Graphene Thermal Interface Materials – State-of-the-Art and Application Prospects

SRIHARSHA SUDHINDRA*,1,2, LOKESH RAMESH1,3, AND ALEXANDER A. BALANDIN1,2,3 (Fellow, IEEE)

(Invited Paper)

1Phonon Optimized Engineered Materials (POEM) Center and Nano-Device Laboratory (NDL), University of California, Riverside, CA 92521 USA
2Department of Electrical and Computer Engineering, University of California, Riverside, CA 92521 USA
3Material Science and Engineering Program, University of California, Riverside, CA 92521 USA

CORRESPONDING AUTHOR: ALEXANDER A. BALANDIN (e-mail: balandin@ece.ucr.edu)

The work of Alexander A. Balandin was supported by ULTRA, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Basic Energy Sciences under Grant DE-SC0021230.

ABSTRACT We provide a summary of the fundamentals of thermal management, outline the state-of-the-art in the field of thermal interface materials, and describe recent developments in graphene-based non-curing and curing composites used for thermal management. The discovery of unique heat conduction properties of graphene and few-layer graphene motivated research activities worldwide focused on creating efficient graphene-based thermal interface materials. While the initial focus of these studies was on obtaining the maximum possible thermal conductivity of the composites, recently the attention has shifted to practical problems of minimizing the thermal contact resistance at interfaces, optimizing the size distribution of graphene as filler, and addressing the issues of scalability, stability, and production costs at commercial scales. We conclude the review with a general outlook for commercial applications of graphene in the thermal management of electronics.

INDEX TERMS Composites, graphene, noncured, cured, polymer, power electronics, thermal interface materials, thermal conductivity, thermal contact resistance.

I. INTRODUCTION

Advances in modern electronics led to substantially higher transistor density [1], which paved the way for a drastic increase in functionality and, at the same time, the need for better thermal management technologies [2], [3]. The emergence of power electronic devices and their miniaturization [4], [5], [6], [7], [8] also motivate the search for new methods of handling high-generated power [9], [10]. Over the past few years, electronic devices have seen an increase in device instability due to an increase in operating temperature [4], [11], [12], [13], [14]. A study, conducted in 2019, showed a significant increase in the power density in electronics [15] and correlated it with the increasing number of devices integrated into a smaller area [16], [17], [18]. Effective management of heat dissipation in electronic devices is vital for continuing progress in electronics. Although humidity, dust, and vibration can lead to device failure, their influences are relatively minor whereas an increase in temperature contributes to ∼55% of device failures and thus limits technology improvements [15], [19], [20].

The utilization of an effective thermal interface material (TIM) with high thermal conductivity and low thermal contact resistance is important for managing excess heat in electronic devices. Generally, an electronic device with a solid heat sink suffers from thermal interface resistance in the junction. The layers of TIMs are applied between a device and a heat sink where otherwise only 2% or less of the overall surface area is in actual contact [3], [21], [22], [23] (see Fig. 1). The reduced contact surface area between the two solid surfaces is mostly due to the uneven surface roughness at the contacting interfaces [24], [25], [26], [27], [28]. The cavity formed between the two surfaces is filled with air, which has a low thermal conductivity of ∼0.026 W/mK at room temperature (RT) [29]. Utilizing a TIM with higher thermal conductivity and low contact resistance improves the thermal management
of electronic devices. The development of TIMs that can provide a lower thermal resistance is an important part of the thermal management approaches for effective heat removal in electronic devices [4], [19], [21], [26], [30], [31], [32].

The performance of the TIM introduced between two uneven surfaces can be evaluated using the equation for the total thermal resistance, R_{total}, [3], [26], [32], [33], [34], [35]:

$$R_{total} = \frac{BLT}{K_{TIM}} + R_C + R_{C2}.$$

(1)

Here, the bulk thermal conductivity of the TIM is denoted by K_{TIM}, and the thermal contact resistance of the two surfaces with TIM is represented by R_C and R_{C2}, while the thickness of the TIM layer, also known as the bond line thickness, is denoted by BLT. The thermal resistance of the TIM layer, R_{TLM}, is BLT/K_{TIM} and if the TIM layer is compressed between two identical surfaces, then $R_C = R_1 = R_2$, which allows one to simplify (1) to:

$$R_{total} = R_{TLM} + 2R_C.$$

(2)

The total thermal resistance, R_{total}, can be reduced by minimizing R_C and BLT, which depend on the properties of TIM and the roughness of the connecting surfaces. For high-power-density electronic devices, in modern electronics, the BLT varies from 15 to 100 μm [4]; typically, larger BLT is required to fill the voids in high-roughness surfaces. This can be particularly relevant for polycrystalline diamond, used as a substrate or active layer [36], [37]. Thermal management requires TIM with both high thermal conductivity and low thermal contact resistance.

The TIM performance can be improved by using a suitable base polymer with incorporated thermally conductive fillers. In developing TIMs one should keep in mind the existence of the Kapitza resistance, between the polymer and the fillers [38], [39], [40], [41], [42], [43], [44], [45]. There are other performance parameters of TIMs that need to be taken into consideration for practical applications. The electrically insulating and mechanical properties as well as reliability and cost effectiveness play major roles. The most commonly used types of TIMs include non-cured, cured, thermal pads, and phase change materials. A non-cured TIM is effective in replacing excess air from the structure by filling the voids formed between the two uneven surfaces. The viscosity of the non-cured TIM influences the BLT and the amount of TIM, which leaks out of the structure, through the process known as pump-out [29], [32], [35], [46], [47]. Commercial TIMs have thermal conductivity, which is no longer sufficient for many modern electronic devices [35], [48], [49], [50], [51], [52], [53], [54], [55]. New TIMs are required for various application domains [4].

