Composition and structure of a lowland forest in the Core Zone of the Bukit Duabelas National Park, Jambi, Indonesia

Azwar Anas¹, Kuswata Kartawinata², and Nisyawati³

¹SMA Negeri 15 Bungo, Jalan Puncak Tuo Limbuk, Kecamatan Limbuk, Kabupaten make, Jambi 37213, Indonesia
²Integrative Research Center, The Field Museum of Natural History, 1400 Lake Shore Drive, Chicago, IL 60605, USA
³Departemen Biologi, Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas Indonesia, Gedung E Lantai 2, Kampus UI, Depok 16424, Indonesia

Corresponding author: Kuswata Kartawinata, kkartawinata@gmail.com

ABSTRACT

The objective of the study was to obtain data on composition and structure of the forest in the midsection of the Bukit Duabelas National Park core zone, designed to complement the existing data and provide new information potentials for the management of the park core zone. The study was carried out in October-November 2012. Observations were made on plots of one hectare (100 m x 100 m), which was divided into 100 subplot, measuring 10 m x 10 m each. Enumeration of tree species with diameters ≥ 10 cm revealed that as many as 540 individuals were recorded, consisting of 89 species and 36 families, with a total basal area of 30.837 m² and only three species of Dipterocarpaceae were registered. The forest had a low diversity as indicated by low species richness, much lower than in the undisturbed lowland primary forests in the Batang Gadis National Park in North Sumatra, where similarity was very low (5.9%). The forest in the plot was designated as the Dacryodes rostrata- Shorea leprosula Association, named after two species with highest importance values, thus the dominant. The structure and species composition was complemented to the regenerating forest after heavy disturbances. The forest has been undergoing slow natural succession, leading to the formation of the forest similar to the original climax forest. Natural recovery through succession could be enhanced and assisted by means of ecological restoration, through planting of tree species characteristics of forests in Jambi, including species of Dipterocarpaceae, useful species having values to maintain the livelihood of the indigenous native tribe Suku Anak Dalam and rare, endemic other species having high conservation values.

INTRODUCTION

The lowland rain forests of Sumatra constitute an important center of plant species diversity and the hub of the geography of plant families and genera within the Malayan region (Steenis 1950; Whitmore, 1986; Kartawinata, 2013). The Bukit Duabelas National Park (BDNP) contains a fraction of these lowland rain forests (Sylviani, 2008; Setiawan, 2010) and constitutes an important biodiversity center in the middle section of Sumatra [BAPPENAS (Badan Perencanaan Pembangunan Nasional), 2003]. Much of the lowland rain forests of Sumatra, dominated by dipterocarp species, have experienced destructive and extensive commercial logging, leaving only undisturbed remnants of forests as scattered mosaics in the

Keywords: Association, disturbances, regenerating forest, ecological restoration, species richness, structure and composition

Submitted 08 January 2021; Accepted 10 March 2021.
lowlands. The Bukit Dua Belas National Park is also a catchment area for the Batanghari River, one of the largest rivers in Jambi (Wiriadinata & Setyowati, 2000; Setiyawan, 2010. It is a unique protected area in view of the fact that it is the last home of the ethnic Anak Dalam (SAD) or known also as orang riniba (Wiriadinata & Setyowati, 2000; Setyowati, 2003; Sriyanto et al. 2003).

Conservation and management of forests within protected areas, including BDNP, require a good and correct planning. In this respect optimal and sustainable management of forest resources can be implemented well if accurate, complete and up-to-date data and information on vegetation were available. They should provide a representation of current condition of plant communities, which constitute the habitats to support the survival of numerous other organisms living in the BDNP areas.

A better knowledge on detailed description of structure, composition and ecology of lowland rain forests of Sumatra, required for better sustainable development and conservation, are relatively limited. Data and information on the vegetation and physiography of Sumatra have been summarised by Laumonier (1997). Scattered studies on vegetation, primarily forests, have been conducted in various parts of Sumatra, mainly in the national parks and other protected areas. They include those in the Batang Gadis National Park (Kartawinata et al., 2004), Berbak National Park (Silvius et al.,1984), Gunung Leuser National Park (Abdulhadi, 1991; Samsoedin and Heriyanto, 2010), Harapan Tropical Rain Forest (Mansur et al. 2010), Hutan Adat Imbo Mengakadai (Elviqar, 2013; Hermawan, 2013), Hutan Danau Bangko (Polosakan, 2011), Kerinci Seblat National Park (Gillisosn et al., 1996), Rimbo Panti Nature Reserve (Yusuf et al., 2005), Tesso Nilo National Park (Gillison, 2001). Studies on the structure and species composition in the eastern and western sections of the BDNP core zone, respectively were undertaken by Rahmah et al. (2016) and Sehati (2013).

The present phytosociological study in the midsection of the BDNP core zone was designed to complement the existing data and provide new information on the species composition, structure and the potentials of the forest in the BDNP core zone. They can be used as a scientific basis and reference for better execution of conservation and management of the park.

METHODS

The BDNP was established by the Decree of the Ministry of Forestry and Plantation (No. 258/Kpts-II/2000 dated 23 August 2000). It had a total area of 60,500 hectare, consisting of primary and secondary forests, which were converted from the permanent production forests, limited production forests and forest designated for other uses (Sriyanto et al., 2003). The entire park was located within the lowland dipterocarp forest region of Sumatra (Lamounier, 1997; Whitmore, 1986).

