Breast Cancer Care in South India: Is Practice Concordant With National Guidelines?

D.K. Vijaykumar, MCh1; Sujana Arun, MSc1; Aswin G. Abraham, DPhil, MD1; Wilma Hopman, MA2,4; Andrew G. Robinson, MD3,4; and Christopher M. Booth, MD3,4

Abstract

Purpose The National Cancer Grid (NCG) of India has recently published clinical practice guidelines that are relevant in the Indian context. We evaluated the extent to which breast cancer care at a teaching hospital in South India was concordant with NCG guidelines.

Methods All patients who had surgery for breast cancer at a single center from January 2014 to December 2015 were included. Demographic, pathologic, and treatment characteristics were extracted from the electronic medical record. Patients were classified as being concordant with six elements selected from the NCG guideline. The indicators related to appropriate use of sentinel lymph node (SLN) biopsy, lymph node harvest, adjuvant radiotherapy, adjuvant chemotherapy, human epidermal growth factor receptor 2 (HER2) testing, and delivery of adjuvant trastuzumab.

Results A total of 401 women underwent surgery for breast cancer; mean age (standard deviation) was 57 (12) years. Lymph node involvement was present in 47% (188 of 401) of the cohort; 23% (94 of 401) had T1 disease. Ninety-two percent (368 of 401) underwent radical modified mastectomy. SLN biopsy was performed in 75% (167 of 222) of eligible patients. Eighty percent (208 of 261) of patients with a positive SLN biopsy or no SLN biopsy had a lymph node harvest of more than 10. Adjuvant chemotherapy with an anthracycline and a taxane was delivered to 67% of patients (118 of 177) with node-positive disease. Adjuvant radiotherapy was delivered to 84% (180 of 213) of patients with breast-conserving surgery, T4 tumors, or 3+ positive lymph nodes. Fluorescent in situ hybridization testing was performed in 59% of patients (43 of 73) with 2+ HER2-positive lymph nodes on immunohistochemistry. Among patients with HER2 overexpression, 40% (36 of 91) received adjuvant trastuzumab.

Conclusion Concordance with NCG guidelines for breast cancer care ranged from 40% to 84%. Guideline concordance was lowest for those elements of care associated with the highest direct costs to patients.
CONTEXT

Key Objective
The National Cancer Grid (NCG) of India recently published clinical practice guidelines that are relevant in the Indian context. We evaluated the extent to which breast cancer care at a teaching hospital in South India was concordant with six specific elements of the NCG guideline.

Knowledge Generated
Sentinel lymph node biopsy was performed on 75% of eligible patients. Eighty percent of patients with nodal dissection had a lymph node harvest of more than 10 nodes. Adjuvant chemotherapy with an anthracycline and a taxane was delivered to 67% of patients with node-positive disease. Adjuvant radiotherapy was delivered to 84% (180 of 213) of eligible patients. Fluorescent in situ hybridization testing for human epidermal growth factor receptor 2 status was performed in 59% of patients. Among patients with human epidermal growth factor receptor 2 overexpression, 40% (36 of 91) received adjuvant trastuzumab.

Relevance
Concordance with NCG guidelines for breast cancer care ranged from 40% to 84%. Guideline concordance was lowest for those elements of care associated with the highest direct costs to patients.

METHODS

Study Setting
This was a retrospective cohort study of all women who underwent surgery for breast cancer from 2014 to 2015 at Amrita Institute of Medical Sciences (AIMS). AIMS is a private, 1,200-bed tertiary care teaching hospital located in the southern Indian city of Kochi. AIMS is recognized as a leading hospital in India and offers courses at the undergraduate and postgraduate levels. The hospital has 25 operating theaters and performs approximately 20,000 surgeries per year. The Department of Breast and Gynecologic Oncology provides comprehensive outpatient, inpatient, and surgical care to all women with breast and gynecologic cancers. The Department includes two consultants in surgical oncology, four consultants in medical oncology, five consultants in radiation oncology postgraduate trainees in all oncology disciplines.

All patients who underwent surgery for breast cancer between January 1, 2014, and December 31, 2015, were identified from a review of the Operating Theater register. Patients with benign breast diseases, other nonmalignant pathologies (ie, granulomatous mastitis), and nonbreast cancer malignancies (ie, sarcoma) were excluded. The study was approved by the AIMS institutional review board.

