On combining high and low Q^2 information on the polarized parton densities

Elliot Leader
Birkbeck College, University of London
Malet Street, London WC1E 7HX, England
E-mail: E.Leader@bbk.ac.uk

Dimiter B. Stamenov
Institute for Nuclear Research and Nuclear Energy
Bulgarian Academy of Sciences
blvd. Tsarigradsko Chaussee 72, Sofia 1784, Bulgaria
E-mail: stamenov@inrne.bas.bg

and
The Abdus Salam International Centre for Theoretical Physics,
Trieste, Italy

Abstract
We draw attention to some problems in the combined use of high-Q^2 deep inelastic scattering (DIS) data and low-Q^2 hyperon β-decay data in the determination of the polarized parton densities. We explain why factorization schemes like the JET or AB schemes are the simplest in which to study the implications of the DIS parton densities for the physics of the low-Q^2 region.
1. Introduction

Our most precise knowledge of the internal partonic structure of the nucleon has come from decades of experiments on unpolarized Deep Inelastic Scattering (DIS) of leptons on nucleons. More recently there has been a dramatic improvement in the quality of the data on polarized DIS and consequently an impressive growth in the precision of our knowledge of the polarized parton densities in the nucleon. However, it will be a long time before the polarized data, for the moment limited to neutral current reactions, can match the unpolarized data in volume and accuracy. As a consequence, almost all analyses of the polarized parton densities supplement the DIS (large Q^2) data with information stemming from low-Q^2 weak interaction reactions. More specifically, it is conventional to use the values of G_A/G_V from neutron β-decay, and 3F-D from hyperon β-decays to help to pin down the values of the first moments of certain combinations of parton densities.

However, the standard way of doing this has been criticized because it essentially assumes exact SU(3)$_f$ flavor symmetry for the hyperon β-decays, whereas the growing precision of the measurements of magnetic moments and G_A/G_V ratios in hyperon semileptonic decays may be indicating a non-negligible breakdown of the flavor symmetry. Thus several attempts have been made \cite{1}-\cite{4} to incorporate some symmetry breaking in the combined analysis of weak interaction data and polarized DIS data.

We wish to point out in this note that there are inconsistencies in some of the schemes and to draw attention to certain essential requirements in any attempts to include SU(3)$_f$ breaking in such combined analyses. We present also some comments regarding the question of the implications of the DIS parton densities for the physics of the low-Q^2 region.

2. Some consequences of scheme dependence

From the measured spin asymmetries A_\parallel and A_\perp in the inclusive DIS of leptons on nucleons one obtains information on the spin structure function $g_1(x,Q^2)$ of the nucleon. In the next to leading order (NLO) QCD approximation the quark-parton decomposition of $g_1(x,Q^2)$ has the following form:

$$g_1(x,Q^2) = \frac{1}{2} \sum_q \epsilon_q^2 \left[(\Delta q + \Delta \bar{q}) \otimes (1 + \frac{\alpha_s(Q^2)}{2\pi} \delta C_q) + \frac{\alpha_s(Q^2)}{2\pi} \Delta G \otimes \delta C_G \right], \quad (1)$$

where $\Delta q(x,Q^2)$, $\Delta \bar{q}(x,Q^2)$ and $\Delta G(x,Q^2)$ are quark, anti-quark and gluon polarized densities which evolve in Q^2 according to the spin-dependent NLO DGLAP equations.
Q^2 denotes the squared four-momentum of the exchanged virtual photon and $Q^2 > 1 \text{ GeV}^2$ for DIS region.) In (1) $\delta C_{q,G}$ are the NLO terms in the spin-dependent Wilson coefficient functions and the symbol \otimes denotes the usual convolution in Bjorken x space. N_f is the number of flavors.