Many important useful plants could be found in BDNP, including fruit trees such as durian (Durio spp.), important hard wood producing bulian (Eusideroxylon zwegeri), latex producing tree species (Dyera costulata) and rattan producing palms such as rotan manau (Calamus manan) and jernang (Daemonorops draco). To date 41 species of orchids.107 species of flowering plant and 27 species of fungi have been recorded to have medicinal values (Kementerian Kehutanan dan Balai TNBD, 2011). The Bukit Duabelas National Park (BDNP) contained also rare plant species, including Eusideroxylon zwegeri, Fagraea fragrans, Calamus manan, Daemonorops draco and Dyera costulata (Kementerian Kehutanan dan Balai TNBD, 2011; Rahmah et al., 2016)

![Figure 1. The map showing the geographic location and the mean monthly rainfall of the study site in the midsection of the core zone of the Bukit Duabelas National Park within the National Park System of the Jambi Province (After Rahmah et al., 2016 & Kementerian Kehutanan dan Balai TNBD, 2011; with modification)](image)

The map of BDNP (Figure 1) shows the park geographic location at the 102°31’37” - 102°48’27” East and 01°44’35”.-02°03’15” South. The topography ranged from undulating to hilly, with the altitude of 260-400 masl (meter above sea level). The Red Yellow Podsolic soil was dominant in the area (Kementerian Kehutanan dan Balai TNBD, 2011). The 38-year record of the mean annual rainfall (Berlage, 1949) was 3224 mm. The highest mean monthly rainfall of 392.9 mm was recorded in November and the lowest of 27.1 mm in August and 52.7 mm in September [BPS...
The Relative Density (RD) for each species was then computed as follows:

$$RD = \frac{\text{number of trees of a species}}{\text{total number of trees}} \times 100\%$$

Frequency was expressed as the number of occurrences of a species in subplots within the plot and was computed as the percentage of the total number of subplots. Relative Frequency (RF) was expressed as follows:

$$RF = \frac{\text{frequency of a species}}{\text{sum of frequency of all species}} \times 100\%$$

The dominance (Do) was determined by the stem cover, which was expressed as basal area (BA). BA was calculated with the formula of \(BA = \frac{d}{2\pi} \), where \(d\) stands for diameter. The dominance of a species was obtained by totalling the BA values for all trees in the species. The Relative Dominance (RDo) was then computed with the following formula:

$$RDo = \frac{\text{dominance of a species}}{\text{dominance of all species}} \times 100\%$$

The Importance Value (IV) of a species was calculated by summing up RD, RF and RDo in the plot, thus:

$$IV = RD + RF + RDo$$

The Family Important Value (FIV) was computed by totaling the Importance Values of all species in a family (Kartawinata et al., 2004).

RESULTS

Composition

Appendix 1 shows that in 100 subplots making up the one-hectare plot, we recorded 540 individual trees, comprising 89 species and 36 families with the total basal area (BA) of 30,837 m²/ha. The authors of the scientific names in the present study are attached to all species listed in Appendix 1. The characteristics of the composition and structure of the forest is summarised in Table 1, which shows that Dipterocarpaceae was not dominant, consisting only of Shorea leprosula, Parashorea lucida and Parashorea sp. (Appendix 1).

Appendix 1 indicates that most of species had low values of density (D), dominance expressed as basal area (BA), frequency (F) and importance value (IV). It shows that 10 species had high IV, where two of them had the highest IV, that were Dacryodes rostrata (IV= 15.80) and Shorea leprosula (IV=15.58). They constituted the dominant and co-dominant species and on the basis of this dominance (Mueller Dombois & Ellenberg, 1974, 2016) the tree community in the forest of the midsection of BDNP core zone could be designated as the Dacryodes rostrata- Shorea leprosula Association. Other eight prevalent species with IV > 10 (Appendix 1), that characterized the association were Hydnocarpus sp. (IV=14.91), Antidesma neurocarpum (IV=14.30); Dialium platysetalum (IV=12.67), Artocarpus odoratissimus (IV=10.83), Dacryodes rugosa (IV=10.17), Parashorea...
platysepalum (IV=10.03), Mussaenda frondosa (IV=9.33) and Symphocos sp. (IV=9.03).

Dacryodes rostrata had the highest density (32 trees/ha), followed by Hydnocarpus sp. and Antidesma neurocarpum (Figure 2a), while the lowest tree density occurred in 30 species with Dacryodes rostrata density of one tree per hectare (Appendix 1). The highest frequency was recorded in Dacryodes rostrata followed by Antidesma neurocarpum and Hydnocarpus sp. (Figure 2b). In terms of basal area Appendix 1 shows that three species had the highest values, they were Shorea leprosula (2.83 m²), Dialium platysetalum (2.58 m²) and Artocarpus odoratissimus (1.84 m²).

Figure 2. (a) Ten tree species with highest density (trees/ha) and (b) ten tree species with highest frequency in the forest of the mid section of the BDNP core zone.

Among the 89 tree species present in the plot, 10 species having IV > 10 jointly dominated the forest, where as mentioned above Dacryodes rostrata was the primary species with highest IV of 15.80 (Appendix 1). The highest IV was attributed to high density and high frequency, implying that its mean tree diameter was small (20.02 cm). It was smaller compared to diameters of Dialium platysetalum (45.17 cm), Shorea leprosula (38.20 cm), Parashorea lucida (37.08 cm) and Artocarpus odoratissimus (36.74 cm). To the contrary Dialium platysetalum, Shorea leprosula, Parashorea lucida and Artocarpus odoratissimus, which were included in the 10 dominant species were observed to have a relatively lower density and frequency compared to that of Dacryodes rostrata.

Table 1. Characteristics of the composition and structure of the forest in a one hectare plot at the midsection of the BDNP core zone, Jambi.

Forest characteristics	Dipterocarpaceae	Non-Dipterocarpaceae	Total
Number of species	3 (3.37%)	85 (96.63%)	88
Density (Trees/ha)	96 (6.67%)	504 (93.33%)	540
Basal Area (m²)	5.01 (16.25%)	25.822 (83.75%)	30.837
Importance Value	28.89 (9.63%)	271.11 (90.37%)	300

Table 1 shows that the total BA in the plot was 30.837 m² representing 540 trees with the mean BA of 0.057 m². Table 3 indicates that the soil surface of the one-hectare plot in the mid-section of the core zone of BDNP was mostly covered by 10 species having highest BA totalling 15.515 m² or 50.31% of the total BA. The species Dipterocarpaceae having the highest BA was represented by Shorea leprosula with BA of 2.829 m² and Parashorea lucida with BA of 1.795 m² or 14.99% of the total BA, comparable to the values elsewhere in Sumatra (Kartawinata et al., 2004) and Kalimantan (Kartawinata et al., 2008). Another dipterocarp species, Parashorea sp. had only an insignificant BA (0.38 m²).

