Update on the Epidemiology and Antibiotic Resistance of Ocular Infections

Darlene Miller

Abstract:

PURPOSE: The purpose of this review is to provide an update on the epidemiology and current antibiotic-resistant threats in ophthalmology.

METHODS: Trends in frequency and antibiotic-nonsusceptible profiles during an 11 year-period (2005–2015) were evaluated and compared with the 5-year Antibiotic Resistance Monitoring in Ocular Microorganism (ARMOR) study.

RESULTS: Trends in the current review confirmed the continued high rates of fluoroquinolone nonsusceptibility circulating among ocular methicillin-susceptible Staphylococcus aureus, methicillin-susceptible Staphylococcus epidermidis, methicillin-resistant S. aureus, and methicillin-resistant S. epidermidis isolates as well as the detection of uncommon, but emerging resistance (<5%) for Streptococcus pneumoniae, Streptococcus viridans group, Haemophilus influenzae, and Pseudomonas aeruginosa. We documented significant differences in empirical fluoroquinolone and aminoglycoside coverage for the top three ocular pathogens (coagulase-negative staphylococci, S. aureus, and P. aeruginosa) in general and for corneal isolates between the Miami and the ARMOR studies. Collectively, the coverage for Miami was 74% versus 65.9% for ARMO (P < 0.0001, 5.3674–10.8042) for ciprofloxacin and 95.9% versus 84.2% for aminoglycosides (gentamicin/tobramycin) (P < 0.0001, 9.9925–13.3974). Monotherapy coverage for ciprofloxacin and levofloxacin for the most recent 5 years (2011–2015) was 76.6% and 77.1%, respectively. Combination therapy with a fluoroquinolone and vancomycin and/or vancomycin and an aminoglycoside provided coverage for 99% and 98% of the isolates, respectively.

CONCLUSION: The etiology of ocular pathogens is patient, source, and geography specific. The true incidence and/or prevalence are unknown. Fluoroquinolone monotherapy as standard therapy for common ocular infections needs to be reassessed. Ophthalmologists must become proactive and join the crusade to develop practical and prudent strategies for the administration of topical antibiotics.

Keywords:
Antibiogram, antibiotic resistance, diversity, nonsusceptibility

Introduction

Ocular infectious diseases (blepharitis, conjunctivitis, keratitis, and endophthalmitis) are responsible for a high degree of visual morbidity and blindness worldwide. Greater than 70% of all ocular infections are associated with Staphylococcus aureus, Staphylococcus epidermidis, Streptococcus pneumoniae, Moraxella species, Pseudomonas aeruginosa, Candida albicans, Aspergillus species, and Fusarium species. The frequency and pathology may fluctuate depending on age, gender, climate, healthcare access, and culturing frequency.

Despite the higher drug concentrations obtained in ocular tissues when using topical antibiotics, there are increasing reports of clinical failure and/or less than optimal outcomes with empirical treatment with each new fluoroquinolone generation.[1,2]
Similar to nonocular isolates, there is an increasing threat to patient safety and poorer outcomes in the management of antibiotic-resistant or nonsusceptible isolates.

The true prevalence of antibiotic resistance and associated clinical failure, however, is unknown. The current standard of care is to treat first and culture later (if ever). There is no national or international clearing house to monitor antimicrobial resistance among common and uncommon bacterial and fungal ocular pathogens.

Regional and local trends in pathogen frequency and antibiotic resistance vary by time, geographic region, and patient population sampled. The Center for Disease Control and Prevention lists monitoring and tracking antibiotic resistance as one of the four cornerstones to reduce and protect against emerging antibiotic threats.[3] Current surveillance and tracking programs for ocular pathogens need to be expanded and coordinated.

The purpose of this review is to provide an update on the epidemiology in ocular pathogen trends and current antibiotic-resistant threats in ophthalmology.

Methods

The Miami Microbiology database was searched and data on trends in organism frequency, diversity, and antibiotic profiles extracted and reviewed for isolates collected between January 2005 and December 2015 with emphasis on the past 5 years (2011–2015). The study was performed with the approval of the University of Miami Institutional Review Board.

Isolates were identified using the Vitek 2 Compact System (BioMerieux, Durham, NC, USA) and a combination of rapid kits and standard microbiology protocols. Susceptibility data were compiled using the Vitek 2 computerized susceptibility database and E-test (BioMerieux, Durham, NC, USA).

Organism frequency and susceptibility profiles from our institute were compared with the Antibiotic Resistance Monitoring in Ocular Microorganism (ARMOR) 5-year study and/or comparable and appropriate national and international studies involving results of isolates collected and reported in literature between 2011 and 2015.

Statistics

Chi-square was used to evaluate differences in proportions. Significance, $P < 0.05$, 95 CI was determined using online software Med Calc, Belgium https://www.medcalc.org/and/or Microsoft 2013 Excel software.

Results

A total of 10,589 isolates were recovered and reviewed over the 11-year study period. There was a significant ($P < 0.0001$, 95 CI [1.8000–4.8083]) decline in the average number of organisms recovered from period I (2005–2010 $n = 5940$) average 990 per year versus period II (2011–2015, $n = 4649$) average 930.

Trends in organism group frequency over time are highlighted in Figure 1. Bacterial species were the predominant organism group for all time periods and ranged from 82% to 87.1%. There was a significant difference in bacterial recovery rates for period I (85.3%, $n = 5066$, 2005–2010) versus period II (87.1%, $n = 4049$, 2011–2015), ($P < 0.0136$, 95 CI 0.3583 – 3.2305).

A significant increase and crossover of Gram-positive bacteria versus Gram-negative bacteria occurred during the most recent 5 years. Compared to period I ($n = 2227$, 37.5%), the proportion of Gram-positive isolates increased by 8.4% ($P = 0.0001$).

This shift was paralleled by a decrease in Gram-negatives by 7.4% (44.6%, $n = 2649$ vs. 37.5%, $n = 1743$) ($P < 0.001; 95 CI 31.3961–34.000$). There was no significant change in the recovery of Mycobacteria species (3.2%, $n = 190$ vs. 3.7, $n = 172$) between the two periods ($P = 0.1600$, 95 CI – 0.2104–1.2263).

