Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Corticosteroid therapy is associated with the delay of SARS-CoV-2 clearance in COVID-19 patients

Rui Huang, Chuanwu Zhu, Jian Wang, Leyang Xue, Chunyang Li, Xiaomin Yan, Songping Huang, Biao Zhang, Li Zhu, Tianmin Xu, Fang Ming, Yun Zhao, Juan Cheng, Huaping Shao, Xiang-an Zhao, Dawen Sang, Haiyan Zhao, Xinying Guan, Xiaobing Chen, Yuxin Chen, Jie Wei, Rahma Issa, Longgen Liu, Xuebing Yan, Chao Wu

PII: S0014-2999(20)30648-8
DOI: https://doi.org/10.1016/j.ejphar.2020.173556
Reference: EJP 173556

To appear in: European Journal of Pharmacology

Received Date: 10 July 2020
Revised Date: 5 September 2020
Accepted Date: 13 September 2020

Please cite this article as: Huang, R., Zhu, C., Jian Wang, , Xue, L., Li, C., Yan, X., Huang, S., Zhang, B., Zhu, L., Xu, T., Ming, F., Zhao, Y., Cheng, J., Shao, H., Zhao, X.-a., Sang, D., Zhao, H., Guan, X., Chen, X., Chen, Y., Wei, J., Issa, R., Liu, L., Yan, X., Wu, C., Corticosteroid therapy is associated with the delay of SARS-CoV-2 clearance in COVID-19 patients, European Journal of Pharmacology (2020), doi: https://doi.org/10.1016/j.ejphar.2020.173556.

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

© 2020 Published by Elsevier B.V.
CRediT authorship contribution statement

Concept and design: Chao Wu, Longgen Liu and Xuebing Yan. Drafting of the manuscript: Rui Huang, Chuanwu Zhu, Jian Wang, Leyang Xue, Chunyang Li, Xiaomin Yan; Critical revision of the manuscript for important intellectual content: Yuxin Chen, Chuanwu Zhu, Longgen Liu and Xuebing Yan. Statistical analysis: Jian Wang, Rui Huang. Administrative, technical, or material support: Longgen Liu, Haiyan Zhao. Supervision: Chao Wu, Longgen Liu and Xuebing Yan. Acquisition, analysis, or interpretation of data: Rui Huang, Jian Wang, Songping Huang, Jie Wei, Xiaomin Yan, Xiang-an Zhao, Fang Ming, Li Zhu, Biao Zhang, Leyang Xue, Shuqin Hong, Tianmin Xu, Chunyang Li, Xuebing Yan, Yun Zhao, Juan Cheng, Dawen Sang, Huaping Shao, Rahma Issa, Haiyan Zhao, Xinying Guan and Xiaobing Chen. All authors reviewed and approved the final version.
Corticosteroid therapy is associated with the delay of SARS-CoV-2 clearance in COVID-19 patients

Rui Huang 1*, Chuanwu Zhu 2*, Jian Wang 1*, Leyang Xue 3*, Chunyang Li 4*
Xiaomin Yan 1*, Songping Huang 5, Biao Zhang 6, Li Zhu 2, Tianmin Xu 7, Fang Ming 5, Yun Zhao 8, Juan Cheng 9, Huaping Shao 10, Xiang-an Zhao 11, Dawen Sang 9, Haiyan Zhao 10, Xinying Guan 12, Xiaobing Chen 13, Yuxin Chen 14, Jie Wei 15, Rahma Issa 15, Longgen Liu 7†, Xuebing Yan 4†, Chao Wu 1†

1 Department of Infectious Diseases, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China;
2 Department of Infectious Diseases, The Affiliated Infectious Diseases Hospital of Soochow University, Suzhou, China;
3 Department of Critical Medicine, Huai'an No. 4 People's Hospital, Huai'an, China;
4 Department of Infectious Diseases, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China;
5 Department of Infectious Diseases, Nantong Third People's Hospital, Nantong University, Nantong, China;
6 Department of Quality Control Office, Huai'an No. 4 People's Hospital, Huai'an, China;
7 Department of Infectious Diseases, The Third People's Hospital of
Changzhou, Changzhou, China;
8 Department of Infectious Diseases, The Third People’s Hospital of Yangzhou, Yangzhou, China;
9 Department of Infectious Diseases, Yancheng Second People’s Hospital, Yancheng, China;
10 Department of Infectious Diseases, The People’s Hospital of Suqian, Suqian, China;
11 Department of Gastroenterology, Northern Jiangsu People’s Hospital, Clinical Medical College of Yangzhou University, Yangzhou, China;
12 Department of Neurology, The Affiliated Hospital of Kangda College of Nanjing Medical University, The First People’s Hospital of Lianyungang, Lianyungang, China;
13 Department of Emergency, The Affiliated Hospital of Kangda College of Nanjing Medical University, The First People’s Hospital of Lianyungang, Lianyungang, China;
14 Department of Laboratory Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China;
15 Department of Infectious Diseases, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China.