Data Sources
Demographic, pathologic, and treatment characteristics were extracted from the electronic medical record by a trained research assistant. Quality assurance and extensive data review were performed by the principal investigator (D.K.V.). To explore concordance of clinical practice with guideline recommendations, we classified each patient as being concordant or not concordant with six elements selected from the NCG indicators. The six indicators were selected on the basis of relevance to routine...
(1) Patients with clinical and radiologic stage N0 should receive sentinel node biopsy.

(2) Patients having an axillary dissection should have at least 10 dissected nodes.

(3) Patients with three or more positive nodes or with breast conservation or stage T4 tumors should receive postoperative adjuvant RT.

(4) Patients with node-positive disease should receive adjuvant chemotherapy with an anthracycline and a taxane.

(5) Patients with human epidermal growth factor receptor 2 (HER2) 2+ on immunohistochemistry (IHC) should have fluorescent in situ hybridization (FISH) testing.

(6) Patients with HER2 3+ or FISH showing amplification should receive trastuzumab.
Although the NCG guidelines do not list a specific adjuvant chemotherapy regimen, the Indian Council of Medical Research uses an anthracycline plus a taxane; this combination was therefore considered to be compliant with guidelines. The primary investigator (D.K.V.) and a senior postgraduate trainee (A.G.A.) reviewed the indicators for each patient to determine treatment concordance.

Statistical Analysis
Data were entered into an Excel spreadsheet (Microsoft Corporation, Redmond, WA) and imported into IBM SPSS (version 24.0 for Windows; Armonk, NY) for statistical analysis. Data were primarily analyzed descriptively, including means and standard deviations for continuous data, such as age, and frequencies and percentages for categorical data. Concordance with guidelines was also analyzed descriptively using subsets as required.

RESULTS
Study Population
From 2014 to 2015, 401 women underwent surgical resection of breast cancer. The mean age was 57 years (standard deviation, 12 years; range 23 to 92 years); 8% of women (33 of 401) were younger than 40 years of age (Table 1). The decade of peak incidence was 50 to 59 years. Fifty-five percent of patients (222 of 401) had T2 primary tumors; only 23% (94 of 401) had T1 disease. Lymph node involvement was present in 47% (188 of 401) of the study population. Estrogen receptors (ERs) and progesterone receptors (PRs) were expressed in 69% (275 of 398) and 55% (222 or 397) of patients, respectively. HER2 overexpression was identified (using IHC) in 23% of patients (91 of 401). Fourteen percent of patients (54 of 383) with ER/PR/HER2 testing were found to have triple-negative disease. The distribution of biologic subtype was 26% luminal A (104 of 401), 32% luminal B (127 of 401), 22% HER2 (90 of 401), 17% basal (67 of 401), and 3% unknown (13 of 401).

Treatment Delivery
The vast majority of patients (92%; 368 of 401) underwent modified radical mastectomy (Table 2). Neoadjuvant and adjuvant chemotherapy were delivered to 16% (63 of 401) and 59% (238 of 401) of patients, respectively; 44% of patients (178 of 401) received adjuvant RT. Adjuvant hormonal therapies with tamoxifen and letrozole were given to 27% (109 of 401) and 35% (142 of 401), respectively.

Concordance With NCG Guidelines
As listed in Table 3, concordance with NCG guidelines ranged from 40% (adjuvant trastuzumab) to 84% (adjuvant RT). Sentinel lymph node (SLN) biopsy was performed in 75% of patients (167 of 222) in whom it was indicated. Eighty percent of patients (208 of 261) with a positive SLN biopsy or no SLN biopsy had greater than 10 lymph nodes sampled at the time of surgery. Adjuvant chemotherapy with an anthracycline and a taxane was delivered to 67% of patients (118 of 177) with lymph node–positive disease.

DISCUSSION
In this study, we explored the extent to which clinical practice for surgically resected breast cancer was consistent with evidence at one of India’s leading institutions. Several important findings emerged. First, compared with cohorts from HICs, patients in this study had more advanced tumors and were more likely to have lymph node involvement. Second, ER/PR status and HER2 status seen in this cohort was comparable to reports from HICs. Third, rates of BCS were far lower in this population compared with current rates in HICs. Finally, concordance with guidelines varied and ranged from 40% to 84%.
were the most discordant with guidelines were tests and therapies that were associated with considerable cost. There are a multitude of factors within the Indian cancer system that likely contribute to practice being discordant with clinical guidelines, including the cost of care (and limited health insurance plans), the lack of drug access programs for patients without the means to pay for therapy, limited oncology workforce capacity in many parts of India, and low health literacy among many segments of the Indian population. It is hoped that recent initiatives, such as the Ayushman Bharat National Health Protection Mission, will reduce the gap between evidence and clinical practice.

