Strain engineering induced interfacial self-assembly and intrinsic exchange bias in a manganite perovskite film

B. Cui, C. Song, G. Y. Wang, H. J. Mao, F. Zeng & F. Pan

Key Laboratory of Advanced Materials (MOE), School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China.

The control of complex oxide heterostructures at atomic level generates a rich spectrum of exotic properties and unexpected states at the interface between two separately prepared materials. The frustration of magnetization and conductivity of manganite perovskite at surface/interface which is inimical to their device applications, could also flourish in tailored functionalities in return. Here we prove that the exchange bias (EB) effect can unexpectedly emerge in a (La,Sr)MnO$_3$ (LSMO) “single” film when large compressive stress imposed through a lattice mismatched substrate. The intrinsic EB behavior is directly demonstrated to be originating from the exchange coupling between ferromagnetic LSMO and an unprecedented LaSrMnO$_4$-based spin glass, formed under a large interfacial strain and subsequent self-assembly. The present results not only provide a strategy for producing a new class of delicately functional interface by strain engineering, but also shed promising light on fabricating the EB part of spintronic devices in a single step.

Metal and semiconductor heterostructures have led to prominent advances in consumer electronics over the last decades. Efforts are increasingly shifting to artificially constructed heterointerfaces between different complex oxides, accompanied by the observation of numerous fascinating phenomena, high-mobility conductivity, exchange bias, and ferroelectricity enhancement, etc. Among these oxide systems, the technological importance of magnetic tunnel junctions and spin injectors as potential applications of magnetically active mixed valence manganites, have continuously triggered extensive research.

The coupling of several degrees of freedom (such as spin, charge, lattice, and orbital) enriches the physical properties of mixed valence perovskite manganites. Moreover, electrostatic and strain-related effects promote the electronic and structural reconstructions at interfaces among dissimilar oxides. Manganite films display very different properties, strongly affected by substrates and film thicknesses. The existence of an interfacial layer (often referred to as the dead layer), which exhibits an insulating and non-ferromagnetic behavior, has been suggested to be responsible for the competitions between variable phases. The origin of this interfacial layer has been vigorously pursued and several mechanisms are proposed: electronic and/or chemical phase separation, orbital reconstruction and delocalization, and a Mn$^{3+}$ enrichment region, whereas a conclusive mechanism remains under debate. A long-term challenge for this rather contradictory situation is that the subtle variation at the interface makes its fingerprint hard to be directly detected. On the other hand, this interfacial layer is thought to be inimical to the device application. Large amount of works are pursuing the reduction of dead layer through various ways like reducing the substrate/film lattice mismatch and changing interfacial chemical stoichiometry. However, these attempts are so far incapable to completely eliminate the unfavorable structures. Hence it is meaningful to go to the opposite direction, exploring a way to enlarge the interfacial reconstruction and benefit from it with tailored functionalities in return.

Specifically, the orbital reorganization results in an antiferromagnetic (AFM) layer in contrast to its ferromagnetic (FM) counterpart according to x-ray magnetic circular/linear dichroism (XMCD/XLD) experiments. In-plane compressive or tensile epitaxial strain favours the $3z^2-r^2$ (C-type AFM) or the x^2-y^2 (A-type AFM) orbital ordering, respectively. The EB effect, discovered 60 years ago and now widely used in spintronic devices, is commonly observed in FM/AFM bilayers and its nature is still exploited. It is then quite natural to expect an intrinsic exchange bias (EB) effect at the self-assembled FM/AFM interface, which is anticipated to enhance the spin polarization at FM/AFM interface and fabricate EB part of spintronic devices in a single step. Although the AFM layer in manganite is depending on the MnO$_6$ octahedral distortion which could be tuned by the strain...
engineering27, the intrinsic EB effect observed in AFM-based manganites is still a question of interest lacking experimental insight and in-depth investigation28–31.

