On Lie algebra modules which are modules over semisimple group schemes

Micah Loverro and Adrian Vasiu

April 24, 2023

Abstract. Let p be a prime. Given a split semisimple group scheme G over a normal integral domain R which is a faithfully flat \mathbb{Z}_p-algebra, we classify all finite dimensional representations V of the fiber G_K of G over $K := \text{Frac}(R)$ with the property that the set of lattices of V with respect to R which are G-modules is as well the set of lattices of V with respect to R which are Lie(G)-modules. We apply this classification to get a general criterion of extensions of homomorphisms between reductive group schemes over Spec K to homomorphisms between reductive group schemes over Spec R. We also show that for a simply connected semisimple group scheme over a reduced \mathbb{Q}-algebra, the category of its representations is equivalent to the category of representations of its Lie algebra.

Key words: category, lattice, Lie algebra, representation, ring, semisimple group scheme

MSC 2020: 14L15, 14L17, 17B10, 17B20, 17B22, 17B45

1 Introduction

Let R be a commutative ring with $1 \neq 0$.

Let $r \in \mathbb{N}$. Let G be a semisimple group scheme over Spec R of rank r: it is an affine smooth group scheme over Spec R whose geometric fibers are semisimple groups over algebraically closed fields which admit maximal tori of dimension r. We recall that G is called split if it has a maximal torus
isomorphic to $G^m_{t_m, R}$. If R is connected, let $d \in \mathbb{N}$ be the relative dimension of G over $\text{Spec} \, R$.

By a G-module we mean a finitely generated projective R-module M endowed with a homomorphism $\rho_M : G \to \mathbf{Aut}_M$, where \mathbf{Aut}_M is the affine smooth group scheme over $\text{Spec} \, R$ of linear automorphisms of M: if S is an R-algebra, then

$$\mathbf{Aut}_M(S) := \{ f : S \otimes_R M \to S \otimes_R M | f \text{ is a bijective } S\text{-linear map} \}.$$

Thus, if $M = R^n$ for some $n \in \mathbb{N} \cup \{0\}$, then $\mathbf{Aut}_M = \mathbf{GL}_{n, R}$ is a general linear group scheme over $\text{Spec} \, R$. If P is another G-module, then by a G-module map between M and P we mean an R-linear map $f : M \to P$ such that for each R-algebra S (equivalently, for each smooth R-algebra S) and every $g \in G(S)$, we have an identity

$$1_S \otimes f \circ \rho_M(S)(g) = \rho_P(S)(g) \circ 1_S \otimes f : S \otimes_R M \to S \otimes_R P.$$ (1)

Let $\text{Rep}(G)$ be the category of G-modules.

By a g-module we mean a finitely generated projective R-module L equipped with a Lie algebra homomorphism $\varrho_L : g \to \mathfrak{gl}_R(L)$, where

$$\mathfrak{gl}_R(L) := \{ e : L \to L | e \text{ is an } R\text{-linear map} \}$$

is equipped with the usual Lie bracket $[,]$: if $e_1, e_2 \in \mathfrak{gl}_R(L)$, then we have $[e_1, e_2] := e_1 \circ e_2 - e_2 \circ e_1$. Thus $\mathfrak{gl}_R(L)$ is the Lie algebra over R which is associated to the R-algebra $\text{End}_R(L)$ and is identified with $\text{Lie}(\mathbf{Aut}_L)$. If J is another g-module, then by a g-module map between L and J we mean an R-linear map $f : L \to J$ such that for all $a \in g$ we have an identity $f \circ \varrho_L(a) = \varrho_J(a) \circ f : L \to J$. Let $\text{Rep}(g)$ be the category of g-modules.

We have a natural functor

$$\text{Lie} = \text{Lie}_G : \text{Rep}(G) \to \text{Rep}(g)$$ (2)

2
that maps a G-module M defined by the representation $\rho_M : G \to \text{Aut}_M$ to

$$\varrho_M := \text{Lie}(\rho_M) : \mathfrak{g} = \text{Lie}(G) \to \text{Lie}(\text{Aut}_M) = \mathfrak{g}_M.$$

Note the typesetting difference: $\text{Lie}(G) = \mathfrak{g}$ is a Lie algebra over R, $\text{Lie} = \text{Lie}_G$ is a functor, and $\text{Lie}(M) = \text{Lie}_G(M)$ is a representation of $\text{Lie}(G) = \mathfrak{g}$.

If R is a field and M is a simple G-module, then the irreducible representation $\rho_M : G \to \text{Aut}_M$ is called \textit{infinitesimally irreducible} if the \mathfrak{g}-module M is simple as well, see [1], Sect. 6; one also calls M an infinitesimally simple G-module.

One would like first to classify all the \mathfrak{g}-modules which are G-modules, i.e., are isomorphic to objects in the image of the functor (2), and second to apply such a classification to obtain extension results from $\text{Spec } K$ to $\text{Spec } R$ for homomorphisms between reductive group schemes that are in line with the extension results obtained in [21], Subsect. 4.3, [22] and [23].

Let $K := N^{-1}_R R$ be the total quotient ring of R, where N_R is the multiplicative set of nonzero divisors of R. If R is an integral domain, then K is a field and we will denote its characteristic by $\text{char}(K)$.

Let p be a prime. We are mainly interested in the following two situations:

(i) The ring R is a \mathbb{Q}–algebra.

(ii) The ring R is a faithfully flat $\mathbb{Z}(p)$-algebra (i.e., K is a \mathbb{Q}–algebra and for each point $z \in \text{Spec } R$, its residue field k_z has characteristic either 0 or p, and there exist such points z with $\text{char}(k_z) = p$).

In the situation (i) we have the following classical result which in essence is well-known (for instance, when $R = K$ is a field see [15] and in the general case see [18], Exp. XXIV, Prop. 7.3.1 which implies the surjectivity of the functor (2) on objects without the reduced assumption):

\textbf{Theorem 1.} We assume that R is a reduced \mathbb{Q}–algebra and G is simply connected. Then the functor (2) is an equivalence of categories.

The goal of this paper is to obtain variants of Theorem 1 for the situation (ii). As Theorem 1 fails in the situation (ii) (see Theorem 2 below), one is led to consider a fixed nonzero G_K-module V (so, if R is an integral domain, V is a finite dimensional K-vector space) and to study the natural map

$$\text{Lie} = \text{Lie}_G : \text{Lat}_G(V) \to \text{Lat}_\mathfrak{g}(V)$$ (3)
induced by the functor \(\text{Lie} \) and denoted in the same way, where \(\text{Lat}_{G}(V) \) (resp. \(\text{Lat}_{\mathfrak{g}}(V) \)) is the set of \textit{lattices} of \(V \) with respect to \(R \) which are \(G \)-modules (resp. \(\mathfrak{g} \)-modules). Here and in what follows, by a lattice of \(V \) with respect to \(R \) we mean a \(\mathcal{R} \)-submodule \(L \) of \(V \) which is a finitely generated \(\mathcal{R} \)-module and for which the injective \(\mathbb{K} \)-linear map \(\mathbb{K} \otimes_{\mathcal{R}} L \to V \) is a bijection. If \(L \) is a \(G \)-module, then \(\text{Lie}(L) \) is \(L \) but viewed as a \(\mathfrak{g} \)-module via the functor \(\text{Lie} \).

Let \(G_{\text{sc}} \) be the simply connected semisimple group scheme cover of \(G \); so \(V \) is also a \(G_{\text{sc}} \)-module.

To study the map (3) we will assume that \(R \) is an integral domain and that char(\(K \)) = 0. Let \(K \) be an algebraic closure of \(K \). We recall from [18], Exp. XXV, Thm. 1.1 that there exists a unique (up to ordering) product decomposition \(G_{\text{sc}} \approx \prod_{i=1}^{n} G_{i} \) such that each \(G_{i} \) has a simple adjoint group scheme \(G_{i}^{\text{ad}} := G_{i}/Z(G_{i}) \) over Spec \(K \), where \(Z(G_{i}) \) is the center of \(G_{i} \); here \(n \in \mathbb{N} \).

For references to the standard facts recalled in this paragraph see Subsection 2.1. As char(\(K \)) = 0, it is well-known that the \(G_{\text{sc}} \)-module \(\mathbb{K} \otimes_{\mathcal{R}} V \) is semisimple and hence we write it as a direct sum \(\mathbb{K} \otimes_{\mathcal{R}} V = \bigoplus_{j=1}^{m} \mathbb{V}_{j} \) of simple \(G_{\text{sc}} \)-modules; here \(m \in \mathbb{N} \). Each \(\mathbb{V}_{j} \) admits a tensor product decomposition \(\mathbb{V}_{j} = \bigotimes_{i=1}^{n} \mathbb{V}_{ij} \), where every \(\mathbb{V}_{ij} \) is a simple \(G_{i} \)-module and where every element \((g_{1}, \ldots, g_{n}) \in G_{\text{sc}}(\mathbb{K}) = \prod_{i=1}^{n} G_{i}(\mathbb{K}) \) acts on \(\mathbb{V}_{j} \) in the usual tensorial way: for all \(v_{1j}, \ldots, v_{nj} \in \mathbb{V}_{nj} \), it maps \(v_{1j} \otimes v_{2j} \otimes \cdots \otimes v_{nj} \) to \(g_{1}(v_{1j}) \otimes g_{2}(v_{2j}) \otimes \cdots \otimes g_{n}(v_{nj}) \). Moreover, for all \(i \in \{1, \ldots, n\} \), if a maximal torus \(T_{i} \) of a Borel subgroup \(B_{i} \) of \(G_{\text{sc}} \) is given and if \(r_{i} \in \mathbb{N} \) is the dimension of \(T_{i} \), then to \(B_{i} \) corresponds a basis \(\omega_{i,1}, \ldots, \omega_{i,r_{i}} \) of dominant weights of the group of characters \(X^{*}(T_{i}) := \text{Hom}(T_{i}, \mathbb{G}_{m}) \simeq \mathbb{Z}^{r_{i}} \).
and the representation \overline{V}_{ij} is uniquely determined by its highest weight
\[
w_{ij} = \sum_{l=1}^{r_i} c_{ijl} \omega_{i,l},
\]
where each $c_{ijl} \in \mathbb{Z}_{\geq 0}$. We have $w_{ij} = 0$, i.e., $c_{ij1} = \cdots = c_{ijr_i} = 0$, if and only if \overline{V}_{ij} is a trivial simple $G_{i,K}^{sc}$-module (equivalently, $\dim_K(\overline{V}_{ij}) = 1$).

Definition 1. We say that the nonzero G_K-module (or $G_{i,K}^{sc}$-module) V is p-latticed if for each $(i, j) \in \{1, \ldots, n\} \times \{1, \ldots, m\}$, for every $l \in \{1, \ldots, r_i\}$ we have $c_{ijl} \in \{0, \ldots, p-1\}$.

Theorem 2. We assume that R is a normal integral domain which is a faithfully flat $\mathbb{Z}(p)$-algebra. We consider the following two statements on the fixed nonzero G_K-module V:

1. The map $\text{Lie}: \text{Lat}_{G}(V) \to \text{Lat}_{q}(V)$ is a bijection.
2. The G_K-module is p-latticed.

Then the following three properties hold:

(a) The implication 2 \Rightarrow 1 always holds.

