Lack of Association between Genetic Polymorphisms in Enzymes Associated with Folate Metabolism and Unexplained Reduced Sperm Counts

Celia Ravel1,2, Sandra Chantot-Bastaraud1,5, Clementine Chalmey1, Luis Barreiro3, Isabelle Aknin-Seifer4, Jerome Pfeffer6, Isabelle Berthaut2, E. Emmanuelle Mathieu2, Jacqueline Mandelbaum2, Jean-Pierre Siffroi5, Ken McElreavey1*, Anu Bashamboo1

1 Human Developmental Genetics, Institut Pasteur, Paris, France, 2 ER9, Université Pierre et Marie Curie Paris 6, AP-HP, Hôpital Tenon Service d’Histologie-Biologie de la Reproduction, Paris, France, 3 Génétique des Populations, Institut Pasteur, Paris, France, 4 Laboratoire de Biologie de la Reproduction, Service de Génétique Moléculaire, CHU-Hopital Nord, Saint Etienne, France, 5 AP-HP, Hôpital Trousseau, Service de génétique et d’Embryologie médicales, Paris, France, 6 Laboratoire Zerah Taar Pfeffer, Bagnolet, France

Abstract

Background: The metabolic pathway of folate is thought to influence DNA stability either by inducing single/double stranded breaks or by producing low levels of S-adenosyl-methionine leading to abnormal gene expression and chromosome segregation. Polymorphisms in the genes encoding enzymes in the folate metabolism pathway show distinct geographic and/or ethnic variations and in some cases have been linked to disease. Notably, the gene Methylene tetrahydrofolate reductase (MTHFR) in which the homozygous (TT) state of the polymorphism c.665C>T (p.A222V) is associated with reduced specific activity and increased thermolability of the enzyme causing mild hyperhomocysteinemia. Recently several studies have suggested that men carrying this polymorphism may be at increased risk to develop infertility.

Methodology/Principal Findings: We have tested this hypothesis in a case/control study of ethnic French individuals. We examined the incidence of polymorphisms in the genes MTHFR (R68Q, A222V and E429A), Methionine synthase reductase MTRR; (I22M and S175L) and Cystathionine beta-synthase (CBS; G307S). The case population consisted of DNA samples from men with unexplained azoospermia (n = 70) or oligozoospermia (n = 182) and the control population consisted of normospermic and fertile men (n = 114). We found no evidence of an association between the incidence of any of these variants and reduced sperm counts. In addition haplotype analysis did not reveal differences between the case and control populations.

Conclusions/Significance: We could find no evidence for an association between reduced sperm counts and polymorphisms in enzymes involved in folate metabolism in the French population.

Introduction

The metabolism of folate is key for the maintenance of genome integrity due to its role in DNA synthesis, repair and methylation [1,2]. Methylene tetrahydrofolate reductase (MTHFR) catalyzes the reduction of 5, 10-methylene tetrahydrofolate to 5-methyltetrahydrofolate (MTHF), the predominant circulatory form of folate and carbon donor for the re-methylation of homocysteine to methionine. Thus, MTHFR is thought to participate in the provision of nucleotides essential for DNA synthesis and repair. Methionine, in its activated form, S-adenosyl methionine (SAM), is the methyl donor of many biologic transmethylation reactions [1,2]. A decreased pool of methionine may therefore also affect DNA methylation and this is supported by the observation that some MTHFR variants are associated with DNA hypomethylation [3].

Several polymorphisms have been described that result in amino acid changes, which could lead to altered MTHFR enzymatic activity [1,4]. A base change from C to T at nucleotide position 665 (also known as C677T) of the MTHFR gene results in the substitution of valine for alanine (p.A222V). Both heterozygous Ala/Val and homozygous Val/Val variants have reduced MTHFR enzyme activity compared with the homozygous Ala/Ala form, due to increased thermolability of the protein [5]. When compared to 665CC individuals, carriers of 665TT have ~34% residual MTHFR activity and 665CT individuals have ~71% residual MTHFR activity measured in vitro [6]. Individuals (particularly with a low folate status) carrying these variants can present with mild hyperhomocysteinemia [5].

