Value of ultrasonography in assessment of recent injury of anterior talofibular ligament in children

Wartość badania ultrasonograficznego w ocenie świeżych uszkodzeń wiązadła skokowo-strzałkowego przedniego u dzieci

Joanna Szczepaniak¹, Beata Ciszkowska-Łysoń¹, Robert Śmigielski², Urszula Zdanowicz²

¹ Diagnostic Imaging Center, Carolina Medical Center, Warsaw, Poland
² Center of Sport-Related Injuries and Department of Lower Limb Surgery, Carolina Medical Center, Warsaw, Poland

Correspondence: Joanna Szczepaniak, MD, PhD, Diagnostic Imaging Center, Carolina Medical Center, Pory 78, 02-757 Warsaw, Poland, tel.: 22 35 58 430, e-mail: joanna.szczepaniak@carolina.pl

DOI: 10.15557/JoU.2015.0022

Abstract

Introduction: Sprained ankle is a very common injury in children. Proper treatment of ligament injuries enables full recovery. X-ray and US examinations are commonly available diagnostic methods. Material and methods: Two hundred and six children (113 girls and 93 boys, mean age 10.6) with recent ankle joint sprain (up to 7 days of injury) were subject to a retrospective analysis. All patients underwent an X-ray and US examination of the ankle joint within 7 days of injury. In 19 patients, anterior talofibular ligament reconstruction was conducted. Results: X-ray failed to visualize a pathology in 129 children (63%); in 24 patients (12%), avulsion fracture of the lateral malleolus was found, and in 36 cases (17%), effusion in the talocrural joint was detected. Ultrasonography failed to visualize a pathology in 19 children (9%); in 60 patients (29%), it showed avulsion fracture of the lateral malleolus involving the attachment of the anterior talofibular ligament (ATFL); in 34 cases (17%), complete ATFL tear was detected, and in 51 patients (25%), partial ATFL injury was found. Other injuries constituted 19%. The surgeries conducted to repair the anterior talofibular ligament (19) confirmed the US/X-ray diagnoses in 100% of cases. Avulsion ATFL injury, i.e. the one that involves the ligament attachment site, is usually found in younger children (median: 8 years of age). Complete ATFL tears (not involving the attachment site) concern older children (median: 14 years of age).

Conclusions: Since X-ray is of limited value in diagnosing ankle joint pathologies in recent sprain injuries in children, soft tissue imaging, i.e. ultrasonography, is the basic examination to assess the ligament complex. Avulsion fractures, which involve the ATFL attachment site and are usually found in younger children, are a consequence of the incomplete ossification and require urgent diagnosis and orthopedic consultation.
Streszczenie