*Contributed equally.
†Joint corresponding authors:
Chao Wu, MD, PhD
Department of Infectious Diseases, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, No. 321 Zhongshan Road, Nanjing 210008, China.
E-mail: dr.wu@nju.edu.cn. Tel: 86-25-83105890; Fax: 86-25-83307115.

or

Xuebing Yan, MD, PhD
Department of Infectious Diseases, The Affiliated Hospital of Xuzhou Medical University, No.9 Kunpeng Road, Xuzhou 221000, China. E-mail: yxbxuzhou@126.com, Tel: 86-516-83353577. Fax: 86-25-83307115.

or

Longgen Liu
Department of Infectious Diseases, The Third People’s Hospital of Changzhou, No. 300 Lanling Road, Changzhou 213001, China. Email: ssewllg@163.com
Tel: 86-519-82009002.

Funding
This study was supported by the Fundamental Research Funds for the Central Universities (No. 14380459).

Conflicts of interest
The authors have declared that no conflicts of interest exist.
Abstract

The impact of corticosteroid treatment on virological course of coronavirus disease 2019 (COVID-19) patients remains unclear. This study aimed to explore the association between corticosteroid and viral clearance in COVID-19. The clinical data of COVID-19 patients from 10 hospitals of Jiangsu, China, were retrospectively collected. Cox regression and Kaplan–Meier analysis were used to analyze the adverse factors of virus clearance. Of the 309 COVID-19 patients, eighty-nine (28.8%) patients received corticosteroid treatment during hospitalization. Corticosteroid group showed higher C-reactive protein (median 11.1 vs. 7.0 mg/l, P=0.018) and lower lymphocytes (median 0.9 vs. 1.4 ×10^9/l, P<0.001) on admission. Fever (93.3% vs. 65.0%, P<0.001) and cough (69.7% vs. 57.3%, P=0.043) were more common in corticosteroid group. The proportions of patients with severe illness (34.8% vs. 1.8%, P<0.001), respiratory failure (25.8% vs. 1.4%, P<0.001), acute respiratory distress syndrome (4.5% vs. 0%, P=0.002), and admission to ICU (20.2% vs. 0.9%, P<0.001) were significantly higher in corticosteroid group than non-corticosteroid group. The duration of virus clearance (median 18.0 vs. 16.0 days, P<0.001) and hospitalization (median 17.0 vs. 15.0 days, P<0.001) were also significantly longer in corticosteroid group than non-corticosteroid group. Treated with corticosteroid (Hazard ratio [HR], 0.698; 95% confidence interval [CI], 0.512 to 0.951; P=0.023) was an adverse factor of the clearance of SARS-CoV-2, especially for male patients (HR, 0.620; 95% CI, 0.408 to
The cumulative probability of SARS-CoV-2 clearance was lower in corticosteroid group (P<0.001). Corticosteroid treatment may delay the SARS-CoV-2 clearance of COVID-19 patients and should be used with cautions.

Keywords: coronavirus disease 2019, virus clearance, corticosteroid.
1. Introduction

Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), rapidly spread around the world (Chen et al., 2020; Huang et al., 2020; Zhu et al., 2020). As of August 16, 2020, 21,294,845 cases of COVID-19 had been reported in the world, and 761,779 patients were died (World Health Organization, 2020). The clinical spectrum of COVID-19 ranges from asymptomatic to critically ill with fatal outcomes (Goyal et al., 2020; Guan et al., 2020). The mortality rate in COVID-19 patients with critically ill was ranged from 26% to 61.5%.

Several studies have demonstrated that cytokine storm was associated with the severity and clinical outcomes of COVID-19 patients (Ma et al., 2020; Mehta et al., 2020; Ye et al., 2020). Corticosteroids were reported to have possible benefit by reducing inflammation-induced lung injury by suppressing lung inflammation (Huang et al., 2020). Corticosteroids have been used for the treatment of COVID-19 patients, especially in the critically ill cases (Guan et al., 2020; Yang et al., 2020). The expert consensus statement by Chinese Thoracic Society recommended the using corticosteroids prudently of short courses at low-to-moderate dose for critically ill COVID-19 patients (Shang et al., 2020). However, several studies have reported that corticosteroid therapy was associated with the delay of SARS-CoV-2 viral clearance (Zha et al., 2020). Thus, the clinical benefit of corticosteroid therapy for COVID-19 patients remains controversial (Fang et al., 2020; Zha et al., 2020). In this
retrospective, multi-center study, we investigated the impact of corticosteroid therapy on the viral clearance of SARS-CoV-2 in COVID-19 patients.

