Macrolides as empiric therapy for outpatients with pneumonia

Daniel M. Musher, MD, FIDSA

1 Baylor College of Medicine, Houston, TX, USA

2 Michael E. DeBakey Veterans Affairs Medical Center, Houston, TX, USA

Corresponding author: Daniel Musher
Infectious Disease Section,
Room 4B-370
VA Medical Center, Houston TX 77030
United States of America
713 794 7386
Daniel.Musher@va.gov

Keywords: community-acquired pneumonia; outpatient; macrolide; azithromycin
In their article, “A Multicenter Evaluation of the US Prevalence and Regional Variation in Macrolide resistant *S. pneumoniae* in Ambulatory and Hospitalized Adult Patients in the US,” Gupta et al [1] provide important information that impacts the treatment of pneumonia in outpatients. The data they present are neither new nor surprising, but very much deserve repeating.

The authors accumulated 3,626 pneumococcal isolates of *Streptococcus pneumoniae* from 329 inpatient and outpatient facilities and tested them for susceptibility to macrolides. Isolates were from diverse parts of the US as determined by zip codes and were obtained from cultures in 2018 and 2019; this is a more diverse set of isolates than those that have been carefully monitored in the CDC’s ongoing ABC studies [2].

The results show that the rate of macrolide resistance amongst *Streptococcus pneumoniae* is >25% in all areas of the country. As has been shown in the past, invasive isolates, which constituted 44% of the ones studied, had lower rates of resistance than noninvasive ones. Overall resistance exceeded 25% in all but New England, Pacific and Mountain states (see Table). Even within states, remarkable variation was observed; for example, resistance was greater in southern than in northern California and in western than in eastern Pennsylvania.

A current systematic review has verified the prominent place of pneumococcus as the most commonly identified bacterial cause of pneumonia [3]. Recent prospective studies using conventional techniques have suggested that pneumococcus causes only 5-10% of cases of pneumonia leading to hospitalization [4, 5]. Since blood cultures are positive only 5-7% of cases [6] and the possible role of nasopharyngeal cultures remains to be determined, the only way to identify a bacterial cause in a patient with pneumonia is by examining the material that is coughed up from
the alveoli, namely, expectorated sputum. Studies using quantitative molecular [7] or bacteriologic [8] techniques, based exclusively on hospitalized patients who were able to provide a high-quality sputum sample, have shown that pneumococcus and *Haemophilus* are currently the two most commonly identified causative organisms, with each being implicated in about one-quarter of cases.

The etiology of pneumonia is far less-well studied in outpatients than in inpatients [9] and, to my knowledge, a report on antibiotic susceptibility of pneumococci in outpatients with pneumonia has not been published. It does not seem unreasonable, however, to assume that most outpatients with pneumococcal pneumonia are not bacteremic and, therefore, that the rate of resistance among these isolates is probably higher than in bacteremic, hospitalized patients. Interest in studying nasal colonization by bacteria that cause pneumonia [10] might be extended to reporting susceptibilities of these isolates. These findings, in turn, might shed light on the resistance patterns of pneumococci causing pneumonia in outpatients. But, such studies have not been reported and, to my knowledge, are not ongoing.

Taken together, these considerations should lead us to question recommendations in the ATS/IDSA guidelines [6] for the management of pneumonia. For all inpatients, guidelines recommend a regimen that includes a beta-lactam or a fluoroquinolone, drugs that would be effective against nearly all pneumococci. Recommendations for treating outpatients are more problematic. The guidelines stratify patients into those who are generally healthy with no premorbid conditions or risk for antibiotic-resistant pathogens, vs those who have a variety of comorbid conditions including chronic heart, liver or lung disease and alcohol use disorder or recent antibiotic therapy. For the latter group, recommendations are similar to those for inpatients. But for outpatients who are otherwise generally healthy, guidelines recommend amoxicillin, doxycycline or azithromycin.
In discussing the evidence for these recommendations, the guidelines state, “in settings where macrolide resistance is documented to be low and there are contraindications to alternative therapies, a macrolide as monotherapy is a treatment option,” but, as is the case with “reading the small print,” many readers do not look beyond the table of recommended treatments to the evidence section, and most physicians have no idea whether resistance is high or low where they practice or how to find out such information.

Azithromycin is effective against *Haemophilus influenzae* and *Moraxella* (which are unlikely to cause pneumonia in patients who lack chronic lung disease) and also against *Mycoplasma* and *Chlamydia*, which are not uncommon causes of pneumonia in young adults. But the most common and potentially most serious bacterial cause of pneumonia is *S. pneumoniae*. In my opinion, to reduce potential efficacy against the most common and most serious infecting agent in order to treat a less common and less serious one is a poor decision. Some objection might also be raised to doxycycline, to which 12% of pneumococci are resistant [11]. An adult with *Mycoplasma* pneumonia who isn’t treated with the right antimicrobial will come back to his or her physician; that is why it used to be called ‘walking pneumonia’. An adult with pneumococcal pneumonia treated with the wrong antibiotic is more likely to end up in an emergency room, possibly hospitalized.

