Caracterização do Pericárdio Humano Descelularizado para Engenharia de Tecidos e Aplicações de Medicina Regenerativa

Characterization of Decellularized Human Pericardium for Tissue Engineering and Regenerative Medicine Applications

Luciana Wollmann, Paula Suss, João Mendonça, Cesar Luzia, Andressa Schittini, George Willian Xavier da Rosa, Francisco Costa, Felipe F. Tuon
Pontifícia Universidade Católica do Paraná, Curitiba, PR – Brasil

Resumo

Fundamento: O enxerto de pericárdio pode ser usado em muitos procedimentos de correção cirúrgica. Uma das estratégias da engenharia tecidual é o processo de descelularização. No entanto, embora esse processo diminua a resposta imunogênica, a descelularização pode modificar tanto o comportamento como a composição da matriz extracelular natural.

Objetivos: Avaliar a eficácia da descelularização usando baixa concentração de dodecil sulfato de sódio na remoção celular, na manutenção das propriedades da matriz extracelular e na integridade mecânica do pericárdio humano descelularizado.

Métodos: A descelularização foi realizada com dodecil sulfato de sódio e ácido etilenodiamino tetra-acético. Foi realizada análise histológica, quantificação de DNA, e avaliação de glicosaminoglicanos e colágeno. O estudo biomecânico foi conduzido pelo teste de tração para comparar os efeitos da descelularização sobre as propriedades teciduais de resistência à tração, alongamento e módulo de elasticidade.

Resultados: Observou-se uma redução na quantidade de núcleos presentes no pericárdio após a descelularização, apesar de manter quantidades similares de feixes de elastina e de colágeno. As concentrações de DNA do pericárdio descelularizado foram significativamente reduzidas para menos que 511,23 ± 120,4 ng por mg de peso seco (p < 0,001). O teste biomecânico não apontou diferenças entre os tecidos fresco e descelularizado.

Conclusão: A descelularização reduziu a concentração de células bem como os componentes da matriz extracelular sem afetar suas propriedades biomecânicas. (Arq Bras Cardiol. 2019; 113(1):11-17)

Palavras-chave: Pericárdio; Bancos de Tecidos; Engenharia Tecidual/tendências; Separação Celular; Glicosaminoglicanos.

Abstract

Background: Pericardium tissue allograft can be used for surgical repair in several procedures. One of the tissue engineering strategies is the process of decellularization. This process decreases immunogenic response, but it may modify the natural extracellular matrix composition and behavior.

Objective: The aim of this study was to evaluate the effectiveness of cell removal, maintenance of extracellular matrix properties and mechanical integrity of decellularized human pericardium using a low concentration solution of sodium dodecyl sulfate.

Methods: Decellularization was performed with sodium dodecyl sulfate and ethylenediaminetetraacetic acid. Histological analysis, DNA quantification, evaluation of glycosaminoglycans and collagen were performed. Biomechanical assay was performed using tensile test to compare the decellularization effects on tissue properties of tensile strength, elongation and elastic modulus. P < 0.05 was considered significant.

Results: There was reduction in visible nuclei present in pericardium tissue after decellularization, but it retained collagen and elastin bundles similar to fresh pericardium. The DNA contents of the decellularized pericardium were significantly reduced to less than 511.23 ± 120.4 ng per mg of dry weight (p < 0.001). The biomechanical assay showed no significant difference for fresh or decellularized tissue.

Conclusion: The decellularization process reduces cell content as well as extracellular matrix components without changing its biomechanical properties. (Arq Bras Cardiol. 2019; 113(1):11-17)

Keywords: Pericardium; Tissue Banks; Tissue Engineering/trends; Cell Separation; Glycosaminoglycans.

