Hierarchical flower-like NiCo$_2$O$_4$@TiO$_2$ heteronanosheets as anodes for lithium ion batteries

Wei Chen,abc Luya Wei,a Zhiya Lin,a Qian Liu,a Yue Chen,a Yingbin Linbcabc and Zhigao Huangbcabc

Flower-like NiCo$_2$O$_4$ consisting of nanosheets are synthesized by hydrothermal technique and subsequently surface-modified with a TiO$_2$ ultrathin layer by a hydrolysis process at low temperature. It is found that NiCo$_2$O$_4$@TiO$_2$ exhibits superior electrochemical performances over NiCo$_2$O$_4$ in terms of rate capability and cyclability. After 60 cycles at 100 mA g$^{-1}$, NiCo$_2$O$_4$@TiO$_2$ showed 78% capacity retention compared with 57% for bare NiCo$_2$O$_4$. Analysis from the electrochemical measurements indicates that the improved electrochemical performances of NiCo$_2$O$_4$@TiO$_2$ might be attributed to a higher lithium diffusion rate, smaller charge-transfer resistance and more structural stability. Kelvin probe force microscopy measurements reveal that NiCo$_2$O$_4$@TiO$_2$ has a lower work function than those of the pristine one, which help to facilitate electron transfer in composites. In addition, the electric field between NiCo$_2$O$_4$ and TiO$_2$ resulting from the difference in work functions is also expected to enhance the electrochemical performances.

1. Introduction

Owing to their advantages on lifespan and energy density, rechargeable lithium-ion batteries have attracted increasing interest due to their wide application in energy storage systems (ESSs) and electric vehicles (EV/HEV/PHEV).1–5 The increasing demands for high-energy or high-power batteries are driving the research interest in electrode materials with a large specific energy.6–8 Unfortunately, graphite or carbon-based materials with low theoretical specific capacity (ca. 372 mAh g$^{-1}$) are not highly desirable for the high energy-density batteries.9,10 In contrast, binary metal oxides, such as ZnFe$_2$O$_4$, NiFe$_2$O$_4$, ZnMn$_2$O$_4$ and NiCo$_2$O$_4$, seem to be a more promising alternative because of their high theoretical capacity and high redox activity.11–14 Among the numerous investigated binary metal oxides, spinel nickel cobaltite (NiCo$_2$O$_4$) has been regarded as a promising electrode composite due to the high specific capacity (890 mA h g$^{-1}$), environmental friendliness and low cost.15,16 However, NiCo$_2$O$_4$ also suffers from sluggish reaction kinetics and drastic volume change during lithium insertion/extraction processes, resulting in the structure deterioration (pulverization or aggregation) and consequent severe decay in capacity.17,18 To address above significant drawbacks, lots of effective strategies have been implemented and surface-modification has been proved to be an effective way to improve electrochemical performances, which not only suppresses the formation of excessive amounts of SEI but also stabilizes structure of the active materials.19 Kou et al.19 reported that Al$_2$O$_3$-coated NiCo$_2$O$_4$ exhibits improved cyclability with a reversible capacity of 395 mA h g$^{-1}$ after 50 cycles. Titanium oxide (TiO$_2$) has been investigated extensively as an anode material, whose volume expansion is less than 4% during the lithium insertion processes.20,21 The low volume expansion would be desirable for adhesion of the coating to the matrix materials, resulting in the enhanced structural stability and a excellent cycle life. On the other hand, TiO$_2$-coating layer acting as an interfacial barrier can also significantly enhance cyclic performances by suppressing the exothermic reaction between the active material and the electrolyte.

In view of all the above, we employ hydrolysis technique to coat TiO$_2$ on flower-like NiCo$_2$O$_4$ consisting of nanosheets at low temperature, and the effect of TiO$_2$-coating on the kinetics of Li$^+$ insertion/extraction is systematically investigated. It is found that the high capacity of NiCo$_2$O$_4$ and the excellent stability of TiO$_2$ as well as the hierarchical structure make the designed composite demonstrate improved rate capability and cycling stability.

