Emergence of an Australian-like pstS-null vancomycin resistant Enterococcus faecium clone in Scotland

Kimon Lemonidis¹,²ᵃ*, Talal S. Salih¹,⼆ᵇ, Stephanie J. Dancer²,³, Iain S. Hunter¹, and Nicholas P. Tucker¹

¹ Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, UK
² Department of Microbiology, Hairmyres Hospital, NHS Lanarkshire, G75 8RG, UK
³ School of Applied Sciences, Edinburgh Napier University, Edinburgh, EH11 4BN, UK

ᵃ Current address: Institute of Molecular, Cell and Systems Biology, University of Glasgow, Glasgow, G12 8QQ, UK
ᵇ Current address: College of Science, University of Mosul, Mosul, Iraq

*Corresponding author

E-mail: kimon.lemonidis@gmail.com
Abstract

Multi-locus sequencing typing (MLST) is widely used to monitor the phylogeny of microbial outbreaks. However, several strains of vancomycin-resistant Enterococcus faecium (VREfm) with a missing MLST locus (pstS) have recently emerged in Australia, with a few cases also reported in England. Here, we identified similarly distinct strains circulating in two closely located hospitals in Scotland. Whole genome sequencing of five VREfm strains isolated from these hospitals identified four pstS-null strains across both hospitals, while the fifth was of a multi-locus sequence type (ST) 262, which is the first documented in the UK. All five Scottish isolates had an insertion in the tetM gene, which is associated with increased susceptibility to tetracyclines, providing no other tetracycline-resistant gene is present. Such an insertion, which encompasses a dfrG gene and two currently uncharacterised genes, was additionally identified in all tested VanA-type pstS-null VREfm strains (5 English and 18 Australian). Phylogenetic comparison with other VREfm genomes indicates that the four pstS-null Scottish isolates sequenced in this study are more closely related to pstS-null strains from Australia rather than the English pstS-null isolates. Given how rapidly such pstS-null strains have expanded in Australia, the emergence of this clone in Scotland raises concerns for a potential outbreak.

Introduction

Vancomycin-resistant Enterococcus (VRE) was first identified about three decades ago and has now become a major nosocomial pathogen. It typically infects immunocompromised patients and can cause endocarditis, bloodstream, urinary tract, and skin and skin structure infections [1]. VRE infections are generally more serious than those caused by vancomycin-susceptible enterococci, and are associated with higher mortality rates [2]. Among all VRE species, vancomycin-resistant Enterococcus faecium (VREfm) is responsible for the majority
of hospital infections. VREfm has been recently listed as a high priority pathogen for research and development of new antibiotics by the World Health Organisation [3]. Various measures have been implemented to monitor the spread of VREfm infections, including multi-locus sequence typing (MLST); this relies on characterising the allelic profile of seven “house-keeping” genes, located in the *E. faecium* chromosome [4]. Although useful, this MLST scheme is of limited resolution to accurately capture the clonal type of isolated *E. faecium* strains [5–7]. Furthermore, VREfm isolates lacking the *pstS* MLST-gene locus have recently emerged in both England [7] and Australia [8].

Here, we have used whole genome sequencing to identify four VREfm isolates from two Scottish hospitals, which lack the *pstS* locus, and another Scottish VREfm isolate with a MLST profile that, to the best of our knowledge, has not been previously reported in the UK. Additionally, we provide information regarding their resistance profiles and epidemiology.