In this context, to enlarge the compressive strain, LaSrAlO\textsubscript{4} (001) (LSAO; \(a = 3.756\) Å) substrates with a comparatively small lattice were intentionally employed to grow 45 unit cell (u.c.) \(La_{2/3}Sr_{1/3}\) MnO\textsubscript{3} (LSMO; \(a = 3.870\) Å for the bulk) films. The interfacial reconstruction of structure and composition is directly observed, resulting in two magnetic sublattices and intrinsic exchange bias in manganite. The structure evolution and property variation of different thickness LSMO also provides the growth dynamics for LSMO grown under large compressive strain.

Results

A typical atomic resolution aberration-corrected high-angle annular dark field scanning transmission electron microscope (HAADF-STEM) image with its analysis is presented in Fig. 1. Remarkably, instead of a uniform film, the LSMO is divided into three sublattices in the order of increasing the distance from the film/substrate interface: (1) LaAlO\textsubscript{3}-like (LAO-like), (2) LaSrMnO\textsubscript{4}, and (3) LSMO. The boundaries and coherence (highlighted by colored spheres) of these three phases are clearly recognizable in the HAADF-STEM image. A magnified view of their schematic counterparts is illustrated in Fig. 1a. According to the electron energy-loss spectroscopy (EELS) (\(d = 0.8\) and 2.0 nm) and energy dispersive x-ray spectroscopy (EDX) with a spatial accuracy of one lattice site, it is surprisingly found that the film/substrate interface is a La and Al (diffused from the substrate during the 700°C growth) enrichment region (Supplementary Fig. S1a), in contrast to the lacking of Mn and depletion of Sr ascribed to the large compressive strain [the size of Sr (Mn) is much larger than that of La (Al)], exhibiting a chemical concentration far away from LSMO. A combination of concentration characterization and lattice feature with the thickness of 6 u.c., reveals the formation of LaAlO\textsubscript{3}-like (LAO) layer just above the interface. It directly bears the strain from the substrate serving as a buffer layer.

The penetration of Sr and shortage of La (Fig. 1e,f) produce a \(K_2\)NiF\textsubscript{4} lattice in area (2) on the top of the LAO-like buffer. Taken together, concentration of this area and the LAO-like layer keeps a chemical equilibrium of LSMO. A closer inspection of the EELS results reveals that the Mn-\(L_{2,3}\) spectrum in this area (\(d = 3.2\) nm) shifts to the low-energy comparing with those of the upper region, indicating that the valence of Mn is mainly in +3 (Ref. 32). The coexistence of \(K_2\)NiF\textsubscript{4} lattice in conjunction with enriched Sr and Mn2+ demonstrate that a cell of AFM LaSrMnO\textsubscript{4} dominates in this area, followed by the growth of normal LSMO in area (3). This observation is corroborated by the inspection of O-EELS (Supplementary Fig. S1b) and surface sensitive XLD spectroscopy (Supplementary Fig. S2). In LaSrMnO\textsubscript{4}, Mn ions at the corner of crystal cell share the \(B\)-site of LAO and LSMO, while La and Sr ions locate at its \(A\)-site, with \(c\)-axis of 13.09 Å. It is also reasonable to form self-assembled three phases in LSMO from the viewpoint of large lattice mismatch between LSMO/LSAO, producing a lattice gradient of \(a_{\text{LSM}O} < a_{\text{LAO}} < a_{\text{LaSrMnO}4} < a_{\text{LSMO}}\) along the growth direction and the relaxation of large strain. Conversely, LSMO grown on SrTiO\textsubscript{3} substrate (the most used substrate for LSMO growth, \(a = 3.904\) Å) with a much smaller mismatch and a different sign of strain, exhibits a homogeneous film without obvious phase separation (Supplementary Fig. S3). A lattice distortion but without apparent self-assembly is observed in the LSMO film grown on LaAlO\textsubscript{3} (\(a = 3.789\) Å), which coincides with its moderate strain between the case on LaSrAlO\textsubscript{4} and SrTiO\textsubscript{3} (Supplementary Fig. S4), suggesting that the film/substrate interface could be tuned by strain. It is noteworthy that the LAO-like and LaSrMnO\textsubscript{4} phases constitute the dead layer of present LSMO film. In particular, magnetic frustration in the present interface is associated with a reconstruction of microstructure and composition, which is essentially different from the dead layer proposed previously17–20, thus providing a new clue as to how to grow fascinating novel structures with tailored functionalities by the intentional interface design.

