Effects of air pollution on heart rate variability: the VA Normative Aging Study

Citation
Park, Sung Kyun, Marie S. O’Neill, Pantel S. Vokonas, David Sparrow, and Joel Schwartz. 2005. Effects of air pollution on heart rate variability: the VA Normative Aging Study. Environmental Health Perspectives 113(3): 304-309.

Published Version
doi:10.1289/ehp.7447

Permanent link
http://nrs.harvard.edu/urn-3:HUL.InstRepos:4879856

Terms of Use
This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA

Share Your Story
The Harvard community has made this article openly available. Please share how this access benefits you. Submit a story.

Accessibility
Reduced heart rate variability (HRV), a marker of poor cardiac autonomic function, has been associated with air pollution, especially fine particulate matter (<2.5 µm in aerodynamic diameter (PM$_{2.5}$)). We examined the relationship between HRV [standard deviation of normal-to-normal intervals (SDNN), power in high frequency (HF), and low frequency (LF), and LF:HF ratio] and ambient air pollutants in 497 men from the Normative Aging Study in greater Boston, Massachusetts, seen between November 2000 and October 2003. We examined 4-hr, 24-hr, and 48-hr moving averages of air pollution (PM$_{2.5}$, particle number concentration, black carbon, ozone, nitrogen dioxide, sulfur dioxide, carbon monoxide). Controlling for potential confounders, HF decreased 20.8% [95% confidence interval (CI), 4.6–34.2%] and LF:HF ratio increased 18.6% [95% CI, 4.1–35.2%] per SD (8 µg/m3) increase in 48-hr PM$_{2.5}$. LF was reduced by 11.5% [95% CI, 0.4–21.3%] per SD (13 ppb) increment in 4-hr O$_3$. The associations between HRV and PM$_{2.5}$ and O$_3$ were stronger in people with ischemic heart disease (IHD) and hypertension. The associations observed between SDNN and LF and PM$_{2.5}$ were stronger in people with diabetes. People using calcium-channel blockers and beta-blockers had lower associations between O$_3$ and PM$_{2.5}$ with LF. No effect modification by other cardiac medications was found. Exposures to PM$_{2.5}$ and O$_3$ are associated with decreased HRV, and history of IHD, hypertension, and diabetes may confer susceptibility to autonomic dysfunction by air pollution.

Materials and Methods

Study population. The Normative Aging Study is a longitudinal study of aging established by the Veterans Administration in 1963, when 1,131 men from the Greater Boston area (21–81 years of age) confirmed to be free from smoking. Weight and height were measured to compute body mass index (BMI). With the subject seated, heart rate and systolic and diastolic blood pressures were measured by a physician. The mean of the left and right arm measurements was used. For this study, we defined mean arterial blood pressure (MAP) as diastolic pressure plus one-third of the difference between systolic and diastolic blood pressure. Subjects with diabetes were defined by a physician’s diagnosis of type 2 diabetes and/or use of a diabetes medication (e.g., oral hypoglycemic drug, metformin, or insulin). Hypertension was defined as systolic blood pressure of ≥140 mm Hg, diastolic blood pressure of ≥90 mm Hg, or reported use of hypertension medication. Cigarette smoking, alcohol consumption, and subjects’ use of medications were assessed by questionnaire. Medication use was confirmed by a physician interview. Prevalent IHD was identified using the Framingham Heart Study criteria for myocardial infarction and angina pectoris (Shurtleff 1974). Temperature of the room where the electrocardiogram (ECG) was taken was recorded.

Address correspondence to S.K. Park, Exposure, Epidemiology and Risk Program, Harvard School of Public Health, Landmark Center East, 3-111-19, 401 Park Dr., Boston, MA 02215 USA. Telephone: (617) 384-8873. Fax: (617) 384-8745. E-mail: spark@hsph.harvard.edu

We thank E.R. Dilbs and J.D. Auerbach for their invaluable assistance in conducting the heart rate variability measurements and other contributions to the VA Normative Aging Study (NAS). This work was supported by the National Institute of Environmental Health Sciences (NIEHS) (ES00002) and the U.S. Environmental Protection Agency (EPA/R2827353). The VA NAS is supported by the Cooperative Studies Program/Epidemiology Research and Information Center of the U.S. Department of Veterans Affairs and is a component of the Massachusetts Veterans Epidemiology Research and Information Center, Boston, S.K.P. and M.S.O. were supported by training grant T32 ES07069 from the NIEHS, National Institutes of Health. Its contents are solely the responsibility of the authors and do not necessarily represent the official views of the NIEHS. M.S.O. was supported by the Robert Wood Johnson Foundation Health and Society Scholars program. The authors declare they have no competing financial interests.

