Abstract

We propose a novel methodology for analyzing the encoding of grammatical structure in neural language models through transfer learning. We test how a language model can leverage its internal representations to transfer knowledge across languages and symbol systems. We train LSTMs on non-linguistic, structured data and test their performance on human language to assess which kinds of data induce generalizable encodings that LSTMs can use for natural language. We find that models trained on structured data such as music and Java code have internal representations that help in modelling human language, and that, surprisingly, adding minimal amounts of structure to the training data makes a large difference in transfer to natural language. Further experiments on transfer between human languages show that zero-shot performance on a test language is highly correlated with syntactic similarity to the training language, even after removing any vocabulary overlap. This suggests that the internal representations induced from natural languages are typologically coherent: they encode the features and differences outlined in typological studies. Our results provide insights into how neural networks represent linguistic structure, and also about the kinds of structural biases that give learners the ability to model language.

1 Introduction

The impressive empirical successes and black-box nature of neural NLP models have given rise to an area of inquiry: how do these systems represent syntax? In this work, we analyze neural models by assessing the kinds of generalizable representations they can encode to share across languages.

Much recent work has demonstrated syntactic and structural awareness in LSTM and transformer models, both by observing network reactions to curated inputs that require complex syntax to complete (Linzen et al., 2016; Gulordava et al., 2018; Talmor et al., 2019; McCoy et al., 2020) or by probing the internal activations of models directly (Conneau et al., 2018a; Dalvi et al., 2019; Hewitt and Manning, 2019; Clark et al., 2019).

We propose a different approach: we probe the structural features encoded in a language model by evaluating its ability to leverage them for transfer across different languages and types of data. We train different models on various types of structured data, and then compare their performance on natural language. This allows us to see what input data can induce generalizable, language-like representations in LSTMs. By assessing what representations are useful across languages, we can examine what grammars LSTMs can encode to model language.

In Experiments 1 through 3, we pretrain models on non-linguistic data and test their performance...
on human languages. By examining which kinds of pretraining data lead to useful encodings for human language, we can determine the kinds of structures that models are capable of encoding and using to model natural language. In Experiment 1, we train on randomly sampled data from a Zipfian distribution to assess if vocabulary distribution can provide sufficient bias for a network when the data is devoid of any structure. In Experiment 2, we test if models can extract usable syntactic information from music and code – structured data which is very different on the surface from natural language. In Experiment 3, we examine the utility of hierarchical structure by comparing models trained on a Nesting Parentheses corpus versus on a similar corpus with a minimal flat structure.

In Experiment 4, we focus on human language, asking: are the structural encodings that are used to transfer between languages the same as the grammatical features that we use to describe language? To answer this, we compare the typological distance between languages with the quality of transfer learning between them. This way, we assess if models can take advantage of typologically sensible encodings to model L2s that share syntactic structures, or if their ad-hoc or coarse encodings behave the same for syntactically similar and syntactically different languages. Here we draw on recent work such as Artetxe et al. (2019), Ponti et al. (2019), and Conneau et al. (2018b) that examines the multilingual and interlingual abilities of neural models, extending it to use typological distance to turn these observations into quantitative probes.

Our methodology allows us to ask a complementary set of questions to those answered by current methods. We can ask: what kinds of structure induces representations in LSTMs that bias them towards modelling human language? How generalizable are representations of structure? In contrast, previous methods need to pre-determine which structural features are indicative of advanced language representation, and then look for those features in models. The question of which pre-training structures bias LSTMs towards learning human language is also related to the cognitive question of what structural biases in the brain let humans acquire language. Our results showing the importance of minimal, non-hierarchical structure for LSTMs raise cognitive questions, as well as questions about the models themselves.

2 Architecture and Training

Our methodology consists of training LSTM language models on \(k\) different L1 languages (natural languages, artificial languages, and non-linguistic symbol systems) and testing the performance of these models on a common L2 language. In our case, we used Spanish as the common L2. Before testing on the L2 test set, we fine-tune the linear embedding layer of the models on the L2 training set, while keeping the LSTM weights frozen. This aligns the vocabulary of each model to the new language, but does not let it learn any structural information about the L2 language. Though word embeddings do contain some grammatical information like part of speech, they do not contain information about how to connect tokens to
each other – that information is only captured in the LSTM. Figure 2 illustrates our training process.

