Learning optical flow from still images

Filippo Aleotti* Matteo Poggi* Stefano Mattoccia
Department of Computer Science and Engineering (DISI)
University of Bologna, Italy
{filippo.aleotti2, m.poggi, stefano.mattoccia}@unibo.it

Abstract

This paper deals with the scarcity of data for training optical flow networks, highlighting the limitations of existing sources such as labeled synthetic datasets or unlabeled real videos. Specifically, we introduce a framework to generate accurate ground-truth optical flow annotations quickly and in large amounts from any readily available single real picture. Given an image, we use an off-the-shelf monocular depth estimation network to build a plausible point cloud for the observed scene. Then, we virtually move the camera in the reconstructed environment with known motion vectors and rotation angles, allowing us to synthesize both a novel view and the corresponding optical flow field connecting each pixel in the input image to the one in the new frame. When trained with our data, state-of-the-art optical flow networks achieve superior generalization to unseen real data compared to the same models trained either on annotated synthetic datasets or unlabeled videos, and better specialization if combined with synthetic images.

1. Introduction

The problem of estimating per-pixel motion between video frames, also known as optical flow [50], has a long history in computer vision and remains far from being solved. On top of it, several higher-level tasks such as tracking, action recognition and more are typically performed. Among the main challenges for optical flow systems, there are occlusions, motion blur and lack of texture.

Deep learning has played a crucial role in the latest years of research on this topic, at first to learn a data term [1, 65] and then to directly infer the dense optical flow field in end-to-end manner [7, 20, 51, 52, 18, 19, 17, 53], currently representing the state-of-the-art in this field. This achievement has been made possible by the availability of extensive training data labeled with ground-truth optical flow fields, most of them obtained through computer graphics [5, 7, 20]. Unfortunately, these large datasets alone are not enough to train a neural network for its deployment in real environments, because of the well-known domain shift occurring when moving from synthetic images to real ones. A notable example is represented by the KITTI optical flow benchmarks [10, 35], over which deep networks that have been trained only on synthetic data perform poorly, as witnessed by recent works [20, 51, 53]. This problem is known in literature and has been faced for other tasks such as semantic segmentation [15, 39, 43, 55] or stereo depth estimation [56, 57, 68, 61]. To fully restore a level of accuracy comparable to the one achieved on synthetic data, fine-tuning on imagery similar to the testing domain is usually required. Anyway, obtaining ground-truth optical flow labels for real images is particularly challenging because there exists virtually no sensor capable of acquiring ground-truth correspondences between points in challenging real-world scenes [37]. A viable strategy consists into passing through depth sensors (e.g., LiDARs), indeed optical flow fields can be obtained by projecting the 3D points from a given frame into the next frame [10], although it cannot take into account independently moving objects, for which manual post-processing or annotation remains necessary [55, 37]. The literature is rich of self-supervised strate-
gies [34, 30, 28, 23] from unlabeled videos to soften this constraint, but they mostly excel when deployed on data similar to those observed for training, a scenario unlikely to occur in most real applications.

Given both the aforementioned domain shift issue and the lack of real imagery annotated for optical flow, we propose an alternative scheme to distill proxy labels from real images for effective training of optical flow estimation networks. Following the observation that depth is required to obtain dense matching across views through reprojection [10, 35, 37], we use a monocular depth estimation network to revert the annotation process: given a single image and its estimated depth, we suppose a virtual motion of the camera to compute a dense optical flow field and, consequently, synthesize a new virtual image accordingly. For instance, in Figure 1 from a) pictures of a person and a cat, we estimate b) monocular depth and generate c) a flow field used to synthesize d) a novel view. We dub this process Depthstillation, and any single image is eligible for producing optical flow annotations through it.

Experiments carried out on synthetic (Sintel) and real (KITTI 2012 and 2015) datasets support our main claims:

- We show that it is possible to train an optical flow network on a collection of unrelated images, e.g. single pictures readily available online
- Using real images through our technique allows us to train networks that better transfer to real data than their counterparts trained on synthetic images, while fine-tuning these latter on depthstilled frames and then on real data improves specialization
- Networks trained on our depthstilled frames and flow labels better transfer to new real datasets than state-of-the-art self-supervised strategies using real videos [23]

2. Related Work

In this section, we review the literature relevant to the research topics touched by our work.

Optical Flow - Energy Minimization models. For a long time, optical flow has been cast as a continuous optimization problem through variational frameworks [16, 3, 67]. These approaches involve a data term coupled with regularization terms, and improvements to the former [4, 63] or the latter [44] represented the primary strategy to increase optical flow accuracy for years [50]. More recent strategies consider optical flow as a discrete optimization problem, despite managing the sizeable 2D search space required to determine corresponding pixels between images [36, 6, 65] is challenging. Until a few years ago [7], early attempts to improve optical flow with deep networks mainly focused on learning more robust data terms by training CNNs to match patches across images [63, 1, 65].