Wstęp: Urazy skrętne stawu skokowego są bardzo częstą kontuzją u dzieci. Właściwe leczenie uszkodzeń wągadłowych umożliwia powrót do pełnej sprawności. Badania RTG i USG są powszechnie dostępnymi metodami diagnostycznymi. Material i metody: Analizie retrospektywnej poddano 206 dzieci (K – 113, M – 93; średnia wieku – 10,6 roku) ze ścieżym urazem skrętnym stawu skokowego – do 7 dni od urazu. Wszyscy pacjenci mieli wykonane badania RTG i USG stawu skokowego do 7 dni od urazu. U 19 pacjentów wykonano rekonstrukcję wągadła skokowo-strzałkowego przedniego. Wyniki: W badaniu RTG nie stwierdzono patologii u 129 pacjentów (63%); u 24 pacjentów (12%) stwierdzono złamanie awulsyjne kostki bocznej; u 36 pacjentów (17%) stwierdzono wysięk w stawie skokowym górnym. W badaniu USG nie stwierdzono patologii u 19 pacjentów (9%); u 60 pacjentów (29%) stwierdzono złamanie awulsyjne kostki bocznej obejmujące przyczep wągadła skokowo-strzałkowego przedniego (ATFL); u 34 pacjentów (17%) stwierdzono całkowite zerwanie ATFL; u 51 pacjentów (25%) stwierdzono częściowe uszkodzenie ATFL; inne uszkodzenia stanowiły 19%. Wykonane zabiegi operacyjne rekonstrukcji wągadła skokowo-strzałkowego przedniego (19) potwierdziły rozpoznanie USG/RTG w 100%. Zerwania awulsyjne ATFL, czyli obejmujące przyczep wągadła, występują u dzieci młodszych (mediana – 8 lat). Zerwania całkowite ATFL (na przebiegu wągadła, nieobjejmujące przyczepu) występują u dzieci starszych (mediana – 14 lat). Wnioski: Ze względu na istotne ograniczoną wartość badania RTG w rozpoznaniu patologii stawu skokowego w ścieżnych urazach skrętnych dzieci badanie wykorzystujące obrazowanie tkanki miękkich – ultrasonografia – jest podstawowe do oceny aparatu wągadłowego. Złamania awulsyjne obejmujące przyczep ATFL, przeważające u dzieci młodszych, wynikają z niezakończonego procesu kostienienia i wymagają pilnej diagnostyki oraz konsultacji ortopedycznej.
the evaluation of coexisting injuries are important when planning the treatment. Surgery is indicated, for instance, when the anterior talofibular ligament is torn completely and the patient manifests clinical sings of the use of software. Ultrasound examinations were conducted with Digital Diagnost V.2 system with Eleva Workspot V.2 examinations were conducted with the use of with recent ankle joint sprain. The average age of patients was 10.6. All of them were instantly examined with X-ray examinations of the ankle joint. The presence of fluid/hematoma in the ankle joint, the image of the synovial membrane and the presence of the anterior talofibular ligament (arrows) were assessed in each US examination: the presence of fluid/hematoma in the ankle joint are powszechnie dostępne. Ocena stopnia uszkodzenia więzadła skokowo-strzałkowego przedniego oraz uszkodzeń towarzyszących ma znaczenie w planowaniu procesu leczenia. Wskazaniami do zabiegu operacyjnego są m.in.: zerwanie całkowite więzadla skokowo-strzałkowego przedniego z obecnością objawów klinicznych niestabilności stawu skokowego, uraz więzadłowy stawu skokowego z towarzyszącym złamaniem chrzusto-kostnym (np. złamanie awulżyny kostki bocznej z przemieszczением fragmentu chrzesto-kostnego w dzieci)3. Nieleczony uraz skrętne może prowadzić do niestabilności stawu, wczesnych zmian zwrodnieniowych czy przewlekłych dolegliwości bólowych stawu. Celem pracy jest zwrócenie uwagi na przydatność wykonywania badań ultrasonograficznych w diagnostyce ścieżnych urazów skrętnych stawu skokowego.

Material and methods

The retrospective analysis involved 206 patients (113 girls and 93 boys) who reported to the trauma outpatient clinic with recent ankle joint sprain. The average age of the patients was 10.6. All of them were instantly examined with X-ray and US (within 7 days of sustaining injury). X-ray examinations were conducted with the use of a Philips Digital Diagnost V.2 system with Eleva Workspot V.2 software. Ultrasound examinations were conducted with the use of a GE Voluson E8 system using linear probes SP10-16D with the frequency of 7–18 MHz and an 11 L-D probe with the frequency of 4–10 MHz.

X-ray examinations of the ankle joint were conducted in three views: A-P, lateral and “mortise view” (used for the assessment of the width of the tibiofibular syndesmosis and for the optimization of the talocrural joint space imaging). Moreover, images of the contralateral ankle were obtained for comparison. X-ray pictures were assessed by four radiologists experienced in diagnosing conditions within the musculoskeletal system.

Ultrasound images were assessed by five radiologists experienced in diagnosing conditions within the musculoskeletal system. The following signs were assessed in each US examination: the presence of fluid/hematoma in the ankle joint, the image of the synovial membrane and the presence of coexisting injuries of the ankle joint.

