Generic coverings of plane with A-D-E-singularities.

V.S. Kulikov and Vic.S. Kulikov *

Abstract

We investigate a presentation of an algebraic surface X with A-D-E-singularities as a generic covering $f : X \to \mathbb{P}^2$, i.e. a finite morphism, having at most folds and pleats apart from singular points, isomorphic to a projection of a surface $z^2 = h(x, y)$ onto the plane x, y in neighbourhoods of singular points, and the branch curve $B \subset \mathbb{P}^2$ of which has only nodes and ordinary cusps except singularities originated from the singularities of X. It is deemed that classics proved that a generic projection of a non-singular surface $X \subset \mathbb{P}^r$ is of such form. In this paper this result is proved for an embedding of a surface X with A-D-E-singularities, which is a composition of the given one and a Veronese embedding. We generalize results of the paper [K], in which Chisini’s conjecture on the unique reconstruction of f by the curve B is investigated. For this fibre products of generic coverings are studied. The main inequality bounding the degree of a covering in the case of existence of two nonequivalent coverings with the branch curve B is obtained. This inequality is used for the proof of the Chisini conjecture for m-canonical coverings of surfaces of general type for $m \geq 5$.

Introduction

Let $S \subset \mathbb{P}^r$ be a non-singular projective surface, $f : S \to \mathbb{P}^2$ be its generic projection to the plane, $B \subset \mathbb{P}^2$ be the branch curve, which we call the discriminant curve. It is deemed that classics proved (see [Z], p.104) that (i) the map f is a finite covering, which has as singularities at most double points (folds), or singular points of cuspidal type (pleats); (ii) with this $f^*(B) = 2R + C$, where the double curve R is non-singular and irreducible, and the curve C is reduced; (iii) the curve B is cuspidal, i.e. has at most nodes and ordinary cusps; over a node there lie two double points, and over a cusp – one point of cuspidal type; (iv) the restriction of f to R is of degree one. Any finite morphism $f : S \to \mathbb{P}^2$ is called a generic (or simple) covering, if it possesses the same properties as a generic projection. Two coverings of plane (S_1, f_1) and (S_2, f_2) are called equivalent, if there is a morphism $\varphi : S_1 \to S_2$ such that $f_1 = f_2 \circ \varphi$.

In this paper we consider a generalization of the notion of a generic covering to the case of surfaces with A-D-E-singularities. First of all we want to explain why we need such a generalization. A presentation of an algebraic variety as a finite covering of the projective space is one of the affective ways of studying projective varieties as well as their moduli. To

*Partly supported by RFFI (No. 99-01–01133) and INTAS-OPEN-97-2072.
Theorem 0.1 compare we recall what such an approach gives in the case of curves. For a curve C of genus g a generic covering $f : C \to \mathbb{P}^1$ is such a covering that in every fibre there is at most one ramification point which is a double point (or a singular point of f of type A_1). Let $B \subset \mathbb{P}^1$ be the set of branch points, and $d = \deg B$, i.e. $d = \sharp(B)$. Then according to the Hurwitz formula $d = 2N + 2g - 2$, where $N = \deg f$. If $N \geq g + 1$, then any curve of genus g can be presented as a simple covering of \mathbb{P}^1 of degree N. The set of all simple coverings (up to equivalence) $f : C \to \mathbb{P}^1$ of degree N with d branch points is parametrized by a Hurwitz variety $H = H^{N,d}$. Let $\mathbb{P}^d \setminus \Delta$ (Δ – discriminant) be the projective space parametrizing the sets of d different points of \mathbb{P}^1, and let M_g be the moduli space of curves of genus g. There are two maps: a map $h : H \to \mathbb{P}^d \setminus \Delta$, sending f to the set of branch points $B \subset \mathbb{P}^1$, and a map $\mu : H \to M_g$, sending f to the class of curves isomorphic to C. Hurwitz introduced and investigated the variety H in 1891. He proved that the variety H is connected, and h is a finite unramified covering. In modern functorial language H was studied also by W. Fulton in 1969. The map μ is surjective (and has fibres of dimension $N + (N - g + 1)$). This gives one of the proofs of irreducibility of the moduli space M_g.

In the case of surfaces we also can consider an analog of Hurwitz variety H of all generic coverings (up to equivalence) $f : S \to \mathbb{P}^2$ of degree N and with discriminant curve B of degree d with given number n of nodes and given number c of cusps. Let \mathbb{P}^ν, $\nu = \frac{(d(N+3))}{2}$, be a projective space parametrizing curves of degree d, and $h : H \to \mathbb{P}^\nu$ be a map sending a covering f to its discriminant curve B. In [K] a Chisini conjecture is studied. It claims that if B is the discriminant curve of a generic covering f of degree $N \geq 5$, then f is uniquely up to equivalence defined by the curve B. In other words, it means that the map h is injective (and, besides, $N = \deg f$ is determined by B). In [K] it is proved that the Chisini conjecture is true for almost all generic coverings. In particular, it is true for generic coverings defined by a multiple canonical class. A construction of the moduli space of surfaces of general type uses pluricanonical maps. As is known [BPV], if S is a minimal surface of general type, then for $m \geq 5$ the linear system $|mK_S|$ blows down only (-2)-curves and gives a birational map of S to a surface $X \subset \mathbb{P}^r$ (the canonical model) with at most A-D-E-singularities (in other terms, rational double points, Du Val singularities, simple singularities of Arnol’d and etc.). This requires a generalization of the notion of a generic covering to the case of surfaces with A-D-E-singularities.

In this paper we, firstly, generalize a classical result on singularities of generic projections of non-singular surfaces to the case of surfaces with A-D-E-singularities. We prove that if a surface $X \subset \mathbb{P}^r$ has at most A-D-E-singularities, then (may be after a ”twist”) for a generic projection $f : X \to \mathbb{P}^2$ the discriminant curve B also has at most A-D-E-singularities. It follows from a slightly more general theorem.

Theorem 0.1 Let $X \subset \mathbb{P}^r$ be a surface with at most isolated singularities of the form $z^2 = h(x, y)$ (= ”double planes”), $X \to \mathbb{P}^2$ be the restriction to X of a generic projection $\mathbb{P}^r \setminus L \to \mathbb{P}^2$ from a generic linear subspace L of dimension $r - 3$. Then

(i) f is a finite covering;

(ii) at non-singular points of X the covering f has as singularities at most either double points (folds), or singular points of cuspidal type (pleats); in a neighbourhood of these points f
is equivalent to a projection of a surface \(x = z^2 \), respectively \(y = z^3 + xz \), to the plane \(x, y \);

(iii) in a neighbourhood of a point \(s \in \text{Sing } X \) the covering \(f \) is analytically equivalent to a projection of a surface \(z^2 = h(x, y) \) to the plane \(x, y \); from (ii) and (iii) it follows that the ramification divisor is reduced, i.e. \(f^*(B) = 2R + C \), where \(B = f(R) \), and \(R \) and \(C \) are reduced curves;

(iv) except singular points \(f(\text{Sing } X) \) the discriminant curve \(B \) is cuspidal;

(v) the restriction of \(f \) to \(R \) is of degree 1.

Actually, the main difficulty in the proof of this theorem lies in the classical case, when the surface \(X \) is non-singular. Unfortunately, authors do not know a complete (and modern) proof of this theorem, and it seems that such a proof does not exist. Thus, the proof, even in the case of a non-singular surface, take interest. In this paper we prove a weakened version of Theorem 0.1, in which the initial embedding is ‘twisted’ by a Veronese embedding. This is quite enough for the purposes described above.

Thus, the curve \(B \) has, firstly, ‘the same’ singularities as the surface \(X \) (and as the curve \(R \)), which are locally defined by the equation \(h(x, y) = 0 \). These singularities on \(B \) we call \(s \)-singularities, in particular, \(s \)-nodes and \(s \)-cusps. Besides, there are nodes and cusps on \(B \) originated from singularities of the map \(f \), which we call \(p \)-nodes and \(p \)-cusps. There are two double points of \(f \) over a \(p \)-node, at which \(f \) is defined locally as a projection of surfaces \(z_1 = x^2 \) and \(z_2 = y^2 \) to the plane \(x, y \).

If \(S \) is a surface with A-D-E-singularities, then a covering \(f : S \to \mathbb{P}^2 \) is called generic, if it satisfies the properties of Theorem 0.1.

Secondly, we generalize the central result of [K] to the case of surfaces with A-D-E-singularities. It is proved there that if a generic covering \(f : S \to \mathbb{P}^2 \) of a non-singular surface \(S \) with discriminant curve \(B \) is of sufficiently big degree \(\deg f = N \), namely under condition

\[
N > \frac{4(3\bar{d} + g - 1)}{2(3\bar{d} + g - 1) - c},
\]

where \(2\bar{d} = \deg B \), \(g \) be the geometric genus of \(B \), and \(c \) be the number of cusps, then \(B \) is the discriminant curve of a unique generic covering (the Chisini conjecture holds for \(B \)).

We can’t expect an analogous result in the case of singular surfaces, because for a curve \(B \) of even degree with at most A-D-E-singularities there always exists a double covering, which is generic. But if two generic coverings with given discriminant curve \(B \) are coverings of sufficiently big degree, then they are equivalent. More exactly, we prove the following theorem. Let there are two generic coverings \(f_1 : X_1 \to \mathbb{P}^2 \) and \(f_2 : X_2 \to \mathbb{P}^2 \) of surfaces with A-D-E-singularities and with the same discriminant curve \(B \subset \mathbb{P}^2 \). Let \(f_i^*(B) = 2R_i + C_i \), \(i = 1, 2 \). With respect to a pair of coverings \(f_1 \) and \(f_2 \) nodes and cusps of \(B \) are partitioned into four types: ss-, sp-, ps- and pp-nodes and cusps. For example, a sp-node \(b \in B \) is a node, which is a \(s \)-node for \(f_1 \) and a \(p \)-node for \(f_2 \). The number of sp-nodes is denoted by \(n_{sp} \). Then \(n = n_{ss} + n_{sp} + n_{ps} + n_{pp} \).

The analogous terminology is used for cusps.

Theorem 0.2 If \(f_1 \) and \(f_2 \) are nonequivalent generic coverings, then

\[
\deg f_2 \leq \frac{4(3\bar{d} + g_1 - 1)}{2(3\bar{d} + g_1 - 1) - \iota_1},
\]

where \(2\bar{d} = \deg B \), \(g_1 \) be the geometric genus of \(B \), and \(\iota_1 \) be the number of cusps on \(B \).
where \(g_1 = p_a(R_1) \) is the arithmetic genus of the curve \(R_1 \), and \(t_1 = 2n_{sp} + 2c_{sp} + c_{pp} \).

We apply the main inequality (2) to the proof of the Chisini conjecture in the case of generic pluricanonical coverings. Let \(S \) be a minimal model of a surface of general type. According to a theorem of Bombieri \([BPV] \), if \(m \geq 5 \), then the \(m \)-canonical map \(\varphi_m : S \to \mathbb{P}^{p_m - 1} \), defined by the complete linear system numerically equivalent to \(|mK_S| \), is a birational morphism, which blows down \((-2)\)-curves on \(S \). Then the canonical model \(X = \varphi_m(S) \) has at most A-D-E-singularities. A generic projection \(f : X \to \mathbb{P}^2 \) is called a generic \(m \)-canonical covering for \(S \). We prove the following theorem.

Theorem 0.3 Let \(S_1 \) and \(S_2 \) be minimal models of surfaces of general type with the same \((K_S^2) \) and \(\chi(S) \), and let \(f_1 : X_1 \to \mathbb{P}^2 \), \(f_2 : X_2 \to \mathbb{P}^2 \) be generic \(m \)-canonical coverings with the same discriminant curve. Then for \(m \geq 5 \) the coverings \(f_1 \) and \(f_2 \) are equivalent.

Consider a subvariety \(\mathcal{H} \subset \text{Hilb} \times \text{Gr} \), parametrizing \(m \)-canonical coverings. Here \(\text{Hilb} \) is a subscheme of the Hilbert scheme, parametrizing numerically \(m \)-canonical embeddings \(X \subset \mathbb{P}^M \) of surfaces with A-D-E-singularities and fixed \((K^2_S) \) and \(\chi(S) \), \(\text{Gr} \) is the Grassmann variety of projection centres from \(\mathbb{P}^M \) to \(\mathbb{P}^2 \), and \(\mathcal{H} \) consists of pairs \((X \subset \mathbb{P}^M, L) \) such that a restriction to \(X \) of a projection with centre \(L \) is a generic covering. By theorem \([7] \) there is a one-to-one correspondence between the set of irreducible (respectively, connected) components of \(\text{Hilb} \) and \(\mathcal{H} \). Let \(h : \mathcal{H} \to \mathbb{P}^\nu \) be a map, taking a covering to its discriminant curve. Denote by \(\mathcal{D} \) a variety of plane curves of degree \(d \) with A-D-E-singularities, among which the number of nodes \(\geq n_p \), and the number of cusps \(\geq p \), where \(d, n_p, c_p \) are defined by invariants of \(S \) (see §6). By theorem \([3] \) it follows (cf. \([3] \), §5)

Corollary. The map, induced by \(h \), from the set of irreducible (respectively, connected) components of the variety \(\mathcal{H} \) to the set of irreducible (respectively, connected) components of the variety \(\mathcal{D} \) is injective.

The proof of the main inequality (2) in \([3] \) in the case of non-singular surfaces runs as follows. To compare two coverings \(f_1 \) and \(f_2 \), a normalization \(X \) of the fibre product \(X_1 \times_{\mathbb{P}^2} X_2 \) is considered. Let \(g_i : X \to X_i, \ i = 1, 2 \), be the corresponding mappings to the factors. The preimage \(g_i^{-1}(R_i) = R + C \) falls into two parts, where \(R \) is the curve mapped by \(g_2 \) to \(R_2 \), and \(C \) is the curve mapped by \(g_2 \) to \(C_2 \). If \(f_1 \) and \(f_2 \) are nonequivalent, then the surface \(X \) is irreducible, and if \(X_i \) are non-singular, then \(X \) is non-singular too. The main inequality is obtained by applying the Hodge index theorem to the pair of divisors \(R \) and \(C \) on \(X \). We use the same idea also in the case of surfaces with A-D-E-singularities. For this we carry out the local analysis of the normalization of the fibre product \(X \) in the case of generic coverings of surfaces with A-D-E-singularities.

In §1 we generalize to the case of surfaces with A-D-E-singularities the theorem on generic projections. In §2 a local analysis of a normalization of the fibre product \(X \) is carried out. In §3 we investigate the canonical cycle of an A-D-E-singularity, with the help of which we compute numerical invariants of a generic covering in §4. In §5 the main inequality (2) is proved. Finally, in §6 the Chisini conjecture for generic \(m \)-canonical coverings of surfaces of general type is proved.
1 Singularities of a generic projection of a surface with A-D-E-singularities.

In this section we prove Theorem 1.1.

1.1. A generic projection to \mathbb{P}^3. Let $X \subset \mathbb{P}^r$ be a surface of degree $\deg X = N$ with at most isolated hypersurface singularities x_1, \ldots, x_k, i.e. such that the dimension of the tangent spaces $\dim T_{X,x_i} = 3$. Denote by $\pi_L : \mathbb{P}^r \setminus L \to \mathbb{P}^{r-1}$ a projection from a linear subspace L of codimension e. It can be obtained as a composition of projections with centers at points. The Theorem 1.1 on projections of X to the plane ($e = 3$) is one of a series of theorems on generic projections for different e, beginning with projections from points ($e = r$) and finishing by projections to the line ($e = 2$), i.e. Lefschetz pencils.

A classical result is that, if $r > 5$ ($= 2 \dim X + 1$), then the projection from a generic point gives an isomorphic embedding of X into \mathbb{P}^{r-1}. It follows that, if $e \geq 6$, then the projection from a generic subspace L gives an isomorphic embedding of X into \mathbb{P}^{e-1}. In particular, by a generic projection the surface X is embedded into \mathbb{P}^5. When projecting to \mathbb{P}^3, $e = 5$, there appears isolated singularities on $\pi_L(X)$, which is not difficult to describe. To prove Theorem 1.1 we are going to consider a generic projection of X into \mathbb{P}^3, $e = 4$, and to take advantage of the following theorem.

