Brief Report

Isolation and identification of human coronavirus 229E from frequently touched environmental surfaces of a university classroom that is cleaned daily

Tania S. Bonny MSc a,b, Saber Yezli PhD c, John A. Lednicky PhD a,b,*

* Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida, Gainesville, FL
b Emerging Pathogens Institute, University of Florida, Gainesville, FL
c The Global Centre for Mass Gatherings Medicine, Public Health Directorate, Ministry of Health, Riyadh, Saudi Arabia

Key Words:
Frequently touched environmental surfaces
Human coronavirus 229E

Symptomatic or asymptomatic individuals that harbor respiratory viruses release virus particles through expiration and respiratory maneuvers such as coughing and sneezing. Virus particles emitted by these persons are present in aerosols or are contained in droplets that settle or are manually deposited onto frequently touched surfaces. One route of human respiratory virus infection is through contact transmission, which occurs when virus-containing fomites or free viruses are transferred from an environmental surface to mucous membranes of the upper respiratory tract.1,2

In this study, we tested which viable (live) respiratory viruses might be isolated from high contact surfaces of a university classroom during the start of influenza season in November 2016.

METHODS

High-touch environmental surfaces were sampled once a day, from November 12-26, 2016, in the same highly used classroom of a university in Florida. Samplings were performed between classroom sessions or on weekends, when students were not present in the classroom, typically between 6-7 PM. The classroom’s high-touch surfaces were cleaned Monday through Friday between 6-7 AM with a commercial cleaning solution consisting of nonionic surfactant (alcohol ethoxylates) mixed with an anionic surfactant (sodium xylene sulfonate) by janitorial staff. Surfaces chosen for sampling in this study were (1) seat-backs made of hard polyvinylchloride, (2) laminate desktops, (3) a wooden podium, and (4) a stainless steel doorknob.

Swab samples were collected using flocked nylon swabs that were inserted into 1 mL of Universal Transport Medium (no. 360C; Copan Diagnostics, Murrieta, CA).3 Virus isolation was attempted in monolayers of 6 ATCC (Manassas, VA) cell lines: A549 (CCL-185), MDCK (NBL-2) (CCL-34), HeLa (CCL-2), LLC-MK2 (CCL-7), VERO E6 (CRL-1586), and MRC-5 (CCL-171).4 Replicate sets of cells were inoculated with 50 μL aliquots from the Universal Transport Medium tubes, with one set incubated at 33°C and the other at 37°C (some human respiratory viruses preferentially grow at 33°C, others at 37°C), and observed over 21 days for development of virus-specific cytopathic effects. Nucleic acids extracted from the spent cell growth media were subsequently analyzed using a GenMark multiplex PCR eSensor XT-8 Respiratory Viral Panel (GenMark Diagnostics, Carlsbad, CA) for virus identification. One human coronavirus 229E (CoV-229E) isolate was thereafter completely sequenced essentially as described by Farsani et al.5

Separately, the stability of a well-studied CoV-229E strain (VR-740; ATCC) was assessed on 3 different hard surfaces held at 24°C and 50% relative humidity with fluorescent lights on for 14 h/d (simulating the university classroom ambient light, temperature, and humidity conditions). Briefly, 20 μL aliquots (3 replicates per day, over a 7-day testing period) containing 2 × 10⁶ plaque forming units
of virus were spotted and spread over the surface of sterile 1 cm² hard plastic, glass, and stainless steel coupons. Virus survival was monitored, with viable counts of viruses extruded off the different surfaces determined by plaque assay.

RESULTS

Six cell cultures inoculated with samples collected on 4 different days displayed cytopathic effects within 3–11 days postinoculation. Viral genomic RNA extracted from virions in spent culture media was identified as that of CoV-229E by the GenMark multiplex PCR eSensor XT-8 Respiratory Viral Panel. Desktops and the doorknob were the most commonly contaminated surfaces (Table 1). The complete genome sequence of CoV-229E/environment/Gainesville/1/2016 was determined from 1 isolate (GenBank: KY996417.1).

After 7 days, there was an approximate reduction of the viable virus count of CoV-299E VR-740 by about 2.5 logs; however, a significant quantity of virus remained infectious (Fig 1).

