Genomic prediction for fusiform rust disease incidence in a large cloned population of *Pinus taeda*

Mohammad Nasir Shalizi,1 W. Patrick Cumbie 2, and Fikret Isik 1,*

1Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC 27695-8002, USA
2ArborGen Inc., Ridgeville, SC 29472, USA
*Corresponding author: Email: fisik@ncsu.edu

Abstract

In this study, 723 *Pinus taeda* L. (loblolly pine) clonal varieties genotyped with 16920 SNP markers were used to evaluate genomic selection for fusiform rust disease caused by the fungus *Cronartium quercuum* f. sp. *fusiforme*. The 723 clonal varieties were from five full-sib families. They were a subset of a larger population (1831 clonal varieties), field-tested across 26 locations in the southeast US. Ridge regression, Bayes B, and Bayes C models were implemented to study marker-trait associations and estimate predictive ability for selection. A cross-validation scenario based on a random sampling of 80% of the clonal varieties for the model building had higher (0.71–0.76) prediction accuracies of genomic estimated breeding values compared with family and within-family cross-validation scenarios. Random sampling within families for model training to predict genomic estimated breeding values of the remaining progenies within each family produced accuracies between 0.38 and 0.66. Using four families out of five for model training was not successful. The results showed the importance of genetic relatedness between the training and validation sets. Bayesian whole-genome regression models detected three QTL with large effects on the disease outcome, explaining 54% of the genetic variation in the trait. The significance of QTL was validated with GWAS while accounting for the population structure and polygenic effect. The odds of disease incidence for heterozygous AB genotypes were 10.7 and 12.1 times greater than the homozygous AA genotypes for SNP11965 and SNP6347 loci, respectively. Genomic selection for fusiform rust disease incidence could be effective in *P. taeda* breeding. Markers with large effects could be fit as fixed covariates to increase the prediction accuracies, provided that their effects are validated further.

Keywords: genomic selection; cloning; categorical traits; loblolly pine; Genetic relatedness; Bayesian whole genome regression; SNP markers; *Cronartium quercuum* f. sp. *fusiforme*

Introduction

Threshold traits (dichotomous or polychotomous characters) are discrete variables when assessed in genetic studies (Lynch and Walsh 1998). Dichotomous traits have two levels of phenotypic classes, “affected (yes)” and “not-affected (no).” Polychotomous traits can have more than two levels of discrete phenotypic classes. Some threshold traits behave like continuous traits and are not inherited in a simple Mendelian manner (Falconer and Mackay 1996). These traits can be heritable and are affected by genetics and the environment. For genetic analyses, threshold traits are sometimes transformed to continuous variables, known as liability, to estimate variance components (Falconer and Mackay 1996). Generalized linear models with various link functions have been used for the analysis of discrete variables (Nelder and Wedderburn 1972; Gilmour et al. 1985).

In pine species of the southern US, fusiform rust disease caused by *Cronartium quercuum* f. sp. *fusiforme* is usually assessed as a discrete dichotomous response. The pathogen has co-evolved with the host pine species in the region over millions of years (Kubisiak et al. 2005). The disease is an important problem in *Pinus taeda* L. plantations in the southern US. The fungus causes damage to more than 100 million US dollars annually in young pine plantations (Cubbage et al. 2000). The disease suppresses growth, reduces wood quality, and increases mortality in pine plantations in the region.

Numerous studies suggested that fusiform rust disease in *P. taeda* is controlled by a few major quantitative trait loci (QTL) named *Fr* genes. A resistant single dominant locus, *Fr1*, was mapped by association of the phenotype with random amplified polymorphic (RAPD) DNA genetic markers in four specific families of *P. taeda* (Wilcox et al. 1996). Using the same method, additional loci were discovered in different *P. taeda* families (Amerson et al. 2015). In the above studies, the QTL could be detected when the progeny of parents were challenged with specific spore isolates of the pathogen.

In recent years, single nucleotide polymorphisms (SNPs) markers were used in GWAS to map QTL and explore genomic selection for fusiform rust disease. In two independent clonally replicated *P. taeda* populations, five SNP markers accounted for 30% (Quesada et al. 2014) and 45% of the total genetic variance for disease incidence (Cumbie et al. 2020). These two studies used different sets of SNP markers. In a most recent study, Lauer and Isik...
(2021) mapped three major QTL affecting fusiform rust disease in two \(P. \) taeda full-sib crosses. Their results showed that progeny of one cross were immune to the disease when they had two QTL. In \(P. \) taeda breeding in the southern US, none of the QTLs have been employed because the marker-tagged QTLs were specific to individual pine families.

In practical breeding of \(P. \) taeda in the southern US, the disease incidence is assessed as a binary outcome and is analyzed as a continuous trait on liability scale (Isik et al. 2008). Numerous studies suggested that selection for fusiform rust disease resistance at the family level is effective in \(P. \) taeda because of high repeatability of family means (McKeand et al. 1999; Isik et al. 2003, 2004, 2008; Cumbie et al. 2011). This is not the case for within-family selection because of low within-family heritability estimates. Cloned progeny testing and selection have been proposed to increase within-family selection efficiency for the species (Foster and Shaw 1988; Isik et al. 2003, 2005; McKeand et al. 2003, 2006). However, cloned progeny testing is costly and adds another three years to the breeding cycle of \(P. \) taeda. Genomic selection may offer an alternative to clonal progeny testing for within-family selection (Isik 2014).

In this study, we investigated the efficiency of within-family genomic selection for \(P. \) taeda, the most economically important tree species in the US (McKeand 2019). Our study is based on a large, cloned progeny population (1831 clonal varieties, 723 were genotyped) that originated from five crosses. We were particularly interested in knowing if there are QTL controlling fusiform rust disease and explore genomic selection strategies for within-family selection. The results from this study may have large implications for conifer breeding for disease and pest incidence.

Materials and methods

Genetic material and experimental design

A total of 1831 clonal varieties from 37 full-sib families were cloned for within-family selection in a \(P. \) taeda population in the southeastern US. The number of clonal varieties (genotype) per family ranged between 1 and 238 with an average of 49. Clonal varieties were produced via somatic embryogenesis (Becwar et al. 1990), in which developing embryos were harvested from immature cones and brought into culture to produce multiple copies of the same genotype. Plantlets were raised in a greenhouse for 8–12 weeks and subsequently grown outdoors for 6 months prior to field trial establishment.