Figure 3 demonstrates the species-area curve expressing the pattern of tree species richness in subplots. It shows that the number of species increased as the area extended and there was no indication of the curve to flatten, implying that the one-hectare area did not represent the minimal area. This is comparable to the phenomenon in the primary lowland forests of Sumatra and Kalimantan (Kartawinata et al., 2004; Kartawinata et al., 2008).

In this study we recorded 36 families and 20 of them had highest IV (Table 2). They were families commonly found in the lowland forests of Sumatra, including Burseraceae, Dipterocarpaceae, Rubiaceae, Lauraceae and Euphorbiaceae (Anwar et al., 1984). Lauraceae contained the highest number of species. It is the family characterizing the lowland forests of Southeast Asia (Yamada, 1976), including Kalimantan (Kartawinata et al., 2008). The other families with high species number were Euphorbiaceae and Malvaceae.

Euphorbiaceae and Phyllanthaceae commonly occurred in both primary and secondary lowland forests (Kartawinata et al., 2004). The species of these families have an adaptive capability to grow in the open areas, including gaps in primary forests (Whitmore, 1986). In the mean time 14 families (39%) contained one species each. Dipterocarpaceae (Table 1) was represented by only three species (Parashorea lucida, Parashorea sp. and Shorea leprosula) with the total basal area of 5.01 m² or 16.25% of the total (Table 1).

Table 1 shows that the total BA in the plot was 30.837 m² representing 540 trees with the mean BA of 0.057 m². Table 3 indicates that the soil surface of the one-hectare plot in the mid-section of the core zone of BDNP was mostly covered by 10 species having highest BA totalling 15.515 m² or 50.31% of the total BA. The species Dipterocarpaceae having the highest BA was represented by Shorea leprosula with BA of 2.829 m² and Parashorea lucida with BA of 1.795 m² or 14.99% of the total BA, comparable to the values elsewhere in Sumatra (Kartawinata et al., 2004) and Kalimantan (Kartawinata et al., 2008). Another dipterocarp species, Parashorea sp. had only an insignificant BA (0.38 m²).
The structure of a forest is reflected by the horizontal and vertical distribution. Horizontal distribution is generally expressed in terms of diameter class distribution (Purwaningsih & Yusuf, 2005) and vertical distribution by height stratification of tree crowns (Richards, 1996; Mirmanto, 2009). It is always the case and is a feature of a primary tropical forest that a diameter class distribution curve forms an inverted J shape, where the tree diameters < 20 cm are dominant in the population, reflecting general characteristics of dynamic tropical rain forest (Richards, 1996). In the present plot the trees with DBH < 20 cm amounted to 292 trees or 54.07 % (Figure 4).

Table 2. Ten families with highest number of tree species with DBH ≥ 10 cm and highest IV in the one-hectare lowland forest plot at the mid-section of the BDNP core zone, Jambi.

Family	Species	Number	%	Family	Number	%
Lauraceae	6	6.74		Burseraceae	31.60	10.53
Euphorbiaceae	5	5.62		Dipterocarpaceae	28.89	9.63
Malvaceae	5	5.62		Phyllanthaceae	23.38	7.79
Clusiaceae	4	4.49		Moraceae	22.37	7.46
Moraceae	4	4.49		Flacourtiaiaceae	20.21	6.74
Myristicaceae	4	4.49		Fabaceae	16.32	5.44
Olacaceae	4	4.49		Lauraceae	13.89	4.63
Phyllanthaceae	4	4.49		Rubiaceae	12.85	4.28
Rubiaceae	4	4.49		Euphorbiaceae	11.94	3.98
Sapotaceae	4	4.49		Malvaceae	10.06	3.35
Total	44	49.44		Total	191.51	63.84
Other 26	45	50.56		Other 26	108.49	36.16

Table 3. Descending Basal Area (BA) of ten tree species with DBH ≥ 10 cm in the one-hectare lowland forest plot at the mid-section of the BDNP core zone, Jambi.

No	Species	Family	BA (m²)
1	Shorea leprosula	Dipterocarpaceae	2.829
2	Dialium platysepalum	Fabaceae	2.580
3	Artocarpus alatissimus	Moraceae	1.840
4	Parashorea lucida	Dipterocarpaceae	1.795
5	Dacryodes rostrata	Burseraceae	1.261
6	Hydnocarpus sp.	Flacourtiaiaceae	1.235
7	Baxcaura macrophylla	Phyllanthaceae	1.031
8	Mussaenda frondosa	Rubiaceae	1.021
9	Anisodima neocarpum	Phyllanthaceae	0.978
10	Artocarpus elasticus	Moraceae	0.945
Total			15,515 m² (50.31%)
79 other species			15,322 m² (49.69%)
Total			30,837 m² (100%)

STRUCTURE

The structure of a forest is reflected by the horizontal and vertical distribution. Horizontal distribution is generally expressed in terms of diameter class distribution (Purwaningsih & Yusuf, 2005) and vertical distribution by height stratification of tree crowns (Richards, 1996; Mirmanto, 2009).

It is always the case and is a feature of a primary tropical forest that a diameter class distribution curve forms an inverted J shape, where the tree diameters < 20 cm are dominant in the population, reflecting general characteristics of dynamic tropical rain forest (Richards, 1996). In the present plot the trees with DBH < 20 cm amounted to 292 trees or 54.07 % (Figure 4).

Table 4 shows the diameter class distribution of the 10 tree species with highest IV. Dacryodes rostrata was dominant at the 10-19.9 cm diameter class. It should be noted also that the ten species were well represented in the 10.9 – 19.9 cm and 30 – 30.9 cm diameter classes. The number of species decreased as the diameter increased. At the upper end of diameter class of 90-90.9 cm we recorded only two species, that were Dialium platysepalum and Parashorea lucida, while Shorea leprosula was present at 80 – 89.9 cm.
Four height classes of trees in the plot could be identified (Figure 5), comprising the A stratum (>30 m), B stratum (20.1-30 m), C stratum (4.1-20 m) and D stratum (1.1-4 m). The highest number of trees (452) occurred in the 4-20 m class (Figure 5). The A stratum which was the emergent stratum was dominated by Dipterocarpaceae, the B stratum by Moraceae, Burseraceae and Flacourtiaceae, the C stratum by Burseraceae, and the D stratum by the four families, each of which was represented by one tree.

