Co-localization of plaque macrophages with calcification is associated with a more vulnerable plaque phenotype and a greater calcification burden in coronary target segments as determined by OCT

Mathias Burgmaier1*, Andrea Milzi1*, Rosalia Dettori1, Kathrin Burgmaier2, Nikolaus Marx1, Sebastian Reith1*

1 Department of Cardiology, University Hospital of the RWTH Aachen, Aachen, Germany, 2 Department of Pediatrics, University Hospital of Cologne, Cologne, Germany

* These authors contributed equally to this work.
* sreith@ukaachen.de

Abstract

Background
The presence of plaque macrophages and microcalcifications are acknowledged features of plaque vulnerability. Experimental data suggest that microcalcifications promote inflammation and macrophages foster microcalcifications. However, co-localization of plaque macrophages and calcification (ColocCaMa) in coronary segments and its impact on plaque phenotype and lesion vulnerability is unexplored.

Methods
Plaque morphology including ColocCaMa of calcified coronary target segments in patients with stable coronary artery disease (n = 116) was analyzed using optical coherence tomography (OCT) prior to coronary intervention. Therefore we considered macrophages co-localized with calcification if their distance in an OCT frame was <100 μm and OCT-defined microcalcifications with a calcium arc <22.5˚.

Results
ColocCaMa was present in 29/116 (25.0%) coronary segments. Calcium burden was greater (calcium volume index: $1731\pm1421*mm$ vs. $963\pm984*mm$, $p = 0.002$) and calcifications were more superficial (minimal thickness of the fibrous cap overlying the calcification $35\pm37\mu m$ vs. $64\pm72\mu m$, $p = 0.005$) in the presence of ColocCaMa. Segments with ColocCaMa demonstrated a higher incidence of newly suggested features of plaque vulnerability, with a 3.5-fold higher number of OCT-defined microcalcifications (0.7 ± 1.0 vs. 0.2 ± 0.6, $p = 0.022$) and a 6.7-fold higher incidence of plaque inflammation (macrophage volume index: $148.7\pm248.3*mm$ vs. $22.2\pm57.4*mm$, $p<0.001$). Clinically, intima–media thickness (IMT) in
Localization of calcification and macrophages was increased in patients with ColocCaMa (1.02±0.30mm vs. 0.85±0.18, p = 0.021).

In a multivariate model, IMT (OR1.76 for 100μm, 95%CI 1.16–2.65, p = 0.007), HDL-cholesterol (OR0.36 for 10mg/dl, 95%CI 0.16–0.84, p = 0.017), calcium volume index (OR1.07 for 100˚*mm, 95%CI 1.00–1.14, p = 0.049), macrophage volume index (OR5.77 for 100˚*mm, 95%CI 2.04–16.3, p = 0.001) and minimal luminal area (OR3.41, 95%CI 1.49–7.78, p = 0.004) were independent predictors of ColocCaMa.

Conclusion

Plaque macrophages co-localize with calcifications in coronary target segments and this is associated with high-risk morphological features including microcalcifications and macrophage infiltration as well as with greater calcification burden. Our data may add to the understanding of the relationship between plaque macrophages, vascular calcification and their clinical impact.

Introduction

Coronary artery disease (CAD) is one of the most relevant pathologies worldwide with a relevant morbidity and mortality, particularly in Western countries [1]. In recent years, research has focused on the progression of coronary atherosclerosis towards acute coronary syndromes (ACS) in search of potential predictors of plaque vulnerability, which may allow clinicians a timely intervention. Among them, features like a lower fibrous cap thickness (FCT) [2,3,4,5], the presence of microchannels [6] or the extension of the necrotic lipid core [2,3,4] have been identified as relevant markers of vulnerable plaques. Besides these established parameters, the presence of macrophages [2,4] and the morphology of calcification [7–13] were recently suggested as novel features of plaque vulnerability. Plaque macrophages reflect plaque inflammation and play a role in lipid accumulation as well as in the disruption of the fibrous components of the plaque inducing a more vulnerable plaque phenotype prone to plaque rupture [14]. On the other hand, both optical coherence tomography (OCT) and intravascular ultrasound (IVUS) have been able to identify small calcifications as features of plaque vulnerability; in particular, Ehara et al. found spotty calcifications, i.e. calcifications with a calcium arc<90˚ to be more frequently present in culprit lesions of ACS patients rather than in lesions of patients with stable CAD [7]. These findings could be confirmed using the superior resolution of OCT [8,9]. Another interesting aspect of the relationship between calcifications and plaque vulnerability was the hypothesis that the so called microcalcifications may increase the peak circumferential stress of the fibrous cap, thus potentially promoting plaque rupture and triggering ACS [10,11,12]. Interestingly, data from basic science studies suggest that calcifications and macrophages are interconnected: microcalcifications, for instance, promote inflammation in vitro and—vice versa—macrophages foster microcalcifications, e.g. via microvesicles [15,16] and induction of an osteogenic phenotype in vascular smooth muscle cells [17].