Among the nonbacterial isolates, significant declines in recovery of molds (9%, $n = 535$ vs. 7.6%, $n = 353$) ($P = 0.0099$, 95 CI0.3268–2.4622) and Acanthamoeba species (2.2%, $n = 137$ vs 1%, $n = 46$) ($P < 0.0001$, 95 CI 0.7135–1.6850) were documented between period I and period II. Recovery of yeast isolates increased by 1.3% (3.5%, $n = 208$ vs. 4.8%, $n = 223$; $P = 0.0008$).

Table 1 outlines the trends in recovery rates between the two periods for the most common ocular bacteria pathogens. There were marginal increases in three of the four Gram-positive pathogens and ranged from 1.7% for the Streptococcus viridans group to 4.6% for S. aureus. The net increase for Gram-positive isolates was 8.8%. Significance was only observed for S. aureus. Significant decreases for two of the three Gram-negatives on the list were observed and ranged from 1.3% for Haemophilus influenzae to 2.2% for P. aeruginosa. The net decline for Gram-negative pathogens was 2.8%.

Abundance and diversity of the top five isolates differed by ocular sources and/or patient population sampled [Table 2]. Gram-positive isolates remain the most frequent isolates overall, but frequency was dependent on ocular source or patient population sampled.
Recovery rates by source for Gram-positive pathogens in descending order were endophthalmitis (90.9%, n = 180), conjunctivitis (62.8%, n = 402), and keratitis (26.4%, n = 395). Recovery rates for Gram-negatives isolates in descending order included keratitis (42.7%), conjunctivitis (37.3%), and endophthalmitis (11.0%). The ratio of Gram-positive to Gram-negative among the top ten most common ocular pathogens was 1.9:1. *S. aureus* remains the most common bacterial pathogen overall and ranged from 7.6% for endophthalmitis to 35.5% for conjunctivitis. *P. aeruginosa* was the most frequent pathogen recovered from patients’ samples submitted to rule out keratitis. Coagulase-negative staphylococci (CoNS; n = 71, 35.8%) remain the top patients recovered from patients with endophthalmitis.

Table 3 compares trends in conjunctiva isolates from three regions; Miami, FL, USA (2011–2015, n = 786), Pittsburg, PA, USA (1993–2011, n = 1320),[iv] and Lagos, Nigeria (2010, n = 155).[v] Spectrum and diversity were distinct for all other locations. Greater than two-thirds of the recovered isolates were Gram-positive for samples evaluated from populations in Pittsburg and Lagos. *S. aureus* was the most frequent pathogens in all three locations. Among the remaining isolates, only *Morganella* species was common to all three groups. Gram-positive
Table 1: Trends in pathogen recovery and frequency

Isolates	2005-2010 (n=5940), n (%)	2011-2015 (n=4649), n (%)	P	Trend	Change (%)
S. aureus	1040 (17.5)	1027 (22.1)	0.0087	↑	4.6
P. aeruginosa	944 (15.9)	639 (13.7)	0.2294	↓	2.2
S. pneumoniae	226 (3.8)	113 (2.4)	0.4994	↓	1.4
H. influenzae	213 (3.6)	108 (2.3)	0.5301	↓	1.3
S. marcescens	187 (3.1)	177 (3.8)	0.7146	↑	0.7
S. viridans group	184 (3.1)	222 (4.8)	0.3865	↑	1.7
S. epidermidis	167 (2.8)	312 (6.7)	0.0704	↑	3.9

Note: Staphylococcus aureus, P. aeruginosa, Pseudomonas aeruginosa, S. pneumoniae, Streptococcus pneumoniae, H. influenzae, Haemophilus influenzae, S. marcescens, Serratia marcescens, S. viridans, Streptococcus viridans, S. epidermidis, Staphylococcus epidermidis, S. aureus: Staphylococcus aureus, P. aeruginosa: Pseudomonas aeruginosa, S. viridans: Streptococcus viridans, C. trachomatis: Chlamydia trachomatis, S. pneumoniae: Streptococcus pneumoniae, E. coli: Escherichia coli, CoNS: Coagulase-negative staphylococci

Table 2: Diversity and distribution of ocular pathogens by source

Rank	Top isolates 2011-2015 (n=876)	Top isolates	Keratitis 2011-2015 (n=1498)	Endophthalmitis 2011-2015 (n=198)	All ocular 2011-2015 (n=4649)
1	S. aureus (35.5)	S. aureus	S. aureus	S. aureus	
2	H. influenzae (7.4)	H. influenzae	H. influenzae	H. influenzae	
3	P. aeruginosa (6.3)	S. aureus	S. aureus	S. aureus	
4	Adenovirus (4.9)	Fusarium	Candida species	S. epidermidis	
5	S. viridans group (4.5)	S. viridans	CoNS, other	S. marcescens	
6	C. trachomatis (3.8)	S. epidermidis	CoNS, other	S. viridans group	
7	S. pneumoniae (3.7)	Herpes simplex virus	S. pneumoniae		
8	Candida species (2.5)	S. pneumoniae	H. influenzae	S. pneumoniae	
9	Corynebacterium species (2.3)	C. albicans	C. albicans	C. albicans	
10	Serratia species (2.3)	Acanthamoeba spp.	S. aureus	S. aureus	

Table 3: Comparison of conjunctivitis isolates by geography

Conjunctivitis 2011-2015 (n=782)-Miami	Conjunctivitis 1993-2011 (n=1320)-Pittsburgh	Conjunctivitis 2010 (n=155)-Lago, Nigeria
Top isolates	Top isolates	Top isolates
S. aureus	S. aureus	S. aureus
Haemophilus species	S. pneumoniae	CoNS
P. aeruginosa	Haemophilus species	Corynebacterium species
S. viridans group	CoNS	Moraxella species
C. trachomatis	Moraxella species	P. aeruginosa
S. pneumoniae	Acinetobacter species	E. coli
Corynebacterium species	Gram-positive, other	Gram-positive, other
Serratia species	Gram-negative, other	Gram-negative, other
Proteus species		
Moraxella species		
Gram-positive isolates, other		
Gram-negative isolates, other		
Percentage of all bacterial conjunctival isolates	782 (101.3)	1320 (100.0)
Percentage of all bacterial conjunctival isolates	782 (101.3)	1320 (100.0)
Percentage of all bacterial conjunctival isolates	782 (101.3)	1320 (100.0)

Note: S. aureus: Staphylococcus aureus, P. aeruginosa: Pseudomonas aeruginosa, S. viridans: Streptococcus viridans, C. trachomatis: Chlamydia trachomatis, S. pneumoniae: Streptococcus pneumonia, E. coli: Escherichia coli, CoNS: Coagulase-negative staphylococci
isolates were the dominant conjunctival pathogens, and recovery rates ranged from 57.1% to 72%.

