Near-Optimal Statistical Query Hardness of Learning Halfspaces with Massart Noise

Ilias Diakonikolas\(^\ast\)
University of Wisconsin-Madison
ilias@cs.wisc.edu

Daniel M. Kane\(^\dagger\)
University of California, San Diego
dakane@cs.ucsd.edu

November 9, 2021

Abstract

We study the problem of PAC learning halfspaces with Massart noise. Given labeled samples \((x, y)\) from a distribution \(D\) on \(\mathbb{R}^d \times \{\pm 1\}\) such that the marginal \(D_x\) on the examples is arbitrary and the label \(y\) of example \(x\) is generated from the target halfspace corrupted by a Massart adversary with flipping probability \(\eta(x) \leq \eta \leq 1/2\), the goal is to compute a hypothesis with small misclassification error. The best known \(\text{poly}(d, 1/\epsilon)\)-time algorithms for this problem achieve error of \(\eta + \epsilon\), which can be far from the optimal bound of \(\text{OPT} + \epsilon\), where \(\text{OPT} = \mathbf{E}_{x \sim D_x} [\eta(x)]\). While it is known that achieving \(\text{OPT} + o(1)\) error requires super-polynomial time in the Statistical Query model, a large gap remains between known upper and lower bounds.

In this work, we essentially characterize the efficient learnability of Massart halfspaces in the Statistical Query (SQ) model. Specifically, we show that no efficient SQ algorithm for learning Massart halfspaces on \(\mathbb{R}^d\) can achieve error better than \(\Omega(\eta)\), even if \(\text{OPT} = 2^{-\log^{c}(d)}\), for any universal constant \(c \in (0, 1)\). Furthermore, when the noise upper bound \(\eta\) is close to 1/2, our error lower bound becomes \(\eta - o_{\eta}(1)\), where the \(o_{\eta}(1)\) term goes to 0 when \(\eta\) approaches 1/2.

Our results provide strong evidence that known learning algorithms for Massart halfspaces are nearly best possible, thereby resolving a longstanding open problem in learning theory.

\(^\ast\)Supported by NSF Medium Award CCF-2107079, NSF Award CCF-1652862 (CAREER), a Sloan Research Fellowship, and a DARPA Learning with Less Labels (LwLL) grant.

\(^\dagger\)Supported by NSF Medium Award CCF-2107547, NSF Award CCF-1553288 (CAREER), and a Sloan Research Fellowship.
1 Introduction

1.1 Background and Motivation

A halfspace, or Linear Threshold Function (LTF), is any function \(f : \mathbb{R}^m \rightarrow \{\pm 1\} \) of the form \(f(x) = \text{sign}(w \cdot x - \theta) \), for some weight vector \(w \in \mathbb{R}^m \) and threshold \(\theta \in \mathbb{R} \). (The function \(\text{sign} : \mathbb{R} \rightarrow \{\pm 1\} \) is defined as \(\text{sign}(t) = 1 \) if \(t \geq 0 \) and \(\text{sign}(t) = -1 \) otherwise.) Halfspaces are a fundamental class of Boolean functions that have been extensively studied in computational complexity and learning theory over several decades [MP68, Yao90, GHR92, STC00, O’D14]. The problem of learning an unknown halfspace is as old as the field of machine learning, starting with the Perceptron algorithm [Ros58, Nov62], and has been one of the most influential problems in this field with techniques such as SVMs [Vap98] and AdaBoost [FS97] coming out of its study.

In the realizable PAC model [Val84], i.e., when the labels are consistent with the target function, halfspaces are efficiently learnable via Linear Programming (see, e.g., [MN06]). In the presence of noisy data, the computational complexity of learning halfspaces depends on the underlying noise model. Here we study the complexity of learning halfspaces with Massart noise. In the Massart (or bounded) noise model, the label of each example \(x \) is flipped independently with probability \(\eta(x) \leq \eta \), for some parameter \(\eta \leq 1/2 \). The flipping probability is bounded above by 1/2, but can depend on the example \(x \) in a potentially adversarial manner. The following definition encapsulates the PAC learning problem in this noisy model.

Definition 1.1 (PAC Learning with Massart Noise). Let \(\mathcal{C} \) be a concept class of Boolean-valued functions over \(X = \mathbb{R}^m \), \(D_x \) be a fixed but unknown distribution over \(X \), and \(0 \leq \eta \leq 1/2 \) be the noise parameter. Let \(f : X \rightarrow \{\pm 1\} \) be the unknown target concept with \(f \in \mathcal{C} \). A Massart *example oracle* \(\text{EX}^{\text{Mas}}(f, D_x, \eta) \), works as follows: Each time \(\text{EX}^{\text{Mas}}(f, D_x, \eta) \) is invoked, it returns a labeled example \((x, y)\), where \(x \sim D_x \), \(y = f(x) \) with probability \(1 - \eta(x) \) and \(y = -f(x) \) with probability \(\eta(x) \), for some unknown function \(\eta(x) : X \rightarrow [0, 1/2] \) with \(\eta(x) \leq \eta \) for all \(x \in X \). Let \(D \) denote the joint distribution on \((x, y)\) generated by the Massart example oracle. A PAC learning algorithm is given i.i.d. samples from \(D \) and its goal is to output a hypothesis \(h : X \rightarrow \{\pm 1\} \) such that with high probability the error \(\text{Pr}_{(x,y) \sim D}[h(x) \neq y] \) is as small as possible. We will use \(\text{OPT} = \inf_{g \in \mathcal{C}} \text{Pr}_{(x,y) \sim D}[g(x) \neq y] \) to denote the optimal misclassification error.

A remark is in order about the definition. While the TCS community had only considered the case that the upper bound \(\eta \) on the Massart noise rate is *strictly smaller* than 1/2, this is not an essential assumption in the model. In fact, the original definition of the Massart model [MN06] allows for \(\eta = 1/2 \). (Note that it is possible that \(\eta = 1/2 \) while \(\text{OPT} \) is much smaller.)

The Massart noise model is a natural semi-random input model that was formulated in [MN06]. An equivalent noise model had already been defined in the 80s by Sloan and Rivest [Slo88, Slo92, RS94, Slo96] (under the name “malicious misclassification noise”) and a very similar definition had been proposed and studied even earlier by Vapnik [Vap82]. The *sample complexity* of PAC learning halfspaces with Massart noise is well-understood. For example, it is known (see, e.g., [MN06]) that for any concept class \(\mathcal{C} \) of VC dimension \(d \), \(O(d/\epsilon^2) \) samples information-theoretically suffice to compute a hypothesis with misclassification error \(\text{OPT} + \epsilon \), where \(\text{OPT} = \mathbb{E}_{x \sim D_x}[\eta(x)] \). This implies that halfspaces on \(\mathbb{R}^m \) are learnable in the Massart model with \(O(m/\epsilon^2) \) samples.

In sharp contrast, our understanding of the *algorithmic aspects* of PAC learning various natural concept classes with Massart noise is startlingly poor and has remained a tantalizing open problem in computational learning theory since the 1980s. In [Slo88] (see also Slo92), Sloan defined the malicious misclassification noise model (an equivalent formulation of Massart noise) and asked whether there exists an efficient learning algorithm for Boolean disjunctions, i.e., ORs of Boolean literals.
— a very special case of halfspaces — in this model. About a decade later, Edith Cohen [Coh97] asked the same question for the general class of halfspaces. The problem remained open, even for weak learning, and was highlighted in Avrim Blum’s FOCS 2003 tutorial [Blu03]. Surprisingly, until fairly recently, it was not even known whether there exists an efficient algorithm that achieves misclassification error 49% for Massart halfspaces with noise rate upper bound of $\eta = 1%$.

Recent work [DGT19] made the first algorithmic progress on this learning problem. Specifically, [DGT19] gave a poly($m, 1/\epsilon$)-time learning algorithm for Massart halfspaces with error guarantee of $\eta + \epsilon$, where η is the upper bound on the Massart noise rate. This is an absolute error guarantee which cannot be improved in general — since it may well be the case that $\text{OPT} = \eta$ (this in particular happens when $\eta(x) = \eta$ for all $x \in X$). Motivated by [DGT19], more recent work [DIK+21] gave an efficient boosting algorithm, achieving error $\eta + \epsilon$ for any concept class, assuming the existence of a weak learner for the class.

The aforementioned error bound of $\eta + \epsilon$ can be very far from the information-theoretically optimum error of $\text{OPT} + \epsilon$. Recall that $\text{OPT} = \mathbb{E}_{x \sim D}[\eta(x)] \leq \eta$ and it could well be the case that $\text{OPT} \ll \eta$. Follow-up work by [CKMY20] showed that exact learning — specifically, obtaining error of $\text{OPT} + o(1)$, when OPT is close to $1/2$ — requires super-polynomial time in the Statistical Query (SQ) model of [Kea98]. The latter SQ lower bound is very fragile in the sense that it does not even rule out any constant factor approximation algorithm for the problem, i.e., a poly($m, 1/\epsilon$)-time learning algorithm with error $C \cdot \text{OPT} + \epsilon$, for a universal constant $C > 1$.

The aforementioned progress notwithstanding, a very large gap remains in our understanding of the efficient learnability of halfspaces in the presence of Massart noise. In particular, prior to the current work, the following questions remained open.

Question 1.1. Is there an efficient learning algorithm for Massart halfspaces achieving a relative error guarantee? Specifically, if $\text{OPT} \ll \eta$ is it possible to efficiently achieve error significantly better than η? More generally, what is the best error (as a function of OPT and η) that can be achieved in polynomial time?

We emphasize here that, throughout this work, we focus on improper learning, where the learning algorithm is allowed to output any polynomially evaluable hypothesis.

In this paper, we essentially resolve the efficient PAC learnability of Massart halfspaces in the SQ model. Specifically, we prove a near-optimal super-polynomial SQ lower bound for this problem, which provides strong evidence that known efficient algorithms are nearly best possible.

Before we formally state our contributions, we require some background on SQ algorithms.

Statistical Query Model Statistical Query (SQ) algorithms are the class of algorithms that are only allowed to query expectations of bounded functions of the underlying distribution rather than directly access samples. The SQ model was introduced by Kearns [Kea98] in the context of supervised learning as a natural restriction of the PAC model [Val84] and has been extensively studied in learning theory. A recent line of work [FGR+13, FPV15, FGV17, Fel17] generalized the SQ framework for search problems over distributions. The reader is referred to [Fel16] for a survey.

One can prove unconditional lower bounds on the complexity of SQ algorithms via a notion of Statistical Query dimension. Such a complexity measure was introduced in [BFJ+94] for PAC learning of Boolean functions and has been generalized to the unsupervised setting in [FGR+13, Fel17]. A lower bound on the SQ dimension of a learning problem provides an unconditional lower bound on the complexity of any SQ algorithm for the problem.

The class of SQ algorithms is fairly broad: a wide range of known algorithmic techniques in machine learning are known to be implementable in the SQ model. These include spectral techniques, moment and tensor methods, local search (e.g., Expectation Maximization), and many
others (see, e.g., [CKL+06, FGR+13, FGV17]). In the context of PAC learning classes of Boolean functions (the topic of this paper), with the exception of learning algorithms using Gaussian elimination (in particular for the concept class of parities, see, e.g., [BK03]), all known algorithms with non-trivial performance guarantees are either SQ or are implementable using SQs. Finally, we acknowledge very recent work [BBH+20] which established a close connection between the SQ model and low-degree polynomial tests under certain assumptions.

1.2 Our Contributions

Our main result shows that any efficient (i.e., using polynomially many queries of inverse-polynomial accuracy) SQ learning algorithm for Massart halfspaces on \mathbb{R}^m cannot obtain error better than $\Omega(\eta)$, even if the optimal error is as small as $\text{OPT} = 2^{-\log^c(m)}$, for any constant $c \in (0, 1)$. This result rules out even very weak relative approximations to the optimal value.

