Can harmful lifestyle, obesity and weight changes increase the risk of breast cancer in BRCA 1 and BRCA 2 mutation carriers? A Mini review

A. Daniele, R. Divella, B. Pilato, S. Tommasi, P. Pasanisi, M. Patruno, M. Digennaro, C. Minoia, M. Dellino, S. Pisconti, P. Casamassima, E. Savino and A. V. Paradiso

Abstract

Background and aim: The BRCA 1 and BRCA 2 genes are associated with an inherited susceptibility to breast cancer with a cumulative risk of 60% in BRCA 1 mutation carriers and of 30% in BRCA 2 mutation carriers. Several lifestyle factors could play a role in determining an individual’s risk of breast cancer. Obesity, changes in body size or unhealthy lifestyle habits such as smoking, alcohol consumption and physical inactivity have been evaluated as possible determinants of breast cancer risk. The aim of this study was to explore the current understanding of the role of harmful lifestyle and obesity or weight change in the development of breast cancer in female carriers of BRCA 1/2 mutations.

Methods: Articles were identified from MEDLINE in October 2020 utilizing related keywords; they were then read and notes, study participants, measures, data analysis and results were used to write this review.

Results: Studies with very large case series have been carried out but only few of them have shown consistent results. Additional research would be beneficial to better determine the actual role and impact of such factors.

Keywords: BRCA mutation, Lifestyle, Obesity, BRCA-associated cancer

Introduction

Breast cancer (BC) is the most common female malignancy worldwide. Approximately 5–10% of breast cancer cases are hereditary and arise from autosomal dominant mutations in specific cancer genes, including the two breast cancer susceptibility genes BRCA 1 and BRCA 2. Women who carry these mutations have up to an 80% risk of developing breast cancer [1–3]. Identifying modifiable exposures is very important in BRCA 1/2 mutation carriers. The onset of breast cancer in these women may be influenced by genetic factors such as AdipoQ gene polymorphism associated to alterations in adipokines [4–6]. Evidence suggests that additional modifying factors influence cancer penetrance in BRCA 1/2 mutations carriers. Exposure to environmental factors and unhealthy lifestyle factors, including obesity, change in body size, smoking, alcohol consumption and physical inactivity, have been suggested to increase breast cancer (BC) risk in BRCA 1/2 mutation carriers [7–9]. An association of these factors has been widely reported to enhance the risk of developing cancer [10]. In a previous study of 2020 (Bruno et al.), we examined the relationships between selected lifestyle, metabolic exposures and BRCA related cancer in 502 women with BRCA mutations and found that increased fat mass...
and dysmetabolism were significantly associated with BC risk and had a greater effect in BRCA 2 positive women [11]. Obesity may increase BC risk through multiple mechanisms including insulin-resistance, metabolic syndrome, increased production of sex hormones and insulin-like growth factor-1 (IGF-1). In 2020, Pasanisi et al. reported that a Mediterranean diet with protein restriction is effective in reducing potential modulators of BRCA penetrance [12].

Given the high penetrance of BRCA 1 and BRCA 2 mutations, prevention and lifestyle changes have an extremely important risk-reducing role in women who have a higher risk of developing breast cancer.

Methods
A broad review of the literature was carried out using MEDLINE (via PubMed) and sixteen articles published from 2002 to 2020, were selected from a total of one hundred. Search terms included keywords, combining the conditions (BRCA 1, BRCA 2, mutations, carriers, breast cancer risk), obesity, change in body weight and lifestyle (alcohol, smoking, physical inactivity). We included only original peer-reviewed articles on large prospective, retrospective and cohort studies that investigated obesity and unhealthy lifestyle habits as probable risk factors for the development of breast cancer. The selected articles concerned BRCA1 / 2 mutant women and investigated whether this status could increase the risk of breast cancer in relation to exposure to certain lifestyles. Studies that considered women without BRCA 1/2 mutations (in the case or control group), those with analyses that incorporated untested individuals or tested negative women, series with fewer than 100 patients enrolled, meta-analyses and reviews were excluded from this review (Fig. 1). One reviewer screened the titles and abstracts to select the studies and reviewed the full-text publications to confirm their eligibility and extract the relevant information from the included trials. A predefined spreadsheet (Excel 2007, Microsoft Corporation®) was used for data extraction. The most significant articles for lifestyles considered in this review are listed in Tables 1, 2, and 3.
Results

