On the cardinality of $S(n)$-spaces

Alexander V. Osipov

Krasovskii Institute of Mathematics and Mechanics, Ural Federal University,
Ural State University of Economics, Yekaterinburg, Russia

Abstract

In this paper we continue to study of properties of $S(n)$-spaces. We establish bounded on the cardinality of $S(n)$-spaces. Also we constructed the example of $S(n)$ not θ^n-Urysohn space for every $n \geq 2 \in \mathbb{N}$. This is the answer to the question of F.A. Basile, N. Carlson and J. Porter.

Keywords: Urysohn, $S(n)$-space, θ-closure, θ^n-closure, $S(n)$-closed, quasi-Menger number

2010 MSC: 54A25, 54D10, 54D25

1. Introduction

Velichko [26] introduced the notion of θ-closedness. Dikranjan and Giuli [9] introduced a more general notion θ^n-closure operator and developed a theory of $S(n)$-spaces, $S(n)$-closed and $S(n)$-θ-closed spaces. Many topologists actively applied this a general notion when studying nonregular Hausdorff spaces [3, 4, 6, 8, 9, 15, 16, 17, 19, 21, 24, 25]. In this paper we continue to study of properties of $S(n)$-spaces by applying notions θ^n-closure and θ^n_0-closure operators.

In Section 3 we introduce new cardinal functions: $sL_{\theta(n)}(X)$, $\theta(n)$-quasi-Menger number $qM_{\theta(n)}(X)$ and $s(n)$-quasi-Menger number $qM_{s(n)}(X)$ in order to extend some known cardinality bounded for Hausdorff and Urysohn spaces in the case of $S(n)$-spaces. In particular we prove the following:

- For every $S(2n)$-space X, $|X| \leq 2^{sL_{\theta(n)}(X)}$ (Theorem 3.6). For $n = 1$ we have Theorem 1 in [1].
For every $S(2n)$-space X, $|X| \leq 2^{qM_{\theta(n)}(X)\kappa_{\theta(n)}(X)}$ (Theorem 3.9). For $n = 1$ we have Theorem 3 in [1].

For every $S(2n)$-space X, $|X| \leq 2^{qM_{s(n)}(X)\kappa_{\theta(n)}(X)}$ (Theorem 3.21).

In Section 4 we construct the example of $S(n)$ not θ^n-Urysohn space for every $n \geq 2 \in \mathbb{N}$. This is the answer to the question of Basile, Carlson and Porter in [4]. Finally, we get the example of Lindelöf $S(n)$-closed not $S(n)$-θ-closed space for every $n \in \mathbb{N}$. This is the answer to the question in [22].

2. Main definitions and notation

Definition 2.1. ([9]). Suppose that X is a topological space, $M \subset X$, and $x \in X$. For each $n \in \mathbb{N}$, the θ^n-closure operator is defined as follows: $x \notin cl_{\theta^n}M$ if there exists a set of open neighborhoods $U_1 \subset U_2 \subset \ldots U_n$ of the point x such that $clU_i \subset U_{i+1}$ for $i = 1, 2, \ldots, n - 1$ and $clU_n \cap M = \emptyset$. For $n = 0$, we put $cl_{\theta^0}M = clM$.

For $n = 1$, this definition gives the θ-closure operator defined by Velichko ([26]).

A set M is said to be θ^n-closed if $M = cl_{\theta^n}M$. Similarly the θ^n-interior of M is defined and denoted by $Int_{\theta^n}M$, so $Int_{\theta^n}M = X \setminus cl_{\theta^n}(X \setminus M)$.

For any $n \in \mathbb{N}$, a point $x \in X$ is $S(n)$-separated from a subset M if $x \notin cl_{\theta^n}M$. For example, x is $S(0)$-separated from M if $x \notin \overline{M}$.

Definition 2.2. ([3]). Let n be a positive integer and X be a space.

- X is an $S(n)$-space (or X satisfies the $S(n)$ separation axiom) if any two different points in X are $S(n)$-separated;
- an open cover $\{U_\alpha\}$ of X is an $S(n)$-cover if every point of X is in the θ^n-interior of some U_α.