In more detail, we establish the following theorem:

Theorem 1.2 (Main Result). For any universal constants c, c' with $0 < c < 1$ and $0 < c' < 1 - c$, the following holds. For any sufficiently large positive integer m and any $0 < \eta < 1/2$, there is no SQ algorithm that PAC learns the class of halfspaces in \mathbb{R}^m with η-Massart noise to error better than $\Omega(\eta)$ using at most $\exp(\log^{1+c}(m))$ queries of accuracy no better than $\exp(-\log^{1+c}(m))$. This holds even if the optimal classifier has error $\text{OPT} = \exp(-\log^{c'}(m))$.

Some comments are in order. First, recall that the efficient algorithm of [DGT19] (which can be implemented in the SQ model) achieves error arbitrarily close to η. Moreover, it is easy to see that the Massart learning problem is computationally easy when $\text{OPT} \ll 1/m$. As a result, the “inapproximability gap” of $\Omega(\eta)$ versus $2^{-\log^c(m)}$ established by Theorem 1.2 is essentially best possible (up to the universal constant in the $\Omega(\cdot)$). For a more detailed statement, see Theorem 3.1.

Remark 1.3. When the Massart noise rate upper bound η approaches $1/2$, we can replace the lower bound of $\Omega(\eta)$ appearing in Theorem 1.2 by the sharper lower bound of $\eta - o(\eta)(1)$. Here the term $o(\eta)(1)$ goes to 0 as η approaches 1/2. See Theorem 3.27 for the statement in this regime.

It is worth comparing Theorem 1.2 to the hardness result of Daniely [Dan16] for PAC learning halfspaces in the agnostic model. Daniely’s result is qualitatively similar to our Theorem 1.2 with two differences: (1) The lower bound in [Dan16] only applies against the (much more challenging) agnostic model. (2) In the agnostic setting, it is hard to learn halfspaces within error significantly better than 1/2, rather than error $\Omega(\eta)$ in the Massart setting. Theorem 3.1 proves an SQ lower bound for a much more benign semi-random noise model at the cost of allowing somewhat better error in polynomial time. We reiterate that error arbitrarily close to η is efficiently achievable for Massart noise [DGT19], and therefore our hardness gap is nearly best possible.

Remark 1.4. Theorem 1.2 strengthens a recent result by the same authors [DK20] which established a weaker inapproximability gap for Massart halfspaces in the SQ model. Specifically, [DK20] showed that no efficient SQ algorithm can learn Massart halfspaces to accuracy $1/polylog(m)$, even when $\text{OPT} = 2^{-\log^c(m)}$. The main difference between the two results, which leads to the difference in the error bounds, lies in the construction of the one-dimensional moment-matching distributions.

1.3 Related and Prior Work

We have already provided some background on the Massart noise model. Here we summarize the most relevant literature on learning halfspaces in related noise models.
Random Classification Noise Random Classification Noise (RCN) [AL88] is the special case of Massart noise where each label is flipped with probability exactly $\eta < 1/2$. Halfspaces are known to be efficiently learnable to optimal accuracy in the (distribution-independent) PAC model with RCN [BFKV96, BFKV97]. In fact, it is well-known that any SQ learning algorithm [Kea98] can be transformed to an RCN noise tolerant learning algorithm — a fact that inherently fails in the presence of Massart noise. Roughly speaking, the ability of the Massart adversary to choose whether to flip a given label and, if so, with what probability, makes the algorithmic problem in this model significantly more challenging.

Agnostic Learning The agnostic model [Hau92, KSS94] is the strongest noise model in the literature, where an adversary is allowed to adversarially corrupt an arbitrary OPT $< 1/2$ fraction of the labels. In the distribution-independent setting, even weak agnostic PAC learning of halfspaces (i.e., obtaining a hypothesis with non-trivial accuracy) is known to be intractable. A long line of work (see, e.g., [GR06, FGKP06]) has established NP-hardness of weak agnostic proper learning. (See [Fel15] for a survey on hardness of proper learning results.) More recently, [Dan16] gave super-polynomial lower bounds for improper learning, under certain average-case complexity assumptions, and simultaneously established SQ lower bounds for the problem. Concretely, [Dan16] showed that no polynomial-time SQ algorithm for agnostically learning halfspaces on \mathbb{R}^m can compute a hypothesis with error $1/2 - 1/m^c$, for some constant $c > 0$, even for instances with optimal error $OPT = 2^{-\log^{1-\nu}(m)}$, for some constant $\nu \in (0,1/2)$.

Finally, it is worth noting that learning to optimal accuracy in the agnostic model is known to be computationally hard even in the distribution-specific PAC model, and in particular under the Gaussian distribution [KK14, GK20, DK20, DP21]. However, these distribution-specific hardness results are very fragile and do not preclude efficient constant factor approximations. In fact, efficient constant factor approximate learners are known for the Gaussian and other well-behaved distributions (see, e.g., [ABL17, DKS18]).

Prior SQ Lower Bound for Massart Halfspaces [CKMY20] showed an SQ lower bound of $m^{\Omega(\log(1/\epsilon))}$ for learning halfspaces with Massart to error $OPT + \epsilon$, when OPT is close to 1/2. Specifically, [CKMY20] observed a connection between SQ learning with Massart noise and the Correlational Statistical Query (CSQ) model, a restriction of the SQ model defined in [BF02] (see also [Fel08, Fel11]). Given this observation, [CKMY20] deduced their SQ lower bound by applying as a black-box a previously known CSQ lower bound by Feldman [Fel11]. This approach is inherently limited to exact learning. Establishing lower bounds for approximate learning requires new ideas.

Efficient Algorithms for Distribution-Specific Learning Finally, we note that $\text{poly}(m, 1/\epsilon)$ time learning algorithms for homogeneous Massart halfspaces with optimal error guarantees have been developed when the marginal distribution on examples is well-behaved [ABHU15, ABHZ16, ZLC17, YZ17, ZSA20, DKTZ20a, DKTZ20b, DKK+20, DKK+21]. The hardness result obtained in this paper provides additional motivation for such distributional assumptions. As follows from our inapproximability result, without some niceness assumption on the distribution of examples, obtaining even extremely weak relative approximations to the optimal error is hard.

Broader Context This work is part of the broader direction of understanding the computational complexity of robust high-dimensional learning in the distribution-independent setting. A long line of work, see, e.g., [KLS09, ABL17, DKK+16, LRV16, DKK+17, DKK+18, DKS18, KKM18, DKS19].
and the recent survey [DK19], has given efficient robust learners for a range of high-dimensional estimation tasks (both supervised and unsupervised) in the presence of a small constant fraction of adversarial corruptions. These algorithmic results inherently rely on the assumption that the clean data is drawn from a “well-behaved” distribution.

On the other hand, the recent work [DGT19] established that efficient robust learners with non-trivial error guarantees are achievable even in the distribution-independent setting, under the more “benign” Massart model. This result provided compelling evidence that there are realistic noise models in which efficient algorithms are possible without imposing assumptions on the good data distribution. Conceptually, the result of this paper shows that, even in such semi-random noise models, there can be strong computational limitations in learnability — in the sense that it is computationally hard to achieve even weak relative approximations to the optimal error.

1.4 Overview of Techniques

At a high level, our proof leverages the SQ lower bound framework developed in [DKS17]. We stress that, while this framework is a key ingredient of our construction, employing it in our context requires new conceptual and technical ideas, as we explain in the proceeding discussion.

Roughly speaking, the prior work [DKS17] established the following generic SQ-hardness result: Let A be a one-dimensional distribution that matches the first k moments with the standard Gaussian G and satisfying the additional technical condition that its chi-squared norm with G is not too large. Suppose we want to distinguish between the standard high-dimensional Gaussian $N(0, I)$ on \mathbb{R}^m and a distribution P_A^v that is a copy of A in a random direction v and is a standard Gaussian in the orthogonal complement. Then any SQ algorithm for this hypothesis testing task requires super-polynomial complexity. Roughly speaking, any SQ algorithm distinguishing between the two cases requires either at least $m^{\Omega(k)}$ samples or at least $2^{m^{O(1)}}$ time.

In the context of the current paper, we will in fact require a generalization of the latter generic result that holds even if the one-dimensional distribution A nearly matches the first k moments with G. Furthermore, in contrast to the unsupervised estimation problem studied in [DKS17], in our context we require a generic statement establishing the SQ-hardness of a binary classification problem. Such a statement (Proposition 3.8) is not hard to derive from the techniques of [DKS17].

In more detail, Proposition 3.8 shows the following: Let A and B be univariate distributions (approximately) matching their first k moments with G (and each having not too large chi-squared norm with respect to G) and let $p \in (0, 1)$. We consider the distribution on labeled samples $P_{A,B,p}^{v}$ that returns a sample from $(P_{v}^{A}, 1)$ with probability p and a sample from $(P_{v}^{B}, -1)$ with probability $1 - p$. Given labeled examples from $P_{v}^{A,B,p}$, for an unknown direction v, the goal is to output a Boolean-valued hypothesis with small misclassification error. Note that it is straightforward to obtain error $\min\{p, 1 - p\}$ (as one of the two constant functions achieves this). We show that obtaining slightly better error is hard in the SQ model.

To leverage the aforementioned result in our circumstances, we would like to establish the existence of a distribution (X, Y) on $\mathbb{R} \times \{\pm 1\}$ that corresponds to a halfspace with Massart noise such that both the distribution of X conditioned on $Y = 1$ (denoted by $(X \mid Y = 1)$) and the distribution of X conditioned on $Y = -1$ (denoted by $(X \mid Y = -1)$) approximately match their first k moments with the standard Gaussian. Note that k here is a parameter that we would like to make as large as possible. In particular, to prove a super-polynomial SQ lower bound, we need to be able to make this parameter k super-constant (as a function of the ambient dimension).

Naturally, a number of obstacles arise while trying to achieve this. In particular, achieving the above goal directly is provably impossible for the following reason. Any distribution X that even approximately matches a constant number of low-order moments with the standard Gaussian
will satisfy $\mathbb{E}[f(X)] \approx \mathbb{E}[f(G)]$ for any halfspace (LTF) f. To see this fact, we can use the known statement (see, e.g., [DGJ+10]) that any halfspace f can be sandwiched between low-degree polynomials $f_{\pm} \geq f \geq f_-$ with $\mathbb{E}[f_+(G) - f_-(G)]$ small. This structural result implies that if both conditional distributions $(X \mid Y = 1)$ and $(X \mid Y = -1)$ approximately match their low-degree moments with G, then $\mathbb{E}[f(X) \mid Y = 1]$ will necessarily be close to $\mathbb{E}[f(X) \mid Y = -1]$, which cannot hold in the presence of Massart noise.

In order to circumvent this obstacle, we will instead prove a super-polynomial SQ lower bound against learning degree-d polynomial threshold functions (PTFs) under the Gaussian distribution with Massart noise, for an appropriate (super-constant) value of the degree d. Since a degree-d PTF on the vector random variable $X \in \mathbb{R}^m$ is equivalent to an LTF on $X^\otimes d$ — a random variable in m^d dimensions — we will thus obtain an SQ lower bound for the original halfspace Massart learning problem. We note that a similar idea was used in [Dan16] to prove an SQ lower bound for the problem of learning halfspaces in the agnostic model.

The next challenge is, of course, to construct the required moment-matching distributions in one dimension. Even for our reformulated PTF learning problem, it remains unclear whether this is even possible. For example, let $f(x) = \text{sign}(p(x))$ be a degree-d PTF. Then it will be the case that $\mathbb{E}[p(X)Y] = \mathbb{E}[p(X)f(X)(1 - 2\eta(X))] = \mathbb{E}[p(X)(1 - 2\eta(X))] > 0$. This holds despite the fact that $\mathbb{E}[p(X) \mid Y = 1] \approx \mathbb{E}[p(X) \mid Y = -1] \approx \mathbb{E}[p(G)]$. If $\mathbb{E}[p(G)] > 0$, it will be the case that $\mathbb{E}[p(X) \mid Y = -1]$ will be positive, despite the fact that the conditional distribution of $X \mid Y = -1$ is almost entirely supported on the region where $p(X) < 0$. Our construction will thus need to take advantage of finding points where $|p(X)|$ is very large.

