ABSTRACT

Objective: Interleukin (IL) -22 is a novel mediator of a member of IL-10 family cytokines that is produced by many different types of lymphocytes including both those of innate and adaptive immune system. This cytokine has potent proliferative and inflammatory effects on different cell lines. Recently, accumulated data has indicated that IL-22 plays an important role in the pathogenesis of rheumatoid arthritis (RA). Current study aimed to investigate the levels of IL-22 and its association with demographic, clinical data as well as serological markers in RA.

Methods: IL-22 serum levels were measured in 45 newly diagnosed RA patients without any treatment and 45 healthy individuals as control by a manual Enzyme linked immunosorbent assay (ELISA). Correlations of IL-22 serum levels were sought with demographic, clinical data and serological parameters. IL-22 levels were significantly elevated in serum of RA patients (median= 86.89ng/ml and range = 896) compared to serum of healthy control (median=75.36ng/ml and range=459), p=.022.

Results: The IL-22 levels were positively correlated with C-reactive protein (CRP), anti-cyclic citrullinated peptide (ACCP) antibodies in RA patients. Significant higher levels of serum IL-22 in RA patients compare with those in healthy control.

Conclusion: Highly significant association between serum levels of IL-22 and the serological markers (CRP and ACCP antibodies) in the diagnosis of RA suggest the potential levels of IL-22 as a valuable biomarker for the evaluation of disease severity in RA patients.

Keywords: Anti-cyclic citrullinated peptide antibody, C-reactive protein, Interleukin-22, rheumatoid arthritis, rheumatoid factor.

INTRODUCTION

Rheumatoid arthritis (RA) is a chronic inflammatory disease that represents one of the most common autoimmune-related disease. Histologically, it is characterized by prominent infiltration of inflammatory mononuclear cells, such as T cells and macrophages, and the proliferation of synovial fibroblasts. In RA, it is clear that inflammatory cytokines play a key role in driving T cell activation and migration that lead to joint destruction. Interleukin (IL)-22 is a novel α-helical protein, the human IL-22 encoding gene is located in the longer arm (q15) of chromosome 13. It belongs to a group of cytokines called the IL-10 family which is a class of potent mediators of cellular inflammatory responses. IL-22 differs from other cytokines of IL-10 family by being a potent proliferative and inflammatory agent for different cell lines. Many types of cells from lymphoid lineage can secrete IL-22, including both those of the innate and adaptive immune system. In humans, these cells include activated CD4T cells, CD8T cells, and γδ T cells as well as various innate lymphoid cells such as Natural killer (NK) cells, NKT cells, lymphoid tissue inducer (LTI) and LTI-like cells. Several studies have shown that IL-22 has a major role in both defense against certain microbes and the development and maintenance of chronic inflammatory diseases. In addition, it plays an important role in mucosal tissue protection and wound healing. Moreover, it induces proliferative and anti-apoptotic pathways in responsive cells allowing for tissue preservation. The IL-22 receptor complex is composed of IL-22R1 and IL-10R2 subunit. IL-22R1 subunit is restricted to cell lineages of a non-haematopoietic origin, in particular, pancreas, kidney and liver as well as barrier surfaces such as the skin, intestine and lung. It is important to note that the bone marrow, peripheral blood mononuclear cell, spleen, thymus do not express IL-22R2 and therefore immune cells are not targets of IL-22. In humans, Th22, a subset of CD4 T cells that specifically express
IL-22 is mainly found in tissues. Animal models as well as human studies have identified both inflammatory and protective roles for IL-22 in autoimmune diseases. In RA, IL-22 is assumed to play a pathogenic role. However, the mechanism by which IL-22 contributes to RA pathogenesis is not completely clear. The assumption was mainly based on the observed minimally reduced susceptibility of the IL-22−/− mice to collagen-induced arthritis (CIA) and decreased incidence of pannus information. In this model of inflammatory arthritis, IL-22 was found to promote osteoclastogenesis and this effect may be associated with the reduced severe arthritis in IL-22-deficient mice. Previous studies suggest that IL-22, through the STAT3, ERKV2, and p38 MAPK pathways stimulate synovial fibroblasts proliferation and monocyte chemoattractants protein (MCP)-1 production, leading to inflammation. Recently, Sakar et al., reported that IL-22 reduces the severity of CIA, when administered prior to the onset of the disease and showed that the mechanism of which is associated with increased with levels of IL-10. Other recent study, has been shown that IL-22 significantly enhanced fibroblast-like synoviocytes proliferation in RA and suggests that its contribution to the synovium hyperplasia and joint destruction. This study showed that potential stimulus present in the rheumatoid joint, such as TNF-α and lipo-polysaccharides are able to induce IL-22 expression. A more recent study, reported that IL-22 promoted osteoclastogenesis in RA by induction of receptor activator of nuclear factor kappa-B ligand (RANKL) in human synovial fibroblast.

