Diabetes downregulates renal adenosine A_{2A} receptors in an experimental model of hypertension

Daniela Patinha1*, Carla Carvalho2*, Carla Abreu2, Olga M. Cunha2, Mariana C. Mota2, Joana Afonso1,3, António Albino-Teixeira1,3, Carmen Diniz2*, Manuela Morato2*

1 Pharmacology and Therapeutics Unit, Department of Biomedicine, Faculty of Medicine, University of Porto, Porto, Portugal, 2 LAQV@REQUIMTE, Laboratory of Pharmacology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal, 3 MedInUP–Center for Drug Discovery and Innovative Medicines, University of Porto, Porto, Portugal

*cdiniz@ff.up.pt (CD); mmorato@ff.up.pt (MM)

Abstract

Studies on diabetic nephropathy rarely take into account that the co-existence of diabetes and hypertension is frequent and further aggravates the prognosis of renal dysfunction. Adenosine can activate four subtypes of adenosine receptors (A_1, A_{2A}, A_{2B} and A_3) and has been implicated in diabetic nephropathy. However, it is not known if, in hypertensive conditions, diabetes alters the presence/distribution profile of renal adenosine receptors. The aim of this work was to describe the presence/distribution profile of the four adenosine receptors in six renal structures (superficial/deep glomeruli, proximal/distal tubules, loop of Henle, collecting tubule) of the hypertensive kidney and to evaluate whether it is altered by diabetes. Immunoreactivities against the adenosine receptors were analyzed in six renal structures from spontaneously hypertensive rats (SHR, the control group) and from SHR rats with diabetes induced by streptozotocin (SHR-STZ group). Data showed, for the first time, that all adenosine receptors were present in the kidney of SHR rats, although the distribution pattern was specific for each adenosine receptor subtype. Also, induction of diabetes in the SHR was associated with downregulation of adenosine A_{2A} receptors, which might be relevant for the development of hypertensive diabetic nephropathy. This study highlights the adenosine A_{2A} receptors as a potential target to explore to prevent and/or treat early diabetes-induced hyperfiltration, at least in hypertensive conditions.

Introduction

Diabetes Mellitus joins a group of metabolic diseases characterized by hyperglycemia and associated with high morbidity and mortality rates. It has reached epidemic proportions; approximately 422 million people worldwide have diabetes[1] and this number will continue to escalate, with predictions to rise up to 592 million by the year of 2035[2]. It is estimated that almost 1/3 of all diabetic patients will develop diabetic nephropathy[3], the prime cause of
end-stage renal disease which, therefore, has a great impact on the use of health resources and associated costs[4]. In its initial stage, diabetic nephropathy is mainly characterized by glomerular hyperfiltration and hypertrophy, basal membrane thickening and mesangial matrix expansion that then progress to glomerulosclerosis, persistent proteinuria and decreased glomerular filtration rate (GFR)[3]. Early hyperfiltration is a good predictor for the development of end-stage renal disease[5].

Diabetes and hypertension independently contribute to the development of diabetic nephropathy and represent major causes of end-stage renal disease[4]. Also, the co-existence of these two chronic diseases is extremely frequent[6]. However, studies on diabetic nephropathy rarely take into account the co-existence of diabetes and hypertension, which further aggravates the prognosis of renal dysfunction[7, 8].

The mechanisms underlying diabetic nephropathy are multifactorial[3, 9] although still not fully characterized. Adenosine regulates a wide range of physiological functions by activating four specific membrane receptor subtypes: A1, A2A, A2B and A3, and has been implicated in diabetic nephropathy[10, 11]. In the kidney, adenosine is crucial for the maintenance of proper hemodynamics mainly through adenosine A1 receptor-mediated constriction of afferent arterioles and glomerular mesangial cells, and adenosine A2A receptor-mediated vasodilation[12–15]. Moreover, adenosine A1 receptors also regulate tubular electrolyte transport and inhibit renin secretion[16, 17] while adenosine A2A receptors contribute to maintain glomerular filtration[18] and mediate anti-inflammatory and immunosuppressive effects[19], although they stimulate renin release[20]. Adenosine A2B receptors have been mainly associated with the production of vascular endothelial growth factor (VEGF)[21, 22] and stimulation of profibrotic and proinflammatory mediators[23]. The adenosine A3 receptors are known to induce mesangial cells apoptosis, which may represent a potential mechanism to limit glomerular mesangial expansion, an important histological feature of diabetic nephropathy[24].

In streptozotocin (STZ)-induced diabetes, it has been described an increased expression of adenosine A1 receptor mRNA but conflicting data has been reported concerning protein expression[21, 25, 26]. The adenosine A2A receptor mRNA and protein levels are increased in the renal cortex of diabetic rats, and diabetes has also been associated with increased glomerular expression of adenosine A2B receptors[21, 25, 26] and increased cortical levels of the adenosine A3 receptor protein[25]. The expression[25, 27–29] and function[11] of renal adenosine receptors is altered in normotensive animals with experimental diabetes when compared with normotensive controls. However, the coexistence of hypertension has never been addressed in this context. As so, the distribution profile of adenosine receptors is not fully described in hypertensive conditions neither is the impact of diabetes on a hypertensive background.

The aim of this work was to characterize the distribution profile of the four subtypes of adenosine receptors in renal structures of spontaneously hypertensive rats (SHR, our control group) and to evaluate whether it is altered by STZ-induced diabetes. We wanted to focus on early diabetic nephropathy, which is associated with hyperfiltration[3], a good predictor of end-stage renal disease[5]. As so, we decided to perform the experiments just 21 days after the induction of diabetes with STZ, since by this time the animals show hyperfiltration[11] and the associated renal disease mainly results from hyperglycemia and not of other putative confounding factors[30–32]. This study allowed us to describe, for the first time, the presence of all adenosine receptors in the kidney of SHR, and a downregulation of the adenosine A2A receptors in SHR with STZ-induced diabetes.
Material and methods

Drugs

The following chemicals were used: STZ, Triton X-100 and DAB were obtained from Sigma Aldrich (Sintra, Portugal). The following primary antibodies were bought from Santa Cruz (Santa Cruz Biotechnology, CA, USA): rabbit polyclonal anti-A1, anti-A2A, anti-A2B and anti-A3. The rabbit biotinylated secondary antibody and the avidin-biotin complex reagents (ABC) were obtained from Vectastain Elite ABC kit universal (Vector Laboratories, Burlingame, CA, USA). All reagents were of analytical grade.

