Does the Mediterranean water shrew
Neomys anomalus (Soricidae, Eulipotyphla) expand the eastern part of the distribution range?

Oleg A. Ermakov, Alina V. Mishta, Boris I. Sheftel, Ekaterina V. Obolenskaya, Georgiy A. Lada, Natalia V. Bystrakova, Alexander B. Ruchin, Andrey A. Lissovsky*

ABSTRACT. The Mediterranean water shrew Neomys anomalus is sparsely distributed across the major part of Eastern Europe. There is a large amount of new information about the enlargement of the distribution range of the species during last 2 to 3 decades. We analysed species distribution, variation of cytochrome b gene and character of appearance of new records on species distribution. We suggest that the “expansion” of the Mediterranean water shrew is rather a result of more thorough faunal studies than of a natural expansion of the species range.

How to cite this article: Ermakov O.A., Mishta A.V., Sheftel B.I., Obolenskaya E.V., Lada G.A., Bystrakova N.V., Ruchin A.B., Lissovsky A.A. 2020. Does the Mediterranean water shrew Neomys anomalus (Soricidae, Eulipotyphla) expand the eastern part of the distribution range? // Russian J. Theriol. Vol.19. No.2. P.112–130. doi: 10.15298/rusjtheriol.19.2.02.

KEY WORDS: Neomys anomalus, distribution, cytochrome b, species distribution modelling, Eastern Europe.

Introduction

The range of the Mediterranean water shrew (Neomys anomalus Cabrera, 1907) extends from Europe to Asia Minor (Hutterer et al., 2010). It is sparsely distributed across the major part of Eastern Europe. New information about the enlargement of the distribution range in the southern, northern and eastern directions began to arrive during last 2 to 3 decades. The Mediterranean water shrew was captured in south-western Iran, which is about 1000 km to the south from known distribution limits (Esmaeili et al., 2008), and was also found in Estonia (Balčiauskas et al., 2016), 700 km to the north...
of the most northern locality for this species in Poland. In Russia, during last decades the species was found in several regions for the first time: Mordovia Republic, Kaluga, Tambov and Penza Regions (Lada & Sokolov, 2000, 2012; Sokolov & Lada, 2007; Borodin, 2013; Ruchin et al., 2018; our data), far outside its known distribution.

This poses the question of the reasons for these new reports. Is this a consequence of species distribution change or a result of increased native populations, which were so sparse previously that it was not possible to capture animals using traditional trapping methods? It should be noted that some “new” findings of the shrew are the result of the analysis of museum collections; animals were captured and stored in a museum with incorrect species identification. In such cases, the Mediterranean water shrew was mixed up with the Eurasian water shrew (*N. fodiens* Pennant, 1771), although these two species have notable morphological differences (Zaitsev et al., 2014).

In this study, we used species distribution modelling as well as analysis of mitochondrial cytochrome *b* sequence variation for the comparison of two alternate hypotheses on the reasons of the “expansion” of the distribution range of *N. anomalus*: actual range shifts vs. previous mistakes in species identification, along with increasing success of species detection using more effective methods.

Material and methods

Species distribution modelling

We analysed all occurrence records of the Mediterranean water shrew in Eastern Europe, available from literature, museum collections, and our field data. The whole dataset consisted of 239 records (Appendix 1), some of which were made from territory that suffered from anthropogenic transformation during the time passed from the date of capture or were obtained from pellets analysis (no geographical coordinates of animal occurrence). Such records were excluded from the analysis. The remaining dataset had irregular spatial distribution, including spatial aggregations. Therefore, we filtered the dataset, selecting one observation locality per 50 × 50-km square. The resulting dataset, which was used in the species distribution modelling, contained 69 localities.

The spatial frame of the analysis included a grid with a resolution of 0.02° in geographic longitude/latitude WGS84-based projection. We used 86 environmental variables: WorldClim 19 “bioclimatic” variables (http://www.worldclim.org; Hijmans et al., 2005), elevation, maximum snow depth, slopes curvature and steepness and 63 MODIS generalised average monthly data layers (9 months of 2004 per seven spectral bands; http://glsf. umiacs.umd.edu/data, Eastern Hemisphere only) as environmental descriptors. To correct for the non-random spatial distribution of locations and to control the set of background points, we prepared a Maxent bias file that describes the spatial distribution of sampling efforts. Specifically, we selected all available records (1149 points) of representatives of Soricidae from the studied region and constructed a 5-km buffer around each. The bias file had the value “1” across the studied region, but “10” under the buffers. The same dataset was used for reducing the number of environmental variables: we learnt principal components analysis (PCA) on the set of raster cells that intersect the 5-km buffers mentioned above and projected the result on the entire raster extent. Thus, principal components explain the variation in the environment around all sampled localities. Overall, 23 PCs, explaining 95% of variance, were selected for further analysis.

Species distribution modelling was carried out in MaxEnt version 3.4.1 (Phillips et al., 2019). To prevent over-parameterisation of the species distribution model, we compared the AICc values across the set of models with different values of regularisation multiplier (0.75, 1, 2, 3, 5) and different sets of feature types (“LQ”, “LQH”, “LQP”, “LQHP”) (Muscarella et al., 2014).

Molecular analysis

We sampled DNA from two museum specimens of the Mediterranean water shrew, originated from the most eastern part of the range (Tambov 52.7216 N, 41.5267 E, and Penza 53.6804 N, 42.2019 E regions). The DNA was extracted according to a standard procedure, including treatment with sodium dodecyl sulphate and proteinase K and subsequent phenol-chloroform extraction (Sambrook et al., 1989). To deal with degraded DNA from old museum samples, we used three overlapping primer pairs specific to *Neomys* in gene cyt *b* (1140 bp) amplification: tRNA*Glu* — 5’-ATC GTT ATT CAA TTA GAA CTA TAA GAA C-3’ and cytb_403R — 5’-YCC YCA RAA TGA TAT TGG YCC TCA-3’; cytb_389F — 5’-GTT AGC GCC ACT GCC TTT ATAG-3’ and cytb_746R — 5’-TAA TTG GCC GGG TCT CCG AGT A-3’; cytb_614F — 5’-TWT TCC TYC ATG AAA CAG GAT C-3’ and tRNA*Thr* — 5’-TTT TGG TTT ACA AGA CCA GTG TAT-3’ (Igea et al., 2015). Each PCR reaction contained 50 mM Tris-HCl (pH 8.9), 20 mM ammonium sulphate, 20 μM EDTA, 150 μg/ml bovine serum albumin, dNTPs (200 μM of each), 2 mM MgCl2, 15 pmol of each primer, 2 units of *Taq* polymerase and 0.1 to 0.2 μg DNA in a final volume of 25 μl. The reaction conditions were an initial denaturation of 3 min at 95°C, followed by 32 cycles of denaturation (30 s at 95°C), annealing (30 s at 54°C) and extension (40 s at 72°C). The PCR products were analysed using electrophoresis in 6% PAAG with subsequent staining with ethidium bromide and visualisation under UV light. Sequencing was done on an ABI 3500 automated capillary sequencer (Applied Biosystems) with the ABI Prism Big Dye Terminator Cycle Sequencing Ready Reaction Kit3.1, using the same primers. Sequences were aligned manually and checked for unexpected stop codons using BioEdit 7.0 (Hall, 1999). The genetic distance matrices (*p*-distances) between haplogroups were calculated in the MEGA7 software (Kumar et al., 2016). Haplotype networks were constructed using the median
joining method in the PopART software (Leigh & Bryant, 2015). The obtained sequences were deposited in GenBank (MT855469, MT855470). Additionally, we used 22 sequences downloaded from GenBank (AB175099–100 (Ohdachi et al., 2006); DQ991049–55 (Castiglia et al., 2007); LK936659–71 (Igea et al., 2015)).

Results

Distribution model

The optimal model selected had a regularisation multiplier of 0.75 and linear and quadratic features only. Algorithm converged after 1100 iterations; AUC was 0.927. The predicted distribution of suitable habitats for the Mediterranean water shrew did not form a continuous area and rather consisted of a set of small patches of suitable habitats. These patches mostly forested areas in river valleys, were separated by bands of unsuitable or less suitable habitats (Fig. 1). The largest agglomerations of suitable habitats were confined to forests in the basin of the middle Oder River, valleys of the Vistula River and its tributaries: Kamienna and Narew, in the Carpathian Mountains (Danube basin: Tisza and Prut Rivers valleys), forests of the Neman River and its tributary Viliya valleys, the middle Dniester basin, tributaries of the Dnieper River (Samara, Vorskla, Psyl, Sula, Teteriv, Irpin, Desna, Sozh, Prypiat), forests of the Seversky Donets River and the tributary Oskol and in mountainous Crimea. The patch of suitable habitats was situated in the basin of the Ushacha River, tributary of Dauгava (Zapadnaya Dvina). Habitat suitability decreased in an eastern direction; the main agglomerations of suitable habitats were situated in forests of the Voronezh River basin (Don River tributary) and the Moksha River basin (Oka tributary, Volga basin).

The Mediterranean water shrew was never found in two areas predicted by our modelling, namely the area in Northern Caucasus and Taman Peninsula as well as the Trans-Volga region near Samara Bend.

Morphology

Measurements of the body, tail and feet of Mediterranean and Eurasian water shrews was taken from museum labels. All specimens were identified using a complex of external and cranial features (Pucek, 1984). We used specimens from collections of the following institutions: the National Museum of Natural History at the National Academy of Sciences of Ukraine (NMNH, Ukraine), the Zoological Museum of Taras Shevchenko National University of Kyiv (KNU, Ukraine), the theriological collection of the Department of Monitoring and Animal Conservation of I.I. Schmalhausen Institute of Zoology (IZAN, Ukraine), the Zoological Museum of Ivan Franko National University of Lviv (LNU, Ukraine), the National Museum of Natural History (Lviv, LNHM, Ukraine), the Zoological Museum of the National University of Uzhhorod (UzhNU) (Uzhhorod, Ukraine), the zoological collection of Mykola Hohol State University of Nizhyn (NU) (Nizhyn, Ukraine), the theriological collection of the Mammal Research Institute Polish Academy of Sciences (MRIPAS) (Białowieża, Poland), the Zoological Museum of the Zaporozh'ke State University (ZMPSU) (Penza, Russia), the Zoological Museum of the Moscow State University (ZMGMU) (Moscow, Russia).
Mitochondrial variation

Both studied specimens of Mediterranean water shrew from the Penza and Tambov regions had the same haplotype, similar (difference 0.3%) to the haplotypes from Belgorod region and Belorussia from GenBank. There are three major haplogroups in the network of *N. anomalus* haplotypes (Fig. 2), all of which have a distinct geographic distribution. The first consisted of Iberian specimens and thus corresponded to *N. a. anomalus*. The remaining two consisted of non-Iberian specimens and therefore represented *N. a. milleri*. One of the haplogroups within *N. a. milleri* included Eastern European samples, while the second included samples from the rest of Europe, excluding the Iberian Peninsula. The difference (p-distance) between subspecies was 6.9 ± 0.6%, while that between haplogroups of *N. a. milleri* was 3.7 ± 0.5%. The average distance within “milleri” haplotypes (2.4 ± 0.3%) was about 2.5 times larger than average distance within “anomalus” (0.9 ± 0.2%).

