ENUMERATING EXTENSIONS OF \((\pi)\)-ADIC FIELDS WITH GIVEN INVARIANTS

SEBASTIAN PAULI AND BRIAN SINCLAIR

Abstract. We give an algorithm that constructs a minimal set of polynomials defining all extension of a \((\pi)\)-adic field with given, inertia degree, ramification index, discriminant, ramification polygon, and residual polynomials of the segments of the ramification polygon.

1. Introduction

It follows from Krasner’s Lemma that a local field has only finitely many extensions of a given degree and discriminant. Thus it is natural to ask whether one can generate a list of polynomials such that each extension is generated by exactly one of the polynomials.

For abelian extensions, local class field theory gives a one-to-one correspondence between the abelian extensions of \(K\) and the open subgroups of the unit group \(K^\times\) of \(K\). An algorithm that constructs the wildly ramified part of the class field as towers of extensions of degree \(p\) was given in [Pau06]. Recently Monge [Mon14] has published an algorithm that, given a subgroup of \(K^\times\) of finite index, directly constructs the generating polynomial of the corresponding totally ramified extension.

In the non-abelian case, such a complete description is not yet known. However, a description of all tamely ramified extensions is well known and all extensions of degree \(p\) have been described completely by Amano [Ama71]. Krasner [Kra66] gave a formula for the number of totally ramified extensions, using his famous lemma as a main tool. Following his approach, Pauli and Roblot [PR01] presented an algorithm that returned a set of generating polynomials for all extensions of a given degree and discriminant. They used the root-finding algorithm described by Panayi [Pan95] to obtain one generating polynomial for each extension. A new approach for determining whether two polynomials generate the same extension was recently presented by Monge [Mon14]. He introduces reduced polynomials that yield a canonical set of generators for totally ramified extensions of \(K\).

Monge’s methods also considerably reduce the number of generating polynomials that need to be considered when computing a set of polynomials defining all totally ramified extensions of \(K\). We present an algorithm that for each extension with given invariants constructs a considerably smaller set of defining polynomials than the set obtained with Krasner’s bound. In many cases this eliminates the need to check whether two polynomials generate the same extension. The polynomials constructed are reduced in Monge’s sense.

Overview. In the first three sections of the paper, we examine extension invariants and how specifying each invariant reduces the number of polynomials to be considered. We recall some of Krasner’s results [Kra66] that are based on degree and discriminant (Section 2) and then add the ramification polygon as an additional invariant (Section 3). In Section 4 we introduce an invariant based on the residual polynomials of the ramification polygon which consists of a polynomial over the residue class field for each segment of the ramification polygon.
polygon. The residual polynomials together with ideas of Monge [Mon14] reduce the number of polynomials to be considered considerably (Section 5). In Section [6] we give an algorithm that uses the results of the previous sections to return a set of polynomials that generate all extensions with given invariants. In many cases this set contains exactly one polynomial for each extension. Section [7] contains examples and comparisons with the implementations of the algorithm by Pauli and Roblot [PR01].

Notation. By convention fractions denoted h/e or h_i/e_i are always taken to be in lowest terms.

We denote by \mathbb{Q}_p the field of p-adic numbers and by v_p the (exponential) valuation normalized such that $v_p(p) = 1$. By K we denote a finite extension of \mathbb{Q}_p, by \mathcal{O}_K the valuation ring of K, and by π a uniformizer of \mathcal{O}_K. We write v_π for the valuation of K that is normalized such that $v_\pi(\pi) = 1$ and also denote the unique extension of v_π to an algebraic closure \overline{K} of K (or to any intermediate field) by v_π.

For $\gamma \in \overline{K}^\times$ and $\delta \in \overline{K}^\times$ we write $\gamma \sim \delta$ if $v(\gamma - \delta) > v(\gamma)$ and make the supplementary assumption $0 \sim 0$.

For $\gamma \in \mathcal{O}_K$ we denote by γ the class $\gamma + (\pi)$ in $\frac{K}{\mathcal{O}_K(\pi)}$, by R_K a fixed set of representatives of K in \mathcal{O}_K, and by \mathcal{R}_K the set R_K without the representative for $0 \in K$. For a polynomial $\varphi \in \mathcal{O}_K[x]$ of degree n we denote its coefficients by φ_i ($0 \leq i \leq n$) such that $\varphi(x) = \varphi_n x^n + \varphi_{n-1} x^{n-1} + \cdots + \varphi_0$ and write $\varphi = \sum_{j=0}^{\infty} \varphi_{i,j} \pi^j$, where $\varphi_{i,j} \in R_K$. If φ is Eisenstein then $\varphi_n = 1$, $\varphi_{0,1} \neq 0$ and $\varphi_{i,0} > 0$ for $1 \leq i < n$.

In examples we use a table to represent sets of polynomials. Each cell contains a set from which the corresponding coefficient $\varphi_{i,j}$ of the π-adic expansion of the coefficient $\varphi_i = \sum_{j=0}^{\infty} \varphi_{i,j} \pi^j$ of the polynomial $\varphi(x) = \varphi_n x^n + \varphi_{n-1} x^{n-1} + \cdots + \varphi_0$ can be chosen.

Example 1.1. The Eisenstein polynomials of degree n over \mathcal{O}_K are represented by the template:

x^n	x^{n-1}	x^{n-2}	\cdots	x^4	x^3	x^2	x^1	x^0
\vdots	\vdots	\vdots	\cdots	\vdots	\vdots	\vdots	\vdots	\vdots
π^2	0	R_K	R_K	\cdots	R_K	R_K	R_K	R_K
π^1	0	R_K	R_K	\cdots	R_K	R_K	R_K	R_K
π^0	1	0	0	\cdots	0	0	0	0

2. **Discriminant**

We recall some of the results Krasner used to obtain his formula for the number of extensions of a p-adic field [Kra66]. These can also be found in [PR01].

The possible discriminants of finite extensions are given by Ore’s conditions [Ore26]:

Proposition 2.1 (Ore’s conditions). Let K be a finite extension of \mathbb{Q}_p, \mathcal{O}_K its valuation ring with maximal ideal (π). Given $J_0 \in \mathbb{Z}$ let $a_0, b_0 \in \mathbb{Z}$ be such that $J_0 = a_0 n + b_0$ and $0 \leq b_0 < n$. Then there exist totally ramified extensions L/K of degree n and discriminant $(\pi)^{n+J_0-1}$ if and only if

$$\min\{v_\pi(b_0)n, v_\pi(n)n\} \leq J_0 \leq v_\pi(n)n.$$
The proof of Ore’s conditions yields a certain form for the generating polynomials of extensions with given discriminant.

Lemma 2.2. An Eisenstein polynomial \(\varphi \in \mathcal{O}_K[x] \) with discriminant \((\pi)^{n+J_0-1}\) where \(J_0 = a_0n + b_0 \) with \(0 \leq b_0 < n \) fulfills Ore’s conditions if and only if
\[
\nu_\pi(\varphi_i) \geq \max\{2 + a_0 - \nu_\pi(i), 1\} \quad \text{for } 0 < i < b_0,
\]
\[
\nu_\pi(\varphi_{b_0}) = \max\{1 + a_0 - \nu_\pi(b_0), 1\},
\]
\[
\nu_\pi(\varphi_1) \geq \max\{1 + a_0 - \nu_\pi(i), 1\} \quad \text{for } b_0 < i < n.
\]

Krasner’s Lemma yields a bound over which the coefficients of the \(\pi \)-adic expansion of the coefficients of a generating polynomial can be chosen to be 0 [Kra66].

Lemma 2.3. Each totally ramified extension of degree \(n \) with discriminant \((\pi)^{n+J_0-1}\) where \(J_0 = a_0n + b_0 \) with \(0 \leq b_0 < n \) can be generated by an Eisenstein polynomial \(\varphi \in \mathcal{O}_K[x] \) with \(\varphi_{i,j} = 0 \) for \(0 \leq i < n \) and \(j > 1 + 2a_0 + \frac{2b_0}{n} \).

With Lemma 2.2 and Lemma 2.3 we obtain a finite set of polynomials that generate all extensions of a given degree and discriminant. In [PR01] this set in conjunction with Krasner’s mass formula [Kra66] and Panayi’s root finding algorithm is used to obtain a generating polynomial for each extension of a given degree and discriminant.

Example 2.4. We want to find generating polynomials for all totally ramified extensions \(L \) of \(\mathbb{Q}_3 \) of degree 9 with \(v_3(\text{disc}(L)) = 18 \). Denote by \(\varphi = \sum_{i=0}^9 \varphi_i x^i \) an Eisenstein polynomial generating such a field \(L \). By Lemma 2.2 with \(J_0 = 10, a_0 = 1, \) and \(b_0 = 1 \) we get \(\nu_\pi(\varphi_1) = 2 \) and \(\nu_\pi(\varphi_i) = 2 - \nu_\pi(i) \) for \(1 < i < n \). Furthermore by Lemma 2.3 \(\varphi_{i,j} = 0 \) for \(0 \leq i < 9 \) and \(j > 3 \). Thus the template for the polynomials \(\varphi \) is:

\(x^9 \)	\(x^8 \)	\(x^7 \)	\(x^6 \)	\(x^5 \)	\(x^4 \)	\(x^3 \)	\(x^2 \)	\(x^1 \)	\(x^0 \)
3\(^4\)	\{0\}	\{0\}	\{0\}	\{0\}	\{0\}	\{0\}	\{0\}	\{0\}	\{0\}
3\(^3\)	\{0\}	\{0,1,2\}	\{0,1,2\}	\{0,1,2\}	\{0,1,2\}	\{0,1,2\}	\{0,1,2\}	\{0,1,2\}	\{0,1,2\}
3\(^2\)	\{0\}	\{0,1,2\}	\{0,1,2\}	\{0,1,2\}	\{0,1,2\}	\{0,1,2\}	\{0,1,2\}	\{1,2\}	\{0,1,2\}
3\(^1\)	\{0\}	\{0\}	\{0\}	\{0\}	\{0\}	\{0\}	\{0\}	\{0\}	\{1,2\}
3\(^0\)	\{1\}	\{0\}	\{0\}	\{0\}	\{0\}	\{0\}	\{0\}	\{0\}	\{0\}

3. Ramification Polygons

To distinguish totally ramified extensions further we use an additional invariant, namely the ramification polygon.

Definition 3.1. Assume that the Eisenstein polynomial \(\varphi \) defines \(L/K \). The ramification polygon \(\mathcal{R}_\varphi \) of \(\varphi \) is the Newton polygon \(\mathcal{N} \) of the ramification polynomial \(\rho(x) = \varphi(\alpha x + \alpha)/(\alpha^n) \in K(\alpha)[x] \) of \(\varphi \), where \(\alpha \) is a root of \(\varphi \).

The ramification polygon \(\mathcal{R}_\varphi \) of \(\varphi \) is an invariant of \(L/K \) (see [GP12 Proposition 4.4] for example) called the ramification polygon of \(L/K \) denoted by \(\mathcal{R}_{L/K} \). Ramification polygons have been used to study ramification groups and reciprocity [Sch03], compute splitting fields and Galois groups [GP12], describe maximal abelian extensions [Lub81], and answer questions of commutativity in \(p \)-adic dynamical systems [Li97].
Let \(\varphi(x) = \sum_{i=0}^{n} \varphi_i x^i \in K[x] \) be an Eisenstein polynomial, denote by \(\alpha \) a root of \(\varphi \), and set \(L = K(\alpha) \). Let \(\rho(x) = \sum_{i=0}^{n} \rho_i x^i \in L[x] \) be the ramification polynomial of \(\varphi \). Then the coefficients of \(\rho \) are

\[
\rho_i = \sum_{k=i}^{n} \binom{k}{i} \varphi_k \alpha^{k-n}
\]

As \(v_\alpha(\alpha) = 1 \) and \(v_\alpha(\varphi_i) \in n\mathbb{Z} \) we obtain

\[
(1) \quad v_\alpha(\rho_i) = \min_{i \leq k \leq n} \left\{ v_\alpha\left(\binom{k}{i} \varphi_k \alpha^k \right) - n \right\} = \min_{i \leq k \leq n} \left\{ n \left[v_\pi\left(\binom{k}{i} \varphi_k \right) - 1 \right] + k \right\}.
\]

Lemma 3.2 (Sch03 Lemma 1). Let \(\varphi(x) = \sum_{i=0}^{n} \varphi_i x^i \in K[x] \) be an Eisenstein polynomial and \(n = e_0 p^m \) with \(p \nmid e_0 \). Denote by \(\alpha \) a root of \(\varphi \) and set \(L = K(\alpha) \). Then the following hold for the coefficients of the ramification polynomial \(\rho(x) = \sum_{i=0}^{n} \rho_i x^i = \varphi(\alpha x + \alpha)/\alpha^n \in \mathcal{O}_L[x] \) of \(\varphi \):

(a) \(v_\alpha(\rho_i) \geq 0 \) for all \(i \);
(b) \(v_\alpha(\rho_{p^m}) = v_\alpha(\rho_n) = 0 \);
(c) \(v_\alpha(\rho_i) \geq v_\alpha(\rho_{p^s}) \) for \(p^s \leq i < p^{s+1} \) and \(s < m \).

This gives the typical shape of the ramification polygon (see Figure 1).

Remark 3.3. Throughout this paper we describe ramification polygons by the set of points

\[
\mathcal{P} = \{(1, J_0), (p^{s_1}, J_1), \ldots, (p^{s_{u-1}}, J_{u-1}), (p^{s_u}, 0), \ldots, (n, 0)\}
\]

where not all points in \(\mathcal{P} \) have to be vertices of the polygon \(\mathcal{R} \). We write \(\mathcal{R} = \mathcal{P} \). This gives a finer distinction between fields by their ramification polygons and also allows for an easier description of the invariant based on the residual polynomials of the segments of the ramification polygon, see Section 4.

We now investigate the points on a ramification polygon further.

Lemma 3.4. Let \(\rho = \sum_{i=1}^{n} \rho_i x^i \) be the ramification polynomial of an Eisenstein polynomial \(\varphi(x) = \sum_{i=0}^{n} \varphi_i x^i \in \mathcal{O}_K[x] \). Denote by

\[
\{(1, J_0), (p^{s_1}, J_1), \ldots, (p^{s_{u-1}}, J_{u-1}), (p^{s_u}, 0), \ldots, (n, 0)\} \subseteq \{(i, v_\alpha(\rho_i)) : 1 \leq i \leq n\}
\]

the points on the ramification polygon of \(\varphi \) and write \(J_i = a_i n + b_i \) with \(0 \leq b_i < n \).

