Predicting the formation of tornadoes using association rule mining by studying a real life tornado event: Georgia, USA January, 2013

GURBRINDER KAUR and RATTAN K. DATTA*
Management Education and Research Institute, GGSIPU, New Delhi, India
*Mohyal Education and Research Institute of Technology, New Delhi, India

(Received 20 September 2018, Accepted 26 September 2021)

e mail: gurbrinderaulakh13@gmail.com

1. Introduction

Formation of Tornado is so complex that scientists have yet to understand it. So, in this paper an attempt has made to understand the formation of tornado by first analyzing each weather attribute and then applying data mining to find association among all those attributes. For this purpose, only important weather elements are analyzed and processed. A real time tornado event is analyzed and experimental results are shown. In Georgia, USA from 29 January to 30 January 2013, a total of 65 tornadoes was confirmed making it the fourth largest winter outbreak.

Confirmed tornadoes by Enhanced Fujita rating retrieved from NOAA (2003, Jan)

EFU	EF0	EF1	EF2	EF3	EF4	EF5	Total
0	28	26	10	1	0	0	65

Wind speed, wind shear (Vorticity), instability and lifting are the most important ingredients for a tornado to occur. In this paper, each ingredient is covered separately and in-depth analysis is performed. After analyzing these ingredients, association has been found among them by applying association rule mining. For association rule mining from the given dataset, we use predictive Apriori algorithm for finding the hidden relationship between various atmospheric parameters. By using predictive Apriori algorithm the association rules are generated on weather data set with support and confidence threshold values.

2. Literature review

Association rule mining had been applied in different research areas like prediction in stock market by V. Argiddi and S. Apte, 2013, analysis of the customer behaviour in retail or super store by Raj and Gupta, 2012, correlation among diseases for patients in health care by...
Rashid et al., 2010, video semantic concept detection framework by Hu and Yang, 2010, crime detection by Ubon Thongsatapornwatana 2014, the spatial autocorrelation by Chen, 2008 and weather forecasting by Pappula and Javvaji, 2014.

Harun, et al., 2017, have applied apriori algorithm in predicting flood areas. The results of the apriori algorithm produced best results and created associations among flood areas. The rules are generated with 100% confidence and 1.5 lift values.

Ranjan and Pani, 2015, have done a comparative study on association rule mining algorithm using weather dataset. They have compared apriori algorithm and filter association to produce association rules. The results have shown the apriori algorithm produced same number of rules as filter association but in less number of cycles.

Jin, 2015 has proved that fuzzy classification rules can be treated as a subset of fuzzy association rules. By applying the fuzzy association rule mining technique one can construct a fuzzy classifier from large datasets by choosing high quality rules from among all possible rules. In order to select high quality rules, a rule weight is needed to attach to each rule to indicate the significance of each rule.

S. Nandagopal et al., 2010, have proposed modified apriori algorithm and applied the algorithm to single and multiple stations weather data. The test results show that with the extended inter-transactional association rules, more comprehensive and interesting association relationships can be found in meteorological data sets.

Dhanya and Kumar, 2009, applied fuzzy association rule mining to predict the southern monsoon rainfall of All-India. Fuzzy association rule helps in extracting the relation between the variables by overcoming the sharp boundary problem when mining association rules from quantitative data.

In Calargun and Yazici, 2008, fuzzy association rule mining is performed with spatial temporal data cubes using two different methods, namely association rule mining through data cubes and association rule mining through Apriori algorithm. Real meteorological data for Turkey recorded between 1970 and 2007 is analyzed using data cube and Apriori algorithm in order to generate fuzzy association rules. The association rules discovered using these algorithms are analyzed based on predefined metrics for association rules to guide data mining researches in this respect.

Fig. 1. Location Georgia, USA Grid Size 0.25 × 0.25 From 29.66° N, -85.40° W to 34.66° N, -80.40° W

3. Data extraction

With the courtesy of Indian Meteorological Department (IMD), forecasts made by NWP model for variables u wind component, v wind component and temperature have been considered for analysis. The Forecasts taken for analysis is as follows:

(i) Forecast made on 0000 GMT 27th January, 2013 to 30th January 2013, valid for 0600 GMT 29th January to 30th January.