Sample from Estonia

The northernmost localities for which the occurrence of the Mediterranean water shrew was found are situated on the territory of Estonia (Balčiauskas et al., 2016). Three *N. anomalus* specimens were found during the revision of collection of the University of Tartu Museum (UTM). Our species distribution modelling did not confirm the existence of suitable habitats for *N. anomalus* in the territory of Estonia (Fig. 1). Keeping in mind the theoretical possibility of mixing up of *N. anomalus* and *N. fodiens*, we compared body measurements of the Estonian sample with those of water shrews from the rest of Eastern Europe. According to our data, values for foot length do not overlap in samples of two *Neomys* species collected from one geographical region (Table). Therefore, the length of the hind foot could serve as a rough diagnostic tool for these two species in sympatry. We suggest that all body measurements (including foot length) of specimens described by Balčiauskas et al. (2016) as *N. anomalus* from Estonia lie completely within the variation of *N. fodiens* from this country and adjacent territories. Besides, there is a negative correlation of body size with latitude (Kryštufek & Quadaccr, 2008); northern populations should be smaller in size. This rule is true for *N. fodiens* (Balčiauskas et al., 2014). Estonian *N. anomalus* (more northern) specimens were larger than those from Lithuania (more southern) (Balčiauskas et al., 2016). Consequently, we suggest a thorough additional investigation of specimens of *N. anomalus* from the UTM collection.

Discussion

The Mediterranean water shrew has a wide but fragmented distribution range from Western Europe to the Volga region and Asia Minor (Zaitsev et al., 2014). Our modelling results confirm that the range in Eastern Europe consists of a number of fragments of various sizes, with different habitat suitability. The largest patches of suitable habitats are located at least in the basins of nine larger rivers. Taking into account the ecological relation of water shrews to water (Spitzenberger, 1990), disconnection of the distribution range into patches in different large river basins, together with low density across the range (Zaitsev et al., 2014), could indicate real distribution fragmentation at present. The high parameterisation of our optimal model (regularisation coefficient of 0.75) suggests regional ecological peculiarity and weak general ecological trends.
Table. Body measurements (mm) of *Neomys anomalus* and *N. fodiens* from Estonia, Lithuania, Poland, Belarus, Ukraine and Russia. Data are from labels of museum collections and publications.

Region	Body length min–max (avg)	Tail length min–max (avg)	Foot length min–max (avg)
	Neomys anomalus from Estonia		
Estonia (Balčiauskas et al., 2016)	70–84 (78) n=3	51–58 (54.6) n=3	16.5–17 (16.8) n=3
	N. anomalus		
Belarus (our data, Savarin & Savarina, 2019; Savarin, 2020)	59.1–77 (67.68) n=19	41–51.3 (45.5) n=19	13–15 (14.25) n=19
Kyiv region (Ukraine)	66–74.5 (71.2) n=9	39.5–49.5 (44.53) n=9	13.8–15.2 (14.29) n=9
Zakarpattia region (Ukraine)	57–88 (74.48) n=21	42–52 (47.67) n=21	14–15.7 (15.16) n=21
Lviv region (Ukraine)	63–79 (70.9) n=20	46–56 (51.05) n=20	13–16 (14.88) n=20
Odessa region (Ukraine)	64–79 (72.1) n=5	44.5–54 (50.68) n=5	14.5–15.4 (14.98) n=5
Sumy region (Ukraine)	67.8–75 (70.86) n=5	38.8–44 (43.4) n=5	13.6–14.7 (14.1) n=5
Lugansk region (Ukraine) (Abelentsev, 1967)	71–76.1 (73.07) n=4	43–53 (47.65) n=4	13.2–15 (14.38) n=4
Crimea	60–89.4 (76.14) n=21	44.5–58.3 (51.9) n=21	15–18 (16.28) n=23
Bryansk region (Russia)	63–74 (69.28) n=9	42–55 (48.33) n=9	13.8–15 (14.14) n=9
Kursk region (Russia)	68–75.2 (72.52) n=11	45–51.5 (48.39) n=11	13.7–15 (14.45) n=11
Mordovia (Russia) (Borodin, 2103)	67–76 (72.8) n=15	44.7–54.1 (50.32) n=15	13.4–15.4 (14.51) n=15
Penza region (Russia)	69 n=1	45 n=1	14 n=1
Białowieża (Poland)	65–83.2 (75.0) n=28	39–49.1 (43.4) n=28	14–16.5 (14.92) n=28
Białowieża (Poland) (Dehn, 1950)	67–85 n=65	42–52 n=65	14–15.4 n=65
Lithuania (Balčiauskas et al., 2012)	–	41–48.2 (44.7) n=3	14–15.2 (4.0) n=3
	N. fodiens		
Belarus (our data; Savarin, 2020)	70.5–102 (78.93) n=7	54–65 (58.57) n=7	16–19 (17.79) n=7
Kyiv region (Ukraine)	78–85 (81.37) n=7	61–69 (63.44) n=7	16–19 (18.06) n=8
Zakarpattia region (Ukraine)	63–105 (79.62) n=90	53–68 (61.09) n=90	16–21 (18.08) n=90
Lviv region (Ukraine)	63–87 (77.36) n=22	53–67 (60.02) n=22	16.5–19 (17.62) n=22
Sumy region (Ukraine)	82.5–94.2 (87.9) n=6	59–66.5 (61.18) n=6	17–19.8 (18.15) n=6
Lugansk region (Ukraine) (our data; Abelentsev, 1967)	66.1–87 (79) n=7	60–69.6 (63.44) n=7	18.7–22 (19.79) n=7
Bryansk region (Russia)	71.5–86 (79.52) n=12	53.5–62 (58.77) n=12	17.1–19 (18.08) n=12
Kursk region (Russia)	81.7–90 (83.11) n=9	62.5–78 (68.24) n=9	17.3–19.4 (18.94) n=9
Białowieża (Poland)	71–93 (81.05) n=78	54–69.2 (61.62) n=78	17.2–19.5 (18.43) n=78
Białowieża (Poland) (Dehn, 1950)	70–96	52–72	16–19.5
Lithuania (Balčiauskas et al., 2012)	–	50.5–73.1 (61.78) n=84	16.3–19.6 (18.0) n=84
Estonia (Balčiauskas et al., 2014)	–	48–68 (59.31) n=18	16–19 (17.53) n=18
Genetic data also support the long-standing formation of the Mediterranean water shrew population in Eastern Europe. According to Igea et al. (2015), the divergence between *N. a. anomalus* and *N. a. milleri* took place about 400000 years ago and, most probably, was related to one of the Middle Pleistocene glaciations. The ancestral population of *N. anomalus* became isolated in the Iberian Peninsula, while the remaining population (*milleri*) could occupy Eastern Europe and Asia Minor during interglacials. Since all known haplotypes from Eastern Europe belong to a separate haplogroup, we can hypothesise that the western and eastern populations of *N. a. milleri* diverged later than the split between *N. a. anomalus* and *N. a. milleri*. The long history of formation of *N. a. milleri* is supported by high genetic distances within this taxon — 2.4% on average, with a maximum of 4.2%.

Turning back to the main task of this study, it would be interesting to describe the dynamics of the accumulation of data on *N. anomalus* distribution. The species was described at the beginning of the 20th century on the basis of a specimen from Spain (Cabrera, 1907). The same year, but later, another species, *N. milleri* (Mottaz, 1907), was described from the territory of Switzerland; this name was considered as a synonym of *N. anomalus* for a long time. Recently, Igea et al. (2015) suggested the separation of Iberian water shrews (*N. a. anomalus*) and animals from the rest of Europe (*N. a. milleri*) into two independent species. The subspecies of the Eurasian water shrew was described from the southern Crimea in 1917 — *N. fodiens mokrcezki* Martino, 1917 (Martino & Martino, 1917); later, this subspecies was considered as a taxon within the Mediterranean water shrew. The author Ognev (1928) listed the Mediterranean water shrew (as *N. soricoides*) in Eastern Europe for the first time; Ognev’s checklist contains two localities: Białowieża and Kyiv Province (I.G. Pidoplichko collection). Around this time, *N. anomalus* was found in Belarus not only in Białowieża (1913), but in the Gomel (1929 and 1930) region (Turov, 1955; Serzhanin, 1961; Serzhanin et al., 1967). The checklist from 1944 (Bobrinskii et al., 1944) expanded the list of the Mediterranean water shrew records in Eastern Europe by two items only: Southern Bessarabia and Voronezhskiy Zapovednik (Lavrov & Lavrov, 1938). There is no mention of this species from Belarus in the text of Bobrinsky’s checklist; however, there is a dot in the Brest region shown on the map. The mammal identification guide of Gromov & Baranova, 1981 almost repeats information from the previous checklist (Bobrinskii et al., 1965), with exception of the absence of a mention of the Mediterranean water shrew from Russia.

Thus, in 1981, at least some Russian zoologists doubted the existence of *N. anomalus* in Russia, while museum specimens with incorrect species identification were kept in collections for a long time. The author E.S. Ptushenko found the Mediterranean water shrew in the Kursk Region in 1926–27. The shrew was collected in five localities of Dmitrivskiy District as well is in the districts Lgovskiy and Sudzhanskiy. These specimens were kept in the Zoological Museum of Moscow State University (ZMMU) and later identified by M.V. Zaitsev. Further, E.S. Ptushenko collected the Mediterranean water shrew near Belgorod in the valley of the Seversky Donets River in 1926; the specimen was passed to the ZMMU. In 1936, L.G. Morozova-Turova captured *N. anomalus* in the territory of Mordovskiy Zapovednik (Ioroki plot) (Borodin, 2013). Later, 15 specimens were collected by L.P. Borodin and P.L. Borodin in a water meadow of the Pushta River in 1975, 1979–1981; two of them are kept in the ZMMU.

The data set from the Ukraine territory was also notably larger than it was reflected in published checklists. The first data on the Mediterranean water shrew were indeed collected in 1926 (Ognev, 1928; Pidoplichko, 1929) — ten skulls from pellets of barn owls were collected by E. Kititsyn in the Vyra River valley near Radomyslska station in Kyiv Province (Korostensky District of Zhytomyr Region now). The adult female of the Mediterranean water shrew was collected by E. Kititsyn in the same locality in autumn 1926, and this material was analysed by I. Pidoplichko. Another specimen, collected by S. Ivanov near Uman (Cherkassy Region) in 1925, was handed to I. Pidoplichko. A large data set on the distribution and density of the Mediterranean water shrew in Right-bank Ukraine and Western Ukraine was generated after analysis of pellets of birds of prey, mainly in the first half of the 20th century (Pidoplichko, 1927, 1929, 1932, 1937, 1963; Sokur, 1963). More than 600 localities of 24 regions were investigated; *N. anomalus* was found in 75 localities of 12 regions. The knowledge on *N. anomalus* distribution in Western Ukraine was extended by Tatarynov (1956). In the territory of Left-bank Ukraine, single Mediterranean water shrews were revealed in the districts Brovaryskiy and Yagotinsky of the Kyiv region (Abelentsiev & Pidoplichko, 1956) and near Poltava City (Gavrilenko, 1946 (1947)). Later, four specimens of *N. anomalus* were collected in the valley of the Seversky Donets River in the summer of 1961 (Kremsensky District, Lugansk Region) (Abelentsiev, 1966, 1967).