(a) For \(p^{s_u} \leq i \leq n \) we have \(v_\alpha(\rho_i) = 0 \) and \(\rho_i \equiv \binom{n}{i} \mod (\alpha) \) if and only if \(v_\alpha(\binom{n}{i}) = 0 \).

(b) For \(0 \leq i \leq u \) we have

\[
\rho_{p^{s_i}} \sim \varphi_{b_i} \left(\binom{b_i}{p^{s_i}} \right)^{\alpha b_i - n}.
\]

It follows from (a) that, modulo (\(\alpha \)), the coefficients of the ramification polynomial that correspond to the horizontal segment of its Newton polygon only depend on the degree of \(\varphi \).

Lemma 3.5. If the ramification polygon of an Eisenstein polynomial \(\varphi \in \mathcal{O}_K[x] \) has the points \(\{(1, J_0), (p^{s_1}, J_1), \ldots, (p^{s_{u-1}}, J_{u-1}), (p^{s_u}, 0), \ldots, (n, 0)\} \) where \(J_i = a_i n + b_i \) with \(0 \leq b_i \leq n - 1 \). Then for \(0 \leq t \leq u \), we have

\[
v_\pi(\varphi_i) \geq \begin{cases}
2 + a_t - v_\pi(\binom{i}{p^{s_t}}) & \text{for } p^{s_t} \leq i < b_t \
1 + a_t - v_\pi(\binom{i}{p^{s_t}}) & \text{for } b_t \leq i \leq n - 1
\end{cases}
\]
and $v_\pi(\varphi_{b_t}) = a_t + 1 - v_\pi\left(p_{p^{s_t}}^{b_t}\right)$ if $b_t \neq 0$.

Proof. By Equation (1), for all k with $s_t \leq k \leq n$,

$$J_t = a_t n + b_t \leq n \left[v_\pi\left(p_{p^{s_t}}^k \varphi_k\right) - 1\right] + k,$$

which solved for $v_\pi(\varphi_k)$ gives

$$1 + a_t - v_\pi\left(p_{p^{s_t}}^k\right) + \frac{b_t - k}{n} \leq v_\pi(\varphi_k) \text{ for } s_t \leq k \leq n.$$

As $v_\pi(\varphi_k)$ is an integer, we may take the ceiling of the fraction. As $0 \leq b_t \leq n - 1$ and $p^{s_t} \leq k \leq n$, if $k < b_t$, then $\left\lfloor \frac{b_t - k}{n} \right\rfloor = 1$, and if $k \geq b_t$, then $\left\lfloor \frac{b_t - k}{n} \right\rfloor = 0$. Therefore,

$$v_\pi(\varphi_i) \geq \begin{cases} 2 + a_t - v_\pi\left(p_{p^{s_t}}^i\right) & \text{for } p^{s_t} \leq i < b_t \\ 1 + a_t - v_\pi\left(p_{p^{s_t}}^i\right) & \text{for } b_t \leq i \leq n - 1 \end{cases}.$$

Now if we consider a point $(p^{s_t}, a_t n + b_t)$ with $b_t \neq 0$, then by Equation (1) we have

$$a_t n + b_t = \min_{p^{s_t} \leq k \leq n} \left\{ n \left[v_\pi\left(p_{p^{s_t}}^k \varphi_k\right) - 1\right] + k \right\},$$

and as $0 < b_t < n$, the minimum is attained at $k = b_t$. Hence $a_t = \left[v_\pi\left(p_{p^{s_t}}^{b_t} \varphi_{b_t}\right) - 1\right]$ and $v_\pi(\varphi_{b_t}) = a_t + 1 - v_\pi\left(p_{p^{s_t}}^{b_t}\right)$. □

From this, we can generalize Ore’s conditions (Proposition 2.1) from a statement about the exponent of the discriminant, which is related to the ordinate of the point above 1, to the ordinates of all points.
Lemma 3.6. Let \mathcal{R}_φ be the ramification polygon of φ as in Lemma 3.5. Then for each point (p^s, J_i) where $J_i = a_in + b_i$ with $0 \leq b_i \leq n - 1$,
\[\min \left\{ v_{\pi}\left(b_i \right)_{p^{s_i}}, n, v_{\pi}\left(n \right)_{p^{s_i}} n \right\} \leq J_i \leq v_{\pi}\left(n \right)_{p^{s_i}} n. \]

Proof. The $k = n$ term of Equation (1) is
\[J_i \leq n \left[v_{\pi}\left(n \right)_{p^{s_i}} \varphi_n - 1 \right] + n = v_{\pi}\left(n \right)_{p^{s_i}} n. \]
If $b_i \neq 0$, then by Lemma 3.5, $v_{\pi}\left(\varphi_{b_i} \right) = a_i + 1 - v_{\pi}\left(b_i \right)_{p^{s_i}}$. So $nv_{\pi}\left(\varphi_{b_i} \right) + b_i = na_i + n - n v_{\pi}\left(b_i \right)_{p^{s_i}} + b_i$ and $nv_{\pi}\left(\varphi_{b_i} \right) + b_i - n + n v_{\pi}\left(b_i \right)_{p^{s_i}} = na_i + b_i = J_i$. As φ is Eisenstein we have $v_{\pi}\left(\varphi_{b_i} \right) \geq 1$, hence $nv_{\pi}\left(\varphi_{b_i} \right) - n \geq 0$. This combined with $b_i > 0$ gives us that
\[J_i = nv_{\pi}\left(\varphi_{b_i} \right) + b_i - n + nv_{\pi}\left(b_i \right)_{p^{s_i}} \geq b_i + n v_{\pi}\left(b_i \right)_{p^{s_i}} \geq n v_{\pi}\left(b_i \right)_{p^{s_i}}. \]
If $b_i = 0$, then the minimum term of Equation (1) defining J_i must be such that $k|n$, which only occurs in the $k = n$ term, so $J_i = v_{\pi}\left(n \right)_{p^{s_i}} n$, which is less than $v_{\pi}\left(n \right)_{p^{s_i}} n = \infty$. \hfill \Box

Lemma 3.7. Let \mathcal{R}_φ be the ramification polygon of an Eisenstein polynomial $\varphi \in \mathcal{O}_K[x]$ with points
\[\mathcal{R}_\varphi = \{(1, J_0), (p^s, J_1), \ldots, (p^{s_{u-1}}, J_{u-1}), (p^{s_u}, 0), \ldots, (n, 0)\}, \]
but no point with abscissa p^i, where $s_t < i < s_{t+1}$ for some $1 \leq t \leq u$. Then for k such that $p^i \leq k \leq n$,
\[v_{\pi}\left(\varphi_k \right) > \frac{1}{n} \left[\frac{J_{i+1} - J_i}{p^{s_{i+1}} - p^{s_i}} (p^i - p^{s_i}) + J_t - k \right] + 1 - v_{\pi}\left(\frac{k}{p^i} \right) \]

Proof. If there is no point on \mathcal{R}_φ with abscissa p^i, then the point $(p^i, v_{\alpha}(\rho_{p^i}))$ must be above the segment from (p^{s_i}, J_t) to $(p^{s_{i+1}}, J_{t+1})$. Thus, $J_t \leq v_{\alpha}(\rho_{p^i})$, and so by Equation (1), for k in $p^i \leq k \leq n$,
\[\frac{J_{i+1} - J_i}{p^{s_{i+1}} - p^{s_i}} (p^i - p^{s_i}) + J_t \leq \left[v_{\pi}\left(\frac{k}{p^i} \right) - 1 \right] + k. \]
Solving for $v_{\pi}\left(\varphi_k \right)$ provides the result of the lemma. \hfill \Box

We collect the results of Lemmas 3.5 and 3.7 to define functions $l_{\mathcal{R}_\varphi}(i, s)$ for $1 \leq s \leq s_u$ and $p^s \leq i \leq n$ that give the minimum valuation of φ_i due to a point (or lack thereof) above p^s on the ramification polygon \mathcal{R}_φ of φ. By taking the maximum of these over all s, we define $L_{\mathcal{R}_\varphi}(i)$ so that $v_{\pi}\left(\varphi_i \right) \geq L_{\mathcal{R}_\varphi}(i)$ for $1 \leq i \leq n - 1$.

Definition 3.8. Let \mathcal{R}_φ be the ramification polygon of φ with points
\[\mathcal{R}_\varphi = \{(1, J_0), (p^s, J_1), \ldots, (p^{s_{u-1}}, J_{u-1}), (p^{s_u}, 0), \ldots, (n, 0)\}, \]
and where $J_i = a_in + b_i$ with $0 \leq b_i \leq n - 1$. For $0 \leq t \leq u$, let
\[l_{\mathcal{R}_\varphi}(i, s_t) = \begin{cases} \max\{2 + a_i - v_{\pi}\left(\frac{i}{p^{s_t}} \right), 1\} & \text{if } p^{s_t} \leq i < b_t, \\ \max\{1 + a_i - v_{\pi}\left(\frac{i}{p^{s_t}} \right), 1\} & \text{if } i \geq b_t. \end{cases} \]
If there is no point above p^w with $s_i < w < s_{i+1}$, then for $p^w \leq i \leq n - 1$, let

$$l_{R_\varphi}(i, w) = \max \left\{ \frac{1}{n} \left[\frac{J_{t+1} - J_t}{p^{st+1} - p^{st}} (p^w - p^{st}) + J_t - k \right] + 1 - v_\pi \left(\frac{k}{p^w} \right) , 1 \right\}$$

Finally, set

$$L_{R_\varphi}(i) = \begin{cases} 1 & \text{if } i = 0 \\ \max\{l_{R_\varphi}(i, t) : p^0 \leq i \} & \text{if } 1 \leq i \leq n - 1 \\ 0 & \text{if } i = n \end{cases}$$

Lemma 3.9. Let \mathcal{R}_φ be the ramification polygon of φ with points

$$\mathcal{R}_\varphi = \{(1, J_0), (p^{s_1}, J_1), \ldots, (p^{s_u-1}, J_{u-1}), (p^{s_u}, 0), \ldots, (n, 0)\}$$

where $J_i = a_in + b_i$ with $0 \leq b_i \leq n - 1$. Then $p^{s_i} | J_i$ for $0 \leq i \leq u$.

Proof. As J_0 is an integer, $p^0 = 1$ divides J_0, and as $J_u = 0$, clearly $p^{s_i} | J_i$.

Suppose that for some $1 \leq i < u$ we have $v_\pi(J_i) = t < s_i$. If \mathcal{R} is the ramification polygon of φ with ramification polynomial p and contains (p^{s_i}, J_i), then $t < s_i$ must imply that $J_i < v_\alpha(p^{r_i})$, which is bounded above by the $k = b_i$ term of Equation (1). By Lemma 3.5 we have that $v_\pi(\varphi_{b_i}) = a_i + 1 - v_\pi(b_i)$. If we substitute this value of $v_\pi(\varphi_{b_i})$ into Equation (1), then

$$a_i(p^{r_i}) \leq n \left[v_\pi(b_i) + v_\pi(\varphi_{b_i}) - 1 \right] + b_i = n \left[v_\pi(b_i) + a_i - v_\pi(b_i) \right] + b_i$$

As $p^t | b_i$, the p^t-term of the base p expansion of b_i is non-zero, so $v_\pi(b_i) = 0$ and consequently $v_\pi(\varphi_{b_i}) = 0$. Thus, $a_i(p^{r_i}) \leq n \left[a_i - v_\pi(b_i) \right] + b_i \leq a_in + b_i = J_i$. This implies that \mathcal{R} cannot have the point (p^{s_i}, J_i), and by contradiction, our claim is shown.

So far we have described many necessary conditions for ramification polygons. Now we propose a necessary and sufficient description of a ramification polygon of an extension.

Proposition 3.10. Let

$$\mathcal{P} = \{(1, J_0), (p^{s_1}, J_1), \ldots, (p^{s_u-1}, J_{u-1}), (p^{s_u}, 0), \ldots, (n, 0)\},$$

be a convex polygon with points where $J_i = a_in + b_i$ with $0 \leq b_i \leq n - 1$. There is an extension L/K with ramification polygon \mathcal{P}, if and only if

(a) For each J_i, $\min \left\{ v_\pi(b_i), v_\pi(n) \right\} \leq J_i \leq v_\pi(n) n$.

(b) If $b_i = b_k$, then $a_i = a_k - v_\pi(b_i) + v_\pi(b_i)$ where $b_i = b_k$.

(c) For each point $(p^{s_i}, a_i + b_i)$, we have that

$$a_i \geq \begin{cases} 1 + a_t - v_\pi(b_i) + (b_i) & \text{if } p^{st} \leq b_i < b_t \\ a_t - v_\pi(b_i) + (b_i) & \text{if } b_i \geq b_t \end{cases}$$

for all other points (p^{s_i}, J_i) with $J_i = a_in + b_i \neq 0$.

(d) If there is no point of \mathcal{P} above p^t, with $s_t < i < s_{t+1}$, then for each point $(p^{s_k}, a_kn + b_k)$ of \mathcal{P} with $b_k > p^t$,

$$a_k > \frac{1}{n} \left[\frac{J_{t+1} - J_t}{p^{st+1} - p^{st}} (p^t - p^{st}) + J_t - b_k \right] - v_\pi(b_k) + \pi(b_k).$$
(c) The points with abscissa greater than \(p^{a_n} \) are \((i,0)\) where \(v_\pi \left(\frac{t}{i} \right) = 0 \).

Proof. Suppose \(\mathcal{P} \) is the ramification polygon for \(L/K \) with generating Eisenstein polynomial \(\varphi \). Assumption \((a)\) follows from Corollary 3.6. If \(b_i = b_k \), then by Lemma 3.5

\[
v_\pi(\varphi_{b_i}) = a_i + 1 - v_\pi \left(\frac{b_i}{p^{s_i}} \right) = a_k + 1 - v_\pi \left(\frac{b_k}{p^{s_k}} \right).
\]

Thus \(a_i = a_k - v_\pi \left(\frac{b_i}{p^{s_i}} \right) + v_\pi \left(\frac{b_i}{p^{s_i}} \right) \), giving us assumption \((b)\). Let \((p^{s_i}, a_i n + b_i)\) be a point of \(\mathcal{P} \), then by Lemma 3.5, we have that for all other points \((p^{s_i}, J_i)\),

\[
v_\pi(\varphi_{b_i}) = a_i + 1 - v_\pi \left(\frac{b_i}{p^{s_i}} \right) \geq \begin{cases} 2 + a_t - v_\pi \left(\frac{b_i}{p^{s_i}} \right) & \text{for } p^{s_i} \leq b_i < b_t \\ 1 + a_t - v_\pi \left(\frac{b_i}{p^{s_i}} \right) & \text{for } b_i \geq b_t \end{cases},
\]

from which we see assumption \((c)\). If there is no point of \(\mathcal{P} \) above \(p^i \), with \(s_t < i < s_{t+1} \), then by Lemma 3.7 for each point \((p^{s_i}, a_i n + b_i)\) of \(\mathcal{P} \) with \(b_i > p^i \),

\[
v_\pi(\varphi_{b_i}) = a_i + 1 - v_\pi \left(\frac{b_i}{p^{s_i}} \right) \geq \frac{1}{n} \left[\frac{j_{t+1} - J_t}{p^{s_{t+1}} - p^{s_t}} (p^i - p^{s_t}) + J_t - b_t \right] + 1 - v_\pi \left(\frac{b_i}{p^i} \right),
\]

from which we have assumption \((d)\). Assumption \((e)\) is given by Lemma 3.4. Thus, if \(\mathcal{P} \) is a ramification polygon of an extension \(L/K \), then these properties are necessary.

