Abstract. We show that there is essentially a unique elliptic curve \(E \) defined over a cubic Galois extension \(K \) of \(\mathbb{Q} \) with a \(K \)-rational point of order 13 and such that \(E \) is not defined over \(\mathbb{Q} \).

1 Introduction

Let \(K \) be a number field and let \(E \) be an elliptic curve over \(K \). The question what the possible orders of torsion points in \(E(K) \) are (or, more generally, which finite abelian groups occur as the group of \(K \)-rational torsion points of some \(E \)) has received much attention in the recent past. Mazur [Maz77] famously solved this problem for \(K = \mathbb{Q} \). Kenku and Momose [KM88] and Kamienny [Kam86, Kam92] dealt with quadratic number fields. Merel [Mer96] proved that for fields \(K \) of given degree \(d \), there are only finitely many possibilities for the order of a torsion point (and therefore also for the torsion subgroup). Jeon, with various coauthors [JKS04, JKL11] determined which torsion structures occur infinitely often for cubic fields. Najman [Naj16] found a sporadic example with a point of order 21 over a cubic field (with the curve defined over \(\mathbb{Q} \)); this is not on Jeon et al.’s list. The second author together with Etropolski, van Hoeij, Morrow and Zureick-Brown [DEvH+20], building on the results of Parent [Par00, Par03], proved that \(\mathbb{Z}/21\mathbb{Z} \) is actually the only torsion structure that occurs finitely often over cubic fields. Jeon [Jeo16] also determined which torsion structures occur infinitely often over cyclic cubic fields. The second author and Najman [DN19] classified all torsion groups that occur over cyclic cubic fields. There are similar results by Jeon and coauthors for quartic fields [JKP06, JKL11b, JKL13, JKL15]. Results on which prime numbers can occur as the order of a torsion point over a field of degree \(d \leq 7 \) can be found in a forthcoming paper by Kamienny, Stein and the last two authors of this note [DKSS17].

In this note, we consider the cubic case. More precisely, we complete the classification of elliptic curves over cyclic cubic fields that have a point of order 13. Jeon in [Jeo16] already found an infinite family (with parameter space an open subset of the projective line) of such curves. They are obtained by pulling back rational points under a cyclic degree 3 Galois cover \(X_1(13) \to \mathbb{P}^1 \), which is derived from the action of the diamond operators on \(X_1(13) \). This implies that the target \(\mathbb{P}^1 \) is a modular curve itself, and all the curves in the family are in fact already defined over \(\mathbb{Q} \) (and acquire a point of order 13 over a cyclic cubic extension). We show that outside this family, there is essentially one other example, which is an elliptic curve that cannot be defined over \(\mathbb{Q} \). This can be seen as a complement to [DN19], where similar results are obtained for points of order 16 and 20.

Date: January 14, 2021.

2010 Mathematics Subject Classification. 11G05, 14G05, 14G25, 14H52.
Acknowledgments

We thank the organizers of the conference on “Torsion groups and Galois representations of elliptic curves” in Zagreb in June 2018, where the work described in this note was done, and Daeyeol Jeon for providing the motivation for this work by pointing out in his talk at the conference that $X_1(13)$ arises as a Galois covering of \mathbb{P}^1 of degree 3 over \mathbb{Q}, raising the question whether there are additional “sporadic” elliptic curves over a cyclic number field with a point of order 13.

The computations were done using the Magma computer algebra system [BCP97].

2 The result

Our goal is to classify all elliptic curves E defined over a cyclic cubic extension K of \mathbb{Q} such that $E(K)$ contains points of order 13. The main result is as follows.