2. Experimental

2.1 Preparation and characterization of anode materials

Flower-like NiCo$_2$O$_4$ consisting of nanosheets are prepared by hydrothermal technique. All chemicals are purchased from...
Aladin and used without further purification. In a typical synthesis, 6 mmol of Ni(NO$_3$)$_2$·6H$_2$O and 12 mmol of Co(NO$_3$)$_2$·6H$_2$O are thoroughly dissolved in 30 ml of deionized water and 30 ml of absolute ethanol, followed by stirring until a light pink solution is formed. Then, 0.1 g of polyvinyl pyrrolidone (PVP) is added to the above aqueous solution under continuous stirring. After vigorous stirring for another 60 min, the resulted mixture is transferred into a 100 ml Teflon-lined autoclave, sealed and maintained at 180 °C for 36 h. After being cooled to room temperature, the precipitates are collected through centrifugation, washed several times with de-ionized water and ethanol, dried at 100 °C overnight under vacuum. The obtained precursors (Ni–Co–O) are calcinated at 450 °C for 5 h in air to get flower-like NiCo$_2$O$_4$ powders. NiCo$_2$O$_4$@TiO$_2$ composites are synthesized by a hydrolysis process at low temperature using tetrabutyl titanate (Ti(OC$_4$H$_9$)$_4$) and Ni–Co–O powders as precursors. 0.23 g of the as-prepared Ni–Co–O precursors are dispersed in 20 ml of absolute ethanol and 1 ml of deionized water under vigorous stirring at 4 °C. Then, 10 ml 10⁻³ M Ti(OC$_4$H$_9$)$_4$ ethanol solution is added dropwise into above solution. After stirring at 4 °C for another 24 h, the resulting precipitates are isolated by centrifugation, dried at 60 °C for 12 h and subsequently sintered at 450 °C for 5 h to obtain flower-like NiCo$_2$O$_4$ surface-modified with TiO$_2$. The schematic illustration of the synthesis process for the NiCo$_2$O$_4$ and NiCo$_2$O$_4$@TiO$_2$ characterized anode materials is shown in Fig. 1.

The crystalline structure of the as-synthesized powders is characterized by X-ray diffraction (XRD, Rigaku MiniFlex II) using CuK$_x$ radiation (λ = 0.15405 nm). Thermo-gravimetric analysis (TGA) analysis are carried out using thermogravimetric analysis (TGA, Netzsch STA449F3) from 30 to 600 °C at a heating rate of 5 °C min⁻¹ under an air atmosphere. Scanning electron microscope (SEM) images are obtained on a Hitachi SU8010 field-emission scanning electron microscope equipped with an energy-dispersive spectroscopy (EDS). The TiO$_2$ content in the composite is determined by inductively coupled plasma OES spectrometer (ICP). Raman scattering is carried out on a Horiba Jobin Yvon Raman instrument using a 532 nm emission line. Nitrogen sorption isotherms are measured at 77 K using a Micromeritics Tristar 3020 analyzer. Specific surface areas of the as-prepared powders are calculated according to the Brunauer–Emmett–Teller (BET) method. The pore size distribution is determined according to the theory of Barrett, Joyner and Halenda (BJH).

The surface potentials of NiCo$_2$O$_4$ and NiCo$_2$O$_4$@TiO$_2$ are measured by Kelvin probe atomic force microscopy (KPAFM) (Bruker dimension ICON, Germany).

2.2 Cell fabrication and characterization

The electrochemical performances of the as-fabricated samples are evaluated with CR2025-type coin cells and assembled in an argon-filled glove box (O$_2$, H$_2$O < 1 ppm). The working electrodes are prepared by coating anode slurries which are made up of 70 wt% active material (NiCo$_2$O$_4$ or NiCo$_2$O$_4$@TiO$_2$) with 10 wt% polyvinylidene fluoride (PVDF) and 20 wt% super-P in N-methyl-2-pyrrolidone. The anode slurry is cast onto a copper current collector and dried in vacuum at 110 °C for 12 h to remove the residual solvent. A lithium foil is used as the reference and counter electrodes, Celgard 2300 microporous polyethylene membrane as separator. The electrolyte consists of 1 M
LiPF$_6$ in a mixture of ethylene carbonate (EC) and dimethyl carbonate (DMC) (1:1 in volume). The cells are galvanostatically charged and discharged on a multichannel battery testing system (Land CT2001A, Wuhan, China) in the voltage range of 0.01–2.5 V. The cyclic voltammetry (CV) measurements are carried out using an Arbin instruments BT-2000 battery testing station, and the electrochemical impedance spectra of the electrodes are determined by an electrochemical workstation (Zahner-Zennium) in the frequency range of 100 kHz to 10 mHz with an amplitude of 5 mV.

3. Results and discussion

3.1 Material characterization

Fig. 2 shows the thermogravimetric (TGA) curve of the as-synthesized Ni–Co–O precursor, measured from 30 to 800°C at a heating rate of 3°C min$^{-1}$ in air atmosphere. The initial 1.1% weight loss at the low temperature (30–250°C) would result from the loss of the evaporation of moisture and the decomposition of crystal water in the precursor. The following 20.4% weight loss with a big step occurs between 250 and 450°C, which might be attributed to the conversion of anhydrous precursors to spinel cubic crystals. Therefore, we reasonably chose 450°C as calcination temperature in our experiment.