A second polymorphism in MTHFR (c.A1286G; p.E429A) also results in reduced enzymatic activity in vitro, but by itself, it is...
not associated with higher plasma homocysteine (Hcy) or a lower plasma folate concentration [7]. However, combined heterozygosity with the c.655C>T polymorphism is associated with reduced MTHFR-specific activity, higher Hcy, and decreased plasma folate levels [7]. Both the c.1296A>C and c.665C>T polymorphism are associated with DNA hypomethylation [3]. A third MTHFR polymorphism leading to an arginine to glutamine change (c.203G>A; p.R68Q) has been described but the effect of this change on enzymatic activity is unknown.

Methylenetetrahydrofolate homocysteine methyltransferase (MTR) converts 5-methyltetrahydrofolate and homocysteine to tetrahydrofolate and methionine. Methionine synthase reductase (MTRR) plays a crucial role in maintaining the active state of MTR through the reductive methylation of cobalamin. Disturbances in the catalytic activity of MTRR could lead to higher levels of Hcy, and this can be a risk factor for neural tube defects (NTD) [8,9]. The most common polymorphism reported is the p.I22M polymorphism associated with DNA hypomethylation [3]. A third key enzyme in folate metabolism is cystathionine β-synthase (CBS). This polymorphism is an isoleucine to methionine change at position 22 (c.66A>G, p.I22M). Although the p.I22M polymorphism does not appear to alter the catalytic activity of the protein, the 66GG genotype is associated with a modest but significant decrease in plasma tHcy levels [10]. Other association studies have suggested that the p.I22M polymorphism is modest risk factor for Down syndrome [11] and NTD [9]. A second common MTRR polymorphism, c.524C>T (p.S175L), has been investigated in only a single study, which failed to detect an association between this polymorphism and NTDs [12].

A third key enzyme in folate metabolism is cystathionine β-synthase (CBS), which catalyzes irreversible cystathionine synthesis from homocysteine and serine. Disturbances in this process can lead to an increased cellular Hcy level and the most common type of inherited homocystinuria in the human is caused by a deficiency in CBS. Cystathionine is a substrate for cysteine synthesis, which is catalyzed by cystathioninase. The gene encoding cystathionine synthase (CBS) has been localized on chromosome 21 (21q22.3) in a region correlated with Down syndrome phenotype. A frequent mutation in the CBS gene in Caucasians, c.919G>A (p.G307S), is one of the most common causes of homocystinuria in patients of Celtic origin [13] and this mutation accounts for 71% of alleles in Irish homocystinuria patients [14]. This mutation has been described in individuals of French, Scottish, English and Irish Ancestry [13–13] and is probably specific for North-west European populations.

Recently several association studies have suggested that polymorphic variants in the MTHFR gene may be associated with reduced sperm counts in the human leading to male infertility in some populations [16–23]. Here, we describe an association study between 3 variants in MTHFR, two variants in MTRR and the p.G307S mutation in the CBS gene and reduced sperm counts in otherwise healthy individuals of French ethnic origin that sought treatment for infertility. We failed to detect an association between any of these variants and unexplained reduced sperm counts leading to male infertility. These data suggest that in our study population, genetic variants in enzymes involved in folate metabolism do not have a significant impact on sperm counts.

Materials and Methods

Patient Recruitment

Patients presenting with idiopathic infertility or normospermic fertile donors were recruited from Tenon Hospital, Paris and Saint-Etienne Hospital, Saint-Etienne. All patients and controls were of French ethnic origin as determined by self-report of patients. Exclusion criteria included known genetic causes of infertility such as chromosome anomalies, Y chromosome AZF deletions [24] and presumed genetic risk factors for male infertility [Y chromosome gr/gr deletions; 25]. The final clinical breakdown of the study population was azoospermic (n = 70), oligozoospermic (<20 x 10⁶ sperm/ml; n = 182), normozoospermic and fertile (>20 x 10⁶ sperm/ml and father of at least one child; n = 114). Semen analysis was performed on at least two separate occasions.

Ethics Statement

All patients provided informed consent prior to participation in this study. The study was approved by the Comite Consultatif de

Table 1. SNPs investigated in this study together with the PCR primers and detection method.

