A meta-analysis of the effectiveness of cogmed computerized cognitive training program on working memory

Hamideh Radmanesh¹, Morteza Omidian², Manije Shehni Yailagh³, Gholamhossein Maktaby²

1. Ph.D Student of Educational Psychology, Faculty of Educational Science & Psychology, Shahid Chamran University of Ahvaz, Ahvaz, Iran.
2. Associate Professor, Department of Psychology, Faculty of Educational Science & Psychology, Shahid Chamran University of Ahvaz, Ahvaz, Iran.
3. Professor, Department of Psychology, Faculty of Educational Science & Psychology, Shahid Chamran University of Ahvaz, Ahvaz, Iran.

Keywords:
Cogmed, Working Memory, Meta-Analysis

Background: The computerized cognitive training Program on working memory (Cogmed) is the most widely computerized program school in the world. According to the claims of producer about the new and important role of this program in improving working memory, learning and learning disabilities, the present study was designed to evaluate the effectiveness of this program in improving working memory in research using meta-analysis.

Aims: The purpose of the present study was to combine research based on meta analysis in the area of the effectiveness of this program on working memory.

Methods: In this study, meta-analysis was used as a tool to determine, collect, combine and summarize research findings related to the role of cogmed program in working memory. To achieve the goal, the research literature on the relationship among these variables, in articles published between 2001 and 2018 were reviewed. 14 studies were included in the meta-analysis based on the research criteria (Experimental method, online printing, comparison of experimental and control groups, descriptive statistics). The results of diffusion bias study showed no bias in the research.

Results: The results showed that the mean of the overall effect size of the investigated studies was 0/441 (P <0/01) for the fixed effects model and 0/651 (P <0/01) for the random effects, both of which were significant and indicated a significant effect of the compuered program on working memory.

Conclusion: Cogmed program is effective based on the combination of research results and is recommended for working memory in prevention and treatment. Meta-analysis method in future studies with intervals of five to ten years is suggested.

Citation: Radmanesh H, Omidian M, Shehni Yailagh M, Maktaby G. A meta-analysis of the effectiveness of cogmed computerized cognitive training program on working memory. J of Psychological Science. 2022; 20(108): 2195-2209.

URL: https://psychologicalscience.ir/article-1-1072-fa.html

DOI: 10.52547/JPS.20.108.2195
Extended Abstract

Introduction
Research on working memory and intervention to improve it through various programs is the focus of many researchers. One of the orientations in the field of working memory is the use of computer programs in this field, which can be called Safari Aware Brain Program (Aware Brain Learning Company website, 2017). Cogmed is an educational approach to enhance working memory and accuracy and enhance executive performance that will be used in this study. This program is presented in three categories: Preschool, elementary and adult group package. Research also confirms the effectiveness of the Cogmed program. Bennett, S., Holmes, J., & Buckley, S. (2013) attempted to use the Cogmed working memory training program for 25 students with Down syndrome aged 7 to 12 years. After working memory training, the intervention group trained in both short-term visual-spatial memory tasks and made significant progress, and this improvement continued after 4 months of training. Gray et al. (2012) showed that adolescents in the working memory training group showed more progress in working memory subset than in math training groups.

In their study, Holmes et al. (2015) used the Cogmed program to improve working memory in students with low verbal abilities. The results showed that intensive training of working memory can improve verbal abilities. Another study concluded that the Cogmed working memory training program can improve working memory, cognition, and mental health (Akerlund, 2013). Holmes, Gathercole & Dunning (2009) discuss the Cogmed training program in overcoming common working memory disorders and related learning difficulties in 10-year-olds, they offered a variety of exercise suggestions, including temporary storage and visual-spatial information, verbal information, or both for 5 to 7 weeks. Most of the children who completed the program improved their working memory significantly, and 6 months after training, a significant increase in math performance was found. In another study, the Cogmed program showed its effectiveness in improving working memory and math performance of students with attention deficit and special needs (Dahlin, 2013). The results of a study revealed that the Cogmed program has the potential to help individuals improve working memory capacity and focused attention (Roche & Johnson, 2014). Research has shown that the Cogmed program is useful in teaching working memory to children with neurodevelopmental disorders (Donk, 2015). Finally, it can be said that the Cogmed program can be effective and useful for people with brain damage (Roche, & Johnson, 2014).

The aim of this study is to meta-analyze the effectiveness of Cogmed method on increasing working memory to show the effectiveness of this program in this regard; Therefore, the purpose of this study is to combine and summarize the results of previous studies in order to provide a comprehensive and complete answer to the basic question of whether the Cogmed program is effective on working memory? Are publication bias indices significant in this regard? Which of the mediating variables is effective in data heterogeneity?

Method
In this study, meta-analysis statistical Method was used to determine, collect, combine and summarize research findings on the role of Cogmed program in working memory. The unit of analysis in this method is the findings of previous research; In fact, the statistical summaries of previous researches were used as research data. Therefore, the statistical population of this meta-analysis includes all available researches related to the role of Cogmed program in working memory between 2001 and 2018. Thus, after searching the databases with the desired keywords, 38 articles were identified that examined the relationship between Cogmed program and working memory worldwide. The researches were included in the meta-analysis according to the entry and exit criteria. The inclusion criteria in this study were as follows: a) Articles and researches that examined the role of Cogmed program and working memory by experimental method; B) Research that was published and available online c) Articles that compared the experimental and control groups d) Articles that expressed sample size, mean, standard deviation or
variance. Finally, 14 studies that met the criteria for entering this meta-analysis were selected.