The morphology and microstructure of the as-prepared NiCo$_2$O$_4$ and NiCo$_2$O$_4$@TiO$_2$ powders are characterized by scanning electron microscopy as shown in Fig. 1. It is clear that NiCo$_2$O$_4$ powders are all rose flower-like morphology (Fig. 3(a)), which is composed of thin transparent nanosheets with a thickness of ~20 nm. Fig. 3(b) reveals that the nanosheets of NiCo$_2$O$_4$ contains many micro-pores, which is mainly attributed to the organics loss accompanying removal of PVP and gases during the calcination process.22,23 Such hierarchical structure would be

![Fig. 2 TGA curves of the Ni–Co precursor in air atmosphere.](image)

![Fig. 3 SEM images of the as-prepared NiCo$_2$O$_4$ and NiCo$_2$O$_4$@TiO$_2$ powders.](image)
highly desirable for rapid Li-ion diffusion and electron transfer. Porosity structure of the NiCo$_2$O$_4$ nanosheet may be benefit for lithium-ion transportation from the electrolyte into the active sites with less resistance, and buffer efficiently large volume expansion during the Li-ion insertion/extraction processes. With TiO$_2$-coating, NiCo$_2$O$_4$@TiO$_2$ powders also maintain the nanosheet-built flower-like nanostructure as same to the bare one, shown in Fig. 3(c). In contrast, the nanosheets of NiCo$_2$O$_4$@TiO$_2$ have a smooth and integrated surface morphology and the micro-pores on the “petals” disappears, indicating TiO$_2$ layer is uniformly coated on the nanosheet surface.

Fig. 4(a) presents nitrogen adsorption–desorption isotherms of NiCo$_2$O$_4$ and NiCo$_2$O$_4$@TiO$_2$ powders, indicating a typical hysteresis mesoporous system. According to Brunauer–Emmett–Teller (BET) equation, the specific surface areas of NiCo$_2$O$_4$ and NiCo$_2$O$_4$@TiO$_2$ are calculated to be 98.78 and 78.09 m2 g$^{-1}$, respectively. Fig. 4(b) shows the corresponding pore-size distribution based on Barrett–Joyner–Halenda (BJH) method, indicating that NiCo$_2$O$_4$@TiO$_2$ have larger average pore size (10.3 nm) that (5.6 nm) of NiCo$_2$O$_4$. An increase in average pore size and reduction in surface area could be reasonably explained by the disappearance of micro-pores (5.6 nm) because of TiO$_2$-coating. The obtained results are consistent with the analysis from SEM images. The distribution of corresponding elements of NiCo$_2$O$_4$@TiO$_2$ is investigated by EDS. Element mapping images for Ni, Co and Ti in NiCo$_2$O$_4$@TiO$_2$ powders (Fig. 5) reveal that the corresponding elements uniformly distribute on the surface of the NiCo$_2$O$_4$@TiO$_2$ particles.

Fig. 6(a) shows the XRD patterns of NiCo$_2$O$_4$ and NiCo$_2$O$_4$@TiO$_2$ powders. All of the diffraction peaks are characteristic
of a spinel NiCo₂O₄ structure with space group Fd₃m (JCPDS card no. 73-1702). It is found that no visible differences in XRD patterns between two composites, which is attributed to the low content of TiO₂ phase. Fig. 6(b) presents Raman spectra of the as-prepared NiCo₂O₄@TiO₂ samples. Five obvious peaks at 212, 313, 366, 536 and 671 cm⁻¹ are found in the Raman spectrum of NiCo₂O₄@TiO₂ composites, which can be assigned to the vibrational modes of spinel NiCo₂O₄. The peak at around 149 cm⁻¹ is related to the E₂g vibration modes of the TiO₂ anatase structure. The TiO₂ content in NiCo₂O₄@TiO₂ composite is further determined to be 3.53 wt% by inductively coupled plasma OES spectrometer (ICP).

The elemental composition and the oxidation state of the NiCo₂O₄@TiO₂ powder is further characterized by X-ray photoelectron spectroscopy (XPS) measurements and the corresponding results are present in Fig. 7(a–e). The survey spectrum (Fig. 7(a)) reveals the presence of Ni, Co, Ti and O as well as C elements without any other impurities. By using a Gaussian fitting method, the Ni 2p core-level spectrum (Fig. 7(b)) has two spin–orbit doublets and two shake-up satellites, which are in good agreement with the characteristic of Ni²⁺ and Ni³⁺. Similarly, two spin–orbit doublets and shake-up satellites can also be observed in the Co 2p spectrum, corresponding to the characteristic of Co²⁺ and Co³⁺. The peaks located at 438.7 and 464.4 eV are attributed to the Ti 2p₃/₂ and Ti 2p₁/₂ spin–orbit doublets, indicating the predominant state of the Ti element in composite is Ti⁴⁺. The O 1s spectra can be divided into two main oxygen peaks at 529.6 and 531 eV. The peak located at 529.6 eV is typical characteristic of metal–oxygen bonds. The XPS results are in good agreement with the analysis from XRD and ED measurements.

