Toward an Anthropometric Pattern in Elite Male Handball

Florin Valentin Leuciuc 1,2,*, Ileana Petrariu 1,2, Gheorghe Pricop 1,2, Dan Mihai Rohozneanu 3 and Ileana Monica Popovici 4

1 Department of Physical Education and Sport, Stefan cel Mare University of Suceava, 13 University Street, 720229 Suceava, Romania; ileana.petrariu@usm.ro (I.P.); gheorghe.pricop@usm.ro (G.P.)
2 The Interdisciplinary Research Center for Human Motricity and Health Sciences, 13 Universitatii Street, 720229 Suceava, Romania
3 Department of Collective Games, Babes Bolyai University of Cluj-Napoca, 1 Mihail Kogalniceanu Street, 400084 Cluj-Napoca, Romania; dan.rohozneanu@ubbcluj.ro
4 Department of Physical Education and Sport, Alexandru Ioan Cuza University of Iasi, 30 Toma Cozma Street, 700554 Iasi, Romania; ileana.popovici@uaic.ro
* Correspondence: florin.leuciuc@usm.ro; Tel.: +40-746-852-974

Abstract: We investigated the anthropometric characteristics associated with specific handball skills in competition. The body anthropometric profiles differ significantly among the playing positions in handball due to the specific tasks. The aim of this study is to identify the anthropometric patterns for each playing position by collecting data from elite male handball players. To determine the anthropometric profile of the elite handball players for each playing position, we used descriptive statistics for every indicator in order to identify the optimal patterns for elite handball players from the top-four ranked teams at the most important competitions over a period of 18 years (2004–2021). Over time, the anthropometric indices evolved: the average height increased (from 190 to 192.6 cm) but less than weight increased (from 90.5 to 95.28 kg), and these affected the body mass index (increase from 25.2 to 25.67). The novelty of our study is that we identified an anthropometric pattern for each playing position and for all teams in elite male handball. Our study also covered a period of 18 years to give our results more accuracy and reliability.

Keywords: handball; pattern; anthropometry; performance

1. Introduction

Currently, along with good sport preparation for elite athletes, the specific anthropometry indices are essential in order to achieve performance in top competitions in collective sports where others are also important: maturity status [1], capacity to be trained [2], body composition [3–5], somatotype [6–8], physiological performance characteristics [9], specific skills [10,11], playing position [12–14] and specifics of the sport branches [8,15–18].

In elite sport, the anthropometric indices have a major impact on performance [19–22] and additionally, there are other factors, such as the preparation level [23–25], specific preparation [26–28] and competition experience [29,30], that influence elite sport outcomes.

Handball has a complex character due to the acyclic movements and situations that appear asking players performing tasks according to the playing position both in attack and in defense. The modern handball game requires players to perform a high number of short, high-intensity specific actions. Based on these considerations, we can state that the features of anthropometric and motor particularities have a high degree of individualization according to the playing position, and it is interesting to determine how personal predispositions can compensate or substitute particular requirements of the playing position.

Somatic and skills indicators of the players can be essential in achieving certain tasks within the game, as in other game situations, they can be a barrier having a limited effect [31,32]. The anthropometric characteristics are determinant in order to efficiently apply the specific handball skills in competitions [33].
Body anthropometric profiles differ significantly among the playing positions in handball due to the specific tasks. From the anthropometric point of view, the wing players were found to be lighter (79.7–81.7 kg) and shorter (177.1–178.3 cm) than backcourt players (193.5–201.9 cm; 90.7–102.3 kg), goalkeepers (192.5–197.6 cm; 82.3–88.1 kg) and pivots (188.6–201.7 cm; 105–121.4 kg); pivots were heavier than centers (83.6–90.5 kg); backcourt players and pivots had higher muscular mass than wings; backcourt players had higher hand-grip values; and the line players (pivots) were the heaviest players.

The majority of elite handball players are part of the mesomorph and endomorph somatotypes; however, according to the playing positions, the backcourt players are mesomorphic, wings and pivots showed an endomorph–mesomorph somatotype, and goalkeepers were in the ecto-endomorph somatotype zone [32,34,35]. The players having a higher skill level are usually taller, and their level of fat-free mass is higher, meaning more muscular mass and a better physiological level are required in modern elite handball in order to achieve performance [36–38].

From 1960 and 1970, there was information concerning the anthropometric characteristics of the elite handball players for each playing position, and, at least for weight, there are some differences compared to the current requirements [39]. In the study conducted by Taborsky, they presented data on anthropometric indices for players participating in the handball World Championships (W.C.) and Olympic Games (O.G.) in the 1970s and for W.C. and European Championships (E.C.) for the period 1998–2007. There is a visible but slight increase of height through the years, from an average of 184 cm in the 1970s to over 190 cm after the year 2000 [31].

A study concerning the anthropometric indices at senior handball teams participating in the competition E.H.F. Champions League, Final Four 2012 showed average values higher than in previous periods (height—192.48 cm, weight—94.63 kg and body mass index—25.51); however, there were only a small number of handball players (62) compared to O.G., W.C. and E.C., and it is important to mention that all of them are elite players of the best four teams in Europe and possibly of the world [40]. Another study conducted at W.C. in 2013 indicated the following values for anthropometric indicators for male handball players: height—190.10 ± 6.82 cm, weight—92.37 ± 9.80 kg and BMI—25.53 ± 2.09 [41].

Over time, there have been studies concerning physical characteristics of the male handball players with different numbers of participants and performance levels (national vs. elite) (Table 1).

Authors, Year	Level/No. of Participants	Height (cm)	Weight (kg)	BMI
Ghermănescu, Gogaltan, Jianu, Negulescu, 1983 [39]	Elite/-	188	86	24.36 1
Bayios et al., 2001 [42]	National/15	181 ± 6	83.1 ± 5.2	25.41 1
Gorostiaga et al., 2005 [43]	Elite/15	189 ± 8	95.2 ± 13	26.66 1
Marques, Gonzalez-Badillo, 2006 [44]	Elite/16	184 ± 13	84.8 ± 13.1	25.01 1
Asci, Acikada, 2007 [45]	National/16	185 ± 6	86.1 ± 8.9	25.17 1
Marques et al., 2007 [46]	Elite/14	182 ± 7	82.5 ± 12.2	24.92 1
Buchheit et al., 2009 [47]	National/9	181	78.4	23.97 1
Sibila, Pori, 2009 [48]	National/78	188.44 ± 5.46	89.56 ± 8.41	25.23 1
Leuciuc, 2012 [40]	Elite/62	192.48	94.63	25.51
Ghobadi, Rajabi, Farzad, Bayati, Jeffreys, 2013 [41]	Elite/409	190.10 ± 6.82	92.37 ± 9.80	25.53 ± 2.09
Michalsik, Madsen, Aagaard, 2015 [49]	National/157	188.7 ± 6.1	90.5 ± 7.9	25.42 1
Pireva, 2019 [50]	National/133	186.84 ± 5.99	91.41 ± 10.31	26.19 1

1 Data not presented in study and calculated by us.
In the studies with a small number of participants, the anthropometric data were collected directly by measuring handball players [42–48]. In the studies with a large number of subjects [41,49], the anthropometric data were obtained indirectly, without involving the researchers in the assessment process.

