Statins: Antimicrobial resistance breakers or makers?

Humphrey Ko** Corresp.,1, 2, Ricky Lareu1, 2, Brett Dix1, Jeffery Hughes1

1 School of Pharmacy, Faculty of Health Sciences, Curtin University, Perth, Western Australia, Australia
2 Curtin Health Innovation Research Institute (CHIRI) Biosciences Research Precinct, Curtin University, Perth, Western Australia, Australia

Corresponding Author: Humphrey Ko
Email address: h.ko2@student.curtin.edu.au

INTRODUCTION

The repurposing of non-antibiotic drugs as adjuvant antibiotics may help break antimicrobial resistance (AMR). Statins are commonly prescribed worldwide to lower cholesterol. They also possess qualities of AMR “breakers”, namely direct antibacterial activity, synergism with antibiotics, and ability to stimulate the host immune system. However, statins’ role as AMR breakers may be limited. Their current extensive use for cardiovascular protection might result in selective pressures for resistance, ironically causing statins to be AMR “makers” instead. This review examines statins’ potential as AMR breakers, probable AMR makers, and identifies knowledge gaps in a statin-bacteria-human-environment continuum. The most suitable statin for repurposing is identified, and a mechanism of antibacterial action is postulated based on structure-activity relationship analysis.

METHODS

A literature search using keywords “statin” or “statins” combined with “minimum inhibitory concentration” (MIC) was performed in six databases on 7th April 2017. After screening 793 abstracts, 16 relevant studies were identified. Unrelated studies on drug interactions; antifungal or antiviral properties of statins; and antibacterial properties of mevastatin, cerivastatin, antibiotics, or natural products were excluded. Studies involving only statins currently registered for human use were included.

RESULTS

Against Gram-positive bacteria, simvastatin generally exerted the greatest antibacterial activity (lowest MIC) compared to atorvastatin, rosuvastatin, and fluvastatin. Against Gram-negative bacteria, atorvastatin generally exhibited similar or slightly better activity compared to simvastatin, but both were more potent than rosuvastatin and fluvastatin.

DISCUSSION

Statins may serve as AMR breakers by working synergistically with existing topical antibiotics, attenuating virulence factors, boosting human immunity, or aiding in wound healing. It is probable that statins’ mechanism of antibacterial activity involves interference of bacterial cell regulatory functions via binding and disrupting cell surface structures such as wall teichoic acids, lipoteichoic acids, lipopolysaccharides, and/or surface proteins. The widespread use of statins for cardiovascular protection may favor selective pressures or co-selection for resistance, including dysbiosis of the human gut microbiota, sublethal plasma concentrations in bacteremic patients, and statin persistence in the environment, all possibly culminating in AMR.
CONCLUSION

Simvastatin appears to be the most suitable statin for repurposing as a novel adjuvant antibiotic. Current evidence better supports statins as potential AMR breakers, but their role as plausible AMR makers cannot be excluded. Elucidating the mechanism of statins’ antibacterial activity is perhaps the most important knowledge gap to address as this will likely clarify statins’ role as AMR breakers or makers.
Article Title: Statins: Antimicrobial resistance breakers or makers?

Authors: Humphrey Ko1,2, Ricky Lareu1,2, Brett Dix1, Jeffery Hughes1.

1 School of Pharmacy, Faculty of Health Sciences, Curtin University, Perth, Western Australia, Australia.
2 Curtin Health Innovation Research Institute (CHIRI) Biosciences Research Precinct, Curtin University, Perth, Western Australia, Australia.

Corresponding author: Humphrey Ko

Email address: h.ko2@student.curtin.edu.au
ABSTRACT

INTRODUCTION

The repurposing of non-antibiotic drugs as adjuvant antibiotics may help break antimicrobial resistance (AMR). Statins are commonly prescribed worldwide to lower cholesterol. They also possess qualities of AMR “breakers”, namely direct antibacterial activity, synergism with antibiotics, and ability to stimulate the host immune system. However, statins’ role as AMR breakers may be limited. Their current extensive use for cardiovascular protection might result in selective pressures for resistance, ironically causing statins to be AMR “makers” instead. This review examines statins’ potential as AMR breakers, probable AMR makers, and identifies knowledge gaps in a statin-bacteria-human-environment continuum. The most suitable statin for repurposing is identified, and a mechanism of antibacterial action is postulated based on structure-activity relationship analysis.

METHODS

A literature search using keywords “statin” or “statins” combined with “minimum inhibitory concentration” (MIC) was performed in six databases on 7th April 2017. After screening 793 abstracts, 16 relevant studies were identified. Unrelated studies on drug interactions; antifungal or antiviral properties of statins; and antibacterial properties of mevastatin, cerivastatin, antibiotics, or natural products were excluded. Studies involving only statins currently registered for human use were included.

RESULTS

Against Gram-positive bacteria, simvastatin generally exerted the greatest antibacterial activity (lowest MIC) compared to atorvastatin, rosuvastatin, and fluvastatin. Against Gram-negative bacteria, atorvastatin generally exhibited similar or slightly better activity compared to simvastatin, but both were more potent than rosuvastatin and fluvastatin.

DISCUSSION
Statins may serve as AMR breakers by working synergistically with existing topical antibiotics, attenuating virulence factors, boosting human immunity, or aiding in wound healing. It is probable that statins’ mechanism of antibacterial activity involves interference of bacterial cell regulatory functions via binding and disrupting cell surface structures such as wall teichoic acids, lipoteichoic acids, lipopolysaccharides, and/or surface proteins. The widespread use of statins for cardiovascular protection may favor selective pressures or co-selection for resistance, including dysbiosis of the human gut microbiota, sublethal plasma concentrations in bacteremic patients, and statin persistence in the environment, all possibly culminating in AMR.

CONCLUSION

Simvastatin appears to be the most suitable statin for repurposing as a novel adjuvant antibiotic. Current evidence better supports statins as potential AMR breakers, but their role as plausible AMR makers cannot be excluded. Elucidating the mechanism of statins’ antibacterial activity is perhaps the most important knowledge gap to address as this will likely clarify statins’ role as AMR breakers or makers.
Introduction

Antimicrobial resistance (AMR) occurs when microorganisms become immune to antimicrobials via intrinsic resistance (possessing mechanisms which reduce intracellular concentrations of antimicrobials or render antimicrobials ineffective); acquired resistance (gaining resistant genes via mutation or horizontal gene transfer); or adaptive resistance (adapting to environmental stress by altering gene expressions) (Canton et al. 2013; Fernandez et al. 2011). Selective pressures for resistance can occur at both lethal and sublethal drug concentrations (Hughes & Andersson 2017). When susceptible bacteria are exposed to antimicrobial concentrations within eight to ten times above the minimum inhibitory concentration (MIC), AMR may occur due to the propagation of pre-existing resistant mutant strains whilst the susceptible strains are killed (Andersson & Hughes 2014; Canton et al. 2013; Levison & Levison 2009). At low antibiotic concentrations (up to several hundred times below MIC), AMR proliferation may occur with the growth of multiple new resistant mutant strains due to minute reductions in the growth rate of susceptible bacteria (Andersson & Hughes 2011; Andersson & Hughes 2014; Kohanski et al. 2010).

In addition to antibiotics, it was found that exposure of bacteria to biocides, metals, and non-antibiotic chemicals with antibacterial properties also contributed to AMR via co-selection of resistant genes (Li et al. 2016; Singer et al. 2016; Wales & Davies 2015). Co-selection protects a bacterial strain against multiple antibiotic classes due to the selection of one gene which confers multiple resistance mechanisms (cross-resistance), or the selection of physically linked genes which collectively confer various resistance mechanisms (co-resistance) (Singer et al. 2016; Wales & Davies 2015).
The World Health Organization has warned that with the rise of AMR, the world is moving towards a post-antibiotic era whereby if last-line antibiotics become ineffective, common infections and minor injuries may prove fatal (World Health Organization). In response to the AMR threat, many countries have initiated a concerted “One Health” best practice approach to suppress AMR, involving optimal use of antibiotics in humans and animals (World Health Organization). It has been suggested that AMR may be impeded by the administration of certain non-antibiotic drugs together with current antibiotic treatment (Brown 2015). These non-antibiotic drugs may be repurposed (used to treat new conditions) to act as AMR “breakers” if they have direct antibacterial activity, synergize with antibiotics, stimulate the host immune system, or possess a combination of these properties (Brown 2015). Antihyperlipidemic agents 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase inhibitors, commonly known as statins, appear to possess the mentioned properties of AMR breakers and have been poised to be repurposed as novel adjuvant antimicrobials (Hennessy et al. 2016).

Statins are one of the most commonly prescribed medicines in the world, with over 30 million people in the United States and up to 200 million people worldwide taking statins daily to lower cholesterol for primary and secondary prevention of cardiovascular diseases (Blaha & Martin 2013). By competitively binding to HMG-CoA reductase in a dose-dependent manner, statins inhibit the rate limiting step of the mevalonate pathway, thus diminishing cholesterol production (Liao 2005). In the process however, important isoprenoid intermediates such as geranylgeranyl pyrophosphate (GGPP) and farnesyl pyrophosphate (FPP) are also reduced, hence decreasing cell signaling proteins (e.g. Ras, Rac, and Rho) and causing multiple cholesterol-independent (pleiotropic) effects which are cardioprotective (e.g. antithrombotic, antioxidant, antiplatelet, and endothelial protection) and immunomodulatory (e.g. anti-inflammatory and neutrophil
extracellular trap [NET] production) (Chow et al. 2010; Gazzerro et al. 2012; Kozarov et al. 2014).

Research on statins originated with the intention of developing new antibiotics. In 1971, Professor Akira Endo searched for new antibiotics with the hypothesis that fungi may produce substances which inhibit HMG-CoA reductase, thereby killing microorganisms (Endo 2010). The discovery of statins and their potent cholesterol-lowering abilities soon led to their clinical use in preventing cardiovascular diseases instead (Endo 2010). In recent years however, interest returned to the inherent antimicrobial effects of statins (Jerwood & Cohen 2008).

Although statins possess the potential to be AMR breakers (direct antibacterial activity, synergistic activity with antibiotics, and ability to stimulate the human immune system) (Brown 2015; Hennessy et al. 2016), they are currently extensively used to treat hypercholesterolemia (a non-antimicrobial purpose). Prolonged exposure of bacterial populations to drugs with antibacterial properties may expedite the death of susceptible bacteria, resulting in subsequent dominance of resistant bacteria, regardless of the exposure being in humans, animals, or the environment (Canton et al. 2013). The problem is likely to be compounded with recent guidelines recommending the initiation of statins in adults aged 40 to 75 years with one or more cardiovascular risk factors (US Preventive Services Task Force 2016), and evidence that the benefits of statins for cardiovascular protection far outweigh their side effects (Collins et al. 2016).

This review examines the potential of statins as AMR breakers, which albeit promising, could be limited by antibacterial resistance acquired via selective pressures and co-selection, ironically culminating in statins contributing as AMR “makers” instead. Statins’ potential roles as AMR
breakers, AMR makers, and knowledge gaps were reviewed as a statin-bacteria-human-environment continuum. From MIC data available in literature, the susceptibility of various bacteria to individual statins may be ascertained to reveal the most suitable statin for repurposing as a novel adjuvant antimicrobial. In addition, by comparing chemical structures of statins with antibacterial activity against statins without antibacterial activity, a mechanism of antibacterial action for statins was postulated.

Methods

Literature search

The keywords “statin” or “statins” were combined with “minimum inhibitory concentration” to identify studies which reported MIC values of statins when tested against specific bacterial strains. “Minimum inhibitory concentration” was used as a keyword instead of a general term “antibacterial effect” because MIC values allow quantitative comparisons of antibacterial potency between individual statins (Dafale et al. 2016). Moreover, exposure of susceptible bacteria to antibacterial drug concentrations ranging from within eight to ten times above MIC to several hundred times below MIC may contribute to selective pressures for resistance (Andersson & Hughes 2011; Levison & Levison 2009). The search was performed by the primary investigator (HK) in six databases on 7th April 2017, namely the Cumulative Index to Nursing and Allied Health Literature (CINAHL), Cochrane Library, Embase, PubMed, Google Scholar, and Web of Science (Figure 1).

Studies selection

Screening the titles and abstracts of the initial 793 results identified from the keywords, 756 studies were excluded because they covered unrelated topics such as drug interactions; antifungal or antiviral properties of statins; and antibacterial properties of mevastatin, cerivastatin,
antibiotics, or natural products. Although antibacterial effects of mevastatin and cerivastatin have been studied (Hennessy et al. 2016), they are not currently used clinically and were therefore omitted in this review (Tobert 2003). Only antibacterial properties of atorvastatin (ATV), fluvastatin (FLV), lovastatin (LVS), pitavastatin (PTV), pravastatin (PRV), rosuvastatin (RSV), and simvastatin (SMV) were considered relevant for this review as these are currently registered drugs for lowering cholesterol in humans, thus likely to affect the statin-bacteria-human-environment continuum.

