Phylogeny and historical biogeography of leafhopper subfamily Evacanthinae (Hemiptera: Cicadellidae) based on morphological and molecular data

Yang Wang1, Christopher H. Dietrich2 & Yalin Zhang1

Phylogenetic relationships among major lineages of the Evacanthinae, a highly diverse leafhopper subfamily distributed worldwide, were explored by analysing a dataset of 100 discrete morphological characters and DNA sequence data from five gene regions. Sixty-seven taxa representing all evacanthine tribes and all regional faunas, and fourteen putative outgroup taxa were included. Maximum-likelihood and Bayesian analyses yielded similar tree topologies that were well resolved with strong support for the monophyly of Evacanthinae and its four previously included tribes, but indicated that Draconirvana Dietrich, was incorrectly placed to tribe and that Sophonia Walker, Evacanthus Le Peletier & Serville, Bundera Distant, Paraonukia Ishihara and Onukia Matsumura are not monophyletic. Divergence time analysis suggests that the deepest divergences coincided with breakup of Gondwana but that more recent divergences occurred largely within a single biogeographic realm during the Paleogene, with a few long-distance dispersal events. Biogeographical analyses suggest that Evacanthinae originated in Neotropical region. A new tribe, Pentoffiini trib.n., is established to include Pentoffia Kramer and Evanirvana Hill, the genus Draconirvana Dietrich, placement n. is transferred to Evacanthini from Nirvanini, a key to tribes is also given and illustrations of representative genera are provided.

Leafhoppers (Cicadellidae), comprising more than 22,000 described species, are one of the largest insect families and inhabit nearly all habitats that support vascular plants worldwide, from tropical rainforest to arctic tundra. Knowledge of leafhopper phylogeny remains rudimentary overall, although some recent studies based on morphology and/or molecular data have yielded estimates of relationships among leafhoppers as a whole1–3 as well as within certain cicadellid subfamilies4–7. These recent studies have resulted in some changes to the higher classification of the family with a reduction of recognized subfamilies from 408 to 25 at present3,6. Improved knowledge of leafhopper phylogeny is needed not only to test the phylogenetic status of currently recognized higher taxa but also to elucidate the evolutionary factors that promoted diversification in this highly successful and economically important group of herbivores.

One diverse leafhopper group that remains poorly studied is the subfamily Evacanthinae8, which comprises 513 described species in 71 genera so far and is distributed worldwide9, primarily inhabiting humid forest habitats. The classification of this group has been unstable over the past several decades with tribes presently included in Evacanthinae previously placed in the separate subfamilies Cicadellinae (tribe Evacanthini Metcalf) and Nirvaninae (tribes Nirvanini Baker and Balbillini Baker)8 and united with unrelated groups (e.g., Occinirvanini Evans, presently included in Deltocephalinae). A previous molecular phylogenetic analysis of Cicadellidae recovered the included representatives of Evacanthinae (in the present sense) as a monophyletic group8. Based on

1Key Laboratory of Plant Protection Resources and Pest Management, Ministry of Education, Entomological Museum, Northwest A&F University, Yangling, Shaanxi 712100, China. 2Illinois Natural History Survey, Prairie Research Institute, University of Illinois, 1816 S Oak St., Champaign, Illinois 61820, USA. Correspondence and requests for materials should be addressed to Y.Z. (email: yalinzh@nwafu.edu.cn)
Results
Phylogenetic analyses. Of the 81 taxa for which DNA extracts were available, nuclear genes 28S rDNA (28S) D2 and D9-D10 were successfully amplified for all taxa (see Supplementary Table S1), 73 for mitochondrial gene cytochrome c oxidase I (COI), 67 for Histone H3 (H3) and 66 for Wingless (WG) were successfully amplified. A new pair of primers was designed to amplify H3 (see Supplementary Table S2) because of the low success rate of primers used in previous studies. In total, a matrix length of 2805 bp for the combined DNA sequences was obtained and used for the phylogenetic analyses. The taxon sample included all known genera of Balbillini (two in total) and Evacanthini (26 in total), 20 of the 35 known genera of Nirvanini and three of the four known genera in the Old World tropics.

The phylogram from maximum likelihood (ML) analysis of combined data is shown in Fig. 1. The tree is well resolved and both SH-like approximate likelihood ratio test (SH-aLRT)32 and ultrafast bootstrap (UFB)33 scores indicate that most branches have moderate to high support. Only 11 nodes have SH-aLRT scores <0.80, and 22 nodes received UFB scores <0.95. The phylogram from Bayesian inference (BI) analysis of combined data can be found as Supplementary Fig. S1. Only seven nodes have posterior probability (PP) values <0.95. The ML and BI topologies are compatible, only differing in the poorly supported nodes. Bayesian PP values are shown on the ML phylogram (Fig. 1), and a red “−” indicates that the clade was not recovered in the Bayesian analysis. The phylogram from ML analysis of molecular data only can be found as Supplementary Fig. S2. The ML topologies based on molecular data only are highly similar to those obtained from the combined data, differing only in a few tip branches within Nirvanini and Evacanthini, and with lower branch support for several nodes. A list of morphological apomorphies for each resolved node on the tree shown in Fig. 1 is also given as Supplemental Text S2. The phylogram from Maximum parsimony (MP) of morphological data alone for the 81 included taxa can be found as Supplementary Fig. S3.

The analysis consistently recovered a clade (Fig. 1, clade 3) comprising Nirvanini, Balbillini, Evacanthini, Pagaronini and Pentoffia Kramer with strong branch support, thus supporting the monophyly of Evacanthinae sensu Dietrich3. In contrast, branches subtending Evacanthinae received only moderate to low support, indicating that the relationship of Evacanthinae to other cicadellid subfamilies remains poorly resolved by our data.

The analysis consistently recovered a clade (Fig. 1, clade 3) comprising Nirvanini, Balbillini, Evacanthini, Pagaronini and Pentoffia Kramer with strong branch support, thus supporting the monophyly of Evacanthinae sensu Dietrich3. In contrast, branches subtending Evacanthinae received only moderate to low support, indicating that the relationship of Evacanthinae to other cicadellid subfamilies remains poorly resolved by our data.

Tribe Nirvanini was recovered as monophyletic with the exception of the genus Draconirvana Dietrich, which Dietrich27 described as morphologically intermediate between Evacanthina and Nirvanini but placed in the latter tribe. Draconirvana is here recovered as sister group to Evacanthini with strong support (Fig. 1). The other previously recognized tribes of Evacanthinae were recovered as monophyletic with strong support.

