FIRST RESULTS OF USE-WEAR ANALYSIS OF THE LEAF POINTS FROM MORAVANY NAD VÁHOM-DLHÁ

Katarzyna Pyżewicz – Adrián Nemergut

DOI: https://doi.org/10.31577/szausav.2021.suppl.2.5

Keywords: Early Upper Palaeolithic, Szeletian, Western Slovakia, leaf points, use-wear analysis

Abstract: In the last century, a big number of specific poplar-leaf shape points were obtained during the archaeological research at the Moravany nad Váhom-Dlhá. The assemblage contains numerous points of various sizes, methods of production at different stages of completion. The paper presents the results of use-wear analysis of the selected leaf points from Moravany nad Váhom-Dlhá. The study focuses on the relation between the morphology, raw material use, size of the points and the character of macroscopic and microscopic traces associated with their use and hafting, as well as the localization on the points. However, from the aspect of use-wear analysis, the collection is a bit problematic. It has been obtained a long time ago, mostly in 1943 and 1963. Instead of being packed separately, numerous leaf points were stored together only in few boxes. Many of them are damaged either by production, or as a result of post-depositional processes, lowering the visibility of the original use-wear traces. First microscopic analysis indicates that these types of tools were probably used as hunting equipment.

INTRODUCTION

The leaf point collection from Moravany nad Váhom-Dlhá is very important as regards a specific technocomplex of the Early Upper Palaeolithic (EUP) in Western Slovakia. The assemblage is renowned because it consists of a big number of triangular points shaped by bifacial retouch, with a slightly convex base (poplar-leaf shape). These specific leaf points were introduced by L. Zotz (1951, 183) as Moravany-Dlhá type points. F. Prošek (1953, 146) included the finds from Moravany nad Váhom-Dlhá in his detailed definition of the Szeletian culture in which leaf points represented the main fossiles directeurs. In recent years, opinions on Szeletian material concept have been changed and refined due to newly obtained results from excavations and lithic collections from central Europe, even though many new questions have arisen (Kaminská et al. 2017; Kaminská/Kozłowski/Škrdla 2011; Lengyel/Mester 2008; Markó 2016; Mester 2018; Nerudal/ Nerudová eds. 2009; 2013; Oliva 2008 – 2009; Škrdla 2017; Valoch 2012). The lithic collection from Moravany nad Váhom-Dlhá has a great potential to contribute to this discussion. The collection comprises of all elements within the chaîne opératoire, including rough pre-forms, production waste, final products – leaf points or reutilized pieces, due to what the site has been interpreted as a leaf point workshop (Freund 1952, 249; Zotz 1951, 181). The paper presents preliminary results of the use-wear analysis of selected leaf points, with the aim of determining whether these tools were used and what for, what could eventually contribute to identification of the site’s function. This is a pilot study focusing only on selected leaf points from the site. This is why points in different stages of production (almost finished, finished, and reutilized), points made of different raw materials and of different quality, including even weathered pieces were selected for the analysis. In order to determine what specimen are suitable for the analysis in the future.

THE SITE

Moravany nad Váhom-Dlhá is located in Southwestern Slovakia, at the foothills of the Považský Inovec mountain range, on the left bank of the Váh River. The site is situated at an altitude of approx. 330 m, on a slope leaning northwards to the Váh River valley, about 3 km far from the river (Fig. 1).

1 This work was supported by the Slovak Research and Development Agency under the Contract no. APVV-20-0521 and project VEGA 2/0101/19.
The site was first systematically excavated by L. Zotz (1951, 181) in the first half of the last century. Later, his work was followed up on by K. Absolon (Nerudová/Valoch 2009). Exact locations of the areas excavated by these researches remain unknown. More detailed information about the site was obtained during the excavations lead by J. Bártá in 1963 and 1990 (Bárta 1967; 1970). In 1963, 25 trenches spreading over a large area of about 150 m² were excavated (Nemergut 2010, 184). The artefacts were located in two superposing layers, as indicated by the profile drawings (Nemergut 2010, fig. 4). According to J. Bártá, the cultural layer was found mainly at the level of fossil soil, and rarely also in the layer of loess, which is why he believes that the finds were not found in their primary positions (Bárta 1970, 39). This was probably caused by extensive deflations and erosion of overlying loess layers. Revising archaeological excavation was carried out in 2008 (Kaminská/Kozłowski/Škrdla 2011, 39), during which three trenches were excavated. Lithic finds were discovered in Trench III, namely in the layer B horizon of fossil soil (Kaminská et al. 2017, 43).

The AMS dating (Poz-29011) of a fragment of Picea sp./Larix sp. from L. Zotz’s 1943 excavation is 33,600 ±300 uncal BP (Kaminská/Kozłowski/Škrdla 2011, 40).

LITHIC INDUSTRY

Several big collections of lithic industry were obtained from the site. They are deposited in various institutions, even though some assemblages have been lost. The collections have been analysed by several researchers (Bárta 1960; Freund 1952; Kaminská et al. 2017; Nemergut 2010; Nemergut/Cheben/Gregor 2012; Nerudová/Valoch 2009; Zotz 1951). The most numerous finds come from the excavations of L. Zotz and J. Bártá. From J. Bártá’s excavations, 5012 lithic artefacts were obtained (Nemergut 2010, 188). 4795 pieces coming from the excavations lead by L. Zotz (Nemergut/Cheben/Gregor 2012, 381) are deposited at the Institute of Archaeology of the Slovak Academy of Sciences (IA SAS). The latter number of specimen is probably not final, as the finds keep being discovered in misplaced/wrongly labelled boxes. Part of the collection, partially analysed by J. Bártá (1960), is still deposited in the Balneological Museum in Piešťany. As the finds were obtained during the excavations conducted a long time ago, the information regarding their contexts is very limited. The finds from the excavation led by L. Zotz in 1943 were packed in boxes with no context information (trenches, layers or depths). The finds from excavations led by J. Bártá were packed by individual trenches and depths, but information on layers and parts of the trenches or sectors is missing. Nevertheless, the assemblage seems to be homogeneous, which is why it is analysed as a whole.

As regards raw materials, most of the lithic artefacts (91%) were made of local radiolarite of different colours (Nemergut/Cheben/Gregor 2012, 382). Presence of pebble cortex indicates that radiolarite was
obtained from nearby gravel terraces of the Váh River. Quartz, opal-chalcedony, siliceous siltstone and sandstone were less frequent materials. Limnosilicite (approx. 70 km), felsitic porphyry (approx. 210 km) and obsidian (approx. 280 km) imported from more distant territories were used as well.

From technological aspect, flakes, their fragments and small flakes absolutely prevail in the collections. Only a small proportion of the assemblages comprises of blades, retouched tools and cores (Nemergut 2010, table 1; Nemergut/Cheben/Gregor 2012, table 1).

LEAF POINTS

Moravany nad Váhom-Dlhá site became famous for a finding of a large number of leaf points. L. Zotz (1951, 183) states that up to 200 pieces come from his excavation. 67 specimens come from the excavations led by J. Bárta, 23 of which represent complete artefacts (Nemergut 2010, 192). The remaining 44 pieces are fragmented, and include distal (15 pcs), lateral (14 pcs), proximal (6 pcs), mesial-distal (4 pcs), proximal-mesial (4 pcs), and mesial parts (1 pc) of leaf points. Some of the fragments fit together, and usually compose of mesial-distal and proximal-mesial parts (Nemergut 2010, pl. IV: 4, 6). Interestingly, in one case, a proximal-mesial fragment of a broken leaf point was re-retouched (Nemergut 2010, pl. IV: 8).

