Explicit evaluation of harmonic sums

Ce Xu*

School of Mathematical Sciences, Xiamen University
Xiamen 361005, P.R. China

Abstract In this paper, we obtain some formulae for harmonic sums, alternating harmonic sums and Stirling number sums by using the method of integral representations of series. As applications of these formulae, we give explicit formula of several quadratic and cubic Euler sums through zeta values and linear sums. Furthermore, some relationships between harmonic numbers and Stirling numbers of the first kind are established.

Keywords Harmonic number; Euler sum; Riemann zeta function; Stirling number.

AMS Subject Classifications (2010): 11M06; 11M32; 33B15

1 Introduction

In this paper, the generalized harmonic numbers and alternating harmonic numbers of order \(k \) are defined respectively as

\[
\zeta_n(k) := \sum_{j=1}^{n} \frac{1}{j^k}, \quad L_n(k) := \sum_{j=1}^{n} \frac{(-1)^{j-1}}{j^k}, \quad 1 \leq n, k \in \mathbb{Z},
\]

where \(H_n \equiv \zeta_n(1) = \sum_{j=1}^{n} \frac{1}{j} \) denotes the classical harmonic number.

From [12,27], we know that the classical Euler sums are the infinite sums whose general term is product of 1 or \((-1)^{n-1}\), harmonic numbers and alternating harmonic numbers of index \(n \) and a power of \(n^{-1} \). Therefore, the Euler sums of index

\[
\pi_1 := \left(k_1, \ldots, k_1, \ldots, k_{m_1}, \ldots, k_{m_1}, q_1, \ldots, q_{q_1} \right), \quad \pi_2 := \left(h_1, \ldots, h_1, \ldots, h_{m_2}, \ldots, h_{m_2}, l_1, \ldots, l_{l_1} \right), \quad p
\]

are defined by

\[
S_{\pi_1, \pi_2, p} \equiv S_{\pi_1} \prod_{i=1}^{m_1} \zeta_{n_i}^{q_i} (k_i) \prod_{j=1}^{m_2} L_{n_j}^{l_j} (h_j),
\]

\[
\bar{S}_{\pi_1, \pi_2, p} \equiv \bar{S}_{\pi_1} \prod_{i=1}^{m_1} \zeta_{n_i}^{q_i} (k_i) \prod_{j=1}^{m_2} L_{n_j}^{l_j} (h_j)
\]

*Corresponding author. Email: xuce1242063253@163.com
where the quantity \(\omega = \pi_1 + \pi_2 + p = \sum_{i=1}^{m_1} (k_i q_i) + \sum_{j=1}^{m_2} (h_j l_j) + p \) being called the weight and the quantities \(m_1, m_2 \) being the degree. Here \(p(p > 1), m_1, m_2, q_i, k_i, h_j, l_j \) are non-negative integers, \(1 \leq k_1 < k_2 < \cdots < k_{m_1} \in \mathbb{Z}, 1 \leq h_1 < h_2 < \cdots < h_{m_2} \in \mathbb{Z} \). For example,

\[
S_{1^22^3,1^22^3,4} = \sum_{n=1}^{\infty} \frac{H_n^3 \zeta(n) (3) L_n^2 (1) L_n^3 (2)}{n^4}, \quad \bar{S}_{0,p_1,0,p} = \sum_{n=1}^{\infty} \frac{L_n (p_1) L_n (p_2)}{n^p} (-1)^{n-1}
\]

From the definition of Euler sums, there are altogether four types of linear sums:

\[
S_{p,0,q} = \sum_{n=1}^{\infty} \frac{\zeta(n) (p)}{n^q}, \quad \bar{S}_{p,0,q} = \sum_{n=1}^{\infty} \frac{\zeta(n) (p)}{n^q} (-1)^{n-1}, \quad S_{0,p,q} = \sum_{n=1}^{\infty} \frac{L_n (p)}{n^q}, \quad \bar{S}_{0,p,q} = \sum_{n=1}^{\infty} \frac{L_n (p)}{n^q} (-1)^{n-1}.
\]

The evaluation of linear sums in terms of values of Riemann zeta function and polylogarithm function at positive integers is known when \((p, q) = (1, 3), (2, 2), \) or \(p + q \) is odd \([6,13]\). For instance, we have

\[
\bar{S}_{1,0,3} = \sum_{n=1}^{\infty} \frac{H_n}{n^3} (-1)^{n-1} = -2 \text{Li}_4 \left(\frac{1}{2} \right) + \frac{11}{4} \zeta(4) + \frac{1}{2} \zeta(2) \ln^2 2 - \frac{1}{12} \ln^4 2 - \frac{7}{4} \zeta(3) \ln 2,
\]

\[
\bar{S}_{0,1,3} = \sum_{n=1}^{\infty} \frac{L_n (1)}{n^3} (-1)^{n-1} = \frac{3}{2} \zeta(4) + \frac{1}{2} \zeta(2) \ln^2 2 - \frac{1}{12} \ln^4 2 - 2 \text{Li}_4 \left(\frac{1}{2} \right).
\]

In \([12]\), Philippe Flajolet and Bruno Salvy gave explicit reductions to zeta values for all linear sums \(S_{p,0,q}, \bar{S}_{p,0,q}, S_{0,p,q}, \bar{S}_{0,p,q} \) when \(p + q \) is an odd weight. The relationship between the values of the Riemann zeta function and Euler sums has been studied by many authors, for example see \([2-3,6,14,16-27]\). The Riemann zeta function and alternating Riemann zeta function are defined respectively by \([1,4,5]\)

\[
\zeta(s) := \sum_{n=1}^{\infty} \frac{1}{n^s}, \quad \Re(s) > 1,
\]

and

\[
\tilde{\zeta}(s) := \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n^s}, \quad \Re(s) \geq 1.
\]

The general multiple zeta functions is defined as

\[
\zeta(s_1, s_2, \cdots, s_m) := \sum_{n_1 > n_2 > \cdots > n_m > 0} \frac{1}{n_1^{s_1} n_2^{s_2} \cdots n_m^{s_m}},
\]

where \(s_1 + \cdots + s_m \) is called the weight and \(m \) is the multiplicity. In this paper, we show that the Euler-type sums with harmonic numbers:

\[
\sum_{n=1}^{\infty} \frac{\zeta_n (m)}{n (n + k)}, \quad \sum_{n=1}^{\infty} \frac{L_n (m)}{n (n + k)}, 1 \leq m, k \in \mathbb{Z}
\]
can be expressed in terms of series of Riemann zeta values and harmonic numbers. We also provide an explicit evaluation of

\[(p - 1)! \sum_{n=1}^{\infty} \frac{S(n+1,p)}{n\ln(n+k)}, \quad 2 \leq p \in \mathbb{Z}, 1 \leq k \in \mathbb{Z}\]

in a closed form in terms of zeta values and the complete exponential Bell polynomial \(Y_k(n)\), \(S(n,k)\) stands for the Stirling number of the first kind. Specifically, we investigate closed-form representations for sums of the following form:

\[S_{1^2,0,p} = \sum_{n=1}^{\infty} \frac{H_n^2}{np^m}, S_{1,1,p} = \sum_{n=1}^{\infty} \frac{H_n L_n (1)}{np^m}, S_{1,1,p} = \sum_{n=1}^{\infty} \frac{H_n L_n (1)}{np^m} (-1)^{n-1},\]

\[\bar{S}_{1^2,0,p} = \sum_{n=1}^{\infty} \frac{H_n^2}{np^m} (-1)^{n-1}, S_{0,1^2,p} = \sum_{n=1}^{\infty} \frac{L_n^2 (1)}{np^m}, \bar{S}_{0,1^2,p} = \sum_{n=1}^{\infty} \frac{L_n^2 (1)}{np^m} (-1)^{n-1}.\]

Furthermore, we evaluate several other series involving harmonic numbers. For example

\[\sum_{n=1}^{\infty} \frac{H_n^2}{n(n+k)} = \frac{1}{k} \left\{ 3\zeta(3) + \frac{H_k^3 + 3H_k \zeta_k(2) + 2\zeta_k(3)}{k} \right\} - \frac{3}{k} \sum_{i=1}^{k-1} \frac{H_i}{i^2} + \zeta(2) H_{k-1} \right\}, \quad (1.2)\]

2 Main Theorems and Proof

In this section, we use certain integral of polylogarithm function representations to evaluate several series with alternating (or non-alternating) harmonic numbers. The polylogarithm function defined as follows

\[\text{Li}_p(x) := \sum_{n=1}^{\infty} \frac{x^n}{n^p}, \Re(p) > 1, \quad |x| < 1.\]

when \(x\) takes 1 and \(-1\), then the function \(\text{Li}_p(x)\) are reducible to Riemann zeta function and alternating Riemann zeta function, respectively.