II. GRAPHENE AND FEW-LAYER GRAPHENE AS FILLERS FOR TIMS

Graphene attracted attention by revealing unusual electrical and optical properties [56], [57]. Raman spectroscopy was instrumental in verifying the quality of graphene and determining the number of atomic planes in few-layer graphene (FLG) [32], [58], [59]. The G-peak of graphene is narrow and sensitive to temperature [59], [60]. The unique heat conduction properties of graphene and FLG were discovered with the help of Raman spectroscopy, using the optothermal Raman technique, [61] and later examined further by various other experimental and theoretical studies [62], [63], [64], [65], [66], [67], [68], [69], [70]. The thermal conductivity of high-quality single-crystal graphene is measured to be in the range of ~1000 $W/mK – 5000$ W/mK near RT [61], [62], [64], [65], [66]. The thermal transport in FLG is influenced strongly by the lateral dimension and thickness [63], [71], [72], [73], [74], [75], [76], [77], [78]. Overall, FLG retains the excellent in-plane heat conduction properties of graphite while being more flexible owing to its small thickness.

Although single-layer graphene (SLG) has a superior intrinsic thermal conductivity, the use of FLG as fillers for TIMs is more promising for practical applications. This is because FLG has a larger cross-sectional area, less degradation when mixed with a base material matrix, retainable mechanical stability with the base matrix, and low cost of mass production [71], [79]. Initial studies of graphene-FLG filler-cured epoxy TIMs with random orientation of low-loading fillers demonstrated enhanced thermal conductivity by a factor of $\times 25$ [33], [80]. A similar enhancement in thermal conductivity was also seen in non-cured graphene-FLG composites [26], [32], [35], [81], [82]. Incorporation of graphene fillers in a base polymer increased the thermal conductivity to ~12.5 W/mK for cured TIMs [83], [84] and ~7.1 W/mK for non-cured TIMs [35], which surpassed the values of commercially available TIMs [35]. When measured in thin-film form by a standard TIM Tester method, the commercial TIMs typically have the thermal conductivity values between 1 W/mK to 6 W/mK. Utilization of the proper base polymer matrix, which couples well with the fillers, helps to increase the overall thermal conductivity of graphene TIMs. This has also been shown to have a positive influence on the thermal performance of such graphene-FLG filler TIMs throughout power cycling [85].

Graphene-FLG mixtures are preferred over carbon nanotubes (CNTs) as fillers for TIMs. In contrast to CNTs, FLG
FIGURE 2. Statistics of the publications on thermal management with graphene during 2008 - 2022 (Source: Google Scholar).

FIGURE 3. RMS surface roughness of polished 1 in2 copper plates determined by optical profilometer for one of the used copper plates after polishing for ~1 minute with $S_q = 1.2 \mu$m. Reproduced from Ref. [26] under CC-BY-4.0.

does not exhibit severe agglomeration issues during mixing processes yielding a better overall thermal performance [74]. Obtaining graphene fillers by synthesis using the technique of liquid-phase exfoliation (LPE) is cheap and can easily be scaled up [32], [86], [87], [88], [89], [90], [91]. The process of LPE can be performed by breaking down the van der Waals (vdW) bonds between graphite with compatible solvents and sonication to obtain FLG. The graphene fillers for composites and TIMs can also be produced by electrochemical exfoliation [92]. This technique utilizes bulk graphite and interaction between electrodes and solvent ions to produce FLG. There are multiple studies on graphene-FLG filler TIMs for various applications [5], [26], [32], [33], [34], [35], [40], [42], [64], [80], [81], [82], [83], [84], [85], [93], [94], [95], [96], [97], [98], [99], [100] and composites with dual fillers including graphene-FLG [38], [40], [80], [98], [100], [110], [111], [112], [113], [114], [115], [116], [117], [118], [119], [120], [121], [122], [123], [124], [125], [126], [127], [128]. Since the discovery of the thermal conductivity of graphene in 2008, multiple studies have been published on thermal management with graphene. Fig. 2 illustrates the interest in this research topic using the number of publications as an indicator.

III. INFLUENCE OF SURFACE ROUGHNESS ON THE PERFORMANCE OF TIMS

In the thermal management of electronics, one often looks for the best TIM based on thermal conductivity and cost. However, the selected TIM may not be the best choice for specific applications and the materials of the electronic device and heat sink. The bulk thermal conductivity of the TIM layer is an important factor of performance, but one should also address the issues of conformability and spreading of TIMs on particular surfaces. Utilizing a TIM with high thermal conductivity and low thermal contact resistance (TCR) is crucial for the thermal performance of TIM and, ultimately, the extended life of an electronic device [23], [26], [85], [129], [130], [131], [132], [133]. The parameter of total thermal resistance, R_{total} can be calculated by measuring the contact resistance of the TIM layer with the mating surfaces, R_C as expressed in (1) and (2).

Multiple studies have been conducted with graphene TIMs [26] and other conductive filler TIMs [27], [28], [134], [135], [136] while varying the surface roughness of the material to understand the correlation of TCR with the surface roughness. Some of us performed a detailed investigation of TCR of non-curing TIMs with graphene fillers with surfaces characterized by different roughness [26]. The study used PDMS and silicone oil as the base polymer and square copper plates with an area of 1 in2 and a thickness of ~1 mm as the connecting surfaces. The surface roughness of the plates was adjusted using a polisher and silicon carbide sandpaper to produce copper plates of different roughness. To determine the root mean square (RMS) roughness, S_q, an optical profilometer was used. Fig. 3 illustrates the S_q roughness of the copper plates determined with the optical profilometer, following the standard procedures [26], [137].

Graphene-FLG fillers with an average lateral dimension, L, of ~25 μm were added to the base polymer and acetone was used to avoid agglomeration during the shear mixing process at low speed. The final non-cured TIMs, at different filler loadings, f, were then experimentally tested for their thermal properties with an ASTM-D5470 TIM tester at ~80 °C and ~80 psi pressure using plastic shims to acquire data at different thicknesses.

