Screening for Antimicrobial Activities of Metanollic Extracts of Aloe vera and Hyptis suaveolens against Co-infections of Giardia lamblia and Salmonella among Diarrhoeagenic Children

Omammegbe Abdulrahman¹*, Adamu B. Samaila², S. M. Panda², Abdullahi Aliyu² and M. R. Sahal²

¹Department of Medical Microbiology, Abubakar Tafawa Balewa University, Bauchi, Nigeria.
²Department of Biological Science, Abubakar Tafawa Balewa University, Bauchi, Nigeria.

Authors’ contributions

This work was carried out in collaboration among all authors. Authors OA, ABS and SMP designed the study, performed the statistical analysis, wrote the protocol and wrote the first draft of the manuscript. Authors AA and MRS managed the analyses of the study. Author OA managed the literature searches. All authors read and approved the final manuscript.

ABSTRACT

The antimicrobial and Phytochemicals activities of methanol extracts obtained from Aloe vera and Hyptis suaveolens plants were investigated individually and combined in an attempt to evaluate their medicinal potentials and efficacies on protozoan; Giardia lamblia and bacteria; Salmonella species as co-infections causing diarrhoea in under five populations in Bauchi State, Nigeria. The phytochemical screening revealed the presence of saponins, tannins, alkaloids, flavonoids, terpenoids, alkaloids, phenols. Antimicrobial activity was determined against Giardia lamblia and Salmonella species; anti-giardial activity, an in-vitro susceptibility assays method was performed and antibacterial activity was carried out by Kirby-Bauer method. The parasites mortality was determined by counting in hemocytometer under a light microscope and the zone of inhibition diameter produced against the bacteria were determined, expressed as mean ±SEM (Standard
1. INTRODUCTION

Diarrhoea, nevertheless, remains a major cause of mortality and morbidity among children under five years of age especially in developing countries [1,2]. Acute diarrhoea disease has significant impact on public health globally with pathogenic agents such as bacteria (Salmonella, Shigella, Escherichia coli, Vibrio cholerae and Campylobacter), parasites (Cryptosporidium, Giardia lamblia and Entamoeba histolytica) and viruses (Rotavirus, adenovirus, norovirus and astrovirus) recognized as leading etiologic agents [3,4]. Since 2000, childhood mortality due to diarrhoea has diminished by 6.5% every year, but this trend requires an acceleration to reach the 2030 objectives. Diarrhoea infections are associated with acute gastroenteritis, one of the most common alimentary diseases; caused by the consumptions of contaminated water and food especially meat [5]. The prevalence rate in Nigeria is about 18.8%, one of the worst in sub-Saharan Africa and accounts for over about 16% of child-deaths and estimated 150,000 deaths chiefly among children less than five years of age which occurs annually due to this disease which is caused by poor sanitations and poor hygiene practices [2]. Salmonella is a genus of enteric pathogens consisting of two species; Salmonella enterica and Salmonella bongori which cause diseases in broad range of hosts, [6]. This sub-species includes host-restricted serovars like Salmonella typhi which cause typhoid fever in humans and the broad host range Salmonella typhimurium causing gastroenteritis in humans and other mammals [7]. Giardiasis is a protozoan infection principally of the upper small intestine and remains largely asymptomatic bringing on acute self-limited diarrhea [8,9]. Its occurrence is world-wide. Children are infected more frequently than adults. Prevalence is higher in area of poor sanitations in institutions with overcrowded human conditions and areas of children not toilet trained [10]. Medicinal plants are widely used to treat different diseases in different parts of the world, as part of complementary and alternative medicine, a number of phyto-medicines including those obtained from African plants are in global markets [11]. Even though medicinal plants may not have been used systematically in Africa as in the western and eastern countries, medicinal plants remain the backbone of African healthcare system. It is therefore pertinent that African plants should be investigated systematically for better use in healthcare systems. Several plant extracts and phytochemicals obtained from them have shown activities against certain types of microorganisms including Gram positive and Gram negative bacteria [12].

This study is aim at determining the antimicrobial potentials of medicinal plants; Aloe vera and Hyptis suaveolens extracts against co-infections of Salmonella sp. and Giardia lamblia and to evaluate their qualitative phytochemical compositions.