Next we will show sufficiency by constructing a polynomial \(\psi(x) = \sum \psi_i x^i \in \mathcal{O}_K[x] \) such that \(\mathcal{R}_\psi = \mathcal{P} \). First, we let \(\psi_n = 1 \) and \(\psi_0 \) be an element of valuation 1 in \(\mathcal{O}_K \). For each point \((p^{s_i}, a_i n + b_i)\) in \(\mathcal{P} \), with \(b_i \neq 0 \), let \(\psi_{b_i} \) be an element of \(\mathcal{O}_K \) with valuation \(1 + a_i - v_\pi \left(\frac{b_i}{p^{s_i}} \right) \). By assumption \((b)\), \(\psi_{b_i} \) is well defined even if it is given by multiple points as those definitions coincide, and by assumption \((a)\) we have that \(v_\pi(\psi_{b_i}) \geq 1 \). If \(\psi_j \) in \(0 < j < n \) is not assigned by some \(b_i \), we set \(\psi_j = 0 \). We now have an Eisenstein polynomial \(\psi \), and we proceed by computing \(\mathcal{R}_\psi \).

Let \(\mathcal{R}_\psi \) be the ramification polygon of \(\psi \), the Newton polygon \(\mathcal{N} \) of the ramification polynomial \(\rho(x) = \psi(ax + \alpha)/(\alpha^n) \in K(\alpha)[x] \), where \(\alpha \) is a root of \(\psi \). Let \(\rho(x) = \sum \rho_i x^i \). Let \(B \) be the set of nonzero \(b_i \) in the points of \(\mathcal{P} \). For all \(0 < i < n \) with \(i \notin B \), \(v_\pi(\psi_i) = \infty \), so we can simplify Equation (1) by only needing to consider terms \(k \in B \cup \{n\} \) to

\[
v_\alpha(\rho_i) = \min \left\{ \min_{k \in B, k \geq i} \left\{ \min \left\{ \frac{a_k - v_\pi \left(\frac{b_k}{p^{s_k}} \right) + v_\pi \left(\frac{b_k}{p^{s_k}} \right)}{n}, n v_\pi \left(\frac{n}{i} \right) \right\}, n v_\pi \left(\frac{n}{i} \right) \right\}, n v_\pi \left(\frac{n}{i} \right) \right\}.
\]

Substitution of our values for \(v_\pi(\psi_{b_i}) \) gives

\[
v_\alpha(\rho_i) = \min \left\{ \min \left\{ \frac{a_k - v_\pi \left(\frac{b_k}{p^{s_k}} \right) + v_\pi \left(\frac{b_k}{p^{s_k}} \right)}{n}, n v_\pi \left(\frac{n}{i} \right) \right\}, n v_\pi \left(\frac{n}{i} \right) \right\}.
\]

Consider \((p^{s_i}, a_i n + b_i) \in \mathcal{P} \), and let us find \(v_\alpha(\rho_{p^{s_i}}) \).

\[
(2) \quad v_\alpha(\rho_{p^{s_i}}) = \min \left\{ \min \left\{ \frac{a_k - v_\pi \left(\frac{b_k}{p^{s_k}} \right) + v_\pi \left(\frac{b_k}{p^{s_k}} \right)}{n}, n v_\pi \left(\frac{n}{p^{s_i}} \right) \right\}, n v_\pi \left(\frac{n}{p^{s_i}} \right) \right\}.
\]

If \(b_i \neq 0 \), then the \(b_k = b_i \) term in the minimum is \(a_i n + b_i \). For \((p^{s_k}, a_k n + b_k) \in \mathcal{P} \) with \(p^{s_i} \leq b_k < b_i \), by assumption \((c)\) we have \(a_k \geq 1 + a_i - v_\pi \left(\frac{b_k}{p^{s_k}} \right) \). Thus, for all of the terms of (2) with \(p^{s_i} \leq b_k < b_i \),

\[
n \left[a_k - v_\pi \left(\frac{b_k}{p^{s_k}} \right) + v_\pi \left(\frac{b_k}{p^{s_k}} \right) \right] + b_k \geq n \left[1 + a_i \right] + b_k \geq a_i n + b_i
\]
For points \((p^* k, a_k n + b_k)\) on \(P\) with \(b_k \geq b_i\), by assumption \(c\) we have \(a_k \geq a_i - v_\pi(\frac{b_k}{p^* i}) + \left(\frac{b_k}{p^* i}\right)\). Thus, for all of the terms of Equation (2) with \(b_k \geq b_i\),
\[
n \left[a_k - v_\pi\left(\frac{b_k}{p^* k}\right) + v_\pi\left(\frac{b_k}{p^* i}\right) \right] + b_k \geq a_i n + b_k \geq a_i n + b_i
\]
Thus \(v_\alpha(p^* i) = \min \left\{ a_i n + b_i, n v_\pi(\frac{n}{p^* i}) \right\}\), which is \(a_i n + b_i\) by assumption \(a\). On the other hand, if \(b_i = 0\), then \(a_i = v_\pi(\frac{n}{p^* i})\), and for all of the terms of the inside minimum of Equation (2), as \(a_k \geq a_i - v_\pi(\frac{b_k}{p^* i}) + \left(\frac{b_k}{p^* i}\right)\), we have
\[
n \left[a_k - v_\pi\left(\frac{b_k}{p^* k}\right) + v_\pi\left(\frac{b_k}{p^* i}\right) \right] + b_k \geq a_i n + b_k \geq a_i n = n v_\pi\left(\frac{n}{p^* i}\right)
\]
So, \(v_\alpha(p^* i) = a_i n\), and all of the points of \(P\) are points of \(R_\psi\).

Suppose there is no point on \(P\) with abscissa \(p^i\) for some \(i\) with \(s_i < i < s_{i+1}\). We take our assumption
\[
a_k > \frac{1}{n} \left[\frac{J_{t+1} - J_t}{p^{s_{t+1}} - p^{s_t}} (p^i - p^{s_t}) + J_t - b_k \right] - v_\pi\left(\frac{b_k}{p^i}\right) + v_\pi\left(\frac{b_k}{p^{s_k}}\right),
\]
and substitute it into Equation (2). After simplifying we get
\[
v_\alpha(p^i) > \min \left\{ \min_{(p^k, J_k) \in P: b_k \geq p^k} \left\{ \frac{J_{t+1} - J_t}{p^{s_{t+1}} - p^{s_t}} (p^i - p^{s_t}) + J_t \right\}, n v_\pi\left(\frac{n}{p^s}\right) \right\}.
\]
As the \(v_\alpha(p^i)\) must be greater than the ordinate above \(p^i\) on the line segment between \((p^s, J_s)\) and \((p^{s\prime + 1}, J_{s\prime + 1})\), there is no point on \(R_\psi\) with abscissa \(p^i\).

Finally, by Lemma 3.4, \(R_\psi\) has points satisfying Assumption(e). Thus \(R_\psi = P\). \(\square\)

Proposition 3.11. An Eisenstein polynomial \(\psi\) has ramification polygon \(R\) with points
\[
R = \{(0, J_0), (p^{s_i}, J_1), \ldots, (p^{s_{u-1}}, J_{u-1}), (p^{s_u}, 0), \ldots, (n, 0)\},
\]
where \(J_i = a_i n + b_i\) with \(0 \leq b_i \leq n - 1\), if and only if
\[(a)\] \(v_\pi(\varphi_i) \geq L_R(i)\)
\[(b)\] For \(0 \leq t \leq u\), \(v_\pi(\varphi_{b_t}) = L_R(b_t)\) if \(b_t \neq 0\).

where \(L_R\) is as defined in Definition 3.3.

Proof. If \(\psi\) has ramification polygon \(R\), then this is the result of Lemmas 3.5 and 3.7.

Suppose \(\psi\) satisfies these assumptions and \(\rho\) is the ramification polynomial of \(\psi\). If \((p^s, J_i = a_i n + b_i)\) is a point of \(R\), then substitution of \(l_R(k, s_i)\) for \(v_\pi(\varphi_k)\) into Equation (1) gives us
\[
v_\alpha(p^s) = \min \left\{ \min_{p^s \leq k < b_i} \{ n a_i + n + k \}, \min_{b_i \leq k < n} \{ n a_i + k \}, n v_\pi\left(\frac{n}{p^s}\right) \right\}
\]
If \(b_i = 0\), then this reduces to
\[
v_\alpha(p^s) = \min \left\{ n a_i + n + p^{s_t}, n v_\pi\left(\frac{n}{p^s}\right) \right\} = n v_\pi\left(\frac{n}{p^s}\right) = J_i.
\]
as \(na_t + n + p^{s_t} \geq J_t = n v_\pi \left(\frac{n}{p^{s_t}} \right) \), by Proposition 3.10 (a). If \(b_t \neq 0 \), then this reduces to

\[
v_\alpha(p^{s_t}) = \min \left\{ na_t + b_t, n v_\pi \left(\frac{n}{p^{s_t}} \right) \right\} = na_t + b_t = J_t
\]
as \(J_t \leq n v_\pi \left(\frac{n}{p^{s_t}} \right) \), by Proposition 3.10 (a). So \(\mathcal{R}_\phi \) contains the points of \(\mathcal{R} \).

If there is no point on \(\mathcal{R} \) with abscissa \(p^i \), with \(s_t < i < s_{t+1} \), then for \(k \) in \(p^i \leq k \leq n \),

\[
v_\pi(\varphi_k) \geq t_\mathcal{R}(k, i) > \frac{1}{n} \left[\frac{J_{t+1} - J_t}{p^{s_{t+1}} - p^{s_t}} (p^i - p^{s_t}) + J_t - k \right] + 1 - v_\pi \left(\frac{k}{p^i} \right).
\]

Some algebraic manipulation of this inequality gives us

\[
\frac{J_{t+1} - J_t}{p^{s_{t+1}} - p^{s_t}} (p^i - p^{s_t}) + J_t < n \left[v_\pi \left(\frac{k}{p^i} \right) \varphi_k \right) - 1] + k,
\]

which shows that \(v_\alpha(p^{s_t}) = \min_{p^i \leq k \leq n} \left\{ n \left[v_\pi \left(\frac{k}{p^i} \right) \varphi_k \right) - 1] + k \right\} \) is greater than the value above \(p^i \) on the segment from \((p^{s_t}, J_t)\) to \((p^{s_{t+1}}, J_{t+1})\). So there is no point on \(\mathcal{R}_\phi \) above \(p^i \), and thus \(\mathcal{R}_\phi = \mathcal{R} \).

Definition 3.12. We call a polygon \(\mathcal{R} \) with points

\[
\mathcal{R} = \{(J_0), (p^{s_1}, J_1), \ldots, (p^{s_{u-1}}, J_{u-1}), (p^{s_u}, 0), \ldots, (n, 0)\},
\]

that fulfills the conditions of Proposition 3.10 a **ramification polygon**. We call the function \(\phi_\mathcal{R} : \mathbb{R}^>0 \rightarrow \mathbb{R}^>0, \lambda \mapsto \min_{0 \leq i \leq u} \left\{ \frac{1}{n} (J_i + \lambda p^{s_i}) \right\} \) the **Hasse-Herbrand function** of \(\mathcal{R} \).

Remark 3.13. The function \(\phi_\mathcal{R} \) in Definition 3.12 agrees with the connections between the ramification polygon and the Hasse-Herbrand transition function as observed in [Lub81, Li97]. Note that these works define the ramification polygon as the Newton polygon of \(\varphi(x + \alpha) \). For normal extensions \(L/K \), our function \(\phi_\mathcal{R} \) agrees with the classical \(\phi_{L/K} \) defined in [Ser79, FV02]. For non-Galois extensions, our function agrees with the transition function for ramification sets defined by Helou in [Hel90].

Example 3.14 (Example 2.4 continued). There are three possible ramification polygons for extensions \(L \) of \(\mathbb{Q}_3 \) of degree 9 with \(v_3(\text{disc}(L)) = 18 \). These polygons are \(\mathcal{R}_1 = \{(1, 10), (9, 0)\}, \mathcal{R}_2 = \{(1, 10), (3, 3), (9, 0)\}, \) and \(\mathcal{R}_3 = \{(1, 10), (3, 6), (9, 0)\} \) and are illustrated in Figure 2.

Since by Lemma 3.5 we have \(v(\varphi_3) = 1 \), the polynomials \(\varphi \) generating extensions with ramification polygon \(\mathcal{R}_2 \) are given by:

\[
\begin{array}{cccccccccccc}
| x^9 | x^8 | x^7 | x^6 | x^5 | x^4 | x^3 | x^2 | x^1 | x^0 |
\hline
3^4 & \{0\} & \{0\} & \{0\} & \{0\} & \{0\} & \{0\} & \{0\} & \{0\} & \{0\} & \{0\} \\
3^3 & \{0\} & \{0, 1, 2\} & \{0, 1, 2\} & \{0, 1, 2\} & \{0, 1, 2\} & \{0, 1, 2\} & \{0, 1, 2\} & \{0, 1, 2\} & \{0, 1, 2\} \\
3^2 & \{0\} & \{0, 1, 2\} & \{0, 1, 2\} & \{0, 1, 2\} & \{0, 1, 2\} & \{0, 1, 2\} & \{0, 1, 2\} & \{0, 1, 2\} & \{0, 1, 2\} \\
3^1 & \{0\} & \{0\} & \{0, 1, 2\} & \{0\} & \{0\} & \{0\} & \{1, 2\} & \{0\} & \{1, 2\} \\
3^0 & \{1\} & \{0\} & \{0\} & \{0\} & \{0\} & \{0\} & \{0\} & \{0\} & \{0\}
\end{array}
\]
Figure 2. Possible ramification polygons of extensions L of \mathbb{Q}_3 of degree 9 with $v_3(\text{disc}(L)) = 18$.