Theorem 1. Let K be a cubic Galois extension of \mathbb{Q} and let E be an elliptic curve defined over K with $E(K)[13] \neq 0$. Then either E is defined over \mathbb{Q}, or else $K = \mathbb{Q}(\alpha)$ with

$$\alpha^3 - \alpha^2 - 82\alpha + 64 = 0$$

and E is isomorphic to a Galois conjugate of the curve

$$E_0: y^2 + (1 - c)xy - by = x^3 - bx^2,$$

where

$$b = \frac{10\alpha^2 + 90\alpha - 1936}{19773} \quad \text{and} \quad c = \frac{6\alpha^2 + 50\alpha - 208}{1521}.$$

To obtain this result, we find all degree 3 morphisms $X_1(13) \rightarrow \mathbb{P}^1$ that are defined over \mathbb{Q} and determine all their fibers above rational points that give rise to a cyclic cubic extension of \mathbb{Q}. There are exactly 13 such morphisms (up to automorphisms of \mathbb{P}^1). One of these is obtained by dividing by a subgroup of order 3 of the group generated by the diamond operators on $X_1(13)$. All its fibers are cyclic or split; this gives rise to the family of elliptic curves over \mathbb{Q} with points of order 13 defined over a cyclic cubic field found by Jeon [Jeo16]. Explicitly, this family can be obtained as

$$E_t: y^2 = x^3 - 27A(t)x + 54(t^2 + 1)B(t)$$

with

$$A(t) = \frac{t^8 - 5t^7 + 7t^6 - 5t^5 + 5t^3 + 7t^2 + 5t + 1}{t^4 - t^3 + 5t^2 + t + 1},$$

$$B(t) = \frac{t^{12} - 8t^{11} + 25t^{10} - 44t^9 + 40t^8 + 18t^7 - 40t^6 - 18t^5 + 40t^4 + 44t^3 + 25t^2 + 8t + 1}{(t^4 - t^3 + 5t^2 + t + 1)^2}.$$

A point of order 13 on E_t is given by

$$P_t = \left(\frac{36tw + 3(t^6 - 3t^5 + 4t^4 - 6t^3 - 8t^2 + 3t + 1)}{t^4 - t^3 + 5t^2 + t + 1}, \frac{108((t + 1)w - t)}{t^4 - t^3 + 5t^2 + t + 1}\right),$$

where

$$w^3 + (-t^3 + t^2 - 3t + 1)w^2 + (-t^3 + 2t^2 - 2t)w + t^2 = 0.$$
This last polynomial has discriminant \(t^4(t^4 - t^3 + 5t^2 + t + 1)^2 \) and therefore defines, for \(t \in \mathbb{Q} \setminus \{0\} \), a cyclic cubic number field. (Our parameter \(t \) is related to \(t_{Jeon} \) of [Jeo16] by \(t_{Jeon} = -\frac{7}{72} - \frac{1}{36t} \).)

The other 12 morphisms fall into two orbits under the group of diamond operators (which is cyclic of order 6). These morphisms are not Galois coverings of \(\mathbb{P}^1 \), so their fibers usually define \(S_3 \)-extensions of \(\mathbb{Q} \). The condition for a fiber to be cyclic is expressed by requiring the discriminant of a cubic polynomial over \(\mathbb{Q}(t) \) (where \(t \) is a parameter on \(\mathbb{P}^1 \); adjoining a root of the cubic defines the covering) to be a square. This defines a hyperelliptic curve. For one of the two orbits, we obtain a curve of genus 2, for which we can prove using Chabauty’s method that it has exactly five rational points. Three of these points arise from split fibers containing cusps, but one pair of points corresponds to a rational point on \(\mathbb{P}^1 \) that has a cyclic fiber above it, leading to the curve \(E_0 \) in Theorem 1. The remaining orbit leads to a curve of genus 3, for which we can prove that it has exactly three rational points; they all correspond to ramified fibers containing cusps. The details are given in the next section.

3 Proof of the theorem

In the following, we will write \(X \) for \(X_1(13) \). We use the model of \(X \) given by

\[
y^2 + (x^3 + x^2 + 1)y = x^2 + x;
\]

see Sutherland’s table [Sut]. In particular, \(X \) has genus 2 and is (therefore) hyperelliptic. The canonical class on \(X \) is the linear equivalence class of divisors arising by pulling back a point under the hyperelliptic covering map \(X \to \mathbb{P}^1 \); it is the same as the class containing the canonical divisors.

The map \(X = X_1(13) \to X_0(13) \) obtained by sending a point of order 13 to the group it generates is Galois over \(\mathbb{Q} \). Its automorphism group consists of the diamond operators and is canonically isomorphic to \((\mathbb{Z}/13\mathbb{Z})^\times/\{\pm1\} \), which is a cyclic group of order 6; we denote this group by \(G \).

