Absence of a thick atmosphere on the terrestrial exoplanet LHS 3844b

Laura Kreidberg1–6, Daniel D. B. Koll2,11, Caroline Morley3,13, Renyu Hu1,5,13, Laura Schaefer6, Drake Deming7, Kevin B. Stevenson8, Jason Dittmann9, Andrew Vanderburg1, David Berardo9,10, Xueying Guo9,10, Keivan Stassun11, Ian Crossfield9,10, David Charbonneau1, David W. Latham1, Abraham Loeb1, George Ricker9,10, Sara Seager2,9,10,12 & Roland Vanderspek9,10

Most known terrestrial planets orbit small stars with radii less than 60 per cent of that of the Sun1–4. Theoretical models predict that these planets are more vulnerable to atmospheric loss than their counterparts orbiting Sun-like stars5–9. To determine whether a thick atmosphere has survived on a small planet, one approach is to search for signatures of atmospheric heat redistribution in its thermal phase curve7–10. Previous phase curve observations of the super-Earth 55 Cancri e (1.9 Earth radii) showed that its peak brightness is offset from the substellar point (latitude and longitude of 0 degrees) — possibly indicative of atmospheric circulation11. Here we report a phase curve measurement for the smaller, cooler exoplanet LHS 3844b, a 1.3-Earth-radii world in an 11-hour orbit around the small nearby star LHS 3844. The observed phase variation is symmetric and has a large amplitude, implying a dayside brightness temperature of 1,040 ± 40 kelvin and a nightside temperature consistent with zero kelvin (at one standard deviation). Thick atmospheres with surface pressures above 10 bar are ruled out by the data (at three standard deviations), and less massive atmospheres are susceptible to erosion by stellar wind. The data are well fitted by a bare-rock model with a low Bond albedo (lower than 0.2 at two standard deviations). These results support theoretical predictions that hot terrestrial planets orbiting small stars may not retain substantial atmospheres.

We observed a light curve of the LHS 3844 system with the InfraRed Array Camera (IRAC)12 of the Spitzer Space Telescope over 100 h between 4 February 2019 and 8 February 2019 (BJD, Program 14204). We used IRAC's Channel 2 (a photometric bandpass over the wavelength range 4–5 μm) and read out the 32 × 32 pixel subarray using 2-s exposures. The observations began with a 30-min dithering sequence to allow the telescope to thermally settle. Following this pre-observation, we employed Spitzer's Pointing Calibration and Reference Sensor (PCRS) 'peak-up' mode to position the target on the detector's 'sweet spot' — a pixel with minimal variation in sensitivity. After the first 60 h of observation, there was a 3-h break for data downlink. The data collection recommenced with another 30-min thermal settling period and continued in PCRS peak-up mode for 40 h. The telescope was repointed every 20 h to keep the image centroid on the detector's sweet spot.

We began our analysis with the Basic Calibrated Data product provided by the Spitzer Science Center pipeline and reduced it with a custom aperture photometry routine13. This routine upsampled each exposure by a factor of 5 in the X and Y dimensions and fitted a two-dimensional Gaussian profile to determine the image centre. We estimated the background from the median value in an annulus 7 to 15 pixels from the target centre. Bad pixels were identified and masked using iterative outlier clipping over groups of 64 exposures. We then summed the flux in a fixed apertured centred on the target. We varied the aperture size from 2 to 4 pixels in 0.5-pixel increments and selected a 2.5-pixel aperture to minimize noise in the resulting light curve.

We fitted the extracted light curve with a simultaneous model of the astrophysical signal and the instrument behaviour. The astrophysical signal consisted of a transit model and a first-degree spherical-harmonics temperature map to represent the planet's thermal phase variation14,15. The instrument model had two components: a two-dimensional spline fitted to Spitzer's pixel sensitivity variations and a linear scaling with the half-width of the point spread function in both the X and Y directions16,17. We determined the best-fit model parameters with a least-squares minimization routine and estimated uncertainties with differential-evolution Markov chain Monte Carlo (MCMC) analysis. We explored alternative models for both the instrument systematics and the planet's thermal phase variation and obtained consistent results with our nominal model (see Methods for further details).