Fig. 4(a)–(b) illustrates the thermal performance of the graphene-FLG non-cured TIMs. The thermal conductivity of the graphene-FLG TIMs at different f is shown in Fig. 4(a). The thermal conductivity of silicone oil itself was measured to be 0.18 W/mK, in agreement with literature [138], [139], [140]. At low graphene loading, TIMs are below the percolation threshold [83]. As the loading increases, one observes a transition to thermal transport in the percolated regime. The specific dependence of the thermal conductivity on the loading can differ for the cured and non-cured TIMs. In curing epoxy TIMs the thermal conductivity shows super-linear trends after percolation is reached. In non-curing TIMs,
The thermal conductivity reveals a sub-linear increase, with a significant enhancement at first as fillers are added as a result of thermal percolation. The thermal conductivity does not show significant enhancement as more fillers are introduced, possibly due to agglomeration or the dominance of filler-polymer and filler-filler contact resistance in thermal transport characteristic of the TIM. The slow increase in the thermal conductivity after $f \sim 10$ wt.% is consistent with the previously studied non-cured graphene-FLG TIMs [35]. The variations in this trend in different graphene-FLG filler composites have been studied in detail [33], [34], [83], [84], [85], [98], [99], [100]. This can also be observed with soft and nano-fluid TIMs [31], [141], [142], [143].

Fig. 4(b) shows the TCR of non-cured TIMs with graphene-FLG filler. The measured R_C reveals a non-monotonic trend as f increases. Theoretically, the thermal contact resistance, R_C, would depend on K_{TIM} and shear modulus of the TIM and the surface roughness of the mating surfaces and the pressure applied. Here, R_C is affected by both shear modulus and K_{TIM} where an increase in bulk thermal conductivity would decrease TCR whereas an opposite dependency can be seen for shear modulus [31]. Although one wants to improve K_{TIM} by increasing f to achieve the lowest R_{total}, special attention must be given to viscosity. The increase in f affects both viscosity and the minimum attainable BLT.

IV. THE ROLE OF THE LATERAL DIMENSION OF THE FILLERS ON THE PERFORMANCE OF TIMS

Multiple studies of graphene filler TIMs focus on K_{TIM} and the thermal diffusivity of the prepared composites as a function of f [71], [73], [74]. Fewer studies focus on fundamental questions such as the existence of thermal percolation (similar to electrical percolation) [83], [144] and synergistic effects, when using various fillers or fillers of the same type with different size distributions [100], [111], [145], [146], [147]. For the electrically conductive filler composites, it is well documented that the electrical percolation threshold depends on the filler aspect ratio and size [148], [149], [150]. A limited number of studies on the influence of L on the thermal conductivity of synthesized graphene filler composites have been documented [144], [151], [152], [153]. Some of us reported a detailed investigation of the influence of L on R_C in the context of graphene TIMs [32]. The scarcity of such data can be attributed to the difficulty in producing graphene fillers with consistent average L to synthesize the required composites.

The gray mean-free path (MFP) of graphene is known to be ~800 nm [63], [72], [75], [76], [77], [78], [154]. This suggests that the lateral dimensions of graphene – FLG fillers should be larger than the MFP value to preserve the intrinsic heat conduction properties of the fillers. On the other side, technological considerations, e.g., bending and rolling of fillers, should also be considered as these processing hassles deteriorate the intrinsic thermal properties of FLG. Apart from the influence of L on the thermal conduction of composites, other key factors are the specific surface area, defect density [62], [110], [112], [155], Kapitza resistance between filler-matrix [156] and interface area between filler-matrix [157], [158], [159], [160].

Fig. 5(a)–(b) illustrates the thermal conductivity and thermal percolation in graphene TIMs based on the average size of the graphene – FLG fillers. Fig. 5(a) shows the thermal conductivity of cured epoxy-based graphene filler composites with L ranging from ~2-8 μm. An increase in the thermal conductivity can be seen as more fillers are introduced into the base polymer matrix and a clear thermal percolation can be observed at $f \sim 30$ vol%. The results were also confirmed with the help of the semi-empirical Lewis-Nielsen (L-N) model [161], [162]. The L-N model accounts for the packing of fillers, the shape of the fillers, and the orientation of the particles with respect to the heat flux. Fig. 5(b) represents the thermal conductivity obtained for cured epoxy-based graphene filler composites with $L \sim 20 \pm 7$ μm. The increase in thermal conductivity can be seen as filler content increases and the thermal percolation threshold was experimentally obtained at $f = 17$ vol%. The obtained results can also be theoretically interpreted with the Nans’ model [163], [164], [165]. Table 1 summarizes the thermal conductivity obtained by multiple research groups which helps to illustrate the influence of L on graphene-FLG filler composites. The acronyms used in the table are GNP–graphene nanoplatelets, SBR–Styrene butadiene, DGEBA–Bisphenol-A diglycidyl ether, GN sheet–graphene nanosheet, EGNP–Expanded
TABLE 1. Thermal Conductivity of Graphene Composites