Table 4 compares keratitis isolates from Bascom Palmer Eye Institute (BPEI, Miami, USA, 2011–2015, n = 1135) with isolates from King Khaled Eye Specialist Hospital (KKESH, Riyadh, SA, USA, 2011–2014, n = 2037).[6] and Hospital Universiti Sain Maylasia (HUSM, Malaysia, Malaysia, n = 1211).[7] Profiles were distinct for each location. Greater than 85% of isolates recovered from keratitis at KKESH were Gram-positive versus 42.6% and 40.5% for HUSM and Miami, respectively. S. aureus isolates ranged from 7.8% (HUSM) to 20.6% for Miami. Methicillin resistance was significantly higher (16.8%, \(P = 0.0001, 95 \text{ CI } 8.3935–24.9972 \)) among S. aureus rates from Miami versus KKESH (36.2%, \(n = 227 \) vs. 19.4%, \(n = 237 \)). The reported methicillin-resistant S. aureus (MRSA) rate for HUSM was the lowest at 7% (\(n = 94 \)).

The greatest contrast was observed for recovery rates for CoNS. These were the most frequent isolates recovered from keratitis at KKESH with a rate of 47.2%. The recovery rate for coagulase-negative isolates in Miami was 9-fold less at 5.2%. No CoNS were detected among the isolates from Malaysia.

Gram-negative bacteria were the predominant organism group recovered in two of the three studies and ranged from 12.5% (KKESH) to 57.4% for HUSM. Recovery rates for Miami were 2.4-fold greater than those for KKESH. Malaysia had the highest Gram-negative rates, 1.1-fold higher than the BPEI and 2.7-fold greater than the rate for KKESH. P. aeruginosa was the top pathogen for only one of these (Miami, 35.7%) but was the second most frequent pathogen in keratitis isolates from Malaysia at 16.0%. P. aeruginosa was recovered from the cornea at least 3.3 times more frequent than KKESH and 2.1 times more frequent than the recovery rate for HUSM.

Eighty-five percent of microorganisms recovered from vitreous samples during this period were Gram-positive, with S. epidermidis being the most frequent at 29.7%. Gram-negative bacteria were not among the top five pathogens for patients with endophthalmitis for this period.

Antibiogram

Table 5 provides a cumulative Antibiogram Report for Ocular Isolates collected for the most recent 5 years (2011–2015). It follows the recommendations of the Clinical Laboratory Standard Institute (M3-A2, CLSI document)[8] for preparation.[9,10]

Fluoroquinolones

Overall, empirical therapy with a fluoroquinolones (ciprofloxacin, 76.6%, \(n = 2383 \)) provided < 80% coverage for the top three (S. aureus, CoNS, and P. aeruginosa) pathogens in our study. Individual susceptibility was species specific.

Gram-negatives

Less than 10% resistance was reported for the most common Gram-negative isolates for ciprofloxacin and/or levofloxacin during the most recent 5-year test period. Percent susceptible
Table 5: Cumulative antibiogram

Organism	Number of isolates	Cefazolin	Cefaclor	Cefadroxil	Cefditoren	Erythromycin	Ciprofloxacin	Levofloxacin	Moxifloxacin	Gentamicin	Tobramycin	Amikacin	Vancocin	Penicillin	Ampicillin	Trimethoprim-sulfamethoxazole
Gram-negative organisms																
Enterobacter species	49	0	98	100	100	98	98	100				70				
Haemophilus species	124	87	99	100												
Haemophilus influenzae	103	88	100	99								70				
Klebsiella species	70	98	97	100	100	100	96	96	100							
Proteus species	62	93	98	90	89	95	95	95	98							
Pseudomonas aeruginosa	597	0	98	98	99	96	100	100								
Serratia species	174	0	99	100	100	100	99	95	100							
Serratia marcescens	162	0	99	100	100	100	99	92	100							
Stenotrophomonas maltophilia	75													96		
Gram-positive organisms																
CoNS - all	295	56	56	39	58	58	88									
Staphylococcus epidermidis	287	54	54	37	51	54	54	99								
Methicillin-susceptible	154	100	100	50	73	73	96									
Methicillin-resistant (MRSE)	133	0	0	23	33	33	33	77								
Staphylococcus aureus, all	967	58	58	37	58	59	59	95								
Methicillin-susceptible	560	100	100	59	86	88	89	99								
Methicillin-resistant (MRSA)	407	0	0	8	19	19	20	91								
Enterococcus faecalis	42	20	75											100	97	
Streptococcus pneumoniae	97	59	100											100	53	
Streptococcus viridans group	266	39	91											100	81	

Percentage susceptible interpretations based on Clinical Laboratory Standards Institute breakpoints.2,3 Data in this document use PD/PK data for individual bug/drug combinations in serum and tissue to generate breakpoints. Duplicates were excluded, only isolates and/or species numbering 30 or more were included in the antibiogram. Statistical validity or estimates of percent susceptibility for organisms for which there are fewer than 30 isolates is limited and could lead to inappropriate selection of empirical therapy.

MRSA=42% Methicillin resistance was determined using the cefoxitin screen (Vitek 2) for the staphylococci. MRSA and CoNS are also resistant to penicillins, MRSE=44% cephalosporins, and carbapenems.