Based on the somatic requirements on high performance selection in handball, we can say that, in terms of height, only 25% of the population would meet the standard. The weight and the essential skills (coordination, speed and power) can compensate for a lower height [31]. The aim of this study is to identify the anthropometric patterns for each playing position by collecting data from elite male handball players.

2. Materials and Methods

2.1. Data Collection

This is a cross-sectional study where we use a descriptive analysis of the anthropometric indices of players at handball top competitions (E.C., W.C. and O.G.). The information concerning the anthropometric characteristics (weight and height) was collected from the EHF and IHF websites that present all information, including the team roster (age, anthropometric data, club and international matches). The data were obtained through an informative portal (EHF and IHF website; these two entities being the organizers of the competitions) without the necessary knowledge about the methodology of its collection in order to assess its reliability and validity [50–64].

2.2. Subjects

Our study collected data from 974 players participating at O.G., W.C. and E.C., as components of the teams ranked in the first four places at each competition. Each team had between 16 and 18 players listed for competition.

Inclusion criteria: male handball players from top-four ranked teams at O.G., W.C. and E.C. in the period 2004–2021. Exclusion criteria: female or male handball players from teams ranked out of the top four at O.G., W.C. and E.C. Due to the fact that this covers a period of 18 years, the data for the same player were used as long as he participated in these top handball competitions.

2.3. Statistics

Descriptive statistics were applied in order to identify the anthropometric patterns (height, weight and body mass index) for each playing position (wing, backcourt, center back, pivot and goalkeeper). The study collected information for almost 20 years (2004–2021). At O.G., there were 12 teams involved in the final stage; at W.C., 24 teams/32 teams (since 2021); and at E.C., the number rose from 16 to 24 teams (since 2020). The data were collected only from the players of the teams placed in the first four places at each analyzed competition.

To determine the anthropometric profile of the elite handball players for each playing position, we used descriptive statistics by applying the average, standard deviation, minimum value and maximum value for every indicator in order to identify the optimal patterns for elite handball players. We applied linear regression to find significant relationship between the variables used in our study using IBM SPSS Statistics 26. The coefficients for regression equation and tests of significance were the most important data obtained by applying this statistical method.

3. Results

Starting with O.G. 2004, data were collected for anthropometric characteristics of the male handball players who participated at O.G., W.C. and E.C. in order to identify the specific patterns for each playing position. We calculated the means for each parameter, standard deviation, minimum value and maximum value for each playing position and for all players. All collected data are presented in Table 2.
Table 2. The anthropometric indices for male handball players (2004–2021).

Competition	Playing Position /Anthropometric Indices/Statistics	Wings	Backcourts	Center Backs	Pivots	Goalkeepers	Overall
O.G. 2004	H(m) X ± S	1.872 ± 0.033	1.995 ± 0.054	1.903 ± 0.035	1.994 ± 0.072	1.926 ± 0.043	1.940 ± 0.069
	MAX	1.92	2.11	1.95	2.14	2.00	2.14
	MIN	1.82	1.86	1.84	1.90	1.85	1.82
	W(kg) X ± S	86.98 ± 4.833	100.83 ± 7.883	91.17 ± 4.104	109.20 ± 14.19	93.78 ± 3.456	95.64 ± 10.3
	MAX	95	118	98	132	100	132
	MIN	76	88	87	92	89	76
	BMI X ± S	24.84 ± 1.344	25.33 ± 1.741	25.19 ± 1.154	27.52 ± 3.539	25.29 ± 1.000	25.41 ± 1.995
	MAX	26.88	29.50	28.06	33.67	27.17	33.67
	MIN	22.63	21.79	23.91	22.55	24.16	21.79
O.G. 2008	H(m) X ± S	1.834 ± 0.048	1.941 ± 0.026	1.899 ± 0.043	1.970 ± 0.045	1.950 ± 0.034	1.913 ± 0.066
	MAX	1.91	1.99	1.97	2.04	2.00	2.04
	MIN	1.76	1.90	1.85	1.90	1.91	1.76
	W(kg) X ± S	83.86 ± 5.331	97.13 ± 6.019	92 ± 4.359	104.1 ± 6.008	95.88 ± 4.941	93.93 ± 9.146
	MAX	114	107	98	114	105	114
	MIN	95	85	86	97	90	85
	BMI X ± S	24.94 ± 1.224	25.79 ± 1.350	25.52 ± 1.943	26.82 ± 1.245	26.21 ± 0.883	25.67 ± 1.367
	MAX	27.17	26.824	28.025	29.079	26.25	29.079
	MIN	23.735	23.546	22.933	25.250	23.467	22.933
W.C. 2009	H(m) X ± S	1.816 ± 0.043	1.964 ± 0.047	1.898 ± 0.049	1.951 ± 0.043	1.954 ± 0.045	1.913 ± 0.076
	MAX	1.92	2.10	1.97	2.02	2.01	2.10
	MIN	1.73	1.89	1.81	1.89	1.90	1.73
	G(kg) X ± S	79.06 ± 4.123	97.86 ± 4.704	92.00 ± 7.566	100.9 ± 6.619	97.63 ± 6.927	92.47 ± 9.917
	MAX	85	106	100	111	109	111
	MIN	72	85	78	91	90	72
	BMI X ± S	23.97 ± 1.542	25.38 ± 1.041	25.54 ± 1.085	26.49 ± 1.545	25.58 ± 1.189	25.26 ± 1.459
	MAX	26.396	26.846	26.593	28.189	27.525	28.189
	MIN	21.267	23.129	23.809	23.212	23.467	21.267
W.C. 2011	H(m) X ± S	1.856 ± 0.063	1.950 ± 0.029	1.895 ± 0.057	1.951 ± 0.040	1.951 ± 0.051	1.914 ± 0.064
	MAX	2.00	2.00	1.96	2.00	2.00	2.00
	MIN	1.76	1.91	1.78	1.87	1.86	1.76
	W(kg) X ± S	83.17 ± 6.758	96.88 ± 4.559	91.36 ± 7.256	103.7 ± 5.461	98 ± 9.661	93.32 ± 9.770
	MAX	98	106	100	113	119	119
	MIN	73	92	80	98	91	73
	BMI X ± S	24.14 ± 1.128	25.48 ± 1.251	25.43 ± 1.424	27.25 ± 1.078	25.73 ± 2.096	25.47 ± 1.662
	MAX	25.661	27.633	28.038	28.928	29.750	29.750
	MIN	22.531	23.232	22.819	25.252	23.467	22.531
H(m)	X ± S	1.854 ± 0.073	1.982 ± 0.062	1.924 ± 0.052	1.953 ± 0.043	1.929 ± 0.047	1.928 ± 0.075
	MAX	2.00	2.10	1.98	2.03	2.00	2.10
	MIN	1.76	1.89	1.83	1.87	1.85	1.78
Table 2. Cont.

