Cloning and Primary Functional Analysis of PeGRF1 in Phyllostachys edulis

Lou Yongfeng 1, Song Xiaochen 1, Sun Huayu 2, Gao Zhimin 2

1 Jiangxi Academy of Forestry, Jiangxi Provincial Key Laboratory of Plant Biotechnology, Nanchang, 330013, China
2 Institute of Gene and Industrialization for Bamboo and Rattan Resources, International Center for Bamboo and Rattan, State Forestry and Grassland Administration, Beijing Key Laboratory on the Science and Technology of Bamboo and Rattan, Beijing, 1001023, China

Corresponding author Email: gaozhimin@icbr.ac.cn

Molecular Plant Breeding, 2020, Vol.11, No.30 doi: 10.5376/mpb.2020.11.0030
Received: 20 Nov., 2020
Accepted: 18 Dec., 2020
Published: 31 Dec., 2020

Copyright © 2020 Lou et al., This article was first published in Molecular Plant Breeding in Chinese, and here was authorized to translate and publish the paper in English under the terms of Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Preferred citation for this article:
Lou Y.F., Song X.C., Sun H.Y., and Gao Z.M., 2020, Cloning and primary functional analysis of PeGRF1 in Phyllostachys edulis, Molecular Plant Breeding, 11(30): 1-9 (doi: 10.5376/mpb.2020.11.0030)

Abstract To explore the role of Growth regulating-factor (GRF) in the growth of bamboo shoots, one GRF gene was isolated from moso bamboo (Phyllostachys edulis) by RT-PCR. Bioinformatics methods were used for gene sequence analysis, and the expression pattern of the GRF gene in bamboo shoots at different development stages was analyzed by qRT-PCR. Simultaneously, ectopic expression in Arabidopsis was conducted to validate the gene function. The result showed that the isolated gene from moso bamboo was 1 164 bp, encoding 387 amino acids, which was named as PeGRF1. Protein sequence analysis showed that PeGRF1 had the complete typical domains (WRC and QLQ) of GRF family. The phylogenetic analysis demonstrated that PeGRF1 were clustered closer to the GRFs of monocotyledonous plants such as Oryza sativa, indicating they had close relationship. PeGRF1 expressed predominantly in young bamboo shoots. Meanwhile, the expression level of PeGRF1 was significantly higher during rapid growth stage than that during slow growth stage of bamboo shoots, and the expression level of PeGRF1 in the upper and middle of bamboo shoots was significantly higher than that in the base. Overexpression of PeGRF1 could increase the plant height of transgenic Arabidopsis. Taken together, our results demonstrated that PeGRF1 was involved in development of bamboo shoots, which provided references for elucidating the biological functions of GRF genes in bamboo.

Keywords Phyllostachys edulis; GRF gene; Function analysis; Stem growth

The Growth regulating factor (GRF) is a plant-specific transcription factor, and that playing an important role in regulating plant growth and development (Omidbakhshfard et al., 2015; Yuan et al., 2017; He et al., 2018). The OsGRF1 of Oryza sativa is the first member of GRF gene family was identified, and it perform a regulatory role in rice stem growth by GA (Van der Knaap et al., 2000). At present, more and more GRF gene families have been identified. For example, the Oryza sativa genome harbours at least 12 GRF genes and the Arabidopsis thaliana genome harbours at least 9 GRF genes (Kim et al., 2003; Choi et al., 2004). In recent years, with the continuous publication of plant genome, many non-model plants GRF gene families have also been identified and analyzed, such as Brassica rapa (Wang et al., 2014), Citrus sinensis (Liu et al., 2016), Camellia sinensis (Wu et al., 2017) and Brassica juncea (Zhang et al., 2020). GRF proteins consist of two conserved domains, the QLQ and WRC domains, in the N-terminal regions. The QLQ domain acts as a transcriptional co-activator, while the WRC domain comprises a functional nuclear localization signal and a zinc-finger motif that functions in DNA binding, which play an important role in the implementation of biological functions of GRF genes (Cao et al., 2016; He et al., 2018).

