Full Genome Sequencing of Corriparta Virus, Identifies California Mosquito Pool Virus as a Member of the Corriparta virus Species

Manjunatha N. Belaganahalli1, Sushila Maan1,2, Narender S. Maan2, Kyriaki Nomikou1, Marc Guimera1, Joe Brownlie3, Robert Tesh4, Houssam Attoui1, Peter P. C. Mertens1*

1 The Vector-Borne Viral Diseases Programme, The Pirbright Institute, Pirbright, Woking, Surrey, United Kingdom, 2 College of Veterinary Sciences, LLR University of Veterinary and Animal Sciences, Hisar, Haryana, India, 3 Department of Pathology and Infectious Diseases, Royal Veterinary College, North Mymms, Hatfield, Herts, United Kingdom, 4 Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America

Abstract

The species Corriparta virus (CORV), within the genus Orbivirus, family Reoviridae, currently contains six virus strains: corriparta virus MRM1 (CORV-MRM1); CS0109; V654; V370; Acado virus and Jacareacanga virus. However, lack of neutralization assays, or reference genome sequence data has prevented further analysis of their intra-serogroup/species relationships and identification of individual serotypes. We report whole-genome sequence data for CORV-MRM1, which was isolated in 1960 in Australia. Comparisons of the conserved, polymerase (VP1), sub-core-shell ‘T2’ and core-surface ‘T13’ proteins encoded by genome segments 1, 2 and 8 (Seg-1, Seg-2 and Seg-8) respectively, show that this virus groups with the other mosquito borne orbiviruses. However, highest levels of nt/aa sequence identity (75.9%/91.6% in Seg-2/T2: 77.6%/91.7% in Seg-8/T13, respectively) were detected between CORV-MRM1 and California mosquito pool virus (CMPV), an orbivirus isolated in the USA in 1974, showing that they belong to the same virus species. The data presented here identify CMPV as a member of the Corriparta virus species and will facilitate identification of additional CORV isolates, diagnostic assay design and epidemiological studies.

Citation: Belaganahalli MN, Maan S, Maan NS, Nomikou K, Guimera M, et al. (2013) Full Genome Sequencing of Corriparta Virus, Identifies California Mosquito Pool Virus as a Member of the Corriparta virus Species. PLoS ONE 8(8): e70779. doi:10.1371/journal.pone.0070779

Editor: Amit Kapoor, Columbia University, United States of America

Received April 6, 2013; Accepted June 21, 2013; Published August 27, 2013

Copyright: © 2013 Belaganahalli et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was partly funded by the Commonwealth Scholarship Commission (http://cssuk.dfid.gov.uk/) awarded to MB, partly by the Department for Environment, Food and Rural Affairs (Defra) (SE2617) awarded to SM, partly by the Wellcome BTV Programme grant (http://www.wellcome.ac.uk/) awarded to KN and EMIDA grant (OrbiNet - K13033026) to fund MG. NSM, PPCM and HA were involved in this work, funded by the Biotechnology and Biological Sciences Research Council (BBSRC), the European Union (EU) (SANCO/940/2002) and Defra. No additional external funding received for this study. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: Co-author Dr. HA is a PLOS ONE Editorial Board member. This does not alter the authors’ adherence to all the PLOS ONE policies on sharing data and materials.

* E-mail: Peter.Mertens@pirbright.ac.uk

Introduction

Corriparta viruses are mosquito-borne arboviruses, classified within one of the 22 virus species currently recognised within the genus Orbivirus, family Reoviridae. Currently there are also 15 ‘unclassified’ orbiviruses in the genus, which may represent additional species [1–6]. The orbivirus genome is composed of 10 segments of linear dsRNA, packaged as one copy of each segment within each of the non-enveloped icosahedral virus particles. The intact virion is composed of three concentric protein shells (the ‘outer-capsid’, ‘core-surface layer and the ‘subcore-shell’). Orbiviruses are transmitted by ticks or hematophagous-insect vectors (including Culicoides, mosquitoes or sand flies) and collectively have a wide host-range that includes both domesticated and wild ruminants, equids, camels, marsupials, sloths, bats, birds, large canine and feline carnivores, and humans [2,7–9].

The species Corriparta virus currently contains six distinct viruses, that are identified as: corriparta virus MRM1 (CORV-MRM1); CS0109; V654; V370; Acado virus; and Jacareacanga virus [2]. The structural and chemical properties of the corriparta viruses are similar to those of other orbiviruses [2]. They are sensitive to low pH and heat, and can be modified by treatment with trypsin or chymotrypsin [10]. They have also been shown to multiply in mosquitoes after intra-thoracic inoculation [10].

Members of the Corriparta virus species/serogroup have been detected in Australia, Africa and South America [11]. They have been isolated from wild birds, and neutralizing antibodies were found in wild and domestic birds, cattle, marsupials, horses and man [12–15]. Corriparta virus MRM1 was isolated in 1960, from Culex mosquitoes, as well as from Aedes aegypti, a rare mosquito species collected near Mitchell River in North Queensland, Australia. Subsequently, strains CS0109, V654 and V370 were also isolated in Australia [2,8,15,16]. Acado virus and Jacareacanga virus were isolated from pools of Culex mosquitoes collected in Ethiopia and Brazil during 1963 and 1975 respectively [8,11].

The International Committee on Taxonomy of Viruses (ICTV) has agreed ‘polythetic’ definitions for individual virus species [17]. The ability to exchange genome segments with other viruses belonging to the same virus species by ‘reassortment’ is recognised as the primary determinant of Orbivirus species [2,7]. However, in the absence of data concerning their compatibility for reassort-
ment, the members of individual species can be identified by other ‘polythetic’ parameters that include similarities in RNA and protein sequences, their RNA-segment size distribution (reflected by their migration patterns - electrophorotype) during agarose gel electrophoresis [AGE], host and/or vector range, the clinical signs of infection, and serological relationships [2,7,18–20].