Tribe Pagaronini (Fig. 1, clade 8) was recovered as the sister group of Evacanthini (plus Draconirvana, Fig. 1, clade 10) and together they form the sister group of Nirvanini (Fig. 1, clade 6). Pentoffia Kramer was the sister to
Balbillini but with only moderate ML bootstrap support; together (Fig. 1, clade 4) they are sister to the remaining Evacanthinae (Fig. 1, clade 5).

Among genera for which more than one species was included, Sophonia Walker, Evacanthus Le Peletier & Serville, Bundera Distant, Paraonukia Ishihara and Onukia Matsumura were each not monophyletic.

The phylogeny resulting from Bayesian analysis (see Supplementary Fig. S2) was similar to the ML tree with the only differences occurring in some areas of the tree with low to moderate branch support in one or both analyses, e.g., relationships among some genera of Nirvanini and Evacanthini. Relationships among evacanthine tribes were identical and strongly supported by both analyses.
Divergence times. The divergence time analysis yielded the chronogram shown in Fig. 2. Divergence of Evacanthinae from other leafhoppers (Fig. 2, clade 1) was estimated to have occurred 94.36 Ma (82.2–106.6 Ma 95% confidence interval [CI]), and the crown age of Evacanthinae was estimated at 88.94 Ma (76.4–102.2 Ma 95% CI) (Fig. 2, clade 2). Divergence of Nirvanini from Evacanthini + Pagaroniini (Fig. 2, clade 4) was estimated to have occurred 79.3 Ma (68.4–91.3 Ma 95% CI), and the ages of the most recent common ancestors of Nirvanini, Evacanthini and Pagaroniini were 75.54 Ma (64.5–86.8 Ma 95% CI) (Fig. 2, clade 5), 61.51 Ma (50.5–71.8 Ma 95% CI) (Fig. 2, clade 8), 48.44 Ma (36.1–60.6 Ma 95% CI) (Fig. 2, clade 7) respectively.

Biogeographical analyses. A phylogenetic tree showing the reconstruction of ancestral distribution ranges based on the BBM model is shown in Fig. 3. The ancestral region for Evacanthinae was somewhat equivocal.
but a Neotropical origin was slightly favored (57% probability) with Oriental less likely (26% probability). The Neotropical region was recovered as the most likely ancestral area for both Nirvanini (95% probability) and Nirvanini + Evacanthini + Pagaroniini (87% probability). The most likely ancestral area for Evacanthini was recovered as Oriental (99% probability). The ancestral region for Pagaroniini was recovered as Nearctic (75% probability).

Discussion

Phylogenetic analyses of Evacanthinae based on combined molecular and morphological data recovered mostly well-resolved topologies with moderate to high support for most branches but poor resolution of relationships between Evacanthinae and representatives of other included leafhopper subfamilies. A previous analysis...
comprising representatives of most cicadellid subfamilies also failed to resolve the position of Evacanthinae among Cicadellidae, Mileewinae, Signoretinae, Coelidiinae and Typhlocybinae. Thus, identification of the sister group of Evacanthinae must await further analyses of Cicadellidae as a whole that include characters more informative of relationships among major lineages of the family.

The present results provide strong support for the monophyly of Evacanthinae (sensu lato, Dietrich) and its four previously included tribes, with the exception of the previous placement of Draconirvana (Fig. 1, clade 10) in Nirvanini. Here we transfer Draconirvana, which was recovered as sister to the remaining Evacanthini to tribe Evacanthini (new placement). Mediporus Wang & Zhang, a more recently described genus of Evacanthini, was suggested to be related to Draconirvana and, in agreement with this suggestion, the present analysis placed Mediporus on the adjacent early-diverging lineage of Evacanthini. Prior to Dietrich’s morphology-based phylogenetic analysis, Nirvaninae (with tribe Balbillini) had been treated as a separate subfamily and tribes Evacanthini and Pagaronini had been included in Cicadellinae. Our results, based on analysis of the most taxonomically comprehensive and character-rich dataset to date for this leafhopper subfamily, support Dietrich’s morphology-based definitions of Evacanthinae and its included tribes, except for placement of Draconirvana, which keys to Nirvanini and was placed in this tribe by Dietrich based on the incomplete median longitudinal carina of the frontoclypeus, but, based on the present results, is more appropriately placed in Evacanthini (other genera of which have the median carina complete).

Kramer noted that Pentoffia is not close to any other genus of the Nirvaninae and only provisionally placed it in the subfamily (then treated as separate from Evacanthinae). Later, Hill provisionally placed the morphologically similar genus Evanirvana in Evacanthini, but considered it to be intermediate between Evacanthini and Nirvaninae. A previous cladistic analysis of morphological characters placed Pentoffia as sister to the rest of Evacanthinae, and, as a result, Dietrich treated both Pentoffia and Evanirvana as genera incertae sedis within Evacanthinae. Our analysis unequivocally placed Pentoffia within Evacanthinae but its position as sister group of Balbillini (Fig. 1, clade 4) received only moderate ML bootstrap support. Considering the unique combination of morphological characters shared by Pentoffia and Evanirvana, including the vestigial ocelli, medially carinate crown, and well-delineated forewing venation usually with three or more m-cu crossveins, we propose to establish a new tribe Pentoffiini within Evacanthinae based on these two genera (see below).

The three species of the morphologically heterogeneous genus Sophonia Walker included in our dataset were not recovered as a monophyletic group. Sophonia rosea Li & Wang has a relatively short head, Sophonia orientalis (Matsumura) has a long head and convex crown, and Sophonia sp. (Fig. 4F), which resembles the type species of the genus, S. rufotelum Walker (known only from the female holotype), has a long head and concave crown. These results indicate that Sophonia, the largest genus of Nirvanini, needs to be redefined.

The results recovered the Oriental genus Kana Distant as sister to the African genus Yaoundea Linnavuori in agreement with the comment of Viraktamath Viraktamath and Wesley that these two genera may be synonymous. Recently, the only species of Nirvania recorded from Australia, Nirvana adelaidae Evans 1938, was removed to a new genus Australnirvana. Our phylogenetic analyses provide support for this, indicating that the Australian species is more closely related to Ochianaia Distard and Decursinirvana Gao, Dai & Zhang than to Nirvana Kirkaldy.