After the 1980s, the information on the Mediterranean water shrew distribution in Eastern Europe grew rapidly (Appendix I). Three localities were found in Lithuania. One specimen was collected in 2009 in the Neman River delta, and two specimens were found during the examination of museum collections (Balčiauskas & Balčiauskiene, 2012).
Several specimens of *N. anomalus* were collected in the Vitebsk region of Belarus, in the territory of Berezinsky Zapovednik (Kashatalyan, 1999; Kashatalyan & Springer, 2012; Igra et al., 2015). In the 20th century, new localities in Brest (Bereza Town vicinities) and Vitebsk (Ushachskiy District) were found (Savarin, Molosh, 2017; Savarin, 2019 a, b, c).

After 1997, in Ukraine, the species was found across Sunny region in the districts Seredina-Budsky, Gluhivsky, Romensky, Sumsky and Lebedinsky (Merzlikin, 1999; Mishta, 1999, 2003; Mishta & Shevchenko, 2003; Podoprigora & Merzlikin, 2003; Gavris et al., 2007; Merzlikin & Sheverdyukova, 2008; Mishta, 2008; Merzlikin & Sheverdyukova, 2010). A single specimen was collected in the valley of the Seversky Donets River near Verkhniy Saltov Village, Kharkiv region, in October 2005 (Zorya, 2008; Tokarskiy & Zorya, 2013). The first record of the Mediterranean water shrew from the Chernigiv region came from the analysis of pellets of tawny owls in 2008 (Zaitseva & Gatina, 2010). The species was found in the south of the regions Kherson and Nikolaev (Gizenko, 1967; Selyunina, 2005) in the Danube delta Reserve of Odessa (Fedorchenko, 1992; Mishta, 2018). The most recent record from the Dniproprotskov region (right bank of the Dnieper River) near Kryvyi Rih was uploaded by V. Sevidov to the UkrBin database (http://ukrbin.com/show_image.php?imageid=52354).

The Mediterranean water shrew has always been a rare species in Ukraine, with an unstable abundance over time. According to data came from the first half of the 20th century, in Right-bank Ukraine, this species was less common in pellets of birds of prey than other shrews such as the common shrew, the Eurasian pygmy shrew, the bicolored white-toothed shrew and the Eurasian water shrew (Abelentsv & Pidoplichko, 1956). In the last 50 years, notable parts of habitats suitable for *N. anomalus* were destroyed or transformed by human activity (swamp drainage, dam construction, deforestation, development and ploughing up of the wetlands). The species was included in the Red Data Book of Ukraine (1994, 2009). Its density in suitable habitats is maintained at a fairly low level — relative density is no more than one to two individuals per 100 traps/days; usually below 0.5 individuals. The percentage of the total catch for this species is usually below 1.5%. There is a tendency to an even greater decline in the number of the species over the last 30 years (Mishta, 2009).

In Russia, the species was registered in the Kaluga region in “Ugra” National Park in 2004 for the first time. Later, single specimens of the Mediterranean water shrew were captured in Belyaevskoe, Yugorskoe (Yukhnovskiy District), Galkinskoe (Dzerzhinskii District) and Berezichskoe (Ulyanovskiy District) forests of this National Park as well as in “Kaluzhskie Zaseki” Zapovednik (Ulyanovskiy District) (Alekseev et al., 2006, 2011, 2014; Koryavchenkov, 2017).

The species was registered in four localities of Khvostovichskiy District in 2011 (Koryavchenkov, 2017) and in Ferzikovsky District in 2014 (S. Alekseev, personal communication).

The Mediterranean water shrew was registered in the south-eastern part of the Bryansk Region, within the districts Trubchevskiy, Suzemskiy and Komarichskiy. The major part of these observations was made in the territory of “Bryanskis Les” Zapovednik (Mishta, 2005; Sitnikova & Mishta, 2006, 2008). Outside the Zapovednik borders, the Mediterranean water shrew was found in Komarichskiy District in 2004 and in the regional natural monument “Nerusso-Sevnyi” in 2005 (Mishta, 2005; Sitnikova & Mishta, 2008).

Recently, the Mediterranean water shrew from the districts Korenevskiy and Kurskiy, Kursk region, was mentioned in several publications (Zherdeva et al., 2009; Zherdeva, 2017), but unfortunately there is no information on species identification in these publications. Inaccurate information about the presence of *N. anomalus* in the Oryol region was published in the Mammals of Russia checklist (Bannikova & Lebedev, 2012); the Dmitrievskiy District of the Kursk region and the neighbouring Dmitrovskiy District of the Oryol region were mixed up when citing specimens collected by E. Ptushenko.

In the Belgorod region, the single recent registration was made by Yu.M. Kovalskaya in the “Belogorye” Zapovednik, “Yamskaya step” plot in 2007 (Igea et al., 2015; Shapovalov, 2019). The occurrence of *N. anomalus* in Lipetsk and Voronezh regions was established within “Usmanskiy Bor” (forest). Most records were from the territory of Voronzhsky Zapovednik, which occupies the northern part of this forest. The last case took place in July 2014 (Sapelnikov & Sapelnikova, 2015). The only specimen registered outside of the Zapovednik was a dead female found during summer 1991 at the south-western edge of Usmanskiy Bor (Klimov & Khitsova, 1996; Klimov, 2011, 2013, 2018). There is additional information about a wider distribution of *N. anomalus* in the Lipetsk region (Nedosekin et al., 1996; Parshina, 1997); however, the data source is unknown. In 1995, one specimen was supposedly collected by M.V. Ushakov in a water meadow of the Don River in the territory of “Galichya Gora” Zapovednik (Sarychev et al., 1995; Klimov & Khitsova, 1996). Nevertheless, this report was recognised as erroneous (Klimov, 2011). The very author of this “finding”, M.V. Ushakov (2009), considers the Mediterranean water shrew as “probably extinct in the region”. This species was not included in later editions of the Red Data Book of Lipetsk region (Konstantinov, 2006; Alexandrov, 2014). The Mediterranean water shrew is known from the Tambov region by the single finding in Vlasovskoye peatland near Tambov (Lada & Sokolov, 2000, 2012; Sokolov & Lada, 2007). Two specimens were collected (1993 and 1997) in the Lyargas River valley, in the vicinity of Alexandrovka village in Zemetchinskiy District of the Penza region (our data). In the Mordovia Republic, the Mediterranean water shrew continues to live in Mordovskiy Zapovednik (Ruchin et al., 2018).

Recently, *N. anomalus* was found in 21 regions of Ukraine and in Crimea: four of these regions were added to the list during 1997–2019 (Chernigov, Sumy, Khar-
It is significant that for most cases of *N. anomalus* registration on the periphery of the range, the species was found during long studies in field stations. Such studies use various kinds of traps, including pitfalls. The stations belong to Nature Reserves (Białowieża Forest, Belogorye, Berezinskii, Bryanskii les, Voronezhskii, Kaluzhskie zaseki, Mordovskii), National Parks (Desnyansko-Starogutskiy, Ugra), natural monuments (Neruso-SEvniy, Lovatyanka, Vytebet and Obelna Rivers, green area of Khvostovichy settlement), other traditional field stations (Pershiniskaya station of MOIP, Vlasovskoye peatland near Tambov, biological centre of Voronezh State University “Venevitino”, vicinities of Alexandrovka village in Zemetchinskii District of Penza Region). No increasing numbers of the Mediterranean water shrew were registered somewhere in Eastern Europe. Thus, there was no reason for a dispersion of animals from zone of higher density to the periphery of the distribution range.

In summary, all studied animals belong to one compact haplogroup that was registered only in Eastern Europe. Consequently, if dispersion of water shrews is taking place, one can expect such dispersion within Eastern Europe only. The highly fragmented structure of *N. anomalus* distribution in this region makes the recent expansion of this rare species to the periphery of the range through large areas of unsuitable habitats less possible. The major part of new registrations of the Mediterranean water shrew is confined to places where long-term observations, focused on the investigation of the faunal composition, take place. This indicates a change in the thoroughness of faunal studies rather than a natural expansion of the species range. We hypothesise that one of the reasons of the “rarity” of *N. anomalus* during the 20th century was rather a social phenomenon: zoologists did not expect to find this species because of its extremely low density. As a result, specimens were not transferred to museums or were misidentified due to the lack of thorough attention.

ACKNOWLEDGMENTS. The authors are grateful to S.K. Alekseev (Eco-biological centre Kaluga region), A.V. Rogulenko (National Park Ugra), A.S. Klīmov (Voronezh State University), E.V. Sinitnikova (Bryansk Forest Nature Reserve), D.S. Mosina (Moscow). A. Abramov (St. Petersburg) and N. Dokuchaev (Magadan) made a valuable comments on the text of the manuscript. This study was supported by the Russian Science Foundation; Grant number 18-14-00093.

References

Abelievets V.I. 1967. [A new find of *Neomys anomalus* in Ukraine] // Vestnik Zoologii. No.4. P.65–68. [in Russian, with English summary]

Abelievets V.I., Pidoplichko I.G. 1956. [Order Insectivores – Insectivora] // [Fauna of Ukraine.] Kyiv: AS URSR Publ. Vol.1. No.1. P.70–228. [in Ukrainian]

Alekseev S.K. & Rogulenko A.V. 2014. [Mammals] // [Vertebrates of the national park “Ugra”. Vol.10. Flora and fauna of national parks]. Moskva: Izdatel’svo Komissii RAN po sokhraneniyu biologicheskogo raznoobraziya. P.63–78. [in Russian]

Alekseev S.K., Dudkovsky N.I., Margolin V.A. & Rogulenko A.V. 2011. [Fauna of vertebrates of the Kaluga region.] Kaluga: AKF Politop. 190 p. [in Russian]

Alekseev S.K., Koryavchenkov D.M. & Rogulenko A.V. 2006. [Insectivores of the Galkinsky forestry of the Ugra National Park] // [Nature and history of Pougorye. Vol.4.] Kaluga: IC “Postkriptum”. P.55–56. [in Russian]

Alexandrov V.L. (ed.) 2014. [Red Book of the Lipetsk region. Vol.2. Animals.] Lipetsk. 484 p. [in Russian]

Balciaskas L. & Balciaskienle L. 2012. Mediterranean water shrew, *Neomys anomalus* Cabrera, 1907 — a new mammal species for Lithuania // North-Western Journal of Zoology. No.8. P.367–369.

Balciaskas L., Balciaskienle L. & Timm U. 2014. Bergmann’s rule for *Neomys fodiens* in the middle of the distribution range // Central European Journal of Biology. Vol.9. P.1147–1154.

Balciaskas L., Balciaskienle L. & Timm U. 2016. Mediterranean water shrew (*Neomys anomalus*): range expansion northward // Turkish Journal of Zoology. Vol.40. P.103–111.

