Multiplicities of Singular Points in Schubert Varieties of Grassmannians

Victor Kreiman and V. Lakshmibai
Northeastern University, Boston, MA 02115

Abstract. We give a closed-form formula for the Hilbert function of the tangent cone at the identity of a Schubert variety X in the Grassmannian in both group theoretic and combinatorial terms. We also give a formula for the multiplicity of X at the identity, and a Gröbner basis for the ideal defining $X \cap O^-$ as a closed subvariety of O^-, where O^- is the opposite cell in the Grassmannian. We give conjectures for the Hilbert function and multiplicity at points other than the identity.

1 Introduction

The first formulas for the multiplicities of singular points on Schubert varieties in Grassmannians appeared in Abhyankar’s results [3] on the Hilbert series of determinantal varieties (recall that a determinantal variety gets identified with the opposite cell in a suitable Schubert variety in a suitable Grassmannian). Herzog-Trung [6] generalized these formulas to give determinantal formulas for the multiplicities at the identity of all Schubert varieties in Grassmannians. Using standard monomial theory, Lakshmibai-Weyman [7] obtained a recursive formula for the multiplicities of all points in Schubert varieties in a minuscule G/P; Rosenthal-Zelevinsky [9] used this result to obtain a closed-form determinantal formula for multiplicities of all points in Grassmannians.

2 Summary of Results

Let K be the base field, which we assume to be algebraically closed, of arbitrary characteristic. Let G be $SL_n(K)$, T the subgroup of diagonal matrices in G, and B the subgroup of upper diagonal matrices in G. Let R be the root system of G relative to T, and R^+ the set of positive roots relative to B. Let W be the Weyl group of G. Note that $W = S_n$, the group of permutations of the set of n elements. Let P_d be the maximal parabolic subgroup

$$P_d = \left\{ A \in G \left| A = \begin{pmatrix} * & \cdots & * \\ 0_{(n-d) \times d} & * \end{pmatrix} \right. \right\}.$$

Let R_{P_d}, $R_{P_d}^+$, and W_{P_d} denote respectively the root system, set of positive roots, and Weyl group of P_d. The quotient W/W_{P_d}, with the Bruhat order, is a distributive lattice. The map $\alpha \mapsto s_\alpha W_{P_d}$ taking a positive root to its
corresponding reflection, embeds \(R^+ \setminus R^+_P \) in \(W/W_P \). We shall also denote the image by \(R^+ \setminus R^+_P \). It is a sublattice of \(W/W_P \).

A multiset is similar to a set, but with repetitions of entries allowed. Define the cardinality of a multiset \(S \), denoted by \(|S|\), to be the number of elements in \(S \), including repetitions. Define a uniset to be a multiset which has no repetitions. If \(S \) is a set, define \(S^* \) to be the collection of all multisets which are made up of elements of \(S \).

A chain of commuting reflections in \(W/W_P \) is a nonempty set of pairwise-commuting reflections \(\{s_{\alpha_1}, \ldots, s_{\alpha_t}\} \), \(\alpha_i \in R^+ \setminus R^+_P \), such that \(s_{\alpha_t} > \cdots > s_{\alpha_1} \); we refer to \(t \) as the length of the chain. For a multiset \(S \in (R^+ \setminus R^+_P)^* \), define the chainlength of \(S \) to be the maximum length of a chain of commuting reflections in \(S \).

Fix \(w \in W/W_P \). Define \(S_w \) to be the multisets \(S \) of \((R^+ \setminus R^+_P)^* \), such that the product of every chain of commuting reflections in \(S \) is less than or equal to \(w \); similarly, define \(S'_w \) to be the unisets of \((R^+ \setminus R^+_P)^* \) having the same property. For \(m \) a positive integer, define

\[
S_w(m) = \{ S \in S_w : |S| = m \}
\]

\[
S'_w(m) = \{ S \in S'_w : |S| = m \}.
\]