The members of the different Orbivirus species were originally identified as belonging to distinct ‘serogroups’, based on their cross-reactivity in ‘group-specific’ serological assays that include complement fixation (CF) tests, group-specific ELISA, or agar-gel-immuno-diffusion (AGID) tests, most of which target outer-core protein VP7[T13] [2,7,21]. The corriparta viruses were initially grouped primarily on the basis of CF tests [8,22]. However, a lack of neutralization assays has prevented further analysis of their intra-serogroup serological-relationships and the identification of distinct serotypes.

Recently, full genome sequencing and phylogenetic analyses have been used to determine the genetic relatedness and taxonomic status of individual isolates belonging to different Orbivirus species, including Bluetongue virus (BTV), African horse sickness virus (AHSV) and Epizootic haemorrhagic disease virus (EHDV) [1,23–26]. These sequence data have supported development of faster and more reliable, virus-species/serogroup, and virus-serotype specific diagnostic assays, using both conventional and real-time RT-PCRs [27–31]. Comparisons of nucleotide (nt) and amino acid (aa) sequence data also provide a basis for grouping of orbivirus isolates into topotypes and for molecular epidemiology studies [23,25,32,33]. However, full-genome sequence data are currently available for representatives of only 11 of the recognized Orbivirus species [24] (accession numbers given in Table S1). Additional partial-sequences are available for the highly conserved genome-segment encoding the subcore ‘T2’ protein (VP3 of BTV) of some Orbivirus species, including Warré virus (WARV), Wallal virus (WALV), Wongorr virus (WGRV) and CORV [32] (Table S1).

‘California mosquito pool virus’ (CMPV) was isolated in 1974 from pooled Culex tarsalis mosquitoes collected as part of an infectious agent surveillance program conducted by The California Department of Public Health [5]. Partial sequences for genome segments 2, 4, 6, 7 and 9 from CMPV (accession numbers EU789391 to EU789395) were compared to available data for other orbiviruses, suggesting that CMPV might represent a novel virus species [5]. However, the lack of reference sequences for representatives of all Orbivirus species, made it impossible to confirm the taxonomic status and species identity of CMPV at that time.

We report the full genome sequence of CORV-MRM1 (AUS1960/01). Comparisons of nucleotide (nt) and deduced amino acid (aa) sequences for the conserved polymerase 'VP1(Pol)', subcore-shell 'T2-protein', and outer-core 'T13-protein', to data published for other orbiviruses, indicate that CORV and CMPV belong to the same species - Corriparta virus.

Results

Virus propagation and dsRNA ‘electrophorotype’

CORV-MRM1 induced severe cytopathic effect (CPE) in BHK cell monolayers, by 48–72 hours post infection (pi). The viral dsRNA was purified from infected cell-cultures and analysed by 1% agarose gel electrophoresis (AGE) (Figure 1). CORV Seg-3 (encoding the larger outer capsid protein VP3[OC1]) migrates close to the medium sized genome-segments (Seg-4, Seg-5 and Seg-6) giving a 2-4-4 (2-4-3-1) migration pattern (Figure 1). This contrasts with the 3-3-4 (3-3-3-1) pattern that is more typical of the

![Corriparta virus, California Mosquito Pool Virus](http://www.reoviridae.org/dsRNA_virus_proteins/CPV-RNA-Termin.htm)

Collectively the terminal non-coding regions (NCR) represent 4.99% of the CORV-MRM1 genome (Table 2). Comparisons with data from GenBank for other mosquito-borne- orbiviruses (MBOs) showed similar or higher percentages, while the tick-borne orbiviruses (TBOs) and Culicoides-borne orbiviruses (CBOs) show similar or lower values (Table 2).

Like other orbiviruses, most genome segments of CORV-MRM1 (AUS1960/01), have shorter 5’ than 3’ NCRs, except for Seg-6 (encoding the smaller outer capsid protein VP5[OC2]) which has a longer 5’ NCR and Seg-9 (encoding VP6) which has 5’ and 3’ NCRs of equal length (Table 1). Exceptions also occur in Umatilla virus (UMAV) and Great Island virus (GIV) although the significance of these variations is unclear.

Seg-5 (1,936 bp) of CORV-MRM1 which encodes the ‘tubule’ protein NS1[TuP] one of the most abundantly expressed orbivirus
Table 1. Characteristics of Corriparta virus (CORV-MRM1) (AUS1960/01) genome segments (dsRNA) and their encoded proteins.

Seg No. (Length)	ORFs bp (including stop codons)	No. of amino acids	Predicted protein molecular kDa	Accession No.	Protein encoded	ORFs bp (including stop codons)	No. of amino acids	Predicted protein molecular kDa	Accession No.
1	12,184 (11,894)	4157	147.07	KGS33401	VP1 (Pol)	12-3884	11	44	147.07
2	3,925 41.66	VP2 (T2) 19-2894	108.75	KGS33402	VP2 (T2)	33-2894	32	61	108.75
3	2,952 43.43	VP3 (OC1) 20-2236	84.81	KGS33403	VP3 (OC1)	20-2236	19	51	84.81
4	2,284 42.43	VP3 (OC1) 20-2236	84.81	KGS33404	VP3 (OC1)	20-2236	19	51	84.81
5	2,032 43.11	VP4 (Cap) 12-1943	74.83	KGS33405	VP4 (Cap)	12-1943	11	92	74.83
6	1,683	VP5 (OC2) 56-1639	57.7	KGS33406	VP5 (OC2)	56-1639	25	63	57.7
7	1,187	NS2 (ViP) 26-1141	41.86	KGS33407	NS2 (ViP)	26-1141	25	63	41.86
8	506	NS3 (143–598)	38.36	KGS33408	NS3 (143–598)	143–598	16	35	38.36
9	493	NS4 (17-101)	38.85	KGS33409	NS4 (17-101)	17-101	16	35	38.85
10	407	NS5a (407–598)	38.85	KGS33501	NS5a (407–598)	407–598	16	35	38.85

Pol = RNA polymerase; OC = outer capsid protein; Cap = capping enzyme (guanylyltransferase); Hel = helicase enzyme; T2 = protein with T = 2 symmetry; T13 = protein with T = 13 symmetry; ViP = viral inclusion body matrix protein; TuP = tubule protein. OC1 and OC2 refer to the larger and smaller outer capsid proteins respectively.

