Transcendence Degree One Function Fields Over a Finite Field with Many Automorphisms

Gábor Korchmáros, Maria Montanucci and Pietro Speziali

Abstract

Let \(\mathbb{K} \) be the algebraic closure of a finite field \(\mathbb{F}_q \) of odd characteristic \(p \). For a positive integer \(m \) prime to \(p \), let \(F = \mathbb{K}(x, y) \) be the transcendence degree 1 function field defined by \(y^q + y = x^m + x^{-m} \). Let \(t = x^{m(q-1)} \) and \(H = \mathbb{K}(t) \). The extension \(F|H \) is a non-Galois extension. Let \(K \) be the Galois closure of \(F \) with respect to \(H \). By Stichtenoth [17], \(K \) has genus \(g(K) = (qm-1)(q-1) \), \(p \)-rank (Hasse-Witt invariant) \(\gamma(K) = (q-1)^2 \) and a \(K \)-automorphism group of order at least \(2q^2m(q-1) \). In this paper we prove that this subgroup is the full \(K \)-automorphism group of \(K \); more precisely \(\text{Aut}_K(K) = Q \times D \) where \(Q \) is an elementary abelian \(p \)-group of order \(q^2 \) and \(D \) has a index 2 cyclic subgroup of order \(m(q-1) \). In particular, \(\sqrt{m} | \text{Aut}_K(K) | > g(K)^{3/2} \), and if \(K \) is ordinary (i.e. \(g(K) = \gamma(K) \)) then \(|\text{Aut}_K(K)| > q^{3/2} \). On the other hand, if \(G \) is a solvable subgroup of the \(K \)-automorphism group of an ordinary, transcendence degree 1 function field \(L \) of genus \(g(L) \geq 2 \) defined over \(\mathbb{K} \), then \(|\text{Aut}_K(K)| \leq 34(g(L)+1)^{3/2} < 68\sqrt{2}g(L)^{3/2} \); see [12]. This shows that \(K \) hits this bound up to the constant \(68\sqrt{2} \).

Since \(\text{Aut}_K(K) \) has several subgroups, the fixed subfield \(F^N \) of such a subgroup \(N \) may happen to have many automorphisms provided that the normalizer of \(N \) in \(\text{Aut}_K(K) \) is large enough. This possibility is worked out for subgroups of \(Q \).

1 Introduction

Let \(L \) be a transcendence degree one function field defined over an algebraically closed field \(\mathbb{K} \), i.e. \(L = \mathbb{K}(\mathcal{X}) \) where \(\mathcal{X} \) is an algebraic curve defined over \(\mathbb{K} \). It is well known that if \(L \) is neither rational, nor elliptic then the \(\mathbb{K} \)-automorphism group \(\text{Aut}(L) \) of \(L \) is finite. More precisely, \(|\text{Aut}(L)| \leq 16g(L)^4 \) with just one exception, namely the Hermitian function field \(H = H(x, y), y^q + y = x^3 + x^{-3} \) with \(q = p^k \) whose genus equals \(\frac{1}{2}q(q-1) \) and \(K \)-automorphism group has order \((q^3+1)q^3(q^2-1) \); see [15]. This bound was refined by Henn in [9] and for special families of curves in [3][4][5][8].

In [12] the authors investigated the case where \(L \) is ordinary, i.e. its genus and \(p \)-rank coincide, and they showed for this case that if \(G \) is a solvable subgroup of \(\text{Aut}(L) \) then

\[
|G| \leq 34(g(L)+1)^{3/2} < 68\sqrt{2}g(L)^{3/2}.
\]

By Stichtenoth [17], the Galois closure \(K \) of \(F|H \) where \(F = \mathbb{K}(x, y) \) with \(y^q + y = x^m + x^{-m} \) where \(q = p^k \), \(m \) is a positive integer prime to \(p \), \(H = \mathbb{K}(x^{m(q-1)}) \), has genus \(g(K) = (q-1)(qm-1) \), \(p \)-rank \(\gamma(K) = (q-1)^2 \) and size of the Galois group \(|\text{Gal}(K|H)| \geq q^2m(q-1) \). For \(m = 1 \), \(K \) is ordinary and it provides an example hitting the bound (1), up to the constant term.

In Section [5] we prove that this subgroup is almost the full \(\mathbb{K} \)-automorphism group of \(K \); more precisely \(\text{Aut}_K(K) = Q \times D \) where \(Q \) is an elementary abelian \(p \)-group of order \(q^2 \) and \(D \) has a index 2 cyclic subgroup of order \(m(q-1) \). Moreover, \(Q \) is defined over \(\mathbb{F}_{q^2} \) while \(D \) is defined over \(\mathbb{F}_{q^r} \) where \(r \) is the smallest positive
integer such that \(m(q-1) \mid (q^r-1) \). We also give an explicit representation for \(K \) showing that \(K = \mathbb{K}(x, y, z) \) with \(y^q + y = x^m + x^{-m} \) and \(z^q + z = x^m \).

Since \(\text{Aut}_{\mathbb{K}}(K) \) has several subgroups, the fixed subfield \(P^N \) of some of such subgroups \(N \) may happen to have many automorphisms provided that the normalizer of \(N \) in \(\text{Aut}_{\mathbb{K}}(K) \) is large enough. In Section 6, this possibility is worked out for subgroups of \(\Delta \).

\section{Background and Preliminary Results}

In this paper, \(\mathbb{K} \) denotes an algebraically closed field of odd characteristic \(p \). Let \(L \) denote a transcendence degree 1 function field with constant field \(\mathbb{K} \); equivalently let \(L \) denote the function field \(\mathbb{K}(X) \) of a (projective, non-singular, geometrically irreducible, algebraic) curve \(\mathcal{X} \) defined over \(\mathbb{K} \). The subject of our paper is the group of automorphisms \(\text{Aut}_{\mathbb{K}}(L) \) of \(L \) which fix \(\mathbb{K} \) elementwise, and we begin by collecting basic facts and known results on \(\text{Aut}_{\mathbb{K}}(L) \) that will be used in our proofs. For more details, the reader is referred to [10] and [16].

For a subgroup \(G \) of \(\text{Aut}_{\mathbb{K}}(L) \), the fixed field \(L^G \) of \(L \) is the subfield of \(L \) fixed by every element in \(G \). The field extension \(L|L^G \) is Galois of degree \(|G| \). Take a place \(\bar{P} \) of \(L^G \) together with a place \(P \) of \(L \) lying over \(\bar{P} \), that is, let \(P \) be an extension of \(\bar{P} \) to \(L \). The integer \(e = e(P|\bar{P}) \) defined by \(v_P(x) = e v_{\bar{P}}(x) \) for all \(x \in L^G \) is the \textit{ramification index} of \(P|\bar{P} \), and \(P|\bar{P} \) is \textit{unramified} if \(e(P|\bar{P}) = 1 \), otherwise it is \textit{ramified}. If \(P|\bar{P} \) is ramified then is either \textit{wild} or \textit{tame} ramified according as \(p \) divides \(e(P|\bar{P}) \) or not. Furthermore, \(P \) is \textit{ramified in} \(L|L^G \) if \(P|\bar{P} \) is ramified for at least one place \(P \) of \(L \), otherwise \(P \) is \textit{unramified in} \(L|L^G \), and the adjective wild or tame is used for \(P \) according as at least one or none of the places \(P \) of \(L \) lying over \(\bar{P} \) is wild or tame. Also, a place \(\bar{P} \) of \(L^G \) is \textit{totally ramified} in \(L|L^G \) if there is just one extension \(P \) of \(\bar{P} \) in \(L \), and if this occurs then \(e(P|\bar{P}) = |G| \). Moreover, \(L|L^G \) is an \textit{unramified extension} if no extension of \(P \) to \(L \) is ramified; otherwise \(L|L^G \) is an \textit{unramified extension}. If each extension \(P|\bar{P} \) is tame then \(L|L^G \) is a \textit{tame Galois extension}; otherwise it is a \textit{wild Galois extension}.

On the set \(\mathcal{P} \) of all places of \(L \), \(G \) has a faithful action. For \(P \in \mathcal{P} \), the \textit{stabilizer} \(G_P \) of \(P \) in \(G \) is the subgroup of \(G \) consisting of all elements of \(G \) fixing \(P \). A necessary and sufficient condition for a place \(P \in \mathcal{P} \) to be ramified is \(|G_P| > 1 \), the ramification index \(e_P \) being equal to \(|G_P| \). The \textit{G-orbit} of \(P \in \mathcal{P} \) consists of the images of \(P \) under the action of \(G \) on \(\mathcal{P} \), and it is a \textit{long or short} orbit according as \(G_P \) is trivial or not. If \(o \) is a \(G \)-orbit then \(|o| = |G|/|G_P| \) for any place \(P \in o \). If no \(G \)-orbit is short then no nontrivial element in \(G \) fixes a place in \(\mathcal{P} \), that is, \(L|L^G \) is an unramified Galois extension, and the converse also holds.

