An outer totalistic weakly universal cellular automaton in the dodecagrid with four states

Maurice MARGENSTERN

August 31, 2021

Abstract

In this paper, we prove that there is an outer totalistic weakly universal cellular automaton in the dodecagrid, the tessellation \{5,3,4\} of the hyperbolic 3D space, with four states. It is the first result in such a context.

1 Introduction

In many papers, the author studied the possibility to construct universal cellular automata in tilings of the hyperbolic plane, a few ones in the hyperbolic 3D space. Most often, the constructed cellular automaton was weakly universal. By weakly universal, we mean that the automaton is able to simulate a universal device starting from an infinite initial configuration. However, the initial configuration should not be arbitrary. It was the case that it was periodic outside a large enough circle, in fact it was periodic outside such a circle in two different directions as far as the simulated device was a two-registered machine. From a result by Minsky, [13], it is enough to simulate any Turing machine. In almost all papers, the considered tiling of the hyperbolic plane was either the pentagrid or the heptagrid, i.e. the tessellation \{5,4\}, \{7,3\} respectively. Both tessellations live in the hyperbolic plane only. In the pentagrid, the basic tile is a regular convex pentagon with right angles. In the heptagrid, it is a regular convex heptagon with the angle $\frac{2\pi}{3}$ between consecutive sides. In the present paper, we consider the dodecagrid which we define and explain in Sub-section 1.1. In Sub-section 1.2 we remind the reader what outer totalistic cellular automata are.

1.1 The dodecagrid

In the present paper, we consider the tiling of the hyperbolic 3D-space which we call the dodecagrid whose signature is defined as \{5,3,4\}. In that signature,
5 is the number of sides of a face, 3 is the number of edges which meet at a vertex, 4 is the number of dodecahedrons around an edge. In the hyperbolic 3D-space, there is another tessellation based on another dodecahedron whose signature is \{5,3,5\} which means that around an edge, there should be five dodecahedrons. From now on, we consider the dodecagrid only and its dodecahedrons are always copies of Poincaré’s dodecahedron we denote by \(\Delta \).

Below, Figure 1 provides us with a representation of the dodecagrid according to Schlegel representation of the solid. We shall more frequently use another representation illustrated by Figure 3 which we shall again meet later in Section 2. That figure makes use of a property we shall see with the explanations about Figure 1. Before turning to that argumentation, we presently deal with the Schlegel representation of alone \(\Delta \).

Figure 1 is obtained by the projection of the vertices and the edges of a dodecahedron of the hyperbolic 3D-space on the plane of one of its faces.

![Figure 1](image-url)

Figure 1 *The Schlegel representation of the dodecahedron \(\Delta \).*

As shown on the figure, we number the faces of \(\Delta \). Face 0 is the face whose plane is the one on which the projection is performed. We number the faces around face 0 by clockwise turning around the face when we look at the plane from a point which stands over \(\Delta \). 'Over' means that \(\Delta \) and the centre of the projection are on the same half-space defined by the plane on which the projection is performed. If we consider the face which is opposed to face 0, we also number the remaining faces of \(\Delta \), they are also clockwise numbered from 6 to 10 with face 6 sharing a side with face 5 and another one with face 1. The not yet numbered face which is opposite to face 0 is now numbered 11. That numbering will be the basic numbering from which we derive a numbering of the vertices and of the edges as follows: a vertex or an edge will be denoted by the numbers of the faces which share that element, two numbers for an edge,
three ones for a vertex.

There is a problem with that representation of which the reader should be aware. Put a dodecahedron \(\Delta_i \) on each face \(i \) of \(\Delta \). Assume that we number the faces of \(\Delta_i \) by numbering with 0 the face of each dodecahedron \(\Delta_i \) which lies on the face \(i \) of \(\Delta \) and denote those dodecahedrons by \(\Delta_{i0} \) respectively. Consider \(\Delta_i \) and \(\Delta_j \) whose faces 0 are contiguous faces of \(\Delta \), which means that both dodecahedrons share the edge shared by the faces \(i \) and \(j \) of \(\Delta \) with, of course \(i \neq j \). We may assume the numbering of the faces of those dodecahedrons is such that the faces 1 of \(\Delta_i \) and \(\Delta_j \) also share the side \(i-j \). We are with three dodecahedrons around the edge \(i-j \): \(\Delta_i, \Delta_j \) and \(\Delta \). If we put a dodecahedron \(\Delta_{ij}, \Delta_{ji} \) on the face 1 of \(\Delta_i, \Delta_j \) respectively, then, necessarily, we have \(\Delta_{ij} = \Delta_{ji} \) as far as there must be exactly four dodecahedrons around the side \(i-j \).

The cellular automaton we construct in Section 2 evolves in the hyperbolic 3D space but a large part of the construction deals with a single plane which we shall call the **horizontal plane** denoted by \(H \). In fact, both sides of \(H \) will be used by the construction and most tiles of our construction have a face on \(H \).

We take advantage of that circumstance to define another representation, possibly more convenient for our purpose.

The trace of the dodecagrid on \(H \) is a tiling of the hyperbolic, namely the tiling \(\{5, 4\} \) we call the **pentagrid**. The left-hand side part of Figure 2 illustrates the tiling and its right-hand side part illustrates a way to locate the cells of the pentagrid. Let us look closer at the figure whose pictures live in Poincaré’s disc, a popular representation of the hyperbolic plane, see [2].

In the left-hand side picture, we can see five tiles which are counter-clockwise numbered from 1 up to 5, those tiles being the neighbours of a tile which we call the **central tile** for convenience. Indeed, there is no central tile in the pentagrid as there is no central point in the hyperbolic plane. We can see the disc model as a window over the hyperbolic plane, as if we were flying over that plane in an abstract spacecraft. The centre of the circle is the point on which are attention is focused while the circle itself is our horizon. Accordingly, the central tile is the tile which is central with respect to the area under our consideration. It is also the reason to number the central tile by 0.

The right-hand side picture shows us five blocs of tiles we call **sectors**. Each sector is defined by a unique tile which shares and edge with the central one. We number that tile by 1. It is a green tile on the picture. The sector is delimited by two rays \(u \) and \(v \) issued from a vertex of tile 1: they continue two consecutive sides of tile 0. Those rays are supported by straight lines in the hyperbolic plane and they define a right angle. Tile 1 is called the **head** of the sector it defines: the sector is the set of tiles contained in the angle defined by \(u \) and \(v \). We also number the sectors from 1 to 5 by counter-clockwise turning around tile 0. We also say that two tiles are **neighbouring** or that they are **neighbours** of each other if and only if they have a common side.
Consider the configuration illustrated by Figure 3. We can see the Schlegel projection of a dodecahedron on each tile of the picture. A few dodecahedrons have another light colour and on each of them, some faces are green and a few ones are red. We call them the elements of a track.

Figure 3 A configuration we shall later meet in Section 2. The central tile is, in some sense, the centre of that configuration. A green, red face means that a green, red dodecahedron respectively is put on that face.

Tile 0 is the central tile of the picture. Around tile 0, we can see three elements of track exactly, the other i neighbouring tiles having a uniform light
colour: we call them blank tiles. We number the elements of tracks by the number of their sectors, here 1, 3 and 5 by counter-clockwise turning around tile 0. On the picture, tile 3 is just below tile 0. Let us look closer at tiles 0 and 3 of \mathcal{H}. Let Δ_0 and Δ_3 be the tiles of the dodecagrid which are put on tiles 0 and 3 of \mathcal{H} respectively. Assume that the face 1 of Δ_0 and of Δ_3 share the side which is shared by the tiles 0 and 3 of \mathcal{H}. By construction of the dodecagrid, below \mathcal{H}, there are also two dodecahedrons, one below Δ_0, the other below Δ_3. Accordingly, the face 1 of Δ_0 and that of Δ_3 coincide as far as four dodecahedrons share the common side of tiles 0 and 3 of \mathcal{H}. Using the numbering of the faces of Δ_0 and Δ_3 just above defined, we can see that if we put a dodecahedron on the faces 6 of Δ_0 and Δ_3 those dodecahedrons share a face which is on the same plane as the common face 1 of Δ_0 and Δ_3. Consider, for instance, the faces 6 and 7 of Δ_0 which also share a common side of Δ_0. Put a dodecahedron D_i on the face i of Δ_0. Then D_6 and D_7 have no common face: their common side is shared by a fourth dodecahedron outside Δ_0, D_6 and D_7 as just indicated. Accordingly, we have to pay attention to dodecahedrons which are put on the faces of a dodecahedron in the representation as defined on Figure 3. We call that representation the \mathcal{H}-representation. The rule is simple: two dodecahedrons sharing an edge s in the \mathcal{H}-representation also share their face sharing s if and only if s is also a common side of the tiles of \mathcal{H} on which those faces are projected.