Graphene Filler Type	Average Filler Lateral Dimension, \(L (\mu m) \)	Polymer Matrix	Composite Type – Cured/Non-Cured (C/NC)	Filler Loading \(\text{wt}\% \) vol\%	Thermal Conductivity (Wm\(^{-2}\)K\(^{-1}\))	Reference
GNP	mm-\(\mu \)m	Silver Epoxy	C	- 5	9.9	[38]
GNP	25	Epoxy	C	- 30	9.3	[85]
GNP	2-8	Epoxy	C	- 45	12	[83]
GNP	0.05-0.5	Epoxy	C	- 10	5.1	[33]
GNP	15	Cyanoacrylate	C	- 0.5	0.35	[166]
GNP	-	SBR Rubber	C	- 15	2.922	[167]
GNP	2-8	Epoxy	C	- 43.6	7.9-9	[98]
GNP	1.5-10	Epoxy	C	- 50	8	[99]
GNP	2-8	Epoxy	C	- 50	3.2	[99]
GNP	3-7	DGEBA Epoxy	C	- 10	0.668	[168]
GNP	5-10	Epoxy	C	- 10	3.35	[169]
GNP	10	Epoxy	C	- 8	1.18	[170]
GNP	25	Epoxy	C	- 10	0.65	[171]
GNP	10	Epoxy	C	- 10	3.87	[172]
GNP	30	Epoxy	C	- 25	6.44	[173]
GNP	15	Epoxy	C	- 24	12.4	[80]
GNP	70	Epoxy	C	- 10	4.01	[174]
GNP	-	Polyamide	C	- 5	0.41	[175]
GNP	15	Lauric Acid	C	- 1	0.49	[176]
GNP	0.55	Paraffin	C	- 20	45	[101]
GNP	5	Polystyrene	C	- 20	0.48	[121]
GNP	5-10	Eicosane	C	- 10	2	[177]
GNP	-	Polyolefin	C	- 10	5.6	[131]
GNP	5	Cyclic butylene terephthalate	C	- 30	4	[153]
GNP	15	Cyclic butylene terephthalate	C	- 30	8	[153]
GNP	25	Cyclic butylene terephthalate	C	- 30	8	[153]
GNP	<2	Polycarbonate	C	- 20	0.75	[151]
GNP	5	Polycarbonate	C	- 20	1.2	[151]
GNP	15	Polycarbonate	C	- 20	1.4	[151]
GNP	5	Polycarbonate	C	- 20	2.2	[151]
GNP	25	Polycarbonate	C	- 20	2.3	[151]
GNP	15	Mineral Oil	NC	- 50	7.1	[35]
GNP	25	Mineral Oil	NC	- 40	6.74	[96]
GNP	12	Silicone Oil	NC	- 30	4.2	[26]
GNP	0.8	Silicone Oil	NC	- 20	0.428	[32]
GNP	0.4	Silicone Oil	NC	- 20	0.359	[32]
GN Sheet	3-5	Natural Rubber	C	- 5.78	10.64	[178]
EGNP	-	Epoxy	C	- 2	0.51	[179]
GO	150-500	DGEBA Epoxy	C	- 2	0.242	[180]
GO	44	Epoxy	C	- 1	0.65	[181]
rGO	-	Polyamide	C	- 10	0.416	[182]
rGO	320	Polyamide	C	- 10	3.5	[183]
rGO	44	TPU	C	- 1.04	0.8	[184]
rGO	0.45	Cellulose	C	- 30	0.07	[185]
rGO	25	PVDF	C	- 0.25	2.35	[186]
GF	0.014	Natural Rubber	C	- 5.78	3	[178]
GF	-	PDMS	C	- 0.5	0.4	[187]
f-FLG	0.2	Epoxy	C	- 10	1.53	[188]
3D-GNs	2-10	Epoxy	C	- 17	4.9	[42]
Graphene woven fabric	105	Polyimide	C	- 12	0.41	[189]
graphene nanoplatelets, GO–graphene oxide, rGO–Reduced graphene oxide, TPU–Thermoplastic polyurethane, PVDF–Poly (vinylidene fluoride), PDMS–Poly(dimethyl siloxane), GF–Graphene foam, f-GF–Functionalized graphene flakes, 3D-GNs–Three-dimensional graphene networks.

As seen from Table 1, little information is available for graphene-FLG filler composites with L which are near the gray MFP of graphene. The influence of L on the thermal properties of non-cured graphene-FLG filler composites with $L \sim MFP$ is addressed [32]. The fillers with different L were produced from graphite using liquid phase exfoliation (LPE) [86], [87], [88], [90], [91]. Graphite was introduced to the process of LPE in an aqueous surfactant solution using liquid cascade centrifugation [190], [191] to select the size of graphene fillers. This enabled us to synthesize fillers with controlled different lateral dimensions and thicknesses. The fillers were introduced to the base polymer matrix to synthesize the required composites. Details on the LPE process can be found in Ref. [32]. The composites were prepared with a similar procedure as reported in Ref. [26] apart from the usage of acetone and thermal treatment for evaporation of the solvent.

The lateral dimensions and thickness of the fillers were determined with atomic force microscopy (AFM), Raman spectroscopy, scanning electron microscopy (SEM), and optical extinction spectroscopy. Fig. 6(a)–(b) illustrates the size distribution of a representative batch after LPE. The determined average L for each filler set were 1.2 μm, 0.8 μm, and 0.4 μm while the number of average atomic planes was 40, 19, and 8. For simplicity, these fillers would now be further labeled as “large”, “medium” and “small”, respectively. Table 2 summarizes the characteristics of the fillers used in the study.

One should note that it is difficult to obtain FLG fillers with fixed N and different L because there is always a correlation between the two. This can be detailed by the process of exfoliation during delamination by tearing [192]. The centrifugation helps the process of size selection which helps correlate the factors of L and N by providing a meaningful relationship between them [190], [191], [192] (see Fig. 7(a)). The characteristic lateral length can be represented as $L^* = (L \times W)^{0.5}$ [32]. Each data point in the plot represents a graphene filler imaged and analyzed with AFM. We found that L influences the thermal transport greater than the thickness of the fillers. Fig. 7(b) shows the Raman spectra of the fillers with different sizes, indicating the correlation of Raman signature peaks with the filler sizes [59], [63], [75], [191], [193]. One can see that the intensity of the D peak increases as filler size decreases [59]. The I_D/I_G ratio can be used to determine the average characteristics of the fillers since this ratio decreases with the increase in filler size [194], [195], [196].

The K_{TIM}, R_C, and R_{total} values of the composites with different filler characteristics were determined following the industry-standard method (ASTM-D5470) [197]. Fig. 8(a)–(b) presents the measured thermal properties of the synthesized composites with different filler sizes and loading.
TABLE 2. Characteristics of LPE Exfoliated graphene-FLG fillers

Characteristic	Symbol	Large	Medium	Small
Average length (nm)	L	1200	800	400
Aspect ratio (length/width)	L/W	1.8	2.1	2.3
Aspect ratio (length/thickness)	(L/t)	110	120	200
Average layer number	N	40	19	8
Characteristic length ($L \times W^{0.5}$ (nm))	L_*	900	430	270

FIGURE 7. (a) Correlation between L and N of the fillers used with the data acquired from multiple AFM measurements. (b) Raman spectra of liquid-phase exfoliated graphene-FLG fillers with different characteristics. Reproduced with permission from [32]. Copyright (2021) American Chemical Society.