Patients in India and other LMICs are more likely to present with advanced disease compared with patients in HICs.10,11 In India and other LMICs, it is known that lower socioeconomic status is associated with more advanced breast cancer at the time of diagnosis.12-14 The proportion of patients with T1 tumors in our study cohort (23\%) was much lower than reports from the United States (61\%) and was also lower than many other parts of Asia.15,16 The reasons for this are complex and multifactorial, and may include lower health awareness, lack of access to primary care and cancer work-up services, sociocultural barriers, and financial costs. In India, out-of-pocket payments account for approximately 75\% of cancer costs and are increasingly a common cause of catastrophic financial expenditures for the patient and family.17 These financial barriers further contribute to the problems with delayed diagnosis and incomplete treatment. A comparable proportion of early-stage breast cancer was reported in Latin America (approximately 20\%), which shares many of the same challenges as India regarding timely cancer diagnosis.18

The rate of BCS in our study population (8\%) was far lower than reports from HICs (approximately 60\%)19 but comparable to other LMICs. Huang et al20 evaluated surgical management of more than 18,000 women in China from 1999 to 2013 and reported a BCS rate of 15\%. However, in another recent single-center report from South India among 401 surgical patients with breast cancer, Ali et al21 reported a BCS rate of 41\%. Reasons for the discordant results between the article by Ali et al21 and our study are not known.

TABLE 3. Concordance Between Treatment Delivered to Women With Localized Breast Cancer at Amrita Institute of Medical Sciences (2014 to 2015; Kochi, India) and National Cancer Grid of India Practice Guidelines (n = 401)

Indicator	Group	Value
Use of SLN biopsy	SLN indicated	222 (100)
Patients with no clinical or radiographic evidence of nodal involvement should have SLN biopsy.	SLN performed	167 (75)
	SLN not performed	55 (25)
	Guideline concordance rate, %	75
Adequate LN sampling	> 10 LN indicated	261 (100)
Greater than 10 LNs should be sampled in patients with a positive SLN biopsy and those patients without SLN biopsy.	> 10 LN sampled	208 (80)
	≤ 10 LN sampled	53 (20)
	Guideline concordance rate, %	80
ACT	ACT indicated	177 (100)
Anthracycline-taxane ACT should be delivered to patients with node-positive disease.	ACT delivered	118 (67)
	ACT not delivered	59 (33)
	Guideline concordance rate, %	67
Adjuvant RT	RT indicated	213 (100)
RT should be delivered to patients with breast-conserving surgery and those with T4 disease or 3+ positive LNs.	RT delivered	180 (85)
	RT not delivered	33 (15)
	Guideline concordance rate, %	84
FISH testing for HER2	FISH indicated	73 (100)
FISH should be used in patient with 2+ result in HER2 immunohistochemistry.	FISH performed	43 (60)
	FISH not performed	29 (40)
	Guideline concordance rate, %	59
Adjuvant trastuzumab	Trastuzumab indicated	91 (100)
Adjuvant trastuzumab should be given to patients with HER2 3+ result in IHC or FISH+.	Trastuzumab delivered	36 (40)
	Trastuzumab not delivered	55 (60)
	Guideline concordance rate, %	40

NOTE. All data are No. (%) unless otherwise indicated.

Abbreviations: ACT, appropriate adjuvant chemotherapy; FISH, fluorescent in situ hybridization; HER2, human epidermal growth factor receptor 2; IHC, immunohistochemistry; LN, lymph node; RT, radiotherapy; SLN, sentinel lymph node.
In a quality improvement study from Canada, Enright et al22 described performance metrics among 28,427 women with early-stage breast cancer, 41% of whom were treated with adjuvant chemotherapy. Seventy-eight percent of women with ER/PR expression were treated with adjuvant hormonal therapy. In another study from Canada, Ashworth et al23 found a postlumpectomy RT rate among 74,220 monal therapy. In another study from Canada, Enright et al22 found a postlumpectomy RT rate among 74,220 women of 69%. We are not aware of any studies of breast cancer guideline compliance from LMICs.