Evacanthini includes the largest number of recognized genera among tribes of the subfamily but several of the included genera remain poorly characterized morphologically. Our phylogenetic results indicate that Evacanthus Le Peletier & Serville, Bundera Distant, Paraonukia Ishihara and Onukia Matsumura are polyphyletic. Specifically, Evacanthus is paraphyletic with respect to Bunderas Li & Wang, with B. trimaculatus Li & Wang arising from within a clade comprising four Evacanthus species. Onukia is highly polyphyletic with the four included species placed in three separate, unrelated clades, although their positions varied somewhat in results from different analyses. The two included Paraonukia species were consistently placed on unrelated clades, one as sister to Onukia flavimaculata Li & Wang, the other as sister to Onukiades formosanus (Matsumura). The two included species of Bundera were also placed in distantly related clades, with one consistently placed as sister to Multiformis sp. and the other varying in position among results from different analyses. Wei et al. revised Baker’s species described in the Oriental leafhopper genus Pythamus Melichar, and placed them in a new genus Pythochondra Wei & Webb. In agreement with this work, the analysis indicated that Pythochondra bilobatus (Baker) and Pythamus hainanensis Wang, Dietrich & Zhang are only distantly related to each other. Representatives of two potential new genera, Gen 1. sp. (Fig. 4Q) and Gen 2. sp. (Fig. 4S) included in the analysis were placed on separate lineages only distantly related to established genera. These will be formally described in a separate paper.

Although our present results provide a strong foundation for classification of tribes and genera within Evacanthinae, the relationship of this group to other subfamilies of Cicadellidae remains unclear. In our results, the sister group of Evacanthinae was either a clade comprising Coelidiinae, Mileewinae and Signoretinae (Bayesian results with 0.99 PP; see Supplementary Fig. S1), or Cicadellinae + Mileewinae (ML results with 82 UFB, Fig. 1). Previous results recovered Coelidiinae + Neocoelidiinae or Mileewinae + Typhlocybinae as sister to Evacanthinae, all with only low to moderate branch support. Given the continued poor resolution of relationships between Evacanthinae and representatives of other included leafhopper subfamilies further analyses of Cicadellidae as a whole based on a large-scale molecular dataset (e.g., mitochondrial genomes and transcriptomes) are needed.

ML phylogram branch support assessed by UFB and SH-aLRT is generally considered to be significant if SH-aLRT > 80 and UFB > 95. Based on these criteria, the current phylogram is reasonably well supported overall, although 11 nodes have SH-aLRT scores <80, and 22 nodes received UFB scores <95. Several factors contributed to this result. 28S D2, 28S D9-D10 and H3 gene fragments have been shown to be informative for leafhopper phylogenetic analysis; the DNA sequence dataset was reasonably complete, with missing data concentrated in a few relatively small gene regions; and the analysis of combined morphological and molecular data included large numbers of phylogenetically informative characters.
Because only 100 discrete morphological characters were included, the morphological data by themselves were not sufficient to yield a well resolved and supported phylogeny for Evacanthinae. Separate analysis of morphological data alone for the 81 included taxa yielded large numbers of equally parsimonious trees and the consensus...
tree (see Supplementary Fig. S3) had several large polytomies. Nevertheless, these analyses consistently recovered Balbillini, Evacanthini, Nirvanini and Pagaroniini as monophyletic and many relationships towards the tips of the tree were identical to those shown in Fig. 1. Areas of disagreement between the morphology-only trees and the trees based on molecular or combined data are attributable to poor resolution and relatively weak phylogenetic signal in one or both datasets. For example, Gen.2 sp. (Fig. 4S) was recovered as the sister group of Bundera emeiana Li & Wang with relatively low branch support (20.5/32) in the molecular-only analyses (see Supplementary Fig. S2) but in the combined data analyses (Fig. 1) Gen.2 sp. was recovered as sister group of Cunedda phaeops Distant + Transvenosus signuma Wang & Zhang with moderate branch support (91.5/76). Gen.2 sp., Cunedda phaeops and Transvenosus signuma are morphologically similar in having the crown strongly concave between dorsally angulate median and lateral longitudinal keels; Bundera emeiana lacks this apparently derived morphological trait. Overall, addition of morphological data yielded a “total evidence” tree with higher branch support than was obtained for the tree based on molecular data alone (see Supplementary Fig. S2).

The divergence time estimates are very uncertain given the poor fossil record for Evacanthinae, and Cicadellidae in general. Only a single undoubted fossil belonging to Evacanthinae is known, from Oligo-Miocene Dominican amber and the group is, so far, conspicuously absent from the diverse and relatively well studied Eocene Baltic amber fauna, which has yielded representatives of several other modern leafflower subfamilies. There remains a major gap in the fossil record of leaffoppers between the oldest undoubted leaffoppers from lower Cretaceous rock fossils, most of which cannot be assigned to modern subfamilies, and the relatively diverse and well-preserved amber faunas of the Paleogene. Thus, although our molecular divergence time estimates suggest that the major lineages (tribes) of Evacanthinae diverged during the Cretaceous, there is no direct fossil evidence for this. Within Evacanthinae, divergences among major lineages and genera are suggested to have occurred mostly during the Paleogene, a plausible scenario given the montane vegetation and tropical forests of the Oriental region, which was very geologically complex and dominated by tropical rainforest during that period.

The deepest clades are Balbillini and Pentoffini (Figs 2 and 3). Balbillini is currently restricted to the Oriental and Afrotropical regions, and Pentoffini is restricted to the Neotropical region. Divergence of Evacanthinae from other leaffoppers (Fig. 2, clade 1) was estimated to have occurred 94.36 Ma (82.2–106.6 Ma 95% CI). So it seems likely that ancestral Evacanthinae were widespread in Gondwana before it completely divided, given the upper range of possible dates within the 95% confidence intervals. The earliest divergences in the subfamily (e.g., between Balbillini and Pentoffini, and between Balbillini + Pentoffini and the remaining lineages) may have occurred during the breakup of Gondwana, which is plausible given the range of possible dates within the 95% confidence intervals (76.4–102.2 Ma) (Fig. 2, clade 2) but they follow no clear Gondwanan vicariant sequence.