PNSSP (nonmeningitis breakpoints)=47%

Key: Empty Empty white space-inappropriate bug/drug testing combination and/or limited clinical data for this combination

Data White space with numbers-not primary choice for this organism. Clinical data are limited or may indicated increasing resistance (CLSI-MS 100-S21)

MRSE: Methicillin-resistant Staphylococcus epidermidis, PNSSP: Penicillin-nonsusceptible Streptococcus pneumoniae, CoNS: Coagulase-negative staphylococci, MRSA: Methicillin-resistant Staphylococcus aureus, BPEI: Bascom Palmer Eye Institute

ranged from 90% for Proteus species to 100% for common Enterobacteriaceae species (Serratia marcescens, Klebsiella oxytoca, Enterobacter cloacae, and H. influenzae). No significant differences were observed for in vitro susceptibilities to ciprofloxacin 98.5%, n = 940 versus 98%, n = 597, P = 0.4593 (95CI − 0.8492–1.6833) and/or levofloxacin 98.5%, n = 939 versus 99%, n = 597, P = 0.4002 (95CI − 0.8492–1.6838) from P. aeruginosa isolates recovered in 2005–2010 compared to 2011–2015.

Gram-positives

Overall, in vitro susceptibilities for the fluoroquinolones were <90% for both methicillin-susceptible and methicillin-resistant S. aureus and S. epidermidis. No significant difference in MSSA (n = 560) versus MRSA (n = 407) susceptibilities for moxifloxacin versus ciprofloxacin was documented.

Methicillin resistance was >40% for both S. aureus and S. epidermidis and ranged from 36.2% for keratitis (n = 224) to 43.8% for dacryocystitis (n = 73). Multidrug resistance was more likely to occur in MRSA and MRSE isolates [Table 6]. The highest level of nonsusceptibility to the fluoroquinolones among methicillin-susceptible isolates was observed for S. epidermidis (27%).

Levofloxacin remained above 90% susceptible for both S. pneumoniae (100%) and S. viridans (91%). While the
cumulative result for the *S. viridans* group was above 90%, values ranged from 88.8% in period I to 92% for period II.

Aminoglycosides

Non-susceptibility among the aminoglycosides (amikacin, gentamicin, and tobramycin) was <20% for all Gram-negative isolates tested during 2011–2015. Gentamicin susceptibility was <90% for all staphylococci excepted for MRSE which declined to < 80%. No significant differences in gentamicin susceptibility rates for *S. aureus* (94.5%, *n* = 1038 vs. 95%, *n* = 967) or *S. epidermidis* (82.5%, *n* = 165 vs. 86%, *n* = 287) were observed between periods. Tobramycin is not recommended for *in vitro* testing of staphylococci. Neither gentamicin nor tobramycin is recommended for *in vitro* testing of *Haemophilus* species and/or streptococcal species.

Susceptibilities for amikacin, gentamicin, and tobramycin were ≥90% for all Gram-negatives isolates tested. There was a significant difference in the susceptibility for gentamicin and tobramycin for both *S. marcescens* and *P. aeruginosa*. Higher susceptibility rates for gentamicin (99%) versus tobramycin (92%), *P* = 0.0024, 95 CI 2.2424–12.3802 to was documented for *S. marcescens*, while the opposite trend was observed for *P. aeruginosa* for both periods (I - 97% vs. 99%, *P* = 0.0019, 95 CI 0.6847—3.4035; II - 96% vs. 100%, *P* < 0.0001, 95 CI = 2.4588 to 5.9009).

Table 6: Coresistance and trends in methicillin susceptible and methicillin resistant staphylococci

(a) Trends for *Staphylococcus aureus*, MSSA=methicillin susceptible *S. aureus*, MRSA=methicillin resistant *S. aureus*

S. aureus	Drugs	All ocular 2011-2015	MSSA (*n*=560)	MRSA (*n*=407)
	n-tested	% susceptible	n-tested	% susceptible
Bacitracin	68	87	42	40
Ciprofloxacin	560	86	407	19
Clindamycin	560	74	407	52
Daptomycin	546	100	396	100
Doxycycline	263	98	168	94
Erythromycin	560	59	407	8
Gentamicin	560	99	407	91
Levofloxacin	560	88	407	19
Linezolid	552	100	400	100
Moxifloxacin	552	89	405	20
Tetracycline	560	88	407	90
Tigecycline	550	100	402	100
Trimethoprim-sulfamethoxazole	560	97	406	92
Vancomycin	560	99	406	98
Percent MRSA				42.10

(b) Trends for *Staphylococcus epidermidis*, MSSE=methicillin susceptible *S. epidermidis*, MRSE=methicillin resistant *S. epidermidis*

S. epidermidis	Drug	All ocular 2011-2015	MSSE (*n*=154)	MRSE (*n*=133)
	n-tested	% susceptible	n-tested	% susceptible
Ciprofloxacin	154	73	133	33
Clindamycin	154	71	133	59
Daptomycin	142	100	131	100
Doxycycline	118	91	75	81
Erythromycin	154	50	133	23
Gentamicin	154	96	133	77
Levofloxacin	154	73	133	33
Linezolid	153	100	133	100
Moxifloxacin	153	73	133	33
Tetracycline	154	83	133	73
Tigecycline	149	100	132	100
Trimethoprim-Sulfamethoxazole	154	84	133	55
Vancomycin	154	99	132	99
Percent MRSE				46.30
Cephalosporins
The first-generation cephalosporins (cefazolin and/or cefaclor) susceptibility was <20% for the staphylococci, Enterobacter species, Serratia species, and Haemophilus species. Greater than 90% susceptibility was observed for Klebsiella species and Proteus species. P. aeruginosa and Stenotrophomonas maltophilia are intrinsically resistant to the first generation cephalosporins.

Ceftazidime nonsusceptibility ranged from 1% to 3% with the highest rate of extended spectrum beta-lactamases being documented for Klebsiella species. Susceptibility for the staphylococci was < 60%.

Ampicillin/penicillins
There was a high rate of resistance to penicillin among the streptococci. Penicillin nonsusceptible S. pneumoniae rate using nonmeningitis interpretation was 47%. Penicillin susceptibility for the S. viridans group was 81%. Ampicillin susceptibility for the Haemophilus species was <80% for isolates recovered during 2011–2015.

Carbapenem (imipenem/meropenem) nonsusceptibility among the Enterobacteriaceae was rare. Rates for P. aeruginosa during the last 5 years was 3% (n = 461/473).

