ABSTRACT

Taqerbucht cultivars of date palm are well known by their natural resistance against devastating fungus Bayoud disease. In order to know, if these accessions have the same genetic and morphological profile or each of them constitutes a separate cultivar, we carried out a morphological and molecular characterization and we compared four Taqerbucht (Tq.) date palm cultivars from the southwestern region of Algeria: Tq.hamra cultivar (red fruits), Tq. safra cultivar (yellow fruits), Tq.beïda (white fruits) and Tq.kahla cultivar (black fruits). Seventy one phenotypic characteristics, including 33 quantitative and 38 qualitative traits, have been selected for comparison. Principal component analysis (PCA) and multi-component clustering were used to analyze and compare the data. The results suggest that the four cultivars can be classified into distinct groups. One group contains one cultivar, the Tq.kahla and another group contains the three other cultivars (Tq.safra, Tq.beïda and Tq. hamra). Based on phylogenetic analyses and sequence comparisons, the cultivar Tq. kahla seems to be divergent from the cultivar Tq.hamra, whereas the two cultivars Tq.Safra and Tq.beïda are close to each other. Using 16 Simple Sequence Repeat (SSR) genetic markers to analyze genetic diversity among the cultivars, we found that 13 markers were detectable in 31 allele’s loci, and the number of alleles per locus varied from 1–4 with an average of 2.38 alleles per locus. Expected heterozygosity (He) values ranged from 0.375–0.500 and observed heterozygosity (Ho) values from 0.750–1.000.

Introduction

Date palm is an important staple food, financial and income source of millions of Saharan people in Africa and Asia. Algerian oases are home to the most important date palm genetic resources in North Africa, with about 18.5 million palm trees and 1100 cultivars, covering about 169,380 ha (1, 2). The Adrar region (southwest of Algeria), where this study was performed, has more than 400 cultivars, and the most common ones are Tilemsou, Tinasser Tagerbucht and Ahartane.

Palm traits are greatly influenced by environmental conditions and developmental stages (3). Palm genetic diversity is also endangered by multiple biotic factors, such as the bayoud disease (*Fusarium* wilt) caused by a telluric fungus called *Fusarium oxysporum* f. sp. *albedinis*, which has ravaged about 3 million date palm trees in Algeria (4). All attempts to control this scourge have been unsuccessful (5, 6). Various control measures have also been used to counteract the general effects of bayoud, such as improving farming practices, biological and chemical applications and genetic control techniques. Only the Tagerbucht cultivar has a natural resistance against this devastating fungus (7).

Furthermore, genetic control, the use of resistant cultivars, remains the most promising and least toxic to the environment. The generalized resistance of cultivar Tagerbucht to bayoud is remarkable in the oases of Touat, Gourara and Tidikelt in the South of Algeria. It is a cultivar that is restricted to the western regions. Thus, the preservation and multiplication of such a genetic resource are of great importance for date palm farmers to breed new resistant cultivars to reduce yield losses and increase date palm quality (8).

Several methods based on genetic, morphological and molecular analyses can be used to achieve this goal. Date palms can multiply by two main methods. The first is vegetative propagation representing about 10% of palm populations in Algeria. The second is...
propagation by seeds, a widely used method for breeding new palm variety with valuable genetic and organoleptic qualities (9, 10). Morphological characteristics such as shape, size, weight, colour, the appearance of the fruit epidermis, fruit consistency, texture etc. are important traits to consider in breeding programmes. Physiological and biochemical characterization, such as the content and types of flavours and flavonoids produced by acid hydrolysis, can also be helpful for the taxonomy and classification of date palm cultivars (11). DNA-based markers also provide valuable information on genetic diversity and relationship between cultivars at molecular levels to identify kinship links and other characteristics that are difficult to figure out by morphological and biochemical analysis. For example, Random Amplified Polymorphic DNA (RAPD), Amplified Fragment Length Polymorphism (AFLP), Inter-Simple Sequence Repeat (ISSR), Random Amplified Microsatellite Polymorphism (RAMP) have been used for the characterization of germplasm of different date palm cultivars from Saudi Arabia, Qatar, Egypt, Tunisia, Sudan, Mauritania and Morocco with similar climatic conditions (12–14). Recently, 17 date palm microsatellite markers have been identified using (GA)n, and (GT)n, repeats (15). Microsatellites and Simple Sequence Repeats (SSRs) have also proven to be helpful in a wide range of applications in genetics (16) as they are relatively easily amplifiable by PCR (Polymerase Chain Reaction), their co-dominant nature and their generally high level of allelic diversity. Twenty-eight microsatellites have already been used to analyze phylogenetic relationships among Iranian and Spanish date palm varieties (17).

