Endoscopic type I tympanoplasty is as effective as microscopic type I tympanoplasty but less invasive—A meta-analysis

István Pap1 | István Tóth1 | Noémi Gede2 | Péter Hegyi2,3 | Zsolt Szakács2,4 | Alexandros Koukkoullis1 | Péter Révész1 | Kinga Harmat1 | Adrienne Németh1 | László Lujber1 | Imre Gerlinger1 | Tímea Bocskai5 | Gábor Varga6 | István Szanyi1

1Department of Otorhinolaryngology (ENT), Medical School, University of Pécs, Pécs, Hungary
2Institute for Translational Medicine, Medical School, University of Pécs, Pécs, Hungary
3Momentum Gastroenterology Multidisciplinary Research Group, Hungarian Academy of Sciences-University of Szeged, Szeged, Hungary
4János Szentágóthai Research Center, University of Pécs, Pécs, Hungary
5Department of Anaesthesiology and Intensive Therapy, Medical School, University of Pécs, Pécs, Hungary
6Department of Oral Biology, Semmelweis University, Budapest, Hungary

Correspondence
István Pap and István Tóth, ENT, Head and Neck Surgery Department, University of Pécs, Medical School, Munkácsy M. u. 2., 7621 Pécs, Hungary.
Emails: pap.istvan88@gmail.com (IP); drtoth.i7@gmail.com (IT)

Funding information
Institutional Developments for Enhancing Intelligent Specialization Grant of the National Research, Development and Innovation Office, Grant/Award Number: EFOP-3.6.2-16-2017-0006 and EFOP-3.6.2-16-2017-0006; Economic Development and Innovation Operative Program Grant, Grant/Award Number: GINOP 2.3.2-15-2016-00048

Abstract

Background: Endoscopic type I tympanoplasty was originally introduced in the 1990s, and the extensive spread of this practice can be easily observed. The conventional technique performed involves the repair of a tympanic membrane perforation, and is defined as microscopic type I tympanoplasty.

Objective of Review: The aim of this study was the comparison of postoperative outcomes of both the endoscopic and the microscopic type I tympanoplasty.

Type of Review: We conducted a meta-analysis in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-analysis (PRISMA) guidelines.

Search Strategy: A systematic literature search was performed in the databases of PubMed, Embase, Cochrane Library, Clarivate Analytics-Web of Science, ClinicalTrials.gov, World Health Organization Library, and Scopus by inserting, ‘myringoplasty OR (tympanoplasty AND perforation)’ into the search query. We applied only a ‘human’ filter. We excluded non-English studies. Additional records were identified by checking the references of relevant studies.

Evaluation Method: Comparative studies were included in our analysis. We calculated the pooled odds ratio (OR) with 95% confidence interval (CI) for dichotomous outcomes and weighted mean difference (WMD) with a 95% CI for continuous outcomes. Additionally, we assessed the risk of bias and estimated the quality of evidence for each outcome.

Results: Our systematic search yielded 16 studies (involving 1179 interventions), eligible for analysis. The pooled graft uptake rate (OR: 1.21, CI: 0.82-1.77; $I^2 = 0.0\%$), the postoperative hearing results (WMD = −1.13; 95% CI: −2.72−0.45; $I^2 = 78.1\%$) and the operation time (WMD = −21.11; 95% CI: −42.60−0.38; $I^2 = 99.3\%$), were all comparable amongst the two techniques. In contrast, the endoscopic type I tympanoplasty outperforms when regarding the pooled canaloplasty rate (OR = 7.96; 95% CI: 4.30−14.76; $I^2 = 0.0\%, P = 1.000$) and features an increase in desirable cosmetic results (OR = 19.29; 95% CI: 11.37−32.73; $I^2 = 0.0\%, P = 0.839$), when compared with the microscopic approach.
1 | INTRODUCTION

The increased proportion amongst subjects suffering from chronic tympanic membrane perforations and, interestingly, do not want to be operated on, suggests there is a considerable need for novel therapeutic procedures. An additional systematic review analysing the burden of disease caused by otitis media, in which chronic suppurative otitis media incidence rate was 4.76‰ or at or about 31 million cases, concluded that 22.6% of cases occurring annually were patients under five years old. Otitis media-related hearing impairment has a prevalence of 30.82 per ten-thousand. Annually, 21,000 individuals succumb due to complications of otitis media. A study found the prevalence of chronic tympanic membrane perforation amongst adults 0.9%, eight out of nine subjects refused tympanoplasty for various reasons. The microscopic tympanoplasty has been the standard procedure regarding the effective reconstruction of a perforated tympanic membrane, dating back to the middle of the 20th century. This approach has many disadvantages including poor cosmetic results, caused by a retroauricular incision and the necessity in performing canaloplasty primarily in cases of anterior perforation. Since endoscopic ear surgery was first performed in the 1990s, it represents the ever-increasing, minimally invasive branch of otologic surgery. An endoscope is an ideal tool, enabling the surgeon to perform transcanal endoscopic ear surgery in its entirety while the classical microscopic approach will most likely require an additional external incision, or a mastoidectomy.