Materials and Methods

VRE strains were isolated from 5 patients in 2 Scottish hospitals, between January to October 2017; these patients developed complications following either biliary or colonic surgery, and had been treated with various combinations of penicillin, amoxicillin, flucloxacillin, Tazocin™, gentamicin, metronidazole and vancomycin during their hospital stay. The VRE strains were cultured on horse blood agar with single colonies transferred to Mueller Hinton broth (Oxoid) liquid. These were subsequently placed on Mueller Hinton agar; single colony cultures of these were subsequently used for DNA isolation. Genomic DNA was extracted using an Isolate II genomic DNA kit (Bioline), using the manufacturer’s instructions for difficult to lyse Gram-positive bacteria. DNA libraries were then prepared using the NEBNext® Fast DNA Fragmentation and Library Prep Set for Ion Torrent™ (New England Biolabs): briefly, 1 µg of plasmid DNA was fragmented, and Ion Xpess barcode
adapters (Life Technologies) were ligated to the DNA fragments; after clean-up using Agencourt AMPure XP beads (Beckman Coulter), 400 bp target fragments were isolated following 18 min electrophoresis on E-gel® SizeSelect™ agarose gels (Life Technologies); these were subsequently amplified by PCR and, following another clean-up with Agencourt® AMPure® XP beads, the quality of the resulting DNA libraries was assessed on a 2100 Bioanalyzer® (Agilent Technologies), using high sensitivity DNA chips (Agilent Technologies). Template positive Ion Sphere™ particles (ISPs) for semiconductor sequencing were prepared using the Ion Touch 2 System (Life Technologies). Enriched ISPs were loaded into ion v2 BC 316™ chips (2 genomes per chip) and sequenced on an Ion PGM™ system (Life Technologies). Low quality reads (quality score threshold: 0.05) were trimmed using CLC genomics Workbench (Qiagen, version 9.5.2), and resulting reads were assembled using SPAdes (St. Petersburg genome assembler, version 3.9). Contigs having less than 1000 bp sequences were discarded. The remaining contigs were reordered on Mauve (version 20150226) using the E. faecium Aus0004 genome [9] as reference, and resulting genome sequences were submitted to GenBank under the assessments PJZU00000000 (VREF001), PJZT00000000 (VREF002), PJZS00000000 (VREF003), PJZR00000000 (VREF004) and PJZQ00000000 (VREF005). Antibiotic resistant genes were identified as perfect, strict or loose matches against resistant genes of the comprehensive antibiotic resistance database (CARD) [10]. Sequence reads of pstS-null genomes from England and Australia were obtained from European Nucleotide Archive, and reads were assembled using CLC genomics Workbench; contigs having less than 200 bp were discarded. In silico MLST analysis was performed using the PubMLST website (http://pubmlst.org/) [11]. Alignments of genomes were done using the REALPHY (Reference sequence Alignment based Phylogeny builder) online tool (version 1.12) [12], with E. faecium Aus0004 [9], Aus0085 [13] as references. Minimum inhibitory concentrations (MICs) for vancomycin, streptomycin, spectinomycin, tetracycline, oxytetracycline, doxycycline, minocycline and rifampicin were calculated using the microdilution method in
cation adjusted Mueller-Hinton broth media (BD Biosciences), whereas MICs for all other antibiotics were obtained using VITEK 2 (bioMerieux).

Results

All Scottish VRE strains sequenced (VREF001-5) had 2.9-3.0 Mb genomes with 37.6-37.7% GC content (Table 1). Analysis of average nucleotide identity and Tetra Correlation Search (TCS) against database genome sequences, using JSpeciesWS (version 3.0.12) [14], showed that all five VRE isolates were *E. faecium*; VREF001, VREF002, VREF004 and VREF005 were highly related with over 99.9% identity among aligned (>97%) sequences, whereas VREF003 displayed around 16% unique sequences compared with the other 4 genomes. *In silico* MLST analysis of VREF001-5 genomes identified VREF003 as sequence type (ST) 262, which has not been previously reported in the United Kingdom. The other 4 genomes had exact matches for 6 MLST alleles (*atpA*-9, *ddl*-1, *gdh*-1, *purK*-1, *gyd*-12, *adk*-1), but no match for *pstS*; such MLST profile has now been assigned as ST1424 in the *Enterococcus faecium* MLST database (https://pubmlst.org/efaecium/). However, despite the missing *pstS* in these four genomes, all VREfm strains sequenced in this study did have a *pstS* homologue within a *pst* operon (also referred to as *pstS2*), which is thought to be the actual *pstS* housekeeping gene in *E. faecium* [7,8].