Competition	Playing Position /Anthropometric Indices/Statistics	Wings	Backcourts	Center Backs	Pivots	Goalkeepers	Overall
		X ± S					
O.G. 2012	W(kg)	88.25 ± 8.250	103 ± 7.458	95.43 ± 5.968	102.8 ± 5.412	95.38 ± 6.589	96.98 ± 9.123
	MAX	102	115	102	114	110	115
	MIN	75	93	83	93	90	75
	X ± S	25.68 ± 1.770	26.22 ± 1.097	25.77 ± 1.770	26.95 ± 0.897	25.64 ± 1.453	26.10 ± 1.292
	BMI	27.727	27.633	28.666	28.025	27.701	28.666
	MIN	23.148	24.984	22.992	24.967	23.467	22.992
W.C. 2013	H(m)	1.847 ± 0.047	1.976 ± 0.077	1.911 ± 0.049	1.978 ± 0.034	1.950 ± 0.057	1.933 ± 0.079
	MAX	1.93	2.12	1.98	2.03	2.01	2.12
	MIN	1.78	1.84	1.84	1.92	1.86	1.78
	X ± S	83.65 ± 4.471	99.23 ± 6.436	89.63 ± 10.35	108.3 ± 5.610	99.13 ± 10.03	95.73 ± 11.17
	W(kg)	90	110	100	114	119	119
	MAX	75	90	74	100	90	74
	MIN	24.52 ± 1.142	25.42 ± 1.631	24.54 ± 2.333	27.66 ± 1.369	26.07 ± 2.050	25.63 ± 1.941
	BMI	26.827	29.879	27.147	29.675	29.455	29.879
	MIN	21.914	22.472	20.074	25.252	23.514	20.074
E.C. 2014	H(m)	1.829 ± 0.045	1.935 ± 0.055	1.920 ± 0.044	1.976 ± 0.039	1.942 ± 0.046	1.921 ± 0.072
	MAX	1.90	2.10	1.98	2.03	2.00	2.10
	MIN	1.78	1.84	1.86	1.92	1.88	1.78
	X ± S	82.63 ± 5.123	98.50 ± 7.288	92.44 ± 10.44	106.5 ± 6.072	96.33 ± 5.874	94.93 ± 10.49
	W(kg)	93	110	102	114	119	119
	MAX	75	85	74	99	92	74
	MIN	24.71 ± 0.985	25.82 ± 1.667	25.08 ± 2.574	27.28 ± 1.346	25.54 ± 1.274	25.71 ± 1.775
	BMI	26.827	30.840	28.597	29.117	27.500	30.840
	MIN	23.148	23.669	20.074	25.252	23.750	20.074
W.C. 2015	H(m)	1.832 ± 0.049	1.952 ± 0.0450	1.896 ± 0.064	1.991 ± 0.056	1.930 ± 0.032	1.917 ± 0.075
	MAX	1.92	2.03	1.98	2.08	2.00	2.08
	MIN	1.77	1.83	1.80	1.92	1.89	1.77
	X ± S	81.12 ± 6.314	96.96 ± 6.779	90.63 ± 8.088	106.60 ± 7.764	92.22 ± 3.528	92.84 ± 10.62
	W(kg)	97	107	102	120	100	120
	MAX	70	82	80	99	87	70
	MIN	24.16 ± 1.434	25.44 ± 1.660	25.20 ± 0.946	26.88 ± 1.439	24.76 ± 0.739	25.25 ± 1.626
	BMI	26.870	28.782	26.551	29.117	26.035	29.117
	MIN	21.605	20.870	23.872	24.750	23.356	20.870
Table 2. Cont.

Competition	Playing Position /Anthropometric Indices/Statistics	Wings	Backcourts	Center Backs	Pivots	Goalkeepers	Overall
H(m)	X ± S	1.859 ± 0.053	1.974 ± 0.057	1.918 ± 0.046	1.961 ± 0.041	1.960 ± 0.049	1.936 ± 0.067
	MAX	1.96	2.10	1.98	2.04	2.02	2.10
	MIN	1.78	1.87	1.82	1.91	1.89	1.78
	X ± S	83 ± 3.305	99 ± 7.148	92 ± 4.837	105.92 ± 7.292	100 ± 11.95	95.82 ± 10.28
E.C. 2016	W(kg)						
	MAX	90	115	100	121	119	121
	MIN	78	88	85	96	80	78
	X ± S	24.03 ± 1.525	25.41 ± 9.67	25 ± 0.927	27.55 ± 2.602	26.03 ± 2.371	25.56 ± 1.963
	W(kg)						
	MAX	26.841	27.803	27.171	33.168	29.750	33.168
	MIN	21.085	23.428	23.796	24.27	22.161	21.085
O.G. 2016	H(m)						
	X ± S	1.863 ± 0.044	1.972 ± 0.055	1.893 ± 0.043	1.993 ± 0.046	1.938 ± 0.048	1.936 ± 0.067
	MAX	1.94	2.10	1.94	2.07	2.01	2.10
	MIN	1.79	1.86	1.84	1.92	1.86	1.79
	X ± S	87.08 ± 4.071	101.53 ± 7.010	99.29 ± 7.566	107.30 ± 5.599	98.75 ± 5.445	98.47 ± 9.078
	W(kg)						
	MAX	94	115	106	118	110	118
	MIN	79	92	87	100	93	79
	X ± S	24.92 ± 0.916	26.11 ± 1.509	27.71 ± 1.488	27.01 ± 1.628	26.31 ± 1.403	26.26 ± 1.617
	BMI						
	MAX	26.57	30.35	29.99	29.84	28.06	30.35
	MIN	24.99	23.96	25.70	24.99	24.98	22.99
	X ± S	1.840 ± 0.044	1.962 ± 0.049	1.881 ± 0.073	1.976 ± 0.036	1.922 ± 0.045	1.923 ± 0.067
	W(kg)						
	MAX	93	110	107	115	112	115
	MIN	74	86	77	95	92	74
	X ± S	24.96 ± 1.304	25.24 ± 1.133	25.79 ± 1.460	27.59 ± 1.863	26.75 ± 1.658	25.90 ± 1.672
	BMI						
	MAX	26.841	27.633	27.853	29.839	30.068	30.068
	MIN	22.84	23.669	23.574	24.729	24.984	22.84
W.C. 2017	H(m)						
	X ± S	1.881 ± 0.066	1.943 ± 0.047	1.914 ± 0.040	1.965 ± 0.051	1.956 ± 0.054	1.930 ± 0.060
	MAX	2.02	2.03	1.96	2.05	2.02	2.05
	MIN	1.78	1.86	1.84	1.88	1.89	1.78
	X ± S	87.41 ± 5.051	96.83 ± 6.813	94.00 ± 4.497	104.62 ± 9.332	100.30 ± 7.056	96.11 ± 8.850
E.C. 2018	W(kg)						
	MAX	100	112	104	116	115	116
	MIN	78	85	87	88	90	78
Table 2. Cont.