We vary the L1 languages and maintain a common L2 (instead of the other way around) in order to have a common basis for comparison: all of the models are tested on the same L2 test set, and therefore we can compare the perplexity scores. We run $n = 5$ trials of every experiment with different random seeds. Any high-resource human language would have provided a good common L2, and Spanish works well for our human languages experiments due to the fact that many higher-resource languages fall on a smooth gradation of typological distance from it (see Table 1).

We use the AWD-LM model (Merity et al., 2017) with the default parameters of 3 LSTM layers, 300-dimensional word embeddings, a hidden size of 1,150 per layer, dropout of 0.65 for the word embedding matrices and dropout of 0.3 for the LSTM parameters. We used SGD and trained to convergence, starting the learning rate at the default of 30 and reducing it at loss plateau 5 times.

Much of the work on multilingual transfer learning has speculated that successes in the field may be due to vocabulary overlap (see for example Wu and Dredze (2019)). Since our work focuses mostly on syntax, we wanted to remove this possibility. As such, we shuffle each word-to-index mapping to use disjoint vocabularies for all languages: the English word “Chile” and the Spanish word “Chile” would map to different integers. This addresses the confound of vocabulary overlap, as all language pairs have zero words in common from the point of view of the model.

Since the vocabularies are totally separated between languages, we align the vocabularies for all L1-L2 pairs by finetuning the word embeddings of all the pretrained models on the Spanish (L2) training data, keeping the LSTM weights frozen. By doing this, we remove the confound that would arise should one language’s vocabulary randomly happen to be more aligned with Spanish than another’s. These controls ensure that lexical features, whether they be shared vocabulary or alignment of randomly aligned indices, do not interfere with the experimental results which are meant to compare higher-level syntactic awareness.

3 Experiment 1: Random Baselines

We run our method on a random baseline L1: a corpus where words are sampled uniformly at random. This gives us a baseline for how much information we gain finetuning the word embeddings to the L2, when there has not been any structurally biasing input to the LSTM from the L1.

We also examine the importance of vocabulary distribution by training on a random corpus that is sampled from a Zipfian distribution. Human languages are surprisingly consistent in sharing a roughly Zipfian vocabulary distribution, and we test how pretraining on this distribution affects the ability to model human language. \(^1\)

3.1 Data

Our random corpora are sampled from the Spanish vocabulary, since Spanish is the common L2 language across all experiments. Words are sampled uniformly for the Uniform Random corpus, and drawn from the empirical Spanish unigram distribution (as calculated from our Spanish training corpus) for the Zipfian Random corpus. Illustrative examples from all of our corpora can be found in Figure 3. The random corpora are controlled to 100 million tokens in length.

3.2 Results

When tested on Spanish, the average perplexity is 513.66 for models trained on the Random Uniform corpus and 493.15 for those trained on the Random Zipfian corpus, as shown in Figure 4. These perplexity values are both smaller than the vocabulary size, which indicates that the word embedding fine-tuning captures information about the test language even when the LSTM has not been trained on any useful data.

The models trained on the Zipfian Random corpus are significantly better than those trained on the Uniform corpus ($p << 0.05$, Welch’s t-test over $n = 5$ trials). However, even though training on a Zipfian corpus provides gains when compared to training on uniformly random data, in absolute terms performance is very low. This indicates that, without higher-level language-like features, there is very little that an LSTM can extract from properties of the vocabulary distribution alone.

The Zipfian Random baseline is controlled for vocabulary distribution: if an experiment yields better results than the Zipfian Random baseline, we cannot attribute its success only to lexical-level similarity to the L2. Therefore, models that are more

\(^1\) See Piantadosi (2014) for a review of cognitive, communication and memory-based theories seeking to explain the ubiquity of power law distributions in language.
The random corpora are sampled randomly from the Spanish vocabulary. There is no underlying structure of any kind that links words with each other. All words are equally likely to be sampled in the Uniform corpus, while common words are more likely in the Zipfian corpus.

Uniform:
marroquín jemer pertenecer osasuna formaron citoesqueleto relativismo

Zipf:
en con conocidas y en los victoriano como trabajar (unk) monte * en juegos días en el

The music data is encoded from classical piano performances according to the MAESTRO standard. Music is structured on many levels. The red arrow in the example illustrates how, on a small timescale, each note is linked to its corresponding note when a motif is repeated but modulated down a whole-step.