V. COMMERCIAL APPLICATIONS OF GRAPHENE

While the initial interest in graphene originated from its unique electronic properties, it is now generally accepted that the high thermal conductivity of graphene and few-layer...
graphene is also extremely interesting and promising for practical applications. The use of graphene and FLG in composites is not limited to thermal management. It is also being utilized for electromagnetic interference (EMI) shielding [84], [99], [103], [108], [125], [198], [199]. Often graphene composites can perform dual functionalities in EMI shielding and thermal management. One should keep in mind that the term graphene in non-electronic applications typically means the mixture of graphene and FLG. The requirements for graphene’s purity and crystallinity for applications in thermal management are not as strict as for applications that utilize the electronic or optical properties of graphene. For this reason, scaling up to the industrial level of graphene and FLG production via LPE processes is feasible. Fig. 9 summarizes the present application of graphene in various industries and its impact. The illustration is based on the data reported in Ref. [200], [201], [202].

Industrial reviews and forecasts from leading business analysts show that the graphene market would grow from less than $100 million in 2020 to more than $1 billion by 2032. The major application can be found in energy storage, thermal management, coatings, inks, adhesives, textiles, concrete, asphalt, sensors, photons, and other applications [203], [204], [205], [206], [207], [208], [209], [210], [211]. The market size of TIMs in 2022 is estimated to be $2.05 billion and is projected to grow up to $4.86 billion or beyond by 2030 [212]. The target thermal conductivity varies, depending on the industry and intended application, with some aiming at \(10 \text{ Wm}^{-1}\text{K}^{-1}\) while others target more than 25 \(\text{Wm}^{-1}\text{K}^{-1}\) [212]. There is also a specific goal of reducing the thermal contact resistance [213], [214]. These industry needs and market trends open a wide application domain for graphene and FLG as fillers in thermal composites.

ACKNOWLEDGMENT

The authors thank Dr. Fariborz Kargar (UCR) and Jonas Brown (UCR) for critical reading of the manuscript.

REFERENCES

[1] G. E. Moore, “Cramming more components onto integrated circuits,” *Proc. IEEE*, vol. 86, no. 1, pp. 82–85, Jan. 1998, doi: 10.1109/PROC.1998.658762.

[2] S. E. Thompson and S. Parthasarathy, “Moore’s law: The future of Si microelectronics,” *Mater. Today*, vol. 9, no. 6, pp. 20–25, Jun. 2006, doi: 10.1016/S1369-7021(06)71539-5.

[3] R. Prasher, “Thermal interface materials: Historical perspective, status, and future directions,” *Proc. IEEE*, vol. 94, no. 8, pp. 1571–1586, Aug. 2006, doi: 10.1109/PROC.2006.879796.

[4] A. Bar-Cohen, K. Matin, and S. Narumanchi, “Nanothermal interface materials: Technology review and recent results,” *J. Electron. Packag.*, vol. 137, no. 4, Dec. 2015, Art. no. 040803, doi: 10.1115/1.4033603.

[5] Z. Yan, G. Liu, J. M. Khan, and A. A. Balandin, “Graphene quilts for thermal management of high-power GaN transistors,” *Nature Commun.*, vol. 3, no. 1, Jan. 2012, Art. no. 827, doi: 10.1038/ncomms1828.

[6] D. Kim, Y. Yamamoto, S. Nagao, N. Wakesugi, C. Chen, and K. Suganuma, “Measurement of heat dissipation and thermal-stability of power modules on DBC substrates with various ceramics by SiC micro-heater chip system and Ag sinter joining,” *Micromachines (Basel)*, vol. 10, no. 11, 2019, Art. no. 745, doi: 10.3390/mi10110745.

[7] R. Warzoha et al., “Applications and impacts of nanoscale thermal transport in electronics packaging,” *J. Electron. Packag.*, vol. 143, no. 2, 2021, Art. no. 020804, doi: 10.1115/1.4049293.

[8] F. N. Faili, C. Engdahl, and E. Francis, “GaN-on-Diamond substrates for HEMT applications,” *Diamond Tooling J.*, vol. 1, pp. 52–55, 2009.

[9] S. Krishnan, S. V. Garamella, G. M. Chrsytler, and R. V. Mahajan, “Towards a thermal Moore’s law,” *IEEE Trans. Adv. Packag.*, vol. 30, no. 3, pp. 462–474, Aug. 2007, doi: 10.1109/TADVP.2007.898517.

[10] S.-C. Lin and K. Banerjee, “Cool chips: Opportunities and implications for power and thermal management,” *IEEE Trans Electron Devices*, vol. 55, no. 1, pp. 245–255, Jan. 2008, doi: 10.1109/TED.2007.911763.

[11] Y. Chen, B. Li, X. Wang, Y. Yan, Y. Wang, and F. Qi, “Investigation of heat transfer and thermal stresses of novel thermal management system integrated with vapour chamber for IGBT power module,” *Thermal Sci. Eng. Prog.*, vol. 10, pp. 73–81, May 2019, doi: 10.1016/j.tsep.2019.01.007.

[12] C. Qian et al., “Thermal management on IGBT power electronic devices and modules,” *IEEE Access*, vol. 6, pp. 12868–12884, 2018, doi: 10.1109/ACCESS.2018.2793300.

[13] A. Guo and J. A. del Alamo, “Unified mechanism for Positive- and Negative-Bias temperature instability in GaN MOSFETs,” *IEEE Trans. Electron Devices*, vol. 64, no. 5, pp. 2142–2147, May 2017, doi: 10.1109/TED.2017.2686840.

[14] Y. A. Cengel, *Heat Transfer: A Practical Approach*, 2nd ed. New York, NY, USA: McGraw-Hill, 2004.

