Genome analysis

RICOPILI: Rapid Imputation for COnsortias PlpeLine

Max Lam 1,2,3,4,5,†, Swapnil Awasthi 1,6,†, Hunna J. Watson 7,8,9, Jackie Goldstein 1,2, Georgia Panagiotaropoulou 1,6, Vassily Trubetskoy 1,6, Robert Karlsson 10, Oleksander Frei 11, Chun-Chieh Fan 11, Ward De Witte 12, Nina R. Mota 12,13, Niamh Mullins 14, Kim Brügger 15, S. Hong Lee 16, Naomi R. Wray 17,18, Nora Skarabis 6, Hai Liang Huang 1,2, Benjamin Neale 1,2, Mark J. Daly 1,2, Manuel Mattheisen 19,20,21, Raymond Walters 1,2 and Stephan Ripke 1,2,6,*

1Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA, 2Analytic and Translational Genetics Unit, Massachusetts General Hospital, Cambridge, MA 02114, USA, 3Division of Psychiatry Research, The Zucker Hillside Hospital, Northwell Health, Glen Oaks, NY 11004, USA, 4Research Division, Institute of Mental Health Singapore, Singapore 539747, Singapore, 5Human Genetics, Genome Institute of Singapore, Singapore 138672, Singapore, 6Department of Psychiatry and Psychotherapy, Charité - Universitätsmedizin, 10117 Berlin, Germany, 7Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA, 8Division of Paediatrics, School of Medicine, The University of Western Australia, Perth, WA 6009, Australia, 9School of Psychology, Curtin University, Perth, WA 6102, Australia, 10Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, 171 77 Stockholm, Sweden, 11NORMENT, KG Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, University of Oslo, Ullevål Hospital, N-0424 Oslo, Norway, 12Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, 13Department of Psychiatry, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands, 14Pamela Sklar Division of Psychiatric Genomics, Department of Genetics and Genomic Science, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA, 15Department of Informatics, University of Bergen, 5020 Bergen, Norway, 16Australian Centre for Precision Health, University of South Australia Cancer Research Institute, University of South Australia, Adelaide, South Australia 5000, Australia, 17Institute for Molecular Bioscience, The University of Queensland, 18Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia, 19Department of Psychiatry, Psychosomatics and Psychotherapy, Center of Mental Health, University Hospital Würzburg, Würzburg, Germany, 20Department of Clinical Neuroscience, Centre for Psychiatric Research, Karolinska Institutet, Stockholm, Sweden and 21Department of Biomedicine, Aarhus University, Aarhus, Denmark

*To whom correspondence should be addressed.
†The authors wish it to be known that, in their opinion, the first two authors contributed equally.

Associate Editor: Russell Schwartz

Received on April 18, 2019; revised on July 31, 2019; editorial decision on August 2, 2019; accepted on August 7, 2019

Abstract

Summary: Genome-wide association study (GWAS) analyses, at sufficient sample sizes and power, have successfully revealed biological insights for several complex traits. RICOPILI, an open-sourced Perl-based pipeline was developed to address the challenges of rapidly processing large-scale multi-cohort GWAS studies including quality control (QC), imputation and downstream analyses. The pipeline is computationally efficient with portability to a wide range of high-performance computing environments. RICOPILI was created as the Psychiatric Genomics Consortium pipeline for GWAS and adopted by other users. The pipeline features (i) technical and genomic QC in case-control and trio cohorts, (ii) genome-wide phasing and imputation, (iv) association analysis, (v) meta-analysis, (vi) polygenic risk scoring and (vii) replication analysis. Notably, a major differentiator from other GWAS pipelines, RICOPILI leverages on automated parallelization and cluster job management approaches for rapid production of imputed genome-wide data. A comprehensive meta-analysis of simulated GWAS data has been incorporated demonstrating each step of the pipeline. This includes all the associated visualization plots, to allow ease of data interpretation and manuscript preparation. Simulated GWAS datasets are also packaged with the pipeline for user training tutorials and developer work.
1 Introduction

Genome-wide association studies (GWASs) have enabled the discovery of genetic variants underlying a plethora of complex traits (https://www.ebi.ac.uk/gwas/diagram). GWASs have highlighted previously unknown biological mechanisms associated with complex diseases and traits (Breen et al., 2016). The Psychiatric Genomics Consortium (PGC) (http://www.med.unc.edu/pgc) the largest umbrella organization for psychiatric genetics (Sullivan et al., 2018)—have made possible to advance the objectives of (i) revealing biological insights of psychiatric illness, (ii) informing clinical practice and (iii) presenting new therapeutic targets through sheer revealing biological insights of psychiatric illness, (ii) informing clinical practice and (iii) presenting new therapeutic targets through sheer...
• Impute genotypes to the 1000 Genomes (1000 Genomes Project Consortium et al., 2015) or Haplootype Reference Consortium panel (McCarthy et al., 2016);
• Perform pre-phasing with Eagle (Loh et al., 2016) or SHAPEIT (Delaneau et al., 2011);
• Perform imputation with IMPUTE (Bycroft et al., 2018; Howie et al., 2009) or Minimac (Das et al., 2016; Howie et al., 2012).