(b) We assume that there exists a discrete valuation ring D of mixed characteristic $(0, p)$ which is a subring of R such that G is the pullback of a semisimple group scheme G_D over $\text{Spec} D$ and the G_K-module V is the pullback of a $G_{\text{Frac}(D)}$-module $V_{\text{Frac}(D)}$, where $\text{Frac}(D) = D[1/p]$ is the subfield of K which is the field of fractions of D (for instance, this holds if G is split). Then the implication 1 \Rightarrow 2 holds.

(c) If G is split, then we have an equivalence 1 \Leftrightarrow 2.

Example 1. We assume that $G = \text{SL}_2, R$ and R is as in Theorem 2. Then the map (3) is a bijection if and only if the G_K-module V is a direct sum of simple G_K-modules of dimension at most p.

For instance, suppose $R = \mathbb{Z}(p)$ and V is simple of dimension $p+1$, so it is the p-th symmetric power $V = \mathbb{Q}x^p \oplus \mathbb{Q}x^{p-1}y \oplus \cdots \oplus \mathbb{Q}y^p$ of the standard $G_{\mathbb{Q}}$-module $\mathbb{Q}x \oplus \mathbb{Q}y$ of rank 2 (here x and y are viewed as indeterminates). Then the map (3) is not surjective: consider the lattice
\[
L := \mathbb{Z}(p)x^p \oplus \mathbb{Z}(p)x^{p-1}y \oplus \cdots \oplus \mathbb{Z}(p)xy^{p-1} \oplus \frac{1}{p}\mathbb{Z}(p)(x^p + y^p)
\]
of V with respect to \mathbb{Z}_p. Let T be the split torus of G which normalizes both $\mathbb{Z}_p \cdot x$ and $\mathbb{Z}_p \cdot y$; it has rank 1, i.e., $T \simeq \mathbb{G}_m \cdot \mathbb{Z}_p$. The elements of the standard \mathbb{Z}_p-basis of \mathfrak{g} map (x, y) to $(y, 0)$ or $(0, x)$ or $(x, -y)$ (respectively) and thus map $\frac{1}{p}(x^p + y^p)$ to elements of L. This implies that L is a \mathfrak{g}-module. But L is not a T-module and thus it is also not a G-module.

The highest weights of Definition 1 show up in the works of Curtis and Borel (see [1], Sects. 6 and 7; see also [6] and [7] for original results under certain restrictions such as $p \geq 7$): they are precisely all the highest weights which in characteristic p define infinitesimally irreducible representations (see [1], Thms. 6.4 and 7.5 (iii)).

Theorem 1 is proved in Section 3 based on the review of Section 2 that recalls classical properties of roots and of closed subgroup schemes of semisimple group schemes over Spec \mathbb{R}. Theorem 2 is proved in Section 5 based on the proof of Theorem 1, on the mentioned works of Curtis and Borel, and on the following general result proved in Section 4.

Theorem 3. Let H be a semisimple group over an algebraically closed field κ. Let P be an H-module such that the $\text{Lie}(H)$-module P is semisimple of the same length as the H-module P. Then the H-module P is itself semisimple.

The following example shows that the “same length” assumption of Theorem 3 is always necessary in positive characteristic.

Example 2. We assume $\text{char}(\kappa) = p$. Let $0 \rightarrow L_1 \rightarrow Q \rightarrow L_2 \rightarrow 0$ be a nonsplit short exact sequence of H-modules with L_1 and L_2 simple and $\dim_\kappa(Q) > 2$ (see [12], Part 2, Ch. 7, Sects. 7.1 and 7.2 for general examples). For an H-module V, we consider the H-module $V^{(p)}$ defined by the representation which is the composite of the surjective Frobenius homomorphism $H \rightarrow H^{(p)}$ and the pullback $H^{(p)} \rightarrow \text{GL}_V^{(p)} = \text{GL}_{V^{(p)}}$ via the Frobenius endomorphism Frob of Spec κ of the representation defining V; here $V^{(p)} := \kappa \otimes_{\text{Frob}, \kappa} V$. Let $P := Q^{(p)}$. Then P is a trivial (hence semisimple) $\text{Lie}(H)$-module of length $\dim_\kappa(Q) > 2$. But P is an indecomposable H-module of length 2; this is so as $L_1^{(p)}$ and $L_2^{(p)}$ are simple H-modules and the short exact sequence $0 \rightarrow L_1^{(p)} \rightarrow P \rightarrow L_2^{(p)} \rightarrow 0$ of H-modules is nonsplit (see [12], Part 2, Ch. 10, Prop. 10.16 for the injectivity of the natural pullback map $\text{Ext}_H^1(L_1, L_2) \rightarrow \text{Ext}_H^1(L_1^{(p)}, L_2^{(p)})$).

By combining Theorem 2 with [23], in Section 6 we prove the following theorem which is an application used in [24] to simplify the arguments of [21].
Subsect. 4.3 on extending homomorphisms between reductive group schemes in contexts related to integral models of Shimura varieties of Hodge type.

Theorem 4. We assume that R is a normal integral domain and a faithfully flat \mathbb{Z}_p-algebra. Let G_K be a simply connected semisimple group over $\text{Spec } K$. Let V be a G_K-module which is p-latticed and let $H_K := \text{Im}(G_K \to \text{Aut}_V)$. Let M be a lattice of V with respect to R such that there exists a perfect symmetric bilinear form $B : M \times M \to R$ which, over K, it is fixed by H_K and whose restriction to $\text{Lie}(H_K) \cap \text{End}_R(M)$ is a unit of R times the Killing form (thus we have $p > 2$, see [23], Prop. 3.5 (a)). Then the schematic closure of the image H_K in Aut_M is a semisimple group scheme H over $\text{Spec } R$ whose simply connected semisimple group scheme cover G extends G_K and has the same Lie algebra $\text{Lie}(H_K) \cap \mathfrak{g}l_M$ as either H or its adjoint G^{ad} (i.e., the isogenies $G \to H \to H^{\text{ad}} = G^{\text{ad}}$ are étale).

Theorem 2 (c) was first obtained by the first author in the case when R is noetherian while he was a graduate student.

2 A review

In this section we assume that $G = G^{\text{sc}}$ is simply connected and split and that R is connected.

2.1 The split context

In this subsection we assume that K is a field with $\text{char}(K) = 0$. Thus a group scheme \triangle of finite type over $\text{Spec } K$ is smooth (for Cartier’s Theorem, for instance, see [3], Ch. II, Sect. 6, Thm. of Subsect. 1.1). Moreover, \triangle is a (not necessarily connected) reductive group if and only if \triangle is linearly reductive, i.e., each \triangle-module is semisimple (completely reducible), see [3], p. 178. Similarly, if \triangle is semisimple, then its Lie algebra $\text{Lie}(\triangle)$ is semisimple (this can be easily checked over \overline{K}), and Weyl’s complete reducibility theorem implies that each $\text{Lie}(\triangle)$-module is semisimple (see [4], Ch. I, Subsect. 6.2, Thm. 2). Thus the categories $\text{Rep}(G_K)$ and $\text{Rep}(K \otimes_R \mathfrak{g}) = \text{Rep}(\text{Lie}(G_K))$ are semisimple abelian categories.

Let T_K be a maximal torus of G_K which is split. Let B_K be a Borel subgroup of G_K that contains T_K. The Lie algebra $\text{Lie}(T_K)$ is a split Cartan subalgebra of $K \otimes_R \mathfrak{g}$ and thus $K \otimes_R \mathfrak{g}$ is also split. Moreover, $\text{Lie}(B_K)$ is
a Borel subalgebra of $K \otimes_R g$. The simple G_K-modules are classified by the dominant weights of T_K with respect to B_K (see [12], Part 2, Ch. 2, Cor. 2.7) and the simple $K \otimes_R g$-modules are classified by the dominant weights of $\text{Lie}(T_K)$ with respect to $\text{Lie}(B_K)$ (see [5], Ch. VIII, Sect. 7, Cor. 2).

2.2 Roots

For centers of semisimple group schemes see [18], Exp. XXII, Cor. 4.1.7.

As R is connected, from [18], Exp. XXV, Thm. 1.1 we get that:

- There exists a unique (up to isomorphism) simply connected split semisimple group G_Z over $\text{Spec } \mathbb{Z}$ such that $G = \text{Spec } R \times_{\text{Spec } \mathbb{Z}} G_Z$.
- There exists a unique direct sum decomposition $G_Z = \prod_{i=1}^{n} G_{i,Z}$, such that each $G_{i,Z}$ has an adjoint group scheme $G_{i,\text{ad},Z} := G_{i,Z}/Z(G_{i,Z})$ whose geometric fibers are simple, where $Z(G_{i,Z})$ is the center of $G_{i,Z}$.

Defining $G_i := \text{Spec } R \times_{\text{Spec } \mathbb{Z}} G_{i,Z}$, we get a product decomposition

$$G = \prod_{i=1}^{n} G_i$$

over $\text{Spec } R$ and a product decomposition $G_K = \prod_{i=1}^{n} G_{i,K}$ over $\text{Spec } K$.

For $i \in \{1, \ldots, n\}$ let $T_{i,Z}$ be a (split) maximal torus of a Borel subgroup scheme $B_{i,Z}$ of $G_{i,Z}$, let $T_i := \text{Spec } R \times_{\text{Spec } \mathbb{Z}} T_{i,Z}$ and $B_i := \text{Spec } R \times_{\text{Spec } \mathbb{Z}} B_{i,Z}$. Therefore, $T := \prod_{i=1}^{n} T_i$ is a maximal torus of the Borel subgroup scheme $B := \prod_{i=1}^{n} B_i$ of G. Let B_{op} be the Borel subgroup scheme of G which is the opposite of B with respect to T.

We identify $G_{m,Z} = \text{Spec } \mathbb{Z}[x, x^{-1}]$ and $\text{Lie}(G_{m,Z}) = \mathbb{Z}$ in such a way that $1 \in \mathbb{Z} = \text{Lie}(G_{m,Z})$ gets identified with the \mathbb{Z}-linear map

$$\Omega^1_{\mathbb{Z}[x,x^{-1}]/\mathbb{Z}} = \mathbb{Z} \frac{dx}{x} \to \mathbb{Z}$$

that maps $\frac{dx}{x}$ to 1. We also identify $\text{Lie}(G_{m,R}) = R \otimes_{\mathbb{Z}} \text{Lie}(G_{m,Z}) = R$.

We can assume that, if K is a field, then the choices made in Section 1 and Subsection 2.1 are compatible with our notation, i.e., for each $i \in \{1, \ldots, n\}$ the maximal torus $T_{i,K}$ and the Borel subgroup $B_{i,K}$ of $G_{i,K}$ are indeed the extensions to $\text{Spec } K$ of T_i and B_i (respectively) and $T_K = \text{Spec } K \times_{\text{Spec } \mathbb{Z}} T_Z$ and $B_K = \text{Spec } K \times_{\text{Spec } \mathbb{Z}} B_Z$. As such, we identify

$$\mathcal{W}_{G_i} := X^*(T_{i,K}) = X^*(T_{i,Z}) = X^*(T_i) := \text{Hom}(T_i, G_{m,R}) \simeq \mathbb{Z}^{r_t},$$

8
\[W_G := X^*(T_R) = X^*(T_K) = X^*(T) = \text{Hom}(T, \mathbb{G}_{m,R}) = \bigoplus_{i=1}^{n} W_{G_i} \]
and we speak about the monoid of dominant weights
\[W_{G}^{\geq 0} := \bigoplus_{i=1}^{n} (\bigoplus_{j=1}^{r_i} \mathbb{Z}_{\geq 0} \omega_{ij}) \subset \bigoplus_{i=1}^{n} W_{G_i} = W_G \]
of \(G \) with respect to the split maximal torus \(T \) of the Borel subgroup scheme \(B \) of \(G \).