Theorem 2.1 For positive integers \(m\) and \(k\), then

\[\sum_{n=1}^{\infty} \frac{\zeta(n)(m)}{n(n+k)} = \frac{1}{k} \left\{ \zeta(m+1) + \sum_{j=1}^{m-1} (-1)^{j-1} \zeta(m+1-j) \zeta_{k-1}(j) + (-1)^{m-1} \sum_{i=1}^{k-1} \frac{H_i}{i^m} \right\}, \quad (2.1)\]

\[\sum_{n=1}^{\infty} \frac{L_n(m)}{n(n+k)} = \frac{1}{k} \left\{ \zeta(m+1) + \sum_{j=1}^{m-1} (-1)^{j-1} \zeta(m+1-j) \zeta_{k-1}(j) \\
+ (-1)^{m-1} \ln 2 (\zeta_{k-1}(m) + L_{k-1}(m)) + (-1)^m \sum_{i=1}^{k-1} \frac{(-1)^{i-1}}{i^m} L_{i} (1) \right\}. \quad (2.2)\]

Proof. By the definition of polylogarithm function and Cauchy product formula, we can verify that

\[\frac{\text{Li}_m(x)}{1-x} = \sum_{n=1}^{\infty} \zeta_n(m) x^n, \quad x \in (-1,1), \quad (2.3)\]
\[-\frac{\text{Li}_m(-x)}{1-x} = \sum_{n=1}^{\infty} L_n(m) x^n, \ x \in (-1,1). \quad (2.4)\]

Multiplying (2.3) and (2.4) by \(x^{r-1} - x^{k-1}\) and integrating over \((0,1)\), we obtain

\[
\int_0^1 \left(x^{r-1} - x^{k-1} \right) \frac{\text{Li}_m(x)}{1-x} \, dx = (k-r) \sum_{n=1}^{\infty} \frac{\zeta_n(m)}{(n+r)(n+k)} \quad (0 \leq r < k, \ r, k \in \mathbb{Z}), \quad (2.5)
\]

\[
\int_0^1 \left(x^{k-1} - x^{r-1} \right) \frac{\text{Li}_m(x)}{1-x} \, dx = (k-r) \sum_{n=1}^{\infty} \frac{L_n(m)}{(n+r)(n+k)} \quad (0 \leq r < k, \ r, k \in \mathbb{Z}). \quad (2.6)
\]

We now evaluate the integral on the left side of (2.5) and (2.6). Noting that

\[
\int_0^1 \left(x^{r-1} - x^{k-1} \right) \frac{\text{Li}_m(x)}{1-x} \, dx = \sum_{i=1}^{k-r} \int_0^1 x^{r+i-2} \text{Li}_m(x) \, dx,
\]

\[
\int_0^1 \left(x^{k-1} - x^{r-1} \right) \frac{\text{Li}_m(x)}{1-x} \, dx = \sum_{i=1}^{k-r} (-1)^{r+i} \int_0^1 x^{r+i-2} \text{Li}_m(x) \, dx. \quad (2.7)
\]

Using integration by parts we have

\[
\int_0^1 \frac{\eta}{x^n} \, dx = \frac{(1)^{\eta} - (1)^{\eta+1}}{n} - \frac{(1)^{\eta+1}}{n} \ln(1-x)
\]

\[
\int_0^1 \frac{\eta}{x^n} \, dx = \frac{(1)^{\eta} - (1)^{\eta+1}}{n} - \frac{(1)^{\eta+1}}{n} \ln(1-x) - \frac{(1)^{\eta+1}}{n} \left(\sum_{k=1}^{n} \frac{x^k}{k} \right).
\]

Taking \(r = 0\) in (2.5)-(2.8), substituting (2.9) into (2.5)-(2.8), we can obtain (2.1) and (2.2). \(\square\)

If taking \(r \geq 1\) in (2.5)-(2.8), using (2.9), we have

\[
\sum_{n=1}^{\infty} \frac{\zeta_n(m)}{(n+r)(n+k)} = \frac{1}{k-r} \left\{ \sum_{j=1}^{m-1} (-1)^{j-1} \zeta(m+1-j) (\zeta_{k-1}(j) - \zeta_{r-1}(j)) \right\},
\]

\[
\sum_{n=1}^{\infty} \frac{L_n(m)}{(n+r)(n+k)} = \frac{1}{k-r} \left\{ \sum_{j=1}^{m-1} (-1)^{j-1} \zeta(m+1-j) (\zeta_{k-1}(j) - \zeta_{r-1}(j)) \right\} + (-1)^{m-1} \ln 2 (\zeta_{k-1}(m) - \zeta_{r-1}(m) + L_{k-1}(m) - L_{r-1}(m)) \right\},
\]

\[
\sum_{n=1}^{\infty} \frac{H_n}{n(n+k)} = \frac{1}{k} \left(\frac{1}{2} H_k^2 + \frac{1}{2} \zeta(k(2) + \zeta(2) - \frac{H_k}{k} \right), \quad (2.12)
\]
\[
\sum_{n=1}^{\infty} \frac{L_n(1)}{n(n+k)} = \frac{1}{k} \left\{ \sum_{n=1}^{\infty} \frac{L_n(1)}{n(n+k)} \right\}.
\]

(2.13)

Theorem 2.2 For integers \(n \geq 1, k \geq 0 \), we have

\[
\int_0^1 t^{n-1} \ln k (1-t) \, dt = (-1)^k \frac{Y_k(n)}{n}.
\]

(2.14)

where \(Y_k(n) = Y_k(\zeta_n(1), 1!\zeta_n(2), 2!\zeta_n(3), \cdots, (r-1)!\zeta_n(r), \cdots) \), \(Y_k(x_1, x_2, \cdots) \) stands for the complete exponential Bell polynomial is defined by (see [15])

\[
\exp \left(\sum_{m \geq 1} x_m \frac{t^m}{m!} \right) = 1 + \sum_{k \geq 1} Y_k(x_1, x_2, \cdots) \frac{t^k}{k!}.
\]

(2.15)

Proof. Using the definition of the complete exponential Bell polynomial, it is easily shown that

\[
1 + \sum_{k \geq 1} Y_k(n) \frac{t^k}{k!} = \frac{1}{(1-t) \left(1 - \frac{t}{2} \right) \cdots \left(1 - \frac{t}{n} \right)}
\]

and

\[
\frac{1}{(1-t) \left(1 - \frac{t}{2} \right) \cdots \left(1 - \frac{t}{n} \right)} = 1 + \sum_{m=1}^{n} \frac{t}{m} \frac{(1-t) \left(1 - \frac{t}{2} \right) \cdots \left(1 - \frac{t}{m} \right)}{m(1-t) \left(1 - \frac{t}{2} \right) \cdots \left(1 - \frac{t}{m} \right)}
\]

Therefore we obtain

\[
Y_k(n) = k \sum_{m=1}^{n} \frac{Y_{k-1}(m)}{m}, \quad Y_0(n) = 1.
\]

(2.16)

It is easily shown using integration by parts that

\[
\int_0^x t^{n-1} \ln (1-t) \, dt = \frac{1}{n} \left\{ x^n \ln (1-x) - \sum_{j=1}^{n} x^j \frac{x^j}{j} - \ln (1-x) \right\}, \quad -1 \leq x < 1.
\]

Letting \(x \to 1^- \), we have

\[
\lim_{x \to 1^-} \int_0^x t^{n-1} \ln (1-t) \, dt = -\frac{H_n}{n} = -\frac{Y_1(n)}{n}.
\]

(2.17)

Using integration by parts and (2.17), we can find that

\[
\int_0^x t^{n-1} \ln^2 (1-t) \, dt = \frac{1}{n} (x^n - 1) \ln^2 (1-x) - \frac{2}{n} \sum_{k=1}^{n} \frac{1}{k} \left\{ x^k \ln (1-x) - \sum_{j=1}^{k} x^j \frac{x^j}{j} - \ln (1-x) \right\}
\]

(2.18)
Letting x tend to 1^- in (2.18), we deduce that

$$
\lim_{x \to 1^-} \int_0^x t^{n-1} \ln^m (1-t) dt = \frac{2}{n} \sum_{k=1}^n \frac{1}{k} \sum_{j=1}^k \frac{1}{j} = \frac{Y_2(n)}{n}.
$$

Further, it is easily verify that

$$
\lim_{x \to 1^-} \int_0^x t^{n-1} \ln^m (1-t) dt = m! \frac{(-1)^m}{n} \sum_{k_1=1}^n \frac{1}{k_1} \sum_{k_2=1}^{k_1} \frac{1}{k_2} \cdots \sum_{k_m=1}^{k_{m-1}} \frac{1}{k_m} = (-1)^m \frac{Y_m(n)}{n}, 1 \leq m \in \mathbb{Z}.
$$

We complete the proof of (2.14). □

From the definition of the complete exponential Bell polynomial, we have

$$
Y_1(n) = H_n, Y_2(n) = H_n^2 + \zeta(2), Y_3(n) = H_n^3 + 3H_n \zeta(2) + 2\zeta(3),
$$
$$
Y_4(n) = H_n^4 + 8H_n \zeta(3) + 6H_n^2 \zeta(2) + 3\zeta^2(2) + 6\zeta(4).
$$

Theorem 2.3 For integer $p \geq 2, k \geq 1$, we have

$$
(p-1)! \sum_{n=p-1}^{\infty} \frac{S(n+1,p)}{n! n(n+k)} = \frac{1}{k} \left\{ (p-1)! \zeta(p) + \frac{Y_p(k)}{p} - \frac{Y_{p-1}(k)}{k} \right\},
$$

where $S(n,k)$ are the Stirling number of the first kind defined by

$$
n! \left(1 + \frac{x}{1}\right) \cdots \left(1 + \frac{x}{n}\right) = \sum_{k=0}^n S(n+1,k+1) x^k.
$$

From the definition $S(n,k)$, we can rewrite it as

$$
\sum_{k=0}^n S(n+1,k+1) x^k = n! \exp \left(\sum_{j=1}^n \ln \left(1 + \frac{x}{j}\right) \right)
$$
$$
= n! \exp \left(\sum_{j=1}^n \sum_{k=1}^{\infty} (-1)^{k-1} \frac{x^k}{kj} \right)
$$
$$
= n! \exp \left(\sum_{k=1}^{\infty} (-1)^{k-1} \frac{\zeta(n) k x^k}{k} \right).
$$