End-to-end Optical Flow. FlowNet [7] is the first end-to-end deep architecture proposed for optical flow. Concurrently, to satisfy the massive amount of training data required, synthetic datasets with dense optical flow ground-truth labels were made available [7, 33]. Eventually, other architectures [20, 51, 52, 18, 19, 17, 53] further improved accuracy on popular synthetic [5, 33] and real [35, 10] benchmarks, with RAFT [53] representing state-of-the-art.

For most existing networks, generalization remains a cause of concerns, in particular when moving from synthetic [7, 33] to real images [10, 35]. With our work, we show how to generate plausible training samples from real, unrelated images allowing for superior generalization.

Self-supervised Optical Flow. Being ground-truths hard to obtain for real data, self-supervised strategies allow to relax this requirement [21, 46, 34]. More recent advances introduced teaching-student frameworks [29], occlusion generation [30] and transformed data from augmentation [28]. Jonschkowski et al. [23] highlighted the key components to achieve state-of-the-art results in this setting.

Most of these approaches train on unlabeled videos (e.g., from the KITTI 2015 multiview dataset [35]) from the same domain where the evaluation is carried out (e.g., the KITTI 2015 optical flow benchmark). In contrast, in our work, we relax both constraints of having i) organized video collections and ii) taken in similar domains, achieving superior generalization compared to self-supervised networks.

Single Image Depth Estimation. In parallel to supervised approaches [64, 25, 9], many works focused on self-supervised strategies, aimed at replacing ground-truth labels with collections of images, either relying on stereo pairs [11, 58, 62] or monocular videos [69, 12, 13, 59]. To improve generalization, recent works [26, 45] exploited supervision from a large variety of images and auxiliary strategies such as Multi-View Stereo methods [48].

Shared by all these methods is the assumption of static scenes, required for reprojection across multiple views. In this paper, we show how a network trained according to such a strategy allows for generating, from still images, training data that well model motions, to train optical flow networks that are effective in presence of moving objects.

Novel View Synthesis. View synthesis aims at creating new images observed from arbitrary viewpoints starting from a given scene. It is gaining an ever increasing interest in computer vision [66, 38, 8, 60, 47], and it is a fundamental step to address many other tasks, such as video interpolation [22, 2, 40] or 3D effects [49, 70, 41].

Conversely, we focus on creating image pairs and corresponding ground-truth pixel displacements rather than visually pleasant videos. While some of the techniques mentioned above rely on pre-trained flow networks [40], our goal is to generate data to train these latter.

Data distillation through depth estimation. Strictly re-
Overview of the proposed depthstillation pipeline. Given a single image I_0 and its estimated depth map D_0, we place the camera in c_0 and virtually move it (red arrow) towards a new viewpoint c_1. From the depth and virtual ego-motion, we obtain optical flow labels $F_{0 \rightarrow 1}$ and a novel image I_1 through forward warping.

3. Depthstillation pipeline

In this section we illustrate our proposed framework to generate new virtual views I_1 from single images I_0, with corresponding dense optical flow ground-truth maps $F_{0 \rightarrow 1}$. An overview of our pipeline is shown in Figure 2.

Virtual camera motion engine. Given I_0, an off-the-shelf monocular depth network Φ is used to estimate its depth map D_0

$$D_0 = \Phi(I_0)$$

used to project pixels in I_0 to 3D space according to some plausible inverse intrinsic matrix K^{-1}. In case the network estimates inverse depth, we bring it to the depth domain first. D_0 usually shows blurred edges \cite{61, 49}, causing flying pixels in the 3D space that can be easily sharpened via edge-preserving filters \cite{32}.

We now assume the camera used to frame image I_0 to be at 3D location c_0 and apply an arbitrary virtual motion, moving it towards a new position c_1. To this aim, we generate a plausible rotation R_1 by sampling a random triplet of Euler angles and a plausible translation t_1 by sampling a random 3D vector. Then, we obtain the transformation matrix $T_{0 \rightarrow 1} = (R_1 | t_1)$ corresponding to such rotation. Thus, we can project our 3D points to the image space through K in order to obtain a new image I_1. This allows to obtain, for each pixel p_0 in I_0, the coordinates p_1 of its corresponding pixel in I_1 acquired from viewpoint c_1

$$p_1 \sim KT_{0 \rightarrow 1}D_0(p_0)K^{-1}p_0$$

and flow $F_{0 \rightarrow 1}$ is obtained as the difference between p_1 and p_0. We point out that $F_{0 \rightarrow 1}$ only models the virtual camera ego-motion, i.e. no object has moved independently. Finally, we obtain the new image I_1 through forward warping.

Forward warping suffers from two well-known problems \cite{61}, that are collisions (i.e., multiple pixels from I_0 being warped to the same location in I_1) and holes (i.e., pixels in I_1 over which no pixel from I_0 is projected). To handle collisions, we keep track of pixels p_1 having multiple projections p_0 in a binary collision mask \mathcal{M} (i.e., collisions are labeled as 1, other pixels as 0) and select, for each, the one having minimum depth according to camera in position c_1, i.e. the closest, to be displayed in I_1.

