Effects of dietary salt on gene and protein expression in brain tissue of a model of sporadic small vessel disease

Citation for published version:
Bailey, EL, Mcbride, MW, McClure, JD, Beattie, W, Graham, D, Dominiczak, AF, Smith, C & Wardlaw, J 2018, 'Effects of dietary salt on gene and protein expression in brain tissue of a model of sporadic small vessel disease', Clinical science. https://doi.org/10.1042/CS20171572

Digital Object Identifier (DOI):
10.1042/CS20171572

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
Clinical science

Publisher Rights Statement:
This is an Accepted Manuscript; not the final Version of Record. You are encouraged to use the final Version of Record that, when published, will replace this manuscript and be freely available under a Creative Commons licence.

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.
EFFECTS OF DIETARY SALT ON GENE AND PROTEIN EXPRESSION IN BRAIN TISSUE OF A MODEL OF SPORADIC SMALL VESSEL DISEASE.

Emma L Bailey PhD¹, Martin W McBride PhD², John D McClure PhD², Wendy Beattie MSc², Delyth Graham PhD², Anna F Dominiczak MD², Colin Smith MD³, Joanna M Wardlaw MD⁴

¹School of Life Sciences, Thomson Building, University of Glasgow, University Avenue, G12 8QQ
²Institute of Cardiovascular and Medical Sciences, University of Glasgow, University Avenue, G12 8QQ
³Academic Department of Neuropathology, Centre for Clinical Brain Sciences, Little France, Edinburgh, EH16 4SB
⁴Centre for Clinical Brain Sciences, and UK Dementia Research Institute at the University of Edinburgh, Chancellors Building, 49 Little France Crescent, Edinburgh, EH16 4SB

Corresponding Author: Joanna Wardlaw, E-mail: joanna.wardlaw@ed.ac.uk

Running Title: Salt in an animal model of small vessel disease

Key Words: Salt, Small Vessel, Stroke, SHRSP, White Matter
ABSTRACT

Background: The effect of salt on cerebral small vessel disease (SVD) is poorly understood. We assessed the effect of dietary salt on the cerebral tissue of the stroke-prone spontaneously hypertensive rat (SHRSP) - a relevant model of sporadic SVD - at both the gene and protein level. Methods: Brains from 21 week old SHRSP and Wistar-Kyoto rats, half additionally salt-loaded (via a 3 week regime of 1% NaCl in drinking water) were split into 2 hemispheres and sectioned coronally – one hemisphere for mRNA microarray and qRT-PCR, the other for immunohistochemistry using a panel of antibodies targeting components of the neurovascular unit. Results: We observed differences in gene and protein expression affecting the acute phase pathway and oxidative stress (ALB, AMBP, APOH, AHSG and LOC100129193, up-regulated in salt-loaded WKY versus WKY, >2-fold), active microglia (increased Iba-1 protein expression in salt-loaded SHRSP versus salt-loaded WKY, p<0.05), vascular structure (ACTB & CTNNB, up-regulated in salt-loaded SHRSP versus SHRSP, >3-fold; CLDN-11,VEGF and VGF downregulated >2-fold in salt-loaded SHRSP versus SHRSP) and myelin integrity (MBP downregulated in salt loaded WKY rats versus WKY, >2.5-fold). Changes of salt-loading were more pronounced in SHRSP and occurred without an increase in blood pressure in WKY rats. Conclusion: Salt exposure induced changes in gene and protein expression in an experimental model of SVD and its parent rat strain in multiple pathways involving components of the glio-vascular unit. Further studies in pertinent experimental models at different ages would help clarify the short and long-term effect of dietary salt in SVD.
ABBREVIATIONS

SHRSP – Spontaneously Hypertensive Stroke-Prone Rat

WKY – Wistar Kyoto Rat

SVD – Small Vessel Disease

CVD – Cerebrovascular Disease

BP – Blood Pressure

WMH – White Matter Hyperintensities

RP – Rank Products

FDR – False Discovery rate

CT – Cycle Threshold

qRT-PCR – Quantitative Real Time Polymerase Chain Reaction
INTRODUCTION

The association between high dietary salt intake and stroke incidence and mortality is well known(1, 2). However, the true interaction between salt intake, blood pressure and cerebrovascular disease (CVD) remains incompletely understood. Literature has begun to highlight a possible mechanism of salt independent of, or only partially mediated by, hypertension(1). For example epidemiology evidence suggests salt intake is associated with increased stroke risk and CVD independent of blood pressure (BP)(3), however this study, like many others, was conducted in a general (heterogeneous) stroke population and the effect of salt may differ across stroke subtypes. Recently, a study of minor ischaemic patients found an association between increased dietary salt intake and greater volume of white matter hyperintensities (WMH), the most frequent feature of small vessel disease (SVD), independent of BP or history of hypertension(4). Long term high dietary salt intake has also been positively associated with worse SVD features on neuroimaging, including lacunes, microbleeds, severe WMH’s and worse total SVD scores in patients with lacunar versus cortical stroke(5).

A major drawback of clinical studies is the inability to assess accurately patients’ salt intake. Experimental models provide an opportunity to do this in a controlled environment. Indeed a recent study has demonstrated that excess dietary salt suppresses resting cerebral blood flow and endothelial function, leading to cognitive impairment in mice– mechanisms and end stage outcomes relevant to SVD(6).
The Spontaneously Hypertensive Stroke-Prone Rat (SHRSP) is considered to be a relevant model of sporadic SVD (7, 8) but most studies investigating salt use in this strain have focused on kidney disorders or malignant hypertension with sparse investigation of cerebral tissue, particularly in relation to SVD.

We aimed to characterise genetic and protein changes in cerebral tissue of SHRSP rats compared with the parent WKY rats, with and without added dietary salt, to determine the impact of salt on the glio-vascular unit changes that are characteristic of SVD.

METHODS

For full methods see supplementary information.

Animals

All animals were kept and experiments conducted according to UK regulations for live animal research in licensed laboratories (licence No. 60/3618) and the ARRIVE (Animal Research: Reporting In Vivo Experiments) guidelines (http://www.nc3rs.org/ARRIVE). All animals were obtained from the Glasgow colony and kept in identical conditions (9).

Study animals consisted of male rats aged 21 weeks reared on either a normal diet ($n = 5$ per strain) or a normal diet until age 18 weeks plus ‘salt-loading’ via 1% NaCl added to drinking water from 18 to 21 weeks ($n = 5$ per strain).

Tail cuff plethysmography was used to take weekly measurements of systolic BP. Animals were sacrificed by overdose of isofluorane plus exsanguination.
extracted and divided into left and right hemispheres – one fixed in formalin for immunohistochemistry, one snap frozen in liquid nitrogen for RNA extraction.

Microarray & qRT-PCR

For mRNA analysis, one hemisphere was snap frozen and 2 mm coronal slices from a frontal and a mid-coronal region were cut using a Zivic® rat slicer matrix – these areas are typically the most damaged areas in SHRSP(9). RNA was extracted using a Qiagen RNAeasy lipid tissue minikit (Qiagen Ltd., Manchester, UK) and transcribed to cRNA using an Ambion® Illumina® Total Prep RNA amplification kit (Applied Biosystems, Foster City, CA, USA). The resulting cRNA was loaded onto a RatRef12 microarray chip (Illumina, San Diego, CA, USA). Chips were scanned on an Illumina® Bead Reader (Illumina, San Diego, CA, USA) for fluorescence intensity. Samples were randomized throughout and were hybridized to chips and scanned at the same time. The same DNase-treated RNA was used as a template for synthesis of cDNA, qRT-PCR reactions using Applied Biosystems Taqman® Gene Expression Assay (Applied Biosystems, Foster City, CA, USA). The reaction mix included Taqman® universal master mix (Applied Biosystems, Foster City, CA, USA) plus GAPDH (VIC® labelled) and Taqman® probes corresponding to genes of interest (FAM® labelled). Results are reported according to the Minimum Information About a Microarray Experiment (MIAME) 2.0 criteria (http://www.mged.org/Workgroups/MIAME/miame_2.0.html).
Immunohistochemistry

Formalin-fixed paraffin-embedded 3mm frontal and mid coronal sections were cut into 7-µm sections. Antibodies assessed various components of the neurovascular unit (for full details of antibodies used see (9)), claudin-5, collagen IV, smooth muscle actin (SMA), collagen I, glial fibrillary acidic protein (GFAP), matrix metalloproteinase 9 (MMP9), ionized calcium-binding adaptor molecule 1 (Iba-1) and Myelin Basic Protein (MBP). Antigen heat retrieval was performed before slides were blocked in hydrogen peroxide followed by either rabbit or swine serum. 3,3′-diaminobenzidine tetrahydrochloride with a haematoxylin counterstain revealed immunoreactivity. Tris-buffered saline replaced the primary antibody in negative controls.

