Effect of dried Citrus sinensis peel on gastrointestinal microbiota and immune system traits of broiler chickens

Abbas Ebrahimi,1 Antonello Santini,2 Mosè Ailse,2 Zohreh Pourhossein,1 Nariman Miraalami,3 Alireza Seidavi4

1Young Researchers and Elite Club, Rasht Branch, Islamic Azad University, Rasht, Iran
2Dipartimento di Farmacia, University of Napoli Federico II, Italy
3Department of Research and Development, Savadkoooh Feed Company, Savadkoooh, Iran
4Department of Animal Science, Rasht Branch, Islamic Azad University, Rasht, Iran

Abstract

Two hundred broiler chickens (Ross-308) were used in a completely randomised study to evaluate the effects of supplementing the feed with different levels of dried Citrus sinensis peel (DCSP) on the gastrointestinal microbiotal population and immune system traits. Feed was supplemented with different DCSP amounts: 0.25% w/w (DCSP-0.25), 0.5% w/w (DCSP-0.50), 0.75% w/w (DCSP-0.75), and 1% w/w (DCSP-1). Control diet (DCSP-0), with no feed addition was used as reference. The study involved five treatments in a time frame of six weeks (four replicates per treatment and each replicate had 10 chickens). Data analysis was performed using SAS software and mean comparison was performed using the Duncan test. The results allowed to observe that the mean of Escherichia coli in caecum on day 42 was significantly different (P<0.05) but did not affect other gastrointestinal microbial population traits (P>0.05). The mean of total sheep red blood cells and immunoglobulin G and M (IgG and IgM) on day 28 (P>0.05) were also determined. Total sheep red blood cells on day 42 were significantly different (P<0.05). The IgG and IgM mean titers on days 28 and 42 was of no significant difference (P>0.05). Supplementing the feed with Citrus sinensis had no significant effect on Newcastle disease on day 42 (P>0.05). The mean value for hemagglutination inhibition on day 42 was significantly different (P<0.05). It can be then concluded that DCSP feed supplementation ameliorated the gastrointestinal microbiota and immune system traits.

Introduction

Management and nutrition are nowadays considered the most important issues in the poultry industry. Management and optimal nutrition reduce costs and economise production, and simultaneously allow the market to offer higher quality products to the consumers (Pope and Emmert, 2001).

The effect of plant extracts on performance, immune status and gut microflora of chickens is currently a topic of great scientific and practical importance, due to the trend in reducing the use of antibiotics in feed as well as in therapy (Yang et al., 2009). Studies on the plant products efficacy have given conflicting results (Huysgebaert et al., 2011), and this is a stimulus to implement research activities in this direction.

Citrus sinensis – belonging to the Rutaceae family (Vivek Kumar et al., 2010) – is one of the oldest plants whose fruits have been used by mankind. It constitutes about 60% of the total citrus world production, which has been estimated in about 122.09 million tons in 2008 (FAO, 2010). In 2012, 4.6 million tons of citrus fruits were produced in Iran, and, among these, about 2.7 million tons of oranges. Citrus sinensis peel ingredients are interesting from a nutritional point of view since they are a source of vitamin C, phenolic compounds, ascorbic acid, coumarin, volatile oils, nobiletin (Fernandez-Lopez et al., 2005), flavonoids (Chang, 1990), pectin (May, 1990) and bioflavonoids including hesperidin (Parhiz et al., 2014), naringin (Shafeqhat, 2010) and hesperetin (Harats et al., 1998). The activity of Citrus sinensis as an anti-microbial agent against Escherichia coli O157:H7 (Nannapaneni et al., 2008) and Salmonella typhimurium (O’Bryan et al., 2008), and its ability to reduce harmful microorganism growth have been observed. Moreover, several types of Citrus sinensis essential oil derivatives and their ability to inhibit the growth of bacteria such as Campylobacter and Arcobacter spp. have been studied (Nannapaneni et al., 2009).

Dried Citrus sinensis peel (DCSP) can significantly improve the immune system activities, and this action has been attributed to their antioxidant properties (Chen et al., 2012). Moreover, it has been demonstrated that herbal extracts can increase the antibody production, especially immunoglobulin G (IgG), indirectly improving the immune system activity with their anti-virus and anti-bacteria action (Catala-Gregori et al., 2007). Due to the great interest on beneficial properties of DCSP, Gallus gallus domesticus – a gallinaceous domesticated fowl, bred and raised specifically for meat production – has been selected to verify the effect of feed supplementation on the gastrointestinal microbial population and the immune system.

