Supporting Information

On-Site Viral Inactivation and RNA Preservation of Gargle and Saliva Samples Combined with Direct Analysis of SARS-CoV-2 RNA on Magnetic Beads

Yanming Liu,1§ Teresa Kumblathan,1§ Wei Feng,1 Bo Pang,1 Jeffrey Tao,1 Jingyang Xu,1 Huyan Xiao,1 Michael A. Joyce,2 D. Lorne Tyrrell,2 Hongquan Zhang,1 Xing-Fang Li,1* X. Chris Le1*

1 Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada T6G 2G3

2 Li Ka Shing Institute of Virology, Department of Medical Microbiology and Immunology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada T6G 2E1

* Corresponding authors. xc.le@ualberta.ca and xingfang.li@ualberta.ca

§ These authors contributed equally.
Table of Contents

Table S1. Comparison of reported methods on inactivation, RNA release and extraction for the detection of SARS-CoV-2 in saliva and gargle samples.

Table S2. A summary of studies on the detection of SARS-CoV-2 in saliva.

Table S3. A summary of studies on the detection of SARS-CoV-2 in gargle.

Table S4. A summary of reported methods that were used to detect SARS-CoV-2 in pooled samples.

Figure S1. Detection of SARS-CoV-2 RNA in tap water gargle and saline gargle samples.

Figure S2. Detection of SARS-CoV-2 RNA in gargle samples treated with different reagents.

Figure S3. Detection of SARS-CoV-2 RNA in gargle samples treated with glycogen or carrier RNA.

Figure S4. Detection of SARS-CoV-2 RNA in saliva and gargle samples treated with either freshly prepared VIP buffer or the VIP buffer stored at room temperature for six months.

Figure S5. Detection of SARS-CoV-2 RNA in the absence or the presence of commercial beads.

Figure S6. Comparison of different concentrations of PEG 8000 in the beads-binding buffer for concentrating viral SARS-CoV-2 RNA.

Figure S7. Detection of 65, 390, or 3900 copies of SARS-CoV-2 RNA in saliva and gargle samples using the VIP-Meg-RT-qPCR method.

Figure S8. Recovery of viral RNA from RNase-free water and pooled gargle samples.

Figure S9. Standard curve from the RT-qPCR analysis of the N1 gene segment (CDC).

Figure S10. SARS-CoV-2 RNA levels in saliva samples collected four times a day on five days.

Figure S11. SARS-CoV-2 RNA levels in gargle samples collected four times a day on seven days.
Table S1. Comparison of reported methods on inactivation, RNA release and extraction for the detection of SARS-CoV-2 in saliva and gargle samples. The checkmarks indicate the study addressed a certain aspect. The green color indicates aspects that have similar advantage to our method. The yellow color denotes aspects that are less advantageous than our method.

Study	Sample	Inactivation/Extraction	RNA Release & Stability	Detection Method	Sensitivity
VIP-Mag Method	BOTH	✓ Single Tube Method (sample collection, inactivation, lysis, & maintains RNA stability)	✓ 1 week at 4°C & Room Temperature	RT-qPCR	25 RNA copies/200 µL of sample
		Heat at 55°C, 10 min	Directly inputted into RT-qPCR without the need for elution/purification		
Ranoa et al., 2020	Saliva	✓ Heat at 95°C for 30 min	24 hours at 4°C (RNA)	RT-qPCR	500–1000 viral particles/mL of saliva
		Heat at 95°C for 30 min TBE buffer and Tween 20	Directly inputted into RT-qPCR without the need for elution/purification		
Vogels et al., 2020	Saliva	✓ Heat at 95°C for 5 min Proteinase K	1 week at 30°C, 4°C & Room Temperature (SARS-CoV-2 in saliva pre-inactivation/extraction)	RT-qPCR	6–12 SARS-CoV-2 copies/µL of saliva
		Proteinase K	Directly inputted into RT-qPCR without the need for elution/purification		
Lalli et al., 2021	Saliva	✓ Heat at 65 °C for 15 min, 95 °C for 5 min, and cooled to 4 °C	RNA stability not mentioned	RT-qPCR	100 viral genomes/reaction
		Heat & RNAsecure & Proteinase K to each sample	Directly inputted into RT-qPCR and LAMP without the need for elution/purification		
Yang et al., 2021	Saliva	✓ Heat at 95 °C for 10 min Saliva stabilization solution (5 mM TCEP, 2 mM EDTA, 29 mM NaOH, 100 µg/mL Proteinase K)	4 days at 4°C (RNA)	LAMP	200 virions/µL of saliva
Gargle	✓				
Tilley et al., 2021	Saline solution	Heat at 65 °C for 20 min and cool to room temperature for 5 min	RNA stability not mentioned	RT-qPCR Single-tube hemi-nested real-time-qPCR (STHN-RT-qPCR) to enhance the overall sensitivity	97% match to NPS positive samples (viral number or copy number not mentioned)
------------------	-----------------	---	-----------------------------	--	---

References:

Lalli, M.A.; Langmade, J.S.; Chen, X.; Fronick, C.C.; Sawyer, C.S.; Burcea, L.C.; Wilkinson, M.N.; Fulton, R.S.; Heinz, M.; Buchser, W.J.; Head, R.D.; Mitra, R.D.; Milbrandt, J. Rapid and extraction-free detection of SARS-CoV-2 from saliva by colorimetric reverse-transcription loop-mediated isothermal amplification. *Clin. Chem. 2021*, 67(2), 415-424. DOI: 10.1093/clinchem/hvaa267