Data analysis

Microarray data were analysed using Rank Products (RP) analysis complete with Bejamini-Hochberg false discovery rate (FDR) adjustment. FDR <0.05 was considered significant. A minimum individual fold change for significance was not set due to an interest in pathway interactions. Ingenuity Pathway Analysis® (IPA) (Ingenuity Systems, http://www.ingenuity.com) analysed data using both a prespecified candidate gene approach and a genome-wide approach Significance of pathways was assessed using one-sided Fisher's exact tests.

qRT-PCR data (cycle threshold (CT) values) were analysed in Microsoft® Excel by comparing mean delta cycle threshold (dCT) values vs. the housekeeper gene using a Student's t-test.
Percentage staining of immunohistochemistry was measured using ImagePro™ software (version 6.2; Media Cybernetics, Bethesda, MD, USA), blinded to species and age, in defined areas of cortical, deep grey and white matter. Statistical analysis was performed in Minitab using a general linear model (two-way ANOVA) followed by Tukey’s test for pairwise comparisons. P values of p<0.05 were considered statistically significant. All data are shown as mean ± SEM.

RESULTS

Weekly systolic BP readings from 16 to 21 weeks were significantly higher in salt-loaded than in non-salt loaded SHRSP (average 237±4 mmHg versus 200±7 mmHg, p=0.05). No difference in systolic BP was found between age-matched salt-loaded WKY versus WKY even at 21 weeks (154±3 mmHg vs 152±4 mmHg).

Genetic data

Salt-loaded versus age-matched non-salt loaded animals - genome wide approach:

Both strains: In the frontal brain section, 59 genes were differentially expressed in salt-loaded WKY versus WKY (figure 1) Within these, a small network of 11, centred on amyloid precursor protein (APP), showed down-regulation in salt-loaded WKY (figure 2a). When salt-loaded SHRSP versus SHRSP data were overlaid, all of the genes surrounding APP (except albumin (ALB) and APP itself) were significantly up-regulated in the salt-loaded SHRSP suggesting a different response to salt-loading (figure 2b). Within the frontal section, we also found a small network of genes centred round beta actin (ACTB) which were almost all up-regulated in salt-loaded
SHRSP versus SHRSP (figure 3), including some that are functionally related to maintaining the structural integrity of the vascular cytoskeleton (e.g. \textit{ACTB}, Destrin (\textit{DSTN}) and beta-catenin (\textit{CTNNB1})).

\textit{The top 10 up and down-regulated genes (table 1):}

\textit{Salt-loaded, WKY:} The most up-regulated gene in both brain sections was \textit{LOC100129193} (major urinary protein pseudogene), +16-fold in the frontal section and +4-fold in the mid-coronal section. The only gene to appear in the 10 most highly up-regulated genes of both brain sections was \textit{ALB} (+2-fold in both sections). In fact, a cluster of genes closely associated with \textit{ALB} and the acute phase response pathway were up-regulated in the frontal section by at least 2-fold: Alpha-1-microglobulin/bikunin precursor (\textit{AMBP}), Apolipoprotein H (\textit{APOH}) and Alpha-2-HS-glycoprotein (\textit{AHSG}). Transthyretin (\textit{TTR}) – a transport protein implicated in amyloidosis - was also upregulated in the mid-coronal section by 2-fold. The most down-regulated gene in salt-loaded versus non-salt loaded WKY was \textit{MBP} in the frontal section (-2.6-fold). Only three other genes were highly down-regulated in both sections: \textit{ACTB} down -2.3-fold and N-ethylmaleimide-sensitive factor (\textit{NSF}) and M2-pyruvate kinase (\textit{PKM2}) both down -2-fold.

\textit{Salt-loaded, SHRSP:} Here, there was much less consistency between brain sections. Like salt-loaded versus non-salt loaded WKY, \textit{TTR} was upregulated in the frontal section but this time by +53.4-fold. In contrast to the salt-loading WKY comparison above, \textit{ACTB} was upregulated in the frontal section (+3.7-fold). In the mid-coronal section \textit{LOC100129193} was the most up-regulated (+3.3-fold) similar to salt-loaded versus non-salt loaded WKY. Here there were also two solute carriers \textit{SLC17a6} (+2.2-
fold) and SLC24a2 (+2.0-fold) as well as ALB (+1.7-fold) which were upregulated. In the frontal section, no gene was substantially down-regulated, but several were downregulated by approximately a -2-fold, topped by VOPP1 (vesicular, overexpressed in cancer, prosurvival protein 1) with a fold change of -2.7. The remaining genes all had fold changes less than 2 and the only other gene of note was CYR61, an angiogenic inducer (down-regulated -1.9-fold). In the mid-coronal section, only 8 genes were significantly down-regulated with salt-loading in the SHRSP, of which TTR came top with a fold change of -3.1, which directly contrasts the up-regulation seen in the frontal section of salt-loaded SHRSP v SHRSP and the mid-coronal section of salt-loaded WKY versus WKY. This was followed by Von Willebrand factor (VWF; -2.3-fold) and vascular growth factor (VGF; -1.9-fold).

Salt-loaded SHRSP versus WKY: Between the two salt-loaded strains the most differentially expressed genes were representative of those previously found at ages 5 and 16 weeks in non-salt loaded WKY and SHRSP(10). GUCY1a3 (Guanylate cyclase soluble subunit alpha-3), RSP9 (Repeat sequence probe 9) and RGD1564649 (similar to 40S ribosomal protein S9) were up-regulated in SHRSP by at least +14-fold in both brain sections, whilst MRPL18 (mitochondrial ribosomal protein L18), HCG2004593 (ribosomal protein L17 pseudogene 39) and LOC100125697 (low-molecular-weight glutenin storage protein) were down-regulated by a minimum of -5-fold in both brain sections. ALB was also down-regulated in both brain sections by at least -3.5-fold.

Analysis of over-represented biological pathways and genes within biological pathways of interest on Ingenuity Pathway Analysis (figure 4):
Tight junctions (blood brain barrier) (9, 11, 12) and the acute phase response (a rapid inflammatory response that provides protection against microorganisms using non-specific defence mechanisms)(13) are considered to be affected in cerebral SVD, so we looked for genes of interest which were differentially expressed within these pathways.

The acute phase response signalling pathway contained the most differentially expressed genes in both rat strains for all salt versus no salt comparisons, consistently appearing within the top five affected pathways. Salt-loading in both rat strains was associated with changes within the tight junction signalling pathway of frontal brain sections. Pathways pertaining to oxidative stress and leukocyte extravasation also contained a high proportion of differentially expressed genes in both strains with salt-loading versus non-salt loading particularly in the frontal brain sections.

In the frontal section of salt-loaded versus not-salt loaded SHRSP, we found Claudin-11 (CLDN11) to be down-regulated -2.3-fold within the tight junction signalling pathway. However, we also found CLDN11 to be up-regulated in salt-loaded SHRSP when compared to salt-loaded WKY (+1.8-fold change) suggesting a difference in response to salt between the strains.

In the acute phase response pathway, ALB was consistently up-regulated across all salt comparisons in both strains. Additionally, in WKY in the frontal section, a group of closely associated genes, AMBP, AHSG and APOH were up-regulated by approximately 2-fold with salt-loading.

qRT-PCR of candidate genes:
From the microarray results above, we chose the following genes for quantitative validation with qRT-PCR: MBP, ACTB and SLC24a2. MBP was chosen due to down-regulation (>2-fold) in the frontal section of salt-loaded WKY versus non-salt loaded WKY and any subsequent effect on protein expression could be directly assessed via immunohistochemistry. ACTB was chosen due to significant down-regulation in salt-loaded WKY versus non-salt loaded WKY in both brain sections (>2-fold) whilst also showing a significant up-regulation in the frontal section of SHRSP+NaCl versus SHRSP (+3.7-fold). SLC24a2 was chosen because, like ACTB, the microarray data showed two significant results. Firstly SLC24a2 was significantly down-regulated in both sections of salt-loaded WKY versus non-salt loaded WKY (-2-fold). Secondly we found SLC24a2 to be significantly up-regulated in the mid-coronal section of salt-loaded SHRSP (+2-fold) versus non-salt loaded SHRSP. Unfortunately qRT-PCR did not replicate any of the significant differences in the 3 genes of interest.

Immunohistochemistry data.

For full numerical immunohistochemical data see supplementary material – tables S1-S4.