Almost all leaf points were made of local radiolarite (Nemergut/Cheben/Gregor 2012, fig. 2: 6, 8, 10), only some were made of local siliceous siltstone and sandstone (Nemergut/Cheben/Gregor 2012, fig. 2: 1–3). One asymmetrical point was even made of a poor-quality quartz. Exceptionally, the points were made of raw materials originating in more distant places, such as limnosilicate and felsitic porphyry (Nemergut/Cheben/Gregor 2012, fig. 2: 4, 5). G. Freund (1952, 249) even mentions obsidian, but it has not been directly documented in the collection deposited in the IA SAS. There is only indirect evidence, in the form of production waste – the bifacial thinning flakes (BTF).
The collection contains numerous finished leaf points but also various exemplars discarded at different production stages. There are two main methods of production (Nemergut/Klaric 2014, 16). First, the leaf points are produced by direct processing of raw material blocks, pebbles or pebble fragments, by discoid reduce strategy. This method is used for making bifacial samples of larger size (Fig. 2: 3). Second method is based on flakes with partial bifacial work (Fig. 2: 2), or unifacial work (Fig. 2: 1), sometimes even only using lateral retouch. The lengths of the leaf points from the collection of J. Báta varies between 23 and 58 mm. Average length is 38 mm, with standard deviation of 9.6. Widths vary from 18 to 41 mm, with average width being 26 mm and standard deviation 6.8. The ratio of length to width varies from 1.1 : 1 to 1.8 : 1. Average ratio is 1.45 : 1, with standard deviation of 0.16 (Nemergut 2010, 192).

USE-WEAR ANALYSIS

Method

Microscopic analysis was conducted using Nikon LV150 metallographic microscope and Keyence VH-Z100R digital microscope. Before the examination, the artefacts were cleaned with warm water, detergent, and acetone. The leaf points were examined under the magnification of 50 x to 400 x, a common procedure in microscopic analysis (e.g. Juel Jensen 1988; Keeley 1980; Levi Sala 1996; Moss 1983; Rots 2010; Van Gijn 1990; Vaughan 1985). The observations were compared mainly with the macroscopic and microscopic traces and especially with the experimental reference dataset kept at the Faculty of Archaeology, University of Warsaw, Poland. This dataset consists of about 200 specimens originally used for hunting, and for processing hide, meat, bones, antler, wood, plant, shells, amber, and minerals. The dataset also includes about 80 blocks of lithic industry associated with technology, and a few hundred specimens linked to postdepositional aspects (like trampling, plowing). The experiments were conducted during the last few years and refer generally to the activities possibly performed in the Stone Age. It is important to emphasize that these experiments had been made before the microscopic analysis of Moravany-Dlhá leaf points, and so they are not directly related to the technology and the usage of leaf points.

Material

A detailed microscopic analysis was conducted on 64 artefacts. The analysed group consists of whole leaf points of Moravany-Dlhá type and their fragments (Table 1). The assemblage is rather challenging, as the leaf points were not packed separately. They were all deposited together in only few boxes. Much of the postdepositional damage of the specimens was probably caused by frequent manipulation with the boxes, resulting in poor visibility of the original traces of use-wear. In order to examine potential microscopic technological and usage traces, we have selected finished, almost finished and reutilized points differing in morphology, type, and size. The analysed group of artefacts comprises of: finished tools, symmetrical, bifacial, and very thin leaf points with a rounded base; partially bifacially retouched points representing finished or almost finished leaf points; unifacially or laterally retouched artefacts; or some reutilized points. The most common are the bifacial variants, which are also the largest, mostly made of radiolarite (Table 1; 2). As for the chaîne opératoire, finished points are the most frequent of all.

Whole and almost whole	Fragments	Total				
Finished	Almost finished	Reutilized	Mesio-basal/ mesio-terminal parts	Tips		
Unifacial	5	3	0	0	3	11
Partially bifacial	6	0	0	2	0	8
Bifacial	20	2	3	10	7	42
Unknown	0	0	0	0	3	3
Total	31	5	3	12	13	64
Table 2. Moravany nad Váhom-Dlhá. Types of macroscopic and microscopic traces observed on the leaf points. xx – the surface is badly damaged mostly due to the postdepositional processes, or the raw material was not fine-grained, causing problems with identification of use-wear traces.

Sample no.	Raw material	Variant of leaf point	Chaîne opératoire	Size (mm)	Fragmentation	Postdepositional traces/not well preserved surface	Hafting/transporting traces	Breaks of tips	Linear traces	Photo
			length	width	thickness	whole	x	x	–	
1	radiolarite	partially bifacial	42.81	20.24	6.61	whole	x	x	–	–
2	radiolarite	bifacial	47.98	22.81	6.64	whole	x	x	–	–
3	radiolarite	bifacial	45.77	22.97	7.87	lateral break	x	x	x	–
4	radiolarite	partially bifacial	47.97	22.98	6.37	whole	xx	–	–	–
5	radiolarite	bifacial	56.08	35.08	10.13	bilateral breaks	xx	–	–	–
6	radiolarite	bifacial	54.88	34.69	9.95	almost whole	–	x	x	x
7	radiolarite	unifacial	26.62	19.03	3.12	whole	xx	x?	–	x?
8	radiolarite	partially bifacial	31.57	22.23	5.12	almost whole	xx	–	x?	–
9	unknown	unifacial	32.07	23.18	8.57	almost whole	xx	–	–	–
10	radiolarite	partially bifacial?	22.78	18.38	3.52	mesio-basal part	–	x?	x?	–
11	radiolarite	partially bifacial	36.56	27.31	4.21	almost whole	xx	–	x	x
12	radiolarite	unifacial	23.64	18.74	2.97	almost whole	xx	–	x	–
13	radiolarite	unifacial	22.55	20.32	3.95	almost whole	–	x	x	–
14	radiolarite	unifacial	24.55	17.95	3.13	almost whole	x	x?	x?	x
15	radiolarite	unifacial	34.64	18.89	2.95	lateral break	xx	–	–	x?
16	radiolarite	unifacial	30.08	21.46	6.55	whole	xx	–	–	–
17	radiolarite	unifacial	30.32	22.66	5.36	whole	xx	–	–	–
18	radiolarite	unifacial?	29.05	21.02	3.11	tip	xx	x?	x	–
19	radiolarite	bifacial	38.68	31.03	8.98	mesio-basal part	xx	–	–	–
20	radiolarite	bifacial	36.82	36.48	11.28	mesio-basal part	xx	–	x	x
21	radiolarite	bifacial	53.43	35.37	13.95	almost whole	xx	x	–	–
22	radiolarite	bifacial	35.21	25.15	5.98	almost whole	xx	–	x	–
Sample no.	Raw material	Variant of leaf point	Chaîne opératoire	Size (mm)	Fragmentation	Postdepositional traces/not well preserved surface	Hafting/transporting traces	Breaks of tips	Linear traces	Photo
-----------	--------------	-----------------------	--------------------	-----------	---------------	---	-----------------------------	----------------	--------------	-------
23	radiolarite	bifacial	finished	33.82	20.14	5.19 whole	xx	--	--	--
24	radiolarite	bifacial	finished	37.25	25.65	6.77 whole	x	x	--	--
25	radiolarite	bifacial	finished	41.93	31.38	8.27 whole	xx	--	--	--
26	radiolarite	bifacial	finished	48.02	34.45	9.61 almost whole	xx	--	x?	--
27	radiolarite	bifacial	finished	47.44	34.4	8.33 whole	xx	--	--	--
28	radiolarite	bifacial	reutilized	56.75	39.21	9.91 tip (technological break) + reutilized mesio-basal part	xx	--	x?	--
29	radiolarite	bifacial	finished	36.27	24.54	4.58 whole	xx	--	--	--
30	radiolarite	partially bifacial	finished	61.8	32.84	4.93 whole	xx	--	--	--
31	radiolarite	bifacial	finished	37.86	32.69	8.95 basal part	xx	--	--	--
32	radiolarite	bifacial	finished	85.73	43.88	12.75 whole	x	x?	--	--
33	felsitic porphyry	bifacial	finished	44.53	26.61	5.94 lateral notch	x	x	--	--
34	radiolarite	?	?	19.85	10.19	3.23 tip	xx	--	x	--
35	radiolarite	?	?	13.01	12.84	3.17 tip	x	x	x?	--
36	radiolarite	?	?	19.33	13.11	2.52 tip	x	x	x	--
37	radiolarite	bifacial	finished	23.22	17.02	3.52 tip	xx	--	x?	--
38	radiolarite	bifacial	finished	18.13	22.58	5.25 tip	x	x	x	--
39	radiolarite	unifacial?	finished?	21.42	21.83	5.48 tip	xx	--	x?	--
40	radiolarite	bifacial	finished	25.47	29.33	8.67 tip	x	x?	x?	x
41	radiolarite	bifacial	finished	27.58	24.71	5.31 tip	xx	--	x?	--
42	radiolarite	bifacial	finished	19.4	22.86	5.23 tip	xx	--	x	--
43	radiolarite	bifacial	finished	36.38	26.13	7.91 mesio-terminal part	xx	--	x?	--
44	radiolarite	bifacial	finished	28.41	28.16	9.97 mesio-terminal part	xx	--	x?	--
Table 2. Continuation.