We recall that, if \(K \) is a field, then the (integral) weights of \(K \otimes \mathbb{R} \mathfrak{g} \) are the elements of
\[\mathcal{W}_g := \text{Hom}_{\mathbb{Z}}(\text{Lie}(T_\mathbb{Z}), \text{Lie}(\mathbb{G}_{m,\mathbb{Z}})) = \text{Hom}_{\mathbb{Z}}(\text{Lie}(T_\mathbb{Z}), \mathbb{Z}) \]
inside
\[\text{Hom}_K(\text{Lie}(T_K), \text{Lie}(\mathbb{G}_{m,K})) = \text{Hom}_K(\text{Lie}(T_K), K), \]
with the dominant weights \(\mathcal{W}_g^{\geq 0} \) being those with respect to \(B_K \). We have a bijection
\[\mathcal{L} : \mathcal{W}_G \to \mathcal{W}_g \]
given by the rule \(w \to \text{Lie}_{T_K}(w) \) which induces a bijection \(\mathcal{L} : \mathcal{W}_G^{\geq 0} \to \mathcal{W}_g^{\geq 0} \) denoted in the same way.

Let \(G_\mathbb{Q} := \text{Spec} \mathbb{Q} \times_{\text{Spec} \mathbb{Z}} G_\mathbb{Z} \). If \(K \) is a field, as the abelian categories \(\text{Rep}(G_K) \) and \(\text{Rep}(G_\mathbb{Q}) \) are semisimple, from the classification of simple \(G_K \)-modules or \(G_\mathbb{Q} \)-modules in terms of dominant weights (see [12], Part II, Ch. 2, Cor. 2.7), we get that these simple modules are absolutely simple (see [12], Part II, Ch. 2, Cor. 2.9). Thus, if \(K \) is a field, then the pullback functor
\[K \otimes \mathbb{Q} \text{Rep}(G_\mathbb{Q}) \to \text{Rep}(G_K) \]
is an equivalence between \(K \)-linear semisimple abelian categories. In particular, for each \(G_K \)-module \(V \), there exists a unique (up to isomorphism) \(G_\mathbb{Q} \)-module \(V_\mathbb{Q} \) such that the \(G_K \)-modules \(V \) and \(K \otimes \mathbb{Q} V_\mathbb{Q} \) are isomorphic.

2.3 Closed subgroups

In this subsection we also assume that \(\text{Spec} \mathbb{R} \) is reduced. Let \(\Phi(G, T) \) be the root system of \(G \) with respect to \(T \) and let \(\Phi^+(G, T) \) be the set of positive roots of \(\Phi(G, T) \) with respect to \(B \). We have a disjoint union
\[\Phi(G, T) = \Phi^+(G, T) \sqcup -\Phi^+(G, T) \]
as well as direct sum decompositions of R-modules

$$g = \text{Lie}(T) \oplus_{\alpha \in \Phi(G,T)} g_\alpha \quad \text{and} \quad \text{Lie}(B) = \text{Lie}(T) \oplus_{\alpha \in \Phi^+(G,T)} g_\alpha,$$

where each g_α is the weight space of the T-module g corresponding to the weight α, with g being viewed as a G-module (hence also as a T-module) via the adjoint representation $\text{Ad} : G \to \text{Aut}_g$. For each $\alpha \in \Phi(G,T)$ there exists a unique $G_{a,R}$ closed subgroup scheme U_α of G which is normalized by T and whose Lie algebra is g_α (see [18], Exp. XII, Sect. 1, Thm. 1.1 or [12], Part II, Ch. 1, Sects. 1.1 and 1.2); as R is a reduced \mathbb{Q}-algebra, $\text{Lie}(U_\alpha) = g_\alpha$ implies that U_α is normalized by T as one can easily check based on [2], Ch. II, Sect. 7, Subsect. 7.1. As $U_\alpha \cong G_{a,R}$, g_α is a free R-module of rank 1.

We recall from [18], Exp. XII, Sect. 4, Prop. 4.1.2 that the product morphism

$$\iota : \left(\prod_{\alpha \in -\Phi^+(G,T)} U_\alpha \right) \times_{\text{Spec} \ R} T \times_{\text{Spec} \ R} \left(\prod_{\alpha \in \Phi^+(G,T)} U_\alpha \right) \to G$$

is an open embedding whose image $U := \text{Im}(\iota)$ does not depend on the orderings of the first and third factor of the source of ι, being in fact equal to the image $B^\text{op} B$ of the product morphism $B^\text{op} \times_{\text{Spec} \ R} B \to G$. In particular, ι induces an isomorphism

$$j : \left(\prod_{\alpha \in -\Phi^+(G,T)} U_\alpha \right) \times_{\text{Spec} \ R} T \times_{\text{Spec} \ R} \left(\prod_{\alpha \in \Phi^+(G,T)} U_\alpha \right) \to U. \quad (4)$$

3 Proof of Theorem [1]

In this section we assume that R is a reduced \mathbb{Q}-algebra and $G = G^{\text{sc}}$ is simply connected.

We write $R = \lim \text{ind}_{\lambda \in \Lambda} R_{\lambda}$ as an inductive limit of finitely generated \mathbb{Z}-subalgebras of R where Λ is the set of finite subsets of R and R_{λ} is the \mathbb{Z}-subalgebra of R generated by the elements of λ.

In this paragraph we recall the essentially well-known property that there exists $\lambda_0 \in \Lambda$ such that G is the pullback of a simply connected semisimple group scheme G_{λ_0} over $\text{Spec} R_{\lambda_0}$. As group objects in a category are defined in terms of commutative diagrams, from [11], Thm. (8.8.2) we get that there exists $\lambda_0 \in \Lambda$ such that G is the pullback of an affine group scheme G_{λ_0} over $\text{Spec} R_{\lambda_0}$ of finite type. Based on [16], Exp. VII, Subsect. 10.9 and...
Prop. 3.9 we can assume that there exists an open subgroup scheme $G^0_{\lambda_0}$ of G_{λ_0} whose fibers over Spec R_{λ_0} are connected. From this and the affineness part of [11], Thm. (8.10.5) we get that we can assume that $G^0_{\lambda_0}$ is affine and hence we can also assume that $G_{\lambda_0} = G^0_{\lambda_0}$. Based on [11], Thm. (11.2.6) we can assume that G_{λ_0} is flat over Spec R_{λ_0}. From [18], Exp. XIX, Thm. 2.5 we get that there exist a largest open subscheme S_{λ_0} of Spec R_{λ_0} such that $S_{\lambda_0} \times_{\text{Spec } R_{\lambda_0}} G_{\lambda_0}$ is a semisimple group scheme over S_{λ_0}. From this and the isomorphism part of [11], Thm. (8.10.5) we get first that we can assume that $S_{\lambda_0} = \text{Spec } R_{\lambda_0}$ and second that we can assume G_{λ_0} is simply connected.

For $\lambda_0 \subset \lambda \in \Lambda$, let $G_{\lambda} := \text{Spec } R_{\lambda} \times_{\text{Spec } R_{\lambda_0}} G_{\lambda_0}$ and let $g_{\lambda} := \text{Lie}(G_{\lambda})$.

As \mathbb{Z} is a universally Japanese ring (see [10], Cor. (7.7.4)), each finitely generated \mathbb{Z}-algebra which is an integral domain has a normalization which is a finitely generated \mathbb{Z}-algebra and hence noetherian. Thus, if R is a normal integral domain, the normalization of each R_{λ} is noetherian, and hence R is the inductive limit of such normal noetherian integral domains.

From [11], Thm. (8.5.2) we get that the categories $\text{Rep}(G)$ and $\text{Rep}(g)$ are the inductive limits of the categories $\text{Rep}(G_{\lambda})$ and $\text{Rep}(g_{\lambda})$ (respectively) indexed by $\lambda \in \Lambda$, $\lambda \supset \lambda_0$. Thus to prove Theorem [11] by replacing R with R_{λ} for some $\lambda \in \Lambda$, $\lambda \supset \lambda_0$, we can assume that R is a finitely generated \mathbb{Z}-algebra, hence noetherian; hence, as R is reduced, K is a finite product of fields.

To check that the functor (2) is faithful, by replacing R by a direct factor of K which is a field, we can assume that $R = K$ is a field of characteristic zero and this case is well-known (for instance, using graphs, this follows from [2], Ch. II, Sect. 7, Subsect. 7.1).

Thus to prove Theorem [11] it suffices to show that the functor (2) is surjective on objects and on morphisms. To check this, we can work locally in the étale topology of Spec R (cf. Equation (1)) and hence we can also assume that R is connected and that (see [18], Exp. XIX, Prop. 6.1) G has a maximal torus which is split.

3.1 Surjectivity of the functor (2) on objects

Though the surjectivity of the functor (2) on objects follows from [18], Exp. XXIV, Prop. 7.3.1 without even assuming that the \mathbb{Q}-algebra R is reduced, several parts of the proof included here are used in the proof of Theorem 2.

Let 1_\ast be the identity automorphism of a (group) scheme \ast.

11
Let L be a g-module. To check that there exists a G-module M such that we have $M = L$ as g-modules, we consider four disjoint cases in order to include several proofs, including simpler ones in the easier cases such as when R is a field or a discrete valuation ring or a normal integral domain.

Case 1: $R = K$ is a field. We include two proofs in this case.

The first proof, slightly sketched, is well-known and relies on the classification of simple G-modules and simple g-modules. As the abelian category Rep(g) is semisimple, we can assume that L is a simple g-module. Let $w \in W_{\geq 0}$ be such that $L(w) \in W_{\geq 0}$ is the dominant weight with the property that L, up to isomorphism, is the simple g-module of highest weight $L(w)$. Let M be the simple G-module of highest weight $w \in G_{\geq 0}$. It is an easy exercise to check that $\text{Lie}(M)$ and L are isomorphic g-modules.

