Positional SHAP (PoSHAP) for Interpretation of Deep Learning Models Trained from Biological Sequences

Quinn Dickinson, Jesse G. Meyer

Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, 53226

Abstract (162/300)
Machine learning with multi-layered artificial neural networks, also known as “deep learning,” is effective for making biological predictions. However, model interpretation is challenging, especially for recurrent neural network architectures due to sequential input data. Here, we introduce a framework called “positional SHAP” (PoSHAP) to interpret models trained from biological sequences by adapting SHapely Additive exPlanations (SHAP) to generate positional model interpretations. We demonstrate this using three long short-term memory (LSTM) regression models that predict peptide properties, including: binding affinity to major histocompatibility complexes (MHC), and collisional cross section (CCS) measured by ion mobility spectrometry. Interpretation of these models with PoSHAP reproduced MHC class I (rhesus macaque Mamu-A1*001 and human A*11:01) peptide binding motifs, reflected known properties of peptide CCS, and provided new insights into interpositional dependencies of amino acid interactions. PoSHAP should have widespread utility for interpreting a variety of models trained from biological sequences.

Keywords: Neural networks, deep learning, model interpretation, shapely additive explanations (SHAP), peptides, major histocompatibility complex (MHC), long-short term memory, LSTM
Introduction
Sequences are ubiquitous throughout the biological world. Nucleic acids and proteins encode information as sequences of monomeric building blocks. Sequence order is extremely important; the primary amino acid sequence of a protein uniquely determines the set of 3D structures formed after folding. Decades of effort by thousands of scientists has focused on measuring protein structures (1–3) and determining intermolecular binding (4). Significant efforts have been devoted to protein structure prediction (5,6). Recent advances in deep learning have achieved major milestones in protein structure prediction (7).

Deep learning is a type of machine learning that uses neural networks to learn relationships between pairs of input and output data (8). For example, one might train a network to take an input of peptide sequence and predict chromatographic retention time. There are many types of neural network models that differ primarily in how neurons are connected. Each architecture is well suited for different types of input data. For example, convolutional neural networks (CNNs) are effective at using images as inputs (9), and recurrent neural networks (RNNs) are effective at using sequence data as input (10). RNNs have found extensive application to natural language processing, and by extension as a similar type of data, predictions from biological sequences such as peptides or nucleic acids. A specific type of RNN called a long short-term memory (LSTM) solves the vanishing gradient problem seen with backpropagation of RNNs (11), and thus LSTM has seen widespread use for biological sequence data.

One goal of building predictive models is to create an understandable and actionable relationship between the input and output data. Although deep learning with LSTM models is effective for making predictions from sequences, interpreting how inputs lead to specific outputs is not trivial. There are model-specific interpretation strategies, such as layer-wise relevance propagation (12) or the attention mechanism (13). There are also strategies to enable interpretation of an arbitrary model, such as permutation importance (14), and Shapley additive explanations (15,16). SHAP is a game theoretic approach to model interpretation which assesses the impact on prediction of each input compared to a baseline input. SHAP is an attractive option because it can dissect interactions between inputs, for example even when inputs are correlated. SHAP is also beneficial in that it can be used with any arbitrary model. However, SHAP does not directly enable sequence-dependent model interpretation.

The major histocompatibility complex (MHC) is an array of closely related genes that encode cell surface proteins that form an essential part of the adaptive immune system (17–19). There are two main classes of MHC complexes, I and II. Peptides bound by the MHC I complex are primarily generated by the proteasome from intracellular proteins (20). Not all degradation products are bound into the MHC class I complex, nor are all peptides bound with equal frequency. Peptides suitable for the MHC class I complex are generally between eight and ten amino acids in length, although longer peptides have been reported (21). The sequence of the peptide is the primary determinant of binding affinity to each MHC class I complex allele. Given the polymorphism of MHC class I alleles in the human population, abundance of potential binding peptides, and the low throughput of current binding assays, the direct testing of most peptides is infeasible. Therefore, the prediction of binding affinities through methods such as
machine learning or molecular modelling could lead to improved development of vaccines against disease like cancer (22).

Extensive efforts have focused on prediction of peptide-MHC interactions (23,24). Both classification and regression models are used to learn which peptides bind to each MHC allele, for example see O'Donnell et al., Zeng and Gifford, and Liu et al. (25–27) However, because many reports forgo model interpretation, the learned biochemical relationships remain unknown. Other works determine relationships learned by their model, for instance in Jin et al. (28), and Hu et al.(29) used CNNs with an attention mechanism to determine the weights of the inputs on the final prediction. This method has been successful in recapitulating the experimentally defined binding motifs, but requires that the model be constructed with attention layers. This may limit the flexibility of model architecture when designing new models.

In addition to predicting binding affinities of peptides, deep learning is useful for predicting peptide properties for proteomics applications (30) including: fragmentation patterns during tandem mass spectrometry (31–33), liquid chromatographic retention time (32,34,35), and ion mobility (36). However, attempts at model interpretation are uncommon in this body of literature. One recent paper (36) utilized SHAP to better understand the mechanics behind the collisional cross section (CCS) of peptides, but insight was limited to aggregate amino acid contributions without position context. Further work is needed to allow model-agnostic interpretation of neural networks trained from biological sequences to understand general patterns in the chemistry of peptides.