Material i metoda

Analizie retrospektywnej poddano 206 pacjentów (K – 113, M – 93), którzy zgłosili się do ambulatorium urazowego ze ścieżnym urazem skrętym stawu skokowego. Średnia wieku wynosiła 10,6 roku. Wszyscy pacjenci zostali niezwłocznie – do 7 dni od przebytego urazu skrętnego – poddani badaniu RTG oraz USG. Badania rentgenowskie były wykonywane aparatem Philips Digital Diagnost V.2 z systemem operacyjnym Eleva Workspot V.2. Badania ultrasonograficzne przeprowadzono aparatem GE Voluson E8 z głowicami liniowymi SP10-16D o zakresie częstotliwości 7–18 MHz oraz głowicą 11 L-D o zakresie częstotliwości 4–10 MHz.

Badanie rentgenowskie stawu skokowego wykonywane było w trzech projekcjach: A-P, bocznej oraz w projekcji „mortise view” – przeznaczonej do oceny szerokości wąsztrozbru piszczelowo-strzałkowego oraz umożliwiającej lepszą wizualizację szpyr górnego stawu skokowego. Wykonywano także zdjęcia porównawcze drugiego stawu skokowego. Badania rentgenowskie oceniane były przez czterech lekarzy radiologów, doświadczonych w zakresie diagnostyki układu mięśniowo-szkieletowego.

Badania ultrasonograficzne wykonywane były przez pięciu lekarzy radiologów doświadczonych w zakresie diagnostyki

Fig. 1. Anatomical model of the right ankle joint. The course of the anterior talofibular ligament (arrows)

Ryc. 1. Preparat anatomiczny prawego stawu skokowego. Przebieg więzadła skokowo-strzałkowego przedniego (strzałki)
of injuries to the ligaments of the ankle joint: anterior and posterior tibiofibular ligament, anterior talofibular ligament, calcaneofibular ligament, medial ligament, Chopart’s joint ligaments (talonavicular and bifurcate ligament), as well as tendons of the peroneus muscles, tibialis muscles, extensor and flexor digitorum longus as well as the region of the epiphyseal cartilage of the fibula and the tuberosity of the fifth metatarsal bone. Moreover, bone fragments that could be detached in the mechanism of avulsion were actively searched for.

The severity of ligament injury was assessed on a 3-grade scale. Grade 1 referred to ligament edema/thickening, which results from elastic deformation of its fibers without the loss of their continuity (commonly known as “stretched” ligament; the ligament remains stable and its structure is homogeneous). Grade 2 was defined as injury in which some fibers are torn (edema, blurred fibrillar echotexture, areas of decreased echogenicity). Finally, Grade 3 referred to complete rupture of the ligament (edema and ligament thickening, no evidence of fiber continuity, failure of function in a dynamic examination: ligament stumps or torn fibers move away from each other). A hematoma at the site of the ligament can be present for several days after sustaining injury. Avulsion fracture, i.e. injury involving the attachment site, is a specific type of grade 3 damage. The structure of the ligament itself is usually assessed as normal or as in grade 1 injuries.

Based on the clinical assessment and imaging findings, 19 patients were scheduled for a surgery to repair the anterior talofibular ligament.

Results

X-ray failed to visualize a pathology in 129 children (63%) (Fig. 2). In 24 patients (12%), avulsion fracture of the lateral malleolus was found (Fig. 3), and in 36 cases (17%), the examinations showed evidence of effusion in the ankle joint or thickening of the soft tissues adjacent to the lateral malleolus (Fig. 4 and 5). The remaining diagnoses constituted 8% of cases (Fig. 2).

A US examination failed to visualize a pathology in 19 children (9%) (Fig. 6; Fig. 7). In 60 patients (29%), avulsion fracture of the lateral malleolus involving the ATFL enthesis was found (Fig. 6; Fig. 8). In 34 patients (17%), the ATFL was found completely torn (Fig. 9), i.e. the ligament itself was torn (not involving the enthesis). Partial ATFL injury was diagnosed in 51 patients (25%), and other injuries – in 19% of cases (Fig. 6).

The surgeries (19) conducted confirmed the US/X-ray diagnoses in 100% of cases (Fig. 10).

