The spectral properties of the Falicov-Kimball model in the weak-coupling limit

Pavol Farkašovský
Institute of Experimental Physics, Slovak Academy of Sciences
Watsonova 47, 043 53 Košice, Slovakia

Abstract

The f and d electron density of states of the one-dimensional Falicov-Kimball model are studied in the weak-coupling limit by exact diagonalization calculations. The resultant behaviors are used to examine the d-electron gap (Δ_d), the f-electron gap (Δ_f), and the fd-electron gap (Δ_{fd}) as functions of the f-level energy E_f and hybridization V. It is shown that the spinless Falicov-Kimball model behaves fully differently for zero and finite hybridization between f and d states. At zero hybridization the energy gaps do not coincide ($\Delta_d \neq \Delta_f \neq \Delta_{fd}$), and the activation gap Δ_{fd} vanishes discontinuously at some critical value of the f-level energy E_{fc}. On the other hand, at finite hybridization all energy gaps coincide and vanish continuously at the insulator-metal transition point $E_f = E_{fc}$. The importance of these results for a description of real materials is discussed.

PACS nrs.:75.10.Lp, 71.27.+a, 71.28.+d, 71.30.+h
1 Introduction

The Falicov-Kimball model (FKM) has become, since its introduction in 1969, one of the most popular examples of a system of interacting electrons with short-range interactions. The model was originally proposed to describe metal-insulator transitions [1] and has since been investigated in connection with a variety of problems such as binary alloys [2], the formation of ionic crystals [3], and ordering in mixed-valence systems [4]. It is the latter language we shall use here, considering a system of localized \(f \) electrons and itinerant \(d \) electrons coupled via the local interaction \(U \) and hybridization \(V \). The Hamiltonian of the spinless FKM is

\[
H = \sum_{ij} t_{ij} d_i^+ d_j + U \sum_i f_i^+ f_i d_i^+ d_i + E_f \sum_i f_i^+ f_i + V \sum_i d_i^+ f_i + h.c.,
\]

where \(f_i^+ \), \(f_i \) are the creation and annihilation operators for an electron in the localized state at lattice site \(i \) with binding energy \(E_f \) and \(d_i^+ \), \(d_i \) are the creation and annihilation operators of the itinerant spinless electrons in the \(d \)-band Wannier state at site \(i \).

The first term of (1) is the kinetic energy corresponding to quantum-mechanical hopping of the itinerant \(d \) electrons between sites \(i \) and \(j \). These intersite hopping transitions are described by the matrix elements \(t_{ij} \), which are \(-t\) if \(i \) and \(j \) are the nearest neighbors and zero otherwise (in the following all parameters are measured in units of \(t \)). The second term represents the on-site Coulomb interaction between the \(d \)-band electrons with density \(n_d = \frac{1}{L} \sum_i d_i^+ d_i \) and the localized \(f \) electrons with density \(n_f = \frac{1}{L} \sum_i f_i^+ f_i \), where \(L \) is the number of lattice sites. The third term stands for the localized \(f \) electrons whose sharp energy level is \(E_f \). The last term represents the hybridization between the itinerant and localized states.

