Carriage of carbapenemase- and extended-spectrum cephalosporinase-producing *Escherichia coli* and *Klebsiella pneumoniae* in humans and livestock in rural Cambodia; gender and age differences and detection of *bla*_{OXA-48} in humans

Clara Atterby¹ | Kristina Osbjer^{2,3} | Viktoria Tepper⁴ | Elisabeth Rajala² | Jorge Hernandez^{5,6,7} | Sokerya Seng³ | Davun Holl⁸ | Jonas Bonnedahl^{5,6} | Stefan Börjesson^{9,10} | Ulf Magnusson² | Josef D. Järhult¹

¹Zoonosis Science Center, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
²Division of Reproduction, Department of Clinical Sciences, Swedish University of Agricultural Sciences (SLU), Uppsala, Sweden
³Food and Agriculture Organization of the United Nations, Phnom Penh, Cambodia
⁴Institute of Environmental Engineering, ETH Zürich, Switzerland
⁵Center for Ecology and Evolution in Microbial Model Systems Linnaeus University, Kalmar, Sweden
⁶Department of Infectious Diseases, Kalmar County Council, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
⁷Diagnostic Centrum, Clinic Microbiologic Laboratory, Kalmar County Hospital, Kalmar, Sweden
⁸General Directorate of Animal Health and Production, Ministry of Agriculture, Forestry and Fisheries, Phnom Penh, Cambodia
⁹Department of Animal Health and Antimicrobial strategies, National Veterinary Institute (SVA), Uppsala, Sweden
¹⁰Department of Clinical and Experimental Medicine, Linköping University, Sweden

Correspondence
Clara Atterby, Zoonosis Science Center, Department of Medical Sciences, Uppsala University, Uppsala, Sweden.
Email: clara.atterby@medsci.uu.se

Funding information
Swedish Civil Contingencies Agency; Swedish International Development Cooperation Agency, Grant/Award Number: 2010-7876; Swedish Research Council VR, Grant/Award Number: 2016-02606

Abstract

Objectives: This study investigates the frequency and characteristics of carbapenemase-producing *Escherichia coli*/*Klebsiella pneumoniae* (CPE/K) and extended-spectrum cephalosporinase-producing *E. coli*/*K. pneumoniae* (ESCE/K) in healthy humans and livestock in rural Cambodia. Additionally, household practices as risk factors for faecal carriage of ESCE/K are identified.

Methods: Faecal samples were obtained from 307 humans and 285 livestock including large ruminants, pigs and poultry living in 100 households in rural Cambodia in 2011. Each household was interviewed, and multilevel logistic model determined associations between household practices/meat consumption and faecal carriage of ESCE/K. CPE and ESCE/K were detected and further screened for colistin resistance genes.
Results: CPE/K isolates harbouring \(\text{bla}_{\text{OXA-48}} \) were identified in two humans. The community carriage of ESCE/K was 20% in humans and 23% in livestock. The same ESBL genes: \(\text{bla}_{\text{CTX-M-15}} \), \(\text{bla}_{\text{CTX-M-14}} \), \(\text{bla}_{\text{CTX-M-27}} \), \(\text{bla}_{\text{SHV-2}} \), \(\text{bla}_{\text{SHV-12}} \), \(\text{bla}_{\text{SHV-28}} \); AmpC genes: \(\text{bla}_{\text{CMY-2}} \), \(\text{bla}_{\text{CMY-42}} \), \(\text{bla}_{\text{DHA-1}} \); and colistin resistance genes: \(\text{mcr-1-like} \) and \(\text{mcr-3-like} \) were detected in humans and livestock. ESCE/K was frequently detected in women, young children, pigs and poultry, which are groups in close contact. The practice of burning or burying meat waste and not collecting animal manure indoors and outdoors daily were identified as risk factors for faecal carriage of ESCE/K.

Conclusions: Faecal carriage of \(E. coli \) and \(K. pneumoniae \) harbouring extended-spectrum cephalosporinase genes are common in the Cambodian community, especially in women and young children. Exposure to animal manure and slaughter products are risk factors for intestinal colonization of ESCE/K in humans.

KEYWORDS

AmpC, Cambodia, carbapenemase, colistin, ESBL, risk factors, rural population, zoonoses

1 | BACKGROUND

Escherichia coli and *Klebsiella pneumoniae* can cause a variety of severe infections, which are increasingly difficult to treat due to acquired resistance to critically important antibiotics (WHO, 2012). Resistance to broad-spectrum beta-lactam antibiotics in *E. coli* and *K. pneumoniae* is commonly due to the production of enzymes, which are characterized as carbapenemases, extended-spectrum beta-lactamases (ESBLs) and plasmid-borne AmpC beta-lactamases (AmpCs), and the latter two may also be collectively referred to as extended-spectrum cephalosporinases (ESCs; Padmini, Ajilda, Sivakumar, & Selvakumar, 2017). Genes encoding carbapenemases, ESBLs and pAmpCs are often located on mobile genetic elements, for example plasmids, in *E. coli* and *K. pneumoniae*, enabling dissemination of antibiotic resistance genes between bacteria (Padmini et al., 2017). The emergence of carbapenemase-producing *E. coli*/*K. pneumoniae* (CPE/K) and extended-spectrum cephalosporinase-producing *E. coli*/*K. pneumoniae* (ESCE/K) in livestock populations, environment and the community shows that transmission and persistence of such bacteria occur also outside of clinical settings (Guenther, Ewers, & Wieler, 2011).

Community carriage of CPE/K has only been described in a few countries such as Lebanon (Beyrouthy et al., 2014) and Spain (Rios, Lopez, Rodriguez-Avil, Culebras, & Picazo, 2017), whereas community carriage of ESCE/K is common worldwide (Woerther, Burdet, Chachaty, & Andremont, 2013), with Southeast Asia identified as an area with a particularly high carriage of ESC-producing Enterobacteriaceae (Hawkey, 2008; Karanika, Karantanos, Arvanitis, Grigoras, & Mylonakis, 2016; Woerther et al., 2013). In China and Thailand, community carriage of ESCE varies between 30% and 58% (Li et al., 2011; Ni et al., 2016; Zhou et al., 2015) and 58% and 62%, respectively (Niumsup et al., 2018; Sasaki et al., 2010). Several studies have indicated that foreign travel from countries with low ESBL frequency to Southeast Asia is a major risk factor for acquiring ESBL-producing Enterobacteriaceae (Karanika et al., 2016). Other risk factors are recent use of antibiotics, recent hospitalization (Luvsansharav et al., 2012), owning a pet (Meyer, Gastmeier, Kola, & Schwab, 2012), household contact with infected community patients (Valverde et al., 2008) and regular consumption of chicken meat (Hijazi, Fawzi, Ali, & Abd El Galil, 2016b). Further potential risk factors that could influence the carriage of ESCE/K and CPE/K are household practices, especially in rural areas, involving poor food hygiene and living conditions that entail close contacts between humans, livestock and outdoor environment.

To date, there are no published reports of CPE/K in humans or livestock in Cambodia or of community carriage of ESCE/K in Cambodia. However, ESCE/K isolates have been detected as causative pathogens in Cambodian patients (Caron et al., 2018; Emary et al., 2015; Moore et al., 2016; Rammaert et al., 2012; Vlieghe et al., 2015). Genetic characterization of ESBL-producing *E. coli*
isolates in bloodstream infections in Cambodia revealed that 96% were of CTX-M-type, mainly bla_{TEM-1} and bla_{CMY-2} from faecal samples from five pigs in a Cambodian slaughterhouse (Trongjit, Angkititrakul, & Chuanchuen, 2016). Interviews with pig farmers have revealed that antibiotic use was common in pig farms (Ström, Boqvist, et al., 2018). ESBL-producing Salmonella has recently been isolated from retail meat in Phnom Penh, Cambodia, and most isolates were harbouring bla_{CTX-M-55} (Nadimpalli et al., 2018).

The objectives of this study were to determine the detection frequency of carbapenem- and third-generation cephalosporin-resistant <i>E. coli</i> and <i>K. pneumoniae</i> in humans and livestock and to analyse whether household practices and meat consumption are potential risk factors associated with community carriage in rural Cambodia. Furthermore, we wanted to characterize the specific carbapenemase/extended-spectrum cephalosporinase gene-variants found and screen for colistin resistance genes and antibiotic susceptibility in CPE/K and ESCE/K isolates.

2 | MATERIALS AND METHODS

2.1 | Sampling

Samples were collected in Kampong Cham, Cambodia, in May 2011 from 10 households each in 10 villages as previously described (Osbjerg et al., 2015). The sampling for this study was conducted in conjunction with other studies (Osbjerg et al., 2017, 2015; Osbjerg, Boqvist, et al., 2016; Osbjerg, Tano, et al., 2016). Samples were collected from humans and 1–6 livestock from the same household. In total, 307 human samples from adult females (135), adult males (54), children 0–5 years (33) and children 6–15 years (85), and 280 livestock samples from cattle (80), water buffalo (23), pigs (39), ducks (28) and chicken (110). For statistical analysis, cattle and water buffalo were grouped as ruminants and chicken and ducks were grouped as poultry. 200 of the 308 human samples had been previously thawed twice before inclusion in this project.

