DECIGO : The Japanese space gravitational wave antenna

Shuichi Sato¹, Seiji Kawamura², Masaki Ando³, Takashi Nakamura⁴, Kimio Tsubono⁵, Akiti Araya⁶, Ikko Funaki⁷, Kunihito Ioka⁷, Nobuyuki Kanda⁸, Shigenori Moriwaki⁹, Mitsuru Musha¹⁰, Kazuhiro Nakazawa¹, Kenji Numata¹¹, Shin-ichiro Sakai¹², Naoki Seto¹³, Takeshi Takahama¹⁴, Takahiro Tanaka¹², Kazuhiro Agatsuma¹⁴, Koh-suke Aoyanagi²⁷, Koji Araï², Hideki Asada¹³, Yoichi Aso¹⁴, Takeshi Chiba¹⁵, Toshikazu Ebisuzaki¹⁴, Yumiko Ejiri¹⁶, Motohiro Enoki⁴⁵, Yoshiharu Eriguchi⁵⁵, Masa-Katsu Fujimoto², Ryuichi Fujita⁴⁶, Mitsuhiko Fukushima², Toshifumi Futamase⁴², Katsuhiko Ganzu¹, Tomohiro Harada⁴⁷, Tatsuaki Hashimoto⁶, Kazuhiro Hayama¹⁸, Wataru Hikida⁴⁸, Yoshiaki Himemoto⁴⁹, Hisashi Hirabayashi¹⁷, Takeshi Hiramatsu¹⁸, Feng-Lei Hong¹⁹, Hideyuki Horisawa²⁰, Mizuho Hosokawa²¹, Kiyotomo Ichiki³, Takeshi Ikegami¹⁹, Kaiki T. Inoue²², Koji Ishidoshiro³, Hideki Ishihara³, Takehiko Ishikawa⁶, Hideharu Ishizaki², Hiroyuki Ito²¹, Yousuke Itoh³⁰, Nobuki Kawashima²², Fumiko Kazazoe²³, Naoko Kishimoto⁶, Kenta Kiuchi²⁷, Shiho Kobayashi²⁴, Kazunori Kohri²⁵, Hiroyuki Koizumi⁶, Yasufumi Kojima⁵¹, Keiko Kokeyama¹⁶, Wataru Kokuyama³, Kei Kotake³, Yoshihide Kozaï²⁶, Hideaki Kudō³, Hiroo Kunimori⁵², Hitoshi Kuninaka⁶, Kazuaki Kuroda¹⁸, Kei-ichi Maeda³⁷, Hideo Matsuhara⁶, Yasushi Mino¹⁴, Osamu Miyakawa¹⁴, Shinji Miyoki¹⁸, Mutsuko Y. Morimoto⁶, Tomoko Morioka³, Toshiyuki Morisawa¹, Shinji Mukohyama³⁹, Shigeo Nagano²¹, Isao Naito⁵⁷, Kouji Nakamura³, Hiroyuki Nakano⁵², Kenichi Nakao⁸, Shinichi Nakasuka¹¹, Yoshinori Nakayama²⁹, Erina Nishida¹⁶, Kazutaka Nishiyama¹⁶, Atsushi Nishizawa³⁰, Yoshito Niwa³⁰, Taiga Nouni⁵¹, Yoshiyuki Obuchi², Masatake Ohashi¹⁸, Naoko Ohishi², Masashi Ohkawa¹², Norio Okada², Kouji Onozato³, Kenichi Oohara³², Norichika Sago³³, Motoyuki Saito²⁴, Masaaki Sakagami³⁰, Shihori Sakata², Misao Sasaki¹², Takashi Sato³², Masaru Shibata³⁵, Hisaaki Shinkai³³, Kentaro Somiya¹⁴, Hajime Sotani³⁶, Naoshi Sugiyama³⁷, Yudai Suwa³, Rieko Suzuki¹⁶, Hideyuki Tagoshi³⁸, Fuminobu Takahashi³⁹, Kakeru Takahashi³, Keitaro Takahashi¹², Ryutaro Takahashi², Ryuichi Takahashi³⁷, Tadayuki Takahashi⁶, Hirotaka Takahashi⁵⁴, Takamori Akiteru³, Tadashi Takano³⁰, Keisuke Taniguchi³⁰, Atsushi Taruya³, Hiroyuki Tashiro³, Yasuo Torii², Morio Toyoshima²¹, Shinji Tsujikawa⁴¹, Yoshiaki Tsumesada⁵⁵, Akitoshi Ueda², Ken-ichi Ueda¹⁰, Masayoshi Utashima⁵⁶, Yaka Wakabayashi¹⁶, Hiroshi Yamakawa⁴², Kazuhiro Yamamoto²³, Toshitaka Yamazaki², Jun’ichi Yokoyama³,
Chul-Moon Yoo8, Shijun Yoshida43, Taizoh Yoshino28,
1Faculty of Engineering, Hosei University, kajinocho, Tokyo 184-8584, Japan, 2National Astronomical Observatory Japan, Osawa 2-21-1, Tokyo 181-8588, Japan, 3Department of Physics, The University of Tokyo, Tokyo 113-0033, Japan, 4Department of Physics, Kyoto University, Kyono 606-8502, Japan, 5Earthquake Research Institute, The University of Tokyo, Tokyo 113-0032, Japan, 6Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency (JAXA), Kanagawa 229-8510, Japan, 7Institute of Particle and Nuclear Studies, High Energy Accelerator Research Organization (KEK), Ibaraki 305-0801, Japan, 8Department of Physics, Osaka City University, Osaka 558-8585, Japan, 9Department of Advanced Materials Science, The University of Tokyo, Chiba 277-8561, Japan, 10Institute for Laser Science, The University of Electro-Communications, Tokyo 182-8585, Japan, 11NASA Goddard Space Flight Center, Code 663, 8800 Greenbelt Rd., Greenbelt, MD20771, USA, 12Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto 606-8502, Japan, 13Department of Earth and Environmental Sciences, Hiroosaki University, Aomori 036-8560, Japan, 14California Institute of Technology, 1200 E. California Blvd. MC 