A neutron diffraction study of macroscopically entangled proton states in the high temperature phase of the KHCO₃ crystal at 340 K

François Fillaux¹, d, Alain Cousson² and Matthias J Gutmann³

¹ LADIR-CNRS, UMR 7075, Université P et M Curie, 2 rue Henry Dunant, 94320 Thiais, France
² Laboratoire Léon Brillouin (CEA-CNRS), CE Saclay, 91191 Gif-sur-Yvette, cedex, France
³ ISIS Facility, Rutherford Appleton Laboratory, Chilton, Didcot OX11 0QX, UK

E-mail: fillaux@glvt-cnrs.fr

Received 18 July 2007, in final form 26 October 2007
Published 12 December 2007
Online at stacks.iop.org/JPhysCM/20/015225

Abstract

We utilize single-crystal neutron diffraction to study the C₂/m structure of potassium hydrogen carbonate (KHCO₃) and macroscopic quantum entanglement above the phase transition at Tc = 318 K. Whereas split atom sites could be due to disorder, the diffraction pattern at 340 K evidences macroscopic proton states identical to those previously observed below Tc by Fillaux et al (2006 J. Phys.: Condens. Matter 18 3229). We propose a theoretical framework for decoherence-free proton states and the calculated differential cross-section accords with observations. The structural transition occurs from one ordered P₂₁/a structure (T < Tc) to another ordered C₂/m structure. There is no breakdown of the quantum regime. It is suggested that the crystal is a macroscopic quantum object which can be represented by a state vector. Raman spectroscopy and quasi-elastic neutron scattering suggest that the |C₂/m⟩ state vector is a superposition of the state vectors for two P₂₁/a-like structures symmetric with respect to (a, c) planes.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

In principle, a crystal with perfect translational invariance is a macroscopic quantum systems with discrete phonon states at any temperature below melting or decomposition. However, for crystals containing O–H···O hydrogen bonds, there is a widely spread dichotomy of interpretation for the so-called 'proton disorder', usually observed as a dynamical equilibrium between two sites, say O1–H···O2 and O1···H–O2. For such systems, semiclassical approaches are commonly used to rationalize proton correlation times measured with solid-state NMR and quasi-elastic neutron scattering (QENS) [1]. Semiclassical protons are dimensionless particles, with definite positions and momentums, moving in a double well coupled to an incoherent thermal bath. Dynamics are rationalized with uncorrelated jumps over the barrier and 'incoherent tunnelling' through the barrier. In fact, these models describe a liquid-like surroundings and strong interaction with the thermal bath is supposed to lead to fast decoherence. By contrast, diffraction and vibrational spectra provide unquestionable evidences that the translational invariance and the quantum nature of lattice dynamics are not destroyed by proton transfer.

The crystal of potassium hydrogen carbonate, KHCO₃, is at variance with this dichotomy of interpretation [2–5]. This crystal is composed of centrosymmetric hydrogen bonded dimers (HCO₃)₂, separated by potassium ions. Below ≈150 K, protons occupy sites corresponding to a unique configuration for dimers, say L. Between 150 and 300 K, protons are progressively transferred to the other
centrosymmetric configuration \(R \), up to a population ratio \(R:L \approx 18:82 \). In contrast to semiclassical models, it has been observed that the sublattice of protons is a macroscopically entangled quantum object over the whole temperature range. Quantum correlations outside any description offered by classical physics are evidenced with neutrons because the intensity diffracted by the sublattice is proportional to the total nuclear cross-section \(\sigma_n \). The unit cell parameters are \(\sigma_n \approx 82.02 \) b, instead of \(\sigma_n \approx 1.76 \) b for uncorrelated protons. Enhanced diffraction observed from cryogenic to room temperatures is consistent with a superposition of decoherence-free macroscopic states at thermal equilibrium and the correlation time measured with QENS [6] can be rationalized with quantum interferences [5]. There are therefore consistent evidences that protons in the crystal field are not semiclassical particles possessing properties on their own right [7].

In the present paper we examine whether the macroscopic entanglement is destroyed by the reversible structural phase transition at \(T_c \approx 318 \) K [8]. The population ratio \(R:L \) increases discontinuously to 0.5:0.5 and then remains a constant above \(T_c \). This transition, supposed to be of the order–disorder type [9–17], could be of great significance to experimental studies of the quantum-to-classical interface in the crystalline state. However, structural and dynamical models are still in debate and require further studies. We have therefore conducted extensive single-crystal neutron diffraction measurements in order to (i) determine the best structural model; (ii) observe whether enhanced features due to quantum correlations survive or not above \(T_c \). The experiments presented below show that the structural transition does not destroy the macroscopic quantum behaviour of protons. It transpires that the transition occurs from one ordered structure to another ordered structure through a coherent quantum process preserving the translational invariance of the crystal.

The organization of this paper is as follows. In section 2, we determine the structure at 340 K, for the sake of comparison with previous models. In section 3, we examine the total differential cross-section measured over a large \(Q \)-range, at the same temperature, which evidence the enhanced features of quantum correlations. The theoretical framework is presented in section 4 and we calculate the differential cross-section of correlated protons in section 5 for comparison with observations. In section 6, macroscopic states are opposed to statistical disorder and we utilize Raman spectroscopy to probe proton dynamics. We suggest that the crystal is in a pure state that can be represented by state vectors.