Full texts in English - http://www.arquivosonline.com.br
Introdução

O desenvolvimento de bioscaffolds a partir da matriz extracelular (MEC) tem sido muito almejado para uso na engenharia tecidual e medicina regenerativa.1 Esse servem podem ser obtidos a partir de uma variação de fontes teciduais alogênicas e xenogênicas de diferentes espécies.2 No entanto, a antigenicidade do biomaterial representa a primeira barreira para se expandir o uso de tecidos xenogênicos na prática clínica.3

O pericárdio é um tecido biológico rico em colágeno contendo glicoproteínas e glicosaminoglicanos.4 Trata-se de um tecido prontamente disponível, maleável e de fácil manipulação. O pericárdio humano pode ser usado como um remendo (patch) em cirurgias cardíacas5 e não cardíacas, tais como na doença de Peyronie,6 glaucoma, e cirurgia de córnea5,6 para cobrir explantes esclerais8 e oculoplastias.8

O patch de pericárdio humano é um material bem conhecido na cirurgia cardiovascular.4 Quanto às características físico-químicas, o pericárdio autólogo usado em cirurgia inclui pericárdio fresco9,10 e pericárdio tratado com glutaraldeído.11 Porém, enquanto o uso de pericárdio autólogo fresco não tratado pode resultar em retração, espessamento, fibrose e perda de maleabilidade do tecido,12 o uso do pericárdio autólogo tratado com glutaraldeído pode resultar em calcificação.13

Assim, o principal desafio é o desenvolvimento de bioscaffold derivado da MEC que seja biocompatível e funcional. O uso de tecidos biológicos aumenta os riscos potenciais de transmissão de patógenos14 e resposta inflamatória ou imunogênica.2,15 As técnicas de descelularização têm sido usadas para minimizar essas questões.16

A descelularização tecidual pode ser realizada utilizando-se diferentes protocolos, extração com detergente ou extração enzimática com soluções hipotônicas ou hipertônicas e tratamentos físicos (agitação, sonicação, pressão mecânica, congelamento-descongelamento).17 O método ideal de descelularização deve remover os componentes antigênicos (ácidos nucleicos, membranas celulares, estruturas citoplasmáticas, lipídios e matriz solúvel) do tecido sem danificar a estrutura e a integridade da MEC.18 Contudo, o processo de descelularização pode modificar a composição natural da MEC, bem como suas características mecânicas e estruturais.19 Ainda, altos níveis de variabilidade dos doadores quanto à composição da MEC leva à diferença composição fracionária da MEC após a descelularização. Assim, a padronização da MEC como um biomaterial ainda é um desafio.20 Apesar de vários procedimentos de descelularização já terem sido descritos, o presente estudo avaliou a utilização de baixa concentração de detergente.

O objetivo deste estudo foi avaliar a remoção celular, a manutenção das propriedades da MEC e a integridade mecânica do pericárdio humano após o processo de descelularização utilizando uma solução com baixa concentração de dodecil sulfato de sódio.21

Métodos

Todos os procedimentos foram realizados de acordo com a Portaria número 2600 do Ministério da Saúde, publicada em 11 de dezembro de 2009, e resolução RDC nº 55 da ANVISA, publicada em 11 de dezembro de 2015. O estudo foi aprovado pelo Comitê de Ética da Pontifícia Universidade Católica do Paraná (protocolo número 1.455.773).

Doadores

Foi obtido, sob condições assépticas, pericárdio de 14 doadores em PCE e ME por amostragem de conveniência. Após o explante do coração, o órgão foi colocado em uma cuba contendo solução salina a 2-8°C, e os coágulos intracavitários foram lavados. O órgão foi colocado em um saco plástico esterilizado, imerso em (NaCl 0,9%) gelada em quantidade suficiente para manter o órgão totalmente imerso. Esse saco foi lacrado, e colocado em dois outros sacos plásticos (embalagem triplo), de modo que cada saco foi adequadamente amarrado ou selado. A embalagem contendo o órgão foi colocado em um recipiente hermético e armazenado dentro de uma caixa térmica com gelo e transportado para o banco de tecidos humanos. A dissecção foi realizada dentro de 48 horas da parada cardíaca. Realizou-se dissecção do tecido para remoção de tecido conjuntivo, e o saco pericárdico cortado em tiras, as quais foram armazenadas individualmente em solução salina a 2-8°C. As amostras foram esterilizadas para HIV, HTLV I/II, HBV, HCV, sífilis, citomegalovírus (IgM e IgG), toxoplasmose (IgM e IgG), e doença de Chagas. Os dados dos doadores foram obtidos dos prontuários médicos. Qualquer sorologia positiva foi usada como critério de exclusão, exceto IgG positivo para toxoplasmose e IgG para citomegalovírus.