We can now state our two main results. First, letting \(X(w) \) denote the Schubert variety of \(G/P_d \) corresponding to \(w \in W/W_P \), the Hilbert function of the tangent cone to \(X(w) \) at the identity is given by

Theorem 1 \(h_{TC,dX(w)}(m) = |S_w(m)|, m \in \mathbb{N}. \)

Second, letting \(M \) denote the maximum cardinality of any element of \(S'_w \), the multiplicity at the identity is given by

Theorem 2 \(\text{mult}_{id} X(w) = |\{ S \in S'_w : |S| = M \}|. \)

3 Preliminaries

3.1 Multiplicity of an Algebraic Variety at a Point

Let \(B \) be a graded, affine \(K \)-algebra such that \(B_1 \) generates \(B \) (as a \(K \)-algebra). Let \(X = \text{Proj}(B) \). The function \(h_B(m) \) (or \(h_X(m) \)) = \(\dim_K B_m/\mathfrak{m}^m \), \(m \in \mathbb{Z} \) is called the *Hilbert function* of \(B \) (or \(X \)). There exists a polynomial \(P_B(x) \) (or \(P_X(x) \)) \(\in \mathbb{Q}[x] \), called the *Hilbert polynomial* of \(B \) (or \(X \)), such that \(f_B(m) = P_B(m) \) for \(m \gg 0 \). Let \(r \) denote the degree of \(P_B(x) \). Then \(r = \dim(X) \), and the leading coefficient of \(P_B(x) \) is of the form \(c_B / r! \), where \(c_B \in \mathbb{N} \). The integer \(c_B \) is called the *degree* of \(X \), and denoted \(\deg(X) \). In the sequel we shall also denote \(\deg(X) \) by \(\deg(B) \).

Let \(X \) be an algebraic variety, and let \(P \in X \). Let \(A = \mathcal{O}_{X,P} \) be the stalk at \(P \) and \(\mathfrak{m} \) the unique maximal ideal of the local ring \(A \). Then the *tangent
cone to X at P, denoted $TC_P(X)$, is defined to be $\text{Spec}(\text{gr}(A, m))$, where $\text{gr}(A, m) = \bigoplus_{j=0}^{\infty} m^j/m^{j+1}$. The multiplicity of X at P, denoted $\text{mult}_P(X)$, is defined to be $\deg(\text{Proj}(\text{gr}(A, m)))$. If $X \subset K^n$ is an affine closed subvariety, and $m_P \subset K[X]$ is the maximal ideal corresponding to $P \in X$, then $\text{gr}(K[X], m_P) = \text{gr}(A, m)$.

3.2 Monomial Orders, Gröbner Bases, and Flat Deformations

Let A be the polynomial ring $K[x_1, \cdots, x_n]$. A monomial order \succ on the set of monomials in A is a total order such that given monomials $m, m_1, m_2, m \neq 1, m_1 \succ m_2$, we have $mm_1 \succ m_1$ and $mm_1 \succ mm_2$. The largest monomial (with respect to \succ) present in a polynomial $f \in A$ is called the initial term of f, and is denoted by $\text{in}(f)$.

The lexicographic order is a total order defined in the following manner. Assume the variables x_1, \ldots, x_n are ordered by $x_n > \cdots > x_1$. A monomial m of degree r in the polynomial ring A will be written in the form $m = x_{i_1} \cdots x_{i_r}$, with $n \geq i_1 \geq \cdots \geq i_r \geq 1$. Then $x_{i_1} \cdots x_{i_r} \succ x_{j_1} \cdots x_{j_s}$ in the lexicographic order if and only if either $r > s$, or $r = s$ and there exists an $l < r$ such that $i_1 = j_1, \ldots, i_l = j_l, i_{l+1} > j_{l+1}$. It is easy to check that the lexicographic order is a monomial order.

Given an ideal $I \subset A$, denote by $\text{in}(I)$ the ideal generated by the initial terms of the elements in I. A finite set $G \subset I$ is called a Gröbner basis of I (with respect to the monomial order \succ), if $\text{in}(I)$ is generated by the initial terms of the elements of G.

