The role of dexamethasone in peripheral and neuraxial nerve blocks for the management of acute pain

KG Gordon**, S Choi and RN Rodseth***

**Department of Anaesthetics, Inkosi Albert Luthuli Central Hospital, Durban, South Africa
1 Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
2 Department of Anaesthetics, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Canada
3 Department of Anaesthetics, Grey’s Hospital, Pietermaritzburg, South Africa
4 Department of Outcomes Research, Cleveland Clinic, Cleveland, OH, USA
*Corresponding author, email: Kategordon0@gmail.com

Dexamethasone has an emerging role as an additive in regional anaesthesia for the management of acute pain. However, outcomes in terms of improvement and prolongation of analgesia, as well as the methods of administration and potential adverse effects, have yet to be clarified. This semi-structured review examines the current literature available with regard to supplemental dexamethasone in regional and neuraxial anaesthesia.

Keywords: adverse effects, analgesia, dexamethasone, dosage regimes, regional anaesthesia

Introduction

Dexamethasone is a glucocorticosteroid with anti-inflammatory properties that is enjoying more widespread use by anaesthesiologists as a systemic, epidural, or perineural analgesic adjunct. It appears that dexamethasone is able to act synergistically with local anaesthetics to achieve a better quality and duration of analgesia, limiting the need for alternative analgesics — particularly opioids. Controversy still exists regarding the route of administration of dexamethasone and dose ranges are wide and unstandardised. The safety of this practice is also questioned: long-term glucocorticosteroid use is associated with significant adverse effects, yet the complications associated with a single perioperative dose are not fully appreciated.

We aimed to conduct a semi-structured review of the current literature to assess the role of dexamethasone as an analgesic adjunct with regional techniques. Specifically, the review aimed to:

1. identify the degree to which dexamethasone reduces pain and prolongs analgesia in the postoperative period when combined with a regional technique;
2. establish the dose range of a single perioperative dose of dexamethasone;
3. identify how dexamethasone is administered with regard to route and timing;
4. describe any side effects associated with its administration during the perioperative period.

Methods

Search strategy and selection criteria

For the purposes of this review we conducted a semi-structured literature search. On 6 June 2016 RNR, using the OVID search engine, searched the following databases: Embase (1974 to 2016 June 04); Ovid Healthstar (1966 to May 2016); Ovid MEDLINE(R) In-Process & Other Non-Indexed Citations, Ovid MEDLINE(R) Daily and Ovid MEDLINE(R) (1946 to 6 June 2016); and the Cochrane database.

We used the following search terms: *regional anaesthesia*, or *brachial plexus*, *interscalene*, *supraclavicular*, *infraclavicular*, *axillary*, *lumbar plexus*, *femoral*, *sciatic*, *popliteal*, *ankle block*, *caudal*, *epidural* or *nerve block*. The ‘and’ function was used to combine these terms with *dexamethasone*, *corticosteroid*, or *steroid* with the definition exploded. The initial search terms with the keywords with the definition exploded were utilised. We largely restricted the search to human beings and aimed to select publications from the last 5 years or those commonly referenced or highly cited older publications. We restricted the search to the management of acute rather than chronic pain in the perioperative setting.

From these results KG and RNR independently identified publications examining the use of dexamethasone in conjunction with peripheral nerve blocks or neuraxial techniques in the management of acute pain and that focused on dexamethasone’s ability to prolong the duration of action of the regional technique employed. From each study identified the following data were extracted: primary author, year of publication, sample size, age group of population, specific form of regional anaesthetic block used, type and dose of local anaesthetic used, route of dexamethasone administration, dose of dexamethasone administered.

