SUPPLEMENTARY MATERIAL

New flavonoid glycosides from seeds of *Baccharoides anthelmintica*

Yi Liua,b, Wen-Qiong Wanga, Tong-Chena and Li-jiang Xuana*

a State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, People’s Republic of China

bUniversity of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, People’s Republic of China

*Corresponding Author
Prof. Dr. Li-jiang Xuan, Tel/fax: +86 21 20231968. E-mail: ljxuan@simm.ac.cn

Abstract: *Baccharoides anthelmintica* is the most popular traditional Uighur medicines used for vitiligo. The chemical investigation of the seeds of *B. anthelmintica* led to the isolation of three new flavonoid glycosides (Vernosides A-C). Their structures were determined by comprehensive analysis of spectroscopic data including 1D and 2D NMR and HRMS data. Vernosides A-C were evaluated for their effects on tyrosinase activity. Vernoside B can enhance tyrosinase activity.

Key words: *Baccharoides anthelmintica*; vitiligo; flavonoid glycosides
List of content

Abbreviations

Table S1. 1H NMR (500 MHz) and 13C NMR (125 MHz) data for Compounds 1-3 (δ_H, δ_C in ppm, J in Hz)

Figure S1. Key COSY and HMBC correlations of compounds 1-3

Figure S2. 1H NMR spectrum of compound 1 in CD$_3$OD

Figure S3. 13C NMR spectrum of compound 1 in CD$_3$OD

Figure S4. 1H-1H COSY spectrum of compound 1 in CD$_3$OD

Figure S5. HSQC spectrum of compound 1 in CD$_3$OD

Figure S6. HMBC spectrum of compound 1 in CD$_3$OD

Figure S7. 1H NMR spectrum of compound 2 in CD$_3$OD

Figure S8. 13C NMR spectrum of compound 2 in CD$_3$OD

Figure S9. HSQC spectrum of compound 2 in CD$_3$OD

Figure S10. HMBC spectrum of compound 2 in CD$_3$OD

Figure S11. 1H NMR spectrum of compound 3 in CD$_3$OD-CDCl$_3$ (1:1)

Figure S12. 13C NMR spectrum of compound 3 in CD$_3$OD-CDCl$_3$ (1:1)

Figure S13. HSQC spectrum of compound 3 in CD$_3$OD-CDCl$_3$ (1:1)

Figure S14. HMBC spectrum of compound 3 in CD$_3$OD-CDCl$_3$ (1:1)

Figure S15. Activation of tyrosinase activity by compound 2

Figure S16. IR spectrum of compound 1

Figure S17. HR-ESI-MS spectrum of compound 1

Figure S18. IR spectrum of compound 2

Figure S19. HR-ESI-MS spectrum of compound 2

Figure S20. IR spectrum of compound 3

Figure S21. HR-ESI-MS spectrum of compound 3
Abbreviations

HMBC: 1H detected heteronuclear multiple-bond correlation

COSY: correlated spectroscopy

HSQC: 1H detected heteronuclear single-quantum coherence
Table S1. 1H NMR (500 MHz) and 13C NMR (125 MHz) data for Compounds 1-3 (δ_H, δ_C in ppm, J in Hz)