Assume now that \(L \) is neither rational nor elliptic. Then \(L \) has genus \(g(L) \geq 2 \), and \(G \) is finite with a finite number of short orbits on \(\mathcal{P} \). For an integer \(i \geq -1 \), the \(i \)-th ramification group \(G_P^{(i)} \) of the extension \(P|\bar{P} \) is defined to be

\[
G_P^{(i)} = \{ g \in G \mid \text{ord}_P(g(z) - z) \geq i + 1, \text{ for all } z \in O_P \},
\]

where \(O_P \) is the local ring at \(P \) in \(L \). These ramification groups are normal subgroups of \(G_P \) and they form a decreasing chain \(G_P = G_P^{(0)} \geq G_P^{(1)} \geq \cdots \geq \{1\} \). Here \(G_P^{(0)} = G_P \) whereas \(G_P^{(1)} \) is the (unique) Sylow \(p \)-subgroup of \(G_P \), and \(G_P = G_P^{(1)} \rtimes C \) where the complement \(C \) in the semidirect product \(G_P^{(1)} \rtimes C \) is cyclic. The Hurwitz genus formula states that

\[
2g(L) - 2 = |G|(2g(L^G) - 2) + \sum_{P \in \mathcal{P}_L} d_P.
\]
where \(g(L^G) \) is the genus of \(L^G \), and

\[
d_p = \sum_{i \geq 0}(|G_p^{(i)}| - 1). \tag{3}
\]

Let \(\gamma(L) \) denote the \(p \)-rank (equivalently, the Hasse-Witt invariant of \(L \)). If \(S \) is a \(p \)-subgroup of \(\text{Aut}_K(L) \) then the Deuring-Shafarevich formula, see [18] or [10, Theorem 11,62], states that

\[
\gamma - 1 = |S|(\bar{\gamma} - 1) + \sum_{i=1}^{k}(|S| - \ell_i), \tag{4}
\]

where \(\gamma(L^S) \) is the \(p \)-rank of \(L^S \) and \(\ell_1, \ldots, \ell_k \) denote the sizes of the short orbits of \(S \). Both the Hurwitz and Deuring-Shafarevich formulas hold true for rational and elliptic curves provided that \(G \) is a finite subgroup.

A subgroup of \(\text{Aut}_K(L) \) is a \(p' \)-group (or a prime to \(p \)) group if its order is prime to \(p \). A subgroup \(G \) of \(\text{Aut}_K(L) \) is tame if the 1-point stabilizer of any point in \(G \) is \(p' \)-group. Otherwise, \(G \) is non-tame (or wild). Every \(p' \)-subgroup of \(\text{Aut}_K(L) \) is tame, but the converse is not always true. If \(G \) is tame then the classical Hurwitz bound \(|G| \leq 84(g(L) - 1) \) holds, but for non-tame groups this is far from being true. The Stichtenoth bound \(|G| \leq 16g(L)^4 \) holds for any \(L \) with \(g(L) \geq 2 \) other than the Hermitian function field.

From Group Theory, we use the following three deep results, see [19, 6, 7].

Lemma 2.1 (Dickson’s classification of finite subgroups of the projective linear group \(\text{PGL}(2, \mathbb{K}) \)). The finite subgroups of the group \(\text{PGL}(2, \mathbb{K}) \) are isomorphic to one of the following groups:

(i) prime to \(p \) cyclic groups;
(ii) elementary abelian \(p \)-groups;
(iii) prime to \(p \) dihedral groups;
(iv) the alternating group \(A_4 \);
(v) the symmetric group \(S_4 \);
(vi) the alternating group \(A_5 \);
(vii) the semidirect product of an elementary abelian \(p \)-group of order \(p^h \) by a cyclic group of order \(n > 1 \) with \(n \mid (q - 1) \);
(viii) \(\text{PSL}(2, p^f) \);
(ix) \(\text{PGL}(2, p^f) \).

Lemma 2.2 (Feith-Thompson theorem). Every finite group of odd order is solvable.

Lemma 2.3 (Alperin-Gorenstein-Walter theorem). If \(\Gamma \) is a finite simple group of 2-rank two (i.e. \(\Gamma \) contains no elementary abelian subgroup of order 8), then one of the following holds:

(i) The Sylow 2-subgroups of \(\Gamma \) are dihedral, and \(\Gamma \) is isomorphic to either \(\text{PSL}(2, n) \) with an odd prime power \(n \geq 5 \), or to the alternating group \(A_7 \).
(ii) The Sylow 2-subgroups of \(\Gamma \) are semi-dihedral and \(\Gamma \) is isomorphic to either \(\text{PSL}(3, n) \) with an odd prime power \(n \equiv -1 \text{ (mod 4)}, \) or to \(\text{PSU}(3, n), n \equiv 1 \text{ (mod 4)}, \) or to the Mathieu group \(M_{11} \).
(iii) The Sylow 2-subgroups of Γ are wreathed, and Γ is isomorphic to either PSL$(3,n)$ with an odd prime power $n \equiv 1 \pmod{4}$, or to PSU$(3, n), n \equiv -1 \pmod{4}$, or to PSU$(3, 4)$.

(iv) Γ isomorphic to PSU$(3,4)$.

From now on, K is the algebraic closure of a finite field \mathbb{F}_q of odd order $q = p^h$ with $h \geq 1$, $m \geq 1$ is an integer prime to p, $F = K(x, y)$ is the transcendency degree 1 function field defined by $y^q + y = x^m + x^{-m}$, $t = x^{m(q-1)}$ and H is the rational subfield $K(t)$ of F.

3 Galois closure of $F|H$

Let F and H be as defined in Section 1. Our first step is to give an explicit presentation of the Galois closure of $F|H$.

Proposition 3.1. The Galois closure of $F|H$ is $K(x, y, z)$ with

$$y^q + y = x^m + \frac{1}{x^m}, \quad (5)$$

$$z^q + z = x^m. \quad (6)$$

Proof. Let K denote the function field $K(x, y, z)$ given by (5) and (6). We show first that K contains a subfield isomorphic to an Artin-Mumford function field. For this, let $s = z - y$. Then (6) reads

$$s^q + s = y^q + y - (z^q + z) = \frac{1}{x^m},$$

whence by (6)

$$s^q + s = \frac{1}{z^q + z}. \quad (7)$$

The function field $L = K(x, s, z)$ with (5) and (7) is a subfield of K. Actually, $K = L$ as $y = z - s$, and $AM = K(s, z)$ with (7) is an Artin-Mumford subfield of K. Also,

$$[L : H] = [K : H] = [K : F] [F : H] = q^2 m (q-1).$$

It remains to show that Aut(L) has a subgroup of order $q^2 m (q-1)$ fixing t. Take a positive integer r for which $m|(q^r - 1)$. Let \mathcal{V} be the subgroup of \mathbb{F}_q^* consisting of all elements v such that $v^m \in \mathbb{F}_q^*$. Obviously, \mathcal{V} is a cyclic group of order $(q-1)m$.

For $\alpha, \beta \in \mathbb{F}_q^*$ with Tr$(\alpha) = \alpha^q + \alpha = 0$, Tr$(\beta) = \beta^q + \beta = 0$, and $v \in \mathcal{V}$, let $\varphi_{\alpha, \beta, v}(x, s, z)$ denote the K-automorphism of K

$$\varphi_{\alpha, \beta, v}(x, s, z) = (vx, v^{-m}s + \alpha, vmz + \beta). \quad (8)$$

Then $\varphi_{\alpha, \beta, v}(s)^q + \varphi_{\alpha, \beta, v}(s) = v^{-m}(s^q + s)$, and $\varphi_{\alpha, \beta, v}(z)^q + \varphi_{\alpha, \beta, v}(z) = v^m(z^q + z)$. This shows that (7) is left invariant by $\varphi_{\alpha, \beta, v}(x, s, z)$. Furthermore, $\varphi_{\alpha, \beta, v}(x)^m = vmx^m$. Let

$$\Phi := \{ \varphi_{\alpha, \beta, v} : v \in \mathcal{V}, \alpha^q + \alpha = 0, \beta^q + \beta = 0 \}.$$

A straightforward computation shows that

$$\varphi_{\alpha, \beta, v} \circ \varphi_{\alpha', \beta', v'} = \varphi_{v^{-m} \alpha' + \alpha, v^m \beta' + \beta, vm}.$$
and hence \(\Phi \) is a subgroup of \(\text{Aut}_K(L) \) of order \(q^2m(q - 1) \). Furthermore,

\[
\varphi_{\alpha,\beta,v}(t) = \varphi_{\alpha,\beta,v}(x^{m(q-1)}) = ((\varphi_{\alpha,\beta,v}(x))^{m})_{q-1} = v^{m(q-1)}x^{m(q-1)} = t.
\]

Since \([L : H] = [K : H] = q^2m(q - 1)\), the claim follows.

Our proof of Proposition 3.1 also gives the following result.

Lemma 3.2. The Galois group of the Galois closure \(K \) of \(F|H \) is \(\Phi \).

4 Some subgroups of \(\text{Aut}_K(K) \)

From Lemma 3.2, \(\Phi \) is a subgroup of \(\text{Aut}_K(K) \) of order \(q^2m(q - 1) \). Actually, \(\text{Aut}_K(K) \) is larger than \(\Phi \).

Lemma 4.1. \(|\text{Aut}_K(K)| \geq 2q^2m(q - 1) \).

Proof. Let

\[
\xi : (x, s, z) \mapsto \left(\frac{1}{x}, z, s \right).
\]

By a straightforward computation, \(\xi \in \text{Aut}_K(F) \), and \(\xi \notin \Phi \) is an involution. Since \(\xi \varphi_{\alpha,\beta,v} \xi = \varphi_{\beta,\alpha,v}^{-1} \) for every \(\varphi_{\alpha,\beta,v} \in \Phi \), the normalizer of \(\Phi \) contains \(\xi \). Thus, \(|\Phi, \xi| = 2q^2m(q - 1) \) by Lemma 3.2.