Flat Deformations: Given a monomial order and an ideal $I \subset A$, there exists a flat family over $\text{Spec}(K[t])$ whose special fiber ($t = 0$) is $\text{Spec}(A/\text{in}(I))$ and whose generic fiber (t invertible) is $\text{Spec}(A/I \otimes K[t, t^{-1}])$. Further, if I is homogeneous, then the special fiber and generic fiber have the same Hilbert function (see [4] for details).

3.3 Grassmannian and Schubert Varieties

The Plücker Embedding: Let d be such that $1 \leq d < n$. The Grassmannian $G_{d,n}$ is the set of all d-dimensional subspaces $U \subset K^n$. Let U be an element of $G_{d,n}$ and $\{a_1, \ldots, a_d\}$ a basis of U, where each a_j is a vector of the form

$$a_j = \begin{pmatrix} a_{1j} \\ a_{2j} \\ \vdots \\ a_{nj} \end{pmatrix}, \text{ with } a_{ij} \in K.$$

Thus, the basis $\{a_1, \cdots, a_d\}$ gives rise to an $n \times d$ matrix $A = (a_{ij})$ of rank d, whose columns are the vectors a_1, \cdots, a_d.
We have a canonical embedding

\[p : G_{d,n} \hookrightarrow \mathbb{P}(\wedge^d K^n),\quad U \mapsto [a_1 \wedge \cdots \wedge a_d] \]
called the Plücker embedding. Let

\[I_{d,n} = \{ \hat{i} = (i_1, \ldots, i_d) \in \mathbb{N}^d : 1 \leq i_1 < \cdots < i_d \leq n \} \, . \]

Then the projective coordinates (Plücker coordinates) of points in \(\mathbb{P}(\wedge^d K^n) \) may be indexed by \(I_{d,n} \); for \(\hat{i} \in I_{d,n} \), we shall denote the \(\hat{i} \)-th component of \(p \) by \(p_{\hat{i}} \), or \(p_{i_1, \ldots, i_d} \). If a point \(U \) in \(G_{d,n} \) is represented by the \(n \times d \) matrix \(A \) as above, then \(p_{i_1, \ldots, i_d}(U) = \det(A_{i_1,\ldots,i_d}) \), where \(A_{i_1,\ldots,i_d} \) denotes the \(d \times d \) submatrix whose rows are the rows of \(A \) with indices \(i_1, \ldots, i_d \), in this order.

Identification of \(G/P_d \) with \(G_{d,n} \): Let \(G, T, B, \) and \(P_d \) be as in Section 2. Let \(\{ e_1, \ldots, e_n \} \) be the standard basis for \(K^n \). For the natural action of \(G \) on \(\mathbb{P}(\wedge^d K^n) \), the isotropy group at \([e_1 \wedge \cdots \wedge e_d] \) is \(P_d \), while the orbit through \([e_1 \wedge \cdots \wedge e_d] \) is \(G_{d,n} \). Thus we obtain an identification of \(G/P_d \) with \(G_{d,n} \). We also note that \(W/W_{P_d} = S_n/(S_d \times S_{n-d}) \) may be identified with \(I_{d,n} \).

Schubert Varieties: For the action of \(G \) on \(G_{d,n} \), the \(T \)-fixed points are precisely \(\{ [e_\hat{i}] : \hat{i} \in I_{d,n} \} \), where \(e_\hat{i} = e_{i_1} \wedge \cdots \wedge e_{i_d} \). The Schubert variety \(X_\hat{i} \) associated to \(\hat{i} \) is the Zariski closure of the \(B \)-orbit \(B[e_\hat{i}] \) with the canonical reduced scheme structure.

