Topology

Steenrod squares on conjugation spaces

Matthias Franz, Volker Puppe

Fachbereich Mathematik, Universität Konstanz, 78457 Konstanz, Germany

Received 11 October 2005; accepted after revision 28 November 2005

Available online 28 December 2005

Presented by Étienne Ghys

Abstract

We prove that the coefficients of the so-called conjugation equation for conjugation spaces in the sense of Hausmann–Holm–Puppe are completely determined by Steenrod squares. This generalises a result of V.A. Krasnov for certain complex algebraic varieties. It also leads to a generalisation of a formula given by Borel and Haefliger, thereby largely answering an old question of theirs in the affirmative.

To cite this article: M. Franz, V. Puppe, C. R. Acad. Sci. Paris, Ser. I 342 (2006).

© 2005 Académie des sciences. Published by Elsevier SAS. All rights reserved.

1. Statement of the results

Let \(X \) be a topological space with an involution \(\tau \). We look at \(X \) as a space with an action of the group \(G = \{1, \tau\} \).

We take cohomology with coefficients in \(\mathbb{F}_2 \) and consider the restriction map \(r: H^*(X) \to H^*(X^\tau) \), its equivariant counterpart \(r_G: H^*_G(X) \to H^*_G(X^\tau) = H^*(X^\tau) \otimes H^*(BG) \) and the canonical projection \(p: H^*_G(X) \to H^*(X) \). Recall that \(H^*(BG) = H^*(\mathbb{RP}^\infty) = \mathbb{F}_2[u] \) with \(\text{deg}(u) = 1 \).

According to Hausmann–Holm–Puppe [2], \((X, \tau)\) is called a conjugation space if \(H^{\text{odd}}(X) = 0 \) and if there exists a section \(\sigma: H^*(X) \to H^*_G(X) \) of \(p \) and a degree-halving isomorphism \(\kappa: H^{2n}(X) \to H^*(X^\tau) \) with the following property: for every \(x \in H^{2n}(X), n \in \mathbb{N} \), there exists elements \(y_1, \ldots, y_n \in H^*(X^\tau) \) such that the so-called conjugation equation holds:

\[
r_G(\sigma(x)) = \kappa(x)u^n + y_1u^{n-1} + \cdots + y_{n-1}u + y_n.
\]
A priori, σ and κ are only assumed to be additive, but the conjugation equation implies that they are in fact multiplicative and unique. There are many examples of conjugation spaces, including flag manifolds, co-adjoint orbits of compact Lie groups and (compact) toric manifolds, see [2].

For the conjugation space $\mathbb{C}P^k$, $k \leq \infty$, Hausmann–Holm–Puppe prove the formula $r_G(\sigma(v^n)) = (wu + w^2)^n$, where $v \in H^2(\mathbb{C}P^k)$ and $w \in H^1(\mathbb{R}P^k)$ denote the generators [2, Example 3.7]. In other words, $r_G(\sigma(v^n)) = (wu + \text{Sq}^1(w))^n$. The following result generalises this to an arbitrary conjugation space X.

Theorem 1.1. For every $x \in H^{2n}(X)$, $n \in \mathbb{N}$, one has

$$r_G(\sigma(x)) = \sum_{i=0}^{n} \text{Sq}^i(\kappa(x)) u^{n-i} =: \text{SQ}(\kappa(x)).$$

Corollary 1.2. For every $x \in H^{n}(X)$, one has

$$r(x) = \kappa(x)^2.$$

We also show that the isomorphism κ commutes with total Steenrod squares.

Theorem 1.3. For every $x \in H^*(X)$ one has

$$\kappa(\text{Sq}(x)) = \text{Sq}(\kappa(x)).$$

Note that the odd Steenrod squares of x vanish since $H^*(X)$ is concentrated in even degrees. Hence, the above identity is equivalent to

$$\kappa(\text{Sq}^{2k}(x)) = \text{Sq}^{k}(\kappa(x)) \quad \text{for all } k \in \mathbb{N}. \quad (2)$$

2. Proofs

We denote the Steenrod algebra for the prime 2 by A.

Lemma 2.1. For every n there exist universal elements a_0, \ldots, a_n, $b \in A$ such that for every conjugation space X and every $x \in H^{2n}(X)$ one has

$$r_G(\sigma(x)) = \sum_{i=0}^{n} a_i(\kappa(x)) u^{n-i} \quad \text{and} \quad \kappa(\text{Sq}(x)) = b(\kappa(x)).$$

Moreover, $a_0 = 1$ and $a_1 = \text{Sq}^1$.

Proof. Since κ is bijective, one can define, for every X, functions $a_i, b : H^*(X) \to H^*(X^\tau)$ such that the above identities hold. We show that they are (or, more precisely, come from) Steenrod squares, using that the restriction map r_G commutes with all Steenrod squares. We write $\kappa(x) = z$.