2. Materials and methods

2.1. Patients

Three hundred and forty-two patients with COVID-19 who were admitted in 10 designated hospitals of Jiangsu province, China from January 18, 2020 to February 26, 2020 were included in the present study. All confirmed patients were tested positive for SARS-CoV-2 in local Centre for Disease Control using reverse transcription polymerase chain reaction (RT-PCR) method based on previous report (World Health Organization, 2020). The clinical outcomes of patients were followed up to February 29, 2020. The study was approved by Ethics Committee of these hospitals, with a waiver of informed consent.

2.2. Data collection and definitions

Demographic and clinical information was retrospectively collected from electronic medical records. All data was entered in computerized database for further analysis.

Respiratory failure and acute respiratory distress syndrome (ARDS) were diagnosed based on the corresponding guidelines (ARDS Definition Task Force et al., 2012). The criteria of discharge was according to the guideline by the Chinese National Health Commission (National Health Commission, 2020). The viral clearance was defined as two consecutively negative SARS-CoV-2 nucleic acid by RT-PCR test with separated by at least 1 day. The time of
2.3. Statistical Analysis

Continuous variables were presented as medians (interquartile range (IQR)), while categorical variables were presented as the counts and percentages.

The independent group t tests (normal distribution) or Mann-Whitney U (non-normal distribution) were used to compared continuous variables between groups. Chi-square or Fisher exact test was used to compare the categorical variables. Cox regression analysis was used to analyze the risk factors of long virus clearance duration. Variables having P values <0.1 in the univariate analysis were further used for a multivariate Cox regression analysis.

The cumulative incidences of viral clearance were estimated by the Kaplan-Meier method. P<0.05 was regarded as statistical significant. SPSS version 22.0 software (SPSS Inc., Chicago, IL, United States) was used for the data analysis.

3. Results

3.1. Demographic and clinical characteristics

Of the 342 COVID-19 patients, 14 patients with insufficient data were excluded. Given that the viral shedding could not be defined, nineteen asymptomatic patients were also excluded. Eventually, 309 patients were enrolled in this study. The median age of patients was 45.0 (IQR 33.0-55.0) years and about
half (54.0%) of the patients were male. Forty-eight (15.5%) patients had a history of hypertension and 25 (8.1%) patients had type 2 diabetes on admission. The most common symptoms were fever (73.1%) and cough (60.8%). The median levels of white blood cells (WBC), lymphocytes, alanine transaminase (ALT), creatinine (Cr), prothrombin time (PT), and C-reactive protein (CRP) were 4.8 (IQR 3.8-6.1) ×10^9/l, 1.2 (IQR 0.9-1.6) ×10^9/l, 26.0 (IQR 19.0-37.0) U/L, 64.0 (IQR 52.0-78.0) μmol/l, 12.8 (IQR 12.0-13.4) s, and 8.3 (IQR 2.3-21.1) mg/l. The majority patients (93.2%) had abnormal chest CT images on admission. The median time from symptom onset to admission was 5.0 (IQR 2.0-8.0) days (Table 1).

During hospitalization, at least one dose of corticosteroid was administered to 89 (28.8%) patients. All patients received low-dose of corticosteroid treatment (40-160 mg/d methylprednisolone). Patients who received corticosteroid treatment were older (median 48.0 vs. 41.0 years, P=0.018) and male dominate (64.0% vs. 50.0%, P=0.025) than patients without corticosteroid treatment. More patients in corticosteroid group had type 2 diabetes than non-corticosteroid group (16.9% vs. 4.5%, P<0.001). More patients had fever (93.3% vs. 65.0%, P<0.001) and cough (69.7% vs. 57.3%, P=0.043) in patients with corticosteroid treatment than patients without corticosteroid treatment. The lymphocyte counts (median 0.9 vs. 1.4 ×10^9/l, P<0.001) in patients with corticosteroid treatment was significantly lower than patients without corticosteroid, while CRP level (median 11.1 vs. 7.0 mg/l, P=0.018) in
patients with corticosteroid treatment was significantly higher than patients without corticosteroid treatment. The proportion of abnormal chest CT images was higher in patients with corticosteroid treatment than patients without corticosteroid treatment (98.9% vs. 90.9%, $P=0.012$) (Table 1).

3.2. Treatment and clinical outcomes

The proportions of patients treated with atomized inhalation of interferon α-2b, lopinavir-ritonavir, and arbidol were 57.9%, 74.8%, and 46.0, respectively. As of February 29, 2020, 26 (8.4%) patients developed respiratory failure and 4 (1.3%) patients progressed to ARDS. Thirty-five (11.3%) patients had severe illness and 20 (6.5%) patients were transferred to the intensive care unit (ICU) during hospitalization. As of February 29, 2020, 275 (89.0%) patients developed virus clearance and the median days of SARS-CoV-2 negativity after symptom onset were 17.0 (IQR 13.0-20.0) days. Two hundred and thirty-six (76.4%) patients were discharged up to February 29, 2020. However, no patient died in our study (Table 2).

