Abstract. We prove a generalization of the q-Selberg integral evaluation formula. The integrand is that of q-Selberg integral multiplied by a factor of the same form with respect to part of the variables. The proof relies on the quadratic norm formula of Koornwinder polynomials. We also derive generalizations of Mehta’s integral formula as limit cases of our integral.

Key words: Koornwinder polynomials; quadratic norm formula; antisymmetrization; q-Selberg integral; Mehta’s integral

2020 Mathematics Subject Classification: 33D52; 05A30; 11B65

1 Introduction

The Selberg integral is one of the most important multiple integrals which admits explicit evaluation [29], and once rediscovered around 1980 there has been followed a flood of studies on it and its various generalizations, see [10] and references therein. In particular, Askey [3] proposed a q-analogue of the Selberg integral with its conjectural explicit evaluation, see (1.1) below, and this conjecture was proved by Habsieger [13] and Kadell [17] in entirely different ways. Aomoto [2] proposed and evaluated q-Selberg type integrals attached to any reduced root systems. Let us mention some recent relevant papers: other proofs of the Habsieger–Kadell’s formula [11, 20, 36] and variations and extensions [16, 34, 35]. To state the formula we require some definitions.

We shall write $(x_1, \ldots, x_m; q)_\infty$ for $\prod_{i=1}^m (x_i; q)_\infty$. The q-integral of a function $f(t_1, \ldots, t_n)$ on $[0,1]^n$ is defined by

$$
\int_{[0,1]^n} f(t_1, \ldots, t_n) \, dt_1 \cdots dt_n = (1 - q)^n \sum_{j_1=0, \ldots, j_n=0}^\infty f(q^{j_1}, \ldots, q^{j_n}) q^{j_1+\cdots+j_n}.
$$

Then the Habsieger–Kadell’s integral formula is

$$
\int_{[0,1]^n} \prod_{i=1}^n t_i^{\alpha_i-1} \frac{(qt_i)_\infty}{(q^2t_i)_\infty} \prod_{1 \leq i < j \leq n} t_i^{2k} \left(q^{1-k} \frac{t_j}{t_i} \right)^{2k} \, dt_1 \cdots dt_n
= q^{\alpha k(n^2+2k^2)} \prod_{i=1}^n \frac{\Gamma_q(1+ik)\Gamma_q(\alpha+(i-1)k)\Gamma_q(\beta+(i-1)k)}{\Gamma_q(1+k)\Gamma_q(\alpha+\beta+(n+i-1)k)},
$$

(1.1)
for \(\Re \alpha, \Re \beta > 0, k \in \mathbb{Z}_{\geq 0} \). In the present paper we prove a generalization of this \(q \)-Selberg integral formula. Namely we evaluate a \(q \)-integral which has the integrand of the \(q \)-Selberg integral multiplied by a factor of the same form with respect to part of the variables:

\[
\int_{[0,1]^n} \prod_{i=n_0+1}^{n} t_i (1 - q^{\beta t_i}) \prod_{n_0+1 \leq i < j \leq n} (t_i - q^{-k t_j}) (t_i - q^{k+1 t_j}) \prod_{i=1}^{n} t_i^{\alpha-1} \frac{(q t_i)^\infty}{(q^{3 t_i})^\infty} \times \prod_{1 \leq i < j \leq n} t_i^{2k} \left(q^{1-k t_j} \right)_t \, dt_1 \cdots dt_n,
\]

or a factor similar to this, see (7.2) and (7.4) in Theorem 7.3 for the precise forms of the evaluation in terms of \(q \)-gamma function. This formula gives, by taking a limit, the evaluation of certain generalizations of the so-called Mehta integral (see Corollaries 7.7 and 7.11).

The motivation to study this type of integral stems from the Baker–Forrester constant term (ex-)conjecture [6]: Suppose \(a, b, k \in \mathbb{Z}_{\geq 0} \) and let

\[
M_n(a, b, k; q) = \prod_{l=0}^{n-1} \frac{\Gamma_q(a + b + 1 + kl) \Gamma_q(1 + k(l + 1))}{\Gamma_q(a + 1 + kl) \Gamma_q(b + 1 + kl) \Gamma_q(1 + k)}.
\]

Then

\[
\text{CT}_{\{t\}} \prod_{n_0+1 \leq i < j \leq n} \left(1 - q^{k t_i} t_j \right) \left(1 - q^{k+1} t_i t_j \right) \prod_{i=1}^{n} (t_i)_a \left(\frac{q}{t_i} \right)_b \prod_{1 \leq i < j \leq n} \left(\frac{q}{t_j} \right)_k \left(\frac{1}{t_j} \right)_k
\]

\[= M_n(a, b, k; q) \times \prod_{j=0}^{n-1} \frac{(k+1)(j+1)_q \Gamma_q((k+1)(j+1)+a+k n_0+1) \Gamma_q((k+1)(j+1)+b+k n_0+1) \Gamma_q((k+1)(j+1)+a+b+k n_0+1)}{(k+2)_q \Gamma_q((k+1)(j+1)+a+k n_0+1) \Gamma_q((k+1)(j+1)+b+k n_0+1)}, \tag{1.2}
\]

where \(n = n_0 + n_1 \) and \(\text{CT}_{\{t\}} \) denotes the constant term of the Laurent polynomial in \(t = (t_1, \ldots, t_n) \). When \(n_0 = 0 \) this is nothing but the \(q \)-Morris constant term identity [26] and is equivalent to the \(q \)-Selberg integral formula (1.1). Similarly the Baker–Forrester constant term identity (1.2) is equivalent to an evaluation of the \(q \)-integral

\[
\int_{[0,1]^n} \prod_{i=1}^{n_0} t_i^{n_1-1} \prod_{n_0+1 \leq i < j \leq n} (t_i - q^{-k t_j}) (t_i - q^{k+1 t_j}) \prod_{i=1}^{n} t_i^{\alpha-1} \frac{(qt_i)_\infty}{(q^{3 t_i})_\infty} \times \prod_{1 \leq i < j \leq n} t_i^{2k} \left(q^{1-k t_j} \right)_t \, dt_1 \cdots dt_n. \tag{1.3}
\]

In [19] we sought to evaluate (1.3) using an integration formula for Macdonald polynomials [18] but only succeeded for some special cases (see also [7, 11, 14] for partial results). Then we turned to the quadratic norm formula of Koornwinder polynomials and the results obtained are evaluations of similar but different integrals, see (7.2) and (7.4) in Theorem 7.3. The constant term conjecture (1.2) has recently been proved by Károlyi et al. [20] employing the combinatorial Nullstellensatz. This establishes the evaluation formula of the \(q \)-integral (1.3), see (7.6) in Theorem 7.4 for the explicit form. Presently it is not clear that the conjecture can be proved by suitably adapting the method of this paper.

As stated above, the proof of Theorem 7.3 relies on the quadratic norm formula of Koornwinder polynomial [24, 31] (see (3.4), (3.5) for explicit form). Koornwinder polynomials are a family of orthogonal Laurent polynomials in several variables, introduced by Koornwinder [21] in the symmetric case, that generalize the Askey–Wilson polynomials. We apply the quadratic
norm formula for specific Koornwinder polynomial E_{ρ_1} (Proposition 3.1) from which the quadratic norm of partially antisymmetrization $U_1^{-1} E_{\rho_1}$ is derived, see Theorem 4.6. Then we take a scaling limit of each side of the quadratic norm formula. The limits are given in Theorems 5.4 and 6.2, and equating these limits yields Theorem 7.3. The procedure of taking a scaling limit of the quadratic norm formula was previously considered by Stokman in [30], where he treated the case of symmetric Koornwinder polynomials. Our calculation might be considered as a specific but nonsymmetric case of his procedure, and is carried out in a similar way, see Remark 6.3.

Our proof needs somewhat involved limit calculations and it would be interesting to see whether or not the method of Károlyi et al. would give a combinatorial proof of our formula formulated as a constant term identity.

The paper is organized as follows. After preparing necessary results on Koornwinder polynomials in Section 2, we define a bilinear form and give the explicit formula of the quadratic norm of Koornwinder polynomials in Section 3. In Section 4 we define partial antisymmetrization and calculate the quadratic norm of antisymmetrization of a specific Koornwinder polynomial. Then in Sections 5 and 6 we calculate a suitable scaling limit of both sides of the quadratic norm formula. Finally in Section 7, we rewrite the resulting limit formula in terms of a q-integral. This gives generalizations of the q-Selberg integral formula, see Theorem 7.3. In particular, as in the original Selberg case, generalizations of Mehta integral are evaluated as limit cases of our integral, see Corollaries 7.7 and 7.11. Furthermore we shall show that these results are amenable to be stated uniformly in terms of degrees of finite reflection groups of classical type and their parabolic subgroups, see Proposition 7.12.

2 Koornwinder polynomials

In this section we summarize necessary results on Koornwinder polynomials. Our main references are [31, 32].

We first recall the affine root system of type C_n. We assume that $n \geq 2$ throughout the paper. Let $V = (\mathbb{R}^n, (.,.))$ be Euclidean n-space with orthonormal basis $\{e_n\}_{i=1}^n$. We denote $|v| = \sqrt{(v,v)}$ for the norm of $v \in V$. Let \hat{V} be the vector space of affine linear functions from V to \mathbb{R}. Each element of \hat{V} may be written as

$$f(w) = (v, w) + \lambda \delta(w), \quad w \in V,$$

for some $v \in V$ and $\lambda \in \mathbb{R}$, where δ is the function identically equal to one on V. We extend the scalar product to a positive semi-definite bilinear form on \hat{V} by setting

$$(v + \lambda \delta, w + \mu \delta) = (v, w).$$

For $f \in \hat{V} \setminus \mathbb{R} \delta$ define the reflection s_f by

$$s_f(g) = g - (g, f^\vee) f, \quad g \in \hat{V},$$

where $f^\vee = 2f/|f|^2$ is the coroot of f. Note that $s_f(g) = g \circ \tilde{s}_f^{-1}$, where $\tilde{s}_f : V \to V$ is the orthogonal reflection in the affine hyperplane $f^{-1}(0)$. For $v \in V$ we define the translation operator $\tau(v) \in \text{GL}(\hat{V})$ by

$$\tau(v)f = f + (f, v) \delta, \quad f \in \hat{V}.$$

Note that $\tau(v)f = f \circ \tilde{\tau}_v^{-1}$, where $\tilde{\tau}_v : V \to V$ is given by $\tilde{\tau}_v(w) = w - v$.

We consider three kinds of root system. First the irreducible root system of type C_n is defined by the following finite subset $\Sigma \subset V$,

$$\Sigma = \{\pm 2e_i \mid 1 \leq i \leq n\} \cup \{\pm e_i \pm e_j \mid 1 \leq i < j \leq n\},$$
where all the sign combinations occur. The Weyl group \(W\) of the root system \(C_n\), generated by the reflections \(s_i, s_j \in \Sigma\), is the semi-direct product \(W = S_n \rtimes (\mathbb{Z}/2\mathbb{Z})^n\) given by permutations and sign changes of the fixed basis \(\{\epsilon_n\}_{n=1}^n\). We shall write \(\Sigma = \Sigma_l \cup \Sigma_m\) for the decomposition of \(\Sigma\) into \(W\)-orbits, \(\Sigma_l\) (resp. \(\Sigma_m\)) being the roots of squared length four (resp. two). Next let \(R \subset \hat{V}\) be the irreducible reduced affine root system of type \(\hat{C}_n\):

\[
R = \Sigma + \mathbb{Z}\delta.
\]

Then the irreducible non-reduced affine root system of type \(C^\vee C_n\) is defined by

\[
S = R \cup R^\vee,
\]

where \(R^\vee\) be the dual root system of \(R\). The affine Weyl groups of \(R\) and \(S\) are the same, generated by the reflections \(s_f, f \in S\), and is denoted by \(\mathcal{W}\).

Let \(Q^\vee\) be the coroot lattice of \(\Sigma\). \(Q^\vee\) coincides with the weight lattice \(\Lambda\) of \(\Sigma\) and

\[
Q^\vee = \Lambda = \bigoplus_{i=1}^n \mathbb{Z}\epsilon_i.
\]

One can readily show that

\[
\mathcal{W} = W \rtimes \tau(Q^\vee).
\]

We fix a base \(\{a_i\}_{i=1}^n\) of the root system \(\Sigma\) by

\[
a_i = \epsilon_i - \epsilon_{i+1}, \quad i = 1, \ldots, n-1, \quad a_n = 2\epsilon_n.
\]

Define

\[
a_0 = \delta - 2\epsilon_1.
\]

Then \(\{a_i\}_{i=0}^n\) is a base of \(R\) and the set \(\{a_0^\vee = a_0/2, a_1^\vee, \ldots, a_{n-1}^\vee, a_n^\vee = a_n/2\}\) is a base of \(R^\vee\) and of \(S\) as well. We denote by \(\Sigma^+\) (resp. \(\Sigma^-\)) the positive (resp. negative) roots in \(\Sigma\) so that we see

\[
\Sigma^+ = \{2\epsilon_i \mid 1 \leq i \leq n\} \cup \{\epsilon_i \pm \epsilon_j \mid 1 \leq i < j \leq n\},
\]

and by \(\Lambda^+ = \bigoplus_{i=1}^n \mathbb{Z}_{\geq 0}\omega_i\) the corresponding cone of dominant weights where \(\omega_i = \epsilon_1 + \cdots + \epsilon_i\) \((i = 1, \ldots, n)\) are the fundamental weights of \(\Lambda\). We also write \(Q^\vee, \Lambda^+\) for the positive span of the simple coroots \(a_i^\vee, i = 1, \ldots, n\): \(Q^\vee, = \sum_{i=1}^n \mathbb{Z}_{\geq 0}a_i^\vee\).

Let \(R^+\) (resp. \(R^-\)) be the positive (resp. negative) roots of \(R\) with respect to the base above. Observe that

\[
R^+ = \Sigma^+ \cup \{f \in R \mid f(0) > 0\}.
\]

The affine Weyl group \(\mathcal{W}\) is generated by \(s_i = s_{a_i}, i = 0, \ldots, n\) and is known to be isomorphic to the Coxeter group with generators \(s_i, (i = 0, \ldots, n)\) satisfying \(s_i^2 = 1\) and the braid relations

\[
s_is_{i+1}s_is_{i+1} = s_{i+1}s_is_{i+1}, \quad i = 0, n-1, \quad s_is_{i+1}s_i = s_{i+1}s_is_{i+1}, \quad i = 1, \ldots, n-2, \quad s_is_j = s_js_i \quad \text{for} \mid i - j \mid \geq 2.
\]

Let \(A\) be the group algebra of the weight lattice \(\Lambda\) with the basis \(x^\lambda, \lambda \in \Lambda, x^0 = 1\) the unit element. The group algebra \(A\) is isomorphic to the Laurent polynomials in the \(n\) indeterminates \(x_i = x^{\epsilon_i}, i = 1, \ldots, n\). We fix a generic parameter \(q \in \mathbb{C} \setminus \{0\}\) and let \(q^{1/2}\) be a fixed square root of \(q\). We define

\[
x^{\lambda+c\delta} = q^c x^\lambda, \quad \lambda \in \Lambda, \quad c \in \frac{1}{2}\mathbb{Z}.
\]
We write orders on the weight lattice \(\Lambda \). For orbit \(\pi \), we write

\[
\tau(wq) \quad \text{and} \quad \tau(tq),
\]

\(\tau \) is determined by the five values \(t_0, t, t_n, t_n' \). We extend this map to \((R, k) \), respectively for short. We extend this map to \(\tilde{\mathcal{V}} \) by setting \(\tilde{t}_f = 1 \) for \(f \in \tilde{\mathcal{V}} \setminus S \). For convenience, we write \(k = (t_\beta)_{\beta \in \mathbb{R}} = (t_0, t, t_n) \) and \(k' = (t_\beta)_{\beta \in \mathbb{R}'} = (t_0', t, t_n') \) for the restrictions of \(t \) to \(R \) and \(R' \), respectively. We shall need a dual multiplicity function \(\tilde{t} \) given by

\[
\tilde{t}_0 = t_n', \quad \tilde{t}_0' = t_0', \quad \tilde{t} = t, \quad \tilde{t}_n = t_n,
\]

which we shall write as \(t_i \) (resp. \(\tilde{t}_i \)) for \(t_{a_i} \) (resp. \(\tilde{t}_{a_i} \)), \(i = 0, \ldots, n \).