2.2 | Interviews

On day 1, the female head of the household was interviewed using a questionnaire, as previously described (Osbjerg et al., 2015). Questions focused on eight household practices: (a) livestock home slaughter, (b) livestock access to sleeping and food preparation areas, (c) consumption of unsafe water (untreated well or pond water), (d) hand wash with soap after handling animals, (e) bury or burn meat waste products, (f) daily collection of animal manure indoors and outdoors, (g) hand wash with soap before and after cooking and (h) consumption of undercooked meat and meat consumption: the number of days each month that the household consumed pork, beef, fish, poultry and wild animals. Antibiotic use was not investigated in this study.

2.3 | Isolation and characterization of CPE/K and ESCE/K

<i>Escherichia coli</i> and <i>K. pneumoniae</i> were isolated using three agar plates: chromID OXA-48 (BioMérieux), chromID CARBA (BioMérieux) and CHROMagar C3^R (Chromagar) and species identities were confirmed by matrix-assisted laser desorption/ionization (MALDI) with time-of-flight mass spectrometry (TOF) according to previously described methods (Atterby et al., 2016). Identified isolates from the chromID OXA-48 and chromID CARBA were subjected to multiplex-PCR detecting carbapenemase gene-groups bla_{KPC}, bla_{NDM}, bla_{OXA}, bla_{IMI}, bla_{AMP}, bla_{ARM}, bla_{GIM}, bla_{IM} and bla_{NDM} with the specific variants determined by sequencing (Brink et al., 2013; Poirrel, Walsh, Cuvillier, & Nordmann, 2011). Isolates from the CHROMagar C3^R plates were subjected to multiplex-PCRs detecting ESBL and AmpC gene-groups bla_{CTX-M}, bla_{SHV}, bla_{TEM}, bla_{OXA-1}, bla_{DOX}, bla_{AL}, bla_{OX}, bla_{ACC}, bla_{ACT} and bla_{FOX-L} and the specific variants were determined by sequencing (Egervarn et al., 2014). All confirmed CPE/K and ESCE/K isolates were subjected to PCR targeting colistin resistance genes mcr-1 to mcr-5 (Rebelo et al., 2018). Isolates in which no ESBL or AmpC genes could be identified were further phenotypically tested according to EUCAST disc diffusion method for antimicrobial susceptibility testing (EUCAST, 2009) and double disc synergy test (Jarlier, Nicolas, Fournier, & Philippon, 1988). Isolates with AmpC phenotype were excluded due to suspected chromosomal AmpC-production. Isolates with verified ESBL-phenotype were characterized as ESCE/K and included in the data analysis and statistical tests. All CPE/K and ESCE/K isolates were tested for susceptibility to Ciprofloxacin, Trimethoprim-sulfamethoxazole, Piperacillin/Tazobactam, Gentamicin, Meropenem, Tetracycline and Chloramphenicol using the EUCAST disc diffusion method and epidemiological cut-offs (ECOFFs) (EUCAST, 2009), with the exception of tetracycline where the cut-off was defined according to the normalized resistance interpretation method (Kronvall, Kahlmeter, Myhre, & Galas, 2003).

2.4 | Data management and statistical analysis

2.4.1 | Detection frequency

Pearson’s chi-square tests were performed using GraphPad Prism version 8 to analyse differences in detection frequencies of ESCE/K and CPE/K between hosts. To control for multiple chi-square tests on the livestock data (Ruminants vs. Pigs, Pigs vs. Poultry and Ruminants vs. Poultry), a Bonferroni correction (p ≤ 0.02) was used. In the human data (Adult females vs. Adult males and Children 0–5 years vs. Children 6–15 years), multiple tests were not performed, and thus, p-values ≤ 0.05 were considered significant.

2.4.2 | Risk factors

Statistical analysis was performed in SAS for Windows 9.3 (SAS Institute Inc.).
Table 1 Origin and characterization of all carbapenem- and extended-spectrum cephalosporin-producing Escherichia coli and Klebsiella pneumoniae detected in livestock and humans living in 10 rural villages in Kampong Cham, Cambodia, in 2011. In total, 307 human samples from adult females (135), adult males (54), children 0–5 years (33) and children 6–15 years (85), and 285 livestock samples from cattle (80), water buffalo (23), pigs (39), ducks (28) and chicken (110).

No.	Village	Household	Species	Sex/Age	Bacteria	Beta-lactamase/ESBL/pAmpC/ carbapenemase gene	Collistin res gene	Additional gene group, not sequenced	Non-wild-type antibiotic susceptibility
1	01.01	Chicken	<1 year	E. coli	bla^{CTX-M-27}	bla_{TEM}	Tmp/Smx, Tc		
2	01.03	Chicken	<1 year	E. coli	bla^{CTX-M-55}	bla_{TEM}	Cl, Tmp/Smx, Gm, Tc, Cm		
3	01.09	Chicken	<1 year	E. coli	bla^{CTX-M-15}	bla_{TEM}	Cl, Tmp/Smx, Gm, Tc, Cm		
4	01.10	Chicken	>1 year	E. coli	bla^{CTX-M-27}	bla_{TEM}	Tmp/Smx, Tc, Cm		
5	02.02	Chicken	<1 year	E. coli	bla^{OXY-2}	bla_{TEM}	Cl, Tmp/Smx, Tc		
6	02.06	Chicken	>1 year	E. coli	bla^{OXY-2}	bla_{TEM}	Cl, Tmp/Smx, Tc		
7	02.06	Chicken	>1 year	E. coli	bla^{OXY-2}	bla_{TEM}	Cl, Tmp/Smx, Tc		
8	02.07	Chicken	<1 year	E. coli	bla^{CTX-M-55}	bla_{TEM}	Cl, Tc, Cm		
9	02.08	Chicken	>1 year	E. coli	bla^{CTX-M-15}	bla_{TEM}, bla_{OXA}	Cl, Tmp/Smx, Tc		
10	03.03	Chicken	>1 year	E. coli	bla^{CTX-M-55}	bla_{TEM}	Tmp/Smx, Tc, Gm, Tc, Tc		
11	03.04	Chicken	>1 year	E. coli	bla^{CTX-M-27}	bla_{TEM}	Cl, Tmp/Smx, Gm, Tc, Cm		
12	04.05	Chicken	<1 year	E. coli	bla^{CTX-M-55}	bla_{TEM}	Tmp/Smx, Gm, Tc		
13	04.05	Chicken	<1 year	E. coli	bla^{CTX-M-55}	bla_{TEM}	Tmp/Smx, Tzp, Tc		
14	04.06	Chicken	>1 year	E. coli	bla^{CTX-M-27}	bla_{TEM}	Cl, Tmp/Smx, Gm		
15	04.08	Chicken	>1 year	E. coli	bla^{CTX-M-55}	bla_{TEM}	Cl, Tmp/Smx, Gm, Tc		
16	04.08	Chicken	>1 year	E. coli	bla^{CTX-M-14}	bla_{TEM}	Cl, Tc		
17	04.08	Chicken	>1 year	E. coli	bla^{OXY-2}	bla_{TEM}	Cl, Tmp/Smx, Tc, Cm		
18	04.10	Chicken	<1 year	E. coli	bla^{CTX-M-14}	mcr³ like	bla_{TEM}	Cl, Tmp/Smx, Gm, Tc, Cm	
19	04.10	Chicken	>1 year	E. coli	bla^{CTX-M-14}	mcr¹ like	bla_{TEM}	Cl, Tmp/Smx, Gm, Tc	
20	05.02	Chicken	>1 year	E. coli	bla^{CTX-M-15}, bla^{CTX-M-27}	bla_{TEM}	Tmp/Smx, Tc		
21	05.02	Chicken	>1 year	E. coli	bla^{CTX-M-14}	bla_{TEM}	Cl, Tmp/Smx, Gm, Tc		
22	06.03	Chicken	<1 year	E. coli	bla^{CTX-M-55}	bla_{OXA}	Cl, Tmp/Smx, Gm, Tc, Cm		
23	08.05	Chicken	<1 year	E. coli	bla^{CTX-M-15}	bla_{TEM}, bla_{OXA}	Cl, Tmp/Smx, Tzp, Tc, Cm		
24	08.05	Chicken	<1 year	E. coli	bla^{CTX-M-15}	bla_{TEM}, bla_{OXA}	Cl, Tmp/Smx, Tzp, Tc, Cm		
25	08.06	Chicken	<1 year	E. coli	bla^{CTX-M-55}	bla_{TEM}, bla_{OXA}	Cl, Tmp/Smx, Tc, Cm		
26	08.07	Chicken	>1 year	E. coli	bla^{CTX-M-14}	bla_{TEM}	Cl, Tmp/Smx, Tc, Cm		
27	08.10	Chicken	<1 year	E. coli	bla^{CTX-M-15}, bla^{CTX-M-27}	bla_{TEM}	Cl, Tmp/Smx, Tc, Cm		
28	08.10	Chicken	<1 year	E. coli	bla^{CTX-M-55}	bla_{TEM}	Cl, Tmp/Smx, Tc, Cm		
29	08.10	Chicken	<1 year	E. coli	bla^{CTX-M-27}	bla_{TEM}	Mer		
30	09.03	Chicken	>1 year	E. coli	bla^{CTX-M-14}	bla_{TEM}	Cl, Tmp/Smx, Tc		