RICOPILI allows for automated data preparation, alignment and sharing with public imputation servers ([https://docs.google.com/document/d/18dupUv4k1w1l1sReC1TuFsQhw0_e0bnMekVw4HLNva] | e.g. Michigan ([https://imputationserver.sph.umich.edu/index.html#pages/home], Sanger ([https://imputation.sanger.ac.uk]), and reintegration of the results back into the RICOPILI data structure. This is especially beneficial if an HPC environment is not accessible, and imputation by third party services has been approved by the user’s local Institutional Review Board (IRB). More importantly with larger reference panels, such as the HRC and TopMed imputation panels becoming available but not directly accessible, RICOPILI allows such resources to be utilized.

The imputation output files are a set of genotype probabilities for all markers and ‘best-guess’ genotype hardcall files filtered on imputation quality and minor allele frequency. Hard call genotypes are available in three levels (hardcall with genotype probability >0.8, otherwise missing): (i) no further filter, (ii) lightly filtered (missimissingness <0.02) and (iii) filtered with strict criteria (missimissingness <0.01; MAF >5%).

RICOPILI allows the creation of case-pseudo-controls to handle imputation and association procedures for trios.

2.5 Post-imputation
The post-imputation module (Supplementary Section S4 and Fig. S5) performs association analysis using imputed dosage files, meta-analysis via METAL (Willer et al., 2010), conditional analysis, polygenic risk scoring, LD score regression (Bulik-Sullivan et al., 2015) and replication analysis. Covariates (e.g. age, sex, principal components from PCA) and alternative phenotypes, including quantitative traits may be incorporated within the post-imputation module.

Automated ‘clumping’ of genome-wide significant single nucleotide polymorphisms to facilitate identification of independently associated genetic loci. Publication-ready reports and visualizations such as Manhattan plots, QQ-plots, forest plots, annotated region plots and polygenic risk distributions are generated by the module as well. It is notable that genome-wide summary statistics as well as input statistics for various Manhattan and QQ-plots, as well as clumped summary statistics are automatically made available in the distribution folder of the pipeline. These could then be utilized for downstream and follow-on analysis ([https://docs.google.com/document/d/1jD2S5BYpAO-TLRAKPSySpovniWwQ2Zz7z9Pce21YU] | e.g. GCTA; Yang et al., 2011, Spredixcan; Barbeira et al., 2018 and FUSION; Gusev et al., 2016) for the GWAS results.

2.6 Additional utility modules
RICOPILI allows for additional features and modules (see Supplementary Information). Including, (i) reference builder: builds reference data for genotype imputation from publicly accessible reference panels (Supplementary Fig. S6), (ii) replication of GWAS: using external summary data or those generated by RICOPILI and (iii) polygenic leave-one-out analysis: where each input dataset is used as a hold out and polygenic risk prediction is done iteratively across hold out data. All helper scripts and modules are saved in a centralized location specified by the user within a folder called rp_bin and logging files with _info suffix are also available.

2.7 Availability of simulated GWAS data
To allow new users to familiarize themselves with RICOPILI and encourage users to develop new functionality for the pipeline, we simulated freely available GWAS data using HAPGEN (Su et al., 2011) (Supplementary Section S6). The dataset comprises 6200 ‘individuals’ across ~600 000 markers based on the Illumina OmniExpress, a widely used genotyping platform. For training and development purposes, population stratification, cross-sample relatedness and technical errors were introduced to the simulated data. The sample is separated into five datasets ‘HapGen5’ packaged with RICOPILI ([https://docs.google.com/document/d/1ux_FBwntSaz1JvqgEw8S7wJyoYtnc_ofYHFb075PQsYj]) and data description and results are described in further detail in Extended Data Analysis and User Guide.

2.8 Cluster portability
RICOPILI is portable ([https://docs.google.com/document/d/14a-eTe15hiS41tH4dAL_4zoyt1HRC5FW5r74m4x0ku] | to various LINUX-based HPC environments (e.g. BSUB ([https://docs.google.com/document/d/1T1FncB3z2BKpmH47Fy_yUFCt09dBq9d9HtoM3A3-MpW]) | QBUS ([https://docs.google.com/document/d/l0t1YI51a64Yg._pmbuWJcSA6MjTzYoGvZlvqQ_xUXwWC80])) or SLURM, GCP [Google Cloud Platform ([https://docs.google.com/document/d/115NA49028_c6Cg7n757Ttdfw0CMGwuOMXHqdxl5hku-E)] | Supplementary Section S7). Support for Docker ([https://hub.docker.com/r/bruggerk/ricopi]) | [https://github.com/trubyets/ricopili_docker] implementation of RICOPILI is also underway. In the absence of an HPC environment, RICOPILI can use the full potential of multi-core machines with parallel optimization. Regular updates and maintenance of the pipeline are carried out to incorporate the latest advances in genetic association methods. Ongoing support includes an active user forum ([https://groups.google.com/forum/#!forum/ricopili-user-group]) | support website ([https://sites.google.com/a/broadinstitute.org/ricopili/home]) and detailed tutorials written by current RICOPILI analysts (consult footnotes).