Fortunately for us, something of a miracle occurs here. Consider a discrete univariate Gaussian G_σ with spacing σ between its values. It is not hard to show that G_σ approximately matches moments with the standard Gaussian G to error $\exp(-\Omega(1/\sigma^2))$ (see Lemma 3.12). On the other hand, all but a tiny fraction of the probability mass of G_σ is supported on $d = \tilde{O}(1/\sigma)$ points. Unfortunately, a discrete Gaussian is not quite suitable for the conditional distributions in our construction, as its χ^2 inner product with respect to the standard Gaussian is infinite. We can fix this issue by replacing the single discrete Gaussian with an average of discrete Gaussians with different offsets. Doing so, we obtain a distribution that nearly-matches many moments with the standard Gaussian such that all but a small fraction of its mass is supported on a small number of intervals.

As a first attempt, we can let one of our conditional distributions be this average of “offset discrete Gaussians” described above, and the other be a similar average with different offsets. Thus, both conditional distributions nearly-match moments with the standard Gaussian and are approximately supported on a small number of (disjoint) intervals. This construction actually suffices to prove a lower bound for (the much more challenging) agnostic learning model. Unfortunately however, for the Massart noise model, additional properties are needed. In particular, for a univariate PTF with Massart noise, it must be the case that except for points x in a small number of intervals, we have that $\Pr[Y = 1 \mid X = x] > \Pr[Y = -1 \mid X = x]$; whereas in the above described construction we have to alternate infinitely many times between $Y = 1$ being more likely and $Y = -1$ more likely.

To circumvent this issue, we need the following subtle modification of our construction. Let $G_{\sigma, \theta}$ be the discrete Gaussian supported on the points $n\sigma + \theta$, for $n \in \mathbb{Z}$ (Definition 3.11). Our previous (failed) construction involved taking an average of $G_{\sigma, \theta}$, for some fixed σ and θ varying in some range. Our modified construction will involve taking an average of $G_{\sigma, \theta}$, where both σ and θ vary together. The effect of this feature will be that instead of producing a distribution whose support is a set of evenly spaced intervals of the same size, the support of our distributions will instead consist of a set of evenly spaced intervals whose size grows with the distance from the origin. This means
that for points x near 0, the support will essentially be a collection of small, disjoint intervals. But when x becomes large enough, these intervals will begin to overlap, causing all sufficiently large points x to be in our support. By changing the offsets used in defining the conditional distribution for $Y = 1$ and the conditional distribution for $Y = -1$, we can ensure that for points x with $|x|$ small that the supports of the two conditional distributions remain disjoint. This in particular allows us to take the optimal error OPT to be very small. However, for larger values of $|x|$, the supports become the same. Finally, by adjusting the prior probabilities of $Y = 1$ and $Y = -1$, we can ensure that $\Pr[Y = 1 \mid X = x] > ((1 - \eta)/(\eta)) \Pr[Y = -1 \mid X = x]$ for all points x with $|x|$ sufficiently large. This suffices to show that the underlying distribution corresponds to a Massart PTF.

1.5 Organization

The structure of this paper is as follows: In Section 2 we review the necessary background on the Statistical Query model. In Section 3 we prove our SQ lower bounds for Massart halfspaces. Finally, in Section 4 we conclude and suggest a few directions for future work.

2 Preliminaries

Notation For $n \in \mathbb{Z}_+$, we denote $[n] \overset{\text{def}}{=} \{1, \ldots, n\}$. We will use standard notation for norms of vectors and functions, that will be presented before it is used in subsequent sections. We use $E[X]$ for the expectation of random variable X and $Pr[E]$ for the probability of event E.

Basics on Statistical Query Algorithms. We will use the framework of Statistical Query (SQ) algorithms for problems over distributions introduced in [FGR+13]. We start by defining a decision problem over distributions.

Definition 2.1 (Decision Problem over Distributions). We denote by $B(\mathcal{D}, D)$ the decision (or hypothesis testing) problem in which the input distribution D' is promised to satisfy either (a) $D' = D$ or (b) $D' \not\in \mathcal{D}$, and the goal of the algorithm is to distinguish between these two cases.

We define SQ algorithms as algorithms that do not have direct access to samples from the distribution, but instead have access to an SQ oracle. We consider the following standard oracle.

Definition 2.2 (STAT Oracle). For a tolerance parameter $\tau > 0$ and any bounded function $f : \mathbb{R}^n \to [-1, 1]$, STAT($\tau$) returns a value $v \in [E_{x \sim D}[f(x)] - \tau, E_{x \sim D}[f(x)] + \tau]$.

We note that [FGR+13] introduced another related oracle, which is polynomially equivalent to STAT. Since we prove super-polynomial lower bounds here, there is no essential distinction between these oracles. To define the SQ dimension, we need the following definitions.

Definition 2.3 (Pairwise Correlation). The pairwise correlation of two distributions with probability density functions $D_1, D_2 : \mathbb{R}^m \to \mathbb{R}_+$ with respect to a distribution with density $D : \mathbb{R}^m \to \mathbb{R}_+$, where the support of D contains the supports of D_1 and D_2, is defined as $\chi_D(D_1, D_2) \overset{\text{def}}{=} \int_{\mathbb{R}^m} D_1(x)D_2(x)/D(x)dx - 1$.

We remark that when $D_1 = D_2$ in the above definition, the pairwise correlation is identified with the χ^2-divergence between D_1 and D, i.e., $\chi^2(D_1, D) \overset{\text{def}}{=} \int_{\mathbb{R}^m} D_1(x)^2/D(x)dx - 1$.

Definition 2.4. We say that a set of s distributions $\mathcal{D} = \{D_1, \ldots, D_s\}$ over \mathbb{R}^m is (γ, β)-correlated relative to a distribution D if $|\chi_D(D_i, D_j)| \leq \gamma$ for all $i \not= j$, and $|\chi_D(D_i, D_i)| \leq \beta$ for $i = j$.

7
We are now ready to define our notion of dimension.

Definition 2.5 (Statistical Query Dimension). For $\beta, \gamma > 0$, a decision problem $B(D, D)$, where D is a fixed distribution and D is a family of distributions over \mathbb{R}^m, let s be the maximum integer such that there exists a finite set of distributions $D_D \subseteq D$ such that D_D is (γ, β)-correlated relative to D and $|D_D| \geq s$. We define the Statistical Query dimension with pairwise correlations (γ, β) of B to be s and denote it by $SD(B, \gamma, \beta)$.

Our proof bounds below the Statistical Query dimension of the considered learning problem. This implies lower bounds on the complexity of any SQ algorithm for the problem using the following standard result.

Lemma 2.6 (Corollary 3.12 in [FGR+13]). Let $B(D, D)$ be a decision problem, where D is the reference distribution and D is a class of distributions. For $\gamma, \beta > 0$, let $s = SD(B, \gamma, \beta)$. For any $\gamma' > 0$, any SQ algorithm for B requires at least $s \cdot \gamma' / (\beta - \gamma)$ queries to the STAT($\sqrt{\gamma + \gamma'}$) oracle.

3 SQ Hardness of Learning Halfspaces with Massart Noise

In this section, we prove our SQ lower bounds for Massart halfspaces, establishing Theorem 1.2.

In more detail, we establish the following result, which implies Theorem 1.2.

Theorem 3.1 (SQ Hardness of Learning Massart Halfspaces on \mathbb{R}^M). Let $OPT > 0$ and $M \in \mathbb{Z}_+$ be such that $\log(M) / (\log \log(M))^3$ is at least a sufficiently large constant multiple of $\log(1/OPT)$. There exists a parameter $\tau \equiv M^{-\Omega\left(\frac{\log(M)}{\log \log(M)} / \log(1/OPT)\right)}$ such that no SQ algorithm can learn the class of halfspaces on \mathbb{R}^M in the presence of η-Massart noise, where $OPT < \eta < 1/2$, within error better than $\Omega(\eta)$ using at most $1/\tau$ queries of tolerance τ. This holds even if the optimal binary classifier has misclassification error at most OPT.

As an immediate corollary of Theorem 3.1, by taking $OPT = \exp(-\log^c(M))$ for any fixed constant $c' \in (0, 1)$, we obtain a super-polynomial SQ lower bound against learning a hypothesis with error better than $\Omega(\eta)$, even when error OPT is possible. Specifically, this setting of parameters immediately implies Theorem 1.2 since $\frac{\log(M)}{\log \log(M)} / \log(1/OPT) = \frac{\log^{1-c'}(M)}{\log \log(M)} > \log^c(M)$, where $0 < c < 1 - c'$, and therefore $1/\tau \gg \exp(\log^{1+c}(M))$.

Remark 3.2. In addition to Theorem 3.1, we establish an alternative “inapproximability gap” of $1/2 - O(\sqrt{1/2 - \eta})$ versus $\exp(-\log^c(M))$, which implies a sharper error lower bound when η approaches $1/2$. Specifically, for η close to $1/2$, we obtain an error lower bound of $\eta - o_\eta(1)$, even if $OPT = \exp(-\log^c(M))$. See Theorem 3.27 for the formal statement.

Structure of This Section The structure of this section is as follows: In Section 3.1 we review the SQ framework of [DKS17] with the necessary enhancements and modifications required for our supervised setting. In Section 3.2 we establish the existence of the one-dimensional distributions with the desired approximate moment-matching properties. In Section 3.3 we put everything together to complete the proof of Theorem 3.1. In Section 3.4 we establish our shaper lower bounds for η close to $1/2$, proving Theorem 3.27.
3.1 Generic SQ Lower Bound Construction

We start with the following definition:

Definition 3.3 (High-Dimensional Hidden Direction Distribution). For a distribution \(A \) on the real line with probability density function \(A(x) \) and a unit vector \(v \in \mathbb{R}^m \), consider the distribution over \(\mathbb{R}^m \) with probability density function

\[
P_v^A(x) = A(v \cdot x) \exp \left(-\|x - (v \cdot x) v\|^2 / 2 \right) / (2\pi)^{m-1}/2.
\]

That is, \(P_v^A \) is the product distribution whose orthogonal projection onto the direction of \(v \) is \(A \), and onto the subspace perpendicular to \(v \) is the standard \((m-1)\)-dimensional normal distribution.

We consider the following condition:

Condition 3.4. Let \(k \in \mathbb{Z}_+ \) and \(\nu > 0 \). The distribution \(A \) is such that (i) the first \(k \) moments of \(A \) agree with the first \(k \) moments of \(N(0, 1) \) up to error at most \(\nu \), and (ii) \(\chi^2(A, N(0, 1)) \) is finite.

Note that Condition 3.4(ii) above implies that the distribution \(A \) has a pdf, which we will denote by \(A(x) \). We will henceforth blur the distinction between a distribution and its pdf.

Our main result in this subsection makes essential use of the following key lemma:

Lemma 3.5 (Correlation Lemma). Let \(k \in \mathbb{Z}_+ \). If the univariate distribution \(A \) satisfies Condition 3.4, then for all \(v, v' \in \mathbb{R}^m \), with \(|v \cdot v'| \) less than a sufficiently small constant, we have that

\[
|\chi_N(0, I)(P_v^A, P_{v'}^A)| \leq |v \cdot v'|^{k+1} \chi^2(A, N(0, 1)) + \nu^2.
\]

This lemma is a technical generalization of Lemma 3.4 from [DKS17], which applied under exact moment matching assumptions. The proof is deferred to Appendix A.

We will also use the following standard fact:

Fact 3.6. For any constant \(c > 0 \) there exists a set \(S \) of \(2^{O(k)} \) unit vectors in \(\mathbb{R}^m \) such that any pair \(u, v \in S \), with \(u \neq v \), satisfies \(|u \cdot v| < c \).

In fact, an appropriate size set of random unit vectors satisfies the above statement with high probability. We note that [DKS17] made use of a similar statement, albeit with different parameters.

We will establish an SQ lower bound for the following binary classification problem.

