Supplemental Online Content

Shahjouei S, Li J, Koza E, et al. Risk of subsequent stroke among patients receiving outpatient vs inpatient care for transient ischemic attack: a systematic review and meta-analysis. JAMA Netw Open. 2022;5(1):e2136644. doi:10.1001/jamanetworkopen.2021.36644

eAppendix. Search Protocols

eTable 1. Mixed-Effect Models Considering Different Possible Moderators

eTable 2. Mixed-Effect Model Considering ABCD² Scores

eTable 3. Excluded Studies

eTable 4. Heterogeneity and Risk of Stroke Assessment Based on Different Estimators

eTable 5. Comparison of Risk Estimates

eTable 6. Publication Bias Assessment

eTable 7. Risk-of-Bias Assessment Based on ROBINS-E Tool

eFigure 1. Funnel Plots

eFigure 2. Risk of Subsequent Ischemic Stroke Within 2 Days

eFigure 3. Risk of Subsequent Ischemic Stroke Within 30 Days

eFigure 4. Sensitivity Analysis: Risk of Subsequent Ischemic Stroke Within 2 Days

eFigure 5. Sensitivity Analysis: Risk of Subsequent Ischemic Stroke Within 7 Days

eFigure 6. Sensitivity Analysis: Risk of Subsequent Ischemic Stroke Within 30 Days

eFigure 7. Sensitivity Analysis: Risk of Subsequent Ischemic Stroke Within 90 Days

eReferences.

This supplemental material has been provided by the authors to give readers additional information about their work.
eAppendix. Search Protocols

1. Medline via Ovid
2. and All EBM reviews via Ovid

Statement 1 AND statement 2 AND statement 3 AND statement 4

Statement 1: Transient Ischemic Attack

(exp Ischemic Attack, Transient/) or (transient isch?emic attack$.mp.) or (TIA.mp.) or (transient neurologic$ attack$.mp.) or (TNA.mp.) or (mini-stroke.mp.) or (minor adj2 stroke.mp.) or (transient focal neurologic$ symptom$.mp.) or (transient focal neurologic$ dysfunction$.mp.)

Statement 2: Care Setting - Format search as Part 1 or Part 2 or Part 3

Part 1
(exp ambulatory care facilities/) or (ambulatory care facilit$.mp.) or (clinic$.mp.) or (exp Ambulatory Care/) or (exp Outpatient Clinics, Hospital/) or (exp Outpatients/) or (exp Mobile Health Units/) or (exp Outpatients/) or (exp Outpatient Clinics, Hospital/) or (exp Emergency Service, Hospital/) or (exp Monitoring, Ambulatory/) or (exp Self-Care Units/) or (exp Clinical Observation Units/) or (exp Secondary Prevention/) or ((initial or urgent or rapid or semi?urgent or emergency) adj3 (evaluation$ or assessment$ or care))

Part 2
(initial adj3 management$.mp) or (primary adj3 management$.mp.) or ((rapid or urgent or semi?urgent) adj3 diagnos$$.mp.) or (model adj2 care$.mp.) or (exp Triage/) or (post?TIA care.mp.) or (TIA adj2 consult$.mp.) or (stroke adj2 specialist$.mp.) or (stroke adj2 clinician$) or (service location.mp.) or (service modification$.mp.) or (service configuration.mp.) or (prevention$ clinic$.mp) or (acute care.mp.) or (exp subacute care/) or (acute adj2 management.mp.) or (exp Disease Management/)

Part 3
(care resource$.mp) or (structure$ adj2 program$.mp.) or (exp referral and consultation/) or (disposition adj2 TIA.mp.) or (disposition adj2 transient isch?emic attack$.mp.) or (disposition adj2 ED.mp.) or (disposition adj2 emergency department$.mp.) or (exp caregivers/) or (care?giv$.mp.) or (care?giver$ guide$.mp.) or (care?giver$ practice$.mp.) or (care?giver$ team$.mp.) or (pathway$.mp) or (pre?hospital$.mp.) or (ambu$lance$.mp.) or (para?medic$.mp.) or (risk$ stratification$.mp.)

Statement 3: Outcomes - Subsequent Cerebral Ischemia, LOS, mortality, readmission

(exp cerebrovascular disorders/) or (Hypoxia-Ischemia, Brain/) or (exp Brain Ischemia/) or (exp stroke/) or (exp cerebral infarction/) or (exp Brain Infarction/) or (Brain adj2 Infarct$.mp.) or (endovascular.mp.) or (cerebr$ artr$ occlusion$.mp.) or (cerebr$ vascul$infrac$mp.) or (cerebrovasc$ infarct$.mp.) or (cerebr$ vasc$ event$.mp.) or (cerebrovasc$ event$.mp) or (cerebr$ vasc$ accident$.mp.) or (cerebrovasc$ accident$.mp.) or (cva.mp.) or (cerebr$ infarct$.mp) or (cerebr$ isch$emia$.mp.) or (medullary infarct$.mp.) or (subsequent adj2 stroke.mp.) or (recur$ adj2 stroke.mp) or (minor adj2 stroke) or (recur$ adj2 isch$emia.mp.) or (length adj3 stay) or (exp mortality/) or (exp death/) or (re?admission$ adj2 stroke) or exp patient readmission/ or exp length of stay/ or (exp Survival/) or survival.mp

Statement 4: Methods of measuring/assessing – Format search as: Part 1 or Part 2 or Part 3 or Part 4 or Part 5 or Part 6 or Part 7

Part 1
(evaluation studies/) or (evaluation studies as topic/) or ("evaluation studies".pt.) or ("validation studies".pt.) or (exp evaluation studies as topic/) or (Pilot projects/) or (program evaluation/) or (validation studies as topic/) or (Intervention Studies/) or (((pre- adj5 post-) or (pretest adj5 posttest)) and (program$ adj6 evaluat$))

Part 2
comparative study.pt or (before adj3 after) or prognos$ or prediction$ or predictor$ or (disease adj3 (course or progression))

Part 3
(modifier$1) or (mediator$1) or (natural histor$) or ((precision or individuali?ed or personali?ed or stratified or systems) adj3 medicine) or (exp models, statistical/) or cohort$ or (follow-up$ adj3 stud$) or case?control or case?controlled

Part 4
((prospective$ or longitudinal or observation$) adj3 stud$) or time series.mp or (exp incidence/) or (exp follow-up studies/) or registries/ or (systematic review) or (structured review.ti.) or (exp Clinical Trials as Topic/) or (clinical trial$) or (randomised controlled trial$) or (randomised trial$) or (workgroup$) or (Practice Guideline/) or (standard$ adj3 reporting)

Part 5
congresses.pt or Delphi Technique/ or (consensus development conference.pt) or (priorit$ symptom$) or (endpoint determination/) or (consensus development conference/) or (patient participation/) or consensus.mp or workshop or (Consensus Development Conferences, NIH as Topic/) or outcome$ or (end point$) or (core adj3 set) or (treatment emergent problem$) or (exp outcome Assessment Health Care/) or (Treatment Outcome/) or (Quality of Life/) or (patient$ adj2 perspective$)

Part 6
(clinical trial) adj 4 design$ or (exp patient outcome assessment/) or (exp delivery of health care/) or (exp epidemiologic studies/) or (exp clinical pathway/) or (exp clinical protocol/) or (exp consensus/) or (exp consensus development conference/) or (exp consensus development conferences as topic/) or (critical pathways/) or (exp guideline/) or (guidelines as topic/) or (exp practice guideline/) or (practice guidelines as topic/) or (health planning guidelines/) or (exp treatment guidelines/) or (guideline or practice guideline or consensus development conference or consensus development conference, NIH).pt

Part 7
position statement$ or policy statement$ or practice parameter$ or best practice$ or standards or guideline$ or consensus$ or ((critical or clinical or practice) adj2 (path or paths or pathway or pathways or protocol$)) or recommendation$ or (care adj2 (standard or path or paths or pathway or pathways or map or maps or plan or plans)) or (algorithm$ adj4 (screening or examination or test or tested or testing or assessment$ or diagnos?s or pharmacotherap$ or chemotherap$ or chemotreatment$ or therapy$ or treatment$ or intervention$)) or (predict$.mp.) or (scor$.tw.)

3. Web of Science via Clarivate Analytics
Refined by: WEB OF SCIENCE CATEGORIES: (CLINICAL NEUROLOGY OR PERIPHERAL VASCULAR DISEASE OR NEUROSCIENCES OR RADIOLOGY NUCLEAR MEDICINE MEDICAL IMAGING OR NEUROIMAGING OR REHABILITATION)

Statement 1 AND Statement 2 AND Statement 3

Statement 1: Transient Ischemic Attack
(“Transient Ischemic Attack”) OR (“transient isch?emic attack*”) OR (TIA) OR (“transient neurologic* attack*”) OR (TNA) OR (mini?stroke) OR (minor stroke) OR (“transient focal neurologic* symptom*”) OR (“transient focal neurologic* dysfunction*”)

Statement 2: Care Setting - Part 1 OR Part 2 OR Part 3

Part 1
(“ambulatory care facilit*”) OR (clinical*) OR (“Ambulatory Care”) OR (Outpatient Clinic*) OR (Outpatients) OR (“Mobile Health Unit*”) OR (“Emergency Service”) OR (“Ambulatory Monitoring”) OR (“Clinical Observation* Unit*”) OR (initial OR urgent OR rapid OR semi?urgent OR emergency) AND (evaluation* OR assessment* OR care)

Part 2

© 2022 Shahjouei S et al. JAMA Network Open.
Part 3

Statement 1 AND statement 2 AND statement 3 AND statement 4

Statement 1: Transient Ischemic Attack

transient AND ischemic AND attack OR (transient AND ischemic AND attack.mp.) OR tia.mp. OR tna.mp. OR 'mini stroke.mp.' OR (minor AND stroke) OR (transient AND focal AND neurologic AND symptom.mp.) OR (transient AND focal AND neurologic AND dysfunction.mp.)

Statement 2: Care Setting- Format search as Part 1 or Part 2 or Part 3

Part 1

(exp ambulatory care facilities/) or (ambulatory care facilit$.mp.) or (clinic$.mp.) or (exp Ambulatory Care/) or (exp Outpatient Clinics) or (exp Outpatients/) or (exp Outpatients/) or (exp Outpatient Clinics/) or (exp Emergency Service/) or (exp Clinical Observation Units/) or ((initial or urgent or rapid or semi?urgent or emergency) adj3 (evaluation$ or assessment$ or care))

Part 2

(initial adj3 management$.mp) or (primary adj3 management$.mp.) or ((rapid or urgent or semi?urgent) adj3 diagnos$.mp) or (model adj2 care$.mp.) or (exp Triage/) or (post?TIA care.mp.) or (TIA adj2 consult$.mp.) or (stroke adj2 specialist$.mp.) or (stroke adj2 clinician$) or (service location.mp.) or (service modification$.mp.) or (service configuration.mp.) or (prevention$.mp) or (acute care.mp.) or (exp subacute care/) or (acute adj2 management.mp) or (exp Disease Management/)

Part 3

(care resource$.mp) or (structure$ adj2 program$.mp.) or (exp referral and consultation/) or (disposition adj2 TIA.mp.) or (disposition adj2 transient isch?emic attack$.mp.) or (disposition adj2 ED.mp.) or (disposition adj2 emergency department$.mp.) or (exp caregivers/) or (care?giv$.mp.) or (care?giver$ effort$.mp) or (care?giver$ guide$.mp.) or (care?giver$ practice$.mp.) or (care?giver$ team$.mp.) or (pathway$.mp) or (pre?hospital$.mp.) or (ambu*lance$.mp.) or (para?medic$.mp) or (risk$ stratification$.mp.)

Statement 3: Outcomes - Subsequent Cerebral Ischemia, LOS, mortality, readmission

(exprecerebrovascular disorders/) or (exp Brain Ischemia/) or (exp stroke/) or (exp cerebral infarction/) or (exp Brain Infarction/) or (Brain adj2 Infarct$.mp.) or (endovascular.mp.) or (cerebr$ artr$ occlusion$.mp.) or (cerebr$ vascul*infarct$.mp) or (cerebrovasc$ infarct$.mp.) or (cerebr$ vasc$ event$.mp.) or (cerebral artr$ infarct$.mp.) or (cerebrovasc$ event$.mp.) or (cerebr$ vasc$ accident$.mp.) or (cerebrovasc$ accident$.mp.) or (cerebr$
infarct$.mp) or (cerebr$ isch?emia$.mp.) or (medullary infarct$.mp.) or (subsequent adj2 stroke.mp.) or (recur$ adj2 stroke.mp) or (minor adj2 stroke) or (recur$ adj2 isch?emia.mp.) or (length adj3 stay) or (exp mortality/) or (exp death/) or (re?admission$ adj2 stroke) or exp patient readmission/ or exp length of stay/ or (exp Survival/) or survival.mp

Statement 4: Methods of measuring/assessing – Format search as: Part 1 or Part 2 or Part 3 or Part 4 or Part 5 or Part 6 or Part 7

Part 1

(evaluation studies/) or (evaluation studies as topic/) or ("evaluation studies".pt.) or ("validation studies".pt.) or (exp evaluation studies as topic/) or (Pilot projects/) or (program evaluation/) or (validation studies as topic/) or (Intervention Studies/) or (((pre- adj5 post-) or (pretest adj5 posttest)) and (program$ adj6 evaluat$))

Part 2

comparative study.pt or (before adj3 after) or prognos$ or prediction$ or predictor$ or (disease adj3 (course or progression))

Part 3

(modifier$1) or (mediator$1) or (natural histor$) or ((precision or individuali?ed or personali?ed or stratified or systems) adj3 medicine) or cohort$ or (follow-up$ adj3 stud$) or case?control or case?controlled

Part 4

((prospective$ or longitudinal or observation$) adj3 stud$) or time series.mp or (exp incidence/) or (exp follow-up studies/) or registries/ or (systematic review) or (structured review.ti.) or (exp Clinical Trials as Topic/) or (clinical trial$) or (randomised controlled trial$) or (randomised trial$) or (workgroup$) or (Practice Guideline/) or (standard$ adj3 reporting)

Part 5

congresses.pt or Delphi Technique/ or (consensus development conference.pt) or (priorit$ symptom$) or (endpoint determination/) or (consensus development conference/) or (patient participation/) or consensus.mp or workshop or (Consensus Development Conferences, NIH as Topic/) or outcome$ or (end point$) or (core adj3 set) or (treatment emergent problem$) or (exp outcome Assessment Health Care/) or (Treatment Outcome/) or (Quality of Life/) or (patient$ adj2 perspective$)

Part 6

(clinical trial) adj 4 design$ or (exp patient outcome assessment/) or (exp delivery of health care/) or (exp epidemiologic studies/) or (exp clinical pathway/) or (exp clinical protocol/) or (exp consensus/) or (exp consensus development conference/) or (exp consensus development conferences as topic/) or (critical pathways/) or (exp guideline/) or (guidelines as topic/) or (exp practice guideline/) or (practice guidelines as topic/) or (health planning guidelines/) or (exp treatment guidelines/) or (guideline or practice guideline or consensus development conference or consensus development conference, NIH).pt

Part 7

position statement$ or policy statement$ or practice parameter$ or best practice$ or standards or guideline$ or consensus$ or ((critical or clinical or practice) adj2 (path or paths or pathway or pathways or protocol$)) or recommendation$ or (care adj2 (standard or path or paths or pathway or pathways or map or maps or plan or plans)) or (algorithm$ adj4 (screening or examination or test or tested or testing or assessment$ or diagnos?ts or pharmacotherap$ or chemotherap$ or chemotreatment$ or therap$ or treatment$ or intervention$)) or (predict$.mp.) or (scor$.tw.)

