Supplementary material to Applied Microbiology and Biotechnology

A bottom-up approach towards a bacterial consortium for the biotechnological conversion of chitin to L-lysine

Marina Vortmann1‡, Anna K. Stumpf2‡, Elvira Sgobba3#, Mareike E. Dirks-Hofmeister4, Martin Krehenbrink5, Volker F. Wendisch1, Bodo Philipp2, and Bruno M. Moerschbacher1*

1 Institute for Biology and Biotechnology of Plants, University of Münster,
Schlossplatz 8, 48143 Münster, Germany
2 Institute for Molecular Microbiology and Biotechnology, University of Münster,
Corrensstr. 3, 48149 Münster, Germany
3 Chair of Genetics of Prokaryotes, Faculty of Biology & CeBiTec, University of Bielefeld,
P.O. Box 100131, 33501 Bielefeld, Germany
4 WeissBioTech GmbH, An der Hansalinie 48-50, 59387 Ascheberg, Germany
5 Cysal GmbH, Mendelstraße 11, 48149 Münster, Germany

‡ these authors contributed equally to this work
current address: Department of Forest Genetics and Plant Physiology, SLU,
Skogsmarksgränd 17, 90183 Umeå, Sweden

*Corresponding author:
Bruno M. Moerschbacher, Institute for Biology and Biotechnology of Plants, University of Muenster,
Schlossplatz 8, 48143 Münster, Germany
e-mail address: moersch@uni-muenster.de
phone: +49 251 8324794, fax: +49 251 8328371
Table S1a Strains used in this study

Escherichia coli

Abbreviation	Relevant characteristics	Reference
EcWT	*E. coli* W3110, F- lambda- IN(rrnD-rrnE)1 rph-1	(Bachmann 1972)
EcNagE*	EcWT with ΔnagE ΔmanXYZ	This work
EcCHB	*E. coli* W3110 with ΔnagE ΔmanXYZΔchbBCA::CM, CmR	This work
EcCHB*	EcCHB; chloramphenicol resistance gene removed	This work
EcLPP	EcCHB with Δlpp::CM; CmR	This work
EcLPP*	EcLPP; chloramphenicol resistance gene removed	This work
EcLPPLYSA	EcLPP* with ΔlysA::CM; CmR	This work
EcLPPLYSA*	EcLPPLYSA; chloramphenicol resistance gene removed	This work
EcLPP* [empty]	EcLPP* with [pPRII+ (empty-vector)], CmR	This work
EcLPP* [TkCDA]	EcLPP* with [pPRII+::C.vio-TkCDA-StrepII], CmR	This work
EcLPPLYSA* [TkCDA]	EcLPPLYSA* with [pPRII+::C.vio-TkCDA-StrepII], CmR	This work
EcLPP* [TK]	EcLPP* with [pPRII+::pelB-TK-StrepII], CmR	This work
EcLPP* [ChiB]	EcLPP* with [pPRII+::pelB-ChiB-StrepII], CmR	This work
EcNagE* [TkCDA]	EcNagE* [pPRII+::C.vio-TkCDA-StrepII], CmR	This work
EcLPP* [ChiB_TK_TkCDA]	EcLPP* with [pPRII+::pelB-ChiB-StrepII_pelB-TK-StrepII_pelB-TkCDA-StrepII], CmR	This work

Corynebacterium glutamicum

Abbreviation	Relevant characteristics	Reference
DM1729	*C. glutamicum* ATCC 13032 carrying chromosomal mutations *pycP458S, homV59A, lysCT311I*	(Georgi et al. 2005)
CgLYS4	*C. glutamicum* DM1729 Δpta-ackA Δcat ΔldhA ΔaceAB ΔnanR	(Sgobba et al. 2018)