Hole filling. Artefacts introduced by holes are more subtle to be solved. Moreover, applying a 6DoF transformation to the camera plane vastly increases the chance of occurrence of holes compared to the case of 1D camera translations applied to distill stereo pairs \cite{61}. In particular, in case of larger camera motion/rotations some stretching artefacts occur on the foreground objects (and, occasionally, in the background as well) as shown in Figure 3 a). To remove these holes, we build a binary hole mask H as in Figure 3 b), where we label pixels in I_1 for which no pixel in I_0 is reprojecting on to with 0. Then, a simple inpainting strategy \cite{54} is usually sufficient to fill them, as reported in Figure 3 c) on the girl’s face. Unfortunately, this is not enough in the case of stretching artefacts occurring in a foreground object overlapping a background one. Indeed, in this case, it is very likely that the holes induced by the stretching of the foreground object are filled by pixels in the background. These pixels are not detected by H, causing the bleeding effect shown in Figure 3 c), where the hair merges with the background umbrella. Since most of these artefacts occur
We report more qualitative examples regarding the different
where the foreground-background bleeding does not occur.
with 0 in
\[H \]
only the
\[F \]
whose depth results lower after motion. Finally, we obtain
\(\mathcal{H} \) by multiplying
\(\mathcal{H} \) and \(\mathcal{P} \)
\[\mathcal{P} = (\mathcal{M}' == \mathcal{M}), \quad \mathcal{H} = \mathcal{H} \cdot \mathcal{P} \quad (3) \]

We can apply the inpainting algorithm to pixels labeled
with 0 in \(\mathcal{H}' \), shown in Figure 3 d), to obtain Figure 3 e),
where the foreground-background bleeding does not occur.
We report more qualitative examples regarding the different
masks in the supplementary material.

We point out how, in large dis-occluded area (i.e., in
the proximity of depth boundaries, as shown in Figure 3 on the
left of the person), the inpainting method produces blurred
content, as shown in Figure 3 c) and e). Despite these arte-
facts, our experiments will prove that hole filling improves
the accuracy of trained networks significantly. We report
in the supplementary material additional qualitative results
concerning the design choices discussed so far.

Independent motions. The pipeline sketched so far
models the optical flow field occurring between images ac-
quired in a static environment, i.e. consequence of the camera
motion, not taking into account possible independently
moving objects, very likely to occur in real contexts [35]. In
order to model more realistic simulations, we introduce the
possibility of applying different virtual motions to objects
extracted from the scene by leveraging an instance segmen-
tation network \(\mathcal{O} \) for extracting \(N \) objects \(\mathcal{M} \), \(i \in [1,N] \)
\[\mathcal{P} = \{ \mathcal{M}_i \}, i \in [1,N] \} = \mathcal{O}(\mathcal{I}_0) \quad (4) \]

Then, to simulate a motion of the object in the scene,
we randomly move the camera from \(c_0 \) towards a point
\(c_{\pi_i} \neq c_1 \) and its corresponding transformation
\(T_{0\rightarrow \pi_i} \) to be applied to object \(\mathcal{M}_i \). Then, we reproject pixels from \(\mathcal{I}_0 \)
on the image planes of the different cameras. Pixel coordina-
tes in \(\mathcal{I}_1 \) will be selected according to their belonging to
segmented objects or the background as
\[p_1 \sim \begin{cases} KT_{0\rightarrow1}D_0(p_0)K^{-1}p_0 & \text{if } p_0 \notin \Pi \\ KT_{0\rightarrow \pi_i}D_0(p_0)K^{-1}p_0 & \text{if } p_0 \in \Pi_i \end{cases} \quad (5) \]

We handle collisions as outlined before, keeping pixels
whose depth results lower after motion. Finally, we obtain
optical flow \(\mathcal{F}_{0\rightarrow1} \) and image \(\mathcal{I}_1 \) as aforementioned.

To be robust to noisy/false detections, e.g. in case of tiny
blobs accidentally labeled as objects, we rank the objects
according to their size, i.e. number of pixels, and keep in \(\Pi \)
only the \(n < N \) largest objects. Figure 4 shows two qual-
itative comparisons between images and flow distilled by
merely applying a virtual camera motion, a) and b), and
those obtained by segmenting the cat or the person in the
foreground and simulating an independent motion, c) and
d). Although our formulation simulates moving objects by
moving virtual cameras instead, we can notice how the final
effect on \(\mathcal{I}_1 \) and \(\mathcal{F}_{0\rightarrow1} \) is equivalent for our purposes.

We point out that, by increasing the number of moving
objects, collisions and holes increase. In particular, a higher
number of dis-occlusions might appear after applying in-
dependent motions, leading to blurry inpainted content, as
shown in Figure 4 c) on the top row, on the right of the cat.
Besides, shape boundaries may be inconsistent across depth
and segmentation predictions, afflicting the truthfulness of
the generated image and introducing artefacts (e.g., back-
ground pixels moved as part of the foreground). We will see
how, although helpful, this approach yields minor improve-
ments compared to the previous two steps performed in our
framework, that result crucial for depthstilling reliable
training data. Moreover, segmenting object instances re-
quires an additional network \(\mathcal{O} \) trained in a supervised man-
ner conversely to single-image depth estimation networks,
whereby an extensive literature of self/weakly-supervised
approaches exists [11, 12, 58, 62].