© 2022 Shahjouei S et al. JAMA Network Open.
5. **Scopus via Ebsco**

TITLE-ABS-KEY (Statement 1 AND Statement 2 AND Statement 3)

Statement 1: Transient Ischemic Attack

{Transient Ischemic Attack} OR {TIA} OR {transient neurological attack} OR {TNA} OR {minor stroke} OR {transient focal neurological symptom}

Statement 2: Care Setting

{clinic} OR {outpatient} OR {out-patient} OR {ambulatory care}

Statement 3: Outcomes

{Brain ischemia} OR {Brain infarction} OR {Stroke} OR {cerebral infarction} OR {ischemic brain injury} OR {death} OR {length of tray}

6. **International Clinical Trials Registry Platform (ICTRP) search portal**

(“Transient ischemic attack” OR TIA OR “transient neurologic attack” OR TNA OR “mini stroke” OR “minor stroke”) AND (outpatient OR “out patient” OR “clinic”) AND (“cerebral infarction” OR “brain ischemia” OR stroke OR “cerebrovascular accident” OR death)

7. **Clinicaltrial.gov**

(“Transient ischemic attack” OR TIA OR “transient neurologic attack” OR TNA OR “mini stroke” OR “minor stroke”) AND (outpatient OR “out patient” OR “clinic”)

8. **Trip database**

P: “Transient ischemic attack” OR TIA OR “transient neurologic attack” OR TNA OR “mini stroke” OR “minor stroke”

I: outpatient OR “out patient” OR “clinic”

C: inpatient OR admit OR hospitalization

O: “cerebral infarction” OR “brain ischemia” OR stroke OR “cerebrovascular accident” OR death

9. **CINAHL Complete**

(“Transient ischemic attack” OR TIA OR “transient neurologic attack” OR TNA OR “mini stroke” OR “minor stroke”) AND (outpatient OR “out patient” OR “clinic”) AND (“cerebral infarction” OR “brain ischemia” OR stroke OR “cerebrovascular accident” OR death)
eTable 1. Mixed-Effect Models Considering Different Possible Moderators

Moderator	Estimate b	se	z-value	p-value	CI_{lb}	CI_{ub}	I^2	H^2
No Moderator	0.1818	0.0056	32.609	<.0001	0.1709	0.1927	96.03%	25.22
Evaluation Interval	0.0006	0.0001	4.4624	<.0001	0.0003	0.0009	95.15%	20.63
Study Design	-0.0242	0.0137	-1.7628	0.0779	-0.051	0.0027	95.71%	23.29
Patient Recruitment	-0.0438	0.0074	-5.898	<.0001	-0.0584	-0.0293	95.36%	21.54
ABCD2 Score	0.0015	0.0006	2.5058	0.0122	0.0003	0.0026	89.66%	9.67
Setting of Management	0.0292	0.0046	6.3724	<.0001	0.0202	0.0381	94.01%	16.69

Evaluation interval was considered within 2, 7, 30, and 90 days; Study design was defined as prospective vs. retrospective; Patient recruitment was defined as before 2000, between 2000 and 2007, and after 2007; ABCD2 score was defined as percentage of patients in each cohort who had score of <4 vs. ≥4; Setting of Management was defined as before 2000, between 2000 and 2007, and unspecified. Restricted Maximum Likelihood (REML) was considered as estimator of all models.
eTable 2. Mixed-Effect Model Considering ABCD² Scores

Setting	Test	Parameter	Among all cohorts*	Within 2 days †	Within 7 days	Within 30 days	Within 90 days
TIA Clinic	**Omnibus Test**	QM	0.3430	0.0218	0.0957	2.8608	
		df	1	2	2	1	
		Pvalue	0.5581	0.8826	0.7570	0.0908	
Mixed-Effect Model	K	13	6	3	3	5	
	τ² estimator	REML	REML	REML	REML	REML	
	QM	0.0008 (SE = 0.0007)	0.0009 (SE = 0.0016)	0.0006 (SE = 0.0098)	0 (SE = 0.0008)	0.0004 (SE = 0.0008)	
	df	1	1	2	3	1	
	Pvalue	0.5581	4.1091	-0.1477	0.3094	1.6914	
Residual Heterogeneity	Zval	26.4096	6.8685	1.1033	0.1859	4.5864	
	df	11	5	1	1	2	
	Pvalue	0.0056	0.2306	0.2935	0.6663	0.2047	
Inpatient	**Omnibus Test**	QM	1.0958	0.9162	0.0004	1.7145	5.7933
		df	1	1	1	2	
		Pvalue	0.2952	0.3385	0.9841	0.1904	0.0161
Mixed-Effect Model	K	15	4	3	4	4	
	τ² estimator	REML	REML	REML	REML	REML	
	QM	0.0021 (SE = 0.0012)	0.0014 (SE = 0.0024)	0 (SE = 0.0082)	0.0030 (SE = 0.0037)	0 (SE = 0.0007)	
	df	15	4	3	4	4	
Residual Heterogeneity	Zval	-1.0468	-0.9572	0.0200	-1.3094	-2.4069	
	df	13	2	1	2	2	
	Pvalue	< .0001	4.8661	0.9034	0.0033	0.6893	
* All cohorts evaluated in different intervals were entered to the model. † Data were sparse for outcome of TIA clinic cohort within 2 days.							

There were inadequate data for running a model for outcome of patients treated in TIA clinics within two days of index TIA. DL, DerSimonian and Laird. QM, indicates test statistic for the omnibus test of coefficients; df, degree of freedom; K, number of outcomes included in the model fitting; τ², estimated amount of residual heterogeneity; I² statistic, residual heterogeneity / unaccounted variability; H², unaccounted variability / sampling variability; R², amount of heterogeneity accounted.

Setting	Test	Parameter	Among all cohorts	Within 2 days	Within 7 days	Within 30 days	Within 90 days
Emergency Department	**Omnibus Test**	QM	9.6061	3.5343	7.2329	1.4271	1.8490
		df	2	1	1	2	1

© 2022 Shahjouei S et al. JAMA Network Open.
There were inadequate data for running a model for outcome of patients treated in TIA clinics within two days of index TIA. DL, DerSimonian and Laird. QM, indicates test statistic for the omnibus test of coefficients; df, degree of freedom; K, number of outcomes included in the model fitting; τ², estimated amount of residual heterogeneity; I² statistic, residual heterogeneity / unaccounted variability; H², unaccounted variability / sampling variability; R², amount of heterogeneity accounted.

Unspecified Setting	Omnibus Test	Mixed-Effect Model	Residual Heterogeneity
	QM	df	Pvalue
	0.6934	2	0.4050
	9.3576	2	0.0022
	2.1743	1	0.1403
	5.9495	1	0.0147
	0.0016	1	0.9686
	K	τ² estimator	df
	22	REML	4
	4	REML	3
	2	REML	3
	2	REML	9
	τ²		
	0.0058 (SE = 0.0020)	0.0000 (SE = 0.0003)	0.0042 (SE = 0.0033)
	0.0002 (SE = 0.0011)	0.001 (SE = 0.0014)	0 (SE = 0.0014)
	0 (SE = 0.0011)	0.0001 (SE = 0.0014)	0 (SE = 0.0014)
	0 (SE = 0.0014)		
	I²		
	94.34%	0.70%	91.78%
	0.00%	99.86%	23.55%
	100.00%	4.00%	100.00%
	H²		
	17.67	1.01	12.16
	1.10	1.10	1.10
	1.00	1.00	1.00
	1.00	1.00	1.00
	R²		
	76.65%	100.00%	97.38%
	100.00%	100.00%	100.00%
	Zval		
	3.0994	2.6894	1.1946
	1.8800	1.00	1.10
	1.00	1.00	1.00
	Pvalue		
	0.0019	0.0601	0.0072
	0.0019	0.0601	0.0072
	0.0019	0.0601	0.0072
	0.0019	0.0601	0.0072
	0.0019	0.0601	0.0072
	df		
	11	2	1
	2	1	1
	1	1	1
	Pvalue		
	0.4928	0.6953	0.2935
	0.0711	0.4884	0.4884

* All cohorts evaluated in different intervals were entered to the model.
| Study | Reason for exclusion | Replaced study |
|-------------------------------|---|-------------------------------------|
| Akijian et al., 2017¹ | Duplicate Data (North Dublin Stroke Study) | Sheehan et al., 2010² |
| Amarenco et al., 2012³ | Duplicate Data (SOS-TIA) | Lavallée et al., 2017⁴ |
| Amarenco et al., 2016⁵ | No Outcome of Interest | |
| Amarenco et al., 2018⁶ | No Outcome of Interest | |
| Amort et al., 2011⁷ | Duplicate Data (Basel Stroke Unit Program) | Engelter et al., 2012⁷ |
| Arhami Dolatabadi et al., 2013⁹ | | |
| Arling et al., 2019¹⁰ | No Outcome of Interest | |
| Baker et al., 1968¹¹ | Evaluation Time Not Available | |
| Banerjee et al., 2009¹² | No Outcome of Interest | |
| Barber et al., 2016¹³ | No Outcome of Interest | |
| Barton et al., 2017¹⁴ | No Outcome of Interest | |
| Benavente et al. 2013¹⁵ | No Outcome of Interest | |
| Birns et al. 2006¹⁶ | No Outcome of Interest | |
| Boden-Alba et al., 2019¹⁷ | No Outcome of Interest | |
| Bose et al., 2017¹⁸ | Review Article | |
| Bots et al., 1997¹⁹ | Evaluation Time Not Available | |
| Boulanger et al., 2018²⁰ | Guideline or Study Design Descriptions | |
| Bradley et al., 2013²¹ | No Outcome of Interest | |
| Brainin et al., 1995²² | Stroke Diagnosis Prior to Index Event | |
| Bravata et al., 2018²³ | No Outcome of Interest | |
| Bravata et al., 2019²⁴ | No Outcome of Interest | |
| Burn et al., 1994²⁵ | Duplicate Data (OCSP) | Johnston et al., 2007²⁶ |
| Calvet et al., 2007²⁷ | Duplicate Data | Calvet et al., 2009²⁸ |
| Cameron et al., 2011²⁹ | No Outcome of Interest | |
| Candelise et al., 1986³⁰ | Evaluation Time Not Available | |
| Chandratheva et al., 2010³¹ | Duplicate Data (OXVASC) | Johnston et al., 2007²⁶ |
| Chang et al., 2017³² | Review Article | |
| Clissold et al., 2020³³ | Review Article | |
| Cosker et al., 2015³⁴ | No Outcome of Interest | |
| Couillard et al., 2009³⁵ | Review Article | |
| Coull et al., 2004³⁶ | Duplicate Data (OXVASC) | Johnston et al., 2007²⁶ |
| Cruz-Flores et al., 2017³⁷ | Guideline or Study Design Descriptions | |
| Dawson et al., 2008³⁸ | No Outcome of Interest | |
| Dennis et al., 1989³⁹ | Review Article | |
| Dennis et al., 1990⁴⁰ | Duplicate Data (OCSP) | Johnston et al., 2007²⁶ |
| Dennis et al., 1989³⁹ | Duplicate Data (OCSP) | Johnston et al., 2007²⁶ |
| Dolmans et al. 2019⁴¹ | Review Article | |
| Dutta et al. 2016⁴² | No Outcome of Interest | |
| Edlow et al., 2018⁴³ | Guideline or Study Design Descriptions | |
| Eliasziw et al., 1995⁴⁴ | Evaluation Time Not Available | |
| Evans et al., 1994⁴⁵ | Evaluation Time Not Available | |
| Falke et al., 1994⁴⁶ | Evaluation Time Not Available | |
| Feigin et al., 2000⁴⁷ | No Outcome of Interest | |
| Ferro et al., 1994⁴⁸ | Outcome Reported as TIA or Stroke Recurrence | |
| Fiorelli et al., 1995⁴⁹ | No Outcome of Interest | |
| Floßmann et al., 2003⁵⁰ | Review Article | |
| Fratiglioni et al., 1989⁵¹ | No Outcome of Interest | |
| Fratiglioni et al., 1991⁵² | No Outcome of Interest | |
| Friday et al., 1997⁵³ | Evaluation Time Not Available | |
| Study | Reason for exclusion | Replaced study |
|-----------------------------------|--|---|
| Gennesseaux et al., 2006 | Guideline or Study Design Descriptions | |
| Giles et al., 2006 | Review Article | |
| Giles et al., 2007 | Review Article | |
| Gilles et al. 2007 | Study Cohort Includes Patients without Cerebral Ischemia | |
| Gommans et al. 2009 | Guideline or Study Design Descriptions | |
| Graham et al. 2019 | Study Cohort Includes Patients without Cerebral Ischemia | |
| Griffith et al. 2014 | Study Cohort Includes Patients without Cerebral Ischemia | |
| Gulli et al., 2013 | Evaluation Time Not Available | |
| Hankey et al., 1991 | Evaluation Time Not Available | |
| Hankey et al., 1992 | Evaluation Time Not Available | |
| Hayashi et al. 2014 | Evaluation Time Not Available | |
| Hier et al., 1994 | No Outcome of Interest | |
| Holzer et al., 2010 | Evaluation Time Not Available | |
| Hörer et al., 2011 | Outcome Reported as TIA or Stroke Recurrence | |
| Hoshino et al., 2013 | Stroke Diagnosis Prior to Index Event | |
| Hoshino et al., 2013 | Stroke Diagnosis Prior to Index Event | |
| Hosier et al. 2016 | No Outcome of Interest | |
| Howard et al., 1987 | Evaluation Time Not Available | |
| Jeerakathil et al., 2014 | Guideline or Study Design Descriptions | |
| Johnston et al. 1986 | Evaluation Time Not Available | |
| Johnston et al., 2000 | Duplicate Data (KMPCP) | Johnston et al., 2007 |
| Jouundi et al. 2017 | Review Article | |
| Kandiyali et al. 2017 | Review Article | |
| Karpal et al. 2016 | Outcome Reported as TIA or Stroke Recurrence | |
| Kernan et al., 2000 | No Outcome of Interest | |
| Kimura et al., 2004 | Evaluation Time Not Available | |
| Kokubo, 2014 | Review Article | |
| Lai et al. 1990 | No Outcome of Interest | |
| Lavallée et al., 2007 | Duplicate Data(SOS-TIA) | Lavallée et al., 2017 |
| Lee et al. 2015 | No Outcome of Interest | |
| Lesenskyj et al. 2016 | No Outcome of Interest | |
| Levi et al., 2019 | Guideline or Study Design Descriptions | |
| Loeb et al. 1978 | Evaluation Time Not Available | |
| Lovette et al. 2003 | Duplicate Data(OCSP) | Johnston et al., 2007 |
| Luengo-Fernandez et al. 2013 | No Outcome of Interest | |
| Madsen et al. 2019 | Commentary | |
| Magin et al. 2013 | No Outcome of Interest | |
| Marti-Vilalta et al., 1979 | Evaluation Time Not Available | |
| Mas et al., 1995 | Evaluation Time Not Available | |
| Mendelowitz et al., 1981 | Outcome Reported as TIA or Stroke Recurrence | |
| Merwick et al. 2011 | Review Article | |
| Mettinger et al., 1984 | Evaluation Time Not Available | |
| Miller et al., 1975 | Evaluation Time Not Available | |
| Mortel et al., 1996 | Evaluation Time Not Available | |
| Muuronen et al., 1982 | Evaluation Time Not Available | |
| Noris et al., 1991 | Review Article | |
| O'Brien et al., 2015 | Evaluation Time Not Available | |
| Ois et al., 2019 | Evaluation Time Not Available | |
| Ong et al. 2010 | No Outcome of Interest | |
| Park et al. 2017 | No Outcome of Interest | |
| Pendlebury et al., 2009 | Review Article | |