For the second proof we consider a G-module V such that the representation $\rho_v : G \rightarrow \text{Aut}_A$ is faithful, to be viewed as a closed embedding. Thus the g-module $N := \text{Lie}(V) \oplus L = V \oplus L$ is such that the representation $\varphi_N : g \rightarrow \text{End}(N)$ is also faithful, to be viewed as an inclusion. Let $\mathcal{T}(N) := \oplus_{a,b \geq 0} N^a \otimes_K (N^*)^b$, where $N^* := \text{Hom}_K(N,K)$ is the dual of N and Lie_c, with $c \in \mathbb{Z}_{\geq 0}$, is the tensor product over K of c-copies of the K-vector space $\mathbf{1}$ ($\mathbf{1}^0 := K$). From [19], Ch. VI, Sect. 5, Thm. 5.2 we get that there exists a finite subset $\mathcal{F} \subset \mathcal{T}(N)$ with the property that g is the Lie subalgebra of $\text{End}_K(N)$ that annihilates every tensor of \mathcal{F}. We can assume that the projection $\pi \in \text{End}_K(N) = N \otimes_K N^*$ of N on L along V belongs to \mathcal{F}. Let E be the subgroup of Aut_N which fixes each tensor of \mathcal{F}. Let E^0 be the connected component of the identity element of E. We have $\text{Lie}(E) = g$, thus also $\text{Lie}(E^0) = g$. As E fixes π, both L and V are E^0-modules. In particular, we have a representation $\sigma : E^0 \rightarrow \text{Aut}_V$ with the property that $\text{Lie}(\sigma)$ is injective (due to the identity $\text{Lie}(E^0) = g$). This implies that σ induces an étale isogeny $\sigma : E^0 \rightarrow \text{Im}(\sigma)$ and moreover we have $\text{Lie(Im(\sigma))} = \text{Lie}(G) = g \subset \text{End}_K(V)$. From this and [2], Ch. II, Sect. 7, Subsect. 7.1 we get that $\text{Im}(\sigma) = G$ and hence we have an étale isogeny $E^0 \rightarrow G$. As G is simply connected, we conclude that $E^0 \rightarrow G$ is an isomorphism. As L is an E^0-module, we conclude that it is as well a G-module in such a way that $\text{Lie}(L)$ is the g-module L.

Case 2: R is a discrete valuation ring. Let k be the residue field of R; we have char(k) = 0.

Let V be the G_K-module such that $\text{Lie}(V) = K \otimes_R L$, see Case 1. We identify $V = K \otimes_R L$ as K-vector spaces and let M be the lattice of V with
respect to R which, under the mentioned identification, gets identified with L. It suffices to show that M is a G-module.

Based on [16], Exp. VIB, Rm. 11.11.1 we get the existence of a G-module P such that the representation $\rho_P : G \to \text{Aut}_P$ is a closed embedding. From [12], Part I, Ch. X, Lem. of Sect. 10.4 we get that there exists a lattice M' of V which is a G-module. As G is split and simply connected and as R is connected, the existence of P (respectively M') also follows by pullback to $\text{Spec} R$ from the mentioned references applied over $\mathbb{Z}_{(p)}$ to $G_{\mathbb{Z}_{(p)}} := \text{Spec} \mathbb{Z}_{(p)} \times_{\text{Spec} \mathbb{Z}} G_{\mathbb{Z}}$ (respectively to $G_{\mathbb{Z}_{(p)}}'$ and a V^*_Q as in Subsection 222). Let $Q := P \oplus M$ and $Q' := P \oplus M'$; we have $K \otimes_R Q = K \otimes_R Q'$.

The representation $\rho_{Q'} : G \to \text{Aut}_{Q'}$ is a closed embedding and thus, with the notation of Subsection 223 for each $q \in \Phi(G, T)$, U_α is also a closed subgroup scheme of $\text{Aut}_{Q'}$ whose Lie algebra is identified with \mathfrak{g}_α via the faithful representation $\rho_{Q'} = \text{Lie}(\rho_{Q'}) : \mathfrak{g} \to \text{End}_R(Q')$.

For $\alpha \in \Phi(G, T)$ let \mathbb{V}_α be the vector group scheme over $\text{Spec} R$ whose group of S-valued points is $S \otimes_R \mathfrak{g}_\alpha$ for each R-algebra S. As R is a \mathbb{Q}-algebra and Q and Q' are \mathfrak{g}-modules, we have homomorphisms

$$\eta_\alpha : \mathbb{V}_\alpha \to \text{Aut}_Q \quad \text{and} \quad \eta'_\alpha : \mathbb{V}_\alpha \to \text{Aut}_{Q'}$$

which for each R-algebra S map $x \in \mathbb{V}_\alpha(S) = S \otimes_R \mathfrak{g}_\alpha$ to the sums $\sum_{q=0}^\infty \frac{\rho_Q(x)^q}{q!}$ and $\sum_{q=0}^\infty \frac{\rho_{Q'}(x)^q}{q!}$ (respectively). These sums coincide as elements of $\text{End}_K(V)$ and are finite sums as each x acts nilpotently on $S \otimes_R Q$ and $S \otimes_R Q'$. The image of $\eta_{\alpha,K} = \eta_{\alpha,K} : U_{\alpha,K}$ have the same Lie algebras and thus they coincide, see [2], Ch. II, Sect. 7, Subsect. 7.1. This implies that η'_α factors through a homomorphism $\zeta_\alpha : \mathbb{V}_\alpha \to U_\alpha$ which induces an isomorphism at the level of Lie algebras, and hence is étale. As \mathbb{G}_m over each field of characteristic 0 has no finite nontrivial subgroup, we deduce that the fibers of ζ_α are isomorphisms, based on which we easily see that ζ_α itself is an isomorphism.

We get a homomorphism $\eta_\alpha \circ \zeta_\alpha^{-1} : U_\alpha \to \text{Aut}_Q$, hence Q is a U_α-module.

We fix an identification $T = \mathbb{G}_m^r$ and with respect to it we speak about the $\mathbb{G}_{m,R}$ factors of T (there exist r such factors). If $F = \mathbb{G}_{m,R}$ is such a factor of T, then we have a direct sum decomposition $K \otimes_R Q = \oplus_{q \in \mathbb{Z}} W_q$ such that F_K acts on W_q via the q-th power of the identity character of F_K. The standard generator x of $\text{Lie}(F)$ acts on W_q as the multiplication by q. As Q is a \mathfrak{g}-module, we have $x(Q) \subset Q$. As $x(Q) \subset Q$ and as for distinct integers q_1, q_2 which are eigenvalues of x acting on the K-vector space $K \otimes_R Q$, the
difference \(q_1 - q_2 \) is invertible in \(k \), it is an easy exercise to check that we have a direct sum decomposition \(Q = \oplus_{q \in Z} Q \cap W_q \). This implies that \(Q \) is an \(F \)-module. The resulting homomorphism \(\eta_F : F \to \text{Aut}_Q \) is a closed embedding as this is so over \(\text{Spec} \ K \), see [23], Lem. 2.3.2 (b) and (c). The images \(\text{Im}(\eta_F) \) indexed by such factors \(F \) of \(T \) commute as this is so over \(\text{Spec} \ K \) and hence we get a product homomorphism \(\eta_T : T \to \text{Aut}_Q \) which over \(\text{Spec} \ K \) is a closed embedding. Again from [23], Lem. 2.3.2 (b) and (c) we get that \(\eta_T \) is a closed embedding. In particular, \(Q \) is a \(T \)-module.

From the last two paragraphs we get a product morphism

\[
\eta : (\prod_{\alpha \in \Phi^+ (G,T)} U_\alpha) \times_{\text{Spec} \ R} T \times_{\text{Spec} \ R} (\prod_{\alpha \in \Phi^- (G,T)} U_\alpha) \to \text{Aut}_Q
\]

which is the product of the \(\eta_\alpha \)'s and \(\eta_T \) and which is compatible with the representation \(\rho_{K \otimes R} : G_K \to \text{Aut}_{K \otimes R} Q \), in the sense that \(\rho_{K \otimes R} \) restricted to \(U_K \) is \(\eta_K \circ f^{-1} \).

The union \(U_+ := G_K \cup U \) is an open subscheme of \(G \) whose complement \(C := G \setminus U_+ \), when endowed with the reduced structure, is a reduced closed subscheme of \(G_k \) of dimension less than \(d = \dim(G_k) \). Thus, as we have \(\dim(G) = d + \dim(R) = d + 1 \), we get that \(\text{codim}_G(C) \geq 2 \).

From the last two paragraphs we get the existence of a morphism

\[
\rho_{Q,U_+} : U_+ \to \text{Aut}_Q
\]

which extends both \(\rho_{K \otimes R} \) and the composite

\[
\rho_{Q,U} := \eta \circ f^{-1} : U = \text{Im}(\iota) \to \text{Aut}_Q.
\]

As \(\text{codim}_G(C) \geq 2 \) and the scheme \(\text{Spec} \ R \) is normal noetherian, from [3], Ch. 4, Sect. 4.4, Thm. 1 we get that the morphism \(\rho_{Q,U_+} \) extends to a morphism \(\rho_Q : G \to \text{Aut}_Q \) which, as it extends \(\rho_{K \otimes R} \), is a homomorphism. So \(Q \) is a \(G \)-module.

The projection of \(Q \) on \(M \) along \(P \) is fixed by \(G \) (as it is fixed by \(G_K \)). This implies that \(\rho_Q \) induces a homomorphism \(\rho_M : G \to \text{Aut}_M \) that extends \(\rho_V \), hence \(M \) is a \(G \)-module.

Case 3: \(R \) is normal but neither a field nor a discrete valuation ring. Let \(\mathcal{D} \) be the set of all local rings of \(R \) which are discrete valuation rings; we recall (for instance, see [14], Thm. 11.5) that, as \(R \) is noetherian, \(\mathcal{D} \) is nonempty and in fact we have \(R = \cap_{O \in \mathcal{D}} O \).
Let $M := L$. From Case 2 we get the existence of an open subscheme Y of Spec R which contains all points of Spec R of codimension in Spec R at most 1 (i.e., the closed subscheme Spec $R \setminus Y$ has codimension in Spec R at least 2) and for which we have a homomorphism $\rho_{M,Y} : G_Y \to Y \times_{\text{Spec } R} \text{Aut}_M$ between reductive group schemes over Y with the property that for each $O \in \mathcal{D}$, the $O \otimes_R g$-module $O \otimes_R M$ is $O \otimes_R L$. Considering the closed embedding

$$(\rho_{M,Y}, 1_{G_Y}) : G_Y \to (Y \times_{\text{Spec } R} \text{Aut}_M) \times_Y G_Y,$$

from [24], Prop. 5.1 we get that it extends uniquely to a closed embedding homomorphism $(\rho_M, 1_G) : G \to \text{Aut}_M \times_{\text{Spec } R} G$. The resulting homomorphism $\rho_M : G \to \text{Aut}_M$ endows M with the structure of a G-module. The fact that the g-module structure on M is the same one as the one given by $M = L$ follows from the fact that this is so over O for one (hence all) $O \in \mathcal{D}$.

Case 4: R is not normal. Let V be the G_K-module such that we have $\text{Lie}(V) = K \otimes_R L$, see Case 1 applied to the direct factors of K which are fields. Let $G_{\mathbb{Z}(p)}$ and $G_{\mathbb{Q}}$ be as in Subsection 2.2 and let M be as in Case 2. As R is connected and $G = G^{\text{sc}}$ is split, there exists a $G_{\mathbb{Q}}$-module $V_{\mathbb{Q}}$ such that the G_K-module V is isomorphic to $K \otimes_{\mathbb{Q}} V_{\mathbb{Q}}$ (see end of Subsection 2.2). This implies that there exist G-modules P and M' such that $\rho_P : G \to \text{Aut}_P$ is a closed embedding and $V = K \otimes_R M'$ (they are obtained, to be compared with Case 2, by pullback from Spec $\mathbb{Z}(p)$ to Spec R). Based on this, as in Case 2 we argue the existence of a product morphism η as in Equation (5), and hence we get a morphism $\rho_{Q,U} : U = \text{Im}(i) \to \text{Aut}_Q$ as in Equation (6). The pullback of $\rho_{Q,U}$ to Spec K coincides with the restriction to U_K of the homomorphism $\rho_{K \otimes_{\mathbb{R}} \mathbb{Q}} : G_K \to \text{Aut}_{K \otimes_{\mathbb{R}} \mathbb{Q}}$.