Theorem 1.1 If $X \subset \mathbb{P}^r$ is a surface with at most isolated hypersurface singularities x_i, then the restriction of a projection $\pi_L : \mathbb{P}^r \setminus L \to \mathbb{P}^3$ with the centre in a generic subspace $L \subset \mathbb{P}^r$ of codimension 4 gives a birational map of X onto a surface $Y \subset \mathbb{P}^3$, which is an isomorphism outside the double curve $D \subset X$ not passing through the points x_i, and Y has, except the points $\pi_L(x_i)$, at most ordinary singularities – the double curve $\Delta = \pi_L(D)$, on which there lie a finite number of ordinary triple points and a finite number of pinches. In neighbourhoods of these points in appropriate local analytic coordinates Y has normal forms as follows: $uv = 0$ for ordinary double points, $uvw = 0$ for ordinary triple points, $u^2 - vw^2 = 0$ for pinches (or "Whitney umbrellas").

The contemporary proof of this theorem one can find in the textbook [G-H]. The presence of singular points x_i do not add extra troubles: we need only to see to thecentre of the projection L not to intersect the tangent spaces T_{X,x_i}, $\dim T_{X,x_i} = 3$. A proof of this theorem one can find also in [M].

We want to prove that for a generic point $\xi \in \mathbb{P}^3$ the composition of projections π_L and $\pi_\xi : \mathbb{P}^3 \setminus \xi \to \mathbb{P}^2$, i.e. the projection $\mathbb{P}^r \setminus \pi^{-1}_L(\xi) \to \mathbb{P}^2$ with the centre $\pi^{-1}_L(\xi)$, restricted to X, $\hat{f} = \pi_\xi \circ \pi_{L|x} : X \to \mathbb{P}^2$, gives a covering satisfying the properties stated in Theorem 1.1.

1.2. The dispostion of lines with respect to a surface \mathbb{P}^3. To describe a projection π_ξ we need to investigate the disposition of lines $l \subset \mathbb{P}^3$ with respect to the surface Y. A line l is called **transversal** to Y at a point y, if it is transversal to the tangent cone to Y at this point. It means that $(l \cdot Y)_y = 1$, if $y \notin \text{Sing } Y$; $(l \cdot Y)_y = 2$, if $y \in \Delta \setminus \Delta_t$ and $(l \cdot Y)_y = 3$, if $y \in \Delta_t$. We denote by Δ_t and Δ_p the set of triple points and the set of pinches. If l is not transversal to Y at a point y, we say that it is tangent to Y at this point. A line l is called a **simple tangent** to Y at y, if $y \notin \text{Sing } Y$ and $(l \cdot Y)_y = 2$, or if $y \in \Delta \setminus (\Delta_t \cup \Delta_p)$ and $(l \cdot Y)_y = 3$, i.e. $(l \cdot Y)_y = 2$.
for one of two branches Y_i at the point y. A line l is called stationary tangent, respectively simple stationary tangent to Y at y, if $y \notin \text{Sing } Y$ and $(l \cdot Y)_y \geq 3$, respectively $= 3$. A line l is called stationary tangent, respectively simple stationary tangent to Y, if l is transversal to Y at all points, except one, at which l is stationary tangent, respectively simple stationary tangent, and, besides the other points of intersection $l \cap Y$ are non-singular on Y. Finally, l is called simple bitangent, if l is transversal to Y at all points, except two of them, at which the contact is simple, the tangent planes at them are distinct, and, besides, $l \cap \text{Sing } Y = \emptyset$. We want to prove that for a generic point $\xi \in \mathbb{P}^3$ all lines $l \ni \xi$ are at most simple bitangents and simple stationary tangents with respect to Y.

To study the disposition of lines $l \subset \mathbb{P}^3$ with respect to Y, we consider the Grassmann variety $G = G(1, 3)$ and the flag variety $\mathbb{F} = \{ (\xi, l) \in \mathbb{P}^3 \times G \mid \xi \in l \}$. There are two projections $\text{pr}_1 : \mathbb{F} \to \mathbb{P}^3$ and $\text{pr}_2 : \mathbb{F} \to G$, which are \mathbb{P}^2- and \mathbb{P}^1-bundles respectively; $\dim \mathbb{F} = 5$, and $\dim G = 4$. In the sequel we consider points $\xi \in \mathbb{P}^3$ as centres of projection $\pi_\xi : \mathbb{P}^3 \setminus \xi \to \mathbb{P}$. The fibre $\text{pr}_1^{-1}(\xi) \simeq \mathbb{P}^2$ is mapped by the projection pr_2 isomorphically onto \mathbb{P}^2. For $\xi \in \mathbb{P}^3$ there is a section $s_\xi : \mathbb{P}^3 \setminus \xi \to \mathbb{F}$ of the projection pr_1, $y \mapsto (y, \overline{\xi y})$. Then π_ξ coincides with the restriction of the projection pr_2 to $s_\xi(\mathbb{P}^3 \setminus \xi)$.

Firstly, we consider the case, when a surface Y is non-singular, and then we describe the necessary modifications and supplements in the case, when there is a double curve Δ and isolated singularities s_i on Y.

Consider a filtration of the variety \mathbb{F} by subvarieties

$$Z_k = \{ (\xi, l) \in \mathbb{F} \mid (l \cdot Y)_\xi \geq k \}.$$

Then $Z_1 = \text{pr}_1^{-1}(Y), \dim Z_1 = 4$. Over a generic point $l \in G$ the map $\varphi = \text{pr}_2|_{Z_1} : Z_1 \to G$ is an unramified covering of degree N. If there are no lines on Y, then φ is a finite covering, and Z_2 is the ramification divisor of the covering.

Now consider restrictions of the projection pr_1. The variety Z_2 is isomorphic to a projectivized tangent bundle, $Z_2 \simeq \mathbb{P}(\Theta_Y)$, and $Z_2 \to Y$ is a \mathbb{P}^1-fibre bundle, $\dim Z_2 = 3$. At a generic point $y \in Y$ there are two asymptotic directions l_1 and l_2 in $T_{Y,y}$, for which $(l_1 \cdot Y)_y$ and $(l_2 \cdot Y)_y \geq 3$. Therefore, over a generic point the restriction of pr_1 onto $Z_3, \psi : Z_3 \to Y$, is a two-sheeted covering, the branch curve of which $P \subset Y$ is the parabolic curve consisting of points with coinciding asymptotic directions. Some fibres of the projection pr_1 are exceptional curves of the map ψ. Their images on Y are points y, at which the restriction of the second differential of the local equation of Y onto the tangent plane $T_{Y,y}$ vanishes. Such points y are called the planar points of the surface Y. The curve $H = \psi(Z_4) \subset Y$ consists of points y, at which at least one of the numbers $(l_i \cdot Y)_y \geq 4$ (H is a curve, if the surface Y is not a quadric).

1.3. Absence of non simple stationary tangents

Consider a product $Y \times \mathbb{F} \subset Y \times \mathbb{P}^3 \times G$ and projections pr_1' and pr_2' onto $Y \times \mathbb{F}$ and $Y \times G$. We can consider the varieties Z_k as subvarieties in $Y \times G \subset \mathbb{P}^3 \times G$. Consider a variety

$$I_4 = \{ (y; \xi, l) \in Y \times \mathbb{F} \mid (l \cdot Y)_y \geq 4 \} = (\text{pr}_2')^{-1}(Z_4).$$

The projection $\text{pr}_2' = \text{id}_Y \times \text{pr}_2$, as well as $\text{pr}_2 : \mathbb{F} \to G$, is a \mathbb{P}^1-bundle. Therefore, $\dim I_4 = 2$ and $\dim \Sigma_4 \leq 2$, where $\Sigma_4 = p_2(I_4)$, and p_2 is a projection of $Y \times \mathbb{P}^3 \times G$ to \mathbb{P}^3. Then, if $\xi \in \mathbb{P}^3 \setminus \Sigma_4$, we have that $(l \cdot Y)_y \leq 3$ for any line $l \ni \xi$ at any point $y \in Y$.

6
1.4. Absence of non simple bitangents. Consider a variety $\Sigma_{2,3} \subset \mathbb{P}^3$, made up of non simple bitangents, and show that $\Sigma_{2,3} \leq 2$. Consider a product $Y \times Y \times \mathbb{P} \subset Y \times Y \times \mathbb{P}^3 \times G$ and subvarieties $I_{i,j}$, which are closures of

$$I_{i,j}^0 = \{(y_1, y_2; \xi, l) \in Y \times Y \times \mathbb{P} : (Y \cdot l)_{y_1} \geq i, (Y \cdot l)_{y_2} \geq j, y_1 \neq y_2\}.$$

Denote a projection of $Y \times Y \times \mathbb{P}$ to $Y \times Y \times G$ by pr''_2, and let $pr''_2(I_{i,j}) = \tilde{I}_{i,j}$. The projection pr''_2 and its restriction to $I_{i,j}, I_{i,j} \rightarrow \tilde{I}_{i,j}$ are \mathbb{P}^1-bundles.

Lemma 1.1

$$\dim I_{2,3} \leq 2.$$

Proof. Consider subvarieties

$$Y \times Y \times G \supset \tilde{I}_{1,1} \supset \tilde{I}_{2,1} \supset \tilde{I}_{2,2} \supset \tilde{I}_{2,3},$$

and let q_1 be a projection onto the first factor. Obviously, $\tilde{I}_{1,1}$ is an irreducible variety of dimension $\dim \tilde{I}_{1,1} = 4$, birationally isomorphic to $Y \times Y$. The projection $q_1 : \tilde{I}_{2,1} \rightarrow Y$ is a fibration, fibers of which are curves $q_1^{-1}(y) \simeq C_y$, where

$$C_y = Y \cap T_{Y,y}.$$

The curve C_y has a singularity at the point y, which is a node for a generic point y.

Furthermore, the restriction of the projection to $\tilde{I}_{2,2}, q_1 : \tilde{I}_{2,2} \rightarrow Y$, is surjective, and its fibre over a point $y \in Y$ is

$$q_1^{-1}(y) = \{(y, y', l) \mid l \subset T_{Y,y} \text{ and } l \text{ is tangent to } y \text{ at } y'\}.$$

We want to prove that $q_1(\tilde{I}_{2,3})$ doesn’t coincide with Y, i.e. the embedding $Y \subset \mathbb{P}^3$ possesses the following property (L_1): there exists a point $y \in Y$ such that all lines $l \subset T_{Y,y}$, passing through y, have at most simple contact with $C_y \setminus \{y\}$. We prove this below in 1.6 (Proposition 1.2) under the assumption that the embedding $Y \subset \mathbb{P}^3$ is obtained by a projection of an embedding "improved" by a Veronese embedding v_k, $k \geq 2$.

Thus, $\dim q_1(\tilde{I}_{2,3}) \leq 1$. A generic fibre of the map $q_1 : \tilde{I}_{2,3} \rightarrow Y$ is of dimension zero (it being one, Y is a ruled surface and we obtain a contradiction to the property (L_1)), therefore, $\dim \tilde{I}_{2,3} \leq 1$ and, consequently, $\dim I_{2,3} \leq 2$.

Set $\Sigma_{2,3} = p_3(I_{2,3})$, where p_3 is a projection of $Y \times Y \times \mathbb{P}^3 \times G$ to \mathbb{P}^3. It follows from Lemma 1.1 that $\dim \Sigma_{2,3} \leq 2$. If $\xi \notin \Sigma_{2,3}$, then any line $l \ni \xi$, touching Y at two points y_1 and y_2, has a simple contact at these points.

1.5. Absence of 3-tangents. Consider a product $Y \times Y \times Y \times \mathbb{P} \subset Y \times Y \times Y \times \mathbb{P}^3 \times G$ and subvarieties $I_{i,j,k}$, which are closures of

$$I_{i,j,k}^0 = \{(y_1, y_2, y_3; \xi, l) \in Y \times Y \times Y \times \mathbb{P} : (Y \cdot l)_{y_1} \geq i, (Y \cdot l)_{y_2} \geq j, (Y \cdot l)_{y_3} \geq k\},$$

where $y_1 \neq y_2 \neq y_3 \neq y_1$. Denote a projection of $Y \times Y \times Y \times \mathbb{P}$ onto $Y \times Y \times Y \times G$ by pr''_2, and let $I_{i,j,k} = pr''_2(I_{i,j,k})$. As above, it is clear that $\dim I_{1,1,1} = 4$, and pr''_2 being a \mathbb{P}^1-bundle, we have $\dim I_{1,1,1} = 5$.

7
Lemma 1.2

\[\dim I_{2,2,2} \leq 2. \]

Proof. Again consider a projection of \(X \times Y \times Y \times G \) and of its subvarieties

\[Y \times Y \times Y \times G \supset \bar{I}_{1,1,1} \supset \bar{I}_{2,1,1} \supset \bar{I}_{2,2,1} \supset \bar{I}_{2,2,2}, \]

to the first factor. Consider \(q_1 : \bar{I}_{2,2,2} \to Y \). For a point \(y \in Y \) we have \(q_1^{-1}(y) = \{(y, y_2, y_3; l) \mid l \subset T_{Y,y}, l \text{ is tangent to } y \text{ at points } y_2 \text{ and } y_3 \in l\} \). Just as in Lemma 1.1 it is sufficient to prove that \(q_1(\bar{I}_{2,2,2}) \) doesn’t coincide with \(Y \). It means that there exists a point \(y \in Y \), possessing the following property \((L_2)\): none of the lines \(l \subset T_{Y,y} \), passing through \(y \), is not a bitangent, i.e. can’t touch \(C_y \setminus \{y\} \) at two different points. We prove this below in the following 1.6 (Proposition 1.2) under the assumption that the embedding \(Y \subset \mathbb{P}^3 \) is obtained by a projection of an embedding “improved” by a Veronese embedding \(v_k \).

Set \(\Sigma_{2,2,2} = p_4(I_{2,2,2}) \), where \(p_4 \) is a projection of \(X \times Y \times Y \times \mathbb{P}^3 \times G \) to \(\mathbb{P}^3 \). Then \(\dim \Sigma_{2,2,2} \leq 2 \) and if \(\xi \notin \Sigma_{2,2,2} \), then any line \(l \ni \xi \) touches \(Y \) at most at two points.

1.6. Embeddings with a Lefschetz property. The properties \((L_1)\) and \((L_2)\) in the two previous subsections mean that there exists a point \(y \in Y \), for which the projection \(\pi_y \) of the curve \(C_y \setminus \{y\} \subset T_{Y,y} \simeq \mathbb{P}^2 \) from the point \(y \) is a Lefschetz pencil. Thus, to prove Lemmas 1.1 and 1.2 it is necessary to prove the existence of a point \(y \in Y \) possessing the following “Lefschetz property” \((L)\) with respect to the embedding into \(\mathbb{P}^3 \). We formulate it for a surface \(X \) embedded into a projective space of any dimension.

Let \(X \subset \mathbb{P}^r \) be an embedding into the projective space. We say, that a hyperplane \(L_1 \subset \mathbb{P}^r \) possesses a property \((L)\), if the curve \(X \cap L_1 \) has at most one node, i.e. \(L_1 \) touches \(X \) at a unique point \(x \), at which the curve \(X \cap L_1 \) has an ordinary quadratic singularity. In other words, the point \([L_1] \in \mathbb{P}^r\), corresponding to \(L_1 \), is a non-singular point of the dual variety \(X^\vee \).

We say that a pair \((L_1, L_3)\), where \(L_3 \subset L_1 \) is a linear subspace of dimension \(r - 3 \), possesses a property \((L)\), if \(L_1 \) possesses the property \((L)\), \(x \in L_3 \), and a projection of the curve \(X \cap L_1 \rightarrow \mathbb{P}^3 \) from the centre \(L_3 \) is a Lefschetz pencil, i.e. any fibre of this (rational) mapping contains one singular point, and this point is at most quadratic (is of multiplicity 2). We say that an embedding \(X \subset \mathbb{P}^r \) possesses a property \((L)\), if \(\exists x \in X \), for which \(L_1 = T_{X,x} \) possesses the property \((L)\), and \(L_1 \) can be added to a pair \((L_1, L_3)\) with the property \((L)\).

It is clear that, if a pair \((L_1, L_3)\) possesses the property \((L)\) and \(Y \subset \mathbb{P}^3 \) is obtained from \(X \) by projection from a centre \(L_4 \subset L_3, \dim L_4 = r - 4 \), then the embedding \(Y \subset \mathbb{P}^3 \) possesses the property \((L)\).

Proposition 1.1 If \(S \subset \mathbb{P}^d \) is an embedding of a non-singular surface, and \(X \subset \mathbb{P}^r \) is its composition with the Veronese embedding \(v_k \) defined by polynomials of degree \(k \), then the embedding \(X \subset \mathbb{P}^r \) possesses the property \((L)\).

