Response spectrum analysis of irregular shaped high rise buildings under combined effect of plan and vertical irregularity using csi etabs

Krishna Prasad Chaudhary¹, Ankit Mahajan²
¹Student of M.Tech, Structural Engineering, Chandigarh University, Punjab, India
²Assistant Professor, Department of civil engineering, Chandigarh University, Punjab, India

Abstract: In this research work several high rise buildings were analyzed using CSI ETABS under the influence of the response spectrum analysis over it. Several different shaped high rise buildings such as H shaped, O shaped and C shaped buildings were taken into consideration for carrying out the research work. All three shaped buildings were of different storey that is of 12 storey and of 16 storey. For proper seismic analysis of all the above discussed buildings, response spectrum method of seismic analysis were taken into consideration. The results of all the buildings for response spectrum analysis were quite different from one another and it was found that the H-shaped building showed better results as compared to the other shaped buildings. It was also seen that the 12 storey building results were quite impressive as compared to the results of the 16 storey building. With the transference of heavy mass, very little effect was seen in latera sway i.e. variation in maximum displacement was negligible. Again, for 16 storey building, maximum displacement was found in the case L-Shaped 16 storey building with the value of 87.804 mm. Again, the transference of heavy masses had a minimal effect on total quantity and cost of the 16 Storey building. In the gist, it was concluded that, bending moments and shear forces were increased from 1.17% to 1.84%. Maximum variation in B.M and S.F. can be seen in O-shaped Building. L-shaped Building produces maximum displacement from all the three irregular shapes i.e. H-shape, L-shaped and O-shaped.

Keywords: Static and Dynamic Seismic Analysis, CSI ETABS, CSI SAP2000, Response spectrum analysis, seismic analysis

1. INTRODUCTION

1.1 SEISMIC ANALYSIS

Afterwards the Gujarat chronological Earthquake ‘BHUJ’ 2001, researchers and designers started captivating earthquakes truly and commence to design our structures seismic resilient so that they will be non-vulnerable to the seismic activity as BHUJ generated so much destruction to constructions and social life. Nowadays, numerous investigational research are being carried out every day to project new equipment relate to it so that our constructions will not surrender at that moment. Seismic activity are twisted due to the movement of rock-strewn surface within the earths inner that produces earth motion in numerous procedures [1–3].
1.2 IRREGULAR STRUCTURES

Today, most of the infrastructures are being widely constructed as irregular structures. A structure is a regular structure when its configurations (dimensional parameters) are almost symmetrical about all the axis. Regular buildings are those buildings which have same appearance either from plan or elevation [4–6].

1.3 PRACTICAL APPLICATIONS

- The current research work can easily be utilized for designing other similar kinds of irregular shaped high rise as well as low rise structures at different kinds of construction sites and the similar kinds of load combinations can also be used for designing the structure with broader aspects.
- The practical applications of all the proposed and well-designed irregular shaped structures can be achieved using the current research work and can be used as the basis of the construction of similar kinds of irregular and regular shaped structures.
- The present research work mainly compares the overall cost effectiveness of similar kind of irregular shaped structures so therefore it will be very much useful to construct the most cost effective building considering numerous number of factors that affect the construction and design of a structural component over a proposed site [4–6].
2. LITERATURE REVIEW

2.1 GENERAL

Various variations and enhancement in the Seismic activity resistant design of building is done in previous latest years. It outcomes in the fluctuations in the Indian standard code IS 1893 which is reviewed and conscripted in year 2016, subsequently a time forgotten of approximately fourteen years. In this research study, the author symbolizes the seismic load calculation for high-rise structure as per Indian standards: 1893-2016 references. Bearing in mind and examining the 4 storey RC framed multistory structure. It was determined that such education work is prepared on separate R-C framed construction building that is designed by means of previous code [7–9]. To forecast the seismic susceptibility of construction building and to check the amendments and variations in the IS code comestibles that the construction is safe or unsafe. In this venture, a private structure of G+10, G+15, G+20 and G+25, Special RC minute resting outline (SMRF) is taken for study. Displaying of the structure is done according to CSI ETABS V8i programming. Timespan of the structure in both the heading is taken from the product and according to the three norms 12 models are made for example 4 models for each code. The explanatory consequences of the model structures are then spoken to graphically and in forbidden structure, it is thought about and broke down observing any huge contrasts. This examination centers around investigating varieties in the outcomes acquired utilizing the three codes for example IS code, IBC and Canada code. A near examination is performed regarding base shear, relocation and story float. Some elevated structures are planned with storm cellar. As a rule, we expect that a structure is fixed at the ground level. In this manner, the storm cellar of the structure is excluded in the investigation and just gravity loads are considered in planning the cellar. In any case, the storm cellar may acquaint adaptability with the structure bringing about bigger horizontal removals and longer vibration periods. The seismic burdens connected to a structure will influence the part powers in the storm cellar. Along these lines, it is prescribed to incorporate the storm cellar in the examination of elevated structure structures. The impact of the storm cellar is examined dependent on the seismic reaction of elevated structures and a productive investigation technique to represent the impact of the cellar was proposed in this examination [10–12].

