Use and Acceptability of HIV Self-Testing Among First-Time Testers at Risk for HIV in Senegal

Carrie E. Lyons1 · Karleen Coly1 · Anna L. Bowring1 · Benjamin Liestman1 · Daouda Diouf2 · Vincent J. Wong3 · Gnilane Turpin1 · Delivette Castor3 · Penda Dieng2 · Oluwasolape Olawore1 · Scott Geibel6 · Sosthenes Ketende1 · Cheikh Ndour4 · Safiatou Thiam5 · Coumba Touré-Kane7 · Stefan D. Baral1

Published online: 13 June 2019
© The Author(s) 2019

Abstract
HIV Self-Testing (HIVST) aims to increase HIV testing coverage and can facilitate reaching the UNAIDS 90-90-90 targets. In Senegal, key populations bear a disproportionate burden of HIV and report limited uptake of HIV testing given pervasive stigma and criminalization. In these contexts, HIVST may represent a complementary approach to reach populations reporting barriers to engagement with existing and routine HIV testing services. In this study, 1839 HIVST kits were distributed in Senegal, with 1149 individuals participating in a pre-test questionnaire and 817 participating in a post-test questionnaire. Overall, 46.9% (536/1144) were first-time testers and 26.2% (300/1144) had tested within the last year; 94.3% (768/814) reported using the HIVST, and 2.9% (19/651) reported a reactive result which was associated with first-time testers (p = 0.024). HIVST represents an approach that reached first-time testers and those who had not tested recently. Implementation indicators suggest the importance of leveraging existing community structures and programs for distribution.

Keywords HIV · Self-Testing · Key populations · Senegal · Sub-Saharan Africa

Resumen
El autodiagnóstico del VIH (ADVIH) busca incrementar la cobertura de las pruebas del VIH y puede facilitar el alcance de los objetivos 90-90-90 de ONUSIDA. En Senegal, los grupos de población clave soportan una carga desproporcionada del VIH y reportan una utilización limitada de las pruebas del VIH, dada la generalización del estigma y la criminalización. En este contexto, el ADVIH puede servir como enfoque complementario para alcanzar a las poblaciones que reportan barreras al compromiso con los servicios de pruebas del VIH existentes y de rutina. En este estudio se distribuyeron 1839 ADVIH en Senegal, donde 1149 individuos participaron en una encuesta antes de recibir la prueba y 817 participaron en una encuesta después de recibir la prueba. En general, el 46.9% (536/1144) se realizó la prueba por primera vez y el 26.2% (300/1144)
se habían realizado una prueba en el último año; el 94.3% (768/814) reportó utilizar el ADVIH y el 2.9% (19/651) reportó un resultado reactivo asociado con realizar la prueba por primera vez \((p = 0.024)\). El ADVIH representa un enfoque que alcanzó a las personas que realizaron la prueba por primera vez y a quienes no se habían realizado la prueba recientemente. Los indicadores de implementación sugieren la importancia de aprovechar las estructuras comunitarias y los programas de distribución existentes.

Introduction

Increasing coverage of HIV testing and early detection of seroconversion among people living with HIV is essential for effectively responding to the HIV pandemic. Early detection of HIV and initiation of antiretroviral therapy (ART) significantly reduces HIV-related morbidity and mortality, and can improve the quality of life for people living with HIV while also eliminating the risk of onward HIV transmission [1–3]. Similarly, awareness of one’s negative HIV serostatus is important for prioritizing prevention strategies especially in the context of increasing availability of pre-exposure prophylaxis (PrEP) [4, 5]. HIV self-testing (HIVST) is emerging as an important tool to potentially increase the uptake and the frequency of HIV testing in populations at increased risk for acquiring HIV such as key populations who may avoid HIV testing services because of stigma and criminalization of their sexual practices, orientation, or occupation, or even the criminalization of HIV transmission [6]. Approximately 48 countries have established an HIVST supportive policy and far more countries have policies under development, including several across sub-Saharan African [7, 8]. Given the rapid adoption of HIVST globally, WHO guidelines have been developed to support the implementation and scale-up of ethical, effective, acceptable, and evidence-based approaches to HIVST [9].

HIVST can potentially overcome barriers to HIV testing uptake and accessibility by placing the locus of control of testing on the individual, increasing confidentiality, and allowing members of marginalized and stigmatized groups to test in settings of privacy, safety, and with dignity [10]. Oral HIVST has been shown to improve HIV testing coverage and to be acceptable among diverse populations across varied settings [11–16]. However, there is currently limited evidence on acceptability of HIVST across Western and Central Africa despite the need to understand the acceptability and strategies for effective implementation across the region [8].

The West African country of Senegal is one of the countries in sub-Saharan Africa where an HIVST policy is currently under development [8]. Senegal has a concentrated HIV epidemic with a prevalence among adults of reproductive age consistently under 1%, and a high burden among specific key populations [17]. In Senegal, HIV disproportionately affects men who have sex with men (MSM), female sex workers (FSW) and people who inject drugs (PWID) with prevalence estimates of 23.5%, 3.3%, 10.2%, respectively [18, 19]. In Senegal, same-sex practices are criminalized and sex work for cisgender women is legal but highly regulated [20]. Stigma has been shown to be a barrier to uptake of HIV testing and accessing other HIV prevention and treatment services. In many places, there is stigma specifically associated with seeking HIV testing [21, 22]. Frequent or regular HIV testing may be perceived by healthcare providers as disclosing a stigmatized behavior, and stigma relating to access to health services among key populations has been reported to be high [18]. Low rates of testing may be affecting Senegal’s progress towards epidemic control among key populations and achieving the UNAIDS 90-90-90 targets for all [23]. While available data are limited, UNAIDS estimates that only 71% of adults living with HIV know their status, of which only 58% are receiving ART [24.] However, uptake of HIV services has been shown to be lower among key populations, with a recent study estimating that only 13% of MSM and 55% of FSW living with HIV reported to be aware of their seropositive status [18].