Definition 3.7 (Hidden Direction Binary Classification Problem). Let \(A \) and \(B \) be distributions on \(\mathbb{R} \) satisfying Condition 3.4 with parameters \(k \in \mathbb{Z}_+ \) and \(\nu \in \mathbb{R}_+ \), and let \(p \in (0, 1) \). For \(m \in \mathbb{Z}_+ \) and a unit vector \(v \in \mathbb{R}^m \), define the distribution \(P_v^{A,B,p} \) on \(\mathbb{R}^m \times \{\pm 1\} \) that returns a sample from \((P_v^A, 1) \) with probability \(p \) and a sample from \((P_v^B, -1) \) with probability \(1 - p \). The corresponding binary classification problem is the following: Given access to a distribution on labeled examples of the form \(P_v^{A,B,p} \), for a fixed but unknown unit vector \(v \), output a hypothesis \(h : \mathbb{R}^m \to \{\pm 1\} \) such that \(\Pr_{(X,Y) \sim P_v^{A,B,p}}[h(X) \neq Y] \) is (approximately) minimized.

Note that it is straightforward to obtain misclassification error \(\min\{p, 1 - p\} \) (as one of the identically constant functions achieves this guarantee). We show that obtaining slightly better error is hard in the SQ model. The following result is the basis for our SQ lower bounds:

Proposition 3.8 (Generic SQ Lower Bound). Consider the classification problem of Definition 3.7. Let \(\tau \) denote \(\nu^2 + 2^{-k}(\chi^2(A, N(0, 1)) + \chi^2(B, N(0, 1))) \). Then any SQ algorithm that, given access to a distribution \(P_v^{A,B,p} \) for an unknown \(v \in \mathbb{R}^m \), outputs a hypothesis \(h : \mathbb{R}^m \to \{\pm 1\} \) such that \(\Pr_{(X,Y) \sim P_v^{A,B,p}}[h(X) \neq Y] < \min\{p, 1 - p\} - 4\sqrt{\tau} \) must either make queries of accuracy better than \(2\sqrt{\tau} \) or must make at least \(2^{O(m)} \tau / (\chi^2(A, N(0, 1)) + \chi^2(B, N(0, 1))) \) statistical queries.
Proof of Proposition 3.8. The proof proceeds as follows: We start by defining a related hypothesis testing problem \(H \) and show that \(H \) efficiently reduces to our learning (search) problem. We then leverage the machinery of this section (specifically, Lemma 3.5 and Fact 3.6) to prove an SQ lower bound for \(H \), which in turns implies an SQ lower bound for our learning task.

Let \(S \) be a set of \(2^{2\Omega(m)} \) unit vectors in \(\mathbb{R}^m \) whose pairwise inner products are at most a sufficiently small universal constant \(c \). (In fact, any constant \(c < 1/2 \) suffices.) By Fact 3.6 such a set is guaranteed to exist. Given \(S \), our hypothesis testing problem is defined as follows.

Definition 3.9 (Hidden Direction Hypothesis Testing Problem). In the context of Definition 3.7 the testing problem \(H \) is the task of distinguishing between: (i) the distribution \(P^{A,B,p}_v \), for \(v \) randomly chosen from \(S \), and (ii) the distribution \(G' \) on \(\mathbb{R}^m \times \{\pm 1\} \), where for \((X,Y) \sim G' \) we have that \(X \) is a standard Gaussian \(G \sim N(0, I) \), and \(Y \) is independently 1 with probability \(p \) and \(-1\) with probability \(1 - p \).

We claim that \(H \) efficiently reduces to our learning task. In more detail, any SQ algorithm that computes a hypothesis \(h \) satisfying \(\Pr_{(X,Y)\sim P^{A,B,p}_v}[h(X) \neq Y] < \min(p,1-p) - 4\sqrt{\tau} \) can be used as a black-box to distinguish between \(P^{A,B,p}_v \), for \(v \) randomly chosen from \(S \), and \(G' \). Indeed, suppose we have such a hypothesis \(h \). Then, with one additional query to estimate the \(\Pr[h(X) \neq Y] \), we can distinguish between \(P^{A,B,p}_v \), for \(v \) randomly chosen from \(S \), and \(G' \) for the following reason: For any function \(h \), we have that \(\Pr_{(X,Y)\sim G'}[h(X) \neq Y] \geq \min(p,1-p) \).

It remains to prove that solving the hypothesis testing problem \(H \) is impossible for an SQ algorithm with the desired parameters. We will show this using Lemma 2.6.

More specifically, we need to show that for \(u,v \in S \) we have that \(|\chi_{G'}(P^{A,B,p}_v,P^{A,B,p}_u)| \) is small. Since \(G',P^{A,B,p}_v \), and \(P^{A,B,p}_u \) all assign \(Y = 1 \) with probability \(p \), it is not hard to see that

\[
\chi_{G'}(P^{A,B,p}_v,P^{A,B,p}_u) = p \chi_{(G'|Y=1)}((P^{A,B,p}_v \mid Y = 1),(P^{A,B,p}_u \mid Y = 1)) + (1 - p) \chi_{(G'|Y=-1)}((P^{A,B,p}_v \mid Y = -1),(P^{A,B,p}_u \mid Y = -1))
\]

\[
= p \chi_G(P^{A}_v,P^{A}_u) + (1 - p) \chi_G(P^{B}_v,P^{B}_u) .
\]

By Lemma 3.5 it follows that

\[
\chi_{G'}(P^{A,B,p}_v,P^{A,B,p}_u) \leq \nu^2 + 2^{-k} (\chi^2(A,N(0,1)) + \chi^2(B,N(0,1))) = \tau .
\]

A similar computation shows that

\[
\chi_{G'}(P^{A,B,p}_v,P^{A,B,p}_u) = \chi^2(P^{A,B,p}_v,G') \leq \chi^2(A,N(0,1)) + \chi^2(B,N(0,1)) .
\]

An application of Lemma 2.6 for \(\gamma = \gamma' = \tau \) and \(\beta = \chi^2(A,N(0,1)) + \chi^2(B,N(0,1)) \) completes the proof. \(\square \)

3.2 Construction of Univariate Moment-Matching Distributions

In this subsection, we give our univariate approximate moment-matching construction (Proposition 3.10), which is the key new ingredient to establish our desired SQ lower bound. The moment-matching construction of this subsection (along with its refinement for \(\eta \) close to \(1/2 \) presented in Section 3.4) is the main technical contribution of this work.
Additional Notation We will be working with moments of distributions that are best described as normalizations of (unnormalized positive) measures. For notational convenience, by slight abuse of notation, we define $E[X]$, for any non-negative measure on \mathbb{R}, by $E[X] = \int t dX(t)$. Note that this is equivalent to $E[X] = \|X||E[Y]\|$, where $Y = X/\|X\|_1$ is the normalized version of X. Furthermore, we denote the k^{th} moment of such an X by $E[X^k]$.

We write $E \gg F$ for two expressions E and F to denote that $E \geq cF$, where $c > 0$ is a sufficiently large universal constant (independent of the variables or parameters on which E and F depend). Similarly, we write $E \ll F$ to denote that $E \leq cF$, where $c > 0$ is a sufficiently small universal constant.

We will use G for the measure of the univariate standard Gaussian distribution $N(0,1)$ and $g(x) = \frac{1}{\sqrt{2\pi}} \exp(-x^2/2)$ for its probability density function.

We view the real line as a measurable space endowed with the σ-algebra of Lebesgue measurable sets. We will construct two (non-negative, finite) measures D_+ and D_- on this space with appropriate properties. The main technical result of this section is captured in the following proposition.

Proposition 3.10. Let $0 < \epsilon < s < 1$ be real numbers such that s/ϵ is at least a sufficiently large universal constant. Let $0 < \eta < 1/2$. There exist measures D_+ and D_- over \mathbb{R} and a union J of $d = O(s/\epsilon)$ intervals on \mathbb{R} such that:

1. (a) $D_+ = 0$ on J, and (b) $D_+/D_- > (1 - \eta)/\eta$ on $J^c := \mathbb{R} \setminus J$.

2. All but $\zeta = O(\eta s/\epsilon) \exp(-\Omega(s^4/\epsilon^2))$ of the measure of D_- lies in J.

3. For any $t \in \mathbb{N}$, the distributions $D_+/\|D_+\|_1$ and $D_-/\|D_-\|_1$ have their first t moments matching those of G within additive error at most $(t + 1)! \exp(-\Omega(1/s^2))$.

4. (a) D_+ is at most $O(s/\epsilon) G$, and (b) D_- is at most $O(s\eta/\epsilon) G$.

5. (a) $\|D_+\|_1 = \Theta(1)$, and (b) $\|D_-\|_1 = \Theta(\eta)$.

Discussion Essentially, in our final construction, D_+ will be proportional to the distribution of X conditioned on $Y = 1$ and D_- proportional to the distribution of X conditioned on $Y = -1$. Furthermore, the ratio of the probability of $Y = 1$ to the probability of $Y = -1$ will be equal to $\|D_+\|_1/\|D_-\|_1$. The Massart PTF that $f(X)$ is supposed to simulate will be -1 on $X \in J$ and 1 elsewhere (thus making it a degree-$2d$ PTF).

We now provide an explanation of the properties established in Proposition 3.10. Property 1(a) says that Y will deterministically be -1 on J, while property 1(b) says that the ratio between D_+ and D_- will be greater than $(1 - \eta)/\eta$ on the complement of J. This implies that Y amounts to $f(X)$ with Massart noise at most η.

Property 2 implies that Y only disagrees with the target PTF with probability roughly ζ, i.e., that the optimal misclassification value OPT will be less than ζ.

Property 3 says that D_+ and D_-, after rescaling, approximately match many moments with the standard Gaussian, which will be necessary in establishing our SQ lower bounds.

Property 4 is necessary to show that D_+ and D_- have relatively small chi-squared norms. Finally, Property 5 is necessary to figure out how big the parameter p (i.e., $\Pr[Y = 1]$) should be (approximately).

The rest of this subsection is devoted to the proof of Proposition 3.10.
Proof of Proposition 3.10. The proof will make essential use of the following two-parameter family of discrete Gaussians.

Definition 3.11 (Discrete Gaussian). For $\sigma \in \mathbb{R}^+$ and $\theta \in \mathbb{R}$, let $G_{\sigma, \theta}$ denote the measure of the “σ-spaced discrete Gaussian distribution”. In particular, for each $n \in \mathbb{Z}$, $G_{\sigma, \theta}$ assigns mass $\sigma g(n\sigma + \theta)$ to the point $n\sigma + \theta$.

Note that $G_{\sigma, \theta}$ is not a probability measure as its total measure is not equal to one. However, it is not difficult to show (see Lemma 3.12 below) that the measure of $G_{\sigma, \theta}$ is close to one for small $\sigma > 0$, hence can be intuitively thought of as a probability distribution.

The following lemma shows that the moments of $G_{\sigma, \theta}$ approximately match the moments of the standard Gaussian measure G.

Lemma 3.12. For all $t \in \mathbb{N}$, $\sigma \geq 0$, and all $\theta \in \mathbb{R}$ we have that

$$|E[G_{\sigma, \theta}^t] - E[G^t]| = t! O(\sigma^t \exp(-\Omega(1/\sigma^2))).$$

The proof of Lemma 3.12 proceeds by analyzing the Fourier transform of $G_{\sigma, \theta}$ and using the fact that the tth moment of a measure is proportional to the tth derivative of its Fourier transform at 0. The proof is deferred to Appendix B.

Note that Lemma 3.12 for $t = 0$ implies the total measure of $G_{\sigma, \theta}$ is $\exp(-\Omega(1/\sigma^2))$ close to one, i.e., for small $\sigma > 0$ $G_{\sigma, \theta}$ can be thought of as a probability distribution.

