Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Effects of air pollution on the potential transmission and mortality of COVID-19: A preliminary case-study in Tarragona Province (Catalonia, Spain)

Montse Marquès a,*, Joaquim Rovira a, b, Martí Nadal a, José L. Domingo a

a Laboratory of Toxicology and Environmental Health, School of Medicine, IISPV, Universitat Rovira i Virgili, Sant Llorenç 21, 43201, Reus, Catalonia, Spain
b Environmental Engineering Laboratory, Departament d’Enginyeria Química, Universitat Rovira i Virgili, Av. Països Catalans 26, 43007, Tarragona, Catalonia, Spain

A R T I C L E I N F O

Keywords:
COVID-19
Air pollutants
Transmission
Lethality
Tarragona province (catalonia Spain)

A B S T R A C T

The number of studies published on COVID-19 in recent months is certainly impressive. However, there are still important gaps to know a great number of characteristics of this disease. Among these, some potential ways of transmission of the SARS-CoV-2 and the different reasons for the severity of the disease in different people.

Various studies have suggested that certain air pollutants could be increasing the transmission of the coronavirus, as well as the risks of COVID-19 incidence and mortality. In the present preliminary case-study conducted in Tarragona Province (Catalonia, Spain), we studied the potential association of COVID-19 with PM10, NO2 and O3, as well as the differences in the incidence and lethality of this disease. This Province is divided into two “health regions”: Camp de Tarragona, with an important industrial complex, and Terres de l’Ebre, with a great agricultural component. In spite of the notable limitations of the current study, our preliminary findings indicate that the industrialized/urban areas of Tarragona Province show a higher incidence and mortality of COVID-19 than the agricultural/rural zones. These – and previous – results would highlight the importance of conducting specific investigations focused on directly assessing whether air pollutants such as particulate matter can act as carriers of the SARS-CoV-2. If confirmed, the recommendation on keeping the “social distance” (1.5–2 m) might need to be adapted to this situation.

1. Introduction

Officially, COVID-19 started in Wuhan (China) in December 2019 and its rapid widespread throughout the world drove to the declaration of the pandemic in March 2020 (WHO, 2020a). In September 17, 2020, the number of global confirmed cases and deaths was 29.4 million and 931,321, respectively (WHO, 2020b).

COVID-19 is associated with the Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV-2). SARS-CoV-2 can be transmitted by human-to-human contact (i.e., through the respiratory droplets emitted by an infected person while coughing, sneezing and/or exhaling to an uninfected person) (WHO, 2020b; Huang et al., 2020; Xu et al., 2020; Lai et al., 2020). Hence, the higher the number of personal contacts, the higher the chances of being infected by SARS-CoV-2. In fact, metropolitan areas, such as New York, in the United States, as well as Madrid and Barcelona, in Spain, or Milan, in Italy, were/have been specially impacted by COVID-19 outbreak.

In addition to this well-characterized pathway of SARS-CoV-2 transmission, the potential role of certain environmental pollutants on the transmission and lethality of this coronavirus is not well-known yet, being currently subject of a number of investigations. In relation to this, we recently reviewed more than 20 scientific articles, which have been published between March and June 2020. The review was aimed at assessing the role of environmental pollution on SARS-CoV-2 transmission and severity (Domingo et al., 2020). The preliminary detection of SARS-CoV-2 in particulate matter (PM) strengthened the associative hypothesis between PM and COVID-19, suggesting that inhalation of PM might be a potential pathway of transmission (Setti et al., 2020b). In turn, higher ambient CO concentration is a risk factor for increased transmissibility of the novel coronavirus (Lin et al., 2020). Although Coccia (2020) stated accelerated transmission dynamics of COVID-19 is due to mainly to the mechanism of “air pollution-to-human transmission” (airborne viral infectivity) rather than “human-to-human transmission, Espejo et al. (2020) concluded that too little is known.

