Circular RNA circ_103820 suppresses lung cancer tumorigenesis by sponging miR-200b-3p to release LATS2 and SOCS6

Yongbin Chi1, Wenlong Zheng2, Guangyu Bao3, Lifeng Wu4, Xiaoxue He1, Ruiy Gan1, Yan Shen1, Xudong Yin5 and Mingming Jin1

Abstract
A growing number of circular RNAs (circRNAs) have been identified and verified in several cancers. However, highly efficient therapeutic methods based on circRNAs in lung cancer remain largely unexplored. In the present study, we identified a novel circular RNA, hsa_circ_103820, based on Gene Expression Omnibus (GEO) data. Functionally, overexpression of hsa_circ_103820 showed significant inhibitory effects on the proliferation, migration and invasion of lung cancer cells, and knockdown of hsa_circ_103820 played promoting roles. Regarding the mechanism, we revealed that miR-200b-3p was a direct target of hsa_circ_103820 and that LATS2 and SOCS6 were the downstream target genes of miR-200b-3p. Therefore, we identified a novel potential tumor suppressive function of hsa_circ_103820 in lung cancer.

Introduction
Lung cancer is estimated to account for approximately one-fifth of all deaths due to malignant tumors worldwide1. In the course of lung cancer, metastasis, genetic mutations, multidrug resistance, and other changes can occur2,3. Although surgical resection, chemotherapy, radiotherapy, targeted drug therapy, immunotherapy and other therapeutic measures are used in clinical practice, the long-term survival rate of lung cancer patients is still unsatisfactory4,5. Therefore, it is of great significance to detect lung cancer in a timely manner and reveal the vital molecular mechanisms involved in the processes of invasion, metastasis, and recurrence of lung cancer.

Circular RNAs (circRNAs) are single-stranded, closed circular noncoding RNAs (ncRNAs) that have neither a 5′ cap nor a 3′ poly A tail6. Due to the special stable structure, circRNAs are not degraded by RNA enzymes, which are evolutionarily conserved7. Based on these characteristics, circRNAs, as biomarkers, might provide new ideas for drug development and new directions for disease research8. With the development of high-throughput sequencing technology, a large number of differentially expressed circRNAs have been screened in various cancers, revealing the crucial roles of circRNAs in the development of cancers for further studies9,10. We aimed to select the expression profiles of differentially expressed circRNAs between lung cancer and adjacent normal lung tissues by adopting the data in the Gene Expression Omnibus (GEO) datasets. After comprehensive analysis, we identified a novel circular RNA, hsa_circ_103820 (hsa_circ_0072309), which is located at chr5:38523520–38530768 (human GRCh37/hg19) and is encoded by leukemia inhibitory factor receptor (LIFR) gene exons that was significantly underexpressed in lung cancer compared to normal controls. To our knowledge, the
functions and mechanisms of hsa_circ_103820 in the tumorigenesis of lung cancer have not been reported.

In the present study, we selected hsa_circ_103820 for further study and found that it was expressed at low levels, while miR-200b-3p was expressed at high levels in lung cancer tissue samples. In addition, knockdown and over-expression of hsa_circ_103820 were conducted to determine the functions of hsa_circ_103820 in lung cancer cell lines, and we found that hsa_circ_103820 suppressed the proliferation, invasion, and migration of lung cancer cells by sponging miR-200b-3p and releasing its target genes large tumor suppressor kinase 2 (LATS2) and suppressor of cytokine signaling 6 (SOCS6).

Results
Screening and identification of hsa_circ_103820 in lung cancer
To identify the potential circRNAs that might participate in the tumorigenesis of lung cancer, we searched “circRNA” and “lung cancer” in the GEO dataset and discovered the GSE101586, GSE101684, and GSE112214 datasets. Next, the top 250 circRNAs in the 3 databases were screened by adopting GEO2R. The differential distributions of the top 250 circRNAs were displayed using hierarchical clustering (Fig. 1A). Subsequently, the circRNAs with consistent expression were confirmed using a Venn diagram in the top 250 circRNAs from GSE101586,
GSE101684, and GSE112214. As presented in Fig. 1B, there were 7 common circRNAs between GSE101586 and GSE101684, 15 common circRNAs between GSE101586 and GSE112214, and 15 common circRNAs between GSE101684 and GSE112214. The changes in the expression levels of circRNAs that were consistently altered were displayed using a statistical diagram according to the log(fold change) values. The results showed that among the 37 circRNAs, the mean level of hsa_circ_103820 was lowest in the tumor group relative to the normal group (Fig. 1C). Through the circBase database, we found that hsa_circ_103820 (hsa_circ_0072309) was formed from LIFR mRNA by backsplicing of sites on exon 2 and exon 5 (Fig. 1D). In addition, qRT-PCR analysis was applied to further verify hsa_circ_103820, and the results uncovered that both cDNA and gDNA were amplified by convergent primers, while only cDNA was amplified by divergent primers (Fig. 1E). Taken together, we chose hsa_circ_103820 as the object of our study.