Ranoa, D.; Holland, R.; Alnaji, F.G.; Green, K.; Wang, L.; Brooke, C.; Burke, M.; Fan. T.; Hergenrother, P.J. Saliva-based molecular testing for SARS-CoV-2 that bypasses RNA extraction. *Biorxiv. 2020*. DOI: HYPERLINK "https://d.docs.live.net/26efea6a3c49de6b/Documents/Saliva SARS-COV-2/Manuscript/10.1101/2020.06.18.159434"10.1101/2020.06.18.159434 (accessed 2021 Dec 10)

Tilley, P.; Gadkar, V.; Goldfarb, D.M.; Young, V.; Watson, N.; Al-Rawahi, G.N.; Srigley, J.; Hoang, L.; Lee, T.; Prystajecky, N. Gargle-Direct: Extraction-Free Detection of SARS-CoV-2 using Real-time PCR (RT-qPCR) of Saline Gargle Rinse Samples. *medRxiv. 2020*. DOI: 10.1101/2020.10.09.20203430 (accessed 2021 Dec 10).

Vogels, C.B.; Brackney, D.; Wang, J.; Kalinich, C.C.; Ott, I.; Kudo, E.; Lu, P.; Venkataraman, A.; Tokuyama, M.; Moore, A.J.; Muenker, M.C.; Casanovas-Massana, A.; Fournier, J.; Bermejo, S.; Campbell, M.; Datta, R.; Nelson, A.; Cruz, C.S.D.; Farhadian, S.F.; Ko, A.I.; Iwasaki, A.; Krumholz, H.M.; Matheus, J.D.; Hui, P.; Liu, C.; Sikka, R.; Wyllie, A.L.; Grubaugh, N.D. SalivaDirect: Simple and sensitive molecular diagnostic test for SARS-CoV-2 surveillance. *Med 2021*, 2(3), 263-280. DOI: HYPERLINK "https://d.docs.live.net/26efea6a3c49de6b/Documents/Saliva SARS-COV-2/Manuscript/10.1016/j.medj.2020.12.010"10.1016/j.medj.2020.12.010

Yang, Q.; Meyerson, N.R.; Clark, S.K.; Paige, C.L.; Fattor, W.T.; Gilchrist, A.R.; Barbachano-Guerrero, A.; Healy, B.G.; Worden-Sapper, E.R.; Wu, S.S.; Muhlrad, D.; Cecker, C.J.; Saldi, T.K.; Lasda, E.; Gonzales, P.; Fink, M.R.; Tat, K.L.; Hager, C.R.; Davis, J.C.; Ozeroff, C.D.; Brisson, G.R.; McQueen, M.B.; Leinwand, L.A.; Parker, R.; Sawyer, S.L. Saliva TwoStep for rapid detection of asymptomatic SARS-CoV-2 carriers. *eLife. 2021, 10*: e65113. DOI: 10.7554/eLife.65113
Table S2. A summary of studies on the detection of SARS-CoV-2 in saliva. Inactivation/extraction method, RNA stability, detection method, and sensitivity comparison with nasopharyngeal swabs (NPS) analysis are summarized. The checkmarks indicate that the study addressed a certain aspect.