However, Little works have been performed so far to phenotypically characterize Taqerbucht cultivars in Algeria, especially in regard to resistance properties against bayoud disease. In this study, our goal was to explore genetic diversity within four date palm cultivars within the variety ‘Taqerbucht’ using nuclear microsatellite markers. We aimed at unravelling genetic relationships and comparing three morphometric traits to identify relevant characteristics that can be used as descriptors in the field.

Materials and Methods

Botanical and morphological sampling

Date palm samples from four Taqerbucht cultivars named “Taqerbucht safra”, “Taqerbucht hamra”, “Taqerbucht Beïda” and “Taqerbucht Kahla” (Table 1) were collected from trees growing in two oases located in Adrar region of Algeria south-west.

The first is Adrar oasis located at 279 m altitude, 27.84°N latitude and 0.33°W longitudes and the second is Augougrout oasis located at 281 altitude, 28.70°N latitude, and 0.30°W longitude (Fig. 1).

The accessions were chosen for the quality of their fruits and the importance in the socioeconomic life of native people of the region and resistance to *Fusarium oxysporum* f. sp. *albedinis*. The Taqerbucht cultivars underwent a comprehensive morphological study on the growth of stock, palm, brunch, fruit and seed.

A total of 71 descriptors, quantitative and qualitative, adopted by the International Plant Genetic Resources Institute (IPGRI) have been used (Table 2, 3) to compare the four cultivars in terms of descriptor stability and resistance to Bayoud disease.

Molecular analysis

In order to characterize the accessions of Taqerbucht, sixteen SSR have been used (16) (Table 4).

Leaflets of juvenile palms from the middle crown of adult palms aged about 15 years from the four date palm cultivars were used for molecular analyses. Genomic DNA was extracted from the leaflets using a NucleoSpin® Plant II extraction kit (Macherey-Nagel, Inc). PCR reactions have been performed in 96-well microplates containing 20 μl reaction mixtures composed of 100 ng genomic DNA, 1X Taq buffer, 0.5U DNA Taq polymerase (Promega), MgCl (1.5 mM), dNTP (0.2 mM each), 50 pmol each Forward and Reverse primer. A PCR contamination control without genomic DNA was used to ensure the absence of contamination. The amplification PCR program was the following: 95 °C for 5 min (initial denaturation), followed by 35 cycles of 95 °C for the 30 seconds, 56 °C for 30 seconds (primer hybridization) and 72 °C for the 30 seconds (primer extension), with a final extension phase at 72 °C for 10 min. PCR products were then separated on 1% agarose gel Tris, Borate, EDTA (TBE) to check amplification quality. PCR amplification reactions were then kept at 4 °C until use. Ten microliters (10μl) of each PCR amplification product (SSR markers) were then separated by electrophoresis (vertical gel electrophoresis system) in 8 % non-denaturing acrylamide gel along with a DNA ladder (Hyper Ladder V) at 250 Volt and 170 mA for 150 minutes. The gels were then visualized under UV transilluminator and DNA bands photographed.

Statistical analysis

To compare intra-cultivar variations, 33 quantitative morphological variables (Table 5) were analyzed separately by ANOVA test with posthoc LSD using Statistica software (19). Principal component analysis (PCA) and multi-component analysis (MCA) have been used to analyze and compare the measures of morphological parameters of growth, palms, inflorescences, fruits and seeds to determine the characteristics for variability using XLSTAT 2004.