* Corresponding author.
E-mail address: montserrat.marques@urv.cat (M. Marquès).

https://doi.org/10.1016/j.envres.2020.110315
Received 22 September 2020; Received in revised form 7 October 2020; Accepted 7 October 2020
Available online 12 October 2020
0013-9351/© 2020 Elsevier Inc. All rights reserved.
The purpose of the present study was to investigate the potential association of COVID-19 with various air pollutants (PM$_{10}$, NO$_2$ and O$_3$) and to assess the potential differences in the incidence and lethality of COVID-19 in two health regions of Tarragona Province (Catalonia, Spain). The population included in these health regions live in zones in Tarragona County, an area where the largest petrochemical complex of Southern Europe is placed (Nadal et al., 2006), and Terres de l’Ebre, an agricultural area of Southern Catalonia.

2. Materials and methods

2.1. COVID-19 data

The daily number of confirmed positive cases (diagnosed by either Polymerase Chain Reaction (PCR) or rapid test) between March 8, 2020, and May 10, 2020, were obtained from the open data portal from the Government of Catalonia (https://analisi.transparenciacatalunya.cat). The number of confirmed fatalities caused by COVID-19 during the same period was provided by the Catalan Health System Observatory (http://observatorisalut.gencat.cat/en/inici/index.html). Tarragona Province is divided into 2 “health regions”: 4 “health sectors” (HS) and 45 “basic health areas” (BHA) (Table 1 and Fig. 1). Both, confirmed positive cases and fatalities, were downloaded at BHA scale in order to achieve an optimal adjustment with the data on environmental pollutants. Finally, COVID-19 data were adjusted to the total population living in Tarragona Province in 2019, which are published by the Statistical Institute of Catalonia (https://www.idescat.cat/?lang=en).

2.2. Environmental pollution data

Time series data of daily average air pollutants PM$_{10}$, NO$_2$ and O$_3$ were obtained from the open data portal of the Government of Catalonia (https://analisi.transparenciacatalunya.cat). The average chronic exposure to these pollutants was estimated by using data covering from January 1, 2014 to December 31, 2019. In turn, to assess exposure to these pollutants during the COVID-19 outbreak, weekly average air concentrations were calculated considering data from March 14, 2020, to May 8, 2020.

2.3. Statistical analysis

SPSS 25.0 was used for statistical assessment. Pearson test was applied to examine the association between environmental concentrations of PM$_{10}$, NO$_2$ and O$_3$ and COVID-19 confirmed cases and fatalities. Both Pearson coefficient and correlation significance ($p < 0.05$) were calculated.

3. Results and discussion

3.1. Incidence of COVID-19: Tarragona County vs Terres de l’Ebre

In the same way as in other recent studies, the ongoing epidemic trend in Province of Tarragona showed strong regional differences in the spread of COVID-19 cases. The distribution of the reported number of positive cases at BHA scale is depicted in Fig. 2. The most impacted BHA was Tarragona-Baix Penedes, followed – at a notable distance – by Baix Camp-Priorat, Terres de l’Ebre and Alt Camp-Conca de Barberá (Fig. 2a). This tendency coincides with the distribution of inhabitants, showing that the higher the number on inhabitants, the higher the number of reported COVID-19 positive cases. Therefore, in order to minimize the difference between the number of inhabitants at each BHA, the absolute

Table 1

Population of the Tarragona Province according to the respective Health Sectors and Basic Health Areas.