Here we demonstrate that LSTM models easily learn to perform regression directly from peptide sequence to that peptide's properties, including affinity to various MHC alleles (29,37) and CCS (36). Our main contribution is a strategy to interpret such models that we term “positional SHAP” (PoSHAP), which reveals how each amino acid contributes to predicted properties for a specific peptide and generally across all peptide predictions. We extend the strategy to track interpositional dependence of amino acids for binding and CCS. This work therefore describes a general, broadly applicable framework for understanding notoriously abstruse deep learning models trained on biological sequences.
Methods

Data

Data used for training and testing the Mamu model was obtained from Haj et al. 2020 (37), where all possible 8-, 9-, and 10-mer peptides from 82 SIV and SHIV strains were measured by fluorescent peptide array. The data consists of 61,066 entries containing the peptide sequence, peptide length, and five intensity values corresponding to the intensity obtained from the fluorescence assay for each of the five Mamu alleles tested (A001, A002, A008, B008, and B017). From the methods of Haj et al., each intensity is the base 2 logarithm of the median intensity value of five replicates reported for each peptide as measured by an MS200 Scanner at a resolution of 2µm and a wavelength of 635 nm (37). For training and testing of the model, the dataset was randomly split into three categories (Supplemental Figure 1). Because the dataset contains truncated forms of each core peptide sequence as 8-, 9-, and 10-mers, the data splitting grouped each core sequence into unique indexes and split based on those indexes. This core sequence-based splitting ensured that training and testing data would not have truncated versions of the same peptide. The training data had 43,923 entries (71.93% of all data). The validation data to assess overfitting during training had 10,973 entries (17.97% of all data). The test data to test the overall model performance had 6,170 entries (10.10% of all data).

Data for the human MHC allele was obtained from Hu et al. 2019 (29), and is a compilation of data from the IEDB MHC class I binding affinity dataset (Kim et al., 2014 (38), Vita et al., 2015 (39), and Pearson et al. 2016 (40)). This dataset consists of species, allele, peptide length, peptide sequence, and a binding affinity measurement as IC50. For A*11:01, a subset of the data was chosen by selecting only the peptides between eight and ten amino acids in length with binding data for the allele. The IC50 were transformed as described in Hu et al. 2019 (29) and Nielsen et al. 2007 (41) where score = 1 - log(affinity)/log(50000). Data splitting into training, validation, and test data was performed as above, split by core peptide sequences (Supplemental Figure 2). The training data had 4,522 entries (71.97% of all data), the validation data consisted of 1,132 entries (18.02% of all data), and the test data consisted of 629 entries (10.01% of all data).

Data for the CCS was obtained from Meier et al. 2021 (36). The dataset consists of peptide sequences, peptide lengths, peptide modifications, retention times, and calculated CCS, among other values, for about 2,000,000 values. From this dataset, we removed all peptides that had any modifications, and for simplicity, kept only peptides with lengths of 8, 9, or 10 amino acids. The mean of the CCS were taken for remaining peptides that had the same sequence. The final dataset consisted of 45,990 entries. The data was split into training, validation, and test sets, split by core peptide sequences, as described above (Supplemental Figure 2). The training data consisted of 33,134 entries (72.04% of all data). The validation data consisted of 8,256 entries (17.95% of all data). The test data consisted of 4,600 entries (10.00% of all data).

Model architecture

The Keras(2.3.0-tf) (42) interface for Tensorflow(2.2.0) (43) was used to build and train the LSTM models (see layouts in Supplemental Figure 3). Peptide sequences were converted to
integers ranging from 0 to 20 where each integer corresponds to an amino acid or the special token “END”, which is used to pad peptides with length 8 or 9 to have length 10. The embedding layer takes these ten integer inputs corresponding to each position of the peptide. Each input is transformed by the embedding layer to a 10x50 dimensional matrix that is sent to the first LSTM layer (11). The LSTM layer outputs a 50x128 dimensional matrix to a dropout layer where a proportion of values are randomly set to 0. For the MHC models, a second LSTM layer outputs a tensor with length 128 and a second dropout layer then randomly sets a proportion of values to 0. Then in all models, a dense layer reduces the data dimensionality to 64. For the MHC models, the data is then passed through a leaky rectified linear unit (LeakyReLU) activation before a final dropout, present in all models. The final dense layer produces either one or five outputs, which are trained to predict the output values (intensity, IC50, CCS). The model is compiled with the Adam optimizer (44) and uses mean squared error (MSE) loss.

Hyperparameter search

For the Mamu MHC alleles, dropout, batch size, and the number of epochs were optimized using the hyperas wrapper for hyperopt (45). The hyperparameter search allowed a uniform range between 0 and 0.6 for each of the three dropout layers. The search for epoch and batch size hyperparameters had binary choices. Epochs were either 1,000 or 2,000. Batch size was either 2,500 or 5,000. To ensure that our unorthodox batch size was correct, we performed the hyperparameter search again, with options of 32, 64,128, or 5,000, and a batch size of 5,000 was selected as optimal.

For the human MHC allele model, dropout, batch size, learning rate, and the number of epochs were optimized using the hyperas wrapper for hyperopt (45). The hyperparameter search used a uniform range between 0 and 0.8 for each of the three dropouts. The search for epochs, batch size, and learning rate hyperparameters had defined choices. Epochs were 100, 500, or 1,000. Batch size was 32, 64, 128, or 5000. Learning rate was a choice between 0.001, 0.005, 0.01, 0.05, and 0.1. To reduce overfitting, the number of epochs was fixed at 200.

For the CCS model, dropout, batch size, learning rate, and the total number of epochs were optimized using the hyperas wrapper for hyperopt (45). Each of the two dropout layers had ranges between 0 and 0.8. Learning rate was a choice of 0.001, 0.005, 0.01, 0.05, and 0.1. Batch size was a choice of 32, 64, 128, and 256. Epochs were a choice of 100, 500, and 1000. To reduce overfitting, we decided on a final epoch count of 200.

