Simultaneous Measurement of Insulin Sensitivity, Insulin Secretion, and the Disposition Index in Conscious Unhandled Mice

Laura C. Alonso1, Yoshio Watanabe2, Darko Stefanovski3, Euhan J. Lee2, Srikanth Singamsetty2, Lia C. Romano2, Baobo Zou2, Adolfo Garcia-Ocaña1, Richard N. Bergman3 and Christopher P. O’Donnell2

Of the parameters that determine glucose disposal and progression to diabetes in humans: first-phase insulin secretion, glucose effectiveness (Sg), insulin sensitivity (Si), and the disposition index (DI), only Si can be reliably measured in conscious mice. To determine the importance of the other parameters in murine glucose homeostasis in lean and obese states, we developed the frequently sampled intravenous glucose tolerance test (FSIVGTT) for use in unhandled mice. We validated the conscious FSIVGTT against the euglycemic clamp for measuring Si in lean and obese mice. Insulin-resistant mice had increased first-phase insulin secretion, decreased Sg, and a reduced DI, qualitatively similar to humans. Intriguingly, although insulin secretion explained most of the variation in glucose disposal in lean mice, Sg and the DI more strongly predicted glucose disposal in obese mice. DI curves identified individual diet-induced obese (DIO) mice as having compensated or decompensated insulin secretion. Conscious FSIVGTT opens the door to apply mouse genetics to the determinants of in vivo insulin secretion, Sg, and DI, and further validates the mouse as a model of metabolic disease.

Obesity (2012) 20, 1403–1412. doi:10.1038/oby.2012.36

INTRODUCTION

It is widely assumed by mouse researchers that regulation of rodent glucose disposal is similar to human. We now know from hyperinsulinemic–euglycemic clamps that factors regulating insulin sensitivity (Si) in conscious mice are relevant to human health and disease (1–3). However, glucose homeostasis is dependent not only on Si, but also on insulin secretion and non-insulin–mediated glucose uptake, termed glucose effectiveness (Sg) (4–8). The disposition index (DI), one of the best predictors of progression to diabetes in humans, is currently not quantifiable in conscious mice. According to recently released guidelines from the Consortium of Mouse Metabolic Phenotyping Centers, metabolic testing under anesthesia yields results that are not physiological (9). Thus, new methods are required to measure these metabolic parameters in conscious unhandled mice in order to fully exploit the potential of mouse genetics in dissecting the pathogenesis of metabolic disease.

Based on work begun in the 1980’s (10–12) it is possible in humans to achieve an integrated view of glucose homeostasis across a disease spectrum from normal glucose tolerance to impaired glucose tolerance (IGT) and diabetes, using the frequently sampled intravenous glucose tolerance test (FSIVGTT) with mathematical modeling. The FSIVGTT has become a widely utilized tool in human research, and has helped delineate key principles of glucose homeostasis such as the role of declining first-phase insulin secretion in glucose intolerance, and the predictive value of the DI in progression to diabetes (13–15). In contrast, the techniques routinely used in conscious mice, euglycemic clamps and intraperitoneal challenge with glucose or insulin, cannot independently assess these metabolic parameters to provide a coordinated view of glucose disposal. Moreover, some data in rats and anesthetized mice actually suggest that the role of first-phase insulin release in glucose disposal may be minor (16) to nonexistent (17) in rodents, raising the question that rodent metabolic physiology may differ significantly from human.

In order to examine the roles of first-phase insulin secretion, Sg, and Si on murine glucose disposal, we developed techniques to perform the FSIVGTT in lean and obese conscious mice. We find that in conscious mice, as in humans, first-phase
insulin secretion, Sg, and the DI impact glucose disposal to varying degrees in health and obesity.

METHODS AND PROCEDURES

Mouse husbandry

All mouse studies were approved by the University of Pittsburgh Institutional Animal Care and Use Committee. C57BL/6j and B6.V-Lepob/J (the Jackson Laboratories, Bar Harbor, ME), or C57BL/6NTac (Taconic, Hudson, NY) male mice were housed in controlled temperature, humidity, and 12-h light-dark cycle with ad libitum access to mouse chow and water. Diet-induced obesity (DIO) mice were fed chow containing 60% kcal% fat (D12492; Research Diets, New Brunswick, NJ) for 16 weeks, starting at 8 weeks of age. 6j, 6NTac, and Ob/Ob mice were 9–11 weeks old. At FSIVGTT, mice weighed 24.8 ± 0.5 g (6j), 24.7 ± 0.6 g (6NTac), 40.0 ± 1.0 g (DIO), and 50.7 ± 1.3 g (Ob/Ob); at clamp, mice weighed 23.2 ± 0.8 g (6j), 39.2 ± 0.4 g (DIO), and 54.8 ± 0.14 g (Ob/Ob). The pre-procedure fasted weights were, on average, 9.0 ± 0.6% below fed-state preoperative weights, with obese mice losing slightly more (10.9 ± 0.8%) than lean mice (7.5 ± 0.8%).

