ABSTRACT

Studying the driving modes of turbulence is important for characterizing the impact of turbulence in various astrophysical environments. The driving mode of turbulence is parameterized by b, which relates the width of the gas density PDF to the turbulent Mach number; $b \approx 1/3$, 1, and 0.4 correspond to driving that is solenoidal, compressive, and a natural mixture of the two, respectively. In this work, we use high-resolution (sub-pc) ALMA 12CO ($J = 2–1$), 13CO ($J = 2–1$), and C18O ($J = 2–1$) observations of filamentary molecular clouds in the star-forming region N159E (the Papillon Nebula) in the Large Magellanic Cloud (LMC) to provide the first measurement of turbulence driving parameter in an extragalactic region. We use a non-local thermodynamic equilibrium (NLTE) analysis of the CO isotopologues to construct a gas density PDF, which we find to be largely log-normal in shape with some intermittent features indicating deviations from lognormality. We find that the width of the log-normal part of the density PDF is comparable to the supersonic turbulent Mach number, resulting in $b \approx 0.9$. This implies that the driving mode of turbulence in N159E is primarily compressive. We speculate that the compressive turbulence could have been powered by gravo-turbulent fragmentation of the molecular gas, or due to compression powered by H I flows that led to the development of the molecular filaments observed by ALMA in the region. Our analysis can be easily applied to study the nature of turbulence driving in resolved star-forming regions in the local as well as the high-redshift Universe.

Key words: turbulence – ISM: evolution – stars: formation - ISM: kinematics and dynamics - radio lines: ISM – galaxies: Magellanic Clouds
the compression of the gas, thus leading to the formation of dense cores. On the other hand, if the turbulence is primarily composed of solenoidal (divergence-free) modes, gas compression is significantly reduced compared to compressive driving (Federrath et al. 2008, 2010). The driving mode of turbulence sets the density and velocity fluctuations in star-forming molecular clouds, which in turn control collapse and fragmentation (Krumholz & McKee 2005; Federrath & Klessen 2012, 2013; Kainulainen et al. 2013; Burkhart et al. 2015; Kainulainen & Federrath 2017). It also influences the chemistry and thermodynamics as the clouds collapse (Struck & Smith 1999; Pan & Padoan 2009; Immer et al. 2016; Sharda et al. 2019b, 2020, 2021; Mandal et al. 2020). Thus, characterizing the mode of turbulence is critical to further our understanding of the lifecycle of molecular clouds.

There has been immense progress towards characterizing the driving mode of turbulence in the ISM, both in theory and simulations (e.g., Federrath et al. 2010; Pan et al. 2016; Jin et al. 2017; Körgen et al. 2017; Mandal et al. 2020; Menon et al. 2020; Lim et al. 2020). In the absence of magnetic fields and assuming an isothermal equation of state, the mode of turbulence is typically defined as the ratio of the width of the normalized gas density probability distribution function (assumed to be log-normal), σ_{ρ}/ρ_0, to the turbulent Mach number, M (Padoan et al. 1997a; Passot & Vázquez-Semadeni 1998).

$$b = \frac{\sigma_{\rho}/\rho_0}{M}. \tag{1}$$

Simulations find that fully solenoidal driving of the turbulence produces $b \approx 1/3$, fully compressive driving produces $b \approx 1$, and a natural (steady-state) mixture of the two yields $b \approx 0.4$ (Federrath et al. 2010, 2011). The physical origin of this relationship is simple: a driving field that contains primarily compressive modes produces stronger compressions and rarefactions, and thus results in a higher spread in the density probability distribution function (PDF) than a primarily solenoidal velocity field (see, for instance, Federrath et al. 2008; Burkhart & Lazarian 2012; Beattie et al. 2021b). Examples of driving mechanisms that are largely compressive include hydrodynamical shocks, spiral waves, ionizing feedback from massive stars (Federrath et al. 2017; Menon et al. 2020; Beattie et al. 2021b). On the other hand, solenoidal turbulence is believed to be driven by magnetorotational instabilities (MRI) in accretion discs, protostellar outflows and stellar winds, and shearing motions, such as those induced by differential rotation (Hansen et al. 2012; Offner & Arce 2014; Federrath et al. 2016; Offner & Chaban 2017; Offner & Liu 2018). It is also important to note that if strong magnetic fields are present, then $M \rightarrow M(1 + \beta)^{-1/2}$ in equation 1. Here, β is the turbulent plasma beta (e.g., Federrath & Klessen 2012) that describes the strength of thermal to magnetic pressure: $\beta = 2M_A^2/M^2$, where M_A is the Alfvén Mach number. The driving mode can also vary from between solenoidal and compressive both in time and space (Körgen et al. 2017; Orkisz et al. 2017; Körgen 2020). Thus, b is best conceived as representing the instantaneous driving mode of turbulence in a system.

Despite great progress in measuring the driving mode of turbulence in simulations, it has only been investigated in a very limited sample of observations (Padoan et al. 1997b; Brunt 2010; Ginsburg et al. 2013; Federrath et al. 2016; Kainulainen & Federrath 2017; Marchal & Miville-Deschênes 2021; Menon et al. 2021; hereafter, M21), all of which remain limited to the Milky Way. This is because measuring b requires constructing the gas density PDF, which needs either dust observations spanning a wide range of frequencies and extinctions (e.g., Schneider et al. 2013, 2015a), or multiple, optically-thin gas density tracers for gas at different densities (e.g., M21). Moreover, measuring b also requires high spatial resolution from which reliable gas kinematics can be obtained (e.g., Sharda et al. 2018). These issues have so far prevented us from measuring the driving mode of turbulence in extragalactic observations.

In this paper, we provide the first observational measurement of the driving mode of turbulence in an extragalactic region. We utilize Atacama Large Millimeter/Submillimeter Array (ALMA) observations of the star-forming region N159E in the Large Magellanic Cloud (LMC) that contains the Papillon Nebula (Fukui et al. 2019, hereafter, F19). Located southwest of the core of the starburst region 30 Doradus, N159E lies at the eastern end of the star-forming giant molecular cloud (GMC) N159 (Johansson et al. 1994; Fukui et al. 2008; Minamidani et al. 2008; Chen et al. 2010). The exquisite resolution provided by ALMA has enabled spatially-resolved molecular gas studies of different parts of N159 on sub-pc scales in great detail (e.g., Fukui et al. 2015; Saigo et al. 2017; Nayak et al. 2018; Tokuda et al. 2019). Since the discovery of the first extragalactic protostar in the region (Gatley et al. 1981), further observations have revealed that N159 hosts a number of massive young stellar objects (YSOs; Heydari-Malayeri et al. 1999; Indebetouw et al. 2004; Meynadier et al. 2004; Nakajima et al. 2005; Testor et al. 2006, 2007; Seale et al. 2009; Chen et al. 2010; Saigo et al. 2017; Nayak et al. 2018; Galametz et al. 2020), making it an ideal region to study the turbulence in the filamentary structure comprised of molecular gas impacted by protostellar feedback. In this work, we measure the mode of turbulence in the filamentary clouds by extracting PDFs from the ALMA data we use in this work, Section 3 describes how we measure the gas density PDF and the turbulent Mach number, Section 4 presents our results, Section 5 lays out the caveats for our work, and Section 6 discusses the possible drivers of turbulence in N159E. Finally, we present our conclusions in Section 7. For this work, we assume the metallicity of the LMC to be $0.5Z_{\odot}$ (e.g., Hughes et al. 1998; Schenck et al. 2016), and distance to the LMC to be 50 kpc (e.g., Pietrzyński et al. 2019), corresponding to 0.01 ± 0.02 pc.