Isolate ID	VREF001	VREF002	VREF003	VREF004	VREF005
Accession	SAMN08196781	SAMN08196782	SAMN08196783	SAMN08196784	SAMN08196785
Size (bp)	2,987,950	2,990,107	2,913,585	2,999,027	2,976,182
GC Content (%)	37.6	37.6	37.7	37.6	37.6
N50	39407	36771	32649	43809	38134
L50	23	22	28	21	22
We then searched for antibiotic resistance genes with perfect or strict matches to reference genes of the comprehensive antibiotic resistance database (CARD), but also considering loose matches with exceptional low e-value ($<10^{-100}$) and/or very high identity (>66%) to the reference gene. Analysis of the gene profiles of these five isolates identified the multi-aminoglycoside resistance gene \textit{aac(6')-IIi}, in all 5 strains, and \textit{aac(6')-aph(2'')}, in all but VREF004; all 5 isolates had at least 1 macrolide-lincosamide-streptogramin resistance gene (\textit{ermB}), a \textit{pbp5} variant (designated \textit{pbp5-R}) conferring resistance to beta-lactams [15], for which no reference gene exists in CARD, and the vancomycin-teicoplanin resistance gene, \textit{vanA}. With the exception of VREF003, all strains had the spectinomycin resistance gene \textit{ant(9)-Ia}. Lastly, VREF003 was the only strain with a tetracycline transporter gene (\textit{tetL}) (Table 2). It is notable that all isolates had 2 loose matches for the tetracycline resistance gene \textit{tetM}. By further examining the region where these \textit{tetM}-like sequences are located, we found that the 5 genomes had a \textit{Tn5801}-like transposon (full-length or fragment) containing a sequence similar to \textit{Staphylococcus aureus} Mu50 \textit{tetM} gene [16], but with a 3,229 bp insertion. The trimethoprim-resistant gene \textit{dfrG} and two more genes with unknown function were located within this insertion. A similar insertion has been reported previously in some ST17 and ST18 \textit{E. faecium} strains [16] which is thought to result in defective protection against tetracyclines [17]. Lastly, all strains had a homologue of the \textit{E. faecalis IsaA} gene which confers resistance to quinupristin-dalfopristin. However, the product of this gene (known as \textit{EatA}), unlike the >99% identical \textit{EatA}, product found in some \textit{E. faecium} strains, has a threonine at position 450, which is associated with increased susceptibility towards quinupristin-dalfopristin [18,19].

\begin{table}[h]
\centering
\begin{tabular}{|c|c|c|c|c|c|}
\hline
Contigs & 185 & 185 & 188 & 184 & 190 \\
\hline
Depth of coverage & 194.91 & 131.85 & 170.17 & 182.45 & 218.18 \\
\hline
\end{tabular}
\caption{MIC values (mg/L) of selected antibiotics against the 5 Scottish VREfm isolates.}
\end{table}
Susceptibility to a given antibiotic is indicated in bold. ND: MIC value not determined.

Resistant genes identified which correspond to strict or perfect matches against antibiotic resistance genes of the comprehensive antibiotic resistance database (CARD) are shown. Additionally, some loose matches (underlined) to CARD reference genes, which either had > 99% identity with reference CARD gene (\textit{tetL}), or had zero e-value (\textit{rpoB2}), or were the sole genes that could explain differences in antimicrobial susceptibility among the 5 isolates (\textit{ant(9)-Ia}, \textit{marA} and \textit{mtrR}), are shown. The variant of a full-length penicillin-binding protein 5 gene conferring resistance to penicillins (\textit{pbp5-R}), for which no reference gene in CARD exists, was found in all genomes. Numbers at top right of resistant genes correspond to the sequenced strains (last digit of isolate ID) carrying these genes.