Proof. Consider the hyperplane \(L_1 \) corresponding to a point \([L_1] \in X^\vee \setminus \text{Sing } X^\vee \). Then the curve \(C = X \cap L_1 \) contains a unique singular point – a node \(x \in C \). Let \(i : C \to X \) be the embedding. Consider a projection \(\pi_{k,x} : \mathbb{P}^r \setminus x \to \mathbb{P}^{r-1} \) from the point \(x \). To prove Proposition 1.1 it is enough to show that the image \(\pi_{k,x}(C) \) is a non-singular curve in \(\mathbb{P}^{r-1} \). For then,
Let I_x be the ideal sheaf of the point x on S, and $\mathcal{O}_S(1)$ be the sheaf of hyperplane sections. Under the identification $v_k : S \simeq X$, the map $\pi_{k,x}$ is given by sections of $H^0(S, \mathcal{O}_S(k) \otimes I_x)$. Let $k = 2$ and let $\sigma : \overline{S} \to S$ be a σ-process with centre at the point x. We can assume that \overline{S} is embedded into \mathbb{P}^{r-1}, where $r_2 - 1 = q(q + 3)/2$, and the rational map $\sigma^{-1} : S \to \overline{S}$ is given by sections of $H^0(S, \mathcal{O}_S(2) \otimes I_x)$, i.e. it coincides with $\pi_{2,x}$. Since the proper transform $\overline{C} = \sigma^{-1}(C) \subset \overline{S}$ is a non-singular curve, we obtain Proposition [1] in the case $k = 2$. Besides, note that sections of $i^*(H^0(S, \mathcal{O}_S(2) \otimes I_x))$ give an embedding of \overline{C} into \mathbb{P}^{r-1}. Consequently, for $k > 2$ sections of $i^*(H^0(S, \mathcal{O}_S(k) \otimes I_x))$ also give an embedding of \overline{C} into \mathbb{P}^{r-1}, since there is a natural injection $H^0(S, \mathcal{O}_S(k - 2)) \otimes H^0(S, \mathcal{O}_S(2) \otimes I_x) \subset H^0(S, \mathcal{O}_S(k) \otimes I_x)$, and sections of $H^0(S, \mathcal{O}_S(k - 2))$ have no base points and fixed components. Therefore, sections of $i^*(H^0(S, \mathcal{O}_S(k) \otimes I_x))$ separate points and tangent directions on \overline{C}.

We say that a linear subspace L_4 of dimension $r - 4$ possesses a property (L) with respect to an embedding $X \subset \mathbb{P}^r$, if the projection π_{L_4} to \mathbb{P}^3 from the centre L_4 maps X onto a surface $Y = \pi_{L_4}(X)$ with ordinary singularities.

As is known (see [G-H]), there is an open subset U in the Grassmannian $G_4 = Gr(r - 4, r)$, points of which correspond to linear subspaces with the property (L).

Proposition 1.2 If an embedding $X \subset \mathbb{P}^r$ possesses the property (L), then there exists a linear subspace L_4 with the property (L), which can be added to a flag $L_1 \supset L_3 \supset L_4$ such that the pair (L_1, L_3) possesses the property (L). In other words, there exists a projection to \mathbb{P}^3, for which the embedding $Y \subset \mathbb{P}^3$, where Y is the image of X, possesses the property (L).

Proof. Let $G_1 = \mathbb{G}r$ be the dual space to \mathbb{P}^r, $G_3 = G(r - 3, r)$ be the Grassmann variety of linear subspaces L_3 of dimension $r - 3$, and $F = F_1, 3, 4 \subset \mathbb{G}r \times G_3 \times G_4$ be the variety of flags $L_1 \supset L_3 \supset L_4$. Let X^\vee be the dual variety, $W \subset X \times X^\vee \subset \mathbb{G}r \times \mathbb{G}r$ be a closed subvariety $W = \{(x, L_1) : L_1 \supset T_{X,x}\}$. Then the projection of $W \to X^\vee$ is an isomorphism over $X_0^\vee = X^\vee \setminus \text{Sing } X^\vee$, $W_0 \simeq X_0^\vee$.

Denote by $Z \subset X \times F$ a closed subvariety

$$Z = \{(x; L_1 \supset L_3 \supset L_4) \mid (x, L_1) \in W, L_3 \supset x\},$$
and by $Z_0 \subset Z$ an open subset: $(x, L_1) \in W_0$. Then Z is an irreducible variety. Consider a projection $Z \to W_0$. The fibres are not empty by the previous proposition, and each of the fibres contains an open set of points z, for which the pair (L_1, L_3) possesses the property (L) (because the centres of projections for Lefschetz pencils form an open set). Therefore, Z contains an open set Z_L, for points of which the pair (L_1, L_3) possesses the Lefschetz property.

Obviously, the map $Z \to G_4$ is surjective. Therefore, $p_4^{-1}(U)$, where p_4 is a projection of Z to G_4, is a non empty Zariski open set. Then $Z_L \cap p_4^{-1}(U)$ is not empty, and if $(x; L_1 \supset L_3 \supset L_4)$ is a point of this set, then L_4 possesses the desired property.

1.7. Projecting in a neighbourhood of a generic point of the double curve Δ. Now let $Y \subset \mathbb{P}^3$ has ordinary singularities along the double curve Δ and isolated singularities $s_i \in$
there are two asymptotic directions for each of two branches of Y, including triple points and pinches, and also at singular points.

Consider $Y \times \mathbb{F}$. In addition to notations in 1.3, let q_1 and q_2 the projections of $Y \times G$ to Y and G. Consider the intersection $\tilde{A} = (\Delta \times G) \cap Z_3$. Then the restriction of the projection $Y \times G \to Y$ to \tilde{A}, $\tilde{A} \to \Delta$, is a covering of degree 4 over a generic point: at a point $y \in \Delta$ there are two asymptotic directions for each of two branches of Y at y. Therefore, \tilde{A} is a curve.

Denote by Σ_0 the union of planes in \mathbb{P}^3 composing the tangent cones at the rest points of Δ, including triple points and pinches, and also at singular points $s_i \in Y$.

1.8. Projecting in a neighbourhood of a triple point. If $\xi \notin \Sigma_0$, then in a neighbourhood of a point $y \in \Sigma_0$ all lines $l \ni \xi$ are transversal to each of the three branches of Y at y, and therefore, locally these branches are mapped isomorphically onto \mathbb{P}^2.

1.9. Projecting in a neighbourhood of a pinch. In a neighbourhood of a pinch $y \in Y$ there are coordinates, by which Y is locally defined by an equation $u^2 = vw^2$. The double curve $\Delta \subset Y$ is a line $u = w = 0$, and the tangent cone $C_{Y,y}$ to Y at y has an equation $u = 0$. In a neighbourhood of a pinch a normalization $\mathbb{C}^2 \to Y$ is defined by formulae $u = tw, v = t^2, w = w$.

Since X is non-singular and π_L is a finite map, we can assume that the projection π_L is the normalization. If a point ξ does not belong to the tangent cone $C_{Y,y}$, then the projection π_ξ locally is a map of gedrr 2. A projection $f : X \to \mathbb{P}^2$ a neighbourhood of the preimage of a pinch is a two-sheeted covering of non-singular varieties, and, hence, locally is defined by equations $v = t^2, w = w$. Thus, the curve $\tilde{R} \subset Y$ goes through the pinch, and pinches are projected to non-singular points of the discriminant curve B.

1.10. Normal forms of a generic projection at points of the ramification curve.

Lemma 1.3 ([A]) Let $(X,0) \subset (\mathbb{C}^3,0)$ be a non-singular surface, and $(\mathbb{C}^3,0) \to (\mathbb{C}^2,0)$ be a smooth morphism, the restriction of which $f : X \to \mathbb{C}^2$ is a finite covering of degree μ. Then one can choose local coordinates x,y in \mathbb{C}^2 and x,y,z in \mathbb{C}^3 such, that X is defined by an equation

$$y = z^\mu + \lambda_1(x)z^{\mu-2} + \ldots + \lambda_{\mu-2}(x)z,$$

and f is a projection along z axis.

Proof. This is Lemma 1 in Arnol’d paper [A]. It is obtained, if we consider the covering f as a 2-parameter family of 0-dimensional hypersurface singularities of multiplicity μ, and, consequently, f is induced by the miniversal deformation of the singularity of type $A_{\mu-1}$.

We proved that at a generic point P of the ramification curve a projection $f : X \to \mathbb{P}^2$ is of degree $\mu = 2$, and at isolated points it is of degree $\mu = 3$. By Lemma 1.3 for $\mu = 2$ we obtain that at a generic point of the ramification curve a generic projection is equivalent to a projection of the surface $X : x = z^2$ to the x,y-plane, i.e. it is a fold. For $\mu = 3$ we obtain
Corollary 1.1 For a non-singular surface X a finite covering $X \to \mathbb{C}^2$ of degree 3 locally is a projection to the x, y-plane of one of the surfaces

$$y = z^3 + x^k z, \; k = 1, 2, \ldots, \text{ or } y = z^3 (k = \infty).$$

In the case $k \neq \infty$ the ramification curve C is reduced and has an equation $3z^2 + x^k = 0$ in local coordinates x, z on X. The curve C is non-singular only for $k = 1$. The discriminant curve B has an equation $4x^{3k} + 27y^2 = 0$, i.e. B is a cusp. It is an ordinary cusp only for $k = 1$.

Proof. By lemma [1.3] we have that X is defined by an equation $y = z^3 + \lambda_1(x)z$. We obtain the stated normal form of the covering f, where k is the order of vanishing of $\lambda_1(x)$ at the point $x = 0$. The ramification curve C is defined by equation $J = 0$, where $J = 3z^2 + x^k$ is the Jacobian of the covering f. The discriminant curve B is defined by 0th Fitting ideal $F_0(f_*\mathcal{O}_C)$ of the sheaf $f_*\mathcal{O}_C$. To obtain an equation of B — the generator of the Fitting ideal, we need to take a finite presentation $f_*\mathcal{O}_X \to f_*\mathcal{O}_X \to f_*\mathcal{O}_C \to 0$ of the sheaf $f_*\mathcal{O}_C$, where $(f_*\mathcal{O}_X)_0 = \mathbb{C}\{x, z\} = \mathbb{C}\{x, y\} \oplus \mathbb{C}\{x, z\}z \oplus \mathbb{C}\{x, y\}z^2$, and to compute a determinant of the $\mathbb{C}\{x, y\}$-linear map J, which is a multiplication by the Jacobian J. ■

Now we show that for a generic projection the discriminant curve B has at most ordinary nodes and cusps. Let $b \in B$ be a point corresponding to a bitangent l under projecting $\pi_\xi : \mathbb{P}^3 \setminus \xi \to \mathbb{P}^2$ from a point ξ. Let l touches Y at points P_1 and P_2, to which correspond branches B_1 and B_2 of the discriminant curve B at a point b. We have to show that for a generic projection the point b is a node, i.e. the branches B_1 and B_2 have different tangents. Determine where does the centres ξ of ”bad” projections lie. Let a line $\lambda \subset \mathbb{P}^2$ is a common tangent to branches B_1 and B_2 at a point b. Then the plane $\pi_\xi^{-1}(\lambda)$ is bitangent — it touches the surface Y at points P_1 and P_2. Consider the dual surface $Y^\vee \subset \mathbb{P}^3$. Then the point $[\pi_\xi^{-1}(\lambda)] \in \text{Sing } Y^\vee = \gamma^\vee$. Set $\gamma = \tau^{-1}(\gamma^\vee)$, where $\tau : Y \to Y^\vee$ is the Gauss map. Let $\Sigma_\mu \subset \mathbb{P}^3$ be a ruled surface composed by lines P_1P_2, where $P_1, P_2 \in \gamma$, $\tau(P_1) = \tau(P_2) = [\pi_\xi^{-1}(\lambda)]$. Then, if $\xi \notin \Sigma_\mu$, then at points b, corresponding to bitangents l, the curve B has at most nodes.

Now let $b \in B$ be a point corresponding to a stationary tangent l at a point $P \in Y$. As was noted above, in a neighbourhood of P the projection π_ξ is equivalent to a projection of a surface $y = z^3 + x^k z$ to the x, y-plane. We have to show that for a generic projection the exponent $k = 1$. The fact is that, if $k > 1$, then the point P is a planar point of the surface Y. Excepting the centres of projection lying in tangent planes to Y at planar points, we obtain that in a neighbourhood of a point with $\mu = 3$ the projection f is equivalent to a projection of a surface $y = z^3 + xz$ to the x, y-plane, i.e. it is a pleat.

1.11. Projecting in a neighbourhood of an isolated double plane singularity.

Lemma 1.4 If $(X, 0) \subset (\mathbb{C}^3, 0)$ is an (isolated) double plane singularity $z^2 = h(x, y)$, $\pi : X \to \mathbb{C}^2$ be a projection from any point $p \in \mathbb{C}^3$, not lying in the tangent cone $z = 0$, then the ramification curve of π is reduced, and the discriminant curve $B \subset \mathbb{C}^2$ is locally analytically isomorphic to the singularity $h(x, y) = 0$.

Proof. The singularity $(X, 0)$ is of multiplicity 2. Therefore, π is a covering of degree 2, and, consequently, is locally a projection of a double plane $w^2 = g(u, v)$ to the (u, v)-plane. 11
Thus, the germs of singularities $h(x, y)$ and $g(u, v)$ are stably isomorphic, and hence isomorphic ([AGN], vol.1).

\section{Local structure of fibre products.}

\subsection{Local structure of a generic covering.}

Let $f : X \to \mathbb{P}^2$ be a generic covering of the plane by a surface X with A-D-E-singularities, and let $B \subset \mathbb{P}^2$ be the discriminant curve, $f^*(B) = 2R + C$. Singular points $o \in \text{Sing} X$ will be called s-points of the surface X (from the word singularity). In a neighbourhood of a s-point o the covering f is isomorphic to the projection to x, y-plane of a surface $z^2 = h(x, y)$, where $h(x, y)$ has one of the A-D-E-singularities. Singular points o on X correspond to singular points of the same type as o on B.

With respect to f non-singular points of X are partitioned into r-points (from the word regular), at which the morphism f is étale, and p-points (from the words singularity of projection) – they are points of the ramification curve R. A p-point is either a fold (or a singular p-point of type A_1), in a neighbourhood of which $f : (x, z) \mapsto (x, y), y = z^2$, or a pleat $o \in R \cap C$ (or a singular p-point of type A_2), in a neighbourhood of which $f : (x, z) \mapsto (x, y), y = z^3 - 3xz$ (more details about this see in section 2.4 below).

The singular points of B ‘originated’ from singular points $\text{Sing} X$ we call s-points. There are additional singular points of type A_1 (nodes) and of type A_2 (cusps), which we call p-nodes and p-cusps. Over a generic point $b \in B$ there lie one fold and $N - 2$ r-points; over p-node there lie two folds and $N - 4$ r-points; over a p-cusp there lie one pleat and $N - 3$ r-points; over a s-node or a s-cusp, as over any s-point $b \in B$, there lie one singular point of X and $N - 2$ r-points.

\subsection{Types of points on the fibre product.}

With respect to a pair of generic coverings $f_1 : X_1 \to \mathbb{P}^2$ and $f_2 : X_2 \to \mathbb{P}^2$ with the same discriminant curve $B \subset \mathbb{P}^2$ nodes and cusps on B are partitioned by this time into 4 types: ss-, sp-, ps- and pp-nodes and cusps. For example, a ps-node it is a node $b \in B$, such that there are two folds on X_1 over b, and on X_2 over b there is a singular point of type A_1. The analogous terminology is used for the classification of points $\bar{x} = (x_1, x_2)$ on the fibre product $X^x = X_1 \times_{\mathbb{P}^2} X_2$: we say about rs-points, ss-points, sp-points, etc. For example, we say that \bar{x} is a ps-point of type A_2, if $x_1 \in X_1$ is a p-point of type A_2, and $x_2 \in \text{Sing} X_2$ is a singular s-point of type A_2.

In this section we describe the structure of a normalization $\nu : X = (X^x)^{(\nu)} \to X^x$ of the fibre product X^x. Denote by g_1, g_2 and f the morphisms of X to X_1, X_2 and \mathbb{P}^2. Since the normalization is defined locally, we can replace \mathbb{P}^2 by a neighbourhood of the point $0 \in \mathbb{C}^2$ and to assume that X_1 and X_2 are neighbourhoods of points $x_1 \in X_1$ and $x_2 \in X_2$. We pass on to an item-by-item examination of all possible types of points $\bar{x} = (x_1, x_2) \in X^x$. We do it up to the permutation of factors X_1 and X_2.

At first we consider quite trivial cases.

