Corticosteroids Use in Pregnant Women with COVID-19: Recommendations from Available Evidence

Abstract: Pregnant women experience immune system changes to accommodate and tolerate the growing foetus, these changes also increase their susceptibility to viral infections such as SARS-COV-2. COVID-19 in pregnancy increases the likelihood of hospital admission and intensive care compared to non-pregnant women. Early administration of low-dose corticosteroids to patients with acute respiratory distress syndrome can reduce all-cause mortality among such patients. However, during pregnancy, prolonged use of corticosteroids that readily cross the placenta like dexamethasone can negatively impact both the mother and foetus. Evidence is thus needed on the choice, timing, and duration for corticosteroids use among pregnant women with COVID-19. This article aims to provide evidence on corticosteroid use in pregnant women with COVID-19. The RECOVERY trial deduced that low-dose dexamethasone (6 milligrams) reduced mortality by up to one-third among COVID-19 patients on mechanical ventilation and one-fifth among those who received supplemental oxygen. Pregnant women in this trial received either oral prednisolone or intravenous hydrocortisone. Based on the RECOVERY trial findings, the Royal College of Obstetricians and Gynaecologists (RCOG) recommends that pregnant women with moderate-to-severe COVID-19 receive oral prednisolone or intravenous hydrocortisone. However, currently, the World Health Organisation (WHO) does not explicitly specify which corticosteroid to use among pregnant women with moderate-to-severe COVID-19. We also note that there are no published articles on corticosteroid use among pregnant women with severe COVID-19 in Africa.

Keywords: COVID-19, corticosteroids, pregnant-women, prednisolone, preterm birth

Background
Globally, health systems have been immensely strained by COVID-19 cases since it was declared a global pandemic by the World Health Organisation on 11 March 2020. With more than 100 million Covid-19 cases and 2.4 million deaths worldwide, evidence on the effect of COVID-19 in pregnancy is still scanty. However, the available data elucidates that there may or may not be a different disease progression pattern at the various stages of pregnancy. Maternal changes in the immunity (immune modulation) to accommodate and tolerate the growing foetus is known to predispose pregnant women to the wrath of viral infections. Pregnancy exacerbates the morbidity of COVID-19, with the effect potentiating as the pregnancy nears term. Pregnancy increases the probability of hospital admission and intensive care. There is, however, no difference in the risk of dying from COVID-19 between pregnant and non-pregnant women.
There is still elusive evidence about the incidence, transmission, and effects of COVID-19 among pregnant women and their foetuses. Nevertheless, several studies have thrown some light on how the disease affects this vulnerable population. For instance, when admitted for COVID-19, pregnant women are likely to have comorbidities, for example, asthma, hypertension, type 2 diabetes, obesity, and autoimmune diseases, just like their non-pregnant counterparts. Early preliminary reports showed that the risk of infection was more apparent as the pregnancy neared term, and it still holds. Such studies also indicated that many pregnant women contracted COVID-19 during the third trimesters, and the majority had prodromal symptoms. However, as the pandemic has progressed, more women have presented with COVID-19 as early as the first trimester. Most pregnant women with COVID-19 are asymptomatic: many others have mild symptoms, from cough, myalgia, headache, to fevers, loss of taste or smell senses. A hospital analysis in the UK deduced that pregnant women with COVID-19 at 20 weeks’ gestation and beyond are five times more likely to be admitted to intensive care units than those below 20 weeks’ gestation. Across all studies, only a few pregnant women with COVID-19 developed severe disease requiring oxygen support or mechanical ventilation. Overall, the risk factors for COVID-19 among pregnant women mirror those of the general population.

COVID-19 in pregnancy increases the risks of preterm delivery by three-fold. Most of the preterm deliveries are iatrogenic, mostly due to maternal indications. The disease is associated with an increased rate of Caesarean deliveries. The evidence that COVID-19 in pregnancy may be associated with increased rates of miscarriage is insufficient. A prospective study at a tertiary treatment centre in Turkey reported that twelve out of 533 pregnant women with COVID-19 had miscarriages. A few neonates have contracted COVID-19 during the postpartum period. However, there’s no evidence of vertical transmission. Currently, clinicians have not observed an increase in stillbirths or neonatal deaths among pregnant women with COVID-19. Also, no evidence exists that the disease causes foetal growth restriction.

