Investigation of Helium-Cooled Planar Transformer-Coupled SQUID Magnetometer

Jia Zeng, Yi Zhang, Michael Mück, Chao Liu, Hans-Joachim Krause, Xiangyan Kong, Xiaoming Xie, Andreas Offenhäusser

1State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology (SIMIT), Chinese Academy of Sciences (CAS), Shanghai 200050, China
2Peter Grünberg Institute (PGI-8), Forschungszentrum Jülich (FZJ), D-52425 Jülich, Germany
3Joint Research Laboratory on Superconductivity and Bioelectronics, Collaboration between CAS-Shanghai, Shanghai 200050, People’s Republic of China and FZJ, D-52425 Jülich, Germany
4University of Chinese Academy of Sciences, Beijing 100049, China
5ez SQUID, Herborner Strasse 9, D-35764 Sinn, Germany

E-mail: y.zhang@fz-juelich.de

Abstract. We investigated helium-cooled planar transformer-coupled SQUID magnetometers with regard to their field resolution δB by varying the SQUID loop inductance L_s, input coils and the pick-up loop L_p. It was found that the pick-up loop area A_p is the most important parameter for δB of transformer-coupled magnetometers. δB with $A_p = 10 \times 10 \text{mm}^2$ reached about 3 fT/$\sqrt{\text{Hz}}$, even using direct readout scheme without any feedback circuitries.

1. Introduction

Our transformer-coupled SQUID magnetometer consists of three parts: a dual-washer SQUID with two series-opposite integrated input coils L_{in} connected to an on-chip pickup loop L_p.

An important figure of merit for a magnetometer is the magnetic field resolution δB, which is a product of the SQUID system flux noise $\delta \Phi$ and the flux-to-field transfer coefficient $\partial B/\partial \Phi$, i.e., $\delta B = \delta \Phi \times (\partial B/\partial \Phi)$. $\delta \Phi$ consists of two parts, the SQUID intrinsic noise $\delta \Phi_i$ and the preamplifier noise contribution $\delta \Phi_{\text{preamp}}$, i.e., $\delta \Phi^2 = \delta \Phi_i^2 + \delta \Phi_{\text{preamp}}^2$. Minimizing $\delta \Phi$ of SQUIDs was analyzed in detail in many previous studies, e.g., in reference [1]. For transformer-coupled magnetometers, $\partial B/\partial \Phi$ can be represented as $\partial B/\partial \Phi = (L_p/\sqrt{L_{in,eff}} + \sqrt{L_{in,eff}})/(kL_{s,eff} \times A_{p,eff})$ [2], whereby L_p and $A_{p,eff}$ denote the inductance and the effective area of the pick-up loop, $L_{in,eff}$ and $L_{s,eff}$ the effective inductances of...
the input coil and the SQUID loop, and k the corresponding coupling coefficient. The value of $L_{in,\text{eff}}$ should be designed to equal L_p in order to achieve a minimum of $\partial B/\partial \Phi$ for a given $L_{s,\text{eff}}$. Generally, larger L_s leads to a larger $\delta \Phi$, but a smaller (i.e., better) value of $\partial B/\partial \Phi$. In practice, most magnetometers are designed with $L_s > 100$ pH to meet the high field resolution requirements [3].

We experimentally studied the properties of magnetometers employing SQUIDs with large $\beta_c \approx 3$ to find the combination of inductances L_s, L_{in} and L_p that is optimum for minimizing δB.

2. Experiments and results

2.1. SQUID magnetometer and readout electronics

In our experiments, mostly SQUID magnetometers with Steward-McCumber parameter $\beta_c \approx 3$ were employed. In our earlier work we have shown that large β_c leads to a large flux-to-voltage transfer coefficient $\partial V/\partial \Phi > 300$ µV/Φ₀ at $L_s = 350$ pH [4], thus reducing $\delta \Phi_{\text{preamp}} = V_n/(\partial V/\partial \Phi)$, whereby the preamplifier voltage noise V_n is 0.9 nV/√Hz (AD797). In this case, the SQUIDs can be connected to the preamplifier directly without any feedback circuitries in order to construct a simple SQUID system with an acceptable $\delta \Phi$ [5], measured in flux-locked loop (FLL) inside a niobium shielding tube. The general layout of our SQUID magnetometer is shown in reference [6]. In this layout, we used the dual-washer gradiometric SQUID to increase the coupling between L_s and L_{in}.