In this paper we perform exhaustive numerical studies of the spectral properties of the FKM with and without hybridization. While the static properties of the FKM are well understood at present [5, 6] (including the picture of valence transitions), the dynamical properties of the model are still unclear. Even, the spectral properties of the \(f \) electrons are not understood satisfactorily nor for \(V = 0 \), where only a few exact results are known for the infinite-dimensional systems [7, 8]. No exact results are known for nonzero hybridization and \(T = 0 \), with the exception of numerical
results obtained on very small clusters [9]. The first systematic study of dynamical properties of the FKM with hybridization has been performed recently by Craco [10] within so called static approximation. He studied the model in the strong-coupling limit (large U) and found that the system is insulating for small values of hybridization (the size of the f and d-electron gap coincides, including the case $V = 0$) and with increasing V an insulator-metal transition takes place at some critical value of $V = V_c$. In our preceding paper we reexamined these strong-coupling results by exact-diagonalization calculations and obtained fully different conclusions [11]. In particular, we have found that for zero hybridization the gaps in the f and d electron density of states do not coincide, and almost all f electron spectral weight is located outside the d electron subbands. For nonzero hybridization the f and d electron gaps coincide, for both the symmetric and unsymmetric case, but no insulator-metal transition driven by hybridization is observed in one as well as in two dimensions. In this contribution we extend numerical calculations to the opposite limit (the weak-coupling limit). From this point of view the paper represents the first systematic (exact) study of dynamical properties of the FKM in the weak-coupling limit. Here, the special attention is devoted to the behavior of the f and d-electron density of states with increasing E_f. Such an analysis is very important since a parametrization of E_f with applied pressure p [12] can, in principle, provide an interpretation of some experimental data, e.g., the behavior of the activation gap (the gap between the occupied and unoccupied states) with increasing p. In our previous paper [6] the problem of pressure dependence of the activation gap was analysed through the behavior of the energy gap in the d-electron spectrum of the FKM and many similarities with the experimental data on the valence fluctuating compound SmB$_6$ were found. These similarities are however only qualitative, since in the correct analysis one should take into account also the behavior of the f-electron spectral functions. This was done by Park and Hong [9] and a nice correspondence of theoretical and experimental results has been obtained. Unfortunately, these results have been obtained on a very small cluster (consisting of only eight sites) and thus cannot be considered as definite. Here we reexamine the behavior of the activation gap in the FKM for both $V = 0$ and $V > 0$. At zero hybridization we are able to present results on relatively large clusters for both the d and f electron density of states, and thus our results can be
extrapolated satisfactorily to the thermodynamic limit. For nonzero hybridization we were able to perform small-cluster exact-diagonalization calculations on lattices only slightly larger than used by Park and Hong [9] \((L \sim 12)\), however a fundamental different behavior of the model is observed already on such small clusters.

2 Results and discussion

Let us start the discussion of our results with the case \(V = 0\). In Fig. 1 we present numerical results for the \(d\) and \(f\) electron density of states obtained for \(U = 0.6\) and several values of the \(f\)-level energy \(E_f\). Since the ground state configurations of the FKM in the weak coupling limit are well-known [6, 13] (the most homogeneous (insulating) configurations for \(|E_f| < E_{fc} \sim 1.34\), and the phase separated (metallic) configurations for \(|E_f| \geq E_{fc}\)), the \(d\)-electron density of states can be calculated directly from the single particle spectrum of the FKM model for \(V = 0\). For the periodic configurations this can be done analytically in the thermodynamic limit [14], and for an arbitrary \(f\)-electron concentration a numerical diagonalization is possible on very large clusters \((L = 64000)\). Unlike this case, the \(f\)-electron density of states has to be calculated by exact diagonalization calculations (Lanczos method [15]), thereby the cluster sizes are strongly limited \((L \leq 24)\). To minimize the finite-size effects on the \(f\)-electron spectra we have performed numerical calculations for several cluster sizes at each value of \(E_f\). The typical behaviors are shown in Fig. 2 for two selected values of \(E_f\). It is seen that finite-size effects are small and thus already results obtained for \(L = 24\) can be used satisfactorily to represent the behavior of large systems. Although we have used in the numerical calculations the relatively large value of \(\epsilon = 0.01\) for the resolution [16], the formation of the gap in the \(f\)-electron density of states at the Fermi level (in all examined cases the Fermi level is located between the first and the second peak) is apparent. It is also apparent that the gaps in the \(d\) and \(f\) electron spectra do not coincide. Moreover, one can see (in accordance with results obtained in the strong-coupling limit [11]) that practically all \(f\)-electron spectral weight is located inside the principal \(d\)-electron gap (the gap at the Fermi energy). With increasing \(E_f\) both the principal gap as well as the \(f\)-electron spectrum shift to higher energies. Since the finite size effects on the \(f\)-electron spectra
are negligible for the cluster sizes used in our numerical calculations ($L = 24$), and even the d-electron spectra can be obtained exactly on much larger clusters, one can try to construct the E_f dependence of all relevant energy gaps. In particular, we have calculated the d-electron gap Δ_d (the gap in the d-electron spectrum at the Fermi energy), the f-electron gap Δ_f (the gap in the f-electron spectrum at the Fermi energy), and the fd-electron gap Δ_{fd} (the gap between the occupied f subband and the empty d subband (the activation gap). To obtain the d-electron gap Δ_d it is sufficient to know the f-electron distribution that minimizes the ground-state energy of the FKM for given E_f and U. As mentioned above, the ground-state configurations of the FKM in the weak-coupling limit are the most homogeneous configurations for $|E_f| < E_{fc}$, and the phase separated configurations for $|E_f| \geq E_{fc}$. While the most homogeneous distribution of f electrons can be easily generated for arbitrary $E_f(n_f)$, the f-electron distribution in the phase separated configuration has to be determined numerically. This distribution can be found in principle exactly, as shown in [6] or approximately as done in [13]. Here we adopt the latter method, since it allows to treat several times larger clusters ($L \sim 300$) and still to keep the high accuracy of computations. The results of numerical calculations for Δ_d obtained using this method on the cluster consisting of 240 sites are presented in Fig. 3. It is seen that E_f dependence of the d electron gap qualitatively mimics the pressure dependence of the activation gap in SmB$_6$ [17] (we note a parametrization of E_f with pressure).