Materials and methods

Animals and dietary treatments

Two hundred broiler chickens (Ross-308) from Rasht, one of the main cities in Iranian province of Guilan, were used in a completely randomised design adopting five diet supplemented feed regimen. The procedures have been approved by the Iranian Author’s Institution Ethic Committee (Protocol number is: 03-16-5-3065), and maximum care was taken to minimise the number of animals used. Experiments were performed under controlled and standard conditions as recommended by Aviagen (Aviagen, 2007). Land cages were used. The study involved four replicates (10 chickens per replicate) and lasted 42 days (six weeks). Each treatment used different amounts of DCSP, namely DCSP-0.25% w/w,
DCSP-0.50% w/w, DCSP-0.75% w/w and DCSP-1.00% w/w in the feed. As control diet, feed without peel addition (DCSP-0%) was used.

Vaccination programme was conducted based on farm veterinarian; vaccination schedule is shown in Table 1. Vaccines were administered via drinking water and, in order to ensure optimal use of the vaccine on all chickens, drinking water was removed from the chickens for 1-2 hours before the administration of the vaccine to ensure chickens to be thirsty.

In addition, and with the aim of reducing the stress caused by vaccination, a multi-electrolyte solution diluted in a ratio 1:1000 was added to the drinking water, 24 hours before and after vaccination. For sanitation, all drinkers were daily regularly washed twice with fresh clean water and refilled to prevent the water from being contaminated with faeces and being exposed to microbial and/or viral contamination.

Tables 2 and 3 report some relevant composition data and energetic value of the starter and grower diets fed to broilers during the 42 days growing period.

As reference, basal tables based on Nutrition Requirements of Poultry (National Reserarch Council, 1994) were used. Dried Citrus sinensis peel was supplied from a local juice factory (Khazarnoush Co., Chaboksaar, Iran). After fine milling, dried peel was mixed with the other ingredients and the composition was determined according to the AOAC official methods (AOAC, 1990).

Microbiota traits measurement

For measuring the microbial population on day 42, one chicken was randomly selected from each experimental unit and slaughtered. Each experimental unit (group) included 4 replicates with 10 animals each. The contents of ileum and caecum sections collected for microbiological cultures were collected in dischargeable containers used also for waste microbial culture.

To evaluate microbial population, the colony forming unit (CFU) method was used. Collection tubes were labeled and treated and number of iterations were determined. Then they were weighed individually and the weight recorded. Collecting tubes were wrapped into aluminum sheet and were autoclaved for sterilising. As culture media, MRS agar (Man Rogosa Sharpe Agar, 1.10660.500) to culture Lactobacilli, Eosin Metilan Blou (EMB, 1.01347.0500) to culture Escherichia coli, and MacConkey agar (105465.0500) to culture coliforms, were used. Culture media were prepared 24 hours before collecting samples and poured into Petri dishes. Samples were transferred to the laboratory using collection tubes, weighed again and their weights were recorded. The amount of sample in each tube was calculated from the difference between these two values. Tubes were shaken for half an hour. The action was performed for bacteria isolated from gastrointestinal contents and preparation of suspension. One mL was removed from the prepared suspension and was added into 9 mL buffer phosphate saline (PBS) in the other tube. Suspensions were prepared by dilutions 10^{-2} and serial dilutions were done (10^{-2}, 10^{-3}, 10^{-4}, 10^{-5} and 10^{-6}). One hundred μL were removed from 10^{-4}, 10^{-5} and 10^{-6} dilutions and poured into the Petri dish already prepared and containing the medium. Lactobacilli bacteria incubation was performed at 37°C in anaerobic conditions for 72 hours. Anaerobic jar was used to create anaerobic condition. Enterobacteriaceae and total aerobic bacteria were incubated at 37°C in aerobic conditions for 48 hours. Bacteria counting on Petri dishes was done by counting colonies counter and the result adjusted to 1 g sample content.

Immunity traits measurements

Blood samples were taken from one broiler chicken randomly chosen on day 42 according to culture Lactobacilli, Eosin Metilan Blou agar (Man Rogosa Sharpe Agar, 1.10660.500) to culture Escherichia coli, and MacConkey agar (105465.0500) to culture coliforms, which were prepared 24 hours before collecting samples. Bacillus cereus strains were transferred to the laboratory using collection tubes, weighed again and their weights were recorded. The amount of sample in each tube was calculated from the difference between these two values. Tubes were shaken for half an hour. The action was performed for bacteria isolated from gastrointestinal contents and preparation of suspension. One mL was removed from the prepared suspension and was added into 9 mL buffer phosphate saline (PBS) in the other tube. Suspensions were prepared by dilutions 10^{-2} and serial dilutions were done (10^{-2}, 10^{-3}, 10^{-4}, 10^{-5} and 10^{-6}). One hundred μL were removed from 10^{-4}, 10^{-5} and 10^{-6} dilutions and poured into the Petri dish already prepared and containing the medium. Lactobacilli bacteria incubation was performed at 37°C in anaerobic conditions for 72 hours. Anaerobic jar was used to create anaerobic condition. Enterobacteriaceae and total aerobic bacteria were incubated at 37°C in aerobic conditions for 48 hours. Bacteria counting on Petri dishes was done by counting colonies counter and the result adjusted to 1 g sample content.