The outcomes assessed in this review included: duration of analgesia; time to administration of additional analgesia post block; and specific complications reported due to dexamethasone or regional anaesthesia including: elevated blood sugar, sepsis, and associated long-term nerve damage. The quality of analgesia afforded by the neuraxial or peripheral nerve block and dexamethasone combination was assessed; however, different methods for measurement of this criterion were noted between studies. Further specific comments unrelated to these outcomes but regarding dexamethasone usage in these studies were also included.
Results

The search yielded a total of 15 studies. Frederickson, Rahagdale and Vermeylen all described the use of perineural dexamethasone in lower limb peripheral nerve blocks in an adult population.4,8,9 Naghipour examined the use of perineural dexamethasone in thoracic and lumbar epidurals;10 and Hong, Kim and Murni explored systemic dexamethasone in conjunction with caudal blocks in a paediatric group.7,11,12 Choi’s systematic review and meta-analysis examined its use in nine studies in conjunction with different forms of brachial plexus blocks via both systemic and perineural approaches.4 These nine studies were examined on an individual basis for the purposes of this review.13–21 Liu, Desmet II, Woo, Abdullah and Shah also examined the addition of dexamethasone to brachial plexus nerve blocks and Akram and Hassani described its use in upper limb Bier’s blocks.22–28

Adverse side effects reported with the use of dexamethasone included nausea, vomiting, pruritus, increased intracranial pressure and respiratory depression. Higher doses were associated with more severe adverse effects.2–4,8–28

Table 1: Characteristics of eligible studies included in the review

Author	Year	Sample size	Age group	Type of regional block	Type and dose of local anaesthetic	Route of dexamethasone administration	Dexamethasone dose
Fredrickson3	2013	126	16–80 yrs	Sciatic/58 ankle blocks	30 ml 0.5% Bupivacaine Systemic—intramuscular	8 mg	
Rahagdale4	2014	80	>18 yrs	Sciatic nerve blocks	0.45 ml/kg Bupivacaine 0.5% with adrenaline	Perineural or intravenous	8 mg
Vermeylen9	2016	72	>18 yrs	Popliteal sciatic blocks	30 ml Ropivacaine 0.75% +/- clonidine 100 mcg	Perineural	5 mg
Cummings13	2011	218	18–75 yrs	Interscalene blocks	30 ml 0.5% Ropivacaine or bupivacaine	Perineural	8 mg
Movafegh14	2006	60	>18 yrs	Axillary blocks	34 ml 1.5% Lignocaine	Perineural	8 mg
Parrington15	2010	45	>18 yrs	Supraclavicular blocks	30 ml 1.5% Mepivacaine	Perineural	8 mg
Shrestha16	2007	60	>18 yrs	Supraclavicular blocks	Bupivacaine +/- tramadol 2 mg/kg	Perineural	8 mg
Shrestha17	2003	40	>18 yrs	Brachial plexus blocks	40–50 ml Local anaesthetic +/- adrenaline	Perineural	8 mg
Tandoc18	2011	90	>18 yrs	Interscalene blocks	40 ml 0.5% Bupivacaine	Perineural	8 mg vs. 4 mg
Vieira19	2010	88	>18 yrs	Interscalene blocks	20 ml 0.5% Bupivacaine with adrenaline and 75 mcg clonidine	Perineural	8 mg
Yadav20	2008	90	>18 yrs	Interscalene blocks	23 ml 1.5% Lignocaine with adrenaline +/- neostigmine	Perineural	4 mg
Desmet21	2013	150	>18 yrs	Interscalene blocks	Ropivacaine 0.15% IV and perineural	10 mg	
Liu22	2015	89	>18 yrs	Supraclavicular blocks	30 ml Bupivacaine 0.25%	Perineural	1 mg; 2 mg; 4 mg
Desmet II23	2015	240	>18 yrs	Interscalene blocks	30 ml Ropivacaine 0.5%	Intravenous	1.25 mg; 2.5 mg; 10 mg
Woo24	2015	144	>18 yrs	Interscalene blocks	12 ml Ropivacaine 0.5%	Perineural	2.5 mg; 5 mg; 7.5 mg
Abdallah25	2015	75	>18 yrs	Supraclavicular blocks	30 ml Bupivacaine 0.5% IV and Perineural	8 mg	
Shah26	2015	53	18–60 yrs	Infraclavicular blocks	1.5% Lignocaine with adrenaline +/- clonidine 150 mcg	Perineural	8 mg
Hong2	2010	77	1–5 yrs	Caudal blocks	Ropivacaine 1.5 ml/kg	Systemic – intravenous	0.5 mg/kg
Kim21	2014	80	6 months–5 years	Caudal blocks	Ropivacaine 0.15% 1.5 ml/kg	Perineural	0.1 mg/kg
Murni22	2015	64	3–10 yrs	Caudal blocks	Levobupivacaine 0.25% 0.75 mg/kg and paracetamol 30 mg/kg	Intravenous	0.5 mg/kg
Naghipour23	2013	70	>18 yrs	Thoracic and lumbar epidurals	Bupivacaine 0.5% titrated and 50 mcg fentanyl	Perineural	8 mg
Akram24	2015	180	>18 yrs	Bier’s Blocks	Lignocaine +/- ketorol-ac 30 mg	Intravenous	8 mg
Hassani25	2015	50	20–55 yrs	Bier’s Blocks	Lignocaine 3 mg/kg	Intravenous	8 mg
Table 2: Outcomes assessed: dexamethasone’s ability to augment analgesia when used in conjunction with regional anaesthesia