Given the HIV epidemic profile in Senegal and the limited uptake of HIV prevention and treatment services among key populations in the country, HIVST may represent an impactful strategy for increasing the uptake and coverage of HIV testing and accelerating progress towards achieving 90-90-90 goals. This study aimed to assess the acceptability of HIVST for key populations and people in their social and sexual networks and secondly, to assess the effectiveness of HIVST in reaching first-time testers. These results will inform appropriately scaled implementation of HIVST in Senegal and across West Africa.

Methods

This is a pilot study which distributed HIVST kits through targeted venues and recruited individuals through convenience sampling to participate in pre and post HIVST socio-behavioral questionnaires.

HIVST Distribution

OraQuick HIV Self-Test Kits (Orasure Technologies, Inc) were distributed to individuals in Dakar and Ziguinchor through venue and social network-based distribution. The HIVST kits included an OraQuick test device, written and
pictorial step-by-step instructions, supplementary information on the test and HIV, and a referral card with information for confirmatory testing sites and study contacts. Instructions and supplementary information were provided in French and Wolof and adapted to the Senegalese context.

HIVST kit distribution and participant recruitment was led by study partner, Enda Santé, and aimed to reach populations with increased vulnerability of HIV acquisition and high levels of health care related stigma, including MSM, FSW, PWID, and clients of FSW. [20].

The venue-based approach for distribution and recruitment utilized directly assisted distribution of HIVST and was conducted through outreach to sex work venues, bars, nightclubs, hot spots, and mobile clinics, as well as health facilities that provide services to key populations. Venues were selected based on recommendations of community partners with previous experience in the communities, and leveraged existing programmatic activities. Directly assisted distribution of HIVST followed the WHO definition [9] and was led by trained distributors who provided pre-test instructions, test information, demonstration of proper HIVST use, and education on the importance for confirmatory testing, irrespective of a test reactivity. When possible, the participant was given the choice to either self-administer in a private space on-site with a peer educator available, or to take their HIVST kit away with them to test later.

A small sample of additional HIVST kits were distributed through social network-based unassisted distribution. The social network-based approach was focused on providing a primary recipient with one HIVST kit for themselves and two additional kits to distribute to individuals within their network. Social network-based distribution leveraged venue-based distribution to engage the primary HIVST recipient, who received the HIVST kits directly from the trained distributor. The primary recipient then distributed to secondary recipients through indirect, unassisted distribution as defined by WHO [9.] Secondary recipients only received written instructions and information contained within the HIVST kit.

Data Collection

Convenience sampling was used to recruit individuals into the study at the time of HIVST kit distribution. Individuals receiving the HIVST kits through directly assisted venue-based distribution were asked if they wished to participate in a pre- and post-test survey. Data from social network-based distribution were only obtained from the primary recipient as follow up was not possible for the network-based HIVST kit recipients. Participants were eligible if they reported being 18 years of age or older; capable of and willing to provide informed consent; agreed to use the HIVST; and spoke Wolof and/or French. Participation was voluntary, and individuals could receive an HIVST kit regardless of survey participation. All pre- and post-test surveys were administered to eligible participants by trained interviewers. Among consenting participants, an interviewer administered pre-test surveys at the distribution site before HIVST utilization. Pre-test surveys captured information on demographic characteristics, HIV risk behaviors, HIV testing history, and motivation for testing.

Among individuals who opted to test at the HIVST distribution sites, the HIVST was collected through a test disposal box after self-administration and was read immediately. The result was logged to track the overall results observed, but not connected to the individual participant. This approach was used to compare aggregate level results to those self-reported in the post-tests. Post-test surveys assessing self-reported HIVST use and acceptability were conducted by phone two weeks after the HIVST kit distribution. Data were not obtained from secondary recipients.

Ethical review and approval were provided by the National Research Ethics Committee in Senegal and the Johns Hopkins School of Public Health Institutional Review Board.

Measures

Key population characteristics were self-reported. Sex worker was defined as reporting exchanging sex for money or goods, and with more than half of income being from selling sex in the past 6 months. Male sex workers (MSW) were defined as sex workers above, as well as being assigned male sex at birth; and FSW were defined as sex workers as above and assigned female sex at birth. MSM was defined as being assigned the male sex at birth and ever having oral or anal sex with another man. Transgender women were defined using a two-step gender assessment of reporting male sex assigned at birth and gender identification as a woman. PWID were defined as ever having injected illicit drugs. Key population categories were not mutually exclusive. Key population was defined as meeting the criteria of at least one of the six key population categories.

First-time testers were defined as individuals who self-reported never having received an HIV test prior to the pre-test questionnaire. HIVST reactivity results were collected in two ways: 1. Results collected from used HIVST at the distribution sites; and 2. Self-reported HIVST results from those who participated in the post-test phone survey. Acceptability measures were informed by The Society for Implementation Research and Collaboration Indicator Review, however, have not yet been validated [25.]
Statistical Analyses

Demographic characteristics and HIV testing history were determined from pre-test questionnaires. Logistic regression was used to assess the crude relationship between HIV testing history (first-time vs. previous testers), demographic characteristics, and HIV risk behaviors. Multiple multivariable logistic regression models were developed to separately assess each demographic characteristic, HIV testing history, HIV risk behaviors as primary predictors of first-time testers and adjusted for a priori demographic characteristics. Pearson’s Chi squared tests were used to assess the crude relationships between first-time testers and HIVST use and acceptability, as well as the relationships between self-reported HIVST result and use and demographic characteristics. A significance value of p < 0.05 was used for all analyses.

Results

Distribution and Study Participation

A total of 1839 HIVST kits were distributed between April 2017 to June 2018, and 62.5% (1149/1839) of recipients participated in the pre-test questionnaire before receiving the HIVST (Table 1). Among pre-test participants, 71.1% (817/1149) participated in the follow up post-test questionnaire.

Among post-test respondents, 5.9% (48/810) had received additional HIVST kits for secondary, unassisted distribution, of which 80.0% (36/45) distributed the additional HIVST kits. Among individuals not provided additional HIVST kits for unassisted distribution, 1.2% (9/730) gave their HIVST kit to someone else.

