Virtual bedside teaching for pharmacy students during their final term at LMU Munich

Abstract
At Ludwig-Maximilians-Universität (LMU) bedside teaching (BT) for pharmacy students has been in place since 2014. To continue offering BT during the contact restrictions imposed by the authorities in 2020, the course was digitalised, and virtual bedside teaching implemented. Using Moodle, the original concept was divided into smaller sections and presented, e.g. in the form of video sequences. All sections of the course were accessed asynchronously by the students. Tasks were individually processed and evaluated. Virtual awards were used to increase the students’ motivation. Contact with each other was possible via posting in available forums or the weekly online chat consultation. A total of 70 students successfully completed the course. The evaluation of the course was very positive, with mainly technical difficulties that were criticized. The students’ feedback will be implemented in the course concept for the winter term.

Keywords: pharmacy education, digitalisation, digital teaching, bedside teaching

1. Introduction
In medicine, bedside teaching (BT) is an important part of university education. BT is considered a fundamental method for learning clinical and communication skills [1]. Clinical pharmacy is a relatively new subject in the otherwise very scientific curriculum of pharmacy. It requires more than the usual acquisition of knowledge to transfer theory into clinical practice. While this should be predictable and calculable in a chemical experiment, many other factors, which cannot necessarily be controlled, are added in clinical pharmacy. Contrary to medical education, BT is the exception rather than the norm for pharmacy students. At the Ludwig-Maximilians-Universität (LMU), visits to hospitals by pharmacy students have been taking place since 2005. Since 2014, these visits have been supplemented by a standardized concept for BT in small groups [2]. To provide BT for pharmacy students even during existing contact restrictions, the teaching concept for the seminar Clinical Pharmacy and practical bedside teaching has been digitalised in a Moodle module.

2. Project description

2.1. Setting
The virtual BT takes place in the 8th term of Pharmacy studies as a Moodle course.

2.2. Concept & structure
The concept for digitalisation is based on Hege's aspects of implementing e-learning [3]. The original BT (face-to-face) is already organized via Moodle [https://moodle.de/], the existing module was expanded for digital teaching. The normal day at the clinic (4-5h) was divided into smaller sections and made available asynchronously. This allowed all students to conduct the course in their own pace, but within a given time frame. Thus, all students had to determine the appropriate working schedule for themselves. Since the hospital’s own network could not be used, the students were provided with corresponding but freely available web links and literature sources to use from home. Each student worked individually; exchange was possible via various forums in Moodle. Table 1 shows the comparison between normal and virtual BT. By tracking the completion of individual activities, both students and lecturers maintained an overview of work completed or still to be completed. Feedback was provided in the form of a weekly online chat, various forums and on completed tasks. To increase the intrinsic motivation of the students, virtual badges were used [4], [5].

2.3. Implementation
The virtual BT was held for the first time during the summer term 2020. The course took place from May 8th to June 5th. A total of five tasks had to be completed at regular intervals. Seven badges with different degrees of
Table 1: Comparison of the schedules for the original bedside teaching (“face-to-face”) with the virtual version. Abbreviations used: DRP – drug related problem, MedRec – medicine reconciliation, MEONA – electronic prescribing system, MI – medicines information, PBL – problem based learning.