The product morphism

$$\Theta : U \times_{\text{Spec } R} U \to G$$

is surjective and smooth, in particular it is a faithfully flat morphism between affine schemes. We will use affine faithfully flat descent with respect to Θ to show that the morphism $\rho_{Q,U}$ extends to a morphism $\rho_Q : G \to \text{Aut}_Q$ that extends $\rho_{K \otimes_{\mathbb{R}} \mathbb{Q}}$. We consider the two projections

$$\Pi_1, \Pi_2 : (U \times_{\text{Spec } R} U) \times_G (U \times_{\text{Spec } R} U) \to U \times_{\text{Spec } R} U$$

defined by Θ. The two composite morphisms

$$\rho_{Q,U} \circ \Pi_1, \rho_{Q,U} \circ \Pi_2 : (U \times_{\text{Spec } R} U) \times_G (U \times_{\text{Spec } R} U) \to \text{Aut}_Q$$

15
coincide as this is so after pullback to Spec K. This implies the existence of $
ho_Q$ with the desired property.

As $\rho_{K \otimes_R Q}$ is homomorphism we get that ρ_Q is a homomorphism. As in the last paragraph of Case 2 we argue that M is a G-module. The fact that the \mathfrak{g}-module structure on M is the same one as the one given by $M = L$ follows from the fact that this is so over K.

3.2 Surjectivity of the functor (2) on morphisms

Let $f : L \to J$ be a morphism of $\text{Rep}(\mathfrak{g})$. Based on Subsection 3.1 we know that there exist G-modules M and P such that $\text{Lie}(M) = L$ and $\text{Lie}(P) = J$, i.e., we have $M = L$ and $P = J$ as R-modules but, in connection to $f : L \to J$, we view them as \mathfrak{g}-modules. We denote also by $f : M \to P$ the R-linear map defined by f and the identifications $M = L$ and $P = J$, and to end the proof of Theorem 1 it suffices to show that $f : M \to P$ is a morphism of G-modules. To check this, recall (see beginning of Section 3) that we are assuming that Spec R is connected and R is a reduced finitely generated \mathbb{Z}-algebra. As each smooth R-algebra S is still a reduced finitely generated \mathbb{Z}-algebra, by replacing R with smooth R-algebras whose spectra are connected, it suffices to show that for every $g \in G(R)$ we have (cf. Equation (1))

$$f \circ \rho_M(R)(g) = \rho_P(R)(g) \circ f : M \to P.$$ \hspace{1cm} (7)

To check this, by giving up on the second recalled assumption on R, we can assume that $R = K = \overline{K}$ is an algebraically closed field and we will only use K.

Let A be the subgroup of $\text{Aut}_M \times_{\text{Spec} K} \text{Aut}_P$ defined by the identity

$$A(K) = \{(g_1, g_2) \in \text{Aut}_M(K) \times \text{Aut}_P(K) | f \circ g_1 = g_2 \circ f \}.$$

Let I be the image of the homomorphism

$$(\rho_M, \rho_P) : G \to \text{Aut}_M \times_{\text{Spec} K} \text{Aut}_P.$$

Considering the short exact sequence $1 \to \text{Ker}(G \to I) \to G \to I \to 1$, as $\text{Ker}(G \to I)$ is smooth over Spec K (due to Cartier’s theorem), we get a short exact sequence of Lie algebras

$$0 \to \text{Lie(}\text{Ker}(G \to I)) \to \mathfrak{g} \to \text{Lie}(I) \to 0.$$
As \(f : L \to J \) is a morphism of \(g \)-modules and as \(g \to \text{Lie}(I) \) is surjective, we get that we have an inclusion

\[
\text{Lie}(I) \subset \text{Lie}(A).
\]

From this and [2], Ch. II, Sect. 7, Subsect. 7.1 we get that \(I \) is a subgroup of \(A \) which implies that Equation (7) holds. Thus the functor (2) is surjective on morphisms. We conclude that Theorem 1 holds. \(\Box \)

4 Proof of Theorem 3

We will first prove the following basic lemma:

Lemma 1. Let \(I \) be a subgroup of a semisimple group \(H \) of adjoint type over the spectrum of an algebraically closed field \(\kappa \) such that \(\dim(H/I) = 1 \). Then there exists an isomorphism \(H \cong \text{PGL}_{2, \kappa} \times_{\text{Spec} \, \kappa} H' \) which induces via restriction an isomorphism \(I \cong B_{2, \kappa} \times_{\text{Spec} \, \kappa} H' \), where \(B_{2, \kappa} \) is a Borel subgroup of \(\text{PGL}_{2, \kappa} \) and \(H' \) is an arbitrary adjoint group over \(\text{Spec} \, \kappa \).

Proof: We consider the connected smooth projective curve \(C \) having \(H/I \) as an open subscheme and let \(g(C) \) be its genus.

For simplicity, we define \(\text{Aut}(H/I) \) to be the reduced (smooth) subgroup of the group of automorphisms \(\text{Aut}(C) \) of \(C \) that leave invariant the complement \(C_0 := C \setminus (H/I) \). As for each field extension \(\mu \) of \(\kappa \), every automorphism of \((H/I)_\mu \) extends to an automorphism of \(C_\mu \), the left multiplication action of \(H(\mu) \) on \((H/I)_\mu \) induces an abstract homomorphism \(H(\mu) \to \text{Aut}(H/I)(\mu) \). Taking \(\mu \) to be the field of fractions of \(H \), we obtain a natural rational morphism from \(H \) to \(\text{Aut}(H/I) \) and using translates it follows that it is defined everywhere. The reduced kernel of the resulting homomorphism \(H \to \text{Aut}(H/I) \) has a connected component \(H' \) of the identity element which is the largest connected normal smooth subgroup of \(H \) contained in \(I \). Thus, as \(H/H' \) is semisimple, we have inequalities

\[
3 \leq \dim(H/H') \leq \dim(\text{Aut}(H/I)). \tag{8}
\]

\[\text{Another approach to prove this lemma due to Gabber is to use induction on the number of simple factors of } H. \text{ One is reduced to the base of the induction case, so } H \text{ is simple, and it would suffice to prove that } \dim(H/I) \text{ is at least equal to the rank of } H; \text{ such an inequality is well-known in characteristic 0 but we could not find a reference for it in positive characteristic (however see [13]).}\]
As $\text{Aut}(H/I) \subset \text{Aut}(C)$ and as the connected component $\text{Aut}(C)^0$ of the identity element of $\text{Aut}(C)$ is trivial if $g(C) \geq 2$, is an elliptic curve (thus abelian) if $g(C) = 1$, and it is $\text{PGL}_{2,\kappa}$ if $g(C) = 0$, we conclude that $g(C) = 0$ and we have a finite homomorphism $H/H' \to \text{PGL}_{2,\kappa}$. As H/H' is semisimple, by reasons of dimensions or by the classification of adjoint groups over κ, we get that H/H' is isomorphic to either $\text{PGL}_{2,\kappa}$ or $\text{SL}_{2,\kappa}$. As H is adjoint, the short exact sequence $1 \to H' \to H \to H/H' \to 1$ splits. Thus $H \simeq H' \times_{\text{Spec} \kappa} H/H'$ and we conclude that $H/H' \simeq \text{PGL}_{2,\kappa}$.

If H/I is an affine rational curve, then $C \simeq \mathbb{P}^1_{\kappa}$ and the connected component $\text{Aut}(H/I)^0$ of the identity element of $\text{Aut}(H/I)$ is the subgroup of $\text{Aut}(\mathbb{P}^1_{\kappa}) \simeq \text{PGL}_{2,\kappa}$ that fixes the finite nonempty set C_0; it follows that $\dim(\text{Aut}(H/I)) \leq \dim(\text{PGL}_{2,\kappa}) - 1 = 2$ which contradicts Inequality (8).

Thus H/I is projective isomorphic to \mathbb{P}^1_{κ} which implies that I/H' is a parabolic subgroup of H/H', hence a Borel subgroup of $H/H' \simeq \text{PGL}_{2,\kappa}$. The lemma follows from the last sentence and the isomorphisms $H/H' \simeq \text{PGL}_{2,\kappa}$ and $H \simeq H' \times_{\text{Spec} \kappa} H/H'$.

To prove Theorem 3 for an H-module \diamond, let $\ell_H(\diamond)$ be its length and let $\ell_{\text{Lie}(H)}(\diamond)$ be its length as a $\text{Lie}(H)$-module. We have a general inequality

$$\ell_H(\diamond) \leq \ell_{\text{Lie}(H)}(\diamond). \tag{9}$$

As ℓ_H and $\ell_{\text{Lie}(H)}$ are additive, from Inequality (9) we get immediately:

Fact 1. If the Inequality (9) is an equality for \diamond, then it is an equality for each H-submodule or quotient of \diamond.

We will use Lemma 1 to prove Theorem 3, i.e., that P is a semisimple H-module, by induction on $\ell := \ell_H(P) = \ell_{\text{Lie}(H)}(P) \in \mathbb{Z}_{\geq 0}$. The base of the induction for $\ell \in \{0, 1\}$ is trivial. For $\ell \geq 2$ the passage from $\ell - 1$ to ℓ goes as follows. Let Q be a simple H-submodule of P: it is a simple $\text{Lie}(H)$-module (by Fact 1) and the $\text{Lie}(H)$-module P/Q is semisimple of the same length $\ell - 1$ as the H-module P/Q. By the induction assumption, the H-module P/Q is semisimple. Thus, to prove that the short exact sequence

$$0 \to Q \to P \to P/Q \to 0$$

splits, we can assume that $\ell = 2$.

As $\ell = 2$, the $\text{Lie}(H)$-module P/Q is simple and we consider a simple $\text{Lie}(H)$-submodule N of P which maps isomorphically onto P/Q. We have a direct sum decomposition $P = Q \oplus N$ of $\text{Lie}(H)$-modules.
We consider two cases as follows.

Case 1: the Lie\((H)\)-modules \(N\) and \(Q\) are not isomorphic. Thus \(P\) has only two simple Lie\((H)\)-submodules: \(Q\) and \(N\). As for all \(h \in \text{Lie}(H)\), we have \(h\text{Lie}(H)h^{-1} = \text{Lie}(H)\), we get that \(h(Q)\) and \(h(N)\) are simple Lie\((H)\)-modules for all \(h \in \text{Lie}(H)\). As \(H\) is connected, from the last two sentences we get that for all \(h \in \text{Lie}(H)\) we have \(Q = h(Q)\) and \(N = h(N)\). This implies that both \(Q\) and \(N\) are \(H\)-submodules of \(P\) which, as \(\ell = 2\), are simple. Thus \(P = Q \oplus N\) is a semisimple \(H\)-module in this case.