Demographic Characteristics

Among participants who completed the pre-test, 47.9% (539/1125) were in Dakar and 52.1% (586/1125) were in Ziguinchor (Table 2). Among pre-test participants, 25.3% (286/1130) were aged 18–24 years of age, 32.7% (370/1130) were 25–30 years, and 42.0 (474/1130) were 31 years and older. Overall, 52.9% (607/1148) reported female and 47.1% (541/1148) reported male sex at birth. Demographic characteristics of individuals who participated in the post-test questionnaire did not differ from the pre-test, except for region (p = 0.011).

Key Populations

Among pre-test respondents, 32.2% (370/1149) self-reported membership of a key population group with 18.8% (204/1085) sex workers specifically, 14.3% (155/1085) FSW and 4.4% (48/1085) MSW; 15.1% (174/1149) MSM; 3.7% (42/1131) PWID; and 1.7% (20/1148) transgender women.

First-Time Testers

Among pre-test respondents, 46.9% (536/1144) of participants were first-time testers, 26.9% (308/1144) had ever tested for HIV but not within the last 12 months, and 26.2% (300/1144) had tested within the last 12 months.

Among key populations, 36.8% (136/370) were first-time testers (Table 3). Among sex workers of all genders, 26.5% (54/204) were first time testers. Among FSW, 20.7% (32/155) were first-time testers, 27.7% (43/155) had tested but not in the last 12 months, and 51.6% (80/155) had tested in the last 12 months. Among MSW, 45.8% (22/48) were first-time testers. Overall, 46.0% (80/174) of MSM, 59.5% (25/42) of PWID, and 55.0% (11/20) of transgender women were first-time testers.

Among participants in Dakar, 42.2% (227/538) were first-time testers, and in Ziguinchor 52.6% (306/582) were first-time testers (Table 4). Among participants 18 to 24 years old, 62.8% (179/285) were first-time testers. Among participants ages 25–30, 46.0% (169/367) were first-time testers, and 38.0% (171/444) were first-time testers among those 31 years and older. Among participants assigned female sex at birth, 38.6% (233/604) were first-time testers compared to 56.2% (303/539) of participants assigned male sex at birth.

Table 1 HIVST distribution and data collection summary in Senegal

HIVST kits distributed	n/N	%
Pre-test participants	1149/1839	62.5
Post-test participants among those who participated in the pre-test	817/1149	71.1
Received additional HIVST for secondary distribution among post-test respondents	48/810	5.9
Distributed HIVST for secondary distribution among post-test respondents	36/45	80.0
Gave HIVST to someone else, although did not receive additional HIVST for secondary distribution	9/730	1.2
HIVST results with positive reactivity among those collected at the distribution sites	76/1407	5.4
Table 2: Demographic characteristics of individuals who participated in pre- and post- HIVST questionnaires

Demographic characteristics	Pre-test participants	Post-test participants	\(X^2\) p value to compare samples		
	N = 1149	N = 817			
	n/N	%	n/N	%	
Region					0.011
Dakar	539/1125	47.9	437/813	53.7	
Ziguinchor	586/1125	52.1	376/813	46.3	
Age					0.947
18–24	286/1130	25.3	207/803	25.8	
25–30	370/1130	32.7	265/803	33.0	
31+	474/1130	42.0	331/803	41.2	
Sex at birth					0.226
Female	607/1148	52.9	454/816	55.6	
Male	541/1148	47.1	362/816	44.4	
Key populations\(^a\)					0.451
Key population (any)					
Yes	370/1149	32.2	250/817	30.6	
No	779/1149	67.8	567/817	69.4	
Sex worker (all genders)					0.841
Yes	204/1085	18.8	148/772	19.2	
No	881/1085	81.2	624/772	80.8	
Female sex worker					0.772
Yes	155/1085	14.3	114/772	14.8	
No	994/1085	85.7	658/772	85.2	
Male sex worker					0.877
Yes	48/1085	4.4	33/772	4.3	
No	1101/1085	95.6	739/772	95.7	
Men who have sex with men					0.417
Yes	174/1149	15.1	113/817	13.8	
No	975/1149	84.9	704/817	86.2	
People who inject drugs					0.230
Yes	42/1131	3.7	22/807	2.7	
No	1089/1131	96.3	785/807	97.3	
Transgender women					0.800
Yes	20/1148	1.7	13/816	1.6	
No	1128/1148	98.3	803/816	98.4	
HIV testing history					
Recent testing for HIV					0.435
Never	536/1144	46.9	358/814	44.0	
Yes, but not in the last 12 months	308/1144	26.9	227/814	27.9	
Yes, within the last 12 months	300/1144	26.2	229/814	28.1	
First time testers					0.208
Yes	536/1144	46.9	358/814	44.0	
No	608/1144	53.1	456/814	56.0	

\(^a\)Not mutually exclusive
Demographic Characteristics, HIV Testing History and HIV Risk Behaviors, and Associations with First-Time Testers

When adjusting for sex and age, region was associated with HIV testing history, with an increased odds of being a first-time tester in Ziguinchor (aOR: 1.99; 95%CI: 1.53, 2.59; p value: < 0.001) compared to Dakar (Table 4). Age was associated with HIV testing history with an increased odds of being a first-time tester among those 18 to 24 years old compared to 31+ (aOR: 2.84; 95%CI: 2.07, 3.90; p-value: < 0.001). Participants assigned male sex at birth had an increased odds of being a first-time tester compared to those assigned female sex (aOR: 2.71; 95CI %: 2.08, 3.52; p-value: < 0.001).