Most of the genome segments of CORV-MRM1 (AUS1960/01) except Seg-9 and Seg-10 are monocistronic, encoding a protein from a single large ORF, starting from an initiation codon with a strong Kozak sequence (RNNNAUGG) [36]. However, like BTV, CORV Seg-10 has two in-frame AUG initiation sites encoding the NS3 and NS3a proteins of 238 aa and 108 aa (starting at 17 bp and 407 bp) respectively (Table 1). The first of these (coding for NS3) has a ‘weak Kozak context’ (GUAUGG) and is expected to produce a protein in infected cells. Weak or moderate Kozak sequences have also been previously identified in several other orbiviruses and has been characterised in BTV and GIV [24,37,38]. The downstream ORF of CORV has a strong Kozak context (AGGAUGG), possibly enhancing read-through and initiation of translation from the second ‘in frame’ initiation site (at 407 bp). This has a strong Kozak context (AGGAUGG), but would express the smallest NS3a in any of the orbiviruses characterized to date.

Phylogenetic comparisons of subcore-shell ‘T2’ proteins

Comparison of homologous orbivirus proteins using BlastX analysis identified VP2, encoded by Seg-2 of CORV, as the subcore shell ‘T2’ protein (equivalent to VP3(T2) of BTV and VP2(T2) of YUOV and SCR). An unrooted neighbour-joining (NJ) phylogenetic tree (Figure 2) constructed for different orbivirus proteins (longest) is longer than the homologous Seg-5 of the CBOs or TBOs (Table 2) with a long (150 bp) 3’ NCR, but is smaller than that of other MBOs [1]. Long 3’ NCRs were also observed in the NS1 genome segment of some other MBOs (e.g. UMAV-278 bp; Yunnan orbivirus [YUOV]-205 bp), but not in all other orbiviruses (<110 bp).

The ‘highly conserved’ subcore-shell VP2(T2) protein and the ‘highly variable’ outer-capsid/cell-attachment protein VP3(OC1) of CORV-MRM1, are encoded by Seg-2 and Seg-3, respectively. A similar coding pattern is seen in other MBOs, but the presence of a larger OC1 in the CBOs (including bluetongue virus, the orbivirus ‘type’ species) results in a reversed coding assignment for these two genome-segments (Figure 1 and Table 2).

The size of the highly conserved T13 core-surface protein (VP7 of BTV) is also relatively consistent in most orbiviruses, while the viral inclusion-body-matrix-protein, (non-structural protein 2 [NS2(Vip)]) is more variable in size (Table 2). As a result, NS2 of CORV-MRM1 (AUS1960/01) is encoded by Seg-7, while Seg-8 encodes the core-surface protein VP7(T13) (Table 1), in a manner similar to the other MBOs (Table 2). However, this coding-assignment is again reversed in BTV and in some CBOs (EUBV and CHUV), due to variability in the size of NS2 between different viruses [34,35]. The capping enzyme ‘VP4(Cap)’ of CORV-MRM1 (at 643aa) is smaller than that of the other MBOs and some of the CBOs (Table 2). However, it is encoded by the largest Seg-4 (at 2,032 bp) so far identified in any orbivirus.

Most of the genome segments of CORV-MRM1 (AUS1960/01) except Seg-9 and Seg-10 are monocistronic, encoding a protein from a single large ORF, starting from an initiation codon with a strong Kozak sequence (RNNNAUGG) [36]. However, like BTV, CORV Seg-10 has two in-frame AUG initiation sites encoding the NS3 and NS3a proteins of 238 aa and 108 aa (starting at 17 bp and 407 bp) respectively (Table 1). The first of these (coding for NS3) has a ‘weak Kozak context’ (GUAUGG), possibly enhancing read-through and initiation of translation from the second ‘in frame’ initiation site (at 407 bp). This has a strong Kozak context (GUAUGG), but would express the smallest NS3a in any of the orbiviruses characterized to date.

The first start codon of CORV-MRM1 (AUS1960/01) Seg-9 also has a moderate Kozak sequence (UGUAUGA) and a second downstream ORF. However, this is in +2 reading-frame (at 143–598 bp), encoding the 152 aa NS4 protein. NS4 has previously been identified in several other orbiviruses and has been characterised in BTV and GIV [24,37,38]. The downstream ORF of CORV has a strong Kozak context (AGGAUGG) and is expected to produce a protein in infected cells. Weak or moderate Kozak sequences have also been observed in several of the genome segments of other orbiviruses, but they still appear to be translated effectively [24,39].

The G+C content of the CORV genome is 45.16%, which is considerably higher than that of other MBOs [Peruvian horse sickness virus (PHSV) and YUOV with 36.66% and 41.59% respectively] but within the overall G+C range of the insect-borne orbiviruses [36.66% in PHSV (mosquito), to 45.86% in Equine encephalitis virus (EEV) (Culicoides)]. However, it is lower than that of the tick-borne or tick-associated orbiviruses [57.29% in GIV and 51.93% in St Croix River virus (SCRV)].

Phylogenetic comparisons of subcore-shell ‘T2’ proteins

Comparison of homologous orbivirus proteins using BlastX analysis identified VP2, encoded by Seg-2 of CORV, as the subcore shell ‘T2’ protein (equivalent to VP3(T2) of BTV and VP2(T2) of YUOV and SCR). An unrooted neighbour-joining (NJ) phylogenetic tree (Figure 2) constructed for different orbivirus
Table 2. Full genome sequence database available for recognised species of genus *Orbivirus* and their genome coding assignments.