4. Residual Polynomials of Segments

Residual (or associated) polynomials were introduced by Ore [Ore28]. They yield information about the unramified part of the extension generated by the factors of a polynomial. This makes them a useful tool in the computation of ideal decompositions and integral bases [GMN13, Mon99, MN92] and the closely related problem of polynomial factorization over local fields [GNP12, Pau10].

Definition 4.1 (Residual polynomial). Let L be a finite extension of K with uniformizer α. Let $\rho(x) = \sum \rho_i x^i \in \mathcal{O}_L[x]$. Let S be a segment of the Newton polygon of ρ of length l with endpoints $(k, v_\alpha(\rho_k))$ and $(k + l, v_\alpha(\rho_{k+l}))$, and slope $-h/e = (v_\alpha(\rho_{k+l}) - v_\alpha(\rho_k))/l$ then

$$A(x) = \sum_{j=0}^{l/e} \rho_{j+k} \alpha^{jh-v_\alpha(\rho_k)} x^j \in K[x]$$

is called the residual polynomial of S.

Remark 4.2. The ramification polygon of a polynomial φ and the residual polynomials of its segments yield a subfield M of the splitting field N of φ, such that N/M is a p-extension [GP12, Theorem 9.1].

From the definition we obtain some of the properties of residual polynomials.

Lemma 4.3. Let L be a finite extension of K with uniformizer α. Let $\rho \in \mathcal{O}_L[x]$. Let N be the Newton polygon of ρ with segments S_1, \ldots, S_ℓ and let A_1, \ldots, A_ℓ be the corresponding residual polynomials.

(a) If S_i has integral slope $-h \in \mathbb{Z}$ with endpoints $(k, v_\alpha(\rho_k))$ and $(k + l, v_\alpha(\rho_{k+l}))$ then

$$A_i(x) = \sum_{j=0}^{l} \rho_{j+k} \alpha^{jh-v_\alpha(\rho_k)} x^j = \rho(\alpha^h x) \alpha^{-k-v_\alpha(\rho_k)} x^{n-l} \in K[x].$$

(b) If for $1 \leq i \leq \ell - 1$ the leading coefficient of A_i is denoted by $A_{i,\deg A_i}$ and $A_{i+1,0}$ is the constant coefficient of A_{i+1} then $A_{i,\deg A_i} = A_{i+1,0}$.

(c) If ρ is monic then A_ℓ is monic.
From now on we consider the residual polynomials of the segments of a ramification polygon. From the definition of the residual polynomials and Lemma 3.4 we obtain:

Proposition 4.4. Let \(\varphi \in \mathcal{O}_K[x] \) be Eisenstein of degree \(n = p^e_0 \) with \(\gcd(p, e_0) = 1 \), let \(\alpha \) be a root of \(\varphi \), the ramification polynomial, and \(\mathcal{R}_\varphi \) the ramification polygon of \(\varphi \).

(a) If \(e_0 \neq 1 \) then \(\mathcal{R}_\varphi \) has a horizontal segment of length \(p^e_0 (e_0 - 1) \) with residual polynomial

\[
A = \sum_{i=0}^{n-p^e_0} A_i x^i \quad \text{where} \quad A_i = \binom{n}{i} \neq 0 \quad \text{if and only if} \quad v_\alpha(n_i) = 0.
\]

(b) If \((p^{s_k}, J_k), \ldots, (p^{s_l}, J_l) \) are the points on a segment \(S \) of \(\mathcal{R}_\varphi \) of slope \(-\frac{b}{e}\), then the residual polynomial of \(S \) is

\[
A(x) = \sum_{i=k}^{l} \rho p^i \alpha^{\rho J_i} x^{(p^i - p^k)/e} = \sum_{i=k}^{l} \varphi b_i (b_i^{p^i}) \alpha^{a_i n_i} x^{(p^i - p^k)/e}.
\]

We immediately get:

Corollary 4.5. Let \(\varphi \in \mathcal{O}_K[x] \) be Eisenstein and \(\mathcal{R}_\varphi \) its ramification polygon.

(a) The residual polynomial of the rightmost segment of \(\mathcal{R}_\varphi \) is monic.

(b) Let \((p^{s_i}, J_i) \) be the right end point of the \(i \)-th segment of \(\mathcal{R}_\varphi \) and \(A_i = \sum_{j=0}^{n_i} A_{i,j} \) its residual polynomial and let \((p^{s_k}, J_k) \) be the left end point of the \((i+1)\)-st segment of \(\mathcal{R}_\varphi \) and \(A_{i+1} = \sum_{j=0}^{n_{i+1}} A_{i+1,j} \) its residual polynomial. Then \(A_{i,m_i} = A_{i+1,0} \).

We now give criteria for the existence of polynomials with given ramification polygon \(\mathcal{R} \) and given residual polynomials.

Proposition 4.6. Let \(n = p^e_0 \) with \(\gcd(p, e_0) = 1 \) and let \(\mathcal{R} \) be a polygon with points

\[
\mathcal{R} = \{(1, J_0), (p^{s_1}, J_1), \ldots, (p^{s_k}, J_k), \ldots, (p^r, 0), \ldots, (p^e, 0)\}
\]

satisfying Proposition 3.10. Write \(J_k = a_k n + b_k \) with \(0 \leq b_k \leq n \). Let \(S_1, \ldots, S_{e} \) be the segments of \(\mathcal{R} \) with endpoints \((p^{s_k}, J_k)\) and \((p^{s_{k+1}}, J_{k+1})\) and slopes \(-\frac{h_i}{e_i} \) \((1 \leq i < e)\). For \(1 \leq i \leq e \) let \(A_{i}(x) = \sum_{j=0}^{n_{i}/e_i} A_{i,j} x^{j} \in K[x] \)

There is an Eisenstein polynomial of degree \(p^e_0 \) with ramification polygon \(\mathcal{R} \) and segments \(S_1, \ldots, S_e \) with residual polynomials \(A_1, \ldots, A_e \in K[x] \) if and only if

(a) \(A_{i,\deg A_i} = A_{i+1,0} \) for \(1 \leq i < e \),

(b) \(A_{i,j} \neq 0 \) if and only if \(j = (q - p^{s_k})/e_i \) for some \(q \in \{p^i_1, \ldots, p^i_e\} \) with \(p^{s_i} \leq q \leq p^{s_i+1} \),

(c) if for some \(1 \leq t, q \leq u \) we have \(b_t = b_q \) and \(s_{k_t} \leq s_t \leq s_{k_t} \) and \(s_{k_j} \leq s_q \leq s_{k_j} \) then

\[
A_{i,(p^{s_t - p^{s_{k_t}}})/e_t} = \frac{b_t}{p^{s_t}} (p^{s_t})^{-1} (-\varphi)^{a_t} = \frac{b_q}{p^{s_q}} A_{j,(p^{s_q - p^{s_{k_q}}})/e_j}.
\]

Proof. Suppose that \(\varphi \) is an Eisenstein polynomial of degree \(p^e_0 \) with ramification polygon \(\mathcal{R} \) and segments \(S_1, \ldots, S_{e} \) with residual polynomials \(A_1, \ldots, A_e \in K[x] \). Property (a) is given by Lemma 4.3(b) and property (b) is given by Proposition 4.4(b). To establish property (c), suppose that for some \(1 \leq t, q \leq u \) we have \(b_t = b_q \) and \(s_{k_t} \leq s_t \leq s_{k_t} \) and \(s_{k_j} \leq s_q \leq s_{k_j} \). From Proposition 4.4 we have that

\[
A_{i,(p^{s_t - p^{s_{k_t}}})/e_t} = \varphi b_t (b_t/p^{s_t}) \alpha^{-a_t n - n} \quad \text{and} \quad A_{j,(p^{s_q - p^{s_{k_q}}})/e_j} = \varphi b_q (b_q/p^{s_q}) \alpha^{-a_q n - n}.
\]

As \(b_t = b_q \), we have that \(\varphi b_t = \varphi b_q \). Since

\[
A_{i,(p^{s_t - p^{s_{k_t}}})/e_t} (b_t/p^{s_t})^{-1} \alpha^{a_t n + n} = \varphi b_t = \varphi b_q = A_{j,(p^{s_q - p^{s_{k_q}}})/e_j} (b_q/p^{s_q})^{-1} \alpha^{a_q n + n},
\]

we have that \(\varphi b_t = \varphi b_q \).
we have

\[
\mathcal{A}_{i,(p^s t - p^s k_i)}/e_i = \left(\frac{b_t}{p^{s t}}\right)\left(\frac{b_t}{p^{s t}}\right)^{-1}(-\psi_0)^{a_t-a_t} \mathcal{A}_{j,(p^s u - p^s k_j)}/e_j.
\]

Conversely, suppose that \(R \) is a ramification polygon with segments \(S_1, \ldots, S_t \) with residual polynomials \(\mathcal{A}_1, \ldots, \mathcal{A}_t \in \mathbb{K}[x] \) with properties (a), (b), and (c) of the proposition. Let \(\psi \) be a polynomial in \(\mathcal{O}_R[x] \) with \(\psi_{\text{eap}^t} = 1, v_{\pi}(\psi_0) = 1 \) and

\[
\psi_{b_t,1+a_t-v_{\pi}(\psi_t)} = \mathcal{A}_{i,(p^s t - p^s k_i)}/e_i \left(\frac{b_t}{p^{s t}}\right)^{-1}(-\psi_{0,1})^{a_t+1_0!}v_{\pi}(\psi_t) \quad \text{for } i \in \{1, \ldots, p^s t \}
\]

for each point \((p^s t, a_t n + b_t)\) in \(R \). For \(\psi \) to be well defined, we must check that the same coefficient is not assigned different values. Multiple assignments occur at vertices (when one point contributes to two \(\mathcal{A}_i \)) and when multiple points have the same \(b_t \). If \((p^s t, a_t n + b_t)\) is a vertex of \(R \), then we have

\[
\psi_{b_t,1+a_t-v_{\pi}(\psi_t)} = \mathcal{A}_{i,(p^s t - p^s k_i)}/e_i \left(\frac{b_t}{p^{s t}}\right)^{-1}(-\psi_{0,1})^{a_t+1_0!}v_{\pi}(\psi_t) = \mathcal{A}_{i+1,(p^s t - p^s k_{i+1})}/e_{i+1} \left(\frac{b_t}{p^{s t}}\right)^{-1}(-\psi_{0,1})^{a_t+1_0!}v_{\pi}(\psi_t).
\]

Cancellation gives us \(\mathcal{A}_{i,j,(p^s t - p^s k_i)}/e_i = \mathcal{A}_{i+1,j,(p^s t - p^s k_{i+1})}/e_{i+1} \). As a vertex, \(p^s t \) is the abscissa of both the right endpoint of \(S_i \) \((p^s k_i = p^s t)\) and the left endpoint of \(S_{i+1} \) \((p^s k_{i+1} = p^s t)\). Thus \((p^s t - p^s k_i)/e_i = \deg \mathcal{A}_i \) and \((p^s t - p^s k_{i+1})/e_{i+1} = 0 \). So, \(\mathcal{A}_{i,j,\deg \mathcal{A}_i} = \mathcal{A}_{i+1,j,0} \), which is property (a). On the other hand, if for some \(1 \leq t, q \leq u \), we have \(b_t = b_q \), with \(s_{k_i} \leq s_t \leq s_{k_i} \) and \(s_{k_j} \leq s_q \leq s_{k_j} \), then let \(b = b_t = b_q \) and we have

\[
\psi_{b_t,1+a_t-v_{\pi}(\psi_t)} = \mathcal{A}_{i,j,(p^s t - p^s k_i)}/e_i \left(\frac{b_t}{p^{s t}}\right)^{-1}(-\psi_{0,1})^{a_t+1_0!}v_{\pi}(\psi_t)
\]

As \(R \) is a ramification polygon, by Proposition 3.10 (b), \(b_t = b_q \) implies that \(a_t = a_q - v_{\pi}(\psi_t) \). This two assignments of coefficients of \(\psi_b \) set the same coefficient, and by property (c), they have the same value. Thus, \(\psi \) is well-defined, and we have set at most one \(\pi \)-adic coefficient for each polynomial coefficient.

By property (b), none of the assigned coefficients are zero and no others are non-zero. Thus, \(v_{\pi}(\psi_b) = 1 + a_t - v_{\pi}(\psi_t) \), and as per the construction in the proof of Proposition 3.10, \(\psi \) is an Eisenstein polynomial with ramification polygon \(R \).

Next we consider the residual polynomials of the segments of \(R \) as given by \(\psi \). Let \(S_i \) be a segment of \(R \) containing points \((p^s t, J_k), \ldots, (p^s t, J_l)\) of slope \(-h_i/e_i\). Let \(\mathcal{A}^*_i \) be the residual polynomial of \(S_i \). From Proposition 4.4 for each point \((p^s t, a_t n + b_t)\) with \(s_k \leq s_t \), we get

\[
\mathcal{A}^*_{i,(p^s t - p^s k)}/e = \psi_{b_t} \left(\frac{b_t}{p^{s t}}\right)^{\alpha_t}a_t n - n.
\]
We need the right side to reduce to our intended value. By our assignment,
\[
\psi_{b_t} = A_i(p^e_t - p^e_k)/e_i(b_t/p_t^e)^{-1}(-\psi_{0,1})^{a_t + 1}v\pi(p_t^e)^{a_t - v\pi(p_t^e)}.
\]
With \(\alpha^n \sim -N_{K(\alpha)/K}(\alpha) = -\psi_0 \sim -\psi_{0,1}\pi \) we get
\[
\psi_{b_t}(p_t^e)\alpha^{a_t - n - n} = A_i(p^e_t - p^e_k)/e_i(b_t/p_t^e)\alpha^{a_t + 1}v\pi(p_t^e)^{a_t - v\pi(p_t^e)}(-\psi_{0,1}\pi)^{a_t - 1}
\]
from which cancellation gives us our desired result \(A_i(p^e_t - p^e_k)/e = A_i(p^e_t - p^e_k)/e\).