2 DATA

N159E was observed during Cycle 4 using ALMA Band 6 (P.I. Y. Fukui, #2016.1.01173.S.), targeting multiple molecular lines ^{12}CO ($J = 2 \rightarrow 1$), ^{13}CO ($J = 2 \rightarrow 1$), $^{12}\text{C}^{18}\text{O}$ ($J = 2 \rightarrow 1$), and ^{12}SiO ($J = 5 \rightarrow 4$), as well as the 1.3 mm continuum. We refer the readers to F19 and Tokuda et al. (2019) for details on the data reduction and analysis of these ALMA observations; here, we note the main features that are relevant to this work. The beam size of these observations is $0.28'' \times 0.25''$ (for the CO isotopologues) and $0.26'' \times 0.23''$ (for the 1.3 mm continuum), corresponding to a spatial resolution of ~ 0.07 pc. The observations detected significant flux in all three CO lines, at an rms noise level of $\sigma_{\text{rms,CO}} \sim 4\,\text{mJy beam}^{-1}$ for ^{12}CO.
\(\sigma_{13\text{CO}} \approx 4.5 \text{ mJy beam}^{-1} \) for \(^{13}\text{CO}, \) and \(\sigma_{\text{C}^{18}\text{O}} \approx 4.5 \text{ mJy beam}^{-1} \) for \(^{18}\text{O} \). These observations also revealed detailed, filamentary structures comprised of molecular gas that were unresolved in previous Cycle 1 ALMA observations of N159E at lower resolution (~ 0.24 pc; Saigo et al. 2017). We do not utilize the Cycle 1 data as the Cycle 4 data shows no significant missing flux at higher resolution (F19).

Figure 1 shows the integrated intensity (moment 0) map of \(^{13}\text{CO} \) in N159E as imaged by ALMA (see also, figure 1 of F19). The Papillon Nebula YSO binary system (masses \(\approx 21 \text{M}_\odot \) and \(41 \text{M}_\odot \) — Heydari-Malayeri et al. 1999; Indebetouw et al. 2004; Testor et al. 2007; Chen et al. 2010) lie towards the southern half of the region, marked by the magenta box. The black box encloses the ~ 1 \(\times \) 4 pc region we analyze in this work (hereafter, referred to as the ‘analysis region’). It possibly consists of filamentary molecular gas structures (see figure 4 of F19) that trace a larger-scale \(\text{H}_2 \) gas distribution (Fukui et al. 2017), and two other compact sources called MMS-1 and MMS-2 identified by F19. These compact sources are most likely massive YSOs believed to have formed as a result of colliding flows (F19; Fukui et al. 2021), which are responsible for driving outflows within the region. The outflowing gas spans ~ 30 km s\(^{-1} \) in velocity. Note that we cannot put constraints on the actual size of the outflows (although they are believed to be 0.1 pc long), or distinguish between the outflowing gas from one massive YSO to the other. Thus, our analysis region consists of a mixture of filamentary molecular clouds where massive YSOs driving outflows are present. We cannot exclude a part of the contiguous structure in this region because a sufficiently large field of view is necessary to properly sample the low column density part of the PDF (Körtgen et al. 2019), as well as to retrieve reliable gas kinematics from the data (Sharda et al. 2018).

3 ANALYSIS

Below we describe the general method we adopt to derive the column density and velocity structure of molecular gas in the region, construct their PDFs, and calculate their respective density and velocity dispersions.

3.1 Gas density PDF

We use the three CO isotopologues to construct the gas density PDF. We also assume the following abundance ratios for N159E: \(X[\text{H}_2]/[13\text{CO}] = 62500 \) (Fukui et al. 2008), \(X[12\text{CO}/[13\text{CO}] = 50 \) (Mizuno et al. 2010; F19), and \(X[12\text{CO}/[\text{C}^{18}\text{O}] = 560 \) (Wang et al. 2009), and we discuss the effects of varying these abundance ratios later in Section 5. Below, we first estimate the column density while assuming the gas to be in local thermodynamic equilibrium (LTE), as is commonly done in such analyses (e.g., M21). Then, we relax this assumption and perform a non-LTE (NLTE) analysis to derive the gas density PDF, showing how sub-thermal excitation of \(^{13}\text{CO}, \) in particular, can give rise to important deviations from an LTE approach for star-forming molecular clouds.

3.1.1 LTE analysis

To trace the \(\text{H}_2 \) gas column density structure under the LTE approximation, we follow M21 and use a hybrid method with a combination of the \(^{13}\text{CO} \) and \(^{18}\text{O} \) \((J = 2 \rightarrow 1) \) lines. We do not use the \(^{12}\text{CO} \) emission to directly trace the \(\text{H}_2 \) column density in this work, primarily because we expect \(^{12}\text{CO} \) to be optically thick in most of the analysis region, so it cannot accurately trace the true column density of \(\text{H}_2 \) (however, see Mangum & Shirley 2015, for an alternative method with a correction factor for optically-thick lines). In the hybrid method, we use \(^{18}\text{O} \) emission to trace the densest parts of the region where \(^{13}\text{CO} \) becomes optically thick, otherwise we use the \(^{13}\text{CO} \) emission. We estimate the optical depth of \(^{13}\text{CO} \) as \(\tau_{13} = \tau_{12} X[13\text{CO}/12\text{CO}] \), where \(\tau_{12} \) is the optical depth of \(^{12}\text{CO} \) that we calculate using the line ratio \(\text{ISO R}_{12}(12\text{CO} (J = 2 \rightarrow 1)) \) following equation 1 of Choi et al. (1993). Thus, we can determine from this relation whether \(^{13}\text{CO} \) is optically thick (i.e., \(\tau_{13} > 1 \)) in a given spectral channel and spatial region, in which case we use \(^{18}\text{O} \) to trace the \(\text{H}_2 \) column density. We find that the maximum optical depths in the analysis region are such that \(^{18}\text{O} \) is never measured to become optically thick.