Salt-loading, WKY: In WKY, salt-loading was associated with reduced GFAP immunoreactivity in the frontal section cortical grey matter (p<0.05) (figure 5). Claudin-5 immunoreactivity was reduced in all areas particularly in the frontal cortex, although this did not reach statistical significance. MBP immunoreactivity (figure 6) was significantly increased in the cortical grey matter of the frontal section (p=0.01),
whilst significantly decreased in the white matter of the same section (p<0.05). MBP in the white matter of the mid-coronal section was significantly increased (p<0.05).

Salt-loading, SHRSP: In SHRSP, salt-loading was associated with decreased Collagen IV in the cortical grey matter of the frontal section (p<0.05). Iba-1 expression varied greatly within the cortical grey matter of the two brain sections - it was significantly lower in the cortical grey matter of the frontal section (p<0.01), but significantly higher in cortical grey matter of the mid-coronal section (p=0.01). GFAP immunoreactivity was significantly increased in the white matter of the mid-coronal section (p<0.01) in salt-loaded SHRSP versus non-salt loaded SHRSP (figure 5). Salt-loaded SHRSP tended to have less SMA immunoreactivity across all regions in both frontal and mid-coronal sections although this did not reach statistical significance. MBP immunoreactivity was significantly decreased in salt-loaded SHRSP in the white matter of the mid-coronal section (p<0.01) (figure 6).

Salt-loading, WKY versus SHRSP: Salt-loading obscured some between-strain differences seen in rats fed normal chow (9), and exaggerated others. For example, we did not see the difference in Claudin-5 immunoreactivity previously found between WKY and SHRSP rats fed a normal diet repeated in the salt-loaded animals, as the amount of Claudin-5 immunoreactivity in salt-loaded WKY rats had also decreased. GFAP immunoreactivity was significantly increased in the cortical and deep grey matter of the frontal section (both p<0.05) and the white matter of the mid-coronal section (p<0.01) of salt-loaded SHRSP versus salt-loaded WKY (figure 5). Iba-1 immunoreactivity was no different between salt-loaded strains in the frontal brain section, however, in the mid-coronal section salt-loaded SHRSP had significantly
increased Iba-1 immunoreactivity in the cortical grey and deep matter compared with salt-loaded WKY (p<0.05 and p=0.01 respectively).

Assessment of gene expression corresponding to proteins assessed using immunohistochemistry.

Of the proteins assessed using immunohistochemistry, only the gene for MBP was differentially expressed. In salt-loaded WKY versus non-salt loaded WKY, MBP was down regulated in the frontal section (-2.6-fold), immunohistochemistry showed protein levels of MBP to be significantly more in the cortical grey matter of the frontal section (1.99 vs 0.47%, p<0.01) whilst being significantly decreased in the white matter of both frontal (0.35 vs 1.4%, p<0.05) and mid-coronal sections (0.521 vs 1.66%, p<0.01) of salt-loaded WKY versus non-salt loaded WKY (figure 6).

In salt-loaded versus non-salt loaded SHRSP, MBP was up-regulated by +2.2-fold in the frontal section. Immunohistochemistry showed protein levels of MBP to be significantly increased in the frontal deep grey matter (1.19 vs 0.47%, p<0.01), whilst being significantly decreased in the mid-coronal white matter (0.06 vs 1.1%, p<0.05) thereby agreeing with salt-loaded WKY versus non-salt loaded WKY. There was no difference in MBP gene expression between salt-loaded WKY and salt-loaded SHRSP, however immunohistochemistry showed a significant decrease in MBP protein levels in the cortical grey matter of the frontal section (0.43 vs 1.99%, p<0.01) and the white matter of the mid-coronal section (0.06 vs 0.52%, p<0.05)(figure 6).
DISCUSSION

This study has highlighted changes with dietary salt-loading in gene and protein expression in networks affecting inflammatory pathways, vascular structure and myelin integrity in the brains of SHRSP, a sporadic model of SVD, and in its parent strain, the WKY rat (for a diagrammatic summary see figure 7). In salt-loaded WKY rats, these changes occurred independently of an increase in blood pressure. Taken together, these results suggest that additional dietary salt may produce tissue changes indicative of SVD-related damage that are at least in part independent of the level of blood pressure.

Whilst this study consisted of a relatively small sample size and a short duration of salt-loading (3 weeks), rats were randomly selected from the Glasgow colony for both the control and salt-loaded groups, careful blinding was undertaken and only established validated techniques were used. Both protein and gene expression changes were assessed in the same animals, reducing between-animal noise and confirming previously reported genetic strain differences between WKY and SHRSP(10) including the upregulation of \textit{GUCY1a3} and down-regulation of \textit{MRPL18} and \textit{ALB}. These between-strain differences - which represent changes associated with the nitric oxide, inflammatory and connective tissue pathways - were larger in magnitude than the effects of salt-loading indicating the effect of rat strain is dominant. However, the fact that differences were found with a short period of salt-loading in both strains cannot be ignored and whilst the majority of changes in gene expression were small in terms of fold change (meaning confirmation with PCR was difficult), in combination and in the long term they could be extremely detrimental. Indeed a recent study in mice has implicated excess salt in endothelial
dysfunction caused via inhibition of eNOS phosphorylation and reduced production
of NO(6). In turn this resulted in cognitive deficits in the salt-fed mice when tested
for spatial memory, novel object recognition and nesting behaviour.

Pathways pertaining to oxidative stress and inflammation showed changes in gene
expression due to salt-loading in both strains. Acute phase response signalling
contained the most differentially expressed genes in all salt versus no salt comparisons,
whilst pathways pertaining to oxidative stress and leukocyte extravasation were also
significantly affected. Increased expression of \(ALB \) and decreased expression of
\(LOC100129193 \) have previously been implicated in hyperhomocysteinemia(14),
however in both salt-loaded WKY and SHRSP this study saw an increase in
\(LOC100129193 \) and a decrease in \(ALB \). This disagreement suggests salt-loading may
influence inflammatory pathways over different time periods or durations of exposure
or that they may not act via homocysteine.

\(TTR \) expression was highly influenced by dietary salt in SHRSP being up-regulated by
over +50-fold in frontal brain sections (though down-regulated in mid-coronal
sections), and being amongst the 10 most upregulated genes in the salt-loaded WKY
v WKY. \(TTR \) was also 7-fold more up-regulated in the salt-loaded SHRSP v salt-
loaded WKY whereas it was only upregulated by 2-fold in the mid-coronal section of
salt-loaded WKY v WKY and therefore did not make the top 10. \(TTR \) has been
previously shown to have associations with senile systemic amyloidosis and plasma
cell dyscrasias providing some evidence of a direct linkage to the immune response
and potentially to the dementia-related effects of SVDs(15).
In salt-loaded SHRSP at the protein level, we found increased reactive gliosis and activation of microglial cells compared to salt-loaded WKY. These results agree with previous data showing increased levels of oxidative stress and inflammation to be established responses to excessive salt intake in SHRSP(16, 17). Salt-loading also resulted in down-regulation of a gene network involved in maintaining vascular structure and tight junction signalling featured in the top 5 pathways affected in both salt-loaded WKY and SHRSP. Within the tight junction signalling pathway, we found CLDN11 gene expression was significantly down-regulated in salt-loaded versus non-salt-loaded SHRSP and conversely up-regulated in salt-loaded SHRSP compared to salt-loaded WKY. As the SHRSP already has reduced Claudin-5 protein expression independent of salt-loading(9) the difference in Claudin-11 could indicate increased leakiness of blood vessels particularly when coupled with changes in gene expression of Albumin. The difference in immunoreactivity of Claudin-5 between the strains at 21 weeks of age was absent in salt-loaded animals because the salt-loaded WKY rats also had less Claudin-5. These results suggest that WKY also develop vascular damage in the presence of salt-loading. The changes in APP and MBP as well as VWF and VGF in salt-loaded WKY versus WKY could indicate further impairments to vascular structure, and underline the importance of avoiding salt-loading in studies of blood brain barrier integrity.

Furthermore, salt-loading caused differential expression of genes associated with myelin integrity in both strains. In WKY rats, several genes in a network centred round APP and MBP were up-regulated suggesting that expression of myelin-associated proteins would be increased. MBP immunoreactivity was also affected by salt-loading in WKY rats, although the changes were somewhat erratic with expression both
increasing and decreasing. As well as involvement in myelination, MBP is directly involved in T-lymphocyte mediated inflammation which can also lead to increased permeability of the BBB(13). Indeed many studies have suggested an inflammatory mechanism in salt-loaded rats which in turn compromises the blood brain barrier(11, 12). Genes centred round APP and MBP were down-regulated in salt-loaded versus non-salt loaded SHRSP and we also saw decreased MBP immunoreactivity with salt-loading in SHRSP. This suggests a different response to salt in WKY versus SHRSP or could represent a different stage in a disease process and requires further investigation.