CmR: chloramphenicol resistance
Name	Relevant characteristics	Reference
pPRII+::pelB-TK-StrepII	pPRII+ with pelB signal peptide, TK (glucosaminidase) from *Thermococcus kodakarensis* KOD1 and StrepII-Tag	This work
pPRII+::pelB-ChiB-StrepII	pPRII+ with pelB signal peptide, ChiB (chitinase) from *Serratia marcescens* and StrepII-Tag	This work
pPRII+::C.vio-TkCDA-StrepII	pPRII+ with sequence for *C. violaceum* signal peptide, TkCDA (chitin deacetylase) from *Thermococcus kodakarensis* KOD1 and StrepII-Tag	This work
pPRII+::pelB-ChiB-StrepII_pelB-TK-StrepII_TkCDATstreplpelB-StrepII	pPRII+ ChiB, TK and TkCDA; all enzymes include a pelB signal peptide and a StrepII-tag	This work
pPRII+ (empty vector)	pPRII+ empty-vector control	EP2848691A1 (patent)
Table S2 Oligonucleotides used in this study

No.	Name	Oligonucleotide sequence (5'-3')	Description
1	nagE_fow	AAAAATACGGCTTTAAACGAGCCAA ATAGGTTCTCTGAGGGGAATAAG GTGTAGGCTGGAGCTGCTTC	Amplification of Cm\(^R\) from pKD3 for disruption of nagE
2	nagE_rev	TTGTCAATTGTTGGATGAGGAGCTCA AGCCTGCATCAAGGAGGATAAAGAGGAGA CATATGAATATCCTCTCTCTAG	Amplification of Cm\(^R\) from pKD3 for disruption of nagE
C1	nagE_contr_FW	TATATCTGAGGACCTGTTGAGGAGC AATTAAAAGGAGGATGCTGGAGGAGA CATATGAATATCCTCTCTCTAG	Control of nagE deletion
C2	nagE_contr_rev	TATATCTGAGGACCTGTTGAGGAGC AATTAAAAGGAGGATGCTGGAGGAGA CATATGAATATCCTCTCTCTAG	Control of nagE deletion
3	manXYZ_fow	AAAAAAATACCTCTGGCAGTGAGGAGGAGGAGA CATATGAATATCCTCTCTCTAG	Amplification of Cm\(^R\) from pKD3 for disruption of manXYZ
4	manXYZ_rev	CACTGAGAGGAGGAGGAGGAGGAGA CATATGAATATCCTCTCTCTAG	Amplification of Cm\(^R\) from pKD3 for disruption of manXYZ
C3	manXYZ_contr_FW	CGATTCGATTTGTGGAGGAGC	Control of manXYZ deletion
C4	manXYZ_contr_rev	ACCAGTCCGGTGATTGTCAT	Control of manXYZ deletion
5	chbBCA_fow	AGGCTTGCGGAGGAGGAGGAGGAGA CATATGAATATCCTCTCTCTAG	Amplification of Cm\(^R\) from pKD3 for disruption of chbBCA
6	chbBCA_rev	GGGCAGTTGCGGAGGAGGAGGAGA CATATGAATATCCTCTCTCTAG	Amplification of Cm\(^R\) from pKD3 for disruption of chbBCA
C5	chbBCA_contr_FW	ATCTTTCGCAATTATTTGTGGC	Control of chbBCA deletion
C6	chbBCA_contr_rev	ATTTCCGCGCGCTTAATCAG	Control of chbBCA deletion
7	lysA_fow	CTTTTATGAA TGTTGCGTTA AAATCAAGAGGAGGAGGAGGAGA CATATGAATATCCTCTCTCTAG	Amplification of Cm\(^R\) from pKD3 for disruption of lysA
8	lysA_rev	CAAATCTGGCTGAGGAGGAGGAGGAGA CATATGAATATCCTCTCTCTAG	Amplification of Cm\(^R\) from pKD3 for disruption of lysA
C7	lysA_contr_FW	CAAACAGAGGCGAGTTGCTTTGC	Control of lysA deletion
C8	lysA_contr_rev	AGTGGTATTGCGCGCCTATGAGA	Control of lysA deletion
9	lpp_fow	AAATTTCTGCAACGCTACAGGGAGAT TAATCTCATCTGGAGGAGGAGA CATATGAATATCCTCTCTCTAG	Amplification of Cm\(^R\) from pKD3 for disruption of lpp
	Primer Name	Sequence	Description
---	---------------	-------------------------------	------------------------------------
10	lpp_rev	ACAAAAAAAATGGCGCACAATGTGC GCCATTTTTCACTTCACAGGTACTAC ATATGAATATCCTCCTTAG	Amplification of Cm\(^R\) from pKD3 for disruption of lpp
C9	lpp_contr_fw	GTAACGCTACATGGAGATTAAC	Control of lpp deletion
C10	Lpp_contr_rev	GACGCAGTAGCGGTAAACGGCAG	Control of lpp deletion