This study was conducted to investigate the presence of IL-22 in the sera of patients with RA and healthy controls and to determine the association between the level of IL-22 and the blood parameters including C-Reactive Protein (CRP), rheumatoid factor (RF), and anti-citrullinated-peptide (ACCP) antibodies, as well as its association to demographic and clinical data in RA cases.

SUBJECTS AND METHODS

This case-control study was conducted at Al-Thawra Modern General Hospital and University of Science and Technology Hospital, Sana'a city, Yemen during a period of one year starting in April 2015 and ending in April 2016. The study group; 45 patients with new onset RA were recruited and diagnosed, according to the revised criteria for classification of RA by the American College of Rheumatology (ACR) criteria. These patients had never been treated with immunosuppressive drugs. The control group is 45 healthy subjects without RA were used as healthy controls. The personal and clinical information of patients and control are shown in Table 1. We conducted the study in accordance with ethical standards, and verbal informed consents were obtained from all participants before their enrollment. Patients were excluded if they had any other autoimmune diseases or infection or he/she had received immunosuppressive or glucocorticoid therapies within the past 6 months.

Five ml of venous blood was collected from each subject. The specimens were allowed to clot at room temperature and centrifuged at 3500 rpm for five minutes. Serum was separated from each sample into three ependroff tubes; one tube for IL-22 test, second for RF test and CRP test and the third for ACCP test. They stored at -20°C till tested. The sera of the selected subjects were tested to determine the IL-22 by a commercially available manual enzyme linked immunosorbent assay (ELISA), Glory Science Co., Ltd, USA). ACCP antibodies were determined by a manual ELISA kit manufactured by (INOVA Diagnostics Kits, San Diego, CA-USA). The levels of serum CRP, and RF were analyzed by latex tests (Vitro Science Co, Egypt).

Table 1: Demographic data of control and cases of RA.

Demographic data	Healthy controls (N=45)	Patients with RA (N=45)	P
Age (years)	Median 40	40	0.734
	Range 80-10	50	
	Min-Max (10-90)	(10-60)	
Gender	Female 36	39	0.402
	Male 9	6	
Residence	R 10	19	0.043
	U 25	26	
Smoking habit	No 41	38	0.340
	Yes 4	7	
Qat chewing	No 30	32	0.653
	Yes 15	13	

R/U: Rural/Urban; Probability value (p) <0.05 (: significant)

Table 2: The distribution of clinical data among cases of RA.

Clinical data	Median	Range (10-90)
Duration (years)	2.0	(0.16-10)
Family history N (%)	8 (17.8)	
Fever N (%)	19 (42.2)	
Joint pain N (%)	44 (97.8)	
Morning stiffness N (%)	42 (93.3)	
Swollen joints N (%)	39 (86.7)	
Fatigue N (%)	36 (80)	
Symmetric arthritis N (%)	27 (60)	

RESULTS

The demographic data of healthy control and patients showed in Table 1. At presentation, most of patients...
(97.8%) had joint pain and morning stiffness (93.3%), while 86.7% had swollen joints and 80% had fatigue. Twenty seven patients (60%) had symmetric arthritis, 19 (42.2%) had fever and only 8 patients (17.8%) had family history (Table 2). IL-22 levels in serum of RA patients were significantly higher compared to that in the healthy control (p=.022). As we expected, there were significant differences between patients and healthy control in the levels of CRP, RF, and ACCP (p=0.000) Table 3.