Definition of the Measures D_+ and D_- We define our measures as mixtures of discrete Gaussian distributions. This will allow us to guarantee that they nearly match moments with the standard Gaussian. In particular, for a sufficiently large constant $C > 0$, we define:

$$D_+ := C (s/\epsilon) \int_0^\epsilon \frac{1}{s + y} G_{s+y, (s+y)/2} dy,$$

and

$$D_- := \eta (s/\epsilon) \int_0^\epsilon \frac{1}{s + y} G_{s+y, (s+y)/2} dy.$$

We will require the following explicit formulas for D_+ and D_-, which will be useful both in the formal proof and for the sake of the intuition.

Lemma 3.13. For all $x \in \mathbb{R}$, we have that:

$$D_+(x) = C g(x) (s/\epsilon) \sum_{n \in \mathbb{Z}} \frac{1\{x \in [ns, ns + (n+1/2)\epsilon]\}}{|n+1/2|},$$

where by $1\{x \in [ns, ns + (n+1/2)\epsilon]\}$ we denote the indicator function of the event that x is between ns and $ns + (n+1/2)\epsilon$, even in the case where $n < 0$ and $ns + (n+1/2)\epsilon < ns$.

Similarly, we have that

$$D_-(x) = \eta g(x) (s/\epsilon) \sum_{n \in \mathbb{Z}} \frac{1\{(n+1/2)s, (n+1/2)s + (n+1/2)\epsilon\}}{|n+1/2|}.$$
Proof. To prove the lemma, we unravel the definition of the discrete Gaussian to find that:

\[D_+(x) = Cs/\epsilon \int_0^\epsilon \sum_{n \in \mathbb{Z}} (s + y)g(n(s + y) + y/2)\delta(x - (n(s + y) + y/2)) dy \]

\[= Cs/\epsilon \sum_{n \in \mathbb{Z}} \int_0^\epsilon g(n(s + y) + y/2)\delta(x - (n(s + y) + y/2)) dy \]

\[= Cs/\epsilon \sum_{n \in \mathbb{Z}} \int_0^\epsilon g((n + 1/2)y + ns)\delta(x - ((n + 1/2)y + ns)) dy \]

\[= Cg(x)s/\epsilon \sum_{n \in \mathbb{Z}} 1\{x \in [ns, ns + (n + 1/2)\epsilon]\} / |n + 1/2| . \]

The calculation for \(D_- (x) \) is similar. \(\square \)

Intuition on Definition of \(D_+ \) and \(D_- \). We now attempt to provide some intuition regarding the definition of the above measures. We start by noting that each of \(D_+ (x) \) and \(D_- (x) \) will have size roughly \(g(x) \) on its support. This can be seen to imply on the one hand that the chi-squared divergence of (the normalization of) \(D_+ \) from the standard Gaussian \(G \) is not too large, and on the other hand that \(D_- \) roughly satisfy Gaussian concentration bounds.

The critical information to consider is the support of these distributions. Each of the two measures is supported on a union of intervals. Specifically, \(D_+ \) is supported on intervals located at the point \(ns \) of width \(|n + 1/2| \epsilon \); and \(D_- \) is supported on intervals located at the point \((n + 1/2)s \) of width \(|n + 1/2| \epsilon \). In the case where \(\epsilon \ll s \), these intervals will be disjoint for small values of \(n \) (roughly, for \(|n| \ll s/\epsilon \)). The factor of \(C > 0 \) difference in the definitions of the two measures will ensure that \(D_+ > D_- (1 - \eta)/\eta \) on their joint support; and once \(|n| \) has exceeded a sufficiently large constant multiple of \(s/\epsilon \), the intervals will be wide enough that they overlap causing the support to be everything.

In other words, for \(|x| \) less than a sufficiently small constant multiple of \(s^2/\epsilon \), \(D_+ \) and \(D_- \) will be supported on \(O(s/\epsilon) \) many intervals and will have disjoint supports. We define \(J \) to be the union of the \(O(s/\epsilon) \) many intervals in the support of \(D_- \) that are not in the support of \(D_+ \). With this definition, we will have that (1) \(D_+ \) is equal to zero in \(J \), and (2) \(D_- / D_+ \) is sufficiently large on \(J^c \). Furthermore, since \(D_- \) only assigns mass to \(J^c \) for \(x \) with \(|x| \gg s^2/\epsilon \), we can take \(\zeta = \exp(-\Omega(s^4/\epsilon^2)) \).

Given the above intuition, we begin the formal proof, starting with moment-matching.

Lemma 3.14. For \(t \in \mathbb{N} \), the distributions \(D_+ / ||D_+||_1 \) and \(D_- / ||D_-||_1 \) match the first \(t \) moments with the standard Gaussian \(G \) to within additive error \(t! O(s)^t \exp(-1/s^2) \).

Proof. This follows from Lemma 3.12 by noting that both of these distributions are mixtures of discrete Gaussians with \(\sigma = \Theta(s) \). \(\square \)

Our next lemma provides approximations to the corresponding \(L_1 \) norms.

Lemma 3.15. We have that \(||D_+||_1 = \Theta(1) \) and \(||D_-||_1 = \Theta(\eta) \).

Proof. Applying Lemma 3.12 with \(t = 0 \), we get that \(||G_{s+y}\||_1 = \Theta(1) \). Thus, working from the
definition, we find that
\[\|D\|_1 = C \left(\frac{s}{\epsilon} \right) \int_0^\epsilon \frac{\Theta(1)}{s + y} dy \]
\[= C \left(\frac{s}{\epsilon} \right) \int_0^\epsilon \Theta(1/s) dy \]
\[= \Theta(1) . \]

The proof for \(D_- \) follows similarly.

For the rest of the proof, it will be important to analyze the intervals on which \(D_+ \) and \(D_- \) are supported. To this end, we start by introducing the following notation.

Definition 3.16. For \(m \in \mathbb{Z} \), let \(I^+_m \) be the interval with endpoints \(ms \) and \(ms + (m + 1/2)s \), and let \(I^-_m \) be the interval with endpoints \((m + 1/2)s \) and \((m + 1/2)s + (m + 1/2)s \). Additionally, for \(x \in \mathbb{R} \), let \(n_+(x) \) be the number of integers \(m \) such that \(x \in I^+_m \), and \(n_-(x) \) be the number of integers \(m \) such that \(x \in I^-_m \).

The following corollary is an easy consequence of the definition.

Corollary 3.17. For \(x \in \mathbb{R} \), we have that \(x \in I^+_m \) only if \(m = x/s + O((|x| + s)/s) \). Similarly, \(x \in I^-_m \) only if \(m = x/s - 1/2 + O((|x| + s)/s) \).

Combining Corollary 3.17 with the explicit formulas for \(D_+ \) and \(D_- \) given in Lemma 3.13, we have that:

Corollary 3.18. For all \(x \in \mathbb{R} \) we have that
\[D_+(x) = \Theta(Cg(x)(s^2/\epsilon)n_+(x)/(|x| + s)) , \]
and
\[D_-(x) = \Theta(\eta g(x)(s^2/\epsilon)n_-(x)/(|x| + s)) . \]

Proof. This follows from the explicit formulas for \(D_+ \) and \(D_- \) given in Lemma 3.13 along with Corollary 3.17, which implies that the denominators \(|n + 1/2| \) are \(\Theta((|x| + s)/s) \).

We next need to approximate the size of \(n_+(x) \) and \(n_-(x) \). We have the following lemma.

Lemma 3.19. For all \(x \in \mathbb{R} \), we have that
\[n_+(x), n_-(x) = |x| (1/s - 1/(s + \epsilon)) + O(1) = |x| \Theta(\epsilon/s^2) + O(1) . \]

Proof. We will prove the desired statement for \(x \geq 0 \) and \(n_+(x) \). The other cases follow symmetrically. Note that \(x \in I^+_m \) only for non-negative \(m \). For such \(m \), \(x \in I^+_m \) if and only if \(ms \leq x \leq m(s + \epsilon) + \epsilon/2 \). This is the difference in the number of \(m \)'s for which \(ms \leq x \) and the number of \(m \)'s for which \(m(s + \epsilon) + \epsilon/2 < x \). The former is \(|x|/s + O(1) \) and the latter is \(|x|/(s + \epsilon) + O(1) \). The lemma follows.

Lemma 3.19 implies the following.

Corollary 3.20. We have that \(n_+(x) \geq 1 \) for all \(x \) larger than a sufficiently large constant multiple of \(s^2/\epsilon \).

Combining Lemma 3.19 with Corollary 3.18 we get the following.
Corollary 3.21. For all $x \in \mathbb{R}$, we have that
\[
 D_+(x) = O\left(\frac{g(x)(s/\epsilon)}{s}\right), \quad D_-(x) = O\left(\frac{g(x)\eta}{s/\epsilon}\right)
\]

A combination of Lemma 3.19 with Corollary 3.18 also implies that on the support of D_+ the ratio D_+/D_- is sufficiently large.

Corollary 3.22. If $x \in \mathbb{R}$ is such that $D_+(x) > 0$, then $D_+(x)/D_-(x) > (1 - \eta)/\eta$.

Proof. If $D_+(x) > 0$, then $n_+(x) > 0$. Lemma 3.19 implies that $n_-(x) = n_+(x) + O(1)$, and therefore $n_-(x)/n_+(x) = O(1)$. Combining this with Corollary 3.18 we have that
\[
 D_+(x)/D_-(x) = \Omega(C/\eta)
\]

For C a sufficiently large universal constant, this implies our result. \(\square\)

We also need to show that the intersection of the supports of D_+ and D_- occurs only for $|x|$ sufficiently large. Specifically, we have the following lemma.

Lemma 3.23. For $x \in \mathbb{R}$, it holds that $\min(n_+(x), n_-(x)) > 0$ only if $|x| = \Omega(s^2/\epsilon)$.

Proof. We have that $\min(n_+(x), n_-(x)) > 0$ only if there exist integers m and m' with $x \in I_m^+ \cap I_{m'}^-$. By Corollary 3.17 it must be the case that $|m|, |m'| = O(|x|/s + 1)$. On the other hand, we have that I_m^+ is an interval containing the point ms, and $I_{m'}^-$ is an interval containing the point $(m' + 1/2)s$. These points must differ by at least $s/2$, and therefore the sum of the lengths of these intervals must be at least $s/2$. On the other hand, these intervals have length $|m + 1/2|\epsilon$ and $|m' + 1/2|\epsilon$ respectively. Thus, $\min(n_+(x), n_-(x)) > 0$ can only occur if $s/2 = O(|x|\epsilon/s + \epsilon)$, which implies that $x = \Omega(s^2/\epsilon)$, as desired. \(\square\)

Definition 3.24. We define J to be $\mathbb{R} \setminus \bigcup_{m \in \mathbb{Z}} I_m^+$. We note that J is a union of intervals.

Lemma 3.25. We have that J is a union of $O(s/\epsilon)$ many intervals.

Proof. By Corollary 3.20 J is an interval $J_0 = [-O(s^2/\epsilon), O(s^2/\epsilon)]$ minus all of the intervals I_m^+ that intersect J_0. By Corollary 3.17 I_m^+ intersects J_0 only when $|m| = O(s/\epsilon)$. Thus, J is an interval minus a union of $O(s/\epsilon)$ other intervals. Thus, it is a union of $O(s/\epsilon)$ many intervals. \(\square\)

We can now directly verify the properties of Proposition 3.10

- The definition of J implies that $n_+(x) = 0$ on J, which itself implies that $D_+(x) = 0$ for $x \in J$. The latter fact combined with Corollary 3.22 imply Property 1
- Lemma 3.21 implies that the intersection of J^c with the support of D_- consists only of points x with $|x| = \Omega(s^2/\epsilon)$. This fact and Corollary 3.21 imply Property 2 (by Gaussian concentration).
- Property 3 follows from Lemma 3.14
- Property 4 follows from Corollary 3.21
- Property 5 follows from Lemma 3.15

This completes the proof of Proposition 3.10. \(\square\)
3.3 Putting Everything Together: Proof of Theorem 3.1

We now have the necessary ingredients to complete the proof of Theorem 3.1.

Proof of Theorem 3.1. The proof leverages the SQ framework of Section 3.1 combined with the one-dimensional construction of Proposition 3.10.