We have a bijection between \{Schubert varieties in \(G_{d,n} \)\} and \(I_{d,n} \). The partial order on Schubert varieties given by inclusion induces a partial order (called the Bruhat order) on \(I_{d,n} \) (\(= W/W_{P_d} \)); namely, given \(\hat{i} = (i_1, \ldots, i_d) \), \(\hat{j} = (j_1, \ldots, j_d) \in I_{d,n} \),

\[\hat{i} \geq \hat{j} \iff i_t \geq j_t, \text{ for all } 1 \leq t \leq d. \]

We note the following facts for Schubert varieties in the Grassmannian (see [3] or [8] for example):

- **Bruhat Decomposition**: \(X_{\hat{i}} = \bigcup_{\hat{j} \leq \hat{i}} B[e_\hat{j}] \).
- **Dimension**: \(\dim X_{\hat{i}} = \sum_{1 \leq t \leq d} i_t - t \).
- **Vanishing Property of a Plücker Coordinate**: \(p_{\hat{i}}|_{X_{\hat{i}}} \neq 0 \iff \hat{i} \geq \hat{j} \).
Standard Monomials: A monomial $f = p_{\theta_1} \cdots p_{\theta_t}$, $\theta_i \in W/W_{P_d}$ is said to be standard if

$$\theta_1 \geq \cdots \geq \theta_t.$$ (1)

Such a monomial is said to be standard on the Schubert variety $X(\theta)$, if in addition to (1), we have $\theta \geq \theta_1$.

Let $w \in W/W_{P_d}$. Let $R(w) = K[X(w)]$, the homogeneous coordinate ring for $X(w)$, for the Plücker embedding. Recall the following two results from standard monomial theory (cf. [5]).

Theorem 3 The set of standard monomials on $X(w)$ of degree m is a basis for $R(w)_m$.

Theorem 4 For $w \in W/W_{P_d}$, let I_w be the ideal in $K[G_{d,n}]$ generated by \{ $p_\theta, \theta \not\in w$ \}. Then $R(w) = K[G_{d,n}]/I_w$.

The Opposite Big Cell O^-: Let U^- denote the unipotent lower triangular matrices of $G = SL_n(K)$. Under the canonical projection $G \to G/P_d$, $g \mapsto gP_d (= g[e_{id}])$, U^- maps isomorphically onto its image $U^-[e_{id}]$. The set $U^-[e_{id}]$ is called the opposite big cell in $G_{d,n}$, and is denoted by O^-. Thus, O^- may be identified with

$$\begin{pmatrix}
\text{Id}_{d \times d} \\
x_{d+11} & \cdots & x_{d+1d} \\
\vdots \\
x_{n1} & \cdots & x_{nd}
\end{pmatrix}, \quad x_{ij} \in K, \quad d+1 \leq i \leq n, 1 \leq j \leq d.$$ (2)

Thus we see that O^- is an affine space of dimension $(n - d) \times d$, with id as the origin; further $K[O^-]$ can be identified with the polynomial algebra $K[x_{-\beta}, \beta \in R^+/R_{P_d}^+]$. To be very precise, denoting the elements of R as in [3], we have $R^+/R_{P_d}^+ = \{ e_{ij} - e_{ii}, d+1 \leq i \leq n, 1 \leq j \leq d \}$; given $\beta \in R^+/R_{P_d}^+$, say $\beta = e_{ij} - e_{ii}$, we identify $x_{-\beta}$ with x_{ij}. We denote by $s_{(i,j)}$ (or $s_{(j,i)}$) the reflection corresponding to β, namely, the transposition switching i and j.

Evaluation of Plücker Coordinates on O^-: Let $j \in I_{d,n}$. We shall denote the Plücker coordinate $p_j|_{O^-}$ by f_j. Let us denote a typical element $A \in O^-$ by $\begin{pmatrix} \text{Id}_{d \times d} \\ X \end{pmatrix}$. Then f_j is simply a minor of X as follows. Let $j = (j_1, \ldots, j_d)$, and let j_r be the largest entry $\leq d$. Let $\{k_1, \ldots, k_{d-r}\}$ be the complement of $\{j_1, \ldots, j_r\}$ in $\{1, \ldots, d\}$. Then this minor of X is given by column indices k_1, \ldots, k_{d-r} and row indices j_{r+1}, \ldots, j_d (here the rows of X are indexed as $d+1, \ldots, n$).