More patients were treated with lopinavir-ritonavir in corticosteroid group than non-corticosteroid group (89.9% vs.68.6%, $P<0.001$), while there were no significant differences in the proportion of patients who received atomized inhalation of interferon α-2b and arbidol between two groups. Regarding complications and outcomes, more patients developed respiratory failure (25.8% vs. 1.4%, $P<0.001$) and ARDS (4.5% vs. 0%, $P=0.002$) in patients with corticosteroid treatment. The proportion of patients with severe illness (34.8%
vs. 1.8%, $P<0.001$) and admission to ICU in corticosteroid treatment group (20.2% vs. 0.9%, $P<0.001$) was also significantly higher than non-corticosteroid group. The median days of SARS-CoV-2 negativity after symptom onset (18.0 vs. 16.0 days, $P<0.001$) and hospitalization (17.0 vs. 15.0 days, $P<0.001$) in corticosteroid group were significantly longer than non-corticosteroid group. (Table 2). The proportion of corticosteroid treatment in patients with severe illness (88.6%) was significantly higher than in patients with mild illness (21.2%, $P<0.001$).

3.3. The adverse factors of the clearance of SARS-CoV-2.

Univariate Cox regression analysis presented that age $>$ 60 years (hazard ratio [HR], 0.464; 95% confidence interval [CI], 0.319 to 0.674; $P<0.001$), concurrent hypertension (HR, 0.595; 95% CI, 0.420 to 0.843; $P=0.004$), type 2 diabetes (HR, 0.644; 95% CI, 0.411 to 1.008; $P=0.004$), severe illness (HR, 0.604; 95% CI, 0.415 to 0.881; $P=0.009$), admission to ICU (HR, 0.607; 95% CI, 0.374 to 0.983; $P=0.043$), and treated with corticosteroid (HR, 0.644; 95% CI, 0.493 to 0.840; $P=0.001$) were associated with the clearance of SARS-CoV-2. Further multivariate analysis showed age $>$ 60 years (HR, 0.543; 95% CI, 0.366 to 0.805; $P=0.002$) and treated with corticosteroid (HR, 0.698; 95% CI, 0.512 to 0.951; $P=0.023$) were independent adverse factors of SARS-CoV-2 clearance. However, the severe illness was not associated with SARS-CoV-2 clearance (HR, 0.680; 95% CI 0.392 to 1.180; $P=0.171$) (Table 3). During the study period, the cumulative probability of SARS-CoV-2 clearance
was significantly lower in corticosteroid group compared to non-corticosteroid group, with 15-day cumulative incidences of 27.2% and 44.2%, 30-day cumulative incidences of 87.9% and 95.8%, respectively (Log Rank $\chi^2=11.97$, P<0.001) (Fig. 1A).

Further subgroup analysis was performed according to gender of COVID-19 patients. For male patients, age > 60 years (HR, 0.480; 95% CI, 0.265 to 0.869; P=0.015) and treated with corticosteroid (HR, 0.620; 95% CI, 0.408 to 0.942; P=0.025) were independent adverse factors for SARS-CoV-2 clearance (Supplemental table 1). The cumulative probability of SARS-CoV-2 clearance for male patients was significantly lower in corticosteroid group than non-corticosteroid group, with 15-day cumulative incidences of 22.8% and 43.4%, 30-day cumulative incidences of 86.0% and 96.9%, respectively (Log Rank $\chi^2=8.897$, P=0.003) (Fig. 1B). The results were similar with entire patients. However, for female patients, treated with corticosteroid (HR, 0.714; 95% CI, 0.464 to 1.098; P=0.125) was not associated with SARS-CoV-2 clearance (Supplemental table 2). The cumulative probability of SARS-CoV-2 clearance for female patients was comparable between corticosteroid group and non-corticosteroid group (Log Rank $\chi^2=2.649$, P=0.104) (Fig. 1C).

4. Discussion

During the outbreaks of severe acute respiratory syndrome (SARS) and Middle East respiratory syndrome (MERS), corticosteroids were widely used
Corticosteroids were reported to play a role in suppressing lung inflammation. However, corticosteroid treatment may also inhibit the immune responses and pathogen clearance (Russell et al., 2020). It was reported that corticosteroid treatment did not improve the clinical outcomes of SARS and MERS, but delayed the viral clearance (Auyeung et al., 2005; Hui, 2018).

Corticosteroids are widely used in the treatment of COVID-19 patients in addition to other therapeutics. It was reported that 18.6%-44.9% of the COVID-19 patients received corticosteroid treatment (Guan et al., 2020; Wang et al., 2020). In our study, 89 (28.8%) of 309 patients were treated with corticosteroids. Patients who treated with corticosteroids had more clinical symptoms such as fever, cough, and more abnormalities of chest CT images on admission. More patients with corticosteroid treatment had respiratory failure and ARDS. The proportions of patients with severe illness and admission to ICU were also higher in corticosteroid group. In patients with severe illness, the proportion of corticosteroid treatment (88.6%) was significantly higher than in patients with mild illness (21.2%), which was similar to the previous studies (Huang et al., 2020; Zha et al., 2020). Our study indicated that more patients with severe illness of COVID-19 were likely to receive corticosteroid treatment.