Inheritance of a BRCA 1 or 2 mutation is associated with an increased lifetime risk of breast cancer [13]. The relationship between anthropometric characteristics such as weight gain and/or BMI and breast cancer risk has been examined extensively [14]. In 2014, a meta-analysis selected 44 articles, according to established quality criteria, considering smoking and alcohol consumption as a risk factor for the onset of BC. The authors found that subjects who smoked for more than 4 years were at greater BC risk than those who had never smoked (ES = 1.97; 95% CI = 1.43 to 2.72) while no

Table 1

Authors/years	Reference	Study Design	Population	Sample Size	Control Group	Outcomes Measures	Main Conclusion
Bruno O. 2020	Clinical Breast Cancer Cohort-Trial Study	BRCA1/2 mutation carriers	502,0	yes	Change in body weight and composition and lifestyle characteristics	Higher fat mass associated with increased BC risk with greater effects in BRCA-2	
Qian F. 2019	J Natl Cancer Inst Randomized study	BRCA1/2 mutation carriers	11,451	yes	Anthropometric measures	Height and BMI associated to BC risk	
Kim S.J. 2018	Int J of Epidem Cohort-Study	BRCA1/2 mutation carriers	3734	yes	Changes in body weight	No association with breast cancer risk	
Manders P. 2011	Br Can Res Treat Cohort-Study	BRCA1/2 mutation carriers	719,0	yes	Anthropometric measures	Overweight and weight gain increase risk of postmenopausal breast cancer	
Kotsopoulos J. 2005	Br Can Res Multicenter study	BRCA1/2 mutation carriers	3291	yes	Changes in body weight	Weight loss within 30 yrs reduces breast cancer risk while no association later in life	

Table 2

Author/years	Reference	Study Design	Population	Sample Size	Control Group	Outcomes Measures	Main Conclusion
Li H. 2020	Cancer Epidemiol Biomarkers Prev Cohort-study	BRCA1/2 mutation carriers	13,118	no	Alcohol consumption, smoking	Smoking associated to BC risk for beginning to smoke more than 5 yrs before full term pregnancy, no association with alcohol consumption	
Kehm RD. 2020	Cancer Res Cohort-study	BRCA1/2 mutation carriers	15,550	yes	Physical activity	Physical inactivity associated to 20% reduction BC risk	
Ko KP. 2018	Int J Cancer Longitudinal cohort study	BRCA1/2 mutation carriers	7195	no	Tobacco smoking	Tobacco smoking is associated with a modest increase of breast and ovarian cancer	
van Erkelens A. 2017	J Genet Counsel Cohort-Study	BRCA1/2 mutation carriers	268,0	no	Physical inactivity, smoking and alcohol consumption around childbearing age	Higher breast cancer risk in overweight women who drink alcohol, smoke and do not exercise	
Dennis J. 2010	Breast Case-control study	BRCA1/2 mutation carriers	1925	yes	Alcohol consumption	No association between alcohol consumption and BC risk	
Ginsburg O. 2009	Breast Can Res Treat Case-control study	BRCA1/2 mutation carriers	2538	yes	Smoking	Increase BC risk in BRCA 1 carriers with a past history of smoking	
Mc Guire V. 2006	Cancer Epidemiol Biomarkers Prev Case-control study	BRCA1/2 mutation carriers	323,0	yes	Alcohol consumption	No association between alcohol intake and BC risk	
Ghardirian P. 2004	Int J Cancer Case-control study	BRCA1/2 mutation carriers	1097	yes	Smoking	Smoking is not a risk factor for BC	
correlation was highlighted in works that investigated the habitual intake of alcohol vs total abstinence (ES = 0.87; 95% CI = 0.50 to 1.23) [15].

Cancer penetrance associated to weight gain and changes in body composition

Weight gain and unfavorable changes in body composition with a significant increase in percentage body fat and decreased lean body mass are risk factors for breast cancer [16–19]. The relationship of anthropometric parameters and body weight changes with breast cancer risk has been examined extensively among women in the general population and several studies have investigated the impact of weight gain and cancer risk in women with a BRCA 1 or BRCA 2 mutation.