Animals and treatments

Male SHR animals (12 weeks; Charles River, Barcelona, Spain) were used. Animals had free access to water and food and were housed under controlled conditions of temperature (22˚C), humidity (60%) and light-dark cycle (12 h/12 h). All animal procedures were performed according to the Portuguese DL n˚ 113/2013 and European Guidelines for humane and responsible animal care (European Directive 2010/63). All experiments were performed in accordance with the European Union guidelines for the protection of animals used for scientific purposes (Directive 2010/63/EU). Protocols are in accordance with the ARRIVE guidelines for reporting experiments[33] and were approved by the Committee on the Ethics of Animal Experiments of the Faculty of Pharmacy of the University of Porto (Permit Number 13/11/2013).

On day 0, SHR animals were randomly assigned to receive an intraperitoneal injection of STZ (65 mg/kg; SHR-STZ group, n = 4) or vehicle (sodium citrate buffer pH 4.5; SHR control group, n = 4). After 48 h, blood glucose concentration was determined using an autoanalyzer (Abbott Diabetes Care Ltd, Santa Clara, CA, USA) and animals with blood glucose concentration above 300 mg/dL were considered diabetic. On day 21, animals were anesthetized with pentobarbital sodium (50 mg/kg; i.p.) to minimize suffering, and the left kidney was excised and processed for immunohistochemistry. With this, the death of the anesthetized animals was ensured by exsanguination.

Immunohistochemistry

The kidneys were fixed in 4% formaldehyde overnight, dehydrated in a graded series of ethanol followed by benzoyl, and embedded in paraffin. Sequential 4-μm-thick renal sections were obtained from each animal and mounted onto poly-L-lysine-coated slides.

Experiments were carried out in five batches using five levels, corresponding to 200 kidney sections for both SHR control and SHR-STZ groups.

Immunohistochemistry was performed as previously described[34] with some modifications. Briefly, sections were dewaxed with toluene and rehydrated in a graded series of ethanol at room temperature (RT). Endogenous peroxidase was blocked using 3% hydrogen peroxide (H2O2) and non-specific protein binding was blocked with 2% serum in phosphate-buffered saline [PBS (g/L): 8g NaCl; 0,201g KCl; 0,191g KH2PO4; 0,765g Na2HPO4·2H2O]. Sections were then incubated with rabbit primary polyclonal antibodies, anti-A1 (1:50 dilution), anti-A2A (1:250 dilution), anti-A2B (1:50 dilution), and anti-A3 (1:250 dilution). The specificity of these primary antibodies has been previously tested by other authors by immunoprecipitation of the protein or knockdown using siRNA[35–38] and by our group in SHR animals[39], by pre-adsorbing individual primary antibody with a tenfold excess of its respective blocking peptides, overnight, at 4˚C.
Incubation with individual adenosine receptor primary antibodies was done overnight, at 4˚C, in a humidified chamber. Sections were subsequently rinsed in PBT and incubated with a biotinylated anti-rabbit secondary antibody (1:125 dilution in PBT) for 1h, at RT. Sections were then rinsed in PBT and incubated with avidin-biotin complex reagent (ABC) for 1h, at RT. After washing with PBS, sections were incubated with 3,3-diaminobenzidine tetrahydrochloride (DAB) activated with H₂O₂, used as a chromophore. The reaction was stopped by washing sections with distilled water. Finally, sections were dehydrated in a graded series of ethanol and xylene, and mounted with Eukitt mounting medium. For negative controls (controls for non-specific binding of secondary antibody) primary antibodies were omitted (Fig 1).

Imaging

Micrographs of each immunostained section were acquired using a CDC camera (Leica DFC295, Leica Microsystems, Heerbrugg Switzerland) mounted on the microscope Nikon Eclipse E400 (objective 20x/0.5; ∞/0.17; WD 2.1; Nikon Corporation, Tokyo, Japan), using software Leica Microsystems software version 3.5.0 (Leica Microsystems, Heerbrugg, Switzerland). Illumination conditions of the bright field optics and camera exposure were maintained constant throughout the acquisition of all tissue sections, including control negative sections.
Acquired images (24 bit, 8 bits/color) with resolution of 3072x2304 pixels corresponded to 655.36x491.52 μm area on the original histological section (1 pixel = 0.21 μm, a calibration micrometer slide was used to convert pixels into micrometers). These images were used both for qualitative analysis and histomorphometry.

Histomorphometry

Histomorphometric analysis has been previously described as a valid methodology[40–42] and can be as effective as PCR or WB for quantitative measurements. Therefore, quantitative analysis and processing of digital images from DAB-immunostained sections were assessed using the SACAIA method and the PAQI software (CEMUP, Porto, Portugal), as previously described[43, 44]. Briefly, from RGB (red, green, blue) digital color images, only the blue component was selected for analysis, due to its higher contrast. RGB color images from DAB-immunostained sections (immunostained with anti-A1, anti-A2A, anti-A2B or anti-A3 antibodies) were converted into their blue component and the renal structures were isolated. Boundaries were delineated to extract the object of interest and to set thresholds for automated DAB-staining segmentation using image analysis. As immunohistochemistry can provide detailed information concerning the location/presence/area of immunostaining, to make the analysis more comprehensive, we evaluated the expression on six different renal structures: superficial (SG) and deep (DG) glomeruli, proximal (PCT) and distal (DCT) collecting tubules, loop of Henle (LH) and collecting tubule (CT).

To determine differences between stained and non-stained tissue, negative control sections were imaged with the same microscope illumination and camera operating conditions, and the average of stained level was determined: a value of 171 for a maximum of 255. This average value was used for threshold segmentation of the stained areas of each kidney structure. The level of immunostaining was obtained by quantifying the fraction of the tissue that stained with DAB (stained fractional area) using digital images of DAB-labeled immunostains from kidney sections.

