PARTIALLY REGULAR AND CSCK METRICS

ANDREA LOI AND FABIO ZUDDAS

Abstract. A Kähler metric g with integral Kähler form is said to be partially regular if the partial Bergman kernel associated to mg is a positive constant for all integer m sufficiently large. The aim of this paper is to prove that for all $n \geq 2$ there exists an n-complex dimensional manifold equipped with strictly partially regular and csck metric g. Further, for $n \geq 3$, the (constant) scalar curvature of g can be chosen to be zero, positive or negative.

Contents

1. Introduction 1
2. Proof of Theorem 1.1 3
References 7

1. Introduction

Let M be an n-dimensional complex manifold endowed with a Kähler metric g. Assume that there exists a holomorphic line bundle L over M such that $c_1(L) = [\omega]_{dR}$, where ω is the Kähler form associated to g and $c_1(L)$ denotes the first Chern class of L (such an L exists if and only if ω is an integral form). Let h be an Hermitian metric on L such that its Ricci curvature $\text{Ric}(h) = \omega$. Here $\text{Ric}(h)$ is the two–form on M whose local expression is given by

$$\text{Ric}(h) = -\frac{i}{2\pi} \partial \overline{\partial} \log h(\sigma(x), \sigma(x)),$$

for a trivializing holomorphic section $\sigma : U \to L \setminus \{0\}$. Consider the separable complex Hilbert space \mathcal{H} consisting of global holomorphic sections s of L such that

$$\langle s, s \rangle = \int_M h(s(x), s(x)) \frac{\omega^n}{n!} < \infty.$$

2000 Mathematics Subject Classification. 53D05; 53C55; 53D45.

Key words and phrases. partial bergman kernel; balanced metric; regular metric; constant scalar curvature metric.

The first two authors were supported by Prin 2015 – Real and Complex Manifolds; Geometry, Topology and Harmonic Analysis – Italy, by INdAM, GNSAGA - Gruppo Nazionale per le Strutture Algebriche, Geometriche e le loro Applicazioni and by GESTA - Funded by Fondazione di Sardegna and Regione Autonoma della Sardegna.
Assume $\mathcal{H} \neq \{0\}$. Let $\mathcal{S} \subseteq \mathcal{H}$ be a complex subspace of \mathcal{H} and let s_j, $j = 0, \ldots, N$ (dim $\mathcal{S} = N + 1 \leq \infty$) be an orthonormal basis of \mathcal{S}. In this paper we say that the metric g is a partially balanced metric with respect to \mathcal{S} if the smooth function, called partial Bergman kernel,

$$T_g^S(x) = \sum_{j=0}^{N} h(s_j(x), s_j(x))$$

is a positive constant (T_g^S really depends only on the metric g and not on the orthonormal basis chosen). When $\mathcal{S} = \mathcal{H}$ then $T_g^\mathcal{H} = T_g$ is Rawnsley’s epsilon function (see [18], [7], [14] and references therein) and being g a partially balanced metric with respect to \mathcal{H} means that g is balanced in Donaldson’s terminology (see [9] and [3] for the compact case and [1] for the noncompact case). Obviously, if M is compact, $\mathcal{H} = H^0(L)$, where $H^0(L)$ is the (finite dimensional) space of global holomorphic sections of L. In the sequel we will say that a Kähler metric g on a complex manifold M is strictly partially balanced with respect to \mathcal{S} if T_g^S is a positive constant for \mathcal{S} strictly contained in \mathcal{H}. Notice that given a (strictly) partially balanced metric g on a complex manifold M then, for all $x \in M$ there exists $s \in \mathcal{H}$ not vanishing at x (the so called free based point condition in the compact case). Then the Kodaira’s map $\varphi : M \to \mathbb{C}P^N, x \to [s_0(x) : \cdots : s_N(x)]$ is well defined. Moreover, it is not hard to see that $\varphi^*\omega_{FS} = \omega + \frac{i}{2\pi} \partial \bar{\partial} \log T_g^S$ and hence in the partially balanced case φ is indeed a Kähler immersion, i.e. $\varphi^*g_{FS} = g$ where g_{FS} (resp. ω_{FS}) is the Fubini-Study metric (resp. form) on $\mathbb{C}P^N$. Thus, by using the celebrated Calabi’s rigidity theorem ([5], [16]) one deduces that in the definition of partially balanced metric the space \mathcal{S} is determined up to unitary transformations of \mathcal{H} and one can then simply speak of strictly partially balanced metric without specifying the space \mathcal{S}. Partial Bergman kernels and their asymptotics have been recently considered, when \mathcal{S} is the subspace of \mathcal{H} consisting of those holomorphic sections of L vanishing at a prescribed order on an analytic subvariety of M (see [17], [19], [20], [21], [22], [23]). Notice that our definition is more general, since we are not fixing any analytic subvariety of M.