We then obtain the \(\text{H}_2 \) column density contribution for each pixel (with more than 3\(\sigma_{13\text{CO}} \) emission) from the main-beam brightness temperature \(T_{\text{MB}} \) of the relevant line as

\[
N_{\text{H}_2} = X[\text{H}_2] \int f(T_{\text{ex}}) T_{\text{MB}} \, dv, \tag{2}
\]

where \(X[\text{H}_2] \) is the abundance factor used to convert the line column density to a \(\text{H}_2 \) column density, and \(f(T_{\text{ex}}) \) is a function of the excitation temperature \(T_{\text{ex}} \). The abundance factor is given by \(X[\text{H}_2] = X[12\text{CO}/13\text{CO}] X[\text{H}_2/12\text{CO}] \) and \(X[12\text{CO}/[\text{C}^{18}\text{O}] X[\text{H}_2/12\text{CO}] \)

Figure 1. ALMA \(^{13}\text{CO} (J = 2 \rightarrow 1) \) integrated intensity map of N159E in the LMC. The magenta box marks the approximate extent of the Papillon Nebula that harbours the Papillon YSO binary system marked by the magenta cross. The 1 \(\times \) 4 pc analysis region we use to measure the driving mode of turbulence is denoted by the solid black box, which contains two young, dense cores marked by the black crosses (MMS-1 and MMS-2, identified by F19) that are suspected to contain massive YSOs that are driving ~ 0.1 pc sized outflows in this region. The beam size (angular resolution = 0.28” \(\times 0.25” \)) is represented by the black circle in the bottom left corner, and the adjacent scale shows the physical extent of the region. The noise in the pixels towards the North is caused by the drop in sensitivity at the edge of the mosaic.
Figure 2. H\(_2\) column density map of the analysis region shown in Figure 1, created using the \(^{12}\)CO (\(J = 2–1\)), \(^{13}\)CO (\(J = 2–1\)), and \(^{18}\)O (\(J = 2–1\)) ALMA observations. The left panel shows the resulting column density when assuming CO isotopologues to be in local thermodynamic equilibrium (LTE) whereas the right panel shows the map for a non-LTE (NLTE) analysis. The beam size and scale are denoted in the bottom left and the top left corner of the plot, respectively. Black crosses denote the probable positions of the two massive, young protostars (MMS-1 and MMS-2) that are driving outflows in this region (F19).

The left panel of Figure 2 shows the resulting H\(_2\) column density map that we obtain for the analysis region under the LTE approximation. The mean column density in the region over all pixels with detections is \(N_{0\text{-LTE}} = (6.0 \pm 0.5) \times 10^{22} \text{ cm}^{-2}\), higher by a factor of 10 than the median H\(_2\) column density in young LMC GMCs (Hughes et al. 2010) but comparable to the H\(_2\) column density in the LMC starburst region 30Doradus (Indebetouw et al. 2013). The maximum column density reaches as high as \(\sim 3 \times 10^{23} \text{ cm}^{-2}\), indicating the presence of dense cores in the region. We describe the analysis to extract the width of the column density PDF later in Section 3.1.3.
coverage in density, temperature, and velocity gradient in the model
grid is sufficient to derive meaningful physical properties from the data.

For a given set of \(n_H, T_g, dv/dr \) and abundances of emitting
species (in this case, \(^{12}\text{CO}, ^{13}\text{CO} \) and \(^{18}\text{O}\)), DESPOTIC gives the excitation temperatures (\(T_g \)), optical depths (\(\tau \)), and velocity-
integrated brightness temperatures (\(W \)) for every rotational line
produced by these species. We assign a \(\chi^2 \) to every model for a given
pixel in the data based on the ratios of the integrated brightness
temperatures of \(^{12}\text{CO}/^{13}\text{CO}, \) and \(^{12}\text{CO}/^{18}\text{O}\)

\[
\chi^2_{\text{mod,pix}} = \frac{1}{2} \left(\frac{W_{\text{mod,}^{12}\text{CO}}/W_{\text{mod,}^{13}\text{CO}} - W_{\text{pix,}^{12}\text{CO}}/W_{\text{pix,}^{13}\text{CO}}}{\sigma_{W_{\text{pix,}^{12}\text{CO}}/W_{\text{pix,}^{13}\text{CO}}}} \right)^2 +
\frac{1}{2} \left(\frac{W_{\text{mod,}^{13}\text{CO}}/W_{\text{mod,}^{18}\text{O}} - W_{\text{pix,}^{13}\text{CO}}/W_{\text{pix,}^{18}\text{O}}}{\sigma_{W_{\text{pix,}^{13}\text{CO}}/W_{\text{pix,}^{18}\text{O}}}} \right)^2 ,
\]

where the subscripts mod and pix refer to the models and the data in
a pixel, respectively. We have tried different combinations of the model
properties that can be matched against the data, and find that the ratio of
integrated brightness temperatures gives the most reasonable and
well-constrained match against the data. This is because using a
combination of optically thin and optically thick tracers allows us to
overcome the challenges one faces when using only one of the
two category of tracers (Burkhart et al. 2013). Finally, to get the
set of column density, gas temperature, velocity gradient, excitation
temperatures, and optical depths that best describe the data in a given
pixel, we take a \(\chi^2 \)-weighted mean of all the models

\[
\{N, n_H, T_g, dv/dr, T_{\text{ex}}, \tau\}_{\text{pix}} = \frac{\sum_{i=1}^{N_{\text{mod}}} \{N, n_H, T_g, dv/dr, T_{\text{ex}}, \tau\}_{\text{pix}} e^{-\chi^2_{i}}}{\sum_{i=1}^{N_{\text{mod}}} e^{-\chi^2_{i}}} ,
\]

where \(N_{\text{mod}} = 140,000 \) is the total number of models in our grid.

The right panel of Figure 2 shows the resulting column density map
that we recover from the NLTE analysis. The mean column density in
this case is \(N_{0,\text{NLTE}} = (4.17 \pm 0.42) \times 10^{-22} \text{ cm}^{-2} \), slightly lower
than what we find from the LTE analysis above. The best-fit means
(over all pixels with detections) are \(n_H = (1.72 \pm 1.24) \times 10^{4} \text{ cm}^{-3} \),
\(T_g = 58 \pm 8 \text{ K} \) and \(dv/dr = (1.33 \pm 0.72) \times 10^{-12} \text{ s}^{-1} \). The mean
gas volume density is a factor 2 – 6 smaller than that found in the
dense pillars around the Papillon Nebula that lie south of the analysis
region (F19, table 1). Both the best-fit mean \(n_H \) and \(T_g \) are in good
agreement with measurements of the density and the gas kinetic
temperature in other massive star-forming regions in the LMC (e.g.,
Tang et al., 2017, 2021). The mean velocity gradient corresponds to
a depth of 0.09 \(\pm 0.05 \) pc along the line of sight, indicating that
the analysis region consists of thin, filamentary structures as reported in
F19 and also seen in simulations (Federrath et al. 2016; Inoue et al. 2018;
Abe et al. 2021; Federrath et al. 2021). Further, we also find that the
best-fit mean optical depths for the \(^{12}\text{CO} \) and \(^{13}\text{CO} \) lines are \(17 \pm 4 \) and
\(0.81 \pm 0.31 \), and the excitation temperatures are \(50 \pm 10 \text{ K} \) and \(39 \pm 6 \text{ K} \). Thus, we confirm our hypothesis that \(^{13}\text{CO} \) is sub-thermally excited in the region. We see from Figure 2 that the
LTE analysis overpredicts the column density by 25 – 60 per cent in
regions where \(^{13}\text{CO} \) is sub-thermally excited, consistent with the recent
findings of Finn et al. (2021) based on a similar analysis in
the LMC using the NLTE software library RADEX (van der Tak et al.
2007). We next describe the procedure to extract the column density
PDF in Section 3.1.3.