3. RESEARCH METHODOLOGY

3.1 OBJECTIVE OF STUDY

- To analyze the different storey buildings (with plan and vertical irregularity) with dynamic seismic analysis in zone V as per the new earthquake code IS: 1893-2016.
- To find all the structural parameters like axial force, displacement, bending moment etc. in a scrutinized way and comparison shall be made.
• To compare the effect of mass irregularity and V-bracing at different floors of same building in terms of Displacement and cost analysis [10–14].
• To draw the final conclusions towards the behavior of irregular structures under seismic forces as per the new code IS: 1893-2016 for RCC framed structures.

3.2 Research methodology
3.2.1 Modeling various irregular structures
Models that have been prepared for the present investigational study is being represented in the Table 1 to 5. As there were 12 models were made, 6 for 16 storey building and 6 for 12 storey building as shown below:

Type	Floors	Shape	Heavy Mass Floor	Type of Bracing
1	12 Storey	H	6th floor	V Type
2	12 Storey	H	9th floor	V Type
3	12 Storey	L	6th floor	V Type
4	12 Storey	L	9th floor	V Type
5	12 Storey	O	6th floor	V Type
6	12 Storey	O	9th floor	V Type
7	16 Storey	H	9th floor	V Type
8	16 Storey	H	12th floor	V Type
9	16 Storey	L	9th floor	V Type
10	16 Storey	L	12th floor	V Type
11	16 Storey	O	9th floor	V Type
12	16 Storey	O	12th floor	V Type

• Storey height in all the models is taken as 3.2 m.
• Size of each bay is taken as 5 m x 5 m

Floors	Column (mm)	Beam (mm)	Bracing (mm)
1 to 4	750 x 750	550 x 450	450 x 450
5 to 8	650 x 650	450 x 350	350 x 350
9 to 12	550 x 550	355 x 300	300 x 300

Floors	Column (mm)	Beam (mm)	Bracing (mm)
1 to 4	900 x 900	600 x 550	550 x 550
5 to 8	800 x 800	550 x 450	450 x 450
9 to 12	700 x 700	450 x 400	350 x 350
13 to 16	600 x 600	400 x 350	300 x 300
Floors	Column (mm)	Beam (mm)	Bracing (mm)
--------	-------------	-----------	--------------
1 to 4	900 x 900	600 x 600	550 x 550
5 to 8	800 x 800	550 x 550	450 x 450
9 to 12	600 x 600	450 x 450	350 x 350
13 to 16	500 x 500	350 x 350	300 x 300

Table 5. Sectional Properties for O-Shaped 16 Storey Building

Floors	Column (mm)	Beam (mm)	Bracing (mm)
1 to 4	900 x 900	550 x 550	450 x 450
5 to 8	800 x 800	450 x 450	400 x 400
9 to 12	600 x 600	400 x 400	350 x 350
13 to 16	500 x 500	350 x 350	300 x 300

Dead Load:
- External Wall Loading: 12.5 kN/m
- Interior Wall Loading: 6.5 kN/m
- Parapet wall loading: 3 kN/m²

Live Load:
- Floor load: 3.2 kN/m²
- Heavy Mass Floor Load: 12 kN/m²

Figure 1. Plan of H-Shaped Building.
3.2.2 RESPONSE SPECTRUM ANALYSIS

After modeling all the structures with various parameters, seismic analysis was carried out with Response Spectrum Method (dynamic seismic analysis). For this purpose, various seismic parameters were defined in CSI ETABS as shown below and in figure 1, 2 & 3.