VREF00 1	VREF00 2	VREF00 3	VREF00 4	VREF00 5	Resistance genes
Beta-lactams					
Amoxicillin	> 32	> 32	> 32	> 32	\textit{pbp5-R}^{a,b}
Co-Amoxiclav	> 8	> 8	> 8	> 8	\textit{pbp5-R}^{a,b}
Glycopeptides					
Vancomycin	64	512	> 512	512	128 \textit{vanA}^{1,2}, \textit{vanHA}^{3,5}, \textit{vanRA}^{1,5}, \textit{vanSA}^{1,5}, \textit{vanX}^{1,2}, \textit{vanYa}^{3,5}, \textit{vanZA}^{2}
Teicoplanin	> 32	> 32	> 32	> 32	4 \textit{vanA}^{1-5}, \textit{vanHA}^{1-3,5}, \textit{vanRA}^{1-5}, \textit{vanSA}^{1-4}, \textit{vanX}^{1-5}, \textit{vanYa}^{2-4}, \textit{vanZA}^{3}
Fluoroquinolones					
Ciprofloxacin	> 4	> 4	> 4	> 4	ND \textit{ermA}^{a}
Aminoglycosides					
Gentamicin	> 128	> 128	> 128	> 128	> 128 \textit{aac(6')-aph(2'')}^{3,5}, \textit{aph(3')-IIIa}^{2,4-5}, \textit{aac(6')-Ii}^{1-5}
Kanamycin	> 128	> 128	> 128	> 128	> 128 \textit{aac(6')-aph(2'')}^{3,5}, \textit{aph(3')-IIIa}^{2,4-5}, \textit{aac(6')-Ii}^{1-5}
Streptomycin	32	32	32	32	32 None
Spectinomycin	512	512	32	> 512	512 \textit{ant(9)-Ia}^{3,4,6}
Tetracyclines					
Tetracycline	≤ 0.25	≤ 0.25	> 128	≤ 0.25	≤ 0.25 \textit{tet}^{a}
Oxytetracycline	1	≤ 0.25	> 128	0.5	≤ 0.25 \textit{tet}^{a}
Doxycycline	≤ 0.25	≤ 0.25	16	≤ 0.25	≤ 0.25 \textit{tet}^{a}
Minocycline	≤ 0.13	≤ 0.13	16	≤ 0.13	≤ 0.13 \textit{tet}^{a}
Tigecycline	≤ 0.13	≤ 0.13	≤ 0.13	≤ 0.13	≤ 0.13 None
Macrolides, Lincosamides, Streptogramins					
Clarithromycin	> 4	> 4	> 4	> 4	> 4 \textit{ermA}^{1-5,7}, \textit{ermB}^{a}
Quinupristin-Dalfopristin	0.5	0.5	0.5	1	0.5 None
Others					
Chloramphenicol	8	8	> 8	8	8 None
Linezolid	2	2	2	2	2 None
Nitrofurantoin	128	256	128	256	256 Unknown
Trimethoprim	> 16	> 16	> 16	> 16	> 16 \textit{dhQ}^{a}
Rifampicin	16	16	16	16	16 \textit{rpoB}^{1,4}, \textit{marA}^{1,2,6}, \textit{mtrR}^{3,4,6}
All strains exhibited high level resistance to vancomycin; 4/5 had high level resistance to teicoplanin, associated with the presence of vanSA (absent from VREF005, which displayed low level resistance) and 4/5 had high level resistance to spectinomycin (apart from VREF003 which displayed low level resistance). The strains had low level resistance to streptomycin, as well as resistance to a variety of other drugs. The low level resistance to streptomycin and spectinomycin, in the absence of any gene coding for resistance to those antibiotics, is due to decreased uptake of these drugs by *E. faecium* [20]. All isolates were susceptible to linezolid, chloramphenicol, tigecycline and Synercid™ (quinupristin-dalfopristin). VREF003 was the only isolate found to be resistant to tetracycline, doxycycline, oxytetracycline and minocycline, but unlike the other four isolates, it was susceptible to rifampicin (Table 2). Since all five isolates had an identical rpoB2 variant (assumed to exert some level of rifampicin-resistance), the decreased resistance of VREF003 towards rifampicin, compared to the other 4 strains, may be due to the lack of any mtrR and marA homologues in the VREF003 genome. On the other hand, loose matches of these were present in the other four isolates, and such genes have been shown to confer resistance to multiple drugs in other bacteria, including rifampicin [21,22]. Alternatively, VREF001-2 and VREF004-5 may contain an mtrR-independent mechanism of reduced permeability for rifampicin compared with VREF003 [23]. Antibiotic susceptibility tests indicated that all five isolates are classified as multi-drug resistant enterococci, according to standardised international terminology [24].

We then performed a phylogenetic comparison of VREF001-5 genomes with other known VREfm genomes reported to have a missing pstS locus; these included: 14 (out of 66 reported) Australian strains isolated from 9 different hospitals between 2014 and 2015 [8], 5 Australian strains (out of 202 reported within 6 local health districts) isolated from 2 different local health districts (LHD-1 and LHD-2) in New South Wales during 2016 [25], and all 5 English pstS-null *E. faecium* strains isolated from a single hospital (Kathy Raven, personal
communication) in 2005 [7]. In our phylogenetic analysis we also included: 5 hospital-associated isolates of different MLST sequence type each, 3 isolates (BM4538, UAA1025 and E2883) previously reported to have an insertion in the tetM-locus [16] and the first complete \textit{E. faecium} genome, Aus0004 [9].

