FORMULATION AND IN VITRO EVALUATION OF LIPOSOMAL DRUG DELIVERY SYSTEM OF METFORMIN HCL

A Dissertation submitted to

THE TAMIL NADU Dr. M.G.R. MEDICAL UNIVERSITY

CHENNAI – 600032

In partial fulfillment of the requirements for the award of the Degree of

MASTER OF PHARMACY

IN

PHARMACEUTICS

Submitted by

M. ANITHA RANI

Reg. No. 261610351

Under the guidance of

Mr. L. SUBRAMANIAN, M.Pharm., (Ph.D.,)

Associate Professor

Department of Pharmaceutics

SANKARALINGAM BHUVANESWARI COLLEGE OF PHARMACY

ANAIKUTTAM, SIVAKASI – 626130

OCTOBER 2018
CERTIFICATES
Mr. L. Subramanian, M.Pharm.,(Ph.D.,)

Associate professor,

Department of Pharmaceutics,

Sankaralingam Bhuvanesvari College of Pharmacy,

Anaikuttam, Sivakasi – 626130.

TamilNadu.

CERTIFICATE BY THE GUIDE

This is to certify that the dissertation entitled, “FORMULATION AND IN VITRO EVALUATION OF LIPOSOMAL DRUG DELIVERY SYSTEM OF METFORMIN HCl” submitted by M. Anitha Rani (Reg. No.261610351) to The Tamil Nadu Dr. M.G.R Medical University, Chennai for the award of degree of “Master of Pharmacy in Pharmaceutics” is a bonafide research work carried out at the Department of Pharmaceutics, Sankaralingam Bhuvaneswari College of Pharmacy, Sivakasi under my guidance and supervision. The content of this dissertation in full or in parts have not been submitted to any degree or diploma.

Place: Anaikuttam

Mr. L. Subramanian, M.Pharm.,(Ph.D.,)

Date:
CERTIFICATE BY THE HEAD OF THE DEPARTMENT

This is to certify that the dissertation entitled, “FORMULATION AND IN VITRO EVALUATION OF LIPOSOMAL DRUG DELIVERY SYSTEM OF METFORMIN HCI” submitted by M. Anitha Rani (Reg. No.261610351) to The Tamil Nadu Dr. M.G.R Medical University, Chennai for the award of degree of “Master of Pharmacy in Pharmaceutics” is a bonafide research work carried out at the Department of Pharmaceutics, Sankaralingam Bhuvaneswari College of Pharmacy, Sivakasi under the guidance and supervision of Mr.L.Subramanian, M.Pharm., (Ph.D.). The content of this dissertation in full or in parts have not been submitted to any degree or diploma.

Place: Anaikuttam
Dr. M. Rajesh, M.Pharm., Ph.D.,

Date:
Dr. P. Solairaj, M.Pharm., Ph.D.,

Principal,

Sankaralingam Bhuvaneswari College of Pharmacy,
Anaikuttam, Sivakasi – 626130,
Tamil Nadu.

ENDROSMENT BY THE PRINCIPAL

This is to certify that the dissertation entitled, “FORMULATION AND IN VITRO EVALUATION OF LIPOSOMAL DRUG DELIVERY SYSTEM OF METFORMIN HCl” submitted by M. Anitha Rani (Reg. No.261610351) to The Tamil Nadu Dr. M.G.R Medical University, Chennai for the award of degree of “Master of pharmacy in Pharmaceutics” is a bonafide research work carried out at the Department of Pharmaceutics, Sankaralingam Bhuvaneswari College of Pharmacy, Sivakasi under the guidance and supervision of Mr. L. Subramanian, M.Pharm., (Ph.D.).

The content of this dissertation in full or in parts have not been submitted to any degree or diploma.

Place: Anaikuttam Dr. P. Solairaj, M.Pharm., Ph.D.,

Date:
This is to certify that the dissertation entitled, “FORMULATION AND IN VITRO EVALUATION OF LIPOSOMAL DRUG DELIVERY SYSTEM OF METFORMIN HCl” is a bonafide work done by M. Anitha Rani (Reg. No.261610351) in the Department of Pharmaceutics, Sankaralingam Bhuvaneswari college of Pharmacy, Sivakasi in partial fulfillment of the university rules and regulations for the award of “Master of Pharmacy in Pharmaceutics” during the academic year 2018.

Name & Signature of the Guide:

Name & Signature of the Head of the Department:

Name & Signature of the Principal:
EVALUATION CERTIFICATE

This is to certify that the dissertation entitled, “FORMULATION AND IN VITRO EVALUATION OF LIPOSOMAL DRUG DELIVERY SYSTEM OF METFORMIN HCl” is a bonafide work done by M.Anitha Rani (Reg.No.261610354) in the Department of Pharmaceutics, Sankaralingam Bhuvaneswari college of Pharmacy, Sivakasi in partial fulfillment of the university rules and regulations for the award of “Master of Pharmacy in Pharmaceutics" during the academic year 2018

Internal Examiner

External Examiner
ACKNOWLEDGEMENT
ACKNOWLEDGEMENT

I take this privilege and pleasure to acknowledge the contributions of many individuals who have been inspirational and supportive throughout my work undertaken and endowed me with most precious knowledge to see success in my attempt. My work bears the imprint of all those peoples.

First of all I thank Almighty God is the source of all wisdom and knowledge for the successful completion of this dissertation work.

I wish to express my deepest thanks, heartfelt indebtedness and regards to my father Mr. S. Maria Antony, mother Mrs. M. Jebarani and sister Mrs. M. Jenefa Great, M.Sc., B. Ed., for giving your love and encouragement to me for proved myself.

I submit my sincere thanks to our most respected correspondent Mr. S. Sri ram Ashok, B.E., for providing necessary facilities to carry out this dissertation work successfully.

With sincere note of gratitude, I wish to express my deepest thanks to my respected institute guide Mr. L. Subramanian, M.Pharm. (Ph.D.), Department of pharmaceutics, S.B. College of Pharmacy, sivakasi. His valuable guidance, patience and support leads me to complete my dissertation work successfully.

I sincerely and specially thanks Dr. P. Solairaj, M.Pharm, Ph.D., Principal, S.B. College of Pharmacy of our esteemed Institution for his valuable guidance. Encouragement and valuable support during my dissertation work.
I wish to express my sincere thanks to Dr. M. Rajesh, M.Pharm., Ph.D., Professor and Head, Department of Pharmaceutics, S.B. College of Pharmacy, Sivakasi, for his valuable support.

I am thankful to Dr. R. Sutharsingh, M.Pharm., Ph.D., Vice Principal and HOD of Pharmacognosy, S.B. College of Pharmacy for his help and suggestions during my dissertation work.

I am equally thankful to Dr. S. Palanichamy, M.Pharm., Ph.D., Director, Department of Pharmaceutics, S.B. College of Pharmacy for his help and suggestions during my dissertation work.

I honestly and deeply thankful to Mr. T. Rajeshsegaran, M.Pharm., Asst. Professor, Department of Pharmaceutics, S.B. College of pharmacy for his timely guidance in encouragement my knowledge and for the abundant morale support leads me to complete my dissertation work successfully.

I am highly thankful to Mr. S.C. Rajesh, M.Pharm., Asst. Professor, Department of Pharmaceutical Analysis and Mr. M. Ramanathan, M.Pharm., Asst. Professor, Department of Pharmaceutics, S.B. College of Pharmacy for their guidance and supports the successful completion of the dissertation work.

Also extend my special thanks to Laboratory Assistant Mrs. R. Lakshmi, D.Pharm., Mrs. Muthupandi, Mrs. Yasmin kani, Mrs. V.P. Shanthi and Mrs. Padma priya of the Pharmaceutics department for wonderful help and also I thank my teaching and nonteaching and administrative staffs for their co-operation.
“Friendship is the secret of my energy”

I am not having words for my awesome M.Pharm friends like J. Joslin Jenishiya, I. Meerammydeen, and G. Hariharaputhraayyanar for their cheerful company, patience and encouragement throughout my post-graduation.

I also special thanks to Master. P. Ryan Sam, Mr. B. Pradeep sathya kumar, M.E., (Ph.D)., Mr. A. John Alphones, B.C.A., Mr. M. Anthony selvam, B.Sc., and Ms. S. Srimadhu, M.Sc., for their wonderful help and encouragement.

I also extended my special thanks to all my well-wishers for their most enjoyable company and sincere suggestion in making my dissertation a success.

“My acknowledge is incomplete without a heartfelt thanks to all those people who are directly or indirectly helped and contributed to this dissertation”

M. Anitha Rani

Place: Reg.No.261610351
DEDICATED TO
ALMIGHTY GOD,
OUR BELOVED PARENTS
AND TEACHERS
NDDS = Novel Drug Delivery system
HCl = Hydro chloride
nm = Nanometer
\(\mu m \) = Micrometer
R.E.S = Reticulo endothelial system
BBB = Blood Brain Barrier
SUVS = Small unilamellar vesicles
DNA = Deoxyribonucleic acid
DEAE = Diethylaminoethyl cellulose
MLV = Multilamellar Large Vesicles
UV = Unilamellar vesicles
MUV = Medium sized unilamellar vesicles
(LUV = Large unilamellar vesicles
GUV = Giant unilamellar vesicles
OLV = Oligolamellar vesicles
MVV = Multivesicular vesicles
LET = Liposomal encapsulation technology
REV = Reverse phase evaporation vesicles
CMC = Critical micelle concentration
UV = Ultra violet spectrometer
pH = Potential of hydrogen
FT-IR = Fourier transform infrared spectroscopy
IV = Intravenous
GIT = Gastro intestinal tract
% = Percentage
CONTENT
S. No.	CONTENTS	Page No.
1.	INTRODUCTION	1-19
2.	AIM AND OBJECTIVES OF WORK	20
3.	PLAN OF WORK	21
4.	REVIEW OF LITERATURE	22-36
5.	MATERIALS AND METHODS	37
6.	LIST OF CHEMICALS	38
7.	DRUG PROFILE	39-42
8.	EXCIPIENT PROFILE	43-52
9.	LIST OF EQUIPMENTS	53
10.	METHODOLOGY	54-61
11.	RESULT AND DISCUSSION	62-85
12.	SUMMARY AND CONCLUSION	86
13.	BIBLIOGRAPHY	87-93
Table No.	TITLE	Page No.
----------	--	----------
1.	List of chemicals	1-19
2.	List of equipments	20
3.	Standard curve data of Metformin HCl using phosphate buffer pH 6.8	21
4.	Formulation of Metformin HCl liposomes	22-36
5.	FT – IR Spectrum of pure Metformin HCl	37
6.	FT – IR Spectrum of cholesterol	38
7.	FT – IR Spectrum of soya lecithin	39-42
8.	FT – IR spectrum of combination of Metformin HCl, cholesterol and soya lecithin	43-52
9.	FT – IR spectrum of pure Metformin HCl, cholesterol, soya lecithin and combination of Metformin HCl, cholesterol and soya lecithin	53
10.	Particle size of all the formulations of Metformin HCl liposomes	54-61
11.	Cumulative percentage drug released of Metformin HCl from liposomes	62-85
12.	After stability study of Percentage drug entrapment of liposomes Metformin HCl liposomes compared with Percentage drug entrapment of immediately after preparation.	86
13.	*In vitro* drug release data of all the Metformin HCl liposome formulations after stability study, compared with before stability	87-93
Figure No.	Title	Page No.
-----------	--	----------
1.	Mechanism of liposome formation	9
2.	Classification of liposome formation	11
3.	Methods of liposome preparation	12
4.	Standard curve of Metformin HCl	56
5.	FT – IR spectrum of pure Metformin HCl	64
6.	FT – IR spectrum of cholesterol	65
7.	FT – IR spectrum of soya lecithin	66
8.	FT – IR spectrum combination of Metformin HCl, cholesterol and soya lecithin	67
9.	Microscopic image of F 1 formulation	69
10.	Microscopic image of F 2 formulation	69
11.	Microscopic image of F 3 formulation	69
12.	Microscopic image of F 4 formulation	69
13.	Microscopic image of F 5 formulation	69
14.	Microscopic image of F 6 formulation	69
15.	Particle size range of F 1 formulation	71
16.	Particle size range of F 2 formulation	72
17.	Particle size range of F 3 formulation	73
18.	Particle size range of F 4 formulation	74
19.	Particle size range of F 5 formulation	75
20.	Particle size range of F 6 formulation	76
21.	Comparative cumulative percentage drug release of Metformin HCl liposome formulations of F 1, F 2 and F 3	79
22.	Comparative cumulative percentage drug release of Metformin HCl liposome formulations of F 4, F 5 and F 6	80
23.	F 1, Immediately after preparation (45x)	82
24.	F 1, After stability study at 4ºC (45x)	82
LIST OF FIGURES

Figure	Description	Page
25.	F 1, After stability study at room temperature (45x)	82
26.	F 2, Immediately after preparation (45x)	82
27.	F 2, After stability study at 4°C (45x)	82
28.	F 2, After stability study at room temperature (45x)	82
29.	F 3, Immediately after preparation (45x)	82
30.	F 3, After stability study at 4°C (45x)	82
31.	F 3, After stability study at room temperature (45x)	82
32.	F 4, Immediately after preparation (45x)	83
33.	F 4, After stability study at 4°C (45x)	83
34.	F 4, After stability study at room temperature (45x)	83
35.	F 5, Immediately after preparation (45x)	83
36.	F 5, After stability study at 4°C (45x)	83
37.	F 5, After stability study at 4°C (45x)	83
38.	F 6, Immediately after preparation (45x)	83
39.	F 6, After stability study at 4°C (45x)	83
40.	F 6, After stability study at room temperature (45x)	83
41.	*In vitro* drug release data of all the Metformin HCl liposome formulations after stability study, compared with before stability	85
INTRODUCTION

Novel Drug Delivery System:

Novel Drug Delivery system (NDDS) refers to the approaches, formulations, technologies, and systems for transporting a pharmaceutical compound in the body as needed to safely achieve its desired therapeutic effects. NDDS is a system for delivery of drug other than conventional drug delivery system. NDDS is a combination of advance technique and dosage form which are far better than conventional dosage form. The aim of NDDS is to provide a therapeutic amount of drug to the appropriate site in the body to accomplish promptly and then maintain the desired drug concentration. NDDS combining polymer science, pharmaceutics and molecular biology.

ADVANTAGES OF NOVEL DRUG DELIVERY SYSTEM:

i. Optimum dose at the right time and right location

ii. Efficient use of expensive drugs, excipients and reduction in production cost

iii. Improves the therapy by increasing the duration of action and reducing the side effects.

iv. Increases the patient compliance and provides convenient route of administration.

v. Achieve the targeting of drugs to a specific sites which reduces the unwanted side effects and obtain maximum efficacy.

vi. Reduces the dose and thus reduces the side effects of drugs.

Types of novel drug delivery systems:

There are number of novel drug delivery systems are available. They are

1. Hydrogels

2. Colloidal drug carrier systems

a) Micelles
b) Microspheres

c) Nanoparticles

d) Liposomes and neosomes

3. Mucoadhesives

4. Transdermal drug delivery

5. Ocular drug delivery

6. Nasal drug delivery

1. Hydrogels:

 Hydrogels are three dimensional hydrophilic polymeric networks capable of absorbing large amount of water or biological fluids. These networks are composed of homopolymers or copolymers and are insoluble because of the presence of chemical or physical crosslinks like entanglements or crystallites. The hydrogels exhibit thermodynamic compatibility with water which allows them to swell in aqueous medium. They are used to control the drug release in reservoir based controlled release system or as carriers in swellable and swelling control release devices\(^4\).

2. Colloidal Drug Carrier Systems:

 Colloidal drug carrier systems like micellar solutions, vesicle and liquid crystal dispersions, microspheres, nanoparticles, consisting of small particles, ranging from 10 nm to 400 nm diameter. They show great promise as drug delivery systems. When developing these formulations the aim is to obtain systems with optimized drug loading and release properties, long shelf life and low toxicity\(^4\).

a) Micelles:

 Micelles formed by the self-assemble of amphiphile block copolymers in aqueous solutions. The size ranges from 5 to 50 nm. They will provide grate interest in drug delivery applications. The drugs can be physically entrapped in the core of block
co polymer micelle and transported at concentration that can exceed their intrinsic water solubility4.

b) Microspheres:

Microspheres are the delivery systems that contain a matrix of the polymer in which the drug in micron size is uniformly dispersed6. It comprises of small spherical particles, with diameters in the micrometer range, typically 1µm to 1000µm5. Microcapsules are those where the drug is coated with the polymer4. The microcapsules and microspheres prolong drug release whereas microspheres are used for drug targeting4.

c) Nanoparticles:

The size ranges from 10 to 1000 nm. They can absorb and encapsulate a drug thus protecting it from chemical and enzymatic degradation. The nanocapsules are vesicular systems in which the drug is confined to a cavity surrounded by a unique polymer membrane. Nanospheres are matrix systems in which the drug is physically and uniformly dispersed. Nanoparticles as drug carriers will be formed from both biodegradable and non-biodegradable polymers. They will provide massive advantages regarding drug targeting, delivery, and release4. Especially, used for the delivery of lipophilic compounds5.

d) Liposomes and Niosomes:

Liposomes are concentric bi-layered vesicles in which aqueous volume is entirely enclosed by a membranous lipid bi-layer mainly composed of natural or synthetic phospholipids. The liposomes are spherical particles that encapsulate the solvents which are freely floating in the interior5. Amphiphillic and lipophilic molecules are solubilised with in the phospholipid bi layer according to their affinity towards phospholipids. Presence of non-ionic surfactant instead of phospholipids in the formation of bilayers results in the formation of neosomes4.