Controle microbiológico

Antes do preparo do tecido, 30mL de solução de transporte (solução NaCl 0,9%) foi obtido assepticamente com uma seringa em cabine de segurança biológica classe II-A, e igualmente distribuída em um recipiente de 90mL contendo tioglicolato (Laborclin, Pinhais, Brasil), 90mL de caldo de soja tripético (Laborclin, Pinhais, Brasil) ou 90mL de ágar Sabouraud (Laborclin, Pinhais, Brasil) para análise bacteriológica e micológico. As amostras foram cultivadas por 14 dias a 35°C, 22°C e 22°C, respectivamente. As culturas foram examinadas diariamente quanto à evidência visual de turvação; aquelas que apresentavam crescimento de microrganismos foram identificadas quanto ao gênero e espécie.

Preparo do tecido e descontaminação

O tecido adiposo foi dissecado com auxílio de tesouras e pinças. O pericárdio foi dividido em duas partes para caracterizar o pericárdio fresco versus pericárdio descelularizado. Os pericárdios foram descontaminados em meio RPMI 1640 (Sigma-Aldrich, St Louie, EUA) contendo antibióticos (240µg/mL cefoxitina, 50 µg/mL vancomicina, 120 µg/mL lincomicina e 100 µg/mL polymixin B), e mantidos a 2-8°C por 24-48 horas. Culturas que permaneciam positivas após a descontaminação foram usadas como critérios de exclusão.

Descelularização

Em resumo, os pericárdios foram tratados sob agitação com uma solução de dodecil sulfato de sódio (SDS, Sigma-Aldrich,
Caracterização do pericárdio descelularizado

St. Louis, USA a 0,1% P/V. Em seguida, foram lavados com etanol a 70% (V/V) por 24 horas em temperatura ambiente, seguido de 10 dias de lavagem com cloreto de sódio (0,9%) para remoção de substâncias residuais e fragmentos celulares.

Análise histológica

Cortes longitudinais de 3,0 mm foram fixados com formalina tamponada neutra a 10% e em seguida em parafina. Cortes de 4 µm de espessura foram depois realizados. Para análise da integridade morfológica do pericárdio, realizou-se marcação com hematoxilina e eosina (H&E) e Russell-Movat (RMP), e utilizou-se um microscópio ótico BX51 (Olympus Tóquio, Japão). Pericárdio fresco foi usado como controle para avaliar mudanças causadas pela descelularização. As lâminas foram examinadas utilizando-se um scanner Axio Scan.Z1 (Carl Zeiss Microscopy GmbH, Jena, Alemanha), e o preparo das imagens foi realizado usando-se o programa Zen lite (Carl Zeiss, Jena, Alemanha).

Extração e quantificação de DNA

A quantificação de DNA foi usada para determinar o total de DNA remanescente comparando-se seus níveis no pericárdio fresco e no pericárdio descelularizado. As amostras de tecidos foram pesadas, purificadas e reidratadas usando-se o kit QIAGEN DNeasy para amostras de sangue ou tecido (QIAGEN, Newtownabbey, Reino Unido), seguindo-se protocolo recomendado. A concentração de DNA extraído foi determinada usando o espectrofotômetro Nanodrop (ThermoFisher Scientific, Wilmington, EUA). A amostra de DNA extraído (1 µL) foi colocada no Nanodrop, e a absorbância determinada a 260 nm. Foram realizadas quatro leituras para cada amostra, e a média foi considerada como a absorbância da amostra. A concentração de DNA foi calculada e expressa em microgramas por miligrama de tecido seco.