Protein	Pol	T2	OC1	Cap	Toc1	OC2	T13	ViP	Hel	NS4	NS3
	Pol	T2	OC1	Cap	Toc1	OC2	T13	ViP	Hel	NS4	NS3
size in bp	3925	3925	3925	3925	3925	3925	3925	3925	3925	3925	3925
Segment	3925	3925	3925	3925	3925	3925	3925	3925	3925	3925	3925
Protein size in aa	1290	1290	1290	1290	1290	1290	1290	1290	1290	1290	1290
size in bp	3933	3933	3933	3933	3933	3933	3933	3933	3933	3933	3933
Segment	3933	3933	3933	3933	3933	3933	3933	3933	3933	3933	3933
Protein size in aa	1299	1299	1299	1299	1299	1299	1299	1299	1299	1299	1299
size in bp	3987	3987	3987	3987	3987	3987	3987	3987	3987	3987	3987
Segment	3987	3987	3987	3987	3987	3987	3987	3987	3987	3987	3987
Protein size in aa	1315	1315	1315	1315	1315	1315	1315	1315	1315	1315	1315
size in bp	3993	3993	3993	3993	3993	3993	3993	3993	3993	3993	3993
Segment	3993	3993	3993	3993	3993	3993	3993	3993	3993	3993	3993
Protein size in aa	1302	1302	1302	1302	1302	1302	1302	1302	1302	1302	1302

NCR and G+C content were calculated for full genome sequences.

Pol = Polymerase, **OC1** = Outer capsid protein 1 (VP2 of BTV), **T2** = Inner core protein (T2 symmetry), **Cap** = Capping enzyme, **Tup** = Tubule forming protein or Tubular protein (NS1), **OC2** = Outer capsid protein 2 (VP5 of BTV), **T13** = Outer core protein (T13 symmetry), **ViP** = Viral inclusion body protein (NS2), **Hel** = Helicase protein. NCR and G+C content were calculated for full genome sequences.

doi:10.1371/journal.pone.0070779.t002
T2 protein sequences (listed in Table S1 supplementary data) identified two major clusters (Figure 2). The larger group in which VP3(T2) is encoded by Seg-3, comprises the Culicoides transmitted orbiviruses (including BTV, AHSV, EHDV, WALV, Eubenangee virus [EUBV], WARV and Palyam virus [PALV]). However, the second group in which VP2(T2) is encoded by Seg-2, includes two sub-groups transmitted by ticks (the Great Island viruses), or by mosquitoes (WGRV, UMAV, PHSV and YUOV) respectively. SCRV, which has previously been suggested as a tick-orbivirus rather than a tick-borne-orbivirus [40], branches separately from these groups and appears to be more distantly related to other orbiviruses. VP2(T2) of CORV-MRM1 (AUS1960/01) clusters very closely with partial sequence data available for CMPV (98.78%/98.99% aa/nt identity - Table 3 and 4), indicating that they belong to the same virus species. These two viruses show lower levels of identity with the other Orbivirus species analysed (58.53%/57.98% aa/nt identity - Table 3).

Phylogenetic comparisons of outer-core ‘T13’ proteins

The orbivirus core-surface protein VP7(T13) is immunodominant and represents a major serogroup-specific antigen [21]. An unrooted phylogenetic tree for VP7(T13) (encoded by Seg-8 of CORV-MRM1) (Figure 4) shows a similar topology to the VP2(T2) and VP1(Pol) trees (Figures 2 and 3), grouping viruses according to their vectors. CORV-MRM1 clusters with CMPV (sharing 91.7%/77.6% aa/nt identity) as members of a distinct species (Table 4), showing lower identities with the other MBOs (<42.57%/47.62% aa/nt identities with UMAV), or the CBOs and TBOs (<32.95%/41.57% aa/nt identities with GIV) (Table 3).

Relationships between CORV and CMPV

The sequences of CORV-MRM1 Seg-4/VP4(Cap), Seg-6/VP5(GC2), and Seg-9/VP6(Hel)/NS4 were also compared with representatives of other Orbivirus species to construct an unrooted NJ phylogenetic tree (Figure 3). Three major clusters were identified, corresponding to the different vector-groups: CBOs, MBOs and TBOs. CORV-MRM1 (AUS1960/01) again clusters as a distinct species, close to other MBOs (>51.44/54.9% aa/nt identity - Table 3), with more distant relationships to VP1 of the Culicoides and tick-borne groups (<50.51%/55.99% aa/nt identity - Table 3).
the incomplete sequence data available for CMPV (Table 4). CMPV again grouped closely with CORV-MRM1 (AUS1960/01), sharing aa/nt identities of 75/67.4% and 86.2/74.3% in VP4(Cap) and VP5(OC2) respectively, further supporting the identification of CMPV as a member of Corriparta virus species. Seg-9 of CORV-MRM1 (coding for NS4 and VP6(Hel)) shares only 42.6/61.6% aa/nt identities with CMPV. However, no closer matches were found in either of these proteins with members of other Orbivirus species. Further analysis of CMPV Seg-9 confirmed the presence of an alternate ORF, encoding a 153 aa NS4 protein, which shares 55.9%/63.2% aa/nt identity with NS4 of CORV-MRM1.

Discussion

Collectively the orbiviruses infect a wide range of hosts and are transmitted by a diverse group of vectors, including Culicoides, mosquitoes, sand flies and ticks [7]. Initially, the different ‘serogroups’ of orbiviruses, which are now recognised as distinct virus species, were identified by CF, AGID, immunofluorescence (IF) tests and/or enzyme-linked immunosorbent assays (ELISA). However, low level serological cross-reactions have been detected between some of the more closely related Orbivirus species. Further analysis of CMPV Seg-9 confirmed the presence of an alternate ORF, encoding a 153 aa NS4 protein, which shares 55.9%/63.2% aa/nt identity with NS4 of CORV-MRM1.

In contrast, nucleotide sequence data for reference orbivirus strains and novel isolates can be compared and transmitted easily between laboratories, without risk, providing highly reproducible and fully quantitative numerical values for the relatedness of each genome segment/protein. These data can also be used to unambiguously identify different genome segments, proteins, virus species, topotypes and serotypes [1,25,33,39,42].

Due to their economic significance, full genomes of multiple isolates (including reference strains) of BTV, EHDV and AHSV have already been characterized [23,43–49]. These data have supported development of rapid and reliable molecular methods and diagnostic tools (RT-PCR assays) for identification of virus serogroup/species and serotype [27–31,49–51]. Sequence variations in the outermost orbivirus capsid and cell-attachment protein, VP2(OCA1) of BTV, correlate with both the geographic origin of the virus (topotype) and with its serotype [42,47]. In contrast, sequence variation in the core proteins VP1(Pol) and T2 (VP3 of BTV) correlate only with virus genus, species, serotypes and topotypes. These data can also be used to unambiguously identify different genome segments, proteins, virus species, topotypes and serotypes [1,25,33,39,42].