Author	Primary outcome	Analgesia duration	Block analgesia quality	Time to additional analgesia	Secondary outcomes	Complications associated with dexamethasone
Fredrickson3	Analgesic quality and duration	Increased analgesia at 24 h vs. no change at 48 h	No difference	–	–	Nil noted
Rahagdale4	Analgesic duration	Prolonged 13 (perineural) vs. 8 (iv) vs. 6 h (control)	–	–	No difference postoperative opioid consumption	Nil noted
Vermeulen5	Analgesic duration	Prolonged by 9 h	–	–	–	Nil noted
Cummings13	Analgesic duration and postoperative pain scores	Prolonged 1.9x with ropivacaine and 1.4x with bupivacaine	Median maximum verbal response pain score significantly lower on day 1 post-surgery	–	Reduced post operative nausea and vomiting	Nil noted
					No significant reduction in opioid use over 72 h postop	
Movafegh14	Analgesic duration	Prolonged 242+/–76 vs. 98+/–33 min	–	–	–	Nil noted
Parrington15	Analgesic duration	Prolonged 332 vs. 228 min	–	–	No difference in analgesia onset time	Nil noted
Shrestha16	Analgesic duration	Prolonged 834 vs. 274 min	No difference	–	Faster onset of analgesia noted	Nil noted
Shrestha17						
Tandoc18	Analgesic duration	Prolonged 21.6 (4 mg) and 25.2 (8 mg) vs. 13.3 h (control)	–	–	Reduced additional analgesic requirements during 48 h	Nil noted at 4 weeks of follow-up
					No significant difference between the two dexamethasone dosages with regard to outcome	
Vieira19	Analgesic duration and postoperative pain scores	Prolonged 1457 (dexamethasone) vs. 833 min (control)	Lower median verbal analogue scores at 24 h (3 vs. 6)	–	Reduced opioid use during first 24 h	Nil noted
					Similar pain scores at 48 h	
Yadav20	Analgesic duration and postoperative pain scores	Prolonged 454.2 +/- 110.7 (dexamethasone) vs. 176.5 +/- 53.5 (neostigmine) minutes	Lower visual analogue pain scores at 12 h	–	Reduced additional mean analgesic requirements	Nil noted
Desmet21	Analgesic duration	Prolonged 1405 (perineural) and 1275 (intravenous) vs. 757 min	–	–	Equivalency between perineural and intravenous doses	Nil noted
Liu22	Analgesic quality and duration	Prolonged 22.3, 23.3, 21.2 h vs. 12.1 h	Significant prolongation of motor blockade also noted	–	Low dose vs. higher dose produce similar duration of prolongation analgesia	Nil noted
Desmet II23	Time to first post-operative analgesic request and pain scores	–	–	Prolonged 17 h and 20 h vs. 12.2 h	1.25 mg dexamethasone failed to prolong time to first analgesia vs. control	Not recorded
Woo24	Time to first post-operative analgesic request and pain scores	–	–	Increased time to first request by factors 1.6; 2.2 and 1.8	Increased percentage of patients requiring no addition analgesia in first 48 h	Nil noted
Abdallah15	Analgesic duration and post operative pain scores	Prolonged 25 h vs. 13 h	Reduced pain scores in both IV and PN groups	–	Reduced postoperative opioid consumption and improved satisfaction	Nil noted
Shah26	Analgesic quality and duration	Prolonged 304 (dex) vs. 217(control) min	Prolonged sensory and motor blockade	–	No difference in satisfaction scores and 24 h opioid requirements	Nil noted