Caracterização bioquímica

Glicosaminoglicanos sulfatados (GAGs)

O pericárdio foi digerido com uma solução de papaína a 60 ºC por 6 horas. A papaína (Sigma, St. Louis, MO) foi dissolvida a 400 mg/mL em tampão fosfato buffer 0,1 M (pH 6,0) contendo hidrocloruro de cisteína 5mM e EDTA 5mM. Os produtos da lise foram usados para detecção da quantidade de GAGs, a qual foi medida usando-se o kit Blyscan (Biocolor, Newtownabbey, Reino Unido), seguindo-se o manual do fabricante. O lisado de tecido foi misturado com o corante Blyscan para esse se ligar ao GAG. O complexo GAG-corante foi então coletado por centrifugação. Subsequentemente, o sobrenadante foi removido, o tubo drenado, e em seguida adicionou-se o reagente de dissociação. A solução foi então transferida para uma placa de 96 poços. A absorbância em relação ao controle de referência foi obtida a um comprimento de onda de 656 nm em um espectrofotômetro VersaMaxTM (Molecular Devices, Sunnyvale, EUA). A quantidade de GAGs foi calculada com base na curva padrão obtida com o GAG padrão do kit.

Colágeno

A concentração de colágeno no pericárdio foi determinada pelo ensaio Sircol (Biocolor, Newtownabbey, Reino Unido), seguindo-se as instruções do fabricante. Os pericárdios foram incubados a 48ºC por 48 horas em ácido acético 0,5M contendo pepsina 0,1 mg/mL. As amostras foram adicionadas ao correte Sircol, e os complexo colágeno-corante foram formados e precipitados. Após a centrifugação, o precipitado foi lavado uma vez com solução de lavagem e suspenso em reageante alcalino. A solução foi transferida para uma placa de 96 poços e a leitura da absorbância realizada pelo espectrofotômetro VersaMaxTM (Molecular Devices, Sunnyvale, EUA) a 550 nm. A quantidade de colágeno foi calculada com base em uma curva padrão obtida com colágeno tipo I bovino padrão fornecido no kit.

Análise de citotoxicidade

A citotoxicidade do pericárdio descelularizado foi avaliada de acordo com ISO 10993/5. Fibroblastos L929 (ATCC linhagem CCL 1, NCTC clone 929) foram semeados em placas de seis poços (Nest) em uma densidade de 1x10^4 células/poço. Em c2mM + soro bovino fetal 10%. Amostras em triplicata, controlado (5% ± 0,5% de CO 2) até que se obtenha um monolomo, em confluiu superior a 80%. O meio foi removido dos poços e substituído com ágar 1,8% e corante vermelho neutro a 0,01%. Amostras em triplicata, controle positivo, negativo e branco sobre a camada de ágar configuraram as placas. Após incubação por um período de 24 horas às 37ºC em atmosfera umidificada (5% ± 0,5% de CO2), mediou-se a zona de inibição ao redor das amostras, uma vez que o vermelho neutro não contém células mortas. A reatividade biológica das amostras foi classificada de 0 a 4 de acordo com os seguintes critérios: 0=ausência de citotoxicidade (ausência de uma zona de lise sob a amostra); 1=leve (zonas de lise celular somente sob a amostra); 2=baixa (zonas de lise celular ≤5 mm da amostra); 3=moderada (zonas de lise celular >5 mm e ≤10 mm da amostra); 4=grave (zonas de lise celular >10 mm, sem envolver o poço inteiro. Além disso, os poços foram examinados com um microscópio invertido (Nikon Eclipse TS 100; Nikon) para avaliar alterações celulares.

