ON THE GROUP OF AUTOMORPHISMS OF THE BRANDT λ^0-EXTENSION OF A MONOID WITH ZERO

OLEG GUTIK

ABSTRACT. The group of automorphisms of the Brandt λ^0-extension $B^0_\lambda(S)$ of an arbitrary monoid S with zero is described. In particular we show that the group of automorphisms $\text{Aut}(B^0_\lambda(S))$ of $B^0_\lambda(S)$ is isomorphic to a homomorphic image of the group defines on the Cartesian product $\mathcal{S}_\lambda \times \text{Aut}(S) \times H^1_1$ with the following binary operation:

$$[\varphi, h, u] : [\varphi', h', u'] = [\varphi\varphi', hh', \varphi u : uh'],$$

where \mathcal{S}_λ is the group of all bijections of the cardinal λ, $\text{Aut}(S)$ is the group of all automorphisms of the semigroup S and H^1_1 is the direct λ-power of the group of units H_1 of the monoid S.

1. INTRODUCTION AND PRELIMINARIES

Further we shall follow the terminology of [2] [21].

Given a semigroup S, we shall denote the set of idempotents of S by $E(S)$. A semigroup S with the adjoined unit (identity) will be denoted by S^1 [S'] (cf. [2]). Next, we shall denote the unit (identity) and the zero of a semigroup S by 1_S and 0_S, respectively. Given a subset A of a semigroup S, we shall denote by $A^* = A \setminus \{0_S\}$.

If S is a semigroup, then we shall denote the subset of idempotents in S by $E(S)$. If $E(S)$ is closed under multiplication in S and we shall refer to $E(S)$ a band (or the band of S). If the band $E(S)$ is a non-empty subset of S, then the semigroup operation on S determines the following partial order \leq on $E(S)$: $e \leq f$ if and only if $ef = fe = e$. This order is called the natural partial order on $E(S)$.

If $h : S \to T$ is a homomorphism (or a map) from a semigroup S into a semigroup T and if $s \in S$, then we denote the image of s under h by $(s)h$.

Let S be a semigroup with zero and λ a cardinal ≥ 1. We define the semigroup operation on the set $B^0_\lambda(S) = (\lambda \times S \times \lambda) \cup \{0\}$ as follows:

$$(\alpha, a, \beta) : (\gamma, b, \delta) = \begin{cases} (\alpha, ab, \delta), & \text{if } \beta = \gamma; \\ 0, & \text{if } \beta \neq \gamma, \end{cases}$$

and $(\alpha, a, \beta) \cdot 0 = 0 \cdot (\alpha, a, \beta) = 0 \cdot 0 = 0$, for all $\alpha, \beta, \gamma, \delta \in \lambda$ and $a, b \in S$. If $S = S^1$ then the semigroup $B^1_\lambda(S)$ is called the Brandt λ-extension of the semigroup S [4]. Obviously, if S has zero then $J = \{0\} \cup \{(0_S, \beta) : 0_S$ is the zero of $S\}$ is an ideal of $B^1_\lambda(S)$. We put $B^0_\lambda(S) = B^1_\lambda(S) / J$ and the semigroup $B^0_\lambda(S)$ is called the Brandt λ^0-extension of the semigroup S with zero [8].

If I is a trivial semigroup (i.e. I contains only one element), then we denote the semigroup I with the adjoined zero by I^0. Obviously, for any $\lambda \geq 2$, the Brandt λ^0-extension of the semigroup I^0 is isomorphic to the semigroup of $\lambda \times \lambda$-matrix units and any Brandt λ^0-extension of a semigroup with zero which also contains a non-zero idempotent contains the semigroup of $\lambda \times \lambda$-matrix units. We shall denote the semigroup of $\lambda \times \lambda$-matrix units by B^1_λ. The 2×2-matrix semigroup with adjoined identity B^1_2 plays an impotent role in Graph Theory and its called the Perkins semigroup. In the paper [20] Perkins showed that the semigroup B^1_2 is not finitely based. More details on the word problem of the Perkins semigroup via different graphs may be found in the works of Kitaev and his coauthors (see [17] [18]).
We always consider the Brandt λ^0-extension only of a monoid with zero. Obviously, for any monoid S with zero we have $B^0_\lambda(S) = S$. Note that every Brandt λ-extension of a group G is isomorphic to the Brandt λ^0-extension of the group G^0 with adjoined zero. The Brandt λ^0-extension of the group with adjoined zero is called a Brandt semigroup \cite{2, 21}. A semigroup S is a Brandt semigroup if and only if S is a completely 0-simple inverse semigroup \cite{1, 19} (cf. also \cite{21}, Theorem II.3.5). We shall say that the Brandt λ^0-extension $B^0_\lambda(S)$ of a semigroup S is finite if the cardinal λ is finite.