Figure 1 shows the measured thermal phase curve and best-fit temperature map. The secondary-eclipse depth is 380 ± 40 p.p.m. and the peak-to-trough amplitude of the phase variation is 350 ± 40 p.p.m. The values correspond to a dayside brightness temperature of 1,040 ± 40 K and a nightside brightness temperature that is broadly consistent with zero (0–710 K; all uncertainties are 1σ unless otherwise specified). The longitude of peak brightness is consistent with zero degrees (−6° ± 6°). The inferred planet–star radius ratio is Rp/Rs = 0.0641 ± 0.0003, which is consistent with the ratio of the corresponding optical-wavelength radii18. The secondary-eclipse time agrees with expectations for a zero-eccentricity orbit. We find no evidence for transit time variations (the transit times deviate from a linear ephemeris at 1σ confidence). From a joint fit to the Spitzer and TESS (Transiting Exoplanet Survey Satellite) transit times, we revisit the time of central transit to 2458325.22559 ± 0.00025 (barycentric Julian date in the barycentric dynamical time system), and the orbital period to 0.4629279 ± 0.0000006 d. We also establish upper limits for transits of other planets in this system, using a joint fit to the TESS and Spitzer data. In the orbital period range 0.5–6 d, our 3σ upper limit corresponds to 0.6R⊕ (R⊕, Earth radius) and in 6–12 d our 3σ upper limit is 0.8R⊕.

The phase curve is consistent with expectations for a synchronously rotating bare rock — a completely absorptive surface in instantaneous thermal equilibrium that radiates isotropically (Extended Data Fig. 1). In this simple picture, the amplitude of the phase curve requires the surface to be very absorptive, with an upper limit on the Bond albedo of 0.2 at 2σ confidence. We model the emission spectra of several rocky surfaces19 and compare them with the measured planet-to-star flux.
Fig. 1 | 4.5-μm thermal phase curve of LHS 3844b and best-fit temperature map. a, Planet-to-star flux binned over 25 equally spaced intervals over the planet’s 11.1-h orbital period (points with 1σ uncertainties) compared to the best-fit phase curve (line). The data are normalized so that the relative flux is zero when the planet is eclipsed by the star at orbital phase 0.5. b, Spherical-harmonics temperature map used to generate the phase variation model. The planet’s substellar point corresponds to latitude and longitude of (0°, 0°). We note that the spherical-harmonics model includes north–south temperature variation, but only east–west variation is constrained by the data.

(Fig. 2). We consider multiple geologically plausible planetary surface types, including primary crusts that form from solidification of a magma ocean (ultramafic and feldspathic), secondary crust that forms from volcanic eruptions (basaltic) and a tertiary crust that forms from tectonic re-processing (granitoid). Governed by the reflectivity in the visible and the near-infrared and the emissivity in the mid-infrared, these surface types have distinct emission spectra. The measured planet-to-star flux for LHS 3844b is most consistent with a basaltic composition. Such a surface is comparable to the lunar mare and Mercury, and could result from widespread extrusive volcanism. Pure feldspathic and granitoid compositions provide a poor fit to the data and must be mixed with a surface at least 40% basaltic or 75% ultramafic to be consistent with the measured eclipse depth at 3σ.