Competition	Playing Position /Anthropometric Indices/Statistics	Wings	Backcourts	Center Backs	Pivots	Goalkeepers	Overall
BMI	X ± S	24.72 ± 1.415	25.63 ± 1.255	25.66 ± 1.156	27.10 ± 1.842	26.22 ± 1.837	25.79 ± 1.637
	MAX	28.09	28.058	28.06	29.839	29.115	29.839
	MIN	22.877	23.872	24.195	24.414	24.262	22.877
	MAX	28.16	28.098	28.12	29.965	29.182	29.885
	MIN	22.94	23.942	24.215	24.515	24.285	22.942
H(m)	X ± S	1.872 ± 0.054	1.966 ± 0.061	1.913 ± 0.035	1.974 ± 0.041	1.958 ± 0.045	1.935 ± 0.063
	MAX	1.98	2.12	1.96	2.03	2.01	2.12
	MIN	1.79	1.90	1.84	1.92	1.89	1.79
	MAX	86.25 ± 4.740	98.26 ± 5.858	95.50 ± 6.474	104.64 ± 7.541	98.50 ± 5.043	96.32 ± 8.612
	MIN	97	115	109	115	105	115
W(kg)	X ± S	24.62 ± 0.829	25.43 ± 1.054	26.11 ± 1.947	26.87 ± 1.857	25.71 ± 0.772	25.72 ± 1.546
	MAX	25.96	27.33	30.84	29.94	26.78	30.84
	MIN	22.91	22.47	23.91	23.67	24.72	22.47
BMI	X ± S	1.861 ± 0.048	1.965 ± 0.044	1.888 ± 0.060	1.961 ± 0.039	1.967 ± 0.067	1.928 ± 0.067
	MAX	1.93	2.03	1.97	2.02	2.06	2.06
	MIN	1.79	1.87	1.77	1.90	1.85	1.77
	MAX	85.56 ± 4.56	98.38 ± 5.51	89.82 ± 6.29	105.25 ± 9.26	98.56 ± 7.44	95.26 ± 9.42
	MIN	96	110	99	120	110	120
	X ± S	24.73 ± 1.23	25.47 ± 1.08	25.17 ± 0.95	27.35 ± 1.99	25.46 ± 0.91	25.58 ± 1.53
E.C. 2020	MAX	27.45	28.06	27.17	29.68	27.14	29.68
	MIN	22.71	23.67	24.19	24.41	24.26	22.71
BMI	X ± S	1.862 ± 0.048	1.942 ± 0.037	1.893 ± 0.033	1.970 ± 0.044	1.931 ± 0.066	1.921 ± 0.059
	MAX	1.97	2.02	1.96	2.04	2.03	2.04
	MIN	1.79	1.86	1.84	1.91	1.82	1.79
	MAX	84.630 ± 4.609	96.731 ± 5.903	93.900 ± 4.977	107.867 ± 8.709	96.833 ± 9.581	95.634 ± 10.044
	MIN	92	110	105	120	120	120
W(kg)	X ± S	24.43 ± 1.15	25.65 ± 1.32	26.22 ± 1.50	27.78 ± 1.85	25.96 ± 1.99	25.87 ± 1.95
	MAX	27.17	28.63	29.71	31.80	31.56	31.56
	MIN	21.75	23.47	24.90	25.50	24.27	22.27

H—height. W—weight. BMI—body mass index. X—average. S—standard deviation. MAX—maximum value. MIN—minimum value.
All the collected data allowed us to find useful information concerning anthropometric characteristics of the elite handball players for each playing position. The synthetic information for all analyzed competitions is presented in Table 3.

Playing Position/Anthropometric Indices/Statistics	Wings	Backcourts	Center Backs	Pivots	Goalkeepers	Team
H(m) X ± S	1.852 ± 0.051	1.962 ± 0.050	1.903 ± 0.048	1.971 ± 0.046	1.944 ± 0.048	1.926 ± 0.068
MAX	2.00	2.12	1.98	2.14	2.06	2.14
MIN	1.76	1.83	1.77	1.87	1.85	1.76
W(kg) X ± S	84.477 ± 5.199	98.553 ± 6.404	92.697 ± 6.830	105.096 ± 7.482	97.315 ± 6.953	95.280 ± 9.798
MAX	114	118	106	132	120	132
MIN	70	82	74	88	80	70
BMI X ± S	24.625 ± 1.278	25.588 ± 1.317	25.609 ± 1.510	27.207 ± 1.762	25.745 ± 1.417	25.677 ± 1.647
MAX	27.727	30.84	30.84	33.67	31.56	33.67
MIN	21.085	20.87	20.074	22.55	22.161	20.074

We applied linear regression to determine the significance of the collected data for the indicators used in our study for each playing position and for all players. The coefficients for regression used to identify the degree of significance are shown in Table 4. This statistical method was applied for a total of 18 situations. The statistical significance was achieved in 16 out of 18 situations: three for \(p < 0.05 \), 6 for \(p < 0.01 \), three for \(p < 0.001 \), and four for \(p < 0.0001 \). Statistical significance (Table 4) was not obtained only in two situations (both for goalkeepers).

