Na-H Exchange-dependent Increase in Intracellular pH Times G2/M Entry and Transition*

Received for publication, July 25, 2003, and in revised form, August 27, 2003
Published, JBC Papers in Press, August 28, 2003, DOI 10.1074/jbc.M308099200

Luanna K. Putney and Diane L. Barber‡
From the Department of Stomatology, University of California, San Francisco, San Francisco, California 94143

It is well established that activation of the Na-H exchanger NHE1 and increases in intracellular pH (pHi) are early and universal responses to mitogens and have permissive effects in promoting cell proliferation. Despite this evidence, a specific role for NHE1 or pHi in cell cycle progression remains undetermined. We now show that NHE1 activity and pHi regulate the timing of G2/M entry and transition. Prior to G2/M entry there is a rapid and transient increase in NHE1 activity and pHi, but in fibroblasts expressing a mutant NHE1 that lacks ion translocation activity, this increase in pHi is attenuated, S phase is delayed, and G2/M transition is impaired. In the absence of ion translocation by NHE1, expression of cyclin B1 and the kinase activity of Cdc2 are decreased and Wee1 kinase expression increases. Increasing pHi, in the absence of NHE1 activity, however, is sufficient to restore Cdc2 activity and cyclin B1 expression and to promote G2/M entry and transition. These data indicate that a transient increase in pHi, induced by NHE1 promotes the timing of G2/M and that they suggest that increases in pHi at the completion of S phase may constitute a previously unrecognized checkpoint for progression to G2 and mitosis.

The ubiquitously expressed plasma membrane Na-H exchanger NHE1 regulates intracellular pH (pHi) homeostasis and has a permissive effect in promoting cell proliferation. Activation of NHE1 and increased pHi are early and universal responses to mitogenic stimulation (1). Growth factor-dependent cell proliferation is attenuated in NHE1-deficient cells (2, 3) in cells treated with pharmacological inhibitors of NHE1 (4–6) and in cells expressing a mutant NHE1 that is deficient in ion translocation (7). Additionally, retrovirus-induced transformation requires an NHE1-dependent increase in pHi, and clamping pHi to prevent alkalinization inhibits proliferation and a transformed phenotype (8). Despite an established role for NHE1 in mitogen-induced cell proliferation, the mechanisms whereby NHE1 activity and increased pHi promote cell proliferation are not well understood. We therefore investigated cell cycle progression in fibroblasts expressing a mutant NHE1 that selectively lacks ion translocation activity and is unable to regulate pHi.

*This work was supported by National Institutes of Health Grants GM63465 (to L. P.) and GM47413 (to D. L. B.). The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked “advertisement” in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.
†To whom correspondence should be addressed: Dept. of Stomatology, HSW604, University of California, San Francisco, San Francisco, CA 94143-0512. Tel.: 415-476-3764; Fax: 415-502-7338; E-mail: barber@itsa.ucsf.edu.
‡The abbreviations used are: NHE1, Na-H exchanger isofrom 1; pHi, intracellular pH; BCECF, 2,7-bis(carboxyethyl)-5(6)-carboxyfluorescein; Cdc2, cyclin-dependent kinase 2; EIPA, ethylisopropylamiloride; FCS, fetal calf serum; HA, hemagglutinin.

EXPERIMENTAL PROCEDURES

Cell Preparation—Ltk– and LAP1 fibroblasts were obtained from J. Pouysségur (University of Nice, France) (9). LAP1 cells stably expressing wild-type and NHE1–266I were obtained by co-transfection of pRSV-neo (1.0 μg) with NHE1 plasmids (10 μg of pCMV-NHE1) as described previously (7). Cells were maintained in DMEM supplemented with 10% FCS (growth medium).

NHE1 Activity and pHi—NHE1 activity was determined as described previously (10) in cells loaded with the acetoxy-methyl ester derivative of the pH-sensitive dye 2,7'-bis(carboxyethyl)-5(6)-carboxyfluorescein (BCECF, Molecular Probes). NHE1 activity was determined by measuring the rate of pHi recovery (dPHi/dt) from an NH4Cl-induced acid load by evaluating the derivative of the slope of the time-dependent pHi recovery at intervals of 0.05. The pHi-dependent H+ efflux was calculated as the product of dPHi/dt and the total intracellular buffering capacity (βi) and expressed as μmol/s as described previously (11). Cytosolic pHi was determined by measuring BCECF fluorescence in the presence of 25 mM NaHCO3 to ensure the function of HCO3-dependent ion exchangers (7). Data represent the mean ± S.E. of four to six separate cell preparations.

