Title
The impact of the absolute number and ratio of positive lymph nodes on survival of endometrioid uterine cancer patients.

Permalink
https://escholarship.org/uc/item/4f9966r4

Journal
British journal of cancer, 97(5)

ISSN
0007-0920

Authors
Chan, JK
Kapp, DS
Cheung, MK
et al.

Publication Date
2007-09-01

DOI
10.1038/sj.bjc.6603898

Peer reviewed
The impact of the absolute number and ratio of positive lymph nodes on survival of endometrioid uterine cancer patients

JK Chan*,1, DS Kapp2, MK Cheung3, K Osann4, JY Shin3, D Cohn5 and PL Seid2

1Division of Gynecologic Oncology, Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California, San Francisco School of Medicine, San Francisco Comprehensive Cancer Center, 1600 Divisadero Street, Box 1702, San Francisco, CA 94143, USA; 2Division of Radiation Therapy, Department of Radiation Oncology, Stanford University School of Medicine, Stanford Cancer Center, 875 Blake Wilbur Drive, MC 5827, Stanford, CA 94305, USA; 3Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Stanford University School of Medicine, Stanford Cancer Center, 875 Blake Wilbur Drive, MC 5827, Stanford, CA 94305, USA; 4Division of Hematology and Oncology Department of Medicine, Chao Family Comprehensive Cancer Center, University of California, Irvine Medical Center, 101 The City Drive, Orange, CA 92866, USA; 5Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, The Ohio State University Comprehensive Cancer Center, Ohio State University College of Medicine and Public Health, M210 Starling-Loving Hall, 320 West Tenth Avenue, Columbus, OH 43210, USA

The aim of the study was to determine the impact of the absolute number and ratio of positive lymph nodes on the survival in node-positive endometrioid uterine cancer. Data were obtained from the National Cancer Institute Registry from 1988 to 2001. Analyses were performed using Kaplan–Meier and Cox proportional hazard methods. A total of 1222 women were diagnosed with stage III–IV node-positive endometrioid corpus cancer. The 5-year disease-specific survival of women with 1, 2–5, and >5 positive nodes were 68.1, 55.1, and 46.1%, respectively (P<0.001). Increasing lymph node ratio, expressed as a percentage of positive nodes to total nodes identified (≤10, >10–≤50, and >50%), was associated with a decrease in survival from 77.3 to 60.7 to 40.9%, respectively (P<0.001). The absolute number of positive nodes and the lymph node ratio remained significant after adjusting for stage (IIIC vs IV) and the extent of lymphadenectomy (≤20 vs >20 nodes). On multivariate analysis, the absolute number of positive nodes and lymph node ratio were significant independent prognostic factors for survival. Increasing absolute number of positive nodes and lymph node ratio are associated with a poorer survival in women with node-positive uterine cancers. The stratification of node-positive uterine cancer for prognostic and treatment purposes warrants further investigation.

British Journal of Cancer (2007) 97, 605–611. doi:10.1038/sj.bjc.6603898 www.bjcancer.com
Published online 31 July 2007
© 2007 Cancer Research UK