Fig. 8(a) shows the rate capabilities of NiCo₂O₄ and NiCo₂O₄@TiO₂ electrodes at various current density, measured from 100 to 2000 mA g⁻¹ in rising order and subsequently followed by returning 1000, 500 and 200 mA g⁻¹. In comparison, NiCo₂O₄@TiO₂ composite exhibits better rate performance than that of the bare one, especially at a higher rate. When the current density increases to 100, 200, 500, 1000 and 2000 mA g⁻¹, the NiCo₂O₄@TiO₂ electrode shows reversible discharge capacities of 988, 930, 840, 750 and 624 mA h g⁻¹, respectively. Even at a high current density of 2000 mA g⁻¹, the discharge capacity still retains 63.2%. When the current density returns back to 1000, 500 and 200 mA g⁻¹, the NiCo₂O₄@TiO₂ electrode still recovers 735, 837 and 1004 mA h g⁻¹, indicating excellent structure stability of the nano-composite. In contrast, the NiCo₂O₄ electrode delivers a lower discharge capacity at current density. The discharge capacities of the NiCo₂O₄ electrode are measured to be 983, 878, 778, 683 and 562 mA g⁻¹ at the same respective current density. It has been reported that small anatase TiO₂ particles would be turning from an insulator into an electronic conductor during the Li⁺ insertion possess. Therefore, TiO₂-coating on NiCo₂O₄ nanosheets is beneficial for both structural stability as well as the rate capability.

Fig. 8(b) presents the cycling performance of NiCo₂O₄ and NiCo₂O₄@TiO₂ electrodes at a current density of 100 mA g⁻¹. In comparison with NiCo₂O₄, the capacity loss is significantly suppressed after coating with TiO₂. The initial discharge capacity at 100 mA g⁻¹ of NiCo₂O₄ is 1424 mA h g⁻¹ and found to decrease to 815 mA h g⁻¹ after 60 cycles (i.e., only 57% of its initial discharge capacity). The discharge capacity of the NiCo₂O₄@TiO₂ is found to decay gradually with continuous cycling, retaining 78% of its maximum discharge capacity after 60 cycles. In addition, the coulombic efficiency of NiCo₂O₄ is relatively low and unstable, which might result from the SEI formation repeatedly on NiCo₂O₄ nanosheet during the charge/discharge processes. Similar results are reported in Lotfabad’s work. Here, we have made a comparison of the electrochemical performances between our NiCo₂O₄@TiO₂ and other NiCo₂O₄ with different morphologies previously reported, as summarized in Table 1. It is found that NiCo₂O₄@TiO₂ nano-composites exhibit superior cycling stability, indicating its potential application in high-energy lithium-ion batteries.

Fig. 9(a and b) shows cyclic voltammetry profiles of NiCo₂O₄ and NiCo₂O₄@TiO₂ electrode for the first six cycles at a scan rate of 0.1 mV s⁻¹ and from 0.01 to 2.5 V. Two peaks are observed at around 0.6 and 0.9 V in the initial cathodic sweep for both samples, which are assigned to the formation of the solid electrolyte interface layer and the reaction of Co²⁺ and Ni³⁺ to Co⁰ and Ni⁰, respectively. Two oxidation peaks at around 1.4
and 2.2 V are also observed in the initial anodic sweep, which are attributed to the oxidation of Co0 and Ni0 to Co$^{3+}$ and Ni$^{2+}$, respectively. According to the previous reports, the redox reactions can be expressed as follows:

$$\text{NiCo}_2\text{O}_4 + 8\text{Li}^+ + 8\text{e}^- \rightarrow \text{Ni} + 2\text{Co} + 4\text{Li}_2\text{O}$$
$$\text{Ni} + \text{Li}_2\text{O} \leftrightarrow \text{NiO} + 2\text{Li}^+ + 2\text{e}^-$$
$$\text{Co} + \text{Li}_2\text{O} \leftrightarrow \text{CoO} + 2\text{Li}^+ + 2\text{e}^-$$
$$\text{CoO} + 1/3\text{Li}_2\text{O} \leftrightarrow 1/3\text{Co}_3\text{O}_4 + 2/3\text{Li}^+ + 2/3\text{e}^-$$

In comparison with NiCo$_2$O$_4$, the CV curves from 2nd to 6th cycles for NiCo$_2$O$_4$@ TiO$_2$ exhibit a better overlapping degree, indicating a better reversibility of the electrochemical reactions.