The clinical benefits of corticosteroid treatment for patients with COVID-19 remains controversial. Zha et al assessed the efficacy of corticosteroid
treatment in 31 COVID-19 patients (Zha et al., 2020). They found that corticosteroid treatment did not impact the virus clearance time and hospital length of stay (Zha et al., 2020). However, the sample size is very small. Fang et al investigated the effect of low-dose corticosteroid therapy on SARS-CoV-2 clearance time, which indicating that corticosteroid therapy may not delay viral clearance (Fang et al., 2020). Xu et al found that corticosteroid treatment was associated with prolonged viral RNA shedding time in COVID-19 patients and COVID-19 patients with early RNA clearance (<16 days) had lower proportion of patients using corticosteroid treatment than patients with late RNA clearance (Xu et al., 2020). However, in that report, the corticosteroid usage was not independently related to the prolonged viral RNA shedding in the multivariable model (Xu et al., 2020). In the present study, corticosteroid treatment was independently associated with delay of SARS-CoV-2 viral clearance after adjusting for the confounding factors. The cumulative probability of SARS-CoV-2 clearance was also significantly lower in corticosteroid group. In addition, increasing evidences suggested that male COVID-19 patients had more severe clinical outcomes than female patients (Guan et al., 2020; Yang et al., 2020). The potential cause may be explained that the expression of angiotensin converting enzyme receptor (ACE2) was more predominant in men than in women (Zhao et al., 2020), which is an essential molecule for SARS-CoV-2 virus entry into target cells (Bourgonje, et al., 2020). Therefore, we further compared the impact of corticosteroid on
SARS-CoV-2 viral clearance between male patients and female patients. The results revealed that treated with corticosteroid resulted in the delay of SARS-CoV-2 viral clearance in male patients, while corticosteroid did not affect SARS-CoV-2 viral clearance in female patients. Previous study demonstrated that the corticosteroid receptor gene expression levels were higher in male than in female, which may be a significant reason causing the result (O’Connor, et al., 2013). Thus, our results indicated that corticosteroid therapy was associated with the delay of SARS-CoV-2 clearance in COVID-19 patients, especially for male patients.

This study had some limitations. First, the patients were retrospectively included. Thus, many confounders may have influenced our results. Second, a controlled, open-label study from United Kingdom demonstrated that use of corticosteroid could reduce the 28-day mortality in a large COVID-19 cohort (Horby et al., 2020). However, the case fatality rate was incredible high (>20%) in that study (Horby et al., 2020). In contrast, the COVID-19 patients had less severe disease with no patient deceased in our study. Thus, the clinical benefits of corticosteroid treatment in COVID-19 patients with different severity and ethnicities deserve further investigation.

In conclusion, corticosteroid treatment may delay viral clearance in COVID-19 patients, especially for male patients. Thus, corticosteroids should be used with cautions. However, more randomized controlled trials are required to investigate the clinical benefits of corticosteroid treatment for COVID-19.
References

ARDS Definition Task Force, Ranieri VM, Rubenfeld GD, Thompson BT, Ferguson ND, Caldwell E, Fan E, Camporota L, Slutsky AS. Acute respiratory distress syndrome: the Berlin Definition. JAMA 307(23):2526–2533, 2012.

Auyeung TW, Lee JSW, Lai WK, Choi CH, Lee HK, Lee JS, Li PC, Lok KH, Ng YY, Wong WM, Yeung YM. The use of corticosteroid as treatment in SARS was associated with adverse outcomes: a retrospective cohort study. J Infect 51(2):98–102, 2005.

Bourgonje AR, Abdulle AE, Timens W, Hillebrands JL, Navis GJ, Gordijn SJ, Bolling MC, Dijkstra G, Voors AA, Osterhaus AD, van der Voort PH, Mulder DJ, van Goor H. Angiotensin-converting enzyme 2 (ACE2), SARS-CoV-2 and the pathophysiology of coronavirus disease 2019 (COVID-19). J Pathol 2020.

Chen N, Zhou M, Dong X, Qu J, Gong F, Han Y, Qiu Y, Wang J, Liu Y, Wei Y, Xia J’an, Yu T, Zhang X, Zhang L. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet Lond Engl 395(10223):507–513, 2020.

Fang X, Mei Q, Yang T, Li L, Wang Y, Tong F, Geng S, Pan A. Low-dose corticosteroid therapy does not delay viral clearance in patients with COVID-19. J Infect 2020.
Goyal P, Choi JJ, Pinheiro LC, Schenck EJ, Chen R, Jabri A, Satlin MJ, Campion TR, Nahid M, Ringel JB, Hoffman KL, Alshak MN, Li HA, Wehmeyer GT, Rajan M, Reshetnyak E, Hupert N, Horn EM, Martinez FJ, Gulick RM, et al. Clinical Characteristics of Covid-19 in New York City. *N Engl J Med* 2020.