Health Region (HR)	Health Sector (HS)	Basic Health Area (BHA)	Population*
Camp de Tarragona	Alt Camp-Conca de	Alt Camp Est	11,740
	Barberà	Alt Camp Oest	6199
		Montblanc	15,889
		Valls Urti	27,188
		Cambrils	33,406
		Coromellida	2184
		Falset	6669
		La Selva del Camp	7207
		Les Borges del Camp	6614
		Mont-roig del Camp	12,737
		Reus 1	13,418
		Reus 2	26,980
		Reus 3	22,528
		Reus 4	21,334
		Reus 5	27,552
		Riudoms	12,566
		Vandells i Hospitalita	5786
Tarragones-Baix	Baix Penedes Interior	Calafell	14,967
Penedes		Constantí	6703
		El Morell	12,039
		El Vendrell	46,709
		Salou	25,975
		Tarragona 1	14,729
		Tarragona 2	27,854
		Tarragona 3	30,377
		Tarragona 4	16,212
		Tarragona 5	16,539
		Tarragona 6	19,632
		Tarragona 7	11,451
		Tarragona 8	15,552
		Torredembarra	35,912
		Vila-seca	21,793
Terres de l’Ebre		Amposta	30,659
		Deltebre	11,673
		Flix	7438
		Algés-Camarles	10,251
		L’Ampolla	9140
		L’Ametlla de Mar - El	9140
		Perellós	9140
		Móra la Nova - Móra d’Ebre	13,968
		Sant Carles de la Rápita	23,739
		Terra Alta	11,015
		Tortosa 1-est	23,146
		Tortosa 2-oest	23,495
		Ulldécona	11,964

*Source: Statistical Institute of Catalonia (https://www.idescat.cat/?lang=en).
The number of confirmed positive cases was normalized according to the number of inhabitants for BHA populations (Fig. 2b). Thus, it was further evidenced that Tarragonès-Baix Penedes was the most highly impacted HS by COVID-19, while Terres de l’Ebre was not so affected.

3.2. Mortality of COVID-19: Tarragona County vs Terres de l’Ebre

The mortality of COVID-19 presented geographical differences (Fig. 3). Fig. 3a shows the distribution of the number of fatalities at BHA scale. Tarragonès-Baix Penedes is the most affected HS, followed by Baix Camp-Priorat, Terres de l’Ebre and Alt Camp-Conca de Barberà. This trend follows a similar pattern to that of the confirmed cases, indicating again that the higher the number of inhabitants, the higher the number of confirmed cases, and consequently, the higher the mortality cases. Although the differences between BHA decreased when the mortality was normalized to the number of inhabitants (Fig. 3b), the pattern of incidence was the same for the 4 HS. Finally, the lethality of SARS-CoV-2 was calculated as here indicated: $\text{Lethality} = \frac{\text{number of COVID-19 fatalities}}{\text{number of COVID-19 cases}}$ (Fig. 4). It was found that SARS-CoV-2 was more lethal in Baix Camp-Priorat and Tarragonès-Baix Penedes than in Terres de l’Ebre and Alt Camp-Conca de Barberà.

3.3. Association between the incidence of COVID-19 and the air concentrations of PM$_{10}$, NO$_2$ and O$_3$

The temporal evolution of the COVID-19 confirmed cases versus the weekly average PM$_{10}$ concentrations in 4 localities of Tarragona Province (Tarragona, Reus, Vila-seca and Amposta) is depicted in Fig. 5. Data are given from one month before the declaration of state of alarm in Spain (March 14, 2020) until the start of the de-escalation (May 4, 2020), just after the lockdown. Even though the present data must be interpreted with great caution, a concentration peak of PM$_{10}$ might have caused a peak in the number of COVID-19 positive cases one and two weeks later. Although the current PM$_{10}$ concentrations are much lower than those reported in the North of Italy, our findings are in agreement with Bontempi (2020), who already hypothesized that PM$_{10}$ might be a carrier of COVID-19. It was based on the fact that episodes of high PM$_{10}$ concentrations were correlated to the increase in the number of infection COVID-19 cases -after two weeks-during the lockdown in several regions of Italy (Bontempi, 2020). Similarly, Coccia (2020) also reported a positive correlation with the frequency of daily PM$_{10}$ exceedances.