Crystal data	340 K	340 K	
\(a (\text{Å}) \)	15.18(1)	15.173(9)	15.173(9)
\(b (\text{Å}) \)	5.620(4)	5.628(4)	5.628(4)
\(c (\text{Å}) \)	3.710(4)	3.711(4)	3.711(4)
\(\beta (\text{deg}) \)	104.67(5)	104.63(5)	104.63(5)
Volume	306.2	306.6	306.6
Reflections measured	1731	1789	1789
Independent reflections	1475	931	931
Number of parameters	56	34	34
Goodness of fit	1.025	1.116	1.107
Extinction	3260(100)	15.4(4)	14.9(7)

2. Crystal structure

The reversible structural transition has a very small enthalpy and the crystal retains its optical transparency [8]. Below \(T_c \), the crystal symmetry is \(P2_1/a \) with four indistinguishable \(\text{KHCO}_3 \) entities in the unit cell [3, 4, 18, 19]. Planar centrosymmetric dimers \((\text{HCO}_3)^\text{-} \), with \(O \cdots O \) distances of \(\approx 2.58 \) Å, are practically parallel to (103) planes. They are alternately slightly tilted with respect to \((a, c) \) glide planes.

Kashida and Yamamoto (KY) [9] have measured X-ray diffraction across the transition. The unit cell parameters are very little affected, the symmetry above \(T_c \) is \(C2/m \) and \((a, c) \) glide planes become mirror planes. These authors envisaged two structural models: (i) the ‘displaceive’ model based on reorientation of dimers whose symmetry changes from \(C_i(T < T_c) \) to \(C_{2h} \) above \(T_c \); (ii) the ‘disorder’ model composed of split \(C_i \) dimers, symmetric with respect to the mirror plane. This latter model was preferred by KY, but Machida et al [11] preferred \(C_{2h} \) dimers to fit their neutron diffraction data.

We have collected single-crystal neutron diffraction data with the four-circle diffractometer 5C2 at the Orphée reactor (Laboratoire Léon Brillouin) [20]. The twinning-free crystal \((\text{Laboratoire Léon Brillouin}) [20] \) was loaded into an aluminium container heated at \(340 \pm 1 \) K. This temperature is sufficiently below decomposition \((\approx 400 \) K) to avoid damage, and it is sufficiently high to marginalize critical phenomena [6, 8, 12–14]. The data reduction was carried out with CRYSTALS [21, 22].

We confirm the monoclinic \(C2/m \) (\(C_{2h} \)) symmetry and previous unit cell parameters (table 1) [9, 11]. Both structural models, referred to as ‘\(C_{2h} \)’ and ‘\(C_i \)’ in table 1, were refined. \(C_{2h} \) dimers are composed of four \(\text{O}_{1/2}\text{C}_{1/2}\text{OH}_{1/2} \) entities per unit cell, while \(C_i \) dimers are obtained with four \((\text{HCO}_3)^\text{-} \) units. This latter model was refined in two steps. First, the split geometry was constrained to fit the mirror plane symmetry. Then, constraints were removed in order to check the stability. After further refinement, deviations were insignificant. The final \(R \)-factor is significantly better for the—therefore preferred—\(C_i \) model (figure 1 and table 1), in accordance with KY, but at variance with Machida et al. The \(R \)-factor is slightly improved by further splitting protons in two sub-sites on either sides of dimer planes, separated by \(\approx 0.05 \) Å. However, the large overlap of the thermal ellipsoids casts doubt on this splitting, so it is ignored in the remainder of this paper.
twinning-free crystal previously measured at 300 K (≈ a reciprocal lattice parameters). On the other hand, O–H bond lengths in CO could arise from the difference between the electronic and nuclear density. A bond length of 0.762(52) Å is too short. These discrepancies account for the variation of the contribution of each atom to Bragg’s peak intensities through the thermal factor T*=exp[−2π2(U11h2a2 + U22k2b2 + U33l2c2 + 2U12hkab* + 2U13hlac* + U23lc*)].

Table 2. Atomic positions, isotropic temperature factors and site occupancies for KHCO3 at 340 K. The variance for the last digit is given in parentheses.

Atom	x/a	y/b	z/c	U (iso.) (Å²)	Occupation
K(1)	0.165 26(7)	0.00	0.2957(3)	0.0290	1.00
C(1)	0.119 51(3)	0.5192(1)	−0.1437(1)	0.0186	0.50
O(1)	0.193 39(4)	0.5019(1)	0.0950(2)	0.0354	0.50
O(2)	0.078 1(2)	0.3021(1)	−0.264(1)	0.0337	0.50
O(3)	0.081 5(2)	0.6989(2)	−0.280(1)	0.0301	0.50
H(10)	0.017 6(2)	0.687(2)	−0.439(1)	0.0462	0.25
H(11)	0.018 9(2)	0.684(1)	−0.450(1)	0.0312	0.25

Table 3. Thermal parameters in Å² units for KHCO3 at 340 K. The variance for the last digit is given in parentheses. The thermal parameters account for the variation of the contribution of each atom to Bragg’s peak intensities through the thermal factor T*=exp[−2π2(U11h2a2 + U22k2b2 + U33l2c2 + 2U12hkab* + 2U13hlac* + U23lc*)].