High expression of LIFR and hsa_circ_103820 was related to a relatively good prognosis in lung cancer

First, we examined the structure of hsa_circ_103820 and LIFR in lung cancer cells. Our data revealed that RNase R did not affect the expression of hsa_circ_103820, while RNase R notably reduced the level of LIFR mRNA in A549 and SPCA1 cells (P < 0.05, Fig. 2A, B). This indicated that circ_103820 is circular in structure. Then, we revealed the stability of this circRNA in lung cancer cells. Total RNA was harvested at the indicated time points after treatment with actinomycin D, an inhibitor of transcription. An analysis of circ_103820 and LIFR mRNA revealed that the circRNA isoform was highly stable, with a transcript half-life exceeding 24 h.
whereas the associated linear transcript exhibited a half-life of 4–8 h (Fig. 2C, D). Next, we discovered that the levels of LIFR and hsa_circ_103820 were potently reduced in lung cancer tissues with respect to adjacent normal tissues ($P < 0.05$, Fig. 2E, F). In addition, statistical results showed that LIFR expression was related to the invasion of lung cancer ($P = 0.038$, Table 1); hsa_circ_103820 expression was connected with the invasion of lung cancer ($P = 0.018$, Table 2). Moreover, the results of the correlation analysis revealed that the expression of LIFR mRNA was positively correlated with the expression of hsa_circ_103820 in lung cancer ($r = 0.4956$, $P = 0.0263$, Fig. 2G, H). To further evaluate the potential prognostic value of LIFR mRNA in lung cancer, data were obtained from GEPIA. As expected, the results of the overall survival analysis proved that patients with high expression of LIFR mRNA exhibited longer overall survival than patients with low expression (Fig. 2I, J). Our clinical data also showed that high expression of hsa_circ_103820 could indicate a good prognosis in lung cancer (Fig. 2K). Therefore, we demonstrated that there was a positive correlation between LIFR and hsa_circ_103820 and that the high expression of LIFR and hsa_circ_103820 was related to a good prognosis in lung cancer.

Clinicopathologic characteristics	No. of patients	LIFR	P value	
	High	Low		
Age (year)				
>60	12	4 (33.3%)	8 (66.7%)	0.205
≤60	8	5 (62.5%)	3 (37.5%)	
Gender				
Male	13	7 (53.8%)	6 (46.2%)	0.500
Female	7	3 (42.9%)	4 (57.1%)	
Tumor size (cm)				
<3	11	7 (63.6%)	4 (36.4%)	0.080
≥3	9	2 (22.2%)	7 (77.8%)	
Differentiation grade				
Well/moderately	7	6 (85.7%)	1 (14.3%)	0.058
Poorly/undifferentiated	13	5 (38.5%)	8 (61.5%)	
Invasion				
T0-T2	14	10 (71.4%)	4 (28.6%)	0.038*
T3-T4	6	1 (16.7%)	5 (83.3%)	
Lymph node metastasis				
N0	16	12 (75.0%)	4 (25%)	0.101
N1–N2	4	1 (25%)	3 (75%)	
Distal metastasis				
M0	18	14 (77.8%)	4 (22.2%)	0.079
M1	2	0 (0.0%)	2 (100.0%)	
TNM stage				
0 & I & II	17	10 (58.8%)	7 (41.2%)	0.105
III & IV	3	0 (0%)	3 (100.0%)	

$^*P < 0.05$, TNM stage: pathologic tumor, node, metastasis stage.

Clinicopathologic characteristics	No. of patients	Hsa_circ_103820	P value	
	High	Low		
Age (year)				
>60	12	5 (41.7%)	7 (58.3%)	0.612
≤60	8	3 (37.5%)	5 (62.5%)	
Gender				
Male	13	8 (61.5%)	5 (38.5%)	0.608
Female	7	4 (57.1%)	3 (42.9%)	
Tumor size (cm)				
<3	11	7 (63.6%)	4 (36.4%)	0.185
≥3	9	3 (33.3%)	6 (66.7%)	
Differentiation grade				
Well/moderately	7	5 (71.4%)	2 (28.6%)	0.102
Poorly/undifferentiated	13	4 (30.8%)	9 (69.2%)	
Invasion				
T0-T2	14	11 (78.6%)	3 (21.4%)	0.018*
T3-T4	6	1 (16.7%)	5 (83.3%)	
Lymph node metastasis				
N0	16	13 (81.3%)	3 (18.8%)	0.061
N1–N2	4	1 (25%)	3 (75%)	
Distal metastasis				
M0	18	13 (72.2%)	5 (27.8%)	0.111
M1	2	0 (0.0%)	2 (100.0%)	
TNM stage				
0 & I & II	17	12 (70.6%)	5 (29.4%)	0.049*
III & IV	3	0 (0%)	3 (100.0%)	