2.2. Different input coil types

We designed and fabricated three types of input coils, with the input coil consisting of 4.5×2 turns (see figure 1(a)) at $L_s = 350$ pH and $A_p = 5 \times 5$ mm²: (i) whole coil placed on the SQUID washer of “Ketchen-type” [7]; (ii) whole coil located inside the hole of the SQUID washer; (iii) a part of coil is overlaying the SQUID washer and the other part is inside the hole. Subsequently, we measured $\delta \Phi$ and $\partial B/\partial \Phi$ to determine δB. We found that $\delta \Phi \approx 5$ µΦ₀/√Hz for all types of magnetometers investigated, while $\partial B/\partial \Phi$ strongly depended on the positions of the input coils. The transfer function $\partial B/\partial \Phi$ increased from 1.5 (for type (i)), and 1.6 (for type (iii)) to 2.7 nT/Φ₀ (for type (ii)). Of course, the “Ketchen-type” magnetometer provides the best coupling method for the transformer-coupled SQUID magnetometer. However, it is surprising that placing all of the coil turns inside the SQUID hole (in the case of type (ii)) reduced the effective area of the magnetometer only to about 50 %, because a much smaller value of the effective area was speculated. In the work described below, only input coils of “Ketchen-type” were utilized.

2.3. SQUID effective inductance

In a transformer-coupled magnetometer, the design (geometrical) value of the SQUID inductance L_s is reduced due to the screening effect when the input coils are connected to the pick-up loop. Therefore, we introduce the SQUID effective inductance $L_{s,\text{eff}}$, because it (and not the geometrical inductance L_s) is responsible for δB of magnetometers. The value of $L_{s,\text{eff}}$ can be determined by the SQUID screening parameter $\beta_c = 2I_c L_{s,\text{eff}}/\Phi_0$, where I_c is the critical current of one junction and Φ_0 is the flux quantum. The value of β_c is determined by the ratio of $I_{c,\text{min}}/I_{c,\text{max}}$. The value of $I_{c,\text{max}}$ is $2I_0$ in the above expression of β_c, when two junctions are identical. The dependence of β_c on $I_{c,\text{min}}/I_{c,\text{max}}$ shown in the inset in figure 1(b) is reproduced from [1]. The screening parameter β_c increases monotonously with increasing
Figure 1. (a) Schematic layout of dual-washer SQUID and input coils (i) fully overlaying the SQUID washer (“Ketchen-type”), (ii) fully inside the SQUID holes, and (iii) partly overlaying the washer and holes. (b) Measured $I - V$ characteristics of the SQUID magnetometer with $L_s = 350$ pH and L_{in} of 4.5×2 turns of type (i) in (a). $I_{c_{\text{max}}}$ and $I_{c_{\text{min}}}$ denote the critical currents at integer and half integer flux quantum, and Φ_a is the applied flux. The inset shows the dependence of the screening parameter β_L on $I_{c_{\text{min}}}/I_{c_{\text{max}}}$ from [1].

$I_{c_{\text{min}}}/I_{c_{\text{max}}}$. Its $\beta_L = 0.75$ is obtained from the curve of β_L vs. $(I_{c_{\text{min}}}/I_{c_{\text{max}}})$ and the measured $I_{c_{\text{min}}}/I_{c_{\text{max}}} = 0.44 (3.65 \mu A/8.3 \mu A)$, leading to $L_{s,\text{eff}} \approx 181$ pH, almost half of L_s [2].

2.4. Field resolution δB

To investigate δB of the magnetometer, we varied the SQUID layout parameter, such as L_s, or the turn number of the input coil. Two SQUID pick-up areas of $A_p = 5 \times 5$ mm2 (table 1) and 10×10 mm2 (table 2) were employed.

In table 1, three important parameters of the magnetometers, $L_{s,\text{eff}}$, $\delta \Phi$ and $\partial B/\partial \Phi$, are listed. The value of $L_{s,\text{eff}}$, for example, at $L_s = 350$ pH, obviously increases with decreasing the turn number of L_{in}, thus increasing $\delta \Phi$, but concurrently improving $\partial B/\partial \Phi$. In fact, for a given L_s of 350pH, $L_{in,\text{eff}}$ slightly changes with the turns of L_{in} varying in a certain range shown in table I and II, since $L_{in,\text{eff}}$ depends on both the turns of L_{in} and $L_{s,\text{eff}}$ [2], which leads to $L_{in,\text{eff}} \approx 14$ nH to match $L_T \approx 15$nH [6]. Consequently, δB was almost constant for such transformer-coupled magnetometers, even when varying L_s from 350 up to 620 pH.