Received 26 July 2004; accepted 6 December 2004.
HRV measurement. We measured HRV between 0600 and 1300 hr using a two-channel (five-lead) ECG monitor (Trillium 3000; Forest Medical, East Syracuse, NY). A detailed description of the HRV measurement protocol is provided elsewhere (Pope et al. 2001). Briefly, after the participants had rested for 5 min, the ECG was recorded (sampling rate of 256 Hz per channel) for approximately 7 min with the subject seated. We used the best 4-consecutive-minute interval for the HRV calculations. The ECG digital recordings were processed, and heart rate and HRV measures were calculated using PC-based software (Trillium 3000 PC Companion Software for MS Windows; Forest Medical). Beats were automatically detected and assigned tentative annotations, which were then reviewed by an experienced scanner to correct for any mislabeled beats or artifacts. Only normal-to-normal (NN) beat intervals were included in the analysis. We computed standard deviation of NN intervals (SDNN), the square root of the mean of the squared differences between adjacent NN intervals (r-MSSD), high-frequency power (HF) (0.04–0.15 Hz), low-frequency power (LF) (0.15–0.4 Hz), low-frequency power ratio, and LF:HF ratio.

Ninety-two subjects with problematic heart rate measurements (atrial fibrillation, atrial bigeminy, frequent ventricular ectopic activity, ventricular bigeminy, and trigeminy, pacemakers, irregular rhythm, irregular sinus rhythm, frequent ventricular ectopic activity, multifocal atrial tachycardia, or measurement time < 3.5 min) were excluded.

Air pollution and weather data. Continuous PM$_{2.5}$, PM$_{10}$, PN, and BC measures were measured at the Harvard School of Public Health monitoring site, 1 km from the exam site, using a Tapered Element Oscillating Microbalance (TEOM) (model 1400A; Rupprecht & Patashnick Co., East Greenbush, NY), condensation particle counter (model 3022A; TSI Inc., Shoreview, MN), and aethalometer (Magee Scientific, Berkeley, CA), respectively. Because the TEOM sample filter is heated to 50°C, a season-specific correction was used to compensate for the loss of semivolatile mass that occurs at this temperature (Allen et al. 1997). Ozone, sulfur dioxide, nitrogen dioxide, carbon monoxide, temperature, and dew-point temperature measurements were obtained from the Massachusetts Department of Environmental Protection local monitoring sites. The gaseous pollutants are measured hourly using U.S. Environmental Protection Agency (EPA) reference methods (U.S. EPA 2002).

To control for weather, we used apparent temperature, defined as a person’s perceived air temperature (O’Neill et al. 2003). It was calculated with the following formula: $-2.653 + (0.994 \times \text{air temperature}) + (0.0153 \times \text{dewpoint temperature})$. We estimated missing values of the potential confounding factors were excluded, 497 subjects with complete data were available for the analyses.

The following variables were chosen as a priori as clinically important predictors and included in the models: age, BMI, fasting blood glucose (FBG), cigarette smoking, use of cardiac medications, room temperature, season, and the lagged moving average of apparent temperature corresponding to the same moving average period for each air pollutant. MAP was also included because it changed the estimated effect of some air pollutants by more than 10%. To model the nonlinear association of apparent temperature with HRV, we used a cubic spline with 3 degrees of freedom (df).

We estimated the percent change in each HRV parameter for 1 SD increase for each pollutant as $[10^{(\beta \times SD)} - 1] \times 100\%$, with 95% confidence intervals (CI) $[10^{(\beta \times SD) + 1.96 \times SE)} - 1] \times 100\%$, where β and SE are the estimated regression coefficient and its standard error. To test whether observed associations in single-pollutant models were robust to inclusion of another pollutant, two-pollutant models were fitted. To assess modifying effects of hypertension, IHD, diabetes or use of cardiac/antihypertensive medications, we ran separate regressions stratified by those variables and compared the percent changes of each pollutant. We also ran regression models including interaction terms.

Table 1. Characteristics [mean ± SD or n (%)] of the study subjects.

