Growth Performance, Nutrient Digestibility and Blood Indices of West African Dwarf Goats Fed Graded Levels of Broiler Litter

S.A. Muhammad, B.R. Gandi, Y. Ibrahim

ABSTRACT

Background: A study was conducted to investigate effects of broiler litter (BL) on growth performance, nutrient utilization, blood haematology and serum biochemistry of West Africa Dwarf (WAD) goats.

Methods: Five complete diets were formulated using BL to replace 40% composition of cottonseed cake at 0 (control), 25, 50, 75 and 100%. Thirty WAD bucks weighing 10.57±0.42 kg were randomly allotted to the five treatments in a randomized complete block design (RCBD).

Result: The results revealed that daily feed intake (g) and final weight gain (kg) were statistically similar (p>0.05), but daily feed intake cost (N) and feed cost per kg gain (N/kg) decreased (p<0.05) across the treatments. Dry matter and organic matter digestibility increased (p<0.05), while neutral detergent fibre and acid detergent fibre digestibility decreased (p<0.05) across the diets. There was no statistical difference (p>0.05) in N intake, faecal N, urine N and N retained (as % N intake). The serum biochemistry and haematological parameters were statistically similar (p>0.05). Therefore, replacing 100% of CSC with BL maintained body growth; reduced cost of feed; improved nutrient digestibility and maintained normal blood haematology and serum biochemistry.

Key words: Blood parameter, Digestibility, Feed cost, Goat, Growth performance, Poultry waste.

INTRODUCTION

One of the major challenges to ruminant production is the cost of feeding which may account for about 70 to 80 % of the total production cost (Amole et al. 2017). High cost of ruminant feed formulated with oilseed cakes can be reduced by incorporating poultry litter (Chavda et al. 2014). Faecal waste from broiler litter contains high energy value and high crude protein (20-37%) content with appreciable amount of minerals and vitamins (Jeon et al. 2013). Poultry litter is safe for feeding ruminants after a simple staking to eliminate harmful microbes (Owen et al. 2010).

However, some researches raised general fear of spreading potential pathogens from poultry wastes to ruminants as well as increasing the risk of antibiotic-resistant bacteria (Agyare et al. 2019). The present study was aimed to investigate effects of replacing cottonseed cake completely with broiler litter on growth performance, blood constituents and feed cost.

MATERIALS AND METHODS

The experiment was conducted between February to June, 2019 at Teaching and Research Farm, Faculty of Agriculture, Kaduna State University, Nigeria. The area is located at latitude rainfall, relative humidity and temperature are 1800 mm, 63 % and 34°C, respectively.

Maize (40%), cottonseed cake (40%), cowpea husk (10%), sorghum spikelet (9.3), bone meal (0.1%), limestone (0.3%) and common salt (0.3 %) were used to formulate control diet. The litter was then used to replace cottonseed cake at 0 (control), 25, 50, 75 and 100%, hence each replacement level served as a treatment.
Chemists (AOAC, 1990) methods of analysis. Cell wall fractions were determined according to the method of Van Soest et al. (1991). Gross energy (GE) was measured using bomb calorimeter (Brand IKA; model C2000).

Data collected on feeding trial, nutrient digestibility, N-balance and blood constituents were analysed using general linear model (GLM) of Statistical Analysis System (SAS, 2011). Means were separated using Duncan Multiple Range Test (DMRT) (Duncan, 1955).

RESULTS AND DISCUSSION

Feed intake, weight gain and feed cost

Feed intake, weight gain feed to gain ratio (Table 2) were statistically similar (p>0.05) across all the treatments. However, there was difference (p<0.05) in cost of daily feed intake and feed cost per kg gain. The daily weight gain (25.56 – 29.33g/d) observed in the present study was within the range reported for West African Dwarf goats (Ilori et al. 2013). The daily weight gain was higher than values reported by Ogunmoye (1995), but lower than average daily weight recorded for WAD goats in hot-humid zone of rain forest (Oni et al. 2010). The differences in DWG in this study and the previous reports could be related to the nature of the diets and ecological location (hot-humid vs hot-dry) of the experiments.

The feed cost per kg gain observed (₦664.24 – 1193.37) in this study was higher compared with ₦170.30 – 290.10 reported by Makun et al. (2013), but lower than ₦1590.12 – 1795.60 recorded for WAD goats fed brewers’ dried grain basal diet (Babale et al. 2018). The differences in feed cost/kg gain found between this study and the previous reports could be due to the different breeds (Red Sokoto and Sahelian goat vs West African Dwarf) used in the experiments and also the nutritional quality of the experimental diets.