Fluoroquinolone monotherapy provided less than 80% coverage (levofloxacin - 77.1%) for gram positive isolates. Combination therapy with a fluoroquinolone and vancomycin coverage was 99.1% (vancomycin and levofloxacin) or (98.9%) vancomycin and ciprofloxacin. Vancomycin plus gentamicin coverage was 98.3%.

Our corneal isolates differed from those recovered from KKESH. No moxifloxacin resistance was documented for KKESH S. aureus isolates (n = 237, 100%). The rate for Miami corneal S. aureus isolates was 55% (n = 225). This 45% difference was significant (P < 0.0001, 95 CI 38.2037–51.7519).

Antibiotic Resistance Monitoring in Ocular Microorganism Study
Table 7 compares fluoroquinolones, gentamicin, vancomycin, and/or imipenem general susceptibility results for S. aureus, CoNS, and P. aeruginosa collected from 2009 to 2013 versus the same isolates from the cumulative ARMOR study.

In general, there were significant differences in empirical fluoroquinolone and aminoglycoside coverage for the top three ocular pathogens (CoNS, S. aureus, and P. aeruginosa) between the Miami and the ARMOR isolates. Collectively, the coverage for Miami was 74% versus 65.9% for ARMOR (P < 0.0001, 5.3674–10.8042) for ciprofloxacin and 95.9% versus 84.2% for aminoglycosides (gentamicin/tobramycin), (P < 0.0001, 9.9925–13.3974).

Individually, different, but not significant differences in fluoroquinolones susceptibilities for MSSA and/or MRSA isolates were documented between the two studies. Higher susceptibility rates were observed among Miami MSSA isolates, range (87%–89%) compared to those from the ARMOR study (85.8%–88%). MRSA rates were slightly higher, but not significantly for Miami versus ARMOR (43.6% vs. 42.2%) among isolates collected during 2009–2013. No difference in rates (42.2% vs. 42.1%) was observed for 2011–2015.

Fluoroquinolone susceptibilities for MRSA were <30% for both studies.

There were no significant differences in fluoroquinolones susceptibilities for Miami isolates collected during 2009–2013 versus those collected during 2011–2015.

Susceptibilities for the fluoroquinolones for isolates recovered from the conjunctiva (n = 234) during 2009–2013 were distinct, but not significantly different than MSSA or MRSA isolates from the general ARMOR study. Corneal isolates were both distinct and significantly lower for all three fluoroquinolones. A >4-fold difference was observed for ciprofloxacin, 4.4×, 17.7%, P < 0.0001 (95 CI 10.1711–22.9450), levofloxacin, 4.6×, 18.9%, P < 0.0001 (95 CI 11.1059–24.5509) and moxifloxacin, 4.6×, 20.3%, P < 0.0001 (95 CI 12.3865–25.8800).

A significant difference was documented for moxifloxacin when comparing S. epidermidis isolates from Miami (n = 150, 33.3%) versus CoNS ARMOR isolates (n = 992 67.7%) (P < 0.0001, 95 CI 25.7122–42.4195). Nonsusceptible trends for the aminoglycosides were slightly higher, but not significant for Miami isolates (17.3% vs. 15%).

No significant differences were observed for CoNS in the Miami versus ARMOR study during (2011–2015) with the exception of lower susceptibility profile for moxifloxacin (58% vs. 65%, P = 0.0318, 95 CI 0.3425–13.2072). Methicillin resistance was 44% (n = 130/295) for BPEI isolates versus 49.7% (n = 493/992) for the ARMOR study. This difference was not significant (P = 0.0856).

Vancomycin susceptibilities were 100% for all Gram-positive isolates for both time periods.
P < 0.0001 (95 CI 2.3846–8.4684 in 2009–2013 and highest for levofloxacin during 2011–2015, [99% vs. 93.1%], 5.9%,

No significant differences were observed for fluoroquinolones susceptibility among conjunctival P. aeruginosa isolates versus isolates in the ARMOR study. Significant differences and higher susceptibilities were observed for Miami P. aeruginosa corneal isolates for both ciprofloxacin (6.4%, P < 0.0001, 95 CI 3.1577–10.2405) and levofloxacin (7.4%, P < 0.00001, 95 CI 4.3335–11.1585). Eighty-one percent of the indefinable (n = 216) P. aeruginosa isolates from the ARMOR study were from the cornea.[11] BPEI data for 2011-2015 mirrored these results. Aminoglycoside susceptibility (gentamicin-Miami, tobramycin-ARMOR) profiles were >90% for all MSSA and MRSA isolates from Miami with significantly higher rates for both groups compared to ARMOR. MSSA, (98.5% vs. 95.6%, P = 0.0055, 95 CI 0.6995–4.5573) and MRSA (90.9% vs. 55.8%),

There was a 32.1% difference in aminoglycoside susceptibility for isolates from the conjunctiva (87.8% vs. 55.8%, P < 0.0001, 95 CI 23.0648–39.7981. Tobramycin susceptibilities were distinct and significantly higher for isolates from Miami versus those in the ARMOR study. The difference was 2.9% (P < 0.0001, 95 CI 1.2586–5.1976) in 2009–2013 and up to 7.7% in 2011–2015 (P < 0.001, 95 CI 5.1771–10.8127).
No significant differences were documented for *P. aeruginosa* isolates to ciprofloxacin among isolates corneal from KKESH \((n = 123, 95\%)\) versus isolates from the ARMOR study \((n = 389, 92.3\%)\).