Parameter Setting Recall the parameters in the theorem statement. We have that OPT > 0 and $M \in \mathbb{Z}_+$ are such that $\log(M)/(\log(M))^3$ is at least a sufficiently large constant multiple of $\log(1/OPT)$. Moreover, we define a parameter τ which is set to $M^{-\Theta\left(\log(M)\log(M) \log(1/OPT)\right)}$, where the implied constant in the exponent is sufficiently small.

Let $C > 0$ be a sufficiently large universal constant. We define positive integers m and d as follows: $m = \lceil C \log(1/\tau) \rceil$ and $d = \lceil C \sqrt{\log(1/OPT)} \log(1/\tau) \rceil$. Observe that

$$\binom{2d + m}{m} \leq m^{2d} = \exp\left(O\left(C\sqrt{\log(1/OPT)} \log(1/\tau) \log(1/\tau)\right)\right).$$

We note that if $\log(1/\tau)$ is a sufficiently small constant multiple of $\log^2(M)/(\log(M))^3 \log(1/OPT)$, then the RHS of (6) is less than M. Thus, by decreasing M if necessary, we can assume that $M = \binom{2d + m}{m}$.

Consider the Veronese mapping, denote by $V_{2d} : \mathbb{R}^m \rightarrow \mathbb{R}^M$, such that the coordinate functions of V_{2d} are exactly the monomials in m variables of degree at most $2d$.

Hard Distributions We can now formally construct the family of high-dimensional distributions on labeled examples that (1) corresponds to Massart halfspaces, and (2) is SQ-hard to learn. We define univariate measures D_+ and D_- on \mathbb{R}, as given by Proposition 3.10 with s and ϵ picked so that s^2/ϵ is a sufficiently large constant multiple of $\log(1/OPT)$ and s/ϵ a sufficiently small constant multiple of d (for example, by taking $s = C^2\sqrt{\log(1/OPT)}/d = \Theta(1/\sqrt{\log(1/OPT) \log(1/\tau)})$ and $s = C\sqrt{\log(1/OPT)}/d^2$).

For a unit vector $v \in \mathbb{R}^m$, consider the distribution P^v_D as in Proposition 3.8 with $p = \|D_+\|_1 + \|D_-\|_1$. By property 5 of Proposition 3.10, note that $\min(p, 1-p) = 1-p = \Theta(\eta)$.

Our hard distribution is the distribution (X', Y') on $\mathbb{R}^M \times \{\pm 1\}$ obtained by drawing (X, Y) from $P^v_{D_+, D_-}$ and letting $X' = V_{2d}(X)$ and $Y' = Y$.

We start by showing that this corresponds to a Massart halfspace.

Claim 3.26. The distribution (X', Y') on $\mathbb{R}^M \times \{\pm 1\}$ is a Massart LTF distribution with optimal misclassification error OPT and Massart noise rate upper bound of η.

Proof. For a unit vector $v \in \mathbb{R}^m$, let $g_v : \mathbb{R}^m \rightarrow \{\pm 1\}$ be defined as $g_v(x) = -1$ if and only if $v \cdot x \in J$, where J is the union of intervals in the construction of Proposition 3.10. Note that g_v is a degree-2d PTF on \mathbb{R}^m, since g_v is a $(2d + 1)$-piecewise constant function of $v \cdot x$. Therefore, there exists some LTF $L : \mathbb{R}^M \rightarrow \{\pm 1\}$ such that $g_v(x) = L(V_{2d}(x))$ for all $x \in \mathbb{R}^m$.

Note that our hard distribution returns (X', Y') with $Y' = L(X')$, unless it picked a sample corresponding to a sample of D_- coming from J^c, which happens with probability at most $\zeta < \text{OPT}$. Additionally, suppose that our distribution returned a sample with $X' = V_{2d}(X)$, for some $X \in \mathbb{R}^m$.

By construction, conditioned on this event, we have that $Y' = 1$ with probability proportional to $D_+(v \cdot X)$, and $Y' = -1$ with probability proportional to $D_-(v \cdot X)$. We note that if $L(V_{2d}(X)) = 1$, then $v \cdot X \not\in J$; so, by Proposition 3.10 property 1(b), this ratio is at least $1 - \eta : \eta$. On the other hand, if $L(V_{2d}(X)) = -1$, then $v \cdot X \in J$, so $D_+(v \cdot X) = 0$. This implies that the pointwise probability of error $\eta(X')$ is at most η, completing the proof of the claim. \qed
We are now ready to complete the proof of our SQ lower bound. It is easy to see that finding a hypothesis that predicts Y' given X' is equivalent to finding a hypothesis for Y given X (since $Y = Y'$ and there is a known 1-1 mapping between X and X'). The pointwise bounds on D_+ and D_-, specifically properties 4 and 5 in Proposition 3.10, imply that

$$\chi^2(D_{\pm}/\|D_{\pm}\|_1, G) \leq O(s/\epsilon)^2 = \text{polylog}(M).$$

The parameter ν in Proposition 3.8 is

$$k! \exp(-\Omega(1/s^2)) = \exp(-\Omega(1/s^2))$$

after taking k to be a sufficiently small constant multiple of $\log(1/s^2)$.

Thus, by Proposition 3.8, in order to output a hypothesis with error smaller than $\min(p, 1-p) = \Theta(\eta)$, any SQ algorithm either needs queries with accuracy better than $\nu^2 + 2^{-k}(\chi^2(A, G) + \chi^2(B, G)) = \exp(-\Omega(\log(1/s^2))\text{polylog}(M)) < \tau$

or a number of queries more than

$$2^{\Omega(m)}\tau(\chi^2(A, G) + \chi^2(B, G)) > 1/\tau.$$

Therefore, Proposition 3.8 implies that it is impossible for an SQ algorithm to learn a hypothesis with error better than $\Theta(\eta)$ without either using queries of accuracy better than τ or making at least $1/\tau$ many queries. This completes the proof of Theorem 3.1.

3.4 Obtaining Optimal Error: The Case of Large η

In this final subsection, we refine the construction of the previous subsections to obtain a sharp lower bound of $\eta - o_\eta(1)$, when η is close to $1/2$. Here the term $o_\eta(1)$ goes to zero when η approaches $1/2$. Specifically, we show:

Theorem 3.27 (Sharp SQ Hardness of Massart Halfspaces for Large η). Let $OPT > 0$ and $M \in \mathbb{Z}_+$ be such that $\log(M)/(\log \log(M))^3$ is at least a sufficiently large constant multiple of $\log(1/\text{OPT})$. Let $c > 0$ be any parameter such that $c \gg \sqrt{1/2 - \eta}$. There exists a parameter

$$\tau \equiv M^{-\Omega\left(\frac{\log(M)}{\log \log(M)^3}/\log(1/\text{OPT})\right)}$$

such that no SQ algorithm can learn the class of halfspaces on \mathbb{R}^M in the presence of η-Massart noise, where $\text{OPT} < \eta \leq 1/2$, within error better than $1/2 - c$ using at most $1/\tau$ queries of tolerance τ. This holds even if the optimal classifier has misclassification error at most OPT.

Conceptually, Theorem 3.27 provides evidence that even the constant factor (of 1) in the error guarantee (of $\eta + \epsilon$) achieved by the Massart learner of [DGT19] cannot be improved in general.

The proof of Theorem 3.27 proceeds along the same lines as the proof of Theorem 3.1. The main difference is in the choice of the one-dimensional moment-matching distributions. For this, we use a construction that is qualitatively similar (though somewhat more sophisticated) to that used in the proof of Section 3.2.

Specifically, for some carefully chosen parameter $C > 0$ (to be determined), we define the positive measures:

$$D_+ := C(s/\epsilon) \int_0^\epsilon \frac{G_{s+y,y/2}}{s+y} dy,$$

and

$$D_- := (s/\epsilon) \int_0^\epsilon \frac{G_{s+y,(y+s)/2}}{s+y} dy.$$

As a refinement of Corollary 3.18 we obtain the following.
Corollary 3.28. For all \(x \in \mathbb{R} \), we have that
\[
D_+(x) = C g(x)(s^2/\epsilon) n_+(x)/(|x| + 1)(1 + O(\epsilon/(|x| + 1)))
\]
and
\[
D_-(x) = g(x)(s^2/\epsilon) n_-(x)/(|x| + 1)(1 + O(\epsilon/(|x| + 1)))
\]

Proof. This follows from the explicit formulas for \(D_+ \) and \(D_- \) (Lemma 3.13) along with the fact that for \(x \in I_{m}^\pm, 1/|m| \) and \(1/|m| + 1/2 \) are \(s/(|x| + 1)(1 + O(\epsilon/(|x| + 1))) \).

Using the above corollary, we obtain the following.

Corollary 3.29. For all \(x \in \mathbb{R} \), we have that \(D_+(x)/D_-(x) = C q(x)(1 + O(\epsilon/(|x| + 1))) \), where \(q(x) = n_+(x)/n_-(x) \) is a rational number with numerator and denominator at most \(O(|x|/s + 1) \).

We want to guarantee that for all \(x \in \mathbb{R} \) it holds that \(D_+(x)/D_-(x) \not\in [\eta/(1-\eta), (1-\eta)/\eta] \). We note that this condition automatically holds for \(|x| \) less than a sufficiently small constant multiple of \(s^2/\epsilon \), as in this range we have that \(\min(n_+(x), n_-(x)) = 0 \). For points \(x \) outside this range, we have that \(D_+(x)/D_-(x) = C q(x)(1 + O(\epsilon/s^2)) \). Furthermore, since \(|n_+(x) - n_-(x)| \leq 1 \), the latter implies that in this range \(D_+(x)/D_-(x) \) is always one of:

- \(C(1 + O(\epsilon/s^2)) \),
- \(C(1 + 1/m)(1 + O(\epsilon/s^2)) \), for some integer \(m \),
- \(C(1 - 1/m)(1 + O(\epsilon/s^2)) \), for some integer \(m \).

We will arrange that this quantity is always in the appropriate range by picking the parameter \(C \), so that for some well chosen \(m_0 \) we have that
\[
C(1 - 1/m_0)(1 + O(\epsilon/s^2)) \leq \eta/(1-\eta), \text{ and } C(1 - 1/(m_0 + 1))(1 - O(\epsilon/s^2)) \geq (1-\eta)/\eta
\]

If the above holds, it is easy to see that \(D_+(x)/D_-(x) \) will never be in the range \([\eta/(1-\eta), (1-\eta)/\eta] \) for any value of \(x \). In order to arrange this, we set \(C \) to satisfy
\[
C(1 - 1/m_0)(1 + O(\epsilon/s^2)) = \eta/(1-\eta)
\]

In order for the second condition to hold, it must be the case that
\[
(1 - 1/(m_0 + 1))(1 - O(\epsilon/s^2)) > ((1 - \eta)/\eta)^2 = 1 + O(1/2 - \eta)
\]

For the latter to be true, it must hold that \(1/m_0^2 \) is at least a sufficiently large constant multiple of \((1/2 - \eta) + (\epsilon/s^2) \), or that \(m_0 \) is at most a sufficiently small constant multiple of \(\min(s/\epsilon, \sqrt{1/2 - \eta}) \).

In particular, if we take \(m_0 \) to be at most a sufficiently small constant multiple of \(\sqrt{1/2 - \eta} \) and ensure that \(\epsilon/s \) is sufficiently small, this construction can be made to work with \(C = 1 + 1/m_0 \).

We then let \(J \) be the set of points \(x \in \mathbb{R} \) for which \(D_-(x) > D_+(x) \). It is easy to see that \(J = \{ x : m_0 \geq n_-(x) > n_+(x) \} \), and from this it can be seen that \(J \) is a union of \(O(m_0 s/\epsilon) \) intervals. As before, \(D_+ \) and \(D_- \) approximately match many moments with a Gaussian and the mass of \(D_+ \) on \(J \) and \(D_- \) on \(J^c \) are both supported on points \(x \) such that \(|x| \geq \Omega(s^2/\epsilon) \), and thus have mass \(\exp(-\Omega(s^4/\epsilon^2)) \).