Gene	Chrom.	SNP	NCBI A.N.	AA substitution	Base change	Detection method	PCR primers	AT	FS (bp)	DFS (bp)
MTHFR	1	c.203G>A	rs2066472	p.R68Q	A/G	PCR+Taql dig	5’CCA TGG GAA TCT GGT GAC AA3’ 5’ACC TGG CAT GAG TTT ACC TG3’	56 C	101	48+53
		c.665C>T	rs1801133	p.A222V	C/T	PCR+HinfI dig	5’CCA AAG GCC ACC CGG AAG3’ 5’GAA AGA TCC CGG GGA CGA TG3’	56 C	180	75+105
		c.1286A>C	rs1801131	p.E429A	A/C	PCR+Mbol dig	5’CTT TGG GGA GCT GAA GGA CTA CTA C3’ 5’CAC TTT GTG ACC ATT CCG GTT TG3’	56 C	163	56+31+30 +28+18
MTRR	5	c.66A>G	rs1801394	p.I22M	A/G	PCR+Ndel dig	5’GCA AAG GCC ATC GCA GAA GAC3’ 5’TGG TAT TAG TGT CCT TT3’	56 C	172	22+157
		c.524C>T	rs1352268	p.S175L	C/T	PCR+Taql dig	5’GCT GGA TTG GTG GAC TCT G3’ 5’AGC AGC TCT GAC TTC ACA AGG3’	56 C	133	101+32
CBS	21	c.919G>A	-	p.G307S	A/G	PCR+Pvul dig	5’ATC ATT GGG GTG CAT CCCCA 3’ 5’ACC GTG GGG ATG TCG CAG3’	60 C	113	92+21

Chrom: Chromosome.
SNP: single nucleotide polymorphism.
NCBI A.N: NCBI Accession Number.
AA: Amino Acid.
Dig: Digestion.
AT: Annealing Temperature.
FS: Fragment size.
DFS: Digestion Fragment size.

doi:10.1371/journal.pone.0006540.t001

Folate and Infertility
Table 2. The allelic frequencies and associations between reduced sperm counts and common polymorphisms in the MTHFR gene.

Gene	SNP	AA substitution	Genotype	Cases	Controls	Odds Ratio (95%CI)	Chi²	p value				
MTHFR	c.203G>A	p.R68Q	GG	69	175	113	99.12	1.286	0.2568			
			AA	0	2	0	0					
			AG	1	5	1	0.88	1.638 (0.101–26.615)	0.123	1.261	0.7262	0.2614
			AA+AG	1	7	1	0.88	1.638 (0.101–26.615)	0.123	2.35	0.7262	0.1253
			A allele frequency	1	9	1	0.88	1.638 (0.101–26.615)	0.123	3.497	0.7262	0.0615
	c.665C>T	p.A222V	CC	33	85	49	42.98					
			CT	31	70	52	45.62	0.885 (0.473–1.656)	0.146	0.98	0.7028	0.3221
			TT	6	25	13	11.4	0.685 (0.237–1.984)	0.489	0.071	0.4845	0.7894
			CT+TT	37	95	65	57.02	0.845 (0.465–1.537)	0.304	0.506	0.5815	0.477
			T allele frequency	43	120	78	34.21	0.819 (0.460–1.459)	0.462	0.27	0.4966	0.6031
	c.1286A>C	p.E429A	AA	34	97	54	47.79					
			AC	28	66	46	40.71	0.967 (0.512–1.827)	0.011	0.769	0.917	0.3804
			CC	7	18	13	11.5	0.855 (0.31–2.357)	0.091	0.421	0.7623	0.5162
			AC+CC	35	84	59	52.21	0.942 (0.517–1.715)	0.038	0.938	0.8455	0.3328
			C allele frequency	42	102	72	31.86	0.926 (0.522–1.643)	0.068	1.075	0.7941	0.2999
Molecular analysis

Single-nucleotide polymorphism analysis. A total of 6 single-nucleotide polymorphism (SNPs) in key genes in folates metabolism where selected for this study. In this study, we used a combination of direct sequencing of PCR products and PCR/restriction fragment length polymorphism (RFLP) assays and genotyped the SNPs in well-defined ethnic French case and control populations. The methodology and the oligonucleotides used in the study are outlined in table 1.