3.2.3 COLLECTING AND SCRUTINIZING THE RESULTS

After analyzing the structures, a careful study was carried for various members and components. Therefore, the post-processing of CSI ETABS software were scrutinized and results were recorded for different parameters and were interpreted. Comparison charts, graphs and tables were developed which will be represented in the Chapter- IV. Cost analysis was also done for the purpose of better comparison so that final outcome of the study is achieved. For this, following material rates were assumed:

Rate of Concrete per cumec: Rs. 4000/.
Rate of steel per kg: Rs. 40/.
4. Results and Discussions

4.1 Results

Present investigational study of irregular structure for 12 storey and 16 storey buildings has been successfully done. All the types of irregularities of the structure have been explored during the study with V-type of Bracing (located at the edges) and the performance of the structure is noticed and structural members were evaluated in terms of displacement axial force, bending moment, shear force, % of steel etc. from the CSI ETABS result [15–17]. The results, collected from CSI ETABS, were tabulated and represented in figures and then they were studied very carefully with the help of tables and comparative figures. Following sections will discuss the results of 16 storey (H, L and O Shaped) buildings and 12 storey (H, L and O Shaped) buildings which were analyzed with earthquake loads.

4.1.1 Results of CSI Etabs for 12 Storey Irregular Shaped Building

The results of 12 storey irregular building i.e the Shear force and bending moment in beams, were recorded and are represent as under table 6 to 8:

Table 6. Displacement (Mm) In Column of 12 Storey H-Shaped Building

Floor	Corner Column	Inner column		
	Type 1	Type 2	Type 1	Type 2
1	2.172	2.08	2.081	2.11
2	3.695	3.546	5.95	6.017
3	5.298	5.094	10.242	10.329
4	7.101	6.838	14.628	14.727
5	9.294	8.964	20.339	20.51
6	11.667	11.277	26.519	26.94
7	14.086	13.639	32.493	33.177
8	16.496	15.993	38.217	39.06
9	19.066	18.487	46.181	46.7
10	21.605	20.951	54.171	54.376
11	24.014	23.292	60.192	60.33
12	26.271	25.489	63.687	63.865

Table 7. Displacement (Mm) In Column of 12 Storey L-Shaped Building

Floor	Corner Column	Inner column		
	Type 3	Type 4	Type 3	Type 4
1	4.256	4.278	2.446	2.485
2	7.534	7.586	7.077	7.17
3	11.122	11.214	12.252	12.368
4	15.212	15.351	17.569	17.684
5	20.279	20.486	24.422	24.597
6	25.866	26.158	31.888	32.421
7	31.65	32.028	39.262	40.282
Table 8. Displacement (Mm) In Column of 12 Storey O-Shaped Building

Floor	Corner Column	Inner column		
	Type 5	Type 6	Type 5	Type 6
1	2.815	2.817	1.985	1.989
2	5.355	5.377	5.727	5.735
3	8.258	8.311	9.92	9.923
4	11.536	11.631	14.228	14.225
5	15.579	15.739	19.843	19.88
6	20.014	20.257	25.976	26.238
7	24.554	24.884	31.889	32.448
8	29.107	29.51	37.465	38.283
9	34.071	34.517	44.98	45.789
10	39.015	39.484	52.629	53.31
11	43.637	44.122	58.566	59.164
12	47.898	48.401	62.161	62.753

4.1.2 Results of CSI Etabs for 16 Storey Irregular Building

The results of 16 storey irregular building i.e. the Shear force and bending moment in beams, were recorded and are represent as under table 9 to 11:

Table 9. Displacement (Mm) In Column Of 16 Storey H-Shaped Building.

Floor	Corner Column	Inner column			
	Type 7	Type 8	Type 7	Type 8	
1	1.46	1.465	1.404	1.399	
2	2.814	2.826	4.152	4.143	
3	4.353	4.374	7.31	7.3	
4	6.165	6.197	10.611	10.6	
5	8.488	8.536	14.828	14.811	
6	11.141	11.209	19.758	19.715	
7	13.979	14.071	24.783	24.705	
8	16.951	17.07	29.706	29.651	
9	20.229	20.385	34.951	35.134	
10	23.629	23.825	40.016	40.528	
11	27.058	27.291	44.807	45.557	
12	30.477	30.739	49.329	50.067	
13	34.07	34.357	55.212	55.832	
Floor	14	37.592	37.902	61.151	61.708
-------	-----	--------	--------	--------	--------
15	40.96	41.292	65.973	66.522	
16	44.159	44.512	68.94	69.489	