© 2022 Shahjouei S et al. JAMA Network Open.
Study	Reason for exclusion	Replaced study
Purroy et al., 2012	Evaluation Time Not Available	
Purroy et al., 2013	Duplicate Data (PROMAPA)	Purroy et al., 2014
Redgrave et al., 2007	Review Article	
Rhoads et al., 1980	Evaluation Time Not Available	
Rooji et al., 2012	Guideline or Study Design Descriptions	
Rothwell et al., 2003	Review Article	
Rothwell et al., 2005	Duplicate Data (OXVASC, OCSP)	Johnston et al., 2007
Rothwell et al., 2005	Duplicate Data (OXVASC, OCSP)	Johnston et al., 2007
Sales et al. 2015	No Outcome of Interest	
Sanossian et al., 2008	Review Article	
Shah et al., 2008	Review Article	
Shah et al., 1995	No Outcome of Interest	
Simonsen et al., 1981	Evaluation Time Not Available	
Sobel et al., 1989	Evaluation Time Not Available	
Stead et al., 2009	Duplicate Data (EDOU)	Stead et al., 2011
Streifler et al., 1995	Evaluation Time Not Available	
Terént et al., 1980	Evaluation Time Not Available	
Terént et al., 1989	Evaluation Time Not Available	
Thacker et al., 2010	Stroke Diagnosis Prior to Index Event	
Tomari et al. 2020	No Outcome of Interest	
Toole et al., 1978	Evaluation Time Not Available	
Torres Macho et al. 2011	Outcome Reported as TIA or Stroke Recurrence	
Tsuda et al., 1983	Evaluation Time Not Available	
Ueda et al., 1987	Evaluation Time Not Available	
Valls et al., 2017	Review Article	
Vandenbussche et al. 2017	Outcome Reported as TIA or Stroke Recurrence	
Vilanova et al., 2015	Evaluation Time Not Available	
Vrethem et al., 1990	Evaluation Time Not Available	
Walker et al. 2012	No Outcome of Interest	
Warrior et al. 2011	Review article	
Weber et al. 2009	Review Article	
Webster et al. 2011	No Outcome of Interest	
Weimar et al., 2010	Evaluation Time Not Available	
Weisberg et al., 1991	Evaluation Time Not Available	
Whisnant et al., 1987	Evaluation Time Not Available	
Widjaja et al. 2004	No Outcome of Interest	
Wijk et al., 2005	Evaluation Time Not Available	
Wu et al., 2007	Review Article	
Zhong et al. 2016	Review Article	
eTable 4. Heterogeneity and Risk of Stroke Assessment Based on Different Estimators

Setting	Estimator	Within 2 Days	Within 7 Days										
		Q	P	I2	Risk	Lower CI	Upper CI	Q	P	I2	Risk	Lower CI	Upper CI
TIA Clinic	DL	6.868	0.231	27.204	0.003	0.000	0.011	7.411	0.284	19.041	0.010	0.003	0.019
TIA Clinic	HE	6.868	0.231	0.000	0.004	0.001	0.009	7.411	0.284	0.000	0.011	0.005	0.017
TIA Clinic	HS	6.868	0.231	8.601	0.003	0.000	0.009	7.411	0.284	3.803	0.010	0.005	0.017
TIA Clinic	ML	6.868	0.231	22.436	0.003	0.000	0.010	7.411	0.284	16.479	0.010	0.003	0.018
TIA Clinic	SJ	6.868	0.231	37.571	0.003	0.000	0.012	7.411	0.284	29.266	0.010	0.003	0.020
TIA Clinic	REML	6.868	0.231	36.995	0.003	0.000	0.012	7.411	0.284	44.292	0.010	0.002	0.022
TIA Clinic	EB	6.868	0.231	17.697	0.005	0.001	0.009	7.411	0.284	11.569	0.011	0.005	0.020
Inpatient	DL	20.430	0.085	36.367	0.005	0.001	0.010	16.410	0.127	32.966	0.011	0.005	0.020
Inpatient	HE	20.430	0.085	0.000	0.004	0.001	0.007	16.410	0.127	0.000	0.010	0.005	0.016
Inpatient	HS	20.430	0.085	30.387	0.005	0.001	0.010	16.410	0.127	24.471	0.011	0.005	0.019
Inpatient	ML	20.430	0.085	37.020	0.005	0.001	0.010	16.410	0.127	36.406	0.012	0.004	0.021
Inpatient	SJ	20.430	0.085	40.637	0.005	0.001	0.011	16.410	0.127	44.119	0.012	0.004	0.022
Inpatient	REML	20.430	0.085	38.184	0.005	0.001	0.010	16.410	0.127	46.253	0.012	0.004	0.022
Inpatient	SJ	20.430	0.085	23.593	0.005	0.001	0.009	16.410	0.127	30.550	0.011	0.005	0.020
Emergency Department	DL	6.390	0.495	0.000	0.019	0.013	0.026	15.919	0.044	49.745	0.034	0.023	0.047
Emergency Department	HE	6.390	0.495	0.000	0.019	0.013	0.026	15.919	0.044	18.572	0.034	0.025	0.044
Emergency Department	HS	6.390	0.495	0.000	0.019	0.013	0.026	15.919	0.044	42.138	0.034	0.024	0.046
Emergency Department	ML	6.390	0.495	0.000	0.019	0.013	0.026	15.919	0.044	41.539	0.034	0.024	0.046
Emergency Department	REML	6.390	0.495	7.018	0.019	0.012	0.027	15.919	0.044	48.384	0.034	0.023	0.047
Emergency Department	SJ	6.390	0.495	35.904	0.018	0.009	0.028	15.919	0.044	61.739	0.034	0.021	0.049
Emergency Department	EB	6.390	0.495	0.000	0.019	0.013	0.026	15.919	0.044	47.502	0.034	0.023	0.047
Unspecified Settings	DL	582.641	0.000	96.739	0.022	0.011	0.035	707.647	0.000	96.467	0.034	0.021	0.048
Unspecified Settings	HE	582.641	0.000	94.005	0.022	0.013	0.031	707.647	0.000	94.523	0.034	0.023	0.045
Unspecified Settings	HS	582.641	0.000	95.570	0.022	0.012	0.033	707.647	0.000	95.340	0.034	0.023	0.046
Unspecified Settings	ML	582.641	0.000	93.422	0.022	0.014	0.031	707.647	0.000	94.112	0.033	0.024	0.045
Unspecified Settings	REML	582.641	0.000	93.828	0.022	0.013	0.031	707.647	0.000	94.434	0.034	0.023	0.045

DL, DerSimonian and Laird estimator; HS, Hunter and Schmidt estimator; Hedges (HE) ML, Maximum Likelihood estimator; REML, Restricted Maximum Likelihood estimator; SJ, Sidik and Jonkman estimator; EB, empirical Bayes, estimator; Q, Cochran's Q test (χ² test for heterogeneity); p, p-value for Q; I2, I2 statistic; Risk, risk of subsequent stroke following index event.
Setting	Estimator	Q	P	I2	Risk	Lower CI	Upper CI		Q	P	I2	Risk	Lower CI	Upper CI		Q	P	I2	Risk	Lower CI	Upper CI
TIA Clinic	DL	11.699	0.069	48.715	0.014	0.005	0.026		17.317	0.138	30.705	0.021	0.015	0.028							
TIA Clinic	HE	11.699	0.069	0.000	0.016	0.010	0.023		17.317	0.138	0.000	0.023	0.018	0.028							
TIA Clinic	HS	11.699	0.069	34.036	0.014	0.006	0.024		17.317	0.138	23.464	0.021	0.016	0.027							
TIA Clinic	ML	11.699	0.069	44.971	0.014	0.005	0.025		17.317	0.138	34.516	0.021	0.015	0.028							
TIA Clinic	REML	11.699	0.069	52.824	0.013	0.004	0.026		17.317	0.138	40.560	0.021	0.014	0.028							
TIA Clinic	SJ	11.699	0.069	44.334	0.014	0.005	0.025		17.317	0.138	43.473	0.021	0.014	0.028							
TIA Clinic	EB	11.699	0.069	36.133	0.016	0.006	0.030		17.317	0.138	25.078	0.028	0.021	0.035							
Inpatient	DL	60.791	0.000	78.615	0.016	0.007	0.027		47.407	0.003	49.375	0.027	0.021	0.035							
Inpatient	HE	60.791	0.000	75.010	0.016	0.007	0.026		47.407	0.003	0.000	0.026	0.022	0.030							
Inpatient	HS	60.791	0.000	11.759	0.011	0.008	0.015		47.407	0.003	45.887	0.027	0.021	0.034							
Inpatient	ML	60.791	0.000	86.053	0.016	0.006	0.030		47.407	0.003	51.626	0.028	0.021	0.035							
Inpatient	REML	60.791	0.000	87.280	0.016	0.006	0.031		47.407	0.003	54.495	0.028	0.021	0.035							
Inpatient	SJ	60.791	0.000	86.316	0.016	0.006	0.031		47.407	0.003	65.554	0.028	0.020	0.037							
Inpatient	EB	60.791	0.000	85.419	0.016	0.006	0.030		47.407	0.003	52.756	0.028	0.021	0.035							
Emergency	Department	DL	22.936	0.001	73.840	0.036	0.017	0.061		4.337	0.631	0.000	0.035	0.025	0.045						
Emergency	Department	HE	22.936	0.001	74.317	0.036	0.016	0.061		4.337	0.631	0.000	0.035	0.025	0.045						
Emergency	Department	HS	22.936	0.001	67.302	0.036	0.019	0.059		4.337	0.631	0.000	0.035	0.025	0.045						
Emergency	Department	ML	22.936	0.001	73.451	0.036	0.017	0.061		4.337	0.631	0.000	0.035	0.025	0.045						
Emergency	Department	REML	22.936	0.001	78.470	0.035	0.015	0.063		4.337	0.631	0.000	0.035	0.025	0.045						
Emergency	Department	SJ	22.936	0.001	80.112	0.035	0.014	0.064		4.337	0.631	0.000	0.033	0.020	0.048						
Emergency	Department	EB	22.936	0.001	78.469	0.035	0.015	0.063		4.337	0.631	0.000	0.035	0.025	0.045						

DL, DerSimonian and Laird estimator; HS, Hunter and Schmidt estimator; Hedges (HE) ML, Maximum Likelihood estimator; REML, Restricted Maximum Likelihood estimator; SJ, Sidik and Jonkman estimator; EB, empirical Bayes, estimator; Q, Cochran’s Q test (χ2 test for heterogeneity); p, p-value for Q; I2, I2 statistic; Risk, risk of subsequent stroke following index event.

© 2022 Shahjouei S et al. JAMA Network Open.
eTable 5. Comparison of Risk Estimates

Comparison	Day Two	Day Seven	Day Thirty	Day Ninety								
	QE	QEP	I²									
Meta-Analysis of All Cohorts												
TIA Clinic versus Inpatient	0.14	0.71	0.00	0.09	0.76	0.00	0.12	0.73	0.00	1.94	0.16	48.49
TIA Clinic versus Emergency Department	7.26	0.01	86.22	9.72	0.00	89.71	3.05	0.08	67.24	5.40	0.02	81.49
TIA Clinic versus Unspecified Setting	8.74	0.00	85.56	10.21	0.00	90.20	8.93	0.00	88.81	23.42	0.00	95.73
Inpatient versus Emergency Department	9.42	0.00	89.39	8.22	0.00	87.83	2.04	0.15	51.07	1.23	0.27	18.74
Inpatient versus Unspecified Setting	11.20	0.00	91.07	8.64	0.00	88.43	6.21	0.01	83.88	14.62	0.00	93.16
Emergency Department versus Unspecified Setting	0.24	0.62	0.00	0.00	0.96	0.00	0.21	0.65	0.00	7.13	0.01	85.97

| **Sensitivity Meta-Analysis of Prospective Cohorts** | | | | | | | | | | | | |
|---|---------------|---------------|---------------|---------------|
| TIA Clinic versus Inpatient | 0.01 | 0.94 | 0.00 | 0.06 | 0.81 | 0.00 | 0.00 | 1.00 | 0.00 | 0.55 | 0.46 | 0.00 |
| TIA Clinic versus Emergency Department | 2.28 | 0.13 | 56.19 | 7.61 | 0.01 | 86.86 | 1.52 | 0.22 | 34.03 | 2.70 | 0.10 | 62.96 |
| TIA Clinic versus Unspecified Setting | 5.88 | 0.02 | 83.01 | 7.28 | 0.01 | 86.26 | 3.98 | 0.05 | 74.90 | 10.85 | 0.00 | 90.78 |
| Inpatient versus Emergency Department | 2.71 | 0.10 | 63.13 | 12.62 | 0.00 | 92.07 | 1.46 | 0.23 | 31.67 | 1.26 | 0.26 | 20.66 |
| Inpatient versus Unspecified Setting | 9.01 | 0.00 | 88.90 | 13.78 | 0.00 | 92.74 | 3.38 | 0.07 | 70.44 | 8.31 | 0.00 | 87.96 |
| Emergency Department versus Unspecified Setting | 0.17 | 0.68 | 0.00 | 0.15 | 0.70 | 0.00 | 0.10 | 0.75 | 0.00 | 2.42 | 0.12 | 58.67 |

Comparisons were conducted under restricted maximum likelihood (REML) estimator. Sensitivity Analysis included the prospective cohorts recruited after 2000. QE indicates test statistics for the tests of heterogeneity; QEP, p-values for the tests of heterogeneity; I², I² statistic.
eTable 6. Publication Bias Assessment