18-34, Pasadena, CA 91125, USA, 15Nihon University, Setagaya, Tokyo 156-8550, Japan, 16Ochanomizu University, 2-1-1, Tokyo 112-0012, Japan, 17Space Education Center, Japan Aerospace Exploration Agency (JAXA), Kanagawa 229-8510, Japan, 18Institute for Cosmic Ray Research, The University of Tokyo, Chiba 277-8582, Japan, 19National Institute of Advanced Industrial Science and Technology (AIST), Ibaraki 305-8563, Japan, 20Department of Aeronautics and Astronautics, Tokai University, Kanagawa 259-1292, Japan, 21National Institute of Information and Communications Technology (NICT), Tokyo 184-8795, Japan, 22School of Science and Engineering, Kinki University, Osaka 577-8502, Japan, 23Max-Planck-Institute for Gravitational Physics (Albert-Einstein-Institute), Callinstr. 38 D-30167 Hannover, Germany, 24Astrophysics Research Institute, Liverpool John Moores University, Twelve Quays House, Egerton Wharf, Birkenhead L41 1LD, UK, 25Gumma Astronomical Observatory, Agatzuma-gun, Gunma 377-0702, Japan, 26Department of Physics, Waseda University, Tokyo, 109-8555, Japan, 27Nakamura-minami Nerima, Tokyo 176-0025, Japan, 28Department of Aerospace Engineering, National Defense Academy, Yokosuka 239-8686, Japan, 29Faculty of Intergated Human Studies, Kyoto University, Kyoto 606-8501, Japan, 30Department of Aeronautics and Astroautics, The University of Tokyo, Tokyo 113-8656, Japan, 31Niigata University, Niigata 950-2181, Japan, 32Highfield, Southampton SO17 1BJ, United Kingdom, 33Department of Physics, Rikkyo University, Tokyo 171-8501, Japan, 34Department of Earth and Astronomy, the University of Tokyo, Tokyo 153-8902, Japan, 35Theoretical Astrophysics Institute for Astronomy and Astrophysics, Eberhard Karls University of Tuebingen, Auf der Morgenstelle 10, 72076 Tuebingen, Germany, 36Department of Earth Science and Astronomy, Osaka University, Osaka 560-0043, Japan, 37Institute for Theoretical Physics, Raman Research Institute, Sir C.V.Raman Avenue, Indiranagar 2nd Stage, Bangalore 560080, India, 38Department of Physics, Rikkyo University, Tokyo 171-8501, Japan, 39Department of Physics, University of Texas, 80 Fort Brown, Brownsville 78520, Texas, U.S.A., 40Center for Educational Assistance, Shibaura Institute of Technology, Saitama 337-8570, Japan, 41Department of Physics, Tokyo University of Science, Tokyo 162-8601, Japan, 42Research Institute for Sustainable Humanosphere, Kyoto University, Kyoto 611-0011, Japan, 43Sapporo Astronomical Observatory, Sapporo 060-0810, Japan, 44RIKEN, 2-1 Hirosawa, Wako 351-0198, Japan, 45Faculty of Business Administration, Tokyo Keizai University, Tokyo 185-8502, Japan, 46Theoretical Physics, Raman Research Institute, Sir C.V.Raman Avenue, Sadasivanagar P.O., Bangalore 560 080, India, 47Department of Physics, Rikkyo University, Tokyo 171-8501, Japan, 48University of Texas, 80 Fort Brown, Brownsville 78520, Texas, U.S.A., 49Center for Educational Assistance, Shibaura Institute of Technology, Saitama 337-8570, Japan, 50Department of Physics, University of Wisconsin-Milwaukee, 1900 East Kenwood Blvd. Milwaukee, WI 53211, USA, 51Graduate School of Science, Hiroshima University, Hiroshima 739-8526, Japan, 52Rochester Institute of Technology, 78 Lomb Memorial Drive, Rochester, NY 14623, USA, 53Dept of Information Systems, Osaka Institute of Technology, Hirakata 573-0190, Japan, 54Graduate School of Management and Information Systems Science, Nagaoka University of Technology, Niigata 940-2188, Japan, 55Graduate School of Science and Engineering / Physics, Tokio Institute of Technology, Tokyo 152-8550, Japan, 56Tsukuba Space Center, Japan Aerospace Exploration Agency (JAXA), Ibaraki 305-8505, Japan, 57Numakage, Saitama-shi, Saitama 336-0027 Japan.