Results

Fourteen studies that experimentally measured the effectiveness of the Cogmed program on memory were included in the analysis (Roughan & Hadwin, 2011; Gray et al., 2012, Lundquist et al., 2010, Ackerlund, 2013; van Dongen-Boomsma et al., 2014; Holmes et al., 2010; Roberts et al., 2016; Hermansen Grunewaldt et al., 2016; Løhaugen et al., 2011; Westerberg & Klingberg 2013; Dunning, Holmes, & Gathercole, 2013; Eve et al., 2016; Pumacahua, Wong, & Wiest, 2017; Bergman Nutley & Soderqvist, 2017).

The results showed that the mean of the overall effect size of the investigated studies was for the random effects model is 0.651 (with the corresponding values of Z = 5.222 and P = 0.001), which is significant at the level of P < 0.01. Thus, according to Table 1, in general, the effectiveness of Cogmed program on working memory is significant. Studies using the r statistic produce an effect size of variable between +1 and -1, which reflects the correlation range (Sprinkel and Pierce, 2005). According to the results in Table 1, the value of the I-square of this study is 71.519, which indicates a large heterogeneity in the studies.

Model	Effect size and 95% confidence interval	Heterogeneity				
	N	Max	Min	Effect size	P	I square
Fixed	14	0.546	0.336	0.441	0.000	71.519
Random	14	0.896	0.407	0.651	0.000	71.519

Table 2. Results of hybrid effect measurements related to the role of Cogmed program in working memory by modifier variables

Mediator Instrument	Heterogeneity index		
Fixed			
Within	13.69	6	0.033
Between	31.954	7	0.000
Total	45.644	13	0.000
Random	16.096	7	0.000

According table 2, Due to the high dispersion rate, the role of possible interfering variables was investigated in the continuation of the analysis. P= 0) and for the difference between different groups is equal to 31.954 (with corresponding values of 13 df= and p= 0.000), which is statistically significant; Therefore, the variables of different groups and the type of tools used as moderating variables had an effect on the size of the observed effect. A more detailed analysis within the group showed that these heterogeneity were more related to the use of Wechsler test tools.

Conclusion

The results of this study showed that the variables of different groups and the type of tools used are factors of heterogeneity in the size of the effect; this finding shows that it is necessary to pay attention to what tool is used to evaluate memory and also what group is being evaluated. This study also faced limitations, which can be noted in the lack of accurate reporting of statistical information related to the initial research. It is suggested that scientific editors and editors of scientific journals encourage researchers to accurately describe their work size values, statistical hypotheses, sample size, and demographic information related to their research samples in their reports. Due to the role and effectiveness of Cogmed program on working memory, it is recommended to use Cogmed program in primary school to strengthen working memory and prevent the consequences that occur due to poor working memory in students. Considering the important and effective role of active memory in learning disabilities and the pervasiveness of children’s problems in this field and the implementation of timely and early intervention plan for diagnosis and treatment of learning disabilities in education, it is recommended to use this effective program in treating learning disabilities in schools.
and psychology clinics. In addition, meta-analysis method should be used to evaluate the effectiveness of programs in research conducted at intervals of five to ten years.

Ethical Considerations

Compliance with ethical guidelines: This study was conducted as the doctoral dissertation of the first author in Shahid Chamran University of Ahvaz with the ethic code: EE / 98.24.3.57555.

Funding: This study was conducted as a doctoral dissertation with the financial support of the Vice Chancellor for Research of Shahid Chamran University of Ahvaz in the form of a grant number (SCU. EM98.29204).

Authors’ contribution: The first author was the senior author, the second was the supervisor & corresponding author, the third and fourth was the advisors.

Conflict of interest: The authors declare no conflict of interest for this study.

Acknowledgments: I would like to appreciate the supervisors, advisors, participants of this research and Research and Technology office of Shahid Chamran University of Ahvaz who helped in conducting this research.
مقاله پژوهشی

فراتحلیل اثربخشی برنامه آموزش شناختی کاگمد در حافظه فعال

حمیده رادمنش، مرتضی امیدیان*، منیجه شهنی‌ییلاق، غلامحسین مکتبی

1. دانشجوی دکتری روانشناسی تربیتی، دانشکده علوم تربیتی و روانشناسی، دانشگاه شهید مدرس، اهواز، ایران.
2. دانشیار، گروه روانشناسی، دانشکده علوم تربیتی و روانشناسی، دانشگاه شهید مدرس، اهواز، ایران.
3. استاد، گروه روانشناسی، دانشکده علوم تربیتی و روانشناسی، دانشگاه شهید مدرس، اهواز، ایران.

چکیده

زمینه: برنامه کاگمد برای توانبخشی حافظه فعال، پی‌کاربردترین برنامه‌هایی در یک مدارس در جهان است. با توجه به دعایدهایی که به ترویج این برنامه در حال حاضر می‌باشد، نیاز به ارزیابی، جمع‌آوری، ترکیب و خلاصه‌گیری اطلاعاتی که در مطالعات پیشین ارائه نگردیده‌اند، جریان جدیدی از جمله مطالعاتی مثل این مقاله را در رشته‌های مختلف ارائه می‌دهد.