Statistical analysis

Immunostaining was expressed as percentage of the tissue total area. Results were presented as median and 25th-75th percentiles (P25-P75); n denotes the number of animals used in each group. In the SHR control group and for each adenosine receptor subtype, the differences in immunostaining observed between the different renal structures analyzed were compared with Kruskal-Wallis with Dunn’s multiple comparisons test. Also, for each renal structure studied (SG, DG, PCT, DCT, LH and CD), the Mann-Whitney test was used to compare the immunostaining against each receptor between SHR control and SHR-STZ groups. In any case, GraphPad Prism 7 software was used for the statistical analysis and a p value <0.05 was considered significant.

Results

The presence/distribution profile of the adenosine receptor subtypes A1, A2A, A2B and A3 was characterized in kidney nephron of the SHR (our control group; a well-known hypertensive animal model[45, 46]) and compared to that observed in the SHR with STZ-induced diabetes.
Distribution profile of adenosine receptors along the renal structures of the SHR group

Representative images of the immunoreactivity observed against each of the four adenosine receptor subtypes studied (A₁, A₂A, A₂B and A₃) in the renal structures of SHR control rats are depicted in Fig 2 and Fig 3. Immunoreactivity against the four adenosine receptor subtypes was observed in all the kidney structures studied: SG, DG, PCT, DCT, LH and CT.

In SHR control animals, the SG was the structure that showed the highest immunoreactivity against the adenosine A₁ receptor (Fig 2, left panels and Fig 4). The distribution of adenosine A₁-receptor immunoreactivity was variable along glomerular cells, with higher immunoreactivity in mesangial cells and lower in podocytes. The parietal layer of the Bowman’s capsule also showed some adenosine A₁ receptor immunoreactivity. Adenosine A₁ receptor immunoreactivity was also present in the other kidney structures (Fig 2, left panels and Fig 4). In the DG, it was located mainly in mesangial cells; the PCT was the renal structure presenting less adenosine A₁ receptor immunoreactivity (Fig 2, left panels and Fig 4); in DCT, LH and CT, adenosine A₁ receptor immunoreactivity was distributed along the basal border of the tubular cells, mostly located in the vasa recta (Fig 2, left panels and Fig 4).

Immunoreactivity against the adenosine A₂A receptor was lower in the glomeruli than in the renal tubular structures (PCT, DCT, LH and CT) (Fig 3, left panels and Fig 4). SG and DG presented similar levels of adenosine A₂A receptor immunoreactivity, which was found to be distributed mainly in mesangial cells although it was also observed in both the parietal and visceral (podocytes) layers of the Bowman’s capsule (Fig 3, left panels). In tubular structures, adenosine A₂A receptor immunostaining was observed in the nuclei and membrane of tubular cells.

Conversely, the kidney structures with higher adenosine A₂B receptor immunoreactivity were the glomeruli (SG and DG) followed by DCT and, much less, the other tubular structures (PCT, LH and CT) (Fig 3, right panels and Fig 4). Among glomeruli, the immunoreactivity against the adenosine A₂B receptor was distributed between mesangial and podocytes, but was almost absent in the parietal layer of the Bowman’s capsule (Fig 3, right panels). In the LH, immunoreactivity against the adenosine A₂B receptor was present in the vicinity of the basal border of cells, in the vasa recta (Fig 3, right panels).

Adenosine A₃ receptor immunoreactivity was weaker than that observed for the other adenosine receptors in every kidney structure studied (Fig 2, right panels). Immunoreactivity against the adenosine A₃ receptor was located both in the nuclei and membrane of the cells. In the glomeruli (both SG and DG) it was mainly found within the nuclei of mesangial cells and in the Bowman’s capsule, where although sparse, it was primarily present in the parietal layer (Fig 2, right panels). As for the other kidney structures, the PCT showed the lowest adenosine A₃ receptor immunoreactivity while DCT and CT were the structures presenting the highest adenosine A₃ receptor immunoreactivity (Fig 2, right panels and Fig 4).

Distribution profile of adenosine receptors along the renal structures of the SHR-STZ group

In SHR-STZ animals, immunoreactivity against the four adenosine receptor subtypes was also observed in all the kidney structures studied: SG, DG, PCT, LH, DCT and CT. The SG was the structure that showed the highest immunoreactivity against the A₁ receptor, the difference being statistically different for PCT and LH (Fig 5, left panels and Fig 6). Also, the glomeruli (both SG and DG) were the kidney structures with more marked A₂B immunoreactivity (Fig 7, right panels and Fig 6). Immunoreactivity against the adenosine A₂A receptor was similar between SG and DG but it was lower in the glomeruli than in the renal tubular structures (Fig
6 and Fig 7, left panels). Likewise, immunoreactivity against the adenosine A$_3$ receptor was also similar between SG and DG and it was lower in the glomeruli than in the tubular structures, namely the LH and CT (Fig 5, right panels and Fig 6). The immunoreactivity against the adenosine A$_3$ receptor was also very low in the PCT compared with the other renal tubular structures (Fig 5, right panels and Fig 6). Generally, A$_3$ receptor immunoreactivity was weaker than that observed for the other adenosine receptors (Fig 5, right panels and Fig 6).

STZ-induced diabetes altered the renal distribution profile of adenosine receptors of the SHR

We found that adenosine A$_1$ receptor immunoreactivity was numerically higher in DG and lower in DCT from SHR-STZ (Table 1) comparatively to the correspondent structures of SHR control animals. The adenosine A$_2A$ receptor immunoreactivity found in DG, PCT and DCT of SHR-STZ animals was lower than that found in the correspondent structures of SHR controls (Table 1). Concerning the immunoreactivities against adenosine A$_2B$ (Table 1) and A$_3$ (Table 1) receptors, there were no differences between renal structures of SHR-STZ and SHR control animals except for a tendency for a lower immunoreactivity against the adenosine A$_2B$ receptor in the PCT of SHR-STZ.