Upon reviewing the full text of the remaining 37 studies, 21 studies were further excluded as they contained duplicate information; studied the effects of statins on infected cells instead of direct bacterial exposure; or tested the combined effects of statins and antibiotics without reporting the MIC of statins alone. The resultant 16 pertinent studies consisted of a thesis (Alshammari 2016), a letter with unpublished MIC data (Bjorkhem-Bergman et al. 2011), a Turkish study with relevant data in its English abstract (Coban et al. 2010), a patent application (Quivey 2014), a review article with information from a reference in press (Ting et al. 2016), and 11 in vitro studies (Bergman et al. 2011; Emani et al. 2014; Graziano et al. 2015; Jerwood & Cohen 2008; Masadeh et al. 2012; Matzneller et al. 2011; Radwan & Ezzat 2012; Sarabhai et al. 2015; Thangamani et al. 2015; Wang et al. 2015; Welsh et al. 2009). No new relevant studies were found after scrutinizing the references of these 16 studies. The relevance of references was reviewed by all the researchers.

Data extraction

From the 16 selected studies, the MIC values of statins against various Gram-positive and Gram-negative bacteria were compiled in Table 1 and Table 2 respectively. The dilution methods for (Alshammari 2016), (Bergman et al. 2011), (Quivey 2014), (Welsh et al. 2009), and (Ting et al.
2016) were described in the respective studies. All other studies were tested according to the broth microdilution method stipulated by the Clinical and Laboratory Standards Institute (CLSI), formerly known as National Committee for Clinical Laboratory Standards (NCCLS). The solvent types and solvent concentrations for water insoluble statins (ATV, LVS, PTV, and SMV) were listed wherever available, because different solvents or solvent concentrations may affect the MIC values (Matzneller et al. 2011).

Results

Antibacterial activity of statins against Gram-positive bacteria

Statins exhibited antibacterial activity against a wide spectrum of Gram-positive bacteria including oral microbiota (*Staphylococcus epidermidis, Streptococcus anginosus, Streptococcus mutans, Streptococcus pneumoniae, Streptococcus pyogenes, Streptococcus salivarius, and Streptococcus sanguinis*, formerly known as *Streptococcus sanguis*); gut microbiota (*Enterococcus faecalis, Enterococcus faecium, Lactobacillus casei*, and methicillin-susceptible *Staphylococcus aureus* [MSSA]); drug-resistant bacteria (vancomycin-resistant *Enterococci* [VRE], methicillin-resistant coagulase negative *S. aureus* [MRCoNS], methicillin-resistant *S. aureus* [MRSA], vancomycin-intermediate *S. aureus* [VISA], and vancomycin-resistant *S. aureus* [VRSA]); and environmental bacteria (*Bacillus anthracis* and *Listeria monocytogenes*) (Table 1).

The antibacterial activity of SMV was found to be generally the most potent (lowest MIC) compared to ATV and RSV, especially against Enterococci (MIC$_{[SMV]}$ ≈ 32 to 292 μg/mL, MIC$_{[ATV]}$ ≈ 83 to >250 μg/mL, MIC$_{[RSV]}$ ≈ 100 to 500 μg/mL); Staphylococci (MIC$_{[SMV]}$ ≈ 16 to 167 μg/mL, MIC$_{[ATV]}$ ≈ 20 to >1024 μg/mL, MIC$_{[RSV]}$ ≈ 100 to >1024 μg/mL); and Streptococci (MIC$_{[SMV]}$ ≈ 7.8 to 292 μg/mL, MIC$_{[ATV]}$ ≈ 83 to 229 μg/mL, MIC$_{[RSV]}$ ≈ 100 to 417 μg/mL). FLV
exhibited relatively weak antibacterial activity against Staphylococci (MIC_{FLV} = >200 to >1024 μg/mL) and Streptococci (MIC_{FLV} = >100 μg/mL).

SMV has been the most widely studied, with researchers examining bacteria which were not tested against other statins such as *B. anthracis* (MIC_{SMV} = 16 μg/mL), *L. casei* (MIC_{SMV} = 7.8 μg/mL), and *L. monocytogenes* (MIC_{SMV} = 32 μg/mL). Few studies have been performed on the other statins, but one study did compare the antibacterial effects of all seven registered statins (ATV, FLV, LVS, PTV, PRV, RSV, and SMV) against MRSA and found that only SMV exhibited antibacterial activity (MIC_{SMV} = 32 μg/mL), while all the other six statins did not (MIC = >1024 μg/mL) (Thangamani et al. 2015).

Antibacterial activity of statins against Gram-negative bacteria

From Table 2, statins also displayed varying antibacterial activity against a range of Gram-negative bacteria, including oral microbiota (*Aggregatibacter actinomycetemcomitans* and *Porphyromonas gingivalis*); nasopharyngeal microbiota (*Haemophilus influenzae* and *Moraxella catarrhalis*); gut microbiota (*Citrobacter freundii*, *Enterobacter aerogenes*, *Enterobacter cloacae*, *Escherichia coli*, *Klebsiella pneumoniae*, and *Proteus mirabilis*); and environmental bacteria (*Acinetobacter baumannii*, *Pseudomonas aeruginosa*, and *Salmonella Typhimurium*).

In general, ATV demonstrated similar or slightly better antibacterial activity compared to SMV and both were more potent than RSV against *A. baumannii* (MIC_{ATV} ≈ 16 to >128 μg/mL, MIC_{SMV} ≈ 32 to >256 μg/mL, MIC_{RSV} ≈ 300 to 333 μg/mL) and *E. coli* (MIC_{ATV} ≈ 26 to >500 μg/mL, MIC_{SMV} ≈ 52 to >500 μg/mL, MIC_{RSV} ≈ 100 to >500 μg/mL). FLV exerted relatively weak antibacterial activity against *E. coli* (MIC_{FLV} = 500 μg/mL) and *P. aeruginosa* (MIC_{FLV} = 500 to >1024 μg/mL). One study evaluated the antibacterial effects of all seven registered statins...
against *P. aeruginosa* but did not find any antibacterial activity (MIC = >1024 μg/mL) (Thangamani et al. 2015).

Variations in MIC results amongst different studies

A two-fold difference in MIC, defined as the lowest antimicrobial concentration that completely inhibits microbial growth, is generally accepted (Turnidge & Paterson 2007). However, greater differences have been reported in some cases amongst various researchers determining the MICs of statins. For example in Table 1 when SMV was tested against a reference American Type Culture Collection (ATCC) MRSA strain (ATCC 43300), the highest MIC[SMV] (≈ 167 μg/mL) and lowest MIC[SMV] (≈ 31 μg/mL) differed by about five-fold (Graziano et al. 2015; Masadeh et al. 2012). Variations in MIC results of a statin against the same bacterial strain between different studies could be attributed to diversity in materials and methods employed, especially if materials were obtained from different manufacturers. Slight deviations in environmental conditions during manufacture, storage, or transport may affect drug or media purity which consequently influences MIC results.

Protocols may not specify every minute detail. General instructions for water insoluble solvents allowed investigators to use various types of solvents and solvent concentrations of their choice, which may result in different MIC results (Matzneller et al. 2011). Most of the studies in Tables 1 and 2 utilized the CLSI broth microdilution method protocol, which recommends an incubation time of 16 to 20 hours for bacteria such as *S. aureus*, but does not specify if microtiter plates should be subjected to continuous shaking during incubation (Clinical and Laboratory Standards Institute 2012). A window of 4 hours may result in different MIC results between readings taken at 16 hours compared with 20 hours of incubation. Some researchers may choose to subject the plates to shaking during incubation to facilitate exposure of bacteria to the drug or reduce biofilm
formation under static growth conditions. However, continuous shaking during incubation may
cause more colonies to grow, affecting MIC results (Liu et al. 2015; Shanholtzer et al. 1984). The
CLSI protocol also stipulates that the MIC should be discerned as absence of turbidity with the
unaided eye (Clinical and Laboratory Standards Institute 2012). This may lead to subjective
results, depending on the ability of individuals to detect minute disparities in turbidity.

In view of the multiple factors hampering reproduction of results, it may be more meaningful to
compare absolute quantitative results (e.g. MIC) within studies performed by the same
researchers, whilst qualitative results or trends (e.g. spectrum of antibacterial efficacy) could be
analyzed between studies by different researchers.

Discussion

The positive factors which promote the use of statins as novel adjuvant antibiotics for infections
(statins as AMR breakers), the negative factors whereby acquired antibacterial resistance against
statins could culminate in AMR (statins as AMR makers), and knowledge gaps are summarized in
Figure 2 and elaborated as follows.

AMR breaker: Intrinsic antibacterial activity

The MIC values in Tables 1 and 2 provide in vitro evidence of individual statins’ inherent
antibacterial effects against various Gram-positive and Gram-negative bacteria gleaned from
literature thus far. SMV has been the most widely studied and demonstrated antibacterial activity
against different types of microbiota (oral, gut, and nasopharyngeal) and environmental bacteria
(Tables 1 and 2). SMV also exerted antibacterial effects against Gram-positive drug resistant
bacteria such as MRCNS, MRSA, VISA, VRE, and VRSA (Table 1). Therefore, SMV may
prove to be an effective antibiotic adjuvant, but *in vivo* studies are required to confirm its clinical antibacterial efficacy.

Knowledge gap: Contribution of statins as AMR makers via selective pressures or co-selection

Despite evidence of statins’ intrinsic antibacterial effects, the life span of statins as novel adjuvant antibiotics serving as AMR breakers may be limited due to the widespread use of statins for non-antibiotic purposes (cardiovascular protection). Such extensive usage exposes susceptible bacteria in humans and the environment to varying concentrations of statins, favoring selective pressures for antibacterial resistance. The possible scenarios and repercussions of exposing susceptible bacterial strains to low (up to several hundred times below MIC) and high (within eight to ten times above MIC) statin concentrations are discussed later in this review. Emergence of AMR due to selective pressures are difficult to predict due to variable influences present in humans, animals, and the environment (Hughes & Andersson 2017). However, it is certain that the development of AMR occurs naturally in bacteria when exposed to antimicrobials (Blair et al. 2015).

Antibiotics, biocides, metals, and non-antibiotic chemicals with antibacterial properties may also induce resistance to multiple antibiotic classes via co-selection (Singer et al. 2016; Wales & Davies 2015). Bacteria may develop multidrug resistance via inheriting genes conferring various resistance mechanisms such as reduced cell permeability to antibiotics, increased efflux of antibiotics, modification of antibiotic targets, or direct inactivation of antibiotics (Blair et al. 2015). Co-selection occurs via cross-resistance (selection of a gene conferring multiple resistance mechanisms) or co-resistance (selection of physically linked genes which collectively confer various resistance mechanisms) (Singer et al. 2016; Wales & Davies 2015). This is of particular
concern because bacteria may inherit multidrug resistance properties in the absence of selective pressures (Wales & Davies 2015).

To date, there is evidence that exposure of bacteria to non-antibiotic chemicals with antibacterial properties (chlorite and iodoacetic acid) may induce AMR (Li et al. 2016). Hence, there is a possibility of statins, as non-antibiotic chemicals with antibacterial properties, to similarly contribute as AMR makers, although there is currently little known evidence of such statin associations.

It was found that ATV unlikely contributed to efflux-mediated resistance in multidrug-resistant Gram-negative bacteria (Laudy et al. 2017). As a result, statins probably contribute as AMR makers via other resistance mechanisms. More studies on statins’ mechanism of antibacterial resistance, as well as the mechanism of antibacterial activity, are required to determine and thus control the extent of statins’ plausible role as AMR makers.

Knowledge gap: Mechanism of statins’ antibacterial action

(Fungal origin unlikely correlates with statins’ antibacterial activity)

SMV, LVS, and PRV have been classified as Type 1 statins (derived from fungal origins and have similar chemical structures) while ATV, FLV, PTV, and RSV have been classified as Type 2 statins (synthetic compounds with chemical groups which bind more tightly with HMG-CoA reductase), as shown in Figure 3 (Gazzarro et al. 2012). Although SMV, LVS, and PRV have similar chemical structures, SMV exhibited antibacterial properties against *S. aureus* but LVS and PRV do not, despite all three being of fungal origin (Thangamani et al. 2015). Moreover, ATV and RSV are synthetic compounds and not of fungal origin, but both exhibited some antibacterial
activity (Masadeh et al. 2012). As such, statins’ fungal origin unlikely correlates with their antibacterial activity.

Knowledge gap: Mechanism of statins’ antibacterial action

(Inhibition of human or bacterial HMG-CoA reductase unlikely correlates with statins’ antibacterial activity)

When administered in humans, all statins inhibit HMG-CoA reductase in the mevalonate pathway to lower cholesterol synthesis. However, not all statins exhibit antibacterial activity (Tables 1 and 2). The presence of the dihydroxy acid moiety is required to competitively inhibit the catalytic function of HMG-CoA reductase and reduce cholesterol synthesis (Harrold 2013). Statins with lactone groups (SMV and LVS) are prodrugs which must be metabolized to the active dihydroxy acid moiety before they may inhibit HMG-CoA reductase (Harrold 2013). Yet SMV, being unable to directly inhibit HMG-CoA reductase, exhibits antibacterial activity against MRSA whilst PRV and PTV, being direct HMG-CoA reductase inhibitors, do not exhibit antibacterial activity (Thangamani et al. 2015).