Table 3: The levels of IL-22 and serologic markers of RA in control and cases.

Parameters	Healthy controls (N=45)	Patients with RA (N=45)	P
IL-22 (ng/ml)	Median 75.36, Range 459-825	Median 86.89, Range 55-514	0.022**
CRP (mg/ml)	Median 0.00, Range 24-48	Median 24.0, Range 0-24	0.000**
RF (IU/ml)	Median 0.00, Range 32-64	Median 32.0, Range 0-320	0.000**
ACCP (U/mL)	Median 0.00, Range 320-517	Median 221.0, Range 0-320	0.000**

Figure 1: The correlation between serum levels of IL-22 and CRP in RA patients.

DISCUSSION

IL-22 has been recently suggested to be involved in the pathogenesis of autoimmune arthritis. In current study, it was observed significantly elevated levels of IL-22 in serum of RA patients compared to healthy controls (p=.022). Our data are in accordance with previous reports that found elevation of IL-22 in serum and plasma of patients with RA. In consistent with current study, IL-22 mRNA was detected in synovial tissue directly as well as in synovial fluid mononuclear cells in patients with RA. As regards to the sources of IL-22 in humans, many studies reported that the higher frequency of peripheral IL-22+CD4+ T cells in RA patients than those in the controls. Moreover, Zhoa et al., showed that IL-22+CD4+ T cells were correlated positively with the disease activity in RA patients and the percentage of these cells were correlated positively with the levels of plasma IL-22 in these patients. Another recent study has been shown that the synovium in RA patients is infiltrated by T lymphocytes especially Th17 which is also a source of IL-22.

Correlation analysis revealed that a significant positive correlations between levels of serum IL-22 and CRP and ACCP antibodies (rho=0.0416, p=0.004 and rho=0.559, p=0.000, respectively). In line with current result, Kim et al., found a significant association between serum IL-22 and ACCP antibodies in patients with RA. Of potential implication, the strong association of elevated serum IL-22 with the more specific serologic marker, ACCP antibodies. In addition, many recent studies reported that IL-22 has been involved in joint destruction in RA and thus, determination of ACCP
antibodies and IL-22 levels may provide a novel means for predicting aggressive disease in these patients. Regarding to the correlation between IL-22 levels and RF in RA patients, current study showed no significant association between them; however, some previous studies demonstrated a positive correlation between them.36,37 While we did not find any previous study about the correlation between IL-22 and CRP.

To the best knowledge, there is no report available on the correlation between IL-22 and the neither individual nor clinical data in RA. In current study, there are no correlations between serum IL-22 and neither demographic nor clinical data of patients. In line with current observation, disease activity in IL-22 knockout mice of CIA did not differ from that of their wild-type littermats.37 In addition, recent study between high and normal levels of serum IL-22 in early untreated RA patients showed no differences in the clinical inflammatory parameters of the two groups of patients, although these studies showed an association between serum IL-22 levels and bone erosion.34,37 On the other hand, previous studies on patients with RA have been a correlation between levels of IL-22 and disease activity or severity.35 However, recent an experimental study has been shown that synovial inflammation was not affected in IL-22-/- mice and this study concludes that the local IL-22 produced by adaptive or innate immune cell have no direct contribution to the induction of T cell-mediated synovial inflammation.36,37 Many studies suggest that the possible explanation for these differences is depending on different phases of the disease development.29,30,41

CONCLUSION
In conclusion, obtained data indicated high levels of IL-22 in RA patients and that the strong association with ACCP antibodies suggests the potential of IL-22 and ACCP antibodies levels as predictive markers in this disease. It is also of interest that as immune cells do not express IL-22, targeting IL-22 and related signaling may be an effective therapeutic approach for treating autoimmune RA.

