In this paper, we develop a fractional integro-differential operator calculus for Clifford algebra-valued functions. To do that, we introduce fractional analogues of the Teodorescu and Cauchy-Bitsadze operators, and we investigate some of their mapping properties. As a main result, we prove a fractional Borel-Pompeiu formula based on a fractional Stokes formula. This tool in hand allows us to present a Hodge-type decomposition for the fractional Dirac operator. Our results exhibit an amazing duality relation between left and right operators and between Caputo and Riemann-Liouville fractional derivatives. We round off this paper by presenting a direct application to the resolution of boundary value problems related to Laplace operators of fractional order.

**KEYWORDS**
Borel-Pompeiu formula, Cauchy-Green formula, fractional Clifford analysis, fractional derivatives, Hodge-type decomposition, Stokes' formula

1 | INTRODUCTION

Clifford analysis offers a higher dimensional generalization of the classical theory of complex holomorphic functions. Its tools can be applied to several different areas, for instance, to quantum mechanics, quantum field theory, projective geometry, computer graphics, neural network theory, and to many other areas of physics and engineering. The corresponding analogy of the class of complex holomorphic functions is that of monogenic functions. These are the null solutions to the Dirac operator. The latter operator factorizes the Laplace operator and provides a first-order generalization of the well-known Cauchy-Riemann operator in complex analysis (see Brackx et al. and Delanghe et al.).

A main tool that Clifford holomorphic function theory uses in the treatment of boundary value problems is the Teodorescu operator, which is the right inverse of the Dirac operator. Properties and applications of the hypercomplex Teodorescu
operator have been studied by many authors (see, for instance, Wang for a list of references). In the context of quaternionic
and Clifford analysis, Gürlebeck and Sprößig studied among many others particular mapping and regularity properties
of this integral operator. Furthermore, they studied its connections to elliptic boundary value problems. Additionally,
Brackx et al also investigated some interesting connections between the Teodorescu operator and Hermitian regular
functions. An extension to the time-dependent case addressing the heat and the Schrödinger operator has been presented
subsequentially in Cerejeiras and Vieira.

Another central aspect that appears in the classical vector calculus and in generalized Clifford holomorphic function
theories is the Helmholtz decomposition of $L^2$-spaces. Actually, in classical three-dimensional vector analysis, it is nothing
else than the decomposition of an arbitrary sufficiently regular vector field into the sum of a divergence free field (having
a vector potential) and a curl free vector field (having a scalar potential). This particular space decomposition together
with the Teodorescu operator calculus provides a very elegant resolution toolkit for boundary value problems in the cor-
responding scales of Hilbert-Sobolev spaces. For more details, we also refer to the survey paper. For the time-dependent
case, see, for instance, previous studies.

A parallel development over the last years consists of a rapidly increasing interest in the theory of derivatives and
integrals of noninteger order. Apart from several applications of fractional order models, as for example, to kinetic theo-
ries, statistical mechanics, to the dynamics in complex media, and to many other fields (see Tarasov and the references
indicated therein), those methods provide an important counterpart and extension of the classical integer order models.
The advantage of fractional models consists of the possibility of using fractional derivatives to describe the memory and
hereditary properties of various materials and processes. Another field of application consists of addressing differential
equations related to flows with permeable boundaries, such as for instance dam-fill problems which provides a further
important motivation to develop three-dimensional generalizations of harmonic and Clifford analysis tools for the frac-
tional setting. Preceding work pointing in this direction can be found in Idczak and Walczak and Hossein et al where
the fractional $p$-Laplace equation has been treated.

Behind this background, the development of links between Clifford analysis and fractional differential calculus re-
resents a very recent topic of research. In particular, some first steps in the direction of an introduction of a fractional
Clifford analytic function theory have been made in other works. In these papers, the authors determined series rep-
resentations for the fundamental solution related to some stationary and nonstationary fractional Dirac-type operators.
The knowledge of explicit representation formulas of these fundamental solutions represents a corner stone in the devel-
opment of a fractional version of Clifford analysis. The latter functions serve as kernels for fractional integral operators,
such as the fractional Teodorescu operator that we are going to introduce and to investigate in this paper.

The aim of this paper is to apply the fundamental solutions obtained in Ferreira and Vieira in order to develop the
fundamentals of a fractional operator calculus related to the fractional Dirac operator that depends on a vector of fractional
parameters $a = (a_1, \ldots, a_n)$ with $a_i \in [0, 1]$, $i = 1, \ldots, n$. We introduce fractional analogues of the Teodorescu operator
and of the Cauchy-Bitsadze operator, and we investigate some important mapping properties. Moreover, we present a
Hodge-type decomposition for the fractional Dirac operator defined via left Caputo fractional derivatives. The results that
we obtain exhibit an amazingly interesting “double duality” between left and right operators and between Caputo and
Riemann-Liouville fractional derivatives. This double duality appears in a nontrivial generalization of the Stokes formula
as well as in the fractional Borel-Pompeiu formula and in the Hodge-type decomposition that we are going to present
subsequentially. Throughout the paper, we show that we can always re-obtain the results of the classical function theory
for the Dirac operator when switching to the limit case when $a = (1, \ldots, 1)$. The analogous of the results presented in
this paper for the case of the time-fractional parabolic Dirac operator can be found in Ferreira et al.

The structure of the paper reads as follows. In the Section 2, we recall some basic definitions from the fractional calcul-
s, special functions, and Clifford analysis. In Section 3, we present the fundamental solutions of the fractional Laplace and
Dirac operators in $\mathbb{R}^n$, defined by left Riemann-Liouville and Caputo fractional derivatives. Moreover, we prove that these
functions belong to the function space $L^q(\Omega)$ under certain conditions. Throughout the whole paper, we assume that $\Omega$
is a bounded open rectangular domain. In Section 4, we introduce and study the main properties of the fractional analogues
of the Teodorescu operator and of the Cauchy-Bitsadze operator. Finally, in Section 5, we present a Hodge-type decom-
position for the $L_q$-space, where one of the components is the kernel of the fractional Dirac operator defined in terms of
left Caputo fractional derivatives. This decomposition represents a main result in the paper apart from proving the gener-
alizations of the Borel-Pompeiu formulae in the context of Caputo derivatives. In the analysis of the mapping properties
and the regularity properties, there still appear some further peculiarities that require special attention. We round off this
paper by giving an immediate application to the resolution of boundary value problems involving the fractional Laplace
operators.
2 | PRELIMINARIES

2.1 | Fractional calculus and special functions

Let \( a, b \in \mathbb{R} \) with \( a < b \) and \( \alpha > 0 \). The left and right Riemann-Liouville fractional integrals \( I^\alpha_a \) and \( I^\alpha_b \) of order \( \alpha \) are given by the following (see Kilbas et al.):

\[
(I^\alpha_a f)(x) = \frac{1}{\Gamma(\alpha)} \int_a^x \frac{f(t)}{(x-t)^{1-\alpha}} \, dt, \quad x > a,
\]

\[
(I^\alpha_b f)(x) = \frac{1}{\Gamma(\alpha)} \int_x^b \frac{f(t)}{(t-x)^{1-\alpha}} \, dt, \quad x < b.
\]

By \( RL D^\alpha_a \) and \( RL D^\alpha_b \), we denote the left and right Riemann-Liouville fractional derivatives of order \( \alpha > 0 \) on \([a, b] \subset \mathbb{R}\), which are defined by the following (see Kilbas et al.):

\[
(RL D^\alpha_a f)(x) = \left(D^{\alpha - m} f\right)(x) = \frac{1}{\Gamma(m - \alpha)} \frac{d^m}{dx^m} \int_a^x \frac{f(t)}{(x-t)^{m+1}} \, dt, \quad x > a,
\]

\[
(RL D^\alpha_b f)(x) = (-1)^m \left(D^{\alpha - m} f\right)(x) = \frac{(-1)^m}{\Gamma(m - \alpha)} \frac{d^m}{dx^m} \int_x^b \frac{f(t)}{(t-x)^{m+1}} \, dt, \quad x < b.
\]

Here, \( m = [\alpha] + 1 \) and \( [\alpha] \) means the integer part of \( \alpha \). Let \( C D^\alpha_a \) and \( C D^\alpha_b \) denote, respectively, the left and right Caputo fractional derivative of order \( \alpha > 0 \) on \([a, b] \subset \mathbb{R}\), which are defined by the following (see Kilbas et al.):

\[
(C D^\alpha_a f)(x) = \left(I^{m-a}_a D^m f\right)(x) = \frac{1}{\Gamma(m - \alpha)} \int_a^x \frac{f^{(m)}(t)}{(x-t)^{m+1}} \, dt, \quad x > a,
\]

\[
(C D^\alpha_b f)(x) = (-1)^m \left(I^{m-a}_b D^m f\right)(x) = \frac{(-1)^m}{\Gamma(m - \alpha)} \int_x^b \frac{f^{(m)}(t)}{(t-x)^{m+1}} \, dt, \quad x < b.
\]

We denote by \( I^\alpha_a(L_1) \) the class of functions \( f \) that are represented by the fractional integral (1) of a summable function, that is, \( f = I^\alpha_a \varphi \), with \( \varphi \in L_1(a,b) \). A description of this class of functions is given in Samko et al.23

**Theorem 1.** (cf Samko et al.23). A function \( f \) belongs to \( I^\alpha_a(L_1) \), \( \alpha > 0 \), if and only if \( I^{m-a}_a f \) belongs to \( AC^m([a, b]) \), \( m = [\alpha] + 1 \) and \( (I^{m-a}_a f)^{(k)}(a) = 0, k = 0, \ldots, m - 1 \).

In Theorem 1, \( AC^m([a, b]) \) denotes the class of functions \( f \) which are continuously differentiable on the segment \([a, b]\) up to the order \( m - 1 \) and \( f^{(m-1)}(x) \) is supposed to be absolutely continuous on \([a, b]\). We note that the conditions \( (I^{m-a}_a f)^{(k)}(a) = 0, k = 0, \ldots, m - 1 \), imply that \( f^{(k)}(a) = 0, k = 0, \ldots, m - 1 \) (see Samko et al.23 and Podlubny24). Removing the last condition in Theorem 1, we obtain the class of functions that admit a summable fractional derivative.

**Definition 1.** (see Samko et al.23). A function \( f \in L_1(a,b) \) has a summable fractional derivative \( (D^\alpha_a f)(x) \) if \((I^{m-a}_a f)(x) \) belongs to \( AC^m([a, b]) \), where \( m = [\alpha] + 1 \).

If a function \( f \) admits a summable fractional derivative, then we have the following composition rules (Samko et al.23 and Podlubny24, respectively):

\[
(RL D^\alpha_a f)(x) = f(x) - \sum_{k=0}^{m-1} \frac{(x-a)^{n-k-1}}{\Gamma(\alpha-k)} \left(I^{m-a}_a f\right)^{(m-k-1)}(a), \quad m = [\alpha] + 1,
\]

\[
(C D^\alpha_a f)(x) = f(x) - \sum_{k=0}^{m-1} \frac{f^{(k)}(a)}{k!} (x-a)^k, \quad m = [\alpha] + 1.
\]
We remark that if \( f \in I_{a}^{\alpha} (L_1) \), then (7) and (8) reduce to \((I_{a}^{\alpha} R_{a}^{\nu} f) \) \((x) = (I_{a}^{\alpha} C_{a}^{\nu} f) \) \((x) = f(x)\). Nevertheless, we note that \( D_{a}^{\alpha} \) \( I_{a}^{\alpha} f = f \) in both cases. This is a particular case of a more general property (cf Podlubny24, theorem4.2)

\[
D_{a}^{\alpha} \left( I_{a}^{\alpha} f \right) = D_{a}^{\alpha - \gamma} f, \quad \alpha \geq \gamma > 0.
\]

One important function used in this paper is the two-parameter Mittag-Leffler function \( E_{\mu,\nu}(z) \) (see Gorenflo et al25), which is defined in terms of the power series by

\[
E_{\mu,\nu}(z) = \sum_{n=0}^{\infty} \frac{z^n}{\Gamma(\mu n + \nu)}, \quad \mu > 0, \quad \nu > 0, \quad z \in \mathbb{C}.
\]