In the paper \cite{14} Gutik and Repovš established homomorphisms of the Brandt λ^0-extensions of monoids with zeros. They also described a category whose objects are ingredients in the constructions of the Brandt λ^0-extensions of monoids with zeros. Here they introduced finite, compact topological Brandt λ^0-extensions of topological semigroups and countably compact topological Brandt λ^0-extensions of topological inverse semigroups in the class of topological inverse semigroups, and established the structure of such extensions and non-trivial continuous homomorphisms between such topological Brandt λ^0-extensions of topological monoids with zero. There they also described a category whose objects are ingredients in the constructions of finite (compact, countably compact) topological Brandt λ^0-extensions of topological monoids with zeros. These investigations were continued in \cite{10} and \cite{9}, where established countably compact topological Brandt λ^0-extensions of topological monoids with zeros and pseudocompact topological Brandt λ^0-extensions of semitopological monoids with zeros their corresponding categories. Some other topological aspects of topologizations, embeddings and completions of the semigroup of $\lambda \times \lambda$-matrix units and Brandt λ^0-extensions as semitopological and topological semigroups were studied in \cite{3, 5, 7, 11, 12, 13, 15, 16}.

In this paper we describe the group of automorphisms of the Brandt λ^0-extension $B^0_\lambda(S)$ of an arbitrary monoid S with zero.

2. Automorphisms of the Brandt λ^0-extension of a monoid with zero

We observe that if $f: S \to S$ is an automorphism of the semigroup S without zero then it is obvious that the map $\hat{f}: S^0 \to S^0$ defined by the formula

$$(s)\hat{f} = \begin{cases} (s)f, & \text{if } s \neq 0_S; \\ 0_S, & \text{if } s = 0_S, \end{cases}$$

is an automorphism of the semigroup S^0 with adjoined zero 0_S. Also the automorphism $f: S \to S$ of the semigroup S can be extended to an automorphism $f_B: B^0_\lambda(S) \to B^0_\lambda(S)$ of the Brandt λ^0-extension $B^0_\lambda(S)$ of the semigroup S by the formulæ:

$$(\alpha, s, \beta) f_B = (\alpha, (s)f, \beta), \quad \text{for all } \alpha, \beta \in \lambda$$
and $(0)f_B = 0$. We remark that so determined extended automorphism is not unique.

The following theorem describes all automorphisms of the Brandt λ^0-extension $B^0_\lambda(S)$ of a monoid S.

Theorem 1. Let $\lambda \geq 1$ be cardinal and let $B^0_\lambda(S)$ be the Brandt λ^0-extension of monoid S with zero. Let $h: S \to S$ be an automorphism and suppose that $\varphi: \lambda \to \lambda$ is a bijective map. Let H_1 be the group of units of S and $u: \lambda \to H_1$ a map. Then the map $\sigma: B^0_\lambda(S) \to B^0_\lambda(S)$ defined by the formulæ

\begin{equation}
((\alpha, s, \beta)) \sigma = ((\alpha)\varphi, (\alpha) u \cdot (s)h \cdot ((\beta)u)^{-1}, (\beta)\varphi) \quad \text{and} \quad (0)\sigma = 0,
\end{equation}

is an automorphism of the semigroup $B^0_\lambda(S)$. Moreover, every automorphism of $B^0_\lambda(S)$ can be constructed in this manner.