Based on the data, it can be concluded that avulsion ATFL injuries are usually found in younger children (median: 8 years of age) in whom the ligament entheses are partially chondral attachments. Complete ATFL tears concern older children (median: 14 years of age).

układu mięśniowo-szkieleotowego. W badaniu USG każdorazowo oceniano obecność płynu/krwia w stawie skokowym, obraz błony maziowej, obecność uszkodzeń aparatu więzadłowego stawu skokowego: więzadła piszczelowo-strzałkowego przedniego i tylnego, więzadła skokowo-strzałkowego przedniego, piętowo-strzałkowego, trójgraniastej, więzadła stawu Choparta (więzadło skokowo-łódkowe, rozdwojone), ściegna mięśni strzałkowych, ściegna mięśni piszczelowych, ściegna mięśni długich prostowników i zginaczy, okolicę chrząstki nasadowej kości strzałkowej, guzowatość V kości śródstopia; aktywnie poszukiwano blaszek kostnych owerdanych w mechanizmie awulacji.

Nasilenie uszkodzenia więzadłowego oceniano w 3-stopniowej skali, gdzie stopień I oznacza obrzęk/pogrubienie więzadła – co wynika z elastycznego odkształcenia/wydłużenia jego włókien bez przerwania ich ciągłości (odpowiada to żargonowemu „naciągnięciu” więzadła; więzadło pozostaje stabilne, a jego struktura jest jednorodna); stopień II – częściowy obrzęk ulga przerwaniu (obecny obrzęk, zatarcie echostruktury włóknikowej więzadła, obecne obszary obniżonej echogeniczności); stopień III – całkowite zerwanie więzadła (obecny obrzęk i pogrubienie więzadła, brak cech ciągłości włókien, niewydolność w badaniu dynamicznym – oddalanie się od siebie kikutów więzadła lub rozerwanych włókien). Krwiak w okolicy więzadła może być obecny w pierwszych dobach po urazie. Specyficzną formą zerwania III stopnia jest złamanie awulowe – uszkodzenie z objęciem przyczepu więzadła. Struktura samego więzadła najczęściej jest kwalifikowana jako prawidłowa lub jak po uszkodzeniu I stopnia.

Na podstawie oceny klinicznej uszkodzeń oraz wniosków płynących z badań diagnostycznych 19 pacjentów poddano zabiegowi rekonstrukcji więzadła skokowo-strzałkowego przedniego.

Wyniki

W badaniu RTG nie stwierdzono patologii u 129 pacjentów (63%) (ryc. 2). U 24 pacjentów (12%) stwierdzono złamanie awulowe okolicy kostki bocznej (ryc. 3), u 36 pacjentów (17%) stwierdzono radiologiczne cechy wysięku w stawie skokowym lub poszerzenie cienia tkanki miękkiej w okolicy kostki bocznej (ryc. 4 i 5). Pozostałe rozpoznania stanowiły 8% przypadków (ryc. 2).

W badaniu USG nie stwierdzono patologii u 19 pacjentów (9%) (ryc. 6; ryc. 7); u 60 pacjentów (29%) stwierdzono złamanie awulowe okolicy kostki bocznej obejmujące przyczep ATFL (ryc. 6; ryc. 8); u 34 pacjentów (17%) stwierdzono całkowite zerwanie ATFL (ryc. 9), czyli zerwanie w przebiegu więzadła (a nie w przycięcie więzadła); u 51 pacjentów (25%) stwierdzono częściowe uszkodzenia ATFL; inne uszkodzenia stanowiły 19% (ryc. 6).

Zabiegi operacyjne (19) potwierdziły rozpoznania USG/RTG w 100% (ryc. 10).