Among pre-test participants, 79.5% (837/1053) had been worried about their HIV status, which was negatively associated with being a first-time tester (aOR: 0.68; 95%CI: 0.49, 0.94; p-value: 0.021) (Table 4). A sexual partner (aOR: 1.92; 95%CI: 1.06, 3.49; p-value: 0.032) or a family member (aOR: 2.61; 95%CI: 1.01, 6.69; p-value: 0.047) suggesting getting tested for HIV were associated with reaching first-time testers compared to ‘other’ people suggesting. The reported primary reason for doing the HIV test was engagement in risky behavior (41.8%; 402/961), sexual partner engagement in risk behavior (7.4%; 71/961), had sex with someone who they thought or knew to be living with HIV (4.7%; 45/961), condom failure (7.0%; 67/961), someone suggested to get tested (20.7%; 199/961), and part of a regular testing routine (17.2%; 165/961).

Use of HIVST

Among post-test survey respondents, 94.3% (768/814) reported using the HIVST of which 43.5% (333/765) were first-time testers (Table 5). In total, 54.3% (363/668) used the HIVST at the distribution site and 45.7% (305/668) used the HIVST at home; and 88.9% (595/669) used the HIVST within 2 days. Among those who used the HIVST, 2.9% (19/651) reported a reactive result, and 2.0% (13/651) had an invalid result. Self-reported reactivity was associated with first-time testers (p = 0.024), and among those with a reactive result 63.2% (12/19) were first-time testers. Reported location of receiving the HIVST was associated with HIV testing history (p-value: < 0.001). Overall 10.3% (48/466)

Table 3 HIV testing history among self-reported key populations in Senegal

Self-reported key population	Total	HIV testing history	Yes, but not in the last 12 months	Yes, within the last 12 months	P value				
	n/N	%	n/N	%	n/N	%	n/N	%	P value
Key population (any)									<0.001
Yes	370/1149	32.2	136/370	36.8	103/325	27.8	131/325	35.4	
No	779/1149	67.8	400/774	51.7	205/774	26.5	169/774	21.8	
Sex worker (all genders)									<0.001
Yes	204/1085	18.8	54/204	26.5	53/204	26.0	97/204	47.6	
No	881/1085	81.2	450/878	51.3	240/878	27.3	188/878	21.4	
Female sex worker									<0.001
Yes	155/1085	14.3	32/155	20.7	43/155	27.7	80/155	51.6	
No	930/1085	85.7	472/927	50.9	250/927	27.0	205/927	22.1	
Male sex worker									0.239
Yes	48/1085	4.4	22/48	45.8	9/48	18.8	17/48	35.4	
No	1037/1085	95.6	482/1034	46.6	284/1034	27.5	268/1034	25.9	
Men who have sex with men									0.923
Yes	174/1149	15.1	80/174	46.0	49/174	28.2	45/174	25.9	
No	975/1149	84.9	456/970	47.0	259/970	26.7	255/970	26.3	
People who inject drugs									0.184
Yes	42/1131	3.7	25/42	59.5	7/42	16.7	10/42	23.8	
No	1089/1131	96.3	500/1084	46.1	297/1084	27.4	287/1084	26.5	
Transgender women									0.242
Yes	20/1048	1.7	11/20	55.0	7/20	35.0	2/20	10.0	
No	1128/1148	98.3	525/1123	46.8	300/1123	26.7	298/1123	26.5	

Not mutually exclusive
of those who reporting using the HIVST reported seeking follow up testing.

Acceptability of HIVST

Overall, 74.5% (496/666) participants reported being comfortable using the HIVST. In total, 86.1% (576/669) found the instructions easy to follow, and 94.4% (638/676) thought their family of friends would use the HIVST. After receiving the HIVST, 30.6% (244/797) discussed HIV testing with a sexual partner or friend. Among participants 78.5% (307/391) would be comfortable asking a primary sexual partner to use an HIVST, and 65.8% (150/228) would be comfortable asking a casual sexual partner to use an HIVST.

HIVST Reactivity

Among post-test respondents reporting a reactive result, 42.1% (8/19) used the test on site, and 57.9% (11/19) used the HIVST at home (Table 6). Among those with a reactive HIVST, 57.9% (11/19) went for confirmatory testing and

Table 4 Demographic characteristics, HIV testing history, motivation for HIV test use and associations with first-time testers in Senegal

Characteristics	Total	HIV testing history	X² p value	OR	aOR*	95% CI	P value			
	n/N	%	n/N	%						
			First-time	Individuals with testing						
			tester	history						
Region										
Dakar	539/1125	47.9	227/538	42.2	311/538	57.8	Ref	Ref	0.001	
Ziguinchor	586/1125	52.1	306/582	52.6	276/582	47.4	1.52	1.99	1.53,2.59	<0.001
Age	<0.001									
18–24	286/1130	25.3	179/285	62.8	106/285	37.2	2.75	2.84	2.07,3.90	<0.001
25–30	370/1130	32.7	169/367	46.0	198/367	54.0	1.39	1.32	1.00,1.76	0.063
31+	474/1130	42.0	171/444	38.0	293/473	62.0	Ref	Ref	<0.001	
Sex at birth	<0.001									
Female	607/1148	52.9	233/604	38.6	371/604	61.4	Ref	Ref	<0.001	
Male	541/1148	47.1	303/539	56.2	236/539	43.8	2.04	2.71	2.08,3.52	<0.001
HIV testing history										
Who suggested you get an HIV test?										
Sexual partner	66/1134	5.8	42/66	63.6	24/66	36.4	2.13	1.92	1.06,3.49	0.032
Peer educator	359/1134	31.7	164/357	45.9	193/357	54.1	1.03	1.09	0.76,1.54	0.648
Doctor	226/1134	19.9	101/224	45.1	123/206	54.9	1.00	1.01	0.68,1.49	0.979
Family member	22/1134	1.9	14/22	63.6	8/22	36.4	2.13	2.61	1.01,6.69	0.047
Friend	213/1134	18.7	97/213	45.5	116/213	54.5	1.01	0.95	0.63,1.42	0.793
Other	248/1134	21.9	112/248	45.2	136/248	54.8	Ref	Ref	<0.001	
In the last 12 months, worried about HIV										
Yes	837/1053	79.5	368/834	44.1	466/834	55.9	0.75	0.68	0.49,0.94	0.021
No	216/1053	19.6	110/215	51.2	105/215	48.8	Ref	Ref	<0.001	
Main reason for doing the HIVST today										
Engaged in risky behavior	402/961	41.8	156/401	38.9	245/401	61.1	3.74	4.11	2.46,6.86	<0.001
Sex partner engaged in risky behavior	71/961	7.4	48/71	67.6	23/71	32.4	12.26	10.92	5.38,22.17	<0.001
Had sex with someone knew/thought to be living with HIV	45/961	4.7	27/45	60.0	18/45	40.0	8.81	8.16	3.70,17.98	<0.001
Condom broke or slipped	67/961	7.0	47/66	71.2	19/66	28.8	14.53	12.70	6.09,26.51	<0.001
Someone suggested I get tested	199/961	20.7	116/197	58.9	81/197	41.1	8.41	9.32	5.33,16.28	<0.001
Part of my regular testing pattern	165/961	17.2	24/165	14.6	141/165	85.5	Ref	Ref		
Other	12/840	1.3	5/12	41.7	7/12	58.3	4.20	1.28	0.24,6.96	0.776