Discussion

The results of the present study reveal, for the first time, a differential expression and distribution pattern of the four adenosine receptor subtypes along the nephron of the SHR. Additionally and also innovative, this study uncovers a downregulation of renal adenosine A$_2A$ receptors caused by STZ-induced diabetes in hypertensive conditions.

Expression of adenosine receptors along the nephron in the SHR control group

Our results indicate that adenosine A$_1$ receptors are mostly present in SG and DCT, while its presence in DG and in the other tubular structures studied is less marked and similar between them. This differential staining between SG and DG was only found for this adenosine receptor subtype and probably reflects the adenosine A$_1$ receptor-mediated afferent vasoconstriction that is crucial for renal autoregulation of blood flow that predominates in the renal superficial cortex[47]. In our study, with hypertensive rats, adenosine A$_1$ receptor was more markedly present in mesangial cells, which contract[12] and contribute to renal autoregulation of blood flow[48]. Differently, in a study with normotensive rats, the adenosine A$_1$ receptor was described in mesangial cells[27] but mostly in the epithelial cells of the glomeruli[25]. The immunolocalization and/or mRNA expression of adenosine A$_1$ receptors in the normal kidney has already been reported in all renal structures[22, 25, 27–29, 49]. Its presence in the PCT is not so consensual[28, 29, 49–52]. We confirm the presence of the adenosine A$_1$ receptor in PCT although this was the less marked renal structure.

In our study with SHR animals, the presence of adenosine A$_2A$ receptor was more marked in the renal tubular structures than the glomeruli. In the renal tubules, adenosine A$_2A$ receptors inhibit tubular sodium reabsorption in the distal nephron[53], thus causing diuretic and
Renal adenosine receptors in diabetic-hypertensive rats
natriuretic effects, and increase distal Mg\(^{2+}\) uptake\(^\text{[54]}\). Again differently, in the normotensive kidney, adenosine A\(_{2A}\) receptors have been described to be mainly located in the vasculature and the glomeruli, with lower expression reported within the tubular structures of cortex and medulla\(^\text{[29]}\), which is consistent with the vasodilatory role of the adenosine A\(_{2A}\) receptor, especially in the deep renal cortex and medulla\(^\text{[13]}\).

Similarly to what was observed for the adenosine A\(_{1}\) receptor, the adenosine A\(_{2B}\) receptor was markedly present in glomeruli and DCT when compared with the other renal tubular structures. Adenosine A\(_{2B}\) receptors increase VEGF production\(^\text{[21, 22]}\) and release\(^\text{[22]}\) in glomerular mesangial cells and podocytes. Although the mRNA for the adenosine A\(_{2B}\) receptor is

\[\text{https://doi.org/10.1371/journal.pone.0217552.g003}\]

Renal adenosine receptors in diabetic-hypertensive rats

Fig 3. Immunoreactivity against the adenosine A\(_{2A}\) and A\(_{2B}\) receptors receptors in the SHR control group. Representative photomicrographs of kidney sections from 4 SHR control rats incubated with a primary antibody against the adenosine A\(_{2A}\) (left panels) and A\(_{2B}\) (right panels) receptors. The six renal structures studied in separate are represented: superficial (SG) and deep glomeruli (DG), proximal (PCT) and distal (DCT) convoluted tubule, loop of Henle (LH) and collecting tubule (CT). Scale bars: 20 μm.

\[\text{https://doi.org/10.1371/journal.pone.0217552.g003}\]

\[\text{https://doi.org/10.1371/journal.pone.0217552.g004}\]
Renal adenosine receptors in diabetic-hypertensive rats

SHR-STZ

A1
SG
DG
PCT
DCT
LH
CT

A3
SG
DG
PCT
DCT
LH
CT
Fig 5. Immunoreactivity against the adenosine A_1 and A_3 receptors in rats simultaneously having hypertension and diabetes. Representative photomicrographs of kidney sections from 4 SHR-STZ rats incubated with a primary antibody against the adenosine A_1 (left panels) and A_3 (right panels) receptors. The six renal structures studied in separate are represented: superficial (SG) and deep glomeruli (DG), proximal (PCT) and distal (DCT) convoluted tubule, loop of Henle (LH) and collecting tubule (CT). Scale bars: 20 μm.

https://doi.org/10.1371/journal.pone.0217552.g005

Fig 6. Quantitative immunostaining for A_1, A_{2A}, A_{2B}, and A_3 adenosine receptors in the renal structures from SHR-STZ rats. Quantitative analysis of the immunostaining (staining fractional area in percentage of the tissue total area; using the SACAIA method) for the adenosine A_1, A_{2A}, A_{2B}, and A_3 receptors in the six renal structures from SHR-STZ rats. Superficial (SG) and deep (DG) glomeruli, proximal (PCT) and distal (DCT) convoluted tubule, loop of Henle (LH) and collecting tubule (CT). Values are median and 25th-75th percentiles (P25-P75) from 4 rats. * $p<0.05$ vs corresponding PCT; $^\text{§}$ $p<0.05$ vs corresponding DG; $^\&$ $p<0.05$ vs corresponding SG and DG; $^\#$ $p<0.05$ vs corresponding LH.

https://doi.org/10.1371/journal.pone.0217552.g006
mostly found in the DCT[29], we also found adenosine A$_{2B}$ receptors in CT, where they stimulate chloride secretion[55]. PCT and LH were the structures with the lowest immunoreactivity against the adenosine A$_{2B}$ receptor and their putative function has not been studied yet. Immunoreactivity against the adenosine A$_{3}$ receptor was the weakest of all adenosine receptors studied. Still, structures of the distal nephron were more markedly stained. Accordingly, mRNA for the adenosine A$_{3}$ receptor has already been found in the whole kidney of normotensive Wistar rats although with a low expression[29], but so far, no distinct intrarenal localization has been reported. Also, very little is known about this receptor and its functions along

Figure 7. Immunoreactivity against the adenosine A$_{2A}$ and A$_{2B}$ receptors in rats simultaneously having hypertension and diabetes. Representative photomicrographs of kidney sections from 4 SHR-STZ rats incubated with a primary antibody against the adenosine A$_{2A}$ (left panels) and A$_{2B}$ (right panels) receptors. The six renal structures studied in separate are represented: superficial (SG) and deep glomeruli (DG), proximal (PCT) and distal (DCT) convoluted tubule, loop of Henle (LH) and collecting tubule (CT). Scale bars: 20 µm.