Inferred areas of origin, particularly for clades near the base of the tree, also need to be interpreted with caution because these may have been biased somewhat by the choice of outgroups, the unresolved relationship of Evacanthinae to other leaffoppers, and the in-group taxon sample. For example, only four pagaroniines (two Neartic, two from Japan) are included in this study. Although the endemic western North American genus Friscanus Oman was sister to the remaining pagaroniines, inclusion of more species from Japan [which has a more species-rich fauna than that of North America] may have increased the probability of a Paleartic area of origin for the tribe. Divergences among the four included pagaroniines are estimated to have occurred 48.44, 31.16 and 24.46 Ma (Fig. 2), and all three would have coincided with dispersal between Northeast Asia and the western Nearctic (Fig. 3). Given the existence of land connections and compatible flora and fauna in the Beringian region during the Paleogene (23–66 Ma) [40,41], the present distribution of Pagaronini is consistent with a Beringian dispersal hypothesis. One lineage of the leaffopper subfamily Iassinae (tribe Hyalojassini) was suggested to have a similar pattern of dispersal over higher latitudes from East Asia into North America at about the same time.

Evacanthini includes one genus (Evacanthus) that occurs throughout the Holarctic region but is otherwise restricted to the Oriental region, particularly in southern China and the Indochinese Peninsula. The most likely ancestral area for Evacanthini was recovered as Oriental (99% probability) (Fig. 3), and that the earliest diverging lineages of the tribe are species from Thailand (Dracornirvana siamensis Dietrich and Meditopus splendidens Wang & Zhang) and Malaysia (Omukia muririi Baker), it seems that Evacanthini originated in this region (Indochina Peninsula).

The biogeographic pattern of dispersal in Nirvanini appears to have been in the opposite direction to that observed in the iassine tribe Hyalojassini. Nirvanini appears to have originated in the Neotropics and later dispersed into the Oriental region (and Africa and Australia). So it seems that exchange of leafflower faunas between Oriental and Neotropical regions occurred in both directions during the Paleogene. It is interesting that the earliest diverging lineage of Nirvanini includes genera that mostly occur in South America (Tahura, Neornirvana) while the later diverging New World lineage includes species from Central America and the Caribbean (Jassaquilus, Antillonirvana), corroborating the hypothesis of dispersal out of South America and eventually into East Asia.

Also, according to our results, there were three separate colonizations of Africa and two separate colonizations of Australia by lineages of Nirvanini, all of which appear to have occurred well after the break-up of Gondwana and are, thus, best explained by intercontinental dispersal. Two divergence events between Oriental and Afrotropical nirvanine lineages are estimated to have occurred at about 27.82 and 32.6 Ma respectively (Figs 2 and 3). Although the transoreal tropical forest spanning the northern continental area that now separates Africa from tropical Asia during the late Paleocene and early Eocene [ca. 50–52 Ma] would presumably have allowed overland dispersal between these two regions, the divergence dates between sister pairs of Oriental and Afrotropical nirvanines appear too young to be explained by such a scenario. Instead, the divergence dates are more consistent with the hypothesis of long-distance dispersal from South Asia across the Indian Ocean into Africa, possibly facilitated in part by expansion of tropical forest areas during cyclical thermal maxima in the Oligocene and Miocene or periods of low sea level during Oligocene glacial cycles. Instances of long-distance, trans-oceanic dispersal have been documented in deltocephaline leaffoppers. Although Nirvanini was the
least well represented tribe in our taxon sample, with only ~57% of known genera represented, we believe that the geographic coverage of this sample was sufficiently representative of the tribe as a whole to provide a reasonable estimate of the biogeographic pattern. Nevertheless, discovery of additional fossil Evacanthinae and denser phylogenetic sampling of extant taxa will facilitate more robust tests of these historical biogeographic scenarios. New genera and species of Evacanthinae are also being discovered at a rapid pace, suggesting that the world fauna of this group remains very incompletely documented.

Taxonomy

Evacanthinae Metcalf. Evacanthinae Metcalf, 1939a: 247 (replacement for Euacanthinae Crumb, 1911a: 234).

Nirvaniidae (sic) Baker, 1923a: 353.
Pythamiiniae (sic) Baker, 1915b: 193.

Notes. Dietrich9 redefined the Evacanthinae to include the tribes Nirvanini, Balbillini, Evacanthini and Pagaroniini and provided detailed descriptions and diagnoses of these taxa.

Key to tribes of Evacanthinae

1. Ocelli absent (Neotropical). .. Pentoffiini trib. n.
 - Ocelli well-developed.. 2

2. Hind femur with macrosetal formula 2 + 1 or 2 + 0; front tibia flattened (Oriental and Afrotropical regions). .. Balbillini
 - Hind femur with macrosetal formula 2 + 1 + 1 or with supranumerary macrosetae; front tibia cylindrical... 3

3. Frontoclypeus with median carina incomplete or absent; front femur ventral row with one basal seta distinctly larger than others; lower margin of maxillary plate even with or extended beyond apex of anteclypeus (Pantropical). .. Nirvanini
 - Frontoclypeus with median carina complete and front femur ventral row with two or more basal setae distinctly larger than others, or, if carina incomplete or absent and ventral row with one seta larger than others, then anteclypeus extended beyond lower margin of maxillary plate .. 4

4. Frontoclypeus with complete median longitudinal carina (except Draconirvana), crown with lateral carina mesad of ocelli (Oriental and Holarctic). .. Evacanthini
 - Frontoclypeus with median longitudinal carina absent or vestigial, crown without lateral carina (eastern Palearctic and western Nearctic) .. Pagaroniini

Pentoffiini trib. n.

Type genus: *Pentoffia* Kramer, 1964. Diagnosis. Medium-sized leafhoppers, usually pale, with or without dark markings. Head (Fig. 4A) moderately produced, expanded laterad anterad of eyes; coronal suture carinate and elevated towards apex; crown depressed medially, nearly horizontal, strongly elevated mesad of eyes, margin sharply carinate; ocelli absent; frontoclypeus in profile oblique, inflated, with median longitudinal carina dorsally; antennal ledges in anterior view narrow, flaplike; lorum very small and narrow, convex, well separated from margin of maxillary plate; gena broadly rounded, not emarginate below eye, mostly concealing large flaplike proepisternum. Forewings with well-delineated venation and usually with three or more m-cu crossveins. Hind femur with macrosetal formula 2+ 1 + 1. Female second valvula (Fig. 4V) with median dorsal tooth basad of toothed distal section, only slightly broadened preapically with irregular, asymmetrical dorsal teeth more prominent towards apex.