4. Experimental results

In this section, we describe the experimental setup used
to validate our depthstilling pipeline. The source code is
available at https://github.com/mattpoggi/depthstilling.

4.1. Training datasets

At first, we describe the datasets used to train the net-
works considered in our experiments.

Chairs (Ch). FlyingChairs [7] is a popular synthetic
dataset used to train optical flow models. It contains 22232
images of chairs moving according to 2D displacement vectors over random backgrounds sampled from Flickr.

Things (Th). The FlyingThings3D dataset [20] is a collection of 3D synthetic scenes belonging to the SceneFlow dataset [33] and contains a training split made of 19635 images. Differently from Chairs, objects move in the scene with more complex 3D motions. State-of-the-art networks usually train in sequence over Chairs and Things (Ch→Th).

COCO dataset. The COCO dataset [27] is a collection of single still images (it provides Z0 only) and ground-truth with labels for tasks such as object detection or panoptic segmentation, but lacks any depth or optical flow annotation. We sample images from the train2017 split, which contains 118288 pictures, to generate virtual images and optical flow maps. We dub *dCOCO* the training set obtained in such a manner.

DAVIS. The DAVIS dataset [42] provides high-resolution videos and it is widely used for video object segmentation. Since it does not provide optical flow ground-truth labels, we use all the 10581 images of the unsupervised 2019 challenge to generate dDAVIS and compare with the state-of-the-art in self-supervised optical flow [23].

4.2. Testing datasets

We describe here the testing imagery used to evaluate the networks trained on the datasets mentioned above. As metrics, we report the average End-Point Error (EPE) and two error rates, respectively the percentage of pixels with absolute error greater than 3 (>) or both absolute and relative errors greater than 3 and 5% respectively (FI), as defined in [35], on All pixels. In every experiment, we will highlight the best results in **bold** and *underline* the second-best among methods trained in fair conditions.

Sintel. Sintel [5] is a synthetic dataset with ground-truth optical flow maps. We use its training split, counting 1041 images for both Clean and Final passes, for evaluation.

KITTI. The KITTI dataset is a popular dataset for autonomous driving with sparse ground-truth values for both depth and optical flow tasks. Two versions exist, KITTI 2012 [10] counting 194 images framing static scenes and KITTI 2015 [35] made of 200 images framing moving objects, in both cases gathered by a car in motion.

4.3. Implementation Details

We describe next our pipeline and the networks used for depth estimation and learning optical flow.

Depth estimation models. To obtain dense depth maps from single RGB images, we select two models, respectively MiDaS [45] and MegaDepth [26], the former because it represents the state-of-the-art for depth estimation in-the-wild and the latter because trained with weaker supervision than MiDaS\(^1\). Next, we will show how the accuracy of networks trained on our data is affected by the depth estimator.

Depthstillation pipeline. To generate virtual images, we convert predicted depths into [1, 100]. Given a single image of resolution W×H, we assume a virtual camera having fixed K, with focals \((f_x, f_y) = 0.58(W,H)\) and optical center \((c_x, c_y) = 0.5(W,H)\). To generate \(T_{0→1}\), we build \(t_1\) by sampling three scalars \(t_x, t_y, t_z\) in \([-0.2, 0.2]\) and \(R_1\) by sampling three Euler angles in \([-\frac{\pi}{2}, \frac{\pi}{2}]\). To simulate moving objects, we run pre-trained Mask-RCNN [14] to select \(n = 2\) instance masks and generate \(t_1\) and \(R_1\) sampling respectively in \([-0.1, 0.1]\) and \([-\frac{\pi}{10}, \frac{\pi}{10}]\) and add them to \(R_1\) and \(t_1\). Depth maps are sharpened by means of 2 iterations of a 5×5 bilateral filter, while we dilate \(M\) with a 3×3 kernel. We can generate multiple camera motions for any given single image and thus a variety of pairs and ground-truth labels. We will see how playing with the number of images and motions impacts optical flow network accuracy.

Optical Flow networks. To evaluate how effective our distilled images are at training optical flow models, we select two main architectures: RAFT [53] and PWC-Net [51]. The first because it represents state-of-the-art architecture for supervised optical flow, already enabling excellent generalization capability. The second because it achieves the best results among self-supervised methods (e.g., UFlow [23]). By deploying both architectures, we aim to prove that our method is general and significantly improves generalization in supervised and self-supervised optical flow. When not otherwise specified, we train RAFT on depthstilled data for 100K steps with a learning rate of \(4×10^{-4}\) and weight decay of \(10^{-4}\), batch size of 6 and 496×368 image crops. This configuration is the largest one fitting into a single NVIDIA Titan X GPU. Following [53], we adopted AdamW as optimizer [31] and applied the same data augmentations and loss functions, while we set 12 as the number of iterative updates. To train PWCNet, we used as optimizer Adam [24], with an initial learning rate of \(1e^{-4}\) and halved after 400K, 600K and 800K steps. We trained our model for 1M steps with a batch size of 8, adopting the multi-scale loss used in [51] for the synthetic pre-training, with the same augmentations and crop size used for RAFT.