In particular, the function \( E_{\mu,\nu}(z) \) is entire of order \( \rho = \frac{1}{\mu} \) and type \( \sigma = 1 \). From the power series (10) and the operators (1), (3), and (5), we can obtain by straightforward calculations the following fractional integral and differential formulae involving \( E_{\mu,\nu}(z) \) (see Gorenflo et al25, pp87-88):

\[
I_{a}^{\alpha} \left( (x-a)^{-1} E_{\mu,\nu} \right) (k(x-a)\mu)) = (x-a)^{\alpha + \nu - 1} E_{\mu,\nu+a} \left( k(x-a)\mu \right)
\]

for all \( \alpha > 0, k \in \mathbb{C}, x > a, \mu > 0, \nu > 0, \) (11)

\[
R_{a}^{\nu} \left( (x-a)^{-1} E_{\mu,\nu} \right) (k(x-a)\mu)) = (x-a)^{\nu - a - 1} E_{\mu,\nu-a} \left( k(x-a)\mu \right)
\]

for all \( \alpha > 0, k \in \mathbb{C}, x > a, \mu > 0, \nu > 0, \nu \neq \alpha - p, \) where \( p = 0, \ldots, m - 1 \) with \( m = [\alpha] + 1 \), and (12)

\[
C_{a}^{\nu} \left( (x-a)^{-1} E_{\mu,\nu} \right) (k(x-a)\mu)) = (x-a)^{\nu - a - 1} E_{\mu,\nu-a} \left( k(x-a)\mu \right)
\]

for all \( \alpha > 0, k \in \mathbb{C}, x > a, \mu > 0, \nu > 0, \nu \neq p, \) where \( p = 1, \ldots, m \) with \( m = [\alpha] + 1 \). (13)

Remark 1. For \( \nu = \alpha - p \) with \( p = 0, \ldots, m - 1 \), we have that \( R_{a}^{\nu} \left( (x-a)^{\alpha-p-1} \right) = 0 \) which implies that the first term in the series expansion of \( (x-a)^{\alpha-p} E_{\mu,\nu} \left( k(x-a)\mu \right) \) vanishes. Therefore, the derivation rule (12) must be replaced in these cases by the following derivation rule:

\[
R_{a}^{\nu} \left( (x-a)^{\alpha-p-1} E_{\mu,\nu-a} \right) (k(x-a)\mu)) = (x-a)^{\nu-a-1} k E_{\mu,\nu-a} \left( k(x-a)\mu \right), \quad p = 0, \ldots, m - 1.
\]

Remark 2. For \( \nu = p \) with \( p = 1, \ldots, m \), we have that \( C_{a}^{\nu} \left( (x-a)^{p-1} \right) = 0 \) which implies that the first term in the series expansion of \( (x-a)^{p-1} E_{\mu,\nu} \left( k(x-a)\mu \right) \) vanishes. Therefore, the derivation rule (13) must be replaced in these cases by the following derivation rule:

\[
C_{a}^{\nu} \left( (x-a)^{p-1} E_{\mu,\nu} \right) (k(x-a)\mu)) = (x-a)^{\nu-a-1} k E_{\mu,\nu-a} \left( k(x-a)\mu \right), \quad p = 1, \ldots, m.
\]

The approach presented in this paper is based on the Laplace transform and leads to the solution of a linear Abel integral equation of the second kind.

**Theorem 2.** (Gorenflo et al25, theorem4.2) Let \( f \in L_{1}[a, b], \alpha > 0 \) and \( \lambda \in \mathbb{C} \). Then the integral equation

\[
u(x) = f(x) + \frac{\lambda}{\Gamma(\alpha)} \int_{a}^{x} (x-t)^{\alpha-1} u(t) \ dt, \quad x \in [a, b]
\]

has a unique solution

\[
u(x) = f(x) + \lambda \int_{a}^{x} (x-t)^{\alpha-1} E_{\alpha,\alpha} (\lambda(x-t)^{\alpha}) f(t) \ dt.
\]

(16)

Now, we recall the formula for fractional integration by parts for \( 0 < \alpha < 1 \) and \( x \in [a, b] \) (see Almeida et al26)

\[
\int_{a}^{b} g(x) \left( D_{a}^{\alpha} f \right) (x) dx = \int_{a}^{b} f(x) \left( R_{a}^{\nu} g \right) (x) dx + \int_{a}^{b} f(x) \left( I_{a}^{\alpha} g \right) (x) dx,
\]

\[
\int_{a}^{b} g(x) \left( D_{a}^{\alpha} f \right) (x) dx = \int_{a}^{b} f(x) \left( R_{a}^{\nu} g \right) (x) dx - \int_{a}^{b} f(x) \left( I_{a}^{\alpha} g \right) (x) dx.
\]
We end this section by recalling an important result about the boundedness of the fractional integrals $I_{a^+}^α$ and $I_{b^-}^α$ (see Samko et al.\(^\text{13}\), theorem 3.5).

**Theorem 3.** If $0 < α < 1$ and $1 < p < \frac{1}{α}$, then the operators $I_{a^+}^α$ and $I_{b^-}^α$ are bounded from $L_p(a, b)$ into $L_q(a, b)$, where $q = \frac{p}{1-αp}$ and $[a, b] \subset \mathbb{R}$.

### 2.2 Clifford analysis

Let $\{e_1, \ldots, e_n\}$ be the standard basis of the Euclidean vector space in $\mathbb{R}^n$. The associated Clifford algebra $\mathbb{R}_{0,n}$ is the free algebra generated by $\mathbb{R}^n$ modulo $x^2 = -||x||^2 e_0$, where $x \in \mathbb{R}^n$ and $e_0$ is the neutral element with respect to the multiplication operation in the Clifford algebra $\mathbb{R}_{0,n}$. The defining relation induces the multiplication rules

$$e_i e_j + e_j e_i = -2δ_{ij},$$

where $δ_{ij}$ denotes the Kronecker delta. In particular, $e_i^2 = -1$ for all $i = 1, \ldots, n$. The standard basis vectors thus operate as imaginary units. A vector space basis for $\mathbb{R}_{0,n}$ is given by the set $\{e_A : A \subseteq \{1, \ldots, n\}\}$ with $e_A = e_i_1 e_i_2 \cdots e_i_n$, where $1 \leq i_1 < \cdots < i_r \leq n$, $0 \leq r \leq n$, and $e_0 := e_1 \cdots e_n = 1$. Each $a \in \mathbb{R}_{0,n}$ can be written in the form $a = ∑_A a_A e_A$, with $a_A \in \mathbb{R}$. The conjugation in the Clifford algebra $\mathbb{R}_{0,n}$ is defined by $\overline{a} = ∑_A a_A e_A$, where $\overline{e_A} = \overline{e_i_1} \overline{e_i_2} \cdots \overline{e_i_n}$, and $\overline{e_j} = -\overline{e_j}$ for $j = 1, \ldots, n$. $e_0 = 1$. Each non-zero vector $a \in \mathbb{R}^n$ has a multiplicative inverse given by $\frac{a}{||a||^2}$.

An $\mathbb{R}_{0,n}$-valued function $f$ over $Ω \subseteq \mathbb{R}^n$ has the representation $f = ∑_A a_A f_A$ with components $f_A : Ω \rightarrow \mathbb{R}_{0,n}$. Properties such as continuity or differentiability have to be understood componentwise. Next, we recall the Euclidean Dirac operator $D = ∑_{j=1}^n e_j d_j$. This operator satisfies $D^2 = -Δ$, where $Δ$ is the $n$-dimensional Euclidean Laplacian. An $\mathbb{R}_{0,n}$-valued function $f$ is called left-monogenic if it satisfies $Du = 0$ on $Ω$ (resp. right-monogenic if it satisfies $uD = 0$ on $Ω$).

For more details about Clifford algebras and basic concepts of its associated function theory, we refer the interested reader for example to Delanghe et al.\(^\text{6}\).

### 3 Fundamental solutions revisited

Ferreira and Vieira\(^\text{17,19}\) considered the so-called three-parameter fractional Laplace and Dirac operators defined in terms of the left Riemann-Liouville and Caputo fractional derivatives and obtained families of eigenfunctions and fundamental solutions for both operators. In this section, we present the generalization of these results for $\mathbb{R}^n$. Let $Ω = ∏_{i=1}^n [a_i, b_i]$ be any bounded open rectangular domain, let $α = (α_1, \ldots, α_n)$, with $α_1 \in [0,1], i = 1, \ldots, n$, and let us consider the $n$-parameter fractional Laplace operators $^{RL}Δ_{a^+}^α$ and $^{C}Δ_{a^+}^α$ defined over $Ω$ by means of the left Riemann-Liouville and left Caputo fractional derivatives, respectively, given by

$$^{RL}Δ_{a^+}^α = ∑_{i=1}^n^{RL} a_i^i d_{x_i}^{1+α_i}, \quad ^{C}Δ_{a^+}^α = ∑_{i=1}^n a_i d_{x_i}^{1+α_i}.$$  

Associated with them, there are the corresponding fractional Dirac operators $^{RL}D_{a^+}^α$ and $^{C}D_{a^+}^α$ defined by

$$^{RL}D_{a^+}^α = ∑_{i=1}^n e_i^{RL} a_i d_{x_i}^{1+α_i}, \quad ^{C}D_{a^+}^α = ∑_{i=1}^n e_i a_i d_{x_i}^{1+α_i}.$$  

For $i = 1, \ldots, n$ the partial derivatives $^{RL} a_i d_{x_i}^{1+α_i}$, $^{C} a_i d_{x_i}^{1+α_i}$, $^{RL} d_{x_i}^{1+α_i}$, $^{C} d_{x_i}^{1+α_i}$, and $^{RL} d_{x_i}^{1+α_i}$ and $^{C} d_{x_i}^{1+α_i}$ are the left Riemann-Liouville and Caputo fractional derivatives (3) and (5) of orders $1 + α_i$ and $1_{α_i}$, with respect to the variable $x_i \in [a_i, b_i]$. Under certain conditions, we have that $^{RL}Δ_{a^+}^α = ^{−RL}D_{a^+}^α$ $^{RL}D_{a^+}^α$ (see Ferreira and Vieira\(^\text{17}\)), and $^{C}Δ_{a^+}^α = ^{−C}D_{a^+}^α$ $^{C}D_{a^+}^α$ (see Ferreira and Vieira\(^\text{19}\)). Due to the nature of the eigenfunctions and the fundamental solution of these operators, we additionally need to consider the variable $x = (x_2, \ldots, x_n) \in \hat{Ω} = ∏_{i=2}^n [a_i, b_i]$, and the fractional Laplace and Dirac operators acting on $x$ defined by
\[
\begin{align*}
R^a_{\mathcal{L}} \hat{a}^a &= \sum_{i=2}^{n} R^a_{a_i} \partial_{x_i}^{1+a_i}, \quad & C^a_{\mathcal{L}} \hat{a}^a &= \sum_{i=2}^{n} C^a_{a_i} \partial_{x_i}^{1+a_i}, \\
R^a_{\mathcal{D}} \hat{a}^a &= \sum_{i=2}^{n} e_i \, \gamma^a_{R^a_{a_i}} \partial_{x_i}^{1+a_i}, \quad & C^a_{\mathcal{D}} \hat{a}^a &= \sum_{i=2}^{n} e_i \, C^a_{a_i} \partial_{x_i}^{1+a_i}.
\end{align*}
\] (20)

We start by addressing the Caputo case. Consider the eigenfunction problem

\[
C^a_{\mathcal{L}} \hat{a}^a \nu(x) = \lambda \nu(x),
\] (21)

where \( \lambda \in \mathbb{C} \), and where we suppose that \( \nu(x) = \nu(x_1, \ldots, x_n) \) admits a summable fractional derivative \((C^a_{a_i} \partial_{x_i}^{1+a_i} \nu)(x)\) in the variable \( x_1 \), and belongs to \( L^1(L_1) \) in the variables \( x_i \), with \( i = 2, \ldots, n \). Applying the fractional integral \( I_{a_i}^{1+a_i} \) to both sides of the previous equation and taking into account (8), we get

\[
\nu(x) - \nu(a_1, \widehat{x}) - (x_1 - a_1) \nu'(a_1, \widehat{x}) + \sum_{k=2}^{n} \left( I_{a_i}^{1+a_i} \nu(x) \right) (x_1) = \lambda \left( I_{a_i}^{1+a_i} \nu(x) \right)(x).
\] (22)