هدف: هدف این پژوهش اثربخشی برنامه کاگمد بر حافظه فعال در انجام پژوهش‌های بعدی است. در این پژوهش از فراتحلیل به عنوان تکنیکی جهت ارزیابی، جمع‌آوری، ترکیب و حاصل کردن یافته‌های پژوهشی ایراد می‌شود. افزایش کیفیت و اثربخشی برنامه کاگمد در حافظه فعال استفاده شده با توجه به بروز این موارد در برنامه‌های کاربردی و بیشتر که در این مقاله توصیف شده، لازم است که برنامه‌های اولیه برنامه کاگمد در مطالعات بعدی جداگانه نشان دهنده بود.

یافته‌ها: یافته‌های پژوهشی ارائه می‌دهند که میانگین اندازه اثر کلی پژوهش‌های بررسی‌های انجام شده و بررسی‌های انجام شده درباره اثربخشی برنامه کاگمد در حافظه فعال ارائه شده‌اند. برای اثربخشی برنامه کاگمد در حافظه فعال، توصیه می‌گردد که از روش‌های جدیدی برای بررسی اثرات برنامه کاگمد در حافظه فعال استفاده شود.

نتیجه‌گیری: برنامه کاگمد برای توانبخشی حافظه فعال، اهمیت بسیاری در رشته‌های مختلف دارد. در این پژوهش اثربخشی برنامه کاگمد در حافظه فعال توسط روش فراتحلیل در مطالعات بعدی با فواصل پنج تا ده سال بیشترین می‌شود.

* نویسنده مسئول: مرتضی امیدیان، دانشیار، گروه روانشناسی، دانشکده علوم تربیتی و روانشناسی، دانشگاه شهید مدرس، اهواز، ایران.
morteza_omid@scu.ac.ir

پیشنهاد می‌شود. اثربخشی برنامه کاگمد در حافظه فعال در این پژوهش اثربخشی برنامه کاگمد در حافظه فعال توسط روش فراتحلیل در مطالعات بعدی با فواصل پنج تا ده سال بیشترین می‌شود.

 DOI: 10.52547/JPS.20.108.2195

Downloaded from psychologicalscience.ir on 2022-02-23
فراحلی انتخابی برنامه آموزش شناختی رایانه‌ای کاگمد در حافظه فعل

مقدمه

حاصله‌ی سامانه‌ای پیچیده است که بر کلیه رفتارهای انسان تأثیر می‌گذارد. از این‌رو موضوع موردیتی علوم مختل‌فی است و آن را می‌توان از جوانی مختلف نظر پژوهشی، روانشناسی، روانشناسی تربیتی، روانشناسی یادگیری، تندیس، برنامه‌ریزی درسی و مورد بحث قراردادهایی (یک‌اندیشی، هولینگس و کوهن، 2002) برقرار در بررسی‌ها (پروری و فرماهان، 2003) بیان می‌کند که حافظه فعال کلیدی در فعالیت‌های یادگیری و پیشرفت تحصیلی به طور خاص در سالهای مدرسه و به طور عام بعد از آن دوره به تنهایی دارد. برخی یادگیری‌ها را مانع از استفاده بهینه و درست از حافظه فعل می‌دانند. حافظه فعل به توانایی ذخیره‌سازی و دستکاری موقت اطلاعات در یک جایگاه دهنده اشاره دارد (ورت و همکاران، 2016). حافظه فعل قبلاً با سواد واروند، نوشت و مهارت های محاسباتی مرتب است (تامسون و گدرکل، 2002) و کودکانی که با حافظه فعل ضعیف به مدرسه وارد می‌شوند بعد است که در یادگیری خوداند، نوشتن، مطالعه و علوم در سطح مورد انتظار عمل کنند (گدرکل، براون و پیکریگ، 2003).

مداخله برای تنظیم برنامه‌های درمانی برای کودکان دارای ناتوانی‌های یادگیری در دوران دستان ارزشمند است (ورت و همکاران، 2002 و سکستون، هریس و گراهام، 1996). در صورتی که بتوان کودکان در دوران دستان درمان کرد ممکن است این مشکلات در سنين پرستاری به علت شناختی و اطلاعاتی شناختی کارآمد باشد. و مدخل یکی از این مشکلات ما به طرف همکاری با برنامه‌ریزی در مراکز آموزشی کودکان و بزرگسالان متوجه شد. برای شنیدن تعامل‌های کودک با والدین شد، می‌توان یکی از ابزارهای انتخابی مؤثر انتخاب داد (گراهام و هریس، 2005 و سکستون، هریس و گراهام، 1998).

پژوهش روز حافظه فعل و مداخله جهت ارتقاء آن از طریق برنامه‌های مختلف کانون توجه به پژوهشگران این است که بر از این زمینه می‌توان برنامه‌های گزارشی و روانشناسی (شیفت عارضه‌ای کاگمد، 2017) برنامه حافظه جنگل، برنامه کاگمد، برنامه روبوتو، و کاگمد 9

1. memory
2. Academic Achievement
3. working memory
4. Brain Ware Safari
5. Brain Ware Safari.com
6. Jungle Memory
7. Coglab
8. Robomemo
9. Cogmed
فراتحلیل اثر بخشی برنامه آموزش شناختی رایانهای کاگمد در حافظه فعال آموزش حافظه فعال مفتاح و اثرات عمکرندی در حالت استراحت (استیل و همکاران، 2015) نشان می‌دهد، تأثیر بر این امر بی‌اهمیت است.