Cell Cycle Analysis—DNA content was determined by flow cytometry of cells labeled with propidium iodide and data analysis was performed by using CellQuest software (BD Biosciences). A double thymidine block was performed by a modification of previously described methods (12). In brief, 24 h after plating cells, 2 mM thymidine was added to the growth medium. After 20 h, cells were washed twice with phosphate-buffered saline and released from the first thymidine block for 9 h in growth medium. A second block was initiated by adding 2 mM thymidine, and cells were maintained for 20 h. Cells were washed in phosphate-buffered saline and released into growth medium for the indicated times. Mitotic index was described as described previously (13).

Immunoprecipitation, Immunoblotting, and Kinase Activity—Immunoprecipitation and immunoblotting of HA-tagged NHE1 was performed as described previously (7) using anti-HA monoclonal antibody (12CA5; Roche Applied Science). For immunoprecipitation of Cdc2, cells plated in 100-mm dishes were lysed in radioimmunoprecipitation assay buffer supplemented with 0.1 T l/mal aprotinin, 2 μg/ml leupeptin, and 1 μg phenylmethylsulfonyl fluoride. Equal amounts of protein from post-nuclear supernatants (10,000 × g for 5 min) were pre-cleared for 1 h with protein-G-Sepharose (Zymed Laboratories Inc.) and then incubated with anti-Cdc2 antibodies (Santa Cruz Biotechnology) for 2 h followed by protein-G-Sepharose for 1 h. Cdc2 kinase activity was determined by phosphorylation of histone H1 as a substrate in vitro kinase assays using immunoprecipitated Cdc2 as described previously (14). For immunoblotting total Cdc2, Py15-Cdc2, cyclins, and β-actin, equal amounts of protein from post-nuclear supernatants were separated by SDS-PAGE and transferred to polyvinylidene difluoride membranes. Membranes were probed with the indicated antibodies (Santa Cruz Biotechnology), and bound antibody was detected by using the enhanced chemiluminescence system (Amersham Biosciences). The protein expression was analyzed by using NIH Image and the abundance of histone H1 phosphorylation was determined by phospho-Immunoblotting analysis.

TaqMan™ Analysis—TaqMan™ analysis was performed in asynchronous cells using TaqMan™ chemistry with the ABI 7700 Prism real-time PCR instrument (Applied Biosystems, Foster City, CA). The forward and reverse primers for mouse Wee1 kinase were 5'-TT-GCTCTTGCTCTCAGACTGCTG-3' and 5'-TTGGAAGACCTTGTGGGAT-3', respectively, and the probe was 5'-FAM/CCTCTCCGACATGGAGACACTGGCT/TAM-3', corresponding to an amplicon of 118 bp. PCR was conducted in triplicate with 50-μl reaction volumes of 1× PCR.
NHE1 and Cell Cycle Progression

RESULTS AND DISCUSSION

Recent evidence indicates that in addition to its function in ion translocation and pH homeostasis, NHE1 also acts as a scaffold to assemble signaling complexes (1, 15) and as a plasma membrane anchor for the actin-based cytoskeleton (7, 16, 17). To selectively impair only the ion translocation function of NHE1, we engineered an ion translocation-defective NHE1 containing an isoleucine substitution for glutamine 266 (NHE1-E266I). In cells expressing NHE1-E266I, the scaffolding and actin anchoring functions of NHE1 are retained, but ion translocation is absent (7, 16, 17). For the current study, the effect of ion translocation by NHE1 on cell proliferation was assessed by using NHE1-null LAP1 fibroblasts (9) selected to stably express either wild-type NHE1 with a C-terminal HA tag (LAPN cells) or HA-tagged NHE1-E266I (LAPE cells). Expression of NHE1 in LAPE cells is slightly greater than that in LAPN cells (Fig. 1A), and the increased gel mobility of NHE1-E266I likely reflects a difference in glycosylation (18). NHE1-null LAP1 cells are derived from parental Ltk− cells expressing wild-type NHE1 in LAPN cells, but not NHE1-E266I in LAPE cells (Fig. 1B). Stable expression of wild-type NHE1 in LAPN cells, but not NHE1-E266I in LAPE cells, restored this efflux (Fig. 1B). Moreover, in LAP1 and LAPE cells maintained in 10% FCS and the presence of 25 mM NaHCO3 and 5% CO2 to ensure the function of endogenous NHE (9), and Ltk− cells expressing endogenous NHE (9), and Ltk− cells have a pH-dependent H+ efflux that is not observed in LAP1 cells (Fig. 1B). Stable expression of wild-type NHE1 in LAPN cells, but not NHE1-E266I in LAPE cells, restored this efflux (Fig. 1B). Moreover, in LAP1 and LAPE cells maintained in 10% FCS and the presence of 25 mM NaHCO3 and 5% CO2 to ensure the function of HCO3−-dependent transporters, steady-state pH (Fig. 1C) and