Estudo biomecânico

O estudo biomecânico do pericárdio humano foi realizado pelo teste de tração para comparar os efeitos de descelularização sobre as propriedades teciduais de resistência de tração, alongamento e módulo de elasticidade. Os testes foram realizados pela máquina universal EMIC DL 500. Foram utilizadas oito amostras de tecido fresco e seis amostras de tecido descelularizado, e a direção de tração das fibras de colágeno foi aleatória. A amostra (forma de halteres, do inglês dumbbell-shaped) foi baseada no padrão ASTM D1708-13 devido ao pequeno tamanho do tecido disponível. Para obtenção das amostras, foi necessário a fabricação de um cortador de aço, seguindo-se especificações
padrões, usado para cortar o pericárdio. Antes de cada teste, foram obtidos espessura, largura e comprimento inicial das amostras. A espessura e a largura são necessárias para cálculo da área transversal e consequentemente do estresse (equação 1). O comprimento inicial é necessário para cálculo da tensão e porcentagem de alongamento (equação 2). A espessura foi medida com um medidor próprio em três pontos do tecido. Aplicou-se uma pré-carga de 0,1 N e velocidade de 5mm/min.

Equação 1. Cálculo do estresse
\[\sigma = \frac{F}{A} \]
onde:
\(\sigma \) é o estresse, em Megapascal [MPa];
\(F \) é a força, em Newton [N] e
\(A \) é a área transversal em milímetros quadrado (mm²)

Equação 2. Cálculo da porcentagem de alongamento
\[\%El = \frac{\Delta C}{C_i} \times 100 = \varepsilon \times 100 \]
onde:
\%El é a porcentagem de alongamento;
\(\Delta C \) é a variação do comprimento da amostra, em milímetros (mm);
\(C_i \) é o comprimento inicial da amostra em mm, e
\(\varepsilon \) é a tensão em mm/mm

Análise estatística
As variáveis contínuas com distribuição normal foram expressas em média ± desvio padrão (DP), e aquelas com distribuição não normal em mediana e intervalo interquartil SD. As variáveis categóricas foram expressas em frequências ou porcentagens. O teste t de Student e o teste de Mann-Whitney foram usado para variáveis contínuas de distribuição normal e não normal, respectivamente. Todos os testes foram bicaudais, e um valor de \(P \leq 0,05 \) foi considerado significativo. A análise estatística foi realizada usando o SPSS 23.0.

Resultados

Características dos doadores
A idade média dos doadores foi 39 ± 14 anos, variando entre 17 e 59 anos. A maioria \(n = 12 \) (86%) dos doadores se autodeclarou como brancos e um indivíduo como afrodescendente \(n = 1 \) (7%). A raça de um paciente (7%) não foi encontrada registrada.

Análise microbiológica
Solução de transporte foi positiva em cinco das 14 amostras. Foram identificadas as bactérias *Corynebacterium* spp., *Streptococcus salivarius*, *Staphylococcus aureus*, *Klebsiella oxytoca*, *Anaerococcus prevotii* e *Leuconostoc pseudomesenteroides*. Os demais testes microbiológicos após descontaminação e descelularização foram negativos.

Análise da integridade da MEC e remoção das células
A coloração com H&E e DAPI mostraram redução dos núcleos visíveis presentes no tecido do pericárdio após a descelularização (Figura 1 A, B, D e E). Os principais componentes da MEC foram examinados com coloração RPM (colágeno: amarelo; elastina: preto; glicosaminoglicanos: azul). A estrutura das fibras extracelulares do pericárdio descelularizado reteve grupamentos de colágeno e elastina similares aos do pericárdio fresco. No entanto, o tecido descelularizado apresentava espessura aumentada em comparação ao tecido fresco (Figura 1 C e F).

