Vitamin Contents in Rat Milk and Effects of Dietary Vitamin Intakes of Dams on the Vitamin Contents in Their Milk

Mika ENDO, Mitsue SANO, Tsutomu FUKUIWATARI and Katsumi SHIBATA*

Department of Food Science and Nutrition, School of Human Cultures, The University of Shiga Prefecture, 2500 Hassaka, Hikone, Shiga 522–8533, Japan

(Received October 8, 2010)

Summary Studies of factors that affect milk vitamin contents are important. We investigated the vitamin contents in rat milk and the effects of dietary vitamin intakes of dams on the vitamin contents in their milk. A low-vitamin diet (0.2%) and a high-vitamin diet (4.0%) based on a diet containing 1% AIN-93-VX (normal diet) was given to female rats from pregnancy to lactation. Regarding the effects of the vitamin intakes, the concentrations of vitamins B1, B2, B6, B12 and E were decreased with the low-vitamin diet, but were not increased with the high-vitamin diet. The concentrations of niacin, pantothenic acid and biotin were not decreased with the low-vitamin diet, but were increased with the high-vitamin diet. The folate concentration remained constant regardless of the intake of folate. These findings clearly indicate that the levels of certain vitamins in milk are easily affected by the dietary vitamin intakes.

Key Words content, lactation, milk, rat, vitamin

It is generally believed that milk contains all of the nutrients for the proper development of infants. However, this is not the case, at least with regard to vitamins. Therefore, studies of factors that affect milk vitamin contents are important. Kirchgessner et al. (1) reported that the vitamin B1 content in rat milk was lower in rats fed with a low-vitamin B1 diet than in rats fed with a sufficient vitamin B1 diet. Duerden and Bates (2) reported that the vitamin B2 concentration in rat milk was extremely low when dams were fed a vitamin B2-restricted diet compared with control dams. Regarding the vitamin B3 content in rat milk, Kirksey and Sussen (3) reported that the vitamin B3 level was a more sensitive indicator than liver or muscle of chronically low intakes of vitamin B3 by dams, while other investigators also reported that the level of vitamin B3 in the milk of dams changed according to their intake of vitamin B3 (3–6). Two groups reported that the concentration of vitamin B12 in milk was affected by the dietary intake of vitamin B12 (7, 8). Meanwhile, O’Connor et al. (9) reported that the folate content of rat milk was increased according to increases in dietary folate. These reports clearly indicate that the levels of certain vitamins in rat milk are easily affected by the dietary vitamin intakes. For other vitamins, there is no available information.

In this study, we investigated nine kinds of vitamin contents in rat milk, the changes in the vitamin contents during lactation, and the effects of dietary vitamin intakes of the dams on the vitamin concentrations in their milk.

*To whom correspondence should be addressed.
E-mail: kshibata@shc.usp.ac.jp

MATERIALS AND METHODS

Chemicals. Vitamin-free milk casein, sucrose and -methionine were purchased from Wako Pure Chemical Industries, Ltd. (Osaka, Japan). Corn oil was purchased from Ajinomoto (Tokyo, Japan). Gelatinized cornstarch, a mineral mixture (AIN-93-M-MX) (10) and a vitamin mixture (AIN-93-VX containing chorine bitartrate) (10) were obtained from Oriental Yeast Co., Ltd. (Tokyo, Japan).

Thiamin hydrochloride (vitamin B1, C12H13ClN4O6·HCl = 337.27), thiamin diprophosphate chloride (C12H19ClN4O7·P·S = 460.77), riboflavin (vitamin B2, C12H20N2O6 = 376.37), cyanocobalamin (vitamin B12, C63H88CoN14O14P·H2O = 1.355.40), nicotinamide (C4H6N2O = 122.13), calcium pantothenate (PaA-Ca, C15H12N2O6·H2O = 476.54), folic acid (C19H19N7O6 = 441.40), d(+)-biotin (C10H16N2O2S = 244.31), (±)-α-tocopheryl acetate (C13H20O4·H2O = 472.74), pyridoxal 5′-phosphate monohydrate (C6H6N4O5·P·H2O = 265.169) and pyridoxal hydrochloride (C6H6N4O2·HCl = 203.62) were purchased from Wako Pure Chemical Industries.

