Determination of Carcinogenic Toluena Detox Mass In Printing Industrial Workers In Surabaya

Rista Novianti
148005-Airlangga University

abdul rohim tualeka
Universitas Airlangga https://orcid.org/0000-0003-1855-4813

Ng Yee Guan (✉️ shah86zam@upm.edu.my)
37449-Putra Malaysia University

Research

Keywords: CYP2E1, detoxification, glutathione, toluene

Posted Date: September 14th, 2020

DOI: https://doi.org/10.21203/rs.3.rs-67823/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License.
Read Full License
Abstract

Background

This study aims to calculate the intake of foods rich in CYP2E1 enzymes and glutathione to increase toluene detoxification.

Methods

The research design used was a cross sectional method. The research location is printing industry in Surabaya, East Java. The number of respondents was 30 workers of the printing industry. The calculated variables included body weight, work duration (years), work frequency per week (days), average workday (hours) of the respondent and benzene concentration. After all variables were obtained, respiration rate and carcinogenic detox benzene food intake per respondent were determined.

Results

All respondents who were at work showed benzene concentrations below the threshold value (TLV). Foods containing CYP2E1 enzyme included beef liver, salmon and fish oil while food with glutathione included grapes, avocados and asparagus.

Conclusion

Adequacy levels of CYP2E1 enzymes and glutathione are different and varied. The effective dose required by each respondent depends on body weight, length of work, and toluene concentration at work. In sum, the greater the toluene concentration, the greater the dietary needs which are rich in enzymes and CYP2E1 glutathione. Each respondent can choose benzene detox food depending on their needs and appetite.

Background

Almost every workplace has a threat in the form of hazardous chemicals. One source of danger is found in printing industry\(^1\). One of the chemicals in question is toluene\(^2\). Toluene is safe for the environment and health if it does not exceed the threshold value of 50ppm\(^3\).

In printing, toluene is used as an organic solvent used in various processes\(^4\). Aside from being a solvent, the volatile property makes it desirable as a fast-drying and useful printing material on high-speed printing presses. Its use dominates work activities (75%). The biggest use of toluene (around 50–200 ppm or 188 mg / m\(^3\)) is done in the automatic cleaning process\(^5\).
Toluene (C₆H₅CH₃) is an aromatic hydrocarbon group with the physical properties of colorless, sweet-smelling and spicy liquid like benzene. Toluene is soluble in diethyl ether, ethanol, benzene, chloroform, glacial acetic acid, carbon disulfide and acetone, insoluble in cold water with water solubility of 0.561 g/L at 25 °C. Short-term toluene exposure occurs through inhalation, eye contact, skin contact and swallowing. In the long run this enters the body by inhalation. It causes damage to the liver and kidneys, peripheral nerve neuropathy, changes in the bone marrow, etc. This can happen if workers do not use Personal Protective Equipment (PPE) such as gloves and masks.

Activities to reduce or even eliminate toxins in chemical compounds in the body that usually use biotransformation. Biotransformation is a change in catalysts that are catalyzed by certain enzymes in living things. The aim is to convert nonpolar to polar, then hydrophilic so that it can be removed from the body. Biotransformation occurs in two phases. The first phase is the functional phase where the functional group matches the oxidation, reduction and hydrolysis reactions. Then the second phase is the phase of the conjugate reaction which involves several types of endogenous metabolites in the body in the endoplasmic reticulum.

This can be performed by using food as a detoxification. The food ingredients used need to contain certain substances, for example CYP2E1 enzyme and Glutathione. Foods that contain CYP2E1 include fish oil, salmon and beef liver. Foods that contain glutathione are asparagus, avocados and grapes. This is in line with a research conducted by Abdul Rohim Tualeka, et al in 2019 on Requirements Prediction for Toluene Detox with Foods Intake Rich in CYP2E1 Enzyme and Glycine to Prevent Nerve and Kidney Damage at Shoe Home Industry Workers in Romokalisari Surabaya, which concluded that the level of adequacy everyone's enzymes and glycine CYP2E1 are different and varied. This suggests that the greater the concentration of toluene, the greater the food requirements which are rich in the enzyme and CYP2E1 glycine. Even so, research using the food approach as a detoxification of toluene is limited.

