The equidistribution of Fourier coefficients of half-integral weight modular forms on the plane

Soufiane Mezroui

Abstract Let $f = \sum_{n=1}^{\infty} a(n)q^n \in S_{k+1/2}(N, \chi_0)$ be a non-zero cuspidal Hecke eigenform of weight $k + \frac{1}{2}$ and the trivial nebentypus χ_0 where the Fourier coefficients $a(n)$ are real. Bruinier and Kohnen conjectured that the signs of $a(n)$ are equidistributed. This conjecture was proved to be true by Inam, Wiese and Arias-de-Reyna for the subfamilies $\{a(tn^2)\}_n$ where t is a squarefree integer such that $a(t) \neq 0$. Let q and d be natural numbers such that $(d, q) = 1$. In this work, we show that $\{a(tn^2)\}_n$ is equidistributed over any arithmetic progression $n \equiv d \mod q$.

Keywords Shimura lift · Fourier coefficients · Half-integral weight · Sato-Tate equidistribution

Mathematics Subject Classification (2010) 11F30 · 11F37

1 Introduction

Let $k \geq 2$, $4 \mid N$ be integers, $\chi \pmod{N}$ a Dirichlet character, and let $f = \sum_{n=1}^{\infty} a(n)q^n \in S_{k+1/2}(N, \chi)$ be a non-zero cuspidal Hecke eigenform of weight $k + \frac{1}{2}$. Applying the Shimura lift to f for a fixed squarefree t such that $a(t) \neq 0$, we get $F_t = \sum_{n=1}^{\infty} A_t(n)q^n \in S_{2k}(N/2, \chi^2)$ the Hecke eigenform of weight $2k$.

When $\chi = 1$, Bruinier and Kohnen suggested in [3] that half of the coefficients $a(n)$ are positive among all non-zero Fourier coefficients. This suggestion was formulated later explicitly as a conjecture in [7]. Assuming some error term for the convergence of the Sato-Tate distribution for integral weight modular forms in [5], Inam and Wise showed when F_t has no CM that half of the coefficients $a(tn^2)$ are positive. They formulated this result in terms of Dedekind-Dirichlet density. They
also showed with Arias-de-Reyna in [11], that \((a(tn^2))_{n \in \mathbb{N}}\) are equidistributed when \(F_t\) has CM and the equidistribution was reformulated in both CM and not CM cases using Dedekind-Dirichlet and natural densities. Later, those results were obtained in [6] by removing the error term assumption.

The present work gives an improvement of the Bruinier-Kohnen conjecture. Indeed, under the error term hypothesis that we will explain below, our main result is the following theorem.

Theorem 1 Assume the setting of the introduction and suppose that \(F_t\) does not have complex multiplication. Let \(q\) be a natural number. Suppose that for all Dirichlet characters \(\varepsilon \pmod{q}\) and all roots of unity \(\xi\) such that \(\xi \in \text{Im } \varepsilon\), there are \(C_{\varepsilon, \xi} > 0\) and \(\alpha_{\varepsilon, \xi} > 0\) such that

\[
\left| \frac{\# \left\{ p \leq x \text{ prime } | p \nmid N, \varepsilon(p) = \xi, \frac{A_{\varepsilon}(p)}{2\varepsilon(p)^{1/2}} \chi(p) \in [a, b] \right\}}{\pi(x)} - \frac{\mu([a, b])}{\# \text{Im } \varepsilon} \right| \leq C_{\varepsilon, \xi} x^{\alpha_{\varepsilon, \xi}}.
\]

Then for all integers \(d, (d, q) = 1\), the sets

\[
\left\{ n \in \mathbb{N} \mid (n, N) = 1, n \equiv d \pmod{q}, a(tn^2) \chi(n) > 0 \right\} \quad \text{and} \quad \left\{ n \in \mathbb{N} \mid (n, N) = 1, n \equiv d \pmod{q}, a(tn^2) \chi(n) < 0 \right\}
\]

have equal positive natural densities and both are half of the natural density of

\[
\left\{ n \in \mathbb{N} \mid (n, N) = 1, n \equiv d \pmod{q}, a(tn^2) \chi(n) \neq 0 \right\}.
\]

We discuss here two aspects of this theorem. Consider first the case when \(\chi = 1\) and the coefficients \(a(n)\) are real. Then for all natural numbers \(q\) and \(d\) such that \((d, q) = 1\), we have

\[
\lim_{x \to +\infty} \frac{\# \left\{ n \leq x \mid n \equiv d \pmod{q}, a(tn^2) \geq 0 \right\}}{\# \left\{ n \leq x \mid n \equiv d \pmod{q}, a(tn^2) \neq 0 \right\}} = \frac{1}{2}
\]

This extends the results obtained in [5, 11], and therefore, one can ask if the Bruinier-Kohnen conjecture remains true over arithmetic progressions. We have no numerical experiments yet to support this hypothesis.