Figure 6 is a simulated profile diagram of the forest on the plot constructed using the method of Kartawinata et al., (2004) by plotting each tree sequentially during the recording and measuring the trees. It revealed the heights of the individual trees from 1.9 m to 45 m, forming the A, B, C and D strata. The heights of the strata in BDNP were shorter than in the undisturbed primary forest at the Batang Gadis National Park, where the A stratum was 50-60 m and the B stratum, which was the main forest canopy, was 30-50 m. The tallest tree with the height of 45 m and DBH of 86 cm was Artocarpus odoratissimus. The shortest trees with the height of 1-4 m were Bombax anceps, Menecylon excelsum, Pertusadina eurhyncha and Madhuca sp. with mean DBH of 12.02 cm.

The emergent top A stratum (>30 m) consisted of only 16 trees of the 10 prevalent species, which were dominated by species of Dipterocarpaceae consisted of five trees or 31.3% of the total. Dominance of Dipterocarpaceae in the upper canopy is a general characteristic of forests in Sumatra (Anwar et al., 1984; Kartawinata et al., 2004). The B stratum was dominated by big trees, including Artocarpus odoratissimus (mean DBH of 36.74 cm), Dacryodes rostrata (mean DBH of 20.02 cm), Dialium platysepalum (mean DBH of 45.17 cm) and Shorea leprosula (mean DBH of 38.20 cm). In C & D strata (1-20 m) the trees were dominated by species of Burseraceae (12.1%), Phyllanthaceae (7.0%), Flacourtiaceae (6.8%), Lauraceae (6.6%) and Dipterocarpaceae (5.3%). The B stratum (20.1-30 m) was dominated by species of the families Moraceae (13.2%), Burseraceae (11.8%), Dipterocarpaceae (10.3%) and Flacourtiaceae (10.3%).

Figure 7 is a histogram of species area curve of tree species with DBH ≥ 10 cm in 100 subplots of the 100 m x 100 m plot in the forest of the midsection of BDNP core zone.

Table 4. Number of trees of 10 species with highest importance values (IV) along the diameter class gradient in a one-hectare plot in the forest of the midsection of the BDNP core zone, Jambi.

No	Species	Diameter class (cm)								
		10-19.9	20-29.9	30-39.9	40-49.9	50-59.9	60-69.9	70-79.9	80-89.9	90-99.9
1	Dacryodes rostrata	22	4	4	2					
2	Shorea leprosula	6	2	2	3	2				
3	Hydnocarpus sp.	14	11	4	1					
4	Anisodium neurocarpum	18	17	5						
5	Dialium platysepalum	4	0	2	2					
6	Artocarpus odoratissimus	2	5	2	1					
7	Dacryodo ragosa	15	12	2	1					
8	Parashorea lucida	4	3	1	2					
9	Mussaenda franchesa	6	8	3	1					
10	Symplocos sp.	6	7	3	1					

Figure 8 is a histogram of height class distribution of trees with DBH ≥ 10 m in a one-hectare plot in the forest of the midsection of the BDNP core zone, Jambi.
Figure 6. Simulated profile diagram of the forest on the plot constructed by plotting the height of each tree and sequential tree position from tree no. 1 in the 1st subplot up to the tree no 529 in the 100th subplot in the mid-section of the BDNP core zone.

Abiotic Factor

The topography of the one-hectare study plot is indicated in Figure 7. The forest in the study site was the lowland primary forest with topography ranging from undulating to hilly. The altitude ranges from 265 m to 327 m asl, with slopes vary from 2 to 45 %. The soil had pH of 5.6-7.36, mean daily temperature was 26.630 C, and the relative humidity ranged from 60.3% to 88.5%.

We recorded that the highest number of trees was recorded at the altitude of 290 - 299 m asl (193 trees) and the lowest number at 330 -339 m asl (3 trees). The highest number of trees (371) occurred at the slopes of 0 - 8 % and the lowest number (46) at the slope of 16-45 %. It was comparable to the situation in Mt. Galunggung (Pratiwi, 1989) and in the Mt. Gede-Pangranago National Park (Siagian, 2000).

DISCUSSION

Figure 8 shows the comparison of the species richness and the tree density in one-hectare plot in the present study to the findings in one-hectare plots of other studies in lowland forests of Sumatra and Kalimantan. The species richness refers to “the number of species in a sampling unit” (McCune & Grace, 2002), which indicates species diversity at the first level or alpha diversity (Whittaker, 1972). In the present study the species richness was the lowest amounted to only 89 species per hectare, comparable to those at the research plots in Sarolangun, Jambi (Elviqar, 2013; Hermawan, 2013; Sehati, 2013 and Rahmah et al., 2016). It was much smaller than the species richness in the typical undisturbed primary lowland forests at the Batang Gadis National Park in North Sumatra (Kartawinata et al., 2004) and at Malinau in East Kalimantan (Sheil et al., 2010) with the number of 203 species, respectively.

The implication of this phenomenon points to the conditions of the forests in the present study as well as in the other studies in Sarolangun, Jambi (Elviqar, 2013; Hermawan, 2013; Sehati, 2013 and Rahmah et al., 2016). They must have been, in one way or another, disturbed by human activities, including highly destructive selective logging by commercial forest concessionaires and less destructive harvesting by the indigenous Suku Anak Dalam (SAD). As indicated by Sriyanto et al., (2003) the forests at BDNP had a total consisted of primary and secondary forests, which were converted from the permanent production forests, limited production forests and forest designated for other uses. It should be noted that the forests constituting the national park were set aside for the protection of the livelihood of the SAD inhabiting the natural ecosystems of the area.

