Cryopreservation of Equine and Bovine Erythrocytes
Using Combined Protective Media

P.Yu. Ulizko*, O.M. Bobrova, O.A. Nardid, P.M. Zubov, I.F. Kovalenko, V.M. Kuchkov, L.A. Vodopianova

Abstract: The cryopreservation effectiveness for equine and bovine erythrocytes with the use of one component (20% DMSO) and combined (10% DMSO, 20% PEO-1500) protective medium was comparatively analyzed. Using fluorescence microscopy and flow cytometry, the 3-DAB fluorescent dye has been shown to stain the membranes of red blood cells and can be used to evaluate their condition at all cryopreservation stages. It was found that the use of combined protective medium can significantly improve the results of cryopreservation of equine and bovine red blood cells in comparison with one-component medium. By cytometric data it has been established that the parameters of equine erythrocytes after freezing-thawing in DMSO-based medium did not correspond the control, even after cryoprotectant removal, but after freezing-thawing in combined protective medium and cryoprotectant washing-out they corresponded to the control. The increased fluorescence in equine and bovine erythrocytes and changes in cytograms after mixing the cells with 20% DMSO suggested its strong membranotropic influence. Hemolysis level after applying a combined cryoprotective medium of equine and bovine erythrocytes was significantly lower at all cryopreservation stages than when 20% DMSO was applied.

Key words: cryopreservation, equine red blood cells, bovine red blood cells, combined cryopreservation medium, hemolysis, fluorescent dye.

*To whom correspondence should be addressed:
P.Yu. Ulizko, et al. Published by the Institute for Problems of Cryobiology and Cryomedicine

UDC 57.086.13:591.111:547.42:535.37
Animal blood components are often used in veterinary medical practice during treatment of intoxications, significant blood loss, immune system disorders, etc. [13, 17]. Looking for a donor animal with a corresponding blood group and testing this blood for the absence of blood-parasitic and infectious diseases [10, 11] require a long time, therefore, in urgent cases, it is important to have the blood stocks with the possibility of long-term storage in cryobanks [9]. It has been shown that in contrast to cryopreservation of human red blood cells, the freezing of the cells of most animal species using protective media based on glycerol or 1,2-propanediol is ineffective [6, 12, 15]. The cryoprotectant dimethylsulfoxide (DMSO) showed a higher protective effect on erythrocytes of horses, bulls, cats and dogs, but the level of hemolysis of the cells after all the stages of cryopreservation was quite a high [6, 12]. Therefore it is necessary to find more effective media for cryopreservation of animal erythrocytes. The use of exocellular cryoprotective compounds results in a low level of erythrocyte hemolysis after thawing, but high osmotic fragility rates do not allow them to be used for hemotransfusion [6]. It has been found that in order to freeze the cells of certain species of animals is more suitable is the combination of protective media based on endo- and exocellular compounds [12, 14].

Currently, in cryobiology there are widely used the fluorescence methods of cell analysis, flow cytometry and luminescent microscopy using fluorescent dyes that respond to changing microenvironment and have high solvatochromic indices as well as a significant increase in quantum yield during binding to living macromolecules [4, 7, 16]. So, a fluorescent dye 3-DAB (3-dimethylaminobenzanthrone) is a neutral substance which is practically insoluble in water and is sensitive to polarity of the environment (solvatochromic effect), possesses sufficient hydrophobicity to penetrate into biological objects and non-covalently bind with their biomacromolecules [7]. It is important that 3-DAB has a high photochemical stability and slight quantum yield of fluorescence in aqueous media, sharply increasing in hydrophobic phase, in concentrations of 10^{-4}–10^{-3} M it does not toxicably affect the cells [4].

The research aim was to compare the effectiveness of single-component and combined cryoprotective media to cryopreserve the equine and bovine red blood cells.