Proof. A simple verification shows that σ is an automorphism of the semigroup $B^0_\lambda(S)$.

Let $\sigma: B^0_\lambda(S) \to B^0_\lambda(S)$ be an isomorphism. We fix an arbitrary $\alpha \in \lambda$.

Since $\sigma: B^0_\lambda(S) \to B^0_\lambda(S)$ is the automorphism and the idempotent $(\alpha, 1_S, \alpha)$ is maximal with respect to the natural partial order on $E(B^0_\lambda(S))$, Proposition 3.2 of \cite{14} implies that $((\alpha, 1_S, \alpha)) \sigma = (\alpha', 1_S, \alpha')$ for some $\alpha' \in \lambda$.

Since $(\beta, 1_S, \alpha)(\alpha, 1_S, \alpha) = (\beta, 1_S, \alpha)$ for any $\beta \in \lambda$, we have that

$$((\beta, 1_S, \alpha)) \sigma = ((\beta, 1_S, \alpha)) \sigma \cdot (\alpha', 1_S, \alpha').$$
and hence
\[(\beta, 1_s, \alpha)\sigma = ((\beta)\varphi, (\beta)u, \alpha'),\]
for some \((\beta)\varphi \in \lambda\) and \((\beta)u \in S\). Similarly, we get that
\[(\alpha, 1_s, \beta)\sigma = (\alpha', (\beta)v, (\beta)\psi),\]
for some \((\beta)\psi \in \lambda\) and \((\beta)v \in S\). Since \((\alpha, 1_s, \beta)(\beta, 1_s, \alpha) = (\alpha, 1_s, \alpha)\), we have that
\[(\alpha', 1_s, \alpha') = ((\alpha, 1_s, \alpha))\sigma = (\alpha', (\beta)v, (\beta)\psi) \cdot ((\beta)\varphi, (\beta)u, \alpha') = (\alpha', (\beta)v \cdot (\beta)u, \alpha'),\]
and hence \((\beta)\varphi = (\beta)\psi = \beta' \in \lambda\) and \((\beta)v \cdot (\beta)u = 1_s\). Similarly, since \((\beta, 1_s, \alpha) \cdot (\alpha, 1_s, \beta) = (\beta, 1_s, \beta)\), we see that the element
\[((\beta, 1_s, \beta))\sigma = ((\beta, 1_s, \alpha)(\alpha, 1_s, \beta))\sigma = (\beta', (\beta)v \cdot (\beta)u, \beta')\]
is a maximal idempotent of the subsemigroup \(S_{\beta', \beta'}\) of \(B^0_\lambda(S)\), and hence we have that \((\beta)v \cdot (\beta)u = 1_s\). This implies that the elements \((\beta)v\) and \((\beta)u\) are mutually invertible in \(H_1\), and hence \((\beta)v = ((\beta)u)^{-1}\).

If \((\gamma)\varphi = (\delta)\varphi\) for \(\gamma, \delta \in \lambda\) then
\[0 \neq (\alpha', 1_s, (\gamma)\varphi) \cdot ((\delta)\varphi, 1_s, \alpha') = ((\alpha, 1_s, \gamma))\sigma \cdot ((\delta, 1_s, \alpha))\sigma,\]
and since \(\sigma\) is an automorphism, we have that
\[(\alpha, 1_s, \gamma) \cdot (\delta, 1_s, \alpha) \neq 0\]
and hence \(\gamma = \delta\). Thus \(\varphi: \lambda \to \lambda\) is a bijective map.