Whether iatrogenic or not, the observation that COVID-19 is associated with preterm delivery implies that such women are subjected to antenatal corticosteroids to accelerate foetal lung maturation. Both the American College of Obstetricians and Gynaecologists (ACOG) and the RCOG recommend that all pregnant women at risk of imminent preterm birth receive antenatal corticosteroids to decrease the risk of neonatal respiratory complications. This article aims to provide evidence on corticosteroid use in pregnant women with COVID-19. We literature searched from key databases that included; Google Scholar, Web of Science and PubMed using search terms like “COVID-19 in pregnancy”, “antenatal corticosteroids”, “acute respiratory distress syndrome” and “corticosteroids”. In addition, we also used the World Health Organisation (WHO) open-source databases. We then extracted and used the articles that were relevant to the topic.

Why Corticosteroids?
Death among patients with COVID-19 is mainly due to a bout of acute respiratory distress syndrome (ARDS). Following a direct or indirect injury to the lungs, three clinical features define ARDS. They are, increased breathing rate (tachypnoea), an abnormally low blood oxygen concentration (respiratory hypoxaemia), and diffuse lung infiltrates (opacities on chest radiographs). During the severe form of COVID-19, the respiratory system mounts an abnormally viscous immune response through a series of proinflammatory mediators and cytokines – a series of events clinicians have described as a cytokine storm. It culminates in a pathological state known as secondary haemophagocytic lymphohistiocytosis.

Normally in clinical practice, women at risk of imminent preterm delivery receive a short course of dexamethasone or betamethasone to accelerate foetal lung maturation. Likewise, in severe COVID-19 condition, such patients must receive a corticosteroid that poses the least effects on the growing foetus. Corticosteroids refine the inflammatory response by decreasing the concentration of circulating proinflammatory mediators like tumour necrosis factor-alpha, interleukin-1 and interleukin-6. They control inflammation by causing immunosuppression; as such, they have a role in managing patients experiencing ARDS. The ARDS outcomes improve with prolonged corticosteroid therapy. Low-dose corticosteroids, when administered early among patients with ARDS can reduce all-cause mortality among such patients.

Because pregnant women with COVID-19 have an accentuated risk of hospital admission and intensive care, they are likely to develop ARDS – and when they do, clinicians must use the corticosteroid that poses the least effect to both the mother and her foetus.
What Corticosteroids?
The RECOVERY trial deduced that low-dose dexamethasone (6 milligrams) reduced mortality by up to one-third among COVID-19 patients on mechanical ventilation and one-fifth among those receiving supplemental oxygen. However, it showed no benefit among COVID-19 patients with mild disease. Pregnant women in this study received either oral prednisolone or intravenous hydrocortisone. The RCOG recommends that pregnant women with moderate-to-severe COVID-19 should receive oral prednisolone or intravenous hydrocortisone. But Saad et al recommend that such patients should receive methylprednisolone instead – because it has proven efficacy in acute lung injury and crosses the placental barrier in minute concentrations.

However, it showed no benefit among COVID-19 patients on mechanical ventilation. The RECOVERY trial deduced that low-dose dexamethasone (6 milligrams) reduced mortality by up to one-third among COVID-19 patients. It is highly soluble in lipids.

The drug that extensively distributes by volume, stays in the lung tissues longer, and achieves higher concentrations in the lungs than prednisolone. It is so because methylprednisolone vastly penetrates the lung tissues at a higher degree when compared to prednisolone. The body has transporter molecules like albumin that carry drugs from one point to another. Methylprednisolone exhibits a low affinity when binding to albumin – yet it does so with a very high capacity. Contrasting, a protein molecule (transcortin) carries prednisolone around the body. Prednisolone has a very high affinity, but it binds to it with a lower capacity. It implies that methylprednisolone more avidly reaches the lungs than prednisolone. The placenta metabolises methylprednisolone, as well as prednisolone. It denotes that both corticosteroids are likely to get to the foetus at equivalent concentrations. The drug that extensively distributes in the lung tissues with a limited placental transfer becomes an ideal agent to treat pregnant women with moderate-to-severe COVID-19. When such women are at risk of imminent preterm delivery, they should receive a short course of dexamethasone or betamethasone, followed by methylprednisolone for that matter.

Gaps in the Current Evidence and Recommendations
To date, few studies exist that are exploring corticosteroid use specifically in pregnant women with COVID-19. It
means that clinicians will still extrapolate data to formulate practice guidelines for this vulnerable population. There is limited evidence concerning the severity of COVID-19 based on the gestational age or trimesters. There is a need for further risk stratification of women in future studies.

