Large magnetoelectric coupling in multiferroic oxide heterostructures assembled via epitaxial lift-off

D. Pesquera1✉, E. Khestanova2, M. Ghidini1,3,4, S. Zhang1,5, A. P. Rooney6, F. Maccherozzi4, P. Riego1,7,8, S. Farokhipoor9, J. Kim1, X. Moya1 ✉, M. E. Vickers1, N. A. Stelmashenko1, S. J. Haigh6, S. S. Dhesi4 & N. D. Mathur1✉

Epitaxial films may be released from growth substrates and transferred to structurally and chemically incompatible substrates, but epitaxial films of transition metal perovskite oxides have not been transferred to electroactive substrates for voltage control of their myriad functional properties. Here we demonstrate good strain transmission at the incoherent interface between a strain-released film of epitaxially grown ferromagnetic La0.7Sr0.3MnO3 and an electroactive substrate of ferroelectric 0.68Pb(Mg1/3Nb2/3)O3-0.32PbTiO3 in a different crystallographic orientation. Our strain-mediated magnetoelectric coupling compares well with respect to epitaxial heterostructures, where the epitaxy responsible for strong coupling can degrade film magnetization via strain and dislocations. Moreover, the electrical switching of magnetic anisotropy is repeatable and non-volatile. High-resolution magnetic vector maps reveal that micromagnetic behaviour is governed by electrically controlled strain and cracks in the film. Our demonstration should inspire others to control the physical/chemical properties in strain-released epitaxial oxide films by using electroactive substrates to impart strain via non-epitaxial interfaces.

1 Department of Materials Science, University of Cambridge, Cambridge CB3 0FS, UK. 2 ITMO University, Saint Petersburg 197101, Russia. 3 Department of Mathematics, Physics and Computer Science, University of Parma, 43124 Parma, Italy. 4 Diamond Light Source, Chilton, Didcot, Oxfordshire OX11 0DE, UK. 5 College of Science, National University of Defense Technology, Changsha 410073, China. 6 School of Materials, University of Manchester, Manchester M13 9PL, UK. 7 CIC nanoGUNE, E-20018 Donostia-San Sebastian, Spain. 8 Department of Condensed Matter Physics, University of the Basque Country, UPV/EHU, E-48080 Bilbao, Spain. 9 Zernike Institute for Advanced Materials, University of Groningen, 9747 AG Groningen, The Netherlands.
✉email: dpesquera@cantab.net; ndm12@cam.ac.uk
Ferroelectric domain switching in our PMN-PT substrate is accompanied by a rhombohedral-orthorhombic phase transition, and the large resulting strain is effectively transmitted to the transferred LSMO film, whose magnetization is enhanced after epitaxial lift-off to a value that greatly exceeds the value for LSMO grown directly on PMN-PT. Despite a layer of adsorbates at the interface, the magnetoelectric coupling coefficient is similar to values recorded for epitaxial heterostructures, and a twofold magnetic anisotropy in the film can be electrically switched by 90° in a repeatable and non-volatile manner. Photoemission electron microscopy (PEEM) with contrast from X-ray magnetic circular dichroism (XMCD) is used to obtain magnetic vector maps that reveal unanticipated complexity, namely few-micron-sized magnetic domains whose boundaries are defined by cracks in the film, and electrically driven magnetic domain rotations through various angles. This complexity represents both a challenge and an opportunity in the development of laminated magnetoelectric memory devices.

Results

Sample fabrication and characterization. An elastomer membrane of polydimethylsiloxane (PDMS) was used to transfer a 45 nm-thick layer of LSMO from its STO (001) growth substrate to platinized PMN-PT (011)pc after dissolving the intervening epitaxial layer of 30-nm-thick SRO with NaIO4 (aq) (ref. 44) (Fig. 1a). The a || [100]pc and b || [010]pc axes of LSMO that lay parallel to the film edges were approximately aligned with the x || [100]pc and y || [011]pc axes of PMN-PT that lay parallel to the edges of the slightly larger substrate (Supplementary Note 1). For simplicity, samples will be labelled LSMO:PMN-PT, without reference to the Pt electrodes that are considered as if they were an integral part of the PMN-PT substrate, and without reference to an amorphous interfacial layer that we observed in cross-sectional scanning transmission electron microscopy (STEM) (Fig. 1b). Chemical analysis revealed this interfacial layer of adsorbates to be primarily composed of SiO2 and C (Supplementary Note 2), implying partial degradation of the PDMS membrane during the SRO etch. Two other polymers, which might have provided better mechanical support, retained only small LSMO flakes after etching.