4.4. Ablation Study

In this section, we assess the impact of the different components of our pipeline.

Depth, hole filling and moving objects. We start by ablating our pipeline to measure the impact of i) estimating depth, ii) applying hole filling to generated images and iii) simulating objects moving independently. This study is carried out by generating virtual views from 20K COCO images produced by pre-trained optical flow networks, introducing biases into images generated with our pipeline. However, we point out that optical flow networks are used only to handle negative disparities in stereo images and would not be necessary if, given the minimum negative disparity \(d_{\text{min}}\), the right image is shifted left by \(|d_{\text{min}}|\), thus making \(d_{\text{min}} = 0\).
images, applying a single virtual camera motion for each, by training RAFT [53] on them and evaluating the final model on Sintel, KITTI 2012 and KITTI 2015. Table 1 collects the outcome of this evaluation. On row (A), we show the performance achieved by generating images without estimating their depth, thus assuming a constant depth value for all pixels in any image. By moving to row (B), for which we use MiDaS [45] to estimate depth during the depthstilling process, we can notice considerable improvements in all metrics and datasets, with F1 score often more than halved. Nonetheless, generated images are affected by large holes and this does not allow for optimal performance. By enabling hole filling (C), the trained RAFT further improves its accuracy on real datasets. Finally, in (D), we show results by simulating objects moving independently, that further improves the results on Sintel. The benefit of this latter strategy is consistent on most metrics, although minor on real datasets such as KITTI 2012 and KITTI 2015 compared to (A) and (B). This fact highlights that a more variegated image content in the training dataset may be beneficial only for generalization to real environments. By depthstilling 5 motions, for a total of 100K training samples (D), yields further improvements on Sintel, again with minor impact on KITTI. To carry out a fair comparison with synthetic datasets, counting about 20K images each, we will use 20K images and a single virtual motion to depthstill our training data from now on.

4.5. Comparison with synthetic datasets

In this section, we evaluate the effectiveness of our depthstilled data versus synthetic datasets [7, 33].

Generalization to real environments. We start by evaluating the robustness of a network trained on our data when deployed on real datasets. Table 4 shows the performance achieved by RAFT when trained on Chairs (A) and fine-tuned on Things (B) with crop size and settings described in [53] to fit in a single GPU, compared to a variant trained on dCOCO, a split of 20K image pairs depthstilled from COCO (C). For completeness, we also report the performance of RAFT models provided by the authors (A†) and (B†), trained on 2× GPUs and thus not directly comparable with our setting. We can notice how training on dCOCO (C) allows for much higher generalization on real datasets such as KITTI compared to (A) and (B). This fact suggests that the benefits of a network trained on our data are not limited to the improved accuracy on synthetic datasets, but extend to real environments as well. This opens the door to the use of generated data for training and evaluating real-world vision tasks, providing a bridge between the two domains.

Depth Model	Sintel C. EPE	Sintel F. EPE	KITTI12 EPE	KITTI15 EPE
(A) No depth	5.00	7.00	11.31	13.52
(B) Megadepth [26]	2.91	6.31	18.22	20.83
(C) MiDaS [45]	2.63	7.00	11.31	13.52

Table 2. Impact of depth estimation. We train RAFT on dCOCO without depth estimation (A), using depth maps provided by MegaDepth (B) or MiDaS (C).

# Training samples	Images	Motions	EPE T	EPE F	EPE T	EPE F
(A) 4K ×1 4K	2.73 6.96 3.97 11.59	1.86 6.81 3.93 12.56				
(B) 4K ×5 20K	2.56 6.78 3.84 10.96	1.77 6.62 3.95 12.57				
(C) 20K ×1 20K	2.83 7.00 3.90 11.51	1.82 6.62 3.91 12.42				

Table 3. Impact of images and virtual motions. We train several RAFT models by changing the number of input images taken from COCO and the number of motions depthstilled for each one.

The depth estimator on our overall data generation pipeline. To this aim, we follow the same protocol of the previous experiments, replacing MiDaS with MegaDepth [26] during the depth estimation step. Table 2 shows the results of this experiment. We can notice how images generated through MegaDepth (B) allow for training a RAFT model that places in between the one trained on images generated without depth (A) and using MiDaS (C), being much closer to the latter than to the former. This proves that depth is a crucial cue in our pipeline and the accuracy of the optical flow network, as we might expect, increases with the quality of the estimated depth maps, although with minor gains.

