A SIMPLE PROOF OF THE A_2 CONJECTURE

ANDREI K. LERNER

Abstract. We give a simple proof of the A_2 conjecture proved recently by T. Hytönen. Our proof avoids completely the notion of the Haar shift operator, and it is based only on the “local mean oscillation decomposition”. Also our proof yields a simple proof of the “two-weight conjecture” as well.

1. Introduction

Let T be an L^2 bounded Calderón-Zygmund operator. We say that $w \in A_2$ if

$$
\|w\|_{A_2} = \sup_{Q \subset \mathbb{R}^n} w(Q)w^{-1}(Q)/|Q|^2 < \infty.
$$

In this note we give a rather simple proof of the A_2 conjecture recently settled by T. Hytönen [7].

Theorem 1.1. For any $w \in A_2$,

$$
(1.1) \quad \|T\|_{L^2(w)} \leq c(n,T)\|w\|_{A_2}.
$$

Below is a partial list of important contributions to this result. First, (1.1) was proved for the following operators:

- Hardy-Littlewood maximal operator (S. Buckley [3], 1993);
- Beurling transform (S. Petermichl and A. Volberg [24], 2002);
- Hilbert transform (S. Petermichl [22], 2007);
- Riesz transform (S. Petermichl [23], 2008);
- dyadic paraproduct (O. Beznosova [2], 2008);
- Haar shift (M. Lacey, S. Petermichl and M. Reguera [16], 2010).

After that, the following works appeared with very small intervals:

- a simplified proof for Haar shifts (D. Cruz-Uribe, J. Martell and C. Pérez [5, 6], 2010);
- the $L^2(w)$ bound for general T by $\|w\|_{A_2} \log(1 + \|w\|_{A_2})$ (C. Pérez, S. Treil and A. Volberg [21], 2010);
- (1.1) in full generality (T. Hytönen [7], 2010);

2010 Mathematics Subject Classification. 42B20, 42B25.
Key words and phrases. Calderón-Zygmund operator, Haar shift operator, local mean oscillation decomposition, A_2 conjecture.
• a simplification of the proof (T. Hytönen et al. [12], 2010);
• (1.1) for the maximal Calderón-Zygmund operator T_\natural (T. Hytönen et al. [9], 2010).

The “Bellman function” proof of the A_2 conjecture in a geometrically doubling metric space was given by F. Nazarov, A. Reznikov and A. Volberg [19] (see also [20]).

All currently known proofs of (1.1) were based on the representation of T in terms of the Haar shift operators $S_{m,k}$. Such representations also have a long history; for general T it was found in [7]. The second key element of all known proofs was showing (1.1) for $S_{m,k}$ in place of T with the corresponding constant depending linearly (or polynomially) on the complexity. Observe that over the past year several different proofs of this step appeared (see, e.g., [15, 25]).

In a very recent work [18], we have proved that for any Banach function space $X(\mathbb{R}^n)$,

$$(1.2) \quad \|T_\natural f\|_X \leq c(T, n) \sup_{D, S} \|A_{D,S} f\|_X,$$

where

$$A_{D,S} f(x) = \sum_{j,k} f_{Q_j^k} \chi_{Q_j^k}(x)$$

(this operator is defined by means of a sparse family $S = \{Q_j^k\}$ from a general dyadic grid D; for these notions see Section 2 below).

Observe that for the operator $A_{D,S} f$ inequality (1.1) follows just in few lines by a very simple argument. This was first observed in [5, 6] (see also [18]). Hence, in the case when $X = L^2(w)$, inequality (1.2) easily implies the A_2 conjecture. Also, (1.2) yields the “two-weight conjecture” by D. Cruz-Uribe and C. Pérez; we refer to [18] for the details.