Table 1. Immunostaining (% of the tissue total area) for A$_{1}$, A$_{2A}$, A$_{2B}$, and A$_{3}$ adenosine receptors in the renal structures from SHR control and SHR-STZ groups.

Adenosine A$_{1}$ receptor	SHR control	SHR-STZ	p
SG	73.92 (45.52–79.07)	73.73 (59.53–80.82)	0.772
DG	36.05 (21.57–52.23)	54.31 (27.32–68.69)	0.081
PCT	28.95 (10.39–59.51)	28.05 (8.82–54.82)	0.772
DCT	63.23 (44.93–70.23)	48.04 (23.43–63.49)	0.079
LH	48.23 (40.44–55.78)	47.24 (39.53–58.24)	0.982
CT	52.81 (45.86–56.19)	49.71 (42.95–61.29)	0.959

Adenosine A$_{2A}$ receptor	SHR control	SHR-STZ	p
SG	32.15 (26.46–37.37)	24.03 (13.09–36.5)	0.115
DG	33.32 (22.75–40.90)	21.26 (15.82–31.88)	0.032
PCT	75.98 (63.23–82.24)	50.06 (31.65–68.38)	0.001
DCT	72.26 (63.05–76.99)	63.22 (55.90–72.37)	0.049
LH	70.21 (66.60–74.07)	62.64 (53.59–76.94)	0.200
CT	64.73 (51.12–70.26)	63.39 (60.15–72.25)	0.392

Adenosine A$_{2B}$ receptor	SHR control	SHR-STZ	p
SG	74.06 (70.70–79.73)	74.94 (61.10–80.16)	0.984
DG	68.32 (61.39–75.78)	69.02 (60.16–74.04)	0.855
PCT	30.84 (17.53–52.23)	8.06 (1.82–42.92)	0.078
DCT	60.22 (49.48–73.84)	52.38 (21.83–69.54)	0.102
LH	44.27 (36.32–48.34)	39.81 (33.22–50.03)	0.525
CT	53.60 (42.96–57.01)	45.74 (34.95–57.54)	0.262

Adenosine A$_{3}$ receptor	SHR control	SHR-STZ	p
SG	11.89 (6.75–31.51)	12.18 (5.88–31.87)	0.886
DG	10.32 (4.02–20.26)	10.73 (5.48–28.27)	0.568
PCT	4.14 (0.54–27.16)	6.32 (1.91–15.77)	0.539
DCT	39.32 (13.38–71.46)	26.26 (15.99–61.62)	0.822
LH	53.78 (26.42–82.10)	43.55 (33.41–63.19)	0.140
CT	52.67 (16.27–78.15)	62.05 (34.18–76.89)	0.328

Values are median (P25-P75) from 4 rats. SG = superficial glomeruli; DG = deep glomeruli; PCT = proximal convoluted tubule; DCT = distal convoluted tubule; LH = loop of Henle; CT = collecting tubule.
the nephron. Even though it has been suggested that, in basal physiological conditions, adenosine A\(_3\) receptors do not play a role in the regulation of renal fluid and transport\([56]\), in distal nephron A6 cells, activation of adenosine A\(_3\) receptors promotes Cl\(^-\) secretion through an increase in the influx of Ca\(^{2+}\)\([57]\). Also, adenosine A\(_3\) receptors have been associated with mesangial cell apoptosis\([24]\) and with direct\([58]\) or transforming growth factor beta (TGF-\(\beta\))-induced\([59]\) expression of fibrosis markers in proximal tubule cells.

STZ-induced diabetes altered the renal expression of adenosine receptors of the SHR

In our study, SHR with STZ-induced diabetes had a markedly higher expression of the adenosine A\(_1\) receptor in the DG when compared to the control SHR group. Although this effect (50% increase) did not reach statistical significance, it is in the opposite direction as that reported in normotensive Sprague-Dawley rats, where STZ-induced diabetes decreased adenosine A\(_1\) receptor immunostaining\([21]\). Although only speculative for now, since the adenosine A\(_1\) receptor is associated with glomerular constriction\([60]\), this tendency to increase could represent an attempt to restrain intraglomerular pressure (and GFR). We have previously reported that these SHR-STZ rats show decreased SBP when compared with their SHR controls\([61]\) but, even though this was associated with a decrease in renal cortical oxidative dysfunction, early diabetic renal damage was still evident, as indicated by increased GFR and proteinuria\([61]\). Overall, this suggests that, at least regarding adenosine regulation in the context of diabetes and hypertension, alterations in glomerular adenosine A\(_1\) receptors are triggered but are not enough to normalize renal hemodynamics. Interestingly, the increase in glomerular adenosine A\(_1\) receptor immunoreactivity would also decrease the blood output through the postglomerular afferent arterioles, compromising the already low blood supply to the renal medulla, thus aggravating the renal damage, which was confirmed by the clear presence of medullary oxidative stress\([61]\).

Moreover, STZ-induced diabetes in SHR animals was associated with downregulation of the adenosine A\(_2A\) receptors in DG and PCT when compared to the SHR control group. Given the known vasodilator effects of adenosine A\(_2A\) receptor in the kidney\([13, 61]\), the decreased glomerular expression in the DG of SHR-STZ animals (comparing to that of SHR controls) might favor a rise in intraglomerular pressure, thus contributing to the increased GFR that is observed in early SHR-STZ diabetic rats\([61]\). Adenosine can stimulate the Na\(^+\)/K\(^+\)-ATPase in PCT\([60]\) through activation of adenosine A\(_2A\) receptors\([62]\). So, the downregulation of adenosine A\(_2A\) receptors observed in the PCT of SHR-STZ animals (comparing to that of SHR controls) might decrease adenosine A\(_2A\) receptor-mediated sodium reabsorption, promoting diuresis and natriuresis, which we have previously reported in these SHR-STZ animals\([61]\).