buffer A (Applied Biosystems). 2.5 mM MgCl2, 0.4 μl each primer, 200 μM each dNTP, 100 ng probe, and 0.025 unit/μl Taq Gold (Applied Biosystems). For each experiment, a large master mix of the above components was made and aliquoted into each optical reaction tube. The primer/probe set (5–10 μl) was then added and PCR conducted using the following cycle parameters: 95 °C 12 min × 1 cycle (95 °C 20 s, 60 °C 1 min × 40 cycles). Data analysis was carried out using sequence detection software that calculates the threshold cycle (Ct) for each reaction, which is used to quantitate the amount of starting template in the reaction. A difference in Ct values (ΔCt) was calculated for each gene by taking triplicate Ct values from three reactions and subtracting the mean Ct of the triplicates for the control gene, GAPDH, for each cDNA sample at the same concentration. An additional difference in Ct values (ΔΔCt) was calculated for each gene by taking the triplicate ΔCt values for each gene in the mutant LAPN1-E266I cells and subtracting the mean ΔCt of the triplicates for the wild-type LAPN cells. As described previously (15), the relative expression levels were calculated as 2−ΔΔCt.

FIG. 1. Ion translocation by NHE1 promotes cell proliferation. A, expression of NHE1, determined by immunoblotting anti-HA immunoprecipitates from total cell lysates obtained from NHE1-deficient LAP1 cells, and LAP1 cells stably expressing wild-type NHE1 (LAPN) or mutant NHE1-E266I (LAPE). NHE1 activity promotes cell proliferation and actin anchoring. B, pH- dependent H+ efflux that is not observed in LAP1 cells (Fig. 1A), and the increased gel mobility of NHE1-E266I likely reflects a difference in glycosylation (18). NHE1-null LAP1 cells are derived from parental Ltk− cells expressing endogenous NHE (9), and Ltk− cells expressing wild-type NHE1. Data represent the mean ± S.E. of six separate cell preparations.

FIG. 2. NHE1 activity promotes G2/M entry. A, DNA content of LAPN and LAPE cells at the indicated times after release from a double thymidine block was analyzed by flow cytometry. B, the percentage of LAPN and LAPE cells in S phase (left) and G2/M (right) at the indicated times after release from a double thymidine block. Data represent the mean ± S.E. of three separate cell preparations.
the rate of cell proliferation (Fig. 1D) were significantly lower than that in Ltk− and LAPN cells. These findings are consistent with those of previous reports (3, 7) that NHE1 activity provides a permissive signal for cell proliferation.

An initial analysis of DNA content in asynchronous cells indicated that G2/M progression was delayed in LAPE cells compared with LAPN cells (data not shown). This was further investigated by arresting cells in S phase with a double thymidine block and analyzing DNA content by flow cytometry at the indicated times after release from arrest (Fig. 2A). At the time of release (time 0), 83 ± 6% of LAPN cells and 80 ± 8% of LAPE cells were in S phase (mean ± S.E.; n = 3 cell preparations) (Fig. 2B). At 3 h after release, 55 ± 5% of LAPN cells, but only 18 ± 2% of LAPE cells, had entered G2/M (Fig. 2B). At 6 h after release, 58 ± 5% of LAPN cells and 47 ± 4% of LAPE cells were in G2/M, and 22 ± 3% of LAPN cells and 39 ± 4% of LAPE cells remained in S phase. Hence, in the absence of NHE1 activity there is a delay in S phase and impaired entry into G2/M. In three separate cell preparations, there was no indication that LAPE cells had increased necrosis or apoptosis compared with LAPN cells.

In LAPN cells, the transition from S phase to G2/M was associated with a significant increase in pH, and NHE1 activity. Cytosolic pH, determined in the presence of NaHCO3, increased steadily after release from a double thymidine block, reaching a maximum of 7.48 ± 0.01 at 3 h (Fig. 3A). At 4 h after release, pHi was rapidly and significantly reduced to 7.26 ± 0.02 (p < 0.01) and remained constant for up to 9 h. Additionally, the increase in pH in LAPN cells at 3 h was associated with a transient increase in NHE1 activity (Fig. 3B), as determined by the rate of pH recovery (dPHi/dt) from an NH4Cl-induced acid load in a Hepes buffer. In the absence of NHE1 activity in LAPE cells there was also a time-dependent increase in pHi indicating that H+ extrusion mechanisms, independent of NHE1 activity, were activated. The maximum pHi of 7.27 ± 0.01 in LAPE cells, however, was significantly lower than that in LAPN cells (Fig. 3A). These data indicate that the transition from S phase to G2/M is associated with an increase in NHE1 activity, which promotes a marked and transient increase in pHi. In the absence of NHE1 activity, the pHi increase is attenuated, S phase is delayed, and entry into G2/M is impaired.