Table 3. Percent nucleotide (nt) and amino acid (aa) identities of Corriparta virus MRM1(AUS1960/01) with other orbiviruses.

Sl no.	Orbivirus species	Abbreviation	T2 aa	T2 nt	VP1 aa	VP1 nt	T13 aa	T13 nt
1	Bluetongue virus	BTV	37.11	47.33	47.40	52.41	25.07	38.71
2	African horse sickness virus	AHSV	37.06	47.64	47.90	53.03	23.85	39.85
3	Epizootic haemorrhagic disease virus	EHDV	37.19	46.80	47.40	53.06	24.50	39.67
4	Eubenangee virus	EUBV	36.60	47.53	47.60	52.88	27.30	42.53
5	Palyan virus	PALV	35.77	47.14	50.51	53.99	27.67	41.02
6	Equine encephalosis virus	EEV	33.96	45.36	46.61	51.26	24.71	39.18
7	Warrego virus	WARV	44.72	51.78	—	—	—	—
8	Walalai virus	WALV	44.64	50.83	—	—	—	—
9	Umatilla virus	UMAV	50.17	55.21	59.66	58.12	42.57	47.62
10	Peruvian horse sickness virus	PHSV	50.39	54.29	57.94	57.23	—	—
11	Yunnan orbivirus	YUOV	44.78	53.16	51.44	54.90	34.09	45.36
12	Corriparta virus*	CORV	98.78	98.99	—	—	—	—
13	Wongorr virus	WGRV	58.53	57.98	—	—	—	—
14	Great Island virus	GIV	45.20	49.87	50.51	52.13	32.95	41.57
15	St Croix river virus	SCRV	24.15	38.46	39.01	45.23	22.03	35.94
16	Pata virus	PATAV	36.19	46.84	47.23	52.28	26.59	40.75

*data previously published for corriparta virus MRM1 (Ac No. AF530086).
doi:10.1371/journal.pone.0070779.t003
MRM1 is unknown, although it has been suggested that these regions may play a role in initiation of transcription or translation of the RNA or its packaging during virus replication [53,54]. The orbivirus proteins VP1(Pol), T2 and T13, which are highly conserved have taken priority in development of molecular diagnostic assays and in phylogenetic analyses [24,29,31,32,55]. Studies with large numbers of different BTV and EHDV isolates show >73%, >83% and >73% intra-species aa identities in VP1, T2 and T13 respectively, providing useful markers for the identification and classification of existing and novel orbivirus isolates [1,40,44].

CORV-MRM1 shares less than 60% aa identity (Table 3) in VP1, T2 and T13, with members of the other recognised Orbivirus species, confirming the classification of Corriparta virus as a distinct species. CORV-MRM1 is most closely related to other MBO species, particularly Umatilla virus (UMAV), with 59.66% and 50.17% aa identity in VP1 and T2 proteins respectively (Table 3). However, CORV-MRM1 shows 91.6%/75.9% aa/nt identity and 91.7%/77.6% aa/nt identity to CMPV in its T2 and T13 protein/sequence, indicating that they belong to the same virus species and therefore that CMPV does not represent a new species as previously suggested [5].

Phylogenetic analyses show that although the size of the orbivirus sub-core-shell T2 protein is relatively constant across the genus (between 890 aa in SCRV to 953 aa in CORV), the size of the larger of the two outer coat proteins (OC1) is much more variable (between 551 aa in GIV to 1056 aa in AHSV). This results in a change in relative size, order and numbering of the genome segments encoding the T2 and OC1 proteins, between the tick-associated/transmitted orbiviruses [VP2(T2) and VP4(OC1) - encoded by Seg-2 and Seg-4], the MBOs [VP2(T2) and OC1(VP3) - encoded by Seg-2 and Seg-3 respectively], and the CBOs [VP3(T2) and VP2(OC1) - encoded Seg-3 and Seg-2 respectively] [1,23,34,39,40,56].

Previous studies have suggested that the MBOs have evolved from tick-borne ancestors, with CBOs being last to evolve [39]. The concatermerisation of orbivirus genome segments and subsequent mutations may provide a mechanism that can progressively increase the size of individual genome segments [39,56]. It may therefore be significant that the size of OC1 increases in the order: TBOs (551 aa in GIV and 654 aa in SCRV), MBOs (755 aa in CORV to 881 aa in PHSV) and CBOs (961 aa in BTV to 1056 aa in AHSV-1) (Table 2).

Previous studies also indicate that the orbiviruses have evolved through a process of ‘co-speciation’ with their vectors [39]. Phylogenetic analyses of the conserved Pol, T2 and T13 proteins (presented here - Fig. 2, 3 and 4), show consistent grouping of the CBOs, MBOs and TBOs. In each case CORV-MRM1 groups with the other MBOs (WGRV, UMAV, PHSV and YUOV).

Corriparta viruses have been isolated in Australia, Africa and South America [11]. However, the data presented here clearly identify CMPV, which was isolated in North America [5], as a member of the species Corriparta virus. The occurrence of these closely related viruses in the Americas and Australia indicates that there has been spread of viruses between these regions, which could be due to movement of infected hosts or vectors. Similar movements are also suggested by the detection of other orbiviruses (UMAV and PHSV, and individual serotypes of BTV and EHDV) in more than one continent, e.g., in Australia, Africa and the Americas [1,28,37–59]. Additional strains of each serogroup/species, from different locations/origins, need to be isolated and characterised/sequenced to better understand their geographical distribution and its significance.

Table 4. Percent identities between Corriparta virus (CORV-MRM1) (AUS1960/01) and California mosquito pool virus (CMPV) proteins and genome segments.