DISCUSSION

We isolated CoV-229E from high-touch surfaces in a university classroom. Others have reported detection of coronavirus genomic RNA on various surfaces in hospitals and dwellings.6,7 Taken together, these findings seem counterintuitive because enveloped viruses are more susceptible to environmental stresses, such as radiation, temperature, and relative humidity, than nonenveloped viruses, mostly because of the lipidic nature of their envelopes.8 Our study of CoV-229E VR-740 survival indicates that the virus is not fully inactivated for at least 7 days after deposition on different environmental surfaces at ambient temperature (24°C) and relative humidity conditions (approximately 50%) typical of our university’s classrooms. This is significant given that the minimum infective dose of respiratory viruses can be very low.9

Given that the frequently touched surfaces in the classroom were cleaned every morning, isolation of CoV-229E on several days during the sampling period suggests frequent redeposition

Table 1
Development of virus-induced cytopathic effects in inoculated cell lines

Sampling date	Surface tested	Day	A549	MRC-5	VERO E6	Respiratory virus identified by eSensor XT-8 Respiratory Viral Panel
November 12, 2016	Desk top 1	Saturday	–	–	–	–
November 13, 2016	Desk top 2	Sunday	–	–	–	–
November 14, 2016	Desk top 3	Monday	–	–	–	–
November 18, 2016	Desk top 4	Friday	+	+	+	CoV-229E
November 19, 2016	Doorknob	Saturday	–	–	–	CoV-229E
November 20, 2016	Desk top 5	Sunday	+	+	+	CoV-229E
November 22, 2016	Podium	Tuesday	–	–	–	CoV-229E
November 22, 2016	Desk top 6	Tuesday	+	+	+	CoV-229E
November 22, 2016	Doorknob	Tuesday	+	+	+	CoV-229E
November 22, 2016	Chair back	Tuesday	–	–	–	CoV-229E
November 23, 2016	Desk top 7	Wednesday	+	+	+	CoV-229E
November 23, 2016	Doorknob	Wednesday	+	+	+	CoV-229E
November 23, 2016	Chair back	Wednesday	–	–	–	CoV-229E
November 24, 2016	Desk top 8	Thursday	–	–	–	CoV-229E
November 25, 2016	Doorknob	Friday	–	–	–	CoV-229E
November 26, 2016	Chair back	Friday	–	–	–	CoV-229E

–, No cytopathic effects observed; +, cytopathic effects observed; CoV-229E, human coronavirus 229E.

Fig 1. Survival of human coronavirus 229E on different hard surfaces over a 7-day observation period. Viable virus counts were determined by plaque assay and reported as PFU per coupon. PFU, plaque forming units.
of the virus on those surfaces or an ineffective daily cleaning regimen. Of all the surfaces tested in the classroom, isolation of infectious CoV-229E from the doorknob is probably of greatest significance because it is always used, and the knob was thoroughly swabbed at each sampling. From a public health perspective, a better choice might be brass instead of stainless steel doorknobs because brass has been reported to be deleterious for CoV-229E; however, quick inactivation on brass may not occur for other viruses. Alcohol ethoxylates, the principal component of the cleaning solution used on the surfaces of the classroom of this study, reduced genomic loads of common respiratory viruses on toys in day care nurseries. Although the effect on virus viability was not investigated in the later study, a decrease in genomic loads of adenov-, rhino-, and respiratory syncytial viruses was reported, but the load of coronavirus, the most prevalent virus group detected on toys, remained unchanged before and after the alcohol ethoxylate intervention. Although a new CoV 229E strain was confirmed by sequencing of 1 isolate, and it is tempting to infer 1 person was the source, it is possible that the same virus strain was circulating among the students and that the viruses we detected over many days emanated from various persons. A broader study might include linking the virus to the person(s) shedding the virus. Also, further study on the effects of commonly used cleaning and disinfecting solutions on CoV-229E viability are warranted. Finally, air sampling studies would be an important adjunct; in our study, an inhalation risk was also likely caused by aerosols containing CoV 229E.

CONCLUSIONS

CoV-229E can remain infectious on environmental surfaces, and potentially poses a biohazard by contact transmission.