With increasing pressure (the f-level position E_f) the gap decreases and vanishes discontinuously at some critical pressure p_c (E_{fc}). The finite-size scaling analysis that we have performed for a wide range of L values ($L = 40, 60 \ldots 240$) showed that Δ_d is practically independent of L for all $|E_f| < E_{fc}$. On the other hand the same analysis performed for $|E_f| \geq E_{fc}$ revealed that the finite-size effects are still present in this region, but a disappearance of Δ_d can be satisfactorily confirmed by extrapolation of results obtained for different L.

To determine the E_f dependence of the f-electron gap Δ_f, and the fd-electron gap Δ_{fd} we have performed exhaustive numerical studies of the f-electron density of states for a wide range of E_f values. In particular, we have calculated the f-electron density of states for each E_f from the interval $[0,1.4]$ with the step $\Delta E_f = 0.05$, and with the step $\Delta E_f = 0.01$ for E_f near the point of the insulator-metal transition.
transition. To reveal the finite-size effects on Δ_{fd} and Δ_f the calculations have been done for several cluster-sizes ($L = 12, 16, 20, 24$) at each E_f. It was found that finite-size effects on Δ_f and Δ_{fd} are negligible for $|E_f| < E_{fc}$, while small finite-size effects have been observed for $E_f > E_{fc}$. The resultant E_f dependence of Δ_f and Δ_{fd} is presented in Fig. 3. It is seen that Δ_{fd} exhibits the same behavior as Δ_d, of course with one exception and namely that $\Delta_{df} \sim \Delta_d/2$. Since Δ_{fd} is the gap between the occupied (f) and unoccupied (d) states (the activation gap) its behavior can be directly compared with the behavior of the activation gap in SmB$_6$ [17]. Although data for Δ_{fd} are more scattered, both activation gaps exhibit qualitatively the same behavior. This indicates that the spinless FKM, probably the simplest model of correlated electrons can, in principle, provide the correct physics for describing properties of real materials.

