CHEMICAL COMPOSITION OF BIOLOGICAL ACTIVE EXTRACTS OF Tapirira guianensis (ANACARDIACEAE)

Eliezer P. da Silvaa,b,#, Jorge M. Davidb,*, Juceni P. Davidc, Geisse H. Trindade Garcia and Maisa T. Silva

1Centro de Formação de Professores, Universidade Federal do Recôncavo da Bahia, 45300-000 Amargosa – BA, Brasil
2Instituto de Química, Universidade Federal da Bahia, 40170-280 Salvador – BA, Brasil
3Faculdade de Farmácia, Universidade Federal da Bahia, 40170-280 Salvador – BA, Brasil

Recebido em 25/03/2020; aceito em 22/06/2020; publicado na web em 07/08/2020

This work describes the chemical composition of MeOH seeds and flowers extracts of Tapirira guianensis, a known tree that occurs in the Brazilian Atlantic forest. The CH2Cl2 soluble fraction of seeds extract was submitted to chromatographic procedures to obtain a mixture of new alkenyl dihydrobenzofuranoids which were identified as 2-[(10′Z)-dodec-10′-enyl]-dihydro-1-benzofuran-5-ol, 2-[(10′Z)-tridec-10′-enyl]-dihydro-1-benzofuran-5-ol e 2-[(10′Z)-pentadec-10′-enyl]-dihydro-1-benzofuran-5-ol (1 – 3) besides β-sitosterol. From the EtOAc soluble fraction of flowers MeOH extract quer cetin, quer cetin and gallic acid were obtained by chromatographic techniques. The fatty acid composition of oils from leaves and seeds were also determinate and the leaves’ oil is composed by 63.94% of saturated and 36.04% of unsaturated fatty acids while in the seeds the oil present 42.13% of saturated and 57.87% of unsaturated. All compounds and derivatives were identified by their spectrometric data analysis. The brine shrimp test of the extracts showed the seed CH2Cl2 and the EtOAc and BuOH soluble fractions of the flowers were actives and, the alkyl phenols are the responsible for this moderate activity. The antioxidant tests of the extracts indicated EtOAc soluble fraction of MeOH extract of flowers showed better results possibly due the presence of flavonoids and gallic acid.

Keywords: Tapirira guianensis; alkenyl dihydrobenzofuranoids; cytotoxic activity; quercetin; quercetin; fatty acid composition.

INTRODUCTION

Anacardiaceae is a family comprising 800 species distributed in 81 genera and these species are predominantly found in tropical and subtropical areas.1 In Brazil, the family Anacardiaceae is represented by 14 genera and 54 species, being 13 of them endemics.2 Several species of this family show significant economic importance due to their woods for carpentry, fruits, and edible seeds, all of them with expressive commercial value. For example, from Anacardium occidentale L. (“cajú” or cashew) is obtained the worldwide known cashew nut, besides juices, jams and other processed food.2

Besides the economic importance, Anacardiaceae is a family well known due to the existence of some toxic species. Studies indicate that about 25% of the genera of this family have species that are characterized as toxic and they are responsible for severe allergic contact dermatitis.3 It is more likely this toxic effect of some species of Anacardiaceae is due to the presence of secondary metabolites known as non-isoprene phenolic lipids or alkyl/alkenyl phenols, present in the leaf surface or are secreted from the resin of these plants.3

The genus Tapirira consists of 35 known species found from the south of Mexico to all South America.4 Brazil contributes with four endemic species of this genus, Tapirira obtusa (Benth.) J.D.Mitch., T. pilosa Sprague, T. retusa Ducke and T. guianensis Aubl.. Between them, T. guianensis is the most well-known native species occurring in all Brazilian biomes and popularly named as “pau-pombo” or “peito-de-pombo”.4 Tapirira guianensis is a 8-14 m tree present in humid soils of Brazil, especially in Atlantic forest areas.5 The leaves of this species are employed in Brazilian folk medicine in the treatment of leprosy, diarrhea and syphilis.6 Previous chemical studies dealing with this species related the presence of cytotoxic alkylphenols from the seeds besides alkyl ester ferulates, triterpenes, steroids, norisoprenoids and flavonoids isolated from the barks and leaves.8,9

This paper describes the reexamination of organic extracts of seeds and flowers a specimen of T. guianensis as well as, the fatty acid composition, evaluation of cytotoxic and antioxidant activities.