Materials and methods

Whole blood was obtained from the jugular vein of healthy, sexually mature male horses and
Матеріали і методи

Цільну кров отримували з яремної вени здорових статевозрілих самців коня і бика, яку стабілізували консервантом ‘Глюгіцир’ (‘Біофарма’, Україна). Усі тварини утримувалися в дослідженні господарстві Харківської державної зооветеринарної академії (Україна). Експерименти проводили відповідно до Закону України “Про захист тварин від жорстокого поводження” (№ 3447–IV від 21.02.2006 р.) із дотриманням вимог Комітету з біоетики Інституту, узгоджених із положеннями Європейської конвенції з захисту хребетних тварин, які використовуються в експериментальних та інших наукових цілях (Страсбург, 1986). Після видалення плазми еритросами групі відмивали центрифугуванням при 1300g протягом 3 хв у 4-кратному об’ємі фізіологічного розчину (рН 7,4).

Для заморожування зразків використовували два кріоконсервуючих середовища, виготовлених на фосфатно-сольовому буфері (0,15 М NaCl, 5 мМ натрій-фосфатній буфер, pH 7,4): 1 – 20% ДМСО; 2 – 10% ДМСО, 20% поліетиленоксиду-1500 (ПЕО-1500). Кріозахисне середовище доводили до відмитних еритроцитів краплями в 1:1 співвідношенні і відмивали протягом 15 хв при кімнатній температурі. Зразки заморожували у золотіх пробірках (4,0 мл) запорошені у рідкий азот, відігрівали на водяній бані (42°C) до появи рідкої фази. Від кріоконсервуючого середовища клітини один раз відмивали 0,6 М NaCl і два рази – 0,15 М NaCl на 5 мМ натрій-фосфатному буфері, pH 7,4. Рівень гемолізу на всіх етапах кріоконсервування вимірювали на спектрофотометрі (‘Pye Unicam SP 8000’) (‘Pye Unicam Ltd’, Велика Британія) і виражали у відсотках до 100% гемолізованих клітин.

Для забарвлення еритроцитів використовували флуоресцентний барвник 3-DAB (‘SETA BioMedicals’, США) у концентрації 40 μM для цитометричних досліджень і 4 μM для цитофлюориметричних [4].

Клітини відмивали з барвником 15 хв і відмивали від вільного барвника центрифугуванням при 1300g протягом 3 хв. Флуоресцентні зображення еритроцитів отримували на флуоресцентному мікроскопі ‘AxioObserverZ1’ (‘Carl Zeiss’, Німеччина). Флуоресцентні характеристики еритроцитів, забарвлених зондами, досліджували за допомогою проточного цитофлюориметра ‘FACS Calibur’ (‘Becton Dickinson’, США). Флуоресценцію зображували світлом із довжиною хвилі 488 нм (аргоновий лазер). Кожний експеримент повторювали п’ять разів.

Проблеми криобіології і кріомедицини
problems of cryobiology and cryomedicine

257
Statistical analysis of the results was conducted using the Student's t-test and Microsoft Excel 2010 software. It was found that 3-DAB stains the membranes of mammalian erythrocytes, so it can be used to evaluate their state. Localization of the probe in membranes and intracellular structures varies depending on the microenvironment of its molecules. The 3-DAB molecules, due to hydrophobic properties, are assumed to be concentrated at the border of non-polar area of cell membrane lipids [4, 7]. The binding of the dye to membrane and intracellular structures probably is due to a non-covalent hydrophobic way, and the place of its localization is nonpolar areas (‘pockets’) near the macromolecules. The 3-DAB dye partially penetrates into intracellular medium of red blood cells, yeast, human sperm, dogs, cattle, etc., but because of high water content, fluorescence from the probe molecules in this area is negligible.

After an incubation of erythrocytes in DMSO solution, the fluorescence of some cells is increases and the diameter of cells decreases (Fig. 1, 2). This may be due to a change in the shape of cells close to the spherical, and an increase in the permeability of membranes of some cells to the dye. The number of hydrophobic binding sites increases and, since the 3-DAB dye interacts with biological structures by hydrophobic mechanism, the fluorescence of erythrocytes is significantly enhanced. Such an effect was observed by I.A. Buriak et al. [4] during a partial damage to membranes, with a complete cell injury resulting in fluorescence quenching by water.