Figure 3. Normalized 2D column density PDF (with 1σ errors) of the analysis
region shown in Figure 2, using the LTE and the NLTE methods described in
Section 3.1. \(N_0 \) represents the mean column density. The distribution
is largely log-normal, with some intermittent features indicating deviations
from non-lognormality. Fitting the Hopkins (2013) gas density PDF model
(solids lines represent the best fit and shaded curves represent the 1σ error
on the best fit) gives the 2D column density dispersion in the LTE case
\(\sigma_{N/N_0}(\text{LTE}) = 0.58 \pm 0.14 \), and in the NLTE case \(\sigma_{N/N_0}(\text{NLTE}) =
0.51 \pm 0.04 \). The corresponding intermittencies are \(\theta = 0.12 \pm 0.05 \) (LTE) and
\(\theta = 0.17 \pm 0.09 \) (NLTE). We use these 2D column density dispersions
to derive the 3D density dispersion \(\sigma_{N/N_0} \), following Brunt et al. (2010a).

3.1.2 Non-LTE analysis

So far, we have assumed that the excitation temperature of the CO
isotopologues is the same as the kinetic temperature of the gas. How-
ever, in the case of N159E, given the expected densities (F19) and
gas kinetic temperatures, we expect \(^{13}\text{CO} \) to be sub-thermally ex-
cited (see, for example, figure 10 of Goldsmith & Langer 1999).
Thus, the assumption of LTE will most likely break down. Addi-
tionally, another advantage of following a non-LTE approach is that
we do not have to *a priori* assume an excitation temperature for the
isotopologues because it is self-consistently determined from a set
of best-fit NLTE models that match the data.

We use the large velocity gradient (LVG) approximation for
the purpose of estimating column densities without assuming LTE
(Sobolev 1960). Briefly, the LVG approximation assumes that pho-
ton absorptions are local to the sites at which photons are emitted, so
the probability that a photon escapes depends on the local velocity
gradient at the point of emission (e.g., de Jong et al. 1975, 1980).
We first create a 3D grid of non-LTE models based on the number
density of H nuclei \(n_H \), gas kinetic temperature \(T_g \) and velocity
gradient \(dv/dr \) along the line of sight using the software library
DESPOTIC (Krumholz 2014). The range in \(n_H \) and \(T_g \) covered by
the grid is \(10^2 - 10^6 \text{ cm}^{-3} \) and \(5 - 100 \text{ K} \), respectively. Based on the
results of F19, we use the plane-of-sky velocity of \(\sim 4 \text{ km} s^{-1} \) as
an estimate of \(dv \) along the line of sight, and vary the line of sight
depth between 0.01 – 100 pc to construct the grid in \(dv/dr \). The
resolution of the grid in \(n_H, T_g, dv/dr \) is \(350 \times 20 \times 20 \), respectively.
We checked for the convergence of the model grid, finding that the
results do not change if the grid resolution is further increased in any
dimension. We also ensure that the models that best describe the data
do not lie along any of the edges in the parameter space; thus, the

Mode of turbulence in LMC N159E 5

MNRAS 000, 1–14 (2021)
Table 1. Summary of the main parameters we derive to measure turbulent driving in the analysis region shown in Figure 1.

Parameter	Description	LTE	NLTE
T_k/K	Gas kinetic temperature	40 ± 10	58 ± 8
T_ex/K	13CO excitation temperature	40 ± 10	39 ± 6
$\log_{10} N_0$/cm$^{-2}$	Mean gas column density	22.8 ± 0.05	22.6 ± 0.04
$\sigma N/N_0$	Column density dispersion	0.58 ± 0.14	0.51 ± 0.04
θ	Column density intermittency	0.12 ± 0.05	0.17 ± 0.09
η	Degree of anisotropy	0.20 ± 0.04	0.15 ± 0.03
$\sigma p/p_0$	3D gas density dispersion	2.97 ± 0.50	3.40 ± 0.92
$\sigma_{v, 1D}$/km s$^{-1}$	1D gas velocity dispersion	0.94 ± 0.09	
c_s/km s$^{-1}$	Sound speed	0.34 ± 0.04	0.41 ± 0.03
M	Turbulent Mach number	4.74 ± 0.74	3.92 ± 0.35
b	Turbulence driving mode	0.62 ± 0.34	0.87 ± 0.25

3.1.3 Model for gas density PDF

We use our LTE and NLTE column density maps to create corresponding PDFs of $\eta = \log (N/N_0)$ – the natural logarithm of the column density N normalized by the mean column density N_0. We estimate the width of each PDF σ_η by fitting a Hopkins (2013) intermittent density PDF model to the volume-weighted PDF of η. This is a physically motivated fitting function that takes into account intermittent features in the density PDF, and provides a more accurate description of the density structure than the more common lognormal approximation, even for large turbulent Mach numbers, non-isothermal equations of state, and magnetic fields (Hopkins 2013; Federrath & Banerjee 2015; Beattie et al. 2021a).

However, we note that the Hopkins (2013) PDF model was originally developed for density PDFs and not column density PDFs. Here, we will assume that the column density PDF follows the same functional form as the density PDF. This is a reasonable assumption because simulations find that supersonic magnetohydrodynamic (MHD) turbulence results in very similar morphological features in the column and volume density PDFs, both of which are largely lognormal with some deviations from perfect Gaussianity (see figures 1 and 13 of Kowal et al. 2007, and figure 1 of Jaupart & Chabrier 2020); these authors also show how the higher-order moments of the column and volume density scale with each other, which suggests that the same underlying PDF can be used for both quantities (see figure 14 of Kowal et al. 2007). Furthermore, Burkhardt et al. (2009) find that in MHD turbulence simulations, the correlations of several physical...
properties with density are similar to those with column density, thus justifying the use of the Hopkins (2013) model to derive the column density PDF parameters.