In order to link the information on the polarized parton densities obtained from the DIS data with the information from hyperon semi-leptonic weak decays it is convenient to rewrite (1) in terms of SU(3) flavor nonsinglet $\Delta q_{3,8}(x, Q^2)$ and singlet $\Delta \Sigma(x, Q^2)$ combinations of the quark densities ($N_f = 3$):

$$g_1^{p(n)}(x, Q^2) = \frac{1}{9}[(\pm \frac{3}{4} \Delta q_3 + \frac{1}{4} \Delta q_8 + \Delta \Sigma) \otimes (1 + \frac{\alpha_s(Q^2)}{2\pi} \delta C_q)$$

$$+ \frac{\alpha_s(Q^2)}{2\pi} \Delta G \otimes \delta C_G],$$

where

$$\Delta q_3(x, Q^2) = (\Delta u + \Delta \bar{u})(x, Q^2) - (\Delta d + \Delta \bar{d})(x, Q^2),$$

$$\Delta q_8(x, Q^2) = (\Delta u + \Delta \bar{u})(x, Q^2) + (\Delta d + \Delta \bar{d})(x, Q^2)$$

$$- 2(\Delta s + \Delta \bar{s})(x, Q^2),$$

$$\Delta \Sigma(x, Q^2) = (\Delta u + \Delta \bar{u})(x, Q^2) + (\Delta d + \Delta \bar{d})(x, Q^2) + (\Delta s + \Delta \bar{s})(x, Q^2).$$

Then for $\Gamma_1^{p(n)}(Q^2)$, the first moments of the proton and neutron structure functions $g_1^{p(n)}$, one has

$$\Gamma_1^{p(n)}(Q^2) = \int_0^1 dx g_1^{p(n)}(x, Q^2)$$

$$= \frac{1}{9}[(\pm \frac{3}{4} a_3 + \frac{1}{4} a_8 + a_0(Q^2))(1 - \frac{\alpha_s(Q^2)}{\pi})],$$

where a_3 and a_8 are the nonsinglet axial charges corresponding to the 3rd and 8th components of the axial vector Cabibbo currents expressed in terms of the first moments of the quark densities (3) and (4) [$\Delta q(Q^2) \equiv \int_0^1 dx \Delta q(x, Q^2)$]

$$a_3 = (\Delta u + \Delta \bar{u})(Q^2) - (\Delta d + \Delta \bar{d})(Q^2),$$

$$a_8 = (\Delta u + \Delta \bar{u})(Q^2) + (\Delta d + \Delta \bar{d})(Q^2) - 2(\Delta s + \Delta \bar{s})(Q^2).$$

Note that while Δq and $\Delta \bar{q}$ depend on Q^2, a_3 and a_8 are conserved (Q^2 independent) quantities.
In (8) \(a_0(Q^2) \) is the singlet axial charge, which depends on \(Q^2 \) because of the axial anomaly. It must be emphasized that the connection between \(a_0(Q^2) \) and the factorization scheme dependent quantity \(\Delta \Sigma \), the first moment of the singlet quark density (4), is different for the various factorization schemes used for the QCD calculations of the structure function \(g_1 \).

So, in the \(\overline{\text{MS}} \) scheme

\[
a_0(Q^2) = \Delta \Sigma(Q^2)_{\overline{\text{MS}}} ,
\]

whereas for the JET and AB schemes in which \(\Delta \Sigma \) is \(Q^2 \) independent,

\[
a_0(Q^2) = \Delta \Sigma_{\text{JET(AB)}} - N_f \frac{\alpha_s(Q^2)}{2\pi} \Delta G(Q^2)_{\text{JET(AB)}} .
\]

As pointed out in [6] one can actually define a family of such schemes. Among them the most popular are the so-called AB (Adler-Bardeen) [7] and JET (see [8] and references therein) schemes. In (10) \(\Delta G \) is the first moment of the polarized gluon density.

For the further considerations it is useful to recall the transformation rule connecting the first moments of the strange sea quarks in the nucleon, \((\Delta s + \bar{s}) \), in the \(\overline{\text{MS}} \) and JET(AB) schemes:

\[
(\Delta s + \bar{s})_{\text{JET(AB)}} = (\Delta s + \bar{s})(Q^2)_{\overline{\text{MS}}} + \frac{\alpha_s(Q^2)}{2\pi} \Delta G(Q^2)_{\overline{\text{MS}}} .
\]

Note that the LHS of (11) is \(Q^2 \) independent.