Table 10. Displacement (mm) In Column of 16 Storey L-Shaped Building

Floor	Corner Column	Inner Column		
	Type 9	Type 10	Type 9	Type 10
1	2.563	2.57	1.532	1.537
2	4.897	4.909	4.493	4.503
3	7.549	7.562	7.911	7.925
4	10.589	10.603	11.5	11.521
5	14.364	14.376	15.702	15.732
6	18.482	18.492	20.126	20.165
7	22.809	22.82	24.58	24.635
8	27.35	27.369	29.042	29.133
9	32.667	32.719	35.411	35.673
10	38.422	38.515	42.968	43.438
11	44.307	44.436	50.395	50.992
12	50.223	50.362	57.433	57.936
13	56.614	56.745	66.841	67.103
14	62.954	63.068	76.203	76.258
15	68.951	69.05	83.419	83.352
16	74.563	74.648	87.804	87.685

Table 11. Displacement (mm) in Column of 16 Storey O-Shaped Building

Floor	Corner Column	Inner Column		
	Type 11	Type 12	Type 11	Type 12
1	2.002	2.015	1.386	1.387
2	4.388	4.417	4.113	4.117
3	7.187	7.236	7.308	7.315
4	10.436	10.511	10.767	10.783
5	14.634	14.745	15.558	15.595
6	19.487	19.645	21.493	21.563
7	24.64	24.852	27.693	27.814
8	29.956	30.234	33.839	34.051
9	35.736	36.104	40.685	41.128
10	41.65	42.114	47.361	48.072
11	47.521	48.07	53.62	54.514
12	53.309	53.919	59.382	60.258
13	59.281	59.938	66.38	67.178
14	65.079	65.777	73.068	73.872
15	70.492	71.229	78.283	79.156
5. Conclusion and Future Scope

All the results have been represented and after evaluating all the irregular structure i.e. 12 storey building and 16 storey building. And final conclusions of the present thesis, which were drawn from results after a scrutinized study, have been concluded in the following section:

- There was very little variation in total quantities and total cost of the building. Therefore, it can be concluded that when the heavy mass is transferred from 6th floor to 9th floor in 12 storey building, it had negligible effect on the quantity and cost of the building.

- In 16 storey irregular building, when the heavy masses were introduced to 9th floor and 12th floor, then the maximum bending moment varies from 1.26% to 1.75%. Like bending moment, shear force also shows great variation as it varies from 1.17% to 1.84%.

- With the transference of heavy mass, very little effect was seen in lateral sway i.e. variation in maximum displacement was negligible. Again, for 16 storey building, maximum displacement was found in the case L-Shaped 16 storey building with the value of 87.804 mm.

- Again, the transference of heavy masses had a minimal effect on total quantity and cost of the 16 Storey building.

- In the gist, it was concluded that, bending moments and shear forces were increased from 1.17% to 1.84%. Maximum variation in B.M and S.F. can be seen in O-shaped Building. L-shaped Building produces maximum displacement from all the three irregular shapes i.e. H-shape, L-shaped and O-shaped.

This research work mainly deals with the seismic analysis of high rise buildings using STAAD.Pro, it can also be done using similar other kinds of software, but at the time of the research work it was very much limited for the whole seismic analysis of the similar other shapes structures as it was beyond the limits of the software although it can be resolved if some other kind of software was used [18,19]. At the time of the research work it was proposed to consider base isolation, hydraulic jacks and distemper kinds of aspects for performing the research work in a better and broader way, but still due to the absence of advanced aspects in the software, limited research work was performed. It was found that the existing practical applications of the similar kinds of irregular shaped buildings was unable to locate due to certain number of aspects and if found at the research work location, the research work might be performed in a broader way or detailed manner.

5.1. Future Scope

Present thesis work was carried out in the seismic zone V with V-type bracing for 16-storey building and 12 storey building with plan and mass irregularities. In future, many Research work shall be carried out from this manuscript includes: : As the variation in displacement was negligible when the heavy mass was transferred from 6th floor in 12 storey building and 9th floor in 16 storey building to three storey above. Therefore, the gap in transference of heavy mass shall be at least 5 Storey for next research. As H-shape, L-shape and O-shape buildings were chosen for present study, different shaped building such as U-shape, plus shape etc. shall be adopted for new study. Another study shall be carried out by changing the seismic zone of seismic analysis. New research study shall be conducted if the type of bracing (i.e. cross bracing, zigzag bracing) and the location of bracing is changed. Different design software like e-tabs, if used, can also generate new research work as it may produce different result. A good comparative study shall be conducted in this case.
REFERENCES

[1] El-Kholy A M, Sayed H and Shaheen A A 2018 Comparison of Egyptian Code 2012 with Eurocode 8-2013, IBC 2015 and UBC 1997 for seismic analysis of residential shear-walls RC buildings in Egypt Ain Shams Eng. J. 9 3425–36

