The efficiency of star formation in clustered and distributed regions

Ian A. Bonnell,1* Rowan J. Smith,1,2 Paul C. Clark2 and Matthew R. Bate3

1SUPA, School of Physics and Astronomy, University of St Andrews, North Haugh, St Andrews, Fife KY16 9SS
2Institut fuer Theoretische Astrophysik, Albert-Ueberle-Str. 2, 69120 Heidelberg, Germany
3School of Physics, University of Exeter, Stocker Road, Exeter EX4 4QL

Accepted 2010 August 27. Received 2010 July 30; in original form 2010 June 22

ABSTRACT

We investigate the formation of both clustered and distributed populations of young stars in a single molecular cloud. We present a numerical simulation of a $10^4 M_\odot$ elongated, turbulent, molecular cloud and the formation of over 2500 stars. The stars form both in stellar clusters and in a distributed mode, which is determined by the local gravitational binding of the cloud. A density gradient along the major axis of the cloud produces bound regions that form stellar clusters and unbound regions that form a more distributed population. The initial mass function (IMF) also depends on the local gravitational binding of the cloud with bound regions forming full IMFs whereas in the unbound, distributed regions the stellar masses cluster around the local Jeans mass and lack both the high-mass and the low-mass stars. The overall efficiency of star formation is ≈ 15 per cent in the cloud when the calculation is terminated, but varies from less than 1 per cent in the regions of distributed star formation to ≈ 40 per cent in regions containing large stellar clusters. Considering that large-scale surveys are likely to catch clouds at all evolutionary stages, estimates of the (time-averaged) star formation efficiency (SFE) for the giant molecular cloud reported here is only ≈ 4 per cent. This would lead to the erroneous conclusion of slow star formation when in fact it is occurring on a dynamical time-scale.

Key words: stars: formation – stars: luminosity function, mass function – ISM: clouds – open clusters and associations: general.

1 INTRODUCTION

The ability to conduct wide-area surveys of molecular clouds has shown that most stars form in clusters containing some hundreds to thousands of stars (Lada et al. 1991; Clarke, Bonnell & Hillenbrand 2000; Lada & Lada 2003). At the same time, mid-infrared surveys such as Spitzer have shown that significant numbers of stars form in a more distributed mode (Allen et al. 2007; Gutermuth et al. 2008, 2009; Evans et al. 2009). The reason why such different modes of star formation exist, and in the same cloud (e.g. Orion A) is unclear.

There has also been considerable interest as to why star formation appears to be inefficient (Evans et al. 2009), with only a few per cent of a molecular cloud’s mass being turned into stars per free-fall time. This could imply that star formation is a slow process (Krumholz & Tan 2007) or that it is an inherently inefficient process, but proceeds on the local dynamical time-scale. In the latter case the efficiency must increase on small scales where bound clusters are formed. For example, the Orion nebula cluster has a median age of $\approx 10^7$ yr and a dynamical time of $\approx 3 \times 10^5$ yr (Hillenbrand & Hartmann 1998). Given an overall SFE of ≈ 50 per cent this implies a star formation per free-fall time of 15 per cent. Considering that the initial pre-cluster cloud is likely to have been at least a factor of 2 larger (Bonnell, Bate & Vine 2003), this implies an efficiency of star formation per initial free-fall time of close to 50 per cent.

To date, numerical simulations have generally chosen spherically symmetric or period box initial conditions of gravitationally bound clouds which collapse and fragment to form stellar clusters (Klessen, Burkert & Bate 1998; Bate, Bonnell & Bromm 2003; Bate 2009). Cluster formation proceeds through hierarchical fragmentation and production of a somewhat distributed population which undergoes a hierarchical merger process from small subclusters to one final cluster containing most of the stars (Bonnell et al. 2003; Bate 2009; Federrath et al. 2010). One simple possibility is that if star formation occurs in regions of molecular clouds that are globally unbound, then there is no reason for the stars that form from the fragmenting population to fall together to form the large stellar cluster. Recent work evaluating the boundedness of molecular clouds show that their masses are typically five times smaller than that to be virialized, implying that much of the present day star formation is occurring in unbound molecular clouds (Heyer et al. 2009). Here we demonstrate that the outcome of a distributed or clustered population can depend on whether the region is, or is not, globally bound.