position	δ_H	δ_C	δ_H	δ_C	δ_H	δ_C
2	5.12 (dd, 10.5, 3.6)	74.3	5.08 (d, 12.3)	74.8	4.99 (d, 12.1)	74.2
3	2.08 (m), 2.06 (m)	39.8	2.25 (m) 1.99 (m)	36.7	2.25 (m) 1.96 (m)	35.5
4	4.68 (dd, 2.4, 2.2)	64.2	4.37 (dd, 5.3, 2.7)	72.1	4.22 (m)	73.3
5	7.13 (d, 8.5)	132.4	7.06 (d, 8.4)	132.8	7.05 (d, 8.4)	132.4
6	6.68 (dd, 8.5, 2.5)	110.3	6.65 (dd, 8.4, 2.4)	110.4	6.64 (dd, 8.4, 2.5)	109.8
7	157.1	157.5	157.5	157.5	157.5	157.5
8	6.58 (d, 2.5)	105.4	6.62 (d, 2.4)	105.2	6.62 (d, 2.5)	105.0
9	159.8	160.2	160.2	160.2	160.2	160.2
10	119.1	117.0	117.0	117.0	117.0	117.0
11	3.63 (m) 3.69 (m)	64.6	3.41 (s)	56.1		
12	1.24 (t, 7.0)	15.9	15.9	15.9	15.9	15.9
1′	133.4	133.5	133.6			
2′	7.25 (d, 8.5)	128.8	7.25 (d, 8.5)	128.8	6.87 (d, 1.9)	114.4
3′	6.80 (d, 8.5)	116.2	6.81 (d, 8.5)	116.2	145.7	
4′	158.3	158.5	158.5	158.5	158.5	158.5
5′	6.80 (d, 8.5)	116.2	6.81 (d, 8.5)	116.2	6.80 (d, 8.1)	115.9
6′	7.25 (d, 8.5)	128.8	7.25 (d, 8.5)	128.8	6.75 (dd, 1.9, 8.1)	118.8
1′′	5.02 (d, 5.6)	101.8	4.93 (d, 7.3)	102.0	4.91 (d, 6.5)	101.4
2′′	3.78 (m)	74.8	3.49 (m)	74.8	3.52 (m)	74.0
3′′	3.51 (m)	77.8	3.41 (m)	77.8	3.40 (m)	77.2
4′′	3.43 (m)	72.0	3.40 (m)	72.0	3.42 (m)	74.2
5′′	3.48 (m)	75.4	3.83 (m)	75.6	3.79 (m)	74.9
6′′	4.64 (m), 4.33 (m)	65.0	4.72 (m)	65.6	4.71 (d, 12.3)	65.2
1′′′	121.8	131.1	130.3			
2′′′	7.86 (d, 8.7)	132.9	7.99 (d, 7.5)	130.6	7.97 (d, 7.8)	130.2
3′′′	6.76 (d, 8.7)	116.3	7.28 (t, 7.5)	129.6	7.25 (t, 7.8)	129.1
4′′′	163.9	7.48 (t, 7.5)	134.2	7.47 (t, 7.4)	133.9	
5′′′	6.76 (d, 8.7)	116.3	7.28 (t, 7.5)	129.6	7.25 (t, 7.8)	129.1
6′′′	7.86 (d, 8.7)	132.9	7.99 (d, 7.5)	130.6	7.97 (d, 7.8)	130.2
7′′′	168.1	167.9	167.7			

aRecorded in CD$_3$OD. bRecorded in CD$_3$OD-CDCl$_3$ (1:1).
Figure S1. Key COSY and HMBC correlations of compounds 1-3
Figure S2. 1H NMR spectrum of compound 1 in CD$_3$OD

Figure S3. 13C NMR spectrum of compound 1 in CD$_3$OD
Figure S4. 1H-1H COSY spectrum of compound 1 in CD$_3$OD

Figure S5. HSQC spectrum of compound 1 in CD$_3$OD
Figure S6. HMBC spectrum of compound 1 in CD$_3$OD

Figure S7. 1H NMR spectrum of compound 2 in CD$_3$OD
Figure S8. 13C NMR spectrum of compound 2 in CD$_3$OD

Figure S9. HSQC spectrum of compound 2 in CD$_3$OD
Figure S10. HMBC spectrum of compound 2 in CD$_3$OD

Figure S11. 1H NMR spectrum of compound 3 in CD$_3$OD-CDCl$_3$ (1:1)
Figure S12. 13C NMR spectrum of compound 3 in CD$_3$OD-CDCl$_3$ (1:1)

Figure S13. HSQC spectrum of compound 3 in CD$_3$OD-CDCl$_3$ (1:1)
Figure S14. HMBC spectrum of compound 3 in CD$_3$OD-CDCl$_3$ (1:1)

Figure S15. Activation of tyrosinase activity by compound 2

Percent increase
Figure S16. IR spectrum of compound 1

Figure S17. HR-ESI-MS spectrum of compound 1
Figure S18. IR spectrum of compound 2

Figure S19. HR-ESI-MS spectrum of compound 2
Figure S20. IR spectrum of compound 3

Figure S21. HR-ESI-MS spectrum of compound 3