Keywords: positive lymph nodes; uterine cancer; prognostic factors

Endometrial carcinoma is the most common gynaecological malignancy in the United States with an expected 7350 deaths associated with this disease in 2006 (Jemal et al, 2006). Although approximately 80% of patients are diagnosed with early-stage (Ⅰ–Ⅱ) disease and have an excellent prognosis, women with advanced-stage (Ⅲ–Ⅳ) cancers have significantly poorer outcome. Metastatic involvement of retroperitoneal lymph nodes is one of the most important prognostic factors (Morrow et al, 1991). Of the patients with node-positive disease, the estimated 5-year disease-specific survival ranges from 10 to 75% (Potish et al, 1985; Larson et al, 1987; Lurain et al, 1991; Morrow et al, 1991; Rose et al, 1992; Greven et al, 1993; Schorge et al, 1996; Nelson et al, 1999; Mariani et al, 2002; Watari et al, 2005; Chan et al, 2006; Randall et al, 2006). The wide range of outcomes suggests that there exists considerable heterogeneity in these node-positive patients based on various clinicopathological prognostic factors. Furthermore, over 50% of stage Ⅲ–Ⅳ disease patients fail standard treatments with either whole abdominal radiation or chemotherapy and experience significant toxicities (Bruner et al, 2006; Randall et al, 2006). Studies focused on defining these prognostic factors may permit better substage stratification and determine novel treatment strategies. For example, multi-modality therapies should be designed for high-risk patients to improve survival and individualised tailored therapies are preferred in low-risk patients to prevent toxicities associated with over-treatment. The association between the extent of lymph node involvement and survival has been demonstrated in most solid tumours including lung, breast, colon, rectal, bladder, cervical, and vulva cancers (van der Velden et al, 1995; Moore and Stehman, 1996; Tepper et al, 2001; Herr et al, 2002; Weir et al, 2002; Gajra et al, 2003; Joseph et al, 2003; Le Voyer et al, 2003). Furthermore, the number of nodal metastases in breast cancer is not only used as a prognostic tool but also guides adjuvant treatment (NCCN, 2006). However, the current staging system for uterine cancer under International Federation of Gynecology and Obstetrics (FIGO) does not account for the extent of nodal disease. Prior studies have shown that patients with stage IIC uterine cancer limited only to the pelvic nodes have significantly better prognosis than for other subgroups of stage IIC disease, suggesting that stratification may be appropriate (Morrow et al, 1991; Nelson et al, 1999; Mariani et al, 2002; Watari et al, 2005).
In this present study, we determined the prognostic significance of the absolute number and ratio of positive lymph nodes in endometrioid uterine cancer. Furthermore, we identified other clinicopathological prognostic factors important in node-positive corpus cancer.

PATIENTS AND METHODS

Demographic, clinicopathological, treatment, and survival information of women diagnosed with endometrioid corpus cancer during the period from 1 January 1988 to 31 December 2001 was extracted with permission from the Surveillance, Epidemiology and End Results (SEER) programme of the United States National Cancer Institute (Surveillance, 2005). This data represent approximately 14% of the US population and is reported from 12 population-based registries including San Francisco-Oakland, Connecticut, metropolitan Detroit, Hawaii, Iowa, New Mexico, Seattle (Puget Sound), Utah, metropolitan Atlanta, Alaska, San Jose-Monterey, and Los Angeles.

Of the 40,880 women diagnosed with endometrioid uterine cancer, 1222 patients had stage IIIC–IV disease with at least one positive pelvic and/or paraaortic lymph node. All patients underwent surgical staging including lymphadenectomy. Information regarding patient age, stage, tumour grade, number of positive lymph nodes, extent of lymph node dissection (defined as the total number of lymph nodes recovered), and use of adjuvant radiation therapy was extracted. Patients were divided into three nodal groups (1, 2–5, and >5 positive nodes). The lymph node ratio, expressed as the percentage of positive nodes to total nodes identified, was stratified into three groups (≤10, 10–50, and >50). Statistical analysis was performed using the Intercooled STATA 8.0 program (College Station, TX). Survival analysis was performed using the Kaplan–Meier method. The outcome of interest was death from endometrial cancer. Time to death was censored in women who died from causes other than uterine cancer. The Cox proportional hazards model was used to identify independent predictors of survival. A forward stepwise model was used to determine which prognostic variable was more important for prediction of outcome. Two-tailed tests at P-values less than 0.05 were considered significant.

RESULTS

Patient characteristics of 1222 women diagnosed with stage IIIC–IV node-positive endometrioid uterine cancer are shown in Table 1. The median age at diagnosis was 64 years (range: 28–93 years). 639 (52.3%) were stage IIIC, 24 (2.0%) were stage IVA, and 559 (45.7%) were stage IVB. The median number of lymph node removed was 11 (range: 1–90). The median number of positive lymph nodes was 2 (range: 1–52) and the median lymph node ratio was 23.2% (range: 1.8–100%). The 5-year disease-specific survivals of patients with stage IIIC and IV were 70.3 and 47.8%, respectively (P = 0.001). When all patients were divided into three groups based on the extent of lymphadenectomy and found that the association between absolute number of lymph nodes (1, 2–5, and >5) of positive nodes was associated with a decrease in survival from 65.1 to 50 to 29.7%, respectively (P < 0.001). In addition, women with >20 nodes identified had an associated decrease in survival from 82.6 to 71.9 to 59.7%, respectively (P = 0.047; Figure 1A and C) for the three positive nodal groups.