Therefore for \(s \in S \setminus \{0_s\}\) we have
\[((\gamma, s, \delta))\sigma = ((\gamma, 1_s, \alpha) \cdot (\alpha, s, \alpha) \cdot (\alpha, 1_s, \delta))\sigma =
= ((\gamma, 1_s, \alpha))\sigma \cdot ((\alpha, s, \alpha))\sigma \cdot ((\alpha, 1_s, \delta))\sigma =
= ((\gamma)\varphi, (\gamma)u, \alpha') \cdot (\alpha', (s)h, \alpha') \cdot (\alpha', ((\delta)u)^{-1}, (\delta)\varphi) =
= ((\gamma)\varphi, (\gamma)u \cdot (s)h \cdot ((\delta)u)^{-1}, (\delta)\varphi).\]

Also, since 0 is zero of the semigroup \(B^0_\lambda(S)\) we conclude that \((0)\sigma = 0\). \(\square\)

Theorem \ref{thm:main} implies the following corollary:

Corollary 1. Let \(\lambda \geq 1\) be cardinal and let \(B_\lambda(G)\) be the Brandt semigroup. Let \(h: G \to G\) be an automorphism and suppose that \(\varphi: \lambda \to \lambda\) is a bijective map. Let \(u: \lambda \to G\) be a map. Then the map \(\sigma: B_\lambda(G) \to B_\lambda(G)\) defined by the formulae
\[((\alpha, s, \beta))\sigma = ((\alpha)\varphi, (\alpha)u \cdot (s)h \cdot ((\beta)u)^{-1}, (\beta)\varphi) \quad \text{and} \quad (0)\sigma = 0,\]
is an automorphism of the Brandt semigroup \(B_\lambda(G)\). Moreover, every automorphism of \(B_\lambda(G)\) can be constructed in this manner.

Also, we observe that Corollary \ref{cor:main} implies the following well known statement:

Corollary 2. Let \(\lambda \geq 1\) be cardinal and \(\varphi: \lambda \to \lambda\) a bijective map. Then the map \(\sigma: B_\lambda \to B_\lambda\) defined by the formulae
\[((\alpha, \beta))\sigma = ((\alpha)\varphi, (\beta)\varphi) \quad \text{and} \quad (0)\sigma = 0,\]
is an automorphism of the semigroup of \(\lambda \times \lambda\)-matrix units \(B_\lambda\). Moreover, every automorphism of \(B_\lambda\) can be constructed in this manner.

The following example implies that the condition that semigroup \(S\) contains the identity is essential.

Example 1. Let \(\lambda\) be any cardinal \(\geq 2\). Let \(S\) be the zero-semigroup of cardinality \(\geq 3\) and \(0_s\) is zero of \(S\). It is easily to see that every bijective map \(\sigma: B^0_\lambda(S) \to B^0_\lambda(S)\) such that \((0)\sigma = 0\) is an automorphism of the Brandt \(\lambda^0\)-extension of \(S\).
Remark. By Theorem 1 we have that every automorphism $\sigma: B_0^\lambda(S) \rightarrow B_0^\lambda(S)$ of the Brandt λ^0-extension of an arbitrary monoid S with zero identifies with the ordered triple $[\varphi, h, u]$, where $h: S \rightarrow S$ is an automorphism of S, $\varphi: \lambda \rightarrow \lambda$ is a bijective map and $u: \lambda \rightarrow H_1$ is a map, where H_1 is the group of units of S.

Lemma 1. Let $\lambda \geq 1$ be cardinal, S be a monoid with zero and let $B_0^\lambda(S)$ be the Brandt λ^0-extension of S. Then the composition of arbitrary automorphisms $\sigma = [\varphi, h, u]$ and $\sigma' = [\varphi', h', u']$ of the Brandt λ^0-extension of S defines in the following way:

$$[\varphi, h, u] \cdot [\varphi', h', u'] = [\varphi\varphi', hh', \varphi'\cdot u'h']$$

Proof. By Theorem 1 for every $(\alpha, s, \beta) \in B_0^\lambda(S)$ we have that

$$(\alpha, s, \beta)(\sigma\sigma') = ((\alpha)\varphi, (\alpha)u(s)h \cdot ((\beta)u)^{-1}, (\beta)\varphi)\sigma' = (((\alpha)\varphi)\varphi', ((\alpha)\varphi)u' \cdot ((\alpha)u(s)h \cdot ((\beta)u)^{-1}) h' \cdot (((\beta)\varphi)u')^{-1}, ((\beta)\varphi)\varphi') =$$

and since h' is an automorphism of the monoid S we get that this is equal to

$$=((\alpha)(\varphi\varphi'), ((\alpha)\varphi)u' \cdot ((\alpha)u(s)h \cdot ((\beta)u)^{-1}) h' \cdot (((\beta)\varphi)u')^{-1}, ((\beta)\varphi)\varphi') =$$