Let us now examine what happens if the hybridization is switched on. One could expect that just the hybridization will improve the accordance between the theoretical and experimental results for the activation gaps, since the hybridization generally smears behaviors. This conjecture support also results by Park and Hong [9] obtained for the FKM with hybridization on a very small cluster consisting of only eight sites. Their results obtained for the E_f dependence of the activation gap and the d-electron concentration n_d are summarized in Fig. 4. It is seen a nice correspondence of theoretical and experimental data for both the activation gap as well as the d-electron concentration. Unfortunately, these results have been obtained on a very small cluster and so cannot be considered as definite. Even, the actual behavior of the activation gap and the d-electron concentration n_d on large lattices can be fully different from one presented in Fig. 4. Indeed, a comparison of their results obtained for n_d at $V = 0$ with our results presented in Fig. 3b reveals fully different behavior of n_d. While n_d calculated by Park and Hong [9] for $L = 8$ is constant for all values of E_f from $E_f = 0.8$ to the insulator-metal transition point $E_{fc} = 1.34$, our results calculated on much larger clusters ($L = 240$) exhibit strong dependence on E_f. In the next we reexamine exactly the behavior of the FKM with hybridization on the cluster consisting of eight sites, as well as on clusters slightly larger ($L = 10, 12$). We present new results that significantly improve results obtained by Park and Hong [9].