The proof of (1.2) in [18] still depended on the representation of T in terms of the Haar shift operators. In this note we will show that this difficult step can be completely avoided. Our new proof of (1.2) is based only on the “local mean oscillation decomposition” proved by the author in [17]. It is interesting that we apply this decomposition twice. First it is applied directly to T_\natural, and we obtain that T_\natural is essentially pointwise dominated by the maximal operator M and a series of dyadic type operators T_m. In order to handle T_m, we apply the decomposition again to the adjoint operators T_m^\ast. After this step we obtain a pointwise domination by the simplest dyadic operators $A_{D,S}$.

Note that all our estimates are actually pointwise, and they do not depend on a particular function space. This explains why we prefer to write (1.2) with a general Banach function space X.
2. Preliminaries

2.1. Calderón-Zygmund operators. By a Calderón-Zygmund operator in \mathbb{R}^n we mean an L^2 bounded integral operator represented as

$$Tf(x) = \int_{\mathbb{R}^n} K(x, y)f(y)dy, \quad x \not\in \text{supp } f,$$

with kernel K satisfying the following growth and smoothness conditions:

(i) $|K(x, y)| \leq \frac{c}{|x-y|^n}$ for all $x \neq y$;

(ii) there exists $0 < \delta \leq 1$ such that

$$|K(x, y) - K(x', y)| + |K(y, x) - K(y, x')| \leq c\frac{|x-x'|^\delta}{|x-y|^{n+\delta}},$$

whenever $|x-x'| < |x-y|/2$.

Given a Calderón-Zygmund operator T, define its maximal truncated version by

$$T^\natural f(x) = \sup_{0<\varepsilon<\nu} \left| \int_{|x|<\varepsilon} K(x, y)f(y)dy \right|.$$

2.2. Dyadic grids. Recall that the standard dyadic grid in \mathbb{R}^n consists of the cubes $2^{-k}([0,1]^n + j)$, $k \in \mathbb{Z}, j \in \mathbb{Z}^n$.

Denote the standard grid by D.

By a general dyadic grid \mathcal{D} we mean a collection of cubes with the following properties: (i) for any $Q \in \mathcal{D}$ its sidelength ℓ_Q is of the form 2^k, $k \in \mathbb{Z}$; (ii) $Q \cap R \in \{Q, R, \emptyset\}$ for any $Q, R \in \mathcal{D}$; (iii) the cubes of a fixed sidelength 2^k form a partition of \mathbb{R}^n.

Given a cube Q_0, denote by $\mathcal{D}(Q_0)$ the set of all dyadic cubes with respect to Q_0, that is, the cubes from $\mathcal{D}(Q_0)$ are formed by repeated subdivision of Q_0 and each of its descendants into 2^n congruent sub-cubes. Observe that if $Q_0 \in \mathcal{D}$, then each cube from $\mathcal{D}(Q_0)$ will also belong to \mathcal{D}.

A well known principle says that there are ξ_n general dyadic grids \mathcal{D}_α such that every cube $Q \subset \mathbb{R}^n$ is contained in some cube $Q' \in \mathcal{D}_\alpha$ such that $|Q'| \leq c_n|Q|$. For $\xi_n = 3^n$ this is attributed in the literature to M. Christ and, independently, to J. Garnett and P. Jones. For $\xi_n = 2^n$ it can be found in a recent work by T. Hytönen and C. Pérez [11]. Very recently it was shown by J. Conde et al. [4] that one can take $\xi_n = n+1$, and this number is optimal. For our purposes any of such variants is suitable. We will use the one from [11].
Proposition 2.1. There are 2^n dyadic grids \mathcal{D}_α such that for any cube $Q \subset \mathbb{R}^n$ there exists a cube $Q_\alpha \in \mathcal{D}_\alpha$ such that $Q \subset Q_\alpha$ and $\ell_{Q_\alpha} \leq 6\ell_Q$.