Conversely, given a minor of X, say, with column indices b_1, \ldots, b_s, and row indices i_{d-s+1}, \ldots, i_d, then that minor is the evaluation of f_j at X, where
\(\mathbf{j} = (j_1, \ldots, j_d) \) may be described as follows: \(\{j_1, \ldots, j_{d-s}\} \) is the complement of \(\{b_1, \ldots, b_s\} \) in \(\{1, \ldots, d\} \), and \(j_{d-s+1}, \ldots, j_d \) are simply the row indices (again, the rows of \(X \) are indexed as \(d+1, \ldots, n \)).

Note that if \(j = (1, \ldots, d) \), then \(p_j \) evaluated at \(X \) is 1. In the above discussion, therefore, we must consider the element 1 (in \(K[O^-] \)) as the minor of \(X \) with row indices (and column indices) given by the empty set.

Example 1 Consider \(G_{2,4} \). Then

\[
O^- = \left\{ \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ x_{31} & x_{32} \\ x_{41} & x_{42} \end{pmatrix}, \ x_{ij} \in K \right\}.
\]

On \(O^- \), we have \(p_{12} = 1 \), \(p_{13} = x_{32}, p_{14} = x_{42}, p_{23} = x_{31}, \ p_{24} = x_{41}, \ p_{34} = x_{31}x_{42} - x_{41}x_{32} \).

Note that each of the Plücker coordinates is homogeneous in the local coordinates \(x_{ij} \).

4 The Hilbert Function of \(TC_{id}X(w) \)

In view of the Bruhat decomposition, in order to determine the multiplicity at a singular point \(x \), it is enough to determine the multiplicity of the \(T \)-fixed point in the \(B \) orbit \(Bx \). In this section, we shall discuss the behavior at a particular \(T \)-fixed point, namely the identity.

4.1 The Variety \(Y(w) \)

We define \(Y(w) \subset G_{d,n} \) to be \(X(w) \cap O^- \). Since \(Y(w) \subset X(w) \) is open dense, and \(id \in Y(w) \), we have that \(TC_{id}Y(w) = TC_{id}X(w) \). As a consequence of Theorem 4, \(Y(w) \subset O^- \) is defined as an algebraic subvariety by the homogeneous polynomials \(f_\theta, \theta \not\in w \); further, \(id \in O^- \) corresponds to the origin. Thus we have that \(\text{gr}(K[Y(w)], m_{id}) = K[Y(w)] \). Hence,

\[
TC_{id}X(w) = TC_{id}Y(w) = \text{Spec}(\text{gr}(K[Y(w)], m_{id}))
\]

\[= \text{Spec}(K[Y(w)]) = Y(w). \quad (3)\]

4.2 Monomials and Multisets

For a monomial \(p = x_{\alpha_{i_1}} \cdots x_{\alpha_{i_m}} \in K[O^-] \), define \(\text{Multisupp}(p) \) to be the multiset \(\{\alpha_{i_1}, \ldots, \alpha_{i_m}\} \). It follows immediately from the definition that \(\text{Multisupp} \) gives a bijection between the monomials of \(K[O^-] \) and the multisets of \((R^+ \setminus R_{P_d}^+) \), pairing the square-free monomials with the unisets. Let \(w \in W/W_{P_d} \). We call a monomial \(w \)-good if it maps under \(\text{Multisupp} \) to an
element of S_w. Note that the w-good square-free monomials are precisely those which map to S'_w.

Define a monomial order \succ on $K[O^-]$ in the following manner. We say $x_{i,j} \succ x_{i',j'}$ if $i > i'$, or if $i = i'$ and $j < j'$. Note that this extends the partial order $x_\alpha > x_\beta \iff s_\alpha > s_\beta$ (in the Bruhat order). The monomials are then ordered using the lexicographic order.