As mentioned in the caption of Figure 3, a dark blue face of the projection of a dodecahedron means that, in the dodecagrid, a dark blue dodecahedron is put in that face. By abus de langage, we also call \mathcal{H} the restriction of the dodecagrid to those which sit on that plane. When it will be needed to clarify, we denote by \mathcal{H}_u, \mathcal{H}_b the set of dodecahedrons which are placed upon, below \mathcal{H} respectively.

1.2 Outer totalistic cellular automata

Let us remind the reader that cellular automata are a model of massive parallelism. The base of a cellular automaton is a cell. The set of cells is supposed to be homogeneous in several aspects: the neighbours of each cell constitute subsets which have the same structure; the cell changes its state at each tip of a discrete clock according the states of its neighbours and its own state. The change is dictated by a finite automaton which is the same for each cell. A regular tiling is an appropriate space for implementing cellular automata: a cell is the combination of a tile together with the finite automaton ruling the change of states. The tile is called the support of the cell. Let T be a tile and let $N(T)$ be the set of its neighbours. By regular, we mean that the number of elements of $N(T)$ is the same for any T. The dodecagrid satisfies that requirement. Moreover, there is an algorithm to locate the tiles which is cubic in time in the size of the code attached to each tile, see [3] for instance. However, taking benefit of \mathcal{H}, we inherit of the linear algorithm allowing us to locate the tiles of \mathcal{H}. That use is reinforced by the face that our incursions in the third dimension will not lead us far from \mathcal{H}. From now on we indifferently say tile or
cell for a dodecahedron of the dodecagrid, confusing the cell with its support.

The way the automaton manages the change of states can be defined by a finite set of rules we shall call the program of the automaton and we shall organise it in a table we shall display by pieces only. In Section 6 we define the format of the rules. However we need not enter such details in order to define outer totalistic cellular automata. The alphabet \(\mathcal{A} \) of the automaton attached to each cell is the set of the possible states taken by the cell. Define an order on \(\mathcal{A} \) so that we can write \(\mathcal{A} = \{e_0, ..., e_n\} \), so that \(n+1 \) is the number of states. By definition, the index of the state \(e_i \) is \(i \). The cellular automaton is said to be outer totalistic if the state at time \(t+1 \) of a cell \(\kappa \) exactly depends both on the state at time \(t \) of \(\kappa \) and on the sum of the indices of the states at time \(t \) of all \(\lambda \) for \(\lambda \in N(\kappa) \), we call it the weight of the neighbours. The cellular automaton is said totalistic if the state at time \(t+1 \) of \(\kappa \) depends on the sum of weight of the cell at time \(t \) and of the state of \(\kappa \) at time \(t \). The maximal value for the weight of the neighbours of a cell \(\kappa \) is \(\frac{1}{n+1} \times |N(\kappa)| \). Call that sum the maximal weight for a rule.

Now that the global setting is given, we shall proceed as follows: Section 2 indicates the main lines of the implementation which is precisely described in Subsection 2.2. At last, Section 3 gives us the rules followed by the automaton. That section also contain a few figures which illustrate the application of the rules. Those figures were established from pieces of figures drawn by a computer program which applied the rules of the automaton to an appropriate window in each of the configurations described in Subsection 2.2. The computer program also computed the sum of states of the neighbour of a cell.

That allowed us to prove the following property:

Theorem 1 There is a weakly universal cellular automaton in the dodecagrid which is outer totalistic and truly spatial. Its automaton has four states and the maximal sum of states in the neighbourhood of a cell is 21, less than the half of the maximal weight for a rule.

2 Main lines of the computation

The first paper about a universal cellular automaton in the pentagrid, the tessellation \(\{5, 4\} \) of the hyperbolic plane, was [1]. That cellular automaton was also rotation invariant, at each step of the computation, the set of non quiescent states had infinitely many cycles: we shall say that it is a truly planar cellular automaton. That automaton had 22 states. That result was improved by a cellular automaton with 9 states in [12]. Recently, it was improved with 5 states, see [7]. A bit later, I proved that in the heptagrid, the tessellation \(\{7, 3\} \) of the hyperbolic plane, there is a weakly universal cellular automaton with three states which is rotation invariant and which is truly planar, [8]. Later, I improved the result down to two states but the rules are no more rotation invariant, see [9]. Paper [4] constructs three cellular automata which are strongly universal and rotation invariant: one in the pentagrid, one in the heptagrid, one
in the tessellation \{5, 3, 4\} of the hyperbolic 3D-space. By strongly universal we mean that the initial configuration is finite, i.e. it lies within a large enough circle.

In the present paper, as we go back to weak universality, we take the general frame of the quoted papers. For the convenience of the reader, we repeat the main ideas in Sub-section 2.1 and we focus on the specificity of the present paper in Sub-subsection 2.2.

2.1 The railway model
The simulation is based on the railway model devised in [14] which lives in the Euclidean plane. It consists of tracks and switches and the configuration of all switches at time \(t\) defines the configuration of the computation at that time. There are three kinds of switches, illustrated by Figure 4. The changes of the switch configurations are performed by a locomotive which runs over the circuit defined by the tracks and their connections organised by the switches.

A switch gathers three tracks \(a\), \(b\) and \(c\) at a point. In an active crossing, the locomotive goes from \(a\) to either \(b\) or \(c\). In a passive crossing, it goes either from \(b\) or \(c\) to \(a\).

![Figure 4](image)

Figure 4 The switches used in the railway circuit of the model. To left, the fixed switch, in the middle, the flip-flop switch, to right the memory switch. In the flip-flop switch, the bullet indicates which track has to be taken.

In the fixed switch, the locomotive goes from \(a\) to always the same track: either \(b\) or \(c\). The passive crossing of the fixed switch is possible. The flip-flop switch is always crossed actively only. If the locomotive is sent from \(a\) to \(b\), \(c\) by the switch, it will be sent to \(c\), \(b\) respectively at the next passage. The memory switch can be crossed actively or passively. Now, the track taken by the locomotive in an active passage is the track taken by the locomotive in the last passive crossing.

![Figure 5](image)

Figure 5 The basic element containing one bit of information.

Figure 5 illustrates the circuit which stores a one-bit unit of information.
The locomotive may enter the circuit either through the gate R or through the gate W.

If it enters through the gate R where a memory switch sits, it goes either through the track marked with 1 or through the track marked with 0. When it crossed the switch through track 1, 0, it leaves the unit through the gate B_1, B_0 respectively. Note that on both ways, there are fixed switch sending the locomotive to the appropriate gate B_i. Note that when the locomotive leaves the unit, no switch was changed. If the locomotive enters the unit through the gate W, it is sent to the gate R, either through track 0 or track 1 from W. Accordingly, the locomotive arrives to R where it crosses the switch passively, leaving the unit through the gate E thanks to a fixed switch leading to that latter gate. When the locomotive took track 0, 1 from W, the switch after that indicates track 1, 0 respectively and the locomotive arrives at R through track 1, 0 of R. The tracks are numbered according to the value stored in the unit. Note that when the locomotive leaves the unit, two switches were changed: the flip-flop at W and the memory switch at R.

By definition, the unit is 0, 1 when both tracks from W and from R are 0, 1 respectively. So that, as seen from that study, the entry through R performs a reading of the unit while the entry through W, changes the unit from 0 to 1 or from 1 to 0: the entry through W should be used when it is needed to change the content of the unit and only in that case. The structure works like a memory which can be read or rewritten. It is the reason why call it the one-bit memory.

We shall see how to combine one-bit memories in the next sub-section as far as we introduce several changes to the original setting for the reasons we indicate there.

2.2 Tuning the railway model

We first look at the implementation of the tracks in Sub-subsection 2.2.1 and how it is possible to define the crossing of two tracks. In Sub-subsection 2.2.2 we see how the switches are implemented. Then, in Sub-subsection 2.2.3 we see how the one-bit memory is implemented in the new context and then, in Sub-section 2.2.4 how we use it in various places. At last but not the least, we shall indicate how registers are implemented in Sub-subsection 2.2.5.