Variable	All subjects (n = 497)	Without (n = 162)	With (n = 335)
Age (years)	72.7 ± 6.6	71.2 ± 6.5	73.4 ± 6.5
BMI (kg/m²)	28.3 ± 4.1	27.2 ± 3.9	28.7 ± 4.1
Systolic blood pressure (mm Hg)	131.4 ± 16.3	125.0 ± 10.5	134.5 ± 17.7
Diastolic blood pressure (mm Hg)	75.7 ± 9.4	75.3 ± 7.1	75.9 ± 10.3
MAP (mm Hg)	94.3 ± 10.2	91.9 ± 7.2	95.5 ± 11.2
Heart rate (beat/min)	70.7 ± 6.7	71.4 ± 5.6	70.4 ± 7.1
Fasting blood glucose (mg/dL)	108.0 ± 29.0	103.1 ± 22.3	110.3 ± 31.5
Cholesterol (mg/dL)	197.0 ± 37.6	207.1 ± 36.2	192.1 ± 37.4
Triglycerides (mg/dL)	49.7 ± 13.5	52.9 ± 15.3	48.1 ± 12.3
Smoking status [n (%)]	129.8 ± 71.5	122.0 ± 66.7	135.3 ± 73.5
Never smoker	160 (32.2)	58 (35.8)	102 (30.4)
Former smoker	311 (62.6)	93 (57.4)	218 (65.1)
Current smoker	26 (5.2)	11 (6.8)	16 (4.5)
Alcohol intake (≥ 2 drinks/day) [n (%)]	96 (19.3)	30 (18.5)	66 (19.7)
Diabetes mellitus [n (%)]	72 (14.5)	14 (8.6)	58 (17.3)
IHD history [n (%)]	142 (28.6)	16 (9.9)	126 (37.6)
Use of beta-blocker [n (%)]	163 (32.8)	0 (0.0)	163 (48.7)
Use of calcium-channel blocker [n (%)]	170 (34.1)	0 (0.0)	70 (20.9)
Use of ACE inhibitor [n (%)]	100 (20.1)	0 (0.0)	100 (29.9)
HRV			
Log$_{10}$ SDNN, msec	1.5 ± 0.25	1.5 ± 0.25	1.5 ± 0.25
Log$_{10}$ HF, msec2	1.9 ± 0.66	1.8 ± 0.62	1.9 ± 0.68
Log$_{10}$ LF, msec2	2.0 ± 0.52	2.0 ± 0.50	2.0 ± 0.54
Log$_{10}$ LF-HF	0.10 ± 0.49	0.22 ± 0.47	0.04 ± 0.49

Table 2. Twenty-four–hour moving averages of outdoor air pollution and apparent temperature, and room temperature during the HRV measurement.

Pollutant	Mean ± SD	Range
PM$_{2.5}$ (µg/m3)	11.4 ± 8.0	0.45–62.9
PM$_{10}$ (µg/m3)	28.9 ± 12.57	8.528–74.675
CO (ppm)	0.50 ± 0.24	0.13–1.8
CO (ppm)	4.9 ± 3.4	0.95–24.7
NO$_{2}$ (ppb)	22.7 ± 6.2	7.0–40.1
Sulfur dioxide (ppb)	22.5 ± 6.2	7.0–40.1
Carbon monoxide (ppm)	0.50 ± 0.24	0.13–1.8
Apparent temperature (°C)	11.4 ± 9.9	-5.2–35.6
Room temperature (°C)	24.5 ± 1.4	20.0–30.0
Results

Table 1 shows the demographic and clinical characteristics and HRV measurements of the subjects. The study participants were all male, with a mean age of 72.7 years (SD = 6.6 years). Seventy-two participants had diabetes (14.5%) on the basis of previously mentioned criteria. Hypertension and IHD prevalences were 67.4% and 28.6%, respectively. People with hypertension were older, had higher levels of BMI and FBG, and were more likely to have IHD, have diabetes, and be taking hypertension medications.

Air pollution and temperature levels are summarized in Table 2. The median time of ECG monitoring was 1000 hr. Levels of all pollutants except O_3 decreased after peaking around 0700 hr. All air pollution concentrations during the study period were within the National Ambient Air Quality Standards (U.S. EPA 2004).

Table 3. Estimated percent changes (95% CIs) in HRV in single (PM_{2.5} or O_3) and two-pollutant (PM_{2.5} and O_3) models for PM_{2.5} and O_3 in various lagged moving averages.