Catheter implantation and maintenance

Detailed protocols for surgical catheterization, catheter maintenance, blood pressure and heart rate recording, arterial blood sampling, and red blood cell return can be found in the online supplement to (18). Briefly, mice were anesthetized with inhaled 2% isoflurane, and micro-renathane catheters (MRE-025; Braintree Scientific, Braintree, MA) were inserted into the left femoral artery and vein, sutured in place, stabilized with superglue, tunneled subcutaneously to exit the skin at the upper back, taped to a wire attached to posterior cervical muscles for stiffness (792500: A-M Systems, Sequim, WA), and connected to a 360° dual channel swivel designed for mice (375/D/22QM; Instech, Plymouth Meeting, PA). Catheter patency was maintained by continuous sterile infusion of 7 µl/h saline containing 20 units/ml heparin (APP Pharmaceuticals, Melrose Park, IL) using a syringe pump with multisyringe adaptor (R99-EM; Razel Scientific Instruments, Stamford, CT).

FSIVGTT

FSIVGTT was performed after 3 days recovery from catheter implantation. All blood samples were taken from the arterial catheter in unrestrained, unhandled, conscious mice. After 5 h of fasting, two baseline blood samples (20 µl, 0, 5, 10 min) were obtained. At time zero, a 1 g/kg bolus of 50% dextrose (Hospira, Lake Forest, IL) was injected through the venous catheter over 15 s; 20 µl of blood was sampled at 1, 2, 4, 8, 12, 16, 20, 30, and 60 min for glucose and insulin (Figure 1a). Additional samples for glucose alone, ~2 µl, were obtained at 3, 5, 6, 10, 14, 18, 25, 40, and 50 min. All samples were obtained through the arterial catheter. After centrifugation (8,000 rpm for 4 min) and plasma removal, pooled red cells were resuspended in 20 µl sterile heparinized saline (100 U/ml) and re-infused post-sampling at ~10, 0, 12, 14, 18, 20, 30, 40 min to maintain blood volume. Blood pressure was monitored continuously throughout the protocol; averaging all mice, there were minimal changes in blood pressure from the beginning (100 ± 1 mm Hg) to the end (98 ± 2 mm Hg) of the FSIVGTT. The hematocrit at the end of the procedure averaged 36 ± 1%. Mouse stress levels during our chronic catheterization and blood sampling protocols are low, as measured by plasma corticosterone levels (18,19), and as evidenced by the low basal blood glucose measured in the Ob/Ob mice, which exhibit increased sensitivity to stress (Figure 2a) (20).

To determine the effect of dosing the intravenous glucose bolus based on lean body mass rather than total body weight, three Ob/Ob mice were subjected to FSIVGTT using 1 g/kg lean body mass. As shown in Supplementary Figure S1 online, this dosing strategy resulted in insufficient insulin secretory response to model FSIVGTT parameters in these mice.

Euglycemic–hyperinsulinemic clamp

Detailed protocols can be found in the online supplement to (21). Mice were catheterized as above, and allowed to recover for 3 days. After a 5-h fast, human insulin was infused at a constant rate (a prime-continuous infusion of 20 mU/kg/min, Novolin R; Novo Nordisk, Princeton, NJ), a variable rate of 50% dextrose was co-infused through the venous catheter to maintain plasma glucose at 100–120 mg/dl. Blood glucose levels were sampled through the arterial catheter as described above, at 10-min intervals.

Biochemical assays

Blood was measured using a Prodigy Autocode glucometer (~1 µl whole blood; Diagnostic Devices, Charlotte, NC). Plasma insulin was measured by radioimmunoassay (5 µl for lean mice, 2 µl for obese mice, Linco sensitive rat insulin RIA kit; Millipore, Billerica, MA).