UNCITED REFERENCES

12. 13. 14. 15. 16. 17. 18. 19. 20. 21. 22. 23. 24. 25. 26. 27. 28. 29. 30. 31. 32. 33. 34. 35. 36. 37. 38. 39. 40. 41. 42. 43. 44. 45. 46. 47. 48. 49. 50. References

1. Monito AS. Epidemiology of viral respiratory infections. Am J Med 2002;112:4-12.
2. Pavia AT. Viral infections of the lower respiratory tract: old viruses, new viruses, and the role of diagnosis. Clin Infect Dis 2011;52:S284-9.
3. Russkanen O, Lahti E, Jennings LC, Murdoch DR. Viral pneumonia. Lancet 2011;377:1264-75.
4. Debiaggi M, Canducci F, Ceresa EL, Clementi M. The role of infections and coinfections with newly identified and emerging respiratory viruses in children. Virol J 2012;9:247.
5. Killingley B, Nguyen-Van-Tam J. Routes of influenza transmission. Influenza Other Respir Viruses 2013;7:42-51.
6. Tellier R. Aerosol transmission of influenza A virus: a review of new studies. J R Soc Interface 2009;6(Suppl):S783-90.
7. Teunis PF, Brienen N, Kretzschmar ME. High infectivity and pathogenicity of influenza A virus via aerosol and droplet transmission. Epidemiol Infect 2010;13:215-2.
8. Fennelly KP, Trickey MD, Wu CY, Heil GL, Radonovich LJ, Loeb KC, et al. Collection and measurement of aerosols of viable influenza virus in liquid media in an Andersen cascade impinger. Virus Adapt Treat 2015;7:1-9.
9. Belshe BR, Gutin KM, Katz JM, Maines TR, Tumpey TM, Loeb JC, et al. Collection of influenza virus infectivity and viremia following ocular-aural inoculation of ferrets. J Virol 2014;88:9647-54.
10. Warnes SL, Little ZR, Keelvi CW. Human coronavirus 229E remains infectious on common touch surface materials. MBio 2015;6:e01697-15.
11. Otter JA, Yezli S, Sallek-JAC, French GL. Evidence that contaminated surfaces contribute to the transmission of hospital pathogens and an overview of strategies to address contaminated surfaces in hospital settings. Am J Infect Control 2013;41:S6-11.
12. Borkow C. Use of biocidal surfaces for reduction of healthcare acquired infections. Springer; 2014.
13. Boyce JM, Potter-Bynoe G, Chenevert C, King T. Environmental contamination due to methicillin-resistant Staphylococcus aureus: possible infection control implications. Infect Control Hosp Epidemiol 1997;18:622-7.
14. Hayden MK, Blom DW, Lyle EA, Moore CG, Weinstein RA. Risk of hand or glove contamination after contact with patients colonized with vancomycin-resistant enterococcus or the colonized patients’ environment. Infect Control Hosp Epidemiol 2008;29:149-54.
15. Hussels K, Rutala WA, Sickbert-Bennett E, Weber DJ. A quantitative approach to defining “high-touch” surfaces in hospitals. Infect Control Hosp Epidemiol 2011;32:426-9.
16. Duckro AN, Blom DW, Lyle EA, Weinstein RA, Hayden MK. Transfer of vancomycin-resistant enterococci via health care worker hands. Arch Intern Med 2005;165:302-7.
17. Oxford J, Berezin EN, Courvalin P, Dwyer DE, Exner M, Jana LA, et al. The survival of influenza A/H1N1 pdm09 virus on 4 household surfaces. Am J Infect Control 2014;42:423-5.
18. Memish ZA, Almasri M, Assiri A, Al-Shantiggi AM, Gray GC, Lednicky JA, et al. Environmental sampling for respiratory pathogens in Jeddah airport during the 2013 Hajj season. Am J Infect Control 2014;42:1266-9.
19. Bean B, Moore BM, Sterner B, Peterson LR, Gerding DN, Ballard HF Jr. Survival of influenza viruses on environmental surfaces. J Infect Dis 1982;146:47-51.
20. Xu H, Jin H, Zhao L, Wei X, Hu L, Shen L, et al. A randomized, double-blind comparison of the effectiveness of environmental cleaning between infection control professionals and environmental service workers. Am J Infect Control 2015;43:292-4.
21. Howie R, Alfa MJ, Coombs K. Survival of enveloped and non-enveloped viruses on surfaces compared with other micro-organisms and impact of suboptimal disinfectant exposure. J Hosp Infect 2008;69:368-76.
22. Lednicky JA, Loeb JC. Detection and isolation of airborne influenza A H3N2 virus using a stoups personal cascade impactor sampler. Influenza Res Treat 2013;2013:570365.
23. Pierce VM, Hodinka RL. Comparison of the GenMark Diagnostics eSensor respiratory viral panel to real-time PCR for detection of respiratory viruses in children. J Clin Microbiol 2012;50:3458-65.
24. Farsami SM, Dijkerman RH, Jebbink MF, Goessens H, Ieven M, Dejs M, et al. The first complete genome sequences of clinical isolates of human coronavirus 229E. Virus Genes 2012;45:433-9.
25. Casanova LM, Jeon S, Rutala WA, Weber DJ, Sobsey MD. Effects of air temperature and relative humidity on coronavirus survival on surfaces. Appl Environ Microbiol 2010;76:2712-7.
26. Boone SA, Gerba CP. Significance of fomites in the spread of respiratory and enteric viral disease. Appl Environ Microbiol 2007;73:1687-96.
27. Otter JA, Yezli S, French GL. Evidence that contaminated surfaces in the transmission of nosocomial pathogens. Infect Control Hosp Epidemiol 2011;32:687-99.
28. Chairman K, Mathew EK, Padmalatha C, Ranjit Singh Aj. Beware of pathogenic microbes in public utility devices. J Microbiol Biotechnol Res 2011;1:85-90.
29. Barker J, Stevens D, Boomfield SF. Spread and prevention of some common viral infections in community facilities and domestic homes. J Appl Microbiol 2001;91:7-21.
30. Pene F, Merlet A, Vabret A, Rozenberg F, Buzyn A, Dreyfus F, et al. Coronavirus 229E-related pneumonia in immunocompromised patients. Clin Infect Dis 2003;37:929-32.
31. Boucher A, Desforges M, Duquette P, Talbot PJ. Long-term human coronavirus- myocard cross-reactive T-cell clones derived from multiple sclerosis patients. Clin Immunol 2007;123:258-67.
32. Sizun J, Gagneur A, Legrand MC, Baron R. Respiratory coronavirus infections in hematopoietic cellular transplant patients with acute respiratory illnesses. Hematol J 2006;7:1634-41.
33. van Kraaij MG, et al. Frequent detection of human coronaviruses in clinical specimens from patients with respiratory tract infection by use of a novel hybridization assay. Mol Cell Probes 2004;18:75-80.
34. van Elden LJ, van Loon AM, Alphen F, Hendrikse KA, Hoepelman AI, van Kraaij MG, et al. Frequent detection of human coronaviruses in clinical specimens from patients with respiratory tract infection by use of a novel
real-time reverse-transcriptase polymerase chain reaction. J Infect Dis 2004;189:652-7.