Definition 2.1. The affine Hecke algebra \(H = H(R; k) \) of type \(\tilde{C}_n \) is the unital, associative algebra with generators \(T_0, \ldots, T_n \) and relations

\[
(T_i - t_i)(T_i + t_i^{-1}) = 0, \quad i = 0, \ldots, n,
\]

and the braid relations

\[
\begin{align*}
T_i T_{i+1} T_i T_{i+1} &= T_{i+1} T_i T_{i+1} T_i, & i &= 0, n - 1, \\
T_i T_{i+1} T_i &= T_{i+1} T_i T_{i+1}, & i &= 1, \ldots, n - 2, \\
T_j T_j &= T_j T_j, & |i - j| &\geq 2.
\end{align*}
\]

Similarly one has the affine Hecke algebra \(H(R'; k') \) in which the parameter \(t_i \) is replaced by \(t_i' \), \(i = 0, \ldots, n \). For a reduced expression \(w = s_{i_1} \cdots s_{i_r} \) of \(w \in \mathcal{W} \) we set \(T_w = T_{i_1} \cdots T_{i_r} \).

The Cherednik–Dunkl type \(Y \)-operator is defined by

\[
Y_i = T_i \cdots T_{n-1} T_n \cdots T_0 T_{i-1}^{-1} T_{i-1} \cdots T_{n-1}, \quad i = 1, \ldots, n
\]

which is an analogue of the reduced expression of the translation \(\tau(\epsilon_1) \):

\[
\tau(\epsilon_i) = s_i \cdots s_{n-1} s_n \cdots s_0 s_1 \cdots s_{i-1}.
\]

Lusztig [22] has shown that the \(Y_i \) commute pairwise and generate a commutative subalgebra \(\mathcal{A}_{Y} \) of \(H \) which is isomorphic to \(\mathcal{A} \).

Let us define rational functions \(v_\beta(x) = v_\beta(x; t; q) \) for \(\beta \in R \) by

\[
v_\beta(x; t; q) = \frac{(1 - t_\beta t_\beta/2x^{\beta/2})(1 + t_\beta t_\beta^{-1}x^{\beta/2})}{1 - x^{\beta}}.
\]

Noumi [27] (cf. [31, Theorem 4.14]) has shown that the following assignment extends to a representation \(\pi_{t, q} : H(R; k) \to \text{End}_C(\mathcal{A}) \).

\[
T_i \mapsto t_i + t_i^{-1} v_{a_i}(x; t; q)(s_i - 1) \in \text{End}_C(\mathcal{A}), \quad i = 0, \ldots, n.
\]

We write \(Y_i \) for the image of \(Y_i \in H(R; k) \) under the representation \(\pi_{t, q} \).

Before proceeding to the definition of Koornwinder polynomials we need to define two partial orders on the weight lattice \(\Lambda \). For \(\lambda \in \Lambda \), let \(\lambda^+ \in \Lambda^+ \) be the unique dominant weight in the orbit \(W\lambda \).
Definition 2.2. Let $\lambda, \mu \in \Lambda$.

1. We write $\lambda \leq \mu$ if $\mu - \lambda \in Q^{\vee,+}$ (and $\lambda < \mu$ if $\lambda \leq \mu$ and $\lambda \neq \mu$).
2. We write $\lambda \preceq \mu$ if $\lambda^+ < \mu^+$, or if $\lambda^+ = \mu^+$ and $\lambda \leq \mu$ (and $\lambda < \mu$ if $\lambda \leq \mu$ and $\lambda \neq \mu$).

Let $\varepsilon : \mathbb{Z} \to \{\pm 1\}$ be the function which maps a nonnegative integer to 1 and a negative integer to -1. Let $\Sigma^+ (\text{resp. } \Sigma^+_i)$ be the positive roots in Σ of squared length 2 (resp. 4), and put

$$\rho^{(m)} = 2 \sum_{i=1}^{n} (n-i)\epsilon_i, \quad \rho^{(l)} = \sum_{i=1}^{n} \epsilon_i$$

for the sum of coroots α^\vee with $\alpha \in \Sigma^+_m$ and $\alpha \in \Sigma^+_l$ respectively. For an element of $\lambda \in \Lambda$ we set

$$\rho^{(m)}(\lambda) = \sum_{\alpha \in \Sigma^+_m} \epsilon((\lambda, \alpha))\alpha^\vee, \quad \rho^{(l)}(\lambda) = \sum_{\alpha \in \Sigma^+_l} \epsilon((\lambda, \alpha))\alpha^\vee.$$

Then it holds that (see [31, proof of Lemma 5.6])

$$\rho^{(m)}(\lambda) = w_\alpha \rho^{(m)}, \quad \rho^{(l)}(\lambda) = w_\alpha \rho^{(l)}, \quad \lambda \in \Lambda,$$

where $w_\lambda \in W$ is the unique element of minimal length such that $w_\lambda \lambda^+ = \lambda$. Let $\gamma\lambda = \gamma_\lambda(\mathbf{k}, q)$ \in \mathbb{C}^n be the vector with ith coordinate given by

$$\gamma_{\lambda,i} = (t_0 t_n) (\rho^{(l)}(\lambda), \epsilon_i) (\rho^{(m)}(\lambda), \epsilon_i) q^{(\lambda, \epsilon_i)}, \quad i = 1, \ldots, n.$$

In particular for a dominant weight $\lambda \in \Lambda^+$ one sees

$$\gamma_\lambda = (t_0 t_n 2^{n-1} q^{\lambda_1}, t_0 t_n 2^{n-2} q^{\lambda_2}, \ldots, t_0 t_n q^{\lambda_n}).$$

Now since the Cherednik–Dunkl Y-operators Y_i, $i = 1, \ldots, n$ act triangularly on \mathcal{A} with respect to the partial order \preceq [31, Proposition 4.5] and $\gamma_{\lambda,i}$ are mutually distinct for generic q, \mathbf{k}, we have [31, Theorem 4.8]

Theorem 2.3. There exists a unique basis $\{E_\lambda\}_{\lambda \in \Lambda}$ of \mathcal{A} such that

1. $E_\lambda(x) = x^\lambda + \sum_{\mu < \lambda} c_{\lambda, \mu} x^\mu$ for certain constants $c_{\lambda, \mu}$,
2. $Y_i E_\lambda = \gamma_{\lambda,i} E_\lambda$.

Definition 2.4. The Laurent polynomial $E_\lambda(x) = E_\lambda(x; t; q)$ is called the monic, nonsymmetric Koornwinder polynomial of degree λ.

3 Quadratic norm formula

In this section we define a bilinear form on \mathcal{A} and give an explicit form for the quadratic norm of the Koornwinder polynomial E_λ. We assume that $0 < q, t < 1$.

We put

$$a_1 = t_0 t_n^\vee q^{1/2}, \quad a_2 = -t_0 (t_0^\vee)^{-1} q^{1/2}, \quad a_3 = t_n t_n^\vee, \quad a_4 = -t_n (t_n^\vee)^{-1},$$

and assume also that $|a_r| < 1$, $r = 1, 2, 3, 4$. Note that, once the quadratic norm formula is established, we shall take the limit $a_1 \to \infty$ or $a_3 \to \infty$ in this formula. For simplicity we will write

$$A = a_1 a_2 a_3 a_4 = q t_0 t_n^{2}. $$
Define \(\Delta(x) = \Delta(x; t; q) \) and \(\Delta_+(x) = \Delta_+(x; t; q) \) by
\[
\Delta(x; t; q) = \prod_{\beta \in R^+} \frac{1}{v_\beta(x; t; q)}
\]
and
\[
\Delta_+(x; t; q) = \prod_{\beta \in R^+, \beta(0) \geq 0} \frac{1}{v_\beta(x; t; q)}
= \prod_{1 \leq i < j \leq n} (x_i x_j, x_i x_j^{-1})_{\infty} (t^2 x_i x_j, t^2 x_i, t^2 x_j^{-1})_{\infty} \prod_{i=1}^{n} (x_i^2, x_i^{-2})_{\infty}.
\]
Then
\[
\Delta(x; t; q) = C(x; t; q) \Delta_+(x; t; q),
\]
where \(C(x; t; q) \) is given by
\[
C(x; t; q) = \prod_{\alpha \in \Sigma^-} v_\alpha(x; t; q) = \prod_{1 \leq i < j \leq n} \frac{(x_i x_j - t^2)(x_i x_j^{-1} - t^2)}{(x_i x_j - 1)(x_i x_j^{-1} - 1)} \prod_{i=1}^{n} \frac{(x_i - a_3)(x_i - a_4)}{x_i^2 - 1}.
\]
Let \(\dagger \) be an involution on \(A \) which maps \(x_i \mapsto x_i^{-1} \) and \((t, q) \mapsto (t^{-1}, q^{-1}) \), where \(t^{-1} = (t_\beta)_{\beta \in S} \).
We now define a bilinear form \(\langle \ , \rangle = \langle \ , \rangle_{t, q} \) on \(A \) by
\[
\langle f, g \rangle = \frac{1}{(2\pi i)^n} \int_{C^n} f(x) g(x) \Delta(x) \frac{dx}{x},
\]
where \(\frac{dx}{x} = \frac{dx_1}{x_1} \ldots \frac{dx_n}{x_n} \) and \(C \) is the positively oriented unit circle around the origin. Note that when \(\Delta(x) \in A, \langle f, g \rangle \) equals the constant term of the Laurent polynomial \(f(x) g(x) \Delta(x) \).

The following property due to Sahi [28, Theorem 3.1], (cf. [31, Proposition 8.3]) is fundamental to our calculation: For \(f, g \in A \), we have
\[
\langle T_i f, g \rangle = \langle f, T_i^{-1} g \rangle, \quad i = 0, \ldots, n. \tag{3.2}
\]

We now state the quadratic norm formula for a dominant weight \(\lambda \in \Lambda^+ \) [31, Theorems 8.10 and 9.3].
\[
\langle E_\lambda, E_\lambda \rangle = \prod_{i=1}^{n} \frac{(Aq^{2\lambda_i + \frac{4(n-i)}{3}})_{\infty}^2 (1 - a_3 a_4 q^{\lambda_i + 2(n-i)})}{(q^{\lambda_i + 1} t^{2(n-i)}, Aq^{\lambda_i} t^{2(n-i)})_{\infty} \prod_{1 \leq r < s \leq 4} (a_r a_s q^{\lambda_i + 2(n-i)})_{\infty}}
\times \prod_{1 \leq i < j \leq n} \frac{(q^{\lambda_i - \lambda_j + 2(j-i)})_{\infty}^2 (Aq^{\lambda_i + \lambda_j} t^{2(2n-i-j)})_{\infty}^2 (Aq^{\lambda_i + \lambda_j} t^{2(2n-i-j+1)})_{\infty}}{(Aq^{\lambda_i + \lambda_j} t^{2(2n-i-j+1)}, Aq^{\lambda_i + \lambda_j} t^{2(2n-i-j)})_{\infty}}. \tag{3.3}
\]

For a general weight \(\lambda \in \Lambda \), one has [31, Lemma 9.1 and Theorem 9.3]
\[
\frac{\langle E_\lambda, E_\lambda \rangle}{\langle E_{\Lambda^+}, E_{\Lambda^+} \rangle} = \prod_{\alpha \in \Sigma^+ \cap w_{\Lambda}^{-1} \Sigma^-} \frac{1}{\bar{v}_{\alpha}(\gamma_{\alpha}^{-1}) \bar{v}_{\alpha}(\gamma_{\alpha}^+)^{\dagger}}. \tag{3.4}
\]
Let $n = n_0 + n_1$ with $n_1 \geq 2$. We define a subroot system Σ_1 in Σ by

$$\Sigma_1 = \{ \pm 2\epsilon_i \mid n_0 + 1 \leq i \leq n \} \cup \{ \pm \epsilon_i \pm \epsilon_j \mid n_0 + 1 \leq i < j \leq n \},$$

with a base $\{ a_i \}_{i=n_0+1}^n$, so that positive roots Σ_1^+ (negative roots: $\Sigma_1^- = -\Sigma_1^+$) are given by

$$\Sigma_1^+ = \{ 2\epsilon_i \mid n_0 + 1 \leq i \leq n \} \cup \{ \epsilon_i \pm \epsilon_j \mid n_0 + 1 \leq i < j \leq n \}.$$

The subgroup of W generated by simple reflections $\{s_{n_0+1}, \ldots, s_n\}$ will be denoted by W_1.

Let ρ_1 be a weight in Λ defined by

$$\rho_1 = \frac{1}{2} \sum_{\alpha \in \Sigma_1^+} \alpha = (0^{n_0}, n_1, n_1 - 1, \ldots, 1).$$

We write down explicitly the norm $\langle E_{\rho_1}, E_{\rho_1} \rangle$. Since $\rho_1^+ = (n_1, \ldots, 1, 0^{n_0})$, the formula for the norm $\langle E_{\rho_1^+}, E_{\rho_1^+} \rangle$ is immediate from (3.3). Moreover from (3.4) we find

$$\frac{\langle E_{\rho_1}, E_{\rho_1} \rangle}{\langle E_{\rho_1^+}, E_{\rho_1^+} \rangle} = \prod_{i=1}^{n_1} \frac{\prod_{j=n_1+1}^{n} \frac{(1 - q^{n_1-i+1} t^{2(j-i)})^2}{(1 - q^{n_1-i+1} t^{2(j-i+1)}) (1 - q^{n_1-i+1} t^{2(j-i)})}}{(1 - q^{n_1-i+1} t^{2(j-i-1)})^2}. \tag{3.5}$$

In fact, to see this, it is sufficient to note that the element $w_{\rho_1} \in W$ is given by the permutation

$$(1, \ldots, n_0, n_0 + 1, \ldots, n)$$

so that

$$\Sigma^+ \cap w_{\rho_1}^{-1} \Sigma^- = \{ \epsilon_i - \epsilon_j : 1 \leq i \leq n_1, n_1 + 1 \leq j \leq n \},$$

and that

$$\gamma_{\rho_1^+} = (t_0 t_1 t_2^{2(n-1)} q_{n_1}, \ldots, t_0 t_n t_2^{2(n-n_1)} q_{n_1}, t_0 t_n t_2^{2(n-n_1)}, \ldots, t_0 t_n).$$

Combining (3.3) and (3.5), we arrive at the explicit formula of the norm $\langle E_{\rho_1}, E_{\rho_1} \rangle$.

Proposition 3.1. For the weight $\rho_1 = (0^{n_0}, n_1, n_1 - 1, \ldots, 1)$, we have

$$\frac{\langle E_{\rho_1}, E_{\rho_1} \rangle}{\langle E_{\rho_1^+}, E_{\rho_1^+} \rangle} = \prod_{i=1}^{n_1} \frac{(A q^{2(n_1-i+1)} t^{4(n-i)})_\infty (1 - a_3 a_4 q^{n_1-i+1} t^{2(n-i)})_\infty}{(A t^{4(n-i)})_\infty (1 - a_3 a_4 t^{2(n-i)})_\infty} \prod_{1 \leq r < s \leq 4} (a_r a_s q^{n_1-i+1} t^{2(n-i)})_\infty$$

$$\times \prod_{i=n_1+1}^{n} \frac{(A q^{n_1-i+1} t^{2(j-i+1)})_\infty (q^{n_1-i+1} t^{2(j-i-1)})_\infty}{(A q^{n_1-i+1} t^{2(j-i)})_\infty (q^{n_1-i+1} t^{2(j-i)})_\infty}$$

$$\times \prod_{1 \leq i < j \leq n_1} \frac{(A q^{n_1-i-j+2} t^{2(2n-i-j)})_\infty}{(A q^{n_1-i-j+2} t^{2(2n-i-j+1)}, A q^{n_1-i-j+2} t^{2(2n-i-j-1)})_\infty}$$

$$\times \prod_{i=1}^{n_1} \prod_{j=n_1+1}^{n} \frac{(q^{n_1-i+1} t^{2(j-i)})_\infty}{(A q^{n_1-i+1} t^{2(j-i+j+1)}, q^{n_1-i+1} t^{2(j-i)})_\infty}$$

$$\times \prod_{n_1+1 \leq i < j \leq n} \frac{(q^{2(j-i)}, A t^{2(2n-i-j)})_\infty}{(q^{2(j-i)}, A t^{2(2n-i-j+1)}, A t^{2(2n-i-j-1)}, A t^{2(2n-i-j-1)})_\infty}. \tag{3.6}$$
4 Partial antisymmetrization

In this section we define partial (anti)symmetrization and calculate the norm of partial antisymmetrization of the Koornwinder polynomial E_{ρ_1}.

Let $l: W_1 \to \mathbb{Z}_{\geq 0}$ be the length function on W_1 defined by

$$l(w) = |\Sigma^+ \cap w^{-1} \Sigma^-|.$$

The length function $l(w)$ is equal to the number r of the reduced expression $w = s_{i_1} \cdots s_{i_r}$ (cf. [15]). Let t_w be a function on W_1 defined by $t_w = t_{i_1} \cdots t_{i_r}$ for a reduced expression $w = s_{i_1} \cdots s_{i_r}$. We define partial symmetrization U^+_1 and partial antisymmetrization U^-_1 as follows:

$$U^+_1 = \frac{1}{\sum_{w \in W_1} t^+_w} \sum_{w \in W_1} (\pm 1)^l(w) t^+_w T_w. \tag{4.1}$$

Then the following fundamental properties hold.