Fig. 1. Fluorescent images of equine red blood cells: A – control; B – after incubation in DMSO solution; C – after freezing-warming in DMSO solution; D – after freezing-warming in DMSO solution and washing; E – after incubation in DMSO and PEO-1500 solution; F – after freezing-warming in DMSO and PEO-1500 solution; G – after freezing-warming in DMSO and PEO-1500 solution and washing.
Freezing-thawing of equine and bovine erythrocytes in a single-component medium causes the appearance of erythrocytes with a homogeneous bright color (Fig. 1, 2). Probably, increasing the permeability of membrane during its damage leads to a more vivid staining of cells. After all the stages of cryopreservation (freezing-warming-washing) of equine erythrocytes in DMSO solution no cells with a bright fluorescence were observed. They may be removed from the suspension after cryoprotectant washing. Percentage of dead cells at all the stages of cryopreservation was determined using the level of hemolysis. Fig. 3 shows that at the stage of washing from the cryoprotectant, the level of hemolysis of erythrocytes increases by almost 30% if compared to that in the samples immediately after freezing-warming. This suggests that after washing-out the cells, which were partially damaged at the stage of incubation with cryoprotectant and freezing-warming, were completely destroyed.

Adding to the suspension of equine and bovine erythrocytes of cryoprotective medium containing compounds of different type of action (DMSO and PEO-1500) did not substantially enhance the fluorescence of erythrocyte membranes, in contrast to a single-component solution based on DMSO. This indicates a less membranotropic effect of the combined medium if compared to a single-component one based on DMSO. After all the stages of cryopreservation in the combined medium, the erythrocyte sizes and intensity of the fluorescence of membranes did not differ significantly from the control (see Fig. 1, 2).
різного типу дії (ДМСО і ПЕО-1500), істотно не посилювало флуоресценцію еритроцитарних мембран, на відміну від однокомпонентного розчину на основі ДМСО. Це свідчить про меншу мембранотропну дію комбінованого середовища порівняно з однокомпонентним середовищем на основі ДМСО. Після всіх етапів кріоконсервування у комбінованому середовищі за розмірами та інтенсивністю флуоресценції мембран еритроцити суттєво не відрізнялися від контрольної групи (див. рис. 1, 2).

На цитограмах флуоресцентних зображень видно, що після заморожування-відігріву значно збільшується кількість еритроцитів у регіоні R1, а за присутності комбінованого кріозахисного середовища ці зміни виражені менше (рис. 4, 5). Так, у регіоні R1 після заморожування в розчині ДМСО спорожнюється 10,5% клітин, а у комбінованому розчині – тільки 1,6%. Розподіл відмитих після кріоконсервування еритроцитів коня і бика в комбінованому середовищі близький до контролю, а розподіл еритроцитів коня, кріоконсервованих з ДМСО, зміщений вправо.

Відомо, що на розподіл клітин на цитограмі впливають морфологічні зміни еритроцитів [20]. Так, Н.Г. Землянских та співавт. [5] за даними мікроскопічних спостережень і аналізу цитограм виявили кореляцію між зсувом розподілення клітин на діаграмі вправо і збільшенням сферичності еритроцитів. Ці зміни були зворотними до моменту досягнення точки гемолізу, а після по-

The cytograms of fluorescence images that after freezing-warming, the number of erythrocytes in the region R1 increases significantly, and in the presence of a combined cryoprotective medium, these changes are less pronounced (Figs. 4, 5). Thus, in the R1 region after freezing in DMSO solution 10.5% of cells were observed, and in the combined solution only 1.6% were found. The distribution of the washed cells after cryopreservation of equine and bovine erythrocytes in the combined medium is close to the control, and the distribution of equine erythrocytes, cryopreserved with DMSO, is shifted to the right.

