A Monogenic Recessive Gene, \(fw \), Conditions Flower Doubling in *Nicotiana alata*

Rozlaily Zainol\(^1\) and Dennis P. Stimart\(^2\)

Department of Horticulture, University of Wisconsin, 1575 Linden Drive, Madison, WI 53706

Additional index words. breeding, double-flowers, genetics, ornamental tobacco

Abstract. A double-flower form of *Nicotiana alata* Link & Otto was characterized genetically as a monogenic recessive trait expressed when homozygous. Reciprocal crosses demonstrated no maternal effect on expression of double flowers. A single dominant gene expressed in the homozygous or heterozygous state caused the single-flower phenotype. The symbol \(fw \) is proposed to describe the gene controlling double-flower phenotype.

Nicotiana alata Link & Otto (Solanaceae), known as ‘Jasmine tobacco’, is a flowering ornamental tobacco native to tropical northeastern Argentina and southern Brazil (Griffiths, 1994). Plants average 1.5 m in height with sticky, hairy stalks, ovate to lanceolate leaves, and 5- to 8-cm long trumpet-shaped flowers with pale purple or white interiors, and yellowish exteriors (Graft, 1980; Kohlein and Menzel, 1994). Crosses of *N. alata* \(\times N. forgetiana* Sander ex Hems. produce hybrids with white, greenish, pink, and red flowers (Kohlein and Menzel, 1994) commonly used as bedding plants.

A white, double-flowered form of *N. alata* was found in an F\(_1\) population of single, white flowering plants (Fig. 1). Anatomical analysis of flowers revealed petal-like outgrowths arising from the anther, connective and filament tissues (Zainol et al., 1998). Petal-like outgrowths can create unique flower types to enhance desirable floral qualities for ornamental use.

Occurrence of flower-doubling has been reported in several solanaceous species, including *N. langsdorffii* J.A. Weim. hybrids (White, 1914), *N. tabacum* L. (Hitier, 1950; Komari, 1990) and *Petunia \(\times \)hybrida* Hort. (Saunders, 1910; Scott, 1937). In *N. tabacum* and *P. \(\times \)hybrida*, flower doubling has been reported to be conditioned by single genes, either recessive (Hitier, 1950; Saunders, 1910) or dominant (Hitier, 1950, Naturella and Sink 1971; Scott, 1937; Sink, 1973). Herein, we report on the inheritance of the double-flowering phenotype in *N. alata*.

Materials and Methods

A double-flowered mutant of *N. alata* ‘White’ (NA) was discovered in an F\(_1\) population grown in a research test plot at the Univ. of Wisconsin, Madison (Fig. 1). The double-flowered NA was self-pollinated and outcrossed with single-flowered *N. alata* ‘Domino Salmon’ (DS) and ‘Metro Lime’ (ML) using standard hybridization methods for *Nicotiana*. F\(_1\) plants and both F\(_2\) progeny and reciprocal backcrossed (BC) progeny were produced. Additional crosses were made to facilitate further determinations of inheritance (Tables 1 and 2).

Seeds were germinated and plants grown according to established procedures (Ball, 1998). Plants were arranged in a completely random design, and scored phenotypically for single or double flowers. Single flowers were categorized as normal and double flowers as possessing petal-like outgrowths on anthers and/or filaments (Table 1). Evaluation was conducted in Sept. 1994 (fall) and repeated with a different subsample of seed from the original cross populations in Jan. 1995 (winter). Data were subjected to chi-square analysis using Yates correction term for small populations (Strickberger, 1976).

Results

Self-pollinated NA produced all double-flowered progeny and self-pollinated single-flowered DS and ML produced all single-flowered progeny (Table 1). Reciprocal matings of DS or ML \(\times \) NA produced single-flowered progeny. The F\(_2\) generations, derived from DS or ML \(\times \) NA, fit a 3 single : 1 double segregation ratio when grown in the fall (Table 1) and were close to a 3:1 ratio when grown in winter. Progeny from backcrosses of the F\(_2\) generations to NA (BC\(_{fw}\)) segregated 1:1 in the fall, but one backcross failed to fit the expected 1:1 segregation in the winter. F\(_1\) plants backcrossed to ML (BC\(_{ML}\)) produced single-flowers in both seasons. Intercrosses of F\(_1\) plants (double cross) fit 3:1 segregations except when ML was present in both parents of the intercross grown in winter. Self-pollinations of single- and double-flowered selections derived from multiple cross matings fit 1:1 or 0:1 segregations (Table 2). Backcrosses of single-flowered selections to NA fit 1:1 segregations (Table 2).