Discussion

Both culture-independent and culture-dependent methods identify a diversity of microorganisms at the ocular surface in health and disease.\(^{[12,15]}\) The top pathogens remain *S. aureus*, *S. pneumoniae*, CoNS, *H. influenzae*, *P. aeruginosa*, *Chlamydia trachomatis*, *C. albicans*, *Fusarium* species, and *Aspergillus* species. In general, now including Miami, Gram-positive bacteria remain the most common microbial agents recovered from ocular infections worldwide.\(^{[1,16]}\)

A 2011 report by Iwalokun *et al.* identified *S. aureus* as the most common bacteria pathogen among 155 isolates recovered from 83 conjunctiva samples collected during an 8-month period (February–September 2010). Gram-positive isolates constituted 72% of the isolates. *P. aeruginosa* was the most frequent Gram-negative pathogen \((n = 15, 9.7\%)\).\(^{[9]}\)

Worldwide, the etiology and frequency in microbial keratitis is greatly influenced by climate and patient population. Bacterial pathogens are the most common in industrialized countries, while fungi and parasites are more frequent in developing nations.\(^{[17-19]}\)

Staphylococci species and *S. pneumoniae* are among the leading bacteria cause of microbial keratitis. Gram-negative isolates, predominately *P. aeruginosa*, may be increasing and have been reported more frequently from Miami, East Kent, and Saudi Arabia.\(^{[20,21]}\)

Reports from the Middle East and Africa are scarce. A recent report by Burton *et al.* identified microbial keratitis as a significant burden of disease and cause of blindness in East Africa.\(^{[19]}\) Prevalence estimates range from 113/100,000 to 789/100,000. Filamentous fungi were the most common pathogens, compounded by underlying HIV diseases. Gebremariam in a small series of 24 isolates documented *P. aeruginosa* (41.7%) as the most common pathogen.

Al-Dhaheri *et al.* documented staphylococci (91.4%) as the leading cause in a recent series documenting trends in keratitis from KKESH from 2011 to 2014. *P. aeruginosa* was recovered in <10% of isolates. The diversity and spectrum of pathogens might reflect the dry climate and the small number of contact lens wearers.\(^{[6]}\)

Data from Malaysia documented *S. aureus* as the predominant pathogen;\(^{[17]}\) however, recovery rate for Gram-negatives was 57.4% versus 46.6% for Gram-positive isolates. *P. aeruginosa* was the top Gram-negative isolate at 16.0%. No CoNS were recovered in this series.\(^{[7]}\)

Kowalski (2013) identified *S. aureus* and *S. pneumoniae* as the top pathogens recovered from samples submitted to the Campbell laboratory over a 19-year period.\(^{[4]}\) Gram-negative isolates were recovered in less than a third of the isolates (30%). This was significantly different than current and historical trends from Miami and might demonstrate the influence of geography and climate on pathogen recovery.

Gram-negative isolates remain the top bacteria pathogens (42.7% vs. 30.7%) in the current Miami series. There was a significant decline, however, in the number and percent of *P. aeruginosa* recovered between earlier years (2005–2010) compared with frequency and numbers for the later 5 years (2011–2015).

Endophthalmitis

Gram-positive isolates, predominantly CoNS, remain the most common isolates recovered from endophthalmitis.\(^{[22-24]}\) The spectrum and diversity is expanding and varies dependent on endophthalmitis category.

Susceptibility tests

Comparing susceptibility results across cities and nations are difficult. Data are hindered by testing standards, interpretation, methodology, and expertise. We limited our *in vitro* comparison to the ARMOR cumulative study (2009–2013) and data from reports with similar methodology (MIC breakpoints).

Fluoroquinolones

The fluoroquinolones remain the most frequently dispensed class of topical antibiotics in the treatment ocular infections.\(^{[1,2,25]}\) Susceptibility is driven by availability and frequency of use. In areas such as the United States, Brasil, and India, where use is high, emerging and nonsusceptible rates are as high as 70% for the staphylococi (both methicillin sensitive and methicillin resistant) and ranged from 1% to 29% for *P. aeruginosa* and the Enterobacteriaceae.\(^{[26-28]}\)

In regions where use is limited and/or minimal, Australia, Africa, and the Middle East, rates are as low as 1%.\(^{[6,19,29]}\)

Cross resistance among the fluoroquinolones are high, but reported lower minimal inhibitory concentrations are observed for besifloxacin.\(^{[26,30,31]}\) In a study by Miller *et al.*, besifloxacin MICs was 2-4 times lower than ciprofloxacin, levofloxacin, and moxifloxacin for fluoroquinolone susceptible and or resistant staphylococcal ocular isolates.\(^{[32]}\) Similar results are observed for both *S. aureus* and CoNS in the cumulative ARMOR surveillance data and the original ARMOR study.\(^{[31]}\)
Differences in the current Miami study and the ARMOR 5-year report was “bug and drug” specific. This study confirmed the continued rise in nonsusceptibility among the staphylococci (both methicillin susceptible and resistant) among the fluoroquinolones and the associated multidrug co-resistance. Emerging fluoroquinolone resistance among the alpha hemolytic streptococci and ceftazidime resistance among P. aeruginosa is worrisome.

In a recent surveillance study involving seven European countries (France, Germany, Italy, Poland, Slovak Republic, Spain, and the UK, January–August 2011), susceptibility results for S. aureus ocular isolates (n = 252) ranged from 0% to 31.1% for moxifloxacin and 5.3%–31.1% for ciprofloxacin. The average rate was 14.7% for ciprofloxacin and 12.7% for moxifloxacin.

Among the countries who submitted 30 or more isolates, the lowest fluoroquinolone resistant or nonsusceptible rates were documented for France (n = 53, 7.5% for ciprofloxacin and moxifloxacin) and the UK (n = 46, 8.7% for ciprofloxacin and 6.5% for moxifloxacin). Highest rates were documented in isolates collected from Germany (n = 45), with a 31.1% for both drugs [33]. Methicillin resistance was only 9.1% for this group with the highest rates reported for Germany at 20.0%. These rates were significantly lower than those reported in the current study and/or those highlighted in the ARMOR study.

Methicillin resistance among coagulase-negative isolates (n = 313) averaged 55%. The highest rates were observed in Spain at 75% (n = 32) and lowest in the UK at 48% (n = 50). Fluoroquinolone resistance ranged from 6.0% to 48.5%.

A total of 70, S. pneumoniae, 64 H. influenzae, and 39 P. aeruginosa isolates were submitted during the 20 months test period. All isolates were 100% susceptible to moxifloxacin and/or ciprofloxacin, except P. aeruginosa. Nonsusceptibility to ciprofloxacin among P. aeruginosa in the European study was 10.8%. This rate was 5-fold higher than the 2% rate reported in this study and 3-fold higher than for isolates in the ARMOR study.