2.9 RICOPILI web app
RICOPILI is now usable via browser on a cluster backed by Google Cloud: http://34.74.48.153. Here the user does not need any UNIX knowledge. Naturally the user needs to make sure that IRB allows for uploading genotype data to third party computer environments.

3 Discussion
RICOPILI has supported the analytical capability of the PGC, encompassing over 800 investigators internationally. The consortium is a testament to collaborative science that has unified much of the field and collated data collections, and enabled rapid progress in uncovering the genetic and biological basis of psychiatric disorders. RICOPILI addresses the need for a rapid computational pipeline for GWAS that integrates leading bioinformatics resources and produces publication-ready outputs. The PGC has reported GWAS studies in high-impact publications, most of which featured RICOPILI as the main analysis pipeline—including the seminal report identifying 108 GWAS loci for schizophrenia (Rupke et al., 2014). The pipeline has been adapted across various consortia, with 112 analysts performing rapid computation for GWAS to date. For this reason, we introduce RICOPILI to an audience of principal investigators, academics, analysts and all personnel tasked with determining the common variation underlying complex, heritable diseases and traits.

Acknowledgements
Computing and network infrastructure was provided by various sources, including SURFsara (Genetic Cluster Computer; LISA cluster) and the Stanley Center for Psychiatric Research at the Broad Institute of MIT and Harvard.

Funding
The PGC has received major funding from the US National Institutes of Health (NIH) [U01 MH109528 and U01 MH109532]; M.L. received funding support from National Medical Research Council, Singapore [NMRG/TCR/003; MH095: 003/008-1014; NMRC/CG/004/2013; NMRC/SEEDFD/019/2017]; S.R. received funding support from NIH/NIMH [U01MH109528]
01 (Ripke, PI) 2016-2021 ‘Psychiatric Genomics Consortium: Finding Actionable Variation’], Broad Institute of MIT and Harvard [691099; ‘Psychiatric Genomics Consortium’] and the German Research Foundation [DFG, RI2846/1-1].

Conflict of Interest: none declared.

References
Barbeira,A.N. et al. (2018) Exploring the phenotypic consequences of tissue specific gene expression variation inferred from GWAS summary statistics. Nat. Commun., 9, 1825.
Breen,G. et al. (2016) Translating genome-wide association findings into new therapeutics for psychiatry. Nat. Neurosci., 19, 1392–1396.
Bulik-Sullivan,B.K. et al. (2015) LD Score regression distinguishes confounding from polygenicity in genome-wide association studies. Nat. Genet., 47, 291–295.
Bycroft,C. et al. (2018) The UK Biobank resource with deep phenotyping and genomic data. Nature, 562, 203–209.
Das,S. et al. (2016) Next-generation genotype imputation service and methods. Nat. Genet., 48, 1284–1287.
Delaneau,O. et al. (2011) A linear complexity phasing method for thousands of genomes. Nat. Methods, 9, 179–181.
Gusev,A. et al. (2016) Integrative approaches for large-scale transcriptome--wide association studies. Nat. Genet., 48, 245–252.
Howie,B. et al. (2012) Fast and accurate genotype imputation in genome-wide association studies through pre-phasing. Nat. Genet., 44, 955–959.
Howie,B.N. et al. (2009) A flexible and accurate genotype imputation method for the next generation of genome-wide association studies. PLoS Genet., 5, e1000329.
Loh,P.K. et al. (2016) Fast and accurate long-range phasing in a UK Biobank cohort. Nat. Genet., 48, 811–816.
McCarthy,S. et al. (2016) A reference panel of 64,976 haplotypes for genotype imputation. Nat. Genet., 48, 1279–1283.
Price,A.L. et al. (2006) Principal components analysis corrects for stratification in genome-wide association studies. Nat. Genet., 38, 904–909.
Purcell,S. et al. (2007) PLINK: a tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet., 81, 559–575.
Ripke,S. et al. (2014) Biological insights from 108 schizophrenia-associated genetic loci. Nature, 511, 421–427.
Su,Z. et al. (2011) HAPGEN2: simulation of multiple disease SNPs. Bioinformatics, 27, 2304–2305.
Sullivan,P.F. et al. (2012) Genetic architectures of psychiatric disorders: the emerging picture and its implications. Nat. Rev. Genet., 13, 537–551.
Sullivan,P.F. et al. (2018) Psychiatric genomics: an update and an agenda. Am. J. Psychiatry, 175, 15–27.
Willer,C.J. et al. (2010) METAL: fast and efficient meta-analysis of genome-wide association scans. Bioinformatics, 26, 2190–2191.
Yang,J. et al. (2011) GCTA: a tool for genome-wide complex trait analysis. Am. J. Hum. Genet., 88, 76–82.
1000 Genomes Project Consortium et al. (2015) A global reference for human genetic variation. Nature, 536, 68–74.