Amount of generated images. We can increase the amount of data we generate acting on two orthogonal dimensions: the number of images I_d and the number of virtual motions I_m we simulate for each. Table 3 collects the results achieved by several RAFT models trained on a different number of images, obtained by varying the parameters mentioned above. By assuming 4K input images, we can notice how applying 5 virtual motions to each (B) allows a consistent boost on Sintel and KITTI 2012 compared to simulating a single motion each (A), while not improving on KITTI 2015. Interestingly, 4K images already allow for strong generalization to real domains, outperforming the results achieved using synthetic datasets shown in detail in the next section. On the other hand, increasing the input images by the same factor $\times 5$, yet simulating a single motion (C) leads worse results on Sintel while achieving some improvement on KITTI compared to (A) and (B).
Table 4. Comparison with synthetic datasets – generalization. Generalization achieved by RAFT when trained on synthetic data (A), (B), on our dCOCO dataset (C) and a combination of both (D). † are obtained with publicly available weights by [53] (2× GPUs).

Table 5. Comparison with synthetic datasets – fine-tuning. Performance of RAFT variants pre-trained on synthetic datasets (A) and (B), on dCOCO (C) or both (D) when fine-tuned on a subset of 160 images from KITTI 2015, tested on KITTI 2012 and the remaining 40 images from KITTI 2015.

Table 6. Impact of depthstilization on different architectures. Evaluation on PWCNet and RAFT. Entries with “-” are not provided in the original paper.

Fine-tuning on real data. We evaluate the effect of pre-training on synthetic images or our generated frames when fine-tuning on a few real data with accurate ground-truth. To this aim, we fine-tune RAFT variants on the first 160 images of the KITTI 2015 training set and evaluate on the remaining 40 and KITTI 2012. We train with a learning rate of 10^{-4} and weight decay of 10^{-5}, batch size of 3 and 960×288 image crops, converging after 20K iterations. Table 5 collects the outcome of this experiment. We can notice how variants (A) and (B) trained on synthetic data are greatly improved by the fine-tuning, while (C) achieves slightly lower accuracy after fine-tuning. Despite allowing for much higher generalization to real images, the supervision allowed by our method is weaker than the one obtained through real image pairs and perfect ground-truth. Thus, it is not surprising that networks trained from scratch to the end on perfect ground-truth might yield better accuracy. Nonetheless, combining synthetic data with our depthstilled images (D) allows for the best performance, confirming the findings from our previous experiments that a combination of the two worlds – synthetic data with perfect labels and realistic yet imperfect images and labels – is beneficial.

Impact on different optical flow networks. To prove that the superior generalization we achieve is enabled by our
data rather than a specific architecture such as RAFT, we also train PWCNet [51] on the 20K images generated from COCO. Table 6 shows how PWCNet trained on dCOCO (C) dramatically outperforms the original variants trained on Chairs (A) and fine-tuned on Things (B) when testing on real data, at the cost of lower performance on Sintel synthetic images, substantially confirming our findings from previous experiments with RAFT, reported in the table for comparison (D). This fact proves that our data, generated from single yet realistic still images, significantly improves generalization to real data independently from the optical flow model trained.

4.6. Comparison with self-supervision from videos

Given the rich literature about self-supervised optical flow [34, 29, 30, 23], we compare our strategy with state-of-the-art practises for self-supervised optical flow [23].

Generalization. In contrast to most works in this field that train and test in the same domain [34, 29, 30, 23], we inquire about how well networks trained in a self-supervised manner or leveraging our proposal transfer across different real datasets. To this aim, we adopt DAVIS [42] for training and evaluate on KITTI 2012 and 2015 as in the previous experiments. To train UFlow [23], we use the official code provided by the authors. In particular, we trained the model on the entire DAVIS dataset for 1M steps, using a batch size of 1 as suggested in [23], 512×384 resized images and letting unchanged other configuration parameters in order to replicate the authors’ settings. Being UFlow based on PWCNet, we train from scratch another instance of PWCNet on dDAVIS for the same number of steps with a batch of 8 over depthstilled images and labels. The learning rate scheduling is the same highlighted in section 4.3, while the crop is 512×384. This way, we evaluate how well a PWCNet trained on depthstilled data transfers to other datasets compared to a model trained on real videos framing the same image content of the depthstilled images. Table 7 collects the outcome of this experiment. We can notice how the PWCNet model trained on dDAVIS (B) transfers much better to the KITTI 2012 and 2015 datasets compared to UFlow trained on the real DAVIS (A), thanks to the stronger supervision from the distilled optical flow labels. For the sake of completeness, we also report the results achieved by RAFT (C) trained on the same data, confirming to be superior.

Limitations. Our pipeline has some obvious limitations. Indeed, the training samples we generate are far from being utterly realistic because cannot model some behaviors, such as the large 3D rotation of objects in the scene, frequently found in real videos. Thus, despite the strong generalization we achieve compared to self-supervision, real videos allow for much better specialization when training and testing in the same domain. As shown in Table 8, UFlow trained on the 4K images of the KITTI multiview dataset (A) performs much better than PWCNet trained on 960×288 crops from dKITTI (B), a set of about 4K images depthstilled from KITTI 2015 multiview testing set. On the other hand, RAFT trained on dKITTI with the same crop size (C) gets closer to UFlow, thanks to the more effective architecture.

This lower specialization is also due to the completely random motions we depthstill. In contrast, KITTI motions consist of a much smaller subset (i.e. mostly forward translations or steerings) dominant in the real KITTI multiview split, yet rarely occurring in dKITTI.