Atom	U11	U22	U33	U13	U23	U12
K(1)	0.0316(4)	0.0303(4)	0.0227(3)	0.0000	0.0025(3)	−0.0003(1)
C(1)	0.0209(2)	0.0117(3)	0.0216(2)	0.0003(2)	0.0023(1)	−0.0001(2)
O(1)	0.0247(2)	0.0441(3)	0.0315(3)	−0.006(3)	−0.0036(2)	0.0083(1)
O(2)	0.029(1)	0.023(1)	0.041(2)	−0.0001(8)	−0.0067(9)	−0.0043(7)
O(3)	0.030(1)	0.028(1)	0.0295(9)	0.0018(7)	0.0009(7)	−0.0072(8)
H(10)	0.040(6)	0.034(5)	0.055(6)	−0.003(5)	−0.007(4)	0.003(4)
H(11)	0.034(5)	0.023(4)	0.036(5)	0.004(3)	−0.008(5)	−0.001(3)

Positional and thermal parameters for heavy atoms in tables 2 and 3 are quite consistent, within estimated errors, with those of KY, but more accurate. By contrast, the proton positions of KY, x/a = 0.032(32) and z/c = −0.410(123), are at variance with those in table 2 and the x-ray based O–H bond length of 0.762(52) Å is too short. These discrepancies could arise from the difference between the electronic and nuclear density. On the other hand, O–H bond lengths in table 4 are virtually identical to those of Machida et al. for the C2h model, and we have checked that the C2h and C3 models refined with our data lead to identical proton positions. Furthermore, proton positions are identical to those previously reported at 14 and 300 K [3, 4], although with different occupancies.

The phase transition can be featured as follows: (i) the discontinuous change of the occupancy of proton sites, with no significant change in positions; (ii) small changes of K and O atom positions by ≈0.1 Å parallel to (b); (iii) the splitting of carbonate groups. The split carbon atoms separated by ≈0.2 Å along (b) can be distinguished, while the split oxygen atoms are practically indiscernible. The CO single and double bond lengths (1.395 and 1.210 Å, respectively in table 4) are markedly different from one another and from those at 300 K (1.333 and 1.273 Å, respectively [4]).

3. Total neutron scattering: measurements

In order to observe whether the enhanced features previously attributed to macroscopic entanglement survive above Tc, we have conducted diffraction experiments with the SXD instrument at the ISIS pulsed neutron source [23, 24]. The twinning-free crystal previously measured at 300 K (≈15 x 10 x 3 mm³) was loaded in a vacuum tank at (340 ± 1) K. It was shown that multiple scattering effects are negligible [4].

Compared to the four-circle diffractometer, the advantage of SXD is twofold. Firstly, with the high flux of epithermal neutrons at the spallation source, one can measure a more extended domain of reciprocal space than at a reactor source. Secondly, with the time-of-flight technique, the total scattering function is measured at once and signals in addition to Bragg peaks are effectively collected.

By definition, Qx, Qy, Qz, are projections of Q onto the normal mode axes for protons, x, y, z (figure 1). The maps
Figure 2. Diffraction patterns of KHCO$_3$ at 340 K in (a^*, c^*) planes. The arrows point to the ridges of intensity for momentum transfer parallel to (z) and perpendicular to the trace of dimer planes (dashed lines), which contain the (x) direction, as defined in figure 1. The (y) direction parallel to (b^*) is perpendicular to (a^*, c^*). $k = Q_y/b^*$ (see table 5).

of intensity (figures 2 and 3) for (a^*, c^*) planes at different k-values ($k = Q_y/b^*$, with $b^* \approx 1.112$ Å$^{-1}$) are concatenations of measurements for eight different crystal orientations, with $(b) \parallel (b^*)$ either parallel or perpendicular to the equatorial plane of the detector bank.

The anisotropic incoherent scattering intensity centred at $Q = 0$, that was clearly observed at 15 K [3], is barely visible at 340 K. The shortfall of intensity with $|Q|$ is a consequence, via the Debye–Waller factor, of the thermal population of the density of states [4, 25].

Cigar-like shaped ridges of intensity along Q_z are visible in figure 2 for particular k-values. For $k = 0$, they appear at $Q_x = 0$ and $\pm(10.00 \pm 0.25)$ Å$^{-1}$. For $k = 1$, they are barely visible. For $k = 2$ or 3, we observe a different pattern of ridges at $Q_x = \pm(5 \pm 0.2)$ and $\pm(15 \pm 0.2)$ Å$^{-1}$, still along Q_z. These features are best visible in figure 3 for $k = 2.5$. There is no visible ridge at $k = 4$. Then, from $k = 5$ to 9, we observe the same sequence as for $k = 0$ to 4. These ridges are basically identical to those previously reported at 300 K or below for the ordered $P2_1/a$ crystal [3, 4]. Consequently, they are not due to transition induced phenomena, such as disorder, or domains, or planar faults, or critical behaviour [26]. Below it is shown that these features can be attributed to diffraction by the sublattice of entangled protons.

4. Theory

4.1. The adiabatic separation

Within the framework of the Born–Oppenheimer approximation, the vibrational Hamiltonian can be partitioned as

$$\mathcal{H}_v = \mathcal{H}_{H} + \mathcal{H}_{int} + \mathcal{C}_{H}.$$

(1)
where \mathcal{H}_H and \mathcal{H}_A represent the sublattices of protons (H$^+$) and heavy atoms, respectively, while $\mathcal{H}_{H\text{at}}$ couples the subsystems. For OH···O hydrogen bonds, coupling terms between OH and O···O degrees of freedom are rather large [27, 28], and beyond the framework of the perturbation theory. Two approaches, either semiclassical or quantum, are commonly envisaged.

Semiclassical protons are dimensionless particles, with definite positions and momentums, moving across a potential surface [29–33]. Complex trajectories involving heavy atoms lead to mass renormalization, and to incoherent phonon-assisted tunnelling [1, 6, 34]. This approach is quite natural when the Born–Oppenheimer surface is calculated from first principles, but quantum effects are severely underestimated.