To show the hybridization effects on Δ_d, Δ_f and Δ_{fd} we have calculated exactly
the f and d electron density of states for $V = 0$ and $V = 0.02$ on a small finite cluster consisting of $L = 8$ sites. We chose this cluster size to be compatible with results of Park and Hong [9]. The resultant behaviors are presented in Fig. 5. The most prominent difference between the results obtained for $V = 0$ and $V = 0.02$ is that a nonzero spectral weight appeared in the d-electron density of states at the Fermi level for finite hybridization. Of course, this fact will change dramatically the picture discussed above for $V = 0$. This is clearly demonstrates in Fig. 6a, where the E_f dependence of Δ_d, Δ_f and Δ_{fd} is displayed for $V = 0.02$ and $L = 8$. It is seen that all gaps coincide for nonzero V, what strongly contradicts to the case of $V = 0$. For a comparison we have displayed in Fig. 6a also the behavior of the single particle excitation energy defined as $\Delta_s = E_G(L + 1) + E_G(L - 1) - 2E_G(L)$, where $E_G(N)$ is the ground state energy for N electrons. As one could expect (on the base of the strong-coupling results [11]) the single particle excitation energy Δ_s coincides with Δ_d, Δ_f and Δ_{fd} for nonzero hybridization. This result is very important from the numerical point of view since the single particle excitation energy can be calculated easily by other methods (that allow to treat much larger clusters, e.g., the density matrix renormalization group method (DMRG)), and so it can be used satisfactorily for describing conducting properties of the model. As one can see from Fig. 6a the conducting properties of the FKM with hybridization are described very inaccurate within the small-cluster exact-diagonalization calculations. In the region where the metallic phase has been identified for $V = 0$, the single particle excitation energy increases and it is not clear if this is a consequence of finite hybridization or finite-size effects. Since calculations performed for $L = 10$ and $L = 12$ revealed relatively large finite-size effects we have decided to use DMRG method to verify the actual behavior of Δ_s. In comparison to exact diagonalization calculations the DMRG method allows to treat several times larger clusters ($L \sim 50$) and still to keep the high accuracy of computations. We typically keep up to 128 states per block, although in the numerically more difficult cases, where the DMRG results converge slower, we keep up to 400 states. Truncation errors [18], given by the sum of the density matrix eigenvalues of the discarded states, vary from 10^{-8} in the worse cases to zero in the best cases. The typical behavior of Δ_s is displayed in Fig. 6b for two finite clusters of $L = 32$ and $L = 36$ sites. Although the finite-size effects are still present for cluster sizes
treated by DMRG method the metallic region seems to be satisfactorily verified also for nonzero hybridization. However, there is one important difference between the case $V = 0$ and the case $V = 0.02$. While for $V = 0$ both Δ_d and Δ_{fd} vanish discontinuously, they seem to vanish continuously for nonzero hybridization. This indicates that the spinless FKM behaves fully differently for zero and non-zero hybridization and fully different are also the corresponding pictures of insulator-metal transitions. Since rare-earth compounds exhibit both types of insulator-metal transitions (discontinuous as well as continuous) their different behavior under the external pressure can be interpreted directly as a consequence of absence (presence) of hybridization in a given material. According to this conjecture, e.g., SmB$_6$ that exhibits a discontinuous pressure-induced insulator-metal transition should be a material with zero hybridization between d and f states. Indeed, SmB$_6$ is the highest symmetry of the O_h point group and the on-site hybridization between d and f states is forbidden by inversion symmetry [19]. This confirms that the spinless FKM, in spite of its relatively simplicity, can yield the correct physics for a description of real materials, e.g. SmB$_6$. Besides of a qualitative correspondence between the theoretical and experimental data for the activation gap, we can state another example that supports this conclusion. In Fig. 7 we have displayed in detail the d and f electron density of states near the Fermi level for several values of E_f ($E_f = 0, 0.1, 0.2$). For this set of E_f values the ground state is characterized by $n_f = 0.5$ what models very well the situation in SmB$_6$ at low temperatures [6]. This electronic structure consisting of two wide and two narrow subbands strongly mimics the electronic structure that we have proposed several years ago for a description of low temperature resistivity data of SmB$_6$ [20]. The analysis of these data showed that they can be explained by introducing a fine structure (consisting of two narrow bands) into the principal gap, in accordance with our results presented in Fig. 7. Of course, all these comparisons are only qualitative since our results have been obtained for the one-dimensional system at $T = 0$, while the real experimental systems are three dimensional and measurements are done at finite temperatures. In future work, we plan to perform a similar analysis in higher dimensions and $T \neq 0$. Moreover, we also want to examine the influence of other factors (the electron-phonon interaction, the orbital dynamics, etc.) that have been neglected in this version of the model.
In summary, the f and d electron density of states of the spinless Falicov-Kimball model were studied in the weak-coupling limit by exact diagonalization calculations. The resultant behaviors were used to examine the d-electron gap Δ_d, the f-electron gap Δ_f, and the fd-electron gap Δ_{fd} as functions of the f-level energy E_f and hybridization V. It was shown that the spinless Falicov-Kimball model behaves fully differently for zero and finite hybridization between f and d states. At zero hybridization the energy gaps do not coincide ($\Delta_d \neq \Delta_f \neq \Delta_{fd}$), and the activation gap Δ_{fd} vanishes discontinuously at some critical value of the f-level energy E_{fc}. In all examined cases practically all f-electron spectral weight is located outside the d-electron subbands. On the other hand, at finite hybridization all energy gaps coincide and vanish continuously at the insulator-metal transition point $E_f = E_{fc}$. The results obtained are compared with experimental behaviors observed in SmB$_6$.

This work was supported by the Slovak Grant Agency VEGA under Grant No. 2/7021/20 and the Science and Technology Assistance Agency under Grant APVT-51-021602. Numerical results were obtained using the PC-Farm of the Slovak Academy of Sciences.
References

[1] L.M. Falicov and J.C. Kimball, Phys. Rev. Lett. 22, 997 (1969).

[2] J.K. Freericks and L.M. Falicov, Phys. Rev. B 41, 2163 (1990).

[3] Ch. Gruber, J.L. Lebowitz and M. Macris. Phys. Rev. B 48, 4312 (1993).

[4] K. Ramirez, L.M. Falicov, Phys. Rev. B 3, 2455 (1971).

[5] P. Farkašovský, Phys. Rev. B 51, 1507 (1995).

[6] P. Farkašovský, Phys. Rev. B 52, R5463 (1995).

[7] U. Brandt and M.P. Urbanek, Z. Phys. 89, 297 (1992).