پژوهش‌های نشان دهنده کاهش دادن آموزش حافظه فعال اصولاً می‌تواند بهترین راه حلی به نظر برسد. ولی در بسیاری از پژوهش‌ها، اثرات آموزش حافظه فعال به‌طور قابل توجهی به نشان داده شده است. در این راستا، تحقیقات حاکمیتی نشان دهنده وجود یک رابطه مثبت بین آموزش حافظه فعال و عملکرد آموزشی است. این کمک می‌کند تا اینکه کودکان دارای مهارت‌های فکری و ذهنی بهتری را داشته باشند.

در نهایت، نتایج این پژوهش نشان داد که آموزش حافظه فعال در کلاس‌های مدرسه می‌تواند تأثیر بخشیده‌ای در تقویت عملکرد دانش‌آموزان داشته باشد. این نتایج نشان داده است که آموزش حافظه فعال بهبودی در عملکرد دانش‌آموزان در مراحل مختلفی از آموزش دارد. بنابراین، بهتر است که معلمان و مسوولین آموزشی از این ابزار استفاده کنند تا توانسته باشند که تأثیرات مثبتی در آموزش حافظه فعال داشته باشند.
برنامه کامگمد بر روی حافظه فعال اثری نداشت که بین سال 1989 و 1998 و در 8 مطالعه در مورد اثر برنامه کامگمد در حافظه فعال اثربخشی با گزارش می‌شود.

6. science direct
7. springer
8. taylor
9. wiley
10. Comperhensive Meta-Analysis

(هدف) طرح پژوهش و شرکت کنندگان: در این پژوهش برای تعمیم جمع آوری، ترکیب و خلاصه کردن یافته‌های پژوهشی در زمینه نقش برنامه کامگمد در حافظه فعال از فن آماری فراتحلیل استفاده شد. برای انجام فراتحلیل و ترکیب نتایج تحقیقات، باید آمارهای آزمون به مقایسه انداده مثل تبدیل شود (فراوانی زاده و حسن نانگری، 1393). انداده‌های اثر ترکیبی، نتایج و نظیرش در هر مطالعه توصیفی. بر اساس توصیفی که در هر مطالعه که با داده مشاهده شده و سپس در دسترس بودند ج) مقالاتی که به مقایسه دو گروه ویرایش دوم شده و در دسترس بودند و در این پژوهش از کلیدواژه بودند، گواهی برای ورود به این فرا تحلیل شدند. ملاک میزان حجم نمونه، میانگین، انحراف معیار با واریانس را بین 16 یوزه‌های ارزانی بودند. در نهایت 12 یوزه‌هایی که میزان حجم نمونه، میانگین، انحراف معیار با واریانس را بین 16 یوزه‌های ارزانی نداشتند انتخاب شدند. این انتخاب با استفاده از برنامه جامع فراتحلیل و ترکیب نتایج مقادیر انداده به وسیله مثبت و منفی می‌شود که بین انداده اثر زیربنایی آنها تحلیل و به همراه تفاوت‌های آنها مشاهده شده در پژوهش‌های اولیه ناشی از اختلال نحوی گری است و در مقابل در مدل اثراتی توصیفی یک مدل می‌شود که انداده اثر واقعی از پژوهش یک یوزه‌های تحت تغییر است که از علت اصلی این گزارش وجود متغیرهای خلاقانه درونی از یک اثر ثابت و تصادفی است. در این پژوهش از مدل اثراتی تا نتایج انجام افتاده است.

ب) ایزارد

در این پژوهش برای تحلیل از برنامه نرم‌افزار جامع فراتحلیل و براش دوم

افتاده شد. در این پژوهش با وارد اطلاعات متغیرهای به یوزه‌های انتخاب نرم‌افزار تحلیل

اداته اثر و نقش متغیرهای متابع، ملاحظه و تهیه می‌شود.

6. science direct
7. springer
8. taylor
9. wiley
10. Comperhensive Meta-Analysis

[DOI: 10.52547/JPS.20.108.2195]
دانیگ، هیلتون و البت، 2010؛ وربر، کور، اسپینسر، ایمس، اندرون، گرگر، گلر، آیسک، تنبیه، ویک، 2012؛ هرمن، گرانجول، اسکروئین، بیزبانک و لاهوگ، 2016؛ لاهوگ، آنتونس، هایگ، گرامستاد، ویک، براک و اسکروئین، 2011؛ وستربرگ و کلینرگ، 2013؛ دانیگ، هلمز و گلر، 2013؛ وک، آکیف، جاهانی، گسان، براون و مرزی، 2016؛ وککاها، ویک و وستا، 2017. برای این مقدار اندام هر اثر به دست آمده برای مدل اثرات تصادفی (520) (ربا) مقدارهای تصادفی تهیه شد. اگر این مقدار با دقت 0/05 در مسنوندار است، پژوهش‌ها یکی از آنها این مقدار پیدا کردند که اثر متغیر بین 0/1 و 0/01 ایجاد می‌کند که معکوس کنش دانه‌های همبستگی است (شابنکلی و بیپریس، 2005).

براساس دیدگاه کوئه (شارنکلی و بیپریس، 2005) در تفسیر اندام اثر با استفاده از آماره اثر 0/05، مقدار 0/05 زیرای و 0/05 مقداری زیر 0/05 مقداری بزرگ و عناصر تغییر می‌شود (مصوبه آمادی، 1995).

