Is the Level of Knowledge on Brucellosis Sufficient in the Highly Endemic Region?

Yüksek Endemik Olduğu Bölgede Bruselloz Hakkında Bilgi Seviyesi Yeterli Düzeyde mi?

Gülsüm İclal Bayhan¹, Zerrin Karakuş Epçaçan², Yunus Ertuğrul³, Muhammed Hamdi Sanhan³, Server Sena Ersarı³, Gülan Makal³, Dilek Şahin³

¹ Department of Pediatric Infectious Diseases, Yıldırım Beyazıt University School of Medicine, Ankara, Turkey
² Clinic of Pediatrics, Healty Sciences University, Van Training and Research Hospital, Van, Turkey
³ Phase 4 Internship, Van Yuzuncu Yil University School of Medicine, Van, Turkey

Cite this article as: Bayhan Gİ, Karakuş Epçaçan Z, Ertuğrul Y, Sanhan MH, Ersarı SS, Makal G, et al. Is the level of knowledge on brucellosis sufficient in the highly endemic region? J Pediatr Inf 2019;13(1):e8-e13

Original Investigation / Özgün Araştırma

DOI: 10.5578/ced.201902 • J Pediatr Inf 2019;13(1):e8-e13

©Copyright 2019 by Pediatric Infectious Diseases and Immunization Society.
Available online at www.cocukenfeksiyon.org
Introduction

As the most commonly seen zoonotic disease, brucellosis is endemic in the Mediterranean shores of Europe, North and East Africa, Middle East, South and Central Asia, and Central and South America (1). Brucellosis is still endemic in our country, especially in Central Anatolia, East and Southeastern Anatolia (2). The seroprevalence of brucellosis in the countryside in Van province has been reported as 27.2%, and it is one of the provinces with the highest seroprevalence rate in our country (3,4). Being a multisystemic disease, it can lead to various clinical pictures and progress with severe hematologic, cardiac and neurologic complications (5-7). Protection from brucellosis is an important matter in terms of public health since it is still endemic in our country, can cause serious complications and even be fatal. The most ideal way to reduce human brucellosis is to decrease brucellosis in animals. In other respects, when it is considered that brucellosis is transmitted to humans by the consumption of raw milk and dairy products, raising awareness about brucellosis has great importance in the protection against brucellosis (8-10). This study aimed at investigating brucellosis awareness in Van province where brucellosis shows the highest endemicity.

Materials and Methods

This survey study was conducted on 987 participants in the city center of Van province between July 2014 and March 2015. The survey included three parts. The first and second parts of the survey were conducted on all participants; however, the third part was only conducted on participants who had been or were still engaged in animal husbandry.

The first part questioned demographics (age, gender, education), the participants’ state of being involved in animal husbandry, whether or not they had previously heard of brucellosis, and whether or not the participant or anyone in his/her close circle or family had been diagnosed with brucellosis.

Mode of transmission was questioned in the second part. The participants were divided into two groups as secondary school and lower and high school and higher regarding their educational background, and correct response rates to the questions in the second part were compared between the groups.

The third part included questions on the mode of transmission of brucellosis from animals to humans, the symptoms of brucellosis in animals, and the procedures to be done to control brucellosis in animal husbandry.

Statistical analysis was performed on SPSS (Statistical Package for Social Sciences, version 21.0, SPSS Inc., Chicago, IL, USA) program. Chi-square and Fisher’s exact tests were used to compare nominal data. Approval of the Ethics Committee of Yüzüncü Yıl University was received for the study.

Results

Our study included 987 individuals of whom 555 (56.2%) were females and 432 (44.8%) were males. The mean age of the participants was 26.8 ± 8.3 years (minimum 14, maximum 70), and their distribution according to the educational background is shown in Figure 1. While 830 participants (84.1%) expressed that they had heard of brucellosis, the rest stated that they had not. Eighty-four (8.5%) participants had previously been diagnosed with brucellosis, and there were people in the family and/or close circle of 501 participants (50.8%).