3. Mucoadhesive Systems:

Mucoadhesives are synthetic or natural polymers that interact with the mucus layer covering the mucosal epithelial surface and mucin molecules. They can adhere to the gastric mucosa or the buccal mucosa. This concept has altered the possibility that these polymers can be used to overcome physiological barriers in long term drug
delivery. This mucoadhesive drug delivery system gives more effective and safe treatment not only for topical disorders but also for systemic problems4.

4. Transdermal Drug Delivery:

Transdermal drug delivery is defined as self-contained, discrete dosage forms which, when applied to the intact skin, deliver the drug, through the skin at controlled rate to the systemic circulation6. If the skin is the site of action then high concentration of drugs can be localized at the skin, which results in reducing the systemic drug levels and also reducing the systemic side effects. It is an alternative route for the delivery of systemically acting drugs. This route have several advantages when compared with oral drug administration. It bypasses the liver there by the dose is reduced and the side effects are minimized4.

5. Ocular Drug Delivery:

Ocular drug delivery is the one of the most challenging drug delivery system. This field has improved significantly over the past 20 years. The improvements have largely focused on maintaining the drug in eyes for an extended period of time unlike conventional eye drops4.

6. Nasal Drug Delivery:

The nasal route appears to be an alternative to parenterals for administrating drugs intended for systemic effects. The nasal route provides rich vascularity high permeable structure for absorption. It avoids hepatic first pass metabolism. Proteins such as insulin are reported to have fast and sustained action when administered through the nasal route4.
LIPOSOMES-An Introduction

Liposomes are colloidal, vesicular structure composed of one or more bilayers surrounding an equal number of aqueous compartment. Liposomes are small artificial vesicles of spherical shape that can be created from cholesterol and natural nontoxic phospholipids. Due to their size and hydrophobic and hydrophilic character (besides biocompatibility), liposomes are promising systems for drug delivery. The sphere like shell encapsulated a liquid interior which contain substances such as peptides, protein, hormones, enzymes, antibiotics, anti-fungal and anti-cancer agents.

Liposome properties differ considerably with lipid composition, surface charge, size, and the method of preparation. Furthermore, the choice of bilayer components determines the ‘rigidity’ or ‘fluidity’ and the charge of the bilayer. For instance, unsaturated phosphatidylcholine species from natural sources (egg or soybean phosphatidylcholine) give much more permeable and less stable bilayers, whereas the saturated phospholipids with long acyl chains (for example, dipalmitoylphosphatidylcholine) form a rigid, rather impermeable bilayer structure.

It has been displayed that phospholipids impulsively form closed structures when they are hydrated in aqueous solutions. Such vesicles which have one or more phospholipid bilayer membranes can transport aqueous or lipid drugs, depending on the nature of those drugs. Because lipids are amphipathic (both hydrophobic and hydrophilic) in aqueous media, their thermodynamic phase properties and self-assembling characteristics influence entropically focused confiscation of their hydrophobic sections into spherical bilayers. Those layers are referred to as lamellae.

Liposomes particle sizes ranges from 30 nm to several micrometers. They consist of one or more lipid bilayers surrounding aqueous units, where the polar head groups are oriented in the pathway of the interior and exterior aqueous phases. On the other hand, self-aggregation of polar lipids is not limited to conventional bilayer structures which rely on molecular shape, temperature, and environmental and preparation conditions but may self-assemble into various types of colloidal particles.

Advantages of Liposomes:
Some of the advantages of liposome are as follows:
1) It can carry both water and lipid soluble drugs.
2) Provides selective passive targeting to tumor tissues (liposomal doxorubicin).
INTRODUCTION

3) Liposomes increased efficacy and therapeutic index of drug (actinomycin-D).
4) Liposome increased stability via encapsulation.
5) Liposomes are non-toxic, flexible, biocompatible, completely biodegradable, and non-immunogenic for systemic and non-systemic administrations.
6) Liposomes reduce the toxicity of the encapsulated agent (amphotericin B, Taxol).
7) Liposomes help reduce the exposure of sensitive tissues to toxic drugs.
8) Site avoidance effect.
9) Flexibility to couple with site-specific ligands to achieve active targeting.
10) Improved pharmacokinetic effects (reduced elimination, increased circulation life times).
11) It provide sustained release.
12) It can be administered through various routes.
13) It engenders incorporate micro and macro molecules.
14) It also act as reservoir of drugs.
15) Liposomes can modulate the distribution of drug.
16) It direct interaction of the drug with cell.

Disadvantages of Liposomes:

Some of the disadvantages of liposome are as follows8,11:

1) Low solubility.
2) Sometimes phospholipid undergoes oxidation and hydrolysis-like reaction.
3) Short half-life.
4) Leakage and fusion of encapsulated drug/molecules.
5) Production cost is high.
6) Fewer stables.
7) Quick uptake by cells of reticuloendothelial system (R.E.S).
8) Allergic reactions may occur to liposomal constituents.
9) Problem to targeting to various tissues due to their large size.

Application of Liposomes:

Liposomes for Brain Targeting:

The biocompatible and biodegradable behavior of liposomes have recently led to their exploration as drug delivery system to brain. Liposomes with a small diameter (100 nm) as well as large diameter undergo free diffusion through the Blood Brain
Barrier (BBB). However it is possible that a small unilamellar vesicles (SUWS) coupled to brain drug transport vectors may be transported through the BBB by receptor mediated or absorptive mediated transcytosis13.

Liposome in Eye Disorders:

Liposome has been widely used to treat disorder of both anterior and posterior segment. The disease of eye includes dry eyes, keratitis, corneal transplant rejection, uveitis, endophthalmitis and proliferative vitre retinopathy. Retinal diseases are leading cause of blindness in advanced countries. Liposome is used as vector for genetic transfection and monoclonal antibody directed vehicle. The recent techniques of the treatment like applying of focal laser to heat induced release of liposomal drugs and dyes are used in the treatment of selective tumor and neo-vascular vessels occlusion, angiography, retinal and choroidal blood vessel stasis13.

Liposome for Respiratory Drug Delivery System:

Liposome is widely used in several types of respiratory disorders. The recent use of liposome for the delivery of DNA to the lung means that a greater understanding of their use in macromolecular delivery via inhalational is now emerging. Much of this new knowledge, including new lipids and analytical techniques, can be used in the development of liposome based protein formulations. For inhalation of liposome the liquid or dry form is taken and the drug release occurs during nebulization. Drug powder liposome has been produced by milling or by spray drying13.

Liposomes in parasitic diseases and infections:

Since conventional liposomes are digested by phagocytic cells in the body after intravenous administration, they are ideal vehicles for the targeting of drug molecules into these macrophages. The best known examples of this ‘Trojan horse-like’ mechanism are several parasitic diseases which normally reside in the cell of mononuclear phagocytic system. They include leishmaniasis and several fungal infections14.

Macrophage activation and vaccination:

Some natural toxins induce strong macrophage response which results in macrophage activation. This can be duplicated and improved by the use of liposomes because small molecules with immunogenic properties (haptens) cannot induce
immune response without being attached to a larger particle. For instance, liposomes containing muramyl tripeptide, the smallest bacterial cell wall subunit with immunogenic properties cause macrophage activation. Activated macrophages are larger and contain more granulomae and lysosome material. Their state lasts for a few days during which they show enhanced tumouricidal, virocidal and microbicidal activity14.

Liposomes in anticancer therapy:

Many different liposome formulations of various anticancer agents were shown to be less toxic than the free drug. Anthracyclines are drugs which stop the growth of dividing cells by intercalating into the DNA and therefore kill predominantly quickly dividing cells. These cells are in tumours, but also in gastrointestinal mucosa, hair and blood cells and therefore this class of drugs is very toxic14.

Liposomes in bioengineering:

Nucleic acids used in gene transfer are large, with molecular weights up to several million Daltons, highly charged and hydrophilic and therefore not easy to transfer across cell membranes. Additionally to classical methods, such as direct injection, phosphate precipitation and others, liposomes were tried as transfection vectors. They can deliver the encapsulated or bound nucleic acid into cells predominantly in two ways: the classical approach is to encapsulate the genetic material into liposomes and liposomes act as an endocytosis enhancer while recently the phosphate or DEAE precipitation was simulated by liposomes. In these cases the nucleic acid forms a complex with several cationic liposomes and the size of the complex and its adsorption on the cell surface catalyses endocytosis or, possibly, fusion14.

Liposomes in cosmetics:

Liposomes as a carrier itself offers advantages because lipids are well hydrated and can reduce the dryness of the skin which is a primary cause for its ageing. Also, liposomes can act to replenish lipids and, importantly, linolenic acid14.

Liposomes in agro-food industry:

Lipid molecules from fats to polar lipids, are one of the fundamental ingredients in almost any food. The sustained release system concept can be used in
various fermentation processes in which the encapsulated enzymes can greatly shorten fermentation times and improve the quality of the product. This is due to improved spatial and temporal release of the ingredient(s) as well as to their protection in particular phases of the process against chemical degradation. A classical example is cheese making14.

Mechanism of Liposome Formation15:

In aqueous medium, the lipid molecules in self-assembled structures are oriented in such a way that the polar portion of the molecule remains in contact with the polar environment and at the same time shields the non-polar part. Among the amphiphiles used in the drug delivery, viz. soap, detergents, polar lipids, the latter (polar lipids) are often employed to form concentric bilayered structures. However, in aqueous mixtures these molecules are able to form various phases, some of them are stable and others remain in the metastable state. At high concentrations of these polar lipids, liquid-crystalline phases are formed that upon dilution with an excess of water can be dispersed into relatively stable colloidal particles.

![Figure 1: Mechanism of liposome formation](image-url)
Classification of liposomes:

Liposome classification based on structural features

Multilamellar Large Vesicles (MLV):

In MLV, vesicles have an onion structure. Classically, several unilamellar vesicles will form on the inside of the other with smaller size, making a multilamellar structure of concentric phospholipid spheres separated by layers of water\(^8\).

Unilamellar vesicles (UV):

In UV liposomes, the vesicle has a single phospholipid bilayer sphere enclosing the aqueous solution. UV vesicles can be prepared in a variety sizes\(^16\):

- Small unilamellar vesicles (SUV) - 20 to 40 nm.
- Medium sized unilamellar vesicles (MUV) – 40 to 80 nm.
- Large unilamellar vesicles (LUV) – 10 to 1000 nm.
- Giant unilamellar vesicles (GUV) - > 1000 nm.

Oligolamellar vesicles (OLV):

OLV have large central aqueous cores surrounded by 2 to 10 bilayers\(^16\).

Multivesicular vesicles (MVV):

MVV first described as large clusters of smaller compartments sharing common bilayers, have been redefined to cover all structures of non-concentric vesicles inside a larger vesicle of 200 nm to 3\(\mu\)m\(^17\).
Figure 2: Classification of liposome formation

SUV - Small Unilamellar Vesicles
LUV - Large Unilamellar Vesicle
GUV - Giant Unilamellar Vesicle
OLV - Oligo Lamellar Vesicle
MLV - Multi Lamellar Vesicle
MVV - Multi Vesicular Vesicle
Methods of Liposomes Preparation:

A. Passive loading techniques:

In these passive loading technique the drug is encapsulated by incorporating an aqueous phase of a water-soluble (hydrophilic) drug or an organic phase of a lipid-soluble drug initially or at predetermined stage during the preparation of the liposomes. The huge drug encapsulation efficiency can be achieved with the help of these passive
loading technique which is more suitable for lipid-soluble drugs with a high resemblance to the lipid membrane.

Different methods discuss under this class start with a lipid solution in organic solvent and end up with lipid dispersion in water. The choice of component are typically combined by co-dissolving the lipids in an organic solvent and the organic solvent is then separated by film deposition under vacuum. When residual solvent is removed, the solid lipid mixture is hydrated with the help of aqueous buffer.

The lipids spontaneously swell and hydrate to form liposome. Liposomal encapsulation technology (LET) is the latest delivery method used by medical researcher to transmit drugs that act as healing promoters to the definite body organs. LET is state of art method of preparing sub-microscopic bubbles called liposome.

1. Mechanical Dispersion Method:

 In these method variety component are mainly combined by co-dissolving the lipids in an organic solvent and after that the organic solvent is then separated by film deposition under vacuum. When all the solvent is evaporated, the solid lipid mixture is hydrated using aqueous phase. The lipids spontaneously swell and hydrate to form liposomes.

The following are types of mechanical dispersion methods:

i. Lipid film hydration method:

 The lipid-film hydration procedure is the most common and simple method for preparation of MLV by dissolving the phospholipids in the organic solvents: dichloromethane, chloroform, ethanol and chloroform-methanol mixture (2:1 v/v; 9:1 v/v; 3:1 v/v). A thin and homogeneous lipid film is formed when solvent is evaporated under vacuum at the temperature: 45-60 °C. Nitrogen gas is involved in order to completely remove the residual solvent. A solution of distilled water, phosphate buffer, phosphate saline buffer at pH 7.4 and normal saline buffer are used in hydration step. The time for the hydration process varied from 1 h to 2 h at the temperature 60- 70 °C. In order to obtain full lipid hydration, the liposomal suspension is left overnight at 4 °C. The lipid-film hydration method can be used for all different kinds of lipid mixtures.

i. Micro-emulsification method:

 An equipment called as microfluidizer is used to prepare small vesicle from concentrated lipid suspension. The lipids can be introduced into the fluidizer as a
suspension of large MLVs. This equipment pumps the suspension at very high pressure through the 5 mm screen. Then it is forced through a microchannel, which directs two streams of fluid to collide together at right angle and very high velocity. The fluid collected can be recycled through the pump and interaction chamber until vesicles of spherical dimension are obtained.

iii. Sonication

Sonication is perhaps the most extensively used method for the preparation of SUV. Here, MLVs are sonicated either with a bath type sonicator or a probe sonicator under a passive atmosphere. The main disadvantages of this method are very low internal volume/encapsulation efficacy, possible degradation of phospholipids and compounds to be encapsulated, elimination of large molecules, metal pollution from probe tip, and presence of MLV along with SUV. There are two sonication techniques.

a. Probe sonication:

The tip of a sonicator is directly engrossed into the liposome dispersion. The energy input into lipid dispersion is very high in this method. The coupling of energy at the tip results in local hotness; therefore, the vessel must be engrossed into a water/ice bath. Throughout the sonication up to 1 h, more than 5% of the lipids can be de-esterified. Also, with the probe sonicator, titanium will slough off and pollute the solution.

b. Bath sonication:

The liposome dispersion in a cylinder is placed into a bath sonicator. Controlling the temperature of the lipid dispersion is usually easier in this method, in contrast to sonication by dispersal directly using the tip. The material being sonicated can be protected in a sterile vessel, dissimilar the probe units, or under an inert atmosphere.

iv. French pressure cell:

French pressure cell involves the extrusion of MLV through a small orifice. An important feature of the French press vesicle method is that the proteins do not seem to be significantly pretentious during the procedure as they are in sonication. An interesting comment is that French press vesicle appears to recall entrapped solutes significantly longer than SUVs do, produced by sonication or detergent removal. The method involves gentle handling of unstable materials. The method has several advantages over sonication method. The resulting liposomes are rather larger than
sonicated SUVs. The drawbacks of the method are that the high temperature is difficult to attain, and the working volumes are comparatively small (about 50 mL as the maximum)\(^8\).

v. Membrane extrusion:

In this method, MLVs is reduced by passing them through a membrane filter of defined bore size. There are two types of membrane filter. The tortuous bath type and the nucleation track type. The former is used for sterile filtration. In this random bath arises between the criss cross fibres in the matrix. Liposomes that are larger than the channel diameter get struck when one tries to pass them though such membrane. The nucleation track is composed of thin continuous sheet of polycarbonate. They will offer less resistance to passage of liposomes as these consist of straight sided pore holes off exact diameter bored from one side to another. This method can be used to process both LUVs and MLVs\(^18\).

vi. Dried reconstituted vesicles:

In DRV method freeze drying of a dispersion of empty SUVs are to be done and then dispersion of it with the aqueous fluid containing the material to be entrapped. This leads to a hydration of solid lipids in finely reduced sized form. Though, the step of freeze-drying is introduced to freeze and lyophilize a performed SUVs dispersion rather than to dry the lipids from an organic solution. This leads to an ordered membrane structure as compared to random matrix structure, which on addition of water can rehydrate, fuse and reseal to form vesicles with a high encapsulation efficiency. The water soluble hydrophillic materials to be entrapped are added to the dispersion which are empty SUVs and they are dried together, so the material for inclusion is present in the dried precursor lipid before the final step of addition of aqueous medium\(^18\).