In regards to the endoscope, the external incision, soft tissue dissection and bone removal can effectively be avoided. In addition, the consumption of medical resources can also be diminished and partly reflecting a shorter rate of hospitalisation. This approach also provides a wider perspective in reference to enabling access into ‘hidden spaces’ deep within the middle ear cavity.

1.1 | Objectives

In 2016, a superbly written meta-analysis was published which collected evidence regarding both endoscopic and microscopic type I tympanoplasty. Since this topic is of particularly high interest, several new studies, including high-quality randomised controlled trials (RCTs), have been recently published. The large body of evidence accumulated proved inspirational, resulting in our intensive review of the plethora of recently published literature. All relevant papers comparing the safety and efficacy of endoscopic type I tympanoplasty to that of microscopic type I tympanoplasty were collated. Our paper aims to determine which method proves more effective in and applicable to the treatment of tympanic membrane perforation.

2 | MATERIALS AND METHODS

The Preferred Reporting Items for Systematic Reviews and Meta-analysis (PRISMA) guidelines were used to report our results. The protocol of this study was registered with PROSPERO (registration number: CRD42018095616; www.crd.york.ac.uk/PROSPERO).

2.1 | Ethical considerations

There were no ethical considerations.

2.2 | Eligibility criteria

Following the PICO framework, eligible studies examined patients (P) at various age, suffering from dry, central tympanic membrane perforation and, who underwent type I tympanoplasty, carried out with either the endoscope (I) or the microscope (C), and discussed strategic, postoperative outcomes (O). Patients with sensorineural or mixed hearing loss, discharging ear, cholesteatoma, ossicular chain abnormality or combating an active ENT infection were excluded.

Randomised and non-randomised studies (nRCT), including conference abstracts, were all included. Case reports, case series, review articles, letters, editorials and comments were excluded.

Conclusions: Based on our meta-analysis, the surgical outcomes of endoscopic type I tympanoplasty in terms of graft uptake rate, postoperative hearing results and operation time were comparable to the microscopic type I tympanoplasty. In regards to cosmetics, an increase in desirable results was achieved in the endoscopic group, particularly the incidence of canaloplasty which proved to be significantly lower.

Keypoints
- Endoscopic type I tympanoplasty is as effective as microscopic type I tympanoplasty but less invasive.
- The surgical outcomes of endoscopic type I tympanoplasty in terms of graft uptake rate, postoperative hearing results, and operation time were comparable to the microscopic type I tympanoplasty.
- In regards to cosmetics, an increase in desirable results was achieved in the endoscopic group, particularly the incidence of canaloplasty which proved to be significantly lower.
2.3 | Outcome measures

The graft uptake rate served as our primary outcome. Regarding inclusion, at least a six-month follow-up was required. Our secondary outcomes included postoperative audiological outcomes, the need for canaloplasty, average operation time and cosmetic results. Seven studies compared the postoperative hearing outcomes based on the average air-bone gap (ABG); hence, we used the ABG means in support of our analysis. However, four of the included studies reported the postoperative ABG, in accordance with the Committee on Hearing and Equilibrium of the American Academy of Otolaryngology, Head and Neck Surgery. In this event, we determined the postoperative hearing results amongst three groups. Group 1 shows the ABG ranging from 0 to 10 dB, Group 2 contains outcomes with ABG ranging from 11 to 20 dB, while in Group 3, the ABG range was 21-30 dB. The necessity of canaloplasty and the duration of the surgery were determined in the review of the surgical reports. The preferred method for reporting cosmetic results was discrepant across the studies, which may influence the precision of the evaluation of cosmetic results. To evaluate the postoperative cosmetic outcome, we collated data creating two groups: good cosmetic results and poor cosmetic results, respectively (Appendix S1.)

2.4 | Search and selection

We performed a systematic search in the databases of PubMed, Embase, Cochrane Library, Clarivate Analytics-Web of Science, ClinicalTrials.gov, World Health Organization Library, and Scopus, dating from inception up through 31 May 2018. The search query included, ‘myringoplasty OR tympanoplasty AND perforation’. Filters of ‘Humans’ and ‘English language’ were applied to the search. Additional records were identified by examining the reference lists of relevant studies. The yield of search was imported using a reference manager software (EndNote X7.4, Thomson Reuters) with the intent of the removal of duplicate records. Two authors (IP and IT) independently screened the remaining studies, selecting them by title, abstract and full-text. If an agreement could not be reached, the dispute was settled with the aid of a third investigator (I.Sz.).

2.5 | Data extraction and management

The two authors (IP and IT) independently imputed the extracted data onto a previously edited Excel table. We collected general information including the name of the first author and the year of publication, study design, initial population, the total number of interventions, in reference to the accomplished type I tympanoplasty upon one ear and the length of the follow-up. The investigation of outcomes consisted of the graft uptake rate, postoperative audiological results, the need for performing canaloplasty, assessing cosmetic results and average operating time. Discrepancies were resolved by consulting a third investigator (I.Sz.).