Outcome, model, predictor	4-hr moving average	24-hr moving average	48-hr moving average
Log_{10} SDNN			
Single-pollutant PM_{2.5}	–0.1 (–5.0 to 4.9)	–2.2 (–7.7 to 3.6)	–5.4 (–11.8 to 1.5)
O_3	–3.6 (–8.9 to 2.0)	–5.3 (–11.7 to 1.7)	–2.2 (–10.0 to 6.1)
Two-pollutant PM_{2.5}	0.2 (–4.8 to 5.5)	–0.3 (–6.6 to 6.3)	–5.0 (–12.2 to 2.7)
O_3	–3.6 (–9.0 to 2.1)	–5.1 (–12.2 to 2.5)	–0.2 (–8.3 to 9.1)
Log_{10} LF			
Single-pollutant PM_{2.5}	–6.3 (–17.8 to 6.7)	–13.2 (–54.1 to 0.1)	–20.8 (–53.2 to 4.7)
O_3	–9.3 (–21.8 to 5.3)	–11.1 (–26.2 to 7.1)	–2.6 (–21.6 to 21.1)
Two-pollutant PM_{2.5}	–5.1 (–17.1 to 8.6)	–8.6 (–22.9 to 8.3)	–20.3 (–53.2 to 2.1)
O_3	–9.4 (–22.1 to 5.4)	–7.9 (–24.9 to 13.0)	6.5 (–15.9 to 34.9)
Log_{10} HF			
Single-pollutant PM_{2.5}	5.7 (–4.6 to 17.1)	–0.6 (–11.9 to 12.1)	–6.0 (–18.9 to 8.9)
O_3	–11.5 (–23.1 to 0.4)**	–10.9 (–23.1 to 3.3)	–6.3 (–21.1 to 11.2)
Two-pollutant PM_{2.5}	6.2 (–4.6 to 18.1)	3.9 (–9.2 to 18.8)	–3.6 (–18.1 to 13.5)
O_3	–11.3 (–23.1 to 0.1)**	–12.2 (–25.3 to 3.2)	–5.0 (–21.2 to 14.6)
Log_{10}(LF:HF)			
Single-pollutant PM_{2.5}	12.9 (3.0 to 23.7)**	14.5 (2.9 to 27.5)**	18.6 (4.1 to 35.2)**
O_3	–2.4 (–12.1 to 8.3)	0.2 (–12.1 to 14.2)	–3.9 (–17.4 to 11.9)
Two-pollutant PM_{2.5}	11.9 (1.8 to 22.9)**	13.7 (0.9 to 28.0)**	21.0 (4.8 to 39.8)**
O_3	–2.1 (–12.0 to 8.8)	–4.7 (–17.4 to 9.9)	–10.7 (–24.4 to 5.3)

Coefficients are expressed as percent change per 1 SD (8 µg/m^3 for PM_{2.5} and 13 ppb for O_3) for adjusting for age; BMI; MAP; FBG; cigarette smoking; use of beta-blocker, calcium-channel blocker, and/or ACE inhibitor; room temperature; season; and cubic smoothing splines (3 df) for moving averages of apparent temperature corresponding for the predictor.

*p < 0.1, **p < 0.05.

Table 4. Estimated percent changes (95% CIs) in HRV for other pollutants.

Outcome, model, predictor	48-hr moving average	4-hr moving average
Log_{10} SDNN		
PN	–0.7 (–9.3 to 8.9)	–3.4 (–10.2 to 3.9)
BC		1.2 (–3.1 to 5.7)
Log_{10} Hf		
PN	–4.1 (–24.7 to 22.1)	–13.9 (–28.3 to 4.4)
BC		–0.9 (–11.7 to 11.2)
Log_{10} LF		
PN	–7.0 (–23.2 to 12.6)	–2.4 (–16.2 to 13.6)
BC		1.1 (–7.7 to 10.7)
Log_{10}(LF:HF)		
PN	–3.0 (–18.2 to 15.0)	13.2 (–1.1 to 29.6)
BC		2.0 (–5.9 to 10.6)

Coefficients are expressed as percent change per 1 SD (13.527/cm^3 for PN, 0.47 µg/m^3 for BC, 6.2 ppb for NO_2, 3.4 ppb for SO_2, and 0.24 ppm for CO) for adjusting for age; BMI; MAP; FBG; cigarette smoking; use of beta-blocker, calcium-channel blocker, and/or ACE inhibitor; room temperature; season; and cubic smoothing splines (3 df) for moving averages of apparent temperature corresponding for the predictor.

*p < 0.1.
We found no significant interaction between PM\textsubscript{2.5} and O\textsubscript{3} and use of beta-blocker or ACE inhibitor. However, the effect of both pollutants on LF was substantially reduced by beta-blocker drugs. In those taking beta-blockers, the decrease in HF was larger than in LF relative to PM\textsubscript{2.5}, compared with those who had not taken those medications. Thus, a larger increase in LF:HF ratio was observed in participants who were taking beta-blocker. However, the association with ACE inhibitors was opposite: There was a larger increase in LF:HF ratio associated with PM\textsubscript{2.5} among those not taking that medication.

Discussion

This study is consistent with previous evidence that PM and O\textsubscript{3} are associated with decreased HRV, particularly for PM and HF, a parasympathetic (vagal) modulation of the heart. The associations of HRV were strongest with the 48-hr moving averages of particles, but O\textsubscript{3} had a shorter-term impact (4 hr and 24 hr). Furthermore, subjects with IHD and hypertension appeared to have larger reductions in HRV measures in relation to both PM\textsubscript{2.5} and O\textsubscript{3} exposures. People with diabetes had larger decreases of SDNN and LF associated with PM\textsubscript{2.5}. In addition, we found evidence for an association with BC, a marker of traffic particles.