(Continued)
Dexamethasone as a regional anaesthesia adjuvant were limited to hyperglycaemia. However, due to limited sample size and long-term follow-up, data are underpowered to draw firm conclusions regarding complications. Table 1 illustrates the extracted data from suitable studies and Table 2 illustrates the study outcomes from each study.

Discussion and narrative summary

Dexamethasone is a synthetic glucocorticosteroid with a multitude of clinical applications. It is a potent anti-inflammatory agent, an immunomodulator and has proved useful to the anaesthetist for its anti-emetic properties. Recent interest has focused on its place as an analgesic adjunct in the perioperative period in conjunction with both general and regional anaesthesia.

Proposed mechanisms by which dexamethasone augments analgesia include a reduction in pro-inflammatory interleukins and tumour necrosis factor – alpha, neutrophides and bradykinin release at tissue level, thus limiting local oedema and tissue destruction that may generate a pain stimulus; potassium channel permeability modulation; changes in lipid membrane equilibrium and the subsequent alteration in nervous impulse generation and transduction, which may further limit nociception locally at the nerve fibre. Furthermore, its ability to down-regulate prostaglandin synthesis contributes to analgesia peripherally and at spinal cord level by limiting sensitisation of nociceptive and inflammatory pathways.

This review revealed that dexamethasone is able to significantly prolong the analgesia afforded by a single-shot peripheral or neuraxial nerve block. Analgesia was achieved through low-dose regimes, with most physicians administering a single perioperative dose of 8 mg. Both perineural and systemic dosing is applied with few side effects. This is in keeping with the findings of Albrecht and Krezevic, both of whom conducted systematic reviews aimed at assessing extent of prolongation of analgesia and incidence of side effects in the use of perineural dexamethasone.

Prolonged duration of analgesia

Of the 15 studies reviewed, all reported a prolongation of the analgesia afforded by the particular nerve blocks administered in the presence of dexamethasone. Naghipour, Liu, Abdallah and Vermeylen all displayed an increase in average analgesic time. Of the 15 studies reviewed, all reported a prolongation of the analgesia associated with the regional block regardless of route employed.

Six studies all indicated a trend to decreased use of opioids in the dexamethasone groups during the postoperative period. Hong also reported lower Face, Legs, Activity, Cry, Consolability (FLACC) Scores and Children's Hospital of Eastern Ontario Pain Scales (CHEOPS) in the dexamethasone group and an earlier discharge from the PACU. Woo, Abdallah and Kim all reported more patients completely pain free in the first 48 h postoperatively and increased satisfaction scores in those patients receiving dexamethasone.

Table 2: (Continued)