We also explore the possibility that the planet has an atmosphere. We develop a simple model to account for both the atmospheric heat redistribution and absorption features from plausible chemical compositions. We parameterize the day–night atmospheric heat redistribution with a scaling that is based on analytic theory and that accounts for the dynamical effects of the surface pressure, ps, and the atmospheric optical thickness, τlW (see Methods for the equation and a validation of the scaling against dynamical models). To estimate the planet’s eclipse depth in the Spitzer 4.5-μm bandpass, we construct one-dimensional radiative-transfer models tuned to match the heat redistribution scaling. Motivated by the atmospheric evolution models of hot, terrestrial planets, we consider model atmospheric compositions that are mixtures of oxygen (O2) and carbon dioxide (CO2) over a range of surface pressures of 0.001–100 bar (1 bar = 105 Pa). We also consider nitrogen (N2) mixtures with trace carbon dioxide.

Figure 3 shows the predicted eclipse depths for the O2/CO2 models compared to the measured values. Higher surface pressures correspond to smaller eclipse depths (implying a cooler dayside) because thick atmospheres are more efficient at transporting energy to the planet’s nightside. Higher CO2 abundances also decrease the predicted eclipse depths, owing to strong absorption by CO2 in the Spitzer 4.5-μm bandpass that pushes the photosphere to higher, cooler layers. Overall, we find that the best-fit models have surface pressures below 0.1 bar. Carbon dioxide-dominated atmospheres are ruled out for surface pressures as low as that of Mars (0.006 bar), and surface pressures above 10 bar are ruled out for all compositions that we consider (greater than 3σ confidence). For N2 mixtures, high surface pressures are ruled out at even higher confidence (for example, a 10-bar N2 atmosphere with 1 p.p.m. CO2 is excluded at 6σ).

As an independent test of these results, we also fit the measured phase curve variation with an energy balance model that computes reflection, longitudinal heat redistribution and thermal emission. The model is parameterized by the planet’s Bond albedo, the ratio of radiative to advective timescales and a greenhouse-warming factor. For photometric data like ours, the Bond albedo and greenhouse factor are degenerate, but we include both parameters to capture the possibility that the observed brightness temperature is different from the energy balance temperature. On the basis of an MCMC analysis, we infer a value of τlW/τadv < 0.3 at 2σ confidence. For a typical wind speed of 300 m s−1 for atmospheres with high mean molecular weight, and assuming a surface gravity of 16 m s−2, consistent with an Earth-like bulk composition (the planet’s mass is not yet known), this requirement implies a photospheric pressure lower than 0.06 bar, in agreement with our finding that the data are fitted well by tenuous O2- and N2-dominated atmospheres with trace amounts of CO2.

To explore whether a tenuous atmosphere or no atmosphere at all is more likely for LHS 3844b, we model atmospheric escape over the planet’s lifetime. The initial atmosphere is assumed to be pure water, which can either dissolve within a magma ocean formed by accretion-induced heating during planet formation or photolyse into hydrogen and oxygen owing to high-energy stellar radiation in the extreme ultraviolet...
end of the simulation, but residual O$_2$ gas remains. Present-day surface pressures of Mars, Earth and Venus with grey symbols. The orange arrow indicates surface pressures that are inconsistent with the observed eclipse depth (>3σ confidence); the pink arrow shows surfaces pressures that are susceptible to erosion by stellar wind.

(XUV) wavelength range29 (0.1 – 100 nm). Most of the atomic hydrogen and oxygen escape to space, but some remnant oxygen reacts with the magma ocean or remains in the atmosphere as O$_2$. We assume that the early XUV flux is a constant fraction of the stellar bolometric luminosity (the ‘saturation fraction’) until the star is 1 Gyr old and then decays with time following a power law4,29. In our model, we vary both the initial planetary water abundance and the XUV saturation fraction. Figure 4 shows the resulting surface pressures compared to the 3σ upper limit of 10 bar obtained in this work. For a typical saturation fraction for low-mass stars30, we find that the initial planetary water abundance could not exceed 240 Earth oceans. For lower initial water abundances or higher XUV saturation, the atmosphere is entirely lost. Further, we estimate that an atmosphere of 1 – 10 bar could be eroded by stellar winds (see Methods for details). Given that thick atmospheres are ruled out by the data and thin atmospheres are unstable over the planet’s lifetime, LHS 3844b is probably a bare rock, unless a thin atmosphere is continually replenished over time.

