Comparative study of HBA1C & superoxide dismutase in type II diabetes mellitus in Jalgaon district

Pravin Kumar Sonawane, SB Gaikwad, Anshula G and Banker M

DOI: https://doi.org/10.33545/26174693.2021.v5.i1a.64

Abstract
Type II diabetes formerly known as adult-onset diabetes, is a type of diabetes that is characterized by high blood sugar, insulin resistance, and relative lack of insulin due to obesity, lack of exercise or genetically determined. HbA1c in diabetic patients provides valuable information about the changes occurring in the blood glucose level over last three months. SOD is considered as a first line Defense against ROS, as it is present in almost all cells and it deals with the most hazardous radicals i.e. Superoxide (O$_2^-$). Oxidative stress is in the foreground of diabetes which increases with increase in severity of diabetes, keeping these facts in mind the present study was designed to compare SOD level in type II D.M in Jalgaon district. In the present study, we got inverse correlation (non-significant correlation) in these two parameter. As the levels of HbA1c increases there is decrease in SOD levels which indicates that as the severity of diabetes increases the levels of SOD decreases.

Keywords: Type II diabetes, oxidative stress, superoxide dismutase, HbA1c

Introduction
Glucose molecule in the blood normally binds to the haemoglobin molecule –known as glycated haemoglobin (HbA1c) or glycation. Its level is increased in diabetes mellitus and thus monitoring the levels of HbA1c in diabetic patients provides valuable information about the changes occurring in the blood glucose level over the period of three months. Diabetes is a metabolic disorder and is generally accompanied by increased levels of free radicals and decreased activity of antioxidants and various studies suggests that increased oxidative stress in diabetes mellitus may be due to increased formation of glycated haemoglobin (HbA1c). This increased glycation is thus involved in progression of diabetes and its complications. [Yau JWY, et al., 2012 & the int. expert committee, 2009] [10-12].

Oxidative stress produced is characterized by production of different free radicals. One of this free radical is superoxide (O$_2^-$) which causes cellular damage. SODs are a ubiquitous family of enzymes that function to efficiently catalyze the dismutation of superoxide anion. In the body there is a defense system which is actively engaged in destroying free radicals, e.g. Vitamins such as vitamin E, vitamin C, enzymes such as catalase, superoxide dismutase, reduced Glutathione [Stitt A.W, 2009] [8]. SOD is considered a first line defense against ROS, as it is present in almost all cells and it deals with the most hazardous radicals i.e. Superoxide (O$_2^-$). [Maxwell S.R, et al, 2003] [9] Oxidative stress is in the foreground of diabetes. It increases with increase in severity of diabetes, keeping these facts in mind the present study was designed to compare the levels of HbA1c and SOD in type II D.M. and to see whether there is any correlation between these parameters.

Aims and Objectives
The aim of the present study was to
1) Determine the activity of superoxide dismutase in erythrocyte (RBC-SOD).
2) To determine the levels of glycated hemoglobin (HbA1c) in type II D.M. patients (without any complications).
3) To evaluate the correlation between the above parameters in the patients having type II D.M.
Materials and Methods
The present study comprised of 110 known diabetic patients (with blood glucose > 180mg/dl) and 110 healthy controls (age and sex matched). This study was conducted in collaboration with Dr. Ulhas Patil Medical College and Government Medical College, Jalgaon from September 2018 to May 2020.

Inclusion Criteria
Patients diagnosed as type-II Diabetes Mellitus without any complications.

Exclusion Criteria
Patients having type-I Diabetes Mellitus, Gestational Diabetes Mellitus, type-II diabetes mellitus patients with complications.

Results and Observation

Parameters	Healthy Controls	Type-II D.M.	’t’ value	’p’ value	’r’ value
GlycatedHb %	4.96 ± 0.60	9.03 ± 0.57	4.99	<0.001	-0.28
SOD (U/gm. of HB)	5.25 ± 0.49	3.00 ± 0.44	23.83	<0.001	

(n= number of cases, p< 0.05 Significant value, p< 0.001 highly significant)

Fig 1: Concentration of Glycated Hemoglobin (%) in Healthy Controls and Type IIDM (Without any complications)

Fig 2: Activity of SOD (U/gm. of Hb) by Kajari Das Method in Healthy Controls and type II diabetes (without any complications).