Therefore, we know that $S(n,k)$ is a rational linear combination of products of harmonic numbers. The following identities is easily derived

$$
S(n,1) = (n-1)!, S(n,2) = (n-1)!H_{n-1}, S(n,3) = \frac{(n-1)!}{2} \left[H_{n-1}^2 - \zeta_{n-1}(2) \right],
$$
$$
S(n,4) = \frac{(n-1)!}{6} \left[H_{n-1}^3 - 3H_{n-1} \zeta_{n-1}(2) + 2\zeta_{n-1}(3) \right],
$$
$$
S(n,5) = \frac{(n-1)!}{24} \left[H_{n-1}^4 - 6\zeta_{n-1}(4) - 6H_{n-1}^2 \zeta_{n-1}(2) + 3\zeta_{n-1}(3) + 8H_{n-1} \zeta_{n-1}(3) \right].
$$
Proof. From [15], we have
\[
\ln^p (1 - x) = (-1)^p p! \sum_{n=p}^{\infty} S(n, p) \frac{x^n}{n!}, \quad 1 \leq p \in \mathbb{Z}, -1 \leq x < 1. \tag{2.22}
\]
Differentiating this equality, we obtain
\[
\frac{\ln^{p-1}(1 - x)}{1 - x} = (-1)^{p-1} (p - 1)! \sum_{n=p-1}^{\infty} S(n+1, p) \frac{x^n}{n!}, \quad p \geq 2. \tag{2.23}
\]
Let \(k, r\) be integers with \(k > r \geq 0\), then multiplying (2.23) by \(x^{r-1} - x^{k-1}\) and integrating over \((0,1)\), we get
\[
\int_0^1 \frac{\ln^{p-1}(1 - x)}{1 - x} (x^{r-1} - x^{k-1}) \, dx = (-1)^{p-1} (p - 1)! \sum_{n=p-1}^{\infty} \frac{(k - r) S(n+1, p)}{n! (n+r) (n+k)}, \quad p \geq 2. \tag{2.24}
\]
Noting that
\[
\int_0^1 \frac{\ln^{p-1}(1 - x)}{1 - x} (x^{r-1} - x^{k-1}) \, dx = \sum_{i=1}^{k-r} \int_0^1 x^{r+i-2} \ln^{p-1}(1 - x) \, dx \tag{2.25}
\]
and
\[
\int_0^1 \frac{\ln^{p-1}(1 - x)}{x} \, dx = (-1)^{p-1} (p - 1)! \zeta(p), \quad 2 \leq p \in \mathbb{Z}. \tag{2.26}
\]
Taking \(r = 0, k \geq 1\) in (2.24), using (2.14)(2.16)(2.25) and (2.26), we can obtain (2.21). \qed
If taking \(r \geq 1\) in (2.24), then we have
\[
(p - 1)! (k - r) \sum_{n=p-1}^{\infty} \frac{S(n+1, p)}{n! (n+r) (n+k)} = \frac{1}{p} \{Y_p (k - 1) - Y_p (r - 1)\}. \tag{2.27}
\]
Letting \(p = 3, 4\) in (2.8), we can give the following Corollary.

Corollary 2.4 If \(1 \leq k \in \mathbb{Z}\), then we have
\[
\sum_{n=1}^{\infty} \frac{H_n^2 - \zeta(n) (2)}{n (n+k)} = \frac{1}{k} \left\{ 2\zeta(3) + \frac{H_k^3 + 3H_k \zeta_k (2) + 2 \zeta_k (3)}{3} - \frac{H_k^2 + \zeta_k (2)}{k} \right\}, \tag{2.28}
\]
\[
\sum_{n=1}^{\infty} \frac{H_n^3 - 3H_n \zeta(n) (2) + 2 \zeta(n) (3)}{n (n+k)} = \frac{1}{k} \left\{ \frac{H_k^4 + 8H_k \zeta_k (3) + 6H_k^2 \zeta_k (2) + 3 \zeta_k^2 (2) + 6 \zeta_k (4)}{4} \right\} + \left\{ \frac{H_k^3 + 3H_k \zeta_k (2) + 2 \zeta_k (3)}{k} + 6 \zeta (4) \right\}. \tag{2.29}
\]
From (2.1), taking \(m = 2\), we have
\[
\sum_{n=1}^{\infty} \frac{\zeta(n) (2)}{n (n+k)} = \frac{1}{k} \left\{ \zeta(3) + \zeta(2) H_{k-1} - \sum_{i=1}^{k-1} \frac{H_i}{i^2} \right\}. \tag{2.30}
\]
Substituting (2.30) into (2.28), we obtain (1.2). In the same manner, we obtain the following Theorem:
Theorem 2.5 For integer $m, k > 0$, then
\[
\sum_{n=1}^{\infty} \frac{\zeta_n(m)}{n+k} (-1)^{n-1} = (-1)^k \left(\sum_{n=1}^{\infty} \frac{\zeta_n(m)}{n} (-1)^{n-1} - \zeta(m+1) \right) + (-1)^{k+m+1} \ln 2 \left(\zeta_{k-1}(m) + L_{k-1}(m) \right) \\
+ (-1)^k \sum_{j=1}^{m-1} (-1)^{j-1} \zeta(m+1-j) L_{k-1}(j) + (-1)^m \sum_{i=1}^{k-1} \frac{H_i(1)}{i^m}.
\]
(2.31)
\[
\sum_{n=1}^{\infty} \frac{L_n(m)}{n+k} (-1)^{n-1} = (-1)^{k-1} \left(\zeta(m+1) - \sum_{n=1}^{\infty} \frac{L_n(m)}{n} (-1)^{n-1} + (-1)^m \sum_{i=1}^{k-1} \frac{H_i}{i^m} (-1)^{i-1} \right) \\
+ (-1)^k \sum_{j=1}^{m-1} (-1)^{j-1} \zeta(m+1-j) L_{k-1}(j)
\]
(2.32)

From (2.31) and (2.32), we obtain
\[
\sum_{n=1}^{\infty} \frac{H_n}{n+k} (-1)^{n-1} = (-1)^{k-1} \left(\frac{1}{2} \ln^2 2 - \ln 2 \left(H_{k-1} + L_{k-1}(1) \right) + \sum_{i=1}^{k-1} \frac{H_i(1)}{i} \right),
\]
(2.33)
\[
\sum_{n=1}^{\infty} \frac{L_n(1)}{n+k} (-1)^{n-1} = (-1)^{k-1} \left(\frac{\zeta(2) - \ln^2 2}{2} - \sum_{i=1}^{k-1} \frac{H_i}{i} (-1)^{i-1} \right).
\]
(2.34)

Theorem 2.6 For $1 \leq l_1, l_2, m \in \mathbb{Z}$ and $x, y, z \in [-1, 1)$, we have the following relation
\[
\sum_{n=1}^{\infty} \frac{\zeta_n(l_1,x) \zeta_n(l_2,y)}{n^{l_1+l_2}} x^n + \sum_{n=1}^{\infty} \frac{\zeta_n(l_1,x) \zeta_n(m,z)}{n^{l_2}} y^n + \sum_{n=1}^{\infty} \frac{\zeta_n(l_2,y) \zeta_n(m,z)}{n^{l_1}} z^n
\]
\[
= \sum_{n=1}^{\infty} \frac{\zeta_n(m,z)}{n^{l_1+l_2}} (xy)^n + \sum_{n=1}^{\infty} \frac{\zeta_n(l_1,x)}{n^{l_2}} (yz)^n + \sum_{n=1}^{\infty} \frac{\zeta_n(l_2,y)}{n^{l_1+m}} (xz)^n
\]
\[
+ \text{Li}_m(z) \text{Li}_{l_1}(x) \text{Li}_{l_2}(y) - \text{Li}_{l_1+l_2+m} (xyz)
\]
(2.35)

where the partial sum $\zeta_n(l,x)$ of polylogarithm function is defined by $\zeta_n(l,x) := \sum_{k=1}^{n} \frac{x^k}{k^l}$.

Proof. We construct the function $F(x,y,z) := \sum_{n=1}^{\infty} \left\{ \zeta_n(l_1,x) \zeta_n(l_2,y) - \zeta_n(l_1+l_2,xy) \right\} z^{n-1}$, $z \in (-1,1)$. By the definition of $\zeta_n(l,x)$, we have
\[
F(x,y,z) = z F(x,y,z) + \sum_{n=1}^{\infty} \left\{ \frac{\zeta_n(l_1,x)}{(n+1)^{l_2}} y^{n+1} + \frac{\zeta_n(l_2,y)}{(n+1)^{l_1}} x^{n+1} \right\} z^n
\]
(2.36)
Moving $zF(x, y, z)$ from right to left and then multiplying $(1 - z)^{-1}$ to the equation (2.36) and integrating over the interval $(0, z)$, we obtain

$$
\sum_{n=1}^{\infty} \frac{\zeta_n(l_1, x) \zeta_n(l_2, y) - \zeta_n(l_1 + l_2, xy)}{n} z^n
$$

$$
= \sum_{n=1}^{\infty} \left\{ \frac{\zeta_n(l_1, x)}{(n + 1)^2} y^{n+1} + \frac{\zeta_n(l_2, y)}{(n + 1)^l} x^{n+1} \right\} \left\{ \text{Li}_1(z) - \zeta_n(1, z) \right\}. \quad (2.37)
$$

Furthermore, using integration and the following formula

$$
\sum_{n=1}^{\infty} \left\{ \frac{\zeta_n(l_1, x)}{(n + 1)^2} y^{n+1} + \frac{\zeta_n(l_2, y)}{(n + 1)^l} x^{n+1} \right\} = \text{Li}_{l_1}(x) \text{Li}_{l_2}(y) - \text{Li}_{l_1+l_2}(xy),
$$

we deduce (2.35) to complete the proof of Theorem 2.6.