Define the monomial ideal $J_w \subset K[O^-]$ to be the ideal generated by $\{\inf_{\theta, \theta \not\in w}, \theta \not\in w\}$, and let $A_w = K[O^-]/J_w$. With our ordering, $\text{MultSupp}(\inf_{\theta})$ is a commuting chain of reflections whose product is θ. Thus the non w-good monomials form a vector space basis for J_w, and therefore the w-good monomials form a basis for A_w.

4.3 Sketch of Proof of Theorems 1 and 2

In view of (3) and the above discussion, Theorem 1 follows immediately from Lemma 1

$\text{h}_{K[Y(w)]}(m) = h_{A_w}(m), m \in \mathbb{N}$.

Theorem 2 is also a consequence. Indeed,

$\text{mult}_{\text{id}}X(w) = \deg(K[\text{TC}_{\text{id}}X(w)]) = \deg(K[Y(w)]) = \deg(A_w)$.

Since A_w is an affine quotient of an ideal generated by square-free monomials, letting M be the maximum degree of a square-free monomial in A_w, we have (cf. (3))

$\deg(A_w) = |\{ p \in A_w : p \text{ is a square-free monomial and } \deg(p) = M \}|$

$= |\{ p \in K[O^-] : p \text{ is a square-free w-good monomial and } \deg(p) = M \}|$

$= |\{ S \in S'_w : |S| = M \}|$

yielding Theorem 2.

The proof of Lemma 2 relies on an inductive argument which shows directly that both functions agree for all positive integers m. Note that $K[Y(w)] = K[X(w)]_{(p_w)}$. Thus, as a consequence of Theorem 2, $K[Y(w)]$ has a basis consisting of monomials of the form $f_{\theta_1} \cdots f_{\theta_l}, w \geq \theta_1 \geq \cdots \geq \theta_l.$ If $SM_w(m)$ denotes the basis elements of degree m, then $h_{Y(w)}(m) = |SM_w(m)|$. Letting $d = d_w$ be the degree of w (see section 4.4 below for definition), as a consequence of standard monomial theory we have

$SM_w(m + d) = SM_w(m) \cup SM_H(m + d)$ (4)

where $SM_H(m + d) = \bigcup_{w_i} SM_{w_i}(m + d)$, the union being taken over the divisors $X(w_i)$ of $X(w)$ (cf. (3)).

We have that $|SM_H(m + d)| = |\bigcup_{w_i} SM_{w_i}(m + d)|$ can be set-theoretically written as the integral linear combination of terms of the form $|SM_{w_i}(m + d)|$
and terms of the form \(|SM_{w_j}(m + d) \cap \cdots \cap SM_{w_k}(m + d)| \). Further, it can be shown that

\[
SM_{w_j}(m + d) \cap \cdots \cap SM_{w_k}(m + d) = SM_\theta(m + d),
\]

where \(\theta \) is given by \(X(\theta) = X(w_j) \cap \cdots \cap X(w_k) \). (Note that \(I_{d,n} \) being a distributive lattice implies that for \(\tau, \phi \in I_{d,n} \), \(X(\tau) \cap X(\phi) \) is irreducible.) Thus,

\[
|SM_H(m + d)| = \sum_{w' < w} a_{w'}|SM_{w'}(m + d)|, \quad \text{for some } a_{w'} \in \mathbb{Z}. \tag{5}
\]

Taking cardinalities of both sides of (4), we obtain

\[
h_K[Y(w)](m + d) = h_K[Y(w)](m) + \sum_{w' < w} a_{w'}h_K[Y(w')](m + d).
\]

Equivalently, \(h_K[Y(w)] \) satisfies the difference equation

\[
\phi(w, m + d) = \phi(w, m) + \sum_{w' < w} a_{w'}\phi(w', m + d). \tag{6}
\]

To prove Lemma 1, it suffices to show that \(h_{A_w}(m) \) satisfies (5) for all \(m \in \mathbb{Z}_{\geq 0} \), since it is a straightforward verification that \(h_K[Y(w)](m) \) and \(h_{A_w}(m) \) have the same initial conditions.