Gravitationally unbound clouds have been explored in a series of studies to investigate how this relates to the efficiency of star

*E-mail: iab1@st-and.ac.uk
formation (Clark & Bonnell 2004; Clark et al. 2005; Clark, Bonnell & Klessen 2008). Low SFEs are commonly taken to imply that star formation is slow and that molecular clouds are long-lived entities, supported by some internal mechanism and lasting for several tens of dynamical times. In contrast, unbound clouds can also produce low SFEs on dynamical time-scales due to the fact that only a fraction of the cloud becomes gravitationally bound due to the turbulence and undergoes gravitational collapse and star formation.

In this paper, we explore the importance of the local gravitational binding in one cloud and show that a single cloud can produce both a distributed and a clustered population, and a range of SFEs, depending on the local gravitational binding.

2 CALCULATIONS

The results presented here are based on a large-scale smoothed particle hydrodynamics (SPH) simulation of a cylindrical 104 M⊙ molecular cloud 10 pc in length and 3 pc in cylindrical diameter. We have chosen an elongated cloud rather than the more standard spherical cloud as most molecular clouds are non-spherical and commonly elongated (e.g. Orion A). Such a geometry can also produce additional structure due to gravitational focusing (Hartmann & Burkert 2007). This also allows for the physical properties to be varied along the cloud in a straightforward manner. The cloud has a linear density gradient along its major axis with maximum/minimum values, at each end of the cylinder, 33 per cent high/lower than the average gas density of 1.35 × 10−20 g cm−3. The gas has internal turbulence following a Larson-type P(k) ~ k−4 power law throughout the cloud and is normalized such that the total kinetic energy balances the total gravitational energy in the cloud. This corresponds to a full cloud (10 pc) 3D velocity dispersion of the order of 4.5 km s−1. The density gradient applied then results in one end of the cloud being over-bound (still superviral) while the other end of the cloud is unbound.

The cloud is populated with 15.5 million SPH particles on two levels, providing high resolution in regions of interest. We initially performed a lower resolution run with 5 million SPH particles producing an average mass resolution of 0.15 M⊙ (Bate & Burkert 1997). Upon completion of this low-resolution simulation, we used three criteria to identify the regions that required higher resolution. This included the particles which formed sinks, and those that were accreted on to sinks. It also included particles which attained sufficiently high density such that their local Jeans mass was no longer resolved in the low-resolution run. All of these particles were identified and from the initial conditions of the low-resolution run, they were split into nine particles each to create the initial conditions for the high-resolution simulations. This particle splitting was performed on the initial conditions to ensure that the physical quantities of mass, momentum, energy and the energy spectrum were preserved. Note that the particle splitting does not introduce finer structure in the turbulent energy spectrum. This produced a mass resolution for the regions involved in star formation of 0.0167 M⊙, sufficient to resolve the formation of higher mass brown dwarfs, equivalent to a total number of 4.5 × 107 SPH particles. The equation of state (below) was specified in order to ensure that the Jeans mass in the higher resolution run did not descend below this mass resolution.

Particle splitting results in a marked increase in resolution without unmanageable computational costs (Kitsionas & Whitworth 2002, 2007). Note however that some of the unsplit particles, which in the low-resolution run neither exceeded their Jeans mass limit nor became involved in the star formation, did get accreted by the additional stars in the high-resolution run. This is to be expected as there are now additional locations of star formation not present in the low-resolution run and these additional sinks will necessarily accrete unsplit particles.