Previous studies have shown that the GRF genes are strongly expressed in actively growing and developing tissues, and thus participate in the regulation of the growth and development of plant, such as stem elongation (Van der Knaap et al., 2000), leaf development (Kim et al., 2003), flower development (Lee et al., 2014) and root growth (Bao et al., 2014). Overexpression of AtGRF1, AtGRF2 or AtGRF5 results in larger leaves in Arabidopsis (Kim et al., 2003; Horiguchi et al., 2005); meanwhile, overexpression of OsGRF1 lead to plant height in Arabidopsis (Van der Knaap et al., 2000). In addition, overexpression of ZmGRF10 results in smaller leaves, decreased cell number and increased cell size (Wu et al., 2014). These results indicated that the function of GRF gene was diverse.
Stem is the main structural of the plant, supporting the above-ground tissues or organs of the plant, and its growth largely effect the size of the plant. In grasses, the stem is composed of nodes and internodes. Bamboo belongs to the subfamily Bambusoideae of the Poaceae family, as an important group of forest, many bamboo species can complete their height growth in the short term. For example, the moso bamboo can grow more than 10 m in 2 months (Yuan et al., 2015), the Dendrocalamus hamiltonii height-growth lasts for about 3 months (Li et al., 2010). In order to explore the mechanism of the rapid growth of bamboo, there are many studies about moso bamboo from various aspects, such as morphological (Cui et al., 2012), physiology and biochemistry (Sun et al., 2018), molecular regulation (Bu et al., 2020). The moso bamboo genome harbours at least 18 GRF genes, and among which at least one GRF1 homologous gene exists (He et al., 2018). Therefore, Based on previous studies, a GRF gene, PeGRF1, was cloned from moso bamboo, and its expression pattern in the rapid growth stage of bamboo shoots was preliminarily analyzed in this study. Meanwhile, ectopic expression in Arabidopsis provided reference for the functional analysis of moso bamboo GRF gene in the future.

1 Results

1.1 Molecular characterization of PeGRF1 in moso bamboo

A cDNA fragment of 1 200 bp was obtained from moso bamboo (Ph. edulis) leaves using the primers, which was consistent with the expected size (Figure 1). The sequencing results showed that the isolated gene from moso bamboo was 1 164 bp, which was 99.57% consistent with that of PH01087379G0010 in the BambooGDB database. The gene encoded 387 amino acids with a calculated molecular mass of 42.3 kDa and a theoretical isoelectric point of 7.66, named PeGRF1.

The secondary structure of PeGRF1 protein was predicted by SOMPA software, and the results showed that the random coil was about 67.44%, the extended strand was about 11.89%, and the α helix and β turn were about 18.09% and 2.58%, respectively. There are similar in the N and C terminal regions between PeGRF1 and OsGRF1 proteins, but it is different in their middle region.

Figure 1 Cloning of Moso bamboo PeGRF1
Note: M: 100 bp Ladder III; 1~2: PCR products

1.2 Alignment and phylogenetic analysis of PeGRF1

The deduced amino acid sequences of PeGRF1 were further examined for homology analysis with other known GRF1 sequences using BLASTP program in NCBI. The result showed that PeGRF1 was more than 75% homologous with those of other monocots, such as Oryza sativa, Brachypodium distachyum and Hordeum vulgare. And about 55% homologous with those of other dicots, such as Arabidopsis thaliana, Brassica rapa and Populus trichocarpa. Similar to other GRF, PeGRF1 had the complete typical domains (WRC and QLQ) of GRF family (Figure 2).
Figure 2 Alignment of the deduced amino acid sequences of GRF1 from *Ph. edulis* and other plants

Note: At: *Arabidopsis thaliana*; Bd: *Brachypodium distachyum*; Br: *Brassica rapa*; Hv: *Hordeum vulgare*; Pe: *Phyllostachys edulis*; Pt: *Populus trichocarpa*; Os: *Oryza sativa*; Vv: *Vitis vinifera*

To investigate the phylogenetic relationship of GRF1 among different species, a phylogenetic tree was constructed based on the amino acid sequence of GRF1 from *Ph. edulis* and other plants. In the phylogenetic tree, GRF from monocots and dicots were clustered into two clades (Figure 3). Furthermore, the PeGRF1 and OsGRF1 were in the same clades, PeGRF1 homology with the OsGRF1 was the highest (84%), indicating that they are closely related.
1.3 Expression analysis of *PeGRF1*

The expression patterns of *PeGRF1* in different tissues of moso bamboo were analyzed according to the RPKM value of PH0108739G0010 in moso bamboo transcriptome data. It is found that RPKM value of *PeGRF1* in leaves, early panicles, advanced panicles, roots, rhizomes, 20-cm and 50-cm bamboo shoots were 2.42, 1.83, 1.52, 4.12, 5.92, 55.33 and 72.14, respectively. This showed that *PeGRF1* are expressed in all tissues, however, the expression levels of *PeGRF1* are difference in different tissues. *PeGRF1* expressed predominantly in young bamboo shoots, such as 20 cm and 50 cm bamboo shoots.