Furthermore, we have that \(D_-(x)/D_+(x) > (1 - \eta)/\eta \) for \(x \in J \) and \(D_+(x)/D_-(x) > (1 - \eta)/\eta \) for \(x \in J^c \). Therefore, the appropriate hidden-direction distribution is a degree-\(O(m_0 s/\epsilon) \) PTF with at most \(\eta \) Massart noise.

Finally, it is not hard to see that \(\|D_+\|_1/\|D_-\|_1 = 1 + 1/m_0 \). Therefore, by following the arguments of Section 3.3 mutatis-mutandis, it follows that for any constant \(\eta < 1/2 \) it is SQ-hard to learn an LTF with \(\eta \)-Massart noise to error better than \(1/2 - c \) for any \(c \gg \sqrt{1/2 - \eta} \), even when \(\text{OPT} \) is almost polynomially small in the dimension. This completes the proof of Theorem 3.27. \(\square \)
4 Conclusions and Future Work

In this paper, we gave a super-polynomial Statistical Query (SQ) lower bound with near-optimal inapproximability gap for the fundamental problem of (distribution-free) PAC learning Massart halfspaces. Our lower bound provides strong evidence that known algorithms for this problem are essentially best possible. An obvious technical open question is whether the hidden constant factor in the $\Omega(\eta)$-term of our lower bound can be improved to the value $C = 1$ for all $\eta > 0$. (Recall that we have shown such a bound for η close to $1/2$.) This would match known algorithms exactly, specifically showing that the error of $\eta + \epsilon$ cannot be improved even for small values of $\eta > 0$.

Interestingly, SQ lower bounds are the only known evidence of hardness for our Massart half-space learning problem. Via a recent reduction [BBH+20], our SQ lower bound implies a similar low-degree polynomial testing lower bound for the problem. An interesting open question is to prove similar hardness results against families of convex programming relaxations (obtained, e.g., via the Sum-of-Squares framework). Such lower bounds would likely depend on the underlying optimization formulation of the learning problem.

A related question is whether one can establish reduction-based computational hardness for learning halfspaces in the presence of Massart noise. Daniely [Dan16] gave such a reduction for the (much more challenging) problem of agnostically learning halfspaces, starting from the problem of strongly refuting random XOR formulas. It currently remains unclear whether the latter problem is an appropriate starting point for proving hardness in the Massart model. That said, obtaining reduction-based hardness for learning Massart halfspaces is left as an interesting open problem.
References

[ABHU15] P. Awasthi, M. F. Balcan, N. Haghtalab, and R. Urner. Efficient learning of linear separators under bounded noise. In Proceedings of The 28th Conference on Learning Theory, COLT 2015, pages 167–190, 2015.

[ABHZ16] P. Awasthi, M. F. Balcan, N. Haghtalab, and H. Zhang. Learning and 1-bit compressed sensing under asymmetric noise. In Proceedings of the 29th Conference on Learning Theory, COLT 2016, pages 152–192, 2016.

[ABL17] P. Awasthi, M. F. Balcan, and P. M. Long. The power of localization for efficiently learning linear separators with noise. J. ACM, 63(6):50:1–50:27, 2017.

[AL88] D. Angluin and P. Laird. Learning from noisy examples. Mach. Learn., 2(4):343–370, 1988.

[BBH+20] M. Brennan, G. Bresler, S. B. Hopkins, J. Li, and T. Schramm. Statistical query algorithms and low-degree tests are almost equivalent. CoRR, abs/2009.06107, 2020. Conference version appeared in COLT’21.

[BF02] N. Bshouty and V. Feldman. On using extended statistical queries to avoid membership queries. Journal of Machine Learning Research, 2:359–395, 2002.

[BFJ+94] A. Blum, M. Furst, J. Jackson, M. Kearns, Y. Mansour, and S. Rudich. Weakly learning DNF and characterizing statistical query learning using Fourier analysis. In Proceedings of the Twenty-Sixth Annual Symposium on Theory of Computing, pages 253–262, 1994.

[BFKV96] A. Blum, A. M. Frieze, R. Kannan, and S. Vempala. A polynomial-time algorithm for learning noisy linear threshold functions. In 37th Annual Symposium on Foundations of Computer Science, FOCS ’96, pages 330–338, 1996.

[BFKV97] A. Blum, A. Frieze, R. Kannan, and S. Vempala. A polynomial time algorithm for learning noisy linear threshold functions. Algorithmica, 22(1/2):35–52, 1997.

[BKW03] A. Blum, A. Kalai, and H. Wasserman. Noise-tolerant learning, the parity problem, and the statistical query model. J. ACM, 50(4):506–519, 2003.

[Blu03] A. Blum. Machine learning: My favorite results, directions, and open problems. In 44th Symposium on Foundations of Computer Science (FOCS 2003), pages 11–14, 2003.

[CKL+06] C.-T. Chu, S. K. Kim, Y. A. Lin, Y. Yu, G. Bradski, A. Y. Ng, and K. Olukotun. Map-reduce for machine learning on multicore. In Proceedings of the 19th International Conference on Neural Information Processing Systems, NIPS’06, pages 281–288, Cambridge, MA, USA, 2006. MIT Press.

[CKMY20] S. Chen, F. Koehler, A. Moitra, and M. Yau. Classification under misspecification: Halfspaces, generalized linear models, and connections to evolvability. CoRR, abs/2006.04787, 2020.

[Coh97] E. Cohen. Learning noisy perceptrons by a perceptron in polynomial time. In Proceedings of the Thirty-Eighth Symposium on Foundations of Computer Science, pages 514–521, 1997.
[Dan16] A. Daniely. Complexity theoretic limitations on learning halfspaces. In *Proceedings of the 48th Annual Symposium on Theory of Computing, STOC 2016*, pages 105–117, 2016.

[DGJ+10] I. Diakonikolas, P. Gopalan, R. Jaiswal, R. Servedio, and E. Viola. Bounded independence fools halfspaces. *SIAM J. on Comput.*, 39(8):3441–3462, 2010.

[DGT19] I. Diakonikolas, T. Gouleakis, and C. Tzamos. Distribution-independent PAC learning of halfspaces with massart noise. In Hanna M. Wallach, Hugo Larochelle, Alina Beygelzimer, Florence d’Alché-Buc, Emily B. Fox, and Roman Garnett, editors, *Advances in Neural Information Processing Systems 32: Annual Conference on Neural Information Processing Systems 2019, NeurIPS 2019*, pages 4751–4762, 2019.

[DIK+21] I. Diakonikolas, R. Impagliazzo, D. M. Kane, R. Lei, J. Sorell, and C. Tzamos. Boosting in the presence of massart noise. In *Conference on Learning Theory, COLT 2021*, volume 134 of *Proceedings of Machine Learning Research*, pages 1585–1644. PMLR, 2021.

[DK19] I. Diakonikolas and D. M. Kane. Recent advances in algorithmic high-dimensional robust statistics. *CoRR*, abs/1911.05911, 2019.

[DK20] I. Diakonikolas and D. M. Kane. Hardness of learning halfspaces with massart noise. *CoRR*, abs/2012.09720, 2020. Available at https://arxiv.org/pdf/2012.09720v2.pdf.

[DKK+16] I. Diakonikolas, G. Kamath, D. M. Kane, J. Li, A. Moitra, and A. Stewart. Robust estimators in high dimensions without the computational intractability. In *Proceedings of FOCS’16*, pages 655–664, 2016.

[DKK+17] I. Diakonikolas, G. Kamath, D. M. Kane, J. Li, A. Moitra, and A. Stewart. Being robust (in high dimensions) can be practical. In *Proceedings of the 34th International Conference on Machine Learning, ICML 2017*, pages 999–1008, 2017.

[DKK+18] I. Diakonikolas, G. Kamath, D. M. Kane, J. Li, A. Moitra, and A. Stewart. Robustly learning a gaussian: Getting optimal error, efficiently. In *Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2018*, pages 2683–2702, 2018. Full version available at https://arxiv.org/abs/1704.03866.

[DKK+19] I. Diakonikolas, G. Kamath, D. Kane, J. Li, J. Steinhardt, and A. Stewart. Sever: A robust meta-algorithm for stochastic optimization. In *Proceedings of the 36th International Conference on Machine Learning, ICML 2019*, pages 1596–1606, 2019.

[DKK+20] I. Diakonikolas, D. Kane, V. Kontonis, C. Tzamos, and N. Zarifis. A polynomial time algorithm for learning halfspaces with tsybakov noise. *CoRR*, abs/2010.01705, 2020.

[DKK+21] I. Diakonikolas, D. M. Kane, V. Kontonis, C. Tzamos, and N. Zarifis. Efficiently learning halfspaces with tsybakov noise. *STOC*, 2021.

[DKPZ21] I. Diakonikolas, D. M. Kane, T. Pittas, and N. Zarifis. The optimality of polynomial regression for agnostic learning under gaussian marginals. In *Proceedings of The 34th Conference on Learning Theory, COLT*, 2021.
[DKS17] I. Diakonikolas, D. M. Kane, and A. Stewart. Statistical query lower bounds for robust estimation of high-dimensional gaussians and gaussian mixtures. In 58th IEEE Annual Symposium on Foundations of Computer Science, FOCS 2017, pages 73–84, 2017. Full version at http://arxiv.org/abs/1611.03473.

[DKS18] I. Diakonikolas, D. M. Kane, and A. Stewart. Learning geometric concepts with nasty noise. In Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2018, pages 1061–1073, 2018.

[DKS19] I. Diakonikolas, W. Kong, and A. Stewart. Efficient algorithms and lower bounds for robust linear regression. In Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2019, pages 2745–2754, 2019.

[DKTZ20a] I. Diakonikolas, V. Kontonis, C. Tzamos, and N. Zarifis. Learning halfspaces with massart noise under structured distributions. In Jacob D. Abernethy and Shivani Agarwal, editors, Conference on Learning Theory, COLT 2020, volume 125 of Proceedings of Machine Learning Research, pages 1486–1513. PMLR, 2020.

[DKTZ20b] I. Diakonikolas, V. Kontonis, C. Tzamos, and N. Zarifis. Learning halfspaces with tsybakov noise. CoRR, abs/2006.06467, 2020.

[DKZ20] I. Diakonikolas, D. M. Kane, and N. Zarifis. Near-optimal SQ lower bounds for agnostically learning halfspaces and relus under gaussian marginals. CoRR, abs/2006.16200, 2020. In NeurIPS’20.

[Fel08] V. Feldman. Evolvability from learning algorithms. In Cynthia Dwork, editor, Proceedings of the 40th Annual ACM Symposium on Theory of Computing, 2008, pages 619–628. ACM, 2008.

[Fel11] V. Feldman. Distribution-independent evolvability of linear threshold functions. In Sham M. Kakade and Ulrike von Luxburg, editors, COLT 2011 - The 24th Annual Conference on Learning Theory, June 9-11, 2011, volume 19 of JMLR Proceedings, pages 253–272. JMLR.org, 2011.

[Fel15] V. Feldman. Hardness of proper learning (1988; pitt, valiant). In Encyclopedia of Algorithms. 2015.

[Fel16] V. Feldman. Statistical query learning. In Encyclopedia of Algorithms, pages 2090–2095. 2016.

[Fel17] V. Feldman. A general characterization of the statistical query complexity. In Satyen Kale and Ohad Shamir, editors, Proceedings of the 30th Conference on Learning Theory, COLT 2017, volume 65 of Proceedings of Machine Learning Research, pages 785–830. PMLR, 2017.

[FGKP06] V. Feldman, P. Gopalan, S. Khot, and A. Ponnuswami. New results for learning noisy parities and halfspaces. In Proc. FOCS, pages 563–576, 2006.