43. Dowell SF, Simmerman JM, Erdman DD, Wu JS, Chaovavanich A, Javadi M, et al. Severe acute respiratory syndrome coronavirus on hospital surfaces. Clin Infect Dis 2004;39:652-7.

44. Fraise AP, Lambert PA, Russell MJ. Hugo and Ayliffe's principles and practices of disinfection, preservation, and sterilization. Massachusetts: Blackwell Publishing; 2004.

45. Firquet S, Beaugard S, Lobert PE, Sané F, Caloone D, Izard D, et al. Survival of enveloped and non-enveloped viruses on inanimate surfaces. Microbes Environ 2015;30:140-4.

46. Rzezutka A, Cook N. Survival of human enteric viruses in the environment and food. FEMS Microbiol Rev 2004;28:441-53.

47. Yezli S, Otter JA. Minimum infective dose of the major human respiratory and enteric viruses transmitted through food and the environment. Food Environ Virol 2011;3:1-30.

48. Warnes SL, Keevil CW. Inactivation of norovirus on dry copper alloy surfaces. PLoS ONE 2013;8:e75017.

49. Moore SL, Denyer SP, Hanlon GW, Olliff CJ, Lansley AB, Rabone K, et al. Alcohol ethoxylates mediate their bacteriocidal effect by altering the cell membrane of Escherichia coli NCTC 8196. Int J Antimicrob Agents 2006;28:503-13.

50. Ibfelt T, Engelund EH, Schultz AC, Andersen LP. Effect of cleaning and disinfection of toys on infectious diseases and micro-organisms in daycare nurseries. J Hosp Infect 2015;89:109-15.