\subsubsection{If \bar{x} is a $r*$-point (where $* = r, s, p$), then X^x at the point \bar{x} is locally the same as X_2 at the point x_2, and $f^* : X^x \to \mathbb{C}^2$ is locally the same as $f_2 : X_2 \to \mathbb{C}^2$.}

\subsubsection{If \bar{x} is a 2×2-point, i.e. x_1 and x_2 are points of ‘double planes’, $z_1^2 = h(x, y), z_2^2 =
$h(x,y)$, then $X^* = X_1 \times_{C^2} X_2$ in a neighbourhood of the point $\bar{x} = (x_1, x_2)$ is a surface in $\mathbb{C}^4 \ni (x,y,z_1,z_2)$, defined by equations $z_1^2 = h(x,y)$, $z_2^2 = h(x,y)$. We obtain that $z_1^2 = z_2^2$ and hence $X^* = X_1^* \cup X_2^*$, where $X_1^* : z_1^2 = h(x,y), z_2 = z_1$, $X_2^* : z_2^2 = h(x,y), z_1 = -z_2$. The surfaces X_1^* and X_2^* meet along a curve $z_1 = z_2 = 0, h(x,y) = 0$. We obtain that a normalization $X = \tilde{X}^* = X_1^* \sqcup X_2^*$ locally consists of two disjoint components X_1^* and X_2^* isomorphic to X_1 and X_2.

In particular, we obtain a description of the normalization in a neighbourhood of a pp-point $(x_1, x_2) \in X^*$ lying over a non-singular point of B, $B : x = 0$.

Every ss-point is a 2×2-point. Thus, in a neighbourhood of a ss-point the normalization has the same local structure as in the case of a pp-point above: X locally consists of two disjoint components isomorphic to X_1 and X_2.

It remains to examine less trivial cases when \bar{x} is a pp- or sp-point of type A_1 or A_2. This is done in the following two subsections.

2.3. On fibre product of double planes.

2.3.1. The ordinary quadratic singularity – the singularity of type A_1 on a surface $X_0 : z^2 = xy$ can be considered as a 2-sheeted covering of the plane $f_0 : X_0 \to \mathbb{C}^2$ branched along a node $B : xy = 0$. As is known, the singularity X_0 itself can be considered as a quotient singularity under the action of cyclic group $\mathbb{Z}_2 = \{\pm 1\}, X_0 = X/\mathbb{Z}_2$, where $X = \mathbb{C}^2 \ni (z_1, z_2)$, and a generator of \mathbb{Z}_2 acts by the rule: $z_1 \mapsto -z_1, z_2 \mapsto -z_2$. The factorization morphism $g_0 : X \to X_0$ is defined by formulae

$x = z_1^2, y = z_2^2, z = z_1z_2$.

We obtain a 4-sheeted covering $f = f_0 \circ g_0 : X \to \mathbb{C}^2$, which can be considered as a factorization under the action of the group $G = \mathbb{Z}_2 \times \mathbb{Z}_2$ on X. Then the factorization g_0 corresponds
to a subgroup of order two $\mathbb{Z}_2 = G_0 = \{(1, 1), (−1, −1)\}$, imbedded diagonally into G. In G there are two more subgroups of order two: $G_1 = \{1\} \times \mathbb{Z}_2$ and $G_2 = \mathbb{Z}_2 \times \{1\}$. Considering $X_1 = \mathbb{C}_2/G_1 \simeq \mathbb{C}_2$ and $X_2 = \mathbb{C}_2/G_2 \simeq \mathbb{C}_2$, we obtain two more decompositions of f and a commutative diagram

\[
X = \mathbb{C}^2 \ni (z_1, z_2)
\]

\[
\begin{array}{ccc}
g_1 & & g_2 \\
\uparrow & & \uparrow \\
(z_1, y) & \in & \mathbb{C}^2 = X_1 \\
\downarrow & & \downarrow \\
X_0 & \rightarrow & X_2 = \mathbb{C}^2 \ni (x, z_2) \\
\downarrow & & \downarrow \\
(x, y) & \in & \mathbb{C}^2
\end{array}
\]

\text{(2)}

where $g_1 : y = z_2^2$, $f_1 : x = z_1^2$, $g_2 : x = z_1^2$, $f_2 : y = z_2^2$.

Denote by $B_1 : x = 0$, $B_2 : y = 0$ the branches of $B : xy = 0$, and by $R' : z_1 = 0$, $R'' : z_2 = 0$ the branches of their proper transform $z_1 z_2 = 0$ on X.

The diagram (2) shows that we can consider X as a normalization in three cases:

2.3.2. X is a normalization in a neighbourhood of a ps-point of type A_1, $\bar{x} \in X_1^x = X_1 \times_{\mathbb{C}_2} X_0$, $f_1^*(B_1) = 2R_1$, $f_1^*(B_2) = C_1$; $g_1^*(R_1) = R'$, $g_1^*(C_1) = 2R''$; $f_0^*(B) = 2R_2 = 2(R'_2 + R''_2)$; $g_0^*(R_2') = R'$; $g_0^*(R''_2) = R''$.

(g_0 is unramified outside the point $0 \in X_0$).
2.3.3. X is a normalization in a neighbourhood of a sp-point of type A_1, $\bar{x} \in X_2^x = X_0 \times \mathbb{C}^2 X_2$ (the case symmetric to 2.3.2.)

2.3.4. X is a normalization in a neighbourhood of a pp-point of A_1, $\bar{x} \in X_2^x = X_1 \times \mathbb{C}^2 X_2$, which is not a 2×2-point, $f_1 : x = z_1^2$, $f_2 : y = z_2^2$.

Fig. 3

$f_1^*(B) = 2R_1 + C_1$, $g_1^*(R_1) = R'$, $g_1^*(C_1) = 2R''$,

$f_2^*(B) = 2R_2 + C_2$, $g_2^*(R_2) = R''$, $g_2^*(C_2) = 2R'$.

Using 2.3.2-2.3.4, now we can describe a normalization X over a neighbourhood of a node $b \in B$.

2.3.5 Over a neighbourhood of a ps-node $b \in B$ (as well as a sp-node) a normalization of X^x in a neighbourhood of a ps-point looks like as

Fig. 4
\[g_1^*(R'_1) = R'' + R'' + C'' , \quad g_1^*(R''_1) = R'' + R'' + C'' \]
\[g_2^*(R'_2) = R' + R' + C' , \quad g_2^*(R''_2) = R'' + R'' \]

On Fig. 4 the normalization in neighbourhoods of pr-, rs- and rr-points of \(X^\times \) is not pictured.

2.3.6. Over a neighbourhood of a pp-node \(b \in B \) a normalization of \(X^\times \) in a neighbourhood of a pp-point looks like as:

2.4. On coverings of \(\mathbb{C}^2 \) unbranched outside a cusp \(B : y^2 = x^3 \). To describe a normalization of the fibre product in a neighbourhood of a sp- and pp-point of type \(A_2 \) in a natural context, we begin with reminding of a small topic from singularity theory.

2.4.1 The singularity of cuspidal type of a map (pleat) and the miniversal deformation of a singularity of type \(A_2 \). A cusp \((B, 0) \subset (\mathbb{C}^2, 0) \) is defined by a germ of function \(x^3 - y^2 \) stable equivalent to a germ of function \(x^3 \). It is a simple singularity of type \(A_2 \). It is interesting that a cusp (a singularity of type \(A_2 \)) appears also on the discriminant in the base of the miniversal deformation of the same singularity of type \(A_2 \).

As is known, the miniversal unfolding of the function \(t = z^3 \) is

\[\mathbb{C} \times \mathbb{C}^2 \rightarrow \mathbb{C} \times \mathbb{C}^2 , \quad (z, a_2, a_3) \mapsto (z^3 + a_2 z + a_3, a_2, a_3) . \]

The restriction of this map over \(\{0\} \times \mathbb{C}^2 \) gives a miniversal deformation \(F \) of a zero-dimensional singularity \(z^3 = 0, \mathbb{C}^3 \supset X \xrightarrow{F} \mathbb{C}^2 \). Here \(X \) is a surface \(z^3 + a_2 z + a_3 = 0 \), and \(F \) is induced by projection onto \((a_2, a_3) \). The surface \(X \) is a graph of function \(-a_3 = z^3 + a_2 z ; z \) and \(a_2 \) are local coordinates on \(X \),
\[(a_2, z) \in \mathbb{C}^2 \xrightarrow{\sim} X \subset \mathbb{C}^3\]

\[G \downarrow F \quad , \quad G: \begin{cases} a_2 &= a_2 \\ -a_3 &= z^3 + a_2z. \end{cases}\]

We obtain a 3-sheeted covering \(G : \mathbb{C}^2 \to \mathbb{C}^2\), the ramification curve of which \(R\) is defined by the equation \(3z^2 + a_2 = 0\), and the discriminant (branch) curve \(B = G(R)\) is defined by equation

\[4a_2^3 + 27a_3^2 = 0.\]

To bring the equation of \(B\) to the form \(y^2 = x^3\), we make a substitution

\[a_2 = -3x, \ a_3 = 2y,\]

and denote \(\mathbb{C}^2 \simeq X\) by \(X_3\), and \(G\) by \(f_3\).

Fig. 6

We obtain a 3-sheeted covering \(f_3 : X_3 \to \mathbb{C}^2\),

\[f_3 : \ x = x, \ y = -\frac{1}{2}(z^3 - 3xz).\]

Then \(x^3 - y^2 = x^3 - \frac{1}{4}(z^3 - 3xz)^2 = (x - z^2)^2(x - \frac{1}{4}z^2)\) and, consequently,

\[f_3^*(B) = 2R + C,\]

where \(R : x = z^2\) is the ramification curve, and \(C : x = \frac{1}{4}z^2\). Note that \(C\) and \(R\) are tangent of order two, \((C \cdot R) = 2\).

By Lemma 1.3 the singular point of the covering \(f_3\) is uniquely characterized as a singular point of a 3-sheeted covering \(f : X \to \mathbb{C}^2\) by a non-singular surface \(X\), the discriminant curve of which is an ordinary cusp.
2.4.2 The Viète map f_6. We produce a well known regular covering of \mathbb{C}^2 with group S_3 branched along a cusp $B : y^2 = x^3$, which appears to be a normalization of the fibre product in a neighbourhood of a sp-point of type A_2. This covering naturally appears in singularity theory.

Consider a quotient of the space \mathbb{C}^3 under the action of permutation group S_3. We get the Viète map

$$v : \mathbb{C}^3 \rightarrow \mathbb{C}^3, \ (z_1, z_2, z_3) \mapsto (a_1, a_2, a_3),$$

where $(z - z_1)(z - z_2)(z - z_3) = z^3 + a_1 z^2 + a_2 z + a_3$, i.e.

$$a_1 = -(z_1 + z_2 + z_3), \ a_2 = z_1 z_2 + z_2 z_3 + z_3 z_1, \ a_3 = -z_1 z_2 z_3.$$

The map v is a map of degree 6 unramified outside $\Delta = \bigcup_{i \neq j} \{z_i = z_j\}$, and $v(\Delta) = D$ is defined by the discriminant of a polynomial of degree three.

The action of S_3 on \mathbb{C}^3 is reducible: \mathbb{C}^3 is a direct sum $\mathbb{C}^3 = \mathbb{C} \oplus \mathbb{C}^2$ of invariant subspaces of the line $\mathbb{C} = \{z_1 = z_2 = z_3\}$ and of the plane $\mathbb{C}^2 = \{z_1 + z_2 + z_3 = 0\}$. Consider the restriction of v to this plane \mathbb{C}^2,

$$(z_1, z_2, z_3) \in \mathbb{C}^3 \supset \{z_1 + z_2 + z_3 = 0\} = \mathbb{C}^2 \rightarrow \mathbb{C}^2 = \{a_1 = 0\} \subset \mathbb{C}^3 \ni (a_1, a_2, a_3).$$

Set $\mathbb{C}^2 \cap \Delta = L \ , \ \mathbb{C}^2 \cap D = B$. Then L consists of three lines

$$L = L_1 + L_2 + L_3, \text{ where } L_i : z_j = z_k, \ z_1 + z_2 + z_3 = 0 \ , \ \{i, j, k\} = \{1, 2, 3\},$$

and the curve $B : 4a_2^3 + 27a_3^2 = 0$ is defined by the discriminant of the polynomial $z^3 + a_2 z + a_3$. Since $\pi_1(\mathbb{C}^2 \setminus L) = \pi_1(\mathbb{C}^3 \setminus \Delta), \ \pi_1(\mathbb{C}^2 \setminus B) = \pi_1(\mathbb{C}^3 \setminus D) = B_{13}$, we obtain a covering $v : \mathbb{C}^2 \rightarrow \mathbb{C}^2$ of degree 6 unbranched apart from B. Denote this map by f_6. In coordinates x, y, where $a_2 = -3x, a_3 = 2y$, this map

$$\mathbb{C}^2 = \{z_1 + z_2 + z_3 = 0\} = X_6 \xrightarrow{f_6} \mathbb{C}^2 \ni (x, y)$$

is defined by formulae

$$f_6 : x = -\frac{1}{3}(z_1 z_2 + z_2 z_3 + z_3 z_1), \ y = -\frac{1}{2}z_1 z_2 z_3,$$

the discriminant B has equation $y^2 = x^3$, and $f^* (B) = 2L = 2L_1 + 2L_2 + 2L_3$ (it is easy to see that $x^3 - y^2 = \frac{1}{12}(z_2 - z_1)^2(z_3 - z_2)^2(z_1 - z_3)^2$ under condition $z_1 + z_2 + z_3 = 0$).

Consider a two-sheeted covering unbranched outside B

$$(x, y, w) \in \mathbb{C}^3 \supset X_2 \xrightarrow{f_2} \mathbb{C}^2 \ni (x, y),$$

where X_2 is defined by equation $w^2 = x^3 - y^2$, and f_2 is induced by projection. Such a structure has a generic covering $f : X \rightarrow \mathbb{P}^2$ in a neighbourhood of a sp-point of type A_2.

Lemma 2.1 ([C]) If $f : (X, 0) \rightarrow (\mathbb{C}^2, 0)$ is a finite covering by a normal irreducible surface X, unbranched outside an ordinary cusp $B \subset \mathbb{C}^2$, and the ramification curve of which is reduced, i.e. $f^* (B) = 2R + C$ (R and C reduced curves), then f is equivalent to one of the coverings f_2, f_3 and f_6. ■

18
The proof is obtained by means of studying the possible monodromy homomorphisms $\rho : \pi_1 \to S_N$, where $\pi_1 = \pi_1(C^2 \setminus B) = Br$ is the fundamental group of a cusp, and $N = \deg f$.

We obtain one more characterization of the covering f_3 as a finite covering $f : (X, 0) \to (C^2, 0)$ by a normal irreducible surface, unbranched outside a cusp B, and with a reduced and non-singular ramification curve R.

2.4.3 *Description of a normalization of the fibre product in a neighbourhood of a sp-point of type A_2.* The map f_6 factors through the maps f_2 and f_3, and we have a commutative diagram

$$
\begin{array}{ccc}
X_6 &=& \{z_1 + z_2 + z_3 = 0\} \\
&\xrightarrow{g_3} & \xrightarrow{g_2} & \{w^2 = x^3 - y^2\} = X_2 \\
&\xrightarrow{f_6} & \xrightarrow{f_3} & X_3 = \{z^3 - 3xz^2 + 2y = 0\}, \\
&\xrightarrow{f_2} & & (x, y) \in C^2 \ni B : y^2 = x^3
\end{array}
$$

where g_2 and g_3 are defined by formulae: x and y are defined by the same formulae as f_6, and $z = z_1$ for g_2, and $w = \frac{1}{6\sqrt{3}}(z_2 - z_1)(z_3 - z_2)(z_1 - z_3)$ for g_3. It is easy to see that g_3 is a factorization under the action of a cyclic group $Z_3 = A_3 \subset S_3$, $X_2 = X_6/A_3$, and g_2 is a factorization under the action of a cyclic group of order two $Z_2 \simeq S_2 = \{(1), (2, 3)\} \subset S_3$.

By the property of universallity of fibre products we have a morphism $X_6 \to X_2 \times_{C^2} X_3$. The fibre product $X_2 \times_{C^2} X_3$ is irreducible, since each its component Z is mapped onto X_2 and X_3, and, therefore, the degree of $Z \to C^2$ have to be divided by 2 and 3, i.e. have to be equal to 6. Thus, X_6 is a normalization of $X_2 \times_{C^2} X_3$, and the diagram $(*)_3$ describes a normalization of the fibre product in a neighbourhood of a sp-point of type A_2.

19
The diagram (\(*_3\)) can be visually-schematic presented as follows

![Diagram](image)

Fig. 7

Direct computations show that \(x - z^2 = \frac{1}{3}(z_2 - z_1)(z_1 - z_3)\), and \(x - \frac{1}{4}z^2 = \frac{1}{12}(z_3 - z_2)^2\), i.e.

\[g_2^*(R) = L_2 + L_3, \quad g_2^*(C) = 2L_1.\]

And, besides, \(g_3^*(R_1) = L_1 + L_2 + L_3\).