Letting $(x, y, z) = (-1, -1, 1), (l_1, l_2, m) = (1, 1, m)$ and $(x, y, z) = (-1, -1, -1), (l_1, l_2, m) = (1, 1, m)$ in (2.35) gives the following

Corollary 2.7 For integer $m > 1$ we have that

$$
\sum_{n=1}^{\infty} \frac{L_n^2(1)}{n^m} + 2 \sum_{n=1}^{\infty} \frac{L_n(1) \zeta_n(m)}{n} (-1)^{n-1}
$$

$$
= \sum_{n=1}^{\infty} \frac{\zeta_n(m)}{n^2} + 2 \sum_{n=1}^{\infty} \frac{L_n(1)}{n^{m+1}} (-1)^{n-1} + \ln^2 2 \zeta(m) - \zeta(m + 2), \quad (m > 1) \quad (2.38)
$$

$$
\sum_{n=1}^{\infty} \frac{L_n^2(1)}{n^m} (-1)^{n-1} + 2 \sum_{n=1}^{\infty} \frac{L_n(1) \zeta_n(m)}{n} (-1)^{n-1}
$$

$$
= \sum_{n=1}^{\infty} \frac{L_n(m)}{n^2} + 2 \sum_{n=1}^{\infty} \frac{L_n(1)}{n^{m+1}} + \ln^2 2 \zeta(m) - \tilde{\zeta}(m + 2), \quad (m > 0). \quad (2.39)
$$

In fact, multiplying (2.35) by $(1 - z)^{-1}$ and integrating over $(0, z)$ ($z \in (-1, 1)$), we can obtain the following Corollary.

Corollary 2.8 For positive integers $l_1 > 0, l_2 > 0, m > 1$ and $x, y, z \in [-1, 1)$, then we have

$$
\sum_{n=1}^{\infty} \frac{\zeta_n(l_1, x) \zeta_n(l_2, y) \zeta_n(1, z)}{n^m} + \sum_{n=1}^{\infty} \frac{\zeta_n(l_1, x)}{n^{l_2}} \left(\sum_{k=1}^{n} \frac{\zeta_k(1, z)}{k^m} \right) y^n + \sum_{n=1}^{\infty} \frac{\zeta_n(l_2, y) \zeta_n(1, z)}{n^{l_1}} x^n
$$

$$
= \sum_{n=1}^{\infty} \frac{\left(\sum_{k=1}^{n} \frac{\zeta_k(1, z)}{k^m} \right)}{n^{l_1+l_2}} x^n y^n + \sum_{n=1}^{\infty} \frac{\zeta_n(l_1, x) \zeta_n(1, z)}{n^{m+l_2}} y^n + \sum_{n=1}^{\infty} \frac{\zeta_n(l_2, y) \zeta_n(1, z)}{n^{m+l_1}} x^n
$$

$$
+ \text{Li}_{l_1}(x) \text{Li}_{l_2}(y) \left(\sum_{n=1}^{\infty} \frac{\zeta_n(1, z)}{n^m} \right) - \left(\sum_{n=1}^{\infty} \frac{\zeta_n(1, z)}{n^{m+l_1+l_2}} y^n \right). \quad (2.40)
$$
Letting \(x, y, z \to 1 \) in (2.40), we arrive at the conclusion that, for integers \(m, l_1, l_2 > 1 \)

\[
\sum_{n=1}^{\infty} \frac{H_n \zeta_n (l_1) \zeta_n (l_2)}{n^m} + \sum_{n=1}^{\infty} \frac{\zeta_n (l_1) \left(\sum_{k=1}^{n} \frac{H_k}{k^m} \right)}{n^{l_2}} + \sum_{n=1}^{\infty} \frac{\zeta_n (l_2, y) \left(\sum_{k=1}^{n} \frac{H_k}{k^m} \right)}{n^{l_1}}
= \sum_{n=1}^{\infty} \frac{\left(\sum_{k=1}^{n} \frac{H_k}{k^m} \right)}{n^{l_1 + l_2}} + \sum_{n=1}^{\infty} \frac{H_n \zeta_n (l_1)}{n^{m + l_2}} + \sum_{n=1}^{\infty} \frac{H_n \zeta_n (l_2)}{n^{m + l_1}} + \zeta (l_1) \zeta (l_2) \left(\sum_{n=1}^{\infty} \frac{H_n}{n^m} \right) - \left(\sum_{n=1}^{\infty} \frac{H_n}{n^{m + l_1 + l_2}} \right).
\] (2.41)

From [13], we derive the following identity

\[
\sum_{n=1}^{\infty} \frac{1}{n^{p+1}} \left(\sum_{k=1}^{n} \frac{H_k}{k^m} \right) = \sum_{n=1}^{\infty} \frac{H_n}{n^{m+p+1}} + \zeta (p + 1) \sum_{n=1}^{\infty} \frac{H_n}{n^m} - \sum_{n=1}^{\infty} \frac{H_n \zeta_n (p + 1)}{n^m}.
\] (2.42)

Therefore, we may rewrite (2.41) as

\[
\sum_{n=1}^{\infty} \frac{H_n \zeta_n (l_1) \zeta_n (l_2)}{n^m} + \sum_{n=1}^{\infty} \frac{\zeta_n (l_1) \left(\sum_{k=1}^{n} \frac{H_k}{k^m} \right)}{n^{l_2}} + \sum_{n=1}^{\infty} \frac{\zeta_n (l_2, y) \left(\sum_{k=1}^{n} \frac{H_k}{k^m} \right)}{n^{l_1}}
= \sum_{n=1}^{\infty} \left\{ \frac{H_n \zeta_n (l_1)}{n^{m+l_2}} + \frac{H_n \zeta_n (l_2)}{n^{m+l_1}} - \frac{H_n \zeta_n (l_1 + l_2)}{n^m} \right\} + \zeta (l_1 + l_2) \left(\sum_{n=1}^{\infty} \frac{H_n}{n^m} \right) + \zeta (l_1) \zeta (l_2) \left(\sum_{n=1}^{\infty} \frac{H_n}{n^m} \right).
\] (2.43)

Taking \(l_1 = l_2 = m = 2l + 1 \) (\(l \) is a positive integer) in (2.43), we conclude that

\[
\sum_{n=1}^{\infty} \frac{H_n \zeta_n^2 (2l + 1)}{n^{2l+1}} + 2 \sum_{n=1}^{\infty} \frac{\zeta_n (2l + 1) \left(\sum_{k=1}^{n} \frac{H_k}{k^{2l+1}} \right)}{n^{2l+1}}
= \sum_{n=1}^{\infty} \left\{ 2 \frac{H_n \zeta_n (2l + 1)}{n^{2l+2}} - \frac{H_n \zeta_n (4l + 2)}{n^{2l+1}} \right\} + (\zeta (4l + 2) + \zeta^2 (2l + 1)) \left(\sum_{n=1}^{\infty} \frac{H_n}{n^{2l+1}} \right).
\] (2.44)

3 Closed form of quadratic Euler sums

In this section we evaluate some quadratic Euler sums involving harmonic numbers and alternating harmonic numbers.

Theorem 3.1 For integers \(l > 0, m > 0, p > 1, \) we have

\[
(-1)^{m-1} \sum_{n=1}^{\infty} \frac{\zeta_n (l)}{n^{p+1}} \left(\sum_{k=1}^{n} \frac{H_k}{k^m} \right) - (-1)^{p+1} \sum_{n=1}^{\infty} \frac{\zeta_n (m)}{n^{p+1}} \left(\sum_{k=1}^{n} \frac{H_k}{k^l} \right).
\]
\[\begin{align*}
&= \sum_{i=1}^{p-1} (-1)^{i-1} \left(\sum_{n=1}^{\infty} \frac{\zeta_n (m)}{n^{l+1}} \right) \left(\sum_{n=1}^{\infty} \frac{\zeta_n (l)}{n^{p+1-i}} \right) + (-1)^{p-1} \zeta (l+1) \left(\sum_{n=1}^{\infty} \frac{\zeta_n (m)}{n^{p+1}} \right) \\
&\quad + (-1)^{p-1} \sum_{j=1}^{l-1} (-1)^{i-1} \zeta (l+1-j) \left\{ \sum_{n=1}^{\infty} \frac{\zeta_n (m) \zeta_n (j)}{n^{p+1}} - \sum_{n=1}^{\infty} \frac{\zeta_n (m)}{n^{p+j+1}} \right\} \\
&\quad - (-1)^{p+l} \sum_{n=1}^{\infty} \frac{H_n \zeta_n (m)}{n^{p+l+1}} + (-1)^{m-1} \sum_{n=1}^{\infty} \frac{H_n \zeta_n (l)}{n^{p+m+1}} - \zeta (m+1) \left(\sum_{n=1}^{\infty} \frac{\zeta_n (l)}{n^{p+1}} \right) \\
&\quad - \sum_{j=1}^{m-1} (-1)^{i-1} \zeta (m+1-j) \left\{ \sum_{n=1}^{\infty} \frac{\zeta_n (l) \zeta_n (j)}{n^{p+1}} - \sum_{n=1}^{\infty} \frac{\zeta_n (l)}{n^{p+j+1}} \right\}. & (3.1)
\end{align*}\]