Such unprecedentedly self-assembled structures have a profound influence on magnetic properties. Corresponding magnetic loops measured at 5 K are shown in Fig. 2a. One of the loops (solid sphere) was measured after field-cooling from room temperature in a +20 kOe field to 5 K. The most eminent feature observed here is the shift of the loop along the magnetic field axis towards negative fields (Fig. 2a). In contrast, on cooling in the presence of a −20 kOe field, the loop is biased in the positive direction. This observation confirms the presence of intrinsic EB in a nominally “single” LSMO film at low temperatures with a bias field \(H_{\text{bias}}\) of 246 Oe, defined as the absolute offset of the loops along the field axis. These measurements are arbitrary from several subsequent runs with different growth that all confirm the reproducible EB behavior. The absence of biasing effect in LSMO grown on (001) SrTiO\textsubscript{3} (Supplementary Fig. S5) suggests the key role of considerable strain and layered structures for the exchange coupling. The blocking temperature \(T_B\) above which the symmetric magnetic loops are recovered independently of the cooling process, is of great importance for studying the strong coupling in LSMO. The dependence of the EB field on temperature is depicted in Supplementary Fig. S6 and summarized in Fig. 2b. The results of coercivity \(H_C\) are also shown for a comparison. The EB field decreases with increasing the temperature, finally vanishing at around \(T_B = 110\) K. Also, the enhancement of \(H_{\text{bias}}\) with the decrease of temperature indicates that the possible lateral phase separated LSMO, reduced in lower temperatures, should not be in charge of the EB effect observed13–15. This \(T_B\) is self-consistent with the Néel temperature \(T_N\) of LaSrMnO\textsubscript{4} of \(\sim 110K\) and sets a temperature limit for the onset of the pinning activity for the AFM-based phase in LSMO. In general, G-type AFM LaSrMnO\textsubscript{4} could not contribute to
the EB behavior because of its compensated spins arrangement36,37, but recently spin canting37 and the Dzyaloshinskii-Moriya interaction38 are proposed to drive the exchange bias at FM/G-AFM interface. On the other hand, the monotonous decay of H_C with temperature is different to some other known EB systems which have a peak at T_B29. It means that AFM-based phase in our case is not in a stable equilibrium, and the thermal effect strongly weakens its coupling with FM7,36.

We now turn towards the unstable spin state in the AFM and the origin of EB effect. Hysteresis loops were measured at $T = 5$ K, with various cooling fields ($H_{\text{cool}} = 0.02, 0.2, 1, 2, 5, 20, 50,$ and 70 kOe) (Fig. 3a). H_{EB} as a function of H_{cool} is subsequently summarized in the inset of Fig. 3a. We note that H_{EB} increases rapidly to 293 Oe as $H_{\text{cool}} = 2$ kOe, and then decreases monotonously to 142 Oe after cooling in a field of 70 kOe. Such a decrease of H_{EB} under a large cooling field could be explained by the fact that the exchange coupling is reduced by the large Zeeman coupling36,39. This behavior normally occurs at a compensated AFM/FM interface associated with the interfacial canted AFM moments, which would be frozen at low temperatures37,39-41. The frozen state, most likely exists at LaSrMnO$_4$/LSMO interface in our system, is reaffirmed by the field-cooling (FC) and zero-field-cooling (ZFC) magnetization versus temperature (M–T) curves measured under various magnetic fields of $50, 100, 200, 300,$ and 500 Oe (Fig. 3b). There are two prominent features in the data: a peak in the ZFC M–T curves (T_{peak}) and a bifurcation between the ZFC and FC curves below the irreversibility temperature T_{irr}. These phenomena are quite characteristic for M–T curves involving spin glass40. Two characteristic temperatures (T_{peak} and T_{irr}) are very close especially with a lower
measurement field, while both the T_{peak} and T_{irr} are reduced when the measurement field is enhanced, suggesting that the frozen state is clearly suppressed by a strong field. As presented in the inset of Fig. 3b, the dependence of T_{irr} on the field follows the Almeida-Thouless line:

$$H(T_{\text{irr}})/\Delta \propto (1 - T_{\text{irr}}/T_F)^{\gamma/2}$$

(1)

where T_F is the zero-field spin glass freezing temperature and Δ parameters the width of the distribution of the exchange interaction. The linear fit of the Almeida-Thouless line bolsters the existence of the spin glass behavior in LSMO with a freezing temperature $T_F \approx 147$ K.