$^*P < 0.05$, TNM stage: pathologic tumor, node, metastasis stage.
Overexpression of hsa_circ_103820 suppressed the proliferation, migration, and invasion of lung cancer cells

Subsequently, we further identified the influences of hsa_circ_103820 overexpression on lung cancer cell functions. The results of qRT-PCR analysis showed that hsa_circ_103820 was dramatically overexpressed in A549 and SPCA1 cells after transfection with hsa_circ_103820 overexpression plasmid, suggesting high transfection efficiency (P < 0.01, Fig. 3A). Regarding function, our results from the CCK-8 assay showed that the proliferation capacity of A549 and SPCA1 cells was observably decreased in the hsa_circ_103820 group compared with the vector (control) group (P < 0.05, P < 0.01, Fig. 3B, C). Further, the results from colony formation and EdU staining assays further verified that overexpression of hsa_circ_103820 had a strong suppressive effect on the proliferation of A549 and SPCA1 cells (P < 0.01, Fig. 3D, E). In addition, the experimental results from Transwell assays indicated that the migration and invasion capacities of A549 and SPCA1 cells were significantly reduced in the hsa_circ_103820 group compared with the vector group (P < 0.01, Fig. 3F, G). The data from the wound healing assay also revealed the inhibitory effect of hsa_circ_103820 overexpression on the migration of A549 and SPCA1 cells (P < 0.01, Fig. S2A). Taken together, our results confirmed that overexpression of hsa_circ_103820 significantly suppressed the progression of lung cancer by inhibiting cell proliferation, migration, and invasion.

Knockdown of hsa_circ_103820 promoted the proliferation, migration, and invasion of lung cancer cells

Subsequently, we further verified the impacts of hsa_circ_103820 knockdown on the progression of lung cancer. First, we designed and synthesized two hsa_circ_103820-targeting siRNAs according to the splice junction of hsa_circ_103820 (Fig. 4A). The identification results from the qRT-PCR assay revealed that hsa_circ_103820 expression was lower in the hsa_circ_103820 siRNA group than in the NC group (P < 0.01, Fig. 4B). Second, the results of the CCK-8 assay revealed that cell proliferation was dramatically elevated in the hsa_circ_103820 siRNA group relative to the NC
Similarly, the data from colony formation and EdU staining assays also revealed that knockdown of hsa_circ_103820 had a marked promoting effect on the proliferation of A549 and SPCA1 cells (P < 0.01, Fig. 4E, F). Moreover, the Transwell assay results showed that the migration and invasion abilities of A549 and SPCA1 cells were notably enhanced in the hsa_circ_103820 siRNA group compared to the NC group (P < 0.01, Fig. 4G). The data from the wound healing assay also demonstrated the inhibitory effect of hsa_circ_103820 knockdown on the migration of A549 and SPCA1 cells (P < 0.01, Fig. S2B). Thus, our results showed that knockdown of hsa_circ_103820 markedly accelerated the progression of lung cancer by promoting cell proliferation, migration, and invasion.
miR-200b-3p was verified as a direct target of hsa_circ_103820

Before verifying the underlying mechanism of hsa_circ_103820 in lung cancer, we found that circ_103820 was preferentially localized within the cytoplasm of lung cancer cells by qRT-PCR analysis (Supplementary Fig. S1). Therefore, we adopted starBase v3.0 to predict the potential target miRNAs of hsa_circ_103820. In total, 16 potential miRNAs were discovered (Fig. 5A). The top 10 miRNAs were selected for verification. As displayed in Fig. 5B, we confirmed that the luciferase activity was markedly reduced by miR-200b-3p in the Luc-hsa_circ_103820 group versus the Luc-vector group (P < 0.01). The putative interacting site was predicted between miR-200b-3p in hsa_circ_103820, and WT-hsa_circ_103820 and Mut-hsa_circ_103820 plasmids were constructed (Fig. 5C). We found that miR-200b-3p
mimics significantly decreased the luciferase activity driven by wild-type hsa_circ_103820 but not the luciferase activity driven by Mut hsa_circ_103820 ($P < 0.01$, Fig. 5D). Moreover, the results of AGO2-IP also confirmed the association of hsa_circ_103820 and miR-200b-3p ($P < 0.001$, Fig. 5E, F). In addition, biotin-miR-200b-3p or biotin-hsa_circ_103820 was transfected into A549 cells, and the enrichment of miR-200b-3p and hsa_circ_103820 was analyzed by RNA pull-down assay. As exhibited in Fig. 5G, H, both miR-200b-3p and hsa_circ_103820 were markedly enriched in the experiment ($P < 0.001$). Moreover, our results uncovered that miR-200b-3p expression was observably upregulated in lung cancer tissues with respect to paracarcinoma tissues ($P < 0.001$, Fig. 5I); further, we found that miR-200b-3p expression related to the invasion of lung cancer ($P = 0.037$, Table 3). By statistical analysis, we discovered that miR-200b-3p and hsa_circ_103820 were inversely correlated in lung cancer ($r = -0.7025$, $P < 0.001$, Fig. 5J). qRT-PCR assays showed that overexpression of circ_103820 markedly downregulated miR-200b-3p expression in A549 cells (Fig. 5K). Therefore, these findings revealed that miR-200b-3p was a negative regulatory target of hsa_circ_103820.