*adjusted for other demographic characteristics presented in this table

adjusted for age, sex, and region
Table 5 Use and acceptability of HIVST and differences between first-time testers and individuals with HIV testing history in Senegal

HIVST distribution and use	Total	First time testers	Individuals with testing history	P value			
Reported use of HIVST	n/N	%	n/N	%	n/N	%	
Yes	768/814	94.3	333/765	43.5	432/765	56.5	0.390
No	46/814	5.7	23/46	50.0	23/64	50.0	
Place of HIVST use							
Home	305/668	45.7	147/302	48.7	155/302	51.3	0.092
At distribution site	363/668	54.3	153/363	42.2	210/363	57.9	
Time of use after distribution							
< 2 days	595/669	88.9	266/593	44.9	327/593	55.1	0.617
> 2 days	74/669	11.1	35/73	48.0	38/73	52.1	
Where did you receive your HIV self-test?							<0.001
Hospital	260/742	35.0	130/259	50.2	129/259	49.8	
Community organization	78/742	10.5	24/78	30.8	54/78	69.2	
At a hotspot, bar, or community venue	194/742	26.2	95/192	49.5	97/192	50.5	
Mobile clinic	108/742	14.6	13/108	12.0	95/108	88.0	
Friend or family	102/742	13.8	69/102	67.7	33/102	32.4	
Self-reported result of HIVST							0.024
Negative	619/651	95.1	268/619	43.4	349/617	56.6	
Reactive	19/651	2.9	12/19	63.2	7/19	36.8	
Invalid	13/651	2.0	9/12	75.0	3/12	25.0	
Confirmed results of HIVST results							0.625
Yes	48/466	10.3	21/48	43.8	27/48	56.3	
No	418/466	89.7	197/415	47.5	218/415	52.5	
Acceptability of HIVST							
How comfortable did you feel using the HIVST?							<0.001
Comfortable	496/666	74.5	202/494	40.9	292/492	59.1	
Not comfortable	170/666	25.5	96/169	56.8	73/169	43.2	
How did you find the instructions?							0.427
Easy	576/669	86.1	263/575	45.7	312/575	54.3	
Not easy	93/669	13.9	38/92	41.3	54/92	58.7	
Would you recommend self-testing to others?							0.390
Yes	596/626	95.2	259/594	43.6	335/594	56.4	
No	30/626	4.8	15/29	51.7	14/29	48.3	
Do you think your friends and/or family would use an HIVST?							0.591
Yes	638/676	94.4	273/636	42.9	363/636	57.1	
No	38/676	5.6	18/38	47.4	20/38	52.6	
Since you receive the HIVST, did you discuss HIV testing with any sexual partners or friends?							0.582
Yes	244/797	30.6	104/244	42.6	140/244	57.4	
No	553/797	69.4	246/550	44.7	304/550	55.3	
Would you be comfortable asking your primary sexual partner to use an HIVST?							0.037
Yes	307/391	78.5	132/306	43.1	174/306	56.8	
No	84/391	21.5	47/84	56.0	37/84	44.1	
Would you be comfortable asking a casual sexual partner to use an HIVST?							0.218
Yes	150/228	65.8	72/149	48.3	77/149	51.7	
No	78/228	34.2	31/78	39.7	47/78	60.3	
among those with an invalid test result none went for fol-
low up testing. Among those with a reactive HIVST result,
84.2% (16/19) were male, 31.6% (6/19) were 18–24 years
old, and 42.1% (8/19) were a self-reported member of a
key population. Among HIVST kits collected at the dis-
tribution site, 5.4% (76/1407) had a positive reactivity
(Table 1).

Discussion

This study demonstrates that HIVST can effectively engage
first-time testers at risk for HIV in Senegal, including key
populations, cisgender men, and young adults. Expanding
access to HIVST may increase the coverage and frequency
of HIV testing and thus have an important role in linking
people living with HIV to diagnosis and treatment services
and potentially mitigating the HIV epidemic in Senegal.
Overall history of HIV testing as well as frequency of test-
ing remains low among key populations, as well as among
young adults in their social and sexual networks in Senegal.
HIVST result reactivity was associated with first-time test-
ing, and among those who tested with an HIVST, accept-
ability was high for both first-time testers and those report-
ing previous HIV testing. However, consistent with some
earlier studies, confirmatory testing and linkage to care was
a challenge during the implementation of HIVST in Senegal
[26, 27].

This study highlights that HIVST was able to reach a
large proportion of individuals, and in particular key popu-
lations, who had never received an HIV test as well as those
who had not tested recently. Notably, approximately half
of MSW, MSM, PWID, and transgender women reached
through HIVST reported not having tested for HIV. Few
programs currently exist to provide tailored health services
to PWID and transgender women in Senegal, and this study
suggests that HIVST may provide an opportunity for PWID
and transgender women to increase uptake of testing in this
context [28]. The proportion of first-time testers among FSW
was lower, suggesting comparatively higher coverage of HIV
testing among FSW than other key populations [18]. Sex
work is legal in Senegal but is strictly regulated through a
registration process for sex workers which includes require-
ments for HIV testing [20]. Despite this, frequency of testing
among FSW is low compared to the recommended guide-
lines for HIV testing among key populations. Many FSW are
not legally registered for sex work in Senegal, and these data
suggest potential barriers to traditional testing approaches
within challenging environments [18].