vii. Freeze-thawed liposome:

SUVs are rapidly frozen and thawed slowly. The short-lived sonication disperses aggregated materials to LUV. The creation of UV is as a result of the fusion of SUV throughout the processes of freezing and thawing. This type of synthesis is strongly inhibited by increasing the phospholipid concentration and by increasing the ionic strength of the medium. The encapsulation efficacies from 20% to 30% were obtained\(^8\).
2. **Solvent Dispersion Method:**

 In these methods lipids are first dissolved in an organic solution and then brought into contact with aqueous phase containing materials to be entrapped within liposome. At the interface between the organic and the aqueous phases the phospholipids align themselves to form a monolayer, which is important step to form the bilayer of liposome\(^{20}\).

 i. **Ether injection (solvent vaporization)\(^{8}\):**

 A solution of lipids dissolved in diethyl ether or ether-methanol mixture is gradually injected to an aqueous solution of the material to be encapsulated at 55°C to 65°C or under reduced pressure. The consequent removal of ether under vacuum leads to the creation of liposomes. The main disadvantages of the technique are that the population is heterogeneous (70 to 200 nm) and the exposure of compounds to be encapsulated to organic solvents at high temperature.

 ii. **Ethanol injection\(^{8}\):**

 A lipid solution of ethanol is rapidly injected to a huge excess of buffer. The MLVs are at once formed. The advantages of the method are that the population is heterogeneous (30 to 110 nm), liposomes are very dilute, the removal all ethanol is difficult because it forms into azeotrope with water, and the probability of the various biologically active macromolecules to inactivate in the presence of even low amounts of ethanol is high.

 iii. **Double emulsion method:**

 In this process, an active ingredient is initially dissolved in an aqueous phase (w1) which is then emulsified in an organic solvent containing polymer to form a primary w1/o emulsion. This primary emulsion is then mixed in an emulsifier which also consist of aqueous solution (w2) to form a w1/o/w2 double emulsion. The extraction of the solvent leaves microspheres in the aqueous external phase, making it possible to separate them by filtering or centrifuging\(^{18}\).

 iv. **Reverse phase evaporation method:**

 The lipid mixture is added to a round bottom flask and the solvent is removed under reduced pressure by a rotary evaporator. The system is purged with
nitrogen and lipids are re-dissolved in the organic phase which is the phase in which the reverse phase vesicle will form. Diethyl ether and isopropyl ether are the usual solvents of choice. After the lipids are re-dissolved the emulsion are obtained and then the solvent is removed from an emulsion by evaporation to a semisolid gel under reduced pressure. Phosphate buffer saline or citric-Na₂HPO₄ buffer is added to aqueous phase with aim to improve the efficiency of liposome formulations. The formation of liposomes is allowed by continued rotary evaporation of the organic solvents under vacuum. Non encapsulated material is then removed. The resulting liposomes are called reverse phase evaporation vesicles (REV). This method is used for the preparation of LUV and OLV formulation and it has the ability to encapsulate large macromolecules with high efficiency13,19.

v. Stable pluri lamellar vesicles:

This method of pluri lamellar vesicle preparation followed by formation of water-in-organic phase dispersion with an excess of lipid which further introduce to drying under continued bath sonication with an irregular stream of nitrogen. SPLVs require a large aqueous core, the common of the entrapped aqueous medium being located in the compartment in between adjacent lamellae. The percent entrapment normally ranges around 30o18.

3. Detergent Removal Method:

In this method the phospholipids are brought into close contact with the aqueous phase via detergents, which associate with phospholipids molecules. The structures formed as a result of this association are known as micelles. They are composed of several hundreds of component molecules. The concentration of detergent in water at which micelles start to form is called CMC. Below CMC the detergent molecule exist in free solution. As the detergent molecule is dissolved in water at concentration higher than the CMC, micelle form in large amounts. As the concentration of detergent added is increased more amount of detergent is incorporated into the bilayer, until a point is reached where conversion from lamellar form to spherical micellar form take place. As detergent concentration is further increased, the micelles are reduced in size20.
INTRODUCTION

i. Dialysis:

Detergents are mainly soluble in both aqueous as well as organic media and there is an equilibrium within the detergent molecules in the water phase, and in the lipid environment of the micelle. The CMC can give an indication to the position of this equilibrium. Upon reducing the concentration of detergent in the whole aqueous phase, the molecules of detergent can be washed away from mixed micelle by dialysis. The action of egg PC with a 2:1 molar ratio of sodium cholate followed by dialysis which lead to the formation of vesicles (100nm). A commercial version of the dialysis system is available under the trade name LIPOPREPTM (Diachema AG, Switzerland)\(^{18}\).

ii. Column Chromatography:

Phospholipids in the form of either sonicated vesicles or as a dry film, at a molar ratio of 2:1 with deoxycholate form UV of 100nm. Deoxycholate remove using column chromatography. This could be done by the passing the dispersion over a Sephadex G-259 column presaturated by constitutive lipids and preequilibrated using hydrating buffer\(^{18}\).

iii. Dilution:

Upon dilution of aqueous mixed micellar solution of detergent and phospholipids with buffer, the micellar size and the polydispersity increase fundamentally, and as the system is diluted beyond the mixed micellar phase boundary, a spontaneous transition from poly-dispersed micelles to vesicles occurs\(^{8}\).

B. ACTIVE LOADING:

The exploitation of liposomes as drug delivery system is encouraged with the advancement of well-organized encapsulation procedures. The membrane from the lipid bilayer is in general impermeable to ions and larger hydrophilic molecules. Ions transport can be synchronized by the ionophores though permeation of neutral and weakly hydrophobic molecule can be inhibited by concentration gradients.

A few weak acid or bases yet, can be transported throughout the membrane because of various transmembrane gradient, such as electric, ionic (pH) or specific salt (chemical potential) gradient. Some method exist for improved incorporation of drugs, including remote (active) loading method which load drug molecules into preformed liposome using pH gradient and potential difference across liposomal membrane.
A concentration variation in proton concentration across the membrane of liposomes can drive the loading of amphipathic molecule\(^ {18}\).

Active loading methods have the following benefit over passive encapsulation

Technique

a) It will lead to high encapsulation efficiency and capacity.

b) Using these method leakage of the encapsulated compounds can be reduced.

c) “Bed side" loading of drugs therefore limiting loss of retention of drugs by diffusion, or chemical degradation while storage.

d) These process is flexible for constitutive lipid, as drug is loaded after the formation of carrier unit.

e) It also reduce the safety hazard by avoiding biologically active compounds in the preparation step during dispersion.

f) The transmembrane pH gradient may be occured by various method. Based upon the nature of drug to be encapsulated\(^ {18}\).
The aim of the present study was to formulate Metformin HCl liposomes for a sustained drug delivery system. The liposomes were prepared by two different methods (physical dispersion method and ether injection method) and then evaluated for various parameters.

The objective of the study is as follows:

To subjugate inherent defects associated with conventional dosage form of Metformin HCl, by formulating oral Metformin HCl liposomes which have the following advantages.

1. Reduce the dose and dosing frequency.
2. Minimize the side effect.
3. Prolong the action of drug.
4. Provide sustained drug release.
5. Better patient compliance.
PLAN OF WORK

The present work carried out to formulate sustained release Metformin HCl liposomes and it was planned to evaluate the various parameters as outlined below:

- To determine the solubility of Metformin HCL in water, methanol and pH 6.8
- Drug-excipients interaction studies by using FT-IR.
- To formulate Metformin HCl liposomes by using cholesterol and lecithin as encapsulated lipids bilayer in various ratio such as 1:1, 1:2 and 1:3 by two different method namely physical dispersion method and ether injection method.
- To evaluate the prepared liposomes for following parameters:
 i. Drug entrapment efficiency.
 ii. Morphological analysis.
 iii. Particle size analysis.
 iv. *In vitro* drug release studies.
 v. Stability studies.
REVIEW OF LITERATURE

Dina Fathalla et al23, formulated and evaluated liposomal gels for sustained ocular delivery of latanoprost using two different methods, namely thin film hydration and reverse phase evaporation techniques. The objective of their work was to develop a liposome-based delivery system for the sustained ocular delivery of latanoprost, a prostaglandin analog commonly used in the management of glaucoma. Latanoprost was incorporated into different liposomes that were evaluated using variety of techniques. Selected liposomes were incorporated into different gels and their viscosity and drug release kinetics were evaluated. Optimal liposomal gels were evaluated in vivo in rabbits’ eyes for their irritation potential and ability to reduce intraocular pressure. Fourier transform infrared and differential scanning calorimetry studies confirmed the interaction between the drug and different excipients in the vesicles, which resulted in drug encapsulation efficiency $\geq 90\%$. Drug encapsulation efficiency increased with the drug/lipid ratio and encapsulation efficiency $\sim 98\%$ was obtained at drug/lipid ratio of 50%. Vesicles incorporated into Pluronic® F127 gel had sustained drug release where $\sim 45\%$ of the encapsulated drug was released in 2 days. Latanoprost liposomal gels had neither irritation nor toxic effects on the rabbits’ eyes. Further, they had a sustained reduction in the rabbit’s intraocular pressure over a period of 3 days, which was significantly longer than that achieved by the commercial latanoprost eye drops.

S. Rathod and S. G. Deshpande24, designed and evaluated prolonged release drug delivery system of pilocarpine nitrate was made by optimizing thin layer film hydration method. Egg phosphatidylcholine and cholesterol were used to make multilamellar vesicles. Effects of charges over the vesicles were studied by incorporating dicetylphosphate and stearylamine. Various factors, which may affect the size, shape, encapsulation efficiency and release rate, were studied. Liposomes in the size range 0.2 to 1 μm were obtained by optimizing the process. Encapsulation efficiency of neutral, positive and negatively charged liposomes were found to be 32.5%, 35.4% and 34.2%, respectively. Biological response in terms of reduction in intraocular pressure was observed on rabbit eyes. Pilocarpine nitrate liposomes were lyophilized and stability studies were conducted.
Thi Lan Nguyen et al25, developed and in vitro evaluated liposomes using soy lecithin to encapsulated paclitaxel. Paclitaxel liposomes were prepared by thin film method using soy lecithin and cholesterol and then were characterized for their physiochemical properties such as particle size, polydispersity index, zeta potential, and morphology. The results indicated that paclitaxel liposomes were spherical in shape with a dynamic light scattering (DLS) particle size of 131 ± 30.5 nm. Besides, paclitaxel was efficiently encapsulated in liposomes, $94.5 \pm 3.2\%$ for drug loading efficiency, and slowly released up to 96 h, compared with free paclitaxel. More importantly, cell proliferation kit I (MTT) assay data showed that liposomes were biocompatible nanocarriers, and in addition the incorporation of paclitaxel into liposomes has been proven successful in reducing the toxicity of paclitaxel. As a result, development of liposomes using soy lecithin may offer a stable delivery system and promising properties for loading and sustained release of paclitaxel in cancer therapy.

Ravindra kamble et al26, developed and characterized liposomal drug delivery system for Nimesulide by various techniques such as ethanol evaporation and rotary evaporator method. The encapsulation of Nimesulide into liposomes significantly improves their properties. In spite of the numerous advantages of using liposomes as carriers to deliver Nimesulide over the free form of the drug, in vitro studies of lipidosome-encapsulated Nimesulide have been mainly focused on evaluation of better method of Nimesulide liposomes which have high drug entrapment, vesicle size and drug release. The average particle size, percent drug entrapment, drug release at the end was found to be $270-703 \mu$m, $49-58\%$, and 65.71% at 9 hours in case of ethanol injection method while in case of rotary evaporator it was found to be $1-12 \mu$m, $69-86\%$ and 76.97% at 9 hours respectively. The Zeta potential for Nimesulide loaded liposomes of ethanol injection method (batch-1) and rotary evaporator method (batch – 3) were -21.23 and -26.78 mV respectively. The result obtained in this study rotary evaporator technique was better for Nimesulide liposomes preparation on the basis of stability, drug entrapment efficiency and ethanol injection method was better on the basis of small size of liposomes and sustains release of drug when compared to rotary evaporator method and pure drug.

Devi R et al27, prepared and evaluated the topical liposomes of Fluconazole by thin film hydration technique using different ratios of soya phosphotidyl choline and
cholesterol. The in-vitro diffusion study was carried out by dialysis membrane using both open ended tube. The study was carried out in 40 ml of phosphate buffer solution pH 7.4. The percentage cumulative release from the optimized batch i.e. F7 with drug: lecithin: cholesterol ratio 1: 10: 5, found to be 75.02% release in 8 hours. The magnitude of drug retention within the vesicles on storage under defined conditions ultimately governs shelf life of the developed formulations. Liposomes showed an increasing vesicle size in accelerated temperature but no significance changes at 4±2°C has observed in storage studies for two months.

Bahareh Sabeti et al28, developed and characterized liposomal doxorubicin hydrochloride with palm oil by freeze thaw method. Their study focuses on the utilization of palm oil in formulating liposomal doxorubicin for minimizes toxicity and enhances target delivery actions by replacing phosphatidylcholine with 5% and 10% palm oil content. Liposomes were formed using the freeze thaw method, and Doxorubicin was loaded through pH gradient technique and characterized through in vitro and ex vivo terms. Based on TEM images, large lamellar vesicles (LUV) were formed, with sizes of 438 and 453 nm, having polydispersity index of 0.21 ± 0.8 and 0.22 ± 1.3 and zeta potentials of about −31 and −32 mV, respectively. In both formulations, the entrapment efficiency was about 99%, and whole Doxorubicin was released through 96 hours in PBS (pH = 7.4) at 37° C. Comparing cytotoxicity and cellular uptake of LUV with CaelyxR on MCF7 and MDA-MBA 231 breast cancer cell lines indicated suitable uptake and lower IC50 of the prepared liposomes.

Ehab I. Taha et al29, designed and evaluated liposomal colloidal systems for ocular delivery of ciprofloxacin. The aim of their study was enhance ocular drug delivery for protective mechanism of eye is limited the bioavailability of drug. In this study several liposomal formulations containing ciprofloxacin have been formulated using reverse phase evaporation technique with final dispersion of pH 7.4. Different types of phospholipids including Phosphatidylcholine, Dipalmitoyl phosphatidylcholine and Dimyristoyl-sn-glycero-3-phosphocholine were utilized. The effect of formulation factors such as type of phospholipid, cholesterol content, incorporation of positively charging inducing agents and ultrasonication on the properties of the liposomal vesicles was studied. Bioavailability of selected liposomal formulations in rabbit eye aqueous humor has been investigated and compared with that
of commercially available ciprofloxacin eye drops (Ciprocin). Pharmacokinetic parameters including Cmax, Tmax, elimination rate constant, t1/2, MRT and AUC0–1, were determined. The investigated formulations showed more than three folds of improvement in ciprofloxacin ocular bioavailability compared with the commercial product.

Eskandar Moghimipour et al30, formulated and evaluated topical liposomal gel of triamcinolone acetonide. Liposomes containing triamcinolone acetonide were prepared using thin film method. The aim of their study was to formulate and evaluate liposomal vesicles loaded with triamcinolone acetonide. The quantities of lecithin and cholesterol were changed to enhance the encapsulation of the drug. Carbomer 940 was used as gel base and four different gel formulations including hydroalcoholic gel, MLV liposomal gel, SUV liposomal gel and blank MLV gel containing free drug were prepared. The release profile of triamcinolone acetonide was determined using dialysis membrane method. Liposomes were also characterized by optical microscope and their particle size was also determined. Formulation containing lecithin: drug: cholesterol (100: 10: 10) having about 90.05% encapsulation was selected as the best formulation and the results of release showed SUV liposomal gel has the most regular and the least interaction between the drug and polymer. Results of particle size determination showed 50% of MLV and SUV liposomes had diameter below 33.80 μm and 22.09 μm, respectively. The results of characterization of the vesicles indicated the potential application of triamcinolone acetonide loaded liposome as carrier system.

B. R. Srinivas Murthy et al31, formulated and evaluated liposomes loaded with mupirocin. Their study aimed at developing and optimising liposomal formulation of Mupirocin, a broad spectrum antibiotic of maximum therapeutic efficacy with minimal side effects by lipid film hydration technique using various ratios of soya lecithin and cholesterol. Upon pre-formulation studies and optimization, the various formulations (of varying proportions) were prepared and subjected for various physico-chemical evaluation studies i.e., morphology, particle size, drug entrapment efficiency, \textit{in-vitro} drug release, release kinetics and stability studies. Among five formulations (F1- F5) F4 formulation emerged as the most satisfactory formulation in all the evaluation parameters. F4 showed a maximum drug entrapment of 71.72%, average particle size was 18.3 μm, maximum percentage yield 89.06%. The liposomes were found to be
stable during their stability studies when stored at different temperatures. They concluded that Mupirocin can also be loaded in liposomal carriers which found to be effective, stable.