2.4.4 Description of a normalization of the fibre product in a neighbourhood of a pp-point of type \(A_2\). Let \(x_1 \in X_1\) and \(x_2 \in X_2\) be p-points of type \(A_2\) for \(f_1\) and \(f_2\); \(f_1^*(B) = 2R_1 + C_1, f_2^*(B) = 2R_2 + C_2\). In this case the 3-sheeted coverings \(f_1\) and \(f_2\) are the same (equivalent), and the monodromy homomorphisms \(\varphi_1, \varphi_2 : \pi_1 = \pi_1(\mathbb{C}^2 \setminus B, y_0) \to S_3\) are epimorphic. The fibre \((f^*)^{-1}(y_0)\) of the 9-sheeted covering \(f^* : X^* = X_1 \times \mathbb{C}^2 X_2 \to \mathbb{C}^2\) consists of pairs \(f_1^{-1}(y_0) \times f_2^{-1}(y_0) = \{(i, j), 1 \leq i, j \leq 3\}\), and the monodromy homomorphism is (equivalent to) a diagonal homomorphism \(\varphi : \pi_1 \to S_3 \times S_3 \subset S_9\). Since \(\varphi_i\) are epimorphic, the fibre \((f^*)^{-1}(y_0)\) consists of two orbits w.r.t. the action of \(\pi_1\) — the orbit of the point \((1, 1)\), which consists of 3 elements, and the orbit of the point \((1, 2)\), which consists of 6 elements. From this and from Lemma [2.1] it follows that in a neighbourhood of the \(\bar{x} = (x_1, x_2)\) a normalization \(X\) of the product \(X^*\) consists of two disjoint components \(X = X_3 \coprod X_6\), and on \(X_3\) the morphism \(f : X \to \mathbb{C}^2\) coincides with \(f_3\), the morphisms \(g_1\) and \(g_2\) are isomorphisms, and on \(X_6\) the morphism \(f = f_6\), the morphisms \(g_1\) and \(g_2\) are the same as \(g_2\) in the diagram \((*_3)\)
There are 4 curves on X^\times: $C_1 \times_B C_2$, $R_1 \times_B C_2$, $C_1 \times_B R_2$, $R_1 \times_B R_2$, preimages of which on the normalization X are C_3, L_2, L_1, and L_3, R_3. Under such a numeration of the lines L_i we have

$$g_1^*(R_1) = R_3 + L_2 + L_3$$
$$g_1^*(C_1) = C_3 + 2L_1$$
$$g_2^*(R_2) = R_3 + L_1 + L_3$$
$$g_2^*(C_2) = C_3 + 2L_2$$

2.4.5 A lift of the diagram (*3). Consider the diagram (*3). For computation of intersection numbers in §5 we need to resolve the singular point of type A_2 on the surface X_2, and to ‘disjoint’ the curves L_2 and L_3 on X. A resolution of the singular point of type A_2, as of any ‘double plane’, can be obtained, if we firstly take an imbedded resolution $\sigma : \mathbb{C}^2 \to \mathbb{C}^2$ of the branch curve $B \subset \mathbb{C}^2$, and then take a normalization of $X_2 \times_{\mathbb{C}^2} \mathbb{C}^2$.

Actually we’ll make more – we lift the whole of the diagram (*3) on \mathbb{C}^2.

1) The singular point of B is resolved by one σ-process σ_1. It is enough for the resolving of the singular point on X_2, but to resolve the total transform of B up to a divisor with normal crossings, one need two more σ-processes. We picture the resolution process schematically by ‘drawing’ the total transform of the curve B. Denote by E_i the curve glued in under the i-th σ-process, and also its proper transform under subsequent σ-processes.

Along each curve we indicate two numbers: the negative is the self-intersection number, the positive is its multiplicity in the total transform of the curve B.

21
2) Denote by $\sigma : \bar{\mathbb{C}}^2 \to \mathbb{C}^2$ the composition $\sigma_3 \circ \sigma_2 \circ \sigma_1$. We add on the diagram (\ast_3) over $\bar{\mathbb{C}}^2$ and obtain a diagram as follows, on which all morphisms on the right face are finite coverings.

The right square of the diagram (\ast) is obtained as a fibre product $(\ast_3) \times_{\mathbb{C}^2} \bar{\mathbb{C}}^2$, i.e. \bar{X}_i are normalizations of $X_i \times_{\mathbb{C}^2} \bar{\mathbb{C}}^2$, and morphisms are induced by morphisms of the diagram (\ast_3) and projections. We describe how one can construct the diagram (\ast) not uniformly as a normalization of the lift, but step-by-step. To facilitate the following of the description we begin with the final picture. We draw the right square of the diagram (\ast) by replacing the varieties at its vertices by the total transforms of the curve B.

Fig. 10
The rule of notation is as follows. The exceptional curves E_1, E_2, E_3 on \mathbb{C}^2 are already denoted. Under double indexing $E_{i,j}$ the first index indicates the variety X_i, where $E_{i,j}$ lies, and the second index indicates to what curve E_j the curve $E_{i,j}$ is mapped on \mathbb{C}^2.

3) We begin a description of the diagram (\ast) with X_6 (‘from the top’). To disjoint the lines L_i, we make σ-process with centre at the point $0 \in X_6 = \mathbb{C}^2 = \{z_1 + z_2 + z_3 = 0\} \subset \mathbb{C}^3$. By this the curve $E_{6,3} = \mathbb{P}^1 = \{t_1 + t_2 + t_3 = 0\} \subset \mathbb{P}^2 \ni (t_1 : t_2 : t_3)$ is glued, and we obtain a variety X'_6. The action of S_3 on X_6 is extended to X'_6 and, in particular, to \mathbb{P}^1. On \mathbb{P}^1 there are 8 exceptional points forming exceptional orbits:

$$p_1 = E_{6,3} \cap L_1 = (-2 : 1 : 1), \quad p_2 = E_{6,3} \cap L_2 = (1 : -2 : 1), \quad p_3 = E_{6,3} \cap L_3 = (1 : 1 : -2);$$

$$P_1 = (0 : 1 : -1), \quad P_2 = (1 : 0 : -1), \quad P_3 = (1 : -1 : 0);$$

$$Q_1 = (1 : \zeta : \zeta^2), \quad Q_2 = (1 : \bar{\zeta} : \bar{\zeta}^2),$$

where $\zeta = \sqrt[3]{1}$ is a primitive root, and $\bar{\zeta} = \zeta^2$. Denote by $\xi = (123)$ a generator of the cyclic group of order three $\mathbb{Z}_3 = A_3 = \{(1), (123), (132)\} \subset S_3$, and by $\varepsilon = (23)$ a generator of the cyclic group of order two $\mathbb{Z}_2 = S_2 = \{(1), (23)\} \subset S_3$. Then

$$\xi(p_1) = p_2, \quad \xi(p_2) = p_3, \quad \xi(p_3) = p_1; \quad \xi(P_1) = P_2, \quad \xi(P_2) = P_3, \quad \xi(P_3) = P_1;$$

$$\varepsilon(p_1) = p_2, \quad \varepsilon(p_2) = p_3, \quad \varepsilon(p_3) = p_1; \quad \varepsilon(P_1) = P_2, \quad \varepsilon(P_2) = P_3, \quad \varepsilon(P_3) = P_2; \quad \varepsilon(Q_1) = Q_2.$$

If we take a quotient X'_6 under the action of $\mathbb{Z}_3 = A_3$, then the stationary points Q_1 and Q_2 give two quotient singularities on $X'_2 = X'_6/A_3$, resolving of which $X''_2 \to X'_2$ glues the curves $E''_{2,1}$ and $E''_{2,1}$ with $(E''_{2,1}) = -3, \ (E''_{2,1}) = -3$. To lift $X'_6 \to X'_2$ onto X''_2, we have to blow up the points Q_1 and Q_2, $X''_6 \to X'_6$, and by this we obtain $X''_6 \to X''_2$.

![Diagram 11](image)

Fig. 11

4) The map f_2 is a factorization under the cyclic group $\mathbb{Z}_2 = S_2$. The action extends to X''_2. The stationary point on $E_{6,3}$ – the image of the point P_1 on $E_{6,3}$ gives a singular point of type A_2 on $X''_2/\mathbb{Z}_2 \ (= \bar{\mathbb{C}}^2)$. A resolution of this point glues a (-2)-curve E_2, and we obtain $\bar{\mathbb{C}}^2$. To lift $X''_2 \to X''_2/\mathbb{Z}_2$ onto the resolution $\bar{\mathbb{C}}^2$, we have to blow up a point on X''_2. By this a (-1)-curve $E_{2,2}$ is glued, and we obtain \bar{X}_2. To obtain $\bar{g}_3 : \bar{X}_6 \to \bar{X}_2$, we have to perform 3
σ-processes with centres at points P_1, P_2, P_3 on X'', by which three lines $E''_{6,2}; E''_{6,2}$ and $E''_{6,2}$ are glued. We obtain the left side \bar{g}_3 and \bar{f}_2 of the right square of diagram (*), pictured on Fig. 10. Note that the map \bar{g}_3 is ramified along the curves $E''_{6,1}$ and $E''_{6,1}$, and the map \bar{f}_2 is ramified along the curves $E_{2,2}$ and R_1.

We can blow down the (-1)-curve $E_{2,2}$ on \bar{X}_2, and then to blow down the (-1)-curve $E_{2,3}$. By this we obtain a minimal resolution of the singular point of type A_2 on X_2,

![Diagram](image1)

Fig. 12

5) The map \bar{g}_2 is a factorization under the group $\mathbb{Z}_2 = S_2 = \{(1), (23)\}$. We obtain the surface $\bar{X}_3 = \bar{X}_6/S_2$, $\bar{g}_2 : \bar{X}_6 \to \bar{X}_3$. The map \bar{g}_2 is ramified along the curves $E''_{6,2}$ and L_2, which are mapped onto $E''_{3,2}$ and C correspondingly. The diagram is completed by the map $\bar{f}_3 : \bar{X}_3 \to \mathbb{C}^2$. The surface \bar{X}_3 is obtained from $X_3 = \mathbb{C}^2$, if we at first blow up the point of tangency of curves C and R gluing $E''_{3,2}$; then we blow up the point of intersection of C and R gluing $E_{3,3}$; finally, we blow up two more points on $E_{3,3}$.

![Diagram](image2)

Fig. 13

3 The canonical cycle of a Du Val singularity

We intend to apply Hodge index theorem to obtain the basic inequality for generic coverings of \mathbb{P}^2 by surfaces with A-D-E-singularities. For this we need intersection theory and, therefore, a resolution of singularities of X. In this section we examine the local situation and find out how the resolution affects the canonical class and the ramification curve.

3.1. Definition of canonical cycle. Let (X, x) be a 2-dimensional A-D-E-singularity. Let $\pi : \bar{X} \to X$ be a minimal resolution, $L = \pi^{-1}(x)$ be the exceptional curve. As is known, the
canonical class K_X is trivial in a neighbourhood of L, that is we can choose a divisor in K_X with a support not intersecting L. In other words, there is a differential form ω on X, which has neither poles nor zeroes in a neighbourhood of L. Such a form can be obtained, for example, as follows. As is known, (X, x) is a quotient singularity, $X = \mathbb{C}^2/G$, where $G \subset SL(2, \mathbb{C})$. The form $du \wedge dv$ on $\mathbb{C}^2 \ni (u, v)$ is invariant w.r.t. G and it defines a form on X $(\varphi^*(\omega) = du \wedge dv$, where $\varphi : \mathbb{C}^2 \to X$). Hence, the divisor $(\omega) = \sum k_i L_i$. Since L_i are (-2)-curves, $(L_i \cdot (\omega)) = 0$, and we obtain $(\omega) = 0$.

On the other hand, (X, x) can be considered as a double plane, that is as a 2-sheeted covering $X \xrightarrow{\bar{f}} Y$ of the plane $Y = \mathbb{C}^2$ (locally). Let $z^2 = h(x, y)$ be an equation of (X, x), $B : h(x, y) = 0$ be the discriminant curve, $f^{-1}(B) = R$, defined by the equation $z = 0$, be the ramification curve. We can consider the differential form $\omega = f^*(dx \wedge dy)$ lifted from Y. Then on \bar{X} the divisor $(\omega)(z) = \bar{R} + Z$, where $\bar{R} \subset \bar{X}$ is the proper transform of R, $Z = \sum \gamma_i L_i$ is a cycle on $L = \pi^{-1}(x)$. We shall say that Z is the canonical cycle of a 2-dimensional A-D-E-singularity. Thus, $-Z$ is a cycle on the exceptional curve L, which is equivalent to the ramification curve \bar{R} in a neighbourhood of L. Let us calculate the canonical cycle for all A-D-E-singularities.

3.2. On resolution of double planes. As for any double plane, a resolution of an A-D-E-singularity can be obtained by means of a resolution of the discriminant curve $B \subset Y = \mathbb{C}^2$, $B : h(x, y) = 0$. Let $\sigma : \bar{Y} \to Y$ be a composition of σ-processes, such that the total transform of B is a divisor with normal crossings. Let $\sigma^*(B) = \bar{B} + \sum_{i=1}^r \alpha_i l_i$, where \bar{B} is the proper transform of B, $l_i \simeq \mathbb{P}^1$, $i = 1, \ldots, r$, are the exceptional curves, as well as their proper transforms, glued by σ-processes. Let \bar{X} be the normalization of $\bar{Y} \times_Y X$, and \bar{f} and π be induced by projections,

$$\pi^{-1}(x) = L = L_1 \cup \ldots \cup L_r \subset \bar{X} \xrightarrow{\pi} X \supset R \ni x, R : z = 0$$

$$\begin{align*}
\bar{f} &\quad & \pi \\
\sigma^*(B) = \bar{B} + \sum_{i=1}^r \alpha_i l_i \subset \bar{Y} &\quad & \sigma \\
f &\quad & \bar{f}
\end{align*}$$

(2)

Set $\bar{f}^{-1}(l_i) = L_i$. The curve L_i is either irreducible or consists of two components $L_i = L_i' + L_i''$, where $L_i' \simeq \mathbb{P}^1$, $L_i'' \simeq \mathbb{P}^1$. The mapping \bar{f} is a 2-sheeted covering branched along the curve $\bar{B} + \sum l_i$. To be more graphic we denote the curves l_i, for which α_i are odd, also by \bar{l}_i, and L_i respectively by \bar{L}_i. The surface \bar{X} has singularities of type A_1 over nodes of the branch curve $\bar{B} + \sum \bar{l}_i$. If this curve is non-singular, that is, a disconnected union of components (one can reach this by performing one additional σ-processes for each node), then X is non-singular and is a resolution of the singularity (X, x). Let \bar{R} be the proper transform of R w.r.t. π (= the proper transform of \bar{B} w.r.t. \bar{f}). We have $\bar{f}^*(\bar{l}_i) = 2\bar{L}_i$, if α_i is odd, and $\bar{f}^*(\bar{l}_i) = L_i$, if α_i is even. We have

$$((\sigma \circ \bar{f})^*h(x, y))(z^2) = 2\bar{R} + \sum_{\alpha_i \text{ odd}} 2\alpha_i \bar{L}_i + \sum_{\alpha_i \text{ even}} \alpha_i L_i$$
and, consequently, \((z) = \bar{R} + Z\), where

\[
Z = \sum_{\alpha_i \text{-odd}} \alpha_i \bar{L}_i + \sum_{\alpha_i \text{-even}} \frac{1}{2} \alpha_i L_i.
\]

Let us compute the cycle \(Z\) for each type of A-D-E-singularities (despite of abundance of papers concerning Du Val singularities, the authors do not know any of them, where the cycle \(Z\) is written out; so we have to perform these computations).

3.3. **Computation of the canonical cycle.** Consider the minimal resolution of each type of A-D-E-singularities described above. The following lemma contains the results of computations of \(\sigma^* (B)\), of the exceptional curve \(\pi^{-1}(x) = L\) and of the canonical cycle \(Z\).