“Face-to-Face” bedside teaching	Virtual bedside teaching
Small group teaching (max. 5 participants)	Individual
MedRec exercise as flipped classroom	Revision of contents from previous lectures by completing an e-learning case in CASUS®
Guided tour through the hospital pharmacy, presentation of usual tasks of hospital pharmacist and outline of the tasks for the afternoon	Guided tour of the hospital pharmacy, presentation of usual tasks of hospital pharmacist and outline of the tasks for the afternoon via video
Signing of data protection declaration	n/a (fictional patients)
Simulation conversation patient/pharmacist	Presentation of relevant sources (within the hospital as well as sources available for work from home) via video (screenshots) due to licence restrictions students use comparable, freely available online sources for their research at home
Presentation of relevant (online) sources within the hospital network	Conversation between patient & pharmacist (audio file)
Analysis of DRPs (small group)	Analysis of DRPs (individual)
Discussion of findings with lecturer	Individual feedback through lecturer
Presentation of clinical ward (structure, specialty)	Presentation of a digital clinical ward via video (using screenshots of a student MEONA ward filled with data from seven fictional patients)
Conversation with real patient (under supervision)	Demonstration of the MedRec process in real-time by the lecturer using one of the fictional patients, how to deal with a new admission via video
Review of relevant sources on ward (lab results, physician’s notes)	Review of available data for each fictional patient on the virtual ward (extract of the medical notes, physicians’ letters, lab results etc.) individually from home
Drafting of a problem list as seen by students (PBL)	Choosing and preparation of an additional MedRec for one of the fictional patients using the available data (individually from home)
Working on a selection of those problems (due to time constraints) in groups of 2-3	No given time limit for preparation, but a deadline for submission
Presentation and discussion of results with whole group and lecturer	Individual feedback through lecturer
Homework: individual processing of a MI request as well as preparation of a pharmaceutical care plan (different patient)	Individual processing of a MI Request
Individual feedback through lecturer	Individual feedback through fellow students from the enquiring physician’s point of view (random distribution by Moodle)

difficulty were defined, the conditions for receiving each badge were openly visible to all students.

2.4. Evaluation

An evaluation of the Moodle module was performed as usual for the face-to-face BT with Evasys® [http://www.evasys.de].

3. Preliminary results

There were 72 students enrolled in total, 70 successfully completed the course. Of the seven badges, five were awarded, but no one had fulfilled the conditions for the two most time-consuming ones by the end of term. Eight students started to work on additional material provided for this purpose. The general course evaluation was completed by 41% of the students (n=29). Of these, the majority (86%) gave the course the grade “very good/good”. The students liked the independent, individual work and the personal feedback. They spent more time on the homework than indicated prior to the assignment, and there were also several technical difficulties, e.g. opening or filling in documents. An overview of the entire course at the beginning of the module was also lacking.

4. Discussion

Feedback on the virtual BT was very positive. It may have been helpful that the period of the course coincided with the strict initial restrictions in Bavaria and that the students did not have to attend any other classes or courses at the same time. This may have led to more intensive research, which in turn led to the criticized longer time spent on assignments. From the individual feedback on the assignments it became apparent that the instructions for the tasks need to be more focused so that students avoid unnecessary work. Many of the technical problems were solved during the course, partly in cooperation with the students. Discussions with the LMU Moodle team are planned for the remaining problems. The students liked the asynchronous structure as well as the individual feedback on the given tasks. The students’ motivation for exchange seemed to be higher than during the original face-to-face event. There was more visible interaction among the students in comparison during summer. The
tracking of progress through activity completion during the course was mainly used by the lecturers and was not seen as helpful for course organization by all students. For the next term, an overview of the entire process will be provided from the start.

5. Conclusion

Teaching at a virtual hospital bed does not replace contact with real patients, but it could be easily accommodated in the curriculum and currently offers an adequate substitute. For the winter term, a further expansion based on previous students’ feedback is planned. Further video sequences are planned to make the patients appear more “real”, as well as a graphic semester overview to support self-organization. The e-learning elements will continue to be used when face-to-face classes resume, in order to prepare the students for the BT with real patients.

Competing interests

The author declares that she has no competing interests.

References

1. Peters M, ten Cate O. Bedside teaching in medical education: A literature review. Perspect Med Educ. 2014;3(2):76-88. DOI: 10.1007/s40037-013-0083-y
2. Pudritz YM, Wahl-Schott C. Neue und moderne didaktische Methoden in der Klinischen Pharmazie. In: Noller J, Beitz-Radzio C, Kugelmann D, Sontheimer S, Westernholz S, editors. Methoden in der Hochschullehre. Interdisziplinäre Perspektiven aus der Praxis (Perspektiven der Hochschullehre). Wiesbaden: Springer VS; 2019. DOI: 10.1007/978-3-658-26990-6_6
3. Hege I. Kurze Zusammenfassung von Aspekten, die bei der Umsetzung von E-Learning wichtig sind. 2020. DOI: 10.13140/RG.2.2.18024.01280
4. Sailer M, Hense JU, Mayr SK, Mandl H. How gamification motivates: An experimental study of the effects of specific game design elements on psychological need satisfaction. Com Human Behav. 2017;69(SupplC):371-380. DOI: 10.1016/j.chb.2016.12.033
5. Tolks D, Lampert C, Dadaczynski K, Maslon E, Paulus P, Sailer M. Spielerische Ansätze in Prävention und Gesundheitsförderung: Serious Games und Gamification. Bundesgesundheitsbl. 2020;63:698-707. DOI: 10.1007/s00103-020-03156-1