2.2.1 The tracks

The tracks play a key role in the computation, as important as instructions and registers: indeed, they convey information without which any computation is impossible. Moreover, as can be seen in many papers of the author, that one included, it is not an obvious issue which must always be addressed.

It is not useful to list the similarities and the distinctions between the present implementation and those of my previous papers. The best is to focus on the implementation used by this paper. If the reader is interested by the comparison
with previous implementations the references already indicated give him/her access to the corresponding papers.

The tracks are one-way. It is already needed by the constraint of outer totalisticity. Indeed, in previous papers, the elements of tracks consist of a blank cell with a few non-blank neighbours placed at appropriated places. We indicate those non-blank neighbours as well as their places by the word decoration. In previous papers, the motion was organised according to the following scheme:

\[
\text{WWW LWW VLL WWW} \tag{1}
\]

Under the constraint of outer totalisticity, such a scheme cannot work: if all elements of the track are identical and if the moving state is always the same, the sum of indices of the non-blank states in the neighbourhood is the same in all the above patterns so that as far as \(L \) occurs in a cell, it is seen by two neighbouring cells. Accordingly, \(L \) will appear in both neighbours of the cell, which is not what is expected. Accordingly, we replace (1) by the following scheme:

\[
3B234234 34B34234 342B34234 3423B234 3423B234 342342B4 \tag{2}
\]

The motion is represented by a moving locomotive which successively takes different colours in consecutive cells which differ by their decorations according to a periodic pattern. The successive pattern is defined by \(234 \) where 2, 3 and 4 refer to the number of non-blank cells in the corresponding decorations of the cells as illustrated by Figure 6.

Now, as soon will be seen, we need a two-way circulation in some portions of the circuit. It is a point where the third direction comes to help us. In many portions, the circuit can be implemented on a fixed plane we call \(H \), already mentioned in the introduction. Roughly speaking, the traffic in one direction will occur in \(H_u \), \(H_b \) while the reverse running will be performed in \(H_b \), \(H_u \) respectively. Occasionally and locally, we shall use a plane \(V \) which is orthogonal to \(H \).

The present organisation of the one-way tracks is very different from all the implementations described in the previous papers of the author. As already mentioned, we mark the elements of a track by milestones whose set constitutes the decoration of the element. But here, the decorations are different and their succession is performed according to the periodic repetition of the same pattern, namely \(234 \), as already indicated. As in [11], the return motion along a track in \(H_u \), \(H_b \) is performed along another track which is placed in \(H_b \), \(H_u \) respectively. But, contrarily to [11], the elements of the return track does not share its face 0 with that of the direct track. In order to make things more accurate, we say that a track is a sequence of elements such that its consecutive members can see each other but it cannot see other elements outside its neighbours in the sequence. Moreover, we require that each element of the track has a side on a line of \(H \) which indicates the direction of the track. We say that the track follows that line. We define a path to be a sequence of tracks which are linked in some way which will be later explained. Elements in a path are imposed the same conditions as elements in a track with respect to the elements they can
see. The left-hand side part of Figure 7 illustrates a track while its right-hand side part illustrates the same track together with its return track.

![Figure 6](image1.png)
Figure 6 Three consecutive elements of a track illustrating the pattern 234.

![Figure 7](image2.png)
Figure 7 To left, a track, to right its return track. They both follow the same line.

On that latter part of the figure, note that the return track follows the same line as the direct one, but it lies in the other half-space with respect to H. As long as it will be possible, the return track will follow the line followed by the direct one. Also note that the direction of the motion is defined by the order of the decorations in the pattern 234. It is a reason why we need a pattern with three elements: with two ones, the orientation would be ambiguous. Another reason is given by the totalistic constraint: a two-elemented pattern would also raise ambiguity.

The decorations of the elements in the pattern 234 are defined by (3):

\begin{align*}
2 \Rightarrow \Delta_i, \ i = 7, 8: \text{g, others:w} \\
3 \Rightarrow \Delta_i, \ i = 7, 8: \text{g, 11:r, others:w} \\
4 \Rightarrow \Delta_i, \ i = 7, 8, 10: \text{g, 11:r, others:w}
\end{align*}

(3)

The indices of the neighbours constituting the decoration of an element of the track in (3) are not at all mandatory. The reason is that the new state of the cell depends on its current state and on the sum of the current states of its neighbours. That sum does not depend on which faces the milestones are placed. That feature gives us some freedom in the place of the milestones. The main constraint is that the milestones of an element η of the track τ should not be seen by a neighbour of η also belonging to τ. Also, it should not be seen by
the elements of the return track of τ. The constraint given in the definition of the return track entails that an element of the return track of a track τ cannot see any element of τ. As we consider that, most often, the face 0 of an element of the track lies on τ, we may consider that the milestones belong to the upper crown of the element and that their place in the crown is most often arbitrary. Of course, we shall mention the right place when it is needed to fix it.

The freedom which is given by the totalistic condition gives us a large flexibility in order to connect two consecutive tracks of a path. We postpone a more precise description to the next sub-subsection, Sub-subsection 2.2.2.

2.2.2 The switches

We define a path joining A to B, where A and B are two tiles of the dodecagrid, as a sequence $\{T_i\}_{i \in \{0..n-1\}}$ of tiles such that T_i and T_{i+1} can see each other for $0 \leq i < n-1$ but T_i and T_j cannot see each other if $|i-j| > 1$. We say that n is the length of the just mentioned path joining A to B. We call distance from A to B, denoted by $\text{dist}(A, B)$, the shortest length among the lengths of the paths joining A to B. Clearly, $\text{dist}(A, B) = 0$ if and only if $A = B$. Clearly too, that distance satisfies the triangular inequality. A circle of radius r in \mathcal{H} around T in \mathcal{H} is the set of tiles in \mathcal{H} whose distance from T is r. Removing the condition to be in \mathcal{H} we get a sphere of radius r around T. A ball of radius r around T is the set of tiles in all spheres of radius ρ around T with $\rho \leq r$. If $T \in \mathcal{H}$, the trace in \mathcal{H} of a ball of radius r around T is a disc of radius r around T. In many figures in the Poincaré’s disc, what we call a window focusing on a tile T is a disc of radius 3 around T.

The section follows the implementation described in [5]. We reproduce it here for the reader’s convenience. The illustrations of the section show us what we call an idle configuration. The view given by such pictures is a window focusing on what we call the centre of the switch. An idle configuration is a configuration where there is no locomotive within the just defined window. Figure 8 shows us three windows focusing on the central tile of a passive fixed switch: according to what we said in Section 2.2, there is no active fixed switch.

In the three configurations of Figure 8 the left-hand side track is the same. There is just a change in the place of the 3-tiles of the decoration of the central tile as mentioned in the caption of the figure. In the leftmost picture, the abutting tracks at the central cell place two 3-tiles as neighbours of the central tile.

In the middle picture of the figure, if we continued the right-hand side track, it would place a 2-pattern as a neighbour of the central cell instead of a 3-one. It is the reason why the right-hand side track is replaced by a path which consists of the following tiles: (4)-3, (4)-7, (4)-2, (4)-2, (4)-2, (4)-2. The number inside parentheses refers to the sector, then the second number is that of the tile in the sector and the possible lower index i refers to the i-neighbour of the tile. Note that the just mentioned elements satisfy the conditions put on elements of a path. Keeping the same notation, we note that (4)-3 is a 4-tile, so that implementing the 234-pattern we get, starting from (4)-3: 423423. Accordingly,
(3)-1 becomes a 3-tile and it is a neighbour of the central tile which is a 4-tile, so that the expected pattern is continued. We can conclude that the motion we defined in Sub-subsection 2.2.1 is possible on that implementation of the passive fixed switch.

Figure 8 Idle configurations of a passive fixed switch. Note that in the central tile of the rightmost picture, the place of the 4-tiles is not the same as in the central tile of the other pictures, but the number of those tiles is the same in the three pictures.

In the rightmost picture of Figure 8 the right-hand side track would abut the central tile with a 4-tile, which does not fit the 234 period. We replace that tile by the following path: (4)-3, (4)-7, (4)-2, (4)-2, (4)-2, (3)-1, (3)-1, (3)-1. In the figure, the tile (3)-1 is not represented but its two neighbours (3)-1 and (3)-1 are represented with a different colour as the other tiles of that path whose elements observe the conditions of an element of a path with respect to its neighbours in the path. Starting from 3 at (4)-3, we get: 3423423423, so that 0 is a 3-tile, which is in agreement as a neighbour of 0, as far as 0 is a 4-tile.