Moreover, as of February 2021, no data presented in this article explicitly comes from the African continent which has the highest burden of maternal mortality and morbidity. Therefore, we recommend more emphasis about the pattern of COVID-19 in pregnancy among the African population. We also recommend that more trials be conducted to assess the benefits of corticosteroids use among pregnant women with severe COVID-19. The RECOVERY trial alone is not enough to deduce practice guidelines across the entire globe. We further recommend that governments in low- and middle-income countries, for example, Uganda, ensure that corticosteroids, especially those that have proven beneficial to this vulnerable population are readily available and affordable.

Conclusions
The above evidence favours the use of methylprednisolone rather than prednisolone among pregnant women with severe COVID-19. When preterm delivery is imminent, such a patient can receive the short course of dexamethasone to accelerate foetal lung maturation. She then continues getting methylprednisolone for the duration as stipulated by the country-specific COVID-19 guidelines. We explicitly note that the RCOG recommends prednisolone or hydrocortisone among pregnant women with severe COVID-19. These two drugs are not only cheaper in most low resource limited settings, but also readily available.

Acknowledgments
We thank the institutions such as RCOG for the open-source data which was partly used for this study.

Author Contributions
All authors made substantial contributions to conception and design, acquisition of data, or analysis and interpretation of data; took part in drafting the article or revising it critically for important intellectual content; agreed to submit to the current journal; gave final approval of the version to be published; and agree to be accountable for all aspects of the work.

Disclosure
All authors declare that they have no conflicts of interest.

References
1. Sserwanja Q, Kawuki J, Kim JH. Increased child abuse in Uganda amidst COVID-19 pandemic. J Paediatr Child Health. 2020;56(9):1469-1473. doi:10.1111/jpc.15289
2. Biadgilign S, et al. COVID-19 in Ethiopia: current situation, missed opportunities, and the risk of health system disruptions. Pan Afr Med J. 2020;35(2):66. doi:10.11604/pamj.supp.2020.35.2.23906
3. Worldometer. COVID-19 Coronavirus Pandemic. Available from: https://www.worldometers.info/coronavirus/. Accessed March 4, 2021.
4. Knight M, Bunch K, Voudsen N, et al. Characteristics and outcomes of pregnant women admitted to hospital with confirmed SARS-CoV-2 infection in UK: national population based cohort study. BMJ (Clinical Research Ed). 2020;369:m2107. doi:10.1136/bmj.m2107
5. Barbero P, Mugiera L, Herrazi I, et al. SARS-CoV-2 in pregnancy: characteristics and outcomes of hospitalized and non-hospitalized women due to COVID-19. J Maternal Fetal Neonatal Med. 2020;1-7. doi:10.1080/14767058.2020.1793320
6. Tug N, Yassa M. Pregnancy worsens the morbidity of COVID-19 and this effect becomes more prominent as pregnancy advances. 2020;17(3):149-154. doi:10.4274/tjod.galenos.2020.38924
7. Lokken EM, Huebner EM, Taylor GG, et al. Disease severity, pregnancy outcomes and maternal deaths among pregnant patients with SARS-CoV-2 infection in Washington state. Am J Obstet Gynecol. 2021. doi:10.1016/j.ajo.2020.12.1221
8. DeBolt CA, Bianco A, Limaye MA, et al. Pregnant women with severe or critical coronavirus disease 2019 have increased composite morbidity compared with nonpregnant matched controls. Am J Obstet Gynecol. 2020. doi:10.1016/j.ajo.2020.11.022
9. Royal College of Obstetricians and Gynaecologists. Coronavirus infection in pregnancy. Available from: https://www.rcog.org.uk/globalassets/documents/guidelines/2020-09-21-coronavirus-lit-search.pdf. Accessed March 4, 2021.
10. Sahin D, Tanacan A, Erol SA, et al. Updated experience of a tertiary pandemic center on 533 pregnant women with COVID-19 infection: a prospective cohort study from Turkey. Int J Gynecol Obstetrics. 2021;152(3):328-334. doi:10.1002/ijgo.13460
11. Yang Z, Wang M, Zhu Z, Liu Y. Coronavirus disease 2019 (COVID-19) and pregnancy: a systematic review. J Maternal Fetal Neonatal Med. 2020;1-4. doi:10.1080/14767058.2020.1759541
12. Kasraein M, Zare M, Vafaei H, et al. COVID-19 pneumonia and pregnancy; a systematic review and meta-analysis. J Maternal Fetal Neonatal Med. 2020;1-8. doi:10.1080/14767058.2020.1763952
13. Sacccone G, Berghella V. Antenatal corticosteroids for maturity of term or near term fetuses: systematic review and meta-analysis of randomized controlled trials. BMJ (Clinical Research Ed). 2016;355:i5044. doi:10.1136/bmj.i5044
14. Guan W-J, Z-y N, Hu Y, et al. Clinical characteristics of coronavirus disease 2019 in China. N Engl J Med. 2020;382(18):1708-1720. doi:10.1056/NEJMoa2002032
15. Thompson BT, Chambers RC, Liu KD. Acute Respiratory Distress Syndrome. N Engl J Med. 2017;377(6):562-572. doi:10.1056/NEJMra1608077
16. Mehta P, McAuley DF, Brown M, Sanchez E, Tattersall RS, Manson JJ. COVID-19: consider cytokine storm syndromes and immunosuppression. The Lancet. 2020;395(10229):1033-1043. doi:10.1016/S0140-6736(20)30628-0
17. Roberts D, Brown J, Medley N, Dalziel SR. Antenatal corticosteroids for accelerating fetal lung maturation for women at risk of preterm birth. Cochrane Database Syst Rev. 2017;3(3):Cd004454. doi:10.1002/14651858.CD004454.pub3
18. The American College of Obstetricians and Gynaecologists. Antenatal Corticosteroid Therapy for Fetal Maturation. Available from: https://www.acog.org/clinical/clinical-guidance/committee-opinion/articles/2017/08/antenatal-corticosteroid-therapy-for-fetal-maturation. Accessed March 4, 2021.

