Ethyl 2-[(E)-{2,4-dimethoxy-6-[2-(4-methoxyphenyl)ethenyl]benzylidene}amino]oxy]acetate

Jiha Sung*

Department of Applied Chemistry, Dongduk Women’s University, Seoul 136-714, Republic of Korea. *Correspondence e-mail: dddklab@gmail.com

In the title compound, C_{22}H_{25}NO_{6}, the C≡C double bond linking the benzene rings adopts an E configuration and the dihedral angle between the rings is 47.1 (2)°. The oxime unit contains a C≡N double bond, which also has an E configuration. In the crystal, pairs of C−H⋯N hydrogen bonds generate inversion dimers and weak C−H⋯O interactions link the dimers into chains propagating along the b-axis direction.

Structure description

A recent review has demonstrated that chemically modified resveratrol derivatives have diverse biological activities (Li et al., 2019). Oxime esters are one of the most important pharmacophores in a large number of bioactive compounds (Vessally et al., 2016). As part of our studies in this area, O-methylated resveralol aldehyde (Ge et al., 2013) was treated with hydroxylamine to give the corresponding oxime analogue, which was reacted with ethyl bromoacetate to provide the title resveratrol-oxime ester compound.

The molecular structure of the title compound, C_{22}H_{25}NO_{6}, is shown in Fig. 1. The benzene rings (C1–C6 and C10–C15) are connected by the C8≡C9 double bond, which has an E-configuration [torsion angle of 173.69 (12)° for C3—C8—C9—C10]. The dihedral angle formed by benzene rings is 47.1 (2)°. The C17≡N1 imine double bond in the oxime unit also adopts an E configuration, which is defined by a torsion angle of 178.3 (1)° for C4—C17—N1—O3. There are three methoxy groups attached to carbon atoms C1, C5 and C13 in the benzene rings: those at the meta positions (C1, C5) are essentially co-planar with their attached benzene rings [C6—C1—O1—C7 = −0.2 (2)° and C6—C5—O6—C22 = 3.9 (2)°] whereas the methoxy group at the para position (C13) is slightly twisted from the corresponding ring plane [C12—C13—O2—C16 = 8.9 (2)°]. In the crystal, pairs of C22—H22⋯N1 hydrogen bonds generate inversion dimers (Table 1,
Synthesis and crystallization

A mixture of E-2,4-dimethoxy-6-(4-methoxystyryl)benzaldehyde (298 mg, 1 mmol; Ge *et al.*, 2013) and hydroxylamine hydrochloride (69 mg, 1 mmol) in 15 ml of ethanol–water (1:1) was refluxed for 4 h. After completion of reaction, the mixture was cooled to room temperature to give the corresponding oxime derivative (86%, m.p. = 150–152°C), which was used for the next reaction. To a mixture of the oxime derivative (156 mg, 0.5 mmol) and potassium carbonate (276 mg, 2 mmol) in 10 ml of DMF, 1.2 equivalents of ethyl bromoacetate (100 mg, 0.6 mmol) were added and heated for 5 h at 60°C. After completion of the reaction, the reaction mixture was poured into crushed ice–water to form a precipitate. The resulting solid was separated by filtration and was washed with ethyl acetate. Recrystallization of the solid from ethyl acetate solution gave colourless blocks of the title compound.

Table 1

Hydrogen-bond geometry (Å, °).
D—H···A
C22—H22/C···N1i
C14—H14···O5ii

Symmetry codes: (i) −x + 1, −y, −z + 2; (ii) −x + 1/2, y + 1/2, −z + 1/2

Table 2

Experimental details.
Crystal data
Mw
Crystal system, space group
Temperature (K)
a, b, c (Å)
V (Å³)
Z
Radiation type
μ (mm⁻¹)
Crystal size (mm)
Data collection
No. of measured, independent and observed [I > 2σ(I)] reflections
Rint
wR2 (F² > 2σ(F²))
No. of reflections
No. of parameters
H-atoms treatment
Δρmax, Δρmin (e Å⁻³)

Computer programs: APEX2 and SAINT (Bruker, 2012), SHELXS and SHELXTL (Sheldrick, 2008), SHELXL2014 (Sheldrick, 2015) and pubICIF (Westrip, 2010).

The next reaction. To a mixture of the oxime derivative (156 mg, 0.5 mmol) and potassium carbonate (276 mg, 2 mmol) in 10 ml of DMF, 1.2 equivalents of ethyl bromoacetate (100 mg, 0.6 mmol) were added and heated for 5 h at 60°C. After completion of the reaction, the reaction mixture was poured into crushed ice–water to form a precipitate. The resulting solid was separated by filtration and was washed with ethyl acetate. Recrystallization of the solid from ethyl acetate solution gave colourless blocks of the title compound.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2.