Nembrutal (2.5 g/50 mL) was obtained from Dainippon Sumitomo Pharma (Osaka, Japan). Oxytocin (50 IU/mg) and lumiflavin (C13H13N2O2 = 256.3) were obtained from Sigma-Aldrich Japan K.K. (Tokyo, Japan).

All other chemicals used were of the highest purity available from commercial sources.

Animals and diets. Male and female rats of the Wistar strain (8 wk old) were obtained from CLEA Japan, Inc. (Tokyo, Japan). The rats were immediately placed in individual cages and fed a 20% casein diet containing 1% vitamin mixture (Table 1) for 1 wk to...
allow them to acclimatize to their new circumstances. The female rats were then divided into three groups and fed one of three experimental diets containing 0.2, 1.0 or 4.0% vitamin mixture (Table 1) during mating, gestation and lactation. After the female rats delivered their pups, the pups that the mother rat brought up was determined by ANOVA and subsequent Tukey-Kramer multiple-comparison tests. Differences with values of p < 0.05 were considered to be statistically significant. Prism version 5.0 (GraphPad Software Inc., San Diego, CA, USA) was used for all analyses.

RESULTS

Effects of feeding the three vitamin diets to the dams on the body weight gains of pups

The low-vitamin (0.2%) and high-vitamin (4.0%) diets based on the AIN-93 diet (10) (1.0% vitamin diet; normal diet) were given to the female rats from pregnancy to lactation. Figure 1 shows the effects of feeding the three vitamin diets to the dams on the body weight gains of the pups. The weights of the pups were almost the same among the three groups.

Vitamin contents in milk of dams fed the normal diet

The reference values of rat’s milk vitamin contents were assumed to be the average of the values on the days 9, 13, 17, and 21. The values are means ± SD for 5–7 rats.

Table 1. Compositions of the experimental diets.

	0.2% VX	1.0% VX	4.0% VX
Casein	20	20	20
l-Methionine	0.2	0.2	0.2
Gelatinized cornstarch	46.9	46.9	46.9
Sucrose	24.2	23.4	20.4
Corn oil	5	5	5
Mineral mixture (AIN-93-MX)	3.5	3.5	3.5
Vitamin mixture (AIN-93-VX)	0.2	1	4

(mg/100 g of diet)

All-trans-retinyl palmitate (500,000 IU/g) 0.16 0.8 3.2
Cholecalciferol (400,000 IU/g) 0.05 0.25 1
All-rac-α-tocopheryl acetate (500 IU/g) 3 15 60
Phyloquinone 0.015 0.075 0.3
Thiamin-HCl 0.12 0.6 2.4
Riboflavin 0.12 0.6 2.4
Pyridoxine-HCl 0.14 0.7 2.8
Cyanocobalamin 0.0005 0.025 0.01
Nicotinic acid 0.6 3 12
Ca pantothenate 0.32 1.6 6.4
Folic acid 0.04 0.2 0.8
D-Biotin 0.004 0.02 0.08
Choline bitartrate 5 25 100
Sucrose up to up to up to
200 1,000 4,000

Table 2. The vitamin contents in rat milk.

Vitamins	Values	n
Vitamin B1 (µg/mL)	0.204 ± 0.082	16
Vitamin B2 (µg/mL)	4.67 ± 0.78	16
Vitamin B6 (µg/mL)	1.49 ± 0.23	13
Vitamin B12 (µg/mL)	0.032 ± 0.008	16
Niacin (µg/mL)	7.02 ± 2.28	16
Pantothenic acid (µg/mL)	15.2 ± 6.6	16
Folate (µg/mL)	2.91 ± 0.38	16
Biotin (µg/mL)	0.154 ± 0.047	13
Vitamin E (µg/mL)	15.3 ± 0.55	16

The values are means ± SD for postpartum days 9, 13, 17, and 21.

Fig. 1. Effect of feeding with the three levels of vitamin mixture diets to dams on the body weight gains of pups.