2.6 | Risk of bias (ROB) assessment

RoB in the individual studies was independently assessed by two authors (IP and IT) (Appendix S1). Randomised controlled trials were assessed using the Cochrane Risk of Bias Tool, in compliance with the following domains: random sequence generation, allocation concealment, blinding of participants, personnel, and outcome assessment, incomplete outcome data, selective reporting and other bias. In the case of nRCTs, we used the topic-tailored version of Newcastle-Ottawa Scale (NOS) regarding three domains: selection, comparability and outcome assessment. If an agreement could not be reached, a third-party arbitration was adopted to settle the dispute (I.Sz.).

2.7 | Statistical analysis

Statistical analysis was performed in the use of the Stata 11 SE (StataCorp). For dichotomous outcomes (graft uptake rate, canaloplasty rate, cosmetics and hearing outcomes, in accordance with the Committee on Hearing and Equilibrium of the American Academy of Otolaryngology, Head and Neck Surgery), we calculated pooled odds ratios (ORs) with 95% confidence intervals (CIs). In some cases, we applied the Peto method, due to the potential, occasional rare event. Weighted mean difference (WMD) with 95% CIs was calculated for continuous outcomes (operation time and ABG means).

Subgroup analyses were applied in accordance with the study design and included (RCT vs nRCT), if, at least three RCTs were available (graft uptake rate, canaloplasty rate, cosmetics and operation time). We applied the random effect model with DerSimonian-Laird estimation. I^2 and chi-squared tests were used to quantify statistical heterogeneity and gain probability-values, respectively; $P < 0.1$ indicated a significant heterogeneity. To check for publication bias, a visual inspection of funnel plots and Egger's test were performed. Sensitivity analysis was performed by omitting studies (individually) from the analyses and recalculating to investigate the impact of the individual studies upon the summary estimate.

The trial sequential analysis (TSA) was conducted regarding the graft uptake rate to observe the futility threshold. Notably, TSA is a methodology which combines an information size calculation (cumulated sample sizes of all included trials) for a meta-analysis with the threshold of statistical significance. In the operational use of this tool, we can quantify the statistical reliability of data in the cumulative meta-analysis adjusting significance levels for sparse data and repetitive testing on accumulating data.

2.8 | The GRADE approach

The Grading of Recommendations Assessment, Development and Evaluation (GRADE) was used for assessing the quality of evidence of critical and important outcomes assessed. The grade of evidence was assessed in support of subgroups of RCTs, if possible.
3 | RESULTS

3.1 | Search and selection

Figure 1 represents the study flow chart. Our primary search yielded a total of 8700 records. In the screening of the records by title, abstract and full-text, we found 18 articles which met the eligibility criteria.\(^6,9-18,24-30\) We found two publications with identical cohorts of patients; therefore, we excluded the recently published one.\(^25\) Another study was excluded due to insufficient data.\(^28\) Inevitably, 16 articles were included in the meta-analysis. Characteristics of the included articles are shown in Table 1. The quality of evidence for each outcome is represented in Table 2.

3.2 | Meta-analysis

3.2.1 | Graft uptake: endoscopic type I tympanoplasty performs as well as microscopic type I tympanoplasty (high grade of evidence)

Sixteen studies including 1179 interventions were deemed eligible for inclusion.\(^6,9-18,24-26,27,29,30\) Accrued results, in which endoscopic type I tympanoplasty was as effective as microscopic type I tympanoplasty in a homogenous dataset, indicated a 90.5% graft uptake rate in the endoscopic and 88.3% success rate in the microscopic group (OR: 1.21, CI: 0.82-1.77; \(I^2 = 0.0\%), P = 0.910\) (Figure 2). The direction of association did not change if we included only five RCTs in the analysis (OR: 0.81, CI: 0.43-1.53; \(I^2 = 0.0\%), P = 0.989\). Performing trial sequential analysis, we concluded additional trials will prove to be potentially futile (Appendix S1).

Based on the Egger's test, the small study effect is unlikely to occur (\(P = 0.727\)) (Appendix S1). We performed a sensitivity analysis which demonstrated if any study is excluded from the analysis, the overall results are not affected nor altered. To overcome the potential risk of poor peer review caused by the inclusion of conference abstracts, we performed sensitivity analysis by omitting abstracts from the relating analysis which confirmed that the inclusion of these publications did not change the direction of the main association (Appendix S1).

3.2.2 | Postoperative hearing results: endoscopic type I tympanoplasty performs and microscopic type I tympanoplasty (very low grade of evidence)

Fifteen authors published data regarding audiological outcomes.\(^6,9-18,24-27,29,30\) We excluded four studies, due to no or insufficient data provided.\(^24-27,29,30\) In the analysis of the postoperative mean ABGs, no statistically significant difference was found (WMD = −1.13; 95% CI: −2.72-0.45; \(I^2 = 78.1\%), P < 0.001\) however, a tendency favouring the endoscopic approach could be observed (Appendix S1). Regarding ABG categories, endoscopy proved to outperform microscopy amongst the ratio of patients achieving 0-10 dB ABG (Appendix S1). Our sensitivity analysis showed, if and when any of the participating studies are excluded from the analysis, the overall results are not affected nor altered.
3.2.3 | Canaloplasty rate: endoscopic type I tympanoplasty performs better compared with microscopic type I tympanoplasty (high grade of evidence)

Six studies analysed the canaloplasty rate, including a total of 594 interventions. The rate of canaloplasty proved eight times higher in the use of the microscope when compared to that of the endoscope (15% vs 0%; OR = 7.96; 95% CI: 4.30–14.76; \(I^2 = 0.0\%\), \(P = 1.000\)) (Figure 3). In the performance of a sensitivity analysis, if and when any study is excluded from the analysis, the overall results are not affected nor altered.