The Hopkins fitting function is given by

\[p_{HK}(\eta) = I_1 \left(2\sqrt{\gamma(\eta)} \right) \exp \left[- (\langle \lambda + \gamma(\eta) \rangle)^{1/2} \right] d\eta, \]

where \(I_1(x) \) is the first-order modified Bessel Function of the first kind, \(\sigma_\eta \) is the standard deviation in \(\eta \), and \(\theta \) is the intermittency parameter that encapsulates the intermittent density PDF features. Note that in the zero-intermittency limit (\(\theta \to 0 \)), equation 7 simplifies to the lognormal PDF. We compute the best-fit parameters of \(\sigma_\eta \) and \(\theta \) using a bootstrapping approach with 10,000 realisations, where we create different random realisations based on Gaussian propagation of uncertainties in all the underlying parameters. We then transform \(\sigma_\eta \) to the linear dispersion \(\sigma_{N/N_0} \) by using the relation (Hopkins 2013),

\[\sigma_{N/N_0} = \exp \left(\frac{\sigma_\eta^2}{1 + 3\theta + 2\theta^2} \right) - 1, \]

which can be derived from the moments of equation 7. We show the resulting PDFs and fits with the Hopkins (2013) model in Figure 3. The shape of the two PDFs is very similar when normalized by \(N_0 \), as is also confirmed from their respective widths: \(\sigma_{N/N_0} = 0.58 \pm 0.14 \) and \(0.51 \pm 0.04 \) for the LTE and NLTE versions, respectively. We also find that the best-fit intermittency \(\theta \approx 0.1 \pm 0.2 \) in both the cases, reflecting the presence of non-lognormal density features in the region. The higher intermittency in the NLTE case is reflected in the fit slightly overshooting the peak in Figure 3, but is consistent with the error margin in the data. Below, we will see that the turbulent Mach number we obtain is in good agreement with that expected from the intermittency-Mach number relation proposed by Hopkins (2013).

There are several other models that characterise the non-lognormalities of the gas density PDF as a function of the supersonic turbulent Mach number (e.g., Fischera 2014; Konstandin et al. 2016; Squire & Hopkins 2017; Robertson & Goldreich 2018; Scannapieco & Safarzadeh 2018; Jaupart & Chabrier 2020). In Appendix A, we fit one such PDF model given by Mocz & Burkhart (2019), which is an alternative intermittency density PDF model to estimate \(\sigma_{N/N_0} \). We find that the results are consistent within the error bars. In addition to these, there are several models that use a lognormal function with a powerlaw function at higher densities to model the gas density PDF, where the powerlaw part is used to account for dense, self-gravitating structures in molecular clouds (e.g., Kritsuk et al. 2011; Collins et al. 2012; Federrath & Klessen 2013; Girichidis et al. 2014; Burkhalter et al. 2015, 2017; Burkhalter 2018; Burkhalter & Mocz 2019; Jaupart & Chabrier 2020). We also attempt to fit one such lognormal + powerlaw model from Khullar et al. (2021), finding that a purely lognormal fit is statistically preferred over a lognormal+powerlaw fit. Thus, we find that the Hopkins (2013) model provides the best fit to the data.

3.1.4 Conversion from 2D to 3D density dispersion

To estimate the 3D density dispersion \(\sigma_{p/p_0} \) from the 2D column density dispersion \(\sigma_{N/N_0} \), we first measure the 2D column density power spectrum \(P_{2D}(k) \) of the quantity \(N/N_0 - 1 \), where \(k = |k| \) is the isotropic wavenumber. We use this to reconstruct the 3D density power spectrum \(P_{3D}(k) \) of the variable \(p/p_0 - 1 \), as \(P_{3D}(k) = 2kP_{2D}(k) \), assuming isotropy\(^3\) of the cloud (Brunt et al. 2010a,b; Kainulainen et al. 2014). The variance of a mean-zero field is proportional to the integral of the power spectrum over all \(k \) (Aurten et al. 2013; Beattie & Federrath 2020). This implies that the 2D column density dispersion, \(\sigma_{N/N_0} \), and 3D density dispersion, \(\sigma_{p/p_0} \), are equal to \(\left[\int P_{2D}(k) dk \right]^{1/2} \) and \(\left[\int P_{3D}(k) dk \right]^{1/2} \), respectively. If we define \(R = P_{2D}(k)/P_{3D}(k) \), \(\sigma_{p/p_0} \) can be obtained from the relation

\[\sigma_{p/p_0} = \frac{\sigma_{N/N_0}}{\sqrt{R}}. \]

\(^3\) This means that we assume the power in the spectral density follows the simple relation \(P_{3D}(k)/4\pi k^2 = P_{2D}(k)/2\pi k \Rightarrow P_{3D}(k) = 2kP_{2D}(k) \), as stated above.
Figure 5. The left panel shows the 13CO moment-1 (intensity-weighted velocity) map of the analysis region. The velocity map shows a large-scale gradient from top to bottom that we subtract by modeling it with a gradient as shown in the middle panel. The right panel shows the residual velocities after the large-scale gradient subtraction, which represent random, turbulent motions within the gas. We use the residual velocities together with the second moment map to find the overall 1D velocity dispersion in the gas, $\sigma_{v,1D}$.

Figure 6. PDFs of the velocity before (left) and after (right) gradient subtraction. The PDF of the residuals post gradient subtraction is largely Gaussian. The blue-shaded curve denotes the 1σ range of the best-fit Gaussian in solid blue. The width of the best-fit Gaussian (denoted by $\sigma_{v,1D,res}$) together with the second moment velocity dispersion (denoted by $\sigma_{v,1D,2m}$) is used to determine the overall 1D velocity dispersion in the gas, $\sigma_{v,1D}$ (see Table 1). We find $\sigma_{v,1D,res} = (0.72 \pm 0.05) \, \text{km s}^{-1}$, and $\sigma_{v,1D} = (0.94 \pm 0.09) \, \text{km s}^{-1}$.
for deriving $\sigma_{v,1D,\text{res}}$ provided the region is resolved with ≥ 30 resolution elements (Sharda et al. 2018).

However, there is no guarantee that residuals obtained from only removing the large-scale gradient represent the true random, turbulent motions within the cloud, since small-scale systematic motions or higher order moments can still persist and contribute to $\sigma_{v,1D,\text{res}}$. In fact, we can see from the first and third panels of Figure 5 that gradient subtraction has a limited effect on the southern part of the analysis region, which is also reflected in the negative velocity tail in the PDF of v_{res} in the right panel of Figure 6. Recent work from Stewart & Federrath (2021) finds that the above approach likely underestimates the true velocity dispersion, and a combination of $\sigma_{v,1D,\text{res}}$ and the second moment (intensity-weighted velocity dispersion around the mean) gives a better estimate of the true velocity dispersion. So, we define the overall 1D velocity dispersion as $\sigma_{v,1D} = \sqrt{(\sigma_{v,1D,\text{res}})^2 + (\sigma_{v,1D,2m})^2}$, where $\sigma_{v,1D,2m} \approx 0.6\,\text{km\,s}^{-1}$ is the velocity dispersion from the mean of the second moment of ^{13}CO (F19). Thus, we obtain $\sigma_{v,1D} = (0.94 \pm 0.09)\,\text{km\,s}^{-1}$. We then scale $\sigma_{v,1D}$ by a factor $\sqrt{3}$ (assuming isotropic velocity fluctuations) to obtain the true velocity dispersion, $\sigma_{v,3D}$. Using a combination of the gradient-subtracted first moment velocities and the second moment velocities to obtain the velocity dispersion rather than deriving it from the line shape in each pixel enables us to avoid the various biases that are introduced in line profiles; for example, flattened line centers due to opacity, overestimation of the turbulent Mach number due to opacity broadening, loss of line wings due to noise, or missing emission from low-density material due to excitation effects – Correia et al. 2014; Hacar et al. 2016; Yuan et al. 2020.