Case 2: the Lie\((H)\)-modules \(N\) and \(Q\) are isomorphic. We fix a Lie\((H)\)-isomorphism \(a: Q \to N\): it is unique up to multiplication by nonzero elements of \(\kappa\). All simple Lie\((H)\)-submodules of \(P\) are of the form \(Q_{[t_0 : t_1]} := \{t_0 x + t_1 a(x) | x \in Q\} \subset P = Q \oplus N\) for a uniquely determined point \([t_0 : t_1] \in \mathbb{P}_\kappa^1\). For instance, \(Q = Q_{[1 : 0]}\) and \(N = Q_{[0 : 1]}\). Similar to Case 1, for each field extension \(\mu\) of \(\kappa\) and for every \(h \in \text{Lie}(\mu)\), \(h(\mu \otimes \kappa Q)\) is a simple Lie\((H)_\mu\)-module and hence there exists a unique point \(\delta(h) = [v_0 : v_1] \in \mathbb{P}_\kappa^1\) such that \(h(Q) = Q_{\delta(h)} := \{v_0 x + v_1 a(x) | x \in \mu \otimes \kappa Q\}\).

An argument similar to the one involving \(\mu\)s in the proof of Lemma \([\text{III}]\) shows that the association \(h \to \delta(h)\) defines a morphism \(\delta: H \to \mathbb{P}_\kappa^1\).

We show that the assumption that \(\delta\) is nonconstant leads to a contradiction. For the stabilizer \(I\) of \(Q\) in \(H\) we have \(\dim(H/I) = \dim(\text{Im}(\delta)) = 1\) and from Lemma \([\text{III}]\) applied to the adjoint group \(H_{\text{ad}}\) of \(H\) we get that there exists an isomorphism \(H_{\text{ad}} \simeq \text{PGL}_{2,\kappa} \times_{\text{Spec} \kappa} H'\) which induces via restriction an isomorphism \(\text{Im}(I \to H_{\text{ad}}) \simeq B_2 \times_{\text{Spec} \kappa} H'\), where \(B_2\) is a Borel subgroup of \(\text{PGL}_{2,\kappa}\) and where \(H'\) is an adjoint group over \(\kappa\). This implies that \(\delta\) is surjective and thus the simple Lie\((H)\)-submodules of \(P\) are permuted transitively under the natural left multiplication action by \(H(\kappa)\). But a simple \(H\)-submodule of \(P\) is among the simple Lie\((H)\)-submodules of \(P\) (by Fact \([\text{I}]\) and it is fixed by \(H(\kappa)\), hence we reached a contradiction.

Thus \(\delta\) is constant of constant value \([1 : 0]\). Hence for all \(h \in H(\kappa)\) we have \(h(Q) = Q\) which implies that \(Q\) is an \(H\)-submodule of \(P\). The same applies to \(N\). Thus \(P = Q \oplus N\) is a semisimple \(H\)-module even in Case 2.

This ends the induction and the proof of Theorem \([\text{II}]\) \(\square\).
5 Proof of Theorem 2

In this section we assume that R is a faithfully flat $\mathbb{Z}(p)$-algebra and a normal integral domain.

Theorem 2 (a) is proved in Subsection 5.1. Theorem 2 (b) is proved in Subsection 5.2. If G is split, then the hypotheses of Theorem 2 (b) hold: as D we can take $\mathbb{Z}(p)$, see the existence of $G_{\mathbb{Z}}$ and $V_{\mathbb{Z}}$ in Subsection 2.2. Thus, Theorem 2 (c) follows directly from Theorems 2 (a) and (b).

We recall the following well-known fact.

Fact 2. Let S be an affine smooth scheme over the spectrum of a discrete valuation ring D with uniformizer ϖ and residue field k. Let M be a free D-module which is a S-module (i.e., it is equipped with a homomorphism $S \to \text{Aut}_M$). Let L be a D-submodule of $\varpi^{-1}M$ which contains M. Then L is a S-module (resp. a Lie(S)-module) if and only if L/M is a S_k-submodule (resp. is a Lie(S_k)-submodule) of $\varpi^{-1}M/M$.

Proof: The ‘only if’ parts and the case of Lie algebras are obvious, hence it suffices to check that if L/M is a S_k-module, then L is a S-module. Writing $S = \text{Spec} \, A$, this is equivalent to checking that the comultiplication D-linear map $\nabla : M \to A \otimes_D M$ is such that $\nabla(L) \subset A \otimes_D L$. To check this we can assume that k is algebraically closed (it suffices to be infinite) and D is complete and we will check directly (i.e., without mentioning ∇ again) that L is a S-module. As L/M is a A_k-submodule of $\varpi^{-1}M/M$, we get that for each $h \in S(D)$ we have $h(L) = L$. From the last two sentences and [21], Prop. 3.1.2.1 a) we get that the homomorphism $S \to \text{Aut}_M$ over the spectrum of the field of fractions of D extends to a homomorphism $S \to \text{Aut}_L$, thus L is a S-module.

5.1 Proof of Theorem 2 (a)

Let $Z := \text{Ker}(G^{sc} \to G)$; it is a finite flat group scheme over $\text{Spec} \, R$ of multiplicative type which is contained in the center of G^{sc} and which, if G is split, is the kernel of the induced homomorphisms between split maximal tori. In particular, the Zariski (or the schematic) closure of Z_K in G^{sc} is Z itself. Thus, if M is a G^{sc}-module such that we can identify $K \otimes_R M = V$ as G^{sc}_K-modules, then the kernel of the homomorphism $\rho_M : G^{sc} \to \text{Aut}_M$ contains Z_K and therefore it contains Z; hence M is in fact a G-module. Thus we can identify $\text{Lat}_{G^{sc}}(V) = \text{Lat}_G(V)$. Based on this and the inclusions
Lat\(_G(V) \subset \text{Lat}_g(V) \subset \text{Lat}_{\text{Lie}(G^{sc})}(V) \supset \text{Lat}_{G^{sc}}(V)\), it suffices to prove that Theorems 2 (a) and (b) hold in the case when \(G = G^{sc}\) is simply connected.

To prove that Theorem 2 (a) holds, as in the beginning of Section 3, using inductive limits and working in the étale topology of \(\text{Spec} \, R\), we can assume that \(R\) is also noetherian and that \(G\) is split. Based on Case 2 of Subsection 3.1, as in Case 3 of Subsection 3.1 we argue that Theorem 2 (a) holds provided it holds for discrete valuation rings of mixed characteristic \((0, p)\). Thus we can also assume that \(R = D\) is a discrete valuation ring of mixed characteristic \((0, p)\); let \(\pi\) be a uniformizer of it. Let \(k := D/(\pi)\): it is a field of characteristic \(p\). Let \(H := G_k\) and let \(h := g/\pi g = k \otimes_D g\).

Let \(L \in \text{Lat}_g(V)\); we have \(V = K \otimes_D L\). With the notation of Subsections 2.2 and 2.3 for \(G = G^{sc}\), if we have \(L \in \text{Lat}_{G_i}(V)\) for all \(i \in \{1, \ldots, n\}\), then we obtain homomorphisms \(\rho_{L,i} : G_i \to \text{Aut}_L\) whose fibers over \(K\) are restrictions of \(\rho_V : G_K \to \text{Aut}_V\). These homomorphisms over \(\text{Spec} \, D\) commute as they commute over \(K\). This implies that their product defines a homomorphism \(\rho_L : G \to \text{Aut}_L\) which extends \(\rho_V\) and hence we have \(L \in \text{Lat}_G(V)\).

As in Case 2 of Subsection 3.1 based on [12], Part I, Ch. X, Lem. of Sect. 10.4 we get the existence of a lattice \(M\) of \(V\) with respect to \(R\) which is a \(G\)-module. So \(M/\pi M\) is an \(H\)-module.

To prove that \(L\) is a \(G\)-module, we can assume that \(k\) is algebraically closed and we can replace \(L\) by \(\pi^r L\) with \(r \in \mathbb{Z}\). Thus we can assume that \(M \subset L\) but \(\pi^{-1} M \not\subset L\). Let \(s \geq 0\) be the smallest integer such that \(L \subset \pi^{-s} M\). We will prove by induction on \(s \in \mathbb{Z}_{\geq 0}\) that, regardless of what the \(G\)-module \(M\) is, \(L\) is a \(G\)-module, i.e., \(L \in \text{Lat}_G(V)\). The base of the induction is trivial: if \(s = 0\), then \(L = M\) is a \(G\)-module.

For \(s \in \mathbb{N}\) the passage from at most \(s - 1\) to \(s\) goes as follows. If \(s \geq 2\), then \(M \subset \pi L + M \subset \pi^{-s+1} M\) are inclusions between \(g\)-modules and hence by induction applied first with \((L, s)\) replaced by \((\pi L + M, s - 1)\) we get that \(\pi L + M\) is a \(G\)-module and applied second with \((M, s)\) replaced by \((\pi L + M, 1)\) we get that \(L\) is a \(G\)-module. Thus we can assume that \(s = 1\), i.e., we have \(M \subsetneq L \subsetneq \pi^{-1} M\). Let

\[n := L/M \subset m := \pi^{-1} M/M \simeq M/\pi M;\]

it is a nonzero \(h\)-module.

We will prove using a second induction on the length \(t \in \mathbb{N}\) of the \(h\)-module \(n\) that, regardless of what the \(G\)-module \(M\) is, \(L\) is a \(G\)-module. Let
Let \mathfrak{p} be a \mathfrak{h}-submodule of \mathfrak{n} of length $t - 1$: thus the \mathfrak{h}-module $\mathfrak{n}/\mathfrak{p}$ is simple. Let M_+ be the inverse image of \mathfrak{p} via the D-linear map $\varpi^{-1}M \to \varpi^{-1}M/M = \mathfrak{m}$. If $t = 1$, then $M_+ = M$ is a G-module. Thus, if $t \geq 2$ and the statement is true for $\leq t - 1$, then by the (second) induction assumption we get first that M_+ is a G-module and second, by replacing (M, t) by $(M_+, 1)$, that L itself is a G-module. Hence to end the proof of both inductions we can assume that not only $s = 1$ but we also have $t = 1$. So \mathfrak{n} is a simple \mathfrak{h}-module.

For a maximal torus T of G which is split, the weights of the action of T on \mathfrak{m} are the same as the weights of the action of T_k on \mathfrak{m}. Based on this, as statement (2) holds, for each composition series of the H-module \mathfrak{m}, the simple factors are irreducible H-modules associated to highest weights $\sum_{l=1}^{r_1} \gamma_{1,l} \omega_{1,l}$ with the property that for all $l \in \{1, \ldots, r_1\}$ we have $\gamma_{1,l} \in \{0, \ldots, p - 1\}$ and hence are simple \mathfrak{h}-modules (see [1], Thm. 6.4). This implies that the H-module \mathfrak{m} and the H-module \mathfrak{m} have the same length, and, by Fact [1] the same holds for each H-submodule \mathfrak{p} of \mathfrak{m}.

We take \mathfrak{p} to be the H-submodule of \mathfrak{m} generated by \mathfrak{n}. As k is algebraically closed, we have an identity

$$\mathfrak{p} = \sum_{h \in H(k)} h(\mathfrak{n})$$

of k-vector spaces. As h normalizes \mathfrak{h}, each $h(\mathfrak{n})$ is a simple \mathfrak{h}-module and therefore \mathfrak{p}, being a sum of simple \mathfrak{h}-modules, is a semisimple \mathfrak{h}-submodule of \mathfrak{m}. From Theorem 3 we get that \mathfrak{p} is a semisimple H-module.