Bannikova A.A. & Lebedev V.S. 2012. Order Eulipotyphla // [Identification guide to the Mammals of the USSR]. Moscow: Nauka. 440 p. [in Russian]

Bobrinskiy N.A., Kuznetsov B.A. & Kuzyakin A.P. 1964. [Identification guide to the Mammals of the USSR]. Moscow: Prosvescheniye. 382 p. [in Russian]

Bobrinskiy N.A., Kuznetsov B.A. & Kuzyakin A.P. 1965. [Identification guide to the Mammals of the USSR]. Moscow: Prosveshcheniye. 382 p. [in Russian]

Borodin P.L. 2013. [Mediterranean water shrew in the Mordovskiy Nature Reserve] // Proceeding of the Mordovskiy State Reserve. Vol.11. No.8. P.109–124. [in Russian]

Cabrera A. 1907. Three new Spanish insectivores // The annals of natural history. Vol.2. Animals. Lipetsk. 484 p. [in Russian]

Castiglia R., Annesi F., Aloise G. & Amori G. 2007. Mitochondrial DNA reveals different phylogeographic structures in the water shrews *Neomys anomalus* and *N. fodiens* (Insectivora: Soricidae) in Europe // Journal of Zoological Systematics and Evolutionary Research. Vol.45. P.255–262.

Dehnel A. 1950. [Studies on the genus *Neomys* Kaup] // Annales Universitatis Marie Curie-Sklodowska. Sectio C. Lublin–Polonia. Vol.5. P.1–63 [in Polish, with English summary]

Dulitsky A.I. 2001. Biodiversity of Crimea. Mammals: Natural history, Status, Conservation, Perspective. Simperfol: Sonat Press. 208 p. [in Russian]

Esmaili H.R., Gholamhosseini G., Teimory A. & Krystufek B. 2008. Noteworthy record of the Mediterranean water shrew (*Neomys anomalus*) from south-western Iran (Mammalia: Neomys anomalus in the eastern part of the range

In three regions: Kursk, Belgorod and Mordovia Republic (Borodin, 2013).
Soricomorpha) // Turkish Journal of Zoology. Vol.32. No.2. P.163–166.

Fedorchenko A.A. 1992. [Insectivorous of the lower Danube River] // [First all-union meeting on the biology of insectivorous mammals] Moskva: IC RAN. P.162–163. [in Russian]

Gavrilenko M.I. 1946 (1947). [New animals and birds of the Poltava region] // [Scientific notes of Poltava Pedagogical Institute.] Poltava. P.121–128. [in Ukrainian]

Gavris G.G., Kuzmenko Yu.V., Mishita A.V. & Kotzerhinska I.M. 2007. [Fauna of vertebrates of Desnyansko-Starogutsky National Park] Sumy: Kozatskyval Publ. 127 p. [in Ukrainian]

Gizenko A.I. 1967. [Fauna of mammals of the Black Sea Reserve] // [Scientific conference dedicated to the 40th anniversary of the Black Sea Biosphere Reserve] Kyiv: Naukova dumka. P.20–23. [in Russian]

Gromov I.M. & Baranova G.A. (eds.) 1981. [Catalogue of mammals of USSR (Pliocene to Recent)] Moscow-Leningrad: Nauka. 455 p. [in Russian]

Gromov I.M., Gureev A.A., Novikov G.A., Sokolov I.P., Strelkov P.P. & Chapsky K.K. 1963. [Mammals of the fauna of USSR, Parts 1. (Guides on the Russian fauna published by Zoological Institute of Academy of Science of USSR, 83)] Moscow, Leningrad: Izdatelstvo Akademii nauk SSSR. 641 p. [in Russian]

Hall T.A. 1999. BioEdit: A user friendly biological sequence alignment editor and analysis program for Windows 95/98/NT // Nucleic Acids Symposium Series. Vol.41. P.95–98.

Hijmans R.J., Cameron S.E., Parra J.L., Jones P.G. & Jarvis A. 2005. Very high resolution interpolated climate surfaces for global land areas // International Journal of Climatology. Vol.25. No.15. P.1965–1978.

Hutterer R., Amori G., Kryštufek B., Yigit N., Mitsain G., Meing H., Bertolino S. & Palomo L.J. 2010. Neomys anomalus // The IUCN Red List of Threatened Species 2010: e.T29657A9512098. Downloaded on 20 October 2020.

Igea J., Aymerich P., Bannikova A.A., Gosálbez J. & Castresa P. 2015. Multilocus species trees and species delimitation in a temporal context: application to the water shrews of the genus Neomys // BMC Evolutionary Biology. Vol.15. No.209. P.1–16.

Kashtalyan A.P. & Springer A.M. 2012. [Long-term dynamics of the number of small mammals in the forest ecosystems of the Berezinsky Biosphere Reserve] // I.A. Zhigarev (Ed.). [Behavior, ecology and evolution of animals: monographs, articles, reports. Scientific collection of Ryazan S.A.Esenin State University PTY (Zoology Series). Vol.3.] Ryazan: NP “Golos gubernii” Publ. P.191–214. [in Russian]

Kashtalyan A.P. 1999. [Materials on the species composition and geographical distribution of shrews in Belarus] // Bol’shakov V.N. at al. (eds.) [Biology of insectivorous mammals: abstracts.] Kemerovo: OOO “Izdatel’stvo Yulis”. P.322. [in Russian]

Klimov A.S. & Khitsova L.N. 1996. [Class Mammals – Mammalia] // [Natural resources of the Voronezh region. Vertebrate. Cadastre.] Voronezh: AOZT “Biomik”. P.160–202. [in Russian]

Klimov A.S. 2011. [Mediterranean water shrew Neomys anomalus Cabrera, 1907] // Negrobov O.P. (ed.) [Red Book of the Voronezh region. Vol.2. Animals.] Voronezh: NPO “Modek”. P.355–356. [in Russian]

Klimov A.S. 2013. [Perennial abundance dynamics and the modern state of small mammalian species in lowland swamps of the Usmansky pine forest (Voronezh region)] // Povolzhskiy Journal of Ecology. Vol.1. P.42–50. [in Russian, with English summary]

Klimov A.S. 2018. [Mediterranean water shrew Neomys anomalus (Cabrera, 1907)] // Negrobov O.P., Numerov O.D. (eds.) [Red Book of the Voronezh region. Vol.2. Animals.] Voronezh: Tsentr dukhovnogo vozrozhdeniya Chernozemnogo kraja. P.404. [in Russian]

Konstantinov V.M. (ed.) 2006. [Red Book of the Lipetsk region. Vol.2. Animals.] Voronezh: Istoiki. 256 p. [in Russian]

Koryavchenkov D.M. 2017. [Mediterranean water shrew Neomys anomalus Cabrera, 1907] // Antokhina V.A. (ed.) [Red Book of the Kaluga region. Vol.2. Animals.] Kaluga: OOO “Vash dom”. P.334. [in Russian]

Kryštufek B. & Quadracci A. 2008. Effects of latitude and allopatty on body size variation in European water shrews // Acta Theriologica. Vol.53. No.1. P.39–46.

Kumar S., Stecher G. & Tamura K. 2016. MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 // Molecular Biology and Evolution. Vol.33. P.1870–1874.

Kyjko A., Gorbun L.I. & Matejchyk V.I. 2005. [Red book data species of vertebrate animals in protected ecosystems of Volyn Polissia and Roztochchia] // [State and biodiversity of Shatsk national park ecosystems. Materials of Scientific conference. 16–18 September 2005.] Lviv: Ivan Franko National University. P.41–43. [in Ukrainian]

Kyseliuk O.I. 2002. [Population of small mammals of forest ecosystems of the north-eastern macroslope of the Ukrainian Carpathians] // [Bulletin of Luhansk Taras Shevchenko National University. Biological Science.] Vol.1. No.45. P.15–18. [in Ukrainian]

Lada G.A. & Sokolov A.S. 2000. [Mediterranean water shrew Neomys anomalus Cabrera, 1907] // Ponomarev N.I. et al. (eds.) [Red Book of the Tambov region: Animals.] Tambov: IC “Tambovpoligrafizdat”. P.318. [in Russian]

Lada G.A. & Sokolov A.S. 2012. [Mediterranean water shrew Neomys anomalus Cabrera, 1907] // Petrova N.P. et al. (eds.) [Red Book of the Tambov region: Animals.] Tambov: OOO “Izdatel’stvo Yulis”. P.322. [in Russian]

Lavrov L.S. & Lavrov V.S. 1938. [Two new forms from the Mediterranean water shrew Neomys anomalus] // Notes of the Crimean Society of Naturalists and Nature Lovers. Vol.7. P.1–2. [in Russian]

Leigh J.W. & Bryant D. 2015. PopART: Full-feature software for haplotype network construction // Methods of Ecology and Evolution. Vol.6. P.1110–1116.

Martino V.E. & Martino E.V. 1917. [New data on mammals of mountain Crimea] // [Notes of the Crimean Society of Naturalists and Nature Lovers. Vol.7. P.1–2. [in Russian]

Merkulina I.P. & Sheverdyukova A.V. 2008. [New meeting of bov. I.P. & Sheverdyukova A.V. 2008. [New meeting of the Mediterranean water shrew Neomys anomalus Cabrera (Insectivora, Soricidae) in the Sumy region] // [Ecology and conservancy: scientific collection.] Sumy: Sumy A.S. Makarenko State Pedagogical University Publ. P.127–129. [in Russian]
Neomys anomalus in the eastern part of the range

Muscarella R., Galante P.J., Soley-Guardia M., Boria R.A., Kass J.M., Uriarte M. & Anderson R.P. 2014. ENMeval: An R package for conducting spatially independent evaluations and estimating optimal model complexity for Maxent ecological niche models // Methods in Ecology and Evolution. Vol.5. No.11. P.1198–1205.

Nedosekin V.Yu., Klimov S.M., Sarychev V.S. & Alexandrov V.N. 1996. [Vertebrates of the Lipetsk region and their protection.] Lipetsk: LSP & LIIT Publ. p.80. [in Russian]

Ognev S.I. 1928. [Mammals of Eastern Europe and Northern Asia, V.1. Insectivores and bats.] Moscow, Leningrad: Glavnauka. 631 p. [in Russian]

Ohdachi S. D., Hasegawa M., Iwasa M. A., Vogel P., Oshida T., Lin L.-K. & Abe H. 2006. Molecular phylogenetics of soricid shrews (Mammalia) based on mitochondrial cytochrome b gene sequences: with special reference to the Soricinae // Journal of Zoology. Vol.270. P.177–191.

Phillips S.J., Dudík M. & Schapire R.E. 2019. Maxent software for modeling species niches and distributions (Version 3.4.1). Available from: <http://biodiversityinformatics.amnh.org/open_source/maxent/> . Accessed: 2 apr. 2019.