Abstract. DECi-hertz Interferometer Gravitational wave Observatory (DECIGO) is the
planned Japanese space gravitational wave antenna, aiming to detect gravitational waves from astrophysically and cosmologically significant sources mainly between 0.1 Hz and 10 Hz and thus to open a new window for gravitational wave astronomy and for the universe. DECIGO will consist of three drag-free spacecraft, 1000 km apart from each other, whose relative displacements are measured by a differential Fabry-Perot interferometer. We plan to launch DECIGO in middle of 2020s, after sequence of two precursor satellite missions, DECIGO pathfinder and Pre-DECIGO, for technology demonstration required to realize DECIGO and hopefully for detection of gravitational waves from our galaxy or nearby galaxies.

1. Introduction
DECIGO (DECi-hertz Interferometer Gravitational wave Observatory) is the planned Japanese space gravitational wave antenna mission [1][2, 3, 4]. DECIGO is targeting to observe gravitational waves from astrophysically and cosmologically significant sources mainly between 0.1 Hz and 10 Hz, thus, to open a new window of observation for gravitational wave astronomy, and also for the universe.

The scope of DECIGO is to bridge (Fig. 1) the frequency gap between LISA [5] band and terrestrial detectors band such as advanced LIGO and LCGT [6]. The major advantage of DECIGO specializing in this frequency band is that the expected confusion limiting noise level caused by irresolvable gravitational wave signals from many compact binaries, such as white dwarf binaries in our Galaxy, is quite low above 0.1 Hz [7], therefore there is a potentially extremely deep window in this band.

Thus, as DECIGO will have sensitivity in the frequency range between LISA and terrestrial detectors band, DECIGO can serve as a follow-up for LISA by observing inspiraling sources that have moved above the LISA band, or as a predictor for terrestrial detectors by observing inspiraling sources that have not yet moved into the terrestrial detectors band.

![Figure 1](image-url)

Figure 1. DECIGO design sensitivity with LISA and LCGT (on behalf of terrestrial detectors).