Segment (Protein)	Genome segment of CORV (bp)	Partial sequence of CMPV (bp)*	% aa identity (CORV vs CMPV)	% nt identity (CORV vs CMPV)
Seg-1/VP1 (Pol)	3,925	—	—	—
Seg-2/VP2 (T2)	2,952	—	—	—
Seg-3/VP3 (OC1)	2,952	2,238	91.6	74.3
Seg-4/VP4 (CaP)	1,983	1,683	91.7	71.9
Seg-5/NS1 (TuP)	1,983	1,683	91.6	74.3
Seg-6/VP5 (OC2)	1,963	1,683	91.6	74.3
Seg-7/NS2 (Wt)	1,936	1,683	91.7	71.9
Seg-8/NS3 (He/P)	1,936	1,683	91.7	71.9
Seg-9/NS4 (3Tu)	1,936	1,683	91.7	71.9
Seg-10/(NS3)	1,927	1,679	91.7	71.9

*Only partial CMPV sequences are available in GenBank.

Indicates identities of NS4.
Figure 3. Unrooted neighbour-joining for orbivirus polymerase VP1(Pol) proteins. An unrooted NJ phylogenetic tree for orbivirus VP1(Pol) proteins was constructed using a p-distance algorithm and pairwise deletion parameters, as indicated in Figure 1. The CORV-MRM1 isolate characterised in this study is indicated in red font in amber coloured circle. Full names of virus isolates and accession numbers of polymerase sequences used for comparative analysis are listed in Table S1 (supplementary data). ‘e’ and ‘w’ after serotype number indicate eastern and western topotype strains, respectively.

doi:10.1371/journal.pone.0070779.g003

Figure 4. Unrooted neighbour-joining for orbivirus outer-core VP7(T13) proteins. An unrooted NJ phylogenetic tree for orbivirus VP7(T13) proteins was constructed using a p-distance algorithm and pairwise deletion parameters, as indicated in Figure 1. The CORV-MRM1 and CMPV isolates are shown in red font in amber coloured circle. Full names of virus isolates and accession numbers of T13 protein sequences used for comparative analysis are listed in Table S1 (supplementary data). ‘e’ and ‘w’ after serotype number indicate eastern and western strains, respectively.

doi:10.1371/journal.pone.0070779.g004
The sequences and relative sizes of the VP1(Pol), T2 and OC1 proteins are important evolutionary markers that can help differentiate/group orbiviruses by species, serotypes and topotype. The sequence data generated in this study will facilitate the use of phylogenetic analyses to identify other novel isolates belonging to the *Corriparta virus* species, as well as helping to identify the arthropod vectors involved in their transmission. Further studies are still needed to define the different serotype and topotypes of CORV.

Materials and Methods

Virus propagation

CORV-MRM1 ([AUS1960/01]), obtained at passage level MB6/BHK2 from the Orbivirus Reference Collection at The Pirbright Institute, was propagated in BHK-21 cell monolayers [clone 13 obtained from European Collection of Animal cell Cultures (ECACC – 84100501)], in Dulbecco’s minimum essential medium (DMEM) supplemented with antibiotics (100 units/ml penicillin and 100 μg/ml streptomycin) and 2 mM glutamine. Infected cell-cultures were incubated at 37°C until they showed widespread (100%) cytopathic effects (CPE). Then viruses were harvested, aliquoted and used for the extraction of viral dsRNA.

All virus isolates used in these studies were obtained from veterinarians in the individual countries.

Extraction and purification of CORV dsRNA

Cell monolayers showing 100% CPE after infection with CORV-MRM1, were harvested and pelleted at 3000 g for 5 min. The viral dsRNA was released and purified using TRIzol® reagent (Invitrogen) as described by Attoui et al [60]. Briefly, the infected cell pellet was lysed in 1 ml of TRIzol®, then 0.2 volume of chloroform was added, vortexed and the mixture incubated on ice for 10 min. The aqueous phase, containing total RNA, was separated from the phenol-chloroform phase by centrifugation at 16°C for 10 min before 900 μl of isopropanol was added prior to precipitation with 2M LiCl (Sigma) until they showed 100% CPE. The RNA was pelleted at 10,000 g for 10 min, washed with 70% ethanol, air dried and dissolved in 100 μl of nuclease free water (NFW). Single stranded RNA (ssRNA) was removed by precipitation with 2M LiCl (Sigma) at 4°C overnight, followed by centrifugation at 10,000 g for 5 min. An equal volume of isopropanol, containing 750 mM ammonium acetate, was mixed with the supernatant. After precipitation at −20°C for 2 hours, the RNA was pelleted at 10,000 g for 10 min, washed with 70% ethanol, air dried and suspended in 50 μl of NFW. The RNA was either used immediately or stored at −20°C.

Reverse transcription and PCR amplification

CORV-MRM1 genome segments were reverse-transcribed into cDNA using the full-length amplification (FLAC) technique described by Maan et al. [61]. Briefly, a 33 base oligonucleotide ‘anchor-primer’, with a phosphorylated 5’ terminus, was ligated to the 3’ ends of the viral dsRNAs using the T4 RNA ligase overnight at 16°C. Then dsRNA segments were fractionated on 1% agarose gel and recovered from the gel using a ‘silica binding’ method (RNAid® kit, MP Biomedicals) as per the manufacturer’s instructions. The dsRNA eluted in NFW, was denatured at 99°C for 5 minutes, and then snap chilled on ice before synthesising first-strand cDNA using RT system (Promega). The resulting cDNAs were amplified using primers complementary to the anchor primer and high fidelity KOD polymerase enzyme (Novagen). PCR amplicons were analyzed by agarose gel electrophoresis.

Cloning and sequencing of cDNA segments

cDNA amplicons were purified and cloned into the ‘pCR®-Blunt’ vector supplied with the Zero Blunt® PCR Cloning Kit (Invitrogen). Recombinant plasmid-vectors containing CORV-MRM1 inserts were transformed into One Shot® TOP10 competent cells supplied with the cloning kit. Clones containing the desired inserts were identified by colony touch PCR using M13 universal primers. Plasmids were extracted from the clones identified, using the QIAprep Spin MiniPrep Kit (Qiagen). The plasmids and PCR products were sequenced using an automated ABI 3730 DNA sequencer (Applied Biosystems).