Increasing lymph node ratio (≤10, >10–50, and >50) was associated with a decrease in 5-year disease-specific survival from 77.3 to 60.7 to 40.9%, respectively (P < 0.001; Figure 1). For patients with stage IIIC disease, survival decreased from 78.6 to 66.5 to 65.3%, corresponding to the three lymph node ratio groups (P = 0.025), and this finding was consistent in stage IV cancers with associated survival rates of 73.8 to 53.3 to 30.1%, respectively (P < 0.001; Table 2 and Figure 2B and D). We also divided the study group based on the extent of lymphadenectomy and found that the group with ≤20 nodes resected had associated survivals of 73.5, 60.1, and 39.3%, for the three corresponding lymph node ratio groups.

Table 1 Clinicopathological Characteristics of Patients with Node-Positive Endometrioid Uterine Cancer (n = 1222)

Parameters	n (%)
Age (years)	
<65	626 (51.2%)
≥65	596 (48.8%)
Race	
White	1025 (83.9%)
Black	75 (6.1%)
Asian	91 (7.4%)
Other	31 (2.5%)
Year of diagnosis	
1988–1992	230 (18.8%)
1993–1997	455 (37.2%)
1998–2001	537 (43.9%)
Stage	
Stage IIIC	639 (52.3%)
Stage IV	583 (47.7%)
Stage IVA	24 (2.0%)
Stage IVB	559 (45.7%)
Grade	
Grade 1	123 (10.0%)
Grade 2	466 (38.1%)
Grade 3	581 (47.5%)
Unknown	52 (4.3%)
Radiation	
No XRT	423 (34.6%)
Adjuvant XRT	772 (62.3%)
Unknown	27 (2.2%)
Number nodes removed	
≤10	582 (47.6%)
11–20	320 (26.2%)
>20	320 (26.2%)
Number of metastatic nodes	
1 positive node	529 (43.3%)
2–5 positive nodes	547 (44.8%)
>5 positive nodes	146 (11.9%)

Abbreviation: XRT, radiotherapy.
In our study, we determined the prognostic significance of the absolute number of positive lymph nodes and the lymph node ratio. Correlation between these variables was relatively small ($r = 0.2$), thus each contributed independently to the prediction of the hazard rate. In forward stepwise regression, lymph node ratio entered the model before absolute number of positive nodes ($P = 0.005$) and the lymph node ratio ($P = 0.003$) were independent prognostic factors for survival adjusting for age, stage, grade of disease, year of diagnosis, adjuvant radiation, and extent of lymphadenectomy (Table 3). Hazard ratios were higher for patients with more than 5 positive nodes relative to those with 2–5 positive or 1 positive node (HR = 1.63 vs 1.28 vs 1.0, respectively). Moreover, the hazard ratio was significantly higher for each percent increase in lymph node ratio (HR = 1.05 for a 10% increase in lymph node ratio). Correlation between these variables was relatively small ($r = 0.2$), thus each contributed independently to the prediction of the hazard rate. In forward stepwise regression, lymph node ratio entered the model before absolute number of positive nodes suggesting an overall greater prognostic ability. However, when the analysis is restricted to patients with less extensive lymphadenectomy (≤ 10 nodes), only the absolute number of positive nodes contributed significantly to prediction of survival ($P = 0.005$ for absolute number of positive nodes; $P = 0.186$ for lymph node ratio).

DISCUSSION

Advanced stage uterine cancer continues to be a significant cause of death among gynaecological cancers in the United States (Jemal et al, 2006). Prior studies have found that stage IIIC node-negative endometrial cancers comprise of only 2–6% of all cases (Creezman et al, 1987; Lurain et al, 1987; Faught et al, 1991; Morrow et al, 1991; Rose et al, 1992; Greven et al, 1993; Schorge et al, 1996; Faught et al, 1998; Nelson et al, 1999; Mariani et al, 2002; Watari et al, 2005; Chan et al, 2006; Randall et al, 2006), several investigators have suggested substaging these patients (Nelson et al, 1999; Mariani et al, 2002; Watari et al, 2005). In this current report, our findings support the concept of stratifying node-positive cancers into substages based on nodal burden. The 5-year disease-specific survival of this heterogeneous cohort of node-positive patients in our study ranges from approximately 40 to 77%.