The grids \mathcal{D}_α here are the following:

$$\mathcal{D}_\alpha = \{2^{-k}([0,1]^n + j + \alpha)\}, \quad \alpha \in \{0, 1/3\}^n.$$

We outline briefly the proof. First, it is easy to see that it suffices to consider the one-dimensional case. Take an arbitrary interval $I \subset \mathbb{R}$. Fix $k_0 \in \mathbb{Z}$ such that $2^{-k_0} - 1 \leq 3\ell_I < 2^{-k_0}$. If I does not contain any point $2^{-k_0}j$, $j \in \mathbb{Z}$, then I is contained in some $I' = [2^{-k_0}j, 2^{-k_0}(j+1))$ (since such intervals form a partition of \mathbb{R}), and $\ell_{I'} \leq 6\ell_I$. On the other hand, if I contains some point $j_02^{-k_0}$, then I does not contain any point $2^{-k_0}(j + 1/3)$, $j \in \mathbb{Z}$ (since $\ell_I < 2^{-k_0}/3$), and therefore I is contained in some $I'' = [2^{-k_0}(j + 1/3), 2^{-k_0}(j + 4/3))$, and $\ell_{I''} \leq 6\ell_I$.

2.3. Local mean oscillations. Given a measurable function f on \mathbb{R}^n and a cube Q, the local mean oscillation of f on Q is defined by

$$\omega_\lambda(f; Q) = \inf_{c \in \mathbb{R}} \left((f - c)\chi_Q \right)^* (\lambda|Q|) \quad (0 < \lambda < 1),$$

where f^* denotes the non-increasing rearrangement of f.

By a median value of f over Q we mean a possibly nonunique, real number $m_f(Q)$ such that

$$\max \left(|\{x \in Q : f(x) > m_f(Q)\}|, |\{x \in Q : f(x) < m_f(Q)\}| \right) \leq |Q|/2.$$

It is easy to see that the set of all median values of f is either one point or the closed interval. In the latter case we will assume for the definiteness that $m_f(Q)$ is the maximal median value. Observe that it follows from the definitions that

$$(2.1) \quad |m_f(Q)| \leq (f\chi_Q)^* (|Q|/2).$$

Given a cube Q_0, the dyadic local sharp maximal function $M^{\#,d}_{\lambda, Q_0}f$ is defined by

$$M^{\#,d}_{\lambda, Q_0}f(x) = \sup_{x \in Q' \in \mathcal{D}(Q_0)} \omega_\lambda(f; Q').$$

We say that $\{Q^k_j\}$ is a sparse family of cubes if: (i) the cubes Q^k_j are disjoint in j, with k fixed; (ii) if $\Omega_k = \bigcup_j Q^k_j$, then $\Omega_{k+1} \subset \Omega_k$; (iii) $|\Omega_{k+1} \cap Q^k_j| \leq \frac{1}{2}|Q^k_j|$.

The following theorem was proved in [18] (its very similar version can be found in [17]).
Theorem 2.2. Let \(f \) be a measurable function on \(\mathbb{R}^n \) and let \(Q_0 \) be a fixed cube. Then there exists a (possibly empty) sparse family of cubes \(Q_j^k \in \mathcal{D}(Q_0) \) such that for a.e. \(x \in Q_0, \)
\[
|f(x) - m_f(Q_0)| \leq 4M \frac{\# \mathbb{Z}_+}{2^{n+2} Q_0} f(x) + 2 \sum_{k,j} \omega_{\frac{1}{2^{n+2}}}(f; Q_j^k) \chi_{Q_j^k}(x).
\]

The following proposition is well known, and it can be found in \([13]\). We give its proof here for the sake of the completeness. The proof is a classical argument used, for example, to show that \(T \) is bounded from \(L^\infty \) to \(\text{BMO} \). Also the same argument is used to prove a good-\(\lambda \) inequality relating \(T \) and \(M \).