Figura 1 – Caracterização histológica do pericárdio humano fresco e pericárdio humano descelularizado. Coloração hematoxilina e eosina (H&E) e a coloração de DAPI não mostraram evidência de células nos cortes teciduais (D e E). H&E e RPM mostraram que a descelularização não afeta a estrutura dos feixes de colágeno; no entanto, houve uma redução no colágeno e aumento na espessura do tecido descelularizado em comparação ao tecido fresco (D e F)
Efeito da descelularização sobre o teor de GAGs e colágeno

A concentração de colágeno por mg de peso seco do pericárdio humano antes e após a descelularização foi 126,9 ± 45,8 e 138,3 ± 58,6 µg/mg, respectivamente (p = 0,716). Após a descelularização, observou-se um pequeno aumento na concentração de colágeno no tecido de pericárdio fresco. A concentração de GAGs foi 0,64 ± 0,50 e 0,02 ± 0,06 por mg de tecido seco antes e após a descelularização, respectivamente (p = 0,014).

Análise de citotoxicidade

O pericárdio humano descelularizado (n=3) foi incubado por 24 horas (Figura 2A). A descelularização não teve efeito sobre as células, apontado pela morfologia normal das células após a incubação. O controle negativo também não teve efeito sobre as células (Figura 2B), ao passo que o látex (controle positivo) causou morte celular (Figura 2C).

Estudo biomecâncico

Não houve diferença estatística (testes de Welch; p = 0,9518) na espessura do pericárdio entre o tecido fresco e o tecido descelularizado (0,45 ± 0,06 mm e 0,44 ± 0,05 mm), respectivamente. A resistência de tração, alongamento e módulo de elasticidade elástico são apresentados em gráficos de dispersão em colunas (Figuras 3A, B e C), em média e DP. A diferença média entre os grupos não foi estaticisticamente significativa para nenhuma das características. A curva da média stress-tensão dos tecidos fresco e descelularizado são apresentados na Figura 3D, o que demonstra o comportamento típico de tecidos biológicos descrito anteriormente.21 Também é possível observar que o comportamento das curvas foi similar na fase inicial até a fase de transição, mantendo-se praticamente paralelas até a tensão máxima.

Discussão

O objetivo da descelularização é minimizar a resposta imune por meio da total remoção dos componentes celulares, bem como pela preservação das características físicas da MEC.2,21 O tecido descelularizado ideal deve atingir completa descelularização e preservação da MEC quanto à estabilidade e função biomecânica. Porém, reconhece-se que qualquer protocolo de descelularização pode resultar na ruptura da MEC e potencial perda da estrutura e composição da superfície.2

No presente estudo, a análise histológica mostrou que, apesar de a maioria dos componentes celulares ter sido removido, houve redução de alguns componentes da MEC e aumento da espessura do tecido descelularizado. Resultados semelhantes foram descritos por Courtman et al.,23 com aumento em três vezes na espessura do tecido. No entanto, no estudo de Mirsadraee et al.,23 em que se utilizou um protocolo de descelularização com SDS, não foram observadas mudanças significativas no pericárdio humano descelularizado em comparação ao pericárdio fresco na análise histológica.

No presente estudo, o pericárdio humano descelularizado apresentou pequeno aumento na quantidade de colágeno e uma redução significativa na quantidade de GAGs. Esses dados estão de acordo com os relatados por Mendoza-Novelo et al.,24 que mostraram uma redução na quantidade de GAGs no pericárdio fresco após a descelularização com tridecil álcool etoxilado e dilatação reversível em meio alcalino.24 Por outro lado, Mirsadraee et al.,23 relataram um pequeno aumento no teor de hidroxiprolina e GAG no tecido após a descelularização. Os autores concluíram que o aumento de hidroxiprolina deveu-se ao aumento relativo na proporção dessas moléculas em relação ao peso seco, dada a perda de proteínas solúveis e componentes celulares.

A fim de assegurar uma remoção residual adequada, foram realizados testes de citotoxicidade para determinar o efeito de resíduos químicos presentes no tecido descelularizado sobre o crescimento de células L929. Os resultados do teste mostraram crescimento adequado das células em contato com amostras do pericárdio humano descelularizado, indicando que os tecidos descelularizados eram atóxicos. Esse resultado também se correlaciona com dados de um estudo prévio23 com pericárdio humano descelularizado.