From the proof of Lemma 4.1, \(G = \Phi \times \langle \xi \rangle \) is a subgroup of \(\text{Aut}_K(K) \). Our main goal is to prove that \(G = \text{Aut}_K(K) \). The proof needs several results on the structure of \(\text{Aut}_K(K) \) which are stated and proven below. For this purpose, the following subgroups of \(\text{Aut}_K(K) \) are useful.

(i) \(\Psi := \{ \varphi_{\alpha,\alpha,1} | \alpha^q + \alpha = 0 \} \) of order \(q \).

(ii) \(\Delta := \{ \varphi_{\alpha,\beta,1} | \alpha^q + \alpha = \beta^q + \beta = 0 \} \) of order \(q^2 \).

(iii) \(W := \{ \varphi_{0,0,v} | v^m = 1 \} \) of order \(m \).

(iv) \(V := \{ \varphi_{0,0,v} | v \in V \} \) of order \((q - 1)m \).

(v) \(M := \{ \varphi_{\alpha,\beta,v} \in \Phi | v^m = 1 \} \).

Obviously, both \(\Delta \) and \(\Psi \) are elementary abelian \(p \)-groups while both \(V \) and \(W \) are prime to \(p \) cyclic groups.

Proposition 4.2. \(K|F \) is an unramified Galois extension of degree \(q \). Furthermore, \(g(K) = (q - 1)(qm - 1) \) and \(\gamma(K) = (q - 1)^2 \).

Proof. We show that \(F = K^\Psi \). From \(\varphi_{\alpha,\alpha,1}(x, s, z) = (x, s + \alpha, z + \alpha) \),

\[
\varphi_{\alpha,\alpha,1}(y) = \varphi_{\alpha,\alpha,1}(z - s) = \varphi_{\alpha,\alpha,1}(z) - \varphi_{\alpha,\alpha,1}(s) = z + \alpha - (s + \alpha) = z - s = y.
\]

Moreover, \(\varphi_{\alpha,\alpha,1}(x) = x \). Therefore, \(K^\Psi \) contains \(F \). Since \([K : F] = q\) this yields \(F = K^\Psi \) whence the first claim follows. We show that no nontrivial element in \(\Psi \) fixes a place of \(K \). From the definition of \(\Psi \), every \(\psi \in \Psi \) leaves the Artin-Mumford subfield \(AM = \mathbb{K}(s, z) \) invariant. By a straightforward computation, if \(\psi \) is nontrivial, then it fixes no place of \(AM \). But then \(\psi \) fixes no place of \(L \), and hence \(K|F \) is unramified. Therefore, the Hurwitz genus formula and the Deuring-Shafarevich formula yield the second claim.

5
Proposition 4.2 has the following corollary.

Corollary 4.3. A necessary and sufficient condition for F to be ordinary, i.e. $g(F) = \gamma(F)$, is $m = 1$.

Lemma 4.4. Δ is an (elementary abelian) Sylow p-subgroup of $\text{Aut}_K(K)$.

Proof. Let S be a Sylow p-subgroup of $\text{Aut}_K(K)$ containing Δ. From Nakajima’s bound [13] Theorem 1, see also [10] Theorem 11.84,

$$|S| \leq \frac{p^r}{p-2}(\gamma(X) - 1) = \frac{p^r}{p-2}(q^2 - 2q) < pq^2,$$

whence $|S| = q^2$. □

Remark 4.5. From the proof of Lemma 4.4 if $q = p$ then K hits the Nakajima’s bound.

Lemma 4.6. The subgroups Δ, W, V, Φ of G have the following properties:

(i) Δ is a normal subgroup of G.

(ii) W is a subgroup of the center $Z(\Phi)$ of Φ.

(iii) $\Phi = \Delta \rtimes V$.

(iv) $G = \Delta \rtimes (V \rtimes \langle \xi \rangle)$.

Proof. By a direct computation,

$$\varphi^{-1}_{\alpha_1,\beta_1,v_1} \circ \varphi_{\alpha_1,\beta_1,v_1} = \varphi(\alpha_1v_1^{-m} + a)v_1^{-m - \alpha_1v_1^{-m}}(\beta_1v_1^{m} + \beta)v_1^{m - \beta_1v_1^{m}},$$

for every $\varphi_{\alpha_1,\beta_1,v_1} \in \Phi$ and $\varphi_{\alpha_1,\beta_1} \in \Delta$. Also, $\xi \circ \varphi_{\alpha_1,\beta_1} \circ \xi = \varphi_{-\alpha_1,-\beta_1}$. Therefore (i) holds. Furthermore, (ii) is proven by a straightforward computation. Since Δ is a normal subgroup of G, and $|\Delta|$ is prime to $|V|$, we have $\langle \Delta, V \rangle = \Delta V = \Delta \rtimes V$. Moreover, $|\Delta V| = |\Delta||V| = |\Phi|$. Thus, $\Phi = \Delta \rtimes V$. From this, (iv) also follows. □

Lemma 4.7. The action of Δ on the set P of places of K has exactly two short orbits both of length q.

Proof. From the Deuring-Shafarevich formula,

$$q^2 - 2q = \gamma(K) - 1 = |\Delta|\gamma(K^\Delta) - 1 + d,$$

with $d = \sum_{i=1}^{\gamma(K)}(q^2 - \lambda_i)$ where $\lambda_1, \ldots, \lambda_r$ are the lengths of the r short orbits of Δ in its action on P. Since $|\Delta| = q^2$, Equation (9) taken mod q^2 yields that $d \geq q^2 - 2q$. Therefore, $\gamma(K^\Delta) = 0$ and hence

$$q^2 - 2q = -q^2 + d.$$

Thus $i \leq 2$ and [9] reads $q^2 - 2q = -q^2 + q^2 - \lambda_1 + q^2 - \lambda_2 = q^2 - (\lambda_1 + \lambda_2)$. whence $\lambda_1 + \lambda_2 = 2q$, that is, $\lambda_1 = \lambda_2 = q$. □

For each point P in a short orbit of Δ, the fact that Δ is abelian together with Lemma 4.7 yield the stabilizer Δ_P to have order q.

Lemma 4.8. For two points P_1, P_2 from different short orbits of Δ, the stabilizers Δ_{P_1} and Δ_{P_2} have trivial intersection.
Proof. By absurd, Δ_{p_1} fixes as many as $2q$ places of K. The Deuring-Shafarevich formula applied to Δ_{p_1} yields that $q = 1 - \gamma$ where γ is the p-rank of $K^\Delta_{p_1}$. But this cannot actually occur as $q > 2$.

Lemma 4.9. Let Ω be a short orbit of $\Aut_K(K)$ containing both short orbits of Δ. Then Ω is the unique non-tame short orbit of $\Aut_K(K)$.

Proof. Take a place $P \in \mathcal{P}$ outside Ω. By absurd, the stabilizer of P in $\Aut_K(K)$ contains a non-trivial p-subgroup. Let S_p be a Sylow p-subgroup containing that subgroup. Lemma 4.11 together with claim (i) of Proposition 4.6 yields that $S_p = \Delta$. Now, the proof follows from Lemma 4.7.

The following results provide characterizations of the short orbits of Δ.

Lemma 4.10. W fixes each place in the short orbits of Δ.

Proof. By Lemma 4.6, $\Delta \times W$ is an abelian group. From Lemmas 4.7 and 4.8, $\Delta \times W$ induces a permutation group on both short orbits of Δ. The nucleus of the permutation representation of $\Delta \times W$ on any of them has order qm and hence it contains W, the unique subgroup of $\Delta \times W$ of order m.

Lemma 4.11. $\text{Supp}(\text{div}(s)_\infty)$ and $\text{Supp}(\text{div}(z)_\infty)$ are the short orbits of Δ.

Proof. From the proof of Proposition 3.7 the subfield K^W is the Artin-Mumford function field $AM = \mathbb{K}(s, z)$ with (7). By (ii) of Lemma 4.6 the centralizer of W in $\Aut_K(K)$ contains Δ. Since $W \cap \Delta = \{1\}$, the restriction of the action of Δ on AM is a subgroup of $\Aut_K(AM)$. On the other hand, AM is the function field of the plane algebraic curve \mathcal{C} of affine equation $(X^q + X)(Y^q + Y) = 1$ which has only two singular points, namely X_∞ and Y_∞, both ordinary singularities of multiplicity q. On the set of places, that is, branches of \mathcal{C}, Δ has a faithful action. Further, the unique Sylow p-subgroup S_p of $\Aut_K(\mathcal{C})$ has order q^2 and a subgroup of S_p of order q fixes each of the q places centered at X_∞ and acts transitively on the set of the q places centered at Y_∞. Another subgroup of S_p of order q acts in the same way if the roles of the places centered at X_∞ and Y_∞ are interchanged. In particular, $\Delta = S_p$, and Δ has exactly two short orbits each of length q. In terms of AM, $\text{div}(s)_\infty$ is the sum of the q places centered at X_∞. This together with Lemma 4.11 shows that the places of M lying over these q places in the extension $K|AM$ form a short orbit of Δ. Similarly, $\text{div}(z)_\infty$ is the sum of the q places centered at X_∞, and the places of K lying over the q places centered at Y_∞ form a short orbit of Δ. From Lemma 4.7 $\text{div}(s)_\infty$ and $\text{div}(z)_\infty$ are the short orbits of Δ.