Proposition 2.3. For any cube \(Q \subset \mathbb{R}^n, \)
\[
\omega\lambda(Tf; Q) \leq c(T, \lambda, n) \sum_{m=0}^{\infty} \frac{1}{2^{m\delta}} \left(\frac{1}{|2^m Q|} \int_{2^m Q} |f(y)| dy \right)
\]
and
\[
\omega\lambda(T^\ast f; Q) \leq c(T, \lambda, n) \sum_{m=0}^{\infty} \frac{1}{2^{m\delta}} \left(\frac{1}{|2^m Q|} \int_{2^m Q} |f(y)| dy \right).
\]

Proof. Let \(f_1 = f \chi_{2\sqrt{m}Q} \) and \(f_2 = f - f_1 \). If \(x \in Q \) and \(x_0 \) is the center of \(Q \), then by the kernel assumptions,
\[
|T(f_2)(x) - T(f_2)(x_0)| \leq \int_{\mathbb{R}^n \setminus 2\sqrt{m}Q} |f(y)||K(x, y) - K(x_0, y)| dy
\]
\[
\leq c \ell_Q^\delta \int_{\mathbb{R}^n \setminus 2Q} \frac{|f(y)|}{|x - y|^{n+\delta}} dy \leq c \ell_Q^\delta \sum_{m=0}^{\infty} \frac{1}{(2^m \ell_Q)^{n+\delta}} \int_{2^{m+1}Q \setminus 2^m Q} |f(y)| dy
\]
\[
\leq c \sum_{m=0}^{\infty} \frac{1}{2^{m\delta}} \left(\frac{1}{|2^m Q|} \int_{2^m Q} |f(y)| dy \right).
\]
From this and from the weak type \((1, 1)\) of \(T, \)
\[
\left((Tf - T(f_2)(x_0)) \chi_Q \right) \ast (\lambda|Q|)
\]
\[
\leq (T(f_1)) \ast (\lambda|Q|) + \|T(f_2) - T(f_2)(x_0)\|_{L^\infty(Q)}
\]
\[
\leq c \frac{1}{|Q|} \int_{2\sqrt{m}Q} |f(y)| dy + c \sum_{m=0}^{\infty} \frac{1}{2^{m\delta}} \left(\frac{1}{|2^m Q|} \int_{2^m Q} |f(y)| dy \right)
\]
\[
\leq c' \sum_{m=0}^{\infty} \frac{1}{2^{m\delta}} \left(\frac{1}{|2^m Q|} \int_{2^m Q} |f(y)| dy \right),
\]
which proves \((2.2)\).
The same inequalities hold for T^\natural as well, which gives (2.3). The only trivial difference in the argument is that one needs to use the sublinearity of T^\natural instead of the linearity of T.

3. Proof of (1.2)

Combining Proposition 2.3 and Theorem 2.2 with $Q_0 \in \mathcal{D}$, we get that there exists a sparse family $S = \{Q_j^k\} \in \mathcal{D}$ such that for a.e. $x \in Q_0$,

$$|T^\natural f(x) - m_{Q_0}(T^\natural f)| \leq c(n, T) \left(Mf(x) + \sum_{m=0}^{\infty} \frac{1}{2^{m\delta}} \|T_{S,m}f\|(x) \right),$$

where M is the Hardy-Littlewood maximal operator and

$$T_{S,m}f(x) = \sum_{j,k} f_{2^m Q_j^k} \chi_{Q_j^k}(x).$$

If $f \in L^1$, then it follows from (2.1) that $|m_Q(T^\natural f)| \to 0$ as $|Q| \to \infty$. Therefore, letting Q_0 to anyone of 2^n quadrants and using Fatou’s lemma, we get

$$\|T^\natural f\|_X \leq c(n, T) \left(\|Mf\|_X + \sum_{m=0}^{\infty} \frac{1}{2^{m\delta}} \sup_{S \in \mathcal{D}} \|T_{S,m}f\|_X \right)$$

(for the notion of the Banach function space X we refer to [1, Ch. 1]).