Author	Primary outcome	Analgesia duration	Block analgesia quality	Time to additional analgesia	Secondary outcomes	Complications associated with dexamethasone
Hong	Time to postoperative analgesic request and pain scores	Significantly lower CHEOPS’ and FLACC’ scores in post anaesthetic care unit	Prolonged 646 vs. 430 min	Reduced sedation, shivering and postoperative nausea and vomiting	Nil noted	
Kim	Time to postoperative analgesic request and pain scores	Reduced pain scores at 6 h and 24 h post-surgery	Prolonged 12 h vs. 4h	Greater pain-free group for first 48 h postoperatively – 50% vs. 10%	Comparable to control – vomiting, fever, wound infection and dehiscence	
Murni	Time to postoperative analgesic request and pain scores	Reduced mean pain scores on day 1 and 2 postoperatively	Prolonged 800 vs. 520 min	Reduced frequency of paracetamol rescue on day 2 postoperative	Not recorded	
Naghipour	Analgesic duration and postoperative pain scores	Prolonged 234.6 vs. 58.1 min	Reduced pain scores	Reduced additional pentazocine usage 37.1 mg vs. 73.1 mg	Nil noted	
Akram	Analgesic duration and time to postoperative pain scores	Unchanged	Reduced pain scores	Prolonged 242 vs. 122 min	Reduced additional analgesic usage	Not recorded
Hassani	Analgesic quality and duration	Prolonged 9.32 vs. 5.60 min	Shorter onset times of sensory and motor blockade	–	Reduced postoperative narcotic consumption	Nil noted
Dosing regimens
Dosing regimens vary, but most employed a fairly low dose in the order of 0.1 mg/kg – with adults in 14 of the studies receiving a single dose of 8 mg.3,8,9,13–19,25–28 Low doses in this setting were considered as 0.1 mg/kg versus high doses of more than 0.2 mg/kg.1 The paediatric group’s dosage also ranged between 0.1 mg/kg and 0.5 mg/kg, but instituted a maximum dose of 10 mg.2,11,12 Dosing ranges do not appear to differ depending on route administered.

There is also no obvious correlation between increased doses and increased adverse effects from the corticosteroids – probably owing to the relatively low doses (in comparison of IV dexamethasone for other uses) being administered as an analgesic additive. Tandoc’s study compared dexamethasone doses of 4 mg and 8 mg, whilst Woo compared doses of 2.5 mg, 5 mg and 7.5 mg and Liu used doses of 1 mg, 2 mg and 4 mg to prolong the duration of action of interscalene brachial plexus blocks.18,22,24 All dexamethasone doses were administered perineurally with brachial plexus blocks. Tandoc showed no significant difference in outcomes between the two doses; however, Woo and Liu indicated an increase in analgesic time experienced and an increase in time to first analgesic request in the group receiving the higher dose of dexamethasone.2,12 However, the literature does lack clarity regarding dexamethasone’s route of administration, timing and dosing range for the specific purpose of analgesic additive.

Adverse effects
Despite concern regarding neuronal damage – particularly in vulnerable populations – as described in recent murine studies, no evidence of any long-term neuropraxia was documented in any study.2,3,14,15 Sepsis – a concern frequently associated with corticosteroid administration – was also not noted to be increased in those patients receiving a dexamethasone adjuvant, nor was local wound site infection.1,14,15 A clinically insignificant increase in blood glucose was, however, reported in several patients in Choi’s review.4

This paucity of complications may be falsely reassuring. Studies may be underpowered to reveal complications and there was little long-term follow-up. Only Tandoc and Cummings instituted a follow-up interview for complications outside of the post-anæsthetic care unit – at 4 weeks and 14 days respectively.13,19 Larger studies regarding the use of perioperative dexamethasone are currently under way, and will shed more light on the incidence of sepsis and local infection.35

Interpretation and guidelines for clinical application
Dexamethasone’s ability to augment the analgesia offered by regional single-shot nerve blocks and thus improve the management of acute pain in the perioperative period is supported by all of the literature currently available. However, the literature does lack clarity regarding dexamethasone’s route of administration, timing and dosing range for the specific purpose of analgesic additive.

It therefore seems reasonable for clinicians to employ preservative-free dexamethasone from single-use vials together with single-shot peripheral and neuraxial anaesthesia provided that it is administered only once, at a low dose (0.1 mg/kg, to a maximum of 10 mg). A single perioperative dose has been illustrated by all sources reviewed to limit adverse effects whilst still inferring benefit from an analgesic point of view. Without clear evidence to favour a perineural route the preferred route for administration of the drug should remain the FDA-approved systemic intravenous route.