Writing $\mathfrak{p} = \bigoplus_{u=1}^b \mathfrak{p}_u$ as a direct sum of simple H-modules, from Fact [1] we get that each \mathfrak{p}_u is a simple \mathfrak{h}-module. From this and the fact that \mathfrak{p} is the H-submodule of \mathfrak{m} generated by \mathfrak{n}, we get that the \mathfrak{h}-module \mathfrak{n} projects isomorphically onto each \mathfrak{p}_u. Hence the \mathfrak{h}-module \mathfrak{p} is isomorphic to $b \mathfrak{n} := \bigoplus_{u=1}^b \mathfrak{n}$. If ω_u is the highest weight of the H-module \mathfrak{p}_u, then as the isomorphism class of the \mathfrak{h}-module \mathfrak{p}_u does not depend on u, we easily get that $\omega_u \in \Omega_1 := \{\sum_{l=1}^{r_1} \gamma_{1,l} \omega_{1,l} | \gamma_{1,1}, \ldots, \gamma_{1,r_1} \in \{0, 1, \ldots, p - 1\}\}$, does not depend on u (this is also proved in [1], Subsect. 6.6). Thus we have $\mathfrak{p} = b \mathfrak{p}_1$ as H-modules as well as \mathfrak{h}-modules and this implies that a k-vector subspace of \mathfrak{p} is an H-module if and only if it is a \mathfrak{h}-module. Therefore \mathfrak{n} is an H-module (and in particular we have $\mathfrak{p} = \mathfrak{n}$ and $b = 1$). This implies that L is a G-module (see Fact 2). This ends the proof of both inductions and hence of Theorem 2 (a).
5.2 Proof of Theorem 2 (b)

Using the contrapositive, it suffices to show that if statement $\textcircled{2}$ does not hold, then there exists $L \in \text{Lat}_g(V)$ which is not a G-module. Considering pullbacks via $\text{Spec } R \to \text{Spec } D$ (i.e., the tensorization of elements of $\text{Lat}_{\text{Lie}(D)}(V_{\text{Frac } D})$ over D with R), to find such an L, we can assume that $R = D$ is a discrete valuation ring of mixed characteristic $(0, p)$. Let ϖ, k and M be as in Subsection 5.1, we will only use G (as $G = G^{\text{sc}} = G^D$), D (as $R = D$), and V (as $V = V_K$).

The factors of a composition series of the $H := G_k$-module $m \simeq M/\varpi M$ do not depend on the choice of the G-module M, see [12], Part I, Ch. X, Sects. 10.7 and 10.9. Let D^h be the henselization of D.

We consider two disjoint cases as follows.

Case 1: H is split. As H is split, the affine smooth scheme T_G over $\text{Spec } D$ that parametrizes maximal tori of G (see [17], Exp. XII,Cors. 1.10 and 5.4) has a k-valued point defining a split maximal torus of H and therefore, due to the smoothness of T_G, it lifts to a D^h-valued point of T_G. Thus $G_{D^h} := \text{Spec } D^h \times_{\text{Spec } D} G$ has a maximal torus whose fiber over $\text{Spec } k$ is split and hence, as D^h is henselian, it is split. Thus G_{D^h} is split. This implies that there exists a D-subalgebra D' of \overline{K} which is étale and a discrete valuation ring of residue field k and which is such that $G_{D'}$ is split.

Let $K' := \text{Frac}(D')$. If T' is a maximal torus of $G_{D'}$ which is split, then the weights of the action of T'_k on $K' \otimes_K V = K' \otimes_D M$ and of the action of T'_k on \mathfrak{m} are the same. As statement $\textcircled{2}$ does not hold, we deduce that the composition series of the $H = \prod_{i=1}^n G_{i,k}$-module \mathfrak{m} has a simple factor n which, up to isomorphism, is a tensor product $\otimes_{i=1}^n \mathfrak{n}_i$, where each \mathfrak{n}_i is a simple $G_{i,k}$-module of highest weight w_i, and there exists $i_0 \in \{1, \ldots, n\}$ such that we can write

$$w_{i_0} = \sum_{t=1}^{r_{i_0}} c_{i_0,t} \omega_{i_0,t}$$

with all $c_{i_0,t} \in \mathbb{Z}_{\geq 0}$ but there exists $l_0 \in \{1, \ldots, r_{i_0}\}$ such that $c_{i_0,l_0} \geq p$. This implies that we can write

$$w_{i_0} = \sum_{t=0}^q p^t w_{i_0,t}$$
with \(q \in \mathbb{N} \), and \(w_{i_0,q} \neq 0 \), and

\[
w_{i_0,0}, \ldots, w_{i_0,q} \in \Omega_{i_0} := \left\{ \sum_{l=1}^{r_{i_0}} \gamma_{i_0,l} \omega_{i_0,l} \left| \gamma_{i_0,1}, \ldots, \gamma_{i_0,r_{i_0}} \in \{0, 1, \ldots, p - 1\} \right. \right\}.
\]

The key point is (see [20], Thm. 1.1; see also [1], Thm. 7.5 (i)) that we have a tensor product decomposition

\[
n_{i_0} \cong \bigotimes_{t=0}^{q} n_{i_0,t}^{(p^t)}
\]
to be viewed as an identification, where \(n_{i_0,t} \) is the simple \(G_{i_0,k} \)-module associated to the highest weight \(w_{i_0,t} \) and we view the \(G_{i_0,k}^{(p^t)} \)-module \(n_{i_0,t}^{(p^t)} \) as a \(G_{i_0,k} \)-module via the functorial Frobenius homomorphism \(G_{i_0,k} \to G_{i_0,k}^{(p^t)} \). We recall that \(G_{i_0,k}^{(p^t)} \) is the pullback of \(G_{i_0,k} \) via the morphism \(\text{Spec} \ k \to \text{Spec} \ k \) defined by the Frobenius endomorphism \(\text{Fr}_t : k \to k \) that maps \(x \) to \(x^{p^t} \) and that \(n_{i_0,t}^{(p^t)} := k \otimes_{\text{Fr}_t,k} n_{i_0,t} \). For \(t \in \{1, \ldots, q\} \), \(\text{Lie}(G_{i_0,k}) \) acts trivially on \(n_{i_0,t}^{(p^t)} \).

We consider two \(H \)-submodules \(p_0 \subset p_1 \) of \(m \) such that as \(H \)-module \(p_1/p_0 \) is (isomorphic to) such an \(H \)-module \(n \) and the \(H \)-module \(p_0 \) has the smallest length. By replacing the \(G \)-module \(M \) by the inverse image of \(p_0 \) (see Fact [2]) via the composite \(D \)-linear map

\[
\nu : M \to M/\varpi M \cong m,
\]
we can assume that \(p_0 = 0 \). Thus \(p_1 = p_1/p_0 \) is a simple \(H \)-module. Therefore we can assume that \(n = p_1 \) is a simple \(H \)-submodule of \(m \).

As \(w_{i_0,q} \neq 0 \), we have \(\dim_k(n_{i_0,q}) \geq 2 \) and thus there exists a nonzero proper \(k \)-vector subspace \(Q_{i_0,q} \) of \(n_{i_0,q}^{(p^q)} \). It is a trivial \(\text{Lie}(G_{i_0,k}) \)-module which is not a \(G_{i_0,k} \)-module. The \(k \)-vector subspace

\[
q_{i_0} := n_{i_0,0}^{(p^q)} \otimes_k n_{i_0,1}^{(p^1)} \otimes_k \cdots \otimes_k n_{i_0,q-1}^{(p^{q-1})} \otimes_k Q_{i_0,q}
\]
of \(n_{i_0} \) is a \(\text{Lie}(G_{i_0,k}) \)-module which is not a \(G_{i_0,k} \)-module. Defining

\[
q := n_1 \otimes_k \cdots \otimes_k n_{i_0-1} \otimes_k q_{i_0} \otimes_k n_{i_0+1} \otimes_k \cdots \otimes_k n_n,
\]
we get that \(\nu^{-1}(q) \in \text{Lat}_q(V) \) but (see Fact [2]) \(\nu^{-1}(q) \not\in \text{Lat}_G(V) \) as \(q \) is not an \(H \)-module.

Case 2: \(H \) is not split. Let \(k' \) be a finite separable field extension of \(k \) such that \(H_{k'} := \text{Spec} \ k' \times_{\text{Spec} \ k} H \) is split. We can assume that the field extension
$k \to k'$ is Galois. The Galois group $\Gamma := \text{Gal}(k'/k)$ acts naturally on the set \{1, \ldots, n\} that indexes the absolutely simple factors of $\text{Spec } k' \times_{\text{Spec } k} G' \cong G' = \prod_{i=1}^n G'_{i,k'}$.

Let D' be a discrete valuation ring which is a finite flat D-algebra with the property that we have an identity $D'/\mathcal{O}D' = k'$. Let $K' := \text{Frac}(D')$; we have $K' = D' \otimes_D K = D'[1/\mathcal{O}]$. Let $\mathfrak{g}' := \text{Lie}(G_D') = D' \otimes_D \mathfrak{g}$.

As Γ is canonically identified with $\text{Aut}(K'/K)$ and $\text{Aut}(D'/D)$, it acts naturally on $K' \otimes_K V$ and $D' \otimes_D M$.

Based on Case 1 applied to G_D' and the G_K'-module $K' \otimes_K V$, we get the existence of a lattice $L' \in \text{Lat}_{\mathfrak{g}'}(K' \otimes_K V)$ which is not a G_D'-module. Let $L := L' \cap V$, the intersection being taken inside $K' \otimes_K V$. As L' is a \mathfrak{g}'-module, it is also a \mathfrak{g}-module and we conclude that $L \in \text{Lat}_\mathfrak{g}(V_K)$. If L is a G-module, then $D' \otimes_D L$ is a G_D'-module and hence we have $L' \neq D' \otimes_D L$. Thus to end the proof in this case it suffices to show that we can choose L' such that we have $L' = D' \otimes_D L$.

Based on Case 1 applied over D' to the G_D'-module $D' \otimes_D M$, we consider $H_{k'}$-submodules $p'_0 \subset p'_1 \subset (D' \otimes_D M)/(\mathcal{O}D' \otimes_D M) = k' \otimes_k m$ such that $n' := p'_1/p'_0$ is a simple $H_{k'}$-module that has the same property as n of Case 1. We can assume that p'_0 is such that its length as an $H_{k'}$-module is the smallest. Due to this, by considering $r'_0 := \sum_{\gamma \in \Gamma} \gamma(p_0)$, which, due to Galois descent, is of the form $k' \otimes_k r_0$ with r_0 an H-submodule of m, and $r'_1 := p'_1 + r'_0$, we have an $H_{k'}$-isomorphism $n'_0 \simeq r'_1/r'_0$. Thus, as in Case 1, by replacing M with $\nu^{-1}(r_0)$, we can assume that $p'_0 = 0$ and hence we have a simple $H_{k'}$-module n' of $k' \otimes_k m$ which is the analogue of n.