In addition, the degree of HMG-CoA reductase inhibition corresponds directly with the cholesterol-lowering capabilities of statins (Liao & Laufs 2005), but it does not seem commensurate with antibacterial potency. The cholesterol-lowering potency of statins has been established in the following order: PTV (most potent) > RSV > ATV > SMV > PRV > LVS > FLV (least potent) (Armitage 2007). RSV is a more potent cholesterol-lowering drug compared to SMV, but SMV demonstrated greater antibacterial activity (Tables 1 and 2), indicating that antibacterial activity may not correlate with the inhibition of human HMG-CoA reductase.
Humans and some Gram-positive bacteria such as S. aureus synthesize essential isoprenoids via the mevalonate pathway (Heuston et al. 2012), whereby HMG-CoA reductase is a catalyst in the rate determining step. However, humans and bacteria have different overall HMG-CoA reductase structures. When administered in humans, statins preferentially bind to human HMG-CoA reductase (Class I) instead of bacterial HMG-CoA reductase (Class II) because the affinity of statins is about 10,000 times stronger for human HMG-CoA reductase (Friesen & Rodwell 2004). Hence, statins are not likely to exert antibacterial effects via inhibition of bacterial HMG-CoA reductase.

Furthermore, many types of Gram-negative bacteria, for example E. coli and P. aeruginosa, synthesize isoprenoids via an alternative metabolic pathway (2C-methyl-D-erythritol 4-phosphate [MEP]), which do not require HMG-CoA reductase (Heuston et al. 2012). Yet, certain statins (ATV, RSV, and SMV) exert some antibacterial activity against E. coli, P. aeruginosa, and various Gram-negative bacteria (Table 2), likely via a mechanism independent of bacterial HMG-CoA reductase inhibition.

Knowledge gap: Mechanism of statins’ antibacterial action

(Postulated mechanism derived from structure-activity relationship analysis)

The mechanism of action for statins’ antibacterial effects has yet to be elucidated. The nature of antibacterial activity for SMV against Gram-positive bacteria was found to be bacteriostatic at drug concentrations that equal MIC (Thangamani et al. 2015), but bactericidal at concentrations four times greater than MIC (Graziano et al. 2015). Suggested mechanisms for statins’ antibacterial effects include the pleiotropic effects of statins repressing cell growth (Masadeh et al. 2012), or the hydrophobic nature of SMV disrupting bacterial membrane in a “soap-like” manner (Bergman et al. 2011), or the reduction of biofilm viability and production (Graziano et
It was also hypothesized that by lowering host cholesterol levels, statins may reduce the production of a protective membrane-stabilising metabolite in the mevalonate pathway, resulting in bacterial cell toxicity (Haeri et al. 2015).

By comparing the chemical structures of statins with known antibacterial activity against statins without antibacterial activity, the presence of two methyl groups arranged in a tetrahedral molecular geometry were identified as important moieties responsible for statins’ antibacterial activity (Figure 3). We postulate that statins may interfere with bacterial cell regulatory functions through non-polar interactions of statins’ methyl groups with alanine residues present in Gram-positive bacterial surface structures such as wall teichoic acids and lipoteichoic acids; hydrogen bond disruptions within Gram-negative bacterial surface lipopolysaccharide structures; and/or via hydrogen bonds and van der Waals forces with various other Gram-positive and Gram-negative bacterial surface proteins to exert bacteriostatic effects (or bactericidal effects at higher statin concentrations). The binding interactions may be similar to the manner by which antimicrobial peptides accumulate at bacterial surfaces (Malanovic & Lohner 2016).

In Figure 3, carbon atoms attached to two methyl groups arranged in a tetrahedral molecular geometry appeared to be common amongst the chemical structures of statins with antibacterial activity (SMV, ATV, FLV, and RSV). In particular, the structures of SMV and LVS are almost identical, except that SMV contains a carbon with two methyl groups in the ester side chain whereas LVS contains a carbon with only one methyl group. Since SMV has antibacterial effects against MRSA while LVS does not (Thangamani et al. 2015), this suggests the importance of the additional methyl moiety in the mechanism of action.
Bacteria have a high affinity for attaching to environmental surfaces, and one of the attachment methods involves non-polar interactions between a hydrophobic methyl group and a hydrophobic side group of an alanine residue (Boland et al. 2000). Repeating alanine residues are found in wall teichoic acids and lipoteichoic acids (Lebeer et al. 2010), which are important anionic polymers protecting bacteria against noxious environmental stress, assisting in bacteria colonisation, infection, and immune evasion (Brown et al. 2013; Xia et al. 2010). The two methyl groups from statins may be in the exact conformation (tetrahedral geometry) to directly bind with alanine residues of wall teichoic acids and lipoteichoic acids protruding from the peptidoglycan cell wall in Gram-positive bacteria (Silhavy et al. 2010), causing structural distortions which may interfere with cell division (Hanson & Neely 2012). In further support, an omission or decline in alanine residues of wall teichoic acids reduces biofilm adhesion and formation, as well as increases bacterial susceptibility to antibiotics, cationic antimicrobial peptides, phagocytes, and neutrophils (Brown et al. 2013).

There are also other surface proteins responsible for various roles in *S. aureus* such as adhering to and invading host cells, evading host immune responses, and formation of biofilms (Foster et al. 2014). Statins are able to change their conformation and bind extensively to proteins (≥ 88% protein binding, except for PRV which exhibits about 43% to 54% protein binding) through van der Waals forces and hydrogen bonds (Gazzerro et al. 2012; Shi et al. 2016). Therefore, the binding of statins to bacterial surface proteins may influence various metabolic pathways to reduce bacteria proliferation and virulence. This may account for the lack of antibacterial activity of PRV, which possessed significantly lower protein binding properties. Incidentally, amitriptyline (antidepressant), chlorpromazine (antipsychotic), propranolol (antihypertensive), and tamoxifen (anticancer) are other non-antibiotic drugs from different pharmacological classes which are highly protein bound (> 90%), possess atoms attached to two methyl groups with a
tetrahedral or a similar trigonal pyramidal molecular geometry, and also exhibit antibacterial activity against *S. aureus* (Figure 3) (Kruszewska et al. 2006; Kruszewska et al. 2010; Mandal et al. 2010).

The postulated mechanism of statins binding to bacterial cell surface structures and/or surface proteins also aligned with the results of two studies showing MIC\(_{\text{[statin]}}\) (MRSA) > MIC\(_{\text{[statin]}}\) (MSSA) (Jerwood & Cohen 2008; Masadeh et al. 2012). MRSA cocci are smaller than MSSA cocci and have a statistically higher cell surface to plasma volume ratio (Kocsis et al. 2010). As such, more statin drug may be required to bind to the corresponding higher number of surface attachments or proteins in MRSA, compared to MSSA cocci.

Gram-negative bacteria contain various exposed structures such as lipopolysaccharides and surface proteins protruding from the outer cell membrane (Lebeer et al. 2010). Lipopolysaccharide structures serve as a protective barrier and regulator of solutes (Rosenfeld & Shai 2006; Ruiz et al. 2009). Disruption of the stabilized hydrogen bond interactions within lateral lipopolysaccharide structures results in a possible breach in the barrier function (Ruiz et al. 2009). Statins may bind to immobilized artificial membranes (which mimic the fluid phospholipid bilayer of cell membranes) via van der Waals forces and hydrogen bonds (Sarr et al. 2008). Hence some of the antibacterial effects exerted by statins on Gram-negative bacteria may be a result of statins’ hydrogen bond forces disrupting the lipopolysaccharide structure, and/or binding to the cell membrane surface proteins.

It was hypothesized that the inhibition of statins via the mevalonate pathway reduces a protective metabolite because the addition of cholesterol to Gram-positive (*S. aureus* and *E. faecalis*) and Gram-negative (*E. coli* and *P. aeruginosa*) bacteria decreased the antibacterial effects of statins.
(Haeri et al. 2015). The decreased antibacterial effect may be in part due to an increase in bacterial load as the *in vitro* addition of cholesterol has been shown to increase *S. aureus* growth (Shine et al. 1993). However, bacteria such as *S. aureus* and *E. coli* are able to incorporate exogenous cholesterol into their cell membranes (Eaton et al. 1981; Shine et al. 1993), increasing rigidity of the membranes and likely reduce disruptions of cell surface structures (Brender et al. 2012). Thus, statins may be unable to bind to rigid membranes in the required conformation, or are unable to distort cell surface structures, further supporting this review’s postulated mechanism of statins’ antibacterial activity.

More studies are required to accurately determine statins’ mechanism of antibacterial effects because if the antibacterial mechanism directly threatens bacteria survival, resistance develops more rapidly (Park & Liu 2012). Even if statins are not repurposed as novel adjuvant antibiotics, their current extensive use for cardiovascular protection may still significantly influence susceptible bacteria.

AMR breaker: Synergistic antibiotic effects

The combination of antibiotics with drugs that possess direct antibacterial properties or synergistic activity may impede AMR (Brown 2015), especially when local delivery of drugs with different mechanisms of action are utilized (Brooks & Brooks 2014). SMV exerted synergistic antibacterial effects against *S. aureus* clinical isolates with the topical antibiotics daptomycin, fusidic acid, mupirocin, and retapamulin (Thangamani et al. 2015). However, no synergism was found when SMV was combined with vancomycin against *S. aureus* (Graziano et al. 2015); when ATV, FLV, LVS, PRV, and SMV were each combined with amikacin, imipenem, or minocycline against *A. baumannii* (Farmer et al. 2013); or when ATV and FLV were each
combined with ciprofloxacin, cefepime, or piperacillin-tazobactam against *E. coli*, *K. pneumoniae*, and *P. aeruginosa* respectively (Farmer et al. 2013).

AMR breaker: Attenuated virulence factors

Virulence factors enable bacteria to harm the host (via adhesion, invasion, colonisation, and toxin secretion); or protect bacteria from the host’s immune defences (via secretion of immune response inhibitors, formation of capsules, and biofilms) (Wu et al. 2008). Instead of directly threatening bacterial survival with antibiotics that affect essential bacterial genes, it has been suggested that non-threatening approaches such as disarming bacteria by attenuating virulence factors may help reduce AMR (Park & Liu 2012).

Through the inhibition of Rho signaling activities and reduced cholesterol production, statins have been observed to attenuate virulence factors. Some examples include reducing bacteria motility and attachment, suppressing production of toxins (Panton-Valentine leucocidin and alpha-hemolysin), directly reducing bacterial translocation and invasion, or protecting against bacterial invasion indirectly via inhibiting lipid raft formation (Hennessy et al. 2016). Statins may also prevent biofilm formation, limit biofilm production, and reduce cell viability in matured biofilms (Graziano et al. 2015).

AMR breaker: Enhanced host immunity

Stimulation of the host’s defence mechanisms to help resolve infections may potentially break AMR (Brown 2015; Park & Liu 2012). Statins have been shown to directly improve the host’s immune defence in humans as well as in animal models (Chow et al. 2010; Frostegard et al. 2016; Parihar et al. 2016; Walton et al. 2016; Yang et al. 2014). In humans, ATV and SMV may inhibit pro-inflammatory T cells and induce anti-inflammatory T regulatory cells via a novel
method involving the downregulation of microRNA let-7c (Frostegard et al. 2016). Clinical studies revealed that SMV enhanced neutrophil function and improved chronic obstructive pulmonary diseases (Walton et al. 2016). In addition, women taking statins were less likely to be hospitalized due to the activation of lung macrophage nitric oxide synthase-3, which increases bacterial killing, clearance, and host survival in pneumonia (Yang et al. 2014). In animal models, SMV was found to protect mice against *Leishmania major* via augmented phagosome maturation and increased levels of oxidative hydrogen peroxide (Parihar et al. 2016).

However, statins may also unpredictably influence host immunity via factors such as NET production, pleiotropic effects during sepsis, and binding as agonists to nuclear receptors as discussed below. More studies are required in these ambiguous areas to determine the overall effects of statins on host immunity and consequently, whether statins potentially break or contribute to AMR.

Knowledge gap: Neutrophil extracellular trap production

FLV, LVS, and SMV have been shown to produce NETs, which are complexes of nuclear DNA, histones, antimicrobial peptides, and proteases capable of trapping and killing a wide spectrum of microorganisms (Chow et al. 2010). However, there is also conflicting evidence that statins do not affect NET production (Sorensen & Borregaard 2016). Further studies may be required to confirm the effect of statins on NETs, as well as whether the NET complexes are in sufficient concentrations to be antibacterial (Sorensen & Borregaard 2016).

Knowledge gap: Pleiotropic effects in sepsis

Statins may potentially benefit sepsis by reducing inflammation via intracellular signaling (Terblanche et al. 2007), lowering catecholamine levels (Millar & Floras 2014), or reducing Toll-
like receptor activation by pathogen associated molecular patterns (PAMPs) (Wittebole et al. 2010). Statins also possess antiangiogenic (at high doses) and antioxidant effects (Gazzerro et al. 2012), which may prevent the progression of severe sepsis (Vera et al. 2015). However, sepsis is a complex condition and there have been conflicting results of statins’ effects from meta-analysis studies (Bjorkhem-Bergman et al. 2010; Deshpande et al. 2015; Janda et al. 2010; Quinn et al. 2016).