Consider now the general case \(f \in S_{k+1/2}(N, \chi)\). Let \(q\) be a natural number, \(\varepsilon \pmod{q}\) a Dirichlet character and \(\xi \in \text{Im } \varepsilon\). From the main theorem above and since the density of the set (3) is independent of \(d\) by Proposition 4 and Remark 2, the sets

\[
\left\{ n \in \mathbb{N} \mid (n, N) = 1, \varepsilon(n) = \xi, a(tn^2) \chi(n) > 0 \right\} \quad \text{and} \quad \left\{ n \in \mathbb{N} \mid (n, N) = 1, \varepsilon(n) = \xi, a(tn^2) \chi(n) < 0 \right\}
\]
have equal positive natural densities and both are half of the natural density of
\[\left\{ n \in \mathbb{N} \mid (n, N) = 1, \varepsilon(n) = \xi, \frac{a(tn^2)}{\chi(n)} \neq 0 \right\}. \]
In the particular case \(q = N \) and \(\varepsilon = \chi \), we deduce that when \(\xi \neq \pm i \), the sets
\[\left\{ n \in \mathbb{N} \mid \chi(n) = \xi, \Re \left(a(tn^2) \right) > 0 \right\} \quad \text{and} \quad \left\{ n \in \mathbb{N} \mid \chi(n) = \xi, \Re \left(a(tn^2) \right) < 0 \right\} \]
have equal positive natural densities and both are half of the natural density of
\[\left\{ n \in \mathbb{N} \mid \chi(n) = \xi, a(tn^2) \neq 0 \right\}. \]

Geometrically, the coefficients \(a(tn^2) \) with \(\chi(n) = \xi \) belong to the same line and they are equidistributed over it. When \(\xi = \pm i \), we obtain a similar result and the coefficients \(a(tn^2) \) with \(\chi(n) = i \) or \(-i \) are equidistributed over the vertical line that passes through \(i \) and \(-i \). Once again, one can ask more generally if the Fourier coefficients \(a(n) \) with \((n, N) = 1 \), that belong to the same line, are equidistributed geometrically as above.

2 Notions of Density

Recall that the set of primes (resp. the set of natural numbers) \(S \subseteq \mathbb{P} \) (resp. \(A \subseteq \mathbb{N} \)) has a natural density \(d(S) \) (resp. \(d(A) \)) if the limit \(d(S) = \lim_{x \to +\infty} \frac{\pi_S(x)}{x} \) (resp. \(d(A) = \lim_{x \to +\infty} \frac{\#\{n \leq x \mid n \in A\}}{x} \)) exists, where \(\pi_S(x) \) and \(\pi(x) \) are defined by
\[\pi(x) = \#\{p \leq x \mid p \in \mathbb{P}\} \quad \text{and} \quad \pi_S(x) = \#\{p \leq x \mid p \in S\}. \]
The set of primes (resp. of natural numbers) \(S \) (resp. \(A \)) is said to have Dirichlet density \(\delta(S) \) (resp. Dedekind-Dirichlet density \(\delta(A) \)) if the limit
\[\delta(S) = \lim_{x \to 1^+} \frac{\sum_{n \leq x} \frac{\pi_S(n)}{n}}{\log \left(\frac{1}{1-x} \right)} \quad \text{and} \quad \delta(A) = \lim_{x \to 1^+} \left(z - 1 \right) \sum_{n \in A} \frac{1}{n^z} \]
exists. Recall that if the set \(A \) of natural numbers has natural density \(d(A) \), then it also has Dedekind-Dirichlet density \(\delta(A) \) with \(d(A) = \delta(A) \). Further, the set of primes \(S \) is said to be regular if there is a holomorphic function \(g(z) \) on \(\Re(z) \geq 1 \) such that
\[\sum_{p \in S} \frac{1}{p^z} = \delta(S) \log \left(\frac{1}{z-1} \right) + g(z). \]
We need the following technical lemma (see [5, Lemma 2.1]).

Lemma 1 Let \(S_1 \) and \(S_2 \) be two regular sets of primes such that \(\delta(S_1) = \delta(S_2) \). Then the function \(\sum_{p \in S_1} \frac{1}{p^z} - \sum_{q \in S_2} \frac{1}{q^z} \) is analytic on \(\Re(z) \geq 1 \).

The following proposition said that the set of primes \(S \) is regular if it has a natural density that satisfies certain error term (see [5, Proposition 2.2]).

Proposition 1 Let \(S \subseteq \mathbb{P} \) be a set of primes that have natural density \(d(S) \). Define \(E(x) = \frac{\pi_S(x)}{\pi(x)} - d(S) \) to be the error function. Suppose that there are \(\alpha > 0 \), \(C > 0 \), and \(M > 0 \) such that for all \(x > M \) we have \(|E(x)| \leq Cx^{-\alpha} \). Then \(S \) is a regular set of primes.
3 The Chebotarev-Sato-Tate equidistribution

We recall now some properties of the Shimura lift (see [12]). The Fourier coefficients of \(f \) and \(F_t \) are related by the following formula

\[
A_t(n) = \sum_{d|n} \chi_{t,N}(d) d^{k-1} a \left(\frac{n^2}{d^2} \right),
\]

(6)

where \(\chi_{t,N} \) denotes the character \(\chi_{t,N}(d) := \chi(d) \left(\frac{-1}{d} N^2 \right) \). Since \(f \) is the Hecke eigenform for the Hecke operator \(T_{p^2} \), \(F_t \) is an eigenform for the Hecke operator \(T_p \), for all primes \(p \nmid N \). Further, we have \(F_t = a(t) F \), where \(F \) is a normalised Hecke eigenform independant of \(t \).

Applying the Ramanujan-Petersson bound to the Fourier coefficients of \(F_t \), then \(|A_t(n)| \leq \frac{2}{\sqrt{n}} \). Since \(F_t \in S_{2k}(N/2, \chi^2) \), then \(A_t(p) = \chi^2(p) A_t(p) \). Therefore \(\frac{A_t(p)}{\chi(p)} \in \mathbb{R} \) and define

\[
B_t(p) := \frac{A_t(p)}{2a(t)p} \chi(p) \in [-1, 1].
\]

Notice that \(a(t) \in \mathbb{R} \), since \(a(t) = \frac{A_t(1)}{\chi(1)} \).