Proposition 4.1.

$$\left(T_i \mp t_i^\pm \right) U^+_1 = 0 \quad \text{for} \quad i = n_0 + 1, \ldots, n, \tag{4.2}$$

$$U^-_1 = U^+_1, \tag{4.3}$$

$$\langle U^+_1 f, g \rangle = \langle f, U^+_1 g \rangle. \tag{4.4}$$

Proof. The proof is carried out in exactly the same way as in [31, Lemma 8.9]. For (4.2), fix $i \in \{n_0 + 1, \ldots, n\}$ and decompose $W_1 = W_{1,i}^+ \cup W_{1,i}^-$, where $W_{1,i}^\pm = \{ w \in W_1 : l(s_i w) = l(w) \pm 1 \}$. Note that $W_{1,i}^- = s_i W_{1,i}^+$ and that $t_{s_i w} = t_i t_w, T_{s_i w} = T_i T_w$ for $w \in W_{1,i}^+$. Then

$$T_i \left(\sum_{w \in W_1} (\pm 1)^l(w) t^+_w T_w \right) = \sum_{w \in W_{1,i}^+} ((\pm 1)^l(w) t^+_w T_i T_w + (\pm 1)^l(w) t^+_w T_i T_{s_i w})$$

$$= \sum_{w \in W_{1,i}^+} (\pm 1)^l(w) t^+_w (T_i \pm t_i^\pm T_i^2) T_w$$

$$= \sum_{w \in W_{1,i}^+} (\pm 1)^l(w) t^+_w (\pm t_i^\pm + t_i^\pm T_i) T_w$$

$$= \pm t_i^\pm \sum_{w \in W_1} (\pm 1)^l(w) t^+_w T_w,$$

where the quadratic relations $(T_i - t_i)(T_i + t_i^{-1}) = 0$ are applied to the third equality. Equation (4.3) follows from (4.2) immediately. For the proof of (4.4), in view of (3.2), it suffices to show that

$$U^+_1 = \frac{1}{\sum_{w \in W_1} t^+_w} \sum_{w \in W_1} (\pm 1)^l(w) t^+_w T_w^{-1}.$$

Let w_1 be the longest element in W_1. Then $l(w_1 w) = l(w_1) - l(w)$ for $w \in W_1$, so that $t_{w_1 w} = t_w t_{w_1}$ and $T_{w_1 w} = T_{w_1} T_w^{-1}$ for $w \in W_1^+$. We change the summation over $w \in W_1$ in (4.1) to a summation over $w_1 w, w \in W_1$. Observe that

$$\sum_{w \in W_1} t^+_w = t^+_w \sum_{w \in W_1} t^+_w, \quad \sum_{w \in W_1} (\pm 1)^l(w) t^+_w T_w = (\pm 1)^l(w_1) t^+_w T_{w_1} \sum_{w \in W_1} (\pm 1)^l(w) t^+_w T_w^{-1}.$$
Substituting these equations into (4.1), and using the relation
\[T_i (\sum_{w \in W_i} (\pm 1)^{(w)} T_w^{-1}) = \pm t_i^\pm \sum_{w \in W_i} (\pm 1)^{(w)} T_w^{-1}, \]
whose proof is similar to that of (4.2), we have
\[U_1^\pm = (\pm 1)^{(w)} T_w^{-1} \sum_{w \in W_i} \frac{1}{t_w^2} \sum_{w \in W_i} (\pm 1)^{(w)} T_w^{-1}, \]
as desired.

We need to know the quadratic norm of the partial antisymmetrization \(U_1^- E_{\rho_1} (x) \). For this purpose it suffices to calculate the expansion coefficient of \(E_{\rho_1} (x) \) in \(U_1^- E_{\rho_1} (x) \). The calculation is based on the following fundamental formula [31, Proposition 6.1]:
and hence
\[c_{\rho_1 \rho_1} = \frac{1}{\sum_{w \in W_1} t_w^{-2} \tilde{t}_{w_1}^{-2} \prod_{\alpha \in \Sigma_1^+} \tilde{v}^{-\alpha}(\gamma_{\rho_1})}. \]

Let \(w_1 = s_{i_1} \cdots s_{i_r} \) (\(r = n_1^2 \), actually) be a reduced expression. It follows from (4.5) that the coefficient of \(E_{\rho_1^R} \) in the expansion of \(T_{w_1} E_{\rho_1} \) is given by \(\prod_{j=1}^r \eta_j(\gamma_{s_{i_j+1} \cdots s_{i_r} \rho_1}) \). But since the product \(s_{i_1} \cdots s_{i_r} \) is reduced, we see that \((s_{i_j+1} \cdots s_{i_r})^{-1} a_{i_j} \) is positive (cf. [15, Lemma 1.6]), so that \((a_{i_j}, s_{i_j+1} \cdots s_{i_r} \rho_1) > 0 \). It also holds, by virtue of [31, Lemma 4.6], that
\[a_{i_j} \gamma_{s_{i_j+1} \cdots s_{i_r} \rho_1} = \gamma_{\rho_1}. \]
(4.10)

Hence (4.8) follows from the fact that
\[\{s_{i_r} \cdots s_{i_2} a_{i_1}, \ldots, a_{i_r}\} = \Sigma_1^+. \]
(4.11)

For (4.9), we note that (4.2) implies the following equality.
\[(T_i + t_i^{-1}) U_i^{-1} E_{\rho_1} = 0. \]

This is equivalent to the fact that the coefficients \(c_{\rho_1 \mu} \) satisfy the recurrence equations
\[c_{\rho_1 s_i \mu} = \left(\frac{\xi_i^-(\gamma_{s_i \mu})}{\eta_i(\gamma_{s_i \mu})} \right) c_{\rho_1 \mu}, \]
where
\[\xi_i^-(x) = \xi_i(x) + t_i^{-1} = \tilde{t}_i^{-1} \tilde{v}_i(x). \]
provided \(\langle \mu, a_i \rangle \neq 0 \). Since \(\langle a_{i_j}, s_{i_j} \cdots s_{i_r} \rho_1 \rangle = -\langle a_{i_j}, s_{i_j+1} \cdots s_{i_r} \rho_1 \rangle < 0 \), it follows from (4.6) that
\[\eta_i(\gamma_{s_{i_j} \cdots s_{i_r} \rho_1}) = \tilde{t}_i. \]

Now (4.9) is immediate from (4.10) and (4.11).

Finally to see the explicit formula (4.7), we note that
\[f(\gamma_\lambda) = w_\lambda^{-1} f(\gamma_+), \quad f \in \mathcal{A}, \quad \lambda \in \Lambda, \]
again by [31, Lemma 4.6]. This implies
\[\tilde{v}_{-\alpha}(\gamma_{\rho_1}) = \tilde{v}_{-w_{\rho_1}^{-1}}(\gamma_{\rho_1^+}), \]
where \(w_{\rho_1}^{-1} \) is given by
\[w_{\rho_1}^{-1} = \left(\begin{array}{c} 1, \ldots, n_0, n_0 + 1, \ldots, n \\ n_1 + 1, \ldots, n, 1, \ldots, n_1 \end{array} \right). \]

Hence
\[w_{\rho_1}^{-1} \Sigma_1^+ = \{2 \epsilon_i \mid 1 \leq i \leq n_1 \} \cup \{\epsilon_i \pm \epsilon_j \mid 1 \leq i < j \leq n_1 \}. \]

Since
\[\gamma_{\rho_1}^+ = \left(t_0 t_{n_1} t^{2(n-1)} q_{n_1}, \ldots, t_0 t_{n_1} t^{2(n-1)} q, t_0 t_{n_1} t^{2(n-1)}, \ldots, t_0 t_n \right), \]
by definitions of the dual multiplicity function \tilde{t}, $v_{\beta}(x)$ and the parameters $\{a_1, a_2, a_3, a_4\}$ ((2.1), (2.2), (3.1)), one obtains

$$
\tilde{v}_{-e_i + \gamma}(\gamma) = \ell^2 \frac{1 - q^{j-i-1}t^{2(j-i)}}{1 - q^{j-i}t^{2(j-i)}},
$$

$$
\tilde{v}_{-e_i - \gamma}(\gamma) = \ell^2 \frac{1 - Aq^{2n_1}t^{2(n_1-j)}}{1 - Aq^{2n_1-i}t^{2(n-i)}}
$$

$$
\tilde{v}_{-2e_i}(\gamma) = \ell^2 \frac{(1 - q^{n_1-i}t^{2(n-i)})(1 - a_1a_2q^{n_1-i}t^{2(n-i)})}{1 - Aq^{2n_1-i}t^{2(n-i)}}.
$$

In view of $\tilde{t}_{w_1} = t_{n_1}^{n_1-1}t_{n_1}^{n_1-1}$, these equalities conclude the proof of the desired formula (4.7).

In (4.7) one can apply the product formula for the Poincaré series of type C [23, Section 2.2], which reads

$$
\sum_{w \in W} \tilde{t}_{w}^{-2} = \prod_{i=1}^{n_1} \left(1 - t^{-2i}\right) \left(1 + t^{-2}t^{-2(i-1)}\right)
$$

$$
= t^{-2n_1(n_1-1)}(-a_3a_4)^{-n_1} \prod_{i=1}^{n_1} \left(1 - t^{-2}\right) \left(1 - a_3a_4t^{2(i-1)}\right).
$$

Note that

$$
c_{\rho_1, \rho_1}^1 = c_{\rho_1, \rho_1}.
$$

Thus far we have given an expansion of the partial antisymmetrization $U_{-\rho_1}E_{\rho_1}(x)$ in terms of $E_{\mu}(x)$. The next step is to give an explicit formula for $U_{-\rho_1}E_{\rho_1}(x)$.

Put

$$
\chi_1(x; t; q) = x^{\rho_1} \prod_{\alpha \in \Sigma_1} (1 - x^{\alpha})v_{\alpha}(x; t^{-1}, q^{-1})
$$

$$
= (-1)^{\frac{n_1(n_1+1)}{2}} t^{-2n_1(n_1-1)}t_{n_1}^{-2n_1} (x_{n_0+1} \cdots x_n)^{-n_1}
$$

$$
\times \prod_{n_0+1 \leq i < j \leq n} (t^{2}x_i - x_j) \left(1 - t^{2}x_i x_j\right) \prod_{i=n_0+1}^{n} (1 - a_3x_i)(1 - a_4x_i).
$$

Then for $f \in \mathcal{A}$ we have

Lemma 4.3.

$$
(T_i + t_i^{-1})(\chi_1 f) = s_i(\chi_1)(T_i - t_i)f, \quad i = n_0 + 1, \ldots, n.
$$

Proof. Note first that

$$
(T_i + t_i^{-1})(\chi_1 f) = (t_i + t_i^{-1} - t_i^{-1}v_i + t_i^{-1}v_is_i)\chi_1 f
$$

$$
= (t_i + t_i^{-1} - t_i^{-1}v_i)\chi_1 f + s_i(\chi_1)t_i^{-1}v_i s_i(f)
$$

$$
= (t_i + t_i^{-1} - t_i^{-1}v_i)\chi_1 f + s_i(\chi_1)(t_i^{-1}v_if + (T_i - t_i)f).
$$

So it is sufficient to show

$$
(t_i + t_i^{-1} - t_i^{-1}v_i)\chi_1 + t_i^{-1}v_is_i(\chi_1) = 0.
$$
Since

\[\chi_1(x; t; q) = x^{\rho_1} \prod_{\alpha \in \Sigma_1^-} (1 - x^\alpha) C(x; t^{-1}, q^{-1}) \]

and

\[s_i \left(x^{\rho_1} \prod_{\alpha \in \Sigma_1^-} (1 - x^\alpha) \right) = -x^{\rho_1} \prod_{\alpha \in \Sigma_1^-} (1 - x^\alpha), \]

it follows that

\[\frac{s_i(\chi_1)}{\chi_1} = -\frac{s_i(C(x; t^{-1}, q^{-1}))}{C(x; t^{-1}, q^{-1})}. \]

Here observe that

\[C(x; t^{-1}, q^{-1}) = \prod_{\beta \in \Sigma^+} t^{-2\beta} v_\beta(x; t, q), \]

so one clearly has

\[\frac{s_i(C(x; t^{-1}, q^{-1}))}{C(x; t^{-1}, q^{-1})} = \frac{s_i(v_i)}{v_i}, \]

where \(v_i = v_{\alpha_i}(x; t, q) \). It thus remains to be shown that

\[\frac{s_i(v_i)}{v_i} = t_i + t_i^{-1} - t_i^{-1}v_i \]

and this is deduced from the definition of \(v_i \).

Let \(\mathcal{A}_1 \) denote the subalgebra of \(W_1 \)-invariants of \(\mathcal{A} \).

Proposition 4.4. Let \(f \in \mathcal{A} \). Then \((T_i + t_i^{-1}) f = 0 \) for \(n_0 + 1 \leq i \leq n \) if and only if \(f \in \chi_1 \mathcal{A}_1 \).

Proof. If \((T + t^{-1}) f = 0 \), then \(g = \chi_1^{-1} f \) is killed by each \(T_i - t_i \). Hence \(g \) is \(W_1 \)-symmetric, and so \(\chi_1^{-1} f = w_1(\chi_1^{-1} f) \) or \(w_1(\chi_1) f = \chi_1 w_1(f) \) for any \(w_1 \in W_1 \). This shows that \(\chi_1 \) divides \(f \) in \(\mathcal{A} \) since \(\chi_1 \) and \(w_1(\chi_1) \) are coprime except for the powers of \(x_{n_0+1}, \ldots, x_n \). Hence \(g \in \mathcal{A}_1 \). Conversely, if \(f = \chi_1 g \) with \(g \in \mathcal{A}_1 \), then (4.14) shows that \((T_i + t_i^{-1}) f = 0 \). \(\square \)

Proposition 4.5.

\[U_1^{-1} E_{\rho_1}(x) = c_{\rho_1, \rho_1} \chi_1(x; t; q). \] \hspace{1cm} (4.15)

Proof. Equation (4.2) implies that \((T_i + t_i^{-1}) U_1^{-1} E_{\rho_1} = 0 \) for \(n_0 + 1 \leq i \leq n \), and hence \(U_1^{-1} E_{\rho_1} = \chi_1 g \) for some \(g \in \mathcal{A}_1 \). Note that the leading term of \(U_1^{-1} E_{\rho_1} \) is that of \(E_{\rho_1} \) except for its coefficient because \(U_1^{-1} E_{\rho_1} \) is a linear combination of \(E_{w(\rho_1)}, w \in W_1 \). But the leading term of \(\chi_1 \) is also of the same degree. Since \(g \) is \(W_1 \) invariant, it must be a constant. Finally equating coefficients of leading terms establishes (4.15). \(\square \)
We now calculate the norm $\langle U_{1}^{-} E_{\rho_{1}}, U_{1}^{-} E_{\rho_{1}} \rangle$.

$$
\langle U_{1}^{-} E_{\rho_{1}}, U_{1}^{-} E_{\rho_{1}} \rangle = \langle U_{1}^{-2} E_{\rho_{1}}, E_{\rho_{1}} \rangle = \langle U_{1}^{-} E_{\rho_{1}}, E_{\rho_{1}} \rangle
= \left\langle \sum_{\mu \in W_{1}\lambda} c_{\rho_{1}\mu} E_{\mu}, E_{\rho_{1}} \right\rangle = c_{\rho_{1}\rho_{1}} \langle E_{\rho_{1}}, E_{\rho_{1}} \rangle.
$$

Hence from (4.15)

$$
\langle c_{\rho_{1}\rho_{1}} \chi(x; t; q), c_{\rho_{1}\rho_{1}} \chi(x; t; q) \rangle = c_{\rho_{1}\rho_{1}} \langle E_{\rho_{1}}, E_{\rho_{1}} \rangle.
$$

Thus, in view of (4.13), we arrive at

Theorem 4.6.

$$
\langle \chi_{1}, \chi_{1} \rangle = \frac{1}{c_{\rho_{1}\rho_{1}}} \langle E_{\rho_{1}}, E_{\rho_{1}} \rangle. \tag{4.16}
$$