In this paper we address the study of those metrics g such that mg is strictly partially balanced (with respect to some complex subspace $\mathcal{S}_m \subset \mathcal{H}_m$) for m sufficiently large, were \mathcal{H}_m denotes the Hilbert space of global holomorphic sections of L^m (the m-th tensor power of L) such that $\langle s, s \rangle_m = \int_M h_m(s(x), s(x)) < \infty$ and h_m is the Hermitian metric on L^m such that Ric(h_m) = mw. Throughout the paper a metric satisfying the previous condition will be called a strictly partially regular metric. When $\mathcal{S}_m = \mathcal{H}_m$ a partially regular metric g is regular as defined in [10] (see also [4] and references therein) and it follows that g is a cscK (constant scalar curvature Kähler) metric.
Therefore it seems natural to address the following:

Question: Does there exist a complex manifold M equipped with a cscK metric g such that g is strictly partially regular?

The aim of this paper is to provide a positive answer to the previous question in the noncompact case as expressed by the following theorem proved in the next section.

Theorem 1.1. For all positive integer $n \geq 2$ there exist an n-dimensional noncompact complex manifold M equipped with a strictly partially regular cscK metric g. Furthermore for $n \geq 3$ the scalar curvature of g can be chosen to be zero, positive or negative.

As we have already noticed above a partially balanced metric g on a complex manifold M is automatically projectively induced. On the other hand in the complex one-dimensional case a projectively induced cscK metric is regular, being homogeneous (actually a complex space form) and so it cannot be strictly partially regular. This is the reason why in Theorem 1.1 we assume $n \geq 2$.

Notice also that it is conjecturally true that a projectively induced cscK metric g on a *compact* complex manifold M is homogeneous and hence regular ([8], [13], see also [6] for an example of regular non homogeneous complete Kähler metric on the blow-up of \mathbb{C}^2 at the origin). Hence we believe that the previous question has a negative answer in the compact case.

Finally we still do not know if there exist complex 2-dimensional manifolds admitting strictly partially regular cscK metrics with non negative scalar curvature (see the proof of Theorem 1.1).

Acknowledgments. The authors would like to thank Michela Zedda for her useful comments on the paper.

2. Proof of Theorem 1.1

In order to prove Theorem 1.1 we first show that the punctured unit disk

$$D_* = \{z = (z_1, z_2) \in \mathbb{C}^2 \mid 0 < |z|^2 < 1\}, \quad |z|^2 = |z_1|^2 + |z_2|^2,$$

can be equipped with a strictly partially regular cscK metric g_* (see Proposition 2.1 below) whose associated Kähler form is given by:

$$\omega_* = \frac{i}{2\pi} \partial \bar{\partial} \Phi_* \quad \Phi_*(z) = \log |z|^2 - \log (1 - |z|^6).$$

A direct computation shows that its volume form is given by

$$\frac{\omega^2}{2!} = \frac{9r(1 + 2r^3)}{(1 - r^3)^3} (\frac{i}{2\pi})^2 dz_1 \wedge d\bar{z}_1 \wedge dz_2 \wedge d\bar{z}_2, \quad r = |z_1|^2 + |z_2|^2,$$

(2)
from which one easily sees (cfr. [11]) that \(g_* \) is a cscK (not Einstein) metric with constant scalar curvature
\[
s_{g_*} = -24\pi. \tag{3}
\]

Remark 1. Notice that the metric \(g_* \) is not complete at the origin while it is complete at \(\{ z \in \mathbb{C}^2 \mid |z|^2 = 1 \} \).