X-ray diffraction (XRD) measurements of our LSMO/STO (001) precursor confirmed that the LSMO layer experienced tensile in-plane epitaxial strain of ~1% (red data, Fig. 1c) and a compressive out-of-plane strain of similar magnitude (Supplementary Note 3). The high quality of the LSMO film was confirmed by the presence of thickness fringes, and a narrow 002pc rocking curve of full-width half-maximum 0.2° (red data, inset of Fig. 1c). Moreover, XRD reciprocal space maps around the STO 010 reflection confirmed a good match between the in-plane lattice parameters of the LSMO, SRO and STO (Supplementary Note 3). XRD measurements of the LSMO film after it had been transferred to the platinized PMN-PT (011)pc substrate revealed that the epitaxial strain had been completely released (blue data, Fig. 1c), and that the full-width-half-maximum of the 002pc rocking curve had increased to 1.7° (blue data, inset of Fig. 1c). This enhancement of texture is attributed to the faceted PMN-PT (011)pc surface that necessarily results from ferroelectric domains of low symmetry (Supplementary Note 4), and cracking in the LSMO film that arose at least in part while it was supported by the flexible PDMS membrane (Supplementary Note 5).

The release of epitaxial strain increased the LSMO saturation magnetization of 2.27 ± 0.03 μB/Mn by 19% to 2.7 ± 0.1 μB/Mn (Fig. 1d), which is roughly six times larger than the room-temperature saturation magnetization of highly strained LSMO grown directly on PMN-PT (ref. 23). Similarly, the release of epitaxial strain led to an increase of Curie temperature (Supplementary Note 6), as expected. The enhanced magnetism is a
and its precursor. All data were obtained at room temperature. Source data are provided as a Source Data

Electrically driven strain in platinized PMN-PT

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-16942-x ARTICLE

Fig. 1 Transfer of epitaxial LSMO (001)pc to platinized PMN-PT (011)pc. a The four-step transfer process in which we approximately aligned the edges of the LSMO film (along a || [100]pc, and b || [010]pc) with the edges of the slightly larger PMN-PT substrate (along x || [100]pc and y || [011]pc). b Bright-field cross-sectional STEM image of the interfacial region between LSMO and PMN-PT, looking down the [011] zone axis of PMN-PT. The region magnified by ×3.5 confirms in-plane LSMO misalignment. c–e Data for electrically virgin LSMO:PMN-PT (blue) and its LSMO/SRO//STO precursor (red). c XRD 2θ-ω scans showing 002pc reflections. The green vertical line corresponds to the expected 002pc reflection for bulk LSMO with pseudocubic lattice parameter60 3.881 Å. Inset: 002pc rocking curves for LSMO. d Magnetization M versus collinear applied field H for one of the two easy axes. e Polar plot of in-plane loop squareness M_r/M_s where M_r denotes remanent magnetization and M_s denotes saturation magnetization. Data in b for sample C. Data in c–e for sample A and its precursor. All data were obtained at room temperature. Source data are provided as a Source Data file.

A consequence of enhanced double exchange following the release of epitaxial strain49, and should not be attributed to the oxidizing effect of the NaIO$_4$ (aq) reagent on optimally doped films that are well annealed. The release of epitaxial strain also modified the biaxial magnetic anisotropy of the LSMO film (Fig. 1e). After growth, the in-plane LSMO <110>pc directions were magnetically easy due to magnetoelastic anisotropy arising from the biaxial in-plane strain imposed by the STO substrate45,50,51. After strain release and film transfer, the in-plane LSMO <100>pc directions were magnetically easy due to uniaxial magnetoelastic anisotropy in each twin variant of the now twinned film52 (Supplementary Note 7). Given that the strain transfer process reduces the magnitude of the easy-axis anisotropy (Fig. 1e), the increase of easy-axis coercivity (Fig. 1d) is inferred to arise because of the observed cracks (Supplementary Note 5) and any accompanying microstructural defects.

