Synthesis and post-functionalization of alternate-linked-meta-para-[2n.1n]thiacyclophanes

Wout De Leger¹, Koen Adriaensen¹, Koen Robeyns², Luc Van Meervelt³, Joice Thomas¹, Björn Meijers⁴,⁵, Mario Smet¹ and Wim Dehaen*¹

Abstract

In recent decades, considerable research attention has been devoted to new synthetic procedures for thiacyclophanes. Thiacyclophanes are widely used as host molecules for the molecular recognition of organic compounds as well as metals. Herein, we report the selective and high-yielding synthesis of novel alternate-linked-meta-para-thiacyclophanes. These novel thiacyclophanes are selectively synthesized in high-yielding procedures. Furthermore, post-functionalization of the phenolic moieties was successfully performed. The 3D structure of the alternate-linked-meta-para-[2²,1²]thiacyclophane was further elucidated via X-ray crystallographic analysis.

Introduction

The ability of cyclophanes to form three-dimensional cavities is interesting for various potential applications, e.g., as supramolecular hosts. Synthetic procedures towards novel cyclophanes have attracted much interest in the scientific community [1-4]. An interesting subclass of cyclophanes is formed by thiacyclophanes, in which the thioether linkages impose less conformational strain and which have an increased cavity size compared to other (oxa/aza)cyclophanes. Thiacalix[n]arenes are among...
the most widely known thiacyclophanes with significant ability for molecular recognition [5-9]. Our group has experience in the synthesis of homothiacalix[n]arenes, a subclass of the thiacyclophanes with significant ability for molecular recognition [5-9]. Homothiacalix[4]arenes were successfully synthesized via nucleophilic substitution and homothiacalix[4]arenes by dynamic covalent chemistry [12-14]. Functionalization of homothiacalix[4]arenes was made possible by changing the precursors before macrocyclization (Scheme 1) [12].

Recently, pillar[n]arenes have attracted much interest as new supramolecular receptors due to their pillar-shaped structure [15-17]. Wang et al. were the first to report a one-pot procedure towards the synthesis of various thiapillararenes [18-20]. Our group reported a disulfide-bridged [2[n]] pillararene-like molecule in a two-step procedure [21]. In contrast to meta-para-bridged azacyclophanes [22-25], less synthetic work has been performed on the synthesis of sulfur-linked cyclophanes with an alternating meta-para-bridge [26]. Herein we report a one-pot macrocyclization of meta-para-bridged thiacyclophanes by means of a substitution reaction between the bisselectrophile 2,6-bis(chloromethyl)-4-tert-butylphenol (4) and the bisnucleophile 4,4’-thiobisbenzenethiol (5). Either the [2 + 2] adduct 6 or the [3 + 3] adduct 7 were selectively obtained by varying the reaction conditions. Post-functionalization of the phenolic moieties was successfully performed. Alternate-linked-meta-para-[2^1.1^2]thiacyclophane 6 was further analysed by X-ray diffraction.

Results and Discussion

Macrocyclization

Macrocyclization and post-functionalization of cyclophanes is of high interest for the development of various applications in molecular recognition. Based on our previous one-pot procedure towards homothiacalixarenes [12], we now report the development of an alternate meta-para-thiacyclophane which could be post-functionalized.

The precursors 2,6-bis(chloromethyl)-4-tert-butylphenol (4) and commercially available 4,4’-thiobisbenzenethiol (5) were chosen as the bisselectrophile and bisnucleophile, respectively [27]. Cyclocondensation of 4 and 5 under highly diluted conditions (employing a syringe pump) resulted in the formation of a mixture of the [2 + 2] adduct 6 and the [3 + 3] adduct 7 (Scheme 1 and Table 1, entry 1).