Nós comparamos as propriedades mecânicas do pericárdio fresco e do pericárdio descelularizado, e não observamos diferenças significativas entre elas. A descelularização com SDS em si não modifica o desempenho do pericárdio humano quanto aos parâmetros de resistência de tração, alongamento e módulo de elasticidade. Esses resultados haviam sido avaliados em pericárdio humano acelular.23 Em um estudo mais recente, em comparação ao pericárdio fresco, as propriedades biomecânicas do pericárdio descelularizado e criopreservado foram mantidas.25

No entanto, este estudo não avaliou o desempenho do implante de pericárdio humano descelularizado. A análise in vitro não é suficiente para confirmar completa

Tabela 1 – Concentração de colágeno, glicosaminoglicanos e DNA no pericárdio humano descelularizado

	Colágeno µg/mg	Glicosaminoglicano µg/mg	DNA ng/mg
Pericárdio fresco	126,9 ± 45,8	0,64 ± 0,50	1591 ± 726,0
Pericárdio descelularizado	138,3 ± 58,6	0,02 ± 0,06	511,23 ± 120,4
Valor de p	0,716	0,014	< 0,001
Conclusão

O processo de descelularização reduz a quantidade de células bem como a de componentes da MEC, e promove um aumento na espessura do tecido descelularizado em comparação ao tecido fresco sem alterar as propriedades biomecânicas. O pericárdio humano descelularizado pode ser um candidato apropriado para a produção de scaffolds a partir da MEC para aplicações na engenharia tecidual e na medicina regenerativa.

Contribuição dos autores

Concepção e desenho da pesquisa: Wollmann L, Suss P; Obtenção de dados: Wollmann L, Suss P, Mendonça J, Luzia C, Schittini A, Rosa GWX; Análise e interpretação dos dados: Luzia C, Tuon FF; Análise estatística e Revisão crítica do manuscrito quanto ao conteúdo intelectual importante: Tuon FF; Obtenção de financiamento: Costa F; Redação do manuscrito: Suss P, Tuon FF.
Potencial conflito de interesses
Declaro não haver conflito de interesses pertinentes.

Fontes de financiamento
O presente estudo foi financiado pelo Fundo Nacional de Saúde - Ministério da Saúde – projeto nº 814611/2014.