AUTHOR'S CONTRIBUTION
The manuscript was carried out, written, and approved in collaboration with all authors.

CONFLICT OF INTEREST
No conflict of interest associated with this work.

REFERENCES
1. McNees IB, Shett G. Mechanisms of Diseases: The pathogenesis of Rheumatoid Arthritis. E New England and Jo Medicine. 2011; 365:2205-19
2. Christodoulou C, Choy EH: Joint inflammation and cytokine inhibition in rheumatoid arthritis. Clin Exp Med 2006; 6: 13-9. https://doi.org/10.1076/hec10.09.001
3. Wolke K, Sabat R. Interleukin-22: A novel T- and NK-cell derived cytokine that regulates the biology of tissue cells. Cytokine Growth Factor Rev 2006; 7:367-80
4. Zwenewicz LA, Flavell RA. Recent advances in IL-22 biology. Int Immunol 2011; 23: 159-63. https://doi.org/10.1093/intimm/dzx001
5. Wolke K, Witte K, Warszawski K, Sabat R: Biology of interleukin-22. Semin Immunol Pathol 2010; 32: 17-31. https://doi.org/10.1007/s00281-009-0188-x
6. Ikeuchi H, Kuroiwa T, Hiramatsu N, Kaneko Y, Hiromura K, Ueki K, et al. Expression of IL-22 in RA: Potential role as a proinflammatory cytokine. Arthritis Rheum 2005; 52:1037-46. https://doi.org/10.1002/art.20965
7. Wolke K, Kunz S, Asadullah K, Sabat R. Cutting edge: immune cells as sources and targets of the IL-10 family members? J Immunol 2002; 5168: 97. https://doi.org/10.4049/jimmunol.168.11.5397
8. Kondo T, Takata H, Matsuki F, Takiguchi M. Cutting edge: phenotypic characterization and differentiation of human CD8+ T lymphocytes from psoriasis skin plaques are cytotoxic effector cells that secrete interferon-gamma. J Leuko Biol 2009; 86:435-43. https://doi.org/10.1189/JIB.0100946
9. Ortega C, Fernandez AS, Carrillo JM, Romero P, Molina II, Moreno JC, Santamaria M. IL-17-producing CD8+ T lymphocytes from psoriasis skin plaques are cytotoxic effector cells that secrete interferon-gamma. J Leuko Biol 2009; 86:435-43.
10. Ness-Schwickherath KJ, Jia C, Morita CT. Cytokine requirements for the differentiation and expansion of IL-17A- and IL-22-producing human Vγ2Vδ2 T cells. J Immunol 2010; 184:7268-80. https://doi.org/10.4049/jimmunol.1000600
11. Nogales KE, Zaha LC, Shomer A, Fuentes-Duculan J, Cardinale I, Kukuchi T, et al. IL-22-producing “T22” T cells account for upregulated IL-22 in atopic dermatitis despite reduced IL-17-producing TH17 T cells. J Allergy Clin Immunol 2009; 123(6):1244-52. https://doi.org/10.1016/j.jaci.2009.03.041
12. Hughes T, Becknell B, Freund AG, McClory S, Briercheck E, Yu J, Mao C, Giovenzana C, Nuovo G, Wei L, et al. Interleukin-1beta selectively expands and sustains interleukin-22+ immature human natural killer cells in secondary lymphoid tissue. Immunity 2010; 32:803-14. https://doi.org/10.1016/j.immuni.2010.06.007
13. Crellin NK, Trifari S, Kaplan CD, Cupedo T, Spits H. Human NKp4 IL-22+ cells and LiT-like cells constitute a stable ROR+ lineage distinct from conventional natural killer cells. J Exp Med 2010; 207:281-90. https://doi.org/10.1084/jem.20091509
14. Cupedo T, Crellin, N. K., Papazian, N. et al. Human fetal lymphoid tissue-inducer cells are interleukin 17-producing precursors to RORC+CD127+ natural killer-like cells. Nat Immunol 2009; 10:66. https://doi.org/10.1038/ni.1668
15. Wolke K, Kunz S, Witte E, Friedrich M, Asadullah K, Sabat R. IL-22 increases the innate immunity of tissues. Immunity 2004; 21: 241-54. https://doi.org/10.1016/j.immuni.2004.07.007
16. Pickert G, Neufert C, Leppkes M. et al. STAT3 links IL-22 signaling in intestinal epithelial cells to mucosal wound healing. J Exp Med 2009; 206:1465. https://doi.org/10.1084/jem.200902683
17. Eyerich S, Wagener J, Wenzel V, Scarponi C, Pennino D, Albanesi C, Schaller M, Behrendt H, Ring J, Schmidt-Weber CB, Cavani A, Mempel M, Traidl-Hoffmann C, Eyerich K: IL-22 and TNF-a represent a key cytokine combination for epidermal integrity during infection with Candida albicans. Eur J Immunol 2011; 41:1894-901. https://doi.org/10.1002/eji.201041197
18. Radaeva S, Sun R, Pan HN, Huang F, Gao B. IL-22 plays a protective role in T cell-mediated murine hepatitis: IL-22 is a survival factor for hepatocytes via STAT3 activation. Hepatology 2004; 39:1332. https://doi.org/10.1002/hep.20184
19. Xie HM, AggarwalAS, HO WH, Foster G, Zhang Z, Stinson G, Wood WA, Godder Adj, Jurney AL. IL-22 a novel human cytokines that signals through the interferon receptor-related proteins CRF2-4 and IL-22R. J Bio Chem 2000; 275:31335-39. https://doi.org/10.1074/jbc.M005304200
20. Dumoutier L, Van Roost E, Colau D, Renaud JC. Human interleukin-10-related T cell-derived inducible factor: molecular cloning and functional characterization as an
hepatocyte-stimulating factor. Proc Natl Acad Sci USA 2000; 97:10144–10149. https://doi.org/10.1073/pnas.170291697