It is important to mention here that the difference between the values of \(\Delta \Sigma \) or of \((\Delta s + \bar{s}) \), obtained in the \(\overline{\text{MS}} \) and JET(AB) schemes could be large due to the axial anomaly. Indeed, as a consequence of the anomaly, the term \(\alpha_s \Delta G \) in (10) and (11) behaves as [4]:

\[
\alpha_s(Q^2) \Delta G(Q^2) = \text{const} + \mathcal{O}(\alpha_s(Q^2)) ,
\]

i.e., it is not really of order \(\alpha_s \). To illustrate how large the difference can be, we present the values of \((\Delta s + \bar{s}) \) at \(Q^2 = 1 \ \text{GeV}^2 \) obtained in our recent analysis [10] of the world DIS data in the \(\overline{\text{MS}} \) and JET(AB) schemes:

\[
(\Delta s + \bar{s})_{\overline{\text{MS}}} = -0.10 \pm 0.01 , \quad (\Delta s + \bar{s})_{\text{JET(AB)}} = -0.06 \pm 0.01 .
\]
3. What can be deduced in principle from DIS

As was shown in [11] if the DIS data on the independent structure functions g_1^p and $g_1^n(q^2)$ were perfect and QCD was the correct theory of the strong interactions, the individual parton densities

\[
(\Delta u + \Delta \bar{u})(x, Q^2), \quad (\Delta d + \Delta \bar{d})(x, Q^2), \quad (\Delta s + \Delta \bar{s})(x, Q^2)
\]

and $\Delta G(x, Q^2)$ or, equivalently, $\Delta q_3, \Delta \Sigma(x, Q^2)$ and $\Delta G(x, Q^2)$ would be uniquely determined at some arbitrary $Q^2 = Q^2_0$. This follows from the fact that Δq_3 is fixed by the difference $g_1^p - g_1^n$ while the rest $\Delta q_8, \Delta \Sigma$ and ΔG can be determined separately from $g_1^p + g_1^n$ because of their different Q^2 evolution.

It is immediately clear, given the limited range of Q^2 available and the fact that the data are not perfect and have errors, that the separation of $\Delta q_8, \Delta \Sigma$ and ΔG from each other will not be very clear-cut. Nonetheless, in principle, the data fix $\Delta q_3, \Delta \Sigma(x, Q^2)$ and $\Delta G(x, Q^2)$ or, equivalently, via Eqs. (3), (4), and (5), (\Delta u + \Delta \bar{u})(x, Q^2), (\Delta d + \Delta \bar{d})(x, Q^2), (\Delta s + \Delta \bar{s})(x, Q^2)$ and $\Delta G(x, Q^2)$.

It is also clear from the above that whereas the strange sea density $(\Delta s + \Delta \bar{s})$ is, in principle, fixed by the inclusive (electromagnetic current) data, these data give no information about the other sea quark densities in the nucleon, $\Delta \bar{u}$ and $\Delta \bar{d}$, and therefore, about the valence parts Δq_v of the quark densities. In order to extract them from the data (they are needed to make predictions for other processes, like polarized pp reactions, etc.), additional assumptions about the flavor decomposition of the sea are necessary. Conventionally, the following assumption has been used in most of the analyses

\[
\Delta \bar{u} = \Delta \bar{d} = \lambda \Delta \bar{s},
\]

where λ is a parameter.

Given that the data fix $\Delta q_3, \Delta \Sigma$ and ΔG and that

\[
(\Delta s + \Delta \bar{s})(x, Q^2) = \frac{1}{3}[\Delta \Sigma(x, Q^2) - \Delta q_8(x, Q^2)],
\]

we see that while $\Delta \bar{u}(\Delta u_v)$ and $\Delta \bar{d}(\Delta d_v)$ are sensitive to the assumptions about the flavor decomposition of the sea, the result for $(\Delta s + \Delta \bar{s})(x, Q^2)$ as well as for $\Delta G(x, Q^2)$ should not change as λ is varied. This provides a serious test for the stability of any analysis and was confirmed numerically in our study [11]. (Note that the attempts [12] to extract the valence quarks from semi-inclusive data without assumptions about the sea are not entirely successful because of the quality of these data at present.)
In other words, inclusive DIS data do not enable us to test if the SU(3) symmetry of the sea is broken or not. What follows from these data and QCD is that $(\Delta s + \Delta \bar{s})(x, Q^2)$, the strange sea of the nucleon, does not depend on the symmetry breaking of the sea and therefore, only models, in which $(\Delta s + \Delta \bar{s})(x, Q^2)$ is insensitive to this breaking, are acceptable.