For each dataset, the hyperparameter search was run with the tree of parzen estimators algorithm (46) allowing a maximum of 100 evaluations. The optimal parameters from this search are in Table 1.
	MAMU	Human MHC	CCS
Dropout Layer 1	0.44	0.53	0.53
Dropout Layer 2	0.2	0.56	n/a
Dropout Layer 3	0.05	0.8	0.09
Learning Rate	0.001*	0.01	0.005
Batch Size	5000	5000	128
Epochs	1000	200*	200*

Table 1: Optimal Hyperparameters for deep learning model. Hyperopt was used to determine the ideal hyperparameters for the model using a tree of parzen estimators algorithm over 100 evaluations. * indicates a hardcoded hyperparameter.

Final Model Training
For each dataset, the final models were re-trained using the best hyperparameters (Table 1). Loss (as MSE) for training and validation data was plotted against the training epochs to monitor overfitting (Supplemental Figure 4).

Model Performance - Regression Metrics
Test peptides were input to the final trained model and the predicted outputs were compared with the experimental data. Correlations between true and predicted values were assessed by MSE, Spearman’s rank correlation coefficient (Spearman’s ρ), and the correlation p-value.

Positional SHAP (PoSHAP)
Shapely Additive Explanations (SHAP) (15) were used to determine the contribution of each position on each peptide to the peptide’s overall predicted value. As the baseline, training peptide sequence data was summarized as 100 weighted samples using the SHAP kmeans method. The summarized data, the test peptide sequence data, and the trained model were input into SHAP’s KernelExplainer method. The contribution of each amino acid at each position was stored in an array. The mean SHAP value of each amino acid at each position was calculated for each input dataset. Exemplary plots of the top predicted peptides were generated using SHAP’s force_plot method indexed with peptides and position (16). Dependence plots were generated using SHAP’s dependence_plot method and modified with MatPlotLib (47).

To generate the dependence analysis tables, for each amino acid at each position, the SHAP values were split into two sets. The first set consists of the SHAP values where a different specified position contains a different specific amino acid. The second set consists of the remaining SHAP values for the amino acid at the position. For each position and amino acid, all sets of positions and amino acids are compared. The two sets are not normally distributed and
were therefore compared with a Wilcoxon Rank Sum test (also known as Mann-Whitney U-test), and the p-values are adjusted with the Bonferroni correction.

To analyze the interdependent interactions between positions and amino acids, the subset of all significant (corr. P-value < 0.05) interactions were taken from the CCS dependence analysis tables. Interactions were grouped by distance or by expected interaction type. Interactions grouped by distance, were further grouped into either neighboring (distance = 1), near (distance = 2,3,4,5), or far (distance = 6,7,8,9). Each amino acid was grouped into the following categories: “Positive” for arginine, histidine, and lysine; “Negative” for aspartic acid and glutamic acid; “Polar” for serine, threonine, asparagine, and glutamine; “Hydrophobic” for alanine, valine, isoleucine, leucine, methionine, phenylalanine, tyrosine, tryptophan, cysteine, glycine, and proline; and “End” for interactions involving the end input. Expected interaction type was determined by the following: “Charge Attraction” by interactions between “Positive” and “Negative” categories. “Charge Repulsion” by interaction between “Positive” and “Positive” or “Negative” and “Negative” categories. “Polar” by interactions between “Polar” and “Polar,” “Polar” and “Negative,” or “Polar” and “Positive” categories. “Hydrophobic” by interactions between “Hydrophobic” and “Hydrophobic” categories. Finally, “Other” by interactions not noted here, including interactions such as “Polar” and “Hydrophobic,” or “Polar” and “End”. ANOVA with Tukey’s post hoc test was calculated amongst the distance groups and amino acids to determine significance. “Attractive” and “Repulsive” categories were further created by combining “Charge Attraction,” “Polar,” and “Hydrophobic” or “Charge Repulsion” and “Other” (representing steric interactions) respectively. A Wilcoxon sum test was used to compare these distributions.

Data and Code Availability

The data and code are available at https://github.com/jessegmeyerlab/positional-SHAP.

Results

Model Training and Prediction

Datasets from each source consisted of a peptide sequence and a corresponding measurement, including fluorescent intensity (37), IC50 (29,38–40), or CCS (36). For the Mamu dataset, each peptide in the table had values for five Mamu MHC class I alleles: A001, A002, A008, B008, and B017. For the human MHC and peptide ion mobility datasets, each peptide had a single value, representing IC50 and CCS, respectively. Data was split into training, validation and test sets in a manner that ensures truncated versions of the same core peptide are in the same set (Supplemental Figure 1, Supplemental Figure 2). The LSTM models used peptide sequences converted to integers as input to an embedding layer, and learned to perform either single-output regression, for the human MHC and CCS, or multi-output regression for the outputs of the five Mamu MHC alleles. (Figure 1, Supplemental Figure 3).
The LSTM models achieved excellent performance on the regression tasks despite the limited sizes of the training sets. Training versus validation loss for the final multi-output model (Supplemental Figure 4) demonstrates some overfitting but not to the detriment of the model’s generalizability. To prevent overfitting of the single output regression models, epochs were limited to 200. Scatterplots of true values versus model predictions for the held-out test set showed excellent performance for all the models according to MSE and Spearman correlation rho (Figure 2). All correlations between true and predicted values were significant with p-values less than 1.0E-16.