(ii) Forecast made on 0000 GMT 27th January, 2013 to 30th January 2013, valid for 1200 GMT 29th January to 30th January.

In this paper a computational grid of 0.25 × 0.25 (latitude × longitude) has been selected around Georgia, USA which is at 32.1656° N, 82.9001° W as shown in Fig. 1. Fundamental quantities of tornado formation like u wind component, v wind component, vertical velocity and temperature are extracted at 500 hPa, 600 hPa, 700 hPa, 800 hPa, 925 hPa and 1000 hPa levels. Derived attributes are wind speed, wind shear, temperature gradient, divergence and convergence, the important ingredients of Tornado formation McGovern et al., 2007. By selecting these quantities at specific grid points has significantly reduced the dataset so that each variable can be examined at each grid point with great proficiency. All the fundamental quantities responsible for formation of tornado are analyzed. Datasets are analyzed for the development of temperature and wind flow patterns in the atmosphere that can cause instability, lift, and wind shear for tornadic thunderstorms.
TABLE 1

Sample data to show wind speed in the given dataset. From the following data it is evident that wind speed has significantly increased at 500 hPa level and is of intensity of EF0, EF1 and EF2 scale.

Enhanced Fujita Scale	Wind Speed m/s
	25-37 min
	30-48 min
	40-60 min

4. Technique applied

Wind Speed, wind shear, velocity and temperature are analyzed and instability in the atmosphere is calculated based on these attributes. For Association Rule mining from the data sets Apriori algorithm is used for finding hidden relationship among weather attributes. By using Apriori algorithm the association rules are generated with support and confidence threshold values. Finally, Fuzzy rules are generated to estimate the weather conditions favorable for tornadoes.

4.1. Analysis of wind speed and wind shear

The important ingredient in the formation of a tornado is the speed of the wind over a given distance. For tornadoes to develop significant increase in wind with height is important. Wind speed and damage caused by the wind is measured by Enhanced Fujita Scale. The Enhanced Fujita scale (EF-Scale) rates the intensity of tornadoes based on the damage they cause. Implemented in place of the Fujita scale introduced in 1971 by Tetsuya Theodore Fujita, it began operational use in the United States on February 1, 2007, followed by Canada on April 1, 2013, as explained online on Tornado Facts and Information. The sample from given dataset is shown in Table 1, which clearly shows that wind speed has increased significantly at 500 hPa level.

4.2. Analysis of convergence or divergence patterns

The concept of convergence and divergence is very important in forecasting tornadoes. With the wind shear in...
place there has to be a force which cause the wind to move towards the upward direction to develop a supercell. For this forecast variables are analyzed to find convergence and divergence at different levels of the atmosphere near the selected region.

Convergence is sinking of the air and is associated with clouds and precipitation therefore it indicates bad weather. Divergence is rising air and is associated with clear, calm conditions and indicates good weather. Fig. 4 gives a sample of gridded data output using NCL. (The NCAR Command Language (NCL), a product of the Computational & Information Systems Laboratory at the National Center for Atmospheric Research (NCAR) and sponsored by the National Science Foundation, is a free interpreted language designed specifically for scientific data processing and visualization. The top panels which show both convergence and divergence at different levels of the atmosphere near the selected region.

TABLE 2

Summary of convergence/divergence on all the four days from 27th of January, 2013 to 30th January, 2013 at different hPa levels. Values in red are convergence and green is divergence.

ISBL Level	Date	Wind Divergence	Convergence	Divergence	
500	1/27/2013	1/28/2013	1/29/2013	1/30/2013	
500		3.825E-07	-0.000000355	-0.00000027	6.26667E-07
600		-0.0000003	-0.000000305	-0.000000285	-0.00000048
700		2.025E-07	-0.000000305	-0.000000225	-0.0000008
800		-2.925E-07	-2.375E-07	-0.000000175	-0.00000051
925		-0.00000014	-1.225E-07	-0.000000145	-3.23333E-07
1000		0.000000235	0.00000021	0.000000222	2.5E-08

Figs. 5(a-d). Location Georgia, USA, 29 January, 2013. 1200 GMT Wind Speed and Divergence ISBL. (a) 1000, (b) 800 (c) 600 and (d) 500
atmosphere levels are selected as samples. The opposite of divergence in normal conversation is convergence. Mathematically, there is no separate definition for convergence, we call it “convergence” if the value of the divergence is negative as explained in R. Holton, 2004. Table 2 shows the sample data output for convergence and divergence of the wind at different atmospheric levels.