Rates of correct responses to questions about food and brucellosis transmission according to the educational background of the participants are demonstrated in Table 1. While the knowledge that brucellosis is transmitted by consuming cheese made of raw milk was higher in the secondary school and lower education group, rates of correct responses to all other questions were found higher in the high school and higher education group. 178 (28.1%) participants having a high school degree or higher and 88 (24.8%) participants having a secondary school degree or lower were found to have no knowledge on transmission of brucellosis through foods (p= 0.245).

While 536 (54.3%) participants had never been engaged in animal husbandry before, 296 (30%) had been involved in animal husbandry in the past and 155 (15.7%) were still involved. 366 (81.2%) participants engaged in animal husbandry had heard of brucellosis before. The responses of 451 participants who had been or were still engaged in animal husbandry to the question “How is brucellosis transmitted to humans during animal husbandry procedures?” are shown in Table 2.

The state of the participants’ having heard of brucellosis vaccination, their state of getting their animals vaccinated, and reasons for not getting the animals vaccinated are shown in Figure 2. Responses to questions “How do you clean the objects and floors contaminated by urine, feces, the miscarried fetus, the fluid and membrane of the fetus of the animals that had a mis-
Table 1. Responses of the participants to the questions on foods and brucellosis transmission

	Ones with secondary school education and lower (355 persons) n (%)	Ones with high school education and higher (632 persons) N (%)	p	Total correct responses n (%)
Can be transmitted by consuming cheese made of raw milk	Yes 317 (89.3)	No 38 (10.7)	173 (27.4)	776 (78.7)
	Yes 459 (72.6)	No 173 (27.4)	0.001	
Can be transmitted by consuming yogurt made of raw milk	Yes 120 (33.8)	No 235 (66.2)	259 (41)	493 (49.9)
	Yes 373 (59)	No 259 (41)	0.001	
Can be transmitted by consuming butter made of raw milk	Yes 101 (28.5)	No 254 (71.5)	305 (48.2)	428 (43.3)
	Yes 327 (51.8)	No 305 (48.2)	0.001	
Can be transmitted by consuming not well-cooked red meat	Yes 0 (0)	No 355 (100)	122 (19.3)	122 (12.3)
	Yes 122 (19.3)	No 510 (80.7)	0.001	

Table 2. Responses to the question “How is brucellosis transmitted to humans during animal husbandry procedures?”

How is brucellosis transmitted to humans from animals?	n (%)
Contact with sick animals	87 (19.3)
Bare hand contact with the womb secretions and membranes of a pregnant animal with brucellosis disease during delivery	99 (21.9)
Bare hand contact with the miscarried young	53 (11.8)

Figure 2. Responses to the question “Have you ever heard of brucellosis vaccination? If you heard brucellosis vaccination, have you got your animals vaccinated? If you have not got your animals vaccinated what are reasons for not getting the animals vaccinated?”
carriage? and "What is your approach when your cattle, sheep or goat has a miscarriage?" are shown in Table 3 and Table 4. Responses to the question "What are the symptoms of brucellosis in animals?" are demonstrated in Table 5.

Table 3. “Responses to the question “What is your approach when your cattle, sheep or goat has a miscarriage?”

Approach when your cattle, sheep or goat has a miscarriage	Correct n (%)	Incorrect n (%)
Does the cattle, sheep or goat need to be separated from the flock/barn when it has a miscarriage so as not to contaminate other animals? (Correct response: Yes)	54 (12)	397 (88)
Can the cattle, sheep or goat be milked, and its milk be used to make cheese, and etc. if it had a miscarriage? (Correct response: No)	89 (19.7)	362 (81.3)
Can the milk of cattle or small cattle be given to the calf if it had a miscarriage? (Correct response: No)	82 (18.2)	369 (81.8)

Table 4. Responses to the question “How do you clean the objects and floors contaminated by urine, feces, the fluid and membrane of the fetus of the animals that had a miscarriage?”