- 0.2% vitamin mixture diet; ○, 1.0% vitamin mixture diet (normal diet); ▼, 4.0% vitamin mixture diet. Values are expressed as means ± SE for 5–7 rats.
rat milk collected on postpartum days 9, 13, 17 and 21 when the dams were fed the normal diet (1% vitamin mixture diet).

Changes in the vitamin contents during lactation of the dams fed the normal diet

Figure 2 shows the changes in the vitamin contents on specific postpartum days. The vitamin B₁ (Fig. 2A) content was lower on postpartum day 4 than on the other days. On the other hand, the contents of vitamins B₂ (Fig. 2B), B₁₂ (Fig. 2D) and E (Fig. 2I) were higher on postpartum day 4 than on the other days. The contents of vitamin B₆ (Fig. 2C), niacin (Fig. 2E), biotin (Fig. 2G) and folate (Fig. 2H) remained relatively constant during lactation.

Effects of feeding the three vitamin diets to the dams on the vitamin contents in their milk

Figure 2 also shows the effects of the intake of the dietary vitamins on the vitamin contents in the rat milk during lactation. Although the concentrations of vitamins B₁ (Fig. 2A), B₂ (Fig. 2B), B₆ (Fig. 2C) and B₁₂ (Fig. 2D) did not increase with the high-vitamin diet compared with the normal vitamin diet, these vitamin concentrations decreased with the low-vitamin diet.

The concentrations of niacin, pantothenic acid and biotin were not decreased by feeding the low-vitamin diet to the dams, although these vitamin concentrations were increased by feeding the high-vitamin mixture diet to the dams (Fig. 2E, 2F and 2G, respectively). The folate concentration remained constant regardless of the amount of folate intake (Fig. 2H). The concentration of vitamin E was decreased with the low-vitamin diet, but was not increased with the high-vitamin diet compared with the normal vitamin diet (Fig. 2I).

DISCUSSION

The body weight gains of the pups were almost the same among the three groups regardless of whether the dams were fed diets containing low (0.2%), normal (1.0%) or high (4%) levels of the vitamin mixture. The present findings mean that the milk of lactating rats fed the low-vitamin diet (0.2%) was able to maintain normal growth of the pups. This finding is likely to have arisen because the AIN-vitamin mixture (10) contains...
around five-fold higher vitamin contents than the required amounts.

The first purpose of the present study was to analyze the milk vitamin concentrations of rats fed the normal diet. As summarized in Table 2, we measured 9 kinds of vitamins, namely vitamin B1, vitamin B2, vitamin B6, vitamin B12, niacin, pantothenic acid, folate, biotin and vitamin E.

We did not measure the contents of vitamins A, D and K in rat milk. The reported values for vitamins A and D in rat milk are around 800 ng/mL (20) and 2 ng/mL (21), respectively. We could not find any data for the vitamin K content in rat milk.

The concentration of vitamin B1 in the milk of dams fed the normal diet was around 200 ng/mL (Fig. 2A and Table 2). There is one previous report about the vitamin B1 content in rat milk. Kirchgessner et al. (1) reported that the content increased according to the postpartum days, with values of 840, 1,600 and 2,500 ng/mL on days 2, 6 and 13, respectively, when the dams were fed a diet containing 0.67 mg/100 g diet (the same concentration in the 1% vitamin mixture diet as the normal diet). These values were about 10-fold higher than the present data for the 1% vitamin mixture diet. Kirchgessner et al. (1) used Sprague-Dawley rats as the experimental animals and fed a relatively high-fat diet (8.7% fat), while we used Wistar rats and fed a 5% fat diet. These differences may be reasons why the milk vitamin B1 concentrations were so different.

The concentration of vitamin B2 in the milk of dams fed the normal diet was around 5,000 ng/mL (Fig. 2B and Table 2). There is one previous report about the vitamin B2 content in rat milk. Duerden and Bates (2) reported that the content was around 8,000 ng/mL when the dams were fed a diet containing 1.5 mg/100 g diet. The concentration of dietary vitamin B2 was 2.5-fold higher than that in the present normal diet, and the content of vitamin B2 in the milk was 1.6-fold higher than that in the present study. Duerden and Bates (2) also reported that the vitamin B2 content in milk was significantly lower when the dams were fed a vitamin B2-restricted diet. In the present study, the vitamin B2 content in milk was lower in the dams fed the low-vitamin diet than in the dams fed the normal and high-vitamin diets.