Recall that the Sato-Tate measure \(\mu \) is the measure on \([-1, 1]\) given by \(\frac{2}{\sqrt{1 - t^2}} dt \).

We state the important Sato-Tate equidistribution theorem for \(\Gamma_0(N) \) (see Theorem B of [2]).

Theorem 2 (Barnet-Lamb, Geraghty, Harris, Taylor). Let \(k \geq 1 \) and let \(F_t = \sum_{n \geq 1} A(n)q^n \in S_{2k}(N/2, \chi^2) \) be a cuspidal Hecke eigenform of weight \(2k \) for \(\Gamma_0(N) \). Suppose that \(F_t \) is without multiplication. Denote by \(\text{Im} \chi \) the image of \(\chi \) and let \(\xi \in \text{Im} \chi \). Then, when \(p \) runs through the primes \(p \nmid N \) such that \(\chi(p) = \xi \), the numbers \(B(p) = \frac{A_t(p)}{2a(t)p} \chi(p) \in [-1, 1] \) are \(\mu \)-equidistributed in \([-1, 1]\).

Inam et al. (see [5], [11], [6]) obtained the equidistribution of the coefficients \(a(tn^2) \) by using Theorem 2. In order to prove the geometric equidistribution on the plan as it was explained in the introduction, we need the following hybrid Chebotarev-Sato-Tate equidistribution proved for elliptic curves in [10] for the first time, and it has been generalized recently by Wong (see [13]) particularly to non-CM Hecke eigenforms.

Proposition 2 (Wong) Let \(q \) be a natural number and \(d \) an integer with \((d, q) = 1 \). Let \([a, b] \subset [-1, 1]\) and put \(S_{[a,b]} := \{ p \text{ prime } | \ p \equiv d \pmod{q}, B_t(p) \in [a, b] \} \). The set \(S_{[a,b]} \) has natural density equal to \(\frac{2}{\sqrt{1 - t^2}} dt \).

Using Dirichlet’s theorem on arithmetic progressions, this proposition could be rewritten as follows.

Proposition 3 Let \(q \) be a natural number, \(\varepsilon \pmod{q} \) a Dirichlet character and \(\xi \) a root of unity such that \(\xi \in \text{Im} \varepsilon \). Let \([a, b] \subset [-1, 1]\) and put \(S_{[a,b]} := \{ p \text{ prime } | \varepsilon(p) = \xi, B_t(p) \in [a, b] \} \). The set \(S_{[a,b]} \) has natural density equal to \(\frac{1}{\#\text{Im} \varepsilon} \int_a^b \sqrt{1 - t^2} dt \), where \(\#\text{Im} \varepsilon \) is the cardinality of the image of \(\varepsilon \).
We will use frequently throughout the paper the following lemma (see [9]).

Lemma 2 Under the hypothesis fixed in the introduction, let \(n \) be an integer such that \((n, N) = 1\). Then \(\frac{a(n^2)}{\chi(n)} \in \mathbb{R} \).

4 Preliminaries Results

We next show that the Chebotarev-Sato-Tate theorem (see [13, Proposition 2.2]) gives the equidistribution of the coefficients \(a(tp^2) \) when a primes \(p \) run over arithmetic progressions.

Theorem 3 We use the assumptions fixed in the introduction and suppose that \(F_t \) has no CM. Let \(q \) be a natural number, \(\varepsilon \) (mod \(q \)) a Dirichlet character and \(\xi \) a root of unity such that \(\xi \in \text{Im } \varepsilon \). Define the set of primes

\[
P_{\varepsilon, \xi, >} := \left\{ p \in \mathbb{P} \mid \varepsilon(p) = \xi, \frac{a(tp^2)}{\chi(p)} > 0 \right\},
\]

and similarly \(P_{\varepsilon, \xi, <}, P_{\varepsilon, \xi, \geq}, P_{\varepsilon, \xi, \leq}, \) and \(P_{\varepsilon, \xi, =0} \). Let \(d \) be an integer such that \((d, q) = 1\). Define also

\[
P_{d, q, >} := \left\{ p \in \mathbb{P} \mid p \equiv d \mod q, \frac{a(tp^2)}{\chi(p)} > 0 \right\},
\]

and similarly \(P_{d, q, <}, P_{d, q, \geq}, P_{d, q, \leq}, P_{d, q, =0} \).

The sets \(P_{d, q, >}, P_{d, q, <}, P_{d, q, \geq}, P_{d, q, \leq}, P_{d, q, =0} \) have natural density \(\frac{1}{\phi(q)} \) and \(P_{d, q, =0} \) has natural density 0. Further, the sets \(P_{\varepsilon, \xi, >}, P_{\varepsilon, \xi, <}, P_{\varepsilon, \xi, \geq}, P_{\varepsilon, \xi, \leq}, P_{\varepsilon, \xi, =0} \) have natural density \(\frac{1}{2 \# \text{Im } \varepsilon} \) and \(P_{\varepsilon, \xi, =0} \) has natural density 0, where \(\# \text{Im } \varepsilon \) is the cardinality of the image of \(\varepsilon \).