The simulation follows a modified Larson-type equation of state Larson (2005) comprising three barotropic equations of state:

\[P = k \rho^\gamma, \]

where

\[\gamma = 0.75; \quad \rho \leq \rho_1 \]
\[\gamma = 1.0; \quad \rho_1 < \rho \leq \rho_2 \]
\[\gamma = 1.4; \quad \rho_2 < \rho \leq \rho_3 \]
\[\gamma = 1.0; \quad \rho > \rho_3 \]

and \(\rho_1 = 5.5 \times 10^{-19} \text{ g cm}^{-3}, \rho_2 = 5.5 \times 10^{-15} \text{ g cm}^{-3}, \rho_3 = 2 \times 10^{-13} \text{ g cm}^{-3}. \)

The initial cooling part of the equation of state mimics the effects of line cooling and ensures that the Jeans mass at the point of fragmentation is appropriate for characteristic stellar mass (Jappsen et al. 2005; Bonnell, Clarke & Bate 2006a). The \(\gamma = 1.0 \) approximates the effect of dust cooling while the \(\gamma = 1.4 \) mimics the effects of an optically thick (to infrared radiation) core, although its location at \(\rho = 5.5 \times 10^{-15} \text{ g cm}^{-3} \), at lower densities than is typical, is in order to ensure that the Jeans mass is always fully resolved and that a single self-gravitating fragment is turned into a sink particle. A higher critical density for this optically thick phase where heating occurs would likely result in an increase in the numbers of low-mass objects formed. The physical processes described would be unchanged. The final isothermal phase of the equation of state is simply in order to allow sink-particle formation to occur, which requires a subvirial collapsing fragment. The initial conditions of the cloud contain 891 thermal Jeans masses (\(M_{\text{Jeans}} \approx 11 M_\odot \)) such that if the cloud were isothermal, we would expect of the order of 900 fragments to form.

Star formation in the cloud is modelled through the introduction of sink particles (Bate, Bonnell & Price 1995). Sink-particle formation is allowed once the gas density of a collapsing fragment reaches \(\rho \geq 6.8 \times 10^{-14} \text{ g cm}^{-3} \), although the equation of state ensures that this requires \(\rho \geq 2.0 \times 10^{-13} \text{ g cm}^{-3} \). The neighbouring SPH particles need to be within a radius of \(1.0 \times 10^{-3} \text{ pc} \) and that fragment must be subvirial and collapsing. Once created, the sinks accrete bound gas within \(1.0 \times 10^{-3} \text{ pc} \) and all gas that comes within \(2.0 \times 10^{-4} \text{ pc} \). The sinks have their mutual gravitational interactions smoothed to \(2.0 \times 10^{-4} \text{ pc} \) or 40 au. No interactions including binary or disc disruptions can occur within this radius.

We assume a 100 per cent efficiency of star formation within our sink particles. This likely overestimates the efficiency that would result were feedback from massive stars included. It is worth noting that our gas densities and core sizes are similar to the continuum surveys (Motte et al. 2001; André et al. 2007) that would require a 100 per cent conversion in order to obtain a mapping from the core mass function to the stellar initial mass function (IMF). Furthermore, previous simulations including ionization and winds (Dale et al. 2005; Dale & Bonnell 2008) do not find a large change in the resultant masses or mass spectra.

3 STAR FORMATION AND THE DEVELOPING IMF

The simulation was followed for 1.02 free-fall times or \(\approx 6.6 \times 10^5 \text{ yr} \) and \(\approx 3.9 \times 10^5 \text{ yr} \) after the first stars formed (see Fig. 1). During
Clustered and distributed star formation

2341

Figure 1. The evolution of our model GMC as it evolves to form both a distributed (bottom) and clustered (top) population of stars. The cloud is initially globally bound but a density gradient along the major axis of the cloud makes the lower region unbound while the top region is gravitationally bound. The cloud is shown at $0.365, 0.544, 0.727$ and $0.961 \, t_{\text{ff}} (t_{\text{ff}} \approx 6.6 \times 10^5)$. Each panel shows the cloud in a 10×10 pc region. The gas column densities are plotted on a logarithmic scale from 0.01 g cm$^{-2}$ (black) to 100 (white) g cm$^{-2}$.

this time, 2542 stars were formed with masses between 0.017 and 30 M$_{\odot}$. The majority of these stars form in the upper gravitationally bound part of the cloud while some 7 per cent form in the lower, gravitationally unbound regions.