Pidoplichko I.G. 1927. [Theriological notes. I. On distribution of some Western European mammals in Ukraine] // [Proceedings of the Zoological Museum (Kyiv)] No.3. P.185–192. [in Ukrainian]

Pidoplichko I.G. 1929. [Theriological notes. II. Overview of the distribution of g. Neomys in Ukraine] // [Proceedings of the Zoological Museum (Kyiv)] No.7. P.67–85 (65–83). [in Ukrainian]

Pidoplichko I.G. 1932. [Analysis of pellets for 1925–1929] // [Materials for the district study of small animals and birds feeding on them. Vol.1.] Kyiv. P.5–75. [in Ukrainian]

Pidoplichko I.G. 1937. [The results of the study of pellets for 1924–1935] // [Proceedings of the Zoological Museum (Kyiv)]. No.19. P.101–107. [in Ukrainian]

Pidoplichko I.G. 1963. [Materials for the study of the fauna of small mammals using the pellets method] // [Proceedings of the Zoological Museum (Kyiv)] No.32. P.3–28. [in Ukrainian]

Podoprígora R.I. & Merzlikin I.R. 2003. [Old records of Mediterranean water shrew Neomys anomalus Cabrera (Insectivora, Soricidae) in Sumy Region] // Syutkin S.I. (ed.) [Problems of conservation of landscape, cocenotic and species diversity of the Dnieper basin: scientific collection.] Sumy: IC SumDPU. P.159–164. [in Russian]

Podoprígora R.I. & Merzlikin I.R. 2004. [Key to determination of mammals of Poland.] Warszawa: Polish Scientific Publishers. 364 p. [in Polish]

Ruchin A.B., Alekseev S.K., Artaev O.N. & Semishin G.B. 2018. [New information on the fauna of small mammals (Rodentia, Insectivora) of Mordovia caught in the soil traps] // Proceeding of the Mordovia State Reserve. Vol.20. P.223–228. [in Russian]

Sambrook J., Fritsch E.F. & Maniatis T. 1989. Molecular cloning: a laboratory manual. NewYork: Cold Spring Harbor Laboratory Press. 1626 p.
Sapelnikov S.F. & Sapelnikova I.I. 2015. [Registration of regional rare species of small mammals in the vicinity of the Voronezh nature reserve] // Blochin G.I. (ed.) [Materials of 6-th international conference “Conservation of animal diversity and hunting husbandry of Russia”]. Reutov: Era press. P.296–297. [in Russian]

Sarychev V.S., Nedosekin V.Yu. & Ushakov M.V. 1995. [New data on rare species of terrestrial vertebrates of the Lipetsk region] // [Theses of the scientific conference dedicated to the founder of the Lipetsk Regional Museum M.P. Trunov.] Lipetsk: Lipetsk State Pedagogical University. P.173–175. [in Russian]

Savarin A. & Savarina V. 2019c. [About distribution and Ecology of the Mediterranean water shrew (Neomys anomalus) in Belarus: return from oblivion.] Minsk: Kol Press. P.122–125. [in Russian, with English summary]

Savarin A.A. & Molosh A.N. 2017. [About finding the Mediterranean water shrew (Neomys anomalus Cabrera, 1907) on the territory of waste water treatment plant in Bereza town (Brest region)] // Odessa National University Herald. Biology. Vol.22. No.1(40). P.71–77. [in Russian, with English summary]

Savarin A.A. 2019a. [About distribution and Ecology of the Mediterranean water shrew (Neomys anomalus Cabrera, 1907) in Belarus] // Ecological Sciences. Vol.2. No.1(24). P.122–125. [in Russian, with English summary]

Savarin A.A. 2019b. [Mediterranean water shrew (Neomys anomalus) in Belarus: return from oblivion.] Minsk: Kolorgrad. 27 p. [in Russian]

Savarin A.A. 2019c. [The find of the Mediterranean water shrew (Neomys anomalus Cabrera, 1907) in Uschakh district of Vitebsk region] // Vestnik VGU. No.2(103). P.66–71. [in Russian, with English summary]

Savarin A.A. 2020. [Water shrew (Neomys) of Belarus, sibling species.] Minsk: Kolorgrad. 28 p. [in Russian]

Selyunina Z.V. 2005. [Mammals of the region of the Black Sea biosphere reserve listed in the Red book of Ukraine (as of 2004)] // Oleksyk T.K. (ed.). [Scientific bulletin of the Uzhhorod University. Series biology. Vol.17.] Uzhhorod: Uzhhorod National University. P.86–88. [in Ukrainian]

Serzhanian I.N. 1961. [Mammals of Belarus.] Minsk: AS BSSR Publ. 318 p. [in Russian]

Serzhanian I.N., Serzhanian Yu.I., Slesarevich V.I. 1967. [Identification guide to the Mammals of the Belarus.] Minsk: “Nauka i technika”. 120 p. [in Russian]

Shapovalov A.S. 2019. [Mediterranean water shrew Neomys anomalus Cabrera, 1907] // Prisny Yu.A. (ed.) [Red Book of the Belgorod region. Rare and endangered plants, lichens, fungi and animals.] Belgorod: IC BelSU. P.602. [in Russian]

Shevchenko L.S. & Zolotukhina S.I. 2005. [Mammals. Issue 2: Insectivores, Bats, Lagomorphs. National Museum of Natural History of Ukraine, Kyiv.] 238 p. [in Russian]

Sitnikova E.F. & Mishta A.V. 2006. [Fauna of mammals of the Bryansk region: species composition, distribution, number] // Fedotov Yu.P. (eds.) [Study and protection of biological diversity of the Bryansk region. Materials for maintaining the Red Book of the Bryansk Region. Vol.2.] Trubchevsk: “Kirillitsa” Publ. P.107–150. [in Russian]

Sitnikova E.F. & Mishta A.V. 2008. [Mammals of the “Bryansk Forest” Nature Reserve] // [Fauna of vertebrates of the “Bryansk Forest” Nature Reserve (birds, mammals.)] Bryansk: “Desyatochka”. P.50–85. [in Russian]

Smirnov N.A. & Skisly I.V. 2010. [The terrestrial vertebrates mortality in the model area of the road in the plain part of Bukovina] // Fedotov Yu.P., Sitnikova E.F. (eds.) [Problems of Studying and Conservation of Wildlife in Natural and Anthropogenic Ecosystems: Proceedings of International Scientific Conference (Chernivtsi, 13 November 2009.).] Chernivtsi: Druk-Art. P.116–118. [in Ukrainian]

Sokolov A.S. & Lada G.A. 2007. [Mediterranean water shrew Neomys anomalus Cabrera, 1907] // [Vertebrates of the Tambov region: cadastre.] Tambov: “Yulis”. P.215–216. [in Russian]

Sokor I.T. 1963. [New materials to the knowledge of the fauna of small mammals of Ukraine] // [Proceedings of the Zoological Museum (Kyiv)] No.32. P.29–42. [in Ukrainian]

Spiritenberger F. 1990. Gattung Neomys Kaup, 1829 // Niethammer J., Kapp F. (eds.). Handbuch der Saugetiere Europas. Band 3/1. Insectenfresser, Herrentiere. Wiesbaden: Au-Verlag. P.317–333.

Tatarov K.A. 1956. [Animals of the western regions of Ukraine. Ecology, significance, protection] Kyiv: AS URSR Publ. 188 p. [in Ukrainian]

Tokarskiy V.A. & Zorya O.V. 2013. [Mediterranean water shrew Neomys anomalus Cabrera, 1907] // Tokarskiy V.A. (ed.) [Red Book of Kharkiv region. Animals.] Kharkiv: V.N. Karazin Kharkiv National University. P.374. [in Ukrainian]

Tovpinitz N.N. & Evstafiev I.L. 2005. Rare, Red Data Book and threatened species of terrestrial mammals of Ukraine on the territory of Crimea: past, present, future. Issue 2. Rodents, carnivores // Reserves of the Crimea: Materials of the III scientific conference (April 22, 2005). Simferopol: KRA “Ecology and World”. Vol.2. P.184–189. [in Russian]

Tsvelych O.M. 2018. [New finds of Mediterranean water shrew Neomys anomalus Cabrera near Kyiv] // Akimov I.A. et al. (eds.) [Series: “Conservation Biology in Ukraine”]. Vol.2. No.7.] Kyiv: Schmalhausen Institute of Zoology of NASc Ukraine. P.347. [in Ukrainian]

Turov S.S. 1955. [Preliminary remarks on the fauna of mammals of Belovezhskaya Pushcha] // [Scientific notes of the Moscow City Pedagogical Institute. V.P. Potemkin. Vol.38. P.5–12. [in Russian]

Ushakov M.V. 2009. [Mediterranean water shrew Neomys anomalus Cabrera, 1907] // Sarychev V.S. (ed.) [Vertebrates of the Lipetsk region. Cadastre.] Voronezh: VSU. P.392. [in Russian]

Zagorodnyuk I.V., Pokynchereda V.F., Kyselyuk O.I. & Dovganych Y.A. 2010. [Theriofauna of the Carpathian Biosphere Reserve] // Vestnik zoologii. Suppl. No.5. 60 p. [in Russian]

Zaitseva H. & Gnatina О. 2010. The feeding relationships of tawny owl (Strix aluco L.) and micromammals on the territory of Chernigivske Polissya // Visnyk of Lviv university. Biology series. No.54. P.132–137. [in Ukrainian, with English summary]

Zatushevskyy A.T., Shydlovskyy I.V., Zakala O.S., Dykky I.V., Holovachov O.V., Senyk M.A. & Romanova Kh.J. 2010.
Neomys anomalus in the eastern part of the range

[Catalogue of the mammals collection of the Zoological museum of Ivan Franko national university of Lviv.] Lviv: LNU Publ. 442 p. [in Ukrainian]

Zherdeva S.V. 2017. [Mediterranean water shrew *Neomys anomalus* Cabrera, 1907] // Konechnaya G.Yu. et al. (eds.) [Red Book of the Kursk region: rare and endangered species of animals, plants and fungi.] Kaliningrad; Kursk: ID ROST-DOAFK. P.127. [in Russian]

Zherdeva S.V., Bausov I.A., Poluyanov A.V. & Sakhatska-T.V. 2009. [Rare and endangered species of animals and plants of the Kursk region.] Kursk: IC KSU. 236 p. [in Russian].

Zorya A.V. 2008. [The first find of the Mediterranean water shrew (*Neomys anomalus*) in the Kharkov region] // Vestnik Zoologii. Vol.42. No.5. P.476. [in Russian]

Appendix 1. Checklist of occurrence localities of *Neomys anomalus* in Lithuania, Belarus, Ukraine and Russia. Localities included in the spatial analysis are marked with *; localities filtered out during spatial aggregations removal are marked with **; localities from the territory that suffered from anthropogenic transformation during the time passed from the date of capture or obtained from pellets analysis are marked with ***.