This completes the proof of the requested equality. \(\square \)

Theorem 2. Let $\lambda \geq 1$ be cardinal, S be a monoid with zero and let $B_0^\lambda(S)$ be the Brandt λ^0-extension of S. Then the group of automorphisms $\text{Aut}(B_0^\lambda(S))$ of $B_0^\lambda(S)$ is isomorphic to a homomorphic image of the group defines on the Cartesian product $\mathcal{S}_\lambda \times \text{Aut}(S) \times H_1^\lambda$ with the following binary operation:

$$(2) \quad [\varphi, h, u] \cdot [\varphi', h', u'] = [\varphi\varphi', hh', \varphi'\cdot u'h']$$

where \mathcal{S}_λ is the group of all bijections of the cardinal λ, $\text{Aut}(S)$ is the group of all automorphisms of the semigroup S and H_1^λ is the direct λ-power of the group of units H_1 of the monoid S. Moreover, the inverse element of $[\varphi, h, u]$ in the group $\text{Aut}(B_0^\lambda(S))$ is defined by the formula:

$$[\varphi, h, u]^{-1} = [\varphi^{-1}, h^{-1}, \varphi^{-1}u^{-1}h^{-1}]$$

Proof. First, we show that the binary operation defined by formula (2) is associative. Let $[\varphi, h, u]$, $[\varphi', h', u']$ and $[\varphi'', h'', u'']$ be arbitrary elements of the Cartesian product $\mathcal{S}_\lambda \times \text{Aut}(S) \times H_1^\lambda$. Then we have that

$$([\varphi, h, u] \cdot [\varphi', h', u']) \cdot [\varphi'', h'', u''] = [\varphi\varphi', hh', \varphi'\cdot u'h'] \cdot [\varphi'', h'', u''] =$$

$$=[\varphi\varphi'\varphi'', hh'h'', \varphi'\varphi''u'' \cdot (\varphi'\cdot u'h')h''] =$$

and

$$[\varphi, h, u] \cdot ([\varphi', h', u'] \cdot [\varphi'', h'', u'']) = [\varphi, h, u] \cdot [\varphi'\varphi'', hh'h'', \varphi'\varphi''u'' \cdot u'h'h''] =$$

and hence so defined operation is associative.

Theorem 1 implies that formula (1) determines a map $\mathcal{S}_\lambda \times \text{Aut}(S) \times H_1^\lambda$ onto the group of automorphisms $\text{Aut}(B_0^\lambda(S))$ of the Brandt λ^0-extension $B_0^\lambda(S)$ of the monoid S, and hence the associativity of binary operation (2) implies that the map $\mathcal{S}_\lambda \times \text{Aut}(S) \times H_1^\lambda$ onto the group $\text{Aut}(B_0^\lambda(S))$.

Next we show that $[1_{\mathcal{S}_\lambda}, 1_{\text{Aut}(S)}, 1_{H_1^\lambda}]$ is a unit element with the respect to the binary operation (2), where $1_{\mathcal{S}_\lambda}$, $1_{\text{Aut}(S)}$ and $1_{H_1^\lambda}$ are units of the groups \mathcal{S}_λ, $\text{Aut}(S)$ and H_1^λ, respectively. Then we have
that
\[[\varphi, h, u] \cdot [1_{\mathcal{X}}, 1_{\text{Aut}(S)} \cdot 1_{H_1}] = [\varphi 1_{\mathcal{X}}, h 1_{\text{Aut}(S)}, \varphi 1_{H_1}] \cdot u 1_{\text{Aut}(S)} = \\
[\varphi h, \varphi 1_{H_1} \cdot u] = \\
[\varphi, h, 1_{H_1} \cdot u] = \\
[\varphi, h, u] \]

and
\[[1_{\mathcal{X}}, 1_{\text{Aut}(S)} \cdot 1_{H_1}] \cdot [\varphi, h, u] = [1_{\mathcal{X}}, \varphi, 1_{\text{Aut}(S)} h, 1_{\mathcal{X}} u \cdot 1_{H_1} \cdot h] = [\varphi, h, u], \]
because every automorphism \(h \in \text{Aut}(S) \) acts on the group \(H_1 \) by the natural way as a restriction of global automorphism of the semigroup \(S \) on every factor, and hence we get that \(1_{H_1} h = 1_{H_1} \).