In addition, the expected heterozygosity (He), the Hardy–Weinberg equilibrium and the null allele frequencies were calculated using GenAlEx6.5 software (New Brunswick, NJ) (20) and CERVUS 3.0.3 (Bozeman, MT) (21, 22). Genetic distance dendrograms have been established using MEGA 6 software (23) according to Nei’s minimum genetic distance matrix (24). The bootstrap resampling methodology (1000 replicates) was performed to test the robustness of the dendrogram topology. Wright’s F-statistics (FIT, FIS, FST) (25, 26) were calculated with POPGENE (27).
Table 1. Phenotypic characterization of the four Taqerbucht fruit cultivars (black, red, white and yellow)

Variety Name	Code (short name)	Dates colour	Precocity	Appreciation by consumers
Taqerbucht safra	Tq. safra	Yellow	Late	average
Taqerbucht beïda	Tq. beïda	White	late	average
Taqerbucht hamra	Tq. hamra	Red	late	average
Taqerbucht kahla	Tq. kahla	black	semi-late	good

Fig. 1. Location of the study area (18).

Table 2. Morphometric comparative characteristics between four cultivars of the Taqerbucht date variety. Thirty-three quantitative characters were used in the comparison

Characters	Quantitative character	character code
1	Palm length (cm)	PAL
2	Palm width (cm)	PAW
3	Spines number	SN
4	Spines thickness	ST
5	Spines length (cm)	SL
6	Pinna number	PN
7	Pinna width	PIW
8	Pinna length	PIL
9	Spacing index	SI
10	Spathe length	SPL
11	Spathe width	SPW
12	Stem length	STL
13	Stem width	STW
14	Thickness Stem	TST
15	Spikelet Numbers per diet	SPND
16	Longest spikelet	LSP
17	Shortest spikelet	SSP
18	Spikelet with flower base	SPF
19	Spikelet length with flower in middle	SPLFM
20	Spikelet length with flower at the top	SPLFT
21	Flower Numbers per longest spikelet	FNLSP
22	Flower numbers per shortest spikelet	FNSSP
23	N° of flowers knotted/spikelet at base	NFKSP
24	Fruit weight	FW
25	Flesh thickness	FT
26	Cavity length	CL
27	Cavity width	CW
28	Chalice diameter	CD
Table 3. Morphometric comparative characteristics between four cultivars of the Tagerbucht date variety. Thirty-eight qualitative characters were used in the comparison

Character Code	Qualitative characters
01	Appearance of Middle Crown
02	Presence of Air Off-Shoots
03	Density of Fibrillium
04	Hardness of Fibrillium
05	Ability To Produce Off Shoots
06	Palm curvature Level
07	Angle of The Palm
08	Rotation of The Palm
09	Petiole color
10	Penne color
11	Disposition of Pinna
12	Apical divergence Pinna
13	Spathe form
14	Diet position
15	Stem color
16	Density of Spikelets
17	Form of Spikelets
18	Fruit form
19	Fruit color
20	Fruit form at base
21	Fruit form at the top
22	Fruit length at Bser stage
23	Fruit width at Bser stage
24	Fruit color at tamor stage
25	Flesh texture
26	Fruit taste
27	Chalice form
28	Chalice color
29	Seed shape
30	Seed length/Fruit
31	Seed color
32	Surface aspect
33	Furrow form of seed
34	Germ pore situation
35	Protuberance type
36	protuberance Frequency
37	Mucron presence
38	Tegument adhesion

Table 4. Sixteen Short Sequence Repeats (SSR) isolated from Phoenix dactylifera used in the comparison of four date cultivars (Tq. beïda, Tq. hamra, Tq. kahla and Tq. safra) using PCR oligonucleotides as described previously

SSR Locus	EMBL Accession no.	Repeat motif	Clone size (bp)	Primer sequences (5’–3’)	Optimal Ta (°C)
mPdCIR010	AJ571673 (GA)22	(GA)	180	F: ACCCCGGACGTGAGGGTG R: CTCGATCTCCTTTTGTCTC	55.9
mPdCIR015	AJ571674 (GA)15	(GA)	253	F: AGCTGGCTCCTCCCTCTTATA R: GCTGTTGAGCCTGTTTTGC	51.6
mPdCIR016	AJ571675 (GA)14	(GA)	209	F: AGCCGGAAATGAAAAGTAT R: ATGAAAAGCGTCCAAATGC	51.7
mPdCIR025	AJ571676 (GA)22	(GA)	269	F: GCAGGAGAGGGCTTATAGT R: CCCCTATTAGATTAGCTAC	49.3
mPdCIR032	AJ571677 (GA)19	(GA)	376	F: CAAACCTTGTGGATGAG R: GGTGGAGTACATGTAGTAG	51.5
mPdCIR035	AJ571678 (GA)15	(GA)	341	F: ACAACGCGCAGGGGATTAC R: CGCAGCTACCTTCTCTCTA	53.9
Results