Underlined letters restriction site
Name	Oligonucleotide sequence (5'-3')	Description
pPRII+::chiB_for	ATGACTCGAGCTGAGAGAC	Excision of TK and TkCDA from pPRII+::chiB_Tk_TkCDA to construct pPRII+::pelB-chiB-StrepII
pPRII+::chiB_for	CTAAGATTATTTTCAAATTGCGGGTGCC	Excision of TK and TkCDA from pPRII+::chiB_Tk_TkCDA to construct pPRII+::pelB-chiB-StrepII
pPRII+::TkCDA_for	ATGAAATACCTGCTGCCG	Excision of chiB and TK from pPRII+::chiB_Tk_TkCDA to construct pPRII+::pelB-TkCDA-StrepII
pPRII+::TkCDA_rev	TTGGAATTCTGTTCCTGTGG	Excision of chiB and TK from pPRII+::chiB_Tk_TkCDA to construct pPRII+::pelB-TkCDA-StrepII
C. vio-TkCDA_for	ATGTTGTTAGCATTTGGGACAA CATGCTTTGCGCTGCTGCAATTG GTGTTCGAAGAATTTAACAA CTTTG	Exchange of pelB-leader for C. violaceum-Tag
C. vio-TkCDA_rev	GCCCATTTGCGATAGCACGACC TGTAGTGCCGCGCATTGTGA ATACTTCTTCTGTGTAAGAA TTG	Exchange of pelB-leader for C. violaceum-Tag
TK_GA_for	CACAGGAAACAGAATCC AAATGAAATACCTGCTGCGC	Amplification of TK from pPRII+::chiB_Tk_CDA
TK_GA_rev	GCTTCTGCAGCTCGAGTGT CATTTTCAAATGTGCGGTGAG	Amplification of TK from pPRII+::chiB_Tk_CDA