Referências

1. Lu H, Hoshiba T, Kawazoe N, Chen G. Autologous extracellular matrix scaffolds for tissue engineering. Biomaterials. 2011;32(10):2489-99.
2. Crapo PM, Gilbert TW, Badylak SF. An overview of tissue and whole organ decellularization processes. Biomaterials. 2011;32(12):3233-43.
3. Platt J, DiSesa V, Gail D, Massicot-Fisher J, National Heart L, Blood Institute H, et al. Recommendations of the National Heart, Lung, and Blood Institute Heart and Lung Xenotransplantation Working Group. Circulation. 2002;106(9):1043-7.
4. Hellstrom WJ, Reddy S. Application of pericardial graft in the surgical management of Peyronie’s disease. J Urol. 2000;163(5):1445-7.
5. Yoo C, Kang SY, Eom YS, Kim HM. Temporary Repair of Corneal Perforation Using Tutoplast((R))-Processed Pericardium Graft. Ophthalmic Surg Lasers Imaging. 2010 Mar:1-3.
6. Yoo C, Kwon SW, Kim YY. Pericardium plug in the repair of the corneoscleral fistula after Ahmed Glaucoma Valve explantation. Korean J Ophthalmol. 2008;22(4):268-71.
7. Weissgold DJ, Millay RH, Bochow TA. Rescue of exposed scleral buckles with cadaveric pericardial patch grafts. Ophthalmology. 2001;108(4):753-8.
8. Seider N, Beiran I, Kaltreider SA. One medial triangular Tutoplast sling as a frontalis suspension for adult myogenic blepharoptosis. Acta Ophthalmol Scand. 2006;84(1):121-3.
9. Evans CF, DeFilippi CR, Shang E, Griffith BP, Gammie JS. Fresh autologous pericardium for leaflet perforation repair in mitral valve infective endocarditis. J Heart Valve Dis. 2013;22(4):560-6.
10. Takahashi H, Kadowaki T, Maruo A, Okita Y, Oshima Y. Mitral commissural repair with autologous fresh pericardium in an infant. Ann Thorac Surg. 2014;97(3):1064-5.
11. Thudt M, Papadopoulos N, Monsefi N, Miskovic A, Karimian-Tabrizi A, Zierer A, et al. Long-Term Results Following Pericardial Patch Augmentation for Incompetent Bicuspid Aortic Valves: A Single Center Experience. Ann Thorac Surg. 2017;103(4):1186-92.
12. Shomura Y, Okada Y, Nasu M, Koyama T, Tsuchiya M, Murashita T, et al. Late results of mitral valve repair with glutaraldehyde-treated autologous pericardium. Ann Thorac Surg. 2013;95(6):2000-5.
13. Fukunaga N, Matsuo T, Saji Y, Imai Y, Koyama T. Mitral Valve Stenosis Progression Due to Severe Calcification on Glutaraldehyde-Treated Autologous Pericardium: Word of Caution for an Attractive Repair Technique. Ann Thorac Surg. 2015;99(6):2203-5.
14. Greenwald MA, Kuehnert MJ, Fishman JA. Infectious disease transmission during organ and tissue transplantation. Emerg Infect Dis. 2012;18(10):e1.
15. Badylak SF, Gilbert TW. Immune response to biologic scaffold materials. Semin Immunol. 2008;20(2):109-16.
16. Doehmen PM. Clinical results of implanted tissue engineered heart valves. HSR Proc Intensive Care Cardiovasc Anesth. 2012;4(4):225-31.
17. Rippel RA, Ghanbari H, Seifalian AM. Tissue-engineered heart valve: future of cardiac surgery. World J Surg. 2012;36(7):1581-91.
18. Aamodt JM, Grainger DW. Extracellular matrix-based biomaterial scaffolds and the host response. Biomaterials. 2016 Apr;86:68-82.
19. Gilbert TW, Sellaro TL, Badylak SF. Decellularization of tissues and organs. Biomaterials. 2006;27(19):3675-83.
20. Hasan A, Ragaert K, Swieszkowski W, Selimovic S, Paul A, Camci-Unal G, et al. Biomechanical properties of native and tissue engineered heart valve constructs. J Biomech. 2014;47(9):1949-63.
21. Min BJ, Kim YJ, Choi JW, Choi SJ, Kim SH, Lim HG. Histologic Characteristics and Mechanical Properties of Bovine Pericardium Treated with Decellularization and alpha-Galactosidase: A Comparative Study. Korean J Thorac Cardiovasc Surg. 2012;45(6):368-79.
22. Courtman DW, Pereira CA, Kashef Y, McComb D, Lee JM, Wilson GJ. Development of a pericardial acellular matrix biomaterial: biochemical and mechanical effects of cell extraction. J Biomed Mater Res. 1994;28(6):655-66.
23. Miranda RE, Wilcox HE, Korosissi SA, Kearney PN, Watterson KG, Fisher J, et al. Development and characterization of an acellular human pericardial matrix for tissue engineering. Tissue Eng. 2006;12(4):763-73.
24. Mendoza-Novelo B, Avila EE, Casich-Rodriguez JV, Jorge-Herrero E, Rojo FL, Guina GV, et al. Decellularization of pericardial tissue and its impact on tensile viscoelasticity and glycosaminoglycan content. Acta Biomater. 2011;7(3):1241-8.
25. Vinci MC, Tessitore G, Castiglioni L, Prandi F, Soncini M, Santoro R, et al. Mechanical compliance and immunological compatibility of fixative-free decellularized/cryopreserved human pericardium. PLoS One. 2013;8(5):e64769.

Este artigo não contém estudos com humanos ou animais realizados por nenhum dos autores.

Vinculação acadêmica
Não há vinculação deste estudo a programas de pós-graduação.