[FGR+13] V. Feldman, E. Grigorescu, L. Reyzin, S. Vempala, and Y. Xiao. Statistical algorithms and a lower bound for detecting planted cliques. In Proceedings of STOC’13, pages 655–664, 2013. Full version in Journal of the ACM, 2017.
V. Feldman, C. Guzman, and S. S. Vempala. Statistical query algorithms for mean vector estimation and stochastic convex optimization. In Philip N. Klein, editor, Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2017, pages 1265–1277. SIAM, 2017.

V. Feldman, W. Perkins, and S. Vempala. On the complexity of random satisfiability problems with planted solutions. In Proceedings of the Forty-Seventh Annual ACM on Symposium on Theory of Computing, STOC, 2015, pages 77–86, 2015.

Y. Freund and R. Schapire. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of Computer and System Sciences, 55(1):119–139, 1997.

S. Goel, A. Gollakota, and A. R. Klivans. Statistical-query lower bounds via functional gradients. CoRR, abs/2006.15812, 2020. In NeurIPS’20.

M. Goldmann, J. Hästad, and A. Razborov. Majority gates vs. general weighted threshold gates. Computational Complexity, 2:277–300, 1992.

V. Guruswami and P. Raghavendra. Hardness of learning halfspaces with noise. In Proc. 47th IEEE Symposium on Foundations of Computer Science (FOCS), pages 543–552. IEEE Computer Society, 2006.

D. Haussler. Decision theoretic generalizations of the PAC model for neural net and other learning applications. Information and Computation, 100:78–150, 1992.

M. J. Kearns. Efficient noise-tolerant learning from statistical queries. Journal of the ACM, 45(6):983–1006, 1998.

A. R. Klivans and P. Kothari. Embedding hard learning problems into gaussian space. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques, APPROX/RANDOM 2014, pages 793–809, 2014.

A. R. Klivans, P. K. Kothari, and R. Meka. Efficient algorithms for outlier-robust regression. In Conference On Learning Theory, COLT 2018, pages 1420–1430, 2018.

A. Klivans, P. Long, and R. Servedio. Learning halfspaces with malicious noise. To appear in Proc. 17th Internat. Colloq. on Algorithms, Languages and Programming (ICALP), 2009.

M. Kearns, R. Schapire, and L. Sellie. Toward Efficient Agnostic Learning. Machine Learning, 17(2/3):115–141, 1994.

K. A. Lai, A. B. Rao, and S. Vempala. Agnostic estimation of mean and covariance. In Proceedings of FOCS’16, 2016.

P. Massart and E. Nedelec. Risk bounds for statistical learning. Ann. Statist., 34(5):2326–2366, 10 2006.

M. Minsky and S. Papert. Perceptrons: an introduction to computational geometry. MIT Press, Cambridge, MA, 1968.
[MT94] W. Maass and G. Turan. How fast can a threshold gate learn? In S. Hanson, G. Drastal, and R. Rivest, editors, Computational Learning Theory and Natural Learning Systems, pages 381–414. MIT Press, 1994.

[Nov62] A. Novikoff. On convergence proofs on perceptrons. In Proceedings of the Symposium on Mathematical Theory of Automata, volume XII, pages 615–622, 1962.

[O’D14] R. O’Donnell. Analysis of Boolean Functions. Cambridge University Press, 2014.

[Ros58] F. Rosenblatt. The Perceptron: a probabilistic model for information storage and organization in the brain. Psychological Review, 65:386–407, 1958.

[RS94] R. Rivest and R. Sloan. A formal model of hierarchical concept learning. Information and Computation, 114(1):88–114, 1994.

[Slo88] R. H. Sloan. Types of noise in data for concept learning. In Proceedings of the First Annual Workshop on Computational Learning Theory, COLT ’88, pages 91–96, San Francisco, CA, USA, 1988. Morgan Kaufmann Publishers Inc.

[Slo92] R. H. Sloan. Corrigendum to types of noise in data for concept learning. In Proceedings of the Fifth Annual ACM Conference on Computational Learning Theory, COLT 1992, page 450, 1992.

[Slo96] R. H. Sloan. Pac Learning, Noise, and Geometry, pages 21–41. Birkhäuser Boston, Boston, MA, 1996.

[STC00] J. Shawe-Taylor and N. Cristianini. An introduction to support vector machines. Cambridge University Press, 2000.

[Val84] L. G. Valiant. A theory of the learnable. In Proc. 16th Annual ACM Symposium on Theory of Computing (STOC), pages 436–445. ACM Press, 1984.

[Vap82] V. Vapnik. Estimation of Dependences Based on Empirical Data: Springer Series in Statistics. Springer-Verlag, Berlin, Heidelberg, 1982.

[Vap98] V. Vapnik. Statistical Learning Theory. Wiley-Interscience, New York, 1998.

[Yao90] A. Yao. On ACC and threshold circuits. In Proceedings of the Thirty-First Annual Symposium on Foundations of Computer Science, pages 619–627, 1990.

[YZ17] S. Yan and C. Zhang. Revisiting perceptron: Efficient and label-optimal learning of halfspaces. In Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, pages 1056–1066, 2017.

[ZLC17] Y. Zhang, P. Liang, and M. Charikar. A hitting time analysis of stochastic gradient langevin dynamics. In Proceedings of the 30th Conference on Learning Theory, COLT 2017, pages 1980–2022, 2017.

[ZSA20] C. Zhang, J. Shen, and P. Awasthi. Efficient active learning of sparse halfspaces with arbitrary bounded noise. coRR, abs/2002.04840, 2020. In NeurIPS’20.
Appendix

A Proof of Lemma 3.5

Let θ be the angle between v and v'. By making an orthogonal change of variables, we can reduce to the case where $v = (1,0,\ldots,0)$ and $v' = (\cos(\theta), \sin(\theta), 0, 0, \ldots, 0)$. Then by definition we have that $\chi^2_{N(0, I)}(P_v, P_{v'}) + 1$ is

$$
\int_{\mathbb{R}^m} \left(\frac{A(x_1)A(\cos(\theta)x_1 + \sin(\theta)x_2)g(x_2)g(\sin(\theta)x_1 - \cos(\theta)x_2)}{g(x_1)g(x_2)} \right) g(x_3) \cdots g(x_m)dx_1 \cdots dx_m.
$$

Noting that the integral over x_3, \ldots, x_m separates out, we are left with

$$
\int_{\mathbb{R}^2} \left(\frac{A(x)A(\cos(\theta)x + \sin(\theta)y)g(y)g(\sin(\theta)x - \cos(\theta)y)}{g(x)g(y)} \right) dxdy.
$$

Integrating over y gives

$$
\int_{\mathbb{R}} \frac{A(x)}{g(x)} \left(\int_{\mathbb{R}} A(\cos(\theta)x + \sin(\theta)y)g(y)g(\sin(\theta)x - \cos(\theta)y)dy \right) dx = \int_{\mathbb{R}} \frac{A(x)U_t A(x)}{g(x)} dx,
$$

where U_t is the Ornstein-Uhlenbeck operator. We will simplify our computations by expressing the various quantities in terms of the eigenbasis for this operator.

In particular, let $h_n(x) = He_n(x)/\sqrt{n!}$ where $He_n(x)$ is the probabilist’s Hermite polynomial. We note the following basic facts about them:

1. $\int h_i(x)h_j(x)g(x)dx = \delta_{i,j}$.
2. $U_t(h_n(x)g(x)) = t^n h_n(x)g(x)$.

We can now write $A(x)$ in this basis as

$$
A(x) = \sum_{n=0}^{\infty} a_n h_n(x)g(x).
$$

From this, we obtain that

$$
\chi^2(A, N(0, 1)) = \int_{\mathbb{R}} \left(\sum_{n=0}^{\infty} a_n h_n(x)g(x) \right)^2 / g(x)dx
$$

$$
= \int_{\mathbb{R}} \sum_{n,m=0}^{\infty} a_n a_m h_n(x)h_m(x)g(x)dx
$$

$$
= \sum_{n=0}^{\infty} a_n^2.
$$

Furthermore, we have that

$$
\int_{\mathbb{R}} h_s(x)A(x)dx = \int_{\mathbb{R}} \sum_{n=0}^{\infty} a_n h_s(x)h_n(x)g(x)dx = a_s.
$$

25
For $1 \leq s \leq k$, we have that

$$h_s(x) = \sqrt{s!} \sum_{t=0}^{[s/2]} (-1)^t x^{s-2t} / 2^t t! (n-2t)!.$$

We therefore have that

$$a_s = \sum_{t=0}^{[s/2]} \left(\frac{\sqrt{s!} (-1)^t x^{s-2t}}{2^t t! (s-2t)!} \right) E[A^{s-2t}].$$

Note that the above is close to

$$\sum_{t=0}^{[s/2]} \left(\frac{\sqrt{s!} (-1)^t x^{s-2t}}{2^t t! (s-2t)!} \right) E[G^{s-2t}] = E[h_s(G)] = 0.$$

In particular, the difference between the two quantities is at most

$$\nu \sum_{t=0}^{[s/2]} \left(\frac{\sqrt{s!}}{2^t t! (s-2t)!} \right).$$

It is easy to see that the denominator is minimized when $t = s/2 - O(\sqrt{s})$. From this it follows that this sum is $2^{O(s)} \nu$. Therefore, we have that $a_s = 2^{O(s)} \nu$, for $1 \leq s \leq k$. Furthermore, $a_0 = \int A(x)dx = 1$. Thus, we have that

$$\chi_{N(0,I)}(P_v, P_{v'}) + 1 = \int_R \frac{A(x)U_{v,v'} A(x)}{g(x)} dx = \int_R \left(\sum_{n=0}^{\infty} a_n h_n(x)g(x) \right) \left(\sum_{n'=0}^{\infty} a_{n'}'(v \cdot v')^{n'} h_{n'}(x)g(x) \right) /g(x)dx$$

$$= \int_R \sum_{n,n'=0}^{\infty} a_n a_{n'}'(v \cdot v')^{n'} h_n(x)h_{n'}(x)g(x)dx$$

$$= \sum_{n=0}^{\infty} a_n^2 (v \cdot v')^n$$

$$= 1 + \sum_{n=1}^{k} a_n^2 (v \cdot v')^n + \sum_{n=k+1}^{\infty} a_n^2 (v \cdot v')^n.$$

Therefore,

$$|\chi_{N(0,I)}(P_v, P_{v'})| \leq O(\nu^2) \sum_{n=1}^{k} 2^{O(n)} |v \cdot v'|^n + |v \cdot v'|^{k+1} \sum_{n=0}^{\infty} a_n^2$$

$$\leq \nu^2 + |v \cdot v'|^{k+1} \chi^2(A, N(0, 1)).$$

This completes our proof.

B Proof of Lemma 3.12

We consider the Fourier transform of $G_{\sigma, \theta}$. Note that $G_{\sigma, \theta}$ is the pointwise product of G with a mesh of delta-functions. Therefore, its Fourier transform is the convolution of their Fourier
transforms. The Fourier transform of G is $\sqrt{2\pi}G$. The Fourier transform of the net of delta-functions $f(\xi) = \sum_{n \in \mathbb{Z}} \delta(\xi - n/\sigma)e^{2\pi in\xi}$. Thus, we have that the Fourier transform of $G_{\sigma,\theta}$ at ξ is
\[\sum_{n \in \mathbb{Z}} \sqrt{2\pi}g(\xi + n/\sigma)e^{-2\pi in\theta/\sigma}. \]

The t^{th} moment of a pseudodistribution is proportional to the value of the t^{th} derivative of its Fourier transform at $\xi = 0$. For G, this is $\sqrt{2\pi}g^{(t)}(0)$. For $G_{\sigma,\theta}$, it is equal to this term plus
\[\sum_{n \in \mathbb{Z}, n \neq 0} \sqrt{2\pi}g^{(t)}(n/\sigma)e^{-2\pi in\theta/\sigma}. \]

Computing the derivative of g using Cauchy’s integral formula (integrating around a circle of radius $1/(2\sigma)$ centered at n/σ), we find that
\[|g^{(t)}(n/\sigma)| = t!O(\sigma)^t \exp(-\Omega(n/\sigma)^2). \]

Taking a sum over n yields our result.