Genotyping. A PCR protocol was applied in genotyping all SNPs. PCR was carried out in a volume of 25 μl containing 30 ng genomic DNA, 1.5 mM MgCl₂, 200 mM each deoxynucleotide triphosphate, 2 μM each primer, 0.5 U Taq DNA polymerase (Bioline, London, U.K.) and 10× reaction buffer. PCR consisted of an initial denaturation at 94°C for 10 min, followed by 33 cycles of 94°C for 30 s, annealing temperature (table 1) for 30 s, and 72°C for 30 s, with a 7-min 72°C final extension. The PCR amplicons were digested by those restriction endonucleases corresponding to their respective SNPs (New England Biolabs, Beverly, Mass.). Digestion products were electrophoresed on a 3% agarose gel. In addition, the allelic status of 96 DNA samples was confirmed by direct sequencing of PCR products to validate the results obtained by RFLP-PCR.

Statistical analysis

In order to assess a possible distortion in allele frequencies between cases and controls, for the different polymorphisms tested, we performed a chi-square test with one degree of freedom for both allelic and genotypic distributions between the groups of cases and controls. Further, we tested if certain allelic combinations could be associated with an increased risk of infertility in any of the genes. For that, we reconstructed haplotypes from unphased genotypic data using the accelerated Expectation Maximization algorithm implemented in Haploview v3.1. Association testing for the haplotypes as well as the measure of linkage disequilibrium (D') between all pairs of SNPs was performed using the same software. p value was determined using a χ² test for the distribution of haplotype alleles between the cases and controls. Significant associations were defined by a p-value below 0.05. Haplotypes occurring at less than 1% frequency were excluded from the analysis.

Results

We analysed 3 MTHFR common variants (c.203G>A; p.R68Q; c.665C>T; p.A222V and c.1286A>G; p.E429A), 2 MTRR polymorphisms (c.66A>G; p.I22M and c.524C>T; p.S175L) and one CBS mutation (c.919G>A; p.G307S). We compared the distributions of the MTHFR and MTRR genotypes between the cases and controls (tables 2 and 3). The MTHFR genotypes distribution for the c.665C>T (p.A222V) and c.1286A>G (p.E429A) polymorphism were in Hardy-Weinberg equilibrium (respectively p = 0.20 and p = 0.22), but not for the c.203G>A (p.R68Q) polymorphism (p = 0.002). For this polymorphism, genotypic distributions was in Hardy-Weinberg equilibrium for cases with azoospermia (p = 1) but not for cases with oligozoospermia (p = 0.0002). The MTRR genotypes distribution for the c.524C>T (p.S175L) polymorphism was in Hardy-Weinberg equilibrium (p = 0.091) but not for the c.66A>G (p.I22M) polymorphism (p = 0.015). The lack of Hardy-Weinberg equilibrium for some of the alleles may be due to the small sample size.

Gene	SNP	AA substitution	Genotype	Cases	Controls	Odds Ratio (95% CI)	Chi²	p value							
				Azoospermic	Oligozoospermic										
				Azoo	Oligo	Azoo	Oligo	Azoo	Oligo						
				n	%	n	%	n	%	Azoospermic	Oligozoospermic	Case	Control		
				32	28.79	61	35.26	42	37.94	Azoospermic	Oligozoospermic	Case	Control		
				19	28.79	61	35.26	42	37.94	Azoospermic	Oligozoospermic	Case	Control		
				8	12.12	19	10.98	12	10.81	Azoospermic	Oligozoospermic	Case	Control		
				47	71.21	112	64.74	69	62.16	Azoospermic	Oligozoospermic	Case	Control		
				55	41.67	131	37.86	81	36.49	Azoospermic	Oligozoospermic	Case	Control		
				29	41.43	61	35.33	47	58.57	Azoospermic	Oligozoospermic	Case	Control		
				30	42.86	78	43.87	35	57.14	Azoospermic	Oligozoospermic	Case	Control		
				11	15.71	40	22.35	16	14.42	Azoospermic	Oligozoospermic	Case	Control		
				41	58.57	118	37.86	76	62.14	Azoospermic	Oligozoospermic	Case	Control		
these markers has been noted elsewhere and this could be a signature of either, genetic drift, non-random mating patterns or an indication of selection acting on specific genotypes. If the latter hypothesis is correct we do not have evidence that this is due to an affect of reduced sperm counts in the male. For all the polymorphisms we did not observe any statistically significant association with reduced sperm counts in the French population. There was no association between the two phenotypes (azoospermia or oligozoospermia). The Bonferroni correction was not applied since significance was not observed with all markers between the case and control cohorts.