Table 1. Vaccination schedule.

Type of vaccine	Days of vaccine	Method of vaccination
AI	1	Spray
IBV	1	Spray
ND	8	Oral
IBD	14	Oral
ND-Clon 30	20	Oral

AI, avian influenza; IBV, infectious bronchitis virus; IBD, infectious bursal disease; ND-Clon 30, nobilis Newcastle disease Clone 30.

Table 2. Composition of basal starter and grower diets fed to chicken broilers.

Ingredient, % (w/w) as fed-basis	Starter	Grower
Corn	58.78	60.00
Soybean meal	34.73	32.73
Carbonate		1.30
Corn oil	3.50	3.50
DL-methionine	0.20	0.22
L-lysine	0.07	0.05
Dicalcium phosphate	2.00	1.50
Sodium chloride	0.20	0.20
Vitamin mixture	0.25	0.25
Mineral mixture	0.25	0.25
Total	100.00	100.00

Vitamin and mineral supplied per kg of diet: vitamin A, 12,000 U; vitamin E, 10 mg; vitamin D, 2200 U; niacin, 35 mg; D-pantothenic acid, 12 mg; riboflavin, 3.63 mg; pterodoxine, 3.5 mg; thiamine, 2.4 mg; folic acid, 1.4 mg; biotin, 0.15 mg; vitamin B, 0.03 mg; manganese, 60 mg; zinc, 40 mg; iron, 1200 mg; copper, 8 mg; iodine, 0.3 mg; selenium, 0.2 mg.

Table 3. Some relevant data and energetic values of the starter and grower diets fed to broilers.

Ingredient	Starter	Grower
ME, kcal/kg	3019.80	2995.00
Crude protein, %	20.48	19.39
SID, %		
Lysine	1.15	0.96
Methionine	0.50	0.48
Met+Cys	0.83	0.78
Threonine	0.79	0.71
Calcium, %	1.00	0.85
Available phosphorus, %	0.50	0.42
DCAB, mEq/kg	236.00	202.00

ME, metabolisable energy; SID, standardized ileal digestible amino acids; Met, methionine; Cys, cysteine; DCAB, electrolyte balance.
to the same procedure adopted elsewhere (Poorghasemi et al., 2015; Pourhossein et al., 2015). Hemagglutination inhibition test was used to determine vaccine titers of Newcastle disease (ND) and avian influenza (AI). This test was described by Hurst (1942) for the first time, and it is based on the virus or bacteria ability to cause red blood cells agglutination. In our experiment, the antigen located in the presence of the studied serum and red blood cells is neutralised and loses the ability of agglutination red blood cells in presence of antibodies and antigen binding.

Newcastle disease and AI antibody titer was measured by the hemagglutination test. At days 21 and 35, chickens from each replicate were injected 0.1 mL per kg of body weight with 0.5% sheep red blood cells into the wing vein. On days 28 and 42, blood samples were taken and analysed. First, after serum separation and decomponention at 36°C, the passive hemagglutination tests were performed. Twenty-five μL serum and 25 μL PBS added into the first 96 well plates (8×12) and the plates were incubated at 37°C for half an hour. After half an hour to rest 25 μL wells of PBS were added and then dilutions of 1:2, 1:4, 1:8, 1:16, 1:32, 1:64, 1:128, 1:256, 1:512, 1:1024 and 1:2048 were prepared. After preparing this dilution, 25 μL sheep red blood cells (SRBC) (1% solution) were added to each well, then the plates were incubated for 45 minutes at 37°C, and the number of first slipping cell was recorded. Titers were reported based on log2.