Based on the background above, this study aims to calculate the intake of foods rich in CYP2E1 enzymes, namely fish oil, salmon and beef liver as well as glutathione-rich foods such as asparagus, avocados and grapes as detoxification of toluene in the printing industry in Surabaya. An effective dose is also needed for detoxification of toluene.

Method

The research design used was a cross sectional method. Research subjects were workers in the printing industry in Surabaya with a total sample of 30 respondents. The variables calculated were toluene concentrations, average work per day (hours) of respondents, duration of work (years), working time per week (days) and body weight. Measurement of toluene concentrations in the work environment used the NIOSH 1501 (2003) measurement method with aromatic hydrocarbon sampling methods. Air samples were taken using a personal calibrated sampler pump. The filter used to absorb toluene vapor is SKC 226-01 charcoal tube. Air samples were analyzed using Gas Chromatography-Flame Ionization Detector (GC-
Measurements of the average work day, duration of work per year and working time per week were performed by using in-depth interviews with respondents. Measurement of respondent's body weight used manual measurement method with body scale. Willingness to participate in the study was made in writing through informed consent and this study had received prior ethical approval by the Ethics Committee of the Faculty of Public Health, Airlangga University.

After all variables were obtained, the respiratory rate and toluene intake of carcinogens per respondent were determined. Below is the formula for toluene carcinogenic intake per respondent per day:

\[
\text{Carcinogenic intake} = \frac{C \times R \times \text{tE} \times \text{I} \times \text{Dt}}{W_b \times 70 \times 365}
\]

- \(C \) : Toluene Concentration (mg /m\(^3\))
- \(R \) : Respiratory rate (m\(^3\)/hour)
- \(\text{Dt} \) : Duration of work (years)
- \(\text{I} \) : Working time per week (days)
- \(\text{tE} \) : Average work time per day (hour)
- \(W_b \) : Weight (kg)

Effective doses of foods rich in CYP2E1 enzymes and glutathione are obtained by manual count using the formula below:

\[
\text{Detox enzyme mass per day} = \frac{\text{Intake tosinogen}}{\text{Mr Toluena}} \times \text{Mr enzyme}
\]

Mr Toluena = 92.14

Mr CYP2E1 = 56.849,00

Mr Glutation = 307,321

After the detox enzyme mass value per respondent per day was obtained, the mass calculation of toluene detox food per day was calculated using the following formula:

\[
\text{Detox food mass per day} = \left(\frac{100}{\text{enzymes in detox foods}}\right) \times \text{mass of detox enzymes per day}
\]

Below are the enzymes contained in 100 grams of food
CYP2E1 enzymes in 100 grams of food13

- Beef Heart = 5,6
- Salmon = 6,6
- Fish oil = 7,2

Glutathione in 100 grams of food14

- Avocado = 27,7
- Grape = 7,9
- Asparagus = 28,3

Results

Distribution of Toluene Concentrations in the Workplace

Figure 1 shows that 100\% of workers were in the workplace with toluene concentrations below TLV of 188 (mg / m3). This means that 30 respondents worked in a safe place from toluene.

Comparison between Toluene Concentration and Body Weight

Based on Figure 2, the person who has the biggest weight (responsiveness 12) that is 87 kg has the highest concentration (C) of toluene of 8092 mg / m3. The person with the lowest body weight (respondent R28) is 45 kg having an average concentration (C) of toluene which is 3,337 mg / m3.

Effective Doses of Foods Containing CYP2E1 Enzyme for Toluene Detox

Figure 3 shows that the effective dose or mass of food containing the highest CYP2E1 enzyme is in beef liver, while the lowest is in fish oil. The highest effective doses of fish oil, salmon and liver were 1,671 kg, 1,823 kg and 2,148 kg, respectively. This was experienced by respondent 14. The lowest effective doses of fish oil, salmon and beef liver foods all had the same mass of 0.001 kg. The lowest dose of food was found in respondents 8.

Effective Doses of Foods Containing Glutathione for Toluene Detox

Figure 4 shows that the effective dose or mass of food containing glutathione is highest in grapes, while the lowest is in asparagus. The highest effective dosages of asparagus, avocado and grape foods are respectively 0.0022981 kg, 0.0023479 kg and 0.0082324 kg, respectively. This was found in respondents 14. The lowest effective dose of asparagus, avocado and grapes was 0.0000011 kg, 0.0000011 kg and 0.0000040 kg. The lowest dose of food was found in respondents 8.