Fig. 6 shows the statistical correlation between the number of COVID-19 cases and the weekly average PM$_{10}$ concentrations during the same week, the previous week and two weeks before in Tarragona Province (Tarragona, Reus, Vila-seca and Amposta). The number of COVID-19 cases correlated significantly with the average concentrations of PM$_{10}$ the week before only in the cities of Reus and Amposta. It might be hypothesized that COVID-19 incidence significantly correlated with PM$_{10}$ in Reus and Amposta because both localities are affected by a typical urban contamination, while Tarragona and Vila-seca have a mixture of pollution sources (urban and industrial). On the other hand, Setti et al. (2020a) reported that the effect of the dust on the spread of COVID-19 is significant when the PM$_{10}$ concentration is over 50 μg/m3. The levels of PM$_{10}$ in the sampling sites of the present study are much lower than this threshold, which could explain the poor correlation between PM$_{10}$ and the number of COVID-19 cases of the current survey. Anyhow, the potential role of PM$_{10}$ as a carrier of SARS-CoV-2 must be confirmed at lab scale, with the detection of the coronavirus in PM$_{10}$. In relation to this, Setti et al. (2020b) recently detected SARS-CoV-2 in PM$_{10}$ sampled in Bergamo (Italy) during the lockdown, confirming PM$_{10}$ and COVID-19 might have not only an associative, but also a casuistry relationship.

Fig. 7 shows the statistical correlation between the regional distribution of COVID-19 cases per inhabitant (%) and the average concentration of PM$_{10}$, NO$_2$ and O$_3$ during the outbreak period, as well as considering also the mean levels of these air pollutants found in the

![Fig. 1. Location of the 4 Health Sectors (HS) of Tarragona Province. Sectors 1, 2 and 3 belong to the “Camp de Tarragona” Health Region (HR).](image-url)
Positive correlations were observed between the incidence of COVID-19 and the exposure to PM$_{10}$ and NO$_2$, both during the period 2014–2019 and during the outbreak. However, this correlation was significant only for NO$_2$. In contrast, we found a negative correlation between COVID-19 incidence and O$_3$ levels, but being only significant in the case of the chronic exposure (2014–2019) to O$_3$. These results agree with those recently reported by Fattorini and Regoli (2020), Zoran et al. (2020 a,b), Zhu et al. (2020) and Bashir et al. (2020) for these air pollutants, excepting O$_3$. Similarly, Jiang et al. (2020) also reported a negative correlation between exposure to O$_3$ and the incidence of COVID-19. In fact, the concentrations of NO$_2$ and O$_3$ usually correlate negatively (Rovira et al., 2020; Munir et al., 2011).
Fig. 3. Confirmed fatalities (a), and confirmed fatalities/10,000 inhabitants (b), at BHA (light red) and HS (dark red) scale. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)
3.4. Association between the mortality of COVID-19 and the air concentrations of PM$_{10}$, NO$_2$ and O$_3$

The potential association between chronic exposure to PM$_{10}$, NO$_2$ and O$_3$ (average concentration of PM$_{10}$, NO$_2$ and O$_3$ during 2014–2019) and the number of fatalities was statistically assessed (Fig. 8). As occurred with the number of COVID-19 cases, a positive correlation was found between the mortality of COVID-19 and the chronic exposure to PM$_{10}$ and NO$_2$, but in this case, there was no statistical significance. In turn, a non-significant negative correlation was noticed between O$_3$ levels and COVID-19 mortality. There is scientific evidence that NO$_2$, O$_3$ and PM induces hyper-expression of pro-inflammatory interleukins, being NO$_2$ a common marker of air pollution and/or industrial activity, which – in turn – is associated with morbidity and mortality (He et al., 2020). The results of the current study support such scientific evidence regarding exposure to NO$_2$ and PM$_{10}$ and the number of fatalities/inhabitant, but not with respect to O$_3$ exposure. In relation to recent reports on the association between air pollution and COVID-19 fatalities, Yao et al. (2020) found a correlation between exposure to PM$_{10}$ and the COVID-19 case fatality rate, while Ogen (2020) reported that > 80% of fatalities of COVID-19 were associated to NO$_2$ > 100 μmol/m2. In contrast, Zoran et al. (2020 a,b) and Bashir et al. (2020) found that PM$_{10}$ and NO$_2$ negative correlated with COVID-19 fatalities. A similar negative correlation seems to occur in the association between PM$_{2.5}$ and the number of COVID-19 deaths. Thus, Frontera et al. (2020b) reported a positive correlation between exposure to PM$_{2.5}$ and the number of fatalities, while Adhikari and Yin (2020) and Bashir et al. (2020) could not find any relationship between them. In turn, Vazquez-Apestegui et al. (2020) also supported the association between PM$_{2.5}$ exposure and COVID-19 fatalities, but not with the fatality rate. With respect to Catalonia, recently Saez et al. (2020) have not discarded that there are biological mechanisms that explain, at least in part, the association between long-term exposure to air pollutants and COVID-19. However, they hypothesized that the spatial spread of COVID-19 in that entire region would be mainly to the different ease with which some people, the hosts of the virus, are infecting others.