Electrically driven strain in platinized PMN-PT. After thermally depolarizing PMN-PT in order to set zero strain, a bipolar cycle of electric field E produced orthogonal in-plane strains ε_x and ε_y that took opposite signs to each other at almost every field, and underwent sign reversal near the coercive field (solid butterfly curves, Fig. 2a). Given that the two butterfly curves would be interchanged and different in magnitude if they arose purely from ferroelectric domain switching in rhombohedral PMN-PT of nominally the same composition46, we infer that polarization reversal was instead associated with a phase transition11–13, as confirmed by measuring XRD reciprocal space maps while applying an electric field (Supplementary Note 8). Large fields promoted the orthorhombic (O) phase by aligning the polarization along an out-of-plane <011>pc direction, whereas switching through the coercive field promoted rhombohedral (R) twins whose polarizations lay along the subset of <111>pc directions with an out-of-plane component. (A similar argument would hold if this latter phase were monoclinic53 rather than rhombohedral.)

A minor electrical loop (blue dots in Fig. 2a) permitted two strain states to be created in PMN-PT at electrical remanence12,46, with $\varepsilon_x = -0.16\%$ in state A and $\varepsilon_x = +0.02\%$
in state B. The corresponding reciprocal space maps obtained at zero electric field (Fig. 2b–e) show for our sample that the O phase dominated in state A (single 222pc reflection, split 031pc reflection), while the R phase dominated in state B (split 222pc reflection, single 031pc reflection). The resulting structural changes in the LSMO film could also be detected by XRD (Supplementary Note 7), despite the twinning and the topography of the underlying ferroelectric domains.

Strain-mediated electrical control of microscopic magnetization in LSMO:PMN-PT. The biaxial magnetic anisotropy that we observed after transfer (Fig. 1e) was rendered uniaxial at both A and B during the course of 30 bipolar electrical cycles (Supplementary Note 9). Subsequent bipolar cycles modified the x and y components of magnetization by ~100% and ~40% (solid butterfly curves, Fig. 3), respectively, and similar results were obtained for two similar samples (Supplementary Note 10). The peak magnetoelectric coefficient $a = \mu_0 \partial M_r / \partial E = 6.4 \times 10^{-8}$ m V$^{-1}$ is similar to the value reported for an LSMO film that benefited from good epitaxial coupling with a PMN-PT (001) substrate. The interconversion of remanent states A and B (blue dots in Fig. 3) rotated the single magnetic easy axis by 90° (Fig. 4), while the finite loop-squareness minimum in state B (Fig. 4d) may represent a vestige of the original fourfold anisotropy, or uniaxial regions trapped from state A.

Strain-mediated electrical control of microscopic magnetization in LSMO:PMN-PT. The local magnetization of the thermally demagnetized film was imaged using PEEM with contrast...
from XMCD. The resulting vector maps of the in-plane magnetization direction \(\phi \) revealed that the electrically remanent A and B states were magnetically inhomogeneous within a 20 \(\mu \)m field of view (Fig. 5a, b); and that switching from A to B rotated the net magnetization in our limited field of view towards the x-axis (Fig. 5c, d), consistent with our macroscopic measurements of magnetic anisotropy (Fig. 4c, d). The magnetization was reasonably homogeneous within few-micron-sized domains whose boundaries coincided partly with cracks (Supplementary Note 11), and the electrically driven magnetic rotations in the 1.3 \(\mu \)m-diameter regions (1–3 in Fig. 5a, b, e) ranged from large (64° in region 1) to medium (−36° in region 2) to small (16° in region 3) (Fig. 5f). Although the clockwise and anticlockwise nature of these rotations could be explained in terms of the ambipolar shear strains associated with rhombohedral ferroelectric domain switching\(^{34}\), the very different rotation magnitudes imply the presence of an additional factor. By assuming this additional factor to be a spatially varying uniaxial magnetic anisotropy, due to spatially varying stress associated with the formation of the observed cracks (Supplementary Note 5), a magnetic free energy model was able to approximately reproduce both the local and macroscopic magnetoelastic effects (Supplementary Note 12).