Despite the known interaction between macrophages and calcifications in vitro, there is no clinical data investigating the co-localization between plaque macrophages and calcifications (ColocCaMa) in coronary arteries in living patients. However, the use of OCT enables in vivo visualization of both, macrophages and calcifications in coronary arteries. Given the known reciprocal interaction between plaque macrophages and calcifications in vitro, this
study aimed to quantify the ColocCaMa in the coronary target segments and its implications towards further features of plaque composition and plaque vulnerability using OCT.

Methods
Ethics statement
The study was approved by the ethics committee of the University Hospital of the RWTH Aachen (EK 071/11 and EK 277/12) and is in accordance with the declaration of Helsinki on ethical principles for medical research involving human subjects.

Study population
In this study we enrolled 102 patients with stable CAD, defined as disease without progression of symptoms within the previous 6 weeks, who underwent a planned coronary angiography at the Department of Cardiology of the University Hospital of the RWTH Aachen. A subgroup of this population was object of previously published analyses [13,18]. Prior to intervention and following diagnostic angiography, the 116 target segments were analyzed using OCT. Main criterion of inclusion was the evidence of calcification in the OCT pullback. Exclusion criteria were the localization of the target lesion in the left main coronary artery, in a vessel bifurcation, in a pre–implanted stent or a bypass graft, ACS, pregnancy and acute or chronic kidney disease. Written consent of the patients was obtained.

OCT image acquisition and analysis
Image acquisition and the analysis of plaque morphology in the coronary target segment were performed as previously described [18]. An example of the analysis is displayed in Fig 1. The analysis was carried out in the whole segment comprising the target lesion, on a frame-by-frame basis in 0.1 mm intervals. In particular, we subdivided calcifications in macrocalcifications with a calcium arc>90˚, spotty calcifications with a calcium arc between 22.5˚ and 90˚ and OCT-defined microcalcifications with a calcium arc<22.5˚ as previously published by our study group [18]. An example of an OCT-defined microcalcification is reported in Fig 2. The distance of the more superficial border of a calcification from the lumen was defined as calcium depth. To assess the thickness of calcification and the calcium area in calcifications without a clearly defined deep contour, we used the automatic interpolation function of the commercial analytic software (Ilumien OPTIS Stent Optimization Software, v. E.4, Abbott, Illinois). The smallest calcification in a given target segment was defined as the one having the smallest maximal calcium arc.

According to currently accepted definition, “signal-rich, distinct, or confluent punctate regions that exceed the intensity of background speckle noise” were interpreted as macrophages [19]. Angular extension and length of macrophages were measured, thus obtaining a “macrophage arc” and a “macrophage length”. The product of average macrophage arc and macrophage length was defined as “macrophage volume index” in analogy to the already used parameters for quantification of the lipid core [3,4] and of calcification [18,20,21]. Macrophages were considered to co-localize with calcification when the reciprocal distance in a single OCT frame was smaller than 100µm; an example is displayed in Fig 3. In order to analyze the position of a ColocCaMa, we assessed the localization in the shoulder region of the plaque, defined as the area immediately adjacent to the interface plaque/normal vessel (i.e. the outer 25% of the plaque).
All measurements were performed by two experienced observers. In case of discordance, a consensus measurement was taken. The inter- and intraobserver variability were respectively 0.979 and 0.893 for calcium arc and 0.989 and 0.902 for calcium area [18].

Carotid ultrasound

Carotid ultrasound was performed using a Vivid I ultrasound system (General Electric, Boston, MA, USA) and a 4- to 13-MHz transducer (8L-RS). The maximal intima media thickness (IMT) of each side was determined using a computerized software. The larger of the two sides was taken for further statistical analysis.

Statistical analysis

All statistical analyses were performed with SPSS software (IBM Corp., Armonk, NY, USA). Categorical variables were summarized as count (percentage), continuous variables as mean ± standard deviation. Distributions of continuous variables were compared with t-test. The association of categorical variables was evaluated by Pearson’s chi-square test. The statistical tests did not account for the presence of multiple lesions in a single patient. To investigate the diagnostic value of morphologic plaque features to predict the presence of a ColocCaMa, univariate...
logistic regression analysis was performed. The parameters with a p-value below 0.10 were then studied in a multivariate logistic regression analysis with consecutive backward selection for variables with a p-value below 0.10. Among parameters describing the extent of calcification and plaque macrophage infiltration, calcium volume index and macrophage volume index were chosen for the multivariate analysis. Statistical significance was awarded for $p < 0.05$.

Results

Clinical parameters

We divided the 116 calcified target segments in two subgroups according to the absence ($n = 87$) or presence ($n = 29$) of a ColocCaMa. Among clinical parameters, IMT values were significantly larger (1.02±0.30mm vs. 0.85±0.18mm, $p = 0.021$) in the presence of ColocCaMa. Further details are reported in Table 1.