The study was established at 26 locations (sites) in the southeastern US. Each site consisted of six incomplete blocks with row-column configuration. Not all the trials were established in the same year because of logistics of producing plantlets. Trials were established in seven test series starting in 2006 and were completed in 2008. The number of tests established per series ranged between 2 and 6. Test sites were strongly connected within a test series (69–396 genotypes in common), whereas the overlap between tests across series was weak. The average number of trees (identical copies) per clonal variety was \(\sim 17 \) trees across all the test series. The layout of the reps and number of crosses and clones differed among sites.

Phenotyping and genotyping

About 31,411 trees (1831 clonal varieties \(\times 17 \) copies each) were assessed for the incidence of fusiform rust disease (presence of galls or no galls) at age 6 years. For this study, 723 clonal varieties from five full-sib families were genotyped. Most of these families were related sharing a parent or a grandparent (Supplementary Figure S1).

The genotyped varieties were distributed across all 26 trials. The number of clonal varieties per family ranged between 46 and 224. For genotyping, DNA was extracted from young needle tissues of trees. A proprietary 17 K custom SNP array was developed using the Applied Biosystems™ Axiom™ array from ThermoFisher Scientific. SNPs loci were initially screened with a 192 sample set of diverse genotypes from across the natural range of \(P. \) taeda. Candidate SNP sequences used in the screening were developed as a part of the PINEMAP project (Coordinated Agricultural Project funded by the USDA National Institute of Food and Agriculture, Award #2011-68002-30185). SNPs were selected for inclusion on the final array based on a call rate success and a minor allele frequency of 5%. Markers violating a nonzero minor allele frequency less than 0.02 and a lower than expected proportion of heterozygotes were discarded. Missing genotypes were imputed with LinkImpute software (Money et al. 2015). The software uses the LD-kNNi algorithm developed and modified by Troyanskaya et al. (2001) and Schwender (2012). The method imputes missing genotypes using normalized distance and \(k \) nearest neighbors between genotypes. The final number of markers used in the study was 16920.

Statistical analysis

Variance components and heritability:

The incidence of fusiform rust disease of 1831 genotypes was analyzed using the following generalized linear mixed model.

\[
\eta = \log \left(\frac{p}{1-p} \right) = 1 + X_a + Z_1 b + Z_2 c + Z_3 r + Z_4 a + Z_5 n + \epsilon
\]

where \(\eta \) is the logit link function \(g(\mu) \) of the vector of response variable (incidence or no incidence); \(p \) is the probability of trait incidence; \(\log(p/(1-p)) \) is the log of odds; \(\mu \) is the conditional mean; \(X \) and \(Z \) are incidence matrices for the fixed and random effects respectively; \(s \) is the vector of site fixed effect (\(s = 26 \)); \(b \) is the vector for random replicate effect (\(b = 6 \)) nested within site with \(b \sim \text{MVN}(0, I_{26}) \); \(c \) is the vector of random column random effect (\(c = 120 \)) nested within replicate with \(c \sim \text{MVN}(0, I_{26}) \); \(r \) is the vector of random row effect (\(r = 145 \)) nested within replicate with \(r \sim \text{MVN}(0, I_{26}) \); \(a \) is the vector of random additive genetic effects (\(a = 1831 \)) with \(a \sim \text{MVN}(0, G_a \otimes A) \); \(n \) is the vector of random nonadditive genetic effects (\(n = 1831 \)) with \(n \sim \text{MVN}(0, I_{26}) \); and \(\epsilon \) is the vector of random errors with \(\epsilon \sim \text{MVN}(0, I_{26}) \).

The symbol \(\otimes \) is the direct (Kronecker) product operator, \(I \) is an identity matrix of its proper dimensions, \(G_a \) is the s-by-s variance-covariance matrix of the genotype nested within environment effect, and \(A \) is the a-by-a numerator relationship matrix derived from pedigree.

Various variance-covariance structures were fit to the additive genetic effects (\(a \)), such as compound symmetry, heterogeneous variance structure, and factor analytics to model the additive genetic and genetic by environment interactions. Heterogeneous variance-covariance structure was the best fit. The mathematical form of heterogeneous \(G_a \) structure is (Isik et al. 2017)

\[
G_a \otimes A = \begin{bmatrix}
\sigma_{gr1}^2 & \sigma_{gr1}\sigma_{gr2}\rho & \ldots & \sigma_{gr1}\sigma_{gr26}\rho \\
\sigma_{gr1}\sigma_{gr2}\rho & \sigma_{gr2}^2 & \ldots & \sigma_{gr2}\sigma_{gr26}\rho \\
\vdots & \vdots & \ddots & \vdots \\
\sigma_{gr1}\sigma_{gr26}\rho & \sigma_{gr2}\sigma_{gr26}\rho & \ldots & \sigma_{gr26}^2
\end{bmatrix} \otimes A
\]

where the diagonal elements are site-specific additive genetic variances and off-diagonal elements are covariance between.
pairs of sites. This covariance structure provided a uniform correlation among site pairs.

A simple IID (independent and identically distributed) structure was fitted for nonadditive genetic effects in the model. This structure provides a single constant nonadditive genetic variance across all sites but no covariance between pairs of sites. Nonadditive genetic by environment interaction was not significant. Residual log-likelihood ratio test was used to assess the significance of additive and nonadditive genetic variances.

Using the observed variance components from the above model, clone-mean narrow-sense, and broad-sense heritabilities were estimated using the derivations according to Isik et al. (2017):

\[
h^2 = \frac{\sigma^2}{\sigma^2 + r_s\sigma^2_g + \sigma^2_n} \quad (3) \\
H^2 = \frac{\sigma^2}{\sigma^2 + r_s\sigma^2_g + \sigma^2_n} \quad (4)
\]

where \(\sigma^2\) is the average square root of product of pairwise additive genetic variances within environments; \(\sigma^2_g\) is nonadditive genetic variance; \(\sigma^2_n\) is the residual variance; \(r_s\) is the additive genetic correlation between pairs of sites, \(s\) is the number of sites \((s = 26)\), and \(n_h\) is the harmonic mean number of trees per clonal variety \((n_h = 11.657)\). \(\sigma^2_e\) is the variance of standard binomial distribution \(\pi^2/3 = 3.29\) (Gilmour et al. 1985). Standard errors of heritabilities were approximated using the delta method (Lynch and Walsh 1998). The models were run using ASReml software version 4.1 (Gilmour et al. 2015). Variance components and heritability estimates were calculated using a pin file in the ASReml software.