Behzad Sharif Makhmalzadeh et al32., prepared and evaluated mafenide acetate liposomal formulation as eschar delivery system. Liposome formulations were prepared by two different methods such as Solvent evaporation method and microencapsulation vesicle (MCV) method. The prepared liposomes undergoes experimental design and data analysis. Drug/lipid ratio, hydration time, aqueous phase volume and homogenizer rpm were considered as independent variable, on the other hand, liposome size, drug loading, stability, drug release and skin permeability parameters as responses. The results demonstrate that liposome were multilamellar and multivesicular. Particle size and drug loading percentage of MCV liposome indicated burst sustained release profile. Burst effect in solvent evaporation liposome was more than MCV liposome. In their conclusion, solvent evaporation liposome improved mafenide acetate partitioning through rat skin and decrease diffusion coefficient with increase particle size of liposome.

Srinivas Lankalapalli et al33., prepared and evaluated liposome formulations for poorly soluble drug Itraconazole by complexation. Beta cyclodextrin and Hydroxy propyl beta cyclodextrin inclusion complexes with Itraconazole were prepared by kneading method/ solvent injection method and these complexes were incorporated in the aqueous phase of the liposomes to prepare Itraconazole liposomes. Factor such as ratio of lipids employed, drug:lipid ratio, etc were fine tuned and optimized to achieve maximum entrapment of the Itraconazole in the aqueous phase. The prepared liposomes are characterized by optical microscopy, scanning electron microscopy, particle size determination, encapsulation efficiency and also evaluated by using FTIR spectroscopy and in-vitro diffusion studies by using dialysis membrane. The drug content was in the range of 94.78 % w/w to 101.81 % w/w for the liposome formulations. The encapsulation efficiency was found to be 37.99 % to 55.01 %. The percentage drug release was found to be 17.25% to 39.62%. The increase in the solubility of Itraconazole with cyclodextrin complexes in comparision with plain drug is an indubitable advantage of this approach.
Anayatollah Salami et al.34,, formulated and evaluated liposomes for transdermal delivery of Celecoxib. Liposomes were prepared by thin film method using soya lecithin and cholesterol. Physicochemical characteristics of the liposomes such as, particle size, drug encapsulation efficiency, drug release and in vitro skin permeability through rat skin were evaluated using Franz diffusion cells were determined. The results showed that the maximum drug encapsulation efficiency was 43.24%. Drug release profile showed that 81.25% of the drugs released in the first 24 hours of the experiment. The decrease of lecithin increased values. Particle sizes of the formulations ranged from 0.117 to 1.123 µm. Jss, Dapp and P parameters in L - 8 formulations were 29.18, 60.95, and 3.21 times higher than those of saturated water solution of celecoxib, respectively. The results of vesicles characterization indicated the potential application of celecoxib loaded liposome as carrier system. In conclusion, the components such as lecithin and cholesterol, and vortex time in liposomal formulations have an essential role in the physicochemical properties and celecoxib permeability through rat skin.

U. D. Shivhare et al.35,, formulated and evaluated liposome formulation of pentoxifylline. Liposomes were prepared by physical dispersion method using different ratio of lipids. In evaluation study, the effect of the varying composition of lipids on the properties such as encapsulation efficiency, particle size and drug release were studied. Phase transition study was carried out to confirm the complete interaction of pentoxifylline with bilayer structure of liposome. Moreover, the release of the drug was also modified and extended over a period of 8 h in all formulations. The average particle size, percent drug entrapment, drug release at the end was found to be 6.24 - 15.07 µm, 29.64 - 48.92 %, and 90.0- 99.23 % at 8 hours. In conclusion, release of the drug from the most satisfactory formulation was evaluated through dialysis membrane to get the idea of drug release.

Yan Chen et al.36,, Prepared Curcumin-Loaded Liposomes and evaluated their skin permeation and pharmacodynamics. Liposomes were prepared by the conventional film method. Soybean phospholipids (SPC), egg yolk phospholipids (EPC), and hydrogenated soybean phospholipids (HSPC) were selected for the preparation of different kinds of phospholipids composed of curcumin-loaded liposomes: C-SPC-L (curcumin-loaded SPC liposomes), C-EPC-L (curcumin-loaded EPC liposomes), and C-HSPC-L (curcumin-loaded HSPC liposomes). The physical properties of different
LITERATURE REVIEW

Lipsomes were investigated as follows: photon correlation spectroscopy revealed that the average particle sizes of the three types of curcumin-loaded liposomes were 82.37 ± 2.19 nm (C-SPC-L), 83.13 ± 4.89 nm (C-EPC-L), and 92.42 ± 4.56 nm (C-HSPC-L), respectively. The encapsulation efficiency values were found to be 82.32 ± 3.91%, 81.59 ± 2.38%, and 80.77 ± 4.12%, respectively. An in vitro skin penetration study indicated that C-SPC-L most significantly promoted drug permeation and deposition followed by C-EPC-L, C-HSPC-L, and curcumin solution. Moreover, C-SPC-L displayed the greatest ability of all loaded liposomes to inhibit the growth of B16BL6 melanoma cells. Therefore, the C-SPC-L were chosen for further pharmacodynamic evaluation. A significant effect on antimelanoma activity was observed with C-SPC-L, as compared to treatment with curcumin solution in vivo. Their results suggest that C-SPC-L would be a promising transdermal carrier for curcumin in cancer treatment.

Xiang-qi QIN et al37, prepared a novel transdermal preparation of liposomal brucine (LB) and investigate its pharmaceutical/pharmacodynamic characterization. LB was prepared by a modified ethanol-dripping method. Its drug encapsulation efficiency (EE), particle size, in vitro release, and skin permeation were studied. Furthermore, a safety evaluation and pharmacodynamic analysis of LB, including acute dermal toxicity, skin irritation, and analgesic and anti-inflammatory effects were investigated. The EE of LB was 72% and the mean particle size of the liposomes was 55.4 nm. The in vitro release profile indicated that less than 68% of the encapsulated brucine was released in 10 h. A skin permeation study showed that compared with the free brucine, LB exhibited higher cumulative drug permeation through the skin and lower drug accumulation in skin tissue, indicative of an obvious promotion of skin permeation with liposomal encapsulation. The acute dermal LD50 of LB was greater than 100 mg/kg (brucine content) and skin irritation tests revealed that LB had no irritation to both integrity and broken skin. A pharmacodynamic evaluation of LB was performed by xylene-induced mouse ear edema test and acetic acid-induced writhing test at the dosage of 1.5, 3, and 6 mg/kg, respectively. The results showed that anti-inflammatory activities and analgesic effects of brucine encapsulated were significantly higher than that of the free brucine (P<0.01). It can be proposed that LB prepared here could represent a safe, effective and promising transdermal formulation for analgesic and anti-inflammatory effects.
P.Divakar *et al*\(^8\), formulated and in vitro evaluated liposomes containing metformin hydrochloride. Liposomal suspensions were prepared using film hydration technique using varying concentrations of phosphatidylcholine and cholesterol and optimize the ideal combination for required drug release. Liposomal formulations were evaluated for particle size, drug entrapment and in-vitro drug release studies. The percentage drug release at the end was found to be 64.0-83.0 % at 4 hours. Drug excipient compatibility was determined by using U.V spectroscopy, FT-IR spectral studies. The results of in vitro drug release studies showed that release from liposomal formulation was slow and sustained for >12 hrs period. The formulations followed first order kinetics and release mechanism was non-fickian diffusion from all the formulations.

Satyavathi K *et al*\(^9\), formulated and in-vitro evaluated liposomal drug delivery system of cabazitaxel. Cabazitaxel liposomes were prepared by thin film hydration technique using lecithin, cholesterol, and Tween 80. Six formulations of liposomes were evaluated for physico chemical properties and in vitro drug release. The compatibility of drug with other ingredients was checked by FTIR studies. The prepared liposomes were characterized for surface morphology by SEM analysis, Percentage drug entrapment efficiency, Particle size, and Zeta potential analysis. The average particle size, poly dispersive index, percentage drug entrapment efficiency and zeta potential analysis as found to be 317 nm to 564 nm, 0.632 to 0.762, 78.39% to 82.96% and -15.2mV to -20.9mV .The in-vitro drug release for optimized formulation F2 followed zero-order release kinetics. F2 was formulated using 270 mg lecithin and 30 mg cholesterol and 0.5 ml of Tween 80 with an objective to achieve a linear release profile for 24 hr. There was no initial burst release, with 5.68% of drug released during the first hour and release was extended up to 24 hrs. Stability studies at different temperatures were conducted and maximum drug retention was found at refrigerated temperature 4°C.

Anjana ashok adhyapak, and Babasaheb gangadhara desai\(^{10}\), formulated and evaluated liposomal transdermal patch for targeted drug delivery of tamoxifen citrate for breast cancer. Liposomes were formulated by solvent evaporation method using poly (sebacic acid-co-ricinoleic acid) in varying ratios and evaluated for particle size, drug loading, entrapment efficiency, transmission electron microscopy,
differential scanning calorimetry, and X-ray diffraction. Formulated tamoxifen-loaded liposomes were finally incorporated into transdermal patch and evaluated for thickness drug content, moisture content, moisture uptake, folding endurance, tensile strength diffusion coefficient, permeability coefficient, in vitro permeation, and skin irritation. Optimized transdermal patches were tested for its pharmacokinetic and pharmacodynamics parameters. The average particle size, percentage drug entrapment efficiency and percentage drug release was found to be 412-543nm, 90.32 -93.33%. It can be concluded Optimized patch formulation F3 was found to have the best release profile when compared to other patches with no skin irritation. Pharmacokinetic and pharmacodynamics profile of formulated patch confirms its advantage over other conventional existing formulations.

Shruthi M V et al41, formulated and evaluated proliposomal gel containing metformin hydrochloride using mannitol as a water soluble carrier. Proliposomes of Metformin hydrochloride were prepared by thin film hydration technique by varying the composition drug, manitol, soya lecithin and cholesterol. Proliposome formulations were characterized for compatibility, vesicle size, % Drug content, % Entrapment efficiency, Surface morphology, Surface charge, invitro drug release and stability studies. The proliposomal gel was prepared for optimized proliposomal formulation F4 by incorporated into 1% Carbopol gel. The in vitro drug release and in vivo skin irritation study and hypoglycemic activity were carried out for the gel F4. Drug and physical mixture were characterized by FTIR, the result of IR study showed that no interaction between drug and polymers and other formulation parameters of formulated proliposomes and proliposomal gel are evaluated which showed better results. Proliposomal gel F4 was proved nonirritant and showed better stability, more hypoglycemic effect as compared to oral formulation because it provide reduction in blood glucose level with controlled manner upto 24 hrs. Hence, Proliposomes drug delivery system was better choice for sustained release of drug through topical drug delivery.

Sangeetha S. S. and Roopa Karki42, formulated and evaluated liposomes in carbopol gels for mixed vaginal infections. The combination of voriconazole and metronidazole were selected as model drugs for mixed vaginal infections. Multi lamellar liposomes composed phosphatidylcholine and cholesterol along with
A combination of drugs was prepared by the thin film hydration method. The prepared liposome were characterized for FT-IR, size distribution, entrapment efficiency, in vitro release study in simulated vaginal fluid and stability studies. The liposomes were loaded to carbopol gel. The liposomes loaded carbopol gels were evaluated for in vitro drugs release study and compared with control gel. FTIR study indicated that there is no significant chemical interaction between the components. The cumulative percent release from liposomal gels FL1 was found to be 69.90% for metronidazole and 56.02% for voriconazole. In vitro release studies of liposomes incorporated in the carbopol gel have shown a prolonged release of entrapped metronidazole and voriconazole compared to control gel. Stability studies showed that the vesicles were stable in refrigerated temperature (4°C) for 60 days without significant differences in drug entrapment.

Krishna Mohan Chinnala and Rabinarayan Panigrahy formulated and evaluated of acyclovir liposomes. The liposomes were prepared by rotary flash evaporation method and thin film hydration technique using different ratios of phospholipids and cholesterol with a desired amount of drug. The percentage entrapment efficiency was determined and maximum entrapment efficiency was found to be 99%. The optimized batches were found to have good entrapment efficiency and it was proved that as the concentration of the cholesterol increased the particle size also increased and entrapment efficiency decreased. In formulation TB1 the ratio of cholesterol and lecithin is 1:1 is selected as optimized formulation based on entrapment efficient and diffusion studies. Optimized formulation was evaluated for particle size analysis and zeta potential. FTIR studies were done on the pure drug and physical mixture of drug and polymers. From FTIR spectra of the drug and physical mixture it was found that there is no significant interaction. Zeta potential analysis was done for optimized formulation TB1. Average zeta potential and charge on the liposome was determined. The value was -20 Mv which indicates that the surface of liposomes is dominated by the anions and proved that prepared liposome have sufficient charge to avoid aggregation of vesicles. It can be concluded that as the concentration of the cholesterol increased the particle size also increased and entrapment efficiency decreased.
Sunitha Sampath et al44, prepared and evaluated liposome entrapped hydrogel complex systems of itraconazole for enhanced transdermal permeation. The liposomes were prepared by thin film hydration method. The complex systems were prepared by incorporating drug liposome consisting of biocompatible lipid, into carbopol to form hydrogel. The systems were evaluated for encapsulation efficiency, particle size, zeta potential and ex vivo release behavior for skin permeability. FT-IR studies were done to find for any drug excipient interactions. The particle size was ranging from 94.2 nm to 104.8 nm with low PdI indicating the formation of monodisperse system. The \% of drug released from the formulation was ranging from 48.04 \% to 99.92 \% in 24 h. In terms of skin permeability, complex liposomal hydrogel has proved to have greater skin permeation compared to simple liposomal system, simple hydrogel system and the plain drug suspension (485.49, 362.06, 226.03 and 172.25 μg/cm2/h). From the release kinetics concluded the drug is releasing by diffusion mechanism and also due to erosion of the gelling agent. It was found that liposome in hydrogel complex systems improved skin permeability of the drug when compared to control with high flux and high permeability coefficient. These results indicate that liposome in hydrogel systems can function as probable drug delivery systems to enhance transdermal permeation of the water insoluble itraconazole for treating the topical infections.

Dr. Khaja Pasha and Dr. Shahana Banu45, formulated and evaluated glimepiride liposomal drug delivery system. Liposomes were prepared by physical dispersion method using different ratio of lipids. In evaluation study the effect of the varying composition of lipids on the properties such as encapsulation efficiency, particle size and drug release were studied. Phase transition study was carried out to confirm the complete interaction of Glimepiride with bilayer structure of liposome. Moreover, the release of the drug was also modified and extended over a period of 8 h in all formulations. F1 emerged as the most satisfactory formulation in so far as its properties were concerned. Further, release of the drug from the most satisfactory formulation (F1) was evaluated through dialysis membrane to get the idea of drug release.

Akshay Singha Roy et al46, designed, formulated and evaluated liposome containing isoniazid. Liposome of isoniazid was made by thin layer film hydration method. Six batches of liposomes were prepared based on the different weight ratio of
L-α-phosphatidylcholine and cholesterol. Differential scanning calorimetry (DSC) study conducted to study in any incompatibility. The prepared liposomes were evaluated by particle size analysis, entrapment efficiency, release study and stability study. Particle sizes were determined from the scanning electron microscopy (SEM) photographs. When particle frequencies were plotted against particle diameter in the histogram, it showed that F1 batch had a skewed distribution towards smaller liposomes while F6 shows a proper bell-shaped curve with a mean at 225 µm. The percentage entrapment efficiency was found to be 4.19 ± 0.12 to 8.99 ± 0.15%. From the release profile, it was seen that F1 batch was fastest and F6 was slowest to release the drug. The satisfactory batch F1 was packed in Eppendorf tube and stored at 4°C temperature for one month. At the end of one month, the samples were analyzed for their physical properties, drug entrapment and in vitro release profile. The percentage release was found to be 96.5 ± 3.2 after 4 hr. The F1 batch showed most promising results compared to other. No significant change was found during one month’s stability study of final batch (F1).

M. P. Jadhav et al47, formulated and evaluated long circulating liposomes for amphotericin B. Liposomes were prepared by simple film hydration method. The formulation was optimized using 2³ factorial designs. Pegylated liposomal formulation showed favorable results with reference to particle size (247.33±9.60 nm), percent entrapment efficiency (94.55±3.34%). TEM studies revealed that the liposomes were essentially spherical, hollow, and appeared like powder puff structures. From DSC study it was concluded that the pegylated formulation containing Amp B showed better stability and membrane integrity of the formulation. During the stability studies the formulation was found to be stable. When subjected to gamma scintigraphy kinetic tracer studies the formulation showed longer residence time in the blood in BALB/C mice.