As stated earlier, \(K[A_w] \) has as basis the \(w \)-good monomials of \(K[O^-] \), which are in bijection with the elements of \(S_w \). Thus \(h_K[A_w](m) = |S_w(m)| \), and it suffices to show that \(|S_w(m)| \) satisfies (5). We can write

\[
S_w(m + d) = (S_w(m + d) \setminus S_H(m + d)) \cup S_H(m + d), \tag{7}
\]

where \(S_H(m + d) = \bigcup_{w_i} S_{w_i}(m + d) \), the union being over the divisors \(X(w_i) \) of \(X(w) \). Following the identical arguments used to deduce (5) (replacing “\(SM \)” by “\(S \)” everywhere), one obtains

\[
|S_H(m + d)| = \sum_{w' < w} a_{w'}|S_{w'}(m + d)|, \tag{8}
\]

for the same integers \(a_{w'} \) as in (5).

Establishing an explicit bijection between \(S_w(m + d) \setminus S_H(m + d) \) and \(S_w(m) \) completes the proof, for then (taking cardinalities of both sides of (7)), one sees that \(h_{A_w}(m) \) satisfies (5) for all \(m \in \mathbb{Z}_{\geq 0} \).

In view of the discussion of flat deformations in Section 3.2, Lemma 1 also implies

Corollary 1 The set \(\{ f_\theta, \theta \not\in w \} \subset K[O^-] \) forms a Gröbner basis for the ideal it generates.
4.4 Combinatorial Interpretation

We call a multiset \(S \) of \((R^+ \backslash R^+_P)^*\) a t-multipath, if the chainlength of \(S \) is \(t \). If \(S \) has no repeated elements (i.e. it is a uniset), then we call it a t-unipath. Define \(s \in S \) to be a chain-maximal element of \(S \) if there is no element in \(S \) strictly greater than \(s \) which commutes with \(s \). Any t-multipath \(S \) can be written in the following manner as the union of \(t \) nonintersecting 1-multipaths: if \(S_i \) is the \(i \)th 1-multipath, then \(S_{i+1} \) is the multiset of chain-maximal elements (including repetitions) of \(S \cup \bigcup_{k=1}^{i} S_k \) (for \(i = 0, \cdots, t-1 \), where \(S_0 \) is defined to be the empty set). If the t-multipath \(S \) is a t-unipath, then each \(S_i \) will be a 1-unipath.

Fix \(w \in W/W_P \). There is a unique expression \(w = s_{\alpha_1} \cdots s_{\alpha_i} d_w \) such that \(s_{\alpha_k} > s_{\alpha_{k+1}} \) for all \(k \), and all the reflections pairwise commute; \(d_w \) is called the degree of \(w \).

Example 2 Let \(w = (3,5,7,8) \in I_{4,8} \). Then \(w = s_{(8,1)} s_{(7,2)} s_{(5,4)} \), where \(s_{(8,1)} > s_{(7,2)} > s_{(5,4)} \) is a chain of commuting reflections. Thus \(d_w = 3 \).

Let \(H_j = \{ \alpha \in R^+ \backslash R^+_P | s_\alpha \leq s_{\alpha_{ij}} \} \). We say that a t-multipath \(S \) is \(w \)-good if, when written as the union of weighted 1-multipaths \(\bigcup_{k=1}^{t} S_k \) as above, we have that the elements of \(S_j \) are in \(H_j \), \(j = 1, \cdots, t \). Any multiset in \((R^+ \backslash R^+_P)^*\) is a t-multipath for some \(t \); it is said to be \(w \)-good if the corresponding t-multipath is \(w \)-good.

It can be seen that the combinatorial property that a multiset (resp. uniset) \(S \) of \((R^+ \backslash R^+_P)^*\) is \(w \)-good is equivalent to the group-theoretic property that \(S \in S_w \) (resp. \(S \in S'_w \)). Thus Theorem 2 is equivalent to the assertion that \(h_{TC,S}(w)(m) \) is the number of \(w \)-good multisets of \((R^+ \backslash R^+_P)^*\) of degree \(m \). Letting \(M \) be the maximum cardinality of a \(w \)-good uniset, Theorem 2 is equivalent to the assertion that \(\text{mult}_{id} X(w) \) is the number of \(w \)-good unisets of cardinality \(M \).