In a recent article of 2019, Qian F et al. investigated whether height or body mass index (BMI) could change the risk of developing breast cancer in 11,451 cases of breast cancer in BRCA 1/2 mutation carriers. These authors found that height was positively associated with breast cancer risk (per 10 cm increase HR = 1.9, 95% CI = 1.0 to 1.17; \(p = 1.17 \)) while BMI was inversely associated with breast cancer risk (per 5 kg/m² increase HR = 0.94, 95% CI = 0.90 to 0.98; \(p = 0.007 \)) [20].

In 2005, a multicenter study by Kotsopoulos J et al. investigated body weight changes and breast cancer risk in a total of 3291 women who carried BRCA 1 or BRCA 2 mutations and provided information on weight at ages 18, 30 and 40 showing that a weight loss of at least 4.5 kg between ages 18 and 30 was associated with a significant reduction in breast cancer risk (34%) thereafter (OR = 0.66; 95% CI 0.46–0.93). Weight gain later in life was not associated with increased risk [21]. In a multicenter longitudinal cohort study of 2018, Kim SJ et al. investigated the relationship between body size and breast cancer risk in 3734 BRCA mutation carriers and found no association between height, BMI and weight change and breast cancer risk [22]. In a retrospective cohort study published in 2011, Manders P. et al. investigated the association between anthropomeric measures and BC risk in 719,0 women with BRCA1 or BRCA2 mutation in pre and post menopause. The results reported in the work showed a decrease in risk in relation to BMI at 18 years while in postmenopausal age there was an increased risk respect to weight and in particular a higher BC risk in women weighing> 72 kg compared to those with weight < 72 kg, suggesting that postmenopausal mutated women should pay close attention to maintaining their body weight [23]. The summary list of these works is shown in Table 1.

Cancer penetrance associated to harmful lifestyle habits

Smoking, drinking alcoholic beverages [24, 25] and physical inactivity [26] are well-known lifestyle risk factors for pre- and postmenopausal breast cancer in the general female population. The association between breast cancer risk and these unhealthy lifestyle choices has been also investigated in BRCA 1/2 mutation carriers.

In a recent retrospective and prospective cohort study of 2020, Li H et al. investigated the association between smoking and alcohol consumption and the risk of developing breast cancer in 13,118 BRCA 1/2 mutation carriers and found that the only variable associated with the risk of BC for both carrier groups it was for mutated women who had smoked for at least 5 years before their first pregnancy compared to first-time mothers who had never smoked before. The results, found no correlation between BC cancer risk and alcohol intake in both groups [27].

In 2020, Kehm RD et al. carried out a prospective cohort study on 15,550 women who had a familial breast cancer risk and investigated the association between recreational physical activity and decreased risk in adult women. The authors tested interactions of physical activity with predicted absolute familial BC risk based on BRCA 1 and BRCA 2 mutation status and concluded that physical activity can reduce the risk of getting BC by about 20% even women with high penetrance due to their genetic family history or medical history [28].

van Erkelens A et al. in a cohort study in 2017, investigated the correlation of unhealthy lifestyles (alcohol intake, smoking and low physical activity) in 268,0 women

Table 3 Article list used to analyzed cancer penetrance associated to oral contraceptive use

Authors/years	Reference	Study Design	Population	Sample Size	Control Group	Outcomes Measures	Main Conclusion
Schrijver LH. 2018	JNCI Canc Spectr Cohort Study	BRCA1/2 mutation carriers	9839	yes	Oral contraceptive use	No association between this use and BC risk	
Lee E. 2008	Canc Epi Biom Prev Population based study	BRCA1/2 mutation carriers	1469	yes	Oral contraceptive use	No association between this use and BC risk	
Narod SA. 2002	J Cell Biol Case control study	BRCA1/2 mutation carriers	1311	yes	Oral contraceptive use	Increase BC risk only in BRCA 1 women who used oral contraceptive before 30 years.	
with BRCA 1 and 2 mutation reporting that 38% of the participants had at least 2 high risk factors for BC, plus age the diagnosis of the mutation correlated with a decrease in physical activity (OR = 0.93/year, 95% CI = 0.86–0.99) and a prevalence of overweight (OR = 1.07/year, 95% CI = 1.02–1.13) [29].