Obviously, any $S(0)$-space is T_0, any $S(1)$-space is Hausdorff, and any $S(2)$-space is Urysohn. In the class of topological $S(n)$-spaces, $S(n)$-closed ($S(n)$-θ-closed) spaces are defined as $S(n)$-spaces which are closed (respectively, θ-closed) in any ambient $S(n)$-space.

Definition 2.3. ([18]). An open set U is called an n-hull of a set A if there exists a family of open sets $U_1, U_2, \ldots, U_n = U$ such that $A \subset U_1$ and $clU_i \subset U_{i+1}$ for $i = 1, \ldots, n - 1$.

2
By a closed n-hull of a set A we mean the closure of any n-hull of A.

All necessary definitions in theory of $S(n)$-spaces can be founded in [9, 18, 20, 22, 24, 25].

3. On cardinality bounds for $S(n)$-spaces

In [2], the cardinal function $sL(X)$ was introduced as being the smallest cardinal κ such that for every $A \subset X$ and every open collection \mathcal{U}, with $\overline{A} \subset \cup \mathcal{U}$, there exists $\mathcal{V} \subset \mathcal{U}$ satisfying $|\mathcal{V}| \leq \kappa$ and $A \subset \overline{\cup \mathcal{V}}$. It was also shown that for a Hausdorff space X, $|X| \leq 2^{sL(X)\chi(X)}$.

O.T. Alas and Lj.D.R. Kočinac introduced the following definition.

Definition 3.1. ([1]) For a space X, $sL_\theta(X)$ is the smallest cardinal κ such that if $A \subset X$, \mathcal{U} is an open collection and $\operatorname{cl}_\theta(A) \subset \cup \mathcal{U}$, there is $\mathcal{V} \subset \mathcal{U}$ with $|\mathcal{V}| \leq \kappa$ and $A \subset \overline{\cup \mathcal{V}}$.

It is immediate that $sL_\theta(X) \leq sL(X)$ for every space X.

Definition 3.2. ([1]) For a Hausdorff space X, let $\kappa(X)$ be the smallest cardinal κ such that for each point $x \in X$, there is a collection \mathcal{V}_x of closed neighborhoods of x so that $|\mathcal{V}_x| \leq \kappa$ and if W is a closed neighborhood of x, then W contains a member of \mathcal{V}_x.

It was also shown that for a Urysohn space X, $|X| \leq 2^{sL_\theta(X)\kappa(X)}$ (Theorem 1 in [1]).

We introduce the following definitions.

Definition 3.3. For a space X and $n \in \mathbb{N}$, $sL_{\theta(n)}(X)$ is the smallest cardinal κ such that if $A \subset X$, \mathcal{U} is an open collection and $\operatorname{cl}_{\theta^n}(A) \subset \cup \mathcal{U}$, there is $\mathcal{V} \subset \mathcal{U}$ with $|\mathcal{V}| \leq \kappa$ and $A \subset \overline{\cup \mathcal{V}}$.

It is immediate that $sL_{\theta(n)}(X) \leq sL_{\theta(n-1)}(X) \leq \ldots \leq sL_{\theta}(X) \leq sL(X)$ for every space X.

Definition 3.4. For a space X and $n \in \mathbb{N}$, let $\kappa_{\theta(n)}(X)$ be the smallest cardinal κ such that for each point $x \in X$, there is a collection \mathcal{V}_x of closed n-hulls of x so that $|\mathcal{V}_x| \leq \kappa$ and if W is a closed n-hull of x, then W contains a member of \mathcal{V}_x.

We need the following lemma which can be easily shown.
Lemma 3.5. For a subset A of a $S(2n)$-space X, $|cl_{\theta}(A)| \leq |A|^{\kappa_{\theta}(X)}$.

Theorem 3.6. For every $S(2n)$-space X, $|X| \leq 2^{s_{\theta(n)}(X)\kappa_{\theta}(X)}$.

Proof. Applying the well-known method of Pol-Sapirovska-Arhangel’skii-Grizlov [2, 11, 23], let $\tau = s_{\theta(n)}(X)\kappa_{\theta(n)}(X)$ and for each $\xi \in X$ let B_ξ be a collection of closed n-hulls of ξ such that $|B_\xi| \leq \tau$ and every closed n-hull W of ξ contains a member of B_ξ.

