A niche construction approach on the central Netherlands covering the last 220,000 years

Don F. A. M. van den Biggelaar¹,³ · Sjoerd J. Kluiving¹,²,³

Received: 14 July 2014 / Accepted: 22 July 2015 / Published online: 29 August 2015 © The Author(s) 2015. This article is published with open access at Springerlink.com

Abstract This paper shows what a niche construction theory (NCT) approach can contribute to the long-term social and environmental history of an area when applied to both sedentary and non-sedentary communities. To understand how communities create and respond to environmental change, hominin presence of the central Netherlands within the last 220,000 years is used as a case study. For this case study we studied the interrelationship between hominins, water and landscape gradients for four periods of interest within this long-term hominin presence. During each of these periods the study area had a specific environmental setting and (possible) traces of hominin presence. These periods cover the (1) Middle to Late Saalian (≈ 220–170 ka), (2) Late Glacial (≈ 14.7–11.7 ka, (3) Mid-Holocene (6000–5400 BP) and (4) Late Holocene (1200–8 BP). This review shows that traces of niche construction behaviour related to water and landscape gradients in the central Netherlands can be shown for both sedentary and non-sedentary communities. Furthermore, in this review it is shown that the transition from inceptive to counteractive change in ecosystem management style in the central Netherlands took place between the Mid- and Late Holocene periods.

Keywords Niche construction theory · Hominins · Environmental management strategy · Social and environmental history · Central Netherlands
Introduction

In the Netherlands there is a long-lasting tradition of living and struggling with the threat of water. The inhabitants of the coastal areas for example, faced a rapid rise in sea level during the Holocene (~ last 11,700 years) (see Behre 2007; Jelgersma 1961, 1979; Van de Plassche 1982 for Holocene sea level curves of the Netherlands). This sea level rise was the result of melting of the glacial ice sheets since the end of the Last Glacial Maximum (~18,000 years ago) (Fig. 1) (see Simpson et al. 2009). One of the coastal areas in the

Fig. 1 Northwest European chronostratigraphy, archaeological periods, climatic history and mondial relative sea level (RSL) record of the last 220,000 years. Chronostratigraphy according to Vandenberghe (1985) and Van Huissteden and Kasse (2001). Marine Isotope Record after Bassinot et al. (1994). RSL record after Waelbroeck et al. (2002). Error envelope of RSL from original source. Yellow bars indicate periods discussed in this paper.
Netherlands where water directly influenced the daily lives of its inhabitants was the Province of Flevoland (central Netherlands) (Fig. 2). During the last 1200 years for example, the area transformed from a peatland to an inlet of the North Sea (see Van den Biggelaar et al. 2014), until its reclamation from the sea between AD 1939 and 1968. This transformation is related to relative sea level rise, which was partly caused by surface lowering due to peat reclamation. As a response to the relative sea level rise, embankments were constructed at the former island Schokland in the northern part of Flevoland since \(\sim 750 \) BP (750 years before present (with present defined as AD 1950)) (Fig. 2) to protect its inhabitants against the increasing influence of the North Sea (Hogestijn 1992; Van der Heide and Wiggers 1954). This example of human-induced landscape transformation from Flevoland shows that organisms have the capacity to change their environment (for other examples see Hansell 1984; Jones et al. 1994, 1997, Laland et al. 1999, 1996; Lewontin 1983; Odling-Smee 1988; Odling-Smee et al. 1996), a process referred to as ‘niche construction’ (Laland et al. 1999, 1996; Odling-Smee 1988; Odling-Smee et al. 1996). Apart from shaping their environment an organism-induced modification can also change other agents’ selective environment (Laland et al. 1999, 1996; Laland and Sterelny 2006; Odling-Smee et al. 2003).

Studies that deal with niche construction theory (NCT) applied to humans have focused predominantly on agricultural-based communities (e.g. Bleed 2006; Briggs et al. 2006; Redman 1999; Smith 2007a, 2011). However, recent archaeological research indicated that hunter-gatherers also affected their surroundings, although on a small scale (i.e. forager day-range) (e.g. Bliege Bird et al. 2008; Bos and Urz 2003; Bos et al. 2013; Pyne 1998).

In the context of the long-term changing interrelationship between hominins and their environment, we should go beyond modern Homo sapiens niche construction. Although evidence of pre-modern Homo sapiens niche construction is difficult to determine, it can be argued that they must also have had an impact on their environment (for examples of Neanderthal niche construction behaviours see Riel-Salvatore 2010). This impact is most likely similar to that of human hunter-gatherers (small-scale). Important features in the local habitat of hominins are water and landscape gradients (Kluiving, this issue). Landscape gradients provide for a wide variety of natural resources and water is the basis for life (see Rockström et al. 2014 for the importance of water for people). According to NCT, changes in the local habitat will affect hominin culture and consequently, a change in hominin life and economy can also modify the environment. Therefore, knowledge on the changing interrelationship between hominins, landscape gradients and water over time is fundamental for the understanding of the landscape and habitation history of an area.

However, studies that combine hominin-environment interaction of hunter-gatherer, agricultural and industrial communities do not yet exist.

Therefore, the aim of this review is to show how NCT can be applied on both sedentary and non-sedentary communities to increase our understanding of the long-term social and environmental history of an area.

The long-term hominin presence of the central Netherlands (Fig. 2) provide a case study to better understand the social and environmental history of the area. For this case study four periods of investigation are selected within the last 220,000 years which contain important transformations in the landscape and have (possible) traces of hominin presence (Van den Biggelaar, in prep.). These periods are (1) Middle to Late Saalian period \((\sim 220–170 \text{ ka})\) (ka = thousands of calibrated years before AD 1950), (2) Late Glacial period \((\sim 14.7–11.7 \text{ ka} / \sim 12,500–10,000 \text{ BP})\) (Late Glacial ages after Hoek 2001 with modifications from Lowe et al. 2008), (3) Mid-Holocene period \((6000–5400 \text{ BP})\) and (4) Late Holocene period \((1200–8 \text{ BP})\) (Figs. 1, 3). For each of these four periods an overview
Fig. 2 Overview of ice-pushed ridges (after Busschers et al. 2008; Van den Berg and Beets 1987), glacial till ridges (after Brouwer 1950; Busschers et al. 2008) and localities of Early Middle Palaeolithic (EMP) artefacts in the central Netherlands. Distribution of EMP artefacts after Stapert (1987) and Van Balen and Busschers (2010). *Inset* shows the location of the study area within the Netherlands.
is given of the interrelationship between hominins, water and landscape gradients of the study area fixed at that time. The time frames between these time periods are discussed briefly. To study this long-term interaction a human (here, hominin) niche construction (HNC) approach was used.

Palaeogeographical context and habitation history

Period 1: Middle to Late Saalian (≈ 220–170 ka)

Prior to the maximum southward extension of the Fennoscandian ice sheet, corresponding to Marine Isotope Stage 6 (MIS 6, ≈ 150 ka) (cf. Bassinot et al. 1994), the central Netherlands was part of a large delta. Before the land ice reached this landscape the area was inhabited by hunter-gathers. The southward ice advance (cf. Van den Berg and Beets...
1987) formed ice-pushed ridges and glacial till ridges in the central Netherlands (Fig. 2) (e.g. Brouwer 1950; De Waard 1949; Jelgersma and Breeuwer 1975; Maarleveld 1983; Ruegg 1983; Ter Wee 1962, 1983; Van den Berg and Beets 1987; Wiggers 1955).