This small scale implementation of HIVST leveraged
existing programs and networks working with key popula-
tions to distribute HIVST. Despite available services and
programs in Senegal, HIVST was able to reach a large pro-
portion of first-time testers in this study. Therefore, HIVST
represents a promising new approach to increase coverage
and uptake of HIV testing through leveraging current pro-
grams. However, adoption and integration of HIVST into
existing programs will require a revision of the current
HIV testing targets for programs in Senegal. HIVST indica-
tors have been incorporated into the PEPFAR Monitoring,
Evaluation, and Reporting (MER 2.0) Indicator Reference
Guide representing appropriate indicators for collection in

| Table 6 HIVST result reactivity and association with use and demographic characteristics |
|---------------------------------|---------------------------------|---------------------------------|-----------------|-----------------|-----------------|
| | Reactive (N = 19) | Invalid (N = 13) | Not reactive (N = 619) | X² P value |
| Place of HIVST use | n/N % | n/N % | n/N % | |
| Home | 11/19 (57.9) | 12/13 (92.3) | 274/616 (44.5) | 0.002 |
| At distribution site | 8/19 (42.1) | 1/13 (7.7) | 3412/616 (55.5) | |
| Confirmed results of HIVST results | | | | <0.001 |
| Yes | 11/19 (57.9) | 0/11 (0.0) | 37/423 (8.8) | |
| No | 8/19 (42.1) | 1/13 (7.7) | 386/423 (91.4) | |
| Sex | | | | <0.001 |
| Female | 3/19 (15.8) | 3/13 (23.1) | 350/619 (56.5) | |
| Male | 16/19 (84.2) | 10/13 (76.9) | 269/619 (43.5) | |
| Age | | | | 0.327 |
| 18–24 | 6/19 (31.6) | 1/13 (7.7) | 56/610 (25.6) | |
| 25–30 | 9/19 (47.4) | 6/13 (46.2) | 210/610 (34.4) | |
| 31+ | 4/19 (21.1) | 6/13 (46.2) | 244/610 (40.0) | |
| Key population | | | | 0.326 |
| Yes | 8/19 (42.1) | 3/13 (23.1) | 167/619 (73.0) | |
| No | 11/19 (57.9) | 10/13 (76.9) | 452/619 (27.0) | |
HIV testing programs [29]. Notably, the HIV testing yield for programs may decrease if HIVST are included though there will be a lower cost per test offered [30].

First-time testers were associated with HIVST result reactivity in this study, with the majority of self-reported reactive results being among first-time testers. These findings suggest the potential effectiveness of HIVST in increasing HIV diagnosis among those living with HIV in Senegal and not accessing traditional testing services. Additionally, acceptability was overall high among individuals who participated in the post-test survey, as shown in other settings [16, 31, 32]. However, one quarter of participants reported that they were not comfortable using the HIVST, which highlights the need to better understand how to improve comfort during testing. Use and acceptability of HIVST was overall not significantly different between first-time testers and those with a testing history for most measures in this study. These results suggest potential for sustained uptake among both new and returning users. Contrarily, other studies have found that acceptability was influenced by prior HIV testing [33].

Although acceptability of HIVST has been high in other studies, consistent evidence on confirmatory testing and linkage to care similarly remain sub-optimal [26, 27]. In this study, confirmatory testing was low, with approximately two-thirds of those with reactive results, and none with invalid results reporting confirmatory testing. A recent study in Zambia found that individuals who had not previously tested for HIV were negatively associated with intention to linkage to care after HIVST [33]. Therefore, there is a need to better understand implementation strategies for linkage to care, especially for first-time testers. Preferred methods for follow up have varied across studies [33, 34]. Community-based confirmation testing was preferred to facility-based testing in Zambia and Malawi [35]. Some studies have shown success in linkage to care through active follow up, however another study found active support for linkage was less important to individuals than other attributes of confirmation testing locations [35]. HIVST strategies in Senegal may require more active mechanisms for follow up and support to improve linkage to confirmatory testing and care. Notably, young adults in this study had a higher odds of being first-time testers, suggesting traditional testing services are not currently reaching this group in Senegal. HIV incidence among adolescents and young adults is high globally, however uptake of HIV services is low [36]. In particular, HIV incidence is generally highest among young MSM in countries with age-disaggregated incidence data [37–39]. The emergence of social media and technology to engage young adults and though social and sexual networks may provide an avenue for increasing uptake of HIV testing services for these populations [40]. Mobile phone apps have also been shown to be acceptable among young MSM in other settings and have been used to assess risk and coordinate HIVST distribution [41–43]. HIVST web-based delivery has been acceptable across settings, including sub-Saharan Africa, and may provide further opportunity to increase uptake and frequency of testing among young MSM [41–43]. Mobile technology may also be an opportunity to reach individuals in rural areas where program coverage and access to services is less, such as the region of Ziguinchor [44].

Several limitations should be considered in this study. Participation in the pre- and post-test questionnaires was voluntary and may not represent the full sample of individuals who participated in HIVST distribution. The results may therefore be subject to bias. Participants who received HIVST through network distribution were not captured in data collection and are not represented in this analysis. Disclosure of key population status as well as positive reactivity from the HIVST were low in self-reported measures of this study. The distribution strategy prioritized members of key populations and worked closely with existing programs providing services to these populations. However, only one-third of the study sample self-reported key population status. Therefore, it may be that HIVST reached individuals who may not currently be at high risk of HIV, in which case there is a need to consider strategies to more effectively target key populations. Alternatively, key population status may have been underreported, in which case HIVST was able to reach individuals unwilling to disclose their key population-related behavior and less integrated into the key population networks [45]. Additionally, there was a discrepancy between the proportion of reactive HIVST collected at the distribution sites and those who self-reported reactive results during posttest questionnaire. Although these figures cannot be linked or compared directly, it may suggest either underreporting of reactive test results, or possibly greater loss to follow up for posttest questionnaire among individuals with a reactive HIVST.