We shall define an increasing sequence $\{A_\alpha : \alpha \in \tau^+\}$ of subsets of X and a sequence $\{U_\alpha : \alpha \in \tau^+\}$ of collections of open subsets of X such that:

1. $|A_\alpha| \leq 2^\tau$, $\forall \alpha < \tau^+$ and $A_\alpha \supset cl_{\theta}(\cup_{\alpha < \alpha} A_\beta)$, $\forall \alpha < \tau^+$;
2. $U_\alpha = \{Int(M) : M \in \cup\{B_\xi : \xi \in cl_{\theta}(\cup_{\alpha < \alpha} A_\beta)\}\}$, $\alpha < \tau^+$;
3. If $V \in [U_\alpha]^{\leq \tau}$ and $\overline{\cup V} \neq X$, then $A_{\alpha+1} \setminus \overline{\cup V} \neq \emptyset$, $\alpha < \tau^+$.

Suppose that the sets $A_\beta U_\beta$, satisfying (1)-(3), have been defined for all $\beta < \alpha < \tau^+$ and let us define A_α and U_α.

By Lemma $|cl_{\theta}(\cup_{\alpha < \alpha} A_\beta)| \leq |(\cup_{\alpha < \alpha} A_\beta)^{\kappa_{\theta}(X)}|$ and, hence, $cl_{\theta}(\cup_{\alpha < \alpha} A_\beta)$ has cardinality $\leq 2^\tau$, according to (2) U_α has cardinality $\leq 2^\tau$. For each $V \in [U_\alpha]^{\leq \tau}$ such that $X \setminus \overline{\cup V} \neq \emptyset$, fix a point $x_v \in X \setminus \overline{\cup V}$ and let $A_\alpha = cl_{\theta}(\cup_{\alpha < \alpha} A_\beta \cup \{x_v\})$.

Finally $A = \cup\{A_\alpha : \alpha < \tau^+\}$. Then $cl_{\theta}(A) = A$. Indeed, let $y \in X$ so that the closure of each n-hull of y intersects A; then for each $F \in B_y$ there is $\alpha_F \leq \tau^+$ so that $F \cap A_{\alpha_F} \neq \emptyset$. Since $|\{\alpha_F : F \in B_y\}| \leq \tau$, there is $\psi < \tau^+$, so that $\psi > \alpha_F$ for every $F \in B_y$ and $y \in cl_{\theta}(A_\psi) \cap A$.

Now it is enough to show that $A = X$. On the contrary, there is $y \in X \setminus A$, then there is $W \in B_y$ so that $W \cap A = \emptyset$. Since W is a closed n-hull of y, W contains 1-hull W_1 of y. For each $x \in A$ choose a closed n-hull $D_x \in B_x$ so that $D_x \subset X \setminus W_1$. Since $\{Int(D_x) : x \in A\}$ is an open cover of $A = cl_{\theta}(A)$, then there is $B \subset A$, so that $|B| \leq s_{\theta(n)}(X) \leq \tau$ and $A \subset \bigcup_{x \in B} Int(D_x)$.

Since $|B| \leq \tau$, there is $\beta < \tau^+$ so that $B \subset A_\beta$ and $V = \{Int(D_x) : x \in B\}$ is a convenient collection of open sets which appears at the step $\beta + 1$. Hence, $A_{\beta+1} \setminus \overline{\cup V} \neq \emptyset$ and we have a contradiction that $A \subset \bigcup_{x \in B} Int(D_x)$.

\[\square \]

Corollary 3.7. (Theorem 1 in [1]) For every Urysohn space X, $|X| \leq 2^{s_{\theta}(X)\kappa_{\theta}(X)}$.

Definition 3.8. (see [1] for $n = 1$) For a space X, the $\theta(n)$-quasi-Menger number $qM_{\theta(n)}(X)$ is the smallest cardinal number κ such that for every
closed subset A of X and every collection $\{U_\alpha : \alpha \leq \kappa\}$ of families of open subsets of X with $A \subset \bigcup_{\alpha<\kappa}(U_\alpha)$, there are finite subfamilies \mathcal{V}_α of U_α, $\alpha < \kappa$, such that $A \subset \bigcup_{\alpha<\kappa}cl_{\theta^n}(\mathcal{V}_\alpha)$.

It is immediate that $qM_{\theta(n)}(X) \leq qM_{\theta(n-1)}(X) \leq \ldots \leq qM_{\theta(1)}(X) = qM_\theta(X)$ for every space X.

