Regulation of cell division and expansion by sugar and auxin signaling

Lu Wang1,2* and Yong-Ling Ruan1,2*

1 Department of Biology, School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW, Australia
2 Australia-China Research Centre for Crop Improvement, The University of Newcastle, Callaghan, NSW, Australia

INTRODUCTION

Plant growth and development result from a combination of three processes at the cellular level: cell division, cell expansion, and cell differentiation. Cell division or mitosis involves the duplication and separation of complete sets of genetic materials. This genetic information is then selectively transcribed and translated to determine the final shape of cells through cell expansion and differentiation. Cell division and expansion determine cell number and cell size in a mature organ, hence its yield. Over the last decade, genetic analyses and genome-wide gene expression profiling studies have significantly advanced our understanding of the signaling pathways regulating cell proliferation and expansion. In this context, the phytohormone auxin plays prominent roles in regulating both cell proliferation and cell expansion (reviewed in Ferrot-Rechenmann, 2010). Rapid advances in the area have helped shed light on the molecular mechanisms regulating auxin homeostasis, transport, and signaling.

In addition to their fundamental roles as carbon and energy sources, sugars also act as signaling molecules to regulate gene expression (e.g., Rolland et al., 2002; Hartig and Beck, 2006). The disaccharide sucrose (Suc) is transported through phloem from photosynthetic leaves (source) to sink organs such as root, meristems, flower, developing fruit, and seed. In general, lowered Suc levels stimulate source activities, including photosynthesis, nutritional mobilization, and export. In contrast, higher Suc levels are believed to inhibit photosynthesis in source leaves, but stimulate growth and storage in sink tissues. Phloem unloading of Suc in companion cells and sieve element (CC/SE) complex and its post-phloem transport to recipient sink cells may occur either apoplastically into cell wall matrix or symplastically through plasmodesmata. Prior to its use for metabolism and biosynthesis, Suc must be degraded either by invertase (Inv) into glucose (Glc) and fructose (Fru), or by Suc synthase (Sus) into UDP-gluco (UDP-Glu) and Fru. Based on the subcellular localization, Inv is usually divided as cell wall Inv (cw-Inv), vacuolar Inv (vac-Inv), and cytosolic Inv (cyto-Inv; but it may also be expressed in mitochondria, plastids, and nuclei); while Sus may exist as soluble protein in cytoplasm (cyto-Sus) or insoluble isoform bound to the plasma membrane (PM-Sus; Cai et al., 2011) and other intracellular organelles (Ruan, 2012). These sucrolytic enzyme activities play direct roles in signaling (Ruan, 2012), since Suc and its catabolic products regulate gene expression (reviewed by Gibson, 2005; Rolland et al., 2006; Loveland and Jackson, 2012). So far, the best studied plant sugar signaling pathway is Glc signaling, mediated by its sensor hexokinase (HXK), which sequentially regulates plant gene expression at transcriptional, translational, and post-translational levels (e.g., Shen, 1990; Ho et al., 2001; Yanagisawa et al., 2003). In the past few years, a large number of sugar-responsive loci have been identified by genetic approaches, and different sugar-based signaling pathways are deciphered in specific developmental processes (reviewed in Smeekens et al., 2010). Mounting evidence also suggests crosstalks among

Keywords: sugar signaling, auxin signaling, cell division, cell expansion, seed development

Plant growth and development are modulated by concerted actions of a variety of signaling molecules. In recent years, evidence has emerged on the roles of sugar and auxin signals network in diverse aspects of plant growth and development. Here, based on recent progress of genetic analyses and gene expression profiling studies, we summarize the functional similarities, diversities, and their interactions of sugar and auxin signals in regulating two major processes of plant development: cell division and cell expansion. We focus on roles of sugar and auxin signaling in both vegetative and reproductive tissues including developing seed.
sugar and various hormone signals, e.g., abscisic acid, ethylene, and cytokinins (Gazzarrini and McCourt, 2003; Hartig and Beck, 2006). Among these, close interactions between sugar and auxin signaling and their interactions in cell division and expansion from a developmental perspective in both vegetative and reproductive organs.

AUXIN AND SUGAR SIGNALING IN CELL PROLIFERATION

The eukaryotic cell cycle consists of DNA synthesis (S phase) and mitosis (M phase), separated by two gap phases G1 and G2 (Figure 1). Mitogenic signals are required for completion of cell cycle, in particular during the transitions from G1 to S and G2 to M phases for proper progression of the cycle; otherwise the cell cycle will be arrested. Some plant cells may skip the M phase under certain developmental processes resulting in endoreduplication and an increase in the degree of ploidy (under certain developmental processes resulting in endoreplication and an increase in the degree of ploidy (Joubès and Chevalier, 2000). A typical example of cell cycle without mitosis occurs in the syncytial endosperm early in seed development.

As a class of essential plant hormones, auxin has been demonstrated to play a leading role in regulating cell proliferation, especially in the preparation of replication (G1 to S phases). A set of *in vitro* cell culture studies have provided insights into the molecular mechanisms by which auxin regulates cell cycle (Figure 1; reviewed in Ferrié-Rechmann, 2010). During G1 phase, auxin was shown to induce the expression of cyclin D gene *cyCD1;1* and cyclin-dependent kinase gene *CDKA1* and to play important roles in *CDKA/CYCD* complex assembling. Meanwhile, *KRP1* and *KRP2* transcripts, encoding two of the CDK inhibitors, were reported to be down-regulated after auxin treatment, thereby preserving the phosphorylated *CDKA/CYCD* complex. Activated *CDKA/CYCD* complex could provoke phosphorylation of the transcriptional repressor retinoblastoma-related (RBR) protein, and release its target Adenovirus E2 promoter-binding factor A/B (*E2FA/B*) and dimerization partner A (*DPA*) complex. Through this post-transcriptional regulation, auxin stabilizes the *E2FA/B* and *DPA* complex, which promotes the expression of genes essential for initiating the S phase. Later in the S phase, auxin stimulates the degradation of the F-box SKP2A (S phase kinase-associated protein 2A) by E3 ubiquitin ligase complex SCF (Skp, Cullin, F-box-containing complex), indirectly stabilizing the E2 promoter-binding factor C (*E2FC*) and dimerization partner B (*DPA*) complex. The latter represses the expression of *S* phase genes. Although most data suggest auxin acts as a permissive signal for achieving competence to enter DNA synthesis (G1/S transition), it is also required in the later G2/M transition to complete the mitosis process (Figure 1; Urano et al., 2012). However, it is difficult to dissect the effect of auxin on later phases from that at the initial step of the cell cycle. Consistent with its role in regulation of cell cycle process, auxin was also found to promote cell division and delay endoreduplication in developing seeds of legume species *Medicago truncatula* (Figure 1; Alif et al., 2012).