Sample no.	Raw material	Variant of leaf point	Chaîne opératoire	Size (mm)	Fragmentation	Postdepositional traces/not well preserved surface	Hafting/transporting traces	Breaks of tips	Linear traces	Photo
45	radiolarite	partially bifacial	finished	27.04/25.55/4.54	mesio-basal part	x	x	x?	–	–
46	radiolarite	bifacial	finished	35.07/23.97/5.72	lateral break	xx	–	x	–	–
47	radiolarite	bifacial	finished	26.35/35.12/7.88	basal part	xx	–	x?	–	–
48	radiolarite	bifacial	finished	15.23/17.23/5.67	tip	xx	–	x	–	–
49	radiolarite	bifacial	finished	31.98/31.43/4.87	tip	x	x?	x?	–	–
50	radiolarite	bifacial	finished	24.72/42.67/7.38	basal part	x	x?	–	–	–
51	radiolarite	bifacial	finished	36.26/29.32/6.58	almost whole	x	–	x	–	–
52	radiolarite	partially bifacial	finished	43.76/30.24/5.25	whole	x	x?	–	x	–
53	radiolarite	bifacial	finished	37.79/47.96/7.56	mesio-terminal part	x	x?	x	–	Fig 3: 6
54	radiolarite	bifacial	finished	41.39/39.61/8.74	mesio-terminal part	x	x	x	–	Fig 5: 1
55	radiolarite	bifacial	finished	55.06/51.79/7.49	mesio-basal part	x	x	x?	–	–
56	unknown	bifacial	finished	54.38/35.63/6.22	lateral break	x	x	x	–	–
57	radiolarite	bifacial	finished	49.68/32.87/5.84	whole	xx	x?	–	–	–
58	radiolarite	bifacial	finished	61.83/37.35/7.08	whole	x	–	–	–	Fig 2: 3
59	radiolarite, Sedmerovec-Kašnák type	bifacial	finished	79.78/51.42/9.86	whole	xx	–	–	–	–
60	limnosilicite	bifacial	finished	50.37/36.67/8.62	almost whole	xx	–	x?	–	–
61	siliceous siltstone	bifacial	finished	62.83/37.79/6.23	almost whole	xx	–	x	x?	–
62	radiolarite, Sedmerovec-Kašnák type	bifacial	finished	84.93/40.96/10.15	whole	xx	–	–	–	–
63	radiolarite	bifacial	unfinished?	74.48/46.96/18.41	whole	x	–	–	–	–
64	radiolarite	unifacial?	finished?	18.58/9.11/4.02	tip	?	?	x	?	Fig 6: 1, 2
What is very important in the context of use-wear studies, analysed artefacts were made of various types of raw-material, and they are characterized by a different states of preservation. It can be concluded that the most important raw material was local one, i.e. radiolarite. Some of the artefacts were made of local quartz or siliceous sandstone. There are some specimens made of raw materials brought from further locations. In some cases, the type of raw-material limited the research. Microscopic analysis of other than “fine-grained” materials and/or those that were weathered was much more complicated. In such cases, diagnostic elements of polishing were poorly preserved and vague. These postdepositional factors limited the identification and

Fig. 3. Moravany nad Váhom-Dlhá. Details of use-wear traces on leaf points. 1 – spin-off fracture (sample 12); 2 – hinge terminating bending fracture (sample 20); 3, 4 – spin-off and hinge terminating bending fractures (sample 11); 5 – feather terminating bending fracture (sample 21); 6 – hinge terminating bending fracture (sample 53).
recognition of the origin of the traces on the artefacts (e.g. Burroni/Donahue/Pollard 2002; Kamińska/Szymczak 1994; Levi Sala 1996; Plisson/Mauger 1988; Shea/Klenck 1993; Van Gijn 1990, 51–53). Because of a bad state of preservation, the use-wear analysis of some leaf points was made only on the macroscopic level.

Results

Table 2 shows the results of the analysis. They were influenced by numerous postdepositional traces located on different parts of analysed points. For instance, breakings of the tips, microscopic linear traces, and polishing were detected (Fig. 3–6). Figures 7 and 8 show that the traces of use-wear can be seen on all types of points, regardless their variant or size.
Broken tips are the most common macroscopic traces. They were observed on many specimens, on finished, almost finished and reutilized specimens (Fig. 7: A). On all known variants, large broken bifacial tips were recognised, on both the partially retouched or on small unifacial forms (Fig. 7: B). These broken tips are characterized by specific morphology. There are some examples of impacts with a convex profile called “hinge” (Fig. 3: 2–4, 6; 5: 2), “step” (Fig. 5: 1) and “feather”, depending on fracture bending of the edge (Fig. 3: 5). Also, “spin-off” fractures were recognized (Fig. 3: 1, 3, 4), characterized by the breaks with straight profiles and some negatives of small chips, usually with hinged or step endings that were placed under the breaks. The morphology of the mentioned fractures indicates that some of them are probably related to tools such as projectiles, and these breaks were created during hitting the target. This is indicated by a series of different experiments (cf. Bergman/Newcomer 1983; Coppe/Rots 2017; Fischer/
FIRST RESULTS OF USE-WEAR ANALYSIS OF THE LEAF POINTS FROM MORAVANY NAD VÁHOM-DLHÁ

Additionally, some leaf points are broken in an unusual way – the breakages have only straight profiles. In such cases, it is not possible to answer the question if they were created during hunting, were formed during the production stage, or they are related to postdepositional factors (like for example trampling).