Study	Sample	Inactivation/Extraction	RNA Stability	Detection Method	Comparison to NPS positive samples		
Altawalah et al., 2020	Saliva	✓	X	✓	✓		
	Mixed in VTM	MagMax Viral/Pathogen Nucleic Acid Isolation Kit	Not mentioned	RT-qPCR	91% match to NPS		
Aita et al., 2020	Saliva	X	X	✓	✓		
	Salivette®	Not mentioned	Not mentioned	RT-qPCR Digital drop PCR	100% match to NPS positive samples (One sample was positive for saliva, but not for NPS.)		
Azzi et al., 2020	Saliva	✓	X	✓	✓		
	PBS dilution	QIAmp Viral RNA mini kit	Not mentioned	RT-qPCR	100% match to NPS		
Byrne et al., 2020	Saliva	✓	X	✓	✓		
	Saliva	QIAmp Viral RNA Mini Kit	Not mentioned	RT-qPCR	86% match to NPS		
Chen et al., 2020	Saliva	✓	X	✓	✓		
	Mixed in VTM	Xpert Xpress SARS-CoV-2 assay	Not mentioned	RT-qPCR Xpert Xpress SARS-CoV-2 assay	84% positive in both NPS and saliva, 10% positive in NPS only, and 5.2% positive in saliva only		
Cheuk et al., 2020	Saliva	✓	X	✓	✓		
	MagNA Pure LC 2.0	Not mentioned	RT-qPCR	85% match to NPS			
Güçlü et al., 2020	Saliva	✓	X	✓	✓		
	EZ1 Virus Kit Qiangen	Not mentioned	RT-qPCR	85% match to NPS			
Han et al., 2020	Saliva	✓	✓	✓	✓		
	Seegene platform	Positivity decreased to 33% and 11%, at week 2 and 3, respectively.	RT-qPCR	80% match to NPS			
Hanson et al., 2020	Saliva	✓	✓	✓	✓		
	Diluted in ARUP laboratories	Hologic Apteima Panther platform	5 days at 4°C & Room Temperature	RT-qPCR	94% match to NPS		
Study	Transport Medium	Saliva	Mixed with PBS	DNA/RNA Shield™ solution	Not mentioned	RT-qPCR	Match to NPS
--------------------	----------------------------------	--------	----------------	--------------------------	---------------	---------	--------------
Iwasaki et al., 2020	Saliva	✓		QIAamp Viral RNA Mini Kit	Not mentioned	RT-qPCR	100% match to NPS
Kojima et al., 2020	Saliva	✓		RNA purification kit, Norgen Biotek Corp	Not mentioned	RT-qPCR	Physician supervised: 90% match to NPS Self collected: 66% match to NPS
Leung et al., 2020	Saliva	✓		MagMAX viral RNA isolation kit	Not mentioned	RT-qPCR	79% match to NPS
Mao et al., 2020	Saliva	✗		Not mentioned	Not mentioned	RT-qPCR	Saliva alone had a 74% match to NPS, but if there was sputum, then match increased to 93%
McCormick-Baw et al., 2020	Saliva	✓		Cepheid Xpert Xpress SARS-CoV-2 assay	Not mentioned	RT-qPCR	96% match to NPS
Migueres et al., 2020	Saliva	✓		Hologic Aptima Panther platform	Not mentioned	RT-qPCR	88% and 95% match for asymptomatic and symptomatic patients, respectively
Pasomsb et al., 2020	Saliva	✓		bioMerieux lysis buffer	Not mentioned	RT-qPCR	98% match to NPS
Rao et al., 2020	Saliva	✓		MagNA Pure 96 DNA and Viral NA Small Volume extraction kit	Not mentioned	RT-qPCR	SARS-CoV-2 was detected more frequently using saliva (93%) than NPS (52%)
Senok et al., 2020	Saliva	✓		Chemagic™ 360 Nucleic Acid Extractor	Not mentioned	Rt-qPCR	73% match to NPS
To et al., 2020	Saliva	✓		NucliSENS easyMAG	Not mentioned	RT-qPCR	92% match to NPS
Uwamino et al., 2020	Saliva	✗		Room temperature for 7 days	Not mentioned	RT-qPCR	32 positive by both NPS and saliva, 15 by NPS only, 11 by saliva only
Study	Specimen	Initial	Lysis	Detection Method	Match to NPS		
-----------------------	----------	------------	------------	-----------------	--------------		
Wong et al., 2020	Saliva	✓	✗	RT-qPCR	85% match to NPS		
		MagNA Pure LC 2.0	Not mentioned				
		MagNA Pure 96					
Wyllie et al., 2020	Saliva	✓	✓	RT-qPCR	81% were positive by saliva and 71% by NPS		
		MagMAX					
		Viral/Pathogen Nucleic Acid Isolation kit	Mentioned stable for 25 days at Room Temperature, but not tested				
Vaz et al., 2020	Saliva	✓	✗	RT-qPCR	96% match to NPS		
		Diluted in PBS	Not mentioned				
		QIAGEN QIAamp® RNA Mini Kit					
Yokota et al., 2021	Saliva	✓	✗	RT-qPCR	86% sensitivity for NPS and 92% for saliva		
		Diluted in PBS	Not mentioned				
		QIAasympohy DSP Virus/Pathogen kit and QIAamp Viral RNA Mini Kit					

References:

Altawalah, H.; Al Huraish, F.; Alkandari, W.A.; Ezzikouri, S. Saliva specimens for detection of severe acute respiratory syndrome coronavirus 2 in Kuwait: a cross-sectional study. *J. Clin. Virol.* **2020**, 132, 104652. DOI: HYPERLINK "https://d.docs.live.net/26efea6a3c49de6b/Documents/Saliva SARS-CoV-2/Manuscript/10.1016/j.jcv.2020.104652" 10.1016/j.jcv.2020.104652

Aita, A.; Basso, D.; Cattelan, A.M.; Fioretto, P.; Navaglia, F.; Barbaro, F.; Stoppa, A.; Coccorullo, E.; Farella, A.; Socal, A.; Vettor, R.; Plebani, M. SARS-CoV-2 identification and IgA antibodies in saliva: one sample two tests approach for diagnosis. *Clin. Chim. Acta.* **2020**, 510,717–722. DOI: HYPERLINK "https://d.docs.live.net/26efea6a3c49de6b/Documents/Saliva SARS-CoV-2/Manuscript/h10.1016/j.cca.2020.09.018" h10.1016/j.cca.2020.09.018

Azzi, L.; Carcano, G.; Gianfagna, F.; Grossi, P.; Gasperina, D.D.; Genoni, A.; Fasano, M.; Sessa, F.; Tettamanti, L.; Maurino, V.; Carinci, F.; Rossi, A.; Tagliabue, A.; Baj, A. Saliva is a reliable tool to detect SARS-CoV-2. *J. Infect.* **2020**, 81(1),e45–e50. DOI: HYPERLINK "https://d.docs.live.net/26efea6a3c49de6b/Documents/Saliva SARS-CoV-2/Manuscript/10.1016/j.jinf.2020.04.005" 10.1016/j.jinf.2020.04.005

Byrne, R.L.; Kay, G.A.; Kontogianni, K.; Aljayyoussi, G.; Brown, L.; Collins, A.M.; Cuevas, L.E.; Ferreira, D.M.; Fraser, A.J.; Garrod, G.; Hill, H.; Hughes, G.L.; Menzies, S.; Mitsu, E.; Owen, S.I.; Patterson, E.I.; Williams, C.T.; Hyder-Wright, A.; Adams, E.R.; Cubas-Atienzar, A.I. Saliva alternative to upper respiratory swabs for SARS-CoV-2 diagnosis. *Emerg. Infect. Dis.* **2020**, 26(11), 2769–2770. DOI: HYPERLINK "https://d.docs.live.net/26efea6a3c49de6b/Documents/Saliva SARS-CoV-2/Manuscript/10.3201/eid2611.203283" 10.3201/eid2611.203283
Chen, J.K.H.; Yip, C.C.Y.; Poon, R.W.S.; Chan, K.H.; Cheng, V.C.C.; Hung, I.F.N.; Chan, J.F.W.; Yeun, K.Y.; To, K.K.W. Evaluating the use of posterior oropharyngeal saliva in a point-of-care assay for the detection of SARS-CoV-2. Emerg. Microb. Infect. 2020, 9(1), 1356-1359. DOI: HYPERLINK "https://d.docs.live.net/26efea6a3c49de6b/Documents/Saliva SARS-COV-2/Manuscript/10.1080/22221751.2020.1775133" 10.1080/22221751.2020.1775133