Fig. 7 XPS spectra of (a) survey spectrum, (b) Ni 2p, (c) Co 2p, (d) Ti 2p and (e) O 1s for the NiCo$_2$O$_4$@ TiO$_2$ product.
To further investigate the potential mechanism behind the improved performances with surface-modified of TiO$_2$ layer, the cells after cycling are disassembled, washed, dried in vacuum and characterized by SEM. Fig. 10 presents the morphologies of NiCo$_2$O$_4$ and NiCo$_2$O$_4$@TiO$_2$ powders characterized by SEM after 10 and 30 cycles, respectively. It is obvious that NiCo$_2$O$_4$ powders has serious structure-deterioration (pulverization or aggregation) and losses its flower-like structure with increasing cycles due to the repeated volume change between metals and metal oxides. The aggregation of the active materials tends to reduce the effective contact areas between active materials and the electrolyte. In contrast, NiCo$_2$O$_4$@TiO$_2$ powders can remain in the flower-like structure well, which further confirms that TiO$_2$-layer would stabilize structure of the active materials and consequently offer more active sites during the lithium-ion insertion/extraction process. Combined with the analysis of the SEM images after cycling, it is expected that stable hierarchical nanostructures are desirable for the improved electrochemical performances.

Electrochemical impedance spectra are carried out to get insight into the improved rate and cyclic performances of NiCo$_2$O$_4$@TiO$_2$. Fig. 11(a) presents the typical EIS of NiCo$_2$O$_4$ and NiCo$_2$O$_4$@TiO$_2$ electrode in the fully discharged state. Both EIS profiles consist of two depressed semicircles in the medium-to-high frequency range and a straight line in the low-frequency region. According to the equivalent circuit in the inset of Fig. 11(a), the charge-transfer resistance (R_{ct}) are
calculated as 36.6 Ω for NiCo2O4 and 20.4 Ω for NiCo2O4@TiO2, respectively. The decrease in \(R_{ct} \) for NiCo2O4@TiO2 would derive from the more stable structure by TiO2-coating with continuous cycling. The TiO2-coating layer is expected to efficiently prevent the pulverization of NiCo2O4 during the Li+ intercalation/extraction process and mediate the increase in charge transfer resistance of the composites, which facilitates Li-ions transfer at the interface between the active material and electrolyte. As a result, the electrochemical performances are improved.

The diffusion coefficients (\(D_{Li} \)) of the Li-ion kinetic of the cells can be also calculated according to the EIS profiles in the low frequency.

\[
\sigma = \frac{RT}{n^2F^2AV/2} \left(\frac{1}{C_{Li}D_{Li}^{1/2}} \right) \quad (5)
\]

\[
Z_{re} = R + \sigma \omega^{-1/2} \quad (6)
\]

\(R, T \) and \(F \) are the mass gas constant, absolute temperature and Faraday’s constant; \(A, n \) and \(C_{Li} \) are the surface area of the electrode, the number of electrons per molecule during oxidation and the molar volume of active material; \(\sigma, Z_{re} \) and \(\omega \) are the Warburg factor, the real part of the impedance and the frequency. Based on the slope coefficient of \(Z_{re} \) to \(\omega^{-1/2} \) (see Fig. 11(b)), the corresponding lithium diffusion coefficients \(D_{Li} \) of NiCo2O4 and NiCo2O4@TiO2 powders are calculated as \(2.57 \times 10^{-12} \) cm² s⁻¹ and \(8.18 \times 10^{-12} \) cm² s⁻¹ respectively, suggesting the rapid diffusion of lithium-ions of NiCo2O4@TiO2 electrode.

To evaluate the effect of TiO2-coating on the Li-ion diffusion during the charge/discharge process, the impedance spectra under different discharge states for NiCo2O4 and NiCo2O4@TiO2 electrodes are continuously measured, shown in Fig. 12(a and b). According to eqn (5) and (6), the corresponding Li⁺-ion diffusion coefficients of NiCo2O4 and NiCo2O4@TiO2 electrodes are calculated. Fig. 12(c) presents lithium-ion diffusion behaviors during the lithium-ion insertion process. Both electrodes demonstrate similar lithium-ion diffusion behavior. On the whole, NiCo2O4@TiO2 electrode exhibits larger diffusion coefficients than those of the bare one, indicating that TiO2-coating does readily facilitate the Li⁺ diffusion in composites. It is worth noting that NiCo2O4@TiO2 electrode has much larger diffusion coefficients of lithium-ions in the voltage range from 1.0 to 0.01 V, which might be attributed to the lithium ion insertion in TiO2. It is expected that lithium-inserted Li_{x}TiO2 anatase would turn from an insulator into an electronic conductor during the Li⁺ insertion process, resulting in enhanced electron-transfer in composites. As a result, TiO2 coating on NiCo2O4 is potentially beneficial for the improved rate capability as well as the structural integrity of the composite.