[15] J. L. Snyder and P. M. Norris, “Brief historical perspective in thermal management and the shift toward management at the nanoscale,” *Heat Transfer Eng.*, vol. 40, no. 3–4, pp. 269–282, Feb. 2019, doi: 10.1080/01457632.2018.1426265.

[16] G. Moreno, S. Narumanchi, X. Feng, P. Anschel, S. Myers, and P. Keller, “Electric-drive vehicle power electronics thermal management: Current status, challenges, and future directions,” *J. Electron. Packag.*, vol. 144, no. 1, Mar. 2022, Art. no. 011004, doi: 10.1115/1.4049815.

[17] J. Cao et al., “Flexible elemental thermoelectrics with ultra-high power density,” *Mater Today Energy*, vol. 25, 2022, Art. no. 100964, doi: 10.1016/j.mtener.2022.100964.

[18] R. Mirrini, D. Sharar, A. Gowda, C. Hoel, B. Whalen, and P. de Bock, “A novel package-integrated cyclone cooler for the thermal management of power electronics,” *J. Electron. Packag.*, vol. 144, no. 2, Jun. 2022, Art. no. 021105, doi: 10.1115/1.4052071.

[19] A. L. Moore and L. Shi, “Emerging challenges and materials for thermal management of electronics,” *Mater. Today*, vol. 17, no. 4, pp. 163–174, May 2014, doi: 10.1016/j.mattod.2014.04.003.

[20] H. Wang, M. Liserre, and F. Blaabjerg, “Towards reliable power electronics: Challenges, design tools, and opportunities,” *IEEE Ind. Electron. Mag.*, vol. 7, no. 2, pp. 17–26, Jun. 2013, doi: 10.1109/MIE.2013.2252958.

[21] M. M. Yovanovich and E. E. Marotta, *Thermal Spreading and Contact Handbook, in Heat Transfer Handbook*, New York, NY, USA: Wiley, 2003.

[22] C. v. Madhusudana, *Thermal Contact Conductance*, New York, NY, USA: Springer, 1996.

[23] R. S. Prasher, “Surface Chemistry and characteristics based model for the thermal contact resistance of fluidic interstitial thermal interface materials,” *J. Heat Transfer*, vol. 123, no. 5, pp. 969–975, Oct. 2001, doi: 10.1115/1.138301.
[104] Z.-G. Wang et al., “Highly thermally conductive graphene-based thermal interface materials with a bilayer structure for central processing unit cooling,” ACS Appl. Mater. Interfaces, vol. 13, no. 21, pp. 25325–25333, 2021, doi: 10.1021/acsami.10b1223.

[105] P. Zhang, J. Zeng, S. Zhai, Y. Xian, D. Yang, and Q. Li, “Thermal properties of graphene filled polymer composite thermal interface materials,” Macromol. Mater. Eng., vol. 302, no. 9, Sep. 2017, Art. no. 1700068, doi: 10.1002/mame.201700068.

[106] A. S. Dmitriev and A. R. Valeev, “Graphene nanocomposites as thermal interface materials for cooling energy devices,” J. Phys.: Conf. Ser., vol. 891, no. 1, 2017, Art. no. 012359, doi: 10.1088/1742-6596/891/1/012359.

[107] C. Chen, Y. He, C. Liu, H. Xie, and W. Yu, “Comprehensive excellent performance for silicone-based thermal interface materials through the synergistic effect between graphene and spherical alumina,” J. Mater. Sci.: Mater. Electron., vol. 31, no. 6, pp. 4642–4649, Mar. 2020, doi: 10.1007/s10994-020-03016-3.

[108] Q. Wei et al., “Superhigh electromagnetic interference shielding of ultrathin aligned pristine graphene nanosheets film,” Adv. Mater., vol. 32, no. 14, Apr. 2020, Art. no. 1907411, doi: 10.1002/adma.201907411.

[109] Z. Barani et al., “Efficient terahertz radiation absorption by dilute graphene composites,” Appl. Phys. Lett., vol. 120, no. 6, Feb. 2022, Art. no. 063104, doi: 10.1063/5.0070987.

[110] A. E. Senturk, A. S. Oktem, and A. E. S. Konukman, “Investigation of interfacial thermal resistance of hybrid graphene/hexagonal boron nitride,” Int. J. Mech. Mater. Des., vol. 15, no. 4, pp. 727–737, Dec. 2019, doi: 10.1007/s10999-018-09440-y.

[111] W. Zhou, C. Wang, Q. An, and H. Ou, “Thermal properties of heat conductive silicone rubber filled with hybrid fillers,” J. Composite Mater., vol. 42, no. 2, pp. 173–187, Jan. 2008, doi: 10.1177/0021998307086184.

[112] N. K. Mahanta, M. R. Loos, I. M. Zloczower, and A. R. Abramson, “Graphite–graphene hybrid filler system for high thermal conductivity of epoxide composites,” J. Mater. Res., vol. 30, no. 7, pp. 959–966, Apr. 2015, doi: 10.1557/jmr.2015.68.

[113] I. Levy, E. M. Wormser, M. Varenik, M. Buzaglo, R. Nadiv, and C. Chen, “Graphene–graphite hybrid epoxy composites with controllable workability for thermal management,” Beilstein J. Nanotechnol., vol. 10, no. 1, pp. 95–104, 2019, doi: 10.3762/bjnano.10.9.

[114] J. Chen and X. Gao, “Thermal and electrical anisotropy of polymer matrix composite materials reinforced with graphene nanoplatelets and aluminum-based particles,” Diamond Related Mater., vol. 100, 2019, Art. no. 107571, doi: 10.1016/j.diamond.2019.107571.

[115] C. Chen, Y. He, C. Liu, H. Xie, and W. Yu, “Comprehensive excellent performance for silicone-based thermal interface materials through the synergistic effect between graphene and spherical alumina,” J. Mater. Sci.: Mater. Electron., vol. 31, no. 6, pp. 4642–4649, Mar. 2020, doi: 10.1007/s10994-020-03016-3.