مقدار شاخص Q برای 14 پژوهش حاضر در این فرآیند 20/04/68 (درجه آزادی = 12) به دست آمده که در سطح 0/01 P معنادار است و این نشانگر وجود ناهمگونی و نبود تجنسی در اندام اثر پژوهش‌های اولیه است.

براساس نتایج هنگام در گروه 1 مقدار شاخص مجذور I یک پژوهش 71/0519 است که بیانگر ناهمگونی زیاد در اثر پژوهش بررسی شده و وجود متغیرهای تعددی گرامیده از رابطه بین این برنامه کاگمد بر حافظه فعال است. درواقع 71/0519 درصد از تغییرات کل مطالعات به دلیل ناهمگونی مطالعات این است. معناداری شاخص Q و مجدور شناخت ناهمگونی و پرآادگی در پژوهش‌های بررسی شده است؛ بنابراین، مدل نهایی برای ترکیب اندام اثر اثر 0/05 یکی از سهول پژوهش، مدل اثرات تصادفی در نظر گرفته شد (اندازه اثرات تصادفی نهایی اثر 0/05 519/0). در این گونه موارد برای پرسی ناهمگونی اختبار داده مورد بررسی مجدد می‌فرام. در صورت تأیید اختبار داده اقدام بعد به نهایی ناهمگونی است.

چون اختبار نتایج پیلی از ورود داده‌های بررسی شده بود. یک بار دیگر نحوه ورود مقادیر بررسی شده و پس از اطلاعیان از عدم خطا در ورود داده‌ها به

همان‌گونه که در شکل 1 مشارکت‌های می‌شود، 14 مطالعه که به صورت آزمایش اثرپذیر برنامه کاگمد بر حافظه را اندام گیری می‌کرده‌اند وارد تحلیل شدند (روغن و هدوان، 2011؛ گری، چابان، مارتنسون، گلدبرگ، گالنبرگ، هیکربی، تاک، 2013؛ لاندکویست، گرانتسرو، سامسون و راتگر، 2010؛ کروک، آکرلوند، اسبیجورن، سانتهگن، پیجورکه، 2013؛ ون دنگن بومسما، وولبرگت، بیت لار و اسلاوس ویلمز، 2014؛ برگمن ناتلی و کاربی، 2014؛ هلمز، گرگر، 2014).
جدول 1. نتایج حاصل از اندازه اثر و مجدور I

پراکندگی	مقدار اثر	تعداد مطالعات	اثرات	حد پایین	حد بالا	ذرای آزادی
اثرات نتیج	23/7	25/6	0/5	13/690		
اثرات دیگر	0/1	0/0	0/0	0/0		

جدول 2. نتایج حاصل از محاسبات N ایمن از خطاهای پژوهشی

مقادیر N	مقدار اثر	تعداد مطالعات	مشاهده شده	مشاهده نشده
اثرات نتیج	13/690	25/6	14	13
اثرات دیگر	0/1	0/0	0/0	0/0

جدول 3. نتایج اندازه‌های اثر ترکیبی مربوط به نقش برنامه کامپیوتر در حافظه فعال به فنیکیت متغیرهای تعیین گر