The comparison of wind speed and convergence at different atmospheric levels are shown in the following panels [Figs. 5(a-d)]. It is clear that wind speed increases as we move up from 1000 hPa to 500 hPa.

4.3. Analysis of temperature

Thunderstorms develop when warm, humid air near the surface lies beneath a thick layer of air in which the temperature decreases rapidly with height. We call this type of atmosphere “unstable”, meaning that when air is nudged upward, the water vapor that it contains condenses. The weather data shows that In Atlanta, Georgia the month of January is characterized by essentially constant daily high temperatures, with daily highs around 53° F throughout the month, rarely exceeding 66° F and low temperatures are around 36° F, rarely falling below 22° F as specified in Weather spark. But the forecast datasets have shown different picture of the atmosphere from 27th January to 30th January, 2013. The temperature data shows minimum temperature as 10° F and maximum as 76° F as shown in the Fig. 6.

4.4. Calculating instability in the atmosphere

Instability refers to unusually warm and humid conditions in the lower atmosphere and possibly cooler than usual conditions in the upper atmosphere. This instability can be responsible for severe weather events, such as tornadoes and tropical cyclones as proved in Edwards, R., 2012. The forecast dataset shows that temperature increases significantly in the lower atmosphere and decreases to its minimum in upper atmosphere thus causing severe instability in the atmosphere. Temperature decreases as we move up in the atmosphere minimum temperature noted is at 500 hPa and Maximum at 1000 hPa.

Another important component to find instability in the atmosphere is vertical velocity. Vertical velocity is the rate of change of pressure with time. A negative value implies ascending air (updraft) and a positive value implies descending air (downdraft). A classic supercell in its mature stage consists of a rotating updraft (mid-altitude mesocyclone) and a downdraft that coexists symbiotically with the updraft in an almost steady state as defined in Davies and Jones, 2015. The comparison of vertical velocity is shown in Fig. 7 at different atmospheric levels. It is evident from the panels that at higher levels vertical velocity becomes negative and there is clear updraft from 1000 to 500 ISBL level. The atmosphere instability thus calculated as shown in the Table 3.

Thus, the analysis of all the components have shown that the temperature instability, vertical velocity and wind speed observed during the given period, are favourable for tornado occurrences at Georgia, USA.
TABLE 3

#Rule	Condition	ISBL Level	Instability
1	If temperature <20 and vertical velocity <0	500-600	Severe
2	If temperature >20 & <39 and vertical Velocity <0	500-600	High
3	If temperature >66 and vertical velocity >0	925-1000	High
4	If temperature >66 and vertical velocity <0	925-1000	Severe

TABLE 4

Rules generated by applying association rule mining

#	Rule	Conf.
1	WindSpeed m/s=('>45.9') ISBL Level=('500-550]') => Atmosphere Instability='Severe'	1
2	WindSpeed m/s=('>45.9') Vertical Velocity=('(-1.1) ISBL Level=('500-550]') => Atmosphere Instability='Severe'	1
3	WindSpeed m/s=('>45.9') ISBL Level=('500-550]') Temperature=('0-13.7]') => Atmosphere Instability='Severe'	1
4	WindSpeed m/s=('>45.9') ISBL Level=('500-550]') Vertical Velocity=('(-1.1) ISBL Level=('500-550]') => Atmosphere Instability='Severe'	1
5	Temperature=('0-13.7]') Vertical Velocity=('(-1.1) => Atmosphere Instability='Severe'	1
6	ISBL Level=('500-550]') Temperature=('0-13.7]') => Atmosphere Instability='Severe'	1
7	ISBL Level=('500-550]') ISBL Level=('500-550]') => Atmosphere Instability='Severe'	1
8	ISBL Level=('29.5-33.6]') ISBL Level=('550-600]') => Atmosphere Instability='Severe'	1
9	ISBL Level=('29.5-33.6]') Vertical Velocity=('(-1.1) ISBL Level=('550-600]') => Atmosphere Instability='High'	1
10	ISBL Level=('550-600]') ISBL Level=('27.2-29.9]') => Atmosphere Instability='High'	1
11	ISBL Level=('550-600]') ISBL Level=('27.2-29.9]') Vertical Velocity=('(-1.1) ISBL Level=('550-600]') => Atmosphere Instability='High'	1
12	ISBL Level=('33.6-37.7]') ISBL Level=('550-600]') => Atmosphere Instability='High'	1