2. MATERIALS AND METHODS

The design was both community and hospitals-based prospective cross-sectional study. Conducted between April, 2018 and February, 2019, the design of the study allows for the collections, extractions of both Aloe vera and Hyptis suaveolens L., laboratory isolation, detections and culturing of Giardia lamblia and Salmonella sp. occurring in both symptomatic and asymptomatic infections among children and the antimicrobial potentials of the crude extracts of Aloe vera and Hyptis suaveolens L. against them in Bauchi Metropolis. The plants were randomly collected in around densely populated areas in Jos, Plateau State. The plants were authenticated by the plant curator at the Herbarium of Federal College of Forestry, Jos, Plateau State, Nigeria. The air dried leaves of
Hyptis suaveolens L. was ground into powder soaked in methanol for 72 hours, placed in Gallenkamp shaker rotating at 65 revolutions per minute, the contents were then homogenized and filtered using Whatman filter paper no.1. The filtrate were poured into a round bottom flask and concentrated using a Buchi Rotavapor R-200 to yield Hyptis suaveolens in required concentrates and also, the grounded powder Aloe vera soaked in methanol in conical flasks and left to stand for 3 days as reported by Ogundare [13]. Stool samples collected, placed in a clean disposable plastic tubes with tight fittings, microscopically examined for Giardia lamblia cysts and trophozoites presence, positively detected 50 mg of stool was inoculated immediately in an axenic medium for culture of Giardia lamblia trophozoites. Also, Salmonella species, stool samples collected were inoculated within two hours of collections onto selective and differential media: MacConkey (MAC) agar, Salmonella-Shigella (SS) agar, and xylose lysine deoxycholate (XLD) agar, using a calibrated inoculating loop in the spread plate method. The media were then incubated aerobically at 35°C for 18 to 24 hours as described by Merchant and Packer [14] and [15].

3. RESULTS AND DISCUSSION

The results in Table 1. shows the plant extracts of Aloe vera and Hyptis suaveolens were qualitatively tested for the presence of phytochemicals. All the plant extracts were found to contain saponins, tannins, alkaloids, flavonoids, terpenoids, alkaloids, and phenolics.

The fecal culture sample of Giardia lamblia trophozoites produced after 72 hours in an estimated numbers are 0.9-1×10⁷/ml.

Hence, the results as presented in Table 2, shows the mean efficacy of treatments and time of Aloe vera on cultured Giardia lamblia trophozoite produced after 48 hours was significantly (P=0.05) different after 48 hours reveals the highest mean value treatment with 80 mg/ml and 48 hours of time resulted in higher efficacy with methanol extractions (0.002±0.553) and (0.002±0.550) when compared with positive control (0.002±0.586).

Table 3 shows the results of mean efficacy of treatments and time of Hyptis suaveolens on cultured Giardia lamblia trophozoite produced after 48 hours, revealed that the effect of Hyptis suaveolens extracts was significantly (P=0.05) and the highest mean value treatment was with 80 mg/ml and 48 hours of time (0.002±0.377) and (0.002±0.412) when compared with positive control (0.002±0.586).

Table 1. Phytochemical constituents of Aloe vera and Hyptis suaveolens

Name of Test	Aloe vera	Hyptis suaveolens
Extractions	Methanol	Methanol
Saponins	+	-
Tannins	+	+
Flavonoids	+	-
Terpenoids	-	-
Steroids	-	-
Cardiac glycosides	-	-
Anthraquinones	-	-
Alkaloid	+	+
(Wagner’s test)	+	-
Alkaloid	+	-
(Mayer’s test)	+	-
Phenolics	-	+

Key: (+) present, (-) absent

Table 2. Standard error and mean efficacy of treatments (Aloe vera) and time on cultured Giardia lamblia trophozoite

Extractions	Methanol	
Treatment	-ve Ctrl	0.002±0.004⁸
	+ve Ctrl	0.002±0.633⁹
40mg		0.002±0.067⁷
50mg		0.002±0.294⁶
60mg		0.002±0.407⁴
70mg		0.002±0.470⁵
80mg		0.002±0.553³

Time (Hours)	
8	0.002±0.112⁷
16	0.002±0.210⁵
24	0.002±0.320⁴
32	0.002±0.405⁴
40	0.002±0.485⁵
48	0.002±0.550⁰

S.E ± Mean Effects after 48 hours
Each value is a mean of ± standard error of three replicates. Mean followed by the same superscripts in a column are not significantly different from each other.