The optimization study was further conducted under diluted conditions and shorter reaction time (Table 1, entries 2–5). As summarized in Table 1, the reaction is strongly affected by time, base and solvent. At higher concentrations, a decreased yield of 6 is observed. A more significant effect on the selectivity towards 7 was observed by screening different bases (Supporting Information File 1, Table S1, entries 2, 3, 9, and 10). Interestingly, stronger bases led to the almost exclusive formation of the [3 + 3] adduct 7 (Table 1, entry 3) over [2 + 2] adduct 6. A higher proportion of macrocycle 6 was obtained using K₂CO₃ as the base and toluene as the solvent, the yield rose from 14% (Table 1, entry 2) to 21% (Table 1, entry 4). Working at low concentrations (4 mM) and under O₂ free conditions gave rise to a significant increase in the formation of 6 (Table 1, entry 5). The [3 + 3] adduct 7 is significantly disfavoured under these conditions. On the basis of these data it could be hypothesized that the [2 + 2] adduct 6 is the more thermodynamically favoured product and the [3 + 3] adduct 7 is the kinetic product. When the reaction was carried out at higher temperatures, an increase in the formation of open chain oligomers was observed (Supporting Information File 1, Table S1, entries 13 and 14). A longer reaction time at low concentration resulted in a higher yield of the [2 + 2] adduct 6. After
Scheme 2: Cyclocondensation reaction of 4 and 5 towards [2 + 2] and [3 + 3] adducts.

Table 1: Optimisation towards alternate-linked-meta-para-thiacyclophane 6 and 7.

entry	base\(^a\)	solvent	concentration (mM)	temperature (°C)	time (h)	NMR yield of 6\(^b\)	NMR yield of 7\(^b\)
1	KO\(_2\)CO\(_3\)	THF	20\(^c\)	rt	18	26	61
2	KO\(_2\)CO\(_3\)	THF	40	rt	1	14	62
3	KOH	THF	40	rt	1	3	82
4	KO\(_2\)CO\(_3\)	toluene	40	rt	1	21	67
5	KO\(_2\)CO\(_3\)	toluene	4\(^d\)	rt	1	68	17
6	KO\(_2\)CO\(_3\)	toluene	4	rt	72	79	21
7	KO\(_2\)CO\(_3\)	toluene	4	rt	168	–\(^e\)\(^f\) (91%)	–
8	t-BuOK (2 equiv)	toluene	4	rt	1.5	2	92 (64%)\(^f\)

\(^a\)1.2 Equivalents used unless otherwise stated. \(^b\)Conversions in all reactions were measured by \(^1\)H NMR spectroscopy in CDCl\(_3\) at 25 °C. The conversion was calculated using the signals from the aromatic peaks of the phenol moiety (6.88 ppm for [3 + 3], 6.86–6.83 ppm for oligomers and 6.67 ppm for [2 + 2] adduct). \(^c\)Biselectrophile and bisnucleophile added with syringe pump over 6 h. \(^d\)O\(_2\) free conditions by flushing with argon. \(^e\)Reaction product precipitated from the reaction mixture. \(^f\)Isolated yield.

6 days a white precipitate was observed in the reaction mixture (Table 1, entry 7). Filtration of the precipitate followed by successively washing with water and methanol resulted in an isolated yield of 91%. The 3D structure of macrocycle 6 was confirmed by single crystal X-ray diffraction and shows approximate twofold rotational symmetry (point group C\(_2\), Figure 1). The dihedral angles between the aromatic rings are given in Table S2 (Supporting Information File 1, ring numbering as shown in Figure 1). The conformation in the solid state is stabilised by intramolecular O–H···S hydrogen bonds (O···S distances 3.2081 (16) and 3.4179 (17) Å) and shows no central void.

The formation of the [3 + 3] product is favoured by stronger bases and shorter reaction times. Therefore, in entry 8 of Table 1, we report our method of choice to selectively synthesise 7. Purification of [3 + 3] adduct 7 was successful via precipitation (CHCl\(_3\)/MeOH) in good yield (64%).

Proposed mechanism and stability

In Scheme 3 a reaction mechanism for the formation of the macrocycles is proposed. It is believed that after deprotonation of the OH group and subsequent chloride loss of 4 an o-quinoid structure 9 is formed in situ, that quickly reacts with the deprotonated thiol 10 via Michael addition (Scheme 3, route A) \([28-30]\). However, as aromatic thiols at the benzylic position are good leaving groups, conversely \(\beta\)-elimination (route B) can easily occur, leading to reversal of the addition reactions.