The invariant \(\mathcal{A}\) of \(L/K\). We introduce an invariant of \(L/K\), that is compiled from the residual polynomials of the segments of the ramification polygon of \(\varphi\). From the proof of \cite[Proposition 4.4]{GP12} we obtain:

Lemma 4.7. Let \(\varphi \in \mathcal{O}_K[x]\) be Eisenstein and \(\alpha\) a root of \(\varphi\) and \(L = K(\alpha)\). Let \(\mathcal{S}\) be a segment of the ramification polygon of \(\varphi\) of slope \(-h/e\) and let \(A\) be its residual polynomial. Let \(\beta = \delta\alpha\) with \(v\alpha(\delta) = 0\) be another uniformizer of \(L\) and \(\psi\) its minimal polynomial. If \(\gamma_1, \ldots, \gamma_m\) are the (not necessarily distinct) zeros of \(A\) then \(\gamma_1/\delta^h, \ldots, \gamma_n/\delta^h\) are the zeros of the residual polynomial of the segment of slope \(-h/e\) of the ramification polygon of \(\psi\).

Thus the zeros of the residual polynomials of all segments of the ramification polygon change by powers of the same element \(\delta\) when transitioning from a uniformizer \(\alpha\) to a uniformizer \(\delta\alpha\). With Proposition \ref{lemma4.4} we obtain:

Theorem 4.8. Let \(S_1, \ldots, S_\ell\) be the segments of the ramification polygon \(R\) of an Eisenstein polynomial \(\varphi \in \mathcal{O}_K[x]\). For \(1 \leq i \leq \ell\) let \(-h_i/e_i\) be the slope of \(S_i\) and \(A_i(x) = \sum_{j=0}^{m_i} a_j x^j\) its residual polynomial. Then
\[
\mathcal{A} = \{ (\gamma_{\delta,1}A_1(\delta^{h_1}x), \ldots, \gamma_{\delta,\ell}A_\ell(\delta^{h_\ell}x)) : \delta \in K^\times \}
\]
where \(\gamma_{\delta,\ell} = \delta^{-h_\ell} \deg A\), and \(\gamma_{\delta,i} = \gamma_{\delta,i+1} \delta^{-h_i} \deg A\) for \(1 \leq i \leq \ell - 1\) is an invariant of the extension \(K[x]/(\varphi)\).

Example 4.9. Let \(\varphi(x) = x^9 + 6x^3 + 9x + 3\). The ramification polygon of \(\phi\) consists of the two segments with end points (1, 10), (3, 3) and (3, 3), (9, 0) and residual polynomials \(1 + 2x\) and \(2 + x^3\). We get
\[
\mathcal{A} = \{ (1 + 2x, 2 + x^3), (1 + x, 1 + x^3) \}.
\]

Generating Polynomials. We show how the choice of a representative of the invariant \(\mathcal{A}\) determines some of the coefficients of the generating polynomials with this invariant.

Lemma 4.10. Let \(\varphi \in \mathcal{O}_K[x]\) be Eisenstein of degree \(n\). Let \(S\) be a segment of ramification polygon of \(\varphi\) with endpoints \((p^i, a_kn + b_k)\) and \((p^i, a_n + b_1)\) and residual polynomial \(A(x) = \sum_{j=1}^{p^i - p^k} A_j x^j \in K[x]\). If \((p^i, a_n + b_1)\) is a point on \(S\) with \(b_1 \neq 0\) then
\[
\mathcal{L}_{n,j} = A_i(p^i - p^k)/e_i\left(\frac{b_1}{p^i}\right)^{-1}(-\varphi_{0,1})^{a_i + 1}v\pi(p^i)\]
where \(j = a_i + 1 - v\pi(p^i)\).

14
Proof. By Lemma 3.3, \(v_\pi(\varphi_{b_i}) = j \) and by Proposition 4.4,\[A(x) = \sum_{i=k}^{l} \varphi_{b_i} (\frac{b_i}{p^{ji}}) \alpha^{-a_in^{-n}} x^{(p^i - p^{j})/e}. \]

Thus \(A_{(p^i - p^{j})/e} = \varphi_{b_i} (\frac{b_i}{p^{ji}}) \alpha^{-a_in^{-n}}. \) With \(\alpha^n \sim -N_{K(\alpha)/K}(\alpha) = -\varphi_0 \sim -\varphi_{0,1} \pi \) we get\[A_{(p^i - p^{j})/e} = \varphi_{b_i} (\frac{b_i}{p^{ji}})(-\varphi_0)^{-a_i-1}. \]

As by Lemma 3.3, \(v_\alpha(\varphi_{b_i}) = v_\alpha(\rho_{p^{ji}}) - v_\alpha(\frac{b_i}{p^{ji}}) - b_i + n = a_i n + b_i - v_\alpha(\frac{b_i}{p^{ji}}) - b_i + n = n(a_i + 1) - v_\alpha(\frac{b_i}{p^{ji}}) \) we have \(\varphi_{b_i} \sim \varphi_{b_i,j} \pi^{a_i+1-v_e(\frac{b_i}{p^{ji}})}. \) Therefore\[A_{(p^i - p^{j})/e} = \varphi_{b_i,j} (\frac{b_i}{p^{ji}})(-\varphi_0,1,\pi^{-a_i-1} \pi^{a_i+1-v_e(\frac{b_i}{p^{ji}})} = \varphi_{b_i,j} (-\varphi_{0,1}^i)^{-a_i-1} (\frac{b_i}{p^{ji}})^{-v_e(\frac{b_i}{p^{ji}})}. \] □

A change of the uniformizer \(\alpha \) of \(L = K(\alpha) \) to \(\delta \alpha \) with \(v(\delta) = 0 \) that determines the representative \((A_1, \ldots, A_k) \in A \) also affects the constant coefficient of the generating polynomial. Namely if the Eisenstein polynomial \(\varphi = \alpha^n + \sum_{i=0}^{n-1} \varphi_i x^i \in \mathcal{O}_K[x] \) is the minimal polynomial of \(\alpha \) then \(\psi(x) = \delta^n \varphi (\frac{x}{\delta}) \) with \(\psi_0 = \delta^n \varphi_{0,1} \) is the minimal polynomial of \(\delta \alpha \).

Lemma 4.11. Let \(\varphi \in \mathcal{O}_K[x] \) be Eisenstein of degree \(n \) and \(S_0 : K \to K, a \mapsto a^n. \)

(a) If and only if \(\delta \in \mathcal{S}_0(K) \), there is \(\psi \in \mathcal{O}_K[x] \) Eisenstein with \(\psi_{0,1} = \delta \varphi_{0,1} \) such that \(K[x]/(\psi) \cong K[x]/(\varphi). \)

(b) If \(n = p^r \) for some \(r \in \mathbb{Z}^>0 \) then \(S_0 \) is surjective and there is \(\psi \in \mathcal{O}_K[x] \) Eisenstein with \(\psi_{0,1} = 1 \) such that \(K[x]/(\psi) \cong K[x]/(\varphi). \)

This corresponds to the reduction step 0 in Monge’s reduction [Mon14, Algorithm 1]. If \(n = p^r e_0 \) with \(\gcd(p, e_0) = 1 \) then \(\varphi_{0,1} \) determines the tamely ramified subextensions of \(K[x]/(\varphi) \), that can be generated by \(x^{e_0} + \varphi_{0,1} \pi. \)

If we fix \(\varphi_{0,1} \) then the set of representatives of \(A \) becomes

\[A^* = \{ (\gamma_{\delta,i} A_i (\delta^{h_i} x), \ldots, \gamma_{\delta,i} A_k (\delta^{h_i} x) : \delta \in K^\times, \delta^n = 1 \} \]

where \(\gamma_{\delta,i} = \delta^{-h_i \deg A_i} \), and \(\gamma_{\delta,i} = \gamma_{\delta,i+1} \delta^{-h_i \deg A} \) for \(1 \leq i \leq \ell - 1 \). Thus fixing \(\varphi_{0,1} \) yields a partition of \(A \). Also, if \(n \) is a power of \(p \) then \(A^* \) contains exactly one representative of \(A \).

Remark 4.12. Let a ramification polygon \(R \) and \(A_1, \ldots, A_k \in K[x] \) satisfying Proposition 4.6. Let \(\Lambda \) as in Theorem 4.8 and \(A = A^{+1} \cup \cdots \cup A^{+k} \) be the partition of \(A \) into sets as in Equation (1). Let \(\gamma \in K^\times. \) Then there is no transformation \(\delta_\alpha \) of the uniformizer \(\alpha \) of an extension with \(R \) and residual polynomials in \(A^{+i} \) for some \(1 \leq i \leq k \) generated by \(\varphi \in \mathcal{O}_K[x] \) with \(\varphi_{0,1} = \gamma \) such that the residual polynomials of the segments of \(R_\varphi = R \) is not in \(A^{+i} \). Thus the construction of generating polynomials for all extensions with \(R \) and \(\Lambda \) can be reduced to constructing polynomials with residual polynomials in the sets \(A^{+i} \).

Lemma 4.13. Let \((A_1, \ldots, A_k) \in A^*. \) If \(\psi \in \mathcal{O}_K[x] \) is a polynomial with residual polynomials in \(A^* \), then there is a polynomial \(\varphi \in \mathcal{O}_K[x] \) with residual polynomials \((A_1, \ldots, A_k) \) such that \(K[x]/(\psi) \cong K[x]/(\varphi). \)
Proof. Let A'_1, \ldots, A'_n be the residual polynomials of ψ. As $(A'_1, \ldots, A'_n) \in A^*$ there exists a $\delta \in K^\times$ with $\delta^n = 1$ so that
\[
(A_1, \ldots, A_n) = (\gamma_{\delta,1} A'_1(\delta^{h_1} x), \ldots, \gamma_{\delta,n} A'_n(\delta^{h_n} x)).
\]
where $\gamma_{\delta,i} = \delta^{-h_i \deg A_i}$, and $\gamma_{\delta,i} = \gamma_{\delta,i+1} \delta^{-h_i \deg A_i}$ for $1 \leq i \leq \ell - 1$.

Let α be a root of ψ and $\varphi(x) = \delta^n \psi(\delta^{-1} x)$ be the minimal polynomial of $\delta \alpha$. This gives us that $K[x]/(\psi) \cong K[x]/(\varphi)$.

Let us find the residual polynomials of φ. From Proposition 4.4 we have that the residual polynomial for a segment S_i of slope h/e with endpoints $(p^h k_i, J_k = a_k n + b_k)$ and $(p^{h_i}, J_k = a_k n + b_k)$ is
\[
\sum_{j=k_i}^{l_i} \varphi_{b_j}(b_j^{p_{r_j}} \gamma_{a-i} x^{p^{r_j} a-i} / e).
\]

Performing our substitution we have this polynomial is
\[
\sum_{j=k_i}^{l_i} \delta^{-b_j \psi_{b_j} p_{r_j}}(\delta \alpha)^{-a+n-n} x^{(p^{r_j} a-i)} / e = \sum_{j=k_i}^{l_i} \delta^{-b_j a+n-n} A'_i / i = \sum_{j=k_i}^{l_i} \delta^{-J_i} A'_i / j.
\]

Next, let us perform the deformation of A'_i by δ. First, we consider $\gamma_{\delta,i}$. Notice that for the A'_i the residual polynomial of the segment S_i with endpoints $(p^h k_i, J_k = a_k n + b_k)$,
\[
\delta^{-h_i \deg A'_i} = \delta^{k_i (p^{h_i} a-i)} = \delta^{k_i-j_i} = \left\{ \begin{array}{ll}
\delta_{J_i} - J_i & \text{if } i = 1 \\
\delta_{J_i+1} - J_i & \text{if } 2 \leq i < \ell \\
\delta_{J_i} - J_i & \text{if } i = \ell
\end{array} \right.
\]

This shows us that for $1 \leq i < \ell - 1$, $\gamma_{\delta,i} = \gamma_{\delta,i+1} \delta^{-h_i \deg A'_i} = \delta^{-J_i}$, and in general, $\gamma_{\delta,i} = \delta^{-J_i}$. So the deformation of A'_i by δ is
\[
A_i = \gamma_{\delta,i} A'_i(\delta^{h_i} x) = \delta^{-J_i} \sum_{j=k_i}^{l_i} A'_i(\delta^{h_i} x) = \delta^{-J_i} \sum_{j=k_i}^{l_i} A'_i(\delta^{h_i} x) = \sum_{j=k_i}^{l_i} \delta^{-J_i} A'_i.
\]

Thus, the residual polynomials of $\varphi(x)$ are (A_1, \ldots, A_n) and $K[x]/(\psi) \cong K[x]/(\varphi)$.

Example 4.14 (Example 3.14 continued). Let $\mathcal{R}_2 = \{ (1,10), (3,3), (9,0) \}$. There are two choices for the invariant A, namely $A_{2,1} = \{ (1 + 2 x, 3 + x^2), (1 + x, 1 + x^2) \}$ (compare Example 2.29) and $A_{2,2} = \{ (2 + 2 x, 2 + x^2), (2 + x, 1 + x^2) \}$.

By Lemma 4.10 all extensions of \mathbb{Q}_3 with ramification polygon \mathcal{R} can be generated by polynomials $\varphi \in \mathbb{Z}_9[x]$ with $\varphi_0 \equiv 3 \mod 9$. Fixing $\varphi_{0,1} = 1$ gives the partition $A_{2,1} = A_{2,1}^* \cup A_{2,1}^*$ with $A_{2,1}^* = \{ (1 + 2 x, 3 + x^2), (2 + x, 1 + x^2) \}$ and $A_{2,2}^* = \{ (1 + x, 1 + x^2) \}$.

For the generating polynomials of the fields with $A_{2,1}^*$ by Lemma 4.10 we get from the point $(1,10) = (3^0, 1 \cdot 9 + 1)$ on \mathcal{R} that $\varphi_{1,2} = 1$ and from the point $(3,3) = (3^1, 0 \cdot 9 + 3)$ on \mathcal{R} that $\varphi_{3,1} = 2$. The polynomials given by \mathcal{R}_2 and A^* are described by:

x^9	x^8	x^7	x^6	x^5	x^4	x^3	x^2	x^1	x^0
3^4	$\{0\}$	$\{0\}$	$\{0\}$	$\{0\}$	$\{0\}$	$\{0\}$	$\{0\}$	$\{0\}$	$\{0\}$
3^3	$\{0, 1, 2\}$	$\{0, 1, 2\}$	$\{0, 1, 2\}$	$\{0, 1, 2\}$	$\{0, 1, 2\}$	$\{0, 1, 2\}$	$\{0, 1, 2\}$	$\{0, 1, 2\}$	$\{0, 1, 2\}$
3^2	$\{0, 1, 2\}$	$\{0, 1, 2\}$	$\{0, 1, 2\}$	$\{0, 1, 2\}$	$\{0, 1, 2\}$	$\{0, 1, 2\}$	$\{0, 1, 2\}$	$\{0, 1, 2\}$	$\{1\}$
3^1	$\{0\}$	$\{0\}$	$\{0\}$	$\{0\}$	$\{0\}$	$\{0\}$	$\{0\}$	$\{0\}$	$\{0\}$
3^0	$\{1\}$	$\{0\}$	$\{0\}$	$\{0\}$	$\{0\}$	$\{0\}$	$\{0\}$	$\{0\}$	$\{0\}$
5. Residual Polynomials of Components

We now apply some results of Monge \[\text{Mon14}\] to reduce the number of polynomials that we need to consider to generate all extensions with given invariants.