The prognostic significance of the absolute number and/or ratio of positive nodes has been reported in other solid tumours (van der Velden et al, 1995; Moore and Stehman, 1996; Tepper et al, 2001; Bando et al, 2002; Herr et al, 2002; Weir et al, 2002; Gajra et al, 2003; Joseph et al, 2003; Le Voyer et al, 2003; Berger et al, 2005; Sierzega et al, 2006). In breast cancer, the nodal ratio has been shown to be an important predictor of loco-regional recurrence and survival both from initial diagnosis and following recurrence (Nieto et al, 2002; Grills et al, 2003; Woodward et al, 2006). Several studies compared the prognostic value of nodal ratios to the absolute number of positive nodes and found that lymph node ratio had a stronger prognostic value in breast cancer (Vinh-Hung et al, 2004; Woodward et al, 2006).

Small retrospective studies from single institutions have evaluated the significance of the absolute number and ratio of positive nodes in uterine cancers. Mariani et al (2001) studied 60 patients with endometrial cancer with pelvic nodal metastases. These authors found that patients who recurred or died of disease had a higher percentage of positive lymph nodes at presentation. Similarly, Tang et al (1998) evaluated 40 patients with pelvic and/or paraaortic nodal metastases and found a 5-year disease-specific survival of 0 vs 55% in those with ≥ 25 vs <25% lymph node ratio. Yasunaga et al (2003) have also shown that a high metastatic ratio is associated with a lower survival. Patients with lymph node ratios of <10, 10–50, and >50% had 5-year survival rates of 82.5, 43.8, and 0%, respectively (Yasunaga et al, 2003). However, these studies were limited by the small sample sizes and inclusion of high-risk cell types such as serous and clear cell cancers. More importantly, there may exist a potential selection bias due to reporting from tertiary care academic centres caring for high-risk patients. Thus, these small study cohorts may not be representative of the general population. Furthermore, these studies did not compare the prognostic importance of nodal ratio to the absolute number of positive nodes, likely due to the limitations in sample size.

On multivariate analysis of the 1222 node-positive patients in this current study, the absolute number ($P = 0.003$) and lymph node ratio ($P = 0.005$) were independent prognostic factors for survival adjusting for age, stage, grade of disease, year of diagnosis, adjuvant radiation, and extent of lymphadenectomy. The hazard ratio for patients with more than 5 positive nodes relative to those with 2–5 positive or 1 positive node (HR = 1.63 vs 1.28 vs 1.0, respectively) was significantly higher for each percent increase in lymph node ratio (HR = 1.05 for a 10% increase in lymph node ratio). Correlation between these variables was relatively small ($r = 0.2$), thus each contributed independently to the prediction of the hazard rate. In forward stepwise regression, lymph node ratio entered the model before absolute number of positive nodes suggesting an overall greater prognostic ability. However, when the analysis is restricted to patients with less extensive lymphadenectomy (≤ 10 nodes), only the absolute number of positive nodes contributed significantly to prediction of survival ($P = 0.005$ for absolute number of positive nodes; $P = 0.186$ for lymph node ratio).

Figure 1 Kaplan–Meier disease-specific survival of node-positive endometrioid uterine cancer based on (A) absolute number (1, 2–5, and >5) and (B) ratio of lymph nodes (≤ 10, 10–≤ 50, and >50%): 77.3, 60.7, and 40.9%; $P < 0.001$.

% survival

Numbers at risk	Time (months)
1	0 50 100 150 200
2–5	529 159 43 8
>5	146 23 5 0

Numbers at risk

Time (months)
0 50 100 150 200

Numbers at risk

Time (months)
0 50 100 150 200

Numbers at risk

Time (months)
0 50 100 150 200

Numbers at risk

Time (months)
0 50 100 150 200

Numbers at risk

Time (months)
0 50 100 150 200
Table 2: Five-Year Disease-Specific Survival by Absolute Number of Positive Nodes and Ratio of Positive to Examined Nodes

Absolute Number of Positive Nodes	Ratio of Positive to Examined Nodes	Log-rank P-value
> 5 (n = 529)	> 10 – < 50% (n = 306)	0.003
2 – 5 (n = 547)	3 – 6% (n = 146)	< 0.001
1 (n = 122)	≤ 1% (n = 0)	0.003

Survival (% (s.e.)