Playing Position/Anthropometric Indices/Statistics	Wings	Backcourts	Center Backs	Pivots	Goalkeepers	Team
Height (m) t	3.02 **	6.17 ****	5.54 ***	3.98 **	2.08	3.73 **
\(p \)	0.009	0.0001	0.001	0.003	0.076	0.002
Weight (kg) t	3.88 **	5.20 ****	3.50 **	3.08 **	1.74	6.18 ****
\(p \)	0.002	0.001	0.008	0.009	0.13	0.0001
BMI t	4.01 ***	9.42 ****	3.27 *	2.88 *	2.82 *	8.30 ****
\(p \)	0.001	0.0001	0.011	0.016	0.026	0.0001

Significance for * \(p < 0.05 \), ** \(p < 0.01 \), *** \(p < 0.001 \), **** \(p < 0.0001 \).

In this context, we were able to identify the anthropometric pattern for each playing position, including all players as a whole by determining the lower and the upper limits for each of them (Table 5).

Playing Position/Anthropometric Indices	Wings	Backcourts	Center Backs	Pivots	Goalkeepers	Team
Height (m)	1.80–1.90	1.91–2.01	1.85–1.95	1.92–2.02	1.90–1.99	1.86–2.00
Weight (kg)	79–90	92–105	86–99	98–113	90–104	86–105
BMI	23.3–25.9	24.2–27	24.1–27.1	25.5–29	24.3–27.2	24–27.3

Table 3. Synthetic information for the anthropometric indices obtained in our study.

Table 4. The significance of the anthropometric patterns for male elite handball players by applying linear regression.

Table 5. Anthropometric patterns for male elite handball players.
4. Discussion

The wings were shorter (average height—1.852 m, lower limit—1.80 m and upper limit—1.90 m) and also the lightest players (84.477 kg, minimum—79 kg and maximum—90 kg). The BMI average was 24.625, meaning they were normo-ponderal with a lower limit of 23.3 and an upper limit of 25.9. For all wing indicators, there were obtained statistical significance for \(p < 0.01 \) and \(p < 0.001 \) (Figure 1) [14,35,41,42,65,66].

![Figure 1](image_url)

Figure 1. The average values for anthropometric indicators for each playing position.

Pivots (1.971 m average height, minimum—1.92 m and maximum—2.02 m) and backcourts (1.956 m, minimum—1.91 m and maximum—2.01 m) were the tallest and also the heaviest players, pivots—105.096 kg with accepted limits between 98 and 113 kg and backcourts—98.553 kg with optimal values between 92 and 105 kg. The average BMI for pivots was 27.207 and 25.588 for backcourts. For pivots, there was significance for \(p < 0.01 \) (height) and for \(p < 0.001 \) (weight and BMI) (Figure 1) [14,35,41,43,65,66].

Goalkeepers were close in value to pivots and backcourts (height average—1.944 m and accepted limits between 1.90 and 1.99 m, weight average—97.315 kg and optimal values between 90 and 104 kg and BMI average—25.745). At linear regression, we obtained statistical significance only for the BMI of goalkeepers (Figure 1) [14,35,45,48,65,66].

Backcourts were close in height to pivots (1.962 m), but lighter (98.553 kg) and the limits for BMI are between 24.2 and 27. The highest values of coefficients at linear regression were achieved at backcourts indicators (\(p < 0.0001 \)) (Figure 1) [14,35,44–46,65,66].

Centerbacks are shorter than pivots, backcourts and goalkeepers but higher than wings with an average value of 1.903 m for height (limits between 1.85 and 1.95 m); the weight average was 92.697 kg (minimum—86 kg and maximum—99 kg); and the BMI average values was 25.609 (accepted range between 24.1 and 27.1). The level of
significance for centerback indicators were for $p < 0.01$ (weight and BMI) and $p < 0.001$ (height) (Figure 1) [14,35,41,42,65,66].

The overall analysis of the pattern for a top handball player found that the average height was 1.926 m with optimal limits between 1.86 m and 2 m; the weight average was 95.28 kg with 86 to 105 kg accepted limits; and the average BMI was 25.677 with recommended limits between 24 and 27.3. We also obtained statistical significance for $p < 0.001$ (height) and $p < 0.0001$ (weight and BMI) (Figure 1) [14,47–49,67,68].

We consider the identified pattern in our study for each playing position valid as, in 16 out of 18 situations, we obtained statistical significance at linear regression, and the data were collected for a period of almost 20 years from 974 top male handball players (Figure 2).

Figure 2. Linear regression model for anthropometric pattern indicators of the male handball players: (a)—height, (b)—weight and (c)—BMI.

Over time, the anthropometric pattern changes for each playing position compared to those in 1970 and 1980. The values for height and weight increased with an average value of 5%. The most important evolution trend was for pivots where the height increased by 7% and the weight by 20% [31,39].
Comparing the results to recent studies concerning the anthropometric pattern for top male handball players, there are no differences [32,35,40,67,68], and the players belonging to teams from the first half of the final ranking in top competitions are in the optimal limits for each indicator [41,58].

An interesting fact is that the pivots were the tallest (197 cm) and heaviest handball players (105 kg), as the backcourts (196 cm) are usually associated as the highest handball players. To identify the anthropometric pattern in our study, only players from the top four were included for each analyzed competition from the best male handball teams for period 2004–2021.

Every year, the I.H.F. awards the world’s best players; five goalkeepers, four center-backs and two backcourts were nominated for the analyzed period. In that period of time, Nicola Karabatic and Mikkel Hansen were nominated three times. The world’s best players were in the limits of the anthropometric pattern identified in our study. The exception being the goalkeeper Arpad Sterbik, who exceeded the upper limits. This aspect confirms the validity of the anthropometric pattern determined by our study (Table 6).

Table 6. Anthropometric characteristics for handball players designated by I.H.F. as world players of the year.

Year	Player	Playing Position	Height	Weight	BMI
2004	Henning Fritz	Goalkeeper	1.89	90.5	25.34
2005	Árpád Sterbik	Goalkeeper	2	120	30.00
2006	Ivano Balić	Center back	1.90	96	26.59
2007	Nikola Karabatić	Center back	1.96	104	27.07
2008	Thierry Omeyer	Goalkeeper	1.92	93	25.23
2009	Slavomir Szmajl	Goalkeeper	1.90	90	24.93
2010	Filip Jicha	Left back	2.01	105	25.99
2011	Mikkel Hansen	Left back	1.92	93	25.23
2012	Daniel Narcisse	Center back	1.89	93	26.04
2013	Domagoj Duvnjak	Center back	1.98	100	25.51
2014	Nikola Karabatić	Center back	1.96	104	27.07
2015	Mikkel Hansen	Left back	1.92	93	25.23
2016	Nikola Karabatić	Center back	1.96	104	27.07
2018	Mikkel Hansen	Left back	1.92	93	25.23
2019	Nikklas Landin	Goalkeeper	2.01	105	25.99

5. Conclusions

The anthropometric pattern was found to evolve over time: the average height increased (1.4%) but less than the average weight (4.5%), thereby, influencing the average body mass index (2.7%). More weight in the case of elite handball players typically means more muscular mass required by the modern handball player in order to be effective in game actions during the competitions.