Table 4 as presented shows the mean efficacy of treatments and time of combined Aloe vera and Hyptis suaveolens on cultured Giardia lamblia trophozoite produced after 48 hours, revealed that the effect of combined Aloe vera and Hyptis
suaveolens extracts was significantly (P=0.05) and the highest mean value treatment was with 80 mg/ml and 48 hours of time (0.002±0.679) and (0.002±0.742) when compared with positive control (0.002±0.627).

Table 3. Standard error and mean efficacy of treatments (Hyptis suaveolens) and time on cultured Giardia lamblia trophozoite

Extractions	Methanol
Treatment	
−ve Ctrl	0.002±0.008^a
+ve Ctrl	0.002±0.586^a
40mg	0.002±0.017[†]
50mg	0.002±0.159[†]
60mg	0.002±0.224[†]
70mg	0.002±0.296[†]
80mg	0.002±0.377[†]
Time (Hours)	
8	0.002±0.077[†]
16	0.002±0.119[†]
24	0.002±0.220[†]
32	0.002±0.271[†]
40	0.002±0.330[†]
48	0.002±0.412[†]

S.E ± Mean Effects after 48 hours
Each value is a mean of ± standard error of three replicates. Mean followed by the same superscripts in a column are not significantly different from each other.

Table 4. Standard error and mean efficacy of treatments (Aloe vera and Hyptis suaveolens) and time on cultured Giardia lamblia trophozoite

Extractions	Methanol
Treatment	
−ve Ctrl	0.002±0.007[†]
+ve Ctrl	0.002±0.627[†]
40mg	0.002±0.383[†]
50mg	0.002±0.458[†]
60mg	0.002±0.520[†]
70mg	0.002±0.603[†]
80mg	0.002±0.679[†]
Time (Hours)	
8	0.002±0.168[†]
16	0.002±0.289[†]
24	0.002±0.465[†]
32	0.002±0.525[†]
40	0.002±0.620[†]
48	0.002±0.742[†]

S.E ± Mean Effects after 48 hours
Each value is a mean of ± standard error of three replicates. Mean followed by the same superscripts in a column are not significantly different from each other.

The result in Table 5, shows the mean efficacy of inhibition zones of treatments with Aloe vera on culturated Salmonella species, the average zones of inhibition formed by the effect of Aloe vera extracts was significantly (P=0.05) different which reveals the highest zone of inhibition value treatment with 80 mg/ml (0.895±20.17) compared with positive control (0.309±28.67).

Table 5. Standard error and mean efficacy of inhibition zone diameters of treatments of Aloe vera on cultured Salmonella species

Extractions	Methanol
Treatment	
−ve Ctrl	0.895±0.333^a
+ve Ctrl	0.895±29.33^a
40mg	0.895±8.883^b
50mg	0.895±11.83^b
60mg	0.895±17.00^b
70mg	0.895±18.67^{bc}
80mg	0.895±20.17^b

S.E ± Mean Effects after 48 hours
Each value is a mean of ± standard error of three replicates. Mean followed by the same superscripts in a column are not significantly different from each other.

The result in Table 6, shows the mean efficacy of inhibition zones of treatments with Hyptis suaveolens on cultured Salmonella species, the average zones of inhibition formed by the effect of Hyptis suaveolens extracts was significantly (P=0.05) different which reveals the highest zone of inhibition value treatment with 80 mg/ml (0.309±13.33) compared with positive control (0.309±28.67).

Table 6. Standard error and mean efficacy of inhibition zone diameters of treatments of Hyptis suaveolens on cultured Salmonella species

Extractions	Methanol
Treatment	
−ve Ctrl	0.309±0.000^a
+ve Ctrl	0.309±28.67^a
40mg	0.309±5.000^b
50mg	0.309±7.333^b
60mg	0.309±9.333^b
70mg	0.309±10.33^b
80mg	0.309±13.33^b

S.E ± Mean Effects after 48 hours
Each value is a mean of ± standard error of three replicates. Mean followed by the same superscripts in a column are not significantly different from each other.

The result in Table 7, shows the mean efficacy of inhibition zones of treatments with combined Aloe vera and Hyptis suaveolens on cultured Salmonella species, the average zones of inhibition formed by the effect of combined Aloe
vera and *Hyptis suaveolens* extracts was significantly (P=0.05) different which reveals the highest zone of inhibition value treatment with 80 mg/ml (0.423±27.50) compared with positive control (0.423±29.00).