4. What we know about the partonic spin content of the nucleon from weak semi-leptonic hyperon decays

In addition to the information on the polarized parton densities from the DIS experiments very useful knowledge of their first moments comes from the hyperon semi-leptonic decays.

The Bjorken sum rule [13] tell us that

$$a_3 = (\Delta u + \Delta \bar{u})(Q^2) - (\Delta d + \Delta \bar{d})(Q^2) = \frac{G_A}{G_V}(n \to p) \equiv g_A ,$$

(17)

where g_A is the neutron weak β-decay constant [14]:

$$g_A = 1.2601 \pm 0.0025 .$$

(18)

This sum rule reflects the isospin SU(2) symmetry which is well established. Assuming the usual SU(3) transformation properties of the axial currents and that the hyperons form an SU(3) octet, the hyperon β-decays fix a_8, the first moment of $\Delta q_8(x, Q^2)$, to be:

$$a_8 = (\Delta u + \Delta \bar{u})(Q^2) + (\Delta d + \Delta \bar{d})(Q^2) - 2(\Delta s + \Delta \bar{s})(Q^2) = 3F - D ,$$

(19)

where

$$3F - D = 0.579 \pm 0.025$$ [15].

(20)

Depending on the data included in the hyperon β-decays analysis this value changes slightly: 0.601 ± 0.038 in [16] and 0.597 ± 0.019 in [17]. However, the large value of χ^2/DOF of the SU(3) symmetric fit (2.7 in [16] and 2.3 in [17]) is some evidence for SU(3) breaking. The issue of this breaking is treated in different models, which predict for a_8 values between 0.36 [16] and 0.85 [18]. The current KTeV experiment in Fermilab on the Ξ^0 β-decay, $\Xi^0 \to \Sigma^+ e\bar{\nu}$, (see [19] and references therein) will be a crucial test for them.

Given that because of the quality of the present DIS data the relations (17) and (19) have been used in addition in most of the analyses, it is quite important to understand what is the proper value of a_8.
In this connection let us consider the SU(3) symmetry breaking model suggested in Ref. [2]. In this model a specific breaking of the symmetry in the hyperon decays is introduced by treating the wave functions of the octet of baryons as made up of a valence quark part, which is SU(3)$_f$ symmetric, and a sea part piece, which is allowed to break the symmetry. So, in this model Eqs. (17) and (19) are modified in the following way

$$\Delta u_v(Q^2) - \Delta d_v(Q^2) = g_A,$$

$$\Delta u_v(Q^2) + \Delta d_v(Q^2) = 3F - D,$$

whereas for the sea quarks the assumption (15) has been used. Note that while the sum rules (17) and (19) are valid for any Q^2, the postulated relations (21), (22) and (15) can only be valid, strictly speaking, at one value of Q^2, since the RH and LH sides evolve differently with Q^2. In the models of hyperon β-decays such relations must be imposed at very small Q^2, $Q^2 \sim 0$, and thereafter cannot be assumed to hold in the DIS region. In particular, because of the anomalous gluon contribution, the equality (15) could be badly broken in the DIS region, especially in the $\overline{\text{MS}}$-type scheme which is used in [3]. The misuse of (15) and (22) leads to incorrect expression for a_8 in the DIS region:

$$a_8 = 3F - D + 2\epsilon(\Delta s + \Delta \bar{s})(Q^2),$$

where $\epsilon = \lambda - 1$ measures the breaking of the symmetry.

The use of Eq. (23) for a_8 in a combined analysis of the DIS and hyperon decays data is probably the origin of what we regard as a discrepancy in the results of [3], namely that the strange quark content of the proton $(\Delta s + \Delta \bar{s})(Q^2)$ is sensitive to SU(3) breaking of the sea, in contradiction with the fact stressed in Section 3, that, at least in principle, the DIS data alone fix the value of the strange sea density $(\Delta s + \Delta \bar{s})(x, Q^2)$ and therefore, the strange sea quark polarization should not change as $\epsilon (\lambda)$ is varied.