Toshimasa Tsukamoto et al48, prepared bromfenac-loaded liposomes modified with chitosan for ophthalmic drug delivery and evaluated physicochemical properties and drug release profile. Bromfenac (BRF)-loaded liposomes were prepared using the calcium acetate gradient method. Liposome sizes and encapsulation efficiencies were optimized by screening several liposome formulations of lipid, drug concentration, and buffer solution. BRF entrapment efficiency was greater than 90% using this method,
and was low using conventional hydration methods. High initial BRF loading using the pH gradient method caused aggregation of liposomes. To circumvent aggregation, the negatively charged lipid dicetylphosphate was incorporated into liposomes, which formed anion layer preventing coalescence. Release of BRF from liposomes was sustained for several hours depending on lipid concentration, inner water phase, initial drug amounts, and surface properties. Surface modification with chitosan (CS), a mucoadhesive cationic polymer, was achieved using electrostatic interactions of negatively charged liposomes. The optimal concentration of CS for evasion of liposome aggregation was 0.15%. The model NSAID BRF was encapsulated into liposomes using the pH gradient method. Formulations were optimized to achieve almost 100% drug loading efficiency.

Dr. M. Purushothaman et al⁴⁹, prepared and evaluated decitabine liposomes. Decitabine Liposomes were prepared by the thin film hydration method using the soya lecithin as the phospholipid. Their study mainly explains about the effect of concentration of soya lecithin, cholesterol and Tween 80. The prepared liposomes were characterized by scanning electron microscopic method respectively. The In-vitro release studies were performed and the drug release kinetics was evaluated using linear regression method. The objective of the present study was to develop liposome containing Decitabine and the prepared liposomes were evaluated for size, shape, drug entrapment efficiency, In-vitro drug release and stability. Decetabine loaded liposomes formulation had good ability to encapsulate drug and elicited favorable physicochemical characteristics. The intestinal absorption and antitumor capacity of Decitabine was significantly enhanced by using liposomes. These results suggest that liposomes could be a promising perioral carrier for Decitabine.

Deevan Paul And Vothani Sarath Babu⁵⁰, formulated and evaluated liposomal gel containing ketoconazole. Liposomes were prepared by thin film hydration technique using ketoconazole, Soya lecithin, Cholesterol were dissolved in mixture of chloroform and methanol (9:1) were taken in different levels. 0. The FT-IR spectroscopy study was carried out to check out the compatibility between the drug Ketoconazole and the excipients used for the preparation. These include average particle size and size distribution, shape, encapsulation efficiency, Percentage drug content, In-vitro drug release study. The compatibility study of the prepared
Ketoconazole Liposomes showed no interaction between drug and excipients. The size of liposomal formulations ranged from 3.278-19.688µm. The entrapment efficiency of drug increased when molar ratio of lipid to cholesterol was changed from 1:1%. Drug content of liposomal formulations obtained shows 94.6 - 99.2% drug content. Liposomal dispersion and gel were found to increase the skin permeation and deposition compared to control and marketed gel. They concluded that Ketoconazole can also be loaded in liposomal carriers which found to be effective, stable and can be preceded for further future studies.

Mohamed A. El-Nabarawi et al.51, formulated and evaluated dispersed paroxetine liposomes in gel. Paroxetine liposomes were prepared by reverse phase evaporation technique using soya lecithin, cholesterol and drug in different weight ratios. The prepared liposomes were characterized for size, shape, entrapment efficiency. The effect of using different weight ratios of soybean lecithin phosphatidylcholine: cholesterol on entrapment efficiency and on drug release was studied. Liposomes showed entrapment efficiency percent of 81.22% ± 3.08 for paroxetine. The optimized paroxetine liposomes formula was F5 (7:7) molar ratio of (SLP: CHOL), which after that was incorporated in different based gels at different concentrations as Pluronic F127 (PF127-G) (20%, 25% and 30%), Carbopol 934 (C934-G) (1%, 1.5% and 2%) and Hydroxypropyl methylcellulose E4M (HPMC-G) (2%, 4% and 6%) and evaluated through in-vitro release, viscosity, pH and drug content.

M.Yasmin Begum et al.52, designed and evaluated flurbiprofen liposomes. Liposomes were prepared by thin film hydration technique using various lipids such as soyphosphatidyl choline, dipalmitoyl phosphatidyl choline and distearoyl phosphatidyl choleoine with or without cholesterol. All the prepared formulations were characterized for their physico chemical properties such as appearance, vesicle size, vesicle size distribution, percentage drug entrapment, stability of the liposomes in terms of their drug leakage and drug retention behavior. Stability was studied by storing the liposomal formulations under different conditions for the period of 30 days. The optimized formulation parameters and process parameters resulted the liposomes in the vesicle size range of 4.6±0.6 to 5.6±0.4µm with mean vesicle diameter of 5. The maximum percentage drug entrapment was achieved with the formulation which contains the distearoyl phosphatidyl choline and cholesterol. In vitro percentage drug release data
showed that the release profile follows zero order kinetics and mechanism of drug release was diffusion. The flurbiprofen liposomes with good stability and appreciable controlled drug release with good retention of the drug even after 24 hours were prepared successfully

J S Dua et al[^53^], prepared, optimized, characterized liposomes containing serratiopeptidase for oral delivery. The liposome prepared by ethanol injection method by using Phosphatidylcholine and cholesterol at 10:10 ratio shown good % Entrapment efficiency and In-vitro drug release study. Optimized formulations were subjected to stability studies at two different temperatures for up to 45 day. No significant changes in drug entrapment efficiency and mean particle size were observed during the course of stability study for formulations stored at 4-8°C but there was a significant decrease in drug entrapment efficiency for liposome stored at room temperature after 15, 30 and 45 days and the mean particle size were increased at room temperature after 15, 30 and 45 days.
Materials and Methods
LIST OF CHEMICALS
S. No	INGREDIENTS	SOURCE
1.	Metformin HCL	Reachem laboratory chemicals, Chennai
2.	Cholesterol	Reachem laboratory chemicals, Chennai
3.	Soy lecithin	The urban platter food co., Mumbai
4.	Chloroform	RANKEM, Haryana
5.	Ether	RANKEM, Haryana
6.	Sodium hydroxide	Reachem laboratory chemicals, Chennai
7.	Potassium di hydrogen phosphate	Merck specialities pvt. Ltd., Mumbai
DRUG PROFILE
METFORMIN HCl

DRUG NAME: Metformin hydrochloride

STRUCTURE

![Chemical Structure of Metformin HCl](image)

MOLECULAR FORMULA: C₄H₁₁N₅

MOLECULAR WEIGHT: 129.1636

CHEMICAL NAME: 1-carbamimidamido-N,N-dimethylmethanimidamide

CATEGORY: Anti-hyperglycemic drug

DOSE: 500 - 2500mg

DESCRIPTION: white crystalline powder, odorless, bitter taste

SOLUBILITY: Freely water soluble

MELTING POINT: 223-226 °C
MECHANISM OF ACTION:

Metformin's mechanisms of action differ from other classes of oral anti-hyperglycemic agents. Metformin decreases blood glucose levels by decreasing hepatic glucose production, decreasing intestinal absorption of glucose, and improving insulin sensitivity by increasing peripheral glucose uptake and utilization. These effects are mediated by the initial activation by metformin of AMP-activated protein kinase (AMPK), a liver enzyme that plays an important role in insulin signaling, whole body energy balance, and the metabolism of glucose and fats. Activation of AMPK is required for metformin's inhibitory effect on the production of glucose by liver cells. Increased peripheral utilization of glucose may be due to improved insulin binding to insulin receptors. Metformin administration also increases AMPK activity in skeletal muscle. AMPK is known to cause GLUT4 deployment to the plasma membrane, resulting in insulin-independent glucose uptake.

PHARMACOKINETICS:

Absorption:

Absorbed over 6 hours, bioavailability is 50 to 60% under fasting conditions. Administration with food decreases and delays absorption. Some evidence indicates that the level of absorption is not dose-related, suggesting that absorption occurs through a saturable process. Limited data from animal and human cell cultures indicate that absorption occurs through a passive, non-saturable process, possibly involving a paracellular route. Peak action occurs 3 hours after oral administration.

Distribution:

654 L for metformin 850 mg administered as a single dose. The volume of distribution following IV administration is 63-276 L, likely due to less binding in the GI tract and/or different methods used to determine volume of distribution.

Metabolism:

Metformin is not metabolized.
Elimination:

Intravenous single-dose studies in normal subjects demonstrate that metformin is excreted unchanged in the urine and does not undergo hepatic metabolism (no metabolites have been identified in humans) nor biliary excretion. Approximately 90% of the drug is eliminated in 24 hours in those with healthy renal function. Renal clearance of metformin is approximately 3.5 times that of creatinine clearance, indicating the tubular secretion is the primary mode of metformin elimination.

ADVERSE REACTION:

Lactic acidosis is characterized by elevated blood lactate levels (>5mmol/L), decreased blood pH, electrolytic disturbance with an increased anion gap and an increased lactate / pyruvate ratio. Feeling very weak, tired or unusual muscles pain, breathing trouble, unusual stomach discomfort were observed with Metformin. Metformin hydrochloride therapy may produce unpleasant or metallic taste, feeling cold, dizziness and suddenly developing a slow or irregular heartbeat. Gastrointestinal symptoms like diarrhea, nausea, vomiting, abdominal bloating, flatulence and anorexia are the most common but very rare (approximately 3%) symptoms.

INDICATIONS:

Metformin is used in patients with type 2 diabetes (non - insulin dependent diabetes). Controlling high blood sugar helps prevent kidney damage, blindness, nerve problem, loss of limbs and sexual function problem. Proper control of diabetes may also lessen the risk of a heart attack or stroke. It also decreases the amount of sugar that the liver makes and that the stomach /intestines absorb.

DOSAGE AND ADMINISTRATION:

The usual starting dose of Metformin hydrochloride 500mg tablet is, one tablet twice in a day, given with the morning and evening meals. Metformin hydrochloride can be administered up to 2000mg per day (twice a day). The maximum recommended daily dose for Metformin hydrochloride in adult is 2000mg.
CONTRAINDICATION:

Metformin is contraindicated in people with any condition that could increase the risk of lactic acidosis, including kidney disorders, lung disease and liver disease. Metformin is recommended to be temporarily discontinued before any radiographic study involving iodinated contrast agents (such as contrast – enhanced CT scan or angiogram), as the contrast dye may temporarily impair kidney function, indirectly leading to lactic acidosis by causing retention of Metformin in the body.

MARKETED PRODUCTS:

Metlong – D, Glumet, Sumet, Daomet, Diamet, Gluconorm, GluforminXL, K-met, Glyciphage, Melmet, Obimet, Zoform.

OTHER DOSAGE FORMS:

Pio – MF bilayered tablets, Glycheck – MF conventional tablets, Riomet oral solution.
EXCIPIENT PROFILE
SOYA LECITHIN57, 58, 59, 60

NON – PROPRIETARY NAME : Lecithin

SYNONYMS : Mixed soybean phosphatides, ovolecithin, mixed soybean phosphatides, ovolecithin, soybean lecithin, soybean phospholipids, vegetables lecithin.

EMPRIICAL FORMULA : $\text{C}_{42}\text{H}_{80}\text{NO}_{8}\text{P}$

MOLECULAR WEIGHT : 758.06g/mol

STRUCTURAL FORMULA :

![Structural Formula](image)

MELTING POINT : -5°C (23°F)

FUNCTIONAL CATEGORY : Emollient; emulsifying agent; solubilizing agent.

DESCRIPTIONS : Solid, White or faintly yellow pearly granules or crystals

SOLUBILITY : Insoluble in water, soluble in chloroform, ethanol and ether.
EXCIPIENTS PROFILE
STABILITY
APPLICATIONS
STORAGE
STABILITY
INCOMPATIBILITIES
CHOLESTEROL61,62

NON-PROPRIETARY NAME: BP: Cholesterol,
JP: Cholesterol,
PhEur: Cholesterol,
USP-NF: Cholesterol

SYNONYM: Cholesterin, cholesterolum.

EMPIRICAL FORMULA: $\text{C}_{27}\text{H}_{46}\text{O}$

MOLECULAR WEIGHT: 386.664 g/mol

STRUCTURAL FORMULA:

![Structural formula of cholesterol]

MELTING POINT: 148.5 °C

FUNCTIONAL CATEGORY: Emulsifying agent,

DESCRIPTIONS: Solid, White or faintly yellow pearly granules or crystals and white crystalline powder.
SOLUBILITY

Lower solubility in water, soluble in ethanol, methanol, hexane, acetone, ether, chloroform and benzene.

APPLICATIONS

Cholesterol is used in liposomes to encapsulate and deliver chemotherapeutic drugs to diseased tissues. Cholesterol-C14 is used clinically as an organ imaging agent. Organs visualized by the technique include ovaries, adrenals, and spleen.

STORAGE

Stored in well close container, protect from direct sunlight and away from oxidizing agent.

STABILITY

Stable under ordinary condition

INCOMPATIBILITIES

Incompatible with strong oxidizing agents
CHLOROFORM63, 64

SYNONYMS: Trichloromethane, Formyl trichloride, Trichloroform, Methenyl chloride, Methenyl trichloride.

EMPRICAL FORMULA: CHCl\textsubscript{3}

MOLECULAR WEIGHT: 119.369 g/mol

STRUCTURAL FORMULA:

```
    Cl
   / \  \\
  C   |  C
   \ /  \\
    Cl
```

MELTING POINT: -63.2 °C

FUNCTIONAL CATEGORY: Inhaled anesthetic and used as a solvent

DESCRIPTIONS: Clear colorless liquid with a characteristic odor

SOLUBILITY: Slightly soluble in water and soluble in carbon disulfide,

APPLICATIONS: Chloroform was used in the past as an extraction solvent for fats, oils, greases, and other products; as a dry cleaning spot remover; in fire extinguishers; as a fumigant and as an anesthetic.

STORAGE: It is to be stored in a cool, dry, well-ventilated place, out of direct light.
STABILITY: Decomposes at ordinary temp in sunlight in the absence of air, and in the dark in the presence of air.

INCOMPATIBILITIES: It is incompatible with dinitrogen tetraoxide, fluorine, sodium metal and alcohols, nitromethane, and triisopropylphosphine.
ETHER65, 66, 67

SYNONYMS : Diethyl ether, Ethyl ether, Ethoxyethane, Diethyl oxide, Ethyl oxide

EMPirical FORMULA : C₄H₁₀O

MOLECULAR WEIGHT : 74.123 g/mol

STRUCTURAL FORMULA :

MELTING POINT : -116°C

FUNCTIONAL CATEGORY : Fuels and fuel additives, Functional fluids (closed systems), Propellants and blowing agents

DESCRIPTIONS : Clear colorless liquid with an anesthetic odor

SOLUBILITY : Soluble in acetone, naphtha, benzene and oils, very soluble in ethanol
APPLICATIONS	Anesthetic, It is a great solvent for fats, waxes, oils, perfumes, alkaloids, and gums.
STORAGE	Ethers should be stored in tightly closed containers within properly labelled fire resistant metal cabinets, or bins, and on drip trays. They must be stored separate from oxidizers.
STABILITY	Ether is stable under normal ambient and anticipated storage and handling conditions of temperature and pressure.
INCOMPATIBILITIES	It is incompatible with acids, bases, oxidizers, and poisons.
SYNONYMS: Methyl alcohol, wood alcohol, carbinol, wood spirit, wood naphtha, methylol, methyl hydroxide, pyroxylic spirit, colonial spirit, cumbrian spirit, monohydroxymethane, methylalkohol

EMPIRICAL FORMULA: CH₃OH

MOLECULAR WEIGHT: 32.042 g/mol

STRUCTURAL FORMULA:

MELTING POINT: -97.6 °C

FUNCTIONAL CATEGORY: Industrial solvent

DESCRIPTIONS: Colourless liquid with characteristic odour.

SOLUBILITY: Miscible with ethanol, ether, benzene, most organic solvents and ketones. Soluble in acetone, chloroform

APPLICATIONS: Methanol is primarily used as an industrial solvent for inks, resins, adhesives, and dyes. It is also used as a solvent in the manufacture of
cholesterol, streptomycin, vitamins, hormones, and other pharmaceuticals.

STORAGE

: Store in a segregated and approved area. Keep container in a cool, well-ventilated area. Keep container tightly closed and sealed until ready for use. Avoid all possible sources of ignition (spark or flame).

STABILITY

: Stored in well close container, protect from direct sunlight and away from oxidizing agent.