The Early Middle Palaeolithic (EMP) flint artefacts left by the early inhabitants of the central Netherlands occur in ice-pushed ridges surrounding the Gelderse Vallei area (Fig. 2). These ridges contain pushed alluvial deposits from the rivers Rhine and Meuse. Gravel and heavy mineral analyses indicated that the Rhine dominated the combined Rhine-Meuse fluvial system in the area (Busschers et al. 2008). However, the Meuse transported flint suitable for the production of tools towards the central Netherlands (Van Balen et al. 2007).

Early Middle Palaeolithic artefacts could possibly be present in the province of Flevoland (see Van den Biggelaar et al. in review), initiating the beginning of the biography of Flevoland (Van den Biggelaar in prep.). These artefacts possibly date between ~220 and ~170 ka (MIS 7—early MIS 6) (see Van den Biggelaar et al., in review). During MIS 7—early MIS 6 both warm and cool climatic phases occurred (Lisiecki and Raymo 2005), suggesting that the early hominins and their archaeological remains may be attributed to a variety of climatological and environmental settings.

In between periods 1 and 2 from the Late Saalian to the Late Pleniglacial (early MIS 6—late MIS 2, 170–14.7 ka), the climate is characterized by alternating cold and short-term temperate phases (e.g. Lisiecki and Raymo 2005; Van Huissteden and Kasse 2001; Zagwijn 1961). The first traces of hominin presence in the central Netherlands after the EMP date to the Weichselian (MIS 5d–2, 115–11.7 ka) (e.g. Johansen et al. 2007; Koopman et al. 2013; Schlüter 2003; Stapert 1980, 1991b, 1993; Van Uum and Wouters 1991). Except during maximum southward ice advance (~150 ka) and during the warm Interglacial Eemian (130–115 ka), the Rhine fluvial system dominated Flevoland until ~40 ka (Busschers et al. 2007; Peeters et al. 2014). After the Rhine abandoned the area, the sedimentary environment of the study region was dominated by aeolian coversand deposits (Spek et al. 1997, 2001a, b; Wiggers 1955).

Period 2: Late Glacial (~14.7–11.7 ka)

At the onset of the Late Glacial (LG) (~14.7 ka) (Fig. 3), Late Palaeolithic hunter—fisher—gatherer groups (Magdalenian, Creswellian and Hamburgian) inhabited the margins of upland areas in NW Europe (Terberger et al. 2009). After the arid and cool start of the LG, the Allerød interstadial (13.9–12.9 ka) is a relatively warm period during which woodlands formed and soils developed (e.g. Hoek 1997; Walker et al. 1994). During the Allerød (13.9–12.9 ka), NW Europe was inhabited by Federmesser hunter—fisher—gatherers. Federmesser sites are primarily concentrated at palaeolakes, fens and river terraces (e.g. Crombé et al. 2013, 2011; De Bie and Caspar 2000; Deeben 1988).

During the subsequent cool and arid Younger Dryas (YD) (12.9–11.7 ka) Ahrensburgian hunter—fisher—gatherer groups appear to concentrate predominantly at margins of upland areas (ridges and terrace edges) in close proximity to freshwater sources (Vermeersch 2011).

In the study region, the Eem and IJssel/Vecht fluvial systems were present during the LG. During the YD, dunes formed along the banks of the fluvial systems (Menke et al. 1998; Wiggers 1955). During this period the landscape is characterized by deeply incised gullies and high elevated dunes and ridges (e.g. Menke et al. 1998; Peeters 2007; Wiggers 1955; Van den Biggelaar et al. accepted). The gullies, dunes and ridges formed the undulating topography of the Pleistocene surface in the region (Peeters 2007; Van der
Heide and Wiggers 1954; Wiggers 1955). This surface is sloping down in western direction and its elevation ranges from -11.5 to -1.5 m Dutch Ordnance Datum (D.O.) (Fig. 4). This undulating topography, together with the presence of freshwater sources indicates the regions’ potential for the availability of LG archaeological remains. This potential is further supported by the presence of LG archaeological remains surrounding the Flevoland

![Fig. 4](imageurl)

Fig. 4 Elevation Pleistocene surface of Flevoland in meters Dutch O.D. (adapted from Peeters 2007) and location of palaeofluvial systems (compiled from Dresscher and Raemaekers 2010; Ente et al. 1986; Menke et al. 1998; Peeters 2007; Van den Biggelaar et al. 2015; Wiggers 1955). Location of the possible Late Glacial archaeological site Schokland-P14 after Ten Anscher 2012. For location of Flevoland in the Netherlands see Fig. 2
region and the presence of intact Allerød soils and peat deposits in the study area (e.g. De Moor et al. 2013a, b; Van Smeerdijk 2002; Wiggers 1955). However, apart from a single possible Late Glacial archaeological site in Flevoland (Schokland—P14; see Ten Anscher 2012) (Fig. 4), there are no archaeological remains of this period in the region. The lack of archaeological remains dating to the LG is possibly a research bias. The study area is covered by 1 up to 10 meters of Holocene deposits (Fig. 5), making it almost impossible to retrieve LG archaeological remains.

Fig. 5 Thickness of Holocene deposits in Flevoland. Data from the Digital Geological Model (DGM) of the TNO Geological Survey of the Netherlands database (www.dinoloket.nl). For location of Flevoland in the Netherlands see Fig. 2
The landscape processes in between period 2 and 3 are steered by climate amelioration at the onset of the Holocene (11.7 ka/ ~ 10,000 years BP), which resulted in extended soil formation in the top Pleistocene deposits. In the study region, the earliest Mesolithic traces that were left on these deposits date to around 9300 BP (Hamburg et al. 2012). Due to groundwater table rise, induced by postglacial sea-level rise, the Pleistocene surface was covered by peat that stopped Early Holocene soil formation (Havinga 1962; Hogestijn and Peeters 2001; Menke et al. 1998; Peeters 2007; Spek et al. 2001a, b; Wiggers 1955).

Period 3: Mid-Holocene (6000–5400 BP)

Continuing rise in the local groundwater level resulted in increasing tidal influence at the western part of the study area from ~6150 BP onwards (Ente 1971). Due to this tidal influence the western part of the area transformed from a peatland into a freshwater area with levees (Ente 1971, 1976; Ente et al. 1986; Menke et al. 1998; Van Zeist and Palfenier-Vegter 1981). However, some marine influence was also present as indicated by the presence of the clayey levees (Ente 1971; Schepers 2014b), coastal diatoms and some foraminifera (see Schepers 2014a for a literature overview and discussion on these palaeoecological indicators as a signal for incidental marine influence in the area). The combination of a dominant freshwater area with some marine influence can be described as a freshwater tidal area (cf. Schepers 2014b).

The Swifterbant culture that developed out of the Mesolithic hunter-gatherer groups (Deckers 1982; Louwe Kooijmans 1993; Whallon Jr and Price 1976), inhabited the study region from 6000 BP onwards (Louwe Kooijmans 1993; Peeters 2007; Raemaekers 1999, 2005; Van Gijn and Louwe Kooijmans 2005). Archaeological remains of the Swifterbant Culture in the study area are concentrated on Saalian glacial till ridges, Late Pleniglacial and Late Glacial coversand ridges and plateaus, Late Glacial source-bordering aeolian dunes and Mid-Holocene tidal levees (e.g. Hogestijn and Peeters 2001; Huisman et al. 2009; Peeters 2007; Raemaekers 1999, 2005; Van den Biggelaar et al. 2015).