Accordingly, we have the solution for implementing the passive fixed switch. We fix the central tile on a tile T of a path provided that it is a 4-tile. If the arriving right-hand side branch falls as in the leftmost picture of Figure 8 there is nothing to do. If it is not the case we are then either in the situation of the middle picture of that figure or in the situation described by the right-hand side picture. We shall use that solution in other situations.

We can now turn to the fork, another structure close to the fixed switch. Indeed, we can see the fork as a reverse passive fixed switch. The totalistic condition allows us to keep an element of the track as central tile of the fork.

We decide that the central tile of the fork is a 2-tile. Accordingly, depending on conditions at the other end of the paths leaving the fork, it may be needed to tune the arrival at the fork. It is illustrated by Figure 9 which implements the same solutions as in Figure 8 for the passive fixed switch.
We remain with the implementation of the controller. We postpone its precise description to Section 3 as far as the controller has a special decoration as well as the tile which gives access to the controller.

Before turning to the more complex switches, we have to look at the implementation of crossings. We take advantage of the flexibility given by the totalistic constraint for that purpose. Figure 10 illustrates the implementation of a tunnel in order to define a crossing. The figure shows us two tracks, one following a red line, the other following a blue line. The left-hand side picture is a projection on \(\mathcal{H} \) while the right-hand side one is a projection on \(\mathcal{V} \), a plane which is perpendicular to \(\mathcal{H} \) and which contains the blue line.

In the projection on \(\mathcal{V} \), we can see that a path joins a tile in \(\mathcal{H}_u \) to another one in \(\mathcal{H}_u \) which is on the other side of the red line. More other, that path does not contain a neighbour of the central tile, neither by the element themselves nor by the tiles belonging to the decorations of those elements. We can see that two elements of the path represented in \(\mathcal{V} \) around the central tile are share a vertex only with the tile which is represented by the central tile in the projection over \(\mathcal{H} \). Not that it could also be possible to organise the crossing as a bridge over one of the tracks, but that would involve more tiles in the path.

\[\text{Figure 9 Idle configuration of a fork} \]

\[\text{Figure 10 Idle configuration of a tunnel. To left, projection on } \mathcal{H}. \text{ To right, projection on } \mathcal{V}. \]
We are now ready to investigate the flip-flop and the memory switches. The flip-flop switch and both parts of the memory switch require a much more involved situation. The global view of an idle configuration of the flip-flop is illustrated by Figure 11.

\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{flip-flop-switch}
\caption{Scheme of the implementation of a flip-flop switch with, to right, a zoom on S. In the zoom, note the crossing \times of a leaving track by the deviated route to S.}
\end{figure}

The locomotive arrives through a segment of a straight line by C where a fork sits. Accordingly, two locomotives leave C, one of them towards L, the other towards R. At L a controller sits and, on the figure, it let the locomotive go further on the segment of straight line. Note that the path from C to L is also a segment of a straight line on the figure, which is conformal to the implementation. Now, the structures which are later involved make the length of that segment to be huge. At R too a controller is sitting but, on the figure, it kills the locomotive which is thus prevented to go outside the switch. On the way from C to R the locomotive meets another fork at A. The fork sends one of the new locomotives to R where it is stopped in the situation illustrated by the figure and the other is sent to S. There a fork is sitting too which sends two locomotives, one of them to L, the other to R. When they reach their goal, the locomotives change the configuration of the controller which is sitting there. The controller which let the locomotive go will further stop it while the one which stopped it will further let it go. Accordingly, after the passage of a locomotive and after a certain time, the configuration of the flip-flop switch is that we described in Sub-section 2.1.

We have now to clarify the implementation of the controller. It is illustrated by Figure 12.

Here, the central cell below H is not an element of the track. Its decoration consists of five \mathfrak{g}-tiles which are placed, for instance on the faces 6, 7, 8, 9 and 10 of the tile. In order to avoid problems with a neighbour, those milestones should be placed on the upper crown of the tile.
Figure 12 The idle configuration of the controller. To left, upon \mathcal{H}, the track; to right, below \mathcal{H}, the controller and its access by a locomotive.

Figure 11 requires the explanation of the zoom: three tracks abut the point S which is supposed to behave like a fork. However, the configuration of the tracks abutting the central tile of a fork is different. It is the reason for which the track arriving to S from A is deviated near S as indicated in the zoom so that the new configuration is conformal to that of a fork. Note that the pieces constituting the deviation of the track are segments of straight line in Poincaré’s disc model. The price to pay is a crossing at x on the picture illustrating the zoom.

We are now in position to deal with the memory switch, active and passive parts.

We first deal with the active part. It looks like the flip-flop switch with this difference that there is no fork A in between the path from the initial fork C to R, one of the controllers. Figure 13 illustrates both parts of the memory switch: to left, the active part of the switch, to right, its passive part.

Figure 13 To left, the active memory switch, to right, the passive one.

In the active part of the switch, left-hand side picture of Figure 13 the
locomotive arrives to a fork sitting at C. From there two locomotives are sent, one to L, the other to R and the working of the switch at this point is alike that of a flip-flop switch. The difference lies in the fact that the passage of the locomotive does not trigger the exchange of the roles between the controllers. That change is triggered by the passage of a locomotive through the non-selected track of the switch. When it is the case, a locomotive is sent from the passive part to the active one. That locomotive arrives at the fork which is sitting at S. The fork creates two locomotives which are sent to L and R in order to change the permissive controller to a blocking one and to change the blocking one into a permissive one.

Let us look at the working of the passive part. The locomotive arrives to the switch through P or through Q. Assume as it through P. A fork sitting at P sends a locomotive to the fixed switch F which let the locomotive leave the switch. The other locomotive sent by P goes to L. If that side is that of the selected track, the controller sitting at L blocks the locomotive so that no change is performed, neither in the passive switch, nor in the active one. Accordingly, the selected track of the active switch is controlled by a permissive controller while the corresponding selected track of the passive switch is controlled by a blocking controller. Presently, assume that the side of L is not that of the selected track. It means that L let the locomotive go to T where a fixed switch sends the locomotive to a fork at U. That fork sends a locomotive to the fork S of the active switch and the other locomotive is sent to S of the passive switch. At that point S in the passive switch, a fork sends a locomotive to L and another one to R in order to change the working of both controllers to the opposite task. As a parallel change occurs in the active switch the selected track is redefined in both parts of the switch.

That working raises several remarks. First, the role of the controllers in the active and in the memory switches are opposite. Nevertheless, in both cases, the same programmable controller is used exactly because it is programmable in the way we just described. A second remark is that we used one crossing, two fixed switches, at F and at T and four forks, at P, Q, U and S. Each structure requires some space, at least a disc whose radius is the length of four tiles aligned along a straight line. Consequently, the passive memory switch requires a huge amount of tiles.

2.2.3 The one-bit memory

It is now time to implement the one-bit memory. Figure 14 illustrates the construction.

We can see the active memory switch at R and the passive one at E. The dark lettres which stand by the blue circle indicate gates of the one-bit memory: W, R, E, b_0 and b_1. We can easily see that if the locomotive enters the unit through the gate R, then it leaves the memory through the gate b_0 or through the gate b_1 depending on the information stored in the memory: that information is provided the unit by the positions of the switch at W and those at R and E. Note that the positions at R and at E are connected by the path
from \(E \) to \(R \), see the figure.

![Figure 14](image)

Figure 14 The idle configuration of the one-bit memory. Note the four crossings in the implementation. Note that the connection from \(E \) to \(R \) is realized by three segments of straight lines.

When the locomotive enters the memory through the gate \(W \) where a flip-flop switch is sitting, it goes to \(R \) through one of both tracks leaving the switch. If it goes through the track marked by \(0, 1 \), it arrives to \(E \) by the track marked with the opposite symbol, \(1, 0 \) respectively. Indeed, when the locomotive crosses \(W \), the passing makes the selected track to be changed so, if it went through one track, after the passage, in particular when the locomotive arrives at \(E \), the new selected track at \(W \) is the track through which the locomotive did not pass. So that the track marked by one symbol at \(W \) should be marked by the opposite one at \(E \).