Among the group of analysed artefacts, tips of the leaf points were recognized. They represent positives of previously described traces. Some of them bear the negatives of hinged or step fractures – they have deep and concave profiles, and the one end of the breakage is much longer than the other.

Vemming Hansen/Rasmussen 1984; Hutchings 2016; Lombard 2005; Odell/Cowan 1986; Rots/Plisson 2014; Shea/Davis/Brown 2001). Additionally, some leaf points are broken in an unusual way – the breakages have only straight profiles. In such cases, it is not possible to answer the question if they were created during hunting, were formed during the production stage, or they are related to postdepositional factors (like for example trampling).

Among the group of analysed artefacts, tips of the leaf points were recognized. They represent positives of previously described traces. Some of them bear the negatives of hinged or step fractures – they have deep and concave profiles, and the one end of the breakage is much longer than the other.

Vemming Hansen/Rasmussen 1984; Hutchings 2016; Lombard 2005; Odell/Cowan 1986; Rots/Plisson 2014; Shea/Davis/Brown 2001). Additionally, some leaf points are broken in an unusual way – the breakages have only straight profiles. In such cases, it is not possible to answer the question if they were created during hunting, were formed during the production stage, or they are related to postdepositional factors (like for example trampling).
It is possible that these fractures were formed during use or technical stage when the leaf points were made (cf. Beyries/Janny/Audouze 2005; Polanská 2018), e.g., with visible butt on the edge (Fig. 6: 3) or postdepositional (probably Fig. 6: 5, 6). There are no tips from partially bifacial variants (Fig. 8: A), what is related with the poorer presence of terminal breaks on partially bifacial points (Fig. 7: B). On the tips, there are some traces that could be related to transporting or hafting (Fig. 8: A), but some of these traces can be related to postdepositional processes. Linear traces were detected exclusively on bifacial variants of tips, as they were statistically most numerous (Fig. 8: A).

On microscopic level, the leaf points are characterized by linear traces. These linear traces are visible on 10 leaf points. They are placed near the tips of the leaf points (Fig. 4: 1, 2), under the already-mentioned macroscopic fractures or near the negatives of the microchips. Linear traces are either multiple, parallel next to each other, or individual. They are parallel or slightly oblique to the tool’s axis of symmetry. Possibly, some of them had been created during the penetration of the target by point, they could be a result of scratching of a surface by stone chips. In one case (Fig. 4: 3B), there are visible linear polishes whose morphology is similar to traces resulting from getting in contact with bone. So, possibly, they may have been created as a result of hitting an animal bone.

Some of the leaf points are covered by traces that could be related to some kind of hafts or transporting (Fig. 5: 1B, 2B, 3B). On protruding parts such as ridges or edges, rounded and polished margins are visible...
(they are usually dull, slightly “greasy” and penetrating the microstructure; e.g. *Lombrad* 2005; *Rots* 2003; 2008a; 2008b; 2009; 2010; 2011; 2015; *Rots/Van Peer/Vermeersch* 2011; *Rots/Vermeersch* 2004; *Van Gijn* 2010). It should be added that these traces occur on large parts of artefacts and are not visible only on specific parts of the tools (for example, near the tip or at the base). Due to the insufficient level of distinction, it was impossible to identify the type of potential haft and the method of fixing the leaf points. Considering the issue of leaf point mounting, the appearance of small notches located on individual specimens edges, lateral (Fig. 5: 3A) or bilateral (distributed symmetrically), at 1/3 to 1/2 of the artefact, should be taken into consideration. However, in this case this observation is not supported by specific results of microscopic analysis. Additionally, on the surface of leaf points, there are clear bright spots - they appear individually or in group, and in a chaotic way. The formation of such traces is related to the activity of natural and mechanical factors (e.g. *Levi Sala* 1993; 1996) and with the use of hafts (e.g. *Rots* 2010; *Rots/Vermeersch* 2004).

DISCUSSION

Traces observed on the leaf points from Moravany nad Váhom-Dlhá are related to macroscopic breakages of the tips, microscopic linear traces, and some kind of polishing (see other experimental and use-wear analysis related to hunting weapons, e.g. *Barton/Bergman* 1982; *Bergman/Newcomer* 1983; *Coppe/Rots* 2017; *Crombe et al.* 2001; *Dockall* 1997; *Fischer* 1990; *Fischer/Vemming Hansen/Rasmussen* 1984; *Hutchings* 2016; *Iovita/Sano eds.* 2016; *Lombard* 2005; *Lombard/Parsons/van der Ryst* 2004; *Moncel et al.* 2009; *Moss/Newcomer* 1982; *Nuzhnyi* 1990; *Odell* 1988; *Odell/Cowan* 1986; *Plisson/Beyries* 1998; *Rots* 2011; 2015; *Rots/Plisson* 2014; *Shea* 1988; 1990; 2006; *Shea/Davis/Brown* 2001; *Villa/Lenoir* 2006; *Villa et al.* 2009).

Unfortunately, at the current stage of the research, there is still a lack of comprehensive use-wear studies related to Central European points belonging to transitional assemblages, including Szeletian. The only analysis was performed on the material from the Moravia region – the leaf points from Vedrovice V and Moravský Krumlov IV (*Nerudová/Dušková-Šajnerová/Sadovský* 2010; *Šajnerová-Dušková* 2009). Microscopic traces were recorded on 19 leaf points and several other tools. They were suggested to have been related to hide processing, scraping of soft and medium-hard material (possibly also hide), as well as drilling or piercing of medium-hard material. Some of them could have been used during hunting, the function of other tools was not specified. In general, the results show that these leaf points were used as multifunctional tools. In comparison, the data on selected leaf points from Siberia indicate that this type of artefacts was used to process soft organic material. These activities were undertaken using the side edges (*Shalagina et al.* 2019). Apart from single cases suggesting different function, latest microscopic studies of Jerzmanowice leaf points from Nietoperzowa Cave revealed that the majority of tools contain traces of use indicating a hunting weapon. The research showed that these tools were made indeed to be used in hunting areas (*Pyżewicz et al.* 2020, 81).

At the same time, it should be noted that in the camp area, other activities associated with animal carcasses were performed. These specimens were parts of composite tools, as potential traces of hafting were observed on their surfaces. Based on preliminary use-wear analysis of endscrapers it can be concluded that these types of tools were used for scraping hide. It can be assumed that if further analyses of the other groups of artefacts were undertaken, it would also be possible to identify other tools for other activities related to the processing of animal carcasses, such as functional knives. Additionally, it should be noted that, based on preliminary results of the use-wear analysis of artefacts from Moravany nad Váhom-Dlhá, there is some evidence of plant processing using the lithic tools. Two examples, one large flake, and the other retouched flake are covered by intensive, very bright and flat gloss, which has overlapping the inner surfaces.