Proof Define the sets \(\pi_{d,q, >}(x) := \# \{ p \leq x \mid p \equiv d \mod q, \frac{a(tp^2)}{\chi(p)} > 0 \} \), and similarly, \(\pi_{d,q}(x), \pi_{d,q,<}(x), \pi_{d,q,\geq}(x), \pi_{d,q,\leq}(x), \) and \(\pi_{d,q,=0}(x) \). Without loss of generality, we can assume that \(F_t \) is normalised and thus \(a(t) = 1 \). Denote the character \((\frac{-1}{N^2 t})\) by \(\chi_1(.) = (\frac{-1}{N^2 t}) \). The formula (6) yields

\[
\frac{a(tp^2)}{\chi(p)} > 0 \iff B_t(p) > \frac{\chi_1(p)}{2\sqrt{p}}.
\]

Let \(\epsilon > 0 \). Since for all \(p > \frac{1}{4\epsilon^2} \), we have \(\frac{\chi_1(p)}{2\sqrt{p}} = \frac{1}{2\sqrt{p}} < \epsilon \), then

\[
\pi_{d,q, >}(x) + \# \{ p \leq x \text{ prime } \mid p \equiv d \mod q, p \leq \frac{1}{4\epsilon^2} \} \geq \# \{ p \leq x \text{ prime } \mid p \equiv d \mod q, B_t(p) > \epsilon \}. \tag{7}
\]

Applying Proposition\ref{lemma2} we get

\[
\lim_{x \to \infty} \frac{\# \{ p \leq x \text{ prime } \mid p \equiv d \mod q, B_t(p) > \epsilon \}}{\pi(x)} = \frac{\mu([\epsilon, 1])}{\phi(q)}
\]
Theorem 4

The Chebotarev-Sato-Tate theorem satisfies certain error term. The proof is closely similarly by using Proposition 3.

Suppose further that \(\alpha > \frac{\pi}{a} \)

\[
\lim_{x \to \infty} \frac{\pi_{d,q}(x)}{\pi(x)} = \mu([0, 1]).
\]

It follows that \(\liminf_{x \to \infty} \frac{\pi_{d,q}(x)}{\pi(x)} \geq \mu([0, 1]) \) for all \(\epsilon > 0 \), hence \(\liminf_{x \to \infty} \frac{\pi_{d,q}(x)}{\pi(x)} \geq \mu([0, 1]) = \frac{1}{2} \).

Similarly, we have

\[
\liminf_{x \to \infty} \frac{\pi_{d,q}(x)}{\pi(x)} \geq \mu([0, 1]) = \frac{1}{2}.
\]

Since \(\pi_{d,q}(x) = \pi_{d,q}(x) - \pi_{d,q}(\pi) \), then \(\limsup_{x \to \infty} \frac{\pi_{d,q}(x)}{\pi(x)} = \frac{1}{2} \). Using the same method, we obtain the densities of \(\mathbb{P}_{d,q,<}, \mathbb{P}_{d,q,\geq}, \) and \(\mathbb{P}_{d,q,\leq} \). Finally, since \(\pi_{d,q,=0}(x) = \pi_{d,q,\geq}(x) - \pi_{d,q,\geq}(x) \), then the density of \(\mathbb{P}_{d,q,=0}(x) \) is zero.

The densities of the sets \(\mathbb{P}_{\varepsilon,\xi,>, \mathbb{P}_{\varepsilon,\xi,\geq, \mathbb{P}_{\varepsilon,\xi,\leq, \mathbb{P}_{\varepsilon,\xi,=0} \) and \(\mathbb{P}_{\varepsilon,\xi,=0} \) are obtained similarly by using Proposition 3.

The following theorem said that the set of primes of Theorem 3 is regular if the Chebotarev-Sato-Tate theorem satisfies certain error term. The proof is closely similar to that of [3, Theorem 4.2].

Theorem 4

Assuming the assumptions of Theorem 3 and suppose there are \(C > 0 \) and \(\alpha > 0 \) such that

\[
\left| \left\{ p \leq x \text{ prime} \mid \varepsilon(p) = \xi, \frac{A_t(p)}{\chi(p)} \in [a, b] \right\} \right| = \frac{\mu([a, b])}{\# \Im \varepsilon} \leq \frac{C}{x^\alpha}.
\]

Then, the sets \(\mathbb{P}_{\varepsilon,\xi,\geq, \mathbb{P}_{\varepsilon,\xi,\leq, \mathbb{P}_{\varepsilon,\xi,=0} \) are regular sets of primes.

Remark 1

Let \(\xi \) be a \(q \)th root of unity. The previous error term is weaker than the one conjectured by Akiyama and Tanigawa (see [1]) and it can be obtained by [3, Theorem 1.3] if GRH is assumed and also, if \(L(\varepsilon, \text{Sym}^m F_q \otimes \eta) \) is automorphic over \(\mathbb{Q} \) for every \(m \) and for all irreducible characters \(\eta \) of \(G(\mathbb{Q}(\xi)/\mathbb{Q}) \).

To proceed with our proof, we establish the following two lemmas.