Interval	Setting	Egger Bias Test	Begg-Mazumdar Rank Correlation
Within 2 Days			
	TIA Clinic	z = 0.470, p = 0.638	Kendall's τ = -0.200, p = 0.719
	Inpatient	z = 0.768, p = 0.442	Kendall's τ = -0.033, p = 0.914
	Emergency Room	z = -1.408, p = 0.159	Kendall's τ = -0.357, p = 0.275
	Unspecified Settings	z = 1.088, p = 0.277	Kendall's τ = -0.116, p = 0.501
Within 7 Days			
	TIA Clinic	z = 0.773, p = 0.440	Kendall's τ = 0.143, p = 0.773
	Inpatient	z = 0.192, p = 0.848	Kendall's τ = 0.000, p = 1.000
	Emergency Room	z = -1.050, p = 0.294	Kendall's τ = -0.167, p = 0.612
	Unspecified Settings	z = 1.449, p = 0.148	Kendall's τ = -0.052, p = 0.727
Within 30 Days			
	TIA Clinic	z = -0.152, p = 0.879	Kendall's τ = -0.143, p = 0.773
	Inpatient	z = 0.355, p = 0.723	Kendall's τ = -0.055, p = 0.830
	Emergency Room	z = -0.883, p = 0.378	Kendall's τ = 0.047, p = 1.000
	Unspecified Settings	z = 0.857, p = 0.392	Kendall's τ = 0.164, p = 0.370
Within 90 Days			
	TIA Clinic	z = -1.688, p = 0.091	Kendall's τ = -0.128, p = 0.590
	Inpatient	z = 0.0990, p = 0.921	Kendall's τ = 0.070, p = 0.624
	Emergency Room	z = -1.4499, p = 0.147	Kendall's τ = -0.619, p = 0.069
	Unspecified Settings	z = 1.0821, p = 0.279	Kendall's τ = 0.015, p = 0.920
eTable 7. Risk-of-Bias Assessment Based on ROBINS-E Tool

Study	Confounding	Participants	Classification of Intervention	Deviation from Intended Intervention	Missing Data	Measurement of Outcome	Report of Result	Overall
Ahmad et al., 2013	Low	Low	Low	Low	Low	Low	Low	Moderate
Al-Khaled et al., 2013	Low	Low	Low	Low	Low	Low	Low	Low
Al-Khaled et al., 2014	Low	Low	No information	Low	Low	Low	No information	Low
Appelros et al., 2017	Moderate	Moderate	No information	Low	Low	Low	Low	No information
Arsava et al., 2011	Low	Low	Low	Low	Low	Low	Low	Low
Ay et al., 2009	Low	Low	Low	Low	Low	Low	Low	Low
Bonifati et al., 2011	Low	Low	Low	Low	No information	Low	Low	Low
Bos et al., 2007	Low	Low	No information	Low	Low	Low	Low	No information
Calvet et al., 2009	Low	Low	Low	Low	Low	Low	Low	Low
Cancelli et al., 2011	Low	Low	No information	Low	Low	Low	Low	No information
Chang et al., 2019	Low	Low	Low	Low	Low	Low	Low	Low
Cheong et al., 2019	Low	Low	Low	Moderate	Low	Low	Moderate	Moderate
Correia et al., 2015	Low	Low	Low	Low	Low	Low	Low	Low
Coutts et al., 2008	Low	Low	Low	Low	Low	Low	Low	Low
Cucchiara et al., 2009	Low	Low	Low	Low	Low	Low	Low	Low
Dahlquist et al., 2019	Low	Low	Low	Low	Low	Low	Low	Low
De Marchis et al., 2014	Low	Low	Low	Low	Low	Low	Low	Low
Delgado et al., 2011	Low	Low	Low	Low	Low	Low	Low	Low
Dutta et al., 2016	Low	Low	Low	Low	Low	Low	Low	Low
Eliaziw et al., 2004	Low	Low	No information	Low	Low	Low	Low	No information
Engelte et al., 2012	Low	Low	Moderate	Moderate	Moderate	Moderate	Moderate	Low
Felgueiras et al., 2019	Low	Low	No information	Low	Low	Low	Low	No information
Study	Applicability	Approach	Evidence	Results	Conclusion			
------------------------	---------------	-------------	----------	---------	------------			
Fujinami et al., 2014	Low	Low	No info	Low	Low			
Geil et al., 2008	Low	Low	Low	Low	Low			
Ghia et al., 2011	Low	Low	Low	Low	Low			
Gladstone et al., 2004	Low	Low	No info	Low	Low			
Gon et al., 2015	Low	Low	Low	Low	Low			
Guarino et al., 2015	Low	Low	Low	Low	Low			
Harrison et al., 2010	Low	Low	Low	No info	No info			
Hill et al., 2004	Low	Low	No info	Low	No info			
Ildstat et al., 2019	Low	Low	No info	Low	No info			
Johnston et al., 2007	Low	Low	No info	Low	No info			
Jove et al., 2014	Low	Low	Low	No info	Moderate			
Study	Con founding	Participants	Classification of Intervention	Deviation from Intended Intervention	Missing Data	Measurement of Outcome	Report of Result	Overall
---	--------------	--------------	---------------------------------	--------------------------------------	--------------	------------------------	-----------------	-------------
Kiyohara et al., 2014	Low	Low	No information	Low	Low	Low	Low	No information
Kleindorfer et al., 2005	Low	Low	No information	Low	Low	Moderate	Low	No information
Lavallée et al., 2017	Low	Low	Low	Low	Low	Low	Low	Low
Lichtman et al., 2009	Moderate	Low	Low	Low	Low	Low	Low	Moderate
Lim et al., 2015	Low	Low	No information	Low	Low	Low	Low	No information
Lisabeth et al., 2004	Low	Low	No information	Low	Low	Low	Low	No information
Majidi et al., 2017	Low	Low	Low	Low	Low	Low	Low	Low
Montassier et al., 2013	Low	Low	Low	Low	Low	Low	Low	Low
Mowla et al., 2021	Low	Low	Low	Low	Low	Low	Low	Low
Nahab et al., 2012	Low	Low	Low	Low	Low	Low	Low	Low
Nguyen et al., 2010	Low	Low	Low	Low	Low	Low	Low	Low
Ohara et al., 2015	Low	Low	No information	Low	Low	Low	Low	No information
Ohara et al., 2019	Moderate	Low	No information	Low	Low	Low	Low	No information
Olivot et al., 2011	Low	Low	low/ No information*	Low	Low	Low	Low	low/ No information*
Ottaviani et al., 2016	Low	Low	Low	Low	Low	Low	Low	Low
Ovbiagele et al., 2008	Low	Low	No information	Low	Low	Low	Low	No information
Palomeras Soler et al., 2015	Low	Low	Low	Low	Low	Low	Low	Low
Perry et al., 2014	Low	Moderate	No information	Low	Low	Low	Low	No information
Purroy et al., 2014	Low	Low	No information	Low	Low	Low	Low	No information
Raposo et al., 2018	Low	Low	Low	Low	Low	Low	Low	Low
Raser et al., 2012	Low	Low	Low	Low	Low	Low	Low	Low

© 2022 Shahjouei S et al. JAMA Network Open.
Study	Grade	Grade	Method	Low	4	5	6	7	8	9	10	11
Ricci et al., 1991	Low	Low	No info	Low	Low	Low	Low	Low	Low	No info	No info	
Ross et al., 2007	Low	Low	Low	Low	Low	Low	Low	Low	Low	No info	No info	
Rothwell et al., 1987	Low	Low	No info	Low	Low	Low	Low	Low	Low	No info	No info	
Sanders et al., 2012	Low	Low	Low	Low	Low	Low	Low	Low	Low	No info	No info	
Sciolla et al., 2008	Low	Low	No info	Low	Low	Low	Low	Low	Low	No info	No info	
Selvarajah et al., 2008	Low	Low	No info	Low	Low	Low	Low	Low	Low	No info	No info	
Sheehan et al., 2010	Low	Low	No info	Low	Low	Low	Low	Low	Low	No info	No info	
Song et al., 2013	Low	Low	No info	Low	Low	Low	Low	Low	Low	No info	No info	
Stead et al., 2009	Low	Low	No info	Low	Low	Low	Low	Low	Low	No info	No info	
Stead et al., 2011	Low	Low	Low	Low	Low	Low	Low	Low	Low	No info	No info	
Sundararajan et al., 2014	Low	Low	No info	Low	Low	Low	Low	Low	Low	No info	No info	
Tsivgoulis et al., 2010	Low	Low	No info	Low	Low	Low	Low	Low	Low	No info	No info	
Study	Con founding	Participant s	Classification of Intervention	Deviation from Intended Intervention	Missing Data	Measure ment of Outcome	Report of Result	Overall				
---	--------------	---------------	---------------------------------	---------------------------------------	--------------	-----------------------	------------------	------------				
Vigen et al., 2018	Low	Low	Low	Low	Low	Low	Low	Low				
Vora et al., 2015	Low	Low	Low/No information	Low	Low	Low	Low/No information*	Low				
Wasserman et al., 2010	Low	Low	Low	Low	Low	Low	Low	Low				
Weimar et al., 2009	Low	Moderate	No information	Low	Low	Low	Low	No information				
Weitzel-Mudersbach et al., 2011	Low	Low	Low/No information*	Low	Low	Low	Low	low/No information*				
Wu et al., 2009	Low	Low	Low	Low	Low	Low	Low	Low				

Risk of bias by considering the distinct cohorts in each study	Low	Moderate	High	No Information				
Risk of bias by considering the distinct cohorts in each study	98 (97.0%)	98 (97.0%)	64 (63.30%)	96 (95.0%)	98 (97.0%)	99 (98.0%)	99 (98.0%)	58 (57.4%)
Risk of bias by considering the distinct cohorts in each study	3 (3.0%)	3 (3.0%)	0 (0.0%)	3 (3.0%)	1 (1.0%)	2 (2.0%)	2 (2.0%)	6 (5.9%)
Risk of bias by considering the distinct cohorts in each study	0 (0.0%)	0 (0.0%)	0 (0.0%)	0 (0.0%)	0 (0.0%)	0 (0.0%)	0 (0.0%)	0 (0.0%)
Risk of bias by considering the distinct cohorts in each study	0 (0.0%)	0 (0.0%)	37 (36.6%)	2 (2.0%)	2 (2.0%)	0 (0.0%)	37 (36.6%)	

* Some cohorts in this study had low risk of bias while there was no information regarding other cohort(s).

† This value is represented for all included cohorts in the study (110 cohorts). Among the 64 cohorts with specified setting (i.e. TIA clinic, inpatient, and ED) 58 (90.6%) cohorts had low and 6 (9.4%) cohorts had moderate overall risk of bias.
eFigure 1. Funnel Plots
Risk of Subsequent Ischemic Stroke Within 2 Days

Study, Publication Year	Estimate	Stroke/index Event, Risk [95% CI]
TIA Clinic		
Cheng et al., 2018		
Montassier et al., 2018		
Mooma et al., 2018		
Veras et al. (106-108), 2018		
Wasserfallen et al., 2018	0.0016	0.0021 (0.0001, 0.0036)
Weisel-Wunderlich et al. (Annals of Neurology), 2011	0.0025	0.0025 (0.0013, 0.0037)
RE Model for Subgroup (I^2 = 67%, p = 0.22; I^2 = 37.7%)	0.0025	0.0025 (0.0013, 0.0037)

Inpatient

Estimate	Stroke/index Event, Risk [95% CI]
0.0167 (0.0001, 0.035)	

Emergency Department

Estimate	Stroke/index Event, Risk [95% CI]
0.0167 (0.0001, 0.035)	

Unspecified Setting

Estimate	Stroke/index Event, Risk [95% CI]
0.0167 (0.0001, 0.035)	

The risk estimate for inpatients was considered as the reference line. * indicates the Stroke Unit, ** indicates the Observation Unit.

© 2022 Shahjouei S et al. *JAMA Network Open.*
The risk estimate for inpatients was considered as the reference line. * indicates the Stroke Unit, ** indicates the Observation Unit.
eFigure 4. Sensitivity Analysis: Risk of Subsequent Ischemic Stroke Within 2 Days

Study, Publication Year	Estimate	Stroke/Index	Event, Risk [95% CI]
TIA Clinic			
Cheng et al., 2008	0 / 306	0.0003 [0.0001, 0.0004]	
Hovenska et al., 2013	1 / 60	0.0175 [0.0105, 0.0240]	
Honda et al., 2020	0 / 10	0.0002 [0.0001, 0.0003]	
Vera et al. (TIA TEAM), 2015	0 / 50	0.0003 [0.0001, 0.0004]	
Wassermann et al., 2010	10 / 502	0.0103 [0.0094, 0.0112]	
Wettstein-Hubenschmied et al. (Aachen TIA), 2013	1 / 107	0.0002 [0.0001, 0.0004]	

RE Model for Subgroup (O = 6.87, p = 0.33; I² = 37.57%)

Inpatient			
Cochrane et al., 2009	4 / 243	0.0003 [0.0002, 0.0004]	
Cheng et al., 2018	1 / 104	0.0002 [0.0001, 0.0003]	
Cochrane et al., 2008	0 / 67	0.0003 [0.0002, 0.0004]	
Gille et al., 2011	0 / 563	0.0003 [0.0001, 0.0005]	
Honda et al., 2020	0 / 35	0.0002 [0.0001, 0.0003]	
Pola et al., 2018	0 / 40	0.0002 [0.0001, 0.0003]	
Rojo et al. , 2018	1 / 254	0.0003 [0.0001, 0.0004]	
Steed et al. EDDO, 2009	2 / 127	0.0003 [0.0001, 0.0004]	
Steed et al. EDDO, 2009	2 / 203	0.0003 [0.0001, 0.0004]	
Vera et al., 2015	0 / 40	0.0002 [0.0001, 0.0003]	
Wassermann et al., 2010	0 / 10	0.0002 [0.0001, 0.0003]	
Wettstein-Hubenschmied et al. (Aachen TIA), 2013	7 / 159	0.0003 [0.0002, 0.0004]	

RE Model for Subgroup (O = 15.45, p = 0.16; I² = 37.56%)

Emergency Department			
Cochrane et al., 2009	4 / 184	0.0002 [0.0001, 0.0003]	
Gille et al., 2011	3 / 126	0.0002 [0.0001, 0.0003]	
Honda et al., 2020	0 / 35	0.0002 [0.0001, 0.0003]	
Pola et al., 2018	0 / 40	0.0002 [0.0001, 0.0003]	

RE Model for Subgroup (O = 12.25, p = 0.74; I² = 0.00%)

Unspecified Setting			
Cochrane et al., 2009	4 / 181	0.0002 [0.0001, 0.0003]	
Glass et al. (Ontario Stroke Registry), 2004	7 / 205	0.0203 [0.0101, 0.0305]	
Jahnke et al., 2008	20 / 105	0.0002 [0.0001, 0.0003]	
Jahnke et al., 2008	20 / 120	0.0002 [0.0001, 0.0003]	
Uszkoreit et al., 2004	10 / 512	0.0003 [0.0001, 0.0004]	
Perry et al., 2015	56 / 2096	0.0002 [0.0001, 0.0003]	
Sevda et al., 2008	3 / 274	0.0002 [0.0001, 0.0003]	
Vera et al., 2015	0 / 50	0.0002 [0.0001, 0.0003]	
Wettstein-Hubenschmied et al., 2011	4 / 305	0.0002 [0.0001, 0.0003]	

RE Model for Subgroup (O = 19.05, p = 0.03; I² = 33.77%)

Sensitivity analysis included the prospective cohort of patients recruited after 2000.