Table 7. Standard error and mean efficacy of inhibition zone diameters of treatments of combined *Aloe vera* and *Hyptis suaveolens* on cultured *Salmonella* species

Extractions	Methanol	Treatment	Ctrl	40mg	50mg	60mg	70mg	80mg
Treatment	ve Ctrl	0.423±0.667						
	+ve Ctrl	0.423±29.00						
	40mg	0.423±14.17						
	50mg	0.423±18.33						
	60mg	0.423±21.00						
	70mg	0.423±24.67						
	80mg	0.423±27.50						

S.E ± Mean Effects after 48 hours

Each value is a mean of ± standard error of three replicates. Mean followed by the same superscripts in a column are not significantly different from each other.

4. CONCLUSION

Based on the findings of this research work, methanol extracts of *Hyptis suaveolens*, *Aloe vera* and of combined *Aloe vera* and *Hyptis suaveolens* all exhibited good activity on *Giardia lamblia* and *Salmonella* species, hence, they possess antimicrobial potentials. There was the presence of phytochemicals in these plant extracts, it is thus concluded that these plants are promising and are very important for the future treatment of *Giardia lamblia* and *Salmonella* sp. causing diarrhoea.

COMPETING INTERESTS

Authors have declared that no competing interests exist.

REFERENCES

1. Bern C, Martines J, De Zoysa I. The magnitude of the global problem of diarrhoea diseases: a ten-year update. Bulletin WHO. 1992;70:705-714.
2. Kosek M, Bern C, Guerrant RL. The magnitude of the global burden of diarrhea disease from studies published 1992-2000. Bull World Health Organ. 2003;81:197-204.
3. Germani Y, Morillon M, Begaud E, Dubourdieu H, Costa R, Thevenon J. Two year study of endemic enteric pathogens associated with acute diarrhea in New Caledonia. Journal of Clinical Microbiology. 1994;32:1532-1536.
4. Na’awas TE, Abo-Shehada MN. A study of the bacterial and parasitic causes of acute diarrhoea in Northern Jordan. Journal of Diarrheal Diseases Research. 1991;9:305-309.
5. Rodulfo H, De DonatoM, Luiggi J, Michelli E, Millán A, Michelli M. Molecular characterization of *Salmonella* strains in individuals with acute diarrhea syndrome in the State of Sucre, Venezuela. Rev Soc Bras Med Trop. 2012;45:329-333.
6. Giammanco GM, Pignato S, Mammina C, Grimont F, Grimont PAD, Nastasi A, et al. Persistent endemicity of *Salmonella bongori* in southern Italy: molecular characterization of human, animal, and environmental isolates. J. Clin. Microbiol. 2002;40:3502-3505.
7. Uzzau S, Brown DJ, Wallis T, Rubino S, Leori G, Bernard S. Host adapted serotypes of *Salmonella enterica*. Epidemiol. Infect. 2000;125:229–255.
8. Craun GF. Waterborne giardiasis in the United States 1965–84. Lancet ii. 1986; 513-514.
9. Farthing MJG. New Perspectives in Giardiasis. J. Med. Microbiol. 1992;37:1-2.
10. Helmi K, Skraber S, Burnet J-B, Leblanc L, Hoffmann L, Cauchie H-M. Two year monitoring of *Cryptosporidium parvum* and *Giardia lamblia* occurrence in a recreational and drinking water reservoir using standard microscopic and molecular biology techniques. Environ Monit Assess. 2011;179:163–175.
11. Beentje H. Kenya Trees, Shrubs and Lianas. National Museums of Kenya, Nairobi; 1994.
12. Nascimento GG, Locatelli J, Freitas PC, Silva GL. Antibacterial activity of plant extracts and phytochemicals on antibiotic-resistant bacteria. Brazilian Journal of Microbiology. 2000;31(4):247-256.
13. Ogundare AO. Antimicrobial Effect of *Tithonia diversifolia* and *Jatropha gossypifolia* Leaf Extract. Trend in Applied Sciences Research. 2007;2:145-150.
14. Merchant IA, Packer RA. Veterinary Bacteriology and Virology. 7th Ed. The Iowa University Press, USA. 1967; 286-306.

15. Winn W, Allen S, Janda W, Koneman E, Procop G, Schreckenberger P. Koneman's Color Atlas and Textbook of Diagnostic Microbiology, 6th edition. New York: Lippincott Williams & Wilkins; 2005.