The SHRSP is considered a relevant model of sporadic SVD in its naïve state(7). SHRSP develop high levels of hypertension with systolic pressures of over 170mmHg in contrast to normal levels of systolic pressure in WKY of 130-140mmHg(18). Salt-loaded SHRSP regularly display systolic blood pressures of over 200mmHg and accelerated end stage pathology (19) meaning they rarely live beyond 28 weeks of age. In the SHRSP, solute carriers such as SLC24a2 (a sodium/potassium/calcium exchanger) were frequently within the top 10 up or down-regulated genes. The fact that these genes were affected in SHRSP and not WKY provides further evidence of the salt sensitivity of the SHRSP(20).

A recent translational study tested associations between genes differentially expressed in the brains of young SHRSP and human WMH(21) and, despite these genes having small fold changes individually, collectively they showed positive associations with human WMH, consistent with the hypothesis that WMH are multifactorial in nature and have a vascular component. The genes identified in this
study should therefore also be tested in clinical cohorts of small vessel disease patients to see if the effect of dietary salt translates.

CONCLUSION

This study showed changes in both gene and protein expression in the cerebral tissue of salt-loaded WKY independent of changes in BP. In both strains, the cerebral changes are exacerbated by salt-loading, although the effect is more pronounced in the SHRSP. Studies to assess different durations of salt-loading in younger non-hypertensive animals are required and salt intake should be further assessed in clinical studies of SVD. Studies using the SHRSP as a model of cerebral SVD should refrain from salt-loading their animals to prevent complicating an already intricate set of pathological changes.

Clinical Significance

- The effect of salt on cerebral small vessel disease (SVD) is poorly understood and dietary salt is difficult to measure & control in the clinic. Therefore the Spontaneously Hypertensive Stroke Prone Rat – a relevant experimental model was used to assess the effects of dietary salt on cerebral gene & protein expression.

- Dietary salt-loading caused changes in gene and protein expression in networks affecting inflammatory pathways, vascular structure and myelin
integrity in the brains of SHRSP, and in its parent strain, the WKY rat. In the latter changes occurred independently of blood pressure elevation.

- The genes identified in this study should be tested in clinical cohorts of small vessel disease patients to see if the effect of dietary salt translates from bench to bedside.

Acknowledgments

The authors would like to thank Dr Wai Kwong Lee for assistance with the Illumina microarray.

Author Contributions Statement

ELB performed RNA extractions, *in vitro* transcriptions, ran the microarray, analysed the data and drafted the manuscript. MWMcB designed the experiment, contributed to genetic analysis and interpretation, performed the statistical analysis and edited the manuscript. WB performed standard PCR and DNA sequencing. JDM designed the experiment, contributed to genetic analysis and interpretation, performed statistical analysis and edited the manuscript. DG was responsible for animal husbandry, provided tissue for the study and provided technical assistance. AFD contributed to the experimental design, provided lab space, experimental animals, contributed to genetic analysis and interpretation and provided expert knowledge in relation to systemic hypertension. CS provided the concept for, obtained funding for, designed the experiment, interpreted the data and edited the
manuscript. JMW provided the hypothesis and concept, obtained funding, designed the experiment, edited the manuscript and takes overall responsibility for the work.

Declaration of Interest

None

Sources of Funding

This work was supported by: a Medical Research Council PhD studentship, the Newby Fund (University of Edinburgh) and the British Neuropathological Society (all for ELB); the Scottish Funding Council through the SINAPSE Collaboration (Scottish Imaging Network, A Platform for Scientific Excellence, http://www.sinapse.ac.uk, JMW); British Heart Foundation Chair and Programme grant funding (CH98001, RG/07/005) and EURATRANS which is co-funded by the European Community's Seventh Framework Programme (FP7/2007-2013) under grant agreement No. HEALTH-F4-2010-241504. Funding is gratefully acknowledged from the European Union Horizon 2020, PHC-03-15, project No 666881, ‘SVDs@Target’, and the Fondation Leducq Transatlantic Network of Excellence for the Study of Perivascular Spaces in Small Vessel Disease, ref no. 16 CVD 05.
References

1. Strazzullo P, D’Elia L, Kandala N-B, Cappuccio FP. Salt intake, stroke, and cardiovascular disease: meta-analysis of prospective studies. BMJ. 2009;339.
2. Li X-Y, Cai X-L, Bian P-D, Hu L-R. High Salt Intake and Stroke: Meta-analysis of the Epidemiologic Evidence. CNS Neuroscience & Therapeutics. 2012;18(8):691-701.
3. Gardener H, Rundek T, Wright CB, Elkind MSV, Sacco RL. Dietary Sodium and Risk of Stroke in the Northern Manhattan Study. Stroke. 2012;43(5):1200-5.
4. Heye AK, Thrippleton M, Chappell F, Valdes Hernandez M, Armitage P, Makin S, et al. Blood pressure and sodium: association with MRI markers in cerebral small vessel disease. Journal of Cerebral Blood Flow and Metabolism. 2016;36:264-74.
5. Makin SDJ, Mubki GF, Doubal FN, Shuler K, Staals J, Dennis MS, et al. Small Vessel Disease and Dietary Salt Intake: Cross-Sectional Study and Systematic Review. Journal of Stroke and Cerebrovascular Diseases.
6. Faraco G, Brea D, Garcia-Bonilla L, Wang G, Racchumi G, Chang H, et al. Dietary salt promotes neurovascular and cognitive dysfunction through a gut-initiated TH17 response. Nature Neuroscience. 2018.
7. Bailey EL, McCulloch J, Sudlow C, Wardlaw JM. Potential Animal Models of Lacunar Stroke. A Systematic Review. 2009;40(6):e451-e8.
8. Hainsworth AH, Markus HS. Do in vivo Experimental Models Reflect Human Cerebral Small Vessel Disease? a Systematic Review. Journal of Cerebral Blood Flow & Metabolism. 2008;28(12):1877-91.
9. Bailey EL, Wardlaw JM, Graham D, Dominiczak AF, Sudlow CLM, Smith C. Cerebral small vessel endothelial structural changes predate hypertension in stroke-prone spontaneously hypertensive rats: a blinded, controlled immunohistochemical study of 5- to 21-week-old rats. Neuropathology and Applied Neurobiology. 2011;37(7):711-26.
10. Bailey EL, McBride MW, Beattie W, McClure JD, Graham D, Dominiczak AF, et al. Differential gene expression in multiple neurological, inflammatory and connective tissue pathways in a spontaneous model of human small vessel stroke. Neuropathology and Applied Neurobiology. 2014;40(7):855-72.
11. Blezer ELA, Nicolay K, Bär PRD, Goldschmeding R, Jansen GH, Koomans HA, et al. Enalapril Prevents Imminent and Reduces Manifest Cerebral Edema in Stroke-Prone Hypertensive Rats. Stroke. 1998;29(8):1671-8.
12. Guerrini U, Sironi L, Tremoli E, Cimino M, Pollo B, Calvio AM, et al. New Insights Into Brain Damage in Stroke-Prone Rats. A Nuclear Magnetic Imaging Study. 2002;33(3):825-30.
13. Cserr HF, Knopf PM. Cervical lymphatics, the blood-brain barrier and the immunoreactivity of the brain: a new view. Immunology Today. 1992;13(12):507-12.
14. DiBello PM, Dayal S, Kaveti S, Zhang D, Kinter M, Lentz SR, et al. The Nutrigenetics of Hyperhomocysteinemia: Quantitative Proteomics Reveals Differences in the Methionine Cycle Enzymes of Gene-Induced versus Diet-Induced Hyperhomocysteinemia. Molecular & Cellular Proteomics : MCP. 2010;9(3):471-85.
15. Pinney JH, Whelan CJ, Petrie A, Dungu J, Banyersad SM, Sattianayagam P, et al. Senile Systemic Amyloidosis: Clinical Features at Presentation and Outcome. Journal of the American Heart Association. 2013;2(2).
16. McBride MW, Brosnan MJ, Mathers J, McLellan LI, Miller WH, Graham D, et al. Reduction of Gstm1 Expression in the Stroke-Prone Spontaneously Hypertension Rat Contributes to Increased Oxidative Stress. Hypertension. 2005;45(4):786-92.
17. Kim-Mitsuyama S, Yamamoto E, Tanaka T, Zhan Y, Izumi Y, Izumiya Y, et al. Critical Role of Angiotensin II in Excess Salt-Induced Brain Oxidative Stress of Stroke-Prone Spontaneously Hypertensive Rats. Stroke. 2005;36(5):1077-82.
18. Kurtz TW, Morris RC. Biological variability in Wistar-Kyoto rats. Implications for research with the spontaneously hypertensive rat. Hypertension. 1987;10(1):127-31.
19. Di Nicolantonio R, Hoy K, Spargo S, Morgan TO. Perinatal salt intake alters blood pressure and salt balance in hypertensive rats. Hypertension. 1990;15(2):177-82.
20. Graham D, McBride MW, Gaasenbeek M, Gilday K, Beattie E, Miller WH, et al. Candidate Genes That Determine Response to Salt in the Stroke-Prone Spontaneously Hypertensive Rat. Congenic Analysis. 2007;50(6):1134-41.
21. Lopez LM, Hill WD, Harris SE, Valdes Hernandez M, Munoz Maniega S, Bastin ME, et al. Genes From a Translational Analysis Support a Multifactorial Nature of White Matter Hyperintensities. Stroke. 2015;46(2):341-7.