Comparing to auxin, our current knowledge about the molecular mechanism of sugar-mediated regulation of cell division is largely derived from studies on cultured suspension cells and mutant seedlings subjected to various sugar treatments. A close correlation was observed between the supply of Glc and the expression of cyclins, e.g., *cyCD1;1, D32;2, A32;2*, and *B1;2* (Figure 1; Riu-Ramírlich et al., 2006; Hartig and Beck, 2006). The D-type cyclins are often mentioned as sensors of external conditions, and associate with cyclin-dependent kinase (e.g., *CDKA*) to regulate cell cycles (Nieuwland et al., 2007). Meanwhile, A3 and B1 cyclins are required to drive G1/S and G2/M transitions, respectively (Menges et al., 2005). These observations suggest that Glc signaling regulates cell cycle throughout the whole cell cycle process. Noteworthy is that the regulatory effect of Glc on the rate of cell division primarily results from signaling rather than nutrient availability and energy status, as cell proliferating activity positively correlated with endogenous hexose levels, but not their uptake rate (Hartig and Beck, 2006). A recent study in Arabidopsis meristematic tissues has shown that Glc signal initiates the G2/M transition by repressing transcription of the negative regulator *TPR-DOMAIN SUPPRESSOR OF STIMPY* (TSS), thereby activating the expression of key cell cycle components required for G2/M transition, such as *CYCB1;1* and *CDKAI;1* (Figure 1; Sklar et al., 2011). Noteworthy is that Glc feeding is insufficient to trigger mitosis, and auxin is also required for the completion of this process, indicating distinct but coordinated roles of sugar and auxin in G2/M regulation (Sklar et al., 2011). Otherwise than hexose, downstream components of Suc/Glc signaling factors may also be involved in cell cycle regulation. Trehalose-6-phosphate (T6P) is a newly identified signal molecule, which is synthesized from G6P and UDPG by T6P synthase (TPS; Paul et al., 2008). AtTPS1, being the only functional Arabidopsis TPS enzyme catalysts T6P synthesis reaction, was observed interacting with *CDKA* and the kinsein *KCA1*, while its loss of function mutant *tps1* showed embryo lethal (reviewed in Smeekens et al., 2010). The exact role of T6P in cell cycle remains unclear. However, a downstream target of T6P is suc Suc non-fermenting1 (Snf1)-related protein kinase (SnRK1), is considered to be a sensor negatively regulating plant growth through crosstalk with cell cycle signaling factors as indicated by studies of its homolog Snf1 in yeast (Francis and Halford, 2006). An inhibition of the catalytic activity of SnRK1 by T6P was revealed both in *in vitro* and in *in vivo* (see O’Hara et al., 2013). A link between T6P/SnRK1 regulatory system and auxin signaling has also been revealed (discussed later, reviewed in O’Hara et al., 2013), implying a potential molecular mechanism of T6P and SnRK1 signaling in regulating cell cycle. However, SnRK1 signal is currently associated with the response to starvation or low energy status during plant development, as its activity leads to down-regulation of carbon-consuming processes but enhancement of photosynthetic processes, thereby increasing carbon availability (Halford and Hey, 2009; O’Hara et al., 2013). It remains to be determined whether SnRK1 signal plays a role in cells division. Similarly, the perception of cellular energy and nutrient levels typically leads to the activation of the growth promoting target of rapamycin (TOR) protein kinase signaling pathway, which then regulates cell growth and proliferation accordingly. It has been reported that TOR promotes *Drosophila* female germ line stem cells proliferation during G2 phase (LaFever et al., 2012). A single copy of TOR has been found in Arabidopsis, the loss of which results...
in embryonic lethality (Menand et al., 2002). Whether the TOR complex functions in regulating plant cell division remains to be investigated.

ROLES OF AUXIN AND SUGAR IN CELL EXPANSION

Cell expansion is another important cellular process for plant growth, which is a net result of internal turgor pressure and irreversible cell wall extension. By accumulating sugars, iron and other osmotically active solutes, plant cell generates a lower osmotic potential to attract water flux into the cell, thereby generating a turgor pressure to drive cell expansion. This process also requires the cell wall to be irreversibly stretched through a wall loosening process, followed by deposition of new wall material. The extent and direction of cell expansion is modulated by many factors including cytoskeletons (Li et al., 2001; Pollard and Cooper, 2009).

Auxin was shown to induce rapid cell elongation in stem, coleoptiles, or hypocotyls segments within minutes after auxin treatment (Rayle and Cleland, 1992). Current model of auxin-regulated cell expansion is based on an acid growth theory (Figure 2; reviewed in Mockaitis and Estelle, 2008; Perrot-Rechenmann, 2010). An extracellular localized auxin is perceived by the auxin receptor, auxin binding protein 1 (ABP1). An interaction between the ABP1 and some unknown membrane-associated proteins may activate the plasma membrane (PM)-H\(^+\)-ATPase, pumping proton into the extracellular space. This lowers the pH in cell wall matrix, activating cell wall loosening proteins such as expansins and xyloglucan endotransglycosylase/hydrolases (XTH), and consequently making the cell wall relaxed for expansion.