Conclusions

In Senegal, key populations bear a disproportionate burden of HIV, and report limited uptake of existing HIV testing services given pervasive stigma and criminalization. In these contexts, HIVST may represent a complementary approach to reach populations reporting barriers to engagement with existing and routine HIV testing services. These data suggest the potential impact that HIVST could have in complementing existing HIV testing services by reaching a diverse group of first-time HIV-testers as well as those who have not tested recently in Senegal. This small-scale implementation further
suggested the importance of leveraging existing structures and programs for distribution. Moreover, since HIVST has the potential to disrupt traditional testing approaches, sustained engagement with government and community stakeholders is needed to inform optimal implementation strategies of HIVST.

Acknowledgements We would like to thank the study participants for donating their time to contribute to this research. Thank you to the study staff, partners, and government support for making this study possible. Thank you to Amrita Rao for support throughout study implementation and manuscript development. Thank you to Maria Garcia Quesada and Pedro Saa for supporting translation. Thank you to Johns Hopkins University Center for AIDS Research (P30AI094189). This study was made possible by the generous support of the American people through the U.S. President’s Emergency Plan for AIDS Relief (PEPFAR) with the U.S. Agency for International Development (USAID) under the Cooperative Agreement Project SOAR (Supporting Operational AIDS Research), number AID-OAA-14-00060. The information provided does not necessarily reflect the views of USAID or the United States Government, and the contents of this manuscript are the sole responsibility of Project SOAR, the Population Council, and the authors.

Compliance with Ethical Standards
Conflict of interest The authors declares that they have no conflicts of interest.

Ethical Approval Ethical review and approval were provided by the National Research Ethics Committee in Senegal and the Johns Hopkins School of Public Health Institutional Review Board.

Informed Consent Informed consent was obtained from all individual participants included in the study.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

References
1. Cohen MS, Chen YQ, McCauley M, Gamble T, Hosseinipour MC, Kumarasamy N, et al. Prevention of HIV-1 infection with early antiretroviral therapy. N Engl J Med. 2011;365(6):493–505.
2. Lundgren JD, Babiker AG, Gordin F, Emery S, Grund B, Sharma S, et al. Initiation of antiretroviral therapy in early asymptomatic HIV infection. N Engl J Med. 2015;373(9):795–807.
3. Anglemeyer A, Rutherford GW, Easterbrook PJ, Horvath T, Vitoria M, Jan M, et al. Early initiation of antiretroviral therapy in HIV-infected adults and adolescents: a systematic review. AIDS. 2014;28(Suppl 2):S105–18.
4. Grant RM, Lama JR, Anderson PL, McMahan V, Liu AY, Vargas L, et al. Preexposure chemoprophylaxis for HIV prevention in men who have sex with men. N Engl J Med. 2010;363(27):2587–99.
5. McCormack S, Dunn DT, Desai M, Dolling DJ, Gafos M, Gibson R, et al. Pre-exposure prophylaxis to prevent the acquisition of HIV-1 infection (PROUD): effectiveness results from the pilot phase of a pragmatic open-label randomised trial. Lancet. 2016;387(10013):53–60.
6. Organization WH. Consolidated guidelines on HIV prevention, diagnosis, treatment and care for key populations. Geneva: WHO; 2014.
7. Venter F, Majam M, Jankelowitz L, Adams S, Moorhouse M. South African HIV self-testing policy and guidance considerations. Southern Afr J HIV Med. 2017;18(1):775.
8. HIVST.org HIV self-testing policy hub 2018 [Available from: http://hivst.org/].
9. WHO. Guidelines on HIV Self Testing and Partner Notification World Health Organization; 2016.
10. Wirtz AL, Clouse E, Veronese V, Thun KH, Naing S, Baral SD, et al. New HIV testing technologies in the context of a concentrated epidemic and evolving HIV prevention: qualitative research on HIV self-testing among men who have sex with men and transgender women in Yangon, Myanmar. J Int AIDS Soc. 2017;20(1):21796.
11. Chanda MM, Ortblad KF. HIV self-testing among female sex workers in Zambia: a cluster randomized controlled trial. PLoS Med. 2017;14(11):e1002442.
12. Stevens DR, Vrana CJ, Dlin RE, Korte JE. A global review of HIV self-testing: themes and implications. BMJ Open. 2018;22(2):497–512.
13. Jamil MS, Prestage G, Fairley CK, Grulich AE, Smith KS, Chen M, et al. Effect of availability of HIV self-testing on HIV testing frequency in gay and bisexual men at high risk of infection (FORTH): a waiting-list randomised controlled trial. Lancet HIV. 2017;4(6):e241–50.
14. Masters SH, Agot K. Promoting partner testing and couples testing through secondary distribution of HIV self-tests: a randomized clinical trial. PLoS Med. 2016;13(11):e1002166.
15. Johnston LG, McFarland W, Sabin ML, Prybylski D, Sabin K, Baral S, et al. Measuring self-reported HIV status in bio-behavioural surveys. Bull World Health Organ. 2015;93(5):287.
16. Lippman SA, Lane T, Rabede O, Gilmore H, Chen YH, Mlotshwa N, et al. High acceptability and increased HIV-testing frequency after introduction of HIV self-testing and network distribution among South African MSM. J Acquir Immune Defic Syndr. 1999;77(3):279–87.
17. UNAIDS. Senegal 2016 [Available from: http://www.unaid s.org/en/regionscountries/count ries/senegal.]
18. Lyons CE, Ketende S, Diong D, Drame FM, Liesten B, Coly K, et al. Potential impact of integrated stigma mitigation interventions in improving hiv/aids service delivery and uptake for key populations in Senegal. J Acquir Immune Defic Syndr. 1999;2017(74 Suppl 1):S52.
19. UNAIDS. Senegal 2015 [cited 2016. Available from: http://www.unaids.org/en/regionscountries/countries/senegal.
20. Foley EE. Regulating sex work: subjectivity and stigma in Senegal. Cult Health Sex. 2017;19(1):50–63.
21. Knox J, Sandfort T, Yi H, Reddy V, Mainman S. Social vulnerability and HIV testing among South African men who have sex with men. Int J STD AIDS. 2011;22(12):709–13.
22. Hu Y, Lu H, Raymond HP, Sun Y, Sun J, Jia Y, et al. Measures of condom and safer sex social norms and stigma towards HIV/ AIDS among Beijing MSM. AIDS Behav. 2014;18(6):1068–74.
23. UNAIDS. 90–90–90 - An ambitious treatment target to help end the AIDS epidemic. 2017.
24. UNAIDS. Senegal. 2017.
25. Lewis CC, Mettert KD, Dorsey CN, Martinez RG, Weiner BJ, Nolen E, et al. An updated protocol for a systematic review of implementation-related measures. Syst Rev. 2018;7(1):66.
26. Choko AT, MacPherson P, Webb EL, Willey BA, Feasy H, Sambakunsi R, et al. Uptake, accuracy, safety, and linkage into
care over two years of promoting annual self-testing for HIV in Blantyre, Malawi: a community-based prospective study. PLoS Med. 2015;12(9):e1001873.