The code corpus is composed of Java code. The above snippet demonstrates some kinds of structure that are present in code: brackets are linked to their pairs, else statements are linked to an if statement, and coreference of variable names is unambiguous.

Code
```java
if (coordFactor == 1.0f)
    return sumExpl;
else {
    result = sum * coordFactor;
}
```

The code corpus is composed of Java code. The above snippet demonstrates some kinds of structure that are present in code: brackets are linked to their pairs, else statements are linked to an if statement, and coreference of variable names is unambiguous.

Parentheses

Nesting:

| 0 | 29 | 29 | 0 | 0 | 5 | 5 | 0 | 1016 | 1016 | 9 | 8 | 8 | 28 | 28 | 9 |

Flat:

| 21 | 13 | 21 | 6294 | 13 | 6294 | 5 | 5471 | 5 | 32 | 32 | 5471 |

(There is a one-to-one mapping between Spanish words and integers and so these integers are sampled from the same Spanish vocabulary distribution as the Random Zipfian corpus. We visualize these corpora here with integers and the Random corpora with words for simplicity).

Figure 3: Examples illustrating the content of our non-linguistic corpora for Experiments 1-3. All examples are taken from the corpora.

successful than the Zipfian baseline at transfer to human language would have useful, generalizable syntactic information about how to link tokens.

4 Experiment 2: Non-linguistic structure

In this experiment, we test the performance of LSTMs on Spanish when they have been trained on music and on code data. We know that music and code both contain syntactic elements that are similar to human language, but especially music is very different on the surface. By comparing performance to our random baselines, we ask: can LSTMs extract generalizable features that go beyond the lexical level from these structured corpora?

Data

For our music data we use the MAESTRO dataset of Hawthorne et al. (2018). The MAESTRO dataset embeds MIDI files of many parallel notes into a linear format suitable for sequence modelling, without losing musical information. The final corpus has a vocabulary of 310 tokens, and encodes over 172 hours of classical piano performances.

For programming code data, we used the Habeas corpus released by Movshovitz-Attias and Cohen (2013), of tokenized and labelled Java code. We took out every token that was labelled as a comment so as to not contaminate the code corpus with natural language.

The music corpus is 23 million tokens in length and the code corpus is 9.5 million. We cannot effectively control the lengths of these corpora to be the same as all of the others, since there is no notion of what one token means in terms of information. However, we only compare these results to the random baseline, which we have trained on 100 million tokens – if the LSTMs trained on these corpora are under-specified compared to the baseline, this would only strengthen our results.

2See for example Lerdahl and Jackendoff (1996) for grammatical structure in music.
Figure 4: Results of Experiments 1 through 3, training on non-linguistic corpora. Error bars on all bars indicate a 95% t-test confidence interval over 5 restarts with different random seeds. All structured data is much better to train on than random data, including music which has a totally divergent vocabulary surface form from the rest. The two parentheses corpora are equivalent, even though one is hierarchical and one is not.

4.2 Results

Our results show that language models pretrained on music are far better at modelling Spanish than those pretrained on random data. As shown in figure 4, LSTMs trained on music data have an average performance of 256.15 ppl on Spanish, compared with 493.15 when training on the Zipfian random corpus. This discrepancy suggests that the network, when training on music, creates representations of the relationships between tokens which are generalizable to apply to Spanish.

The music corpus is markedly different from the Spanish corpus by most measures. Most saliently, MAESTRO uses a vocabulary of just 310 tokens to encode various aspects of music like volume and note co-occurrence. This is in contrast to the Zipfian Random corpus, which has the same surface-level vocabulary and distribution as Spanish, yet models trained on it perform on average 237 ppl worse compared to those trained on the music corpus. Since the surface forms between music and language are so different, the difference in performance cannot be based on surface-level heuristics, and our results indicate the presence of generalizable, structurally-informed representations in LSTM language models.

We also show that models trained on Java code can transfer this knowledge to a human L2 with success compared to the random baseline. Syntactic properties of code such as recursion are similar to natural language, though code is constructed to be unambiguously parsed and lacks a lot of the subtlety and ambiguity that characterizes natural language. Models trained on code have an average perplexity of 139.10 on the Spanish test set. The large discrepancy between this performance and the baseline indicates that LSTMs trained on code capture the syntactic commonalities between code and natural language in a manner that is usable for modelling natural language.