Nutrient digestibility

The apparent digestibility (Table 3) of dry matter (DM), organic matter (OM), neutral detergent fibre (NDF), acid detergent fibre (ADF), crude protein (CP) and gross energy (GE) were altered (p<0.05) across the treatments. The trend of nutrient digestibility in this study shows that the apparent digestibility of NDF and ADF decreased across the treatments, while DM digestibility increased with level of cottonseed cake replacement with broiler litter. The trend could be explained in relation to nutrient composition of the experimental diets (Table 1) both NDF and ADF contents decreased with levels of CSC replacement with BL. Besides, NDF is known to correlate negatively with rate of feed digestion (Casler and Jung, 2006) while ADF indirectly correlates to gross energy. Hence, animals on treatments with lower NDF contents tended to empty their rumen contents at faster rates than animals on control or on lower levels of broiler litter inclusion. Similarly, increasing ADF concentration across the treatments reduced gross energy contents hence the low digestible energy and its apparent digestibility. The result of this study disagrees with Makun et al. (2013) who reported no difference (p>0.05) in DM, NDF and ADF digestibility of Red Sokoto and Sahelian goats fed CSC based diet. The finding was, however, similar to report by Ilori et al. (2013) who observed difference (p<0.05) in DM, CP and fibre digestibility of WAD goats supplemented with baobab fruit meal in a wheat offal concentrate diet. The differences observed in this study and other reports could be related to the different types of test and basal feeds fed to the experimental animals.

Nitrogen intake, nitrogen loss and nitrogen balance

Nitrogen balance (Table 4) was different (p<0.05) across the treatments; however, nitrogen intake, nitrogen losses and percentage nitrogen retained were similar (p>0.05). The absence of differences in nitrogen intake can be attributed to a nearly similar CP content between broiler litter and cottonseed cake used in formulating experimental diets. Though the trend of nitrogen balance in this result was not consistent to the replacement levels, animals on 100% replacement level showed higher nitrogen balance. This finding revealed that animals on treatment diets had similar

Nutrient (%)	Level of replacing CSC with BL				
	0%	25%	50%	75%	100%
Dry matter	90.30	90.02	90.21	90.04	90.03
Organic matter	89.62	87.34	86.04	85.79	84.62
Ash	10.38	12.66	13.96	14.21	15.38
Neutral detergent fibre	57.40	54.30	52.50	50.20	47.40
Acid detergent fibre	24.90	26.70	27.75	28.40	26.75
Acid detergent lignin	5.65	6.30	7.48	8.45	8.95
Crude fibre	16.67	15.33	14.00	11.33	10.00
Hemi cellulose	32.50	27.60	24.75	21.80	20.65
Cellulose	19.25	20.40	20.27	19.95	17.8
Ether extract	4.67	4.33	4.13	3.84	3.25
Crude protein	13.88	13.96	13.65	13.56	13.76
Gross energy (MJ/kg DM)	16.138	15.895	15.285	14.870	14.510
Table 2: Effects of replacing Cottonseed cake with broiler litter on feed intake, weight gain and feed cost of WAD bucks fed complete diet.

Nutrient	0%	25%	50%	75%	100%	SEM	P-value
DFI (g)	377.87	372.76	391.2	346.98	318.63	16.76	0.454
TFI (kg)	31.74	31.31	32.86	29.15	26.77	1.41	0.454
DWI (L)	0.66	0.78	0.77	0.70	0.72	0.03	0.307
DWG (g)	29.33	26.22	27.78	27.78	25.56	0.14	0.968
FWG (kg)	2.53	1.97	2.50	2.50	2.30	0.005	0.005
FGR	13.98	13.36	15.68	13.14	13.20	0.80	0.639
FC/kg (N)	81.08	75.08	60.08	63.08	57.08	1.43	0.005
DFIC (N)	30.64	27.99	27.02	21.89	18.19	1.43	0.005
TFIC (N)	2573.56	2350.94	2270.08	1838.56	1527.75	120.49	0.005
FC/Kg gain(N/kg)	1017.22	1193.37	908.03c	735.42	664.24	61.87	0.002

DFI= daily feed intake, TFI= total feed intake, DWI= daily water intake, FWG= final weigh gain, FGR= feed to gain ratio, FC= feed cost ($= N 360), DFIC= daily intake cost, TFIC= total feed intake cost, FC/kg gain= feed cost per kg gain.

Table 3: Apparent nutrient digestibility (%) of WAD bucks fed cottonseed cake diet replaced with broiler litter.