For KHCO$_3$, we argue, as an example, that this is not itinerant particles with an energy band structure. The mass-conserving normal coordinates and their conjugated momentums, coordinates α_{ijkl} and α'_{ijkl} ($\alpha = x, y, z$) with respect to equilibrium positions at $\pm \alpha_{0ijkl}$. The mass-conserving normal coordinates and their conjugated momentums, lead to uncoupled oscillators at frequencies $\hbar \omega_{\alpha a}$ and $\hbar \omega_{\alpha a'}$ respectively, each with $m = 1$ amu. The difference $\hbar \omega_{\alpha a} - \hbar \omega_{\alpha a'}$ depends on the coupling term (say λ_{α}). The wavefunctions, namely $\Psi_{\alpha jkl}(\alpha_n) / \sqrt{2}$, $\Psi'_{\alpha jkl}(\alpha_n - \sqrt{2} \alpha_0) / \sqrt{2}$ for a half-dimer, cannot be factored into wavefunctions for individual particles, so there is no local information available for these entangled oscillators and the degenerate ground state must be antisymmetrized. For this purpose, the wavefunctions are rewritten as linear combinations of those for permuted oscillators as

$$\frac{1}{\sqrt{2}} \Theta_{ijkl \pm} = \frac{1}{2} \prod_a \Psi_{ijkl}^a(\alpha_a)[\Psi_{ijkl}^a(\alpha_a + \sqrt{2} \alpha_0) \pm \Psi_{ijkl}^a(\alpha_a) \Psi_{ijkl}^a(\alpha_a - \sqrt{2} \alpha_0)]$$

where $\Theta_{ijkl \pm}$ is the total wavefunction for superposed half-dimers with identical proton sites. Then, the antisymmetrized state vectors are:

$$|0 jkl+ \rangle \otimes |S \rangle = |\Theta_{ijkl+} \rangle \otimes \frac{1}{\sqrt{2}}[|\uparrow_1 \downarrow_2 \rangle - |\downarrow_1 \uparrow_2 \rangle];$$

$$|0 jkl- \rangle \otimes |T \rangle = |\Theta_{ijkl-} \rangle \otimes \frac{1}{\sqrt{2}}[|\uparrow_1 \uparrow_2 \rangle + |\downarrow_1 \downarrow_2 \rangle + \frac{1}{\sqrt{2}}[|\uparrow_1 \downarrow_2 \rangle + |\downarrow_1 \uparrow_2 \rangle].$$

The oscillators are now entangled in position, momentum, and spin. In contrast to magnetic systems [41], there is no level splitting, so the symmetry-related entanglement is energy free. It is also independent of the magnitude of the coupling terms between oscillators. Furthermore, in contrast to Keen and Lovesey [42], or Sugimoto et al [43], we argue, as an experimental fact, that there is no significant exchange integral for protons separated by ≈ 2.2 Å [44]. Protons in KHCO$_3$ are definitely not itinerant particles with an energy band structure.

4.2. Macroscopic proton states

Consider a crystal composed of very large numbers N_a, N_b, N_c ($N = N_a N_b N_c$) of unit cells labelled j, k, l, along crystal axes (a), (b), (c), respectively. Because centrosymmetric dimers have no permanent electric dipole, interdimer coupling terms are negligible [38–40]. Proton dynamics for a C$_4$ dimer is modelled with collinear oscillators in three dimensions, along
The spatial periodicity of the crystal leads to extended states and nonlocal observables in three dimensions. Consider the vibrational wavefunction for a unit cell containing two dimer entities as $\Xi_{ijkl} = \Theta_{ijkl} \pm \Theta_{ijkl}^\prime$, with $r = \{+\}$ or $\{-\}$. Then, trial phonon waves can be written as

$$\Xi_{0\tau}(k) = \frac{1}{\sqrt{N}} \sum_{l=1}^{N_c} \sum_{k=1}^{N_r} \sum_{j=1}^{N_r} \Xi_{0ijkl} \exp(i k \cdot L).$$

where k is the wavevector and $L = j a + k b + l c$, with the unit cell vectors a, b, c. For fermions, antisymmetrization leads to

$$k \cdot L \equiv 0 \text{ modulo } 2\pi.$$

Consequently, there is no phonon (no elastic distortion) in the ground state. This symmetry-related `super-rigidity' [4] is independent of proton–proton interaction. Then, state vectors in three dimensions can be written as:

$$|\Xi_{0+}(k = 0)\rangle \otimes |S\rangle;$$
$$|\Xi_{0-}(k = 0)\rangle \otimes |T\rangle.$$

There is no local information available for these entangled states and the wavefunctions $\Xi_{0\tau}(k = 0)$ describes oscillations of the super-rigid sublattice as a whole. Finally, the ground state of the sublattice is:

$$\sqrt{N}|\Xi_{0+}(k = 0)\rangle \otimes |S\rangle;$$
$$\sqrt{N}|\Xi_{0-}(k = 0)\rangle \otimes |T\rangle.$$

This state is intrinsically steady against decoherence. Irradiation by plane waves (photons or neutrons) may single out some excited states. Entanglement in position and momentum is preserved, while the spin symmetry and super-rigidity are destroyed. However, these features are reset automatically after decay to the ground state, presumably on the timescale of proton dynamics. This mechanism allows the super-rigid sublattice to be at thermal equilibrium with the surroundings, despite the lack of internal dynamics. Note that even at room temperature, the thermal population of the first excited proton state ($\gamma \text{OH} \approx 1000 \text{ cm}^{-1}$) is negligible (<1%).