This was observed in a stability experiment where pure [3 + 3] macrocycle 7 in CDCl\(_3\) (without adding base) over two weeks’
time converted into a mixture of [3 + 3] macrocycle 7 (9%), acyclic oligomers (50%) and the more thermodynamically stable [2 + 2] macrocycle 6 (41%, see Figure S13, Supporting Information File 1). Due to the instability of the macrocycles, purification of the reaction mixtures via column chromatography (silica/alumina) or selective crystallization was difficult.

Changing the biselectrophile precursor to anisole derivative 13, for which the ortho-quinoid formation is not possible, did not led to the formation of macrocycle 14 or 15 under the optimized conditions, supporting the proposed mechanism (Scheme 4). Mainly starting material was observed in the reaction mixture.

The syntheses of various phenolic thiamacrocycles are reported under basic conditions [31-34]. To the best of our knowledge, reactions of thiamacrocycles under acidic conditions have not been reported in contrast to homooxacalix[n]arenes, for example [35,36].
A reaction under acidic conditions with precursor 16 was investigated based on similar conditions as reported by Cragg et al. [35]. The reaction in the presence of p-toluenesulfonic acid (0.05 equiv) led mainly to oligomerization, although in the 1H NMR spectrum traces of macrocycles 6 and 7 were observed (Scheme 5).

Post-functionalization

As the macrocycles are not stable in solution or in basic medium, most of the initial attempts to post-functionalization with ethyl bromoacetate (17) resulted in complex reaction mixtures. Reactions at room temperature or higher temperature (25–60 °C) mainly resulted in the transformation of the [2 + 2] adduct 6 to the functionalized [3 + 3] adduct 19. Traces of unidentified oligomers and functionalized [2 + 2] macrocycle were also observed in the reaction mixture. It can be argued that, due to steric hindrance, the alkylation of macrocycle 6 is slow. The less sterically hindered cyclic trimer 7 and the linear oligomers are therefore faster alkylated and removed from the equilibrium between macrocycle 6 and 7. Macrocyclization under the optimal conditions (Table 1), followed by in situ post-functionalization (DBU 2.2 equiv, ethyl bromoacetate 3 equiv)
in a one-pot procedure also led to a shift towards the functionalized \([3 + 3]\) adduct 19. Purification of these complex reaction mixtures was not successful. Therefore, in order to prevent \(\beta\)-elimination, lower temperatures were applied. Cooling of the reaction mixtures to \(-20 °C\) had a positive effect on the stability of the macrocycles. Despite this, no full conversion was obtained, even with a strong base (NaH). Further exploration of the reaction conditions towards the functionalized macrocycles 18 and 19 indicated that the reaction proceeds best at \(0 °C\), using NaH as a base combined with a large excess of the appropriate electrophile 17 (15 equivalents per hydroxy moiety, Scheme 6). Functionalized macrocycles 18 and 19 were obtained in good yields 93% and 77%, respectively.

Further modification of the functionalized \([2 + 2]\) macrocycle 18 towards the amide derivative 20 and the acid derivative 21 were successfully performed in good yields (Scheme 7). Functionalization of the phenolic moieties afforded a stable macro-

Scheme 6: Post-functionalization of thiacyclophanes 6 and 7 with ethyl bromoacetate (17).

Scheme 7: Modification of the functionalized \([2 + 2]\) adduct 18 towards an amide derivative 20 and acid derivative 21.
cycle under various conditions (basic medium, heat). This also indicates that ring opening occurs via an o-quinoid structure like 9 (Scheme 3).

Conclusion

In conclusion, a selective procedure was developed towards alternate-linked-meta-para-thiacyclophanes. Starting from readily available materials, the [2 + 2] adduct 6 was synthesized in a high-yielding protocol. A major benefit of the procedure is the simple work-up as the product precipitates from the reaction mixture. Furthermore, it was also possible to selectively synthesize the [3 + 3] adduct 7 in good yield, while avoiding chromatography. The unfunctionalized macrocycles are labile in neutral solution or basic medium. However, post-functionalization of the macrocycles was successfully realized at low temperatures and with a large excess of the electrophile. Functionalization of the [2 + 2] macrocycle 6 towards an amide derivative 20 and acid derivative 21 was performed with good overall yields (three steps), 80% and 54%. In the near future, the binding properties of these interesting alternate-linked-meta-para-thiacyclophanes will be investigated.