- Stage III C: 77.1 (±2.8)
- Stage IV: 47.8 (±2.7)
- Grade 1: 88.1 (±2.6)
- Grade 2: 72.8 (±3.2)
- Grade 3: 56.4 (±3.2)
- Radiation: 46.2 (±3.2)
- Adjuvant XRT: 47.2 (±3.1)

Number of Nodes Removed

- <20: 55.6 (±4.0)
- 20: 65.1 (±2.9)
- 60: 82.6 (±4.6)
- >60: 71.9 (±2.3)

Grade

- 1: 88.1 (±2.6)
- 2: 72.8 (±3.2)
- 3: 56.4 (±3.2)

Radiation

- Adjuvant XRT: 46.2 (±3.2)
- XRT: 47.2 (±3.1)

Abbreviations

- s.e., standard error
- XRT, radiotherapy

The majority of stage III–IV uterine cancer patients fail standard chemotherapy or whole abdominal radiation (Randall et al., 2006). It would be important to identify the patients at particularly high risk of recurrence in whom a combination of chemotherapy and radiation therapy may be beneficial, while sparing lower-risk patients from the toxicity of excessive therapy (Bruner et al., 2006). Extrapolating from breast cancer treatment recommendations, it may be possible that tailored therapy can be selected based on stratifying patients with node-positive uterine cancer into various risk groups. For example, local irradiation may be adequate for those with low numbers of lymph nodes involved, particularly if a thorough lymphadenectomy was performed. In contrast, higher-risk patients with a larger nodal tumour burden may warrant more extensive treatment including systemic chemotherapy combined with site-specific irradiation. In fact, a current Gynecologic Oncologic Group trial is investigating the role of multi-modality therapy in advanced uterine cancer to define the optimal chemotherapy combined with radiation (Homesley et al., 2000).

The finding that the overall number of lymph nodes removed at surgery correlates with survival has been previously reported (Kilgore et al., 1995; Blythe et al., 1997; McMeekin et al., 2001; Chan et al., 2006; Lutman et al., 2006; Mariani et al., 2006). In early-stage disease, it is not clear whether this benefit is due directly to cytoreductive effects of surgery or from more accurate staging. In this current study of node-positive patients, we found that a more extended dissection remained as an important predictor for survival after controlling for the absolute number and ratio of positive nodes. The improvement in survival associated with extent of lymph node resection and possible mechanisms have been previously reported (Chan et al., 2006). Lastly, it is possible that lymph node dissection may be a surrogate for the quality of care rather than the cause that resulted in the better outcome of these patients.

Our study has several recognisable limitations. There is a lack of information on disease extent, stage, grade of disease, and extent of lymph node dissection. The correlation between the categorical variables, absolute number and ratio of positive nodes, was relatively small and thus both variables were independent predictors for survival. Analysed as a continuous variable, lymph node ratio entered the proportional hazard model before absolute number of positive nodes in stepwise regression suggesting that the lymph node ratio may better characterise prognostic subgroups than the number of positive nodes. In addition, Kaplan–Meier analyses provide further support showing a larger separation of curves depicted in the overall study group (Figure 1) and subgroups of IIIC vs IV cancers (Figure 2).

Compared to the absolute number of positive lymph nodes, the lymph node ratio may be a better predictor of tumour burden and aggressive biological behaviour of the tumour, particularly in those who had a more extensive lymphadenectomy. As such, the survival differences within these subgroups by lymph node ratio were more pronounced. However, in patients with a limited number of lymph nodes recovered, the absolute number of positive nodes appears to be a better predictor. It is important to note that the number of nodes recovered may reflect a more extensive dissection, comprehensiveness of pathological evaluation, variations in number of nodes of each patient, and difficulties in performing lymphadenectomies due to medical comorbidities (Yasunaga et al., 2003).
Figure 2 Kaplan–Meier disease-specific survival based on stage IIIIC (A and B) vs stage IV (C and D) disease by absolute number (A and C) and ratio (B and D) of positive lymph nodes.

Figure 3 Kaplan–Meier disease-specific survival based on extent of node dissection ≤20 nodes (A and B) vs >20 nodes (C and D) disease by absolute number (A and C) and ratio (B and D) of positive lymph nodes.
debunking, and extent of extrauterine involvement associated with the node-positive cancer. It is conceivable that the extent of extrauterine involvement may be strongly correlated with the lymph node burden and thus confound our findings.

The strengths of this study include the fact that this is one of the largest studies evaluating the impact of nodal burden and lymphadenectomy on the survival of node-positive endometrioid uterine cancer. In addition, all patients with high-risk cell types such as papillary serous, clear cell, and sarcomas were excluded from the analyses. The wide geographical distribution of patients including 12 US regions also decreases the potential selection and surveillance biases that are associated with single-institution analyses (Surveillance, 2005). Furthermore, the results from this population-based study can be generalised to the entire US population. The quality control measures of the SEER programme allow the registry to maintain the highest level of certification of data quality and completeness reported by the Northern American Association of Central Cancer Registries.