Mathematical modeling

Based on glucose and insulin curves, glucose disposal was divided into three phases: mixing phase (0–2 min), Sg-dominated phase (2–5 min), and insulin-dominated phase (5–60 min). The mixing phase was not used for SI or Sg modeling. Acute insulin response to glucose (AIRg) was based on insulin values between 0–4 min. All SI calculations are multiplied by 104. Data was modeled using MinMod software modified for phase durations as stated above and Sg starting estimate. Alternative mathematical methodology for estimating SI from FSIVGTT data on anesthetized mice have been published (22).

Statistical analyses

Data were expressed as mean ± s.e. All statistical analyses were performed using GraphPad Prism (GraphPad Software, La Jolla, CA). P values were calculated by Student’s t-test when only two groups were compared, or by one-way ANOVA when more than two groups were compared, using log-transformed data when Bartlett’s test for unequal variance showed P < 0.05. P < 0.05 was considered significant.

RESULTS

FSIVGTT glucose and insulin curves demonstrate rapid glucose disposal and vigorous insulin secretion in conscious lean mice

The FSIVGTT protocol (Figure 1a) was designed to obtain a sufficient number of samples to accurately model individual mouse blood glucose and plasma insulin curves, yet minimize impact on mouse hemodynamics. After an intravenous bolus of glucose into healthy lean C57BL/6NTac (6NTac) mice, blood glucose levels rose rapidly to peak 1 min postinjection (Figure 1b). Subsequently, blood glucose declined quickly and dipped slightly below baseline, normalizing before 15 min. Reproducibility among mice was high, resulting in tight curves with minimal variability.

Plasma insulin levels rose rapidly, peaking 1 min after glucose injection (Figure 1c). These measurements represent the endogenous mouse pancreatic insulin secretory response; exogenous insulin was not administered. On average, peak insulin concentration was 12.9-fold higher than basal levels. Plasma insulin levels declined rapidly, stabilizing well before 15 min postinjection. Plasma insulin curves also showed a high degree of reproducibility among 6NTac mice.

The FSIVGTT protocol was applied to a second, related strain of healthy lean inbred mice, C57BL/6j (6j), to determine whether similar strains would generate similar blood glucose
and plasma insulin curves. Blood glucose in 6J mice also peaked at 1 min and returned to baseline before 15 min, although this group as a whole did not dip below baseline (Figure 1d). 6J mice had lower basal plasma insulin levels (Figure 1e) than 6NTac mice (0.6 ± 0.1 ng/ml vs. 1.0 ± 0.2 ng/ml, P = 0.04) but peak insulin levels were not statistically different (8.3 ± 1.7 ng/ml vs. 11.0 ± 1.1 ng/ml). The average fold increase in peak plasma insulin level attained for 6J mice was 19.0-fold over basal. Overall curve shapes were comparable in 6NTac and 6J mice, demonstrating the reproducibility of FSIVGTT among similar strains.

Si measurements by FSIVGTT in conscious mice are comparable to euglycemic–hyperinsulinemic clamp

FSIVGTT was performed on conscious obese leptin-deficient Ob/Ob (C57BL/6J background) and control 6J mice (Figure 2a,b). Controls were the subset of 6J mice from Figure 1 with sufficient insulin secretion to model Si (see below for details on insulin secretion in 6J mice). Despite their obese state, unhandled conscious Ob/Ob mice had similar basal blood glucose levels to control mice (Figure 2a). Basal plasma insulin levels were elevated in Ob/Ob mice (7.7 ± 1.3 vs. 0.7 ± 0.2 ng/ml, P = 0.0001; Figure 2b). After an intravenous bolus of glucose, Ob/Ob mice attained higher blood glucose levels than controls (527 ± 23 vs. 381 ± 12 mg/dl, P < 0.0001). Blood glucose declined more slowly in Ob/Ob mice, not reaching basal levels even by 1 h postinjection. Area under the plasma concentration–time curve (AUC) glucose was significantly higher in Ob/Ob mice: 14,265 ± 726 vs. 9,087 ± 306 mg/dl × min; P < 0.0001. Plasma insulin levels attained a higher peak in Ob/Ob mice than controls (31.2 ± 3.4 vs. 8.3 ± 1.7 ng/ml, P < 0.0001).