Discussion
Threshold Value (TLV), Weight, and Toluene Concentration

Analysis of the distribution diagram between toluene concentration and TLV shows that all respondents had toluene concentrations below TLV. The TLV for toluene concentration is in accordance with the Regulation of the Minister of Manpower and Transmigration Number PER 13/MEN/X/2011 concerning Threshold Value of Physical and Chemical Factor Values in the Workplace is 50 ppm (188, 43 mg / m3)\(^{17}\).

Comparative diagram analysis between toluene concentration and respondent's weight shows that the respondent with the highest weight has the highest toluene concentration, while the respondent with the smallest weight has average toluene concentration. Research based on the research of Faradisha, et al in 2019 shows that toluene compounds are lipophilic (fat soluble) fats will bind toluene into residues in the body. It is assumed that the more obese respondents affected by toluene, the higher the health risk due to exposure toluene\(^ {18}\). In sum, there is lower toluene toxicity in obese people than in low weighted people.

Detoxification of Toluene by Foods Rich in CYP2E1 Enzymes

The negative impact of toluene exposure on printing workers can be reduced or even eliminated, one way is by detoxifying the body's poisons. One detoxification method that can be used is food. Several publications using cells, animals, and clinical studies have shown that food-based components and nutrients can modulate the process of conversion and excretion of toxins from the body\(^ {19}\). About 25–40% of toluene is inhaled by humans, then expelled by expiration. The remaining 60–75% are metabolized in the liver to benzyl alcohol.

Toluene will be converted to benzyl alcohol through a hydroxylation reaction. The reaction was carried out by members of the cytochrome P450 (CYP) in the liver, namely CYP1A1, CYP1A2, CYP2B6, CYP2C8, and CYP2E1\(^ {20}\). Then, benzyl alcohol will be metabolized into benzaldehyde by CYP and alcohol dehydrogenase enzymes through oxidation reactions. CYP is more active than the alcohol dehydrogenase enzyme. A small amount of benzaldehyde will be converted to benzylmercapturic acid, while most of the other will be converted to benzoic acid. Benzoic acid will be metabolized to hippuric acid, which will be excreted through urine\(^ {21}\).

Consumption of suitable substances can detoxify toluene from the body, such as foods that contain the enzyme CYP2E1. High concentrations of the CYP2E1 enzyme are found in some foods such as beef liver, salmon and fish oil. The content of the CYP2E1 enzyme in 100 grams of beef liver is 5.6 mg, in 100 grams of salmon is 6.6 mg and 100 grams of fish oil is 7.2\(^ {22}\).

In Fig. 3, the effective dosage of each food is different depending on the individual's physical and toluene levels in his body. The higher the concentration of toluene, the higher the mass of toluene detoxification for beef liver, salmon and fish oil. This effective dose is also influenced by the weight and duration of work of the worker. This research is based on previous research, which states that it has a synergistic
relationship with the concentration of substances. Detox toluene food can be selected by each respondent based on their toluene concentration and taste. If the respondent is not interested in consuming beef liver, they can consume salmon, fish oil and vice versa. The consumption of each food can be arranged by each respondent and divided into several days according to the needs of the respondent's food intake.

Detoxification of Toluene by Foods Rich in Glutathione

The enzyme responsible for glutathione metabolism is the enzyme glutathione s-transferase (GST). It involves antioxidant responsive elements and xenobiotic response elements. Many foods upregulate this enzyme, including avocados, asparagus, grapes, broccoli, carrots, tomatoes, etc. Genetic, gender, and perhaps body weight variations can play a role in the effects of dietary factors on the GST enzyme.

In addition to foods containing the CYP2E1 enzyme, foods containing glutathione are also beneficial in this regard. High concentrations of glutathione are found in some foods such as avocados, asparagus and grapes. The content of glutathione in 27.7 grams of avocado, 100 grams of asparagus 28.3 and in 100 grams of wine is 7,9.

Based on the results of an effective dose of avocado, asparagus and grapes that the body needs to detox toluene from the body as shown in Fig. 4, the effective dose of each food differs depending on the individual's physical and toluene levels in his body. The higher the concentration of toluene, the higher the mass of toluene detoxification. This effective dose is also influenced by the weight and duration of work of the worker. Detox toluene food can be selected by each respondent based on their toluene concentration and taste. If the respondent is not interested in consuming avocados, they can consume asparagus, grapes and vice versa. The consumption of each food can be arranged by each respondent and divided into several days according to the needs of the respondent's food intake.