Here, by virtue of (3.6), (4.7) and (4.12), the right-hand side is written explicitly as

$$
\frac{1}{c_{\rho_{1}\rho_{1}}} \langle E_{\rho_{1}}, E_{\rho_{1}} \rangle = t^{-2n_{1}(n_{1}-1)}(-a_{3}a_{4})^{-n_{1}} \prod_{i=1}^{n_{1}} \frac{1}{(1-t^{2i})} \frac{1-a_{3}a_{4}t^{2(i-1)}}{1-t^{2}}
\times \prod_{i=1}^{n_{1}} \left(\frac{A_{q}^{n_{1}(n_{1}-i+1)}q^{i}(n_{1}-i+1)}{A_{q}^{n_{1}(n_{1}-i+1)}q^{i}(n_{1}-i+1)} \right)_{\infty}
\times \prod_{i=n_{1}+1}^{n} \left(\frac{A_{t}^{2(n_{1}-i)}q^{i}(n_{1}-i+1)}{A_{t}^{2(n_{1}-i)}q^{i}(n_{1}-i+1)} \right)_{\infty}
\times \prod_{1 \leq i < j \leq n_{1}} \left(\frac{A_{q}^{n_{1}(n_{1}-i-j)+1}q^{i}(n_{1}-i-j)}{A_{q}^{n_{1}(n_{1}-i-j)+1}q^{i}(n_{1}-i-j)} \right)_{\infty}
\times \prod_{i=1}^{n_{1}} \prod_{j=n_{1}+1}^{n} \left(\frac{A_{q}^{n_{1}(n_{1}-i-j)+1}q^{i}(n_{1}-i-j)}{A_{q}^{n_{1}(n_{1}-i-j)+1}q^{i}(n_{1}-i-j)} \right)_{\infty}
\times \prod_{n_{1}+1 \leq i < j \leq n} \left(\frac{A_{q}^{n_{1}(n_{1}-i-j)+1}q^{i}(n_{1}-i-j)}{A_{q}^{n_{1}(n_{1}-i-j)+1}q^{i}(n_{1}-i-j)} \right)_{\infty}
\times \prod_{n_{1}+1 \leq i < j \leq n} \left(\frac{A_{q}^{n_{1}(n_{1}-i-j)+1}q^{i}(n_{1}-i-j)}{A_{q}^{n_{1}(n_{1}-i-j)+1}q^{i}(n_{1}-i-j)} \right)_{\infty},
$$

and the left-hand side is

$$
\langle \chi_{1}, \chi_{1} \rangle = \frac{1}{(2\pi i)^{n}} \int_{\gamma_{n}} \prod_{i=n_{0}+1}^{n} \left(1-a_{3}a_{4} \right) \left(1-a_{3}^{-1}x_{i}^{-1} \right) \left(1-a_{4}^{-1}x_{i}^{-1} \right)
\times \prod_{n_{0}+1 \leq i < j \leq n} \left(t^{2x_{i}} - x_{j} \right) \left(t^{-2x_{i}} - x_{j}^{-1} \right) \Delta(x) \frac{dx}{x},
$$
This theorem may be viewed as a variation of the Selberg-type integral formula due to Gustafson [12], in which the integral (1.1) was evaluated. We will prove that, by a suitable limiting procedure, the formula (4.16) gives a variation of the q-Selberg integral formula [3, 13, 17] involving a q-difference product with respect to part of the variables, see Theorem 7.3.

Before proceeding to the limiting procedure, we first observe that (4.17) can be simplified using the identities

$$\prod_{1 \leq i < j \leq n} \frac{1 - QT^{j-i+1}}{1 - QT^{j-i}} = \prod_{i=1}^{n} \frac{1 - QT^{i}}{1 - QT}, \quad \prod_{1 \leq i < j \leq n} \frac{1 - QT^{i+j+1}}{1 - QT^{i+j}} = \prod_{i=1}^{n} \frac{1 - QT^{2i}}{1 - QT^{i+1}}.$$

In fact the following formulæ immediately follow from these identities:

$$\prod_{1 \leq i < j \leq n_1} \frac{(q^{j-i}t^{2(j-i)}, q^{j-i+1}t^{2(j-i)})}{(q^{j-i+1}t^{2(j-i+1)}, q^{j-i}t^{2(j-i-1)})} = \prod_{i=1}^{n_1} \frac{(qt^2, q^2t^{2(i-1)})}{(qt^2, q)},$$

$$\prod_{n_1+1 \leq i < j \leq n} \frac{(qt^{2(j-i)})^2}{(qt^{2(j-i+1)}, q^2t^{2(j-i-1)})} = \prod_{i=1}^{n_0} \frac{(qt^2, q^2t^{2(i-1)})}{(qt^2, q)},$$

$$\prod_{1 \leq i < j \leq n_1} \frac{(A^2q^{2n-i-j+1}t^{2(2n-i-j)}, A^2q^{2n-i-j+2}t^{2(2n-i-j)})}{(A^2q^{2n-i-j+1}t^{2(2n-i-j+1)}, A^2q^{2n-i-j+2}t^{2(2n-i-j+1)})} = \prod_{i=1}^{n_1} \frac{(A^2t^{2(i-1)}, A^2q^2t^{2(2n+2i-3)})}{(A^{2i-1}t^4(n_0+i-1), A^4t^{2(2n+i-2)})},$$

$$\prod_{n_1+1 \leq i < j \leq n} \frac{(A^2t^{2(2n-i-j)})^2}{(A^2t^{2(n-i-j+1)}, A^2t^{2(2n-i-j+1)})} = \prod_{i=1}^{n_0} \frac{(A^2t^{2(i-1)})}{(A^{4i-1})}, \quad \prod_{i=1}^{n_0} \frac{(A^2t^{2(2i-3)})}{(A^{4i-1})},$$

We rewrite the product $\prod_{i=1}^{n_1}$ in (4.17) as the product $\prod_{i=1}^{n_0}$. The product $\prod_{i=1}^{n_1} \prod_{j=n_1+1}^{n}$ also can be rewritten as the product $\prod_{i=1}^{n_1}$:

$$\prod_{i=1}^{n_1} \prod_{j=n_1+1}^{n} \frac{(q^{n_1-i+1}t^{2(j-i)})^2}{(q^{n_1-i+1}t^{2(j-i+1)}, q^{n_1-i+1}t^{2(j-i)})} = \prod_{i=1}^{n_1} \frac{(qt^2, q^2t^{2(n_0+i-1)})}{(qt^2, q)},$$

and

$$\prod_{i=1}^{n_1} \prod_{j=n_1+1}^{n} \frac{(A^2q^{n_1-i+1}t^{2(2n-i-j)})^2}{(A^2q^{n_1-i+1}t^{2(2n-i-j+1)}, A^2q^{n_1-i+1}t^{2(2n-i-j-1)})} = \prod_{i=1}^{n_1} \frac{(A^2t^{2(n_0+i-2)}, A^2t^{2(2n_0+i-1)})}{(A^2t^{2(n_0+i-3)}, A^2t^{2(2n_0+i-2)})},$$

Substituting these formulæ into (4.17), after some cancellations, we obtain

$$\frac{1}{c_{\rho_1, \rho_1}} (E_{\rho_1}, E_{\rho_1}) = F(a_1, a_2, a_3, a_4) G(a_1, a_2, a_3, a_4),$$

(4.18)
where

\[F(a_1, a_2, a_3, a_4) = (-a_3a_4)^{-n_1} \prod_{i=1}^{n_1} \left(1 - a_3a_4 t^{2(i-1)} \right) \prod_{i=1}^{n_0} \left(1 - a_3a_4 t^{2(i-1)} \right) \]

\[= \prod_{i=1}^{n_1} \left(1 - a_3a_4 t^{2(i-1)} \right) \prod_{i=1}^{n_0} \left(1 - a_3a_4 t^{2(i-1)} \right), \quad (4.19) \]

and

\[G(a_1, a_2, a_3, a_4) = t^{-2n_1(n_1-1)} \left(\frac{q t^{2(n_1-1)}}{(q)^n} \right) \prod_{i=1}^{n_0} \left(1 - t^{2i} \right) \prod_{i=1}^{n_1} \left(1 - t^{2i} \right) \prod_{i=1}^{n_0} \left(1 - t^{2i} \right) \prod_{i=1}^{n_1} \left(1 - t^{2i} \right) \]

\[\times \left(\frac{A t^{2(n_0-1)}}{(A t^{2(n_0-1)})^{\infty}} \right) \prod_{i=1}^{n_0} \left(1 - A t^{2(i-1)} \right) \prod_{i=1}^{n_1} \left(1 - A t^{2(i-1)} \right) \prod_{1 \leq r < s \leq 4} \left(a_r a_s t^{2(i-1)} \right) \]

\[\times \prod_{i=1}^{n_1} \left(A q^{2i-1} t^{2(2n_0+2i-3)} a q^{2i} t^{4(n_0+i-1)} \right) \]

But since

\[\left(\frac{A t^{2(n_0-1)}}{(A t^{2(n_0-1)})^{\infty}} \right) \prod_{i=1}^{n_0} \left(1 - A t^{2(i-1)} \right) \prod_{i=1}^{n_1} \left(1 - A t^{2(i-1)} \right) = \prod_{i=1}^{n_0} \left(A t^{2(n_0+i-2)} \right), \]

we find that

\[G(a_1, a_2, a_3, a_4) = t^{-2n_1(n_1-1)} \left(\frac{q t^{2(n_1-1)}}{(q)^n} \right) \prod_{i=1}^{n_0} \left(1 - t^{2i} \right) \prod_{i=1}^{n_1} \left(1 - t^{2i} \right) \]

\[\times \prod_{i=1}^{n_0} \prod_{1 \leq r < s \leq 4} \left(a_r a_s t^{2(i-1)} \right) \]

\[\times \prod_{i=1}^{n_1} \left(A q^{2i} t^{2(n_0+i-2)} \right) \prod_{1 \leq r < s \leq 4} \left(a_r a_s t^{2(i-1)} \right). \quad (4.20) \]

We have thus established the formula (4.16) in a simplified form:

\[\frac{1}{(2\pi i)^n} \int_{C^n} \prod_{i=n_0+1}^{n} (1 - a_3 x_i) (1 - a_4 x_i) (1 - a_3^{-1} x_i^{-1}) (1 - a_4^{-1} x_i^{-1}) \Delta(x) \frac{dx}{x} \]

\[= t^{-2n_1(n_1-1)} (-a_3 a_4)^{-n_1} \left(\frac{q t^{2(n_1-1)}}{(q)^n} \right) \prod_{i=1}^{n_0} \left(1 - t^{2i} \right) \prod_{i=1}^{n_1} \left(1 - t^{2i} \right) \]

\[\times \prod_{i=1}^{n_0} \left(1 - a_3 a_4 t^{2(i-1)} \right) \prod_{i=1}^{n_1} \left(1 - a_3 a_4 t^{2(i-1)} \right) \prod_{i=1}^{n_0} \left(A t^{2(n_0+i-2)} \right) \prod_{i=1}^{n_1} \left(A t^{2(n_0+i-2)} \right) \prod_{1 \leq r < s \leq 4} \left(a_r a_s t^{2(i-1)} \right). \]
5 Limit of the quadratic norm formula: Part 1

In this section we calculate the limit of the left-hand side of the quadratic norm formula (4.21).

Hereafter we assume that

\[t^2 = q^k, \quad k \in \mathbb{Z}_{\geq 0}. \]

Put

- **Case I:** \((a_1, a_2, a_3, a_4) = (e^{-1}q^{\frac{1}{2}}, -aq^{\frac{1}{2}}, \epsilon bq^{\frac{1}{2}}, -q^{\frac{1}{2}}),\)
- **Case II:** \((a_1, a_2, a_3, a_4) = (\epsilon bq^{\frac{1}{2}}, -aq^{\frac{1}{2}}, \epsilon^{-1}q^{\frac{1}{2}}, -q^{\frac{1}{2}}),\)

where \(0 < |a|, |b| < 1.\) We shall also write \(a = q^s, \ b = q^t.\) First \(\epsilon\) is taken so that \(|a_i| < 1, i = 1, 2, 3, 4\) and then, after multiplying the norm formula (4.16) by a suitable factor, we take the limit \(\epsilon \to 0,\) or more precisely we take a suitable sequence \(\{\epsilon_r\}\) which converges to 0. For this purpose, define

\[\epsilon_r = \epsilon_0 q^r, \quad r \geq 0. \]

We assume \(q^\frac{1}{2} < |\epsilon_0| < q^{-\frac{1}{2}}\) so that, for \(0 \leq s \leq r - 1,\) one has

\[q^{s+\frac{1}{2}} < |\epsilon_r| < q^{s+\frac{1}{2}}. \quad (5.1) \]

Let us consider the integrand \(\chi_1(x)\chi_1(x)^\dagger \Delta(x)^{\frac{1}{2}}.\) We put

\[
\begin{align*}
g(x) &= \prod_{i=n_0+1}^{n}(1-a_3x_i)(1-a_4x_i)(1-a_3^{-1}x_i^{-1})(1-a_4^{-1}x_i^{-1}) \\
&\quad \times \prod_{i=1}^{n}(x_i-a_3)(x_i-a_4)(x_i^{-2}-1), \\
h(x) &= \prod_{n_0+1 \leq i < j \leq n}(t^2x_i-x_j)(1-t^2x_ix_j)(t^{-2}x_i^{-1}-x_j^{-1})(1-t^{-2}x_i^{-1}x_j^{-1}) \\
&\quad \times \prod_{1 \leq i < j \leq n}(t^2-x_i)(t^2-x_ix_j^{-1})(1-x_i^{-1}x_j^{-1})(1-x_i^{-1}x_j^{-1}), \\
D(x) &= \prod_{1 \leq i < j \leq n}(qx_ix_j,qx_ix_j^{-1},qx_i^{-1}x_j,qx_i^{-1}x_j^{-1}) \prod_{1 \leq i < j \leq n}(t^2x_ix_j,t^2x_ix_j^{-1},t^2x_i^{-1}x_j,t^2x_i^{-1}x_j^{-1}) \prod_{1 \leq i < j \leq n}(qx_ix_j,qx_ix_j^{-1},qx_i^{-1}x_j,qx_i^{-1}x_j^{-1})_k^{-1}, \\
A(x_i) &= \frac{(qx_i^2,qx_i^{-2})_k^{-1}}{x_i} \prod_{r=1}^{4}(a_rx_i,a_rx_i^{-1})_k^{-1},
\end{align*}
\]

so that

\[
\chi_1(x)\chi_1(x)^\dagger \Delta(x)^{\frac{1}{2}} \frac{1}{x} = g(x)h(x)D(x) \prod_{i=1}^{n} A(x_i).
\]
In either case, Case I or Case II, one has
\[
A(x_i) = \frac{(qx_i, -qx_i, q^{\frac{1}{2}}x_i, qx_i^{-1}, -qx_i^{-1}, q^{\frac{1}{2}}x_i^{-1})_\infty}{x_i((\epsilon^{-1}q^{\frac{1}{2}}x_i, \epsilon^{-1}q^{\frac{1}{2}}x_i^{-1}, -aq^{\frac{1}{2}}x_i, -aq^{\frac{1}{2}}x_i^{-1}, ebq^{\frac{1}{2}}x_i, ebq^{\frac{1}{2}}x_i^{-1})_\infty)}.
\]

Note that our integrand is a product of the Laurent polynomial \(g(x)h(x)D(x)\) and functions of one variable \(\prod_{i=1}^n A(x_i)\).

For \(\epsilon = \epsilon_r\), \(A(x_i)\) has a non-isolated singularity at the origin and has poles at the points
\[
x_{r,s} = \epsilon_r^{-1}q^{s+\frac{1}{2}}_s, \quad y_{r,s'} = \epsilon_r bq^{s'+\frac{1}{2}}_s, \quad z_{s''} = -aq^{s''+\frac{1}{2}}
\]
and the reciprocals of these points, where \(s, s', s'' \in \mathbb{Z}_{\geq 0}\). We assume that \(\epsilon_0\) is generic so that \(x_{r,s}, \ldots, x_{r,s}^{-1}\) are distinct and do not lie on the unit circle, so that the poles of each \(A_i(x)\) are all simple. Note also that, by (5.1), \(x_{0,s} \) (resp. \(x_{0,s}^{-1}\)) lies in the interior (resp. exterior) of the unit circle.

When we take the limit \(\epsilon_r \to 0\), some poles may move from the interior (resp. exterior) to the exterior (resp. interior) of the unit circle. More precisely, while \(y_{r,s'}\) and \(z_{s''}\) (resp. \(y_{r,s'}^{-1}\) and \(z_{s''}^{-1}\)) always lie in the interior (resp. exterior) of the unit circle, \(x_{r,s}\) (resp. \(x_{r,s}^{-1}\)) moves from the interior (resp. exterior) to the exterior (resp. interior) of the unit circle as \(r\) increases. In fact \(x_{r,s}\)'s (resp. \(x_{r,s}^{-1}\')) lie in the interior (resp. exterior) of the unit circle for \(0 \leq s \leq r - 1\) in view of (5.1). Hence we must deform the unit circle in each coordinate complex plane to include \(x_{r,s}\) and exclude \(x_{r,s}^{-1}\) keeping \(y_{r,s'}, z_{s''}\) inside and \(y_{r,s'}^{-1}, z_{s''}^{-1}\) outside. Accordingly, we define the deformed contour \(C_r\) for \(r\) as a closed curve enclosing the origin, \(x_{r,s}, y_{r,s'}, z_{s''}\) and excluding \(x_{r,s}^{-1}, y_{r,s'}^{-1}, z_{s''}^{-1}\) for any \(s, s', s'' \in \mathbb{Z}_{\geq 0}\). Let \(C_{r,1}\) (resp. \(C_{r,-1}\)) be a positively oriented circle encircling only \(x_{r,s}\) (resp. \(x_{r,s}^{-1}\)) with \(0 \leq s \leq r - 1\). Then in each coordinate plane one has
\[
C_r = C + C_{r,1} - C_{r,-1}
\]
as the path of integration. Let us write
\[
\text{sgn}(x) = \begin{cases}
1, & x \geq 0, \\
-1, & x < 0.
\end{cases}
\]
We will consider the limit of the product of a suitable factor and the integral
\[
\int_{C'_{\pi}} \chi_1(x)\chi_1(x)\frac{\Delta(x)}{x} dx = \sum_{\kappa_i=0, \pm 1} \prod_{i=1}^n \text{sgn}(\kappa_i) \int_{C_{r,\kappa_1} \times \cdots \times C_{r,\kappa_n}} \chi_1(x)\chi_1(x)\frac{\Delta(x)}{x} dx, \quad (5.2)
\]
where \(C_{r,0}\) should be understood as the unit circle \(C\). We shall prove later that the terms with \(\kappa_i = 0\) for some \(i\) is negligible in the limit calculation.