5. Differential cross-section: calculations

Neutrons (spin 1/2) are unique to observing the spin symmetry of proton states (7). However, the spin symmetry is not stabilized by any energy. It is therefore extremely fragile and only `noninvasive' experiments, free of measurement induced decoherence, can evidence quantum entanglement [45]. For neutron scattering, this means (i) no energy transfer, (ii) no spin flip and (iii) particular Q-values preserving the super-rigidity. For planar dimers, these conditions are realized when Q_x, Q_y match a node of the reciprocal sublattice of protons, so that scattering events probe the super-rigid lattice without any perturbation of its internal state. The spin symmetry is probed along the neutron spin direction without spin flip and the cross-section, namely the total nuclear cross-section σ_{Hc}, is ≈ 45 times greater than the coherent cross-section, σ_{Hc}, when the matching conditions are not realized [4, 46]. Enhanced diffraction probe the perfect periodicity of the super-rigid sublattice, so the Debye–Waller factor is equal to unity. Alternatively, when the matching conditions are not realized, phonons created by neutrons contribute to the thermal parameters in table 3 and to the ellipsoids in figures 1.

In fact, enhanced diffraction and Bragg peaks of heavy atoms are superimposed. Their intensities are proportional to σ_{Hc} and $\sigma_{KCO3} \exp(-2W_{KCO3}(Q))$, respectively, where $\sigma_{KCO3} \approx 27.7 b$ is multiplied by the Debye–Waller factor. At large Q-values, the contribution of heavy atoms is largely hidden by that of correlated protons, and this effect is more pronounced at elevated temperatures.

The dashed lines in figure 1 show that proton sites are aligned along x and y, but not along z. Consequently, the noninvasive condition can be realized for Q_x and Q_y exclusively, whereas Q_z never coincides with a node of the reciprocal lattice of protons. Then, the diffraction pattern depends on whether we consider incoherent or coherent scattering along Q_z.

In order to calculate the differential scattering functions, we consider a $C2/m$ super-rigid sublattice composed of primitive unit cells ($a/2, b, c$) with (j, k, l) indexes. Proton sites are at $\pm\{x_0, y_0, z_0\}$, $\pm\{x_0, y_0, ±z_0\}$, with respect to the centre of split dimers. The periodicity of the grating-like structure parallel to y is $D_y/2$, with $D_y \approx a/\cos 42^\circ \approx 20.39 \text{ Å}$, while the periodicity of double lines parallel to x is $D_x = b$.

5.1. Super-rigid arrays in two dimensions

The differential cross-section can be written as

$$\frac{d\sigma_{Q_x}}{d\Omega} \propto \sum_{l=1}^{N_c} \sum_{k=1}^{N_c} \sum_{j=1}^{N_c} \sum_{i=1}^{N_c} \left[\exp i Q_x (k D_y - y_0) + \tau_i \tau_x \exp i Q_x (k D_y + y_0) \right] \left[\exp i Q_x (j D_y/2 - x_0) + \tau_i \tau_x \exp i Q_x (j D_y/2 + x_0) \right]^2 \exp[-2W_{Q_x}(Q_x)].$$

with $N_c' = 2N_c$. Neutrons are scattered either in-phase ($\tau_i \tau_x = +1$) or anti-phase ($\tau_i \tau_x = -1$) by pairs of lines separated by $2x_0 \approx 0.6 \text{ Å}$ and $2y_0 \approx 2.209 \text{ Å}$, respectively. The phase matching condition, namely $x_0 (y_0) \text{commensurable with } D_c/2 (D_y)$, is intrinsic to the crystal structure. $\{\cdots\}$ accounts for simultaneous scattering by superposed singlet-like and triplet-like states (7), without neutron spin flip. The compound Debye–Waller factor exp $-2W_{Q_x}(Q_x)$, including contributions from all atoms, accounts for incoherent scattering along Q_z.

The diffraction pattern is composed of rods of diffuse scattering parallel to Q_x, cigar-like shaped by the Debye–Waller factor, at Q_x. Q_x-values corresponding to divergences of (9) gathered in table 5. Such divergences occur at $Q_x = n_1\pi/y_0 \approx n_1 \times 2.86 \text{ Å}^{-1}$, since $Q_x D_y/\pi \approx 5n_1$ is integer. There is no divergence for anti-phase scattering at $Q_x = \pm(n_1 + 1/2)\pi/y_0$, because $Q_x D_y/\pi \approx 5(n_1 + 1/2)$ is not integer. For n_1 even, $Q_x D_y/\pi$ is also even, $\tau_i = \tau_x$, and ridges are anticipated at $Q_x = n_1\pi/x_0 \approx n_1 \times 10 \text{ Å}^{-1}$.

$\text{J. Phys.: Condens. Matter} \ 20 \ (2008) \ 015225$
since \(Q_x D_y / \pi \approx 68 n_x \) is even. Alternatively, for \(n_y \) odd, \(Q_x D_y / \pi \) is also odd, \(\tau_x \neq \tau_y \), and ridges are anticipated at \(Q_x = (n_x + 1/2) \pi / x_0 \), since \(Q_x D_y / \pi \approx 68 (n_x + 1/2) \) is even. In this case, the enhanced features are best visible at \(k \approx 2.57 \) (figure 3).