Discussion

Our macroscopic magnetic measurements yield two key results. First, growth using a well-matched substrate, followed by strain release via epitaxial lift-off\(^{28,29}\), resulted in an LSMO film magnetization that is greatly enhanced with respect to the value for an LSMO film that contained strain and dislocations following direct growth on PMN-PT\(^{23}\). Second, our strain-mediated magnetoelastic coupling is just as effective as strain-mediated coupling across an epitaxial interface\(^{17,18}\) in spite of the incoherent bonding between our magnetostrictive film and electroactive substrate. Our structurally contiguous micron-sized regions were separated by cracks that could be avoided if one were to transfer micron-size patterned structures, or modify the procedure and transfer millimetre-sized crack-free films\(^{36}\). However, the presence of cracks was instructive because the resulting micro-mechanical boundary conditions likely served to influence the magnetic rotations of our micron-size magnetic domains.

Close control of these boundary conditions via lithographic patterning would permit a transferred ferromagnetic film to function as the electrically controlled free layer of a magnetic tunnel junction for data-storage applications\(^{14–16}\), and the free choice of in-plane misorientation angle would permit the realization of schemes for electrically driven magnetization reversal\(^{55–57}\). As we have shown, the magnetization would not suffer from the epitaxial suppression that compromises oxide device performance\(^{38}\). More generally, the physical and chemical properties of any epitaxially grown film could be electrically controlled via strain after transfer to an electroactive substrate, with no constraints on relative crystallographic orientation, and no epitaxial strain to suppress film functional properties. Separately, it would be interesting to investigate strain-mediated coupling while varying the thickness and composition of the interfacial glue that formed here serendipitously. It would also be interesting to better support the LSMO film during transfer in order to avoid the observed cracks. Ultimately, electroactive substrates themselves could be replaced by electroactive films that have been released in order to avoid substrate clamping\(^{39}\). Our work therefore opens the way for multifunctional heterostructures to be assembled from epitaxial oxides via mechanical separation and stacking, just as two-dimensional and other materials may be combined using similar methods of van der Waals integration\(^{30}\). These multifunctional heterostructures could then be transferred to silicon host structures in the wider-ranging quest for CMOS compatibility.

Methods

Samples. We fabricated three similar LSMO:PMN-PT samples (A, B and C). The LSMO film (edges along \(a \parallel [100]_p \) and \(b \parallel [010]_p \)) was misaligned with the PMN-
PT substrate (edges along x || [100]PC and y || [011]PC) by 5" samples A, B, and 20" sample C. All experimental data were obtained using sample A or its precursor compounds. Additional exceptions: measurements of strain and electrical polarization were obtained using PMN-PT from the same master substrate that we used for sample A; atomic force microscopy (AFM) data were obtained using sample B; STEM data were obtained using sample C; the Curie temperature measurements in Supplementary Fig. 6 were obtained using similar samples; and the macroscopic magnetoelectric data in Supplementary Fig. 10 were obtained using samples A–C.

Epitaxial growth of LSMO/SRO bilayers. Epitaxial LSMO (45 nm)/SRO (30 nm) bilayers were grown by pulsed laser deposition (KrF excimer laser, 248 nm, 1 Hz) on STO (001) substrates (5 mm × 5 mm × 1 mm) that had been annealed in flowing oxygen for 90 min at 950 °C. The SRO was grown in 10 Pa O2 at 600 °C (1200 pulses, 1.5 cm2). The LSMO was grown at 330 °C (1800 pulses, 2 cm2). After growth, the LSMO/SRO/STO stacks underwent in situ annealing in 50 KPa O2 for 1 h at 700 °C. Using X-ray reflectivity measurements, the growth rates for single layers of SRO and LSMO were both found to be ~0.025 nm per pulse.

Platinized PMN-PT substrates. Each 0.668Pb(Mg1/3Nb2/3)O3–0.32PbTiO3 (011)PC substrate (PMN-PT, Atom Optics) was cut to 5 mm × 5 mm × 0.3 mm from a different 10 mm × 10 mm × 0.3 mm master. Sputter deposition of Pt resulted in a 6-nm-thick top electrode that served as ground, and a much thicker bottom electrode.