Dennis J et al. in 2010 conducted a case-control study of 1925 premenopausal women who carried a BRCA 1 or BRCA 2 mutation to investigate alcohol consumption and the risk of breast cancer, reporting an inversely proportional association between alcohol intake and increased risk of developing BC only in BRCA1-mutated women, while no association was found in BRCA2-mutated women (OR = 0.82; 95% CI 0.70–0.96) vs OR = 1.00; CI 0.71–1.41) [30].

In 2004, Ghadirian P et al. studied the correlation between smoking and the risk of breast cancer in a large cohort of BRCA 1 and BRCA 2 mutation carriers [31]. The authors, in a case-control study conducted on 1097 BRCA1 and 2 mutated women vs healthy women, found no significant association between the 2 groups considered (mutated vs healthy women) whether they were smokers or ex smokers or the age at which smoking began within 5 years of menarche (OR = 1.03;95% CI = 0.90 to 1.33) or before the first pregnancy concluding that smoking could not be a breast cancer risk in carriers of BRCA mutations.

Two other eligible studies by Ko KP et al. in 2018 and Ginsburg O et al. in 2009 investigated the association between smoking and increased breast cancer risk. The first was a cohort study of 7195 women that demonstrated an increased risk of breast and ovarian cancer in women smokers with a BRCA 1 or BRCA 2 mutation (HR = 1.17; 95% CI 1.01–1.37), [32] and the second was a case control study of 2538 BRCA 1/2 carriers that showed a modest, but significant increase BC risk in BRCA 1 carriers with a past history of smoking (OR = 1.27; 95% CI 1.06–1.50) [33]. McGuire V et al. in 2006 investigated the association between alcohol consumption and increased risk of breast cancer in 323,056 women suggesting no positive association between alcohol intake and breast cancer risk in BRCA 1 and BRCA 2 mutation carriers aged [34]. The summary list of these works is shown in Table 2.

Cancer penetrance associated to oral contraceptive use

In the general population, multiparity and breastfeeding are among the protective factors of the risk of developing breast cancer, while the use of oral contraceptives could represent a predisposing factor; the data in the literature on the use of contraceptives in mutated women are still discordant but a possible role of estrogens on carcinogenesis has its foundation [35, 36]. The BRCA 1/2 genes are involved in several functions including DNA damage and repair so the cancer-promoting effects of estrogen can be stronger in mutated BRCA 1 or BRCA 2 genes [37].

In 2018, Schrijver LH et al. investigated the association between the use of oral contraceptives and breast cancer risk in BRCA 1 and BRCA 2 mutation carriers in a retrospective and prospective cohort study of 9839 cases. They found no association between the use of oral contraceptives and BC risk in women with a BRCA 1 mutation (HR = 1.08, 95% CI = 0.75 to 1.56) while for BRCA 2 mutation carriers, the authors highlighted an increased risk of developing breast cancer in mutated women taking oral contraceptives (HR: =1.75, 95% CI = 1.03 to 2.97) and this risk was also related to the duration of treatment particularly in the period prior to the first full-term pregnancy [38].

In a 2008 population-based study on 1469 women and 444 control subjects Lee E et al. investigated reproductive factors and oral contraceptive use in BRCA 1/2 mutation carriers and non-carriers and reported no association between oral contraceptive use and BC risk in women carrying the mutations [39].

In 2002, in a matched case-control study on 1311 pairs of women with a known BRCA 1/2 mutation Narod SA et al. found an increased risk of breast cancer in women with a BRCA 1 mutation who first used oral contraceptives before age 30, or who used them for more than 5 years, while a similar risk did not appear in BRCA 2 mutation carriers [40]. The summary list of these works is shown in Table 3.

