Akizuki’s counterexample

Miles Reid *

Mar 1995

Abstract

Following [Akizuki], I construct a Noetherian local integral domain C_M whose normalisation (integral closure) is not finite over C_M. My proof follows closely Akizuki’s ingenious calculations.

Let A be a DVR with local parameter t and residue field $k = A/(t)$, and \hat{A} the completion of A. There are no restrictions on the characteristic of A or k, but I assume that \hat{A} contains a transcendental element over A. (For DVRs of interest, \hat{A} usually has infinite transcendence degree over A.) The rings B, C constructed below, and their localisations, are intermediate subrings between A and \hat{A}.

The construction depends on a power series

$$z = z_0 = a_0 + a_1 t^{n_1} + a_2 t^{n_2} + \cdots \in \hat{A},$$

(not just on the element z). Assume:

(2) Each $a_i \in A$ is a unit.

(3) $n_r \geq 2n_{r-1} + 2$ for every $r \geq 1$, where I set $n_0 = 0$; for example, the smallest possible choice is $n_r = 2(2^r - 1) = 0, 2, 6, 14, 30, \ldots$.

(4) z is transcendental over A, so that $A \subset A[Z] \subset \hat{A}$ is a polynomial extension.

Akizuki’s construction is as follows: for $r \geq 0$, let

$$z_r = \frac{z_0 \text{ - first } r \text{ terms}}{t^{m_r}} = a_r + a_{r+1} t^{m_{r+1}} + \cdots,$$

where

$$m_r = n_r - n_{r-1} \text{ so that (3) gives } 2m_r \geq n_r + 2.$$

*This paper was written during a stay at the semestre “Surfaces de Riemann et fibrés vectoriels” of the Centre Emile Borel, paid for by the EEC HCM project AGE (Algebraic Geometry in Europe), contract number ERBCHRXCT 940557.
Then the \(z_r \) satisfy the identities
\[
\begin{align*}
z_r - a_r &= t^{m_r+1} z_{r+1}, \\
t^{m_r} z_r &= z_0 - \sum_{i=0}^{r-1} a_i t^{m_i}, \quad \text{with} \sum_{i=0}^{r-1} a_i t^{m_i} \in A.
\end{align*}
\] (6) (7)

Then set \(B = A[z_0, z_1, \ldots] = A[(z_0 - a_0), (z_1 - a_1), \ldots] \). The properties of \(B \) are easy (compare, for example, [UCA], Ex. 8.5).

Theorem The principal ideal \(m = tB \subset B \) is maximal, with \(B/m = k = A/(t) \), and the localisation \(B_m \) is a DVR with the same parameter \(t \).

Proof Consider the natural “evaluation” homomorphism \(B \to k = A/(t) \) defined by \(t \mapsto 0, \ z_r \mapsto a_r \). This is obviously surjective, and by (6), the kernel is the principal ideal \(m = tB \). The localisation \(B_m \) is a local ring; its maximal ideal \(mB_m = tB_m \) is principal; and \(\bigcap (t^n) = 0 \) in \(B_m \), because \(B_m \subset A \), and the same holds there. This proves that \(B \) is a DVR (see, for example, [UCA], Proposition 8.4) with local parameter \(t \), residue field \(B/tB = A/(t) = k \) and \(\text{Frac} B = \text{Frac} A(z) \). Q.E.D.

Now the big one: set \(C = A[t(z_0 - a_0), \{(z_i - a_i)^2\}_{i=0}^\infty] \subset B \).

Theorem \(M = (t, t(z_0 - a_0)) \subset C \) is a maximal ideal with \(C/M = k = A/(t) \), and the localisation \(C_M \) has the following properties:

(i) \(B \) and \(C \) have the same field of fractions:
\[
\text{Frac} B = \text{Frac} C = \text{Frac} A(z).
\]

(ii) \(B_m \) is integral over \(C_M \), so that \(B_m = \widehat{C_M} \) (the normalisation).

(iii) \(C_M \) is a 1-dimensional Noetherian local ring.

(iv) \(B_m \) is not finite as a \(C_M \)-module.

Statements (i) and (ii) are immediate. The surprise, of course, is that \(C \) is Noetherian.

Proof Manipulating the identities (6), (7) gives two standard tricks. First, by (7), the difference between \(t(z_0 - a_0) \) and \(t^{r+1}(z_r - a_r) \) is an element of \(A \) for any \(r \geq 0 \). This allows me to replace \(t^{n+1}(z_i - a_i) \) wherever it appears by an element of \(A \) plus \(t^{n+1}(z_j - a_j) \) with \(j > i \).