Definition 5.1. Let \mathcal{N} be a Newton polygon. For $\lambda \in \mathbb{Q}$ we call

$$\mathcal{N}_\lambda = \{(k, w) \in \mathcal{N} | \lambda k + w = \min\{\lambda l + u | (l, u) \in \mathcal{N}\}\}$$

the λ-component of \mathcal{N}.

Remark 5.2. If \mathcal{N} has a segment with slope λ then \mathcal{N}_λ contains that segment. Otherwise \mathcal{N}_λ consists of only one point.

To each component of integral slope of a ramification polygon we attach a residual polynomial.

Definition 5.3. Let $\varphi \in \mathcal{O}_K[x]$ be Eisenstein, α a root of φ, ρ the ramification polynomial of φ, and \mathcal{R} the ramification polygon of φ. For $\lambda \in \mathbb{Z}^+0$ the residual polynomial of the $(-\lambda)$-component of \mathcal{R} is

$$\mathcal{S}_\lambda(x) = \rho(\alpha^\lambda x)/\cont_\alpha(\rho(\alpha^\lambda x))$$

where $\cont_\alpha(\rho(\alpha^\lambda z))$ denotes the highest power of α dividing all coefficients of $\rho(\alpha^\lambda z)$.

The quantity $\cont_\alpha(\rho(\alpha^m z))$ only depends on the ramification polygon. Namely if $\rho(x) = \sum_{i=1}^n \rho_i x^i$ we have $\rho(\alpha^\lambda x) = \sum_{i=0}^n \rho_i (\alpha^\lambda)^i = \sum_{i=0}^n \rho_i (\alpha^\lambda)^i x^i$ and obtain

$$n\phi_{\mathcal{R}}(\lambda) = \min_{0 \leq i \leq n} v(\rho_i) + i\lambda = \cont_\alpha(\rho(\alpha^\lambda x))$$

for the Hasse-Herbrand function $\phi_{\mathcal{R}}$ of \mathcal{R} (Definition \[3.12\]). Thus \[\text{Mon14}\] Proposition 1 yields

$$n\phi_{\mathcal{R}}(\lambda) = \cont_\alpha(\rho(\alpha^\lambda x)) = n\phi_{L/K}(\lambda).$$

To calculate $n\phi_{\mathcal{R}}(\lambda)$, we only have to take the minimum of the $v(\rho_i) + i\lambda$ for the points $(v(\rho_i), i)$ on the polygon. For $p^s < i < p^{s+1}$, we have $v_\alpha(\rho_{p^s}) \leq v_\alpha(\rho_i)$ (Lemma \[3.2\] (c)) and $p^s < i$, which gives us that $v_\alpha(\rho_{p^s}) + p^s \lambda < v_\alpha(\rho_i) + i\lambda$. This demonstrates the formula for $\phi_{\mathcal{R}}$ from Definition \[3.12\].

Lemma 5.4. Let \mathcal{R} be the ramification polygon of φ.

(a) If \mathcal{R} has a segment S of integral slope $-m \in \mathbb{Z}$, with left endpoint (k, w) and residual polynomial \mathbf{A} then $S_m(x) = x^k \mathbf{A}(x)$.

(b) If \mathcal{R} has no segment of slope $-m \in \mathbb{Z}$ then $S_m(x) = x^{p^s}$ where $0 \leq s \leq v_p(n)$ such that $v(\rho_{p^s}) + p^s \cdot m = \min_{0 \leq r \leq v_p(n)} v(\rho_{p^s}) + p^s \cdot m$.

(c) For all $m \in \mathbb{Z}^+0$ the residual polynomial S_m of \mathcal{R}_{-m} is an additive polynomial.

(d) $S_m : K \to K$ is F_p-linear.

Proof. (a) By Remark \[5.2\] the component $\mathcal{R}_{(-m)}$ contains S and by Remark \[4.3\](a) $S_m(x) = x^k \mathbf{A}(x)$.
(b) As mentioned in Remark 5.2 \(\mathcal{N}_{(-m)}\) and \(\mathcal{R}\) only have one point in common. By Lemma 3.2 this point is of the form \((p^s, v(p^s))\). It follows from Lemma 3.2 that if the ramification polygon \(\mathcal{R}\) of \(\varphi\) has no segment of slope \(-m\) then
\[
v(\text{cont}_\alpha(p(\alpha^m x))) = \min_{0 \leq i \leq n} v(p_i) + i \cdot m = \min_{0 \leq r \leq v_p(n)} v(p_{r^p}) + p^r \cdot m
\]
and \(S_m(x) = x^{p^r}\) where \(0 \leq s \leq v_p(n)\) such that \(v(p_{r^p}) + p^s \cdot m = \min_{0 \leq r \leq v_p(n)} v(p_{r^p}) + p^r \cdot m\).

(c) By Lemma 3.2 the abscissa of each point on \(\mathcal{R}\) is of the form \(p^s\). Thus the residual polynomial of \(\mathcal{R}_{(-m)}\) is the sum of monomials of the form \(x^{p^r}\) which implies that \(S_m\) is additive.

(d) Is a direct consequence of (c). \(\square\)

We now investigate the effect of changing the uniformizer \(\alpha\) of \(K(\alpha)\) on the coefficients of its minimal polynomial (compare [Mon14, Lemma 3]).

Proposition 5.5. Let \(\varphi \in \mathcal{O}_K[x]\) be Eisenstein of degree \(n\), let \(\alpha\) be a root of \(\varphi\) and let \(\rho\) be the ramification polynomial of \(\varphi\). Let \(\beta = \alpha + \gamma \alpha^{m+1}\) where \(\gamma \in L = K(\alpha)\) with \(v(\gamma) = 0\) be another uniformizer of \(L\) and \(\psi \in \mathcal{O}_K[x]\) its minimal polynomial.

(a) If \(0 \leq j < n\) and \(j \equiv v_\alpha(p(\gamma \alpha^m)) \mod n\) then \(\varphi_j - \psi_j = \alpha^n \rho(\gamma \alpha^m)\)

(b) If \(0 \leq k < n\) and \(k \equiv v_\alpha(\text{cont}_\alpha(p(\alpha^m x))) \mod n\) then
\[
\frac{(\varphi_k - \psi_k)/\alpha^{n-k} \text{cont}_\alpha(p(\alpha^m x))}{} = S_m(\gamma).
\]

Proof.

(a) By Definition 3.1 we have
\[
\sum_{i=0}^{n-1} (\varphi_i - \psi_i) \beta^i = \varphi(\beta) - \psi(\beta) = \varphi(\beta) = \alpha^n \rho(\beta/\alpha - 1) = \alpha^n \rho(\gamma \alpha^m).
\]

Since \(v_\pi(\varphi_i) \in \mathbb{Z}\) and \(v_\pi(\psi_i) \in \mathbb{Z}\) and \(v_\pi(\beta^i) = \frac{i}{n}\) we have
\[
v_\pi \left(\sum_{i=0}^{n-1} (\varphi_i - \psi_i) \beta^i \right) = \min_{0 \leq i < n-1} v_\pi \left((\varphi_i - \psi_i) \beta^i \right).
\]

Thus for \(0 \leq j < n\) and \(j \equiv v_\pi(p(\gamma \alpha^m)) \mod n\) we have \(\varphi_j - \psi_j = \alpha^n \rho(\gamma \alpha^m)\).

(b) Dividing Equation (5) by \(\alpha^n \text{cont}_\alpha(p(\alpha^m x))\) yields
\[
\frac{(\varphi(\beta) - \psi(\beta))/\alpha^n \text{cont}_\alpha(p(\alpha^m x))}{} = \frac{\alpha^n \rho(\gamma \alpha^m)/(\alpha^n \text{cont}_\alpha(p(\alpha^m x)))}{} = S_m(\gamma).
\]

For \(0 \leq k < n\) with \(k \equiv v(\text{cont}_\alpha(p(\alpha^m x))) \mod n\) we get
\[
\frac{(\varphi_k - \psi_k) \beta^k/(\alpha^n \text{cont}_\alpha(p(\alpha^m x)))}{} = S_m(\gamma).
\]

With \(\beta \equiv \alpha \mod (\alpha^2)\) we obtain the result. \(\square\)

Generating Polynomials. Using the results from above we can reduce the set of generating polynomials with given invariants considerably. We show how the coefficients of a generating polynomial can be changed by changing the uniformizer. The coefficients that we can change arbitrarily this way we set to 0, thus reducing the number of polynomials to be considered.
Corollary 5.6. Let $\varphi \in \mathcal{O}_K[x]$ be Eisenstein of degree n, let α be a root of φ, let $L = K(\alpha)$, and let ρ be the ramification polynomial of φ. Let $m \in \mathbb{Z}^>0$, $c = v_\alpha(\text{cont}_\alpha(\rho(\alpha^m x)))$, $0 \leq k < n$ with $k \equiv c \mod n$, and $j = \frac{n-k+c}{n}$.

(a) If $\hat{\delta} \in S_m(K)$ then for the minimal polynomial $\psi \in \mathcal{O}_K[x]$ of $\beta = \alpha + \gamma \alpha^{m+1}$ where $\gamma \in S_m^{-1}(\hat{\delta})$ we have $\psi_{k,j} = \varphi_{k,j} - \hat{\delta}$.

(b) If $S_m : K \rightarrow K$ is surjective we can set $\delta = \varphi_{k,j}$ and obtain $\psi_{k,j} = 0$.

(c) If $S_m(\gamma) = 0$ and $d = v_\alpha(\alpha^n (\gamma \alpha^m))$, $0 \leq l < n$ with $l \equiv d \mod n$, and $i = \frac{n-l-d}{n}$ then $\psi_{i,j} = \varphi_{i,j} - \pi^{-i} \alpha^n (\gamma \alpha^m)$.

The next Lemma follows directly from Corollary 5.6.

Lemma 5.7. Let $\varphi \in \mathcal{O}_K[x]$ be Eisenstein of degree n, R its ramification polygon. Assume there is $m \in \mathbb{Z}^>0$ such that $k \equiv n \phi_R(m) \mod n$ and $j = \frac{n+n\phi_R(m)-k}{n}$ and let S_m be the residual polynomials of $R_{(-m)}$.

(a) If S_m is surjective then there is an Eisenstein polynomial $\psi \in \mathcal{O}_K[x]$ with $\psi_{k,j} = 0.$ such that $K[x]/(\psi) \cong K(\alpha)$.

(b) If $\psi \in \mathcal{O}_K[x]$ has the same ramification polygon with the same residual polynomials as φ and $\varphi_{k,j} - \psi_{k,j} \notin S_m(K)$ then $K[x]/(\psi) \not\cong K[x]/(\varphi)$.

Example 5.8 (Example 4.14 continued). The ramification polygon $R_2 = \{(1, 10), (3, 3), (9, 0)\}$ has no segments with integral slope. We get $S_1 = x^3, S_2 = x^3, and S_3 = x^3,$ with $9\phi(1) = 6, 9\phi(2) = 9,$ and $9\phi(3) = 12.$ Thus $\varphi_{0,1} = 0, \varphi_{0,2} = 0,$ and $\varphi_{3,2} = 0.$ Furthermore $S_m = x$ for with $9\phi(m) = 10 + m$ for $m \geq 4.$ Thus by Lemma 5.7 we can set $\varphi_{k,j} = 0$ for $k + 9(j - 1) \geq 14.$

For the generating polynomials with $A_{2,1}^{14}$ we get the template:

\[
\begin{array}{cccccccc}
\text{3}^4 & \{0\} & \{0\} & \{0\} & \{0\} & \{0\} & \{0\} & \{0\} & \{0\} \\
\text{3}^3 & \{0\} & \{0\} & \{0\} & \{0\} & \{0\} & \{0\} & \{0\} & \{0\} \\
\text{3}^2 & \{0\} & \{0\} & \{0\} & \{0\} & \{0, 1, 2\} & \{0\} & \{0\} & \{0\} \\
\text{3}^1 & \{0\} & \{0\} & \{0\} & \{0\} & \{0\} & \{0\} & \{0\} & \{0\} \\
\text{3}^0 & \{1\} & \{0\} & \{0\} & \{0\} & \{0\} & \{0\} & \{0\} & \{0\} \\
\end{array}
\]

Since changing the uniformizer cannot change $\varphi_{2,2}$ and $\varphi_{4,2}$ independently from the other coefficients of φ we obtain a unique generating polynomial of each extension with ramification polygon R_2 and $A_{2,1}^{14}$.

6. Enumerating Generating Polynomials

We use the results from the previous sections to formulate an algorithm that returns generating polynomials of all extensions with given ramification polynomials and residual polynomials. In certain cases this set will contain exactly one polynomial for each extension.

Algorithm 6.1 (AllExtensionsSub).

Input: A π-adic field K, a convex polygon R with points $(1, a_0 n + b_0), (p^{s_1}, a_1 n + b_1), \ldots, (p^{s_u}, a_n n + b_u) = (p^{s_0}, 0), \ldots, (n, 0)$ satisfying Proposition 3.10 where $0 \leq b_i < n$ for $1 \leq i \leq u = v_\pi(n), S_1, \ldots, S_t$ the segments of R, a representative δ_0 of a class in $K^\times/(K^\times)^n$, and $\mathcal{A}_1, \ldots, \mathcal{A}_t \in K[x]$ satisfying Proposition 4.6.
Output: A set that contains at least one Eisenstein polynomial for each totally ramified extension of degree n, that can be generated by a polynomial φ with ramification polygon \mathcal{R}, $\varphi_{0,1} = \delta_0$, and residual polynomials A_1, \ldots, A_r.

(a) $c \leftarrow \left\lfloor \frac{1 + 2a_0 + 2a_n}{n} \right\rfloor - 1$ \hfill [Lemma 2.3]
(b) Initialize template $(\tau_{i,j})_{0 \leq i \leq n-1, 1 \leq j \leq c}$ with $\tau_{i,j} = \{0\} \subset K$
(c) For $0 \leq i \leq n-1$ and $L_{\mathcal{R}}(i) \leq j \leq c$:
 - If there is no $m \in \mathbb{Z}^{>0}$ with $i \equiv n\phi_k(m) \mod n$ and $j = \frac{n-i+n\phi_k(m)}{n}$:
 - $\tau_{i,j} \leftarrow K$
 - $i \leftarrow n\phi_k(m) \mod n$, $j \leftarrow \frac{n-i+n\phi_k(m)}{n}$
 - $\tau_{i,j} \leftarrow R$ where R is a set of representatives of $K/S_n(K)$.