Nutrient	0%	25%	50%	75%	100%	SEM	P-value
Dry matter	41.11b	44.35b	54.70a	52.54a	53.69a	1.26	0.0035
Organic matter	43.16b	50.90ab	58.42a	55.79a	55.98a	2.55	0.0492
NDF	50.12a	43.50b	35.07c	33.08c	25.67d	1.74	0.0003
ADF	43.59a	40.49b	31.56c	21.35c	13.33d	<0.001	
Crude protein	44.62b	51.48a	44.78b	44.95b	51.07ab	1.51	0.0461
Ash	30.54	34.34	34.40	35.19	42.56	4.36	0.4904
Ether extract	76.4	99.02	99.20	98.65	98.55	4.81	0.5659
DE	27.33ab	30.75a	31.70a	23.89b	23.26b	1.41	0.0079

NDF= neutral detergent fibre, ADF= acid detergent fibre, DE= digestible energy.

Table 4: Nitrogen balance (g/d) of WAD bucks fed cottonseed cake diet replaced with broiler litter.

Parameter	0%	25%	50%	75%	100%	SEM	P-value
N intake	9.54	9.65	9.44	9.35	9.56	0.092	0.0831
Faecal N	1.71	1.55	1.70	1.69	1.52	0.048	0.0704
urine N	0.14	0.12	0.11	0.11	0.12	0.019	0.7854
N loss	1.83	1.67	1.82	1.75	1.64	0.056	0.1893
N Balance	7.75bc	7.99a	7.76c	7.63c	7.88ab	0.056	0.0069
N retained (as % intake)	80.74	82.74	80.78	81.31	82.76	0.584	0.1129

Nitrogen intake and nitrogen retention to animals on the control diet. The nitrogen retained (80.74 – 82.76%) in the present study was higher than previous report for WAD goats fed ensiled mixtures of elephant grass (*Pennisetum purpureum*) with legume beans (Ajayi, 2011), but similar result was recorded for WAD goats fed different browse plants (*Moringa oleifera, Leucaena leucocephala* and *Gliricidia sepium*) (Asaolu et al. 2011). The reason for different nitrogen balances between our results and previous reports could be associated with different nitrogen intake observed in the experiments.

Haematology and serum biochemistry

Blood haematology and serum biochemistry is presented as Table 5. The total red blood cells (TRBC) was slightly low but within a normal range (5 – 8 × 10^{12}/L); TRBC below the normal value is associated to an underlying haem parasitic infection or poor nutrition (Paul and Dey 2015). The total white blood cell counts (TWBC) were within the normal values of 4 – 13 × 10^{9}/L, hence the animals were healthy (Al-Bulushi et al. 2017). The observation on blood haematology in the present work was previously confirmed by Singh et al. (2002) that feeding poultry litter to crossbred calves did not cause any health threats.

Blood urea nitrogen (BUN) across treatments were within normal values (12-26 mg/dl) which suggested that the kidneys and liver were functioning well since BUN levels provide information to renal physiology (Ostfeld et al. 2010). The higher BUN concentration observed in treatment groups was an evidence that BL contains high nitrogen (N) content that was indicated in Table 5.
Table 5: Haematology and serum biochemistry of West African Dwarf bucks fed cottonseed cake diet replaced with broiler litter.

Parameter	Level of replacing CSC with BL	SEM	p-value				
	0%	25%	50%	75%	100%		
PCV (%)	32.33	36.00	31.00	37.00	34.67	2.69	0.398
Hb (g/L)	10.73	11.97	10.30	12.30	11.53	0.90	0.401
TP (g/L)	6.67	6.80	5.87	6.20	6.40	0.54	0.713
TWBC (x 10^9/L)	11.13	10.63	10.67	6.60	8.00	1.04	0.136
TRBC (x 10^9/L)	5.57	6.03	4.93	6.07	5.90	0.46	0.399
Neutrophils (%)	35.67	37.67	33.00	33.67	36.33	4.93	0.197
Lymphocytes (%)	58.67	59.33	64.67	62.33	62.00	5.57	0.903
Basophils (%)	1.33	1.33	1.00	0.67	1.00	0.78	0.785
BAND (%)	0.0	0	0	0	0		
MCV (fL)	58.40	59.53	63.20	61.00	58.80	1.53	0.512
MCH (pg)	19.37	19.83	21.03	20.27	19.57	0.49	0.473
albumin (g/L)	21.00	27.67	31.33	28.00	32.33	4.57	0.485
Ts protein (g/L)	63.33ab	73.33	64.00ab	62.00b	66.33ab	3.25	0.032
BUN (mg/dl)	18.33	20.08	21.73	22.67	23.72	2.25	0.471
Creatine (mg/dl)	1.63	1.00	1.53	1.33	1.80	0.26	0.193
Cholesterol (mg/dl)	1.73	1.77	1.17	1.70	1.67	0.32	0.791
ALT (IU/L)	18.33	19.67	15.67	21.33	20.67	5.60	0.947
AST (IU/L)	68.67	70.00	86.33	88.33	90.67	13.49	0.21
ALP (IU/L)	17.00	18.67	16.00	20.33	25.00	6.32	0.894