Morphological analysis

Thirty three quantitative and 38 qualitative traits (Table 2, 3) in seeds, fruits, palm and inflorescence (flowers) have been compared between four date cultivars from the variety Tagerbucht (Tq). The four cultivars are Tq. beïda (a date palm variety with white fruits), Tq. hamra (a variety with red fruits), Tq. kahla (a variety with black fruits) and Tq. safra (a variety with yellow fruits). Fruit maturities in these cultivars are relatively late, and their appreciation by consumers varies from average to good. While consumers averagely appreciate yellow, white and red fruits, black fruit (Tq. kahla), on the other hand, is highly appreciated for their morphological and physiological properties (shape, colour and taste) where they are sweeter than other varieties.
Inter-varietal comparison between the four Taqerbucht cultivars show that about 11 qualitative characteristics, mostly in the palm organ, were relatively conserved or similar among the four cultivars.

The comparison of the total quantitative and qualitative traits (a sum of 71 traits) between the four cultivars (Tq. beïda, Tq. hamra, Tq. kahla, and Tq. safra) show four distinct groups as revealed by a principal component analysis (Fig. 2). The phenotypic characterization of the two cultivars Tq. beïda and Tq. safra seems to be grouped into one large related group.

Based on the 38 qualitative morphological traits, the four cultivars were grouped into nine distinct groups according to common/distinctive traits as shown by a multi-component analysis (Fig. 3). The variety Tq. kahla comprised four groups (groups 1, 2, 3 and 4), the variety Tq. hamra contains two groups (groups 6 and 7) while the two cultivars Tq. safra and Tq. beïda shared three groups of common characteristics (groups 5, 8 and 9).

Molecular and polymorphism analysis

A total of 16 Short Sequence Repeat (SSR) markers have been used for molecular and polymorphism analyses between the four Taqerbucht cultivars. We, however, could not obtain amplification for three SSR markers (mPdCIR044, mPdCIR063 and mPdCIR070). Hence, we removed them from the analysis and used the remaining 13 SSR markers in which the marker mPdCI057 seemed to be monomorphic (Table 6).

Using these markers, 31 alleles were detectable in 13 loci. The number of alleles per locus varied from one mPdCIR057 to four mPdCIR090 with a mean of 2.38 alleles per locus. The effective mean number of alleles was 1.86. Expected heterozygosity (H_e) values ranged from 0.375 (mPdCIR025 and mPdCIR078) to 0.500 (the rest of all loci). The lowest and highest observed heterozygosity (H_o) values were 0.750 (mPdCIR025 and mPdCIR078) and 1.0, respectively, for the other loci. For all markers, the values of observed heterozygosity (H_o) were higher than expected. In order to analyze the stability of expected heterozygosity in the studied populations, we performed the Wright F-statistics (F_{is}, F_{it}, F_{st}) (25). In fact, The F_{is} values were negative for all markers with an average of -1.0 (Table 6). F_{st} values varied between 0 for six markers to 0.520 for the mPdCIR078 marker with an average of 0.122. All markers, except two (mPdCIR025 and mPdCIR078), showed a significant HW deviation.

Intra-cultivars genetic diversity

The number of alleles per variety ranged from 23 for the cultivar Tq. safra to 26 for the cultivar Tq. hamra with a mean value of 24.5. The two cultivars Tq. hamra and Tq. beïda showed the highest values in terms of mean heterozygosity observed. The expected heterozygosity values in the four cultivars were less than the observed values. The F_{is} value, an important factor in defining population structure and indicating heterozygosity loss, ranged from -1.0 for the cultivar Tq. hamra to -0.692 for the cultivar Tq. kahla. Only seven alleles have been identified as specific to the

![Figure 2. PCA. Representation of accessions and quantitative morphological characteristics (Biplot).](image-url)
cultivar Tq. kahla and the percentage of polymorphic loci per cultivar varied from 84.62–92.31 %, with an average of 88.46 % (Table 7).