During early sepsis, high levels of catecholamines and PAMPs such as lipopolysaccharides and lipoteichoic acids cause an initial pro-inflammatory response (Murphy et al. 2004; Rittirsch et al. 2008). An anti-inflammatory response may be initiated concurrent to the initial inflammation and in some cases, secondary infections may cause a secondary pro-inflammatory response (Murphy et al. 2004). As sepsis continues, pathogenic bacteria may induce vagal stimulation to decrease catecholamines and suppress the host’s immune system (Weinstein et al. 2015). There are also many other pro-inflammatory factors (protein catabolism, cachexia, and persistent inflammation) and anti-inflammatory factors (defects in adaptive immunity) that occur slightly later after the onset of sepsis (Binkowska et al. 2015). These variables make it difficult to appropriately administer statins to reduce inflammation or catecholamine levels because it is uncertain if the host is in an overall state of immunostimulation or immunosuppression at any one point in time during sepsis.

Furthermore, the possibility of using statins in infections is further complicated by the potency of statins, whereby different types and doses of statins resulted in different outcomes (Ou et al. 2014). At low doses, statins exhibit proangiogenic effects (Gazzerro et al. 2012), which may be detrimental in severe sepsis (Vera et al. 2015). Hence varying administration times, different types or doses of statin could have caused the conflicting results in meta-analysis studies.
Knowledge gap: Nuclear receptor agonists

Statins may indirectly influence the human immune system by binding as agonists to various nuclear receptors, namely farnesoid X receptors (FXRs), glucocorticoid receptors (GCRs), pregnane X receptors (PXR), and vitamin D receptors (VDRs) (Hswe et al. 2011; Marshall 2006). Statins may also indirectly induce peroxisome proliferator-activated receptor gamma (PPARγ) activity (Paumelle & Staels 2007). The activation of FXRs and VDRs induce antimicrobial peptide gene expression (Schaap et al. 2014), whilst activation of GCRs, PXR, and PPARγ result in anti-inflammatory effects (Kadmiel & Cidlowski 2013; Paumelle & Staels 2007; Schaap et al. 2014).

Although statins may bind as agonists to nuclear receptors, a direct increase in nuclear receptor activity may not be apparent because by inhibiting the mevalonate pathway, statins reduce the production of several nuclear receptor agonists such as cholesterol (precursor of glucocorticoids which are GCR and PXR agonists), bile acids (FXR agonist), and vitamin D (VDR agonist) (Liao 2005). Moreover, nuclear receptors may also influence the production of other receptor agonists (e.g. activation of PXR reduces bile acid production) (Schaap et al. 2014), and nuclear receptor agonists are not receptor specific (e.g. bile acids are agonists at both FXRs and VDRs; vitamin D is an agonist at GCRs, PXR, and VDR) (Gombart 2009; Mangin et al. 2014; Marshall 2006).

Some nuclear receptor agonists which boost the human immune system may ironically influence bacterial morphology directly to cause antibiotic tolerance (e.g. bile acids may activate FXRs and VDRs to stimulate antimicrobial peptide production, but bile acids also induce biofilm changes resulting in antibiotic resistant chronic infections) (Reen et al. 2016; Schaap et al. 2014). In view
of the numerous variables, of which some are antagonistic, it is difficult to anticipate the net effect of statins on the immune system via nuclear receptor activity.

AMR breaker: Improved wound healing

Uncomplicated skin and wound infections are amongst one of the highest causes for outpatient antibiotic usage (Hurley et al. 2013). As a result, inappropriate or prolonged antibiotic use may contribute to AMR. Antibacterial agents aiding in wound healing should serve to reduce bacterial infection and improve healing time, thus limiting exposure time to antibiotics. Statins are theoretically ideal for wound healing because they may act as PXR agonists to enhance wound healing in intestinal epithelial cells, inhibit FPP (an activator of GCR which impedes wound healing), reduce inflammation, regulate epithelial homeostasis, promote angiogenesis at low doses, reduce oxidative stress, increase vascular endothelial growth factors, and increase levels of nitric oxide (Bu et al. 2011; Calanni et al. 2014; Elewa et al. 2010; Farsaei et al. 2012; Fitzmaurice et al. 2014; Vukelic et al. 2010). The effects of oral statins (ATV, SMV, LVS, PRV, and RSV) and topical statins (ATV, SMV, and LVS) have been examined and it was concluded that there was sufficient evidence to warrant clinical trials assessing the potential efficacy of statins in postoperative wound healing (Fitzmaurice et al. 2014).

AMR maker: Dysbiosis of gut microbiota

Antimicrobials disrupting the gut microbiota may cause AMR and potentially create a store of AMR genes in the gut microbiota, resulting in recalcitrant infections (Francino 2016). Statins have been shown to reduce gut microbiota diversity in humans (Zhemakova et al. 2016), but the mechanism of dysbiosis of the human gut microbiota has not been elucidated. A recent animal study has shown that statin-induced bile acid alterations resulted in mouse gut dysbiosis via a PXR-dependent mechanism (Caparros-Martin et al. 2017). Our review provides plausible
evidence that statins may additionally disrupt the human gut microbiota via a direct antimicrobial effect.

From Tables 1 and 2, Gram-positive (E. faecalis, E. faecium, L. casei, and S. aureus) and Gram-negative (C. freundii, E. aerogenes, E. cloacae, E. coli, K. pneumoniae, and P. mirabilis) gut microbiota were susceptible to various statins, whereby $\text{MIC}_{\text{SMV}} \approx 8$ to $>500 \mu\text{g/mL}$ (Matzneller et al. 2011; Ting et al. 2016), $\text{MIC}_{\text{ATV}} \approx 16$ to $>1024 \mu\text{g/mL}$ (Masadeh et al. 2012; Thangamani et al. 2015), $\text{MIC}_{\text{RSV}} \approx 100$ to $>1024 \mu\text{g/mL}$ (Thangamani et al. 2015; Welsh et al. 2009), and $\text{MIC}_{\text{FLV}} = >200$ to $>1024 \mu\text{g/mL}$ (Jerwood & Cohen 2008; Thangamani et al. 2015).

The licensed oral daily dose range of statins for cholesterol-lowering purposes are $\text{SMV} = \text{ATV} = 10$ mg to 80 mg ($10,000 \mu\text{g}$ to $80,000 \mu\text{g}$), $\text{FLV} = 40$ mg to 80 mg ($40,000 \mu\text{g}$ to $80,000 \mu\text{g}$), and $\text{RSV} = 5$ mg to 40 mg ($5,000 \mu\text{g}$ to $40,000 \mu\text{g}$) (Armitage 2007). The laboratory conditions ($35 ^\circ\text{C}$ and pH 7.2 to 7.4) at which MIC values were determined are attainable when gut microbiota are exposed to statins along the gastrointestinal tract ($37 ^\circ\text{C}$ body temperature and pH 7.2 to 7.4 along various parts of the small intestines) (Clinical and Laboratory Standards Institute 2012; Khutoryanskiy 2015). Although gut concentrations of orally administered parent statin drugs are reduced via absorption, distribution, and metabolism as they move along the gastrointestinal tract, the reduction in concentrations are limited by enterohepatic circulation, and statins are eventually excreted mainly in the feces ($\text{SMV} \approx 60\%$, $\text{ATV} > 98\%$, $\text{FLV} \approx 93\%$, and $\text{RSV} \approx 90\%$) (McFarland et al. 2014; Reinoso et al. 2002). As such, statin concentrations along the gastrointestinal tract are likely sufficient to kill gut microbiota. Even if gut statin concentrations fall below MIC, prolonged gut microbiota exposure to drug concentrations up to several hundred times lower than MIC may still result in selective pressures for resistance (Andersson & Hughes 2011).
AMR maker: Statin plasma concentrations in bacteremic patients being much lower than MIC

Oral doses of statins may be high enough to exert antimicrobial effects in the gut, but the peak statin plasma concentrations have been found to be much lower (SMV ≈ 0.0209 µg/mL, ATV ≈ 0.01 µg/mL, RSV ≈ 0.037 µg/mL, and FLV ≈ 0.24 µg/mL) due to low bioavailability and protein binding (Jerwood & Cohen 2008; Kantola et al. 2000; Welsh et al. 2009). Hence, statins are unlikely to exert significant systemic antimicrobial effects since the peak plasma concentrations range from hundred to thousand times lower than the MIC. Of greater concern however, is the risk of exposing bacteremic patients to such low systemic antimicrobial concentrations, which may result in selective pressures for resistance (Andersson & Hughes 2011).

AMR maker: Environmental impact due to extensive use of stains

The present usage of statins (ATV, RSV, and SMV) has resulted in residual levels (µg/mL to pg/mL) persisting in sewage for at least a few weeks (Lee et al. 2009; Ottmar et al. 2012). Since the exposure of bacteria to antibiotic concentrations several hundred times below MIC (in the range of µg/mL to pg/mL) poses a risk of bacterial resistance (Andersson & Hughes 2011), this lingering exposure of bacteria in the sewage system to current statin concentrations may thus contribute to selective pressures for resistance.

Conclusion

The potential roles of statins as AMR breakers, AMR makers, and knowledge gaps in the statin-bacteria-human-environment continuum have been summarized in Figure 2. Literature has shown that SMV, ATV, RSV, and FLV exert varying antibacterial effects on Gram-positive and Gram-negative bacteria (Tables 1 and 2), especially SMV (against most of the Gram-positive bacteria tested) and ATV (against most of the Gram-negative bacteria tested). However, SMV currently
appears to be the best candidate as a novel adjuvant antibiotic because it has been the most widely studied statin and demonstrated direct \textit{in vitro} antibacterial activity against various types of microbiota (oral, gut, and nasopharyngeal), drug-resistant bacteria, and environmental bacteria. Based on the structure-activity relationship analysis of statins’ chemical structures, it is plausible that statins’ mechanism of antibacterial activity involves the interference of bacterial cell regulatory functions via binding to bacterial cell surface structures such as wall teichoic acids and lipoteichoic acids (for Gram-positive bacteria), lipopolysaccharides (for Gram-negative bacteria), and/or bacterial surface proteins (for both Gram-positive and Gram-negative bacteria).

Current evidence better supports statins as AMR breakers by working synergistically with existing topical antibiotics, attenuating virulence factors, boosting human immunity, or aiding in wound healing. However, the paucity of data directly associating statins to AMR should not exclude statins’ role as plausible AMR makers. The widespread use of statins for non-antibiotic (cardioprotective) purposes may favor selective pressures or co-selection for resistance via dysbiosis of the human gut microbiota, sublethal plasma concentrations in bacteremic patients, and persistence in the environment, all of which could culminate in AMR.

Perhaps the most urgent knowledge gap to address is determining the mechanism of statins’ antibacterial activity. If the antibacterial mechanism involves disarming bacteria instead of directly threatening bacterial survival, AMR is not likely to develop rapidly (Park & Liu 2012), and statins may still play an effective role as AMR breakers. However, if the antibacterial mechanism directly threatens bacterial survival, AMR is likely to develop rapidly. If so, statins’ role as AMR breakers will likely be limited, and may paradoxically function as AMR makers instead.
Acknowledgements

The authors wish to thank all their friends and colleagues at the Curtin Health Innovation Research Institute (CHIRI) Biosciences Research Precinct Core Facility (Curtin University), especially Dr Joshua Ramsay, for making this work possible.

References

Alshammari A. 2016. In vitro effect of statins on Streptococcus mutans, Streptococcus sanguis, and Streptococcus salivarius Master of Science. Temple University, Philadelphia, United States of America.

Andersson DI, and Hughes D. 2011. Persistence of antibiotic resistance in bacterial populations. FEMS Microbiol Rev 35:901-911. 10.1111/j.1574-6976.2011.00289.x

Andersson DI, and Hughes D. 2014. Microbiological effects of sublethal levels of antibiotics. Nat Rev Microbiol 12:465-478. 10.1038/nrrmicro3270

Armitage J. 2007. The safety of statins in clinical practice. Lancet 370:1781-1790. 10.1016/S0140-6736(07)60716-8

Bergman P, Linde C, Putsep K, Pohanka A, Normark S, Henriques-Normark B, Andersson J, and Bjorkhem-Bergman L. 2011. Studies on the antibacterial effects of statins--in vitro and in vivo. PLoS One 6:e24394. 10.1371/journal.pone.0024394

Binkowska AM, Michalak G, and Slotwinski R. 2015. Current views on the mechanisms of immune responses to trauma and infection. Cent Eur J Immunol 40:206-216. 10.5114/ceji.2015.52835

Bjorkhem-Bergman L, Bergman P, Andersson J, and Lindh JD. 2010. Statin treatment and mortality in bacterial infections--a systematic review and meta-analysis. PLoS One 5:e10702. 10.1371/journal.pone.0010702
Bjorkhem-Bergman L, Lindh JD, and Bergman P. 2011. What is a relevant statin concentration in cell experiments claiming pleiotropic effects? *Br J Clin Pharmacol* 72:164-165. 10.1111/j.1365-2125.2011.03907.x

Blaha MJ, and Martin SS. 2013. How do statins work?: changing paradigms with implications for statin allocation. *J Am Coll Cardiol* 62:2392-2394. 10.1016/j.jacc.2013.08.1626

Blair JM, Webber MA, Baylay AJ, Ogbolu DO, and Piddock LJ. 2015. Molecular mechanisms of antibiotic resistance. *Nat Rev Microbiol* 13:42-51. 10.1038/nrmmicro3380

Boland T, Latour RA, and Stutzenberger FJ. 2000. Molecular Basis of Bacterial Adhesion. In: Yuehuei HA, and Friedman RJ, eds. *Handbook of Bacterial Adhesion: Principles, Methods, and Applications*. 2000 ed. Totowa, New Jersey: Humana Press Inc, 29-41.