When we examined medications, calcium-channel blockers had the most profound effect on the pollution associations, particularly for O\textsubscript{3}. This modification was primarily on LF, suggesting that this drug is blocking effects of pollution on the sympathetic pathway. If anything, the parasympathetic response was enhanced in these subjects. As expected, use of ACE inhibitors did not consistently or significantly modify pollution effects. Drug use patterns in these subgroups are related to underlying conditions, thus limiting the interpretability of these results. Nevertheless, they suggest that air pollution has the ability to affect both sympathetic and parasympathetic pathways. The sympathetic response seems mediated by pathways related to calcium influx into cells, whereas the parasympathetic response seems likely to be due to other mechanisms.

Previous studies have consistently reported PM associations with decreased HRV in older adults (Creason et al. 2001; Gold et al. 2000; Holguin et al. 2003; Liao et al. 1999, 2004; Pope et al. 1999, 2004) (Table 7). Our results are consistent with those. For example, estimated decreases in HF resulting from an exposure to a PM\textsubscript{2.5} increment of 10 µg/m3 in the previous studies were 24.1, 14.9, 19.3, and 5.1%. The last result is for a 10-µg/m3 increase in PM\textsubscript{10}, and is not directly comparable. We found a 16.2% reduction. Given the CIs (Table 7), these look fairly similar.

Three studies also evaluated the effect of O\textsubscript{3} on cardiac autonomic function, primarily HF (Gold et al. 2000; Holguin et al. 2003; Liao et al. 2004). The difference in measuring times used in the studies preclude quantitative comparisons of results, but there was substantial variability. In the present study, O\textsubscript{3}-related decreases in HF ranged from 2.6 to 11.1% depending on choice of moving averages of O\textsubscript{3}, but all estimates were insignificant.

Current knowledge about pathophysiological mechanisms that connect air pollution exposure and alterations in the autonomic nervous system is limited. One plausible mechanism is that inhalation of PM causes oxidative stress directly or via acute pulmonary inflammation. Oxidative stress in the lungs seems to induce proinflammatory mediators, such as cytokines (Donaldson et al. 2001), to increase extracellular calcium influx possibly through activation of calcium channels.
calcium channels in the plasma membrane (Stone et al. 2000), and to inactivate nitric oxide (Thomas et al. 2001). These effects are considered to cause an increase in sympathetic and a reduction in vagal tone (Arison et al. 2001; Chowdhary et al. 2002; Rodenbaugh et al. 2003), which may be linked with cardiac events, such as ventricular arrhythmias and myocardial infarction. In general, we find air pollution associated with greater reductions in vagal tone than in sympathetic activity.

A study from the Utah Valley (USA) found positive associations between PM_{10} and r-MSSD (Pope et al. 1999). Additionally, dogs exposed to concentrated ambient air particles showed significantly higher HF and LF compared with filtered air exposure (Godleski et al. 2000). Godleski et al. (2000) argued that too much elevation in parasympathetic stimulation may deteriorate cardiac status and result in a fatal bradyarrhythmia. A large follow-up study in Rotterdam, the Netherlands, found that elderly subjects in the highest quartile of SDNN had significantly increased risks for cardiac mortality, as well as the lowest quartile of SDNN had significantly increased risks for cardiac mortality, suggesting that in the elderly, alterations in HRV in either direction might be adverse (de Bruyne et al. 1999).

Few previous studies have evaluated modifiers of the air pollution–HRV association. Our results agree with two such studies, which showed larger decreases in HRV among people with hypertension (Holguin et al. 2003; Liao et al. 2004). Although dysregulation of the autonomic nervous system plays a role in the pathogenesis of hypertension, the causal mechanism of modification by hypertension has not been discussed. Hypertension is associated with lower baseline HRV and endothelial dysfunction (John and Schmieder 2003; Schroeder et al. 2003; Singh et al. 1998). Hypertensive people may have higher levels of oxidative–stress–induced inflammatory responses. These existing impairments may make hypertensive people less able to accommodate the additional oxidative stress related to air pollution exposure and therefore could explain the enhanced effect on HRV.

We observed a larger reduction in HRV among people with diabetes compared with subjects without diabetes. Diabetes is known to be associated with low autonomic function (Burger and Arison 2001; Singh et al. 2000), and has been reported to modify the association of PM with both hospital admissions (Zanobetti and Schwartz 2001) and deaths (Bateson and Schwartz 2004). Several epidemiologic studies showed that LF power, which reflects mainly sympathetic modulation, was more influenced by diabetes than any other HRV index (Burger and Arison 2001; Singh et al. 2000). The present study also showed that decreases in LF in relation to PM_{2.5} exposure were larger in people with diabetes than those in people without diabetes (−19.1% vs. −5.0%). Both diabetes and PM have been associated with oxidative-stress–induced inflammation and endothelial and autonomic dysfunctions. Therefore, susceptible individuals who have pre-existing inflammation due to diabetes may be more responsive to airborne particles exposure.