Also, similar arguments imply that
\[[\varphi, h, u] : [\varphi, h, u]^{-1} = [\varphi, h, u] : [\varphi^{-1}, h^{-1}, \varphi^{-1} u^{-1} h^{-1}] = \\
[\varphi, h^{-1}, hh^{-1}, (\varphi^{-1})^{-1} u^{-1} h^{-1} \cdot uh^{-1}] = \\
[\varphi, h^{-1}, hh^{-1}, (1_{\mathcal{X}}) u^{-1} h^{-1} \cdot uh^{-1}] = \\
[\varphi, h^{-1}, hh^{-1}, u^{-1} h^{-1} \cdot uh^{-1}] = \\
[1_{\mathcal{X}}, 1_{\text{Aut}(S)} \cdot 1_{H_1}] \]

This implies that the elements \([\varphi^{-1}, h^{-1}, \varphi^{-1} u^{-1} h^{-1}]\) and \([\varphi, h, u]\) are invertible in \(\mathcal{X} \times \text{Aut}(S) \times H_1 \), and hence the set \(\mathcal{X} \times \text{Aut}(S) \times H_1 \) with the binary operation \((2)\) is a group.

Let \(\text{Id}: B^0_\lambda(S) \to B^0_\lambda(S) \) be the identity automorphism of the semigroup \(B^0_\lambda(S) \). Then by Theorem 1 there exist some automorphism \(h: S \to S \), a bijective map \(\varphi: \lambda \to \lambda \) and a map \(u: \lambda \to H_1 \) into the group \(H_1 \) of units of \(S \) such that
\[(\alpha, s, \beta) = (\alpha, s, \beta) \text{Id} = ((\alpha)\varphi, (\alpha)u \cdot (s)h \cdot ((\beta)u)^{-1}, (\beta)\varphi), \]
for all \(\alpha, \beta \in \lambda \) and \(s \in S^* \). Since \(\text{Id}: B^0_\lambda(S) \to B^0_\lambda(S) \) is the identity automorphism we conclude that
\((\alpha)\varphi = \alpha \) for every \(\alpha \in \lambda \). Also, for every \(s \in S^* \) we get that \(s = (\alpha)u \cdot (s)h \cdot ((\beta)u)^{-1} \) for all \(\alpha, \beta \in \lambda \), and hence we obtain that
\[1_S = (\alpha)u \cdot (1_S)h \cdot ((\beta)u)^{-1} = (\alpha)u \cdot ((\beta)u)^{-1} \]
for all \(\alpha, \beta \in \lambda \). This implies that \((\alpha)u = (\beta)u = \tilde{u}\) is a fixed element of the group \(H_1 \) for all \(\alpha, \beta \in \lambda \).

We define
\[\ker N = \{ [\varphi, h, u] \in \mathcal{X} \times \text{Aut}(S) \times H_1 : \varphi: \lambda \to \lambda \ is \ an \ identity \ map, \ \tilde{u}(s)h\tilde{u}^{-1} = s \ for \ any \ s \in S \}. \]

It is obvious that the equality \(\tilde{u}(s)h\tilde{u}^{-1} = s \) implies that \((s)h = \tilde{u}^{-1}s\tilde{u} \) for all \(s \in S \). The previous arguments implies that \([\varphi, h, u] \in \ker N\) if and only if \([\varphi, h, u][3] \) is the unit of the group \(\text{Aut}(B^0_\lambda(S)) \), and hence \(\ker N \) is a normal subgroup of \(\mathcal{X} \times \text{Aut}(S) \times H_1 \). This implies that the quotient group \((\mathcal{X} \times \text{Aut}(S) \times H_1) / \ker N \) is isomorphic to the group \(\text{Aut}(B^0_\lambda(S)) \). \(\square \)
References