In parallel to its role in activating proteins essential for cell expansion at the post-translational level, auxin signal in the nuclei also enhances the transcription of these genes including those encoding PM-ATPase, K\(^+\) channels, expansins, and cell wall remodeling enzymes. Furthermore, auxin promotes excytoysis of vesicles containing new cell wall material (Figure 2, reviewed in Perrot-Rechenmann, 2010). In addition, auxin may affect F-actin through ABP1 and its downstream Rho GTPases and their effectors CRIB MOTIF-CONTAINING proteins (RICs), which consequently modulates asymmetric cell expansion (Figure 2; Yang and Fu, 2007; Xu et al., 2010).

Different from auxin which regulates cell growth solely through signaling, sugars modulate cell expansion both as important signals and metabolites. The latter serves as osmotically active solutes and substrates for biosynthesis of diverse products including cell wall material required for cell expansion.

![FIGURE 1](image) **FIGURE 1| Glucose and auxin signal in cell cycle regulation (modified from Perrot-Rechenmann, 2010, Figure 2).** The cell cycle is divided into four phases: DNA replication (S), mitosis (M), and two gap phases G1 and G2, between M/S and S/M, respectively. Some plant cells may skip the M phase under certain developmental processes, resulting in “endoreduplication.” Cell cycle starts in G1. During this phase, Glc and auxin signals could induce the expression of CycD, while auxin is also able to increase CDK4 transcription. The CycD4/CDK4 complex is activated by phosphorylation but can still be blocked by CDK inhibitor KRP. Auxin was reported to reduce the expression of some KRP. The active CycD4/CDK4 complex provokes phosphorylation of the transcriptional repressor RBR, and release the transcription regulator E2F/DP and DPA complex. By post-transcriptional regulation, auxin stabilizes the E2F/DP and DPA complex, which promote the expression of genes essential for the beginning of the S phase. The expression of CycA3 could be up-regulated by Glc signal, which is required to drive the cells from G1 to S phase. Auxin was shown to increase the degradation of the F-box SAP2 later in S phase, which indirectly stabilizes E2F/DP complex, and represses the S phase genes expression. As cell cycle processes into G2 phase, Glc signal was found to initiate the G2/M transition by repressing TSS transcription, and activating the expression of key cell cycle genes, such as CycB and CycD. Auxin signal is required for the initiation and completion of mitosis, probably through an unknown pathway independent or in parallel to Glc. Auxin is also likely to emit a negative signal to prevent cell from going into endoreduplication hence sustaining cell divisions. Glc and Auxin in italic indicate regulation at transcription level and those in non-italic suggest regulation at protein level.
Sugar and auxin signal in regulating sink cell expansion (modified from Perrot-Rechenmann, 2010, Figure 3).

Unloaded Suc in sink tissues may enter into recipient cells either apoplasmically through cell wall matrix or symplasmically via plasmodesmata. In the former case, sucrose could be taken up by sucrose transporter on plasma membrane, or be hydrolyzed by cwl-Inv into Glc and Fru, and then be transported into cells by hexose transporter (HT). Apoplasmic Glc could be recognized by RGS1, which transmits extracellular sugar signal into the cell through G-proteins. In cytoplasm, Suc may be hydrolyzed by cyto-Inv or degraded by Sus. In the presence of high Suc level, Sus intends to bind actin filaments and form a multi-protein complex bound to plasma membrane, which may facilitate cell expansion by providing UDPG for cellulose/callose biosynthesis. Cytoplasmic Suc could also be transported into nucleus, vacuole, plastid or mitochondrion. In vacuole, Suc could be hydrolyzed by vac-Inv, thus doubling the osmotic contribution of Suc, which has the potential to positively impact on cell turgor. Moreover, vac-Inv could also promote cell expansion via sugar signaling involving WAKs, which subsequently activates MPK3 in nucleus, and induces downstream gene expression for cell wall biosynthesis. Suc hydrolysis in vacuole could also regulate nuclear gene transcription, involving in auxin biosynthesis, distribution and signaling.

An Arabidopsis cyto-Inv isoform was found in nucleus, where it interacts with and negatively regulates by a phosphatidylinositol monophosphate 5-kinase (AtPIP5K9). Hexoses generated by cyto-Inv could be sensed by a nuclear-localized HXK, producing a Glc signaling complex core combining VHA-B1 and RPT5B, which is sequentially integrated into a signal/metabolites loop modulating cell expansion. Auxin is perceived by the auxin receptor ABP1, which interacts with unknown membrane-associated proteins at the plasma membrane (such as glycosylphosphatidylinositol (GPI)-anchored protein C-terminal peptide-binding protein 1 (CBP1)). This activates the proton pump ATPase, acidifying extracellular space for optimal function of expansins and XTH and activating K+ inward rectifying channels, essential for water uptake to sustain cell expansion. Auxin could also enhance these effects by promoting the transcription of these genes. Moreover, auxin is likely to act on actin microfilaments and microtubules via the modulation of ROP GTPases, thereby affecting vesicle delivery to plasma membrane and cell wall matrix.
By hydrolyzing Suc into Glc and Fru, vac-Inv doubles the osmotic contribution of Suc in vacuole, and thus has the potential to positively impact cell turgor in cells accumulating hexoses to high levels, such as elongating cotton fiber (Figure 2; Wang et al., 2010). Consistently, high vac-Inv expression or activity has been observed in a range of expanding tissues, for example, maize ovaries (Anderson et al., 2002), grape berry (Davies and Robinson, 1996), carrot taproot (Tang et al., 1999), and a reduction of maize ovary expansion was associated with the decrease of a vac-Inv gene fra1 expression under drought (Andersen et al., 2002).