4. Conclusions

Firstly, we want to highlight that this is certainly a preliminary case-study with some important limitations. It makes difficult a proper data analysis and the consequent interpretation of results, as well as drawing clear conclusions. These limitations include: i) the low number of air quality stations to monitor air pollutants across the area of study (Tarragona Province, Catalonia, Spain), ii) these stations are not uniformly distributed throughout Tarragona Province, iii) the air pollutants here assessed (PM$_{10}$, NO$_2$ and O$_3$) are not regularly analyzed in all the air...
Fig. 5. COVID-19 confirmed cases versus concentrations of PM$_{10}$ in 4 locations of Tarragona Province.
quality stations, and iv) COVID-19 fatalities at BHA do not include those occurred in nursing homes, which – doubtless – meant a very high number.

Bearing the above in mind, our preliminary findings indicate that Tarragones-Baix Penedès experienced the highest incidence and mortality of COVID-19 in Tarragona Province, while the lowest rates occurred in Terres de l’Ebre and Alt Camp-Conca de Barberà. However, it must be taken into account that the density of population is higher in the HS of Tarragones-Baix Penedès than in Terres de l’Ebre. It means a higher probability of person-to-person contact, and consequently, of being infected. Moreover, it is important to note that there is a large petrochemical industrial complex located in Tarragona County, whose harmful emissions might have a potential role on the health status of the individuals living in the neighborhood. Hence, individuals living in the surroundings of such industrial areas might already have a stressed respiratory system. Consequently, these subjects might be in worse conditions to face the COVID-19, suffering the more lethal form, when infected not only by SARS-CoV-2, but also by other potential respiratory viral infections (Domingo and Rovira, 2020). Although this is right now only a hypothesis, we do believe that it is certainly worthy of being investigated in deep. In summary, the current health and air pollution data of Tarragona Province are still preliminary to conclude whether chronic exposure to certain air pollutants is a significant reason to cause a higher incidence/severity of COVID-19. However, these and previous results would highlight the importance of conducting specific studies focused on directly assessing if air pollutants such as PM can act as carriers of the SARS-CoV-2. If confirmed, the recommendation on keeping the “social distance” (1.5–2.0 m) might need to be adapted to this situation. In addition, we also suggest to conduct specific health surveys at local level, which include those individuals, who due to their usual places of residence, are potentially affected by the air pollutants emitted by the petrochemical industries.

Credit author statement

Montse Marquès, Conceptualization, Methodology, Formal analysis, Writing - original draft. Joaquim Rovira, Conceptualization, Methodology, Formal analysis, Writing - review & editing, Funding acquisition. Martí Nadal, Conceptualization, Methodology, Writing - review & editing. José L. Domingo, Conceptualization, Writing - review & editing, Supervision, Project administration.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
Fig. 7. Correlation between chronic (2014–2019) and outbreak (COVID-19) exposure to O_3, PM_{10} and NO_2 and the incidence of COVID-19 (confirmed cases/inhabitant).
Aknowledgements

This work was supported by Agency for Management of University and Research grants (AGAUR, Generalitat de Catalunya, Spain) through SGR 2017-SGR-245. Joaquim Rovira got a postdoctoral fellowship from “Juan de la Cierva-incorporación” program of the Spanish “Ministerio de Ciencia, Innovación y Universidades” (IJC 2018-035126-I). The authors also thank Dr Enric Rovira and Dr Ramon Descarrega, from the Catalan Health System Observatory, for sharing data on COVID-19 fatalities at BHA scale.