The risk estimate for inpatients was considered as the reference line. * indicates the Stroke Unit, ** indicates the Observation Unit.
eFigure 5. Sensitivity Analysis: Risk of Subsequent Ischemic Stroke Within 7 Days

Risk of Subsequent Ischemic Stroke within 7 Days

Study, Publication Year	Estimate	Stroke/Index	Event, Risk (95% CI)
TIA Clinic			
Cheung et al., 2018	1 / 308	0.0010 (0.0004, 0.0164)	
Hermans et al., 2018	1 / 40	0.0040 (0.0006, 0.070)	
Macle et al., 2020	0 / 10	0.0080 (0.0008, 0.123)	
Olivot et al. (TMO A252), 2011	1 / 157	0.0060 (0.0003, 0.121)	
Voss et al. (MTHAEF), 2013	1 / 58	0.0170 (0.0036, 0.073)	
Woosnam et al., 2005	39 / 492	0.0360 (0.014, 0.092)	

RE Model for Subgroup (Q = 9.88, p = 0.52; I² = 32.32%)

Inpatient

	1 / 44	0.0540 (0.0006, 0.094)	
Cheung et al., 2018	4 / 104	0.0380 (0.0004, 0.091)	
Estola et al., 2018	0 / 87	0.0000 (0.0000, 0.010)	
Macle et al., 2020	0 / 15	0.0090 (0.0008, 0.132)	
Olivot et al. (TMO A252), 2011	1 / 47	0.0540 (0.0004, 0.094)	
Stroh et al. (EIGOR, 2011)	5 / 637	0.0090 (0.0003, 0.019)	
Stroh et al. (EIGOR, 2009)	2 / 291	0.0070 (0.0004, 0.021)	
Voss et al., 2015	0 / 40	0.0000 (0.0000, 0.004)	
Woosnam et al., 2005	0 / 18	0.0000 (0.0000, 0.004)	

RE Model for Subgroup (Q = 6.72, p = 0.67; I² = 0.00%)

Emergency Department

	0 / 40	0.0000 (0.0000, 0.004)	
Cacciarelli et al., 2019	4 / 166	0.0540 (0.0004, 0.091)	
Delgatt et al., 2018	3 / 88	0.0340 (0.0040, 0.090)	
Jones et al., 2018	33 / 293	0.2300 (0.184, 0.283)	
Macle et al., 2020	1 / 15	0.0000 (0.0000, 0.010)	

RE Model for Subgroup (Q = 4.45, p = 0.33; I² = 0.00%)

Unspecified Setting

	06 / 306	0.0220 (0.018, 0.027)	
Caccati et al., 2011	3 / 161	0.0580 (0.025, 0.097)	
Glaubman et al. (Cerebro Stroke Registry), 2004	10 / 245	0.0380 (0.018, 0.056)	
Hetsen et al., 2018	1 / 577	0.0000 (0.0000, 0.010)	
Johnston (CSPH, 2007)	29 / 565	0.0570 (0.035, 0.087)	
Johnston (CSPH, 2007)	27 / 325	0.0860 (0.057, 0.125)	
Kyochara et al. (Tokoku Stroke Registry), 2014	40 / 493	0.0600 (0.051, 0.099)	
Liu et al., 2016	34 / 501	0.0670 (0.036, 0.104)	
Uzunbey et al., 2004	32 / 612	0.0280 (0.018, 0.032)	
Olivot et al. (TMO A252), 2011	2 / 224	0.0090 (0.006, 0.027)	
Oud_PRISMA et al. (P3ND), 2008	5 / 222	0.0340 (0.019, 0.056)	
Puma et al. (PRONAMH), 2014	20 / 297	0.0740 (0.053, 0.096)	
Siemieto et al., 2008	39 / 273	0.0560 (0.024, 0.092)	
Sherkhazai et al. (North Public Population Stroke Study), 2016	15 / 449	0.0340 (0.019, 0.055)	
Tongeget et al., 2019	31 / 248	0.1370 (0.073, 0.223)	
Voss et al., 2015	1 / 18	0.0000 (0.0000, 0.004)	
Wintzki-Mudersbach et al. (Departments, 2011)	5 / 308	0.0160 (0.013, 0.019)	

RE Model for Subgroup (Q = 9.88, p = 0.00; I² = 98.75%)

0.00 0.02 0.05 0.07 0.10 0.12

Sensitivity analysis included the prospective cohort of patients recruited after 2000.

The risk estimate for inpatients was considered as the reference line. * indicates the Stroke Unit, ** indicates the Observation Unit.

© 2022 Shahjouei S et al. JAMA Network Open.
Sensitivity analysis included the prospective cohort of patients recruited after 2000.

The risk estimate for inpatients was considered as the reference line. * indicates the Stroke Unit, ** indicates the Observation Unit.
Sensitivity analysis included the prospective cohort of patients recruited after 2000.

The risk estimate for inpatients was considered as the reference line. * indicates the Stroke Unit, ** indicates the Observation Unit.

© 2022 Shahjouei S et al. JAMA Network Open.
eReferences.

1. Akijian L, Ni Chróinín D, Callaly E, Hannon N, Marnane M, Merwick Á, Sheehan Ó, Hayden D, Horgan G, Duggan J, et al. Why do transient ischemic attack patients have higher early stroke recurrence risk than those with ischemic stroke? Influence of patient behavior and other risk factors in the North Dublin Population Stroke Study. *Int. J. Stroke*. 2017;12:96–104.

2. Sheehan OC, Kyne L, Kelly LA, Hannon N, Marnane M, Merwick A, McCormack PME, Duggan J, Moore A, Moroney J, et al. Population-based study of ABCD2 score, carotid stenosis, and atrial fibrillation for early stroke prediction after transient ischemic attack: The North Dublin TIA study. *Stroke*. 2010;41:844–850.

3. Amarenco P, Labreuche J, Lavallée PC, PC L, Amarenco P, Labreuche J, Lavallée PC. Patients with transient ischemic attack with ABCD2 <4 can have similar 90-day stroke risk as patients with transient ischemic attack with ABCD2 ≥4. *Stroke (00392499)* [Internet]. 2012;43:863–865. Available from: https://ezproxy.uthsc.edu/login?url=http://search.ebscohost.com/login.aspx?direct=true&db=ccm&AN=108160245&site=ehost-live

4. Lavallée PC, Sissani L, Labreuche J, Meseguer E, Cabrejo L, Guidoux CC, Klein IF, Touboul P-JJ, Amarenco P, Lavallée PC, et al. Clinical significance of isolated atypical transient symptoms in a cohort with transient ischemic attack. *Stroke*. 2017;48:1495–1500.

5. Amarenco P, Lavallée PC, Labreuche J, Albers GW, Bornstein NM, Canhão P, Caplan LR, Donnan GA, Ferro JM, Hennerici MG, et al. One-year risk of stroke after transient ischemic attack or minor stroke. *N. Engl. J. Med.* 2016;374:1533–42.

6. Amarenco P, Lavallée PC, Monteiro Tavares L, Labreuche J, Albers GW, Abboud H, Anticoli S, Audebert H, Bornstein NM, Caplan LR, et al. Five-year risk of stroke after TIA or minor ischemic stroke. *N. Engl. J. Med.* 2018;378:2182–2190.

7. Amort M, Fluri F, Schäfer J, Weisskopf F, Katan M, Burow A, Bucher HC, Bonati LH, Lyrer PA, Engelter ST. Transient ischemic attack versus transient ischemic attack mimics: Frequency, clinical characteristics and outcome. *Cerebrovasc. Dis.* 2011;32:57–64.

8. Engelter ST, Amort M, Jax F, Weisskopf F, Katan M, Burow A, Bonati LH, Hatz F, Wetzel SG, Fluri F, et al. Optimizing the risk estimation after a transient ischaemic attack - The ABCDE⊕ score. *Eur. J. Neurol.* 2012;19:55–61.

9. Arhami Dolatabadi A, Meisami A, Hatamabadi H, Mansori B, Shahrami A, Amini A, Jamali K. Improving the prediction of stroke or death after transient ischemic attack (TIA) by adding diffusion-weighted imaging lesions and TIA etiology to the ABCD2 score. *J. Stroke Cerebrovasc. Dis.* 2013;22:e25–e30.

10. Arling G, Sico JJ, Reeves MJ, Myers L, Baye F, Bravata DM. Modelling care quality for patients after a transient ischaemic attack within the US Veterans Health Administration. *BMJ Open Qual.* 2019;8:e000641.

11. Baker RN, Ramseyer JC, Schwartz WS. Prognosis in patients with transient cerebral ischemic attacks. *Neurology*. 1968;18:1157–1165.

12. Banerjee S, Natarajan I, Biram R, Sutton K, Ekeng G, Armes D, Chataway J. FAST-TIA: A prospective evaluation of a nurse-led anterior circulation TIA clinic. *Postgrad. Med. J.* 2009;85:637–642.

13. Barber PA, Krishnamurthi R, Parag V, Anderson NE, Ranta A, Kilfoyle D, Wong E, Green G, Arroll B, Bennett DA, et al. Incidence of Transient Ischemic Attack in Auckland, New Zealand, in 2011 to 2012. *Stroke*. 2016;47:2183–2188.

14. Barton P, Sheppard JP, Penalosa-Ramos CM, Jowett S, Ford GA, Lasserson D, Mant J, Mellor RM, Quinn T, Rothwell PM, et al. When has service provision for transient ischaemic attack improved enough? A discrete event simulation economic modelling study. *BMJ Open*. 2017;7:1–9.

15. Benavente L, Calleja S, Larrosa D, Vega J, Mauri G, Pascual J, Lahoz CH. Long term evolution of patients treated in a TIA unit. *Int. Arch. Med.* 2013;6:1–8.
16. Birns J, Vilasuso M, Cohen DL. One-stop clinics are more effective than neurology clinics for TIA [2]. *Age Ageing* [Internet]. 2006;35:306–308. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-33646192887&doi=10.1093%2Fageing%2Fafj057&partnerID=40&md5=84d0ee05ccd1607580b262da886c44

17. Boden-Albala B, Goldmann E, Parikh NS, Carman H, Roberts ET, Lord AS, Torrico V, Appleton N, Birkemeier J, Parides M, et al. Efficacy of a Discharge Educational Strategy vs Standard Discharge Care on Reduction of Vascular Risk in Patients with Stroke and Transient Ischemic Attack: The DESERVE Randomized Clinical Trial. *JAMA Neurol.* 2019;76:20–27.

18. Bose P, Wilson A, Mistri A. Diagnosis and management of transient ischemic attacks in primary care: A systematic review. *J. Prim. Health Care.* 2017;9:114–130.

19. Bots ML, Wilk EC van der, Koudstaal PJ, Hofman A, Diederick E. Grobbee. Transient Neurological Attacks in the General Population. Prevalence, risk factors, and clinical relevance. *Stroke.* 1997;28:768–773.

20. Boulanger JM, Lindsay MP, Gubitz G, Smith EE, Stotts G, Foley N, Bhogal S, Boyle K, Braun L, Goddard T, et al. Canadian Stroke Best Practice Recommendations for Acute Stroke Management: Prehospital, Emergency Department, and Acute Inpatient Stroke Care, 6th Edition, Update 2018. *Int. J. Stroke.* 2018;13:949–984.

21. Bradley D, Cronin S, Kinsella JA, Tobin WO, Mahon C, O’Brien M, Lonergan R, Cooney MT, Kennelly S, Collins DR, et al. Frequent inaccuracies in ABCD2 scoring in non-stroke specialists’ referrals to a daily Rapid Access Stroke Prevention service. *J. Neurol. Sci.* [Internet]. 2013;332:30–34. Available from: http://dx.doi.org/10.1016/j.jns.2013.05.030

22. Brainin M, McShane LM, Steiner M, Dachenhausen A, Seiser A. Silent brain infarcts and transient ischemic attacks: A three-year study of first-ever ischemic stroke patients: The klosterneuburg stroke data bank. *Stroke.* 1995;26:1348–1352.

23. Bravata DM, Myers LJ, Arling G, Miech EJ, Damush T, Sico JJ, Phipps MS, Zillich AJ, Yu Z, Reeves M, et al. Quality of care for veterans with transient ischemic attack and minor stroke. *JAMA Neurol.* 2018;75:419–427.

24. Bravata DM, Myers LJ, Reeves M, Cheng EM, Baye F, Ofner S, Miech EJ, Damush T, Sico JJ, Zillich A, et al. Processes of Care Associated with Risk of Mortality and Recurrent Stroke among Patients with Transient Ischemic Attack and Nonsevere Ischemic Stroke. *JAMA Netw. Open.* 2019;2:1–13.

25. Burn J, Dennis M, Bamford J, Sandercock P, Wade W, Warlow C. Erratum: Long-term risk of recurrent stroke after a first-ever stroke: The Oxfordshire Community Stroke Project. *Stroke.* 1994;25:333–337.

26. Johnston SC, Peter M Rothwell, Nguyen-Huynh MN, Giles MF, Elkins JS, Bernstein AL, Sidney S. Validation and refinement of scores to predict very early stroke risk after transient ischaemic attack. *Lancet.* 2007;369:283–92.

27. Calvet D, Lamy C, Touzé E, Oppenheim C, Meder JF, Mas JL. Management and outcome of patients with transient ischemic attack admitted to a stroke unit. *Cerebrovasc. Dis.* 2007;24:80–85.

28. Calvet D, Touzé E, Oppenheim C, Turc G, Meder JF, Mas JL. DWI lesions and TIA etiology improve the prediction of stroke after TIA. *Stroke.* 2009;40:187–192.

29. Cameron AC, Dawson J, Quinn TJ, Walters MR, McInnes GT, Morrison D, Sloan W, Lees KR. Long-term outcome following attendance at a transient ischemic attack clinic. *Int. J. STROKE.* 2011;6:306–311.

30. Candelise L, Vigotti M, Fieschi C, Brambilla GL, Bono G, Conforti P, Zanche L De, Inzittari D, Mariani F, Prencipe M, et al. Italian multicenter study on reversible cerebral ischemic attacks: VI — Prognostic factors and follow-up results. *Stroke.* 1986;17:842–848.

31. Chandrathewa A, Geraghty OC, Luengo-Fernandez R, Rothwell PM. ABCD2 score predicts severity rather than risk of early recurrent events after transient ischemic attack. *Stroke.* 2010;41:851–856.

32. Chang BP. Can I send this patient with stroke home? Strategies Managing Transient Ischemic Attack and
Minor Stroke in the Emergency Department. *Physiol. Behav.* 2017;176:139–148.

33. Clissold B, Phan TG, Ly J, Singhal S, Srikanth V, Ma H. Current aspects of TIA management. *J. Clin. Neurosci.* [Internet]. 2020;72:20–25. Available from: https://doi.org/10.1016/j.jocn.2019.12.032

34. Cosker K, Samson S, Woimant F, Tuppin P. First hospitalization for transient ischemic attack in France: Characteristics, treatments and 3-year outcomes. *Rev. Neurol. (Paris).* [Internet]. 2015;172:152–159. Available from: http://dx.doi.org/10.1016/j.neurol.2015.06.008

35. Couillard P, Poppe AY, Coutts SB. Predicting recurrent stroke after minor stroke and transient ischemic attack. *Expert Rev. Cardiovasc. Ther.* 2009;7:1273–1281.

36. Coull AJ, Lovett JK, Rothwell PM, Oxford Vascular Study. Population based study of early risk of stroke after transient ischaemic attack or minor stroke: Implications for public education and organisation of services. *Br. Med. J.* 2004;328:326–328.

