Identification of seawater intrusion in Gapura Sub-district, Sumenep Regency, East Java, Indonesia

R K Warist1,4*, W Wilopo2,3*, N I Setiawan2,3

1Magister of Geological Engineering, Universitas Gadjah Mada, Jln. Grafika No. 2, Bulaksumur, Yogyakarta, 55281 Indonesia
2Department of Geological Engineering, Universitas Gadjah Mada, Jln. Grafika No. 2, Bulaksumur, Yogyakarta, 55281 Indonesia
3Center for Disaster Mitigation and Technological Innovation (GAMA-InaTEK), Universitas Gadjah Mada, Jln. Grafika No. 2, Bulaksumur, Yogyakarta, 55281 Indonesia
4Ministry of Public Works and Housing, Indonesia

*Corresponding Author: rafdi.kasyful.warist@mail.ugm.ac.id

Abstract. Gapura sub-district is located in the Sumenep Regency, Madura Island, that also recognized as the center of salt production. Due to not availability of a clean water network from the municipal water network (PDAM), the daily water need of the community is provided by groundwater. Local people have reported several brackish waters in the wells since a few years ago. Therefore, the purpose of this research is to identify seawater intrusion potential in this area. The seawater intrusion is analyzed based on the value of electrical conductivity (EC) and groundwater hydrochemistry. From the analysis of EC values, it can be concluded that there are two out of thirty groundwater samples classified as moderately saline water, while in the study of groundwater ion values, both two samples have chloride values that are more than 240 mg/L. However, the Cl and HCO\textsubscript{3} ratio show that the two samples will only have a small effect on seawater. Therefore, it can be concluded that the Gapura sub-district does not have seawater intrusion. High salinity in some wells is mostly coming from salt production in this area.

keywords: Groundwater, intrusion, salt seawater

1. Introduction

Groundwater is one of the essential sources of water in the world. It serves as a crucial source in all regions, especially in an arid area. It is used not only for domestic purposes but also for irrigation and industrial. Groundwater exploitation increases due to its quantity stability, excellent quality, and relatively low development costs [1]. One area with high groundwater susceptibility to the contaminant is the coastal area where all the water will meet the seawater. All surface water and groundwater will be drained in this region with all chemical elements included. Therefore, all pollutants will be carried by the water flow to the coastal zone [2]. The main concern in the many areas is the problems associated with naturally saline groundwater, seawater intrusion, and upcoming saline water due to over-pumping in agricultural and industrial zones. This problem can be caused by natural factors such as water interaction with rocks, hydrodynamic conditions, impacts from adjacent aquifers, and seawater intrusion.
In addition, coastal areas groundwater is also susceptible to contamination by human activities and natural processes such as seawater level rise [4].

Sumenep Regency is located in Madura Island, one of the largest salt producers in Indonesia, based on the Ministry of Maritime and Fisheries Affairs, Indonesia [5]. One of the sub-district that produces salt in Sumenep Regency is Gapura [6]. The groundwater is the primary source of water in this sub-district. The local people use dug well and deep well to abstract the groundwater because the clean water network (PDMA) is not available yet. According to information from local residents, several brackish waters in the wells have been found since a few years ago. Electrical conductivity tends to increase when there are larger salt ions in water [7]. Therefore, it is essential to research groundwater to assess its hydrochemical composition and the impact of pollutants [8]. Therefore, the purpose of this study is to identify the potential of seawater intrusion analyzed based on the value of electrical conductivity (EC) and hydrochemistry of groundwater in this area. Tracing of salinity source is relatively tricky, especially in aquifers with several non-point sources. Other processes, such as water-rock interactions, make it a more complex problem to identify the primary source of salinity [9].

2. **Methodology**

The research area is an area of the coast, the southern side directly adjacent to the strait. The research area is located in the eastern region of Sumenep City, Sumenep Regency, as shown in Figure 1. The lithology of the research area is composed of alluvial deposits, sandstone, and limestone with show karst plains and tidal plains morphology. The research site has a large salt pond, as shown in Figure 2.