3.2.4 | Cosmetic results: endoscopic type I tympanoplasty performs better than microscopic type I tympanoplasty (moderate grade of evidence)

Cosmetic results were reported in four articles including 279 interventions. Microscopic type I tympanoplasty was reportedly 19 times more likely to result in a poor cosmetic outcome when compared to the endoscopic approach (58.3% vs 0%; OR = 19.29; 95% CI: 11.37–32.73; \(I^2 = 0.0\%\), \(P = 0.839\)) (Figure 4). We performed a sensitivity analysis, based on, if and when any study is excluded from the analysis, the overall results are not affected nor altered.

3.2.5 | Operation time: endoscopic type I tympanoplasty performs and microscopic type I tympanoplasty (low grade of evidence)

Twelve studies evaluated data regarding operation time\(^6,9,11,13,15,17,24,27,29,30\); however, three of these were excluded, due to incomplete reporting. Of these nine studies, six were nRCTs\(^5,9,10,13,17,29\) and an additional three others were RCTs\(^11,15,16\). Based on the pooled data analysis, there was no statistically significant difference between the two approaches (WMD = −21.11; 95% CI: −42.60 to 0.38; \(I^2 = 99.3\%\), \(P < 0.001\)) (Appendix S1). Egger’s test confirmed there is no small study effect (\(P = 0.902\)) (Appendix S1). Performing subgroup analysis, based on nRCTs endoscopic Type I Tympanoplasty, requires shorter time,

Table 1 Summarises the characteristics of the papers considered in our study

Author, year	Study design	Country/No. of centres	No. of interventions (Endoscopic)	No. of interventions (Microscopic)	Outcomes assessed	Follow-up time (months)							
Harugop, 2008\(^15\)	RCT	India/1	50	50	Graft uptake, canaloplasty needed, operation time, cosmetic results, hearing results	6							
Jyothi, 2017\(^16\)	RCT	India/1	60	60	Graft uptake, canaloplasty needed, operation time, hearing results	12							
Kaya, 2017\(^11\)	RCT	Turkey/1	13	13	Graft uptake, operation time, hearing results	6							
Kumar, 2015\(^16\)	RCT	India/1	30	30	Graft uptake, canaloplasty needed, operation time, cosmetic results, hearing results	6							
Lade, 2013\(^12\)	RCT	India/1	30	30	Graft uptake, canaloplasty needed, cosmetic results, hearing results	6							
Choi, 2017\(^6\)	Retrospective comparative study	Korea/1	25	48	Graft uptake, canaloplasty needed	3							
Dündar, 2014\(^9\)	Retrospective cohort study	Turkey/2	32	29	Graft uptake, operation time, hearing results	12							
Fina, 2016\(^23\)	Retrospective cohort study	USA/1	29	30	Graft uptake, operation time, hearing results	N/A							
Huang, 2016\(^10\)	Retrospective comparative study	Taiwan/4	50	50	Graft uptake, operation time, hearing results	6							
James, 2017\(^25\)	Prospective comparative study	Canada/1	13	15	Graft uptake	12							
Lakpathi, 2015\(^17\)	Prospective comparative study	India/1	30	30	Graft uptake, operation time, cosmetic results, hearing results	6							
Nassif, 2015\(^28\)	Observational retrospective study	Italy/2	22	23	Graft uptake, operation time, hearing results	6							
Plodpai, 2017\(^13\)	Retrospective comparative study	Thailand/1	90	91	Graft uptake, canaloplasty needed, operation time, hearing results	6							
Raj, 2001\(^18\)	Comparative study	India/1	20	20	Graft uptake, hearing results	10							
Shoeb, 2016\(^48\)	Prospective comparative study	India/1	30	30	Graft uptake, operation time, hearing results	6							
Tay, 2017\(^29\)	Retrospective study	Singapore/1	32	74	Graft uptake, operation time	N/A							
Certainty assessment	Summary of findings	Anticipated absolute effects											
----------------------	---------------------	-----------------------------											
No. of participants (studies)	Follow-up	Risk of bias	Inconsistency	Indirectness	Imprecision	Publication bias	Overall certainty of evidence	Study event rates (%)	With microscopic approach	With endoscopic approach	Relative effect (95% CI)	Anticipated absolute effects	
												Risk with microscopic approach	Risk difference with endoscopic approach
Graft uptake rate (follow-up: mean 6 mo; assessed with: otoscopy)—Critical outcome													
366 (5 RCTs)	Not serious	Not serious	Not serious	Not serious	None	None	High	163/183 (89.1%)	159/183 (86.9%)	OR 0.81 (0.43 to 1.53)	89 per 100	2 fewer per 100 (11 fewer to 4 more)	
Postoperative mean ABG (follow-up: mean 6 months; assessed with: clinical records)—Critical outcome													
561 (2 RCTs, 5 nRCTs)	Serious	Very serious	Not serious	Not serious	None	None	Very low	291	270			WMD 1.13 lower (2.72 lower to 0.45 higher)	
Canalplasty rate (assessed with: clinical records)—Important outcome													
340 (4 RCTs)	Not serious	Not serious	Not serious	Not serious	Uncertain	None	High	27/170 (15.9%)	0/170 (0.0%)	OR 8.61 (3.94 to 18.84)	16 per 100	46 more per 100 (27 more to 62 more)	
Cosmetic results (follow-up: mean 6 months; assessed with: physical examination, patient reports)—Important outcome													
219 (3 RCTs)	Not serious	Not serious	Not serious	Serious	Uncertain	None	Moderate	60/109 (55.0%)	0/110 (0.0%)	OR 18.86 (10.23 to 34.77)	55 per 100	41 more per 100 (38 more to 43 more)	
Operation time (assessed with: clinical records)—Important outcome													
186 (3 RCTs)	Not serious	Very serious	Not serious	Not serious	Uncertain	None	Low	93	93			WMD 0.3 higher (32.18 lower to 32.79 higher)	