(Continues)
No.	Village. Household	Species	Sex/Age	Bacteria	Beta-lactamase/ESBL/pAmpC/ carbapenemase gene	Collistin res gene	Additional gene group, not sequenced	Non-wild-type antibiotic susceptibility
31	09.05	Chicken	>1 year	E. coli	$\text{bla}_{\text{CTX-M15}}$			
32	09.09	Chicken	<1 year	E. coli	$\text{bla}_{\text{CTX-M27}}$	bla_{TEM}		
33	10.01	Chicken	<1 year	E. coli	$\text{bla}_{\text{CTX-M27}}, \text{bla}_{\text{CMY-2}}$	bla_{TEM}		
34	10.10	Chicken	>1 year	E. coli	$\text{bla}_{\text{CMY-2}}$			
35	01.10	Duck	>1 year	E. coli	$\text{bla}_{\text{CTX-M55}}$			
36	01.10	Duck	<1 year	E. coli	$\text{bla}_{\text{CTX-M55}}$			
37	02.03	Duck	>1 year	E. coli	$\text{bla}_{\text{CTX-M55}}$			
38	02.05	Duck	<1 year	E. coli	$\text{bla}_{\text{CTX-M55}}$			
39	04.09	Duck	>1 year	E. coli	$\text{bla}_{\text{CMY-2}}$			
40	01.10	Pig	>6 months	E. coli	$\text{bla}_{\text{CTX-M55}}$			
41	02.03	Pig	<3 month	E. coli	$\text{bla}_{\text{CTX-M55}}$			
42	02.09	Pig	<3 month	E. coli	$\text{bla}_{\text{CTX-M55}}$			
43	03.01	Pig	>6 months	E. coli	$\text{bla}_{\text{CTX-M55}}$			
44	03.02	Pig	>6 months	E. coli	$\text{bla}_{\text{CTX-M55}}$			
45	03.03	Pig	>6 months	E. coli	$\text{bla}_{\text{CTX-M55}}$			
46	03.07	Pig	3-6 month	E. coli	$\text{bla}_{\text{CTX-M55}}$			
47	04.01	Pig	>6 months	E. coli	$\text{bla}_{\text{CTX-M55}}$			
48	04.03	Pig	3-6 month	E. coli	$\text{bla}_{\text{CTX-M55}}$			
49	04.06	Pig	3-6 month	E. coli	$\text{bla}_{\text{CTX-M55}}$			
50	04.06	Pig	3-6 month	E. coli	$\text{bla}_{\text{CTX-M55}}$			
51	04.06	Pig	3-6 month	E. coli	$\text{bla}_{\text{CTX-M55}}$	bla_{TEM}		
52	04.07	Pig	>6 months	E. coli	$\text{bla}_{\text{CTX-M55}}$			
53	04.10	Pig	<3 month	E. coli	$\text{bla}_{\text{CTX-M55}}$			
54	06.02	Pig	<3 month	E. coli	$\text{bla}_{\text{CTX-M55}}$			
55	06.09	Pig	<3 month	E. coli	$\text{bla}_{\text{CTX-M55}}$			
56	09.05	Pig	<3 month	E. coli	$\text{bla}_{\text{CTX-M55}}$			
57	09.04	Cattle	>2 years	E. coli	$\text{bla}_{\text{CTX-M55}}$			
58	09.04	Cattle	>2 years	E. coli	$\text{bla}_{\text{CTX-M55}}$			
59	09.09	Cattle	>2 years	E. coli	$\text{bla}_{\text{CTX-M55}}$			

(Continues)
No.	Village, Household	Species	Sex/Age	Bacteria	Beta-lactamase/ESBL/pAmpC/carbapenemase gene	Colistin res gene	Additional gene group, not sequenced	Non-wild-type antibiotic susceptibility
62	03.06	Ruminant	<6 month	E. coli	bla_{CTX-M55}			
63	07.01	Buffalo	>2 years	E. coli	bla_{CTX-M27}			
64	01.01	Female	Adult	E. coli	bla_{CTX-M27}			
65	02.03	Female	Adult	E. coli	bla_{CTX-M27}			
66	02.10	Female	Adult	E. coli	bla_{CTX-M14}			
67	03.01	Female	Adult	E. coli	bla_{CTX-M55}			
68	03.06	Female	Adult	E. coli	bla_{CTX-M55}, mcr-3 like			
69	04.08	Female	Adult	E. coli	bla_{CTX-M27}			
70	04.10	Female	Adult	E. coli	bla_{CTX-M15}			
71	05.01	Female	Adult	E. coli	bla_{CTX-M14}			
72	05.03	Female	Adult	E. coli	bla_{CTX-M27}			
73	05.09	Female	Adult	E. coli	bla_{CTX-M27}			
74	06.10	Female	Adult	E. coli	bla_{CTX-M27}			
75	07.01	Female	Adult	E. coli	bla_{CTX-M14}			
76	07.04	Female	Adult	E. coli	bla_{CMY-2}, bla_{OXA-48}			
77	07.04	Female	Adult	E. coli	bla_{CTX-M27}			
78	07.05	Female	Adult	E. coli	bla_{CTX-M27}			
79	07.08	Female	Adult	E. coli	bla_{CMY-2}, bla_{OXA-48}			
80	07.08	Female	Adult	E. coli	bla_{CTX-M55}			
81	08.01	Female	Adult	E. coli	bla_{CMY-2}			
82	08.04	Female	Adult	E. coli	bla_{CTX-M14}, bla_{OXA-48}			
83	08.09	Female	Adult	E. coli	bla_{CTX-M55}			
84	09.02	Female	Adult	E. coli	bla_{CMY-42}			
85	09.03	Female	Adult	E. coli	bla_{CTX-M15}			
86	09.04	Female	Adult	E. coli	Unknown			
87	09.07	Female	Adult	E. coli	bla_{CTX-M27}			
88	10.02	Female	Adult	E. coli	bla_{CTX-M55}			
89	10.09	Female	Adult	E. coli	bla_{CTX-M27}			
90	03.07	Male	Adult	E. coli	bla_{CTX-M27}			
91	04.05	Male	Adult	E. coli	bla_{CTX-M27}			
92	06.03	Male	Adult	E. coli	bla_{CTX-M55}			
No.	Village. Household	Species	Sex/Age	Bacteria	Beta-lactamase/ESBL/pAmpC/carbapenemase gene	Collistin res gene	Additional gene group, not sequenced	Non-wild-type antibiotic susceptibility
-----	------------------	---------	---------------	----------	---	-------------------	--------------------------------------	--------------------------------------
93		Male	Adult	E. coli	$\text{bla}_{\text{CTX-M15}}$			
94		Male	Adult	E. coli	$\text{bla}_{\text{CTX-M15}}$			
95		Male	Adult	E. coli	$\text{bla}_{\text{CTX-M27}}$			
96		Child	6–15 years	E. coli	$\text{bla}_{\text{CTX-M14}}$			
97		Child	6–15 years	E. coli	$\text{bla}_{\text{CTX-M55}}$		bla_{OXA}	
98		Child	6–15 years	E. coli	$\text{bla}_{\text{CTX-M55}}$			
99		Child	6–15 years	E. coli	$\text{bla}_{\text{CTX-M14}}$		mcr1-like	
100		Child	6–15 years	E. coli	$\text{bla}_{\text{CTX-M27}}$			
101		Child	6–15 years	E. coli	$\text{bla}_{\text{CTX-M55}}$			
102		Child	6–15 years	E. coli	$\text{bla}_{\text{CTX-M14}}$			
103		Child	6–15 years	E. coli	$\text{bla}_{\text{CTX-M55}}$		bla_{TEM}	
104		Child	6–15 years	E. coli	$\text{bla}_{\text{CTX-M27}}$		bla_{TEM}	
105		Child	6–15 years	E. coli	$\text{bla}_{\text{CTX-M55}}$			
106		Child	6–15 years	E. coli	$\text{bla}_{\text{CTX-M55}}$			
107		Child	2–5 years	E. coli	$\text{bla}_{\text{CTX-M27}}$		bla_{TEM}	
108		Child	2–5 years	E. coli	$\text{bla}_{\text{CTX-M55}}$			
109		Child	2–5 years	E. coli	$\text{bla}_{\text{CTX-M14}}$		bla_{TEM}	
110		Child	2–5 years	E. coli	$\text{bla}_{\text{CTX-M15}}$			
111		Child	2–5 years	E. coli	$\text{bla}_{\text{CTX-M14}}$			
112		Child	2–5 years	E. coli	$\text{bla}_{\text{CTX-M15}}$			
113		Child	<2 years	E. coli	$\text{bla}_{\text{CTX-M14}}$			
114		Child	<2 years	E. coli	$\text{bla}_{\text{CTX-M55}}, \text{bla}_{\text{CTX-M14}}, \text{bla}_{\text{CMY-2}}$	bla_{TEM}		
115		Child	<2 years	E. coli	$\text{bla}_{\text{CTX-M55}}$			
116		Human	Unknown	E. coli	$\text{bla}_{\text{CTX-M55}}$		bla_{TEM}	
117		Chicken	>1 year	Kl. pn.	$\text{bla}_{\text{SHV-12}}$			
118		Chicken	>1 year	Kl. pn.	$\text{bla}_{\text{CTX-M14}}$		mcr-3-like	
119		Chicken	<1 year	Kl. pn.	$\text{bla}_{\text{SHV-2}}$			
120		Chicken	<1 year	Kl. pn.	$\text{bla}_{\text{SHV-1}}$			
121		Duck	<1 year	Kl. pn.	$\text{bla}_{\text{DHA-1}}$			
122		Female	Adult	Kl. pn.	$\text{bla}_{\text{SHV-28}}$		$\text{bla}_{\text{SHV}}, \text{bla}_{\text{SHV}}$	
123		Female	Adult	Kl. pn.	$\text{bla}_{\text{SHV-2}}$			
124		Female	Adult	Kl. pn.	$\text{bla}_{\text{SHV-2}}$			
The eight potential risk factors (Table 1) were screened using univariable logistic regression and selected for multivariable logistic regression if \(p < 0.2 \). A multivariable logistic regression model was used to investigate the association between faecal carriage of ESCE/K and potential risk or protective factors at individual level. Manual backward elimination was used until all remaining variables showed a \(p \leq 0.05 \). The model was investigated for interactions between all included variables in the final model. The statistical models had three levels of nested factors in the hierarchy, where each person sampled was clustered within households that were clustered within villages. All variables in the model were categorical except for the continuous variable meat consumption.