For the LTE case, the turbulent Mach number corresponding to $T_{\text{B}} = (40 \pm 10)$ K is $M = 4.74 \pm 0.54$. For the NLTE case, we find $M = 3.92^{+0.35}_{-0.29}$ based on the best-fit $T_{\text{B}} = (58 \pm 8)$ K. The turbulent Mach numbers we obtain are indicative of supersonic turbulence in the region and closely follow the $M - \theta$ relation from Hopkins (2013, figure 3). The middle panel in each row of Figure 4 depicts the distribution of M for the two cases based on 10,000 bootstrapping realisations; the dashed lines denote the quantiles for the 16th, 50th, and 84th percentiles, respectively.

4 RESULTS

Thanks to the exquisite resolution provided by ALMA, we can now derive the first extragalactic measurement of the driving mode of turbulence in a star-forming region. For simplicity, we collect all the different parameters we derive in Table 1. Using the measured values of the width of gas volume density PDF, σ_{p/ρ_0}, and turbulent Mach number, M, we can now estimate the driving mode parameter $b = 0.62^{+0.34}_{-0.17}$ and $0.87^{+0.25}_{-0.17}$ for the LTE and the NLTE analyses, respectively. The right panels of the two rows in Figure 4 plots the distributions of b resulting from the 10,000 bootstrapping realisations. These values of b indicate the presence of primarily compressive (or, solenoidal-free) turbulence in the region. We also find that the more accurate NLTE analysis gives a higher b as compared to the LTE analysis. Our findings (from the NLTE analysis) exclude a natural mix of modes and fully solenoidal driving at $n > 6\sigma$ and $> 7\sigma$ level, respectively.

It is worth noting that the distribution of b in Figure 4 has a tail extending to $b > 1$, which might seem in contradiction with theoretical expectations. While a part of the presence of this tail is simply due to observational and modeling uncertainties on various parameters, it could also be due to physical reasons. For example, it is possible that $b > 1$ if a physical process other than turbulence (such as gravity) has substantial contributions to density fluctuations (and hence the density dispersion). It is also possible that the derived turbulent Mach number includes contributions from non-turbulent sources, such as gravitational collapse motions. M21 find that all of the pillars in the Carina Nebula where they derive $b > 1$ have virial parameters < 1, suggesting that gravity plays a significant role in the density and velocity structure of gas in such pillars. On the other hand, Federrath et al. (2016) find $b < 1/3$ for the Central Molecular Zone (CMZ) cloud Brick (also known as G0.253+0.016) due to strong shearing motions. Given the presence of dense cores like MMS-1 and MMS-2 in the analysis region, it is not surprising that the expected distribution of b extends beyond unity. However, like our results, the uncertainties on the measurements of Federrath et al. (2016) and M21 are consistent with $1/3 \leq b \leq 1$.

It is helpful to place our results in the context of the literature. Figure 7 shows a compilation of observations where the driving mode of turbulence has been measured in the Galaxy. The data are limited and heterogeneous because different studies use different gas density tracers. Most clouds (except for Taurus and Brick) lack an estimate of the magnetic field strength, thus we assume $\beta \rightarrow \infty$ for them. For Taurus, we use the magnetic field estimate from Federrath et al. (2016) that is based on earlier results from Heyer & Brunt (2012). We see two distinct classes of star-forming regions from Figure 7 – one where the turbulence is highly compressive in nature (like the spiral arm molecular cloud Taurus and the star-forming pillars in the Carina Nebula), and another where it is largely non-compressive (like the CMZ cloud Brick). Our NLTE measurements for N159E (the only extragalactic region on this plot) fall in the former category.

5 CAVEATS

The use of CO isotopologues to derive gas density PDFs typically introduces three major sources of uncertainty due to uncertain abundances, excitation temperatures, and fraction of CO-dark molecular gas. To test the impacts of abundance variations, we increase $X(\text{H}_2/^{12}\text{CO})$ by a factor of 2 (e.g., Bolatto et al. 2013), finding that it slightly decreases σ_{p/ρ_0} without significantly changing the turbulence driving parameter b. Similarly, if we increase $X(\text{^{12}CO}/\text{^{13}CO})$ to 70 (typical of molecular clouds in the Galaxy – Johansson et al. 1994; Wilson & Rood 1994; Yan et al. 2019), σ_{p/ρ_0} decreases by at most 17 per cent, which is within the error bars. The reason our results are insensitive to variations in CO abundances is because we use a combination of optically-thick and optically-thin tracers in our analysis (see equation 5). Additionally, the NLTE analysis ensures that we self-consistently calculate the optical depth of the CO isotopologues, thus ensuring that the radiative transfer effects do not bias the resulting density dispersion (Burkhart et al. 2013). While we have to assume $T_{\text{B}} = T_{\text{ex}}$ in LTE, the NLTE modeling gives a self-consistent excitation temperature, thus suppressing the uncertainties in T_{ex}. We cannot constrain the amount of CO-dark molecular gas (e.g., Glover & Clark 2012), which can be quite high in low-metallicity regions like the LMC and the Small Magellanic Cloud (SMC; e.g., Roman-Duval et al. 2014; Jameson et al. 2018; Chevance et al. 2020; Tokuda et al. 2019).

4 We do not measure turbulence driving in other regions in N159E (for example, the pillars identified by F19 possibly created due to stellar radiation feedback around the Papillon Nebula) because we cannot derive a reasonable $\sigma_{v,1D,\text{res}}$ for them using this technique.
Figure 7. Plot summarizing currently available measurements of the mode of turbulence from observations, denoted by the ratio of the 3D density dispersion (σ_3/ρ_0) to the turbulent Mach number (M). The three dashed lines mark the theoretical limits within which turbulence can be driven through solenoidal or compressive modes, or a mixture of the two (Federrath et al. 2008, 2010). The data is taken from various sources – IC5146 (Padoan et al. 1997a), Taurus (Brunt 2010, with revised estimates of the turbulent Mach number from Kainulainen & Tan 2013, and magnetic field estimate from Federrath et al. 2016), W49A (Ginsburg et al. 2013), CMZ cloud Brick (Federrath et al. 2016), Warm Neutral Medium (WNM, Marchal & Miville-Deschênes 2021), and 6 pillar-like regions in the Carina Nebula (M21). Errors are shown where available. Note that only Taurus and Brick have magnetic field estimates available for them, so for these clouds the x-axis should be read as $M(1 + 1/\beta)^{1/2}$, where β is the turbulent plasma beta that accounts for the effects of magnetic fields in deriving the mode of turbulence (Molina et al. 2012). The cyan markers denote the measurements for the LMC star-forming region N159E we study in this work using the LTE and the NLTE approaches; it is the only extragalactic region where the driving mode of turbulence has been measured.
6 POSSIBLE DRIVERS OF COMPRESSIVE TURBULENCE IN N159E

If the density structure and the dynamics we see in N159E is highly influenced by gravitational collapse motions, then we naturally expect a large fraction of compressive modes to be introduced, which may explain the high value of b (Jaupart & Chabrier 2020; Khullar et al. 2021). Several studies have shown how supersonic turbulence can compress the gas on local scales leading to the creation of cores (such as MMS-1 and MMS-2 in N159E) and filaments, while stabilizing the cloud against gravity on larger scales (e.g., Ossenkopf & Mac Low 2002; Schneider et al. 2011; Federrath & Klessen 2012; Robertson & Goldreich 2018; Beattie et al. 2020; Imara et al. 2021).