[1] A. H. Clifford, Matrix representations of completely simple semigroups, Amer. J. Math. 64 (1942), 327–342.
[2] A. H. Clifford and G. B. Preston, The Algebraic Theory of Semigroups, Vols. I and II, Amer. Math. Soc. Surveys 7, Providence, R.I., 1961 and 1967.
[3] S. Bardyla and O. Gutik, On a semitopological polycyclic monoid, Algebra Discr. Math. 21:2 (2016), 163–183.
[4] O. V. Gutik, On Howie semigroup, Mat. Metody Phis.-Mekh. Polya. 42:4 (1999), 127–132 (in Ukrainian).
[5] O. Gutik, On closures in semitopological inverse semigroups with continuous inversion, Algebra Discr. Math. 18:1 (2014), 59–85.
[6] O. V. Gutik and K. P. Pavlyk, Topological Brandt λ-extensions of absolutely H-closed topological inverse semigroups, Visnyk Lviv Univ., Ser. Mekh.-Math. 61 (2003), 98–105.
[7] O. V. Gutik and K. P. Pavlyk, On topological semigroups of matrix units, Semigroup Forum 71:3 (2005), 389–400.
[8] O. V. Gutik and K. P. Pavlyk, On Brandt λ^0-extensions of semigroups with zero, Mat. Metody Phis.-Mekh. Polya. 49:3 (2006), 26–40.
[9] O. Gutik and K. Pavlyk, On pseudocompact topological Brandt λ^0-extensions of semitopological monoids, Topological Algebra Appl. 1 (2013), 60–79.
[10] O. Gutik, K. Pavlyk, and A. Reiter, Topological semigroups of matrix units and countably compact Brandt λ^0-extensions, Mat. Stud. 32:2 (2009), 115–131.
[11] O. V. Gutik, K. P. Pavlyk, and A. R. Reiter, On topological Brandt semigroups, Mat. Metody Fiz.-Mekh. Polya 54:2 (2011), 7–16 (in Ukrainian); English version in: J. Math. Sci. 184:1 (2012), 1–11.
[12] O. Gutik and O. Ravsky, On feebly compact inverse primitive (semi)topological semigroups, Mat. Stud. 44:1 (2015), 3–26.
[13] O. V. Gutik and O. V. Ravsky, Pseudocompactness, products and Brandt λ^0-extensions of semitopological monoids, Mat. Metody Fiz.-Mekh. Polya 58:2 (2015), 20–37.
[14] O. Gutik and D. Repovš, On Brandt λ^0-extensions of monoids with zero, Semigroup Forum 80:1 (2010), 8–32.
[15] J. Jamalzadeh and Gh. Rezaei, Countably compact topological semigroups versus Brandt extensions and paragroups, Algebras Groups Geom. 27:2 (2010), 219–228.
[16] J. Jamalzadeh and Gh. Rezaei, Brandt extensions and primitive topologically periodic inverse topological semigroups, Bull. Iran. Math. Soc. 39:1 (2013), 87–95.
[17] S. Kitaev and V. Lozin, Words and Graphs, Monographs in Theor. Comput. Sc. An EATCS Series. Springer, Cham, 2015.
[18] S. Kitaev and S. Seif, Word problem of the Perkins semigroup via directed acyclic graphs, Order 25:3 (2008), 177–194.
[19] W. D. Munn, Matrix representations of semigroups, Proc. Cambridge Phil. Soc. 53 (1957), 5–12.
[20] P. Perkins, Bases for equational theories of semigroups, J. Algebra 11:2 (1969), 298–314.
[21] M. Petrich, Inverse Semigroups, John Wiley & Sons, New York, 1984.

Faculty of Mathematics, National University of Lviv, Universytetska 1, Lviv, 79000, Ukraine
E-mail address: o_gutik@franko.lviv.ua, ovgutik@yahoo.com