PERPLEXING PEDIATRIC CASES

Diagnosis and Observational Management of a Postoperative Interventricular Septal Hematoma in a Pediatric Patient

Mehul D. Patel, MD, B. Seth Goldstein, MD, and Catharine A. Kral Kollars, MD, San Antonio, Texas

INTRODUCTION

We present a case of a 1-month-old infant boy with complication of postoperative interventricular septal hematoma (IVSH) after cardiac surgical repair of a ventricular septal defect (VSD) and coarctation of the aorta. Our management of this unusual finding and a summary of other cases reported in the literature are also discussed.

CASE PRESENTATION

The infant was diagnosed prenatally with coarctation of aorta, which was confirmed after birth at 37 weeks of gestation with findings of mild transverse aortic arch hypoplasia and moderate narrowing of the distal arch. In addition there was a large perimembranous VSD partially obstructed by aneurysmal tricuspid valve tissue. He was followed closely by his primary pediatric cardiologist and then referred to our cardiac surgical center at 4 weeks of age for surgical repair of these defects. Preoperative echocardiography (both transthoracic, performed the day prior to surgery, and transesophageal imaging done day of surgery but prior to incision) also noted borderline left ventricular (LV) dilation with normal systolic function, normal appearance of the rest of the ventricular septum, and a patent foramen ovale.

Surgical repair was performed utilizing cardiopulmonary bypass and heparin anticoagulation. The VSD was approached through the tricuspid valve, and the defect was closed with two separate pledgeted sutures. With the use of low-flow cerebral perfusion, the aortic arch was opened from proximal to the descending thoracic aorta. The aortic arch was reconstructed with pulmonary homograft material, and full-flow cardiopulmonary bypass was resumed. The patent foramen ovale was also closed primarily with a single running suture. The patient was separated from cardiopulmonary bypass uneventfully foramen ovale. This was oval in shape with a homogenous echo-signal (distinctly different than the normal myocardium) and surrounded by an echogenic ring (Figures 1A and 1B, Videos 1 and 2). There was no LV outflow tract obstruction, and hematoma size remained stable by end of exam.

The infant was admitted to our pediatric cardiac intensive care unit in hemodynamically stable condition. Postoperative recovery was notable for respiratory failure requiring reintubation on postoperative day (POD) 2, but he was successfully extubated on POD 5. Transthoracic echocardiogram performed on POD 1 showed stable size of the IVSH; follow-up echocardiography on POD 6 and 9 showed smaller size of the IVSH, a small residual VSD, and low-normal LV systolic function. The patient was discharged home on POD 11 without electrocardiogram abnormalities. At interval follow-up at 7 weeks of age, he was clinically doing well with complete resolution of the IVSH, normal ventricular wall thicknesses, no residual VSD shunt, and normal systolic function by echocardiography (Figures 2A and 2B, Videos 3 and 4).

The patient continued to do well with longer term follow-up and at 7 months of age continued to have normal appearance of the interventricular septum and unchanged, normal systolic function (Videos 5 and 6).

DISCUSSION

IVSH is an overall rare phenomenon that has been reported in the clinical settings of acute myocardial infarction, chest wall trauma, aortic valve disease, and coronary artery bypass surgery. More recently, cases have been reported in pediatric patients during cardiopulmonary bypass and surgical repair of several different congenital heart defects. Yoneyama et al. presented one case and reviewed similar pediatric case reports; other recent reports in addition to our case give a total of 16 cases reported thus far in the literature.

The interventricular septum is a thick, muscular structure notably supplied by septal perforator branches of the posterior descending and left anterior descending coronary arteries. In nearly all reported cases, VSD patch closure was associated with development of IVSH (the one notable exception being a neonate who underwent repair of atrial septal defect and mixed total anomalous pulmonary venous connection). Thus the bleeding likely originates from surgical trauma of a septal perforator branch, with bleeding (worsened by cardiopulmonary bypass anticoagulation) accumulating into a hematoma

In adult patients, IVSH formation is associated with hemodynamic or conduction system abnormalities such as atrioventricular block, outflow tract obstruction, and tamponade. In adult cases (especially in the setting of myocardial infarction), medical treatment or surgical intervention are variously reported. In pediatric cases, a total of four patients were reported to have undergone intraoperative drainage of the IVSH; three patients underwent incisional drainage on cardiopulmonary bypass, and one patient underwent drainage with a 16-gauge needle. Two of these patients requiring intervention on the IVSH later died (one 8 months after surgery and the other immediately after
surgical repair). All other patients survived with gradual resolution of the IVSH by echocardiography in most cases. The great majority (75%) of patients were conservatively managed with typical postoperative care and observation and did well overall.