Theorem 3.9. For every $S(2n)$-space X, $|X| \leq 2^{qM_{\theta(n)}(X)\kappa_{\theta(n)}(X)}$.

Proof. Let $qM_{\theta(n)}(X)\kappa_{\theta(n)}(X) = \kappa$ and let for each $x \in X \mathcal{B}_x$ be a collection of closed n-hulls of x such that $|\mathcal{B}_x| \leq \kappa$ and every closed n-hull of x contains a member of \mathcal{B}_x. We shall define an increasing sequence $\{F_\alpha : \alpha \in \kappa^+\}$ of subsets of X and a sequence $\{U_\alpha : \alpha \in \kappa^+\}$ of collections of open subsets of X satisfying the following conditions:

1. $|F_\alpha| \leq 2^\kappa$, for every $\alpha < \kappa^+$;
2. $\mathcal{U}_\alpha = \{Int(M) : M \in \mathcal{U}_x : x \in cl_{\theta^n}(\bigcup_{\beta<\alpha}F_\beta)\}, \alpha < \kappa^+$;
3. If $V \in [\mathcal{U}_x]^{<\kappa}$ and $\bigcup V \neq X$, then $F_\alpha \setminus \bigcup V \neq \emptyset$, $\alpha < \kappa^+$.

Suppose $\alpha < \kappa^+$ and the sets F_β and \mathcal{U}_β satisfying (1)-(3) are already defined for all $\beta < \alpha$. We are going to define F_α and \mathcal{U}_α.

Put $M_\alpha = cl_{\theta^n}(\bigcup_{\beta<\alpha}F_\beta)$. By the lemma, $|M_\alpha| \leq 2^\kappa$, hence, $|\mathcal{U}_\alpha| \leq 2^\kappa$. For every $V \in [\mathcal{U}_x]^{<\kappa}$ such that $\bigcup V \neq X$ take a point $x_V \in X \setminus \bigcup V$ and define F_α to be the θ^n-closure of the union of $\bigcup_{\beta<\alpha}F_\beta$ with the set of all these x_V. Then $|F_\alpha| \leq 2^\kappa$.

Let $F = \bigcup\{F_\alpha : \alpha < \kappa^+\}$. Then $|F| \leq 2^\kappa$ and the proof will be finished if we show that $cl_{\theta^n}(F) = X$. First, we show that $cl_{\theta^n}(F) = \bigcup_{\alpha<\kappa^+}cl_{\theta^n}(F_\alpha)$. Let $x \in cl_{\theta^n}(F)$. The closure of every n-hull of x intersects F, so that for each $B \in \mathcal{B}_x$ one can find some $\alpha_B < \kappa^+$ for which $B \cap F_{\alpha_B} \neq \emptyset$. Since κ^+ is a regular cardinal and $|\{\alpha_B : B \in \mathcal{B}_x\}| \leq \kappa$, there exists $\beta < \kappa^+$ such that $\beta > \alpha_B$ for every $B \in \mathcal{B}_x$ and $x \in cl_{\theta^n}(F_\beta) \subseteq F$. Note that $cl_{\theta^n}(F) = F$.

Suppose now $y \in X \setminus cl_{\theta^n}(F)$. Let $\mathcal{B}_y = \{B_y(\alpha) : \alpha < \kappa\}$. For each $\alpha < \kappa$ let \mathcal{W}_α be the collection of all members $W \in \bigcup\{B_x : x \in cl_{\theta^n}(F)\}$ such that $B_y(\alpha) \cap W = \emptyset$. Since X is a $S(2n)$-space, $cl_{\theta^n}(F) \subseteq \bigcup_{\alpha<\kappa}\bigcup\{int(W) : W \in \mathcal{W}_\alpha\}$. As $cl_{\theta^n}(F)$ is θ^n-closed, one can choose $\mathcal{V}_\alpha \in [\mathcal{W}_\alpha]^{<\omega}$ for each $\alpha < \kappa$ such that $cl_{\theta^n}(F) \subseteq \bigcup_{\alpha<\kappa}cl_{\theta^n}(\bigcup\{int(V) : V \in \mathcal{V}_\alpha\})$. Clearly, for every $\alpha < \kappa$, $\bigcup\{int(V) : V \in \mathcal{V}_\alpha\} \cap B_y(\alpha) = \emptyset$, hence, $y \notin cl_{\theta^n}(\bigcup\{int(V) : V \in \mathcal{V}_\alpha\})$. This means $y \notin \bigcup_{\alpha<\kappa}cl_{\theta^n}(\bigcup\{int(V) : V \in \mathcal{V}_\alpha\})$. There is a $\beta < \kappa^+$ such that all \mathcal{V}_α, $\alpha < \kappa$, are contained in \mathcal{U}_β. Then by (3), $F_{\beta+1} \setminus \bigcup_{\alpha<\kappa}cl_{\theta^n}(\bigcup\{int(V) : V \in \mathcal{V}_\alpha\}) \neq \emptyset$ which is a contradiction.