The MTHFR c.665C and c.1286C polymorphic sites are only 2.1 kb apart and are in strong linkage disequilibrium (see figure 1). It has been suggested that these polymorphisms are the result of independent founder effects in which each variant evolved on a separate wild-type allele.

We did not identify any individual carrying the CBS c.919G>A (p.G307S) mutation.

Haplotype analysis

Haplotypes for the MTHFR and MTRR genes were reconstructed using the accelerated Expectation Maximization algorithm implemented in Haploview v3.1. We identified three haplotypes that characterize 93% of all haplotypic diversity in the MTHFR gene. There was no statistical significant difference in the distribution of these haplotypes between case and control cohorts. The analysis of the MTRR gene revealed 4 major haplotypes. There was no difference in the distribution of the haplotypes between the case and control groups (tables 4 and 5).

Discussion

Changes in folate status could affect spermatogenesis in two ways: 1) by causing DNA hypomethylation and thereby disrupting gene expression and 2) inducing uracil misincorporation during DNA synthesis leading to errors in DNA repair, strand breakage and chromosomal anomalies. There is considerable experimental evidence that key enzymes in the folate metabolism are necessary for male spermatogenesis. Mice that lack the Mthfr gene exhibit hyperhomocystenemia, significantly decreased S-adenosylmethionine levels, global DNA hypomethylation and developmental retardation with severe neuropathology [26]. These mice also showed delayed maturation of the external genitalia but appeared to be fertile [26]. However, extensive backcrossing of these mice to a BALB/c background resulted in spermatogenic failure during early postnatal development and resultant complete male infertility [27]. Fertility could be restored in a subset of Mthfr−/− mice by supplementing the diet with betaine, a choline directive that can serve as an alternative methyl donor for the remethylation of methionine.

![Figure 1. Haplotype organisation of the MTHFR gene in the CEPH pedigrees.](image-url)
Table 4. Associations between reduced sperm counts and the most common MTHFR haplotypes.

Haplotype	Frequency	Cases (alleles)	Controls (alleles)	Chi²	p
	n (%)	n (%)	n (%)		
GCA	0.400	201 40.26	87 38.07	0.217	0.6410
GTA	0.290	144 28.78	65 28.33	0.0020	0.9627
GCC	0.261	127 25.48	60 26.4	0.114	0.7360
GTC	0.034	13 2.68	11 5.0	2.647	0.1037

Table 5. Associations between reduced sperm counts and the most common MTRR haplotypes.

Haplotype	Frequency	Cases (alleles)	Controls (alleles)	Chi²	p
	n (%)	n (%)	n (%)		
GC	0.352	165 33.02	78 34.12	0.032	0.8580
GT	0.270	125 24.98	61 26.84	0.199	0.6556
AC	0.229	109 21.78	49 21.58	0.021	0.8860
AT	0.149	73 14.62	30 13.07	0.393	0.5310

Acknowledgments

We want to thank Joelle Bignon-Topalovic for technical support.

Author Contributions

Conceived and designed the experiments: KM AB. Performed the experiments: CR SCB CC KM. Analyzed the data: CR CC LBB KM. Contributed reagents/materials/analysis tools: CR SCB IAS JP IB JM JPS. Wrote the paper: CR KM AB.
Table 6. Summary of published associations between the MTHFR C667T variant and unexplained male infertility.