Lemma 3

Assuming the assumptions fixed in the introduction and suppose that \(F_t \) has no CM. Let \(q \) be a natural number. Suppose that for all \(\varepsilon \) (mod \(q \)) Dirichlet characters and all roots of unity \(\xi \) such that \(\xi \in \Im \varepsilon \), there are \(C_{\varepsilon,\xi} > 0 \) and \(\alpha_{\varepsilon,\xi} > 0 \) such that

\[
\left| \left\{ p \leq x \text{ prime} \mid p \nmid N, \varepsilon(p) = \xi, \frac{A_t(p)}{\chi(p)} \in [a, b] \right\} \right| - \frac{\mu([a, b])}{\# \Im \varepsilon} \leq \frac{C_{\varepsilon,\xi}}{x^{\alpha_{\varepsilon,\xi}}}.
\]

Suppose further that \(a(t) > 0 \). Define the multiplicative function, \(\forall n \in \mathbb{N}, \)
The equidistribution of Fourier

\[f(n) = \begin{cases}
1, & \text{if } \frac{a(tn^2)}{\chi(n)} > 0 \text{ and } (n, N) = 1, \\
-1, & \text{if } \frac{a(tn^2)}{\chi(n)} < 0 \text{ and } (n, N) = 1, \\
0, & \text{if } a(tn^2) = 0 \text{ and } (n, N) = 1, \\
0, & \text{if } (n, N) \neq 1.
\]

Let \(d \) be an integer with \((d, q) = 1\). Then the Dirichlet series

\[F(z) = \sum_{n \geq 1 \atop n \equiv d \mod q} f(n) \frac{z^n}{n^z} \]

is holomorphic on \(\Re(z) \geq 1 \).

Proof We have

\[
\sum_{n \geq 1 \atop n \equiv d \mod q} f(n) \frac{z^n}{n^z} = \frac{1}{\varphi(q)} \sum_{n=1}^{\infty} f(n) \frac{z^n}{n^z} \times \left(\sum_{\varepsilon \mod q} \varepsilon(n) \varepsilon(d) \right)
\]

\[
= \frac{1}{\varphi(q)} \sum_{\varepsilon \mod q} \left(\sum_{n=1}^{\infty} f(n) \frac{z^n}{n^z} \right) \times \varepsilon(d).
\]

Since the first sum is finite, it suffices to show that \(G_{\varepsilon}(z) = \sum_{n=1}^{\infty} f(n) \frac{z^n}{n^z} \) is holomorphic on \(\Re(z) \geq 1 \).

Since \(a(t) > 0 \), and \(\forall m, n \in \mathbb{N}, (m, N) = 1, (n, N) = 1 \),

\[
\frac{a(tm^2) a(tn^2)}{\chi(m) \chi(n)} = a(t) \frac{a(tm^2n^2)}{\chi(mn)}
\]

then \(f(n) \) is multiplicative.

Applying [11, Lemma 2.1.2], we obtain

\[
\log G_{\varepsilon}(z) = \sum_{p \in \mathfrak{P}} \frac{f(p) \varepsilon(p)}{p^z} + g(z),
\]

where \(g(z) \) is a function that is holomorphic on \(\Re(z) > \frac{1}{2} \). Hence

\[
\log G_{\varepsilon}(z) = \sum_{p \in \mathfrak{P}} \frac{f(p) \varepsilon(p)}{p^z} + g(z)
\]

\[
= \sum_{\xi \in \mathfrak{I}(\varepsilon)} \xi \sum_{p \in \mathfrak{P}_{\xi, \varepsilon}} \frac{f(p)}{p^z} + g(z)
\]

\[
= \sum_{\xi \in \mathfrak{I}(\varepsilon)} \xi \left(\sum_{p \in \mathfrak{P}_{\xi, \varepsilon, >}} \frac{1}{p^z} - \sum_{p \in \mathfrak{P}_{\xi, \varepsilon, <}} \frac{1}{p^z} \right) + g(z).
\]
The sets $\mathbb{P}_{\varepsilon,\xi,>}$ and $\mathbb{P}_{\varepsilon,\xi,<}$ are regular sets of primes, and they have the same density $\frac{1}{2\# \Im \varepsilon}$ by Theorem 3. Therefore by Lemma 1, $\log G_{\varepsilon}(z)$ is holomorphic on $R(z) \geq 1$, and consequently $G_{\varepsilon}(z)$ is also holomorphic.

Lemma 4 We use the assumptions fixed in the introduction and suppose that F_{z} has no CM. Let q be a natural number. Suppose that for all Dirichlet characters $\varepsilon \pmod{q}$ and all roots of unity ξ such that $\xi \in \Im \varepsilon$, there are $C_{\varepsilon,\xi} > 0$ and $\alpha_{\varepsilon,\xi} > 0$ such that

\[
\left| \# \left\{ p \leq x \text{ prime} \mid p \nmid N, \varepsilon(p) = \xi, \frac{A_{\varepsilon}(p)}{2\alpha_{\varepsilon}(p)^{2} \chi(p)} \in [a, b] \right\} \right| - \frac{\mu([a, b])}{\# \Im \varepsilon} \leq C_{\varepsilon,\xi} x^{\alpha_{\varepsilon,\xi}}.
\]

(9)

Then for all integers d, $(d, q) = 1$, the set

\[
\{ n \in \mathbb{N} \mid (n, N) = 1, n \equiv d \pmod{q}, a(tn^{2}) \neq 0 \}
\]

has natural density.

Proof

We have

\[
\sum_{n \equiv d \pmod{q}} \frac{f(n)^{2}}{n^{2}} = \frac{1}{\varphi(q)} \sum_{\varepsilon \pmod{q}} \left(\sum_{n=1}^{\infty} \frac{f(n)^{2} \varepsilon(n)}{n^{2}} \right) \times \varepsilon(d).
\]