Lemma 3.1 Below we picture schematically the total transform \(\sigma^* (B) = \bar{B} + \sum_{i=1}^r \alpha_i l_i\) (near each curve \(l_i\) a positive number \(\alpha_i\), and a negative number \((l_i^2)\) are shown), and over it we picture the curve \(\pi^{-1}(\bar{R})\), consisting of \(\bar{R}\) and \((-2)\)-curves, and besides we write down the canonical cycle \(Z\):

1) The singularity \(A_{2k-1}: y^2 = x^{2k},\ k \geq 1,\)

\[
Z = L_1 + 2L_2 + \ldots + kL_k;
\]
2) The singularity $A_{2k} : y^2 = x^{2k+1}$, $k \geq 1$,

$$Z = L_1 + 2L_2 + \ldots + kL_k;$$

3) The singularity $D_{2k+2} : x(y^2 + x^{2k})$, $k \geq 1$,

$$Z = 3L_1 + 5L_2 + \ldots + (2k+1)L_k + 2L_{k+1} + 4L_{k+2} + \ldots + 2kL_{2k} + (k+1)L_{2k+1} + (k+1)L_{2k+2};$$
4) The singularity $D_{2k+3} : x(y^2 + x^{2k+1})$, $k \geq 1$,

\[
4) \text{ The singularity } D_{2k+3} : x(y^2 + x^{2k+1}), \quad k \geq 1,
\]

\[
Z = 3L_1 + 5L_2 + \ldots + (2k+1)L_k + 2L_{k+1} + 4L_{k+2} + \ldots + 2kL_{2k} + (2k+2)L_{2k+2} + (k+1)L_{2k+1};
\]

\[
L_{2k+1} = L'_{2k+1} + L''_{2k+1};
\]

5) The singularity $E_6 : x^3 + y^4$,

\[
5) \text{ The singularity } E_6 : x^3 + y^4,
\]

\[
Z = 3L_1 + 2L_2 + 4L_3 + 6L_4;
\]
6) The singularity $E_7 : x(x^2 + y^3)$,

\[
Z = 3L_1 + 5L_2 + 9L_3 + 6L_4 + 5L_5 + 8L_6 + 3L_7;
\]

7) The singularity $E_8 : x^3 + y^5$,

\[
Z = 3L_1 + 5L_2 + 9L_3 + 15L_4 + 10L_5 + 8L_6 + 12L_7 + 6L_8. \quad \blacksquare
\]

3.4. Defect of a singularity. Define a defect δ of a A-D-E-singularity by the formula

\[
\delta = \frac{1}{2} (\bar{R} \cdot Z).
\]
Corollary 3.1 For different types of A-D-E-singularities the defect equals
\[\delta = \begin{cases}
\frac{n+1}{2} & \text{for type } A_n; \\
\frac{n}{2} + 1 & \text{for type } D_n; \\
\frac{n+1}{2} & \text{for types } E_n, \ n = 6, 7, 8.
\end{cases} \]

In particular, for the type A_1 (nodes) and A_2 (cusps) the defect $\delta = 1$.

Actually one can show that defect δ is the δ-invariant (genus) of the one-dimensional A-D-E-singularity.

4 Numerical invariants of a generic covering

Now we consider a global situation. Let X be a surface with A-D-E-singularities,
\[\text{Sing } X = \sum_{k \geq 1} a_k A_k + \sum_{k \geq 4} d_k D_k + \sum_{k = 6, 7, 8} e_k E_k, \]
that means that X has a_k singularities of type A_k, d_k of type D_k and e_k of type E_k.

Let $f : X \to \mathbb{P}^2$ be a generic covering of degree N, and $B \subset \mathbb{P}^2$ be the discriminant curve. Let $\deg B = d$ and let B has n nodes and c cusps, $n_s = a_1$ and $c_s = a_2$ of which originates from $\text{Sing } X$, and n_p and c_p are p-nodes and p-cusps. Let $R \subset X$ be the ramification curve, $f^*(B) = 2R + C$, and $L \subset X$ be the preimage of a generic line $l \subset \mathbb{P}^2$. Denote by \bar{R} and \bar{L} the proper transforms of R and L on S. Then \bar{R} is a normalization of the curve $R \simeq B$, and $\bar{L} \simeq L$.

4.1. The canonical class K_S and the canonical cycle Z. Let
\[Z = \sum_{x \in \text{Sing } X} Z_x \]
be the canonical cycle of S, where Z_x are the canonical cycles of singularities $x \in \text{Sing } X$. It follows from 3.2 that
\[K_S = (f \circ \pi)^* K_{\mathbb{P}^2} + \bar{R} + Z = -3\bar{L} + \bar{R} + Z. \]
Besides, the singularities of X being Gorenstein, the divisor R is locally principal, and
\[\pi^*(R) = \bar{R} + Z. \]

4.2. The intersection numbers.

Lemma 4.1 The intersection numbers of L, \bar{R} and Z on S are equal
\[(L^2) = N, \ L \cdot R = d, \ L \cdot Z = 0, \ \bar{R} \cdot Z = 2\delta_X, \ (Z^2) = -2\delta_X, \]
where
\[\delta_X = \sum_{x \in \text{Sing } X} \delta_x = \sum a_k \left[\frac{k+1}{2} \right] + \sum d_k \left(\frac{k}{2} + 1 \right) + \sum e_k \left(\frac{k+1}{2} \right) \]
is the defect of the surface X.

30
Proof. Obviously, we have \((L^2) = \deg f = N \), and \(\bar{L} \cdot \bar{R} = \deg B = d \). By 3.4 we have \(\bar{R} \cdot Z = 2\delta_X \). The divisor \(Z \) being exceptional, we have \(\pi(Z) = \text{Sing} \ X \), \(\dim \pi(Z) = 0 \), and \(\bar{L} = \pi^*(\bar{L}) \), \(\bar{R} + Z = \pi^*(R) \), and therefore, \(\bar{L} \cdot Z = 0 \), and \((\bar{R} + Z) \cdot Z = 0 \), and, consequently, \((Z^2) = -(\bar{R} \cdot Z) \).\hfill \blacksquare

It remains to compute \((\bar{R}^2) \).

4.3. The evenness of degree \(\deg B = d = 2\bar{d} \). The restriction of \(\bar{f} \) to \(\bar{L} \), \(\bar{L} \to l \sim \mathbb{P}^1 \), is a covering of degree \(N \), with ramification indices 2 at the points of intersection of \(\bar{L} \) and \(\bar{R} \). We have \(\bar{L} \cdot \bar{R} = d \), and from Hurwitz formula we obtain \(2g(\bar{L}) - 2 = -2N + d \). It follows that \(\deg B = d \) is even. Let \(d = 2\bar{d} \). Besides, since

\[
g(\bar{L}) = \frac{1}{2}d + 1 - N \geq 0,
\]
we obtain a bound for the degree of covering,

\[
N \leq \bar{d} + 1.
\]

4.4. The self-intersection number \((\bar{R}^2)\) and the arithmetical genus of the curve \(R\). Denote by \(\delta \) the defect of the curve \(B \),

\[
\delta = \delta_B = \sum_{s \in \text{Sing} B} \delta_s = n + c + \delta_0,
\]

where

\[
\delta_0 = \sum_{x \in \text{Sing} B, \ x \ not \ A_1 \ and \ A_2} \delta_x.
\]

The numbers \(\delta \) and \(\delta_0 \) are the extremal values of defects \(\delta_X \) of surfaces \(X \) with given discriminant curve \(B : \delta_0 \) corresponds to a surface \(X \), all nodes and cusps of which are p-nodes and p-cusps, \(n = n_p \), \(c = c_p \), and \(\delta \) corresponds to a surface \(X \) (for example, a 2-sheeted covering of \(\mathbb{P}^2 \)), all nodes and cusps of which are s-nodes and s-cusps, \(n = n_s \), \(c = c_s \).

At first we express the geometric genus of \(B \), \(g = g(B) = g(\bar{R}) \), in terms of the defect \(\delta \). For this we consider a surface \(X \), which is a 2-sheeted covering of \(\mathbb{P}^2 \) with the discriminant curve \(B \). In this case \((Z^2) = -(\bar{R} \cdot Z) = -2\delta \), and \(f^*(B) = 2R \) and, consequently, \(d \cdot \bar{L} \sim 2\bar{R} + 2Z \), because \(B \sim d \cdot l \). From (4.1) and the adjunction formula \(g(\bar{R}) = \frac{(\bar{R}, \bar{R} + K_X)}{2} + 1 \) we obtain

\[
g = \frac{(d - 1)(d - 2)}{2} - \delta.
\]

If it is known that the defect \(\delta \) coincides with the \(\delta \)-invariant of a one-dimensional singularity, then this formula coincides with the well known formula for the geometric genus \(g(R) \) of a singular curve \(R \), \(g(R) = p_a(R) - \sum_{x \in \text{Sing} R} \delta_x \).

We return to a generic covering \(X \) of degree \(N \), \(n = n_s + n_p \), \(c = c_s + c_p \). Then

\[
\delta_X = n_s + c_s + \delta_0 = \delta - n_p - c_p.
\]
Lemma 4.2 The self-intersection number of the proper transform of the ramification curve $\bar{R} \subset S$ is equal

$$(\bar{R}^2) = 3\bar{d} + g - 1 - \delta_X,$$

(4.9)

and

$$(\bar{R} + Z)^2 = 3\bar{d} + g - 1 + \delta_X = 3\bar{d} + p_a(R) - 1,$$

(4.10)

where

$$p_a(R) = g + \delta_X = \frac{(d-1)(d-2)}{2} - n_p - c_p$$

(4.11)

is the arithmetical genus of R.

Proof. From (4.1) and the adjunction formula $2g(R) - 2 = (\bar{R}, R + K_S) = (\bar{R}, -3\bar{L} + 2\bar{R} + Z)$ we obtain $$(\bar{R}^2) = \frac{3}{2}(\bar{R} \cdot \bar{L}) + g - 1 - \frac{1}{2}(\bar{R} \cdot Z).$$ Applying formulae (4.3), we obtain the proof. ■

From formulae (4.1), (4.3) and (4.9) we obtain a corollary.

Corollary 4.1

$$(K_S^2) = 9N - 9\bar{d} + p_a(R) - 1,$$

or, substituting $p_a(R)$ from (4.11),

$$(K_S^2) = 9N + \frac{1}{2}d(d - 12) - n_p - c_p.$$

(4.12')

4.5. A bound for the covering degree.

Lemma 4.3 For a generic covering of degree N with discriminant curve of degree $d = 2\bar{d}$ and genus g, we have

$$N \leq 4\bar{d}^2 \frac{d}{3d + g - 1 + \delta_X},$$

(4.13)

where δ_X is the defect of singularities of X, and moreover, the equality holds if and only if $\bar{L} \equiv mK_S$ for some $m \in \mathbb{Q}^*$, or $mK_S \equiv 0$.

Proof. Applying Hodge index theorem to divisors \bar{L} and $\pi^*(R) = \bar{R} + Z$ on S, we obtain

$$\left| \begin{array}{cc} \bar{L}^2 & (\bar{L}, \bar{R} + Z) \\ (\bar{L}, \bar{R} + Z) & (\bar{R} + Z)^2 \end{array} \right| = \left| \begin{array}{cc} N & d \\ d & 3\bar{d} + g - 1 + \delta_X \end{array} \right| \leq 0,$$

and it is the desired inequality. The equality holds only if \bar{L} and $\bar{R} + Z$ are linear dependent in the Néron-Severi group $NS(\bar{X}) \otimes \mathbb{Q}$. Since $K_S = -3\bar{L} + \bar{R} + Z$, we obtain the assertion about possible equality. ■

4.6. The topological Euler characteristic $e(S)$.

Lemma 4.4 The topological Euler characteristic of a surface S, obtained by the minimal resolution of singularities of X, is connected with the defect δ_X and invariants of a generic covering f by a formula

$$e(S) = 3N + 2g - 2 + 2\delta_X - c_p,$$

(4.14)

where $N = \deg f$, and c_p is the number of p-cusps on B (or the number of pleats of f).
Proof is obtained in the same way as in the case of a non-singular surface X ([K], §1 Lemma 7), considering a generic pencil of lines on \mathbb{P}^2 and the corresponding hyperplane sections on S, and lifting the morphism $\bar{f}: S \to \mathbb{P}^2$ to a morphism of fiberings of curves over \mathbb{P}^1. One can obtain a proof by direct computations. At first we find $e(X) = 3N - e(B) - n_p - c_p$ by considering the finite covering $f: X \to \mathbb{P}^2$, the stratification $\mathbb{P}^2 = (\mathbb{P}^2 \setminus B) \cup (B \setminus \text{Sing } B) \cup \text{Sing } B$, and applying the additivity property of Euler characteristic, and then we find $e(S)$. ■

From Noether’s formula $(K_S^2) + e(S) = 12p_a$ and formulae (4.12) and (4.14) we have $12p_a = 12N - 9\bar{d} + 3p_a(R) - 3 - c_p$. Substituting $p_a(R)$ from (4.11), we obtain a corollary.

Corollary 4.2 The Euler characteristic of the structure sheaf \mathcal{O}_S equals

$$p_a = 1 - q - p_g = N + \frac{\bar{d}(\bar{d} - 3)}{2} - \frac{n_p}{4} - \frac{c_p}{3}. \quad (4.15)$$

Thus, as in the case of a non-singular surface X, we obtain

Corollary 4.3

$n_p \equiv 0 \pmod{4}$, $c_p \equiv 0 \pmod{3}$.

5 Proof of the main inequality.

5.1. A fiber product of two generic coverings. Let a curve B be a common discriminant curve for two generic coverings $f_1: X_1 \to \mathbb{P}^2$ and $f_2: X_2 \to \mathbb{P}^2$ of degrees $\deg f_1 = N_1$ and $\deg f_2 = N_2$. Let

$$\text{Sing } B = nA_1 + cA_2 + \sum_{k>2} a_k A_k + \sum_{k \geq 4} d_k D_k + \sum_{k=6,7,8} e_k E_k.$$

With respect to a pair of coverings f_1 and f_2 nodes and cusps of B are subdivided into four types,

$$n = n_{ss} + n_{sp} + n_{ps} + n_{pp}, \quad c = c_{ss} + c_{sp} + c_{ps} + c_{pp}, \quad (5.1)$$

where $n_{\sharp\sharp}$ and $c_{\sharp\sharp}$ are numbers of $\sharp\sharp$-nodes and $\sharp\sharp$-cusps of B. In particular, $n_{ss} + n_{sp} = a_1$ is the number of singularities of type A_1, and $ss + sp = a_2$ is the number of singularities of type A_2 on the surface X_1.

Consider a normalization X of the fiber product $X^\times = X_1 \times_{\mathbb{P}^2} X_2$ and the corresponding commutative diagram

$$X = \mathbb{C}^2 \ni (z_1, z_2)$$

$$(z_1, y) \in \mathbb{C}^2 = X_1 \ni (x_1, y) \ni X_0$$

$$(x, y) \in \mathbb{C}^2$$

$$(x, y) \ni X_2 = \mathbb{C}^2 \ni (x, z_2)$$

$$(x, y) \ni X_2 = \mathbb{C}^2 \ni (x, z_2)$$
The surface X is a N_1N_2-sheeted covering of \mathbb{P}^2 and it has at most A-D-E-singularities, which lie over $\text{Sing} \ B$.

Lemma. If coverings f_1 and f_2 are non equivalent, then the surface X is irreducible.

Proof is word for word the same as in the case of generic coverings of non-singular surfaces ([K] Proposition 2). □

We set

$$g_1^{-1}(R) = R + C,$$

where R is a part, which is mapped by g_2 onto R_2, and C is a part, which is mapped g_2 onto C_2. We are interested in the intersection number of R and C after a resolution of singularities of X in a neighbourhood of the curve $R + C$.

Consider a restriction $R + C \to R_1$ of the covering g_1 over the curve R_1. As follows from 2.2.1 and 2.2.2, it is an étale covering of degree N_2 over a generic point $x_1 \in R_1$, where $R \to R_1$ is a 2-sheeted, and $C \to R_1$ is a $(N_2 - 2)$-sheeted covering. The same picture is over a point $x_1 \in R_1$, which is a s-point of X_1, lying over a ss-point of B.

Denote by $\tilde{\pi} : S \to X$ a minimal resolution of singularities of X, and denote by \tilde{R} and \tilde{C} the proper transforms of R and C on S. Our goal is to calculate the intersection numbers (\tilde{R}^2), $(\tilde{R} \cdot \tilde{C})$ and (\tilde{C}^2), and also the analogous intersection numbers for divisors $\tilde{\pi}^{-1}(R) = \tilde{R} + Z_R$ and $\tilde{\pi}^{-1}(C) = Z_C$, where Z_R and Z_C are the sums of canonical cycles corresponding to singular points $x \in \text{Sing} \ X$ and lying on R and C respectively.