Plaque morphology

Segments with ColocCaMa presented a significantly smaller lipid core with a lower lipid volume index (2299±1591 vs. 5817±3769, $p<0.001$). Furthermore, minimal luminal
diameter (MLD: 1.3±0.4mm vs 1.1±0.2mm, p = 0.021) and minimal luminal area (MLA: 2.1 ±1.2mm² vs. 1.5±0.7mm², p = 0.017) were greater and % area stenosis was smaller (71.0 ±11.6% vs. 75.6±9.7%, p = 0.039) in the presence of ColocCaMa. With ColocCaMa we detected significantly more extensive plaque macrophage infiltration (macrophage angle: 42.1±27.3˚ vs. 12.2±20.4˚, p<0.001; macrophage length: 2.6±2.3mm vs. 0.5±1.0mm, p<0.001; macrophage volume index, 148.7±248.3˚mm vs. 22.2±57.4˚mm, p<0.001). Please refer to Table 2 for further details.

In the analysis of calcification characteristics, segments presenting ColocCaMa showed a higher burden of calcification as expressed by higher average angle of calcification (96.8±56.5˚ vs. 73.0±31.7˚, p = 0.038), length of calcification (16.7±9.0mm vs. 11.1±8.7mm, p = 0.004) and calcium volume index (1731±1421˚mm vs. 963±984˚mm, p = 0.002), as well as a lower minimal cap thickness overlying the calcification (35±37μm vs. 64±72μm, p = 0.005). Furthermore, the total number of calcifications in the plaque (5.0±3.0 vs. 3.5±2.5, p = 0.010) and the number of OCT-defined microcalcifications (0.7±1.0 vs. 0.2±0.6, p = 0.022) were higher in plaques with ColocCaMa. Additional data are reported in Table 3.

In 15/29 cases (51.7%) ColocCaMa were localized in the shoulder region of the plaque. Calcifications with ColocCaMa showed a mean calcium arc of 93.2±59.3˚ and a mean thickness of 0.59±0.22 mm.
Uni- and multivariate analysis of predictors of ColocCaMa

In univariate logistic regression analysis, IMT, lipid volume index, MLD, MLA, parameters assessing the extent of macrophage infiltration (mean macrophage angle, macrophage length, macrophage volume index) and the extent of coronary calcification (total number of calcifications, number of OCT-defined microcalcifications, average calcium arc, average calcified area, calcium length and calcium index) as well as the minimal depth of calcification were all significant predictors of a ColocCaMa (Table 4).

Since many of these predictors may be reciprocally influenced, we performed multivariate logistic regression analysis. In this analysis, HDL-cholesterol (OR 0.36 for 10 mg/dl, 95%CI 0.16–0.84, p = 0.017), IMT (OR 1.76 for 100μm, 95%CI 1.16–2.65, p = 0.007), calcium volume index (OR 1.07 for 100˚˚mm, 95%CI 1.00–1.14, p = 0.049), macrophage volume index (OR 5.77 for 100˚˚mm, 95%CI 2.04–16.31, p = 0.001) and MLA (OR 3.41, 95%CI 1.49–7.78, p = 0.004) were independent predictors of ColocCaMa (Table 5).

Discussion

The main findings of this study in patients with stable CAD are:

Table 1. Clinical parameters of patients with and without a co-localization between macrophages and calcification in the coronary target segment. Abbreviations: BP = blood pressure; BMI = body mass index; COPD = chronic obstructive pulmonary disease; CAD = coronary artery disease; PCI = percutaneous coronary intervention; CABG = coronary artery bypass graft; ASS = aspirin; ACEi/ARB = angiotensin converting enzyme inhibitors/angiotensin receptor blockers.
1. In target segments with ColocCaMa we found more extensive plaque inflammation, larger calcium burden with more superficial plaque calcifications (i.e. with a lower depth of calcification), more OCT-defined microcalcifications and less advanced lesions with larger MLA and smaller necrotic lipid core. Clinically, patients with ColocCaMa presented larger IMT of carotid arteries.

2. Calcium volume index, macrophage volume index, MLA, HDL-cholesterol and IMT of carotid arteries were independent predictors for ColocCaMa.

In order to minimize cardiovascular events due to CAD, the identification of vulnerable lesions is necessary. Intravascular imaging, such as IVUS or OCT, enables the clinician to gain in vivo insight into vulnerable plaque features and to use it for patient care. Although it is known that a lower FCT, the presence of microchannels and a larger necrotic lipid core are

Table 2. Morphological analysis using OCT in target segments with and without co-localization between macrophages and calcification. Abbreviations: RD = reference diameter, MLD = minimal luminal diameter, RA = reference area, MLA = minimal luminal area, FCT = fibrous cap thickness.