It was thus suggested that the different results of the trials are due to: i) differences in the composition of phytochemical preparations, ii) different methods used to extract the essential oils (EO) form the herbs, iii) level of the application in feed (Cross et al., 2007). Antimicrobial activities (anti-bacterial, anti-fungal and anti-yeast activity) have been reported for EO from various plants or fruits (Debeaufort, 2007). Essential oils function mainly as antimicrobials and antioxidants; their antimicrobial ability may modulate the gut ecosystem to affect fat digestibility (Lee et al., 2004a). Essential oils function mainly as antimicrobials and antioxidants; their antimicrobial ability may modulate the gut ecosystem to affect fat digestibility (Lee et al., 2004a). A commercial preparation of essential oil components reduced faecal C. perfringens counts of chickens in a field study (Mitsch et al., 2002). In addition, dietary supplementation of EO reduced the intestinal populations of E. coli (Jang et al., 2007) and increased digestive enzymes in either pancreas and/or intestinal mucosa (Jang et al., 2007); however intestinal mucosal morphology was not affected by EO supplementation (Garcia et al., 2007).

The effects of various herbs and oils on broiler performance, allowed assessing that the quality as well as the quantity of active chemicals in plant extract determine the bird response (Cross et al., 2007). In addition, the efficacy of dietary EO can be affected by intrinsic and extrinsic factors such as nutritional status of animals, infection, environment, and diet composition (Giannenas et al., 2003; Lee et al., 2004b). It is known that feeding rye to chickens increases the number of bacteria in the intestine (Feighner and Dashkevich, 1987). The microbial over-population by rye feeding is attributed to its pentosan content that raises intestinal viscosity.

It is suggested that intestinal viscosity, caused by ingestion of soluble fibre, impairs the normal digestion process so that more undigested materials travel to distal parts where they can be used as substrates by the microflora. Increased microbial populations are also apparent in the upper part of the small intestine (Smits et al., 1998) where digestion occurs. The yellow coloured Citrus sinensis essential oil (CEO) obtained from citrus peel antibacterial activities is well known, and it has been observed that an injured orange releases a much greater amount of terpene peel-oil constituents than healthy fruits (Norman et al., 1967; McCallet and Torres-Griñol, 1992). This might be the source of antibacterial activity found in CEO. Various components of CEO may act synergistically and several compounds might have stimulating actions on fungal spore germination (French, 1985). There are several reports on the antimicrobial action of CEO (Murdock and Allen, 1960; Subba et al., 1967). These reports demonstrated that the fungi are more resistant than yeasts and bacteria. Flora includes Clostridium, Lactobacillus Peptostreptococcus, Bifidobacterium, Faubacterium, Escherichia, Streptococcus, and Bacteroides (Feighner and Dashkevich, 1987).

Gut microflora has significant effects on host nutrition, health, and growth performance (Barron, 1992) by interacting with nutrient utilisation and the development of gut system of the host. This interaction is very complex and, depending on the composition and activity of the gut microflora, it can have either positive or negative effects on the health and growth of birds. For example, when pathogens attach to the mucosa, gut integrity and function are severely affected (Droleskey et al., 1994) and immune system threatened (Neish, 2002).

Statistical analysis

Data recorded for broilers’ gastrointestinal microbial population and immune system were statistically analysed using the one-way variance analysis (ANOVA). Statistics was carried out using SAS v8 (SAS Institute Inc., Cary, NC, USA). Duncan’s multiple range test was applied to compare the differences between the means (Steel et al., 1997).

Results and discussion

Natural medicinal products originating from herbs and spices have been used as feed additives for farm animals in for long time. To differentiate from the plant products used for veterinary purposes (prophylaxis and therapy of diagnosed health problems), phytophobiotics were redefined by Windisch and Kroisamayr (2006) as plant-derived products added to the feed in order to improve performance of agricultural livestock.

Many phytochemicals in phytophobiotics are well known to have antimicrobial ability (Cowan, 1999). Polysaccharides also are considered to be the most important immunoactive components (Xue and Meng, 1996). Increased feed intake and consequent increased digestive secretions have been observed in animals offered phytophobic-supplemented feed (Windisch and Kroisamayr, 2006). The same observation holds true for the addition of phytopogenic additives in broiler feed. Many experiments investigating the effects of herbs, plant extracts and essential oils on broiler performance gave however contradicting results. Some authors reported a significant positive effect of phytochemicals on broiler performance (Cross et al., 2007), while other trials using different phytophobic additives and essential oils did not affect body weight gain, feed intake or feed efficiency in broilers (Ocak et al., 2008).