INCOMPATIBILITIES

: It is incompatible with acids, bases, oxidizers and poisons.
LIST OF EQUIPMENTS
LIST OF EQUIPMENTS

Table No. 2

S.No	EQUIPMENT NAME	EQUIPMENT MANUFACTURER
1.	Magnetic stirrer	Remi equipment Pvt.Ltd
2.	Digital Balance	ORSON
3.	Optical microscopy	Olympus opto systems India Pvt. Ltd, Noida
4.	UV spectrophotometer	UV – 1800 SHIMADZU corporation, Japan
5.	Cooling centrifugator	Remi elektrotechnik limited, vasai, India.
LIST OF EQUIPMENTS

Table No. 2

S.No	EQUIPMENT NAME	EQUIPMENT MANUFACTURER
1.	Magnetic stirrer	Remi equipment Pvt.Ltd
2.	Digital Balance	ORSON
3.	Optical microscopy	Olympus opto systems India Pvt. Ltd, Noida
4.	UV spectrophotometer	UV – 1800 SHIMADZU corporation, Japan
5.	Cooling centrifugator	Remi elektrotecnik limited, vasai, India.
METHODOLOGY
METHODOLOGY

CONSTRUCTION OF STANDARD CURVE OF METORMIN HCL

Preparation of 0.2M Potassium di hydrogen phosphate:

Accurately weighed 27.218 gm of potassium di hydrogen phosphate was dissolved in distilled water and make up to 1000 ml with distilled water.

Preparation of 0.2M Sodium hydroxide solution:

Accurately weighed 8.0 gm of sodium hydroxide was dissolved in distilled water and make up to 1000 ml with distilled water.

Preparation of ph 6.8 phosphate buffer

500 ml of 0.2 M potassium di hydrogen phosphate and 224 ml of 0.2 M sodium hydroxide solution was mixed together and made up to 2000 ml with distilled water. Then it was adjusted to pH 6.8.

Preparation of standard curve of Metformin HCl using pH 6.8 phosphate buffer:

Accurately weighed 100 mg metformin HCl was dissolved in water and the volume was make up to 100 ml using distilled water in a volumetric flask to obtain a solution of 1000 µg/ml. From the above solution 10 ml was pipetted out into a 100 ml volumetric flask and made up to 100 ml using phosphate buffer pH 6.8 to get a stock solution of 100 µg/ml. From this stock solution, aliquots of 0.2ml, 0.4ml, 0.6ml, 0.8ml, 1.0ml, 1.2ml, 1.4ml, 1.6ml, 1.8 ml and 2.0ml were pipetted out into a series of 10 ml volumetric flask and made up to mark with phosphate buffer pH 6.8 to get a concentration in the range of 2 to 20 µg/ml. The absorbance of the resulting solution was then measured at 233 nm using UV Double beam spectrophotometer against phosphate buffer pH 6.8 as blank. The standard curve was obtained by plotting concentration (µg/ml) values in X- axis and absorbance values in Y – axis.
STANDARD CURVE DATA OF METFORMIN HCL USING PHOSPHATE BUFFER pH 6.8

Table No. 3 Standard curve data of Metformin HCl using phosphate buffer pH 6.8

S. No.	Concentration (µg/ml)	Absorbance at 233 nm
1.	2	0.189
2.	4	0.370
3.	6	0.524
4.	8	0.699
5.	10	0.858
6.	12	1.055
7.	14	1.244
8.	16	1.394
9.	18	1.568
10.	20	1.716
Figure No. 4 Standard curve of Metformin HCl

\[y = 0.0858x + 0.018 \]
\[R^2 = 0.9994 \]
PREFORMULATION STUDIES

Preformulation testing is an investigation of physical and chemical properties of a drug substance alone and when combined with excipients. It is the first step in the rational development of dosage form. The objective of preformulation testing is to generate information useful to the formulation in developing stable and stable and bioavailable dosage forms. The use of preformulation parameters maximize the chances in formulating an acceptable, safe, efficacious and stable product.

A) Solubility

Solubility of Metformin Hcl in water, methanol, phosphate buffer pH 6.8 was determined at room temperature with the help of magnetic stirrer. Approximate solubility of drug was indicated from the following limits:

Very soluble: 1 part of the substance is soluble less than 1 part of the solvent.

Freely soluble: 1 part of the substance is soluble in 1 to 10 parts of the solvent.

Soluble: 1 part of the substance is soluble in 10 to 30 parts of the solvent.

Sparingly soluble: 1 part of the substance is soluble in 30 to 100 parts of the solvent.

Slightly soluble: 1 part of the substance is soluble in 100 to 1,000 parts of the solvent.

Very slightly soluble: 1 part of the substance is soluble in 1000 to 10,000 parts of the solvent.

Practically insoluble or insoluble: More than 10,000 parts of the solvent is required to dissolve 1 part of substance.

B) Melting Point

Melting point determination was done by using melting point apparatus. Small amount of pure drug of Metformin HCl was taken in a capillary tube and it was kept in the melting point apparatus and the melting point was noted.

Drug – excipients interaction studies:

FT-IR spectra were taken for the dried samples using FT-IR 8400S (Shimadzu, Japan) to determine the possible interactions between the drug and polymers. The plain drug, individual lecithin and cholesterol, combination of drug with cholesterol and lecithin in three different ratio (1:1, 1:2 and 1:3) were taken and mixed with KBr.
The samples were compressed to form a pellet using a hydraulic press. The prepared pellets were transformed into disk. The disk was applied to the centre of the sample holding device and scanned from 4,500 to 400 cm⁻¹ using FT-IR spectrophotometer.

Formulation of liposomes loaded with Metformin hydrochloride:

The formulation of liposomes loaded with Metformin HCl was prepared by two different techniques namely, physical dispersion method and ether injection method. In both the techniques ratio of cholesterol was kept as same and the lecithin concentration was increased as 1:1, 1:2 and 1:3.

Physical dispersion method:

Liposomes were prepared by physical dispersion method using different ratio of soya lecithin and cholesterol was kept as constant. In this method the soya lecithin and cholesterol were dissolved in chloroform. Then it was spread over flat bottom conical flask and allowed to evaporate at room temperature for overnight without disturbing the solution for a formation of lipid film. The drug was dissolved in phosphate buffer pH 6.8. It act as an aqueous medium. Then the aqueous medium was added to the lipid film for hydration. For this the flask was inclined to one side and aqueous medium was introduced down the side of flask and flask was slowly returned to upright orientation. Then the conical flask was kept on water bath and the temperature was maintained at 37± 2°C for 2 hours for the completion of hydration. The conical flask was gently shaken until the lipid layer was removed from wall of conical flask and formation a liposomes suspension. Then the formed liposomes suspension was stored at 4°C for one day for the maturation of liposomes. The prepared liposome suspension was centrifuged at 15,000 rpm for 20 mins. Then the precipitate was collected and diluted with distilled water for further studies. Different batches of liposomes were prepared as per the general method described above and composition for the preparation of liposomes is given in Table 5.
Ether injection method:

Liposomes were prepared by ether injection method using different ratio of soya lecithin and cholesterol was kept as constant. In this method the cholesterol and soya lecithin were dissolved in ether and methanol. The drug was dissolved in phosphate buffer pH 6.8. It act as an aqueous medium. The aqueous medium was heated to 60°C. The method involves injecting drop by drop of ether-lipid solutions into the above warmed aqueous medium. The ether vaporizes upon contacting the aqueous phase, and the dispersed lipid forms primarily unilamellar liposomes. Then the product was collected and it was stored at 4°C for maturation of liposome. Then prepared liposomal suspension was centrifuged at 15,000 rpm for 20 mins. The precipitate was diluted with distilled water for evaluation studies. Different batches of liposomes were prepared as per the general method described above and composition for the preparation of liposomes is given in **Table No. 4**.

Table No. 4 Formulation of Metformin HCl liposomes

S. No.	Ingredients	Physical dispersion method	Ether injection method				
		F 1	F 2	F 3	F 4	F 5	F 6
1.	Cholesterol	100 mg	100 mg	100 mg	100 mg	100 mg	100 mg
2.	Lecithin	100 mg	200 mg	300 mg	100 mg	200 mg	300 mg
3.	Metformin HCl	10 gm	10 gm	10 gm	10 gm	10 gm	10 gm
4.	Ether	-	-	-	7 ml	7 ml	7 ml
5.	Methanol	-	-	-	3 ml	3 ml	3 ml
6.	Chloroform	5 ml	5 ml	5 ml	-	-	-
7.	Phosphate buffer pH 6.8	50 ml					
EVALUATION OF LIPOSOMES:

1. **Determination of percentage drug entrapment efficiency:**

 Drug entrapment efficiency was calculated by using centrifugation method. 10 ml of liposome suspension was taken and centrifuged at 15,000 rpm for 20 mins. The supernatant liquid was collected and suitably diluted. Then the absorbance was taken at 233 nm with the help of UV double beam spectrophotometer using pH 6.8 as a blank. The drug entrapment efficiency was calculated from the following formula:

 \[
 \text{Total entrapment efficiency} = \frac{\text{Amount of drug in supernatant liquid}}{\text{Amount of drug}} \times 100
 \]

2. **Morphology analysis:**

 The prepared Metformin HCl liposomes for all the formulations were viewed under for observing the vesicle formation and discreteness of dispersed vesicles. A slide was prepared by placing a drop of liposome dispersion on a glass slide and cover slip was placed over it and this slide was viewed under optical microscope at 40X magnification. Photographs were taken to prepared slides using digital camera.

3. **In vitro drug release study:**

 Apparatus : USP TYPE II (Paddle)

 RPM : 50

 Temperature : 37°C ± 0.5°C

 Time : 30 min. interval Upto 8 hrs

 The in vitro release for all the formulated Metformin HCl liposomes were carried out for 8 hours in phosphate buffer pH 6.8. The studies were carried in USP dissolution apparatus II (Paddle) at 37°C ± 0.5°C and 50 rpm speed. 900 ml of phosphate buffer pH 6.8 was used as a dissolution medium. Equivalent to 100 mg of Metformin HCl liposome was taken in a dissolution jar contains dissolution medium and the paddle was rotated at 50 rpm. 1 ml of samples were withdrawn at every 30 min. upto 480 mins and make upto 10 ml with pH 6.8 and analyzed for Metformin HCl content at 233 nm with pH 6.8 as blank using double beam UV double beam spectrophotometer.
4. Particle size determination:

The particle size determination is done by using Malven particle size analyzer. Groups of particles are dispersed in a liquid medium and measured as they are circulated between the flow cell, which is placed in the measurement unit, and a dispersion bath in the sampler. The dispersion bath incorporates a stirrer and an ultrasonic sonicator. A pump delivers the dispersed suspension to the flow cell. The pump is specially designed to ensure both liquid medium and the particles are circulated. It can be controlled from a PC. Organic solvents can be used as dispersion media.

5. Stability studies:

The behavior of the liposome to retain the drug was studied by storing the liposome at two different temperature conditions, i.e., 4°C (refrigerator RF), 25°C±2°C for a period of 1 month. The liposomal preparations were kept in sealed vials. At 30th day the samples were analyzed for the drug content following the same method described in % drug encapsulation efficiency and in vitro drug release. And also the liposomes were studied for their morphology.
RESULT AND DISCUSSION
RESULTS AND DISCUSSION

The research study was aimed to formulate Metformin HCl liposomes to sustain the action of drug for over the period of 8 hours. The liposomes were prepared by physical dispersion method and ether injection method. Soya lecithin and cholesterol were used for encapsulating the drug and also to release the drug in sustained manner. Chloroform, ether and methanol were used as a solvent. Phosphate buffer pH 6.8 was used as a hydration medium for loading the drug.

Preformulation studies such like solubility analysis, melting point and FT – IR studies were carried out before the formulations. After formulation, the liposomes were evaluated for various parameters like percentage drug entrapment efficiency, microscopic analysis, particle size analysis, *in vitro* drug release studies and stability study.

PREFORMULATION STUDIES

A) Solubility

The drug should be dissolve in solvents and also dissolution medium so the solubility analysis for the drug was important. The solubility of raw drug was determined by dissolving in distilled water, methanol and phosphate buffer pH 6.8. The drug was found to be freely soluble in water, soluble in methanol and phosphate buffer pH 6.8.

B) Melting point

The melting point was confirmed the Metformin HCl present in raw material of drug. It was found to be 224ºC within the specification range. So it confirmed Metformin HCl present in raw material of drug.

C) DRUG – EXCIPIENTS INTERACTION STUDIES:

The FT – IR studies of pure Metformin HCl, cholesterol, soya lecithin and Metformin HCl+ cholesterol + soya lecithin were conducted to study the interaction between the drug and excipients.
RESULT AND DISCUSSION

IR spectral analysis showed that the fundamental peaks and patterns of the spectra were similar both in pure drug and combination containing drug and highest proportion of excipients. This indicated that there was no chemical interaction between Metformin HCl and the other excipients used in the formulations. The spectral datas are presented in Table No. 5 - 8 and spectral peaks were presented graphically in Figure No. 5 – 9.
FT – IR SPECTRUM OF PURE METFORMIN HCL

Figure No. 5 FT – IR Spectrum of pure Metformin HCl

Table No. 5 FT – IR Spectrum of pure Metformin HCl

Wave length (cm⁻¹)	Functional group
3372	N-H stretching
1582	Amino N-H bending
1466	CH₃ bending alkanes
1057	C-N Stretching
957	Alkene C-H bending
FT – IR SPECTRUM OF CHOLESTEROL

Figure No. 6

Table No. 6 FT – IR Spectrum of cholesterol

Wave length(cm⁻¹)	Functional group
3421	N-H stretching
1466	CH₃ bending alkanes
1057	C-N Stretching
955	Alkene C-H bending
RESULT AND DISCUSSION

FT – IR SPECTRUM OF SOYA LECITHIN

![FTIR Spectrum Image](image_url)

Figure No. 7

Table No. 7 FT – IR Spectrum of soya lecithin

Wave length (cm⁻¹)	Functional group
3379	N-H stretching
1620	Amino N-H bending
1464	CH₃ bending alkanes
1104	C-N Stretching
864	Alkene C-H bending
FT – IR SPECTRUM OF COMBINATION OF METFORMIN HCl, CHOLESTEROL AND SOYA LECITHIN

Figure No. 8

Table No. 7 FT – IR Spectrum of combination of Metformin HCl + cholesterol + soya lecithin

Wave length (cm⁻¹)	Functional group
3372	N-H stretching
1582	Amino N-H bending
1466	CH₃ bending alkanes
1057	C-N Stretching
957	Alkene C-H bending
RESULT AND DISCUSSION

Table No. 8
FT – IR Spectrum of pure Metformin HCl, cholesterol, soya lecithin and combination of Metformin HCl + cholesterol + soya lecithin

Functional group	N-H stretching (cm⁻¹)	Amino N-H bending (cm⁻¹)	CH₃ bending alkanes (cm⁻¹)	C-N Stretching (cm⁻¹)	Alkene C-H bending (cm⁻¹)
Drug	3372	1582	1466	1057	957
Cholesterol	3421	-	1466	1057	955
Soya lecithin	3379	1620	1464	1104	864
Combination of drug + cholesterol + soya lecithin	3372	1582	1466	1057	957

EVALUATION OF METFORMIN HCL LIPOSOMES

Percentage drug entrapment efficiency

The percentage drug entrapment efficiency of liposomes were prepared by physical dispersion method and ether injection method. The formulations were formulated by varying the cholesterol – soya lecithin ratio. It was found to be that percentage drug entrapment efficiency of formulations F 1, F 2 and F 3 were 86.60 %, 79.90 % and 73.10 % respectively and formulations F 4, F 5 and F 6 were 30.47%, 39.58% and 39.69% respectively. The results may adjudge physical dispersion method have better drug entrapment efficiency than ether injection method.
RESULT AND DISCUSSION

Morphology analysis

The morphology characters of liposomes were analyzed by optical microscopy (Olympus Opto System, India) and the images were taken using digital camera. The formulation F 1, F 2, F 3, F 4, F 5 and F 6 microscopic images were showed in Figure No. 9 -14.