	Co-Localization (n = 29)	No Co-Localization (n = 87)	p
Maximal proximal RD (mm)	3.1±0.6	3.0±0.5	0.414
Maximal distal RD (mm)	2.9±0.7	2.7±0.5	0.099
MLD (mm)	1.3±0.4	1.1±0.2	0.021
Proximal RA (mm²)	6.8±3.0	6.1±2.2	0.205
Distal RA (mm²)	5.9±2.9	5.0±1.9	0.069
MLA (mm²)	2.1±1.2	1.5±0.7	0.017
Percent area stenosis (%)	71.0±11.6	75.6±9.7	0.039
Mean lipid arc (°)	110.0±33.0	139.4±48.0	0.077
Lipid plaque length (mm)	14.5±6.2	15.2±8.9	0.734
Lipid volume index (°mm)	2299±1591	5817±3769	<0.001
Minimal FCT (μm)	104±28	89±31	0.166
Mean FCT (μm)	137±27	132±32	0.628
Mean macrophage angle (°)	42.1±27.3	12.2±20.4	<0.001
Macrophage length (mm)	2.6±2.3	0.5±1.0	<0.001
Macrophage volume index (°mm)	148.7±248.3	22.2±57.4	<0.001

https://doi.org/10.1371/journal.pone.0205984.t002

Table 3. Morphological analysis of calcification in coronary segments with and without a co-localization between macrophages and calcification.

	Co-Localization (n = 29)	No Co-Localization (n = 87)	p
Presence of microcalcifications (n,%):	11 (37.9)	11 (11.7)	0.003
No. of microcalcifications (n per segment)	0.7±1.0	0.2±0.6	0.022
Total no. of calcification (n per segment)	5.0±3.0	3.5±2.5	0.010
Average calcium arc (°)	96.8±56.5	73.0±31.7	0.038
Average thickness of calcification (mm)	0.56±0.16	0.52±0.13	0.213
Maximal thickness of calcification (mm)	1.05±0.36	0.93±0.31	0.113
Minimal depth of calcification (μm)	35±37	64±72	0.005
Average calcified area (mm²)	1.2±0.9	0.8±0.6	0.048
Maximum calcified area (mm²)	3.5±2.3	2.9±6.8	0.675
Calcium length (mm)	16.7±9.0	11.1±8.7	0.004
Calcium Volume Index (°mm)	1731±1421	963±984	0.002
Average calcium arc of the smallest calcification (°)	46.1±66.2	40.1±25.2	0.499
Average thickness of the smallest calcification (mm)	0.35±0.21	0.38±0.19	0.449
Average calcified area of the smallest calcification (mm²)	0.53±1.03	0.38±0.41	0.559

https://doi.org/10.1371/journal.pone.0205984.t003
features of vulnerable plaques [2–6], plaque vulnerability still remains partly unexplored and new potential predictors are continuously proposed and evaluated. Recently, macrophage infiltration and microcalcifications were suggested as novel features of vulnerable plaques. Macrophages play a relevant role in the genesis of atherosclerosis, being able to induce accumulation of lipids in the plaque; however, they do also promote plaque vulnerability through the catabolic effect on the fibrous components of the plaque [14]. Plaques showing a high rate of macrophages infiltration are therefore active, possibly rupture-prone entities, even though prospective studies supporting the role of macrophages in future coronary events are lacking. The ability of OCT to effectively individuate macrophages has been discussed. In the pioneering work of Tearney and coll., a high degree of positive correlation between macrophages detected by histology and visual OCT-analysis was first shown [22]. Such an approach established itself as consensus [19] and has since then been widely used in all intravascular imaging studies assessing vascular inflammation as a component of plaque vulnerability. In spite of histologic data showing the absence of macrophages in a minority of the OCT-defined bright spots [23], a recent study employing directional coronary atherectomy showed an excellent performance of OCT in detecting macrophage accumulations, with a sensitivity of 85.7% and a specificity of 88.9% [24]. Therefore and in accordance to the current standards, we employed a visual individuation and quantification of macrophages in this study.

Table 4. Univariate analysis on predictors of a co-localization between macrophages and calcification.

Predictor	OR (95% CI)	p
Intima-media thickness (per 0.1 mm)	1.45 (1.12–1.87)	0.005
LDL cholesterol at admission (per 10 mg/dl)	0.90 (0.79–1.02)	0.097
HDL cholesterol at admission (per 10 mg/dl)	0.71 (0.48–1.05)	0.090
HbA1c (%)	1.33 (0.96–1.83)	0.080
Mean lipid arc (per 10°)	0.83 (0.68–1.03)	0.088
Lipid volume index (100° mm)	0.96 (0.92–0.99)	0.026
Minimal luminal diameter (mm)	7.86 (1.87–33.0)	0.005
Minimal luminal area (mm²)	1.95 (1.20–3.18)	0.007
Mean macrophage angle (per 10°)	1.69 (1.35–2.12)	<0.001
Macrophage length (mm)	2.76 (1.78–4.01)	<0.001
Macrophage volume index (100° mm)	4.05 (1.97–8.35)	<0.001
No. of microcalcifications	2.07 (1.21–3.54)	0.008
Total no. of calcification	1.20 (1.03–1.40)	0.016
Average calcium arc (per 10°)	1.15 (1.03–1.28)	0.012
Minimal depth of calcification (per 10μm)	0.92 (0.85–0.99)	0.022
Average calcified area (mm²)	2.06 (1.12–3.79)	0.020
Calcium length (mm)	1.07 (1.02–1.12)	0.006
Calcium Volume Index (per 100° mm)	1.06 (1.02–1.10)	0.004

https://doi.org/10.1371/journal.pone.0205984.t004

Table 5. Multivariate analysis on predictors of a co-localization between macrophages and calcification.