Güçlü, E.; Koroglu, M.; Yürümez, Y.; Toptan, H.; Kose, E.; Guneysu, F.; Karabay, O. Comparison of saliva and oro-nasopharyngeal swab sample in the molecular diagnosis of COVID-19. Rev. Assoc. Med. Bras. 2020, 66(8), 1116-1121. DOI: 10.1590/1806-9282.66.8.1116

Han, M.S.; Seong, M.W.; Kim, N.; Shin, S.; Cho, S.I.; Park, H.; Kim, T.S.; Park, S.S.; Choi, E.H. Viral RNA load in mildly symptomatic and asymptomatic children with COVID-19, Seoul, South Korea. Emerg. Infect. Dis. 2020, 26(10),2497–2499. DOI: HYPERLINK "https://d.docs.live.net/26efea6a3c49de6b/Documents/Saliva SARS-COV-2/Manuscript/10.3201/eid2610.202449" 10.3201/eid2610.202449

Hanson, K.E.; Barker, A.P.; Hillyard, D.R.; Gilmore, N.; Barrett, J.W.; Orlandi, R.R.; Shakir, S.M. Self-collected anterior nasal and saliva specimens versus healthcare worker-collected nasopharyngeal swabs for the molecular detection of SARS-CoV-2. J. Clin. Microbiol. 2020, 58(11), e01824-20. DOI: HYPERLINK "https://d.docs.live.net/26efea6a3c49de6b/Documents/Saliva SARS-COV-2/Manuscript/10.1128/JCM.01824-20" 10.1128/JCM.01824-20

Iwasaki, S.; Fujisawa, S.; Nakakubo, S.; Kamada, K.; Yamashita, Y.; Fukumoto, T.; Sato, K.; Oguri, S.; Taki, K.; Senjo, H.; Sugita, J.; Hayasaka, K.; Konno, S.; Nishida, M.; Teshima, T. Comparison of SARS-CoV-2 detection in nasopharyngeal swab and saliva. J. Infect. 2020, 81(2), e145-e147. DOI: HYPERLINK "https://d.docs.live.net/26efea6a3c49de6b/Documents/Saliva SARS-COV-2/Manuscript/10.1016/j.jinf.2020.05.071" 10.1016/j.jinf.2020.05.071

Kojima, N.; Turner, F.; Slepnnev, V.; Bacelar, A.; Deming, L.; Kodeboyina, S.; Klausner, J. D. Self-collected oral fluid and nasal swabs demonstrate comparable sensitivity to clinician collected nasopharyngeal swabs for coronavirus disease 2019 detection. Clin. Infect. Dis. 2021, 73(9), e3106-e3109. DOI: 10.1093/cid/ciaa1589

Leung, E.C.; Chow, V.C.; Lee, M.K.; Lai, R.W. Deep throat saliva as an alternative diagnostic specimen type for the detection of SARS-CoV-2. J. Med. Virol. 2021, 93(1), 533-536. DOI: HYPERLINK "https://d.docs.live.net/26efea6a3c49de6b/Documents/Saliva SARS-COV-2/Manuscript/10.1002/jmv.26258" 10.1002/jmv.26258

Mao, M.H.; Guo, J.J.; Qin, L.Z.; Han, Z.X.; Wang, Y.J.; Yang, D. Serial semiquantitative detection of SARS-CoV-2 in saliva samples. J. Infect. 2021, 82(3), 414-451. DOI: HYPERLINK "https://d.docs.live.net/26efea6a3c49de6b/Documents/Saliva SARS-COV-2/Manuscript/10.1016/j.jinf.2020.10.002" 10.1016/j.jinf.2020.10.002

Mccormick-Baw, C.; Morgan, K.; Gaffney, D.; Cazares, Y.; Jaworski, K.; Byrd, A.; Molberg, K.; Cauvo, D. Saliva as an alternate specimen source for detection of SARS-CoV-2 in symptomatic patients using cepheid xpress xpress SARS-CoV-2. J. Clin. Microbiol. 2020, 58(8), e01109-20. DOI: 11.1028/JCM.01109-20
Migueres, M.; Mengelle, C.; Dimeglio, C.; Didier, A.; Alvarez, M.; Delobel, P.; Mansuy, J.M.; Izopet, J. Saliva sampling for diagnosing SARS-CoV-2 infections in symptomatic patients and asymptomatic carriers. *J. Clin. Virol.* 2020, 130, 104580. DOI: HYPERLINK "https://d.docs.live.net/26efea6a3c49de6b/Documents/Saliva SARS-COV-2/Manuscript/10.1016/j.jcv.2020.104580" 10.1016/j.jcv.2020.104580

Pasomsub, E.; Watcharanan, S.P.; Boonyawat, K.; Janchompoo, P.; Wongtabtim, G.; Suksuwan, W.; Sungkanuparph, S.; Phuphuakrat, A. Saliva sample as a non-invasive specimen for the diagnosis of coronavirus disease 2019 (COVID-19): a cross-sectional study. *Clin. Microbiol. Infect.* 2021, 27(2), 285.e1-285.e4. DOI: 10.1016/j.cmi.2020.05.001