2.5 Study approval

Ethical approval (43 NECHR, 8th April 2011) was obtained prior to the survey from the National Ethics Committee for Health Research, Ministry of Health, Cambodia, and an advisory ethical statement (Dnr 2011/63) was obtained from the Regional Board for Research Ethics in Uppsala, Sweden. The authors assert that all procedures contributing to this work comply with the ethical standards of the relevant national and institutional committees on human experimentation and with the Helsinki Declaration of 1975, as revised in 2008.

3 RESULTS

Faecal samples from 307 humans and 285 livestock living in 100 households in 10 villages in Kampong Cham province, Cambodia, were collected and analysed for the presence of carbapenem- and third-generation cephalosporin-resistant *E. coli* and *K. pneumoniae*.

3.1 Determination of carbapenemase, extended-spectrum cephalosporinase and colistin resistance genes

All suspected carbapenem- and third-generation cephalosporin-resistant *E. coli* and *K. pneumoniae* isolated were analysed for the presence of carbapenemase, extended-spectrum cephalosporinase and colistin resistance genes. Three CPE/K harboured the carbapenemase *bla*\(_{OXA-48}\) gene. The two *bla*\(_{OXA-48}\)*-*E. coli* isolates also harboured one additional AmpC/ESBL gene; *bla*\(_{CMY-2}\) and *bla*\(_{CTX-M-14}\) respectively (Table 1). The one OXA-48 *K. pneumoniae* isolate also harboured AmpC/beta-lactamase genes *bla*\(_{DHA-1}\) and *bla*\(_{SHV-11}\) (Table 1). All 129 isolates that were resistant to third-generation cephalosporins were verified to carry a ESBL or AmpC gene, with the exception of three *K. pneumoniae* which carried *bla*\(_{SHV-1}\) and one *E. coli* in which no beta-lactamase or ESBL gene was found, Table 1, Figure 1. All ESBL genes from 100 *E. coli* isolates were of CTX-M-type group 1 and 9, and especially *bla*\(_{CTX-M-55}\) (group 1) and *bla*\(_{CTX-M-2}\) (group 9) were frequently detected, with the others being *bla*\(_{CTX-M-14}\) (group 9) and *bla*\(_{CTX-M-15}\) (group 1). Seventeen *E. coli* isolates carried...
In K. pneumoniae, 11 ESBL/AmpC genes were detected in nine isolates from human samples in the following distribution: $\text{bla}_{\text{SHV-2}}$ (4), $\text{bla}_{\text{SHV-11}}$ (1), $\text{bla}_{\text{SHV-28}}$ (1) $\text{bla}_{\text{DHA-1}}$ (2), $\text{bla}_{\text{CTX-M-27}}$ (1), $\text{bla}_{\text{CTX-M-14}}$ (1) and $\text{bla}_{\text{CTX-M-15}}$ (1). From the chicken samples, four ESBL/AmpC genes were detected in four K. pneumoniae isolates $\text{bla}_{\text{SHV-12}}$, $\text{bla}_{\text{CTX-M-14}}$, $\text{bla}_{\text{SHV-2}}$ and $\text{bla}_{\text{DHA-1}}$ (Table 1).

Two chickens and five humans were carrying both E. coli and K. pneumoniae that harboured ESBL/AmpC genes. The E. coli and K. pneumoniae isolates in the same individual harboured different ESBL/AmpC genes in all cases. One adult female carried three different isolates; one E. coli harbouring $\text{bla}_{\text{OXA-48}}$ and $\text{bla}_{\text{CTX-M-14}}$; one K. pneumoniae harbouring $\text{bla}_{\text{OXA-48}},$ $\text{bla}_{\text{SHV-11}},$ $\text{bla}_{\text{DHA-1}}$ and one K. pneumoniae harbouring $\text{bla}_{\text{CTX-M-14}}$ (Table 1). Two children and three chickens from the same household were sampled, and all were negative. Colistin resistance genes mcr-1-like or mcr-3-like were identified in 10 E. coli isolates and one K. pneumoniae isolate from two humans and nine livestock (Table 1).

3.2 Analyses of zoonotic risk factors associated with faecal carriage of ESCE/K in humans

To identify possible risk factors for faecal carriage of ESCE/K in humans, the head female in each of the 100 households was interviewed regarding household risk behaviour and meat consumption. Results from interviews were as follows: (a) livestock is slaughtered by someone in the household (76%), (b) livestock have access to sleeping and food preparation areas (57%), (c) unsafe water is consumed (36%), (d) hands are not washed with soap after handling animals (29%), (e) meat waste products are not burned or buried (21%), (f) animal manure is not collected daily indoors and outdoors (20%), (g) hands are not washed with soap before and after cooking (15%), and (h) undercooked meat is consumed (7%). The average number of days per month (d/m) that meat was consumed in households were: pork 5.7 d/m, beef 2.8 d/m, fish 22.5 d/m and poultry 2.2 d/m. Wildlife meat was consumed in 9/100 households, 1–10 d/m.

Based on the results of the univariable analysis, the following explanatory variables were selected for further analysis; livestock home slaughter, hand wash with soap after handling animals, burn or bury meat waste, daily collection of animal manure indoors and outdoors, consumption of undercooked meat and consumption of poultry. In the multivariable analysis, the household practice of not collecting animal manure indoors and outdoors daily was associated with increased odds of faecal carriage of ESCE/K isolates ($p = 0.03$, OR 2.19, 95% CI 1.07–4.47), whereas the household practice of not burning or burying meat waste was associated with decreased odds of faecal carriage of ESCE/K isolates ($p = 0.01$, OR 0.26, 95% CI 0.10–0.71).

3.3 Detection of CPE/K and ESCE/K

The overall detection frequency of CPE/K was 1% in humans and 0% in livestock. The overall detection frequency of ESCE/K isolates was 20% in humans and 23% in livestock, with the detection frequency ranging from 5% to 62% in humans and 4% to 45% in livestock in the 10 villages (Figure 2). The detection frequency of ESCE/K isolates in adult females ($n = 135$) and adult males ($n = 54$) was 23% and 11%, respectively, Figure 3. There was a significant ($p = 0.03$) difference between the combined detection frequencies of CPE/K and ESCE/K isolates in adult females compared with the combined detection frequencies of CPE/K and ESCE/K in adult males. In Figure 3, the detection frequencies in children are grouped based on age. No CPE/K isolates were detected in children, and the detection frequency of

FIGURE 1 Distribution of carbapenemase- and extended-spectrum cephalosporinase genes in Escherichia coli isolates (n) from humans and livestock living in 10 rural villages in Kampong Cham province, Cambodia in May 2011 [Colour figure can be viewed at wileyonlinelibrary.com]
ESCE/K isolates was significantly \(p = 0.04 \) higher, 30%, in age-group 0–5 years \(n = 33 \) than in age-group 6–15 years \(n = 85 \), 13%.