Notes. The new tribe Pentoffiini includes Pentoffia Kramer and Evanirvana Hill. Although the latter genus is known only from a few museum specimens and could not be included in the molecular dataset, it is very similar morphologically to Pentoffia, which was placed as sister to Balbillini in our phylogenetic estimates. As noted by Dietrich, the main feature distinguishing Evanirvana from Pentoffia is the presence of a complete median keel on the crown of the former. Based on the phylogenetic results, Pentoffiini are most closely related to Balbillini but these two tribes are dramatically different morphologically, species of the latter being strongly flattened dorsoventrally with the ventral surface of the head horizontal. The dorsal teeth of the second valvulae of these two tribes are similar to each other in being blunt and irregular (Fig. 4V, X) compared to the acute and more evenly spaced and symmetrical teeth present in the other three tribes (Fig. 4W, Y, Z).

Draconirvana Dietrich, placement n. In consideration of the depressed form and incomplete longitudinal carina on the face, traits that have traditionally been used to distinguish Nirvanini from related leafhoppers, Dietrich12 placed Draconirvana in Nirvanini but mentioned that it is morphologically intermediate between Evacanthini and Nirvanini. Our phylogenetic analysis confirmed its intermediate position but indicates that Draconirvana Dietrich is sister to a clade comprising the remaining genera of Evacanthini. Thus, we transfer this genus to Evacanthini. Presumably synapomorphic morphological features shared by Draconirvana and other Evacanthini include the strongly convex frontoclypeus, shallow antennal pits, keeled marginal carinae on the crown, pair of lateral oblique carinae mesad of the ocelli, and the tapered setae of the pecten of hind tarsomere 1. Mediporus, a more recently described genus of Evacanthini, was suggested to be related to Draconirvana12. Draconirvana differs in having the crown strongly declivous, the longitudinal carina on the frontoclypeus incomplete, and the lower part of the face horizontal, as well as in the structure of the male genitalia.
Material and methods

Taxon sampling. Sixty-seven taxa were included representing all four evacanthine tribes plus genus Pentoffia Kramer (incertae sedis) and all regional faunas. Most included genera were represented by a single species but some larger and more morphologically heterogeneous genera were represented by multiple species to facilitate preliminary phylogenetic tests of the phylogenetic status of these genera. Fourteen additional taxa belonging to seven related subfamilies, Cicadellinae, Mileiewinae, Signoretiiinae, Coelidiinae, Tychlocybinae, Neocoelidiinae, Deltacephalinae, were selected as outgroups based on previous phylogenetic analyses that indicated possible relatedness to Evacanthinae. Supplementary Table S1 shows the list of taxa and DNA sequences included in phylogenetic analyses.

DNA extraction, amplification, sequencing. Field-collected leafhoppers were preserved in 95% ethanol. Upon processing, the ethanol was replaced and the samples were stored at −20 °C. Genomic DNA was extracted from the whole abdomens of single specimens by the DNeasy Tissue Kit (Qiagen, Inc.). Occasionally, DNA was also extracted from the entire leafhopper specimen if it was relatively small or old. We followed the manufacturer’s protocol, but with some modifications: the entire abdomen was incubated at 55 °C for 15–24 h, and DNA extractions were performed without destruction of the specimens, to allow for the subsequent examination of morphology and to preserve voucher material. Some DNA extractions were obtained from previous phylogenetic study of family Cicadellidae by Dietrich deposited at the Illinois Natural History Survey (INHS). Vouchers and DNA extracts newly included in this study are deposited at INHS and Northwest Agriculture and Forestry University, Yangling, Shaanxi, China.

Fragments of the genes 28S, WG and H3 and COI were amplified using primer pairs that can be found as Supplementary Table S2. These genes were selected based on their wide phylogenetic utility in published studies on leafhoppers. A previously published dataset of nearly complete 28S gene sequences for leafhoppers was screened and the D2 and D9-D10 regions were selected for amplification because they included the most characters potentially informative of relationships among Evacanthinae. Several 28S rDNA and COI sequences were obtained from Genbank.

Fragments of H3, WG and 28S were amplified by PCR in a total reaction volume of 25 μl using Taq Polymerase (Promega Corp.), held first for 3 min at 95 °C, then 30 cycles of 94 °C for 1 min, 55 °C for 1 min, and 72 °C for 2 min, then a final elongation step at 72 °C for 10 min, and held at 10 °C before being removed from the cycler. Primers used for amplification can be found as Supplementary Table S2. COI PCR products were amplified by primers LCO1490 and HCO2198 with the following thermal cycling protocol: 2 minutes at 95 °C; five cycles of 40 seconds at 94 °C, 40 seconds at 45 °C, and 1 minute at 72 °C; 35 cycles of 40 seconds at 94 °C, 40 seconds at 51 °C, and 1 minute at 72 °C; 10 minutes at 72 °C; and finally held at 10 °C. When these primers were not successful, the primer cocktail C-tRWF_t1 enabled the amplification of the standard 658 bp barcode region, together with a short upstream sequence, in an additional 15% of the specimens. PCR products were purified using Qiaquick PCR Purification Kit (Qiagen Inc.) or with GeneClean III Kit (MP Biomedicals). Both strands were sequenced using ABI Prism BigDye Terminator Kit version 3 (PE Applied Biosystems). Sequencing products were run on an ABI 3730XL capillary sequencer at the W.M. Keck Center for Comparative and Functional Genomics at the University of Illinois.

Morphology. Morphological data consisted of 100 discrete binary and multistate characters of the exoskeleton (see Supplementary Text S1 and Table S3) treated as unordered and of equal weight. Missing or inapplicable states are indicated by “?” in the matrix and were treated as missing values in the analysis. Character states were scored using the same specimens from which DNA sequences were obtained, supplemented by one or more additional specimens in order to obtain data from both sexes. Morphological terminology follows previous work by Dietrich.

Alignment and phylogenetic analyses. Chromatograms were visualized in SEQUENCHER 5.1 (Gene Codes Corp.), and forward and reverse sequences were checked and assembled. Sequences were aligned with the MUSCLE application in MEGA 6, and minor changes were subsequently made by hand. The 28S data sets, which contained few or no ambiguously aligned positions, were manually adjusted as needed.

