a. Deviations of a from this assumption are not included in our systematic uncertainties. Such deviations (e.g. 3-particle ZYAM 13) do not introduce significant change to the shape of the ridge.

The v_2 systematic range used in our analysis is given by those from the modified reaction plane and 4-particle cumulant methods 14 and their average is used as
our nominal v_2. An additional systematic uncertainty arises from possible correlation of the ridge with the reaction plane which is not included in Eq. (2). The estimated uncertainty from this source and that from v_2 are added in quadrature and referred to generally as flow uncertainty.

Figure 2a-c shows the background subtracted charge independent (referred to as AAT) correlated hadron pair density (\hat{P}) for minimum bias $d+Au$, 40-80% and 0-12% Au+Au collisions, respectively. The $d+Au$ and 40-80% Au+Au results show a peak at $(\Delta \eta_1, \Delta \eta_2) \sim (0,0)$, consistent with jet fragmentation in vacuum. A similar peak is also observed in 0-12% Au+Au collisions, but it is atop an overall pedestal. This pedestal is composed of the ridge particle pairs, and does not seem to have other structures in $(\Delta \eta_1, \Delta \eta_2)$. To see this quantitatively, Fig. 3a) shows the average $\langle \hat{P} \rangle$ for AAT as a function of $R=\sqrt{\Delta \eta_1^2 + \Delta \eta_2^2}$. The average density is peaked at $R \sim 0$ and decreases with R for all systems. For $d+Au$ and 40-80% Au+Au collisions the average density at $R > 1$ is consistent with zero, indicating no ridge contribution. On the other hand, in 0-12% Au+Au collisions, the average density drops more slowly and becomes approximately constant above $R > 1$, indicating the presence of the ridge.

Jet fragmentation has a charge ordering property, as shown at $|\Delta \eta| \sim 0$ in Fig. 1b). The probability to fragment into three same-sign hadrons at our energy scale is negligible. Any correlation in three same-sign hadron triplets may therefore be interpreted as ridge correlation. Thus, we analyze our data with same-sign triplets ($A^+A^\pm T^\mp$) only, as well as with a same-sign associated pair and an opposite-sign trigger particle ($A^\pm A^\mp T^\mp$). The results are shown in Fig. 3b). Indeed, no jet-like component is apparent in $A^\pm A^\mp T^\mp$. The $A^\pm A^\mp T^\mp$ result contains both jet-like and ridge components. The contribution from other charge combinations, namely $A^\pm A^\mp T^\pm$, are simply the difference between AAT in Fig. 3a) and $(A^\pm A^\mp T^\pm + A^\mp A^\pm T^\mp)$ in Fig. 3b). We found this to be equal to twice the $A^\pm A^\mp T^\pm$ contribution within errors.

The ridge is very similar for like- and unlike-sign trigger-associated pairs at $|\Delta \eta| > 0.7$ as shown in Fig. 1b), thus we expect the ridge contributions in the correlated pair density to be the same in all charge combinations. We verified this for large $|\Delta \eta|$ correlated pair densities within our current statistics, as can be seen from Fig. 3b). Therefore the total ridge particle pair density (\hat{P}_{τ}) can be obtained as four times $A^\pm A^\mp T^\mp$. The remaining jet-like signal, the sum of jet-like correlated particle pairs (\hat{P}_{jj}) and cross pairs of a jet-like and a ridge particle (\hat{P}_{jr}), can then be obtained by subtracting the total ridge from AAT.

Figure 4a) shows the R dependence of the average $\langle \hat{P}_{\tau} \rangle$ and $\langle \hat{P}_{jj} \rangle + \langle \hat{P}_{jr} \rangle$ in 0-12% Au+Au collisions. The ridge pair density is consistent with a constant
0.14±0.02 ($\chi^2/\text{ndf}=5.8/7$). Gaussian fits indicate a best fit value $\sigma=2.1$ ($\chi^2/\text{ndf}=4.8/6$, solid curve) and $\sigma>1.4$ (dashed curve) with 84% confidence level. On the other hand, the jet-like component is narrow with a Gaussian $\sigma=0.34^{+0.13}_{-0.09}$ ($\chi^2/\text{ndf}=0.8/6$, dominated by statistical errors), comparing well to those from the correlated single hadron density.

In order to investigate possible structures in the ridge, we show in Fig. 4(b) the average ridge particle pair density as a function of $\xi=\text{arctan}(\Delta\eta_2/\Delta\eta_1)$ within $R<1.4$. The data are consistent with a uniform distribution in ξ ($\chi^2/\text{ndf}=1.7/7$). This suggests that the ridge particles are uncorrelated in $\Delta\eta$ not only with the trigger particle but also between themselves. In other words, the ridge appears to be uniform in $\Delta\eta$ event-by-event.

Correlation between the jet-like correlated hadrons and the ridge would yield horizontal and vertical stripes in the correlated pair density in Fig. 4(a) resulting in a finite $\langle P_{jr} \rangle$, a non-zero signal in Fig. 4(a) at large R. We found $\langle P_{jr} \rangle=−0.001±0.030$, averaged over the $|\Delta\eta_1|<0.7$ and $|\Delta\eta_2|>0.7$ region and its mirror region. On the other hand for the correlated jet-jet and ridge-ridge pairs,

\[
\sqrt{\langle P_{jj} \rangle \langle P_{rr} \rangle} = \sqrt{(0.081 ± 0.034) \times (0.114 ± 0.039)} = 0.096 ± 0.026
\]

where the averages are taken with $|\Delta\eta_{1,2}|<0.7$ and $|\Delta\eta_{1,2}|>0.7$, respectively. The comparison between these two pair density magnitudes (whose systematic uncertainties are strongly correlated) suggests that production of the ridge and production of the jet-like particles may be uncorrelated.