miR-200b-3p reversed the inhibitory effects of hsa_circ_103820 on proliferation, migration, and invasion in lung cancer

To further investigate whether hsa_circ_103820 can affect the functions of A549 and SPCA1 cells through miR-200b-3p, hsa_circ_103820 plasmid and miR-200b-3p mimics were cotransfected into A549 and SPCA1 cells. qRT-PCR analysis revealed that overexpression of hsa_circ_103820 markedly downregulated miR-200b-3p expression in A549 cells (Fig. 5L). Therefore, these findings revealed that miR-200b-3p was a negative regulatory target of hsa_circ_103820.

LATS2 and SOCS6 were proven to be the downstream target genes of miR-200b-3p

Next, we further explored the potential target genes of the circ_103820/miR-200b-3p axis downstream in lung cancer. First, we adopted TargetScan, miRDB and starBase v3.0 to predict the downstream target genes. We discovered that LATS2 and SOCS6 were commonly predicted by three prediction algorithms (Fig. 7A). Second, knockdown of these two genes had a tumor suppressive effect in lung cancer according to the colony formation assay (Supplementary Fig. S3). Based on these concerns, we speculated that these two factors might be the regulatory targets of miR-200b-3p. Then, we constructed LATS2 and SOCS6 vectors with luciferase reporters (Fig. 7B). In addition, HEK-293T cells were cotransfected with WT-LATS2/Mut-LATS2, WT-SOCS6/Mut-SOCS6, and scramble mimics/miR-200b-3p mimics. The results revealed that miR-200b-3p significantly

| Table 3 The correlation analysis between miR-200b-3p expression and clinicopathologic characteristics in lung cancer. |
|---|---|---|---|
| Clinicopathologic characteristics | No. of patients | miR-200b-3p P value | High | Low |
| Age (year) | | | | |
| >60 | 12 | 7 (58.3%) | 5 (41.7%) | 0.535 |
| ≤60 | 8 | 4 (50.0%) | 4 (50.0%) | |
| Gender | | | | |
| Male | 13 | 5 (38.5%) | 8 (61.5%) | 0.608 |
| Female | 7 | 3 (42.9%) | 4 (57.1%) | |
| Tumor size (cm) | | | | |
| <3 | 11 | 7 (63.6%) | 4 (36.4%) | 0.630 |
| ≥3 | 9 | 6 (66.7%) | 3 (33.3%) | |
| Differentiation grade | | | | |
| Well/moderately | 7 | 2 (28.6%) | 5 (71.4%) | 0.102 |
| Poorly/undifferentiated | 13 | 9 (69.2%) | 4 (30.8%) | |
| Invasion | | | | |
| T0-T2 | 14 | 2 (14.3%) | 12 (85.7%) | 0.037* |
| T3-T4 | 6 | 4 (66.7%) | 2 (33.3%) | |
| Lymph node metastasis | | | | |
| N0 | 16 | 5 (31.3%) | 11 (68.8%) | 0.153 |
| N1–N2 | 4 | 3 (75%) | 1 (25%) | |
| Distal metastasis | | | | |
| M0 | 18 | 5 (27.8%) | 13 (72.2%) | 0.521 |
| M1 | 2 | 1 (50.0%) | 1 (50.0%) | |
| TNM stage | | | | |
| O & I & II | 17 | 5 (29.4%) | 12 (70.6%) | 0.270 |
| III & IV | 3 | 2 (66.7%) | 1 (33.3%) | |