From now on Ω_1 and Ω_2 denote the two short orbits of Δ as given in Lemma 4.7. Up to a change of notation, $\text{div}(s)_0 = \Omega_1$ and $\text{div}(s)_\infty = \Omega_2$. A byproduct of the proof of Lemma 4.11 is the following result.

Lemma 4.12. The stabilizer of any point $P \in \Omega_1$ in Δ consists of all $\varphi_{\alpha,0,1}$ with $\alpha^q + \alpha = 0$. The same holds for $P \in \Omega_2$ and $\varphi_{0,\beta,1}$ with $\beta^q + \beta = 0$.

We prove another result on the zeroes and poles of x.

Lemma 4.13. The zeroes of x, as well as the poles of x, have the same multiplicity.

Proof. From Lemma 4.11 any zero of x is a point of Ω_1. Since Δ fixes x, and Ω_1 is an orbit of Δ, the claim follows for the zeroes of x. The same argument works for the poles of x whenever Ω_1 is replaced by Ω_2. Since $|\Omega_1| = |\Omega_2|$, we also have that the multiplicity of any zero of x is equal to that of any pole of x.

Lemma 4.14. The subfield K^Δ of K is rational.

7
Proof. For a place $P \in \Omega_1 \cup \Omega_2$, let U be a subgroup of $\text{Aut}_K(K)$ fixing P whose order u is prime to p. Then U is a cyclic group. Suppose that U centralizes Δ_P. Then $U\Delta_P$ is an abelian group of order uq. Furthermore, the first $u + 1$ ramification groups coincide, that is, $\Delta_P^{(0)} = \Delta_P^{(1)} = \ldots = \Delta_P^{(u)}$, see [10, Lemma 11.75 (iv)]. Since $\Delta_P = \Delta_P^{(0)}$ has order q by Lemma 4.15, the Hurwitz genus formula applied to Δ gives

$$2g(K) - 2 \geq q(2g(K^\Delta) - 2) + 2q(q - 1)(u + 1)$$

By (ii) of Lemma 4.6 and Lemma 4.10, U may be assumed to contain W. Then $2q^2(u + 1) \geq 2q^2(m + 1)$. This together with $2g(K) - 2 = 2(q^2m - qm - q)$ yields $g(K^\Delta) = 0$. \qed

The proof of Lemma 4.14 also gives the following result.

Lemma 4.15. The centralizer of Δ in $\text{Aut}_K(K)$ is $\Delta \times W$.

5 Main result

Our goal is to prove the following result.

Theorem 5.1. Let K be the Galois closure of the extension $F|H$ where $F = F(x, y)$ with $y^q + y = x^m + x^{-m}$, and $H = \mathbb{K}(x^{m(q-1)})$. Then $\text{Aut}_K(K) = \Delta \rtimes (C_{m(q-1)} \rtimes \langle \xi \rangle)$ where Δ is an elementary abelian normal subgroup of order q^2, $C_{m(q-1)}$ is a cyclic subgroup and ξ is an involution.

In the proof we treat two cases separately depending upon the abstract structures of minimal normal subgroups of $\text{Aut}_K(K)$.

5.1 Case I: $\text{Aut}_K(K)$ contains a solvable minimal normal subgroup

Lemma 5.2. If N is a normal elementary abelian subgroup of $\text{Aut}_K(K)$ of order prime to p then either $N \leq W$ or $|N| \equiv |N \cap W| + 1$ (mod p).

Proof. By (ii) of Lemma 4.9 the conjugate of every element in $N \setminus N \cap W$ by any element of Δ is also in $N \setminus N \cap W$. Assume on the contrary that $|N| - |N \cap W| \not\equiv 1$ (mod p). Then some element $u \in N \setminus N \cap W$ coincides with its own conjugate by any element of Δ. Equivalently, u centralizes Δ. By Lemma 4.7, u preserves Ω_1 (and Ω_2). Since u has prime order different from p, u fixes a place in Ω_1. For $U = \langle u \rangle$, the argument used in the proof of Lemma 4.14 shows that U is contained in W, a contradiction. \qed

Next, the possibility of the existence of some subgroup of $\text{Aut}_K(K)$ which is not contained in

$$G = \Phi \rtimes \langle \xi \rangle$$

is investigated.

Lemma 5.3. Let H be a subgroup of $\text{Aut}_K(K)$ which is not contained in G. Then the centralizer of H does not contain W.

Proof. As already observed in the proof of Lemma 4.11 the subfield K^W is the Artin-Mumford function field $AM = \mathbb{K}(s, z)$ with $[\mathbb{K}:AM]$. By absurd, HW/W is a subgroup of $\text{Aut}(AM)$. Since $|\text{Aut}(AM)| = 2(q - 1)q^2$, see [19, Theorem 7] for $q = p$ and [13, Theorem 5.3] for any q, and G/W is a subgroup of $\text{Aut}(AM)$, the latter subgroup is the whole $\text{Aut}(AM)$. Therefore HW/W is contained in G/W. But then $HW \leq G$ and hence $H \leq G$, a contradiction. \qed
From Proposition 4.6, \(M = \Delta \times W \). Therefore, \(M \) is an abelian subgroup of \(\Phi \) of order \(q^2m \), and \(|M| = q^2m > (q - 1)(qm - 1) = \varphi(K)\). Let \(R \) be the subgroup of \(G \) generated by \(M \) and \(\xi \). Then \(R = M \times \langle \xi \rangle \) as the normalizer of \(M \) in \(G \) contains \(\xi \).

Lemma 5.4. If \(N \) is an elementary abelian normal \(2 \)-subgroup of \(\text{Aut}_K(K) \) then \(N = \{1, \varphi_{0,0,-1}\} \).

Proof. By definition, \(\xi \) and \(\varphi_{0,0,-1} \) are contained in \(G \). Since both \(\xi \) and \(\varphi_{0,0,-1} \) are involutions and commute, they generate an elementary abelian subgroup \(S \) of \(G \) of order 4. Let \(U \) be a subgroup of \(\text{Aut}_K(K) \) of order \(d = 2^n \geq 2 \). From the Hurwitz genus formula applied to \(U \),

\[
2\varphi(K) - 2 = 2^n(2\varphi(K^U) - 2) + \sum_{i=1}^k (2^n - \ell_i)
\]

where \(\ell_1, \ldots, \ell_k \) are the short orbits of \(U \) on the set \(P \) of all places of \(K \). Since \(\varphi(K) = (q - 1)(qm - 1) \) is even, and hence \(2\varphi(K) - 2 \equiv 2 \pmod{4} \), while \(2^n(2\varphi(K^U) - 2) \equiv 0 \pmod{4} \), some \(\ell_i \) \((1 \leq i \leq k)\) must be either 1 or 2. Therefore, \(U \) or a subgroup of \(U \) of index 2 fixes a point of \(\mathcal{X} \) and hence is cyclic. From [11] Chapter I, Satz 14.9, \(U \) is either cyclic, or the direct product of a cyclic group by a group of order 2, or a generalized quaternion group, or dihedral, or semidihedral, or a modular maximal-cyclic group (also called type (3) with Huppert’s notation). In particular, \(U \) contains no elementary abelian subgroup of order 8. By absurd, let \(N \) be a elementary abelian normal \(2 \)-subgroup of \(\text{Aut}_K(K) \) which is not contained in \(G \). Then \(N \) has order 2 or 4. In the former case, \(N \) is in \(Z(\text{Aut}_K(K)) \) and hence \(N \) together with \(S \) generate an elementary abelian group of order 8, a contradiction. If \(|N| = 4 \) and \(N \cap S = \{1\} \) then some non-trivial element of \(s \in S \) commutes with each element of \(N \), and hence \(N \) together with \(s \) generate an elementary abelian group of order 8, again a contradiction. If \(N \cap S = \{1, u\} \) then \(u \in Z(G) \) and hence \(u = \varphi_{0,0,-1} \). Since \(|N| - |N \cap S| = 2 \), Lemma 5.2 yields \(N < W \) a contradiction. Therefore, \(N < G \), and hence \(N \) is a subgroup of \(V \times \langle \xi \rangle \). Since \(V \) is cyclic, \(N \) contains \(\varphi_{0,0,-1} \). If \(|N| = 4 \) then \(N \) has two elements outside \(W \). But this is impossible by Lemma 5.2.

Remark 5.5. The proof of Lemma 5.4 also shows that \(\text{Aut}_K(K) \) contains no elementary abelian group of order 8.

Lemma 5.6. Any solvable minimal normal subgroup of \(\text{Aut}_K(K) \) is contained in \(R \).

Proof. Let \(N \) be a solvable minimal normal subgroup of \(\text{Aut}_K(K) \). Then \(N \) is an elementary abelian group of order \(r^h \) with a prime \(r \geq 2 \) and \(h \geq 1 \). If \(r = p \) then \(N \) is contained in \(\Delta \) by Lemma 4.4. Therefore \(r \neq p \) is assumed. By Lemma 5.2, the case \(r = 2 \) is dismissed, as well.

