Cross-sensitization to *Artemisia* and *Ambrosia* pollen allergens in an area located outside of the current distribution range of *Ambrosia*

Łukasz Grewling¹, Dorota Jenerowicz², Paweł Bogawski¹, Matt Smith¹, Małgorzata Nowak¹,², Agata Frątczak¹, Magdalena Czarnecka-Operacz²

¹Laboratory of Aeropalynology, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland
²Department of Dermatology, Poznan University of Medical Science, Poznan, Poland
³Department of Plant Taxonomy, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland

Abstract

Introduction: The role of long-distance transported (LDT) *Ambrosia* pollen in inducing new sensitization and affecting sensitization rates in *Artemisia*-sensitized patients is unclear.

Aim: The aim of this study was to estimate the degree of cross-sensitization to *Ambrosia/Artemisia* allergens in citizens of Poznan (Western Poland). This area is covered by extensive *Artemisia* populations but does not currently have local *Ambrosia* populations.

Material and methods: Sera of 119 patients were tested by fluoroenzyme immunoassay (CAP-FEIA system) against pollen allergen extracts of *Artemisia vulgaris* and *Ambrosia artemisiifolia*, an allergenic component of *A. vulgaris* (n.Art v 1), and an allergenic component of *A. artemisiifolia* (n.Amb a 1). Skin prick tests (SPTs, n = 86) were performed with pollen allergen extracts of *A. vulgaris* and *A. artemisiifolia*. *Artemisia* and *Ambrosia* pollen in ambient air was collected (1996–2013) by a Hirst type volumetric trap sited at roof level (33 m).

Results: The SPT showed that the prevalence of sensitization to *Ambrosia* and *Artemisia* pollen exceeded 3.5%, and 10.5%, respectively. The measurements of IgE in blood serum (CAP-FEIA) revealed that among *Ambrosia*-sensitized patients 90.1% (20/22 patients) were concomitantly sensitized to *Artemisia*. 59.1% (13/22) of these patients reacted to n.Art v 1, suggesting primary sensitization to *Artemisia* pollen. Only 2 (9.1%) patients were mono-sensitized to *Ambrosia* pollen extract, but surprisingly not to n.Amb a 1.

Conclusions: The LDT *Ambrosia* pollen had a negligible effect on the rate of sensitization to *Ambrosia* allergens in Poznan and did not increase the prevalence of sensitization to *Artemisia* pollen in this region. However, the majority of patients showing hypersensitization to *Artemisia* pollen might also present symptoms during elevated episodes of LDT of *Ambrosia* pollen.

Key words: Amb a 1, Art v 1, immunoglobulin E (IgE), skin prick test, fluorescence-linked immunosorbent assay.

Introduction

Allergens released from *Artemisia* and *Ambrosia* pollen are an important cause of late-summer allergy worldwide [1–3]. Both genera are phylogenetically related and belong to the Asteraceae family [4]. *Artemisia* pollen grains contain several types of allergenic proteins, e.g. the major allergen Art v 1 (a two-domain glycoprotein) and Art v 6 (a pectate lyase) [5, 6]. The major allergen of *Ambrosia* pollen (Amb a 1) also belongs to the pectate lyase protein family and shares 65% sequence identity with Art v 6 [5]. Another protein characterized from *Ambrosia* pollen, Amb a 4, is a close homologue of Art v 1 [7]. A recent study has shown [8] that these proteins play an important role in *Artemisia* and *Ambrosia* pollen allergy and might be responsible for observed cross-sensitization, i.e. the phenomenon of the same IgE binding to several different, but structurally similar allergens, such as Art v 1 and Amb a 4 [9]. As a result, patients sensitized to *Artemisia* pollen may also show allergy reactions when in contact with *Ambrosia* pollen (and vice versa). However, the cross-sensitization should be clearly distinguished from co-sensitization – the simultaneous presence of different IgEs binding to allergens without...
common structural features, such as Art v 1 and Amb a 1. Although the consequences for patients with co- and cross-sensitization are similar, i.e. allergy symptoms to both pollen types, the etiology (causative factor) is different. This may, in turn, affect the overall cost and efficacy of allergy immunotherapy.