The floristic similarity between the present study plot and that in the eastern core zone of BDNP (Rahmah et al., 2016) was 40.8 % and with those at Hutan Adat Imbo Mengkadai (HAIM) 1 and HAIM 2 was 8.3 %, respectively, while with the Batang Gadis NP was 5.9 %, thus showing a totally different composition. It implies that differences were due to disturbances, leading to diverse compositional development of the disturbed forests resulting from the close association of the regrowth of original forest tree species and the late successional secondary forest species (Connel, 1978; Slik et al., 2008; Sheil & Burslem, 2003).

The two dominant species in the plot, Dacryodes rostrata and Shorea leprosula (Appendix 1) signified the secondary nature of the forest. Yusuf (2005) noted that in West Sumatra Dacryodes rostrata occurred only in 20-30 years old secondary forests and was not found in 10 years old secondary forest. Secondary forest species recorded in the present study plot included Cratoxylum cochinchinense, Macaranga hypoleuca, Macaranga tanarius, Malotus mollissimus, Mussaenda frondosa, Neouneura calycina and Shorea leprosula. Shorea leprosula is a primary lowland rain forest species but often behaves like secondary forest species or even like a pioneer species invading canopy gaps and forest edges (Whitmore, 1986).
The presence of only three species of *Dipterocarpaceae* with D (density) of 36 trees/ha and BA (basal area) of 5.01 m² was unusual in view of the fact that in undisturbed lowland forests of Sumatra, the species of *Dipterocarpaceae* are generally dominant. It was exemplified by the lowland forest at the Batang Gadis National Park, which contained 16 dipterocarp species with D of 122 trees/ha and BA of 18.99 m² (Kartawinata et al., 2004). We assumed that this phenomenon was due to intensive selective logging of dipterocarp species which mostly have high commercial values. The heights of the strata in BDNP (Figure 6) were shorter than in the undisturbed primary forest at the Batang Gadis National Park, where the A stratum was 50-60 m and the B stratum, which was the main forest canopy was 30-50 m. Structurally it points to the disturbed condition of the forest at the midsection of the core zone of BDNP.

The widespread distribution of *Dacyrides rostrata* as shown by high frequency value of 28 % was apparently related to its fruits, which were palatable to birds and primates (Balgooy, 1998), thus functioned as dispersers. Fruits of *Dacyrides rostrata* were reported to have high nutritive values, where 100 g of fruits contained 241 kcal energy, 35 mg protein, 399 mg K, 83 mg Ca and 83 mg Mg (Hoe & Siong, 1999).

Distribution of a species is generally not dependent on the distribution of other species, implying the absence of association among species. It was revealed by the association of species having frequencies > 5 %, indicating the Jaccard Coefficient of < 0.4 (Figure 9). It was further confirmed by X² test (df = 1 and α = 0.05) for 5 species with high frequencies, which showed negative association (X² < X² Table).

In the plot, we recorded only two species that were listed in the IUCN Red List of having high IUCN conservation status. They were *Parashorea lucida* and *Shorea leprosula*. *Parashorea lucida* had only12 trees and was listed in the category of Critically Endangered, while *Shorea leprosula* had only 19 trees and listed in the category of Endangered (Table 5). The entire area of BDNP, however, contained also rare plant species, including *Eusideroxylon zwageri*, *Fagraea fragrans*, *Calamus manan*, * Daemonorops draco* and *Dyera costulata* (Kementerian Kehutanan dan Balai TNBD, 2011; Rahmah et al., 2016).

The concept of Hubbell & Foster (1986) states that if on the average, a species had one or fewer individuals per hectare, it can be considered as a rare species on the local scale. Applying this concept, 59 species of 32 families occurring in the plot can be considered as rare in view of the fact that they had the percentage of number of trees of 1-5 %. Of 32 families, 15 of them were represented by one individual each (Table 5). This phenomenon should not be in any way perceived on the global scale as defined by IUCN criteria of rareness.

Table 5. The status of tree species occurring in the mid-section of the core zone of the BDNP as listed in the IUCN Red List Species.

No	Scientific name	Family	IUCN Status	D	F	Do	IV
1	*Parashorea lucida*	Dipterocarpaceae	CE	12	10	1.79	10.11
2	*Shorea leprosula*	Dipterocarpaceae	E	19	14	2.83	15.50
3	*Dacyrides rostrata*	Burseraceae	LR/LC	32	28	1.26	15.80
4	*Phyos grisea*	Rutaceae	LR/LC	17	16	0.76	8.22
5	*Sophora macrophylla*	Malvaceae	LR/LC	10	9	0.63	5.75
6	*Discospermum arenale*	Ebenaceae	LR/LC	7	6	0.68	8.32
7	*Aglita odoroviridis*	Meliaceae	LR/LC	5	5	0.91	2.75
8	*Javan fistulosa*	Myristicaceae	LR/LC	4	4	0.12	1.98
9	*Alysonia saccata*	Gomortegaceae	LR/LC	1	1	0.01	0.45

Legend: CE = Critically Endangered; E = Endangered; LR/LC = Lower Risk/Least Concern

CONCLUSION

The one-hectare study plot contained 540 trees, comprising 89 species and 36 families. On the basis of two dominant species we designated the tree community in the forest as the *Dacyrides rostrata-Shorea leprosula Association*. Floristically it was a poor community with low species richness and non-dipterocarp species were prevalent. The one hectare plot should not in any way considered as the minimal area representing the surrounding forests, but it sufficiently provided an illustration of the forest locally. The plot was established as a permanent plot so that it can be used for monitoring dynamic processes.
and future studies in various aspects valuable to support sustainable management of the BDNP and the livelihood of SAD.

Structurally and floristically the forest represented a developing and regenerating disturbed forest, with heterogenous species composition as reflected by very low frequency and density in the majority of the species. The core zone of the BDNP has undergone changes from dipterocarp dominated forest to that dominated by non-dipterocarps, due to human activities.

A natural succession has been taking place in the forest of the core zone, leading to the formation of forest similar to the original one prior to disturbance. This rate of natural succession is, however, extremely slow. It can be enhanced and assisted by means of ecological restoration through planting of tree species characteristics of forests in Jambi. They include species of Dipterocarpaceae, useful species having values to maintain the livelihood of the SAD, rare and endemic species and others with high conservation values. Species that were persistent and would maintain themselves in the forest in the future are currently represented in almost all diameter classes, although with low density.

