Information-Theoretic Comparison of Quantum Many-Body Systems

K. Ch. Chatzisavvas, C. P. Panos, S. E. Massen

Physics Department,
Aristotle University of Thessaloniki,
54124 Thessaloniki, Greece

May, 2003

Abstract

An information measure inspired by Onicescu’s information energy and Uffink’s information measure (recently discussed by Brukner and Zeilinger) are calculated as functions of the number of particles N for fermionic systems (nuclei and atomic clusters) and correlated bosonic systems (atoms in a trap). Our results are compared with previous ones obtained for Shannon’s information entropy, where a universal property was derived for atoms, nuclei, atomic clusters and correlated bosons. It is indicated that Onicescu’s and Uffink’s definitions are finer measures of information entropy than Shannon’s.

Onicescu [1] introduced the concept of information energy E as a finer measure of dispersion distributions than that of Shannon’s information entropy [2, 3]. So far, only the mathematical aspects of this concept have been developed, while the physical aspects have been neglected [4].

*e-mail: kchatz@auth.gr
†e-mail: chpanos@auth.gr
‡e-mail: massen@physics.auth.gr
The information energy for a single statistical variable x with the normalized density $\rho(x)$ is defined by

$$E(\rho) = \int \rho^2(x) \, dx$$ \hspace{1cm} (1)

For a Gaussian distribution of mean value μ, standard deviation σ and normalized density

$$\rho(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$ \hspace{1cm} (2)

relation (1) gives

$$E = \frac{1}{2\pi\sigma^2} \int_{-\infty}^{\infty} e^{-\frac{(x-\mu)^2}{\sigma^2}} \, dx$$

Thus

$$E = \frac{1}{2\sigma\sqrt{\pi}}$$ \hspace{1cm} (3)

Therefore, the greater the information energy E, the narrower the Gaussian distribution. E does not have the dimension of energy, but it has been connected with Planck’s constant appearing in Heisenberg’s uncertainty relation [4, 5].

For a 3-dimensional spherically symmetric density distribution $\rho(r)$ the obvious generalization of (1) is

$$E_r = \int \rho^2(r)4\pi r^2 \, dr$$ \hspace{1cm} (4)

and

$$E_k = \int n^2(k)4\pi k^2 \, dk$$ \hspace{1cm} (5)

in position- and momentum-space respectively, where $n(k)$ is the density distribution in momentum-space.

E_r has the dimension of inverse volume, while E_k of volume. Thus the product $E_r E_k$ is dimensionless and is a measure of the concentration (or the information content) of the density distribution of a quantum system. As seen from (3) E increases as σ decreases (or the concentration increases) and Shannon’s information entropy (or uncertainty) S decreases. Clearly, Shannon’s information S and information energy E are reciprocal. In order to be able to compare them, we define the quantity

$$S_E = \frac{1}{E_r E_k}$$ \hspace{1cm} (6)
as a measure of the information content of a quantum system in both position
and momentum spaces.

In place of Shannon information, Brukner and Zeilinger [6] propose the
quantity

\[I = N \sum_{i=1}^{n} \left(p_i - \frac{1}{n} \right)^2 \]

(7)

from which they derive their notion of information content of a discrete prob-
ability distribution \(p_1, p_2, \ldots, p_n \). The quantity \(\sum_{i=1}^{n} (p_i - \frac{1}{n})^2 \) is one of the
class of measures of the concentration of a probability distribution given by
Uffink [7, 8]. For a continuous 3-dimensional density distribution \(\rho(r) \), relation
(7) is extended as \((N = 1) \)

\[I_r = \int \left(\rho(r) - \tilde{\rho}(r) \right)^2 4\pi r^2 \, dr \]

(8)

and

\[I_k = \int \left(n(k) - \tilde{n}(k) \right)^2 4\pi k^2 \, dk \]

(9)

in position- and momentum space respectively, \(\tilde{\rho}(r) \) is the equivalent uniform
distribution defined according to the relation

\[\tilde{\rho}(r) = \begin{cases} \rho_0 & 0 < r < R_U \\ 0 & r > R_U \end{cases} \]

(10)

where \(\rho_0 \) = constant and \(R_U = R_{\text{uniform}} \) are fixed by the relation

\[\langle r^2 \rangle_U = \langle r^2 \rangle_{\rho(r)} \]

(11)

where

\[\langle r^2 \rangle_U = \int_0^{R_U} \rho_0 r^2 4\pi r^2 \, dr \]

(12)

and

\[\langle r^2 \rangle_{\rho(r)} = \int_0^{\infty} \rho(r) r^2 4\pi r^2 \, dr \]

(13)

while

\[R_U = \sqrt{\frac{5}{3} \langle r^2 \rangle_{\rho(r)}} \]

(14)

and

\[\rho_0 = \frac{3}{4\pi R_U^3} \]

(15)
$\hat{n}(k)$ is the equivalent uniform distribution in momentum-space, defined in a similar way. Thus we define a measure of information content by the relation

$$S_I = \frac{1}{I_r I_k}$$

which gives (16) putting $\hat{\rho}(r) = \hat{n}(k) = 0$.