Let \(m \) be a positive integer and \(\mathcal{D}_* \times \mathbb{C} \) be the trivial holomorphic line bundle on \(\mathcal{D}_* \) endowed with the hermitian metric
\[
h^m_*(z, \xi) = e^{-m\Phi_*(z)}|\xi|^2 = \frac{(1 - |z|^6)^m|\xi|^2}{|z|^{2m}} = \frac{(1 - r^3)^m|\xi|^2}{r^m} \tag{4}
\]
satisfying \(\text{Ric}(h^m_*) = m\omega_* \) (cfr. [11]).

Proposition 2.1. The Kähler metric \(g_* \) on \(\mathcal{D}_* \) is strictly partially regular.

Proof. Consider the Hilbert space
\[
\mathcal{H}_m = \{ f \in \text{Hol}(\mathcal{D}_*) \mid \| f \|_m^2 = \int_{\mathcal{D}_*} e^{-m\Phi_*(z)}|f(z)|^2\omega_*^2 < \infty \}.
\]
We show that \(\mathcal{H}_m \neq \{0\} \) for \(m \geq 3 \) and an orthonormal basis of \(\mathcal{H}_m \) is given by the monomials \(\left\{ \frac{z^j\bar{z}^k}{\|z_j\bar{z}_k\|_m} \right\}_{j + k > m - 3} \), where
\[
\|z^j\bar{z}^k\|_m^2 = \frac{3j!k!}{4(j + k + 1)!} \frac{\Gamma\left(\frac{1}{3}j + \frac{1}{3}k + 1\right)(m - 3)!}{\Gamma\left(\frac{1}{3}j + \frac{1}{3}k + m - 1\right)} \left[1 + \frac{2\left(\frac{1}{3}j + \frac{1}{3}k + 1\right)}{\frac{1}{3}j + \frac{1}{3}k} + \frac{1}{4} \right]. \tag{5}
\]

Let us first see for which values of \(j \) and \(k \) the monomial \(z_j^k \) belongs to \(\mathcal{H}_m \), namely when its norm \(\|z^j\bar{z}^k\|_m^2 \) is finite. By passing to polar coordinates \(z_1 = \rho_1 e^{i\theta_1}, z_2 = \rho_2 e^{i\theta_2}, r = \rho_1^2 + \rho_2^2 \) one gets:
\[
\|z^j\bar{z}^k\|_m^2 = 9 \int_{\mathcal{D}_*} \left(\frac{1 + 2r^3}{r^{m-1}} \right)^{m-3} |z_1|^{2j} |z_2|^{2k} \frac{i}{2\pi} d\rho_1 d\rho_2
\]
\[
= 9 \int_{r=0}^{\rho} \rho_1^{2j+1} \rho_2^{2k+1} \frac{(1 + 2r^3)^{m-3}}{r^{m-1}} d\rho_1 d\rho_2
\]
Now, by setting \(r^* = \rho = \sqrt{\rho_1^2 + \rho_2^2} \) we can make the substitution \(\rho_1 = \rho \cos \theta, \rho_2 = \rho \sin \theta \), \(0 < \rho < 1, 0 < \theta < \frac{\pi}{2} \), so that \(d\rho_1 d\rho_2 = \rho d\rho d\theta \) and the integral becomes
\[
9 \int_{\theta=0}^{\frac{\pi}{2}} \frac{(\cos \theta)^{2j+1}}{2(j + k + 1)!} \int_{\rho=0}^{1} \rho^{2j+2k-2m+5} (1 + 2\rho^6)(1 - \rho^6)^{m-3} d\rho
\]
\[
= \frac{9j!k!}{2(j + k + 1)!} \int_{\rho=0}^{1} \rho^{2j+2k-2m+5} (1 + 2\rho^6)(1 - \rho^6)^{m-3} d\rho \tag{6}
\]
Let us make the change of variable
and \(\mathcal{H}_m\) rewrites

\[
\|z_1^j z_2^k\|_m^2 = \frac{3j!k!}{4(j + k + 1)!} \int_0^1 x^2 \frac{1}{(1 + 2x)(1 - x)^{m-3}} dx. \]

This integral converges if and only if \(m \geq 3\) and \(j + k > m - 3\). Moreover, formula (5), easily follows by using the well-known fact that, for any \(\alpha, \beta \in \mathbb{C}\) with \(Re(\alpha) > 0, Re(\beta) > 0\), we have

\[
\int_0^1 x^{\alpha-1}(1-x)^{\beta-1} = \frac{\Gamma(\alpha)\Gamma(\beta)}{\Gamma(\alpha + \beta)}. \]

By radiality it follows the monomials \(z_1^j z_2^k\) form a complete orthogonal system and hence \(\{z_1^j z_2^k\}_{j+k=m-3}\) turns out to be an orthonormal basis for \(\mathcal{H}_m\).