Second, consider the identity
\[
(z_{i-1} - a_{i-1})^2 = (t^{m_i} z_i)^2 = t^{2m_i}((z_i - a_i)^2 - a_i^2) + 2a_i t^{2m_i} z_i.
\]

(8)
It’s easy to check that both terms on the right are in tC: the second, because of (7) and the assumption $2m_r \geq n_r + 2$ (see (3) and (5)). A first consequence is that the kernel of the map $C \to k$ defined by the evaluation $t \mapsto 0$ and $z_i \mapsto a_i$ is the maximal ideal $M = (t, t(z_0 - a_0))$.

The second trick allows me to replace $(z_{r-1} - a_{r-1})^2$ wherever it appears by

$$t^{2m_r}(z_i - a_i)^2 + \text{multiple of } t^{n_r+2}(z_i - a_i) + \text{element of } A.$$

Performing these two tricks repeatedly gives that, for any specified $r \geq 0$ and $N > 0$, any element $f \in C$ can be written

$$f = X + Yt^{n_r+1}(z_r - a_r) + t^NZ, \quad \text{with } X, Y \in A \text{ and } Z \in C. \quad \text{(9)}$$

Main Claim For $0 \neq f \in M$, the principal ideal fC_M contains a power of t.

Proof of Claim There exists N such that $f \notin t^NA$. Choose r with $n_r \geq N - 1$, and consider the expression (10). Then necessarily $X = t^nu$ with $n < N$ and u a unit of A. Dividing through by u, I assume that $X = t^n$, and

$$f = t^n(1 + t^{N-n}Z) + Yt^{n_r+1}(z_r - a_r).$$

To prove the claim, multiply f by $g = t^n(1 + t^{N-n}Z) - Yt^{n_r+1}(z_r - a_r)$:

$$fg = t^{2n}(1 + t^{N-n}Z)^2 - Y^2t^{2n+2}(z_r - a_r)^2.$$

This is obviously of the form t^{2n} times an element of $C \setminus M$. Q.E.D.

I prove that the local ring C_M is Noetherian and 1-dimensional. It is clear from (10) that C_M/t^NC_M is generated over $A/(t^N)$ by 1 and $t^{n_r+1}z_r$, and therefore is a Noetherian A-module. Now any nonzero ideal $I \subset C_M$ contains t^N for some N, and then the quotient ring C_M/I is also Noetherian. Therefore bigger ideals $I \subset J \subset C_M$ have the a.c.c. A nonzero prime ideal of C_M contains some t^N, and therefore also t and $t(z_0 - a_0)$, so that Spec $C_M = \{0, MC_M\}$.

Under the assumption that z is transcendental, I now prove that B_m is not finite over C_M, arguing by contradiction. Since C_M is Noetherian, if B_m were finite, it would be a Noetherian C_M-module. Consider the ascending chain of submodules generated by $\{(z_i - a_i)\}_{i \leq r'}$; for some r, I get a relation

$$z_r - a_r = \sum_{i=0}^{r-1} g_i(z_i - a_i) \quad \text{with } g_i \in C_M. \quad \text{(10)}$$

Writing $g_i = f_i/f_r \in C_M$ gives

$$f_r(z_r - a_r) = \sum_{i=0}^{r-1} f_i(z_i - a_i) \quad \text{with } f_0, \ldots, f_r \in C \text{ and } f_r \notin M. \quad \text{(11)}$$
Now multiplying (11) by t^{n_r} and using (7) gives

$$f_r(z - \sum_{j=0}^{r+1} a_j t^{n_j}) = \sum_{i=0}^{r-1} f_i t^{n_r-n_i}(z - \sum_{j=0}^{i+1} a_j t^{n_j}).$$

(12)

Now all the $f_i \in C$ are polynomials in z with coefficients in A, and the left-hand side is a unit times z (because $f_r \notin M$), whereas every coefficient on the right-hand side is divisible by t. Therefore (12) is a nontrivial polynomial relation $F(z) = 0$ with coefficients in A. This contradiction completes the proof of the theorem. Q.E.D.

Exercises

1. Use (8) to prove that $M^2 = t M$.

2. Prove that $t^{n_r}(z_r - a_r) \notin C$ for any $r \geq 0$. [Hint: following the method of (12), use $t^{n_r}(z_r - a_r) \in C$ to derive an algebraic dependence relation for z over A.]