In agreement with the idea that sugar could also act as a signal for cell expansion, vac-Inv has been shown to promote cell expansion in Arabidopsis root through an osmotic-independent pathway (Wang et al., 2010). One possible explanation is that vac-Inv may crossstalk with wall-associated kinases (WAKs) through sugar signaling to regulate cell wall extensibility (Figure 2). Here, as receptor-like proteins, WAKs are bound to pectin in cell walls, and their activity is required for cell expansion (Anderson et al., 2001; Lally et al., 2001). The observations that vac-Inv activity and ArabidINV2 transcription were dramatically reduced in Arabidopsis wak-1 mutant (Kohorn et al., 2006), and the deletion of ArabidINV2 (vin, Salk_100813) down-regulated the expression of AWAK2 (Wang and Ruan, unpublished data), strongly suggest an interplay between vacuole sugar homeostasis and extracellular matrix signaling during cell expansion. Microarray analysis revealed a WAK2-dependent pectin activation of many genes involved in cell wall biosynthesis, which is likely achieved via a downstream mitogen-activated protein kinase AtMAPK3 (Figure 2; Kohorn et al., 2009; Kohorn and Kohorn, 2012). This, together with our finding on repression of WAK expression in vin mutant also implies that a sugar signal derived from vacuole could play roles in transcription of genes required for cell expansion. Indeed, Suc hydrolysis in vacuole was able to evoke a sugar signal effect on numerous gene expressions, involving auxin biosynthesis, distribution, and auxin signal sensing (Mishra et al., 2009; discussed below). Suggested by the finding that vacuolar H+-ATPase B1 unit (VHA-B1) interacts with the nuclear-localized AhHXK1 (Cho et al., 2006), a similar protein complex on tonoplast could be responsible for transmitting vacuole sugar signals.

However, it remains to be determined as to what is the exact downstream signal pathway of this vacuole sugar signal, and how vac-Inv interacts with cell wall protein WAKs to regulate cell expansion. Other than vac-Inv, cyto-Inv was also described to play a role in regulating root cell elongation in Arabidopsis and rice (Lou et al., 2007; Jia et al., 2008). Interestingly, the Arabidopsis cyto-Inv isoform AtCIN1 (Atg35580) was observed in nuclei, where it interacts with a phosphatidylinositol monophosphate 5-kinase (ADPIPS5K), and is negatively regulated by ADPIPS5K (Figure 2; Lou et al., 2007). ADPIPS5K is a key enzyme in phosphatidylinositol (PI) signaling pathway, and may directly or indirectly regulate cytoskeleton dynamics via myo-inositol (Lou et al., 2007). Meanwhile, the hexoses derived from nuclear Suc degradation catalyzed by AtcIN1, may be sensed by nuclear-localized AhHXK1 (Cho et al., 2006), and sequentially modulates transcriptions of specific target genes (Figure 2). However, the biological functions of the nuclear-localized AtCIN1 and AhHXK1 protein complex are still unclear.

In contrast to Inv, the second Suc-degrading enzyme, Sus, contributes to cell expansion primarily through providing one of the cleavage reaction products, UDPG for cell wall biosynthesis. For example, Sus is highly expressed in cotton cellularizing endosperm cells (Ruan et al., 2008) and seed coat transfer cell undergoing wall in growth (Pugh et al., 2010). Recent studies in Arabidopsis and tobacco support a model of PM-Sus-mediated cell wall biosynthesis where PM-Sus binds to actin filaments to initiate the formation of a multi-protein complex and to provide UDPG to callose synthase and cellulose synthase, thus facilitating cell expansion via cellulose/callose biosynthesis (Figure 2; Fujii et al., 2005; Cai et al., 2011). Interestingly, a conversion from the cytosolic Sus to its membrane-associated form was detected in the presence of high Suc level, indicating a role of Suc homeostasis in cell wall deposition (Cai et al., 2011). Recently, during Arabidopsis seed development, hexose signaling was observed to induce the expression of Sus genes via a HXK-independent pathway (Angelé-Nielsen and Tieszen, 2012). Together, these results show that sugars may regulate Sus-mediated cell wall biosynthesis through cellular metabolism as well as signaling network.

Research on sugar signaling has been primarily focused on intracellular processes. It remains virtually unknown how cell senses extracellular signals such as sugars to elicit downstream cellular processes. Ruan et al. (2009) proposed that the apoplastic Glc generated by cw-Inv could be recognized by a membrane protein, RGS1 (regulator of G-protein signaling 1), which transmits extracellular sugar signal into the cell (Figure 2). An insight into the molecular basis of sugar and G-protein signaling crosstalk comes from a recent discovery by Urano et al. (2012) in which Glc could be sensed by AtRGS1 that represses the activity of heterotrimeric G-protein complex. This Glc sensing leads to endocytosis of AtRGS1, hence uncoupling the inhibitory effect of AtRGS1 on AtGPA1 (G-protein α subunit) and consequently activating G-protein signaling (Urano et al., 2012).

Other than G-protein, HXK could also be a potential integrator in regulating cell expansion through Glc signaling, probably via modulating cytoskeleton dynamics (Karve et al., 2008; see Figure 2): AhHXK1 was shown to affect F-actin dynamics, thereby influencing the formation and the stability of cytoskeleton-bound polysomes, and the complex membrane trafficking involved in expansion (Balasubramanian et al., 2007). In addition, Cho et al. (2006) suggested a nuclear Glc signaling core formed by nuclear-localized AhHXK1 interacts with VHA-B1 and the 19S regulatory particle of proteasome subunit (RPT5B). Arabidopsis VHA-Bs are involved in actin cytoskeleton remodeling via binding and stabilizing F-actin in vitro (Ma et al., 2012), thereby potentially affecting cell expansion through modulating actin-guided vesicle trafficking for cell wall synthesis.

Together, the above analyses allow us to formulate a model of cell expansion regulated by sugar and auxin signaling network, covering WAKs, G-protein and nuclear PI signaling, and linking transmission of signals from extracellular environment to different subcellular compartments for a range of cellular processes required for cell enlargement (Figure 2).
As discussed above, sugar and auxin signals play distinctive roles in regulating cell division and expansion. However, the two pathways also interact with each other to regulate plant development and recent studies indeed show that auxin biosynthesis, distribution, and response is regulated directly by sugar signal.