Figure Legends

Figure 1. Four way Venn diagram from rank products analysis representing genes that were significantly differentially expressed in comparisons of salt (S) vs no salt animals, within A: SHRSP (SP) frontal (F) brain sections; B: WKY frontal brain sections; C: SHRSP mid-coronal (M) brain sections; D: WKY mid-coronal brain sections. The total number of significantly differentially expressed genes is given in brackets outside the relevant Venn rectangle (112 for A, 59 for B, 9 for C, 78 for D). Within the rectangles every possible combination of these sets of significant genes is given. For example: (A___) shows there were 83 genes that were only significant for the A comparison; (AB__) shows there were 7 genes that were significant for both the A and B comparisons but not for C and D; (ABC_) shows there were 0 genes that were significant for the A, B and C comparisons but not for D; (ABCD) shows there was 1 gene significant for all four of the comparisons.

Figure 2. An IPA software network representing interactions between differentially expressed genes within frontal brain sections. Green = down-regulated genes and red = up-regulated genes. Statistics quoted are, from top to bottom – p value, fold change and signal intensity. Solid lines indicate direct interactions. Dotted lines indicate indirect interactions. A) salt-loaded versus non-salt loaded WKY, B) the same network overlaid with salt-loaded versus non-salt loaded SHRSP data therefore genes highlighted in red indicate genes up regulated in salt-loaded SHRSP compared to SHRSP. For full numerical data corresponding to this figure see supplementary material.

Figure 3. An IPA software network representing interactions between differentially expressed genes within the frontal sections of salt-loaded SHRSP versus non-salt loaded SHRSP. All genes highlighted in green are down regulated in salt-loaded SHRSP. Genes highlighted red are up regulated in salt-loaded SHRSP. Statistics quoted are from top to bottom – p value, fold change and signal intensity. Solid lines indicate direct interactions. Dotted lines indicate indirect interactions. For full numerical data corresponding to this figure see supplementary material.
Figure 4. The top 5 biological pathways in IPA containing an over representation of significantly differentially expressed genes in the frontal sections of A) Salt-loaded WKY versus non-salt loaded WKY, B) Salt-loaded SHRSP versus salt-loaded WKY and C) Salt-loaded SHRSP versus non-salt-loaded SHRSP. The blue bar represents how significant the uploaded data set is to the pathway (log p value) and the orange line represents the number of genes differentially expressed as a proportion of the total genes within that pathway.

Figure 5. Immunoreactivity of GFAP in frontal and mid-coronal sections. Each bar represents N=5. Error bars represent standard error of the mean. Staining panel A) Non-salt loaded WKY B) Salt-loaded WKY C) Non-salt loaded SHRSP D) Salt-loaded SHRSP. All images taken at x10 objective in the deep grey matter of a frontal section.

Figure 6. Immunoreactivity of MBP in frontal and mid-coronal sections. Each bar represents N=5. Error bars represent standard error of the mean. Staining panel A) Non-salt loaded WKY B) Salt-loaded WKY C) Non-salt loaded SHRSP D) Salt-loaded SHRSP. All images taken at x4 objective in the cortical grey matter of a frontal section.

Figure 7. A diagrammatical summary of both genetic and protein changes affecting the neurovascular unit observed in the cerebral tissue of salt-loaded WKY and SHRSP rats.
Table 1. Results are for each brain section. N=4 for all groups. All genes listed are significantly expressed when a FDR of q<0.05 is applied. LOC100129193 = major urinary protein pseudogene. AMBP = alpha-1-microglobulin/bikunin precursor. APOH = Apolipoprotein H. ALDOB = aldolase B, fructose-bisphosphatase. AHSG = alpha-2-HS-glycoprotein. GC = group specific component. GPM6A = glycoprotein m6a. TCEB1 = transcription elongation factor B (SIII), polypeptide 1. NTS = neurotensin. CPE = carboxypeptidase E. ACTB = Beta Actin. TSPAN7 = tetraspanin 7. MAP1B = microtubule-associated protein 1B. PPP3CB = protein phosphatase 3, catalytic subunit, beta isoform. TPI1 = triosephosphate isomerase 1. NSF = N-ethylmaleimide-sensitive factor. PKM2 = pyruvate kinase, muscle. SETD3 = SET domain containing 3. TMEM27 = transmembrane protein 27. SLCO1A5 = solute carrier organic anion transporter family, member 1a5. MCTP1 = multiple C2 domains, transmembrane 1. TAC1 = tachykinin 1. GPR88 = G Protein coupled receptor 88. TTR = Transthyretin. LRRC7 = leucine rich repeat containing 7. SLC17A6 = solute carrier family 17 member 6. SLC24A2 = solute carrier family 24 member 2. OPCML = opioid binding protein/cell adhesion molecule-like. VGF = Vascular growth factor. PRKCG = protein kinase C, gamma. SOSTDC1 = sclerostin domain containing 1. OTX2 = orthodenticle homeobox 2. F5 = coagulation factor V. GDI1 = GDP dissociation inhibitor 1. SNURF = SNRPN upstream reading frame. VOPP1 = vesicular, over expressed in cancer, prosurvival protein 1. SEC61G = SEC61, gamma subunit. ROCK2 = Rho-associated coiled-coil containing protein kinase 2. CYR61 = cysteine-rich, angiogenic inducer, 61. HBXIP = hepatitis B virus x interacting protein. MYEF2 = myelin expression factor 2. GSK3B = glycogen synthase kinase 3 beta. IL11 = Interleukin 11. HBB = hemoglobin, beta. SEPT7 = septin 7. CABP7 = calcium binding protein 7. ANXA1 = annexin A1. ADORA2A = adenosine A2a receptor. AQP1 = aquaporin 1. SCN4B = sodium channel, voltage-gated, type IV, beta. SLC32A1 = solute carrier family 32 member 1. RASD2 = RASD family, member 2. DLX5 = distal-less homeobox 5. PMCH = pro-melanin-concentrating hormone. SIPA1L2 = signal-induced proliferation-associated 1 like 2. RGD = Rat genome database. RSP9 = Ribosomal protein 9. GUCY1a3 = Guanylate cyclase alpha subunit 3. FAM151B = family with sequence similarity 151, member B. ZNF597 = Zinc finger protein 597. OXT = Oxytocin. MRPL18 = Mitochondrial ribosomal protein L18. PXPM4 = peroxisomal membrane protein 4. GPR18 = G protein coupled receptor 18. CSNK2A1 = casein kinase 2, alpha 1 polypeptide. AVP = Arginine vasopressin. HLA-C = major histocompatibility complex, class I.
Salt-loaded WKY versus non-salt loaded WKY	Up regulated	Fold change	Down regulated	Fold change	Up regulated	Fold change	Down regulated	Fold change
LOC100129193	x16.3	MBP	x2.6	TTR	LOC100129193	x4.2	PRKCD	x2.5
AMBP	x2.6	CPE	x2.4	SOSTDC1				
APOH	x2.2	ACTB	x2.3	SLC17A6				
ALDOB	x2.2	TSPAN7	x2.2	SLCO1A2				
AHSG	x2.2	MAP1B	x2.1	OPCML				
GC	x2.0	PPIB	x2.0	SEPT7				
ALB	x2.0	TP1I	x1.9	AMBP				
GPM6A	x1.9	NSF	x1.9	CABP7				
NTS	x1.9	PKM2	x1.9	ALB				
LOC100129193		SETD3	x1.9	LRRC7				