The expression patterns of *PeGRF1* in different development stage of bamboo shoots were analyzed using qRT-PCR. The results demonstrated that the expression levels of *PeGRF1* increased significantly along with the shoot growth, and reached the highest expression level in 3.0 m bamboo shoots. The expression levels of *PeGRF1* in 6.7 m bamboo shoots decreased slightly compared with that of 3.0m bamboo shoots, but it was still significantly higher than that of 0.2 m bamboo shoots (Figure 4A). Further analysis showed that *PeGRF1* had the highest expression in the upper internodes and nodes of 3.0 m and 6.7m bamboo shoots, and it was significantly higher than that of the middle and the basal (Figure 4 B; Figure 4C).

Figure 3 Phylogenetic tree constructed based on GRF1 protein sequences
Note: At: Arabidopsis thaliana; Bd: Brachypodium distachyum; Bn: Brassica napus; Br: Brassica rapa; Cs: Citrus sinensis; Es: Eutrema salsugineum; Hv: Hordeum vulgare; Pe: Phyllostachys edulis; Pt: Populus trichocarpa; Os: Oryza brachyantha; Os: Oryza sativa; Ph: Panicum hallii; Qs: Quercus suber; Si: Setaria italica; Ta: Triticum aestivum; Vv: Vitis vinifera

Figure 4 Expression pattern analysis of *PeGRF1*
Note: A: Basal of bamboo shoots with different heights; B-C: Different parts of 3.0 m and 6.7 m bamboo shoots; IN: Internode; N: Node; A single and two asterisks indicate the significance of the difference is $p<0.05$ and $p<0.01$.
1.4 Generation of *PeGRF1* transgenic Arabidopsis plants and phenotypic analysis

To investigate whether heterologous expression of *PeGRF1* is functional, overexpression vector of *PeGRF1* was constructed and transformed into Arabidopsis (Col-0). After hygromycin resistance screening and verified by PCR, two transgenic lines (L4 and L8) were obtained (Figure 5A). In addition, the transcript levels of *PeGRF1* in L1 and L8 transgenic lines were determined using semi quantitative RT-PCR. The results showed that *PeGRF1* was successfully introduced into the Arabidopsis genome and expressed successfully (Figure 5B). It was found that the plant height of the *PeGRF1* transgenic plants increased significantly compared with the Arabidopsis (Col-0) (Figure 6), indicating that the overexpression of *PeGRF1* affect the growth of transgenic plants.

![Figure 5](image5.png)

Figure 5 Identification of transgenic Arabidopsis (A) and expression analysis of *PeGRF1* in transgenic lines (B)

Note: L1-L8: Suspected transgenic Lines; WT: Wild type (Col-0); M: DL5000 DNA Maker

![Figure 6](image6.png)

Figure 6 Analysis of phenotype (A) and height (B) in *PeGRF1* transgenic Arabidopsis

Note: L4 and L8: Transgenic Lines; WT: Wild type (Col-0); Asterisks indicate significant difference (p<0.05)

2 Discussions

GRF gene is a plant specific transcription factor gene family, and its related studies are increasing in recent years. In previous research, our teams have identified and analyzed 18 GRF genes from moso bamboo by bioinformatics, meanwhile, which tissue expression pattern also analyzed (He et al., 2018). Based on previous studies, a GRF gene, *PeGRF1*, was cloned from moso bamboo, with a length of 1 164 bp, encoding 387 amino acids, and belonging to the GRF gene family. According to the results of *PeGRF1* homology analysis and phylogenetic relationship, *PeGRF1* had high homology and closely relationship with GRF1 from monocots, such as *Oryza sativa*, *Hordeum vulgare*, moreover, had low homology with GRF1 from dicot, such as *Arabidopsis thaliana*, *Brassica rapa*. This indicates that the evolution of the GRF1 in monocots and dicot plants may be differences.