As the one-bit memory will be used later, we introduce a simplified notation: in Figure 14 the memory structure is enclosed in a blue circle. At its circumference the gates are repeated by the same symbols. In the next figures, when a one-bit memory will be used, we shall indicate it by a light blue disc with, at its border, the five gates mentioned in Figure 14.

2.2.4 From instructions to registers and back

As will be explained in Sub-subsection 2.2.5, the locomotive arrives at a register at a point which depends on the type of the operation to be performed. It depends on the type only, whether it is a decrementation or an incrementation. It does not depend on namely which instruction of the program required the execution of that operation. Moreover, the return path of the locomotive once it performed its operation is the same in most cases. Accordingly, when the locomotive goes back from the register to the program, it is important to define
the point at which it will return. Correspondingly with what we said, the unique solution is to keep track of that information before the locomotive enters the register where that information disappears.

To that goal we define a structure D_I for each register as follows. The structure consists of as many units as there are instructions incrementing that register, say R, in the program. Each unit is based on a one-bit memory and Figure 15 illustrates such a unit. The working of D_I is the following. An instruction for incrementing R is connected through a path to a specific unit of D_I. The path goes from the program to the W-gate of that unit. At the initial time, the configuration of D_I is such that all its unit contain the bit 0: the switches of the one-bit memory are in a position which, by definition defines bit 0. Accordingly, when the locomotive enters the unit, it will change the flip-flop and the memory switches so that, by definition, the memory contains the bit 1. The locomotive leaves the memory through the gate E and it meets a flip-flop switch at A which, in its initial position, sends the locomotive to R.

Note that when the locomotive leaves D_I a single unit of the structure contains the bit 1 and selects a path to the program at its flip-flop switch.

Similarly, a structure D_D memorises which instruction required a decrementation of that register. The structure contains as many unit as there are instructions of the program which decrements that register. But instead of containing one bit, each unit contains two of them. Those bits are either both 0 or both 1. Before the arrival of a locomotive to D_D, both bits of each unit are set to 0. When the locomotive enters the structure, it arrives at the unit which corresponds to the instruction which sent it to that register. The locomotive sets both bits of the unit to 1. When it leaves D_D, a single unit contains its both bits set to 1.

But just before entering the register, the locomotive enters a third structure, D_O, which memorises which type of instruction operates on the register. The structure contains two one-bit memories which are set to 0 in its initial configuration. If the locomotive comes from D_I both bits remain 0. When it comes from D_D, both bits are set to 1.

Accordingly, when the locomotive goes back from the register, if the bits of D_O are set to 0, it goes back to D_I. There, the locomotive goes to the unique unit whose bit is set to 1 and the unit sends the locomotive back to the program at the right instruction by an appropriate path. If the bits of D_O are set to 1, the arrival to D_O depends on whether the decrementation was possible or not: there are two arriving paths to D_O. The locomotive reset both bits to 0 and it leaves the structure through the appropriate path: that which corresponds to a successful decrementation or that which corresponds to the case of a register containing 0.

Let us first consider the case of D_I. The structure of a unit is illustrated by Figure 15.

When the locomotive completed the incrementation of R it goes back to the program. In order to find the appropriate way, it visits the units of the D_I attached to R until it finds the single unit whose one-bit memory is set to 1. Then, the locomotive rewrites the bit, turning it to 0 and again exits through
the gate E. It meets the flip-flop switch at A which sends the locomotive on its other path which leads it back to the program. That new visit of the flip-flop switch at A makes the switch again select the track leading to R. Accordingly, when the locomotive leaves \mathbb{D}_I the structure recovers its initial configuration.

Figure 15 The idle configuration of a unit of the structure which memorises the right incrementing instruction. Note the three crossings in the implementation. Also note that the intensive use of sequences of connected segments of straight lines.

We can check on Figure 15 that the implementation it gives for a unit entails a working which is conformal to the above scheme.

When the locomotive comes from an incrementing instruction of the program, it arrives at the corresponding unit of the right \mathbb{D}_I through the gate W of that unit. Accordingly, it changes a bit 0 to 1 and leaves the memory through E. From there it meets A where the flip-flop switch sends it to R: as the unit contained 0, the switch at A selects the path leading to R. When it leaves A, the flip-flop now selects the other path, that which leads back to the program.

When the locomotive comes back from \mathbb{D}_D, it arrives to the closest unit of \mathbb{D}_I through its gate R. If the locomotive reads 0, it leaves the unit through b0 and the corresponding path sends the locomotive to the next unit. Accordingly, the locomotive crosses the units containing 0 until it arrives to the R-gate of the single unit containing 1. As far as it reads 1, the locomotive leaves the memory through b1 on a path which leads it to W again. Accordingly, the locomotive rewrites the content of the memory which is thus changed from 1 to 0. The locomotive again leaves the memory through E and meet A where the flip-flop switch presently sends it to the program. When leaving A, the switch is changed and it again selects the path leading to R, so that that \mathbb{D}_I recovers its initial configuration. The scheme allows us to correctly simulate the working of the units of \mathbb{D}_I.

Presently, we examine the structure \mathbb{D}_D which plays for the decrementing
instruction the role that D_1 does for the incrementing ones. The structure is more complex for the following reason. An incrementing instruction is always performed which is not necessarily the case for a decrementing instruction. Indeed, if the register contains the value 0, it cannot be decremented. We say that the register is empty. In that case, the next instruction to be performed is not the next one in the program. It is the reason why the case of an empty register requires a particular treatment. Concretely, it means that the return track of the locomotive depends on whether the register was empty or not at the arrival of the locomotive.

Accordingly we need two one-bit memories instead of one. More over, as far as the bit 1 locates the unit of D_D which will send the locomotive to the right place in the program, the content of the memories should be the same: 0, if the locomotive did not visited that unit at its arrival to D_D, 1 if it visited the required unit. As there are two return tracks after decrementation, the D-track is used when the decrementation could be performed, the Z-track is used when the decrementing locomotive found an empty register. We call D-, Z-memory the one-bit memory visited by D-, Z-track respectively. The complication entailed by that organisation makes a representation of a unit in a single window hardly readable. It is the reason why it was split into three windows as illustrated by Figure 16.

To left, we have the D-memory. It is represented by the left-hand side picture of the figure. A locomotive sent by the program for decrementing a register R arrives at the appropriate unit of the D_D attached to R by the track marked by D in the picture. As far as the locomotive enters the memory through its W-gate, it rewrites its content from 0 to 1. Now, it has to mark the Z-memory which is represented on the right-hand side picture of the figure. To that goal, the track leaving the D-memory through its gate E, goes to the point c, that italic lettre marking a small yellow disc close to the border of the window. The track is continued from a small yellow disc close to the border of the right-hand
side window marked with the same lettre c. Other such discs in the figure are marked by other lettres which are pairwise the same in two different windows. From that second c, the track leads the locomotive to the gate W of the Z-memory whose content, accordingly, will be changed from 0 to 1. Leaving the Z-memory through its gate E, the locomotive is lead to a small disc d so that the corresponding track is continued by the small disc d we find in the middle window of Figure 10. From there, the locomotive is lead to a flip-flop switch sitting at F which, in its initial configuration, selects the track leading to R. Now, after the switch is passed by the locomotive, its selection is changed, indicating the track leading to another switch sitting at A. Consider the case when the locomotive returns from R after a successful decrementation. It one by one visits the units of \(D_{D} \). It arrives to the gate R of the D-memory of a unit. If it reads 0, the track issued from b0 of the D-memory leads the locomotive to the R-gate of the D-memory of the next unit. So that such a motion is repeated until the locomotive reads 1 in the unique D-memory whose bit is 1. When it is the case, the locomotive leaves the memory through its b1-gate which leads the locomotive to a small disc a, so that the track is continued from the small disc a we can see in the middle picture of Figure 10. From there, the locomotive arrives to P, the passive part of the memory switch whose active part lies at A. The locomotive is sent from P to a small disc e whose track arriving there is continued by the track issued from the small disc e of the left-hand side picture of the figure. That track leads the locomotive back to the W-gate of the D-memory. Consequently, the content 1 of the memory is returned to 0 and leaving the memory through its gate E, the locomotive again arrives to the W-gate of the Z-memory through the small discs c. That visit rewrites the bit of the Z-memory from 0 to 1. Then, the locomotive leaves the Z-memory through its E-gate which sends the locomotive to the small disc d which, through the other such disc in the middle window, again arrives at A. As far as it took much more time for the locomotive to rewrite both memories of the unit than for another locomotive to go from P to A in order to set the selection of the active switch, the switch a A indicates the track corresponding to the branch Pa of the passive switch. That track leads to the right decrementing instruction in the program.