Ambrosia pollen grains observed in the air of Poland (Central Europe) are mainly released by local populations of Artemisia species, e.g. A. vulgaris, A. campestris and A. absinthium [10]. Artemisia vulgaris is the most widely distributed [11] and therefore should be considered as the main pollen contributor. The intensity of Artemisia pollen seasons recorded in Poland is one of the highest in Central and Eastern Europe [12]. In addition, Artemisia pollen seasons in Poznan (Western Poland) have started earlier and increased in length over the last two decades [13]. Artemisia pollen allergens are therefore considered to be one of the most common causes of allergic diseases of the upper respiratory tract in Poland, ranking third behind Poaceae and Betula pollen allergens [1].

In contrast, Ambrosia artemisiifolia (the most common ragweed species) is an invasive weed from North America, which has currently infested many regions in Asia, particularly Eastern China and South Korea [14, 15], Australia [16], and Europe, especially the Pannonian Plain (mainly Hungary and Northern Serbia) as well as parts of France, Northern Italy (Po Valley) and Ukraine [17]. An expansion of the plant’s distribution into Central and Northern Europe (e.g. Germany) has also been observed in recent years [18]. In Poznan, however, Ambrosia has only occurred ephemerally and the majority of recorded Ambrosia pollen grains are transported from distant sources, particularly from the Pannonian Plain and Ukraine [19–21]. As a result, exposure to Ambrosia pollen allergens in Poznan depends highly on meteorological conditions facilitating long-distance transport [22].

It is interesting to note that in areas where both plant species are present, e.g. Northern Italy, an unexpectedly high prevalence of concomitant sensitization to these airborne allergens has been recorded [8, 23]. In other words, the expansion of Ambrosia not only resulted in the increase of Ambrosia pollen allergy but also a parallel increase in Artemisia pollen sensitization. This phenomenon might be especially important in such areas as Poland where: (1) a high rate of Artemisia pollen allergy is observed; (2) Ambrosia invasion is still in its initial phase (mainly limited to the south of the country), and the majority of ragweed pollen arrived from distant sources. With overlapping pollination periods and cross-reacting pollen allergens these species may concomitantly affect sensitized patients, hindering appropriate allergy treatment.

Aim

Therefore, the aim of this study is to determine the prevalence of Artemisia and Ambrosia pollen allergy and to identify the degree of cross-sensitization among citizens of Poznan. In addition, we examined airborne Artemisia and Ambrosia pollen concentrations recorded over the last 18 years, as exposure is an important factor that plays a role in the induction of allergy sensitization.

Material and methods

Clinical survey

Clinical studies were performed at the Department of Dermatology, University of Medical Sciences in Poznan. Poznań is the main city of Western Poland (and the fifth largest city in Poland) with a population of ~550 000 [24]. The examined group included 119 consecutive patients (48 males and 71 females), aged 3–66 years. Mean age was 22.8 years. Patients were hospitalized, or attended our outpatient clinic. They presented various manifestations of atopy: mostly atopic dermatitis (83 patients – 70% of examined group), allergic rhinitis and conjunctivitis (29 patients – 24% of examined group) and asthma (7 patients – 6% of entire group). All patients were residents of Poznan and the surrounding area. In all recruited patients, total and antigen-specific IgE (as IgE) levels were measured in serum using fluoroenzyme immunoassay (FEIA) (CAP System 100, Phadia) against:

– allergen extract of Artemisia vulgaris pollen,
– allergen extract of Ambrosia artemisiifolia pollen,
– allergenic component Artemisia vulgaris (nArt v 1),
– allergenic component of Ambrosia artemisiifolia (nAmb a 1).

Fluoroenzyme immunoassay (CAP System FEIA – Phadia) was used according to the producer’s instructions. Results were presented as kU/l and interpreted according to the age standard (total IgE), or interpreted as classes (asIgE) – an antibody level lower than 0.35 kU/l was interpreted as “serum antibodies undetectable”.