Rao, M.; Rashid, F.A.; Sabri, F.S.A.H.; Jamil, N.N.; Zain, R.; Hasim, R.; Amran, F.; Kok, H.T.; Samad, M.A.; Ahmad, N. Comparing nasopharyngeal swab and early morning saliva for the identification of SARS-CoV-2. *Clin. Infect. Dis.* 2021, 72(9), e352–e356. DOI: 10.1093/cid/ciaa1156

Senok, A.; Alsuwaidi, H.; Atrah, Y.; Ayedi, O.A.; Zahid, J.A.; Han, A.; Al Marzoqui, A.; Healy, S.A.; Altrabulsi, B.; AbdelWareth, L.; Idaghdour, Y.; Ali, R.; Loney, T.; Alsheikh-Ali, A. Saliva as an alternative specimen for molecular COVID-19 testing in community settings and population-based screening. *Infect. Drug. Resist.* 2020, 13, 3393–3399. DOI: HYPERLINK "https://d.docs.live.net/26efea6a3c49de6b/Documents/Saliva SARS-COV-2/Manuscript/10.2147/IDR.S275152" 10.2147/IDR.S275152

To, K.K.W.; Tsang, O.T.Y.; Yip, C.C.Y.; Chan, K.H.C.; Wu, T.C.; Chan, J.M.C.; Leung, W.S.; Chik, T.S.H.; Choi, C.Y.C.; Kandamby, D.H.; Lung, D.C.; Tam, A.R.; Poon, R.W.S.; Fung, A.Y.F.; Hung, I.F.N.; Cheng, V.C.C.; Chan, J.F.W.; Yuen, K.Y. Consistent Detection of 2019 Novel Coronavirus in Saliva. *Clin. Infect. Dis.* 2020, 71(15), 841-843. DOI: HYPERLINK "https://d.docs.live.net/26efea6a3c49de6b/Documents/Saliva SARS-COV-2/Manuscript/10.1093/cid/ciaa149" 10.1093/cid/ciaa149

Uwamino, Y.; Nagata, M.; Aoki, W.; Fujimori, Y.; Nakagawa, T.; Yokota, H.; Sakai-Tagawa, Y.; Iwatsuki-Horimoto, K.; Shiraki, T.; Uchida, S.; Uno, S.; Kabata, H.; Ikemura, S.; Kamata, H.; Ishii, M.; Fukunaga, K.; Kawaoka, Y.; Hasegawa, N.‘Mitsuru, M. Accuracy and stability of saliva as a sample for reverse transcription PCR detection of SARS-CoV-2. *J. Clin. Pathol.* 2020, 74(1), 67-68. DOI: HYPERLINK "https://d.docs.live.net/26efea6a3c49de6b/Documents/Saliva SARS-COV-2/Manuscript/10.1136/jclinpath-2020-206972" 10.1136/jclinpath-2020-206972

Wong, S.C.; Tse, H.; Siu, H.K.; Kwong, T.S.; Chu, M.Y.; Yau, F.Y.S.; Cheung, I.Y.Y.; Tse, C.W.Z.; Poon, K.C.; Cheung, K.C.; Wu, T.C.; Chan, J.W.M.; Cheuk, W.; Lung, D.C. Posterior oropharyngeal saliva for the detection of SARS-CoV-2. *Clin. Infect. Dis.* 2020, 71(11), 2939–2946. DOI: 10.1093/cid/ciaa797

Wyllie, A.L.; Fournier, J.; Casanovas-Massana, A. Saliva is more sensitive for SARS-CoV-2 detection in COVID-19 patients than nasopharyngeal swabs. *N. Engl. J. Med.* 2020, 383,1283-1286. DOI: 10.1056/NEJMec2016359

Vaz, S.N.; Santana, D.S.; Netto, E.M.; Pedroso, C.; Wang, W.K.; Santos, F.D.A.; Brites, C. Saliva is a reliable, non-invasive specimen for SARS-CoV-2 detection. *Braz. J.*
Yokota, I.; Shane, P.Y.; Okada, K.; Unoki, Y.; Yang, Y.; Inao, T.; Sakamaki, K.; Iwasaki, S.; Hayasaka, K.; Sugjita, J.; Nishida, M.; Fujisawa, S.; Teshima, T. Mass screening of asymptomatic persons for SARS-CoV-2 using saliva. *Clin. Infect. Dis.* **2021**, *73*(3), e559–e565. DOI: HYPERLINK "https://d.docs.live.net/26eafea6a3c49de6b/Documents/Saliva SARS-COV-2/Manuscript/10.1093/cid/ciaa1388" 10.1093/cid/ciaa1388
Table S3. A summary of studies on the detection of SARS-CoV-2 in gargle. Inactivation/extraction method, RNA stability, detection method, and sensitivity comparison to nasopharyngeal swabs (NPS) analysis are summarized. The checkmarks indicate that the study addressed certain aspects.