* $P < 0.05$, TNM stage: pathologic tumor, node, metastasis stage.
Fig. 6 miR-200b-3p reversed the inhibitory effects of hsa_circ_103820 on proliferation, migration, and invasion in lung cancer. A549 and SPCA1 cells were cotransfected with hsa_circ_103820 plasmid or/and miR-200b-3p mimics. A miR-200b-3p expression was monitored using qRT-PCR assay. B-D Cell proliferation was examined via CCK-8 and colony formation assays. E, F Transwell experimental analysis in the treated A549 and SPCA1 cells. Scale bars, 100 μm. Data are mean ± SD, n = 3. ***P < 0.001, **P < 0.01 (Student’s t test).
decreased the luciferase activities, which confirmed the interactions of miR-200b-3p and LATS2 or SOCS6 ($P < 0.001$, Fig. 7C). In addition, through western blot assay, our results revealed that LATS2 and SOCS6 expression was dramatically reduced in the miR-200b-3p group relative to the scramble group, while LATS2 and SOCS6 expression was prominently elevated in the hsa_circ_103820 group relative to the vector group in A549 and SPCA1 cells (Fig. 7D). Furthermore, we discovered that the over-expression of hsa_circ_103820 significantly increased the levels of LATS2 and SOCS6 in A549 and SPCA1 cells, while the increases could be observably reversed by miR-200b-3p (Fig. 7E). Moreover, we proved that the inhibitory effect of hsa_circ_103820 on the proliferation of A549 and SPCA1 cells was attenuated by miR-200b-3p ($P < 0.001$, Fig. 7F). Above all, our study demonstrated that the hsa_circ_103820/miR-200b-3p/LATS2 and SOCS6 regulatory axis affects the proliferation, migration, and invasion of A549 and SPCA1 cells (Fig. 7G).

Discussion

CircRNA can regulate eukaryotic gene expression by mediating transcription and posttranscriptional gene regulation11. With further research on circRNAs, the function and mechanism of circRNAs in malignant tumors have been successively reported12,13. For instance, hsa_circ_0005273 serves as a new therapeutic target of metastatic colorectal cancer;14 exosome-transmitted circ_MMP2 facilitates the metastasis of hepatocellular carcinoma15; circ_AMOTL1 accelerates the growth of cervical cancer by regulating AMOTL1.16 In our study, we selected “lung cancer” and “circRNA” as the keywords.
to search the related dataset from GEO datasets. Based on the GSE101586, GSE101684 and GSE112214 databases, 37 underlying circRNAs were obtained. In addition, hsa_circ_103820 was chosen as a research target according to the fold changes. Subsequently, our identification results revealed that hsa_circ_103820 was circular and stable; further, we revealed that high expression of LIFR and hsa_circ_103820 was relevant to a good prognosis in lung cancer patients. Functionally, our results revealed that overexpression of hsa_circ_103820 had strong suppressive effects on the proliferation, migration, and invasion of lung cancer cells, and knockdown of hsa_circ_103820 had significant promoting effects. Therefore, we suggested a novel circular RNA, hsa_circ_103820 that significantly inhibits the progression of lung cancer. This evidence solidly proves the important role of circRNAs in lung cancer tumorigenesis; thus, circRNAs may serve as new therapeutic targets for lung cancer patients.

In terms of the detailed mechanism, multiple studies have verified that circRNAs regulate cancer progression primarily by acting as miRNA sponges. In other words, circRNAs can bind miRNAs to inhibit their functions and competitively inhibit the interactions between miRNAs and their normal targets, thereby affecting cancer progression. For example, circ-MAPK4 suppresses apoptosis in malignant glioma through regulation of miR-125a-3p which influences the MAPK signaling pathway; circ-LMTK2 accelerates the proliferation and metastasis of gastric cancer by targeting miR-150-5p; and circ-ZKSCAN1 inhibits bladder cancer progression by regulating the miR-1178-3p/p21 axis. Our study proved for the first time that hsa_circ_103820 binds with miR-200b-3p to inhibit its expression, which indicates a new circRNA/miRNA axis in lung cancer cell tumorigenesis. Many studies have proven that miRNAs negatively regulate the expression of target genes and promote the degradation or translation of target miRNAs. Among these miRNAs, some studies have also verified that miR-200b-3p plays a carcinogenic role in a variety of cancers. In our study, we further demonstrated that the inhibitory effects of hsa_circ_103820 on the proliferation, migration, and invasion of lung cancer cells could be potently reversed by miR-200b-3p, suggesting that hsa_circ_103820 may serve as a sponge for miR-200b-3p to suppress the malignant behaviors of lung cancer.