In LAPE cells G2/M transition was also impaired and the activity and expression of G2/M regulatory proteins were markedly different compared with LAPN cells. In asynchronous cells, the mitotic index of LAPE cells was 50% lower than that of LAPN cells (4 versus 8%). In eukaryotic cells, mitotic entry is dependent on increased activity of the cyclin-dependent kinase Cdc2 (19). At 3 and 6 h after thymidine release, Cdc2 kinase activity in LAPN cells increased, as determined by phosphorylation of histone H1 in *in vitro* kinase assays using immunoprecipitated Cdc2 (Fig. 4A, top row). Cdc2 kinase activity also increased in LAPE cells, but at delayed 6- and 9-h time points and maximum activity was reduced by 40% compared with LAPN cells (Fig. 4B). The abundance of Cdc2 in LAPN and LAPE cells, however, was similar at all time points (Fig. 4A, bottom row).
Phase regulators and promotes mitotic entry.

Translocation by NHE1 alters the activity and expression of M phase regulators. To confirm that impaired G2/M entry and transition were not merely due to changes in pH, regulating the timing of G2/M, increasing pH in the absence of NHE1 activity was sufficient to rescue the time-dependent entry into G2/M and the activity and expression of M phase regulators. To confirm that impaired G2/M entry and transition were not merely due to the constitutive loss of NHE1 activity in LAPE cells, but could also result from acute inhibition of NHE1, the effects of pH were determined in LAPN cells with the amiloride analog ethylisopropylamiloride (EIPA), which selectively inhibits NHE1 activity (25). At the time of release from a double thymidine block, LAPN cells were treated with either 0.1 M NaHCO3 (control) or EIPA (25 μM) and were maintained in the continuous presence of 25 mM NaHCO3 and 5% CO2. At 3 h after release, the pH of LAPN treated with EIPA was significantly lower than control cells (Fig. 5A; p < 0.01; n = 4) and NHE1 activity was completely inhibited (data not shown). To increase pH in the absence of NHE1 activity, EIPA-treated LAPN cells were incubated in 50 mM NaHCO3 at 15% CO2 at the time of thymidine release, which resulted in an alkalization to 7.38 ± 0.03, compared with a pH of 6.98 ± 0.02 with EIPA alone (Fig. 5A). Moreover, increasing pH in EIPA-treated cells was associated with an increased number of cells in G2/M at 3 h (Fig. 5A). At 3 h after release, the percentage of cells in G2/M was 56 ± 3 for control LAPN cells, 21 ± 3 for LAPN cells treated with EIPA, and 50 ± 4 for LAPN cells treated with EIPA but maintained in 50 mM NaHCO3 at 15% CO2. There was a similarity in the percentage of cells in G2/M at 3 h in LAPN cells expressing a mutant NHE1 lacking ion translocation (Fig. 2B) and in LAPN cells treated with EIPA (Fig. 5B). Like LAPE cells lacking NHE1 ion translocation, acutely inhibiting NHE1 activity in LAPN cells with EIPA was associated with decreased Cdc2 kinase activity compared with control cells, as indicated by histone H1 phosphorylation by immunoprecipitated Cdc2 (Fig. 5, C and D). Compared with control cells, EIPA treatment also increased Tyr15 phosphorylation of Cdc2 and decreased cyclin B1 expression (Fig. 5E), indicating that impaired Cdc2 activity and cyclin B1 expression were not merely a consequence of constitutive loss of NHE1 activity in LAPE cells but also resulted from acute inhibition of NHE1 activity. Moreover, increasing pH in the absence of NHE1 activity was sufficient to increase Cdc2 activity (Fig. 5, C and D). Compared with control cells, EIPA treatment also increased Tyr15 phosphorylation of Cdc2 and decreased cyclin B1 expression (Fig. 5E), indicating that impaired Cdc2 activity and cyclin B1 expression are regulated by NHE1 activity. NHE1 contains an H+ modifier site, which renders activity of the exchanger exquisitely sensitive to changes in pH. Hence, the transient increase in NHE1 activity could be a response to increased glycolysis and metabolic acid production during DNA replication in S phase, with the concomitant increase in pH providing a signal for efficient progression from S phase to G2/M. Whether the kinase activities of Cdc2 and Wee1 are pH-sensitive is undetermined. It also remains to be determined whether a specific G2/M regulatory protein is the primary target of increased pH, although cyclin B1 is a likely candidate. Cyclin B1 synthesis increases at the