Expected and realized genomic relationships

The additive genetic relationships were calculated using the pedigree. Realized genomic relationship matrix was calculated using the regression method according to VanRaden (2008).

\[
MM = g_011^* + g_1A + E
\]

where \(M\) is \(n\times m\) matrix of SNP markers with elements \(-1, 0,\) and \(1\) for AA, AB, and BB genotypes, respectively, \(g_0\) is the intercept, \(g_1\) is the regression slope, \(\mathbf{A}\) is the matrix of expected genetic relationship matrix calculated from pedigree, and \(\mathbf{E}\) is the matrix of Mendelian sampling variation plus measurement error. In this method, the product of the \(M\) matrix with its transpose \((\mathbf{MM})\) is regressed on \(\mathbf{A}\). The intercept \((g_0)\) and the slope \((g_1)\) were calculated by solving the following equation:

\[
\eta^2 = \frac{\Sigma_j\Sigma_kA_{jk}g_0}{\Sigma_j\Sigma_kA_{jk}^2} = g_1\mathbf{MM}^t_{jk}A_{jk}
\]

The intercept and the slope estimated from Equation (6) were used to calculate the realized genomic relationship matrix as

\[
G = \frac{M^tM}{\eta^2}
\]

The relationship matrices were calculated using the AGHmatrix package in R statistical software (Amadieu et al. 2016). Using the \(\mathbf{A}\) and \(\mathbf{G}\) matrices, average expected and realized relationship coefficients were calculated for individual families and family pairs.

Linkage disequilibrium

The homozygous and heterozygous genotype frequencies across all SNP loci were 0.813 (AA), 0.178 (AB), and 0.009 (BB). Minor allele frequency ranged between 0 and 0.50 with a mean of 0.10. The marker matrix was used to identify clusters of genotypes into families in order to better understand the structure in the population. Spectral decomposition was performed on the marker matrix using principal component analysis in R statistical software (R Core Team 2018). Heatmaps were generated to compare the expected additive genetic relationships (based on pedigree) and realized additive genetic relationship (based on SNP markers). Linkage disequilibrium among the three most significant and six other high ranking loci based on Bayesian whole-genome regression models was calculated as \(r^2 = (h_{AB}h_{AB} - h_{AB}h_{AB})^2/p\sigma_A^2\sigma_B^2\), where \(h_{AB}, h_{AB}, h_{AB}, h_{AB}\) are probability of observing gamete frequencies and \(p\) indicates frequency for the two alleles at loci \(A\) and \(B\) (Isik et al. 2017) (see Supplementary Figure S2). For construction of heatmaps the R package ggplot2 was used (Wickham 2016).

Marker-traits associations and genomic prediction

We fit the following whole-genome regression model to estimate genomic estimated breeding values (GEBV) and SNP marker effects

\[
y = \beta1_{\mathbf{W}} + e
\]

where \(y\) is the vector of best linear unbiased estimates (pseudo-phenotypes) obtained by solving mixed model equations in model Equation (5), \(\mu\) is the overall mean, \(\beta\) is the vector of random marker effects, \(\mathbf{W}\) is the incidence matrix of markers, \(e\) is the vector of random residual effects with \(e \sim NID(0, \sigma^2_e)\), and \(1\) is the vector of ones.

Ridge regression implementation of Equation (9) (Hoerl and Kennard 1970) assumes multivariate normal prior distribution with mean zero and common variance for marker effects, \(\beta \sim NID(0, \sigma^2_\beta)\). The model shrinks marker effects uniformly.
This method estimates marker effects by minimizing residual sums of squares (Tibshirani 1996).

\[
\hat{\beta}_{\text{BRR}} = \text{argmin} \left\{ y - \mathbf{W}\beta^2 + \sigma^2_b \sum_{i=1}^{p} \beta_i^2 \right\}
\]

(10)

where, \(\hat{\beta}_{\text{BRR}}\) is the estimated marker effect and \(\sigma^2_b\) is the regularization parameter. Other terms were explained before.

In the literature, there are some empirical data reporting large QTL effects on fusiform rust disease incidence in P. taeda (Amerson et al. 2015). To test this hypothesis, Bayes B model was fit, which assumes that each marker has a unique variance following a scaled inverse \(\chi^2\) prior with two hyper parameters, \(u_p\) and \(S^2_b\), where \(u_p\) are the degrees of freedom and \(S^2_b\) is the scale parameter (Meuwissen et al. 2001; Gianola et al. 2009). The effect of each marker is fit with probability (1 − \(\pi\)) which follows a univariate student’s t-distribution, \(t(0, u_p, S^2_b)\) with degrees of freedom \(u_p = 5\) (BGLR default) and scale parameter \(S^2_b \sim \text{gamma}\) (BGLR default), where \(\pi\) represents the probability of markers having zero effect. The prior used for additive marker effect \(\beta_k\) has a mixture of distribution given below (Gianola et al. 2009).

\[
\beta_k | \pi \sim \text{IID}\left\{ \begin{array}{ll}
0 & \text{with prob } \pi_k, \\
\{0, u, S^2_b\} & \text{with prob } (1 - \pi_k)
\end{array} \right\}, k = 1, 2, \ldots, p
\]

(11)

The Bayes B model assigns a different variance to each marker. The \(\pi\) value in Bayes B is treated as unknown and is specified from the data (Gianola 2013) with \(\pi \sim \text{Beta}(\pi_0, \pi_0)\), where \(\pi_0\) denotes to the number of counts (prior successes plus prior failures) and \(\pi_0\) is markers having null effects with \(\pi_k \in [0, 1]\).