Now, applying successively the fractional integrals \( I_{a_i}^{1+a_i} \), with \( j = 2, \ldots, n \), to both sides of the previous equation, applying Fubini theorem, and rearranging the terms, we get

\[
\left( \prod_{j=2}^{n} \frac{I_{a_i}^{1+a_i}}{a_j} \right) \nu(x) - \nu(a_1, \widehat{x}) - (x_1 - a_1) \nu'(a_1, \widehat{x}) + \sum_{k=2}^{n} \left( I_{a_i}^{1+a_i} \nu(x) \right) (x_1) = \lambda \left( I_{a_i}^{1+a_i} \nu(x) \right)(x).
\] (22)

where \( g_0 \) and \( g_1 \) are the Cauchy initial conditions given by

\[
g_0(\widehat{x}) = \nu(a_1, \widehat{x}) \quad \text{and} \quad g_1(\widehat{x}) = \nu'(a_1, \widehat{x}).
\] (23)

We observe that the fractional integrals in (22) are Laplace-transformable functions. Therefore, we may apply the \( (n - 1) \)-dimensional Laplace transform with respect to \( x_2, \ldots, x_n \):

\[
\mathcal{F}(\tilde{s}) = \mathcal{F}(s_2, \ldots, s_n) = \mathcal{F}\{f\}(s_2, \ldots, s_n) = \int_{a_n}^{+\infty} \left( - \sum_{p=2}^{n} s_p x_p \right) f(x_2, \ldots, x_n) \, dx_n \ldots dx_2.
\]

Taking into account its convolution and operational properties (see Kilbas et al.\(^{22}\) and Ditkin and Prudnikov\(^{27}\)), we obtain the following relations for each term in (22):

\[
\mathcal{F} \left\{ \prod_{j=2}^{n} \frac{I_{a_i}^{1+a_i}}{a_j} \right\} (x_1, \tilde{s}) = \sum_{k=2}^{n} s_k^{-1-a_k} \left( I_{a_i}^{1+a_i} \mathcal{F} \nu \right) (x_1, \tilde{s}), \quad k = 2, \ldots, n.
\] (24)

\[
\mathcal{F} \left\{ \prod_{j=2}^{n} \frac{I_{a_i}^{1+a_i}}{a_j} \right\} (x_1, \tilde{s}) = \prod_{p=2}^{n} s_p^{-1-a_p} \mathcal{F} \nu(x_1, \tilde{s}),
\] (25)

\[
\mathcal{F} \left\{ \frac{I_{a_i}^{1+a_i}}{a_j} \right\} (x_1, \tilde{s}) = \prod_{p=2}^{n} s_p^{-1-a_p} \mathcal{F} \nu(x_1, \tilde{s}),
\] (26)

\[
\mathcal{F} \left\{ \frac{I_{a_i}^{1+a_i}}{a_j} g_0 \right\} (x_1, \tilde{s}) = \sum_{p=2}^{n} s_p^{-1-a_p} \mathcal{F} g_0(\tilde{s}),
\] (27)

\[
\mathcal{F} \left\{ \prod_{j=2}^{n} \frac{I_{a_i}^{1+a_i}}{a_j} g_1 \right\} (x_1, \tilde{s}) = (x_1 - a_1) \prod_{p=2}^{n} s_p^{-1-a_p} \mathcal{F} g_1(\tilde{s}).
\] (28)
Combining all the resulting terms and multiplying by \(\prod_{p=2}^{n} s_p^{1+a_p}\), we obtain the following second kind homogeneous integral equation of Volterra type:

\[
\mathcal{V}(x_1, \hat{s}) + \sum_{a_1=2}^{n} \frac{s_p^{1+a_p} - \lambda}{\Gamma(1 + a_1)} \int_{a_1}^{x_1} (x_1 - t)^{n} \mathcal{V}(t, \hat{s}) \, dt = G(x_1, \hat{s}),
\]

where \(G(x_1, \hat{s}) = \Theta_0(\hat{s}) + (x_1 - a_1) \Theta_1(\hat{s})\) and \(\Theta_1(\hat{s}) = \Theta_0(g_k)\) with \(k = 0, 1\). Using (16), we have that the unique solution of (29) in the class of summable functions is the following:

\[
\mathcal{V}(x_1, \hat{s}) = G(x_1, \hat{s}) - \sum_{a_1=2}^{n} \frac{s_p^{1+a_p} - \lambda}{\Gamma(1 + a_1)} \int_{a_1}^{x_1} (x_1 - t)^{n} E_{1+a_1,1+a_1} \left( \frac{- (x_1 - t)^{1+a_1} \left( \sum_{p=2}^{n} s_p^{1+a_p} - \lambda \right) }{\Gamma(1 + a_1)} \right) G(t, \hat{s}) \, dt,
\]

which involves the two-parameter Mittag-Leffler function. Due the convergence of the integrals and the series that appear in (30), we can interchange them and rewrite (30) in the following way:

\[
\mathcal{V}(x_1, \hat{s}) = \Theta_0(\hat{s}) + \sum_{m=0}^{+\infty} \sum_{k=0}^{+\infty} (-1)^{k+1} \frac{\left( \sum_{p=2}^{n} s_p^{1+a_p} - \lambda \right)^{k+1} (x_1 - a_1)^{(1+a_1)k+1}}{\Gamma((1 + a_1)k + 2 + a_1)} (x_1 - a_1)^{(1+a_1)(1+a_1)m+1} \Theta_1(\hat{s})
\]

In order to cancel the Laplace transform, we need to take into account its distributional form in Zemanian space (for more details about generalized integral transforms, see Zemanian\(^{28}\)) and the following relation:

\[
\lim_{r_2, \ldots, r_m \to +\infty} \int_{\sigma_1 - ir_1}^{\sigma_1 + ir_1} \ldots \int_{\sigma_m - ir_m}^{\sigma_m + ir_m} \sum_{m=0}^{\infty} \prod_{p=2}^{n} s_p^{1+a_p} G_k(\hat{s}) \exp \left( \sum_{p=2}^{n} s_p x_p \right) \, ds_1 \ldots ds_n = \left( \prod_{j=2}^{n} \Theta_j^{(m)} g_k(\hat{s}) \right) \varphi(\hat{s}),
\]

where \(k = 0, 1\). Therefore, applying the multinomial theorem and after straightforward calculations, we get the following solution of (21):

\[
v(x) = \sum_{m=0}^{\infty} (-1)^m \frac{(x_1 - a_1)^{(1+a_1)m}}{\Gamma((1 + a_1)m + 1)} \left( c \Delta_a^{a_m} - \lambda \right)^m g_0(\hat{s}) + \sum_{m=0}^{\infty} (-1)^m \frac{(x_1 - a_1)^{(1+a_1)m+1}}{\Gamma((1 + a_1)m + 2)} \left( c \Delta_a^{a_m} - \lambda \right)^m g_1(\hat{s}).
\]

From the previous calculations, we obtain the following results in \(\mathbb{R}^n\), which generalize theorem 3.1 and theorem 4.1 in Ferreira and Vieira.\(^{19}\)

Theorem 4. A family of eigenfunctions of the fractional Laplace operator \(c \Delta_a^{a_m}\) is given by

\[
v_a(x) = E_{1+a_1,1} \left( -(x_1 - a_1)^{(1+a_1)} \left( c \Delta_a^{a_m} - \lambda \right) \right) g_0(\hat{s}) + (x_1 - a_1) E_{1+a_2,2} \left( -(x_1 - a_1)^{(1+a_1)} \left( c \Delta_a^{a_m} - \lambda \right) \right) g_1(\hat{s}),
\]

where \(g_0(\hat{s}) = v(a_1, \hat{s})\) and \(g_1(\hat{s}) = v'_{\hat{x}_1}(a_1, \hat{s})\).
We give a direct proof of the theorem in order to confirm that (34) is indeed the solution of (21). The proof uses the fact that $C_{a_i}^\partial_x^{1+a_i} 1 = 0$ and $C_{a_i}^\partial_x^{1+a_i} (x_1 - a_1) = 0$, and the analogous fractional formula for differentiation of integrals depending on a parameter where the upper limit also depends on the same parameter (see Podlubny, section 2.7.4).

**Proof.** Applying the operator $C_{a_i}^\Delta_x^a = C_{a_i}^\Delta_x^1 + C_{a_i}^\Delta_x^\alpha$ to (34) and using the series expansion of the Mittag-Leffler function (10), we get

$$C_{a_i}^\Delta_x^a, v_\lambda(x) = \sum_{k=1}^{\infty} (-1)^k (x_1 - a_1)^{k-1} \left( C_{a_i}^\Delta_x^\alpha - \lambda \right)^k g_0(\hat{x}) + \sum_{k=1}^{\infty} (-1)^k \left( x_1 - a_1 \right)^{k-1} \left( C_{a_i}^\Delta_x^\alpha - \lambda \right)^k g_1(\hat{x}) + \left( C_{a_i}^\Delta_x^\alpha \right) v_\lambda(x).$$

Rearranging the terms of the series, we obtain

$$C_{a_i}^\Delta_x^a, v_\lambda(x) = - \left( C_{a_i}^\Delta_x^\alpha - \lambda \right) v_\lambda(x) + \left( C_{a_i}^\Delta_x^\alpha \right) v_\lambda(x) = \lambda \cdot v_\lambda(x).$$

**Corollary 1.** A family of fundamental solutions for the fractional Laplace operator $C_{a_i}^\Delta_x^a$ is obtained by considering $\lambda = 0$ in (34):

$$C_{a_i}^\Delta_x^a, v_0(x) = E_{1+a_i,1} \left( - (x_1 - a_1)^{1+a_i} C_{a_i}^\Delta_x^\alpha \right) g_0(\hat{x}) + E_{1+a_i,1} \left( - (x_1 - a_1)^{1+a_i} C_{a_i}^\Delta_x^\alpha \right) g_1(\hat{x}),$$

where $g_0(\hat{x}) = v(a_1, \hat{x})$ and $g_1(\hat{x}) = v_\lambda(\hat{x})$.

For the fractional Dirac operator $C_{a_i}^D_x^a$, we can obtain a family of fundamental solutions by applying the operator $C_{a_i}^D_x^a$ to the family of fundamental solutions of the operator $C_{a_i}^\Delta_x^a$.

**Theorem 5.** A family of fundamental solutions of the fractional Dirac operator $C_{a_i}^D_x^a$ (acting on the left or on the right) is given by

$$C_{a_i}^D_x^a, v_\mu(x) = \sum_{i=1}^{n} e_i \left( C_{a_i}^D_x^a \right)_i(x),$$

where

$$\left( C_{a_i}^D_x^a \right)_i(x) = (x_1 - a_1)^{1+a_i} E_{1+a_i,1} \left( (x_1 - a_1)^{1+a_i} C_{a_i}^\Delta_x^a \right) g_0(\hat{x}) + (x_1 - a_1)^{1+a_i} E_{1+a_i,1} \left( (x_1 - a_1)^{1+a_i} C_{a_i}^\Delta_x^\alpha \right) g_1(\hat{x}),$$

and for $i = 2, \ldots, n$

$$\left( C_{a_i}^D_x^a \right)_i(x) = \left( E_{1+a_i,1} \left( (x_1 - a_1)^{1+a_i} C_{a_i}^\Delta_x^a \right) \left( C_{a_i}^\partial_{x_i}^{1+a_i} \right) \right) g_0(\hat{x}) + (x_1 - a_1)^{1+a_i} \left( E_{1+a_i,1} \left( (x_1 - a_1)^{1+a_i} C_{a_i}^\Delta_x^a \right) \left( C_{a_i}^\partial_{x_i}^{1+a_i} \right) \right) g_1(\hat{x})$$

with $g_0(\hat{x}) = v(a_1, \hat{x})$ and $g_1(\hat{x}) = v_\lambda(\hat{x})$.

Now, we present the corresponding results for the Riemann-Liouville case. First, we obtain the eigenfunctions associated with the operator $RL_{a_i}^\Delta_x^a$ satisfying $RL_{a_i}^\Delta_x^a v(x) = \lambda v(x)$, where $\lambda \in \mathbb{C}$, and $v(x) = v(x_1, \ldots, x_n)$ admits a summable fractional derivative $RL_{a_i}^\Delta_x^a v(x)$ in the variable $x_1$ and belongs to $L^1_{a_i}(L_1)$ in the variables $x_i$, with $i = 2, \ldots, n$. The following results generalize theorem 3.1 and theorem 3.4 in Ferreira and Vieira.