\square
Corollary 3.10. (Theorem 3 in [1]) For every Urysohn space X, $|X| \leq 2^{qM_{\theta}(X)\kappa_\theta(X)}$.

Remark 3.11. Similarly, we can define the θ^0_0-closure operator and obtain similar cardinality bounds for $S(2n-1)$-spaces.

Definition 3.12. Suppose that X is a topological space, $M \subset X$, and $x \in X$. For each $n \in \mathbb{N}$, the θ^0_0-closure operator is defined as follows: $x \notin cl_{\theta^0_0}M$ if there exists a set of open neighborhoods $U_1 \subset U_2 \subset ... U_n$ of the point x such that $clU_i \subset U_{i+1}$ for $i = 1, 2, ..., n-1$ and $U_n \cap M = \emptyset$.

Definition 3.13. For a space X and $n \in \mathbb{N}$, $sL_{\theta^0_0}(n)$ is the smallest cardinal κ such that if A is a θ^0_0-closed subset of X, U is an open cover of A, there is $V \subset U$ with $|V| \leq \kappa$ and $A \subset \bigcup V$.

Definition 3.14. For a space X and $n \in \mathbb{N}$, $\kappa_{\theta^0_0}(n)$ be the smallest cardinal κ such that for each point $x \in X$, there is a collection V_x of n-hulls of x so that $|V_x| \leq \kappa$ and if W is a n-hull of x, then W contains a member of V_x.

Lemma 3.15. For a subset A of a $S(2n-1)$-space X, $|cl_{\theta^0_0}A| \leq |A|^{\kappa_{\theta^0_0}(n)}$.

Theorem 3.16. If X is a $S(2n-1)$-space, then $|X| \leq 2^{sL_{\theta^0_0}(n)\kappa_{\theta^0_0}(n)}$.

Definition 3.17. For a space X, the $\theta_0(n)$-quasi-Menger number $qM_{\theta_0(n)}(X)$ is the smallest cardinal number κ such that for every closed subset A of X and every collection $\{U_\alpha : \alpha \leq \kappa\}$ of families of open subsets of X with $A \subset \bigcup_{\alpha < \kappa} U_\alpha$, there are finite subfamilies V_α of U_α, $\alpha < \kappa$, such that $A \subset \bigcup_{\alpha < \kappa} cl_{\theta_0}U_\alpha$.

Theorem 3.18. For every $S(2n-1)$-space X, $|X| \leq 2^{qM_{\theta_0(n)}(X)\kappa_{\theta_0(n)}}$.

In [25], L. Stramaccia defined the notion of $S(n)$-set.

Definition 3.19. (25) Let X be a topological space, M a subset of X.

- A cover $U = \{U_\alpha : \alpha \in \Lambda\}$ of M by open sets of X, is an $S(n)$-cover with respect to M, if $M \subset \bigcup \{Int_{\theta_0}U_\alpha : \alpha \in \Lambda\}$.
- M is an $S(n)$-set of X if every $S(n)$-cover with respect to M has a finite subcover.
Definition 3.20. For a space X and $n \in \mathbb{N}$, $sL_{\theta(n)}(X)$ is the smallest cardinal κ such that if A is a θ^n-closed subset of X, \mathcal{U} is an $S(n)$-cover with respect to A, there is $V \subset \mathcal{U}$ with $|V| \leq \kappa$ and $A \subset \bigcup V$.

Note that $sL_{\theta(n)}(X) \leq sL_{\theta(n)}(X)$ for every $n \in \mathbb{N}$.