EXPERIMENTAL

General procedures

The solvents (MeOH, EtOAc, CH2Cl2, CHCl3 and hexane) employed in extraction and chromatographic techniques were all PA purchased from Quimex. In the CC we used Sigel 60 (0.063-0.200 and 0.040-0.063 mm) from Merck and Acros and, in TLC 60 F254 (Merck) precoated plates. The TLC monitoring were revealed by UV (254 and 365 nm) lamps, iodine fumes and Lieberman-Burchard reagent, prepared by the mixture of 10 mL sulfuric acid, 10 mL acetic anhydride in 50 mL of cold EtOH. The IR spectra were registered in the FT Shimadzu spectrophotometer mod IRAffinity-1 employing dry KBr plates or pellets. The 1H and 13C NMR spectra (mono and bidimensional) were carried out in the Varian® (GEMINI 2000) and Bruker (DRX 500) spectrometer using traditional pulse sequences for the homonuclear and heteronuclear correlation experiments. Optical rotations were performed using a Perkin-Elmer model 341 Polarimeter employing a microcell. The mass spectra were obtained on a negative ESI LCMS Shimadzu spectrometer mod. 2010A and in the EI (70 eV) HP mass detector mod. 5973. The UV spectra were recorded in a CARY 1 Varian spectrophotometer. The HPLC/DAD analysis were recorded in a Dionex equipment (mod. UltiMate 3000) with an injection volume of 10 μL. A DIONEX C18 column (120 Å 3.0 x 75 mm) with 5μm particles diameter was used. As eluent system, gradient mixtures MeOH (B) and 0.2% of aqueous acid formic (A): 30-50% of B for 15 min and 50-100% B from 15 to 20 min of running time at 0.5 mL min⁻¹ flow rate. The detection was registered in 254, 265, 290 and 330 nm UV region.
Plant material

The seeds and flowers of *T. guianensis* were previously dried in a forced circulating oven for 48 h at 40 °C, and then ground in a blender. The powdered seeds (316.15 g) were submitted to extraction by maceration by 3x employing hexane for 48 h each one. The extract was concentrated in rotavaporator furnishing 6.62 g of hexane extract and, sequentially it was submitted to liquid-liquid partition between hexane and MeOH:H₂O (95:5). This procedure permitted to obtain the hexane soluble fraction (2.23 g) and the hydroalcoholic one (3.62 g). The hydromethanolic fraction was dissolved in MeOH:H₂O (1:1) and also submitted to partition between CH₂Cl₂ furnishing 3.15 g of the soluble fraction in CH₂Cl₂.

The CH₂Cl₂ soluble fraction was chromatographed over silica gel 60 (0.063-0.200 mm) and eluted with pure CH₂Cl₂ and gradient of mixtures of CH₂Cl₂:MeOH. The CC furnished 19 fractions of 20 mL each and they are monitored and grouped by silica gel TLC (UV lamps and iodine fumes). The first fractions eluted with CH₂Cl₂ (158.35 g) was then submitted to flash CC, also employing silica gel (0.040-0.063 mm) eluted with mixtures of CH₂Cl₂:MeOH furnished the mixture of the new compound identified as 2-[(10'-Z)-dodec-10'-enyl]-dihydro-1-benzofuran-5-ol, 2-[(10'-Z)-tridec-10'-enyl]-dihydro-1-benzofuran-5-ol and 2-[(10'-Z)-pentadec-10'-enyl]-dihydro-1-benzofuran-5-ol (1–3, 20 mg) besides β-sitosterol (4, 25 mg).

Extraction and isolation of the constituents of *T. guianensis* seed extracts

The flowers were previously dried at room temperature, and then ground in a blender and the powered material (344.04 g) was submitted to extraction 3x by MeOH, with about 48 hours for each extraction. The MeOH extract was diluted with H₂O to furnished a MeOH:H₂O (6:4) solution and sequentially it was partitioned with CH₂Cl₂, obtaining 6 g of material and, then, EtOAc furnishing 2.50 g of the soluble fraction of this solvent.

The CH₂Cl₂ soluble fraction was submitted to a silica gel 60 (0.063-0.200 mm) CC and eluted with mixtures of CH₂Cl₂:MeOH, obtaining 20 fractions of 100 mL each. The fraction eluted with 20% of MeOH (479 mg) was submitted to another CC and the fraction eluted with hex:EtOAc (3:2) furnished quercitin (5, 10 mg).