Results for S. pneumoniae and H. influenzae were in line with the results for the current and ARMOR studies. Comparative result should be viewed, however, with caution due to the low numbers in the European study.

Aminoglycosides

Worldwide, susceptibility to the aminoglycosides is also impacted by use, availability, and disease profile. In areas where fluoroquinolone monotherapy has supplanted traditional use of the aminoglycosides with a cefazolin for dual therapy, in vitro susceptibilities rates are higher [34].

Sanfilippo et al. documented differences in nonsusceptibility for gentamicin and tobramycin among S. aureus, CoNS, and P. aeruginosa in a recent surveillance study from Europe [33]. Nonsusceptibility rates for gentamicin among the staphylococci ranged from 2.0% to 28.4%, with highest rates for coagulase-negative isolates. In contrast, the rates for tobramycin against the same isolates ranged from 9.5% to 39.9%, again with rates highest among the coagulase-negative strains. Rate for P. aeruginosa was 2.7% for both gentamicin and tobramycin.

Cephalosporins

Cephalosporins remain treatment options for treating bacterial conjunctivitis, keratitis, and endophthalmitis. In areas with high MRSA, MRSE, and MRCoNS rates, their use are limited. Nonsusceptibility among the cephalosporins (cefazolin, cefuroxime, and ceftazidime) is correlated with methicillin resistance. Isolates resistant to methicillin confer resistance to all beta lactams [25,39].

The second-generation cephalosporins have varying activity against members of the Enterobacteriaceae and the streptococci and are ineffective against P. aeruginosa [25].

Ceftazidime susceptibility among Gram-negatives retains >95% for Gram-negative Enterobacteriaceae and P. aeruginosa in this study.

Vancomycin

Vancomycin susceptibility remains >95% for the most common Gram-positive ocular isolates with ranges from 99% to 100%. No true vancomycin-resistant S. aureus and/or S. epidermidis have been documented among ocular isolates in any of the surveillance studies in the United States. Reports of VRSA using disk diffusion are inappropriate and unreliable. Disk diffusion is not an acceptable method for detection of vancomycin intermediate and or resistant isolates.

Vancomycin-resistant enterococci have been recovered from cases of posttraumatic endophthalmitis. The majority of these have been Enterococcus faecalis and/or Enterococcus faecium associated with previous ocular surgery and immunosuppression. Hillier et al. describes a case of Enterococcus gallinarum following trauma [38].

Limitations of this study include its retrospective nature and current issues of patient sampling frequency, in vitro susceptibility testing and interpretation. Our center is a tertiary referral center and isolates and susceptibility profiles may reflect recovery of pathogens with a different pathology and susceptibility profile. The use of the Clinical Laboratory Standards Institute susceptibility breakpoints for serum and tissues may not accurately.
reflect the pharmacokinetics and pharmacodynamics of antibiotics in ocular tissues and fluids.

Spectrum and diversity of ocular pathogens along with their in vitro susceptibility patterns are influenced by climate, geographic region, patient populations, and prior antibiotic exposure. These factors may compromise extrapolation and application of these and similar surveillance data to other regions.

Conclusion

The spectrum and diversity of ocular pathogens have not changed significantly, over the last 10 years. What has changed is the declining rate of the in vitro efficacy of fluoroquinolone as coverage for the most common ocular pathogens, worldwide.

Fluoroquinolone monotherapy as standard therapy for common ocular infections should be reassessed. Ophthalmologists must become proactive and join the crusade to develop practical, prudent, and collaborative efforts in antibiotic stewardship for improved patient safety and optimal visual outcomes.

Financial support and sponsorship

Nil.

Conflicts of interest

There are no conflicts of interest.