2. Pre-conceptual design
The pre-conceptual design of DECIGO consists of three drag-free spacecraft which keep triangular configuration with formation flying technique. The separation of each spacecraft (proof mass) is designed to be 1,000 km, whose relative displacements are measured by a
differential Fabry-Perot (FP) interferometer (Fig. 2). The laser source is supposed to be frequency-doubled Nd:YAG laser with $\lambda = 532$ nm yielding output power of 10 W. The mass of the mirror is 100 kg with 1 m diameter, with low-loss High-reflectivity coatings, which enables the finesse of FP cavity to reach 10 with green light. Three sets of such interferometers sharing the mirrors as arm cavities comprise one cluster of DECIGO. As shown in Fig. 3, four clusters of DECIGO, located separately in the heliocentric orbit with two of them nearly at the same position, form the constellation DECIGO.

![Figure 2. The pre-conceptual design of DECIGO. Three drag-free spacecraft keep 1000 km triangular configuration with formation flying technique. Each spacecraft will have light source and two proof masses.](image)

The advantage of FP configuration is clearly that it can utilize much power of light for a better shot-noise-limited sensitivity than the transponder-type configuration (e.g. LISA). On the other hand, the FP configuration requires very accurate formation flying: the FP configuration requires the distance between two mirrors, thus, the distance between two spacecraft to be constant during continuous operations. This is a major difference between DECIGO and a transponder-type configuration, where the spacecraft are freely falling according to their local gravitational field.

3. Sensitivity goal and science
The target sensitivity of DECIGO, as shown in Fig. 4, is supposed to be limited by quantum noise in all frequency band: by the radiation pressure noise below 0.15 Hz, and by the shot noise above 0.15 Hz. In order to reach this sensitivity, all the practical noise should be suppressed well below this level. This imposes more stringent requirements than LISA for some subsystems of DECIGO, especially in the acceleration noise and frequency noise, therefore rigorous investigations are supposed to be indispensable for attainment of design sensitivity. Nonetheless, full success of DECIGO is expected to extract fruitful sciences.

- **Characterization of dark energy:** DECIGO will have enough sensitivity to detect gravitational waves coming from neutron star binaries at $z=1$ for five years prior to coalescences. Within this observable volume, about 50,000 neutron star binaries are expected to coalesce every year [8]. In addition to the physics of the neutron star, with precise analysis resolving gravitational wave signals coming from a number of binaries, it is possible to determine the acceleration of the expansion of the universe [1]. The constellation DECIGO is expected to have an angular resolution of about 1 arcsec, therefore, there is a chance to identify the host galaxies of each binary system. Thus, the acceleration of the expansion of the universe can also be measured by determining their red shifts optically [9], which will lead to better characterization of dark energy.
Figure 3. Constellation DECIGO in its orbit, which will have four clusters of DECIGO in total.

Figure 4. DECIGO design sensitivity (for 1 unit and for 3 years correlation) and expected gravitational wave sources.

- **Formation mechanism of supermassive black holes:** DECIGO can detect gravitational waves coming from coalescences of intermediate-mass black hole binaries with an extremely high fidelity. For example, the coalescences of black hole binaries of 1,000 solar masses at $z = 1$ give a signal to noise ratio of 6,000. This will make it possible to collect numerous data about the relationship between the mass of the black holes and the frequency of the coalescences, which will reveal the formation mechanism of supermassive black holes.
in the center of galaxies.

- **Verification and characterization of inflation:** With correlation analysis of the data from the two clusters of DECIGO at nearly same location for three years, DECIGO will capable to detect stochastic background gravitational waves corresponding to $\Omega_{GW} = 2 \times 10^{-16}$. According to the standard inflation model, it is expected that we could detect gravitational waves produced at the inflation period of the universe with DECIGO. This could be an extremely significant science driver for DECIGO because gravitational waves are the only means which make it possible to directly observe the inflation of the universe.

4. Roadmap

DECIGO is expected to be launched in the middle of 2020s (Fig. 5), before that, we plan to launch two precursor satellites: DECIGO pathfinder (DPF) [?] and pre-DECIGO(See Fig. 5). Major objective of these missions is a demonstration of key technologies for DECIGO just as LISA pathfinder [12] does for LISA, in addition, we also hope we can extract some scientific achievements with limited equipments allowed for these satellites in phases.