TABLE 5

Fuzzy IF-Then Rules

IF	Then Tornado Occurrence	Confidence [0-10] Lowest to Highest
Instability is Stable and Wind_Speed is Low and Divergence is Smooth	No	10
Instability is High and Wind_Speed is Medium and Divergence is Divergence	May Be	10
Instability is Severe and Wind_Speed is High and Divergence is Convergence	Yes	10
Instability is Severe and Wind_Speed is High and Divergence is Divergence	No	6
Instability is Stable and Wind_Speed is Medium and Divergence is Convergence	May be	6
Instability is Severe and Wind_Speed is Medium and Divergence is Convergence	May be	7

4.5. Association rule mining

After analyzing each output in depth, apriori algorithm of Association Rule Mining has been applied to find association among all these variables. Theapriori algorithm is very effective to find frequent patterns and their relationships. The interestingness of the rules is based on minimum support and confidence specified by the user. Only those association rules are considered as interesting if their support and confidence are greater than the minimum support and confidence threshold values. For finding interesting rules, threshold for support is set at 0.2 and confidence is 0.9 at the scale of 0 to 10. Association Rule Mining has generated interesting rules among all the variables as shown in Table 4. Only rules for maximum confidence and instability as ‘Severe’ or ‘High’ are selected for illustration purpose.

From the above table, Fuzzy rules algorithm has been applied and following rules have been generated. A fuzzy IF-THEN rule associates a condition described using linguistic variables and fuzzy sets to an output or a conclusion. The Analysis shows that wind speed, instability and divergence play a major role in formation
of Tornadoes. It is also evident that percentage and range of these attributes define the occurrence of tornadoes. Based on association among all attributes, rules have been generated as shown in Table 5. Although several different conditions are required for the tornado formation but these rules are generated for this particular event and can be tested on other real-life events.

5. Conclusions and future work

The objective of the research work is to develop better prediction of the formation of tornadoes by applying association rule mining and fuzzy association rules. We have applied Association Rule Mining to find association among various weather variables responsible for the tornado formation. For association rules mining from the given dataset, we use predictive Apriori algorithm for finding the hidden relationship between various atmospheric parameters. By using predictive Apriori algorithm the association rules are generated on weather data set with support and confidence threshold values. The research has produced interesting rules to predict tornadic and non-tornadic weather conditions. It has been noticed that probability of Tornado is maximum when wind speed is high, divergence is convergence and instability is severe. We further conclude that there are no chances of tornadoes when wind speed is low, divergence is divergence and instability is stable. Association rules are generated and tested on real life tornadoes in Georgia, USA. In future, this work may be extended to analyze severe weather conditions in India.

Disclaimer: The contents and views expressed in this research paper/article are the views of the authors and do not necessarily reflect the views of the organizations they belong to.

References

An introduction to dynamic meteorology, Fourth Edition James R. Holton Department of Atmospheric Sciences, University of Washington, Seattle, Washington, Copyright c 2004, Elsevier Inc.

Average Weather in January in Atlanta Georgia, United States,

Baitaru, Tapas Ranjan, Pani and Kumar, Dr. Subhendu, 2015, “A comparative study on association rule mining algorithms using weather dataset”, International Journal of Advanced Technology in Engineering and Science, 3 (Aug 2015), ISSN 2348-7550.

Calargun, S. U. and Yazici, A., 2008, “Fuzzy Association Rule Mining from Spatio-temporal Data”, In : Gervasi, O., Murgante, B., Laganà, A., Taniar, D., Mun, Y., Gavrilova, M.L. (eds) Computational Science and Its Applications - ICCSA 2008. ICCSA 2008. Lecture Notes in Computer Science, Vol. 5072. Springer, Berlin, Heidelberg.