Hence, (1.2) will follow from

$$\|Mf\|_X \leq c(n) \sup_{\varphi, S} \|A_{\varphi,S}f\|_X \quad (f \geq 0)$$

and

$$\sup_{S \in \mathcal{D}} \|T_{S,m}f\|_X \leq c(n) m \sup_{\varphi, S} \|A_{\varphi,S}f\|_X \quad (f \geq 0).$$

Inequality (3.1) was proved in [18]; we give the proof here for the sake of the completeness. The proof is just a combination of Proposition 2.1 and the Calderón-Zygmund decomposition. First, by Proposition 2.1,

$$Mf(x) \leq 6^n \sum_{\alpha=1}^{2^n} M^\natural \alpha f(x).$$

Second, by the Calderón-Zygmund decomposition, if

$$\Omega_k = \{x : M^d f(x) > 2^{(n+1)k}\} = \bigcup_j Q_j^k \quad \text{and} \quad E_j^k = Q_j^k \setminus \Omega_{k+1},$$

then the family $\{Q_j^k\}$ is sparse and

$$M^d f(x) \leq 2^{n+1} \sum_{k,j} f_{Q_j^k} \chi_{E_j^k}(x) \leq 2^{n+1} A f(x).$$
From this and from (3.3),
\[
Mf(x) \leq 2 \cdot 12^n \sum_{\alpha=1}^{2^n} A_{\emptyset, \mathcal{S}_\alpha}f(x),
\]
where \(\mathcal{S}_\alpha \in \emptyset\) depends on \(f\). This implies (3.1) with \(c(n) = 2 \cdot 24^n\).

We turn now to the proof of (3.2). Fix a family \(\mathcal{S} = \{Q_j^k\} \in \mathcal{D}\). Applying Proposition 2.1 again, we can decompose the cubes \(Q_j^k\) into \(2^n\) disjoint families \(F_\alpha\) such that for any \(Q_j^k \in F_\alpha\), there exists a cube \(Q_{j,\alpha}^k \in \emptyset_\alpha\) such that \(2^{m}Q_j^k \subset Q_{j,\alpha}^k\) and \(\ell Q_{j,\alpha}^k \leq 6 \ell 2^n Q_j^k\). Hence,

\[
\mathcal{T}_{\mathcal{S}, m}f(x) \leq 6^n \sum_{\alpha=1}^{2^n} \sum_{j,k : Q_j^k \in F_\alpha} f_{Q_j^k} \chi_{Q_j^k}(x).
\]

Set
\[
A_{m,\alpha}f(x) = \sum_{j,k} f_{Q_j^k,\alpha} \chi_{Q_j^k}(x).
\]

We have that (3.2) will follow from
\[
\|A_{m,\alpha}f\|_X \leq c(n) m \sup_{\emptyset, \mathcal{S}} \|A_{\emptyset, \mathcal{S}}f\|_X \quad (f \geq 0).
\]

Consider the formal adjoint to \(A_{m,\alpha}\):
\[
A_{m,\alpha}^* f = \sum_{j,k} \left(\frac{1}{|Q_j^k,\alpha|} \int_{Q_j^k} f \right) \chi_{Q_j^k,\alpha}(x).
\]

Proposition 3.1. For any \(m \in \mathbb{N}\),
\[
\|A_{m,\alpha}^* f\|_{L^2} \leq 8 \|f\|_{L^2}.
\]

Proof. Set \(E_j^k = Q_j^k \setminus \Omega_{k+1}\). Observe that the sets \(E_j^k\) are pairwise disjoint and \(|Q_j^k| \leq 2|E_j^k|\). From this,
\[
\int_{\mathbb{R}^n} (A_{m,\alpha}f) g dx = \sum_{k,j} f_{Q_j^k,\alpha} g_{Q_j^k} |Q_j^k| \leq 2 \sum_{k,j} \int_{E_j^k} (M_{\emptyset, \alpha} f)(M^d g) dx
\]
\[
\leq 2 \int_{\mathbb{R}^n} (M_{\emptyset, \alpha} f)(M^d g) dx.
\]

From this, using Hölder’s inequality, the \(L^2\) boundedness of \(M^d\) and duality, we get the \(L^2\) bound for \(A_{m,\alpha}\).