21. Kotenko SV, Izotova LS, Mirochnitchenko OV, Esterova E, Dickensheets H, Donnelly RP, Peska S. Identification of the functional interleukin-22 (IL-22) receptor complex: the IL-10R2 chain (IL-10Rbeta) is a common chain of both the IL-10 and IL-22 (IL-10-related T cell-derived inducible factor, IL-TIF) receptor complexes. J Biol Chem 2001; 276:2725–2732. https://doi.org/10.1074/jbc.M007537200

22. Kunz S, Wolk K, Witte E, Witte K, Doecke WD, Volk HD. Sterility of IL-22 and IL-20 and IL-24 are produced by and act on keratinocytes and are distinct from classical ILs. Exp Dermatol 2006; 15:991–100. https://doi.org/10.1046/j.1523-747.2000.02003.x

23. Wolk K, Kunz S, Witte E, Friedrich M, Asadullah K, Sabat R. IL-22 increases the innate immunity of tissues. Immunity 2004; 21:241–254. https://doi.org/10.1016/j.immuni.2004.07.007

24. Takatori H, Kanno WT, et al. lymphoid inducer-like cells are an innate source of IL-17 and IL-22. J Exp Med 2009; 206:35. https://doi.org/10.1084/jem.20072713

25. Trifari S, Kaplan CD, Tran EH, Crellin NK, Spits H. Identification of a human helper T cell population that has abundant production of IL-22 and is distinct from TH17, TH1 and TH2 cells. Nat Immunol 2009; 10(8):864–71. https://doi.org/10.1038/ni.1767

26. Ratsep R, Kingo K, Karelson M, et al. Gene expression study of IL10 family genes in vitiligo skin biopsies, peripheral blood mononuclear cells and sera. Br J Dermatol 2008; 159:1275–81. https://doi.org/10.1111/j.1365-2133.2008.08785.x

27. Geboes L, Dumoutier L, Kelchermans H, Schurgers E, Mitera T, Renaud JC, et al. Proinflammatory role of the Th17 cytokine IL-22 in collagen-induced arthritis in C57BL/6 mice. Arthritis Rheum 2009; 60:390–5. https://doi.org/10.1002/art.24220