Z zebranych danych wynika, że zerwanie awulowe ATFL występują u dzieci młodszych (mediana – 8 lat), u których
Value of ultrasonography in assessment of recent injury of anterior talofibular ligament in children

	Frequency
NA	63%
Avulsion	12%
Effusion	17%
Other	8%

NA – no abnormalities (normal results with no changes)
Avulsion – avulsion fracture of the apex of the lateral malleolus
Effusion – effusion

Fig. 2. X-ray findings

Ryc. 2. Wyniki badań RTG

Fig. 3. X-ray picture of the right ankle joint in the mortise view. Avulsion fracture of the apex of the fibular epiphysis. A slight detached bone fragment, separated from the fibular outline, can be seen.

Ryc. 3. Zdjęcie RTG prawego stawu skokowego w projekcji „mortise view”. Złamanie awulsyjne szczytu nasady kości strzałkowej. Widoczna odlamana drobna blaszka kostna odsunięta od zarysu szczytu kości strzałkowej

Fig. 4. X-ray picture of the right ankle joint in the AP view. Thickening of the soft tissues adjacent to the lateral malleolus (arrow)

Ryc. 4. Zdjęcie RTG prawego stawu skokowego w projekcji AP. Widoczne poszerzenie cienia tkanki miękkich w okolicy kostki bocznej (strzałka)

Fig. 5. X-ray picture of the right ankle joint in the lateral view. Radiological evidence of effusion in the talocural joint (arrow)

Ryc. 5. Zdjęcie RTG prawego stawu skokowego w projekcji bocznej. Widoczne radiologiczne cechy wysięku w stawie skokowym górnym (strzałka)
Fig. 6. US findings

Fig. 6. US findings

Ryc. 6. Wyniki badań USG

NA – no abnormalities (normal results with no changes)
Avulsion – avulsion fracture of the apex of the lateral malleolus, ATFL ligament injury involving the enthesis
BZ – wyniki prawidłowe (w których nie opisano żadnych zmian)
Awulsja – złamanie awulsyjne szczytu kostki bocznej, uszkodzenie wiązadła ATFL obejmujące przyczep

Fig. 7. Ultrasound image of the normal anterior talofibular ligament. The course of the ligament (arrows) and ligament attachment sites (arrowheads). Marked fibrillar structure; stretched in a resting position

Fig. 7. Ultraszanograficzny obraz prawidłowego wiązadła skokowo-strzałkowego przedniego. Przebieg wiązadła (strzałki) oraz przyczepy wiązadła (groty). Wiązadło o wyraźnej budowie włókienkowej, napięte w spoczynku

Fig. 8. Avulsion injury of the anterior talofibular ligament at the fibular enthesis. Detached bone fragment (arrow), separated from the fibular enthesis outline. The ligament is thickened; the fibrillar structure is slightly blurred. Bone entheses are marked with arrowheads

Fig. 8. Ultrasonograficzny obraz uszkodzenia awulsyjnego wiązadła skokowo-strzałkowego przedniego w przyczepie strzałkowym. Odlaminana blaszka kostna (strzałka) odsunięta od zarysu przyczepu strzałkowego. Wiązadło pogrubiałe, o częściowo zatartej budowie włókienkowej. Przyczepy kostne wiązadła zaznaczono grotami

Fig. 9. Ultrasound image of complete tear of the anterior talofibular ligament. Swollen ligament stumps (arrows) bridged by thin scars

Fig. 9. Ultrasonograficzny obraz całkowitego zerwania wiązadła skokowo-strzałkowego przedniego. Widoczne obrzęknięte kikuty wiązadła (strzałki) pomostowane cienkimi bliznami

Fig. 10. Arthroscopic image of complete tear of the anterior talofibular ligament. Ligament stumps (arrowheads)

Fig. 10. Artroskopowy obraz całkowitego zerwania wiązadła skokowo-strzałkowego przedniego. Widoczne obrzęknięte kikuty wiązadła (groty)
Discussion

In most cases (over 60%), the result of an X-ray examination was normal – no visible structural changes within the joint, which considerably contrasts with the number of normal ultrasound results (9%) (Fig. 2 and 6).

Effusion in the ankle joint or thickened shadow of the soft tissues at the ankle level (Fig. 3) detected in a radiogram should indicate a need for an extended diagnosis.