Conclusion

All respondents were at work with toluene concentrations below the threshold value (TLV). Food intake containing CYP2E1 enzymes (beef liver, salmon and fish oil) and glutathione (avocado, asparagus and grapes) is expected to increase toluene detoxification. The effective dose required by the respondent depends on body weight, length of work, and toluene concentration at work. The higher the concentration of toluene, the higher the food needs to contain the enzyme CYP2E1 and glutathione that the body needs. Weight and duration of work can also be other factors in individual income differences. Each respondent can choose food depending on their needs and appetites.

Abbreviations

C
Concentration
CYP
Cytochrome P450
Dt
Duration of work
GC-FID
Gas Chromatography-Flame Ionization Detector
GST
Glutathione s-transferase
I
Working time per week
PPE
Personal Protective Equipment
R
Respiratory rate
tE
Average work time per day
TLV
Threshold Value
Wb
Weight

Declarations

Acknowledgements

Thanks to Dr. Abdul Tualeka for data collection and processing. We also thank to Dr. Ng Yee Guan for the collaboration in writing this article. Don't forget we also thank to Airlangga University for providing financial support and all parties involved in the success of this research.

Ethics approval and consent to participate

This study was approved by the institutional Ethical Board of the Public Health, Airlangga University.

Consent for publication

Not applicable

Availability of data and material

The datasets generated and analysed during the current study are not publicly available due but are available from the corresponding author on reasonable request.

Competing interests
All authors have no conflicts of interest to declare

Funding

This is an article was supported by Public Health Faculty, Airlangga University.

Authors' contributions

Authors’ generated the initial idea for the study, data collection and processing. All authors provided critical input into the interpretation of the results, revisions to the manuscript and approved the final draft.

References

1. Prasasti C, Mukono J, Sudarmaji S. Toksikologi Logam Berat B3 dan Dampaknya terhadap Kesehatan. Jurnal Kesehatan Lingkungan Unair. 2006;2(2):3956.
2. Irmasari F. Kadar Toluene di Udara Lingkungan Kerja Berkorelasi terhadap Kadar Asam Hipurat Urine pada Pekerja Percetakan di Rungkut Surabaya. Jurnal Kesehatan Lingkungan. 2018;10:328–35.
3. Peraturan Menteri Kesehatan. Peraturan Menteri Kesehatan Nomor 70 Tahun 2016 tentang Standar Kesehatan Lingkungan Kerja Industri. Jakarta: Peraturan Menteri Kesehatan Republik Indonesia.
4. Decharat S. Urinary Hippuric Acid and Toluene Levels in Workers of Printing Factories in Thailand. *International Journal Of Occupational Hygiene* 2016, 85–92. http://ijoh.tums.ac.ir/index.php/ijoh/article/viewFile/228/265.
5. Agency for Toxic Substances and Disease Registry (ATSDR). Draft Toxicological Profile For Toluene 2015. http://www.atsdr.cdc.gov/phs/phs.asp?id=159&tid=29.
6. International Agency for Research on Cancer (IARC). *Summaries & Evaluations of Toluene* 1999. http://www.inchem.org/documents/iarc/vol71/030-toluene.html.
7. Pratamasari F, Setyopranoto I, Soebijanto S. Pajanan Toluene Udara dan Kejadian Neuropati Saraf Tepi di Percetakan Offset. Berita Kedokteran Masyarakat. 2016;32:359–66. https://doi.org/10.22146/bkm.8254.
8. Sentra Informasi Keracunan. Nasional (Sikernas). Toluene. Jakarta. Pusat Informasi Obat dan Makanan, Badan POM RI, 2012.
9. Ruus A, Sandvik M, Ugland KI, Skaare JU. *Aqu Tox 04 PROD POM* 2002, 61:1–15. papers3://publication/uuid/E9AA5031-E1B4-47FD-AE4B-97B453C9634F.
10. James MO, Sacco JC, Faux LR. Effects of food natural products on the biotransformation of PCBs. *Environ Toxicol Pharmacol*. 2008;25(2):211–7. https://doi.org/10.1016/j.etap.2007.10.024.
11. Marganda S, Ashar T, Nurmaini N. The Effect of Toluene Exposure on Central Nervous Disorder among Printing Workers. Indonesian Journal of Medicine. 2018;3:3:125–33. https://doi.org/10.26911/theijmed.2018.03.03.01.
12. Tualeka AR. Toksikologi Industri dan Risk Assessment 2013. Surabaya: Graha Ilmu Mulia.
13. Hodges RE, Minich DM. Modulation of Metabolic Detoxification Pathways using foods and food-derived components. *Journal of Nutrition and Metabolism* 2015, 1–23.