Studies have verified that miR-200b-3p can downregulate extracellular matrix-related proteins and target ZEB1 in pancreatic cancer. It can also serve as an oncogene in lung adenocarcinoma by targeting ABCA1. However, the complex miR-200b-3p-target gene network in lung cancer is still largely unknown. Our data showed that LATS2 and SOCS6 might be the regulatory targets of miR-200b-3p through bioinformatics prediction. LATS2 is a member of the LATS tumor suppressor gene family, which significantly contributes to cancer progression and the cell cycle. Studies have demonstrated the inhibitory effect of LATS2 expression in a variety of cancers. SOCS6 is a member of the SOCS family and is mainly involved in the negative regulation of receptor tyrosine protein kinase. SOCS6 is a vital factor for normal cell growth and can act as a tumor suppressor gene in a variety of cancers. In our study, our results uncovered for the first time that LATS2 and SOCS6 are the downstream target genes of miR-200b-3p and that they can be downregulated by miR-200b-3p in lung cancer.

In summary, our study suggested that hsa_circ_103820 inhibits the proliferation, migration, and invasion of lung cancer cells by binding miR-200b-3p. MiR-200b-3p can affect the development of lung cancer by negatively regulating the expression of LATS2 and SOCS6. Therefore, hsa_circ_103820, miR-200b-3p, LATS2 and SOCS6 might be possible markers in lung cancer, providing potential targets for the treatment of lung cancer patients.

Materials and methods

Clinical samples

Twenty pairs of paracarcinoma tissues and lung cancer tissues were collected from Gongli Hospital of Shanghai Pudong New Area. All patients with lung cancer were confirmed by pathological examination. All patients were treated initially and did not receive any antitumor therapy before or after biopsy. All patients also provided informed consent. Ethical approval for this study was provided by the Ethics Committee of the Gongli Hospital of Shanghai Pudong New Area. All tissues were stored at −80 °C as soon as they were extracted.

Cell culture, transfection, and functional assays

SPCA1, A549, and HEK-293T cells were obtained from ATCC. All three types of cells were cultured in Dulbecco's modified Eagle's medium (DMEM) with 10% fetal bovine serum (FBS, Thermo Fisher Scientific, Inc.) at 37 °C in 5% CO₂. When the cells were in the logarithmic growth phase, they were used for experiments. SPCA1 and A549 cells were also treated with ribonuclease R (RNase R) and actinomycin, respectively. Hsa_circ_103820-overexpressing plasmid and control (vector) were synthesized by GENESEEED (Guangzhou, China). Hsa_circ_103820 siRNAs, scramble and miR-200b-3p mimics, and negative control (NC) were obtained from GenePharma (Shanghai, China). SPCA1 and A549 cells (1 × 10⁵ cells/well) were inoculated in 6-well plates and transfected with hsa_circ_103820-overexpressing plasmid, hsa_circ_103820 siRNAs, miR-200b-3p mimics and respective controls using Lipofectamine 3000 reagent (Invitrogen) based on the experimental instructions. The detailed procedures of cell functional assays, including CCK-8 assay, colony formation assay, EdU
staining, Transwell assay, and wound healing assay are described in the supplementary materials.

Collection of circRNA data
The circRNA data were obtained from the GEO website (available: http://www.ncbi.nlm.nih.gov/geo/) using “lung cancer” as the keyword. After analysis, the data in the GSE101586, GSE101684 and GSE112214 datasets were selected and downloaded. The top 250 differentially expressed circRNAs were obtained by GEO2R. The R language package was applied for hierarchical clustering analysis.

Gene expression profiling interactive analysis (GEPIA) database
Survival curves according to LIFR and hsa_circ_103820 expression were obtained based on GEPIA (http://geopia.cancer-pku.cn/).

Agarose gel electrophoresis and qRT-PCR assay
Total RNA was extracted with TRIzol reagent based on the instructions. cDNAs were then synthesized by reverse transcription using an All-in-OneTM First-Strand cDNA Synthesis kit (GeneCopoeia, Guangzhou, China). Gene expression (cDNA and gDNA) was assessed by PCR using 2% agarose gel electrophoresis. Relative gene expression was confirmed using the Quantifast SYBR Green PCR Kit (Qiagen). The nuclear and cytoplasmic fractions were isolated using NE-PER Nuclear and Cytoplasmic Extraction Reagents (Thermo Scientific). Total RNA from the nuclear and cytoplasmic fractions was isolated with TRIzol. Relative quantitative analysis performed via the $2^{-\Delta\Delta C_t}$ method. All primers were synthesized by Shanghai Sangon Bioengineering Co. Ltd. (Shanghai, China), and the primer sequences are displayed in Table 4.

Table 4 The sequences of primers in qRT-PCR assay.