Several biosynthesis pathways of the main sugar, IAA (indole-3-acetic acid) have been postulated in plant. These include the widely distributed IAM (indole-3-acetamide) pathway, the IPA (indole-3-picryl acid) pathway, and two possible Brassicaceae species-specific pathways using IAOX (indole-3-acetaldolime) and IAN (indole-3-acetonitrile) as intermediates (Mamo and Nemoto, 2012). All the above pathways synthesize TRP (L-triptophan) as a precursor (Mamo and Nemoto, 2012). Importantly, Glc increases the concentrations of many IAA precursors related to IAM, IAOX, and IAM pathways, as well as three major IAA metabolites and conjugates (oIAA, IAAasp, and IAGlu), demonstrating a direct positive regulation of Glc in auxin synthesis (Sairanen et al., 2012). In vivo evidence consistent with this finding comes from Arabidopsis hypocotyls, where an endogenous carbon-sensing pathway triggers increased auxin flux and hypocotyl elongation (Lilley et al., 2012). Another important founding by Sairanen et al. (2012) is that the Glc-induced auxin synthesis is negatively regulated by the PHYTOCHROME-INTERACTING FACTOR (PIF) transcription factor family. Considering the up-regulation of PIF gene expression by Suc (Stewart et al., 2013), it is possible that PIF protein acts as a switch-off button in Glc induction of auxin biosynthesis at high Suc level or by some specific developmental cues. Further evidence on the positive role of Glc in auxin biosynthesis comes from the maize miniature1 mutant which lacks the expression of basal kernel-specific cw-Inv (INCW2), leading to miniature seed phenotype. In the mutant seed, the IPA auxin synthesis pathway was down-regulated through decreased expression of a maize YUCCA gene (LeClere et al., 2010). YUCCA encodes a flavin monoxygenase-like enzyme, which uses IPA as a substrate to produce IAA. This observation suggests that Inv-mediated generation of hexoses is required for auxin biosynthesis in developing seed.

In addition to its role in synthesis, Glc is also implicated in auxin distribution and signaling. To this end, microarray analysis in Arabidopsis seedlings, including those encoding auxin receptors TIR1 (transport inhibitor response 1) and ARF1, auxin transporter PIN1, auxin response factors ARF4, ARF8, and a number of genes belonging to auxin induced gene families such as AUX/IAA, GH3, and SAUR (Mishra et al., 2009). Studies using Glc-insensitive mutants also revealed that hexose-mediated sugar signaling partially functions through auxin response (Moore et al., 2003). Genetic studies showed that Suc and Glc stabilize N-MYC DOWN-REGULATED-LIKE1 (NDL1) protein, which interacts with Gliy dimers of heterotrimeric G-protein complex, thereby positively regulating auxin transport in root to promote lateral root initiation and emergence (Mudgil et al., 2009). During Arabidopsis embryogenesis, nuclear PI signaling was involved in regulating polar transport of auxin effluxer PIN1 via modulating endomembrane structure and trafficking (Luo et al., 2011). Given the importance of hexose substrate for PI biosynthesis (see previous discussions), this observation implies a possible link of Glc-mediated auxin transport through PI signaling.

Apart from Glc, emerging evidence also indicates connections between the T6P/SnRK1 regulatory system and auxin signaling. For example, microarray analysis in Arabidopsis seedlings has demonstrated a down-regulation of AUX/IAA genes and auxin receptor gene TIR1 by elevated T6P level (Paul et al., 2008). SnRK1 has been shown to interact with the SKP1 domain of the SCF complex and the 26S proteasome, possibly through phosphorylating targeted proteins such as AUX/IAA for degradation in SCF-TIR1 complex (Farras et al., 2001).

Most of the studies described above on sugar and auxin signaling were conducted in cell culture systems and vegetative tissues such as developing roots, hypocotyls, leaves, and young seedlings. Reproductive organs are equally, or even more complex than, vegetative tissues in response to sugar and hormonal signals (Ruan et al., 2012). We discussed this issue below by focusing on recent advance obtained from developing seed.

ROLES OF SUGAR AND AUXIN SIGNALING IN SEED DEVELOPMENT

Angiosperm seeds originate from double fertilization, which give birth to the diploid embryo and the triploid endosperm, wrapped by the maternal tissue known as seed coat. Seed formation proceeds by a phase of cell division, which represents a crucial period for seed set, highly sensitive to biotic and abiotic stress, and impacting significantly on seed yield potential (Ruan et al., 2012). During seed development, the endosperm mother cell initially undergoes nuclear divisions without cell wall formation to generate syncytial endosperm soon after fertilization (Olsen, 2004). Endosperm nuclear division occurs earlier and faster than the embryo cell proliferation (Bate et al., 2004; Nowack et al., 2007). This sequential endosperm and embryo proliferation are tightly coupled to different regulatory mechanisms, for example, sugar signaling. Recent findings on the asymmetric spatial expression of cw-inv gene GlcWINJ in cotton embryo sac, implied a control of the sequential development of endosperm and embryo by Inv-mediated sugar signaling. This may be achieved through establishing a spatial gradient of Glc concentration being higher in the endosperm region than that in the embryo region, thus favoring endosperm nuclear division over embryo cell proliferation during the seed set phase (Wang and Ruan, 2012). Consistently, a cw-inv inhibitor was localized at the boundary between the endosperm and embryo in developing maize seed (Bate et al., 2004), which could help to minimize hexose flow to young embryo, to ensure nuclear division in endosperm but a quiescent status in embryo at this stage.

Later, embryo develops starting from the acquisition of zygote polarity and elongation, follows by a serial of cell division. Soon after the asymmetric zygote division, the separated cells quickly establish an apical–basal axis of polarity, then the differentiation of an epidermis and the formation of the shoot and root meristem during the next rounds of cell division (Dumas and Burgowsky, 2008). Auxin plays a prominent role in regulating these pattern formations in a cell type-dependent manner (Rademacher et al., 2012). The molecular mechanisms of auxin action in early
embryogenesis have been reviewed (e.g., Möller and Weijers, 2009; Lau et al., 2012), and will not be discussed here. Comparing to auxin, it remains unknown whether sugar signaling affects embryo patterning formation. However, significant correlations between Glc concentration and CWI expression and early embryo (pre-heart stage) mitotic activity have been revealed in many species, such as Arabidopsis, faba bean, and cocklebur (O’Hara et al., 2009; Wang and Ruan, 2012), indicating Glc as a signal to stimulate cytokinesis during embryogenesis. Apart from Glc, T6P signaling may also affect mitosis activity in early embryo, as Arabidopsis TPS1-deficient mutant (tps1) showed slower embryo development compare to that of wild-type (Gómez et al., 2010). However, tps1 embryos are eventually stopped at torpedo stage, implying T6P signal may not essential for rapid cell division in early development, but indispensable for the transition into late stage of embryo development (Gómez et al., 2010).