History

My treatment follows Akizuki in all essentials. Clearly under the influence of the papers of Krull and his followers, Akizuki only considers the case where $\hat{A} = \mathbb{Z}_p$ is the ring of p-adic integers. His proof that C is infinite over B is indirect. He argues by contradiction, based on the notion of “analytically unramified” (in later terminology): the element $x_r = t^{n_r+1}(z_r - a_r) \notin t C$ (by Ex. 2 above), but $x_r^2 \in t^{2n_r+2} C$. Thus $x = \lim_{r \to \infty} x_r$ is a nilpotent element of the t-adic completion of C.

As discussed in [UCA], 9.4, the real point of this counterexample, and of those of Nagata (see the appendix to [Nagata]) is that there is really no hope of making everything that works for geometric rings go through for Noetherian rings. At some time you have to make assumptions of a concrete nature, for example that your ring is finitely generated over k or \mathbb{Z}.

Geometric interpretation of B

If $A = \mathbb{C}[t](0)$ and the power series z has positive radius of convergence, I can consider the analytic arc $\Gamma \subset \mathbb{C}^2$ defined by $(z = z(t))$. There is an obvious sense in which B_m is the ring of regular functions on Γ that are restrictions of rational functions on Γ that are restrictions of rational functions of t, z.

More algebraically, for each r, I can view $\mathbb{A}_r = \text{Spec } A[z_r]$ as the “affine plane” with coordinates t, z_r, or its germ at $(t = 0, z = a_r)$. The inclusion of rings $\text{Spec } A[z_{r-1}] \subset \text{Spec } A[z_r]$ corresponds to the “blow-up” $\mathbb{A}_r \to \mathbb{A}_{r-1}$ defined by $(t, z_r) \mapsto (t, a_r + t^{n_r} z_{r-1})$. The limit $\text{Spec } B$ is the surface in infinite dimensional space defined by the relations (11). The projection to each \mathbb{A}_r can be viewed as an infinitely thin cusp-shaped region around the analytic arc $z = z(t)$.

Rings like B are interesting because of their proclivity to dimensional ambiguity, arising from the question as to whether or not (1) is a functional dependence relation $z = z(t)$. This ambiguity is the starting point for Nagata's
examples of noncatenary rings, see \cite{Nagata}, Example 2, p. 203 or \cite{UCA}, Example 9.4, (2). As we have seen, B becomes a DVR when localised at (t), because modulo t^N the identities (6)–(7) imply the “obvious” relation $z = z(t)$. On the other hand, if I delocalise A (taking, say, $A = k[t]$), I can pass to the ring of fractions $B[1/t]$. Then the identities (6) give all the z_i as functions of $z = z_0$, so that, assuming z is transcendental over A, $B[1/t] = A[1/t][z]$ is clearly 2-dimensional (for example, $B = k[t,z][1/t]$ is just polynomial functions on the z,t plane).

Geometric interpretation of C Even after the event, I don’t know how to motivate Akizuki’s example to make it completely natural, and it’s hard to imagine how he discovered his incredibly ingenious construction.

For what it’s worth, I have in mind the following geometric picture, by analogy with the above picture of B: the ring $C \subset B$ is the union over r of subrings

$$A[t^{n_r+1}z_r, (z_r - a_r)^2] \subset A[z_r].$$

In other words, the monomials that are missing are $t^i z_r$ for $i = 1, \ldots, n_r$. This can be interpreted as creasing the z,t plane A_r along the analytic arc Γ to have a cusp for $n_r + 1$ infinitesimal steps. Of course, it’s hard to predict on the basis of the geometric picture why such a weird procedure should lead to a Noetherian ring.

Thanks To John Moody and Shigeru Mukai for helpful discussions.

Ad This note is a free sample of my forthcoming book \cite{UCA}. Place your order soon to avoid disappointment.

References

\cite{Akizuki} Y. Akizuki, Einige Bemerkungen über primäre Integritätsbereiche mit Teilerkettensatz, Proc. Phys.-Math. Soc. Japan, 17 (1935), pp. 327–336

\cite{Nagata} M. Nagata, Local rings, John Wiley Interscience, New York, London, 1962

\cite{UCA} M. Reid, Undergraduate commutative algebra, C.U.P., Cambridge 1995