Funding information

This work was supported by a Dongduk Women’s University grant.

References

Bruker (2012). APEX2, SAINT and SADABS, Bruker AXS Inc. Madison, Wisconsin, USA.
Go, X.-L., Guan, Q.-X., Deng, S.-S. & Ruan, B.-F. (2013). *Acta Cryst. E69*, o629.

Li, Q.-S., Li, Y., Deora, G. S. & Ruan, B. F. (2019). *Mini Rev. Med. Chem.* 19, 809–825.

Sheldrick, G. M. (2008). *Acta Cryst. A64*, 112–122.

Sheldrick, G. M. (2015). *Acta Cryst. C71*, 3–8.

Vessally, E., Saeidian, H., Hosseinian, A., Edjlali, L. & Bekhradnia, A. A. (2016). *Curr. Org. Chem.* 21, 249–271.

Westrip, S. P. (2010). *J. Appl. Cryst.* 43, 920–925.
full crystallographic data

IUCrData (2021). 6, x210950 [https://doi.org/10.1107/S2414314621009500]

Ethyl 2-[(E)-{(2,4-dimethoxy-6-[2-(4-methoxyphenyl)ethenyl]benzylidene)amino}oxy]acetate

Jiha Sung

Ethyl 2-[(E)-{(2,4-dimethoxy-6-[2-(4-methoxyphenyl)ethenyl]benzylidene)amino}oxy]acetate

Crystal data

Symbol	Value
C₂₂H₂₅NO₆	
Mr	399.43
Monoclinic	P2₁/n Hall symbol: -P 2yn
a	11.3656 (9) Å
b	7.0636 (5) Å
c	26.035 (2) Å
β	100.148 (3)°
V	2057.4 (3) Å³
Z	4

Data collection

Instrument
PHOTON 100 CMOS diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
ϕ and ω scans
72604 measured reflections
5157 independent reflections

Data collection
4367 reflections with I > 2σ(I)
Rint = 0.052
θmax = 28.4°, θmin = 2.1°
h = -15→15, k = -9→9, l = -34→34

Refinement

Refinement on F²
Least-squares matrix: full
R(F² > 2σ(F²)) = 0.046
wR(F²) = 0.133
S = 1.06
5157 reflections
266 parameters
0 restraints
Primary atom site location: structure-invariant direct methods
Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H-atom parameters constrained
w = 1/[σ²(Fo)² + (0.0616P)² + 0.781P]
where P = (Fo² + 2Fo²)/3
(Δσ)max = 0.001
Δρmax = 0.32 e Å⁻³
Δρmin = -0.18 e Å⁻³

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F² against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F², conventional R-factors R are based on F, with F set to zero for negative F². The threshold expression of F² > 2sigma(F²) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F² are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