The SHR-STZ group also showed lower expression of adenosine A\(_2A\) receptors in DCT when compared with the SHR control group. In the distal nephron, adenosine regulates Mg\(^{2+}\) homeostasis through decreased reabsorption via an adenosine A\(_1\)-receptor mediated mechanism and increased reabsorption through activation of adenosine A\(_2A\) receptors\([54]\). We did not measure Mg\(^{2+}\) levels but published data and the results of this study are consistent with a role of adenosine as an important regulator of magnesium homeostasis, which is relevant from a translational perspective. Indeed, hypomagnesemia has been implicated in the progression of diabetic and hypertensive chronic kidney disease\([63]\).

Most studies on the impact of diabetes on the expression and function of renal adenosine receptors have focused on the adenosine A\(_3\BETA\) receptor and showed overexpression\([21, 26]\). Unexpectedly, our study showed similar expression of adenosine A\(_3\BETA\) receptors between SHR-STZ rats and control SHR rats suggesting that in hypertensive animals this adenosine
receptor subtype is not implicated in early STZ-diabetic nephropathy. To our knowledge, the immunolocalization of the adenosine A_{2B} receptor in the PCT has never been previously reported and its effects on this renal structure have not been studied yet. However, based on our observations, adenosine A_{2B} receptors might influence renal function in diabetes-associated hypertension since its expression was almost abolished in SHR-STZ rats, although the difference was not statistically different from control SHR rats. The adenosine adenosine A_{2B} receptor has been reported to be relevant in the early stages of diabetic nephropathy for restraining mesangial cell growth[64]. However, it has also been implicated in later detrimental effects, namely renal fibrosis and glomerulosclerosis, through IL-6 formation[65] and the release of VEGF[21, 22] and TGF-β1[26].

In our experimental conditions, there was no difference in the expression of adenosine A_{3} receptors between SHR-STZ rats and control SHR rats, which suggests that adenosine A_{3} receptor-mediated mechanisms are non-operating in the early hyperfiltration conditions of diabetes associated with hypertension.

In conclusion, the four adenosine receptor subtypes (A_{1}, A_{2A}, A_{2B} and A_{3}) are expressed in the kidney of SHR rats, although the distribution pattern is specific for each receptor subtype. Furthermore, STZ-induced diabetes in SHR rats affects their distribution mostly by downregulating the expression of A_{2A} receptors, which might be relevant for the development of early diabetes-associated hyperfiltration. Future studies will address whether endogenous or exogenous adenosine levels are relevant for the expression of renal adenosine receptors in the context of diabetes associated with hypertension.

Author Contributions

Conceptualization: Daniela Patinha, António Albino-Teixeira, Carmen Diniz, Manuela Morato.

Data curation: Daniela Patinha, Carla Carvalho, Mariana C. Mota, Joana Afonso, Carmen Diniz, Manuela Morato.

Formal analysis: Daniela Patinha, Carla Carvalho, Carla Abreu, Olga M. Cunha, Mariana C. Mota, Manuela Morato.

Funding acquisition: Daniela Patinha, António Albino-Teixeira, Carmen Diniz, Manuela Morato.

Investigation: Daniela Patinha, Carla Carvalho, Carla Abreu, Olga M. Cunha, Mariana C. Mota, Joana Afonso.

Methodology: Carla Carvalho, Carla Abreu, Joana Afonso, Carmen Diniz.

Project administration: António Albino-Teixeira, Carmen Diniz, Manuela Morato.

Supervision: Carmen Diniz, Manuela Morato.

Writing – original draft: Daniela Patinha, Carla Carvalho, Carla Abreu, Olga M. Cunha, Mariana C. Mota, Joana Afonso.

Writing – review & editing: Daniela Patinha, Carla Carvalho, António Albino-Teixeira, Carmen Diniz, Manuela Morato.

References

1. Organization WH. Global report on diabetes.; 2016. Contract No.: ISBN 978 92 4 156525 7 (NLM classification: WK 810).

2. Federation ID. IDF Diabetes Atlas 7th Edition ed2015.
3. Dronavalli S, Duka I, Bakris GL. The pathogenesis of diabetic nephropathy. Nat Clin Pract Endocrinol Metab. 2008; 4(4):444–52. https://doi.org/10.1038/ncpendmet0894 PMID: 18607402

4. Jha V, Garcia-Garcia G, Iseki K, Li Z, Naicker S, Plattner B, et al. Chronic kidney disease: global dimensions and perspectives. Lancet. 2013; 382(9888):260–72. https://doi.org/10.1016/S0140-6736(13)60687-X PMID: 23727169

5. Magee GM, Bilous RW, Cardwell CR, Hunter SJ, Kee F, Fogarty DG. Is hyperfiltration associated with the future risk of developing diabetic nephropathy? A meta-analysis. Diabetologia. 2009; 52(4):691–7. https://doi.org/10.1007/s00125-009-1268-0 PMID: 19198800

6. Colosia AD, Palencia R, Khan S. Prevalence of hypertension and obesity in patients with type 2 diabetes mellitus in observational studies: a systematic literature review. Diabetes Metab Syndr Obes. 2013; 6:327–38. https://doi.org/10.2147/DMSO.S51325 PMID: 24082791

7. Imai G, Satoh T, Kumai T, Murao M, Tsuchida H, Shima Y, et al. Hypertension accelerates diabetic nephropathy in Wistar fatty rats, a model of type 2 diabetes mellitus, via mitogen-activated protein kinase cascades and transforming growth factor-beta1. Hypertens Res. 2003; 26(4):339–47. PMID: 12733703

8. Tomohiro T, Kumai T, Sato T, Takeba Y, Kobayashi S, Kimura K. Hypertension aggravates glomerular dysfunction with oxidative stress in a rat model of diabetic nephropathy. Life Sci. 2007; 80(15):1364–72. https://doi.org/10.1016/j.lfs.2006.11.054 PMID: 17331548