CONCLUSION

Lithic collection from Moravany nad Váhom-Dlhá represents an important (probably homogeneous) assemblage crucial for EUP (Szeletian), as suggested by many finished leaf points, semi-finished products, BTF, etc. On the other hand, the collection is problematic because it was obtained during older
excavations, and the context of the finds is absent. It is also chronologically old assemblage and the authors are aware of the fact that they cannot expect such results as those obtained from the finds from younger periods cannot be expected. Studying other assemblages from surrounding countries show that it is possible to detect traces also on Middle Palaeolithic or transitional industries (Nerudová-Nerudová/Šajnerová-Dušková 2010; Nerudová/Dušková-Šajnerová/Sadovský 2010; Šajnerová-Dušková 2009). The problem lies mainly in the deposition of analysed finds in the depository and the moving of the collection which has led to fresh traces on the finds and partial covering/removing of the original traces. The aim of the presented article was not to analyse all points, but rather a representative part of the assemblage. These are preliminary results which must be further validated on other points in the collection of the IA ŠAS. Analysis of assemblages stored in other institutions should also be attempted. Main preliminary results of this study can be summarised as follows:

- The analysis has clearly shown that significant number of fractures is associated with fresh fractures or with accidents production, which is logical, since the leaf points were massively produced at the site.
- Absence of traces on edges which might interpret the points as multifunctional tools. This is an interesting discovery, since it is remarkably different from, e.g., Szeletian points from Moravia (Nerudová/Dušková-Šajnerová/Sadovský 2010; Šajnerová-Dušková 2009). On the other hand, other activities on other tools (sidescrapers, endscrapers) were documented at the site of Moravany nad Váhom-Dlhá; thus, if the original users had wanted to use the points universally, they would have. It has not been confirmed so far that the points from the analysed site were used as multifunctional tools.
- Rarely, traces suggesting use during hunting, such as microscopic linear traces and diagnostic impact and spin-off fractures, were documented. The cases when a combination of such traces was discovered on a single specimen are interesting, as this cannot be considered a coincidence (e.g. samples 6, 14, 40; Table 2).

To sum up the use-wear analysis of artefacts from Moravany nad Váhom-Dlhá, it can be concluded that at the site activities related to hunting were performed. The leaf points were most probably specialized tools used during hunting activities. This preliminary conclusion should be confirmed by further research.

As a result of conducted microscopic analysis, some further questions associated with the recognition of microscopic traces have arisen. Conducting a series of experiments connected with production and using (cutting, throwing, hafting, etc.) would be helpful. We would like to know:

- if macroscopic and microscopic traces (technological, usage, hafting, transporting) observed on experimental leaf points made from analogical raw materials such as artefacts from Moravany nad Váhom-Dlhá could be similar;
- how the type of raw material influences the readability of microscopic technological, use-wear or hafting traces;
- if particular types of macroscopic breakages of tips of Moravany-Dlhá type leaf points should be associated with using or technological aspects during their creation.

Translated by authors and Viera Tejbusová

BIBLIOGRAPHY

Barton/Bergman 1982
R. N. E. Barton/C. A. Bergman: Hunters at Hengistbury: some evidence from experimental archaeology. *World Archaeology* 14, 1982, 237–248.
DOI: https://doi.org/10.1080/00438243.1982.9979864

Bárta 1960
J. Bárta: K problému listovitých hrotov typu Moravany-Dlhá. *Slovenská archeológia* 8, 1960, 295–323.

Bárta 1967
J. Bárta: Stratigraphische Übersicht der paläolitischen Funde in der Westslowakei. *Quartär* 18, 1967, 57–80.

Bárta 1970
J. Bárta: Sidliská zo staršej doby kamennej na okolí Moravian nad Váhom. In: *Almanach Balneologického múzea v Piešťanoch*. Piešťany 1970, 31–40.

Bergman/Newcomer 1983
C. A. Bergman/M. H. Newcomer: Flint Arrowhead Breakage: Examples from Ksar Akil, Lebanon. *Journal of Field Archaeology* 10, 1983, 238–243.
Beyries/Janny/Audouze 2005 S. Beyries/F. Janny/F. Audouze: Débitage, matière première et utilisations des becs sur le site de Verberie “Le Buisson Campin” (Oise) dans le Nord de la France. *Revue archéologique de Picardie* 22, 2005, 15–24.

Burroni/Donahue/Pollard 2002 D. Burroni/R. E. Donahue/A. M. Pollard: The Surface Alteration Features of Flint Artefacts as a Record of Environmental Processes. *Journal of Archaeological Science* 29, 2002, 1277–1287. DOI: https://doi.org/10.1016/j.jas.2001.07.071

Coppe/Rots 2017 J. Coppe/V. Rots: Focus on the target. The importance of a transparent fracture terminology for understanding projectile points and projecting modes. *Journal of Archaeological Science: Reports* 12, 2017, 109–123. DOI: https://doi.org/10.1016/j.jasrep.2017.01.010

Crombe et al. 2001 P. Crombe/Y. Perdaen/J. Sergant/J.-P. Caspar: Wear Analysis on Early Mesolithic Microliths from Verrebroek Site, East Flanders, Belgium. *Journal of Field Archaeology* 28/3–4, 2001, 253–269. DOI: https://doi.org/10.1179/jfa.2001.28.3-4.253

Dockall 1997 J. E. Dockall: Wear traces and Projectile Impact: A Review of the Experimental and Archaeological Evidence. *Journal of Field Archaeology* 24/3, 1997, 321–331. DOI: https://doi.org/10.1179/0108464X.1997.10589910

Fischer 1990 A. Fischer: Hunting with Flint-Tipped Arrows: Results and Experiences from Practical Experiments. In: C. Bonsall (ed.): *The Mesolithic in Europe. Papers presented at the Third International Symposium, Edinburgh 1985*. Edinburgh 1990, 29–39.

Fischer/Vemming Hansen/Rasmussen 1984 A. Fischer/P. Vemming Hansen/P. Rasmussen: Macro and Micro Wear Traces on Lithic Projectile Points. Experimental Results and Prehistoric Examples. *Journal of Danish Archaeology* 3, 1984, 19–46. DOI: https://doi.org/10.1080/0108464X.1984.10589910

Freund 1952 G. Freund: *Die Blattspitzen des Paläolithikums in Europa*. Bonn 1952.

Hutchings 2016 W. K. Hutchings: When Is a Point a Projectile? Morphology, Impact Fractures, Scientific Rigor, and the Limits of Inference. In: R. Iovit/K. Sano (eds.): *Multidisciplinary Approaches to the Study of Stone Age Weaponry*. Dordrecht 2016, 3–12.

Iovita/Sano eds. 2016 R. Iovit/K. Sano (eds.): *Multidisciplinary Approaches to the Study of Stone Age Weaponry*. Dordrecht 2016.

Juel Jensen 1988 H. Juel Jensen: Functional Analysis of Prehistoric Flint Tools by High-Power Microscopy: A Review of West European Research. *Journal of World Prehistory* 2/2, 1988, 53–87.

Kaminská et al. 2017 E. Kaminská/J. K. Kozłowski/M. Moskal-Del Hoyo/A. Nemergot/P. Škrdla: Moravany-Dlhá a phenomenon of the poplar-leaf shape points. *Eurasian Prehistory* 14/1–2, 2017, 41–54.