5.2. The structure of a fibre product over a neighbourhood of a singular point of the discriminant curve. Let $U \subset \mathbb{P}^2$ be a sufficiently small neighbourhood (in complex topology) of a point $b \in \text{Sing} \ B$. The preimage $f_1^{-1}(U)$ is a disjoint union of two parts, $f_1^{-1}(U) = V_1 \sqcup V'_1$, where V_1 is a part containing the ramification curve R_1, and V'_1 is a part not containing R_1 and étale mapped to U. Analogously $f_2^{-1}(U) = V_2 \sqcup V'_2$. Then $f^{-1}(U)$ is a disjoint union of four open sets – of normalizations of fibre products $W = V_1 \times_U V_2$, $W' = V_1 \times_U V'_2$, $V'_1 \times_U V'_2$. And only W and W' meet the curve $g_1^{-1}(R_1)$. The open sets $W \subset X$ were studied in detail in §2. The surface X in the neighbourhood W is non-singular except the case of ss-points b. The open set W' consists of $N_2 - k$ components ($k = 2, 3$ or 4 depending on the type of the singular point b), which are mapped isomorphically onto V_1. And W' does not meet R, and $W' \cap C$ consists of $N_2 - k$ components isomorphic to $V_1 \cap R_1$.

It follows from the investigation of the local structure of X in §2 that X and the curves R and C are of the following form over neighbourhoods of singular points $b \in \text{Sing} \ B$ of different types.

1) Over a ss-point b the neighbourhood W has 2 , and W' has $N_2 - 2$ components, which are mapped isomorphically onto V_1 by the map g_1. Correspondingly $R \cap W$ consists of two, and $C \cap W'$ consists of $(N_2 - 2)$ components isomorphic to $R_1 \cap V_1$.

2) Over a sp-point $b \in B$ of type A_1 the neighbourhood W' consists of $(N_2 - 4)$ components isomorphic to V_1 and having a singular point of type A_1. Correspondingly C consists of $N_2 - 4$ nodal curves. The neighbourhood W consists of two components: see Fig. 4, where

$$R = R' + R'' \ , \quad C = C' + C'' \ ,$$

(it ought to change places of the left and right parts of Fig. 4, g_1 stands for g_2, and g_2 – for
3) Over a ps-point \(b \in B \) of type \(A_1 \) the neighbourhood \(V_1 \subset X_1 \) consists of two components and on each of them the map \(f_1 \) has a fold. The neighbourhood \(W' \) consists of disjoint union of \((N_2 - 2) \) pieces isomorphic to \(V_1 \). The neighbourhood \(W \) consists of two components: see Fig. 4, on which
\[R = R'' + R''', \text{ and } C = \emptyset. \]
We see that on \(W \) the curve \(R \) is non-singular and does not meet \(C \).

4) Over a pp-point \(b \in B \) of type \(A_1 \) the neighbourhood \(V_1 \subset X_1 \) consists of two irreducible components and on each of them \(f_1 \) has a fold. The neighbourhood \(W' \) is non-singular and consists of \(N_2 - 4 \) components isomorphic to \(V_1 \). The neighbourhood \(W \) is represented on Fig. 5, on which
\[R = R' + R'' + R'''', \text{ and } C = C'' + C''''. \]
We see that the curves \(R \) and \(C \) are non-singular and do not meet.

5) Over a sp-point \(b \in B \) of type \(A_2 \) the neighbourhood \(V_1 \) has a singular point of type \(A_2 \), and \(W' \) consists of \((N_2 - 3) \) components isomorphic to \(V_1 \). The neighbourhood \(W \) is pictured on Fig. 7, on which
\[R = L_2 + L_3, C = L_1. \]
We see that \(R \) has a double point, \(C \) is non-singular and intersect transversally each of the branches of \(R \) at the intersection point, and, consequently, \((R \cdot C) = 2\).

6) Over a ps-point \(b \in B \) of type \(A_2 \) the neighbourhood \(V_1 \) is non-singular, and \(W' \) consists of \((N_2 - 2) \) components isomorphic to \(V_1 \). The neighbourhood \(W \) is pictured on Fig. 7 (on which it ought to change places of the left and right parts, \(g_1 \) stands for \(g_2 \), and \(g_2 \) for \(g_3 \)), where
\[R = L_2 + L_3, C = \emptyset. \]
We see that \(R \) has a double point and does not meet \(C \).

7) Over a pp-point \(b \in B \) of type \(A_2 \) the neighbourhood \(W' \) consists of \(N_2 - 3 \) components isomorphic to \(V_1 \). The neighbourhood \(W \) is pictured on Fig. 8, on which
\[R = R_3 + L_3, C = L_2. \]
We see that \(R \) is non-singular and meets with \(C \) transversally at one point.

From the obtained local description it follows that the surface \(X \) is non-singular at the points of intersection of \(R \) and \(C \), and the intersection is not void only over the points \(b \in B \) of types: over sp-points of type \(A_1 \), where \((R \cdot C) = 2\), over sp-points of type \(A_2 \), where \((R \cdot C) = 2\), and over pp-pointe of type \(A_2 \), where \((R \cdot C) = 1\). Therefore,
\[(\tilde{R} \cdot \tilde{C}) = 2n_{sp} + 2c_{sp} + c_{pp}. \]
(5.3)

5.3. A lift of the fibre product to a resolution of the discriminant curve. To compute intersection numbers on \(S \) we consider firstly an auxiliary surface \(\bar{X} \), which is not a minimal
resolution of \(X\), and then we ‘descend’ to \(S\). Let \(\sigma : \mathbb{P}^2 \to \mathbb{P}^2\) be a composition of \(\sigma\)-processes resolving the curve \(B\) and needed to obtain a minimal resolution of a double plane singularities, lying over \(B\) (see \(\S3\)), and, besides, let \(\sigma\) includes two additional \(\sigma\)-processes as in 2.4.5 for each cusp, which is not a \(ss\)-cusp. Consider a lift of the diagram \((\ast_1)\) to \(\mathbb{P}^2\), namely consider the diagram

\[
(5.4)
\]

in which \(\bar{X}_i\) and \(\bar{X}\) are normalizations of \(X_i \times_{\mathbb{P}^2} \mathbb{P}^2\) and \(X \times_{\mathbb{P}^2} \mathbb{P}^2\). Then morphisms ‘on the right wall’ of diagram (5.4) are finite coverings. The surface \(\bar{X}\) is non-singular, and \(\bar{\pi} : \bar{X} \to S\) blows down the ‘superfluous’ exceptional curves of the first kind. Let \(\bar{R}_1\) be the proper transform of \(R_1\) on \(\bar{X}_1\), and \(\bar{R}\) and \(\bar{C}\) (respectively \(R_2\) and \(C_2\)) be the proper transforms of \(R\) and \(C\) on \(\bar{X}\) (respectively on \(S\)). Then \(\bar{g}_1(\bar{R}_1) = \bar{R} + \bar{C}\), and \(\bar{R} \to \bar{R}_1\) and \(\bar{C} \to \bar{R}_1\) are finite coverings of degree 2 and \(N_2 - 2\) respectively, and \(\bar{R}\) and \(\bar{C}\) are disjoint. Therefore,

\[
(\bar{R}^2) = 2 (\bar{R}_1^2), \quad (\bar{C}^2) = (N_2 - 2) (\bar{R}_1^2), \quad \bar{R} \cdot \bar{C} = 0. \tag{5.5}
\]

Actually from 3) and 4) one can see that over \(ps\)- and \(pp\)-nodes \(b\) in a neighbourhood of \(R + C\) the surface \(X\) is non-singular, and \(\bar{\pi} : \bar{X} \to S\) blows down the ‘superfluous’ exceptional curves of the first kind. Let \(\bar{R}_1\) be the proper transform of \(R_1\) on \(\bar{X}_1\), and \(\bar{R}\) and \(\bar{C}\) (respectively \(R\) and \(C\)) be the proper transforms of \(R\) and \(C\) on \(\bar{X}\) (respectively on \(S\)). Then \(\bar{g}_1(\bar{R}_1) = \bar{R} + \bar{C}\), and \(\bar{R} \to \bar{R}_1\) and \(\bar{C} \to \bar{R}_1\) are finite coverings of degree 2 and \(N_2 - 2\) respectively, and \(\bar{R}\) and \(\bar{C}\) are disjoint. Therefore,

\[
(\bar{R}^2) = 2 (\bar{R}_1^2), \quad (\bar{C}^2) = (N_2 - 2) (\bar{R}_1^2), \quad \bar{R} \cdot \bar{C} = 0. \tag{5.5}
\]

5.4. Computation of intersection numbers. First we find \((\bar{R}_1^2)\). Recall that by (4.9) we have on the minimal resolution \(\bar{X}_1\) of the surface \(X_1\)

\[
(\bar{R}_1^2) = 3\bar{d} + g - 1 - \delta_1, \tag{5.6}
\]

where \(\delta_1 = \delta_{X_1} = n_s + c_s + \delta_0\), and \(n_s = n_{ss} + n_{sp}\) and \(s = ss + sp\) are the numbers of singular points of type \(A_1\) and \(A_2\) on the surface \(X_1\).

Let \(\pi_1 = \bar{\pi}_1 \circ \pi_1\), where \(\bar{\pi}_1 : \bar{X}_1 \to X_1\) is a minimal resolution, and \(\bar{\pi}_1 : \bar{X}_1 \to \bar{X}_1\) is the blowing down of the "superfluous" exceptional curves. The surface \(\bar{X}_1\) differs from the surface \(\bar{X}_1\) only over the cusps of \(B\), which are not \(ss\)-cusps. Let \(U = \sigma^{-1}(U)\), and \(\bar{V}_1 = \pi_1^{-1}(V_1), \bar{V}_1 = \bar{\pi}_1^{-1}(V_1)\) be neighbourhoods of \(X_1\) and \(\bar{X}_1\) lying over \(U\) and containing the proper transform of \(R_1\). Analogously \(\bar{V}_1'\) and \(\bar{V}_1'\).
For a sp-cusp \(b \in B \) the blowing down \(\tilde{V}_1 \rightarrow \tilde{V}_1 \) is represented on Fig. 12. We see that \(\tilde{\pi} \) includes one \(\sigma \)-process with a centre \(\tilde{R}_1 \). For ps- and pp-cusps \(b \in B \) the blowing down \(\tilde{V}_1 \rightarrow \tilde{V}_1 \) is represented on Fig. 13 (where \(R \) stands for \(R_1 \), and \(C \) stands for \(C_1 \)). We see that it needs two \(\sigma \)-process with centres on \(R_1 \) to disjoint \(C_1 \) and \(R_1 \). Therefore,

\[
(R_1^2) = (\tilde{R}_1^2) - c_{sp} - 2c_{ps} - 2c_{pp},
\]

(5.7)

Now we examine how the intersection numbers \((R^2)\) and \((C^2)\) change under the blowing down \(\tilde{\pi} \). For a neighbourhood \(U \subset \mathbb{P}^2 \) of a point \(b \in \text{Sing } B \) set \(\tilde{W} = \pi^{-1}(W) \), \(\tilde{W}' = \pi^{-1}(W') \), \(\tilde{W} = \tilde{\pi}^{-1}(W) \), \(\tilde{W}' = \tilde{\pi}^{-1}(W') \). Then \(\tilde{g}_1^{-1}(\tilde{V}_1) = \tilde{W} \cup \tilde{W}' \). We examine one after another the blowing down \(\tilde{\pi} : \tilde{X} \to \tilde{S} \) in neighbourhoods \(\tilde{W} \cup \tilde{W}' \subset \tilde{X} \) separately for different types of singular points \(b \in \text{Sing } B \) (the numbering of cases corresponds to the numbering of cases in 5.2).

2) For a sp-point \(b \) of type \(A_1 \) the neighbourhood \(\tilde{W}' \) is a disjoint union of \((N_2 - 4)\) open sets isomorphic to \(\tilde{V}_1 \) to the minimal resolution of singular points of type \(A_1 \). The neighbourhood \(\tilde{W} \) is represented on Fig. 4, and \(\tilde{\pi} : \tilde{W} \to \tilde{W} \) is a blowing up of two points \(R' \cap R'' \) and \(R''' \cap R'''' \). Therefore, the blowing down \(\tilde{\pi} : \tilde{W} \to \tilde{W} \simeq W \) increases \((\tilde{R}^2)\) and \((\tilde{C}^2)\) on \(2 \) for one point \(b \) and, consequently, on \(2n_{sp} \) for all points of this type.

5) For a sp-point of type \(A_2 \) the neighbourhood \(\tilde{W} \) is represented on the upper part of Fig. 10. It is obtained from the neighbourhood \(\tilde{W} \), pictured on Fig. 7, by blowing up the point of intersection of lines \(L_1, L_2 \) and \(L_3 \), and then by blowing up 5 points on the glued line \(E_{0,3} \) and not lying on the proper transform of these lines. The blowing down \(\tilde{\pi} : \tilde{W} \to \tilde{W} \simeq W \) is the converse procedure, i.e. the blowing down of five exceptional curves of the first kind, and then blowing down the curve \(E_{0,3} \). In this case \(R = L_2 + L_3 \), and \(C = L_1 \). Since \((\tilde{R}^2) = (L_2^2) + 2(L_2 \cdot L_3) + (L_3^2)\) and \((L_2^2), (L_3^2)\) are diminished on 1, and \(L_2 \) and \(L_3 \) are no longer intersected after the \(\sigma \)-process with the centre at the point \(L_2 \cap L_3 \), the blowing down \(\tilde{\pi} \) increases \((\tilde{R}^2)\) on 4 for one point \(b \) and on \(4c_{sp} \) for all points of this type.

6) For a ps-point \(b \) of type \(A_2 \) the neighbourhood \(\tilde{W} \) and the blowing down \(\tilde{\pi} : \tilde{W} \to \tilde{W} \simeq W \) are the same as in 5), but in this case \(R = L_2 + L_3 \), and \(C \cap W = \emptyset \). Therefore, as in 5) we obtain that the blowing down \(\tilde{\pi} \) increases \((\tilde{R}^2)\) on \(4c_{ps} \).

The neighbourhood \(\tilde{W}' \) consists of \((N_2 - 2)\) components isomorphic to \(\tilde{V}_1 \), for each of which \(\tilde{\pi} \) is represented on Fig. 12. As above for \((\tilde{R}_1^2)\), we see that the blowing down \(\tilde{\pi} \) increases \((\tilde{C}^2)\) on \((N_2 - 3) + 1\) (taking account of the neighbourhood \(\tilde{W} \)) for one point \(b \) and on \((N_2 - 2)c_{sp} \) for all points of this type.

7) For a pp-point \(b \) of type \(A_2 \) the neighbourhood \(\tilde{W} \) consists of two components: one is the same as in 5) and the other is the same as \(\tilde{V}_1 \) and represented on the left side of Fig. 13. Since in the neighbourhood, represented on Fig. 8, \(R = R_3 + L_3 \), and \(C = L_2 \), we obtain that the blowing down \(\tilde{\pi} : \tilde{W} \to \tilde{W} \simeq W \) increases \((\tilde{R}^2)\) on \(2(N_2 - 2) \) for one point \(b \) and on \(2(N_2 - 2)c_{ps} \) for all points of this type. Besides, \((\tilde{C}^2)\) is increased on \(c_{pp} \).

The neighbourhood \(\tilde{W}' \) consists of \((N_2 - 3)\) components isomorphic to \(\tilde{V}_1 \), and is represented
on Fig. 13 (on which C stands for R). Therefore, taking account of the neighbourhood W, the blowing down π increases \((\tilde{C}^2)\) on \(2(N_2 - 3)c_{pp} + c_{pp} = (2N_2 - 5)c_{pp}\).