Corresponding author:
Dr. Yvonne Marina Pudritz
LMU Klinikum, Apotheke, Pettenkoferstr. 8a, D-80336 Munich, Germany
yvonne.pudritz@med.uni-muenchen.de

Please cite as
Pudritz YM. Virtual bedside teaching for pharmacy students during their final term at LMU Munich. GMS J Med Educ. 2021;38(1):Doc26. DOI: 10.3205/zma001422, URN: urn:nbn:de:0183-zma0014228

This article is freely available from https://www.egms.de/en/journals/zma/2021-38/zma001422.shtml

Received: 2020-07-28
Revised: 2020-10-20
Accepted: 2020-11-24
Published: 2021-01-28

Copyright ©2021 Pudritz. This is an Open Access article distributed under the terms of the Creative Commons Attribution 4.0 License. See license information at http://creativecommons.org/licenses/by/4.0/.
Unterricht am virtuellen Krankenbett für Pharmaziestudierende des 8. Fachsemesters an der Ludwig-Maximilian-Universität München

Zusammenfassung
An der Ludwig-Maximilians-Universität (LMU) gibt es seit 2014 einen strukturierten Unterricht am Krankenbett für Pharmaziestudierende. Um diesen auch während der 2020 behördlich verordneten Kontaktbeschränkungen weiter anbieten zu können, wurde der Kurs digitalisiert und der Unterricht am virtuellen Krankenbett durchgeführt. Eingebettet in ein Moodle-Modul wurde das Präsenzkonzept in kleinere Abschnitte unterteilt und z.B. in Form von Videosequenzen dargestellt. Alle Abschnitte des Kurses wurden asynchron von den Studierenden bearbeitet. Alle Aufgaben wurden individuell bearbeitet und bewertet. Virtuelle Auszeichnungen wurden eingesetzt, um die Motivation der Studierenden zu steigern. Kontakt untereinander war möglich in Form von Forenbeiträgen oder der wöchentlichen online Sprechstunde. Insgesamt konnten 70 Studierende den Kurs erfolgreich beenden. Evaluation des Angebotes war sehr positiv, bemängelt wurden hauptsächlich technische Schwierigkeiten. Das Feedback der Studierenden wird für das Wintersemester in das Kurskonzept implementiert.

Schlüsselwörter: pharmazeutische Ausbildung, Digitalisierung, digitale Lehre, Unterricht am Krankenbett

1. Einleitung
In der Medizin ist der Unterricht am Krankenbett ein wichtiger Bestandteil der universitären Ausbildung. Dieser Unterricht gilt als grundlegende Methode zum Erlernen klinischer Fähigkeiten und Kommunikationskompetenzen [1]. Klinische Pharmazie ist ein relativ junges (Prüfungs-) Fach in dem sonst sehr naturwissenschaftlich geprägten Pharmaziestudium. Es geht über den gewohnten Wissenwerb hinaus, um die Übertragung von Theorie in die klinische Praxis. Während dies in einem chemischen Experiment vorhersehbar und planbar ablaufen sollte, kommen in der Klinischen Pharmazie viele weitere, nicht zwangsläufig kontrollierbare, Faktoren hinzu. Im Gegensatz zur medizinischen Ausbildung ist der Unterricht am Krankenbett für Pharmaziestudierende die Ausnahme und nicht die Norm. An der Ludwig-Maximilians-Universität (LMU) finden seit 2005 Klinikbesuche durch Pharmaziestudierende statt. Seit 2014 wurden diese Besuche durch ein einheitliches Konzept für den Unterricht am Krankenbett in Kleingruppen ergänzt [2]. Um auch während bestehender Kontakteinschränkungen den Unterricht am Krankenbett für Pharmaziestudierende durchführen zu können, wurde das Lehrkonzept für das Seminar Klinische Pharmazie und des praktischen Unterrichtes am Krankenbett in einem Moodle Modul digitalisiert.