Place	Longitude	Latitude	Date	Reference
Belgorod Region, Belogorye Zapovednik, “Yamskaya steppe” area, gully of Sura River	37.6363	51.2035	22.06.2007	Shapovalov, 2019 *
Belgorod Region, vicinity of Belgorod, floodplain of Seversky Donets River	36.6207	50.5586	31.08.1926	ZMMU *
Bryansk Region, Komarichsky District, vicinity of Larerevka Village, sandbar of Usozha River	34.3892	52.414	23.07.2004	Mishta, 2005; Sitnikova & Mishta, 2006, 2008 *
Bryansk Region, Suzemsky District, Bryanskii Les Zapovednik, quarter 111	33.8797	52.4429	18.07.2003	Mishta, 2005; Sitnikova & Mishta, 2006, 2008 **
Bryansk Region, Suzemsky District, Bryanskii Les Zapovednik, quarter 111	33.8776	52.4417	01.01.2004	Mishta, 2005; Sitnikova & Mishta, 2006, 2008 **
Bryansk Region, Suzemsky District, Bryanskii Les Zapovednik, vicinity of Chukhrai	33.8608	52.4623	13.06.2004	Mishta, 2005; Sitnikova & Mishta, 2006, 2008 *
Bryansk Region, Suzemsky District, Bryanskii Les Zapovednik, vicinity of Chukhrai	33.8617	52.4625	01.06.2005	Mishta, 2005 **
Bryansk Region, Suzemsky District, Natural monument “Nerusso-Sevny”	34.126	52.3973	01.01.2005	Mishta, 2005; Sitnikova & Mishta, 2006 **
Bryansk Region, Trubchevsk District, Bryanskii Les Zapovednik, vicinity of Proletarsky cordon	34.0555	52.5385	06.10.2004	Mishta, 2005; Sitnikova & Mishta, 2006, 2008 *
Bryansk Region, Trubchevsk District, Bryanskii Les Zapovednik, vicinity of Staroe Yamnoe cordon	33.8664	52.4497	01.07.2007	IZAN **
Kaluga Region, Dzerzhinsky District, Ugra National Park, Galkinskoe Forestry	35.805	54.7144	01.06.2004	Alekseev * et al., 2006
Kaluga Region, Dzerzhinsky District, Ugra National Park, vicinity of Sabelnikovo Village	35.9396	54.6616	27.06.2004	Alekseev * et al., 2006 **
Kaluga Region, Dzerzhinsky District, Ugra National Park, vicinity of Sabelnikovo Village	35.9396	54.6616	27.06.2005	Alekseev * et al., 2006 **
Kaluga Region, Ferzikovsky District, 13 km South of Ferzikovo Village, Mshakovka ravine	36.5763	54.4492	15.07.2014	Alekseev S.K. *
Kaluga Region, Khvastovichsky District, Natural monument “Vytebet River and its floodplain”	35.5957	53.4611	01.06.2011	Koryavchenkov, 2017 **
Kaluga Region, Khvastovichsky District, Natural monument “Green zone of Khvastovichsky settlement”	35.0654	53.4835	01.06.2011	Koryavchenkov, 2017 **
Kaluga Region, Khvastovichsky District, Natural monument “Lovotyanka River and its floodplain”	35.0867	53.6231	01.06.2011	Koryavchenkov, 2017 *
Place, Longitude, Latitude, Date, Reference

Place	Longitude	Latitude	Date	Reference
Kaluga Region, Khvastovichsky District, Natural monument “Obelnya River and its floodplain”	35.1307	53.2997	01.06.2011	Koryavchenkov, 2017
Kaluga Region, Kozezk District, Ugra National Park, Berezichsky Forestry	35.8558	53.9567	01.06.2004	Alekseev & Rogulenko, 2014
Kaluga Region, Ulyanovsky District, Kaluzhskiy Zaseki Zapovednik	35.739	53.568	01.06.2004	Koryavchenkov, 2017
Kaluga Region, Yukhnovsky District, Ugra National Park, Belyaevsky Forestry	35.0851	54.8036	01.06.2004	Alekseev & Rogulenko, 2014
Kaluga Region, Yukhnovsky District, Ugra National Park, Ugra Forestry	35.0405	54.7682	01.06.2004	Koryavchenkov, 2017
Kursk Region, Dmitriyevsky District, Pershino biological station	35.1317	52.1022	08.08.1926	ZMMU
Kursk Region, Dmitriyevsky District, Pershino biological station	35.1317	52.1022	17.09.1926	ZMMU
Kursk Region, Dmitriyevsky District, Pershino biological station	35.1268	52.1041	15.08.1927	ZMMU
Kursk Region, Dmitriyevsky District, Pershino biological station	35.1317	52.1022	18.08.1927	ZMMU
Kursk Region, Dmitriyevsky District, Pershino biological station	35.1317	52.1022	19.08.1927	ZMMU
Kursk Region, Dmitriyevsky District, vicinity of Rogozna Village	35.0878	52.0817	17.08.1927	ZMMU
Kursk Region, Dmitriyevsky District, vicinity of Sniza Village	35.1711	52.1281	16.08.1927	ZMMU
Kursk Region, Kursky District, Linevo Lake	35.2926	51.2009	28.08.1926	ZMMU
Kursk Region, vicinity of Dmitriyev	35.0921	52.1229	25.07.1927	ZMMU
Kursk Region, vicinity of Dmitriyev	35.0873	52.1222	27.07.1927	ZMMU
Kursk Region, vicinity of Lgov	35.2479	51.6726	03.09.1926	ZMMU
Mordovia, Temnikov District, Mordovskski Zapovednik, “Inorka” area	43.1289	54.729	03.09.1936	Borodin, 2013
Mordovia, Temnikov District, Mordovskski Zapovednik, quarter 358	43.1887	54.7652	01.01.2013	Ruchin et al., 2018
Mordovia, Temnikov District, Mordovskski Zapovednik, quarter 358	43.1887	54.7652	01.01.2013	Ruchin et al., 2018
Mordovia, Temnikov District, Mordovskski Zapovednik, quarter 377	43.1015	54.7542	29.04.1929	Borodin, 2013
Mordovia, Temnikov District, Mordovskski Zapovednik, quarter 408	43.2011	54.7487	01.01.2013	Ruchin et al., 2018
Mordovia, Temnikov District, Mordovskski Zapovednik, quarter 449	43.2197	54.7111	29.04.1975	Borodin, 2013
Penza Region, Zemetchinsky District, vicinity of Aleksandrovka	42.2019	53.6804	02.08.1993	ZM PSU
Penza Region, Zemetchinsky District, vicinity of Aleksandrovka	42.2019	53.6804	11.08.1997	ZM PSU
Tambov Region, vicinity of Tambov, Prigorodnobe Forestry, northwest of Vlasovskoe peatland	41.5267	52.7216	22.04.1982	Lada & Sokolov, 2000
Voronezh Region, Usmansky Bor, South-Western outskirts, vicinity Biological Educational and Scientific Center of Voronezh State University “Venevitinovo” Samara Swamp	39.384	51.8111	01.07.1991	Klimov, 2011
Voronezh Region, Verkhnekhavsky District, vicinity of Belovka Village	39.7934	51.8999	25.07.2014	Sapelnikov & Sapelnikova, 2015
Crimea, Alma River	34.2671	44.668	03.05.1935	ZMMU
Crimea, Bakheysarai District, Prokhladnoe Village	33.9925	44.7461	25.07.1987	rusmam.ru
Appendix 1 (continued)

Place	Longitude	Latitude	Date	Reference
Crimea, Bakchysarai District, Shelkovichnoe Village	34.1011	44.635	15.10.1999	rusmam.ru
Crimea, Bakchysarai District, Shelkovichnoe Village	34.1011	44.635	15.10.1999	rusmam.ru
Crimea, Bakchysarai District, Trudolubovka Village	33.9914	44.7739	15.09.1998	rusmam.ru
Crimea, Bakchysarai District, Trudolubovka Village	33.9914	44.7739	15.09.1998	rusmam.ru
Crimea, Bakchysarai District, Zalesnoe Village	33.7789	44.5786	15.11.2008	ZM NUK
Crimea, Beshyyskoe Forestry, Kohlodnaya Voda Tract, vicinity of Chatyr-Dag	34.2007	44.7149	08.09.1918	ZIN RAS
Crimea, Boldshaya Chuchel Mountain	34.1618	44.6568	16.07.1967	SMNH (Lviv)
Crimea, Crimean Zapovednik and Hunting Farm, Kacha River	34.0117	44.66	27.08.1969	Shevchenko & Zolotukhina, 2005
Crimea, Crimean Zapovednik, Alabach cordon	34.22	44.6177	16.07.1975	Shevchenko & Zolotukhina, 2005
Crimea, Crimean Zapovednik, Bazarchik place, Alma River (now Pochtovoe)	33.942	44.8373	20.10.1923	ZMMU
Crimea, Crimean Zapovednik, Kholodnaya Voda Tract, Alma River	34.2717	44.6935	27.06.1975	Shevchenko & Zolotukhina, 2005
Crimea, Crimean Zapovednik, Kholodnaya Voda Tract, Savlyk-Su River	34.2697	44.664	11.10.1973	Shevchenko & Zolotukhina, 2005
Crimea, Crimean Zapovednik, Sodov cordon	34.3017	44.6959	28.10.1967	Shevchenko & Zolotukhina, 2005
Crimea, Crimean Zapovednik, Kotolnaya Voda Tract, Alma River	34.2367	44.6315	24.04.1967	ZMMU
Crimea, Greater Yalta District, Krasnokamenka Village	34.2931	44.5703	25.10.1985	rusmam.ru
Crimea, Kurortnoe Village	35.18	44.92	09.09.1973	ZM NUK
Crimea, Kuybyshesky District, Sokolinoe Village	33.9576	44.5543	20.06.1957	Shevchenko & Zolotukhina, 2005
Crimea, Nikita Village	34.2285	44.514	03.06.1979	Shevchenko & Zolotukhina, 2005
Crimea, rock outcrops at foot of mount Syuryu-Kaya, Bank of Sara-Uzen River	33.9683	44.5104	01.01.1983	Tovpinets & Evstafiev, 2005
Crimea, Simferopol District, Perevalnoe Village	34.2924	44.8365	01.01.2007	Tovpinets & Evstafiev, 2005
Crimea, Simferopol District, Perevalnoe Village	34.3117	44.9114	15.09.1998	rusmam.ru
Crimea, Simferopol District, Perevalnoe Village	34.3383	44.7778	05.04.1999	rusmam.ru
Crimea, Sudaksky District, Shchepetrovka Village	35.1536	44.9242	25.09.1998	Tovpinets & Evstafiev, 2005
Crimea, vicinity of Grand Canyon	34.0028	44.5226	08.06.1986	Dulitsky, 2001
Crimea, vicinity of Krasnolesye Village	34.2357	44.811	02.07.2009	Mishta, 2008
Cherkasy Region, Kozatskoe	31.1469	49.1	1926–1928	Pidoplichko, 1932
Cherkasy Region, Miliev Village, Vilshanka River	31.4879	49.3141	06.1926; 30.07.1927	Pidoplichko, 1932
Cherkasy Region, Mohny District, Irdyn Swamp	31.7084	49.4033	01.07.1927	Pidoplichko, 1932
Cherkasy Region, Uman	30.1752	48.7206	1925	Pidoplichko, 1929
Cherkasy Region, vicinity of Katerynopol	30.9704	48.9294	22.08.1928	Pidoplichko, 1932
Cherkasy Region, vicinity of Katerynopol	30.9806	48.9595	01.01.1928	NMNH (Kyiv)
Cherkasy Region, vicinity of Yablunivka, Ros River	31.2635	49.4086	09.05.1926	Pidoplichko, 1932