14. Minich DM, Brown BI. A Review of Dietary (Phyto) Nutrients for Glutathione Support. *Nutrients* 2019;11:9:1–20. https://doi.org/10.3390/nu11092073.

15. Tualeka AR, Rahmawati P, Ahsan A, Pathak Y, Russeng SS, Sukarmin S, Wahyu A. Requirement Prediction for Toluene Detox with Foods Intake Rich in CYP2E1 Enzyme and Glycine to Revent Nerve and Kidney Damage at Shoe Home Industry Workers in Romokalisari Surabaya. *Open Access Macedonian Journal of Medical Sciences*. 2019;7(11):1788–93. https://doi.org/10.3889/oamjms.2019.356.

16. Institut Nasional untuk Kesehatan dan Keselamatan Kerja (NIOSH). Hidrokarbon Aromatik. Metode 1501. Manual NIOSH tentang Metode Analisis (NMAM) Edisi Keempat 3, 2003.

17. Kementerian Tenaga Kerja dan Transmigrasi. Permenakertrans No. Per.13/MEN/X 2011 tentang Nilai Ambang Batas Faktor Fisika dan Faktor Kimia di Tempat Kerja. 2011:1–54.

18. Faradisha J, Tualeka AR, Widajati N, Mulyono. Analysis of Correlation Between Toluene Exposure and Health Risk Characterization on Printing Worker of Plastic Bags Industry. *Indian Journal of Public Health Research Development*. 2019;10(6):411–5. https://doi.org/10.5958/0976-5506.2019.01307.

19. Laham S, Potvin M. Biological Conversion of Benzaldehyde to Benzylmercapturic Acid in the Sprague-Dawley Rat. *Drug Chem Toxicol* 1987, 10:3–4, 209 – 25. https://doi.org/10.3109/01480548709042983 PMid:3428183.

20. 10.1016/j.toxlet.2003.11.003
Inoue O, Kanno E, Kasai K, Ukai H, Okamoto S, Ikeda M Benzylmercapturic Acid is Superior to Hippuric Acid and O-cesol as a Urinary Marker of Occupational Exposure to Toluena. *Toxicology Letters* 2004, 147:2, 177 – 86. https://doi.org/10.1016/j.toxlet.2003.11.003 PMid:14757321.

21. Hamazaki T, Okuyama H, Ogushi Y, Hama R. Towards a Paradigm Shift in Cholesterol Treatment. A Re-examination of the Cholesterol Issue in Japan. *Ann Nutr Metab.* 2015;66(suppl 4):1–116. https://doi.org/10.1159/000381654.

22. Haviland AW. Antropology 4th 1985, Number 2. Jakarta: Erlangga.

23. Minich DM, Hodges RE. Modulation of Metabolic Detoxification Pathways Using Foods and Food-Derived Components: A Scientific Review with Clinical Application. *Journal of Nutrition Metabolism* 2015, 760689. http://doi.org/10.1155/2015/760689.

24. Tualeka AR, Rahmawati P, Ahsan, Russeng SS, Sukarmin, Wahyu A. Prediction of The Needs for Benzene Detox with Foods Intake Containing CYP2E1 Enzyme, Sulfation, and Glutathione at Gas Stations Pancoranmas Depok, Indonesia. *Indian Journal of Forensic Medicine Toxicology*. 2020;14(1):118–23.

25. Cadenas E, Jones PD. Bioavailability of Glutathione. In: Cadenas E, Packer L, editors. Handbook of Antioxidants. *2nd.Ed*. New York: Marcel Dekker, Inc.; 2002. pp. 549–64.
Figures

Figure 1

Toluene C Distribution Diagram (mg / m³)
Figure 2

Comparison between Toluene Concentration and Body Weight

Figure 3

Comparison between Toluene Concentration and Body Weight
Effective Doses of Foods Containing the CYP2E1 Enzyme for Toluene Detox

Figure 4

Effective Doses of Foods Containing Glutathione for Toluene Detox