Combined ML analysis (28S D2, 28S D9-D10, H3, WG, COI and morphological data) and molecular-only ML analysis were conducted in IQtree v1.4.13 using the best-fit substitution model automatically selected by the software according to the Bayesian information criterion scores and weights (BIC) with partitions. Separate data partitions were set up for each gene and morphology. An ultrafast bootstrap (UFB) with 10000 replications and the SH-like approximate likelihood ratio test (SH-aLRT) were used in the analysis to assess branch support.

Combined BI analysis was conducted with MrBayes (v. 3.1.2) as implemented in CIPRES. Separate data partitions were defined and unlinked for the 28S D2, 28S D9-D10, H3, WG, COI and morphology. The best-fit substitution model was selected by jModelTest 2.0 as implemented in CIPRES. The SYM model was used for all molecular data partitions. The morphological dataset was run under the standard discrete model. Two runs with six chains each (three heated and three cold) were run for 20 million generations; the chains were sampled every 2000 generations with default parameter values. Stationarity of the Markov Chain was determined as the point when sampled log-likelihood values plotted against generation time reached a stable mean equilibrium value; the first 25% of MCMC samples were discarded as ‘burn in’. Convergence of the Markov Chain and assessment of ‘burn in’ samples were determined using Tracer v1.4. The morphological data were analysed under parsimony with the computer program TNT 1.5 (tree analysis using new technology) using a traditional search with 1000 replicates of random addition sequence followed by TBR (tree bisection and reconnection) branch swapping. Bremer supports using retain for suboptimal trees by 100 steps.
Divergence time estimation. Divergence dates were inferred using the Bayesian relaxed clock uncorrelated lognormal method in BEAST as implemented in CIPRES. The partitioned BEAST.xml input file was created with BEAUti v1.4.6. A separate GTR + I + Γ model with four gamma categories was set and a Yule prior was set for branch lengths. Model parameters were unlinked across partitions. MCMC analyses were run for 20 million generations with parameters sampled every 2000 generations. The first 25% of the generations from each run were discarded as 'burn in'. Convergence of the chains was checked using TRACER v1.4.1. The searches achieved adequate mixing as assessed by the high effective sampling size (ESS) values for all parameters. Node ages and upper and lower bounds of the 95% highest posterior density (HPD) interval for divergence times were calculated using TreeAnnotator v1.5.4 and visualized using FigTree v1.4.2. The 95% HPD represents the shortest interval that contains 95% of the sampled values from the posterior.

Calibrations. Because the fossil record of leafhoppers is extremely sparse and only a single representative of Evacanthinae is known from the fossil record, the oldest undoubted cicadellid fossil was used to constrain the maximum age of the root of the tree (~118 Ma). A normal distribution, which accounts for uncertainty in calibration estimates was used as a prior for the root node (A in Fig. 2), with a mean at 118 Ma (SD 6) and 97.5% confidence interval (CI) between 108 and 129.8 Ma. Jassoqualus hispaniolensis from Dominican amber, the only known fossil representative of Evacanthinae, was used to calibrate the split between Jassoqualus and Antillosirvana. The age of Dominican amber, 15–20 Ma based on Foraminifera, was used to calibrate this node (B in Fig. 2; minimum age). A log-normal prior distribution was specified (Logmean: 2.995) to allow the date to shift backwards in time because the divergence event likely occurred prior to the appearance of the fossil.

Biogeographical analyses. Ancestral areas were inferred by performing a Bayesian binary model (BBM) analysis implemented in RASP 3.2 using default parameter settings. We chose this method because it provides probabilistic estimates of uncertainty in ancestral distributions, given the available data. We used a fixed (JC) model and equal among-site rate variation with the default chain parameters (50,000 cycles, 10 chains, with sampling every 100 generations and a temperature of 0.1) for the Bayesian analysis. Root distribution was set to Null and the maximum number of areas for each node was set to 2. Areas were defined based on known present-day distributions of extant taxa and coded as follows: A, Oriental; B, Palaearctic; C, Australian; D, Afrotropical; E, Neotropical; F, Neartctic. These broad geographic assignments were most appropriate for our data, which included a broad sample of the global fauna of Evacanthinae but did not include sufficiently dense sampling to infer finer-scale patterns within individual biogeographic realms.