The level of genetic differentiation among cultivars was analyzed by ANOVA, and it was found that the percentage of molecular variability in the four cultivars were about 92 % within individuals and 8 % among populations (Fig. 4). This suggests that the cultivars are homogeneous, and the differentiation is more individual than population-related. This is probably due to plantation errors and farmers’ practices mixing between varieties.

On the other hand, in the phylogenic tree constructed using Nei’s minimum genetic distance (Fig. 5), the cultivar Tq. kahla appears a bit distant from the others. Pairwise comparisons between populations confirm this distance, where the cultivar Tq. kahla has seven specific alleles (Table 7).

Table 6. Polymorphisms of 13 microsatellites used to compare four date cultivars

Loci	NA	Ne	Ho	He	F	Fis	Fit	Fst	Nm	EHW
mPdCIR010	3	2	1	0.5	-1.000	-1.000	-0.684	0.158	1.333	*
mPdCIR013	2	2	1	0.5	-1.000	-1.000	-0.6	0.2	1	**
mPdCIR016	2	2	1	0.5	-1.000	-1.000	-0.6	0	1	**
mPdCIR025	2	1.75	0.75	0.375	-1.000	-1.000	0.2	0	1	**
mPdCIR032	2	2	1	0.5	-1.000	-1.000	-0.684	0.158	1.333	*
mPdCIR033	3	2	1	0.5	-1.000	-1.000	-0.6	0	1	**
mPdCIR048	2	2	1	0.5	-1.000	-1.000	-0.684	0.158	1.333	*
mPdCIR050	2	2	1	0.5	-1.000	-1.000	-0.6	0	1	**
mPdCIR057	1	1	0	0	/	/	/	/	/	Monomorphic
mPdCIR078	3	1.5	0.75	0.375	-1.000	-1.000	0.04	0.52	0.231	ns
mPdCIR085	2	2	1	0.5	-1.000	-1.000	-0.6	0	1	**
mPdCIR090	4	2	1	0.5	-1.000	-1.000	-0.684	0.158	1.333	*
mPdCIR093	3	2	1	0.5	-1.000	-1.000	-0.6	0	1	**
Mean	2.385	1.865	0.885	0.442	-1.000	-1.000	-0.756	0.122	0.454	

Na = Number of Different Alleles; Ne = N° of Effective Alleles = 1 / (Sum pi²); I = Shannon’s Information Index = -1 * Sum (pi * Ln (pi)); Ho = Observed Heterozygosity = N° of Hets / N; Na = No. of Different Alleles; Ne = No. of Effective Alleles = 1 / (Sum pi²); I = Shannon’s Information Index = -1 * Sum (pi * Ln (pi)); Ho = Observed Heterozygosity = N° of Hets / N; He = Expected Heterozygosity = 1 - Sum pi²; F = Fixation Index = (He - Ho) / He = 1 - (Ho / He), Fis, Fst, Fit (Fstatistic).

cultivar Tq. kahla and the percentage of polymorphic loci per cultivar varied from 84.62–92.31 %, with an average of 88.46 % (Table 7).

The level of genetic differentiation among cultivars was analyzed by ANOVA, and it was found that the percentage of molecular variability in the four cultivars were about 92 % within individuals and 8 % among populations (Fig. 4). This suggests that the cultivars are homogeneous, and the differentiation is more individual than population-related. This is probably due to plantation errors and farmers’ practices mixing between varieties.

On the other hand, in the phylogenic tree constructed using Nei’s minimum genetic distance (Fig. 5), the cultivar Tq. kahla appears a bit distant from the others. Pairwise comparisons between populations confirm this distance, where the cultivar Tq. kahla has seven specific alleles (Table 7).
correlation, however, between the two cultivars Tq. hamra and Tq. beïda \((r = 1)\) was noticeable (Table 8).

To visualize the relationship between individuals from different cultivars and to figure out any possible admixtures between populations, a factorial correspondence analysis (FCA) was performed using GENETIX4.05 software. About 88.47% of the total variations distinguish the cultivar Tq. kahla from the other cultivars. By contrast, the second axis representing 10.47% of the total variation showed the isolation of Tq. safra, Tq. hamra and Tq. beïda (Fig. 6).