Material used in cleaning	n (%)
Fertilizer	1 (0.2)
Lime	18 (4)
Detergent	10 (2.2)
Water	77 (17.1)
I do not clean	345 (76.5)

Table 5. Responses to the question “What are the symptoms of brucellosis in animals?”

Symptoms	n (%)
Having miscarriages	50 (11.1)
Reduced fertility	19 (4.2)
Decreased milk	27 (6)
I do not know	388 (86)

Discussion

The most frequently reported risk factors for brucellosis is raw milk consumption (48%) and animal husbandry (59%) (11). Apart from milk, brucellosis is also transmitted by raw consumption of dairy products such as cheese and cream and consumption of uncooked, raw meat. Although Brucella spp. content is diminished in the making of butter, yoghurt and curd cheese due to a fair amount of acidification, pH must have decreased under 3.5 for the bacteria to be completely destroyed. In pH levels over 3.5, the risk of brucellosis transmission still continues (1). In a large series reported from Van province, 63.6% of the cases have been determined to consume raw milk and dairy products (12). In series reported from our country, it has been indicated that brucellosis transmission is based on raw milk and dairy products consumption at a rate of 94.6% (10,13). Consumption of raw milk by boiling it also protects from brucellosis. The seroprevalence of brucellosis has been found lower in persons consuming boiled milk compared to those consuming milk without boiling it and in persons consuming cheese made of boiled milk compared to those consuming cheese made of unboiled milk (1,14). In our study, even though awareness about the fact that brucellosis could be transmitted by other raw dairy products besides cheese. Particularly, the rate of knowing that it could be transmitted by consuming raw, uncooked meat was found low. The prevalence of brucellosis has been found to decrease with the increase in educational background (15). In accordance with the literature, rate of correct responses was found significantly higher in the group with high level of education.

In a seroprevalence study conducted in Van province in our country, brucellosis positivity has been found 22.9%, 21.5% and 21.7% in sheep, goats and beef cattle, respectively (6). Seropositivity in sheep and beef cattle in Kirikkale province has been reported as 6.4%, in Kayseri province as 10.37%, in Afyon province as 5%, and in Kars province as 34.8% (16-18). We can say that Van is one of the provinces with the highest rate of brucellosis seropositivity in our country. Brucellosis transmission occurs with direct contact with the infected animal during husbandry procedures, contact with the secretion of the animal, pregnancy material, urine and the disintegrated skin or mucosa (11,19).

In a study conducted in India, it has been detected that brucellosis seropositivity is highest in shepherds (11.4%) and slaughter house workers (8.6%) among various occupational groups; however, it has also been determined that persons in these occupational groups have never heard of brucellosis before, do not have any knowledge of mode of transmission of brucellosis and symptoms of the disease and that they do not use any kind of protective equipment (8). In our study, it was confirmed that
persons engaged in animal husbandry had heard of brucellosis disease but their level of knowledge on how brucellosis is transmitted to humans during animal husbandry procedures was very low.

Brucellosis eradication program in sheep and goats in our country was started first in 1952 (4). The best method in controlling brucellosis in animal husbandry is taking the infection under control in its source and having it eradicated. Recommended methods to provide this are vaccination of the animals, surveillance of the animals with laboratory support, separating the infected animal from the healthy ones and killing it. The most economical method in regions with a brucellosis seroprevalence of 1% and lower in animals is the killing of the animals whose laboratory-supported surveillance turns out positive. However, this method is not suitable for our country since seropositivity is much higher in our country and grasslands and water meadow are mutually used and animal migration is not under control. The suitable method for our country is the vaccination of the animals. Various vaccination activities have been carried out against brucellosis since 1960 (4). In scope of the notice referred to as “Combat with Animal Diseases and Animal Movement Control Program” published in 2017 in our country, brucellosis vaccination is given free of charge by the Ministry of Agriculture and Forestry (20). In our study group, more than half of the individuals engaged in animal husbandry expressed that they had not heard of the vaccination. We determined that most of the individuals with knowledge of the vaccination had their animals vaccinated, but majority of the persons having heard of the vaccination did not have their animals vaccinated since they did not know the benefits of the vaccine. The results of our study led us to consider that individuals engaged in animal husbandry had a significant lack of knowledge and education on brucellosis vaccination.