We investigate the subfield \(K^N \). The quotient group \(\bar{M} = M/N \) is a subgroup of \(\text{Aut}_K(K^N) \). Since \(p \neq r \), we have \(\Delta \cap N = \{1\} \) and \(M \cap N = W \cap N \leq W \). Furthermore, \(\bar{M} = M/(M \cap N) \cong \Delta W/(W \cap N) \). The Hurwitz genus formula applied to \(N \) yields \(\varphi(K) - 1 \geq |N|/\varphi(K^N) - 1 \).

We show that the \(\ell \)-rank \(\gamma(K^N) \) of \(K^N \) is positive. If \(\gamma(K^N) = 0 \) by absurd, any nontrivial \(\ell \)-subgroup of \(\text{Aut}_K(K^N) \) has exactly one fixed place, see [10] Lemma 11.129]. Let \(\hat{P} \) be the unique fixed place of \(\Delta = \Delta N/N \) viewed as a subgroup of \(\text{Aut}_K(K^N) \). Then the \(\Delta \)-orbit of \(\hat{P} \) in the extension \(K\bar{M}^N \) contains \(\Omega_1 \cup \Omega_2 \). Furthermore, since \(N \) is a normal subgroup of \(\text{Aut}_K(K) \), \(\Omega \) is the union of \(\Delta \)-orbits. By Lemma 4.1, each \(\Delta \)-orbit other than \(\Omega_1 \) and \(\Omega_2 \) has size \(q^2 \). Therefore, \(q \) divides \(|\Omega| \). Since \(|\Omega| \) divides \(|N| \), this yields that \(q \) divides \(N \), a contradiction. As a consequence, \(K^N \) is not rational.

We show that \(K^N \) is neither elliptic. For a place \(P \in \Omega_1 \), all ramification groups \(N_i^{(i)} \) of \(N \) at \(P \) have odd order, and hence \(d_P = \sum_i (N_i^{(i)} - 1) \) is even. Let \(\theta \) be the \(\Delta \)-orbit containing \(P \). Then, \(|N_P|/|\theta| = |N| \).
Take a Sylow 2-subgroup \(S \) of \(G \) containing a Sylow 2-subgroup \(S_P \) of \(G_P \). Since \(\xi, \varphi_{0,0,-1} \) are two distinct involutions which commute, \(S \) is not cyclic. Therefore \(S \neq S_P \), as \(S \) does not fix \(P \). Thus \(|S| \) does not divide \(|G_P| \) showing that the \(G \)-orbit of \(P \) must have even length. This yields that \(\sum_{p \in P} d_p \) is divisible by four.

On the other hand, \(2g(K) - 2 = 2(q^2m - qm - q) \) is twice an odd number, a contradiction.

Therefore, \(g(K^N) \geq 2 \). From the Nakajima bound, see [14], or [10, Theorem 11.84] applied to \(\hat{\Delta} \),

\[
q^2 \leq \frac{p}{2}(\gamma(K^N) - 1) \leq \frac{p}{2}(g(K^N) - 1)
\]

whence

\[
g(K^N) - 1 \geq \begin{cases}
3 & \text{when } q = 3, \\
15 & \text{when } q > 3.
\end{cases}
\] (10)

From \(|M| \geq g(K) - 1 \),

\[
4|M| \geq 4(g(K) - 1) \geq 4|N|(g(K^N) - 1) = |N|(4g(K^N) + 4 - 8)
\] (11)

which yields

\[
4|M| \geq |N||M| - 8|N|.
\] (12)

From \(|N|(g(K^N) - 1) \leq (g(K) - 1) \leq |M| \),

\[
4 \geq \frac{|N|}{|M|} \cdot \frac{|M|}{|M \cap N|} - \frac{8|N|}{|M \cap N|} = \frac{|N|}{|M \cap N|} - \frac{8}{g(K^N) - 1}.
\] (13)

This and (10) yield

\[
\frac{|N|}{|W \cap N|} \leq \begin{cases}
6 & \text{when } q = 3, \\
4 & \text{when } q > 3.
\end{cases}
\] (14)

Since \(W \cap N \leq N \) we have \(|W \cap N| = r^w \) for some \(0 \leq w \leq h \). By (10) and Lemma 5.2, this is only possible when either \(r = 3 \) and \(p \neq 3 \), or \(r = 5 \) and \(q = 3 \), or \(w = h \). In the latter case, \(W \cap N = N \) whence \(N \leq W < R \), and the claim is proven. If \(r = 3 \) and hence \(|N| = 3 \) or \(|N| = 9 \) according as \(N \cap W = \{1\} \) or \(|N \cap W| = 3 \), Lemma 5.2 shows that \(N \leq W < R \). The same argument works for \(r = 5 \), \(|N| = 5, 25 \), and \(|N \cap W| = 1, 5 \).

Lemma 5.7. If a normal subgroup \(N \) of \(\Phi \) is contained in \(\Delta \) then \(N \) coincides with \(\Delta \).

Proof. Take \(\varphi_{\alpha,\beta,1} \in N \) for some \(\alpha \neq 0 \), \(\beta \neq 0 \). Since \(v \) has order \(m(q - 1) \) in \(F_q \). \(v^m \) is a primitive element of \(F_q \). Since \(N \) is normal in \(\text{Aut}_F(K) \), \(\varphi_{0,0,v}^{-1} \circ \varphi_{\alpha,\beta,1} \circ \varphi_{0,0,v} \in N \). From

\[
\varphi_{0,0,v}^{-1} \circ \varphi_{\alpha,\beta,1} \circ \varphi_{0,0,v}(x, s, z) = (x, s + v^m \alpha, z + v^{-m} \beta),
\]

\[
\varphi_{0,0,v}^{-1} \circ \varphi_{\alpha,\beta,1} \circ \varphi_{0,0,v} = \varphi_{v^m \alpha, v^{-m} \beta, 1}.
\]

Since \(v^m \) is a primitive element of \(F_q \), \(N \) contains each \(\varphi_{\alpha',\beta',1} \) whenever \(\alpha' = \omega \alpha, \beta' = \omega^{-1} \beta \) with \(\omega \in F_q^* \). Thus \(|N| \geq q \). Moreover if \(\alpha_i = \omega_i \alpha \) and \(\beta_i = \omega_i^{-1} \beta \), where \(\omega_i \in F_q^* \) and \(i = 1, 2 \) then \(N \) contains \(\varphi_{\alpha_i,\beta_i,1} = \varphi_{(\omega_1 + \omega_2) \alpha, (\omega_1^{-1} + \omega_2^{-1}) \beta, 1} \). To count the elements in \(N \), observe that \((\omega + \omega')^{-1} = \omega^{-1} + \omega'^{-1} \) only occurs whenever \(\omega' = \omega \) is a root of the quadratic polynomial \(\omega x + \omega^2 + x^2 \). For a fixed \(\omega \), this shows that at least \((q - 1) - 2 = q - 3 \) possible choices for \(\omega' \) provide different elements in \(N \). Thus, \(|N| \geq q + (q - 1)(q - 3) = q^2 - 3(q - 1) \).

By absurd, \(N \) is a proper subgroup of \(\Delta \). Then \(q^2 - 3(q - 1) \leq \frac{q^2}{p} \), which is only possible for \(q = p = 3 \). In this case, since \(\psi \circ \varphi_{\alpha,\beta,1} \circ \psi \in N \) we find \(q - 1 \) more elements in \(N \) of the form \(\varphi_{\alpha',\beta',1} \), where \(\alpha' = \omega \alpha \) and \(\beta' = \omega \beta \) for \(\omega \in F_q^* \). Thus, \(|N| \geq q^2 - 2(q - 1) = 5 \). Since \(\frac{q^2}{p} = 3 \) the claim also holds in this case. \(\square \)
Lemma 5.8. Let N be a normal subgroup M of R. If $|N| = r^h$, with an odd prime r different from p, then N is a subgroup of W.

Proof. From $[R : M] = 2$, N is a subgroup of $M = \Delta \times W$. Since $N \cap \Delta = \{1\}$, this is only possible when $N < W$.

Lemmas 5.4, 5.6, 5.7, 5.8 have the following corollary.

Lemma 5.9. Let N be a solvable minimal normal subgroup of $\text{Aut}_K(K)$. Then either

(i) $N = \Delta$, and $|N| = q^2$,

(ii) $N < W$, and $|N| = r$ with a prime r different from p.

Lemma 5.10. If $\text{Aut}_K(K)$ has a solvable minimal normal subgroup then Δ is a normal subgroup of $\text{Aut}_K(K)$.

Proof. We may assume that (ii) of Lemma 5.9 holds. Then $N = \langle \varphi_{0,0,w} \rangle$ with $w^r = 1$. Therefore, the fixed places of N are the zeroes and poles of x. From Lemma 4.11 these points form $\Omega_1 \cup \Omega_2$. Hence $\text{Aut}_K(K)$ preserves $\Omega_1 \cup \Omega_2$. Therefore, the conjugate Δ' of Δ by any $h \in \text{Aut}_K(K)$ has its two short orbits Ω_1' and Ω_2' contained in $\Omega_1 \cup \Omega_2$. Actually, $\Omega_1' \cup \Omega_2' = \Omega_1 \cup \Omega_2$. From this we infer that $\Delta = \Delta'$. Take any place $P \in \Omega_1$. Then $|\Delta_P| = |\Delta'_P| = q$. Then both Δ_P and Δ'_P are contained in the unique p-subgroup S_P of the stabilizer of P in $\text{Aut}_K(K)$, see [10] (ii)a Theorem 11.49. If $\Delta'_P \neq \Delta_P$ then $|S_P| > q$. Let S be a Sylow p-subgroup of $\text{Aut}_K(K)$. By Lemma 4.3 S is conjugate to Δ in $\text{Aut}_K(K)$. But this is impossible as $|\Delta_Q| \leq q$ for any $Q \in \Delta'$ by Lemma 4.7. The same argument works for any place in Ω_2. Since Δ_P and Δ_Q, with $P \in \Omega_1, Q \in \Omega_2$, generate Δ, it turns out that Δ' is also generated by Δ_P and Δ_Q. Thus $\Delta = \Delta'$.