Generally, plants exhibited reduced expression of flower-doubling in the winter. Also, expressivity varied between lines but was similar within a line (data not collected). Additionally, a degree of doubling stronger than the parent was observed in some lines among the first generation plants of self-pollinated NA. Flowers on these plants were...
Table 1. Segregation for double-flower form in matings of N. alata Link & Otto.

Parents/Generation	Test ratio	Fall 1994 Flower form	Winter 1995 Flower form						
		–+	+	χ²	P	–+	+	χ²	P
Parents self-polliinated									
NA	0:1	0	27	All double	30	All single	0	30	All single
ML	1:0	13	0	All single	13	0 All single	31	0 All single	
ML	1:0	27	0	All single	31	0 All single			
F₁, F₂, and BC									
NA (P₁) x DS (P₂)									
F₁	1:0	29	0	All single	30	0 All single			
F₁	3:1	19	6	0.07 0.82	25	6 0.39 0.55			
BCP₁	1:1	12	15	0.46 0.50	8	22 6.57 0.01			
BCP₂	1:0	0	no seed	---	---	No seed	---	---	---
Reciprocal									
DS x NA	1:0	28	0	All single	30	0 All single			
ML x NA	1:0	28	0	All single	31	0 All single			
Double cross									
(NA x DS) x (NA x DS)	3:1	20	7	0.14 0.71	22	5 0.90 0.36			
(NA x ML) x (NA x ML)	3:1	21	7	0.05 0.85	29	3 5.57 0.03			
(NA x DS) x (NA x ML)	3:1	22	8	0.03 0.88	21	7 0.05 0.85			

N. alata Link & Otto. 1914. Double-flowered, ‘Domino Salmon’ single-flowered, and ‘Metro Lime’ single-flowered, respectively.

*a Single (−) or double (+) flower form.

Table 2. Segregation for double-flower form in N. alata Link & Otto after various matings of single- and double-flowered selections in Spring 1996.

Parent	Flower form	Test ratio	χ²	P	
NA x [NA x (NA x DS)]	S of single selections	25 26	1:1	0.02	0.89
NA x [NA x (NA x ML)]	21 25	1:1	0.35	0.76	
NA “least” double	0 32	0:1	All double		
NA “most” double	No seed	0	0:1	All double	
NA x DS	0 14	0:1	All double		
NA x ML	No seed	0	0:1	All double	
NA x (NA x DS)	0 46	0:1	All double		
NA x (NA x ML)	0 50	0:1	All double		
(NA x DS) x (NA x DS)	0 50	0:1	All double		
(NA x ML) x (NA x ML)	0 11	0:1	All double		
[(NA x DS) x (NA x DS)] x [(NA x ML) x (NA x ML)]	0 51	0:1	All double		
Single selections BC, to double selections	S of double selections	25 26	1:1	0.02	0.89
NA x [NA x (NA x DS)]	21 25	1:1	0.35	0.56	

N. alata Link & Otto. 1914. Double-flowered, ‘Domino Salmon’ single-flowered, and ‘Metro Lime’ single-flowered, respectively.

*a Single (−) or double (+) flower form.

Discussion

A nuclear recessive gene conditions the double-flowering phenotype of N. alata. The dominant allele conditioned single flowers in either the homozygous or heterozygous state. Segregation data obtained from F₁, F₂, backcross families, and intercrosses between F₁ populations largely support the genetic model proposed (Table 1). The failure of two crosses [BC, DS and (NA x ML) x (NA x ML)] to fit expected segregation ratios was probably the result of sampling errors or small population size. We do not believe environmental variables caused significant deviation from expected ratios, since plants evaluated from other crosses fit expected segregation ratios under similar environmental conditions. We propose the symbol fw for the gene controlling the double-flower phenotype in N. alata.