We are now ready to prove that \(g_*\) is strictly partially regular for \(m \geq 3\) with respect to the subspace \(\mathcal{S}_m \subset \mathcal{H}_m\) spanned by \(\{z_1^j z_2^k\}_{j+k=m=3i}\), for \(i = 0, 1, \ldots\).

One needs to verify that there exists a positive constant \(C_m\) (depending on \(m\)) such that:

\[
T_{\mathcal{S}_m g_*}(z) = \frac{(1 - |z|^2)^m}{|z|^{2m}} \sum_{j+k=m+3i, i=0,1,\ldots} \frac{|z_1|^{2j}|z_2|^{2k}}{\|z_1^j z_2^k\|_m^2} = C_m, \quad (7)
\]

Equation (5) for \(j + k = m + 3i\) becomes

\[
\|z_1^j z_2^k\|_m^2 = \frac{3}{4(m-1)(m-2)} \binom{m+3i}{j}^{-1} \binom{m+i-1}{i}^{-1}. \quad (8)
\]

By using

\[
\frac{1}{(1-x)^m} = \sum_{i=0}^{\infty} \frac{m(m+1) \cdots (m+i-1)}{i!} x^i = \sum_{i=0}^{\infty} \binom{m+i-1}{i} x^i
\]

(and \(|z|^2 = |z_1|^2 + |z_2|^2\) one has

\[
\frac{|z_1|^{2m}}{(1 - |z|^6)^m} = \sum_{j+k=m+3i, i=0,1,\ldots} \binom{m+i-1}{j} \binom{m+3i}{j} |z_1|^{2j}|z_2|^{2k}. \quad (9)
\]

By combining (8) and (9) one sees that (7) is satisfied with \(C_m = \frac{4}{3}(m-1)(m-2)\), and we are done.

Remark 2. Notice that the metric \(g_*\) is radial, namely it admits a Kähler potential depending only on \(|z_1|^2 + |z_2|^2\). Moreover, a simple computation shows that \(|R_{g_*}|^2 - 4|Ric_{g_*}|^2\) is a constant (given by \(-960n^2\)), where \(Ric_{g_*}\) and \(R_{g_*}\), are, respectively, the Ricci tensor and the Riemann curvature tensor of the metric \(g_*\). By using the classification results on radial cscK metrics given in [11] (see also [12]) one can prove the following: if \(g\) is a radial, strictly partially regular cscK metric on an \(n\)-dimensional complex manifold \(M\) such that \(|R_{g}|^2 - 4|Ric_{g}|^2\) is constant, then \(n = 2\).
and there exist three positive constants μ, λ and ξ such that μ and $\mu^\frac{1}{\lambda}$ are positive integers, $M = \left\{ r = |z_1|^2 + |z_2|^2 \mid r < \xi^{-\frac{1}{\lambda+1}} \right\}$ and $\omega = \frac{i}{\pi} \partial \bar{\partial} \Phi(m, \lambda, \xi)$ where

$$\Phi(m, \lambda, \xi) = m \log \frac{(|z_1|^2 + |z_2|^2)\frac{\lambda}{\lambda+1}}{1 - \xi(|z_1|^2 + |z_2|^2)(\lambda+1)}.$$ \hspace{1cm} (10)

Moreover the scalar curvature s_g of g is given by

$$s_g = -\frac{24\pi}{m}.$$ \hspace{1cm} (11)

Notice that when $m = 1$, $\lambda = 2$ and $\xi = 1$ one regains $M = D_*$ and $g = g_*$.

In the proof of Theorem 1.1 we need the following:

Lemma 2.2. Let (M_1, g_1) and (M_2, g_2) be two Kähler manifolds such that g_1 is strictly partially balanced and g_2 is (strictly) partially balanced. Then the metric $g_1 \oplus g_2$ on $M_1 \times M_2$ is strictly partially balanced. In particular, if g_1 is strictly partially regular and g_2 is (strictly) partially regular then $g_1 \oplus g_2$ is strictly partially regular.