References

1. McDonald M, Blondeau JM. Emerging antibiotic resistance in ocular infections and the role of fluoroquinolones. J Cataract Refract Surg 2010;36:1588-98.
2. Bertino JS Jr. Impact of antibiotic resistance in the management of ocular infections: The role of current and future antibiotics. Clin Ophthalmol 2009;3:507-21.
3. Centers for Disease Control and Prevention (CDC). Antibiotic resistance threats in the United States, 2013. Atlanta: CDC; 2013. Available from: http://www.cdc.gov/drugresistance/threat-report-2013/pdf/ar-threats-2013-508.pdf. [Last accessed on 2016 Jul 14].
4. Kowalski RP. Is antibiotic resistance a problem in the treatment of ophthalmic infections? Expert Rev Ophthalmol 2013;8:119-26.
5. Iwalokun BA, Oluwadun A, Akinsinde KA, Niemogha MT, Nwaokorie FO. Bacteriologic and plasmid analysis of etiologic agents of conjunctivitis in Lagos, Nigeria. J Ophthalmic Inflamm Infect 2011;1:95-103.
6. Al-Dhaferi HS, Al-Tamimi MD, Khandekar RB, Khan M, Stone DU. Ocular pathogens and antibiotic sensitivity in bacterial keratitis isolates at King Khaled Eye Specialist Hospital, 2011 to 2014. Cornea 2016;35:789-94.
7. Rahman ZA, Harun A, Hasan H, Mohamed Z, Noor SS, Deris ZZ, et al. Ocular surface infections in northeastern state of Malaysia: A 10-year review of bacterial isolates and antimicrobial susceptibility. Eye Contact Lens 2013;39:355-60.
8. Hindler JF, Stelling J. Analysis and presentation of cumulative antibiograms: A new consensus guideline from the Clinical and Laboratory Standards Institute. Clin Infect Dis 2007;44:867-73.
9. Clinical and Laboratory Standards Institute, editor. Performance Standards for Antimicrobial Susceptibility Testing: Twenty-First Informational Supplement, MS100-S21. Wayne, PA: CLSI; 2011.
10. Clinical and Laboratory Standards Institute. Performance Standards for Antimicrobial Susceptibility Testing: Twenty-Fifth Informational Supplement, MS100-S25. Wayne, PA: CLSI; 2015.
11. Asbell PA, Sanfilippo CM, Pillar CM, DeCory HH, Sahm DF, Morris TW. Antibiotic resistance among ocular pathogens in the United States: Five-year results from the Antibiotic Resistance Monitoring in Ocular Microorganisms (ARMOR) Surveillance Study. JAMA Ophthalmol 2015;133:1445-54.
12. Dong Q, Brulc JM, Iovino A, Bates B, Garoutte A, Miller D, et al. Diversity of bacteria at healthy human conjunctiva. Invest Ophthalmol Vis Sci 2011;52:5408-13.
13. Shin H, Price K, Albert L, Dodick J, Park L, Dominguez-Bello MG. Changes in the eye microbiota associated with contact lens wearing. MBio 2016;7:e0198.
14. Taravati P, Lam D, Van Gelder RN. Role of molecular diagnostics in ocular microbiology. Curr Ophthalmol Rep 2013;1. doi: 10.1007/s40135-013-0025-1.
15. Zhou AW, Lee MC, Rudinsky CJ. Ocular microbiology trends in Edmonton, Alberta: A 10-year review. Can J Ophthalmol 2012;47:301-4.
16. Sharma S. Ocular infections: Research in India. Indian J Med Microbiol 2010;28:91-4.
17. Hernandez-Camarena JC, Graue-Hernandez EO, Ortiz-Casas M, Ramirez-Miranda A, Navas A, Pedro-Aguilar L, et al. Trends in microbiological and antibiotic sensitivity patterns in infectious keratitis: 10-year experience in Mexico City. Cornea 2015;34:778-85.
18. Lichtinger A, Yeung SN, Kim P, Amirian MD, Iovino A, Elbaz U, et al. Shifting trends in bacterial keratitis in Toronto: An 11-year review. Ophthalmology 2012;119:1785-90.
19. Burton MJ, Pithuwa J, Okello E, Afwamba I, Onyango JJ, Oates F, et al. Microbial keratitis in East Africa: Why are the outcomes so poor? Ophthalmic Epidemiol 2011;18:158-63.
20. Shalchi Z, Gurbaxani A, Baker M, Nash J. Antibiotic resistance in microbial keratitis: Ten-year experience of corneal scrapes in the United Kingdom. Ophthalmology 2011;118:2161-5.
21. Aldebsi YH, Aly SM, Ahmad MI, Khan AA. Incidence and risk factors of bacteria causing infectious keratitis. Saudi Med J 2013;34:1156-60.
22. Relhan N, Albini TA, Pathengay A, Kuriyan AE, Miller D, Flynn HW. Endophthalmitis caused by Gram-positive organisms with reduced vancomycin susceptibility: Literature review and options for treatment. Br J Ophthalmol 2016;100:446-52.
23. Schwartz SG, Flynn HW Jr, Das T, Mieler WF. Ocular infection: Endophthalmitis. Dev Ophthalmol 2016;55:176-88.
24. Jindal A, Pathengay A, Jalan S, Mathai A, Pappuru RR, Narayan R, et al. Microbiologic spectrum and susceptibility of isolates in delayed post-catarract surgery endophthalmitis. Clin Ophthalmol 2015;9:1077-9.
25. Bremond-Gignac D, Chiambaretta F, Milazzo S. A European perspective on topical ophthalmic antibiotics: Current and evolving options. Ophthalmol Eye Dis 2011;3:29-43.
26. Sharma S. Antibiotic resistance in ocular bacterial pathogens. Indian J Med Microbiol 2011;29:218-22.
27. Bisco PJ, Alfonso EC, Flynn HW, Miller D. Emerging -methylfluoroquinolone resistance among methicillin-susceptible Staphylococcus epidermidis isolates recovered from patients with endophthalmitis. J Clin Microbiol 2013;51:2959-63.
28. Major JC Jr., Engelbert M, Flynn HW Jr, Miller D, Smiddy WE, Davis JL. Staphylococcus aureus endophthalmitis: Antibiotic susceptibilities, methicillin resistance, and clinical outcomes. Am J Ophthalmol 2010;149:278-83.e1.
29. Willcox MD. Review of resistance of ocular isolates of Pseudomonas aeruginosa and staphylococci from keratitis to ciprofloxacin, gentamicin and cephalosporins. Clin Exp Optom 2011;94:161-8.
30. Asbell PA, Colby KA, Deng S, McDonnell P, Meisler DM, Raizman MB, et al. Ocular TRUST: Nationwide antimicrobial susceptibility patterns in ocular isolates. Am J Ophthalmol 2008;145:951-8.

31. Haas W, Pillar CM, Torres M, Morris TW, Sahm DF. Monitoring antibiotic resistance in ocular microorganisms: Results from the Antibiotic Resistance Monitoring in Ocular microorganisms (ARMOR) 2009 surveillance study. Am J Ophthalmol 2011;152:567-74.e3.

32. Miller D, Chang JS, Flynn HW, Alfonso EC. Comparative in vitro susceptibility of besifloxacin and seven comparators against ciprofloxacin- and methicillin-susceptible/nonsusceptible staphylococci. J Ocul Pharmacol Ther 2013;29:339-44.

33. Sanfilippo CM, Morrissey I, Janes R, Morris TW. Surveillance of the activity of aminoglycosides and fluoroquinolones against ophthalmic pathogens from Europe in 2010-2011. Curr Eye Res 2016;41:581-9.

34. Jensen HG, Felix C. In vitro antibiotic susceptibilities of ocular isolates in North and South America. In Vitro Antibiotic Testing Group. Cornea 1998;17:79-87.

35. Fuda C, Suvorov M, Vakulenko SB, Mobashery S. The basis for resistance to beta-lactam antibiotics by penicillin-binding protein 2a of methicillin-resistant Staphylococcus aureus. J Biol Chem 2004;279:40802-6.

36. Bains HS, Weinberg DV, Feder RS, Noskin GA. Postoperative vancomycin-resistant Enterococcus faecium endophthalmitis. Arch Ophthalmol 2007;125:1292-3.

37. Sharma S, Desai RU, Pass AB, Saffra NA. Vancomycin-resistant enterococcal endophthalmitis. Arch Ophthalmol 2010;128:794-5.

38. Hillier RJ, Arjmand P, Rebick G, Ostrowski M, Muni RH. Post-traumatic vancomycin-resistant enterococcal endophthalmitis. J Ophthalmic Inflamm Infect 2013;3:42.