Notes: Regarding the risk of bias, in the postoperative mean ABG, we assessed it poses a serious risk due to the number of non-randomised trials, which were higher in number. Undeniably, a serious inconsistency was evaluated in the event of high heterogeneity at the following two outcomes: Postoperative mean ABG ($I^2 = 78.1\%$) and, the duration of the operation ($I^2 = 98.0\%$). The evaluation of indirectness yielded irrelevant results, due to the entirety of the included studies featured a clear PICO, which corresponded to our PICO.

Regarding the cosmetic results, imprecision was determined as relevant, since the assessment of cosmetic results was not performed using a standardised questionnaire. The optimal duration of operation was not precisely defined. In consideration of the balance of the outcomes, imprecision was not as serious amongst the outcomes based on RR. Publication bias was not detected amongst critical outcomes. Regarding the remaining three important outcomes, publication bias could not be evaluated, due to the decreased number of included studies.

Abbreviations: ABG, Air-Bone Gap; CI, Confidence Interval; nRCT, non-Randomised Controlled Trial; OR, Odds Ratio; RCT, Randomised Controlled Trial; RR, Risk Ratio; WMD, Weighted Mean Difference.
including an average of 31 minutes (WMD = −31.83; 95% CI: −56.72 to −6.94; $I^2 = 99.3\%$, $P < 0.001$). The analysis including RCTs offered no statistically significant difference amongst the two groups regarding operation time (WMD = 0.30; 95% CI: −32.18 to 32.79; $I^2 = 98.0\%$, $P < 0.001$). Performing the sensitivity analysis, we observed that by excluding Harugop’s or Kumar’s studies the results yielded in favour of endoscopic type I tympanoplasty.

3.2.6 | Postoperative pain, quality of life and perioperative complications

Three studies reported data on postoperative pain,⁶,¹¹,²⁷ all used subjective methods for pain assessment. The studies did not detect a significant difference in the level of postoperative pain between the endoscopic and microscopic techniques.

Only one study investigated quality of life.¹¹ According to their findings, after endoscopic type I tympanoplasty, the patient’s quality of life improved significantly.

Nine of the included studies reported data on the incidence and severity of perioperative complications.¹⁰,¹³,¹⁵,¹⁶,¹⁸,²⁶,²⁷ Altogether the endoscopic approach proved to be much safer.

Since the discrepant reporting of the findings, these outcomes proved to be ineligible for meta-analysis.

4 | DISCUSSION

Endoscopic ear surgery represents the ever-increasing, minimally invasive branch of otologic surgery. New results culminating in the past recent years warranted an updated meta-analysis to resolve debates concerning the two approaches. Our results indicate that the endoscopic approach competitively achieved graft uptake and hearing restoration equally and the microscopic method, yet it resulted in an increase in the preferred cosmetic results and a lower canaloplasty rate (ie less invasive) (Table 2). These findings support the fact that the endoscope is an ideal tool in the management of chronic suppurative otitis media.

With regards to the primary outcome in association with the graft uptake, both approaches performed well. During endoscopic ear surgery, one-handed dissection is performed. Thus, one might assume that the thickness and maneuverability of the materials used for the reconstruction of the tympanic membrane can
influence the primary outcome. Although technical differences across studies (e.g., reconstruction of the membrane with fascia, perichondrium or cartilage) elevated reasonable concern in reference to clinical heterogeneity (Table 3), it did not manifest itself in statistical heterogeneity ($I^2 = 0.0\%$, see Figure 2). The potential selection bias is a persistent worry surrounding surgical studies, however, results on efficacy were also consistent in the subgroup of RCTs (Figure 2). Similarly, the number of interventions proved to be generally satisfactory towards excluding beta-type errors (Appendix S1).

Audiological outcomes reflect graft uptake. Not surprisingly, the postoperative ABGs showed no difference amongst both groups. However, using ABG as a categorical variable, yielded results favouring endoscopy. Here, we believe the difference observed may be biased due to the potential differences in hearing at the baseline. Factually, this hypothesis in which we failed to detect any difference regarding the graft uptake rate, determines the recovery in hearing.