Lemma 5.11. If $\text{Aut}_K(K)$ has a solvable minimal normal subgroup then W is a normal subgroup of $\text{Aut}_K(K)$.

Proof. We may assume that (ii) of Lemma 5.9 holds. From Lemma 4.15, $\Delta \times W$ is a normal subgroup of $\text{Aut}_K(K)$. Since $|\Delta|$ and $|W|$ are coprime, the assertion follows.

Theorem 5.12. If $\text{Aut}_K(K)$ has a minimal normal subgroup which is solvable then $\text{Aut}_K(K) = G$. In particular $|\text{Aut}_K(K)| = 2q^2(q - 1)m$.

Proof. As usual, the factor group $\text{Aut}_K(K)/\Delta$ is viewed as a subgroup of $\text{Aut}_K(K \Delta)$. Since ξ interchanges Ω_1 and Ω_2, Lemma 4.7 yields that $\text{Aut}_K(K \Delta)$ has an orbit of length 2 consisting of the points lying under Ω_1 and Ω_2 in the field extension $K|\Delta$. From Lemma 4.14 $K \Delta$ is rational. Hence $\text{Aut}_K(K \Delta)$ is isomorphic to a subgroup of $\text{PGL}(2, K)$. From the classification of subgroups of $\text{PGL}(2, K)$, $\text{Aut}_K(K \Delta)$ is a dihedral group. This shows that $\text{Aut}_K(K)$ contains a (normal) subgroup T of index 2 such that $T = \Delta \times C$ with a cyclic group C. Observe that T is the subgroup of $\text{Aut}_K(K)$ which preserves both Ω_1 and Ω_2. Hence $W \leq T$. From Lemma 5.11, CW is a group. Since its order $|C||W|/|C \cap W|$ is prime to p, this yields $W \leq C$. Therefore, the assertion follows from Lemma 5.8.

5.2 Case II: $\text{Aut}_K(K)$ contains no solvable minimal normal subgroup

For the rest of the paper we assume that $\text{Aut}_K(K)$ has no solvable minimal normal subgroup. In particular, $O(\text{Aut}_K(K))$ is trivial, that is, $\text{Aut}_K(K)$ is an odd-core free group. Therefore, any minimal normal subgroup N of $\text{Aut}_K(K)$ is the direct product of pairwise isomorphic non-abelian simple groups. Since $\text{Aut}_K(K)$ has no elementary abelian subgroup of order 8, see the proof of Lemma 5.4 this direct product has just one factor, that is, N itself is a non-abelian simple group. The possibilities for N are listed below.
Lemma 5.13. If no minimal normal subgroup of $\text{Aut}_G(K)$ is solvable, and N is a non-abelian minimal normal subgroup of $\text{Aut}_G(K)$, then Δ is contained in N.

Proof. Since N is a normal subgroup, its centralizer $C(N)$ in $\text{Aut}_G(K)$ is also a normal subgroup of $\text{Aut}_G(K)$. Actually $C(N)$ is trivial. In fact, on one hand, C has odd order, since an involution in $\text{Aut}_G(K)$ together with an elementary abelian group of N of order 4 would generate an elementary abelian group of order 8 contradicting the claim in Remark 5.5. On the other hand, groups of odd order are solvable by the Feith-Thompson theorem. By conjugation, every $d \in \Delta$ defines a permutation on N, and hence Δ has a permutation representation on N. Its kernel is contained in the centralizer $C(N)$, and hence is trivial, that is, the permutation representation is faithful. Therefore, Δ is isomorphic to a subgroup D of the automorphism group $\text{Aut}(N)$ of N.

We show that $D \cap N \neq \{1\}$. By absurd, $\text{Aut}(N)/N$ contains the subgroup $DN/N \cong D$. Then case (I) does not occur since $\text{Aut}(N) \cong \text{PSL}(2, q)$ while the factor group $\text{PSL}(2, q)/\text{PGL}(2, q)$ is cyclic and $[\text{PGL}(2, q) : \text{PSL}(2, q)] = 2$, and hence the odd order subgroups of $\text{Aut}(N)/N$ are all cyclic. In case (II), $\text{Aut}(N) \cong \text{PGL}(3, q)$ while the factor group $\text{PGL}(3, q)/\text{PSL}(3, q)$ is cyclic and $[\text{PGL}(3, q) : \text{PSL}(3, q) : 3] = 1, 3$ according as $q \equiv \pm 1 \pmod{3}$. Therefore, an odd order subgroup of $\text{Aut}(N)/N$ is an elementary abelian group of order q^2 only for $q = 3$ and $q \equiv 1 \pmod{3}$. Furthermore, if $q \equiv 1 \pmod{3}$ then $|N|$ also divisible by 3. Therefore, case (ii) does not occur either. Case (III) can be ruled out with the same argument replacing the condition $q \equiv \pm 1 \pmod{3}$ with $q \equiv \mp 1 \pmod{3}$. In cases (IV), $|\text{Aut}(N)/N| = 2$ and $|\text{Aut}(N)/N| = 1$ respectively, and they contain no nontrivial subgroups of odd order.

The nontrivial subgroup $D \cap N$ is contained in a Sylow p-subgroup S_p of N. Since N is a normal subgroup of $\text{Aut}_G(K)$, Lemma 5.13 yields that $D \cap N$ is a subgroup of Δ. Since $D \cap N$ is a normal subgroup of G, Lemma 4.4 shows that $D \cap N = \Delta$. Therefore, $\Delta < N$. \hfill \Box

Proposition 5.14. $\text{Aut}_G(K)$ has a minimal normal solvable subgroup.

Proof. By absurd, $\text{Aut}_G(K)$ has no minimal solvable subgroup, and hence it has a minimal normal simple subgroup isomorphic to one of the five simple groups listed above. From the proof of Lemma 5.13 the centralizer of N in $\text{Aut}_G(K)$ is trivial. Therefore, we have a monomorphism $\tau : \text{Aut}_G(K) \rightarrow \text{Aut}(N)$ defined by the map which takes $g \in \text{Aut}_G(K)$ to the automorphism $\tau(g)$ of N acting on N by conjugation with g. Since τ maps N into a normal subgroup $\tau(N)$ of $\text{Aut}(N)$ and $\Delta < N$ by Lemma 5.13 we have that $\tau(N)$ has a subgroup isomorphic to Δ.

In Case (I), $\tau(N) = \text{PSL}(2, q)$, and $\bar{q} = q^2$ by Lemma 4.4 and the classification of subgroups of $\text{PSL}(2, q)$. From Lemma 4.15 the centralizer of Δ in $\text{Aut}_G(K)$ contains an element of order prime to p. Obviously, the same holds for $\tau(\Delta)$ where $\tau(\Delta) < \tau(N) \cong \text{PSL}(2, q)$. But this is impossible since $\text{Aut}(\text{PSL}(2, q)) = \text{PGL}(2, q)$ and any subgroup of $\text{PGL}(2, q)$ of order q coincides with its own centralizer in $\text{PGL}(2, q)$.

In Case (II), $\tau(N) = \text{PSL}(3, q)$ and q must be a divisor of $q - 1$. The latter claim follows from the fact that $\text{PSL}(3, q)$ has order $q^3(q^2 + q + 1)(q + 1)/12$ with $q = 3, 1$ according as $q \equiv \pm 1 \pmod{3}$ where its subgroups of order q^2 are not abelian while its subgroups of order $q + 1$ and of order $q + 1$
are cyclic. Therefore, \(\tau(\Delta)\) is a Sylow subgroup contained in a subgroup which is the direct product of two cyclic groups of order \(\bar{q} - 1\). Since \(\bar{q} - 1\) is even, this shows that the centralizer of \(\tau(\Delta)\) in \(PSL(3, \bar{q})\) contains an elementary abelian subgroup of order 4. Since \(\tau\) is a monomorphism, the same holds for the centralizer of \(\Delta\) in \(\text{Aut}_{\bar{K}}(K)\). But this contradicts Lemma 4.15.

Case (III) can be ruled out with the argument used for Case (II) whenever \(\bar{q} - 1\) and \(\bar{q} + 1\) are interchanged.