It has been suggested that the different results of the trials are due to: i) differences in the composition of phytopogenic preparations, ii) different methods used to extract the essential oils (EO) form the herbs, iii) level of the application in feed (Cross et al., 2007). Antimicrobial activities (anti-bacterial, anti-fungal and anti-yeast activity) have been reported for EO from various plants or fruits (Debeaufort, 2007). Essential oils function mainly as antimicrobials and antioxidants; their antimicrobial ability may modulate the gut ecosystem to affect fat digestibility (Lee et al., 2004a). A commercial preparation of essential oil components reduced faecal C. perfringens counts of chickens in a field study (Mitsch et al., 2002). In addition, dietary supplementation of EO reduced the intestinal populations of E. coli (Jang et al., 2007) and increased digestive enzymes in either pancreas and/or intestinal mucosa (Jang et al., 2007); however intestinal mucosal morphology was not affected by EO supplementation (Garcia et al., 2007).
proposed that structural properties are responsible for the antibacterial activity (Bowles and Miller, 1993).

It is thought that membrane perforation or binding is the main mode of action (Shapiro and Gugenheim, 1995; Stiles et al., 1995), leading to an increase of permeability and leakage of vital intracellular constituents (Juven et al., 1994).

Microbiota traits measurements

All animals used for this study were healthy and survived until the end of the study.

Table 4 shows the effect of different levels of DCSP on broilers intestinal microbial population at the end of the treatment with different feed supplemented diets.

Supplementation of *Citrus sinensis* had no significant effect on *Lactobacillus* sp. (ileum and caecum), on coliforms (ileum and caecum) and *Escherichia coli* (ileum) on day 42 (P>0.05), but supplementation with *Citrus sinensis* had significant effect on *Escherichia coli* (caecum) on day 42 (P<0.05). The highest average number of log CFU•g⁻¹ *Lactobacillus* sp. (ileum) was observed in the experimental group feed with the DCSP-0.5.

Compared with the DCSP-0 treatment, lower number of *Lactobacillus* sp. was observed. The highest average number of logs CFU•g⁻¹ *Lactobacillus* sp. (caecum) was observed in the experimental group DCSP-1, and, compared with the DCSP-0 treatment, we observed lower number of *Lactobacillus* sp. The highest average number of log CFU•g⁻¹ coliforms (ileum and caecum) was in the experimental DCSP-0 treatment. Compared with the DCSP-1 treatment, we observed lower numbers of coliforms. The highest average number of log CFU•g⁻¹ *Escherichia coli* (ileum) was in the experimental DCSP-0 treatment. Compared with the DCSP-0.25, we observed lower numbers of *Escherichia coli*. The highest average number of log CFU•g⁻¹ *Escherichia coli* (caecum) was in the experimental DCSP-0 treatment. Compared with the DCSP-1, we observed lower numbers of *Escherichia coli*.

Table 4. Effect of different levels of dried *Citrus sinensis* peel on broilers' intestinal microbial population (log₁₀).

Treatment	Lactobacilli	Coliforms	*Escherichia coli*			
	Ileum	Caecum	Ileum	Caecum	Ileum	Caecum
DCSP-0	7.52	8.19	9.45	9.64	8.46	9.19b
DCSP-0.25	7.90	9.58	8.25	8.85	7.54	8.44ab
DCSP-0.50	9.46	9.06	8.89	9.16	8.14	8.88ab
DCSP-0.75	8.30	9.31	7.85	8.88	7.77	7.87ab
DCSP-1.00	9.01	9.58	7.21	8.02	8.30	7.69ab
SEM	1.37	0.57	0.87	0.58	0.37	0.58
P	0.18	0.00	0.09	0.45	0.55	0.01

DCSP; dried *Citrus sinensis* peel; DCSP-0, control diet without feed addition; DCSP-0.25, diet with 0.25% DCSP w/w feed addition; DCSP-0.50, diet with 0.50% DCSP w/w feed addition; DCSP-0.75, diet with 0.75% DCSP w/w feed addition; DCSP-1.00, diet with 1% DCSP w/w feed addition. *Means within a column with different superscript letters are significantly different (P<0.05).

Table 5. Effect of different levels of dried *Citrus sinensis* peel on broilers’ immune system (log₂).

Treatment	28th day	42nd day				
	TSRBC	IgG	IgM	TSRBC	IgG	IgM
DCSP-0	3.33	1.00	2.33	6.33b	3.33	3.00
DCSP-0.25	6.66	2.66	4.00	7.66ab	5.33	2.33
DCSP-0.50	6.00	2.66	3.33	7.66ab	4.00	3.55
DCSP-0.75	6.00	2.66	3.33	8.66b	5.33	3.33
DCSP-1.00	4.66	1.33	3.33	8.00ab	4.33	3.66
SEM	1.33	0.82	0.59	0.84	0.86	0.55
P	0.07	0.12	0.52	0.05	0.05	0.04

TSRBC, sheep red blood cell; IgG, Immunoglobulin G; IgM, Immunoglobulin M; DCSP, dried *Citrus sinensis* peel; DCSP-0, control diet without feed addition; DCSP-0.25, diet with 0.25% DCSP w/w feed addition; DCSP-0.50, diet with 0.50% DCSP w/w feed addition; DCSP-0.75, diet with 0.75% DCSP w/w feed addition; DCSP-1.00, diet with 1% DCSP w/w feed addition. *Means within a column with different superscript letters are significantly different (P<0.05).