On the basis of obtained results, the patients were divided into 3 subgroups:

– Subgroup I. Detectable serum antibodies against Artemisia and Ambrosia pollen extracts (Art+/Amb+), cross-sensitized patients.
– Subgroup II. No detectable serum antibodies against Artemisia pollen extract, but detectable against Ambrosia (Art–/Amb+), patients mono-sensitized to Ambrosia pollen.
– Subgroup III. Detectable serum antibodies against Artemisia, but not against Ambrosia pollen extract (Art+/Amb–), patients mono-sensitized to Artemisia pollen.

Within these three subgroups, the number of patients with positive reactions to particular allergenic components nArt v 1/nAmb a 1 was calculated. Asero et al. [8] stated that the major Artemisia pollen allergen (Art v 1) can be considered as the best marker of primary Artemisia sensitization. On the other hand, due to the high cross-reactivity between Amb a 1 and Art v 6, it is not possible to distinguish between co- and cross-sensi-
Cross-sensitization to *Artemisia* and *Ambrosia* pollen allergens in an area located outside of the current distribution range of *Ambrosia*

The number of days with daily mean *Artemisia* and *Ambrosia* pollen concentrations ≥ 30 P/m³ was extracted from the pollen database. The threshold value (≥ 30 P/m³) was chosen based on the atmospheric concentrations of *Artemisia* and *Ambrosia* pollen often reported to evoke allergic symptoms (De Weger et al. [29] and references therein). Next, the probability risk (p) of recording at least 1, 3, 5, 7 and 10 days with an elevated daily mean *Artemisia* and/or *Ambrosia* pollen level (≥ 30 P/m³) during every decade from the beginning of July to the end of September was calculated. The following descriptors of probability were applied (adapted from [30]): very low (0.0 ≤ p ≤ 0.25), low (0.25 < p ≤ 0.50), medium (0.5 < p ≤ 0.75), high (0.75 < p ≤ 0.90), very high (0.90 < p ≤ 1.00).

Results

Clinical survey

FEIA: Out of all recruited patients (n = 119), positive results for *Artemisia* and/or *Ambrosia* allergen extracts were obtained in 29 patients (29/119 – 24.4%) (Table 1).

Twenty-two (18.5%) patients reacted to *Ambrosia* pollen extract (Subgroups I and II):

- The majority of these patients (20/22 – 90.1%) were also sensitized to *Artemisia* pollen extract, and 59.1% (13/22) of them reacted to nArt v I, suggesting primary sensitization to *Artemisia* pollen.
- Eight patients (8/22 – 36.4%) did not react to nAmb a I and nArt v I; they could therefore be sensitized to other (minor) *Ambrosia/Artemisia* pollen allergens. Six of them (Subgroup I; Art+/?Amb+) were potentially cross-sensitized, and the remaining 2 (Subgroup II, Art–/?Amb+) were mono-sensitized to *Ambrosia* pollen, but surprisingly not to the major *Ambrosia* pollen allergen – nAmb a 1.
- Four patients (4/22 – 18.2%) reacted to the major *Ambrosia* pollen allergen – nAmb a 1, but only 1 patient did not show concomitant reaction to nArt v 1. As this patient also reacted to *Artemisia* pollen extract (Art+),

Pollen monitoring

Artemisia and *Ambrosia* pollen grains in ambient air were collected (1996–2013) by a volumetric trap of the Hirst design [26] sited at roof level (33 m) approximately 8 km from Poznan city centre (52°24’N 16°53’E). The pollen counting methods used in Poznan during the years studied have previously been described in detail [27].

Daily averages of airborne *Artemisia* and *Ambrosia* pollen counts were converted to concentrations and expressed as particles per cubic metre of air (P/m³) [28].