We found the strongest effects of PM_{2.5} and O_{3} in 48-hr and 4-hr moving averages, respectively. The rationale for the moving average model is that air pollution can lead to adverse health events occurring not only on the same day but also on several subsequent days (Schwartz 2000). Hence, the response to an acute pollution exposure could be distributed over a number of days. Because hourly measured concentrations of air pollution were available, we could evaluate several lagged models with end times matched to each participant’s ECG measure, an improvement over traditional approaches using fixed calendar days. We found stronger particle pollutant associations in longer lagged models but stronger O_{3} associations in shorter ones. A potential limitation of this study is that we measured ECG once for each subject, so subject-specific variation of HRV measures may not be ruled out as a potential confounder. However, this variation would have to be correlated with air pollution levels for it to confound the observed associations. We collected information on many possible factors that would affect autonomic function, but the covariates included in the model may not cover all predictors of individual variations of HRV. A longitudinal design would provide for better adjustment of within-subject variation in the observed associations and allow examination of differences in baseline autonomic function over time.

Table 7. Summary of the studies that assessed the association between ambient PM and HRV.

Reference	Design	Population (no./mean or age range/study area)	Ambient PM level (μg/m^2)	Covariates adjusted	Main results a
Liao et al. 1999	Longitudinal	26 volunteers (3 weeks) Mean, 81 years Baltimore	24-hr PM_{2.5}, 16.1 ± 6.9	Age, sex, cardiovascular health status	SDNN, –8.8 (–14.9 to 0.0) HF, –24.1 (–42.5 to 0.0) LF, –22.4 (–39.7 to 0.0)
Pope et al. 1999	Longitudinal	7 (29 person days) Mean, 70 years Utah Valley	PM_{10}, no concentration reported	Barometric pressure at 1700 hr mountain time, HR	SDNN, –1.4 (–2.1 to –0.6) LF, –1.4 (–2.4 to –0.5) r-MSSD, 1.9 (–0.2 to 3.9)
Gold et al. 2000	Longitudinal	21 (163 observation) range, 53–87 years Boston	4-hr PM_{2.5}, 15.3 Range, 2.9–48.6	Uses of calcium or beta-blockers, ACE inhibitor	SDNN, –2.9 (–7.8 to 2.1) r-MSSD, –10.6 (–18.3 to –2.9)
Creason et al. 2001	Longitudinal	56 nonsmokers (4 weeks) Mean, 82 years Baltimore	24-hr PM_{2.5}, 20.5 (Range, 7.8–45.3)	Age, sex, CV status, trend, maximum temperature, mean DPT	HF, –14.9 (–25.9 to –4.5) LF, –12.9 (–20.6 to –2.3)
Holguin et al. 2003	Longitudinal	34 (384 observations) Mean, 79 years Mexico City	24-hr PM_{2.5}, 30.4 ± 9.9	Age, HR, hypertension	HF, –19.3 (–29.2 to –7.7) LF, –8.4 (–19.3 to 0.2)
Pope et al. 2004	Longitudinal	88 (250 observations) Range, 54–89 years Utah	24-hr PM_{2.5}, 23.7 ± 20.2	Interactive spline smooths for temperature, RH, HR	SDNN, –2.7 (–3.9 to –1.4) LF, –2.7 (–3.3 to –0.2) r-MSSD, –6.1 (–3.2 to –3.0)
Liao et al. 2004	Cross-sectional	4,899 Mean, 62 years ARIC Study	24-hr PM_{10}, 23.2 ± 11.5	Age, sex, ethnicity, BMI, education, smoking, CV medication, CHD, diabetes, hypertension, HR, season, temperature, RH, sky cover	SDNN, –2.4 (–3.8 to –1.0) LF, –5.1 (–8.0 to –2.1)
Present study	Cross-sectional	497 males Mean, 73 years Normative Aging Study in Boston	24-hr PM_{2.5}, 11.4 ± 8.0	Age, MAP, smoking, FBG, use of ACE inhibitor, room temperature, apparent temperature, season	SDNN, –2.7 (–9.5 to 4.6) HF, –15.2 (–30.7 to 1.3) LF, –0.7 (–14.6 to 15.4) LF-HF, 18.5 (3.7 to 35.4)

Abbreviations: SDANN, standard deviation of all 5-min NN interval means; CHD, coronary heart disease; CV, cardiovascular disease; HR, heart rate; DPT, dew-point temperature; RH, relative humidity.

aPercent change (95% CI) for an increase of 10 μg/m^2 in PM_{2.5}.}
In this study, many potential confounding factors were included in the model. BMI; blood total cholesterol, high-density lipoprotein, and triglyceride levels; alcohol consumption; and respiratory and cardiovascular disease history did not confound the association between air pollution and HRV. We also measured the ECG at a stable temperature and adjusted for the temperature of the room where the ECG was taken, as well as for ambient meteorologic factors, including apparent temperature and season. Therefore, the observed associations are less likely to reflect bias due to the confounding factors.