The hexane soluble fraction of seeds and the hexane extract of *T. guianensis* leaves was submitted to transesterification with a solution sodium methoxide (0.5 mol L⁻¹) in 2.0 mL of MeOH and 25 mg of the triglycerides/fatty acids mixture and the reaction was stirred during 30 min. In sequence, H₂O was added, and the methyl esters were extracted by partition between hexane.

The methyl ester derivatives were analyzed injecting a solution of the hexane extracts in a GC-MS system (Shimadzu CG-2010/QP-2010 high efficiency, coupled with quadrupole mass detector and a Rtx®-1 MS (Crossbond® 100% dimethyl polisiloxane) column of 30 m, Φ 0.25 mm and 0.25 μm of thickness). The speed of carrier gas was set to 40 cm s⁻¹; the carrier gas flow in the column to 0.8 mL min⁻¹; the injection mode was split with a rate of 1:30; the temperature of the injector was set to 280 °C, interface temperature of 260 °C and the oven temperature gradient set to 80 °C (at 2.0 min), rising at 1.5 °C min⁻¹ then 10 °C min⁻¹ to 140 °C, 3 °C min⁻¹ to 200 °C/10 °C (10 min) and 5 °C min⁻¹ to 250 °C; with the transfer line set to 250 °C; the ion source to 250 °C and an impact energy of 70 eV and voltage detector of 1.3 KV. The methyl ester constituents were identified by molecular ion and analyzing the fragmentation pattern in the mass spectra and comparison with NIST 114T and WYILEY 8 databases.

Brine shrimp test

For an initial screening on the bioactivity, the adapted Brine Shrimp Lethality assay described by Meyer and co-worker was employed to study the general cytotoxicity of the compounds 1-6. Alive brine shrimp (*Artemia salina* Leach) cysts (500 mg) were transferred to a conical flask containing 3500 mL of artificial seawater. The flasks were aerated with the aid of an air pump and kept at 28 °C under a bright light and the nauplii hatched after 48 hours approximately. The compounds and extracts were separately dissolved artificial seawater and DMSO to reach the final concentration of 1 mg mL⁻¹. Solutions of 50, 100, 150, 200, 300 e 400 μg mL⁻¹ of extracts and for the 1-3 each compound (25, 50, 75, 100, and 150 μg mL⁻¹) were transferred to vials, which already contained seawater (5 mL) and 10 nauplii. Controls containing DMSO, seawater, and 10 nauplii also performed. The assays were carried out in triplicate. After 24 hours of incubation, the number of live nauplii was counted. The mortality was defined as the absence of controlled forward motion during 30 seconds of observation. The lethal concentration doses for 50% of the brine shrimp (LC₅₀) and the respective 95% confidence intervals were determined by using the GraphPad Prism version 5.0 (GraphPad, La Jolla, CA) software.
DPPH scavenging activities

Radical scavenging activities of plant extracts were determined through spectrophotometry using the 1,1-diphenyl-2-picrylhydrazyl (DPPH) scavenging radical assay (MeOH, 40 μg mL⁻¹) employing 3 mL of DPPH solution and 1 mL of the samples. The radical scavenging ability was calculated by the formula, % IC₅₀ = [(AbsB – AbsA) / AbsB] × 100, and the IC₅₀ was determined from the linear decrease in the inhibition percentage at λ = 517 nm immediately and after 30 min of incubation at room temperature and the solutions protected from light. Gallic acid was employed as positive control and the extracts were evaluated at different concentrations (50, 100, 150, 200 e 250 μg mL⁻¹).