The distribution of cells in cytogram is known to be influenced by morphological changes of red blood cells [18]. So N.G. Zemlyanskikh et al. [19], according to microscopic observations and cytogram analysis, revealed the correlations between the shift of cell division in the diagram to the right and the increase of sphericity of red blood cells. These changes were reversible until the point of hemolysis was reached, and after returning to isotonic conditions, the shape of most erythrocytes and their cytogram were back to the control parameters. Based on the obtained cytometric data, we found that for the equine erythrocytes, cryopreserved with DMSO, the cytogram was not restored, even after washing-out the cryoprotectant. This fact indicates irreversible changes in the shape of erythrocytes, therefore their normal functional activity after transfusion is impossible.

Thus, it was established that single-component cryoprotective medium, based on DMSO is not quite
Проблеми криобіології і кріомедицини
problems of cryobiology and cryomedicine
том/issue 29, №/issue 3, 2019

Вернення до ізотонічних умов форма більшості еритроцитів та їх цитограма поверталися до контрольних показників. На підставі одержаних цитофлуориметричних даних ми встановили, що для еритроцитів коня, кріоконсервованих із ДМСО, цитограма не відновлювалася, навіть після відмивання від кріопротектора. Цей факт свідчить про незворотні зміни форми еритроцитів, а нормальні подальша функціональна їх активність після трансфузії за відсутності збереження морфологічних характеристик після кріоконсервування неможлива.

Таким чином встановлено, що однокомпонентне кріозахисне середовище на основі ДМСО не-достатньо ефективне для кріоконсервування еритроцитів коня, і більшість клітин, які збереглись після заморозування, не відновлюють свої морфологічні властивості. О.М. Денисова та співавт. [3] також виявили істотні морфологічні зміни еритроцитів тварин після взаємодії з ДМСО. Еритроцити коня, бика і собаки після змішування з 20%-м розчином ДМСО (вихідна концентрація кріопротектору в розчині) набували форму неповної сфери з різною глибиною центральної ямки. Суспендування у 30%-му розчині ПЕО-1500, навпаки, призводило до сплощення еритроцитів, яке пов’язане з їх зневодненням та агрегацією. Після розморожування еритроцитів, кріоконсервованих із ДМСО, майже всі клітини effective for cryopreservation of equine red blood cells, and most of the cells preserved after freezing did not restore their morphological characteristics. O.M. Denisova et al. [5] also revealed significant morphological changes in erythrocytes of animals after interaction with DMSO. Equine, bovine and dog erythrocytes after mixing with a 20% solution of DMSO (initial concentration of cryoprotectant in solution) acquired the shape of incomplete sphere with different depth of the central excavation. Suspending in a 30% solution of PEO-1500, on the contrary, led to the flattening of erythrocytes, which was associated with their dehydration and aggregation. After warming the erythrocytes, frozen with DMSO, almost all cells acquired echinocytic form, and the one with PEO-1500 had stomatocytic shape.

It was found that freezing of erythrocytes of animals in the presence of PEO-1500 allowed a low level of hemolysis [6]. Thus, for equine erythrocytes immediately after thawing, the hemolysis rate was about 1%, and after further transfusion modeling (without washing of PEO-1500) it made 25–38%. P.M. Zubov suggested [20] that the high efficiency of PEO-1500 in freezing of erythrocytes could be explained by adaptive rearrangements in them. Asymmetric distribution of phospholipids is the basis for the normal functioning of membrane and a cell as a whole. Rearrangements in lipid

![Cytograms of SSC/FL3-H of equine erythrocytes: A – control; B – after incubation in DMSO solution; C – after freezing-warming in DMSO solution; D – after freezing-warming in DMSO solution and washing; E – after incubation in DMSO and PEO-1500 solution; F – after freezing-warming in DMSO and PEO-1500 solution; G – after freezing-warming in DMSO and PEO-1500 solution and washing.](image-url)
набывали эхиноцитарной формы, а з ПЕО-1500 — стоматоцитарной.