Kelvin probe atomic force microscopy is used to study the influence of TiO2-coating on the Li-ion kinetic behavior in composites. Fig. 13(a and b) shows the surface potential maps over a scan area of 200 nm × 200 nm of NiCo2O4 and NiCo2O4@TiO2 powders before cycling. Fig. 13(c) presents the surface potential image of Au foil acting as reference sample. According to our prior work,⁴⁵ the work functions of NiCo2O4 and NiCo2O4@TiO2 powders are calculated based on the surface potential.
profiles and the corresponding results are shown in Fig. 13(d). Here, the work functions of the SFM-tip (ϕ_{tip}) is calibrated by Au foil, whose work function (ϕ_{Au}) is 5.31 eV. It is found that NiCo$_2$O$_4$@TiO$_2$ has a smaller work function (~5.41 eV) than that (~5.51 eV) of the NiCo$_2$O$_4$. The measured work function of NiCo$_2$O$_4$ is close to the reported value (5.53 eV). The larger work function suggests the more energy required for electrons to escape from the composites. As a result, the electrochemical performances of the composites are enhanced with surface-modified with TiO$_2$-coating. These obtained results are consist with the analysis of EIS measurements.

The reduced work function of NiCo$_2$O$_4$@TiO$_2$ could be explained phenomenologically based on the energy-band model. As shown in Fig. 14(a), electrons transfer occurs from TiO$_2$ to NiCo$_2$O$_4$ until the Fermi levels are aligned due to the smaller work function (~4.5 eV) of anatase TiO$_2$. As a result, the TiO$_2$ is positively charged and the NiCo$_2$O$_4$ is negatively charged near its surface due to electrostatic induction because of electrostatic induction. Meanwhile, a corresponding electric field (E) is built up between them, shown in Fig. 14(b). Such electric field could facilitate Li-ion diffusion from positively-charged TiO$_2$ to negatively-charged NiCo$_2$O$_4$, and electron transfer from NiCo$_2$O$_4$ to TiO$_2$ across heterojunction interfaces. With the help of the electric field, more electrons in NiCo$_2$O$_4$ matrix would transfer through TiO$_2$ rather than NiCo$_2$O$_4$/NiCo$_2$O$_4$ interface during the lithium insertion process. Moreover, TiO$_2$ coated on NiCo$_2$O$_4$ could effectively suppress the pulverization of NiCo$_2$O$_4$ matrix due to the volume change in...
the charge/discharge process. As a result, the electrochemical performances are enhanced.

Conflicts of interest

There are no conflicts to declare.

Acknowledgements

This work is supported by a grant from Key Project of Department of Science & Technology of Fujian Province (No. 2014H0020), Program for New Century Excellent Talents in University of Fujian Province (No. JA14069) and Project A of Education Bureau of Fujian Province (No. JA12067).

References

1 M. Armand and J.-M. Tarascon, Building better batteries, *Nature*, 2008, 451, 652–657.
2 J. B. Goodenough, Electrochemical energy storage in a sustainable modern society, *Energy Environ. Sci.*, 2014, 7, 14–18.
3 R. A. Huggins, Review—a new class of high rate, long cycle life, aqueous electrolyte battery electrodes, *J. Electrochem. Soc.*, 2017, 164, A5031–A5036.
4 J. Lu, Z. H. Chen, Z. F. Ma, F. Pan, A. L. Curtiss and K. Amine, The role of nanotechnology in the development of battery materials for electric vehicles, *Nat. Nanotechnol.*, 2016, 11, 1031–1038.
16 Y. Lei, J. Li, Y. Wang, L. Gu, Y. Chang and D. Xiao, In-situ X. Q. Xie, Y. M. Zhang, H. B. Lin, P. Xia, X. Cai, X. G. Li, R. C. Jin, H. Jiang, Y. X. Sun, Y. Q. Ma, H. H. Li and G. Chen, Morphology-tuned synthesis of nanostructures for lithium-ion batteries, J. Electrochem. Soc., 2013, 113, 5364–5457.

17 B. B. Jiang, C. P. Han, B. Li, Y. J. He and Z. Q. Lin, In-situ crafting of ZnFe2O4 nanoparticles impregnated within continuous carbon network as advanced anode materials, ACS Nano, 2016, 10, 2728–2735.