The results presented here motivate similar studies for less-irradiated planets orbiting small stars. Cooler planets are less susceptible to atmospheric escape and erosion, and may provide a friendlier environment for the evolution of life. In coming years this hypothesis can be tested using the infrared-wavelength coverage of the James Webb Space Telescope and the influx of planet detections expected from current and future surveys.

Online content

Any methods, additional references, Nature Research reporting summaries, source data, extended data, supplementary information, acknowledgements, peer review information; details of author contributions and competing interests; and statements of data and code availability are available at https://doi.org/10.1038/s41586-019-1497-4.

Received: 22 March 2019; Accepted: 22 July 2019; Published online 19 August 2019.

1. Dressing, C. D. & Charbonneau, D. The occurrence of potentially habitable planets orbiting M dwarfs estimated from the full Kepler dataset and an empirical measurement of the detection sensitivity. *Astrophys. J.* **807**, 45 (2015).
2. Fulton, B. J. et al. The California–Kepler survey. III. A gap in the radius distribution of small planets. *Astron. J.* **154**, 109 (2017).
3. Tarter, J. C. et al. A reappraisal of the habitability of planets around M-dwarf stars. *Astrobiology* **7**, 30–65 (2007).
4. Luger, R. & Barnes, R. Extreme water loss and abiotic O$_2$ buildup on planets throughout the habitable zones of M dwarfs. *Astrobiology* **15**, 119–143 (2015).
5. Wordsworth, R. Atmospheric heat redistribution and collapse on tidally locked rocky planets. *Astrophys. J.* **806**, 180 (2015).
6. Shields, A. L., Ballard, S. & Johnson, J. A. The habitability of planets orbiting M-dwarf stars. *Phys. Rep.* **663**, 1–38 (2016).
7. Seager, S. & Deming, D. On the method to infer an atmosphere on a tidally locked super Earth exoplanet and upper limits to GJ 876d. *Astrophys. J.* **703**, 1884–1889 (2009).
8. Selvin, F., Wordsworth, R. D. & Forget, F. Thermal phase curves of nontransiting terrestrial exoplanets. I. Characterizing atmospheres. *Astron. Astrophys.* **532**, A1 (2011).
9. Kreidberg, L. & Loeb, A. Prospects for characterizing the atmosphere of Proxima Centauri b. *Astrophys. J.* **Let. 832**, 12 (2016).
10. Koll, D. D. B. & Abbot, D. S. Temperature structure and atmospheric circulation of dry tidally locked rocky exoplanets. *Astrophys. J.* **825**, 99 (2016).
11. Demory, B.-O. et al. A map of the large day–night temperature gradient of a super-Earth exoplanet. *Nature* **532**, 207–209 (2016).
12. Fazio, G. G. et al. The Infrared Array Camera (IRAC) for the Spitzer Space Telescope. *Astrophys. J. Suppl. Ser.* **154**, 10–17 (2004).
13. Cubillos, P. et al. WASP-8b: characterization of a cool and eccentric exoplanet with Spitzer. *Astrophys. J.* **768**, 42 (2015).
14. Kreidberg, L. & Bateman: BÀsic Transit Model cÁlculo Ià in Python. *Publ. Astron. Soc. Pac.* **127**, 1161–1165 (2015).
15. Louden, T. & Kreidberg, L. SPIDERMAN: an open-source code to model phase curves and secondary eclipses. *Mon. Not. R. Astron. Soc.* **477**, 2613–2627 (2018).
16. Stevenson, K. B. et al. Transit and eclipse analyses of the exoplanet HD 191304b using BLISS mapping. *Astrophys. J.* **754**, 136 (2012).
17. Lanotte, A. A. et al. A global analysis of Spitzer and new HARPS data confirms the loneliness and metal-richness of GJ 436 b. *Astron. Astrophys.* **572**, A73 (2014).
18. Vanderspek, R. et al. TESS discovery of an ultra-short-period planet around the nearby M dwarf LHS 3844. *Astrophys. J. Lett.* **871**, 24 (2019).
19. Hu, R., Ehmann, B. L. & Seager, S. Theoretical spectra of terrestrial exoplanet surfaces. *Astrophys. J.* **752**, 7 (2012).
20. de Pater, I. & Lissauer, J. Planetary Sciences (Cambridge Univ. Press, 2001).
21. Ray, C. V., Kreidberg, L., Rustamkulov, Z., Robinson, T. & Fortney, J. J. Observing the atmospheres of known terrestrial Earth-sized planets with JWST. *Astrophys. J.* **850**, 121 (2017).
22. Wordsworth, R. D. & Pierrehumbert, R. T. Water loss from terrestrial planets with CO$_2$–rich atmospheres. *Astrophys. J.* **778**, 184 (2013).
23. Wordsworth, R. & Pierrehumbert, R. Abiotic oxygen-dominated atmospheres on terrestrial habitable zone planets. *Astrophys. J. Lett.* **785**, 20 (2014).
24. Schaefer, L., Wordsworth, R. D., Berta-Thompson, Z. & Sasselov, D. Predictions of the atmospheric composition of GJ 1132b. *Astrophys. J.* **829**, 63 (2016).