It is immediate to see that
\[
\text{Res}_{x_i = x_{r,s}^{-1}} A(x_i) = -\text{Res}_{x_i = x_{r,s}} A(x_i),
\]
and hence
\[
\text{sgn}(\kappa_i) \text{Res}_{x_i = x_{r,s}^{-1}} A(x_i) = \text{Res}_{x_i = x_{r,s}} A(x_i).
\]
Therefore, for \(\kappa_i = \pm 1, i = 1, \ldots, n\), we have
\[
\frac{1}{(2\pi i)^n} \prod_{i=1}^n \text{sgn}(\kappa_i) \int_{C_{r,\kappa_1} \times \cdots \times C_{r,\kappa_n}} \chi_1(x)\chi_1(x)\frac{\Delta(x)}{x} dx.
\]
Lemma 5.1. The following inequalities hold:

Moreover we have

Here the residue $\text{Res}_{x_i=x_{r, s}} A(x_i)$ can be easily shown to be

Since $D(x)$ is W-invariant, we have

For the calculation of the limit of the norm, we first consider the limits of $D(x)$, $h(x)$ with $x = (x_{r, s}^0, \ldots, x_{r, s}^n)$ and $\text{Res}_{x_i=x_{r, s}} A(x_i)$. Hereafter we denote by K a positive constant independent of r and s. For $\kappa = (\kappa_1, \ldots, \kappa_n)$, put $d(\kappa) = \sum_{1 \leq i < j \leq n} (1 - \kappa_i) = \frac{n(n-1)}{2} - \sum_{i=1}^{n}(n-i)\kappa_i$.

Lemma 5.1. The following inequalities hold:

Moreover we have

and

In particular,

and

Proof. The inequality and the limit formula for $D(x_{r,s_1}^{\kappa_i}, \ldots, x_{r,s_n}^{\kappa_i})$ are immediate from (5.5). The inequality (5.6) is also clear from the definition of $h(x)$. For the limit (5.7), observe that

$$
\lim_{r \to \infty} \epsilon_r^2 (x_{r,s_1}^{\kappa_i}, x_{r,s_2}^{\kappa_i}) - t^2 \left(x_{r,s_1}^{\kappa_i} x_{r,s_2}^{\kappa_i} - t^2 \left(x_{r,s_1}^{\kappa_i} x_{r,s_2}^{\kappa_i} - 1 \right) \left(x_{r,s_1}^{\kappa_i} x_{r,s_2}^{\kappa_i} - 1 \right) - q t^{1-\kappa_i} (t^{1-\kappa_i} q^{s_1} - t^{1+\kappa_i} q^{s_2}) \right),
$$

$$
\lim_{r \to \infty} \epsilon_r^2 \left(t^2 x_{r,s_1}^{\kappa_i} - x_{r,s_2}^{\kappa_i} \right) \left(1 - t^2 x_{r,s_1}^{\kappa_i} x_{r,s_2}^{\kappa_i} \right) \left(1 - t^2 x_{r,s_1}^{\kappa_i} x_{r,s_2}^{\kappa_i} \right)
$$

$$
= q \left(t^{2-\kappa_i} q^{s_1} - q^{s_2} \right)^2
$$

from which (5.7) follows.

Lemma 5.2. The following inequality and limit formula hold:

$$
\left| (-\epsilon_r^{-1} q, -\epsilon_r^{-1} aq) \right|_\infty \epsilon_r^{-2} \text{Res}_{x_1=x_{r,s_1}} A(x_i) \leq K |a| q^{-(s_1+1)},
$$

$$
\lim_{r \to \infty} \left(-\epsilon_r^{-1} q, -\epsilon_r^{-1} aq \right) \epsilon_r^{-2} \text{Res}_{x_1=x_{r,s_1}} A(x_i) = \frac{q^{-s_1} q^{-(s_1+1)}}{(q, bq^{s_1+1})_\infty (q)_{s_1}}.
$$

Proof. By (5.4) one has

$$
\left(-\epsilon_r^{-1} q, -\epsilon_r^{-1} aq \right) \infty \text{Res}_{x_1=x_{r,s}} A(x_i)
$$

$$
= \frac{(-1)^s q^{s+1} \left(-\epsilon_r^{-1} q, -\epsilon_r^{-1} aq \right)_s \left(\epsilon_r q^{-s+\frac{1}{2}}, -\epsilon_r q^{-s+\frac{1}{2}}, \epsilon_r q^{-s}\right)}{\left(q\right)_\infty \left(q\right)_{s}} \frac{(-\epsilon_r q^{-s}, bq^{s+1}, \epsilon_r q^{-s})_\infty}{\left(\epsilon_r q^{-s}, bq^{s+1}, \epsilon_r q^{-s}\right)_\infty},
$$

which implies the limit formula (5.9). For the inequality (5.8), we note that

$$
\left| \left(\epsilon_r q^{-s+\frac{1}{2}}, -\epsilon_r q^{-s+\frac{1}{2}}, \epsilon_r q^{-s}\right) \right|_\infty \leq \left| \left(\epsilon_r q^{-s}, bq^{s+1}, \epsilon_r q^{s}\right) \right|_\infty \leq \frac{1}{\left(|b|, bq^{s+1}\right)_{\infty}}.
$$

One also has

$$
\epsilon_r^{-2} \left(-\epsilon_r^{-1} q, -\epsilon_r^{-1} aq \right)_s = \prod_{l=1}^{s+1} \left(\epsilon_r q^{s+l} \right),
$$

and so

$$
\prod_{l=1}^{s+1} \left(\epsilon_r q^{s+l} \right) \left(\epsilon_r q^{s+l} \right)_s \leq \prod_{l=1}^{s+1} \left(\epsilon_r q^{s+l} \right) \left(\epsilon_r q^{s+l} + |a| q^l \right) \leq |a|^s q^{s(s+1)} (-\epsilon_r^2, -|a|^{-1} q^2)_\infty.
$$

These inequalities imply (5.8).

Lemma 5.3. If $\kappa_i = 0$ for some i, then

Case I:

$$
\lim_{r \to \infty} \left(-\epsilon_r^{-1} q, -\epsilon_r^{-1} aq \right)_n \epsilon_r^{n(n-1)k+n_1(n_1+1)} \int_{C_{r,\kappa_1} \times \cdots \times C_{r,\kappa_n}} \chi_1(x) \chi_1(x) \Delta(x) \frac{dx}{x} = 0,
$$

Case II:

$$
\lim_{r \to \infty} \left(-\epsilon_r^{-1} q, -\epsilon_r^{-1} aq \right)_n \epsilon_r^{n(n-1)k+n_1(n_1+1)+n} \int_{C_{r,\kappa_1} \times \cdots \times C_{r,\kappa_n}} \chi_1(x) \chi_1(x) \Delta(x) \frac{dx}{x} = 0.
$$
Proof. Put \(I_0 = \{i \mid \kappa_i = 0\}, I_+ = \{i \mid \kappa_i = 1\}, I_- = \{i \mid \kappa_i = -1\} \) and denote their intersection with \(\{n_0 + 1, \ldots, n\} \) by \(I'_0, I'_+, I'_- \) respectively. We write

\[
|I_0| = p_0, \quad |I_+| = p_+, \quad |I_-| = p_-, \quad |I'_0| = p'_0, \quad |I'_+| = p'_+, \quad |I'_-| = p'_-,
\]

so that \(p_0 + p_+ + p_- = n, p'_0 + p'_+ + p'_- = n_1 \). We assume that \(p_0 \geq 1 \).

Let \(x = (x_i) \) be \(|x_i| = 1, i \in I_0 \) and \(x_i = x_{r,s_i}^{n_0}, i \in I_+ \cup I_- \). Note first that

\[
(-\epsilon_r^{-1} q, -\epsilon_r^{-1} a q) \leq K|\epsilon_r|
\]

when \(|x_i| = 1 \). This follows at once from estimate

\[
|A(x_i)| \leq K \frac{1}{|\epsilon_r^{-1} q^2 x_i|, \epsilon_r^{-1} q^2 x_i^{-1}}
\]

and equalities

\[
(\epsilon_r^{-1} q^2 x_i^\pm 1) = (\epsilon_r^{-1} q^2 x_i^\pm 1) \epsilon^{-1} q^2 x_i^\pm 1 = (-1)^r \epsilon_r^{-1} q^2 x_i^\pm r (\epsilon_0 q^2 x_i^\pm 1) r (\epsilon_0 q^2 x_i^\pm 1).
\]

Hence by (5.8) and (5.10) we see

\[
\left| \epsilon_r^{-1} q, -\epsilon_r^{-1} a q \right| \geq \prod_{i \in I_0} A(x_i) \prod_{i \in I_+ \cup I_-} \text{Res}_{x_i = x_{r,s_i}} A(x_i) \leq K \left| \epsilon_r \right| n \frac{a}{q} \left| \epsilon_r \right|^{n+p_++p_-}. \tag{5.11}
\]

The following inequalities are also immediate:

\[
\left| x_{r,s_i} - a_3 \right| \leq K \left| \epsilon_r \right|^{-1}, \quad \left| x_{r,s_i} - a_4 \right| \leq K \left| \epsilon_r \right|^{-1}.
\]

The factor \(g(x) \) needs precise analysis. In Case I: \(a_3 = \epsilon_r b q^2, a_4 = -q^2 \) (resp. Case II: \(a_3 = \epsilon_r q^2, a_4 = -q^2 \)), we have

\[
\left| (x_i - a_3)(x_i - a_4)(x_i^2 - 1) \right| \leq K \left| \epsilon_r \right|^{-1}, \quad \left| (x_i - a_3)(x_i - a_4)(x_i^2 - 1) \right| \leq K \left| \epsilon_r \right|^{-1}.
\]

Now combining (5.11), (5.12), (5.13) and (5.14) yields

Case I:

\[
\left| \epsilon_r^{-1} q, -\epsilon_r^{-1} a q \right| \geq K \left| \epsilon_r \right|^{n(n-1)+p_0(p_0-1)+(n_1-1)-p'_0(p'_0-1)} g(x) D(x) \prod_{i \in I_0} A(x_i) \prod_{i \in I_+ \cup I_-} \text{Res}_{x_i = x_{r,s_i}} A(x_i)
\]

Case II:

\[
\left| \epsilon_r^{-1} q, -\epsilon_r^{-1} a q \right| \geq K \left| \epsilon_r \right|^{n(n-1)+p_0(p_0-1)+2(n_1-1)-2p'_0(p'_0-1)} g(x) D(x) \prod_{i \in I_0} A(x_i) \prod_{i \in I_+ \cup I_-} \text{Res}_{x_i = x_{r,s_i}} A(x_i)
\]
\[\leq K e^1_x |a| \sum_{i \in I_+ \cup I_-} |q|^{\sum_{i \in I^+} s_i + 2 \sum_{i \in I^-} s_i}, \]

Case II:
\[\left| (e^{-1}_r q, -e^{-1}_r aq)^n \infty \epsilon_r (n-1)k + n_1(n_1+1) + n g(x) h(x) D(x) \prod_{i \in I_0} A(x_i) \prod_{i \in I_+ \cup I_-} \text{Res}_{x=x_i} A(x_i) \right| \]
\[\leq K e^2_x |a| \sum_{i \in I_+ \cup I_-} |q|^{\sum_{i \in I^+} s_i + 2 \sum_{i \in I^-} s_i}, \]

where
\[e_1 = p_0(p_0 - 1)k + p'_0(p'_0 - 1) + n + n_1 - p_+ - 2p'_-, \]
\[e_2 = p_0(p_0 - 1)k + p'_0(p'_0 - 1) + n + n_1 - p_- - 2p'_+. \]

Since
\[n + n_1 - p_+ - 2p'_- = p_0 + p'_0 + p'_+ + p_- - 2p'_+ \geq p_0 \geq 1, \]
\[n + n_1 - p_- - 2p'_+ = p_0 + p'_0 + p'_- + p_+ - 2p'_+ \geq p_0 \geq 1, \]

and the series \(|a|^{\sum_{i \in I_+ \cup I_-} s_i}\) is absolutely convergent, we obtain the conclusion of our lemma. \(\blacksquare \)

Theorem 5.4. We have

Case I:
\[\lim_{r \to \infty} \left(-e^{-1}_r q, -e^{-1}_r aq \right)^n \infty \epsilon_r (n-1)k + n_1(n_1+1) + n \frac{1}{(2\pi i)^n} \int_{C_r} \chi_1(x) \chi_1(x)^{\dagger} \Delta(x) \frac{dx}{x} \]
\[= A_1 \sum_{s_1, \ldots, s_n=0}^{n} \prod_{i=1}^{n} a^{s_i} q^{((n-1)k+1)s_i} \frac{(q^{s+1})_{\infty}}{(bq^{s+1})_{\infty}} \prod_{1 \leq i < j \leq n} (q^{s_i-s_j}, q^{-s_i+s_j})_k \]
\[\times \prod_{i=n_0+1}^{n} q^{s_i} (1 - bq^{s+1}) \prod_{n_0+1 \leq i < j \leq n} (t^{\frac{2}{q} q^{s_i} - q^{s_j}})(q^{s_i} - t^{\frac{2}{q} q^{s_j}}), \]

Case II:
\[\lim_{r \to \infty} \left(-e^{-1}_r q, -e^{-1}_r aq \right)^n \infty \epsilon_r (n-1)k + n_1(n_1+1) + n \frac{1}{(2\pi i)^n} \int_{C_r} \chi_1(x) \chi_1(x)^{\dagger} \Delta(x) \frac{dx}{x} \]
\[= A_{II} \sum_{s_1, \ldots, s_n=0}^{n} \prod_{i=1}^{n} a^{s_i} q^{((n-1)k+1)s_i} \frac{(q^{s+1})_{\infty}}{(bq^{s+1})_{\infty}} \prod_{1 \leq i < j \leq n} (q^{s_i-s_j+1}, q^{-s_i+s_j})_k \]
\[\times \prod_{i=n_0+1}^{n} q^{s_i} (1 - q^{s_i}) \prod_{n_0+1 \leq i < j \leq n} (t^{\frac{2}{q} q^{s_i} - q^{s_j}})(q^{s_i} - t^{\frac{2}{q} q^{s_j}}), \]

where
\[A_1 = (-1)^{\binom{n}{2}} k(q) \infty \epsilon (q^{\frac{n}{2}})_{\frac{1}{2}} \frac{(k+1)}{2} p_0(n_0-1) b, \]
\[A_{II} = (-1)^{\binom{n}{2}} k(q) \infty \epsilon \frac{n(n_1+1)}{2} + n \frac{1}{2} \frac{(k+1)}{2} p_0(n_0-1) + n_1. \]

Proof. The integral in the theorem are sums of the integrals over \(C_{r, \kappa_1} \times \cdots \times C_{r, \kappa_n}, \kappa_i = 0, \pm 1, \) see (5.2). By Lemma 5.3 it suffices to consider only the integrals over \(C_{r, \kappa_1} \times \cdots \times C_{r, \kappa_n} \) with \(\kappa_i = \pm 1, i = 1, \ldots, n, \) in which case each integral reduces to the sum of residues of the poles \((x^{\kappa}_{r, s_1}, \ldots, x^{\kappa}_{r, s_n}), 0 \leq s_i \leq r - 1, i = 1, \ldots, n, \) see (5.3). We assert that the order with respect
to \(e_r \) of the factor \(g(x_{r,s_1}^{\kappa_1}, \ldots, x_{r,s_n}^{\kappa_n}) h(x_{r,s_1}^{\kappa_1}, \ldots, x_{r,s_n}^{\kappa_n}) D(x_{r,s_1}^{\kappa_1}, \ldots, x_{r,s_n}^{\kappa_n}) \) in the right-hand sum of (5.3) is lowest only when \(\kappa_1 = \cdots = \kappa_{n_0} = 1, \kappa_{n_0+1} = \cdots = \kappa_n = -1 \) in Case I and \(\kappa_1 = \cdots = \kappa_{n_0} = -1, \kappa_{n_0+1} = \cdots = \kappa_n = 1 \) in Case II. To see this, in view of Lemma 5.1, one only needs to consider how the order of \(g(x_{r,s_1}^{\kappa_1}, \ldots, x_{r,s_n}^{\kappa_n}) \) depends on the choice of \(\kappa \). Let us look at the exponents \(e_1, e_2 \) in the proof of Lemma 5.3. Since \(p_0 = p_0' = 0 \), we see

\[
e_1 = p'_+ + p_- - p'_-, \quad e_2 = p'_+ + p_+ - p'_+.
\]

Hence \(e_1 \) (resp. \(e_2 \)) is smallest when \(p'_+ = p_- - p'_- = 0 \) (resp. \(p'_+ = p_+ - p'_+ = 0 \)), which is nothing but our assertion.