Figure 1: Overview of data, modeling, and positional SHAP analysis for model interpretation. Peptide sequence and output data was downloaded from Haj et al. 2020, Hu et al. 2019, and Meier et al. 2021 and used as an input for three separate deep learning models. The peptide sequences were numerically encoded, split to positional inputs, and Long Short-Term Memory (LSTM) models were trained to predict each of the outputs. These include the five peptide array intensities for the Mamu MHC allele data, IC50 binding data for the A*11:01 data, and CCS for the mass spectrometry data. The trained models were then used to make predictions on a separate test subset for each of the datasets. Finally, the model interpretation method SHAP was adapted to enable determination of each amino acid position’s contribution to the final prediction. This PoSHAP analysis was visualized by plotting the mean SHAP value of each amino acid at each position as a heatmap.
PoSHAP analysis revealed expected patterns of positional effects for experimentally supported interactions. For the Mamu allele A001, we found patterns similar to a prior publication that determined specificity experimentally with a library of peptides with single amino acid substitutions (48). This previous study determined a preference for “…S or T in position 2, P in position 3, and hydrophobic or aromatic residues at the C terminus”. Our heatmap shows a similar preference (Figure 3), but we also note that F/I/L is preferred at position 1, and a proline at one of the positions between 2-5. The preference for a hydrophobic amino acid in position 1 was also seen using a substitution array in the original publication of the peptide array data used to train our models (37).
Figure 3. Heatmaps showing PoSHAP analysis to determine amino acid binding motifs from deep learning models. The mean SHAP values for each amino acid at each position across all peptides in the test set were arranged into a heatmap. The position in each peptide is along the y-axis and the amino acid is given along the x-axis. “End” is used in positions 9 and 10 to enable inputs of peptides with length 8, 9, or 10. For comparison, the SHAP force plot for the peptide with the highest binding prediction is shown for each allele.
For the human MHC allele A*11:01 model, PoSHAP analysis recapitulates positional relationships found through attention mechanism based models (Figure 4A) (29). This pattern is in congruence with the experimental data for the binding of A*11:01 (49). Jin et al. (28) reported anchor sites for MHC alleles from attention-based models. PoSHAP analysis matched these anchor sites based on the PoSHAP heatmap (Figure 4A) and the range of the SHAP values per position (Supplemental Figure 5).

![Figure 4A](image)

Figure 4. PoSHAP interpretation of models trained to predict A*11:01 binding or CCS. The mean SHAP value for each amino acid across all test peptides were calculated and arranged into heatmaps representing the values for A*11:01 (A) and CCS (B). The position along the peptide is along the y-axis and each amino acid is listed along the x-axis.

For the CCS model, PoSHAP analysis reflects results from experimental positional analysis performed in Meier et al. (36), which demonstrated the importance of the histidine residue position relative to the peptide’s C- and N-terminus. Our PoSHAP analysis also shows the high dependence of position to the SHAP value of histidine, particularly with the highest values at the C-terminus and high values at the N-terminus, reflecting that peptides with histidine at these positions are more likely to have higher CCS. Meier et al. (36) also performed SHAP analysis on their own model that illustrates the contribution of each amino acid across all positions. They remarked that “lysine, arginine, and histidine varied over the entire range of observed SHAP values” and that this variation indicated residues with the most important positional effects.” PoSHAP analysis agreed with this and showed that the amino acids with the greatest ranges (Supplemental Figure 6) also had the highest levels of positional dependence, with histidine, lysine, and arginine having the greatest overall ranges and the greatest dependence on position (Figure 4).

Given the accuracy of PoSHAP in recapturing experimentally verified positional effects, it’s use has promise in generating hypotheses about the analyzed systems. One example is with the CCS data. The PoSHAP analysis revealed that the three amino acids (H, K, R) that contribute the highest proportion to CCS when at the termini are all positively charged under physiological and mass spectrometry conditions. The contribution to CCS by the positively charged amino acids may be due to charge repulsion between the positive charges on adjacent amino acids in the peptide, as the vast majority of peptides used to train the model had a greater charge than
+1. When the amino acids are at the termini, they have the greatest freedom to extend away from the rest of the peptide, increasing the CCS. The opposite trend is seen for the negatively charged amino acids, aspartic acid and glutamic acid, which had a slight negative effect across PoSHAP with the greatest effects at the termini.

Another application of PoSHAP is to be able to make hypotheses about the binding characteristics of the uncharacterized MHC alleles (Figure 3). We found that the model predicts that Mamu A001 prefers F, I, L, S, T, V, or Y in the first position, with a strong preference for S, T, or P in the second position; S and T are very similar chemically, with small, polar side chains containing hydroxyl functional groups. The heatmap of PoSHAP values also showed that A001 had a preference for proline between positions two and six. The preference of Mamu A002 was similar to A001 in that n-terminal serine or threonine resulted in high binding, but the preference for proline was completely absent. The preference map of Mamu A008 showed an opposite trend, where only the preference for early proline between positions one and four is readily apparent and the contribution of S or T is absent. Mamu B008 appears to be most selective for the amino acids near the N-terminus, with a strong preference for arginine or methionine and strong negative SHAP values for many amino acids. Finally, B017 showed a preference for L, M, or H followed by F near the N-terminus. The heatmap of SHAP values for B017 also showed a positive contribution to binding from tryptophan near the C-terminus, suggesting that the entire peptide length may play a bigger role in binding to the B017 MHC protein.