Predictor	OR (95% CI)	p
Intima-media thickness (per 0.1 mm)	1.76 (1.16–2.65)	0.007
HDL cholesterol at admission (per 10 mg/dl)	0.36 (0.16–0.84)	0.017
Minimal luminal area (mm²)	3.41 (1.49–7.78)	0.004
Macrophage volume index (per 100° mm)	5.77 (2.04–16.31)	0.001
Calcium Index (per 100° mm)	1.07 (1.00–1.14)	0.049

https://doi.org/10.1371/journal.pone.0205984.t005
On the other hand, small calcifications have been hypothesized as another novel feature of plaque vulnerability. Intravascular imaging studies showed a higher prevalence of calcifications with a calcium arc <90°, the so-called spotty calcifications, in lesions of ACS patients [7–9]. Other studies suggested the role of even smaller calcifications, i.e. microcalcifications, in the destabilization of the plaque, provided that their presence in the context of a plaque significantly alters its biomechanics with a sharp increase in the circumferential peak stress on the fibrous cap, which predisposes to rupture [10–12]. A universal definition of microcalcifications is lacking; for instance, Maldonado and coll. focused on a diameter <50μm or <60μm [11,25], whereas Cardoso developed a model including particles with a diameter of 10μm [26]. OCT, with its axial resolution of 10–20μm [27], may not be able to detect the smallest of these calcifications, but still remains the best in vivo imaging modality allowing the identification of these features—at least until the implementation of the currently only ex vivo available Micro-OCT systems with a resolution of 1μm [28]. Recently, an OCT-based definition of microcalcifications was therefore introduced [13].

Macrophage infiltration and calcifications are however not only linked by their independent contribution to plaque vulnerability, but also by a deeper bond which has its roots in the genesis and evolution of the atherosclerotic plaque. It has been demonstrated that macrophages are able to induce an osteogenic phenotype in vascular smooth muscle cells [17] and to promote calcification in the vessel wall e.g. through the release of calcifying matrix vesicles [15], which then trigger the mineralization via an annexin A5- and protein S100A9-dependent pattern [16]. These small calcified areas may then merge into larger, biomechanically relevant microcalcifications. On the other hand, calcifications themselves are able to foster macrophage infiltration [29], generating what Nadra et al. defined as a vicious cycle of inflammation and arterial calcification [30]. The link between plaque inflammation and vascular calcification has already been demonstrated in murine models through micro-CT [31] and in humans through 18-sodium fluoride PET/CT [32].

Due to the seemingly inextricable interdependence of macrophages and calcifications, we chose to analyze in vivo their co-localization, its predictors and its clinical effects. First, we extended the current knowledge by highlighting a higher calcium burden and a more extensive plaque inflammation in coronary plaques with ColocCaMa. This is in line with the above mentioned experimental data that macrophages promote calcifications and calcifications foster inflammation in vitro [15,16,17,29]. Moreover, we observed a higher number of OCT-defined microcalcifications and more superficial calcifications in the presence of ColocCaMa, suggesting a more vulnerable plaque phenotype. The impact of ColocCaMa on plaque vulnerability is also suggested by their frequent localization in the plaque shoulder. The more superficial calcifications in case of ColocCaMa may be explained by the catabolic action of collagens exerted by macrophages [14], which according to previous studies may even be the starting point of the calcifying process [33] and therefore explain also the more extensive calcium burden.

The dimensions of calcifications showing ColocCaMa are striking. With an average calcium arc of 93.2±59.3° and an average thickness of 0.59±0.22mm, these calcifications are not microcalcifications. However, plaque vulnerability is not only limited to the morphology of a single calcification, but is influenced by many features of plaque vulnerability [4]; in this specific case, ColocCaMa is associated with more extensive macrophage infiltration, a higher number of microcalcifications and more superficial calcifications suggesting a more vulnerable plaque phenotype.

Furthermore, we demonstrated that in spite of a higher plaque inflammation and calcification, the coronary plaques expressing ColocCaMa present a smaller necrotic lipid core. This is surprising, as volumetric parameters of the necrotic lipid core are well known morphological...
risk features, but may partly be due to the natural evolution of the coronary plaque, in which the core itself undergoes a process of calcification [34]. This may also be partly due to the study design including only calcified lesions, which inevitably lead to the exclusion of some lipid-rich plaques. However, coronary segments presenting ColocCaMa showed less advanced lesions with lower MLA and lower degree of stenosis. Given that pathology studies demonstrated an association between macrophage infiltration and the initial phase of atherogenesis [35], such active plaques with ColocCaMa may reflect an early yet vulnerable stadium of coronary atherosclerosis, therefore also with a less extensive lipid content. On the other hand, minimal and mean FCT were not significantly different between lesions with and without ColocCaMa.