19. Lamontagne F, Brower R, Meade M. Corticosteroid therapy in acute respiratory distress syndrome. CMAJ. 2013;185(3):216–221. doi:10.1503/cmaj.120582

20. Meduri GU, Bridges L, Shih M-C, Marik PE, Siemieniuk RAC, Kocak M. Prolonged glucocorticoid treatment is associated with improved ARDS outcomes: analysis of individual patients’ data from four randomized trials and trial-level meta-analysis of the updated literature. Intensive Care Med. 2016;42(5):829–840. doi:10.1007/s00134-015-4095-4

21. University of Oxford. The Recovery trial. https://www.recoverytrial.net/. Accessed March 4, 2021.

22. Saad AF, Chappell L, Saade GR, Pacheco LD. Corticosteroids in the management of pregnant patients with Coronavirus Disease (COVID-19). Obstet Gynecol. 2020;136(4):823–826. doi:10.1097/AOG.0000000000004103

23. Villar J, Ferrando C, Martínez D, et al. Dexamethasone treatment for the acute respiratory distress syndrome: a multicentre, randomised controlled trial. Lancet Respir Med. 2020;8(3):267–276. doi:10.1016/s2213-2600(19)30417-5

24. World Health Organization. Corticosteroids for COVID-19. Available from: https://apps.who.int/iris/rest/bitstreams/1299344/retrieve. Accessed March 4, 2021.

25. Annane D, Pastores SM, Arlt W, et al. Critical illness-related corticosteroid insufficiency (CIRCI): a narrative review from a Multispecialty Task Force of the Society of Critical Care Medicine (SCCM) and the European Society of Intensive Care Medicine (ESICM). Intensive Care Med. 2017;43(12):1781–1792. doi:10.1007/s00134-017-4914-x

26. Mariotti V, Marconi AM, Pardi G. Undesired effects of steroids during pregnancy. J Maternal Fetal Neonatal Med. 2004;16(Suppl 2):5–7. doi:10.1080/14767050410001727099

27. Murphy VE, Fittock RJ, Zarzyczyk PK, Delahunty MM, Smith R, Clifton VL. Metabolism of synthetic steroids by the human placenta. Placenta. 2007;28(1):39–46. doi:10.1016/j.placenta.2005.12.010

28. Vichyanond P, Irvin CG, Larsen GL, Szefler SJ, Hill MR. Penetration of corticosteroids into the lung: evidence for a difference between methylprednisolone and prednisolone. J Allergy Clin Immunol. 1989;84(6 Pt 1):867–873. doi:10.1016/0091-6749(89)90381-3

29. Groes LS, Vichyanond P, Bloedow DC, et al. Methylprednisolone achieves greater concentrations in the lung than prednisolone. A pharmacokinetic analysis. Am Rev Respir Dis. 1991;144(3 Pt 1):586–592. doi:10.1164/ajrccm/144.3_Pt_1.586

30. Sserwanja Q, Musaba MW, Mukunya D. Prevalence and factors associated with modern contraceptives utilization among female adolescents in Uganda. BMC Women’s Health. 2021;21(1):61. doi:10.1186/s12905-021-01206-7