Theorem 3.21. For every $S(2n)$-space X, $|X| \leq 2^{sL_{\theta(n)}(X)}$.

Proof. Note that in the proof of Theorem 3.6, $\{\text{Int}(D_x) : x \in A\}$ is an $S(n)$-cover with respect to A and $A = \text{cl}_{\theta(n)}(A)$, hence, in the same way as in Theorem 3.6, we obtain a complete proof. \qed

Theorem 3.22. (Stramaccia). Let X be $S(n+1)$-θ-closed, $n \in \mathbb{N}$, and let $M \subset X$. M is an $S(n)$-set of X whenever it is θ^n-closed in X.

Corollary 3.23. If X is a $S(n+1)$-θ-closed $S(2n)$-space, then $|X| \leq 2^{sL_{\theta(n)}(X)}$.

Proof. Note that in the proof of Theorem 3.6, $A = \text{cl}_{\theta(n)}(A)$, hence, by Theorem 3.22, A is $S(n)$-set of X and every $S(n)$-cover with respect to A has a finite subcover. By Theorem 3.6, we obtain a complete proof. \qed

Corollary 3.24. If X is a $S(2)$-θ-closed Urysohn space, then $|X| \leq 2^{sL_{\theta(n)}(X)}$.

4. Example

Definition 4.1. ([18]). A point x of X is called a $\theta^0(n)$-accumulation point (a $\theta(n)$-accumulation point) for an infinite set F if $|F \cap U| = |F|$ (respectively, $|F \cap U| = |F|$) for any n-hull U of the point x.

Note that, for $n = 1$, any $\theta^0(1)$-accumulation point is a complete accumulation point, and any $\theta(1)$-accumulation point is a θ-accumulation point.

Definition 4.2. ([18]). A topological space X is said to be weakly $S(n)$-θ-closed (weakly $S(n)$-closed) if any infinite subset of X with regular cardinality has a $\theta^0(n)$-accumulation (respectively, $\theta(n)$-accumulation) point.

Theorem 4.3. (Theorem 1 in [18]) Let X be an $S(n)$-θ-closed $S(n)$-space. Then X is weakly $S(n)$-θ-closed space.

Theorem 4.4. (Theorem 3.6 in [22]) Let X be a Lindelöf weakly $S(n)$-closed $S(n)$-space. Then X is a $S(n)$-closed space.
Definition 4.5. \([\square]\) Let \(X\) be a space. For \(n \in \mathbb{N}\), the \(n\)-\(\theta\)-closure of a subset \(A\) of \(X\) is \(\text{cl}_\theta^n = \text{cl}_\theta \text{cl}_\theta \ldots \text{cl}_\theta(A)\), \(n\)-times.

Definition 4.6. \([\square]\) A space \(X\) is a \(\theta^n\)-Urysohn, for every \(n \in \mathbb{N}\), if for every \(x, y \in X\) with \(x \neq y\), there exist open subsets \(U\) and \(V\) of \(X\) with \(x \in U\) and \(y \in V\) such that \(\text{cl}_\theta^n(U) \cap \text{cl}_\theta^n(V) = \emptyset\).

In \([\square]\), Basile, Carlson and Porter posed the question: Does there exist a \(S(n)\)-space not \(\theta^n\)-Urysohn space for every \(n \geq 2 \in \mathbb{N}\)?

In \([\square]\), Osipov posed the question: Does there exist a non \(S(n)\)-\(\theta\)-closed Lindelöf \(S(n)\)-closed space for every \(n \geq 2 \in \mathbb{N}\)?

The following example answers both of these questions.

Example 4.7. Fix \(n \in \mathbb{N}\). Let \(\mathbb{R} = \bigcup_{i=1}^{2n} A_i\) where \(A_i\)'s are pairwise disjoint, each \(A_i\) is dense in \(\mathbb{R}\), \(|A_i| = 2^n\) for \(i \neq 2\). Let \(A_{2n+1}\) be a copy of \(A_1\) and let \(X_{2n+1} = \bigcup_{i=1}^{2n+1} A_i\).