RESULTS AND DISCUSSION

From the CH₂Cl₂ soluble fraction of the hexane extract of the T. guianensis seeds were isolated by CC an inseparable mixture of three new alkyl dicydrobenzofuranoids (1-3, Figure 1) by usual chromatographic techniques. Besides them, β-sitosterol, quercetin, quercitrin and, gallic acid were also obtained. The TLC analysis of this mixture showed just one spot however the negative ESIMS showed [M-H] molecular ions at m/z 301, 315, and 343. These data combined with the peaks observed in the IR, ¹H, and ¹³C spectra, including hydroxylation and carbon and carbon compounds, permitted to assign C₁₅H₂₃O₆, C₁₇H₂₅O₂, and C₁₉H₂₈O₂ as the molecular formula. The IR spectrum of 1-3 showed characteristic stretching bands of OH groups of phenolics (3347 and 1199 cm⁻¹) besides aromatic and groups of phenolics (peaks at δZ characteristic of hydrogens of aliphatic double bond carbons, similar 6.58 (H-6). The multiplet at δZ bearing the phenolic OH group is a non-hydrogenated one displayed hydroxyl group present was determined as phenolic. Thus, the carbon (C-5) was considered as oxymethine carbon once the nature of the (C-5) was determined through spectrophotometry using the 1,1-diphenyl-2-picrylhydrazyl (DPPH) scavenging radical assay (MeOH, 40 μg mL⁻¹) employing 3 mL of DPPH solution and 1 mL of the samples. The radical scavenging ability was calculated by the formula, % IC₅₀ = [(AbsB – AbsA) / AbsB] × 100, and the IC₅₀ was determined from the linear decrease in the inhibition percentage at λ = 517 nm immediately and after 30 min of incubation at room temperature and the solutions protected from light. Gallic acid was employed as positive control and the extracts were evaluated at different concentrations (50, 100, 150, 200 e 250 μg mL⁻¹). The IR spectrum of the DMDS derivatives. The EIMS of the DMDS derivatives were useless for this kind of assignment. The obtained theoretical data were corroborated with ¹H NMR spectra data, the coupling constants assignments (HMBC) of [CDCl₃, J (Hz), δ (ppm)]

position	δc	δh	HMBC
2	83.7	4.74 (m)	
3	36.1	3.22 (dd, 8.8, 8.8)	
2.83 (dd, 8.0, 8.0)	153.6, 128.2, 83.7, 35.9		
3a	128.2	-	-
4	112.4	6.68 (brs)*	153.6, 149.4, 114.1, 36.1
5	149.4	-	-
6	114.1	6.58 (d, 8.4)	153.6, 149.4, 112.4,
7	109.1	6.62 (d, 8.4)	153.6, 149.4, 128.2
7*	153.6	-	-
1'	35.9	1.82 (m)	1.63 (m)
2'-8'	29.8-29.6	1.32 (m)	
9	26.9	2.04 (m)	129.9
10'/11'	129.9	5.36 (m)	27.2
12'	27.2	2.04 (m)	129.9
13'	32.0	1.32 (m)	
14'	22.4	1.32 (m)	
15'	14.2	0.91 (t, 6.4)	22.4, 32.0

*brs broad singlet.

The position groups attached in the structure were partially determined by HMBC. The correlations of methylene hydrogens (H-3) at δZ 2.83 and 3.22 and the C-4 (δZ, 112.40), C-3a (δZ, 128.22), C-7a (δZ, 153.62) and the oxymethine carbon (C-2) are indicative both ring junction (Table 1).

The localization of the OH group at C-5 was just allocated by NMR and remains unknown. The know isolated compounds sitosterol, quercetin (5), quercitrin or quercetin-3-O-rhaminosyl (6) and gallic acid were identified by NMR, UV spectrometry and comparison with literature data and direct comparison with standard by HPLC (Supplementary Material). The isolation of the mixture of triglycerides from hexane extracts of leaves and seeds yielded a mixture of two fatty acid methyl ester mixtures which were identified by GC-MS and FID GC comparison with a commercial F.A.M.E standard (Table 2). The fatty acid profile of the oil’s seeds indicated it is rich of unsaturated while the leaves' profile indicates a predominance of saturated fatty acid.

![Figure 1. Isolated compounds from T. guianensis seeds](image-url)
The Brine Shrimp Test has been employed as a screening of cytotoxic compounds or extracts. The LD_{50} of CH_{2}Cl_{2} soluble fraction of seeds (> 1000 μg mL^{-1}) and flowers (615.46 μg mL^{-1}) and, EtOAc (166.36 μg mL^{-1}) and BuOH (249.37 μg/mL) indicated that except the seed CH_{2}Cl_{2} of T. guianensis all of them are moderately active (LD_{50} = 100-1000 μg mL^{-1}). However, the mixture 1-3 (LD_{50} = 174.06 μg mL^{-1}) showed considerable activity. These compounds are present in minor concentrations in the seed oils, which justifies the absence of activity in the CH_{2}Cl_{2} soluble fraction of seeds.

The most common and practical methodology to determine antioxidant is quenching of free radical DPPH (2,2-diphenyl-1-picryl-hydrazil). The organic extracts of the flowers of T. guianensis were evaluated and the EtOAc soluble fraction (EC_{50} = 69.22 μg mL^{-1}) is more active than the BuOH (EC_{50} = 116.99 μg mL^{-1}) comparing with the positive standard (EC_{50}=26.45 μg mL^{-1}). This activity probably in accordance with the presence of flavonoids and gallic acid in the EtOAc soluble fraction.