PoSHAP analysis also reveals the amino acids at each position that decrease peptide binding. All MHC alleles except for A002, and most pronounced in B008, have a strong negative contribution to binding prediction if there is an acidic amino acid in position one or two (i.e. D or E). For all alleles except B017, histidine near the peptide N-terminus also predicts low binding affinity.

We further show that PoSHAP can reveal the pooled binding contributions for top performing subsets of peptides. When the PoSHAP heatmap is filtered for the eight peptides with the highest binding predictions (top 0.013%), distinct patterns emerge (Supplemental Figure 7). The serine or threonine at position two remains important for the A001 and A002 alleles and can also be important to A008 binding. Proline emerges as important for B008 and B017 alleles; proline at position three hinders binding to B017 among the top peptides, but proline at position four helps binding to B008.

PoSHAP Interpositional Dependence Analysis
The SHAP value of any position is dependent on the values of all other positions in the peptide. SHAP values for each amino acid at each position were split based off of the amino acid at another position across all peptides. This enabled the determination of the dependence of a PoSHAP value on the presence of an amino acid at any and all other positions. This method also enabled determination of the significance and magnitude of the dependence by comparing the means and calculating a Wilcoxon Rank Sum test with a Bonferroni correction (Supplemental Tables 1-3). The original SHAP package provides a means to illustrate these relationships through its dependence plots.
Using the dependence analysis, we were able to discover significant positional relationships for each of the three models we trained. For the Mamu alleles, the most striking relationship was observed with the model trained on the A001 dataset. As previously mentioned, it can be seen in the heatmaps that the highest SHAP values are observed for serine and threonine near the N-terminus of the peptide (Figure 3). However, the top predicted peptides do not show the same pattern, instead beginning with either a phenylalanine or a leucine, and continuing with a serine or threonine (Supplemental Figure 7). Among the calculated interpositional relationships with the greatest significance and magnitude are between the leucine and threonine (Supplemental Table 1, corr. p-value 7.33E-23) and the phenylalanine and serine (Supplemental Table 1, 7.31E-4) between the first and second positions (Figure 5).

Additionally, threonine or serine followed by a proline between positions one and two (Supplemental Table 1, corr. p-values 8.86E-7, 1.68E-8, respectively), or two and three (corr. p-values 2.96E-8, 1.07E-5, respectively) were significant. This suggests that the most important motif for binding is Thr-Pro or Ser-Pro and that the ideal binding motif for A001 is Leu-Thr-Pro or Phe-Ser-Pro at the N-terminus of the peptide.

For the human allele A*11:01 model, there were less significant interactions, potentially due to the smaller size of the dataset. However, there were still a couple notable interactions. The interactions with the greatest magnitudes were those with lysine at the ninth position. The interaction with the greatest magnitude was between lysine and “end.” (Supplemental Table 2, corr. p-values 0.011). This reflects the preference of the binding site for 9-mers and lysine as the C-terminal amino acid. Additionally, the next three interactions with the greatest magnitude were lysine interacting with serine, leucine, and isoleucine (Supplemental Table 2, corr. p-values 6.83E-4, 4.71E-6, 0.026, respectively). All three of these have significantly greater SHAP contributions when lysine is at position nine. This may reflect that there is some flexibility with the earlier root site when lysine is bound, and may demonstrate that the model had learned the length of the binding motif between the second position and the C-terminus (28) (Supplemental Table 2, Supplemental Figure 5).

For the CCS model, the interpositional interactions are different as they rely on the chemical interactions within the peptide itself, rather than interacting with a binding site. That is, interactions which promote peptide compaction will reduce CCS, and those that promote extension will generally increase CCS. To further determine how PoSHAP can reveal the important amino acids and positions generally, additional metrics were derived from the subset of significant amino acid pairs from the PoSHAP dependence analysis. All significant interactions (adj p-value < 0.05) from the CCS model interpretation (Supplemental Table 3) were used to compute the absolute magnitude of the difference in SHAP value as a function of the distance between those residues (Figure 6). Absolute SHAP differences between interdependent amino acids were higher when the interaction was with the neighbor amino acid (ANOVA with Tukey’s posthoc test p-value = 0.001), or distant amino acids (distance 6-9, ANOVA with Tukey’s posthoc adjusted p-value = 0.001) versus intermediate amino acids. This suggests that amino acids interact more strongly with their neighbors because the R groups are adjacent, and have stronger interactions with those further along the peptide because of the
flexibility of the chain, but interactions at an intermediate distance have a lesser magnitude of effect.

Additionally, there are interesting differences in the interactions of the amino acid among the significant set of interactions (Figure 6B). All significant interactions from the CCS data (Supplemental Table 3, adj. p-value < 0.05) within the peptides were grouped by the expected interaction type occurring between the amino acids based off of the chemistry of the R groups. Interestingly, this analysis revealed that generally attractive molecular interactions, including charge attraction, polar interactions, and hydrophobic interactions decreased predicted CCS while generally repulsive molecular interactions, including charge repulsion and “other” interactions (likely steric interactions) increased predicted CCS. Additionally, when the categories are further categorized into generally attractive interactions and repulsive interactions, there is significant difference between the two categories. (Wilcoxon rank sum test p-value 3.52E-3) This suggests that the model was able to learn fundamental chemistry of the inputs and that the calculated PoSHAP interactions are reflective of this.