Fig. 2 shows the developing IMF during the star formation process. The stars form with masses comparable to the Jeans mass of the local gas. These initial masses are initially of the order of several tenths of a solar mass, while lower mass fragments form stars later in the evolution due to the compression of gas to higher densities as it falls into existing stellar clusters (Bate, Bonnell & Bromm 2002; Bonnell, Clark & Bate 2008). Low- and intermediate-mass stars located in the centre of forming clusters continue to accreted from the infalling gas and become high-mass stars (e.g. Bonnell, Vine & Bate 2004; Smith, Longmore & Bonnell 2009). This produces a mass function that resembles the stellar IMF at all points during the evolution with a continuous source of low-mass stars forming with a decreasing subset of these accreting to ever higher masses. The high-mass end of the IMF is somewhat flatter than Salpeter (Maschberger et al. 2010). This leaves room for the additional physics of feedback from massive stars and the expected decrease in efficiency of massive star formation. Note that by the massive stars attain their high-mass status through ongoing accretion over relatively long time periods (Bonnell et al. 2004) such that their feedback could only affect the cloud after much of the star formation has occurred.

The cloud produces a variety of outcomes in terms of the distribution of stellar masses, clustered and distributed modes of star formation as well as the efficiency of the star formation process. These all depend largely on the initial conditions of the cloud and in particular to how gravitationally bound the cloud is locally.
The density gradient that is imposed along the major axis, in conjunction with a constant specific kinetic energy of the gas, results in a local variation of the gravitational binding. Measured in terms of the critical mass per unit length to be bound, this variation extends from $M/L = 0.6$ (unbound) to $M/L = 1.4$ (bound with the cloud overall having a $M/L = 1$).

4 CLUSTERING

The evolution produced a number of high-density clusters as well as a distributed population of stars. The clusters form predominantly in the (upper) bound regions of the cloud. The clusters form through the fragmentation of local overdense filamentary structures that arise due to the turbulence, especially where such filaments intersect. Stars fall into local potential wells and form small-N clusters which quickly grow by accreting other stars (and gas) that flow along the filaments into the cluster potential. The merger of clusters also contributes to the growth of a stellar cluster. Fig. 3 shows an example of this process whereby accretion of gas and stars occurs along filaments flowing into the cluster.

An important result from this work is that the clustering depends strongly on the local gravitational binding of the gas prior to star formation. Fig. 4 shows the resulting stellar densities as a function of how bound the cloud was initially in terms of the critical mass per unit length, M/L, to be bound. Two measures of the stellar densities are plotted. The blue crosses show the median stellar density determined by the volume needed to contain the 10 nearest stellar neighbours. The black triangles show the density of stars contained in a fixed volume of size 0.5 pc. The density determined by the first method is significantly higher as it typically is based on much smaller volumes. In both cases, the stellar density is low in regions that were initially unbound and is much higher in the bound parts of the cloud with $M/L > 1$.

This result is understandable in that clusters are (at least temporarily) bound objects and their formation requires that the pre-star formation gas is also bound. In locally unbound regions, it is still possible to form small stellar clusters in regions where turbulent compression and shocks result in a locally bound region. This process is more efficient in regions that are globally bound. Larger scale regions containing many subsystems are bound even before any turbulent support is dissipated. The smaller systems that form locally can then hierarchically merge to form large stellar clusters (Bonnell et al. 2003; Bate 2009). Residual gas in these bound regions then falls into the gravitational potential of the cluster to be competitively accreted by the growing massive stars located in the bottom of the potential well (Bonnell et al. 2004; Bonnell & Bate 2006). The massive stars are thus located in the stellar clusters.