---

* L. K. Putney and D. L. Barber, manuscript in preparation.
end of S phase (20), and cyclin B1 transcription or mRNA stability could be regulated by pH. Additionally, cyclin B1 levels are transiently reduced by DNA damage (12), and decreased pH could be part of a DNA damage-sensing response. An important future direction will be to determine whether increasing cyclin B1 expression is sufficient to rescue the delayed timing of G2/M transition in the absence of transiently increased NHE1 activity and pH. Most intriguing is the possibility that transient increases in pH at the completion of S phase constitute a previously unrecognized component of a checkpoint pathway.

Acknowledgments—We thank D. Morgan and D. Ilic for helpful discussions.

REFERENCES
1. Putney, L. K., Denker, S. P., and Barber, D. L. (2002) Annu. Rev. Pharmacol. Toxicol. 42, 527–552
2. Pouyssegur, J., Sardet, C., Franchi, A., L’Allemain, G., and Paris, S. (1984) Proc. Natl. Acad. Sci. U. S. A. 81, 4833–4837
3. Kapus, A., Grinstein, S., Wasan, S., Kandasamy, R., and Orlowski, J. (1994) J. Biol. Chem. 269, 23544–23552
4. Bussolino, F., Wang, J. M., Turrini, F., Alessi, D., Ghigo, D., Costamagna, C., Pescarmona, G., Mantovani, A., and Bosia, A. (1989) J. Biol. Chem. 264, 18284–18287
5. Dévaux, M., Bastie, M. J., Chentoufi, J., Crapoe, E. J., Jr., Vaysse, N., and Ribet, A. (1990) Am. J. Physiol. 259, G842–G849
6. Horvat, B., Taheri, S., and Salihagic, A. (1992) Eur. J. Cancer 28A, 132–137
7. Denker, S. P., Huang, D. C., Orlowski, J., Furthmayr, H., and Barber, D. L. (2000) Mol. Cell 6, 1425–1436
8. Reshkin, S. J., Belluzzi, A., Caldeira, S., Albarani, V., Malanchi, I., Pugine, M., Alunni-Fabbroni, M., Casavola, V., and Tommasino, M. (2000) PSEB J. 14, 2185–2197
9. Franchi, A., Perucchi-Lostanlen, D., and Pouyssegur, J. (1986) Proc. Natl. Acad. Sci. U. S. A. 83, 9388–9392
10. Tominaça, T., Ishizaki, T., Narumiya, S., and Barber, D. L. (1998) EMBO J. 17, 4712–4722
11. Voyno-Yasenetskaya, T., Conklin, B. R., Gilbert, R. L., Hooley, R., Bourne, H. R., and Barber, D. L. (1994) J. Biol. Chem. 269, 4721–4724
12. Jin, P., Hardy, S., and Morgan, D. O. (1998) J. Cell Biol. 141, 875–885
13. Gu, Y., Rosenblatt, J., and Morgan, D. O. (1992) EMBO J. 11, 3995–4005
14. Furnari, B., Blasina, A., Boddy, M. N., McGowan, C. H., and Russell, P. (1999) Mol. Biol. Cell 10, 833–845
15. Ginzinger, D. G. (2002) Exp. Hematol. 30, 503–512
16. Denker, S. P., and Barber, D. L. (2002)Curr. Opin. Cell Biol. 14, 214–220
17. Denker, S. P., and Barber, D. L. (2002) J. Cell Biol. 159, 1087–1096
18. Counillon, L., Pouyssegur, J., and Reithmeier, R. A. (1994) Biochemistry 33, 10463–10469
19. Nurse, P. (1990) Nature 344, 503–508
20. Pines, J., and Hunter, T. (1999) Cell 98, 833–846
21. Krek, W., and Nigg, E. A. (1991) EMBO J. 10, 305–316
22. Atherton-Fessler, S., Parker, L. L., Geahlen, R. L., and Piwnica-Worms, H. (1993) Mol. Cell. Biol. 13, 1675–1685
23. Lundgren, K., Walworth, N., Bocher, R., Dembski, M., Kirschner, M., and Beach, D. (1991) Cell 64, 1111–1122
24. Parker, L. L., and Piwnica-Worms, H. (1992) Science 257, 1955–1957
25. Counillon, L., Scholz, W., Lang, H. J., and Pouyssegur, J. (1999) Mol. Pharmacol. 44, 1041–1045