Transfer of LSMO. PDMs stamps were cut to 5 mm × 5 mm × 1.5 mm from a commercial specimen (Gelfilm from Gelpak), and each was brought into conformal contact with the given LSMO/SRO/STO stack by heating in air at 760 °C (1000 pulses, 2 cm2). After growth, the LSMO/SRO/STO stacks underwent via wet chemical etch using a mixture of H2O2 and NH4OH. The Pt/SRO/STO/LSMO LSMO film was then transferred to a platinized PMN-PT substrate, which had previously been cleaned using acetic acid, and isopropanol, and recently cleaned by annealing at 120 °C for 10 min. After transfer, the entire stack was annealed in air (at 100 °C for 10 min) to promote adhesion at the newly formed interface. After cooling to 70 °C and peeling off the PDMs stamp with tweezers, interfacial adhesion was further improved by annealing in air at 150 °C for 10 min.

X-ray diffraction. We acquired 2θ–ω scans and rocking curves for LSMO with a Panalytical Empyream diffractometer (Cu-Kα, λ = 1.540598 Å), using a hybrid two-bounce primary monochromator on the incident beam, and a two-bounce analyser crystal before the proportional point detector. Reciprocal space maps of PMN-PT were acquired with the same incident beam optics and a PI Xcelsys position-sensitive detector, using the frame-based 1D mode with a step time of 10 s. We used Sample A and its epitaxial precursor to obtain 2θ–ω scans and rocking curves before applying an electric field (Fig. 1c). For the transferred LSMO film in Sample A, offset angle ω was obtained by averaging the rocking-curve-peak-values for azimuthal angles of ϕ = 0° and ϕ = 180°. Our electric-field-dependent XRD data were also obtained using sample A, after acquiring a subset of the X-ray diffraction data on the LSMO/SRO/STO stack and then repeating the last 10 minutes of the fabrication process (10 min in air at 150 °C) in order to depolarize the substrate. We first obtained reciprocal space maps of PMN-PT at successively larger positive fields after negative poling (Supplementary Fig. 5d, e), before acquiring reciprocal space maps for remanent states A and B (Fig. 2d–b). We then obtained 2θ–ω scans of LSMO for remanent states A and B (Supplementary Fig. 6).

Atomic force microscopy. Atomic force microscopy (AFM) images were obtained in tapping mode using a Veeco Digital Instruments Dimension D3100 microscope.

Electron microscopy. Cross-sectional transmission electron microscopy (STEM) specimens were prepared via an in situ lift-out procedure in a dual-beam instrument (JEI Nova 600i) that incorporated a focused ion beam microscope and scanning electron microscope in the same chamber. Both S and 2 kV ions were used to polish the TEM lamella to a thickness of 50 nm, and remove side damage. High-resolution scanning transmission electron microscopy (STEM) was performed using a probe convergence angle of 21 mrad and a probe current of ~90 pA. In bright-field images, identification of each atomic layer was achieved by elemental analysis using energy dispersive X-ray (EDX) and electron energy loss spectroscopy (EELS). EDX images were obtained using a Super-X four silicon drift EDX detector system with a total-collection solid angle of 0.7 sr. EELS images were obtained using an Gatan Imaging Filter (GIF) Quantum ER system, with an entrance aperture of 5 mm. The lamella was oriented by using the Kikuchi bands to direct the electron beam down the [011] zone axis of PMN-PT.

Strain measurements. Platinized PMN-PT (derived from the master substrate used for sample A) was cleaned like sample A, using acetone and isopropanol, and then annealed in air at 150 °C for 30 min in order to mimic the final depolarizing heat treatment experienced by sample A. A biaxial strain gauge (KFG-1-120-D16-16 L1MS, Kyowa) was affixed using glue (CC-33A strain gauge cement, Kyowa) to the top electrode, with measurement axes along x and y. The initial values of resistance were used to identify zero strain along the two measurement directions. Strain-field data were obtained while applying bipolar triangular voltages at 6.01 Hz in the range ±10 kV cm⁻¹.

Macroscopic magnetization measurements. After completing all macroscopic magnetoelectric measurements, we obtained raw images of sample A after thermal demagnetization. The electrically remanent states A and B were interconverted in situ using a 300 V power supply that was connected via feedthroughs in the sample holder. Sample A was placed on beamline I06 at Diamond Light Source, where we used an Emlitec SPELEEM-III microscope to map secondary-electron emission arising from circularly polarized X-rays that were incident on the sample surface at a grazing angle of 16°. The probe depth was ~7 nm, and the lateral resolution in our 20 μm-diameter field of view was typically ~50 nm (corresponding to pixels that represent ~20 nm).