Table 6. Effect of different levels of dried *Citrus sinensis* peel on Newcastle disease and avian influenza (log₂).

Treatment	ND (42nd day)	DCSP-0	DCSP-0.25	DCSP-0.50	DCSP-0.75	DCSP-1.00	SEM	P
ND	4.00	5.66	7.66	6.66	5.66	5.00	0.98	0.15
Al (42nd day)	2.66b	2.66b	4.33a	4.33a	3.00ab	0.69	0.01	

ND, Newcastle disease; Al, avian influenza; DCSP, dried *Citrus sinensis* peel; DCSP-0, control diet without feed addition; DCSP-0.25, diet with 0.25% DCSP w/w feed addition; DCSP-0.50, diet with 0.50% DCSP w/w feed addition; DCSP-0.75, diet with 0.75% DCSP w/w feed addition; DCSP-1.00, diet with 1% DCSP w/w feed addition. *Means within a column with different superscript letters are significantly different (P<0.05).
significantly different (P<0.05). According to the results of this study on day 28, the lowest titer of total anti-SRBC was related to DCSP-0 treatment and the highest rate was related to DCSP-0.25 treatment. On day 42, the lowest titer of total anti-SRBC was related to DCSP-0 treatment and the highest rate was related to DCSP-0.75 treatment. In Table 5 the means of IgM and IgG titers on days 28 and 42 are also shown. According to the results of this study, they were no significantly different (P>0.05). On day 28, the lowest titer of IgG was related to DCSP-0 treatment and the highest rate was related to DCSP-0.25, DCSP-0.5 and DCSP-0.75 treatments. On day 42, the lowest titer of IgM was related to DCSP-0 treatment and the highest rate was related to DCSP-0.25 and DCSP-0.75 treatments. On day 42, the lowest titer of IgG was related to DCSP-0.5 treatment and the highest rate was related to DCSP-0.25 treatment. According to the results of this study on day 42, the lowest titer of IgG was related to DCSP-0 treatment and the highest rate was related to DCSP-0.25 and DCSP-0.75 treatments. On day 42, the lowest titer of IgM was related to DCSP-0.25 treatment and the highest rate was related to DCSP-1 treatment.

Newcastle disease and avian influenza titer

Table 6 shows the mean ND and AI titer on day 42. According to the results shown, the mean of ND titers on day 28 was not significantly different (P>0.05). On day 42, the lowest titer of ND was related to DCSP-0 treatment and the highest rate was related to DCSP-0.5 treatment. According to the results of this study, for the mean of AI titers on day 42, no significant difference was observed (P>0.05). On day 42, the lowest titer of AI was related to DCSP-0 treatment and DCSP-0.25 treatment and the highest rate was related to DCSP-0.5 treatment.

Conclusions

Dried Citrus sinensis peel feed supplement of broiler chickens resulted in ameliorating the gastrointestinal microbiota and immune system traits. The mean of Escherichia coli in caecum on the 42nd day improved while no other gastrointestinal microbial population trait was affected. Feed supplementation with Citrus sinensis dried peel had no significant effect on ND at the 42nd day while the mean value for hemagglutination inhibition on the 42nd day was significantly different. The results suggest a possible use of DCSP as feed supplement for broiler chickens.

References

AOAC, 1990. Official methods of analysis. 15th ed. Association of Official Analytical Chemists, Washington, DC, USA.

Aviagen, 2007. Ross 308 broiler. Nutrition specification. Aviagen, Newbridge, UK.

Barrow, P.A., 1992. Probiotics for chickens. In: R. Fuller (ed.) Probiotics: the scientific basis. Chapman and Hall, London, UK, pp. 255-257.

Bowles, B.L., Miller, A.J., 1993. Antibotulinal properties of selected aromatic and aliphatic aldehydes. J. Food Protect. 56:788-794.

Catala-Gregori, V.P., Hernandez, F., Megias, M.D., Madrid, J., 2007. Effect of formic acid and plant extracts on growth, nutrient digestibility, intestine mucosa morphology, and meat yield of broilers. J. Appl. Poultry Res. 16:555-562.

Chang, S.H., 1990. Flavonoids coumarins and acrideon alkaloids from the root bark of citrus limonia. Phytochemistry 29:351-353.