In Cases (IV) and (V), we have \(\text{Aut}(N) = S_7\) and \(\text{Aut}(N) = M_{11}\) respectively. The only Sylow subgroups of \(N\) whose orders are square numbers have order 9, and they coincide with their own centralizers in \(\text{Aut}(N)\) contradicting Lemma 4.15.

\[
\text{Case (III) can be ruled out with the argument used for Case (II) whenever } \bar{q} - 1 \text{ and } \bar{q} + 1 \text{ are interchanged.}
\]

\[
\text{In Cases (IV) and (V), we have } \text{Aut}(N) = S_7 \text{ and } \text{Aut}(N) = M_{11} \text{ respectively. The only Sylow subgroups of } N \text{ whose orders are square numbers have order 9, and they coincide with their own centralizers in } \text{Aut}(N) \text{ contradicting Lemma 4.15.}
\]

6 Some Galois subcovers of \(K\)

We investigate the possibility that some Galois subcovers of the Galois closure \(K\) of \(F|H\) are of the same type of \(K\) with different defining pair \((q, m)\) of parameters. More precisely, we consider the family of all function fields \(\bar{F}(x, y)\) with \(y^q + y = x^m + x^{-m}\) where \(\bar{q} = p^k\), \(\bar{m}\) is any positive integer prime to \(p\), and find sufficient conditions on the parameters \(\bar{q}\) and \(\bar{m}\) ensuring that the Galois closure \(\bar{K}\) of the extension \(\bar{F}|H\) be isomorphic to a subfield of \(K^H\) for a subgroup \(H\) of \(\text{Aut}_{\bar{K}}(K)\).

First we point out that this can really occur.

Proposition 6.1. For any divisor \(d\) of \(m\), let \(C\) be the subgroup of \(W\) of order \(d\), and set \(\bar{m} = m/d\). Then the subfield \(K^C\) of \(K\) is \(\bar{K}(t, s, z)\) with (7) and

\[
z^q + z = t^\bar{m},
\]

and \(K^C\) is isomorphic to \(\bar{F}\) for \(\bar{q} = q\) and \(\bar{m}\).

Proof. The rational function \(t = x^d\) is fixed by \(C\). Since \([\bar{K}(K): \bar{K}(K^C)] = d\) and \(\bar{K}(t, s, z) \subset K^C\), the claim follows.

Next we show examples with \(\bar{q} < q\) arising from subfields of \(\bar{F}_q\). For this purpose, we need a slightly different representation for \(K\) and its \(\bar{K}\)-automorphism group. Take two nonzero elements \(\mu, \theta \in \bar{K}\) such that \(\mu^q + \mu = 0\) and \(\theta^m = -\mu^{-1}\), and define \(x' = \theta^{-1}x\), \(s' = \mu^{-1}s\), \(z' = \mu z\). Then \(K = \bar{K}(x', s', z')\) with

\[
s'^q - s' = \frac{1}{z'^q - z'},
\]

and

\[
z'^q - z' = x'^m.
\]

In fact, from (7),

\[
1 = (s^q + s)(z^q + z) = (\mu^q s^q + \mu s')(\mu^{-q} z'^q + \mu^{-1} z') = (s'^q - s')(z'^q - z'),
\]

while, from (6),

\[
-\mu^{-1} x'^m = x^m = z^q + z = -\mu^{-1}(z'^q - z').
\]

Let \(\bar{F}_q\) the smallest Galois extension of \(\bar{F}_q\) such that \(m \mid (q^r - 1)\). For \(\alpha', \beta' \in \bar{F}_q\) and \(v^m(q-1) = 1\) with \(v \in \bar{F}_q\), let

\[
\varphi_{\alpha', \beta', v}(x', s', z') = (v' x', -v'^{-m} s' + \alpha', -v'^m z' + \beta').
\]
Lemma 6.2. The genus and p-rank of $K_{\tilde{\Delta}}$ are

$$g(K_{\tilde{\Delta}}) = \left(\frac{q}{\bar{q}} - m - 1\right)\left(\frac{q}{\bar{q}} - 1\right), \quad \text{and} \quad \gamma(K_{\tilde{\Delta}}) = \left(\frac{q}{\bar{q}} - 1\right)^2.$$

Proof. From Lemma 4.14 K_{Δ} is rational and the different in the Hurwitz genus formula applied to Δ is

$$\sum_{p \in P} \sum_{i=0}^{m} (|\Delta_p^{(i)}| - 1) = 2g(K) - 2 + q^2 = 2q(m+1)(q-1),$$

where P is the set of all places of K. On the other hand, Δ_P is nontrivial if and only if $P \in \Omega_1 \cup \Omega_2$. From Lemma 4.10 $W \times \Delta_P$ fixes P, and hence for any $P \in \Omega_1 \cup \Omega_2$, $q = \Delta_P^{(0)} = \Delta_P^{(1)} = \cdots = \Delta_P^{(m)}$; see [10] Lemma 11.75 (i). Also $|\Omega_1| + |\Omega_2| = 2q$ and $|\Delta_P| = q$. Therefore, $\Delta_P^{(i)}$ is trivial for every $i > m$. By the properties of the subgroups Δ_1 and Δ_2, this yields for any point $P \in \Omega_1 \cup \Omega_2$ that $\bar{q} = \tilde{\Delta}_P^{(0)} = \tilde{\Delta}_P^{(1)} = \cdots = \tilde{\Delta}_P^{(m)}$ but $\tilde{\Delta}_P^{(i)}$ is trivial for $i > m$. Therefore, the different in the Hurwitz genus formula applied to $\tilde{\Delta}$ is

$$\sum_{p \in P} \sum_{i=0}^{m} (|	ilde{\Delta}_P^{(i)}| - 1) = 2g(K) - 2 + 2q^2 = 2q(m+1)(\bar{q} - 1),$$

Thus,

$$2(qm - 1)(q - 1) = \bar{q}^2(2g(K_{\tilde{\Delta}}) - 2) + 2q(m+1)(\bar{q} - 1),$$

whence the first claim follows. Moreover, from the Deuring-Shafarevic formula applied to $\tilde{\Delta}$,

$$(q - 1)^2 - 1 = \bar{q}^2(\gamma(K_{\tilde{\Delta}}) - 1) + \frac{2q}{\bar{q}}(\bar{q}^2 - \bar{q}),$$

whence the second claim follows. \qed
Proposition 6.3. Let $q = q^k$ with $k \geq 1$. Then $K^\Delta = \mathbb{K}(x', t, w)$ with
\[
\begin{align*}
 w + w^q + \ldots + w^{q^{k-1}} &= x'^{-m}, \\
 t + t^q + \ldots + t^{q^{k-1}} &= x'^m.
\end{align*}
\]
Furthermore, $\text{Aut}_E(K^\Delta)$ has a subgroup \tilde{G} of order $2(q/\bar{q})^2 m(\bar{q}-1)$ with $\tilde{G} = (\Delta/\bar{\Delta}) \rtimes (C_m(q-1) \rtimes \langle \xi \rangle)$.

Proof. First we show that $K^\Delta = \mathbb{K}(x', t, w)$ with $t = s^q - s'$, and $w = z^q - z'$. By direct computation, both t and x' are fixed by Δ. Hence $\mathbb{K}(x', t, w) \subseteq K^\Delta$. Also $[K : K^\Delta] = q^2$. On the other hand, both extensions $K|\mathbb{K}(x', s, w)$ and $\mathbb{K}(x', s, w)|\mathbb{K}(x', t, w)$ are (Artin-Schreier extensions) of degree \bar{q},
\[
[K : \mathbb{K}(x', t, w)] = [K : \mathbb{K}(x', s, w)] \cdot [\mathbb{K}(x', s, w) : \mathbb{K}(x', t, w)] = \bar{q} \cdot \bar{q} = q^2.
\]
Therefore $K^\Delta = \mathbb{K}(x', t, w)$. Since $z^q - z' = z^q - z^q^{k-1} + z^{q^2-1} - \ldots + z^{q^k-1} - z^q - z' = \sum_{i=0}^{k-1} w^{q^i}$, and this remains true when z' and w are replaced by s' and t, the first claim follows. The second claim can be deduced from $\text{Aut}_E(K)$ taking for \tilde{G} the normalizer of Δ. Alternatively, a direct computation shows that the following maps are elements of $\text{Aut}_E(K^\Delta)$:
\[
\varphi_{\alpha, \beta, v}(x', t, w) = (vx', v^{-m}t + \alpha', v^m w + \beta) \quad \text{with} \quad T_{\bar{q}^r|\bar{q}^s}(\alpha) = T_{\bar{q}^r|\bar{q}^s}(\beta) = 0, \quad \text{and} \quad v^m(\bar{q}-1) = 1, \quad \text{and} \quad \xi(x', t, w) = (x'^{-1}, w, t). \quad \text{These generate a group} \quad \tilde{G} \quad \text{with the properties in the second claim.}
\]

Corollary 6.4. If $q = q^2$ then K^Δ is isomorphic to F with parameters (\bar{q}, m).

From Lemma 6.2 for every $q = q^k$ with $k \geq 1$, K^Δ has the same genus and p-rank of the function field F with parameters $(q/\bar{q}, m)$. Moreover, from Proposition 6.3 $K^\Delta = \mathbb{K}(x', t, w)$ with
\[
\begin{align*}
 (w + w^q + \ldots + w^{q^{k-1}})(t + t^q + \ldots + t^{q^{k-1}}) &= 1, \\
 t + t^q + \ldots + t^{q^{k-1}} &= x'^m,
\end{align*}
\]
and $\text{Aut}_E(K^\Delta)$ has a subgroup \tilde{G} of order $2(q/\bar{q})^2 m(\bar{q}-1)$ with
\[
\tilde{G} = (\Delta/\bar{\Delta}) \rtimes (C_m(q-1) \rtimes \langle \xi \rangle) = (\Delta/\bar{\Delta}) \rtimes (C_m(q-1) \rtimes \langle \xi \rangle)
\]
where the subgroup $\tilde{W} = \Delta/\bar{\Delta} \rtimes C_m(q-1)$ consists of all maps $\varphi_{\alpha, \beta, v}(x', t, w) = (vx', v^{-m}t + \alpha, v^m w + \beta)$ with $T_{\bar{q}^r|\bar{q}^s}(\alpha) = T_{\bar{q}^r|\bar{q}^s}(\beta) = 0$, $v^m(\bar{q}-1) = 1$, whereas $\xi(x', t, w) = (x'^{-1}, w, t)$. In particular, the subgroup C_m consisting of all maps $\varphi_{0,0,v}$ with $v^m = 1$ is the center $Z(\tilde{W})$ of \tilde{W}, and C_m is a normal subgroup of \tilde{G}.