Brender JR, McHenry AJ, and Ramamoorthy A. 2012. Does cholesterol play a role in the bacterial selectivity of antimicrobial peptides? *Front Immunol* 3:195. 10.3389/fimmu.2012.00195

Brooks BD, and Brooks AE. 2014. Therapeutic strategies to combat antibiotic resistance. *Adv Drug Deliv Rev* 78:14-27. 10.1016/j.addr.2014.10.027

Brown D. 2015. Antibiotic resistance breakers: can repurposed drugs fill the antibiotic discovery void? *Nat Rev Drug Discov* 14:821-832. 10.1038/nrd4675

Brown S, Santa Maria JP, Jr., and Walker S. 2013. Wall teichoic acids of gram-positive bacteria. *Annu Rev Microbiol* 67:313-336. 10.1146/annurev-micro-092412-155620

Bu DX, Griffin G, and Lichtman AH. 2011. Mechanisms for the anti-inflammatory effects of statins. *Curr Opin Lipidol* 22:165-170. 10.1097/MOL.0b013e3283453e41

Calanni F, Renzulli C, Barbanti M, and Viscomi GC. 2014. Rifaximin: beyond the traditional antibiotic activity. *J Antibiot (Tokyo)* 67:667-670. 10.1038/ja.2014.106

Canton R, Horcajada JP, Oliver A, Garbajosa PR, and Vila J. 2013. Inappropriate use of antibiotics in hospitals: the complex relationship between antibiotic use and antimicrobial
resistance. *Enferm Infecc Microbiol Clin* 31 Suppl 4:3-11. 10.1016/S0213-005X(13)70126-5

Caparrós-Martin JA, Lareu RR, Ramsay JP, Pепlies J, Jerry Reen F, Headlam HA, Ward NC, Croft KD, Newsholme P, Hughes JD, and O'Gara F. 2017. Statin therapy causes gut dysbiosis in mice through a PXR-dependent mechanism. *Microbiome* 5:95.

Chow OA, von Kockritz-Blickwede M, Bright AT, Hensler ME, Zinkernagel AS, Cogen AL, Gallo RL, Monestier M, Wang Y, Glass CK, and Nizet V. 2010. Statins enhance formation of phagocyte extracellular traps. *Cell Host Microbe* 8:445-454.

Clinical and Laboratory Standards Institute. 2012. Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically; Approved Standard-Ninth Edition. CLSI document M07-A9. Wayne, Pennsylvania, USA: Clinical and Laboratory Standards Institute.

Coban AY, Tekeli HO, Guney AK, and Durupinar B. 2010. [Investigation of the in vitro antibacterial effects of statins]. *Mikrobiyol Bul* 44:161-163.

Collins R, Reith C, Emberson J, Armitage J, Baigent C, Blackwell L, Blumenthal R, Danesh J, Smith GD, DeMets D, Evans S, Law M, MacMahon S, Martin S, Neal B, Poulter N, Preiss D, Ridker P, Roberts I, Rodgers A, Sandeरock P, Schulz K, Sever P, Simes J, Smeeth L, Wald N, Yusuf S, and Peto R. 2016. Interpretation of the evidence for the efficacy and safety of statin therapy. *Lancet*. 10.1016/S0140-6736(16)31357-5

Dafale NA, Semwal UP, Rajput RK, and Singh GN. 2016. Selection of appropriate analytical tools to determine the potency and bioactivity of antibiotics and antibiotic resistance. *Journal of Pharmaceutical Analysis* 6:207-213.

http://dx.doi.org/10.1016/j.jpha.2016.05.006
Deshpande A, Pasupuleti V, and Rothberg MB. 2015. Statin Therapy and Mortality from Sepsis: A Meta-analysis of Randomized Trials. *Am J Med* 128:410-417 e411. 10.1016/j.amjmed.2014.10.057

Eaton LC, Erdos GW, Vreeland NL, and Ingram LO. 1981. Failure of Escherichia coli to alter its fatty acid composition in response to cholesterol-induced changes in membrane fluidity. *J Bacteriol* 146:1151-1153.

Elewa HF, El-Remessy AB, Somanath PR, and Fagan SC. 2010. Diverse effects of statins on angiogenesis: new therapeutic avenues. *Pharmacotherapy* 30:169-176. 10.1592/phco.30.2.169

Emani S, Gunjiganur GV, and Mehta DS. 2014. Determination of the antibacterial activity of simvastatin against periodontal pathogens, Porphyromonas gingivalis and Aggregatibacter actinomycetemcomitans: An in vitro study. *Contemp Clin Dent* 5:377-382. 10.4103/0976-237X.137959

Endo A. 2010. A historical perspective on the discovery of statins. *Proc Jpn Acad Ser B Phys Biol Sci* 86:484-493.

Farmer AR, Murray CK, Mende K, Akers KS, Zera WC, Beckius ML, and Yun HC. 2013. Effect of HMG-CoA reductase inhibitors on antimicrobial susceptibilities for gram-negative rods. *J Basic Microbiol* 53:336-339. 10.1002/jobm.201100614

Farsaei S, Khalili H, and Farboud ES. 2012. Potential role of statins on wound healing: review of the literature. *Int Wound J* 9:238-247. 10.1111/j.1742-481X.2011.00888.x

Fernandez L, Breidenstein EB, and Hancock RE. 2011. Creeping baselines and adaptive resistance to antibiotics. *Drug Resist Updat* 14:1-21. 10.1016/j.drup.2011.01.001

Fitzmaurice GJ, McWilliams B, Nolke L, Redmond JM, McGuinness JG, and O'Donnell ME. 2014. Do statins have a role in the promotion of postoperative wound healing in cardiac surgical patients? *Ann Thorac Surg* 98:756-764. 10.1016/j.athoracsur.2014.02.089
Foster TJ, Geoghegan JA, Ganesh VK, and Hook M. 2014. Adhesion, invasion and evasion: the
many functions of the surface proteins of Staphylococcus aureus. Nat Rev Microbiol
12:49-62. 10.1038/nrmicro3161

Francino MP. 2016. Antibiotics and the Human Gut Microbiome: Dysbioses and Accumulation of
Resistances. Front Microbiol 6:1543. 10.3389/fmicb.2015.01543

Friesen JA, and Rodwell VW. 2004. The 3-hydroxy-3-methylglutaryl coenzyme-A (HMG-CoA)
reductases. Genome Biol 5:248. 10.1186/gb-2004-5-11-248

Frostegard J, Zhang Y, Sun J, Yan K, and Liu A. 2016. Oxidized Low-Density Lipoprotein
(OxLDL)-Treated Dendritic Cells Promote Activation of T Cells in Human
Atherosclerotic Plaque and Blood, Which Is Repressed by Statins: microRNA let-7c Is
Integral to the Effect. J Am Heart Assoc 5. 10.1161/JAHA.116.003976

Gazzerro P, Proto MC, Gangemi G, Malfitano AM, Ciaglia E, Pisanti S, Santoro A, Laezza C,
and Bifulco M. 2012. Pharmacological actions of statins: a critical appraisal in the
management of cancer. Pharmacol Rev 64:102-146. 10.1124/pr.111.004994

Gombart AF. 2009. The vitamin D-antimicrobial peptide pathway and its role in protection
against infection. Future Microbiol 4:1151-1165. 10.2217/fmb.09.87

Graziano TS, Cuzzullin MC, Franco GC, Schwartz-Filho HO, de Andrade ED, Groppo FC, and
Cogo-Muller K. 2015. Statins and Antimicrobial Effects: Simvastatin as a Potential Drug
against Staphylococcus aureus Biofilm. PLoS One 10:e0128098.
10.1371/journal.pone.0128098

Griffith R, Creely D, Revell P, Dunne WM, and Shortridge D. 2009. Comparison of Three
Reference Methods for Testing Susceptibility of Staphylococci to Trimethoprim-
Sulfamethoxazole. Journal of Clinical Microbiology 47:3726-3728. 10.1128/JCM.00451-
Haeri MR, White K, Qharebegloa M, and Ansar MM. 2015. Cholesterol suppresses antimicrobial effect of statins. *Iran J Basic Med Sci* 18:1253-1256.

Hanson BR, and Neely MN. 2012. Coordinate regulation of Gram-positive cell surface components. *Curr Opin Microbiol* 15:204-210. 10.1016/j.mib.2011.12.011

Harrold M. 2013. Antihyperlipoproteinemics and Inhibitors of Cholesterol Biosynthesis. In: Lemke TL, Williams DA, Roche VF, and Zito SW, eds. *Foye's Principles of Medicinal Chemistry*. 7 ed. Philadelphia, United States of America: Lippincott Williams & Wilkins.

Hennessy E, Adams C, Reen FJ, and O’Gara F. 2016. Is There Potential for Repurposing Statins as Novel Antimicrobials? *Antimicrob Agents Chemother* 60:5111-5121. 10.1128/AAC.00192-16

Heuston S, Begley M, Gahan CG, and Hill C. 2012. Isoprenoid biosynthesis in bacterial pathogens. *Microbiology* 158:1389-1401. 10.1099/mic.0.051599-0

Howe K, Sanat F, Thumser AE, Coleman T, and Plant N. 2011. The statin class of HMG-CoA reductase inhibitors demonstrate differential activation of the nuclear receptors PXR, CAR and FXR, as well as their downstream target genes. *Xenobiotica* 41:519-529. 10.3109/00498254.2011.569773

Hughes D, and Andersson DI. 2017. Evolutionary Trajectories to Antibiotic Resistance. *Annu Rev Microbiol* 71:579-596. 10.1146/annurev-micro-090816-093813

Hurley HJ, Knepper BC, Price CS, Mehler PS, Burman WJ, and Jenkins TC. 2013. Avoidable antibiotic exposure for uncomplicated skin and soft tissue infections in the ambulatory care setting. *Am J Med* 126:1099-1106. 10.1016/j.amjmed.2013.08.016

Janda S, Young A, Fitzgerald JM, Etminan M, and Swiston J. 2010. The effect of statins on mortality from severe infections and sepsis: a systematic review and meta-analysis. *J Crit Care* 25:656 e657-622. 10.1016/j.jcrc.2010.02.013
Jerwood S, and Cohen J. 2008. Unexpected antimicrobial effect of statins. *J Antimicrob Chemother* 61:362-364. 10.1093/jac/dkm496

Kadmiel M, and Cidlowski JA. 2013. Glucocorticoid receptor signaling in health and disease. *Trends Pharmacol Sci* 34:518-530. 10.1016/j.tips.2013.07.003

Kantola T, Backman JT, Niemi M, Kivisto KT, and Neuvonen PJ. 2000. Effect of fluconazole on plasma fluvastatin and pravastatin concentrations. *Eur J Clin Pharmacol* 56:225-229.

Khutoryanskiy VV. 2015. Supramolecular materials: Longer and safer gastric residence. *Nat Mater* 14:963-964. 10.1038/nmat4432

Kocsis E, Kristóf K, Hermann P, and Rozgonyi F. 2010. A comparative review on the pathogenicity and virulence factors of meticillin-resistant and meticillin-susceptible Staphylococcus aureus. *Reviews in Medical Microbiology* 21:31-37. 10.1097/MRM.0b013e3283393nd4

Kohanski MA, DePrists MA, and Collins JJ. 2010. Sublethal antibiotic treatment leads to multidrug resistance via radical-induced mutagenesis. *Mol Cell* 37:311-320. 10.1016/j.molcel.2010.01.003

Kozarov E, Padro T, and Badimon L. 2014. View of statins as antimicrobials in cardiovascular risk modification. *Cardiovascular Research* 102:362-374. 10.1093/cvr/cvu058

Kruszewska H, Zareba T, and Tyski S. 2006. Estimation of antimicrobial activity of selected non-antibiotic products. *Acta Pol Pharm* 63:457-460.

Kruszewska H, Zareba T, and Tyski S. 2010. Examination of antimicrobial activity of selected non-antibiotic products. *Acta Pol Pharm* 67:733-736.