Supporting Information

Supporting Information File 1
Experimental part.
[https://www.beilstein-journals.org/bjoc/content/supplementary/1860-5397-14-192-S1.pdf]

Acknowledgements

We thank the KU Leuven for financial support (IDO/13/015). Mass spectrometry was made possible by the support of the Hercules Foundation of the Flemish Government (grant 20100225-7).

ORCID® iDs

Wout De Leger - https://orcid.org/0000-0003-3011-0158
Koen Adriaensen - https://orcid.org/0000-0003-3632-574X
Koen Robeyns - https://orcid.org/0000-0002-4763-4217
Luc Van Meerveldt - https://orcid.org/0000-0003-2186-5209
Björn Meijers - https://orcid.org/0000-0002-2846-2026

References

1. Gutsche, C. D. Calixarenes Revisited; Royal Society of Chemistry: Cambridge, 1998.
2. Liu, Z.; Nalluri, S. K. M.; Stoddart, J. F. Chem. Soc. Rev. 2017, 46, 2459–2478. doi:10.1039/C7CS00185A
3. Böhmer, V. Angew. Chem., Int. Ed. Engl. 1995, 34, 713–745. doi:10.1002/anie.199507131
4. Gutsche, C. D. Calixarenes; Royal Society of Chemistry: Cambridge, 1989.
5. Lhoták, P. Eur. J. Org. Chem. 2004, 1675–1692. doi:10.1002/ejoc.200300492
6. Morohashi, N.; Narumi, F.; Ikí, N.; Hattori, T.; Miyano, S. Chem. Rev. 2006, 106, 5291–5316. doi:10.1021/cr050565j
7. König, B.; Fonseca, M. H. Eur. J. Inorg. Chem. 2000, 2303–2310. doi:10.1002/1099-0682(200011)2000:11<2303:AID-EJIC2303>3.0.CO;2-Y
8. Kumar, R.; Lee, Y. D.; Bhalla, V.; Kumar, M.; Kim, J. S. Chem. Soc. Rev. 2014, 43, 4824. doi:10.1039/c4cs00068d
9. Wang, M.-X. Chem. Commun. 2008, 4541–4551. doi:10.1039/b809287f
10. Cottel, K.; Marcos, P. M.; Cragg, P. J. Beilstein J. Org. Chem. 2012, 8, 201–226. doi:10.3762/bjoc.8.22
11. Thomas, J.; Gusak, A. S.; Dehaen, W. Homoheteracalix[n]arenes (X = S, Se, N). In Calixarenes and Beyond; Nerl, P.; Sessler, J. L.; Wang, M.-X., Eds.; Springer International Publishing: Cham, 2016.
12. Thomas, J.; Van Hecke, K.; Robeyns, K.; Van Rossum, W.; Sonawane, M. P.; Van Meerveldt, L.; Smet, M.; Maes, W.; Dehaen, W. Chem. – Eur. J. 2011, 17, 10339–10349. doi:10.1002/chem.201101690
13. Sonawane, M. P.; Van Hecke, K.; Jacobs, J.; Thomas, J.; Van Meerveldt, L.; Dehaen, W.; Van Rossum, W. J. Org. Chem. 2012, 77, 8444–8450. doi:10.1021/jo303121w
14. Thomas, J.; Reekmans, G.; Adriaensens, P.; Van Meerveldt, L.; Smet, M.; Maes, W.; Dehaen, W.; Dobrazilka, L. Angew. Chem., Int. Ed. 2013, 52, 10237–10240. doi:10.1002/anie.201302822
15. Ogoshi, T.; Yamagishi, T.-a.; Nakamoto, Y. Chem. Rev. 2016, 116, 7937–8002. doi:10.1021/acs.chemrev.5b00765
16. Xue, M.; Yang, Y.; Chi, X.; Zhang, Z.; Huang, F. Acc. Chem. Res. 2012, 45, 1294–1308. doi:10.1021/ar200341f
17. Yang, K.; Pei, Y.; Wen, J.; Pei, Z. Chem. Commun. 2016, 52, 9316–9326. doi:10.1039/C6CC03641D