This analysis indicated that Scottish pstS-null isolates are most closely related to Australian pstS-null isolates (Fig. 1A; subclade 3-1), and particularly to certain ST1424 clones isolated from New South Wales (hospital 3 and Local Health District 1). Due to the existence of long branches within subclade 3-1 (Fig. 1A), the phylogeny of that subclade was further refined by analysis of genomes belonging only to this subclade [12] (Fig. 1B); most Australian ST1421 clones and the sole ST1422 were found to be closely related to the ST1424 subclade; however, few Australian ST1421 strains (SVH-244, DMG1500788 and DMG1500808) and one ST1424 (SVH-278) were more phylogenetically distinct, whereas the sole ST1423 clone (\textit{VanB} type DMG1500761) was found to diverge the most among all pstS-null strains (Fig. 1A-C). English pstS-null isolates, which are all ST1477, all cluster together (Fig. 1A; subclade 2-2) and are distinct from Australian and Scottish pstS-null strains; nevertheless, all pstS-null clones appear to be related to ST17 clones (Fig. 1A; subclade 3-2 and Fig. 1C), which suggests that the former may have derived from ST17 strains. Most of the Australian pstS-null genomes we analysed were ST1421 (Fig. 1C), in agreement with recent data showing that ST1421 is the most common and widespread pstS-null VRE strain in Australia, accounting for more than 70\% of the cases [25,26]. Since both Australian [8] and Scottish (this study) VREFm pstS-null strains were found in different hospitals (Fig. 1C), it is likely that such clones have spread in the community. Our phylogenetic analysis further supports an intercontinental ST1424 clone spread between hospitals of New South Wales and Scotland (Fig. 1). On the other hand, all English VREFm strains with missing pstS locus [7] cluster together and are likely to have spread within the hospital that they were isolated from. VREF003 is more phylogenetically related to ST18 \textit{E. faecium} isolates (Fig. 1A), in agreement with a previous study showing a phylogenetic
relationship between ST262 and ST18 *E. faecium* strains [27]. *VanA* type VREfm strains lacking the *pstS* locus (4/4 Scottish, 18/18 Australian and 5/5 English) were found to also contain a *Tn5801*-like transposon with an insertion in the *tetM* locus (Fig. 1C). This genotype, previously documented in the MLST-typeable Aus0004, BM4538, E2883 and UAA1025 [16] included in this analysis, was further observed in VREF003, ERR374934 and ERR374968. The sole *vanB* type VREfm with missing *pstS* reported, though, had an intact *tetM* gene sequence. Collectively, it appears that the *tetM* insertion in VREfm is associated with *VanA* type strains missing *pstS* (STs: 1421, 1422, 1424 and 1477), as well as with STs: 17, 18, 80 and 262 (Fig. 1C).

Figure 1. A. Phylogenetic tree of selected *E. faecium* genomes, constructed using the REALPHY (Reference sequence Alignment based Phylogeny builder) online tool, with Aus0004 and Aus0085 used as reference genomes. *pstS*-null genomes are present in subclades 2-2 (English isolates) and 3-1 (Australian and Scottish isolates). B. The phylogeny of strains clustering in subclade 3-1 (A) was further refined using REALPHY with Aus0085 and ERR374968 as references. C. The MLST sequence type (ST) and alleles, country of origin, *van* genotype, hospital and year of isolation are given for each sequenced genome. * Only the Local Health District (LHD) is known for Australian strains isolated in New South Wales hospitals during 2016; hospitals 3 and 9 are also in New South Wales jurisdiction, but their LHD is not known. Information is given on whether an insertion encompassing *dfrG* and two uncharacterised genes was found within *tetM* in these genomes. N/A: not applicable (no *tetM* sequences found). ** Although no such insertion was identified in Aus0085, there was a frameshift mutation within its *tetM* gene. *pstS*-null genomes of same ST are highlighted with the same colour.

Discussion
MLST analysis is inferior to whole genome sequence analysis for outbreak investigations of VREfm [7], due to the high rate of recombination events occurring within the *E. faecium* chromosome that cannot be captured adequately by MLST analysis [27,28]. Furthermore, the emergence of non-typeable VREfm strains poses an extra obstacle in implementing the MLST scheme for VREfm phylogenetic analysis. Non-typeable VREfm strains have recently emerged and have been shown to be very rare in the UK: in a study encompassing whole genome sequencing of nearly 500 *E. faecium* healthcare-associated isolates from 2001-2011 in the UK and Ireland, there were only 5 cases of *pstS*-null VRE strains, all of which were isolated from a single English hospital, between 2004 and 2005 [7]. The emergence of such strains was even more recent in Australia: the first two strains were isolated in 2013, but numbers increased rapidly to a total of 89 cases, by the end of 2015 [8,29,30] and to about 300 cases, by the end of 2016 [25,30,31].