Table 1. Results of FEIA grouped according to hypersensitivity to *Ambrosia* and/or *Artemisia* pollen extract detected in 119 examined patients

Clinical test	*Ambrosia* and *Artemisia* allergen extracts (subgroups)	Sum			
	Subgroup I Art+/Amb+ (number of patients; %)	Subgroup II Art–/Amb+ (number of patients; %)	Subgroup III Art+/Amb– (number of patients; %)		
	20/119 (16.8%)	2/119 (1.7%)	7/119 (5.9%)	29/119 (24.0%)	
Allergenic components	nAmb a 1 (+)/nArt v 1 (+)	3 (15%)	0	0	3 (10.4%)
	nAmb a 1 (+)/nArt v 1 (–)	1 (5%)	0	0	1 (3.4%)
	nAmb a 1 (–)/nArt v 1 (+)	10 (50%)	0	4 (57%)	14 (48.3%)
	nAmb a 1 (–)/nArt v 1 (–)	6 (30%)	2 (100%)	3 (43%)	11 (37.9%)
there is a high chance that the reaction to nAmb a 1 resulted from the cross-sensitivity to Art v 6.

Twenty-seven patients were sensitized to Artemisia pollen extract (20 from Subgroup I and 7 from Subgroup III). A total of 63% (17/27) showed reactions to the major Artemisia pollen allergen nArt v 1.

SPT: Of the 86 atopic patients examined, a total of 16 patients presented either positive (9/86 – 10.5%) or doubtful (7/86 – 8%) results for Artemisia allergen extract (Figure 1). With respect to the Ambrosia allergen extract, 3 patients exhibited positive (3/86 – 3.5%) and 9 patients doubtful (9/86 – 10.5%) SPTs. Simultaneously positive and/or doubtful SPT results for both allergens were obtained in 9 out of 86 patients (10.5%).

Aerobiological data

During the examined period (July–September) the highest probability of recording at least 1 day with an elevated Artemisia pollen level (≥30 Artemisia P/m³ daily average) was observed in the 1st and 2nd 10-day period in August (p = 0.89) (Figure 2 A). During the 1st 10-day period the probability was also high for ≥ 3 days (p = 0.83) and medium for ≥ 5 and ≥ 7 days with ≥ 30 Artemisia P/m³ (p = 0.72 and p = 0.61, respectively). In relation to Ambrosia pollen, the probability of exceeding the threshold value (≥ 30 Ambrosia P/m³ daily average) at least once during a 10-day period was the highest in the 3rd 10-day period in August and the 1st 10-day period in September (p = 0.28 and p = 0.22, respectively) (Figure 2 B). In general, the probability of recording elevated daily mean Ambrosia pollen levels during selected 10-day periods was very low or low (never exceeding ≥ 0.30). When both taxa were considered together (Figure 2 C) the most distinct differences were observed in the 3rd 10-day period in August, when the probability of recording at least one day with mean daily Artemisia or Ambrosia pollen levels ≥ 30 P/m³ increased to 0.39. However, the probability of simultaneously observing elevated daily average concentrations of pollen (≥ 30 P/m³) from both pollen taxa in the same 10-day period was very low (e.g. p = 0.19 in the 3rd 10-day period of August) (Figure 2 D).

Discussion

The prevalence of pollen allergy to particular plant species is closely related to the geographical location, and more specifically to the intensity of pollen exposure in that area. In Poland, where Artemisia pollen is considered to be an important aeroallergen, the prevalence to Artemisia pollen allergens is over 20% and one of the highest in Europe [1]. In our study, depending on tests used, the prevalence varies from 10.5% (positive reaction in SPT), to 15.1% (positive reaction to Art v 1), and 22.7% (positive reaction to Artemisia pollen extract). It is worth noting that among patients sensitized to Artemisia pollen extract (FEIA), 63% reacted positively to the allergenic component nArt v1 (the major Artemisia pollen allergen). The remaining Artemisia-hypersensitive patients presumably reacted to other Artemisia pollen allergens. For instance, according to Gadermaier et al. [31] Art v 3 can be considered as a new major Artemisia pollen allergen, with the
prevalence of reactivity among Artemisia pollen-sensitized individuals reaching 85%. The comparison of SPT results obtained in this study with results obtained in a previous analysis conducted during 2002–2004 [32] shows that the rate of sensitization to Artemisia pollen has not markedly changed (from 11.6% to 10.5%). Although the pollen level of Artemisia is gradually decreasing in Poznan (likely due to drier summers and reduction of suitable habitats) [13], Artemisia still represents a major source of allergenic sensitization in atopic patients, with stable prevalence over the last decade. These results are in contrast with Northern Italy, where the prevalence of Artemisia sensitivity has increased dramatically during recent decades in parallel with the spread of Ambrosia [33].