It has reported that the GRF genes are strongly expressed in actively growing and developing tissues, but weakly expressed in mature tissues or organs (Kim et al., 2003; Liu et al., 2016; He et al., 2018). In other words the expression level of GRF gene in tissues or organs is related to the development stage of that. For example, the expression levels of *CsGRF* genes were higher in tender leaves and consistently downregulated during tea plant leaf development (Wu et al., 2017). Bamboo shoots are the tender stage of the stem of bamboo, and the most active parts in the growth and development of various tissues or organs of bamboo. In this study, *PeGRF1* was mainly expressed...
in bamboo shoots, which was consistent with the expression patterns of other plant GRF genes (Kim et al., 2003; Liu et al., 2016), meaning that PeGRF1 play the roles in the development of moso bamboo shoots.

The expression patterns of PeGRF1 in the 0.2, 1.0, 3.0 and 6.7 m bamboo shoots were analyzed, and found that PeGRF1 higher expressed in the 1.0 and 3.0 m bamboo shoots, which was similar to the expression patterns of GRF genes families. The plant height growth process of moso bamboo can be divided into four stages: the initial stage, the ascending stage, fast growth stage and maturity stage. Bamboo shoots after Unearthed, which growth from the basal to the top internode, and showed the pattern of “slow-fast-slow”. The 0.2 m bamboo shoots, which just unearthed and in the initial stage of height growth process, with slow growth and less active of tissues, so the PeGRF1 low expressed. The 1.0, 3.0 and 6.7 m bamboo shoots are in the ascending and fast growth stages, the rapid growth of 1.0 and 3.0 m bamboo shoots mainly caused by the rapid elongation of the basal internode, which have the high activity, and the expression levels of PeGRF1 increased significantly. However, the basal internode of the 6.7 m bamboo shoots has basically completed the height growth, which in the "mature stage", so it activity has decreased. At the same time, PeGRF1 expression decreased. This suggests that PeGRF1 may be involved in the rapid growth of moso bamboo shoots. In addition, at fast growth stages, 3.0 m and 6.7 m bamboo shoots, the growth and development activity of the upper internode of the shoots was significantly higher than that of the middle and basal internode, and the expression level of PeGRF1 in the upper internode was higher than that of the middle and basal internode. The nodes of the bamboo shoots have intercalary meristem, which is an important reason for the elongation of bamboo shoots. Compared with the internodes, the expression level of PeGRF1 in the nodes of bamboo shoots is higher.

GRF transcription factors play an important role in regulating plant growth and development. For example, overexpression of AtGRF1 or AtGRF2 results in larger leaves and cotyledons in Arabidopsis (Kim et al., 2003), Overexpression of BrnGRF2 and BrGRF8 in Arabidopsis also leads to larger leaves, and Overexpression of PagGRF15 in poplar leads to larger leaves (Liu et al., 2012; Wang et al., 2014; Zhou et al., 2019). However, overexpression of ZmGRF10 results in smaller leaves by decreased cell number and increased cell size (Wu et al. 2014). This indicating that GRF gene has both positive and negative regulatory functions. In the present study, we found that PeGRF1 affected plant height, and overexpression of PeGRF1 can increase the plant height in Arabidopsis. Combined with the previous results that PeGRF1 expressed predominantly in young bamboo shoots, meanwhile, the expression levels of PeGRF1 were significantly higher during rapid growth stage than that during slow growth stage of bamboo shoots, we deduced that PeGRF1 plays an important role in regulating bamboo shoots growth and development.

In this study, the full-length cDNA of PeGRF1 of moso bamboo was cloned, and its expression pattern in the rapid growth stage of bamboo shoots was preliminarily analyzed. Meanwhile, ectopic expression in Arabidopsis provided reference for the functional analysis of moso bamboo GRF gene in the future.

3 Materials and Methods

3.1 Plant materials

To examine the expression levels of PeGRF1 in moso bamboo shoots at different development stages, the basal parts of bamboo shoots with different heights (0.2, 1.0, 3.0, and 6.7 m) were collected from the Nanchang Botanical Garden of Jiangxi Academy of Forestry in April to May 2018. In addition, the nodes and internodes of the basal, middle and upper parts with the 3.0 m and 6.7 m moso bamboo shoots were collected, respectively. Each sample was three Biological replicates, frozen immediately in liquid nitrogen and stored at -80°C.