9. Giunti S, Barit D, Cooper ME. Mechanisms of diabetic nephropathy: role of hypertension. Hypertension. 2006; 48(4):519–26. https://doi.org/10.1161/01.HYP.0000240331.32352.0c PMID: 16952978

10. Quezada C, Alarcon S, Jaramillo C, Munoz D, Oyarzun C, San Martin R. Targeting adenosine signaling to treatment of diabetic nephropathy. Curr Drug Targets. 2013; 14(4):490–6. PMID: 23316933

11. Patinha D, Afonso J, Sousa T, Morato M, Albino-Texeira A. Activation of adenosine receptors improves renal antioxidant status in diabetic Wistar but not SHR rats. Ups J Med Sci. 2014; 119(1):10–8. https://doi.org/10.3109/03009734.2013.851748 PMID: 24195577

12. Olivera A, Lamas S, Rodriguez-Puyol D, Lopez-Novoa JM. Adenosine induces mesangial cell contraction by an A1-type receptor. Kidney Int. 1989; 35(6):1300–5. PMID: 2770110

13. Valladares D, Quezada C, Montecinos P, Concha II, Yanez AJ, Sobrevia L, et al. Adenosine A2B receptor activation mediates an increase on VEGF-A production in rat kidney glomeruli. Biochem Biophys Res Commun. 2008; 366(1):180–5. https://doi.org/10.1016/j.bbrc.2007.11.113 PMID: 18060864

14. Wilkinson PF, Farrell FX, Morel D, Law W, Murphy S. Adenosine Signaling Increases Proinflammatory and Profibrotic Mediators through Activation of a Functional Adenosine 2B Receptor in Renal Fibroblasts. Ann Clin Lab Sci. 2016; 46(4):339–45. PMID: 27466291
24. Zhao Z, Kapoian T, Shepard M, Lianos EA. Adenosine-induced apoptosis in glomerular mesangial cells. Kidney Int. 2002; 61(4):1276–85. https://doi.org/10.1046/j.1523-1755.2002.00256.x PMID: 11918734

25. Pawelczyk T, Grden M, Rzepko R, Sakowicz M, Szutowicz A. Region-specific alterations of adenosine receptors expression level in kidney of diabetic rat. Am J Pathol. 2005; 167(2):315–25. https://doi.org/10.1016/S0002-9440(10)62977-X PMID: 16049319

26. Roa H, Gajardo C, Troncoso E, Fuentealba V, Escudero C, Yanez A, et al. Adenosine mediates transforming growth factor-beta 1 release in kidney glomeruli of diabetic rats. FEBS Lett. 2009; 583(19):3192–8. https://doi.org/10.1016/j.febslet.2009.09.003 PMID: 19737558

27. Smith JA, Sivaprasadarao A, Munsey TS, Bowmer CJ, Yates MS. Immunolocalisation of adenosine A(1) receptors in the rat kidney. Biochem Pharmacol. 2001; 61(2):237–44. PMID: 11163338

28. Weaver DR, Reppert SM. Adenosine receptor gene expression in rat kidney. Am J Physiol. 1992; 263(6 Pt 2):F991–5.

29. Vitzthum H, Weiss B, Bachleitner W, Kramer BK, Kurtz A. Gene expression of adenosine receptors along the nephron. Kidney Int. 2004; 65(4):1180–90. https://doi.org/10.1111/j.1523-1755.2004.00490.x PMID: 15086457

30. Palm F, Liss P, Fasching A, Hansell P, Carlsson PO. Transient glomerular hyperfiltration in the streptozotocin-diabetic Wistar Furth rat. Ups J Med Sci. 2001; 106(3):175–82. https://doi.org/10.3109/2000-1967-147 PMID: 12166509

31. Palm F, Ortsater H, Hansell P, Liss P, Carlsson PO. Differentiating between effects of streptozotocin per se and subsequent hyperglycemia on renal function and metabolism in the streptozotocin-diabetic rat model. Diabetes Metab Res Rev. 2004; 20(6):452–9. https://doi.org/10.1002/dmrr.472 PMID: 15386825

32. Kume S, Uzu T, Araki S, Sugimoto T, Ishihara K, Chin-Kanasaki M, et al. Role of altered renal lipid metabolism in the development of renal injury induced by a high-fat diet. J Am Soc Nephrol. 2007; 18(10):2715–23. https://doi.org/10.1681/ASN.2007010089 PMID: 17855643

33. Kilkenny C, Browne WJ, Cuthill IC, Emerson M, Altman DG. Improving bioscience research reporting: The ARRIVE guidelines for reporting animal research. J Pharmacol Pharmacother. 2010; 1(2):94–9. https://doi.org/10.4103/0976-500X.72351 PMID: 21350617

34. Leal S, Sa C, Goncalves J, Fresco P, Diniz C. Immunohistochecmical characterization of adenosine receptors in rat aorta and tail arteries. Microsc Res Tech. 2008; 71(10):703–9. https://doi.org/10.1002/jemt.20609 PMID: 18570336

35. Zizzo MG, Bonomo A, Belluardo N, Mule F, Serio R. A1 receptors mediate adenosine inhibitory effects in mouse ileum via activation of potassium channels. Life Sci. 2009; 84(21–22):772–8. https://doi.org/10.1016/j.lfs.2009.03.006 PMID: 19324061

36. Thakur S, Du J, Hourani S, Ledent C, Li JM. Inactivation of adenosine A2A receptor attenuates basal and angiotensin II-induced ROS production by Nox2 in endothelial cells. J Biol Chem. 2010; 285(51):40104–13. https://doi.org/10.1074/jbc.M110.184606 PMID: 20943032

37. Eckle T, Faigle M, Grenz A, Laucher S, Thompson LF, Eltzschig HK. A2B adenosine receptor dampens hypoxia-induced vascular leak. Blood. 2008; 111(4):2024–35. https://doi.org/10.1182/blood-2007-11-117044 PMID: 18056839

38. Carreira MC, Camina JP, Diaz-Rodriguez E, Alvear-Perez R, Llorens-Cortes C, Casanueva FF. Adenosine does not bind to the growth hormone secretagogue receptor type-1a (GHS-R1a). J Endocrinol. 2006; 191(1):147–57. https://doi.org/10.1677/joe.1.06714 PMID: 17065398

39. Sousa-Oliveira A, Brandao A, Vojtek M, Goncalves-Monteiro S, Sousa JB, Diniz C. Vascular impairment of adenosinergic system in hypertension: increased adenosine bioavailability and differential distribution of adenosine receptors and nucleoside transporters. Histochem Cell Biol. 2018.