Discussion

The presence of BRCA 1 and 2 mutations may predispose to a higher risk of breast cancer in the percentage of 60 and 30% respectively. It is important to underline that not all mutated women will certainly develop cancer during their lifetime, but knowing the genetic or environmental risk factors that can increase the subjective predisposition to cancer is of fundamental importance. It has been proposed that several lifestyle factors such as smoking, alcohol consumption, poor nutrition or sedentariness may be potential modulators of BRCA penetrance, but the data reported in the literature are still conflicting and incomplete. The BRCA 1 gene and the BRCA 2 gene located on chromosome 17 and on chromosome 13, respectively (Fig. 2), are tumor suppressors capable of regulating cell proliferation and repairing any damage in DNA replication. It is therefore plausible that carcinogens that are contained, for example, in cigarette smoke or in some food may increase the risk of BC in female carriers of BRCA 1/2 mutations. The carcinogens present in the cigarette have the ability to infiltrate the pulmonary alveolus [41] and the bloodstream flowing into the breast by means of plasma lipoproteins.
They are lipophilic, tobacco-related carcinogens can be stored in breast adipose tissue \[33, 34\] and then metabolized and activated by human mammary epithelial cells \[44\]. Many authors have reported that cigarette smoke contains various substances harmful to the breast parenchyma highlighting the presence of p53 mutation in the breast parenchyma of smokers compared to non-smokers \[45\]. On the other hand, heterocyclic amines and acrylamides, foods rich in starch and cooked at high temperatures (e.g., grilled or overcooked meat) or rich in animal protein or milk \[11\] may be potentially more likely to promote the development of breast cancer and favor BRCA penetrance. Although several studies have largely reported concordant results about the correlation between unhealthy lifestyle habits and sustained weight gain over time and breast cancer risk in the general population, few studies with large series have been conducted on women carrying the BRCA 1 and 2 mutation. This mini review considered 16 studies (12 prospective and 4 retrospective) that highlighted a discrepancy between the effects of some unhealthy lifestyle factors in increasing the risk of breast cancer. Alcohol consumption was not observed to have a key role in the onset of breast cancer while smoking, weight gain and physical inactivity, especially in postmenopausal age, seem to increase the risk of breast cancer.

Conclusion

Numerous factors have been reported to modify breast cancer risk. Our review of the specific literature has highlighted that there are few consistent results across different studies and that additional research would be beneficial to better determine the actual role and impact of such factors.

Acknowledgements

We thank Athina Papa for the language editing.

Authors’ contributions

Antonella Daniele and Angelo Virgilio Paradiso creators of the review and wrote the paper; Carla Minoia, Miriam Dellino and Salvatore Pisconti partecipated in data collection, Patrizia Pasanisi, Margherita Patruno and Maria Digennaro partecipated in critical revision of manuscript, Rosa Divella, Porzia Casamassima and Eufemia Savino partecipated in study design. All authors approved final version of manuscript.

Funding

Not applicable for that section.

Availability of data and materials

Not applicable for that section.

Declarations

Ethics approval and consent to participate

Not applicable for that section.

Consent for publication

All authors agree to the publication.

Competing interests

The authors declare no conflict of interest.

Author details

1Experimental Oncology and Biobank Management Unit, IRCCS Istituto Tumori “Giovanni Paolo II” Bari, Viale Orazio Flacco 65, 70124 Bari, Italy. 2Molecular Diagnostics and Pharmacogenetics Unit, IRCCS Istituto Tumori “Giovanni Paolo II” Bari, Bari, Italy. 3Epidemiology and Prevention Unit, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy. 4Experimental Oncology, Center for Study of Heredo-Familial Tumors, IRCCS-Istituto Tumori “Giovanni Paolo II”, Bari, Italy. 5Hematology Unit, IRCCS Istituto Tumori “Giovanni Paolo II” Bari, Bari, Italy. 6Gynecologic Oncology Unit, IRCCS Istituto Tumori “Giovanni Paolo II” Bari, Bari, Italy. 7Medical Oncology Unit, Ospedale Moscati, Taranto Italy. 8Clinical Pathology
References

1. King MC, Marks JH, Mandell JB. Breast and ovarian cancer risks due to inherited mutations in BRCA 1 and BRCA 2. Science. 2003;302(5645):643–6. https://doi.org/10.1126/science.1088759.

2. Nakano A, Ghadirian P. Epidemiology of breast cancer among BRCA mutation carriers: an overview. Cancer Lett. 2004;205(1):1–8. https://doi.org/10.1016/j.canlet.2003.10.005.

3. Pruthi S, Gostout BS, Lindor NM. Identification and Management of Women with BRCA mutations or hereditary predisposition for breast and ovarian Cancer. Mayo Clin Proc. 2010;85(12):1111–20. https://doi.org/10.4065/mcp.2010.0414.