The most important mode of transmission between animals is contact after miscarriage. As a result of the contamination of the barn with organisms after miscarriage, brucellosis is transmitted to other animals by inhalation, inoculation from the conjunctiva and skin contamination. Other modes of transmission include the mutual use of milking machine, which results in the transmission of the disease from the breast of the animal, the feeding of the calves with the milk of the infected animal and sexual contact (1). Therefore, miscarriage management is vital in the prevention of brucellosis. Burning the miscarriage secretions and objects that were in contact with the secretions or burying them away from water resources by whitewashing them, and disinfecting the barn with disinfectants containing hypochloride, iodophor or phenol components are necessary (1). The results of our study revealed that persons engaged in animal husbandry do not separate the animal having a miscarriage from the flock, continue to use its milk and do not do any additional cleaning after the miscarriage.

Brucellosis in animals causes miscarriages, reduction in milk production, decrease in weight gain, premature deaths, and thus increase in veterinary costs besides looking sick. An association has been found in many studies between brucellosis seropositivity and increased frequency in miscarriages (19). In a study carried out in India, it has been shown that brucellosis creates 3.4 billion dollars revenue loss as a result of causing reduction in animal products, decrease in fertility and premature deaths of the animals (21). Another unwanted effect of brucellosis in animals is the transmission of the disease to other animals and the young born from the infected animal (19). The results of our study showed that a majority of the persons engaged in animal husbandry do not know the negative effects of brucellosis in animals. It is our belief that insufficient knowledge of the persons engaged in animal husbandry is a reason for them not to do any research and find out the measures to be taken against brucellosis.

When the low level of knowledge on brucellosis as put forth by our study is evaluated with the fact that Van province is one of the provinces with the highest brucellosis seroprevalence in animals in our country and that the traditional cheese consumed in Van is mostly made of raw milk, it is clear that public health is at risk. Raising societal awareness about brucellosis will preclude an important public health problem and revenue loss in animal husbandry. In order to raise awareness in our public in the matter of easy, practical and applicable measures in the protection against brucellosis, we are of the opinion that various studies aimed at societal enlightenment, such as giving lessons about brucellosis in schools in provinces with a high rate of endemicity should be carried out.

Ethics Committee Approval: Ethics committee approval was received.

Informed Consent: Patient consent was obtained.

Peer-review: Externally peer-reviewed.

Author Contributions: Concept - GB; Design - GB; Supervision - GB; Materials - ZKE, YE, MHS, SSE, GM, DS; Data Collection and/or Processing - ZKE, YE, MHS, SSE, GM, DS; Analysis and/or Interpretation - GB, YE, MHS, SSE, GM, DS; Literature Review - GB; Writing - GB; Critical Review - GB.

Conflict of Interest: No conflict of interest was declared by the authors.

Financial Disclosure: The authors declared that this study has received no financial support.

References

1. Brucellosis in humans and animals. WHO/CDS/EPR/2006.7 (Accessed date: 18 October 2018)

2. Yuce A, Alp Çavuş S. Türkiye’de bruselloz: Genel bakış. Klinik Derg 2006;19:87-97.
3. Ceylan E, Irmak H, Buzgan T, Karahocagil MK, Evirgen Ö, Sakarya H ve ark. Van iline bağlı bazı köylerde insan ve hayvan populasyonunda bruseloz seroprevalansı. Van Tıp Dergisi 2003;10:1-3.