18. Fu, Z.-D.; Guo, Q.-H.; Zhao, L.; Wang, D.-X.; Wang, M.-X. Org. Lett. 2016, 18, 2668–2671. doi:10.1021/acs.orglett.6b01112
19. Guo, Q.-H.; Zhao, L.; Wang, M.-X. Chem. – Eur. J. 2016, 22, 6947–6955. doi:10.1002/chem.201600462
20. Guo, Q.-H.; Zhao, L.; Wang, M.-X. Angew. Chem., Int. Ed. 2015, 54, 8386–8389. doi:10.1002/anie.201503179
21. Sonawane, M. P.; Jacobs, J.; Thomas, J.; Van Meerveldt, L.; Dehaen, W. Chem. Commun. 2013, 49, 6310–6312. doi:10.1039/c3cc42984a
22. Ito, A.; Ono, Y.; Tanaka, K. Angew. Chem., Int. Ed. 2000, 39, 1072–1075. doi:10.1002/(SICI)1521-3773(20000317)39:6<1072::AID-EJIC2303>3.0.CO;2-Y
23. Kurata, R.; Sakamaki, D.; Ito, A. Org. Lett. 2017, 19, 3115–3118. doi:10.1021/acs.orglett.7b01229
24. Ito, A.; Uebe, M.; Kurata, R.; Yano, S.; Fueno, H.; Matsumoto, T. Chem. – Asian J. 2018, 13, 754–760. doi:10.1002/asia.201701717
25. Sakamaki, D.; Ito, A.; Furukawa, K.; Kato, T.; Tanaka, K. Chem. Commun. 2009, 4542–4546. doi:10.1039/b907792a
26. Seppälä, T.; Wegelius, E.; Rissanen, K. New J. Chem. 1998, 22, 789–791. doi:10.1039/a803490g
27. Paine, R. T.; Tan, Y.-C.; Gan, X.-M. Inorg. Chem. 2001, 40, 7009–7013. doi:10.1021/ic0107633
28. Walden, D. M.; Jaworski, A. S.; Johnston, R. C.; Hovey, M. T.; Baker, H. V.; Meyer, M. P.; Scheidt, K. A.; Cheong, P. H.-Y. J. Org. Chem. 2017, 82, 7183–7189. doi:10.1021/acs.joc.7b00697
29. Lewis, R. S.; Garza, C. J.; Dang, A. T.; Pedro, T. K. A.; Chain, W. J. Org. Lett. 2015, 17, 2278–2281. doi:10.1021/acs.orglett.5b00972
30. Merijan, A.; Shoulders, B. A.; Gardner, P. D. J. Org. Chem. 1963, 28, 2148–2149. doi:10.1021/jo01043a050
31. Ashram, M. J. Inclusion Phenom. Macrocyclic Chem. 2006, 54, 253–259. doi:10.1007/s10847-005-8648-y
32. Ito, K.; Yamamori, Y.; Ohba, Y.; Sone, T. Synth. Commun. 2000, 30, 1167–1177. doi:10.1080/00397910008087137
33. Ito, K.; Nagai, T.; Ohba, Y.; Sone, T. J. Heterocycl. Chem. 2000, 37, 1121–1128. doi:10.1002/jhet.5570370516
34. Sonawane, M. P.; Boodts, S.; Thomas, J.; Dehaen, W. Supramol. Chem. 2014, 26, 547–551. doi:10.1080/10610278.2013.866898
35. Miah, M.; Romanov, N. N.; Cragg, P. J. J. Org. Chem. 2002, 67, 3124–3126. doi:10.1021/jo025597a
36. Hampton, P. D.; Benicze, Z.; Tong, W.; Daitch, C. E. J. Org. Chem. 1994, 59, 4838–4843. doi:10.1021/jo00096a026

License and Terms

This is an Open Access article under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0). Please note that the reuse, redistribution and reproduction in particular requires that the authors and source are credited.

The license is subject to the Beilstein Journal of Organic Chemistry terms and conditions: (https://www.beilstein-journals.org/bjoc)

The definitive version of this article is the electronic one which can be found at: doi:10.3762/bjoc.14.192