5.2. Super-rigid lattice in three dimensions

The differential cross-section for no spin flip scattering events is

\[
\frac{d \sigma}{d \Omega} \propto \sum_{n_x} \sum_{n_y} \sum_{n_z} \exp i Q_x \sum_{l=1}^{N_x} \exp i Q_y \sum_{l=1}^{N_y} \exp i Q_z \sum_{l=1}^{N_z} + \tau_x \tau_y \exp i Q_x (k D_y + y_0) + \tau_x \tau_z \exp i Q_y (j D_z / 2 + z_0) \mid^2. \tag{10}
\]

Divergences occur along the poles of the main reflection \(Q_x = \pm \pi / D_x \), with \(D_x \approx \varepsilon \times \cos 28^\circ \approx 3.28 \text{ Å} \) and \(2\pi / D_x \approx 1.92 \text{ Å}^{-1} \). In figure 2, these peaks clearly emerge from the rods of diffuse scattering depressed by the Debye–Waller factor in (9).

Equations (9) and (10) confirm that the enhanced features correspond to the reciprocal sublattice of protons represented by state vectors (8) based on a theoretical framework free of ad hoc hypothesis or parameters. The only prerequisite, namely the adiabatic separation, is an intrinsic property of hydrogen bonds in this crystal. By contrast, other models [42, 43] cannot account for enhanced diffraction.

6. Discussion

Kashida and Yamamoto [9] have opposed the ordered \(C_{2h} \) to the disordered \(C_1 \) structures. The argument consists in that for the former there is no splitting of heavy atom sites and the symmetrized double wells for protons lead to quantum delocalization [6, 14, 16, 17, 47]. By contrast, split \(C_1 \) dimers are supposed to be representative of a statistical distribution of atom positions and the double well remains asymmetric, as it is below \(T_c \).

Kashida and Yamamoto [9] or Eckold et al [6] have observed that the \(P_{21}/a \) superlattice reflections \((h + k = 2n + 1) \) merge above \(T_c \), into elastic diffuse scattering, cigar-like shaped along \((a^*) \). The intensity decreases as the temperature increases but the signal is still visible above 340 K. According to KY, the \(P_{21}/a \) local structure could survive above \(T_c \) as pre-transitional domains whose correlation length diverges as \(T \) goes down to \(T_c \). Diffuse scattering along \((a^*) \) is invisible with SXD (figure 2) but this does not question the existence of this signal.

Critical phenomena have been also thoroughly investigated for the phase transition of KDCO3 at \(T_{cD} = 353 \) K, taking advantage of the larger coherent scattering cross-section of the deuterium atom [12–14]. QENS measurements at the superlattice reflection \((1, 2, 0)\) with the high resolution spin-echo technique evidence very slow dynamics (\(\sim 10^{-8} \)) above \(T_{cD} \) and complete slowing down as \(T \rightarrow T_{cD} \). These dynamics were tentatively associated with pre-transitional collective re-orientation of dimers, eventually correlated with the softening of an acoustic mode propagating along \((a^*) \), with polarization parallel to \((b) \) [8]. On the other hand, diffuse scattering around the main reflection \((0, 2, 0)\) was attributed to the relaxation of individual dimers [12–14].

In contrast to the order–disorder schemes envisaged in previous works, the diffraction patterns presented in figures 2 and 3 lead to the conclusion that the structural transition is of the order–order type. Then the question arises as to whether the double well undergoes symmetrization or not.

The shape of the double wells along the hydrogen bonds can be probed with Raman spectroscopy in the frequency range of the OH stretching vibrations [5, 48]. In figure 5, the submaxima observed below \(T_c \) at \(\approx 2580, 2800, 2930, 3100 \text{ cm}^{-1} \) are representative of the four transitions for the asymmetric double wells of the \(P_{21}/a \) structure. Additional transitions (for example overtones and combinations) cannot be excluded, but a detailed assignment scheme is not necessary because the chief point of the argument is that symmetrization of the double wells above \(T_c \) should be of dramatic consequences to the spectral profile: (i) large frequency shifts due to the collapse of the potential asymmetry; (ii) the symmetry-related selection rules should extinguish two among the four transitions. Figure 5 shows that the extended eigenstates of the \(v_{OH} \) mode probed at the Brillouin zone centre are identical for the \(P_{21}/a \) and \(C2/m \) structures. Symmetrization is excluded.

Table 5. Orders \(n_x, n_y \) and positions \(Q_x, Q_y \) of rods of intensity arising from the entangled array of orthogonal double lines of protons in two dimensions. Obs. \(Q_z \); positions in \(\AA^{-1} \) of the observed rods of intensity along \(Q_z \) in figures 2 and 3. \(Q_x D_y / \pi \) is rounded to integers.\n
\(n_x \)	\(\tau_x \tau_y \)	\(Q_x (\AA^{-1}) \)	\(Q_y D_z / \pi \)	\(k = Q_z / b^* \)	\(\frac{Q_z}{x_0} \)	\(\frac{Q_y}{y_0} \)	\(\frac{Q_z}{z_0} \)
0	0	0	0	0	(n_x + 1/2) \pi / x_0	±5, ±15	±5, ±15
-1	-1	2.86	5	2.57	(n_x + 1/2) \pi / x_0	±5, ±15	±5, ±15
2	+1	5.71	10	5.14	n_x \pi / x_0	0, ±10	±5, ±15
-1	3	8.57	15	7.71	(n_x + 1/2) \pi / y_0	±5, ±15	±5, ±15

The \(b^* \) vectors are supposed to be representative of a statistical distribution of state vectors (8) based on a theoretical framework free of ad hoc hypothesis or parameters. The only prerequisite, namely the adiabatic separation, is an intrinsic property of hydrogen bonds in this crystal. By contrast, other models [42, 43] cannot account for enhanced diffraction.
temperature was controlled within

The sample was sealed in a glass tube and then loaded in a furnace. The DILOR XY triple-monochromator equipped with an Ar phase transition at T, while emitting at 4880 Å. The spectral resolution was ≈ 2 cm$^{-1}$. The sample was sealed in a glass tube and then loaded in a furnace. The temperature was controlled within ±2 K.