One of the primary advantages regarding endoscopic type I tympanoplasty is that there is no necessity for performing a canaloplasty. Non-invasiveness was proven both in the subgroup of RCTs and nRCTs (Figure 3); no canaloplasty was required in the endoscopic group. In contrast with the microscopic approach: 47 of 309 interventions (15\%) required canaloplasty, resulting in drilling-out the medial part of the anterior external auditory canal wall. The immense difference amongst both techniques can be explained in which the lens of the endoscope can be approximated one centimetre to the operational field, bypassing the narrowest part of the external ear canal, whereas the microscope lens is lateral to this, restricting the surgical view.

Characteristically, yet another significant advantage regarding the endoscopic technique reflects upon the non-invasiveness aspects. Retroauricular incision is completely avoidable regarding endoscopy, yet a visible scar is nearly inevitable when utilising the use of the microscope. Additionally, the lack of invasiveness reduces the incidence of postoperative auricular deformity, numbness and pain. Based on the three RCTs and one nRCT, the meta-analysis showed endoscopy is definitely preferred concerning cosmetic results (Figure 4). However, the assessment of cosmetic results varies: patients’ opinion (subjective) or the presence or absence of a visible scar (objective) was both applied across the vast field of studies.

The duration of the operation can be influenced by various factors. In this study, based upon nRCTs, it can be concluded in which endoscopic type I tympanoplasty requires, on average, 31 minutes less surgical time. This difference may be the result of selection bias (Appendix S1), meaning the surgical time is influenced by the surgeon’s experience and the learning curve. However, these articles did not provide any information about these factors. Regarding the

Studies	OR (95\% CI)	Events, microscopic	Events, endoscopic	Weight
RCT				
Lade, 2013	8.55 (1.39, 52.52)	5/30	0/30	11.53
Kumar, 2015	8.22 (1.10, 61.49)	4/30	0/30	9.39
Harugop, 2008	9.03 (2.48, 33.12)	10/50	0/50	22.49
Jyothi, 2017	8.37 (2.01, 34.94)	8/60	0/60	18.63
Subtotal (I-squared = 0.0\%, P = 1.000)	8.61 (3.94, 18.84)	27/170	0/170	62.04
nRCT				
Plodpai, 2017	7.58 (1.05, 54.56)	4/91	0/90	9.73
Choi, 2017	6.83 (2.14, 21.79)	16/48	0/25	28.23
Subtotal (I-squared = 0.0\%, P = 0.931)	7.01 (2.58, 19.07)	20/139	0/115	37.96
Overall (I-squared = 0.0\%, P = 1.000)	7.98 (4.30, 14.76)	47/309	0/285	100.00

-_FIGURE 3_ Represents the forest plot of our third outcome, commonly referred to as the canaloplasty rate.
duration of the operation, in consideration of the inclusion of the three RCTs, there is no significant difference amongst the two techniques. The sensitivity analysis demonstrated, with the exclusion of two RCTs, the pooled result becomes statistically significant in favour of the endoscopic approach.15,16 Since these articles did not offer enough data regarding the exact anatomical situations, intraoperative complication rates or the surgeon’s experience, in the assessment and addressing, specifically, why the endoscopic approach required additionally more time regarding both these studies, ultimately, could not be performed. The analysis suffers from significant heterogeneity, which may reflect clinical and/or methodological differences of the RCTs (Appendix S1). The lack of an additional surgical incision may explain the shorter time required in support of endoscopy.

In the use of an endoscope, one can better visualise the middle ear’s structures and concealed anatomical regions, which can be beneficial, not only during myringoplasty, and, additionally, in other middle ear pathologies, such as seen in cholesteatoma or stapes fixation.

\section{4.1 Strengths and limitations}

Our meta-analysis possesses several strengths. A thorough systematic search and RoB assessment was performed using the Cochrane Risk of Bias Tool and NOS. Our findings were similar to those presented in the previously published meta-analysis. In contrast to the former publication, specifically regarding this topic,7 the present search yielded an additional three more randomised controlled trials11,16,27 which allowed us to arrange subgroups of RCTs. To rate the evidence of every statement, the GRADE approach was used (Table 2). Following the completion of the subgroup analysis, only RCTs were included to grade the evidence of the statements. While performing the TSA, it can be inferred, in which, regarding the graft uptake rate, there was no difference of effect amongst endoscopic type I tympanoplasty and microscopic type I tympanoplasty.

Admittedly, amongst our strengths, our meta-analysis has several limitations. Two papers were conference abstracts, which potentially carry the risk, due to a less than ideal peer review process. Moreover, we were unable to perform subgroup analysis of RCTs separated from nRCTs, due to the diminished number of eligible studies regarding postoperative audiological outcomes. The variance observed in the location and size of the tympanic membrane perforation raised concerns about clinical heterogeneity, especially in the observational studies as demonstrated with the RoB assessment (Appendix S1). Regarding postoperative hearing outcomes, uncertainty is detected in the examination of the categorical audiological results, in accordance with the Committee on Hearing and Equilibrium of the American Academy of Otolaryngology, Head and Neck Surgery. Additionally, a limitation of the measurement regarding our critical outcomes was the use of various materials reconstructing the continuity of the tympanic membrane. A wide spectrum of follow-up periods could be observed which influenced

\begin{figure}
\centering
\includegraphics[width=\textwidth]{figure4.png}
\caption{Features the forest plot of our fourth outcome, referred to as the cosmetic results}
\end{figure}
TABLE 3 summarises the characteristics of perforation, graft material, and the surgical technique across the included studies