28. Lejeune D, Dumoutier L, Constantinescu S, Kruijer W, Schuringa JJ, Renaud JC. IL-22 activates the JAK/STAT, ERK, JNK, and p38 MAP kinase pathways in a rat hepatoma cell line. Pathways that is shared with and distinct from IL-10. J Biol Chem 2002; 33277:3367. https://doi.org/10.1074/jbc.M204204200

29. Sarkar S, Zhou X, Justa S, et al. Interleukin-22 reduces the severity of collagen-induced arthritis in association with increased levels of IL-10. Arthritis Rheum 2013; 66:950-71. https://doi.org/10.1002/art.37849

30. Carrion M, Juarranz Y, Martinez C, Gonzalez-A-Tiavo I, PablosJ, Gutie`Rez-Can ASI, Gomariz RP. IL-22/IL-22R1 axis and S100A8/A9 alarmins in human osteoarthritic and rheumatoid arthritis synovial Fibroblasts. Rheumatol 2013; 52:2177-2186. https://doi.org/10.1093/rheumatology/ket315

31. Kim KW, Kim HR, Park JY, et al. IL-22 promotes osteoclastogenesis in rheumatoid arthritis through induction of RANKL in human synovial fibroblasts. Arthritis Rheum 2012; 64:1015-23. https://doi.org/10.1002/art.33446

32. Arnett FC, Edworthy SM, Bloch DA, McShane DJ, Fries JF, Cooper NS, et al. The American Rheumatism Association 1987 revised criteria for the classification of rheumatoid arthritis. Arthritis Rheum 1988; 31:315–24. https://doi.org/10.1002/art.1780310302

33. Fagerland MW, Sandvik L. Performance of two-sample location tests for skewed distributions with unequal variances. Contemp Clin Trials 2009; 30:490–496. https://doi.org/10.1016/j.cct.2009.06.007

34. Leipe J, Schramm MA, Grunke M, Bauereule M, Dechant C, Nigg AP, et al. IL-22 serum levels are associated with radiographic progression in rheumatoid arthritis. Annals of the Rheumatic Diseases 2011; 70:1453–1457. https://doi.org/10.1136/ard.2011.152074

35. Dda Rocha Jr LF, Duarte AL, Mariz HA, Pitta ID, Galdino SL, et al. Increased serum IL-22 in patients with RA and correlation with disease activity. J Rheumatol 2012; 39(7):1320-5. https://doi.org/10.3899/jrheum.1111027

36. Zhao L, Jiang Z, Jiang Y, Ning MA, Zhang Y, Feng L, Wang K. IL-22+/CD4+ T cells in patients with RA. Int J Rheum Dis 2013; 16:518-26. https://doi.org/10.1111/j.1756-185X.12099

37. Kim S, Han S, Withers DR, Gaspal F, Bae J, Baik S, Shin HC, Kim KS, Bekiaris V, Anderson G, et al. CD117 CD3 CD56 OX40L high cells express IL-22 and display an LTi phenotype in human secondary lymphoid tissues. Eur J Immunol 2011; 41:1563–1572. https://doi.org/10.1002/eji.201040915

38. CascaoR, Moura RA, Perpetuo I, et al. Identification of a cytokine network sustaining neutrophil and Th17 activation in untreated early RA. Arthritis Res Ther 2010; 12 R196. https://doi.org/10.1186/ar1168

39. Shen H, Goodall JC, Hill Gaston JS. Frequency and phenotype of peripheral blood Th17 cells in ankylosing spondylitis and rheumatoid arthritis. Arthritis Rheum 2009; 60:1647-1656. https://doi.org/10.1002/art.2627

40. Lubberts E. Th17 cytokines in arthritis. Semin Immunopathol 2010; 32:43-53.

41. Yang X, Zheng SG. Interleukin-22: A likely target for treatment of autoimmune diseases. Autoimmun Rev 2014; 13:615-620. https://doi.org/10.1111/scitranslmed.3003504