Proof. Multiplying (2.1) by \(\frac{\zeta_k (l)}{k^p} \) and summing with respect to \(k \), we obtain

\[\begin{align*}
\sum_{k=1}^{\infty} \sum_{n=1}^{\infty} \frac{\zeta_k (l) \zeta_n (m)}{k^p n (n+k)} &= \sum_{k=1}^{\infty} \frac{\zeta_k (l)}{k^p} \sum_{n=1}^{\infty} \frac{\zeta_n (m)}{n (n+k)} = \sum_{n=1}^{\infty} \frac{\zeta_n (m)}{n} \sum_{k=1}^{\infty} \frac{\zeta_k (l)}{k^p (n+k)}.
\end{align*}\]

Then by using (2.1) and the following partial fraction decomposition formula

\[\frac{1}{k^p (n+k)} = \sum_{i=1}^{p-1} \frac{(-1)^{i-1}}{n^i \cdot k^{p+1-i}} + \frac{(-1)^{p-1}}{n^{p-1} \cdot k (n+k)},\]

we can obtain (3.1). \(\Box \)

Taking \((p, l) = (2l, m) \) in (3.1), we can find that

\[\begin{align*}
\sum_{n=1}^{\infty} \frac{\zeta_n (m)}{n^{2l+1}} \left(\sum_{k=1}^{n} \frac{H_k}{k^m} \right) &= (-1)^{m-1} \sum_{i=1}^{l} (-1)^{i-1} \left(\sum_{n=1}^{\infty} \frac{\zeta_n (m)}{n^{i+1}} \right) \left(\sum_{n=1}^{\infty} \frac{\zeta_n (m)}{n^{2l+1-i}} \right) + \frac{(-1)^{m-l-1}}{2} \left(\sum_{n=1}^{\infty} \frac{\zeta_n (m)}{n^{l+1}} \right)^2 \\
&\quad - (-1)^{m-1} \zeta (m+1) \left(\sum_{n=1}^{\infty} \frac{\zeta_n (m)}{n^{2l+1}} \right) + \sum_{n=1}^{\infty} \frac{H_n \zeta_n (m)}{n^{2l+m+1}} \\
&\quad - (-1)^{m-1} \sum_{j=1}^{m-1} (-1)^{i-1} \zeta (m+1-j) \left\{ \sum_{n=1}^{\infty} \frac{\zeta_n (m) \zeta_n (j)}{n^{2l+1}} - \sum_{n=1}^{\infty} \frac{\zeta_n (m)}{n^{2l+j+1}} \right\}. & (3.2)
\end{align*}\]

Putting \(m = 2l + 1 \) in (3.2) and combining (2.44), we obtain

\[\begin{align*}
S_{1(2l+1)^2,0,(2l+1)} &= \sum_{n=1}^{\infty} \frac{H_n \zeta_n^2 (2l+1)}{n^{2l+1}} \\
&= 2 \zeta (2l+2) \left(\sum_{n=1}^{\infty} \frac{\zeta_n (2l+1)}{n^{2l+1}} \right) \\
&\quad + \left(\zeta (4l+2) + \zeta^2 (2l+1) \right) \left(\sum_{n=1}^{\infty} \frac{H_n}{n^{2l+1}} \right) \\
&= \frac{2 \zeta (2l+2) \zeta (4l+2) + \zeta (4l+3)}{2} \left(\sum_{n=1}^{\infty} \frac{H_n}{n^{2l+1}} \right) + \left(\zeta (4l+2) + \zeta^2 (2l+1) \right) \left(\sum_{n=1}^{\infty} \frac{H_n}{n^{2l+1}} \right),
\end{align*}\]
we can get the following result

\[m = 2 \]

and are reducible to linear sums. In [27], we showed that all quadratic Euler sums of the form

\[l = 1, p = m - 1 \text{ in (3.1) and using the formula} \]

\[\sum_{n=1}^{\infty} \frac{H_n}{n^m} \left(\sum_{k=1}^{n} \frac{H_k}{k^m} \right) = \frac{1}{2} \left\{ \left(\sum_{n=1}^{\infty} \frac{H_n}{n^m} \right)^2 + \sum_{n=1}^{\infty} \frac{H_n^2}{n^{2m}} \right\}, \quad 2 \leq m \in \mathbb{Z}, \]

we can get the following result

\[S_{1^m,0,m} = \sum_{n=1}^{\infty} \frac{H_n \zeta_n (m)}{n^m} \]

\[= 2(-1)^{m-1} \sum_{i=1}^{m-2} (-1)^{i-1} \left(\sum_{n=1}^{\infty} \frac{\zeta_n (m)}{n^{i+1}} \right) \left(\sum_{n=1}^{\infty} \frac{H_n}{n^{m-i}} \right) \]

\[- \zeta (2) \left(\zeta^2 (m) + \zeta (2m) \right) - 2(-1)^{m-1} \zeta (m+1) \left(\sum_{n=1}^{\infty} \frac{H_n}{n^m} \right) \]

\[- 2(-1)^{m-1} \sum_{j=1}^{m-1} (-1)^{j-1} \zeta (m+1-j) \left\{ \sum_{n=1}^{\infty} \frac{H_n \zeta_n (j)}{n^m} - \sum_{n=1}^{\infty} \frac{H_n}{n^{m+j}} \right\} \]

\[+ 2 \sum_{n=1}^{\infty} \frac{H_n \zeta_n (m)}{n^{m+1}} + \sum_{n=1}^{\infty} \frac{H_n^2}{n^{2m}} - \left(\sum_{n=1}^{\infty} \frac{H_n}{n^m} \right)^2 - \sum_{n=1}^{\infty} \frac{\zeta_n (2) \zeta_n (m)}{n^{m+2}}. \]

(3.4)

In [13], Philippe Flajolet and Bruno Salvy gave the following conclusion: If \(p_1 + p_2 + q \) is even, and \(p_1 > 1, p_2 > 1, q > 1 \), the quadratic sums

\[S_{p_1p_2,0,q} = \sum_{n=1}^{\infty} \frac{\zeta_n (p_1) \zeta_n (p_2)}{n^q} \]

are reducible to linear sums. In [27], we showed that all quadratic Euler sums of the form

\[S_{1^m,0,p} = \sum_{n=1}^{\infty} \frac{H_n \zeta_n (m)}{n^p} \quad (m + p \leq 8) \]

are reducible to polynomials in zeta values and to linear sums. Hence, from (3.4), we know that the cubic sums \(S_{1^m,0,m} \) are reducible to polynomials in zeta values and to linear sums when \(m = 2, 3, 4, 5 \). For example

\[S_{1^2,0,2} = \sum_{n=1}^{\infty} \frac{H_n^2 \zeta_n (2)}{n^2} = \frac{41}{12} \zeta (6) + 2 \zeta^2 (3), \]

\[S_{1^2,0,3} = \sum_{n=1}^{\infty} \frac{H_n^2 \zeta_n (3)}{n^3} = \frac{9}{2} \zeta (3) \zeta (5) + \frac{3}{2} \zeta (2) \zeta^2 (3) - \frac{443}{288} \zeta (8) - \frac{23}{4} S_{2,0,6}, \]
where \(S_{2,0,6} = \sum_{n=1}^{\infty} \frac{\zeta_n(2)}{n^6} \).

Noting that, from Theorem 4.2 in the reference [13], we deduce that

\[
S_{23,0,3} = \sum_{n=1}^{\infty} \frac{\zeta_n(2) \zeta_n(3)}{n^4} = \frac{45}{2} \zeta(3) \zeta(5) - \frac{827}{48} \zeta(8) - \frac{3}{2} \zeta(2) \zeta^2(3) - \frac{23}{4} S_{2,0,6}.
\]

In the same way, we can obtain the following Theorems.

Theorem 3.2 For integers \(p_1 > 1, p_2 > 1, m > 0 \), we have

\[
\frac{(p_1 - 1)!}{p_2} \sum_{n=p_1-1}^{\infty} \frac{S(n + 1, p_1) Y_{p_2}(n)}{n^{m+1} n!} - (-1)^{m-1} \frac{(p_2 - 1)!}{p_1} \sum_{n=p_2-1}^{\infty} \frac{S(n + 1, p_2) Y_{p_1}(n)}{n^{m+1} n!}
\]

\[
= (p_1 - 1)! \sum_{n=p_1-1}^{\infty} \frac{S(n + 1, p_1) Y_{p_2-1}(n)}{n^{m+2} n!} - (-1)^{m-1} (p_2 - 1)! \sum_{n=p_2-1}^{\infty} \frac{S(n + 1, p_2) Y_{p_1-1}(n)}{n^{m+2} n!}
\]

\[
+ (p_1 - 1)! (p_2 - 1)! \sum_{i=1}^{m-1} (-1)^{i-1} \left(\sum_{n=p_1-1}^{\infty} \frac{S(n + 1, p_1)}{n^{m+1-i} n!} \right) \left(\sum_{n=p_2-1}^{\infty} \frac{S(n + 1, p_2)}{n^{i+1} n!} \right)
\]

\[
+ (-1)^{m-1} (p_1 - 1)! (p_2 - 1)! \zeta(p_1) \left(\sum_{n=p_1-1}^{\infty} \frac{S(n + 1, p_1)}{n^{m+1} n!} \right)
\]

\[
- (p_1 - 1)! (p_2 - 1)! \zeta(p_2) \left(\sum_{n=p_1-1}^{\infty} \frac{S(n + 1, p_1)}{n^{m+1} n!} \right). \tag{3.5}
\]