To verify whether this is indeed the case, we require observations of molecular gas tracers for higher densities (e.g., HCN or HCO$^+$) at similar resolution and sensitivity as the CO observations we use in this study. This is because such tracers can potentially reveal the power-law tail in the density PDF due to self-gravitating structures, such as the MMS-1 and MMS-2 cores.

Another plausible candidate for compressive driving is the compression caused by the H1 flow that is proposed to have led to the creation of the massive molecular filaments observed by ALMA (F19, figure 8), a view supported by magnetohydrodynamical simulations (Inoue & Inutsuka 2012; Inoue & Fukui 2013). This flow is proposed to have originated due to tidal interactions between the LMC and SMC (Bekki & Chiba 2007; Fukui et al. 2017) 0.2 Gyr ago (Fujimoto & Noguchi 1990). However, the limited resolution of currently available H1 data (Kim et al. 2003) makes it challenging to study the correlation between the molecular gas structure observed by ALMA and the larger-scale H1 gas structure (e.g., Fukui et al. 2009). Note that N159E is only one part of the GMC N159. The western end of N159 (denoted by N159W in the literature – Heikilla et al. 1998) shows similar molecular gas morphology, protostellar activity, and star formation activity (Tokuda et al. 2019). These similarities hint at a common origin of the kinematics and dynamics in both N159E and N159W, providing support for the large-scale H1 flow scenario (F19). Even if N159W also exhibits largely compressive turbulence, it is difficult to establish whether the H1 flow that originated 0.2 Gyr ago is the cause, given the instantaneous nature of the mode of turbulence that we can measure from observations. High-resolution H1 observations from the H1 component of the upcoming Galactic ASKAP survey (GASKAP-H1 – Dickey et al. 2013; Pingel et al. 2021) and eventual SKA observations (Koribalski et al. 2020) will prove instrumental in pinpointing the driver of compressive turbulence in N159E.

As we noted in Section 1, protostellar outflows can also drive and inject turbulence in star-forming regions. Simulations find that protostellar outflows drive primarily solenoidal motions, at least in the shearing layers between outflow and ambient gas (Offner & Arce 2014; Offner & Chaban 2017), while the bow shock of an outflow is more compressive (e.g., Guicking et al. 2010). However, the protostellar outflows observed in N159E are only ~0.1 pc in size (F19), so we do not expect them to drive turbulence in our analysis region, which is 10x bigger (see Figure 1). Thus, we can exclude them as a source of the compressive driving of turbulence in this region.

Lastly, it is worth emphasizing that turbulence driving in other parts of N159E not covered in this work may not be compressive, or may not share the same physical origin for compressive driving as the analysis region. For example, it is likely that the CO pillars surrounding the Papillon YSO (magenta box in Figure 1) also exhibit compressive turbulence driving, but due to photoionization feedback from the YSOs, similar to the CO pillars in the Carina nebula in the Milky Way (M21).

7 CONCLUSIONS

In this work, we utilize high-resolution (sub-pc) ALMA 12CO ($J = 2–1$), 13CO ($J = 2–1$), and C18O ($J = 2–1$) observations of the star-forming region N159E (the Papillon Nebula) in the LMC to provide the first extragalactic measurement of turbulence driving at pc scales. The turbulence driving mode is characterized by the parameter b – the ratio of the normalized gas density dispersion (σ_{ρ}/ρ_0) to the turbulent Mach number (M). Values of $b \approx 1/3$ represent a highly solenoidal driving, $b \approx 1$ represents highly compressive driving, and a natural mixture of the two is given by $b \approx 0.4$ (Federrath et al. 2008, 2010).

We use an NLTE analysis of the CO isotopologues using the radiative transfer code DÉSPOTIC (Krumholz 2014) to construct the gas column density PDF for the analysis region we show in Figure 1, which consists of filamentary molecular clouds with dense cores driving protostellar outflows. We then fit the PDF with the Hopkins (2013) density PDF model to get the 2D column density dispersion, which we then convert to get the 3D density dispersion using the Brunt et al. (2010a) method. We obtain $\sigma_{\rho}/\rho_0 = 3.4^{+0.92}_{-0.63}$ We use a combination of the gradient-subtracted first moment map and the mean of the second moment map to get the gas velocity dispersion, which gives $M = 3.9^{+0.35}_{-0.29}$. Thus, the driving mode of turbulence we obtain is $b = 0.87^{+0.25}_{-0.17}$ indicating that the turbulence being driven in this region is highly compressive. We suspect that the compressive turbulence could be driven by gravo-turbulent fragmentation of the dense gas, or by the H1 flow that is proposed to have led to the creation of GMC N159. This analysis is easily reproducible and can be applied to measure b in resolved star-forming regions both in the local and the high-redshift Universe.

ACKNOWLEDGEMENTS

We thank Tony Wong for going through a preprint of this paper and providing comments. We also thank an anonymous referee for a constructive feedback on our work. We acknowledge useful discussions with Shivan Khullar on gas density PDFs, with Jack Livingston on magnetic fields in the LMC, and with Rajsekhar Mohapatra on the mode of turbulence. PS is supported by the Australian Government Research Training Program (RTP) Scholarship. CF and MRK acknowledge funding provided by the Australian Research Council (ARC) through Discovery Projects DP170100603 (CF) and DP190101258 (MRK) and Future Fellowships FT180100495 (CF) and FT180100375 (MRK), and by the Australia-Germany Joint Research Cooperation Scheme grant (UA-DAAD). MRK is also the recipient of an Alexander von Humboldt award. PS, CF and MRK acknowledge the support of the ARC Centre of Excellence for All Sky Astrophysics in 3 Dimensions (ASTRO 3D), through project number CE170100013. JRB acknowledges financial support from the Australian National University via the Deakin PhD and Dean’s Higher Degree Research (theoretical physics) Scholarships. KT is supported by the National Astronomical Observatory of Japan (NAOJ) ALMA Scientific Research Grant Number 2016-03B. BB acknowledges the generous support of the Flatiron Institute Simons Foundation and National Aeronautics and Space Administration (NASA) award 19-ATP19-0020. CJL acknowledges funding from the NSF Graduate Research Fellowship under grant DGE1745303. TJJ acknowledges...
support under NASA contract NAS8-03060 with the Chandra X-ray Center. NMP acknowledges from ARC DP190101571 and National Science Foundation (NSF) grant AST-1309815. IRS acknowledges support from the ARC grant FT160100028. HS is supported by Japan Society for the Promotion of Science (JSPS) KAKENHI Grant Numbers JP19H05075 and JP21H11036. This paper makes use of the following ALMA data: ADS/JAO. ALMA#2016.1.01173.S. ALMA is a partnership of the ESOS, NSIF, NRC, NSC, and ASIAA. The Joint ALMA Observatory is operated by the ESOS, AUI/NAOJ, and NAOJ. Analysis was performed using NUMPY (Oliphant 2006; Harris et al. 2020), ASTROPY (Astropy Collaboration et al. 2013, 2018) and SCIPY (Virtanen et al. 2020); plots were created using MATPLOTLIB (Hunter 2007). This research has made extensive use of LAMDA (Schöier et al. 2005; van der Tak et al. 2020) and NASA’s Astrophysics Data System Bibliographic Services. The LAMDA database is supported by the Netherlands Organization for Scientific Research (NWO), the Netherlands Research School for Astronomy (NOVA), and the Swedish Research Council.