In summary, improving risk assessments in advanced endometrioma cancers beyond the current FIGO staging definition is of particular interest as the treatment of high-risk uterine cancers evolves. The sub-classification of node-positive cancers based on the absolute number and ratio of positive nodes may assist the physician to better define prognosis and more importantly, stratify patients into various risk groups in the design of future clinical trials. If confirmed in a prospective clinical trial, these findings may ultimately modify the current staging system and lead to individualised tailored therapies in patients with node-positive uterine cancer.

REFERENCES

Bando E, Yonemura Y, Taniguchi K, Fushida S, Fujimura T, Miwa K (2002) Outcome of ratio of lymph node metastasis in gastric carcinoma. *Ann Surg Oncol* 9: 775–784

Berger AC, Sigurdson ER, LeVoyer T, Hanlon A, Mayer RJ, Macdonald JS, Catalano PJ, Haller DG (2005) Colorectal cancer survival is associated with decreasing ratio of metastatic to examined lymph nodes. *J Clin Oncol* 23: 8706–8712

Blythe JG, Edwards E, Heimbecker P (1997) Para-aortic lymph node biopsy: a twenty-year study. *Am J Obstet Gynecol* 176: 1157–1162; discussion 1162–3

Bruner DW, Barsevick A, Tian C, Randall M, Mannel R, Cohn DE, Sorosky J, Spirtos NM (2006) Randomized trial results of quality of life comparing whole abdominal irradiation and combination chemotherapy in advanced endometrial carcinoma: a gynecologic oncology group study. *Qual Life Res* 16: 89–100

Chan JK, Cheung MK, Huh WK, Osann K, Husain A, Teng NN, Kapp DS (2006) Therapeutic role of lymph node resection in endometrioid corpus cancer: a study of 12333 patients. *Cancer* 107: 1823–1830

Cresman WT, Morrow CP, Bundy BN, Homey MS, Grahn J, Sill JE, Helfer PB (1987) Surgical pathologic spread patterns of endometrial cancer. A gynecologic oncology group study. *Cancer* 60: 2035–2041

Faught W, Faught F, Fung MF, Krepav GT, Lotochki RJ, Heywood MS, Genest P (1998) Microscopic surgical stage IIC endometrioid adeno- carcinoma of the endometrium: implications for bimodal adjuvant therapy. *Int J Gynecol Cancer* 8: 41–45

Gajra A, Newman N, Gamble GP, Kohnan LJ, Graziano SL (2003) Effect of number of lymph nodes sampled on outcome in patients with stage I non-small-cell lung cancer. *J Clin Oncol* 21: 1029–1034

Greven KM, Lanciano RM, Corn B, Case D, Randall ME (1993) Pathologic stage III endometrial carcinoma. Prognostic factors and patterns of recurrence. *Cancer* 71: 3697–3702

Grills IS, Kestin LL, Goldstein N, Mitchell C, Martinez A, Ingold J, Vicini FA (2003) Risk factors for regional nodal failure after breast-conserving therapy: regional nodal irradiation reduces rate of axillary failure in patients with four or more positive lymph nodes. *Int J Radiat Oncol Biol Phys* 56: 658–670

Herr HW, Bockner BH, Dalbagni G, Donat SM, Reuter VE, Bajorin DF (2002) Impact of the number of lymph nodes retrieved on outcome in patients with muscle invasive bladder cancer. *J Urol* 167: 1295–1298

Homsey SD et al. (2000) GOG Protocol no #184. A randomized Phase III study of tumor volume directed pelvic plus or minus para-aortic irradiation followed by cisplatin doxorubicin or cisplatin doxorubicin paclitaxel for advanced endometrial carcinoma

Jemal A, Siegel R, Ward E, Murray T, Xu J, Smigal C, Thun MJ (2006) Cancer statistics. 2006. *CA Cancer J Clin* 56: 106–130

Joseph NE, Sigurdson ER, Hanlon AL, Wang H, Mayer RJ, Macdonald JS, Catalano PJ, Haller DG (2003) Accuracy of determining nodal negativity in colorectal cancer on the basis of the number of nodes retrieved on resection. *Ann Surg Oncol* 10: 213–218