We were also interested in how marker effects on fusiform rust disease incidence vary by controlling the level of markers having null effects (\(\pi_0\)), a method called Bayes C\(\pi\) (Habier et al. 2011). In Bayes C\(\pi\), the value of \(\pi\) is unknown. The effect of each SNP comes from a mixture of multivariate student’s t-distributions (Habier et al. 2011). We tested eight different prior distributions for the percent of markers with null effect (\(\pi_0 = 0.99-0.10\)) to assess the completely polygenic vs oligogenic inheritance for the trait. All genomic prediction models were fit using the R package BGLR (Pérez and de Los Campos 2014), using 100,000 iterations, 20,000 burn-in, and thinning length of 50 iterations. Model convergence was visually assessed with trace plots created from samples of residual variance. No erratic behaviors were detected in trace plots of residuals indicating stable convergence of the models (Supplementary Figure S3).

Cross-validation

Ridge regression and Bayes B models provided better fit statistics (DIC and predictive ability) for fusiform rust disease compared to Bayes C\(\pi\) model. The following cross-validation (CV) scenarios were implemented to test the predictive ability of all SNP markers using ridge regression and Bayes B models. A summary of the cross-validation scenarios (sampling) is given in Supplementary Table S1.

1) Random-CV: A fivefold cross-validation scenario was performed by randomly selecting 80% (578 clonal varieties) of the population as the training set and the remaining 20% (145 clonal varieties) as the validation set. The random sampling was repeated 30 times. In this cross-validation scenario, the family structure and the relatedness were ignored.

2) Family-CV: Four full-sib families out of five were used as the training set, and the remaining one full-sib family was used as the validation set. The size of the training and validation sets differed for each family-CV scenario. Depending on the full-sib families included, the training set ranged between 503 and 677 clonal varieties while the testing set ranged between 46 and 224 clonal varieties.

3) Within-family-CV: In this scenario, 80% of each full-sib family was randomly selected to create the training set. The training population size was about the same (579 clonal varieties) as random-CV scenario. The validation sets (the remaining 20% of each full-sib family) had a range of 9-45 clonal varieties, depending on the family size. Within each family, the random sampling was repeated 30 times.

Predictive ability between the training and validation sets was estimated as \(r_{\text{vs}} = r(y_{\text{vs}}, \hat{g}_{\text{vs}})\) (Isik et al. 2016), where \(y_{\text{vs}}\) denotes the best linear unbiased estimates (BLUE) and \(\hat{g}_{\text{vs}}\) is genomic estimated breeding value (GEBV) from the validation set (vs). We also calculated the rank correlations \(r_{\text{rank}} = (y_{\text{vs}}, \hat{g}_{\text{vs}})\) between GEBV and BLUE for each run. The mean estimates of the predictive ability and rank correlations were reported. Mean squared error (MSE) for each fold was calculated to assess the model fit.

Validation of QTL effects (GWAS)

Bayes B and Bayes C\(\pi\) models revealed three SNP loci with large effects. The following generalized linear mixed model was fit to estimate allelic substitution effect for significant loci detected in the Bayesian whole genome regression models.

\[
\eta = \log (\frac{p}{1-p}) = \mu + \sum_{i=1}^{p} b_i X_i + p + a + e
\]

(12)

where, \(b_i\) is the vector of additive marker i-th effect, \(X_i\) is the design matrix of the fixed covariate marker with elements -1, 0, and 1. The \(p\) is effect of random experimental design effects. \(a\) is the additive (polygenic) effect of clonal variety associated with the additive genomic relationship matrix. Other terms were previously defined. Subsets of the models containing one, two, and all three QTL effects with or without polygenic effects were compared using average standard error of difference between predictions and average prediction error variance (Isik et al. 2017). The odds ratios of SNP loci genotypes (AA, AB, and BB) for fusiform rust disease outcome and percent variance explained by three QTL were estimated. The effect (odds ratio) of favorable allele dosage across all loci was estimated by constructing the haplotypes from the three SNP loci.

Results

Genetic parameter estimates

Fusiform rust disease incidence had an overall mean of 9.7% in the studied population. The five genotyped full-sib families had a mean of 4 to 14% disease incidence. The mean incidence varied for clonal varieties within the families, ranging between 0 and 100% (Figure 1).

The additive genetic variance estimate was significant based on log-likelihood ratio tests, while the nonadditive genetic variance estimate was negligible. The clone-mean narrow-sense and broad-sense heritability estimates were high (0.87 and 0.93, respectively). Genotype-by-environment interaction was negligible, as shown by the high additive genetic correlations between pairs of sites (\(r_s = 0.95\)) (Table 1).
Clustering and genetic relationships

Principal component analysis of SNP marker data put 723 clonal varieties into five distinct clusters, each representing a full-sib family (Figure 2). The clusters remained distinct when the first and second principal components were plotted against the incidence of fusiform rust disease (Figure 2). Families CxD and FxC formed a cluster, differentiating from the other three families. The clustering corresponded well with the expected genetic and realized genomic relationships. The five families were clearly visible as sub blocks in the diagonal of the matrix (Figure 3A). Overall, the realized genomic relationship agreed with the expected genetic relationships. Mean expected and realized genetic relationships for individual families and family pairs are presented in Figure 3B. The mean realized genomic relationship coefficients for the family pairs were slightly lower than expected genetic relationships derived from pedigree.

QTL effects

Bayesian models (Bayes B and Bayes Cτ, pτ > 0.90) detected three SNP loci (SNP6347, SNP11965, and SNP1920) with large effects on fusiform rust disease incidence (Figure 4). No major QTL effects were observed by Bayesian ridge regression and Bayes Cτ models with pτ < 0.90. The results of Bayes Cτ models with pτ < 0.90 were comparable to the Bayesian ridge regression model. The absolute effect of the three SNP loci identified by the Bayesian models was greater than 0.5. The effects were clearly visible when plotted (Figure 4). These three loci explained about 54% of genetic variation in disease incidence. Weak LD (≤ 0.17) between pairs of loci (Supplementary Figure S2), suggested that they are likely unlinked. We could not map these loci to the current version of P. taeda reference genome v2.01, because the markers used in this study were called using the P. taeda reference genome v1.0, a highly fragmented draft genome assembly with more than 15 million scaffolds (Zimini et al. 2014).