References

Adhikari, A., Yin, J., 2020. Short-term effects of ambient ozone, PM2.5, and meteorological factors on COVID-19 confirmed cases and deaths in queens, New York. Int. J. Environ. Res. Publ. Health 17, 4047.

Bashir, M.F., Jiang, B., Bilal, M.A., Komal, B., Bashir, M.A., Farooq, T.H., Iqbal, N., Bashir, M., 2020. Correlation between environmental pollution indicators and COVID-19 pandemic: a brief study in Californian context. Environ. Res. 187, 109652.

Bontempi, E., 2020. First data analysis about possible COVID-19 virus airborne diffusion due to air particulate matter (PM): the case of Lombardy (Italy). Environ. Res. 186, 109639.

Coccia, M., 2020. Factors determining the diffusion of COVID-19 and suggested strategy to prevent future accelerated viral infectivity similar to COVID. Sci. Total Environ. 729, 138474.

Copat, C., Cristaldi, A., Fiore, M., Grasso, A., Zuccarello, P., Signorelli, S.S., Conti, G.O., Ferrante, M., 2020. The role of air pollution (PM and NO2) in COVID-19 spread and lethality: a systematic review. Environ. Res. 191, 110125.

Domingo, J.L., Marquès, M., Rovira, J., 2020. Effects of air pollutants on the transmission and severity of respiratory viral infections. Environ. Res. 187, 109650.

Espejo, W., Celis, J.E., Chiang, G., Bahamonde, P., 2020. Environment and COVID-19: pollutants, impacts, dissemination, management and recommendations for facing future epidemic threats. Sci. Total Environ. 747, 141314.

Fattorini, D., Regoli, F., 2020. Role of the chronic air pollution levels in the Covid-19 outbreak risk in Italy. Environ. Res. 264, 114732.

Frontera, A., Cinzia, L., Vlachos, K., Landoni, G., Cremona, G., 2020a. SARS-CoV-2 spread in Northern Italy: what about the pollution role? J. Infect. 81, 255–259.

He, M.Z., Kinney, P.L., Li, T., Chen, C., Sun, Q., Ban, J., Wang, J., Liu, S., Goldsmith, J., Kroumoutzoglou, M.A., 2020. Short- and intermediate-term exposure to NO2 and mortality: a multi-county analysis in China. Environ. Pollut. 261, 114165.

Huang, C., Wang, Y., Li, X., Ren, L., Zhao, J., Hu, Y., Zhang, L., Fan, G., Xu, J., Gu, X., Cheng, Z., Yu, T., Xia, J., Wei, Y., Wu, W., Xie, X., Yin, W., Li, H., Liu, M., Xiong, X., Gao, H., Guo, L. Xia, J., Wang, G., Jiang, R., Gao, Z., Jin, Q., Wang, J., Cao, R., 2020.

Fig. 8. Correlation between chronic (2014–2019) exposure to O3, PM10 and NO2 and the mortality of COVID-19 (confirmed cases/inhabitant).
Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 395, 497–506.

Jiang, Y., Wu, X.J., Guan, Y.J., 2020. Effect of ambient air pollutants and meteorological variables on COVID-19 incidence. Infect. Contr. Hosp. Epidemiol. 1, S.

Lai, C.C., Shih, T.P., Ko, W.C., Tang, H.J., Hsueh, P.R., 2020. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and coronavirus disease-2019 (COVID-19): the epidemic and the challenges. Int. J. Antimicrob. Agents 55, 105924.

Lin, S., Wei, D., Sun, Y., Chen, K., Yang, L., Liu, B., Huang, Q., Bastos Paoliello, M.M., Li, H., Wu, S., 2020. Region-specific air pollutants and meteorological parameters influence COVID-19: a study from mainland China. Ecotoxicol. Environ. Saf. 204, 111035.