Here, we report four additional non-typeable VREfm strains isolated in 2017, which are the first identified in Scotland. Their striking genomic similarity, combined with the fact that one was isolated from a different hospital, indicates that these, although deriving from a single strain type, are not necessarily hospital-acquired, but may be health-care associated, or spread within the community. Although transmission may have occurred through the frequent transfer of equipment, specimens, staff and patients between these two hospitals (located in the same health board just 14 miles apart), evidence suggests that VRE strains are also transmitted outside hospitals, such as in long term care facilities [6]. Additionally, VRE clones can disperse outside health-care facilities, since strains can be carried in patients for long periods, ranging from a few months to a few years following their discharge from hospital [32,33]. For the above reasons VRE infections may spread over long periods and across long distances. Indeed, our phylogenetic analysis is indicative of an inter-continental spread between Australia and Scotland: the closest phylogenetic relationships were identified among Australian and Scottish ST1424 clones; such 6-locus sequence type has been identified in 28.7% (58/202) of the recently sequenced *pstS*-null VREfm strains.
from New South Wales, Australia [25]. In addition, the spread of such strains in all health
districts of New South Wales is also suggestive of inter-hospital transmission for this VREfm
close clone [25]. But even within the same hospital, VRE transmission routes can be prolonged
and complex with closely related VRE strains re-appearing in the same ward after several
months, or transmitted to patients located in different wards [34]. Indeed, we also observed
re-appearance of a pstS-null strain (isolate VREF005) in the same hospital, seven months
after discharge of the last carrier patient.

With the exception of one vancomycin-sensitive and one vanB type strain, all other (69)
previously sequenced pstS-null E. faecium strains have been found to be vanA type [7,8],
and consistent with these studies, the newly sequenced Scottish VREfm strains with the
missing pstS locus were also vanA type. In fact, the vast majority (84.2%) of all VanA E.
faecium 2016 isolates from New South Wales (Australia) sequenced, have been identified as
pstS-null strains [25]; hence pstS-null VREfm appears to be a very successful VanA clone.

We further identified that loss of pstS in VanA type VREfm is strongly associated with an
insertion in a tetM gene (27/27 cases tested). Such insertion was absent only in the sole
vanB type E. faecium strain of the pstS-null collection. As the 18 Australian VanA type pstS-
null strains analysed here, were chosen to represent all 9 hospitals in the 3 health
jurisdictions (or different local health district of the same jurisdiction) and phylogenetically
distinct clades of the Australian pstS-null collection [8,25], it is highly likely that most (if not
all) of the reported VanA-type pstS-null Australian strains excluded from our analysis (about
280 isolates) would contain a Tn5801-like transposon with an insertion in the tetM locus. The
reason that these two features (missing pstS and tetM insertion) were co-selected in
numerous VREs is currently unknown and deserves some further investigation. The tetM
insertion leads to apparent inactivation of the resulting gene product towards tetracyclines,
as can be inferred from Aus0004 [17], VREF001-2 and VREF004-5 (this study) susceptibility
tests against tetracycline, doxycycline and minocycline. All sequenced isolates were
resistant to trimethoprim, and the cause of such resistance is most likely the dfrG gene
inserted into the \textit{tetM} locus. None of the isolates sequenced had a tigecycline, Synercid, or linezolid resistant gene, and as a consequence they were all susceptible to these 3 drugs. Thus these antibiotics, which are frequently used for management of multi-drug-resistant enterococcal infections \cite{1,35}, may still be the favourable option for combating VREfm strains with a missing \textit{pstS} locus.

The emergence of \textit{pstS}-null VREfm strains in Scotland raises concerns for a potential outbreak: these strains were found to be highly similar to Australian \textit{pstS}-null strains (this study), while the latter have very rapidly expanded to become the leading strain in Australia \cite{8,25,26}. Furthermore, the missing \textit{pstS} locus of such strains renders the - limited in resolution - MLST analysis even less suitable for VREfm outbreak investigations. Hence, our study, like previous ones \cite{7,8,25}, highlights the need for whole genome sequencing approaches in monitoring VREfm epidemiology.

\section*{Acknowledgements}

This work was supported by the Scottish Chief Scientist Office grant TCS/16/24 to NPT, SJD and ISH. We are very thankful to Gavin Paterson and Alison MacFadyen for reading the manuscript and for their useful comments.

\section*{References}

1. O'Driscoll T, Crank CW. Vancomycin-resistant enterococcal infections: epidemiology, clinical manifestations, and optimal management. Infect Drug Resist. Dove Press; 2015;8: 217–30. doi:10.2147/IDR.S54125
2. Orsi GB, Ciorba V. Vancomycin resistant enterococci healthcare associated infections. Ann Ig. 2013;25: 485–492. doi:10.7416/ai.2013.1948

3. WHO. Prioritization of pathogens to guide discovery, research and development of new antibiotics for drug resistant bacterial infections, including tuberculosis [Internet]. Essential medicines and health products. 2017. doi:WHO reference number: WHO/EMP/IAU/2017.12

4. Homan WL, Tribe D, Poznanski S, Li M, Hogg G, Spalburg E, et al. Multilocus sequence typing scheme for Enterococcus faecium. J Clin Microbiol. 2002;40: 1963–71.