Hyperinsulinemic–euglycemic clamps were performed on a separate set of Ob/Ob and lean mice. Blood glucose was clamped similarly (104 ± 4 mg/dl (Ob/Ob) vs. 104 ± 5 mg/dl (6J)). Plasma insulin levels for obese mice were 7.6 ± 4.6 ng/ml (baseline) and 26.7 ± 4.7 ng/ml (clamp) and for lean controls were 0.8 ± 0.4 ng/ml (baseline) and 6.7 ± 4.4 ng/ml (clamp).
Glucose infusion rates were reduced in Ob/Ob mice relative to controls, resulting in a significantly lower Si-clamp (Figure 2c). When Si was mathematically modeled from FSIVGTT blood glucose and plasma insulin curves, the measured degree of insulin resistance (Si-FSIVGTT) was similar to the clamp result (Figure 2d).

To test whether FSIVGTT-derived Si measurements would parallel hyperinsulinemic–euglycemic clamp measurements in...
First-phase insulin secretion determines the kinetics of glucose disposal in lean mice

Prior work has suggested that glucose disposal after intravenous glucose challenge in rodents, in contrast to humans, may be largely insulin-independent (16,17). We asked whether first-phase insulin secretion was relevant to glucose disposal in conscious mice. Although the population of 6NTac mice showed a fairly uniform AIRg (defined as AUC insulin between 0–4 min), 6J mice had a surprisingly variable AIRg (Figure 3a). This finding was not related to technical artifact, as low secretors were distributed among high secretors with respect to both FSIVGTT procedure date and insulin radioimmunoassay.
batch, and there was a high degree of consistency among multiple insulin measurements from individual mice. 6J mice are all homozygous for the Nicotinamide nucleotide transhydrogenase (Nnt) mutation, which can reduce insulin secretion (23–25). Differences in AIRg in 6J mice were not due to mouse body weight (Figure 3b), age (Figure 3c), or peak blood glucose (Figure 3d). Although the cause of the variable AIRg in 6J mice remains unexplained, we did observe that, compared to the highest secretors, low secretors demonstrated higher basal blood glucose (131 ± 7 vs. 101 ± 4 mg/dl, P < 0.05) and consumed more chow in the postoperative period (12.6 ± 0.5 vs. 8.6 ± 0.3 g, P < 0.01).

We made use of the variable insulin secretion in 6J mice to determine whether the endogenous insulin secretory response impacted glucose disposal rates. Comparing the plasma insulin curves from low-, med-, and high secretors (Figure 3e) demonstrated an average increase over basal of sixfold (low), 23-fold (med), and 42-fold (high). Basal insulin levels were not different between the three groups.

The blood glucose curves of low-, med-, and high-insulin secretors (Figure 3d) demonstrated the impact of endogenous insulin secretion on glucose disposal. High secretors displayed extremely rapid glucose disposal, dipping below baseline before 15 min postinjection, similar to 6NTac mice (compare with Figure 1b). Mice with intermediate insulin secretion showed intermediate glucose disposal, returning to baseline by 15 min but without dipping below baseline. Low secretors showed markedly delayed glucose disposition, and did not achieve baseline blood glucose levels by 1 h postinjection. When all lean mice were examined together, variation in AUC for glucose between 0–60 min was unrelated to Sg (Figure 3f), but showed a strong inverse correlation with AIRg (Figure 3g), confirming the importance of the first-phase insulin secretory response for determining variation in glucose disposal in conscious lean mice.

Obese, insulin-resistant mice show increased AIRg and reduced Sg relative to lean mice

To determine whether conscious mice show the metabolic changes seen in humans with obesity, including increased AIRg and reduced Sg, we compared these parameters between lean, DIO, and Ob/Ob mice. The AIRg and Sg data from 6NTac and 6J mice were combined for these analyses (“lean”). DIO and Ob/Ob mice had (a) increased AIRg and (b) reduced Sg compared with lean mice. Data are represented as mean ± s.e.m. AIRg, acute insulin response to glucose; DIO, diet-induced obesity; FSIVGTT, frequently sampled intravenous glucose tolerance test; IGT, impaired glucose tolerance.