**Theorem 6.** A family of eigenfunctions of the fractional Laplace operator $RL_{a_i}^\Delta_x^a$ is given by

$$u_i(x) = (x_1 - a_1)^{-1} E_{1+a_i,1} \left( (x_1 - a_1)^{1+a_i} RL_{a_i}^\Delta_x^a \right) f_0(\hat{x}) + \left( x_1 - a_1 \right)^{-1} E_{1+a_i,1} \left( RL_{a_i}^\Delta_x^a \right) f_1(\hat{x}),$$

where $f_0(\hat{x}) = \left( RL_{a_i}^\Delta_x^a u \right) (a_1, \hat{x})$ and $f_1(\hat{x}) = \left( RL_{a_i}^\Delta_x^a u \right) (a_1, \hat{x})$.

The proof of Theorem 6 is similar to the proof of Theorem 4; however, it takes into account the composition rule (7). For the case $n = 3$, see Ferreira and Vieira.
Corollary 2. A family of fundamental solutions for the fractional Laplace operator $\text{RL} \Delta_{a^+}^{\alpha}$ is obtained by considering $\lambda = 0$ in (39):

$$\text{RL} \mathcal{G}^+_{a^+}(x) = u_0(x) = (x_1 - a_1)^{\frac{\alpha - 1}{2}} E_{1 + \alpha, \frac{\alpha - 1}{2}} \left( - (x_1 - a_1)^{1 + \alpha}, \text{RL} \Delta_{a^+}^{\alpha} \right) f_0(\hat{x})$$

$$+ (x_1 - a_1)^{\alpha} E_{1 + \alpha, 1 + \alpha} \left( - (x_1 - a_1)^{1 + \alpha}, \text{RL} \Delta_{a^+}^{\alpha} \right) f_1(\hat{x}),$$

where $f_0(\hat{x}) = \left( I_{a^+}^{\alpha - 1} u \right)(a_1, \hat{x})$ and $f_1(\hat{x}) = \left( \partial_x^\alpha u \right)(a_1, \hat{x})$.

For the fractional Dirac operator $\text{RL} \mathcal{D}_{a^+}^{\alpha}$, we can obtain a family of fundamental solutions by applying the operator $\text{RL} \mathcal{D}_{a^+}^{\alpha}$ to the family of fundamental solutions of the operator $\text{RL} \Delta_{a^+}^{\alpha}$.

Theorem 7. A family of fundamental solutions of the fractional Dirac operator $\text{RL} \mathcal{D}_{a^+}^{\alpha}$ (acting on the left or on the right) is given by

$$\text{RL} \mathcal{G}^+_{a^+}(x) = \sum_{i=1}^n e_i \left( \text{RL} \mathcal{G}^+_{a^+} \right)_i(x),$$

where

$$\left( \text{RL} \mathcal{G}^+_{a^+} \right)_i(x) = (x_1 - a_1)^{\alpha i - 1} E_{1 + \alpha, \frac{\alpha - 1}{2}} \left( - (x_1 - a_1)^{1 + \alpha}, \text{RL} \Delta_{a^+}^{\alpha} \right) f_0(\hat{x}) + (x_1 - a_1)^{\alpha i} E_{1 + \alpha, 1 + \alpha} \left( - (x_1 - a_1)^{1 + \alpha}, \text{RL} \Delta_{a^+}^{\alpha} \right) f_1(\hat{x}),$$

and for $i = 2, \ldots, n$

$$\left( \text{RL} \mathcal{G}^+_{a^+} \right)_i(x) = (x_1 - a_1)^{\alpha i - 1} \left( E_{1 + \alpha, \frac{\alpha - 1}{2}} \left( - (x_1 - a_1)^{1 + \alpha}, \text{RL} \Delta_{a^+}^{\alpha} \right) \partial_x^\alpha \right) f_0(\hat{x})$$

$$+ (x_1 - a_1)^{\alpha i} \left( E_{1 + \alpha, 1 + \alpha} \left( - (x_1 - a_1)^{1 + \alpha}, \text{RL} \Delta_{a^+}^{\alpha} \right) \partial_x^\alpha \right) f_1(\hat{x})$$

with $f_0(\hat{x}) = \left( I_{a^+}^{\alpha - 1} u \right)(a_1, \hat{x})$ and $f_1(\hat{x}) = \left( \partial_x^\alpha u \right)(a_1, \hat{x})$.

Remark 3. From (40) or (35), it is possible to obtain the fundamental solution of the Euclidean Laplace operator in $\mathbb{R}^n$ when $\alpha = (1, \ldots, 1)$. Let us consider only the Riemann-Liouville case (the Caputo case can be treated similarly). We know that the fundamental solution of the Euclidean Laplace operator in $\mathbb{R}^n$, $n \geq 3$, is given (up to a constant) by $|x - a|^{-(n-2)}$. The case $n = 2$ can also be treated but we restrict ourselves to only present the case $n \geq 3$ in detail. First, we need to obtain the power series expansion of the fundamental solution of the Laplace operator in $\mathbb{R}^n$. Considering the binomial series

$$(1 - x)^{-s} = \sum_{p=0}^{+\infty} \left( \frac{s + p - 1}{p} \right) x^p, \quad |x| < 1,$$

we obtain

$$||x - a||^{-(n-2)} = \left( (x_1 - a_1)^2 + ||\hat{x} - \hat{a}||^2 \right)^{-\frac{n-2}{2}}$$

$$= ||\hat{x} - \hat{a}||^{-(n-2)} \left( 1 + \frac{(x_1 - a_1)^2}{||\hat{x} - \hat{a}||^2} \right)^{-\frac{n-2}{2}}$$

$$= \sum_{p=0}^{+\infty} (-1)^p \left( \frac{n-2}{2} + p - 1 \right) \left( \frac{x_1 - a_1)^{2p}}{||\hat{x} - \hat{a}||^{2p+2}} \right)$$

with $||\hat{x} - \hat{a}||^2 = \sum_{i=1}^n (x_i - a_i)^2$, and $\frac{(x_i - a_i)^2}{||\hat{x} - \hat{a}||^2} < 1$. Now, putting $\alpha = (1, \ldots, 1)$ and $f_1$ the null function in (40), we obtain

$$u_0(x) = \sum_{p=0}^{+\infty} (-1)^p \frac{(x_1 - a_1)^{2p}}{\Gamma(2p + 1)} \partial_x^p f_0(\hat{x}).$$

From a comparison of (44) and (45), we observe that we have to find a function $f_0(\hat{x})$ such that

$$\partial_x^p f_0(\hat{x}) = \left( \frac{n-2}{2} + p - 1 \right) \frac{(2p)!}{||\hat{x} - \hat{a}||^{2p+n-2}}.$$
We observe that the function \( f_0(\hat{x}) = \|\hat{x} - \hat{a}\|^{-(n-2)} \) satisfies (46). First, we recall that the \( p \)-th powers of the \( m \)-dimensional Euclidean Laplace satisfy (see Aronszajn et al.29,1.5)

\[
\Delta^p r^k = \frac{2^{2p} \Gamma\left(\frac{k}{2} + 1\right) \Gamma\left(k + m\right)}{\Gamma\left(k - p + 1\right) \Gamma\left(k + m - p\right)} r^{k-2p},
\]

with \( r = \|x\|, x \in \mathbb{R}^m, p \in \mathbb{N} \) and \( k \in \mathbb{Z} \). Therefore, for \( m = n - 1 \) and \( k = 2 - n \), we obtain

\[
\Delta^p r^{2-n} = \frac{2^{2p} \Gamma\left(\frac{2-n}{2} + 1\right) \sqrt{\pi}}{\Gamma\left(\frac{2-n}{2} - p + 1\right) \Gamma\left(\frac{1}{2} - p\right)} r^{2-n-2p}.
\]  

(47)

Comparing (46) and (47), we conclude that we have to show that

\[
\left(\frac{n-2}{2} + p - 1\right) (2p)! = \frac{2^{2p} \Gamma\left(\frac{2-n}{2} + 1\right) \sqrt{\pi}}{\Gamma\left(\frac{2-n}{2} - p + 1\right) \Gamma\left(\frac{1}{2} - p\right)}.
\]  

(48)

This equality is true and can be proved by using well-known relations for the Gamma function and taking into account that

\[
\binom{v}{k} = \frac{\Gamma(1 + v)}{\Gamma(1 + k) \Gamma(1 + v - k)}.
\]

Therefore, we conclude that the equality (46) is satisfied when \( f_0(\hat{x}) = \|\hat{x} - \hat{a}\|^{-(n-2)} \). As expected, on the basis of considering this same function, together with \( f_1 \) being the null function, we may obtain from (41) and (36) the fundamental solution for the Euclidean Dirac operator in \( \mathbb{R}^n, n \geq 3 \), when \( a = (1, \ldots, 1) \).

In the following section, we introduce fractional versions of the Teodorescu and Cauchy-Bitsadze operators where the kernel of these operators is the fundamental solution \( C\mathcal{G}_+^a \). Before we proceed to the development of the operator calculus, we present the following auxiliary results.

**Theorem 8.** For functions \( g_0 \) and \( g_1 \) such that

\[
\int_{\Omega} \left| \left( C\mathcal{\Delta}^a_{u_r} \right)^i g_0(\hat{x}) \right| \, d\hat{x} < \infty, \quad \int_{\Omega} \left| \left( C\mathcal{\Delta}^a_{u_r} \right)^i g_1(\hat{x}) \right| \, d\hat{x} < \infty, \quad \forall i \in \mathbb{N}_0,
\]

the fundamental solution \( C\mathcal{G} + \alpha \) belongs to \( L_1(\Omega) \).

**Proof.** From (35), we have

\[
\| C\mathcal{G}^a_+ \|_{L_1(\Omega)} \leq \| E_{1+a_1,1} \left( -(x_1 - a_1)^{1+a_1} C\mathcal{\Delta}^a_{u_r} \right) g_0(\hat{x}) \|_{L_1(\Omega)} + \| (x_1 - a_1) E_{1+a_1,2} \left( -(x_1 - a_1)^{1+a_1} C\mathcal{\Delta}^a_{u_r} \right) g_1(\hat{x}) \|_{L_1(\Omega)}
\]

\[
\leq \int_{\Omega} \left| E_{1+a_1,1} \left( -(x_1 - a_1)^{1+a_1} C\mathcal{\Delta}^a_{u_r} \right) g_0(\hat{x}) \right| \, dx + \int_{\Omega} \left| (x_1 - a_1) E_{1+a_1,2} \left( -(x_1 - a_1)^{1+a_1} C\mathcal{\Delta}^a_{u_r} \right) g_1(\hat{x}) \right| \, dx.
\]

Relying on the series expansion of the Mittag-Leffler function (10), and the fact that the series and integrals that are involved are absolutely convergent, we derive that

\[
\| C\mathcal{G}^a_+ \|_{L_1(\Omega)} \leq \sum_{i=0}^{\infty} \frac{1}{\Gamma((1 + a_1)i + 1)} \int_{a_1}^{b_1} \left( x_1 - a_1 \right)^{(1+a_1)i} \, dx_1 \int_{\hat{\Omega}} \left| \left( C\mathcal{\Delta}^a_{u_r} \right)^i g_0(\hat{x}) \right| \, d\hat{x}
\]

\[
+ \sum_{i=0}^{\infty} \frac{1}{\Gamma((1 + a_1)i + 2)} \int_{a_1}^{b_1} \left( x_1 - a_1 \right)^{(1+a_1)i+1} \, dx_1 \int_{\hat{\Omega}} \left| \left( C\mathcal{\Delta}^a_{u_r} \right)^i g_1(\hat{x}) \right| \, d\hat{x},
\]

where \( \hat{\Omega} = \prod_{j=2}^{n} [a_j, b_j] \), and where \( g_0, g_1 \), are chosen such that the integrals over \( \hat{\Omega} \) are finite for each \( i = 1, \ldots, n \). Let us denote by \( C_0 \) and \( C_1 \) the corresponding maximum values over \( i \). Moreover, computing the integrals with respect to
\( x_1 \) leads to the following inequality
\[
\left\| CG_+^\epsilon \right\|_{L^1(\Omega)} \leq C_0 (b_1 - a_1) \left( \sum_{i=0}^{\infty} \frac{(b_1 - a_1)^{(1+\alpha)_i}}{\Gamma((1+\alpha)_i) + 2} + C_1 (b_1 - a_1)^2 \sum_{i=0}^{\infty} \frac{(b_1 - a_1)^{(1+\alpha)_i}}{\Gamma((1+\alpha)_i) + 3} \right).
\]
Moreover, since \( 0 < \alpha_1 \leq 1 \), we get the final estimate
\[
\left\| CG_+^\epsilon \right\|_{L^1(\Omega)} \leq C_0 (b_1 - a_1) \left( \sum_{i=0}^{\infty} \frac{(b_1 - a_1)^{2i}}{\Gamma(i + 2)} + C_1 (b_1 - a_1)^2 \sum_{i=0}^{\infty} \frac{(b_1 - a_1)^{2i}}{\Gamma(i + 3)} \right)
= C_0 \frac{\epsilon^{\alpha_1} - 1}{b_1 - a_1} + C_1 \frac{\epsilon^{\alpha_1} - (b_1 - a_1)^2 - 1}{(b_1 - a_1)^2}.
\]
The last expression is a finite quantity in view of \( \alpha_1 < b_1 \).