The majority of the stars and brown dwarfs formed are in high-density regions or have been ejected from stellar clusters through interactions (Bate et al. 2002, 2003). As noted in Bonnell et al. (2008), the brown dwarfs predominantly form in stellar clusters due to the compression of the gas to high local densities as it falls into the gravitational potential. The high-mass stars are also predominantly formed in clusters (Bonnell et al. 2004; Smith et al. 2009). This leads to a potentially observable difference in the stellar IMFs of distributed and clustered star formation. Fig. 5 shows the final IMF for the overall population and also for distributed and clustered populations defined as those with a stellar density lower...
Clustered and distributed star formation

5 EFFICIENCY OF STAR FORMATION

One of the central questions we wish to address in this paper is the relationship between the nature and efficiency of the star formation process. Previous studies (i.e. Clark & Bonnell 2004; Clark et al. 2005, 2008) showed that unbound clouds resulted in inefficient star formation. Furthermore, the efficiency reduces dramatically the further the clouds are from being bound. Turbulent compression and shocks results in some star formation in these clouds but it is localized and much of the cloud escapes without entering the star formation process.

In this study, we have one cloud that has regions which are bound and regions which are unbound with a spatially varying M/L from 0.6 to 1.4. This results in a range in local SFEs from 0.006 to 0.4. Fig. 7 plots the local SFE as a function of the local binding of the cloud in terms of the critical M/L for the cloud to be globally bound. We see that after 1.02 free-fall times or $\approx 6.6 \times 10^5$ yr (and $\approx 3.9 \times 10^5$ yr after the first stars formed) the local efficiency of star formation is strongly dependent on local binding of the cloud. The bound regions have efficiencies varying from 10 per cent where the cloud is just bound to 20 per cent for a $M/L = 1.2$ to a peak...
The stellar density is plotted as a function of the local gravitational binding measure in terms of the critical mass-to-length measure for a cylinder to be gravitationally bound. The higher (blue) points show the median density measured from the 10 nearest neighbours to each ‘star’ while the lower value is measured over the local volume of the cloud. We see that low stellar densities correspond to unbound regions of the cloud whereas high stellar densities result from bound regions.

The initial mass functions at the end of the simulation are plotted for the total (top, black line) population and for those stars formed in high-density regions (over 100 stars pc$^{-3}$, red line) and low-density regions (lower, blue line). We see that the low-density regions do not form either high- or low-mass stars and thus result in an unusual IMF. The right-hand panel shows the same three distributions but where the stellar density is measured at the end of the simulation. Several stars formed in high-density regions have been ejected from the clusters into the field.

The value of 40 per cent near where the cloud is maximally bound. On the unbound side, the efficiency quickly drops below 10 per cent, reaching values as low as a few per cent for $M/L < 0.8$. We can thus conclude that small changes in the local binding of the cloud result in vastly different outcomes in terms of the SFE.

It is worth noting that there is a strong correlation between the local efficiency of star formation and the formation of stellar clusters. Regions with relatively high efficiencies of >10 per cent correspond to regions which are bound and thus form stellar clusters. In contrast, the unbound regions form a relatively distributed, low stellar density population and does so at very low efficiencies. This is in agreement with observations where clustered regions are found to have higher star-forming efficiencies, whereas distributed regions such as Taurus have low SFEs. These differences in the SFEs reported here are not simply due to delays in star formation in the unbound parts of the cloud as most of the mass is actually leaving the cloud and cannot partake in the star formation process (Clark et al. 2008).

The evolution of the SFE is shown in Fig. 8 from where the first stars form at $t \approx 0.5t_{ff}$ to the end of the simulation at $t \approx 1.0t_{ff}$. The overall SFE as measured at the end of the simulation is ≈ 15 per cent. This global value is an upper limit as no feedback effects are included (e.g. Dale & Bonnell 2008). Magnetic fields could also act to reduce this number further (Price & Bate 2008, 2009). For example, if feedback acted to destroy the cloud at $0.7t_{ff}$, then the final SFE would be of the order of 5 per cent.