Fig. 3 | Predicted 4.5-μm eclipse depths for model atmospheres compared to the measured value. The grey region represents the 1σ uncertainty on the measured eclipse depth. The model atmospheres are composed of oxygen–carbon dioxide mixtures and account for heat transport to the planet’s nightside. We indicate the surface pressures of Mars, Earth and Venus with grey symbols. The orange arrow indicates surface pressures that are inconsistent with the observed eclipse depth (>3σ confidence); the pink arrow shows surfaces pressures that are susceptible to erosion by stellar wind.

Fig. 4 | Final atmospheric pressure after 5 Gyr of energy-limited atmospheric escape. The contours indicate final surface pressure as a function of the XUV saturation fraction and the initial water abundance. Labels ‘0’ and ‘1’ indicate log(P_{final}) = 0 and log(P_{final}) = 1—the allowed range from our data. For all cases considered here all water is lost by the end of the simulation, but residual O$_2$ gas remains. Present-day surface pressures greater than 10 bar (single-hatched region) are excluded on the basis of the observed phase curve amplitude, and pressures below 0.7 bar are susceptible to erosion by stellar wind (cross-hatched region). The vertical dashed line marks the nominal saturation fraction for LHS 3844. The yellow and red dots on the horizontal axis show the $L_{\text{XUV}}/L_{\text{bol}}$ of the early Sun and a young M-dwarf (AD Leo), respectively29,30.

25. Hu, R., Demory, B.-O., Seager, S., Lewis, N. & Showman, A. P. A semi-analytical model of visible-wavelength phase curves of exoplanets and applications to Kepler-7 b and Kepler-10 b. *Astrophys. J.* **802**, 51 (2015).

26. Angelo, I. & Hu, R. A case for an atmosphere on super-Earth 55 Cancri e. *Astron. J.* **154**, 232 (2017).

27. Kataria, T., Showman, A. P., Fortney, J. J., Marley, M. S. & Freedman, R. S. The atmospheric circulation of the super Earth GJ 1214b: dependence on composition and metallicity. *Astrophys. J.* **785**, 92 (2014).

28. Zhang, X. & Showman, A. P. Effects of bulk composition on the atmospheric dynamics on close-in exoplanets. *Astrophys. J.* **836**, 73 (2017).

29. Ribas, I. et al. First determination of the distance and fundamental properties of an eclipsing binary in the Andromeda galaxy. *Astrophys. J. Lett.* **635**, 37–40 (2005).