Discussion

We aimed to phenotypically and genetically compare these cultivars to deduce relationships between them in terms of morphological and genetic characteristics involved in environmental, economic and nutritive values. Using statistical analyses, we observed some highly significant intra-varietal variations that can be classified into two distinct types: 1) those that are conserved or common between the four cultivars, and 2) those specific or variable between the cultivars. The first type of conserved characteristics seems to be related to vegetative organs, mainly the palm, while the second category of traits seems to be linked to the reproductive organs, particularly inflorescence and seeds.

Multivariate analyses using 33 quantitative traits identified four groups, almost one group for each variety. These groups, however, share well-defined quantitative and morphological characteristics. For example, the black-fruit variety (Tq. kahla) is positively correlated with quantifiable morphological traits such as the spikelet length with flowers at the top (SPLFT) \((r = 0.9)\), shortest spikelet (SSP) \((r = 0.78)\), cavity width (CW) \((r = 0.80)\), the width of the seed (WSD) \((r = 0.82)\), and Spines number (SN) \((r = 0.51)\), suggesting that these traits are conserved. The red-fruit cultivar (Tq. hamra) was characterized by the following quantitative traits: fruit weight (FW) \((r = 0.95)\), palm length (PAL) \((r = 0.76)\), long spikelet (LSP) \((r = 0.65)\), spine length (SL) \((r = 0.76)\), thickness stem (inflorescence carrier) (TST) \((r = 0.54)\) and stem width

Table 7. Intra-cultivar genetic diversity

Cultivars	Na	Ne	Ho	He	F	Fis	specific alleles ≥ 50%	HW	%P
Tq. Safra	23	1.769	0.846	0.423	-1.000	-0.833	/	NS	84.62%
Tq. Hamra	26	1.923	0.923	0.462	-1.000	-1.000	/	NS	92.31%
Tq. Beïda	25	1.923	0.923	0.462	-1.000	-0.846	/	NS	92.31%
Tq. Kahla	24	1.846	0.846	0.423	-1.000	-0.692	7	NS	84.62%
Mean	24.5	1.865	0.885	0.442	-1.000	-0.842	88.46%		

\(Na\): N° of different alleles, \(Ne\): No. of effective alleles: \(1 / (\text{Sum } pi^2)\), \(Ho\): Observed Heterozygosity; \(No \text{ of } Hets } / N\), \(He\): Expected Heterozygosity \(= 1 - \text{Sum } pi^2\), \(F = \text{Fixation Index } = (\text{He} - \text{Ho}) / \text{He} = 1 - (\text{Ho } / \text{He})\), \(Fis\), \(Fst\), \(Fh\) (Fstatistic), \(Nm = ((1 / Fst) - 1) / 4\), ns=not significant, \(\%P\): percentage of polymorphic loci.

Table 8. Pairwise Population Matrix according to Nei's Genetic Identity

	Tq. safra	Tq. hamra	Tq. beïda	Tq. kahla
Tq. Safra	1.000			
Tq. Hamra	0.964	1.000		
Tq. Beïda	0.964	1.000	1.000	
Tq. Kahla	0.752	0.759	0.759	1.000

% of the total variations distinguish the cultivar Tq. kahla from the other cultivars. By contrast, the second axis representing 10.47% of the total variation showed the isolation of Tq. safra, Tq. hamra and Tq. beïda (Fig. 6).

Fig. 4. Percentages of molecular variability in four Algerian date Palm accessions.

Fig. 5. Dendrogram based on Nei’s (1972) genetic distance: Method = UPGMA of 4 cultivars of palm date in Algeria.

Fig. 6. The factorial correspondence analysis (FCA) results showing the relationship between the four cultivars of date palm.
majority of microsatellites markers are highly polymorphic, except the mPdCIR057 marker that is monomorphic. They show significant genetic diversity and deviation from EHW, with a high heterozygosity deficiency and negative Fis values.