ACKNOWLEDGEMENTS

We are very grateful to the Head of the Education Agency of the Jambi Province and the Regent of Bungo, who provided financial support to the first author (AA) that made the present study possible. Our thanks go also to Ms. Rahmah and Ms. Sehati, the graduate students of the Borany Department of the University of Indonesia, for their assistance and collaboration extended during the field data collection. We thank also the Head and the staff members of the Bukit Duabelas National Park for the permit and for providing various facilities during the field work and allowing to use the map of the Park.

REFERENCES

Abdulhadi, R. (1991). A Meliaceae forest in Ketambe, G. Leuser National Park, Sumatra, Indonesia. In: Proceedings of the 4th Round-Table Conference on Dipterocarps, Bogor, Indonesia, 12-15 December 1989 (eds: I. Soerianegara, S. S.Tjitosomo, R. C. Umaly & I. Umboh), pp. 307-315. BIOTROP Special Publication 41, SEAMEO-BIOTROP, Bogor, Indonesia.

Anwar, J., Damanik, S.J., Hisyam, N. & Whitten, A.J. (1984). Ekologi Ekosistem Sumpatera, Gadjah Mada University Press, Yogyakarta, Indonesia.

BPS (Badan Pusat Statistik Kabupaten Sarolangun. (2015). Jumlah Curah Hujan dan Banyaknya Hari Hujan Menurut Bulan di Kabupaten Sarolangun Tahun 2015 (Sarolangunkab.bps.go.id : 2015/12, accessed 06 December 2020).

BAPPENAS (Badan Perencanaan Pembangunan Nasional). (2003). Strategi dan Rencana Aksi Keenakaragaman Hayati Indonesia 2003-2020. IBSAP dokumen Regional. BAPPENAS, Jakarta, Indonesia.

Balgooy, M.M.J.van. (1998). Malesian Seed Plants. Backhuys Publisher Leiden.

Berlage, H.P. (1949). Regenval in Indonesië (Rainfall in Indonesia). Meteorologische en Geophysische Dienst, Koninklijk Magnetsisch en Meteorologisch Observatorium te Batavia. Verhandelingen No.37:134.

Connell, J.H. (1978). Diversity in tropical rain forests and coral reefs - high diversity of trees and corals is maintained only in a non-equilibrium state. Science 199: 1302–1310.

Cox, W.G. (1967). Laboratory Manual of General Ecology. W.M.C. Brown Company Publisher, Dubuque, U.S.A.

Elviqar. (2013). Komunitas pohon di Hutan Adat Imbo Mengkadai, Desa Temenggung, Kabupaten Sarolangun, Provinsi Jambi. M.Sc thesis, Universitas Indonesia, Depok, Indonesia.

Gillison, A.N. (2001). Vegetation Survey and Habitat Assessment of the Tesso Nilo Forest Complex; Pekanbaru, Riau Province, Sumatra, Indonesia. Report prepared for WWF-US. (October-November, 2001). Center for Biodiversity Management, Yungaburra, Australia.

Gillison, A.N., Liswanti, N. & Arieffrachman, I. (1996). Rapid Ecological Assessment, Kerinci Seblat National Park Buffer Zone, Central Sumatra: Report for Plant Ecology. CIFOR Working Paper No. 14., Bogor, Indonesia.

Harms, K.E., Condit, R., Hubbel, S.P. & Foster, R.B. (2001). Habitat associations of trees and shrubs in a 50-ha neotropical forest plot. Journal of Ecology 89: 947-959.

Heryanto, N.M, Kartawinata, K. & Samsoedin, I. (2019). Tree species diversity, structural characteristics and carbon stock in a one-hectare plot of the protection forest area in West Lampung Regency, Indonesia. Reinwardtia 18: 1-18.

Hermawan, A. (2013). Komposisi spesies pohon hutan pamah dan keanekaragaman Artocarpus serta pola sebarannya di Hutan Adat Imbo Mengkadai, Kabupaten, Sarolangun, Provinsi Jambi. M.Sc thesis, Universitas Indonesia, Depok, Indonesia.

Hoe, V.B. & Siong, K.H. (1999). The nutritional value of indigenous fruits and vegetable in Sarawak. Asia Pacific J.Clin. Nutr B: 24-31.
Hubbell, S.P. & Foster, R.B. (1986). Biology, chance and history and the structure of tropical rain forest tree communities. In: Community Ecology. (eds. Diamond J.M. & Case T.J.), pp. 314-329. Harper and Row, New York, U.S.A.

Kartawinata, K. (2013). Diversitas Ekoistemen Alam Indonesia. Yayasan Pustaka Obor Indonesia & LIPI Press, Jakarta, Indonesia.

Kartawinata, K., Samsoedin, I., Heriyanito, N.M. & Afriastini, J.J. (2004). A tree species inventory in a one hecet plot at the Batang Gadis National Park. North Sumatera. Indonesia. Reinwardtia 12: 145-157.

Kartawinata, K., Purwaningsih, Partomihardjo, T., Yusuf, R., Abdulhadi, R. & Riswan, S. (2008). Floristics and structure of a lowland dipterocarp forest at Wanariset Samboja. East Kalimantan. Indonesia. Reinwardtia 12: 301-323.

Kementerian Kehutanan dan Balai TNBD. (2011). Buku Informasi Taman Nasional Bukit Duabelas. Kementerian Kehutanan dan Balai TNBD, Jambi, Indonesia.

Laumonier, Y. (1997). The Vegetation and Physiology of Sumatra. Kluwer Academic Publishers, Dordrecht, Netherlands.

Mansur, M., Triono, T. & Ismail. (2010). Analisis vegetasi pohon di hutan hujan tropik Harapan, Jambi. Berita Biologi 10: 173-178.

McCune, B. & Grace, J.B. (2002). Analysis of ecological communities, MJM Software Design, Gleneden Beach, Oregon.

Mirmanto, E. (2009). Analisis vegetasi hutan pamah di Pulu Batanta, Raja Ampat, Papua. Jurnal Biologi Indonesia 6: 79-96.