Guan WJ, Ni ZY, Hu Y, Liang WH, Ou CQ, He JX, Liu L, Shan H, Lei CL, Hui DSC, Du B, Li LJ, Zeng G, Yuen KY, Chen RC, Tang CL, Wang T, Chen PY, Xiang J, Li SY, et al. Clinical Characteristics of Coronavirus Disease 2019 in China. *N Engl J Med* 382(18):1708–1720, 2020.

Horby P, Lim WS, Emberson JR, Mafham M, Bell JL, Linsell L, Staplin N, Brightling C, Ustianowski A, Elmahi E, Prudon B, Green C, Felton T, Chadwick D, Rege K, Fegan C, Chappell LC, Faust SN, Jaki T, Jeffery K, et al. Dexamethasone in Hospitalized Patients with Covid-19 - Preliminary Report. *N Engl J Med* 2020.

Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, Zhang L, Fan G, Xu J, Gu X, Cheng Z, Yu T, Xia J, Wei Y, Wu W, Xie X, Yin W, Li H, Liu M, Xiao Y, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. *Lancet Lond Engl* 395(10223):497–506, 2020.

Hui DS. Systemic Corticosteroid Therapy May Delay Viral Clearance in Patients with Middle East Respiratory Syndrome Coronavirus Infection. *Am J Respir Crit Care Med* 197(6):700–701, 2018.
Ma J, Xia P, Zhou Y, Liu Z, Zhou X, Wang J, Li T, Yan X, Chen L, Zhang S, Qin Y, Li X. Potential effect of blood purification therapy in reducing cytokine storm as a late complication of critically ill COVID-19. *Clin Immunol Orlando Fla* 214:108408, 2020.

Mehta P, McAuley DF, Brown M, Sanchez E, Tattersall RS, Manson JJ, HLH Across Speciality Collaboration, UK. COVID-19: consider cytokine storm syndromes and immunosuppression. *Lancet Lond Engl* 395(10229):1033–1034, 2020.

National Health Commission. Guidelines for the Diagnosis and Treatment of coronavirus disease 2019 (COVID-19) by the National Health Commission (Trial Version 6). 2020.

O'Connor CM, Rodela TM, Mileva VR, Balshine S, Gilmour KM. Corticosteroid receptor gene expression is related to sex and social behaviour in a social fish. *Comp Biochem Physiol A Mol Integr Physiol* 164(3):438-446, 2013.

Russell CD, Millar JE, Baillie JK. Clinical evidence does not support corticosteroid treatment for 2019-nCoV lung injury. *Lancet Lond Engl* 395(10223):473–475, 2020.

Shang L, Zhao J, Yi H, Du R, Cao B. On the use of corticosteroids for 2019-nCoV pneumonia. *Lancet* 2020.

Stockman LJ, Bellamy R, Garner P. SARS: systematic review of treatment
effects. *PLoS Med* 3(9):e343, 2006.

Wang D, Hu B, Hu C, Zhu F, Liu X, Zhang J, Wang B, Xiang H, Cheng Z, Xiong Y, Zhao Y, Li Y, Wang X, Peng Z. Clinical Characteristics of 138 Hospitalized Patients With 2019 Novel Coronavirus-Infected Pneumonia in Wuhan, China. *JAMA* 2020.

World Health Organization. Laboratory diagnostics for novel coronavirus. 2020a.

World Health Organization. Novel Coronavirus (COVID-19) Situation. 2020.

Xu K, Chen Y, Yuan J, Yi P, Ding C, Wu W, Li Y, Ni Q, Zou R, Li X, Xu M, Zhang Y, Zhao H, Zhang X, Yu Liang, Su J, Lang G, Liu J, Wu X, Guo Y, et al. Factors associated with prolonged viral RNA shedding in patients with COVID-19. *Clin Infect Dis Off Publ Infect Dis Soc Am* 2020.

Yang X, Yu Y, Xu J, Shu H, Xia J ‘an, Liu H, Wu Y, Zhang L, Yu Z, Fang M, Yu T, Wang Y, Pan S, Zou X, Yuan S, Shang Y. Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: a single-centered, retrospective, observational study. *Lancet Respir Med* 8(5):475–481, 2020.

Ye Q, Wang B, Mao J. The pathogenesis and treatment of the `Cytokine Storm’ in COVID-19. *J Infect* 2020.
Zha L, Li S, Pan L, Tefsen B, Li Y, French N, Chen L, Yang G, Villanueva EV. Corticosteroid treatment of patients with coronavirus disease 2019 (COVID-19). *Med J Aust* 2020.