Sequence and phylogenetic analysis

‘Raw’ ABI sequence data was assembled into ‘contigs’ using the SeqManII sequence analysis package (DNASTAR version 5.0). The ORFs of CORV-MRM1 genome segments were identified and translated to aa sequences for further analysis using EditSeq (DNASTar version 5.0). The putative function of each protein was identified by Blast X comparisons to homologous orbivirus (BTV) proteins in GenBank (http://blast.ncbi.nlm.nih.gov/Blast.cgi?CMD=Web&PAGE_TYPE=BLASTHome). Multiple alignments of consensus sequences were performed using Clustal X (Version 2.0) [62], Clustal Omega (http://www.ebi.ac.uk/Tools/msa/clustalo/) and MAFFT [63] to ensure proper alignment. Aligned protein sequences were back translated to nucleotide sequences using DAMBE [64] or RevTrans 1.4 server available online (http://www.cbs.dtu.dk/services/RevTrans/) for further nucleotide analysis. Pairwise distance (aa and nt) calculations and phylogenetic trees constructions were done using MEGA 5 software [65] with the p-distance parameter and neighbour-joining method [66]. GenBank nucleotide accession numbers of polymerase (VP1), T2 and T13 protein sequences that were used in phylogenetic analyses are provided in Table S1 (supplementary data).

Supporting Information

Table S1 Nucleotide accession numbers for sequences used in phylogenetic analysis.

(DOCX)

Acknowledgments

The authors wish to acknowledge support from international colleagues who provided virus isolates for analyses and comparisons.

Author Contributions

Conceived and designed the experiments: MB SM NSM HA PPCM. Performed the experiments: MB SM NSM KN MG. Analyzed the data: MB SM NSM HA. Contributed reagents/materials/analysis tools: MB SM RT JB PPCM. Wrote the paper: MB SM PPCM.
2. Mertens PPC, Maan S, Samuel A, Attoui H (2005) Orbiviruses, Reoviridae. In: Faquet CM, M.A. Mayo, J. Maniloff, U. Desselberger and L.A. Ball, editor. Virus Taxonomy, Eighth Report of the International Committee on Taxonomy of Viruses. London: Elsevier/Academic Press. pp. 450–454.

3. Mertens LC, Diniz AJA, Silva DV, Barros FLH, Albuquerque HA, et al. (2007) Characterization of Minacur virus (Reoviridae: Orbiviridae) and pathological changes in experimentally infected newborn mice. Int J Exp Pathol 88: 63–73.

4. Brown SE, Gorman BM, Tesh RB, Knudson DL (1992) Isolation of bluetongue and epizootic hemorrhagic disease viruses from mosquitoes collected in Indonesia. Vet Microbiol 32: 243–252.

5. Victoria JK, Kapoor A, Dupuis K, Schnurr DP, Delwart EL (2008) Rapid identification of known and new RNA viruses from animal tissues. PLoS Pathog 4: e1000163.

6. Kapoor A, Tesh RB, Duraisamy S, Popov VL, Travassos da Rosa AP, et al. (2013) A novel mosquito-borne Orbivirus species found in South-east Asia. J Gen Virol 94: 1051–1057.

7. Attoui H, Mertens PPC, Becnel J, Belaganahalli M, Bergoin M, et al., editors (2012) Reoviridae. London, UK: Elsevier Academic Press. 497–650 p.

8. Karabatsos N (1985) International catalogue of arboviruses including certain other viruses of vertebrates. San Antonio: American Society of Tropical Medicine and Hygiene.

9. Attoui H, Maan SS, Anthony SJ, Mertens PPC (2009) Bluetongue virus, other orbiviruses and other reoviruses: Their relationships and taxonomy. In: Moller PS, Baylis M, Mertens PPC, editors. Reovirus monograph. 1 ed. London: Elsevier/Academic Press. pp. 23–52.

10. Carles JG, Standfast HA (1969) Corriparta virus: properties and multiplication in experimentally inoculated mosquitoes. Am J Epidemiol 89: 385–393.

11. Gonzalez HA, Knudson DL (1987) Genetic relatedness of corriparta serogroup orbiviruses. J Gen Virol 68 (Pt 3): 661–672.

12. Boughton CR, Hawkes RA, Naim HM (1990) Arbovirus infection in humans in the River Valley 1972–1976. Aust J Exp Biol Med Sci 59: 347–356.

13. Brown SE, Gorman BM, Tesh RB, Monaghan P, Alpar HO, Anthony S, Darpel KE, et al. (2007) Complete sequence characterization of the genome of the St Croix River virus, a new orbivirus isolated from cells of Ixodes scapularis, J Gen Virol 88: 795–804.

14. Borden EG, Shope RE, Murphy FA (1971) Physicochemical and morphological relationships of some arthropod-borne viruses to bluetongue virus—a new taxonomic group. Physicochemical and serological studies. J Gen Virol 13: 217–231.

15. Maan S, Maan SS, Samuel AR, Rao S, Attoui H, et al. (2007) Analysis and phylogenetic comparisons of full-length VP2 genes of 24 bluetongue serotypes. J Gen Virol 88: 621–630.

16. Shaw AE, Monaghan P, Alpar HO, Anthony S, Darpel KE, et al. (2007) Complete genome characterisation of a novel 26th bluetongue virus serotype from kuwait. PLoS One 6: e26147.

17. Maan S, Maan SS, van Rijn PA, van Gennip RG, Sanders A, et al. (2010) Full genome characterization of bluetongue virus serotype 6 from the Netherlands 2008 and comparison to other field and vaccine strains. PLoS One 5: e10323.

18. Anthony SJ, Maan N, Maan S, Sutton G, Attoui H, et al. (2009) Genetic and phylogenetic analysis of the core proteins VP1, VP3, VP6 and VP7 of epizootic haemorrhagic disease virus (EHDV). Virus Res 145: 217–227.

19. Anthony SJ, Maan N, Maan S, Sutton G, Attoui H, et al. (2009) Genetic and phylogenetic analysis of the non-structural proteins NS1, NS2 and NS3 of epizootic haemorrhagic disease virus (EHDV). Virus Res 145: 211–219.