Study	Sample	Inactivation/Extraction	RNA Stability	Detection Method	Sensitivity/Comparison to NPS positive samples
Goldfarb et al., 2021	Gargle	✓	✓	RT-qPCR	98% sensitivity, 39/40 NPS confirmed patients tested positive using gargle
	Saline solution				
	QiaSymphony automated extractor using the DSP virus/pathogen minikit				
	Cepheid Xpert Xpress SARS-CoV-2 assay				
	2 days at Room Temperature				
Kandel et al., 2021	Gargle	✓	✗	RT-qPCR	90% match to NPS
	Saline solution				
	Heated at 56°C for 30 mins in a dry bath filled with thermal beads and vortexed for 30 secs.				
	TNA lysis buffer (plus carrier RNA, and MS2 phage internal control)				
	MagBind Viral RNA Xpress kit				
Lopez-Lopes et al., 2020	Gargle	✓	✗	RT-qPCR	Not all samples had a paired NPS, but study generally found that Ct values of throat washes were comparable to NPS but higher
	Saline solution				
	Automated extraction (Bio Gene, Quibasa or Abbott M2000)				
Malecki et al., 2021	Gargle	✓	✗	RT-qPCR	Screened 924 healthcare workers, 26 were positive
	Saline solution				
	Not mentioned				
Paré et al., 2021	Gargle	✓	✗	In house laboratory developed (LD) NAAT	1297 adult samples processed. Overall sensitivity was 98% for NPS and 90% for gargles.
	Natural spring water				
Poukka et al., 2021	Both	✓	✓	✓	✓
--------------------	------	---	---	---	---
Saliva & Gargle	Viscous samples were diluted with PBS and vortexed	Not mentioned	One step RT-qPCR	Saliva had 100% sensitivity	
	Chemagic Viral300 DNA/RNA kit H96			Gargle had 97% sensitivity	

References:

Goldfarb, D.M.; Tilley, P.; Al-Rawahi, G.N.; Srigley, J.A.; Ford, G.; Pedersen, H.; Pabbi, A.; Hannam-Clark, S.; Charles, M.; Dittrick, M.; Gadkar, V.J.; Pernica, J.M.; Hoang, L.M.N. Self-Collecting Saline Gargle Samples as an Alternative to Health Care Worker-Collected Nasopharyngeal Swabs for COVID-19 Diagnosis in Outpatients. *J. Clin. Microbiol.* **2021**, *59*(4), e02427-20. DOI: 10.1128/JCM.02427-20

Kandel, C.E.; Young, M.; Serbanescu, M.A.; Powis, J.E.; Bulir, D.; Callahan, J.; Katz, K.; McCready, J.; Racher, H.; Sheldrake, E.; Quon, D.; Vojdani, O.K.; McGeer, A.; Goneau, L.W.; Vermeiren, C. Detection of severe acute respiratory coronavirus virus 2 (SARS-CoV-2) in outpatients: A multicenter comparison of self-collected saline gargle, oral swab, and combined oral–anterior nasal swab to a provider collected nasopharyngeal swab. *Infect. Control Hosp. Epidemiol.* **2021**, *42*(11), 1340–1344. DOI: 10.1017/ice.2020.229

Lopez-Lopes, G.I.; Ahagon, C.; Benega, M.A.; da Silva, D.B.B.; Silva, V.O.; Santos, K.C.D.O.; do Prado, K.S.D.P.; dos Santos, F.P.; Cilli, A.; Saraceni, C.; da Cruz, N.B.; Afonso, A.M.S.; Timenetsky, M.D.C.; de Macedo Brigido, L. Throat wash as a source of SARS-CoV-2 RNA to monitor community spread of COVID-19. *medRxiv*. **2020**. DOI: HYPERLINK "https://d.docs.live.net/26eafe6a3c49de6b/Documents/Saliva SARS-COV-2/Manuscript/10.1101/2020.07.29.20163998*10.1101/2020.07.29.20163998 (accessed 2021 Dec 10).

Malecki, M.; Lüsebrink, J.; Teves, S.; Wendel, A.F. Pharynx gargle samples are suitable for SARS-CoV-2 diagnostic use and save personal protective equipment and swabs. *Infect. Control Hosp. Epidemiol.* **2021**, *42*(2), 248-249. DOI: 10.1017/ice.2020.229

Paré, S.G.; Bestman-Smith, J.; Fafard, J.; Doualla-Bell, F.; Jacob-Wagner, M.; Lavallée, C.; Charest, H.; Beauchemin, S.; Coutlée, F.; Dumaresq, J.; Busque, L.; St-Hilaire, M.; Lepine, G.; Boucher, V.; Desforges, M.; Goupil-Sormany, I.; Labbe, A.C. Natural spring water gargle samples as an alternative to nasopharyngeal swabs for SARS-CoV-2 detection using a laboratory-developed test. *J. Med. Virol.* **2021**. DOI: 10.1002/jmv.27407

Poukka, E.; Mäkelä, H.; Hagberg, L.; Vo, T.; Nohynek, H.; Ikonen, N.; Liitsola, K.; Helve, O.; Savolainen-Kopra, C.; Dub, T. Detection of SARS-CoV-2 Infection in Gargle, Spit, and Sputum Specimens. *Microbiol. Spectr.* **2021**, *9*(1), e00035-21. DOI: 10.1128/Spectrum.00035-21
Table S4. A summary of reported methods that were used to detect SARS-CoV-2 in pooled samples. The checkmarks indicate that the study addressed certain aspects.