40. Guirado R, Carceller H, Castillo-Gomez E, Castren E, Nacher J. Automated analysis of images for molecular quantification in immunohistochemistry. Heliyon. 2018; 4(6):e00669. https://doi.org/10.1016/j.heliyon.2018.e00669 PMID: 30003163

41. Laforest S, Pelletier M, Michaud A, Daris M, Descamps J, Soulet D, et al. Histomorphometric analyses of human adipose tissues using intact, flash-frozen samples. Histochem Cell Biol. 2018; 149(3):209–18. https://doi.org/10.1007/s00418-018-1635-3 PMID: 29356964

42. Lu Z, Liu Y, Xu J, Yin H, Yuan H, Gu J, et al. Immunohistochemical quantification of expression of a tight junction protein, claudin-7, in human lung cancer samples using digital image analysis method. Comput Methods Programs Biomed. 2018; 155:179–87. https://doi.org/10.1016/j.cmpb.2017.12.014 PMID: 29512497
43. Leal S, Diniz C, Sa C, Goncalves J, Soares AS, Rocha-Pereira C, et al. Semiautomated computer-assisted image analysis to quantify 3,3'-diaminobenzidine tetrahydrochloride-immunostained small tissues. Anal Biochem. 2006; 357(1):137–43. https://doi.org/10.1016/j.ab.2006.07.017 PMID: 16914112

44. Diniz C. Microscopic image analysis using computer-assisted methodology to quantify immunostained receptors. In: M-VAD J., editor. Microscopy: Science, Technology, Applications and Education. 2: Formax Research Center; 2010.

45. Okamoto K, Aoki K. Development of a strain of spontaneously hypertensive rats. Jpn Circ J. 1963; 27:282–93. PMID: 13939773

46. Trippodo NC, Frohlich ED. Similarities of genetic (spontaneous) hypertension. Man and rat. Circ Res. 1981; 48(3):309–19. PMID: 7460205

47. Vallon V, Osswald H. Adenosine receptors and the kidney. Handb Exp Pharmacol. 2009(193):443–70. https://doi.org/10.1007/978-3-540-89615-9_15 PMID: 19639291

48. Stockand JD, Sansom SC. Glomerular mesangial cells: electrophysiology and regulation of contraction. Physiol Rev. 1998; 78(3):723–44. https://doi.org/10.1152/physrev.1998.78.3.723 PMID: 9674692

49. Yamaguchi S, Umemura S, Tamura K, Iwamoto T, Nyui N, Ishigami T, et al. Adenosine A1 receptor mRNA in microdissected rat nephron segments. Hypertension. 1995; 26(6 Pt 2):1181–5.

50. Wilcox CS, Welch WJ, Schreiner GF, Belardinelli L. Natriuretic and diuretic actions of a highly selective adenosine A1 receptor antagonist. J Am Soc Nephrol. 1999; 10(4):714–20. PMID: 10203354

51. Kost CK Jr., Herzer WA, Rominski BR, Mi Z, Jackson EK. Diuretic response to adenosine A(1) receptor blockade in normotensive and spontaneously hypertensive rats: role of pertussis toxin-sensitive G-proteins. J Pharmacol Exp Ther. 2000; 292(2):752–60. PMID: 10640315

52. Patinha D, Fasching A, Pinho D, Albino-Teixeira A, Morato M, Palm F. Angiotensin II contributes to glomerular hyperfiltration in diabetic rats independently of adenosine type I receptors. Am J Physiol Renal Physiol. 2013; 304(5):F614–22. https://doi.org/10.1152/ajprenal.00285.2012 PMID: 23293998

53. Ma H, Ling BN. Luminal adenosine receptors regulate amiloride-sensitive Na+ channels in A6 distal nephron cells. Am J Physiol. 1996; 270(5 Pt 2):F798–805.

54. Kang HS, Kerstan D, Dai LJ, Ritchie G, Quamme GA. Adenosine modulates Mg(2+) uptake in distal convoluted tubule cells via A(1) and A(2) purinoceptors. Am J Physiol Renal Physiol. 2001; 281(6):F1141–7. https://doi.org/10.1152/ajprenal.2001.281.6.F1141 PMID: 11704566

55. Rajagopal M, Pao AC. Adenosine activates s2b receptors and enhances chloride secretion in kidney inner medullary collecting duct cells. Hypertension. 2010; 55(5):1123–8. https://doi.org/10.1111/j.1524-456X.2009.014304.007433.x

56. Mozaffari MS, Abebe W, Warren BK. Renal adenosine A3 receptors in the rat: assessment of functional role. Can J Physiol Pharmacol. 2000; 78(5):428–32. PMID: 10841439

57. Reshkin SJ, Guerra L, Bagorda A, Debells L, Cardone R, Li AH, et al. Activation of A(3) adenosine receptor induces calcium entry and chloride secretion in A(6) cells. J Membr Biol. 2000; 178(2):103–13. PMID: 11083899

58. Kretschmar C, Oyarzun C, Villablanca C, Jaramillo C, Alarcon S, Perez G, et al. Reduced Adenosine Receptors in the Kidney. Handb Exp Pharmacol. 2019(228):33–66. PMID: 10203354

59. Lee J, Hwang I, Lee JH, Lee HW, Jeong LS, Ha H. The selective A3AR antagonist LJ-1888 ameliorates renal adenosine receptors in diabetic-hypertensive rats.
65. Dai Y, Zhang W, Wen J, Zhang Y, Kellems RE, Xia Y. A2B adenosine receptor-mediated induction of IL-6 promotes CKD. J Am Soc Nephrol. 2011; 22(5):890–901. https://doi.org/10.1681/ASN.2010080890 PMID: 21511827