2. Projektbeschreibung

2.1. Setting
Der Unterricht am virtuellen Krankenbett findet im 8. Fachsemester Pharmazie (Staatsexamen) als Moodle Modul statt.

2.2. Konzeption & Aufbau
Das Konzept für die Digitalisierung beruht auf den Aspekten zur Umsetzung von E-Learning von Hege [3]. Der Unterricht am Krankenbett wird auch in der Präsenzphase über Moodle [https://moodle.de/] organisiert, das entsprechende Modul wurde für den digitalen Unterricht ausgebaut. Der normale Präsenz-Tag (4-5h) wurde in kleinere Abschnitte eingeteilt und asynchron zur Verfügung gestellt. Dies erlaubt allen Studierenden, den Kurs in Eigenregie, aber in einem vorgegebenen Zeitfenster durchzuführen. So konnten alle Studierenden den für sie geeigneten Arbeitsrahmen selbst festlegen. Da klinikeigene Software nicht genutzt werden konnte, erhielten die Studierenden entsprechende frei verfügbare Weblinks und Literaturquellen zur Bearbeitung zuhause. Die Studierenden arbeiten individuell, ein Austausch war über diverse Foren in Moodle möglich. Tabelle 1 zeigt die Gegenüberstellung zwischen dem normalen Präsenzunter-
Tabelle 1: Vergleich Ablauf Unterricht am Krankenbett (Präsenz/Digital). Verwendete Abkürzungen: ABP-arzneimittelbezogene Probleme; POL-problemorientiertes Lernen; AM-Info – Arzneimittelinformation; MEONA – klinische Dokumentationssoftware.

Präsenzunterricht	Digitale Station (Moodle)
Kleingruppen à 5 Teilnehmer*innen	Individuell
Medikationsanalyse im Rahmen der Präsenzsemimare als *flipped classroom*	Wiederholung der Seminarinhalte durch E-Learning (Durchführung einer Anamnese in CASUS⁵)
Führendie Krankenhausapotheke, Aufgaben von Apotheker*innen und Zielsetzung für den Nachmittag	Individuelle Durchführung einer Medikationsanalyse für 2 Standardpatient*innen
Datenschutzerklärung	Individuelles Feedback durch Dozentin
Simulation Gespräch Patient*innen/Apotheker*in	Entfällt, da fiktive Patient*innen
Vorstellung der relevanten (online) Quellen im Krankenhaus	Vorstellung relevanter Quellen (im Krankenhaus sowie für die Arbeit von zuhause) [aus Lizenzen erhalten die Studierende frei verfügbare Quellen für die Recherche] im Video (Screenshots)
Analyse der APB in der Gruppe	Gespräch zwischen Apotheker & Patient (Tonspur)
Diskussion der Ergebnisse mit Dozent*in	Individuelles Feedback durch Dozentin
Vorstellung der Station (Aufbau, Fachrichtung)	Vorstellung der digitalen Station über Video (Screenshots aus MEONA von einer Lehrstunde gefüllt mit momentanen sieben fiktiven Patient*innen)
Gespräch mit Patient*innen (unter Aufsicht)	Vorstellung einer fiktiven Arzneimittelanamnese, Aufarbeitung eines Neuzugangs durch die Dozentin im Video und real-time
Durchsicht relevanter Quellen auf Station (Arztbrief/Laborwerte)	Durchsicht der vorhandenen Quellen zu den Patient*innen auf Station (aufgearbeitete Auszüge aus der Krankenakte, fiktive Arztbriefe, Laborwerte etc.) individuell zuhause
Erstellung einer „Problemliste“ durch Studierende (POL)	Individuelle Bearbeitung einer „s weiteren Patient*in auf Basis der zur Verfügung gestellten Dokumente
Bearbeitung ausgewählter Probleme (Zeitlimit) in 2-3er Gruppen	Kein direktes Zeitlimit, lediglich Abgabetermin
Vorstellung und Diskussion der Ergebnisse in Kleingruppe mit Dozentin	Individuelles Feedback durch Dozentin
Hausarbeit: Individuelle Bearbeitung einer AM-Info Anfrage und Erstellung eines pharmazeutischen Betreuungsplanes für eine/n weitere/n Patient*innen	Individuelle Bearbeitung einer AM-Info Aufgabe
Individuelles Feedback durch Dozentin	Individuelles Feedback durch Mittelende in der Sicht der fragenden Ärzt*in (Zufallsverteilung durch Moodle)