20. Anthony SJ, Maan S, Samuel AR, Bachanek-Bankowska K, et al. (2009) Genetic and phylogenetic analysis of the outer-coat proteins VP2 and VP3 of epizootic haemorrhagic disease virus (EHDV): comparison of genetic and serological data to characterise the EHDV serogroup. Virus Res 145: 200–211.

21. Pongier AC, Steele AD, van Dijk AA (2002) Cloning of complete genome sets of six dRNA viruses using an improved cloning method for large dRNA genes. J Gen Virol 83: 2215–2223.

22. Bankowska K (2013) Genetic studies of African horse sickness virus: A thesis submitted in partial fulfilment for the degree of Doctor of Philosophy. University of Oxford.

23. Ornu G, Ferrando ML, Meloúi M, Laciard M, Savin G, et al. (2006) Rapid detection and quantitation of Bluetongue virus (BTV) by a Molecular Beacon fluorescent probe assay. J Virol Methods 137: 34–42.

24. Shaw AE, Jokisch A, Roy P (1983) Homologous terminal sequences of the Reoviridae. In: Victoria JG, Kapoor A, Dupuis K, Schnurr DP, Delwart EL (eds) Rapid detection of African horsesickness virus by the reverse transcriptase polymerase chain reaction (RT-PCR) assay. In: Victoria JG, Kapoor A, Dupuis K, Schnurr DP, Delwart EL (eds) Rapid detection of African horsesickness virus by the reverse transcriptase polymerase chain reaction (RT-PCR) assay. Elsevier/Academic Press. pp. 466–483.

25. Shaw AE, Jokisch A, Roy P (1983) Homologous terminal sequences of the Reoviridae. In: Victoria JG, Kapoor A, Dupuis K, Schnurr DP, Delwart EL (eds) Rapid detection of African horsesickness virus by the reverse transcriptase polymerase chain reaction (RT-PCR) assay. Elsevier/Academic Press. pp. 466–483.

26. Shaw AE, Jokisch A, Roy P (1983) Homologous terminal sequences of the Reoviridae. In: Victoria JG, Kapoor A, Dupuis K, Schnurr DP, Delwart EL (eds) Rapid detection of African horsesickness virus by the reverse transcriptase polymerase chain reaction (RT-PCR) assay. Elsevier/Academic Press. pp. 466–483.

27. Shaw AE, Jokisch A, Roy P (1983) Homologous terminal sequences of the Reoviridae. In: Victoria JG, Kapoor A, Dupuis K, Schnurr DP, Delwart EL (eds) Rapid detection of African horsesickness virus by the reverse transcriptase polymerase chain reaction (RT-PCR) assay. Elsevier/Academic Press. pp. 466–483.

28. Shaw AE, Jokisch A, Roy P (1983) Homologous terminal sequences of the Reoviridae. In: Victoria JG, Kapoor A, Dupuis K, Schnurr DP, Delwart EL (eds) Rapid detection of African horsesickness virus by the reverse transcriptase polymerase chain reaction (RT-PCR) assay. Elsevier/Academic Press. pp. 466–483.

29. Shaw AE, Jokisch A, Roy P (1983) Homologous terminal sequences of the Reoviridae. In: Victoria JG, Kapoor A, Dupuis K, Schnurr DP, Delwart EL (eds) Rapid detection of African horsesickness virus by the reverse transcriptase polymerase chain reaction (RT-PCR) assay. Elsevier/Academic Press. pp. 466–483.

30. Shaw AE, Jokisch A, Roy P (1983) Homologous terminal sequences of the Reoviridae. In: Victoria JG, Kapoor A, Dupuis K, Schnurr DP, Delwart EL (eds) Rapid detection of African horsesickness virus by the reverse transcriptase polymerase chain reaction (RT-PCR) assay. Elsevier/Academic Press. pp. 466–483.
56. Anthony SJ, Darpele KE, Belaganahalli MN, Maan N, Nomikou K, et al. (2011) RNA segment 9 exists as a duplex concatemer in an Australian strain of epizootic haemorrhagic disease virus (EHDV): Genetic analysis and evidence for the presence of concatemers as a normal feature of orbivirus replication. Virology 420: 164–171.

57. Gibbs EP, Calisher CH, Tesh RB, Laznick JS, Bowen R, et al. (1989) Bivens arm virus: a new rhabdovirus isolated from Culicoides insignis in Florida and related to Tibrogargan virus of Australia. Vet Microbiol 19: 141–150.

58. Attoui H, Mendez-Lopez MR, Rao S, Hurtado-Alendes A, Lizaraso-Caparo F, et al. (2009) Peruvian horse sickness virus and Yunnan orbivirus, isolated from vertebrates and mosquitoes in Peru and Australia. Virology 394: 298–310.

59. Allison AB, Goekjian VH, Potgieter AC, Wilson WC, Johnson DJ, et al. (2010) Detection of a novel reassortant epizootic hemorrhagic disease virus (EHDV) in the USA containing RNA segments derived from both exotic (EHDV-6) and endemic (EHDV-2) serotypes. J Gen Virol 91: 430–439.

60. Attoui H, Billoir F, Cantaloube JF, Biagini P, de Micco P, et al. (2000) Strategies for the sequence determination of viral dsRNA genomes. J Virol Methods 89: 147–158.

61. Maan S, Rao S, Maan NS, Anthony SJ, Attoui H, et al. (2007) Rapid cDNA synthesis and sequencing techniques for the genetic study of bluetongue and other dsRNA viruses. J Virol Methods 143: 132–139.

62. Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, et al. (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23: 2947–2948.

63. Kato K, Asimenes G, Toh H (2009) Multiple alignment of DNA sequences with MAFFT. Methods Mol Biol 537: 39–64.

64. Xia X, Xie Z (2001) DAMBE: software package for data analysis in molecular biology and evolution. J Hered 92: 371–373.

65. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, et al. (2011) MEGA5: Molecular Evolutionary Genetics Analysis using Maximum Likelihood, Evolutionary Distance, and Maximum Parsimony Methods. Mol Biol Evol 28: 2731–2739.

66. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4: 406–425.