Mueller-Dombois, D. & Ellenberg, H. (1972). Aims and methods of vegetation ecology, John Willey & Sons, New York.

Mueller-Dombois, D. & Ellenberg, H. (2016). Ekologi vegetasi, maksud dan metode, LIPI Press & Yayasan Pustaka Obor Indonesia, Jakarta, the translated version in Indonesian by Kartawinata, K & Abdulhadi, R. Aims and methods of vegetation ecology, John Willey & Sons, New York.

Newman, M.F., Burgess, P.E. & Whitmore, T.C. (1999). Peloman Identifikasi pohon-pohon Dipterocarpaceae Sumatera. PROSEA Indonesia, Bogor, Indonesia.

Polosakan, R. (2001). Komposisi jenis pohon di hutan kawasan Taman Nasional Bukit Tigapuluhi, Propinsi Riau. In: Proyek Inventarisasi dan Karakterisasi Sumberdaya Hayati (eds.: Sunaryo, Prarioatmodjo, S., Suyanto, A., Juhaeti, T.,Widodo, W., Napitupulu, R. N. & Agustiyani, D.), pp. 63-71. Laporan Teknik 2001, Pusat Penelitian Biologi, LIPI, Bogor, Indonesia.

Polosakan, R. (2011). Studi keanekaragaman jenis pohon di kawasan Hutan Danau Bangko, Jambi: analisis aspek ekologi dan pemanaftannya. In: Valiasi hasil hutan bukan kayu (Kawasan Lindung PT. Wirakarya Sakhi Jambi), (eds.: Purwanto,Y., Waluyo, E. B. & Wahyudi, A), pp. 215-224. LIPI Press, Jakarta, Indonesia.

Prativi. (1989). Analisis komposisi vegetasi di areal lahar hasil letusan Gunung Galunggung. Jawa Barat. Bulletin Penelitian Hutan 512: 23-31.

Purwaningsih & Yusuf, R. (2005). Komposisi jenis dan struktur vegetasi hutan di kawasan Pakuli. Taman Nasional Lore Lindu. Sulawesi Tengah. Biodiversitas 6: 123-128.

Purwaningsih, Kartawinata, K., Polosakan, R., Yusuf, R. (2017). Phytosociological study of the montane forest on the south slope of Mt. Willis, East Java, Indonesia. Reinwardtia 16: 31-45.

Rahmah, Kartawinata, K., Nisyawati, Wardhana, W. & Nurdin, E. (2016). Tree species diversity in the lowland forest of the core zone of The Bukit Duabelas National Park, Jambi, Indonesia. Reinwardtia 15: 11-26.

Richards, P.W. (1996). The Tropical rain forest; an ecological study. Second Edition, Cambridge University Press, Cambridge, U.K.

Samsoedin, I. & Heriyanito, N.M. (2010). Struktur dan komposisi hutan pamah bekas tebangan ilegal di kelompok hutan Sei Lepan, Sei Serdang, Taman Nasional Gunung Leuser, Sumatera Utara. Jurnal Penelitian Hutan dan Konservasi Alam 7: 299-314.

Sehati. (2013). Komposisi dan struktur hutan pamah di zona ini bagian barat Taman Nasional Bukit Duabelas, Jambi. M.Sc thesis, Universitas Indonesia, Depok, Indonesia.

Setiawan, B. (2010). Kebijakan pembangunan sosial masyarakat adat orang rimba di kawasan Taman Nasional Bukit Duabelas Provinsi Jambi. M.Sc thesis, Universitas Indonesia, Depok, Indonesia.

Setyowati, F.R. (2003). Hubungan keterkaitan masyarakat kubu dengan sumber daya tumbuh-tumbuhan di cagar biosfer Bukit Duabelas, Jambi. Biodiversitas 4: 47-54.

Sheil, D. & Burslem, D.F.R.P. (2003). Disturbing hypotheses in tropical forests. Trends in Ecology & Evolution 18: 18-26.

Sheil, D., Kartawinata, K., Samsoedin, I., Priyadi, H. & Afriastini, J.J. (2010). The lowland forest tree community in Malinau, Kalimantan (Indonesian Borneo); results from a one-hectare plot. Plant Ecology and Diversity 3: 59-66.

Siagian, R. (2000). Komposisi dan struktur komunitas tumbuhan bawah di areal kebakan Gunung Masigit dan studi awal regenerasi alami di areal kebakan Gunung Masigit Taman Nasional Gunung Gede Pangrango. M.Sc thesis, Universitas Indonesia, Depok, Indonesia.
Silvius, M. J., Simmons, H.W. & Verheught, W.J.M. (1984). Soils, vegetation, fauna and nature conservation in Berbak Game Reserve, Sumatra, Indonesia. Research Institute for Nature Management, Arnhem, Netherlands.

Silk, J.W.F., Bernard, C.S., Breman, F.C., Van Beek, M., Salim, A. & Sheil, D. (2008). Wood density as a conservation tool: quantification of disturbance and identification of conservation priority areas in tropical forests. *Conservation Biology* **22**: 1299-1308.

Sriyanto, A., Wellesley, S., Suganda, D., Widjanarti, E. & Sudaryono, D. (2003). *Guidebook of 41 National Parks in Indonesia*. Ministry of Forestry of Republic of Indonesia, UNESCO and CIFOR, Jakarta, Indonesia.

Steenis, C.G.G.J. van. (1950). The delimitation of Malaysia and its main plant geographic divisions. In: *Flora Malesiana* Ser. I, Volume I, (eds: Steenis C.G.G.J. van), pp. lxxi-lxxv. Noordhoff-Kolff, N.V. Djakarta, Indonesia.

Sylviani. (2008). Kajian dampak perubahan fungsi kawasan hutan terhadap masyarakat sekitar. *Jurnal Penelitian Sosial dan Ekonomi Kehutanan* **5**: 155-178.

Whitmore, T.C. (1986). *Tropical Rain Forest of the Far East*. Oxford University Press. Oxford, U.K.

Whittaker, R.H. (1972). Evolution and measurement of species diversity. *Taxon* **21**: 213-251.