The subsistence economy of the Swifterbant culture is characterised by a combination of hunting, gathering, fishing, domestication of animals and crop cultivation (extended broad spectrum economy) (Louwe Kooijmans 1993; Peeters 2007; Raemaekers 1999, 2005). The earliest traces of the domestication of animals in the area is dated to 5700 BP (Raemaekers 1999, 2005) and that of crop cultivation around 5400 BP (e.g. Huisman et al. 2009; Raemaekers 1999; Ten Anscher 2012). At that time, habitation in the area is concentrated on the higher elevated ground of the Eem and IJssel/Vecht fluvial systems (e.g. De Roever 2004; Hacquebord 1974, 1976; Raemaekers 2005; Van den Biggelaar et al. 2015).

Between periods 3 and 4 habitation continued to concentrate on the higher grounds until the Early Iron Age (2500 BP) (e.g. Gehasse 1995; Hogestijn 1991; Ten Anscher 2012; Ten Anscher and Gehasse 1993), due to continuous relative sea-level rise. A decrease in the rate of sea-level rise between 5500 and 3500 BP (Van der Spek and Beets 1992), resulted in the closure of tidal inlets along the Dutch western coast around 3200 BP (Berendsen 2008a; De Mulder and Bosch 1982; Vos et al. 2011). Subsequently, freshwater lakes within a peatland developed in Flevoland (Ente et al. 1986; Gotjé 1993; Pons and Wiggers 1960; Wiggers 1955). This poorly drained peat area had a low habitation potential. However, the discovery of modified wooden posts dating to the Early Roman period indicates that the area was visited around 1900 cal BP (Van Heeringen et al. 2014).
Period 4: medieval and modern period (1200–8 BP)

After 1200 BP, the peatland in Flevoland drained via the tidal inlet in the northwestern part of the Netherlands (Ente et al. 1986; Wiggers 1955). Due to this natural drainage, the habitation potential of the area increased (Van Balen 2008). Renewed habitation in Flevoland around 1150 BP (e.g. Hogestijn et al. 1994; Van der Heide and Wiggers 1954), led to the reclamation of the peatlands. Subsequent surface lowering due to oxidation and compaction of the peat (e.g. Hogestijn et al. 1994; Van der Heide and Wiggers 1954), caused increasing marine influence in the region. This resulted in erosion of the former island Schokland (northern part of Flevoland) by storm surges (Van den Biggelaar et al. 2014; Van den Biggelaar et al., in prep.). Consequently, unfavourable habitation conditions formed. To improve these conditions, the inhabitants of the former island constructed embankments since 750 BP (Hogestijn 1992; Van der Heide and Wiggers 1954) and moved to artificially raised areas around 500 BP (Fig. 6) (Van der Heide 1950; Van der Heide and Wiggers 1954). The marine environment dominated the region until the construction of the enclosure embankment in 18 BP (Wiggers 1955). The former island Schokland became a land-locked island after completion of the reclamation of the northern part of the study area at 8 BP (Wiggers 1955). The reclamation of the northern part of the study area involved creating fertile land. This area was inhabited over the past 70 years by an agricultural community. In AD 1995, Schokland became the 1st UNESCO World Heritage Site of the Netherlands and serves as an open-air museum since that time (www.schokland.nl; www.unesco.nl).

Hominins, landscape gradients and water in Flevoland during the last 220,000 years

To understand how communities create and respond to environmental change, we focus on the role of water and landscape gradients in hominin communities within the last 220,000 years. The four periods discussed in this paper provide insight in hominin-water-landscape gradient interaction in both sedentary and non-sedentary communities in landforms as delta’s, river terraces, coastal estuaries and peat islands through time.

Early delta inhabitants

During the first period of interest (~220–170 ka), the central Netherlands was a large delta with intense fluvial dynamics and climate change over time. This delta had a high exploitation potential for hominins and animals due to the availability of freshwater. Furthermore, the fluvial systems dominating the area (Rhine: prior to 170 ka, combined Rhine/Meuse: ~ 170 ka; Busschers et al. 2008) most likely served as a corridor in the landscape. Also, the Meuse carried raw lithic material suitable for the production of artefacts (Stapert 1987, 1991a; Van Balen 2006; Van Balen et al. 2007). The Meuse transported this material from the southeastern Netherlands and adjoining areas towards the central Netherlands (Van Balen 2006; Van Balen et al. 2007). This fluvial landscape contained a plethora of natural resources. The faunal remains analysed in the artefact-bearing sediment in the study area indicate the presence of both temperate/warm and cold climate species. This co-occurrence of faunal remains of different climatic epochs is explained by the fluvial character of the deposits, hereby mixing sediments of different periods (Van Kolfschoten 1981, 1991). The cold climatic indicators are *Mammuthus*...
primigenius, Coelodonta antiquitatis, Ovibos moschatus, Cervus (M.) giganteus, Rangifer tarandus and Bison priscus. These species prefer an open steppe landscape. The composition of the temperate/warm climate fauna (Elephas namadicus, Dicerorhinus kirchbergensis, Sus crofa, Cervus elaphus, Dicerorhinus bemitoechus, Equus and Hippopotamus amphibius), indicate a wood/steppe biotope (Van Kolfschoten 1981, 1991). The wide variety of species during different climatic periods indicates the potential for exploitation in the area. Future research should indicate whether these species were exploited and if so,
whether specific exploitation strategies were applied by EMP hominins (e.g. Neanderthals). One of those specific exploitation strategies by Neanderthals is selective hunting of prime-adult bovids (e.g. bison) (e.g. Gaudzinski 1995; Hoffecker et al. 1991) and cervids (e.g. reindeer) (e.g. Gaudzinski and Roebroeks 2000). Selective hunting of prime-aged prey can reduce the mean age at first reproduction in prey populations (see Stiner 1994). Earlier sexual maturity is one of the changes that is associated with the domestication of several mammal species, although the capacity for a species to be tamed is even more important (Belyaev 1979). Although selective hunting of certain mammal species cannot automatically be linked to the domestication process, it could have set the stage for the long complex process of domestication (Stiner 2002). The possible use of this specific exploitation strategy in the region indicates active modification of the sustainability of the natural resources by EMP hominins and can therefore be elaborated in a HNC approach.

Neanderthals not only applied a new flaking technology (Levallois technique), they were also the first hominins who distributed lithics across the landscape. This scattering of lithics for future use allowed them to adapt to a wide variety of ecosystems (e.g. Hovers and Kuhn 2006; Scott and Ashton 2011). This strategy allowed hominins to exploit less predictable and more widely spaced resources. In open environments for example, animal resources roam further than in forested environments. Therefore, hominins hunting these animals most likely adapted their strategy to be able to travel larger distances without the need of continuous access to raw lithic sources (Scott and Ashton 2011). Future research on the lithic distribution in the study area may indicate whether lithics were stockpiled to create a landscape scattered with lithics (sensu Webb 1993). This stockpiling indicates a change in the way Neanderthals engaged the landscape.

The fluvial system is not only an attractive area for hunting terrestrial animals, aquatic sources may also have been exploited. Both marine (e.g. Haustator eryna, Scapharca diluvia and Venus multilamella) and non-marine molluscs (e.g. Valvata piscinalis, Bithynia tentaculata, Radix ovata and Corbicula fluminalis) were found in the artefact-bearing sediment of the Urk Formation (combined Rhine-Meuse deposits) in the southern part of the study area near Wageningen (Fig. 2) (Meijer 1991). Although no evidence exists for the exploitation of aquatic sources in the region, in Spain marine resources (molluscs) have been systematically exploited by Neanderthals since ~150 ka (e.g. Corte´s–Sa´nchez et al. 2011). Moreover, in France the earliest evidence of fish exploitation by Neanderthals date between 250,000 and 125,000 years ago (Hardy and Moncel 2011). The systematic exploitation of aquatic resources by Neanderthals since ~250 ka indicates that they were able to acquire fast-moving small prey, a trait previously seen as the domain of modern humans (Hardy and Moncel 2011). This suggests that Neanderthal resource exploitation may not be so different from that of Homo sapiens, indicating that just like Homo sapiens, Neanderthals were potentially seriously constructing hominin niches.