Our patient showed no signs of hemodynamic instability, and the IVSH by echocardiography had normalized by 3 weeks after surgery. In a majority of pediatric cases of IVSH (as with our patient), typical postoperative care and expectant observation were associated with good prognosis. Most cases of IVSH were immediately identified on postoperative TEE, performed prior to sternal closure (as was our case). Furthermore, we routinely obtain preoperative TEE images, which demonstrated a normal ventricular septum in our patient, in stark contrast to the IVSH found on postoperative TEE images. The IVSH was also readily visible in standard parasternal, apical, and subcostal images in our patient. This emphasizes the importance of awareness for this rare but significant abnormality not only for pediatric cardiothoracic surgeons and pediatric cardiologists but also for sonographers and pediatric intensivists.

CONCLUSION

We present a case of an infant with IVSH, a rare postoperative complication in congenital heart surgical cases. This was readily visualized both by transthoracic and TEE. Regardless of timing or method of diagnosis, most cases of IVSH are associated with overall good outcomes with observation and typical postoperative care. Postoperative echocardiography assessment should evaluate for resolution or increase of the IVSH as well as outflow tract obstruction and ventricular dysfunction. Close follow-up with electrocardiography and echocardiography of the ventricular function, septum, and conduction system is recommended.

SUPPLEMENTARY DATA

Supplementary data related to this article can be found at https://doi.org/10.1016/j.case.2018.04.001.

REFERENCES

1. Vargas-Barron J, Romero-Cardenas A, Roldan F, Molina-Carrion M, Avila-Casado C, Villavicencio R, et al. Long-term follow-up of intramyocardial dissecting hematomas complicating acute myocardial infarction. J Am Soc Echocardiogr 2005;18:1422-6.
2. Drago M, Butera G, Giamberti A, Lucente M, Frigiola A. Interventricular septal hematoma in ventricular septal defect closure. Ann Thorac Surg 2005;79:1764-5.
3. Zhu J, Liu H, Zhang J, Feng X, Wu S, Mei J, et al. Interventricular septal hematoma after congenital cardiac surgery. Ann Thorac Surg 2013;95:2171-3.
4. Jensen R, Burg P, Anderson C, Garabedian C, Garabedian H, Siwek L, et al. Postoperative ventricular septal hematoma: a natural history of two pediatric cases. J Thorac Cardiovasc Surg 2007;133:1651-2.
5. Padalino MA, Spaggiari S, Pitterello D, Milanesi O, Stellin G. Unexpected interventricular septal hematoma after ventricular septal closure: intraoperative echocardiographic early detection. Eur J Echocardiogr 2007;8:195-7.
6. Bernasconi A, Cavalle-Garrido T, Redington A. Spontaneous intraoperative ventricular haematoma in a neonate. Heart 2007;93:898.
7. Eyileten Z, Aliyev A, Çiftçi Ö, Uçar T, Ödek Ç, Kendirli T, et al. An extremely rare complication of congenital heart surgery: interventricular septal hematoma. Turk J Pediatr 2013;55:662-4.
8. Yoneyama F, Matsubara M, Sakamoto H, Hiramatsu Y. Interventricular septal hematoma associated with congenital heart surgery: a case report and literature review. J Thorac Cardiovasc Surg 2017;153:e55-7.
9. Yamazawa H, Takeda A, Nakajima H, Tachibana T, Aoki M. Interventricular septal hematoma following repair of a ventricular septal defect. J Card Surg 2017;32:390-3.
10. Zhuang J, Chen JM, Huang X. Interventricular septal dissecting hematoma. Eur Heart J 2008;29:2488.
11. Suteu CC, Muntean I, Benedek T, Toganel R. Giant dissecting ventricular septal hematoma associated with critical congenital heart disease. Interact Cardiovasc Thorac Surg 2016;23:837-8.
12. Bailey FJ, Jivanji SG, Kostolny M. Postoperative interventricular septal haematoma following tetralogy of Fallot repair and perimembranous ventricular septal defect repair. Interact Cardiovasc Thorac Surg 2017;24:296-8.
13. Woods R, Hraska V. Skunk’s poked: what now? J Thorac Cardiovasc Surg 2017;153:e59-60.