Heart Rate Recovery After Exercise Is a Predictor of Silent Myocardial Ischemia in Patients With Type 2 Diabetes

Tomohide Yamada, MD
Takashi Yoshitama, MD, PhD
Kunihiro Makino, MD, PhD
Tetsuo Lee, MD
Fumihiro Saeki, MD, PhD

OBJECTIVE—Slow heart rate recovery (HRR) predicts all-cause mortality. This study investigated the relationship between silent myocardial ischemia (SMI) and HRR in type 2 diabetes.

RESEARCH DESIGN AND METHODS—The study enrolled 87 consecutive patients with type 2 diabetes and no chest symptoms. They underwent treadmill exercise testing and single-photon emission computed tomography imaging with thallium scintigraphy. Patients with abnormal myocardial perfusion images also underwent coronary angiography.

RESULTS—SMI was diagnosed in 41 patients (47%). The SMI group showed slower HRR than the non-SMI group (18 ± 6 vs. 30 ± 12 bpm; P < 0.0001). HRR was significantly associated with SMI (odds ratio 0.83 [95% CI 0.75–0.92]; P = 0.0006), even after adjustment for maximal exercise workload, resting heart rate, maximum heart rate, rate pressure product, HbA1c, use of sulfonamides, and a history of cardiovascular disease.

CONCLUSIONS—HRR can predict SMI in patients with type 2 diabetes.
Comparison of the SMI and non–SMI groups

There were no differences of clinical characteristics between the two groups (Table 1). The 1- and 3-min heart rates were similar in both groups, but the SMI group showed slower HRR (18 ± 6 vs. 30 ± 12 bpm; P < 0.0001) along with a higher resting heart rate (P = 0.01), lower maximum heart rate (P < 0.001), lower rate pressure product (P = 0.0032), and lower max METs. The number of patients who achieved the target heart rate was not significantly different between the two groups (P = 0.13).

Multivariate logistic regression analysis was performed to assess parameters significantly associated with myocardial ischemia, using the following variables: HRR, use of sulfonamides, and history of cardiovascular disease. As a result, HRR was significantly associated with SMI (odds ratio 0.83 [95% CI 0.75–0.92], P = 0.0006) and was also significantly associated with significant angiographic stenosis, even after adjustment for the above covariates (0.84 [0.75–0.94]; P = 0.0017).

CONCLUSIONS—Many physicians screen asymptomatic persons by stress testing, but it has a low specificity (8). Furthermore, it has been reported that a decrease of the chronotropic reserve predicts CAD (9).

Our findings indicated that slow HRR after exercise strongly predicts SMI in patients with type 2 diabetes. Slow HRR similarly predicts myocardial ischemia at the microvascular and macrovascular levels.

Possible mechanisms of SMI include autonomic denervation of the myocardium (10–12), a higher pain threshold during exercise testing (13), higher endorphin levels (14), and increased production of anti-inflammatory cytokines that may block pain transmission and increase the neural activation threshold (15).

The prevalence of SMI may exceed 20% among asymptomatic patients with type 2 diabetes (3). In this study, the prevalence was a high 47%, probably because our cohort included patients with electrocardiogram abnormalities, at least two risk factors for CAD in addition to diabetes, or a history of CAD (13).

Table 1—Comparison of the SMI and non–SMI patients

Variable	SMI patients (n = 41)	Non–SMI patients (n = 46)	OR (95% CI)	P value*
			Univariate	Multivariate
Female sex	8 (20)	13 (28)	—	—
Age (years)	66 ± 11	62 ± 10	—	—
BMI (kg/m²)	24.0 ± 3.3	24.1 ± 3.1	—	—
Duration of diabetes (years)	11.0 ± 6.3	10.3 ± 9.1	—	—
Current smoker	13 (32)	22 (48)	—	—
Family history of diabetes	20 (49)	33 (72)	—	—
Hypertension	30 (73)	36 (78)	—	—
Hyperlipidemia	29 (71)	27 (59)	—	—
Cardiovascular disease	6 (15)	5 (11)	1.01 (0.15–6.87)	0.6 0.99
Diabetic treatment			—	—
Diet only	8 (20)	11 (24)	—	—
Oral hypoglycemic agent	23 (56)	25 (54)	—	—
Use of sulfonamides	16 (39)	17 (37)	1.02 (0.31–3.4)	0.84 0.97
Insulin	10 (24)	10 (22)	—	—
ACE inhibitors or ARB	28 (68)	24 (52)	—	—
Statins	24 (59)	21 (46)	—	—
Calcium channel blockers	11 (27)	9 (20)	—	—
Serum cholesterol (mmol/L)	4.97 ± 1.01	4.97 ± 0.88	—	0.96
Total	2.77 ± 0.88	2.82 ± 0.72	—	0.72
Serum triglycerides (mmol/L)	3.65 ± 2.09	4.34 ± 2.95	—	0.2
HbA1c (%)	7.6 ± 1.8	6.9 ± 1.3	0.7 (0.47–1.04)	0.05 0.08
Heart rate (bpm)			—	—
Resting	87 ± 11	81 ± 12	1.01 (0.95–1.08)	0.01 0.67
Maximum	133 ± 14	143 ± 13	0.98 (0.91–1.05)	<0.001 0.54
1-min	115 ± 14	113 ± 15	—	0.45
3-min	95 ± 12	90 ± 11	—	0.05
Recovery	18 ± 6	30 ± 12	0.83 (0.75–0.92)	<0.0001 0.0006
Maximum METs	7.2 ± 2.1	9.0 ± 1.7	0.79 (0.56–1.12)	<0.0001 0.19
Rate pressure product	25,316 ± 4,739	28,368 ± 4,641	1.0 (0.99–1.01)	0.0032 0.41
Achievement of THR	25 (61)	33 (76)	—	0.13