37. Cruz-Flores S. Acute Stroke and Transient Ischemic Attack in the Outpatient Clinic. *Med. Clin. North Am.* [Internet]. 2017;101:479–494. Available from: http://dx.doi.org/10.1016/j.mcna.2017.01.001

38. Dawson J, Lamb KE, Quinn TJ, Lees KR, Horvers M, Verrijth MJ, Walters MR. A recognition tool for transient ischaemic attack. *Qjm.* 2008;102:43–49.

39. Dennis MS, Bamford JM, Sandercock PAG, and C.P. Warlow. Incidence of early risk of stroke after transient ischaemic attack or minor stroke: Implications for public education and organisation of services. *Br. Med. J.* 2004;328:326–328.

40. Dolmans LS, Hoes AW, Bartelink MLEL, Koenen NCT, Kappelle LJ, Rutten FH. Patient delay in TIA: a systematic review. *J. Neurol.* [Internet]. 2019;266:1051–1058. Available from: http://dx.doi.org/10.1007/s00415-018-8977-6

41. Dutta D. Diagnosis of TIA (DOT) score - design and validation of a new clinical diagnostic tool for transient ischaemic attack. *BMC Neurol.* [Internet]. 2016;16:1–7. Available from: http://dx.doi.org/10.1186/s12883-016-0535-1

42. Edlow JA. Managing Patients With Transient Ischemic Attack. *Ann. Emerg. Med.* [Internet]. 2018;71:409–415. Available from: https://doi.org/10.1016/j.annemergmed.2017.06.026

43. Eliasziw M, Streiffler JY, Spence JD, Fox AJ, Hachinski VC, Barnett HJM. Prognosis for patients following a transient ischemic attack with and without a cerebral infarction on brain ct. *Neurology.* 1995;45:428–431.

44. Evans BA, Sicks JD, Whisnant JP. Factors Affecting Survival and Occurrence of Stroke in Patients With Transient Ischemic Attacks. *Mayo Clin. Proc.* 1994;69:416–421.

45. Falke P, Lindgärde F, Stavenow L. Prognostic indicators for mortality in transient ischemic attack and minor stroke. *Acta Neurol. Scand.* 1994;90:78–82.

46. Feigin VL, Shishkin S V., Tzirkin GM, Vinogradova TE, Tarasov A V., Vinogradov SP, Nikitin YP. A population-based study of transient ischemic attack incidence in Novosibirsk, Russia, 1987-1988 and 1996-1997. *Stroke.* 2000;31:9–13.

47. Ferro JM, Crespo M. Prognosis after transient ischemic attack and ischemic stroke in young adults. *Stroke.* 1994;25:1611–1616.

48. Fiorelli M, Argentino C, Sacchetti ML, Toni D, Sette G, Cavalletti C, Gori MC, Fieschi C, Alpérovitch A. Prediction of long-term outcome in the early hours following acute ischemic stroke. *Arch. Neurol.* 1995;52:250–255.

49. Floßmann E, Rothwell PM. Prognosis of vertebrobasilar transient ischaemic attack and minor stroke. *Brain.* 2003;126:1940–1954.

50. Fratiglioni L, Arfaïoli C, Nencini P, Ginanneschi A, Iaquinta L, Marchi M, Inzitari D. Transient ischemic attacks in the community: Occurrence and clinical characteristics. A population survey in the area of
52. Fratiglioni L, Inzitari D, Arfaoli C, Nencini P, Ginanneschi A, Pracucci G, Zuppiroli A, Italian G, Amaducci L. Risk factors for transient ischemic attacks in middle-age. A population-based case-control study. *Acta Neurol. Scand.* 1991;83:214–220.

53. Friday G, Alter M, Lai SM, Sobe E. Transient ischemic attack and risk of stroke recurrence: The Lehigh Valley Recurrent Stroke Study. *J. Stroke Cerebrovasc. Dis.* 1997;6:410–415.

54. Gennesseaux J, Giordano Orsini G, Lefour S, Bakchine S, Marion Q, Barbe C, Gennai S. Early Management of Transient Ischemic Attack in Emergency Departments in France. *J. Stroke Cerebrovasc. Dis.* 2019;29:104464.

55. Giles MF, Rothwell PM. Prediction and prevention of stroke after transient ischemic attack in the short and long term. *Expert Rev. Neurother.* 2006;6:381–395.

56. Giles MF, Rothwell PM. Risk of stroke early after transient ischaemic attack: a systematic review and meta-analysis. *Lancet. Neurol.* 2007;6:1063–72.

57. Giles MF, Rothwell PM. Substantial underestimation of the need for outpatient services for TIA and minor stroke. *Age Ageing.* 2007;36:676–680.

58. Gommans J, Barber PA, Fink J. Preventing strokes: The assessment and management of people with transient ischaemic attack. *N. Z. Med. J.* 2009;122:50–60.

59. Graham C, Bailey D, Hart S, Hutchison A, Sandercock P, Doublé F, Sudlow C, Carrall A, Wardlaw J, Dennis M, et al. Clinical diagnosis of TIA or minor stroke and prognosis in patients with neurological symptoms: A rapid access clinic cohort. *PLoS One.* 2014;9:e0210452.

60. Griffiths D, Sturm J, Heard R, Reyneke E, Whyte S, Clarke T, O’Brien W, Crimmins D. Can lower risk patients presenting with transient ischaemic attack be safely managed as outpatients? *J. Clin. Neurosci.* 2014;21:47–50.

61. Gulli G, Marquardt L, Rothwell PM, Markus HS. Stroke risk after posterior circulation stroke/transient ischemic attack and its relationship to site of vertebrobasilar stenosis: Pooled data analysis from prospective studies. *Stroke.* 2013;44:598–604.

62. Hankey GJ, Slattery JM, Warlow CP. The prognosis of hospital-referred transient ischaemic attacks. *J. Neurol. Neurosurg. Psychiatry.* 1991;54:793–802.

63. Hankey GJ, Slattery JM, Warlow CP. Transient ischaemic attacks: Which patients are at high (and low) risk of serious vascular events? *J. Neurol. Neurosurg. Psychiatry.* 1992;55:640–652.

64. Hayashi T, Kato Y, Nagoya H, Ohe Y, Deguchi I, Fukuoka T, Maruyama H, Horiuchi Y, Nagamine Y, Sano H, et al. Prediction of ischemic stroke in patients with tissue-defined transient ischemic attack. *J. Stroke Cerebrovasc. Dis.* 2014;23:1368–1373.

65. Hier DB, Foulkes MA, Swiontoniowski M, Sacco RL, Gorelick PB, Mohr JP, Price TR, Wolf PA. Stroke recurrence within 2 years after ischemic infarction. *Stroke.* 1991;22:155–161.

66. Holzer K, Feurer R, Sadikovic S, Esposito L, Bockelbrink A, Sander D, Hemmer B, Poppert H. Prognostic value of the ABCD2score beyond short-term follow-up after transient ischemic attack (TIA) - A cohort study. *BMC Neurol.* 2010;10:50.

67. Hörer S, Schulte-Altedorneburg G, Haberl RL. Management of patients with transient ischemic attack is safe in an outpatient clinic based on rapid diagnosis and risk stratification. *Cerebrovasc. Dis.* 2011;32:504–510.

68. Hoshino T, Mizuno S, Shimizu S, Uchiyama S. Clinical features and functional outcome of stroke after transient ischemic attack. *J. Stroke Cerebrovasc. Dis.* 2013;22:260–266.

69. Hoshino T, Nagao T, Mizuno S, Shimizu S, Uchiyama S. Transient neurological attack before vertebrobasilar stroke. *J. Neurol. Sci.* 2013;325:39–42.

70. Hosier GW, Phillips SJ, Doucette SP, Magee KD, Gubitz GJ. Transient ischemic attack: Management in Florence, Italy. *Neuroepidemiology.* 1989;8:87–96.
the emergency department and impact of an outpatient neurovascular clinic. Can. J. Emerg. Med. 2016;18:331–339.

71. Howard G, Toole JF, Frye-Pierson J, Hinshelwood LC. Factors influencing the survival of 451 transient ischemic attack patients. Stroke. 1987;18:552–557.

72. Jeerakathil T, Shuaib A, Majumdar SR, Demchuk AM, Butcher KS, Watson TJ, Dean N, Gordon D, Edmond C, Coutts SB. The Alberta Stroke Prevention in TIAs and mild strokes (ASPIRE) intervention: Rationale and design for evaluating the implementation of a province-wide TIA Triaging system. Int. J. Stroke. 2014;9:135–143.

73. Johnson SE, Skre H. Transient cerebral ischemic attacks in the young and middle aged a population study. Stroke. 1986;17:662–666.

74. Johnston SC, Gress DR, Browner WS, Sidney S. Short-term prognosis after emergency department diagnosis of TIA. J. Am. Med. Assoc. 2000;284:2901–2906.

75. Joundi RA, Saposnik G. Organized Outpatient Care of Patients with Transient Ischemic Attack and Minor Stroke. Semin. Neurol. 2017;37:383–390.

76. Kandiyali R, Lasserson DS, Whiting P, Richards A, Mant J. Predictive values of referrals for transient ischaemic attack from first-contact health care: A systematic review. Br. J. Gen. Pract. 2017;67:e871–e880.

77. Kapral MK, Hall R, Fang J, Austin PC, Silver FL, Casaubon LK, Gladstone DJ, Stamplecoski M, Tu J V. Predictors of Hospitalization in Patients with Transient Ischemic Attack or Minor Ischemic Stroke. Can. J. Neurol. Sci. 2016;43:523–528.

78. Kernan WN, Viscoli CM, Brass LM, Makuch RW, Sarrel PM, Roberts RS, Gent M, Rothwell P, Sacco RL, Liu R-C, et al. The Stroke Prognosis Instrument II (SPI-II). Stroke. 2000;31:456–462.

79. Kimura K, Kazui S, Minematsu K, Yamaguchi T. Analysis of 16,922 Patients with Acute Ischemic Stroke and Transient Ischemic Attack in Japan. Cerebrovasc Dis. 2004;8565:47–56.

80. Kokubo Y. Epidemiology of transient ischemic attack. Front. Neurol. Neurosci. 2014;33:69–81.

81. Lai SM, Alter M, Friday G, Sobel E, Gil-Peralta A, McCoy RL, Levitt LP, Isack T. Transient ischemic attacks: Their Frequency in the lehigh valley. Neuroepidemiology. 1990;9:124–130.

82. Lavallée PC, Meseguer E, Abboud H, Cabrejo L, Olivot J, Simon O, Mazighi M, Nifl C, Niclot P, Lapergue B, et al. A transient ischaemic attack clinic with round-the-clock access (SOS-TIA): feasibility and effects. Lancet Neurol. 2007;6:953–960.

83. Lee W, Frayne J. Transient ischaemic attack clinic: An evaluation of diagnoses and clinical decision making. J. Clin. Neurosci. [Internet]. 2015;22:645–648. Available from: http://dx.doi.org/10.1016/j.jocn.2014.09.020

84. Lesenskyj AM, Maxwell CR, Veznedaroglu E, Liebman K, Hakma Z, Binning MJ. An Analysis of Transient Ischemic Attack Practices: Does Hospital Admission Improve Patient Outcomes? J. Stroke Cerebrovasc. Dis. [Internet]. 2016;25:2122–2125. Available from: http://dx.doi.org/10.1016/j.jstrokecerebrovasdis.2016.06.002

85. Levi CR, Lasserson D, Quain D, Valderas J, Dewey HM, Alan Barber P, Spratt N, Cadilhac DA, Feigin V, Zareie H, et al. The International comparison of Systems of care and patient outcomes In minor Stroke and Tia (InSIST) study: A community-based cohort study. Int. J. Stroke. 2019;14:186–190.

86. Loeb C, Priaio A, Albano C. Clinical features and long-term follow-up of patients with reversible ischemic attacks (RIA). Acta Neurol. Scand. 1978;57:471–480.

87. Lovett JK, Dennis MS, Sandercock PAG, Bamford J, Warlow CP, Rothwell PM. Very early risk of stroke after a first transient ischemic attack. Stroke. 2003;34:e138-40.

88. Luengo-Fernandez R, Paul NLM, Gray AM, Pendlebury ST, Bull LM, Welch SJV, Cuthbertson FC, Rothwell PM. Population-based study of disability and institutionalization after transient ischemic attack and stroke: 10-year results of the oxford vascular study. Stroke. 2013;44:2854–2861.

© 2022 Shahjouei S et al. JAMA Network Open.
89. Madsen TE, Wira CR. The Future of Minor Stroke and Transient Ischemic Attack: The RAVEN Approach Is Promising but Not Ready for Prime Time. *Ann. Emerg. Med.* [Internet]. 2019;74:572–574. Available from: https://doi.org/10.1016/j.annemergmed.2019.08.458

90. Magin P, Lasserson D, Parsons M, Spratt N, Evans M, Russell M, Royan A, Goode S, McElduff P, Levi C. Referral and triage of patients with transient ischemic attacks to an acute access clinic: risk stratification in an Australian setting. *Int. J. Stroke.* 2013;8:81–89.

91. Martí-Vilalta JL, Lopez-Pousa S, Grau JM, Barraquer L. Transient ischemic attacks. Retrospective study of 150 cases of ischemic infarct in the territory of the middle cerebral artery. *Stroke.* 1979;10:259–262.

92. Mas JL, Zuber M. Recurrent cerebrovascular events in patients with patent foramen ovale, atrial septal aneurysm, or both and cryptogenic stroke or transient ischemic attack. *Am. Heart J.* 1995;130:1083–1088.

93. Mendelowitz DS, Kimmins S, Evans WE. Prognosis of patients with transient ischemic attacks and normal angiograms. *Arch. Surg.* 1981;116:1587–1591.

94. Merwick Á, Kelly PJ. Transient ischaemic attack clinics and management of transient ischaemic attacks. *Curr. Opin. Neurol.* 2011;24:50–58.

95. Mettinger KL, Söderström CE, Allander E. Epidemiology of acute cerebrovascular disease before the age of 55 in the stockholm county 1973-77: I incidence and mortality rates. *Stroke.* 1984;15:795–801.

96. Miller JFTRJKCRCCDFJHS. Transient Ischemic Attacks Due to Atherosclerosis. *Arch. Neurol.* 1975;32:5.

97. Mortel KF, Meyer JS. Prospective study of vascular events and cerebral perfusional changes following transient ischemic attacks. *Angiology.* 1996;47:215–224.

98. Muuronen A, Kaste M. Outcome of 314 patients with transient ischemic attacks. *Stroke.* 1982;13:24–31.

99. Norris JW. Outcome of Transient Ischaemic Attacks and Stroke. *Drugs.* 1991;42:10–15.

100. O’Brien EC, Zhao X, Fonarow GC, Schulte PJ, Dai D, Smith EE, Schwamm LH, Bhatt DL, Xian Y, Saver JL, et al. Quality of care and ischemic stroke risk after hospitalization for transient ischemic attack: Findings from get with the guidelines-stroke. *Circ. Cardiovasc. Qual. Outcomes.* 2015;8:S117–S124.