Our results on non-linguistic data suggest that LSTMs trained on structured data extract representations which can be used to model human languages. The non-linguistic nature of these data suggests that it is something structural about the music and Java code that is helping in the zero-shot task. However, there is a multitude of structural interpretations of music, and it is not clear what kinds of structure the LSTM encodes from music. In the next experiment, we create simple artificial corpora with known underlying structures in order to test how the LMs can represent and utilize these structures.

5 Experiment 3: Recursive Structure

In this experiment, we assess the importance of hierarchical recursive structure in LSTM representations. We created two types of artificial structured corpora: a Nesting Parentheses corpus and a Flat Parentheses corpus. These two corpora both contain matching pairs of arbitrary symbols from the vocabulary, but with vastly different internal structures. (Although the matching symbols are identical and can be any symbol, we’ll refer to both of these as parenthesis corpora, drawing our metaphor from the wide variety of studies examining nested parenthesis (Karpathy et al., 2016)). In the Nesting corpus the matching parentheses must open and close in a projective, hierarchical manner, while in the flat corpus each pair of parentheses opens and closes irrespective of the state of any other pair, leading to a non-projective and also crucially non-hierarchical structure. Using these corpora, we can isolate the extent to which LSTM LMs need to encode hierarchical structure to model human language.

3For consistency, the model that we train on music data has a word embedding matrix of 50,000 rows, but during training only ever sees words 1-310, meaning that much of the word embedding space has never been seen by the model when it is tested on Spanish.
5.1 Data

The vocabulary for these corpora are the integers 0-50,000, where each number is a parenthesis token, and that token “closes” when the same integer appears a second time. We draw the opening tokens from the empirical Spanish unigram distribution (mapping each Spanish word to an integer), meaning that these corpora have a similar vocabulary distribution, albeit a much simpler non-linguistic structure, to the L2. Both of the corpora are 100 million tokens long, like the random and the natural language corpora.

We create the Nesting Parentheses corpus by following a simple stack-based grammar. At timestep \(t \), we flip a coin to decide whether to open a new parenthesis (with probability 0.4) or close the top parenthesis on the stack (with probability 0.6). If we are opening a new parenthesis, we sample an integer \(x_{\text{open}} \) from the Spanish unigram distribution, write the integer \(x_{\text{open}} \) at the corpus position \(t \), and push \(x_{\text{open}} \) onto the stack of open parentheses. If we are closing a parenthesis, we pop the top integer from the stack, \(x_{\text{close}} \), and write \(x_{\text{close}} \) at corpus position \(t \).

The Flat Parentheses corpus is made up of pairs of parentheses that do not nest. At timestep \(t \), we sample an integer \(x \) from the empirical Spanish unigram distribution, and a distance \(d \) from the empirical distribution of dependency lengths (calculated from the Spanish Universal Dependencies treebank (McDonald et al., 2013)). Then, we write \(x \) at position \(t \) and at position \(t + d \). This creates pairs of matching parentheses which are not influenced by any other token in determining when they close. Note that this corpus is very similar to the Random Zipf corpus, except that each token sampled is placed twice instead of once.

5.2 Results

LSTMs trained on both parentheses corpora are able to model human language far better than models trained on the random corpora. Surprisingly, performance is the same for a model pretrained on the Nesting Parentheses and the Flat Parentheses corpus. This suggests that it is not necessarily hierarchical encodings which LSTMs use to model human language, and that other forms of structure such as flat head-head dependencies may be just as important (de Marneffe and Nivre, 2019).

The Nesting Parentheses corpus exhibits hierarchical structure while not having any of the irregularities and subtleties of human language or music. Despite the simplicity of the grammar, our results indicate that the presence of this hierarchical structure is very helpful for an LSTM attempting to model Spanish. Our models trained on the Nesting Parentheses corpus have an average perplexity of 170.98 when tested on the Spanish corpus. This is 322 perplexity points better than the baseline models trained on the Zipf Random corpus, which has the same vocabulary distribution (Figure 4).

Models trained on the Flat Parentheses corpus are equally effective when tested on Spanish, achieving an average perplexity of 170.03. These results are surprising, especially given that the Flat Parentheses corpus is so similar to the Random Zipf corpus – the only difference being that integers are placed in pairs not one by one – and yet performs better by an average of 323 perplexity points. This suggests that representing relationships between pairs of tokens is a key element that makes syntactic representations of language successful in LSTMs.