We shall define $H_{\varepsilon}(z) = \sum_{n=1}^{\infty} \frac{f(n)^{2} \varepsilon(n)}{n^{2}}$. Applying [11, Lemma 2.1.2] to get

\[
\log H_{\varepsilon}(z) := \sum_{p \in \mathbb{P}} \frac{f(p)^{2} \varepsilon(p)}{p^{2}} + g_{\varepsilon}(z)
\]

\[
= \sum_{\xi \in \Im \varepsilon} \xi \left(\sum_{p \in \mathbb{P}_{\varepsilon,\xi,>} \cup \mathbb{P}_{\varepsilon,\xi,<}} \frac{1}{p^{2}} \right) + g_{\varepsilon}(z),
\]

where $g_{\varepsilon}(z)$ is a function that is holomorphic on $Re(z) > \frac{1}{2}$. Applying Theorem 4, the sets $\mathbb{P}_{\varepsilon,\xi,>}$ and $\mathbb{P}_{\varepsilon,\xi,<}$ are regular sets of primes of natural density $\frac{1}{2\# \Im \varepsilon}$. Then

\[
\sum_{p \in \mathbb{P}_{\varepsilon,\xi,>} \cup \mathbb{P}_{\varepsilon,\xi,<}} \frac{1}{p^{2}} = \frac{1}{\# \Im \varepsilon} \log \left(\frac{1}{z - 1} \right) + h_{\xi}(z),
\]

where h_{ξ} is a holomorphic function on $Re(z) \geq 1$. It follows that

\[
\log H_{\varepsilon}(z) := \sum_{\xi \in \Im \varepsilon} \xi \left(\sum_{p \in \mathbb{P}_{\varepsilon,\xi,>} \cup \mathbb{P}_{\varepsilon,\xi,<}} \frac{1}{p^{2}} \right) + g_{\varepsilon}(z) + \sum_{\xi \in \Im \varepsilon} \xi h_{\xi}(z) + g_{\varepsilon}(z).
\]
Thus \(\log H_{\varepsilon_0}(z) = \log \left(\frac{1}{z} \right) + h_1(z) + g_{\varepsilon_0}(z) \) where \(\varepsilon_0 \) is the principal Dirichlet character modulo \(q \), and \(\log H_{\varepsilon}(z) = \sum_{\xi \in \text{Im } \varepsilon} h_{\xi}(z) + g_{\varepsilon}(z) \) when \(\varepsilon \neq \varepsilon_0 \). From this we see that in all cases, there is \(b_{\varepsilon} \in \mathbb{C} \) satisfying

\[
H_{\varepsilon}(z) = \frac{b_{\varepsilon}}{z - 1} + k_{\varepsilon}(z),
\]

where \(k_{\varepsilon} \) is holomorphic on \(\text{Re}(z) \geq 1 \). Therefore

\[
\sum_{n \equiv \varepsilon \mod q} \frac{f(n)^2}{n^z} = \frac{b}{z - 1} + k(z),
\]

where \(b \in \mathbb{C} \) and \(k \) is holomorphic on \(\text{Re}(z) \geq 1 \). We can now apply Wiener-Ikehara’s theorem (see [8]) to deduce the result.

Remark 2 Notice that the natural density of the set

\[
\{ n \in \mathbb{N} \mid (n, N) = 1, n \equiv d \mod q, a(tn^2) \neq 0 \}
\]

is independent of the choice of \(d \). Indeed, from Wiener-Ikehara’s theorem we know that this density is equal to \(\frac{h_1(1) + g_{\varepsilon_0}(1)}{\varphi(q)} \).

5 Proof of Theorem 1

Before starting the proof, recall the theorem of Delange (see [4]).

Theorem 5 Let \(g : \mathbb{N} \rightarrow \mathbb{C} \) be a multiplicative arithmetic function for which:

1. \(\forall n \in \mathbb{N}, \, |g(n)| \leq 1 \).
2. There exists \(a \in \mathbb{C} \) such that \(a \neq 1 \) and satisfying

\[
\lim_{x \rightarrow +\infty} \frac{\sum_{p \text{ prime}} g(p)}{\pi(x)} = a.
\]

Then we have

\[
\lim_{x \rightarrow +\infty} \frac{\sum_{n \leq x} g(n)}{x} = 0.
\]

We can now piece together the previous lemmas to prove Theorem 1.

Proof We have

\[
\sum_{\substack{1 \leq n \leq x \\mod q \atop n \equiv \varepsilon \mod q}} f(n) = \frac{1}{\varphi(q)} \sum_{\varepsilon \mod q} \left(\sum_{1 \leq n \leq x} f(n) \varepsilon(n) \right) \times \overline{\varepsilon(d)}.
\]

(10)

For a Dirichlet character \(\varepsilon \) modulo \(q \), we have

\[
\lim_{x \rightarrow +\infty} \frac{\sum_{1 \leq p \leq x} f(p) \varepsilon(p)}{\pi(x)} = \lim_{x \rightarrow +\infty} \sum_{\xi \in \text{Im } \varepsilon} \xi \frac{\# \{ p \leq x \mid p \in \mathbb{P}, \xi(p) > 0 \}}{\pi(x)} - \xi \frac{\# \{ p \leq x \mid p \in \mathbb{P}, \xi(p) < 0 \}}{\pi(x)} = 0,
\]
since $P_{\varepsilon, >}$ and $P_{\varepsilon, <}$ have the same natural density $\frac{1}{\varphi(q)}$. Applying Delange’s theorem, we get
$$\lim_{x \to +\infty} \frac{\sum_{1 \leq n \leq x} f(n)\varepsilon(n)}{x} = 0,$$
and consequently
$$\lim_{x \to +\infty} \frac{\sum_{n \equiv d \mod q} f(n)}{x} = 0.$$

From which we have
$$\lim_{x \to +\infty} \frac{\# \left\{ n \leq x \mid (n, N) = 1, n \equiv d \mod q, a(tn^2) > 0 \right\}}{x} - \frac{\# \left\{ n \leq x \mid (n, N) = 1, n \equiv d \mod q, a(tn^2) < 0 \right\}}{x} = 0. \quad (11)$$

By Lemma 4, there is $b > 0$ such that
$$\lim_{x \to +\infty} \frac{\# \left\{ n \leq x \mid (n, N) = 1, n \equiv d \mod q, a(tn^2) > 0 \right\}}{x} + \frac{\# \left\{ n \leq x \mid (n, N) = 1, n \equiv d \mod q, a(tn^2) < 0 \right\}}{x} = b. \quad (12)$$

The result follows from (11) and (12).