Chen, Z.T., Chu, H.L., Chyau, C.C., Duh, P.D., 2012. Protective effects of sweet orange (Citrus sinensis) peel and teir bioactive compounds on oxidative stress. Food Chem. 135:2119-2127.

Cowan, M.M., 1999. Plant products as antimicrobial agents. Clin. Microbiol. Rev. 12:564-582.

Cross, D.E., McDevitt, R.M., Hillman, K., Acamovic, T., 2007. The effect of herbs and their associated essential oils on performance, dietary digestibility and gut microflora in chickens from 7 to 28 days of age. Brit. Poultry Sci. 48:496-506.

Droleskey, R.E., Oyofo, B.A., Hargis, B.M., Cross, D.E., McDevitt, R.M., Hillman, K., Bowles, B.L., Miller, A.J., 1993. Antibotulinal compounds on oxidative stress. Food Chem. 135:2119-2127.

Ebrahimi et al., 2007. Protective effects of sweet orange (Citrus sinensis) peel and their bioactive compounds on oxidative stress. Food Chem. 135:2119-2127.

Fernandez-Lopez, J., Zhi, N., Aleson-Carbonell, L., Perez-Alvaraz, J.A., Kuri, V., 2005. Antioxidant and antibacterial activities of natural extracts: application in beef meatballs. Meat Sci. 69:371-380.

French, R.C., 1985. The bio-regulatory action of flavor components on fungal spores and other propagules. Annu. Rev. Phytopathol. 23:173-199.

Giannenas, I., Florou-Paneri, P., Papazahariadou, M., Christaki, E., Botsoglou, N.A., Spais, A.B., 2003. Effect of dietary supplementation with oregano essential oil on performance of broilers after experimental infection with Eimeria tenella. Arch. Anim. Nutr. 57:99-106.

Harats, D., Chevion, S., Nahir, M., Norman, Y., Sagee, O., Berry, E.M., 1998. Citrus fruit supplementation reduces lipoprotein oxidation in young men ingesting a diet high in saturated fat: presumptive evidence for an interaction between vitamin C and vitamin E in vivo. Am. J. Clin. Nutr. 67:240-245.

Hirst, G.K., 1942. The quantitative determination of influenza virus and antibodies by means of red cell agglutination. J. Exp. Med. 75:49-64.

Huyshebaert, G., Ducatelle, R., Van Immerseel, F., 2011. An update on alternatives to antimicrobial growth promoters for broilers. Vet. J. 187-182-188.

Jang, I.S., Ko, Y.H., Kang, S.Y., Lee, C.Y., 2007. Effect of a commercial essential oil on growth performance, digestive enzyme activity and intestinal microflora population in broiler chickens. Anim. Feed Sci. Tech. 134:304-315.

Juven, B.J., Kanner, J., Schved, F., Weisslowicz, H., 1994. Factors that interact with the antibacterial action of thyme essential oil and its active constituents. J. Appl. Bacteriol. 76:626-631.

Lee, K.W., Everts, H., Beynen, A.C., 2004a. Essential oils in broiler nutrition. Int. J. Poultry Sci. 3:738-752.

Lee, K.W., Everts, H., Kappert, H.J., Van Der Kuilen, J., Lemmens, A.G., Frehner, M., Beynen, A.C., 2004b. Growth performance, intestinal viscosity, fat digestibility and plasma cholesterol in broiler chickens fed a rye-containing diet without or with essential oil components. Int. J. Poultry Sci. 3:613-618.

May, C.D., 1990. Industrial pectins sources, production and application. Carbohydr. Polym. 12:93-84.

Mitsch, P., Kohler, B., Gabler, C., Losa, R., Zitterl-Eglseder, K., 2002. CRINA poultry reduces colonisation and proliferation of Clostridium perfringens in the intestine and faeces of broiler chickens. pp 6-10 in Proc. 11th European Poultry Conf., Bremen, Germany.

Murdock, D.I., Allen, W.E., 1960. Germicidal effect of orange peel oil and D-limonene in water and orange juice. Fungicidal proper-
ties against yeast. Food Technol. 14:441-445.

Nannapaneni, R., Arunachalam, M., Philip Crandall, G., Johnson, M.J., O’Bryan, C.A., Chalova, V.I., Callaway, T.R., Carroll, J.A., Arthington, J.D., Nishet, D.J., Ricke, S.C., 2008. Antimicrobial activity of commercial citrus-based natural extracts against Escherichia coli 0157:1-17 isolates and mutant strains. Foodborne Pathog. Dis. 5:695-699.