For Ambrosia, the highest rate of allergy is observed in countries that are significantly infested by this plant, such as Hungary and France [1]. On the other hand, there is almost no sensitization to Ambrosia pollen allergens in Scandinavia (a region with negligible local sources). The estimated prevalence of sensitization to Ambrosia pollen in Poznan (3.5%) is similar to that observed in Scandinavia (i.e., 2.3% in Finland), and lower than in neighbouring countries, e.g., 14.4% in Germany [1] and around 20% in the Czech Republic [34]. It is also lower than the rate of sensitization to Ambrosia pollen allergens observed in other Polish cities, e.g., 10.8% in Lodz (Central Poland) [1], and almost 50% of patients reacted to Ambrosia pollen allergens in Krakow (Southern Poland) [35]. These two cities are located further south than Poznan, and as such are nearer to the northern distribution range of Ambrosia in Europe [17]. Moreover, in Southern Poland Ambrosia artemisiifolia occurs in several well-established populations (> 1000 individuals), becoming a distinct local source of Ambrosia pollen [36].

It should, however, be noted that exposure to pollen is not only related to the plant’s distribution area but may also depend on the ability of pollen to be transported over long distances. Episodes of long-distance transport (LDT) of Ambrosia pollen from infested to “ragweed-free” areas, such as Poznan, have been detected over the last

Figure 2. Probability of recording a certain a number of days with elevated mean daily Artemisia (A), Ambrosia (B), Artemisia OR Ambrosia (C), and Artemisia AND Ambrosia (D) pollen concentrations (≥ 30 P/m³) in the air of Poznan during every 10-day period from the beginning of July to the end of September.
Conclusions

Western Poland is currently a ragweed free area, without local plant populations, and the majority of pollen grains recorded in Poznan are transported from very far away. However, in recent decades the distance from the nearest Ambrosia sources has been gradually decreasing. Ambrosia has infested areas in Northern Europe; it has been observed in Eastern Germany and Southern Poland. The "ragweed pollen noose" is slowly tightening... how this situation will affect the allergic population of Poznan is still uncertain. However, it seems that nowadays, Ambrosia pollen does not pose a high allergenic risk in Poznan. The probability of recording elevated mean daily Ambrosia pollen levels is still low and limited to a 20-day period (in late August and early September). In addition, the chances of observing high concentrations of Artemisia and Ambrosia pollen in the air at the same time are even lower, which should be helpful information for physicians choosing appropriate allergy immunotherapy. Finally, the prevalence of Ambrosia pollen allergy is very low, and the co-sensitization to both investigated species is a rather rare phenomenon. This positive information should not, however, lull our sense of security. Ambrosia produces one of the most potent aeroallergens and its distribution range is gradually expanding; it surely requires the highest attention.

Acknowledgments

Clinical studies were performed at the Department of Dermatology, University of Medical Sciences in Poznan. This work was funded by Polish National Science Centre grants No. NN404015439 and No. 2011/03/D/NZ7/06224. The results presented here relate to European COST Action FA1203 "Sustainable management of Ambrosia artemisifolia in Europe (SMARTER)". We thank A. Szymańska and L. Kostecki for help with data collection and technical assistance.

Conflict of interest

The authors declare no conflict of interest.

References

1. Burbach GJ, Heinzerling LM, Edenharter G, et al. GA2LEN skin test study II: clinical relevance of inhalant allergen sensitizations in Europe. Allergy 2009; 64: 1507-15.
Cross-sensitization to *Artemisia* and *Ambrosia* pollen allergens in an area located outside of the current distribution range of *Ambrosia*

2. Oswalt ML, Marshall GD. Ragweed as an example of worldwide allergen expansion. Allergy Asthma Clin Immunol 2008; 4: 130-5.