5. de Been M, Pinholt M, Top J, Bletz S, Mellmann A, van Schaik W, et al. Core Genome Multilocus Sequence Typing Scheme for High-Resolution Typing of Enterococcus faecium. J Clin Microbiol. American Society for Microbiology; 2015;53: 3788–97. doi:10.1128/JCM.01946-15

6. Brodrick HJ, Raven KE, Harrison EM, Blane B, Reuter S, Török ME, et al. Whole-genome sequencing reveals transmission of vancomycin-resistant Enterococcus faecium in a healthcare network. Genome Med. 2016; doi:10.1186/s13073-015-0259-7

7. Raven KE, Reuter S, Reynolds R, Brodrick HJ, Russell JE, Török ME, et al. A decade of genomic history for healthcare-associated Enterococcus faecium in the United Kingdom and Ireland. Genome Res. 2016; doi:10.1101/gr.204024.116

8. Carter GP, Buultjens AH, Ballard SA, Baines SL, Tomita T, Strachan J, et al. Emergence of endemic MLST non-typeable vancomycin-resistant Enterococcus faecium. J Antimicrob Chemother. 2016;71: 3367–3371. doi:10.1093/jac/dkw314

9. Lam MMC, Seemann T, Bulach DM, Gladman SL, Chen H, Haring V, et al. Comparative Analysis of the First Complete Enterococcus faecium Genome. J
10. McArthur AG, Waglechner N, Nizam F, Yan A, Azad MA, Baylay AJ, et al. The Comprehensive Antibiotic Resistance Database. Antimicrob Agents Chemother. 2013;57: 3348–3357. doi:10.1128/AAC.00419-13

11. Jolley KA, Maiden MC. BIGSdb: Scalable analysis of bacterial genome variation at the population level. BMC Bioinformatics. BioMed Central; 2010;11: 595. doi:10.1186/1471-2105-11-595

12. Bertels F, Silander OK, Pachkov M, Rainey PB, Van Nimwegen E. Automated reconstruction of whole-genome phylogenies from short-sequence reads. Mol Biol Evol. Oxford University Press, Oxford; 2014;31: 1077–1088. doi:10.1093/molbev/msu088

13. Lam MMC, Seemann T, Tobias NJ, Chen H, Haring V, Moore RJ, et al. Comparative analysis of the complete genome of an epidemic hospital sequence type 203 clone of vancomycin-resistant Enterococcus faecium. BMC Genomics. 2013; doi:10.1186/1471-2164-14-595

14. Richter M, Rosselló-Móra R, Oliver Glöckner F, Peplies J. JSpeciesWS: a web server for prokaryotic species circumscription based on pairwise genome comparison. Bioinformatics. Oxford University Press; 2016;32: 929–931. doi:10.1093/bioinformatics/btv681

15. Montealegre MC, Roh JH, Rae M, Davlieva MG, Singh KV, Shamoo Y, et al. Differential Penicillin-Binding Protein 5 (PBP5) Levels in the Enterococcus faecium Clades with Different Levels of Ampicillin Resistance. Antimicrob Agents Chemother. American Society for Microbiology; 2017;61: e02034-16. doi:10.1128/AAC.02034-16

16. León-Sampedro R, Novais C, Peixe L, Baquero F, Coque TM. Diversity and evolution of the Tn5801-tet(M)-like integrative and conjugative elements among Enterococcus,
streptococcus, and Staphylococcus. Antimicrob Agents Chemother. 2016; 17. Cattoir V, Isnard C, Cosquer T, Odhiambo A, Bucquet F, Guérin F, et al. Genomic analysis of reduced susceptibility to Tigecycline in Enterococcus faecium. Antimicrob Agents Chemother. 2015; doi:10.1128/AAC.04174-14 18. Singh K V., Weinstock GM, Murray BE. An Enterococcus faecalis ABC homologue (Lsa) is required for the resistance of this species to clindamycin and quinupristin-dalfopristin. Antimicrob Agents Chemother. 2002; doi:10.1128/AAC.46.6.1845-1850.2002 19. Isnard C, Malbruny B, Leclercq R, Cattoira V. Genetic basis for in vitro and in vivo resistance to lincosamides, streptogramins a, and pleuromutins (LSAP Phenotype) in Enterococcus faecium. Antimicrob Agents Chemother. 2013; doi:10.1128/AAC.01030-13 20. Arias CA, Murray BE. The rise of the Enterococcus: Beyond vancomycin resistance. Nature Reviews Microbiology. 2012. doi:10.1038/nrmicro2761 21. Cohen SP, McMurry LM, Levy SB. marA locus causes decreased expression of OmpF porin in multiple-antibiotic-resistant (Mar) mutants of Escherichia coli. J Bacteriol. 1988; doi:10.1128/jb.170.12.5416-5422.1988 22. Spratt BG, Balthazar JT, Hagman KE, Pan W, Judd RC, Shafer WM. Resistance of Neisseria gonorrhoeae to antimicrobial hydrophobic agents is modulated by the mtrRCDE efflux system. Microbiology. Microbiology Society; 1995;141: 611–622. doi:10.1099/13500872-141-3-611 23. Abadi FJ, Carter PE, Cash P, Pennington TH. Rifampin resistance in Neisseria meningitidis due to alterations in membrane permeability. Antimicrob Agents Chemother. 1996;40: 646–51.
24. Magiorakos A, Srinivasan A, Carey RB, Carmeli Y, Falagas ME, Giske CG, et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant Bacteria: an International Expert Proposal for Interim Standard Definitions for Acquired Resistance. Microbiology. 2011;18: 268–281. doi:10.1111/j.1469-0691.2011.03570.x