We validated the effects of three QTL as fixed covariates in GWAS. All three SNPs were significant at the α = 0.05 level (F tests probability values <0.0001). The model with three SNP loci as fixed covariates while accounting for polygenic effects had a lower average standard error of pair-wise prediction (1.02) and prediction error variance (1.04) compared to the model with polygenic effects only (1.37 and 1.86, respectively).

The incidence of fusiform rust disease substantially decreased with the dosage of the A allele (Figures 5). Homozygous major genotypes AA showed significantly lower rust disease incidence (2%) compared to the heterozygous AB (~20%) genotypes. The odds of fusiform rust disease incidence for heterozygous (AB) individuals were 10.7 and 12.1 times greater than the homozygous (AA) individuals for the two loci SNP6347 and SNP11965. Minor allele homozygous genotypes were not segregating for these two SNP loci in the population (Supplementary Table S2).

Predictive ability of markers

The summary of predictive ability of SNP markers for fusiform rust disease incidence, rank correlations, and model mean squared error statistics are given in Tables 2–4. Among three CV scenarios, Random-CV resulted in the highest average predictive ability estimates for Bayes B (0.71) and Bayesian ridge regression (0.76). This scenario also produced higher rank correlations and smaller mean squared error variance (better) compared to other CV scenarios (Table 2).

Family-CV scenarios produced low to moderate predictive ability estimates, ranging between 0.04 and 0.56 (Table 3). Using family CxE as the validation set produced the highest predictive ability among family-CV scenarios because of its relatively strong genetic relatedness with the training population (Figure 3B). The trend was similar for rank correlations and mean squared error variance. Bayes B and Bayesian ridge regression models varied for some families, but they produced similar statistics for the others.

Within-family-CV predictive ability estimates, with a range of 0.38–0.66, were considerably higher than the estimates for family-CV scenario (Table 4). Rank correlations had a similar range as

![Figure 1](image)

Figure 1 Boxplot showing incidence of fusiform rust disease for the genotyped full-sib families. Horizontal line in the middle of the box is the median and black diamond inside each box represents the mean. The boxes are in the interquartile range (50% of the data). Green circles denote individual clonal varieties.

Parameter	Fusiform rust (SE)
Mean incidence %	9.70 (0.167)
Additive genetic variance (σa²)	2.49 (0.450)
Nonadditive genetic variance (σd²)	0.16 (0.201)
Clone-mean narrow-sense heritability (hns²)	0.67 (0.078)
Clone-mean broad-sense heritability (hbs²)	0.93 (0.006)
Additive genetic correlation between pairs of sites (ρa)	0.95 (0.023)

Standard errors (SE) of the estimates are provided in parentheses. Fusiform rust disease appears to be under strong additive genetic control.
the predictive ability estimates. Like random-CV, this CV had smaller mean squared error statistics compared to family-CV scenario. Bayes B and Bayesian ridge regression models produced similar predictive ability estimates.

Discussion

QTL effects on disease outcome

Fusiform rust disease incidence caused by the endemic fungus *C. quercuum f. sp. fusiforme* in *P. taeda* is under strong genetic control as evident from high clone mean heritability estimates, large QTL effects, and high genomic prediction accuracies. Bayesian interpretation of whole-genome regression models found large QTL segregating in the population suggesting an oligogenic inheritance. The effects of the three SNP loci were substantial, explaining about 54% of the total variance providing supporting evidence for major QTLs affecting the trait. Previous studies also showed that Bayesian models were effective in detecting markers with large effects and predicting fusiform rust disease incidence with high accuracy in *P. taeda* (Resende et al. 2012; Quesada et al. 2014). The three QTL detected in this study behaved additively. As the dosage of the favorable allele increased, the odds of disease outcome decreased (Figure 5, Supplementary Figure S4). In another *P. taeda* breeding population, Quesada et al. (2014) observed lower rust disease incidence for a homozygous major allele genotype. The authors used a different set of SNP markers discovered via the Illumina Infinium platform. The population of *P. taeda* used in this study has been under selection for fusiform rust disease resistance by ArborGen Inc. Selection for resistant genotypes in multiple breeding cycles may have resulted in a higher frequency of QTLs controlling the disease outcome in the population.

The three SNPs with large effects on the trait had weak pairwise linkage disequilibrium values, suggesting that they might be on different linkage groups. We did not have data to identify the position of the three major SNP loci on *P. taeda* reference genome v2.01 or sequence details of loci in both flanking regions. These SNP markers were called using the first draft of the *P. taeda* reference genome v1.0 (Neale et al. 2014), which was highly fragmented with ∼15 M scaffolds. To consider using these three QTL in *P. taeda* breeding program for selection of disease resistance genotypes, they need to be validated in an independent study.

![Figure 2](image2) Spectral decomposition of genomic relationship among clonal varieties based on SNP markers across five full-sib families. The principal component analysis of marker data clustered clonal varieties into five distinct groups corresponding with the genomic relationships (full-sib families). The first and second principal components were plotted against the incidence of fusiform rust disease (transformed BLUES). The circles represent individual genotypes and colors represent full-sib families.

![Figure 3](image3) Heatmaps showing realized genomic (diagonal + upper diagonal) and expected additive genetic (lower diagonal) relationships calculated from SNP markers and pedigree, respectively. (A) Genetic relationships between 723 clonal varieties. The five dark blue blocks in the diagonal of the matrix correspond to full-sib families. (B) Average relationships within families (orange blocks in the diagonal of the matrix) and between five full-sib families. The realized genomic relationships (above diagonal) were slightly lower for some of the families and family pairs compared to expected genetic relationships (below diagonal).
revealed three SNP loci with large effects on fusiform rust disease.

The training set size was 578 (80%), while the validation set was 145.

Table 2
Mean (range) predictive ability estimates, rank correlations, and mean squared error from Bayes B and Bayesian ridge regression models for the random-CV

Model	Predictive ability	Rank correlation	MS error
Bayes B	0.76 (0.66–0.84)	0.74 (0.63–0.83)	13.5 (10.3–16.9)
Ridge regression	0.71 (0.67–0.76)	0.70 (0.64–0.74)	15.3 (13.7–17.8)

The training set size was 578 (80%), while the validation set was 145.