Munir, S., Chen, H., Ropkins, K., 2011. Non-parametric nature of ground-level ozone and its dependence on nitrogen oxides (NOx): a view point of vehicular emissions. WIT Transactions on Ecology and the Environment, Air Pollution XIX 147, 93–104.

Nadal, M., Kumar, V., Schuhmacher, M., Domingo, J.L., 2006. Definition and GIS-based characterization of an integral risk index applied to a chemical/petrochemical area. Chemosphere 64, 1526–1535.

Ogen, Y., 2020. Assessing nitrogen dioxide (NO2) levels as a contributing factor to coronavirus (COVID-19) fatality. Sci. Total Environ. 726, 138605.

Rovira, J., Domingo, J.L., Schuhmacher, M., 2020. Air quality, health impacts and burden of disease due to air pollution (PM10, PM2.5, NO2 and O3): application of AirQ + model to the Camp de Tarragona County (Catalonia, Spain). Sci. Total Environ. 703, 135538.

Saez, M., Tobias, A., Barceló, M.A., 2020. Effects of long-term exposure to air pollutants on the spatial spread of COVID-19 in Catalonia, Spain. Environ. Res. 12, 110177.

Sciomer, S., Mosucci, F., Magrì, D., Badagliacca, R., Pecirillo, G., Agostoni, P., 2020. SARS-CoV-2 spread in Northern Italy: what about the pollution role? Environ. Monit. Assess. 192, 925.

Setti, L., Passarini, F., De Gennaro, G., Barbieri, P., Perrone, M.G., Borelli, M., Palmisani, J., Di Gilio, A., Torboli, V., Fontana, F., Clemente, L., Pallavicini, A., Russi, M., Piccielli, P., Miani, A., 2020b. SARS-CoV-2RNA found on particulate matter of Bergamo in Northern Italy: first evidence. Environ. Res. 188, 109754.

Sharma, A.K., Balyan, P., 2020. Air pollution and COVID-19: is the connect worth its weight? Indian J. Publ. Health 64, S132–S134.

Vasquez-Apestegui, V., Parra-Garrido, E., Tapia, V., Paz-Aparicio, V.M., Rojas, J.P., Sánchez-Corayro, O.R., Gonzales, G.F., 2020. Association between air pollution in Lima and the high incidence of COVID-19: findings from a post hoc analysis. Research Square. https://doi.org/10.21203/rs.3.rs-39404/v1.

WHO, 2020a. Coronavirus disease 2019 (COVID-19) situation report– 51. Available at: https://www.who.int/emergencies/diseases/novel-coronavirus-2019/situationreports.

WHO, 2020b. WHO coronavirus disease (COVID-19) dashboard. Available at: https://covid19.who.int/.

Xu, K., Cui, K., Young, L.H., Hsieh, Y.K., Wang, Y.F., Zhang, J., Wan, S., 2020. Impact of the COVID-19 event on air quality in Central China. Aerosol and Air Quality Research 20, 915–929.

Yao, Y., Pan, J., Wang Weidong Liu, Z., Kan, H., Qiu, Y., Meng, X., Wang, Weibing, 2020. Association of particulate matter pollution and case fatality rate of COVID-19 in 49 Chinese cities. Sci. Total Environ. 741, 140396.

Zoran, M.A., Savastru, R.S., Savastru, D.M., Tautan, M.N., 2020a. Assessing the relationship between ground levels of ozone (O3) and nitrogen dioxide (NO2) with coronavirus (COVID-19) in Milan, Italy. Sci. Total Environ. 740, 140005.

Zoran, M.A., Savastru, R.S., Savastru, D.M., Tautan, M.N., 2020b. Assessing the relationship between surface levels of PM2.5 and PM10 particulate matter impact on COVID-19 in Milan. Italy. Sci. Total Environ. 738, 139825.