**Theorem 9.** For functions \( g_0 \) and \( g_1 \) such that
\[
\int_{\Omega} \left| \left( CDA^\epsilon_{a^+} \right)^i g_0(\hat{x}) \right| d\hat{x} < \infty, \quad \forall i \in \mathbb{N}_0,
\]
and
\[
\int_{\Omega} \left| \left( CDA^\epsilon_{a^+} \right)^i \frac{\partial}{\partial x_i} g_1(\hat{x}) \right| d\hat{x} < \infty, \quad \forall i \in \mathbb{N}_0,
\]
the fundamental solution \( CG_+^\epsilon \) belongs to \( L^1(\Omega) \).

## 4 | Fractional Teodorescu and Cauchy-Bitsadze Operators

In this section, we introduce and study the main properties of the fractional analogues of the classical Teodorescu and Cauchy-Bitsadze operators described in Gürlebeck and Sprößig. We start by proving fractional analogues of the Stokes formula and the Borel-Pompeiu formula in a rectangular open rectangular domain of the form \( \Omega = \prod_{i=1}^{n} |a_i, b_i| \). From now on, \( CD_{b^+} \) denotes the right Caputo fractional Dirac operator, which is given by
\[
CD_{b^+} = \sum_{i=1}^{n} e_i C_{b^+}^{\frac{1+n}{2}} \frac{\partial}{\partial x_i},
\]
where, for \( i = 1, \ldots, n \), the partial derivative \( C_{b^+}^{\frac{1+n}{2}} \frac{\partial}{\partial x_i} \) is the right Caputo fractional derivative (6) of order \( \frac{1+n}{2} \) with respect to the variable \( x_i \in |a_i, b_i| \).

**Theorem 10.** Let \( f, g \in AC^1(\Omega) \cap AC(\overline{\Omega}) \). Then the following fractional Stokes formula holds
\[
\int_{\Omega} \left[ - (f^{CD}_{b^+}) (x) g(x) + f(x) (RLD^\epsilon_{a^+}) g(x) \right] d\sigma(x) = \int_{\partial\Omega} f(x) d\sigma(x) (I^{\epsilon}_{a^+} g)(x),
\]
where \( d\sigma(x) = n(x) d\Omega \), with \( n(x) \) being the outward pointing unit normal vector at \( x \in \partial\Omega \), where \( d\Omega \) is the classical surface element, and \( dx \) represents the \( n \)-dimensional volume element.

Before we give a proof of theorem, we observe that in (50) the operator \( CD_{b^+} \) acts on the right and the operator \( RL_{a^+} \) acts on the left, which is specific of the Clifford analysis setting because of the lack of commutativity.

**Proof.** Suppose that \( f \) and \( g \) satisfy the above mentioned conditions. From (49) and (6), we obtain that
\[
\int_{\Omega} - (f^{CD}_{b^+}) (x) g(x) d\sigma(x) = \sum_{i=1}^{n} \int_{\Omega} f \left( I^{\frac{1+n}{2}}_{b^+} \frac{\partial}{\partial x_i} \right) (x) e_i g(x) d\sigma(x)
= \sum_{i=1}^{n} \sum_{A} \int_{\Omega} \left( f A I^{\frac{1+n}{2}}_{b^+} \frac{\partial}{\partial x_i} \right) (x) e_A e_i g(x) d\sigma(x).
\]
Concerning the integral appearing in (51), we have
\[
\int \left( f_A \frac{I^{1-n}}{\Gamma \left( \frac{1-n}{2} \right)} \partial_a \right) (x) e_A e_i g(x) dx = \frac{1}{\Gamma \left( \frac{1-n}{2} \right)} \int_{a_i}^{b_i} \int_\Omega \left( w-x_i \right)^{-1+n} \left( \partial_a f_A \right) (x_i^*, w) e_A e_i dw g(x) dx_i dx_i^*,
\]
where \( \Omega^* = \prod_{k=1}^{n} [a_k, b_k], x_i^* = (x_1, \ldots, x_{i-1}, x_{i+1}, \ldots, x_n) \) and where \( (\partial_a f_A) (x_i^*, w) \) means that after differentiation, the variable \( x_i \) is replaced by \( w \), while the remaining variables remain unchanged. Changing the order of integration in the two inner integrals and relying on (1), we obtain that the right-hand side of (52) equals to
\[
\frac{1}{\Gamma \left( \frac{1-n}{2} \right)} \int_{a_i}^{b_i} \int_\Omega \left( w-x_i \right)^{-1+n} g(x) dx_i dw dx_i^* = \int_\Omega \left( \partial_a f_A \right) (x) e_A e_i \left( \frac{I^{1-n}}{\Gamma \left( \frac{1-n}{2} \right)} g \right) (x) dx.
\]
Hence, inserting (53) into (51), we conclude that
\[
\int \left( f^C D^n_{b_i^*} \right) (x) g(x) dx = \sum_{i=1}^{n} \sum_{\sigma} \int_\Omega \left( \partial_a f_A \right) (x) e_A e_i \left( \frac{I^{1-n}}{\Gamma \left( \frac{1-n}{2} \right)} g \right) (x) dx.
\]
Applying now the classical Stokes formula (see Delanghe et al\(^a\)) to the right-hand side of (54) and applying (3), we get
\[
\int \left( f^C D^n_{b_i^*} \right) (x) g(x) dx = \sum_{i=1}^{n} \sum_{\sigma} \left[ \int_\Omega f_A(x) e_A d\sigma(x) \left( \frac{I^{1-n}}{\Gamma \left( \frac{1-n}{2} \right)} g \right) (x) - \int_\Omega f_A(x) e_A e_i \left( \frac{I^{1-n}}{\Gamma \left( \frac{1-n}{2} \right)} g \right) (x) dx \right] = \sum_{i=1}^{n} \int_\Omega f(x) d\sigma(x) \left( \frac{I^{1-n}}{\Gamma \left( \frac{1-n}{2} \right)} g \right) (x) dx - \sum_{i=1}^{n} \int_\Omega f(x) e_i \left( \frac{RL}{a_i^*} \frac{I^{1-n}}{\Gamma \left( \frac{1-n}{2} \right)} g \right) (x) dx.
\]
Therefore, from (49), we obtain the following fractional Stokes formula
\[
\int_\Omega \left[ \left( f^C D^n_{b_i^*} \right) (x) g(x) + f(x) \left( \frac{RL}{a_i^*} g \right) (x) \right] dx = \int_\Omega f(x) d\sigma(x) \left( \frac{I^{1-n}}{\Gamma \left( \frac{1-n}{2} \right)} g \right) (x),
\]
where \( \left( \frac{I^{1-n}}{\Gamma \left( \frac{1-n}{2} \right)} g \right) (x) = \sum_{i=1}^{n} \left( \frac{I^{1-n}}{\Gamma \left( \frac{1-n}{2} \right)} g \right) (x). \]
We notice that the Stokes’s formula in the classical Clifford analysis setting has the form
\[
\int_\Omega \left[ \left( f D \right) (x) g(x) + f(x) \left( D g \right) (x) \right] dx = \int_\Omega f(x) d\sigma(x) g(x).
\]
where \( D \) is the Euclidean Dirac operator. However, in the fractional Clifford analysis setting, we obtain a more complicatedly kind of “double duality” relation. On the one hand, the formula involves both the Caputo and Riemann-Liouville derivatives, and on the other hand, it also involves left and right derivatives. It is also possible to obtain other versions of the fractional Stokes formula. For example, if we consider in () the operator \( \frac{RL}{a_i^*} \), then we obtain the following alternative version of the Stokes formula:
\[
\int_\Omega \left[ \left( f \frac{RL}{a_i^*} \right) (x) g(x) - f(x) \left( \frac{RL}{a_i^*} g \right) (x) \right] dx = \int_\Omega \left( \frac{I^{1-n}}{\Gamma \left( \frac{1-n}{2} \right)} f \right) (x) d\sigma(x) g(x).
\]
Before we deduce our fractional Borel-Pompeiu formula, we need to understand the behaviour of the fractional Dirac operator \( \frac{RL}{a_i^*} \) when the argument of the function \( f \) in (50) is translated and reflected. Denoting the translation operator by \( T_\theta f(y) := f(\theta + y) \) and the reflection operator by \( R_y f(y) := f(-y) \), and applying the definitions of the right and left Caputo fractional derivatives presented in (6) and (5), we can deduce the following relation (where the derivative is with respect to the variable \( y \)):
\[
(f(\theta - y)) \frac{RL}{a_i^*(\theta - a_i^*)} = \left( T_\theta R_y f(y) \right) \frac{RL}{a_i^*(\theta - a_i^*)} = -T_\theta R_y (f(y) \frac{RL}{a_i^*}) = - \left( f \frac{RL}{a_i^*} \right) (\theta - y).
\]
Replacing \( f \) by \( \frac{RL}{a_i^*} (x + a - y) \) in (50) and integrating with respect to the variable \( y \), we obtain the following fractional Borel-Pompeiu formula and fractional Cauchy integral formula.
\textbf{Corollary 3.} Let \( g \in AC^1(\Omega) \cap AC(\overline{\Omega}) \). Then the following fractional Borel-Pompeiu formula holds
\[
- \int_{\Omega} C_{\alpha}^a(x + a - y) \left( RL_{a^*} g \right)(y) dy + \int_{\partial \Omega} C_{\alpha}^a(x + a - y) d\sigma(y) \left( I_{a^*}^n g \right)(y) = g(x). \tag{57}
\]
Moreover, if \( g \in \ker \left( RL_{a^*} \right) \), then we obtain the fractional Cauchy integral formula:
\[
\int_{\partial \Omega} C_{\alpha}^a(x + a - y) \ d\sigma(y) \left( I_{a^*}^n g \right)(y) = g(x). \tag{58}
\]

\textbf{Proof.} Note that \( C_{\alpha}^{\alpha}(y) \) is the fundamental solution of \( C \ D_{a^*}^{\alpha} \) defined only for \( y_i > a_i, i = 1, \ldots, n \) and satisfies \( \left( C \ D_{a^*}^{\alpha}, C_{\alpha}^{\alpha} \right)(y) = \delta(y-a) \). First, we replace \( f \) by \( C_{\alpha}^{\alpha}(x + a - y) = T_{x+a} R_y C_{\alpha}^{\alpha}(y) \) in (50). Since \( C_{\alpha}^{\alpha}(x + a - y) \) is defined only for \( y_i < x_i, i = 1, \ldots, n \), due to translations and reflections, the operator \( C \ D_{a^*}^{\alpha} \) in (50) is replaced by \( C \ D_{a^*}^{\alpha} \). Thus, we have
\[
- \int_{\Omega} C_{\alpha}^{\alpha}(x + a - y) C \ D_{a^*}^{\alpha} g(y) dy + \int_{\Omega} C_{\alpha}^{\alpha}(x + a - y) \left( RL_{a^*} g \right)(y) dy = \int_{\partial \Omega} C_{\alpha}^{\alpha}(x + a - y) d\sigma(y) \left( I_{a^*}^n g \right)(y).
\]
Applying (56) with \( \theta = x + a \) leads to
\[
\int_{\Omega} \delta(x-y) g(y) dy + \int_{\Omega} C_{\alpha}^{\alpha}(x + a - y) \left( RL_{a^*} g \right)(y) dy = \int_{\partial \Omega} C_{\alpha}^{\alpha}(x + a - y) d\sigma(y) \left( I_{a^*}^n g \right)(y).
\]
The previous expression leads to the fractional Borel-Pompeiu formula
\[
g(x) = - \int_{\Omega} C_{\alpha}^{\alpha}(x + a - y) \left( RL_{a^*} g \right)(y) dy + \int_{\partial \Omega} C_{\alpha}^{\alpha}(x + a - y) d\sigma(y) \left( I_{a^*}^n g \right)(y).
\]
Additionally, if \( g \in \ker \left( RL_{a^*} \right) \), then the first integral of the right-hand side of the preceding expression is equal to zero. Therefore, we arrive at the fractional version of Cauchy integral formula stated in (58). \( \square \)

As a consequence of the “double duality” mentioned previously, it is possible to deduce alternative versions of the previous Borel-Pompeiu formula.