PCV= packed cell volume, Hb= haemoglobin, TP= total protein, TWBC= total white blood cells, TRBC= total red blood cells, MCV= Mean corpuscular value, MCH= Mean corpuscular haemoglobin, MCHC= Mean corpuscular haemoglobin concentration. Ts protein= thymidylate synthase protein, BUN= blood urea nitrogen, ALT= Alanine Aminotransferase, AST=Aspartate Aminotransferase, ALP= alkaline phosphate level.

uric acid content (Liang et al. 2011), which is quickly degraded in the rumen to ammonia, thus excess ammonia that is not utilize by rumen microbes or absorbed via rumen walls is converted to urea by the liver (Jin et al. 2018). Urea is then either recycled via saliva or excreted in the urine; nonetheless, urea is secreted via milk (Gulinski et al. 2016).

The range of blood glucose (48.42-68.58 mg/dl) observed in the study was higher than values reported for WAD goats fed dried cassava leaves plus guinea grass as basal feed (Daramola et al. 2005). Nevertheless, the high blood glucose level recorded in this study contradicted glucose levels observed in WAD goats fed groundnut haulms and cowpea husk supplemented with brewers’ dried grain (Babale et al. 2019). The variation in blood glucose levels between the present study and the previous reports could be associated to carbohydrate intake and the energy content of the experimental diets.

CONCLUSION

Based on the findings of this study, it was concluded that replacing 100 % of cottonseed cake with broiler litter in the diet of goats maintained feed intake and weight gain; it reduced cost of feed and feed cost per kg gain; it improved nutrient digestibility and nitrogen balance and did not alter blood parameters from normal values.

ACKNOWLEDGEMENT

This work was funded in 2018 under Institution Based Research (IBR) grant of the Tertiary Education Trust Fund (TET fund), Federal Ministry of Education, Nigeria. The supervision and custodianship of the grant by Kaduna State University via the Research and Publication Committee is acknowledged.

REFERENCES

Agyare, C., Etsiapa Boamah, V., Ngofi Zumbi, C. and Boateng Osei, F. (2019). Antibiotic use in poultry production and its effects on bacterial resistance: In antimicrobial resistance - a global threat. Intech Open Science. 1-20.

Ajayi, F.T. (2011). Effects of feeding ensiled mixtures of elephant grass (Pennisetum purpureum) with three grain legume plants on digestibility and nitrogen balance of West African Dwarf goats. Livestock Science. 142(1): 80-84.

Al-Bulushi, S., Shawafl, T. and Al-Hasani, A. (2017). Some haematological and biochemical parameters of different goat breeds in Sultanate of Oman: A preliminary study. Veterinary World. 10(4): 461-466.

Amole, T.A., Zijlstra, M., Descheemaeker, K., Ayantunde, A.A. and Duncan, A.J. (2017). Assessment of lifetime performance of small ruminants under different feeding systems.11(5): 881-889.

AOAC. (1990). Official methods of analysis of the AOAC, 15th ed.
Growth Performance, Nutrient Digestibility and Blood Indices of West African Dwarf Goats Fed Graded Levels of Broiler Litter

Methods. 932.06, 925.09, 985.29, 923.03. Association of Official Analytical Chemists. Arlington, VA, USA.

Asadu, V.O., Binuomote, R.T., Akinlade, J.A., Oyelami, O.S. and Kolapo, K.O. (2011). Utilization of Moringa oleifera fodder combinations with Leucaena leucocephala and Gliricidia sepium fodders by West African Dwarf goats. International Journal of Agricultural Research. 6: 607-619.

Babale, D.M., Millam, J.J. and Gworgor, Z. (2019). Blood profile and carcass characteristics of West African Dwarf goats fed groundnut haulms and cowpea husk supplemented with brewers' dried grain. Biomedical Journal of Scientific and Technical Research. 16(1): 11751-11754.

Babale, D.M., Millam, J.J., Abaya, H.Y. and Kefas, B.W. (2018). Growth performance and cost-benefits of feeding West African Dwarf goat groundnut haulms and cowpea husk supplemented with brewers' dried grains. MOJ Anatomy and Physiology. 5 (6): 386-389.