For each substructure, there are two configurations, L or R, for the proton sublattice. Within the framework of the adiabatic separation, the state vectors of the four configurations L_u, L_d, R_u, R_d, sketched in figure 4, are $|p_u|H_{L_{ur}}|\tau\rangle$, $|p_u|H_{L_{dr}}|\tau\rangle$, $|p_d|H_{L_{ur}}|\tau\rangle$, $|p_d|H_{L_{dr}}|\tau\rangle$, where $|p_u\rangle$ and $|p_d\rangle$ represent heavy atoms. The ground state is a superposition of the degenerate states $|p_u\rangleH_{L_{ur}}|\tau\rangle$ and $|p_d\rangleH_{L_{dr}}|\tau\rangle$, while $|p_u\rangleH_{L_{ur}}|\tau\rangle$ and $|p_d\rangleH_{L_{dr}}|\tau\rangle$, also degenerate, are at higher energy ($\Delta E_{L,R}$). The state vector of the crystal can be then written as

$$|C2/m\rangle = 2^{-1/2}[\alpha(T)\{|p_u\rangleH_{L_{ur}}|\tau\rangle + |p_d\rangleH_{L_{dr}}|\tau\rangle\} + \beta(T)\{|p_u\rangleH_{R_{ur}}|\tau\rangle + |p_d\rangleH_{R_{dr}}|\tau\rangle\}].$$

with $\alpha(T)^2 + \beta(T)^2 = 1$. The superposition of proton states is consistent with enhanced diffraction because the corresponding sublattices are identical in reciprocal space.

QENS measurements of KHCO$_3$ [6] are also consistent with (11). The inverse correlation time for proton transfer ($\tau_0^{-1} \approx 2 \times 10^{12}$ s$^{-1}$) is temperature independent, without any discontinuity at T_c, because QENS, like Raman spectroscopy, probes proton dynamics of the P$_{21}/a$ structure below T_c and the same dynamics for either $|P_u\rangle$ or $|P_d\rangle$ above T_c.

Furthermore, τ_0^{-1} below T_c is consistent with a superposition of proton states giving rise to quantum interferences whose beating frequency, $\nu_0 \approx 2.5 \times 10^{12}$ s$^{-1}$, is in reasonable agreement with QENS measurements [5]. Above T_c, quantum interferences for (11) are cancelled by symmetry. This is at odds with the expectation that fluctuations should increase at elevated temperatures. However, this fluctuation-free state cannot be ‘observed’ because QENS probes either $|P_u\rangle$ or $|P_d\rangle$ states.

Above T_c, diffuse scattering along (a^*), very slow dynamics, and enhanced diffraction suggest dynamical interconversion between superposed $|P_u\rangle$ and $|P_d\rangle$ states, on the one hand, and their analogues $|P_{21}/a\rangle_u$ and $|P_{21}/a\rangle_d$ states, on the other. This may occur through very small displacements of heavy atoms along (b) (figure 1). Upon cooling, symmetry breaking at T_c should lead to either $|P_{21}/a\rangle_u$ or $|P_{21}/a\rangle_d$ states, with equal probabilities. However, these structures are related through a translation vector ($a/2, b/2, 0$). They are indistinguishable and the symmetry breaking leads to a unique P_{21}/a structure.

It is often argued that a complex open system undergoing continuous interactions with the environment should be in a significantly mixed state that cannot be represented by a state vector [51–53]. The present work leads to conclusions at variance with this view: the crystal of KHCO$_3$ at thermal equilibrium with the surrounding atmosphere can be represented by a state vector. The gaseous environment can
be treated as a distribution of plane waves that cannot destroy the entanglement intrinsic to the lattice periodicity. Only the spin symmetry can be transitory destroyed. However, this reversible disentanglement does not increase with time and it is insignificant because the density of states of the surroundings is smaller than that of the crystal by many orders of magnitude.

7. Conclusion

We confirm with single-crystal neutron diffraction the $C2/m$ structure composed of split C_i dimers proposed by Kashida and Yamamoto [9], but proton positions are at variance with those based on x-ray diffraction. The structure of the sublattice of protons is practically temperature independent, apart from site occupancies. The enhanced differentiation pattern measured at 340 K is basically identical to that arising from macroscopic quantum correlations below T_c [3, 4].

The theoretical framework for quantum correlations is based on fundamental principles of quantum mechanics. The fermionic nature of protons, unveiled by the adiabatic separation, leads to spin symmetry and super-rigidity. The spin symmetry is probed by neutrons diffracted at Q-values corresponding to nodes of the reciprocal lattice of protons. The coherent scattering cross-section is increased by a factor of ≈ 45, compared to that for uncorrelated protons, and super-rigidity cancels the shortfall of intensity by the Debye–Waller factor.

Above T_c, statistical disorder, or stochastic proton jumps, or clusters, or domains, or uncorrelated dynamics of individual dimers, or whatever phenomena which could destroy the translational invariance of the crystal, are excluded. The phase transition occurs from one ordered $P2_1/a$ structure to another ordered $C2/m$ structure. Both phases can be treated as pure states represented by state vectors. Raman spectroscopy and QENS show that eigenstates for protons are identical in the two structural phases. This suggests that the state vector $|C2/m\rangle$ is a superpositions of state vectors $|P_{21}\rangle$ and $|P_{22}\rangle$ for $P2_1/a$-like structures. This leads to the rather paradoxical conclusion that quantum interferences arising from superposition of proton states are cancelled by symmetry, as long as these states are not ‘observed’.