25. van Hal SJ, Beukers AG, Timms VJ, Ellem JA, Taylor P, Maley MW, et al. Relentless spread and adaptation of non-typeable vanA vancomycin-resistant Enterococcus faecium: a genome-wide investigation. J Antimicrob Chemother. 2018; 1487–1491. doi:10.1093/jac/dky074

26. Coombs G, Daley D, on behalf of The Australian Group on Antimicrobial Resistance. Australian Enterococcal Sepsis Outcome Program (AESOP). 2016 Final Rep. 2017; 1–41. Available: http://www.agargroup.org/files/AESOP 2016 Final Report 2017.pdf

27. Bowden R, Ansari MA, Jensen SO, Ip CLC, Espedido BA, van Hal SJ, et al. Evolutionary dynamics of Enterococcus faecium reveals complex genomic relationships between isolates with independent emergence of vancomycin resistance. Microb Genomics. 2016; doi:10.1099/mgen.0.000048

28. Howden BP, Holt KE, Lam MMC, Seemann T, Ballard S, Coombs GW, et al. Genomic insights to control the emergence of vancomycin-resistant enterococci. MBio. American Society for Microbiology; 2013;4: e00412-13. doi:10.1128/mBio.00412-13

29. Lee RS, Gonçalves da Silva A, Baines SL, Strachan J, Ballard S, Carter GP, et al. The changing landscape of vancomycin-resistant Enterococcus faecium in Australia: a population-level genomic study. J Antimicrob Chemother. Oxford University Press; 2018;73: 3268–3278. doi:10.1093/jac/dky331

30. Leong KWC, Cooley LA, Anderson TL, Gautam SS, McEwan B, Wells A, et al. Emergence of Vancomycin-Resistant Enterococcus faecium at an Australian Hospital: A Whole Genome Sequencing Analysis. Sci Rep. 2018;8: 1–11. doi:10.1038/s41598-
31. Leong KWC, Cooley LA, O'Toole RF. Draft Genome Sequence of New Vancomycin-Resistant *Enterococcus faecium* Sequence Type 1421. Genome Announc. 2018;6. doi:10.1128/genomeA.00438-18

32. Sohn KM, Peck KR, Joo E-J, Ha YE, Kang C-I, Chung DR, et al. Duration of colonization and risk factors for prolonged carriage of vancomycin-resistant enterococci after discharge from the hospital. Int J Infect Dis. 2013;17: e240–e246. doi:10.1016/j.ijid.2012.09.019

33. Karki S, Land G, Aitchison S, Kennon J, Johnson PDR, Ballard SA, et al. Long-term carriage of vancomycin-resistant enterococci in patients discharged from hospitals: a 12-year retrospective cohort study. J Clin Microbiol. 2013;51: 3374–9. doi:10.1128/JCM.01501-13

34. Raven KE, Gouliouris T, Brodrick H, Coll F, Brown NM, Reynolds R, et al. Complex Routes of Nosocomial Vancomycin-Resistant Enterococcus faecium Transmission Revealed by Genome Sequencing. Clin Infect Dis. 2017;64: 886–893. doi:10.1093/cid/ciw872

35. Arias CA, Contreras GA, Murray BE. Management of Multi-Drug Resistant Enterococcal Infections. Clin Microbiol Infect. 2010;16: 555–62. doi:10.1111/j.1198-743X.2010.03214.x