Выведено, что замораживание эритроцитов тварин у присутствии ПЕО-1500 дозволяє отримати низький рівень гемолізу [2]. Так, для еритроцитов коня одразу після заморожування рівень гемолізу був біля 1%, а після подальшого моделювання трансфузії (без відмивання ПЕО-1500) — 25–38%. П.М. Зубовим було висновлено припущення [6], що висока ефективність ПЕО-1500 при заморожуванні еритроцитів може пояснюватися адаптивними перебудовами у них.

Асиметричне розподілення фосфоліпідів є основою для нормального функціонування мембрани і клітини в цілому. Перебудови у ліпідній організації мембрани під впливом кріопротектора, а також опосередковані зміни модифікації білок-білкових і білок-ліпідних взаємодій у процесі кріоконсервування можуть порушувати асиметричне розподілення фосфоліпідів у мембрани. В еритроцитах коня виявлено дефіцит білка полоси 4.2, який відіграє важливу роль у стабілізації клітин [9]. Тому національність еритроцитів після кріоконсервування у середовищі, яке містить ПЕО-1500, може забезпечуватися модифікацією мембрano-цитоскелетного комплексу під впливом даного кріопротектору. При цьому присутність у середовищі кріоконсервування проникновення мембрани у низької ефективності ПЕО-1500 при заморожуванні еритроцитів може пояснюватися адаптивними перебудовами у них.

Організація мембрани при заморозуванні-відігріванні під впливом ПЕО-1500 може пояснюватися адаптивними перебудовами у них.

It should be noted that for the washed after cryopreservation bovine erythrocytes, there was no similar to equine erythrocytes shift in the cytogram to the right and an increase in the number of cells in the R1 region (Fig. 5). This indicates the restoration of the parameters of frozen with DMSO cells after cryoprotectant washing-out. O.M. Denisova et al. [6] also obtained data on a higher level of hemolysis of equine erythrocytes after cryopreservation with 10% DMSO.
ного кріопротектору ДМСО дозволяє зменшити зневоднення еритроцитів коня на етапі інкубації і, відповідно, знизити ступінь їх пошкодження на етапі реінкорпорації після перенесення в ізотонічні умови.

Слід відзначити, що для відмитих після кріоконсервування еритроцитів бика не естествілися подібні для еритроцитів коня зміщення на цитограмі вправо і збільшення кількості клітин у регіоні R1 (рис. 5). Це свідчить про відновлення параметрів заморожених із ДМСО клітин після відмивання від кріопротектора. О.М. Денисовою та співавт. [2] також отримано дані про вищий рівень гемолізу еритроцитів коня після кріоконсервування з 10%-м ДМСО, ніж у еритроцитах бика і собаки. Після кріоконсервування з ПЕО-1500 гемоліз у еритроцитах коня був, навпаки, менший, що є доказом їх чутливості до специфічної токсичної дії ДМСО. Ми зареєстрували значні збільшення концентрації ДМСО в рідинах заморожених клітин коня після кріоконсервування при використанні 10%-ї рідини. Після кріоконсервування з 10%-м ДМСО з різними кріопротекторами отримані дані про вищий рівень гемолізу еритроцитів коня порівняно з еритроцитами бика (див. рис. 3). У комбінованому середовищі такого різниці виявлено не було.

В.П. Best показав [10], що ДМСО у концентрації 10% чинить токсичну дію на ряд клітин: призводить до змін в мембранах фібробластів хом'яка, викликає незворотні ультраструктурні пошкодження міокарда щуру, знижує клоногенний потенціал клітин-попередників периферичної крові тощо. Причому крім осмотичних ефектів залишається продемонстрована здатність до дестабілізації конформації білка білки мембранних каналів, а його гідрофільність зменшується з підвищенням температури. Крім цього, для ДМСО характерна специфічна пошкоджаюча дія – клітинна мембранна токсичність [3]. Однак незважаючи на це, ДМСО широко застосовується в індустрії заморозки багатьох біологічних об’єктів завдяки високій проникній та склоутвоючої здатності. Модифікація структури води молекулою ДМСО на білки мембраних каналів, а його гідрофільність та здатність до дестабілізації конформації білка збільшуються з підвищенням температур. Крім того, для ДМСО характерна специфічна пошкоджаюча дія – клітинна мембранна токсичність [10]. Основним ефектом ДМСО є блокування клітинних мембран, відповідно, зниження клоногенної активності клітин, зменшення умісту клітинних компонентів в рідині, перенесення в ізотонічні умови.