Data are mean ± SD or number (%). ARB, angiotensin-receptor blocker; OR, odds ratio; THR, target heart rate. *The t test or χ² test was used to assess differences between the SMI group and non–SMI group. Multivariate logistic regression analysis was performed to identify the parameters significantly associated with myocardial ischemia using heart rate recovery, max METs, resting heart rate, maximum heart rate, rate pressure product, HbA1c, use of sulfonamides, and history of cardiovascular disease.
This study had the limitations of being performed at a single institution and in a small patient population. Accordingly, the relation between HRR and SMI should be assessed by a larger study with pathophysiologic data in the future.

Although it is possible that our results were influenced by the difference of exercise parameters between the two groups, we conclude that HRR is useful for easy detection of SMI in high-risk type 2 diabetic patients to allow primary prevention and that HRR is significantly associated with SMI even after adjustment for the influence of exercise parameters.

Acknowledgments—No potential conflicts of interest relevant to this article were reported.

T.Ya. contributed to all study processes, including data research and manuscript preparation. T.Yo. contributed to discussion and wrote, reviewed, and edited the manuscript. K.M., T.L., and F.S contributed to discussion.

References
1. Grundy SM, Benjamin IJ, Burke GL, et al. Diabetes and cardiovascular disease: a statement for healthcare professionals from the American Heart Association. Circulation 1999;100:1134–1146
2. Cohn PF. Silent myocardial ischemia. Ann Intern Med 1988;109:312–317
3. Wackers FJT, Young LH, Inzucchi SE, et al.; Detection of Ischemia in Asymptomatic Diabetics Investigators. Detection of silent myocardial ischemia in asymptomatic diabetic subjects: the DIAD study. Diabetes Care 2004;27:1954–1961
4. Imai K, Sato H, Hori M, et al. Vagally mediated heart rate recovery after exercise is accelerated in athletes but blunted in patients with chronic heart failure. J Am Coll Cardiol 1994;24:1529–1533
5. Cole CR, Blackstone EH, Pashkow FJ, Snader CE, Lauer MS. Heart-rate recovery immediately after exercise as a predictor of mortality. N Engl J Med 1999;341:1351–1357
6. Jouven X, Empana J-P, Schwartz PJ, Desnos M, Courbon D, Ducimetière P. Heart-rate profile during exercise as a predictor of sudden death. N Engl J Med 2005;352:1951–1958
7. American Society of Nuclear Cardiology; DePuey EG, Garcia EV. Updated imaging guidelines for nuclear cardiology procedures: part 1. J Nucl Cardiol 2001;8:G1–G58
8. Yeung AC, Vekshtein VI, Krantz DS, et al. The effect of atherosclerosis on the vaso-motor response of coronary arteries to mental stress. N Engl J Med 1991;325:1551–1556
9. Ho PM, Maddox TM, Ross C, Rumsfeld JS, Magid DJ. Impaired chronotropic response to exercise stress testing in patients with diabetes predicts future cardiovascular events. Diabetes Care 2008;31:1531–1533
10. Cohn PF, Fox KM, Daly C. Silent myocardial ischemia. Circulation 2003;108:1263–1277
11. Langer A, Freeman MR, Josse RG, Armstrong PW. Metaiodobenzylguanidine imaging in diabetes mellitus: assessment of cardiac sympathetic denervation and its relation to autonomic dysfunction and silent myocardial ischemia. J Am Coll Cardiol 1995;25:610–618
12. Di Carli MF, Bianco-Batilles D, Landa ME, et al. Effects of autonomic neuropathy on coronary blood flow in patients with diabetes mellitus. Circulation 1999;100:813–819
13. Ranjadayalan K, Umachandran V, Ambepityia G, Kopelman PG, Mills PG, Timmis AD. Prolonged anginal perceptual threshold in diabetes: effects on exercise capacity and myocardial ischemia. J Am Coll Cardiol 1990;16:1120–1124
14. Falcone C, Guasti L, Ochan M, et al. Beta-endorphins during coronary angioplasty in patients with silent or symptomatic myocardial ischemia. J Am Coll Cardiol 1993;22:1614–1620
15. Mazzzone A, Cusa C, Mazzucchelli I, et al. Increased production of inflammatory cytokines in patients with silent myocardial ischemia. J Am Coll Cardiol 2001;38:1895–1901

HRR predicts SMI in type 2 diabetes