Despite the fact that the current literature suggests that complications are limited, the possibility for adverse effects should always be borne in mind when using a drug. Dexamethasone’s proven ability to generate neural damage in animal models, hyperglycaemia and even sepsis with repeated administration should not be discounted.2,23,33,35 Contamination from multi-use vials and the preservatives contained therein is also of concern when considering potential side effects. Patients at high risk of sepsis or hyperglycaemia should receive dexamethasone only with caution or not at all.

Implications for future research
Current literature has illustrated dexamethasone’s ability to augment analgesia in the perioperative period when combined with regional techniques. However, the long-term safety of this practice still needs to be addressed. The first step for future study would involve monitoring adverse reactions in patients who have received a single perioperative dose of dexamethasone. There should be a focus on the development of local infection in these patients, hyperglycaemia in at-risk patients and the development of neuronal damage in patients receiving perineural dexamethasone. Larger future randomised controlled trials should investigate the relative risk for these adverse outcomes in all patient groups receiving adjunctive dexamethasone. Follow-up studies should assess the development of these side effects during a 24 h period following the perioperative dose – bearing in mind the 190 min half-life of the drug. Long-term follow-up at a point of 3 months post-surgery would provide the optimum time span to conclusively exclude any permanent neuropathia. The PADDI (Perioperative ADministration of Dexamethasone and Infection) trial is currently under way; it is a large multi-centre randomised control trial, which will provide great insight into the exact risk of sepsis and local infection in patients receiving perioperative steroids.35

Once the potential for complications has been reviewed, further information regarding the best application of the drug in this setting should be investigated. The most efficacious dose, the most reliable route and the most appropriate timing of administration all need to be established. Further work in animal models is needed to limit the potential for harm in humans.
Conclusion

Dexamethasone has potential as an additive in regional analgesia for its ability to prolong the duration of action of analgesia afforded by 'single-shot' peripheral and neuraxial blocks. The routes of administration and dosing ranges are currently controversial but a trend to low dosing and systemic use appear to reduce the potential for complications. A single, intravenous, low-dose (0.1 mg/kg) dexamethasone adjunct may be used peripheratively in conjunction with regional techniques in all non-diabetic patients. However, future studies are required to elucidate the most effective route and optimum dosing range for dexamethasone's use in this field.

References

1. Waldron NH, Jones CA, Gan TJ, et al. Impact of perioperative dexamethasone on postoperative analgesia and side-effects: systematic review and meta-analysis. Br J Anaesth. 2013;110(2):191–200. http://dx.doi.org/10.1093/bja/aes431

2. Hong JY, Han SW, Kim WO, et al. Effect of dexamethasone in combination with caudal analgesia on postoperative pain control in day-case plastic orthiopcy. Br J Anaesth. 2010;105(4):506–10. http://dx.doi.org/10.1093/bja/aep187

3. Fredrickson, Fanzca MJ, Danes-Clough TK, White R. Adjuvant dexamethasone for bupivacaine sciatic and ankle blocks. Region Anesth Pain Med. 2013 Jul-Aug;38(4):300–7. http://dx.doi.org/10.1093/ AAPob013e318292c121

4. Choi S, Rodseth R, McCarthy CJ. Effects of dexamethasone as a local anesthetic adjunct for brachial plexus block: a systematic review and meta-analysis of randomized trials. Br J Anaesth. 2014 Mar;112(3):427–39. http://dx.doi.org/10.1093/bja/aet417

5. De Oliveira Jr. GS, Almeida MD, Benson HT, et al. Perioperative single dose systemic dexamethasone for postoperative pain. Anaesth. 2011 Sep;115(3):575–88. http://dx.doi.org/10.1097/ ALN.0b013e31822ac42c

6. Förster JG, Rosenberg PH. Clinically useful adjuvants in regional anaesthesia. Cur Opin Anaesthesiol. 2003 Oct;16(5):477–86. http://dx.doi.org/10.1097/00001053-200310000-00007