Although we did not conduct personal exposure monitoring during the time of the test, the monitoring site was relatively close (1 km) to the examination site. Moreover, evidence suggests that ambient measures of PM have relatively uniform spatial distribution across urban areas and the longitudinal correlation between daily changes in exposure and daily changes in ambient concentrations are high (Sarnat et al. 2000). Therefore, PM concentrations at the monitoring site should be a good surrogate of PM exposure.

This study cohort consists of all males and almost all whites. Sex and race may be important determinants of HRV as well as modifiers of the association between air pollution and HRV, as was observed by Liao et al. (2004).

This population-based study suggests that short-term exposures to PM$_{2.5}$ and O$_3$ are predictors of alterations in cardiac autonomic function as measured by HRV among older adults. Persons with IHD, hypertension, and diabetes appear to be more susceptible to autonomic dysfunction related to PM$_{2.5}$ exposure. The consistency of the effect modification observed in this and other studies supports evidence that these conditions mark susceptibility to air pollution exposure and provides new information to guide research on underlying biologic mechanisms.

References

Allen G, Sicutas C, Koutrakis P, Reiss R, Lummann FW, Roberts PT. 1997. Evaluation of the TEDOM method for measurement of ambient particulate mass in urban areas. J Air Waste Manag Assoc 47:682–689.

Arison D, Mittleman MA, Burger AJ. 2001. Interleukin-6 levels are inversely correlated with heart rate variability in patients with decompensated heart failure. J Cardiovasc Electrophysiol 12:294–300.

Bateson TF, Schwartz J. 2004. Who is sensitive to the effects of particulate air pollution on mortality? A case–crossover analysis of effect modifiers. Epidemiology 15:142–149.

Bell B, Rose C, Damon A. 1972. The Normative Aging Study: an interdisciplinary and longitudinal study of health and aging. Aging Hum Dev 24:4–17.

Burger AJ, Arison D. 2001. Effect of diabetes mellitus on heart rate variability in patients with congestive heart failure. Pacing Clin Electrophysiol 24:53–59.

Chowdhury S, Ng OA, Nutall SL, Coohe JT, Ross HF, Townend JN. 2001. Oxidative stress and cardiac parasympathetic control in human heart failure. Clin Sci (Lond) 102:397–402.

Creason J, Neas L, Walsh D, Williams R, Sheldon L, Liao D, et al. 2001. Particulate matter and heart rate variability among elderly retirees: the Baltimore 1998 PM study. J Expo Anal Environ Epidemiol 11:119–128.

de Bruyne MC, Kors JA, Hoes AW, Kluitkpij P, Dekker, HM, A. et al. 1999. Both decreased and increased heart rate variability on the standard 10-second electrocardiogram predict cardiac mortality in the elderly: the Rotterdam Study. Am J Epidemiol 150:1277–1288.

Dekker JM, Schouten EG, Kluitkpij P, Pool J, Spenne CA, Kromhout D. 1997. Heart rate variability from short electrocardiographic recordings predicts mortality from all causes in middle-aged, normotensive men: the Zutphen Study. Am J Epidemiol 145:899–906.

Devin RB, Gio AJ, Kehrl H, Sanders G, Cassis W. 2000. Elderly humans exposed to concentrated air pollution particles have decreased heart rate variability. Eur Respir J 40:765–768.

Donaldson K, Stone V, Seaton A, MacNee W. 2001. Ambient particulate inhalation and the cardiovascular system: potential mechanisms. Environ Health Perspect 109(suppl 4):523–527.

Gerritsen J, Dekker JM, TenVoorde BJ, Kostenje P, Heijne RJ, Bouter LM, et al. 2001. Impaired autonomic function is associated with increased mortality, especially in subjects with diabetes, hypertension, or a history of cardiovascular disease: the Hoon Study. Diabetes Care 24:1793–1798.

Godleski JJ, Verrier RL, Koutrakis P, Catalano F, Cobl J, Reisin EJ, et al. 2000. Mechanisms of morbidity and mortality from exposure to ambient air particles. Res Rep Health Eff Inst 91:95–85.

Gold DR, Littounia A, Schwartz J, Lovett E, A Larsson B, et al. 2000. Ambient pollution and heart rate variability. Circulation 101:1267–1273.

Goldberg MS, Burnett RT, Bailer JC, III, Brook J, Bonvalot Y, Goldberg DR, Litonjua A, Schwartz J, Lovett E, Larson A, Nearing B, Petterson S, et al. 2001. Increased calcium influx in a monocytic cell line on exposure to ultrafine carbon black. Eur Resp J 18:1739–1749.

Greaves MG, Ralston H, Isenberg HD, Durrington PN. 2001. Particulate matter and heart rate variability among a panel of elderly subjects. Environ Health Perspect 113:239–245.