References
1. Dietrich, C. H. In Proceedings of the Fifteenth North American Prairie Conference. (ed. Warwick, C.) 44–49 (Nat. Areas Assoc., 1999).
2. Dietrich, C. H., Rakitov, R. A., Holmes, J. L. & Black, W. C. Phylogeny of the major lineages of Membracoidea (Insecta: Hemiptera: Cicadomorpha) based on 28S rDNA sequences. Mol Phylogenet Evol 18, 293–305, doi: 10.1006/mpev.2000.0873 (2001).
3. Dietrich, C. et al. In Abstracts of Talks and Posters: 12th International Auchenorrhyncha Congress. August edn (ed A. Purcell) 7–12 (2005).
4. Krishnankutty, S. M., Dietrich, C. H., Dai, W. & Siddappaji, M. H. Phylogeny and historical biogeography of leafhopper subfamily Lassinae (Hemiptera: Cicadellidae) with a revised tribal classification based on morphological and molecular data. Syst Entomol 41, 580–595, doi: 10.1111/j.1365-3109.2016.00217 (2016).
5. Zahniser, J. N. & Dietrich, C. H. Phylogeography, evolution, and historical biogeography of the grassland leafhopper tribe Chiasmini (Hemiptera: Cicadellidae: Deltocephalinae). Zool J Linn Soc-Lond 175, 473–495, doi: 10.1111/j.1096-3642.2012.00129 (2015).
6. Zahniser, J. N. & Dietrich, C. H. A review of the tribes of Deltocephalinae (Hemiptera: Auchenorrhyncha: Cicadellidae). European Journal Of Taxonomy 45, 1–211, doi: 10.5852/ejt.2013.45 (2013).
7. Takiya, D. M. Systematic studies on the leafhopper subfamily Cicadidae (Hemiptera: Cicadellidae). Unpublished PhD thesis.—University of Urbana-Champaign, 183 (2007).
8. Oman, P. W., Knight, W. J. & Nielson, M. W. Leafhoppers (Cicadellidae): A bibliography, generic check-list and index to the world literature 1956–1985 (1990).
9. Dietrich, C. H. Phylogeny of the leafhopper subfamily Evacanthinae with a review of Neotropical species and notes on related groups (Hemiptera: Membracoidea: Cicadellidae). Syst Entomol 29, 455–487, doi: 10.1111/j.1365-3109.2004.00250.x (2004).
10. Dmitriev, D. A. 3i: Auchenorrhyncha database. Web site: http://dmitriev.speciesfile.org/. Last accessed on 08/16/2016 (2003 onward).
11. Wang, Y. & Zhang, Y. L. Two new species in the leafhopper genus Pythamus Melichar (Hemiptera: Cicadellidae: Evacanthinae) from Japan. Zootaxa 3764, 587–592, doi: 10.11646/zootaxa.3764.4.10 (2014).
12. Wang, Y. & Zhang, Y. A new genus of Evacanthinae (Hemiptera: Cicadellidae) from China. Zootaxa 3794, 587–592, doi: 10.11646/zootaxa.3794.4.10 (2014).
13. Li, Y. J. & Li, Z. Z. Mediporus, a new genus of the leafhopper subfamily Evacanthinae (Hemiptera: Cicadellidae), with description of a new species from China. Zootaxa 3795, 589–593, doi: 10.11646/zootaxa.3795.1.2 (2014).
14. Wang, Y. & Zhang, Y. Concavocorona, a new genus of the leafhopper subfamily Evacanthinae (Hemiptera: Cicadellidae), with description of a new species. Zootaxa 3794, 587–592, doi: 10.11646/zootaxa.3794.4.10 (2014).
15. Li, Y. J. & Li, Z. Z. Shortcornua, a new genus of Evacanthinae (Hemiptera: Cicadellidae) from China. Zootaxa 3764, 467–474 (2014).
16. Wang, Y. & Zhang, Y. Two new species in the leafhopper genus Pythamus Melichar (Hemiptera: Cicadellidae: Evacanthinae) from China. Zootaxa 4058, 429–436 (2015).
17. Li, Y. J., Li, Z. Z. & Yang, M. F. A review of the leafhopper genus Subulatus Yang & Zhang (Hemiptera: Cicadellidae: Evacanthinae), with description of a new species from China. Zootaxa 3914, 77–82, doi: 10.11646/zootaxa.3914.1.6 (2015).
18. Wang, Y. & Zhang, Y. Three new species in the leafhopper genus Angustata (Hemiptera: Cicadellidae: Evacanthinae) from Thailand. Zootaxa 3893, 587–594, doi: 10.11646/zootaxa.3893.4.8 (2014).
19. Kamitani, S., Higuchi, T. & Okudera, S. Taxonomic study of the protecta-group in the genus Pagonaria Ball (Hemiptera, Cicadellidae, Evacanthinae) from Japan. Zootaxa, 1–14 (2012).
20. Viraktamath, C. & Wesley, C. Revision of the Nirvaninae (Homoptera: Cicadellidae) of the Indian subcontinent. Great Basin Naturalist Memoirs, 182–223 (1988).
21. Aguin-Pombo, D., Aguilar, A. M. F. & Kuznetsova, V. G. Bionomics and taxonomy of leafhopper Sophonia orientalis (Hemoptera: Cicadellidae), a pacific pest species in the macaronesian archipelagos. Ann Entomol Soc Am 100, 19–26, doi: 10.1603/0013-8746(2007)100[19:Batohe]2.0.CO;2 (2007).
22. Evans, J. The leafhoppers and froghoppers of Australia and New Zealand (Homoptera: Ciadelloidea and Cercopidae). Memoirs of the Australian Museum 12, 1–347 (1966).
23. Linnavaru, R. Revision of the African Cicadellidae (Homoptera Auchenorrhyncha). Revue de Zoologie africaine (1979).
24. Huang, K. Nivarni of Taiwan (Homoptera: Cicadellidae: Nivarniinae). Bulletin of the Society of Entomology (Taihong) 21, 61–76 (1989).
25. Li, Z. & Chen, X. Nivarni of China (Homoptera, Cicadellidae). First edn, 149 (Guizhou Science and Technology Press, 1999).
26. Viraökkampth, C. Oriental nivarniine leaffhoppers (Homoptera: Cicadellidae): a review of CF Baker's species and keys to the genera and species from Singapore, Borneo and the Philippines. Insect Systematics & Evolution 23, 249–273 (1992).
27. Dietrich, C. H. A remarkable new genus of Nivarni (Hemiptera: Cicadellidae: Evcathaninae) from Southeast Asia. Zootaxa, 63–67 (2011).
28. Gao, M., Dai, W. & Zhang, Y. Two new Nivarni genera from China (Homoptera: Cicadellidae). Zootaxa 3841, 491–500 (2014).
29. Wang, Y., Dietrich, C. H. & Zhang, Y. Austraibronia, a new leafhopper genus of Nivarni (Hemiptera: Cicadellidae) from Australia. Zootaxa 4168, 134–140, doi: 10.11646/zootaxa.4168.1.6 (2016).
30. Cryan, J. R. & Urban, J. M. Higher-level phylogeny of the insect order Hemiptera: is Auchenorrhyncha really paraphyletic? Syst Entomol 37, 7–21, doi: 10.1111/j.1365-3131.2011.01061.x (2012).
31. Li, H. et al. Higher-level phylogeny of paraphylogenetic insects inferred from mitochondrial genome sequences. Sci Rep-Uk 5, 8527, doi: 10.1038/srep08527 (2015).
32. Guindon, S. et al. New Algorithms and Methods to Estimate Maximum-Likelihood Phylogenies: Assessing the Performance of PhyML 3.0. Syst Biol 59, 307–321, doi: 10.1093/sysbio/sys010 (2010).