The four date cultivars showed high genetic diversity with high levels of observed heterozygosity value (Ho) in comparison with five SSR within 26 Tunisian cultivars (30), 14 SSR within 46 cultivars, or 16 SSR within 11 Moroccan cultivars (31). Excess heterozygosity manifested by negative Fis values in the four cultivars. Only the cultivar Tq. kahla (black fruits) showed seven specific alleles (>50%), confirming its origin belonging to the south of Algeria. The Fst suggests the presence of genetic differentiation between the cultivars, which might result from geographic separation, distance, climate conditions and difficulty of exchanging vegetative materiel (30, 36), though the cultivar Tq. kahla seems to be differentiated from the three other cultivars, but there is no differentiation between the two cultivars Tq. safra and Tq. beida (Fst= 0.000). This result confirmed by molecular variance analysis (Fig. 2), in which the total genetic diversity of Algerian date palm is strongly represented within the individual rather than among cultivars.

The phylogenetic tree constructed using Nei’s minimum genetic distance among four cultivars shows two distinct groups (Fig. 3), confirmed by FCA analysis which shows two groups (Fig. 4). The first group comprises the three cultivars Tq. safra, Tq. beida and Tq. hamra, while the second group was formed lonely by the cultivar Tq. Kahla.

Conclusion
Morphological and genetic analyses show genetic variations within four Tagerbucht date palm cultivars (Tq. beida cultivar, Tq hamra, Tq kahla and Tq safra). Quantitative and qualitative variability analyses prove to be helpful to highlight the effectiveness of date palm descriptors, though some cultivars seemed to be mixed within other cultivars. The most important divergence criteria are the form consistency, plasticity, texture and taste of the fruit. Through intra-cultivar analysis at the interregional level of Adrar, environmental conditions have an impact in particular on the weight of the fruits and seeds, the consistency, the taste and the surface of the seed. In perspective, it would be interesting to broaden the analyses to include other cultivars from southern Algeria to characterize their resistance to bayoud disease and look for resistant genes toward breeding new disease tolerance cultivars.

Acknowledgements
This research was supported by the École Nationale Supérieure Agronomique (ENSA) Algiers, Algeria and the Institut national de la recherché agronomique d’Algérie that have provided financial support for our project research.

Authors’ contributions
BS carried out the Survey in palm groves Biometric analysis Molecular analysis in laboratory. AAA
Conflict of interests

Authors do not have any conflict of interests.

References

1. Djiaafr M, Kalloum S, Kaidi K, Salem F, Balla S, Meslem D and Iddou. Enhanced Methane Production from Dry Leaflets of Algerian Date Palm (Phoenix dactylifera L.) In Vitro Cultivar, by Alkaline Pretreatment. Waste and Biomass Valorization 2020;11:2661–71. https://doi.org/10.1016/j.wbi.2020.04.007

2. Hannachi, S. Ressources génétiques du palmier dattier (Phoenix dactylifera L.) en Algérie : Analyse de la variabilité inter et intra des principaux cultivars, Thèse Magister. ENSA Alger; 2012. Available from: http://hdl.handle.net/123456789/1889

3. Farooq S, Maqbool MM, Bashir MA et al. Production suitability of date palm under changing climate in a semi-arid region predicted by CLIMEX model. Journal of King Saud University – Science 2021;33(3):101394. https://doi.org/10.1016/j.jsus.2021.101394.

4. Bahriz, H, Bouras, N. Etude de la Maladie du Bayoud, le Comportement Variétal du Palmier Dattier vis-à-vis du Fusarium oxysporum f. sp. albedinis dans la Vallée du M’Zab. African Review of Science, Technology and Development 2020;5(1):41-60.

5. Chibane, E, Essarioui A, Ouknin M, Boumezouzou A, Bouyanner A, Majidi L. Antifungal activity of Asteriscus graveolens (Forsk.). Less essential oil against Fusarium oxysporum f. sp. albedinis, the causal agent of “Bayoud” disease on date palm. Mor J Chem. 2020;8(2):456-65. http://revues.imist.ma/journal=morjchem&page=login

6. Benzohra IE, Megateli M, Elayachi BA, Zekraoui M, Djillali K, Bennani I, Rezki N, Boudeffeur S, Selection of some cultivars of date palm (Phoenix dactylifera L.) and their transferability to certaines espèces Forestières dans la région d’Adrar. La forêt Algérienne. 2015;39.

7. StatSoft, Inc. Electronic Statistics Textbook. Tulsa, 2012; OK: StatSoft. WEB: http://www.statsoft.com/textbook/ (references liste).