30. Chadney, J. M., Galand, M., Unruh, Y. C., Koskinen, T. T. & Sanz-Forcada, J. XUV-driven mass loss from extrasolar giant planets orbiting active stars. *Icarus* **250**, 357–367 (2015).

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

© The Author(s), under exclusive licence to Springer Nature Limited 2019
METHODS

Data analysis. In this section we provide additional description of the data analysis. Our nominal model for the planet’s phase variation was a first-degree spherical-harmonics temperature map for the planet. For each point in the time series, we computed the planet-to-star flux ratio for the viewing geometry at that time. We multiplied the planet-to-star flux by a transit model to account for the drop in stellar flux when the planet obscures the star.

We used a differential-evolution MCMC algorithm to obtain the posterior distribution of the model parameters. The free parameters for the fit were the planet-to-star radius ratio, the time of central transit, a linear limb-darkening parameter and four coefficients for the spherical-harmonics model. The fit also had free parameters for a normalization constant and linear scaling of the pixel response function (PRF) width in both the X and Y directions. We fixed the other orbital parameters on the best-fit values from the discovery paper. We initially allowed the secondary-eclipse time to vary but found that it was consistent with expectations for zero eccentricity, so our final fit assumed a circular orbit. We also applied a prior that assigned zero probability to solutions with temperature maps that dropped below zero.

Over the observation, the telescope was repositioned several times (see Extended Data Fig. 2). We assumed that the astrophysical parameters were the same for all five pointings but allowed the systematics parameters to vary. We fitted all the data simultaneously. We masked two short segments of data that showed correlated noise in the residuals (grey shading in Extended Data Fig. 2). As a test of the fit quality, we made an Allan deviation plot (Extended Data Fig. 3). The root-mean-square deviation decreases as the square root of the number of data points per bin, as expected for photon-noise-limited statistics. We rescaled the estimated uncertainty per data point by a factor of 1.07 to achieve a reduced \(\chi^2 \) value of unity for the best fit. We then ran the differential-evolution MCMC algorithm with four chains until the Gelman–Rubin statistic dropped below 1.01.

In addition to the spherical-harmonics model, we also tested a sinusoidal model, which has been commonly used to fit other phase curve data. The only reason that the two models would produce different phase curves is that the sinusoidal model had a peak-to-trough phase curve amplitude of 310 p.p.m. and a secondary-eclipse depth of 335 p.p.m. However, the fit had time-correlated noise that made it challenging to robustly estimate uncertainties. For these data, the target centroid motion is large enough to ensure that the assumptions behind PLD break down, and the results from the two-dimensional-spline mapping technique are more robust.

Spectral energy distribution fit. The theoretical models in this paper require an estimate of the stellar spectrum. We estimated the spectrum with a spectral energy distribution fit using all available photometry. The fit (shown in Extended Data Fig. 5) gave a metallicity of [Fe/H] = 0.0 ± 0.1 and a bolometric luminosity of \(L_\text{bol} = 5.52 \pm 0.33 \text{ erg s}^{-1} \text{ cm}^{-2} \) (measured at Earth). From these values and the Gaia parallax, we derived a stellar radius of \(R_\star = 0.1788 \pm 0.0129 \) (\(R_\odot \), solar radius; assuming a stellar effective temperature of \(T_\text{eff} = 3036 \pm 77 \) K) and a stellar mass of \(M_\star = 0.1584 \pm 0.0004 \) (\(M_\odot \), mass of the Sun). There is chromospheric emission in the GALEX (Galaxy Evolution Explorer) far-ultraviolet band that could contribute to present-day photoevaporation of the planetary atmosphere.