ATFL injuries, both those of the ligament only and those involving the enthesis (avulsion fractures), accounted for 70% of cases. Some patients with these injuries were scheduled for a surgery.

It must be observed that in 36 patients, avulsion fracture was occult in X-ray, which accounts for 60% of patients with this injury.

The authors are aware that X-ray is not intended for ligament assessment. It merely enables one to make conclusions concerning soft tissue injuries based on the presence of joint effusion or soft tissue thickening.

The sensitivity and specificity of both modalities (X-ray and US) can be compared only with respect to avulsion injuries when a separated bone fragment is visible in an X-ray picture.

	X-ray	US
sensitivity	40%	100%

X-ray examinations helped establish the correct diagnosis in 40% of cases with avulsion injury whereas this value reached 100% for a US examination.

The specificity of both methods in detecting avulsion fractures is as follows:

	X-ray	US
specificity	100%	100%

All patients without avulsion fracture were diagnosed correctly, i.e. they obtained a negative result both in an X-ray and US examination. This means that there were no patients in this population with false positive results.

Ultrasonography is a valuable method to assess avulsion fractures, tiny fractures due to compression injury as well as coexistent soft tissue injuries in the ankle joint. Ultrasonic examinations provide clinicians with valuable information for further treatment. Ultrasonography, as an inexpensive, easily available and noninvasive method, can be broadly used particularly in pediatric radiology, and its findings can significantly influence the therapeutic process. The final decision concerning the treatment is

przyczepy więzadła są częściowo przyczepami chrzestnymi. Zerwania całkowite ATFL występują u dzieci starszych (mediana – 14 lat).

Omówienie

W przeważającej części przypadków (ponad 60%) badanie rentgenologiczne było prawidłowe – nie uwidoczniło zmian strukturalnych w obrębie stawu, co znacząco kontrastuje z liczbą prawidłowych badań ultrasonograficznych – 9% (ryc. 2 i 6).

Badanie RTG, w którym widoczny jest wysięk w stawie skokowym bądź poszerzenie cienia tkank miękkich na poziomie stawu skokowego (ryc. 3), powinno stanowić przesłankę do poszerzenia diagnostyki.

Uszkodzenia ATFL – zarówno środmażdżadłowe, jak i z objęciem stopy przyczepu (złamania awulsyjne) – stanowiły łącznie 70% przypadków. Część pacjentów z tego typu uszkodzeniami została zakwalifikowana do leczenia zabiegowego.

Należy zauważyć, że u 36 pacjentów złamanie awulsyjne było nieme w badaniu RTG, co stanowi 60% pacjentów z tym uszkodzeniem.

Autorzy mają świadomość, że badanie RTG nie służy do oceny aparatu więzadłowego, pozwala jedynie wnioskować o uszkodzeniach tkank miękkich na podstawie obecności wysięku w stawie bądź poszerzenia tkank miękkich.

Czułość i swoistość obu metod (RTG i USG) można porównać wyłącznie w przypadku obecności urazu o typie awulsyjnym, gdy w badaniu rentgenowskim widoczna jest odwrócona blaszka kostna.

	RTG	USG
czułość	40%	100%

W badaniach RTG poprawnie zdiagnozowanych zostało 40% osób ze złamaniem awulsyjnym, a w badaniach USG 100%.

Swoistość obu badań dla złamań awulsyjnych przedstawiała się w następujący sposób:

	RTG	USG
swoistość	100%	100%

Poprawnie zdiagnozowanych zostało 100% osób bez złamania awulsyjnego, czyli uzyskały one negatywny wynik zarówno w badaniach RTG, jak i USG. Oznacza to, że w badanej populacji nie pojawiły się pacjenci, których wynik byłby fałszywie dodatni.

Ultrasonografia jest cenną metodą do oceny złamań awulsyjnych, drobnych złamań wskutek urazu zgnięciowego
made by an orthopedist on the basis of the whole clinical picture, current patient condition and own experience.