The Flat Parentheses corpus has structure in that each token is placed in relation to one other token, but just one other token. To model this successfully a model would have to have some ability to look back at previous tokens and determine which ones would likely have their match appear next. Our results suggest that this kind of ability is just as useful as potentially being able to model a simple stack-based grammar.

6 Experiment 4: Human Languages

Human languages share universal syntactic similarities, and so we would expect zero-shot transfer between human languages to be successful compared to non-linguistic corpora. However, some languages are more syntactically similar to each other than others, a concept formalized by typological metrics. In this experiment, we ask: do LSTMs encode and leverage the grammatical features of their training language to model syntactically similar languages. To answer this, we investigate if transfer is better between languages that are grammatically similar than between those which have more grammatical differences.
Table 1: WALS-syntax distance between Spanish and L1s

Language	WALS-syntax distance from Spanish (out of a max of 49 features)
Spanish (es)	0
Italian (it)	0
Portuguese (pt)	3
English (en)	4
Romanian (ro)	5
Russian (ru)	9
German (de)	10
Finnish (fi)	13
Basque (eu)	15
Korean (ko)	18
Turkish (tr)	23
Japanese (ja)	23

Figure 5: Results of Experiment 4: Transfer is better between typologically similar languages, even when vocabularies are disjoint. Perplexity on Spanish test data plotted against the WALS-syntax distance of each model’s L1 to Spanish. The relationship is almost linear for Indo-European languages, and then reaches a ceiling. There are n = 5 trials for every L1 with different random seeds. These results demonstrate how LSTMs can transfer knowledge more easily to languages that share structural features with the L1, and that this correlation is robust to multiple trials. The orange line represents the oracle perplexity of training all parameters to convergence on the L2 train data.

6.1 Data

We created our language corpora from Wikipedia, which offers both wide language variation as well as a generally consistent tone and subject domain. We used the gensim wikicorpus library to strip Wikipedia formatting, and the stanfordnlp Python library (Qi et al., 2018) to tokenize the corpus. We run experiments on data from 12 human languages, all of which have Wikipedias of over 100,000 articles: Spanish, Portuguese, Italian, Romanian, English, Russian, German, Finnish, Basque, Korean, Turkish and Japanese. All of the training corpora are 100 million tokens in length.

For our typological data, we use the World Atlas of Linguistic Structure, using the features that relate to syntax (WALS-syntax features). Examples of syntactic features in WALS include questions such as does a language have Subject-Verb-Object order, or does a degree word (like “very”) come before or after the adjective. We accessed the WALS data using the lang2vec package (Littell et al., 2017). The quantity we are interested in extracting from the WALS data is the typological distance between the L2 (Spanish) and all of the L1 languages mentioned above. Not every feature is reported for every language, so we calculate the WALS distance by taking into account only the 49 features that are reported for all our chosen languages and count the number of entries that are different (see Table 1). Since they are only based on 49 features, these distances do not provide a perfectly accurate distance metric. Though we cannot use it for fine-grained analysis, correlation with this distance metric would imply correlation with syntactic distance.

6.2 Results

Our experiments present a strong correlation between the ability to transfer from an L1 language to Spanish and the WALS-syntax distance between those two languages, as shown in Figure 5(a). In the case of Indo-European languages the relationship is largely linear with a Pearson R^2 coefficient of 0.83. For languages not in the Indo-European language family, transfer performance appears to reach a noisy ceiling, and Pearson’s $R^2 = 0.78$ when taking into account all languages.6

Our previous experiments show that LSTMs can encode and generalize structural features from data that is structured, both in recursive and in non-hierarchical fashion. This experiment provides a more finegrained analysis using using natural language to show that the syntax induced by LSTMs is generalizable to other languages in a typologically sensible fashion, even when we do not let the model take advantage of vocabulary overlap.

5The code we used to create the Wikipedia corpora is available at https://github.com/toizzy/wiki-corpus-creator

6We verified that our results also stand when calculating correlation coefficients using log perplexity, which yielded similar values: R^2 of 0.79 and 0.73 for Indo-European and all languages respectively.
ever, after a certain threshold, the model is unable to take advantage of fine-grained similarities and performance on distant languages reaches a ceiling. It should be noted that all of the models trained on natural language, even the most distant, perform far better than the random baseline, indicating that LSTMs able to extract universal syntactic information from all natural language L1s that is general enough to apply to Spanish.