![Figure 1. Geological Map of the research area](image)

The research was conducted by field measurements and analysis of the chemical composition of water. First, field measurements were carried out on 50 dug wells, including pH, temperature, electrical conductivity (EC) using Hanna Instrument. Only 30 water samples were taken from the field based on the EC value, as shown in Figure 2. Five hundred milliliters of water samples were taken using...
polyethylene bottles and washed with hydrochloric acid and distilled water. Before its use, the bottle was washed with local water, filled until full, and kept in a cooler for laboratory analysis. The analysis of water samples to determine major elements including Na⁺, K⁺, Ca²⁺, Mg²⁺, Cl⁻ and HCO₃⁻ based on the Indonesia national standard (SNI).

Analysis of major ions was used to determine indications of seawater intrusion based on EC value, Cl⁻, sodium chloride ratio, base exchange indices (BEX), and analysis of comparisons of chloride (Cl⁻) and bicarbonate (HCO₃⁻) ions. The classification of EC value is shown in Table 1 and Cl⁻ in Table 2.

Table 1. Classification of saline water according to EC value [11]

Water class	EC (μS/cm)
Non-saline	<700
Slightly saline	700-2,000
Moderately saline	2,000-10,000
Highly saline	10,000-20,000
Very highly saline	20,000-45,000
Brine	>45,000

Table 2. Classification of saline water based on Cl⁻ value [12]

Water class	Cl value
Freshwater	<280
Slightly brackish	280-600
Medium brackish	600-2,800
Brackish	2,800-9,000
Strong brackish	9,000-18,000
Sea water	>18,000

The sodium chloride ratio is used as an indicator for seawater intrusion, with the following equation:

\[
\text{Ca Enrichment} = \frac{\text{Ca}}{\text{Mg}}
\]

A sodium chloride ratio value of less than 0.83 indicates seawater intrusion, where the effect of pollutants from anthropogenic sources will have a value of more than 1 [13].
Another indication of seawater intrusion in an aquifer is used base exchange indices (BEX), with the following equation:

$$BEX = Na + K + Mg - 1.0716 \ Cl$$

(2)

The freshening process was represented by the positive BEX value, which the negative BEX value represents the salinization process, and the BEX value 0 means no base exchange [14].

Analysis of the effect of seawater intrusion was carried out using a comparison of Cl\(^-\) with HCO\(_3\)\(^-\). The effect of seawater intrusion on groundwater is then classified based on Table 3.

Effect level of saltwater	Comparison of Cl\(^-\) with HCO\(_3\)\(^-\) [15]
No effect	≤ 0.50
Small effect	0.51 - 1.50
Medium effect	1.50 - 3.00
Quite large effect	3.01 - 6.50
Big effect	6.51 - 15.50
Huge effect	≥ 15.50

3. **Result and Discussion**

According to the groundwater level measurement from the 30 wells, a groundwater level map can be developed in the study area. The depth of groundwater level has a range from 1 to 30 meters from the ground surface. In this area, the groundwater flows from north to south (Figure 3). Table 4 shows the field measurements and analysis results of major ions. Field measurements show that the value of EC of groundwater range from 140 μS/cm to 2,440 μS/cm, the results of the analysis of the EC value can be seen in Figure 4.

![Figure 3. Groundwater flow patterns and directions](image-url)
Table 4. Field measurement and laboratory result of water analysis