We calculate S_E and S_I as functions of the number of particles N for three quantum many-body systems, where $\rho(r)$ and $\eta(k)$ are calculated numerically:

1. Nuclei, using the Skyrme III parametrization of the nuclear field [9]. Here N is the number of nucleons in nuclei.

2. Atomic clusters, employing a Woods-Saxon potential parametrized by Ekardt [10]. Here N is the number of valence electrons.

3. A correlated bosonic system (atoms in a trap) [11, 12]. Here N is the number of atoms in the trap.

In Fig.1 we plot S_E as a function of N for nuclei and clusters and in Fig.2 $S_I(N)$ for the same systems. In Fig.3 we plot $S_E(N)$ and in Fig.4 $S_I(N)$ for a correlated bosonic system. It is seen that S_E depends linearly on N for both nuclei and atomic clusters. Also S_I shows a similar trend (a power of N) for nuclei and clusters. However the dependence $S_E(N)$ and $S_I(N)$ is different for correlated bosons compared with nuclei and clusters.

Our fitted expressions are:

$$S_E(\text{clusters}) = 143.420 N, \quad S_E(\text{nuclei}) = 73.883 N \quad \text{(Fig.1)}$$

$$S_I(\text{clusters}) = 431.576 N^{1.719}, \quad S_I(\text{nuclei}) = 260.275 N^{1.554} \quad \text{(Fig.2)}$$

We can compare with the universal relation $S(N) = a + b \ln N$ (a, b are constants depending on the system) obtained recently [13] for Shannon’s information entropy for fermionic systems (atoms, nuclei and atomic clusters) and correlated bosonic systems [11] (atoms in a trap). It was seen [13] that $S(N)$ shows the same dependence on N for all the systems considered i.e. nuclei, clusters, atoms and correlated bosons.
It is conjectured that nuclei and atomic clusters are equivalent from an information-theoretic point of view in the following sense: under any definition of information content (e.g. Shannon, Onicescu or Uffink), the dependence of information shows a similar trend (linear on \(\ln N \) for Shannon, linear on \(N \) for Onicescu and a power of \(N \) for Uffink). However, the similarity breaks down for bosons. This indicates that \(S_E \) and \(S_I \) distinguish between fermions and correlated bosons i.e. they are finer measures of information than Shannon’s \(S \). Our results may contribute to the recent debate between Brukner-Zeilinger and Timpson for a possible inadequacy of the Shannon information \[6, 14\]

References

[1] O. Onicescu, *C. R. Acad. Sci. Paris A* 263 (1966)

[2] C. E. Shannon, *Bell Syst. Tech. J.* 27 (1948), 379; ibid. 27 (1948) 623

[3] C. E. Shannon, W. Weaver, *The Mathematical Theory of Communication*, University of Illinois Press, Urbana and Chicago, 1963

[4] M. Agop, C. Buzea, C. Gh. Buzea, L. Chirila, S. Oancea, *Chaos, Solitons and Fractals* 7 (1996), 659

[5] H. Ioannidou, *Int. Journ. of Theor. Phys.* 20 20 (1981), 1129

[6] C. Brukner, A. Zeilinger, *Phys. Rev. A* 63 (2001), 022113

[7] J. Uffink, *PhD Thesis*, University of Utrecht (1990)

[8] H. Maassen, J. Uffink, *Phys. Rev. Lett.* 60 (1988), 1103

[9] C. B. Dover, N. Van Giai, *Nucl. Phys. A* 190 (1972), 373

[10] N. Ekardt, *Phys. Rev. B* 29 (1984), 1558

[11] S. E. Massen, Ch. C. Moustakidis, C. P. Panos, *Phys. Lett. A* 299 (2002), 131

[12] A. Fabrocini, A. Polls, *Phys. Rev. A* 60 (1999), 2319

[13] S. E. Massen, C. P. Panos, *Phys. Lett. A* 246 (1998), 530
[14] C. G. Timpson, LANL archive, quant-ph/0112178
Figure 1: Onisescu’s information entropy S_E as function of N & for nuclei (circles) and atomic clusters (squares)
Figure 2: The same as in Fig. 1 but for Uffink’s information & entropy S_i
Figure 3: Dependence of S_E on N for correlated bosons
Figure 4: The same as in Fig.3 but for S_I