4. Yumuk Z, O’Callaghan D. Brucellosis in Turkey—an overview. Int J Infect Dis 2012;16:228-35.

5. Karaman K, Akbayram S, Bayhan GI, Dogan M, Parlaç M, Akbayram HT, et al. Hematologic findings in children with brucellosis: experiences of 622 patients in eastern Turkey. J Pediatr Hematol Oncol 2016;38:463-6.

6. Bayhan GI, Ece I, Oner AF. Brucella aortitis and meningoccephalitis in an adolescent. Pediatr Infect Dis J 2016;35:1368-70.

7. Teke TA, Koyuncu H, Oz FN, Metin O, Bayhan GI, Aydin ZG, et al. Neurobrucellosis in children: case series from Turkey. Pediatr Int 2015;57:578-81.

8. Mangalgi SS, Sajjan AG, Mohite ST, Gajul S. Brucellosis in occupational exposed groups. J Clin Diagn Res 2016;10:24-7.

9. Akinç E. Bruseloz. www.ekmud.org.tr (Accessed date: 11 October 2018)

10. Demiroğlu YZ, Turunç T, Aşkan H, Çokaköprü Ş, Arslan H. Bruseloz: 151 olgunun klinik, laboratuvar ve epidemiyolojik özelliklerinin retrospektif değerlendirilmesi. Mikrobiyol Bul 2007;41:17-27.

11. Lytras T, Danis K, Dounias G. Incidence patterns and occupational risk factors of human brucellosis in Greece, 2004-2015. Int J Occup Environ Med 2016;7:221-6.

12. Buzgan T, Karahocagil MK, Irmak H, Baran Al, Karsen H, Evrinc O, et al. Clinical manifestations and complications in 1028 cases of brucellosis: a retrospective evaluation and review of the literature. Int J Infect Dis 2016;14:469-78.

13. Ataman Hatipoğlu Ç, Kınikli S, Tülek N, Koruk Tekin S, Arslan S, Tuncer Ertem G ve ark. Bir eğitim hastanesinin infeksiyon hastalıkları ve klinik mikrobiyoloji kliniğinde izlenen 202 bruseloz olgusunun epidemiyolojik verilerinin idraklenmesi. Klinik Dergisi 2005;18:94-8.

14. Aral M, Doramaci Kopru N, Ekeriçer HÇ, Gül M, Çıragil P, Alkış Koçtürk S. Kahramanmaraş il merkezinde bruseloz hastalığının seroprevalansı. Mersin Univ Sağlık Bilimleri Dergisi 2011;4:17-23.

15. Ünsal A, Alpat A, Tözün M, Arslan Taş D, Tirpan K. Sivrihisarda (Eskişehir) bruseloz yaygınlığı. Türk Mikrobiyol Cem Derg 2007;37:19-25.

16. Sahin M, Genç O, Unver A, Otuğ B. Investigation of bovine brucellosis in northeastern Turkey. Trop Anim Health Prod 2008;40:281-6.

17. İnci A, Aydin N, Babur C, Cam Y, Akdogan C, Kuzan S. Seroepidemiologic investigations on toxoplasmosis and brucellosis in bovine and sheep in Kayseri region. Pendik Veteriner Mikrobiyol Derg 1999;30:41-6.

18. Apan TZ, Yıldırım M, İstanbulluoğlu E. Seroprevalence of brucellosis in human, sheep and cattle populations in Kırıkkale (Turkey). Turk J Vet Anim Sci 2007;31:75-8.

19. Franc KA, Krecek RC, Hasler BN, Arenas-Gamboa. Brucellosis remains a neglected disease in the developing world: a call for interdisciplinary action. BMC Public Health 2018;18:125.

20. Genelge Hayvan Hastalıkları ile Mücadele ve Hayvan Hareketleri Kontrolü Genelgesi (2017/01) https://kms.kaysis.gov.tr/Home/Goster/96438. (Accessed date: 19 October 2018).

21. Singh BB, Dhanda NK, Gill JP. Economic losses occurring due to brucellosis in Indian livestock populations. Prev Vet Med 2015;119:211-15.