The concentration of vitamin B6 in the milk of dams fed the normal diet was around 1,500 ng/mL (Fig. 2C and Table 2). In previous reports, a constant value for the vitamin B6 content in rat milk was not obtained. Thomas and Kirksey (6) reported that the vitamin B6 content was 500 ng/mL when the dams were fed a diet containing 0.3 mg pyridoxine-HCl/100 g diet (this concentration is three-sevenths of that in our normal control diet). Felice and Kirksey (5) reported that the content was around 900 ng/mL when the dams were fed a diet containing 1.0 mg pyridoxine-HCl/100 g diet (this concentration is 1.4-fold higher that the concentration in our normal control diet). Debes and Kirksey (4) reported that content was around 500 ng/mL when the dams were fed a diet containing 2.0 mg pyridoxine-HCl/100 g diet (this concentration is 2.85-fold higher than the concentration in our normal control diet). In the present study, the vitamin B6 content increased according to the change in diet from the low-vitamin (0.14 mg pyridoxine-HCl/100 g diet) to the normal diet (0.7 mg pyridoxine-HCl/100 g diet). However, the concentration did not increase when the dietary vitamin intake was increased from the normal diet to the high-vitamin diet (2.8 mg pyridoxine-HCl/100 g diet) (Fig. 2C). This finding is consistent with those in Kirksey and Susten (3) and Pang and Kirksey (22). They fed five levels of pyridoxine-HCl (0.12, 0.24, 0.48, 0.96 and 1.92 mg/100 g diet) to female rats, and found that the vitamin B6 concentration in the milk reached a plateau of around 300 ng/mL with the 0.48 mg pyridoxine-HCl/100 g diet.

The concentration of vitamin B12 in the milk of dams fed the normal diet was around 30 ng/mL (Fig. 2D and Table 2). Regarding previous reports, the vitamin B12 content in rat milk was dramatically increased according to the intake of vitamin B12 of the dams. When the dams were changed from a diet containing 0.2 μg/100 g diet to a diet containing 20 μg/100 g diet, the concentration of vitamin B12 increased from about 7 ng/g milk curd to 120 ng/g milk curd (22). When the dams were fed a vitamin B12-deficient diet, the content was around 5 ng/mL (8).

Regarding previous reports of the folate content in rat milk, values of 150 ng/mL milk (9) and 440 ng/mL milk (23) were observed when the dams were fed a diet containing 0.2 mg/100 g diet. In the present study, the folate concentration in the milk of dams fed the normal diet was around 3 μg/mL (Fig. 2H and Table 2). This value was about 10-fold higher than the previously reported values (9, 23). The previously reported values were obtained using Sprague-Dawley rats as the experimental animals, while we used Wistar rats. This difference may be the reason why the folate concentrations in the milk were so different.

No data for the contents of niacin, pantothenic acid, biotin and vitamin E in rat milk have been reported. The concentration of niacin in the milk of dams fed the normal diet was around 7 μg/mL (Fig. 2E and Table 2). The concentration of pantothenic acid in the milk of dams fed the normal diet was around 15 μg/mL (Fig. 2F and Table 2). The concentration of biotin in the milk of dams fed the normal diet was around 150 ng/mL (Fig. 2G and Table 2). The concentration of vitamin E in the milk of dams fed the normal diet was around 15 μg/mL (Fig. 2I and Table 2).