richt und dem Unterricht am virtuellen Krankenbett. Durch die Verwendung des Aktivitätsabschlusses einzelner Aktivitäten behalten sowohl Studierende als auch Dozierende den Überblick über geleistete bzw. noch ausstehende Arbeiten. Feedback gab es in Form einer wöchentlichen Online-Sprechstunde, diverser Foren und auf bearbeitete Aufgaben. Um die intrinsische Motivation der Studierenden zu erhöhen, wurden virtuelle Auszeichnungen (Badges) verwendet [4], [5].

2.3. Implementierung

Der Unterricht am virtuellen Krankenbett fand zum ersten Mal im Sommersemester 2020 statt. Der Kurs startete am 08.05.2020, bis zum 05.06. mussten in regelmäßigen Abständen insgesamt 5 Aufgaben abgegeben werden. Es wurden 7 Badges mit unterschiedlichen Schwierigkeitsgraden definiert, die Bedingungen für den Erhalt dieser Auszeichnung waren offen einsehbar für alle Studierenden.

2.4. Evaluation

Es wurde eine Evaluation des Moodle Moduls analog zur normalen Praktikumsbewertung mit Evasys® [https://www.evasys.de] durchgeführt.

3. Vorläufige Ergebnisse

Es waren 72 Studierende in das Modul eingeschrieben, 70 haben es erfolgreich beendet. Von den sieben Badges wurden fünf vergeben, die Bedingungen für die zwei zeitleich aufwendigsten hatte bis zum Vorlesungsende noch niemand erfüllt. Dafür haben sich acht Studierende mit zusätzlich zur Verfügung gestellten Material beschäftigt. Die allgemeine Kursevaluation wurde von 41% der Studierenden (n=29) ausgefüllt. Davon gab die Mehrheit (86%) dem Kurs die Note „sehr gut/gut“. Gefallen hat den Studierenden das selbständige, individuelle Arbeiten und das persönliche Feedback. Der Zeitaufwand für die Hausarbeiten wurde höher als in der Aufgabenstellung angegeben bewertet, zudem gab es mehrere technische Schwierigkeiten, z.B. beim Öffnen oder Ausfüllen von Dokumenten. Es wurde sich eine Übersicht über den ge-
samten Ablauf des Kurses zu Beginn des Moduls gewünscht.

4. Diskussion

Feedback zum Unterricht am digitalen Krankenbett war sehr positiv. Hilfreich war eventuell, dass der Zeitraum des Kurses in die Zeit der strengen Ausgangsbeschränkungen in Bayern fiel und die Studierenden keine weiteren Praktika zeitgleich durchführen mussten. Dies hat eventuell zu einer intensiveren Recherche geführt, aus der die bemängelte, längere Bearbeitungszeit resultiert. Aus dem individuellen Feedback zu den Hausarbeiten wurde ersichtlich, dass die Aufgabenstellungen geschränkt werden müssen, damit die Studierenden keine unnötige Arbeit leisten. Viele der technischen Probleme konnten während des Kurses gelöst werden, teilweise in Zusammenarbeit mit den Studierenden. Für die ausstehenden Probleme sind Gespräche mit dem LMU-Moodle-Team geplant. Der asynchrone Aufbau sowie das individuelle Feedback auf die abgegebenen Aufgaben gefiel den Studierenden. Die Motivation der Studierenden zum Austausch schien höher als in der Präsenzveranstaltung, im Vergleich gab es mehr sichtbare Interaktion untereinander. Die Verfolgung des Fortschrittes durch den Aktivitätsabschluss während des Kurses nutzten hauptsächlich die Dozierenden und wurde nicht von allen Studierenden als hilfreich zur Kursorganisation gesehen. Für das nächste Semester wird daher zusätzlich eine Übersicht über den gesamten Ablauf zur Verfügung gestellt.