7 Discussion

In this work we propose a novel analytic method for neural language models which tests the ability of a model to generalize and use structural knowledge. Our experiments are cross-lingual and cross-modal in nature, not searching for representations of high-level features in one language, but for representations that encode general ideas of structure. Our work thus attempts to avoid known issues with some analytic methods like probing (Voita and Titov, 2020; Pimentel et al., 2020; Hewitt and Liang, 2019).

We run experiments on both natural language and non-linguistic corpora. Our non-linguistic experiments suggest three facets of the structural encoding ability of LSTM LMs. First, that vocabulary distribution has a very minor effect for modelling human language compared to structural similarity. Second, that models can encode useful language modelling information from non-linguistic structured data, even if the surface forms are vastly differing. Last, that encodings derived from hierarchically structured tokens are equally useful for modelling human language as those derived from linked but non-hierarchical pairs of tokens. Running experiments on a range of human languages, we conclude that the internal linguistic representation of LSTM LMs allows them to take advantage of structural similarities between languages when unaided by lexical overlap.

Our results on the parentheses corpora do not necessarily provide proof that the LSTMs trained on the Nesting Parentheses corpus aren’t encoding and utilizing hierarchical structure. In fact, previous research shows that LSTMs are able to successfully model stack-based hierarchical languages (Suzgun et al., 2019b; Yu et al., 2019; Suzgun et al., 2019a). What our results do indicate is that, in order for LSTMs to model human language, being able to model hierarchical structure is similar in utility to having access to a non-hierarchical ability to “look back” at one relevant dependency. These results shine light on the importance of considering other types of structural awareness that may be used by neural natural language models, even if those same models also demonstrate the ability to model pure hierarchical structure.

Our method could also be used to test other hypotheses regarding neural language, by choosing a discerning set of pretraining languages. A first step in future work would be to test if the results of this paper hold on Transformer architectures, or if Transformers result in different patterns of structural encoding transfer. Future work expanding on our results could focus on ablating specific structural features by creating hypothetical languages that differ in single grammatical features from the L2, in the style of Galactic Dependencies (Wang and Eisner, 2016), and testing the effect of structured data that’s completely unrelated to language, such as images.

Our results also contribute to the long-running nature-nurture debate in language acquisition: whether the success of neural models implies that unbiased learners can learn natural languages with enough data, or whether human abilities to learn given sparse stimulus implies a strong innate human learning bias (Linzen and Baroni, 2020). The results of our parentheses experiments suggest that simple structural head-dependent bias, which need not be hierarchical, goes a long way toward making language acquisition possible for neural networks, highlighting the possibility of a less central role for recursion in language learning for both humans and machines.

References

Mikel Artetxe, Sebastian Ruder, and Dani Yogatama. 2019. On the cross-lingual transferability of monolingual representations. arXiv preprint arXiv:1910.11856.

Kevin Clark, Urvashi Khandelwal, Omer Levy, and Christopher D. Manning. 2019. What does BERT look at? an analysis of bert’s attention. CoRR, abs/1906.04341.

Alexis Conneau, German Kruszewski, Guillaume Laplace, Loc Barrault, and Marco Baroni. 2018a. What you can cram into a single vector: Probing sentence embeddings for linguistic properties. Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers).
Alexis Conneau, Guillaume Lample, Ruty Rinott, Adina Williams, Samuel R. Bowman, Holger Schwenk, and Veselin Stoyanov. 2018b. XNLI: evaluating cross-lingual sentence representations. CoRR, abs/1809.05053.

Fahim Dalvi, Nadir Durrani, Hassan Sajjad, Yonatan Belinkov, Anthony Bau, and James Glass. 2019. What is one grain of sand in the desert? analyzing individual neurons in deep nlp models. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 33, pages 6309–6317.

Kristina Gulordava, Piotr Bojanowski, Edouard Grave, Tal Linzen, and Marco Baroni. 2018. Colorless green recurrent networks dream hierarchically. Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers).

Curtis Hawthorne, Andriy Stasynuk, Adam Roberts, Ian Simon, Cheng-Zhi Anna Huang, Sander Dieleman, Erich Elsen, Jesse Engel, and Douglas Eck. 2018. Enabling factorized piano music modeling and generation with the maestro dataset.