Understanding their sequence variation and location in *P. taeda* genome are important steps to develop DNA assays for marker-aided selection in *P. taeda* breeding. Estimation of allele substitution effect and fitting loci with large effects may increase prediction accuracies in estimation of genomic breeding values of disease incidence in *P. taeda*. In estimation of allele substitution effect, scaling might be an important factor for alleles with low frequencies (Bouwman et al. 2017). Low minor allele frequency loci (<0.01) are more common in conifers because of their large genome, large effective population size, and very recent breeding history (Neale et al. 2014).

Table 3
Predictive ability estimates, rank correlations and mean squared error from Bayes B and Bayesian ridge regression models for the family-CV

Model	Validation set Family (size)	Predictive ability	Rank correlation	MS error
Bayes B	AxB (46)	0.04	0.03	23.1
	CxD (127)	0.10	0.05	22.0
	CxE (224)	0.56	0.52	34.3
	FxC (106)	0.29	0.27	36.6
	GxS (220)	0.48	0.50	41.3
Ridge regression	AxB (46)	0.10	0.05	40.9
	CxD (127)	0.13	0.06	20.3
	CxE (224)	0.42	0.39	16.7
	FxC (106)	0.30	0.27	19.9
	GxS (220)	0.37	0.39	49.1

There was no random sampling in family-CV and only one estimate was provided. Four full-sib families out of five were used as the training set. The validation set size is provided within parenthesis after each family ID.

Genomic prediction within families

Genomic selection for fusiform rust disease in *P. taeda* breeding is promising. The random cross-validation scenario produced the highest prediction accuracies. It was closely followed by the random sampling within families to establish a training set and predicting the GEBV of the remaining 20% of progeny in each family. Using four families as the training set to predict GEBV of a remaining family produced low prediction accuracies. Studies on rubber tree yield and Sitka spruce growth reported 0.17–0.60 within-family prediction accuracies (Fuentes-Utrilla et al. 2017; Cros et al. 2019). Similar within-family prediction accuracy results were also reported in wheat and triticale *Fusarium* head blight disease incidence assessed as a binary trait (Würschum et al. 2017; Herter et al. 2019).

Genetic relatedness between the training and validation set is an important factor on the prediction accuracy of genomic estimated breeding values (Solberg et al. 2008; Misztal 2011; Würschum et al. 2017). In this study, we found low predictive ability of markers when the genetic relatedness between the training and the validation sets were weak (family-CV). These results agree with previously published studies, reporting that among-family prediction accuracies were low due to weak genetic relatedness between training and validation sets (Wang et al. 2014; Han et al. 2016; Toro et al. 2017). Marker-trait phase might be different in a genetically independent population and the linkages between the QTLs and maker loci may not hold (Isik 2014). This is not surprising since, with genomic selection, we are likely tracing chromosome haplotypes segregating in the pedigree and thus capturing genetic relationships better rather than capturing the LD (Misztal 2011). In a simulation study on GS in plant breeding, about 1000 individuals were recommended for the training set if validation set is closely genetically related to the training set but 5–20 times more individuals were suggested if the training set is not closely linked to the validation set (Hickey et al. 2014). Genomic selection can be performed for within-family selection in *P. taeda* to capture Mendelian segregation effects if the training set for the model is genetically connected to the validation set.

One of the limitations of this study was small sample size, for some families, which hindered testing the predictive ability of markers within such families (small training sets). Hence, we used 80% of individuals from other families to make the training population size comparable to the random-CV scenario. Low overall fusiform rust disease incidence (10%) was another caveat of the study. Low incidence of fusiform rust disease is not surprising.
Within-family genomic selection for fusiform rust incidence in a set of clonally replicated full-sib families of *P. taeda*. The mean of a binomial distribution is related to its variance and lower disease incidence would have smaller variance among genotypes, which might bias estimates downward (King and Zeng 2001).

Table 4 Mean (range) predictive ability estimates, rank correlations, and mean squared error from BayesB and Bayesian ridge regression models for within-family-CV

Model	Validation set Family (size)	Predictive ability	Rank correlation	MS error
Bayes B	AxB (9)	0.52 (0.13–0.78)	0.38 (–0.30 to 0.80)	11.9 (7.1–22.7)
	CxD (25)	0.66 (0.44–0.82)	0.68 (0.48–0.83)	11.4 (7.5–17.2)
	CxE (45)	0.56 (0.28–0.79)	0.48 (0.29–0.69)	13.7 (8.3–17.9)
	FXC (21)	0.41 (0.24–0.65)	0.42 (0.12–0.64)	19.1 (13.6–23.8)
	GxE (44)	0.54 (0.39–0.68)	0.55 (0.43–0.72)	13.7 (8.5–17.8)
Ridge regression	AxB (9)	0.60 (0.10–0.80)	0.43 (–0.37 to 0.87)	11.8 (3.8–21.6)
	CxD (25)	0.53 (0.29–0.72)	0.59 (0.32–0.78)	14.1 (10.5–18.5)
	CxE (45)	0.50 (0.32–0.70)	0.46 (0.16–0.71)	14.8 (11.8–18.0)
	FXC (21)	0.41 (−0.05 to 0.75)	0.43 (–0.04 to 0.66)	18.2 (12.4–25.1)
	GxE (44)	0.38 (0.14–0.52)	0.40 (0.20–0.54)	17.2 (12.6–24.0)

The training sets were formed by randomly sampling 80% of each family and combining them (579 clonal varieties) to predict validation sets (20% of the family) within families. The validation set size (20%) for each family is given within parenthesis.

and has been widely reported from cloned progeny tests (Foster and Anderson 1989; Frampton et al. 2000; Isik et al. 2003; Shalizi et al. 2020). Compared with seedling progeny, vegetative propagules of *P. taeda* are resistant to fusiform rust disease in field trials (Frampton et al. 2000). The mean of a binomial distribution is related to its variance and lower disease incidence would have smaller variance among genotypes, which might bias estimates downward (King and Zeng 2001).