Proof. Replacing \(p \) by \(p_2 \) in (2.21), we get

\[
(p_2 - 1)! \sum_{n=p_2-1}^{\infty} \frac{S(n + 1, p_2)}{n! n (n+k)} = \frac{1}{k} \left\{ (p_2 - 1)! \zeta(p_2) + \frac{Y_{p_2}(k)}{p_2} - \frac{Y_{p_2-1}(k)}{k} \right\}. \tag{3.6}
\]

Multiplying (3.6) by \((p_1 - 1)! \frac{S(k + 1, p_1)}{k! k^m} \) and summing with respect to \(k \), we obtain

\[
(p_1 - 1)! (p_2 - 1)! \sum_{k=p_1-1}^{\infty} \sum_{n=p_2-1}^{\infty} \frac{S(k + 1, p_1) S(n + 1, p_2)}{k! k^m n! n (n+k)}
\]

\[
= (p_1 - 1)! \sum_{k=p_1-1}^{\infty} \frac{S(k + 1, p_1)}{k! k^m} (p_2 - 1)! \sum_{n=p_2-1}^{\infty} \frac{S(n + 1, p_2)}{n! n (n+k)}
\]

\[
= (p_2 - 1)! \sum_{n=p_2-1}^{\infty} \frac{S(n + 1, p_2)}{n! n} (p_1 - 1)! \sum_{k=p_1-1}^{\infty} \frac{S(k + 1, p_1)}{k! k^m (n+k)}.
\]

Then with the help of formula (2.21) we may easily deduce the result. \(\square \)

Theorem 3.3 For integer \(m > 0 \), then we have

\[
\left(\frac{1}{2} + (-1)^m \right) \sum_{n=1}^{\infty} \frac{H_n^2}{n^{m+1}}
\]
we deduce Theorem 3.3 holds. □

Proof. Similarly as in the proofs of Theorem 3.1 and 3.2, we consider the following sums

$$
= \sum_{j=0}^{m-2} (-1)^j \zeta (m-j) \sum_{n=1}^{\infty} \frac{H_n}{n^{j+2}} - \zeta (2) \zeta (m+1) + \sum_{n=1}^{\infty} \frac{H_n}{n^{m+2}} - \frac{1}{2} \sum_{n=1}^{\infty} \zeta_n (2) \zeta_{m+1}^{(2)} , \quad (3.7)
$$

$$
\frac{1}{2} \sum_{n=1}^{\infty} \frac{H_n^2}{n^{m+1}} (-1)^{n-1} + (-1)^{m-1} \sum_{n=1}^{\infty} \frac{H_n L_n (1)}{n^{m+1}} (-1)^{n-1}
$$

$$
= \sum_{j=1}^{m-1} (-1)^{j-1} \bar{\zeta} (m-j+1) \sum_{n=1}^{\infty} \frac{H_n}{n^{j+1}} + (-1)^{m-1} \ln 2 \sum_{n=1}^{\infty} \frac{H_n}{n^{m+1}} + \frac{1}{2} \sum_{n=1}^{\infty} \zeta_n (2) \zeta_{m+1}^{(2)} (-1)^{n-1} - \zeta (2) \bar{\zeta} (m+1) , \quad (3.8)
$$

$$
(\frac{1}{2} + (-1)^m) \sum_{n=1}^{\infty} \frac{L_n^2 (1)}{n^{m+1}} (-1)^{n-1}
$$

$$
= \bar{\zeta} (2) \bar{\zeta} (m+1) + \ln 2 \sum_{n=1}^{\infty} \frac{H_n + L_n (1)}{n^{m+1}} (-1)^{n-1} + (-1)^m \ln 2 \sum_{n=1}^{\infty} \frac{L_n (1)}{n^{m+1}} (1 + (-1)^{n-1})
$$

$$
+ \sum_{n=1}^{\infty} \frac{L_n (1)}{n^{m+2}} - \ln 2 (\bar{\zeta} (m+2) + \zeta (m+2)) - \frac{1}{2} \sum_{n=1}^{\infty} \zeta_n (2) \zeta_{m+1}^{(2)} (-1)^{n-1}
$$

$$
- \sum_{j=1}^{m-1} (-1)^{j-1} \bar{\zeta} (m-j+1) \sum_{n=1}^{\infty} \frac{L_n (1)}{n^{j+1}} , \quad (3.9)
$$

$$
\frac{1}{2} \sum_{n=1}^{\infty} \frac{L_n^2 (1)}{n^{m+1}} + (-1)^{m-1} \sum_{n=1}^{\infty} \frac{H_n L_n (1)}{n^{m+1}}
$$

$$
= \bar{\zeta} (2) \bar{\zeta} (m+1) + \ln 2 \sum_{n=1}^{\infty} \frac{H_n + L_n (1)}{n^{m+1}} - \ln 2 (\bar{\zeta} (m+2) + \zeta (m+2)) - \frac{1}{2} \sum_{n=1}^{\infty} \zeta_n (2) \zeta_{m+1}^{(2)}
$$

$$
+ \sum_{n=1}^{\infty} \frac{L_n (1)}{n^{m+2}} (-1)^{n-1} - \sum_{j=1}^{m-1} (-1)^{j-1} \bar{\zeta} (m-j+1) \sum_{n=1}^{\infty} \frac{L_n (1)}{n^{j+1}} . \quad (3.10)
$$

Proof. Similarly as in the proofs of Theorem 3.1 and 3.2, we consider the following sums

$$
\sum_{k=1}^{\infty} \sum_{n=1}^{\infty} \frac{H_n}{k^{n+k}} , \quad \sum_{k=1}^{\infty} \sum_{n=1}^{\infty} \frac{H_n}{k^{n+k} (n+k)} (-1)^{k-1} ,
$$

$$
\sum_{k=1}^{\infty} \sum_{n=1}^{\infty} \frac{L_n (1)}{k^{n+k}} , \quad \sum_{k=1}^{\infty} \sum_{n=1}^{\infty} \frac{L_n (1)}{k^{n+k} (n+k)} (-1)^{k-1} .
$$

Then using identities (2.12), (2.13) with the help of the following formula

$$
\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n^{m} (n+k)} = \sum_{j=1}^{m-1} \frac{(-1)^{j-1}}{k^j} \bar{\zeta} (m-j+1) + \frac{(-1)^{m-1}}{k^m} \ln 2
$$

$$
+ \frac{(-1)^{m+k}}{k^m} \ln 2 - \frac{(-1)^{m+k}}{k^m} L_k (1) ,
$$

we deduce Theorem 3.3 holds. □
\textbf{Theorem 3.4} For integer \(m > 0 \), we have

\[
\left(\frac{1}{3} + (-1)^m \right) \sum_{n=1}^{\infty} \frac{H_n^3}{n^{m+1}} + \left(1 + (-1)^{m-1} \right) \sum_{n=1}^{\infty} \frac{H_n \zeta_n(2)}{n^{m+1}}
\]

\[
= \sum_{j=0}^{m-2} (-1)^j \zeta(m-j) \sum_{n=1}^{\infty} \frac{H_n^2 - \zeta_n(2)}{n^{j+2}} + \sum_{n=1}^{\infty} \frac{H_n^2 + \zeta_n(2)}{n^{m+2}} - \frac{2}{3} \sum_{n=1}^{\infty} \frac{\zeta_n(3)}{n^{m+1}} - 2 \zeta(3) \zeta(m+1), \tag{3.11}
\]

\[
\sum_{n=1}^{\infty} \frac{L_n^3(1) + L_n(1) \zeta_n(2)}{n^{2m+1}}
\]

\[
= 2 \tilde{\zeta}(2) \left(\sum_{n=1}^{\infty} \frac{L_n(1)}{n^{2m+1}} \right) + 2 \ln 2 \sum_{n=1}^{\infty} \frac{H_n L_n(1) + L_n^2(1)}{n^{2m+1}} - 2 \ln 2 \sum_{n=1}^{\infty} \frac{L_n(1)}{n^{2m+2}} \left(1 + (-1)^{n-1} \right)
\]

\[
+ 2 \sum_{n=1}^{\infty} \frac{L_n^2(1)}{n^{2m+2}} (-1)^{n-1} - 2 \sum_{i=1}^{m} (-1)^{i-1} \left(\sum_{n=1}^{\infty} \frac{L_n(1)}{n^{i+1}} \right) \left(\sum_{n=1}^{\infty} \frac{L_n(1)}{n^{2m+2-i}} \right)
\]

\[
+ (-1)^{m-1} \left(\sum_{n=1}^{\infty} \frac{L_n(1)}{n^{m+1}} \right)^2, \tag{3.12}
\]

\[
\frac{1}{2} \sum_{n=1}^{\infty} \frac{H_n L_n(1) + H_n \zeta_n(2)}{n^{m+1}} + \frac{(-1)^{m-1}}{2} \sum_{n=1}^{\infty} \frac{H_n^2 L_n(1) + L_n(1) \zeta_n(2)}{n^{m+1}}
\]

\[
= \tilde{\zeta}(2) \left(\sum_{n=1}^{\infty} \frac{H_n}{n^{m+1}} \right) + \ln 2 \sum_{n=1}^{\infty} \frac{H_n^2 + H_n L_n(1)}{n^{m+1}} - \ln 2 \sum_{n=1}^{\infty} \frac{H_n}{n^{m+2}} \left(1 + (-1)^{n-1} \right)
\]

\[
- \sum_{i=1}^{m-1} (-1)^{i-1} \left(\sum_{n=1}^{\infty} \frac{L_n(1)}{n^{i+1}} \right) \left(\sum_{n=1}^{\infty} \frac{H_n}{n^{m+2-i}} \right) - (-1)^{m-1} \zeta(2) \left(\sum_{n=1}^{\infty} \frac{L_n(1)}{n^{m+1}} \right)
\]

\[
+ (-1)^{m-1} \sum_{n=1}^{\infty} \frac{H_n L_n(1)}{n^{m+2}} + \sum_{n=1}^{\infty} \frac{H_n L_n(1)}{n^{2m+2}} (-1)^{n-1}. \tag{3.13}
\]