DPF tests the key technologies for DECIGO such as drag-free control of the spacecraft, stabilized laser system in space, precision laser metrology in space and test mass lock mechanism. At the same time, as DPF will have gentle sensitivity to the gravitational waves, it is expected that DPF will put some upper limit to the gravitational waves from the sources around center of our galaxy.

The technical objectives of Pre-DECIGO are demonstration of accurate formation flying, precision laser metrology with long baseline FP cavity and drag-free control for multiple spacecraft. Pre-DECIGO will have 100 km-scale FP cavity, therefore, it is supposed to have reasonable sensitivity to detect gravitational waves with minimum specifications. We hope that
it will be launched around 2018.

Finally DECIGO is supposed to be launched around 2024 to open a new window of observation for gravitational wave astronomy.

5. DECIGO Pathfinder
DPF [10, 11] will employ a small-sized drag-free spacecraft that contains two freely falling proof masses, whose relative displacement is measured with a Fabry-Perot interferometer. A short Fabry-Perot cavity with finesse of 100 is illuminated by the frequency-stabilized Nd:YAG laser light yielding output power of 100 mW. The proof masses are clamped tightly for the launch and released gently in orbit. DPF is supposed to be delivered in the geocentric sun-synchronous orbit with an altitude of 500 km. DPF will have strain sensitivity of $\sim 10^{-15}$ around the frequency band of 0.1-1 Hz.

The primary objective of DPF is to demonstrate key technologies for DECIGO such as drag-free control system, FP cavity precision metrology system in orbit, frequency-stabilized laser in orbit, and the clamp release mechanism. In addition, the scientific objective of DPF is to detect rather unlikely events of intermediate-mass black hole ($10^3 - 10^4 M_{\odot}$) inspirals in our galaxy; it is possible to detect such events with the aimed sensitivity of DPF.

Recently, DPF was identified as one of the candidate missions for the small satellite mission series which had been initiated by the Japanese space agency, JAXA/ISAS. This program is to launch at least 3 small satellites in upcoming 5 years using standard bus systems, whose scope is to reduce the cost of missions significantly compared with the conventional missions, and thus to increase a chance to go to space for a variety of fields. DPF is now selected as one of the potential mission candidates for the second or third missions, so DPF will be launched in 2012 (second mission) in the best and earliest case.

6. Conclusions
The future Japanese space gravitational wave antenna, DECIGO, is expected to detect gravitational waves from various kinds of sources and thus to open a new window of observation for gravitational wave astronomy. We have started serious R&D for DPF as one of the candidate missions for the small-spacecraft mission series to demonstrate the technologies required to realize DECIGO.

References
[1] Seto N, Kawamura S and Nakamura T 2001 Possibility of direct measurement of the acceleration of the universe using 0.1 Hz band laser interferometer gravitational wave antenna in space Phys. Rev. Lett. 87 221103
[2] Kawamura S et al 2006 The Japanese Space Gravitational Wave Antenna - DECIGO Class. Quantum Grav. 23 S125
[3] Kawamura S et al 2008 The Japanese Space Gravitational Wave Antenna - DECIGO Journ. of Phys.: Conf. Ser. 120 032004
[4] Kawamura S et al 2008 The Japanese Space Gravitational Wave Antenna; DECIGO Journ. of Phys.: Conf. Ser. 122 012006
[5] LISA: System and Technology Study Report, ESA document ESA-SCI (2000)
[6] Kuroda K et al 2002 Japanese large-scale interferometers Class. Quantum Grav. 19 1237
[7] Farmer A J and Phinney E S 2003 The gravitational wave background from cosmological compact binaries Mon. Not. R. Astron. Soc. 346 1197
[8] Cutler C and Harms J 2006 Big Bang Observer and the neutron-star-binary subtraction problem Phys. Rev. D 75 042001
[9] Schutz B F 1986 Determining the Hubble constant from gravitational wave observations Nature 323 310
[10] Ando M et al 2008 DECIGO pathfinder Journ. of Phys.: Conf. Ser. 120 032005
[11] Ando M et al 2008 DECIGO pathfinder in this volume
[12] Anza S et al 2005 The LTP experiment on the LISA Pathfinder mission Class. Quantum Grav. 22 S125-S138