We start by proving the claim about the a_i by induction on i, beginning at $a_0(z) = z$. If $i > 0$ is even, we apply Sq^{2k}, where $k \leq i/2$ will be chosen later. By the Leray–Hirsch theorem, we can write

$$\text{Sq}^{2k}(\sigma(x)) = \sum_{l=-n}^{k} \sigma(x_l) u^{2(k-l)} \quad (3)$$

for some $x_l \in H^{2(n+l)}(X)$. Write $z_l = \kappa(x_l)$. The restriction $r_G(\sigma(x_l) u^{2(k-l)})$ has leading term $z_l u^{n+2k-l}$, while, by (1) and the Cartan formula, the leading power of u in $\text{Sq}^{2k}(r_G(\sigma(x)))$ is at most u^{n+2k}. Hence, the summation in (3) is in fact only over $0 \leq l \leq k$.

We first compare coefficients of u^{n+2k-l} in $r_G(\text{Sq}^{2k}(\sigma(x))) = \text{Sq}^{2k}(r_G(\sigma(x)))$. Using Eq. (3) and the formula [5, Lemma 2.4]

$$\text{Sq}^j(u^i) = \binom{i}{j} u^{i+j},$$
we get for $0 \leq l \leq k$
\[z_l = \sum_{j=0}^{l} \binom{n-l+j}{2k-j} Sq^l(a_{l-j}(z)) + \sum_{j=1}^{l} a_j(z_{l-j}), \tag{4} \]
in particular
\[z_0 = \binom{n}{2k} z. \]

Since $l < i$, this inductively shows $z_l = b_l(z)$ for some $b_l \in \mathcal{A}$. Comparing coefficients of u^{n+2k-i} then gives
\[\sum_{l=0}^{k} a_{i-l}(z_l) = \binom{n}{2k} a_i(z) + \sum_{l=1}^{k} a_{i-l}(b_l(z)) = \binom{n-i}{2k} a_i(z) + \sum_{j=1}^{2k} \binom{n-i+j}{2k} Sq^j(a_{i-j}(z)). \tag{5} \]

Now suppose that $k \leq i/2$ is such that
\[\binom{n-i}{2k} \neq \binom{n}{2k}. \]

For instance, this is true if $2k$ is the largest power of 2 dividing i. (Recall that a binomial coefficient mod 2 is the product of the binomial coefficients taken for each pair of binary digits, cf. [5, Lemma I.2.6].) Then Eq. (5) can be solved for $a_i(z)$ and shows that $a_i(z)$ can be expressed in terms of repeated Steenrod squares of z.

For odd i, a similar (but simpler) reasoning based on commutativity with respect to Sq^1 gives $a_i(z) = Sq^1(a_{i-1}(z))$, in particular $a_1(z) = Sq^1(z)$.

Now that all $a_i(z)$ are known, we apply Sq^{2k} for any k. Using the same notation as above, we have $Sq^{2k}(x) = p(Sq^{2k}(\sigma(x))) = x_k$. Comparing coefficients as before gives a formula for $b_l(z)$ similar to Eq. (4), but where the summation index j starts at $l-n$ if $l > n$. Still, the equations can be recursively solved for z_l. Hence,
\[\kappa(Sq(x)) = \kappa(x_0) + \cdots + \kappa(x_n) = b_0(z) + \cdots + b_n(z) = b(z). \] \qed

In principle, the preceding proof could be used to determine the coefficients of the conjugation equation completely (as well as those of $Sq^i(\sigma(x))$ for any k). We will take a less tedious approach which relies on the fact that suitable products of infinite-dimensional real projective space can “detect” Steenrod squares, cf. [5, Corollary I.3.3].

Fact 2.2. The restricted evaluation map $\mathcal{A}_{\leq n} \to H^*(\mathbb{RP}^\infty)^n$, $a \mapsto a(w \times \cdots \times w)$ is injective for any $n \in \mathbb{N}$.

Proof of Theorem 1.1. We want to show $r_G(\sigma(x)) = SQ(\kappa(x))$ for all cohomology classes of all conjugation spaces.