پراکندگی	مقدار	درجه آزادی	مجدور	اثرات نتیج	اثرات دیگر
اثرات نتیج	23/7	13/690	0/0	13/690	0/0
اثرات دیگر	0/1	0/0	0/0	0/0	0/0
بحث و نتیجه‌گیری
هدف از این پژوهش تعیین اندازه اثر کلی برنامه کاگمد بر حافظه فعال بود. در مدل اثر تصادفی برای اثر برنامه کاگمد بر حافظه فعال رایبرد، بود. یکی از نشانه‌های اثر تازگی کاگمد است. به‌دست آمده از برخورداری دانیل آموزش حافظه کاری از طریق کاگمد با تغییر در فعالیت عملکردی مغز همراه است؛ به عنوان تغییرات در نوره‌سانی ۳۵۰۲ و همکاران، (۲۰۰۹). فعالیت‌های عملکردی در حافظه کاری (السون و همکاران، ۲۰۰۴ و ۲۰۰۷؛ برهم، دیکمن، بلدر، وسرتگر، فیشر و بکمن، ۲۰۱۱ و ۲۰۱۶) و اتصال عملکردی در حال استراحت (استلر، بارانز، باکر، کالاکل، و وورینگ، ۲۰۱۵) ارائه می‌شود. دانه کاگمد و میزان تأثیر آن به طور مستقیم با یک عضوی به‌دست آمده از آموزش حافظه کاری بر توانایی ت송 گروه‌سازی توانایی فعالیت کاری از طریق کاگمد بود. برخورداری دانیل آموزش حافظه کاری از طریق کاگمد با تغییر در فعالیت عملکردی مغز همراه است؛ به عنوان تغییرات در نوره‌سانی ۳۵۰۲ و همکاران، (۲۰۰۹). فعالیت‌های عملکردی در حافظه کاری (السون و همکاران، ۲۰۰۴ و ۲۰۰۷؛ برهم، دیکمن، بلدر، وسرتگر، فیشر و بکمن، ۲۰۱۱ و ۲۰۱۶) و اتصال عملکردی در حال استراحت (استلر، بارانز، باکر، کالاکل، و وورینگ، ۲۰۱۵) ارائه می‌شود. دانه کاگمد و میزان تأثیر آن به طور مستقیم با یک عضوی به‌دست آمده از آموزش حافظه کاری بر توانایی ت송 گروه‌سازی توانایی فعالیت کاری از طریق کاگمد بود. برخورداری دانیل آموزش حافظه کاری از طریق کاگمد با تغییر در فعالیت عملکردی مغز همراه است؛ به عنوان تغییرات در نوره‌سانی ۳۵۰۲ و همکاران، (۲۰۰۹). فعالیت‌های عملکردی در حافظه کاری (السون و همکاران، ۲۰۰۴ و ۲۰۰۷؛ برهم، دیکمن، بلدر، وسرتگر، فیشر و بکمن، ۲۰۱۱ و ۲۰۱۶) و اتصال عملکردی در حال استراحت (استلر، بارانز، باکر، کالاکل، و وورینگ، ۲۰۱۵) ارائه می‌شود. دانه کاگمد و میزان تأثیر آن به طور مستقیم با یک عضوی به‌دست آمده از آموزش حافظه کاری بر توانایی ت송 گروه‌سازی توانایی فعالیت کاری از طریق کاگمد بود. برخورداری دانیل آموزش حافظه کاری از طریق کاگمد با تغییر در فعالیت عملکردی مغز همراه است؛ به عنوان تغییرات در نوره‌سانی ۳۵۰۲ و همکاران، (۲۰۰۹). فعالیت‌های عملکردی در حافظه کاری (السون و همکاران، ۲۰۰۴ و ۲۰۰۷؛ برهم، دیکمن، بلدر، وسرتگر، فیشر و بکمن، ۲۰۱۱ و ۲۰۱۶) و اتصال عملکردی در حال استراحت (استلر، بارانز، باکر، کالاکل، و وورینگ، ۲۰۱۵) ارائه می‌شود. دانه کاگمد و میزان تأثیر آن به طور مستقیم با یک عضوی به‌دست آمده از آموزش حافظه کاری بر توانایی ت송 گروه‌سازی توانایی فعالیت کاری از طریق کاگمد بود. برخورداری دانیل آموزش حافظه کاری از طریق کاگمد با تغییر در فعالیت عملکردی مغز همراه است؛ به عنوان تغییرات در نوره‌سانی ۳۵۰۲ و همکاران، (۲۰۰۹). فعالیت‌های عملکردی در حافظه کاری (السون و همکاران، ۲۰۰۴ و ۲۰۰۷؛ برهم، دیکمن، بلدر، وسرتگر، فیشر و بکمن، ۲۰۱۱ و ۲۰۱۶) و اتصال عملکردی در حال استراحت (استلر، بارانز، باکر، کالاکل، و وورینگ، ۲۰۱۵) ارائه می‌شود. دانه کاگمد و میزان تأثیر آن به طور مستقیم با یک عضوی به‌دست آمده از آموزش حافظه کاری بر توانایی ت송 گروه‌سازی توانایی فعالیت کاری از طریق کاگمد بود. برخورداری دانیل آموزش حافظه کاری از طریق کاگمد با تغییر در فعالیت عملکردی مغز همراه است؛ به عنوان تغییرات در نوره‌سانی ۳۵۰۲ و همکاران، (۲۰۰۹). فعالیت‌های عملکردی در حافظه کاری (السون و همکاران، ۲۰۰۴ و ۲۰۰۷؛ برهم، دیکمن، بلدر، وسرتگر، فیشر و بکمن، ۲۰۱۱ و ۲۰۱۶) و اتصال عملکردی در حال استراحت (استلر، بارانز، باکر، کالاکل، و وورینگ، ۲۰۱۵) ارائه می‌شود. دانه کاگمد و میزان تأثیر آن به طور مستقیم با یک عضوی به‌دست آمده از آموزش حافظه کاری بر توانایی ت송 گروه‌سازی توانایی فعالیت کاری از طریق کاگمد بود. برخورداری دانیل آموزش حافظه کاری از طریق کاگمد با تغییر در فعالیت عملکerd
فراتحلیل اثربخشی برنامه آموزش شناختی رایانه‌ای کاگمد در حافظه فعال

حمیده رادمنش و همکاران

شدن مشکل کودکان در این زمینه و اجرای طرح مداخله به‌همگام و زودهنگام تشخیص و درمان اختلال پایداری در آموزش و پرورش بیشتر نمود از این برنامه مؤثر در درمان اختلال پایداری در مدارس و کلینیک‌های روانشناسی بهره برده شود. به علاوه از روش فراتحلیل برای بررسی اثر بخشی برنامه‌ها در پژوهش‌های انجام شده طی فواصل پنج تا ده سال استفاده می‌شود.

ملاحظات اخلاقی

پرویز از اصول اخلاق پژوهش: این مطالعه به عنوان یک پژوهش دکتری اولین نویسنده در دانشگاه شهید چمران اهواز با کد اخلاقی EE/98.24.3.57555 انجام شده است.

مطالعه به عنوان پایان‌نامه دکتری با حمایت مالی معاونت پژوهش دانشگاه شهید چمران اهواز در قالب گرنت به شماره گرنت (SCU. EM98.20924) انجام شد.