Different parameters determine variation in glucose disposal in lean mice than obese mice

To learn which metabolic parameters correlate best with glucose disposal in lean vs. obese mice, each of the four principal FSIVGTT modeled outcomes (AIRg, Sg, Si, and DI) were plotted separately against AUC for glucose (Figure 5a–d). By linear regression, AIRg was the most important factor in lean mice, explaining 63% of the variation in glucose disposal (Figures 3g and 5a), but was only loosely correlated with AUC glucose in obese mice (Figure 5a). Intriguingly, variation in Sg was irrelevant to AUC glucose in lean mice, but explained nearly half of the variation in glucose disposal in obese mice (Figures 3f and 5b). The degree of insulin resistance did not independently predict variation in AUC glucose for either lean or obese mice (Figure 5c). Although the DI only nominally predicted AUC glucose in lean mice, DI was the strongest predictor of glucose disposal in obese mice, accounting for 62% of the variation (Figure 5d). These findings suggest that in the setting of obesity, the mouse insulin secretory response was most relevant when taken in context of the degree of Si, as is true for humans (e.g., ref. (13)).

DI identifies metabolic decompensation in individual DIO mice

The DI, defined as the product of AIRg and Si, is a strong predictor of progression to glucose intolerance in humans. Conceptually, DI defines the hyperbolic relationship between insulin resistance and insulin secretion; metabolic compensation is maintained in the face of decreasing Si only if insulin secretion increases. In conscious mice, when AIRg was evaluated in the context of Si, the data approximated a hyperbolic relationship,
as expected (Figure 6a). Comparing the lean vs. obese groups, the average DI was reduced in both DIO and Ob/Ob mice (Figure 6b), indicating that despite increased AIRg, the insulin secretory response was insufficient to maintain metabolic compensation. When the mean DI curves for lean (compensated) vs. Ob/Ob (most decompensated) mice were plotted (Figure 6c), the obese DI curve (dashed line) was downward-shifted relative to the lean curve (solid line). Of note, when the DIO mice, which on average had an intermediate DI, were individually plotted against these curves (Figure 6d) some clustered near the compensated curve, whereas the others approximated the decompensated curve, suggesting that the conscious FSIVGTT may have sufficient sensitivity to identify metabolic decompensation in individual mice, while simultaneously measuring Si, insulin secretion, and Sg.

DISCUSSION

With this work, we demonstrate the feasibility of performing FSIVGTT in conscious, unhandled mice. This technology represents a critical step forward for mouse metabolic research, as it allows simultaneous accurate measurement of Si, Sg, first-phase insulin secretion, and the DI. Using this technique, we have made several novel observations. Importantly, these data confirm the widely assumed concept that glucose disposal in the mouse is governed by similar parameters to human metabolism, which include first-phase insulin secretion and Sg in addition to Si. In lean mice, endogenous first-phase insulin secretion determined glucose disposal kinetics. Insulin-resistant obese mice had increased AIRg and reduced Sg. Notably, the parameters responsible for glucose disposal kinetics varied between lean and obese mice. Finally, mice with metabolic decompensation showed the same downward shift in the DI curve seen in humans with metabolic decompensation (7).

The value of accurately measuring first-phase insulin secretion and Sg in vivo should not be understated. Advances in diabetes research using mouse models have been weighted towards understanding Si, due to availability of the euglycemic clamp.
whereas simultaneous measurement of first-phase insulin secretion has not been possible. Currently available techniques to measure mouse first-phase insulin secretion either require anesthesia (16,26,27), or remove the islet from its natural environment, which alters insulin secretion (1,28). Note that the FSIVGTT does not measure second-phase insulin secretion. The relative contributions of secretion and clearance of insulin cannot be inferred from these data, although the protocol could be adapted to include C-peptide measurements. The variability in insulin secretion observed in genetically identical 6J mice remains unexplained. Interestingly, variability has been demonstrated in these mice for other outcomes, including oncogenesis, stress response, weight gain on high-fat diet, and tissue-dependent messenger RNA expression (29–32). Even more surprising, 6J mice are genetically nonidentical at the locus encoding the insulin-degrading enzyme, which regulates circulating insulin concentration (33). Although we present insulin secretion that varied between sixfold and 42-fold as three distinct groups, it is likely that insulin secretion in 6J mice represents a continuum, just as in humans (11). Peak circulating insulin during the FSIVGTT in lean conscious mice was higher than steady-state levels achieved during euglycemic clamps, despite the high insulin infusion rate of 20 mU/kg/min.

FSIVGTT in conscious mice will allow new types of analyses of in vivo first-phase insulin secretory capacity, non-insulin–mediated glucose disposal, and the DI. This work opens the door to applying genetic and environmental studies, as well as correlation with tissue morphological, histochemical, and molecular analyses, to better understand the determinants of these previously inaccessible parameters. For example, by combining FSIVGTT and histology we can separate the roles of β-cell mass and β-cell function in models of diabetes, by combining FSIVGTT with genetics we can identify determinants of high- vs. low-secretors of insulin, and Sg, in obesity-related glucose intolerance (1).