Within our own cohort, we reviewed clinical records to understand common reasons for noncompliance with practice guidelines. For sentinel node sampling, most of the noncompliance related to technical issues (ie, scar tissue on breast limited uptake in axilla). In some cases, the procedure was not performed because of non-availability of radio-isotope or technical problems with the gamma probe. Potential reasons for inadequate lymph node harvest related to surgical decision making in some patients and also to the use of neoadjuvant chemotherapy. Some patients with node-positive disease who had not received anthracyline and taxane adjuvant chemotherapy declined treatment because of financial costs, pursuit of alternative therapy, and/or comorbidity, making the risks of adverse effects substantial. It is also notable that an additional 35 patients received other chemotherapy regimens that did not include anthracyline and taxane; therefore, compliance with this indicator was likely higher than reported (ie, may be as high as approximately 87%). The low rates of FISH testing for HER2 status and use of adjuvant trastuzumab was almost uniformly because of financial considerations; in fact, if a patient cannot afford trastuzumab treatment, testing for HER2 status may not be appropriate.

Our study has important limitations that merit comment. This was a single-center study whose results may not be generalizable to other settings. In particular, these data come from a private teaching hospital. It is therefore likely that guideline concordance may be far lower at other hospitals in India, where there are even fewer resources. We also had a priori selected six specific elements of the NCG breast cancer guideline. Concordance with other elements of care was not evaluated in this study. It is notable that the chosen elements of care are consistent with recommendations from the Indian Council of Medical Research and the BHGI/ASCO resource-stratified guidelines.9,24 Our study was limited by the fact that the reason for noncompliance was generally not evident from the clinical chart. Finally, it is worth noting that although the data reported in this study describe practice from 2014 to 2015, the NCG guidelines were not published until 2017. However, the specific treatment recommendations included in this study were already firmly established in the literature by 2014. It will be important to understand whether performance at this institution and others throughout India have improved since 2017. An initiative within the NCG is under way to expand this study to include prospective contemporary cohorts at multiple institutions across India. Data from the future study will inform sub-sequent knowledge translation efforts to close the gaps between evidence and practice. This study illustrates that women in South India are commonly diagnosed with advanced breast cancer. Rates of BCS are low. Concordance rates with six specific elements of care range from 40% to 84%. Treatment elements with low concordance are associated with substantial financial cost to the patient and family. Future work is needed to better understand the reasons for non-compliance, whether rates are improving, and the extent to which new government funding programs will close the observed gap between evidence and practice.

AFFILIATIONS

1Amrita Institute of Medical Sciences and Research Centre, Cochin, India
2Kingston General Hospital Research Institute, Kingston, Ontario, Canada
3Queen’s University Cancer Research Institute, Kingston, Ontario, Canada
4Queen’s University, Kingston, Ontario, Canada

CORRESPONDING AUTHOR

D.K. Vijaykumar, MCh, Department of Breast and Gynecological Oncology, Amrita Institute of Medical Sciences and Research Centre, Ponekkara PO, Cochin - 682 041, Kerala, India; e-mail: dkvijaykumar@aims.amrita.edu.

SUPPORT

C.M.B. is supported as the Canada Research Chair in Population Cancer Care.

AUTHOR CONTRIBUTIONS

Conception and design: D.K. Vijaykumar, Aswin G. Abraham, Christopher M. Booth

Provision of study materials or patients: Aswin G. Abraham

Collection and assembly of data: D.K. Vijaykumar, Sujana Arun, Aswin G. Abraham

Data analysis and interpretation: All authors

Manuscript writing: All authors

Final approval of manuscript: All authors

Accountable for all aspects of the work: All authors

AUTHORS’ DISCLOSURES OF POTENTIAL CONFLICTS OF INTEREST

The following represents disclosure information provided by authors of this manuscript. All relationships are considered compensated. Relationships are self-held unless noted. I = Immediate Family Member, Inst = My Institution. Relationships may not relate to the subject matter of this manuscript. For more information about ASCO’s conflict of interest policy, please refer to www.asco.org/wc or ascopubs.org/jgo/site/misc/authors.html.