This work emphasizes that atoms in the crystal field of KHCO$_3$ are not individual particles possessing properties on their own right. They merge into macroscopic states and exhibit all features of quantum mechanics: nonlocality, entanglement, spin symmetry, superposition and interferences. There is every reason to suppose that similar quantum effects should occur in many hydrogen bonded crystals undergoing structural phase transitions.

Acknowledgment

We should like to thank F Romain from LADIR-CNRS for recording the Raman spectra.

References

[1] Skinner J L and Trommsdorff H P 1988 Proton transfer in benzoic acid crystals: a chemical spin-boson problem. Theoretical analysis of nuclear magnetic resonance, neutron scattering, and optical experiments J. Chem. Phys. 89 897–907

[2] Ikeda S and Fillaux F 1999 Incoherent-elastic-neutron scattering study of the vibrational dynamics and spin-related symmetry of protons in the KHCO$_3$ crystal Phys. Rev. B 59 4134–45

[3] Fillaux, Cousson A and Keen D 2003 Observation of the dynamical structure arising from spatially extended quantum entanglement and long-lived quantum coherence in the KHCO$_3$ crystal Phys. Rev. B 67 054301

[4] Fillaux, Cousson A and Gutmann M J 2006 Macroscopic quantum entanglement and super-rigidity of protons in the KHCO$_3$ crystal from 30 to 300K J. Phys.: Condens. Matter 18 3229–49

[5] Fillaux F 2007 Proton transfer in the KHCO$_3$ and benzoic acid crystals: a quantum view J. Mol. Struct. 844/845 308–18

[6] Eckold G, Grimm H and Stein-Arsic M 1992 Proton disorder and phase transition in KHCO$_3$ Physica B 180/181 336–8

[7] Leggett A J 2002 Testing the limits of quantum mechanics: motivation, state of play, prospects J. Phys.: Condens. Matter 14 R415–51

[8] Haussühl S 1986 Anomalous elastic behaviour of monoclinic potassium hydrogen carbonate, KHCO$_3$, in the vicinity of the phase transition at 318 K Solid State Commun. 57 643–7

[9] Kashida S and Yamamoto K 1990 Structural transition in KHCO$_3$. J. Solid State Chem. 86 180–7

[10] Takasaka S, Tsujimi Y and Yagi T 1997 Acoustic anomaly in the antiferrodistortive phase transition of KHCO$_3$ studied by Brillouin scattering Phys. Rev. B 56 10715–8

[11] Machida M, Yamaguchi Y, Sugimaya M, Iwata Y, Koyano N and Fukushima S 1995 Neutron structural investigation of the isotope effect of KHCO$_3$ Physica B 213/214 393–5

[12] Kanao R, Nohdo S-I, Horiuichi N, Kashida S, Kakurai K and Yamada Y 1996 Deuteron self-trapped state and the strain-mediated structural phase transition in KDCO$_3$ J. Phys. Soc. Japan 64 2286–9

[13] Kanao R, Nohdo S-I, Horiuichi N, Kashida S, Kakurai K and Yamada Y 1996 Neutron scattering study on the structural phase transition in KDCO$_3$, J. Phys. Soc. Japan 65 1710–7

[14] Kakurai K, Sakaguchi T, Nishi M, Zeyen C M E, Kashida S and Yamada Y 1996 Dynamics of the strain-mediated phase transition in KDCO$_3$: a thermal neutron spin-echo study Phys. Rev. B 53 R5974–7

[15] Yamada Y and Kanao R 1996 A note on the dynamical critical phenomena at the structural phase transition in KDCO$_3$, J. Phys. Soc. Japan 65 1718–21

[16] Lim A R and Jeong S-Y 2001 Phase transition studied by nuclear spin–lattice relaxation in a KHCO$_3$ single crystal Phys. Status Solidi b 226 413–8

[17] Lim A R and Jeong S-Y 2006 NMR study of the order–disorder phase transitions of KHCO$_3$KDCO$_3$ single crystals J. Solid State Chem. 179 1009–15

[18] Thomas J O, Tellegren R and Olovsson I 1974 Hydrogen-bond studies. LXXXIV. An x-ray diffraction study of the structures of KHCO$_3$ and KDCO$_3$ at 298, 219 and 95 K Acta Crystallogr. B 30 1155–66

[19] Thomas J O, Tellegren R and Olovsson I 1974 Hydrogen bond studies. XGII. Disorder in (HCO)$_2$ and (DCO)$_2$ dimers: a neutron diffraction study of KHCO$_3$ and KDCO$_3$ Acta Crystallogr. B 30 2540–9
[20] http://www-llb.cea.fr
[21] Watkin D J, Prout C K, Carruthers J R, Betteridge P W and Cooper R I 1996 Crystals issue 11 Technical report Chemical Crystallography Laboratory (University of Oxford, England)
[22] http://www.xtl.ox.ac.uk/crystals.html
[23] http://www.isis.rl.ac.uk/crystallography
[24] Keen D A, Gutmann M J and Wilson C C 2006 SXD—the single-crystal diffractometer at the Isis spallation neutron source J. Appl. Crystallogr. 39 714–22
[25] Wilson C C 2002 Single crystal neutron diffraction from molecular materials Series on Neutron Techniques and Applications vol 2 (Singapore: World Scientific) p 912805
[26] Field F, Romain F, Limage M-H and Leygue N 2006 Infrared spectra of the hydrogen-bonded carboxylic acids J. Chem. Phys. 20 012225