Such global SFEs are commonly invoked to discriminate between slow and fast star formation. Slow star formation invokes some...
Star formation requires that the clouds are globally, or at least in large part, being gravitationally bound, with typically gravitational and kinetic energies unbound resulting in low SFEs. Star formation would then proceed until either the local gas reservoir is depleted, or until the gas reservoir is removed by the effects of feedback from young stars. The tidal shear from leaving the spiral arm potential could also limit the lifetime of the clouds (Dobbs et al. 2006). The majority of the cloud need never become gravitationally bound before the cloud is dispersed resulting in inefficient star formation process that is still occurring on a fast dynamical timescale.

8 CONCLUSIONS

Star formation in realistic GMCs will proceed from a variety of physical conditions, spanning regions that are gravitationally bound to parts or whole clouds which are gravitationally unbound. Star formation will occur as long as the local conditions are close to being gravitationally bound but the properties of the young stellar population can depend strongly on these conditions. Regions that are bound produce bound stellar clusters and a stellar population that follows the full IMF from brown dwarfs to high-mass stars. Regions that are unbound are likely to produce a somewhat skewed IMF biased towards the local Jeans mass in the gas and with significant lack of lower mass stars, such as those seen in Taurus (Luhman 2004).

The SFE is also a product of the local physical conditions with bound regions resulting in a relatively high SFE of the order of 10 per cent or more per free-fall time. Regions that are unbound can have drastically reduced efficiencies of the order of 1 per cent or less per free-fall time. Thus, clustered star formation should occur in regions of higher local SFEs that more distributed populations.

Estimates of low SFEs are equally consistent with fast dynamical star formation as slow quasi-static star formation provided that one relaxes the condition that GMCs are globally bound long-lived entities. Including the pre-star formation time periods where clouds are still being assembled, global estimates of depletion time-scales or star
formation rates per free-fall time will appear to be low even while local regions are undergoing fast star formation at high efficiencies. Finally, realistic GMCs are likely to be constructed from a mix of physical conditions such that a fraction of the cloud is bound producing stellar clusters at high efficiencies whereas the majority of the cloud is unbound producing a more distributed population at low SFEs before the cloud is unbound by feedback or alternative process. Such a scenario is consistent with a model where GMCs are not formed due to their self-gravity but rather to an external process such as spiral shocks (Dobbs et al. 2006; Dobbs 2008).

ACKNOWLEDGMENTS

We acknowledge the contribution of the UK Astrophysical Fluids Facility (UKAFF) and SUPA for providing the computational facilities for the simulations reported here. IAB thanks the ETCC committee of STFC for providing the rail journeys on which this paper was written. PCC acknowledges support by the Deutsche Forschungsgemeinschaft (DFG) under grant KL 1358/5 and via the Sonderforschungsbereich (SFB) SFB 439, Galaxien im frühen Universum. MRB is grateful for the support of a Philip Leverhulme Prize and a European Young Investigator (EURYI) Award. This work, conducted as part of the award ‘The formation of stars and planets: radiation hydrodynamical and magnetohydrodynamical simulations’ made under the European Heads of Research Councils and European Science Foundation EURLI Awards scheme, was supported by funds from the Participating Organizations of EURYI and the EC Sixth Framework Programme. We would like to thank Chris Rudge and Richard West at the UKAFF for their tireless assistance and enthusiasm during the completion of this work.