In livestock \(n = 285 \), no CPE/K isolates were detected, but 23% carried ESCE/K. In ruminant \(n = 103 \) and pigs \(n = 39 \), the detection frequencies of ESCE isolates were 7% and 46%, respectively, and no ESCK isolates were detected. In poultry \(n = 138 \), the detection frequency of ESCE/K isolates was 28% (Figure 4). The detection frequency was significantly higher in pigs and poultry compared with ruminants \(\text{both } p < 0.0001 \), but the detection frequency was not significantly different between poultry and pigs \(p = 0.10 \).

3.4 Susceptibility to other antibiotics

Only CPE/K isolates and one ESCE expressed non-wild-type phenotypes to meropenem but resistance to other antibiotics was common (Figure 5 and Table 1). In total, 96% of the isolates were characterized as multidrug resistant, that is expressed a non-wild-type phenotype to ≥3 antibiotic classes. According to the clinical breakpoints provided by CLSI, 92% of the isolates were characterized as multidrug resistant.

4 DISCUSSION

To the best of our knowledge, this is the first published report of \(\text{bla}_{\text{OXA-48}} \) in \(E. \text{coli} \) and \(K. \text{pneumoniae} \) in Cambodia. The presence of \(\text{bla}_{\text{OXA-48}} \) harbouring \(E. \text{coli} \) and \(K. \text{pneumoniae} \) in the community is of special concern because carbapenems are the last line of defence against invasive multiresistant Gram-negative bacteria (Papp-Walace, Endimiani, Taracila, & Bonomo, 2011). However, the detection frequency of carbapenem-resistant \(E. \text{coli}/K. \text{pneumoniae} \) in rural Cambodia in 2011 was still low, 1% in humans and not detected in livestock. Community carriage of \(\text{bla}_{\text{OXA-48}} \) harbouring Enterobacteriaceae is rare, but has been reported from humans in Lebanon (Beyrouthy et al., 2014) and Switzerland (Zurfluh et al., 2015). \(\text{Bla}_{\text{OXA-48}} \) harbouring isolates expressed a non-wild-type phenotype to meropenem, ciprofloxacin, sulfamethoxazole/trimethoprim, piperacillin/tazobactam, tetracycline and chloramphenicol but colistin resistance genes were not detected.

In this study, the combined detection frequency of CPE/K and ESCE/K in stool from adult females was significantly higher compared with adult males. This contrasts to community carriage in Western Europe where no difference between genders was observed (Ny et al., 2017; Valenza et al., 2014; Wielders et al., 2017). Furthermore, ESBL colonization in male neonatal children was more common compared with female neonatal children in an Israeli hospital (Leikin-Zach et al., 2018). There are no obvious biological reasons for the observed difference in community carriage between sexes, and the explanation could be local gender-related behaviour leading to transmission between populations. In the current study population, women are often more responsible for the care of poultry and pigs (high level ESCE/K colonized livestock), while men generally take care of more valuable livestock such as ruminants (low level ESCE/K colonized livestock) (Osbjør et al., 2015). It has been previously shown that close contact with poultry increased community carriage of ESCE in Dutch humans (Huijbers et al., 2014). Furthermore, women are generally responsible for the care of young children and the current study identify that young children aged 0–5 years were more prone to carry ESCE/K (30%) compared with older children ages 6–15 years (13%). Young children are incontinent, have less developed hygiene and intimate contact with the environment, animals and their caregiver. Thus, it is reasonable to assume that transmission of ESCE/K occurs between adult females and children and/or poultry/pigs and children. A Swedish study found that children below 3 years, in contrast to older children and adults, were colonized with the same ESCE as the family dog (Ljungquist et al., 2016). In addition, it has been found that there is a six-fold increased risk of ESBL-producing Enterobacteriaceae...
FIGURE 3 Detection frequencies of carbapenemase- and extended-spectrum cephalosporinase-producing Escherichia coli and Klebsiella pneumoniae in humans living in 10 rural villages in Kampong Cham province, Cambodia in May 2011, n = sample size, * indicates statistical significant differences, p < 0.05 [Colour figure can be viewed at wileyonlinelibrary.com]

FIGURE 4 Detection frequencies of carbapenemase- and extended-spectrum cephalosporinase-producing Escherichia coli and Klebsiella pneumoniae in livestock living in 10 rural villages in Kampong Cham province, Cambodia in May 2011, n = sample size, * indicates statistical significant difference, p < 0.02 [Colour figure can be viewed at wileyonlinelibrary.com]

FIGURE 5 Antibiotic resistance in CPE/K and ESCE/K isolates (n) from humans and animals in rural Kampong Cham, Cambodia in 2011 determined by disc diffusion test and characterized as wild-type or non-wild-type phenotype (R) [Colour figure can be viewed at wileyonlinelibrary.com]
colonization in underweight newborns if the mother is a carrier (Denkel et al., 2014). Little is known about ESCE/K in different age groups of children though similar to our results, stool samples from 519 children in the US revealed a higher colonization frequency of ESCE/K amongst children <5 years (5.7%) compared with children >5 years (1.7%) (Islam et al., 2017). The overall detection frequency amongst children (age 0–15) in rural villages in Kampong Cham province, Cambodia, in 2011 was 19%. Other reports examining community carriage in healthy children have found varying prevalence frequencies; 2.9% in Sweden 2010 (Kaarme, Molin, Olsen, & Melhus, 2013), 20% in Sweden 2016 (Kaarme et al., 2018), 2.7% in Portugal 2008 (Guimaraes et al., 2009) and 49.6% in infants in Lebanon 2013 (Hijazi, Fawzi, Ali, & Abd El Gaill, 2016a). The observed difference between children age 0–5 years (30%) and 6–15 years (13%) was statistically significant using the chi-square test, but due to a small sample size in the 0–5 years group (n = 33), the 95% confidence intervals are overlapping between the two groups, and our results should be interpreted with caution.

Our results show that certain household practices in rural Cambodia are potential risk factors for faecal carriage of ESCE/K. The practice of daily collection of animal manure indoor and outdoor decreased the risk of faecal carriage of ESCE/K, indicating that removing animal manure reduces the environmental exposure to antibiotic-resistant bacteria. The practice of either burning or burying meat waste in a household was a risk factor for faecal carriage of ESCE/K. This is perhaps contradictory as meat waste could be contaminated with antibiotic-resistant bacteria (Lazarus, Paterson, Mollinger, & Rogers, 2015), and burning or burying meat waste would limit the exposure. However, burning of burying meat waste could be a confounding factor to for example home slaughter or other actions increasing contact with raw meat, but home slaughter was not significantly associated with faecal carriage in this study. The possible impact of home slaughter is supported by a study in Cameroon showing that ESBL-producing K. pneumoniae isolates disseminate from animals to abattoir workers (Founou et al., 2018). There were no significant associations between meat consumption and faecal carriage of ESCE/K, which contrast previous studies that have shown regular consumption of meat and consumption of undercooked meat to be risk factors for community carriage of ESBL-producing Enterobacteriaceae (Hijazi et al., 2016b; Niumsup et al., 2018).

The same ESBL/AmpC genes detected in E. coli/K. pneumoniae from human and livestock faeces in our study (bla_{CTX-M-55}, bla_C, bla_{TX-M-22}, bla_{CTX-M-15}, bla_{CMY-2} and bla_{DHA-1}) were detected in E. coli/K. pneumoniae from bloodstream infections in Phnom Penh, Cambodia, between 2007 and 2010 (Vlieghe et al., 2015). This indicates that the gut serves as a reservoir for extra-intestinal pathogenic E. coli, which has been previously suggested (Carlet, 2012). It is important to consider that the gene variation in the current study might be underestimated as only one colony was selected on each agar plate. In one E. coli and two K. pneumoniae, no extended-spectrum beta-lactamase gene could be identified and further molecular analysis is required to establish whether a less common or a novel ESBL gene can explain the phenotype.

The zoonotic potential of ESCE/K and CPE/K is of concern, and previous work has shown that the awareness of zoonotic risks of antibiotic-resistant bacteria is low in the current study population (Osbjørn et al., 2015). Transmission of bacteria and/or mobile genetic elements between populations through contact and environmental exposure seem likely, as the same ESBL/pAmpC genes were detected in humans and livestock and the antibiotic resistance profile was similar in ESCE/K isolates. However, additional molecular work is needed to better understand relatedness between isolates in different hosts, but was not within the scope of this study.