L_s [pH]	350	350	350	480	480	620	620
Turns of L_{in} —	3.5×2	4.5×2	5.5×2	2.5×2	5.5×2	2.5×2	4.5×2
$L_{s,\text{eff}}$ [pH]	235	180	140	365	190	420	310
$\partial B/\partial \Phi$ [nT/Φ0]	1.47	1.50	1.63	1.24	1.53	1.09	1.28
$\delta \Phi$ [μΦ0/√Hz]	5.4	5	4.5	6.6	5.2	7.4	5.6
δB [fT/√Hz]	7.9	7.5	7.3	8.2	7.9	8.1	7.2
For A_p of $10 \times 10 \text{ mm}^2$ (table 2), we increased the turn number of L_{in}, e.g., to 7.5×2 at $L_s = 350 \text{ pH}$, thereby leading to the reduction of $\frac{\partial B}{\partial \Phi} \approx 0.55 \text{ nT/\Phi}_0$, although $L_{s,\text{eff}}$ further reduced to 120 pH. Indeed, making A_p larger is very useful for the improvement of δB. For different L_s, $\delta B \approx 3 \text{ fT/\sqrt{Hz}}$ of such magnetometers was achieved. Note that $\delta \Phi$ of the present SQUID magnetometers in table 2 was larger than that listed in table 1, due to $\beta_c > 3$. Larger β_c led to a higher $\delta \Phi$, which dominated $\delta \Phi$ [5].

Table 2. Parameters of SQUID magnetometers with A_p of $10 \times 10 \text{ mm}^2$

L_s [pH]	350	480	620	
Turns of L_{in}	—	7.5×2	6.5×2	5.5×2
$L_{s,\text{eff}}$ [pH]	—	120	192	265
$\frac{\partial B}{\partial \Phi}$ [nT/\Phi_0]	0.55	0.47	0.4	
$\delta \Phi$ [\mu\Phi_0/\sqrt{Hz}]	5.5	7	9.5	
δB [fT/\sqrt{Hz}]	3	3.3	3.8	

3. Conclusion

We studied different layouts of transformer-coupled SQUID magnetometers with varying L_s, L_{in} and L_p. An input coil fully overlaying the SQUID washer ("Ketchen type") provides the best coupling between L_s and L_{in}, whereas placing the input coil fully inside the SQUID hole will reduce the pick-up area by about 50%. The effective SQUID inductance $L_{s,\text{eff}}$ obviously increases with decreasing turn number of L_{in}, thus increasing $\delta \Phi$, but at the same time reducing $\frac{\partial B}{\partial \Phi}$. Consequently, δB is almost constant for a certain pick-up-loop area A_p. In other words, L_s, L_{in} and the matching between L_{in} and L_p will not influence greatly δB. Only by increasing A_p will the field resolution improve.

Acknowledgement

This work was Supported by the "Strategic Priority Research Program (B)" of the Chinese Academy of Sciences (Grant No: XDB04010100).

References

[1] Tesche C D and Clarke J 1977 J. Low Temp. Phys. 29 pp 301–331
[2] Cantor R and Koelle D 2004 “Practical DC SQUIDs: Configuration and Performance” in The SQUID Handbook edited by Clarke J and Braginski A I (Weinheim: Wiley) Vol I pp 172–210
[3] Schmelz M, Stolz R, Zakosarenko V, Schönau T, Anders S, Fritzsch L, Mück M and Meyer H-G 2011 Supercond. Sci. Technol. 24 065009
[4] Liu C, Zhang Y, Mück M, Krause H-J, Braginski A I, Xie X, Offenhäusser A, Jiang M 2012 Appl. Phys. Lett. 101 222602
[5] Zeng J, Zhang Y, Mück M, Krause H-J, Braginski A I, Kong X, Xie X, Offenhäusser A and Jiang M 2013 Appl. Phys. Lett. 103 042601
[6] Zhang Y, Liu C, Schmelz M, Krause H-J, Braginski A I, Stolz R, Xie X, Meyer H-G, Offenhäusser A and Jiang M 2012 Supercond. Sci. Technol. 25 125007
[7] Jaycox J M and Ketchen M B 1981 IEEE Trans. Magn. MAG 17 400–403