To further investigate the dynamics of spin glass in LSMO, ac susceptibility measurements were carried out in the range of 5–300 K with a field of 10 Oe and different frequencies (0.1–500 Hz), as presented in Fig. 3c. Apparently, frequencies dependent maxima are clearly recognizable for both the real (χ') and the imaginary (χ'') components of the magnetic susceptibility. Such maxima are intimately correlated to the frozen of moments with decreasing temperature. As the frequency of the field is ramped up, the maxima become weaker and shift slightly to higher temperatures, which is due to the elongation of action time induced frozen delay. The presence of spin glass as a result of magnetic frustration can be linked to the competition between the AFM super-exchange and the FM double-exchange interactions at the interface of LaSrMnO$_4$/LSMO. We then conclude that the canted AFM moments associated with spin glass behavior is responsible for the EB effect.

Measurements performed over a range of LSMO thicknesses offer further insight into the EB effect and growth dynamics of self-assembled structures. A series of LSMO with different thicknesses on LSAO were then prepared. The EB behavior as a function of LSMO thickness is shown in Fig. 4a and its inset. The increase of film thickness to 45 u.c. boosts the H_{EB} to the maximum of 246 Oe, and then H_{EB} is reduced to 30 Oe for 150 u.c as expected, ascribed to the thick FM layer in the EB system. Particularly, there is no resolvable exchange bias in fully strained 7 u.c. LSMO, indicating the absence of AFM phase in such ultrathin films. We confirm this speculation by a HAADF-STEM image and corresponding EDX analysis of the AFM LaSrMnO$_4$ phase. From Fig. 3b, the dependence of H_{EB} on thickness follows the Almeida-Thouless line. As the frequency of the field is increased from room temperature in 20 kOe, $M-T$ and $R-T$ curves for different LSMO thicknesses (7, 30, 45, 60, and 150 u.c.) are presented in (b) and (c), respectively. For clarity, the moment in $M-T$ curves are multiplied by a coefficient as shown.

![Image](www.nature.com/scientificreports)

Figure 4 | Magnetic and electric properties for LSMO samples with various thicknesses. (a), Normalized $M-H$ curves measured at 5 K after field cooling from room temperature in 20 kOe. $M-T$ and $R-T$ curves for different LSMO thicknesses (7, 30, 45, 60, and 150 u.c.) are shown. The inset of (a) shows the dependence of H_{EB} on thickness, which follows the Almeida-Thouless line. The linear fit of the Almeida-Thouless line bolsters the existence of the spin glass behavior in LSMO with a freezing temperature $T_F \approx 147$ K.

A comparison among the microstructures and physical properties of samples with different thicknesses, especially for the samples from 7 u.c. to 45 u.c., provides the growth dynamics for LSMO grown under large compressive strain as follows: initially a highly strained LSMO film is grown on LSAO showing a non-equilibrium state. Subsequently, both Mn and Sr are squeezed out by the interfacial strain, and the position of Mn is compensated by the diffusion of Al from the substrate, forming the LAO-like structure, above which AFM LaSrMnO$_4$ with one crystal cell emerges, and then it contacts with the FM LSMO with the formation of FM/spin glass interface. Both LAO-like and LaSrMnO$_4$ phases serve as buffer layers for the growth of normal LSMO, and most of the strain is released by these self-assembled structures. Differently, such interface engineering could not be observed in the LSMO deposited on SrTiO$_3$ (001) substrates due to the small film/substrate mismatch, whose strain energy could be released by a simple lattice distortion. Correspondingly, we could not find any EB behavior for the LSMO with various thicknesses grown on the SrTiO$_3$ substrates (Supplementary Fig. S9), while for the films grown on LaAlO$_3$ (001) substrates the H_{EB} are in between (SrTiO$_3$ and LSAO).