* Neomys anomalus in the eastern part of the range
| Place | Longitude | Latitude | Date | Reference |
|--|-----------|----------|------------|-------------------------|
| Cherkasy Region, Zvenyhorodka District, Kozatskoe | 31.1469 | 49.1006 | 17.11.1930 | Pidoplichko, 1937 |
| Chernivtsi Region, vicinity of Lenkovtsy, Sursha River | 31.1469 | 49.1006 | 02.05.2018 | Gikhazali M. (UKRBIN) |
| Chernivtsi Region, Khotyn District, Klishkovtsy | 31.1469 | 49.1006 | 25.05.1950 | Sokur, 1963 |
| Chernivtsi Region, on road between Kitsman and Dubovtsy | 31.1469 | 49.1006 | 01.01.2009 | Smirnov & Skilskiy, 2010|
| Chernivtsi Region, Sadhora District, Toporivtsi | 31.1469 | 49.1006 | 31.05.1950 | Sokur, 1963 |
| Dnepropetrovsk Region, vicinity of Kryvyi Rih, Northern Red gully Landscape Reserve | 31.1469 | 49.1006 | 02.10.2017 | Sevidov V. (UKRBIN) |
| Ivano-Frankivs Region, Carpathian National Park | 24.5018 | 49.1006 | 19.06.1959 | SMNH (Lviv) |
| Ivano-Frankivs Region, Dniester River Bank | 24.7534 | 49.1006 | 28.06.1959 | Sokur, 1963 |
| Ivano-Frankivs Region, Galich | 24.7451 | 49.1006 | 10.06.1950 | Sokur, 1963 |
| Ivano-Frankivs Region, Gorodenka | 25.4824 | 48.1006 | 15.06.1950 | Sokur, 1963 |
| Ivano-Frankivs Region, Kolonya | 25.0374 | 48.1006 | 01.06.1950 | Sokur, 1963 |
| Ivano-Frankivs Region, Nadvirna District, Polonyna Pozhizhevskaja | 24.5327 | 48.1006 | 30.07.1958 | SMNH (Lviv) |
| Ivano-Frankivs Region, Nadvirna District, Rogatin | 24.6201 | 49.1006 | 21.06.1950 | Sokur, 1963 |
| Ivano-Frankivs Region, Nadvirna District, Zabolotov | 25.292 | 48.1006 | 03.06.1950 | Sokur, 1963 |
| Kherson Region, Bilozerkza District, Kizomys Village, Bobrovka Lake | 32.5558 | 46.5448 | 02.11.2005 | NMNH |
| Kherson Region, Hola Prystan, Danube overflow land | 32.5221 | 46.5448 | 10.07.1996 | Mishta, 2008 |
| Kherson Region, Hola Prystan District, 7 km South-East of Malye Kopani Village, Burkuty Tract | 32.7777 | 46.4046 | 01.01.1967 | Abelentsev, 1967 |
| Kherson Region, Hola Prystan District, 7 km South-East of Malye Kopani Village, Burkuty Tract | 32.7777 | 46.4046 | 1967 | Abelentsev, 1967 |
| Kherson Region, Hola Prystan District, vicinity of Hola Prystan | 32.5003 | 46.5328 | 13.11.1963 | Abelentsev, 1967 |
| Kherson Region, Hola Prystan District, West side of Black Sea Biosphere Reserve | 32.1464 | 46.4692 | 01.01.1967 | Gizenko, 1967 |
| Kherson Region, vicinity of Gopri, Bobrovka Lake | 32.5487 | 46.5425 | 01.01.1963 | NMNH |
| Khmelnytsky Region, Derazhnia District, Kalnya | 27.5394 | 49.27 | 1928 | Pidoplichko, 1932 |
| Khmelnytsky Region, Izzyaslav | 26.8254 | 50.1174 | 08.06.1949 | Sokur, 1963 |
| Khmelnytsky Region, Kamanets-Podilskyi | 26.5789 | 48.679 | 12.05.1952 | Sokur, 1963 |
| Khmelnytsky Region, Kamanets-Podilskyi District, Kulchievtsy Village | 26.7297 | 48.6534 | 14.08.2004 | Mishita, 2008 |
| Khmelnytsky Region, Krasilov | 26.9691 | 49.6488 | 29.07.1929 | Pidoplichko, 1937 |
| Khmelnytsky Region, Starokonstantinov | 27.253 | 49.7669 | 10.08.1928 | Pidoplichko, 1937 |
| Khmelnytsky Region, vicinity of Kamanets-Podilskyi, Muksha River | 26.6013 | 48.713 | 25.09.1927 | Pidoplichko, 1932 |
| Kirovohrad Region, Kirovohrad (Kropyvnytsky) | 32.2355 | 48.5518 | 1928 | NMNH (Kyiv) |
| Kyiv, Kyiv-Sviatoshyn District, left Bank of Lubka River | 30.3006 | 50.4981 | 10.07.2017 | Tsvelykh, 2018 |
| Kyiv Region, Koncha Zaspa reserve | 30.5683 | 50.2994 | 03.10.1930–25.06.1931 | Isotiv, 1932; Popov, 1932; Sharleman, 1933 |
Neomys anomalus in the eastern part of the range

Appendix 1 (continued)

Place	Longitude	Latitude	Date	Reference
Kyiv Region, Bila Tserkva District, Shkvarivka	30.1847	49.7412	26.06.1927	Pidoplichko, 1932 ***
Kyiv Region, Bila Tserkva, Ros River	30.0576	49.803	25.06.1927	Pidoplichko, 1932 ***
Kyiv Region, Boryspil District, Bortnishi	30.7304	50.3885	27.10.1957	ZM NUK **
Kyiv Region, former Berezansky District (now Yagotinsky District), Supoy River	31.758	50.238	01.01.1956	Abelentsev & Pidoplichko, 1956 *
Kyiv Region, Kyiv, Holosiivsky District, Pirogovo urban residential	30.5087	50.3466	10.03.1988	Tsvelykh, 2018 **
Kyiv Region, Kyiv-Sviatoshyn District, Lesniki Tract	30.5585	50.2818	01.10.1957	ZM NUK **
Kyiv Region, Kyiv-Sviatoshyn District, Romanovskoe swamp, Bank of Kubka River	30.2718	50.5015	10.07.2017	Tsvelykh, 2018 **
Kyiv Region, Obolon	30.5211	50.5298	19.10.1963	ZM NUK **
Kyiv Region, Obukhiv District, between Villages of Krenychy and Gvodaz	30.3029	50.2459	01.04.2015	Mishta et al., 2018 **
Kyiv Region, Slupsky Village	30.144	50.4129	25.08.1929	Pidoplichko, 1937 ***
Kyiv Region, Zhukov Village	30.5687	50.3061	01.01.1937	Pidoplichko, 1937 **
Lugansk Region, Kremenskoy District, Serebryansky Forestry, floodplain of Seversky Donets, Cheremkova Lake	38.1316	48.9457	01.01.1961	Abelentsev, 1966; Abelentsev & Pidoplichko, 1967 *
Lviv Region, Drohobych District, Gai Village	24.2625	49.7557	29.06.1950	Sokur, 1963 **
Lviv Region, Glimiansky District, Yasenewka Village	24.8163	49.8184	01.11.1951	Tatarynov, 1956; ZM LNU *
Lviv Region, Gorodok	23.6505	49.7812	07.07.1950	Sokur, 1963 **
Lviv Region, Ivano-Frankivsk	23.7436	49.9008	07.07.1948	Sokur, 1963 **
Lviv Region, Khodorov	24.3225	49.4145	24.05.1950	Sokur, 1963 **
Lviv Region, Kimets Village	23.1766	48.8346	01.01.1960	ZM LNU **
Lviv Region, Lisimichy Village, vicinity of Lviv	24.1089	49.8339	01.01.1957	SMNH (Lviv) **
Lviv Region, Nesterovo (Zhovkva)	23.9676	50.0534	08.07.1950	Sokur, 1963 **
Lviv Region, Pomornyany	24.939	49.6396	09.07.1950	Sokur, 1963 **
Lviv Region, Pustomytyovskiy District, Davydov Village	24.1195	49.7533	27.07.1956	SMNH (Lviv) **
Lviv Region, Roztochchia Biosphere Reserve	23.6575	49.9642	01.01.2004	Kyjko et al., 2005 **
Lviv Region, Strelkovsky District, (Staryi Sambr District now), Verkhny Luhok	23.0212	49.3678	5.08.1950	Sokur, 1963 ***
Lviv Region, Turka District, Volche Village	22.8626	49.2268	30.07.1959	SMNH (Lviv) ***
Lviv Region, Turka Village	23.0366	49.1443	5.07.1950	Sokur, 1963 ***
Lviv Region, Zolochev	24.8706	49.8279	9.07.1950	Sokur, 1963 ***
Lviv, Eastern outskirts	24.1089	49.8339	21.06.1951	Tatarynov, 1956; SMNH (Lviv) **
Mykolaiv Region, Ochakiv District, Black Sea Biosphere Reserve, Volozhin area	31.6727	46.5367	01.01.1967	Gizenko, 1967 **
Odessa Region, Bobrik, Kodyma River	30.1685	47.91	10.08.1928	Pidoplichko, 1932 ***
Odessa Region, Danube Biosphere Reserve, Gneushev Island	29.7547	45.442	23.11.1986	Chronicle of nature DBZ *
Odessa Region, Danube Biosphere Reserve, Kubansky Island	29.7338	45.3399	01.07.1985	Chronicle of nature DBZ **
Appendix 1 (continued)