It is known that \(X(\mathbb{Q}) \) consists of the six rational cusps and that the group of rational points on its Jacobian \(J \) is cyclic of order 19; see [MT73]. The rational points on \(X \) form one orbit under \(G \); they are the two points at infinity and the points \((-1,-1), (-1,0), (0,-1) \) and \((0,0)\) on our model of \(X \).

Since the genus of \(X \) is 2, every rational point on \(J \) except the origin has a unique representation as an effective divisor \(D \) of degree 2 minus the canonical class, with the points in the support of \(D \) either rational or defined over a quadratic extension of \(\mathbb{Q} \) and conjugate, where \(D \) is not in the canonical class. Since the six rational points lead to exactly 18 effective divisors of degree 2 outside the canonical class, they account for all the rational points in \(J \), which implies that there are no quadratic points with irrational \(x \)-coordinate. See [BBDN14, DMK18].

Now consider a point \(P \in X \) with \([\mathbb{Q}(P) : \mathbb{Q}] = 3 \). The sum of \(P \) and its two Galois conjugates is a rational effective divisor \(D \) of degree 3, so it gives a rational point on the symmetric cube \(S \) of \(X \). Under the canonical map \(\pi: S \to \text{Pic}^3(X) \), it maps to a rational point on \(\text{Pic}^3(X) \). The fibers of \(\pi \) are \(\mathbb{P}^1 \)'s; this follows from the Riemann-Roch theorem.
Since Pic^3(X) is isomorphic to J (note that X has rational points), it has exactly 19 rational points. Therefore D lies in the fiber of π above one of these points. Six of the rational points on Pic^3(X) arise as a rational point on X plus the canonical class. This implies that all divisors in the corresponding fiber contain this rational point and can therefore never contain a cubic point.

For the remaining 13 rational points on Pic^3(X), the corresponding line bundle L is base-point-free. In this case, the fiber of π above the point can be identified with the target of the morphism X → P^1 defined by the two-dimensional space of global sections of the line bundle L. This implies that each cubic point on X lies in the fiber of one of these morphisms X → P^1 above a rational point of P^1.

These 13 rational points on Pic^3(X) consist of one point that is fixed by G and two orbits of size 6 under G. It clearly suffices to determine the cyclic cubic points in the fibers of the degree 3 morphisms X → P^1 associated to one representative of each orbit.

Let G′ be the subgroup of order 3 of G. The quotient X/G′ is a curve of genus 0, so the map X → X/G′ must show up in our list. Since this quotient is unique, the map must correspond to the point in Pic^3(X)(Q) that is fixed by G. Since X → X/G′ is a Galois covering, all its fibers over rational points are either ramified, split, or cyclic. The modular curve X/G′ is a double cover of X_0(13); viewing G′ as the group of diamond operators {⟨1⟩, ⟨3⟩, ⟨9⟩}, we see that X/G′ is a fine moduli space outside the branch locus of X → X/G′ (the image in X/G′ of the zero locus of x^2 + x + 1 in our model of X.) Since the cubic points arising in fibers of X → X/G′ map to rational points on X/G′ outside this branch locus, the elliptic curves they represent are defined over Q. This accounts for the first alternative in Theorem 1. (We have made this one-parameter family explicit in the previous section.)

One representative of one of the other two orbits of degree 3 morphisms to P^1 is given by the y-coordinate map of our model of X. The discriminant with respect to x of the equation defining X is

\[d_1(y) = (y + 1)(-27y^5 - 31y^4 - 6y^3 + 6y^2 + 5y + 1); \]

the condition that this is a square then defines a hyperelliptic curve D_1 of genus 2. A quick search finds five rational points on D_1: one point with y = −1 and two each with y = 0 and y = −\frac{4}{13}. So there are three fibers of the y-coordinate map with Galois group contained in A_3. The first two contain rational points on X, but the fiber above −\frac{4}{13} really consists of three conjugate points defined over the cyclic extension K; they and the other points in their G-orbits give rise to the curve E_0 and its Galois conjugates mentioned in 1. (It can be easily checked that the point (0, 0) on E_0 indeed has order 13. The discriminant of K is (13 · 19)^2.)