27. Choko AT, Desmond N, Webb EL, Chavula K, Napierala-Mavedzenge S, Gaydos CA, et al. The uptake and accuracy of oral kits for HIV self-testing in high HIV prevalence setting: a cross-sectional feasibility study in Blantyre, Malawi. PLoS Med. 2011;8(10):e1001102.

28. MacDonell K, Naar-King S, Hutsz H, Belzer M. Barriers to medication adherence in behaviorally and perinatally infected youth living with HIV. AIDS Behav. 2013;17(1):86–93.

29. PEPFAR Monitoring, Evaluation, and Reporting (MER 2.0) Indicator Reference Guide. 2017.

30. Cambiano V, Ford D, Mabugu T, Napierala Mavedzenge S, Miners A, Mugurungi O, et al. Assessment of the potential impact and cost-effectiveness of self-testing for HIV in low-income countries. J Infect Dis. 2015;212(4):570–7.

31. Harichund C, Moshabela M. Acceptability of HIV self-testing in sub-Saharan Africa: scoping study. AIDS Behav. 2018;22(2):560–8.

32. Thirumurthy H. Acceptability and feasibility of a novel approach to promote HIV testing in sexual and social networks using HIV self-tests. 8th IAS Conference on HIV Pathogenesis, Treatment, & Prevention 19–22 July, 2015; Vancouver, Canada.

33. Chipungu J. Understanding linkage to care with HIV self-test approach in Lusaka, Zambia - A mixed method approach. PLoS Med. 2017;12(11):e0187998.

34. Green K. VNB, Phan Thi Thu H., Tran Hung M, Vo Hai S., Ngo Van H., Doan H.A., Dang Hong L. How acceptable and feasible is HIV self-testing among key populations in Vietnam? Preliminary results from an intervention evaluation study. 9th IAS Conference on HIV Science (IAS 2017); Paris, France, 2017.

35. d’Elbee M, Indravudh PP, Mwenge L, Kumwenda MM, Simwanga M, Choko AT, et al. Preferences for linkage to HIV care services following a reactive self-test: discrete choice experiments in Malawi and Zambia. AIDS. 2018;32(14):2043–9.

36. Kim SH, Gerver SM, Fil더 S, Ward H. Adherence to antiretroviral therapy in adolescents living with HIV: systematic review and meta-analysis. AIDS. 2014;28(13):1945–56.

37. Baral SD, Grosso A, Holland C, Papworth E. The epidemiology of HIV among men who have sex with men in countries with generalized HIV epidemics. Curr Opin HIV AIDS. 2014;9(2):156–67.

38. Garofalo R, Hotton AL, Kuhns LM, Gratzer B, Mustanski B. Incidence of HIV infection and sexually transmitted infections and related risk factors among very young men who have sex with men. J Acquir Immune Defic Syndr. 1999;21(1):79–86.

39. Bedoya CA, Mimiaga MJ, Beaucamp G, Donnell D, Mayer KH, Safran SA. Predictors of HIV transmission risk behavior and seroconversion among Latino men who have sex with men in Project EXPLORE. AIDS Behav. 2012;16(3):608–17.

40. Perrin A. Social Networking Usage. Pew Research Center. 2015.

41. Sullivan PS, Driggers R. Usability and acceptability of a mobile comprehensive HIV prevention app for men who have sex with men: a pilot study. JMIr mHealth uHealth. 2017;5(3):e26.

42. De Boni R.B. VVG, Fernandez N., Lessa F., Girard R., Cruz M., Oliveira J., Lentine N., Miranda R., Bingham T, Barbosa A., Grinsztejn B. Online HIV self-testing: a tool to expand first HIV testing for young high-risk MSM in Brazil. 9th IAS Conference on HIV Science (IAS 2017); Paris, France, 2017.

43. Smith P. MR, Atujuna M., Madubela N., Bekker L.-G. “I can do this myself”: investigating the acceptability of a web-based, HIV self-testing service in South Africa. 9th IAS Conference on HIV Science (IAS 2017); Paris, France, 2017.

44. Sullivan PS, Grey JA, Simon Rosser BR. Emerging technologies for HIV prevention for MSM: what we have learned, and ways forward. J Acquir Immune Defic Syndr. 1999;2013(63 Suppl 1):S102–7.

45. Rao A, Stahlman S. Sampling Key Populations for HIV Surveillance: Results From Eight Cross-Sectional Studies Using Respondent-Driven Sampling and Venue-Based Snowball Sampling. JMIR Public Health Surveill. 2017;3(4):e72.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.