As embryos develop to heart-stage embryos, cells undergo rapid expansion, and gradually start to accumulate storage materials. As discussed before, cell expansion could be regulated by the concerted actions of sugar and auxin signaling network. Many studies have shown the impacts of sugar and auxin on seed size (e.g., Cheng and Chourey, 1999; Andersen et al., 2002; Schruff et al., 2006). However, most of the observations are not able to differentiate signaling roles of sugar from its potential nutrient or osmotic effect. The contribution of auxin signal to seed size is largely due to its roles in cell division but not expansion. There is little direct evidence about the role of sugar and auxin signaling in cell enlargement so far, probably due to, in part, the complexity of cell types in seed.

By contrast, many studies have demonstrated that the switch from seed expansion to storage phase is strongly affected by sugar signals. A general finding is that the transition from cell division and expansion to storage activities in seed is usually associated with a decrease in Iwv expression and activity and an increase in Suc activity, and an increased ratio of Suc to Glc. Using high-resolution histographical mapping, a clear correlation was observed between decreased Glc concentration and reduced mitotic activity in legume embryo (Borisjuk et al., 1998), largely due to the decrease of cv-Ive genes expression (Wolber et al., 1995). In cytoplasm, an increase of Suc activity leads a shift in carbon use toward starch synthesis in plastid. For example, highest expression of Su gene temporally matches with rapid starch filling in rice grain (Wang et al., 1999). In correlation to Suc level, T6P synthesis could be induced, which may then result in an increased expression and activity of the ADP-glucose pyrophosphorylase (AGPase), as well as the redox activation of AGPase, essential for starch accumulation in the plastid (O’Hara et al., 2013).

Clearly, much has been learned about the complexity of sugar and auxin network in regulating plant cell division and expansion. Further research on dissecting the complex network of sugar and auxin signaling pathways in specific plant tissues under particular growth stages or environment conditions, will not only contribute to a better understanding of the regulatory systems underpinning complex developmental processes, but could also have great importance in crop improvement through designing innovative approaches to optimize plant performance for yield and stress tolerance.

REFERENCES

Andersen, C. M., Schm, J. A., Wu, Y., Jomaa, C. B., Naendal, H., Mogensen, V. A., Anhuirud, J. A., Balasubramanian, R., Karve, A., Kleinow, T., Cochran, B. D. (2001). WAKs cell wall-associated kinases linking the cytoplasm to the extracellular matrix. Plant Mol. Biol. 41, 197–208. doi: 10.1023/A:1015973787885

Angelos-Nielsen, J. G., and Jørgensen, A. (2012). Regulation of AOS32 and AOS235 by glucose and the transcription factor LEA2 in different tissues and at different stages of Arabidopsis seed development. Plant Mol. Biol. 78, 277–282. doi: 10.1007/s11103-011-9757-0

Atif, R. M., Boudet, F., Correa, C., Thompson, R., and Ochani, S. J. (2012). In vitro auxin treatment promotes cell division and delays endoreduplication in developing seeds of the model legume species Medicago truncatula. Physiol. Plant. doi: 10.1111/j.1399-3054.2012.01779.x (Lush ahead of print).

Bate, N. J., Niu, X., Wang, Y., Chen, X., Bate, E., and Weijers, D. (2004). An invertase inhibitor from maize kernels during early embryo surrounding region during early kernel development. Plant Physiol. 134, 246–254. doi: 10.1104/pp.134.2.246

Bazquez, L., Wakasa, S., Wolber, H., Mueller-K笑then, W., and Wolbur, U. (1998). High-resolution histographical mapping of glucose concentration in developing cytotypes of Vicia faba. Plant Cell Physiol. 39, 375–382. doi: 10.1093/pcp/39.3.375

Borisjuk, I., Wang, Y., Lien, J., and Tasi, C. R. (2001). Regulation of AtSUS2 and AtSUS3 by glucose and the transcription factor LEA2 in different tissues and at different stages of Arabidopsis seed development. Plant Mol. Biol. 41, 197–208. doi: 10.1023/A:1015973787885

Cho, Y. H., You, S. D., and Shin, J. (2006). Regulatory functions of nuclear hexokinase 1 complex in glucose signaling. Cell 127, 579–589. doi: 10.1016/j.cell.2006.09.028

Crisp, P., and Robinson, S. P. (1996). Cleavage of two putative vacuolar invertases (oDNAs and their expression in grapevine tissues. Plant Physiol. 111, 275–283. doi: 10.1104/pp.111.1.275

Dumas, C., and Royer, H. (2001). Antisense targeting of AGPase, essential for starch accumulation in the plastid. www.frontiersin.org May 2013 | Volume 4 | Article 163 | 7

"fpls-04-00163" — 2013/5/29 — 15:51 — page 7 — #7

Ferras, R., Fernández, A., Jin, K., Khramov, T., Okonev, L., Tuberoso, A., et al. (2011). SKP1-SKID protein kinase interactions and ABA, ethylene and sugar signaling pathways. J. Exp. Bot. 62, 989–1001. doi: 10.1093/jxb/erq190

Gazzarrini, S., and McCourt, P. (2001). Genetic interaction between ABA, ethylene and sugar signaling pathways. Curr. Opin. Plant Biol. 4, 387–391. doi: 10.1016/S1369-5266(00)00190-4

Gibson, S. L. (2005). Control of plant development and gene expression by sugar signaling. Curr. Opin. Plant Biol. 8, 95–112. doi: 10.1016/j.pbi.2004.11.003

Gomez, E. D., Goldfinch, E., and Graham, I. A. (2010). AGPase mediated trehalose 6-phosphate synthesis is essential for...
embryonic and vegetative growth and responsiveness to ABA in germinating seeds and maturing petals.