\textbf{Remark 4.} In the case \( a = (1, \ldots, 1), a = (0, \ldots, 0), g_1 \equiv 0, g_0(\overline{x}) = ||x||^{-(n-2)} \) in (50), (57), and (58), and taking into account that \( \left( C \ D_{a^*}^1, C_{\alpha}^1 \right)(x) = -(Dg)(x) \), \( \left( RL_{a^*}^1, C_{\alpha}^1 \right)(x) = (Dg)(x) \), and \( \left( I_{a^*}^0, g \right)(x) = g(x) \), we obtain the classical Stokes formula (55), the Borel-Pompeiu formula, and Cauchy integral formula presented in Gürlebeck and Sprößig, section 3.2 and Delanghe et al., section 2.1

From (57), we may introduce the following definition.

\textbf{Definition 2.} Let \( g \in AC^1(\Omega) \). Then the linear integral operators
\[
\left( C \ T^a \ g \right)(x) = - \int_{\Omega} C_{\alpha}^a(x + a - y) g(y) \ dy \tag{59}
\]
and
\[
\left( C \ F^a \ g \right)(x) = \int_{\partial \Omega} C_{\alpha}^a(x + a - y) d\sigma(y) \left( I_{a^*}^n g \right)(y) \tag{60}
\]
are called the fractional Teodorescu and Cauchy-Bitsadze operator, respectively.

\textbf{Remark 5.} In the case \( a = (1, \ldots, 1), a = (0, \ldots, 0), g_1 \equiv 0, g_0(\overline{x}) = ||x||^{-(n-2)} \), the operators \( C \ T^a \) and \( C \ F^a \) coincide with the usual and well-known classical operators defined in Gürlebeck and Sprößig, def. 3.1, 3.25

The previous definition allows us to rewrite (57) in the alternative form
\[
\left( C \ T^a RL_{a^*} g \right)(x) + \left( C \ F^a g \right)(x) = g(x), \quad x \in \Omega.
\]
Now, we study some properties of the fractional integral operators $^C T^a$ and $^C F^a$. We point out that in all the forthcoming results, the parameter $p$ referring to the $L_p$-space belongs to the interval $1, \frac{2}{1-a^*}$, with $a^* = \min_{1 \leqslant i \leqslant n} (a_i)$. This specific range of $p$ results from the application of Theorem 3 to the fractional integrals of order $\frac{1-n}{2}$, with $i = 1, \ldots, n$, that appear in the definition of the fractional differential operators. Moreover, the parameter $q$ of the $L_q$-space must be chosen such that $q = \frac{2p}{2-(1-a^*)p}$, according to Theorem 3. If $a = (1, \ldots, 1)$, then we conclude that $p \in [1, \infty]$ and $q = p$, as it occurs in the classical setting (see Gürlebeck and Sprößig\(^4\), ch.3). Before we deduce, two properties of the fractional integral operators (59) and (60), we need to understand the behaviour of our fractional derivatives when the argument of the function over which we apply the derivatives is only translated. Denoting the translation by $T_{\theta} f(x) := f(x + \theta)$, and using the definition of the left Caputo fractional derivative presented in (5), we can deduce the following relation (where the derivative is with respect to the variable $x$):

\[
^\left(C^D^a \right)_{(-\theta + a)} f(x + \theta) = \frac{\partial}{\partial \theta} \left[ ^C D^a f(x) \right] = \frac{\partial}{\partial \theta} \left[ ^C D^a f(x) \right] = \left( ^C D^{a^*} f \right)(x + \theta).
\]

**Theorem 11.** The fractional operator $^C T^a$ is the right inverse of $^C D^a$, i.e., for $g \in L_p(\Omega)$, with $p \in 1, \frac{2}{1-a^*}$ and $a^* = \min_{1 \leqslant i \leqslant n} (a_i)$, we have

\[
\left( ^C D^a , ^C T^a g \right)(x) = g(x).
\]

**Proof.** Note that $^C G^a_i(x)$ is the fundamental solution of $^C D^a_i$, defined only for $x_i > a_i$, $i = 1, \ldots, n$ and satisfies $\left( ^C D^a_i, ^C G^a_i \right)(x) = \delta(x - a)$. With respect to the variable $x$, the function $^C G^a_i(x + a - y)$ is defined only for $x_i > y_i$, $i = 1, \ldots, n$, therefore, the operator $^C D^a_i$ is replaced by $^C D^a_{i^*}$. Taking into account the definition of $^C T^a$ given in (59) and the relation (61) with $\theta = a - y$, we obtain

\[
\left( ^C D^a_i, ^C T^a g \right)(x) = - \int_\Omega ^C D^a_i \left( ^C G^a_i(x + a - y) g(y) \right) dy
\]

\[
= - \int_\Omega ^C D^a_i \left( T_{a-y} ^C G^a_i(x) \right) g(y) dy
\]

\[
= - \int_\Omega ^C D^a_i \left( T_{a-y} ^C G^a_i(x) \right) g(y) dy
\]

\[
= - \int \left( T_{a-y} \delta(x - a) g(y) dy
\]

\[
= \delta(x - y) g(y) dy
\]

\[
= g(x).
\]

\[\square\]

In a similar way as in Idczak and Walczak\(^15\) we introduce the fractional Sobolev space $W^{a^* p}_a(\Omega)$, specifically adapted to our problem, with the norm $\| \cdot \|_{W^{a^* p}_a(\Omega)}$ given by

\[
\| f \|_{W^{a^* p}_a(\Omega)} := \| f \|_{L_p(\Omega)}^p + \sum_{k=1}^n \left\| \partial_{x_{i_k}} \right\|_{L_p(\Omega)}^p,
\]

where $\| \cdot \|_{L_p(\Omega)}$ is the usual $L_p$-norm in $\Omega$, and $a = (a_1, \ldots, a_n)$, with $a_k \in [0, 1], k = 1, \ldots, n$.

**Theorem 12.** The fractional operator $^C F^a$ maps $W^{a^* p}_a(\partial \Omega)$—functions to functions belonging to the kernel of $^C D^a_i$, i.e, the fractional operator $^C F^a$ satisfies $\left( ^C D^a_i, ^C F^a g \right)(x) = 0$, for every $g \in W^{a^{* \frac{1}{2}}}_{a^*}(\partial \Omega)$, with $p \in 1, \frac{2}{1-a^*}$ and $a^* = \min_{1 \leqslant i \leqslant n} (a_i)$. 
Proof. By the same reasonings used Theorem 11, we have from (60) that
\[
\left( C D^{\alpha}_{a^*} \right) (x) = \int_{\alpha^*}^{\alpha} C D^{\alpha}_{y^*} C G^\alpha_+ (x + y) \, d\sigma(y) \, \left( I_{\alpha^*} \right) (y)
\]
\[
= \int_{\alpha^*}^{\alpha} C D^{\alpha}_{y^*} \left( T_{a-y} C G^\alpha_+ (x) \right) \, d\sigma(y) \, \left( I_{\alpha^*} \right) (y)
\]
\[
= \int_{\alpha^*}^{\alpha} T_{a-y} \left( C D^{\alpha}_{a^*} C G^\alpha_+ (x) \right) \, d\sigma(y) \, \left( I_{\alpha^*} \right) (y)
\]
\[
= \int_{\alpha^*}^{\alpha} \delta(x-a) \, d\sigma(y) \, \left( I_{\alpha^*} \right) (y)
\]
\[
= \int_{\alpha^*}^{\alpha} \delta(x-y) \, d\sigma(y) \, \left( I_{\alpha^*} \right) (y)
\]
\[
= 0.
\]

Note that the validity of the last equality is due to the fact that \( x \in \Omega \) and \( y \in \partial \Omega \), i.e., the difference \( x - y \) is always nonzero.

Now, we present some mapping properties of the fractional operators \( C T^{\alpha} \) and \( C F^{\alpha} \).

**Theorem 13.** The operator \( C T^{\alpha} \) is bounded from \( L_p(\Omega) \) to \( L_p(\Omega) \), with \( p \in 1, \frac{2}{1-a^*} \) and \( a^* = \min_{1 \leq i \leq n} \{ a_i \} \).

**Proof.** Under the previous conditions, and in view of the Young inequality for convolutions (see Samko et al. \( ^{23} \), theorem 1.4) and Theorem 9, we obtain
\[
\| C T^{\alpha} g \|_{L_p(\Omega)} = \| C G^\alpha_+ \|_{L_p(\Omega)} \leq \| C G^\alpha_+ \|_{L_p(\Omega)} \| g \|_{L_p(\Omega)},
\]
which leads to our result.

**Remark 6.** Considering \( a = (1, \ldots, 1) \), \( a = (0, \ldots, 0) \), \( g_1 \equiv 0 \), and \( g_0(\hat{\chi}) = \| \hat{\chi} \|^{-(n-2)} \) we obtain theorem 3.9 in Gürlebeck and Sprößig.\(^4\)

Now, we want to study the derivatives of \( C T^{\alpha} \). Before we do that, we present an auxiliar result where we calculate the partial fractional derivatives of \( C G^\alpha_+ \).

**Theorem 14.** The partial fractional derivatives of the fundamental solution \( C D^{\alpha}_{a^*} \) are given by
\[
\left( C D^{\alpha}_{a^*} \right) (x) = e_1 \left[ (x_1 - a_1)^{(1+a)} \right] E_{1+a,1-a} \left( -(x_1 - a_1)^{1+a} C \hat{\Delta}_{a^*} \right) g_0(\hat{\chi})
\]
\[
+ (x_1 - a_1)^{-a} E_{1+a,1-a} \left( -(x_1 - a_1)^{1+a} C \hat{\Delta}_{a^*} \right) g_1(\hat{\chi})
\]
\[
+ \sum_{i=2}^{n} e_i \left[ (x_i - a_i)^{(1+a)} \right] E_{1+a,1-a} \left( -(x_i - a_i)^{1+a} C \hat{\Delta}_{a^*} \right) C_{a^*} \left( \frac{1+a}{a_i} \right) g_0(\hat{\chi})
\]
\[
+ (x_i - a_i)^{-a} E_{1+a,1-a} \left( -(x_i - a_i)^{1+a} C \hat{\Delta}_{a^*} \right) C_{a^*} \left( \frac{1+a}{a_i} \right) g_1(\hat{\chi})
\]
\[
+ \sum_{i=2}^{n} e_i \left[ E_{1+a,1-a} \left( -(x_i - a_i)^{1+a} C \hat{\Delta}_{a^*} \right) C_{a^*} \left( \frac{1+a}{a_i} \right) g_0(\hat{\chi})
\]
\[
+ (x_i - a_i)^{-a} E_{1+a,1-a} \left( -(x_i - a_i)^{1+a} C \hat{\Delta}_{a^*} \right) C_{a^*} \left( \frac{1+a}{a_i} \right) g_1(\hat{\chi})
\].

and for \( k = 2, \ldots, n \)
\[
\left( C \left( \frac{1+a}{a_k} \right) \right) (x) = e_1 \left[ (x_1 - a_1)^{(1+a)} \right] E_{1+a,1-a} \left( -(x_1 - a_1)^{1+a} C \hat{\Delta}_{a^*} \right) C_{a^*} \left( \frac{1+a}{a_i} \right) g_0(\hat{\chi})
\]
\[
+ (x_1 - a_1)^{-a} E_{1+a,1-a} \left( -(x_1 - a_1)^{1+a} C \hat{\Delta}_{a^*} \right) C_{a^*} \left( \frac{1+a}{a_i} \right) g_1(\hat{\chi})
\]
\[
+ \sum_{i=2}^{n} e_i \left[ E_{1+a,1-a} \left( -(x_i - a_i)^{1+a} C \hat{\Delta}_{a^*} \right) C_{a^*} \left( \frac{1+a}{a_i} \right) g_0(\hat{\chi})
\]
\[
+ (x_i - a_i)^{-a} E_{1+a,1-a} \left( -(x_i - a_i)^{1+a} C \hat{\Delta}_{a^*} \right) C_{a^*} \left( \frac{1+a}{a_i} \right) g_1(\hat{\chi})
\].

\[
+ (x_i - a_i) E_{1+a,2} \left( -(x_i - a_i)^{1+a} C \hat{\Delta}_{a^*} \right) C_{a^*} \left( \frac{1+a}{a_i} \right) g_0(\hat{\chi})
\]
\[
+ (x_i - a_i) E_{1+a,2} \left( -(x_i - a_i)^{1+a} C \hat{\Delta}_{a^*} \right) C_{a^*} \left( \frac{1+a}{a_i} \right) g_1(\hat{\chi})
\].