Anthropometric characteristics, including the body composition and the somatotype of the elite handball players, are specific to the playing position in order to allow them to efficiently act in competitions. Among these indicators, the specific preparation of handball players is essential to achieve competition goals and to be efficient in specific actions during the game.

The limitations of the study include access to data concerning only height and weight and indirect data collection from the official website of the International Handball Federation and European Federation. For the future, it will be important to collect data for other variables, such as the body composition, skinfold thickness and body circumference. Among other factors, the anthropometric pattern is essential when a coach wants to select a player for his team, and it is optimal to choose a player that meets these requirements concerning anthropometric patterns.
The novelty of our study is that we identified an anthropometric pattern for each playing position and for all teams in elite male handball, and our study covered a period of 18 years to give our results more accuracy and reliability. These identified patterns will be subject to change over time, and further studies are necessary in order to keep these anthropometric models updated.

Author Contributions: Conceptualization, F.V.L., I.P., G.P., D.M.R. and I.M.P.; methodology, F.V.L., I.P., G.P., D.M.R. and I.M.P.; software, I.M.P.; validation, F.V.L. and G.P.; formal analysis, G.P. and D.M.R.; investigation, F.V.L. and I.M.P.; resources, F.V.L., I.P. and D.M.R.; data curation, F.V.L.; writing—original draft preparation, F.V.L., I.P. and D.M.R.; writing—review and editing, G.P. and I.M.P.; visualization, I.M.P.; supervision, G.P. and D.M.R.; project administration, F.V.L.; funding acquisition. All authors have read and agreed to the published version of the manuscript.

Funding: The APC was funded by Stefan cel Mare University of Suceava.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Di Credico, A.; Gaggi, G.; Ghinassi, B.; Mascherini, G.; Petri, C.; Di Giminiani, R.; Di Baldassarre, A.; Izzicupo, P. The influence of maturity status on anthropometric profile and body composition of youth goalkeepers. *Int. J. Environ. Res. Public Health* **2020**, *17*, 8247. [CrossRef] [PubMed]

2. Viero, V.; Triossi, T.; Bianchi, D.; Campagna, A.; Melchiorri, G. Physical and performance variables for talent identification in water polo. *J. Sport Med. Phys. Fit.* **2020**, *60*, 1309–1316. [CrossRef] [PubMed]

3. Siquier-Coll, J.; Grijota, F.J.; Bartolome, I.; Montero, J.; Munoz, D. Anthropometric and physical condition analysis of young female handball players. Difference between categories. *J. Sport Health Sci.* **2020**, *12*, 364–372.

4. Martins, N.C.; Alves, F.D.; Sehl, P.; Schneider, C.D.; Souza, G.C. Comparison between body composition assessment methods in elite water polo. *J. Sport Med. Phys. Fit.* **2020**, *60*, 1360–1367. [CrossRef] [PubMed]

5. Kaplanova, A.; Sagat, P.; Gonzalez, P.P.; Bartik, P.; Zvonar, M. Somatotype profiles of Slovak and Saudi Arabian male soccer players according to playing positions. *Kinesiology* **2020**, *52*, 143–150. [CrossRef]

6. Campa, F.; Silva, A.M.; Talluri, J.; Matias, C.N.; Badicu, G.; Toselli, S. Somatotype and bioimpedance vector analysis: A new target zone for male athletes. *Sustainability* **2020**, *12*, 4365. [CrossRef]

7. Campa, F.; Silva, A.M.; Talluri, J.; Matias, C.N.; Badicu, G.; Toselli, S. Somatotype and bioimpedance vector analysis: A new target zone for male athletes. *Sustainability* **2020**, *12*, 4365. [CrossRef]

8. de la Fuente, F.P.; Gonzalez-Jurado, J.A.; Garcia-Gimenez, A.; Tobon, F.G.; Otin, C.C. Anthropometric characteristics of elite paddle players. Pilot study. *Rev. Int. Med. Y Cienc. Act. Fis. Y Del Deporte* **2019**, *19*, 181–195.

9. Bogfild, C.; Jensen, K.; Kvarning, T. Physiological performance characteristics of Danish national team handball players 1990–2016: Implications on position-specific strength and conditioning training. *J. Strength Cond. Res.* **2020**, *34*, 1555–1563. [CrossRef]

10. O’Brien-Smith, J.; Bennett, K.J.M.; Fransen, J.; Smith, M.R. Same or different? A comparison of anthropometry, physical fitness and perceptual motor characteristics in male and female youth soccer players. *Sci. Med. Footb.* **2020**, *4*, 37–44. [CrossRef]

11. Clemente, F.M.; Conte, D.; Sanches, R.; Moleiro, C.F.; Gomes, M.; Lima, R. Anthropometry and fitness profile, and their relationships with technical performance and perceived effort during small-sided basketball games. *Res. Sports Med. 2019*, *27*, 452–466. [CrossRef]

12. Sebastia-Amat, S.; Pueo, B.; Villalon-Gasch, L.; Jimenez-Olmedo, J.M. Anthropometric profile and conditional factors of U21 Spanish elite beach volley players according to playing position. *RETOS Nuevas Tend. En Educ. Fis. Deportre Recreacion* **2020**, *38*, 620–625.

13. Rodriguez-Rodriguez, F.; Lopez-Fuenzalida, A.; Holway, F.; Aguilera, C.J. Anthropometric differences per playing position in Chilean professional footballers. *Nutr. Hosp.* **2019**, *36*, 846–853.