The second purpose of the present study was to evaluate the changes in the vitamin contents during lactation. The content of vitamin B1 was remarkably increased from day 9 (Fig. 2A). A similar phenomenon has already been reported by Kirchgessner et al. (1). On the other hand, the contents of vitamin B2 (Fig. 2B) and vitamin E (Fig. 2I) remarkably decreased from day 9. These phenomena would be associated with the vitamin requirement in the pups and regulated through the expression of carrier proteins for the vitamins in the
mammary glands. The other vitamins remained at relatively constant concentrations during lactation. Regarding vitamin B12, Williams and Spray (8) already reported a similar phenomenon to the present study. However, Felice and Kirksey (5) reported that the content of vitamin B6 was significantly higher on day 21 than earlier in the lactation period. For vitamin B2, niacin, pantothenic acid, biotin, folate and vitamin E, the changes in the vitamin contents during lactation are reported here for the first time.

The final purpose of the present study was to clarify the effects of dietary vitamin contents on the milk vitamin contents in rats. In previous reports, the milk contents of vitamins B1 (1) and B2 (2) were decreased when the dams were fed on corresponding vitamin-restricted diets, and the vitamin B6 (3) and B12 (7) contents in the rat milk reflected the intakes of the respective vitamins. In the present study, the concentrations of vitamins B1, B2, B6, B12 and E were decreased with the low-vitamin diet, but were not increased with the high-vitamin diet. The present findings for vitamin B1 are similar to the findings of Kirchgessner et al. (1), who also found that the vitamin B1 content was decreased by feeding a low-vitamin B1 diet, but was not increased by feeding an excess vitamin B1 diet. The concentrations of niacin, pantothenic acid and biotin were not decreased with the low-vitamin diet, but were increased with the high-vitamin diet. These results indicate that the concentrations of niacin, pantothenic acid and biotin in milk are not easily decreased, even with low intake, while the concentrations of vitamins B1, B2, B6, B12 and E in milk are affected by their intakes. The folate concentration remained constant regardless of the folate intake. It is known that there is a well-developed epithelial folate transport system for the regulation of normal folate homeostasis (24, 25). Therefore, the concentrations of the vitamins could also be well-regulated by transport systems in intestinal absorption and in secretion to the milk. However, the present findings suggest there is a specific regulation mechanism for each of the vitamins to maintain the milk vitamin contents. Regarding the vitamin E concentration in human milk, its concentration is associated with the total fat intake by mothers, while the vitamin E intake seems to have no effect (26).

Acknowledgments
This investigation is a part of a study entitled “Studies on construction of evidence to the revised Dietary Reference Intakes for Japanese—Elucidation of balance of dietary intake between micronutrients and macro elements”—(principal investigator, Katsumi Shibata),” which was supported by The Ministry of Health, Labor and Welfare. The authors would like to thank Ema Sugimoto, Alato Okuno, Eri Imai, Atsushi Shimizu, Kei Takahashi, Miki Terakata, Aya Moriya, Keiko Miki, Tomoyo Chiba, Masako Otsubo and Akemi Kawai for technical assistance.