ID	Sequence (5′-3′)
GAPDH	Forward: TGTTCGTCATGGGTGTGAAC
GAPDH	Reverse: ATGGCATGGACTGTGGTCAT
Circ_103820	Forward: TCCACACCGCTCAATGTTA
Circ_103820	Reverse: ATCCAGGATGGTCGTTTCAA
LIFR	Forward: TCCATCATGAGCCATCCCTA
LIFR	Reverse: GAACGCTTCACGAATTTGC
miR-200b-3p	Forward: GCTGCTGAATTCCATCTAATTTCCAAAAG
miR-200b-3p	Reverse: TATTATGGATCCGCCCCCAGGGCAATGGG
U6	Forward: CTCGCCAGCACACATATA
U6	Reverse: GAACGCTTCACGAAATTTGC

Luciferase reporter gene assay
WT-pmirGLO-hsa_circ_103820, Mut-pmirGLO-hsa_circ_103820, WT-pmirGLO-LATS2, Mut-pmirGLO-LATS2, WT-pmirGLO-SOC56, and Mut-pmirGLO-SOC56 were purchased from Wuhan Hualian Biotechnology Co. (Wuhan, China). HEK293T cells were cotransfected with the corresponding plasmids and scramble or miR-200b-3p using Lipofectamine 3000 reagent (Invitrogen). After 48 h, the harvested cells were examined using the Dual-Luciferase Reporter Assay System (Promega).

RNA pull-down assay
After enzyme digestion of the constructed vector, transcription and biotin labeling were performed using an in vitro transcription kit (Roche). After transcription, DNase I was added to digest the transcription template, and TRIZol was utilized to extract the transcription products in vitro. After quantification, 3 μg RNA was mixed with the extracts of SPCAI and A549 cells. The reaction system of the RNA pull-down experiment was 25 mM Tris-Cl [pH 7.4], 150 mM Na Cl, 0.5% NP-40, 0.5 mM DTT and 1× complete protease inhibitors (Roche). After incubation for 3 h, streptavidin-coupled T1 beads (Roche) were added for 30 min. The extracted RNAs were used to perform qRT-PCR detection.

Ago2-immunoprecipitation (IP) assay
HEK293T cells were transfected with hsa_circ_103820-Ago2 or miR-200b-3p-Ago2 for 48 h. After washing, proteins were extracted and treated with 2 μg antibody for 4 h at 4 °C. Magnetic beads were washed three times, and the qRT-PCR assay was carried out.

Western blotting analysis
After washing, RIPA lysate containing protease inhibitor was added to the treated SPCA1 and A549 cells. The cells were lysed on ice for 30 min, and the supernatant was collected after centrifugation (12,000 rpm, 4 °C) for 15 min. After the protein concentration was determined by the BCA method, 30 μg protein was isolated by 10% SDS-PAGE by electrophoresis, and the separated proteins were then transferred to PVDF membranes. After sealing for 2 h, the membranes were incubated with primary antibody overnight at 4 °C. After washing, the membranes were incubated with secondary antibody for 2 h. The results were examined using the ECL substrate kit (Thermo Scientific) based on the instructions.

Statistical analysis
All experimental data are presented as the mean ± SD. The data were calculated by the application of SPSS software (ver. 20.0, SPSS, Inc., Chicago, USA). Statistical analysis was performed using GraphPad Prism 7.0. $P < 0.05$ was considered statistically significant.
Author details
1Medical Laboratory, Gongli Hospital of Shanghai Pudong New Area, Shanghai 200135, China. 2Department of Clinical Laboratory, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai 201399, China. 3Department of Clinical Laboratory, Affiliated Hospital of Yangzhou University, Yangzhou 225001, China. 4Department of Laboratory Medicine, The 3rd Affiliated Hospital of Wenzhou Medical University, Ruian, 325000 Zhejiang, China. 5Department of Oncology, Affiliated Hospital of Yangzhou University, Yangzhou 225001, China

Received: 6 February 2020 Revised: 4 June 2020 Accepted: 8 June 2020

Funding information
This work was supported by Shanghai Pudong District Science and Technology Innovation Project (Grant No. PKU018-Y06) and Key Disciplines Group Construction Project of Pudong Health Bureau of Shanghai (Grant No. pwZxq2017-15).

Conflict of interest
The authors declare that they have no conflict of interest.

Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information
The online version contains supplementary material available at https://doi.org/10.1038/s41419-021-03472-7.