5. How to link low Q^2 data with polarized DIS experiments

It is clear from the above that the polarized densities cannot be extracted well enough at present without linking the information from both high and low-Q^2 regions. In future more accurate both inclusive and semi-inclusive DIS data would help us to extract a_8 independently and thus to test models of the SU(3) flavor symmetry breaking. It also appears that it might be possible in the not too distant future to do high intensity neutrino experiments with a polarized target.
For the present we suggest the following regarding the combined use of DIS and low-\(Q^2\) data and the question of the implications of the DIS parton densities for the physics of the low-\(Q^2\) region.

\(i\) It is simplest to deal with quantities independent of \(Q^2\). While \(a_3\) and \(a_8\) are independent of \(Q^2\), the singlet combination of quarks \(\Delta\Sigma(Q^2)\), as well as \((\Delta s + \Delta\bar{s})(Q^2)\), are in general \(Q^2\) dependent. However, there are factorization schemes like the AB and JET schemes, in which \(\Delta\Sigma(Q^2)\) and \((\Delta s + \Delta\bar{s})(Q^2)\) do not depend on \(Q^2\). Although the theoretical results for the physical quantities such as the polarized structure functions \(g_1^{p(n)}\) are scheme independent, it is clear that only in schemes like AB and JET, it is meaningful to directly interpret \(\Delta\Sigma\) as the contribution of the quark spins to the nucleon spin and to confront its value obtained from the high energy region with predictions from low energy models like constituent quark, chiral quarks models, etc.

\(ii\) An important result from the present DIS data is that the singlet axial charge is small: \(a_0(Q^2) \approx 0.2 - 0.3\) in the high energy region \(Q_{\text{DIS}}^2 \geq 1\text{ GeV}^2\). As a consequence, \((\Delta s + \Delta\bar{s})(Q^2)_{\overline{\text{MS}}}\) in the \(\overline{\text{MS}}\) scheme is relatively large and negative in this region. This does not mean that \((\Delta s + \Delta\bar{s})(Q^2)_{\overline{\text{MS}}}\) is large in the nonperturbative, low-\(Q^2\) region too. To determine \((\Delta s + \Delta\bar{s})(Q^2)\) in the low-\(Q^2\) region using the information on \(a_0(Q^2)\) obtained in the DIS range, it is simplest to work in the JET(AB) scheme, in which this quantity is \(Q^2\) independent. As seen from Eqs. (11) and (13), \((\Delta s + \Delta\bar{s})(Q^2)\) could be small, even zero (as expected in constituent quark models), depending on the sign and the size of the gluon polarization in the DIS region. Although \(\Delta G(Q^2)\) is not well determined from the present data there is significant evidence from the experimental data, directly \([20]\) and indirectly via \(Q^2\) evolution effects (see, for example \([10]\), \([21]\)), that \(\Delta G(Q^2)\) is positive and not too small: \(\Delta G(Q^2) \sim 0.5 - 1.0\) at \(Q^2 \sim 1\text{ GeV}^2\).

Here we would like to recall the interesting possibility of obtaining independent information on the strange sea quarks from the elastic \(\nu(\bar{\nu})N\) scattering. As shown in the papers \([22]\), measurements on the \(\nu(\bar{\nu})\) asymmetry of these reactions will allow to extract \((\Delta s + \Delta\bar{s})(Q^2)\) at \(Q^2 \approx 0\) in a model-independent way.

\(iii\) SU(3) symmetry breaking models invoked to explain hyperon decay data in the low-\(Q^2\) range have to be consistent with the polarized parton densities and the QCD factorization scheme used in their determination from the DIS data.

6. Summary

We have presented a critical assessment of what can be learned at present about the partonic spin content of the nucleon from both low energy hyperon \(\beta\)-decays and
polarized DIS data. It was pointed out that the simplest way to link consistently the theoretical and experimental results obtained in these different regions is to use for the calculation of the spin-dependent structure function g_1 factorization schemes like the JET and AB schemes. In these schemes, in addition to a_3 and a_8, the scheme dependent quantities $\Delta \Sigma$, $(\Delta s + \Delta \bar{s})$, the first moments of the singlet and strange sea densities, are also Q^2 independent. In the JET and AB schemes it is meaningful to interpret $\Delta \Sigma$ as the contribution of the quark spins to the nucleon spin and to compare its value obtained from DIS region with the predictions of the different (constituent, chiral, etc.) quark models at low Q^2. Finally, in such schemes the role of the gluon polarization in the high energy polarized experiments is more transparent.