Sample	EC (μS/cm)	Na⁺ (mg/L)	K⁺ (mg/L)	Ca²⁺ (mg/L)	Mg²⁺ (mg/L)	Cl⁻ (mg/L)	HCO₃⁻ (mg/L)
G 1	880	27.6	29.8	109.8	12.8	24.9	326
G 2	1070	47.1	2.71	118.5	18.3	58.6	368
G 3	2440	245.2	38	118.2	39.6	432.8	391
G 4	1200	89.2	24.4	105	20.7	97.5	432
G 5	720	20.7	3.03	103.4	7.89	23.6	280
G 6	450	4.25	3.22	79.6	2.36	4.46	372
G 7	1100	59.6	33.6	121.8	8.83	63.7	336
G 8	980	50.7	1.89	91.5	13.5	99.4	405
G 9	670	11.3	6.71	97.5	8.12	3.82	345
G 10	940	21.5	1.03	113.6	23.1	22.3	349
G 11	560	27.7	4.3	72.3	7.8	35.7	345
G 12	330	9.87	0.78	49.7	7.62	3.19	340
G 13	720	8.62	1.55	110.1	3.9	6.37	299
G 14	470	46	14.1	40.5	4.25	36.3	290
G 15	190	38.1	43.7	93.6	21.6	76.5	372
G 16	1080	34.7	8.06	86.9	13.7	57.4	368
G 17	1060	49.7	1.94	92.5	16.4	116	377
G 18	2100	264.4	5.66	114	32.8	247.3	322
G 19	1060	79.6	23.3	88.7	20.2	95.6	368
G 20	1210	104.7	25.6	107.6	22.3	148.5	313
G 21	1150	82.8	23.4	110.4	15.8	70.8	294
G 22	800	26.8	6.04	95.4	16.8	33.1	303
G 23	800	20.3	1.47	94.1	18.5	8.92	331
G 24	600	11.9	2.32	99.4	2.51	12.1	299
G 25	430	19.6	3.17	63.6	4.17	7.65	276
G 26	600	18	0.54	68	10.3	16.6	345
G 27	540	8.19	1.28	73.6	3.89	6.37	391
G 28	1040	26.3	6.22	115.4	28.7	38.2	336
G 29	310	3.92	4.45	69.8	4.63	6.37	349
G 30	960	52.7	29.4	92.4	14.1	70.1	278

Figure 4. Groundwater EC value distribution map
Based on measurements of 30 samples taken, the EC value shows three types of saltwater influence levels, non-saline, slightly saline, and moderately saline. Only two samples are classified as moderately saline water, G3 and G18, while the other twenty-eight samples belong to non-saline and slightly saline classification. The distribution classification of groundwater EC values can be seen in Table 5.

Sample	EC (μS/cm)	Water category	Sample	EC (μS/cm)	Water category
G1	880	Slightly saline	G16	1080	Slightly saline
G2	1070	Slightly saline	G17	1060	Slightly saline
G3	2440	Moderately saline	G18	2100	Moderately saline
G4	1200	Slightly saline	G19	1060	Slightly saline
G5	720	Slightly saline	G20	1210	Slightly saline
G6	450	Non-saline	G21	1150	Slightly saline
G7	1100	Slightly saline	G22	800	Slightly saline
G8	980	Slightly saline	G23	800	Slightly saline
G9	670	Non-saline	G24	600	Non-saline
G10	940	Slightly saline	G25	430	Non-saline
G11	560	Non-saline	G26	600	Non-saline
G12	330	Non-saline	G27	540	Non-saline
G13	720	Slightly saline	G28	1040	Slightly saline
G14	470	Non-saline	G29	310	Non-saline
G15	190	Non-saline	G30	960	Slightly saline

According to Cl- concentration, only one sample has a value more than the freshwater standard, G3 classified as slightly brackish water, shown in Table 6.

Sample	Cl- (mg/L)	Water category	Sample	Cl- (mg/L)	Water category
G1	24.9	Freshwater	G17	57.4	Freshwater
G2	58.6	Freshwater	G17	116	Freshwater
G3	432.8	Slightly brackish	G18	247.3	Freshwater
G4	97.5	Freshwater	G19	95.6	Freshwater
G5	23.6	Freshwater	G20	148.5	Freshwater
G6	4.46	Freshwater	G21	70.8	Freshwater
G7	63.7	Freshwater	G22	33.1	Freshwater
G8	99.4	Freshwater	G23	8.92	Freshwater
G9	3.82	Freshwater	G24	12.1	Freshwater
G10	22.3	Freshwater	G25	7.65	Freshwater
G11	35.7	Freshwater	G26	16.6	Freshwater
G12	3.19	Freshwater	G27	6.37	Freshwater
G13	6.37	Freshwater	G28	38.2	Freshwater
G14	36.3	Freshwater	G29	6.37	Freshwater
G15	76.5	Freshwater	G30	70.1	Freshwater