River terrace inhabitants

During the Late Glacial (~14.7–11.7 ka), elevated aeolian ridges and dunes are present within the Eem and IJssel/Vecht fluvial systems (see Menke et al. 1998; Peeters 2007; Wiggers 1955; Van den Biggelaar et al. accepted). Examples from the Netherlands and Northern Belgium show that such elevated areas in close proximity to a freshwater environment had a high habitation potential for Late Palaeolithic groups (e.g. Arts 1988; Bos et al. 2013; Crombé et al. 2013, 2011; De Bie and Vermeersch 1998; Deeben 1988; Derese et al. 2012; Vermeersch 2011). The combination of higher grounds and adjacent lakes and fluvial systems provided a high biodiversity. Also, the fluvial systems could be
used as a corridor in the landscape. Furthermore, lithic sources were available in close proximity to the fluvial systems. The glacial till deposits at Urk and Schokland (northern part of Flevoland) and the ice-pushed ridges surrounding the Gelderse Vallei area (see Fig. 2) contain rocks (e.g. flint, granite and quartzitic sandstone) of useable size and composition for the production of tools (Devriendt 2014; Stapert 1981). The glacial till deposits of Urk and Schokland also contain amber that could be used for the production of tools (Van Sprosen 1977; Waterbolk and Waterbolk 1991). Although for the study area very few LG archaeological remains are known, the high potential of preserved LG archaeological remains (see Peeters 2007; Van den Biggelaar et al. accepted), indicates the regions’ high potential for future research on niche construction strategies. Examples of such strategies that have been documented for the LG at different parts of the world are: (1) systematic burning of fire for ecosystem engineering (e.g. Smith 2007b) and (2) domestication of plants and animals (e.g. Bleed and Matsui 2010; Yen 1989). The use of these strategies indicate an active modification of the exploitation potential of the landscape by its inhabitants and can therefore be applied in a niche construction approach.

Coastal area inhabitants

The gradual transformation of the study area into a wetland area with dry ridges and dunes during the Mid-Holocene (6000–5400 BP) (Ente 1971, 1976; Ente et al. 1986; Hacquebord 1976; Menke et al. 1998; Peeters 2007; Van den Biggelaar et al. 2015), resulted into a gradient-rich landscape with a variety of ecotones (such as back swamps, river banks and dunes; see Schepers 2014a for a complete overview). The diversity of ecosystems made the area suitable for an extended broad spectrum economy (hunting/gathering/fishing, domestication of animals and crop cultivation). There is a vast amount of literature concerning the introduction of crop cultivation (e.g. Bender 1978; Binford 1968; Bogucki 1988; Chase 1989; Cohen 1977; Flannery 1968; Hayden 1990; Ingold 1980; Keeley 1995; Rowley-Conwy 1984, 1985; Smith 1972; Sørensen and Karg 2012; Van den Biggelaar et al. 2015; Wright 1977; Zvelebil and Dolukhanov 1991). Although these studies might offer an explanation for the initial adoption of crop cultivation, NCT can provide insight in the way the landscape was domesticated to prepare for crop cultivation (Bleed and Matsui 2010). As suggested by Van den Biggelaar et al. (2015), the spatial differentiation of soil properties within the study area appears to have influenced choices of humans to adopt crop cultivation. The initial adoption of crop cultivation in the area is limited to areas with a high natural soil fertility (e.g. loam-rich glacial till ridges and clayey levees) (Van den Biggelaar et al. 2015). The rise in sea level resulted in increasing influence of the North Sea in the study region. Consequently, the sea deposited nutrient-rich clay in the area, forming the clayey levees that were used by the inhabitants for crop cultivation. This suggests that natural processes applied on a heterogeneous substrate are influencing NCT.

The use of an extended broad spectrum economy indicates that although domesticates (plants and animals) were used, these domesticated resources were not successful enough to stop people from hunting, gathering and fishing (Bleed and Matsui 2010). Future research on domesticates in the study area can provide insight in the factors that determine successful domestication.

Other examples of environmental management strategies in the region that are linked to water or landscape gradients and that could possibly have been applied are: (1) raising of habitation surface at tidal levees with reed bundles (Van der Waals 1977) and (2) burning of vegetation along the banks of the fluvial systems to improve fishing possibilities (Schepers 2014b).
Peat island inhabitants

For the Medieval and Modern Period (1200–8 BP) we focus on Schokland, because it is one of the few areas in Flevoland that was inhabited for the main part of that period. During this period water and landscape gradients play a dominate role in the human-environment response in the area.

Due to the natural drainage of Schokland since 1200 BP, the peatland became dry and the area had a high occupation potential. However, subsequent reclamation of the area since around 900 BP and possibly as early as 1150 BP (see Hogestijn et al. 1994), led to surface downwarping. This downwarping caused increasing marine influence in the area, opposite to what was anticipated with the reclamation of the area. Due to this marine influence the habitable area of Schokland and surroundings decreased over time (Fig. 6). Apart from modifications in the environment, the increasing marine influence also affected the subsistence economy of the inhabitants of Schokland. While crop cultivation and cattle were the main forms of subsistence until the 15th century (Geurts 1991; Van der Heide and Wiggers 1954), fishing became the main source of income until 91 BP when the former island was evacuated (Geurts 1991).

Discussion

The most tangible traces of niche construction behaviour related to water and landscape gradients in the central Netherlands can be shown for the Mid-Holocene and Medieval and Modern Period. However, also for the Middle to Late Saalian and Late Glacial periods there is a wide variety of potential traces for environmental management strategies. While climate change is traditionally seen as the driving factor for the development of such strategies (e.g. Burroughs 2005; Richerson et al. 2001), NCT provides an important alternative (see Laland and O’Brien 2010).

During the Middle to Late Saalian, Early Middle Palaeolithic populations may have subjected the delta landscape to specific strategies exploiting faunal and aquatic resources. Together with stockpiling of lithics, these strategies indicate that EMP hominins were possibly seriously constructing hominin niches. Whether the population was able to change entire ecosystems still has to be debated, but those changes can be considered very small in terms of scale and assumed low impact on vast natural reserves. Although small-scale, the use of these strategies (e.g. stockpiling of lithics) indicates that EMP hominins were actively modifying their environment.

A niche construction approach on Late Glacial environmental management strategies (e.g. ecosystem engineering by fire and the domestication of plants and animals), opens up new avenues to investigate the development of these strategies into the Holocene. This approach could for example be used to understand the origin of domestication by taking into account the combination of changes in hominin behaviour, biology and ecology (see Laland and O’Brien 2010).

The Mid-Holocene coastal inhabitants (here: Swifterbant culture) expanded the hunter—fisher—gather subsistence economy with crop cultivation and the domestication of animals. The role of humans in the creation of a suitable ecology for the domestication of plants and animals provides a novel perspective to understand successful domestication (Bleed and Matsui 2010). This role most likely differs per location, because successful domestication has been documented for the Mid-Holocene for different environments.
across the world (e.g. Bleed and Matsui 2010; Lentz 2000; Terrell et al. 2003; Wagner 2003; Yen 1989). Although the choices of people influence successful domestication, the study by Van den Biggelaar et al. (2015) suggests that these choices are influenced by their natural environment (here: substrates with a high natural soil fertility).