Pope CA III, Verrier RL, Lovett EG, Larson AC, Raizenne ME, Kanner RE, et al. 1999. Heart rate variability associated with particulate air pollution. Am J Cardiol 138:899–900.

Rodenbaugh DW, Collins HL, Nowacke DG, DiCarlo SE. 2003. Increased susceptibility to ventricular arrhythmias is associated with changes in Ca$^{2+}$- channel proteins in paraplegic rats. Am J Physiol Heart Circ Physiol 285:H2065–H2068.

Samet JM, Domirici F, Currie FC, Couras I, Zeger SL. 2001. Fine particulate air pollution and mortality in 20 U.S. cities, 1987–1994. N Environ J. 343:172–177.

Sarnat JA, Koutrakis P, Sun HH. 2000. Assessing the relationship between personal particulate and gaseous exposures of senior citizens living in Baltimore, MD. J Air Waste Manag Assoc 50:1194–1198.

Schroeder EE, Liao D, Chambers LE, Prinae RJ, Evans GW, Heiss G. 2003. Hypertension, blood pressure, and heart rate variability. The Atherosclerosis Risk in Communities (ARIC) Study. Hypertension 42:1006–1111.

Schwartz J. 1999. Air pollution and hospital admissions for heart disease in eight US counties. Epidemiology 10:17–22.

Schwartz J. 2000. The distributed lag between air pollution and daily deaths. Epidemiology 11:300–326.

Shurtleff D. 1974. Some Characteristics Related to the Incidence of Cardiovascular Disease and Death: Framingham Study, 18-Year Follow-up. Bethesda, MD: U.S. Department of Health, Education, and Welfare Publication.

Singh JP, Larson MG, O’Donnell CJ, Wilson PF, Tsui H, Lloyd–Jones DM, et al. 2000. Association of hyperglycemia with reduced heart rate variability (the Framingham Heart Study). Am J Cardiol 86:309–312.

Singh JP, Larson MG, Tsui J, Evans JC, O’Donnell CJ, Levy D. 1998. Reduced heart rate variability and new-onset hypertension: insights into the pathogenesis of hypertension: the Framingham Heart Study. Hypertension. 32:292–297.

Stone V, Tuinnman M, Vamvakopoulos JE, Shaw J, Brown D, Petterson S, et al. 2000. Increased calcium influx in a monocytic cell line on exposure to ultracine carbon black. Eur Resp J. 15:297–303.

Tapanainen JM, Thomsen PE, Kober L, Torp-Pedersen C, Maskalio TH, Still AM, et al. 2002. Fractional analysis of heart rate variability and mortality after an acute myocardial infarction. Am J Cardiol 90:347–352.

Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. 1996. Heart rate variability: standards of measurement, physiological interpretation and clinical use. Circulation 93:1043–1045.

Thomas GD, Zhang W, Victor RG. 2001. Impaired modulation of sympathetic vasconstrictor in contracting skeletal muscle of rats with chronic myocardial infarctions: role of oxidative stress. Circ Res. 88:816–823.

Tomiyama H, Kimura Y, Sakuma Y, Shiojiya K, Yamamoto A, Saito I, et al. 1998. Effects of an ACE inhibitor and a calcium channel blocker on chronic myocardial infarction: role of oxidative stress. Circ Res. 83:818–826.

Tsuji H, Larson MG, Tsui J, Evans JC, O’Donnell CJ, Levy D. 1998. Reduced heart rate variability and new-onset hypertension: insights into the pathogenesis of hypertension: the Framingham Heart Study. Hypertension. 32:292–297.

Tsujii H, Larson MG, Tsui J, Evans JC, O’Donnell CJ, Levy D. 1998. Reduced heart rate variability and new-onset hypertension: insights into the pathogenesis of hypertension: the Framingham Heart Study. Hypertension. 32:292–297.

Wang K, Australian Research Council. 1997. Blood pressure, vagal parasympathetic outflow, and ambulatory heart rate: a comparison of aortic baroreflex function in humans exposed to concentrated air pollution. Circulation 104:980–981.

Watson JT, Traynor L, Todd JA, Smith DJ, Christiani DC. 2001. Association of heart rate variability with occupational and environmental exposure to particulate air pollution. Pacing Circulation 104:960–967.

Watanabe S, Kanda T, Hayashi Y, Tsuchii T, Takisawa H, Tsutsui S, et al. 2001. Reduced heart rate variability and mortality after a acute myocardial infarction. Am J Cardiol 90:347–352.

Watanabe S, Kanda T, Hayashi Y, Tsuchii T, Takisawa H, Tsutsui S, et al. 2001. Reduced heart rate variability and mortality after a acute myocardial infarction. Am J Cardiol 90:347–352.

Zanobetti A, Schwartz J. 2002. Cardiovascular damage by airborne particles: are diabetics more susceptible? Epidemiology 13:558–562.