(63)
Proof. Let us start with the proof of (62). Applying the operator \( \frac{C}{a_k^\frac{1+\nu}{\nu}} \partial_{x_k}^\frac{1+\nu}{\nu} \) to \( CT^\alpha \) and relying on (13), we obtain the expression (62). Concerning (63), the deduction is even more direct because the operator \( \frac{C}{a_k^\frac{1+\nu}{\nu}} \partial_{x_k}^\frac{1+\nu}{\nu} \) only acts on the functions \( g_0 \) and \( g_1 \).

Let us now study the derivatives of \( CT^\alpha \).

**Theorem 15.** Let \( g \in L_q(\Omega) \), with \( q = \frac{2p}{2-(1-a)^{-}} \), \( p \in 1, \frac{2}{1-a} \), and \( \alpha^* = \min_{1 \leq i \leq n} \{ \alpha_i \} \). The fractional partial derivatives of \( CT^\alpha \) with respect to \( x_k \) satisfy the mapping property

\[
\frac{C}{a_k^\frac{1+\nu}{\nu}} \partial_{x_k}^\frac{1+\nu}{\nu} (CT^\alpha g) : L_q(\Omega) \to L_q(\Omega), \quad k = 1, 2, \ldots, n.
\]

**Proof.** Since for \( k = 1, \ldots, n \) we have

\[
\left( \frac{C}{a_k^\frac{1+\nu}{\nu}} \partial_{x_k}^\frac{1+\nu}{\nu} CT^\alpha g \right)(x) = -\int_{\Omega} \frac{C}{a_k^\frac{1+\nu}{\nu}} \partial_{x_k}^\frac{1+\nu}{\nu} \text{Tran}C^\alpha(x + a - y)g(y) \, dy
\]

\[
= -\int_{\Omega} \frac{C}{a_k^\frac{1+\nu}{\nu}} \partial_{x_k}^\frac{1+\nu}{\nu} (T_{a-y}C^\alpha(x)) \, g(y) \, dy
\]

\[
= -\int_{\Omega} T_{a-y} \left( \frac{C}{a_k^\frac{1+\nu}{\nu}} \partial_{x_k}^\frac{1+\nu}{\nu} C^\alpha(x) \right) \, g(y) \, dy,
\]

then to study the derivatives of the operator \( CT^\alpha \) it suffices to study the convolution terms (64) (see Mikhlin and Prössdorf). The expression for the kernel of this convolution corresponds to the expressions (62) and (63). These kernels can be proved to be \( L_1 \) functions in a similar way as it was done in the proof of Theorem 8, with \( g_0 \) and \( g_1 \), like in Theorem 8. This fact, combined with Young inequality for convolutions (see Samko et al\(^{13, \text{Theorem 1.4}} \)), leads to

\[
\left\| \frac{C}{a_k^\frac{1+\nu}{\nu}} \partial_{x_k}^\frac{1+\nu}{\nu} (CT^\alpha g) \right\|_{L_q(\Omega)} = \left\| \left( \frac{C}{a_k^\frac{1+\nu}{\nu}} \partial_{x_k}^\frac{1+\nu}{\nu} C^\alpha \right) * g \right\|_{L_q(\Omega)} \leq \left\| \frac{C}{a_k^\frac{1+\nu}{\nu}} \partial_{x_k}^\frac{1+\nu}{\nu} C^\alpha \right\|_{L_q(\Omega)} \left\| g \right\|_{L_q(\Omega)}
\]

which in turn implies our result. \( \square \)

**Remark 7.** Considering \( a = (1, \ldots, 1), a' = (0, \ldots, 0), g_1 \equiv 0 \), and \( g_0(x) = \|x\|^{-(n-2)} \) the previous theorem reduces to theorem 3.8 in Gürlebeck and Sprößig.\(^4\)

Theorems 13 and 15 allow us to prove the continuity of \( CT^\alpha \).

**Theorem 16.** Let \( q = \frac{2p}{2-(1-a)^{-}} \), \( p \in 1, \frac{2}{1-a} \), and \( \alpha^* = \min_{1 \leq i \leq n} \{ \alpha_i \} \). The operator \( CT^\alpha : L_q(\Omega) \to W^{a,q}_{\alpha^*}(\Omega) \) is continuous.

This result can be obtained as direct consequence of Theorem 13 and Theorem 15 and, therefore, we omit a detailed proof. Now, we study the mapping properties of \( CF^\alpha \).

**Theorem 17.** Let \( q = \frac{2p}{2-(1-a)^{-}} \), \( p \in 1, \frac{2}{1-a} \), and \( \alpha^* = \min_{1 \leq i \leq n} \{ \alpha_i \} \). The operator \( CF^\alpha \) acts continuously on \( W^{a-\frac{1}{p},\frac{p}{p}}_{a^*}(\partial\Omega) \), more precisely, the operator

\[
CF^\alpha : W^{a-\frac{1}{p},\frac{p}{p}}_{a^*}(\partial\Omega) \to W^{a,q}_{\alpha^*}(\Omega) \cap \ker(CD^\alpha)
\]

is continuous.

**Proof.** For a function \( f \in W^{a-\frac{1}{p},\frac{p}{p}}_{a^*}(\partial\Omega) \), we can find a function \( g \in W^{a,q}_{\alpha^*}(\Omega) \) such that \( g = CF^\alpha f \). Next, by the Borel-Pompeiu formula (57), we may infer that \( CF^\alpha f = (I - C T^\alpha RL D_{a^*}^\alpha) g \). In view of the continuity of \( CT^\alpha \) and the fact that for a function \( g \in W^{a,q}_{\alpha^*}(\Omega) \) we have \( RL D_{a^*}^\alpha g \in W^{a,q}_{\alpha^*}(\Omega) \), and hence, we conclude that \( (I - C T^\alpha RL D_{a^*}^\alpha) g \in W^{a,q}_{\alpha^*}(\Omega) \).
By Theorem 11 and Theorem 12, we have \(0 = \mathcal{C} D_{a^+}^\alpha \mathcal{C} F^a f = (\mathcal{C} D_{a^+}^\alpha (I - \mathcal{C} T_{a^+}^\alpha) D_{a^+}^\alpha) g\). This in turn implies that \(g = \mathcal{C} F^a f \in W^{s,a}(\Omega) \cap \ker (\mathcal{C} D_{a^+}^\alpha)\) for a function \(g \in W^{s,a}(\Omega)\).

\[ \square \]

**Remark 8.** Considering \(a = (1, \ldots, 1)\), \(a = (0, \ldots, 0)\), \(g_1 \equiv 0\), and \(g_0(\hat{x}) = \|\hat{x}\|^{-(n-2)}\) we have that \(\ker (\mathcal{C} D_{a^+}^\alpha)\) reduces to \(\ker (D)\) as it happens in Gürlebeck and Sprößig.\(^4\)

## 5 Hodge-Type Decomposition

The aim of this section is to obtain a Hodge-type decomposition and to present an immediate application of this decomposition for the resolution of boundary value problems involving the fractional Laplace operator. To realize this, we need first the following lemma.

**Lemma 1.** Let \(u \in L_1(\Omega)\), and \(v\) has a summable fractional derivative \(\left(\mathcal{C} a_{a^+}^j a_{x_i}^j v\right)(x)\) in the variable \(x_i\), and belongs to \(L_{a^+}^{1+a_j}(L_1)\) in the variables \(x_i\) with \(i = 2, \ldots, n\). The solution \(v(x)\) of the Poisson equation

\[ \mathcal{C} \Delta_{a^+}^a v(x) = u(x) \]  

is given in the operator form by

\[ v(x) = E_{1+a_i,1} \left( -(x_1 - a_1)^{1+a_i} \mathcal{C} \Delta_{a^+}^a \right) g_0(\hat{x}) + (x_1 - a_1) E_{1+a_i,2} \left( -(x_1 - a_1)^{1+a_i} \mathcal{C} \Delta_{a^+}^a \right) g_1(\hat{x}) + \sum_{m=0}^\infty \left(-\mathcal{C} \Delta_{a^+}^a\right)^m \left( E_{a_i,1}^{(1+a_i)(m+1)} u \right)(x), \]

where the functions \(g_0\) and \(g_1\) are the Cauchy initial conditions given by

\[ g_0(\hat{x}) = v(a_1, \hat{x}) \quad \text{and} \quad g_1(\hat{x}) = v'_x(a_1, \hat{x}). \]

**Proof.** The proof follows the same reasoning of the deduction of (33). Applying successively the fractional integrals \(I_{a_i}^{1+a_i}\), with \(j = 1, \ldots, n\), to both sides of (65), applying Fubini theorem, and rearranging the terms, we get

\[ \left( I_{a_i}^{1+a_i} \sum_{k=2}^n I_{a_j}^{1+a_j} v \right)(x) + \left( \prod_{j=2}^n I_{a_j}^{1+a_j} v \right)(x) = \left( \prod_{j=2}^n I_{a_j}^{1+a_j} g_0 \right)(\hat{x}) + (x_1 - a_1) \left( \prod_{j=2}^n I_{a_j}^{1+a_j} g_1 \right)(\hat{x}) + \sum_{j=1}^n I_{a_i}^{1+a_i} u(x), \]  

where \(g_0\) and \(g_1\) are the Cauchy initial conditions given in (67). Applying the \((n - 1)\)-dimensional Laplace transform with respect to \(\hat{x} = (x_2, \ldots, x_n)\) to (68), taking into account the relations (24) to (28), and multiplying by \(\prod_{p=2}^n s_p^{1+a_p}\), we obtain the following second kind homogeneous integral equation of Volterra type:

\[ \mathcal{V}(x_1, \hat{s}) + \sum_{j=1}^n \frac{s_j^{1+a_j} x_j}{\Gamma(1 + a_j)} \int_{a_i}^{x_j} (x_1 - t)^{a_1} \mathcal{V}(t, \hat{s}) dt = G(x_1, \hat{s}) + \left( I_{a_i}^{1+a_i} \mathcal{U} \right)(x_1, \hat{s}), \]

where \(G(x_1, \hat{s}) = \mathcal{G}_0(\hat{s}) + (x_1 - a_1) \mathcal{G}_1(\hat{s})\) and \(\mathcal{G}_k(\hat{s}) = \mathcal{L} \{ g_k \}(s)\) with \(k = 0, 1\). Using (16), we have that the unique solution of (69) in the class of summable functions is the following:

\[ \mathcal{V}(x_1, \hat{s}) = G(x_1, \hat{s}) - \frac{\sum_{j=1}^n s_j^{1+a_j} x_j}{\Gamma(1 + a_j)} \int_{a_i}^{x_j} (x_1 - t)^{a_1} E_{1+a_j,1+a_i} \left( -(x_1 - t)^{1+a_i} \sum_{p=2}^n s_p^{1+a_p} \right) G(t, \hat{s}) dt \]

\[ + \left( I_{a_i}^{1+a_i} \mathcal{U} \right)(x_1, \hat{s}) - \frac{\sum_{p=2}^n s_p^{1+a_p} x_j}{\Gamma(1 + a_j)} \int_{a_i}^{x_j} (x_1 - t)^{a_1} E_{1+a_j,1+a_i} \left( -(x_1 - t)^{1+a_i} \sum_{p=2}^n s_p^{1+a_p} \right) \left( I_{a_i}^{1+a_i} \mathcal{U} \right)(x_1, \hat{s}) dt. \]
Theorem 18. Let \( q = \frac{2p}{2-(1-a^*)p}, p \in (0, 1], \) and \( a^* = \min_{1 \leq i \leq n} \{a_i\}. \) The space \( L_q(\Omega) \) admits the following direct decomposition

\[
L_q(\Omega) = L_q(\Omega) \cap \ker (\xi D_{a}^{*}) \oplus \xi D_{a}^{*} \left( W_{a}^{\alpha,p}(\Omega) \right),
\]

where \( W_{a}^{\alpha,p}(\Omega) \) is the space of functions \( g \in W_{a}^{\alpha,p}(\Omega) \) such that \( tr(g) = 0. \) Moreover, we can define the following projectors

\[
\xi P^{*} : L_q(\Omega) \to L_q(\Omega) \cap \ker (\xi D_{a}^{*}), \quad \xi Q^{*} : L_q(\Omega) \to \xi D_{a}^{*} \left( W_{a}^{\alpha,p}(\Omega) \right).
\]