Infertile	MTHFR 665 genotype (%)	Controls	MTHFR 665 genotype (%)	Odds Ratio (CI) 95% CI	Chi² Population
Bezold et al 2001	255 CC: 114 (44.7)	200 CC: 92 (46)	0.843 (0.565–1.258)	p = 0.4	Not defined
Stuppia et al. 2003	93 CC: 37 (39.8)	105 CC: 33 (31.4)	0.767 (0.403–1.460)	p = 0.4193	Caucasian
Singh et al. 2005	151 CC: 105 (69.5)	200 CC: 163 (81.5)	1.678 (1.008–2.795)	p = 0.04	Indian
Park et al. 2005	373 CC: 105 (28.15)	396 CC: 145 (36.62)	1.42 (1.03–1.95)	p = 0.0319	Korean
Lee et al. 2006	360 CC: 115 (31.94)	325 CC: 118 (36.31)	1.21 (0.88–1.67)	p = 0.2287	Korean
A et al. 2007	355 CC: 130 (36.6)	252 CC: 128 (50.8)	1.72 (1.07–2.76)	p = 0.023	Chinese
Dhillon et al. 2007	179 CC: 81 (45.25)	200 CC: 70 (35)	1.5 (0.97–2.33)	p = 0.076	Indian
This study 2008	250 CC: 118 (47.2)	114 CC: 49 (42.98)	0.907 (0.503–1.294)	p = 0.3718	Caucasian
	CT: 101 (40.4)	CT: 52 (45.62)	0.807 (0.503–1.294)	p = 0.9789	(French)
	CT: 31 (12.4)	CT: 13 (11.40)	0.990 (0.478–2.051)	p = 0.4539	
	CT: 132 (52.8)	CT: 65 (57.02)	0.843 (0.540–1.317)	p = 0.4539	

References

1. Donnelly JG (2001) Folic acid. Crit Rev Clin Lab Sci 38: 183–223.
2. Fowler B (2005) Homocysteine: overview of biochemistry, molecular biology, and role in disease processes. Semin Vasc Med 5: 77–86.
3. Castro R, Rivera I, Ravasco P, Camilo ME, Jakobs C, et al. (2004) 5,10-methylenetetrahydrofolate reductase (MTHFR) 677C→T and 1298A→C mutations are associated with DNA hypomethylation. J Med Genet 41: 454–8.
4. Toffoli G, De Mattia E (2008) Pharmacogenetic relevance of MTHFR polymorphisms. Pharmacogenomics 9: 1195–206.
5. Frost P, Blom HJ, Milos R, Goossens H, Sheppard CA, et al. (1995) A candidate genetic risk factor for vascular disease: a common mutation in methylene-tetrahydrofolate reductase activity due to the 677C→T mutation in families with spina bifida offspring. J Mol Med 74: 691–4.
6. van de Put NM, Gabreels F, Stevens EM, Smetsink J, Trijbels EJ, et al. (1995) A second common mutation in the methylenetetrahydrofolate reductase gene: an additional risk factor for neural-tube defects? Am J Hum Genet 57: 1044–51.
7. Leclerc D, Wilson A, Platt R, Christensen B, et al. (1999) A common variant in methionine synthase reductase combined with low cobalamin (vitamin B12) increases risk for spina bifida. Mol Genet Metab 67: 317–23.
8. Gaughan DJ, Kluijtmans LA, Barbaux S, McMaster D, Young IS, et al. (2001) The methionine synthase reductase (MTRR) A66G polymorphism is a novel genetic determinant of plasma homocysteine concentrations. Atherosclerosis 157: 451–6.
9. O’Leary VB, Parle-McDermott A, Molloy AM, Kirke PN, Johnson Z, et al. (2002) MTRR and MTHFR polymorphism: link to Down syndrome? Am J Med Genet 107: 151–5.
12. O’Leary VB, Mills JL, Pangilinan F, Kirke PN, Cox C, et al. (2005) Analysis of methionine synthase reductase polymorphisms for neural tube defects risk association. Mol Genet Metab 85: 220–7.

13. Kraus JP (1994) Komrower Lecture. Molecular basis of phenotype expression in homocystinuria. J Inherit Metab Dis 17: 383–90.

14. Gallagher PM, Ward P, Tan S, Naughten E, Kraus JP, et al. (1995) High frequency (71%) of cystathionine beta-synthase mutation G307S in Irish homocystinuria patients. Hum Mutat 6: 177–80.

15. Hu FL, Gu Z, Kosich V, Kraus JP, Ramesh V, et al. (1993) Molecular basis of cystathionine beta-synthase deficiency in pyridoxine responsive and nonresponsive homocystinuria. Hum Mol Genet 2: 1857–60.

16. Bezold G, Lange M, Peter RU (2001) Homozygous methylenetetrahydrofolate reductase C677T mutation and male infertility. N Engl J Med 344: 1172–3.