In Solanaceae, flower-doubling has been expressed strong degrees of doubling. In contrast, double flowering response of N. alata in the present study was controlled by a monogenic recessive character fw. Petal-like outgrowths originated from the androecium, leaving the gynoecium unaffected (Zainol et al., 1998). Also, self-pollinated NA produced progeny with varying degrees of flower doubling originating from the androecium (data not presented), suggesting that minor gene action may be involved in double-flower expression. However, male sterility prevented further investigation into plants with high expression of doubling.

Reynolds and Tampion (1983), reported that plants that produced double flowers were both male- and female-sterile. They stated that when petaloid development from stamens was strong, anthers failed to develop and function normally. Also, the carpel may be affected if petaloidy occurs in the center of the flower as in sterile double-flowering P. ×hybrida (Natarella and Sink, 1971). In N. alata (Zainol et al., 1998), it was noted that, as degree of flower doubling increased, the anthers became more deformed and led to increased sterility. In addition, pollen from these plants was largely nonfunctional.

Observed seasonal differences in expressivity of flower doubling suggest that environmental variables influence gene expression, as reported by others (Garrod and Harris, 1974; Kohl, 1961). Transferring the fw gene to lines with other flower colors could increase the ornamental value of N. alata. However, challenges to commercial application may exist in the form of monogenic recessive inheritance and sterility factors.

Literature Cited

Ball, V. 1998. Ball redbook. 16th ed. Ball Publ. Batavia, Ill.

Garrod, J.F. and G.P. Harris. 1974. Studies on the glasshouse carnation: Effects of temperature...
and growth substance on petal number. Ann. Bot. 38:1025–1031.

Graft, A.B. 1980. Tropica. Color encyclopedia of exotic plants and trees, 10th ed. Roehrs, N.J. Griffiths, M. 1994. Index of garden plants. Timber Press, Portland, Ore.

Hitier, H. 1950. Etude génétique des caractères “enation” et “catacorolle” chez Nicotiana tabacum L. Annales du Tabac 2:31–61. Bergerac (France).

Kohl, H.C. 1961. Period during development of a carnation shoot when temperature has greatest effect on flower size. Proc. Amer. Soc. Hort. Sci. 77:540–543.

Kohlein, F. and P. Menzel. 1994. Color encyclopedia of garden plants and habitats. Timber Press, Portland, Ore.

Komari, T. 1990. Genetic characterization of a double-flowered tobacco plant obtained in a transformation experiment. Theor. Appl. Genet. 80:167–171.

Kohlein, F. and P. Menzel. 1994. Color encyclopedia of garden plants and habitats. Timber Press, Portland, Ore.

Naturella, N.J. and K.C. Sink. 1971. The morphogenesis of double flowering in Petunia hybrida Hort. J. Amer. Soc. Hort. Sci. 96:600–602.

Reynolds, J. and J. Tampion. 1983. Double flowers: A scientific study. Scientific and Academic Ed. New York.

Saunders, E.R. 1910. Studies in the inheritance of doubleness in flowers. I. Petunia. J. Genet. 1:57–59.

Scott, G.W. 1937. A genetical and cytological study of Petunia with special reference to the inheritance of doubleness. PhD Diss., Univ. of Calif., Davis.

Sink, K.C. 1973. The inheritance of apetalous flower type in Petunia hybrida Vilm. and linkage tests with the genes for flower doubleness and grandiflora characters and its use in hybrid seed production. Euphytica 22:520–526.

Strickberger, M.W. 1976. Genetics. Macmillan, New York.

White, O.E. 1914. Studies of teratological phenomena in their relation to evaluation and the problems of heredity. Amer. J. Bot. 1:23–36.

Zainol, R., D.P. Stimart, and R.F. Evert. 1998. Anatomical analysis of double flower morphogenesis in Nicotiana alata Link & Otto. J. Amer. Soc. Hort. Sci. 123:967–972.