Lemma 3.2. For any \(m \in \mathbb{N}\),
\[
\|A_{m,\alpha}^* f\|_{L^{1,\infty}} \leq c(n) m \|f\|_{L^1}.
\]
Proof. Set \(\Omega = \{ x : Mf(x) > \alpha \} \) and let \(\Omega = \cup_l Q_l \) be a Whitney decomposition such that \(3Q_l \subset \Omega \), where \(Q_l \in \mathcal{D} \) (see, e.g., [1, p. 348]). Set also

\[
b_l = (f - f_{Q_l}) \chi_{Q_l}, \quad b = \sum_l b_l
\]

and \(g = f - b \). We have

\[
|\{ x : |A^{*}_{m,\alpha}f(x)| > \alpha \}| \leq |\Omega| + |\{ x : |A^{*}_{m,\alpha}g(x)| > \alpha/2 \}|
\]

(3.6)

Further, \(|\Omega| \leq \frac{c(n)}{\alpha} \|f\|_{L^1} \), and, by the \(L^2 \) boundedness of \(A^{*}_{m,\alpha} \),

\[
|\{ x : |A^{*}_{m,\alpha}g(x)| > \alpha/2 \}| \leq \frac{4}{\alpha^2} \|A^{*}_{m,\alpha}g\|_{L^2}^2 \leq \frac{c}{\alpha^2} \|g\|_{L^2}^2 \leq \frac{c}{\alpha} \|g\|_{L^1} \leq \frac{c}{\alpha} \|f\|_{L^1}
\]

(we have used here that \(g \leq c\alpha \)).

It remains therefore to estimate the term in (3.6). For \(x \in \Omega^c \) consider

\[
A^{*}_{m,\alpha}b(x) = \sum_l \sum_{k,j} \left(\frac{1}{|Q^k_{j,a}|} \int_{Q^k_{j,a}} b_l \right) \chi_{Q^k_{j,a}}(x).
\]

The second sum is taken over those cubes \(Q^k_j \) for which \(Q^k_j \cap Q_l \neq \emptyset \). If \(Q_l \subset Q^k_j \), then \((b_l)_{Q^k_j} = 0 \). Therefore one can assume that \(Q^k_j \subset Q_l \). On the other hand, \(Q^k_j \cap \Omega^c \neq \emptyset \). Since \(3Q_l \subset \Omega \), we have that \(Q_l \subset 3Q^k_{j,a} \).

Hence

\[
\ell_{Q_l} \leq 3\ell_{Q^k_{j,a}} \leq 18 \cdot 2^m \ell_{Q^k_j}.
\]

The family of all dyadic cubes \(Q \) for which \(Q \subset Q_l \) and \(\ell_{Q_l} \leq 18 \cdot 2^m \ell_Q \) can be decomposed into \(m+4 \) families of disjoint cubes of equal length. Therefore,

\[
\sum_{k,j:Q^k_j \subset Q_l \subset 3Q^k_{j,a}} \chi_{Q^k_j} \leq (m+4) \chi_{Q_l}.
\]

From this we get

\[
|\{ x \in \Omega^c : |A^{*}_{m,\alpha}b(x)| > \alpha/2 \}| \leq \frac{2}{\alpha} \|A^{*}_{m,\alpha}b\|_{L^1(\Omega^c)}
\]

\[
\leq \frac{2}{\alpha} \sum_l \sum_{k,j:Q^k_j \subset Q_l \subset 3Q^k_{j,a}} \int_{Q^k_j} |b_l| dx \leq \frac{2(m+4)}{\alpha} \sum_l \int_{Q_l} |b_l| dx
\]

\[
\leq \frac{4(m+4)}{\alpha} \|f\|_{L^1}.
\]

The proof is complete. \(\square \)