By Lemma 2.1 and Fact 2.2, it suffices to do so for $X = (\mathbb{CP}^\infty)^n$ (which is a conjugation space by [2, Proposition 4.5]) and x, the n-fold cross product of the generator v because $X^r = (\mathbb{RP}^\infty)^n$ and $\kappa(x) = w \times \cdots \times w$ in this case. For $n = 1$ the identity is true since we already know a_1. The general case reduces to the case $n = 1$ because of the multiplicativity of the maps κ, σ, r_G and SQ: writing $v_1 \in H^2(X)$ for the pull-back of v induced by the projection $X \to \mathbb{CP}^\infty$ onto the i-th factor, we get
\[r_G(\sigma(x)) = r_G(\sigma(v_1 \cdots v_n)) = r_G(\sigma(v_1)) \cdots r_G(\sigma(v_n)) = SQ(\kappa(v_1)) \cdots SQ(\kappa(v_n)) = SQ(\kappa(v_1 \cdots v_n)) = SQ(\kappa(x)). \] \qed

Proof of Corollary 1.2. We have for $x \in H^{2n}(X)$
\[r(x) = r(p(\sigma(x))) = p(r_G(\sigma(x))) = p(Sq^2(\kappa(x))) = \kappa(x)^2. \] \qed

Proof of Theorem 1.3. As in the proof of Theorem 1.1, it suffices to show the claimed identity for $X = (\mathbb{CP}^\infty)^n$ and $x = v \times \cdots \times v$. Again, the general case can be reduced to $n = 1$, where we find
\[\kappa(Sq(v)) = \kappa(v^2) = \kappa(v) + \kappa(v)^2 = Sq(\kappa(v)). \] \qed
3. Remarks

Let X be a non-singular complex projective variety defined over the reals such that its real locus X^τ is non-empty. In what follows, all algebraic cycles in X are understood to be defined over the reals. Borel and Haefliger have shown that if $H_*(X)$ and $H_*(X^\tau)$ are generated by algebraic cycles, then the restriction λ of cycles in X to their real locus induces a degree-halving isomorphism $H_2(X) \to H_2(X^\tau)$ respecting intersection products [1, §5.15]. They also show that if $H_*(X^\tau)$ is generated by algebraic cycles and $x \in H^*(X)$ is Poincaré dual to a linear combination of non-singular subvarieties, then the identity in Theorem 1.3 holds, and they ask whether it holds more generally [1, §5.17].

Krasnov has proved that for a variety X as above, Theorem 1.1 holds for cohomology classes Poincaré dual to algebraic cycles, where κ is the Poincaré transpose of λ and σ the canonical section [3, Theorem 4.2]. This implies that if $H_*(X)$ is generated by algebraic cycles, then so is $H_*(X^\tau)$ [4, Theorem 0.1]. Moreover, X is a conjugation spaces in the sense of [2].

In a topological framework van Hamel has recently shown that certain topological manifolds with involutions are conjugation spaces [6, Theorem]. The necessary assumptions are formulated in terms of topological cycles.

The following simple example shows that in general the existence of a degree-halving multiplicative isomorphism $\kappa : H^*(X) \to H^*(X^\tau)$ by itself does not imply that (X, τ) is a conjugation space.

Example 1. Let $X = S^2 \times S^4$ be equipped with the componentwise involution τ which is the identity for S^2 and for S^4 has fixed point set S^1. So $X^\tau = S^2 \times S^1$. Clearly there is a degree-halving multiplicative isomorphism $\kappa : H^*(X) \to H^*(X^\tau)$. It is easy to check there is also a multiplicative section $\sigma : H^*(X) \to H^*_G(X)$. But (X, τ) is not a conjugation space: the restriction map

$$r_G : H^n_G(S^2 \times S^4) \cong H^n(S^2 \times S^4) \otimes \mathbb{F}_2[u] \to H^n(S^2 \times S^1) \otimes \mathbb{F}_2[u]$$

is given by $s_2 \otimes 1 \mapsto s_2 \otimes 1$ and $s_4 \otimes 1 \mapsto s_1 \otimes u^3$, where $s_n \in H^n(S^n)$ denotes the generator. Hence the conjugation equation does not hold. Of course, $S^2 \times S^4$ with the different componentwise involution $\tilde{\tau}$ which has $S^1 \subset S^2$ and $S^2 \subset S^4$ as fixed point sets (and hence $X^{\tilde{\tau}} = S^1 \times S^2 \cong X^\tau$) is a conjugation space.

Acknowledgements

We want to thank the referee for his valuable comments and suggestions.

References

[1] A. Borel, A. Haefliger, La classe d’homologie fondamentale d’un espace analytique, Bull. Soc. Math. France 89 (1961) 461–513.
[2] J.-C. Hausmann, T. Holm, V. Puppe, Conjugation spaces, Alg. Geom. Topology 5 (2005) 923–964.
[3] V.A. Krasnov, On equivariant Grothendieck cohomology of a real algebraic variety, and its applications, Russian Acad. Sci. Izv. Math. 44 (1994) 461–477.
[4] V.A. Krasnov, Real algebraically maximal varieties, Math. Notes 73 (2003) 806–812.
[5] N.E. Steenrod, Cohomology Operations, Princeton University Press, Princeton, NJ, 1962.
[6] J. van Hamel, Geometric cohomology frames on Hausmann–Holm–Puppe conjugation spaces, math.AT/0509498, 2005.