x	y	z	Uiso*/Ueq			
C1	0.24155 (11)	0.2768 (2)	0.96981 (5)	0.0339 (3)		
C2	0.27638 (11)	0.2914 (2)	0.92163 (5)	0.0330 (3)		
H2	0.2175	0.3046	0.8911	0.040*		
C3	0.39681 (11)	0.28708 (17)	0.91753 (5)	0.0289 (2)		
C4	0.48435 (11)	0.26856 (17)	0.96321 (5)	0.0277 (2)		
C5	0.44554 (11)	0.25016 (17)	1.01146 (5)	0.0292 (3)		
C6	0.32511 (12)	0.25393 (19)	1.01513 (5)	0.0331 (3)		
H6	0.3005	0.2411	1.0480	0.040*		
O1	0.12111 (9)	0.28900 (18)	0.96906 (4)	0.0448 (3)		
C7	0.08045 (14)	0.2768 (3)	1.01766 (7)	0.0531 (4)		
H7A	0.1001	0.1517	1.0331	0.080*		
H7B	−0.0063	0.2954	1.1020	0.080*		
C8	0.42894 (11)	0.31089 (18)	0.86556 (5)	0.0300 (3)		
H8	0.5016	0.3741	0.8633	0.036*		
C9	0.36217 (12)	0.24905 (18)	0.82140 (5)	0.0318 (3)		
H9	0.2942	0.1749	0.8247	0.038*		
C10	0.38336 (11)	0.28418 (17)	0.76843 (5)	0.0386 (2)		
C11	0.31500 (12)	0.18938 (19)	0.72667 (5)	0.0345 (3)		
H11	0.2584	0.0980	0.7335	0.041*		
C12	0.32681 (12)	0.2241 (2)	0.67544 (5)	0.0349 (3)		
H12	0.2800	0.1555	0.6478	0.042*		
C13	0.40742 (11)	0.35951 (19)	0.66487 (5)	0.0316 (3)		
C14	0.47781 (12)	0.4548 (2)	0.70595 (5)	0.0353 (3)		
H14	0.5341	0.5465	0.6989	0.042*		
C15	0.46637 (11)	0.41688 (19)	0.75671 (5)	0.0326 (3)		
H15	0.5158	0.4820	0.7843	0.039*		
O2	0.42356 (9)	0.40901 (17)	0.61580 (4)	0.0428 (3)		
C16	0.34007 (14)	0.3337 (2)	0.57350 (5)	0.0425 (3)		
H16A	0.3487	0.1958	0.5726	0.064*		
H16B	0.3554	0.3877	0.5406	0.064*		
H16C	0.2587	0.3658	0.5781	0.064*		
C17	0.61356 (11)	0.27478 (18)	0.96420 (5)	0.0303 (3)		
H17	0.6643	0.3104	0.9957	0.036*		
N1	0.66105 (10)	0.23457 (17)	0.92473 (5)	0.0345 (3)		
O3	0.78758 (8)	0.25945 (16)	0.93779 (4)	0.0390 (2)		
C18	0.83580 (12)	0.2301 (2)	0.89191 (5)	0.0375 (3)		
H18A	0.8035	0.1106	0.8752	0.045*		
H18B	0.9236	0.2164	0.9014	0.045*		
Atom	U^11	U^22	U^33	U^12	U^13	U^23
-------	-------	-------	-------	-------	-------	-------
C1	0.0266 (6)	0.0382 (7)	0.0379 (7)	-0.0006 (5)	0.0081 (5)	-0.0013 (5)
C2	0.0281 (6)	0.0381 (7)	0.0321 (6)	-0.0002 (5)	0.0032 (5)	0.0024 (5)
C3	0.0298 (6)	0.0278 (6)	0.0294 (6)	-0.0010 (4)	0.0064 (5)	0.0012 (4)
C4	0.0272 (6)	0.0263 (5)	0.0301 (6)	-0.0011 (4)	0.0064 (5)	0.0013 (4)
C5	0.0289 (6)	0.0291 (6)	0.0292 (6)	-0.0016 (5)	0.0043 (5)	0.0006 (4)
C6	0.0322 (6)	0.0374 (7)	0.0311 (6)	-0.0022 (5)	0.0094 (5)	-0.0001 (5)
O1	0.0264 (5)	0.0684 (7)	0.0408 (6)	0.0001 (5)	0.0090 (4)	-0.0012 (5)
C7	0.0330 (7)	0.0821 (13)	0.0477 (9)	-0.0010 (7)	0.0162 (6)	-0.0021 (8)
C8	0.0271 (6)	0.0304 (6)	0.0326 (6)	0.0004 (5)	0.0061 (5)	0.0048 (5)
C9	0.0303 (6)	0.0316 (6)	0.0341 (6)	-0.0029 (5)	0.0074 (5)	0.0039 (5)
C10	0.0268 (6)	0.0281 (6)	0.0309 (6)	0.0015 (4)	0.0045 (5)	0.0018 (5)
C11	0.0333 (6)	0.0345 (6)	0.0358 (7)	-0.0100 (5)	0.0061 (5)	-0.0003 (5)
C12	0.0334 (6)	0.0379 (7)	0.0321 (6)	-0.0081 (5)	0.0022 (5)	-0.0044 (5)
C13	0.0273 (6)	0.0373 (7)	0.0304 (6)	-0.0002 (5)	0.0057 (5)	0.0016 (5)
C14	0.0312 (6)	0.0397 (7)	0.0350 (6)	-0.0109 (5)	0.0054 (5)	0.0017 (5)
C15	0.0297 (6)	0.0348 (6)	0.0322 (6)	-0.0067 (5)	0.0019 (5)	-0.0017 (5)
O2	0.0401 (5)	0.0590 (7)	0.0291 (5)	-0.0104 (5)	0.0056 (4)	0.0025 (4)
C16	0.0421 (8)	0.0555 (9)	0.0295 (6)	-0.0012 (7)	0.0051 (5)	-0.0033 (6)
C17	0.0284 (6)	0.0322 (6)	0.0300 (6)	-0.0013 (5)	0.0047 (5)	0.0033 (5)
N1	0.0249 (5)	0.0428 (6)	0.0359 (6)	-0.0018 (4)	0.0051 (4)	-0.0024 (5)
O3	0.0242 (4)	0.0627 (7)	0.0298 (5)	-0.0004 (4)	0.0043 (4)	0.0036 (4)
C18	0.0289 (6)	0.0509 (8)	0.0338 (7)	0.0070 (6)	0.0088 (5)	0.0046 (6)
C19	0.0295 (6)	0.0409 (7)	0.0321 (6)	0.0007 (5)	0.0077 (5)	-0.0026 (5)
O4	0.0706 (8)	0.0481 (6)	0.0457 (6)	0.0193 (6)	0.0240 (6)	0.0018 (5)
O5	0.0441 (5)	0.0364 (5)	0.0340 (5)	0.0062 (4)	0.0152 (4)	0.0023 (4)
C20	0.0522 (8)	0.0357 (7)	0.0373 (7)	0.0025 (6)	0.0135 (6)	0.0047 (6)
C21	0.0599 (10)	0.0449 (8)	0.0402 (7)	-0.0093 (7)	0.0206 (7)	0.0001 (6)
O6	0.0310 (5)	0.0507 (6)	0.0272 (4)	-0.0017 (4)	0.0044 (4)	0.0043 (4)
C22	0.0400 (7)	0.0465 (8)	0.0268 (6)	-0.0043 (6)	0.0055 (5)	-0.0001 (5)
Geometric parameters (Å, °)