Study	Sample	Inactivation/Extraction	RNA Stability	Detection Method	Results
VIP-Mag Method	Both	✓	✓	✓	Positive detectable even after diluting by 32 times
Saliva		Single Tube Method (sample collection, inactivation, lysis, & maintains RNA stability) Heat at 55°C, 10 min	1 week at 4°C & Room Temperature (RNA)	RT-qPCR	
Barat et al., 2021	Saliva	Proteinase K, vortexed and heated for 5 min at 95°C NucliSENS easyMAG Panther Fusion Cobas 6800	Not mentioned	RT-qPCR	90-94% sensitivity in 5 pooled samples
Bokelmann et al., 2021	Gargle	Lysis/binding buffer (Tris-HCl, LiCl, LiDS, EDTA, DTT) Quick extract (Lucigen)	Not mentioned	RT-qPCR capture and improved loop-mediated isothermal amplification (CAP-LAMP)	1 positive in 25 pooled samples can be detected
Kellner et al., 2021	Gargle	Guanidine thiocyanate KingFisher magnetic particle processor DNaseI for 15 mins at 37°C QuickExtract DNA extraction solution (Lucigen)	Not mentioned	RT-qPCR LAMP	1 positive in 100 pooled samples can be detected
Willeit et al., 2021	Gargle	10 pooled samples mixed using KingFisher Flex mixer Lysis buffer (Tris, GITC, EDTA, 2% Triton)	Not mentioned	RT-qPCR	This method was used to screen 10 734 participants from 245 schools in Austria.
2 M 1,4-dithiothreitol added to reduce viscosity

X-100, DTT) added and incubated for 10 min at room temperature

KingFisher Flex Magnetic Particle Processor System

Carboxylated magnetic bead CyBio Felix System

References:

Barat, B.; Das, S.; De Giorgi, V.; Henderson, D.K.; Kopka, S.; Lau, A.F.; Miller, T.; Moriarty, T.; Palmore, T.N.; Sawney, S.; Spalding, C.; Tanjutco, P.; Wortmann, G.; Zelazny, A.M.; Frank, K.M. Pooled saliva specimens for SARS-CoV-2 testing. J. Clin. Microbiol. 2021, 59(3), e02486-20. DOI: 10.1128/JCM.02486-20

Bokelmann, L.; Nickel, O.; Maricic, T.; Pääbo, S.; Meyer, M.; Borte, S.; Riesenberg, S. Point-of-care bulk testing for SARS-CoV-2 by combining hybridization capture with improved colorimetric LAMP. Nat. Commun. 2021, 12(1), 1-8. DOI: 10.1038/s41467-021-21627-0

Kellner, M.J.; Ross, J.J.; Schnabl, J.; Dekens, M.P.; Heinen, R.; Grishkovskaya, I.; Bauer, B.; Stadlmann, J.; Menéndez-Arias, L.; Fritsche-Polanz, R.; Traugott, M.; Seitz, T.; Zoufaly, A.; Fodinger, M.; Wenisch, C.; Zuber, J.; Pauli, A.; Brennecke, J. A rapid, highly sensitive and open-access SARS-CoV-2 detection assay for laboratory and home testing. bioRxiv. 2020. DOI: HYPERLINK "https://d.docs.live.net/26efea6a3c49de6b/Documents/Saliva SARS-COV-2/Manuscript/10.1101/2020.06.23.166397"10.1101/2020.06.23.166397 (accessed 2021 Dec 10).

Willeit, P.; Krause, R.; Lamprecht, B.; Berghold, A.; Hanson, B.; Stelzl, E.; Stoiber, H.; Zuber, J.; Heinen, R.; Köhler, A.; Bernhard D.; Borena, W.; Doppler, C.; von Laer, D.; Schmidt, H.; Proll, J.; Steinmetz, I.; Wagner, M. Prevalence of RT-qPCR-detected SARS-CoV-2 infection at schools: First results from the Austrian School-SARS-CoV-2 prospective cohort study. The Lancet Regional Health-Europe. 2021, 5, 100086. DOI: 10.1016/j.lanepe.2021.100086
Comparison of Tap Water and Saline Used for Collecting Gargle Samples

To explore whether tap water is suitable for collecting a gargle sample, we compared the stability of SARS-CoV-2 viral RNA in tap water gargle and saline gargle samples. We obtained pooled tap water gargle and pooled saline gargle from SARS-CoV-2 negative volunteers. We added 65, 390, or 3900 copies of viral RNA to each type of the pooled gargle samples. We analyzed these samples after they were stored at room temperature for 2 h. The results show that the tap water gargles containing 65 or 390 copies of the viral RNA required higher threshold cycles (Ct) to achieve detection than those for their saline gargle counterparts (Figure S1A). We also tested three saline gargle and three tap water gargle samples collected from a SARS-CoV-2 positive patient (Figure S1B). The Ct values are consistently higher for the tap water gargle samples than for the saline gargles samples. These results indicate lower concentrations of the viral RNA in tap water gargle than in saline gargle samples, probably because of more degradation of the viral RNA in tap water. Saline was used for the subsequent collection of all the gargle samples in this study.

Additional Information on Developing a Viral Inactivation and RNA Preservation (VIP) Buffer.

We first tested commercially available QuickExtract plant DNA extract solution (containing SDS) and RLT lysis buffer (containing guanidinium isothiocyanate; QIAgen), as well as the addition of 2-mercaptoethanol (2-ME), proteinase K, and Triton X-100 (Figure S2). The analyses of gargle samples containing 3900 copies of viral RNA show that a lower threshold cycle (Ct) was obtained for the detection of the viral RNA when the RLT buffer was used as compared to the QuickExtract plant DNA extract solution (Figure S2). We chose to use the RLT buffer with the addition of 2-mercaptoethanol (2-ME), proteinase K, and Triton X-100. Proteinase K and 2-mercaptoethanol were used to denature proteins and digest RNase enzymes that would otherwise degrade RNA. Chellappan et al. (J. Ind. Microbiol. Biotechnol. 2011, 38(6), 743–752. doi:10.1007/s10295-010-0914-3) showed that 1% 2-ME enhanced the activity of proteinase K although 5% 2-ME reduced its activity. Triton X-100 was used to enhance inactivation of SARS-CoV-2 by destroying envelopes of virions. The optimum
concentrations of these reagents in the VIP buffer were 1% 2-ME, 2.5% Triton X-100, and 170 ng/μL proteinase K.