Wiriadinata, H. & Setyowati, F.M. (2000). Kajian pemanfaatan tumbuhan oleh Suku Anak Dalam di Cagar Biosfer Bukit Duabelas Jambi. In: *Prosiding Seminar Nasional Ethnobotani III*, (eds: Purwanto, Y. & Wahjujo, E.B), pp. 274-283. Pusat Penelitian dan Pengembangan Biologi-LIPI, Bogor, Indonesia.

Yamada, I. (1976). Forest ecological studies of the montane forest of Mt. Pangrango. West Java III. Litterfall of the tropical montane forest near Cibodas. *The Southeast Asian Studies* **14**: 194-229.

Yusuf, R., Purwaningsih & Gusman. (2005). Komposisi dan struktur vegetasi Hutan Alam Rimbo Panti. Sumatera Barat. *Biodiversitas* **6**: 266-271.

Yusuf, R. (2005). Keanekaragaman dan potensi jenis tumbuhan hutan sekunder di Kuala Ran. Kabupaten Bulungan. Kalimantan Timur. *BioSMART* **7**: 37-43.
The one-hectare study plot contained 540 trees, comprising 89 species and 36 families. On the basis of two dominant species we designated the tree community in the forest as the *Dacryodes rostrata*-Shorea leprosula Association. Folrisically it was a poor community with low species richness and non-dipterocarp species were prevalent. The one hectare plot should not in any way be considered as the minimal area representing the surrounding forests, but it sufficiently provided an illustration of the forest locally. The plot was established as a permanent plot so that it can be used for monitoring dynamic processes and future studies in various aspects valuable to support sustainable management of the BDNP and the livelihood of SAD.

Structurally and floristically the forest represented a developing and regenerating disturbed forest, with heterogeneous species composition as reflected by very low frequency and density in the majority of the species. The core zone of the BDNP has undergone changes from dipterocarp dominated forest to that dominated by non-dipterocarps, due to human activities. A natural succession has been taking place in the forest of the core zone, leading to the formation of a forest similar to the original one prior to disturbance. This rate of natural succession is, however, extremely slow. It can be enhanced and assisted by means of ecological restoration through planting of tree species characteristics of forests in Jambi. They include species of Dipterorocapaceae, useful species having values to maintain the livelihood of the SAD, rare and endemic species and others with high conservation values. Species that were persistent and would maintain themselves in the forest in the future are currently represented in almost all diameter classes, although with low density.

Appendix 1. Density (D = trees/ha), frequency (F in %) and BA (Basal Area in m sq.) of tree species in a one-hectare plot of a lowland forest at the midsection of the core zone of the Bukit Duabelas National Park, Jambi.
No.	Species Name	Family	Local Name	Quantity 1	Quantity 2	Specific Value 1	Specific Value 2
60	Dalium indicum L.	Fabaceae	Keranjih batu	2	2	0.028	0.87
61	Macaranga tanarius (L.) Müll.Arg.	Euphorbiaceae	Sengkubung	1	1	0.096	0.70
62	Rhus globularia (Lam.) Warb.	Myristicaceae	Anggung	1	1	0.064	0.60
63	Socratea coriacea (Baill.) Becc.	Olacaceae	Kulim	1	1	0.052	0.56
64	Nephelium mutabile Blume	Sapindaceae	Samak ketan	1	1	0.051	0.56
65	Gnetum arabicum Blume	Rhizophoraceae	Kayu buluh	1	1	0.045	0.54
66	Madhuca mollissima (Geieler) Airy Shaw	Euphorbiaceae	Setarik	1	1	0.044	0.53
67	Oncosperma hirundinum (Griff.) Scheff.	Arecaceae	Bayas	1	1	0.039	0.52
68	Diospyros hermanthroides (Zoll.) Bukh, ex Steenis	Ebenaceae	Nilau nasi	1	1	0.029	0.49
69	Garcinia purpurea (Miq.) Miq.	Clusiaceae	Kandih burung	1	1	0.023	0.48
70	Diospyros sp.	Meliaceae	Tampoi kuro-kuro	1	1	0.023	0.47
71	Syzygium cumina (Lam.) DC.	Myrtaceae	Kelat sumak	1	1	0.022	0.46
72	Eurya longifolia Jack	Simaroubaceae	Semedu tanah	1	1	0.021	0.46
73	Kinna manilensis Warb.	Myristicaceae	Benal	1	1	0.020	0.46
74	Tintinnia tinnon (Spreng.) Merr.	Rubiaceae	Itam tehutu	1	1	0.020	0.46
75	Pittosporum moluccatum Miq.	Pittosporeaceae	Kalampang Beras	1	1	0.019	0.45
76	Psychotria niphidium King	Sapindaceae	Kemangar	1	1	0.017	0.45
77	Glocinica sp.	Clusiaceae	Injai daro	1	1	0.015	0.44
78	Micrococcus opaca Burret	Malvaceae	Sesumpit	1	1	0.015	0.44
79	Garcinia atroviridis Griff. ex T.Anderson	Clusiaceae	Assam gelugur	1	1	0.013	0.43
80	Oroxylum cochinichianus (Lour.) Blume	Hypericaceae	Semampat	1	1	0.013	0.43
81	Bombax acerifolium Pierre	Malvaceae	Kakabu	1	1	0.013	0.43
82	Monodora edulis Roxb.	Melastomataceae	Belimbing hutan	1	1	0.013	0.43
83	Ocotea spicata (Semenatex) Mast.	Olacaceae	Petaling menah	1	1	0.013	0.43
84	Genipa hispa Ridi.	Cannabaceae	Medang sailok	1	1	0.011	0.43
85	Pertucula marchalina (Miq.) Ridsdale	Rubiaceae	Kayu pisang	1	1	0.011	0.43
86	Neolitchea sp.	Lauraceae	Medang pengam	1	1	0.011	0.43
87	Alangium javanicum (Blume) Wangerin	Cornaceae	Nilai ruso	1	1	0.010	0.43
88	Baccaurea dulcis (Jack) Müll.Arg.	Phyllanthaceae	Tampoi kerawak	1	1	0.010	0.43
89	Unidentified		Aka jangat	1	1	0.032	0.49

Total 540 540 30.837 300