We identified as clinical predictors of ColocCaMa a lower HDL-cholesterol and a higher IMT of carotid arteries. However, this is not surprising, as HDL is a widely employed marker of cardiovascular risk and on the other hand IMT represents an easily, non-invasively measurable parameter of systemic atherosclerosis. ColocCaMa, which according to our findings may be considered a marker of a dynamic, high-risk coronary plaque, is therefore associated to other clinical high risk features.

Taken together, these aspects allow to hypothesize that ColocCaMa in the coronary plaques arise in high-risk patients in the early phases of the atherosclerotic process, as demonstrated by less advanced stenotic severity, nevertheless yielding a specific biological activity which rapidly promotes further calcification and inflammation.

However, some limitations of the present study may be taken into account. First of all, although we could identify an association between ColocCaMa and a more extensive plaque calcification as well as a more vulnerable plaque phenotype, due to the retrospective nature of our investigation we are unable to prove causality. Although our work is the first study exploring in vivo the interesting field of ColocCaMa in patients with CAD, further data in larger patient cohorts are required to confirm our findings. Moreover, as this investigation focused on calcified lesions, we cannot draw any conclusions about the magnitude of macrophage infiltration in non-calcified plaques. Due to the exclusion of patients with chronic kidney failure because of ethical reasons linked to the increased need of contrast medium for the OCT investigation, we cannot draw any conclusion about this subpopulation. Furthermore, due to patient selection, we cannot extend our conclusions to patients with ACS, who due to their clinic may express a particularly vulnerable plaque phenotype—further studies are ongoing in order to analyze this specific group.

Conclusion

Plaque macrophages co-localize with calcification in calcified coronary target segments and this is associated with more vulnerable plaque phenotype, greater calcification burden and less advanced lesions. Moreover, this is associated with well-known clinical predictors of systemic atherosclerosis. Our data may add to the understanding of the relationship between plaque macrophages, vascular calcification and their clinical impact.

Author Contributions

Conceptualization: Mathias Burgmaier, Andrea Milzi, Nikolaus Marx, Sebastian Reith.

Data curation: Rosalia Dettori, Kathrin Burgmaier.

Formal analysis: Kathrin Burgmaier.

Investigation: Mathias Burgmaier, Andrea Milzi, Rosalia Dettori, Sebastian Reith.
Methodology: Mathias Burgmaier, Andrea Milzi, Kathrin Burgmaier, Nikolaus Marx.

Supervision: Sebastian Reith.

Writing – original draft: Mathias Burgmaier, Andrea Milzi, Sebastian Reith.

Writing – review & editing: Mathias Burgmaier, Andrea Milzi, Rosalia Dettori, Kathrin Burgmaier, Nikolaus Marx, Sebastian Reith.

References

1. Mozaffarian D, Benjamin EJ, Go AS, Arnett DK, Blaha MJ, Cushman M, et al. Executive Summary: Heart Disease and Stroke Statistics—2016 Update: A Report From the American Heart Association. Circulation. 2016; 133(4):447–54. https://doi.org/10.1161/CIR.0000000000000366 PMID: 26811276

2. Kato K, Yonetsu T, Kim SJ, Xing L, Lee H, McNulty I, et al. Nonculprit plaques in patients with acute coronary syndromes have more vulnerable features compared with those with non-acute coronary syndromes: a 3-vessel optical coherence tomography study. Circ Cardiovasc Imaging. 2012; 5(4):433–40. https://doi.org/10.1161/CIRCIMAGING.112.973701 PMID: 22679059

3. Sinclair H, Bourantas C, Bagnall A, Mintz GS, Kunadian V. OCT for the identification of vulnerable plaque in acute coronary syndrome. JACC Cardiovasc Imaging. 2015; 8(2):198–209. https://doi.org/10.1016/j.jcmg.2014.12.005 PMID: 25677892

4. Burgmaier M, Hellmich M, Marx N, Reith S. A score to quantify coronary plaque vulnerability in high-risk patients with type 2 diabetes: an optical coherence tomography study. Cardiovasc Diabetol. 2014; 13:117. https://doi.org/10.1186/s12933-014-0117-8 PMID: 25248966

5. Kolodgie FD, Burke AP, Farb A, Gold HK, Yuan J, Narula J, et al. The thin-cap fibroatheroma: a type of vulnerable plaque: the major precursor lesion to acute coronary syndromes. Curr Opin Cardiol. 2001; 16(5):285–92. PMID: 11584167

6. Kitabata H, Tanaka A, Kubo T, Takarada S, Kashiwagi M, Tsujioka H, et al. Relation of microchannel structure identified by optical coherence tomography to plaque vulnerability in patients with coronary artery disease. Am J Cardiol. 2010; 105(12):1673–8. https://doi.org/10.1016/j.amjcard.2010.01.346 PMID: 20538113