[116] X. Tian, M. E. Ikis, and R. C. Haddon, “Application of hybrid fillers for improving the through-plane heat transport in graphite nanoplatelet-based thermal interface layers,” Mater. Sci. Eng., vol. 5, no. 1, Oct. 2015, Art. no. 13108, doi: 10.1088/1361-6668/24/15/135604.

[117] L. Jiang, S. Yang, L. Li, and S. Bai, “High thermal conductivity polyacrylate acid composite for 3D printing: Synergistic effect of graphene and alumina,” Polymers for Adv. Technol., vol. 31, no. 6, pp. 1291–1299, Jun. 2020, doi: 10.1002/pat.4588.

[118] H. Wang, J. Y. Peng, X. J. Hu, and K. M. Ng, “Reducing thermal contact resistance using a bilayer aligned CNT thermal interface material,” Chem. Eng. Sci., vol. 65, no. 3, pp. 1101–1108, Feb. 2010, doi: 10.1016/j.cej.2009.09.064.

[119] C. Liu, W. Yu, J. Yang, Y. Zhang, and H. Xie, “Reducing thermal contact resistance by a novel elastomeric polyethylene glycol–crosslinked polyester resin/graphene thermal interface materials,” Int. Commun. Heat Mass Transfer, vol. 127, 2021, Art. no. 105553, doi: 10.1016/j.icheattransf.2021.105553.

[120] T. Cui, Q. Li, Y. Xuan, and P. Zhang, “Preparation and thermal properties of the graphene–polylefin adhesive composites: Application in thermal interface materials,” Microelectronics Rel., vol. 55, no. 12, pp. 2569–2574, Dec. 2015, doi: 10.1016/j.microrel.2015.07.036.

[121] S. Sakamoto et al., “Selection and evaluation of thermal interface materials for reduction of the thermal contact resistance of thermoelectric generators,” J. Electron. Mater., vol. 43, no. 10, pp. 3792–3800, Oct. 2014, doi: 10.1007/s11664-014-3165-7.

[122] R. S. Prasher and J. C. Matayabas, “Thermal contact resistance of cured gel polymeric thermal interface material,” Thermomechanical Phenomena Electron. Syst. - Proc. Interociety Conf., vol. 1, no. 4, pp. 28–35, 2004, doi: 10.1109/therm.2004.1319150.

[123] T. Hisakado, “Effects of surface roughness and surface films on contact resistance,” Wear, vol. 44, no. 2, pp. 345–359, 1977.

[124] J. W. Zhao, R. Zhao, Y. K. Hau, and W. L. Cheng, “Effects of surface roughness, temperature and pressure on interface thermal resistance of thermal interface materials,” Int. J. Heat Mass Transfer, vol. 140, pp. 705–716, Sep. 2019, doi: 10.1016/j.ijheatmasstransfer.2019.06.045.

[125] C.-K. Leong and D. D. L. Chung, “Carbon black dispersions and carbon–silicon combinations as thermal pastes that surpass commercial silver and ceramic pastes in providing high thermal contact conductance,” Carbon N Y, vol. 42, no. 11, pp. 2323–2327, 2004, doi: 10.1016/j.carbon.2004.05.013.

[126] J. P. R. Abbott and H. Zhu, “3D Optical surface profiler for quantifying leaf surface roughness,” Surf. Topogr.: Metrol. Prop., vol. 7, no. 4, 2019, Art. no. 045016, doi: 10.1088/2057-6252/ab4c6c.

[127] Z. Huang, W. Wu, D. Drummer, C. Liu, Y. Wang, and Z. Wang, “Enhanced the thermal conductivity of polydimethylsiloxane via a three-dimensional hybrid boron nitride@silver nanowires thermal network filler,” Polymers (Basel), vol. 13, no. 2, Jan. 2021, Art. no. 248, doi: 10.3390/polym13020248.

[128] J. E. Mark, Polymer Data Handbook. New York, NY, USA: Oxford Univ. Press, 1999.
[140] Y.-H. Zhao, Y.-F. Zhang, and S.-L. Bai, “High thermal conductivity of flexible polymer composites due to synergistic effect of multilayer graphene flakes and graphene foam,” Composites Part A: Applied Science and Manufacturing, vol. 96, pp. 148–155, Jun. 2016, doi: 10.1016/j.compositesa.2016.03.021.

[141] W. Evans, R. Prasher, J. Fish, P. Meakin, P. Phelan, and P. Keblinski, “Effect of aggregation and interfacial thermal resistance on thermal conductivity of nanocomposites and colloidal nanofluids,” Int. J. Heat Mass Transfer, vol. 51, no. 5–6, pp. 1431–1438, Mar. 2008, doi: 10.1016/j.ijheattasstransfer.2007.10.017.

[142] L. Zhang, M. Ruesch, X. Zhang, Z. Bai, and L. Liu, “Tuning thermal conductivity of crystalline polymer nanofibers by interchain hydrogen bonding,” RSC Adv., vol. 5, no. 107, pp. 87981–87986, 2015, doi: 10.1039/C5RA18519J.

[143] L. Mu, T. Ji, L. Chen, N. Mehra, Y. Shi, and J. Zhu, “Paving the thermal highway with self-organized nanocrystals in transparent polymer composites,” ACS Appl. Mater. Interfaces, vol. 8, no. 42, pp. 29080–29087, Oct. 2016, doi: 10.1021/acsami.6b10451.

[144] M. Shtein, R. Nadiv, M. Buzaglo, K. Kahlil, and O. Regev, “Thermally conductive graphene-polymer composites: Size, percolation, and synergy effects,” Chem. Mater., vol. 27, no. 6, pp. 2100–2106, Mar. 2015, doi: 10.1021/cm504550e.

[145] K.-Y. Chun et al., “Highly conductive, printable and stretchable composites of carbon nanotubes and silver,” Nature Nanotechnol., vol. 5, no. 12, pp. 853–857, Dec. 2010, doi: 10.1038/nnano.2010.232.