\textbf{Proof.} Similarly as in the proof of Theorem 3.1-3.3, we consider the following sums

\[
\sum_{k=1}^{\infty} \sum_{n=1}^{\infty} \frac{H_k^2 - \zeta_n(2)}{k^{m+n}(n+k)}, \sum_{k=1}^{\infty} \sum_{n=1}^{\infty} \frac{L_k(1) L_n(1)}{k^{2m+n}(n+k)}, \sum_{k=1}^{\infty} \sum_{n=1}^{\infty} \frac{H_k L_n(1)}{k^{m+n}(n+k)}.
\]

Then using (2.12), (2.13) and (2.28), by a simple calculation, we obtain the desired results. \(\square \)

\textbf{Corollary 3.5} For integers \(k > 0, p > 1 \), we have

\[
\frac{(p-1)!}{p} \sum_{n=p-1}^{\infty} \frac{S(n+1,p) Y_p(n)}{n^{2k+1+n!}}
\]

\[
= (p-1)! \sum_{n=p-1}^{\infty} \frac{S(n+1,p) Y_{p-1}(n)}{n^{2k+2+n!}} - [(p-1)!]^2 \zeta(p) \left(\sum_{n=p-1}^{\infty} \frac{S(n+1,p)}{n^{2k+1+n!}} \right)
\]

\[
+ [(p-1)!]^2 \sum_{i=1}^{k} (-1)^{i-1} \left(\sum_{n=p-1}^{\infty} \frac{S(n+1,p)}{n^{2k+1-i+n!}} \right) \left(\sum_{n=p-1}^{\infty} \frac{S(n+1,p)}{n^{i+1+n!}} \right)
\]

15
Similarly, taking \(p = 2 \) in (3.14), we obtain

\[
- \frac{(p - 1)!^2}{2} (-1)^{k-1} \left(\sum_{n=p-1}^{\infty} \frac{S(n+1,p)}{n^{k+1}n!} \right)^2.
\]

(3.14)

Taking \(p = 2 \) in (3.14), we obtain

\[
\sum_{n=1}^{\infty} \frac{H_n^3 + H_n \zeta_n (2)}{n^{2k+1}} = 2 \sum_{n=1}^{\infty} \frac{H_n^2}{n^{2k+2}} + 2 \sum_{i=1}^{k} (-1)^{i-1} \left(\sum_{n=1}^{\infty} \frac{H_n}{n^{2k+1-i}} \right) \left(\sum_{n=1}^{\infty} \frac{H_n}{n^{i+1}} \right) \\
- 2 \zeta (2) \left(\sum_{n=1}^{\infty} \frac{H_n}{n^{2k+1}} \right) - (-1)^{k-1} \left(\sum_{n=1}^{\infty} \frac{H_n}{n^{k+1}} \right)^2.
\]

(3.15)

Letting \(m = 2k - 1 \) in (3.11), we get

\[
\sum_{n=1}^{\infty} \frac{H_n^3}{n^{2k+1}} = \frac{3}{4} \sum_{j=0}^{2k-2} (-1)^j \zeta (2k - j) \sum_{n=1}^{\infty} \frac{H_n^2 - \zeta_n (2)}{n^{j+2}} + \frac{3}{4} \sum_{n=1}^{\infty} \frac{H_n^2 + \zeta_n (2)}{n^{2k+2}} \\
- \frac{1}{2} \sum_{n=1}^{\infty} \frac{\zeta_n (3)}{n^{2k+1}} - \frac{3}{2} \zeta (3) \zeta (2k + 1).
\]

(3.16)

Substituting (3.16) into (3.15), we arrive at the conclusion that

\[
\sum_{n=1}^{\infty} \frac{H_n \zeta_n (2)}{n^{2k+1}} = 2 \sum_{n=1}^{\infty} \frac{H_n^2}{n^{2k+2}} + 2 \sum_{i=1}^{k} (-1)^{i-1} \left(\sum_{n=1}^{\infty} \frac{H_n}{n^{2k+1-i}} \right) \left(\sum_{n=1}^{\infty} \frac{H_n}{n^{i+1}} \right) \\
+ \frac{1}{2} \sum_{n=1}^{\infty} \frac{\zeta_n (3)}{n^{2k+1}} + \frac{3}{2} \zeta (3) \zeta (2k + 1) - 2 \zeta (2) \left(\sum_{n=1}^{\infty} \frac{H_n}{n^{2k+1}} \right) - (-1)^{k-1} \left(\sum_{n=1}^{\infty} \frac{H_n}{n^{k+1}} \right)^2 \\
- \frac{3}{4} \sum_{j=0}^{2k-2} (-1)^j \zeta (2k - j) \sum_{n=1}^{\infty} \frac{H_n^2 - \zeta_n (2)}{n^{j+2}} - \frac{3}{4} \sum_{n=1}^{\infty} \frac{H_n^2 + \zeta_n (2)}{n^{2k+2}}.
\]

(3.17)

Similarly, taking \((p_1, p_2) = (2, 3), (1, 4) \) in Theorem 3.2, we deduce that

\[
\left(\frac{1}{3} - \frac{(-1)^{m-1}}{2} \right) \sum_{n=1}^{\infty} \frac{H_n^4}{n^{m+1}} + \sum_{n=1}^{\infty} \frac{H_n^2 \zeta_n (2)}{n^{m+1}} + \frac{3}{2} \sum_{n=1}^{\infty} \frac{H_n \zeta_n (3)}{n^{m+1}} + \frac{(-1)^{m-1}}{2} \sum_{n=1}^{\infty} \frac{\zeta_n^2 (2)}{n^{m+1}} \\
= \left(1 - (-1)^{m-1} \right) \sum_{n=1}^{\infty} \frac{H_n^3}{n^{m+2}} + \left(1 + (-1)^{m-1} \right) \sum_{n=1}^{\infty} \frac{H_n \zeta_n (2)}{n^{m+2}} + (-1)^{m-1} \zeta (2) \sum_{n=1}^{\infty} \frac{H_n^2 - \zeta_n (2)}{n^{m+1}} \\
- 2 \zeta (3) \sum_{n=1}^{\infty} \frac{H_n}{n^{m+1}} + \sum_{i=1}^{m-1} (-1)^{i-1} \left(\sum_{n=1}^{\infty} \frac{H_n}{n^{m+1-i}} \right) \left(\sum_{n=1}^{\infty} \frac{H_n^2 - \zeta_n (2)}{n^{i+1}} \right).
\]

(3.18)

\[
\left(\frac{1}{4} + (-1)^m \right) \sum_{n=1}^{\infty} \frac{H_n^4}{n^{m+1}} + 3 \left(\frac{1}{2} + (-1)^{m-1} \right) \sum_{n=1}^{\infty} \frac{H_n^2 \zeta_n (2)}{n^{m+1}} + 2 \left(1 + (-1)^m \right) \sum_{n=1}^{\infty} \frac{H_n \zeta_n (3)}{n^{m+1}} + \frac{3}{4} \sum_{n=1}^{\infty} \frac{\zeta_n^2 (2)}{n^{m+1}} \\
= \sum_{n=1}^{\infty} \frac{H_n^3 + 3H_n \zeta_n (2) + 2 \zeta_n (3)}{n^{m+2}} + \sum_{i=1}^{m-1} (-1)^{i-1} \zeta (m + 1 - i) \left(\sum_{n=1}^{\infty} \frac{H_n^3 - 3H_n \zeta_n (2) + 2 \zeta_n (3)}{n^{i+1}} \right)
\]
Proceeding in a similar fashion to evaluation of the Theorem 3.1-3.4, it is possible to evaluate other Euler sums involving harmonic numbers and alternating harmonic numbers. For instance, multiplying (2.21) by \(\frac{(-1)^{k-1}}{k^m} \), \(L_k (1) \), and summing with respect to \(k \), we obtain

\[
\frac{1}{p} \sum_{n=1}^{\infty} \frac{Y_p(n)}{n^{m+1}} (-1)^{n-1} + (-1)^{m-1} (p - 1)! \sum_{n=p-1}^{\infty} \frac{S(n+1,p) L_n(1)}{n! n^{m+1}} (-1)^{n-1}
\]

\[
= \sum_{n=1}^{\infty} \frac{Y_{p-1}(n)}{n^{m+2}} (-1)^{n-1} + (p - 1)! \sum_{i=1}^{m-1} (-1)^{i-1} \zeta(m+1-i) \left(\sum_{n=p-1}^{\infty} \frac{S(n+1,p)}{n! n^{i+1}} \right)
\]

\[
+ (-1)^{m-1} (p - 1)! \ln 2 \sum_{n=p-1}^{\infty} \frac{S(n+1,p)}{n! n^{m+2}} \left(1 + (-1)^{n-1} \right)
\]

\[
- (-1)^{m-1} (p - 1)! \ln 2 \sum_{n=p-1}^{\infty} \frac{S(n+1,p) H_n + L_n(1)}{n! n^{m+1}}
\]

and

\[
\frac{1}{p} \sum_{n=1}^{\infty} \frac{Y_p(n) L_n(1)}{n^{m+1}} + \frac{(-1)^{m-1}}{2} (p - 1)! \sum_{n=p-1}^{\infty} \frac{S(n+1,p) (L_n^2(1) + \zeta_n(2))}{n! n^{m+1}}
\]