Prepared liposomes F 1 to F 6 shows well identified morphology characters.
Particle size analysis

The particle size analysis was carried out by particle size analyzer for all the prepared liposome formulations. The particle size for all the formulated liposomes were found be in the range of 30.617 µm to 0.031µm as shown in Table No. 7 and graphically showed in Figure No. 15 to 20. The particle size data showed that when the concentration of soya lecithin was increased the particle size was decreased for all the formulations of Metformin HCl liposomes in prepared by both methods. The particle size of Metformin HCl liposomes of F 3 and F 6 were found to be lower when compared with other formulations this may be due to higher concentration of soya lecithin.
RESULT AND DISCUSSION

Figure No. 15 Particle size range of F1 formulation

Dia/μm	Cum%	Diff%	Qi(%)	Diam/μm	Cum%	Diff%	Qi(%)
2500.00 100.00 0.00	0.00	2.7 113.342 100.00 0.00	0.00	5.189 16.808 4.230 79	0.233 0.000 0.000		
2219.51 100.00 0.00	0.00	2.6 100.628 100.00 0.00	0.00	4.562 12.578 3.273 80	0.207 0.000 0.000		
1797.56 100.00 0.00	0.00	2.5 89.339 100.00 0.00	0.00	4.050 9.326 2.498 81	0.184 0.000 0.000		
1479.50 100.00 0.00	0.00	2.4 79.317 100.00 0.00	0.00	3.595 6.807 1.916 82	0.163 0.000 0.000		
1155.24 100.00 0.00	0.00	2.3 70.419 100.00 0.00	0.00	3.193 4.801 1.590 83	0.145 0.000 0.000		
870.90 100.00 0.00	0.00	2.2 62.250 100.00 0.00	0.00	2.834 3.291 1.251 84	0.129 0.000 0.000		
722.38 100.00 0.00	0.00	2.1 55.956 100.00 0.00	0.00	2.516 2.040 0.667 85	0.114 0.000 0.000		
608.96 100.00 0.00	0.00	2.0 49.288 100.00 0.00	0.00	2.234 1.074 0.557 86	0.101 0.000 0.000		
506.39 100.00 0.00	0.00	1.9 43.752 100.00 0.00	0.00	1.984 0.419 0.279 87	0.090 0.000 0.000		
434.05 100.00 0.00	0.00	1.8 38.843 100.00 0.00	0.00	1.761 0.139 0.079 88	0.080 0.000 0.000		
360.66 100.00 0.00	0.00	1.7 34.868 100.00 0.00	0.00	1.563 0.060 0.033 89	0.071 0.000 0.000		
271.52 100.00 0.00	0.00	1.6 30.617 100.00 0.168	64	1.388 0.027 0.000 90	0.063 0.000 0.000		
199.57 100.00 0.00	0.00	1.5 27.183 99.832 0.725	65	1.232 0.027 0.000 91	0.056 0.000 0.000		
153.12 100.00 0.00	0.00	1.4 24.133 99.107 1.762	66	1.094 0.027 0.000 92	0.050 0.000 0.000		
142.59 100.00 0.00	0.00	1.3 21.426 97.325 3.683	67	0.971 0.027 0.000 93	0.044 0.000 0.000		
419.52 100.00 0.00	0.00	1.2 19.023 93.642 4.942	68	0.862 0.027 0.000 94	0.039 0.000 0.000		
372.51 100.00 0.00	0.00	1.1 16.889 88.700 5.901	69	0.766 0.027 0.000 95	0.035 0.000 0.000		
330.72 100.00 0.00	0.00	1.0 14.994 82.799 6.681	70	0.660 0.019 0.016 96	0.031 0.000 0.000		
293.62 100.00 0.00	0.00	0.9 13.312 76.118 7.392	71	0.604 0.003 0.003 97	0.027 0.000 0.000		
260.68 100.00 0.00	0.00	0.8 11.819 66.926 7.676	72	0.536 0.000 0.000 98	0.024 0.000 0.000		
231.44 100.00 0.00	0.00	0.7 10.493 61.249 8.161	73	0.476 0.000 0.000 99	0.022 0.000 0.000		
205.49 100.00 0.00	0.00	0.6 9.316 53.088 8.292	74	0.422 0.000 0.000 100	0.019 0.000 0.000		
182.48 100.00 0.00	0.00	0.5 8.271 44.796 8.233	75	0.375 0.000 0.000 101	0.017 0.000 0.000		
161.96 100.00 0.00	0.00	0.4 7.343 36.563 7.685	76	0.333 0.000 0.000			
143.79 100.00 0.00	0.00	0.3 6.519 28.078 6.561	77	0.296 0.000 0.000			
127.66 100.00 0.00	0.00	0.2 5.788 22.317 5.009	78	0.262 0.000 0.000			

Condition File Name
- Ref Index: 2.00-0.00s
- Deionized Solvent:
- Concentration of Dispersing Agent: Dispersion Method: Diaminendicarboxylic acid
- Pump Speed: 0.0
- Sample Preparation: Time for Sonicator: 10
- Distribution Function: None
- Select Emulsion Table:
- Sequence File Name:

Figure No. 15 Particle size range of F1 formulation
Figure No. 16 Particle size range of F 2 formulation
RESULT AND DISCUSSION

Figure No. 17 Particle size range of F 3 formulation
RESULT AND DISCUSSION

Diam (μm)	Cum% (%)	Diff% (%)	Diam (μm)	Cum% (%)	Diff% (%)	Diam (μm)	Cum% (%)	Diff% (%)	Diam (μm)	Cum% (%)	Diff% (%)
1 2.900	0.000	0.000	113.342	100.000	0.000	5.139	9.276	3.569	0.233	0.000	0.000
2 2.219	0.000	0.000	100.628	100.000	0.000	4.562	5.712	2.062	0.207	0.000	0.000
3 1.970	0.000	0.000	89.339	100.000	0.000	4.050	3.650	1.238	0.184	0.000	0.000
4 1.749	0.000	0.000	79.317	100.000	0.000	3.596	2.412	0.665	0.163	0.000	0.000
5 1.553	0.000	0.000	70.419	100.000	0.000	3.193	1.747	0.603	0.145	0.000	0.000
6 1.379	0.000	0.000	62.520	100.000	0.000	2.634	1.144	0.442	0.129	0.000	0.000
7 1.224	0.000	0.000	55.506	100.000	0.000	2.516	0.702	0.365	0.114	0.000	0.000
8 1.086	0.000	0.000	49.280	100.000	0.000	2.234	0.338	0.246	0.101	0.000	0.000
9 0.965	0.000	0.000	43.752	100.000	0.000	1.904	0.092	0.083	0.050	0.000	0.000
10 0.856	0.000	0.000	38.843	100.000	0.000	1.761	0.009	0.007	0.030	0.000	0.000
11 0.760	0.000	0.000	34.486	100.000	0.000	1.636	0.002	0.002	0.071	0.000	0.000
12 0.675	0.000	0.000	30.417	100.000	0.000	1.500	0.004	0.004	0.054	0.000	0.000
13 0.599	0.000	0.000	27.183	100.000	0.000	1.392	0.000	0.000	0.046	0.000	0.000
14 0.532	0.000	0.000	24.133	100.000	0.000	1.432	0.000	0.000	0.042	0.000	0.000
15 0.472	0.000	0.000	21.426	100.000	0.000	1.457	0.000	0.000	0.044	0.000	0.000
16 0.419	0.000	0.000	19.023	100.000	0.000	1.592	0.000	0.000	0.049	0.000	0.000
17 0.372	0.000	0.000	16.899	100.000	0.000	1.622	0.000	0.000	0.045	0.000	0.000
18 0.330	0.000	0.000	14.994	100.000	0.000	1.578	0.000	0.000	0.045	0.000	0.000
19 0.293	0.000	0.000	13.312	100.000	0.000	1.558	0.000	0.000	0.045	0.000	0.000
20 0.260	0.000	0.000	11.819	100.000	0.000	1.471	0.000	0.000	0.045	0.000	0.000
21 0.231	0.000	0.000	10.493	100.000	0.000	1.417	0.000	0.000	0.045	0.000	0.000
22 0.205	0.000	0.000	9.316	100.000	0.000	1.379	0.000	0.000	0.045	0.000	0.000
23 0.182	0.000	0.000	8.271	100.000	0.000	1.358	0.000	0.000	0.045	0.000	0.000
24 0.161	0.000	0.000	7.343	100.000	0.000	1.329	0.000	0.000	0.045	0.000	0.000
25 0.143	0.000	0.000	6.519	100.000	0.000	1.304	0.000	0.000	0.045	0.000	0.000
26 0.127	0.000	0.000	5.788	100.000	0.000	1.280	0.000	0.000	0.045	0.000	0.000

Figure No. 18 Particle size range of F 4 formulation
RESULT AND DISCUSSION

Figure No. 19 Particle size range of F 5 formulation
Figure No. 20 Particle size range of F 6 formulation
Table No. 9 Particle size of all the formulations of Metformin HCl liposomes

S. No.	Formulations	Particle size range
1.	F 1	30.617 – 1.563 µm
2.	F 2	19.023 – 1.563 µm
3.	F 3	0.071 -0.031µm
4.	F 4	24.133 – 1.563 µm
5.	F 5	0.081 – 0.031 µm
6.	F 6	0.071 -0.031µm

In vitro drug release studies

In vitro release studies were performed to evaluate the release of drug from the prepared Metformin HCl liposomes. The result of the *in vitro* release studies of all formulation were presented in **Table No. 10.**
RESULT AND DISCUSSION

Table No. 10 Cumulative percentage drug released of Metformin HCl from liposomes

S. No	Time (Mins)	F – 1	F - 2	F - 3	F – 4	F - 5	F – 6
1.	30	9.31±0.94	8.92±0.52	8.16±0.63	8.64±0.48	7.53±0.58	2.74±0.33
2.	60	15.76±0.59	12.19±0.61	11.24±0.80	16.63±0.67	13.73±0.37	5.34±0.94
3.	90	24.47±1.13	18.60±1.72	15.84±1.26	24.16±1.28	19.19±0.94	9.79±1.27
4.	120	32.70±2.54	25.22±1.47	20.78±2.42	31.48±1.88	26.48±0.71	15.75±0.57
5.	150	40.48±2.20	30.44±3.18	26.11±2.36	39.54±2.12	33.31±0.48	21.56±0.95
6.	180	45.49±1.85	36.58±3.54	30.60±2.44	47.31±2.30	38.18±0.43	26.58±0.42
7.	210	50.25±1.90	41.20±3.80	35.19±2.47	55.12±2.44	42.81±1.27	30.09±0.97
8.	240	57.43±1.72	47.65±3.87	38.49±2.61	62.44±2.32	47.44±2.58	33.31±1.51
9.	270	65.91±1.45	53.68±3.55	43.26±2.61	69.45±2.12	52.66±1.57	37.28±1.57
10.	300	74.00±3.11	58.45±3.00	46.98±2.38	76.56±1.47	57.29±1.36	42.40±2.03
11.	330	81.77±2.78	63.71±3.21	50.45±2.37	83.81±1.64	61.95±1.91	46.19±2.00
12.	360	88.04±2.81	69.84±3.56	55.85±2.37	91.06±1.57	66.51±1.36	51.41±1.88
13.	390	92.43±2.07	75.66±3.03	62.30±2.37	97.61±1.86	73.10±0.10	57.40±1.75
14.	420	95.83±2.11	80.70±2.63	69.23±2.51	100.58±1.58	79.13±1.61	64.06±1.55
15.	450	99.76±2.02	86.52±3.09	75.36±2.51	-	82.08±1.66	71.34±1.40
16.	480	103.03±2.47	91.92±2.72	82.12±2.51	-	85.06±1.73	79.05±1.03

All the values expressed as mean± standard deviation, n = 3

The Metformin HCl liposomes were prepared by physical dispersion method and ether injection method using different ratio of cholesterol and soya lecithin. The cumulative percentage drug release was compared with different formulations.

The cumulative percentage drug release of formulations F 1, F 2 and F 3 were found to be 103.03±2.47, 91.92±2.72 and 82.12±2.51 respectively in 8 hours. The
formulation F 1 show faster release than formulations F 2 and F 3 due to the lower concentration of soya lecithin.

The cumulative percentage drug release of formulations F 4 was found to be 100.58 ± 1.58 at the end of 7 hours. And the cumulative percentage drug release of formulations F 5 and F 6 were found to 85.06±1.73 and 81.39±1.12 respectively in 8 hours. The formulation F 4 show faster release than formulations F 5 and F 6. While the concentration of soya lecithin was increase it decrease the release of drug.

The prepared liposomes F 1 to F 6 showed sustained release of drug. When increased ratio of soya lecithin also sustain the release of drug was increased in both method of preparations.

The Figure No. 21 and 22 shows the formulation F 1, F 2 and F 3 and F 4, F 5 and F 6 respectively in 8 hours.

Figure No. 21 Comparative cumulative percentage drug release of Metformin HCl liposome formulations of F 1, F 2 and F 3
STABILITY STUDIES

All the formulations of Metformin HCl liposomes were relatively stable at 4°C storage condition. The drug leakage percent amounts of original entrapped in liposomes were very small and the amount retained in vesicle had no significant difference after one month as compared to the amount immediately after preparation. But at the storage condition of 25°C±2°C, all the formulations of Metformin HCl liposomes were unstable. In addition, the result of drug entrapment studies showed higher leakage at higher temperature. This may be due the higher fluidity of lipid bilayer at higher temperature, resulting into higher drug leakage.

Figure No. 22 Comparative cumulative percentage drug release of Metformin HCl liposome formulations of F 4, F 5 and F 6
RESULT AND DISCUSSION

Table No. 11 Stability study of percentage drug entrapment of liposomes Metformin HCl liposomes compared with percentage drug entrapment of immediately after preparation.

S. No.	Formulations code	Immediately after preparation (%)	After one month	
			At 4°C	At 25°C±2°C
1.	F 1	86.60	85.92%	76.87%
2.	F 2	79.90 %	77.99%	70.98%
3.	F 3	73.10 %	72.08%	66.89%
4.	F 4	30.47%	29.35%	24.89%
5.	F 5	39.58%	38.44%	35.39%
6.	F 6	39.69%	38.36%	36.69%

The morphological characters of Metformin HCl liposomes for F 1 – F 4 didn’t show any characteristic changes after it was stored at 4°C and 25°C±2°C for a period of one month. F 5 and F 6 formulations were showed slightly reduced in the size after it was stored at 25°C±2°C for a period of one month but there was no changes for the same formulation when it was stored at 4°C. Microscopic images of all the formulations (F 1 – F 6) of Metformin HCl liposomes were compared with before and after stability stability studies were shown in Figure No. 23 – 40.
RESULT AND DISCUSSION

Morphology characters of liposomes – Before and after stability study

Figure No. 23 F 1, Immediately after preparation (45x)
Figure No. 24 F 1, After stability study at 4°C (45x)
Figure No. 25 F 1, After stability study at 25°C±2°C (45x)

Figure No. 26 F 2 Immediately after preparation (45x)
Figure No. 27 F 2, After stability study at 4°C (45x)
Figure No. 28 F 2, After stability study at 25°C±2°C (45x)

Figure No. 29 F 3, Immediately after preparation (45x)
Figure No. 30 F 3, After stability study at 4°C (45x)
Figure No. 31 F 3, After stability study at 25°C±2°C (45x)
RESULT AND DISCUSSION

Figure No. 32 F 4, Immediately after preparation (45x)

Figure No. 33 F 4, After stability study at 4°C (45x)

Figure No. 34 F 4, After stability study at 25°C±2°C (45x)

Figure No. 35 F 5, Immediately after preparation (45x)

Figure No. 36 F 5, After stability study at 4°C (45x)

Figure No. 37 F 5, After stability study at 25°C±2°C (45x)

Figure No. 38 F 6, Immediately after preparation (45x)

Figure No. 39 F 6, After stability study at 4°C (45x)

Figure No. 40 F 6, After stability study at 25°C±2°C (45x)
RESULT AND DISCUSSION

After one month, Metformin HCl liposomes formulations F 1 to F 6 were showed difference in in vitro drug release profile. Dissolution rate was decreased in all Metformin HCl liposomes formulations at both storage conditions like 4°C and 25ºC±2ºC. The results of in vitro drug release of all the formulations at both storage conditions were compared with before and after stability studies and the results were shown in Table No. 10 and Figure No. 40.

Table No. 12 In vitro drug release data of all the Metformin HCl liposome formulations after stability study, compared with before stability

S. No.	Formulation code	Immediately after preparation	After stability study	
		At 4°C	At 25ºC±2ºC	
1.	F 1	103.03±2.47	91.81	73.38
2.	F 2	91.92±2.72	86.77	68.26
3.	F 3	82.12±2.51	77.91	64.37
4.	F 4	100.58±1.12	91.74	87.41
5.	F 5	85.06±1.73	78.81	61.81
6.	F 6	79.05±1.03	73.98	63.32
In vitro drug release data of all the Metformin HCl liposome formulations after stability study, compared with before stability.

Figure No. 41 *In vitro* drug release data of all the Metformin HCl liposome formulations after stability study, compared with before stability.

At storage condition 4°C showed better stability than another condition. This may due to their elevated temperature reduce the stability. But in both storage condition higher proportion of soya lecithin contains formulations like F 3 and F 6 showed better stability than other their formulations.
SUMMARY AND CONCLUSION
SUMMARY AND CONCLUSION

This study concluded that Metformin HCl was successfully prepared as a liposomal drug delivery system by using two different techniques such as physical dispersion method and ether injection method. In this liposomes preparations, cholesterol ratio was constant and soya lecithin concentrations were gradually increased (like 1:1, 1:2 and 1:3). The liposomes prepared by physical dispersion method showed better percentage drug entrapment when compared with ether injection method. The morphological characters of prepared liposomes were determined with the help of optical microscope. The particle size was analyzed by Malven particle size analyzer. The results of the particle size showed, when the concentration of soya lecithin was increased the size of the particle was reduced. The in vitro release showed that as the concentration of soya lecithin was increased the release rate of drug was retarded. Among the two methods ether injection method showed prolonged action when compared to physical dispersion method. The stability studies for all the formulations were performed by keeping the formulations at two different temperatures 4°C±2°C and 25°C±2°C for a period of 30 days. After the stability period the formulations were tested for morphological analysis, percentage drug entrapment and in vitro drug release and compared with before stability study. There was no change in morphological characters at 4°C±2°C, but there was a slight reduced in particles size at 25°C±2°C. The percentage drug entrapment was reduced in all the formulations at both the conditions. The in vitro drug release was reduced for all the formulations. Liposomes prepared by physical dispersion method showed better stability compared with ether injection method.
BIBLIOGRAPHY
1. Tariq Jamshaid. Pharmaceutics & novel drug delivery systems. Pharmaceutical regulatory affairs, 2015; 4(3):74.