Kilgore LC, Partridge EE, Alvarez RD, Austin JM, Shingleton HM, Noffin III F, Conner W (1995) Adenocarcinoma of the endometrium: survival comparisons of patients with and without pelvic node sampling. *Gynecol Oncol* 56: 29–33

Larson DM, Copeland LJ, Gallager HS, Wharton JT, Gershenson DM, Edwards CL, Malone Jr JM, Rutledge FN (1987) Prognostic factors in stage II endometrial carcinoma. *Cancer* 60: 1358–1361

Le Voyer TE, Sigurdson ER, Hanlon AL, Mayer RJ, Macdonald JS, Catalano PJ, Haller DG (2003) Colon cancer survival is associated with increasing number of lymph nodes analyzed: a secondary survey of intergroup trial INT-0089. *J Clin Oncol* 22: 2912–2919

Lurain JR, Rice BL, Rademaker AW, Poggesse EE, Schink JC, Miller DS (1991) Prognostic factors associated with recurrence in clinical stage I adenocarcinoma of the endometrium. *Obstet Gynecol* 78: 63–69

Lutman CV, Havrilesky LJ, Crigan JM, Secord AA, Calingaert B, Berchuck A, Clarke-Pearson DL, Soper JT (2006) Pelvic lymph node count is an important prognostic variable for FIGO stage I and II endometrial carcinoma with high-risk histology. *Gynecol Oncol* 102: 92–97

Mariani A, Dowdy SC, Cliby WA, Haddock MG, Keeney GL, Nersnick TG, Podratz KC (2006) Efficacy of systematic lymphadenectomy and adjuvant radiotherapy in node-positive endometrial cancer patients. *Gynecol Oncol* 101: 200–208

Mariani A, Webb MJ, Keeney GL, Haddock MG, Aletti G, Podratz KC (2002) Stage IIC: endometrioid corpus cancer includes distinct subgroups. *Gynecol Oncol* 87: 112–117

Mariani A, Webb MJ, Rao SK, Nersnick TG, Podratz KC (2001) Significance of pathologic patterns of pelvic lymph node metastases in endometrial cancer. *Gynecol Oncol* 80: 113–120

McMeekin DS, Lashbrook D, Gold M, Scribner DL, Kamelle S, Tillmanns TD, Mannel R (2001) Nodal distribution and its significance in FIGO stage IIC endometrial cancer. *Gynecol Oncol* 82: 375–379

Moore DH, Stehman FB (1996) What is the appropriate management of early stage cervical cancer (International Federation of Gynecology and Obstetrics stages I and IIA), surgical assessment of lymph nodes, and role of therapeutic resection of lymph nodes involved with cancer? *J Natl Cancer Inst Monogr* 43: 46

Table 3 Multivariable Analysis for Important Prognosticators in Node-Positive Endometrioid Uterine Cancer (n = 1222)

Hazard ratio	95% CI	P-value	
Age at diagnosis\(^a\)	1.03	(1.02–1.04)	<0.0005
Stage of disease\(^b\)	1.66	(1.31–2.10)	<0.0005
Grade\(^c\)	2.01	(1.66–2.42)	<0.0005
Radiation\(^d\)	0.61	(0.49–0.76)	<0.0005
Year of diagnosis\(^e\)	0.70	(0.55–0.88)	0.002
Extent of lymphadenectomy\(^f\)	0.60	(0.44–0.82)	0.001
Positive lymph nodes\(^g\)	1.28	(1.08–1.51)	0.005
Lymph node ratio\(^h\)	1.70	(1.20–2.40)	0.003

\(^a\) Age at diagnosis as a continuous variable. \(^b\) Stage of disease as IIC vs IV. \(^c\) Grade as I vs 2 vs 3. \(^d\) No radiation vs adjuvant radiation. \(^e\) Year of diagnosis as ≤ 1992 vs > 1992. \(^f\) Extent of lymphadenectomy as 1–20 vs > 20 nodes. \(^g\) Positive lymph nodes as I vs 2–5 vs > 5 positive nodes. \(^h\) Lymph node ratio as a continuous variable.
Morrow CP, Bundy BN, Kurman RJ, Creasman WT, Heller P, Homesley HD, Graham JE (1991) Relationship between surgical-pathological risk factors and outcome in clinical stage I and II carcinoma of the endometrium: a gynecologic oncology group study. *Gynecol Oncol* 40: 55–65