4. Boffa EM, Oliverio A, Paradiso A, Daniele A, Tommasi S, et al. Hereditary Cancer in Clinical Practice. Bari, Bari, Italy.

5. World Cancer Research Fund / American Institute for Cancer Research. Diet, Nutrition, Physical Activity, and the Prevention of Cancer: a global perspective. Washington, DC: AICR; 2007.

6. : https://doi.org/10.1586/14747147.2005.11892.1431 PMID: 7613275; PMCID: PMC2549812.

7. Manders P, Pijpke T, Groenwald J, Singeef C, Moller P, Lynch HT, et al. Prospective evaluation of body size and breast cancer risk among BRCA 1 and BRCA 2 mutation carriers. Int J Epidemiol. 2018;47(3):977–9. https://doi.org/10.1093/ije/dyx039. PMID: 29547931; PMCID: PMC605062.

8. https://doi.org/10.3892/mco.2013.209 Epub 2013 Oct 30. PMID: 24649316; PMCID: PMC3915700.

9. Shachar SS, Deal AM, Weinberg M, Williams GR, Nyrop KA, Popuri K, et al. Body Composition as a Predictor of Toxicity in Patients Receiving Anthracycline and Taxane-Based Chemotherapy for Early-Stage Breast Cancer. Clin Cancer Res. 2017;23(14):3537–43. https://doi.org/10.1158/1078-0433.CCR-16-2266 Epub 2017 Jan 31. PMID: 28143874; PMCID: PMC5511549.

10. Trentham-Dietz A, Newcomb PA, Storer BE, Longnecker MP, Baron J, Greenberg ER, et al. Body size and risk of breast cancer. Am J Epidemiol. 1997;145(11):1011–9. 9169910. https://doi.org/10.1093/oxfordjournals.aje.a009057.

11. https://doi.org/10.1002/ijc.20106 Erratum in: Int J Cancer. 2007 Dec 1;121(11):2648–54. https://doi.org/10.1002/ijc.20106. PMID: 17530487.

12. https://doi.org/10.1186/bcr1293 Epub 2005 Aug 19. PMID: 16186183; PMCID: PMC242151.

13. https://doi.org/10.1093/jnci/djv092 Epub 2015 Jun 22. PMID: 26073079.

14. Ghadirian P, Lubinski J, Lynch HT, Isaacs C, et al. Changes in body weight and the risk of breast cancer in BRCA 1 and BRCA 2 mutation carriers. Breast Cancer Res. 2005;7(5):R83–3. https://doi.org/10.1186/bcr1293 Epub 2005 Aug 19. PMID: 16186183; PMCID: PMC242151.

15. Kim SJ, Huzarski T, Groenwald J, Singer CF, Moller P, Lynch HT, et al. Prophylactic oophorectomy in young women at high risk of breast and ovarian cancer with BRCA 1 and BRCA 2 mutations: an overview. Breast Cancer Res Treat. 2011;124(3):282–94. https://doi.org/10.1007/s10549-010-1133-2. Epub 2011 Aug 29. PMID: 21779586.

16. https://doi.org/10.1158/1055-9566.EPI-15-0546 Epub 2016 Dec 2. PMID: 31790208.

17. van Erkelens D, Derks L, Ste AS, Fengers L, Woldringh G, Prins JB, et al. Lifestyle Risk Factors for Breast Cancer in BRCA 1/2 Mutation Carriers: Results from The BRCA 1 and BRCA 2 Cohort Consortium. Cancer Epidemiol Biomarkers Prev. 2020;29(2):368–78. https://doi.org/10.1158/1055-9156.EPI-19-0546.

18. https://doi.org/10.1093/ijc/dyx039. PMID: 29547931; PMCID: PMC605062.