The demonstrated community carriage of ESCE/K in humans and livestock in Cambodia (20% in humans and 23% in livestock) is similar to a recent report on ESBL-producing E. coli colonization in chicken farmers (20%) and chickens (35%) from Vietnam (Nguyen et al., 2019) but lower than in reports from Thailand (62%) and Vietnam/Laos (41%–70%) (Nakayama et al., 2015; Niumsup et al., 2018). The lower detection frequency in our study could be due to the rural habitat of the sampled population and that previous thawing of some samples has led to an underestimation of human carriage. The difference in ESCE/K detection between villages could partly be explained by skewed sampling. Poultry and pigs were sampled in high numbers in the high detection village number 4, as opposed to the low detection village number 7, which contained many samples from ruminants. In contrast, the detection frequency in humans was very high in village 7. Owning ruminants is associated with high wealth in Cambodia (Osbjørn et al., 2015), and wealthy families might be more likely to travel and use medicine like antibiotics, both risk factors for acquiring antibiotic-resistant bacteria (Karanika et al., 2016). The high detection frequencies of ESCE/K in poultry and pigs could be related to transmission and inappropriate use of antibiotics. Pigs were often kept in crowded confinement (Osbjørn et al., 2015), which allows for frequent transmission of bacteria. Previous studies have found that antibiotic use in the pig and poultry industry in Cambodia is widespread and uncontrolled (Om & McLaws, 2016; Ström, Boqvist, et al., 2018). ESCE/K is also frequent in poultry production in Europe, even in countries with low antibiotic resistance burden, and the prevalence is mainly related to vertical transmission (Blaak et al., 2015; Borjesson et al., 2016). The ESCE/K in pig manure is an environmental hazard, as pig farmers in Cambodia often dump the pig manure in the environment (Ström, Albihn, et al., 2018).

Colistin resistance genes were identified in poultry, pigs and humans. The mcr-1 gene has been previously detected in stool sample from a Cambodian child (Stoesser, Mathers, Moore, Day, & Crook, 2016) but to our knowledge this is the first finding of mcr-3-like gene in the country. Resistance to colistin is particularly worrisome as colistin can be the last available treatment for CPE/K (Falagas, Karageorgopoulos, & Nordmann, 2011). A study on backyard chicken farms in Vietnam concluded that detection of mcr-1-carrying bacteria in chicken samples was associated with colistin use and that detection in human samples was associated with exposure to mcr-1-positive chickens (Trung et al., 2017). Through interviewing pig farmers in Cambodia, Ström, Boqvist, et al. (2018) found that antibiotic
use, including colistin, was common in pig farms and sometimes used as prophylactic treatment.

5 | CONCLUSIONS

Carbapenemase and colistin resistance genes were present in the Cambodian community to a low extent in 2011, but continuous surveillance is necessary as dissemination of multidrug-resistant bacteria is a dynamic process. Faecal carriage of *E. coli* and *K. pneumoniae* harbouring extended-spectrum cephalosporinase genes were common in rural Cambodia, with more frequent occurrence in women and young children. Environmental exposure and contact with animal manure and slaughter products were risk factors for intestinal colonization of ESCE/K, suggesting that farming households and animal health workers should be further educated on hygiene precautions to limit such exposure.

ACKNOWLEDGEMENTS

We thank the Cambodian families who participated in the study. We also extend our thanks to the commune, district and provincial veterinarians in Kampong Cham Province and the staff of the National Animal Health and Production Research Institute and the Royal University of Agriculture in Phnom Penh for assistance during the field work. We thank Mattias Myrenäs and Annica Landén at Swedish Veterinary Institute for technical guidance and Rachel Hickman and Professor Dan Andersson for comments on the manuscript. The Swedish Civil Contingencies Agency (MSB), the Swedish International Development Cooperation Agency (Sida) (grant number 2010-7876) and the Swedish Research Council VR (grant number 2016-02606) supported this work.

CONFLICT OF INTEREST

None to declare.

ORCID

Clara Atterby https://orcid.org/0000-0001-7360-5383

REFERENCES

Atterby, C., Ramey, A. M., Hall, G. G., Jarhult, J., Borjesson, S., & Bonnedahl, J. (2016). Increased prevalence of antibiotic-resistant *E. coli* in gulls sampled in Southcentral Alaska is associated with urban environments. *Infection Ecology & Epidemiology*, 6, 32334. https://doi.org/10.3402/iee.v6.i32334

Beyrouthy, R., Robin, F., Dabboussi, F., Mallat, H., Hamze, M., & Bonnet, R. (2014). Carbapenemase and virulence factors of Enterobacteriaceae in North Lebanon between 2008 and 2012: Evolution via endemic spread of OXA-48. *Journal of Antimicrobial Chemotherapy*, 69(10), 2699–2705. https://doi.org/10.1093/jac/dku181

Blaak, H., van Hoek, A. H., Hamidjaja, R. A., van der Plaats, R. Q., Kerkhof-de Heer, L., de Roda Husman, A. M., & Schets, F. M. (2015). Distribution, numbers, and diversity of ESBL-producing *E. coli* in the poultry farm environment. PLoS ONE, 10(8), e0135402. https://doi.org/10.1371/journal.pone.0135402

Borjesson, S., Ny, S., Egervarn, M., Bergstrom, J., Rosengren, A., Englund, S., ... Byfors, S. (2016). Limited dissemination of extended-spectrum beta-lactamase- and plasmid-encoded AmpC-producing *Escherichia coli* from food and farm animals, Sweden. *Emerging Infectious Diseases*, 22(4), 634–640. https://doi.org/10.3201/eid2204.151142

Brink, A. J., Coetzee, J., Corcoran, C., Clay, C. G., Hari-Makkkan, D., Jacobson, R. K., ... Nordmann, P. (2013). Emergence of OXA-48 and OXA-181 carbapenemases among Enterobacteriaceae in South Africa and evidence of in vivo selection of colistin resistance as a consequence of selective decontamination of the gastrointestinal tract. *Journal of Clinical Microbiology*, 51(1), 369–372. https://doi.org/10.1128/JCM.02234-12

Carlet, J. (2012). The gut is the epicentre of antibiotic resistance. *Antimicrobial Resistance & Infection Control*, 1(1), 39. https://doi.org/10.1186/2047-2994-1-39

Caron, Y., Chheang, R., Puthea, N., Soda, M., Boyer, S., Tarantola, A., & Kerleguer, A. (2018). Beta-lactam resistance among Enterobacteriaceae in Cambodia: The four-year itch. *International Journal of Infectious Diseases*, 66, 74–79. https://doi.org/10.1016/j.ijid.2017.10.025

Denkel, L. A., Schwab, F., Kola, A., Leistner, R., Garten, L., von Weizsacker, K., ... Piening, B. (2014). The mother as most important risk factor for colonization of very low birth weight (VLBW) infants with extended-spectrum beta-lactamase-producing Enterobacteriaceae (ESBL-E). *Journal of Antimicrobial Chemotherapy*, 69(8), 2230–2237. https://doi.org/10.1093/jac/dku097

Egervarn, M., Borjesson, S., Byfors, S., Finn, M., Kaise, P., Englund, S., ... Lindblad, M. (2014). *Escherichia coli* with extended-spectrum beta-lactamases or transferable AmpC beta-lactamases and Salmonella on meat imported into Sweden. *International Journal of Food Microbiology*, 171, 8–14. https://doi.org/10.1016/j.ijfoodmicro.2013.11.005

Emary, K. R. W., Carter, M. J., Pol, S., Sona, S., Kumar, V., Day, N. P. J., ... Moore, C. E. (2015). Urinary antibiotic activity in paediatric patients attending an outpatient department in north-western Cambodia. *Tropical Medicine & International Health*, 20(1), 24–28. https://doi.org/10.1111/tmi.12398

EUCAST (2009). EUCAST disk diffusion test methodology. Retrieved from http://www.eucast.org/ast_of_bacteria/disk_diffusion_methodology/

Falagas, M. E., Karageorgopoulos, D. E., & Nordmann, P. (2011). Therapeutic options for infections with Enterobacteriaceae producing carbapenem-hydrolyzing enzymes. *Future Microbiology*, 6(6), 653–666. https://doi.org/10.2217/fmb.11.49

Founou, L. L., Founou, R. C., Allam, M., Ismail, A., Djoko, C. F., & Essack, S. Y. (2018). Genome sequencing of extended-spectrum beta-lactamase (ESBL)-producing *Klebsiella pneumoniae* isolated from pigs and abattoir workers in Cameroon. *Frontiers in Microbiology*, 9, 188. https://doi.org/10.3389/fmicb.2018.00188

Guenther, S., Ewers, C., & Wieler, L. H. (2011). Extended-spectrum beta-lactamases producing *E. coli* in wildlife, yet another form of environmental pollution? *Frontiers in Microbiology*, 2, 246. https://doi.org/10.3389/fmicb.2011.00246