Figure 5. SHAP dependence plots for allele Mamu-A001 show how relationships between sequential amino acids contribute to binding. Each graph represents a pair of positions in the peptide, here positions one and two (A) and positions two and three (B). The x-axis lists each possible amino acid for that position and the y-axis shows the SHAP value. Each point represents a peptide with the listed amino acid at that position on the x-axis and the amino acid in the subsequent position is shown by color. This shows how the range of SHAP values for a particular amino acid at a specific location is reflective of the dependence of other amino acid positions.
Discussion
The main contribution of this work is the concept of PoSHAP analysis to interpret neural networks trained on biological sequences. We show how PoSHAP can reveal amino acid motifs that influence MHC I binding and further describe how PoSHAP enables understanding of interpositional dependence of amino acids that result in high affinity predictions. This work also contributes a method for accurate prediction of peptide-MHC I affinity using peptide array data enabled by novel application of a neural network that combines amino acid embedding and LSTM layers.

Although there are many effective neural network models for biological sequences, there are a dearth of methods to understand those models. Thus, PoSHAP fills a gap in the biological machine learning community. Prior studies have used sequence logos from the top predictions (50), but this method doesn’t ask the model what was learned and instead is observed-sequence centric. Another approach used by DeepLigand (26) is to apply Sufficient Input Subset (SIS) analysis (51), which attempts to reduce inputs to the minimal values required for prediction. While useful in many contexts, SIS is only amenable to classification models and does not provide contribution values for each input. A third approach is to create an interpretable model through the construction of the model itself. One example of this is by using attention mechanism based models, such as what has been done with ACME (29). However, this method of model interpretation limits the architecture of the model. Our model-agnostic

Figure 6. Dependence analysis of CCS model. Significant (corr. P-value < 0.05) values were taken from the dependence analysis and the differences between the interdependent amino acids and the non-dependent amino acid at each compared position pair were grouped based off of either the distance between the dependent interaction (A) or the category of interaction(B). For the distance analysis, interactions were grouped into three categories, neighboring (distance = 1), near (distance = 2, 3, 4, 5), and far (distance = 6, 7, 8, 9). * indicates significance. (ANOVA with Tukey’s post hoc test p-value < 0.05) For the interaction categories, each interaction was grouped by the expected type of interaction between the two amino acids. Significant differences between interaction types are noted by the pairing by lines. (ANOVA with Tukey’s post hoc test p-value < 0.05).
PoSHAP approach provides contribution degrees for each amino acid input, and disentangles the interactions between inputs. Our examples validate PoSHAP compared to previous peptide model interpretation methods, and show additional benefits in uncovering interpositional dependence and summarizing PoSHAP across amino acid and position.

Altogether the advances described herein are likely to find widespread use for both interpreting models trained from biological sequences, and also for improving prediction performance using advanced model architectures.

Author Contributions
Conceptualization, QD, JGM; Methodology, QD, JGM; Software, QD, JGM; Validation, QD, JGM; Formal Analysis, QD, JGM; Investigation, QD, JGM; Resources, JGM; Data Curation, QD, JGM; Writing - Original Draft, QD, JGM; Writing - Reviewing and Editing, QD, JGM; Visualization, QD, JGM; Supervision, JGM; Project Administration, JGM; Funding Acquisition, JGM.

Acknowledgements
This research was completed in part with computational resources and technical support provided by the Research Computing Center at the Medical College of Wisconsin. We thank Dasom Hwang for help with graphic design. Part of this work was conceived under support from NIH training grant T15 LM007359.