7. Williams BA, Murison BB, Grable BR, et al. Future considerations for pharmacologic adjuvants in single-injection peripheral nerve blocks for patients with diabetes mellitus. Reg Anesth Pain Med. 2009 Sep–Oct;34(5):445–57. http://dx.doi.org/10.1097/ AAPob013e3181ac4942

8. Rahangdale R, Kendall MC, McCarthy RJ, et al. The effects of perineural versus intravenous dexamethasone on sciatic nerve blockade outcomes. Anesth Analg. 2014 May;118(5):1113–9. doi: 10.1213/ANE.0000189055.06729.0a

9. Vermeulen K, Engelen Stefan, Roofthooft Eva, et al. A double-blind randomized controlled trial comparing dexamethasone and clonidine as adjuvants to a ropivacaine sciatic popliteal block for foot surgery. Local and Regional Anaesthesia 2016;19:17–24. http://dx.doi.org/10.2147/ LRA.Z2587

10. Naghipour B, Aghamohamadi D, Azafarin R et al. Dexamethasone added to bupivacaine prolongs duration of epidural analgesia. Middle East J Anesthesiol. 2013 Feb;22(1):53–7.

11. Kim EM, Lee JR, Koo BN, et al. Analgesic efficacy of caudal dexamethasone combined with caudal block prolongs postoperative analgesia in pediatric daycare surgery. Middle East J Anesthesiol. 2015 Jun;23(2):177–83.

12. Cummings KC, Napierkowski DE, Perar-Sanchez I, et al. Effect of dexamethasone on the duration of interscalene nerve blocks with ropivacaine or bupivacaine. Br J Anaesth. 2011;107:446–53. http://dx.doi.org/10.1093/bja/aer159

13. Movafegh A, Razazian M, Hajimaohamadi F, et al. Dexamethasone added to lidocaine prolongs axillary brachial plexus blockade. Anesth Analg. 2006;102:263–7. http://dx.doi.org/10.1213/01.an.e.0000189055.06729.0a

14. Parrington SJ, O’Donnell D, Chan VW, et al. Dexamethasone added to mepivacaine prolongs the duration of analgesia after supravacular brachial plexus blockade. Reg Anesth Pain Med. 2010;35:422–6. http://dx.doi.org/10.1093/ AAPob013e3181e8se9

15. Shrestha BR, Mahajan SK, Shrestha S, et al. Comparative study between tramadol and dexamethasone as an adjuvant to bupivacaine in supravacular brachial plexus block. JNMA J Nepal Med Assoc. 2007;46:158–64.

16. Shrestha BR, Mahajan SK, Tabedar S. Supravacular brachial plexus block with and without dexamethasone—a comparative study. Kathmandu Univ Med J. 2003;1:158–60.

17. Tandoc MN, Fan L, Kolesnikov S, et al. Adjuvant dexamethasone with bupivacaine prolongs the duration of interscalene block: a prospective randomized trial. J Anesth. 2011;25:704–9. http://dx.doi. org/10.1007/s00540-011-1180-x

18. Veire PA, Pulai I, Tsao GC, et al. Dexamethasone with bupivacaine increases duration of analgesia in ultrasound-guided interscalene brachial plexus block. Eur J Anaesthesiol. 2010;27:285–8. http://dx.doi.org/10.1016/j.eja.2010.12.003

19. Yadav RK, Sah BP, Kumar P, et al. Effectiveness of addition of neostigmine or dexamethasone to local anaesthetic in providing perioperative analgesia for brachial plexus block: a prospective, randomized, double blinded, controlled study. Kathmandu Univ Med J. 2008;6:302–9.

20. Desmet M, Braems H, Reynvoet M, et al. I.V. and perineural dexamethasone are equivalent in increasing the analgesic duration of a single-shot interscalene block with ropivacaine for shoulder surgery: a prospective, randomized, placebo-controlled study. Br J Anaesth. 2013 Sep;111(3):455–52. doi: 10.1093/bja/aeq109.