Received: 6 February 2020 Revised: 4 June 2020 Accepted: 8 June 2020
Published online: 15 February 2021

References
1. Adegi, A. A. Lung cancer worldwide. J. Thorac. Oncol. 14, 956 (2019).
2. Jin, J. et al. Identification of genetic mutations in cancer: challenge and opportunity in the new era of targeted therapy. Front. Oncol. 9, 263 (2019).
3. e Silva, E. F. et al. C-Phycocyanin: cellular targets, mechanisms of action and multi drug resistance in cancer. Pharmacol. Rep. 70, 75–80 (2018).
4. Bames, H. et al. Surgery for limited colorectal cancer. Mol. Oncol. 14, 1365–1380 (2020).
5. Arnaiz, E. et al. Circular RNAs and cancer: biomarkers and master regulators. Semin. Cancer Biol. 58, 90–99 (2019).
6. Yang, H. et al. CIRCPTK2 (hsa_circ_0005273) as a novel therapeutic target for metastatic colorectal cancer. Mol. cancer 19, 13 (2020).
7. Liu, D. et al. Exosome-transmitted circ_MMP2 promotes hepatocellular carcinoma metastasis by upregulating MMP2. Mol. Oncol. 14, 102–110 (2020).
8. Ou, R. et al. circAMOTL1 Motivates AMOTL1 expression to facilitate cervical cancer growth. Mol Ther. Nucleic Acids 19, 50–60 (2019).
9. Kulcheski, F. R., Christoff, A. P. & Margis, R. Circular RNAs are miRNA sponges and can be used as a new class of biomarker. J. Biotechnol. 238, 42–51 (2016).
10. Thomson, D. W. & Dinger, M. E. Endogenous microRNA sponges: evidence and controversy. Nat. Rev. Genet. 17, 272 (2016).
11. He, J. et al. Circular RNA MAPK4 (circ-MAPK4) inhibits cell apoptosis via MAPK signaling pathway by sponging miR-125a-3p in gliomas. Mol. Cancer 17, 1 (2018).
12. Wang, S. et al. circLMTK2 acts as a sponge of miR-150-5p and promotes proliferation and metastasis in gastric cancer. Mol. Cancer 18, 162 (2019).
13. Bi, J. et al. Circular RNA circ-ZSCAN1 inhibits bladder cancer progression through miR-1178-3p/PTP21 axis and acts as a prognostic factor of recurrence. Mol. Cancer 18, 133 (2019).
14. Ibrahim, S. A., Hassan, H. & Gottes, M. MicroRNA regulation of proteoglycan function in cancer. FEBS J. 281, 5009–5022 (2014).
15. Janga, S. C. & Valabhahni, S. MicroRNAs as post-transcriptional machines and their interplay with cellular networks. Adv. Exp. Med. Biol. 722, 59–74 (2011).
16. Liu, K. et al. MiR-200b-3p functions as an oncogene by targeting ABCA1 in lung adenocarcinoma. Technol. Cancer Res. Treat. 18, 53002318982509 (2019).
17. Xia, L. et al. Transcriptional regulation of PRRK2B by miR-200b-3p/200c-3p and XBP1 in human prostate cancer. Biomed. Pharmacother. 124, 109863 (2020).
18. Tovar-Vidales, T., Clark A. miR-200b-3p and miR-211-5p Downregulate the Expression of Extracellular Matrix and Associated Proteins in Human Optic Nerve Head Astrocytes (UNTHSC, 14/03/2018). https://unthsc-ir.tdl.org/handle/210500/12503/28049.
19. Gui, Z. et al. Oridonin inhibition and miR-200b-3p/211-5p Downregulate the Expression of Extracellular Matrix and Associated Proteins in Human Optic Nerve Head Astrocytes (UNTHSC, 14/03/2018). https://unthsc-ir.tdl.org/handle/210500/12503/28049.
20. Xie, T. et al. MicroRNAs in breast cancer. Breast Cancer Res. Treat. 2020, 1–13 (2020).
21. Furth, N. & Aylon, Y. The LATS1 and LATS2 tumor suppressors: beyond the Hippo pathway. Cell Death Differ. 24, 1488–1501 (2017).
22. Yan, L. et al. Long noncoding RNA PVT1 promotes non-small cell lung cancer cell proliferation through epigenetically regulating LATS2 expression. Mol. Cancer Ther. 15, 1082–1094 (2016).
23. Furth, N. et al. LATS1 and LATS2 suppress breast cancer progression by maintaining cell identity and metabolic state. Life Sci. Alliance 1, e201800171 (2018).
24. Lawrenson, I. D. et al. Cortical layer inversion and deregulation of reelin signaling in the absence of SOCS6 and SOCS7. Cereb. Cortex 27, 576–588 (2017).
25. Yuan, D. et al. SOCS6 functions as a tumor suppressor by inducing apoptosis and inhibiting angiogenesis in human prostate cancer. Curr. Cancer Drug Targets 18, 1315–1324 (2018).
26. Wang, X. et al. MiR-183 modulates multi-drug resistance in hepatocellular carcinoma (HCC) cells via miR-183-5p/30c-5p feedback loop. Eur. Rev. Med. Pharmacol. Sci. 20, 2020–2027 (2016).