Additional Information on Enhancing the Recovery of Low Amounts of RNA.

We compared the use of a commercially available RNA carrier and glycogen for enhancing the recovery of low amounts of RNA from gargle samples. We added 17, 34, or 68 ng/μL of glycogen or 1.7 ng/μL of Carrier RNA (1 μg per sample, recommended by MagMAX viral RNA isolation kit) in VIP buffer. We mixed 600 μL of VIP buffer with 200 μL of gargle samples containing 390 or 3900 copies of viral RNA. As shown in Figure S3, the addition of glycogen reduced the threshold cycles (Ct) needed for the detection of 390 copies of viral RNA, suggesting a better recovery of the viral RNA for detection. The effect of “Carrier RNA” and glycogen on the higher concentration (3900 copies) of viral RNA is minimum. To achieve efficient recovery of minute amounts of viral RNA from the samples, we added glycogen into VIP buffer to a final concentration of 17 ng/μL.
Figure S1. Detection of SARS-CoV-2 RNA in tap water gargle and saline gargle samples. (A) Viral RNA were added to SARS-CoV-2 negative tap water gargle or saline gargle samples and detected after storage at room temperature for 2 h. (B) Detection of SARS-CoV-2 RNA in three tap water gargle and three saline gargle samples collected from a SARS-CoV-2 positive patient. The error bars represent one standard deviation of triplicate measurements. NTC (no template control) is negative control. ND indicates no detectable SARS-CoV-2 RNA.
Figure S2. Detection of SARS-CoV-2 RNA in gargle samples treated with different reagents. Quick Plant DNA EX stands for Quick Plant DNA Extract. RLT stands for RLT lysis buffer. PK indicates proteinase K, and TX indicates Triton X-100. The error bars represent one standard deviation of triplicate measurements. NTC (no template control) is negative control. ND indicates no detectable SARS-CoV-2 RNA.
Figure S3. Detection of SARS-CoV-2 RNA in gargle samples treated with glycogen or carrier RNA. The gargle samples contained either 390 or 3900 copies of SARS-CoV-2 RNA. The error bars represent one standard deviation of triplicate measurements. NTC (no template control) is negative control. ND indicates no detectable SARS-CoV-2 RNA.
Figure S4. Detection of SARS-CoV-2 RNA in saliva and gargoyle samples treated with either freshly prepared VIP buffer or the VIP buffer stored at room temperature for six months. The saliva and gargoyle samples each contained 390 copies of viral RNA. The error bars represent one standard deviation of triplicate measurements. NTC stands for no template control. ND indicates no detectable SARS-CoV-2 RNA.
Figure S5. Detection of SARS-CoV-2 RNA in the absence or the presence of commercial beads. Solid Phase Reversible Immobilization select beads (SPRIselect beads) and silica-based beads (TurboBeads) were tested. Ten or 20 μL of SPRIselect or TurboBeads were washed three times with RNase-free water and then added into a sample of 2000 copies of SARS-CoV-2 RNA. The samples were analyzed using RT-qPCR. The error bars represent one standard deviation of triplicate measurements. NTC denotes no template control. ND indicates no detectable SARS-CoV-2 RNA. PC indicates positive control. Similar Ct values from the reactions containing SARS-CoV-2 RNA with or without the presence of SPRIselect beads indicate that the SPRIselect beads did not affect the RT-qPCR detection.
Figure S6. Comparison of different concentrations of PEG 8000 in the beads-binding buffer for concentrating SARS-CoV-2 RNA. The error bars represent one standard deviation of triplicate measurements. NTC (no template control) is negative control containing all reagents including 36% PEG. ND indicates no detectable SARS-CoV-2 RNA.
Figure S7. Detection of 65, 390, or 3900 copies of SARS-CoV-2 RNA in saliva and gargle samples using the VIP-Meg-RT-qPCR method. The error bars represent one standard deviation of triplicate measurements. NTC (no template control) is negative control. ND indicates no detectable SARS-CoV-2 RNA.
Figure S8. Recovery of viral RNA from RNase-free water and pooled SARS-CoV-2 negative gargle samples. RNase-free water and pooled gargle samples from healthy volunteers were each spiked with 65, 390, or 3900 copies of SARS-CoV-2 RNA. The samples were analyzed using the VIP-Meg-RT-qPCR method. The error bars represent one standard deviation of triplicate measurements. NTC (no template control) is negative control. ND indicates no detectable SARS-CoV-2 RNA.
Figure S9. Standard curve from the RT-qPCR analysis of the N1 gene segment (CDC). The log values of the numbers of pure SARS-CoV-2 RNA are plotted against the corresponding Ct values. E represents PCR efficiency which was calculated using the equation: $E = -1 + 10(-1/slope)$, where slope refers to the slope of the standard curve. This standard curve was used to quantify the amounts of SARS-CoV-2 RNA in samples.
Figure S10. SARS-CoV-2 RNA levels in saliva samples collected four times a day on five days. The samples were collected from the first SARS-CoV-2 positive patient volunteer from the sixth to the tenth day. Lines represent the mean of duplicates, shown individually as symbols. NTC (no template control) is negative control.
Figure S11. SARS-CoV-2 RNA levels in gargle samples collected four times a day on seven days. The gargle samples were collected from the second SARS-CoV-2 positive patient volunteer from the fourth to the 11th day. Lines represent the mean of duplicates, shown individually as symbols. NTC (no template control) denotes negative control.