Zhu N, Zhang D, Wang W, Li X, Yang B, Song J, Zhao X, Huang B, Shi W, Lu R, Niu P, Zhan F, Ma X, Wang D, Xu W, Wu G, Gao GF, Tan W, China Novel Coronavirus Investigating and Research Team. A Novel Coronavirus from Patients with Pneumonia in China, 2019. *N Engl J Med* 2020.

Zhao Y, Zhao Z, Wang Y, Zhou Y, Ma Y, zuo W. Single-cell RNA expression profiling of ACE2, the putative receptor of Wuhan 2019-nCov. BioRxiv 2020.
Figure legends

Fig. 1. The cumulative incidence of SARS-CoV-2 clearance in the corticosteroid group and non-corticosteroid group (A, entire patients; B, male patients; C, female patients).
Table 1. Clinical characteristics of COVID-19 patients.

Variables (n [%] or median [IQR])	All patients (n=309)	Non-corticosteroid (n=220)	Corticosteroid (n=89)	p value
Age (ys)	45.0 (33.0, 55.0)	41.0 (32.0, 54.0)	48.0 (36.0, 57.0)	0.018
Male	167 (54.0)	110 (50.0)	57 (64.0)	0.025
Comorbidities				
Hypertension	48 (15.5)	31 (14.1)	17 (19.1)	0.271
Type 2 diabetes	25 (8.1)	10 (4.5)	15 (16.9)	<0.001
Onset signs and symptoms				
Fever	226 (73.1)	143 (65.0)	83 (93.3)	<0.001
Cough	188 (60.8)	126 (57.3)	62 (69.7)	0.043
Fatigue	68 (22.0)	44 (20.0)	24 (27.0)	0.181
Condition	Group A	Group B	Group C	p-value
---------------------------	---------	---------	---------	---------
Sore throat	34 (11.0)	20 (9.1)	14 (15.7)	0.091
Muscle ache	35 (11.3)	26 (11.8)	9 (10.1)	0.668
Headache	20 (6.5)	18 (8.2)	2 (2.2)	0.055
Days from symptom onset to admission	5.0 (2.0, 8.0)	5.0 (2.0, 8.0)	5.0 (3.0, 8.0)	0.375

Laboratory and imaging findings

Test	Group A	Group B	Group C	p-value	
WBC ($\times 10^9$/l)	4.8 (3.8, 6.1)	4.8 (3.8, 6.1)	4.9 (3.7, 6.1)	0.554	
Lymphocyte ($\times 10^9$/l)	1.2 (0.9, 1.6)	1.4 (1.0, 1.7)	0.9 (0.7, 1.2)	<0.001	
ALT (U/L)	26.0 (19.0, 37.0)	25.0 (18.0, 37.0)	27.0 (21.9, 40.0)	0.05	
Cr (μmol/l)	64.0 (52.0, 78.0)	62.8 (50.1, 76.0)	68.8 (56.5, 85.7)	0.004	
PT (s)	12.8 (12.0, 13.4)	12.8 (12.1, 13.5)	12.9 (12.0, 13.3)	0.602	
CRP (mg/l)	8.3 (2.3, 21.1)	7.0 (1.7, 18.9)	11.1 (4.1, 26.6)	0.018	
Chest CT	No pneumonia	21 (6.8)	20 (9.1)	1 (1.1)	0.012
	Count	Median	Mean	P-value	
----------------	-------	--------	------	---------	
Unilateral pneumonia	45 (14.6)	37 (16.8)	8 (9.0)	0.077	
Bilateral pneumonia	243 (78.6)	163 (74.1)	80 (90.0)	0.002	

IQR, interquartile range; WBC, white blood cells; ALT, alanine transaminase; Cr, creatinine; PT, prothrombin time; CRP, C-reactive protein.
Table 2. Treatment, complications, and outcomes of COVID-19 patients.

Variables (n [%] or median [IQR])	All patients (n=309)	Non-corticosteroid (n=220)	Corticosteroid (n=89)	P value	
Drug treatment					
Atomized inhalation of interferon α-2b	179 (57.9)	120 (54.5)	59 (66.3)	0.058	
Lopinavir-ritonavir	231 (74.8)	151 (68.6)	80 (89.9)	<0.001	
Arbidol	142 (46.0)	99 (45.0)	43 (48.3)	0.597	
Complications					
Respiratory failure	26 (8.4)	3 (1.4)	23 (25.8)	<0.001	
ARDS	4 (1.3)	0	4 (4.5)	0.002	
Outcomes					
Severe illness	35 (11.3)	4 (1.8)	31 (34.8)	<0.001	
Admission to ICU	20 (6.5)	2 (0.9)	18 (20.2)	<0.001	
	Value 1	Value 2	Value 3	Value 4	p-value
--------------------------	------------------	------------------	------------------	------------------	---------
Death	0	0	0	0	-
Day of negative PCR from symptom onset	17.0 (13.0, 20.0)	16.0 (13.0, 19.0)	18.0 (15.0, 23.0)	<0.001	
Discharged	236 (76.4)	167 (75.9)	69 (77.5)	0.762	
Day of hospitalization (days)	15.0 (12.0, 20.0)	15.0 (12.0, 19.0)	17.0 (14.0, 23.0)	<0.001	

IQR, interquartile range; ICU, Intensive care unit; PCR, polymerase chain reaction.
Table 3. Cox regression analysis of factors for the clearance of SARS-CoV-2.