Glucose kinetics after an intravenous bolus of glucose into healthy, unanesthetized mice were extremely rapid, approximately three times faster than published human glucose curves (11). This difference may be due to the smaller volume of distribution, increased heart rate, shorter circulation time, and accelerated glucose turnover. Other than the faster kinetics, the shapes of mouse curves resembled human curves (11);
lean healthy mice blood glucose dipped below basal levels and in obese mice with impaired glucose tolerance glucose disposal was prolonged.

Our data contradict prior evidence that glucose disposal in mice (16) and rats (17) is independent of first-phase insulin secretion. Differences in outcomes between our study and prior mouse studies may be due to the effects of anesthesia on glucose metabolism (34–36). In anesthetized mice, glucose disposal after intravenous glucose challenge is markedly slower than in conscious mice, only approaching baseline by 50 min postinjection in lean mice (16,37–40). Differences from the prior rat study (17) may be related to variability among species, the glucose dose, or fast duration (overnight in the rats vs. 5 h in our study) (41).

In lean mice, the strongest predictor of glucose disposal was AIRg. This observation is consistent with human studies, in which the etiology of impaired glucose tolerance was noted to be different between lean and obese people, with impaired disposal principally attributable to AIRg in lean individuals (11). Our finding that the AIRg was increased in obese conscious mice is consistent with a large body of data on the effect of insulin resistance on insulin secretion across species. Interestingly, in obese mice the AIRg did not predict glucose disposal as effectively as it did in lean mice, but considering Si and AIRg together (DI) strongly predicted glucose disposal in obese mice.

Obese mice also had reduced Sg, as is seen in humans with impaired glucose tolerance and type 2 diabetes (42). In people, Sg and DI independently predict progression to type 2 diabetes in individuals at high risk for diabetes (13,43–45). We have found that Sg correlates with glucose disposal in obese mice but not in lean mice. As the gold-standard technique for measurement of Sg is the FSIVGTT, use of this technique in conscious mice will allow further investigation into the regulation of this much-debated metabolic parameter.

This technique has some limitations. Modeling SI is dependent on adequate endogenous insulin secretion; modification of the technique to include an exogenous insulin bolus several minutes after the glucose injection would surmount this obstacle. Also, FSIVGTT cannot differentiate insulin resistance arising from liver, fat or muscle.

In summary, we have used the FSIVGTT to demonstrate that the metabolic parameters determining glucose disposal in conscious mice are similar to published human findings. This technique allows quantification of critical elements of glucose metabolism that were not previously quantifiable in unhandled mice: first-phase insulin secretion, Sg, and the DI, extending the reach of mouse genetics to interrogate new arenas in metabolism.

SUPPLEMENTARY MATERIAL
Supplementary material is linked to the online version of the paper at http://www.nature.com/oby

ACKNOWLEDGMENTS
We gratefully acknowledge the thoughtful input of Andrew Stewart, Rupangi Vasavada, Don Scott, and Robert O'Doherty, University of Pittsburgh. This work was supported by National Institutes of Health: HL063767 (C.P.O.D.), DK076562 (L.C.A.), DK29867 and DK27619 (R.N.B.) and by the American Diabetes Association: 7-11-BS-04 (L.C.A.).

DISCLOSURE
The authors declared no conflict of interest. See the online ICMJE Conflict of Interest Forms for this article.