If \(a, b \in \mathbb{R}\) and \(a < b\), an open base for \(X_{2n+1}\) is generated by these families of sets:

- \((1)\) if \(i \in \mathbb{N}\) is odd and \(1 \leq i \leq 2n + 1\), \((a, b) \cap A_i\) is open,
- \((2)\) if \(i \in \mathbb{N}\) is even and \(2 \leq i \leq 2n\), \((a, b) \cap (A_{i-1} \cup A_i \cup A_{i+1})\) is open.

Let \(a, b, c, d \in \mathbb{R}\), \(U = (a, b) \cap A_1\). Then \(\text{cl}_\theta(U) = \text{cl}(U) \subseteq [a, b] \cap (A_1 \cup A_2)\).

Let \(V = (c, d) \cap (A_3 \cup A_4 \cup A_5)\). Then \(\text{cl}_\theta(V) = \text{cl}(V) = [c, d] \cap (A_2 \cup A_3 \cup A_4 \cup A_5 \cup A_6)\). It follows that \(\text{cl}_\theta^n(U) = [a, b] \cap (A_1 \cup A_2 \cup A_3 \cup A_4)\). By induction, \(\text{cl}_\theta^n(U) = [a, b] \cap (A_1 \cup A_2 \cup \ldots \cup A_{2n})\). Likewise, starting from the right-hand subspace \(A_{2n+1}\) with \(U = (a, b) \cap A_{2n+1}\), we have \(\text{cl}_\theta^n(U) = [a, b] \cap (A_{2n+1} \cup A_{2n} \cup \ldots \cup A_2)\).

We have the following consequences:

- \((a)\). \(X_{2n+1}\) is a \(S(n)\)-space. Every \(x, y \in X_{2n+1}\), \(x \neq y\), are \(\theta^n\)-separated.
 For \(x, y \in X_{2n+1}\), \(x \neq y\), there are \(n\)-hull \(V(x)\) of \(x\) and \(W(y)\) of \(y\) such that
 - if \(n\) is odd then \(V(x) \cap W(y) = \emptyset\), and
 - if \(n\) is even then \(V(x) \cap W(y) = \emptyset\).
- \((b)\). Every pair of points \(x, x'\) such that \(x \in A_1\), \(x' \in A_{2n+1}\) (\(x'\) is a copy of \(x\)) are not \(\theta^n\)-Urysohn separated. Let \(a, b, c, d \in \mathbb{R}\), \(x \in (a, b)\) and \(x' \in (c, d)\), \(U = (a, b) \cap (c, d)\). Then \(\text{cl}_\theta^n(U) = \overline{U} \cap (A_1 \cup A_2 \cup \ldots \cup A_{2n})\) and
\[cl_\theta^n(U) = \overline{U} \cap (A_{2n+1} \cup A_{2n} \cup \ldots \cup A_2). \] Thus, \(cl_\theta^n(U) \cap cl_\theta^n(U') \neq \emptyset; \) \(X_{2n+1} \) is not \(\theta^n \)-Urysohn.

(c). Consider the subspace \(Z = [0,1] \cap (\bigcup_{i=1}^{2n} A_i) \) of \(X_{2n+1} \).

Then \(Z \) is a Lindelöf \(S(n) \)-closed space, but it is not \(S(n) \)-\(\theta \)-closed space.

1. Since \([0,1] \cap A_2 \) is subspace of \(\mathbb{R} \) and \(\mathbb{R} \) is hereditarily Lindelöf, then \([0,1] \cap A_2 \) is Lindelöf and, hence, \(Z \) is Lindelöf.

2. Let \(a \in [0,1] \cap A_1 \). Consider a sequence \(\{a_m : m \in \mathbb{N}\} \) such that \(a_m \in [0,1] \cap A_{2n} \) for every \(m \in \mathbb{N} \) and \(\{a_m\}_{m \in \mathbb{N}} \) converges to \(a \) \((m \mapsto \infty)\) in natural topology of \([0,1] \). Then there is a \(n \)-hull \(U(a) \) of the point \(a \) such that \(U(a) \cap \{a_n : n \in \mathbb{N}\} = \emptyset \). It follows that the set \(\{a_n : n \in \mathbb{N}\} \) has not a \(\theta^0(n) \)-accumulation point. Hence, by Theorem 4.3 \(Z \) is not \(S(n) \)-\(\theta \)-closed space.