5. Schlussfolgerung

Der Unterricht am virtuellen Krankenbett ersetzt nicht den Kontakt mit echten Patienten, war aber problemlos im Curriculum unterzubringen und bietet momentan einen adäquaten Ersatz. Für das Wintersemester ist ein weiterer Ausbau basierend auf dem Feedback der Studierenden geplant. So sind weitere Videossequenzen geplant, um die Patienten „realer“ erscheinen zu lassen, sowie eine grafische Semesterübersicht zur Unterstützung der Selbstorganisation. Bei Wiederaufnahme des Präsenzunterrichtes sollen die e-Learning Elemente weiterhin eingesetzt werden, dann zur Vorbereitung auf den Unterricht am reellen Krankenbett mit echten Patient*innen.

Interessenkonflikt

Die Autorin erklärt, dass sie keine Interessenkonflikte im Zusammenhang mit diesem Artikel hat.

Literatur

1. Peters M, ten Cate O. Bedsideteaching in medical education: A literature review. Perspect Med Educ. 2014;3(2):78-88. DOI: 10.1007/s40037-013-0083-y
2. Pudritz YM, Wahl-Schott C. Neue und moderne didaktische Methoden in der Klinischen Pharmazie. In: Noller J, Beitz-Radzio C, Kugelmann D, Sontheimer S, Westernholz S, editors. Methoden in der Hochschullehre. Interdisziplinäre Perspektiven aus der Praxis (Perspektiven der Hochschullehre). Wiesbaden: Springer VS; 2019. DOI: 10.1007/978-3-658-26990-6_6
3. Hege I. Kurze Zusammenfassung von Aspekten, die bei der Umsetzung von E-Learning wichtig sind. 2020. DOI: 10.13140/RG.2.2.18024.01280
4. Sailer M, Hense JU, Mayr SK, Mandl H. How gamification motivates: An experimental study of the effects of specific game design elements on psychological need satisfaction. Com Human Behav. 2017;69(SupplC):371-380. DOI: 10.1016/j.chb.2016.12.033
5. Tolks D, Lampert C, Dadaczynski K, Maslon E, Paulus P, Sailer M. Spielerische Ansätze in Prävention und Gesundheitsförderung: Serious Games and Gamification. Bundesgesundheitsbl. 2020;63:698-707. DOI: 10.1007/s00103-020-03156-1

Korrespondenzadresse:
Dr. Yvonne Marina Pudritz
LMU Klinikum, Apotheke, Pettenkoferstr. 8a, 80336 München, Deutschland
yvonne.pudritz@med.uni-muenchen.de

Bitte zitieren als
Pudritz YM. Virtual bedside teaching for pharmacy students during their final term at LMU Munich. GMS J Med Educ. 2021;38(1):Doc26. DOI: 10.3205/zma001422, URN: urn:nbn:de:0183-zma0014228

Artikel online frei zugänglich unter https://www.ejms.de/en/journals/zma/2021-38/zma001422.shtml

Eingereicht: 28.07.2020
Überarbeitet: 20.10.2020
Angenommen: 24.11.2020
Veröffentlicht: 28.01.2021

Copyright
©2021 Pudritz. Dieser Artikel ist ein Open-Access-Artikel und steht unter den Lizenzbedingungen der Creative Commons Attribution 4.0 License (Namensnennung). Lizenz-Angaben siehe http://creativecommons.org/licenses/by/4.0/.