Using the Magma implementation of 2-descent on hyperelliptic Jacobians as described in [Sto01], we find that the Mordell-Weil rank of the Jacobian of D_1 is at most 1. From the rational points we have found on D_1, we can easily construct a rational point of infinite order on the Jacobian. A combination of Chabauty’s method with the Mordell-Weil sieve as explained in [BS10] and implemented in Magma then quickly proves that the five points we found are indeed all the rational points on D_1.

A representative of the remaining orbit is X → P^1 given by \frac{y^2 + 1}{x}. Writing t for the parameter on P^1, we have y = xt − 1. Plugging this into the equation of X and taking the discriminant
with respect to x gives
\[
d_2(t) = t(t + 1)^3(-4t^5 + 5t^4 - t^3 - 25t^2 - 23t - 4).
\]
Setting $d_2(t)/(t + 1)^2$ equal to a square gives a hyperelliptic curve D_2 of genus 3. It has three obvious rational Weierstrass points at infinity and with $t = -1$ or 0. We do not find any other rational point. Using 2-descent again, we can show that the Mordell-Weil rank of the Jacobian is 0. A minimal model of D_2 is
\[
v^2 + (u^3 + u^2)v = u^7 - 8u^5 - 13u^4 - 7u^3 - 2u^2 - u;
\]
from this we see that D_2 has good reduction at 2. The reduction has exactly three \mathbb{F}_2-points, which are the images of the three rational points we had found. Since their residue disks are fixed by the hyperelliptic involution, we know that each of the three residue disks contains an odd number of rational points. Since the Mordell-Weil group is finite, all 2-adic integrals $\int_P^Q \omega$ between rational points $P, Q \in D_2(\mathbb{Q})$ for regular differentials ω must vanish. In particular, we can, for each residue class, choose a differential whose reduction mod 2 does not vanish in the corresponding \mathbb{F}_2-point on the reduction. By [Sto06, Section 6], the corresponding integral vanishes for at most two points in the residue class. Since it has to vanish at each rational point and the number of rational points in the residue class is odd, there is only the known rational point in each of the three residue classes, which shows that $\#D_2(\mathbb{Q}) = 3$. These three points are all images of cusps, so we do not obtain any further cyclic cubic points on X. This concludes the proof.

References

[BCP97] Wieb Bosma, John Cannon, and Catherine Playoust, The Magma algebra system. I. The user language, J. Symbolic Comput. 24 (1997), no. 3-4, 235–265, DOI 10.1006/jsco.1996.0125. Computational algebra and number theory (London, 1993). MR1484478

[BBDN14] Johan Bosman, Peter Bruin, Andrej Dujella, and Filip Najman, Ranks of elliptic curves with prescribed torsion over number fields, Int. Math. Res. Not. IMRN 11 (2014), 2885–2923, DOI 10.1093/imrn/rnt013. MR3214308

[BS10] Nils Bruin and Michael Stoll, The Mordell-Weil sieve: proving non-existence of rational points on curves, LMS J. Comput. Math. 13 (2010), 272–306, DOI 10.1112/S1461157009000187. MR2685127

[DEvH+20] Maarten Derickx, Anastassia Etropolski, Mark van Hoeij, Jackson S. Morrow, and David Zureick-Brown, Sporadic Cubic Torsion, July 28, 2020. Preprint, arXiv:2007.13929.

[DN19] Maarten Derickx and Filip Najman, Torsion of elliptic curves over cyclic cubic fields, Math. Comp. 88 (2019), no. 319, 2443–2459, DOI 10.1090/mcom/3408. MR3957900

[DKSS17] Maarten Derickx, Sheldon Kamienny, William Stein, and Michael Stoll, Torsion points on elliptic curves over number fields of small degree, July 2, 2017. Preprint, arXiv:1707.00364.