3.2 Total RNA Isolation and cDNA synthesis

The total RNA was extracted using the plant total RNA extraction kit (TaKaRa MiniBEST Plant RNA Extraction Kit, TaKaRa, Dalian, China) according to the manufacturer’s instructions. High quality total RNA was selected and used for the synthesis of cDNA by a reverse transcription system (PrimeScript™ 1st Strand cDNA Synthesis Kit, TaKaRa, Dalian, China).
3.3 Gene isolation and bioinformatics analysis

To identify the putative GRF1 homologue sequence in moso bamboo, the BLAST search was performed using the known sequences of OsGRF1 (AF201895) as queries in the database of BambooGDB. Primers were designed according to the GRF1 homologue sequences (PH01087379G0010) in moso bamboo. GRF1-001: 5'-ATGATGATGATGAGCGGTCGC-3' and GRF1-501: 5'-TCACCTCATCGTTGTTGTCGGGGGACGGTGCTCCG-3'. PCR amplification reactions were performed in a volume of 25μL, which contained 3.0 μL of cDNA, 2.5 μL of 10 × LA Buffer, 2.5 μL of dNTPs Mixture (2.5 μmol/L each), 1.5 μL of forward and reverse primer (10 μmol/L), 0.3 μL of LA Taq DNA polymerase (5 U/μL) and 13.7 μL of ddH2O. PCRs were performed with an initial denaturation at 94°C for 3 min; followed by 35 cycles of denaturation at 94°C for 30 s, annealing at the optimal temperature of 65°C for 30 s, and extension at 72°C for 90 s; followed by a final extension at 72°C for 10 min. The PCR products were inserted into the pMD19-T vector, and subsequently confirmed by sequencing.

Sequence homology was searched using BLASTP (https://blast.ncbi.nlm.nih.gov/Blast.cgi). Multiple alignments of PeGRF1 and GRF1s from other plants were conducted using DNAMAN. Phylogenetic tree was constructed using MEGA 7.0 software. The open reading frame (ORF), molecular weight (MW), and isoelectric point (pI) parameters of PeGRF1 were calculated by the online program ExPasy (http://www.expasy.org/tools/).

3.4 PeGRF1 expression analysis

The expression pattern of PeGRF1 was assessed using quantitative real-time PCR (qRT-PCR), which performed on a qTOWER system, and with specific primers GRF1-002 and GRF1-502 (GRF1-002: 5'-CTCTCCGGGACCTTCTTCAAC-3' and GRF1-502: 5'-GTAAGCAGGAGTGGGTGATAA-3'). PeNTB was also amplified as the reference gene (Fan et al., 2013). The qRT-PCR procedure consisted of 95°C for 5 min and 40 cycles of 95°C for 10 s, and 62°C for 10 s. The reaction volume was 10.0 μL containing 5.0 μL of 2· SYBR Green 1 Master, 1.0 μL cDNA, 0.3μL of primer (5.0 mM, each) and 3.4 μL ddH2O. The relative expression level of PeGRF1 was calculated with 2^{-ΔΔCt} method (Livak and Schmittgen, 2001).

In addition, to investigate the expression of PeGRF1 genes in the different tissues and developmental stages of shoots, RNA-seq data generated from leaves, early panicles, advanced panicles, roots, rhizomes, 20 cm shoots and 50-cm shoots were downloaded from the NCBI Short Read Archive (SRA) (Peng et al., 2013) and used for gene expression analysis.

3.5 Construction of plant expression vectors and transformation

The ORF sequences of PeGRF1 was amplified using the primer pairs of GRF1-003 and GRF-503, which harbored BamHI and XbaI restriction sites in forward and reverse primers respectively. The fragments were subcloned into the corresponding sites of modified pCAMBIA1301 vector, and construction of plant expression vector pCAMBIA1301-PeGRF1. After the validation of integrity by sequencing, the vector pCAMBIA1301-PeGRF1 was introduced into Agrobacterium tumefaciens EHA105 by electroporation, and the positive clones were selected for transform Arabidopsis plants.

Transformation Arabidopsis plants by the floral dip method. T0 generation transgenic Arabidopsis plants were selected using 1/2 MS medium with 30 mg/L hygromycin. T1 generation resistant lines were obtained, and then which DNA extracted for PCR validation. Finally, T2 transgenic lines were selected and used in subsequent research.

Authors' contributions

This work was carried out in collaboration between authors. Lou Yongfeng designed and carried out the experiments, analyzed the results and wrote the manuscript; Song Xiaochen and Sun Huayu contributed experiments and analysis. Gao Zhimin conceived the idea, designed experiments, analyzed the results and wrote the manuscript. All authors read and approved the final manuscript.