Kaminská/Kozłowski/Škrdla 2011 E. Kaminská/J. K. Kozłowski/P. Škrdla: New approach to the Szeletian-Chronology and cultural variability, *Eurasian Prehistory* 8/1–2, 29–49.

Kamińska/Szymczak 1994 J. Kamińska/K. Szymczak: Patyna powierzchni zabytków krzemiennych jako wyznacznik chronologiczny, *Światowit* 39, 1994, 215–223.

Keeley 1980 L. H. Keeley: *Experimental Determination of Stone Tool Uses: a Microwear Analysis*. Chicago 1980.

Lengyel/Mester 2008 G. Lengyel/Z. Mester: A new look at the radiocarbon chronology of the Szeletian in Hungary. *Eurasian Prehistory* 5/2, 2008, 73–84.

Levi Sala 1993 I. Levi Sala: Use-Wear Traces: Process of Development and Post-depositional alterations. In: P. C. Anderson/S. Beyries/M. Otte/H. Plisson (eds.): *Traces et fonction, les gestes retrouvés. Actes du colloque international de Liège*, 8–9–10 décembre 1990. ERAUL 50. Liège 1993, 401–416.

Levi Sala 1996 I. Levi Sala: *A Study of Microscopic Polish on Flint Implements*. Oxford 1996.

Lombard 2005 M. Lombard: Evidence of hunting and hafting during the Middle Stone Age at Sibidu Cave, KwaZulu-Natal, South Africa: a multianalytical approach. *Journal of Human Evolution* 48, 2005, 279–300. DOI: https://doi.org/10.1016/j.jhevol.2004.11.006

Lombard/Parsons/van der Ryst 2004 M. Lombard/L. Parsons/M. M. van der Ryst: Middle Stone Age lithic point experimentation for macro-fracture and residue analyses: the process and preliminary results with reference to Sibidu Cave points. *South African Journal of Science* 100, 2004, 159–166.

Markó 2016 A. Markó: Considerations on the lithic assemblages from the Szeleta Cave. *Communicationes Archaeologicae Hungariae* 2015–2016, 2016, 5–44.

Mester 2018 Z. Mester: The problems of the Szeletian as seen from Hungary. *Recherches Archéologiques* 9, 2018, 19–48.
Rots 2009
V. Rots: The functional analysis of the Mousterian and Micoquian assemblages of Sesselfelsgrotte, Germany: Aspect of tool use and hafting in the European Late Middle Paleolithic. *Quartär* 56, 2009, 37–66.

Rots 2010
V. Rots: Pretension and Hafting Traces on a Flint Tools. A Methodology. Leuven 2010.

Rots 2011
V. Rots: Tool Use and Hafting in the Western European Middle Paleolithic. In: M. Toussaint/K. Di Modica/S. Pirson (eds.): *Le paleolithique moyen en Belgique: mélanges Marguerite Ullrich-Closset*. Liège 2011, 277–287.

Rots 2015
V. Rots: Hafting and Site Function in the European Middle Paleolithic. In: N. J. Conard/A. Delagneis (eds.): *Settlement Dynamics of the Middle Paleolithic and Middle Stone Age IV*. Tübingen 2015, 383–410.

Rots/Plisson 2014
V. Rots/H. Plisson: Projectiles and the abuse of the use-wear method in a search for impact. *Journal of Archaeological Science* 48, 2014, 154–165. DOI: https://doi.org/10.1016/j.jas.2013.10.027

Rots/Vermersch 2004
V. Rots/P. M. Vermersch: Experimental characterization of hafting traces and their recognition in archaeological assemblages. In: E. A. Walker/F. Wenban-Smith/F. Healy (eds.): *Lithics in Action. Papers from the Conference “Lithic Studies in the Year 2000”*. Oxford 2004, 156–168.

Rots/Van Peer/Vermeersch 2011
V. Rots/P. Van Peer/P. M. Vermersch: Aspects of tool production, use, and hafting in Palaeolithic assemblages from Northeast Africa. *Journal of Human Evolution* 60, 2011, 637–664. DOI: https://doi.org/10.1016/j.jhevol.2011.01.001

Shalagina et al. 2019
A. V. Shalagina/L. V. Zatkina/A. A. Anoikin/N. A. Kulik: Listovidnye bifasy v kompleksakh nakhal'nogo verkhnego paleolita yuzhnogo Sibiri i severa siber'skoi Azii. Teoriya i praktika arheologicheskikh issledovanii 26/2, 2019, 47–60.

Shea 1988
J. J. Shea: Spear Points from the Middle Paleolithic of Levant. *Journal of Field Archaeology* 15/4, 1988, 441–450. DOI: https://doi.org/10.1179/jfa.1988.15.4.441

Shea 1990
J. J. Shea: Further note on Mousterian spear points. *Journal of Field Archaeology* 17, 1990, 111–114. DOI: https://doi.org/10.1179/009346990791548529

Shea 2006
J. J. Shea: The origins of lithic projectile point technology: evidence from Africa, the Levant, and Europe. *Journal of Archaeological Science* 33, 2006, 823–846. DOI: https://doi.org/10.1016/j.jas.2005.10.015

Shea/Davis/Brown 2001
J. J. Shea/Z. Davis/K. Brown: Experimental tests of Middle Paleolithic spear points using a calibrated crossbow. *Journal of Archaeological Science* 28, 2001, 807–816. DOI: https://doi.org/10.1016/j.jas.2000.0590

Shea/Klenck 1993
J. J. Shea/J. D. Klenck: An Experimental Investigation of the Effects of Trampling on the Results of Lithic Microwear Analysis. *Journal of Archaeological Science* 20, 1993, 175–194. DOI: https://doi.org/10.1016/j.jas.1993.1013

Šajnerová-Dušková 2009
A. Šajnerová-Dušková: Treaseologická analýza szeletienských artefaktů z Moravy. In: *Neruda/Nerudová eds.* 2009, 174–177.

Škrdla 2017
P. Škrdla: Middle to Upper Paleolithic transition in Moravia: New sites, new dates, new ideas. *Quaternary International* 450, 2017, 116–125. DOI: https://doi.org/10.1016/j.quaint.2016.07.029

Valoch 2012
K. Valoch: Szeletien na Moravě a na západním Slovensku. *Acta Musei Moraviae, Scientiae sociales* 97, 2012, 167–198.

Van Gijn 1990
A. L. Van Gijn: The wear and tear of flint. Principles of functional analysis applied to Dutch Neolithic assemblages. Leiden 1990.

Van Gijn 2010
A. L. Van Gijn: Flint in focus. *Lithic Biographies in the Neolithic and Bronze Age*. Leiden 2010.

Vaughn 1985
P. C. Vaughn: *Use-Wear Analysis of Flaked Stone Tools*. Tucson 2010.

Villa/Lenoir 2006
P. Villa/M. Lenoir: Hunting weapons of the Middle Stone Age and the Middle Palaeolithic: spear points from Sibudu, Rose Cottage and Bouheben. *Southern African Humanities* 18, 2006, 89–122.