The history of the peat island population of Schokland is determined by a loop of Human Niche Construction mechanisms that fits within the Anthropocene concept. This concept is used to describe the period during which human modification of the global environment outcompeted natural processes (see Crutzen 2002; Crutzen and Stoermer 2000). The starting date of the Anthropocene is under debate, ranging from the early Holocene (e.g. Smith and Zeder 2013) to AD 1945 (e.g. Zalasiewicz et al. 2014). For the western Netherlands the transition to the Anthropocene is placed around 3000 BP, based on the transition from a reactive to a proactive water management strategy, i.e. the transition from inceptive to counteractive changes (cf. Kluiving, this issue). Around 3000 BP peat development in the western Netherlands was at its greatest lateral expansion (see Vos et al. 2011). The dome shaped peat masses measured ~30 km² and their top was located at an elevation of 5 m above current sea level (Eggelsmann and Schuch 1980). The increasing human interference in the landscape since 3000 BP resulted in natural erosion (Kluiving et al. 2013). The exploitation and excavation of peat for energy purposes in the 2nd millennium led to dewatering, oxidation and eventually considerable surface lowering (Berendsen 2008b; Van der Molen 1982). Currently, the lowest surface elevations in the western Netherlands are 5 m below Dutch Ordnance Datum (see Digital Elevation Model of surface elevation of the Netherlands, www.ahn.com), indicating that within 3000 years the actual peat surface has been lowered by 10 metres. This surface lowering initiated and enlarged the effect of relative sea level rise. These culturally induced natural processes testify that the (large scale) natural system is fundamentally altered, which in its turn alters ecosystems (cf. Kluiving, this issue).

At Schokland, the reclamation of the peatland around 900 BP (or as early as 1150 BP) (see Hogestijn et al. 1994) led to an unintentional change in the ecosystem, causing surface lowering. As a response to this change, water management strategies were applied (e.g. construction of embankments and raised areas). These strategies dominated the social life of the inhabitants of Schokland until the evacuation at 91 BP. The social and environmental history of Schokland since 900 BP is dominated by the interaction between its inhabitants and the increasing marine influence. This history was set in motion due to the unintentional change in the environment that was caused by hominin influence. Therefore, the Schokland example fits well within the concept of NCT. The similarity between Schokland and the western Netherlands in terms of culturally induced natural processes indicates that the environmental and cultural history of Schokland is a small-scale example of nation-wide relative sea level rise.

A comparison between the four investigated periods in terms of inceptive or counteractive ecosystem management style contributes to the discussion on the onset of the Anthropocene (see Kluiving, this issue for an overview of this discussion). For the Middle to Late Saalian and Late Glacial periods, societies exploited and adapted ecosystems on a small scale (forager day-range). The stockpiling of lithics and small-scale exploitation of specific resources during the Middle to Late Saalian indicate inceptive changes in the environment. The Late Glacial processes of anthropogenic fire and initial domestication of plants and animals are also examples of inceptive changes. Although during the Mid-Holocene societies possibly raised habitation levels with reed bundles (cf. Van der Waals 1977) and exploited the substrate on a landscape scale by crop domestication (e.g. Van den Biggelaar et al. 2015), these are still considered inceptive changes in NCT terminology.
During the Late Holocene, cultural impact induced an unintentional macro-scale landscape change (peat surface lowering), which resulted in an unforeseen change in the ecosystem (enhanced effect of storm surges on Schokland). This process is an example of counter-active change in the environment. In summary, the transition from inceptive to counter-active ecosystem management styles occurred in Flevoland between the Mid- and Late Holocene periods. This supports the investigation by Kluiving (this issue) who placed this transition in the Western Netherlands around 3000 BP. The results of this study also indicate that traces of niche construction behaviour can be recognized for anthropogenic effects on ecosystems as early as the Middle to Late Saalian period (cf. Palaeoanthropocene concept of Foley et al. 2013). These results indicate that NCT allows to describe changes in hominin niche cycles such as inceptive to counteractive changes or scale differentiation of hominin impact. For this study a 3-stage temporal differentiation in scale of ecosystem management styles can be observed: (1) small-scale impact on ecosystems (Middle to Late Saalian, Late Glacial and most likely extending into the Holocene), (2) landscape domestication of preferred substrates on a landscape scale (Mid-Holocene), followed by domestication of the landscape on a supra-regional scale and (3) landscape transformation by flooding processes caused by human induced surface lowering of 10 meters during the Late Holocene (most drastic landscape changes).

To improve the understanding of the relationship between hominins and their environment a multi-disciplinary HNC approach is needed in which geoarchaeology plays an important role (see Kluiving, this issue). Interaction between hominins, water and landscape gradients in the central Netherlands covering the last 220,000 years indicate a wide variety of (possible) environmental management strategies and adaptations to natural ecosystem services. A HNC approach for the investigated periods provide new ways to evaluate the (geo)archaeological data to better understand the social and environmental history of the study area. Furthermore, a HNC approach can provide parameters of timing and duration of hominin impact on their environment in order to test its influence on large-scale eco-system dynamics. This insight plays and will play a key role in the current and future discussion of the Anthropocene concept.

Conclusions

In this review we have shown that traces of niche construction behaviour related to water and landscape gradients in the central Netherlands can be shown for both sedentary and non-sedentary communities. Traces of observed and potential hominin niche construction behaviour in the central Netherlands can be divided into three scales of ecosystem management styles. During the Middle to Late Saalian and Late Glacial periods, societies exploit and adapt ecosystems on a small scale (forager day-range). Examples of potential ecosystem management techniques are stockpiling of lithics, anthropogenic fire and initial domestication of plants and faunal species. The Mid-Holocene societies adapted their preferred location of land management at a landscape scale in response to relative sea level rise. During the Late Holocene, the most drastic landscape changes took places on a macro-scale. Culturally induced natural processes (peat surface lowering) resulted in relative sea level rise, followed by an unintentional enhanced effect of storm surges in the area. The transition from inceptive to counteractive change in ecosystem management style in the central Netherlands took place between the Mid- and Late Holocene periods. Regional integrated case studies of geoarchaeological research provide for spatial and temporal
reconstructions of the social and environmental history of an area and thereby contribute to the HNC approach.

Acknowledgments This paper is part of the PhD research of D.F.A.M. van den Biggelaar at the VU University Amsterdam (VU). The research is part of the multidisciplinary ‘Biography of the New Land’ research programme of CLUE (VU), in collaboration with the Nieuw Land Heritage Centre (Lelystad, The Netherlands). This programme is jointly funded by the research institute CLUE (VU) and the Nieuw Land Heritage Centre (Lelystad, The Netherlands). The late Tony Wilkinson is remembered and deeply acknowledged for giving comments on an earlier draft of this paper. His comments greatly improved the quality of the paper. Finally, we are very grateful for the constructive review by Maurits Ertsen and several anonymous reviewers. Their feedback helped us to sharpen the focus of this manuscript.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