Author, year	Perforation size	Perforation location	Annulus involvement	Graft material	Surgical technique
Harugop, 2008	Medium to subtotal (according to the number of quadrants involved)	Central (marginal or attic perforations were excluded)	Not reported	Temporal fascia	Underlay
Jyothi, 2017	Not reported	Central	Not reported	Temporal fascia	Underlay
Kaya, 2017	<25%, 25%-50%, 50%-75% 75%<	Anterior, posterior, central, subtotal	Not reported	Cartilage	Underlay
Kumar, 2015	<5 mm	Central	Not reported	Temporal fascia	Underlay
Lade, 2013	Any (apart from small or moderate sized posterior perforations)	Any (apart from small or moderate sized posterior perforations)	Not reported	Fascia	Underlay
Choi, 2017	Percentage of the entire TM area (mean 21.9% ± 12)	Not reported	Not reported	Perichondrium, temporal fascia	Underlay
Dündar, 2014	<50%, 50%<	Central, marginal	Not reported	Chondroperichondrial graft	Underlay
Fina, 2016	Not reported	Not reported	Not reported	Not reported	Underlay
Huang, 2016	Not reported	Central, peripheral	Not reported	Temporal fascia (microscopic group) perichondrium (endoscopic group)	Underlay
James, 2017	Not reported	Not reported	Not reported	Fascia, areolar tissue/perichondrium, non-autogenous grafts	Underlay
Lakpathi, 2015	Small, medium, large	Central	Not reported	Temporal fascia	Underlay
Nassif, 2015	Not reported	Not reported	Not reported	Temporal fascia or perichondrium (microscopic group) perichondrium (endoscopic group)	Underlay
Plodpai, 2017	Small, medium, large	Not reported	Not reported	Temporal fascia	Overlay
Raj, 2001	Not reported	Central	Not reported	Perichondrium	Underlay
Shoeb, 2016	Large	Anterior, subtotal	Not reported	Temporal fascia	Underlay
Tay, 2017	Not reported				

Abbreviation: TM, tympanic membrane.

*Data were collected from conference abstracts.
us towards applying a high RoB (Appendix S1), if and when, a minimum period of six months was not achieved.

5 | CONCLUSION

5.1 | Implications for research

Our meta-analysis provides a high level of evidence towards justifying the introduction of endoscopic type I tympanoplasty. Distinctly, based upon the TSA performed on graft uptake rates amongst the two methods (endoscopic vs microscopic), it can be stated, in which there is no need to perform additional, randomised controlled trials debating this outcome. However, the potential modifying effect of the location of tympanic membrane perforation and the learning curve in surgical practice should be further investigated. Due to the discrepant reporting of the cosmetic results, the importance of developing standardised questionnaires for quality of life evaluation should be emphasised.

5.2 | Implications for clinical practice

Our results imply how endoscopy, if and when accessible, is preferred when compared with microscopy throughout the routine practice. Hence, the implementation of endoscopic type I tympanoplasty regarding the treatment guidelines of chronic supplicative otitis media is strongly recommended.

ACKNOWLEDGEMENTS

We would like to thank Jon Marquette for English proofreading of our manuscript.

CONFLICT OF INTEREST

The authors have no involvement in any financial or non-financial interest in the subject discussed in this manuscript.

ORCID

István Pap https://orcid.org/0000-0002-4653-0627
Péter Révész https://orcid.org/0000-0002-7060-8172