CONCLUSIONS

The chemical study of the organic extracts of seeds of T. guianensis permitted to isolate known compounds and three new alkyl dihydrobenzofuranoids (1-3) presenting cytotoxic activity in Artemia salina nauplii. Besides the fatty acid profile of hexane extracts of seeds and leaves indicated the oil from leaves is predominantly saturated and the seed oils were composed predominantly by unsaturated fatty acids. The presence of toxic alklyphenols in nonpolar fractions of the seed extracts could not indicate the T. guianensis seed oils for food purposes. However, more investigations must be performed.

SUPPLEMENTARY INFORMATION

Some spectra, spectrometric data, chromatograms are available as supplementary material free of charge at http://quimicanova.sbq.org.br

ACKNOWLEDGEMENTS

This work was supported by the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) under Grant # 406427/2018-6. The authors also thank CAPES and CNPq for the scholarships.

REFERENCES

1. Martinell, G.; Moraes, M. A.; Livro vermelho da flora do Brasil, 1ª ed., Rio de Janeiro, 2013, cap. 2.
2. Souza, V. C.; Lorenzi, H.; Botânica Sistemática: guia ilustrado para identificação das famílias de Angiospermas da flora brasileira. Instituto Plantarum: Nova Odessa, 2005.
3. Correia, S. de J.; David, J. M.; Quim. Nova 2006, 29, 1287.
4. Roumy, V.; Fabre, N.; Portet, B.; Boudry, G.; Acvez, L.; Vigor, C.; Valentin, A.; Moulis, C.; Phytochemistry 2009, 70, 305.
5. http://floradobrasil.ibcp.gov.br/2010/, acessada em julho de 2020.
6. Souza, V. C.; Lorenzi, H.; Botânica Sistemática: guia ilustrado para identificação das famílias de Fanerógamas nativas e exóticas no Brasil, baseado em AGG II, 2ª ed., Instituto Plantarum: Nova Odessa. 2008.
7. Lorenzi, H. Árvores brasileiras: Manual de identificação e cultivo de plantas arbóreas nativas do Brasil, 4ª ed., Instituto Plantarum: Nova Odessa. 2002.
8. David, J. M.; Chávez, J. P.; Chai, H.; Pezzuto, J. M.; Cordell, G. A.; J. Nat. Prod. 1998, 61, 287.
9. Correia, S. de J.; David, J. P.; David, J. M.; Quim. Nova 2003, 36, 36.
10. David, J. P.; Silva, E. F. da; Moura, D. L. de; Guedes, M. L. da S.; Assunção, R. de J.; David, J. M.; Quim. Nova 2004, 21, 730.
11. Breitmaier, E.; Voelter, W.; Carbon-13 NMR spectroscopy: High-Resolution Methods and Applications in Organic Chemistry and Biochemistry, 3ª ed., New York, 1987.
12. Silverstein, R. M.; Webster, F. X.; Kiemle, D. J.; Identificação espectrométrica de compostos orgânicos, Livros técnicos e científicos S.A.: Rio de Janeiro, 2007.
13. Greca, M. D.; Monaco, P.; Previtera, L.; J. Nat. Prod. 1990, 53, 1430; Alves, C. Q.; David, J. M.; David, J. P.; Villareal, C. F.; Soares, M. B. P.; De Queiroz, L. P.; Aguiar, R. M.; Quim. Nova 2012, 35, 1137; Correia, S. de J.; David, J. M.; Silva, E. P.; David, J. P.; Lopes, L. M. X.; Guedes, M. L. S.; Quim. Nova 2008, 31, 2057; Oliveira, B. M.; de Carvalho, A. L.; Alves, C. Q.; Morbeck, L. L. B.; Cruz, M. P.; Yatsuda, R.; David, J. P.; David, J. M. RSC Adv. 2019, 9, 41256.
14. Anderson, J. E.; Goetz, C. M.; McLaughlin, J. L.; Suffness, M.; Phytochem. Anal. 1991, 2, 107.
15. Alves, C. Q.; David, J. M.; David, J. P.; Bahia, M. V.; Aguiar, R. M.; Quim. Nova 2010, 33, 2202; Arnao, M. B.; Cano, A.; Acosta, M.; Redox Rep. 2000, 5, 365.