18 L. L. Li, S. J. Peng, Y. L. Cheah, P. F. Teh, J. Wang, G. Wee, W. F. Wei and L. B. Chen, Tufted NiCo2O4 nanoneedles grown on carbon nanofibers with advanced electrochemical property for lithium ion batteries, Electrochim. Acta, 2016, 222, 1878–1886.

19 H. R. Kou, X. F. Li, H. Shan, L. L. Fan, B. Yan and D. J. Li, An optimized Al2O3 layer for enhancing the anode performance of NiCo3O4 nanosheets for sodium-ion batteries, J. Mater. Chem. A, 2017, 5, 17881–17888.

20 Z. H. Chen, I. Belharouak, Y. K. Sun and K. Amine, Titanium-based anode materials for safe lithium-ion batteries, Adv. Funct. Mater., 2013, 23, 959–969.

21 J. H. Lee, M. H. Hon, Y. W. Chung and I. C. Leu, The effect of TiO2 coating on the electrochemical performance of ZnO nanorod as the anode material for lithium-ion battery, Appl. Phys. A, 2011, 102, 545–550.

22 T. Li, X. Li, Z. Wang, H. Guo and Y. Li, A novel NiCo2O4 anode morphology for lithium-ion batteries, J. Mater. Chem. A, 2015, 3, 11970–11975.

23 J. Xu, D. W. Su, W. Z. Bao, Y. F. Zhao, X. Q. Xie and G. X. Wang, Rose flower-like NiCo2O4 with hierarchically porous structures for highly reversible lithium storage, J. Alloys Compd., 2016, 684, 691–698.

24 F. C. Zheng, D. Q. Zhu and Q. W. Chen, Facile fabrication of porous NiCo3O4 nanosheets with enhanced electrochemical performance as anode materials for lithium batteries, ACS Appl. Mater. Interfaces, 2014, 6, 9256–9264.

25 Y. D. Mo, Q. Ru, X. Songa, L. Y. Guo, J. F. Chen, X. H. Hou and S. J. Hu, The sucrose-assisted NiCo2O4@C composites with enhanced lithium-storage properties, Carbon, 2016, 109, 616–623.

26 A. K. Mondal, D. W. Su, S. Q. Chen, X. Q. Xie and G. X. Wang, Highly porous NiCo2O4 nanoflakes and nanobelts as anode materials for lithium-ion batteries with excellent rate capability, ACS Appl. Mater. Interfaces, 2014, 6, 14827–14835.

27 H. Zheng, S. Xu, L. Li, C. Feng and S. Q. Wang, Synthesis of NiCo2O4 microellipsoids as anode material for lithium-ion batteries, J. Electron. Mater., 2016, 45, 4966–4972.

28 L. B. Ma, X. P. Shen, Z. Y. Ji, X. Q. Cai, G. X. Zhu and K. M. Chen, Porous NiCo2O4 nanosheets/reduced graphene oxide composite: facile synthesis and excellent capacitive performance for supercapacitors, J. Colloid Interface Sci., 2015, 440, 211–218.

29 Y. Zhang, W. Wu, K. Zhang, C. H. Liu, A. F. Yu, M. Z. Peng and J. Y. Zhai, Raman study of 2D anatase TiO2 nanosheets, Phys. Chem. Chem. Phys., 2016, 18, 32178–32184.

30 R. X. Ge, M. Ma, X. Ren, F. L. Qu, Z. A. Liu, G. Du, A. M. Asiri, L. Chen, B. Zheng and X. Sun, A NiCo2O4@Ni–Co–C@Co@C core–shell nanowire array as an efficient electrocatalyst for water oxidation at near-neutral pH, Chem. Commun., 2017, 53, 7812–7815.

31 M. C. Biesinger, L. W. Lau, A. R. Gerson and R. S. C. Smart, Resolving surface chemical states in XPS analysis of first row transition metals oxides and hydroxides: Sc, Ti, V, Cu and Zn, Appl. Surf. Sci., 2010, 257, 887–898.

32 Y. D. Mo, Q. Ru, X. Song, S. J. Hu, L. Y. Guo and X. Q. Chen, 3-dimensional porous NiCo2O4 nanocomposite as a high-rate capacity anode for lithium-ion batteries, Electrochim. Acta, 2015, 176, 575–585.

33 E. M. Lotfabad, P. Kalisvaart, K. Cui, A. Kohandeheghan, M. Kupsta, B. Olsena and D. Mitlin, ALD TiO2 coated silicon nanowires for lithium ion battery anodes with
enhanced cycling stability and coulombic efficiency, Phys. Chem. Chem. Phys., 2013, 15, 13646–13657.