Acknowledgments

The work was supported by the Special Funds for Fundamental Scientific Research on Professional Work Supported by the International Center for Bamboo and Rattan (No. 1632020004) and the Natural Science Foundation of Jiangxi Province, China (No.
References

Bao M.L., Bian H.W., Zha Y.L., Li F.Y., Sun Y.Z., Bai B., Chen Z.H., Wang J.H., Zhu M.Y., and Han N., 2014, miR396a-Mediated basic helix-loop-helix transcription factor bHLH74 repression acts as a regulator for root growth in Arabidopsis seedlings, Plant Cell Physiol., 55(7): 1343-1353
https://doi.org/10.1093/pcp/pcu058
PMid:24793750

Bu K.L., Fu L.C., Wang L.J., Li Q.L., Wang K.Y., Ma Y.D., Gao Y., and Zhang R.M., 2020, Analysis of PeATG1/PeATG4 gene expression in Phyllostachys edulis during rapid growth, Zhejiang Nongling Daxue Xuebao (Journal of Zhejiang A&F University), 37(1): 43-50

Cao Y.P., Han Y.H., Jin Q., Lin Y., and Cai Y.P., 2016, Comparative genomic analysis of the GRF genes in Chinese pear (Pyrus bretschneideri Rehd), poplar (Populus), grape (Vitis vinifera), Arabidopsis and rice (Oryza sativa), Front. Plant Sci., 7: 1750
https://doi.org/10.3389/fpls.2016.01750

Choi D.S., Kim J.H., and Kende H., 2004, Whole genome analysis of the OsGRF gene family encoding plant-specific putative transcription activators in rice (Oryza sativa L.), Plant Cell Physiol., 45(7): 897-904
https://doi.org/10.1093/pch/pcd098
PMid:15295073

Fan C.J., Ma J.M., Guo Q.G., Li X.T., Wang H., and Lu M.Z., 2013, Selection of reference genes for quantitative real-time PCR in bamboo (Phyllostachys edulis), PLoS One, 8(2): e56573

He L.Y., Liu W.Y., Lou Y.F., and Xiao F.M., 2018, Genome-wide identification and analysis of GRF transcription factor family in moso bamboo, Zhiwu Kexue Xuebao (Plant Science Journal), 36(5): 713-720

Horiguchi G., Kim G.T., and Tsukaya H., 2005, The transcription factor AtGRF5 and the transcription coactivator AN3 regulate cell proliferation in leaf primordia of Arabidopsis thaliana, Plant J., 43(1): 68-78
https://doi.org/10.1111/j.1365-313X.2005.02429.x
PMid:15960617

Kim J.H., Choi D., and Kende H., 2003, The AtGRF family of putative transcription factors is involved in leaf and cotyledon growth in Arabidopsis, Plant J., 36(1): 94-104
https://doi.org/10.1046/j.1365-313X.2003.01862.x
PMid:12974814

Lee B.H., Wynn A.N., Franks R.G., Hwang Y.S., Lim J., and Kim J.H., 2014, The Arabidopsis thaliana GRF-INTERACTING FACTOR gene family plays an essential role in control of male and female reproductive development, Dev. Biol., 386(1): 12-24
https://doi.org/10.1016/j.ydbio.2013.12.009
PMid:24355747

Li R., He M.X., Dao D.W., Xiang M.H., Sun A.L., and Yang Q., 2010, The bamboo shooting and young bamboo growth rhythm of Dendrocalamus hamiltonii, Jiyinxueyu Yingyong Shengwuxue (Genomics and Applied Biology), 29(4): 735-739

Liu J., Hua W., Yang H.L., Zhan G.M., Li R.J., Deng L.B., Wang X.F., Liu H.G., and Wang H.Z., 2012, The BnGRF2 gene (GRF2-like gene from Brassica napus) enhances seed oil production through regulating cell number and plant photosynthesis, J. Exp. Bot., 63(10): 3727-3740
https://doi.org/10.1093/germplasm/er066
PMid:22442419 PMCid:PMC338832

Liu X., Guo L.X., Jin L.F., Liu Y.Z., Liu T., Fan Y.H., and Peng S.A., 2016, Identification and transcript profiles of citrus growth-regulating factor genes involved in the regulation of leaf and fruit development, Mol. Biol. Rep., 43(10): 1059-1067
https://doi.org/10.1007/s11033-016-4048-1
PMid:27491940