Raw images were acquired during 1 s exposure times with right (R) and left (L) circularly polarized light, both on the Mn L2,3 resonance at 645.5 eV, and off this resonance at 642 eV. The pixels in a raw XMCPE-PEEM image describe the XMCD absorption (\(I_L - I_R \)) and the spin polarization (\(I_L/I_R \)), which is related to the relative intensity for secondary-electron emission due to X-ray absorption on \(I_L(\\pm) \) and off \(I_R(\\pm) \) the Mn L2,3 resonance (the comparison between intensities obtained on and off resonance avoids the influence of any inhomogeneous illumination).

We averaged 40 raw XMCPE-PEEM images to obtain a single XMCPE-PEEM image for each of two orthogonal sample orientations. These two images were combined in order to yield vector maps of in-plane magnetization, which are not necessarily perfectly circular after correcting for drift and distortion via an affine transformation that was based on topographical images of X-ray absorption for each sample orientation. Each of these topographical images was obtained by averaging all raw images that had been obtained on resonance with left- and right-polarized light.

XAS images. X-ray absorption spectroscopy images are presented alongside XMCPE-PEEM images (Supplementary Note 11) by plotting \((I_L-I_R)/I_R \) and \((I_L/I_R) - (I_L/I_R)

Data availability. The source data underlying Figs. 1c–e, 2a, 3, 4a–d and 5c–f are provided in a Source Data file. All other relevant data are available from all corresponding authors on request. Source data are provided with this paper.