Summing all modifications of \((\tilde{R}^2)\) and \((\tilde{C}^2)\), we obtain

\[
(\tilde{R}^2) = (\tilde{R}^2) + 2n_{sp} + 4c_{sp} + 4c_{ps} + 3c_{pp},
\]

\[
(\tilde{C}^2) = (\tilde{C}^2) + 2n_{sp} + (N_2 - 2)c_{sp} + 2(N_2 - 2)c_{ps} + (2N_2 - 5)c_{pp}.
\]

Applying (5.5) and substituting \((\tilde{R}^2)\) from (5.7), we obtain

\[
(\tilde{R}^2) = 2((\tilde{R}^2) - c_{sp} - 2c_{ps} - 2c_{pp}) + 2n_{sp} + 4c_{sp} + 4c_{ps} + 3c_{pp} =
\]

\[
= 2(\tilde{R}^2_1) + 2n_{sp} + 2c_{sp} - c_{pp},
\]

\[
(\tilde{C}^2) = (N_2 - 2)((\tilde{R}^2) - c_{sp} - 2c_{ps} - 2c_{pp}) + 2n_{sp} + (N_2 - 2)c_{sp} + 2(N_2 - 2)c_{ps} + (2N_2 - 5)c_{pp} =
\]

\[
= (N_2 - 2)(\tilde{R}^2_1) + 2n_{sp} - c_{pp}.
\]

5.5. Computation of intersection numbers (continuation). Now we find \((\tilde{R} + Z_R)^2\), \((\tilde{C} + Z_C)^2\) and \((\tilde{R} + Z_R) \cdot (\tilde{C} + Z_C)\), where the divisor \(Z_R\), respectively \(Z_C\), equals to \(\sum Z_x\), where \(Z_x\) is the canonical cycle of a point \(x \in Sing X\), and the summation runs over \(x \in \tilde{R}\), respectively \(x \in C\). The analogous sums \(\sum \delta_x\) we denote by \(\delta_R\) and \(\delta_C\) respectively. By (4.2) we have

\[
(\tilde{R} \cdot Z_R) = -(Z_R^2) = 2\delta_R, (\tilde{C} \cdot Z_C) = -(Z_C^2) = 2\delta_C.
\]

Obviously,

\[
(\tilde{R} + Z_R) \cdot (\tilde{C} + Z_C) = \tilde{R} \cdot \tilde{C},
\]

and

\[
(\tilde{R} + Z_R)^2 = (\tilde{R}^2) + 2(\tilde{R} \cdot Z_R) + (Z_R^2) = (\tilde{R}^2) + 2\delta_R.
\]

Analogously, \((\tilde{R}_C + Z_C)^2 = (\tilde{C}^2) + 2\delta_C\).

It remains to determine how many singular points \(x \in Sing X\) lie on \(R\), respectively, on \(C\). From 5.2 it follows that over each ss-point on \(R\) there lie 2, and on \(C\) there lie \((N_2 - 2)\) singular points. There are no other singular points on \(R\). There are singular points on \(C\) of the following type: over a sp-point of type \(A_1\) there are \((N_2 - 4)\) singular points of type \(A_1\), over a sp-point of type \(A_2\) there are \((N_2 - 3)\) singular points of type \(A_2\). We obtain

\[
\delta_R = 2(\delta_0 + n_{ss} + c_{ss}) = 2(\delta_1 - n_{sp} - c_{sp}),
\]

\[
\delta_C = (N_2 - 2)(\delta_0 + n_{ss} + c_{ss}) + (N_2 - 4)n_{sp} + (N_2 - 3)c_{sp} =
\]

\[
= (N_2 - 2)(\delta_1 - n_{sp} - c_{sp}).
\]

Substituting \((\tilde{R}^2)\) from (5.10) and \(\delta_R\) from (5.14) to (5.13), we obtain

\[
(\tilde{R} + Z_R)^2 = 2(\tilde{R}_1^2) + 2n_{sp} + 2c_{sp} - c_{pp} + 4(\delta_1 - n_{sp} - c_{sp}) =
\]

\[
= 2((\tilde{R}_1^2) + 2\delta_1) - 2n_{sp} - 2c_{sp} - c_{pp}.
\]

38
Analously we find
\[(\tilde{R}_C + Z_C)^2 = (N_2 - 2)(\tilde{R}_1^2) + 2n_{sp} - c_{pp} + 2(N_2 - 2)\delta_1 - 4n_{sp} - 2c_{sp} =
\]
\[= (N_2 - 2)((\tilde{R}_1^2) + 2\delta_1) - 2n_{sp} - 2c_{sp} - c_{pp}.
\]
Set
\[2n_{sp} + 2c_{sp} + c_{pp} = \iota_1,
\]
and let
\[g_1 = p_a(R_1) = g + \delta_1
\]
be the arithmetic genus of the curve R_1. Since by (5.6) $(\tilde{R}_1^2) + 2\delta_1 = 3\bar{d} + g - 1 + \delta_1 = 3\bar{d} + g_1 - 1$, finally we obtain:
\[(\tilde{R} + Z_R)^2 = 2(3\bar{d} + g_1 - 1) - \iota_1,
\]
\[(\tilde{C} + Z_C)^2 = (N_2 - 2)(3\bar{d} + g_1 - 1) - \iota_1,
\]
\[(\tilde{R} + Z_R) \cdot (\tilde{C} + Z_C) = \iota_1.
\]

5.7. The self-intersection number of the divisor $\tilde{R} + Z_R$ is positive.

Lemma 5.1
\[(\tilde{R} + Z_R)^2 > 0.
\]

Proof. Recall that $2\bar{d} = d = \deg B$, and $\delta_1 = \delta_0 + n_{sp} + c_{sp}$. Therefore,
\[(\tilde{R} + Z_R)^2 = 2(3\bar{d} + g - 1 + \delta_1) - 2n_{sp} - 2c_{sp} - c_{pp} =
\]
\[d + (2d + 2g - 2) + 2\delta_0 - c_{pp}.
\]

Now we apply the Hurwitz formula for a generic projection $\varphi : B \to \mathbb{P}^1$ of the curve B from a point $P \in \mathbb{P}^2$ onto the line \mathbb{P}^1, more precisely for the covering $\tilde{\varphi} : \tilde{B} \to \mathbb{P}^1$, where $\tilde{\varphi} = \varphi \circ n$, and $n : B \to B$ is a normalization of the curve B. Obviously, the covering $\tilde{\varphi}$ is ramified at the following points. Firstly, $\tilde{\varphi}$ has a ramification of the second order at points $\tilde{b} \in \tilde{B}$, which correspond to non-singular points $b \in B$, for which the line \overline{Pb} is tangent to B. The number of such points is $\bar{d} = \deg \tilde{B}$, where \tilde{B} is a curve dual to B. Secondly, $\tilde{\varphi}$ has a ramification of order m_k at points \tilde{b}, which correspond to the branches B_k of the curve B at the singular points b. Here m_k is the multiplicity (order) of the corresponding branch. Denote by
\[\nu = \sum_k (m_k - 1),
\]
where the summation runs over all branches of the curve (at singular points). The covering $\tilde{\varphi}$ is of degree $d = \deg B$. By the Hurwitz formula we obtain
\[2g - 2 = -2d + \hat{d} + \nu.
\]

Remark 5.1 *Actually we derived one of the Plücker formulae*
\[\hat{d} = 2d + (2g - 2) - \nu
\]
for a plane curve with singularities.
Obviously, the number \(\nu \) for A-D-E-singularities is equal:
\[
\nu(A_{2k-1}) = \nu(D_{2k+2}) = 0, \quad \nu(A_{2k}) = \nu(D_{2k+3}) = \nu(E_7) = 1, \quad \nu(E_6) = \nu(E_8) = 2.
\]
Therefore, for the curve \(B \) the number \(\nu = \nu(B) \) is equal:
\[
\nu = c + \nu', \quad \text{where} \quad \nu' = \sum_{k>1} a_{2k} + \sum d_{2k+3} + 2e_6 + e_7 + 2e_8.
\] (5.22)

Returning to the proof of the inequality, we obtain from (5.19), (5.21) and (5.22)
\[
(\bar{R} + Z_R)^2 = d + (\bar{d} + \nu') + 2\delta_0 - c_{pp} = d + \bar{d} + 2\delta_0 + \nu' + (c - c_{pp}) > 0. \quad \blacksquare \quad (5.23)
\]

5.8. Conclusion of the main inequality. Applying the Hodge index theorem to divisors \(\bar{R} + Z_R \) and \(\bar{C} + Z_C \) on the surface \(S \), we obtain
\[
\begin{vmatrix}
2(3\bar{d} + g_1 - 1) - \nu_1 \\
\nu_1
\end{vmatrix}
\begin{vmatrix}
\nu_1 \\
(N_2 - 2)(3\bar{d} + g_1 - 1) - \nu_1
\end{vmatrix} \leq 0.
\]
Therefore,
\[
2(N_2 - 2)(3\bar{d} + g_1 - 1)^2 - N_2(3\bar{d} + g_1 - 1)\nu_1 \leq 0
\]
or
\[
N_2[2(3\bar{d} + g_1 - 1) - \nu_1] \leq 4(3\bar{d} + g_1 - 1). \quad (5.24)
\]
Thus, if there are two nonequivalent generic coverings \(f_1 \) and \(f_2 \), then
\[
N_2 \leq \frac{4(3\bar{d} + g_1 - 1)}{2(3\bar{d} + g_1 - 1) - \nu_1}. \quad (5.25)
\]

6 Proof of the Chisini conjecture for pluricanonical embeddings of surfaces of general type.

6.1. The numerical invariants in the case of a \(m \)-canonical embedding. Let \(S \) be a minimal model of a surface of general type with numerical invariants \((K_S^2) = k \) and \(e(S) = e \). Let \(X \) be a canonical model of the surface \(S \), and \(\pi : S \rightarrow X \) be the blowing down of \((-2)\)-curves. Let \(f : X \rightarrow \mathbb{P}^2 \) be a generic \(m \)-canonical covering, i.e. a generic projection onto \(\mathbb{P}^2 \) of \(X = \varphi_m(S) \), where \(\varphi_m \) is a \(m \)-canonical map, \(\varphi_m : S \rightarrow \mathbb{P}^{p_m-1} \), defined by the complete linear system \(|mK_S| \), \(p_m = \frac{1}{2}m(m-1)k + \chi(S) \). As is well known [BPV], by a theorem of Bombieri \(\varphi_m(S) \simeq X \) for \(m \geq 5 \), and \(\varphi_m \) gives the blowing down \(\pi \).

Let \(B \subset \mathbb{P}^2 \) be the discriminant curve. We conserve the notations of \S 4. Then
\[
L = mK_S, \quad K_S \cdot Z = 0, \quad R = (3m + 1)K_S - Z. \quad (6.1)
\]
By formulae (4.3), we obtain
\[
N = m^2 k, \quad d = m(3m + 1)k. \quad (6.2)
\]
By formulae (4.10), we find
\[3d + p_a(R) - 1 = (3m + 1)^2k, \] (6.3)
and
\[p_a(R) - 1 = \frac{1}{2}(3m + 1)(3m + 2)k. \] (6.4)

6.2. Invariants of a surface and of the discriminant curve define invariants of the covering. Now let \(S_1 \) and \(S_2 \) be two surfaces of general type with numerical invariants \(k \) and \(e \). Let \(f_i : X_i \to \mathbb{P}^2, i = 1, 2, \) be their \(m_i \)-canonical coverings having the same discriminant curve \(B \subset \mathbb{P}^2 \). Then by the second formula of (6.2) it follows that \(m_1 = m_2 = m \). Then also \(\deg f_1 = \deg f_2 = N \). We show that the other numerical invariants of \(f_1 \) and \(f_2 \) are the same.

By formula (6.4) it follows that \(p_a(R_1) = p_a(R_2) \), and since \(p_a(R) = g + \delta_X \), we have \(\delta_X_1 = \delta_X_2 \).

By formulae (4.14) and (4.11) it follows that the number of \(p \)-cusps \(c_p \) and the number of \(p \)-nodes \(n_p \) for both coverings are the same. Then \(n_p = n_{pp} + n_{sp} = n_{pp} + n_{sp}, c_p = c_{pp} + c_{ps} = c_{pp} + c_{sp} \) and, consequently, \(n_{ps} = n_{sp} \) and \(c_{ps} = c_{sp} \).

6.3. The main inequality in the case of surfaces of general type. To prove that \(m \)-canonical projections \(f_1 \) and \(f_2 \) are equivalent, by (5.24) it is sufficient to show that an inequality
\[N \left(2(3d + p_a(R) - 1) - \iota \right) > 4(3d + p_a(R) - 1) \]
holds (here \(R \) stands for \(R_1 \)), or
\[(N - 2)(3d + 2p_a(R) - 2) - N \cdot \iota > 0, \] (6.6)
where
\[\iota = 2n_{sp} + 2c_{sp} + c_{pp} = 2n_{sp} + c_{sp} + c_p. \] (6.7)

Let us obtain an estimate for the number \(\iota \). We can express \(c_p \) by formulae (4.14)
\[c_p = 3N + 2p_a(R) - 2 - e. \] (6.8)

To estimate \(2n_{sp} + c_{sp} \) we use the Hirzebruch-Miyaoka inequality ([BPV], p.215): if the minimal surface of general type \(S \) contains \(s \) disjoint \((-2)\)-curves, then
\[s \leq \frac{2}{9} (3e(S) - (K_S^2)) . \] (6.9)

Since we can take one \((-2)\)-curve for each of the singular points of types \(A_1 \) and \(A_2 \) on \(X \), we have
\[n_s + c_s \leq \frac{2}{9} (3e - k) . \] (6.10)

Remark 6.1 Instead of the Hirzebruch-Miyaoka inequality we can use the estimate \(2n_{sp} + c_{sp} \leq 2(h^{1,1} - 1) = 2(e - 2 + 4q - 2p_g - 1) \) and the inequalities \(p_g \geq q, p_g \leq \frac{1}{2}(K_S^2) + 2 \) (the Noether’s inequality).
By (6.7), (6.8) and (6.10), we obtain an estimate

\[\iota \leq \frac{4}{9}(3e - k) + 3N + 2p_a(R) - 2 - e = \frac{1}{9}e - \frac{4}{9}k + 3N + 2p_a(R) - 2. \]

Applying the Noether’s inequality ([BPV], p. 211),

\[e \leq 5k + 36, \quad (6.11) \]

we obtain

\[\iota \leq \frac{11}{9}k + 12 + 3N + 2p_a(R) - 2. \quad (6.12) \]

Combining (6.12) and (6.6), we obtain a corollary.

Lemma 6.1 If the inequality

\[3N(d - N) - 6d - 4(p_a(R) - 1) - \left(\frac{11}{9}k + 12 \right)N > 0 \quad (6.13) \]

holds, then a generic m-canonical projection of a surface of general type S with given k and e is unique. ■

6.4. Proof of Theorem 0.3. Express the inequality (6.13) in terms of m. Substitute N and d from (6.2) and $p_a(R) - 1$ from (6.4) to (6.13). We obtain

\[3m^3(2m + 1)k^2 - 6m(3m + 1)k - 2(3m + 1)(3m + 2)k - \left(\frac{11}{9}k + 12 \right)km^2 > 0, \]

i.e.

\[3m^3(2m + 1)k - 4(3m + 1)^2 - \left(\frac{11}{9}k + 12 \right)m^2 > 0. \]

Dividing by m^2, we obtain

\[3m(2m + 1)k - \left(\frac{11}{9}k + 12 \right) - 4 \left(3 + \frac{1}{m} \right)^2 > 0, \]

or, dividing by k,

\[3m(2m + 1) > \frac{11}{9} + \frac{1}{k} \left(12 + 4(3 + \frac{1}{m})^2 \right). \quad (6.14) \]

The right side of inequality decreases, when k and m increase. This inequality holds for all $k \in \mathbb{N}$, if it holds for $k = 1$. For $k = 1$ and $m = 3$ the right side equals $\frac{11}{9} + 12 + 4 \cdot \left(\frac{4}{3} \right)^2 = \frac{173}{9} < 9 \cdot 7 = 63$. Thus, the inequality (6.14), and, consequently, the inequality (6.6), holds for $m \geq 3$ and for all k. This completes the proof of Theorem 0.3.

We can mention in addition that for $m = 2$ the inequality (6.14) holds, if $k > 2$, and for $m = 1$ it holds, if $k > 9$.

42
References

[A] Arnol’d, V.I.: Indices of singular points of 1-forms on a manifold with a boundary, convolution of invariants of groups generated by reflections, and singular projections of smooth surfaces. – Usp. Math. Nauk., 34, No. 2 (1979), 3–38. (Engl. translation in Russ. Math. Surv., 34, No. 2 (1979), 1–42.)

[AGV] Arnol’d, V.I., Gusein-Zade, S.M., Varchenko, A.N.: Singularities of differentiable Maps, Vol. I, II. – Birkhäuser, (1985).

[BPV] Barth W., Peters C., Van de Ven A.: Compact complex surfaces.– Springer (1984).

[C] Catanese F.: On a Problem of Chisini. – Duke Math. J., 53, No. 1 (1986), 33-42.

[G-H] Griffiths, Ph., Harris, J.: Principles of algebraic geometry.– John Wiley & Sons, New York (1978).

[K] Kulikov, Vic.S. On a Chisini Conjecture. – Izvestiya: Mathematics, V.63, No.6 (1999).

[M] Moishezon B.: Complex Surfaces and Connected Sums of Complex Projective Planes. – LNM 603, Springer (1977).

[Z] Zariski, O.: Algebraic surfaces.– Berlin,Verlag von Julius Springer (1935) (Springer-Verlag (1971)).

V.S. Kulikov
Chair of Mathematics,
Moscow State University of Printing,
E-mail: valentin@masha.ips.ras.ru

Vic. S. Kulikov
Department of algebra,
Steklov Mathematical Institute,
E-mail: victor@olya.ips.ras.ru

43