REFERENCES

1. Kaftan H, Noack M, Friedrich N, Volzke H, Hosemann W. Prevalence of chronic tympanic membrane perforation in the adult population. Hno. 2008;56(2):145-150.
2. Monasta L, Ronfani L, Marchetti F, et al. Burden of disease caused by otitis media: systematic review and global estimates. PLoS ONE. 2012;7(4):e36226.
3. Ayache S. Cartilaginous myringoplasty: the endoscopic transcanal procedure. Eur Arch Otorhinolaryngol. 2013;270(3):853-860.
4. Tarabichi M. Endoscopic middle ear surgery. Ann Otol Rhinol Laryngol. 1999;108(1):39-46.
5. Hsu Y-C, Kuo C-L, Huang T-C, Huang TC. A retrospective comparative study of endoscopic and microscopic Tymanoplasty. J Otolaryngol. 2018;47(1):44.
6. Choi N, Noh Y, Park W, et al. Comparison of Endoscopic Tympanoplasty to Microscopic Tympanoplasty. Clin Exp Otorhinolaryngol. 2017;10(1):44-49.
7. Tseng C-C, Lai M-T, Wu C-C, Yuan S-P, Ding Y-F. Comparison of the efficacy of endoscopic tymanoplasty and microscopic tympanoplasty: A systematic review and meta-analysis. Laryngoscope. 2017;127(8):1890-1896.
8. Moher D, Liberati A, Tetzlaff J, Altman DG. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. BMJ. 2009;339:b2535-b2535.
9. Dündar R, Kulduk E, Soy FK, et al. Endoscopic versus microscopic approach to type 1 tympanoplasty in children. Int J Pediatr Otorhinolaryngol. 2014;78(7):1084-1089.
10. Huang TY, Ho KY, Wang LF, Chien CY, Wang HM. A Comparative Study of Endoscopic and Microscopic Approach Type 1 Tympanoplasty for Simple Chronic Otitis Media. J Int Adv Otol. 2016;12(1):28-31.
11. Kaya I, Sezgin B, Sergin D, et al. Endoscopic versus microscopic type 1 tympanoplasty in the same patients: a prospective randomized controlled trial. Eur Arch Otorhinolaryngol. 2017;274(9):3343-3349.
12. Lade H, Choudhary SR, Vashishth A. Endoscopic vs microscopic myringoplasty: a different perspective. Eur Arch Otorhinolaryngol. 2014;271(7):1897-1902.
13. Plodpaiy P, Paje N. The outcomes of overlay myringoplasty: Endoscopic versus microscopic approach. Am J Otolaryngol. 2017;38(5):542-546.
14. Shob M, Gite V, Bhargava S, Meshal S. Comparison of surgical outcomes of tymanoplasty assisted by conventional microscopic method and endoscopic method. Int J Otorhinolaryngol Head Neck Surg. 2016;2(4):184.
15. Harugop AS, Mudhol RS, Godhi RA. A comparative study of endoscope assisted myringoplasty and microscope assisted myringoplasty. Indian J Otolaryngol Head Neck Surg. 2008;60(4):298-302.
16. Kumar M, Kanaujiya SK, Singh A. A comparative study of endoscopic myringoplasty vs conventional myringoplasty. Otorhinolaryngology Clinics. 2015;7(3):132-137.
17. Lakpathi G, Reddy LS, Anand . Comparative Study of Endoscope Assisted Myringoplasty and Microscopic Myringoplasty. Indian J Otolaryngol Head Neck Surg. 2016;68(2):185-190.
18. Raj A, Meher R. Endoscopic transcanal myringoplasty - A study. Indian J Otolaryngol Head Neck Surg. 2001;53(1):47-49.
19. Committee, . on Hearing and Equilibrium guidelines for the evaluation of results of treatment of conductive hearing loss. AmericanAcademy of Otolaryngology-Head and Neck Surgery Foundation, Inc. Otolaryngol Head Neck Surg. 1995;113(3):186-187.
20. Higgins J, GSe. Cochrane Handbook for Systematic Reviews of Interventions Version 5.1.0 [updated March 2011].The Cochrane Collaboration. 2011.
21. Wells G, Peterson J, Welch V, Losos M.The Newcastle-Ottawa Scale (NOS) for assessing the quality if nonrandomized studies in meta-analyses. 2011.
22. Wetterslev J, Thorlund K, Brok J, Gluud C. Trial sequential analysis. 2011.
23. Guyatt GH, Oxman AD, Vist GE, et al. GRADE: an emerging consensus on rating quality of evidence and strength of recommendations. BMJ. 2008;336(7650):924-926.
24. Fina M, Yang R, Asche SE, Yueh B. Comparison of outcomes in endoscopic and microscopic tympanoplasty. Otolaryngol Head Neck Surg. 2016;155:P107.
25. Gaur RS, Tejavath P, Chandel S. Comparative study of microscopic-assisted and endoscopic-assisted myringoplasty. Indian J Otol. 2016;22(3):177-182.
26. James AL. Endoscope or microscope-guided pediatric tympanoplasty? Comparison of grafting technique and outcome. *Laryngoscope*. 2017;127(11):2659-2664.

27. Jyothi AC, Shrikrishna BH, Kulkarni NH, Kumar A. Endoscopic Myringoplasty Versus Microscopic Myringoplasty in Tubotympanic CSOM: A Comparative Study of 120 Cases. *Indian J Otolaryngol Head Neck Surg*. 2017;69(3):357-362.

28. Kuo CH, Wu HM. Comparison of endoscopic and microscopic tympanoplasty. *Eur Arch Otorhinolaryngol*. 2017;274(7):2727-2732.

29. Nassif N, Berlucchi M, Redaelli de Zinis LO. Tympanic membrane perforation in children: Endoscopic type I tympanoplasty, a newly technique, is it worthwhile? *Int J Pediatr Otorhinolaryngol*. 2015;79(11):1860-1864.

30. Tay K, Tan B. Outcomes of endoscopic versus microscopic myringoplasty. *Otolaryngol Head Neck Surg*. 2017;157(1):P255.

31. Freitas MR, Oliveira TC. The role of different types of grafts in tympanoplasty. *Braz J Otorhinolaryngol*. 2014;80(4):275-276.

SUPPORTING INFORMATION

Additional supporting information may be found online in the Supporting Information section at the end of the article.

How to cite this article: Pap I, Tóth I, Gede N, et al. Endoscopic type I tympanoplasty is as effective as microscopic type I tympanoplasty but less invasive—A meta-analysis. *Clin Otolaryngol*. 2019;44:942-953. https://doi.org/10.1111/coa.13407