Nannapaneni, R., Chalova, V.I., Crandall, P.G., Ricke, S.C., Johnson, M.G., O’Bryan, C.A., 2009. Campylobacter and Arcobacter species sensitivity to commercial orange oil fractions. Int. J. Food Microbiol. 129:43-49.

National Research Council, 1994. Nutrition requirements of poultry. 9th rev. ed. National Research Council, Washington, DC, USA.

Neish, A.S., 2002. The gut microflora and intestinal epithelial cells: a continuing dialogue. Microbes Infect. 4:309-317.

Norman, S., Craft, C.C., Davis, P.L., 1967. Volatiles from injured and uninjured Valencis oranges at different temperatures. J. Food Sci. 32:656-659.

O’Bryan, C.A., Crandall, P.G., Chalova, V.I., Ricke, S.C., 2008. Orange essential oils antimicrobial activities against Salmonella spp. J. Food Sci. 73:264-267.

Ocak, N., Eren, G., Burak, A.K.F., Sungu, M., Altop, A., Ozmen, A., 2008. Performance of broilers fed diets supplemented with dry peppermint (Mentha piperita L.) or thyme (Thymus vulgaris L.) leaves as growth promoter source. Czech J. Anim. Sci. 53:169-175.

Parhiz, H., Roohbakhsh, A., Soltani, A.F., Rezaee, R., Iranshahi, M., 2014. Antioxidant and anti-inflammatory properties of the citrus flavonoids hesperidin and hesperetin: an updated review of their molecular mechanisms and experimental models. Phytother. Res. 29:323-331.

Pooprasert, P., Seidavi, A.R., Qotbi, A.A.A., Chambers, J.R., Laudadio, V., Tufarelli, V., 2015. Effect of dietary fat source on humoral immunity response of broiler chickens. Arch. Geflugeld. 79:1-8.

Pope, T., Emmert, J.L., 2001. Phase feeding supports maximum growth performance of broiler chicks from forty-three to seventy one days. Poultry Sci. 80:345-352.

Pourhossein, Z., Qotbi, A.A.A., Seidavi, A.R., Laudadio, V., Centoducati, G., Tufarelli, V., 2015. Effect of different levels of dietary sweet orange (Citrus sinensis) peel extract on humoral immune system responses in broiler chickens. Anim. Sci. J. 86:105-110.

Shafeghat, A., 2010. Antioxidant activity, extraction and determining of chemical structure of flavonoids and chalcone in flowers of Tanacetum Parthenium L. Iran. J. Med. Arom. Plants 2:157-167.

Shapiro, S., Guggenheim, B., 1995. The action of thymol on oral bacteria. Oral Microbiol. Immun. 10:241-246.

Smits, C.H.M., Veldman, A., Verkade, H.J., Beynen, A.C., 1998. The inhibitory effect of carboxymethylcellulose with high viscosity on lipid absorption in broiler chickens coincides with reduced bile salt concentration and raised microbial numbers in the small intestine. Poultry Sci. 77:1534-1539.

Steel, R.G.D., Torrie, J.H., Dicky, D.A., 1997. Principles and procedures of statistics: a biometrical approach. 3rd ed. WCB/McGraw-Hill, New York, NY, USA.

Stiles, J.C., Sparks, W., Ronzio, R.A., 1995. The inhibition of Candida albicans by oregano. J. Appl. Nutr. 47:96-102.

Subba, M.S., Soumithri, T.C., Ruryanaryana Rao, R., 1967. Antimicrobial action of citrus oils. J. Food Sci. 32:225-227.

Tepe, B., Daferera, D., Sokmen, A., Sokmen, M., Polissiou, D., 2005. Antimicrobial and antioxidant activities of the essential oil and various extracts of Salvia tomentosa Miller (Lamiaceae). Food Chem. 90:333-340.

Vivek Kumar, R., Nandini, Shashidhara, S., Anitha, S., 2010. Anti typhoid activity of aqueous extract of fruit peel citrus sinensis. Int. J. Pharma Res. Dev. 2:217-221.

Yang, Y., Iji, P.A., Choct, M., 2009. Dietary modulation of gut microflora in broiler chickens: a review of the role of six kinds of alternatives to in-feed antibiotics. World. Poultry Sci. J. 65:97-114.

Windisch, W., Kroismayr, A., 2006. The effects of phytobiotics on performance and gut function in monogastrics. pp 85-90 in Proc. World nutrition forum: the future of animal nutrition. Vienna, Austria.

Xue, M., Meng, X.S., 1996. Review on research progress and prosperous of immune activities of bioactive polysaccharides. J. Trad. Vet. Med. 3:15-18.