Acknowledgments

One of us (D. S.) thanks S. B. Gerasimov for useful discussions concerning the hyperon β-decays. D. S. is grateful for the hospitality of the High Energy Section of the Abdus Salam International Centre for Theoretical Physics, Trieste, where this work has been completed. This research was partly supported by a UK Royal Society Collaborative Grant and by the Bulgarian National Science Foundation.

References

[1] Z. Dziembowski and J. Franklin, J. Phys. G 17 (1991) 213.

[2] H. J. Lipkin, Phys. Lett. B 337 (1994) 157.

[3] J. Lichtenstadt and H. J. Lipkin, Phys. Lett. B 353 (1995) 119; M. Karliner and H. J. Lipkin, Phys. Lett. B 461 (1999) 280.

[4] M. Glück, E. Reya, M. Stratmann and W. Vogelsang, Phys. Rev. D 53 (1996) 4775.

[5] V. N. Gribov and L. N. Lipatov, Sov. J. Nucl. Phys. 15 (1972) 438; Yu. L. Dokshitzer, Sov. Phys. JETP 46 (1977) 641; G. Altarelli and G. Parisi, Nucl. Phys. B 126 (1977) 298; R. Mertig and W. L. van Neerven, Z. Phys. C 70 (1996) 637; W. Vogelsang, Phys. Rev. D 54 (1996) 2023.

[6] E. B. Zijlstra and W. L. van Neerven, Nucl. Phys. B 417 (1994) 61.
[7] R. D. Ball, S. Forte and G. Ridolfi, *Phys. Lett.* **B 378** (1996) 255.

[8] E. Leader, A. V. Sidorov and D. B. Stamenov, *Phys. Lett.* **B 445** (1998) 232.

[9] A. V. Efremov and O. V. Teryaev, in the *Proceedings of the Int. Hadron Symposium*, Bechyne, Czechoslovakia, 1988, edited by J. Fischer *et al.* (Czech Academy of Science, Prague, 1989), p. 302; G. Altarelli and G. G. Ross, *Phys. Lett.* **B 212** (1988) 381; R. D. Carlitz, J. C. Collins and A.H. Mueller, *Phys. Lett.* **B 214** (1988) 229.

[10] E. Leader, A. V. Sidorov and D. B. Stamenov, *Phys. Lett.* **B 462** (1999) 189.

[11] E. Leader, A. V. Sidorov and D. B. Stamenov, *Phys. Rev.* **D 58** (1998) 114028.

[12] SMC, B. Adeva et al., *Phys. Lett.* **B 420** (1998) 180; HERMES, K. Ackerstaff *et al.*, *Phys. Lett.* **B 464** (1999) 123.

[13] J. D. Bjorken, *Phys. Rev.* **148** (1966) 1467; *ibid.* **D 1** (1970) 1376.

[14] Particle Data Group, R. M. Barnett *et al.*, *Phys. Rev.* **D 54**, 1 (1996).

[15] F. E. Close and R. G. Roberts, *Phys. Lett.* **B 316** (1993) 165.

[16] R. Flores-Mendieta, E. Jenkis and A. Manohar, *Phys. Rev.* **D 58** (1998) 094028.

[17] P. Ratcliffe, *Phys. Rev.* **D 59** (1999) 014038.

[18] S. B. Gerasimov, *Chin.J.Phys.* **34** (1996) 848 [hep-ph/9906386].

[19] P. Ratcliffe, *Summary talk presented at Hyperon 99 Symposium*, Fermilab, Batavia, Sep 27-29, 1999 [hep-ph/9910544].

[20] HERMES, A. Airapetian *et al.*, *Phys.Rev.Lett.* **84** (2000) 2584 [hep-ex/9907020].

[21] SMC, D. Adeva *et al.*, *Phys. Rev.* **D 58** (1998) 112001.

[22] D. B. Kaplan and A. Manohar, *Nucl. Phys.* **B 310** (1988) 527; W. M. Alberico, S. M. Bilenky, C. Giunti and C. Maieron, *Z. Phys.* **C 70** (1996) 463.