14. Lijewski, M.; Burdukiewicz, A.; Pietraszewska, J.; Stachon, A.; Andrzejewska, J.; Chronik, K. Anthropometric and strength profiles of professional handball players in relation to their playing position-multivariate analysis. *Acta Bioeng. Biomech.* **2019**, *21*, 147–155. [CrossRef]

15. Chino, K.; Inoue, N.; Iizuka, T.; Masuda, K.; Park, J.B. Comparison of anthropometric characteristics between elite singles and doubles badminton players. *Gazz. Med. Ital.* **2019**, *178*, 781–784. [CrossRef]

16. Calleja-Gonzalez, J.; Mielgo-Ayuso, J.; Lekue, J.A.; Leibar, X.; Eratzkin, J.; Jukic, I.; Ostojic, S.M.; Ponce-Gonzalez, J.G.; Fuentes-Azpíroz, M.; Terrados, N. Anthropometry and performance of top youth international male basketball players in Spanish national academy. *Nutr. Hosp.* **2018**, *35*, 1331–1339. [CrossRef] [PubMed]
17. Tomaszewski, P.; Keska, A.; Tkaczyk, J.; Nowicki, D.; Sienkiewicz-Dianzenza, E. Somatic characteristics and motor fitness of elite and sub-elite Polish male badminton players. J. Sport Med. Phys. Fit. 2018, 58, 1456-1464. [CrossRef] [PubMed]

18. Neogi, A.; Chakraborty, C.; Chatterjee, S.; Dey, S.K. Anthropometric profiles and pulmonary function parameters of male Football & Hockey players according to their specific playing position: A Comparative Study. Int. J. Appl. Exerc. Physiol. 2018, 7, 10-23.

19. Mallett, A.; Bellinger, P.; Derave, W.; Osborne, M.; Minahan, C. The age, height, and body mass of Olympic swimmers: A 50-year review and update. Int. J. Sports Sci. Coach. 2020, 16, 210–223. [CrossRef]

20. Senseg, M.; Muller, W.; Storchle, P.; Furhapter-Rieger, A. Competitive performance of Kenyan runners compared to their relative body weight and fat. J. Sports Med. 2020, 42, 323-335. [CrossRef]

21. Sanchez Munoz, C.; Muros, J.I.; Belmonte, O.L.; Zabala, M. Anthropometric characteristics, body composition and somatotype of elite male young runners. Int. J. Environ. Res. Public Health 2020, 17, 674. [CrossRef] [PubMed]

22. Leon-Guero, P.; Urdampilleta, A.; Zourdos, M.C.; Mielgo-Ayuso, J. Anthropometric profile, body composition and somatotype in elite traditional bowlers: A cross-sectional study. Rev. Esp. De Nutr. Hum. Y Diet. 2018, 22, 279-286. [CrossRef]

23. Prieske, O.; Chaabene, H.; Gabler, M.; Herz, M.; Helm, N.; Markov, A.; Granacher, U. Seasonal changes in anthropometry, body composition, and physical fitness and the relationships with sporting success in young sub-elite judo athletes: An exploratory study. Int. J. Environ. Res. Public Health 2020, 19, 7169. [CrossRef]

24. Giles, D.; Barnes, K.; Taylor, N.; Chidley, C.; Chidley, J.; Mitchell, J.; Torr, O.; Gibson-Smith, E.; Espana-Romero, V. Anthropometry and performance characteristics of recreational advanced to elite female rock climbers. J. Sports Sci. 2020, 39, 49-56. [CrossRef]

25. Nichas, A.; Shaw, B.S.; Millard, L.; Breukelman, G.J.; Shaw, I. Kinanthropometric attributes of elite South African male kata and kumite karateka. Arch. Budo 2020, 16, 181–194.

26. Mostaert, M.; Laureys, F.; Vansteenwinkel, P.; Pion, J.; Deconinck, F.J.A.; Lenoir, M. Discriminating performance profiles of cycling disciplines. Int. J. Sports Sci. Coach. 2021, 16, 110–122. [CrossRef]

27. Chaabene, H.; Prieske, O.; Lesinski, M.; Sandau, I.; Granacher, U. Short-term seasonal development of anthropometry, body composition, physical fitness, and sport-specific performance in young Olympic weightlifters. Sports 2019, 7, 242. [CrossRef]

28. van der Zwaard, S.; de Ruiter, C.J.; Jaspers, R.T.; de Koning, J.J. Anthropometric clusters of competitive cyclists and their sprint and endurance performance. Front. Physiol. 2019, 10, 1276. [CrossRef]

29. Dessalew, G.W.; Woldeyes, D.H.; Abebay, B.A. The relationship between anthropometric variables and race performance. Open Access J. Sports Med. 2019, 10, 209-216. [CrossRef]

30. Wazir, M.R.W.N.; Mostaert, M.; Pion, J.; Lenoir, M. Anthropometry, physical performance, and motor coordination of medallist and non-medallist young fencers. Arch. Budo 2018, 14, 33–40.

31. Taborsky, F. The Body Height and Top Team Handball Players. EHF Web Period. 2007, 1, 1–3. Available online: http://home.eurohandball.com/ehf_files/Publikation/WP_Taborsky-Body%20height.pdf (accessed on 3 March 2016).

32. Nikolaidis, P.T.; Ingebrigtsen, J.; Povoas, S.C.; Moss, S.; Torres-Luque, G. Physical and physiological characteristics in male team handball players by playing position—Does age matter? J. Sport Med. Phys. Fit. 2015, 55, 297–304.

33. Fieseler, G.; Hermassi, S.; Hoffmeyer, B.; Schulze, S.; Irjenbusch, L.; Bartels, T.; Delank, K.S.; Laudner, K.G.; Schwesig, R. Differences in anthropometric characteristics in relation to throwing velocity and competitive level in professional male team handball: A tool for talent profiling. J. Sport Med. Phys. Fit. 2017, 57, 985–992. [CrossRef]

34. Chouauchi, A.; Brughelli, M.; Levin, G.; Boudhina, N.B.; Cronin, J.; Chamari, K. Anthropometric, physiological and performance characteristics of elite team-handball players. J. Sports Sci. 2009, 27, 151–157. [CrossRef] [PubMed]

35. Ramos-Sanchez, F.; Camina-Martin, M.A.; Alonso-de-la-Torre, S.R.; de-Mateo-Silleras, B. Body composition and somatotype in professional men’s handball according to playing positions. Rev. Int. Med. Cienc. Act. Fís. Deporte 2018, 18, 91–102.

36. Manchado, C.; Tortosa-Martinez, J.; Vila, H.; Ferragut, C.; Platen, P. Performance factors in women’s team handball: Physical and physiological aspects: Review. J. Strength Cond. Res. 2013, 27, 1708-1719. [CrossRef]

37. Debanne, T.; Lafayye, G. Predicting the throwing velocity of the ball in handball with anthropometric variables and isotonic tests. J. Sports Sci. 2011, 29, 705–713. [CrossRef]

38. Wagner, H.; Fuchs, P.X.; von Duvillard, S.P. Specific physiological and biomechanical performance in elite, sub-elite and in non-elite male team handball players. J. Sport Med. Phys. Fit. 2018, 58, 73–81. [CrossRef]

39. Ghermănescu, I.K.; Gogaltan, V.; Jianu, E.; Negulescu, I. Teoria si Metodica Handbalului (Theory and Methodic of Handball), 1st ed.; Editura Didactica și Pedagogică: București, Romania, 1983; p. 164.