Plant J. 84, 1–15. doi:10.1111/1365-313X.12012

Hullford, N. G., and Hey, S. J. (2009). Still-null mutants and Arabidopsis (Arabidopsis) act within an intricate network that links metabolic and stress signaling in plants.

Plant Physiol. 150, 237–246. doi:10.1104/pp.108.123070

Hung, K. and Buck, E. (2006). Crosstalk between auxin, cytokinins, and sugars in the plant cell cycle.

Plant Cell 18, 389–399. doi:10.1105/tpc.2006.052970

Ho, S. L., Chao, Y., Tong, W. P., and Yu, S. M. (2001). Sugar coordination and differentially regulates growth and stress-related gene expression via a complex signal transduction network and multiple control mechanisms.

Plant Physiol. 125, 877–886. doi:10.1104/pp.102.021797

Kohorn, B. D., and Kohorn, S. (2005). Their progeny in the ovary.

Front. Plant Sci. 313, 1–20. doi:10.1007/s00425-008-0718-0

Kohorn, B. D., Johansen, S., Shishido, J.-I., et al. (2009). Pectin activation gene family in *Lilium davidii*. *Plant Cell* 21, 722–730. doi:10.1105/tpc.108.069453

Lilley, J. L., Go, C. W., Sarizam, L., Xiang, K., and Nambu, K. (2007). An endogenous c-Jun-dependent pathway triggers increased auxin flow and bypassed elongation.

Plant Cell 19, 2263–2271. doi:10.1105/tpc.107.059377

Luo, Y., Grz, V. Y., and Xue, H. W. (2007). PGP1, an Arabidopsis phospholipase membrane-bound phosphatidylserine kinase, interacts with a cytokinin receptor to negatively regulate sugar-metabolized root growth.

Plant Physiol. 145, 169–181. doi:10.1104/ pp.106.092145

Ma, B., Qian, D., Nan, Q., Tan, C., An, Y., and Xiong, Y. (2012). Arabidopsis vacuolar H(+)-ATPase (V-ATPase) B subunits are involved in auxin cytoplasmic remodeling via binding to, bundling, and stabilizing B-ATPase.

J. Biol. Chem. 287, 19809–19817. doi:10.1074/jbc.M111.281053

Moro, Y., and Nemoto, K. (2012). The pathway of auxin biosynthesis in plants. *J. Exp. Bot.* 63, 2853–2872. doi:10.1093/jxb/ers241

Menard, B., Denoue, T., Nussaume, L., Berger, B., Bouchard, D., Meyer, C. et al. (2012). Endoreduplication and disruption of the Arabidopsis TDR (target of squamosa) gene. *Proc. Natl Acad. Sci. U.S.A.* 109, 6422–6427. doi:10.1073/pnas.1202148109

Menges, M., de Jager, S. M., Gruissem, W., and Murray, J. A. (2003). Global analysis of the core cell cycle regulators of Arabidopsis identifies novel genes, reveals multiple and highly specific profils of expression and provides a coherent model for plant cell cycle control. *Plant Cell* 15, 566–586. doi:10.1105/tpc.017111

Menand, B., Desnos, T., Nussaume, L., Grini, P. E., et al. (2007). Bypassing auxin auxin biosynthesis in *Arabidopsis thaliana*. *Plant Cell* 19, 201–214. doi:10.1105/tpc.105.038384

Mishra, B. S., Singh, M., Bharrwia, D., and Zhang, Y. (2008). Trehalose metabolism and signaling. *Annu. Rev. Plant Biol.* 59, 437–455. doi:10.1146/annurev.arplant.59.032007.092905

Perrott-Rechenmann, C. (2010). Cellular responses to auxin: division versus expansion. *Cold Spring Harb. Perspect. Biol.* 2, a004466. doi:10.1101/cshperspect.a004466

Pollard, T. D., and Cooper, J. A. (2009). Actin, a central player in cell shape and movement. *Science* 326, 1206–1212. doi:10.1126/science.1177062

Pugh, D. A., Ollier, C. E., Talbot, M. I., and Bown, S. L. (2010). Evidence for the role of transfer cells in the evolutionary increase in cell size and fiber biomass yield in cotton. *Mol. Plant* 3, 1075–1086. doi:10.1093/mp/pqq094

Raschendorfer, E., Lekkerker, A. S., Schlueter, A., Lellanta-Pers, P. C., Bayer, M., Kamm, M., et al. (2009). Different auxin responses maintain control distinct cell fates in the early plant embryos. *Cold Spring Harb. Perspect. Biol.* 1, a001455. doi:10.1101/cshperspect.a001455

Ryan, R. E. (1999). The acid growth theory of auxin-induced cell elongation is alive and well. *Plant Physiol.* 121, 1271–1274. doi:10.1104/pp.99.4.1271

Rivas-Almalkieh, C., Menges, M., Hardy, D. L., and Murray, J. A. (2008). Sugar control of the plant cell cycle: differential regulation of Arabidopsis D-type cyclin gene expression. *Mol. Biol. Cell* 20, 4515–4521. doi:10.1091/mbc.E08-03-0328

Rolland, F., Barts-Gonzalez, E., and Sheen, J. (2006). Sugar sensing and signaling in plants: conserved and novel mechanisms. *Annu. Rev. Plant Biol.* 57, 679–708. doi:10.1146/annurev.arplant.57.032905.120326

Rolland, F., Moore, B., and Sheen, J. (2002). Sugar sensing and signaling in plants. *Plant Cell* 14, 5195–5205. doi:10.1105/tpc.007293.1

Ruan, Y.-L. (2012). Signaling roles of innate metabolites in plant development. *Mol. Plant* 5, 765–785. doi:10.1104/mgp.111.039460

“fpls-04-00163” — 2013/5/29 — 15:51 — page 8 — # 8

Wang and Ruan Sugar and auxin in cell growth

Frontiers in Plant Science | Plant Physiology May 2013 | Volume 4 | Article 163 | 8
Metabolic sugar signal promotes Arabidopsis meristematic proliferation via G2. Dev. Biol. 305, 82–90. doi: 10.1016/j.ydbio.2010.12.019

Sreckovic., A., M., J., and Rol-

Plant Physiol. 13, 177–191. doi: 10.1093/ pp.28.03.12.002

Tang, G., Q., Luchsh, M., and Steun-

Trends Plant Sci. 17, 856–665. doi: 10.1016/j.plants.2012.06.005

Development the size of seeds and other organs.