References

Arts N (1988) A survey of final Palaeolithic archaeology in the southern Netherlands. In: Otte M (ed) De la Loire à l’Oder. Les civilisations du Paléolithique final dans le nord-ouest européen (= Actes du Colloque de Liège, décembre 1985). BAR International Series, vol 444 (I & II). Oxford, pp 287–356
Bassinot FC, Labeyrie LD, Vincent E, Quidelleur X, Shackleton NJ, Lancelot Y (1994) The astronomical theory of climate and the age of the Brunhes-Matuyama magnetic reversal. Earth Planet Sci Lett 126:91–108. doi:10.1016/0012-821x(94)90244-5
Behre K-E (2007) A new Holocene sea-level curve for the southern North Sea. Boreas 36:82–102. doi:10.1111/j.1502-3885.2007.tb01183.x
Belyaev DK (1979) Destabilizing selection as a factor in domestication. J Hered 70:301–308
Bender B (1978) Gatherer-hunter to farmer: a social perspective. World Archaeol 10:204–222. doi:10.1080/00438243.1978.9979731
Berendsen HJA (2008a) De vorming van het land: inleiding in de geologie en de geomorfologie, 5th edn. Van Gorcum, Assen
Berendsen HJA (2008b) Landschap in delen: Overzicht van de geofactoren, 4th edn. Van Gorcum & Comp, BV, Assen
Binford LR (1968) Post-pleistocene adaptations. In: Binford S, Binford LR (eds) New perspectives in archaeology. Aldine, Chicago, pp 313–341
Bleed P (2006) Living in the human niche evolutionary anthropology: issues. News Rev 15:8–10
Bleed P, Matsui A (2010) Why didn’t agriculture develop in Japan? A consideration of jomon ecological style, niche construction, and the origins of domestication. J Archaeol Method Theor 17:356–370
Bliege Bird R, Bird D, Codding B, Parker C, Jones JH (2008) The fire-stick farming hypothesis: Australian Aboriginal foraging strategies, biodiversity and anthropogenic fire mosaics. Proc Natl Acad Sci 105:14796–14801
Bogucki PI (1988) Forest farmers and stockherders: early agriculture and its consequences in North-Central European. Cambridge University Press, Cambridge
Bos JA, Urz R (2003) Late Glacial and early Holocene environment in the middle Lahn river valley (Hessen, central-west Germany) and the local impact of early Mesolithic people—pollen and macrofossil evidence. Veg Hist Archaeobot 12:19–36
Bos JA, Verbruggen F, Engels S, Crombé P (2013) The influence of environmental changes on local and regional vegetation patterns at Rieme (NW Belgium): implications for Final Palaeolithic habitation. Veg Hist Archaeobot 22:17–38. doi:10.1007/s00334-012-0356-0
Briggs JM, Spielmann KA, Schaafsma H, Kintigh KW, Kruse M, Morehouse K, Schollmeyer K (2006) Why ecology needs archaeologists and archaeology needs ecologists. Front Ecol Environ 4:180–188
Brouwer A (1950) De glacigene landschapstypen in Nederland. Tijdschrift Koninklijk Nederlands Aardrijkskundig Genootschap 2e serie 67:20–32
Burroughs WJ (2005) Climate change in prehistory: the end of the reign of chaos. Cambridge University Press, Cambridge
Busschers FS et al (2007) Late Pleistocene evolution of the Rhine-Meuse system in the southern North Sea basin: imprints of climate change, sea-level oscillation and glacio-isostacy. Quat Sci Rev 26:3216–3248
Busschers FS, Van Balen RT, Cohen KM, Kasse C, Weerts HJT, Wallinga J, Bunnik FPM (2008) Response of the Rhine-Meuse fluvial system to Saalian ice-sheet dynamics. Boreas 37:377–398
Chase A (1989) Domestication and domicile in northern Australia: a social perspective. In: Harris D, Hillman G (eds) Foraging and farming: the evolution of plant exploitation. Unwin, Hyman, London, pp 42–54
Cohen MN (1977) The food crisis in prehistory: overpopulation and the origins of agriculture. Yale University Press, New Haven, Connecticut
Cortés-Sánchez M et al (2011) Earliest known use of marine resources by Neanderthals. PloS One 6:e24026
Crombé P, Sergant J, Robinson E, De Reu J (2011) Hunter-gatherer responses to environmental change during the Pleistocene-Holocene transition in the southern North Sea basin: final Palaeolithic-Final Mesolithic land use in northwest Belgium. J Anthropol Archaeol 30:454–471. doi:10.1016/j.jaa.2011.04.001
Crombé P et al (2013) Hunter-gatherer responses to the changing environment of the Moervaart palaeolake (Nw Belgium) during the Late Glacial and Early Holocene. Quatern Int 308–309:162–177. doi:10.1016/j.quaint.2013.05.035
Crutzen PJ (2002) Geology of mankind. Nature 415:23
Crutzen PJ, Stoermer EF (2000) The Anthropocene IGBP. Newsletter 41:12
De Bie M, Caspar J-P (2000) Rekem. A Federmesser camp on the Meuse river bank. Vlaams Instituut voor Onroerend Erfgoed, Leuven
De Bie M, Vermeersch PM (1998) Pleistocene-Holocene transition in Benelux. Quat Int 49:29–43
De Moor JW, Maurer A, Devriendt I (2013a) Almere Poort, locatie 4E4 “de Kaap” Scandinaviëlaan/Noorwegenkade. Een archeologische begeleiding door middel van boringen, dateringen en specialistisch onderzoek vol 38. Amersfoort
De Moor JW, Maurer AM, Fritsch D, Devriendt I (2013b) Almere Poort Vindplaats 4E_17 “de Geest”—Nederlandstraat. Een waarderend archeologisch onderzoek door middel van boringen, dateringen en specialistisch onderzoek vol 45. Amersfoort
De Mulder EF, Bosch JHA (1982) Holocene stratigraphy, radiocarbon datings and palaeogeography of Central and Northern North-Holland (The Netherlands). Mededingen Rijks Geologische Dienst 36:111–116
De Roever P (2004) Swifterbant-aardewerk: een analyse van de neolithische nederzettingen bij Swifterbant, 5e millennium voor Christus vol 2. Barkhuis
De Waard D (1949) Glacigeen Pleistoceen: een geologisch detailonderzoek in Urkerland (Noordoostpolder). Utrecht University, Utrecht
Deckers P (1982) Preliminary notes on the neolithic flint material from Swifterbant. Swifterbant contributi 13. Helinium Wetteren 22:33–39
Deeben J (1988) The Geldrop sites and the Federmesser occupation of the southern Netherlands. In: Otte M (ed) De la Loire à l’Oder. Les civilisations du Paléolithique final dans le nord-ouest européen (= Actes du Colloque de Liège, décembre 1985), vol 444 (I & II). Oxford, pp 357–398
Derese C, Vandenberghe DAG, Van Gils M, Mees F, Paulissen E, Van den Haute P (2012) Final Palaeolithic settlements of the Campine region (NE Belgium) in their environmental context: optical age constraints. Quat Int 251:7–21. doi:10.1016/j.quaint.2011.03.023
Devriendt I (2014) Swifterbant stones. The neolithic stone and flint industry at Swifterbant (the Netherlands): from stone typology and flint technology to site function. 2 Vols. Barkhuis Publishing, Groningen
Dresscher S, Raemaekers DCM (2010) Oude geulen op nieuwe kaarten. Het krekkensysteem bij Swifterbant (FL) Paleo-aktueel 21:31–38
Eggelmann R, Schuch M (1980) Moorhydrologie. In: Gottlich K (ed) Moor- und Torfkunde, 2e edn. Schweizerbartische Verlagsbuchhandlung, Stuttgart, pp 210–224
Ente PJ (1971) Sedimentary geology of the Holocene in lake IJssel Region. Neth J Geosci 50:373–382
Ente PJ (1976) The geology of the northern part of Flevoland in relation to the human occupation in the Atlantic time. Helinium 16:15–35
Ente PJ, Koning J, Koopstra R (1986) De bodem van Oostelijk Flevoland vol 258. Lelystad
Flannery KV (1968) Archaeological systems theory and early Mesoamerica. In: Meggers B (ed) Anthropological archaeology in the Americas. Anthropological Society of Washington, Washington D.C., pp 67–87
Foley SF et al (2013) The Palaeoanthropocene—the beginnings of anthropogenic environmental change. Anthropocene 3:83–88. doi:10.1016/j.ancene.2013.11.002
Keeley LH (1995) Protoagricultural practices among hunter-gatherers: a cross-cultural survey. In: Price DT, Gebauer AB (eds) Last hunters, first farmers. New perspectives on the prehistoric transition to agriculture. School of American Research Press, Santa Fe, New Mexico, pp 243–272