Salt-loaded vs non-salt loaded SHRSP	Up regulated	Fold change	Down regulated	Fold change	Up regulated	Fold change	Down regulated	Fold change
TTR	x53.4	VOPP1	x2.7	TTR	LOC100129193	x3.3	SOSTDC1	x3.1
SOSTDC1	x10	RPS13	x2.1	SLC17A6				
SLCO1A5	x5.2	TP1I	x2.1	SLC24A2				
OTX2	x3.9	SEC61G	x1.9	HBB				
CPE	x3.8	ROCK2	x1.9	OMPCL				
ACTB	x3.7	CYR61	x1.9	SEPT7				
F5	x3.6	HBXIP	x1.8	AMBP				
GDI1	x3.4	MYE2F	x1.8	CABP7				
SNURF	x3.4	GSK3B	x1.8	ALB				
TSPAN7	x3.3	IL11	x1.7	ANXA1				

Table 1. The top 10 up and down regulated genes within and between strain and salt comparisons.
LOC100129193 = major urinary protein pseudogene. AMBP = alpha-1-microglobulin/bikunin precursor. APOH = Apolipoprotein H. ALDOB = aldolase B, fructose-bisphosphate. AHSG = alpha-2-HS-glycoprotein. GC = group specific component. GPM6A = glycoprotein m6a. TCEB1 = transcription elongation factor B (SIII), polypeptide 1. NTS = neurotensin. CPE = carboxypeptidase E. ACTB = Beta Actin. TSPAN7 = tetraspanin 7. MAP1B = microtubule-associated protein 1B. PPP3CB = protein phosphatase 3, catalytic subunit, beta isoform. TPI1 = triosephosphate isomerase 1. NSF = N-ethylmaleimide-sensitive factor. PKM2 = pyruvate kinase, muscle. SETD3 = SET domain containing 3. TMEM27 = transmembrane protein 27. SLCO1A5 = solute carrier organic anion transporter family, member 1a5. MCTP1 = multiple C2 domains, transmembrane 1. TAC1 = tachykinin 1. GPR88 = G Protein coupled receptor 88. TTR = Transthyretin. LRRC7 = leucine rich repeat containing 7. SLC17A6 = solute carrier family 17 member 6. SLC24A2 = solute carrier family 24 member 2. OPCML = opioid binding protein/cell adhesion molecule-like. VGF = Vascular growth factor. PRKCG = protein kinase C, gamma. SOSTDC1 = sclerostin domain containing 1. OTX2 = orthodenticle homeobox 2. F5 = coagulation factor V. GDI1 = GDP dissociation inhibitor 1. SNURF = SNRPN upstream reading frame. VOPP1 = vesicular, over expressed in cancer, prosurvival protein 1. SEC61G = SEC61, gamma subunit. ROCK2 = Rho-associated coiled-coil containing protein kinase 2. CYR61 = cysteine-rich, angiogenic inducer, 61. HBXIP = hepatitis B virus x interacting protein. MYEF2 = myelin expression factor 2. GSK3B = glycogen synthase kinase 3 beta. IL11 = Interleukin 11. HBB = hemoglobin, beta. SEPT7 = septin 7. CABP7 = calcium binding protein 7. ANXA1 = annexin A1. ADORA2A = adenosine A2a receptor. AQP1 = aquaporin 1. SCN4B = sodium channel, voltage-gated, type IV, beta. SLC32A1 = solute carrier family 32 member 1. RASD2 = RAS family, member 2. DLX5 = distal-less homeobox 5. PMCH = pro-melanin-concentrating hormone. SIPA1L2 = signal-induced proliferation-associated 1 like 2. RGD = Rat genome database. RSP9 = Ribosomal protein 9. GUCY1A3 = Guanylate cyclase alpha subunit 3. FAM151B = family with sequence similarity 151, member B. ZNF597 = Zinc finger protein 597. OXT = Oxytocin. MRPL18 = Mitochondrial ribosomal protein L18. PXMP4 = peroxisomal membrane protein 4. PRK18 = G protein coupled receptor 18. CSNK2A1 = casein kinase 2, alpha 1 polypeptide. AVP = Arginine vasopressin. HLA-C = major histocompatibility complex, class C. VPS13C = vacuolar protein sorting 13 homologue.

Salt-loaded SHRSP versus salt-loaded WKY	RGD1564649	RSP9	GUCY1A3	TTR	FAM151B	RGD1311103	SOSTDC1	ZNF597	OXT	RGD1566136
LOC100125697	x46.1	x19.5	x15.3	x7.2	x5.6	x5.6	x5.0	x4.4	x3.2	x3.0
LOC100125697	HCG2004593	x39.4	RSP9	x18.3	x5.3	x15.3	x19.5	x5.6	x3.6	x43.9
LOC100125697	LOC100125697	x4.7	LOC100125697	x4.5	x4.1	x4.0	x4.0	x4.1	x3.5	x4.7
LOC100125697	RGD1565336	x4.5	GPR18	x4.1	x4.0	x4.0	x4.0	x4.0	x3.3	x4.7
LOC100125697	RGD1311103	x16.8	GUCY1A3	x14.5	x8.0	x14.5	x14.5	x14.5	x3.5	x4.6
LOC100125697	RGD156336	x5.2	FAM151B	x8.0	x6.1	x8.0	x6.1	x6.1	x4.6	x5.6
LOC100125697	LOC100125697	x7.2	RGD1311103	x4.7	x4.7	x7.2	x7.2	x7.2	x4.4	x5.0
LOC100125697	LOC100125697	x5.8	RGD1565336	x5.8	x5.8	x5.8	x5.8	x5.8	x4.0	x3.0
LOC100125697	x39.4	x19.5	x15.3	x7.2	x5.6	x5.6	x5.0	x4.4	x3.2	x3.0
LOC100125697	x43.9	x16.8	RSP9	x18.3	x5.3	x15.3	x19.5	x5.6	x3.6	x41.7
A: SP.21wkF vs SP.21wk.F (112)

B: WKY.21wkF vs WKY.21wk.F (50)

C: SP.21wkS.M vs SP.21wk M (5)

D: WKY.21wkS.M vs WKY.21wk.M (78)

5% FDR significant probesets

Fig 1
Fig 2
GFAP

A) Frontal Section

B) Mid Coronal Section

Fig 5
MBP

A) Frontal Section

B) Mid Coronal Section

Fig 6
Fig 7
METHODS

Animals

All animals were kept and experiments conducted according to UK regulations for live animal research in licensed laboratories (licence No. 60/3618) and conducted according to the ARRIVE (Animal Research: Reporting In Vivo Experiments) guidelines (http://www.nc3rs.org/ARRIVE). Results are reported according to the Minimum Information About a Microarray Experiment (MIAME) 2.0 criteria (http://www.mged.org/Workgroups/MIAME/miame_2.0.html). All animals were obtained from the Glasgow colony and kept in identical conditions [8].

Study animals consisted of male rats aged 21 weeks reared on either a normal diet ($n = 5$ per strain) or a normal diet until age 18 weeks and then a ‘salt-loaded’ diet consisting of 1% NaCl added to drinking water from 18 to 21 weeks ($n = 5$ per strain).

Tail cuff plethysmography was used to take weekly measurements of systolic blood pressure. Animals were sacrificed by overdose of isofluorane plus exsanguination. Brains were extracted and divided into left and right hemispheres – one fixed in formalin for immunohistochemistry, one snap frozen in liquid nitrogen for RNA extraction.

Microarray

For full methods see [9]. For mRNA analysis, one hemisphere was snap frozen in RNA-later ice solution and 2 mm coronal slices from a frontal and a mid-coronal region were cut using a Zivic® rat slicer matrix. One region was selected at +1.8-mm bregma to capture a representative frontal section and a second region at −1.72-mm bregma to capture representative areas of the basal ganglia and internal capsule (mid-coronal section). These
areas are typically affected in patients, and, from the published literature, typically are the
most damaged areas in SHRSP [8].

RNA was extracted from homogenized coronal slices using a Qiagen RNAeasy lipid tissue
minikit (Qiagen Ltd., Manchester, UK). Turbo DNase removed any remaining genomic DNA
and RNA quality was assessed on a Nanodrop 1000 and Agilent® bioanalyser 2100 (Agilent,
Santa Clara, CA, USA). RNA was transcribed to cRNA using an Ambion® Illumina® Total
Prep RNA amplification kit (Applied Biosystems, Foster City, CA, USA). We obtained a
final cRNA elute of ~200μl and checked cRNA quality on an Agilent® bioanalyser. The
resulting cRNA was loaded onto a RatRef12 microarray chip (Illumina, San Diego, CA,
USA), containing 22,519 gene and probe sets and stained in a solution of E1 buffer plus
1:1000 dilution of streptavidin-Cy3. Chips were scanned on an Illumina® Bead Reader
(Illumina, San Diego, CA, USA) for fluorescence intensity. Samples with a signal intensity of
>600 passed the bead array reader's quality control. We randomized samples throughout the
entire microarray protocol and all samples were hybridized to the chips and scanned at the
same time.

qRT-PCR: To quantitatively confirm differential expression from the microarray the same
DNase-treated RNA was used as a template for synthesis of cDNA, qRT-PCR reactions using
Applied Biosystems Taqman® Gene Expression Assay (Applied Biosystems, Foster City,
CA, USA). The reaction mix included Taqman® universal master mix (Applied Biosystems,
Foster City, CA, USA) plus GAPDH (VIC® labelled)] and Taqman® probes corresponding
to our gene of interest (FAM® labelled).