(d) For $1 \leq m \leq \left\lfloor \frac{(a_0 + b_1) - (a_0 b_0)}{p^i - 1} \right\rfloor$:
 - $i \leftarrow n\phi_k(m) \mod n$, $j \leftarrow \frac{n-i+n\phi_k(m)}{n}$
 - $\tau_{i,j} \leftarrow R$

(e) For $1 \leq i \leq u$:
 - Find a segment S_t of \mathcal{R} such that $(p^k, a_n + b_k)$ is on S_t
 - $j \leftarrow a_i + 1 - v_\pi(b_k)$
 - $\tau_{i,j} \leftarrow \left\lfloor \frac{A_i(p^{k+1} - p^k)/c(\sqrt{9})^{a_i+1}(b_k)^{-1} \pi^{a_i}(b_k)}{p^i} \right\rfloor$
 where $(p^k, a_k n + b_k)$ is the left end point of S_t and $-h/e$ is the slope of S_t.

(f) $\tau_{0,1} \leftarrow \{0\}$ \hfill [Lemma 4.10]

(g) Return $\left\{ x^n + \sum_{i=0}^{n-1} \left(\sum_{j=1}^{c} \varphi_{i,j} \pi^j \right) x^i \in \mathcal{O}_k[x] : \varphi_{i,j} \in R_{K} \text{ such that } \varphi_{i,j} \in \tau_{i,j} \right\}$

As is evident from the following example Algorithm [6.1] may return more than one generating polynomial for some extensions.

Example 6.2. The polygon $\mathcal{R}_3 = \{(1, 10), (3, 6), (9, 0)\}$ has segments with slopes $\frac{10 - 6}{3 - 3} = -2$ and $\frac{6 - 0}{3 - 9} = -1$. With the choice $\varphi_0 \equiv 3 \mod 9$ the possible pairs of residual polynomials are $A_{3,1} = \{(2 + x^2, 1 + x^6)\}$, $A_{3,2} = \{(2 + 2x^2, 2 + x^6)\}$, $A_{3,3} = \{(1 + 2x^2, 2 + x^6)\}$, and $A_{3,4} = \{(1 + x^2, 1 + x^6)\}$.

For $A_{3,2} = \{(2 + 2x^2, 2 + x^6)\}$ we get $\varphi_{1,2} = 2$ and furthermore this choice also gives $S_1 = (2 + x^6)x^3$, $S_2 = (2x^2 + 3)x^2$ and $S_m = x$ for $m \geq 3$ with $S_1(\mathbb{F}_3) = \{0\}$, $S_2(\mathbb{F}_3) = \mathbb{F}_3$, and $S_m(\mathbb{F}_3) = \mathbb{F}_3$. As S_2 is surjective we can set $\varphi_{3,2} = 0$. As S_m for $m \geq 3$ we can set $\varphi_{k,j} = 0$ for $k + 9(j - 1) \geq 14$ where $0 \leq k < 9$. As the image of S_i is $\{0\}$ changing the uniformizer does not affect $\varphi_{0,2}$. Thus Algorithm [6.1] generates the template:

x^9	x^8	x^7	x^6	x^5	x^4	x^3	x^2	x^1	x^0	
3^1	$\{0\}$	$\{0\}$	$\{0\}$	$\{0\}$	$\{0\}$	$\{0\}$	$\{0\}$	$\{0\}$	$\{0\}$	
3^2	$\{0\}$	$\{0\}$	$\{0\}$	$\{0\}$	$\{0\}$	$\{0\}$	$\{0\}$	$\{0\}$	$\{0\}$	
3^2	$\{0\}$	$\{0\}$	$\{0\}$	$\{0\}$	$\{0\}$	$\{0\}$	$\{0\}$	$\{0, 1, 2\}$	$\{2\}$	$\{0, 1, 2\}$
3^1	$\{0\}$	$\{0\}$	$\{0\}$	$\{0\}$	$\{0\}$	$\{0\}$	$\{0\}$	$\{0\}$	$\{0\}$	$\{1\}$
3^0	$\{1\}$	$\{0\}$	$\{0\}$	$\{0\}$	$\{0\}$	$\{0\}$	$\{0\}$	$\{0\}$	$\{0\}$	$\{0\}$

Of the corresponding polynomials $\varphi_{c,d} = x^9 + 6x^6 + 9c \cdot x^2 + 18x + 3 + 9d \cdot c, d \in \{1, 2\}$ more than one polynomial generates each extension. Let α be root of $\varphi_{c,d}$ and ρ its ramification polynomial. For $\gamma \in \{1, 2\}$ we have $v_\rho(\rho(\gamma \alpha)) = 11$. If $\psi(x) = \sum_{i=0}^{9} \psi_i x^i$ denotes the minimal polynomial of $\alpha + \gamma \alpha^2$ then by Proposition [5.3] (a) we have $\varphi_2 - \psi_2 = \alpha^3 \rho(\gamma \alpha)$ and hence $\psi_{2,2} = \varphi_{2,2} - \rho(\gamma \alpha)/\alpha^9 \neq 0 \mod \alpha$. As $\gamma(\alpha) \mapsto \rho(\gamma \alpha)/\alpha^{11} + (\alpha) = 2 \gamma + (\alpha)$ is surjective, changing the uniformizer from α to $\alpha + \gamma \alpha$ results in a change of $\varphi_{2,2}$. Thus
we can choose γ such that $\varphi_{2,2} = 0$ and get that all extensions with ramification polygon R_3 and residual polynomials $A_{3,2}$ are generated by exactly one polynomial of the form $\varphi_d = x^9 + 6x^6 + 18x + 3 + 9d$ where $(d \in \{1, 2\})$.

Theorem 6.3. Let F be the set of polynomials returned by Algorithm 6.1 given K and a ramification polygon R, $\delta_0 \in K$ and polynomials $A_1, \ldots, A_6 \in K[x]$.

(a) If F contains at least one Eisenstein polynomial for each totally ramified extension of degree n, that can be generated by a polynomial φ with ramification polygon R, $\varphi_{n,1} = \delta_0$, and residual polynomials A_1, \ldots, A_6.

(b) If $S_m : K \to K$ is surjective for all segments with integral slope $-m$, then no two polynomials in F generate isomorphic extensions.

(c) If there is exactly one $S_m : K \to K$ that is non-surjective, and for all integers $k > n\varphi_R(m)$, there is an $m' \in \mathbb{Z}^+\cap R$ such that $n\varphi_R(m') = k$, then no two polynomials in F generate isomorphic extensions.

Proof. (a) Let $\varphi \in F$. In Algorithm 6.1 step (c) we have ensured that $v_\varphi(\varphi_i) \geq L_R(i)$ and in step (e) we assign nonzero values to $\varphi_{b,j}$ so that $v_\varphi(\varphi_{b,j}) = L_R(b)$ for points $(p^s_i, a_i n + b_i)$ with $b_i \neq 0$. So by Proposition 3.11 φ has ramification polygon R. By Lemma 4.10 the values assigned in step (e) ensure that R_φ has residual polynomials (A_1, \ldots, A_6). Thus each extension generated by a polynomial with the input invariants is generated by a polynomial in F and all polynomials in F have these invariants.

(b) If $S_m : K \to K$ is surjective for all segments with integral slope $-m$, then all of the nonzero coefficients in our template τ are either fixed by δ_0 or A, or free because they are not set by a choice of element in the image of some S_m. Any deformation of the uniformizer that might result in two polynomials in F to generate the same extension would have to change one of these free coefficients, but such a change cannot be made independently of the choices we made in order to set coefficients to zero by Lemma 5.7. So no two polynomials in F generate isomorphic extensions.

(c) Suppose there is exactly one $S_m : K \to K$ that is non-surjective, and for all integers $k > n\varphi_R(m)$, there is an $m' \in \mathbb{Z}^+\cap R$ such that $n\varphi_R(m') = k$. As $S_m : K \to K$ is non-surjective, there will be more than one choice for $\varphi_{i,j}$ where $jn + i = n\varphi_R(m)$. By Proposition 5.3 the corresponding change of uniformizer (from α to $\alpha + \gamma \alpha^{m+1}$) can change $\varphi_{i,j}$ to $\varphi'_{i',j'}$ where $j'n + i' > jn + i$. Since there exists $m' \in \mathbb{Z}^+$ such that $n\varphi_R(m') = j'n + i'$, then Algorithm 6.1 will assign $\varphi'_{i,j}$ based on $S_{m'}$. Given that $m \neq m'$, $S_{m'}$ is surjective, $\varphi'_{i,j}$ can be set to zero by Lemma 5.7. As all coefficients $\varphi'_{i,j}$ with $j'n + i' > jn + i$ are assigned by the residual polynomials of components, no two polynomials generate isomorphic extensions. □

As in general the algorithm returns more than one polynomial generating each extension with the given invariants, the output needs to be filtered by comparing the generated extensions by

(a) computing all reduced generating polynomials using [Mon14 Algorithm 3] and comparing these or

(b) using a root finding algorithm (compare [PR01]).
The product $\prod_{n=0}^{\infty} \# \ker \delta^n$ is an upper bound for the number of automorphisms of L/K. This together with the number of reduced polynomials of ϕ gives the number of automorphisms of L/K ([Mon14 Theorem 1]). Alternatively the number extensions generated by each polynomial can be computed using root finding.

Now we present an algorithm to enumerate all extensions with a given invariants. It may require multiple calls to Algorithm 6.1 AllExtensionsSub depending the structure of A and the number of tame subextensions.

Algorithm 6.4 (AllExtensions).

Input: A π-adic field K, a ramification polygon R, and invariant A

Output: A set F that contains one generating Eisenstein polynomial for each totally ramified extension of K with ramification polygon R and invariant A

(a) $S_0 \leftarrow$ a set of representatives of $K^\times/(K^\times)^n$.
(b) For $\delta \in S_0$ do
 (i) Partition A into disjoint sets $A^{\times 1}, \ldots, A^{\times k}$ by Equation (4).
 (ii) For $A^* \in \{A^{\times 1}, \ldots, A^{\times k}\}$ do
 • Let A be a representative of A^*.
 • $F' \leftarrow$ AllExtensionsSub(K, R, A, δ).
 • Unless avoidable by Theorem 6.3, filter F' so that no two polynomials generate the same extension using method of choice.
 • $F \leftarrow F \cup F'$.
 (c) Return F.

Theorem 6.5. Let F be the set of polynomials returned by Algorithm 6.4. For each extension L/K with ramification polygon R and invariant A, the set F contains exactly one generating polynomial.

Proof. Let L/K be a totally ramified extension with ramification polygon R and invariant A. Let $\psi \in \mathcal{O}_K[x]$ be an Eisenstein polynomial generating L with $\psi_0, 1 \in S_0$. Let $A^{(\psi)}$ be the residual polynomials of segments of R given ψ. As ψ generates L with invariant A, $A^{(\psi)}$ belongs to some A^* in our partition of A. If A is our choice of representative of A^*, then by Lemma 4.13, there is a $\phi \in \mathcal{O}_K[x]$ with residual polynomials A such that $K[x]/(\phi) \cong K[x]/(\phi)$. Thus, L/K can be generated by an Eisenstein polynomial ϕ with residual polynomials A, and $\phi_0, 1 = \psi_0, 1$, and by Theorem 6.3 there is at least one $\phi \in F'$ with F' returned by AllExtensionsSub$(K, R_\phi, A, \psi_0, 1)$ generating L/K. The output F contains one generator for every extension that can be generated by any polynomial in any F' produced, and so there is a polynomial in F generating L/K.

To show that no two polynomials in F generate the same extension, it suffices to show that no polynomials produced by different calls to Algorithm 6.1 generate the same extension. Let ϕ and ψ be in two such polynomials. By Lemma 4.11 if $\phi_0, 1 \neq \psi_0, 1$, then as $\phi_0, 1, \psi_0, 1 \in K^\times/(K^\times)^n, K[x]/(\phi) \nmid K[x]/(\phi)$. Now suppose $\phi_0, 1 = \psi_0, 1$. By Remark 4.12 if the residual polynomials of ϕ and ψ are not in the same A^* then $K[x]/(\psi) \nmid K[x]/(\phi)$. Thus, if two polynomials are generated by Algorithm 6.1 with different inputs of δ or residual polynomials returned by Algorithm 6.4 they cannot generate the same extension. □
In Figure 3 we compare the implementation of the algorithm from [PR01] in Magma [BCP97] (AllExtensions) and Pari [PG14] (padicfields) with our implementation of Algorithm 6.4 in Magma using root finding to filter the set of polynomials to obtain a minimal set. In the implementation of the method from [PR01] Magma we replaced the deterministic enumeration of polynomials by random choices, which yields a considerable performance improvement. In our implementation of Algorithm 6.4 the filtering out of redundant polynomials can be accelerated by using reduction [Mon14] instead of root finding.

We now present generating polynomials for totally ramified extensions of degree 15 over \(\mathbb{Q}_5 \) (Example 7.1), totally ramified extensions of degree 8 over an unramified extension of degree 2 over \(\mathbb{Q}_2 \) (Example 7.2), totally ramified extensions of degree 9 over a ramified extension of \(\mathbb{Q}_3 \) of degree 3 (Example 7.3), and an example over \(\mathbb{Q}_5 \) that shows that in general not all extensions with the same ramification polygon and invariant \(\mathcal{A} \) have the same mass (Example 7.4).

Example 7.1. We find generating polynomials for all totally ramified extensions \(L \) of \(\mathbb{Q}_5 \) of degree 15 with \(v_5(\text{disc}(L)) = 29 \), the highest possible valuation by Proposition 2.1. There is only one possible ramification polygon \(\mathcal{R} = \{ (1, 15), (5, 0), (10, 0), (15, 0) \} \) and only one possible set of residual polynomials \(\mathcal{A} = \{ (3z + 2, z^{10} + 3z^5 + 3) \} \) for such extensions. Denote by \(\varphi(x) = \sum_{i=0}^{15} \varphi_i x^i \) an Eisenstein polynomial generating such a field \(L \).