Lemma 3.3. For any cube \(Q \in \mathcal{D}_\alpha \),

\[
\omega_{\lambda_n}(A^{*}_{m,\alpha}f; Q) \leq c(n)m f_Q \quad (\lambda_n = 1/2^{n+2}).
\]
Proof. For $x \in Q$,
\[
\sum_{k,j: Q \subseteq Q^k_{j,\alpha}} \left(\frac{1}{|Q^k_{j,\alpha}|} \int_{Q^k_{j,\alpha}} f \right) \chi_{Q^k_{j,\alpha}}(x) = \sum_{k,j: Q \subseteq Q^k_{j,\alpha}} \left(\frac{1}{|Q^k_{j,\alpha}|} \int_{Q^k_{j,\alpha}} f \right) \equiv c.
\]
Hence
\[
|A^\star_{m,\alpha} f(x) - c| \chi_Q(x) = \sum_{k,j: Q^k_{j,\alpha} \subseteq Q} \left(\frac{1}{|Q^k_{j,\alpha}|} \int_{Q^k_{j,\alpha}} f \right) \chi_{Q^k_{j,\alpha}}(x) \leq A^\star_{m,\alpha} (f \chi_Q)(x).
\]
From this and from Lemma 3.2,
\[
\inf_c ((A^\star_{m,\alpha} f - c) \chi_Q)^*(\lambda_n |Q|) \leq (A^\star_{m,\alpha} (f \chi_Q))^*(\lambda_n |Q|) \leq c(n)m f_Q,
\]
which completes the proof. □

We are ready now to prove \eqref{3.5}. One can assume that the sum defining $A_{m,\alpha}$ is finite. Then $m_{A_{m,\alpha}} f(Q) = 0$ for Q big enough. Hence, By Lemma 3.3 and Theorem 2.2 for a.e. $x \in Q$ (where $Q \in D_\alpha$),
\[
A^\star_{m,\alpha} f(x) \leq c(n)m(M f(x) + A S_\alpha, f(x)).
\]
From this and from \eqref{3.4}, for any $g \geq 0$ we have
\[
\int_{\mathbb{R}^n} (A_{m,\alpha} f) g dx = \int_{\mathbb{R}^n} f (A^\star_{m,\alpha} g) dx
\leq c_n m \sum_{\alpha=1}^{2^n} \int_{\mathbb{R}^n} f (A S_{\alpha} g) dx
\leq c_n m \sup_{\mathcal{G}, Q} \|A S_{\alpha} f\|_X \|g\|_{X'}.
\]
Taking here the supremum over g with $\|g\|_{X'} = 1$ completes the proof.

Added in proof. We have just learned that T. Hytönen, M. Lacey and C. Pérez [10] have also found a proof of the A_2 conjecture avoiding a representation of T in terms of Haar shifts. The first step in this proof is the same: the “local mean oscillation decomposition” combined with Proposition 2.3 which reduces the problem to operators $A_{m,\alpha}$. In order to handle $A_{m,\alpha}$, the authors use the result from [8] where it was observed that this operator can be viewed as a positive Haar shift operator of complexity m. As we have mentioned previously, our proof avoids completely the notion of the Haar shift operator, and to bound $A_{m,\alpha}$ we apply the decomposition again (as it is shown starting with Lemma 3.2).
References