40. Leuciu, F.V. Somatic model and performance age in elite handball (study case: Male Champions League final four 2012). GymnasiuM 2012, 13, 113–125.

41. Ghobadi, H.; Rajabi, H.; Farzad, B.; Bayati, M.; Jeffreys, I. Anthropometry of world-class elite handball players according to the playing position: Reports from men’s handball world championship 2013. J. Hum. Kinet. 2013, 39, 213–220. [CrossRef]

42. Bayios, I.A.; Anastasopoulou, E.M.; Sioudris, D.S.; Boudolos, K.D. Relationship between isokinetic strength of the internal and external shoulder rotators and ball velocity in handball. J. Sport Med. Phys. Fit. 2001, 41, 229–235.

43. Gorostiaga, E.M.; Granados, C.; Ibarra, J.; Izquierdo, M. Differences in physical fitness and throwing velocity among elite and amateur male handball players. Int. J. Sports Med. 2005, 26, 225–232. [CrossRef] [PubMed]

44. Marques, M.C.; Gonzalez-Badillo, J.J. In-season resistance training and detraining in professional team handball players. J. Strength Cond. Res. 2006, 20, 563–571.
45. Asci, A.; Acikada, C. Power production among different sports with similar maximum strength. *J. Strength Cond. Res.* 2007, 21, 10–16.

46. Marques, M.C.; van den Tillaar, R.; Vescovi, J.D.; GonzalezBadillo, J.J. Relationship between throwing velocity, muscle power, and bar velocity during bench press in elite handball players. *Int. J. Sports Physiol. Perform.* 2007, 2, 414–422. [CrossRef] [PubMed]

47. Buchheit, M.; Lepretre, P.M.; Behaegel, A.L.; Millet, G.P.; Cuvelier, G.; Ahmaidi, S. Cardiorespiratory responses during running and sport-specific exercises in handball players. *J. Sci. Med. Sport* 2009, 12, 399–405. [CrossRef] [PubMed]

48. Sibila, M.; Pori, P. Position-Related Differences in Selected Morphological Body Characteristics of Top-Level Handball Players. *Coll. Antropol.* 2009, 33, 1079–1086.

49. Michalsik, L.B.; Madsen, K.; Aagaard, P. Technical match characteristics and influence of body anthropometry on playing performance in male elite team handball. *J. Strength Cond. Res.* 2015, 29, 416–428. [CrossRef]

50. Official Results Book, Handball, 14–29 August, Atena 2004. Available online: http://www.ihf.info/files/Uploads/Documents/8294_HB.pdf (accessed on 3 March 2016).

51. Official Results Book, Handball, 9–24 August, Beijing 2008. Available online: http://www.ihf.info/files/Uploads/Documents/8238_HB_Results_Bookoverall%20team%20statistics.pdf (accessed on 3 March 2016).

52. Official Results Book, Handball, 28 July–12 August, London 2012. Available online: http://www.ihf.info/files/Uploads/Documents/11388_Handball20%20HB%20Results%20Book%20V1[1].pdf (accessed on 3 March 2016).

53. Official Results Book, Handball, 6–21 August, Rio de Janeiro 2016. Available online: http://ihf.info/files/Uploads/Documents/43056_Rio_2016_Handball_Results_Book_v1.0.pdf (accessed on 7 December 2016).

54. Available online: http://www.ihf.info/enus/ihfcompetitions/worldchampionships/mensworldchampionships/menshandballworldchampionship2009/teaminfo.aspx (accessed on 3 March 2016).

55. Available online: http://www.ihf.info/enus/ihfcompetitions/worldchampionships/mensworldchampionships/mensworldchampionships/menshandballworldchampionship2011/teaminfo.aspx (accessed on 3 March 2016).

56. Available online: http://www.ihf.info/enus/ihfcompetitions/worldchampionships/mensworldchampionships/mensworldchampionships/menshandballworldchampionshipspain2013/teaminfo.aspx (accessed on 3 March 2016).

57. Available online: http://www.ihf.info/enus/ihfcompetitions/worldchampionships/mensworldchampionships/menshandballworldchampionshipqatar2015/teaminfo.aspx (accessed on 3 March 2016).

58. Available online: http://www.ihf.info/enus/ihfcompetitions/worldchampionships/mensworldchampionshipfrance2017/teaminfo.aspx (accessed on 12 May 2017).

59. Available online: http://www.handball19.com/#teams (accessed on 28 April 2019).

60. Available online: http://www.ihf.info/competitions/men/308/27th-ihf-mens-world-championship-2021/22415/groups-rankings (accessed on 1 February 2021).

61. Available online: http://den2014.ehf-euro.com/#teams/ (accessed on 3 March 2016).

62. Available online: http://pol2016.ehf-euro.com/teams/ (accessed on 3 March 2016).

63. Available online: https://cro2018.ehf-euro.com/teams/ (accessed on 9 March 2018).

64. Available online: https://www.m20ehfeuro.com/en/teams (accessed on 17 December 2020).

65. Burdukiewicz, A.; Pietraszewska, J.; Andrzejewksa, J.; Stachon, A.; Lijewski, M. Variability in professional athletes: Secular changes in the anthropometry of elite handball players. *Homo* 2020, 70, 163–170. [CrossRef]

66. Hermassi, S.; van den Tillaar, R.; Khliifa, R.; Chelly, M.S.; Chamari, K. Comparison of in-season-specific resistance vs. A regular throwing training program on throwing velocity, anthropometry, and power performance in elite handball players. *J. Strength Cond. Res.* 2015, 29, 2105–2114. [CrossRef] [PubMed]

67. Cichy, I.; Dudkowski, A.; Kociuba, M.; Ignasiak, Z.; Sebastian, A.; Kochan, K.; Koziel, S.; Rokita, A.; Malina, R.M. Sex differences in body composition changes after preseason training in elite handball players. *Int. J. Environ. Res. Public Health* 2020, 17, 3880. [CrossRef] [PubMed]

68. Ziv, G.; Lidor, R. Physical characteristics, physiological attributes, and on-court performances of handball players: A review. *Eur. J. Sport Sci.* 2009, 9, 375–386. [CrossRef]