[146] T. Zhou, X. Wang, X. Liu, and D. Xiong, “Improved thermal conductivity of epoxy composites using a hybrid multi-walled carbon nanotube/micro-SiC filler,” Carbon N Y, vol. 48, no. 4, pp. 1171–1176, Apr. 2010, doi: 10.1016/j.carbon.2009.11.040.

[147] P.-C. Ma et al., “Enhanced electrical conductivity of nanocomposites containing hybrid fillers of carbon nanotubes and carbon black,” ACS Appl. Mater. Interfaces, vol. 1, no. 5, pp. 1090–1096, May 2009, doi: 10.1021/am900500s.

[148] A. Devpura, P. E. Phelan, and R. S. Prasher, “Size effects on the thermal conductivity of polymers laden with highly conductive filler particles,” Microsclae Thermophysical Properties, vol. 3, no. 3, pp. 177–189, Jul. 2001, doi: 10.1080/1093951075332269.

[149] G. Zhang et al., “A percolation model of thermal conductivity for filled polymer composites,” J. Composite Mater., vol. 44, no. 8, pp. 963–970, Apr. 2010, doi: 10.1177/0021998309349690.

[150] B. Debak and K. Ladj, “Use of exfoliated graphite filler to enhance polymer physical properties,” Carbon N Y, vol. 45, no. 9, pp. 1727–1734, Aug. 2007, doi: 10.1016/j.carbon.2007.05.016.

[151] H. S. Kim, H. S. Bae, J. Yu, and S. Y. Kim, “Thermal conductivity of polymer composites with the geometrical characteristics of graphene nanoplatelets,” Sci. Rep., vol. 6, no. 1, Jun. 2016, Art. no. 26825, doi: 10.1038/srep26825.

[152] X. Shen, Z. Wang, Y. Wu, X. Liu, Y.-B. He, and J.-K. Kim, “Multilayer graphene enables higher efficiency in improving thermal conductivities of graphene/polymer composites,” Journal of Nano Research, vol. 16, no. 3, pp. 3585–3593, Jun. 2016, doi: 10.1007/s11000-016-9572-2.

[153] J. Jang et al., “Thermal percolation behavior in thermal conductivity of polymer nanocomposite with lateral size of graphene nanoplatelet,” Polymers (Basel), vol. 14, no. 2, Jan. 2022, Art. no. 323, doi: 10.3390/polym14020323.

[154] M.-H. Bae et al., “Ballistic to diffusive crossover of heat flow in graphene ribbons,” Nature Commun., vol. 4, no. 1, Jun. 2013, Art. no. 1734, doi: 10.1038/ncomms2755.

[155] M. Owais, J. Zhao, A. Imani, G. Wang, H. Zhang, and Z. Zhang, “Synergistic effect of hybrid fillers of boron nitride, graphene nanoplatelets, and short carbon fibers for enhanced thermal conductivity and electrical resistivity of epoxy nanocomposites,” Composites Part A: Appl. Sci. Manuf., vol. 85, pp. 11–22, Feb. 2019, doi: 10.1016/j.compositesa.2018.11.006.

[156] S. Jasmee, G. Omar, S. S. C. Othaman, N. A. Masripan, and H. S. Kim, “Graphite nanoplatelet-epoxy composite thermal interface materials,” J. Adhesion, vol. 90, no. 10, pp. 835–847, Oct. 2014, doi: 10.1080/00218644.2014.893510.

[157] A. A. Dmitriev, A. S. Dmitriev, P. Makarov, and I. Mikhailova, “New nanocomposite surfaces and thermal interface materials based on mesoscopic microspheres, polymers and graphene flakes,” AIP Conf. Proc., vol. 1957, 2018, Art. no. 020003, doi: 10.1063/1.5034322.

[158] Y. Wang et al., “Enhanced thermal and electrical properties of epoxy composites reinforced with graphene nanofillers,” Polym. Compos., vol. 36, no. 3, pp. 556–565, Mar. 2015, doi: 10.1002/pc.22972.

[159] R. Moriche, S. G. Prolongo, M. Sánchez, A. Jiménez-Suárez, F. J. Chamorro, and A. Ureña, “Thermal conductivity and lap shear strength of GNP/epoxy nanocomposites adhesives,” Int. J. Adhesion Adhesives, vol. 68, pp. 407–410, Jul. 2016, doi: 10.1016/j.ija.2015.12.012.

[160] W. Park et al., “High-performance thermal interface material based on few-layer graphene composite,” J. Phys. Chem. C, vol. 119, no. 47, pp. 26753–26759, Nov. 2015, doi: 10.1021/acs.jpcc.5b08816.

[161] A. Yu, P. Ramesh, M. E. Itkis, E. Belyakov, and R. C. Haddon, “Graphite nanoplatelet-epoxy composite thermal interface materials,” J. Phys. Chem. C, vol. 111, no. 21, pp. 7565–7569, 2007, doi: 10.1021/jp071761s.

[162] Y.-X. Fu, Z.-X. He, D.-C. Mo, and S.-S. Lu, “Thermal conductivity enhancement of epoxy adhesive using graphene sheets as additives,” Int. J. Thermal Sci., vol. 86, pp. 276–283, Dec. 2014, doi: 10.1016/j.ijthermalsci.2014.07.011.

[163] N. Song, J. Yang, P. Ding, S. Tang, and L. Shi, “Effect of polymer modifier chain length on thermal conductive property of polyamide 6/graphene nanocomposites,” Composites Part A: Appl. Sci. Manuf., vol. 73, pp. 232–241, Jun. 2015, doi: 10.1016/j.compositesa.2015.03.018.

[164] S. Harish, D. Orejon, Y. Takata, and M. Kohno, “Thermal conductivity enhancement of lauric acid phase change nanocomposite with graphene nanoplatelets,” Appl. Thermal Eng., vol. 80, pp. 205–211, Apr. 2015, doi: 10.1016/j.applthermaleng.2015.01.056.