We show finally by another method how the natural density of the set defined in Lemma 4 is independent of d.

Proposition 4 Assuming the assumptions of the main theorem. Then, the natural density of the set
$$\{ n \in \mathbb{N} \mid (n, N) = 1, n \equiv d \mod q, a(t_n^2) \neq 0 \}$$
is equal to
$$\frac{1}{\varphi(q)} \lim_{z \to 1^+} (z - 1) \sum_{(n, q) = 1}^{\infty} \frac{f(n)^2}{n^z}.$$

Proof Since $\{ n \in \mathbb{N} \mid (n, N) = 1, n \equiv d \mod q, a(t_n^2) \neq 0 \}$ has natural density by Lemma 4 then it suffices to prove that the Dedekind-Dirichlet density of this set is equal to $\frac{1}{\varphi(q)} \lim_{z \to 1^+} (z - 1) \sum_{(n, q) = 1}^{\infty} \frac{f(n)^2}{n^z}$.

We shall define $B(z) = \sum_{n \equiv d \mod q} f(n)^2$ and $C_\varepsilon(z) = \sum_{n=1}^{\infty} \frac{f(n)^2 \varepsilon(n)}{n^z}$ where ε runs over Dirichlet characters modulo q. We must now compute $\lim_{z \to 1^+} (z - 1)B(z)$. By the same computations as in the previous theorem, it suffices to compute $\lim_{z \to 1^+} (z - 1)C_\varepsilon(z)$. We have
\[
\frac{C_{\xi}(z)}{L(z, \varepsilon)} = \prod_{p \in \mathbb{P}} \sum_{k=0}^{\infty} f(p^k) \varepsilon(p^k) p^{-kz} \times \prod_{p \in \mathbb{P}} (1 - \frac{\varepsilon(p)}{p^z}) \\
= \prod_{p \in \mathbb{P}} (1 - \frac{\varepsilon(p)}{p^z}) \times \prod_{p \in \mathbb{P}} \left(1 + \sum_{k=1}^{\infty} \frac{\varepsilon(p^k)}{p^{kz}} \right) \\
= \prod_{p \in \mathbb{P}} \left(\begin{array}{c} (1 - \frac{\varepsilon(p)}{p^z}) \\ \frac{1}{p^z} + \sum_{k=2}^{\infty} \frac{\varepsilon(p^k)}{p^{kz}} \end{array} \right) \\
\times \prod_{p \in \mathbb{P}} \left(\begin{array}{c} (1 - \frac{\varepsilon(p^2)}{p^{2z}} + h_1(z, p)) \\ \frac{1}{p^{2z}} + h_2(z, p) \end{array} \right),
\]

where \(h_1(z, p)\) and \(h_2(z, p)\) are the remaining terms. Applying logarithm to \(\frac{C_{\xi}(z)}{L(z, \varepsilon)}\) and notice that \(\sum_{p \in \mathbb{P}} \log \left(1 - \frac{\varepsilon(p^2)}{p^{2z}} + h_1(z, p) \right)\) is holomorphic on \(\text{Re}(z) \geq 1\). On the other hand, we have \(\sum_{p \in \mathbb{P}} \log \left(1 - \frac{\varepsilon(p)}{p^z} + h_2(z, p) \right) = \sum_{p \in \mathbb{P}} \frac{\varepsilon(p)}{p^z} + h_3(z, p)\) where \(h_3(z, p)\) is holomorphic on \(\text{Re}(z) \geq 1\). Further, since for all roots of unity \(\xi\) such that \(\xi \in \text{Im} \varepsilon\), the set \(\mathbb{P}_{\varepsilon, \xi} = 0\) is a regular set of primes of density 0 by Theorem 3, then

\[
\sum_{p \in \mathbb{P}} \frac{\varepsilon(p)}{p^z} = \sum_{\xi \in \text{Im} \varepsilon} \sum_{p \in \mathbb{P}_{\varepsilon, \xi}} \frac{1}{p^z}
\]

is also holomorphic on \(\text{Re}(z) \geq 1\). Thus \(\frac{C_{\xi}(z)}{L(z, \varepsilon)}\) is holomorphic on \(\text{Re}(z) \geq 1\) and by taking exponential we see that \(\frac{C_{\xi}(z)}{L(z, \varepsilon)}\) is also holomorphic on \(\text{Re}(z) \geq 1\). Then the limit \(\lim_{z \to 1^+} (z - 1)C_{\varepsilon_0}(z)\) exists, where \(\varepsilon_0\) is the principal character modulo \(q\), and \(\lim_{z \to 1^+} (z - 1)C_{\xi}(z) = 0\) when \(\xi \neq \varepsilon_0\).

\[
\lim_{z \to 1^+} (z - 1)B(z) = \frac{1}{\varphi(q)} \lim_{z \to 1^+} (z - 1)C_{\varepsilon_0}(z) \\
= \frac{1}{\varphi(q)} \lim_{z \to 1^+} (z - 1) \sum_{n=1}^{\infty} \frac{f(n)^2}{n^z}.
\]