Bond/Angle	Length/Distance/Angle		
C1—O1	1.3683 (16)		
C1—C2	1.3842 (18)		
C1—C6	1.3876 (19)		
C2—C3	1.3919 (17)		
C2—H2	0.9500		
C3—C4	1.4158 (17)		
C3—C8	1.4719 (17)		
C4—C5	1.4089 (17)		
C4—C17	1.4649 (17)		
C5—O6	1.3628 (15)		
C5—C6	1.3890 (18)		
C6—H6	0.9500		
O1—C7	1.4242 (18)		
C7—H7A	0.9800		
C7—H7B	0.9800		
C7—H7C	0.9800		
C8—C9	1.3345 (18)		
C8—H8	0.9500		
C9—C10	1.4623 (17)		
C9—H9	0.9500		
C10—C11	1.3917 (18)		
C10—C15	1.4012 (17)		
C11—C12	1.3857 (18)		
C11—H11	0.9500		
C12—C13	1.3853 (18)		
C12—H12	0.9500		
C13—O2	1.3676 (15)		
C13—C14	1.3913 (18)		
O1—C1—C2	115.30 (12)		
O1—C1—C6	123.55 (12)		
C2—C1—C6	121.14 (12)		
C1—C2—C3	120.65 (12)		
C1—C2—H2	119.7		
C3—C2—H2	119.7		
C2—C3—C4	119.52 (11)		
C2—C3—C8	118.33 (11)		
C4—C3—C8	122.09 (11)		
C5—C4—C3	118.25 (11)		
C5—C4—C17	117.23 (11)		
C3—C4—C17	124.47 (11)		
O6—C5—C6	122.35 (11)		
O6—C5—C4	115.86 (11)		
C6—C5—C4	121.79 (12)		
C1—C6—C5	118.61 (12)		
C1—C6—H6	120.7		
C14—C15	1.3768 (18)		
C14—H14	0.9500		
C15—H15	0.9500		
O2—C16	1.4242 (17)		
C16—H16A	0.9800		
C16—H16B	0.9800		
C16—H16C	0.9800		
C17—N1	1.2742 (17)		
C17—H17	0.9500		
N1—O3	1.4291 (14)		
O3—C18	1.4144 (16)		
C18—C19	1.515 (2)		
C18—H18A	0.9900		
C18—H18B	0.9900		
C19—O4	1.1962 (17)		
C19—O5	1.3362 (15)		
O5—C20	1.4565 (17)		
C20—C21	1.498 (2)		
C20—H20A	0.9900		
C20—H20B	0.9900		
C21—H21A	0.9800		
C21—H21B	0.9800		
C21—H21C	0.9800		
O6—C22	1.4302 (15)		
C22—H22A	0.9800		
C22—H22B	0.9800		
C22—H22C	0.9800		
C13—C14	119.8		
C14—C15—C10	121.36 (12)		
C14—C15—H15	119.3		
C10—C15—H15	119.3		
C13—O2—C16	116.50 (11)		
O2—C16—H16A	109.5		
O2—C16—H16B	109.5		
H16A—C16—H16B	109.5		
O2—C16—H16C	109.5		
H16A—C16—H16C	109.5		
N1—C17—C4	123.02 (12)		
N1—C17—H17	118.5		
C4—C17—H17	118.5		
C17—N1—O3	109.39 (11)		
C18—O3—N1	107.72 (10)		
C18—C19—O4	112.50 (11)		
Bond/Angle/Distance	Value 1	Value 2	Value 3
--------------------	---------	---------	---------
C5—C6—H6	120.7	O3—C18—H18A	109.1
C1—O1—C7	117.64	C19—C18—H18A	109.1
O1—C7—H7A	109.5	O3—C18—H18B	109.1
O1—C7—H7B	109.5	C19—C18—H18B	109.1