Proof. For $\alpha = 1, 2$ let (L_α, h_α) be the Hermitian line bundle over M_α such that $\text{Ric}(h_\alpha) = \omega_\alpha$ (cfr. [11] in the introduction), where ω_α is the Kähler form associated to g_α. Let $(L_{1,2} = L_1 \otimes L_2, h_{1,2} = h_1 \otimes h_2)$ be the holomorphic hermitian line bundle over $M_1 \times M_2$ such that $\text{Ric}(h_{1,2}) = \omega_1 \otimes \omega_2$ and

$$\mathcal{H}_\alpha = \left\{ s \in H^0(L_\alpha) \mid \int_{M_\alpha} h_\alpha(s, s)\frac{\omega_\alpha^{n_\alpha}}{n_\alpha!} < \infty \right\},$$

where n_α is the complex dimension of M_α. Let $\mathcal{S}_\alpha \subset \mathcal{H}_\alpha$, $\alpha = 1, 2$, be the subspace of \mathcal{H}_α with respect to which g_α is (strictly) partially balanced. Notice that $\mathcal{S}_1 \subseteq \mathcal{H}_1$ since g_1 is strictly partially balanced.

Let $\{s^1_1\}$ (resp. $\{s^2_2\}$) be an orthonormal basis for \mathcal{S}_1 (resp. \mathcal{S}_2) with respect to the L^2-product induced by h_1 (resp. h_2).

It is not hard to see (cfr. [15] Lemma 7]) that $\{s^1_j \otimes s^2_k\}$ is an orthonormal basis for the subspace $\mathcal{S}_{1,2} = \mathcal{S}_1 \otimes \mathcal{S}_2$ of the Hilbert space

$$\mathcal{H}_{1,2} = \left\{ s \in H^0(L_{1,2}) \mid \int_{M_1 \times M_2} h_{1,2}(s, s)\frac{(\omega_1 + \omega_2)^{n_1+n_2}}{(n_1+n_2)!} < \infty \right\}.$$

Thus

$$T^{S_{1,2}}_{g_1 \oplus g_2}(x, y) = \sum_{j,k} h_{1,2}(s^1_j(x) \otimes s^2_k(y), s^1_j(x) \otimes s^2_k(y)) = \sum_j h_1(s^1_j(x), s^1_j(x)) \sum_k h_2(s^2_k(y), s^2_k(y)) = T^{S_1}_{g_1}(x)T^{S_2}_{g_2}(y) = C_1C_2.$$
for two positive constant C_1 and C_2. Then $g_1 \oplus g_2$ is strictly partially balanced with respect to the subspace $S_{1,2} \subseteq H_{1,2}$. Assume now that g_α is (strictly) partially regular and let m_α be such that mg_α is (strictly) partially balanced for $m \geq m_\alpha$. Then, by the first part, $m(g_1 \oplus g_2)$ is strictly partially balanced for $m \geq \max\{m_1, m_2\}$, i.e. $g_1 \oplus g_2$ is strictly partially regular.

Proof of Theorem 7.1 It is well-known (see, e.g. [1]) that the Fubini-Study metric g_{FS} on the complex sphere $\mathbb{C}P^1$, and the flat metric g_0 on the complex Euclidean space \mathbb{C}^k, $k \geq 1$, are regular cscK metrics of constant scalar curvatures $s_{g_{FS}} = 8\pi$ and $s_{g_0} = 0$ respectively. By Proposition 2.1 and Lemma 2.2 the metric $g_\ast \oplus g_0$ is a strictly partially regular cscK metric with negative scalar curvature on the complex n-dimensional manifold $\mathcal{D}_* \times \mathbb{C}^{n-2}$, for all $n \geq 2$.

Further, by combining Proposition 2.1, Lemma 2.2, (3) and (11) it follows that the Kähler metrics $3g_\ast \oplus g_{FS} \oplus g_0$ and $4g_\ast \oplus g_{FS} \oplus g_0$ on the complex n-dimensional manifold $\mathcal{D}_* \times \mathbb{C}P^1 \times \mathbb{C}^{n-3}$, $n \geq 3$, are strictly partially regular metrics with vanishing scalar curvature and positive scalar curvature respectively.