19. PMID: 29308845; PMCID: PMC4020833.

20. PMID: 29547931; PMCID: PMC605062.

21. PMID: 29308845; PMCID: PMC4020833.

22. PMID: 29308845; PMCID: PMC4020833.

23. PMID: 29308845; PMCID: PMC4020833.

24. PMID: 29308845; PMCID: PMC4020833.

25. PMID: 29308845; PMCID: PMC4020833.

26. PMID: 29308845; PMCID: PMC4020833.

27. PMID: 29308845; PMCID: PMC4020833.

28. PMID: 29308845; PMCID: PMC4020833.

29. PMID: 29308845; PMCID: PMC4020833.

30. PMID: 29308845; PMCID: PMC4020833.

31. PMID: 29308845; PMCID: PMC4020833.

32. PMID: 29308845; PMCID: PMC4020833.

33. PMID: 29308845; PMCID: PMC4020833.

34. PMID: 29308845; PMCID: PMC4020833.

35. PMID: 29308845; PMCID: PMC4020833.

36. PMID: 29308845; PMCID: PMC4020833.

37. PMID: 29308845; PMCID: PMC4020833.

38. PMID: 29308845; PMCID: PMC4020833.

39. PMID: 29308845; PMCID: PMC4020833.

40. PMID: 29308845; PMCID: PMC4020833.
34. McGuire V, John EM, Felberg A, Haile RW, Boyd NF, Thomas DC, et al. Whittmore AS, kConFab Investigators. No increased risk of breast cancer associated with alcohol consumption among carriers of BRCA 1 and BRCA 2 mutations ages <50 years. Cancer Epidemiol Biomark Prev. 2006;15(8):1565–7. https://doi.org/10.1158/1055-9965.EPI-06-0323 PMID: 16896652.
35. Yager JD, Davidson NE. Estrogen carcinogenesis in breast cancer. N Engl J Med. 2006;354(3):270–82. https://doi.org/10.1056/NEJMra050776 PMID: 16421368.
36. Cavalieri E, Frenkel K, Liehr JG, Rogan E, Roy D. Estrogens as endogenous genotoxic agents--DNA adducts and mutations. J Natl Cancer Inst Monogr. 2000;27(27):75–93. https://doi.org/10.1093/oxfordjournals.jncimonographs.a024247 PMID: 10963621.
37. Yoshida K, Miki Y. Role of BRCA 1 and BRCA 2 as regulators of DNA repair, transcription, and cell cycle in response to DNA damage. Cancer Sci. 2004;95(11):866–71. https://doi.org/10.1111/j.1349-7006.2004.tb02195.x PMID: 15546503.
38. Schrijver LH, Olsson H, Phillips KA, Terry MB, Goldgar DE, Kast K, et al. Oral Contraceptive Use and Breast Cancer Risk: Retrospective and Prospective Analyses From a BRCA 1 and BRCA 2 Mutation Carrier Cohort Study. JNCI Cancer Spectr. 2018;2(2):pky023. https://doi.org/10.1093/jncics/pky023 PMID: 31360853; PMCID: PMC6649757.
39. Lee E, Ma H, McKean-Cowdin R, Van Den Berg D, Bernstein L, Henderson BE, et al. Effect of reproductive factors and oral contraceptives on breast cancer risk in BRCA 1/2 mutation carriers and noncarriers: results from a population-based study. Cancer Epidemiol Biomark Prev. 2008;17(11):3170–8. https://doi.org/10.1158/1055-9965.EPI-08-0396 PMID: 18990759.
40. Plant AL, Benson DM, Smith LC. Cellular uptake and intracellular localization of benzo(a)pyrene by digital fluorescence imaging microscopy. J Cell Biol. 1985;100(4):1295–308. https://doi.org/10.1083/jcb.100.4.1295.
41. Shu HP, Byum EN. Systemic excretion of benzo(a)pyrene in the control and microsomally induced rat: the influence of plasma lipoproteins and albumin as carrier molecules. Cancer Res. 1983;43(2):485–90.
42. Hecht SS. Tobacco smoke carcinogens and breast cancer. Environ Mol Mutagen. 2002;39(2-3):119–26. https://doi.org/10.1002/em.10071.
43. Morris JJ, Seifert E. The role of aromatic hydrocarbons in the genesis of breast cancer. Med Hypotheses. 1992;38(3):177–84. https://doi.org/10.1016/0306-9877(92)90090-Y.
44. MacNicol AØ, Easty GC, Neville AM, Grover PL, Sims P. Metabolism and activation of carcinogenic polycyclic hydrocarbons by human mammary cells. Biochem Biophys Res Commun. 1980;95(4):1599–606. https://doi.org/10.1016/0006-291X(80)80081-7.
45. el-Bayoumy K. Environmental carcinogens that may be involved in human breast cancer etiology. Chem Res Toxicol. 1992;5:385–90.