Discussion
Oxidative stress is one of the important factors playing pathological role in diabetic complications and is a status in which disturbance in the balance between oxidants and natural antioxidants are seen. There are many possible explanations for increased oxidative stress observed in patients with D.M., one of them could be higher rate of glycation. Proposals have been made suggesting that increased glycation itself can lead to the production of free radicals [Palanduz S, et al, 2001] [7]. HbA1c can provide accurate and reliable method to assess routinely the relative level of glycemic control. In the present study table no.1 and Fig. 1 and 2 shows levels of glycated hemoglobin and SOD in healthy controls and type II diabetic patients. In diabetic patients, the mean HbA1C was increased as compared to control, this difference was statistically significant (p<0.001) when compared between study cases and healthy control subjects. Superoxide Dismutase (SOD) is one of the defenses against oxidative stress. It catalyzes the dismutation of superoxide radicals to oxygen and hydrogen peroxide (H₂O₂). SOD is thought to be one of the major enzymes that protect cells from ROS. In the present study (Fig. No. 2) shows that erythrocyte SOD activity was significantly decreased in type 2 diabetic patients (without any complications) as compared to healthy controls (P<0.001).

Hyperglycemia seen in diabetes activates many reactions such as glucose autoxidation, non-enzymatic glycation of proteins, and activation of protein Kinase C. This results in overproduction of Superoxide, Hydroxyl radicals and Hydrogen peroxide. So there is every possibility that while quenching superoxide, SOD may be utilized or SOD is inhibited by these oxidants and this causes reduction in the SOD activity. Palanduz S, Ademoglu E et al. observed that the SOD activity significantly decreased in diabetes mellitus. They suggested that there seems to be an imbalance between plasma oxidant and antioxidant systems in patients with type II diabetes. [Palanduz S, et al, 2001] [7]. Abdol Ijalal Marjani et al. also found decreased erythrocyte SOD enzyme activity with type II diabetes as compared to controls .These results led us to think if there is a relation between Hba1c level and SOD. This is the reason; we have
correlated these two parameters by using Karl Pearson’s Coefficient. In the present study we observed a non-significant inverse correlation (‘r’ value = -0.28). As the levels of HbA1c increases, there is decrease in SOD levels. It indicates that there is influence of glycemic control on antioxidant levels in diabetic subjects.

Conclusion

From the present study we conclude that oxidative stress is in the foreground of diabetes. HbA1c being the marker of glycemic control was compared with the oxidative stress marker SOD. There is an inverse correlation observed between these two markers. This indicates that as the degree of severity of diabetes increases, there is decrease in SOD activity which leads to oxidative stress. It suggests that a good glycemic control can reduce the oxidative stress in diabetes mellitus.

References

1. Abdal Jalal Marjani. Plasma lipid peroxidation zinc and erythrocyte Cu – Zn superoxide dismutase enzyme activity in patients with type 2 diabetes mellitus in Gorgan city (south east of the Caspian Sea). The Internet Journal of Endocrinology 2005;2(1). DOI: 10.5580/126b.
2. The International Expert Committee. International Expert Committee report on the role of the A1C assay in the diagnosis of diabetes. Diabetes Care 2009;32:1327-34.
3. Irshad M, Choudhari PS. Oxidant and antioxidant system: role and significance in human body. Indian J Exp Biol 2002;40:1233-9.
4. Kajari-Das, Luna Samanta, Chainy GBN. A modified spectrometric assay of superoxide dismutase using nitrite,” Formation by superoxide radicals. Indian Journal of Biochemistry and Biophysics 2000;37:201-204.
5. Maxwell SR, Thomason H, Sandler D, Le Guen C, Baxter MA, Thorpe GH, et al. Poor glycaemic control is associated with reduced serum free radical scavenging (antioxidant) activity in non-insulin-dependent diabetes mellitus. Ann Clin. Biochem 1997;34:638-644.
6. Misra H, Fridovich I. Estimation of superoxide dismutase. J Biochem 1972;247:3170-3178.
7. Palanduz S, Ademoglu E, Gokkusu C, Tamer S. Res CommunMolpatholpharmocol 2001;109(56):309-318.
8. Stitt AW. The role of advanced glycation in the pathogenesis of diabetic retinopathy”. Exp Mol Pathol 2003;75:95-108. [PubMed]
9. Trivelli LA, Ranney PH, Lai HT. Estimation of Glycated Haemoglobin by Resin Binding Method. New Eng. J. Med 1971, 284-353.
10. Yau JWY, Rogers SL, Kawasaki R. Global prevalence and major risk factors of diabetic retinopathy”. Diabetes Care 2012;35:556-64. [PubMed].