Data Analysis: Microarray data were analysed using Rank Products (RP) analysis complete
with Bejamini-Hochberg false discovery rate (FDR) adjustment for multiple testing.
FDR <0.05 was considered significant. A minimum individual fold change for significance
was not set due to an interest in pathway interactions. Venn diagrams were used to visualize
the results by age and brain section, then Ingenuity Pathway Analysis® (IPA) (Ingenuity Systems, http://www.ingenuity.com) analysed data using both a prespecified candidate gene approach (looking for changes in genes and pathways thought to be relevant from previous work by ourselves and others) and a genome-wide approach (to generate new hypotheses). Significance of pathways was assessed using one-sided Fisher's exact tests.

qRT-PCR data (cycle threshold (CT) values) was analysed in Microsoft® Excel by comparing mean delta cycle threshold (dCT) values vs. the housekeeper gene using a Student's t-test.

Immunohistochemistry

Tissue preparation: Formalin-fixed tissue was sectioned into 3-mm-thick coronal slices, processed and embedded in paraffin blocks, which were then cut into 7-μm sections. Similar frontal and mid coronal sections were chosen for analysis. “Standard coordinates from a stereotactic atlas were used to identify prominent structures (e.g. the internal capsule). The frontal region encompassed a region approximately +1.8-mm bregma (containing the anterior commissure and anterior lateral ventricle) and the mid coronal captured a region at −1.72-mm bregma (including areas of the basal ganglia and internal capsule)”.

Antibody staining: Antibodies assessed various components of the neurovascular unit, claudin-5, collagen IV, smooth muscle actin (SMA), collagen I, glial fibrillary acidic protein (GFAP), matrix metalloproteinase 9 (MMP9), ionized calcium-binding adaptor molecule 1 (Iba-1) and Myelin Basic Protein (MBP). We previously assessed this panel of antibodies in 5 and 16 week old WKY and SHRSP [8]. All immunohistochemical studies used the ABC immunoperoxidase method (Vector Laboratories, Peterborough, UK). Antigen heat retrieval using a pressure cooker (with slides immersed in citric acid buffer) was performed before slides were blocked in hydrogen peroxide followed by either rabbit or swine serum. 3.3′-
diaminobenzidine tetrahydrochloride with a haematoxylin counterstain revealed immunoreactivity. Tris-buffered saline replaced the primary antibody in negative controls.

Data analysis: Percentage staining within a defined area of interest was generated using ImagePro™ software (version 6.2; Media Cybernetics, Bethesda, MD, USA), blinded to species and salt, in cortical, deep grey and white matter. A standard sampling protocol was developed by identifying cross sections using landmarks such as the rhinal fissure and piriform cortex (for full protocol see [8]). Each cross section was divided into cortical grey matter, white matter and deep grey matter using the freehand tool on ImagePro™. Intra-observer reliability was assessed using a randomly selected slide counted on five separate occasions and revealed less than 10% of the variance within the counts was due to the effect of day. Colour-matched pixel counts applied to the entire hemisphere and subsequently converted into percentage areas of staining as a measure of immunoreactivity using ImagePro™, once each region of interest (e.g. cortical grey) had been defined by hand.

We performed statistical analysis in Minitab using a general linear model (two-way ANOVA) followed by Tukeys test for pairwise comparisons. The effect of both salt diet and strain were analysed. Frontal cortex and mid-coronal sections were analysed separately due to significant differences in the distribution of grey and white matter, and the influence of brain territory on expression was also included. P values of p<0.05 were considered statistically significant. All data are shown as mean ± SEM.
Table S1. Results of ANOVA analysis on the effect of salt on the percentage staining of 4 antibodies assessing vascular structure.

REGION	Cortex	White Matter	Deep Grey	Cortex	White Matter	Deep Grey
Claudin 5						
WKY	0.280±0.123	0.268±0.127	0.231±0.162	0.160±0.063	0.112±0.057	0.085±0.049
SHRSP	0.132±0.027	0.073±0.045	0.048±0.033	0.104±0.029	0.126±0.048	0.117±0.087
P for salt						
WKY:WKY+NaCl	No significant differences			WKY+NaCl:SHRSP+NaCl	No significant differences	SHRSP+NaCl:SHRSP+NaCl

Collagen I						
WKY	0.172±0.047	0.134±0.079	0.120±0.072	0.094±0.050	0.080±0.039	0.077±0.051
SHRSP	0.138±0.100	0.066±0.032	0.030±0.014	0.097±0.064	0.099±0.067	0.030±0.014
P for salt						
WKY:WKY+NaCl	No significant differences			WKY+NaCl:SHRSP+NaCl	No significant differences	SHRSP+NaCl:SHRSP+NaCl

Collagen IV						
WKY	0.163±0.120	0.234±0.162	0.062±0.017	0.203±0.124	0.106±0.062	0.089±0.025
SHRSP	0.361±0.074	0.120±0.032	0.100±0.044	0.113±0.053	0.041±0.028	0.098±0.049
P for salt						
WKY:WKY+NaCl	No significant differences			WKY+NaCl:SHRSP+NaCl	No significant differences	SHRSP+NaCl:SHRSP+NaCl

SMA						
WKY	0.189±0.075	0.100±0.049	0.139±0.043	0.298±0.161	0.087±0.025	0.146±0.056
SHRSP	0.396±0.121	0.260±0.136	0.199±0.087	0.231±0.027	0.171±0.094	0.139±0.067
P for salt						
WKY:WKY+NaCl	No significant differences			WKY+NaCl:SHRSP+NaCl	No significant differences	SHRSP+NaCl:SHRSP+NaCl

Data taken from frontal section tissue in 21 week old SHRSP versus WKY rats fed either a normal diet or salt-loaded with 1% NaCl from the age of 18 weeks. Numbers indicate percentage staining ± the standard error of the mean from n=5 animals. NS = No significant difference.
Table S2. Results of ANOVA analysis on the effect of salt on the percentage staining of 4 antibodies assessing vascular structure.

SECTION	MID CORONAL SECTION	SALT	No Salt	Deep Grey	Cortex	White Matter	Deep Grey
					WKY	SHRSP	SHRSP
Cortex	WKY: 0.200±0.025	SHRSP: 0.080±0.070	0.261±0.140	0.414±0.125	0.233±0.122	0.144±0.084	0.439±0.222
Collagen I	P for salt				No significant differences	No significant differences	No significant differences
Cortex	WKY: 0.088±0.064	SHRSP: 0.308±0.135	0.060±0.012	0.732±0.381	0.242±0.150	0.131±0.080	0.475±0.202
Collagen IV	P for salt				No significant differences	No significant differences	No significant differences
Cortex	WKY: 0.239±0.089	SHRSP: 0.183±0.112	0.265±0.121	0.151±0.018	0.311±0.100	0.116±0.068	0.230±0.153
Collagen IV	P for salt				No significant differences	No significant differences	No significant differences
Cortex	WKY: 0.292±0.044	SHRSP: 0.530±0.237	0.385±0.183	0.291±0.087	0.262±0.076	0.219±0.092	0.648±0.187
Collagen IV	P for salt				No significant differences	No significant differences	No significant differences
Cortex	WKY: 0.530±0.237	SHRSP: 0.517±0.231	0.517±0.231	0.704±0.352	0.426±0.200	0.403±0.118	0.398±0.252
Collagen IV	P for salt				No significant differences	No significant differences	No significant differences

Data taken from mid coronal tissue in 21 week old SHRSP versus WKY rats fed either a normal diet or salt-loaded with 1% NaCl from the age of 18 weeks. Numbers indicate percentage staining ± the standard error of the mean from n=5 animals. NS = No significant difference.
Data taken from frontal tissue in 21 week old SHRSP versus WKY rats fed either a normal diet or salt-loaded with 1% NaCl from the age of 18 weeks. Numbers indicate percentage staining ± the standard error of the mean from n=5 animals. NS = No significant difference.

Table S3. Results of ANOVA analysis on the effect of salt on the percentage staining of 4 antibodies assessing the presence / absence of vascular disease.