Meanwhile, from the calculation of the Sodium Chloride Ratio, all samples are still classified as freshwater, shown in table 7.
Table 7. Water classification of groundwater based on the Sodium Chloride Ratio value

Sample	Sodium Chloride Ratio	Water class	Sample	Sodium Chloride Ratio	Water class
G1	8.57	Freshwater	G16	6.34	Freshwater
G2	6.48	Freshwater	G17	5.64	Freshwater
G3	2.98	Freshwater	G18	3.48	Freshwater
G4	5.07	Freshwater	G19	4.39	Freshwater
G5	13.11	Freshwater	G20	4.83	Freshwater
G6	33.73	Freshwater	G21	6.99	Freshwater
G7	13.79	Freshwater	G22	5.68	Freshwater
G8	6.78	Freshwater	G23	5.09	Freshwater
G9	12.01	Freshwater	G24	39.60	Freshwater
G10	4.92	Freshwater	G25	15.25	Freshwater
G11	9.27	Freshwater	G26	6.60	Freshwater
G12	6.52	Freshwater	G27	18.92	Freshwater
G13	28.23	Freshwater	G28	4.02	Freshwater
G14	9.53	Freshwater	G29	15.08	Freshwater
G15	4.33	Freshwater	G30	6.55	Freshwater

However, there were some irregularities in the result of the BEX calculation. For example, it can be seen in Table 8, samples classified as experiencing salinization occurred in samples G3, G8, G16, G17, and G20.

Table 8. Water classification of groundwater BEX value

Sample	BEX	Water process	Sample	BEX	Water process
G1	43.52	Freshening	G16	-5.05	Salinization
G2	5.31	Freshening	G17	-56.27	Salinization
G3	-140.99	Salinization	G18	37.85	Freshening
G4	29.82	Freshening	G19	20.66	Freshening
G5	6.33	Freshening	G20	-6.53	Salinization
G6	5.05	Freshening	G21	46.13	Freshening
G7	33.77	Freshening	G22	14.17	Freshening
G8	-40.43	Salinization	G23	30.71	Freshening
G9	22.04	Freshening	G24	3.76	Freshening
G10	21.73	Freshening	G25	18.74	Freshening
G11	1.54	Freshening	G26	11.05	Freshening
G12	14.85	Freshening	G27	6.53	Freshening
G13	7.24	Freshening	G28	20.28	Freshening
G14	25.45	Freshening	G29	6.17	Freshening
G15	21.42	Freshening	G30	21.08	Freshening

Analysis of the seawater on groundwater is also shown by the value of the ratio of Cl\(^-\) and HCO\(_3^-\). Based on the calculation results in Table 9, only two samples show that they are classified as a small effect. G3 and G18 have a value greater than 0.5, other samples classified as no effect.

The EC value analysis and several groundwater hydrochemical indicators show that the indications of seawater intrusion are small and can only be seen at two sampling locations. Two water samples that have high salinity with a brackish taste are located close to the salt ponds. Therefore, a source of salinity in the wells mainly comes from the salt ponds, not from seawater intrusion.
Table 9. Classification of the effect of seawater intrusion on groundwater conditions

Sample	Cl/HCO₃	Level of effect	Sample	Cl/HCO₃	Level of effect
G1	0.08	No effect	G16	0.16	No effect
G2	0.16	No effect	G17	0.31	No effect
G3	1.11	Small effect	G18	0.77	Small effect
G4	0.23	No effect	G19	0.26	No effect
G5	0.08	No effect	G20	0.47	No effect
G6	0.01	No effect	G21	0.24	No effect
G7	0.19	No effect	G22	0.11	No effect
G8	0.25	No effect	G23	0.03	No effect
G9	0.01	No effect	G24	0.04	No effect
G10	0.06	No effect	G25	0.03	No effect
G11	0.10	No effect	G26	0.05	No effect
G12	0.01	No effect	G27	0.02	No effect
G13	0.02	No effect	G28	0.11	No effect
G14	0.13	No effect	G29	0.02	No effect
G15	0.21	No effect	G30	0.25	No effect

4. Conclusion
The EC, chloride, and seawater intrusion indicators of groundwater shows that there are only two samples of groundwater classified as moderately saline water. However, Cl and HCO₃ ratio show that those two samples will only have a small effect from seawater. Those samples could not meet the requirement as seawater intrusion categories. Therefore, it cannot be categorized as seawater intrusion. It can be concluded that the Gapura sub-district does not have seawater intrusion. Salt production and salt ponds activity is the primary source of high salinity in the groundwater in this area.