7. Ehara S, Kobayashi Y, Yoshiyama M, Shimada K, Shimada Y, Fukuda D, et al. Spotty calcification typifies the culprit plaque in patients with acute myocardial infarction: an intravascular ultrasound study. Circulation. 2004; 110(22):3424–9. https://doi.org/10.1161/01.CIR.0000148131.41425.E9 PMID: 15557374

8. Mizukoshi M, Kubo T, Takarada S, Kitabata H, Ino Y, Tanimoto T, et al. Coronary superficial and spotty calcium deposits in culprit coronary lesions of acute coronary syndrome as determined by optical coherence tomography. Am J Cardiol. 2013; 112(1):34–40. https://doi.org/10.1016/j.amjcard.2013.02.048 PMID: 23540654

9. Sakaguchi M, Hasegawa T, Ehara S, Matsumoto K, Mizutani K, Iguchi T, et al. New insights into spotty calcification and plaque rupture in acute coronary syndrome: an optical coherence tomography study. Heart Vessels. 2016; 31(12):1915–22. https://doi.org/10.1007/s00380-016-0820-3 PMID: 26945869

10. Kelly-Arnold A, Maldonado N, Laudier D, Akawa E, Cardoso L, Weinbaum S. Revised microcalcification hypothesis for fibrous cap rupture in human coronary arteries. Proc Natl Acad Sci U S A. 2013; 110(26):10741–6. https://doi.org/10.1073/pnas.1308814110 PMID: 23733926

11. Maldonado N, Kelly-Arnold A, Vengrenyuk Y, Laudier D, Fallon JT, Virmani R, et al. A mechanistic analysis of the role of microcalcifications in atherosclerotic plaque stability: potential implications for plaque rupture. Am J Physiol Heart Circ Physiol. 2012; 303(5):H619–28. https://doi.org/10.1152/ajpheart.00036.2012 PMID: 22774119

12. Vengrenyuk Y, Carlier S, Xanthos S, Cardoso L, Ganatos P, Virmani R, et al. A hypothesis for vulnerable plaque rupture due to stress-induced debonding around cellular microcalcifications in thin fibrous caps. Proc Natl Acad Sci U S A. 2006; 103(40):14678–83. https://doi.org/10.1073/pnas.0606310103 PMID: 17003118

13. Reith S, Milzi A, Dettori R, Marx N, Burgmaier M. Predictors for target lesion microcalcifications in patients with stable coronary artery disease: an optical coherence tomography study. Clin Res Cardiol. 2018.

14. Libby P, Tabas I, Fredman G, Fisher EA. Inflammation and its resolution as determinants of acute coronary syndromes. Circ Res. 2014; 114(12):1867–79. https://doi.org/10.1161/CIRCRESAHA.114.302699 PMID: 24902971
15. New SE, Aikawa E. Role of extracellular vesicles in de novo mineralization: an additional novel mechanism of cardiovascular calcification. Arterioscler Thromb Vasc Biol. 2013; 33(8):1753–8. https://doi.org/10.1161/ATVBAHA.112.307482 PMID: 23766262

16. New SE, Goettsch C, Aikawa M, Marchini JF, Shibasaki M, Yabusaki K, et al. Macrophage-derived matrix vesicles: an alternative novel mechanism for macrocalcification in atherosclerotic plaques. Circ Res. 2013; 113(1):72–7. https://doi.org/10.1161/CIRCRESAHA.113.301036 PMID: 23616621

17. Ikeda K, Souma Y, Akakabe Y, Kitamura Y, Matsu o K, Shimoda Y, et al. Macrophages play a unique role in the plaque calcification by enhancing the osteogenic signals exerted by vascular smooth muscle cells. Biochem Biophys Res Commun. 2012; 425(1):39–44. https://doi.org/10.1016/j.bbrc.2012.07.045 PMID: 22820183

18. Milzi A, Burghmaier M, Burghmaier K, Hellmich M, Marx N, Reith S. Type 2 diabetes mellitus is associated with a lower fibrous cap thickness but has no impact on calcification morphology: an intracoronary optical coherence tomography study. Cardiovasc Diabetol. 2017; 16(1):152. https://doi.org/10.1186/s12933-017-0635-2 PMID: 29195505

19. Tearney GJ, Regar E, Akasaka T, Adriaenssens T, Barlis P, Bezerra HG, et al. Consensus standards for acquisition, measurement, and reporting of intravascular optical coherence tomography studies: a report from the International Working Group for Intravascular Optical Coherence Tomography Standardization and Validation. J Am Coll Cardiol. 2012; 59(12):1085–72. https://doi.org/10.1016/j.jacc.2011.09.079 PMID: 22421299

20. Kume T, Okura H, Kawamoto T, Yamada R, Miyamoto Y, Hayashida A, et al. Assessment of the coronary calcification by optical coherence tomography. EuroIntervention. 2011; 6(6):72–7. https://doi.org/10.4244/EIJV6I6A130 PMID: 21205603