Italic letters: *C. violaceum*-Tag; Bold letters: Overlapping region
Plasmid	Template	Primers	Cloning method
pPRII+::pelB-chiB-StrepII	pPRII::Syn_OP	-	Digestion with EcoRV, religation of vector
pPRII+::pelB-chiB-TkCDA-StrepII	pPRII::pelB-chiB-StrepII::pelB-Tk-	pPRII+::chiB_for, pPRII+::chiB_rev	Back-to-back PCR, religation
pPRII+::pelB-TkCDA-StrepII	pPRII::pelB-chiB-StrepII::pelB-Tk-	pPRII+::TkCDA_for, pPRII+::TkCDA_rev	Back-to-back PCR, religation
pPRII+::pelB-Tk-	pPRII::pelB-TkCDA-StrepII (vector	pPRII+::chiB_for and pPRII+::TkCDA_rev for vector backbone	Gibson assembly using Gibson Assembly® Master Mix (NEB, Ipswich, MA, USA)
	backbone)	TK_GA_for and TK_GA_rev for insert	
pPRII+::C.vio-TkCDA-StrepII	pPRII::pelB-TkCDA-StrepII	C.vio-TkCDA_for, C.vio-TkCDA_rev	Back-to-back PCR, religation
Fig. S1 Secretion of chitin deacetylase TkCDA. Amount of chitin deacetylase TkCDA in the extracellular medium (filled bars) and in the cellular fraction (open bars) of EcLPP* [TkCDA] and E. coli W3110 ΔnagE ΔmanXYZ [pPRII::C.vio-TkCDA-StrepII] (EcNagE* [TkCDA]). Error bars indicate standard deviation (n = 3). Statistically significant difference at *** P < 0.001.
Fig. S2 Growth of *E. coli* strains on GlcNAc and quantification of metabolites. (a) Optical density (OD$_{600}$) of the strain EcLPP* [empty] (red squares and dashed line) and EcLPP* [TkCDA] (blue squares and solid line) cultivated with 20 mM *N*-acetylglucosamine (GlcNAc) as sole carbon and energy source. *E. coli* cells were induced with 0.2 mM IPTG at t_0. Error bars indicate standard deviation ($n = 3$). (b) Concentration of GlcNAc (filled bars) and glucosamine (open bars) in the supernatant of EcLPP* [TkCDA] measured using UHPLC-ELSD-ESI-MS$^+$ as described in Stumpf et al. 2019.
Fig. S3 Extracted ion chromatograms (EICs) of UHPLC-ESI-MS analysis of culture supernatants of substrate converters expressing ChiB, TK, or TkCDA cultured in the presence of their respective substrates (TkCDA: GlcNAc, TK: GlcN₂, ChiB: colloidal chitin) at time point t₃ (72 h). Inserts show the mass to charge ratio of the respective peaks. A) EIC of mass 425.18 (GlcNAc₂, H⁺ adduct): EcLPP* [ChiB] cultured in M₉ minimal medium with 20 mM glucose as carbon source and 0.1% (wt/vol) colloidal chitin. B) EIC of mass 359.17 (two GlcN units, H⁺ adduct): EcLPP* [TK] cultured in M₉ minimal medium with 20 mM glucose as carbon source and 12 mM GlcN₂. C) EIC of mass 359.17 (two GlcN units, H⁺ adduct): EcLPP* [TkCDA] cultured in M₉ minimal medium with 40 mM GlcNAc, no additional carbon source.
Fig. S4 Cultivation of synthetic microbial consortia on colloidal chitin. Cultivation of the co-culture of EcLPP* [ChiB], EcLPP* [TK], and ECLPP* [TkCDA] together with CgLYS4 and co-culture of EcLPP* [empty-vector] and CgLYS4 on 0.5% colloidal chitin supplemented with 5 mM acetate as sole carbon and energy sources. *E. coli* cells harbouring a plasmid were induced with 0.2 mM IPTG at t₀. (a) CFUs of strains EcLPP* [ChiB], EcLPP* [TK], and ECLPP [TkCDA] (blue squares and solid line) and EcLPP* [empty-vector] (red squares and dashed line). (b) CFUs of strain CgLYS4 in co-culture with EcLPP* [ChiB], EcLPP* [TK], and ECLPP* [TkCDA] (blue dots and solid line) and in co-culture with EcLPP* [empty-vector] (red dots and dashed line). Error bars indicate standard error of the mean (n = 3).

References

Bachmann BJ (1972) Pedigrees of some mutant strains of *Escherichia coli* K-12. Bacteriol Rev 36:525–57

Georgi T, Rittmann D, Wendisch VF (2005) Lysine and glutamate production by *Corynebacterium glutamicum* on glucose, fructose and sucrose: Roles of malic enzyme and fructose-1,6-bisphosphatase. Metab Eng 7:291–301 . https://doi.org/10.1016/j.ymben.2005.05.001

Sgobba E, Stumpf AK, Vortmann M, Jagmann N, Krehenbrink M, Dirks-Hofmeister ME, Moerschbacher B, Philipp B, Wendisch VF (2018) Synthetic *Escherichia coli-Corynebacterium glutamicum* consortia for L-lysine production from starch and sucrose. Biore sour Technol 260:302–310 . https://doi.org/10.1016/j.biortech.2018.03.113

Stumpf AK, Vortmann M, Dirks-Hofmeister ME, Moerschbacher BM, Philipp B (2019) Identification of a novel chitinase from *Aeromonas hydrophila* AH-1N for the degradation of chitin within fungal mycelium. FEMS Microbiol Lett 366:1–9 . https://doi.org/10.1093/femsle/fny294