101. Ois A, Cuadrado-Godia E, Giralt-Steinhauer E, Jimenez-Conde J, Soriano-Tarraga C, Rodriguez-Campello A, Avellaneda C, Cascales D, Fernandez-Perez I, Roquer J. Long-term stroke recurrence after transient ischemic attack: Implications of etiology. *J. Stroke.* 2019;21:184–189.

102. Park HK, Kim BJ, Han MK, Park JM, Kang K, Lee SJ, Kim JG, Cha JK, Kim DH, Nah HW, et al. One-year outcomes after minor stroke or high-risk transient ischemic attack Korean multicenter stroke registry analysis. *Stroke.* 2017;48:2991–2998.

103. Pendlebury ST, Rothwell PM. Risk of recurrent stroke, other vascular events and dementia after transient ischaemic attack and stroke. *Cerebrovasc. Dis.* 2009;27:1–11.

104. Purroy F, Montserrat J, Begué R, Gil MI, Quílez A, Sanahuja J, Brieva L, Pardina M, Piñol-Ripoll G. Higher carotid intima media thickness predicts extracranial vascular events and not stroke recurrence among transient ischemic attack patients. *Int. J. Stroke.* 2012;7:125–132.

105. Purroy F, Jiménez Caballero PE, Gorospe A, Torres MJ, Álvarez-Sabin J, Santamarina E, Martínez-Sánchez P, Cánovas D, Freijo MJ, Egido JA, et al. Recurrent transient ischaemic attack and early risk of stroke: data from the PROMAPA study. *J. Neurol. Neurosurg. Psychiatry.* 2013;84:596–603.

106. Purroy F, Jiménez Caballero PE, Gorospe A, Torres MJ, Álvarez-Sabin J, Martínez-Sánchez P, Cánovas D, Freijo M, Egido JA, Ramírez-Moreno JM, et al. How predictors and patterns of stroke recurrence after a TIA differ during the first year of follow-up. *J. Neurol.* 2014;261:1614–1621.

107. Redgrave JN, Coutts SB, Schulz UG, Briley D, Rothwell PM. Systematic review of associations between the presence of acute ischemic lesions on diffusion-weighted imaging and clinical predictors of...
109. Rhoads GG, Popper JS, Kagan A, Yano K. Incidence of transient cerebral ischemic attack in hawaiian japanese men: The honolulu heart study. *Stroke*. 1980;11:21–36.

110. Rooij FG van, Dijk EJ van, Frank-Erik de Leeuw. 24/7 TIA-service. *Integr. Care Case Vol*. 2012;12.

111. Rothwell PM. Incidence, risk factors and prognosis of stroke and TIA: The need for high-quality, large-scale epidemiological studies and meta-analyses. *Cerebrovasc. Dis.* 2003;16:2–10.

112. Rothwell PM, Giles MF, Flossmann E, Lovelock CE, Redgrave JNEE, Warlow CP, Mehta Z. A simple score (ABCD) to identify individuals at high early risk of stroke after transient ischaemic attack. *Lancet*. 2005;366:29–36.

113. Rothwell PM, Warlow CP. Timing of TIAs preceding stroke: Time window for prevention is very short. *Neurology*. 2005;64:817–820.

114. Sales M, Quain D, Lasserson D, Levi C, Oldmeadow C, Jiwa M, Parsons M, Russell M, Clarey J, Magin P. Quality of referrals and guideline compliance for time to consultation at an acute neurovascular clinic. *J. Stroke Cerebrovasc.* [Internet]. 2015;24:874–880. Available from: http://dx.doi.org/10.1016/j.jstrokecerebrovasdis.2014.12.004

115. Sanossian N, Ovbiagele B. The risk of stroke within a week of minor stroke or transient ischemic attack. *Expert Opin. Pharmacother*. 2008;9:2069–2076.

116. Shah KH, Kleckner K, Edlow JA. Short-term Prognosis of Stroke Among Patients Diagnosed in the Emergency Department With a Transient Ischemic Attack. *Ann. Emerg. Med.* 2008;51:316–323.

117. Shah S, Cooper B. The epidemiology of stroke and transient ischaemia in Brisbane, Australia. *Ital. J. Neurol. Sci.* 1995;16:603–612.

118. Simonsen N, Christiansen HD, Heltberg A, Marquardsen J, Pedersen HE, Sørensen PS. Long-term prognosis after transient ischemic attacks. *Acta Neurol. Scand.* 1981;63:156–168.

119. Sobel E, Alter M, Davanipour Z, Friday G, McCoy R, Levitt LP, Isack T. Stroke in the lehigh valley: Combined risk factors for recurrent ischemic stroke. *Neurology*. 1989;39:669–672.

120. Stead LG, Bellolio MF, Suravaram S, Brown RD, Bhagra A, Gilmore RM, Boie ET, Decker WW. Evaluation of transient ischemic attack in an emergency department observation unit. *Neurocrit. Care*. 2009;10:204–8.

121. Stead LG, Suravaram S, Bellolio MF, Enduri S, Rabinstein A, Gilmore RM, Bhagra A, Manivannan V, Decker WW. An assessment of the incremental value of the ABCD2 score in the emergency department evaluation of transient ischemic attack. *Ann. Emerg. Med.* [Internet]. 2011;57:46–51. Available from: http://dx.doi.org/10.1016/j.annemergmed.2010.07.001

122. Streifler Y, Eliasziw M, Benavente OR, Harbison JW, Hachinski VC, Barnett HJM, Simard D. The Risk of Stroke in Patients With First-Ever Attacks and High-grade Carotid Stenosis. *Arch Neurol.* 1995;52:246–249.

123. Terént A, Andersson B. The Outcome of Patients with Transient Ischemic Attacks and Stroke Treated with Anticoagulants. *Acta Med. Scand.* 1980;208:359–365.

124. Terent A. Survival after stroke and transient ischemic attacks during the 1970s and 1980s. *Stroke*. 1989;20:1320–1326.

125. Thacker EL, Wiggins KL, Rice KM, Longstreth WT, Bis JC, Dublin S, Smith NL, Heckbert SR, Psaty BM. Short-term and long-term risk of incident ischemic stroke after transient ischemic attack. *Stroke*. 2010;41:239–243.

126. Tomari S, Magin P, Lasserson D, Quain D, Valderas JM, Dewey HM, Barber PA, Spratt NJ, Cadilhac DA, Feigin VL, et al. The Characteristics of Patients With Possible Transient Ischemic Attack and Minor Stroke in the Hunter and Manning Valley Regions, Australia (the INSIST Study). *Front. Neurol.* 2020;11:1–7.

© 2022 Shahjouei S et al. *JAMA Network Open.*
127. Toole JF, Yuson CP, Janeway R, Johnston F, Davis CL, Cordell AR, Howard G. Transient ischemic attacks: A prospective study of 225 patients. Neurology. 1978;28:746–753.

128. Torres Macho J, Peña Lillo G, Pérez Martínez D, González Mansilla A, Gámez Diez S, Mateo Alvarez S, García De Casasola G. Outcomes of atherothrombotic transient ischemic attack and minor stroke in an emergency department: Results of an outpatient management program. Ann. Emerg. Med. [Internet]. 2011;57:510–516. Available from: http://dx.doi.org/10.1016/j.annemergmed.2010.09.009

129. Tsuda Y, Kimura K, Yoneda S, Miyai M, Isaki Y, Abe H. Transient ischemic attacks: racial differences, treatment, and prognosis. Neurol. Res. 1983;5:103–117.

130. Ueda K, Kiyohara Y, Hasuo Y, Yanai T, Kawano H, Wada J, Kato I, Kajiwara E, Omae T, Fujishima M. Transient cerebral ischemic attacks in a japanese community, Hisayama, Japan. Stroke. 1987;18:844–848.

131. Valls J, Peiro-Chamarro M, Cambray S, Molina-Seguin J, Benabdelah I, Purroy F. A current estimation of the early risk of stroke after transient ischemic attack: A systematic review and meta-analysis. Cerebrovasc. Dis. 2017;43:90–98.

132. Vandenbussche N, Demeestere J, Lemmens R. Evaluation and outcome of triage for patients with transient ischemic attack A two-year analysis of the TIA Clinic of the University Hospitals Leuven. 2017;2016–2017.

133. Vilanova MB, Mauri-Capdevila G, Sanahuja J, Quilez A, Piñol-Ripoll G, Begué R, Gil MI, Codina-Barios MC, Benabdelah I, Purroy F. Prediction of myocardial infarction in patients with transient ischemic attack. Acta Neurol. Scand. 2015;131:111–119.

134. Vrethem M, Johansson I. Prognosis in patients with transient ischaemic attacks and minor stroke associated with a normal angiogram. Eur. Neurol. 1990;30:203–206.

135. Walker J, Isherwood J, Eveson D, Naylor AR. Triaging TIA/minor stroke patients using the ABCD2 score does not predict those with significant carotid disease. Eur. J. Vasc. Endovasc. Surg. [Internet]. 2012;43:495–498. Available from: http://ovidsp.ovid.com/ovidweb.cgi?T=JS&PAGE=reference&D=med9&NEWS=N&AN=22377238

136. Warrior L, Prabhakaran S. Transient ischemic attack evaluation models: Hospitalization, same-day clinics, or rapid evaluation units. Am. J. Ther. 2011;18:45–50.

137. Weimar C, Benemann J, Michalski D, Müller M, Luckner K, Katsarava Z, Weber R, Diener HC. Prediction of Recurrent Stroke and Vascular Death in Patients with Transient Ischemic Attack or Nondisabling Stroke: A Prospective Comparison of Validated Prognostic Scores. Stroke. 2010;41:487–493.

138. Whisnant JP, Wiebers DO. Clinical Epidemiology of Transient Cerebral Ischemic Attacks (TIA) in the Anterior and Posterior Cerebral Circulation. In: Occlusive Cerebrovascular Disease: Diagnosis and Surgical Management. WB Saunders; 1987. p. 60–65.

139. Widjaja, E., S. N. Salam, P. D. Griffiths, C. Kamara, C. Doyle and GSV. Is the rapid assessment stroke clinic rapid enough in assessing transient ischaemic attack and minor stroke? J. Neurol. Neurosurg. Psychiatry. 2004;76:141–142.
term survival and vascular event risk after transient ischaemic attack or minor ischaemic stroke: A cohort study. *Lancet.* 2005;365:2098–2104.

144. Wu CM, McLaughlin K, Lorenzetti DL, Hill MD, Manns BJ, Ghali WA. Early Risk of Stroke After Transient Ischemic Attack A Systematic Review and Meta-analysis. *Arch Intern Med.* 2007;167:2417–2422.

145. Zhong W, Geng N, Wang P, Li Z, Cao L. Prevalence, causes and risk factors of hospital readmissions after acute stroke and transient ischemic attack: a systematic review and meta-analysis. *Neurol. Sci.* 2016;37:1195–1202.

146. Ahmad O, Penglase RG, Chen MS, Harvey I, Hughes AR, Lueck CJ. A retrospective analysis of inpatient compared to outpatient care for the management of patients with transient ischaemic attack. *J. Clin. Neurosci.* 2013;20:988–992.

147. Al-Khaled M, Matthys C, Eggers J. The prognostic impact of the stroke unit care versus conventional care in treatment of patients with transient ischemic attack: a prospective population-based German study. *J. Vasc. Interv. Neurol.* 2013;5:22–226.

148. Al-Khaled M, Eggers J. Early Hospitalization of Patients with TIA: A Prospective, Population-based Study. *J. STROKE Cerebrovasc. Dis.* 2014;23:99–105.

149. Appelros P, Berglund MH, Ström JO. Long-term risk of stroke after transient ischemic attack. *Cerebrovasc. Dis.* 2017;43:25–30.

150. Arsava EM, Furie KL, Schwamm LH, Sorensen AG, Ay H. Prediction of early stroke risk in transient symptoms with infarction: Relevance to the new tissue-based definition. *Stroke.* 2011;42:2186–2190.

151. Ay H, Arsava EM, Johnston SC, Vangel M, Schwamm LH, Furie KL, Koroshetz WJ, Sorensen AG. Clinical- and imaging-based prediction of stroke risk after transient ischemic attack: The CIP model. *Stroke.* 2009;40:181–186.

152. Bonifati DM, Lorenzi A, Ermani M, Refatti F, Gremes E, Boninsegna C, Filipponi S, Orrico D. Carotid stenosis as predictor of stroke after transient ischemic attacks. *J. Neurol. Sci.* 2015;303:85–89.

153. Bos MJ, Van Rijn MJE, Witteman JCM, Hofman A, Koudstaal PJ, Breteler MMB. Incidence and prognosis of transient neurological attacks. *JAMA - J. Am. Med. Assoc.* [Internet]. 2007;298:2877–2885. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-37549038251&doi=10.1001%2Fjama.298.24.2877&partnerID=40&md5=a8ed06cbdc01ab2713c107c1f62533e6

154. Cheong E, Toner P, Dowie G, Jannes J, Kleinig T. Evaluation of a CTA-Triage Based Transient Ischemic Attack Service: A Retrospective Single Center Cohort Study. *J. Stroke Cerebrovasc. Dis.* [Internet]. 2018;27:3436–3442. Available from: https://ezproxy.uthsc.edu/login?url=http://search.ebscohost.com/login.aspx?direct=true&db=ccm&AN=138728145&site=ehost-live

155. Cheong E, Toner P, Dowie G, Jannes J, Kleinig T. Evaluation of a CTA-Triage Based Transient Ischemic Attack Service: A Retrospective Single Center Cohort Study. *J. Stroke Cerebrovasc. Dis.* [Internet]. 2018;27:3436–3442. Available from: https://doi.org/10.1016/j.jstrokecerebrovasdis.2018.08.006

156. Correia M, Fonseca AC, Canhão P. Short-term outcome of patients with possible transient ischemic attacks: A prospective study. *BMC Neuro.* 2015;15:78.

157. Coutts SB, Hill MD, Campos CR, Choi YB, Subramaniam S, Kosior JC, Demchuk AM. Recurrent events in transient ischemic attack and minor stroke: What events are happening and to which patients? *Stroke.* 2008;39:2461–2466.

158. Cucchiara BL, Messe SR, Sansing L, MacKenzie L, Taylor RA, Pacelli J, Shah Q, Kasner SE. Lipoprotein-Associated Phospholipase A(2) and C-Reactive Protein for Risk-Stratification of Patients With
160. Dahlquist RT, Young JM, Reyner K, Farzad A, Moleno RB, Gandham G, Ho AF, Wang H. Initiation of the ABCD3-I algorithm for expediated evaluation of transient ischemic attack patients in an emergency department. Am. J. Emerg. Med. [Internet]. 2019;Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85067471067&doi=10.1016%2Fj.ajem.2019.06.018&partnerID=40&md5=358afe372e206b2b85f36f2ca9a62

161. De Marchis GM, Weck A, Audebert H, Benik S, Foerch C, Buhl D, Schuetz P, Jung S, Seiler M, Morgenthaler NG, et al. Copeptin for the Prediction of Recurrent Cerebrovascular Events After Transient Ischemic Attack Results From the CoRisk Study. STROKE. 2014;45:2918+.