تشکر و قدردانی: از همکاری و مساعدت مالی معاونت پژوهشی دانشگاه شهید چمران اهواز تشکر می‌گویم.
References

Akerlund, E., Esbjörnsson, E., Sunnerhagen, K. S., & Bjo¨ rdahl, A. (2013). Can computerized working memory training improve impaired working memory, cognition and psychological health?. Brain Injury, 27(13–14), 1649–1657. [Link]

Astle, D.E., Barnes, J. J., Baker, K., Colclough, G.L., & Woolrich, M. L. (2015) Cognitive Training Enhances Intrinsic Brain Connectivity in Childhood. The Journal of Neuroscience, 35(16), 6277–6283. [Link]

Aziziyan, M, Asadzadeh, H, Alizadeh, H, Dortaj, F, Sadipour, E. (2017). The Effectiveness of Executive Functions Training on Enhancement of Attention, Working Memory, and Inhibition in Pupsils with Borderline Intellectual Functioning. Journal of Research Behavioral Science; 15(1): 93-103.[Link]

Badeley, A. D., & Hitch, G. (1974) Working Memory. Psychology of learning and motivation, 8, 47-89. [Link]

Beckmann, B., Holling, H., Kuhn, J. T. (2007). Reliability of verbal-numerical working memory task. Personality and Individual Differences, 43 (4), 703-714. [Link]

Bennett, S., Holmes, J., & Buckley, S. (2013). Computerized memory training leads to sustained improvement in visuo-spatial short term memory skills in children with Down syndrome. American Journal on Intellectual and Developmental Disabilities, 118(3), 179-192. [Link]

Bergman Nutley, S., & Klingberg, T. (2014). Effect of working memory training on working memory, arithmetic and following instructions. Psychol Res, 78, 869-77. [Link]

Bergman Nutley, S., & Soderqvist, S. (2017). How is working memory training likely to influence academic performance? Current evidence and methodological considerations. Frontiers in psychology, 8, 1-12. [Link]

Bremner, Y., Rieckmann, A., Bellander, M., Westerberg, H., Fischer, H., & Bäckman, L. (2011). Neural correlates of training-related working-memory gains in old age. NeuroImage, 58 (4), 1110-1120.[Link]

Capodiecì, A., Gola, M. L., Cornoldi, C., & Re, A. M. (2011). Effects of a working memory training program in preschoolers with symptoms of attention-deficit/hyperactivity disorder. Journal of Clinical and Experimental Neuropsychology, 40(1),17-29.[Link]

Dahlin, K. I. E. (2013). Working Memory Training and the Effect on Mathematical Achievement in Children with Attention Deficits and Special Needs. Journal of Education and Learning, 2 (1), 118-133. [Link]

Donk, M. V. D., Hiemstra- Beernink, A., Tjeenk- Kalff, A., Leij, A. V. D., & lindauer. R. (2015). Cognitive training for children with adhd: a randomized controlled trail of cogmed working memory training paying attention in class. Frontiers in psychology. 6, 1081.[Link]

Dunning, D. L., Holmes, J., & Gathercole, S. E. (2013). Does working memory training lead to generalized improvements in children with low working memory? A randomized controlled trial. Developmental Science. 16 (6), 915–925. [Link]

Eve, M., O’Keeffe, F., Jhui, S., Ganesan, V., Brown, G., & Murphy, T. (2016). Computerized Working-Memory Training for Children Following Arterial Ischemic Stroke: A Pilot Study With Long-Term Follow-Up. Appl Neuropsychol Child, 5 (4), 273-82. [Link]

Gathercole, S. E, Brown, L. & Pickering, S. J. (2003). Working memory assessments at school entry as longitudinal predictors of national curriculum attainment levels. Educational and Child Psychology, 20(3), 109-142.

Graham, S., & Harris, K. R. (2003). Students with learning disabilities and the process of writing: A meta-analysis of SRSD studies. [Link]

Gray, S. A., Chaban, P., Martinussen, R., Goldberg, R., Gottlieb, H., Kronitz, R., Hockenberry, M., & Tannock, R. (2012). Effects of a computerized working memory training program on working memory, attention, and academics in adolescents with severe LD and comorbid ADHD; a randomized controlled trial. Journal of Child Psychology and Psychiatry, 53 (12), 1277-1284. [Link]

Hermansen Grunewaldt, K., Skranes, J., Brubakk, A. M., & Lahaugen, G. (2016). Computerized working memory training has positive long-term effect in very low birthweight preschool children. Developmental Medicine & Child Neurology, 58, 195-201. [Link]

Holmes, J., Gathercole S. E. & Dunning D. L. (2009). Adaptive training leads to sustained enhancement of poor working memory in children. Journal of Developmental science, 12 (4), 9-15. [Link]

Holmes, J., Gathercole, S. E., Place, M., Dunning, D. L., Hilton, K. A., & G.J., Elliott. (2010). Working Memory Deficits can be Overcome: Impacts of Training and Medication on Working Memory in
Children with ADHD. *Cognitive psychology*, 24 (6), 827–836. [Link]

Holmes, J., Butterfield, S., Cormack, F., Lohenhoud, A. V., Ruggero, L., Kashkar, L., & Gathercole, S. (2015). Improving working memory in children with low language abilities. *Frontiers in psychology*, 6, 1-10. [Link]

Jafari F, Arjmandnia A A, Rostami R. The effect of neuropsychological rehabilitation program on working memory and response inhibition of students with dysgraphia. *Journal of psychological science*, 20 (98):233-246. [Link]

Jonides, J., & Awh, E. (2001). Overlapping mechanisms of attention and spatial working memory. *Trends in Cognitive Sciences*, 5 (3), 119-126. [Link]

Khorasani Zadeh A, Bahrami H, Ahadi H. (2018). Changes in cortical dopamine D1 receptor binding associated with cognitive training. *Science*. 323 (5915), 800-2. [Link]