Received: 23 October 2019; Accepted: 2 June 2020; Published online: 24 June 2020

References
1. Tokura, Y. Orbital physics in transition-metal oxides. Science 288, 462–468 (2000).
2. Hwang, H. Y. et al. Emergent phenomena at oxide interfaces. Nat. Mater. 11, 103–113 (2012).
3. Weber, M. C. et al. Multiple strain-induced phase transitions in LaNiO3 thin films. Phys. Rev. B 94, 014118 (2016).
4. Mayashesha, T. & Morgan, D. Strain effects on oxygen vacancy formation energy in perovskites. Solid State Ionics 311, 105–117 (2017).
5. Aetukuri, N. B. et al. Control of the metal-insulator transition in vanadium dioxide by modifying orbital occupancy. Nat. Phys. 9, 661–666 (2013).
6. Pan, X. Q. et al. Enhancement of ferroelectricity in strained BaTiO3 thin films. Science 306, 1005–1009 (2004).
7. Konishi, Y. et al. Orbital-state-mediated phase-control of manganites. J. Phys. Condens. Matter 18, 3790–3793 (2006).
8. Hwang, J. et al. Tuning perovskite oxides by strain: electronic structure, properties, and functions in (electro)catalysis and ferroelectricity. Mater. Today 31, 100–118 (2019).
9. Petrie, J. R. et al. Enhanced bifunctional oxygen catalysis in strained LaNiO₃ perovskites. J. Am. Chem. Soc. 138, 2488–2491 (2016).
10. Patel, S. E. & Shah, E. R. Ultrahigh strain and piezoelectric behavior in relaxed ferroelectric single crystals. J. Appl. Phys. 82, 1804–1811 (1997).
11. Wang, Z., Wang, Y., Luo, H., Li, J. & Viehland, D. Crafting the strain state in epitaxial thin films: a case study of CoFe₂O₄ films on Pb(Mg₁/₃Nb₂/₃)O₃–PbTiO₃. Phys. Rev. B 90, 134103 (2014).
12. Wang, Z., Wu, W., Li, J. & Viehland, D. Volatile and nonvolatile magnetic easy-axis rotation in epitaxial ferromagnetic thin films on ferroelectric single crystal substrates. Appl. Phys. Lett. 103, 132909 (2013).
13. Gilbert, I. et al. Magnetic microscopy and simulation of strain-mediated control of magnetization in PMN-PT/Ni nanostructures. Appl. Phys. Lett. 109, 162404 (2016).
14. Matsuura, F., Tokura, Y. & Ohno, H. Control of magnetism by electric fields. Nat. Nanotechnol. 10, 209–220 (2015).
15. Fusil, S., Garcia, V., Barthélémy, A. & Bibes, M. Magnetoelectric devices for spintronics. Annu. Rev. Mater. Res. 44, 91–116 (2014).
16. Hu, J. M., Li, Z., Chen, L. Q. & Nan, C. W. High-density magnetoresistive random access memory operating at ultralow voltage at room temperature. Nat. Commun. 2, 553–558 (2011).
17. Eerenstein, W., Wiora, M., Prieto, J. L., Scott, J. F. & Mathur, N. D. Giant sharp and persistent converse magnetoelectric effects in multiferroic epitaxial heterostructures. Nat. Mater. 6, 348–351 (2007).
18. Thiele, C., Dörér, K., Bilani, O., Rödel, J. & Schultz, L. Influence of strain on the magnetization and magnetoelectric effect in La₀.₇Sr₀.₃MnO₃/PbMg₁/₃Nb₂/₃O₃/PMN-PT(001) (A=Sr,Ta). Phys. Rev. B 75, 054408 (2007).
19. Moya, X. et al. Giant and reversible extrinsic magnetocericular effects in La₀.₆₇Sr₀.₃₃MnO₃ films due to strain. Nat. Mater. 12, 52–58 (2013).
20. Dale, D., Fleet, A., Brock, J. D. & Suzuki, Y. Dynamically tuning properties of epitaxial colossal magnetoresistance thin films. Appl. Phys. Lett. 87, 3275 (2006).
21. Hsu, S. et al. Magneto-electrical transients by field-controlled strains in NdNiO₃/SrTiO₃/PMN-PT(001) heterostructures. Sci. Rep. 6, 22228 (2016).
22. Zhang, W. et al. Piezostrip-enhanced photo voltaic effects in BiFeO₃/ La₀.₆₇Sr₀.₃₃MnO₃/PMN-PT heterostructures. Nano Energy 18, 315–324 (2015).
23. Xu, H. et al. Strain-mediated converse magnetoelectric coupling in La₀.₇Sr₀.₃MnO₃/Pb(Mg₁/₃Nb₂/₃)O₃–PbTiO₃ multiferroic heterostructures. Cryst. Growth Des. 18, 5934–5939 (2018).
24. Kim, J. Y., Yao, L. & Van Dijken, S. Coherent piezoelectric strain transfer to thick epitaxial ferromagnetic films with large lattice mismatch. J. Phys. Condens. Matter. 25, 082205 (2013).
25. Park, J. H. et al. In-plane strain control of the magnetic remanence and cation–charge redistribution in CoFe₂O₄ thin film grown on a piezoelectric substrate. Phys. Rev. B 81, 134401 (2010).
26. Zhou, W. P. et al. Electric field manipulation of magnetic and transport properties in SrRuO₃/Pb(Mg₁/₃Nb₂/₃)O₃–PbTiO₃ heterostructure. Sci. Rep. 4, 6991 (2014).
27. Bilani-Zeneli, O. et al. SrTiO₃ on piezoelectric PMN-PT(001) for application of variable strain. J. Appl. Phys. 104, 054508 (2008).
28. Doss, S., Pollenier, L., Dobbelaere, P. D. E., Beys, C. & Daele, P. V. A. N. Epitaxial lift-off and its applications. Semicond. Sci. Technol. 8, 1124–1135 (1993).
29. Konagai, M., Sugimoto, M. & Takahashi, K. High efficiency GaAs thin film solar cells by peeled epitaxial technology. J. Cryst. Growth 45, 277–280 (1978).
30. Liu, Y., Huang, Y. & Duan, X. Van der Waals integration before and beyond two-dimensional materials. Nature 567, 323–333 (2019).
31. Cheng, C. W. et al. Epitaxial lift-off process for gallium arsenide substrate reuse and flexible electronics. Nat. Commun. 4, 1577 (2013).
32. Kim, Y. et al. Remote epitype through graphene and heterostructures enables two-dimensional water-soluble layers. Nat. Mater. 15, 1255–1260 (2016).
33. Chen, Z. et al. Freestanding crystalline YBa₂Cu₃O₇ thin films and heterostructures by etching of sacrificial water-soluble layers. Nat. Mater. 15, 1255–1260 (2016).
34. Wang, H. et al. Integration of both invariable and tunable microwave magnetisations in a single flexible La₀.₆₇Sr₀.₃₃MnO₃ thin film. ACS Appl. Mater. Interfaces 11, 22677–22683 (2019).