Conclusions

We identified three SNP loci with a large effect on fusiform rust disease outcome in a set of clonally replicated full-sib families of *P. taeda*. These markers should be further validated in an independent study to be considered for marker-assisted selection. Within-family genomic selection for fusiform rust incidence could be effective in *P. taeda* breeding. A training population that is genetically linked to the prediction population is recommended for predicting individuals within families. Bayesian models could capture loci with large effects in fusiform rust disease in southern pines and should be preferred over the whole genome regression models with uniform distribution.

Acknowledgments

The authors are grateful to the ArborGen Inc. for providing the data for this study. We would like to thank Dr. Gary Hodge and Trevor Walker for providing useful comments on the final draft of the manuscript. We also would like to thank the two anonymous reviewers for their helpful comments and suggestions which improved the manuscript.

M.N.S. analyzed the data and wrote the first draft of the manuscript. W.P.C. conceived the experiment and supervised phenotyping and genotyping. F.I. contributed to the statistical modeling, writing, and interpretation of the results. All the authors contributed to the preparation of the final draft of the manuscript.

Data availability

All data used in this manuscript are available in supplemental materials uploaded on figshare https://doi.org/10.25387/g3.13589606. File Shalizi-pedigree.csv includes pedigree of all clonal varieties used to estimate variance components and breeding values. File Shalizi-phenotype.csv includes raw phenotype data used to estimate variance components, breeding values, and adjusted phenotypes. File Shalizi-SNPmarker-adjustedPhenotype.rda includes adjusted phenotypes and SNP markers for 723 *P. taeda* clonal varieties used to estimate marker effects and predict genomic estimated breeding values.

Conflicts of interest

None declared.

Literature cited

Amadeu RR, Cellon C, Olmstead JW, Garcia AAF, Resende MFR, et al. 2016. AGHmatrix: R package to construct relationship matrices for autotetraploid and diploid species: a blueberry example. Plant Genome. 9:1–10.

Amerson HV, Nelson CD, Kubisiak TL, Kuhlman EG, Garcia SA. 2015. Identification of nine pathotype-specific genes conferring resistance to fusiform rust in loblolly pine (*Pinus taeda*). Forests. 6: 2739–2761.

Becwar MR, Nagmani R, Wann SR. 1990. Initiation of embryogenic cultures and somatic embryo development in loblolly pine (*Pinus taeda*). Can J Res. 20:810–817.

Bouwman AC, Hayes BJ, Calus MPL. 2017. Estimated allele substitution effects under genomic evaluation models depend on the scaling of allele counts. Genet Sel Evol. 49:79.

Cros D, Mbo-Nkoulou L, Bell JM, Oum J, Masson A, et al. 2019. Within-family genomic selection in rubber tree (*Hevea brasiliensis*) increases genetic gain for rubber production. Indus Crops Products. 138:111464.

Cubbage FW, Pye JM, Holmes TP, Wagner JE. 2000. An economic evaluation of fusiform rust protection research. Southern J Appl Forest. 24:77–85.

Cumbie WP, Huber DA, Steel VC, Rottmann W, Cannistra C, et al. 2020. Marker associations for fusiform rust resistance in a clonal population of loblolly pine (*Pinus taeda*, L). Tree Genet Genom. 16:1–15.

Cumbie WP, Isik F, Li B, Goldfarb B. 2011. Effects of propagule type on genetic parameters of wood density and growth in a loblolly pine progeny test at ages 10 and 11 years. Tree Genet Genom. 7:1147–1158.

Falconer DS, Mackay TFC. 1996. Introduction to Quantitative Genetics (Fourth edition). Longman Group. 464. p.

Foster GS, Anderson RL. 1989. Indirect selection and clonal propagation of loblolly pine seedlings enhance resistance to fusiform rust. Can J Res. 19:534–537.

Foster GS, Shaw DV. 1988. Using clonal replicates to explore genetic variation in a perennial plant species. Theor Appl Genet. 76: 788–794.
Frampton J, Li B, Goldfarb B. 2000. Early field growth of loblolly pine rooted cuttings and seedlings. South J Appl Forest. 24:98–105.

Fuentes-Utrilla P, Goswami C, Cottrell JE, Pong-Wong R, Law A, et al. 2017. QTL analysis and genomic selection using RADseq derived markers in Sitka spruce: the potential utility of within family data. Tree Genet Genom. 13:33.

Garrick DJ, Taylor JF, Fernando RL. 2009. Deregressing estimated breeding values and weighting information for genomic regression analyses. Genet Sel Evol. 41:55.

Gianola D. 2013. Priori in whole-genome regression: the Bayesian alphabet returns. Genetics. 194:573–596.

Gianola D, de los Campos G, Hill WG, Manfredi E, Fernando R. 2009. Additive genetic variability and the Bayesian alphabet. Genetics. 183:347–363.

Gilmour AR, Anderson RD, Rae AL. 1985. The analysis of binomial data by a generalized linear mixed model. Biometrika. 72:593–599.

Gilmour AR, Gogel BJ, Cullis BR, Welham S, Thompson R. 2015. ASReml User Guide Release 4.1 Structural Specification. Hemel Hempstead: VSN International Ltd.

Habier D, Fernando RL, Kizilkaya K, Garrick DJ. 2011. Extension of the bayesian alphabet for genomic selection. BMC Bioinformatics. 12:186.

Han S, Utz HF, Liu W, Schrag TA, Stange M, et al. 2016. Choice of models for QTL mapping with multiple families and design of the training set for prediction of Fusarium resistance traits in maize. Theor Appl Genet. 129:431–444.

Herter CP, Ebmeyer E, Kollers S, Crossa J, Hearne S, Babu R, et al. 2014. Accuracy of within-and among-family genomic prediction for Fusarium head blight and Septoria tritici blotch in winter wheat. Theor Appl Genet. 132:1121–1135.

Hickey JM, Dreisigacker S, Crossa J, Hearne S, Babu R, et al. 2014. Evaluation of genomic selection training population designs and genotyping strategies in plant breeding programs using simulation. Crop Sci. 54:1476–1488.

Hoerl AE, Kennard RW. 1970. Ridge regression: biased estimation for nonorthogonal problems. Technometrics. 12:55–67.

Isik F. 2014. Genomic selection in forest tree breeding: the concept and an outlook to the future. New Forests. 5:347–401.