Place	Longitude	Latitude	Date	Reference
Odessa Region, Danube Biosphere Reserve, Kubansky Island	29.757	45.3086	23.09.1992	Chronicle of nature DBZ **
Odessa Region, Danube Biosphere Reserve, Ochakiv Island	29.6707	45.4306	16.12.1989	Chronicle of nature DBZ **
Odessa Region, Danube Biosphere Reserve, Ochakiv Island	29.6806	45.4299	18.07.1986	Chronicle of nature DBZ **
Odessa Region, Danube Biosphere Reserve, Pleshchany Island	29.6828	45.3837	15.08.1991	Chronicle of nature DBZ **
Odessa Region, Danube Biosphere Reserve, Pleshchany Island	29.6192	45.3829	01.01.1992	Chronicle of nature DBZ **
Odessa Region, Kiliya District, vicinity of Vilkovo	29.5785	45.4206	26.08.2009	Mishta A.V. (unpublished data) *
Odessa Region, Limansky District, Leski Village	29.4883	45.4564	01.01.2008	Mishta A.V. (unpublished data) **
Odessa Region, South-Eastern outskirts of Vilkovo	29.5682	45.4332	19.07.1996	Mishta, 2008 IZAN **
Poltava Region, vicinity of Poltava	34.5786	49.592	25.05.1944	Gavrilenko, 1946 (1947); Abelentsev & Pidoplichko, 1956 ZMMU ***
Rivne Region, Rivne Zapovednik, Bilozerske Forestry	25.79	51.4784	29.06.2019	Mishta A.V. (unpublished data) *
Sumy Region, Glukhovsky District, floodplain of Abesta River, Shalyginsky Landscape Reserve of National Importance	34.11	51.61	01.01.1990	Podoprignora & Merzlikin, 2003 *
Sumy Region, Romny District, Anddriashchevsko-Gudymovsky Hydrological Reserve of National Importance, Ostrov Tract	33.3384	50.558	01.01.1984	Podoprignora & Merzlikin, 2003 *
Sumy Region, Seredyno-Buds'kyi District, Desna-Starohutsky National Nature Park (Staraya Guta area, 121 quarter)	33.7	52.32	02.03.2002	Gavris, 2007; IZAN **
Sumy Region, Seredyno-Buds'kyi District, Desna-Starohutsky National Nature Park (vicinity of Staraya Guta Village)	33.6711	52.308	26.09.1999	Gavris, 2007 **
Sumy Region, Seredyno-Buds'kyi District, Desna-Starohutsky National Nature Park, vicinity of Ochkinovo Village	33.3288	52.2619	07.08.2007	Mishta et al., 2018 *
Sumy Region, Sumy and Lebedynsky Districts, vicinity of Petrenkovo Village	34.6913	50.7711	25.07.1997	Merzlikin, 1999 **
Sumy Region, Sumy, vicinity of Tokary Village	34.874	50.9246	19.12.2009	Merzlikin & Sheverdulova, 2010 *
Sumy Region, Vorozhbas'kyi Hydrological Reserve	34.6947	50.7668	03.07.2004	Mishta, 2008 *
Ternopil Region, Berezhany	24.9417	49.4489	10.05.1950	Sokur, 1963 *
Ternopil Region, Chortkiv District, Uryn	25.8287	48.971	15.05.1950	Sokur, 1963 ***
Ternopil Region, Zborov	25.1659	49.668	07.08.1995	Sokur, 1963 ***
Vinnitsa Region, Bar District, Garmaki, Rovets River	27.5487	49.1032	29.09.1927	Pidoplichko, 1932 ***
Vinnitsa Region, Bershad District, Florino	29.4986	48.3431	17.05.1952	Sokur, 1963 **
Vinnitsa Region, Borovka Village, Bushka River	28.259	48.4991	08.09.1927	Pidoplichko, 1932 ***
Vinnitsa Region, Komarginorod Village	28.6119	48.5305	20.08.1929	Pidoplichko, 1937 *
Vinnitsa Region, Kopaigorodsky District, Khrenovka (now Chernomivsky District, Privetnoe)	27.8182	48.7935	27.10.1928	Pidoplichko, 1937 *
Vinnitsa Region, Luninet District, Populukhi Village	28.9907	48.2254	28.11.1928	Pidoplichko, 1932 ***
Vinnitsa Region, Martinovka	28.0204	49.0892	02.05.1928	Pidoplichko, 1937 ***
Neomys anomalus in the eastern part of the range

Appendix 1 (continued)

Place	Longitude	Latitude	Date	Reference	
Vinnitsa Region, Murafa	28.2067	48.7826	15.03.1927	Pidoplichko, 1929	
Vinnitsa Region, Nemercha	27.7227	48.6701	18.07.1927	Pidoplichko, 1932	
Vinnitsa Region, Obodovsky District, Balanovka Village	29.3734	48.3932	15.05.1952	Sokur, 1963	
Vinnitsa Region, Oratov settlement	29.5239	49.1856	1927	Pidoplichko, 1927	
Vinnitsa Region, Stefanovka	28.7736	49.1291	21.08.1929	Pidoplichko, 1937	
Vinnitsa Region, Vinnytsky District, Vedmezhe Ushko Village	28.313	49.1896	06.05.1989	Mishta, 2008	
Vinnitsa Region, Vinnytsky District, vicinity of Peshchanka	28.8896	48.2081	13.03.1988	Mishta, 2008	
Vinnitsa Region, Yakushintsy	28.3763	49.2525	12.08.1930	Pidoplichko, 1937	
Vinnitsa Region, Yampil District, Dzygivka	28.3249	48.3706	22.09.1927	Pidoplichko, 1932;	
Vinnitsa Region, Zhmerynka District, Severinovka	27.9468	49.0557	18.04.1928	Sokur, 1963	
Vinnitsa Region, Zhmerynka District, Severinovka, Rov River	27.9473	49.0561	13.03.1928	Sokur, 1963	
Vitebsk Region, Ushachsky District, Vashkovo Village, Borkovschina Lake	28.6004	55.1058	11.07.1905	Savarin, 2019 a, b, c	
Vitebsk Region, Ushachsky District, Borkovschina Lake	28.6009	55.1094	11.07.1905	Savarin, 2019 a, b, c	
Vitebsk Region, Ushachsky District, Vashkovo Village, Dolzhina Lake	28.6103	55.1321	11.07.1905	Savarin, 2019 a, b, c	
Volyn Region, Kamin-Kashyrskiy	24.9933	51.6368	27.06.1949	Sokur, 1963	
Volyn Region, Klevan	25.97	50.75	14.06.1949	Sokur, 1963	
Volyn Region, Lubomi	24.0483	51.2275	21.06.1949	Sokur, 1963	
Volyn Region, Manychy District, Povorsk	25.1588	51.2703	28.06.1949	Sokur, 1963	
Volyn Region, Shatsk	23.9602	51.4888	24.06.1949	Sokur, 1963	
Volyn Region, Shatsky District, Zatishye Village, Northern shore of Luky Lake	23.8366	51.5824	22.06.2004	Zatushevskiy et al., 2010	
Zakarpattia Region, Beregi	22.7826	48.2529	29.08.1946	Sokur, 1963	
Zakarpattia Region, Beskidy, Volonets Village	23.1975	48.6979	05.08.1950	Tatarynov, 1956; SMNH (Lviv)	
Zakarpattia Region, Byerazino District, Uzhok Village	22.9299	48.9893	01.07.1961	ZM UzhNU	
Zakarpattia Region, Carpathian Biosphere Reserve, central office	24.2229	51.4037	01.01.1987	Zagorodyuk et al., 1997	
Zakarpattia Region, Carpathian Biosphere Reserve, Chernogorka	24.4798	48.1121	01.01.1987	Zagorodyuk et al., 1997	
Zakarpattia Region, Carpathian Biosphere Reserve, Kaziysky area	24.1598	48.0001	1987–1994	Zagorodyuk et al., 1997, 1997	
Zakarpattia Region, Carpathian Biosphere Reserve, Marmorosky area	24.45	48.1	1987–1994	Zagorodyuk et al., 1997, 1997	
Zakarpattia Region, Carpathian Biosphere Reserve, Shirokoluzhansky area	23.7722	48.2328	1987–1994	Zagorodyuk et al., 1997, 1997	
Zakarpattia Region, Carpathian Biosphere Reserve, Ugolsky area	23.6102	48.2127	01.01.1987	Sokur, 1963	
Zakarpattia Region, Chornogora	24.6108	48.0541	19.08.1961	NMNH	
Zakarpattia Region, Irshavsky District, vicinity of Dolgoe Village	23.2946	48.3834	08.09.1990	Zatushevskiy et al., 2010	
Zakarpattia Region, Maly Bereznyi	22.5767	48.3988	28.05.1948	Sokur, 1963	
Zakarpattia Region, Mal'te Pastil	22.541	48.5922	28.05.1948	Sokur, 1963	
Zakarpattia Region, Mal’t Bereznyi	22.4511	48.8628	01.09.1948	Sokur, 1963	
Place	Longitude	Latitude	Date	Reference	
--	------------	-----------	------------	----------------------------------	
Zakarpattia Region, Mukachevo	22.6797	48.4393	11.12.1947	Sokur, 1963	
Zakarpattia Region, Mukachevo District, Sinyak Village	22.8523	48.5799	10.06.1965	ZM NUK	
Zakarpattia Region, Perechyn District, Turi Remety	22.5988	48.7012	02.05.1948	Sokur, 1963	
Zakarpattia Region, Rakhovsky District, Kvasovy Menchul	24.3278	48.1732	01.09.1972	ZM UzhNU	
Zakarpattia Region, Rakhovsky District, vicinity of Yasyna Village, Lopushanka River, Portoshi Tract	24.3898	48.2298	01.08.1986	ZM UzhNU	
Zakarpattia Region, Sheshul, Baskul Tract	24.3732	48.1529	01.01.1950	NMNH (Kyiv), SMNH (Lviv)	
Zakarpattia Region, Svaliava District, Vilchy Village	23.1039	48.5952	07.1965	ZIN RAS	
Zakarpattia Region, Tiachiv District	23.7101	48.3079	25.06.1954	ZM NUK	
Zakarpattia Region, Tiachiv District, Bradul Tract	23.9663	48.4633	01.09.1963	ZM NUK	
Zakarpattia Region, Tiachiv District, Goverlyanka River	24.4699	48.1404	01.05.1963	ZM NUK	
Zakarpattia Region, Tiachiv District, Grushevo	23.7689	48.0104	28.05.1948	Sokur, 1963	
Zakarpattia Region, Tiachiv District, Uglya	23.6288	48.1487	14.05.1948	Sokur, 1963	
Zakarpattia Region, Tiachiv District, vicinity of Bolshaya Ugolka Village	23.67	48.2	01.08.1978	ZM UzhNU	
Zakarpattia Region, Tyachev	23.5969	48.0083	28.05.1948	Sokur, 1963	
Zakarpattia Region, Uzhhorod District, Maly Berezny	22.4514	48.8672	09.11.1955	ZIN RAS	
Zakarpattia Region, Velykyi Berezny	22.4611	48.8863	29.08.1948	Sokur, 1963	
Zakarpattia Region, Vynohradiv District, Bolshe Komaty	22.9809	48.2464	03.06.1948	Sokur, 1963	
Zhytomyr Region, Borushkovtsi	27.656	49.9746	02.05.1928	Pidoplichko, 1932	
Zhytomyr Region, Liubar District, Glezno	27.7067	49.9794	24.07.1929	Pidoplichko, 1937	
Zhytomyr Region, Liubar District, Korostki	27.7434	49.9954	06.09.1926	Pidoplichko, 1932	
Zhytomyr Region, Malinsky District, Fedorovka	29.3694	50.7053	07.09.1926	Pidoplichko, 1932, 1937	
Zhytomyr Region, Mala Tsvilka	27.549	50.7427	31.07.1929	Pidoplichko, 1932	
Belarus, Brest Region, Baranovichi District, wet alder forest on River Bank	25.6649	52.9898	20.08.1997	Mishra, 2011	
Belarus, Brest Region, Kamenets District, Bialowieza Forest	24.9958	52.5181	15.08.2015	Savarin & Molosh, 2017; Savarin, 2019 a, b,c	*
Belarus, Vitebsk Region, Lepelsky District, Berezynski Biosphere Reserve (Test site “Sinichen”, forest quarter 444 and test site “Savsky Bor”, forest quarter 401)	28.1908	54.7147	15.07.1998	Kashtalyan, 1999; Kashtalyan & Springer, 2012	*
Belarus, Vitebsk Region, Ushachsky District, Vaskhovo Village, Borkovschina Lake	28.6013	55.1051	11.07.1905	Savarin, 2019 a, b,c	*
Lithuania, Delta of Neman River	21.2851	55.2477	01.01.2009	Balčiauskas & Balčiauskiene, 2012; Balčiauskas et al., 2016	*