В.П. Best показав [3] що ДМСО у концентрації 10% міг являти токсичну дію на клітини, що призводить до змін в мембранах фібробластів, викликає незворотні ультраструктурні пошкодження міокарда щуру, знищує клоногенний потенціал клітин-попередників периферичної крові тощо. Причому крім осмотичних ефектів залишається продемонстрована здатність до дестабілізації конформації білка білки мембранних каналів, а його гідрофільність зменшується з підвищенням температури. Крім цього, для ДМСО характерна специфічна пошкоджаюча дія – клітинна мембранна токсичність [3]. Однак незважаючи на це, ДМСО широко застосовується в індустрії заморозки багатьох біологічних об’єктів завдяки високій проникній та склоутвоючої здатності. Модифікація структури води молекулою ДМСО на білки мембраних каналів, а його гідрофільність та здатність до дестабілізації конформації білка збільшуються з підвищенням температур. Крім того, для ДМСО характерна специфічна пошкоджаюча дія – клітинна мембранна токсичність [10]. Основним ефектом ДМСО є блокування клітинних мембран, відповідно, зниження клоногенної активності клітин, зменшення умісту клітинних компонентів в рідині, перенесення в ізотонічні умови.

Зніження токсичної дії ДМСО можливе при зменшенні його концентрації, часу та температури інкубації. Комбінація ДМСО з кріопротекто-рами іншого типу дозволяє знизити його концентрацію у розчині і відповідно зменшити ток-
Висновки
1. Барвник 3-DAB можна успішно застосовувати для оцінки збереженості еритроцитів після кріоконсервування.
2. Комбіноване кріозахисне середовище з ПЕО-1500 і ДМСО більш ефективно захищає еритроцити коня і бика на всіх етапах кріоконсервування, ніж однокомпонентне середовище на основі ДМСО, зменшується кількість загиблих клітин; характеристики еритроцитів, які збереглися після всіх етапів кріоконсервування, більш близькі до контрольних, що важливо враховувати для клітин коня, які найбільш чутливі до пошкоджуючої дії факторів кріоконсервування.

Література
1. Буряк ИА, Зинченко ВД, Дюбко ТС, і др. Применение новых флуоресцентных красителей в криобиологических исследованиях. Проблемы криобиологии. 2008; 18(1): 17–21.
2. Денисова ОН, Жегунов ГФ, Бабийчук ЛА. Криоконсервирование эритроцитов животных под защитой диметилсульфоксида, полиэтиленоксида, глицерина. Проблемы криобиологии. 2005; 15(2): 195–201.
3. Денисова ОН, Кулешина ЛГ, Землянских НГ, и др. Морфологические изменения эритроцитов животных после криоконсервирования. Проблемы криобиологии. 2007; 17(2): 150–5.
4. Егоров МІ, Дюбко ТС, Ліннік ТП, та ін. Нові флуоресцентні барвники як зонди для дослідження сперматозоїдів собак.