Klingberg, T., Forssberg, H., & Westerberg, H. (2002). Training of working memory in children with ADHD. *Journal of Clinical and Experimental Neuropsychology*, 24 (6), 781-791. [Link]

Klingberg, T., Fennell, E., Olesen, P.J., Johnson, M., Gustafsson, P., Dahlström, K., Gillberg, C.G., Forssberg, H., & Westerberg, H. (2005). Computerized training of working memory in children with ADHD – a randomized, controlled trial. *Journal of the American Academy of Child & Adolescent Psychiatry*, 44(2), 177-186. [Link]

Løhaugen, G. C. C., Antonsen, I., Håberg, A., Gramstad, A., Vik, T., Brubakk, A.M., Skranes, J. (2011). Computerized working memory training improves function in adolescents born at extremely low birth weight. *Journal of Pediatrics*, 158 (4), 555-561. [Link]

Lundqvist, A., Grundstrom, K., Samuelsson, K., & Ronnberg, J. (2010). Computerized training of working memory in a group of patients suffering from acquired brain injury. *Brain Injury*, 24 (10), 1173–1183. [Link]

McNab, F., Varrone, A., Farde, L., Jucaite, A., Bystritsky, P., Forssberg, H., & Klingberg, T. (2009). Changes in cortical dopamine D1 receptor binding associated with cognitive training. *Science*. 323 (5915), 800-2. [Link]

Nejati, V., Najian, A., & Akbarpour, F. (2017). The effectiveness of motor based cognitive rehabilitation on improvement of working memory of children with ADHD. *Journal of psychological science*, 15(60), 504-517. [Link]

Olesen, P. J., Westerberg, H., & Klingberg, T. (2004). Increased prefrontal and parietal activity after training of working memory. *Nature Neuroscience*, 7 (1), 75-79. [Link]

Passolunghi, M. C., & Costa, H. M. (2016). Working memory and early numeracy training in preschool children. *Child Neuropsychology*. 22 (1), 81-98. [Link]

Premuzic, T. & Furnham, A. (2003). Personality traits and academic examination performance. *European Journal of Personality*, 17 (3), 237-250. [Link]

Pumacciahu, T.T., Wong, E. H., & Wiest, D. W. (2017). Effects of Computerized Cognitive Training on Working Memory in a School Setting. *International Journal of Learning, Teaching and Educational Research*, 16 (3), 88-104. [Link]

Re, A. M., Capodieci, A., & Cornoldi, C. (2015). Effect of training focused on executive functions (attention, inhibition, and working memory) in preschoolers exhibiting ADHD symptoms. *Front Psychol*, 6, 1161. [Link]

Roberts, G.,Quach, J; Spencer-Smith, M; Anderson, P. J., Gathercole, S., Gold, L., Sia, K. L., Mensah, F., Rickards, F., Ainley, A., Wake, M. (2016). Academic Outcomes 2 Years After Working Memory Training for Children With Low Working Memory A Randomized Clinical Trial. *Jama Pediatr*, 170 (5), E1 - E10.[Link].

Roche, J. D., & Johnson, B. D. (2014). Cogmed Working Memory Training Product Review. *Journal of Attention Disorders*, 18 (4), 379–384. [Link]

Roughan, L., & Hadwin, J. A. (2011). The impact of working memory training in young people with social, emotional and behavioural difficulties. *Learning and individual differences*, 21 (6), 759-764. [Link]

Sexton M, Harris KR, Graham S. (1998). Self-Regulated Strategy Development and the Writing Process: Effects on Essay Writing and Attributions. *Exceptional Children*, 64(3), 295-311. [Link]

Sprenkle, D. H., & Piercy, F. P. (2005). *Research methods in family therapy*. Guilford Press: New York. [Link]

Stevens, M.C., Gaynor, A., Bessette, K. & Pearlson, G. D. (2016). A preliminary study of the effects of working memory training on brain function. *Brain Imaging and Behaviour*, 10 (2), 387-407. [Link]

Swanson, L. H. (2015). Cognitive strategy interventions improve word problem solving and working
memory in children with math disabilities. Frontiers in Psychology, 6, 25-37. [Link]

Thompson, S. T. & Gathercole, S. (2006). Executive functions and achievement in school: shifting, updating, inhibition and working memory. Journal of Experimental Psychology (Colchester), 59 (4), 745-759. [Link]

van Dongen-Boomsma, M., Vollebregt, M. A., Buitelaar, J. K., & Slaats-Willemse, D. (2014). Working memory training in young children with ADHD: a randomized placebo-controlled trial. Journal of Child Psychology and Psychiatry, 55 (8), 886-896. [Link]

Wethington HR, Hahn RA, Fuqua-Whitley DS, Sipe TA, Crosby AE, Johnson RL, et al. (2008). The Effectiveness of Interventions to Reduce Psychological Harm from Traumatic Events among Children and Adolescents: A Systematic Review. American Journal of Preventive Medicine, 35(3), 281-313. [Link]

Weicker, J., Villringer, A., & Thöne-Otto, A. (2016) Can Impaired Working Memory Functioning Be Improved By Training? A Meta-Analysis With a Special Focus on Brain Injured Patients. Neuropsychology, 30(2), 190–212. [Link]

Westerberg, H., & Klingberg, T. (2007). Changes in cortical activity after training of working memory – a single-subject analysis. Physiology and Behavior, 92(1-2), 186 -192. [Link]

www.cogmed.com. [Link]