Casler, M.D. and Jung, H.J.G. (2006). Relationships of fibre, lignin and phenolic to in vitro fibre digestibility in three perennial grasses. Animal Feed Science and Technology. 125: 151-161.

Chavda, J.A., Sawsani, H.H., Murthy, K.S. and Ribadiya, N.K. (2014). Utilization of poultry excreta as a ruminant feed - A review. Agricultural Reviews. 2: 136-141.

Daramola, J.O., Adeloye, A.A., Fatoba, T.A. and Soladoye, A.O. (2005). Haematological and biochemical parameters of West African Dwarf goats. Livestock Research for Rural Development. 17(8): 95.

Duncan, D.B. (1955). Multiple Range and Multiple F Tests. Biometrics. 11: 1-41.

Guliński, P., Salamonczyk, E. and Młynk, K. (2016). Improving nitrogen use efficiency of dairy cows in relation to urea in milk - A review. Animal Science Papers and Reports. 34: 5-24.

Ilori, H.B., Salami, S.A., Majoka, M.A. and Okunlola, D.O (2013). Acceptability and nutrient digestibility of West African Dwarf goat fed different dietary inclusion of baobab (Adansonia digitata). IOSR Journal of Agriculture and Veterinary Science. 6: 22-26.

Jeon, Y.W., Kang, J.W., Kim, H., Yoon, Y.M. and Lee, D.H. (2013). Unit mass estimation and characterization of litter generated in the broiler house and slaughter house. International Bio deterioration and Biodegradation. 85: 592-597.

Jin, D., Zhao, S., Zheng, N., Beckers, Y. and Wang, J. (2018). Urea metabolism and regulation by rumen bacterial urease in ruminants - a review. Annals of Animal Science. 18(2): 303-318.

Liang, W.Z., Shah, S.B., Classen, J.J. and Sharma-Shivappa, R. (2011). Ammonium and ammonia sorption on broiler litter and cake. In: American Society of Agricultural and Biological Engineers Annual International Meeting. 1: 335-356.

Makun, H.J., Otaru, S.M. and Dung, D.D. (2013). Effect of management practices on milk yield and live weight changes of indigenous breeds of goats supplemented with groundnut haulms and concentrate in sub humid zone of Nigeria. Sokoto Journal of Veterinary Sciences. 11: 45-50.

Ogunmoye, O.A. (1995). Utilization of soybean by West African Dwarf goats. M.Sc. Thesis, University of Ibadan, Nigeria.

Oni, A.O., Arigbede, O.M., Oni, O.O., Onwuka, C.F.I., Anele, U.Y., Oduguwa, B.O. and Yusuf, K.O. (2010). Effects of feeding different levels of dried cassava leaves (Manihot esculenta, Crantz) based concentrates with Panicum maximum basal on the performance of growing West African Dwarf goats. Livestock Science. 129 (1-3): 24-30.

Ostfeld, R., Spinelli, M., Mokherjee, D., Holtzman, D., Shoyeb, A., Schaefer, M., Kawano, T., Doddamani, S., Sprevack, D. and Duc, Y. (2010). The Association of blood urea nitrogen levels and coronary artery disease. The Einstein Journal of Biology and Medicine. 25: 3-7.

Owen, O.J., Alawa, J.P., Welke, S.N., Amakiri, A.O. and Ngodigha, E.M. (2010). Deep stacking poultry litter as feed ingredient in livestock production. Toxicological and Environmental Chemistry. 92(7): 1259-1263.

Rahman, M.K., Islam, S., Ferdous, J., Uddin, M.H., Hossain, M.B., Hassan, M.M. and Islam, A. (2018). Determination of haematological and serum biochemical reference values for indigenous sheep (Ovis aries) in Dhaka and Chittagong districts of Bangladesh. Veterinary World. 11(8): 1089-1093.

Rahman, M.M., Abdullah, R.B., Wan Khadijah, W.W., Nakagawa, T. and Akashi, R. (2013). Feed intake, digestibility and growth performance of goats offered Napier grass supplemented with molasses protected palm kernel cake and soya waste. Asian Journal of Animal and Veterinary Advances. 8: 527-534.

SAS. (2011). SAS/STAT 9.3 User’s Guide. User’s Guide. SAS Institute Inc., Cary, NC.

Singh, P.K., Singh, V.P. and Pandita, N.N. (2002). Haematological observation of cross-bred calves fed dried poultry litter and temple waste. Indian Journal of Animal Research. 36: 94-97.

Van Soest, P.J., Robertson, J.B. and Lewis, B.A. (1991). Methods for dietary fibre, neutral detergent fibre and non-starch polysaccharides in relation to animal nutrition. Journal of Dairy Science. 74(10): 3583-3597.