No potential conflicts of interest were reported.
REFERENCES

1. Anderson BO, Shyyan R, Eniu A, et al: Breast cancer in limited-resource countries: An overview of the Breast Health Global Initiative 2005 guidelines. Breast J 12S3-S15, 2006 (suppl 1)
2. Anderson BO, Duggan C: Resource-stratiﬁed guidelines for cancer management: Correction and commentary. J Glob Oncol 3:84-88, 2016
3. Anderson BO, Yip CH, Smith RA, et al: Guideline implementation for breast healthcare in low-income and middle-income countries: Overview of the Breast Health Global Initiative Global Summit 2007. Cancer 113:2221-2243, 2008 (8 suppl)
4. Chuang LT, Temin S, Camacho R, et al: Management and care of women with invasive cervical cancer: American Society of Clinical Oncology resource-stratiﬁed clinical practice guideline. J Glob Oncol 2:311-340, 2016
5. National Cancer Grid: Search by cancer type. https://tmc.gov.in/ncg/index.php/guidelines/search-by-cancer-type
6. Pramesh CS, Badwe RA, Sinha RK: The national cancer grid of India. Indian J Med Paediatr Oncol 35:226-227, 2014
7. Sullivan R, Pramesh CS, Booth CM: Cancer patients need better care, not just more technology. Nature 549:325-328, 2017
8. Raghunathrao D, Kannan R, Hingnekar C, et al: Institutional external peer review: A unique National Cancer Grid initiative. Indian J Med Paediatr Oncol 36:186-188, 2015
9. Indian Council of Medical Research: Guidelines. https://www.icmr.nic.in/guidelines
10. Yeole BB, Kumar AV, Kurkure A, et al: Population-based survival from cancers of breast, cervix and ovary in women in Mumbai, India. Asian Pac J Cancer Prev 5:308-315, 2004
11. Walters S, Maringe C, Butler J, et al: Breast cancer survival and stage at diagnosis in Australia, Canada, Denmark, Norway, Sweden and the UK, 2000-2007: A population-based study. Br J Cancer 108:1195-1208, 2013
12. Sathwara JA, Balasubramaniam G, Bobdey SC, et al: Sociodemographic factors and late-stage diagnosis of breast cancer in India: A hospital-based study. Indian J Med Paediatr Oncol 38:277-281, 2017
13. Jain A, Ganesh B, Bobdey SC, et al: Sociodemographic and clinical proﬁle of cervical cancer patients visiting in a tertiary care hospital in India. Indian J Med Paediatr Oncol 38:291-295, 2017
14. Sharma K, Costas A, Shulman LN, et al: A systematic review of barriers to breast cancer care in developing countries resulting in delayed patient presentation. J Oncol 2012:121873, 2012
15. Sopik V, Narod SA: The relationship between tumour size, nodal status and distant metastases: On the origins of breast cancer. Breast Cancer Res Treat 170:647-656, 2018
16. Kim Y, Yoo KY, Goodman MT: Differences in incidence, mortality and survival of breast cancer by regions and countries in Asia and contributing factors. Asian Pac J Cancer Prev 16:2867-2870, 2015
17. Pramesh CS, Badwe RA, Borthakur BB, et al: Delivery of affordable and equitable cancer care in India. Lancet Oncol 15:e223-e233, 2014
18. Justo N, Wilking N, Jönsson B, et al: A review of breast cancer care and outcomes in Latin America. Oncologist 18:248-256, 2013
19. Porter G, Wagar B, Bryant H, et al: Rates of breast cancer surgery in Canada from 2007/08 to 2009/10: Retrospective cohort study. CMAJ Open 2:E102-E108, 2014
20. Huang NS, Liu MY, Chen JJ, et al: Surgical management of breast cancer in China: A 15-year single-center retrospective study of 18,502 patients. Medicine (Baltimore) 95:e4201, 2016
21. Ali SH, Somasekhkar SP, Arun Kumar N: Rate of breast-conserving surgery vs mastectomy in breast cancer: A tertiary care centre experience from South India. Indian J Surg Oncol 10:72-76, 2019
22. Enright KA, Taback N, Powis ML, et al: Setting quality improvement priorities for women receiving systemic therapy for early-stage breast cancer by using population-level administrative data. J Clin Oncol 35:3207-3214, 2017
23. Ashworth A, Kong W, Whelan T, et al: A population-based study of the fractionation of postlumpectomy breast radiation therapy. Int J Radiat Oncol Biol Phys 86:51-57, 2013
24. Al-Sukhun S, Temin S, Chavez-MacGregor M, et al: ASCO resource-stratiﬁed guidelines: Methods and opportunities. J Glob Oncol 4:1-8, 2018