Chen, Jiang ping, 2008, “An algorithm about association rule mining based on spatial auto correlation”, The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. Vol. XXXVII. Part Bb. Beijing 2008.

Dhanya, C. T. and Nagesh Kumar, D., 2009, “Fuzzy Association Rules for Prediction of Monsoon Rainfall”, Conference : Proceedings of the 4th Indian International Conference on Artificial Intelligence, IICAI 2009, Tumkur, Karnataka, India, December 16-18, 2009.

Edwards, R., 2012, “Tropical cyclone tornadoes : A review of knowledge in research and prediction”, Electronic J. Severe Storms Meteor., 7, 6, 1-61.

Harun, Nur Ashikin, Makhtar, Mokhairi, Aziz, Azwa Abd, Zakaria, Zahratul Amani, Abdullah, Fadzli Syed, Jusoh and Julailiy Aida, 2017, “The application of apriori algorithm in predicting flood areas”, International Journal on Advance Science Engineering Information Technology, 7, 3, ISSN : 2088-5334.

https://weatherspark.com/m/15598/1/Average-Weather-in-January-in-Atlanta-Georgia-United-States.

Hu, Min and Yang, Shuangyaan, “Overview of”, 5th International Conference on Computer Science and Education (ICCSE)”, 2010 Conference Publications, 1868-1870. doi : image mining research, IEEE 10.1109/ICCSE.2010.5593813.

Jin, Weiqing, 2005, “Fuzzy classification based on fuzzy association rule mining”, Doctoral Dissertation,2005, retrieved from http://www.lib.ncsu.edu/resolver/1840.16/5924.

Mahmood, A. Rashid, Md Tamjidul Hoque, Abdul, Sattar, 2010, “Association Rules Mining Based Clinical Observations”, Griffith University Nathan, QLD, Australia, {m.rashid, t.hoque, a.sattar}@griffith.edu.au.

McGovern, Amy, Rosendahl, Derek, H., Kruger, Adrianna, Beaton, Meredith G., Brown, Rodger, A. and Droegemeier, Kelvin, K., 2007, “Anticipating the formation of tornadoes through data mining”, Preprints of the Fifth Conference on Artificial Intelligence and its Applications to Environmental Sciences at the American Meteorological Society annual conference.

National Ocean and Atmospheric Administration Report downloaded from https://www.ncdc.noaa.gov/stormevents/eventdetails.jsp?id=428692.

Pappula, Praveen and Javvaji, Ramesh, 2014, “Experimental survey on data mining techniques for association rule mining”, International Journal of Advanced Research in Computer Science and Software Engineering, 4, 2, 566-571.

Rajesh, V. Argiddi and Sulabha, S. Apte, 2013, “An evolutionary fragment mining approach to extract stock market behaviour for investment portfolio”, (IJCET) ISSN 0976 - 6376(Print), ISSN 0976-6375(Online), 4, 5, 138-146.

Rao, Sanjeev and Gupta, Priyanka, 2012, “Implementing Improved Algorithm over APRIORI Data Mining Association Rule Algorithm”, ISSN : 0976-8491 (Online) | ISSN : 2229-4333 (Print) IJCST, 3, 1, Jan-Mar, 2012.

Robert, Davies Jones and Emeritus, 2015, “NOAA National Severe Storms Laboratory, Norman, OK”, USA “A review of supercell and tornado dynamics”, Atmospheric Research, 158-159 (2015), 274-291.
S. Nandagopal, S. Karthik and Arunachalam, V. P., 2010, “Mining of meteorological data using modified aприорi algorithm”, European Journal of Scientific Research, ISSN 1450-216X, 47, 2, 295-308. © Euro Journals Publishing, Inc. 2010.

The NCAR Command Language (Version 6.4.0) [Software]. (2017). Downloaded from UCAR/NCAR/CISL/TDD. http://dx.doi.org/10.5065/D6WD3XH5.

Tornado Facts and Information available from the resource: http://www.tornadofacts.net/tornado-scale.php.

Ubon, Thongsatapornwatana, 2014, “A Survey of Data Mining Techniques for Analyzing Crime Patterns”, Second Asian Inter Transactions”, International Journal of Current Engineering and Technology, 4, 4 (Aug 2014), E-ISSN 2277-4106, P-ISSN 2347-5161.