DATA AVAILABILITY STATEMENT

No new data were generated for this work. The ALMA data we use in this work is publicly available here.

REFERENCES

Abe D., Inoue T., Inutsuka S.-i., Matsumoto T., 2021, ApJ, 916, 83
Arfken G. B., Weber H. J., Harris F. E., 2013, in Arfken G. B., Weber H. J., Harris F. E., eds., Mathematical Methods for Physicists (Seventh Edition), seventh edition edn, Academic Press, Boston, pp 935 – 962
Asensio Ramos A., Elitzur M., 2018, A&A, 616, A131
Astropy Collaboration et al., 2013, A&A, 558, A33
Astropy Collaboration et al., 2018, AJ, 156, 123
Beattie J. R., Federrath C., 2020, MNRAS, 492, 668
Beattie J. R., Federrath C., Seta A., 2020, MNRAS, 498, 1593
Beattie J. R., Mocz P., Federrath C., Klessen R. S., 2021a, arXiv e-prints, p. arXiv:2109.10470
Beattie J. R., Mocz P., Federrath C., Klessen R. S., 2021b, MNRAS, 504, 4354
Bekki K., Chiba M., 2007, Publ. Astron. Soc. Australia, 24, 21
Bolatto A. D., Wolfire M., Leroy A. K., 2013, ARA&A, 51, 207
Brunlt C. M., 2010, A&A, 513, A67
Brunlt C. M., Federrath C., Price D. J., 2010a, MNRAS, 403, 1507
Brunlt C. M., Federrath C., Price D. J., 2010b, MNRAS, 405, L56
Burkhart B., 2018, ApJ, 863, L18
Burkhart B., Lazarai A., 2012, ApJ, 755, L19
Burkhart B., Mocz P., 2019, ApJ, 879, L29
Burkhart B., Falceta-Gonçalves D., Kowal G., Lazarai A., 2009, ApJ, 693, 250
Burkhart B., Ossenkopf V., Lazarai A., Sutizki J., 2013, ApJ, 771, 122
Burkhart B., Collins D. C., Lazarai A., 2015, ApJ, 808, 48
Burkhart B., Stalpes K., Collins D. C., 2017, ApJ, 834, L1
Burkhart B., et al., 2020, ApJ, 905, 14
Chen H. R., et al., 2010, ApJ, 721, 1206
Chen H. H.-H., Burkhart B., Goodman A., Collins D. C., 2018, ApJ, 859, 162
Chevance M., et al., 2020, MNRAS, 494, 5279
Choi M., Evans Neal J. I., Jaffe D. T., 1993, ApJ, 417, 624
Collins D. C., Kritsuk A. G., Padoan P., Li H., Xu H., Ustyugov S. D., Norman M. L., 2012, ApJ, 750, 13
Correia C., Burkhart B., Lazarai A., Ossenkopf V., Stutzki J., Kainulainen J., Kowal G., de Medeiros J. R., 2014, ApJ, 785, L1
Crutcher R. M., 2012, ARA&A, 50, 29
Dickey J. M., et al., 2013, Publ. Astron. Soc. Australia, 30, e003
Mode of turbulence in LMC N159E

APPENDIX A: MOCZ AND BURKHART (2019) NON-LOGNORMAL DENSITY MODEL

A1 Model description

Mocz & Burkhart (2019) model the volume-weighted density PDF of hydrodynamical density fluctuations using a Markovian framework. They construct a Langevin model

\[s(t + \Delta t) = s(t) + A(s) \Delta t + N(0, 1) \sqrt{D(s)}, \]
\[A(s) = -\frac{s - s_0}{\tau_A} \left[1 + H(s - s_0) \frac{3f}{2} \right], \]
\[D(s) = 2\sigma_s^2 \frac{s}{\tau_0}, \]

where \(A(s) \) is the deterministic, or advective term in the model, \(D(s) \) is the stochastic, or diffusive term in the model and \(N(0, 1) \) is a standard normal distribution. The stochastic term, \(D(s) \), contains the turbulent fluctuations \(\sigma_s^2 \), which have dynamical time-scale \(\tau_0 = \ell_0/(c_s M) \), where \(\ell_0 \) is the turbulent driving scale. The deterministic term, \(A(s) \), encodes how logarithmic density fluctuates about the mean dynamically on timescales \(\tau_A = \tau_{A,0}/[1 + H(s - s_0)] \frac{3f}{2} \), where \(H(s - s_0) \) is the Heaviside function. This encodes how high-density structures, such as the density contrast caused by a shock,
live on shorter times scales than the rest of the density fluctuations in the fluid (Robertson & Goldreich 2018). For $s > s_0$ the timescale is reduced by $\tau_A = 3 f/2$, and hence f becomes the fitting parameter for how much shorter the dynamical timescales are for the overdense regions. The PDF of Mocz & Burkhart (2019)’s Langevin model defines a steady-state solution to the Fokker-Planck equation (Kadanoff 2000), which has a solution of the form,

$$p_{MB}(s) \propto \exp \left\{ -\frac{(s - s_0)^2}{2\sigma_N^2} \left[1 + f(s - s_0)H(s - s_0) \right] \right\}. \quad (A4)$$

The asymmetric dynamical timescale of the low- and high-density objects in the cloud encodes a non-Gaussian 3rd moment (skewness) into the PDF through the $O[(s - s_0)^3]$ term in the exponential.

A2 Fitting and Results

We fit equation A4 using the same bootstrapping method we used to fit the Hopkins (2013) PDF model in Section 3.1.3. Each fit in the bootstrapped sample preserves probability, $\int d\eta p_{MB}(\eta) = 1$, $\int d\eta \exp(\eta) p_{MB}(\eta) = N_0$. Our fit results, $\sigma_N / N_0 = 0.56 \pm 0.37$ and $f = 3.15 \pm 0.42$, are consistent within 1σ variations to the results quoted in Table 1, and hence our measurements of the density dispersion are robust to different non-lognormal density PDF models.

This paper has been typeset from a TeX/LaTeX file prepared by the authors.