[8] V. Zlatic, J.K. Freericks, R. Lemanski, G. Czycholl, Phil. Mag. B 81, 1443 (2001)

[9] M. Park and J. Hong, Journal of the Korean Physical Society 33, 480 (1998).

[10] L. Craco, J. Phys.: Condens. Matter 13, 263 (2001).

[11] P. Farkašovský, Phys. Rev. B 63, 245119 (2002).

[12] C.E.T. Goncalves da Silva and L.M. Falicov, Solid State Commun. 17, 1521 (1975).

[13] P. Farkašovský, Eur. Phys. J. B 20, 209 (2001).

[14] R. Lyzwa, Physica A 192, 231 (1993).

[15] E. Daggoto, Rev. Mod. Phys. 89, 297 (1994).

[16] ε is a small (real) number introduced in the calculation of spectral properties to shift the poles of the Green’s function into the complex plane (see Ref. 14 for details).

[17] J.C. Colley, M.C. Aronson, Z. Fisk and P.C. Canfield, Phys. Rev. Lett. 74, 1629 (1995).
[18] S.R. White, Phys. Rev. Lett. 69, 2863 (1992); Phys. Rev. B 48, 10345 (1993).

[19] M.E. Foglio and L.M. Falicov, Phys. Rev. B 21, 4154 (1980).

[20] I. Batko, P. Farkašovský, K. Flachbart, E.S. Konovalova and Yu. Paderno, Solid State Communications 81, 405 (1993).
Figure Captions

Fig. 1. The f and d electron density of states of the FKM obtained for $V = 0, U = 0.6$ and several different values of E_f. The results for the f electron density of states are plotted for $L = 24$, while the results for the d electron density of states are plotted for $L = 64000$. The corresponding f-electron concentrations are: $n_f = 0.5$ for $E_f = 0$, $n_f = 4/10$ for $E_f = 0.5$, $n_f = 1/3$ for $E_f = 0.8$, and $n_f = 1/4$ for $E_f = 1.2$.

Fig. 2. The f electron density of states of the FKM obtained for $V = 0, U = 0.6$ and two different values of L and E_f.

Fig. 3. The d-electron gap Δ_d, the f-electron gap Δ_f, the fd-electron gap Δ_{fd}, and the d-electron concentration n_d as functions of the f-level energy E_f calculated for $V = 0$ and $U = 0.6$. The solid lines are guides to the eye.

Fig. 4. The activation gap Δ_{fd} and the d-electron concentration n_d as functions of the f-level energy E_f calculated for $U = 0.6$ and $L = 8$ (Ref. 7).

Fig. 5. The f and d electron density of states of the FKM obtained for $U = 0.6, E_f = 1.2, L = 8$ and two different values of V. The arrow denotes the most prominent difference between the results obtained for $V = 0$ and $V = 0.02$.

Fig. 6. a) The d-electron gap Δ_d, the f-electron gap Δ_f, the fd-electron gap Δ_{fd}, and the single particle excitation energy Δ_s as functions of the f-level energy E_f calculated for $V = 0.02, L = 8$ and $U = 0.6$. b) The single particle excitation energy Δ_s as a function of the f-level energy E_f calculated by DMRG method for the same values of V and U. The solid and dashed lines are guides to the eye.

Fig. 7. The f and d electron density of states of the FKM obtained for $V = 0, U = 0.6$ and several different values of E_f. The results for the f electron density of states are plotted for $L = 24$, while ones for the d electron density of states are plotted for $L = 64000$. In all cases the f-electron concentration is equal to $n_f = 0.5$. To see clearly the f-electron gap, the f-electron density of states has been plotted with high resolution ($\epsilon = 0.001$).

Figure a)

- Δ_f (upper line)
- Δ_{f_d} (middle line)
- Δ_d (lower line)

Figure b)

- D-electron density n_d versus f-level energy E_f for $U=0.6$.