Livak K.J., and Schmittgen T.D., 2001, Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method, Methods, 25(4): 402-408
https://doi.org/10.1016/S1046-2023(01)00038-8
PMid:1186609

Peng Z.H., Lu Y., Li L.B., Zhao Q., Feng Q., Gao Z.M., Lu H.Y., Hu T., Yao N., Liu K.Y., Li Y., Fan D.L., Gao Y.L., Li W.J., Li Y.Q., Weng Q.J., Zhou C.C., Zhang L., Huang T., Zhao Y., Zhu C.R., Liu X.G., Yang X.W., Wang T., Miao K., Zhaung C.Y., Cao X.L., Tang W.L., Liu G.S., Liu Y.L., Chen J., Liu Z.J., Yuan L.C., Liu Z.H., Huang X.H., Lu T.T., Fei B.H., Ning Z.M., Han B., and Jiang Z.H., 2013, The draft genome of the fast growing non-timber forest species moso bamboo (Phyllostachys heterocycla), Nat. Genet., 45 (4): 456-461
https://doi.org/10.1038/ng.2560
PMid:23435089
San J.F., Zhai J.Y., Ma Y.D., Fu L.C., Bu K.L., Wang K.Y., Gao Y., and Zhang R.M., 2018, Differences in photosynthetic pigments and photosynthetic enzyme activities in different internodes of *Phyllostachys edulis* during rapid growth stage, Zhiwu Xuebao (Chinese Bulletin of Botany), 53(6): 773-781

van der Knaap E., Kim J.H., and Kende H., 2000, A novel gibberellin-induced gene from rice and its potential regulatory role in stem growth, Plant Physiol., 122(3): 695-704

van der Knaap E., Kim J.H., and Kende H., 2000, A novel gibberellin-induced gene from rice and its potential regulatory role in stem growth, Plant Physiol., 122(3): 695-704

Wang F.D., Qiu N.W., Ding Q., Li J.J., Zhang Y.H., Li H.Y., and Gao J.W., 2014, Genome-wide identification and analysis of the growth-regulating factor family in Chinese cabbage (*Brassica rapa* L. *ssp. pekinensis*), BMC Genomics, 15: 807

Wang F.D., Qiu N.W., Ding Q., Li J.J., Zhang Y.H., Li H.Y., and Gao J.W., 2014, Genome-wide identification and analysis of the growth-regulating factor family in Chinese cabbage (*Brassica rapa* L. *ssp. pekinensis*), BMC Genomics, 15: 807

Wu L., Zhang D.F., Xue M., Qian J.J., He Y., and Wang S.C., 2014, Overexpression of the maize *GRF10*, an endogenous truncated growth-regulating factor protein, leads to reduction in leaf size and plant height, J. Integr. Plant Biol., 56(11): 1053-1063

Wu L., Zhang D.F., Xue M., Qian J.J., He Y., and Wang S.C., 2014, Overexpression of the maize *GRF10*, an endogenous truncated growth-regulating factor protein, leads to reduction in leaf size and plant height, J. Integr. Plant Biol., 56(11): 1053-1063

Yuan J.L., Wen G.S., Zhang M.R., Zhang R.M., Cai X.F., Li H.J., Weng X., and Zhu H., 2015, Water potential with *Phyllostachys edulis* in its fast-growth periods, Zhejiang Nongling Daxue Xuebao (Journal of Zhejiang A&F University), 32(5): 722-728

Yuan Q., Zhang C.L., Zhao T.T., and Xu X.Y., 2017, Research advances of GRF transcription factor in plant, Jiyinzuxue yu Yingyong Shengwuxue (Genomics and Applied Biology), 36(8): 3145-3151.

Zhang Z.K., Guo J.N., Guo Z.L., and Wang W.J., 2020, Genome-wide identification and analysis of the growth-regulating factor family in *Brassica juncea*, Fenzhi Zhiwu Yuzhong (Molecular Plant Breeding), 18(15): 4878-4885

Zhou H.J., Song X.Q., Wei K.L., Zhao Y.Q., Jiang C., Wang J.N., Tang F., and Lu M.Z., 2019, Growth-regulating factor 15 is required for leaf size control in *Populus*, Tree Physiol., 39(3): 381-390