As take-home message, our depthstillation strategy effectively addresses the scarcity of training data, e.g. when annotated images or not-annotated videos of the target environment are not available, yielding superior generalization compared to existing practices. Moreover, it is complementary to domain-specific real training data with labels, seldom ever available in practice.

5. Conclusion

We proposed a new strategy named, Depthstillation, to distill dense optical flow ground-truth maps from single still images and create novel virtual views, by leveraging the depth provided by a pre-trained monocular network. Through extensive experiments, we showed how it allows for training state-of-the-art optical flow networks [51, 53], leading to models that better generalize to real data compared to the use of synthetic images or self-supervision from videos framing different content, while suffering at specialization. Depthstillation is a powerful solution when domain-specific training data is not available, as occurs in most practical applications in-the-wild.

Acknowledgement. We gratefully acknowledge the support of NVIDIA Corporation with the donation of the Titan Xp GPU used for this research.
References

[1] Min Bai, Wenjie Luo, Kaustav Kundu, and Raquel Urtasun. Exploiting semantic information and deep matching for optical flow. In European Conference on Computer Vision, pages 154–170. Springer, 2016. 1, 2

[2] Wenbo Bao, Wei-Sheng Lai, Chao Ma, Xiaoyun Zhang, Zhiyong Gao, and Ming-Hsuan Yang. Depth-aware video frame interpolation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 3703–3712, 2019. 2

[3] Michael J Black and Padmanabhan Anandan. A framework for the robust estimation of optical flow. In 1993 (4th) International Conference on Computer Vision, pages 231–236. IEEE, 1993. 2

[4] Thomas Brox, Christoph Bregler, and Jitendra Malik. Large displacement optical flow. In 2009 IEEE Conference on Computer Vision and Pattern Recognition, pages 41–48. IEEE, 2009. 2

[5] D. J. Butler, J. Wulff, G. B. Stanley, and M. J. Black. A naturalistic open source movie for optical flow evaluation. In A. Fitzgibbon et al. (Eds.), editor, European Conf. on Computer Vision (ECCV), Part IV, LNCS 7577, pages 611–625. Springer-Verlag, Oct. 2012. 1, 2, 5

[6] Qifeng Chen and Vladlen Koltun. Full flow: Optical flow estimation by global optimization over regular grids. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 4706–4714, 2016. 2

[7] Alexey Dosovitskiy, Philipp Fischer, Eddy Ilg, Philip Hauser, Caner Hazirbas, Vladimir Golkov, Patrick Van Der Smagt, Daniel Cremers, and Thomas Brox. Flownet: Learning optical flow with convolutional networks. In Proceedings of the IEEE international conference on computer vision, pages 2758–2766, 2015. 1, 2, 4, 6

[8] John Flynn, Michael Broxton, Paul Debevec, Matthew DuVall, Graham Fyffe, Ryan Overbeck, Noah Snavely, and Richard Tucker. Deepview: View synthesis with learned gradient descent. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 2367–2376, 2019. 2

[9] Huan Fu, Mingming Gong, Chaohui Wang, Kayhan Batmanghelich, and Dacheng Tao. Deep ordinal regression network for monocular depth estimation. In The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2018. 2

[10] Andreas Geiger, Philip Lenz, and Raquel Urtasun. Are we ready for autonomous driving? the kitti vision benchmark suite. In Conference on Computer Vision and Pattern Recognition (CVPR), 2012. 1, 2, 5

[11] Clément Godard, Oisin Mac Aodha, and Gabriel J Brostow. Unsupervised monocular depth estimation with left-right consistency. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 270–279, 2017. 2, 4

[12] Clément Godard, Oisin Mac Aodha, Michael Firman, and Gabriel J. Brostow. Digging into self-supervised monocular depth prediction. In The International Conference on Computer Vision (ICCV), October 2019. 2, 4

[13] Vitor Guizilini, Rares Ambrus, Sudeep Pillai, Allan Raven-tos, and Adrien Gaidon. 3d packing for self-supervised monocular depth estimation. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2020. 2

[14] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Girshick. Mask r-cnn. In Proceedings of the IEEE international conference on computer vision, pages 2961–2969, 2017. 5

[15] Judy Hoffman, Eric Tzeng, Taesung Park, Jun-Yan Zhu, Phillip Isola, Kate Saenko, Alexei Efros, and Trevor Darrell. Cycada: Cycle-consistent adversarial domain adaptation. In International conference on machine learning, pages 1989–1998. PMLR, 2018. 1

[16] Berthold KP Horn and Brian G Schunck. Determining optical flow. In Techniques and Applications of Image Understanding, volume 281, pages 319–331. International Society for Optics and Photonics, 1981. 2

[17] Tak-Wai Hui and Chen Change Loy. LiteFlowNet3: Resolving Correspondence Ambiguity for More Accurate Optical Flow Estimation. In Proceedings of the European Conference on Computer Vision (ECCV), 2020. 1, 2