Presently, consider the case when the locomotive returns from an empty R. It returned through the Z-track and it arrives to the \(D_{D} \) attached to R. There it visits the units of the structure reading the content of its Z-memory through the track leading to the R-gate of that memory in the unit. So that the locomotive visits the units until the single one whose Z-memory contains 1. When it is the case, the locomotive leaves the Z-memory through its b1-gate which sends it to the W-gate of the D-memory through the small disc b. But the continuation happens by b of the middle picture which leads the locomotive to P. The passive switch sends the locomotive to e and from there to the W-gate of the D-memory, P remembering that the locomotive arrived through the Pb-branch of the switch. Accordingly, what we seen in a visit through a unit thanks to the D-track occurs once again. Accordingly, the locomotive rewrites the contents of both the D- and the Z-memories, returning them from 1 to 0.
Then, the locomotive leaves the Z-memory through its E-gate so that, via the disc d, it arrives to F where the flip-flop switch sitting there sends it to the switch sitting at A. Now, during its trip for the E-gate of the Z-memory to the W-gate of the D-memory, the locomotive arrived to P through the branch Pb of that passive switch. Accordingly, the switch selected that track and, in the meanwhile, sent another locomotive to A in order to select the appropriate track, that which leads to Z in the program. As the locomotive passed for a second time through F, the switch selects presently the track leading to R, its initial configuration, up to the configuration at A which can be arbitrary as shown by our discussion. Accordingly, the scheme illustrated by the picture performs what is expected.

Presently, we arrive to the structure D_O which is illustrated by Figure 17. As mentioned in the caption, the figure very much looks like Figure 16. Indeed, the middle picture is almost the same in both figures while the other pictures are a bit simpler in Figure 17. Indeed, in the middle picture, the paths leaving A go to different places that in Figure 16.

![Figure 17](image)

Figure 17 The idle configuration of a unit of the structure which memorises the type of the current instruction. The structure looks like very much a unit of D_D as displayed by Figure 15 although it is a bit simpler.

As indicated by the leftmost picture of Figure 17, when the locomotive comes from an incrementing instruction via a D_IN-structure, it does not cross the D_O-structure which remains with both its memory-units set to 0. It directly goes to the register via a path which is specific to incrementing instructions for that register. As the one-bit memories will be distinguished in what follows, we denote them by D and Z respectively as in a unit of a D_D-structure. When the locomotive comes from a decrementing instruction via a D_D-structure, it enters the D_O of the register through the W-gate of its D-memory. Accordingly, the bit of that unit is set to 1. The locomotive exits from the D-memory through the gate E and then, through the small circle c, it is sent to the W-gate of the Z-memory, see the small disc c in the rightmost picture of Figure 17. Accordingly, the bit of the Z-memory is set to 1. Exiting from the gate E of the Z-memory, the locomotive is sent via the discs d to that of the middle picture of the figure. From that d-disc, the locomotive is sent to a flip-flop switch sitting at F which sends the locomotive to the register, through a path which is specific to the
decrementing instructions for that register. After crossing F, the switch sitting there now selects the track leading to the switch at A.

Consider the case when the locomotive returns from the register after executing an instruction. It is the same track if the instruction could be completely performed. The track arrives at the gate R of the D-memory. It the locomotive reads 0, the $b0$-gate sends it to the program, to the instruction following the incrementing instruction which was executed. The $b0$-gate sends the locomotive to the small disc f_1, so that it directly goes to the disc f_2 from which the track leads to the program. If the locomotive reads 1, the $b1$-gate sends the locomotive to a disc a which indicates the continuation through the disc a of the middle picture of the figure. There, the locomotive is sent to the passive memory switch sitting at P. Accordingly, that switch orders the switch at A to select the path leading to the D_D of the register. After crossing P, the locomotive arrives at the small disc marked by e, so that it continues its way through the small disc e of the leftmost picture of the figure. Then the enters the D-memory through its W-gate, so that it rewrites the bit from 1 to 0. Leaving the memory through E, the locomotive is sent through a small discs c to the W-gate of the Z-memory whose bit is turned from 1 to 0. The locomotive is sent through the small discs d to the flip-flop switch at F. As the D_O-structure had its memories set to 1, they must be returned to 0. Now, the locomotive arrives through the Z-path at the R-gate of the Z-memory. As far as the decrementing instruction visited D_O before arriving at the empty register, the Z-memory bit contains 1, so that the locomotive leaves that memory through its $b1$-gate which sends the locomotive to the small disc b. The continuation happens in the middle picture where the small disc marked with b sends the locomotive to P where a passive memory switch sits. As far as the locomotive arrives at P through the branch Pb of the switch, P makes the active switch sitting at A select the track leading to D_D via the Z-path. The locomotive leaves P, going to e where the continuation occurs in the leftmost picture of the figure. There, the locomotive is sent to the W-gate of the D-memory whose bit is accordingly turned from 1 to 0. As in the case we have seen for a successful decrementation, the locomotive via the small discs c is sent to the W-gate of the Z-memory whose bit too is changed from 1 to 0. At F, the flip-flop switch indicates the path to A as far as when it arrived to D_O the bits of the structure were set to 1, so that the locomotive is sent to D_D via the Z-path. As far as the locomotive crossed F the flip-flop switch changes its selection so that it again selects the path to the register. Accordingly, the locomotive leaves D_O in
the initial condition of the structure, up to the switch at \(A \) whose selection is arbitrary.

At last and not the least, we have to look at what happens when the locomotive arrives to the program after performing its operation on the register. Two cases occur: the new instruction is the next one in the program after the previous one; the new instruction occurs at another place in the program. In both cases, the return track leads the locomotive to the appropriate place.

2.2.5 Constitution of a register

The implementation of the register requires a special examination. Weak universality means that the initial configuration is infinite but not arbitrary. In the present paper, it will be periodic outside a large ball containing the implementation part of the program and also the first unit of the two registers needed for universality, according to Minsky’s theorem, see [13]. Each register, in some sense, follows a line and that construction along each line is periodic.

A register consists of infinitely many units which we may index by \(\mathbb{N} \). Let \(R \) denote a register. By \(R(n) \), we denote the \(n \)th unit. We shall call \(R(0) \) the first unit of the register. Each unit contains two one-bit memories. Both memories contain the same bit when the locomotive is away from the register. At each time \(t \) of the computation, there is a number \(c_t \) such that the bits of \(R(n) \) are both set to 0 when \(n \geq c_t \) and all of them are set to 1 when \(n < c_t \). We say that \(c_t \) is the value of the register. We also say that it is its content. When \(c_t = 0 \) we also say that the register is empty. In that case, the bit in all memories of all units of the register is set to 0.

![Figure 18](image-url)
Figure 18 The idle configuration of a unit of a register. We can see the memories devoted to the materialisation of the content of the register. On the bottom, the access to the unit, on the top the return path and the auxiliary paths used for performing a decrementation.

On Figure 18 we display such a unit. In order to make the structure more visible, we use two windows: one focuses on what we call the I-memory the
other focuses on the D-memory. On the lower part of each window, we can see two paths delimited by small circles. Those small circles are devoted to allow the locomotive to go from the left-hand side path to the right-hand side one when the paths are marked by the same letter. A similar organisation can be seen above the one-bit memories but, this time, the locomotive goes from the right-hand side window to the left-hand side one.

2.3 Operations on a register

Presently, we describe how the operations on a register are performed by a locomotive. Sub-subsection 2.3.1 deals with incrementation while decrementation is dealt with by Sub-subsection 2.3.2. In both cases of our discussion, the reader is invited to follow the arguments on Figure 18.

2.3.1 Incrementation

When a locomotive arrives from the D₀-structure of the register R at its first unit in order to increment R, the locomotive is running on the path I of the units which is devoted to perform the incrementation. The path I leads the locomotive to the R-gate of the I-memory of the unit. Remember that both units contain the same bit.

If the locomotive reads 1 in the I-memory, it leaves the memory through its gate b₁ so that the locomotive follows the continuation of the path I until it arrives at the next unit.