162. Delgado P, Chacón P, Penalba A, Pelegri D, García-Berrocoso T, Giralt D, Santamaria E, Ribó M, Maisterra O, Alvarez-Sabín J, et al. Lipoprotein-associated phospholipase A2 activity is associated with large-artery atherosclerotic etiology and recurrent stroke in TIA patients. Cerebrovasc. Dis. 2012;33:150–158.

163. Eliaszew M, Kennedy J, Hill MD, Buchan AM, Barnett HJM. Early risk of stroke after a transient ischemic attack in patients with internal carotid artery disease. CMAJ. 2004;170:1105–1109.

164. Engelter ST, Amort M, Jax F, Weisskopf F, Katan M, Burow A, Bonati LH, Hatz F, Wetzel SG, Fluri F, et al. Optimizing the risk estimation after a transient ischaemic attack - the ABCDE circle plus score. Eur. J. Neurol. 2012;19:55–61.

165. Felgueiras R, Magalhães R, Silva MR, Silva MC, Correia M. Transient ischemic attack: Incidence and early risk of stroke in northern Portugal from 1998–2000 to 2009–2011. Int. J. Stroke. 2019;0:1–11.

166. Fujinami J, Uehara T, Kimura K, Okada Y, Hasegawa Y, Tanahashi N, Suzuki A, Takagi S, Nakagawara J, Arri K, et al. Incidence and predictors of ischemic stroke events during hospitalization in patients with transient ischemic attack. Cerebrovasc. Dis. 2014;37:330–335.

167. Geil K, González-Concejón JJ, Jiménez-Velázquez IZ, Medina B, Velazco X. Management and outcome of transient ischemic attacks in Ponce, Puerto Rico. Bol. Asoc. Med. P. R. 2008;100:11–14.

168. Ghia D, Thomas P, Cordato D, Epstein D, Beran RG, Cappellen-Smith C, Griffith N, Hanna I, Mcdougall A, Hodgkinson SJ, et al. Low positive predictive value of the ABCD2 score in emergency department transient ischemic attack diagnoses: The South Western Sydney Transient Ischaemic Attack Study. Intern. Med. J. 2012;42:913–918.

169. DJ G, MK K, Fang J, Laupacis A, JV T, Gladstone DJ, Kapral MK, Fang J, Laupacis A, Tu J V. Management and outcomes of transient ischemic attacks in Ontario. C. Can. Med. Assoc. J. [Internet]. 2004;170:1099–1104. Available from: https://ezproxy.uthsc.edu/login?url=http://search.ebscohost.com/login.aspx?direct=true&db=ccm&AN=106756735&site=ehost-live

170. Gon Y, Sakaguchi M, Okazaki S, Mochizuki H, Kitagawa K. Prevalence of positive diffusion-weighted imaging findings and ischemic stroke recurrence in transient ischemic attack. J. Stroke Cerebrovasc. Dis. [Internet]. 2015;24:1000–1007. Available from: http://dx.doi.org/10.1016/j.jstrokecerebrovasdis.2014.12.023

171. Guarino M, Rondelli F, Favaretto E, Stracciari A, Filippini M, Rinaldi R, Zele I, Sartori M, Faggioni G, Mondini S, et al. Short- and Long-Term Stroke Risk after Urgent Management of Transient Ischaemic Attack: The Bologna TIA Clinical Pathway. Eur. Neurol. 2015;74:1–7.

172. Harrison JK, Sloan B, Dawson J, Lees KR, Morrison DS. The ABCD and ABCD2 as predictors of stroke in transient ischemic attack clinic outpatients: A retrospective cohort study over 14 years. Q J Med. 2010;103:679–685.

173. Hill MD, Yiannakoulas N, Jeerakathil T, Tu J V, Svenson LW, Schopflocher DP. The high risk of stroke immediately after transient ischemic attack: A population-based study. Neurology. 2004;62:2015–2020.

174. Ildstad F, Ellekjaer H, Wethal T, Lydersen S, Sund JK, Fjaertoft H, Schuler S, Horn JW, Brathen G, Midtsaether A-G, et al. Stroke risk after transient ischemic attack in a Norwegian prospective cohort. BMC © 2022 Shahjouei S et al. JAMA Network Open.
175. Johnston SC, Rothwell PM, Nguyen-Huynh MN, Giles MF, Elkins JS, Bernstein AL, Sidney S. Validation and refinement of scores to predict very early stroke risk after transient ischaemic attack. *Lancet*. 2007;369:283–292.

176. Jove M, Mauri-Capdevila G, Suarez I, Cambray S, Sanahuja J, Quilez A, Farre J, Benabdelahk I, Pamliona R, Portero-Otin M, et al. Metabolomics predicts stroke recurrence after transient ischemic attack. *Neurology*. 2015;84:36–45.

177. Kiyohara T, Kamouchi M, Kumai Y, Ninomiya T, Hata J, Yoshimura S, Ago T, Okada Y, Kitazono T, Investigators FSR. ABCD3 and ABCD3-I Scores Are Superior to ABCD2 Score in the Prediction of Short- and Long-Term Risks of Stroke After Transient Ischemic Attack. *STROKE*. 2014;45:418–425.

178. Kleindorfer D, Panagos P, Pancholi A, Khoury J, Kissing B, Alwell K, Jauch E, Miller R, et al. Incidence and short-term prognosis of transient ischemic attack in a population-based study. *Stroke*. 2005;36:720–3.

179. Lichtman JH, Jones SB, Watanabe E, Allen NB, Wang Y, Howard VJ, Goldstein LB. Elderly Women Have Lower Rates of Stroke, Cardiovascular Events, and Mortality After Hospitalization for Transient Ischemic Attack. *Stroke* [Internet]. 2009;40:2116–2122. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-66849065968&doi=10.1161%2FSTROKEAHA.108.543009&partnerID=40&md5=e633ef8867561ab40210751a58ba10cf

180. Lim J-S, Hong K-S, Kim G-M, Bang OY, Bae H-J, Kwon H-M, Park J-M, Lee S-H, Rha J-H, Koo J, et al. Cerebral microbleeds and early recurrent stroke after transient ischemic attack: results from the Korean Transient Ischemic Attack Expression Registry. *JAMA Neurol.* 2015;72:301–8.

181. Lisabeth LD, Ireland JK, Risser JMH, Brown DL, Smith MA, Garcia NM, Morgenstern LB. Stroke risk after transient ischemic attack in a population-based setting. *Stroke*. 2004;35:1842–6.

182. Rothrock J, Majidi S, Burger K, Leon-Guerrero C. Inpatient versus Outpatient Management of TIA or Minor Stroke: Clinical Outcome. *Neurology*. 2016;86.

183. Montassier E, Lim T-X, Goffinet N, Guillou B, Segard J, Martinage A, Potel G, Le Conte P. Results of an outpatient transient ischemic attack evaluation: a 90-day follow-up study. *J. Emerg. Med.* [Internet]. 2013;44:970–975. Available from: https://ezproxy.uthsc.edu/login?url=http://search.ebscohost.com/login.aspx?direct=true&db=ccm&AN=104283594&site=ehost-live

184. Nahab F, Leach G, Kingston C, Mir O, Abramson J, Hilton S, Keadey M, Gartland B, Ross M. Impact of an emergency department observation unit transient ischemic attack protocol on length of stay and cost. *J. Stroke Cerebrovasc. Dis.* 2012;21:673–678.

185. Nguyen H, Kerr D, Kelly AM. Comparison of prognostic performance of scores to predict risk of stroke in ED patients with transient ischaemic attack. *Eur. J. Emerg. Med.* 2010;17:346–348.

186. Ohara T, Uehara T, Toyoda K, Suzuki R, Sato S, Nagatsu K, Minematsu K. Early stroke risk after transient ischemic attack in patients without large-artery disease or atrial fibrillation. *J. Stroke Cerebrovasc. Dis.* 2015;24:1656–61.

187. Ohara T, Uehara T, Sato S, Hayakawa M, Kimura K, Okada Y, Hasegawa Y, Tanahashi N, Suzuki A, Nakagawara J, et al. Small vessel occlusion is a high-risk etiology for early recurrent stroke after transient ischemic attack. *Int. J. STROKE*. 2019;14:871–877.

188. Olivot JM, Woldorf C, Castle J, Mlynash M, Schwartz NE, Lansberg MG, Kemp S, Albers GW. TWO ACES: Transient ischemic attack work-up as outpatient assessment of clinical evaluation and safety. *Stroke*. 2011;42:1839–1843.

189. Ottaviani M, Vanni S, Moroni F, Peiman N, Boddi M, Grifoni S. Urgent carotid duplex and head computed tomography versus ABCD2 score for risk stratification of patients with transient ischemic attack. *Eur. J. Emerg. Med.* 2016;23:19–23.

© 2022 Shahjouei S et al. *JAMA Network Open.*
190. Ovbiagele B, Cruz-Flores S, Lynn MJ, Chimowitz MI. Early stroke risk after transient ischemic attack among individuals with symptomatic intracranial artery stenosis. Arch. Neurol. 2008;65:733–737.

191. Palomeras Soler E, Fossas Felip P, Cano Orgaz AT, Sanz Cartagena P, Casado Ruiz V, Muriana Batista D. Evaluación rápida del ataque isquémico transitorio en un hospital sin guardias de neurologia. Neurología. 2015;30:325–330.

192. Perry JJ, Sharma M, Sivilotti MLA, Sutherland J, Worster A, Émond M, Stotts G, JinAY, Oczkowski WJ, Sahlas DJ, et al. A prospective cohort study of patients with transient ischemic attack to identify high-risk clinical characteristics. Stroke. 2014;45:92–100.

193. Purroy F, Jimenez Caballero PE, Gorospe A, Torres MJ, Alvarez-Sabin J, Martinez-Sanchez P, Canovas D, Freijo M, Egido JA, Ramirez-Moreno JM, et al. How predictors and patterns of stroke recurrence after a TIA differ during the first year of follow-up. J. Neurol. 2014;261:1614–1621.

194. Raposo N, Albucher JF, Rousseau V, Acket B, Chollet F, Olivot JM. ED Referral Dramatically Reduces Delays of Initial Evaluation in a French TIA Clinic. Front. Neurol. 2018;9.

195. Raser JM, Cucchiara BL. Modifications of the ABCD(2) Score Do Not Improve the Risk Stratification of Transient Ischemic Attack Patients. J. STROKE & Cerebrovasc. Dis. [Internet]. 2012;21:467–470. Available from: http://ovidsp.ovid.com/ovidweb.cgi?T=JS&PAGE=reference&D=med9&NEWS=N&AN=21388829

196. Ricci S, Celani MG, Rosa F La, Vitali R, Duca E, Ferraguzzi R, Paolotti M, Seppoloni D, Caputo N, Chiurulla C, et al. A community-based study of incidence, risk factors and outcome of transient ischaemic attacks in Umbria, Italy: the SEPIVAC study. J. Neurol. 1991;238:87–90.

197. Ross MA, Compton S, Medado P, Fitzgerald M, Kilanowski P, O’Neil BJ. An Emergency Department Diagnostic Protocol for Patients With Transient Ischemic Attack: A Randomized Controlled Trial. Ann. Emerg. Med. 2007;50:109–119.

198. Rothwell PM, Giles MF, Chandratheva A, Marquardt L, Geraghty O, Redgrave JN, Lovelock CE, Binney LE, Bull LM, Cuthbertson FC, et al. Effect of urgent treatment of transient ischaemic attack and minor stroke on early recurrent stroke (EXPRESS study): a prospective population-based sequential comparison. Lancet. 2007;370:1432–1442.

199. Sanders LM, Srikanth VK, Jolley DJ, Sundararajan V, Psihogios H, Kong W, Ramsay D, Phan TG. Monash transient ischemic attack triaging treatment: Safety of a transient ischemic attack mechanism-based outpatient model of care. Stroke. 2012;43:2936–2941.

200. Sciolla R, Melis F, Grp S. Rapid identification of high-risk transient ischemic attacks - Prospective validation of the ABCD score. STROKE. 2008;39:297–302.

201. Selvarajah JR, Smith CJ, Hulme S, Georgiou RF, Vail A, Tyrrell PJ. Prognosis in patients with transient ischaemic attack (TIA) and minor stroke attending TIA services in the North West of England: The NORTHSTAR Study. J. Neurol. Neurosurg. Psychiatry. 2008;79:38–43.

202. Song B, Fang H, Zhao L, Gao Y, Tan S, Lu J, Sun S, Chandra A, Wang R, Xu Y. Validation of the ABCD3-I score to predict stroke risk after transient ischemic attack. Stroke [Internet]. 2013;44:1244–1248. Available from: http://ovidsp.ovid.com/ovidweb.cgi?T=JS&PAGE=reference&D=med10&NEWS=N&AN=23532014

203. Stead LG, Suravaram S, Bellolio MF, Enduri S, Rabinstein A, Gilmore RM, Bhagra A, Manivannan V, Decker WW. An Assessment of the Incremental Value of the ABCD2 Score in the Emergency Department Evaluation of Transient Ischemic Attack. Ann. Emerg. Med. [Internet]. 2011;57:46–51. Available from: https://ezproxy.uthsc.edu/login?url=http://search.ebscohost.com/login.aspx?direct=true&db=ccm&AN=57074063&site=ehost-live

204. Sundararajan V, Thrift AG, Phan TG, Choi PM, Clissold B, Srikanth VK. Trends over time in the risk of stroke after an incident transient ischemic attack. Stroke. 2014;45:3214–8.

205. Tsivgoulis G, Stamboulis E, Sharma VK, Heliopoulos I, Voumournakis K, Teoh HL, Patousi A, Andrikopoulou A, Lim EL, Stiliou L, et al. Multicenter external validation of the ABCD(2) score in triaging
TIA patients. Neurology. 2010;74:1351–1357.

206. Vigen T, Thommessen B, Rønning OM. Stroke risk is low after urgently treated transient ischemic attack. J. Stroke Cerebrovasc. Dis. 2018;27:291–295.

207. Vora N, Tung CE, Mlynash M, Garcia M, Kemp S, Kleinman J, Zaharchuk G, Albers G, Olivot J-M. TIA Triage in Emergency Department Using Acute MRI (TIA-TEAM): A Feasibility and Safety Study. Int. J. Stroke. 2015;10:343–347.

208. Wasserman J, Perry J, Dowlatshahi D, Stotts G, Stiell I, Sutherland J, Symington C, Sharma M. Stratified Urgent Care for Transient Ischemic Attack Results in Low Stroke Rates. STROKE. 2010;41:2601–2605.

209. Weimar C, Benemann J, Huber R, Mieck T, Kaendler S, Grieshammer S, Katsarava Z, Diener HC. Long-term mortality and risk of stroke after transient ischemic attack: AAA hospital-based cohort study. J. Neurol. 2009;256:639–644.

210. Weitzel-Mudersbach P V, Johnsen SP, Andersen G, v. Weitzel-Mudersbach P, Johnsen SP, Andersen G. Low risk of vascular events following urgent treatment of transient ischaemic attack: The Aarhus TIA study. Eur. J. Neurol. 2011;18:1285–1290.

211. Wu CM, Manns BJ, Hill MD, Ghali WA, Donaldson C, Buchan AM. Rapid evaluation after high-risk TIA is associated with lower stroke risk. Can. J. Neurol. Sci. 2009;36:450–455.