Discussion

The structural reconstruction of LSMO displays an enlarged image of interfacial state of manganite perovskite film, which might provide a new and in-depth understanding of the magnetic and electric frustration at the interface. The strain engineering design results in the formation of antiferromagnetic LaSrMnO$_4$ and ferromagnetic...
LSMO interface through self-assembly in a nominally “single” LSMO film. The self-assembled structures with tailored functionalities that are inaccessible in uniform films include but not limited to the manganites. Hence this self-assembly and corresponding growth dynamics provide a conceptually novel vision for interface engineering on the growth of complex oxide films. The direct observation of antiferromagnetic phase near the interface and the intrinsic exchange bias derived from the coupling between LSMO/spin glass would advance the insight into the contradictory situation of the interface of LSMO. It paves a new way for investigating the dead layer and more studies are needed to fully understand the self-assembly and the exchange bias observed in manganite films. Besides its fundamental significance, the creation of a well-defined exchange bias system by self-assembly demonstrates the broad ability for the fabrication of the biasing components of spintronics in a simplified way.

Methods

Sample preparation. All of the samples were grown using pulsed layer deposition (PLD) from a stoichiometric La0.7Sr0.3MnO3 target by applying a KrF excimer laser at a rate of 1.16 nm/min. During growth, the substrates (LaSrAlO4, SrTiO3, and LaAlO3) were held at 700 °C and in an oxygen background pressure of 200 mTorr. The growth was monitored in situ by RHEED (reflection high-energy electron diffraction) analysis allowing precise control of the thickness at the unit cell scale and accurate characterization of the growth dynamics (Supplementary Fig. S16). After the growth, the samples were slowly cooled to room temperature in 300 Torr of oxygen at a rate of ∼5°C/min to improve the oxidation level.

Sample characterization. Microstructures of cross-sectional samples were investigated by aberration-corrected HAADF-STEM in a Titan™ G2 80–200 with ChemiSTEM™ EFIEI with the resolution of 160 pm and 80 pm for image and probe corrector, respectively. EDX as well as EELS were performed with atomic resolution in order to probe the atomic structure of the interfaces and to check chemical interdiffusion. A Quantum Design superconducting quantum interference device (SQUID) measurement system (MPMS-7) was used to measure the magnetic properties in the temperature range 5–350 K with the magnetic field (H) applied in-plane along the (100) direction of the substrate. All the M–H (magnetization versus magnetic field) and the field-cooling M–T (magnetization versus temperature) measurements in this work without special statement were carried out after cooling down to 5 K in a magnetic field of 20 kOe and 2 kOe, respectively. Conductivity was determined in a Van der Pauw four-point configuration by the E7900 electronic transport measurement system.

Acknowledgements

The authors are grateful to Prof. Z. Zhang, Z. J. Shen, J. H. Hong of Zhejiang University for the assistance of TEM characterization, and to Prof. G. A. Gehring and Prof. P. Yu for fruitful discussions and critical reading of manuscript. The authors also acknowledge Beamline BL18U in Shanghai Synchrotron Radiation Facility (SSRF) for XLD measurements. This work was supported by the National Natural Science Foundation of China (Grant Nos. 10534010, 20634010, National Basic Research Program of China (Grant No. 2010CB832905) and National Hi-tech (R&D) project of China (Grant No. 2011AA307306).

Author contributions

B.C. and G.Y.W. prepared the samples. B.C. and C.S. carried out the measurements. C.S. and F.P. conceived and directed the project. F.Z. and H.J.M. provided advice on the experiments. All authors participated in discussing the data and writing the manuscript.
Additional information
Supplementary information accompanies this paper at http://www.nature.com/scientificreports
Competing financial interests: The authors declare no competing financial interests.

How to cite this article: Cui, B. et al. Strain engineering induced interfacial self-assembly and intrinsic exchange bias in a manganite perovskite film. Sci. Rep. 3, 2542; DOI:10.1038/srep02542 (2013).

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported license. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/3.0