Accordingly, the locomotive crosses the units which contain 1 until it reaches \(R(n) \) for the smallest \(n \) such that the unit contains 0. Consequently we are in the case when, entering the I-memory through its R-gate, the locomotive reads 0, so that it leaves the memory through its gate b₀. There, a path leads the locomotive to the W-gate of the same memory, so that the locomotive rewrite its bit from 0 to 1. It exits through the E-gate of the memory where it is led to a small disc \(s \) indicating a continuation through another \(s \) small disc of the right-hand side window. From that second \(s \), the locomotive goes to the W-gate of the D-memory, so that the second bit of the unit is turned from 0 to 1. Accordingly, when the locomotive leaves the D-memory through the E-gate, the unit is set to 1 which means that the incrementation is performed. From the E-gate, the locomotive is led to the R-path which is a return path, leading the locomotive back to the D₀-structure. From there, the locomotive will reach the D₁-structure which will send it back to the appropriate place in the program.

2.3.2 Decrementation

Presently, consider the case of a locomotive coming to R in order to decrement it. The locomotive arrives at the first unit through the path D.

We first consider the case when the content \(c \) of R is positive. The locomotive arrives at \(R(0) \) through a path D which we can see on the lower part of the left-hand side part of Figure 18. The path is continued on the right-hand side
part and it leads the locomotive to the \textbf{R}-gate of the \textbf{D}-memory. As far as \(c > 0\), the locomotive reads 1. Leaving the memory through its gate \(b_1\), the locomotive is sent back to the \(D\)-path in order to go to visit the \textbf{D}-memory of the next unit.

Accordingly, the locomotive arrives at \(R(c)\) whose content is 0 as well as the content of \(R(n)\) for \(n \geq c\). It means that the locomotive has to go back to \(R(c-1)\) in order to set the content of that unit to 0. To that goal, the locomotive is sent from \(b_0\) to a path \(wd_1\) which leads the locomotive to the \textbf{W}-gate of the \textbf{I}-memory of \(R(c-1)\). So that the locomotive follows the same path as in the case of an incrementation. Now, remember that entering a one-bit memory through its \textbf{W}-gate rewrites its bit: if it is 0, it becomes 1, it is 1, it becomes 0. By assumption the bits in the memories of \(R(c-1)\) are both set to 1 so that entering the \textbf{W}-gate of the \textbf{I}-memory, the locomotive eventually leaves the \textbf{D}-memory through its \textbf{E}-gate which sends it to the return path \(R\) and both memories of the unit are set to 0. Consequently, in that case, the locomotive performed the decrementation. The \(D_O\)-structure will send it to the \(D_D\)-one through the \(D\)-path so that the locomotive will reach the program at the appropriate place.

Presently, consider the case when \(R\) is empty. The locomotive still arrives at the \textbf{R}-gate of the \textbf{D}-memory of the first unit of \(R\). But reading 0, the locomotive leaves the unit through the \(b_0\)-gate which sent it to an auxiliary path, the \(wd_1\)-one which initiates the \(Z\)-path going to the \(D_O\)-structure. The locomotive is sent through the \(Z\)-path to the \(D_D\)-structure, so that it eventually reaches the appropriate place of the program.

Figure 18 illustrates the arrival of the locomotive at the \textbf{W}-gate of the \textbf{I}-memory through another auxiliary path, \(wd_2\), which comes from the unit \(R(n+1)\) assuming that the figure illustrates \(R(n)\). Clearly, the incrementation is performed on the unit where the locomotive reads 0, the decrementation is performed in the preceding unit which explains what happens when the register is empty. Accordingly, a successful decrementation implies that the locomotive goes back through the \(R\)-path while an unsuccessful one implies the return through the \(wd_1\)-path: it is always possible to fix that one for the units with an even index while \(wd_2\) operates for the units whose index is odd.

3 The rules

In Sub-section 3.1, we define the format of the rules and we discuss the way we define the totalisticity. In Sub-section 3.2 we give the rules for the elements of the tracks, for the control and for the forks.

3.1 Format of the rules and totalisticity

A cell of the dodecagrid in the present cellular automaton consists of two elements: a tile of the tiling, we call it the \textbf{support} of the cell, and a finite automaton defined by the rules of the present section. Note that the finite automaton is the same for all cells. The neighbours of a cell \(c\) whose support is \(\Delta\)
are the cells whose support are the Δ_i, $i \in \{0..11\}$, where Δ_i shares the face i of Δ. In that case, Δ_i is called the ith-\textit{neighbour} of c, its i-neighbour for short. The numbering of the faces is the one we described in Section I with the help of Figure II.

As usual, we call \textbf{alphabet} of our cellular automaton the finite set of its possible states. In the present case, the alphabet of our cellular automaton consists of W, B, R, and G. We also call W the \textbf{blank} as far as it is the state of the cells of the dodecagrid except finitely many of them. Let c be a cell of the dodecagrid whose state is s_o and whose support is Δ, and let s_i be the state of its i-neighbour. Let s_n be the \textbf{new} state of c, \textit{i.e.} the state taken by c when it is the state associated with s_o and the s_i by the automaton. We write this as follows:

$$s_o.s_0s_1s_2s_3s_4s_5s_6s_7s_8s_9s_{10}s_{11}.s_n \quad (1)$$

and we say that s is a \textbf{rule} of the automaton. All rules of the automaton we give in the present section obey the format defined by (1). Of course, s_o, s_n, and the s_i belong to the alphabet $\{\text{W, B, R, G}\}$.

Note that if σ is a permutation on $\{0..11\}$ we call \textbf{permuted image} of s \textbf{under} σ the rule:

$$s_o.s_{\sigma(0)}s_{\sigma(1)}s_{\sigma(2)}s_{\sigma(3)}s_{\sigma(4)}s_{\sigma(5)}s_{\sigma(6)}s_{\sigma(7)}s_{\sigma(8)}s_{\sigma(9)}s_{\sigma(10)}s_{\sigma(11)}.s_n$$

which we denote s_{σ}. Let s be a rule, we call \textbf{weight} of s denoted by $w(s)$ the number $\sum_{i=0}^{11} w(s_i)$ where $w(s_i)$ is the weight of the considered state \textit{i.e.} the rank of that state in $\{\text{W, B, R, G}\}$, the rank of W being 0. Accordingly, in the line giving a rule we also indicate its weight. As an example, the quiescent rule will be written as follows:

$$1 \text{ W.WWWW.}.W \quad 0$$

It is the first rule and its weight is 0.

As a last point, we shall present the rules not only by splitting their set according to their role in the simulation but also, inside each of such subsets, according to the role of the rule with respect to the motion itself. We noted in the previous sections what we called idle configurations. In such a condition, the configuration must remain unchanged as long as the locomotive is not in the window which defines the configuration. Such rules are called \textbf{conservative}. When the locomotive falls within the window, some cells are changed while the others remain unchanged. Those which are changed are called \textbf{motion rules}.

3.2 \textbf{The rules for the tracks}

We start our study of the rules and the construction of the rules by those which manage the tracks. As mentioned in Sub-subsection 2.2.1, the motion of the locomotive is depicted by the scheme (2) we reproduce below for the convenience of the reader.

$$3\text{B234234} \quad 3\text{4B34234} \quad 3\text{42G4234} \quad 3\text{423B234} \quad 3\text{423B234} \quad 3\text{423B234} \quad 3\text{42342B4} \quad (2)$$
Here, 2, 3 and 4 denote elements of the tracks with 2, 3 and 4 milestones respectively in their decoration. Figure 6 shows us such elements. The conservative rules induced by those elements are given by Table 1. The first rules, thirteen of them, deal with the milestones. When the current state is not \(\text{W} \), it means that the locomotive is seen by the milestone. Note that \(\text{B} \) is not the state of a milestone.

Table 1 Conservative rules for the tracks. When a rule is repeated, for example rule 6, its number is also repeated.