For these reasons, I think that amoxicillin remains the drug of choice for treating pneumonia in otherwise healthy adults and amoxicillin/clavulanic acid in older adults or those with comorbid conditions. In support of this concept, a recent study [12] found that 44% of outpatients who failed empiric therapy had received doxycycline, and an equivalent number, a fluoroquinolone. It is worth noting that two new drugs have been approved since the guidelines committee formulated its recommendations, namely, lefamulin [13] and omadacycline [14]. Both of these drugs can be given
orally, and either is highly effective against nearly all strains of *S. pneumoniae* as well as other bacteria that commonly cause pneumonia.

In summary, Gupta et al give us good reason not to treat outpatient pneumonia empirically with a macrolide. My choice remains a beta-lactam, but fluoroquinolones are effective, and two new drugs are now available for consideration.

Potential Conflicts of interest: none

Funding Information: The author has no funding
Table. Regional variation of pneumococcal resistance to macrolides in the US

Region of the US	Blood	Respiratory	Overall
West north central	52%	55%	54%
South Atlantic	30%	61%	48%
South central	375	52%	42%
Mountain	4%	33%	14%
New England	4%	25%	18%
Pacific	13%	25%	18%
References

1. Gupta. A Multicenter Evaluation of the US Prevalence and Regional Variation in Macrolide resistant S. pneumoniae in Ambulatory and Hospitalized Adult Patients in the US. Open Forum Infect Dis 2021.

2. Prevention CfDCa. Active Bacterial Core Surveillance report, Emerging Infections Program Network, Streptococcus pneumoniae, 2018. Available at https://www.cdc.gov/absc/reports-findings/survreports/spneu18.pdf 2018.

3. Shoar S, Mushur DM. Etiology of community-acquired pneumonia in adults: a systematic review. Pneumonia (Nathan) 2020; 12: 11.

4. Mushur DM, Roig IL, Cazares G, Stager C, Logan N, Safar H. Can an etiologic agent be identified in adults who are hospitalized for community-acquired pneumonia: Results of a one-year study. J Infect 2013; 67: 11-8.

5. Jain S, Self WH, Wunderink RG, et al. Community-Acquired Pneumonia Requiring Hospitalization among U.S. Adults. N Engl J Med 2015; 373: 415-27.

6. Metlay JP, Waterer GW, Long AC, et al. Diagnosis and Treatment of Adults with Community-acquired Pneumonia. An Official Clinical Practice Guideline of the American Thoracic Society and Infectious Diseases Society of America. Am J Respir Crit Care Med 2019; 200(7): e45-e67.

7. Gadsby NJ, Russell CD, McHugh MP, et al. Comprehensive molecular testing for respiratory pathogens in community-acquired pneumonia. Clin Infect Dis 2016; 62(7): 817-23.

8. Mushur DM, Jesudasen SS, Barwatt JW, Cohen DN, Moss BJ, Rodriguez-Barradas MC. Normal Respiratory Flora as a Cause of Community-Acquired Pneumonia. Open Forum Infect Dis 2020; 7(9): ofaa307.

9. Pakhale S, Mulpuru S, Verheij TJ, Kochen MM, Rohde GG, Bjerre LM. Antibiotics for community-acquired pneumonia in adult outpatients. Cochrane Database Syst Rev 2014; (10): CD002109.

10. Holter JC, Muller F, Bjorang O, et al. Etiology of community-acquired pneumonia and diagnostic yields of microbiological methods: a 3-year prospective study in Norway. BMC Infect Dis 2015; 15: 64.

11. Jones RN, Jacobs MR, Sader HS. Evolving trends in Streptococcus pneumoniae resistance: implications for therapy of community-acquired bacterial pneumonia. Int J Antimicrob Agents 2010; 36(3): 197-204.

12. Tillotson G, Lodise T, Classi P, Mildvan D, McKinnell JA. Antibiotic Treatment Failure and Associated Outcomes Among Adult Patients With Community-Acquired Pneumonia in the Outpatient Setting: A Real-world US Insurance Claims Database Study. Open Forum Infect Dis 2020; 7(3): ofaa065.

13. File TM, Goldberg L, Das A, et al. Efficacy and Safety of Intravenous-to-oral Lefamulin, a Pleuromutilin Antibiotic, for the Treatment of Community-acquired Bacterial Pneumonia: The Phase III Lefamulin Evaluation Against Pneumonia (LEAP 1) Trial. Clin Infect Dis 2019; 69(11): 1856-67.

14. Stets R, Popescu M, Gonong JR, et al. Omadacycline for Community-Acquired Bacterial Pneumonia. N Engl J Med 2019; 380(6): 517-27.