Soft tissues can also be assessed in magnetic resonance imaging (MRI). However, it is not used routinely to assess recent sprain injuries of the ankle joint in children because of its limited availability and long duration of scanning. Ultrasonography can be useful in the initial assessment of whether patients need an MRI examination. The literature reports demonstrate that US and MRI are equally sensitive in detecting ligament injuries in the ankle joint (11).

Conclusions

1. X-ray and US examinations are used for the assessment of sprain injuries of the ankle joint in children and should be used as complementary tests in the emergency department.

2. A US examination of the ankle joint is characterized by greater sensitivity in assessing avulsion injuries.

3. Ultrasonography should be therefore considered the primary modality for the assessment of ligament injuries in the ankle joint since its findings can change the therapeutic process.

Conflict of interest

Authors do not report any financial or personal links with other persons and organizations, which might affect negatively the content of this publication and/or claim authorship rights to this publication.

References / Piśmiennictwo

1. Rodineau J, Foltz V, Dupond P: [Sprained ankle in children]. Ann Readapt Med Phys 2004; 47: 317–323.

2. Garrick JG, Requa RK: The epidemiology of foot and ankle injuries in sports. Clin Sports Med 1988; 7: 29–36.

3. Renström A, Konradsen L: Ankle ligaments injuries. Br J Sports Med 1997; 31: 11–20.

4. Fong DT, Hong Y, Chan LK, Yung PS, Chan KM: A systematic review on ankle injury and ankle sprain in sports. Sports Med 2007; 37: 73–94.

5. Lynch SA, Renström A: Treatment of acute lateral ankle ligament rupture in the athlete. Sports Med 1999; 27: 61–71.

6. Dias LS: The lateral ankle sprain: an experimental study. J Trauma 1979; 19: 266–269.

7. Kumai T, Takakura Y, Rufai A, Milz S, Benjamin M: The functional anatomy of the human anterior talofibular ligament in relation to ankle sprains. J Anat 2002; 200: 457–465.

8. Golano P, Vega J, de Leeuw PA, Malalgelada F, Manzanares MC, Götzzens V, Van Dijk CN: Anatomy of the ankle ligaments: a pictorial essay. Knee Surg Sports Traumatol Arthrosc 2010; 18: 557–569.

9. Hsu CC, Tsai WC, Chen CP, Chen MJ, Tang SF, Shih L: Ultrasonographic examination for inversion ankle sprains associated with osseous injuries. Am J Phys Med Rehabil 2006; 85: 785–792.

10. Wang CL, Shieh JY, Wang TG, Hsieh FJ: Sonographic detection of occult fractures in the foot and ankle. J Clin Ultrasound 1999; 27: 421–425.

11. Margetić P, Pavić R: Comparative assessment of the acute ankle injury by ultrasound and magnetic resonance. Coll Antropol 2012; 36: 605–610.

Do oceny urazów tkanek miękkich służy także badanie rezonansu magnetycznego (MR). Nie jest ono jednak używane rutynowo do oceny świeżych urazów skrętnych stawu skokowego w populacji dziecięcej, m.in. ze względu na ograniczoną dostępność i długo czas badania. Ultrasonografia może służyć do wstępnej kwalifikacji pacjentów do badania MR. Z doniesień wynika, że USG i MR są równie czułe w wykrywaniu świeżych urazów więzadłowych stawu skokowego (11).

Wnioski

1. Badania RTG i USG służą do oceny urazów skrętnych stawu skokowego w populacji dziecięcej i powinny być stosowane jako komplementarne w trybie ostrodyżurowym.

2. Badanie USG stawu skokowego charakteryzuje się większą czułością w ocenie urazów awulsyjnych niż badanie RTG.

3. Należy uznać badanie USG za badanie podstawowe do oceny uszkodzeń więzadłowych stawu skokowego – jego wynik może istotnie zmienić postępowanie lecznicze.

Konflikt interesów

Autorzy nie zgłaszają żadnych finansowych ani osobistych powiązań z innymi osobami lub organizacjami, które mogłyby negatywnie wpłynąć na treść publikacji oraz rościć sobie prawo do tej publikacji.