REFERENCES
1. Berglund ED, Li CY, Paffenberger G et al. Glucose metabolism in vivo in four commonly used inbred mouse strains. Diabetes 2008;57:1790–1799.
2. Kim JK, Zisman A, Fillmore JJ et al. Glucose toxicity and the development of diabetes in mice with muscle-specific inactivation of GLUT4. J Clin Invest 2001;108:153–160.
3. Kulkarni RN, Almind K, Goren HU et al. Impact of genetic background on development of hyperinsulinemia and diabetes in insulin receptor/insulin receptor substrate-1 double heterozygous mice. Diabetes 2003;52:1529–1534.
4. Lilloja S, Mott DM, Spraul M et al. Insulin resistance and insulin secretory dysfunction as precursors of non-insulin-dependent diabetes mellitus. Prospective studies of Pima Indians. N Engl J Med 1993;329:1988–1992.
5. Weyer C, Bogardus C, Mott DM, Pratley RE. The natural history of insulin secretory dysfunction and insulin resistance in the pathogenesis of type 2 diabetes mellitus. J Clin Invest 1990;104:787–794.
6. Weyer C, Tataranni PA, Bogardus C, Pratley RE. Insulin resistance and insulin secretory dysfunction are independent predictors of worsening of glucose tolerance during each stage of type 2 diabetes development. Diabetes Care 2001;24:89–94.
7. Bergman RN, Finegood DT, Kahn SE. The evolution of beta-cell function and insulin resistance in type 2 diabetes. Eur J Clin Invest 2002;32(Suppl 9):S5–45.
8. Chen M, Bergman RN, Pacini G, Porto D. Jr. Pathogenesis of age-related glucose intolerance in man: insulin resistance and decreased beta-cell function. J Clin Endocrinol Metab 1985;65:13–20.
9. Ayala JE, Samuel VT, Morton GJ et al. Standard operating procedures for describing and performing metabolic tests of glucose homeostasis in mice. Dis Model Mech 2010;3:525–534.
10. Bergman RN, Finegood DT, Adler M. Assessment of insulin sensitivity in vivo. Endocr Rev 1982;3:45–86.
11. Bergman RN, Phillips LS, Cobelli C. Physiologic evaluation of factors controlling glucose tolerance in man: measurement of insulin sensitivity and beta-cell glucose sensitivity from the response to intravenous glucose. J Clin Invest 1981;68:1456–1467.
12. Bergman RN, Prager R, Volund A, Olefsky JM. Equivalence of the insulin sensitivity index in man derived by the minimal model method and the euglycemic glucose clamp. J Clin Invest 1987;79:790–800.
13. Lorenzo C, Wagenknecht LE, Rewers MJ et al. Disposition index, glucose effectiveness, and conversion to type 2 diabetes; the Insulin Resistance Atherosclerosis Study (IRAS). Diabetes Care 2010;33:2098–2103.
14. Lyseenko V, Jonsson A, Almgren P et al. Clinical risk factors, DNA variants, and the development of type 2 diabetes. N Engl J Med 2008;359:2220–2232.
15. Kahn SE, Prigeon RL, McCulloch DK et al. Quantification of the relationship between insulin sensitivity and beta-cell function in human subjects. Evidence for a hyperbolic function. Diabetes 1993;42:1663–1672.
16. Pacini G, Thomaseth K, Ahren B. Contribution to glucose tolerance of insulin-independent vs. insulin-dependent mechanisms in mice. Am J Physiol Endocrinol Metab 2001;281:E693–E703.
17. McArthur MD, You D, Klapstein K, Finegood DT. Glucose effectiveness is the major determinant of intravenous glucose tolerance in the rat. Am J Physiol 1999;276:E739–E746.
18. Alonso LC, Yokoe T, Zhang P et al. Glucose infusion in mice: a new model to induce beta-cell replication. Diabetes 2007;56:1792–1801.
19. Yokoe T, Alonso LC, Romano LC et al. Intermittent hypoxia reverses the diurnal glucose rhythm and causes pancreatic beta-cell replication in mice. J Physiol (Lond) 2008;586:899–911.
20. Rowland NE, Dunn AJ. Effect of dexfenfluramine on metabolic and neurochemical measures in restraint-stressed db/db mice. Physiol Behav 1995;58:749–754.
21. Ikoyi N, Alonso LC, Li J et al. Intermittent hypoxia causes insulin resistance in lean mice independent of autonomic activity. Am J Respir Crit Care Med 2007;175:851–857.
22. Pacini G, Ahren M, Ahren B. Reappraisal of the intravenous glucose tolerance index for a simple assessment of insulin sensitivity in mice. Am J Physiol Regul Integr Comp Physiol 2009;296:R1316–R1324.
23. Toye AA, Lippiat JD, Proks P et al. A genetic and physiological study of impaired glucose homeostasis control in C57BL/6J mice. Diabetologia 2005;48:675–686.

24. Freeman HC, Hugill A, Dear NT, Ashcroft FM, Cox RD. Deletion of nicotinamide nucleotide transhydrogenase: a new quantitative trait locus accounting for glucose intolerance in C57BL/6J mice. Diabetes 2006;55:2153–2156.