[DMK18] Maarten Derickx, Barry Mazur, and Sheldon Kamienny, Rational families of 17-torsion points of elliptic curves over number fields, Number theory related to modular curves—Momose memorial volume, Contemp. Math., vol. 701, Amer. Math. Soc., Providence, RI, 2018, pp. 81–104, DOI 10.1090/conm/701/14142. MR3755909

[Jeo16] Daeyeol Jeon, Families of elliptic curves over cyclic cubic number fields with prescribed torsion, Math. Comp. 85 (2016), no. 299, 1485–1502, DOI 10.1090/mcom/3012. MR3454372

[JKL11a] Daeyeol Jeon, Chang Heon Kim, and Yoonjin Lee, Families of elliptic curves over cubic number fields with prescribed torsion subgroups, Math. Comp. 80 (2011), no. 273, 579–591, DOI 10.1090/S0025-5718-10-02369-0. MR2728995
Families of elliptic curves over quartic number fields with prescribed torsion subgroups, Math. Comp. 80 (2011), no. 276, 2395–2410, DOI 10.1090/S0025-5718-2011-02493-2. MR2813367

Infinite families of elliptic curves over dihedral quartic number fields, J. Number Theory 133 (2013), no. 1, 115–122, DOI 10.1016/j.jnt.2012.06.014. MR2981403

Families of elliptic curves with prescribed torsion subgroups over dihedral quartic fields, J. Number Theory 147 (2015), 342–363, DOI 10.1016/j.jnt.2014.07.014. MR3276329

Daeyeol Jeon, Chang Heon Kim, and Euisung Park, On the torsion of elliptic curves over quartic number fields, J. London Math. Soc. (2) 74 (2006), no. 1, 1–12, DOI 10.1112/S0024610706022940. MR2254548

Daeyeol Jeon, Chang Heon Kim, and Andreas Schweizer, On the torsion of elliptic curves over cubic number fields, Acta Arith. 113 (2004), no. 3, 291–301, DOI 10.4064/aa113-3-6. MR2069117

Daeyeol Jeon, Chang Heon Kim, and F. Momose, Torsion points on elliptic curves defined over quadratic fields, Nagoya Math. J. 109 (1988), 125–149, DOI 10.1017/S0027763000002816. MR931956

B. Mazur, Modular curves and the Eisenstein ideal, Inst. Hautes Études Sci. Publ. Math. 47 (1977), 33–186 (1978). MR488287

B. Mazur and J. Tate, Points of order 13 on elliptic curves, Invent. Math. 22 (1973/74), 41–49, DOI 10.1007/BF01425572. MR0347826

Loic Merel, Bornes pour la torsion des courbes elliptiques sur les corps de nombres, Invent. Math. 124 (1996), no. 1-3, 437–449, DOI 10.1007/s002220050059 (French). MR1369424

Filip Najman, Torsion rational elliptic curves over cubic fields and sporadic points on $X_1(n)$, Math. Res. Lett. 23 (2016), no. 1, 245–272, DOI 10.4310/MRL.2016.v23.n1.a12. MR3512885

Pierre Parent, Torsion des courbes elliptiques sur les corps cubiques, Ann. Inst. Fourier (Grenoble) 50 (2000), no. 3, 723–749 (French, with English and French summaries). MR1779891

Pierre Parent, No 17-torsion on elliptic curves over cubic number fields, J. Théor. Nombres Bordeaux 15 (2003), no. 3, 831–838 (English, with English and French summaries). MR2142238

Michael Stoll, Implementing 2-descent for Jacobians of hyperelliptic curves, Acta Arith. 98 (2001), no. 3, 245–277, DOI 10.4064/aa98-3-4. MR1829626

Michael Stoll, Independence of rational points on twists of a given curve, Compos. Math. 142 (2006), no. 5, 1201–1214, DOI 10.1112/S0010437X06002168. MR2264661

Andrew Sutherland, Optimized equations for $X_1(N)$. http://math.mit.edu/~drew/X1_optcurves.html.

Universiteit Leiden, Mathematisch Instituut, Postbus 9512, 2300 RA Leiden, The Netherlands.

Email address: P.J.Bruin@math.leidenuniv.nl

URL: http://pub.math.leidenuniv.nl/~bruinpj/

Universiteit Leiden, Mathematisch Instituut, Postbus 9512, 2300 RA Leiden, The Netherlands.

Email address: maarten@derickx.nl

URL: http://www.maartenderickx.nl/

Mathematisches Institut, Universität Bayreuth, 95440 Bayreuth, Germany.

Email address: Michael.Stoll@uni-bayreuth.de

URL: http://www.mathe2.uni-bayreuth.de/stoll/