Example 3 Let \(w = s_{(15,2)} s_{(13,4)} s_{(10,5)} \in I_{7,16} \). We have that \(s_{(15,2)} > s_{(13,4)} > s_{(10,5)} \) is a chain of commuting reflections, and thus \(d_w = 3 \).

The diagram below shows the lattice \(R^+ \backslash R^+_P \), where the reflection \(s_{(i,j)} \) is denoted by \(i,j \). The set \(S \) of reflections which lie along the three broken-line paths is an example of a \(w \)-good uniset of maximum cardinality. In fact, any \(w \)-good uniset of maximum cardinality can be seen as the set of reflections lying on three paths in the lattice, satisfying the following properties:

- One path starts and ends at “X”, the second at “Y”, and the third at “Z”.
- Each path can move only down or to the right.
- The paths do not intersect.

Thus the number of ways of drawing three such paths is \(\text{mult}_{id} X(w) \).
5 Conjectures on the Behavior at Other Points

Let \(w, \tau \in W/W_p \). Define \(S_{w,\tau} \) to be the multisets \((R^+ \setminus R^+_p)^* \), such that for every chain of commuting reflections \(s_{\alpha_1} \circ \cdots \circ s_{\alpha_t} \), \(s_{\alpha_i} \in S \), we have that \(w \geq s_{\alpha_1} \circ \cdots \circ s_{\alpha_t} \); define \(S'_{w,\tau} \) to be the unisets of \((R^+ \setminus R^+_p)^* \) having the same property. For \(m \) a positive integer, define

\[
S_{w,\tau}(m) = \{ S \in S_{w,\tau} : |S| = m \}
\]

\[
S'_{w,\tau}(m) = \{ S \in S'_{w,\tau} : |S| = m \}.
\]

We state two conjectures. First, the Hilbert function \(h_{TC, X(w)}(m) \) of the tangent cone to \(X(w) \) at \(\tau \) is given by

Conjecture 1 \(h_{TC, X(w)}(m) = |S_{w,\tau}(m)|, m \in \mathbb{N}. \)

Second, letting \(M \) denote the maximum cardinality of an element of \(S'_{w,\tau} \), the multiplicity \(\text{mult}_\tau X(w) \) of \(X(w) \) at \(\tau \) is given by

Conjecture 2 \(\text{mult}_\tau X(w) = |\{ S \in S'_{w,\tau} : |S| = M \}|. \)

References

1. S.S. Abhyankar, Enumerative combinatorics of Young tableaux, *Monographs and Textbooks in Pure and Applied Mathematics*, 115. Marcel Dekker, Inc., New York (1988).
2. N. Bourbaki, Groupes et Algèbres de Lie, Chapitres 4, 5 et 6, Hermann, Paris (1968).
3. D. Cox, J. Little and D. O’Shea, Ideals, varieties and algorithms, Springer-Verlag, New York, (1992).
4. D. Eisenbud, Commutative algebra with a view toward Algebraic Geometry, Springer-Verlag, GTM, 150.
5. N. Gonciulea and V. Lakshmibai, Flag varieties, to appear in Hermann-Actualites Mathematiques.
6. J. Herzog and N.V. Trung, Gröbner bases and multiplicity of determinantal and Pfaffian ideals, Adv. Math., 96 (1992), 1–37.
7. V. Lakshmibai and J. Weyman, Multiplicities of points on a Schubert variety in a minuscule G/P, Adv. in Math., 84 (1990), 179–208.
8. C. Musili, Postulation formula for Schubert varieties, J. Indian Math. Soc., 36 (1972), 143–171.
9. J. Rosenthal and Zelevinsky, Multiplicities of points on Schubert varieties in Grassmannians, J. Algebraic Combin. 13 (2001), no. 2, 213–218.