Proof. By \( (-\xi \Delta_{a}^{*})^{-1} \) we denote the unique operator solution for the problem (cf Lemma 1)

\[
\begin{cases}
-\xi \Delta_{a}^{*} u = f, & \text{in } \Omega \\
 f = 0, & \text{on } \partial \Omega,
\end{cases}
\]
which is given by (66) with \( v(x) = f(x) \) and \( g_0(\hat{x}) = 0 \). As a first step, we take a look at the intersection of the two spaces that appear in the decomposition. Let \( f \in [L_q(\Omega) \cap \ker (C D_{a^*}^\alpha)] \cap C D_{a^*}^\alpha \left( W_{a^*}^{\alpha/p}(\Omega) \right) \). We directly see that \( C D_{a^*}^\alpha f = 0 \), in \( \Omega \). Moreover, since \( f \in C D_{a^*}^\alpha \left( W_{a^*}^{\alpha/p}(\Omega) \right) \), there exists a function \( g \in W_{a^*}^{\alpha/p}(\Omega) \) with \( C D_{a^*}^\alpha g = f \) and \( C \Delta_{a^*}^\alpha g = 0 \). From the uniqueness of \((-C \Delta_{a^*}^\alpha)^{-1}\) we obtain that \( g = 0 \). Consequently, \( f = 0 \) in \( \Omega \). Hence, the intersection of these subspaces only contains the zero function, which implies that the sum is direct. Now, let \( f \in L_q(\Omega) \) and \( f_2 \) such that
\[
 f_2 := C D_{a^*}^\alpha (-C \Delta_{a^*}^\alpha)^{-1} C D_{a^*}^\alpha f \quad \in \quad C D_{a^*}^\alpha \left( W_{a^*}^{\alpha/p}(\Omega) \right).
\]
Applying \( C D_{a^*}^\alpha \) to the function \( f_1 := f - f_2 \), we get
\[
 C D_{a^*}^\alpha f_1 = C D_{a^*}^\alpha f - C D_{a^*}^\alpha f_2
 = C D_{a^*}^\alpha f - C D_{a^*}^\alpha C D_{a^*}^\alpha (-C \Delta_{a^*}^\alpha)^{-1} C D_{a^*}^\alpha f
 = C D_{a^*}^\alpha f - (-C \Delta_{a^*}^\alpha)^{-1} C D_{a^*}^\alpha f
 = C D_{a^*}^\alpha f - C D_{a^*}^\alpha f = 0,
\]
ie, \( f_1 \in \ker (C D_{a^*}^\alpha) \). Since \( f \in L_q(\Omega) \) was arbitrarily chosen our decomposition is a direct decomposition of the space \( L_q(\Omega) \).

\[ \square \]

Remark 9. When \( a = (1, \ldots, 1) \), we have that \( q = p \) and \( p \in ]1, +\infty[ \). For the particular case of \( p = 2 \), the decomposition is orthogonal (see Gürlebeck and Sprößig, theorem 3.75).

We end this section by presenting an immediate application of our results.

**Theorem 19.** Let \( p \in \left( \frac{1}{1-a}, \frac{2}{1-a} \right) \), and \( a^* = \min_{1 \leq i \leq n} \{ a_i \} \). Consider \( g \in W_{a^*}^{2+a^*p}(\Omega) \). The unique solution of the problem
\[
\begin{cases}
 C \Delta_{a^*}^\alpha f = g, & \text{in } \Omega \\
 f = 0, & \text{on } \partial \Omega
\end{cases}
\]
is given by \( f = -C T^a C Q^a C T^a g \).

**Proof.** The proof is based on applying the properties of the operator \( C T^a \) and of the projector \( C Q^a \). Since \( C T^a \) is the right inverse of \( C D_{a^*}^\alpha \), we get
\[
 C \Delta_{a^*}^\alpha f = C D_{a^*}^\alpha C D_{a^*}^\alpha C T^a C Q^a C T^a g = C D_{a^*}^\alpha C Q^a C T^a g = C D_{a^*}^\alpha C T^a g = g.
\]

\[ \square \]

6 | CONCLUSION

In this work, we presented a generalization of several results of the classical continuous Clifford function theory developed in Gürlebeck and Sprößig in the context of fractional Clifford analysis. Our results can be regarded as a starting point for future works. Due to the “double duality” indicated previously, some of the previous results admit alternative versions, for instance, for the operator \( R_L D_{a^*}^\alpha \). Moreover, it is desirable to obtain an explicit expression for the fundamental solutions finding appropriate functions \( g_0 \) and \( g_1 \). This can be done considering adequate series expansions in the neighbourhood of \( a \). This will be subject for future work.

ACKNOWLEDGEMENTS

The work of M. Ferreira, M. M. Rodrigues, and N. Vieira was supported by Portuguese funds through CIDMA—Center for Research and Development in Mathematics and Applications and FCT—Fundação para a Ciência e a Tecnologia, within project UID/MAT/04106/2019.

The work of the authors was supported by the project New Function Theoretic Methods in Computational Electrodynamics/Neue funktionentheoretische Methoden für instationäre PDE, funded by Programme for Cooperation in Science between Portugal and Germany (“Programa de Ações Integradas Luso-Alemanás/2017”—Accção No. A-19/08 - DAAD-PPP Deutschland-Portugal, Ref: 57340281).

N. Vieira was also supported by FCT via the FCT Researcher Program 2014 (Ref: IF/00271/2014).
CONFLICT OF INTEREST
The authors declare no potential conflict of interests.

ORCID

Milton Ferreira  https://orcid.org/0000-0003-1816-8293
R. Sören Kraußhar  https://orcid.org/0000-0002-0915-1898
M. Manuela Rodrigues  https://orcid.org/0000-0002-8834-5841
Nelson Vieira  https://orcid.org/0000-0001-8756-4893

REFERENCES

1. Gilbert RP, Buchanan JL. First Order Elliptic System. A Function Theoretic Approach, Mathematics in Science and Engineering, vol. 163. New York-London etc.: Academic Press; 1983.
2. Xu C, Liu H, Cao W, Wenming FJ. Multispectral image edge detection via Clifford gradient. Sci China Inf Sci. 2012;55(2):260-269.
3. Bayro-Corrochano E, Vallejo R, Arana-Daniel N. Geometric preprocessing, geometric feedforward neural networks and Clifford support vector machines for visual learning. Neurocomputing. 2005;67(1-4):54-105.
4. Gürlebeck K, Sprößig W. Quaternionic and Clifford Calculus for Physicists and Engineers, Mathematical Methods in Practice. Chichester: Wiley; 1997.
5. Brackx F, Delanghe R, Sommen F. Clifford Analysis Research Notes in Mathematics, Vol. 76. Boston-London-Melbourne: Pitman Advanced Publishing Program; 1982.
6. Delanghe R, Sommen F, Soucek V. Clifford Algebras and Spinor-Valued Functions. A Function Theory for the Dirac Operator, Mathematics and its Applications, vol. 53. Dordrecht etc.: Kluwer Academic Publishers; 1992.
7. Wang L. Some properties of a kind of generalized Teodorescu operator in Clifford analysis. J Inequal Appl. 2016; Paper No. 102. https://doi.org/10.1186/s13660-016-1048-6
8. Brackx F, De Schepper H, Luna-Elizarrarás ME, Shapiro M. The Teodorescu operator in Clifford analysis. Chin Ann Math-Ser B. 2012;33(4):625-640.
9. Cerejeiras P, Vieira N. Regularization of the non stationary Schrödinger. Operator Math Meth Appl Sci. 2009;32(5):535-555.
10. Sprößig W. On Helmholtz decompositions and their generalizations—an overview. Math Methods Appl Sci. 2010;33(4):374-383.
11. Cerejeiras P, Kähler U, Rodrigues MM, Vieira N. Hodge decomposition in variable exponent spaces for the time-dependent operators: the Schrödinger case. Commun Pure Appl Anal. 2014;13(6):2253-2272.
12. Kraußhar RS, Rodrigues MM, Vieira N. Hodge decomposition and solution formulas for some first order time dependent parabolic operators with non-constant coefficients. Ann Mat Para Appl (4). 2014;193(6):1807-1821.
13. Kraußhar RS, Rodrigues MM, Vieira N. Hodge type decomposition for time dependent first order parabolic operators with non-constant coefficients: the variable exponent case. Milan J Math. 2014;82(2):407-422.
14. Tarasov VE. Fractional generalization of gradient and Hamiltonian systems. J Phys A Math Gen. 2005;38(26):5929-5943.
15. Idczak D, Walczak S. Fractional Sobolev spaces via Riemann-Liouville derivatives. J Funct Space Appl. 2013:15. Article ID 128043. http://doi.org/10.1155/2013/128043
16. Hossein H, Baleanu D, Khan H, Khan RA, Khan A. Existence criterion for the solutions of fractional order p-Laplacian boundary value problems. Bound Value Probl. 2015; Paper No.164. https://doi.org/10.1186/s13661-015-0425-2
17. Ferreira M, Vieira N. Eigenfunctions and fundamental solutions of the fractional Laplace and Dirac operators: the Riemann-Liouville case. Complex Anal Oper Theory. 2016;10(5):1081-1100.
18. Ferreira M, Vieira V. Fundamental solutions of the time fractional diffusion-wave and parabolic Dirac operators. J Math Anal Appl. 2017;447(1):329-353.
19. Ferreira M, Vieira N. Eigenfunctions and fundamental solutions of the fractional Laplace and Dirac operators: the Caputo case. Complex Var Elliptic Equ. 2017;62(9):1237-1253.
20. Ferreira M, Rodrigues MM, Vieira N. Fundamental solution of the time-fractional telegraph Dirac operator. Math Meth Appl Sci. 2017;40(18):7033-7050.
21. Ferreira M, Rodrigues MM, Vieira N. A time-fractional Borel-Pompeiu formula and a related hypercomplex operator calculus. Complex Anal Oper Theory. In Press. https://doi.org/10.1007/s11785-018-00887-7
22. Kilbas AA, Srivastava HM, Trujillo JJ. Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies, vol. 204. Amsterdam: Elsevier; 2006.
23. Samko SG, Kilbas AA, Marichev OL. Fractional Integrals and Derivatives: Theory and Applications. New York NY: Gordon and Breach; 1993.
24. Podlubny I. Fractional Differential Equations. An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications, Mathematics in Science and Engineering, vol. 198. San Diego, CA: Academic Press; 1999.
25. Gorenflo R, Kilbas AA, Mainardi F, Rogosin S. Mittag-Leffler Functions. Theory and Applications, Springer Monographs in Mathematics. Berlin: Springer; 2014.
26. Almeida R, Malinowska AB, Torres D. Fractional Euler-Lagrange differential equations via Caputo derivatives. In: Baleanu D., Tenreiro Machado JA, Luo ACJ, eds. Fractional Dynamics and Control. New York: Springer; 2012:109-118.

27. Ditkin VA, Prudnikov AP. Integral Transforms and Operational Calculus, International Series of Monographs in Pure and Applied Mathematics, vol. 78. Oxford-London-Edinburgh-New York-Paris-Frankfurt: Pergamon Press; 1965.

28. Zemanian AH. Generalized Integral Transformations, Pure Applied Mathematics, vol. 18. New York etc.: Interscience Publishers (division of John Wiley & Sons; 1968.

29. Aronszajn N, Creese TM, Lipkin LJ. Polyharmonic Functions, Oxford Mathematical Monographs. Oxford: Oxford University Press (Clarendon Press); 1983.

30. Mikhlin SG, Prössdorf S. Singular Integral Operators. Berlin etc.: Springer-Verlag; 1986.

31. Khan H, Li Y, Chen W, Baleanu D, Khan A. Existence theorems and Hyers-Ulam stability for a coupled system of fractional differential equations with p-Laplacian operator. Bound Value Probl. 2017; Paper No. 157. https://doi.org/10.1186/s13661-017-0878-6

How to cite this article: Ferreira M, Kraußhar RS, Rodrigues MM, Vieira N. A higher dimensional fractional Borel-Pompeiu formula and a related hypercomplex fractional operator calculus. Math Meth Appl Sci. 2019;42: 3633-3653. https://doi.org/10.1002/mma.5602