Laudy AE, Kulinska E, and Tyski S. 2017. The Impact of Efflux Pump Inhibitors on the Activity of Selected Non-Antibiotic Medicinal Products against Gram-Negative Bacteria. *Molecules* 22. 10.3390/molecules22010114
Lebeer S, Vanderleyden J, and De Keersmaecker SC. 2010. Host interactions of probiotic bacterial surface molecules: comparison with commensals and pathogens. *Nat Rev Microbiol* 8:171-184. 10.1038/nrmicro2297

Lee HB, Peart TE, Svoboda ML, and Backus S. 2009. Occurrence and fate of rosuvastatin, rosuvastatin lactone, and atorvastatin in Canadian sewage and surface water samples. *Chemosphere* 77:1285-1291. 10.1016/j.chemosphere.2009.09.068

Levison ME, and Levison JH. 2009. Pharmacokinetics and pharmacodynamics of antibacterial agents. *Infect Dis Clin North Am* 23:791-815, vii. 10.1016/j.idc.2009.06.008

Li D, Zeng S, He M, and Gu AZ. 2016. Water Disinfection Byproducts Induce Antibiotic Resistance-Rule of Environmental Pollutants in Resistance Phenomena. *Environ Sci Technol* 50:3193-3201. 10.1021/acs.est.5b05113

Liao JK. 2005. Clinical implications for statin pleiotropy. *Curr Opin Lipidol* 16:624-629. 00041433-200512000-00006 [pii]

Liao JK, and Laufs U. 2005. Pleiotropic effects of statins. *Annu Rev Pharmacol Toxicol* 45:89-118. 10.1146/annurev.pharmtox.45.120403.095748

Liu M, Lu J, Muller P, Turnbull L, Burke CM, Schlothauer RC, Carter DA, Whitchurch CB, and Harry EJ. 2015. Antibiotic-specific differences in the response of Staphylococcus aureus to treatment with antimicrobials combined with manuka honey. *Front Microbiol* 5:779. 10.3389/fmicb.2014.00779

Malanovic N, and Lohner K. 2016. Gram-positive bacterial cell envelopes: The impact on the activity of antimicrobial peptides. *Biochim Biophys Acta* 1858:936-946. 10.1016/j.bbamem.2015.11.004

Mandal A, Sinha C, Kumar Jena A, Ghosh S, and Samanta A. 2010. An Investigation on in vitro and in vivo Antimicrobial Properties of the Antidepressant: Amitriptyline Hydrochloride. *Braz J Microbiol* 41:635-645. 10.1590/S1517-83822010000300014
Mangin M, Sinha R, and Fincher K. 2014. Inflammation and vitamin D: the infection connection. *Inflamm Res* 63:803-819. 10.1007/s00011-014-0755-z

Marshall TG. 2006. Are statins analogues of vitamin D? *Lancet* 368:1234; author reply 1235. 10.1016/S0140-6736(06)69509-3

Masadeh M, Mhaidat N, Alzoubi K, Al-Azzam S, and Alnasser Z. 2012. Antibacterial activity of statins: a comparative study of atorvastatin, simvastatin, and rosuvastatin. *Ann Clin Microbiol Antimicrob* 11:13. 10.1186/1476-0711-11-13

Matzneller P, Manafi M, and Zeitlinger M. 2011. Antimicrobial effect of statins: organic solvents might falsify microbiological testing results. *Int J Clin Pharmacol Ther* 49:666-671. 10.5414/CP201581

McFarland AJ, Anoopkumar-Dukie S, Arora DS, Grant GD, McDermott CM, Perkins AV, and Davey AK. 2014. Molecular mechanisms underlying the effects of statins in the central nervous system. *Int J Mol Sci* 15:20607-20637. 10.3390/ijms151120607

Millar PJ, and Floras JS. 2014. Statins and the autonomic nervous system. *Clin Sci (Lond)* 126:401-415. 10.1042/CS20130332

Murphy TJ, Paterson HM, Mannick JA, and Lederer JA. 2004. Injury, sepsis, and the regulation of Toll-like receptor responses. *J Leukoc Biol* 75:400-407. 10.1189/jlb.0503233

Ottmar KJ, Colosi LM, and Smith JA. 2012. Fate and transport of atorvastatin and simvastatin drugs during conventional wastewater treatment. *Chemosphere* 88:1184-1189. 10.1016/j.chemosphere.2012.03.066

Ou SY, Chu H, Chao PW, Ou SM, Lee YJ, Kuo SC, Li SY, Shih CJ, and Chen YT. 2014. Effect of the use of low and high potency statins and sepsis outcomes. *Intensive Care Med* 40:1509-1517. 10.1007/s00134-014-3418-1
Parihar SP, Hartley MA, Hurdayal R, Guler R, and Brombacher F. 2016. Topical Simvastatin as Host-Directed Therapy against Severity of Cutaneous Leishmaniasis in Mice. *Sci Rep* 6:33458. 10.1038/srep33458

Park B, and Liu GY. 2012. Targeting the host-pathogen interface for treatment of *Staphylococcus aureus* infection. *Semin Immunopathol* 34:299-315. 10.1007/s00281-011-0297-1

Paumelle R, and Staels B. 2007. Peroxisome proliferator-activated receptors mediate pleiotropic actions of statins. *Circ Res* 100:1394-1395. 10.1161/01.RES.0000269334.42814.d2

Quinn M, Moody C, Tunnicliffe B, Khan Z, Manji M, Gudibande S, Murphy N, Whitehouse T, Snelson C, and Veenith T. 2016. Systematic review of statins in sepsis: There is no evidence of dose response. *Indian J Crit Care Med* 20:534-541. 10.4103/0972-5229.190366

Quivey R. 2014. Reducing dental caries. Google Patents: University Of Rochester. Google Patents: University Of Rochester.

Radwan S, and Ezzat O. 2012. Antimicrobial Effect and Immunomodulation of Atorvastatin. *J Am Sci* 8:1012-1016.

Reen FJ, Flynn S, Woods DF, Dunphy N, Chroinin MN, Mullane D, Stick S, Adams C, and O'Gara F. 2016. Bile signalling promotes chronic respiratory infections and antibiotic tolerance. *Sci Rep* 6:29768. 10.1038/srep29768

Reinoso RF, Sanchez Navarro A, Garcia MJ, and Prous JR. 2002. Preclinical pharmacokinetics of statins. *Methods Find Exp Clin Pharmacol* 24:593-613.

Rittirsch D, Flierl MA, and Ward PA. 2008. Harmful molecular mechanisms in sepsis. *Nat Rev Immunol* 8:776-787. 10.1038/nri2402

Rosenfeld Y, and Shai Y. 2006. Lipopolysaccharide (Endotoxin)-host defense antibacterial peptides interactions: role in bacterial resistance and prevention of sepsis. *Biochim Biophys Acta* 1758:1513-1522. 10.1016/j.bbamem.2006.05.017
Ruiz N, Kahne D, and Silhavy TJ. 2009. Transport of lipopolysaccharide across the cell envelope: the long road of discovery. Nat Rev Microbiol 7:677-683. 10.1038/nr micro2184

Sarabhai S, Dhaliwal LK, Capalash N, and Sharma P. 2015. Effect of atorvastatin and rosuvastatin on quorum sensing, biofilm formation and bacterial motilities of Pseudomonas aeruginosa. International Journal of Pharma and Bio Sciences 6:(B) 1-8.

Sarr FS, Andre C, and Guillaume YC. 2008. Statins (HMG-coenzyme A reductase inhibitors)-biomimetic membrane binding mechanism investigated by molecular chromatography. J Chromatogr B Analyt Technol Biomed Life Sci 868:20-27. 10.1016/j.jchromb.2008.03.034

Schaap FG, Trauner M, and Jansen PL. 2014. Bile acid receptors as targets for drug development. Nat Rev Gastroenterol Hepatol 11:55-67. 10.1038/nrgastro.2013.151

Shanholtzer CJ, Peterson LR, Mohn ML, Moody JA, and Gerding DN. 1984. MBCs for Staphylococcus aureus as determined by macrodilution and microdilution techniques. Antimicrob Agents Chemother 26:214-219.

Shi JH, Wang Q, Pan DQ, Liu TT, and Jiang M. 2016. Characterization of interactions of simvastatin, pravastatin, fluvastatin, and pitavastatin with bovine serum albumin: multiple spectroscopic and molecular docking. J Biomol Struct Dyn:1-18. 10.1080/07391102.2016.1188416

Shine WE, Silvany R, and McCulley JP. 1993. Relation of cholesterol-stimulated Staphylococcus aureus growth to chronic blepharitis. Invest Ophthal mol Vis Sci 34:2291-2296.

Silhavy TJ, Kahne D, and Walker S. 2010. The bacterial cell envelope. Cold Spring Harb Perspect Biol 2:a000414. 10.1101/cshperspect.a000414

Singer AC, Shaw H, Rhodes V, and Hart A. 2016. Review of Antimicrobial Resistance in the Environment and Its Relevance to Environmental Regulators. Front Microbiol 7:1728. 10.3389/fmicb.2016.01728
Sorensen OE, and Borregaard N. 2016. Neutrophil extracellular traps - the dark side of neutrophils. *J Clin Invest* 126:1612-1620. 10.1172/JCI84538

Terblanche M, Almog Y, Rosenson RS, Smith TS, and Hackam DG. 2007. Statins and sepsis: multiple modifications at multiple levels. *Lancet Infect Dis* 7:358-368. 10.1016/S1473-3099(07)70111-1

Thangamani S, Mohammad H, Abushahba MF, Hamed MI, Sobreira TJ, Hedrick VE, Paul LN, and Seleem MN. 2015. Exploring simvastatin, an antihyperlipidemic drug, as a potential topical antibacterial agent. *Sci Rep* 5:16407. 10.1038/srep16407

Ting M, Whitaker EJ, and Albandar JM. 2016. Systematic review of the in vitro effects of statins on oral and perioral microorganisms. *Eur J Oral Sci* 124:4-10. 10.1111/eos.12239

Tobert JA. 2003. Lovastatin and beyond: the history of the HMG-CoA reductase inhibitors. *Nat Rev Drug Discov* 2:517-526. 10.1038/nrd1112

Turnidge J, and Paterson DL. 2007. Setting and revising antibacterial susceptibility breakpoints. *Clin Microbiol Rev* 20:1391-408. 10.1128/CMR.00047-06

US Preventive Services Task Force. 2016. Statin use for the primary prevention of cardiovascular disease in adults: Us preventive services task force recommendation statement. *JAMA* 316:1997-2007. 10.1001/jama.2016.15450

Vera S, Martinez R, Gormaz JG, Gajardo A, Galleguillos F, and Rodrigo R. 2015. Novel relationships between oxidative stress and angiogenesis-related factors in sepsis: New biomarkers and therapies. *Ann Med* 47:289-300. 10.3109/07853890.2015.1029967

Vukelic S, Stojadinovic O, Pastar I, Vouthounis C, Krzyzanowska A, Das S, Samuels HH, and Tomic-Canic M. 2010. Farnesyl pyrophosphate inhibits epithelialization and wound healing through the glucocorticoid receptor. *J Biol Chem* 285:1980-1988. 10.1074/jbc.M109.016741
Wales AD, and Davies RH. 2015. Co-Selection of Resistance to Antibiotics, Biocides and Heavy Metals, and Its Relevance to Foodborne Pathogens. *Antibiotics (Basel)* 4:567-604. 10.3390/antibiotics4040567

Walton GM, Stockley JA, Griffiths D, Sadhra CS, Purvis T, and Sapey E. 2016. Repurposing Treatments to Enhance Innate Immunity. Can Statins Improve Neutrophil Functions and Clinical Outcomes in COPD? *J Clin Med* 5. 10.3390/jcm5100089

Wang CC, Yang PW, Yang SF, Hsieh KP, Tseng SP, and Lin YC. 2015. Topical simvastatin promotes healing of Staphylococcus aureus-contaminated cutaneous wounds. *Int Wound J*. 10.1111/iwj.12431

Weinstein LI, Revuelta A, and Pando RH. 2015. Catecholamines and acetylcholine are key regulators of the interaction between microbes and the immune system. *Ann N Y Acad Sci* 1351:39-51. 10.1111/nyas.12792

Welsh AM, Kruger P, and Faoagali J. 2009. Antimicrobial action of atorvastatin and rosuvastatin. *Pathology* 41:689-691. 10.3109/00313020903305860

Wittebole X, Castanares-Zapatero D, and Laterre PF. 2010. Toll-like receptor 4 modulation as a strategy to treat sepsis. *Mediators Inflamm* 2010:568396. 10.1155/2010/568396

World Health Organization. Antimicrobial resistance. *Available at* http://www.who.int/mediacentre/factsheets/fs194/en/ (accessed 08 December 2016).

World Health Organization. Antimicrobial resistance: Global Report on Surveillance. *Available at* http://www.who.int/drugresistance/documents/surveillancereport/en/ (accessed 08 December 2016).