Milestones	Control fork
1 \(W.WWWW\ldots \) W	6 \(W.GGWWW\ldots \) W
2 \(G.WWWW\ldots \) G	10 \(R.GWWW\ldots \) R
3 \(R.WWWW\ldots \) R	11 \(G.GWWW\ldots \) G
4 \(W.RWWW\ldots \) R	5 \(W.GWWW\ldots \) W
5 \(W.GWWW\ldots \) W	6 \(W.GGRWWW\ldots \) W
6 \(W.GGWWW\ldots \) W	13 \(G.GWWW\ldots \) G
7 \(W.RWWW\ldots \) R	8 \(R.RWWW\ldots \) R

Note that rule 6 is repeated: it first occurs for a blank tile which can see two \(\text{G} \)-milestones when they are put on adjacent faces of an element of the tracks. In the second occurrence of the rule, it is an element of the track, namely the element 2 as far as its decoration consists of two milestones. In the table, rules 2 up to 5 say that a blank neighbour of a milestone remains blank while a milestone itself whose all neighbours are blank does not change its state. Rules 6 and 7 deal with a blank tile which can see two milestones: either two \(\text{G} \)-ones or a \(\text{G} \)-one together with an \(\text{R} \)-one. Rules 8 up to 10 say that an \(\text{R} \)-milestone is not affected when it can see a locomotive, whichever its state. The same role is performed by rules 11 up to 13 for a \(\text{G} \)-milestone.

Table 2 Motion rules for the tracks.

Track	Control fork
2	6 \(W.GGWWW\ldots \) W
3	5 \(W.GGRWWW\ldots \) W
4	11 \(W.GGWWW\ldots \) W
5	13 \(W.GGRWWW\ldots \) W
6	15 \(W.GGWWW\ldots \) W
7	16 \(W.GGWWW\ldots \) W
8	17 \(W.GGWWW\ldots \) W
9	18 \(W.GGWWW\ldots \) W

28
Table 2 gives all the motion rules involved in the computation. In order to better understand the rules, the conservative rules of each configuration has been repeated: it can be recognised by the fact that its number is the same as the one it received in Table 1. Moreover, in the neighbourhoods of the rules, we first give the decorations and then, separated from them by a \(w \)-symbol, the possible occurrences of non-blank states. They can be the state of a locomotive, in the considered element of the track. They can be two non-blank states in the case of the controller or in the case of the fork.

The reader may notice that the rules for the motion in an element of the track are parallel in the different cases: rules 6, 14 and 15 are the conservative rules in an idle configuration. The way the locomotive crosses an element is given by (4):

\[
\begin{array}{cccc}
\text{element} & \text{rules} & \text{entry} & \text{inside} & \text{exit} \\
2 & 18, 19, 20 & B & R & G \\
3 & 21, 22, 23 & R & G & B \\
4 & 24, 25, 26 & G & B & R \\
\end{array}
\]

Note that the fork is a 2-element for which rules 6, 18 and 19 apply. Now, instead of rule 20, rule 27 applies as far as two locomotives leave the element. It is witnessed by rule 27 which indicates two \(G \)-states outside the states corresponding to its decoration.

The access to the controller is dealt with by rule 17, the conservative rule, together with rules 32 up to 34. A \(B \)-locomotive makes the cell becomes \(R \), which allows the controller to change its state: from \(w \) to \(R \) by rule 29 and from \(R \) to \(w \) by rule 30. Note that rule 16 is the conservative rule for a blank controller while rule 28 conservatively applies when it is \(R \). Rule 31 shows us that the locomotive when the element is 4, a \(G \)-locomotive is stopped by an \(R \)-controller. At last, rule 35 is a conservative rule for a \(G \)-milestone of a controller or of its access cell when an \(R \)-locomotive crosses the considered cell. Indeed, as can be seen on Figure 12 each one of two milestones of the controller can see a milestone of the access to the controller and, of course, conversely. So that rule 35 applies both to the controller and to its access cell.

Note that we fixed the controller to be placed under a 4-element, as shown by rule 31. The rule says that the locomotive, which is then in the \(G \)-state, cannot enter the element. That requires the arrival to the access cell of the controller to be the case of a \(B \)-locomotive. If it is not provided by the standard periodic motion along a track, that can be arranged through a path as indicated in the passive fixed switch or in the fork.

That last point completes the proof of Theorem 1.

Figure 19 illustrates the motion of the locomotive on a portion of a path. Note that the path is rather a simple one: it avoids a single cell of a track which requires three additional cells. In the figure, the first element of the appended cells is a 2-one so that the \(B \)-locomotive leaving the track became an \(R \)-locomotive when it is again on the track. It is conformal to the periodic motion on a track. Note that the configuration of the milestones of the 3-element of the
path is different from those of the track: indeed, in another disposition, we would have milestones of a 3-element which would see a milestone of a neighbouring 4-element. It is avoided so that the rules apply without any problem. For a similar reason, in the decoration of the 2-element of the track at which the path arrives, we place the milestones so that none of them can see a milestone of a neighbouring element. We place one milestone on face 11 and the other on a face of the upper crown which points at a blank neighbour of the cell in H_u.

\begin{figure}[h]
\centering
\includegraphics[width=0.8\textwidth]{figure19.png}
\caption{The motion of the locomotive on a portion of a path constructed for the purpose. Note the successive states taken by the locomotive. When the locomotive is in a cell c we can see its colour on the faces of the neighbours of c which are adjacent to the face 0 of c. The indices show us the order of the pictures.}
\end{figure}

4 Conclusion

We have 35 rules for our cellular automaton which is outer totalistic and weakly universal. There is no rule which is used with the same weight and the same current state in different neighbourhoods. Several rules occur with the same weight and with w as the current state: they have different contexts. It occurs with the weights 9 and 12. The present cellular automaton is not completely totalistic: rules 5, 9 and 13 have a total weight of 3, taking the weight of the current state into account and their new state is different. Another example is given by rules 25 and 27.

Four states seem to be needed for the motion of the locomotive on the tracks, as already noticed. However, other results with cellular automata on which a different constraint is put might be obtained. It is an open question. Another open question is to consider completely totalistic cellular automata. Another one is to look whether it is possible to construct an outer totalistic cellular
automaton which would also be strongly universal, i.e. whose set of non-blank cells would always be finite.
And so, there are a lot of open questions.

References

[1] F. Herrmann, M. Margenstern, A universal cellular automaton in the hyperbolic plane, *Theoretical Computer Science*, **296**, (2003), 327-364.

[2] M. Margenstern, *Cellular Automata in Hyperbolic Spaces, vol. 1. Theory*, Collection: *Advances in Unconventional Computing and Cellular Automata*, Editor: Andrew Adamatzky, Old City Publishing, Philadelphia, (2007), 422p.

[3] M. Margenstern, *Cellular Automata in Hyperbolic Spaces, vol. 2. Implementations and Computations*, Collection: *Advances in Unconventional Computing and Cellular Automata*, Editor: Andrew Adamatzky, Old City Publishing, Philadelphia, (2008), 360p.

[4] M. Margenstern, An Upper Bound on the Number of States for a Strongly Universal Hyperbolic Cellular Automaton on the Pentagrid, *JAC2010* Turku, Finland, (2010), *Proceedings*, Turku Center for Computer Science, 168-179.

[5] M. Margenstern, A weakly universal cellular automaton in the hyperbolic 3D space with three states, *arXiv:1002.4290v1*, (2010), 54pp.

[6] M. Margenstern, *Small Universal Cellular Automata in Hyperbolic Spaces: A Collection of Jewels*, Springer Verlag, (2013), 331p.

[7] M. Margenstern, A Weakly Universal Cellular Automaton in the Pentagrid with Five States, *Lecture Notes in Computer Science*, C.S. Calude et al. (Eds.): Gruska’s Festschrift, **8808**, (2014), 99-113.

[8] M. Margenstern, A weakly universal cellular automaton in the heptagrid with three states, *arXiv:1410.1864v1*, (2014), 27p.

[9] M. Margenstern, A Weakly Universal Cellular Automaton in the Heptagrid of the Hyperbolic Plane, *Complex Systems*, **27**(4), (2018), 315-354.

[10] M. Margenstern, A Strongly Universal Cellular Automaton on the Heptagrid with Seven States, *Journal of Cellular Automata*, to appear.

[11] M. Margenstern, A strongly universal cellular automaton in with four states, *arXiv:2107.04843v1*, (2010), 54pp.

[12] M. Margenstern, Y. Song, A new universal cellular automaton on the pentagrid, *Parallel Processing Letters*, **19**(2), (2009), 227-246.
[13] M. L. Minsky, *Computation: Finite and Infinite Machines*, Prentice Hall, Englewood Cliffs, NJ, 1967.

[14] I. Stewart, A Subway Named Turing, Mathematical Recreations in *Scientific American*, (1994), 90-92.