John Hewitt and Percy Liang. 2019. Designing and interpreting probes with control tasks. arXiv preprint arXiv:1909.03368.

John Hewitt and Christopher D Manning. 2019. A structural probe for finding syntax in word representations. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pages 4129–4138.

Andrej Karpathy, Justin Johnson, and Li Fei-Fei. 2016. Visualizing and understanding recurrent networks.

Fred Lerdahl and Ray S Jackendoff. 1996. A generative theory of tonal music. MIT press.

Tal Linzen and Marco Baroni. 2020. Syntactic structure from deep learning. Annual Review of Linguistics, 7.

Tal Linzen, Emmanuel Dupoux, and Yoav Goldberg. 2016. Assessing the ability of lstms to learn syntax-sensitive dependencies. Transactions of the Association for Computational Linguistics, 4:521–535.

Patrick Littell, David R Mortensen, Ke Lin, Katherine Kairis, Carlisle Turner, and Lori Levin. 2017. Uriel and lang2vec: Representing languages as typological, geographical, and phylogenetic vectors. In Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics: Volume 2, Short Papers, volume 2, pages 8–14.

Marie-Catherine de Marneffe and Joakim Nivre. 2019. Dependency grammar. Annual Review of Linguistics, 5:197–218.

R. Thomas McCoy, Robert Frank, and Tal Linzen. 2020. Does syntax need to grow on trees? sources of hierarchical inductive bias in sequence-to-sequence networks. Transactions of the Association for Computational Linguistics, 8:125140.

Ryan McDonald, Joakim Nivre, Yvonne Quirmbach-Brundage, Yoav Goldberg, Dipanjan Das, Kuzman Ganchev, Keith Hall, Slav Petrov, Hao Zhang, Oscar Täckström, et al. 2013. Universal dependency annotation for multilingual parsing. In Proceedings of the 51st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pages 92–97.

Stephen Merity, Nitish Shirish Keskar, and Richard Socher. 2017. Regularizing and Optimizing LSTM Language Models. arXiv preprint arXiv:1708.02182.

Dana Movshovitz-Attias and William Cohen. 2013. Natural language models for predicting programming comments. In Proceedings of the 51st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pages 35–40.

Steven T Piantadosi. 2014. Zipf’s word frequency law in natural language: A critical review and future directions. Psychonomic bulletin & review, 21(5):1112–1130.

Tiago Pimentel, Josef Valvoda, Rowan Hall Maudslay, Ran Zmigrod, Adina Williams, and Ryan Cotterell. 2020. Information-theoretic probing for linguistic structure.

Edoardo Maria Ponti, Ivan Vulić, Ryan Cotterell, Roi Reichart, and Anna Korhonen. 2019. Towards zero-shot language modeling. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pages 2900–2910, Hong Kong, China. Association for Computational Linguistics.

Peng Qi, Timothy Dozat, Yuhao Zhang, and Christopher D. Manning. 2018. Universal dependency parsing from scratch. In Proceedings of the CoNLL 2018 Shared Task: Multilingual Parsing from Raw Text to Universal Dependencies, pages 160–170, Brussels, Belgium. Association for Computational Linguistics.

Mirac Suzgun, Sebastian Gehrmann, Yonatan Belinkov, and Stuart M. Shieber. 2019a. Lstm networks can perform dynamic counting. ArXiv, abs/1906.03648.

Mirac Suzgun, Sebastian Gehrmann, Yonatan Belinkov, and Stuart M. Shieber. 2019b. Memory-augmented recurrent neural networks can learn generalized dyck languages.

Alon Talmor, Yanai Elazar, Yoav Goldberg, and Jonathan Berant. 2019. olimpics – on what language model pre-training captures.
Elena Voita and Ivan Titov. 2020. Information-theoretic probing with minimum description length. *arXiv preprint arXiv:2003.12298*.

Dingquan Wang and Jason Eisner. 2016. The galactic dependencies treebanks: Getting more data by synthesizing new languages. *Transactions of the Association for Computational Linguistics*, 4:491–505.

Shijie Wu and Mark Dredze. 2019. *Beto, bentz, becas: The surprising cross-lingual effectiveness of bert*. *Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)*.

Xiang Yu, Ngoc Thang Vu, and Jonas Kuhn. 2019. Learning the dyck language with attention-based seq2seq models. In *ACL 2019*.