3. Note that \(Z \) is weakly \(S(n) \)-closed space. Then, by Theorem 4.4 \(Z \) is a \(S(n) \)-closed space.

References

[1] O.T. Alas, Lj.D.R. Kočinac, More cardinal inequalities on Urysohn spaces, Math.Balkanica – new series Vol.14., Fasc.3-4., (2000), 247–252.

[2] A. V. Arhangel’skii, A generic theorem in the theory of cardinal invariants of topological spaces, Comment. Math. Univ. Carolinae, 36, (1995), 303-325.

[3] F.A. Basile, M. Bonanzinga and N. Carlson, Variations on known and recent cardinality bounds, Topology Appl., 240, (2018), 228–237.

[4] F.A. Basile, N. Carlson and J. Porter, On cardinality bounds for \(\theta^n \)-Urysohn spaces, arXiv: 1808.06712

[5] A. Bella, F. Cammarota, On the cardinality of Urysohn spaces, Canad. Math. Bull. Vol. 31(2), (1988), 153–158.

[6] A. Bella, N. Carlson, On cardinality bounds involving the weak Lindelöf degree, Quaestiones Mathematicae, Vol. 41, issue 1, (2018), 99–113.

[7] M.P. Berri, J.R. Porter and R.M. Stephenson, A survey of minimal topological spaces, General Topology and its Relations to Modern Analysis and Algebra – Proc.Kanpur Top.Conf. (Academic Press,New York).– 1970.– P. 93–114.
[8] F. Cammaroto, A. Catalioto and J. Porter, *On the cardinality of Urysohn spaces*, Topology Appl., 160, issue 14, (2013), 1862–1869.

[9] D. Dikranjan and E. Giuli, *S(n)-θ-closed spaces*, Topology Appl., 28, (1988), 59-74.

[10] R. Engelking, *General Topology*, Heldermann-Verlag, Berlin, (1989).

[11] A. A. Gryzlov, *H-closed spaces and compactness-type properties*, Candidates Dissertation in Physics and Mathematics, Sverdlovsk (1973).

[12] T. Hamlett, *H-closed spaces and the associated θ-convergence space*, Math. Chronicle, 8, 83-88 (1979).

[13] H. Herrlich, *T_θ-Abgeschlossenheit und T_θ-Minimalität*, Math. Z., 88, 285-294 (1965).

[14] D. Jankovic, On some separation axioms and θ-closure, Mat. Vesnik, 4, No. 17, 439-449 (1980).

[15] S. Jiang, I. Reilly, and S. Wang, *Some properties of S(n)-θ-closed spaces*, Topology Appl., 96, (1999), 23-29.

[16] Lj.D.R. Kočinac, *On the cardinality of Urysohn spaces*, Q & A, General Topology, 13, n.2, (1995), 211–216.

[17] A. V. Osipov, *An example of a nonfeebly compact product of U-θ-closed spaces*, Proc. Steklov Inst. Math., Suppl. 2, 186-188 (2001).

[18] A. V. Osipov, *Different kinds of closedness in S(n)-spaces*, Proc. Steklov Inst. Math., Suppl. 1, 155-160 (2003).

[19] A. V. Osipov, *Weakly H-closed spaces*, Proc. Steklov Inst. Math., Suppl. 1, 15-17 (2004).

[20] A. V. Osipov, *Nearly H-closed spaces*, Journal of Mathematical Sciences, Vol. 155, No.4, (2008), 626–633.

[21] A. V. Osipov, *On the multiplicativity of CFC-spaces*, Mathematical Notes, Vol. 93, issue 1-2, (2013), 158–162.

[22] A. V. Osipov, *Some properties of minimal S(α) and S(α)FC spaces*, Topology Proceedings Vol. 50, (2017), 79–86.
[23] R. Pol, *Short proofs of two theorems on cardinality of topological spaces*, Bull. Acad. Pol. Sci. Ser. Math., v.22, (1974), 1245–1249.

[24] J. Porter and C. Votaw, *$S(\alpha)$-spaces and regular Hausdorff extensions*, Pac. J. Math., 45, 327-345 (1973).

[25] L. Stramaccia, *$S(n)$-spaces and H-sets*, Comment. Math. Univ. Carolinae, 29, No. 2, 221-226 (1988).

[26] N. V. Velichko, *H-closed topological spaces*, Mat. Sb., 70, (1966), 98-112.