8. Peakall R, Smouse PE. GENALEX 6. Genetic Analysis in Excel. Population genetic software for teaching and research. Molecular Ecology Notes. 2006;6:288–95.

9. Kalinowski ST, Taper ML, Marshall TC. Revising how the computer program CERVUS accommodates genotyping error increases success in paternity assignment. Molecular Ecology. 2007;6:1099-06. https://doi.org/10.1111/j.1365-294X.2007.03089.x

10. Marshall TC, CERVUS, 3.0, Cervus is a computer program for assignment of parents to their offspring using genetic markers, Cervus, a Windows package for parentage analysis using likelihood approach, CERVUS was written by Tristan Marshall 2006 http://www.fieldgenetics.com (Erişimtarihi: 02.07.2008).

11. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: Molecular Evolutionary Genetics Analysis version 6, 0, Molecular Biology and Evolution. 2013;30:2725-29. https://doi.org/10.1093/molbev/ms3197

12. Nei M. Genetic distance between populations. Am Nat. 1972;106:283-92. http://dx.doi.org/10.1086/282771

13. Wright S. Evolution in Mendelian populations. Genetics. 1931;16:385-386.

14. Weir BS, Cockerham CC. Estimating F-statistics for the analysis of population structure, Evolution. 1984;38:1358–70.

15. Yeh FC, Yang BC, Boyle TJ, Ye ZH, Mao JX. POPGENE: The User-Friendly Shareware for Population Genetic Analysis, Edmonton, AB, Canada: University of Alberta; 1997.

16. Bedjaojui H, Benoua H. Assessment of phenotypic diversity of local Algerian date palm (Phoenix dactylifera L.) cultivars. Journal of the Saudi Society of Agricultural Sciences. 2018;19(1):63-75. https://doi.org/10.1016/j.jssas.2018.06.002

17. Amari I. Etude de la variabilité génétique des cultivars de palmier dattier (Phoenix dactylifera L.) et de leur agent causal Fusarium oxysporum f. sp. albedinis (Kilian et Maire) Gordon dans les régions du Touat, Tidilket et Gourara. Mémoire Master II; ENSA Alger; 2017.

18. Hamza H, Benabderrahim MA, Elbekkay M, Feizoua G, Triki T, Ferchichi A. Investigation of genetic diversity of Tunisian date palm (Phoenix dactylifera L.) cultivars using ISSR marker systems and their relation with fruit characteristics. Turk J Biol. 2012;36:449-58. https://doi.org/10.3906/biy-1107-12
31. Bodian A, El Houmazi MA, Ndoye-Ndir K, Hasnaoui A, Nachtigall M. Genetic diversity analysis of date palm (Phoenix dactylifera L.) cultivars from Figuig oasis (Morocco) using SSR markers. International Journal of Science and Advanced Technology. 2012;2(9):96-104.

32. Zehdi S, Sakka H, Rouma A, Ould Mohamed Salem A, Marrakchi M, Trifi M. Analysis of Tunisian date palm germplasm using simple sequence repeat primers. African journal of Biotechnology. 2004;3:215-19. https://doi.org/10.5897/AJB2004.000-2040

33. Hamza H, Elbekkay M, Benabderrahim MA, Ferchichi A. Molecular and morphological analyses of date palm (Phoenix dactylifera L.) subpopulations in southern Tunisia. Arid and oases cropping laboratory. Arid area institute. Medenine. Span J Agric Res Des. 2011;9(2):484-93. https://doi.org/10.5424/sjar/20110902-271-10

34. Elshibli S, Korpolainen H. Microsatellite markers reveal diversity high genetic in date palm germplasm from Sudan. Genetica. 2008;134:251-60. https://doi.org/10.1007/s10709-007-9232-8

35. Bennaceur M, Lanaud C, Chevalier MH, Bounaga N. Genetic diversity of date palm (Phoenix dactylifera L.) from Algeria revealed by enzyme markers. Plant breed. 1991;107:56-69. https://doi.org/10.1111/j.1439-0523.1991.tb00528.x

36. Salem AOM, Trifi M, Sakka H, Rouma A, Marrakchi MJGR. Genetic inheritance analysis of four enzymes in date-palm (Phoenix dactylifera L.). Genetic Resources and Crop Evolution. 2001;48:361-68.