21. Krishnamoorthy P, Vengrenyuk Y, Ueda H, Yoshimura T, Pena J, Motoyama S, Baber U, Hasan C, Kesanakkurthy S, Sweeny JM, et al: Three-dimensional volumetric assessment of coronary artery calcification in patients with stable coronary artery disease by OCT. EuroIntervention 2017, 13:312–319. https://doi.org/10.4244/EIJ-D-16-00139 PMID: 27973330

22. Tearney GJ, Yabusita H, Houser SL, Aretz HT, Jang IK, Schilendorf KH, et al. Quantification of macrophage content in atherosclerotic plaques by optical coherence tomography. Circulation. 2003; 107(1):113–9. PMID: 12515752

23. Phipps JE, Vela D, Hoyt T, Halaney DL, Mancuso JJ, Buja LM, et al. Macrophages and intravascular OCT bright spots: a quantitative study. JACC Cardiovascular Imaging. 2015; 8(1):63–72. https://doi.org/10.1016/j.jcmg.2014.07.027 PMID: 25499133

24. Habara M, Otsuka F, Tsuchiokane E, Terashima M, Nasu K, Kinosita Y, et al. In vivo tissue characterization of human atherosclerotic plaques by optical coherence tomography: A directional coronary atherectomy study with histopathologic confirmation. Int J Cardiol. 2018.

25. Maldonado N, Kelly-Arnold A, Cardoso L, Weinbaum S. The explosive growth of small voids in vulnerable cap rupture; cavitation and interfacial debonding. J Biomech. 2013; 46(2):396–401. https://doi.org/10.1016/j.jbiomech.2014.01.010 PMID: 24503048

26. Huang D, Swanson EA, Lin CP, Schuman JS, Stinson WG, Chang W, et al. Optical coherence tomography. Science. 1991; 254(5035):1178–81. PMID: 1957169

27. Liu H, Yuan L, Xu S, Wang K. Endothelial cell and macrophage regulation of vascular smooth muscle cell calcification modulated by cholesterol-3beta, 5alpha, 6beta-triol. Cell Biol Int. 2007; 31(9):900–7. https://doi.org/10.1016/j.cellbi.2007.02.009 PMID: 17419076

28. Chatrour ML, Cleutjens JP, van der Vusse Gj, Rijiers RB, Mutsaers PH, Schurgers LJ. Intra-Section Analysis of Human Coronary Arteries Reveals a Potential Role for Micro-Calcifications in Macrophage Recruitment in the Early Stage of Atherosclerosis. PLoS One. 2015; 10(11):e0142335. https://doi.org/10.1371/journal.pone.0142335 PMID: 2655788

29. Nadra I, Mason JC, Philippidis P, Florey O, Smythe CD, McCarthy GM, et al. Proinflammatory activation of macrophages by basic calcium phosphate crystals via protein kinase C and MAP kinase pathways: a vicious cycle of inflammation and arterial calcification? Circ Res. 2005; 96(12):1248–56. https://doi.org/10.1161/01.RES.0000171451.88616.c2 PMID: 15905460

30. Aikawa E, Nahrendorf M, Figueiredo JL, Swirska FK, Shaltland T, Kohler RH, et al. Osteogenesis associated with inflammation in early-stage atherosclerosis evaluated by molecular imaging in vivo. Circulation. 2007; 116(24):2841–50. https://doi.org/10.1161/CIRCULATIONAHA.107.732867 PMID: 18040026

31. Derlin T, Tóth Z, Papp L, Wisotzki C, Apostolova I, Habermann CR, et al. Correlation of inflammation assessed by 18F-FDG PET, active mineral deposition assessed by 18F-fluoride PET, and vascular

10.1371/journal.pone.0205984 October 24, 2018
calcification in atherosclerotic plaque: a dual-tracer PET/CT study. J Nucl Med. 2011; 52(7):1020–7. https://doi.org/10.2967/jnumed.111.087452 PMID: 21680686

33. Basalyga DM, Simionescu DT, Xiong W, Baxter BT, Starcher BC, Vyavahare NR. Elastin degradation and calcification in an abdominal aorta injury model: role of matrix metalloproteinases. Circulation. 2004; 110(22):3480–7. Otsuka F, Sakakura K, Yahagi K, Joner M, Virmani R. Has our understanding of calcification in human coronary atherosclerosis progressed? Arterioscler Thromb Vasc Biol. 2014;34(4):724–36. https://doi.org/10.1161/01.CIR.000048367.08413.E9 PMID: 15545515

34. Otsuka F, Sakakura K, Yahagi K, Joner M, Virmani R. Has our understanding of calcification in human coronary atherosclerosis progressed? Arterioscler Thromb Vasc Biol 383 Biol. 2014; 34(4):724–36.

35. Kortelainen ML, Porvari K. Adventitial macrophage and lymphocyte accumulation accompanying early stages of human coronary atherogenesis. Cardiovasc Pathol. 2014; 23(4):193–7. https://doi.org/10.1016/j.carpath.2014.03.001 PMID: 24685316