Variables	Univariate	Multivariate			
	HR (95% CI)	P-value	HR (95% CI)	P-value	
Age					
≤60	Reference				
>60	0.464 (0.319, 0.674)	<0.001	0.543 (0.366, 0.806)	0.002	
Sex					
Female	Reference				
Male	0.897 (0.706, 1.140)	0.376			
Hypertension					
No	Reference				
Yes	0.595 (0.420, 0.843)	0.004	0.727 (0.504, 1.049)	0.088	
Type 2 diabetes					
No	Reference				
Yes	0.644 (0.411, 1.008)	0.054	0.965 (0.599, 1.553)	0.882	
WBC					
No decreased	Reference				
Condition	Decreased	95% CI	P	Reference 95% CI	P
---------------------------------	-----------	----------------	------	-----------------	------
Lymphocyte	Decreased	1.167 (0.895, 1.521)	0.255		
No decreased	Reference				
Decreased	0.884 (0.683, 1.145)	0.35			
Severe illness	No	Reference			
Yes	0.604 (0.415, 0.881)	0.009	0.680 (0.392, 1.180)	0.171	
ICU admission	No				
Yes	0.607 (0.374, 0.983)	0.043	1.125 (0.584, 2.168)	0.724	
Glucocorticoid	No	Reference			
Yes	0.644 (0.493, 0.840)	0.001	0.698 (0.512, 0.951)	0.023	

WBC, white blood cells; ICU, Intensive care unit; HR, hazard ratio; CI, confidence interval.
Supplemental table 1. Cox regression analysis of factors associated with the clearance of SARS-CoV-2 in male patients.

Variables	Univariate			Multivariate		
		HR (95% CI)	P-value	HR (95% CI)	P-value	
Age						
≤60		Reference				
>60		0.463 (0.265, 0.809)	0.007	0.480 (0.265, 0.869)	0.015	
Hypertension						
No		Reference				
Yes		0.645 (0.421, 0.987)	0.043	0.733 (0.468, 1.149)	0.176	
Type 2 diabetes						
No		Reference				
Yes		0.612 (0.357, 1.048)	0.074	0.921 (0.522, 1.626)	0.778	
WBC						
No decreased		Reference				
Decreased		1.111 (0.756, 1.631)	0.593			
Lymphocyte						
No decreased		Reference				
	Decreased	Severe illness	ICU admission	Glucocorticoid		
--------------------------	-------------------------	----------------	---------------	----------------		
	0.788 (0.553, 1.121)	0.186				
Severe illness						
No	Reference					
Yes	0.617 (0.394, 0.966)	0.035	0.836 (0.421, 1.663)	0.610		
ICU admission						
No						
Yes	0.526 (0.296, 0.937)	0.029	0.897 (0.406, 1.984)	0.789		
Glucocorticoid						
No	Reference					
Yes	0.615 (0.436, 0.866)	0.005	0.620 (0.408, 0.942)	0.025		

WBC, white blood cells; ICU, Intensive care unit; HR, hazard ratio; CI, confidence interval.
Supplemental table 2. Cox regression analysis of factors associated with the clearance of SARS-CoV-2 in female patients.

Variables	Univariate	Multivariate		
	HR (95% CI)	P-value	HR (95% CI)	P-value
Age				
≤60	Reference	0.002	0.493 (0.289, 0.841)	0.010
>60	0.445 (0.268, 0.740)		0.493 (0.289, 0.841)	0.010
Hypertension				
No	Reference	0.038	0.692 (0.359, 1.335)	0.273
Yes	0.515 (0.275, 0.963)		0.692 (0.359, 1.335)	0.273
Type 2 diabetes				
No	Reference	0.520		
Yes	0.763 (0.335, 1.738)			
WBC				
No decreased	Reference	0.313		
Decreased	1.212 (0.835, 1.760)			
Lymphocyte				
No decreased	Reference			
Parameter	Reference	Yes	Hazard Ratio (95% CI)	P-value
-------------------	-----------	-----	----------------------	---------
Decreased	Reference	1.027 (0.701, 1.503)	0.892	
Severe illness	Yes	0.602 (0.293, 1.234)	0.166	
ICU admission	No	1.112 (0.453, 2.731)	0.817	
Glucocorticoid	Yes	0.714 (0.464, 1.098)	0.125	

WBC, white blood cells; ICU, Intensive care unit; HR, hazard ratio; CI, confidence interval.