Acknowledgments
We acknowledge the support received from the Department of Geological Engineering, Gadjah Mada University, and the scholarship was provided by the Ministry of Public Works and Public Housing, Indonesia.

References
[1] Chahar R B 2005 Groundwater Hydrology (New Delhi: McGraw Hill Education)
[2] Wilopo W, Risanti, Susatio R, Putra DPE 2021 Seawater Intrusion Assessment and Prediction of Sea-freshwater interface in Parangtritis Coastal Aquifer, South of Yogyakarta Special Province, Indonesia Journal of Degraded and Mining Lands Management 8(3) pp 2709-2718
[3] Mohammed E, Abdennabi E, Mahjoub H, Albert C and Boubker E 2012 Messinian Salinity Crisis Impact on The Groundwater Quality in Kert Aquiver NE Morocco: Hydrochemical and statistical approaches International Journal of Water Resources and Environmental Engineering 4(11) pp 339-351
[4] Gopinath S, Krishnaraj S, Murugesan V, Saravanan K, Prakash R, Suma C S, and Senthilnathan D 2016 Hydrochemical characteristics and salinity of groundwater in parts of Nagapattinam district of Tamil Nadu and the Union Territory of Puducherry, India Springer-Verlag Berlin Heidelberg Publ. 33
[5] Kementerian Kelautan dan Perikanan 2021 Produksi Garam Tahun 2018 Retrieved 1 Mei 2021 from https://statistik.kkp.go.id/home.php?m=garam&i=107#panel-footer
[6] Badan Pusat Statistik Kabupaten Sumenep 2021 Kabupaten Sumenep Dalam Angka 2021 (Sumenep: Badan Pusat Statistik)
[7] Cahyadi A, Adji T N, Marfai M A, Noviandaru S and Agniy R Z 2017 Analisa Dampak Intrusi Air Laut terhadap Airtanah di Pulau Koral Pramuka, DKI Jakarta Majalah Geografi Indonesia 31(2)

[8] Gopinath S, Krishnaraj S, Murugesan V, Saravanan K, Prakash R, Suma C S, and Senthilnathan D 2016 Hydrochemical characteristics and salinity of groundwater in parts of Nagapattinam district of Tamil Nadu and the Union Territory of Puducherry, India Springer-Verlag Berlin Heidelberg Publ. 33

[9] Vengosh A, Kloppmann W, Marei A, Livshitz Y, Gutierrez A, Banna M, Guerrot C, Pankratov I, and Raanan H 2005 Sources of salinity and boron in the Gaza strip: Natural contaminant flow in the southern Mediterranean coastal aquifer the American Geophysical Union 41 W01013

[10] Situmorang R L, Agustianti D A, Suparman M 1992 Peta Geologi Lembar Waru - Sumenep, Jawa Timur (Bandung: Pusat Penelitian dan Pengembangan Geologi)

[11] Rhoades J D, Kandiah A and Mashali A 1992. The Use of Saline Waters for Crop Production (Roma: FAO)

[12] Saline Agricultural Worldwide 2021 Classification of Saline Water Retrieved 25 June 2021 from https://www.salineagricultureworldwide.com/classification-of-saline-water

[13] Bear J, Cheng A H D, Sorek S, Ouazar D and Herrera I 1999 Seawater Intrusion in Coastal Aquifers: Concepts, Methods and Practices, Springer Netherlands. Publ.627

[14] Klassen J, Allen D M, and Kirste D 2014 Chemical Indicators of Saltwater Intrusion for the Gulf Islands, British Columbia (British Columbia: Ministry of Forests, Land and Natural Operation and BC Ministry of Environment)

[15] Purnama, S 2010 Hidrologi Airtanah (Yogyakarta: Penerbit Kanisius)