Isik F, Amerson HV, Whetten RW, Garcia SA, Li B, et al. 2008. Resistance of Pinus taeda families under artificial inoculations with diverse fusiform rust pathogen populations and comparison with field trials. Can J Res. 38:2687–2696.

Isik F, Bartholomé J, Farjat A, Chancerel E, Raffin A, et al. 2016. Genomic selection in maritime pine. Plant Sci. 242:108–119.

Isik F, Goldfarb B, LeBude A, Li B, McKeand S. 2005. Predicted genetic gains and testing efficiency from two loblolly pine clonal trials. Can J Res. 35:1754–1766.

Isik F, Li B, Frampton J. 2003. Estimates of additive, dominance and epistatic genetic variances from a clonally replicated test of loblolly pine. Forest Sci. 49:77–88.

Isik F, Li B, Frampton J, Goldfarb B. 2004. Efficiency of seedlings and rooted cuttings for testing and selection in Pinus taeda. Forest Sci. 50:44–53.

Isik F, Maltecca C, Holland J. 2017. Genetic Data Analysis for Plant and Animal Breeding. New York: Springer International Publishing.

King G, Zeng L. 2001. Logistic regression in rare events data. Polit Anal. 9:137–163.

Kubisiak TL, Amerson HV, Nelson CD. 2005. Genetic interaction of the fusiform rust fungus with resistance gene Fr 1 in loblolly pine. Phytopathology. 95:376–380.

Lauer E, Isik F. 2021. Major QTL confer race-nonspecific resistance in the co-evolved Cronartium quercuum f. sp. fusiforme–Pinus taeda pathosystem. Heredity. 1–12.

Lynch M, Walsh B. 1998. Genetics and Analysis of Quantitative Traits. Vol. 1. Sunderland, MA: Sinauer.

McKeand SE, Li B, Amerson HV. 1999. Genetic variation in fusiform rust resistance in loblolly pine across a wide geographic range. Silvae Genetica. 48:255–259.

McKeand SE, Jokela EJ, Huber DA, Byram TD, Allen HL, et al. 2006. Performance of improved genotypes of loblolly pine across different soils, climates, and silvicultural inputs. Forest Ecology and Management. 227:178–184.

McKeand SE. 2019. The evolution of a seedling market for genetically improved loblolly pine in the southern United States. Journal of Forestry. 117:293–301.

McKeand SE, Mullin T, Byram T, White T. 2003. Deployment of Genetically Improved Loblolly and Slash Pines in the South. Journal of Forestry. 101:32–37.

Meeuwissen THE, Hayes BJ, Goddard ME. 2001. Prediction of total genetic value using genome-wide dense marker maps. Genetics. 157:1819–1829.

Mislata I. 2011. FAQ for genomic selection. J Anim Breed Genet. 128:245–246.

Money D, Gardner K, Migicovsky Z, Schwanger H, Zhong GY, et al. 2015. LinkImpute: fast and accurate genotype imputation for nonmodel organisms. G3 (Bethesda). 5:2383–2390.

Neale DB, Wegrzyn JL, Stevens KA, Zimin AV, Puiu D, et al. 2014. Decoding the massive genome of loblolly pine using haploid DNA and novel assembly strategies. Genome Biol. 15:R59.

Nelder JA, Wedderburn RW. 1972. Generalized linear models. Journal of the Royal Statistical Society: Series A (General). 135:370–384.

Pérez P, de Los Campos G. 2014. Genome-wide regression and prediction with the BGLR statistical package. Genetics. 198:483–495.

Quesada T, Resende MF, Jr. Muñoz P, Wegryn J, Neale D, et al. 2014. Mapping fusiform rust resistance genes within a complex mating design of loblolly pine. Forests. 5:347–362.

R Core Team. 2018. R: A language and environment for statistical computing. Vienna: Austria: R Foundation for Statistical Computing. 2013.

Resende MFR, Muñoz P, Resende MDV, Garrick DJ, Fernando RL, et al. 2012. Accuracy of genomic selection methods in a standard data set of loblolly pine (Pinus taeda L.). Genetics. 190:1503–1510.

Schwender H. 2012. Imputing missing genotypes with weighted k nearest neighbors. J Toxicol Environ Health A. 75:438–446.

Shalizi MN, Gezan SA, McKeand SE, Sherrill JR, Cumbie WP, et al. 2020. Correspondence between breeding values of the same Pinus taeda L. Genotypes from clonal trials and half-sib seedling progeny trials. Forest Sci. 66:600–611.

Solberg TR, Sonesson AK, Woolliams JA, Meeuwissen THE. 2008. Genomic selection using different marker types and densities. J Anim Sci. 86:2447–2454.

Tibshirani R. 1996. Regression shrinkage and selection via the lasso. J R Stat Soc B. 58:267–288.

Toro MA, Saura M, Fernandez J, Villanueva B. 2017. Accuracy of genomic within-family selection in aquaculture breeding programmes. J Anim Breed Genet. 134:256–263.

Troyanskaya O, Cantor M, Sherlock G, Brown P, Hastie T, et al. 2001. Missing value estimation methods for DNA microarrays. Bioinformatics. 17:520–525.
VanRaden PM. 2008. Efficient methods to compute genomic predictions. J Dairy Sci. 91:4414–4423.
Wang Y, Mette MF, Miedaner T, Gottwald M, Wilde P, et al. 2014. The accuracy of prediction of genomic selection in elite hybrid rye populations surpasses the accuracy of marker-assisted selection and is equally augmented by multiple field evaluation locations and test years. BMC Genomics. 15:556.
Wilcox PL, Amerson HV, Kuhlman EG, Liu BH, O’Malley DM, et al. 1996. Detection of a major gene for resistance to fusiform rust disease in loblolly pine by genomic mapping. Proc Natl Acad Sci USA. 93:3859–3864.
Würschum T, Maurer HP, Weissmann S, Hahn V, Leiser WL. 2017. Accuracy of within-and among-family genomic prediction in triticate. Plant Breed. 136:230–236.
Zimin A, Stevens KA, Crepeau MW, Holtz-Morris A, Koriabine M, et al. 2014. Sequencing and assembly of the 22-Gb loblolly pine genome. Genetics. 196:875–890.

Communicating editor: D.-J. de Koning