Nelson G, Randall M, Sutton G, Moore D, Hurteau J, Look K (1999) FIGO stage IIIC endometrial carcinoma with metastases confined to pelvic lymph nodes: analysis of treatment outcomes, prognostic variables, and failure patterns following adjuvant radiation therapy. *Gynecol Oncol* 75: 211–214

Nieto Y, Nawaz S, Jones RB, Shpall EJ, Cagnoni PJ, McSweeney PA, Baron A, Razook C, Matthews S, Bearman SI (2002) Prognostic model for relapse after high-dose chemotherapy with autologous stem-cell transplantation for stage IV oligometastatic breast cancer. *J Clin Oncol* 20: 707–718

NCCN (2006) NCCN Clinical Practice Guidelines in Oncology Breast Cancer. V.2.2006

Potish RA, Twiggs LB, Adcock LL, Savage JE, Prem KA (1985) Paraaoortic lymph node radiotherapy in cancer of the uterine corpus. *Obstet Gynecol* 65: 251–256

Randall ME, Fillaci VL, Muss H, Spirtos NM, Mannel RS, Fowler J, Thigpen JT, Benda JA (2006) Randomized phase III trial of whole-abdominal irradiation vs doxorubicin and cisplatin chemotherapy in advanced endometrial carcinoma: a gynecologic oncology group study. *J Clin Oncol* 24: 36–44

Rose PG, Cha SD, Tak WK, Fitzgerald T, Reale F, Hunter RE (1992) Radiation therapy for surgically proven para-aortic node metastasis in endometrial carcinoma. *Int J Radiat Oncol Biol Phys* 24: 229–233

Schorge JO, Molpuls KL, Goodman A, Nikrui N, Fuller Jr AF (1996) The effect of postsurgical therapy on stage III endometrial carcinoma. *Gynecol Oncol* 63: 34–39

Sierzega M, Popielka T, Kulig J, Nowak K (2006) The ratio of metastatic/resected lymph nodes is an independent prognostic factor in patients with node-positive pancreatic head cancer. *Pancreas* 33: 240–245

Surveillance, Epidemiology End Results (SEER) Program (2005) (www.seer.cancer.gov) SEER*Stat Database: incidence SEER 9 Regs Public-Use, Nov 2004 Sub (1973–2002), National Cancer Institute, DCCPS, Surveillance Research Program, Cancer Statistics Branch

Tang X, Tanemura K, Ye W, Ohmi K, Tsunematsu R, Yamada T, Katsumata N, Sonoda T (1998) Clinicopathological factors predicting retroperitoneal lymph node metastasis and survival in endometrial cancer. *Jpn J Clin Oncol* 28: 673–678

Tepper JE, O’Connell MJ, Niedzwiecki D, Hollis D, Compton C, Benson III AB, Cummings B, Gunderson L, Macdonald JS, Mayer RJ (2001) Impact of number of nodes retrieved on outcome in patients with rectal cancer. *J Clin Oncol* 19: 157–163

van der Velden J, van Lindert AC, Lammes FB, ten Kate FJ, Sie-Go DM, Ooosting H, Heintz AP (1995) Extracapsular growth of lymph node metastases in squamous cell carcinoma of the vulva. The impact on recurrence and survival. *Cancer* 75: 2885–2890

Vinh-Hung V, Verschaeren C, Promish DI, Cserni G, Van de Steene J, Tai P, Vlastos G, Voordecker M, Storme G, Royce M (2004) Ratios of involved nodes in early breast cancer. *Breast Cancer Res* 6: R680–R688

Watari H, Todo Y, Takeda M, Ebina Y, Yamamoto R, Sakuragi N (2005) Lymph-vascular space invasion and number of positive para-aortic node groups predict survival in node-positive patients with endometrial cancer. *Gynecol Oncol* 96: 651–657

Weir L, Speers C, D’Yachkova Y, Olivotto IA (2002) Prognostic significance of the number of axillary lymph nodes removed in patients with node-negative breast cancer. *J Clin Oncol* 20: 1793–1799

Woodward WA, Vinh-Hung V, Ueno NT, Cheng YC, Royce M, Tai P, Vlastos G, Wallace AM, Hortobagyi GN, Nieto Y (2006) Prognostic value of nodal ratios in node-positive breast cancer. *J Clin Oncol* 24: 2910–2916

Yasunaga M, Yamasaki F, Tokunaga O, Iwasaka T (2003) Endometrial carcinomas with lymph node involvement: novel histopathologic factors for predicting prognosis. *Int J Gynecol Pathol* 22: 341–346