Since

\[
|e_r^2(x_{r,s} - a_3)(x_{r,s} - a_4)(x_{r,s}^{-2} - 1)| \leq K|q|^{2s},
\]

\[
|e_r(x_{r,s}^{-1} - a_3)(x_{r,s}^{-1} - a_4)(x_{r,s}^2 - 1)| \leq K|q|^s,
\]

\[
\lim_{r \to \infty} e_r^2(x_{r,s} - a_3)(x_{r,s} - a_4)(x_{r,s}^{-2} - 1) = -q^{2s+1},
\]

\[
\lim_{r \to \infty} e_r(x_{r,s}^{-1} - a_3)(x_{r,s}^{-1} - a_4)(x_{r,s}^2 - 1) = (1 - bq^{s+1})q^{s+1},
\]

and

\[
|e_r^3(1 - a_3x_{r,s}^{-1})(1 - a_4x_{r,s}^{-1})(1 - a_3^{-1}x_{r,s})(1 - a_4^{-1}x_{r,s})| \leq K|q|^{2s},
\]

\[
\lim_{r \to \infty} e_r^3(1 - a_3x_{r,s}^{-1})(1 - a_4x_{r,s}^{-1})(1 - a_3^{-1}x_{r,s})(1 - a_4^{-1}x_{r,s}) = -b^{-1}q^{2s},
\]

we see

\[
|e_r^{2n+2n_1}g(x_{r,s_1}, \ldots, x_{r,s_{n_0}}, x_{r,s_{n_0+1}}^{-1}, \ldots, x_{r,s_n}^{-1})| \leq K \prod_{i=1}^{n} |q|^{2s_i} \prod_{i=n_0+1}^{n} |q|^{s_i},
\]

\[
\lim_{r \to \infty} e_r^{2n+2n_1}g(x_{r,s_1}, \ldots, x_{r,s_{n_0}}, x_{r,s_{n_0+1}}^{-1}, \ldots, x_{r,s_n}^{-1}) = (-1)^n q^n b^{-n_1} \prod_{i=1}^{n} q^{2s_i} \prod_{i=n_0+1}^{n} (1 - bq^{s_i+1})q^{s_i}.
\]

Similarly, in Case II, since

\[
|e_r^2(x_{r,s} - a_3)(x_{r,s} - a_4)(x_{r,s}^{-2} - 1)| \leq K|q|^s,
\]

\[
|e_r^3(x_{r,s}^{-1} - a_3)(x_{r,s}^{-1} - a_4)(x_{r,s}^2 - 1)| \leq K|q|^{2s}
\]

\[
\lim_{r \to \infty} e_r^2(x_{r,s} - a_3)(x_{r,s} - a_4)(x_{r,s}^{-2} - 1) = (1 - q^s)q^{s+1},
\]

\[
\lim_{r \to \infty} e_r^3(x_{r,s}^{-1} - a_3)(x_{r,s}^{-1} - a_4)(x_{r,s}^2 - 1) = -q^{2s+2},
\]

and

\[
|e_r^3(1 - a_3x_{r,s})(1 - a_4x_{r,s})(1 - a_3^{-1}x_{r,s})(1 - a_4^{-1}x_{r,s})| \leq K|q|^{2s},
\]

\[
\lim_{r \to \infty} e_r^3(1 - a_3x_{r,s})(1 - a_4x_{r,s})(1 - a_3^{-1}x_{r,s})(1 - a_4^{-1}x_{r,s}) = q^{2s+2},
\]

it follows that

\[
|e_r^{3n+2n_1}g(x_{r,s_1}^{-1}, \ldots, x_{r,s_{n_0}}^{-1}, x_{r,s_{n_0+1}}^{-1}, \ldots, x_{r,s_n}^{-1})| \leq K \prod_{i=1}^{n} q^{2s_i} \prod_{i=n_0+1}^{n} q^{s_i},
\]

\[
\lim_{r \to \infty} e_r^{3n+2n_1}g(x_{r,s_1}^{-1}, \ldots, x_{r,s_{n_0}}^{-1}, x_{r,s_{n_0+1}}^{-1}, \ldots, x_{r,s_n}^{-1}) = (-1)^n q^{2n+n_1} \prod_{i=1}^{n} q^{2s_i} \prod_{i=n_0+1}^{n} (1 - q^{s_i})q^{s_i}.
\]
Combining Lemmas 5.1 and 5.2, we have thus obtained estimates of the sums of residues and their limits as \(r \to \infty \). One sees

\[
\left| (-\epsilon_r^{-1} q, -\epsilon_r^{-1} aq) \right|^n \left(\frac{1}{r} \right)^{n(n-1)k+n_1(n_1+1)} g(x_{r,s_1}, \ldots, x_{r,s_{n_0}}, x_{r,s_{n_0+1}}, \ldots, x_{r,s_n}) \\
\times h(x_{r,s_1}, \ldots, x_{r,s_{n_0}}, x_{r,s_{n_0+1}}, \ldots, x_{r,s_n}) D(x_{r,s_1}, \ldots, x_{r,s_n}) \prod_{i=1}^{n} \text{Res}_{x_i=r_{s_i}} A_i(x) \right| \\
\leq K \prod_{i=1}^{n} (aq)^{s_i} \prod_{i=n_0+1}^{n} q^{s_i},
\]

for the Cases I and II respectively. The series \(\sum_{s_1, \ldots, s_n=0}^{\infty} \prod_{i=1}^{n} (aq)^{s_i} \prod_{i=n_0+1}^{n} q^{s_i} \) is absolutely convergent as \(|a| < 1 \). Therefore, in virtue of the dominated convergence theorem, these estimates assure that the residue sums converge as \(r \to \infty \) and it is easily seen that the limits are as described in the theorem. This completes the proof of Theorem 5.4.

Remark 5.5. In the case \(a_3 = \epsilon^{-1} q^{\frac{1}{2}}, a_4 = \epsilon b q^{\frac{1}{2}} \) or \(a_3 = \epsilon b q^{\frac{1}{2}}, a_4 = \epsilon^{-1} q^{\frac{1}{2}} \), on the contrary to our Case I and Case II, it is not certain whether Lemma 5.3 holds or not. One needs more precise analysis on \(A(x) \) when \(|x| = 1 \).

6 Limit of the quadratic norm formula: Part 2

In this section we calculate the limit of the right-hand side of the norm formula (4.16), that is

\[
\lim_{r \to \infty} \left(-\epsilon_r^{-1} q, -\epsilon_r^{-1} aq \right)^n \left(\frac{1}{r} \right)^{n(n-1)k+n_1(n_1+1)} \frac{1}{c_{\rho_1 \rho_1}} \langle E_{\rho_1}, E_{\rho_1} \rangle \\
\text{in Case I},
\]

\[
\lim_{r \to \infty} \left(-\epsilon_r^{-1} q, -\epsilon_r^{-1} aq \right)^n \left(\frac{1}{r} \right)^{n(n-1)k+n_1(n_1+1)+n} \frac{1}{c_{\rho_1 \rho_1}} \langle E_{\rho_1}, E_{\rho_1} \rangle \\
\text{in Case II}.
\]

Recall that we have written the explicit formula for \(\frac{1}{c_{\rho_1 \rho_1}} \langle E_{\rho_1}, E_{\rho_1} \rangle \) as (see (4.18))

\[
\frac{1}{c_{\rho_1 \rho_1}} \langle E_{\rho_1}, E_{\rho_1} \rangle = F(a_1, a_2, a_3, a_4) G(a_1, a_2, a_3, a_4)
\]

in which the factor \(G(a_1, a_2, a_3, a_4) \) is invariant under the permutation of \(a_1, a_2, a_3, a_4 \). In view of (4.19) the limit of \(F(a_1, a_2, a_3, a_4) \) is readily observed to be

\[
\lim_{r \to \infty} F(a_1, a_2, a_3, a_4) = (ab)^{-n_1} q^{\frac{n_1(n_1-1)}{2} - 2n_1(t^2) - n_0n_1 - \frac{n_1(n_1-1)}{2}}, \tag{6.1}
\]

in Case I and

\[
\lim_{r \to \infty} \epsilon_{\rho}^n F(a_1, a_2, a_3 a_4) = q^{\frac{n_1(n_1+1)}{2} + n(t^2) n_1(n-1) + \frac{n_0(n_0-1)}{2}} \tag{6.2}
\]

in Case II. The limit of \(G(a_1, a_2, a_3, a_4) \) is given by the following proposition.
Proposition 6.1. We have

\[
\lim_{r \to \infty} (-e_r^{-1} q, -e_r^{-1} a q)^n \epsilon_r^{n(n-1)k+1} G(a_1, a_2, a_3, a_4) = q^B \frac{(q^2)^n}{(q)_n} \prod_{i=1}^{n} (q^{2i})_\infty \prod_{i=1}^{n} (1-\epsilon r^i t^2(n_0+i-1))_\infty \prod_{i=1}^{n} \frac{(abq^2t^2(n_0+i-2))_\infty}{(aq^2t^2(n_0+i-1), bq^2t^2(n_0+i-1))_\infty} \\
\times \prod_{i=1}^{n}(abq^{i+2}t^2(n_0+i-2), aq^{i+1}t^2(n_0+i-1), bq^{i+1}t^2(n_0+i-1))_\infty
\]

where

\[
B = \frac{n_1(n_1+1)(n_1+2)}{3} + \frac{n_1(n_1+1)}{2} \alpha + \left(\left(\begin{array}{c} n \\ 2 \end{array}\right) - n_1(n_1-1) + \frac{n_1(n_1+1)(3n-n_1-2)}{3}\right)k
\]

+ \left(\frac{n(n-1)(2n-1)}{6}\right)k^2.

Proof. Since \(G(a_1, a_2, a_3, a_4)\) is invariant under the permutation of \(a_1, a_2, a_3, a_4\), we may assume \((a_1, a_2, a_3, a_4) = (e^{-1} q^\frac{1}{2}, -aq^\frac{1}{2}, ebq^\frac{1}{2}, -q^\frac{1}{2})\). In (4.20) note first that

\[
\prod_{i=1}^{n}(a_r a_s t^{2(i-1)})_\infty \prod_{i=1}^{n} (a_r a_s q t^{2(n_0+i-1)})_\infty = \prod_{i=1}^{n}(a_r a_s t^{2(n_0+i-1)})_i.
\]

In view of \(a_1 a_2 = -e_r^{-1} a q, a_1 a_4 = -e_r^{-1} q, \) one has

\[
\lim_{r \to \infty} \epsilon_r^{n(n_1+1)k} \prod_{i=1}^{n_1} (a_1 a_2 t^{2(n_0+i-1)})_i (a_1 a_4 t^{2(n_0+i-1)})_i = \frac{n_1(n_1+1)}{2} q \frac{n_1(n_1+1)(n_1+2)}{3} (t^2)^{n_1(n_1+1)(3n-n_1-2)} \frac{1}{t^{n_1(n_1+1)(3n-n_1-2)}} \\
\lim_{r \to \infty} \epsilon_r^{n(n-1)k} (-e_r^{-1} q, -e_r^{-1} a q)^n \prod_{i=1}^{n} (a_1 a_2 t^{2(i-1)}, a_1 a_4 t^{2(i-1)})_\infty = a^{(n)k} q^{\frac{n(n-1)(2n-1)}{6} k^2 + \binom{n}{2} k},
\]

from which the expression for \(B\) follows. The limit of the other factors of \(G(a_1, a_2, a_3, a_4)\) is readily observed and one obtains the first equality of (6.3). Rewriting this in terms of \(\Gamma_q\) is also straightforward. Note that the factor \(\frac{1-q^{k+1}}{1-q^{k+i+1}}\) comes from the shift of \(\Gamma_q(1+k)\) to \(\Gamma_q(2+k)\):

\[
\frac{1}{\Gamma_q(1+k)} \frac{1-q^{k+1}}{1-q^{k+i+1}} = \frac{1}{\Gamma_q(2+k)} [i(k+1)]_q, \quad i = 1, \ldots, n_1.
\]

Combining the limit formulas (6.1), (6.2) and (6.3), we arrive at
Theorem 6.2. We have

Case I:

\[
\lim_{r \to \infty} \left(-\epsilon_r^{-1} q, -\epsilon_r^{-1} aq \right)^n \epsilon_r^{n(n-1)k+n_1(n+1)} \frac{1}{c_{\rho_1 \rho_1}} \langle E_{\rho_1}, E_{\rho_1} \rangle = \frac{q^{BJ}}{(1-q)^{n(q)^2\infty}} \prod_{i=1}^{n_1} \frac{1-q^{ik}}{1-q^{k+1}} \prod_{i=1}^{n_0} \frac{\Gamma_q(1+ik) \Gamma_q(\alpha+1+(i-1)k) \Gamma_q(\beta+1+(i-1)k)}{\Gamma_q(1+k) \Gamma_q(\alpha+\beta+2+(n_0+i-2)k)} \Gamma_q(\alpha+i+1+(n_0+i-1)k) \\
\times \Gamma_q(\alpha+i+2+(2n_0+i-2k))^{-1},
\]

Case II:

\[
\lim_{r \to \infty} \left(-\epsilon_r^{-1} q, -\epsilon_r^{-1} aq \right)^n \epsilon_r^{n(n-1)k+n_1(n+1)+n} \frac{1}{c_{\rho_1 \rho_1}} \langle E_{\rho_1}, E_{\rho_1} \rangle = \frac{q^{BJ}}{(1-q)^{n(q)^2\infty}} \prod_{i=1}^{n_1} \frac{1-q^{ik}}{1-q^{k+1}} \prod_{i=1}^{n_0} \frac{\Gamma_q(1+ik) \Gamma_q(\alpha+1+(i-1)k) \Gamma_q(\beta+1+(i-1)k)}{\Gamma_q(1+k) \Gamma_q(\alpha+\beta+2+(n_0+i-2)k)} \Gamma_q(\alpha+i+1+(n_0+i-1)k) \\
\times \Gamma_q(\alpha+i+2+(2n_0+i-2k))^{-1},
\]

where

\[
B_I = B - \frac{n_1(n_1+3)}{2} - (\alpha+\beta)n_1 - \left(n_0n_1 + \frac{n_1(n_1-1)}{2} \right) k, \\
B_{II} = B + \frac{n_1(n_1+1)}{2} + n + \left(n_1(n-1) + \frac{n_0(n_0-1)}{2} \right) k.
\]

Remark 6.3. In Sections 5 and 6 we have taken the scaling limit of the quadratic norm formula of specific Koornwinder polynomial to obtain q-integral formula. As stated in introduction, this would be considered as a specific but nonsymmetric case of Stokman’s procedure [30], in which he, in particular, deduced the quadratic norm formulas of the little and big q-Jacobi polynomials from that of symmetric Koornwinder polynomials. Hence it would be desirable to consider the scaling limit of the full nonsymmetric Koornwinder polynomials, which, in particular, should give nonsymmetric little q-Jacobi polynomials and its quadratic norm formula (see [30, 33] for the symmetric case). Moreover partial antisymmetrization of some specific polynomial of this type might lead to the evaluation of the integral (7.6) in Theorem 7.4 below. Studies on the scaling
We rewrite the infinite series given in Theorem 5.4 in terms of a nonsymmetric Macdonald polynomials. (see also [5]) particular cases of Theorem 7.4 were affirmed using partial antisymmetrization of nonsymmetric Koornwinder polynomials are left for future work. We note that in [7] let

We have Proposition 7.2.

We shall use the following lemma on antisymmetric functions. This is a special case of Kadell's formula [17, formula (4.7)], and has been appeared also in [13, p. 1479], [35, Lemma 3.1] and [7, Lemma 9]. We write \([n]_q! = [1]_q \cdot \ldots \cdot [n]_q\).