REFERENCES

[1] C. Arezzo, A. Loi, *Quantization of Kähler manifolds and the asymptotic expansion of Tian–Yau–Zelditch*, J. Geom. Phys. 47 (2003), 87-99.

[2] C. Arezzo and A. Loi, *Moment maps, scalar curvature and quantization of Kähler manifolds*, Comm. Math. Phys. 246 (2004), 543-549.

[3] C. Arezzo, A. Loi, F. Zuddas, *On homothetic balanced metrics*, Ann. Global Anal. Geom. 41, n. 4 (2012), 473-491.

[4] C. Arezzo, A. Loi, F. Zuddas, *Szegö Kernel, regular quantizations and spherical CR-structures*. Math. Z. (2013) 275, 1207-1216.

[5] E. Calabi, *Isometric Imbedding of Complex Manifolds*, Ann. of Math. Vol. 58 No. 1, 1953.

[6] F. Cannas Aghedu, A. Loi, *The Simanca metric admits a regular quantization*, arXiv:1809.04431.

[7] M. Cahen, S. Gutt, J. H. Rawnsley, *Quantization of Kähler manifolds I: Geometric interpretation of Berezin’s quantization*, JGP. 7 (1990), 45-62.

[8] A. J. Di Scala, H. Hideyuki, A. Loi, *Kähler immersions of homogeneous Kähler manifolds into complex space forms*, Asian Journal of Mathematics Vol. 16 No. 3 (2012), 479-488.

[9] S. Donaldson, *Scalar Curvature and Projective Embeddings, I*, J. Diff. Geom. 59 (2001), 479-522.

[10] A. Loi, *Regular quantizations of Kähler manifolds and constant scalar curvature metrics*, J. Geom. Phys. 53 (2005), 354-364.

[11] A. Loi, R. Mossa, F. Zuddas, *Finite TYCZ expansions and cscK metrics*, arXiv:1903.07679.

[12] A. Loi, F. Salis, F. Zuddas, *On the third coefficient of TYZ expansion for radial scalar flat metrics*, J. Geom. Phys. 133, 210-218 (2018).

[13] A. Loi, M. Zedda, *Kähler-Einstein submanifolds of the infinite dimensional projective space*, Math. Ann. 350 (2011), 145-154.

[14] A. Loi, M. Zedda, *Balanced metrics on Cartan and Cartan-Hartogs domains*, Math. Z. (2012), Vol. 270, 1077-1087.
A. Loi, M. Zedda, *On the coefficients of TYZ expansion of locally Hermitian symmetric spaces*, Manuscripta Mathematica (2015), Vol. 148, 303-315.

A. Loi, M. Zedda, *Kähler Immersions of Kähler Manifolds into Complex Space Forms*, Lecture Notes of the Unione Matematica Italiana 23, Springer, (2018).

F.T. Pokorna, J. Ross, *Toric partial density functions and stability of toric varieties*, Math. Ann. 358 (2014), no. 3-4, 879-923.

J. Rawnsley, *Coherent states and Kähler manifolds*, Quart. J. Math. Oxford (2), n. 28 (1977), 403-415.

J. Ross, M. Singer *Asymptotics of partial density functions for divisors*, J. Geom. Anal. 27 (2017), no. 3, 1803-1854.

S. Zelditch P. Zhou, *Interface asymptotics of partial Bergman kernels on S^1-symmetric Kähler manifolds*, arXiv:1604.06655

S. Zelditch P. Zhou, *Central Limit theorem for spectral Partial Bergman kernels*, arXiv:1708.09267

S. Zelditch P. Zhou, *Interface asymptotics of partial Bergman kernels around a critical level*, arXiv:1805.01801

S. Zelditch P. Zhou, *Pointwise Weyl laws for Partial Bergman kernels*, arXiv:1805.05203

G. Tian, *On a set of polarized Kähler metrics on algebraic manifolds*, J. Diff. Geom. 32, 99-130 (1990).

(Andrea Loi) Dipartimento di Matematica e Informatica, Università di Cagliari (Italy)

E-mail address: loi@unica.it

(Fabio Zuddas) Dipartimento di Matematica e Informatica, Università di Cagliari (Italy)

E-mail address: fabio.zuddas@unica.it