H7A—C7—H7B	109.5	H18A—C18—H18B	107.8
O1—C7—H7C	109.5	O4—C19—O5	124.44
H7A—C7—H7C	109.5	O4—C19—C18	125.86
H7B—C7—H7C	109.5	O5—C19—C18	109.70
C9—C8—C3	123.98	C19—O5—C20	116.35
C9—C8—H8	118.0	O5—C20—C21	108.06
C3—C8—H8	118.0	O5—C20—H20A	110.1
C8—C9—C10	126.42	C21—C20—H20A	110.1
C8—C9—H9	116.8	O5—C20—H20B	110.1
C10—C9—H9	116.8	C21—C20—H20B	110.1
C11—C10—C15	117.15	H20A—C20—H20B	108.4
C11—C10—C9	119.55	C20—C21—H21A	109.5
C15—C10—C9	123.24	C20—C21—H21B	109.5
C12—C11—C10	122.11	H21A—C21—H21B	109.5
C12—C11—H11	118.9	C20—C21—H21C	109.5
C10—C11—H11	118.9	H21A—C21—H21C	109.5
C13—C12—C11	119.53	H21B—C21—H21C	109.5
C13—C12—H12	120.2	C5—O6—C22	117.86
C11—C12—H12	120.2	O6—C22—H22A	109.5
O2—C13—C12	124.35	O6—C22—H22B	109.5
C12—C13—C14	116.15	O6—C22—H22B	109.5
C15—C14—C13	120.32	O6—C22—H22C	109.5
C15—C14—H14	119.8	O6—C22—H22C	109.5
O1—C1—C2—C3	177.99	C9—C10—C11—C12	176.62
C6—C1—C2—C3	−1.2	C10—C11—C12—C13	−1.2
C1—C2—C3—C4	−0.4	C11—C12—C13—O2	−177.91
C1—C2—C3—C8	−177.58	C11—C12—C13—C14	1.9
C2—C3—C4—C5	1.62	O2—C13—C14—C15	178.88
C8—C3—C4—C5	178.74	C12—C13—C14—C15	−0.9
C2—C3—C4—C17	−175.79	C13—C14—C15—C10	−0.8
C8—C3—C4—C17	1.32	C11—C10—C15—C14	1.4
C3—C4—C5—O6	178.79	C9—C10—C15—C14	−175.53
C17—C4—C5—O6	−3.61	C12—C13—O2—C16	8.9
C3—C4—C5—C6	−1.41	C14—C13—O2—C16	−170.87
C17—C4—C5—C6	176.20	C5—C4—C17—N1	158.35
O1—C1—C6—C5	−177.70	C3—C4—C17—N1	−24.2
C2—C1—C6—C5	1.4	C4—C17—N1—O3	178.31
O6—C5—C6—C1	179.69	C17—N1—O3—C18	−174.86
C4—C5—C6—C1	−0.1	N1—O3—C18—C19	72.08
C2—C1—O1—C7	−179.36	O3—C18—C19—O4	5.7
C6—C1—O1—C7	−0.2	O3—C18—C19—O5	−174.87
C2—C3—C8—C9	−33.37	O4—C19—O5—C20	4.5
C4—C3—C8—C9 149.49 (13) C18—C19—O5—C20 −174.88 (12)
C3—C8—C9—C10 173.69 (12) C19—O5—C20—C21 176.76 (12)
C8—C9—C10—C11 171.46 (13) C6—C5—O6—C22 3.90 (18)
C8—C9—C10—C15 −11.6 (2) C4—C5—O6—C22 −176.29 (11)
C15—C10—C11—C12 −0.5 (2)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D···A	D—H···A
C22—H22···N1i	0.98	2.61	3.5633 (19)	166
C14—H14···O5ii	0.95	2.55	3.4834 (16)	166

Symmetry codes: (i) −x+1, −y, −z+2; (ii) −x+3/2, y+1/2, −z+3/2.