25. Wong N, Blair AR, Morahan G, Andrikopoulos S. The deletion variant of nicotinamide nucleotide transhydrogenase (Nnt) does not affect insulin secretion or glucose tolerance. Endocrinology 2010;151:96–102.

26. Curry DL, Bennett LL, Grodsky GM. Dynamics of insulin secretion by the perfused rat pancreas. Endocrinology 1968;83:572–584.

27. Maechler P, Gjinovci A, Wollheim CB. Implication of glutamate in the kinetics of insulin secretion in rat and mouse perfused pancreas. Diabetes 2002;51(Suppl 1):S99–102.

28. Nunemaker CS, Wasserman DH, McGuinness OP et al. Insulin secretion in the conscious mouse is biphasic and pulsatile. Am J Physiol Endocrinol Metab 2006;290:E523–E529.

29. Prehn RT. Nongenetic variability in susceptibility to oncogenesis. Science 1975;190:1095–1096.

30. Jakovcevski M, Schachner M, Morellini F. Individual variability in the stress response of C57BL/6J male mice correlates with trait anxiety. Genes Brain Behav 2008;7:235–243.

31. Zhang LN, Morgan DG, Clapham JC, Speakman JR. Factors predicting nongenetic variability in body weight gain induced by a high-fat diet in inbred C57BL/6J mice. Obesity (Silver Spring) 2011; e-pub ahead of print 30 June 2011.

32. Vedell PT, Svenson KL, Churchill GA. Stochastic variation of transcript abundance in C57BL/6J mice. BMC Genomics 2011;12:167.

33. Watkins-Chow DE, Pavan WJ. Genomic copy number and expression variation within the C57BL/6J inbred mouse strain. Genome Res 2008;18:60–66.

34. Tanaka T, Nabatame H, Tanifuji Y. Insulin secretion and glucose utilization are impaired under general anesthesia with sevoflurane as well as isoflurane in a concentration-independent manner. J Anesth 2005;19:277–281.

35. Schlosser S, Spanholtz T, Merz K et al. The choice of anesthesia influences oxidative energy metabolism and tissue survival in critically ischemic murine skin. J Surg Res 2010;162:308–313.

36. Johansen O, Vaaler S, Jorde R, Reikerås O. Increased plasma glucose levels after Hypnorm anaesthesia, but not after Pentobarbital anaesthesia in rats. Lab Anim 1994;28:244–248.

37. Flipsson B, Pacini G, Scheurink AJ, Ahnén B. PACAP stimulates insulin secretion but inhibits insulin sensitivity in mice. Am J Physiol 1998;274:E334–E842.

38. Ahnén B, Pacini G. Dose-related effects of GLP-1 on insulin secretion, insulin sensitivity, and glucose effectiveness in mice. Am J Physiol 1999;277: E996–E1004.

39. Aston-Mourney K, Wong N, Kebede M et al. Increased nicotinamide nucleotide transhydrogenase levels predispose to insulin hypersecretion in a mouse strain susceptible to diabetes. Diabetologia 2007;50: 2476–2485.

40. Kooptiwut S, Zraika S, Thorburn AW et al. Comparison of insulin secretory function in two mouse models with different susceptibility to beta-cell failure. Endocrinology 2002;143:2085–2092.

41. Ayala JE, Bracy DP, McGuinness OP, Wasserman DH. Considerations in the design of hyperinsulinemic-euglycemic clamps in the conscious mouse. Diabetes 2006;55:390–397.

42. Taniguchi A, Fukushima M, Sakai M et al. Insulin secretion, insulin sensitivity, and glucose effectiveness in nonobese individuals with varying degrees of glucose tolerance. Diabetes Care 2000;23:127–128.

43. Goldfine AB, Bouche C, Parker RA et al. Insulin resistance is a poor predictor of type 2 diabetes in individuals with no family history of disease. Proc Natl Acad Sci USA 2003;100:2724–2729.

44. Osei K, Rhinesmith S, Gaillard T, Schuster D. Impaired insulin sensitivity, insulin secretion, and glucose effectiveness predict future development of impaired glucose tolerance and type 2 diabetes in pre-diabetic African Americans: implications for primary diabetes prevention. Diabetes Care 2004;27:1439–1446.

45. Martin BC, Warram JH, Krolewski AS et al. Role of glucose and insulin resistance in development of type 2 diabetes mellitus: results of a 25-year follow-up study. Lancet 1992;340:925–929.