References
1. Anchordoguy TJ, Carpenter JF, Crowe JH, et al. Temperature-dependent perturbation of phospholipids-bilayers by dimethyl-sulfoxide. Biochim Biophys Acta. 1992; 1104(1): 117–22.
2. Baskurt OK, Farley RA, Meiselman HJ. Erythrocyte aggregation tendency and cellular properties in horse, human, and rat: a comparative study. American Journal of Physiology-Heart and Circulatory Physiology. 1997; 273(6):H2604–H2612. [Cited 01.07.2019] Available from: https://www.physiology.org/journal/ajpheart
3. Best BP. Cryoprotectant toxicity; facts, issues, and questions. Rejuvenation Research. 2015; 18(5):422–36. [Cited 01.07.2019] Available from: https://www.liebertpub.com/loi/rej
4. Buriak IA, Zinchenko VD, Dyubko TS, et al. Application of new fluorescent dyes in cryobiological studies. Problems of Cryobiology. 2008; 18(1): 17–21.
5. Denisova ON, Kuleshova LG, Zemlyanskikh NG, et al. Post-thaw morphological changes in animal erythrocytes. Problems of Cryobiology. 2007; 17(2): 150–5.
6. Denisova ON, Zhegunov GF, Babijchuk LA. Cryopreservation of animal’s erythrocytes under dimethyl sulfoxide, polyethylene oxide and glycerol protection. Problems of Cryobiology. 2005; 15(2): 195–201.
7. Egorov MI, Dyubko TS, Linnik TP, et al. New fluorescent dyes as fluorescent probes for examination of canine spermatozoa in cryoprotective media. Problems of Cryobiology. 2006. 16(1); 13–23.
8. Elliott GD, Wang S, Fuller BJ. Cryoprotectants: A review of the actions and applications of cryoprotective solutes that modulate cell recovery from ultra-low temperatures. Cryobiology. 2017; 76;74–91.
problems of cryobiology and cryomedicine
tome/volume 29, №3, Issue 3, 2019

1. Zemlianskykh NG, Kovalenko IF, Babijchuk LA. Peculiarities of modifications in geometric parameters and changes in osmotic fragility of human erythrocytes following their exposure to cryoprotective solutes that modulate tendency and cellular properties in horse, human, and rat: a comparative study. American Journal of Physiology-Heart and Circulatory Physiology. 1997; 273(6):H2604–H2612. [Cited 01.07.2019] Available from: https://www.physiology.org/journal/ajpheart

2. Elliott GD, Wang S, Fuller BJ. Cryoprotectants: A review of the actions and applications of cryoprotective solutes that modulate cell recovery from ultra-low temperatures. Cryobiology. 2017; 76:74–91.

3. Holowaychuk MK, Yagi K. Evolution of veterinary transfusion medicine and blood banking. Manual of Veterinary Transfusion Medicine and Blood Banking. 2016 1:1–12.

4. Mair T, Divers T. Equine Internal Medicine. Veterinary Self-Assessment Color Review Series. Boca Raton: CRC Press; 2016. 382 p.

5. Yamamoto A, Saito N, Yamauchi Y, et al. Flow cytometric detection of erythrocyte osmotic fragility. Cytometry Part B: Clin Cytom. 2009;76(2):135–41.

6. Yagi K., Holowaychuk M. Manual of veterinary transfusion medicine and blood banking. Ames: Wiley-Blackwell, 2016. 382 p.

7. Yamamoto A, Saito N, Yamauchi Y, et al. Flow cytometric analysis of red blood cell osmotic fragility. Journal of Laboratory Automation. 2014; 19(5):483–7. [Cited 01.07.2019] Available from: https://journals.sagepub.com/home/jla

8. Holowaychuk MK, Yagi K. Evolution of veterinary transfusion medicine and blood banking. Manual of Veterinary Transfusion Medicine and Blood Banking. 2016 1:1–12.

9. Pogozhykh D, Pakhomova Y, Pervushina O, et al. Exploring the possibility of cryopreservation of feline and canine erythrocytes by rapid freezing with penetrating and non-penetrating cryoprotectants. Stieger K, editor. PLOS ONE. 2017; 12(1): e0169689. [Cited 08.08.2019] Available from: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0169689

10. Holowaychuk MK, Yagi K. Evolution of veterinary transfusion medicine and blood banking. Manual of Veterinary Transfusion Medicine and Blood Banking. Boca Raton: CRC Press, 2016. 243 p.

11. Mair T, Divers T. Equine Internal Medicine. Veterinary self-assessment color review series. Boca Raton: CRC Press; 2015. 399 p.