Wu HJ, Wang AH, and Jennings MP. 2008. Discovery of virulence factors of pathogenic bacteria. *Curr Opin Chem Biol* 12:93-101. 10.1016/j.cbpa.2008.01.023

Xia G, Kohler T, and Peschel A. 2010. The wall teichoic acid and lipoteichoic acid polymers of Staphylococcus aureus. *Int J Med Microbiol* 300:148-154. 10.1016/j.ijmm.2009.10.001
Yang Z, Huang YC, Koziel H, de Crom R, Ruetten H, Wohlfart P, Thomsen RW, Kahlert JA, Sorensen HT, Jozefowski S, Colby A, and Kobzik L. 2014. Female resistance to pneumonia identifies lung macrophage nitric oxide synthase-3 as a therapeutic target. *Elife* 3. 10.7554/eLife.03711

Zhernakova A, Kurilshikov A, Bonder MJ, Tigchelaar EF, Schirmer M, Vatanen T, Mujagic Z, Vila AV, Falony G, Vieira-Silva S, Wang J, Imhann F, Brandsma E, Jankipersadsing SA, Joossens M, Cenit MC, Deelen P, Swertz MA, LifeLines cohort s, Weersma RK, Feskens EJ, Netea MG, Gevers D, Jonkers D, Franke L, Aulchenko YS, Huttenhower C, Raes J, Hofker MH, Xavier RJ, Wijmenga C, and Fu J. 2016. Population-based metagenomics analysis reveals markers for gut microbiome composition and diversity. *Science* 352:565-569. 10.1126/science.aad3369
Table 1 (on next page)

Compiled antimicrobial susceptibility results of statins against various Gram-positive bacteria reported in literature.

The dilution methods for (Alshammari 2016), (Bergman et al. 2011), (Quivey 2014), (Welsh et al. 2009), and (Ting et al. 2016) were described in the respective studies. All other studies were tested according to the broth microdilution method stipulated by the Clinical and Laboratory Standards Institute (CLSI), formerly known as National Committee for Clinical Laboratory Standards (NCCLS).

ATCC, American Type Culture Collection.

All studies were tested with Mueller Hinton broth unless specified. Solvent types and solvent concentrations used for water insoluble statins (ATV, LVS, PTV, and SMV) were listed as reported in the various references. DMSO, dimethyl sulfoxide.

ATV, atorvastatin; FLV, fluvastatin; LVS, lovastatin; MIC, minimum inhibitory concentration; PRV, pravastatin; PTV, pitavastatin; RSV, rosuvastatin; SMV, simvastatin.
Bacteria type and strain^a	Solvent/Broth^c	ATV	FLV	LVS	PTV	PRV	RSV	SMV	Reference					
Bacillus species														
Isolates	Methanol	43.75							(Radwan & Ezzat 2012)					
	1:2 dilution (range from 50% to 0.78%)	± 17.12 &												
Bacillus anthracis														
AMES35, UM23	Unknown solvent and %	Not tested	Not tested &						(Thangamani et al. 2015)					
Enterococcus faecalis														
Unknown strain	Ethanol	Not tested	64	(Quivey 2014)										
	1%													
Enterococcus faecalis (Vancomycin-resistant)														
ATCC 51299	DMSO	166.67	Not tested	Not tested	Not tested	Not tested	500	104.17	(Masadeh et al. 2012)					
	Unknown %	± 72.16							36.08					
ATCC 51299	Unknown solvent and %	Not tested	32	(Thangamani et al. 2015)										
ATCC 51299	Ethanol	250	Not tested	Not tested	Not tested	Not tested	100	Not tested	(Welsh et al. 2009)					
	6.25%													
SF24413, SF28073	Unknown solvent and %	Not tested	32	(Thangamani et al. 2015)										
Isolates	DMSO	216.67	Not tested	Not tested	Not tested	Not tested	500.00	291.67	(Masadeh et al. 2012)					
	Unknown %	± 32.27							39.53					
Isolates	Unknown solvent and %	>128	Not tested	Not tested	Not tested	Not tested	>128	Not tested	(Coban et al. 2010)					
Enterococcus faecalis (Vancomycin-sensitive)														
Strain/Isolates	Solvent/Unknown solvent	% Solvent	MIC											
-----------------	-------------------------	-----------	----------------	----------------	----------------	----------------	----------------	----------------	----------------					
ATCC 7080,	Unknown	Not tested	Not tested	32 (Thangamani et al. 2015)										
ATCC 14506														
ATCC 19433	DMSO	83.33	Not tested	Not tested	Not tested	333.33 ± 52.08	144.33 ± 18.04	Not tested	(Masadeh et al. 2012)					
ATCC 29212	Unknown	>128	Not tested	64 (Coban et al. 2010)										
ATCC 29212	Ethanol	250	Not tested	Not tested	Not tested	100	Not tested	Not tested	(Welsh et al. 2009)					
ATCC 29212	DMSO	>250	Not tested	Not tested	Not tested	>250	Not tested	Not tested	>250					
ATCC 49532,	Unknown	Not tested	Not tested	32 (Thangamani et al. 2015)										
ATCC 49533,	Unknown													
HH22, MMH594,														
SF24397														
Isolates	DMSO	95.83	Not tested	Not tested	Not tested	333.33 ± 291.67	21 ± 39.53	Not tested	(Masadeh et al. 2012)					
ATCC 29212	Ethanol	>128	Not tested	Not tested	Not tested	>128	Not tested	Not tested	(Coban et al. 2010)					
Enterococcus faecium	Unknown strain	Ethanol	Not tested	64 (Quivey 2014)										
Enterococcus faecium (Vancomycin-resistant)	ATCC 700221, E0120, ERV102	Unknown	Not tested	32 (Thangamani et al. 2015)										
Isolates	Unknown	>128	Not tested	Not tested	Not tested	>128	Not tested	Not tested	(Coban et al. 2010)					
Enterococcus faecium (Vancomycin-sensitive)	ATCC 6569,	Unknown	Not tested	32 (Thangamani et al. 2015)										
	Isolates	solvent and %	>128	Not tested	Not tested	Not tested	Not tested	>128	Not tested	Not tested	Not tested	>128	(Coban et al. 2010)	
----------------	-----------------------------------	---------------	------	------------	------------	------------	------------	------	------------	------------	------------	------	-------------------	
Lactobacillus casei	Unknown strain	Not specified						7.8	(Ting et al. 2016)					
Listeria monocytogenes	ATCC 13932, ATCC 19111, ATCC 19112, ATCC 19114, F4244, J0161	DMSO 2.5%	>250	Not tested	Not tested	Not tested	Not tested	>250	Not tested	Not tested	Not tested	31.25	(Quivey 2014)	
Staphylococci (Methicillin-resistant coagulase negative, MRCoNS)	Isolates	Unknown strain	Ethanol 1%	>128	Not tested	Not tested	Not tested	Not tested	>128	Not tested	Not tested	Not tested	>128	(Coban et al. 2010)
Staphylococcus aureus	Unknown strain	Ethanol 1%	>128	Not tested	Not tested	Not tested	Not tested	>128	Not tested	Not tested	Not tested	>128	(Coban et al. 2010)	
Staphylococcus aureus (Methicillin-resistant, MRSA)	ATCC 14458, ATCC 33591, ATCC 43300	DMSO 2.5%	>250	Not tested	Not tested	Not tested	>250	Not tested	>250	Not tested	31.25	(Graziano et al. 2015)		
ATCC 43300	DMSO 2.5%	>250	Not tested	Not tested	Not tested	>250	Not tested	>250	Not tested	31.25	(Graziano et al. 2015)			
ATCC 43300	DMSO 2.5%	>250	Not tested	Not tested	Not tested	>250	Not tested	>250	Not tested	31.25	(Graziano et al. 2015)			
ATCC 43300	Unknown solvent and %	>128	Not tested	Not tested	Not tested	Not tested	>128	Not tested	>128	Not tested	31.25	(Graziano et al. 2015)		
ATCC 43300	Unknown solvent and %	>1024	>1024	>1024	>1024	>1024	>1024	32	(Thangamani et al. 2015)					
ATCC 49476	Ethanol	6.25%				100		Not tested	(Welsh et al. 2009)					
ATCC BAA-44, NRS70, NRS71, NRS108, NRS119, NRS123	Unknown solvent and %	Not tested	32	(Thangamani et al. 2015)										
NRS100, NRS194	Unknown solvent and %	Not tested	64	(Thangamani et al. 2015)										
USA100, USA200, USA300, USA400, USA500, USA700, USA800, USA1000, USA1100 Isolates	DMSO	108.33 ± 27.36	Not tested	Not tested	Not tested	Not tested	500.00 ± 0.00	116.67 ± 30.19	(Masadeh et al. 2012)					
Isolates	Unknown solvent and %	>128	Not tested	>128	(Coban et al. 2010)									
Isolates	Methanol 1:2 dilution (range from 50% to 0.2%)	>200 (mean)	Not tested	74.9 (mean)	(Jerwood & Cohen 2008)									
Isolates	Methanol 1:2 dilution (range from 50% to 0.78%)	37.5 ± 13.98	Not tested	(Radwan & Ezzat 2012)										

Staphylococcus aureus (Methicillin-sensitive, MSSA)

ATCC 6538	DMSO	>250	Not tested	Not tested	>250	Not tested	31.25	(Graziano et al. 2015)	
ATCC 6538	Unknown solvent and %	Not tested	32	(Thangamani et al. 2015)					
ATCC 25213	DMSO	41.67	Not tested	Not tested	Not tested	Not tested	208.33	26.04	(Masadeh et al. 2012)
Organism	Unknown solvent and %	% Survival								
ATCC 25923	Unknown solvent and %	>128								
	Ethanol 6.25%	250								
ATCC 29213	DMSO 0.5%	>250								
ATCC 29213	Unknown solvent and %	>128								
ATCC 29213	DMSO 2.5%	>250								
ATCC 29213	Various solvents	250								
	(Ethanol 5%)	500								
	(DMSO 5%)	>500								
RN4220, NRS72, NRS77, NRS846, NRS860	Unknown solvent and %	Not tested								
Isolates	Unknown solvent and %	>128								
Isolates	DMSO	52.08								
Isolates	Methanol 1:2 dilution (range from 50% to 0.2%)	Not tested								
Isolates	DMSO	>250								
Organism	Strain	Solvent	Solvent %	MIC (μg/mL)	Source					
--------------------------------	---------	---------	-----------	-------------	-------------------------					
Staphylococcus aureus (Vancomycin-intermediate, VISA)	NRS1, NRS19, NRS37	Unknown	Not tested	Not tested	Not tested	Not tested	32	(Thangamani et al. 2015)		
		solvent and %								
Staphylococcus aureus (Vancomycin-resistant, VRSA)	VRS1, VRS2, VRS3a, VRS3b, VRS4, VRS5, VRS6, VRS7, VRS8, VRS10, VRS11a, VRS11b, VRS12, VRS13	Unknown	Not tested	Not tested	Not tested	Not tested	32	(Thangamani et al. 2015)		
		solvent and %								
Staphylococcus epidermidis	ATCC 12228	DMSO	20.83	Not tested	Not tested	Not tested	166.67	26.04	(Masadeh et al. 2012)	
		Unknown %	± 9.02				72.16	± 9.02		
	NRS101	Unknown	Not tested	Not tested	Not tested	Not tested	32	(Thangamani et al. 2015)		
		solvent and %								
	Isolates	DMSO	19.78	Not tested	Not tested	Not tested	233.33	35.41	(Masadeh et al. 2012)	
		Unknown %	± 4.94				39.52	± 4.94		
Streptococcus anginosus	Unknown strain	Not specified	Not tested	Not tested	Not tested	Not tested	7.8	(Ting et al. 2016)		
Streptococcus mutans	ATCC 25175	DMSO	100	Not tested	Not tested	Not tested	200	100	15.6	(Alshammari 2016)
		1:2 dilution (range from 50% to 0.2%)								
	UA159	Ethanol	1%	Not tested	16	(Quivey 2014)				

Note: MIC values represent minimum inhibitory concentrations determined by the reference methods.
Strain	Solvent and %	Method	Concentration	MIC (μg/mL)			
Unknown strain	Not specified	Not tested	Not tested	Not tested	Not tested	15.6 (Ting et al. 2016)	
Streptococcus pneumoniae							
51916	Unknown	Not tested	Not tested	Not tested	Not tested	64 (Thangamani et al. 2015)	
70677	DMSO	Not tested	>100	Not tested	>100	15.6 (Bergman et al. 2011)	
ATCC BAA-334	DMSO	2.5%	Not tested	Not tested	Not tested	15.6 (Bergman et al. 2011)	
Unknown ATCC strain	DMSO	Unknown %	104.17 ±	Not tested	333.33 ±	166.67 ± (Masadeh et al. 2012)	
			36.08	Not tested	144.33	72.16 (Masadeh et al. 2012)	
Isolates	DMSO	Unknown %	229.17 ±	Not tested	416.67	291.67 (Masadeh et al. 2012)	
			± 60.38	Not tested	± 0.00	± 39.53 (Masadeh et al. 2012)	
Unknown strain	Unknown	Not tested	Not tested	Not tested	Not tested	15 (Bjorkhem-Bergman et al. 2011)	
Streptococcus pyogenes							
ATCC 19615	DMSO	Unknown %	83.33	Not tested	166.67	62.5 (Masadeh et al. 2012)	
			± 36.08	Not tested	± 72.16	± 0.00 (Masadeh et al. 2012)	
Isolates	DMSO	Unknown %	133.33	Not tested	275.00	145.83 (Masadeh et al. 2012)	
			± 19.76	Not tested	± 72.17	± 32.27 (Masadeh et al. 2012)	
Streptococcus salivarius							
ATCC 2593	DMSO	1:2 dilution (range from 50% to 0.2%)	100	200	7.8 (Alshammari 2016)		
Unknown strain	Not specified	Not tested	Not tested	Not tested	Not tested	7.8 (Ting et al. 2016)	
Streptococcus sanguinis (Streptococcus sanguis)	DMSO	1:2 dilution (range from 50% to 0.2%)	100	200	15.6 (Alshammari 2016)		
Unknown strain	Not specified	Not tested	15.6				
------------------------	---------------	------------	------------	------------	------------	------------	-------
							(Ting et al. 2016)

from 50% to 0.2%)

1
Compiled antimicrobial susceptibility results of statins against various Gram-negative bacteria reported in literature.\(^a\)

\(^a\) The dilution methods for (Bergman et al. 2011), (Quivey 2014), (Welsh et al. 2009), and (Ting et al. 2016) were described in the respective studies. All other studies were tested according to the broth microdilution method stipulated by the Clinical and Laboratory Standards Institute (CLSI), formerly known as National Committee for Clinical Laboratory Standards (NCCLS).