REFERENCES
1) Kirchgessner M, Trubswetter N, Stangl GI, Roth-Maier DA. 1997. Dietary thiamin supply during gestation effects thiamin status of lactating rats and their suckling offspring. Int J Vitam Nutr 67: 248–254.
2) Duerrden JM, Bates CJ. 1985. Effect of riboflavin deficiency on reproductive performance and on biochemical indices of riboflavin status in the rat. Br J Nutr 53: 97–105.
3) Kirksey A, Susten SS. 1978. Influence of different levels of dietary pyridoxine on milk composition in the rat. J Nutr 108: 509–513.
4) Debes SA, Kirksey A. 1979. Influence of dietary pyridoxine on selected immune capacities of rat dams and pups. J Nutr 109: 744–759.
5) Felice JH, Kirksey A. 1981. Effects of vitamin B-6 deficiency during lactation on the vitamin B-6 content of milk, liver and muscle of rats. J Nutr 111: 610–617.
6) Thomas MR, Kirksey A. 1976. Influence of pyridoxine supplementation on vitamin B-6 levels in milk of rats deficient in the vitamin. J Nutr 106: 509–514.
7) Daniel LJ, Gardiner M, Ottey LJ. 1953. Effect of vitamin B12 in the diet of the rat on the vitamin B12 contents of milk and livers of young. J Nutr 50: 275–289.
8) Williams DL, Spray GH. 1971. Some observations on the vitamin B12 content of rat’s milk. Br J Nutr 25: 295–298.
9) O’Connor DL, Picciano MF, Tamura T, Shane B. 1990. Impaired milk folate secretion is not corrected by supplemental folate during iron deficiency in rats. J Nutr 120: 499–506.
10) Reeves PG. 1997. Components of the AIN-93 diets as improvements in the AIN-76A diet. J Nutr 127: 838S–841S.
11) Fukuwatari T, Toriocchi M, Ohta M, Sasaki R, Shibata K. 2004. Metabolic disturbance of tryptophan-nicotinamide conversion pathway by putative endocrine disruptors, bisphenol A and styrene monomer. Shokuhin Eiseigaku Zasshi 45: 1–7.
12) Ohkawa H, Ohishi N, Yagi K. 1982. A simple method for micro-determination of flavin in human serum and whole blood by high-performance liquid chromatography. Anal Biochem 133: 336–344.
13) Rybak ME, Pfeiffer CM. 2004. Clinical analysis of vitamin B6: determination of pyridoxal 5′-phosphate and 4-pyridoxic acid in human serum by reversed-phase high-performance liquid chromatography with chlorite post column derivatization. Anal Biochem 333: 326–344.
14) Watanabe F, Abe K, Katsura H, Takenaka S, Mazumder ZH, Yamaji R, Ebara S, Fujita T, Tanimori S, Kirihata M, Nakano Y. 1998. Biological activity of hydroxylamin B12 degradation product formed during microwave heating. J Agric Food Chem 46: 5177–5180.
15) Shibata K, Kawada T, Iwai K. 1988. Simultaneous micro-determination of nicotinamide and its major metabolites, N2-methyl-2-pyridone-5-carboxamide and N2-methyl-3-pyridone-4-carboxamide, by high-performance liquid chromatography. J Chromatogr 424: 23–28.
16) Skeggs HR, Wright LD. 1944. The use of Lactobacillus arabinosus in the microbiological determination of pantothenic acid. J Biol Chem 156: 21–26.
17) Tamura T. 1990. Microbiological assay of folic acids. In: Folic Acid Metabolism in Health and Disease. Contem-
porary Issues in Clinical Nutrition (Picciano MF, Stolstad ELR, Gregory JF III, eds), Vol 13, p 121–137. Wiley-Liss, New York.

18) Fukui T, Iinuma K, Oizumi J, Izumi Y. 1994. Agar plate method using *Lactobacillus plantarum* for biotin determination in serum and urine. *J Nutr Sci Vitaminol* 40: 491–498.

19) Yoshikawa S, Morinobu T, Hamamura K, Hirahara F, Iwamoto T, Tamai H. 2005. The effect of

20) Green MH, Green JB, Akohoue SA, Kelley SK. 2001. Vitamin A intake affects the contribution of chylomicrons vs. retinol-binding protein to milk vitamin A in lactating rats. *J Nutr* 131: 1279–1282.

21) Clements MR, Fraser DR. 1988. Vitamin D supply to the rat fetus and neonate. *J Clin Invest* 81: 1768–1773.

22) Pang R, Kirksey A. 1974. Early postnatal changes in brain composition in pregnancy of rats fed different levels of dietary pyridoxine. *J Nutr* 104: 111–117.

23) O’Connor DL, Picciano MF, Sherman AR, Burgert SL. 1987. Depressed folate incorporation into milk secondary to iron deficiency in the rat. *J Nutr* 117: 1715–1720.

24) Balamurugan K, Said HM. 2003. Ontogenic regulation of folate transport across rat jejuna brush-border membrane. *Am J Physiol Gastrointest Liver Physiol* 285: G1068–G1073.

25) Ashokkumar B, Mohmmed ZM, Vaziri ND, Said HM. 2007. Effect of folate oversupplementation on folate uptake by human intestinal and renal epithelial cells. *Am J Clin Nutr* 86: 159–166.

26) Antonakou A, Chiou A, Andrikopoulos NK, Bakoula C, Matalas AL. 2011. Breast milk tocopherol content during the first six months in exclusively breastfeeding Greek women. *Eur J Nutr* 50: 195–202.