SECTION	FRONTAL SECTION	SALT	No Salt	Deep Grey	Salt	No Salt	Deep Grey					
REGION	Cortex	White Matter	Deep Grey	Cortex	White Matter	Deep Grey						
MMP9	WKY	0.349±0.211	0.154±0.101	0.096±0.065	0.132±0.098	0.112±0.073	0.087±0.057					
	SHRSP	0.148±0.077	0.143±0.081	0.030±0.023	0.264±0.106	0.248±0.174	0.158±0.132					
P for salt	WKY:WKY+NaCl	No significant differences	WKY+NaCl:SHRSP+NaCl	SHRSP:SHRSP+NaCl	No significant differences	SHRSP:SHRSP+NaCl	No significant differences					
GFAP	WKY	0.914±0.199	1.387±0.254	1.490±0.567	0.493±0.136	1.991±0.230	0.835±0.161					
	SHRSP	0.715±0.169	2.419±0.756	1.034±0.304	1.046±0.299	1.840±0.314	1.190±0.139					
P for salt	WKY:WKY+NaCl	Cortex p<0.05	White = NS	Deep Grey = NS	WKY+NaCl:SHRSP+NaCl	Cortex p<0.01	White = NS	Deep Grey = NS	SHRSP:SHRSP+NaCl	No significant differences		
IBA-1	WKY	0.063±0.013	0.109±0.042	0.048±0.013	0.031±0.011	0.054±0.016	0.027±0.010					
	SHRSP	0.071±0.035	0.084±0.048	0.052±0.028	0.014±0.002	0.030±0.013	0.051±0.026					
P for salt	WKY:WKY+NaCl	No significant differences	WKY+NaCl:SHRSP+NaCl	SHRSP:SHRSP+NaCl	No significant differences	SHRSP:SHRSP+NaCl	No significant differences					
MBP	WKY	0.477±0.191	1.402±0.611	1.690±0.697	1.990±0.794	0.346±0.117	1.165±0.092					
	SHRSP	0.462±0.204	0.632±0.224	0.472±0.286	0.427±0.237	0.561±0.294	1.189±0.290					
P for salt	WKY:WKY+NaCl	Cortex p<0.01	White = NS	Deep Grey = NS	WKY+NaCl:SHRSP+NaCl	Cortex p<0.01	White = NS	Deep Grey = NS	SHRSP:SHRSP+NaCl	Cortex = NS	White = NS	Deep Grey = p<0.01
Table S4. Results of ANOVA analysis on the effect of salt on the percentage staining of 4 antibodies assessing the presence / absence of vascular disease.

SECTION	MID CORONAL SECTION	Salt				
		No Salt	Salt			
REGION	Cortex	White Matter	Deep Grey			
	Cortex	White Matter	Deep Grey			
MMP9						
WKY	0.141±0.058	0.217±0.013	0.521±0.171	0.162±0.115	0.367±0.225	0.717±0.346
SHRSP	0.452±0.232	0.207±0.102	0.380±0.196	0.350±0.225	0.119±0.056	0.375±0.182
P for salt						
WKY:WKY+NaCl	No significant differences					
WKY+NaCl:SHRSP+NaCl	No significant differences					
SHRSP:SHRSP+NaCl	No significant differences					
GFAP						
WKY	0.683±0.302	2.388±0.529	1.898±0.496	0.615±0.174	2.439±0.382	2.551±0.382
SHRSP	0.702±0.172	2.093±0.500	2.246±0.515	0.504±0.162	3.965±0.766	2.552±0.702
P for salt						
WKY:WKY+NaCl	No significant differences					
WKY+NaCl:SHRSP+NaCl	No significant differences					
SHRSP:SHRSP+NaCl	No significant differences					
IBA-1						
WKY	0.032±0.020	0.022±0.011	0.013±0.006	0.055±0.020	0.034±0.021	0.019±0.009
SHRSP	0.045±0.015	0.034±0.019	0.036±0.020	0.112±0.033	0.109±0.099	0.063±0.026
P for salt						
WKY:WKY+NaCl	No significant differences					
WKY+NaCl:SHRSP+NaCl	No significant differences					
SHRSP:SHRSP+NaCl	No significant differences					
MBP						
WKY	4.622±2.152	1.659±0.634	0.582±0.228	3.634±1.410	0.521±0.150	0.292±0.107
SHRSP	1.570±0.786	1.096±0.761	0.383±0.233	1.944±0.886	0.063±0.046	0.130±0.105
P for salt						
WKY:WKY+NaCl	No significant differences					
WKY+NaCl:SHRSP+NaCl	No significant differences					
SHRSP:SHRSP+NaCl	No significant differences					

Data taken from mid coronal tissue in 21 week old SHRSP versus WKY rats fed either a normal diet or salt-loaded with 1% NaCl from the age of 18 weeks. Numbers indicate percentage staining ± the standard error of the mean from n=5 animals. NS = No significant difference.
WKY vs NS Frontal

Symbol	Entrez Gene Name	Expr p-value	Expr Fold Change	Location	Family
ACTB	actin beta	0.002937063	-2.254365334	Cytoplasm	other
AHSG	alpha 2-HS glycoprotein	0.028353808	2.161816113	Extracellular Space	other
ALB	albumin	0.01	2.038292073	Extracellular Space	transporter
AMBP	alpha-1-microglobulin/bikunin precursor	0.011185771	2.61159513	Extracellular Space	transporter
APP	APP	0.041423671	-1.825170257	Plasma Membrane	other
CPE	CPE	0.001363636	-2.381731904	Plasma Membrane	peptidase
MAP1B	microtubule associated protein 1B	0.009760766	-2.191795586	Cytoplasm	other
MBP	myelin basic protein	0.000849351	-2.638272104	Extracellular Space	other
NSF	N-ethylmaleimide sensitive factor, vesicle fusing ATPase	0.039690522	-1.945245839	Cytoplasm	transporter
NTS	neurotensin	0.041423671	1.823815196	Extracellular Space	other
TTR	transthyretin	0.036727273	-1.009580577	Extracellular Space	transporter

SHRSP vs NS Frontal

Symbol	Entrez Gene Name	Expr p-value	Expr Fold Change	Location	Family
ACTB	actin beta	0.000363636	3.664505183	Cytoplasm	other
AHSG	alpha 2-HS glycoprotein	0.869386098	1.563497312	Extracellular Space	other
ALB	albumin	0.252661871	2.186806048	Extracellular Space	transporter
AMBP	alpha-1-microglobulin/bikunin precursor	0.420691928	1.687026381	Extracellular Space	transporter
APP	APP	0.2296706305	1.867222156	Plasma Membrane	other
CPE	CPE	0.000833333	3.790831982	Plasma Membrane	peptidase
MAP1B	microtubule associated protein 1B	0.009696997	3.039544736	Cytoplasm	other
MBP	myelin basic protein	0.027624442	2.159306134	Extracellular Space	other
NSF	N-ethylmaleimide sensitive factor, vesicle fusing ATPase	0.022399404	2.308452769	Cytoplasm	transporter
NTS	neurotensin	0.552521408	1.52970972	Extracellular Space	other
TTR	transthyretin	0	53.37301373	Extracellular Space	transporter
Symbol	Entrez Gene Name	Expr p-value	Expr Fold Change	Location	Family
--------	-----------------	--------------	------------------	----------	----------------
ACTB	actin beta	0.000363636	3.664505185	Cytoplasm	other
CAPNS1	calpain small subunit 1	0.017414141	2.132061626	Cytoplasm	peptidase
CTNNB1	catenin beta 1	0.004545455	2.700607847	Nucleus	transcription regulator
DNAJB4	DnaJ heat shock protein family (Hsp40) member B4	0.025200535	2.130853613	Nucleus	other
DSTN	DSTN	0.012545455	2.516480202	Cytoplasm	other
HNRNPA2B1	heterogeneous nuclear ribonucleoprotein A2/B1	0.040969125	1.883773987	Nucleus	other
KCNIP4	potassium voltage-gated channel interacting protein 4	0.029879518	2.234544061	Plasma Membrane	ion channel
MBP	myelin basic protein	0.027260442	2.159306134	Extracellular Space	other
PLS3	plastin 3	0.02084048	2.149291695	Cytoplasm	other
ROCK2	Rho associated coiled-coil containing protein kinase 2	0.021338843	-1.914940256	Cytoplasm	kinase
RPL7	ribosomal protein L7	0.015159705	2.413802708	Cytoplasm	transcription regulator
YAF2	YAF2	0.016807611	2.083912782	Nucleus	transcription regulator
YY1	YY1 transcription factor	0.015159705	2.382734897	Nucleus	transcription regulator