Lemma 7.1. Let \(n = n_0 + n_1\) with \(n_1 \geq 2\) and \(f(t_1, \ldots, t_n)\) be antisymmetric with respect to the variables \(t_{n_0+1}, \ldots, t_n\). Then

\[
\int_{[0,1]^n} \prod_{n_0+1 \leq i < j \leq n} (t_i - Q_{ij}) f(t_1, \ldots, t_n) \, d_q t_1 \cdots d_q t_n = \frac{[n]_q!}{n_1!} \int_{[0,1]^n} \prod_{n_0+1 \leq i < j \leq n} (t_i - t_j) f(t_1, \ldots, t_n) \, d_q t_1 \cdots d_q t_n.
\]

This lemma implies

\[
\int_{[0,1]^n} \prod_{n_0+1 \leq i < j \leq n} (t_i - Q_{ij}) f(t_1, \ldots, t_n) \, d_q t_1 \cdots d_q t_n = \frac{[n]_q!}{[n]_q^2} \int_{[0,1]^n} \prod_{n_0+1 \leq i < j \leq n} (t_i - Q_{ij}) f(t_1, \ldots, t_n) \, d_q t_1 \cdots d_q t_n.
\]

(7.1)

Proposition 7.2. We have:

Case I:

\[
\sum_{s_1, \ldots, s_n=0}^{\infty} \prod_{i=1}^{n} a_i q^{(n-1)k+1} s_i \left(\frac{q^{s_i+1}}{b q^{s_i+1}}\right) \prod_{1 \leq i < j \leq n} \left(q^{s_i-s_j}, q^{s_i+s_j+1}\right) \times \prod_{i=n_0+1}^{n} q^{s_i} (1 - b q^{s_i+1}) \prod_{n_0+1 \leq i < j \leq n} (t_i - q^{-k} t_j) (t_i - q^{-1} t_j)
\]

\[
\times \prod_{i=1}^{n} \prod_{i=n_0+1}^{n} t_i (1 - q^{s_i+1} t_i) \prod_{n_0+1 \leq i < j \leq n} (t_i - q^{-1} t_j) (t_i - q^{-k} t_j)
\]

\[
\times \prod_{i=1}^{n} \prod_{i=n_0+1}^{n} \left(\frac{q t_i}{q^{s_i+1} t_i}\right) \prod_{1 \leq i < j \leq n} \left(q^{-1} t_i - q^{-1} t_j\right) 2k \, d_q t_1 \cdots d_q t_n,
\]

Case II:

\[
\sum_{s_1, \ldots, s_n=0}^{\infty} \prod_{i=1}^{n} a_i q^{(n-1)k+1} s_i \left(\frac{q^{s_i+1}}{b q^{s_i+1}}\right) \prod_{1 \leq i < j \leq n} \left(q^{s_i-s_j}, q^{s_i+s_j+1}\right) \times \prod_{i=n_0+1}^{n} q^{s_i} (1 - q^{s_i}) \prod_{n_0+1 \leq i < j \leq n} (t_i q^{s_i+1} - q^{s_i}) (q^{s_i} - q^{s_j}),
\]
Let Theorem 7.3. Selberg integral.

\[\frac{1 - q^{ik}}{1 - q^k} \frac{1 - q^{k+1}}{1 - q^{i(k+1)}} \prod_{i=1}^{n_1} (1 - q^{i(k+1)}) \]

\[\times \int_{[0,1]^n} \prod_{i=n_0+1}^{n} t_i (1 - t_i) \prod_{n_0+1 \leq i < j \leq n} (t_i - q^{-k-1} t_j) (t_i - q^k t_j) \]

\[\times \prod_{i=1}^{n} t_i^\alpha \frac{(qt_i)_\infty}{(q^\beta t_i)_\infty} \prod_{1 \leq i < j \leq n} t_i^{2k} \left(\frac{q - t_j}{t_i} \right)^{2k} d_q t_1 \cdots d_q t_n. \]

Proof. These are rewrites in which use is made of (7.1). For Case I, we use (7.1) with \(Q_1 = q^k, Q_2 = q^{k+1} \) and for Case II, \(Q_1 = q^{-k}, Q_2 = q^{-k-1} \). ■

Combining Theorems 5.4 and 6.2 and Proposition 7.2, we arrive at a generalization of the \(q \)-Selberg integral.

Theorem 7.3. Let \(n = n_0 + n_1 \) with \(n_1 \geq 2 \). For \(\text{Re } \alpha > 0, \text{Re } \beta > 0, k \in \mathbb{Z}_{\geq 0} \), we have

\[\int_{[0,1]^n} \prod_{i=n_0+1}^{n} t_i (1 - q^\beta t_i) \prod_{n_0+1 \leq i < j \leq n} (t_i - q^{-k-1} t_j) (t_i - q^k t_j) \]

\[\times \prod_{i=1}^{n} t_i^{\alpha-1} \frac{(qt_i)_\infty}{(q^\beta t_i)_\infty} \prod_{1 \leq i < j \leq n} t_i^{2k} \left(\frac{q - t_j}{t_i} \right)^{2k} d_q t_1 \cdots d_q t_n \]

\[= q^{C_1} \prod_{i=1}^{n_0} \Gamma_q(1 + ik) \Gamma_q(\alpha + (i - 1) k) \Gamma_q(\beta + (i - 1) k) \]

\[\times \prod_{j=1}^{n_1} \Gamma_q(2 + k) \prod_{j=1}^{n_1} \Gamma_q(\alpha + j + (n_0 + j - 1) k) \]

\[\times \prod_{j=1}^{n_1} \left\{ \Gamma_q(\alpha + \beta + j + (2n_0 + j - 2) k) \right\}^{-1}, \quad (7.2) \]

where

\[C_1 = \frac{n_1(n_1-1)(2n_1-1)}{6} + \left(\frac{n_1}{2} \right) \alpha + \left(\frac{n_0 n_1}{2} + \frac{n_1(n_1-1)(4n_1-5)}{6} \right) k \]

\[+ \left(\frac{n}{2} \right) \alpha k + 2 \left(\frac{n}{3} \right) k^2, \quad (7.3) \]

and

\[\int_{[0,1]^n} \prod_{i=n_0+1}^{n} t_i (1 - t_i) \prod_{n_0+1 \leq i < j \leq n} (t_i - q^{-k-1} t_j) (t_i - q^k t_j) \]

\[\times \prod_{i=1}^{n} t_i^{\alpha-1} \frac{(qt_i)_\infty}{(q^\beta t_i)_\infty} \prod_{1 \leq i < j \leq n} t_i^{2k} \left(\frac{q - t_j}{t_i} \right)^{2k} d_q t_1 \cdots d_q t_n \]

\[= q^{C_1} \prod_{i=1}^{n_0} \Gamma_q(1 + ik) \Gamma_q(\alpha + (i - 1) k) \Gamma_q(\beta + (i - 1) k) \]

\[\times \prod_{j=1}^{n_1} \Gamma_q(2 + k) \prod_{j=1}^{n_1} \Gamma_q(\alpha + j + (n_0 + j - 1) k) \]
Let us write
\[x > b \]
where
\[\frac{1}{2} \leq C_{II} = \frac{n_1(n_1^2 + 2)}{3} + \frac{n_1(n_1 + 1)}{2} \alpha + \left(\frac{n_1(n_1 + 1)(3n - n_1 - 2)}{3} - \left(\frac{n_1}{2} \right) - \left(\frac{n}{2} \right) \right) k \]
\[+ \left(\frac{n}{2} \right) \alpha k + 2 \left(\frac{n}{3} \right) k^2. \]

(7.5)

Proof. Let us write \(C_I, C_{II} \) in (7.3) and (7.5) as \(C_I(\alpha), C_{II}(\alpha) \) respectively. Then, in view of Theorems 5.4 and 6.2 and Proposition 7.2, it only remains to check that
\[A_I^{-1} \left(\frac{q^{B_I}}{(1 - q)^n(q)_{2n}} \right) \left(\frac{-1}{(1 - q)^n} \right) = q^{C_I(\alpha + 1)}, \]
\[A_{II}^{-1} \left(\frac{q^{B_{II}}}{(1 - q)^n(q)_{2n}} \right) \left(\frac{-1}{(1 - q)^n} \right) = q^{C_{II}(\alpha + 1)}. \]
This completes the proof of Theorem 7.3.

As stated in the introduction, our studies stem from the Baker–Forrester constant term (ex-) conjecture (1.2). We rewrite the conjecture in the form of an integral evaluation. Note first that for a general Laurent polynomial \(f(t_1, \ldots, t_n) \) there holds [6, Proposition 4.1]:
\[\binom{\Gamma_q(x + y)}{\Gamma_q(x)\Gamma_q(y)} \frac{1}{n!} \prod_{i=1}^{n} t_{i}^{x-1} \frac{(qt_i)_{\infty}}{(q^y t_i)_{\infty}} f(t_1, \ldots, t_n) d_q t_1 \cdots d_q t_n \]
\[= \left(\frac{(q)_{a}(q)_{b}}{(q)_{a+b}} \right) \frac{1}{n} CT_{\{t\}} \prod_{i=1}^{n} \frac{t_i}{(t_i)_a} f(q^{-(b+1)} t_1, \ldots, q^{-(b+1)} t_n) \]
provided \(x = -b \) and \(y = a + b + 1 \). Then put
\[f = f_{n_0, n} = \prod_{n_0+1 \leq i < j \leq n} \left(1 - q^{x} t_i \right) \left(1 - q^{x} t_j \right) \prod_{1 \leq i < j \leq n} \left(q^{t_j} t_i \right)^{k} \left(\frac{t_i}{t_j} \right)^{k}. \]
In view of the constant term identity (1.2), this gives
\[\binom{\Gamma_q(x + y)}{\Gamma_q(x)\Gamma_q(y)} \frac{1}{n!} \prod_{i=1}^{n} t_{i}^{x-1} \frac{(qt_i)_{\infty}}{(q^y t_i)_{\infty}} f_{n_0, n}(t_1, \ldots, t_n) d_q t_1 \cdots d_q t_n \]
\[= \left(\frac{(q)_{a}(q)_{b}}{(q)_{a+b}} \right) \left(\text{RHS of (1.2)} \right), \]
where \(b = -x \) and \(a = x + y - 1 \). One can rewrite this, after some calculations (cf. [19]), to get the reformulation of the results of Baker–Forrester and Károlyi et al.:

Theorem 7.4 (Baker–Forrester [6], Károlyi et al. [20]). Let \(n = n_0 + n_1 \) with \(n_1 \geq 2 \). For \(\Re x > 0, \Re y > 0, \), we have
\[\int_{[0,1]^n} \prod_{i=1}^{n_0} t_{i}^{x_1-1} \prod_{n_0+1 \leq i < j \leq n} (t_i - q^{-k} t_j) (t_i - q^{k+1} t_j) \prod_{i=1}^{n} t_{i}^{x-1} \frac{(qt_i)_{\infty}}{(q^y t_i)_{\infty}} \]
For Corollary 7.6. From Theorems 7.3 and 7.4 one obtains

$$\int_{[0,1]^n} \prod_{i=\alpha+1}^{n} \frac{t_i}{t_i} \prod_{i=\alpha+1}^{n} (t_i - t_j)^2 D_{\alpha,\beta,\gamma}(t) \, dt_1 \cdots dt_n \]

where

$$D = 2\left(\frac{n_1}{3} + \frac{n_1 - 1}{2} \left(n - 1 \right) \frac{n_1(n_1 - 5)}{3} \right) k + \frac{n}{2} x k + \frac{1}{2} \left(\frac{n(n-1)(2n-3)}{2} - n_0(n_1(n-1) - n_0(n_0 - 1)(2n_0 - 1) + n_1(n_1 - 1)(2n_1 - 1)) \right) k^2.$$

Remark 7.5.

1. As the integrand of (7.6) suggests, it might be possible to prove Theorem 7.4 in a similar way to the proof of Theorem 7.3, if one finds some specific Koornwinder polynomial whose partial antisymmetrization is the discriminant like $\prod_{n_0+1 \leq i < j \leq n}(1 - q^{-k} t_j/t_i)$.

2. In [19], we proved that the evaluation of the integral of (7.6) follows from a conjecture for the expansion of certain symmetric polynomial related to the integrand of (7.6) in terms of Macdonald polynomials. This conjecture, i.e., certain terms do not appear in the expansion, was checked for small values of n_0 and n_1. A similar problem, namely the expansion of the square of the difference product in terms of Schur or Jack polynomials or of other orthogonal polynomials has been investigated rather extensively, see [8, 9] and references therein.

Next we consider the $q = 1$ case. Let us write

$$D_{\alpha,\beta,\gamma}(t) = \prod_{i=1}^{n} t_i^{\alpha-1}(1-t_i)^{\beta-1} \prod_{1 \leq i < j \leq n} |t_i - t_j|^{2\gamma}.$$

From Theorems 7.3 and 7.4 one obtains

Corollary 7.6. For Re $\alpha > 0$, Re $\beta > 0$, Re $\gamma \geq 0$, we have

$$\int_{[0,1]^n} \prod_{i=\alpha+1}^{n} \frac{t_i}{t_i} \prod_{i=\alpha+1}^{n} (t_i - t_j)^2 D_{\alpha,\beta,\gamma}(t) \, dt_1 \cdots dt_n \]

$$= \prod_{j=1}^{n_1} \prod_{j=1}^{n_1} \Gamma(\alpha + j + (n_0 + j - 1)\gamma) \Gamma(\beta + j + (n_0 + j - 1)\gamma) \prod_{j=1}^{n_1} \frac{1 + \gamma j \Gamma(j + (n_0 + j)\gamma)}{\Gamma(2 + \gamma)} \]

$$\times \prod_{j=1}^{n_1} \left\{ \Gamma(\alpha + \beta + j + (2n_0 + j - 2)\gamma) \right\}^{-1}. \quad (7.7)$$
Corollary 7.9. Recall 7.8. (7.8) leads to the same formula by the same way.

Proof. The case that \(\gamma \) is a nonnegative integer follows from Theorems 7.3 and 7.4 by taking the limit \(q \to 1 \). For complex \(\gamma \) with \(\text{Re} \, \gamma \geq 0 \), one can apply a weak form of Carlson’s theorem: Suppose \(f(z) \) be bounded and holomorphic in \(\text{Re} \, z \geq 0 \) and \(f(z) = 0 \) for \(z \in \mathbb{Z}_{\geq 0} \). Then \(f(z) = 0 \) identically. For fixed \(\alpha \) and \(\beta \), the integrals on the left sides of (7.7) and (7.8) are clearly bounded and holomorphic in \(\text{Re} \, \gamma \geq 0 \). The products on the right side can be verified to be bounded in \(\text{Re} \, \gamma \geq 0 \) by Sirling’s formula.

As a limit case of these formulæ, we obtain a generalization of Mehta integral [10, 25]. Let \(d\mu \) be the standard Gaussian measure on \(\mathbb{R}^n \):

\[
d\mu = (2\pi)^{-n/2} \prod_{i=1}^{n} e^{-x_i^2/2} dx_1 \cdots dx_n.
\]

Then

Corollary 7.7. For \(\text{Re} \, \gamma \geq 0 \), we have

\[
\int_{\mathbb{R}^n} \prod_{n_0+1 \leq i < j \leq n} (x_i - x_j)^2 \prod_{1 \leq i < j \leq n} |x_i - x_j|^{2\gamma} d\mu = \prod_{i=1}^{n_0} \frac{\Gamma(1 + i\gamma) \prod_{j=1}^{n_1} j(1 + \gamma) \Gamma(j + (n_0 + j)\gamma)}{\Gamma(1 + \gamma) \Gamma(2 + \gamma)}.
\]

Proof. In (7.7), put \(\alpha = \beta, t_i = (1 + x_i/\sqrt{2\alpha})/2 \) and let \(\alpha \to \infty \), and apply Stirling’s formula.

Remark 7.8. (7.8) leads to the same formula by the same way.

We have also

Corollary 7.9. For \(\text{Re} \, \alpha > 0, \text{Re} \, \gamma \geq 0 \), we have

\[
\int_{\mathbb{R}_{\geq 0}^n} \prod_{j=n_0+1}^{n} x_j \prod_{n_0+1 \leq i < j \leq n} (x_i - x_j)^2 \prod_{1 \leq i < j \leq n} |x_i - x_j|^{2\gamma} \prod_{i=1}^{n} x_i^{\alpha-1} e^{-x_i} dx
\]

\[
= \prod_{i=1}^{n_0} \frac{\Gamma(1 + i\gamma) \Gamma(\alpha + (i - 1)\gamma)}{\Gamma(1 + \gamma)} \prod_{j=1}^{n_1} j(1 + \gamma) \Gamma(j + (n_0 + j)\gamma) \frac{\Gamma(\alpha + j + (n_0 + j - 1)\gamma)}{\Gamma(2 + \gamma)},
\]

\[
\int_{\mathbb{R}_{\geq 0}^n} \prod_{n_0+1 \leq i < j \leq n} (x_i - x_j)^2 \prod_{1 \leq i < j \leq n} |x_i - x_j|^{2\gamma} \prod_{i=1}^{n} x_i^{\alpha-1} e^{-x_i} dx
\]

\[
= \prod_{i=1}^{n_0} \frac{\Gamma(1 + i\gamma) \Gamma(\alpha + (i - 1)\gamma)}{\Gamma(1 + \gamma)}
\]
Proposition 7.10. For \(\alpha\) and \(\gamma\) by \(\Gamma_{1}\) so that by a change of variables one has

\[
\Delta \quad \text{we have}
\]

The proof is almost the same as the one given in [4] which we briefly reprise. Put

Proof.