By Lemma 4.11 all extensions of \(\mathbb{Q}_5 \) with ramification polygon \(\mathcal{R} \) can be generated by polynomials \(\varphi \in \mathbb{Z}_5[x] \) with \(\varphi_0 \equiv 5 \mod 25 \). As \(b_t = 0 \) for all points \((p^e, a_t n + b_t) \in \mathcal{R}, \) Proposition 3.11 only gives us restrictions on \(\varphi \) based on \(L_{\mathcal{R}} \) and no coefficients are set by Lemma 4.10. This provides the following template for \(\varphi \):

\[
\begin{array}{cccccccccccccccccc}
& x^{15} & x^{14} & x^{13} & x^{12} & x^{11} & x^{10} & x^9 & x^8 & x^7 & x^6 & x^5 & x^4 & x^3 & x^2 & x^1 & x^0 \\
5^2 & \{0\} & R_{\bar{5}} & R_{5} \\
5^1 & \{0\} & \{0\} & \{0\} & \{0\} & R_{\bar{5}} & R_{5} & R_{\bar{5}} \\
5^0 & \{1\} & \{0\} & \{0\} & \{0\} & \{0\} & \{0\} & \{0\} & \{0\} & \{0\} & \{0\} & \{0\} & \{0\} & \{0\} & \{0\} & \{0\} \\
\end{array}
\]

The ramification polygon \(\mathcal{R}_2 \) has no segments with non-zero integral slope. We get \(S_1 = x^{15}, S_2 = x^{15}, \) and \(S_3 = x^{15} \), with \(15\phi(1) = 5, 15\phi(2) = 10, \) and \(15\phi(3) = 15 \). Thus \(\varphi_{5,1} = 0, \varphi_{10,1} = 0, \) and \(\varphi_{0,2} = 0 \). Further, for \(m \geq 4, S_m = x \). As \(15\phi(m) = 15 + m \) for \(m \geq 4, \) by
Lemma 5.7 we can set $\varphi_{k,j} = 0$ for $k + 9(j - 1) \geq 19$. Therefore, the generating polynomials φ of the fields over \mathbb{Q}_5 with invariants \mathcal{R} and \mathcal{A} follow this template:

$$
\begin{array}{cccccccccccc}
5^0 & (0) & (0) & (0) & (0) & (0) & (0) & (0) & (0) & (0) & (0) & (0) \\
5^1 & (0) & (0) & (0) & (0) & (0) & (0) & (0) & (0) & (0) & (0) & (1) \\
5^0 & (1) & (0) & (0) & (0) & (0) & (0) & (0) & (0) & (0) & (0) & (0) \\
\end{array}
$$

As all of the S_m are surjective, by Theorem 6.3 (b), no two of these 125 polynomials generate isomorphic extensions of \mathbb{Q}_5.

Example 7.2. Let K be the unramified extension of \mathbb{Q}_2 generated by $y^2 + y + 1 \in \mathbb{Q}_2[y]$. Let γ be a root of $y^2 + y + 1$, so $K = \mathbb{F}_2(\gamma)$. We want to find generating polynomials for all totally ramified extensions L of K of degree 8 with $v_2(\text{disc}(L)) = 16$, ramifications polygon with points $\mathcal{R} = \{(1,9), (2,6), (8,0)\}$, and \mathcal{A} containing $(\gamma z + \gamma, z^6 + \gamma)$. Denote by $\varphi = \sum_{i=0}^{8} \varphi_i x^i$ an Eisenstein polynomial generating such a field L.

By Proposition 3.11 we have $v(\varphi_1) = 2$ and $v(\varphi_6) = 1$, and that $v(\varphi_i) \geq 2$ for $i \in \{2,3,4,5,7\}$. By Lemma 4.10 the point $(1,9) = (2^0, 1 \cdot 8 + 1)$ on \mathcal{R} gives us that $\varphi_{1,2} = \gamma$ and the point $(2,6) = (2^1, 0 \cdot 8 + 6)$ on \mathcal{R} gives us that $\varphi_{6,1} = \gamma$. We set $\varphi_{0,1} = 1$ by Lemma 4.11 and the template for the polynomials φ is:

$$
\begin{array}{cccccccccccc}
2^0 & (0) & R_K \\
2^0 & (0) & R_K & R_K & R_K & R_K & R_K & R_K & \{\gamma\} & R_K & R_K & \{\gamma\} \\
2^1 & (0) & (0) & \{\gamma\} & (0) & (0) & (0) & (0) & (0) & \{0\} & (1) \\
2^0 & (1) & (0) & (0) & (0) & (0) & (0) & (0) & (0) & (0) & (0) \\
\end{array}
$$

It remains to consider the S_m. Our ramifications polygon \mathcal{R} has two segments of integral slope, -3 and -1, respectively. So by Lemma 5.4, $S_1(z) = z^2 A_3 = z^2 (z^6 + \gamma)$ and $S_3(z) = z A_1 = z (\gamma z + \gamma)$. As S_1 is surjective and $n\phi(1) = 8$, we may set $\varphi_{0,2} = 0$. As \mathcal{R} has no segment of slope -2, S_2 is surjective, so with $n\phi(2) = 10$, we may set $\varphi_{2,2} = 0$. On the other hand, S_3 is not surjective and has image $\{0, \gamma\}$. By Lemma 5.7 and as $n\phi(3) = 12$, $\varphi_{4,2} \in R_K/\{0, \gamma\} = \{0, 1\}$. For $m \geq 4$, $n\phi(m) = 9 + m$, and so we can set $\varphi_{k,j} = 0$ for $k + 8(j - 1) \geq 13$. This gives us the following template for polynomials φ:

$$
\begin{array}{cccccccccccc}
2^0 & (0) & (0) & \{0\} & (0) & \{0\} & (0) & \{0\} & (0) & \{0\} & (0) & (0) \\
2^2 & (0) & (0) & (0) & (0) & (0) & (0,1) & R_K & \{\gamma\} & (0) \\
2^1 & (0) & (0) & \{\gamma\} & (0) & (0) & (0) & (0) & (0) & (1) \\
2^0 & (1) & (0) & (0) & (0) & (0) & (0) & (0) & (0) & (0) \\
\end{array}
$$

As S_3 is the only non-surjective S_m, and for all integers k greater than $n\phi(3) = 12$, $n\phi(k - 9) = k$, we have by Theorem 6.3 (c) that no two of these 8 polynomials generate the same extension.

Example 7.3. Let $K = \mathbb{Q}_3[x]/(x^2 - 3)$ and let π be a uniformizer of the valuation ring of K. As in Example 3.14 there are three possible ramifications polygons for extensions L of K of degree 9 with $v_3(\text{disc}(L)) = 18$, namely $\mathcal{R}_1 = \{(1,10), (9,0)\}$, $\mathcal{R}_2 = \{(1,10), (3,3), (9,0)\}$, and $\mathcal{R}_3 = \{(1,10), (3,6), (9,0)\}$ (compare Figure 2).

Let us again choose to investigate \mathcal{R}_2. By Lemma 3.5 we have $v_3(\varphi_3) = 1$ and by Lemma 4.11 we can set $\varphi_{0,1} = 1$. As $K = \mathbb{Q}_3$, we have the same four choices for the invariant
A: $A_{2,1} = \{(1 + 2x, 2 + x^3)\}$, $A_{2,2} = \{(2 + x, 1 + 2x^3)\}$, $A_{2,3} = \{(1 + x, 1 + x^3)\}$, and $A_{2,4} = \{(2 + 2x, 2 + x^3)\}$.

Let us choose $A_{2,1}$. By Lemma 4.10 we get from the point $(1, 10) = (3^0, 1 \cdot 9 + 1)$ on R_2 that $\varphi_{1,2} = 1$ and from the point $(3, 3) = (3^1, 0 \cdot 9 + 3)$ on R_2 that $\varphi_{3,1} = 2$.

The ramification polygon R_2 has no segments with integral slope. We get $S_1 = x^3$, $S_2 = x^3$, and $S_3 = x^3$, with $9\phi(1) = 6$, $9\phi(2) = 9$, and $9\phi(3) = 12$. Thus $\varphi_{0,1} = 0$, $\varphi_{0,2} = 0$, and $\varphi_{3,2} = 0$. Furthermore $S_m = x$ for with $9\phi(m) = 10 + m$ for $m \geq 4$. Thus by Lemma 5.7 we can set $\varphi_{k,j} = 0$ for $k + 9(j - 1) \geq 14$.

Proceeding as in Examples 3.14 4.14 and 5.8 we obtain a familiar template for the polynomials generating fields over K with ramification polygon R_2 and invariant $A_{2,1}$:

x^0	x^1	x^2	x^3	x^4	x^5	x^6	x^7	x^8	x^9
π^0	$\{0\}$	$\{0\}$	$\{0\}$	$\{0\}$	$\{0\}$	$\{0\}$	$\{0\}$	$\{0\}$	$\{0\}$
π^3	$\{0\}$	$\{0\}$	$\{0\}$	$\{0\}$	$\{0\}$	$\{0\}$	$\{0\}$	$\{0\}$	$\{0\}$
π^2	$\{0\}$	$\{0\}$	$\{0\}$	$\{0\}$	$\{0\}$	$\{0\}$	$\{2\}$	$\{0\}$	$\{1\}$
π^1	$\{0\}$	$\{0\}$	$\{0\}$	$\{0\}$	$\{0\}$	$\{0\}$	$\{0\}$	$\{0\}$	$\{0\}$
π^0	$\{1\}$	$\{0\}$	$\{0\}$	$\{0\}$	$\{0\}$	$\{0\}$	$\{0\}$	$\{0\}$	$\{0\}$

As all of the S_m are surjective, we obtain a unique generating polynomial of each degree 9 extension of K with $v_3(\text{disc}(L)) = 18$, ramification polygon R_2, and invariant $A_{2,1}$.

As mentioned in the previous section, our choice of residual polynomials relate to the size of the automorphism group of the extensions generated by our polynomials. However, the polynomials generated by Algorithm 6.3 (and in general, those generating extensions of the same degree, discriminant, ramification polygon, and A) do not generate extensions with the same automorphism group size.

Example 7.4. Over $\mathbb{Q}_3[x]$, let $\varphi(x) = x^9 + 6x^6 + 18x^5 + 3$ and $\psi(x) = x^9 + 18x^8 + 9x^7 + 6x^6 + 18x^5 + 3$. Both are Eisenstein polynomials generating degree 9 extensions over \mathbb{Q}_3 with ramification polygon $R = \{(1, 14), (3, 6), (9, 0)\}$ and having residual polynomials $A_i = 2z^2 + 1$ and $A_i = z^6 + 2$. Using root-finding, we see that over $\mathbb{Q}_3[x]/(\varphi)$, φ has 3 roots, while over $\mathbb{Q}_3[x]/(\psi)$, ψ has 9 roots. Thus ψ generates a normal extension, while φ generates three extensions with automorphism groups of size 3 which shows that not all extension with the same ramification polygon and residual polynomials have the same mass.

8. Acknowledgments

We thank Jonathan Milstead for his careful reading of our manuscript.

References

[Ama71] Shigeru Amano, *Eisenstein equations of degree p in a p-adic field*, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 18 (1971), 1–21. MR 0308086 (46 #7201)

[BCP97] Wieb Bosma, John Cannon, and Catherine Playoust, *The Magma algebra system. I. The user language*, J. Symbolic Comput. 24 (1997), no. 3-4, 235–265, Computational algebra and number theory (London, 1993). MR MR1484478

[FV02] Ivan B. Fesenko and Sergey V. Vostokov, *Local fields and their extensions*, 2nd ed., Translations of Mathematical Monographs, vol. 121, American Mathematical Society, 2002.

[GMN13] Jordi Guàrdia, Jesús Montes, and Enric Nart, *A new computational approach to ideal theory in number fields*, Found. Comput. Math. 13 (2013), no. 5, 729–762. MR 3105943
[GNP12] Jordi Guàrdia, Enric Nart, and Sebastian Pauli, *Single-factor lifting and factorization of polynomials over local fields*, J. Symbolic Comput. **47** (2012), no. 11, 1318–1346. MR 2927133

[GP12] Christian Greve and Sebastian Pauli, *Ramification polygons, splitting fields, and Galois groups of Eisenstein polynomials*, International Journal of Number Theory **8** (2012), no. 6, 1401–1424. MR 2965757

[Hel90] Charles Helou, *Non-Galois ramification theory of local fields*, Algebra Berichte [Algebra Reports], vol. 64, Verlag Reinhard Fischer, Munich, 1990. MR 1076620 (91j:11103)

[Kra66] Marc Krasner, *Nombre des extensions d’un degré donné d’un corps p-adique*, Les Tendances Géom. en Algèbre et Théorie des Nombres, Editions du Centre National de la Recherche Scientifique, Paris, 1966, pp. 143–169. MR 0225756 (37 #1349)

[Li97] Hua-Chieh Li, *p-adic power series which commute under composition*, Transactions of the American Mathematical Society **349** (1997), no. 4, 1437–1446.

[Lub81] Jonathan D. Lubin, *The local Kronecker-Weber theorem*, Transactions of the American Mathematical Society **267** (1981), no. 1, 133–138.

[MN92] Jesús Montes and Enric Nart, *On a theorem of Ore*, J. Algebra **146** (1992), no. 2, 318–334. MR 1152908 (93f:11077)

[Mon99] Jesús Montes, *Poligonos de Newton de orden superior y aplicaciones aritméticas*, 1999, Thesis (Ph.D.)–Universitat de Barcelona.

[Mon14] Maurizio Monge, *A family of Eisenstein polynomials generating totally ramified extensions, identification of extensions and construction of class fields*, Int. J. Number Theory **10** (2014), no. 7, 1699–1727. MR 3256847

[Ore26] Öystein Ore, *Bemerkungen zur Theorie der Differente*, Math. Z. **25** (1926), no. 1, 1–8. MR 1544795

[Ore28] __________, *Newtonsche Polygone in der Theorie der algebraischen Körper*, Math. Ann. **99** (1928), no. 1, 84–117 (German). MR 1512440

[Pan95] Peter Panayi, *Computation of Leopoldt’s p-adic regulator*, 1995, Thesis (Ph.D.)–University of East Anglia.

[Pau06] Sebastian Pauli, *Constructing class fields over local fields*, J. Théor. Nombres Bordeaux **18** (2006), no. 3, 627–652. MR 2330432 (2008f:11135)

[PR01] Sebastian Pauli and Xavier-François Roblot, *On the computation of all extensions of a p-adic field of a given degree*, Math. Comp. **70** (2001), no. 236, 1641–1659 (electronic). MR 1836924 (2002e:11166)

[Ser79] Jean-Pierre Serre, *Local fields*, Graduate Texts in Mathematics, vol. 67, Springer-Verlag, New York-Berlin, 1979, Translated from the French by Marvin Jay Greenberg. MR 554237 (82e:12016)