Villa et al. 2009
P. Villa/P. Boscato/F. Ranaldo/A. Ronchitelli: Stone tools for the hunt: points with impact scars from a Middle Paleolithic site in Southern Italy. *Journal of Archaeological Science* 36, 2009, 850–859. DOI: https://doi.org/10.1016/j.jas.2008.11.012

Zotz 1951
L. Zotz: *Altschichtkunde Mittel europas*. Stuttgart 1951.
Prvé výsledky trasologickej analýzy listovitých hrotov z lokality Moravany nad Váhom-Dlhá

Katarzyna Pyżewicz – Adrián Nemergut

Súhrn

Predložená štúdia predstavuje výsledky trasologickej analýzy listovitých hrotov z lokality Moravany nad Váhom-Dlhá s cielem zistiť, či tieto nástroje boli používané a za akým účelom. Pri analýze bol využitý metalografický mikroskop Nikon LV150 a digitálny mikroskop Keyence VH-Z100R. Artefakty boli skúmané pri zväčšení od 50 x do 400 x. Zistené makroskopické a mikroskopické stopy sa porovnávali s experimentálnou porovnávacou zbierkou Katedry archeológie Varšavskej univerzity. Tá pozostáva z približne 200 exemplárov použitých počas lovu a systémov v súvislosti s experimentálne výrobky listovitých hrotov. Obsahuje tiež 80 predmetov súvisiacich s technológiou a niekoľko stoviek exemplárov s postdepozíčnymi procesmi. Mikroskopická analýza sa uskutočnila na 64 listovitých hrotoch typu Moravany-Dlhá a ich fragmentoch (tabela 1). Tie sa od seba líšili veľkosťou, tvorom a najmä typom suroviny použitej na ich výrobu (tabela 2). To čiastočne ovplyvnilo aj samotnú analýzu, nakoľko u hrubozrnnejších zvetraných a patinovaných surovín boli pracovné stopy zachované a viditeľné minimálne. V analýzovanej skupine sú priklady bifacialných (obr. 2: 3), čiastočne bifacialných (obr. 2: 2) a unifacialných listovitých hrotov (obr. 2: 1), niekedy retušovaných len na hranách. Ide o pilotnú štúdiu, ktorá neobsahuje všetky známe listovité hroty z predmetnej lokality, ale len reprezentatívnu vzorku. Zo tohto dôvodu boli do analýzy vybrané takmer dokončené, dokončené a reutilizované hroty. Vybrané boli aj exempláre z rôznych surovín, hornej kvality, dokonca aj zvetraných kusov, aby sa z metodického hľadiska vedelo, aké kusy má zmysel analyzovať v budúcnosti.

Výsledky trasologickej analýzy sú obsiahnuté v tabeľe 2. Ide o problematickú kolekciu z hľadiska zachovania pracovných stôp, nakoľko listovité hroty neboli balené separatne, ale vo váčších množstvách boli uložené v násadách alebo zaoblenia (obr. 4: 3B; 5: 1B, 2B, 3B). Ide o stopy, ktoré sa mohli teoreticky interpretovať ako výsledok umiestnenia vyššie opísaných makroskopických fraktúr špičiek. SVK s priamym profilom a negatívnymi malými úštepov umiestnených pod lomom (Fischer/Vemming Hansen 2015; Rasmussen 1984). Špičky niektorých listovitých hrotov sú zlomené odlišným spôsobom, čoho výsledkom sú zväčšení od 50 x do 400 x. Z tohto dôvodu boli do analýzy vybrané takmer dokončené, dokončené a reutilizované hroty. Vybrané boli aj exempláre z rôznych surovín, hornej kvality, dokonca aj zvetraných kusov, aby sa z metodického hľadiska vedelo, aké kusy má zmysel analýzovať v budúcnosti.

Vysvetlenia trasologickej analýzy sú obsiahnuté v tabeľe 2. Ide o problematickú kolekciu z hľadiska zachovania pracovných stôp, nakoľko listovité hroty neboli balené separatne, ale vo váčších množstvách boli uložené v násadách alebo zaoblenia (obr. 4: 3B; 5: 1B, 2B, 3B). Ide o stopy, ktoré sa mohli teoreticky interpretovať ako výsledok umiestnenia vyššie opísaných makroskopických fraktúr špičiek. SVK s priamym profilom a negatívnymi malými úštepov umiestnených pod lomom (Fischer/Vemming Hansen 2015; Rasmussen 1984). Špičky niektorých listovitých hrotov sú zlomené odlišným spôsobom, čoho výsledkom sú zväčšení od 50 x do 400 x. Z tohto dôvodu boli do analýzy vybrané takmer dokončené, dokončené a reutilizované hroty. Vybrané boli aj exempláre z rôznych surovín, hornej kvality, dokonca aj zvetraných kusov, aby sa z metodického hľadiska vedelo, aké kusy má zmysel analýzovať v budúcnosti.

Výsledky trasologickej analýzy sú obsiahnuté v tabeľe 2. Ide o problematickú kolekciu z hľadiska zachovania pracovných stôp, nakoľko listovité hroty neboli balené separatne, ale vo váčších množstvách boli uložené v násadách alebo zaoblenia (obr. 4: 3B; 5: 1B, 2B, 3B). Ide o stopy, ktoré sa mohli teoreticky interpretovať ako výsledok umiestnenia vyššie opísaných makroskopických fraktúr špičiek. SVK s priamym profilom a negatívnymi malými úštepov umiestnených pod lomom (Fischer/Vemming Hansen 2015; Rasmussen 1984). Špičky niektorých listovitých hrotov sú zlomené odlišným spôsobom, čoho výsledkom sú zväčšení od 50 x do 400 x. Z tohto dôvodu boli do analýzy vybrané takmer dokončené, dokončené a reutilizované hroty. Vybrané boli aj exempláre z rôznych surovín, hornej kvality, dokonca aj zvetraných kusov, aby sa z metodického hľadiska vedelo, aké kusy má zmysel analýzovať v budúcnosti.

Výsledky trasologickej analýzy sú obsiahnuté v tabeľe 2. Ide o problematickú kolekciu z hľadiska zachovania pracovných stôp, nakoľko listovité hroty neboli balené separatne, ale vo váčších množstvách boli uložené v násadách alebo zaoblenia (obr. 4: 3B; 5: 1B, 2B, 3B). Ide o stopy, ktoré sa mohli teoreticky interpretovať ako výsledok umiestnenia vyššie opísaných makroskopických fraktúr špičiek. SVK s priamym profilom a negatívnymi malými úštepov umiestnených pod lomom (Fischer/Vemming Hansen 2015; Rasmussen 1984). Špičky niektorých listovitých hrotov sú zlomené odlišným spôsobom, čoho výsledkom sú zväčšení od 50 x do 400 x. Z tohto dôvodu boli do analýzy vybrané takmer dokončené, dokončené a reutilizované hroty. Vybrané boli aj exempláre z rôznych surovín, hornej kvality, dokonca aj zvetraných kusov, aby sa z metodického hľadiska vedelo, aké kusy má zmysel analýzovať v budúcnosti.
očakávať výsledky, ako z nálezov z mladších období. Problematické bolo hlavne uloženie nálezov v depozitári, resp. jeho prekladanie, vďaka čomu vzniklirecentné stopy na nálezoch a časť pôvodných hrot bola prekrýtá alebo odstránená. Studie iných súborov poukazujú, že je možné zistiť stopy aj na starších artefaktoch zo stredného paleolitu, prípadne staršej fázy mladého paleolitu (Neruda/Nerudová-Sajnerová-Dušková 2010; Nerudová/Dušková-Sajnerová-Sadovský 2010; Sajnerová-Dušková 2009).