3. Tang R, Sun J, Yin J, et al. Artemisia allergy research in China. Biomed Res Intern 2015; 2015: 179426.

4. Jäger S. Plant taxonomy and nomenclature. Postep Derm Allergol 2003; 20: 218-26.

5. Jahn-Schmid B, Hauser M, Wopfner N, et al. Humoral and cellular cross-reactivity between *Amb a 1*, the major ragweed pollen allergen, and its Mugwort homolog *Art v 6*. J Immunol 2012; 188: 1559-67.

6. Gadermaier G, Hauser M, Ferreira F. Allergens of weed pollen: an overview on recombinant and natural molecules. Methods 2014; 66: 55-66.

7. Leonard R, Wopfner N, Pabst M, et al. A new allergen from ragweed (*Ambrosia artemisiifolia*) with homology to *Art v 1* from mugwort. *J Biol Chem* 2010; 285: 27192-200.

8. Asero R, Bellotto E, Ghiani A, et al. Concomitant sensitization to ragweed and mugwort pollen: who is who in clinical allergy? Allergy Asthma Immunol 2014; 113: 307-13.

9. Migueres M, Davila I, Frati F, et al. Types of sensitization to aeroallergens: definitions, prevalences and impact on the diagnosis and treatment of allergic respiratory disease. Clin Transl Allergy 2014; 4: 16.

10. Bogawski P, Grewling L, Frątczak A. Flowering phenology and potential pollen emission of three *Artemisia* species in relation to airborne pollen data in Poznań (Western Poland). Aerobiologia 2016; 32: 265-76.

11. Zając A, Zając M. Atlas rozmieszczenia roślin naczyniowych w Polsce. Distribution atlas of vascular plants in Poland. Instytut Botaniki Uniwersytetu Jagiellońskiego Kraków 2001.

12. Grewling L, Šikoparija B, Skjøth CA, et al. A mechanism for the Asia-Pacific Region: Springer 2007. GIS for Health and the Environment Development in Problems: Spiewak R (ed). Institute of Agricultural Medicine, Standards and Registers Department. Central Statistical Office 2013.

13. Kruszewski J, Siły W, Mazurek H, et al. Testy skórne. Stan- dardy w alergologii. Część I. The UCB Institute of Allergy and Immunology, Standards and Registers Department. Central Statistical Office 2013.

14. Zając A, Zając M. Atlas rozmieszczenia roślin naczyniowych w Polsce. Distribution atlas of vascular plants in Poland. In: Pollens and Pollinosis: Current and Evolutionary Aspects of Biology. Biodiv Res Conserv 2011; 21: 39-48.

15. Asero R, García-Mozo H, Prieto-Baena JC, et al. Prevalence of *Artemisia* species pollinosis in Western Poland: impact of climate change on allergological trends, 1995-2004. J Invest Allergol Clin Immunol 2007; 17: 39-47.

16. Bass DJ, Delpech V, Beard J, et al. Ragweed in Australia. *Austral Biomedica* 2000; 16: 107-11.

17. Smith M, Cecchi L, Skjæth CA, et al. Common ragweed: a threat to environmental health in Europe. Environ Int 2013; 61: 115-26.

18. Cunze S, Leiblein MC, Mackensen O. Range expansion of *Ambrosia artemisiifolia* in China using GIS and statistical methods in *Lai PC*, *Mak ASH* (Eds). GIS for Health and the Environment Development in the Asia-Pacific Region: Springer 2007.

19. Bass DJ, Delpech V, Beard J, et al. Ragweed in Australia. *Austral Biomedica* 2000; 16: 107-11.

20. Smith M, Skjæth CA, Myszkowska D, et al. Long-range transport of *Ambrosia* pollen to Poland. *Agric For Meteorol* 2008; 148: 1402-11.

21. Stach A, Smith M, Skjæth CA, et al. Examining *Ambrosia* pollen episodes at Poznan (Poland) using back-trajectory analysis. *Int J Biometeorol* 2007; 51: 275-86.

22. Kasprzyk I, Myszkowska D, Grewling L, et al. The occurrence of *Ambrosia* pollen in Rzeszów, Kraków and Poznań, Poland: investigation of trends and possible transport of *Ambrosia* pollen from Ukraine. *Int J Biometeorol* 2011; 55: 633-44.