Model for atmospheric heat redistribution. We computed the planet’s broadband dayside-averaged brightness temperature using the following scaling:

\[
T_{\text{day}} = T_s \left(\frac{R}{a} \right)^{1/4} \left(\frac{1 - \alpha_f}{1 + \alpha_f} \right)^{1/4}
\]

where

\[
f = \frac{2}{3} - \frac{5}{12} \times \frac{T_{\text{day}}}{T_{\text{bol}}} \left(\frac{R}{a} \right)^{1/3} \left(\frac{T_{\text{bol}}}{T_s} \right)^{-4/3}
\]

Here \(T_s \) is the stellar effective temperature, \(R_\star \) is the stellar radius, \(d \) is the semi-major axis, \(\alpha_f \) is the planetary albedo and \(T_{\text{bol}} \) is the planet’s equilibrium temperature. The derivation for the scaling will be presented elsewhere (Koll et al.a). To validate the scaling, Extended Data Fig. 6 compares the dayside eclipse depths predicted by the scaling against the dayside eclipses simulated with a general circulation model (GCM) with tidally locked orbital parameters and semi-grey radiative transfer. The scaling successfully captures the main variation in the GCMs day–night heat redistribution.

To include our scaling in the one-dimensional radiative-transfer model, we calculated the broadband optical thickness \(\tau_{\text{bol}} \) for a given atmospheric composition and surface pressure using the atmosphere’s attenuation of the surface’s thermal emission,

\[
\tau_{\text{bol}} = -\ln \left[\frac{\int f e^{-\tau} B_\nu(T_s) \, d\lambda}{\int B_\nu(T_s) \, d\lambda} \right]
\]

Here \(B_\nu \) is the Planck function, \(T_s \) is the surface temperature and \(\gamma \) is the atmosphere’s column-integrated optical thickness at a given wavelength \(\lambda \), computed with the one-dimensional radiative-transfer model.
Atmospheric escape due to stellar wind. Interaction with a stellar wind can also be a considerable source of atmospheric erosion. We estimated the erosion for LHS 3844b based on the ion escape rates of $10^{26} - 10^{27}$ s$^{-1}$ (equivalent to a mass loss of $3 - 30$ kg s$^{-1}$; ref. 31) calculated for Proxima Centauri b. Proxima Centauri has approximately the same stellar type as that of LHS 3844. When scaling for orbital distance, the stellar wind flux onto LHS 3844b is about 10 times larger than for Proxima Centauri b, corresponding to a mass loss rate of $30 - 300$ kg s$^{-1}$. Assuming a constant stellar wind flux over the planet's lifetime, this implies a total mass loss of $10^{18} - 10^{19}$ kg, equivalent to 0.7 - 7 bar. The stellar wind flux was probably higher during the star’s active period, so this value is a lower limit to the amount of escape that could be driven by the stellar wind alone.

Stability to atmospheric collapse. We explored the possibility of atmospheric collapse by comparing LHS 3844b to previously published models of synchronously rotating planets with CO$_2$-dominated atmospheres. In the simulations, planets with three times the insolation of Earth (S_\odot) were stable to collapse for surface pressures of 0.03 bar (assuming $M_p = 1 M_\oplus$; mass of Earth) or 0.4 bar (10M_\oplus). The higher the insolation is, the more stable the atmosphere is to collapse. Because LHS 3844b is much more highly irradiated than the range of planets considered (70S_\odot), we expect that surface pressures below about 0.1 bar are stable. In the non-synchronous case the planet is more evenly heated, making atmospheric collapse even less likely.

Data availability
The raw data used in this study are available at the Spitzer Heritage Archive, https://sha.ipac.caltech.edu/applications/Spitzer/SHA.

Code availability
We processed and fitted the data with the open-source pipeline POET, which is available at https://github.com/kevin218/POET. We used the code version corresponding to commit ID abde62e7b733d9541231e8d1e5d32b7e2cadad76.