Guimaraes, B., Barreto, A., Radhouani, H., Figueiredo, N., Gaspar, E., Rodrigues, J., ... Poeta, P. (2009). Genetic detection of extended-spectrum beta-lactamase-containing *Escherichia coli* isolates and vancomycin-resistant enterococci in fecal samples of healthy children. *Microbial Drug Resistance*, 15(3), 211–216. https://doi.org/10.1089/mdr.2009.0910

Hawkey, P. M. (2008). Prevalence and clonality of extended-spectrum beta-lactamases in Asia. *Clinical Microbiology & Infection*, 14(Suppl 1), 159–165. https://doi.org/10.1111/j.1469-0691.2007.01855.x

Hijazi, S. M., Fawzi, M. A., Ali, F. M., & Abd El Galil, K. H. (2016a). Multidrug-resistant ESBL-producing Enterobacteriaceae and
associated risk factors in community infants in Lebanon. The Journal of Infection in Developing Countries, 10(9), 947–955. https://doi.org/10.3855/jidc.7593

Hijazi, S. M., Fawzi, M. A., Ali, F. M., & Abd El Galil, K. H. (2016). Prevalence and characterization of extended-spectrum beta-lactamases producing Enterobacteriaceae in healthy children and associated risk factors. Annals of Clinical Microbiology and Antimicrobials, 15 (3). https://doi.org/10.1186/s12941-016-0121-9

Huijbers, P. M., Graat, E. A., Haenen, A. P., van Santen, M. G., van Essen-Zandbergen, A., Mevius, D. J., ... van Hoek, A. H. (2014). Extended-spectrum and AmpC beta-lactamase-producing Escherichia coli in broilers and people living and/or working on broiler farms: Prevalence, risk factors and molecular characteristics. Journal of Antimicrobial Chemotherapy, 69(10), 2669–2675. https://doi.org/10.1093/jac/dku178

Islam, S., Selvarangan, R., Kanwar, N., McHenry, R., Chappell, J. D., Halasa, N., ... Gomez-Duarte, O. G. (2017). Intestinal carriage of third-generation cephalosporin-resistant and extended-spectrum beta-lactamase-producing enterobacteriaceae in healthy US children. Journal of the Pediatric Infectious Diseases Society, 7 (3), 234–240. https://doi.org/10.1016/j.jpids.2014.05.014

Jarlier, V., Nicolas, M. H., Fournier, G., & Philippon, A. (1988). Extended broad-spectrum beta-lactamases conferring transferable resistance to newer beta-lactam agents in Enterobacteriaceae: Hospital prevalence and susceptibility patterns. Reviews of Infectious Diseases, 10(4), 867–878.

Kaarmo, J., Moline, Y., Olsen, B., & Melhus, A. (2013). Prevalence of extended-spectrum beta-lactamase-producing Enterobacteriaceae in healthy Swedish preschool children. Acta Paediatrica, 102(6), 655–660. https://doi.org/10.1111/apa.12206

Kaarmo, J., Riedel, H., Schaal, W., Yin, H., Neveus, T., & Melhus, A. (2018). Rapid increase in carriage rates of enterobacteriaceae producing extended-spectrum beta-lactamases in healthy preschool children, Sweden. Emerging Infectious Diseases, 24(10), 1874–1881. https://doi.org/10.3201/eid2410.171842

Karanika, S., Karantanos, T., Arvanitis, M., Grigoras, C., & Mylonakis, E. (2016). Fecal colonization with extended-spectrum beta-lactamase-producing enterobacteriaceae and risk factors among healthy individuals: A systematic review and metaanalysis. Clinical Infectious Diseases, 63(3), 310–318. https://doi.org/10.1093/cid/ciw283

Kronvall, G., Kahmeler, G., Myhre, E., & Galas, M. F. (2003). A new method for normalized interpretation of antimicrobial resistance from disk test results for comparative purposes. Clinical Microbiology & Infection, 9(2), 120–132. https://doi.org/10.1046/j.1469-0691.2003.00546.x

Lazarus, B., Paterson, D. L., Mollinger, J. L., & Rogers, B. A. (2015). Do human extraintestinal Escherichia coli infections resistant to expanded-spectrum cephalosporins originate from food-producing animals? A systematic review. Clinical Infectious Diseases, 60(3), 439–452. https://doi.org/10.1093/cid/ciu785

Leikin-Zach, V., Shany, E., Yitshak-Sade, M., Eshel, R., Shafat, T., Borer, A., & Melamed, R. (2018). Neonatal risk factors for colonization with extended-spectrum beta-lactamase-producing bacteria in the neonatal intensive care unit. Israel Medical Association Journal, 5(20), 286–290.

Li, B., Sun, J. Y., Liu, Q. Z., Han, L. Z., Huang, X. H., & Ni, Y. X. (2011). High prevalence of CTX-M beta-lactamases in faecal Escherichia coli strains from healthy humans in Fuzhou, China. Scandinavian Journal of Infectious Diseases, 43(3), 170–174. https://doi.org/10.3109/03055790.2010.538856

Ljungquist, O., Ljungquist, D., Myrenas, M., Ryden, C., Finn, M., & Bengtsson, B. (2016). Evidence of household transfer of ESBL/pAmpC-producing Enterobacteriaceae between humans and dogs - a pilot study. Infection Ecology & Epidemiology, 6, 31514. https://doi.org/10.3402/iee.v6.i6.31514

Luvsansharav, U. O., Hirai, I., Nakata, A., Imura, K., Yamauchi, K., Niki, M., ... Yamamoto, Y. (2012). Prevalence of and risk factors associated with faecal carriage of CTX-M beta-lactamase-producing Enterobacteriaceae in rural Thai communities. Journal of Antimicrobial Chemotherapy, 67(7), 1769–1774. https://doi.org/10.1093/jac/dks118

Meyer, E., Gastmeier, P., Kola, A., & Schwab, F. (2012). Pet animals and foreign travel are risk factors for colonisation with extended-spectrum beta-lactamase-producing Escherichia coli. Infection, 40(6), 685–687. https://doi.org/10.1007/s10101-012-0324-8

Moore, C. E., Sona, S., Poda, S., Putchhat, H., Kumar, V., Sopheyar, S., ... Parry, C. M. (2016). Antimicrobial susceptibility of uropathogens isolated from Cambodian children. Paediatrics and International Child Health, 36(2), 113–117. https://doi.org/10.1179/204695515Y.0000000008

Nadimpalli, M., Fabre, L., Yith, V., Sem, N., Gouali, M., Delarocque-Astagneau, E., ... Members of the, B. S. G. (2018). CTX-M-55-type ESBL-producing Salmonella enterica are emerging among retail meats in Phnom Penh, Cambodia. Journal of Antimicrobial Chemotherapy, 74, 342–348. https://doi.org/10.1093/jac/dky451

Nguyen, V. T., Jamrozy, D., Matamoros, S., Carrique-Mas, J. J., Ho, H. M., Thai, Q. H., ... Ngo, T. H. (2019). Limited contribution of non-intensive chicken farming to ESBL-producing Escherichia coli colonization in humans in Vietnam: An epidemiological and genomic analysis. Journal of Antimicrobial Chemotherapy, 74(3), 561–570. https://doi.org/10.1093/jac/dky506

Ni, Q., Tian, Y., Zhang, L., Jiang, C., Dong, D., Li, Z., ... Peng, Y. (2016). Prevalence and quinolone resistance of fecal carriage of extended-spectrum beta-lactamase-producing Escherichia coli in community residents in the IndoChinese peninsula. Infection and Drug Resistance, 8, 1–5. https://doi.org/10.2147/IDR.S74934

Niumsup, P. R., Tansawai, U., Na-udom, A., Jantapalaboon, D., Assawatheptawee, K., Kiddee, A., ... Walsh, T. R. (2018). Prevalence and risk factors for intestinal carriage of CTX-M-type ESBLs in Enterobacteriaceae from a Thai community. European Journal of Clinical Microbiology and Infectious Diseases, 37(1), 69–75. https://doi.org/10.1007/s10096-017-3102-9

Ny, S., Lofmark, S., Borjesson, S., Englund, S., Ringman, M., Bergstrom, J., ... Byfors, S. (2017). Community carriage of ESBL-producing Escherichia coli is associated with strains of low pathogenicity: A Swedish nationwide study. Journal of Antimicrobial Chemotherapy, 72(2), 582–588. https://doi.org/10.1093/jac/dkw419

Om, C., & McLawns, M. L. (2016). Antibiotics: Practice and opinions of Cambodian commercial farmers, animal feed retailers and veterinarians. Antimicrobial Resistance & Infection Control, 5, 42. https://doi.org/10.1186/s13756-016-0147-y