33. Minh, B. Q., Nguyen, M. A. T. & von Haeseler, A. Ultrafast Approximation for Phylogenetic Bootstrap. Mol Biol Evol 30, 1188–1195, doi: 10.1093/molbev/mst024 (2013).
34. Kramer, J. A review of the neotropical Nivarninae (Homoptera: Cicadellidae). Entomol News 75, 112–128 (1964).
35. Hill, B. G. A new genus of Cicadellidae from Brazil. Proceedings of the Entomological Society of Washington 75, 78–79 (1973).
36. Trifinopoulos, J. & Bui, M. IQ-TREE: Frequently asked questions. Web site: http://www.cibiv.at/software/iqtree/doc/Frequently-Asked-questions/ 2015).
37. Zahniser, J. N. & Dietrich, C. H. Phylogeny of the leafhopper subfamily Deltocephalinae (Hemiptera: Cicadellidae) based on molecular and morphological data with a revised family-group classification. Syst Entomol 35, 489–511, doi: 10.1111/j.1365-3131.2010.00522.x (2010).
38. Dietrich, C. H. & Vega, F. E. Leaffhoppers (Homoptera, Cicadellidae) from Dominican Amber. Ann Entomol Soc Am 88, 263–270 (1995).
39. Dietrich, C. H. & Goncalves, A. C. New Baltic amber leaffhoppers representing the oldest Aphrodisaeae and Megophthalmae (Hemiptera, Cicadellidae). European Journal of Taxonomy 74, 1–13, doi: 10.5852/ejt.2014.74 (2014).
40. Sammartin, I., Enghoff, H. & Ronquist, F. Patterns of animal dispersal, vicariance and diversification in the Holarctic. Biol J Linn Soc 73, 345–390, doi: 10.1006/bijl.2001.0542 (2001).
41. Guo, P. et al. Out of Asia: Naticrine snakes support the Cenozoic Beringian Dispersal Hypothesis. Mol Phylogenet Evol 63, 825–833, doi: 10.1016/j.ympev.2012.02.021 (2012).
42. Morley, R. In Tropical rainfall responses to climatic change (eds Mark, Bush, John, Flenley & William, Gosling) Ch. Cretaceous and Tertiary climate change and the past distribution of megathermal rainforests, 1–34 (Springer, 2011).
43. Bennett, G. M. & O’Grady, P. M. Historical biogeography and ecological opportunity in the adaptive radiation of native Hawaiian leafhoppers (Cicadellidae: Neosphyrsoyne). J Biogeogr 40, 1512–1523, doi: 10.1111/jbi.12099 (2013).
44. Park, D. S., Foottit, R., Maw, E. & Hebert, P. D. Barcoding bugs: DNA-based identification of the true bugs (Insecta: Hemiptera: Heteroptera). Plos One 6, e18749, doi: 10.1371/journal.pone.0018749 (2011).
45. Hebert, P. D. N., Stoeckle, M. Y., Zemlak, T. S. & Francis, C. M. Identification of birds through DNA barcodes. PLoS Biology 2, e312 (2004).
46. Ogden, T. H. & Whiting, M. F. The problem with “the Paleoptera problem:” sense and sensitivity. Cladistics 19, 432–442 (2003).
47. Urban, J. M. & Cryan, J. R. Evolution of the planthoppers (Insecta: hemiptera: Fulgoroidea). Mol Phylogenet Evol 42, 556–572 (2007).
48. Cryan, J. R., Liebheer, J. K., Fettner, J. W. & Whiting, M. F. Evaluation of relationships within the endemic Hawaiian Platynini (Coleoptera: Carabidae) based on molecular and morphological evidence. Mol Phylogenet Evol 21, 72–85 (2001).
49. Wang, Y., Nansen, C. & Zhang, Y. L. Integrative insect taxonomy based on morphology, mitochondrial DNA, and hyperspectral reflectance profiling. Zool J Linn Soc-Lond 177, 378–394, doi: 10.1111/jzo.12367 (2016).
50. Tamura, K., Stecher, G., Peterson, D., Filipski, A. & Kumar, S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30, 2725–2729 (2013).
51. Nguyen, L. T., Schmidl, H. A., von Haeseler, A. & Minh, B. Q. IQ-TREE: A Fast and Effective Stochastic Algorithm for Estimating Maximum-Likelihood Phylogenies. Mol Biol Evol 32, 268–274, doi: 10.1093/molbev/mss005 (2015).
52. Ronquist, F. & Huelsenbeck, J. P. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19, 1572–1574, doi: 10.1093/bioinformatics/btg180 (2003).
53. Miller, M. A., Pfeiffer, W. & Schwartz, T. In 2010 Gateway Computing Environments Workshop (GCE 2010). 1–8 (Institute of Electrical and Electronics Engineers, 2010).
54. Rambout, A. & Drummond, A. Tracer v1.4: MCMC trace analysis tools. See http://tree.bio.ed.ac.uk/software/tracer/PMC [PubMed] (2007).
55. Goloboff, P. A., Farris, J. S. & Nixon, K. C. TNT, a free program for phylogenetic analysis. Cladistics 24, 774–786 (2008).
56. Drummond, A. J. & Rambout, A. BEAST: Bayesian evolutionary analysis by sampling trees. Bmc Evol Biol 7 (2007).
57. Hamilton, K. Homoptera. Insects from the Santana Formation. Lower Cretaceous of Brazil, 82–122 (1990).
58. Hamilton, K. Lower Cretaceous Homoptera from the Koonwarra fossil bed in Australia, with a new superfamily and synopsis of Mesozoic Homoptera. Ann Entomol Soc Am 85, 423–430 (1992).
59. Ho, S. Y. W. & Phillips, M. J. Accounting for Calibration Uncertainty in Phylogenetic Estimation of Evolutionary Divergence Times. Syst Biol 58, 367–380, doi: 10.1093/sysbio/syp035 (2009).
60. Ibarra Vinent, M. A. & MacPhee, R. D. E. Age and paleogeographical origin of Dominican amber. Science 273, 1850–1852, doi: 10.1126/science.273.5283.1850 (1996).
61. Yu, Y., Harris, A. J., Blair, C. & He, X. RASP (Reconstruct Ancestral State in Phylogenies): a tool for historical biogeography. Mol Phylogenet Evol 87, 46–49 (2015).

Acknowledgements
We thank James Zahniser, Lin Lu, Brendan Morris, Andrew Sweet and Christian Millan-Hernandez for assistance in the molecular lab. This study was supported by the National Natural Science Foundation of China (31273234, 31420103911), the Ministry of Science and Technology of China (2015FY20300), the US National Science Foundation (DEB 1239788) and China Scholarship Council.
Author Contributions
All authors conceived and designed the experiments. Y.W. performed the experiments and analyzed the data. All authors wrote the paper cooperatively.

Additional Information
Supplementary information accompanies this paper at http://www.nature.com/srep

Competing Interests: The authors declare no competing financial interests.

How to cite this article: Wang, Y. et al. Phylogeny and historical biogeography of leafhopper subfamily Evacanthinae (Hemiptera: Cicadellidae) based on morphological and molecular data. Sci. Rep. 7, 45387; doi: 10.1038/srep45387 (2017).

Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.