References
1. Wüthrich K. Protein structure determination in solution by NMR spectroscopy. J Biol Chem. 1990 Dec 25;265(36):22059–62.
2. Developments, applications, and prospects of cryo-electron microscopy - Benjin - 2020 - Protein Science - Wiley Online Library [Internet]. [cited 2021 Mar 2]. Available from: https://onlinelibrary.wiley.com/doi/10.1002/pro.3805
3. Protein crystallography from the perspective of technology developments: Crystallography Reviews: Vol 21, No 1-2 [Internet]. [cited 2021 Mar 2]. Available from: https://www.tandfonline.com/doi/abs/10.1080/0889311X.2014.973868
4. Huttlin EL, Ting L, Bruckner RJ, Gebreab F, Gygi MP, Szpyt J, et al. The BioPlex Network: A Systematic Exploration of the Human Interactome. Cell. 2015 Jul 16;162(2):425–40.
5. Lee J, Freddolino PL, Zhang Y. Ab Initio Protein Structure Prediction. In: J. Rigden D, editor. From Protein Structure to Function with Bioinformatics [Internet]. Dordrecht: Springer Netherlands; 2017 [cited 2021 Feb 26]. p. 3–35. Available from: https://doi.org/10.1007/978-94-024-1069-3_1
6. Kuhlman B, Bradley P. Advances in protein structure prediction and design. Nat Rev Mol Cell Biol. 2019 Nov;20(11):681–97.
7. Senior AW, Evans R, Jumper J, Kirkpatrick J, Sifre L, Green T, et al. Improved protein structure prediction using potentials from deep learning. Nature. 2020 Jan;577(7792):706–10.
8. LeCun Y, Bengio Y, Hinton G. Deep learning. Nature. 2015 May;521(7553):436–44.
9. Fukushima K. Neocognitron: A self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position. Biol Cybern. 1980 Apr;36(4):193–202.
10. Rumelhart DE, Hinton GE, Williams RJ. Learning representations by back-propagating errors. Nature. 1986 Oct;323(6088):533–6.
11. Hochreiter S, Schmidhuber J. Long short-term memory. Neural Comput. 1997 Nov 15;9(8):1735–80.
12. Arras L, Arjona-Medina J, Widrich M, Montagov G, Gillhofer M, Müller K-R, et al. Explaining and Interpreting LSTMs. In: Samek W, Montagov G, Vedaldi A, Hansen LK, Müller K-R, editors. Explainable AI: Interpreting, Explaining and Visualizing Deep Learning [Internet]. Cham: Springer International Publishing; 2019 [cited 2021 Feb 26]. p. 211–38. (Lecture Notes in Computer Science). Available from: https://doi.org/10.1007/978-3-030-28954-6_11
13. Bahdanau D, Cho K, Bengio Y. Neural Machine Translation by Jointly Learning to Align and Translate. ArXiv14090473 Cs Stat [Internet]. 2016 May 19 [cited 2021 Jun 16]; Available from: http://arxiv.org/abs/1409.0473
14. Breiman L. Random Forests. Mach Learn. 2001 Oct 1;45(1):5–32.
15. Lundberg SM, Lee S-I. A unified approach to interpreting model predictions. In: Proceedings of the 31st International Conference on Neural Information Processing Systems. Red Hook, NY, USA: Curran Associates Inc.; 2017. p. 4768–77. (NIPS’17).
16. Lundberg SM, Nair B, Vavilala MS, Horibe M, Eisses MJ, Adams T, et al. Explainable machine-learning predictions for the prevention of hypoxaemia during surgery. Nat Biomed Eng. 2018 Oct;2(10):749–60.
17. Cresswell P, Bangia N, Dick T, Diedrich G. The nature of the MHC class I peptide loading complex. Immunol Rev. 1999;172(1):21–8.
18. Neefjes J, Jongsma MLM, Paul P, Bakke O. Towards a systems understanding of MHC class I and MHC class II antigen presentation. Nat Rev Immunol. 2011 Dec;11(12):823–36.
19. Matzaraki V, Kumar V, Wijmenga C, Zhernakova A. The MHC locus and genetic susceptibility to autoimmune and infectious diseases. Genome Biol. 2017 Apr 27;18(1):76.
20. Sijts EJAM, Kloetzel P-M. The role of the proteasome in the generation of MHC class I ligands and immune responses. Cell Mol Life Sci. 2011 May;68(9):1491–502.
21. Burrows SR, Rossjohn J, McCluskey J. Have we cut ourselves too short in mapping CTL epitopes? Trends Immunol. 2006 Jan;27(1):11–6.
22. Bonnal SC, López-Oreja I, Valcárcel J. Roles and mechanisms of alternative splicing in cancer — implications for care. Nat Rev Oncol. 2020 Aug;17(8):457–74.
23. Nielsen M, Andreatta M, Peters B, Buus S. Immunoinformatics: Predicting Peptide–MHC Binding. Annu Rev Biomed Data Sci. 2020;3(1):191–215.
24. Antunes DA, Abella JR, Devaurs D, Rigo MM, Kavraki LE. Structure-based Methods for Binding Mode and Binding Affinity Prediction for Peptide-MHC Complexes. Curr Top Med Chem. 2018 Oct 1;18(26):2239–55.
25. O’Donnell TJ, Rubinstein A, Bonsack M, Riemer AB, Laserson U, Hammerbacher J. MHCflurry: Open-Source Class I MHC Binding Affinity Prediction. Cell Syst. 2018 Jul 25;7(1):129-132.e4.
26. Zeng H, Gifford DK. DeepLigand: accurate prediction of MHC class I ligands using peptide embedding. Bioinformatics. 2019 Jul 15;35(14):i278–83.
27. Liu Z, Cui Y, Xiong Z, Nasiri A, Zhang A, Hu J. DeepSeqPan, a novel deep convolutional neural network model for pan-specific class I HLA-peptide binding affinity prediction. Sci Rep. 2019 Jan 28;9(1):794.
28. Jin J, Liu Z, Nasiri A, Cui Y, Louis S-Y, Zhang A, et al. Deep learning pan-specific model for interpretable MHC-I peptide binding prediction with improved attention mechanism. Proteins Struct Funct Bioinforma [Internet]. [cited 2021 May 25];n/a(n/a). Available from:
29. Hu Y, Wang Z, Hu H, Wan F, Chen L, Xiong Y, et al. ACME: pan-specific peptide–MHC class I binding prediction through attention-based deep neural networks. Bioinformatics. 2019 Dec 1;35(23):4946–54.

30. Meyer JG. Deep learning neural network tools for proteomics. Cell Rep Methods. 2021 May 17;10003.

31. Lin Y-M, Chen C-T, Chang J-M. MS2CNN: predicting MS/MS spectrum based on protein sequence using deep convolutional neural networks. BMC Genomics. 2019 Dec 24;20(9):906.

32. Guan S, Moran MF, Ma B. Prediction of LC-MS/MS Properties of Peptides from Sequence by Deep Learning*[S]. Mol Cell Proteomics. 2019 Oct 1;18(10):2099–107.

33. Liu K, Li S, Wang L, Ye Y, Tang H. Full-Spectrum Prediction of Peptides Tandem Mass Spectra using Deep Neural Network. Anal Chem. 2020 Mar 17;92(6):4275–83.

34. Yang Y, Liu X, Shen C, Lin Y, Yang P, Qiao L. In silico spectral libraries by deep learning facilitate data-independent acquisition proteomics. Nat Commun. 2020 Jan 9;11(1):146.

35. Wen B, Li K, Zhang Y, Zhang B. Cancer neoantigen prioritization through sensitive and reliable proteogenomics analysis. Nat Commun. 2020 Apr 9;11(1):1759.