We conclude with some related remarks.
Remark 3 When \(q = N \) or \((q, N) = 1 \), the Dedekind-Dirichlet density of the set
\(\{ n \in \mathbb{N} \mid (n, N) = 1, n \equiv d \mod q, \alpha(tn^2) = 0 \} \) exists. Indeed, we have

\[
\lim_{z \to 1^+} (z - 1) \sum_{n \geq 1 \atop n \equiv d \mod q} \frac{1}{n^z} = \frac{1}{q}.
\]

By Lemma 3, it follows that

\[
\lim_{z \to 1^+} (z - 1) \left(2 \sum_{(n, N) = 1 \atop n \equiv d \mod q} \frac{1}{n^z} + \sum_{(n, N) = 1 \atop \alpha(tn^2) = 0} \frac{1}{n^z} + \sum_{(n, N) \neq 1 \atop n \equiv d \mod q} \frac{1}{n^z} \right) = \frac{1}{q}. \tag{13}
\]

Let \(\chi_0 \) be a principal character modulo \(N \). We have

\[
\sum_{(n, N) = 1 \atop n \equiv d \mod q} \frac{1}{n^z} = \frac{\sum_{n \equiv d \mod q} \chi_0(n)}{n^z} \frac{1}{\varphi(q)} \sum_{n \geq 0} \frac{\chi_0(n)}{n} \sum_{\varepsilon \mod q} \sum_{d \geq 0} \chi_0(n) \varepsilon(n) \frac{1}{n^z}.
\]

Following our hypothesis, if \(q = N \) we consider \(\chi_0 \) as a character modulo \(N \); if \((q, N) = 1 \) we consider it as a character modulo \(qN \). Therefore \(\lim_{z \to 1^+} \sum_{(n, N) = 1 \atop n \equiv d \mod q} \frac{1}{n^z} \) exists and thus \(\lim_{z \to 1^+} \sum_{(n, N) \neq 1 \atop n \equiv d \mod q} \frac{1}{n^z} \) also exists. Replacing this in (13) and the result follows.

Remark 4 The weaker version of Theorem 1 could be obtained using Proposition 4. Indeed, in the proof of the previous proposition there is \(b > 0 \) such that \(\lim_{z \to 1^+} (z - 1) B(z) = b \). Hence \(\{ n \in \mathbb{N} \mid (n, N) = 1, n \equiv d \mod q, \alpha(tn^2) \neq 0 \} \) has a Dedekind-Dirichlet density equal to \(b \). It follows from (13) that

\[
\lim_{z \to 1^+} (z - 1) \left(\sum_{(n, N) = 1 \atop n \equiv d \mod q} \frac{1}{n^z} + \sum_{(n, N) \neq 1 \atop n \equiv d \mod q} \frac{1}{n^z} \right) = \frac{1}{q} - b.
\]

Replace this in (13) to get

\[
\lim_{z \to 1^+} (z - 1) \sum_{(n, N) = 1 \atop n \equiv d \mod q \atop \chi(n^2) > 0} \frac{1}{n^z} = \frac{b}{2}.
\]
The equidistribution obtained here is in terms of the Dedekind-Dirichlet density only.

References

1. Akiyama, S., Tanigawa, Y.: Calculation of values of l-functions associated to elliptic curves. Math. Comp. 68, 1201–1231 (1999)
2. Barnet-Lamb, T., Geraghty, D., Harris, M., Taylor, R.: A family of calabi-yau varieties and potential automorphy, ii. Publ. RIMS 47, 29–98 (2011)
3. Bruijn, J.H., Kohnen, W.: Sign changes of coefficients of half integral weight modular forms. In: B. Edixhoven, van der G. Gerard, B. Moonen (eds.) Modular Forms on Schiermonnikoog, pp. 57–65. Cambridge University Press (2008)
4. Delange, H.: Un théorème sur les fonctions arithmétiques multiplicatives et ses applications. Ann. Sci. École Norm. Sup. 78, 1–29 (1961)
5. Inam, I., Wiese, G.: Equidistribution of signs for modular eigenforms of half integral weight. Arch. Math. 101, 331–339 (2013)
6. Inam, I., Wiese, G.: A short note on the bruiner-kohnen sign equidistribution conjecture and halas theorem. Int. J. Number Theory 12, 1–4 (2016)
7. Kohnen, W., Lau, Y.K., Wu, J.: Fourier coefficients of cusp forms of half-integral weight. Math. Z. 273, 29–41 (2013)
8. Korevaar, J.: The wiener-ikehara theorem by complex analysis. Proc. Amer. Math. Soc. 134, 1107–1116 (2006)
9. Mezroui, S.: Sign changes of a product of dirichlet character and fourier coefficients of half integral weight modular forms. ArXiv e-prints pp. 1–6 (2017). URL https://arxiv.org/abs/1706.05013
10. Murty, M.R., Murty, V.K.: The sato-tate conjecture and generalizations. In: Current Trends in Science, pp. 639–646. Indian Academy of Sciences (2009)
11. Arias-de Reyna, S., Inam, I., Wiese, G.: On conjectures of sato-tate and bruinier-kohnen. Ramanujan J. 36, 455–481 (2015)
12. Shimura, G.: On modular forms of half-integral weight. Ann. Math. 97(3), 440–481 (1973). URL http://www.jstor.org/stable/1970831
13. Wong, P.J.: On the chebotarev-sato-tate phenomenon. e-print pp. 1–19 (2017). URL http://www.mast.queensu.ca/~pjwong/stuff/GST.pdf