By Corollary 6.4, if $q = q^2$ then K^Δ and F with parameter $(q/\bar{q}, m)$ are isomorphic. Our aim is to prove that the converse also holds.

For this purpose, it is useful to view $\mathbb{K}(x', t, w)$ as a degree m Kummer extension of the function field $L = \mathbb{K}(t, w)$ where $(w + w^q + \ldots + w^{q^{k-1}})(t + t^q + \ldots + t^{q^{k-1}}) = 1$. Since L is the fixed field of C_m, and C_m is a normal subgroup of G, the factor group G/C_m is a subgroup of $\text{Aut}(L)$. By direct computation, G/C_m contains the subgroup Δ^* consisting all maps $\varphi_{\alpha, \beta}(t, w) = (t + \alpha, w + \beta)$ with $T_{\bar{q}^r|\bar{q}^s}(\alpha) = T_{\bar{q}^r|\bar{q}^s}(\beta) = 0$ as well as the involution $\xi^*(t, w) = (w, t)$, and the subgroup $\bar{G}_{\bar{q}-1} = \{\eta^*(t, w) = (\lambda^m t, \lambda^{-1} w)|\lambda^{\bar{q}-1} = 1\}$. Therefore, $\tilde{G}/C_m \cong (\Delta^* \rtimes C_{\bar{q}-1}) \rtimes (\xi^*)$. Furthermore, Δ^* has two short orbits $\Omega_1^* \text{ and } \Omega_2^*$, the former consisting of all places centered at the infinite point W_{∞} of the curve $(W + W^q + \ldots + W^{q^{k-1}})(T + T^q + \ldots + T^{q^{k-1}}) = 1$, the latter one of those centered at the other infinite point T_{∞}. Both points at infinity are ordinary singular
points with multiplicity \(q/\bar{q} \). Now look at \(\mathbb{K}(t, w)/\mathbb{K}(t) \) as a generalized Artin-Schreier extension of degree \(q/\bar{q} \). Then the (unique) zero of \(t \) is totally ramified while each pole of \(t \) is totally unramified. More precisely, \(\text{div}(t)_0 = (q/\bar{q})P \), while \(\text{div}(t)_\infty = \sum_{i=1}^{q/\bar{q}} T_i \) with \(\Omega_1 = \{ T_1, \ldots, T_{q/\bar{q}} \} \) where \(P \) is the place corresponding to the unique branch centered at \(W_\infty \) whose tangent has equation \(T = 0 \). By a direct computation, \(C_{\bar{q}-1} \) fixes \(P \) and acts transitively on the remaining \(q/\bar{q} - 1 \) places in \(\Omega_1 \). Analogous results hold for \(w \) and \(\Omega_2 \). Hence \(C_{\bar{q}-1} \) fixes a unique point in \(\Omega_2 \) and acts transitively on the remaining \(q/\bar{q} - 1 \) places in \(\Omega_2 \).

Lemma 6.5. Let \(C \leq \text{Aut}_L(\mathbb{K}) \) be a cyclic group containing \(C_{\bar{q}-1} \). If \(C \) is in the normalizer \(N_{\text{Aut}_L(\mathbb{K})}(\Delta^*) \) and leaves both short orbits of \(\Delta \) invariant, then \(C = C_{\bar{q}-1} \).

Proof. Let \(C = \langle c \rangle \). Then \(c \) preserves both \(\Omega_1^* \). Since \(c \) commutes with \(C_{\bar{q}-1} \), it fixes \(P \). Thus \(t \) and the image \(c(t) \) of \(t \) by \(c \) have the same poles and the same zero. Therefore, \(c(t) = \rho t \) with some \(\rho \in \mathbb{K}^* \). Analogously, \(c(w) = \sigma w \) with some \(\sigma \in \mathbb{K}^* \). By a straightforward computation, this yields \(\rho = \sigma \) and \(\rho^{\bar{q}-1} = 1 \). Hence \(c \) has order at most \(\bar{q} - 1 \) and the claim holds. \(\square \)

Corollary 6.6. Let \(q = \bar{q}^k \). Then \(k \leq 2 \) is the necessary and sufficient condition for \(K^{\Delta} \) to be isomorphic to \(F \) with parameter \((q/\bar{q}, m) \).

Proof. By Corollary 6.4 we only have to prove the necessary condition. By absurd, \(K^{\Delta} \) and \(F \) with parameter \((q/\bar{q}, m) \) have isomorphic \(K \)-automorphism groups. From Theorem 5.1, \(\text{Aut}_K(K^{\Delta}) \) has a cyclic group of order \(q/\bar{q} - 1 \) contained in the normalizer of \(\Delta \). From the discussion after Corollary 6.4, this yields the existence of a cyclic group \(C \) of the same order \(q/\bar{q} - 1 \) satisfying the hypotheses in Lemma 6.5. Therefore, \(q/\bar{q} - 1 \leq \bar{q} - 1 \) whence \(k \leq 2 \). \(\square \)

Remark 6.7. From Corollary 6.4, a tower \(\mathbb{K}(x) \subset F_1 \subset \cdots \subset F_i \subset \cdots \) arises where \(q = p^{2^i} \) and \(F_i \) is a function field isomorphic to \(\mathbb{K}(x, y, z) \) defined by \(y^q + y = x^m + x^{-m} \) and \(z^q + z = x^m \). By Theorem 5, \[
\lim_{i \to \infty} \frac{|\text{Aut}_L(F_i)|}{g(F_i)^{3/2}} = \frac{2}{\sqrt{m}}.
\]

References

[1] J.L. Alperin, R. Brauer and D. Gorenstein, Finite simple groups of 2-rank two, *Scripta Math.* **29** (1973), 191-214.

[2] J.L. Alperin, R. Brauer and D. Gorenstein, Finite groups with quasi-dihedral and wreathed Sylow 2-subgroups, *Trans. Amer. Math. Soc.* **151** (1970), 1-261.

[3] M. Giulietti and G. Korchmáros, Large 2-groups of automorphisms of algebraic curves over a field of characteristic 2, *J. Algebra* **427** (2015), 264-294.

[4] M. Giulietti and G. Korchmáros, Automorphism groups of algebraic curves with p-rank zero, *J. Lond. Math. Soc.* **81** (2010), 277-296.

[5] M. Giulietti and G. Korchmáros, Algebraic curves with a large non-tame automorphism group fixing no point, *Trans. Amer. Math. Soc.* **362** (2010), 5983-6001.

[6] D. Gorenstein and J.H. Walter, The characterization of finite groups with dihedral Sylow 2-subgroups. I. *J. Algebra* **2** (1965), 85-151.
[7] D. Gorenstein and J.H. Walter, The characterization of finite groups with dihedral Sylow 2-subgroups. II. *J. Algebra* 2 (1965), 218-270.

[8] R. Guralnick, B. Malmskog and R. Pries, The automorphism groups of a family of maximal curves, *J. Algebra* 361 (2012), 92-106.

[9] H.-W. Henn, Funktionenkörper mit grosser Automorphismengruppe, *J. Reine Angew. Math.* 302 (1978), 96–115.

[10] J.W.P. Hirschfeld, G. Korchmáros and F. Torres, *Algebraic Curves over a Finite Field*, Princeton Series in Applied Mathematics, Princeton, (2008).

[11] B. Huppert, *Endliche Gruppen. I*, Grundlehren der Mathematischen wissenschaften 134, Springer, Berlin, 1967, xii+793 pp.

[12] G. Korchmáros and M. Montanucci, Ordinary algebraic curves with many automorphisms in positive characteristic, arXiv:1610.05252, 2016.

[13] G. Korchmáros and M. Montanucci, The Geometry of the Artin-Schreier-Mumford Curves over an Algebraically Closed Field, arXiv: 1612.05912, 2016.

[14] S. Nakajima, p-ranks and automorphism groups of algebraic curves, *Trans. Amer. Math. Soc.* 303 (1987), 595-607.

[15] H. Stichtenoth, Über die Automorphismengruppe eines algebraischen Funktionenkörpers von Primzahlcharakteristik. II. Ein spezieller Typ von Funktionenkörpern, *Arch. Math.* 24 (1973), 615–631.

[16] H. Stichtenoth, *Algebraic Function Fields and Codes*, Springer, Berlin, 1993, x+260 pp.

[17] H. Stichtenoth, Private communications, 2016.

[18] F. Sullivan, p-torsion in the class group of curves with many automorphisms, *Arch. Math.* 26 (1975), 253–261.

[19] R.C. Valentini and M.L. Madan, A Hauptsatz of L.E. Dickson and Artin–Schreier extensions, *J. Reine Angew. Math.* 318 (1980), 156–177.

[20] J.H. Walter, The characterization of finite groups with abelian Sylow 2-subgroups, *Ann. of Math.* 89 (1969), 405-514.