\(^b\) ATCC, American Type Culture Collection.

\(^c\) All studies were tested with Mueller Hinton broth unless specified. Solvent types and solvent concentrations used for water insoluble statins (ATV, LVS, PTV, and SMV) were listed as reported in the various references. DMSO, dimethyl sulfoxide.

\(^d\) ATV, atorvastatin; FLV, fluvastatin; LVS, lovastatin; MIC, minimum inhibitory concentration; PRV, pravastatin; PTV, pitavastatin; RSV, rosuvastatin; SMV, simvastatin.
Bacteria type and strain	Solvent/Broth	ATV	FLV	LVS	PTV	PRV	RSV	SMV	Reference
Acinetobacter baumannii									
ATCC 17978	DMSO	15.62	Not tested	Not tested	Not tested	333.33	104.17		(Masadeh et al. 2012)
	Unknown %	± 0.00							
ATCC BAA747, ATCC BAA1605, ATCC BAA19606	Unknown solvent and %	Not tested	>256		(Thangamani et al. 2015)				
Isolates	DMSO	21.87	Not tested	Not tested	Not tested	300.00	32.29		(Masadeh et al. 2012)
	Unknown %	± 4.94					± 79.05	± 6.38	
Isolates	Unknown solvent and %	>128	Not tested	Not tested	Not tested	Not tested	>128		(Coban et al. 2010)
Aggregatibacter actinomycetemcomitans									
Unknown ATCC strain	DMSO	Not tested	<1		(Emani et al. 2014)				
	1% stock, Brain heart infusion broth								
Unknown strain	Not specified	Not tested			(Ting et al. 2016)				
Citrobacter freundii									
ATCC 8090	DMSO	83.33	Not tested	Not tested	Not tested	166.67	52.08		(Masadeh et al. 2012)
	Unknown %	± 36.08					± 72.16	± 18.04	
Isolates	DMSO	108.33	Not tested	Not tested	Not tested	333.33	133.33		(Masadeh et al. 2012)
	Unknown %	± 27.36					± 79.06	± 39.58	
Enterobacter aerogenes									
ATCC 29751	DMSO	15.62	Not tested	Not tested	Not tested	104.17	26.04		(Masadeh et al. 2012)
	Unknown %	± 0.00					± 36.08	± 9.02	
Isolates	DMSO	Unknown %	Not tested	Not tested	Not tested	Not tested	183.33	33.33	(Masadeh et al. 2012)
--------------------------	------	-----------	------------	------------	------------	------------	--------	-------	-----------------------
Enterobacter cloacae									
ATCC 13047	DMSO	41.67	Not tested	Not tested	Not tested	Not tested	166.67	62.5	(Masadeh et al. 2012)
Isolates									
Escherichia coli									
1411, SM1411ΔacrAB	Unknown solvent and %	Not tested	>256		(Thangamani et al. 2015)				
ATCC 10536	DMSO	>250	Not tested	Not tested	Not tested	Not tested	>250		(Graziano et al. 2015)
ATCC 25922	2.5%	>250	Not tested	Not tested	Not tested	Not tested	>250		
ATCC 25922	Various solvents	>250	500	>500	Not tested	>500	>500		(Matzneller et al. 2011)
and %	(Ethanol 5%)	(DMSO 5%)							
ATCC 25922	Ethanol	250	Not tested	Not tested	Not tested	Not tested	100	Not tested	(Welsh et al. 2009)
6.25%									
ATCC 35218	DMSO	26.04	Not tested	Not tested	Not tested	Not tested	104.17	52.08	(Masadeh et al. 2012)
Isolates									
ATCC 35218	Unknown solvent and %	>128	Not tested	Not tested	Not tested	Not tested	>128		(Coban et al. 2010)
Isolates									
Isolates									
Methanol	75	Not tested		(Radwan & Ezzat 2012)					
1:2 dilution (range from 50% to									
Escherichia coli O157:H7

Strain	Solvent and %	% Survival	Inhibition	MIC (μg/mL)	Reference
ATCC 35150, ATCC 700728	Unknown solvent and %	Not tested	Not tested	Not tested	>256 (Thangamani et al. 2015)

Haemophilus influenzae

Strain	Solvent	% Survival	Inhibition	MIC (μg/mL)	Reference
ATCC 29247	DMSO	83.33	Not tested	Not tested	166.67 ± 72.16 (Masadeh et al. 2012)
Isolates	DMSO	104.17	Not tested	Not tested	366.67 ± 145.83 (Masadeh et al. 2012)
Isolates	DMSO	>100	Not tested	Not tested	>250 (Bergman et al. 2011)

Klebsiella species

Strain	Solvent	% Survival	Inhibition	MIC (μg/mL)	Reference
Not specified	Ethanol 1%	Not tested	Not tested	Not tested	64 (Quivey 2014)

Klebsiella pneumoniae

Strain	Solvent	% Survival	Inhibition	MIC (μg/mL)	Reference
ATCC 13883	DMSO	166.67	Not tested	Not tested	333.33 ± 144.33 (Masadeh et al. 2012)
ATCC 700603	Unknown solvent and %	>128	Not tested	Not tested	>128 (Coban et al. 2010)
ATCC BAA-1705, ATCC BAA-2146	Unknown solvent and %	Not tested	Not tested	Not tested	>256 (Thangamani et al. 2015)
Isolates	DMSO	216.67	Not tested	Not tested	258.33 ± 64.55 (Masadeh et al. 2012)
Isolates	Unknown solvent and %	>128	Not tested	Not tested	>128 (Coban et al. 2010)

Moraxella catarrhalis

Strain	Solvent	% Survival	Inhibition	MIC (μg/mL)	Reference		
Isolates	DMSO	Not tested	>100	Not tested	15.6 (Bergman et al. 2011)		
Porphyromonas gingivalis							
---	---	---	---	---	---	---	
ATCC 33277	DMSO	Not tested	2	(Emani et al. 2014)			
	1% stock, 1% stock,						
	Brain heart infusion broth						

Proteus mirabilis									
ATCC 12459	DMSO	62.5	Not tested	Not tested	Not tested	Not tested	250	166.67	(Masadeh et al. 2012)
	Unknown %	± 0.00				250	± 0.00	± 72.16	al. 2012)
Isolates	DMSO	127.08	Not tested	Not tested	Not tested	Not tested	191.67	158.33	(Masadeh et al. 2012)
	Unknown %	± 25.51				191.67	± 32.27	± 32.27	al. 2012)
Isolates	Methanol 1:2 dilution (range from 50% to 0.78%)								(Radwan & Ezzat 2012)

Pseudomonas aeruginosa										
ATCC 9027	DMSO	83.33	Not tested	Not tested	Not tested	Not tested	166.67	166.67	(Masadeh et al. 2012)	
	Unknown %	± 36.08				166.67	± 72.16	± 72.16	al. 2012)	
ATCC 9027, ATCC 9721, ATCC 10145	Unknown solvent and %	Not tested	>256	(Thangamani et al. 2015)						
ATCC 15442	Unknown solvent and %	>1024	>1024	>1024	>1024	>1024	>1024	>1024	(Thangamani et al. 2015)	
ATCC 25619	DMSO 2.5%	>250	Not tested	Not tested	Not tested	>250	Not tested	>250	(Graziano et al. 2015)	
ATCC 25619, ATCC 27853	Unknown solvent and %	Not tested	>256	(Thangamani et al. 2015)						
ATCC 27853	DMSO 2.5%	>250	Not tested	Not tested	Not tested	>250	Not tested	>250	(Graziano et al. 2015)	
ATCC 27853	Various solvents and %	>250	500	>500	Not tested	>500	>500	>500	(Matzneller et al. 2011)	
------------	------------------------	------	-----	------	------------	------	------	------	--------------------------	
ATCC 27853	Ethanol 5%				Not tested				(Welsh et al. 2009)	
ATCC 35032, ATCC BAA-1744	Unknown solvent and %	Not tested	>256	(Thangamani et al. 2015)						
PAO1	DMSO 2% stock, Lysogeny Broth	625	Not tested	Not tested	Not tested	625	Not tested	(Sarabhai et al. 2015)		
Isolates	DMSO Unknown % ± 22.09	95.83	Not tested	Not tested	Not tested	291.67	120.83	39.53	32.27	(Masadeh et al. 2012)
Isolates	Unknown solvent and % >128	Not tested	Not tested	Not tested	Not tested	>128	Not tested	(Coban et al. 2010)		
Unknown strain	Ethanol 1%	Not tested	>256	(Quivey 2014)						

Salmonella Typhimurium

| ATCC 700720 | Unknown solvent and % | Not tested | >256 | (Thangamani et al. 2015) |

1
Figure 1

Flow chart summarizing the literature search process performed in six databases on 7th April 2017.

CINAHL, Cumulative Index to Nursing and Allied Health Literature.

793 potential studies identified:
- CINAHL = 2
- Cochrane Library = 1
- Embase = 34
- PubMed = 53
- Google Scholar = 695
- Web of Science = 8

756 unrelated studies (covering drug interactions; antifungal or antiviral properties of statins; antibacterial properties of mevastatin, cerivastatin, antibiotics or natural products) excluded based on title and abstract:
- CINAHL = 1
- Cochrane Library = 1
- Embase = 24
- PubMed = 43
- Google Scholar = 682
- Web of Science = 5

37 full-text studies considered for review:
- CINAHL = 1
- Embase = 10
- PubMed = 10
- Google Scholar = 13
- Web of Science = 3

21 studies were excluded:
- 18 duplicate studies
- 1 review covered 8 duplicate studies
- 1 study did not test direct bacterial exposure
- 1 study did not test individual statin exposure

16 studies included for current review article
Figure 2

Potential of statins as repurposed novel adjuvant antibiotics for infections in the statin-bacteria-human-environment continuum.

(+) refers to factors leading to potentially positive outcomes, whereby statins co-administered with antibiotics may impede AMR (AMR breakers). (-) refers to factors leading to potentially negative outcomes, whereby statin use may favor selective pressures or co-selection for resistance and culminate in AMR (AMR makers). (?) refers to further research required to bridge knowledge gap. AMR, antimicrobial resistance; MIC, minimum inhibitory concentration; NET, neutrophil extracellular trap.

Humans

(+): Enhanced host immunity
(?): NET production
(?): Pleiotropic effects in sepsis
(?): Nuclear receptor agonists
(+): Improved wound healing
(-): Dysbiosis of gut microbiota
(-): Statin plasma concentrations in bacteremic patients << MIC

Statins

(+): Intrinsic antibacterial activity
(?): Contribution as AMR makers via selective pressures or co-selection
(?): Mechanism of antibacterial action

Bacteria

(+): Synergistic antibiotic effects
(+): Attenuated virulence factors

Environment

(-): Extensive use of statins
(-): Subinhibitory concentrations
(-): Persistence in sewage
Figure 3

Chemical structures of clinically used statins and selected non-antibiotic drugs from other pharmacological classes.

(A) Type 1 statins (SMV, LVS, and PRV) are derived from fungi and have similar chemical structures. (B) Type 2 statins (ATV, FLV, PTV, and RSV) are synthetic compounds which bind more tightly with HMG-CoA reductase. (C) Selected non-antibiotic drugs from other pharmacological classes with antibacterial activity against *Staphylococcus aureus*. The dihydroxy acid moiety (in PRV, ATV, FLV, PTV, and RSV) is required for HMG-CoA reductase inhibition, while the lactone group (in SMV and LVS) must by metabolised to the dihydroxy acid moiety before HMG-CoA reductase inhibition may occur. Drugs marked (†) possess antibacterial activity against *Staphylococcus aureus*. Two methyl groups arranged in a tetrahedral (*) or similar trigonal pyramidal (#) molecular geometry may be important for such antibacterial activity. ATV, atorvastatin; FLV, fluvastatin; HMG-CoA, 3-hydroxy-3-methylglutaryl-coenzyme A; LVS, lovastatin; PRV, pravastatin; PTV, pitavastatin; RSV, rosvastatin; SMV, simvastatin.