Kluiving SJ, Lascaris MA, De Kraker AMJ, Renes H, Borger GJ, Soetens SA (2013) Potential and use of archaeological and historical data in the coastal zone of the southern North Sea in a reconstruction of the sea level curve of the last 3000 years: results of a case study. In: Borger GJ, De Kraker AMJ, Soens T, Thoen E, Tys D (eds) Landscape or seascapes? The history of the coastal environment in the North Sea area reconsidered. Brepols Publishers, Turnhout, pp 61–84

Koopman S, Pfeifer AE, Ruegg GH (2013) Goois Geologisch Informatie Systeem versie 4.1. http://www.ivn-gooi.nl/ggis/inleid.htm

Laland KN, O’Brien MJ (2010) Niche construction theory and archaeology. J Archaeol Method Theor 17:303–322

Laland KN, Sterelny K (2006) Perspective: seven reasons (not) to neglect niche construction. Evolution 60:1751–1762

Laland KN, Odling-Smith FJ, Feldman MW (1996) The evolutionary consequences of niche construction: a theoretical investigation using two-locus theory. J Evol Biol 9:293–316

Laland KN, Odling-Smith FJ, Feldman MW (1999) Evolutionary consequences of niche construction and their implications for ecology. Proc Natl Acad Sci 96:10242–10247

Lentz DL (2000) Imperfect balance: landscape transformations in the Precolumbian Americas. Columbia University Press, New York

Lewontin RC (1983) Gene, organism and environment. In: Bendall DS (ed) Evolution from molecules to men. Cambridge University Press, Cambridge, pp 273–285

Lisiecki LE, Raymo ME (2005) A Pliocene-Pleistocene stack of 57 globally distributed benthic δ18O records. Paleoceanography 20:1–17

Louwe Kooijmans LP (1993) The Mesolithic/Neolithic transformation in the lower Rhine basin. Case Stud Eur Prehist 95–145

Louwe Kooijmans LP, Van den Broeke PW, Fokkens H, Van Gijn A (eds) (2005) Nederland in de prehistorie. Bert Bakker, Amsterdam

Lowe JJ, Rasmussen SO, Björck S, Hoek WZ, Steffensen JP, Walker MJC, Yu ZC (2008) Synchronisation of palaeoenvironmental events in the North Atlantic region during the Last Termination: a revised protocol recommended by the INTIMATE group. Quat Sci Rev 27:6–17. doi: 10.1016/j.quascirev.2007.09.016

 Maarleveld G (1983) Ice-pushed ridges in the Central Netherlands. In: Ehlers J (ed) Glacial deposits in North-West Europe. Balkema, Rotterdam, pp 393–397

Meijer T (1991) Molluscan investigation of ice-pushed Pleistocene deposits near Wageningen, The Netherlands. Meded Rijks Geol Dienst 46:55–64

Menke U, Van de Laar E, Lenselink G (1998) De Geologie en Bodem van Zuidelijk Flevoland vol 415. Lelystad

Odling-Smee F (1988) Niche-constructing phenotypes. In: Plotkin HC (ed) The role of behavior in evolution. The MIT Press, Cambridge, pp 73–132

Odling-Smee FJ, Laland KN, Feldman MW (1996) Niche construction The American Naturalist 147:641–648

Odling-Smee FJ, Laland KN, Feldman MW (2003) Niche construction: the neglected process in evolution. Princeton University Press, Princeton and Oxford

Peeters JHM (2007) Hoge Vaart-A27 in context: towards a model of Mesolithic-Neolithic land use dynamics as a framework for archaeological heritage management. University of Amsterdam, Amsterdam

Peeters J, Busschers FS, Southamer E (2014) Fluvial evolution of the Rhine during the last interglacial-glacial cycle in the southern North Sea basin: a review and look forward. Quat Int 357:176–188

Pons LJ, Wiggers AJ (1960) De Holocene wordinggeschiedenis van Noord-Holland en het Zuiderzeegebied, deel II Tijdschrift Koninklijk Nederlands Aardrijkskundig Genootschap, 2e serie 77:1–57

Pyne SJ (1998) Landscapes forged in fire: History, land, and anthropogenic fire. In: Bale W (ed) Advances in historical ecology. Columbia University Press, New York, pp 64–103

Raemaekers DCM (1999) The articulation of a” New neolithic”

Raemaekers DCM (2005) Het Vroeg-en Midden-Neolithicum in Noord-, Midden-en West-Nederland. Peeters J, Busschers FS, Southamer E (2014) Fluvial evolution of the Rhine during the last interglacial-glacial cycle in the southern North Sea basin: a review and look forward. Quat Int 357:176–188

Pons LJ, Wiggers AJ (1960) De Holocene wordinggeschiedenis van Noord-Holland en het Zuiderzeegebied, deel II Tijdschrift Koninklijk Nederlands Aardrijkskundig Genootschap, 2e serie 77:1–57

Pyne SJ (1998) Landscapes forged in fire: History, land, and anthropogenic fire. In: Bale W (ed) Advances in historical ecology. Columbia University Press, New York, pp 64–103

Raemaekers DCM (1999) The articulation of a” New neolithic”

Raemaekers DCM (2005) Het Vroeg-en Midden-Neolithicum in Noord-, Midden-en West-Nederland. J Deeben, E Drenth, Mf van Oursouw & L Verhart (red), De Steentijd van Nederland:261–282

Redman CL (1999) Human impact on ancient environments. University of Arizona Press, Tuscon

Richerson PJ, Boyd R, Bettinger RL (2001) Was agriculture impossible during the Pleistocene but mandatory during the Holocene? A climate change hypothesis. Am Antiqu 66:387–411

Riel-Salvatore J (2010) A niche construction perspective on the middle–upper paleolithic transition in Italy. J Archaeol Method Theor 17:323–355
A niche construction approach on the central Netherlands…” 553