Osbjörn, K., Berg, M., Sokerya, S., Chheng, K., San, S., Davun, H., ... Zohari, S. (2017). Influenza A virus in backyard pigs and poultry in rural Cambodia. Transboundary and Emerging Diseases, 64(5), 1557–1568. https://doi.org/10.1111/tbed.12547

Osbjörn, K., Boqvist, S., Sokerya, S., Chheng, K., San, S., Davun, H., ... Magnusson, U. (2016). Risk factors associated with Campylobacter detected by PCR in humans and animals in rural Cambodia. Epidemiology and Infection, 144(4), 2979–2988. https://doi.org/10.1017/S095026881600114X

Osbjörn, K., Boqvist, S., Sokerya, S., Kannarath, C., San, S., Davun, H., ... Magnusson, U. (2015). Household practices related to disease transmission between animals and humans in rural Cambodia. BMC Public Health, 15, 476. https://doi.org/10.1186/s12889-015-1811-5
Osbjer, K., Tano, E., Chhayheng, L., Mac-Kwashie, A. O., Fernstrom, L. L., Ellstrom, P., ... Magnusson, U. (2016). Detection of Campylobacter in human and animal field samples in Cambodia. APMIS, 124(6), 508–515. https://doi.org/10.1111/apm.12531

Padmini, N., Ajilda, A. A. K., Sivakumar, N., & Selvakumar, G. (2017). Extended spectrum beta-lactamase producing Escherichia coli and Klebsiella pneumoniae: Critical tools for antibiotic resistance pattern. Journal of Basic Microbiology, 57(6), 460–470. https://doi.org/10.1002/jobm.201700008

Papp-Wallace, K. M., Endimiani, A., Taracila, M. A., & Bonomo, R. A. (2011). Carbapenems: Past, present, and future. Antimicrobial Agents and Chemotherapy, 55(11), 4943–4960. https://doi.org/10.1128/AAC.00296-11

Poirel, L., Walsh, T. R., Cuillivier, V., & Nordmann, P. (2011). Multiplex PCR for detection of acquired carbapenemase genes. Diagnostic Microbiology and Infectious Disease, 70(1), 119–123. https://doi.org/10.1016/j.diagmicrobio.2010.12.002

Rammaert, B., Goyet, S., Beauët, J., Hem, S., Te, V., Try, P. L., ... Vong, S. (2012). Klebsiella pneumoniae related community-acquired acute lower respiratory infections in Cambodia: Clinical characteristics and treatment. BMC Infectious Diseases, 12, 3. https://doi.org/10.1186/1471-2334-12-3

Rebelo, A. R., Bortolaia, V., Kjeldgaard, J. S., Pedersen, S. K., Leekitcharoenphon, P., Hansen, I. M., Hendriksen, R. S. (2018). Multiplex PCR for detection of plasmid-mediated colistin resistance determinants, mcr-1, mcr-2, mcr-3, mcr-4 and mcr-5 for surveillance purposes. Eurosurveillance Weekly, 23(6), 00617–00672. https://doi.org/10.2807/1560-7917.ES.2018.23.6.17-00672

Rios, E., Lopez, M. C., Rodriguez-Avil, I., Culebras, E., & Picazo, J. J. (2017). Detection of Escherichia coli ST131 clonal complex (ST705) and Klebsiella pneumoniae ST15 among faecal carriage of extended-spectrum beta-lactamase- and carbapenemase-producing Enterobacteriaceae. Journal of Medical Microbiology, 66(2), 169–174. https://doi.org/10.1099/jmm.0.000399

Sasaki, T., Hirai, I., Niki, M., Nakamura, T., Komalamisra, C., Maipanich, W., ... Yamamoto, Y. (2010). High prevalence of CTX-M beta-lactamase-producing Enterobacteriaceae in stool specimens obtained from healthy individuals in Thailand. Journal of Antimicrobial Chemotherapy, 65(4), 666–668. https://doi.org/10.1093/jac/dkq008

Stoesser, N., Mathers, A. J., Moore, C. E., Day, N. P., & Crook, D. W. (2016). Colistin resistance gene mcr-1 and pHNISP45 plasmid in human isolates of Escherichia coli and Klebsiella pneumoniae. The Lancet Infectious Diseases, 16(3), 285–286. https://doi.org/10.1016/S1473-3099(16)00010-4

Ström, G., Albihn, A., Jinnerot, T., Boqvist, S., Andersson-Djurfeldt, A., Sokerya, S., ... Magnusson, U. (2018). Manure management and public health: Sanitary and socio-economic aspects among urban livestock-keepers in Cambodia. Science of the Total Environment, 621, 193–200. https://doi.org/10.1016/j.scitotenv.2017.11.254

Ström, G., Boqvist, S., Albihn, A., Fernström, L.-L., Andersson Djurfeldt, A., Sokerya, S., ... Magnusson, U. (2018). Antimicrobials in small-scale urban pig farming in a lower middle-income country - arbitrary use and high resistance levels. Antimicrobial Resistance & Infection Control, 7, 35. https://doi.org/10.1186/s13756-018-0328-y

Trongjit, S., Angkittittrakul, S., & Chuanchuen, R. (2016). Occurrence and molecular characteristics of antimicrobial resistance of Escherichia coli from broilers, pigs and meat products in Thailand and Cambodia provinces. Microbiology and Immunology, 60(9), 575–585. https://doi.org/10.1111/jmii.12420

Trung, N. V., Matamoros, S., Carrique-Mas, J. J., Nghia, N. H., Nhung, N. T., Chieu, T. T., ... Hoa, N. T. (2017). Zoonotic transmission of mcr-1 colistin resistance gene from small-scale poultry farms, Vietnam. Emerging Infectious Diseases, 23(3), 529–532. https://doi.org/10.3201/eid2303.161553

Valenza, G., Nickel, S., Pfeifer, Y., Eller, C., Krupa, E., Lehner-Reindl, V., & Holler, C. (2014). Extended-spectrum-beta-lactamase-producing Escherichia coli as intestinal colonizers in the German community. Antimicrobial Agents and Chemotherapy, 58(2), 1228–1230. https://doi.org/10.1128/AAC.01993-13

Valverde, A., Grill, F., Coque, T. M., Pintado, V., Baquero, F., Canton, R., & Cobo, J. (2008). High rate of intestinal colonization with extended-spectrum-beta-lactamase-producing organisms in household contacts of infected community patients. Journal of Clinical Microbiology, 46(8), 2796–2799. https://doi.org/10.1128/JCM.01008-08

Vliehe, E. R., Huang, T.-D., Phe, T., Bogaerts, P., Berhin, C., De Smet, B., ... Glupczynski, Y. (2015). Prevalence and distribution of beta-lactamase coding genes in third-generation cephalosporin-resistant Enterobacteriaceae from bloodstream infections in Cambodia. European Journal of Clinical Microbiology and Infectious Diseases, 34(6), 1223–1229. https://doi.org/10.1007/s10096-015-2350-9

WHO (2012). Critically important antimicrobials for human medicine (3rd ed.). Geneva, Switzerland.

Wielders, C. C. H., van Hoek, A., Hengeveld, P. D., Veenman, C., Dierikx, C. M., Zomer, T. P., van Duijkeren, E. (2017). Extended-spectrum beta-lactamase- and pAmpC-producing Enterobacteriaceae among the general population in a livestock-dense area. Clinical Microbiology & Infection, 23(2), 120.e121-120.e128. https://doi.org/10.1016/j.cmi.2016.10.013

Woerther, P. L., Burdet, C., Chachaty, E., & Andremont, A. (2013). Trends in human fecal carriage of extended-spectrum beta-lactamases in the community: Toward the globalization of CTX-M. Clinical Microbiology Reviews, 26(4), 744–758. https://doi.org/10.1128/CMR.00023-13

Zhou, Y., Wu, X., Zhang, J., Tao, X., Deng, Z., Hu, Y., ... Yang, Z. (2015). High Prevalence of CTX-M Beta-Lactamases in Enterobacteriaceae from Healthy Individuals in Guangzhou, China. Microbial Drug Resistance, 21(4), 398–403. https://doi.org/10.1089/mdr.2014.0201

Zurfluh, K., Nuesch-Inderbinen, M. T., Poirel, L., Nordmann, P., Hachler, H., & Stephan, R. (2015). Emergence of Escherichia coli producing OXA-48 beta-lactamase in the community in Switzerland. Antimicrobial Resistance & Infection Control, 4, 9. https://doi.org/10.1186/s13756-015-0051-x

How to cite this article: Atterby C, Osbjer K, Tepper V, et al. Carriage of carbapenemase- and extended-spectrum cephalosporinase-producing Escherichia coli and Klebsiella pneumoniae in humans and livestock in rural Cambodia; gender and age differences and detection of blaOXA-48 in humans. Zoonoses Public Health. 2019;66:603–617. https://doi.org/10.1111/zph.12612