[1] C. Bennett and R. Sharpley, Interpolation of Operators, Academic Press, New York, 1988.
[2] O.V. Beznosova, Linear bound for the dyadic paraproduct on weighted Lebesgue space $L^2(w)$, J. Funct. Anal., 255 (2008), no. 4, 994-1007.
[3] S.M. Buckley, Estimates for operator norms on weighted spaces and reverse Jensen inequalities, Trans. Amer. Math. Soc., 340 (1993), no. 1, 253–272.
[4] J.M. Conde, J. García-Cuerva and J. Parcet, Sharp dyadic coverings and nondoubling Calderón-Zygmund theory, preprint. Available at http://arxiv.org/abs/1201.3513
[5] D. Cruz-Uribe, J.M. Martell and C. Pérez, Sharp weighted estimates for approximating dyadic operators, Electron. Res. Announc. Math. Sci. 17 (2010), 12–19.
[6] D. Cruz-Uribe, J.M. Martell and C. Pérez, Sharp weighted estimates for classical operators, Adv. Math., 229 (2012), no. 1, 408–441.
[7] T.P. Hytönen, The sharp weighted bound for general Calderón-Zygmund operators, to appear in Annals of Math. (2012). Available at http://arxiv.org/abs/1007.4330
[8] T.P. Hytönen and M. Lacey, The $A_p – A_\infty$ inequality for general Calderón-Zygmund operators, to appear in Indiana Univ. Math. J. Available at http://arxiv.org/abs/1106.4797
[9] T.P. Hytönen, M.T. Lacey, H. Martikainen, T. Orponen, M.C. Reguera, E.T. Sawyer and I. Uriarte-Tuero, Weak and strong type estimates for maximal truncations of Calderón-Zygmund operators on A_p weighted spaces, preprint. Available at http://arxiv.org/abs/1103.5229
[10] T.P. Hytönen, M.T. Lacey and C. Pérez, Non-probabilistic proof of the A_2 theorem, and sharp weighted bounds for the q-variation of singular integrals, preprint. Available at http://arxiv.org/abs/1202.2229
[11] T.P. Hytönen and C. Pérez, Sharp weighted bounds involving A_∞, to appear in J. Analysis&PDE. Available at http://arxiv.org/abs/1103.5562
[12] T.P. Hytönen, C. Pérez, S. Treil and A. Volberg, Sharp weighted estimates for dyadic shifts and the A_2 conjecture, preprint. Available at http://arxiv.org/abs/1010.0755
[13] B. Jawerth and A. Torchinsky, Local sharp maximal functions, J. Approx. Theory, 43 (1985), 231–270.
[14] M.T. Lacey, An A_p-A_∞ inequality for the Hilbert transform, preprint. Available at http://arxiv.org/abs/1104.2199
[15] M.T. Lacey, On the A_2 inequality for Calderón-Zygmund operators, preprint. Available at http://arxiv.org/abs/1106.4802
[16] M.T. Lacey, S. Petermichl and M.C. Reguera, Sharp A_2 inequality for Haar Shift Operators, Math. Ann. 348 (2010), no. 1, 127-141.
[17] A.K. Lerner, A pointwise estimate for the local sharp maximal function with applications to singular integrals, Bull. London Math. Soc., 42 (2010), no. 5, 843–856.
[18] A.K. Lerner, On an estimate of Calderón-Zygmund operators by dyadic positive operators, preprint. Available at http://arxiv.org/abs/1202.1860
A2 CONJECTURE

[19] F. Nazarov, A. Reznikov and A. Volberg, The proof of A_2 conjecture in a geometrically doubling metric space, preprint. Available at http://arxiv.org/abs/1106.1342

[20] F. Nazarov and A. Volberg, A simple sharp weighted estimate of the dyadic shifts on metric spaces with geometric doubling, preprint. Available at http://arxiv.org/abs/1104.4893

[21] C. Pérez, S. Treil and A. Volberg, On A_2 conjecture and corona decomposition of weights, preprint. Available at http://arxiv.org/abs/1006.2630

[22] S. Petermichl, The sharp bound for the Hilbert transform on weighted Lebesgue spaces in terms of the classical A_p- characteristic, Amer. J. Math., 129 (2007), no. 5, 1355–1375.

[23] S. Petermichl, The sharp weighted bound for the Riesz transforms, Proc. Amer. Math. Soc., 136 (2008), no. 4, 1237–1249.

[24] S. Petermichl and A. Volberg, Heating of the Ahlfors-Beurling operator: weakly quasiregular maps on the plane are quasiregular, Duke Math. J. 112 (2002), no. 2, 281–305.

[25] S. Treil, Sharp A_2 estimates of Haar shifts via Bellman function, preprint. Available at http://arxiv.org/abs/1105.2252

Department of Mathematics, Bar-Ilan University, 52900 Ramat Gan, Israel
E-mail address: aklerner@netvision.net.il