17. Park JH, Lee HC, Jeong YM, Chung TG, Kim HJ, et al. (1995) High frequency (71%) of cystathionine beta-synthase mutation G307S in Irish homocystinuria patients. Hum Mutat 6: 177–80.

18. Singh K, Singh SK, Sah R, Singh I, Raman R (2005) Mutation C677T in the methylenetetrahydrofolate reductase gene is associated with male infertility in an Indian population. Int J Androl 28: 115–9.

19. Lee HC, Jeong YM, Lee SH, Cha KY, Song SH, Kim NK, Lee KW, Lee S (2006) Association study of four polymorphisms in three folate-related enzyme genes with non-obstructive male infertility. Hum Reprod 21: 3162–70.

20. Dhillon VS, Shahid M, Husain SA (2007) Associations of MTHFR/DNMT3b 4977 bp deletion in mtDNA and GSTM1 deletion, and aberrant CpG island hypermethylation of GSTM1 in non-obstructive infertility in Indian men. Mol Reprod Dev 73: 213–22.

21. Stuppia L, Gatta V, Scarciolla O, Colovosio A, Guanciali-Franchi P, et al. (2003) The methylenetetrahydrofolate reductase (MTHFR) C677T polymorphism and male infertility in Italy. J Endocrinol Invest 26: 620–2.

22. A ZC, Yang Y, Zhang SZ, Li N, Zhang W (2007) Single nucleotide polymorphism C677T in the methylenetetrahydrofolate reductase gene might be a genetic risk factor for infertility in Chinese men with azoospermia or severe oligozoospermia. Asian J Androl 9: 57–62.

23. McElreavey K, Krausz C, Bishop CE (2000) The human Y chromosome and male infertility. Resusc Probl Cell Differ 20: 211–32.

24. Machev N, Saat N, Longepied G, Teriou F, Navarro A, et al. (2004) Sequence family variant loss from the AZFa interval of the human Y chromosome, but not gene copy loss, is strongly associated with male infertility. J Med Genet 41: 814–23.

25. Chen Z, Kazaglis AC, Ackerman SL, Pogribny IP, Melnyk S, et al. (2001) Mice deficient in methylenetetrahydrofolate reductase exhibit hyperhomocysteinemia and decreased methylation capacity, with neuropathology and aortic lipid deposition. Hum Mol Genet 10: 833–43.

26. Kelly TL, Neaça OR, Scholau BC, Röser R, Trader JM (2005) Infertility in 5,10-methylenetetrahydrofolate reductase (MTHFR)-deficient male mice is partially alleviated by lifetime dietary betaine supplementation. Biol Reprod 72: 667–77.

27. Bentivoglio G, Melica F, Cristoforoni P (1993) Folic acid in the treatment of human male infertility. Fertil Steril 60: 698–701.

28. Stevenson RE, Schwartz CE, Du YZ, Adams MJ Jr (1997) Differences in methylenetetrahydrofolate reductase genotype frequencies between Whites and Blacks. Am J Hum Genet 60: 229–30.

29. Clayton DG, Walker NM, Smyth DJ, Pask R, Cooper JD, et al. (2005) Population structure, differential bias and genomic control in a large-scale, case-control association study. Nat Genet 37: 1243–6.

30. Botto LD, Yang Q (2000) 5,10-Methylenetetrahydrofolate reductase gene variants and congenital anomalies: a HuGE review. Am J Epidemiol 151: 862–77.

31. Wang WY, Barratt BJ, Clayton DG, Todd JA (2005) Genome-wide association studies: theoretical and practical concerns. Nat Rev Genet. 6: 109–18.

32. Botto LD, Yang Q (2000) 5,10-Methylenetetrahydrofolate reductase gene variants and congenital anomalies: a HuGE review. Am J Epidemiol 151: 862–77.

33. Purcell S, Cherny SS, Sham PC (2003) Genetic power calculator: design of linkage and association genetic mapping studies of complex traits. Bioinformatics 19: 149–50.

34. O’Leary VB, Mills JL, Pangilinan F, Kirke PN, Cox C, et al. (2005) Analysis of methionine synthase reductase polymorphisms for neural tube defects risk association. Mol Genet Metab 85: 220–7.