21. Liu J, Richman KA, Grodofsky SR, et al. Is there a dose response of dexamethasone as an adjuvant for supravacular branchial plexus nerve block? A prospective randomized double-blinded clinical study. J Clin Anesth. 2015 May;27(3):237–42. doi: 10.1016/j.jclinane.2014.12.004. Epub 2015 Jan 28

22. Desmet M, Vanneste B, Reynvoet M, et al. A randomised controlled trial of intravenous dexamethasone combined with interscalene brachial plexus block for shoulder surgery. Anaesthesia. 2015 Oct;70(10):1180–5. doi:10.1111/anae.13156

23. Woo JH, Kim YJ, Kim DY, et al. Dose-dependency of dexamethasone on the analgesic effect of interscalene block for arthroscopic shoulder surgery using ropivacaine 0.5%. Eur J Anaesthesiol. 2015 Sep;32(9):650–5. doi:10.1016/j.eja.2015.04.006.

24. Abdallah FW, Johnson J, Chan V, et al. Intravenous dexamethasone and perineural dexamethasone similarly prolong the duration of analgesia after supravacular brachial plexus block. Reg Anesth Pain Med. 2015 Mar–Apr;40(2):125–32. doi: 10.1097/AAP.0000000000002210.

25. Shah DM, Arora M, Trikha A, et al. Comparison of dexamethasone and clonidine as an adjuvant to 1.5% lignocaine with adrenaline in infravacular brachial plexus block for upper limb surgeries. J Anaesthesiol Clin Pharmacol. 2015 Jul-Sep; 31(3):354–9. doi:10.4103/0970-9185.161672

26. Akram M, Farooqi FM, Irshad M, et al. Role of addition of Dexamethasone and Ketorolac to lignocaine intravenous regional anesthesia (Bier's Block) to improve tourniquet tolerance and post-operative analgesia in hand and forearm surgery. J Pak Med Assoc. 2015 Nov;65(11 Suppl 3): S128–31.

27. Hassani E, Mahoori A, Aghdashi MM, et al. Evaluating the quality of intravenous regional anesthesia following adding dexamethasone to lidocaine. Saudi J Anaesth. 2015 Oct-Dec;9(4):418–21. doi: 10.4103/1658-354X.159467.

28. Albrecht E, Kern C, Kirkham KR. A systematic review and meta-analysis of perineural dexamethasone for peripheral nerve blocks. Pain. 2015;155(12):2998–3005. doi:10.1093/annals/ann065.

29. Knezevic NN, Anantamongkol U, Candido KD. Perineural dexamethasone increases duration of analgesia after brachial plexus block. Pain Physician. 2015;18:1–14.

30. Albrecht E, Kern C, Kirkham KR. A systematic review and meta-analysis of perineural dexamethasone for peripheral nerve blocks. Pain Physician. 2015;18:1–14.
32. Kettner SC, Willschke H, Marhofer P. Does regional anaesthesia really improve outcome? Br J Anaesth. 2011;107(suppl 1): i90–3. http://dx.doi.org/10.1093/bja/aer340

33. Pasternak JJ, McGregor DG, Lanier WL. Effect of single-dose dexamethasone on blood glucose concentration in patients undergoing craniotomy. J Neurosurg Anesthesiol. 2004;16:122–5. http://dx.doi.org/10.1097/00008506-200404000-00003

34. Price C, Arden N, Coglan L, et al. Cost-effectiveness and safety of epidural steroids in the management of sciatica. Health Technol Assess. 2005;9:1–58.

35. Merkler AE, Saini V, Kamel H, et al. Preoperative steroid use and the risk of infectious complications after neurosurgery. Neurohospitalist. 2014 Apr;4(2):80–5. http://dx.doi.org/10.1177/1941874413510920

36. Sidhu J. Perioperative administration of dexamethasone and infection trial (PADDI). Available from: www.paddi.org.au.

Received: 12-07-2016 Accepted: 18-10-2016