Acknowledgements
L.K. is a Junior Fellow of the Harvard Society of Fellows. J.D. is a 51 Pegasi b Postdoctoral Fellow. A.V. is a NASA Sagan Fellow. D.D.B.K. was supported by a James S. McDonnell Foundation postdoctoral fellowship. R.H. is supported in part by NASA Grant number 80NSSC18K0612. The research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. A.V.’s work was performed under contract with the California Institute of Technology (Caltech)/Jet Propulsion Laboratory, funded by NASA through the Sagan Fellowship Program executed by the NASA Exoplanet Science Institute. D.C. acknowledges support from the John Templeton Foundation. The opinions expressed in this publication are those of the authors and do not necessarily reflect the views of the John Templeton Foundation.

Author contributions
L.K. conceived the project, planned the observations and carried out the primary data reduction. D.D.B.K., C.M. and R.H. ran theoretical models for the planet’s atmosphere and surface. L.S. provided atmospheric evolution models. D.D., K.B.S., J.D., A.V., D.B. and X.G. contributed to the data analysis. K.S. modelled the stellar spectrum. I.C., D.C., D.W.L., A.L., G.R., S.S. and R.V. provided useful comments on the manuscript and assisted with the observing proposal.

Competing interests
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to L.K.

Peer review information
Nature thanks Nicolas Cowan and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Reprints and permissions information
is available at http://www.nature.com/reprints.
Extended Data Fig. 1 | LHS 3844b phase curve compared to predictions for a bare rock. The model (red line) assumes that the incident stellar flux is totally absorbed (zero Bond albedo) and is reradiated instantaneously and isotropically. The error bars correspond to 1σ uncertainties.
Extended Data Fig. 2 | LHS 3844b light curve and diagnostics. The top panel shows the normalized light curve (‘Norm. Flux’; points) and best fit model (red line). The data are binned in 10-min increments. Regions marked in grey were masked in the fit because of time-correlated noise in the residuals. The second panel shows the residuals (‘Resid.’) to the best-fit model. The recorded flux in microjanskys is given in the third panel. The fourth and fifth panels from the top show the shift in X (‘ΔX’) and Y (‘ΔY’) of the target centroid on the detector. The two bottom panels show the width of the PRF in the X (‘PRF_X’) and Y (‘PRF_Y’) directions. Changes in telescope pointing are marked with dashed vertical lines. The gap after 2.5 days is due to the break for data downlink.
Extended Data Fig. 3 | Allan deviation for the residuals from the full fit of the phase curve. The data decrease as expected, with the photon noise on timescales from 2 s (one exposure) to 5.5 h (10^4 exposures).
Extended Data Fig. 4 | Independent transit and eclipse fits. a, Spitzer transit of LHS 3844b at 4.5 μm, decorrelated using PLD (see text) and phased and binned for clarity. b, Spitzer secondary eclipse of LHS 3844b at 4.5 μm, decorrelated in a manner similar to the transit, but using a different binning. (The binning used in this figure is merely for illustration, and it is not the same as the binning used by our PLD code.) Blue lines represent the fits. The error bars correspond to 1σ uncertainties.
Extended Data Fig. 5 | Best-fit spectral energy distribution for LHS 3844. The red points are measurements, and the purple points represent the stellar model binned over each photometric bandpass. The vertical error bars represent 1σ uncertainties. The horizontal error bars represent photometric bandpasses.
Extended Data Fig. 6 | Thermal phase curve of LHS 3844b in the Spitzer bandpass as a function of surface pressure, simulated with the GCM flexible modelling system42–44. We used semi-grey radiative transfer and increased the long-wave optical thickness linearly with surface pressure, $\tau_{LW} = p_s/(1\ \text{bar})$. The grey region shows the measured secondary eclipse with 1σ uncertainty, coloured lines show simulated phase curves and crosses show the dayside eclipses predicted by our analytic scaling. Thin atmospheres with surface pressure lower than 1 bar are indistinguishable from bare rock, whereas thick atmospheres become increasingly uniform.