For \(\alpha\), put

Proof.

Then by the change of the variables

Multiplying both sides by \(\lambda^{\beta+n\alpha+n_1^2+n(n-1)\gamma-1}e^{-\lambda}\) and integrating over \([0, \infty)\) give

Then by the change of the variables

we have

\[
\int_{\Delta} \prod_{j=n_0+1}^{n} \prod_{i=1}^{n} x_j \prod_{n_0+1 \leq i < j \leq n} (x_i - x_j)^2 \prod_{1 \leq i \leq j \leq n} |x_i - x_j|^{2\gamma} dx
\]

\[
= \frac{\Gamma(\beta)}{\Gamma(\beta + n\alpha + n_1^2 + n(n-1)\gamma)} L(1).
\]

These formulas give, as in [4] (cf. [1, Theorem 8.3.3]), integral formulas on the \(n\)-simplex. Let \(\Delta_n = \{(x_1, \ldots, x_n) \mid x_i \geq 0, i = 1, \ldots, n, x_1 + \cdots + x_n \leq 1\}\). We denote the right-hand sides of (7.10) and (7.11) by \(\Gamma_1, \Gamma_2\) respectively. Then

Proposition 7.10. For \(\Re \alpha > 0, \Re \gamma \geq 0\), we have

\[
\int_{\Delta_n} \prod_{j=n_0+1}^{n} \prod_{i=1}^{n} x_j \prod_{n_0+1 \leq i < j \leq n} (x_i - x_j)^2 \prod_{1 \leq i \leq j \leq n} |x_i - x_j|^{2\gamma} dx
\]

\[
= \frac{\Gamma(\beta)}{\Gamma(\beta + n\alpha + n_1^2 + n(n-1)\gamma)} \Gamma_1,
\]

\[
\int_{\Delta_n} \prod_{i=1}^{n} x_i^{\alpha-1} \left(1 - \sum_{i=1}^{n} x_i\right)^{\beta-1} \prod_{n_0+1 \leq i < j \leq n} (x_i - x_j)^2 \prod_{1 \leq i \leq j \leq n} |x_i - x_j|^{2\gamma} dx
\]

\[
= \frac{\Gamma(\beta)}{\Gamma(\beta + n\alpha + n_1^2 + n(n-1)\gamma)} \Gamma_2.
\]

Proof. The proof is almost the same as the one given in [4] which we briefly reprise. Put

\[
L(\lambda) = \int_{\mathbb{R}^n_{\geq 0}} \prod_{j=n_0+1}^{n} x_j \prod_{n_0+1 \leq i < j \leq n} (x_i - x_j)^2 \prod_{1 \leq i \leq j \leq n} |x_i - x_j|^{2\gamma} dx \sum_{i=1}^{n} x_i^{\alpha-1} e^{-\lambda x_i} dx,
\]

so that by a change of variables one has

\[
L(\lambda) = \lambda^{-(na+n_1^2+n(n-1)\gamma)} L(1).
\]

Multiplying both sides by \(\lambda^{\beta+n\alpha+n_1^2+n(n-1)\gamma-1}e^{-\lambda}\) and integrating over \([0, \infty)\) give

\[
\prod_{j=n_0+1}^{n} x_j \prod_{n_0+1 \leq i < j \leq n} (x_i - x_j)^2 \prod_{1 \leq i \leq j \leq n} |x_i - x_j|^{2\gamma} \prod_{i=1}^{n} x_i^{\alpha-1} dx
\]

\[
= \frac{\Gamma(\beta)}{\Gamma(\beta + n\alpha + n_1^2 + n(n-1)\gamma)} L(1).
\]

Then by the change of the variables

\[
x_i = t_i \left(1 - \sum_{i=1}^{n} t_i\right)^{-1}
\]

we have

\[
\int_{\Delta_n} \prod_{j=n_0+1}^{n} t_j \prod_{i=1}^{n} t_i^{\alpha-1} \left(1 - \sum_{i=1}^{n} t_i\right)^{\beta+n} \prod_{n_0+1 \leq i < j \leq n} (t_i - t_j)^2 \prod_{1 \leq i \leq j \leq n} |t_i - t_j|^{2\gamma} dx
\]

\[
= \frac{\Gamma(\beta)}{\Gamma(\beta + n\alpha + n_1^2 + n(n-1)\gamma)} L(1),
\]
where \(J \) is the Jacobian. One can readily verify that

\[
J = \left(1 - \sum_{i=1}^{n} t_i \right)^{-n-1}.
\]

This completes the proof of (7.12). The case (7.13) is similar. ■

By setting \(x_i = y_i^2/2 \) in (7.10) and (7.11) one also gets

\[
\int_{\mathbb{R}^n_{n_0+1}} \prod_{i=n_0+1}^{n} \prod_{n_0+1 \leq i < j \leq n} (x_i^2 - x_j^2) \prod_{1 \leq i < j \leq n} |x_i|^{2a_1-1}e^{x_i^2/2} \, dx = 2^{n_1+n_0+n(n-1)} \Gamma_1,
\]

\[
\int_{\mathbb{R}^n_{n_0+1}} \prod_{n_0+1 \leq i < j \leq n} (x_i^2 - x_j^2) \prod_{1 \leq i < j \leq n} |x_i|^{2a_1-1}e^{x_i^2/2} \, dx = 2^{n_1(n-1)+n_0+n(n-1)} \Gamma_2.
\]

By setting \(\alpha = c + 1/2 \) and applying the duplication formula for the gamma function, we obtain

Corollary 7.11. For \(\text{Re } c > -1/2, \text{ Re } \gamma \geq 0 \), we have

\[
\int_{\mathbb{R}^n_{n_0+1}} \prod_{i=n_0+1}^{n} \prod_{n_0+1 \leq i < j \leq n} (x_i^2 - x_j^2) \prod_{1 \leq i < j \leq n} |x_i|^{2c} \prod_{1 \leq i < j \leq n} |x_i^2 - x_j^2|^{2\gamma} \, d\mu = 2^{-n_1-cn} \prod_{i=1}^{n_0} \frac{\Gamma(1 + i\gamma)\Gamma(1 + 2c + 2(i - 1)\gamma)}{\Gamma(1 + \gamma)\Gamma(1 + c + (i - 1)\gamma)}
\]

\[
\times \prod_{j=1}^{n_1} j(1 + \gamma)\Gamma(j + (n_0 + j)\gamma)\Gamma(1 + 2c + 2(j - 1) + 2(n_0 + j - 1)\gamma),
\]

\[
(7.14)
\]

\[
\int_{\mathbb{R}^n_{n_0+1}} \prod_{n_0+1 \leq i < j \leq n} (x_i^2 - x_j^2) \prod_{1 \leq i < j \leq n} |x_i|^{2c} \prod_{1 \leq i < j \leq n} |x_i^2 - x_j^2|^{2\gamma} \, d\mu = 2^{-cn} \prod_{i=1}^{n_0} \frac{\Gamma(1 + i\gamma)\Gamma(1 + 2c + 2(i - 1)\gamma)}{\Gamma(1 + \gamma)\Gamma(1 + c + (i - 1)\gamma)}
\]

\[
\times \prod_{j=1}^{n_1} j(1 + \gamma)\Gamma(j + (n_0 + j)\gamma)\Gamma(1 + 2c + 2(j - 1) + 2(n_0 + j - 1)\gamma).
\]

\[
(7.15)
\]

Finally we note that the formulae (7.9), (7.14) and (7.15) could be recast in terms of degrees of finite reflection groups of classical type. Let \(G \) be a finite reflection groups of type \(A_{n-1}, B_n \) or \(D_n \) and \(G_1 \) a parabolic subgroup of \(G \) of the same type \(A_{n-1}, B_n \) or \(D_n \). Let \(P(x) \) the product of all the normalized defining polynomials of reflecting hyperplanes:

\[
P(x) = \prod_{i=1}^{N} (a_{i1}x_1 + \cdots + a_{in}x_n), \quad \sum_{j=1}^{n} a_{ij}^2 = 2,
\]

where \(N \) is the number of reflecting hyperplanes of \(G \). The polynomial \(P_1(x) \) is defined for the subgroup \(G_1 \) similarly. Let \(d_1, d_2, \ldots, d_n \) be the degrees of basic invariants of \(G \), i.e., \(d_i = i \) and \(d_i = 2i, i = 1, \ldots, n \) for \(A_{n-1} \) and \(B_n \) respectively, and \(d_i = 2i, i = 1, \ldots, n-1, d_n = n \) for \(D_n \) and \(d_1^{(1)}, d_2^{(1)}, \ldots, d_n^{(1)} \) be the degrees for \(G_1 \). Then we obtain

Proposition 7.12. For \(\text{Re } \gamma \geq 0 \), we have

\[
\int_{\mathbb{R}^n} P_1(x)^2 |P(x)|^{2\gamma} \, d\mu = \prod_{i=1}^{n_0} \frac{\Gamma(1 + d_i\gamma)}{\Gamma(1 + \gamma)} \prod_{j=1}^{n_1} j(1 + \gamma) \frac{\Gamma(1 + d_j^{(1)} + d_{n_0+j}\gamma)}{\Gamma(2 + \gamma)}.
\]
Proof. The \((A_{n-1}, A_{n-1})\) case is immediate from (7.9). The cases \((B_n, B_{n_1})\) and \((D_n, D_{n_1})\) follow from (7.14) and (7.15) by setting \(c = \gamma\) and \(c = 0\) respectively. ■

Remark 7.13. It would be interesting to see if Proposition 7.12 holds for other pairs of finite reflection groups and their parabolic subgroups. At present we have no results in this direction.

Acknowledgements

The author is very grateful to the referees and the editor for many valuable comments and suggestions.

References

[1] Andrews G.E., Askey R., Roy R., Special functions, *Encyclopedia of Mathematics and its Applications*, Vol. 71, Cambridge University Press, Cambridge, 1999.

[2] Aomoto K., On elliptic product formulas for Jackson integrals associated with reduced root systems, *J. Algebraic Combin.* 8 (1998), 115–126.

[3] Askey R., Some basic hypergeometric extensions of integrals of Selberg and Andrews, *SIAM J. Math. Anal.* 11 (1980), 938–951.

[4] Askey R., Richards D., Selberg’s second beta integral and an integral of Mehta, in Probability, Statistics, and Mathematics, Academic Press, Boston, MA, 1989, 27–39.

[5] Baker T.H., Dunkl C.F., Forrester P.J., Polynomial eigenfunctions of the Calogero–Sutherland–Moser models with exchange terms, in Calogero–Sutherland Models (Montréal, QC, 1997), *CRM Ser. Math. Phys.*, Springer, New York, 2000, 37–51.

[6] Baker T.H., Forrester P.J., Generalizations of the \(q\)-Morris constant term identity, *J. Combin. Theory Ser. A* 81 (1998), 69–87.

[7] Baratta W., Some properties of Macdonald polynomials with prescribed symmetry, *Kyushu J. Math.* 64 (2010), 323–343, arXiv:1001.3134.

[8] Belbachir H., Boussicault A., Luque J.G., Hankel hyperdeterminants, rectangular Jack polynomials and even powers of the Vandermonde, *J. Algebra* 320 (2008), 3911–3925, arXiv:0709.3021.

[9] Di Francesco P., Gaudin M., Itzykson C., Lesage F., Laughlin’s wave functions, Coulomb gases and expansions of the discriminant, *Internat. J. Modern Phys. A* 9 (1994), 4257–4351, arXiv:hep-th/9401163.

[10] Forrester P.J., Warnaar S.O., The importance of the Selberg integral, *Bull. Amer. Math. Soc. (N.S.)* 45 (2008), 489–534, arXiv:0710.3981.

[11] Gessel I.M., Lv L., Xin G., Zhou Y., A unified elementary approach to the Dyson, Morris, Aomoto, and Forrester constant term identities, *J. Combin. Theory Ser. A* 115 (2008), 1417–1435, arXiv:0701066.

[12] Gustafson R.A., A generalization of Selberg’s beta integral, *Bull. Amer. Math. Soc. (N.S.)* 22 (1990), 97–105.

[13] Habsieger L., Une \(q\)-intégrale de Selberg et Askey, *SIAM J. Math. Anal.* 19 (1988), 1475–1489.

[14] Hamada S., Proof of Baker–Forrester’s constant term conjecture for the cases \(N_1 = 2, 3\), *Kyushu J. Math.* 56 (2002), 243–266.

[15] Humphreys J.E., Reflection groups and Coxeter groups, *Cambridge Studies in Advanced Mathematics*, Vol. 29, Cambridge University Press, Cambridge, 1990.

[16] Ito M., Forrester P.J., A bilateral extension of the \(q\)-Selberg integral, *Trans. Amer. Math. Soc.* 369 (2017), 2843–2878, arXiv:1309.0001.

[17] Kadell K.W.J., A proof of Askey’s conjectured \(q\)-analogue of Selberg’s integral and a conjecture of Morris, *SIAM J. Math. Anal.* 19 (1988), 969–986.

[18] Kaneko J., \(q\)-Selberg integrals and Macdonald polynomials, *Ann. Sci. École Norm. Sup. (4)* 29 (1996), 583–637.

[19] Kaneko J., On Baker–Forrester’s constant term conjecture, *J. Ramanujan Math. Soc.* 18 (2003), 349–367.

[20] Károlyi G., Nagy Z.L., Petrov F.V., Volkov V., A new approach to constant term identities and Selberg-type integrals, *Adv. Math.* 277 (2015), 252–282, arXiv:1312.6369.
[21] Koornwinder T.H., Askey–Wilson polynomials for root systems of type BC, in Hypergeometric Functions on Domains of Positivity, Jack Polynomials, and Applications (Tampa, FL, 1991), Contemp. Math., Vol. 138, Amer. Math. Soc., Providence, RI, 1992, 189–204.

[22] Lusztig G., Affine Hecke algebras and their graded version, J. Amer. Math. Soc. 2 (1989), 599–635.

[23] Macdonald I.G., The Poincaré series of a Coxeter group, Math. Ann. 199 (1972), 161–174.

[24] Macdonald I.G., Affine Hecke algebras and orthogonal polynomials, Cambridge Tracts in Mathematics, Vol. 157, Cambridge University Press, Cambridge, 2003.

[25] Mehta M.L., Dyson F.J., Statistical theory of the energy levels of complex systems. V, J. Math. Phys. 4 (1963), 713–719.

[26] Morris II W.G., Constant term identities for finite and affine root systems, conjectures and theorems, Ph.D. Thesis, The University of Wisconsin, Madison, 1982.

[27] Noumi M., Macdonald–Koornwinder polynomials and affine Hecke rings, Sūrikaisekikenkyūsho Kōkyūroku 919 (1995), 44–55.

[28] Sahi S., Some properties of Koornwinder polynomials, in q-Series from a Contemporary Perspective (South Hadley, MA, 1998), Contemp. Math., Vol. 254, Amer. Math. Soc., Providence, RI, 2000, 395–411.

[29] Selberg A., Remarks on a multiple integral, Norsk Mat. Tidsskr. 26 (1944), 71–78.

[30] Stokman J.V., On BC type basic hypergeometric orthogonal polynomials, Trans. Amer. Math. Soc. 352 (2000), 1527–1579, arXiv:q-alg/9707005.

[31] Stokman J.V., Koornwinder polynomials and affine Hecke algebras, Int. Math. Res. Not. 2000 (2000), 1005–1042, arXiv:math.QA/0002090.

[32] Stokman J.V., Lecture notes on Koornwinder polynomials, in Laredo Lectures on Orthogonal Polynomials and Special Functions, Adv. Theory Spec. Funct. Orthogonal Polynomials, Nova Sci. Publ., Hauppauge, NY, 2004, 145–207.

[33] Stokman J.V., Koornwinder T.H., Limit transitions for BC type multivariable orthogonal polynomials, Canad. J. Math. 49 (1997), 373–404.

[34] Warnaar S.O., q-Selberg integrals and Macdonald polynomials, Ramanujan J. 10 (2005), 237–268.

[35] Warnaar S.O., The sl_3 Selberg integral, Adv. Math. 224 (2010), 499–524, arXiv:0901.4176.

[36] Xin G., Zhou Y., A Laurent series proof of the Habsieger–Kadell q-Morris identity, Electron. J. Combin. 21 (2014), 3.38, 16 pages, arXiv:1302.6642.