[2] Sumit and Gupta S M 2019 Performance-Based Seismic Evaluation of Multi-storey R.C.C. Building with Addition of Shear Wall Lect. Notes Civ. Eng. 30 49–61

[3] Choi Y, Ju H and Jung H-J 2020 Probabilistic soil-structure interaction response of nonlinear npp structure in time domain Proceedings of the 30th European Safety and Reliability Conference and the 15th Probabilistic Safety Assessment and Management Conference ed Z E Baraldi P. Di Maio F. (Research Publishing, Singapore) p 217

[4] Sunagar P, Dharek M S, Nruhtya K, Sreekeshava K S, Nagashree B and Ramegowda R S 2020 Non-Linear Seismic Analysis of Steel Plate Shear Wall Subjected to Blast Loading IOP Conference Series: Materials Science and Engineering vol 955, ed K N P V Vasudevan M. Soundara B. (IOP Publishing Ltd)

[5] Ugalde D, Lopez-Garcia D and Parra P F 2020 Fragility-based analysis of the influence of effective stiffness of reinforced concrete members in shear wall buildings Bull. Earthq. Eng. 18 2061–82

[6] Mats T T, Branco J M, Rocha P, Demschner T and Lourenço P B 2019 Quasi-static tests on a two-story CLT building Eng. Struct. 201

[7] Briceno C, Noel M F, Chacara C and Aguilar R 2021 Integration of non-destructive testing, numerical simulations, and simplified analytical tools for assessing the structural performance of historical adobe buildings Constr. Build. Mater. 290

[8] Kiani Y M, Lavassani S H H and Meshkat-Dini A 2021 Seismic assessment of nature-inspired hexagrid lateral load-resisting system Earthq. Eng. Eng. Vib. 20 661–72

[9] Beiranvand B, rozbahi M, Mazaheri A R and Komasi M 2021 Quasi-static and dynamic analysis of pore water pressure in Azadi earth dams using Abaqus software Arab. J. Geosci. 14

[10] Zhang J, Yang Z-Y, Yuan D-P, Zheng S-X and Hu Y-R 2021 Seismic Response of Two Site Models and Their Effects on the Railway Cable-Stayed Bridge KSCE J. Civ. Eng.

[11] Shehu R 2021 A Simplified Two-Step Approach for the Seismic Retrofitting Design of Existing Structures Towards a Resiliency Enhancement RILEM Bookseries 32 133–46

[12] Navya K S, Vishal B V, Kavitha S and Mamatha P G 2021 Seismic Behaviour of Twisted Tall Building with Different Angle of Rotation ed S S K S T K V O P Manik G. Kalia S. Lect. Notes Mech. Eng. 65–75

[13] Raggi F 2021 Seismic Analyses of Menta Embankment Dam: An Elasto-Plastic Model with a Stress-Strain Dependent Stiffness and a Composite Yielding Surface ed M G F A Bolzon G. Sterpi D. Lect. Notes Civ. Eng. 91 605–17

[14] Catalano E, Stucchi R, Agosti M and Crapp R 2021 Seismic Analysis of Menta Embankment Dam ed M G F A Bolzon G. Sterpi D. Lect. Notes Civ. Eng. 91 439–52

[15] Singh D, Kumar V and Kaur M 2019 Single image dehazing using gradient channel prior Appl. Intell. 49 4276–93

[16] Singh G, Prunca C I, Gupta M K, Mia M, Khan A M, Jamil M, Pimenov D Y, Sen B and Sharma V S 2019 Investigations of machining characteristics in the upgraded MQL-assisted turning of pure titanium alloys using evolutionary algorithms Materials (Basel). 12

[17] Singh U, Salgotra R and Rattan M 2016 A Novel Binary Spider Monkey Optimization Algorithm for Thinning of Concentric Circular Antenna Arrays IETE J. Res. 62 736–44

[18] Kumar A, Grover N, Manna A, Kumar R, Chohan J S, Singh S, Singh S and Prunca C I 2021 Multi-Objective Optimization of WEDM of Aluminum Hybrid Composites Using AHP and Genetic Algorithm Arab. J. Sci. Eng.

[19] Khairandish M I, Chopra A, Singh S, Chohan J S and Kumar R 2021 Effect of Gradation and Morphological Characteristics of Aggregates on Mechanical Properties of Bituminous Concrete and Dense Bituminous Macadam Iran. J. Sci. Technol. - Trans. Civ. Eng.