\[
= \sum_{n=1}^{\infty} \frac{Y_{p-1}(n) L_n(1)}{n^{m+2}} + (p - 1)! \sum_{i=1}^{m-1} (-1)^{i-1} \left(\sum_{n=p-1}^{\infty} \frac{L_n(1)}{n! n^{m+1-i}} \right) \left(\sum_{n=p-1}^{\infty} \frac{S(n+1,p)}{n! n^{i+1}} \right)
\]

\[
+ (-1)^{m-1} (p - 1)! \zeta(2) \sum_{n=p-1}^{\infty} \frac{S(n+1,p)}{n! n^{m+1}} + (-1)^{m-1} (p - 1)! \sum_{n=p-1}^{\infty} \frac{S(n+1,p) L_n(1)}{n! n^{m+2}}
\]

\[
- (-1)^{m-1} (p - 1)! \ln 2 \sum_{n=p-1}^{\infty} \frac{S(n+1,p) H_n + L_n(1)}{n! n^{m+1}}
\]

\[
+ (-1)^{m-1} (p - 1)! \ln 2 \sum_{n=p-1}^{\infty} \frac{S(n+1,p) (H_n + L_n(1))}{n! n^{m+1}}
\]

\[
- (p - 1)! \zeta(p) \sum_{n=p-1}^{\infty} \frac{L_n(1)}{n! n^{m+1}}. \quad (3.21)
\]

4 Some Examples

Now, we give some examples.

\[
\sum_{n=1}^{\infty} \frac{L_n^2(1)}{n^2} (-1)^{n-1} = -\frac{41}{16} \zeta(4) + 2 \zeta(2) \ln^2 2 + \frac{1}{6} \ln^4 2 + \frac{7}{4} \zeta(3) \ln 2 + 4 \text{Li}_4 \left(\frac{1}{2} \right),
\]

\[
\sum_{n=1}^{\infty} \frac{L_n^2(1)}{n^3} (-1)^{n-1} = -4 \text{Li}_4 \left(\frac{1}{2} \right) \ln 2 + \frac{19}{8} \zeta(4) \ln 2 + \zeta(2) \ln^3 2 - \frac{1}{6} \ln^5 2 + \frac{3}{8} \zeta(2) \zeta(3) - \frac{19}{32} \zeta(5),
\]

\[
\sum_{n=1}^{\infty} \frac{L_n^2(1)}{n^4} (-1)^{n-1} = \frac{15}{4} \ln^2 2 \zeta(4) + \frac{9}{4} \zeta(2) \zeta(3) \ln 2 - \frac{93}{16} \zeta(5) \ln 2 + \frac{35}{64} \zeta(6) - \frac{15}{16} \zeta^2(3)
\]
\begin{align*}
\sum_{n=1}^{\infty} \frac{L_n(1) L_n(2)}{n} (-1)^{n-1} &= \frac{61}{16} \zeta(4) - \frac{7}{8} \zeta(3) \ln 2 - \frac{1}{4} \zeta(2) \ln^2 2 - \frac{1}{6} \ln^4 2 - 4 \text{Li}_4 \left(\frac{1}{2} \right), \\
\sum_{n=1}^{\infty} \frac{L_n(1) L_n(3)}{n} (-1)^{n-1} &= 2 \ln 2 \text{Li}_4 \left(\frac{1}{2} \right) + \frac{1}{12} \ln^5 2 + \frac{3}{8} \zeta(3) \ln^2 2 - \frac{19}{32} \zeta(5) - \frac{1}{2} \zeta(2) \ln^3 2 \\
&+ \frac{11}{16} \zeta(4) \ln 2 + \frac{1}{4} \zeta(2) \zeta(3), \\
\sum_{n=1}^{\infty} \frac{L_n(1) L_n(4)}{n} (-1)^{n-1} &= -\frac{35}{128} \zeta(6) + \frac{3}{4} \zeta^2(3) - \frac{9}{8} \zeta(2) \zeta(3) \ln 2 + \frac{155}{32} \zeta(5) \ln 2 \\
&- \frac{23}{16} \zeta(4) \ln^2 2 - \sum_{n=1}^{\infty} \frac{\zeta_n(2)}{n^4} (-1)^{n-1}, \\
\sum_{n=1}^{\infty} \frac{H_n^3}{n^5} &= \frac{469}{32} \zeta(8) - 16 \zeta(3) \zeta(5) + \frac{3}{2} \zeta(2) \zeta^2(3) + \frac{11}{4} \sum_{n=1}^{\infty} \frac{\zeta_n(2)}{n^6}, \\
\sum_{n=1}^{\infty} \frac{H_n \zeta_n(2)}{n^5} &= -\frac{343}{48} \zeta(8) + 12 \zeta(3) \zeta(5) - \frac{5}{2} \zeta(2) \zeta^2(3) - \frac{1}{4} \sum_{n=1}^{\infty} \frac{\zeta_n(2)}{n^6}, \\
\sum_{n=1}^{\infty} \frac{H_n^2 \zeta_n(3)}{n^3} &= 9 \frac{\zeta(3)}{2} \zeta(5) + \frac{3}{2} \zeta(2) \zeta^2(3) - \frac{443}{288} \zeta(8) - \frac{23}{4} \sum_{n=1}^{\infty} \frac{\zeta_n(2)}{n^6}.
\end{align*}

Acknowledgments. The authors would like to thank the anonymous referee for his/her helpful comments, which improve the presentation of the paper.

References

[1] George E. Andrews, Richard Askey, Ranjan Roy. *Special Functions.* Cambridge University Press., 2000: 481-532.

[2] David H. Bailey, Jonathan M. Borwein and Roland Girgensohn. *Experimental evaluation of Euler sums.* Experimental Mathematics., 1994, 3(1): 17-30.

[3] David H. Bailey, Jonathan M. Borwein, Richard E. Crandall. *Computation and theory of extended Mordell-Tornheim-Witten sums.* Math. Comp., 2014, 83(288): 1795-1821.

[4] B. C. Berndt. *Ramanujan Notebooks, Part I.* Springer-Verlag, New York., 1985.

[5] B. C. Berndt. *Ramanujan Notebooks, Part II.* Springer-Verlag, New York., 1989.

[6] David Borwein, Jonathan M. Borwein and Roland Girgensohn. *Explicit evaluation of Euler sums.* Proc. Edinburgh Math., 1995, 38: 277-294.

[7] J.Borwein, P.Borwein, R.Girgensohn, S.Parnes. *Making sense of experimental mathematics.* Mathematical Intelligencer., 1996, 18(4): 12-18.

[8] Jonathan M. Borwein, David M. Bradley, David J. Broadhurst, Petr. Lisonk. *Special values of multiple polylogarithms.* Trans. Amer. Math. Soc., 2001, 353(3): 907-941.

[9] J. M. Borwein, I. J. Zucker, J. Boersma. *The evaluation of character Euler double sums.* Ramanujan J., 2008, 15 (3): 377-405.

[10] J.M. Borwein, R. Girgensohn, *Evaluation of triple Euler sums,* Electron. J. Combin., 1996: 2-7.
[11] Ayhan Dil, Khristo N. Boyadzhiev, Euler sums of hyperharmonic numbers, J. Number Theory., 2015, 147: 490-498.
[12] Minking Eie, Chuan-Sheng Wei. Evaluations of some quadruple Euler sums of even weight. Functions et Approximatio., 2012, 46(1): 63-67.
[13] Philippe Flajolet and Bruno Salvy. Euler sums and contour integral representations. Experimental Mathematics., 1998, 7(1): 15–35.
[14] Pedro freitas. Integrals of polylogarithmic functions, recurrence relations, and associated Euler sums. Mathematics of Computation,. 2005, 74(251): 1425-1440.
[15] Comtet L. Advanced combinatorics, Boston: D Reidel Publishing Company, 1974.
[16] Zhonghua LI. On Functional Relations for the Alternating Analogues of Tornheim's Double Zeta Function. Chinese Annals of Mathematics,. 2015, 36(6): 907-918.
[17] I.Mező. Nonlinear Euler sums. Pacific J. Math., 2014, 272: 201-226.
[18] A. Sofo. Integral forms of sums associated with harmonic numbers. Applied Mathematics and Computation., 2009, 207(2): 365-372.
[19] A. Sofo. Quadratic alternating harmonic number sums. J. Number Theory., 2015, 154: 144-159.
[20] A. Sofo. Integral identities for sums. Math. Commun., 2008, 13: 303-309.
[21] A. Sofo, H.M. Srivastava. Identities for the harmonic numbers and binomial coefficients. Ramanujan J., 2011, 25: 93-113.
[22] A. Sofo. Harmonic sums and integral representations. J. Appl. Anal., 2010, 16: 265-277.
[23] A. Sofo. Harmonic number sums in closed form. Math. Commun., 2011, 16: 335-345.
[24] A. Sofo. Shifted harmonic sums of order two. Commun. Korean Math. Soc., 2014, 29(2): 239-255.
[25] Coffey M W, Lubbers N. On generalized harmonic number sums. Applied Mathematics and Computation., 2010, 217(2): 689-698.
[26] Ce Xu, Jinfu Cheng. Some Results On Euler Sums. Functions et Approximatio., 2016, 54(1): 25-37.
[27] Ce Xu, Yuhuan Yan, Zhijuan Shi. Euler sums and integrals of polylogarithm functions. J. Number Theory., 2016, 165: 84-108.