2. Naresh Kalra1 and G. Jeyabalan. Niosomes: a versatile drug delivery system. Research journal of life sciences, bio-informatics, pharmaceutical and chemical science, 2016; 2(4): 44-54.

3. Nagashree Kotturi. Novel drug delivery system. Research & Reviews: Journal of Pharmaceutics and Nanotechnology, 2015; 3(2): 32-36.

4. https://www.uniassignment.com/essay-samples/biology/advantages-of-novel-drug-delivery-systems-biology-essay.php

5. Shaktipal Patil, Amrapali Mhaiskar and Dharmendra Mundhada. A review on novel drug delivery system: a recent trend. International Journal of Current Pharmaceutical & Clinical Research, 2016; 6(2): 89-93.

6. R.R. Bhagwat and I.S. Vaidhya. Novel drug delivery systems: An overview. International journal of pharmaceutical sciences and research, 2013; 4(3): 970-982.

7. Kant shashi, Kumar satinder and Prashar bharath. A complete review on: Liposomes. International research journal of pharmacy, 2012; 3(7):10-16.

8. Abolfazl Akbarzadeh, Rogaie Rezaei-Sadabady, Soodabeh Davaran, Sang Woo Joo, Nosratollah Zargarhami,Younes Hanifehpour, Mohammad Samiei, Mohammad Kouhi and Kazem Nejati-Koshki. Liposome: classification, preparation, and applications. Nanoscale Research Letters, 2013; 8(102):1-9.

9. S. Suggy Chrai, R. Murari, and Imran Ahmad. Liposomes: A Review. Biotech Trends, 2001; 14(11):10–14.

10. W Andreas, Karola-Uhl. Liposome technology for industrial purposes. Journal of Drug Delivery; 2011:1-9.

11. M Mansoori, S Agrawal, S Jawade, M. I. Khan. Review on Liposome. International Journal of Advanced Research Pharmaceutical and Bio Sciences, 2012; 2 (4):453-464.

12. V.N.L Sirisha, I. BhavaniHarika, B. Sruthi, Namrata, P. Kirankumar, Y. Kiran Kumar Rao, K. Pranavi, S. Sindhura, N. Vamsi Krishna , O. UmaMaheshwaraRao. Liposomes – the potential drug carriers. IOSR Journal of Pharmacy, 2012; 2(5): 26-38.
13. Abdus Samad, Y. Sultana and M. Aqil. Liposomal drug delivery systems: An update review. Current drug delivery, 2007; 4(4): 297-305.
14. R. Lipowsky and E. Sackmann. Applications of Liposomes, Handbook of Biological Physics. 1995; 1: 491-519.
15. S.P. Vyas and R.K. Khar. Targeted and controlled drug delivery novel carrier systems. 2011: 173-248.
16. David B. Troy and Paul Beringer. Remington: The Science and Practice of Pharmacy. 21st edition; 2006: 766-767.
17. Maik Hadorn, Eva Boenzli, Peter Eggenberger Hotz and Martin M. Hanczyc. Hierarchical unilamellar vesicles of controlled compositional heterogeneity. Plos one 2012; 7(11):1-7.
18. Varsha A. Andhale, Priyanka R. Patil, Anuja U. Dhas, Priyanka D. Chauhan, Seema V. Desai. Liposome: an emerging tool in drug carrier system. International Journal of Pharmacy & Technology, 2016; 8(1): 10982-11011.
19. Olga Popovska, Jana Simonovska, Zoran Kavrakovski and Vesna Rafajlovsk. An Overview: Methods for Preparation and Characterization of Liposomes as Drug Delivery Systems. International Journal of Pharmaceutical and Phytopharmacological Research, 2013; 3 (3): 182-189.
20. Kant shashi, Kumar Satinder and Prashar bharat. A complete review on: Liposomes. International research journal of pharmacy, 2012; 3(7):10-16.
21. Rutuja Ravindra Deshmukh, Snehal Vijay Gawale, Megha Kailas Bhagwat, Priyanka, Arvind Ahire and Nikita Diliprao Derle. A review on: liposomes. World journal of pharmacy and pharmaceutical sciences, 2016; 5(3):506-517.
22. Manivannan Rangasamy and Kugalur Ganesan Parthiban. Recent advances in novel drug delivery system.
23. Dina Fathalla, Ghareb M. Soliman and Ehab A. Fouad. Development and in vitro/in vivo evaluation of liposomal gels for the sustained ocular delivery of latanoprost. Journal of Clinical & Experimental Ophthalmology. 2015; 6(1): 1-9.
24. S. Rathod and S. G. Deshpande. Design and evaluation of liposomal formulation of pilocarpine nitrate. Indian Journal of Pharmaceutical Science, 2009; 72(2): 155-160.
25. Thi lan nguyen, Thi hiep nguyen and Dai hai nguyen. Development and in vitro evaluation of liposomes using soy lecithin to encapsulated paclitaxel. International journal of Biomaterials, 2017; 1-7.
26. Ajay Kumar, Shital Badde, Ravindra Kamble and Varsha B. Pokharkar, Development and characterization of liposomal drug delivery system for nimesulide. International Journal of Pharmacy and Pharmaceutical Sciences, 2010; 2(4): 87-89.

27. Devi R, Prasad C. M, Renganathan A, Kasthuri S, Sundhararajan R and Deepa N. Formulation, characterization and evaluation of fluconazole liposomes, Pelagia Research Library, 2015; 6(5): 61-66.

28. Bahareh Sabeti, Mohamed Ibrahim Noordin, Shaharuuddin Mohd, Rosnani Hashim, Afendi Dahlan, and Hamid Akbari Javar, Development and Characterization of Liposomal Doxorubicin Hydrochloride with Palm Oil, BioMed Research International, 2014; 1-6.

29. Ehab I. Taha, Magda H. El-Anazi, Ibrahim A. El-Bagory, Mohsen A. Bayomi, Design of liposomal colloidal systems for ocular delivery of ciprofloxacin, Saudi Pharmaceutical Journal, 2013:1-10.

30. Eskandar Moghimipour, Mohsen Tafaghodi, Ali Balouchi, Somayeh Handali, Formulation and in vitro Evaluation of Topical Liposomal Gel of Triamcinolone Acetonide, Research Journal of Pharmaceutical, Biological and Chemical Sciences, 2013; 4 (1):101-107.

31. B. R. Srinivas Murthy, K. Vishakha, P. Prakash, D. Jamal Basha, T. Govardhan, Muni Sai Prathap, Formulation And In Vitro Evaluation of Liposomes Loaded with Mupirocin, International Journal of Research in Pharmaceutical and Nano Sciences, 2015; 4(3): 162-174.

32. Behzad Sharif Makhmalzadeh, Zahra Azh, Armita Azarpanah, Preparation and evaluation of mafenide acetate liposomal formulation as eschar delivery system, International Journal of Drug Development & Research October-December 2011; 3(4): 129-140.

33. Srinivas Lankalapalli, V. S. Vinai Kumar Tenneti and Rajasri Adama, Preparation and evaluation of liposome formulations for poorly soluble drug itraconazole by complexation, Scholars Research Library, 2015; 7 (8):1-17.

34. Eskandar Moghimipour, Anayatollah Salami, and Mahsa Monjezi, Formulation and Evaluation of Liposomes for Transdermal Delivery of Celecoxib, Jundishapur Journal of Natural Pharmaceutical Products, 2015; 10(1): 1-6.
35. U. D. Shivhare, D.U. Ambulkar, V. B. Mathur, K. P. Bhusari, M.D. Godbole, Formulation and evaluation of pentoxifylline liposome formulation. Digest journal of nanomaterials and biostructures, 2009; 4(4):857 – 862.

36. Yan Chen, Qingqing Wu, Zhenghai Zhang, Ling Yuan, Xuan Liu And Lei Zhou, Preparation of Curcumin-Loaded Liposomes And Evaluation of their Skin Permeation And Pharmacodynamics, Molecules, 2012; 17(5):5972-87.

37. Xiang-Qi QIN, Yuan YUAN, Chang-Sheng LIU, Qiu-Yun WANG, Xi Shen, Bai-Can Yang. Preparation of liposomal brucine and its pharmaceutical/pharmacodynamic characterization. Acta Pharmacologica Sinica, 2007; 28 (11): 1851–1858

38. P.Divakar, Dasari Pavan Kumar, C.Praveen, C.Sowmya and C.Suryaparakash Reddy, Formulation and In Vitro Evaluation of Liposomes Containing Metformin Hydrochloride, International Journal of Research in Pharmaceutical and Biomedical Sciences, Apr– Jun 2013;4 (2): 479-485.

39. Satyavathi K, Bhojaraju P, Srikranthi M and Sudhakar P, Formulation and in-vitro evaluation of liposomal drug delivery system of cabazitaxel, Journal of Pharmaceutics & Drug Delivery Research, 2015; 4(2): 1-4.

40. Anjana ashok adhyapak and Babasaheb gangadhar desai. Formulation and evaluation of liposomal transdermal patch for targeted drug delivery of tamoxifen citrate for breast cancer. Indian journal of health sciences and biomedical research kleu, 2016; 9(1):40-48.

41. Shruthi M V, S.Parthiban, G.P.Senthilkumar, T.Tamiz mani. Formulation and evaluation of proliposomal gel containing metformin hydrochloride using mannitol as a water soluble carrier. International journal of pharmaceutical development & technology, 2015; 5(1):27-34.

42. Sangeetha S. S. and Roopa Karki. Formulation and evaluation of liposomes in carbopol gels for mixed vaginal infections. Scholars research library, 2015; 7 (5):291-299

43. Krishna Mohan Chinnala and Rabinarayan Panigrahy, Formulation and Evaluation of Acyclovir Liposomes, International Research Journal of Pharmaceutical and Biosciences, 2017; 4 (1): 5- 15.

44. Sunitha sampathi, Thirupathi ajimera, Vijaya kuchana. Preparation and evaluation of liposome entrapped hydrogel complex systems of itraconazole for enhanced
transdermal permeation. Journal of pharmaceutical and scientific innovation, 2014; 3(1): 25-29.

45. Dr. Khaja Pasha and Dr. Shahana Banu, Formulation and Evaluation of Glimepiride Liposomal Drug Delivery System, World Journal of Pharmacy and Pharmaceutical Sciences, 2017; 4(3):39-44.

46. Akshay Singha Roy, Sudipta Das, Arnab Samanta, Design, Formulation and Evaluation of Liposome Containing Isoniazid, International Journal of Applied Pharmaceutics, 2018; 10(2): 52-56.

47. Jadhav M. P., Mangal S. Nagarsenker, Gaikwad R. V., Samad. A And Nilima A. Kshirsagar, Formulation And Evaluation Of Long Circulating Liposomal Amphotericin B: A Scinti-Kinetic Study Using 99mtec In Balb/C Mice, Indian Journal Of Pharmaceutical Sciences, 2011; 73(1): 57–64.

48. Toshimasa Tsukamoto, Kohei Hironaka, Takuya Fujisawa, Daiki Yamaguchi, Kohei Tahara, Yuichi Tozuka, Hirofumi Takeuchi, Preparation of bromfenac-loaded liposomes modified with chitosan for ophthalmic drug delivery and evaluation of physicochemical properties and drug release profile, Asian Journal of Pharmaceutical Sciences, 2013; 8(2): 104-109.

49. M. Purushothaman, V. Viswanath, B. Narashimha Rao, S. Irshad Begum, Preparation and Evaluation of Decitabine Liposmoe, Indo American Journal of Pharmaceutical Sciences, 2015; 2 (9): 1264-1273.

50. Deevan Paul And Vothani Sarath Babu, Formulation and Evaluation of Liposomal Gel Containing Antifungal Activity – Ketoconazole, Indo American Journal of Pharmaceutical Research, 2016; 6(7): 6154- 6170.

51. Mohamed A. El-Nabarawi, Ehab R. Bendas , Randa Tag A. El Rehem and Mohammed Y. S. Abary, Formulation and Evaluation of Dispersed Paroxetine Liposomes in Gel, Journal of Chemical and Pharmaceutical Research, 2012;4(4):2209-2222.

52. M.Yasmin Begum, K.Abbulu, M.Sudhakar, Design and Evaluation of Flurbiprofen Liposomes, Journal of Pharmacy Research, 2011; 4(3):653-655.

53. J S Dua, Dr. A C Rana, Dr. Anil Bhandari, Preparation, Optimization, Characterization of Liposomes containing Serratiopeptidase for Oral Delivery, International Journal of Pharmaceutical Studies and Research, 2013; 4(3): 1-3.

54. Prescribing Information for Metformin HCl. Available from: http://www.Rxlist.com.
55. “Pharmacology and pharmacotherapeutics”. R.S Sathoskar, S.D Bhandarkar and N. Nirmala. Re Revised 21st Ed. Popular Prakashan; Mumbai; 2009: 895.
56. “Medical Pharmacology”. K.D. Tripathi. 6th Ed. Jaypee brother’s medical publishers (p) ltd; New Delhi; 2008: 266-269.
57. http://www.chemicalbook.com/ChemicalProductProperty_EN_CB1242041.htm
58. https://www.foodsweeteners.com/
59. http://www.naturalsourcing.com/
60. https://www.nwmissouri.edu/naturalsciences/sds/l/Lecithin.pdf
61. http://www.chemspider.com/Chemical-Structure.5775.html
62. https://pubchem.ncbi.nlm.nih.gov/compound/cholesterol#section=Top
63. https://pubchem.ncbi.nlm.nih.gov/compound/chloroform
64. https://cameochemicals.noaa.gov/chemical/2893
65. https://pubchem.ncbi.nlm.nih.gov/compound/diethyl_ether#section=Pharmacology-and-Biochemistry
66. file:///C:/Users/Lenovo/Desktop/Liposomes%20project%20review/liposome%20typing%20reference%20article/ine%20of%20ether.pdf
67. https://web.engr.uky.edu/~cense/about/Incompatible%20Chemicals.pdf
68. https://ehs.unc.edu/files/2015/09/Simple_Chemical_Segregation_Guidelines.pdf
69. http://www.scientelab.com/msds.php?msdsId=9927227
70. https://pubchem.ncbi.nlm.nih.gov/compound/methanol#section=2D-Structure
71. Indian Pharmacopoeia. Govt of India. Ministry of Health and Family Welfare; 2007: Vol 2: 1358 – 1359, 1795.
72. The United States Pharmacopoeia. The National Formulary, USP 94 NF19, Asian Ed; 2000: 2232.
73. P. N Dhabale and C, Seervi. Simultaneous UV spectrophotometric method for estimation of Metormin Hydrochloride in Tablet Dosage form. Inter. J. Chem. Tech Res; 2010: 813 – 817.
74. “Tutorial Pharmacy”. J. Cooper and C. Gunn. Powder flow and Compaction”, 12th Ed. CBS publishers; New Delhi; 1987: 211 – 233.
75. Vikas Parashar, Dabeer Ahmad Surya Prakash Gupta, Neeraj Upmanyu and Neha Parashar. Formulation and evaluation of biodegradable microspheres of Tinidazole. International Journal of Drug Delivery; 2010: Vol- 2: 238-241.
76. S. Mutalik, A. Naha, A.N. Usha, P. Anju, A.K. Ranjith, P. Musmade, K. Manoj and Prasanna. Preparation, in vitro, preclinical and clinical evaluation of once daily
sustained release of tablets of aceclofenac. Arch Pharm Res; 2007: Vol – 30: 222 – 232.

77. Laouini, C. Jaafar-Maalej, I. Limayem-Blouza, S. Sfar, C. Charcosset1, and H. Fessi. Preparation, characterization and applications of liposomes: State of the Art. Journal of Colloid Science and Biotechnology, 2012; Vol – 1: 147–168.

78. K L Senthilkumar1, R P Ezhilmuthu and P. Praveen. Preparation and characterization of nabumetone liposomes. International journal of life science biotechnology and pharma research, 2012; 1(1): 81-86.

79. The United State of Pharmacopoeia 24/NF26. Asian Ed. The official compendia of United States of Pharmacopoeial convection Inc. Rockville; 1995: 1015 – 1016.

80. https://www.ssi.shimadzu.com/sites/ssi.shimadzu.com/files/Products/literature/testing/C060-E009B.pdf

81. R S Pai and K V Devi. Lamivudine Liposomes for Transdermal Delivery-Formulation, Characterization, Stability, and Invitro Evaluation, International Journal of. Pharmaceutical Science and Nanotechnology, 2009; 1: 317-326.