As in Case 1 we get a tensor product decomposition $n' = \prod_{i=1}^n n'_i$, an element $i_0 \in \{1, \ldots, n\}$, and a second product decomposition $n'_{i_0} \simeq \otimes_{i=0}^n (n'_{i_0,i})^{(p')}$.

The stabilizer Γ_{i_0} of i_0 in Γ acts naturally on the set of dominant weights of $G_{i_0,k'}$ and as such let $\Gamma_{i_0}^{-}$ be the subgroup of Γ_{i_0} that fixes $w_{i_0,q}$. Thus the $G_{i_0,k'}$-module $n'_{i_0,q}$ is defined over the subfield of k' fixed by Γ_{i_0} and as such there exists a nonzero proper k'-vector subspace $Q'_{i_0,q}$ of $(n'_{i_0,q})^{(p')}$ left invariant by $\Gamma_{i_0}^-$. We use it to define an element

$$M' := (1_{D'} \otimes_D \nu)^{-1}(q') \in \text{Lat}_{\mathfrak{g}'}(K' \otimes_K V)$$

which (see Fact 2) is not a G_D'-module. Then we can take

$$L' := \sum_{\gamma \in \Gamma} \gamma(M').$$
As L' is Γ-invariant, using Galois descent we get that we have $L' = D' \otimes_D L$. As g' is Γ-invariant, each $\gamma(M')$ is a g'-module. As Γ_i leaves M' invariant, we have $L' = \sum_{\gamma \in \Gamma/\Gamma_i} \gamma(M')$ and it follows that L' is not a $G_{D'}$-module.

We conclude that Theorem 2 (b) holds.

6 Proof of Theorem 4

Due to the perfect assumptions we have a direct sum decomposition

$$\text{End}_R(\mathcal{M}) = \text{Lie}(\mathcal{H}_K) \cap \text{End}_R(\mathcal{M}) \oplus [\text{Lie}(\mathcal{H}_K) \cap \text{End}_R(\mathcal{M})]^\perp,$$

where $[\text{Lie}(\mathcal{H}_K) \cap \text{End}_R(\mathcal{M})]^\perp$ is the perpendicular of $\text{Lie}(\mathcal{H}_K) \cap \text{End}_R(\mathcal{M})$ with respect to \mathcal{B}. Thus the R-module underlying the Lie algebra $\text{Lie}(\mathcal{H}_K) \cap \mathfrak{gl}_M$ is projective. Moreover, the Killing form of $\text{Lie}(\mathcal{H}_K) \cap \mathfrak{gl}_M$ is a perfect bilinear map as it times a unit of R is so. As $\text{char}(K) = 0$, we have $\text{Lie}(\mathcal{H}_K) = \text{Lie}(\mathcal{H}_{Kad})$. Based on the last two sentences, from [23], Cor. 1.3 we get that there exists a unique adjoint group scheme \mathcal{H}_{ad} over Spec R which extends \mathcal{H}_{Kad} and whose Lie algebra is $\text{Lie}(\mathcal{H}_K) \cap \mathfrak{gl}_M$.

Let G be the simply connected semisimple group scheme cover of \mathcal{H}_{ad}, we have $G_{ad} = \mathcal{H}_{ad}$ and our notation matches (i.e., the fiber of G over Spec K is the ‘initial’ G_K). Let \mathcal{H} be the normalization of \mathcal{H}_{ad} in the field of fractions of \mathcal{H}_K. From [23], Lem. 2.3.1 we get that \mathcal{H} has a unique structure of a semisimple group scheme over Spec R which extends \mathcal{H}_K and the morphism $\mathcal{H} \to \mathcal{H}_{ad}$ is in fact a central isogeny. Clearly, G is also the simply connected semisimple group scheme cover of \mathcal{H}.

From [23], Prop. 3.5 (b) we get that the homomorphisms $G \to \mathcal{H}$ and $\mathcal{H} \to \mathcal{H}_{ad}$ are étale. Thus we have identifications

$$\text{Lie}(G) = \text{Lie}(\mathcal{H}) = \text{Lie}(\mathcal{H}_{ad}) = \text{Lie}(\mathcal{H}_K) \cap \mathfrak{gl}_M$$

and the kernels $\mathcal{K} := \text{Ker}(G \to \mathcal{H})$ and $\text{Ker}(\mathcal{H} \to \mathcal{H}_{ad})$ are finite étale group schemes over Spec R.

As \mathcal{M} is a $\text{Lie}(\mathcal{H}_K) \cap \mathfrak{gl}_M$-module and hence also a $\text{Lie}(G)$-module, from Theorem 2 (a) we get that \mathcal{M} is a G-module. The kernel of the resulting homomorphism $G \to \text{Aut}_\mathcal{M}$ contains \mathcal{K}_K and hence contains \mathcal{K}. This implies that $G \to \text{Aut}_\mathcal{M}$ factors through a homomorphism $\rho : \mathcal{H} \to \text{Aut}_\mathcal{M}$.

Using a limit argument as in the beginning of Section 3, to check that ρ is a closed embedding we can assume that the normal domain R is also noetherian.
As ρ_K is a closed embedding, from [22], Thm. 1.1 (c) we get that ρ is finite over the spectrum of each local ring of R which is a discrete valuation ring. This implies that there exists an open subscheme Y of $\text{Spec } R$ which contains all points of $\text{Spec } R$ of codimension in $\text{Spec } R$ at most 1 and such that ρ_Y is finite. Based on this, as $p > 2$, from [23], Prop. 5.1 we get that ρ itself is a closed embedding. This implies that the cokernel $\mathfrak{gl}_M/\text{Lie}(\mathcal{H})$ of the inclusion $\text{Lie}(\mathcal{H}) \to \mathfrak{gl}_M$ has constant rank over the points of $\text{Spec } R$, so it is a finitely generated projective module over R. Thus $\text{Lie}(\mathcal{H})$ is a direct summand of \mathfrak{gl}_M and hence we have $\text{Lie}(\mathcal{H}) = \text{Lie}({\mathcal{H}}_K) \cap \mathfrak{gl}_M$. Therefore Theorem 4 holds. □

Acknowledgement. The authors confirm that the data supporting the findings of this study are available within the article. This paper has no data associated to it and no conflict of interest. We would like to thank Ofer Gabber for pointing out the essence of the footnote of Section 4. The first author would like to thank SUNY at Binghamton for years of support during his graduate studies and the second author for introducing him to the topics of this paper, providing valuable advice and constant support, and always being willing to answer questions. The second author would like to thank SUNY at Binghamton for good working conditions.

References

[1] A. Borel, Properties and linear representations of Chevalley groups, 1970 Seminar on Algebraic Groups and Related Finite Groups, pp. 1–55 Lecture Notes in Math., Vol. 131, Springer-Verlag, Berlin, 1970

[2] A. Borel, Linear algebraic groups. Second edition, Grad. Texts in Math., 126, Springer-Verlag, New York, 1991

[3] S. Bosch, W. Lüttkebohmert, and M. Raynaud, Néron models, Ergeb. Math. Grenzgeb. (3), 21, Springer-Verlag, Berlin, 1990

[4] N. Bourbaki, Lie groups and Lie algebras. Chapters 1–3, Reprint of the 1989 English translation, Elem. Math. (Berlin), Springer-Verlag, Berlin, 1998

[5] N. Bourbaki, Lie groups and Lie algebras. Chapters 7–9, Translated from the 1975 and 1982 French originals by Andrew Pressley, Elem. Math. (Berlin), Springer-Verlag, Berlin, 2005

27
[6] C. W. Curtis, *Representations of Lie algebras of classical type with applications to linear groups*, J. Math. Mech. 9 (1960), 307–326

[7] C. W. Curtis, *On projective representations of certain finite groups*, Proc. Amer. Math. Soc. 11 (1960), 852–860

[8] M. Demazure and P. Gabriel, *Groupes algébriques. Tome I: Géométrie algébrique, généralités, groupes commutatifs*. Avec un appendice *Corps de classes local par Michiel Hazewinkel*, Masson & Cie, Éditeur, Paris, North-Holland Publishing Co., Amsterdam, 1970

[9] J. Fogarty, *Invariant theory*, W. A. Benjamin, Inc., New York-Amsterdam, 1969

[10] A. Grothendieck, *Éléments de géométrie algébrique. IV, Étude locale des schémas et des morphismes des schémas. II*, Publ. Math. Inst. Hautes Études Sci., Vol. 24, 1965

[11] A. Grothendieck, *Éléments de géométrie algébrique. IV, Étude locale des schémas et des morphismes des schémas. III*, Publ. Math. Inst. Hautes Études Sci., Vol. 28, 1966

[12] J. C. Jantzen, *Representations of algebraic groups. Second edition*, Math. Surveys and Monogr., 107, American Mathematical Society, Providence, RI, 2003

[13] M. W. Liebeck and G. M. Seitz, *The maximal subgroups of positive dimension in exceptional algebraic groups*, Mem. Amer. Math. Soc., Vol. 169, No. 802, 2004

[14] H. Matsumura, *Commutative ring theory. Second edition*, Cambridge Stud. Adv. Math., 8, Cambridge University Press, Cambridge, 1989

[15] J. Milne, *Semisimple algebraic groups in characteristic zero*, https://arxiv.org/pdf/0705.1348.pdf

[16] *Schémas en groupes. I: Propriétés générales des schémas en groupes*, Séminaire de Géométrie Algébrique du Bois Marie 1962/64 (SGA 3), Dirigé par M. Demazure et A. Grothendieck, Lecture Notes in Math., Vol. 151, Springer-Verlag, Berlin-New York, 1970
[17] Schémas en groupes. II: Groupes de type multiplicatif, et structure des schémas en groupes généraux, Séminaire de Géométrie Algébrique du Bois Marie 1962/64 (SGA 3), Dirigé par M. Demazure et A. Grothendieck, Lecture Notes in Math., Vol. 152, Springer-Verlag, Berlin-New York 1970

[18] Schémas en groupes. III: Structure des schémas en groupes réductifs, Séminaire de Géométrie Algébrique du Bois Marie 1962/64 (SGA 3), Dirigé par M. Demazure et A. Grothendieck, Lecture Notes in Math., Vol. 153 Springer-Verlag, Berlin-New York, 1970

[19] J.-P. Serre, Lie algebras and Lie groups, 1964 lectures given at Harvard University, Corrected fifth printing of the second (1992) edition, Lecture Notes in Math., 1500, Springer-Verlag, Berlin, 2006

[20] R. Steinberg, Representations of algebraic groups, Nagoya Math. J. 22 (1963), 33–56

[21] A. Vasiu, Integral canonical models of Shimura varieties of preabelian type, Asian J. Math. 3 (1999), no. 2, 401–518

[22] A. Vasiu, On two theorems for flat, affine group schemes over a discrete valuation ring, Cent. Eur. J. Math. 3 (2005), no. 1, 14–25

[23] A. Vasiu, Extension theorems for reductive group schemes, Algebra Number Theory 10 (2016), no. 1, 89–115

[24] A. Vasiu, Three methods to prove the existence of integral canonical models of Shimura varieties of abelian type, work in progress

Micah Loverro, E-mail: m.loverro@gmail.com

Adrian Vasiu, E-mail: adrian@math.binghamton.edu
Address: Department of Mathematical Sciences, Binghamton University, P. O. Box 6000, Binghamton, New York 13902-6000, U.S.A.