34 W. J. H. Borghols, D. Lutzenkirchen-Hecht, U. Haake, E. R. H. van Eck, F. M. Mulder and M. Wagemaker, The electronic structure and ionic diffusion of nanoscale LiTiO$_2$ anatase, Phys. Chem. Chem. Phys., 2009, 11, 5742–5748.

35 S. N. Liu, J. Wu, J. Zhou, G. Z. Fang and S. Q. Liang, Mesoporous NiCo$_2$O$_4$ nanoneedles grown on three dimensional graphene networks as binder-free electrode for high-performance lithium-ion batteries and supercapacitors, Electrochim. Acta, 2015, 176, 1–9.

36 G. H. Chen, J. Yang, J. J Tang and X. Y. Zhou, Hierarchical NiCo$_2$O$_4$ nanowire arrays on Ni foam as anode for lithium-ion batteries, RSC Adv., 2015, 5, 23067–23072.

37 G. X. Gao, H. B. Wu, S. J. Ding and X. W. Lou, Preparation of carbon-coated NiCo$_2$O$_4$@SnO$_2$ hetero-nanostructures and their reversible lithium storage properties, Small, 2015, 11, 432–436.

38 Y. J. Chen, J. Zhu, B. H. Qu, B. A. Lun and Z. Xu, Graphene improving lithium-ion battery performance by construction of NiCo$_2$O$_4$/graphene hybrid nanosheet arrays, Nano Energy, 2014, 3, 88–94.

39 Y. J. Chen, M. Zhuo, J. W. Deng, Z. Xu, Q. H. Li and T. H. Wang, Graphene improving lithium-ion battery performance by construction of NiCo$_2$O$_4$/graphene hybrid nanosheet arrays, J. Mater. Chem. A, 2014, 2, 4449–4456.

40 J. B. Cheng, Y. Lu, K. W. Qiu, H. L. Yan, J. Y. Xu, L. Han, X. M. Liu, J. S. Luo, J. K. Kim and Y. S. Luo, Hierarchical core/shell NiCo$_2$O$_4$@NiCo$_2$O$_4$ nanocactus arrays with dual-functionalities for high performance supercapacitors and Li-ion batteries, Sci. Rep., 2015, 5, 12099.

41 Y. Chen, J. Zhu, B. Qu, B. Lu and Z. Xu, Graphene improving lithium-ion battery performance by construction of NiCo$_2$O$_4$/graphene hybrid nanosheet arrays, Nano Energy, 2014, 3, 88–94.

42 C. F. Zhang and J. S. Yu, Morphology-tuned synthesis of NiCo$_2$O$_4$-coated 3D graphene architectures used as binder-free electrodes for lithium-ion batteries, Chem.–Eur. J., 2016, 22, 4422–4430.

43 L. L. Li, Y. Cheah, Y. W. Ko, P. Teh, G. Wee, C. L. Wong, S. J. Peng and M. Srinivasan, The facile synthesis of hierarchical porous flower-like NiCo$_2$O$_4$ with superior lithium storage properties, J. Mater. Chem. A, 2013, 1, 10935–10941.

44 W. Shi, H. T. Zhao and B. G. Lu, Core–shell ZnCo$_2$O$_4$@TiO$_2$ nanowall arrays as anodes for lithium ion batteries, Nanotechnology, 2017, 28, 165403.

45 L. C. Chen, Y. M. Yang, Z. S. Wang, J. Y. Zhang, Q. L. Su, Y. Chen, Y. B. Lin and Z. G. Huang, Enhanced electrochemical performances and thermal stability of LiNi$_{1/3}$Co$_{1/3}$Mn$_{1/3}$O$_2$ by surface modification with YF$_3$, J. Alloys Compd., 2017, 711, 462–472.

46 K. K. Naik, R. T Khare, R. V Gelamo, M. A More, R. Thapa, D. J. Late and C. S. Rout, Enhanced electron field emission from NiCo$_2$O$_4$ nanosheet arrays, Mater. Res. Express, 2015, 2, 095011.

47 C. Zhang, X. P. Geng, S. L. Tang, M. S. Deng and Y. W. Du, NiCo$_2$O$_4$@rGO hybrid nanostructures on Ni foam as high-performance supercapacitor electrodes, J. Mater. Chem. A, 2017, 5, 5912–5919.

48 L. X. Zheng, S. C. Han, H. Liu, P. P. Yu and X. S. Fang, Hierarchical MoS$_2$ nanosheet@TiO$_2$ nanotube array composites with enhanced photocatalytic and photocurrent performances, Small, 2016, 12, 1527–1536.