Predložená práca reprezentuje predbežné výsledky, ktoré treba ďalej validovať na ostatných hrotoch v kolekci Archeologického ústavu SAV a pokúsiť sa o analýzu kolekcií z iných inštitúcií. Za hlavné predbežné výsledky považujeme:

- Analyzá jednoznačne poukázala, že značné množstvo zlomenín súvisí s ich výrobou, resp. s nehodami, prípadne s recentnými zlomeninami, čo je logicke, keďže sa na predmetnej lokalite listovité hroty vo veľkých množstvách vyrábali.

- Absencia stôp na hranách, ktoré by hroty interpretovali ako multifunkčný nástroj. Ide o zaujímavé zistenie, keďže sa odlišuje od záverov napr. moravských hrotov zo szeletienu (Neruda/Nerudová-Sajnerová-Dušková 2010; Sajnerová-Dušková 2009). Na druhej strane na lokalite Moravany nad Váhom-Dlňah boli doložené iné aktivity na iných nástrojoch (škrabadiel, driapadl), takže ak by boli využívané hroty univerzálnie, tak by to bolo viditeľné aj na predmetnej kolekci. Nateraz sa však nepotvrdilo, aby hroty z analyzovanej lokality boli využívané ako multifunkčné nástroje.

- Ojedinele boli doložené stopy, ktoré naznačujú použitie počas lovu, ako napr. linie a ulomené terminálne časti. Zaujímavé sú exempláre, keď sa na jednom hrote zistila kombinácia týchto stôp, čo nemožno považovať za náhodu (napr. vzorky 6, 14, 40; tabela 2).

Z hláška interpretácie listovitých hrotov z Moravian nad Váhom-Dlňah možno skonštatoovať, že mohlo ísť o špecializované nástroje používané počas lovu. Zároveň je potrebné poznamenať, že v areáli tábova sa vykonávali ďalšie činnosti spojené so spracovaním mŕtvych zvierat, ako napr. línie a ulomené terminálne časti. Zaujímavé sú exempláre, keď sa na jednom hrote zistila kombinácia týchto stôp, čo nemožno považovať za náhodu (napr. vzorky 6, 14).

Do budúcnú by bolo zaujímavé rozšíriť trasologickú analýzu aj na ostatné typy artefaktov a identifikovať ďalšie nástroje súvisiace so spracovaním mŕtvych zvierat. Predbežná analýza škrabadiel poukázala, že sa používali na oškrabávanie kože. V niektorých ďalších prípadoch kamenných nástrojov boli zistené dokonca dôkazy o spracovaní rastlín.

K ich jednoznačnejšej identifikácii by určite mohlo pomôcť uskutočniť sériu experimentov spojených s výrobou a použitím hrotov (rezanie, vrhanie, umiestnenie v násade a pod.), na základe čoho by sme sa mohli dozvedieť:

- aké makroskopické a mikroskopické stopy (technologické, po použití, po umienstnení v násade, pri transporte) boli zistené na experimentálnych listovitých hrotoch vyrábaných z analogických surovín v porovnaní s artefaktmi z Moravian nad Váhom-Dlňah;

- ako druh suroviny ovplyvňuje čitateľnosť mikroskopických technologických stôp, stôp po opotrebovaní alebo po umiestnení v násade;

aký je rozdiel medzi makroskopickými fraktúrami špičiek listových hrotov odlomených počas lovu a pri ich výrobe.

Obr. 1. Situovanie lokality Moravany nad Váhom-Dlňah na mape.
Obr. 2. Moravany nad Váhom-Dlňah. Variabilita listovitých hrotov. 1 – unifaciálny, ojedinele retušovaný len na hranách (vzorka 9); 2 – čiastočne bifaciálny (vzorka 58).
Obr. 3. Moravany nad Váhom-Dlňah. Detaily negatívov šikmých fraktúr špičiek listovitých hrotov. 1 – „spin-off“; 2 – fraktúra ukončená ohybom (vzorka 20); 3 – „spin-off“ a fraktúra ukončená ohybom (vzorka 11); 4 – „spin-off“ a fraktúra ukončená ohybom (vzorka 21); 5 – perovítá fraktúra (vzorka 53).
Obr. 4. Moravany nad Váhom-Dlňah. Detaily stôp na listovitých hrotoch. 1 – lineárna stopa (A) vzorky 15; 2 – fraktúra špičky hrotu (A) a lineárna stopa (B) vzorky 14; 3 – fraktúra špičky hrotu (A) a vyhladená časť pravdepodobne po kontakte s košou (B) vzorky 40.
Obr. 5. Moravany nad Váhom-Dlňah. Detaily stôp na listovitých hrotoch. 1 – fraktúra ukončená schodikom (A) a vyhladená časť (výsledok umiestnenia v násade prípadne transportu); B) vzorky 54; 2 – fraktúra ukončená ohybom (A) a vyhladená časť (výsledok umiestnenia v násade prípadne transportu); B) vzorky 3; 3 – vrub (A) a vyhladená časť (výsledok umiestnenia v násade prípadne transportu); B) vzorky 33.
Obr. 6. Moravany nad Váhom-Dlňah. Detaily ulomených špičiek listovitých hrotov. 1 – funkcčná fraktúra (?); 2 – technologická fraktúra (šípka ukazuje na pätku); 3 – postdepozičná fraktúra (?). 1, 2 – vzorky 64; 3, 4 – vzorka 36; 5 – vzorka 35.
Obr. 7. Moravany nad Váhom-Dlňah. Stopy na celych a takmer celych listovitých hrotoch vo vzťahu k ich variantom a vyhotovenie v rámci operačného refazu. Legenda: a – lineárne stopy; b – umiestnenie v násade/transport; c – fraktúra špičky; d – bez stôp; e – postdepozičné stopy; f – spolu.
Obr. 8. Moravany nad Váhom-Dlňah. Stopy na ulomených špičkách a fragmentoch listovitých hrotov vo vzťahu k ich variantom. Legenda: a – lineárne stopy; b – umiestnenie v násade/transport; c – fraktúra špičky; d – bez stôp; e – postdepozičné stopy; f – spolu.
Tabela 1. Moravany nad Váhom-Dlhá. Varianty listovitých hrotov vo vzťahu k ich fragmentácii a vyhotovenia v rámci operačného refazca.

Tabela 2. Moravany nad Váhom-Dlhá. Makroskopické a mikroskopické stopy na listovitých hrotoch. xx – problém s identifikáciou stôp z dôvodu vážne poškodeného povrchu vplyvom postdepozičných procesov alebo hrubozrného povrchu suroviny.

Dr. Katarzyna Pyżewicz
Faculty of Archaeology
University of Warsaw
Krakowskie Przedmieście 26/28
PL – 00-927 Warsaw
k.pyzewicz@uw.edu.pl

Mgr. Adrián Nemergut, Ph.D.
Archeologický ústav SAV
Akademická 2
SK – 949 21 Nitra
adrian.nemergut@savba.sk