REFERENCES

Allen L. et al., 2007, in Reipurth B., Jewitt D., Keil K., eds, Protostars and Planets V. Univ. Arizona Press, Tucson, p. 361
André P., Belloche A., Motte F., Peretto N., 2007, A&A, 472, 519
Bate M. R., 2009, MNRAS, 392, 590
Bate M. R., Burkert A., 1997, MNRAS, 288, 1060
Bate M. R., Bonnell I. A., Price N. M., 1995, MNRAS, 277, 362
Bate M. R., Bonnell I. A., Bromm V., 2002, MNRAS, 332, L65
Bate M. R., Bonnell I. A., Bromm V., 2003, MNRAS, 339, 577
Bonnell I. A., Bate M. R., 2006, MNRAS, 370, 488
Bonnell I. A., Bate M. R., Vine S. G., 2003, MNRAS, 343, 413
Bonnell I. A., Vine S. G., Bate M. R., 2004, MNRAS, 349, 735
Bonnell I. A., Dobbs C. L., Robitaille T. P., Pringle J. E., 2006a, MNRAS, 365, 37
Bonnell I. A., Clarke C. J., Bate M. R., 2006b, MNRAS, 368, 1296
Bonnell I. A., Clarke P., Bate M. R., 2008, MNRAS, 389, 1556
Clark P. C., Bonnell I. A., 2004, MNRAS, 347, L36
Clark P. C., Bonnell I. A., Zinnecker H., Bate M. R., 2005, MNRAS, 359, 809
Clark P. C., Bonnell I. A., Klessen R. S., 2008, MNRAS, 386, 3
Clarke C. J., Bonnell I. A., Hillenbrand L. A., 2000, in Mannings V., Boss A. P., Russell S. S., eds, Protostars and Planets IV. Univ. Arizona Press, Tucson, p. 151
Dale J. E., Bonnell I. A., 2008, MNRAS, 391, 2
Dale J. E., Bonnell I. A., Clarke C. J., Bate M. R., 2005, MNRAS, 358, 291
Dobbs C. L., 2008, MNRAS, 391, 844
Dobbs C. L., Bonnell I. A., Pringle J. E., 2006, MNRAS, 371, 1663
Elmegreen B. G., 2000, MNRAS, 311, L5
Evans N. J., Dunham M. M., Jørgensen J. K., Enoch M. L., Merín B., van Dishoeck E. F., Alcalá J. M., Myers P. C., 2009, ApJS, 181, 321
Federrath C., Banerjee R., Clark P. C., Klessen R. S., 2010, ApJ, 713, 269
Gutermuth R. A. et al., 2008, ApJ, 674, 336
Gutermuth R. A., Megeath S. T., Myers P. C., Allen L. E., Pipher J. L., Fazio G. G., 2009, ApJS, 184, 18
Hartmann L., Burkert A., 2007, ApJ, 654, 988
Heyer M., Krawczyk C., Duval J., Jackson J.-M., 2009, ApJ, 699, 1092
Hillenbrand L. A., Hartmann L. W., 1998, ApJ, 492, 540
Jappsen A.-K., Klessen R. S., Larson R. B., Li Y., Mac Low M.-M., 2005, A&A, 435, 611
Kitsionas S., Whitworth A. P., 2002, MNRAS, 330, 129
Kitsionas S., Whitworth A. P., 2007, MNRAS, 378, 507
Klessen R. S., Burkert A., Bate M. R., 1998, ApJ, 501, L205
Krumholz M. R., Tan J. C., 2007, ApJ, 654, 304
Lada C. J., Lada E. A., 2003, ARA&A, 41, 57
Lada E. A., Depoy D. L., Evans N. J., II, Gatley I., 1991, ApJ, 371, 171
Larson R. B., 2005, MNRAS, 359, 211
Luhman K. L., 2004, ApJ, 617, 1216
McKee C. F., Ostriker E. C., 2007, ARA&A, 45, 565
Maschberger T., Clarke C. J., Bonnell I. A., Kroupa P., 2010, MNRAS, 404, 1061
Motte F., André P., Ward-Thompson D., Bontemps S., 2001, A&A, 372, L41
Price D. J., Bate M. R., 2008, MNRAS, 385, 1820
Price D. J., Bate M. R., 2009, MNRAS, 398, 33
Pringle J. E., Allen R. J., Lubow S. H., 2001, MNRAS, 327, 663
Smith R. J., Longmore S., Bonnell I., 2009, MNRAS, 400, 1775

This paper has been typeset from a \TeX/\LaTeX\ file prepared by the author.