36. Deep learning the collisional cross sections of the peptide universe from a million experimental values | Nature Communications [Internet]. [cited 2021 Feb 26]. Available from: https://www.nature.com/articles/s41467-021-21352-8

37. Haj AK, Breitbach ME, Baker DA, Mohns MS, Moreno GK, Wilson NA, et al. High-Throughput Identification of MHC Class I Binding Peptides Using an Ultradense Peptide Array. J Immunol Baltim Md 1950. 2020 Mar 15;204(6):1689–96.

38. Kim Y, Sidney J, Buus S, Sette A, Nielsen M, Peters B. Dataset size and composition impact the reliability of performance benchmarks for peptide-MHC binding predictions. BMC Bioinformatics. 2014 Jul 14;15:241.

39. Viola R, Overton JA, Greenbaum JA, Ponomarenko J, Clark JD, Cantrell JR, et al. The immune epitope database (IEDB) 3.0. Nucleic Acids Res. 2015 Jan;43(Database issue):D405-412.

40. Pearson H, Daouda T, Granados DP, Durette C, Bonneil E, Courcelles M, et al. MHC class I–associated peptides derive from selective regions of the human genome. J Clin Invest. 2016 Dec 1;126(12):4690–701.

41. Nielsen M, Lundegaard C, Worning P, Lauemøller SL, Lambeth K, Buus S, et al. Reliable prediction of T-cell epitopes using neural networks with novel sequence representations. Protein Sci Publ Protein Soc. 2003 May;12(5):1007–17.

42. Chollet, Francois. Keras [Internet]. [cited 2021 Jan 12]. Available from: https://keras.io/
49. Yusim K, Korber BT, Brander C, Barouch D, de Boer R, Haynes BF, et al. HIV Molecular Immunology 2015 [Internet]. Los Alamos National Lab. (LANL), Los Alamos, NM (United States); 2016 Apr [cited 2021 Jun 15]. Report No.: LA-UR-16-22283. Available from: https://www.osti.gov/biblio/1248095

50. Jensen KK, Andreatta M, Marcatili P, Buus S, Greenbaum JA, Yan Z, et al. Improved methods for predicting peptide binding affinity to MHC class II molecules. Immunology. 2018;154(3):394–406.

51. Carter B, Mueller J, Jain S, Gifford D. What made you do this? Understanding black-box decisions with sufficient input subsets. ArXiv181003805 Cs Stat [Internet]. 2019 Feb 8 [cited 2021 Mar 2]; Available from: http://arxiv.org/abs/1810.03805
Supplemental Figure 1. Details of the data distributions and splitting. The data was split into three subsets. Training data made up 72% of the overall data and was used directly to train the model. Validation data made up 18% of the overall data and was used to monitor overfitting. Test data made up 10% of the total data and was used to test the final model’s performance. The intensity distributions for each data subset were plotted for each allele to ensure that each maintained the same distribution. Note the difference in y-axis scales.
Supplemental Figure 2. Details of the data distributions and splitting for A*11:01 and CCS. The data was split into three subsets. Training data made up 72% of the overall data and was used directly to train the model. Validation data made up 18% of the overall data and was used to monitor overfitting. Test data made up 10% of the total data and was used to test the final model’s performance. The output distributions for each data subset were plotted for each allele to ensure that each maintained the same distribution.
Supplemental Figure 3: Summary of LSTM model architecture. The architecture of the model consists of an embedding layer with 10 inputs with 21 dimensions each, representing each position of the peptide and each of the numeric representations of the possible amino acids and the end marker. This is followed by a pair of LSTM and dropout layers, with the dropout ratios determined by a hyperparameter search. Following the LSTM layers are a dense layer, a leaky ReLU activation layer, a final dropout layer, and a final dense layer with five outputs, each representing the intensity of the corresponding allele. The model was trained with a batch size of 5000 for 1000 epochs.
Supplemental Figure 4. Mean squared error loss over training. The models were trained for either 1000 or 200 epochs and the loss from mean squared error between predictions and true, known values were plotted for both the training data and the validation data. For the MAMU model, validation loss diverges from the test loss around epoch 175, indicating some amount of overfitting, however, the MSE of both datasets continues to decrease as the model is trained over 1000 epochs. For the A*11:01 model, test and validation loss were similar, until around epoch 200 when the model was finished training. For the CCS dataset, the validation loss started and remained lower throughout the training.
Supplemental Figure 5. SHAP value ranges by position. SHAP values were arranged by position in the peptides and their distributions were plotted as violin plots, with the quartile ranges and total range illustrated by the box and whisker plot within each. Each of the five modeled MAMU alleles (A), human MHC A*11:01 (B), and CCS (C) are displayed.
Supplemental Figure 6. SHAP value ranges by amino acid. SHAP values were arranged by amino acids across all positions in the peptides and their distributions were plotted as violin plots, with the quartile ranges and total range illustrated by the box and whisker plot within each. Each of the five modeled MAMU alleles (A), human MHC A*11:01 (B), and CCS (C) are displayed. End input is represented by x.
Supplemental Figure 7. Pooled PoSHAP for top predicted subsets of the data. The mean SHAP values for each amino acid at each position were calculated for the peptides with the top 0.013% predicted intensity (top 8 peptides). Due to the small sample size, most of the amino acid positions have a value of zero. The positions with high values however, illustrate important amino acids for high intensity prediction. Phenylalanine or leucine are important at the first position for both A001 and A008. A serine or threonine at position two is important for A001, A002, and A008. All alleles, other than B017, demonstrate the importance of a proline near the middle of the peptide.