Our data qualitatively distinguish between some of the ridge models. (i) Longitudinal flow [3] would push correlated particles in one direction yielding a diagonal excess in $\Delta\eta\cdot\Delta\eta$, disfavored by the present data. (ii) Turbulent color fields [4] would generate a broad ridge in $\Delta\eta$, which may however still be too narrow to reconcile with the width of our ridge pair density distribution. (iii) Recombination between thermal and shower particles [3] should produce horizontal and vertical stripes in correlated pair density distribution which is disfavored by the data, and it does not have a mechanism for long range $\Delta\eta$ correlations. (iv) The momentum kick model incorporates a broad ridge as input, but it should produce a much larger ridge on the away-side than on the near-side which is not supported by data [19], and also may not describe other data such as the reaction plane dependence of the ridge in di-hadron correlations [20]. (v) QCD bremsstrahlung [7,8] or color flux tube fluctuations [9,11] would yield a structure-less pair density [11] for the ridge as observed in our data, however the correlations between jet-like particles and ridge, as expected from these models, are not observed with our present sensitivity. Clearly more quantitative model calculations are needed to compare to the data reported here and elsewhere [1,2,20] to further our understanding of the ridge.

In summary, we have presented the first 3-particle coincidence measurement in $\Delta\eta\cdot\Delta\eta$ in minimum bias $d+Au$, 40-80% and 0-12% Au+Au collisions at $\sqrt{s_{NN}} = 200$ GeV. The p_{T} ranges are $3<p_{T}^{(1)}<10$ GeV/c for the trigger particle and $1<p_{T}^{(a)}<3$ GeV/c for both associated particles. A correlated hadron pair density peak at $(\Delta\eta_1, \Delta\eta_2)\sim(0,0)$, characteristic of jet fragmentation, is observed in all systems. This peak sits atop a broad pedestal in 0-12% Au+Au collisions, which is composed of particle pairs from the data. We have exploited the charge ordering properties to separate the jet-like and ridge components. We found that same-sign associated pairs correlated with a same-sign trigger particle are dominated by the ridge. While the jet-like particle pair density is narrowly confined, the ridge is broadly distributed and is approximately uniform in $\Delta\eta$. A Gaussian fit in R to the average correlated pair density of the ridge yields $\sigma>1.4$ with 84% confidence level. Except for the correlations at $\Delta\phi\sim0$, the particles from the ridge appear to be uncorrelated in $\Delta\eta$ not only with the trigger particle, but also between themselves; they are uniform in our measured $\Delta\eta$ range event-by-event. No correlation is found between production of the ridge and production of the jet-like particles, suggesting the ridge may be formed from the bulk medium itself.

We thank the RHIC Operations Group and RCF at BNL, the NERSC Center at LBNL and the Open Science Grid consortium for providing resources and support. This work was supported in part by the Offices of NP and HEP within the U.S. DOE Office of Science, the U.S. NSF, the Sloan Foundation, the DFG cluster of excellence ‘Origin and Structure of the Universe’, CNRS/IN2P3, STFC and EPSRC of the United Kingdom, FAPESP CNPq of Brazil, Ministry of Ed. and Sci. of the Russian Federation, NNSFC, CAS, MoST, and MoE of China, GA and MSMT of the
Czech Republic, FOM and NWO of the Netherlands, DAE, DST, and CSIR of India, Polish Ministry of Sci. and Higher Ed., Korea Research Foundation, Ministry of Sci., Ed. and Sports of the Rep. Of Croatia, Russian Ministry of Sci. and Tech, and RosAtom of Russia.

* Deceased

[1] J. Adams et al., (STAR collaboration) Phys. Rev. Lett. 95, 152301 (2005).
[2] B. I. Abelev et al., (STAR collaboration) arXiv:0909.0191 (2009).
[3] N. Armesto et al., Phys. Rev. Lett. 93, 242301 (2004).
[4] A. Majumder et al., Phys. Rev. Lett. 99, 042301 (2007).
[5] C. B. Chiu and R. Hwa, Phys. Rev. C 72, 034903 (2005).
[6] C. Y. Wong, Phys. Rev. C 78, 064905 (2008).
[7] S. A. Voloshin, Phys. Lett. B 632, 490 (2006).
[8] E. Shuryak, Phys. Rev. C 76, 047901 (2007).
[9] A. Dumitru et al., Nucl. Phys. A 810, 91 (2008).
[10] K. Dusling et al., Nucl. Phys. A 828, 161 (2009).
[11] J. Takahashi et al., arXiv:0902.4870 (2009).
[12] K. H. Ackermann et al., (STAR collaboration) Nucl. Instrum. Meth. A 499, 624 (2003).
[13] B. I. Abelev et al., (STAR collaboration) Phys. Rev. Lett. 102, 052302 (2009).
[14] K. H. Ackermann et al., (STAR collaboration) Nucl. Instrum. Meth. A 661, 681 (1999).
[15] J. Adams et al., (STAR collaboration) Phys. Rev. C 72, 014904 (2005).
[16] J.G. Ulery and F. Wang, Nucl. Instrum. Meth. A 595, 502 (2008).
[17] P. Abreu et al., Phys. Lett. B 407, 174 (1997).
[18] T. Sjöstrand et al., Comput. Phys. Commun. 135, 238 (2001).
[19] B. I. Abelev et al., (STAR collaboration) in preparation.
[20] A. Feng (for STAR Collaboration), J. Phys. G 35, 104082 (2008).