Rockström J et al (2014) Water resilience for human prosperity. Cambridge University Press, Cambridge
Rowley-Conwy P (1984) The laziness of the short-distance hunter: the origins of agriculture in western Denmark. J Anthropol Archaeol 3:300–324. doi:10.1016/0278-4165(84)90005-9
Rowley-Conwy P (1985) The origin of agriculture in Denmark: a review of some theories. J Dan Archaeol 4:188–195
Ruegg G (1983) Glaciofluvial and glaciolacustrine deposits in the Netherlands. In: Ehlers J (ed) Glacial deposits in North-West Europe. AA Balkema, Rotterdam, pp 379–392
Schepers M (2014a) Reconstructing vegetation diversity in coastal landscapes. University of Groningen, Groningen
Schepers M (2014b) Wet, wealthy worlds: the environment of the Swifterbant river system during the Neolithic occupation (4300e4000 cal BC). J Archaeol Low Ctries 5:79–106
Schütler D (2003) Neanderthalers in Overijssel Overijsselse Historische Bijdragen 118:179–193
Scott B, Ashton N (2011) The early Middle Palaeolithic: the European context. In: Ashton N, Lewis SG, Stringer CB (eds) The ancient human occupation of Britain, vol 14. Elsevier, Amsterdam, pp 91–112
Simpson MJR, Milne GA, Huybrechts P, Long AJ (2009) Calibrating a glaciological model of the Greenland ice sheet from the Last Glacial Maximum to present-day using field observations of relative sea level and ice extent. Quat Sci Rev 28:1631–1657. doi:10.1016/j.quascirev.2009.03.004
Smith PEL (1972) Changes in population pressure in archaeological explanation. World Archaeol 4:5–18. doi:10.1080/00438243.1972.9979517
Smith BD (2007a) Niche construction and the behavioral context of plant and animal domestication evolutionary anthropology: issues. News Rev 16:188–199
Smith BD (2007b) The ultimate ecosystem engineers. Science 315:1797–1798
Smith BD (2011) General patterns of niche construction and the management of ‘wild’ plant and animal resources by small-scale pre-industrial societies. Philosophical Trans R Soc B 366:836–848
Smith BD, Zeder MA (2013) The onset of the anthropocene. Anthropocene 4:8–13
Sørensen L, Karg S (2012) The expansion of agrarian societies towards the north–new evidence for agriculture during the Mesolithic/Neolithic transition in Southern Scandinavia. J Archaeol Sci. doi:10.1016/j.jas.2012.08.042
Spek T, Bisdom EBA, Van Smeerdijk DG (1997) Verdroenden dekzandgronden in Zuidelijk Flevoland (archeologische opgraving ‘A27-Hoge Vaart’): een interdisciplinaire studie naar de veranderingen van bodem en landschap in het Mesolithicum en Vroeg-Neolithicum vol 472.1. Wageningen
Spek T, Bisdom EBA, Van Smeerdijk DG (2001a) Deel 7: Bodemkunde en landschapsecologie I: veranderingen in bodem en landschap. In: Peeters JHM, Hogestijn JWH (eds) De mesolitische en vroeg-neolithische vindplaats Hoge Vaart-A27 (Flevoland), vol 79-7. Rapportage Archeologische Monumentenzorg. Rijksdienst voor het Oudheidkundig Bodemonderzoek, Amersfoort
Spek T, Bisdom EBA, Van Smeerdijk DG (2001b) Deel 8: Bodemkunde en landschapssecologie II: aanvullend onderzoek naar landschapsvormende processen. In: Peeters JHM, Hogestijn JWH (eds) De mesolitische en vroeg-neolithische vindplaats Hoge Vaart-A27 (Flevoland), vol 79-8. Rapportage Archeologische Monumentenzorg. Rijksdienst voor het Oudheidkundig Bodemonderzoek, Amersfoort
Stapert D (1980) A Levallois flake from the Ijsselmeer Berichten van de Rijksdienst voor het. Oudheidkd Bodemonderz 30:7–10
Stapert D (1981) Archaeological research in the Kwintelooijen Pit, Municipality of Rhenen, The Netherlands. In: Ruegg GHJ, Zandstra JG (eds) Geology and archaeology of Pleistocene deposits in the ice-pushed ridge near Rhenen and Veenendaal, vol 35–2/7. Mededelingen Rijks Geologische Dienst, New York, pp 204–222
Stapert D (1987) A progress report on the Rhenen industry (central Netherlands) and its stratigraphical context. Palaeohistoria 29:219–243
Stapert D (1991a) Archaeological research in the Fransche Kamp pit near Wageningen (central Netherlands). Meded Rijks Geol Dienst 46:71–88
Stapert D (1991b) Zwolle: een Levallooi-afslag. In: Verlinde AD (ed) Archeologische kroniek van Overijssel over 1990, vol 106. Overijsselse Historische Bijdragen, New York
Stapert D (1993) Haerst, gem. Zwolle. In: Verlinde AD (ed) Archeologische kroniek van Overijssel over 1992, vol 108. Overijsselse Historische Bijdragen, New York, pp 131–133
Stiner MC (1994) Honor among thieves: A zooarchaeological study of Neandertal ecology. Princeton University Press Princeton, Princeton
Stiner MC (2002) Carnivory, coevolution, and the geographic spread of the genus Homo. J Archaeol Res 10:1–63
Ten Anscher TJ (2012) Leven met de Vecht: Schokland-P14 en de Noordostpolder in het Neolithicum en de Bronstijd. University of Amsterdam, Amsterdam
Van Kolfschoten T (1991) The Saalian mammal fossils from Wageningen-Fransche Kamp. In: Ruegg GHJ (ed) Geology and archaeology of ice-pushed Pleistocene deposits near Wageningen (The Netherlands), vol 46. Mededelingen Rijks Geologische Dienst, pp 37-53
Van Smeerdijk DG (2002) Palaeo-ecologisch onderzoek aan een bodemprofiel uit de locatie Almere Kasteel, gemeente Almere vol 138. Zaandam
Van Spronsen EA (1977) Barnsteen. Grondboor Hamer 31:130–151
Van Uum R, Wouters A (1991) Jong-Acheuleén van Eem-ouderdom uit het dal van de Vecht bij. Haerst Archeol 3:39–49
Van Zeist W, Palfenier-Vegter R (1981) Seeds and fruits from the Swifterbant S3 site: final reports on Swifterbant IV. Palaeohistoria 23:105–168
Vandenberghhe J (1985) Paleo-environment and Stratigraphy during the Last Glacial in the Belgian-Dutch Border Region. Quat Res 24:23–38
Vermeersch PM (2011) The human occupation of the Benelux during the Younger Dryas. Quat Int 242:267–276. doi: 10.1016/j.quaint.2010.10.021
Vos P, Bazelmans J, Weerts HJT, Van der Meulen M (2011) Atlas van Nederland in het Holoceen. 3rd Etn. Uitgeverij Bert Bakker, Amsterdam
Waelbroeck C et al (2002) Sea-level and deep water temperature changes derived from benthic foraminifera isotopic records. Quat Sci Rev 21:295–305
Wagner GE (2003) Eastern woodlands anthropogenic ecology. In: Minnis PE (ed) People and plants in ancient eastern North America. Smithsonian Books, Washington and London, pp 126–171
Walker M, Bohncke S, Coope G, O’Connell M, Usinger H, Verbruggen C (1994) The Devensian/Weichselian Late-glacial in northwest Europe (Ireland, Britain, north Belgium, The Netherlands, northwest Germany). J Quat Sci 9:109–118
Waterbolk H, Waterbolk H (1991) Amber on the coast of the Netherlands. In: Thoen H, Bourgeois J, Vermeulen F, Crombé P, Verlaeckt K (eds) Studia Archaeologica: Liber Amicorum Jacques AE Nenquin. Seminarie voor Archeologie, Gent, pp 201–209
Webb C (1993) The lithification of a sandy environment. Archaeol Ocean 28:105–111
Whallon Jr R, Price T (1976) Excavations at the River Dune Sites S11-13. Helinium Wetteren 16:222–229
Wiggers AJ (1955) De wording van het Noordoostpoldergebied. University of Amsterdam
Wright HE Jr (1977) Environmental change and the origin of agriculture in the Old and New Worlds. In: Reed CA (ed) Origins of agriculture. Mouton, The Hague, pp 281–318
Yen DE (1989) The domestication of environment. In: Harriss DR, Hillman GC (eds) Foraging and farming. The evolution of plant exploitation. Unwin Hyman, London, pp 55–75
Zagwijn WH (1961) Vegetation, climate and radiocarbon datings in the Late Pleistocene of the Netherlands: Part I: Eemian and Early Weichselian. Meded van de Geologische Sticht 14:15–45
Zalasiewicz J et al (2014) When did the Anthropocene begin? A mid-twentieth century boundary level is stratigraphically optimal. Quat Int. doi: 10.1016/j.quaint.2014.11.045
Zvelebil M, Dolukhanov P (1991) The transition to farming in Eastern and Northern Europe. J World Prehist 5:233–278. doi: 10.1007/bf00974991