[18] Tak-Wai Hui, Xiaouu Tang, and Chen Change Loy. LiteFlowNet: A Lightweight Convolutional Neural Network for Optical Flow Estimation. In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 8981–8989, 2018. 1, 2

[19] Tak-Wai Hui, Xiaoou Tang, and Chen Change Loy. A lightweight optical flow cnn - revisiting data fidelity and regularization. In IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020. 1, 2

[20] E. Ilg, N. Mayer, T. Saikia, M. Keuper, A. Dosovitskiy, and T. Brox. Flownet 2.0: Evolution of optical flow estimation with deep networks. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Jul 2017. 1, 2, 5

[21] J Yu Jason, Adam W Harley, and Konstantinos G Derpanis. Back to basics: Unsupervised learning of optical flow via brightness constancy and motion smoothness. In ECCV Workshops (3), 2016. 2

[22] Huaizu Jiang, Deqing Sun, Varun Jampani, Ming-Hsuan Yang, Erik Learned-Miller, and Jan Kautz. Super slomo: High quality estimation of multiple intermediate frames for video interpolation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 9000–9008, 2018. 2

[23] Rico Jonschkowski, Austin Stone, Jon Barron, Ariel Gordon, Kurt Konolige, and Anelia Angelova. What matters in unsupervised optical flow. ECCV, 2020. 2, 5, 8

[24] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980, 2014. 5

[25] Iro Laina, Christian Rupprecht, Vasileios Belagiannis, Federico Tombari, and Nassir Navab. Deeper depth prediction with fully convolutional residual networks. In 3DV, 2016. 2

[26] Zhengqi Li and Noah Snavely. Megadepth: Learning single-view depth prediction from internet photos. In Computer Vision and Pattern Recognition (CVPR), 2018. 2, 5, 6

[27] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr Dollár, and C Lawrence
[57] Alessio Tonioni, Fabio Tosi, Matteo Poggi, Stefano Mato-
coccia, and Luigi Di Stefano. Real-time self-adaptive deep
stereo. In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition (CVPR), June 2019. 1

[58] Fabio Tosi, Filippo Aleotti, Matteo Poggi, and Stefano Mato-
coccia. Learning monocular depth estimation infusing tradi-
tional stereo knowledge. In Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition, pages
9799–9809, 2019. 2, 4

[59] Fabio Tosi, Filippo Aleotti, Pierluigi Zama Ramirez, Matteo
Poggi, Samuele Salti, Luigi Di Stefano, and Stefano Mattoc-
cia. Distilled semantics for comprehensive scene understand-
ing from videos. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, 2020. 2

[60] Richard Tucker and Noah Snavely. Single-view view synthe-
sis with multiplane images. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition
(CVPR), June 2020. 2

[61] Jamie Watson, Oisin Mac Aodha, Daniyar Turmukhambetov,
Gabriel J. Brostow, and Michael Firman. Learning stereo
from single images. In European Conference on Computer
Vision (ECCV), 2020. 1, 3

[62] Jamie Watson, Michael Firman, Gabriel J Brostow, and
Daniyar Turmukhambetov. Self-supervised monocular depth
hints. In Proceedings of the IEEE International Conference
on Computer Vision, pages 2162–2171, 2019. 2, 4

[63] Philippe Weinzaepfel, Jerome Revaud, Zaid Harchaoui, and
Cordelia Schmid. Deepflow: Large displacement optical
flow with deep matching. In Proceedings of the IEEE inter-
national conference on computer vision, pages 1385–1392,
2013. 2

[64] Dan Xu, Wei Wang, Hao Tang, Hong Liu, Nicu Sebe, and
Elisa Ricci.Structured attention guided convolutional neural
fields for monocular depth estimation. In CVPR, 2018. 2

[65] Jia Xu, René Ranftl, and Vladlen Koltun. Accurate optical
flow via direct cost volume processing. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recogni-
tion, pages 1289–1297, 2017. 1, 2

[66] Jae Shin Yoon, Kihwan Kim, Orazio Gallo, Hyun Soo Park,
and Jan Kautz. Novel view synthesis of dynamic scenes with
globally coherent depths from a monocular camera. In Pro-
cedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 5336–5345, 2020. 2

[67] Christopher Zach, Thomas Pock, and Horst Bischof. A du-
ality based approach for realtime tv-1 l optical flow. In Joint
pattern recognition symposium, pages 214–223. Springer,
2007. 2

[68] Feihu Zhang, Xiaojuan Qi, Ruigang Yang, Victor Prisacariu,
Benjamin Wah, and Philip Torr. Domain-invariant stereo
matching networks. arXiv preprint arXiv:1911.13287, 2019.

[69] Tinghui Zhou, Matthew Brown, Noah Snavely, and David G
Lowe. Unsupervised learning of depth and ego-motion from
video. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 1851–1858, 2017. 2

[70] Tinghui Zhou, Richard Tucker, John Flynn, Graham Fyffe,
and Noah Snavely. Stereo magnification: Learning view syn-
thesis using multiplane images. In SIGGRAPH, 2018. 2