(auxin) and carbon and carbohydrate state.

This is an open-access article distributed under the terms of the Creative Commons

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any com-

Copyright © 2013 Wang and Ruan.

false positives and negatives. This article was submitted to Frontiers in Plant Science. Copyright © 2013 Wang and Ruan.

Ruan, Y.-L., Lin, Y., and Huang, J. (2009). Capping invertase activity by its inhibitor: roles and impli-

www.frontlinen.org

May 2013 | Volume 4 | Article 163 | 3

"fpls-04-00163" — 2013/5/29 — 15:51 — page 9 — #9

Schruff, M. C., Spielman, M., Tiwari, R. J. (2006). The AUXIN RESPONSE

Arabidopsis. Plant Cell Physiol. 40, 809–807. doi: 10.1093/

Weber, H., Borisjuk, L., Henn, U., Buchner, P., and Wolfs, U. (1995). Seed coat-associated invertases of fava bean control both unloading and storage functions: cloning of dDNAs and cell type-

Wei, S., M., Wang, L., and Ruan, Y.-L. (2012). New insights into roles of cell wall invertases in early seed development revealed by comprehensive spatial and temporal expression patterns of GtCNs1 in cotton. Plant Physiol. 163, 777–787. doi: 10.1104/ pp.11.200905

Wei, S., M., Wang, L., Li, X. R., Lian, H., Ni, D. W.-H., Sayion, Y., Liu, L.-F., et al. (2012). Endocytosis of the vacuolar and cell wall invertase in transgenic carrot alters early plant development and sucrose partitioning. Plant Cell 11, 177–191. doi: 10.1105/tpc.11.2.177

Uran, D., Plu, N., Jones, J. C., Yang, J., Huang, I. E., Griffith, L., et al. (2012). Endosperm of the seven-transmembrane RGS1 protein activates G-protein-coupled signaling in Arabidopsis. Nat Cell Biol. 14, 1079–1085. doi: 10.1038/ncb2568

Urano, D., Phan, N., Jones, J. C., Tang, G. Q., Jackson, M., and Stewart, J. L., Maloof, J. N., and Rol-

S., Adams, S., Fenby, N., and Scott, W. J. (2006). The AUXIN RESPONSE

Arabidopsis. Plant Cell Physiol. 40, 809–807. doi: 10.1093/

K. H., Chen, X. Y., et al. (2010). Evidence that high activity of vacuolar invertase is required for cot-

Plant Cell 13, 744–756. doi: 10.1016/j.plphysiol.2010.11.1287

Wang, L., and Ruan, Y.-L. (2012). Metabolic sugar signal promotes Arabidopsis meristematic proliferation via G2. Dev. Biol. 305, 82–90. doi: 10.1016/j.ydbio.2010.12.019

Sreckovic., A., M., J., and Rol-

Plant Physiol. 13, 177–191. doi: 10.1093/ pp.28.03.12.002

Tang, G., Q., Luchsh, M., and Steun-

Trends Plant Sci. 17, 856–665. doi: 10.1016/j.plants.2012.06.005

Development the size of seeds and other organs.

(auxin) and carbon and carbohydrate state.

This is an open-access article distributed under the terms of the Creative Commons

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any com-

Copyright © 2013 Wang and Ruan.

false positives and negatives. This article was submitted to Frontiers in Plant Science. Copyright © 2013 Wang and Ruan.

Ruan, Y.-L., Lin, Y., and Huang, J. (2009). Capping invertase activity by its inhibitor: roles and impli-

www.frontlinen.org

May 2013 | Volume 4 | Article 163 | 3

"fpls-04-00163" — 2013/5/29 — 15:51 — page 9 — #9

Schruff, M. C., Spielman, M., Tiwari, S., Adams, S., Fenby, N., and Scott, W. J. (2006). The AUXIN RESPONSE

Arabidopsis. Plant Cell Physiol. 40, 809–807. doi: 10.1093/

K. H., Chen, X. Y., et al. (2010). Evidence that high activity of vacuolar invertase is required for cot-

Plant Cell 13, 744–756. doi: 10.1016/j.plphysiol.2010.11.1287

Wang, L., and Ruan, Y.-L. (2012). Metabolic sugar signal promotes Arabidopsis meristematic proliferation via G2. Dev. Biol. 305, 82–90. doi: 10.1016/j.ydbio.2010.12.019

Sreckovic., A., M., J., and Rol-

Plant Physiol. 13, 177–191. doi: 10.1093/ pp.28.03.12.002

Tang, G., Q., Luchsh, M., and Steun-

Trends Plant Sci. 17, 856–665. doi: 10.1016/j.plants.2012.06.005

Development the size of seeds and other organs.

(auxin) and carbon and carbohydrate state.

This is an open-access article distributed under the terms of the Creative Commons

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any com-

Copyright © 2013 Wang and Ruan.

false positives and negatives. This article was submitted to Frontiers in Plant Science. Copyright © 2013 Wang and Ruan.

Ruan, Y.-L., Lin, Y., and Huang, J. (2009). Capping invertase activity by its inhibitor: roles and impli-

www.frontlinen.org

May 2013 | Volume 4 | Article 163 | 3

"fpls-04-00163" — 2013/5/29 — 15:51 — page 9 — #9

Schruff, M. C., Spielman, M., Tiwari, S., Adams, S., Fenby, N., and Scott, W. J. (2006). The AUXIN RESPONSE

Arabidopsis. Plant Cell Physiol. 40, 809–807. doi: 10.1093/