Studying DDT Susceptibility at Discriminating Time Intervals Focusing on Maximum Limit of Exposure Time Survived by DDT Resistant Phlebotomus argentipes (Diptera: Psychodidae): an Investigative Report

Aarti Ramu1†, Shreekant Kesari1, Pradeep Das2, and Vijay Kumar1†*

1Department of Vector Biology and Control, Rajendra Memorial Research Institute of Medical Sciences (Indian Council of Medical Research), Agamkuan, Patna, Bihar; and
2Rajendra Memorial Research Institute of Medical Sciences (Indian Council of Medical Research), Agamkuan, Patna, Bihar, India

SUMMARY: Extensive application of routine insecticide i.e., dichlorodiphenyltrichloroethane (DDT) to control Phlebotomus argentipes (Diptera: Psychodidae), the proven vector of visceral leishmaniasis in India, had evoked the problem of resistance/tolerance against DDT, eventually nullifying the DDT dependent strategies to control this vector. Because tolerating an hour-long exposure to DDT is not challenging enough for the resistant P. argentipes, estimating susceptibility by exposing sand flies to insecticide for just an hour becomes a trivial and futile task. Therefore, this bioassay study was carried out to investigate the maximum limit of exposure time to which DDT resistant P. argentipes can endure the effect of DDT for their survival. The mortality rate of laboratory-reared DDT resistant strain P. argentipes exposed to DDT was studied at discriminating time intervals of 60 min and it was concluded that highly resistant sand flies could withstand up to 420 min of exposure to this insecticide. Additionally, the lethal time for female P. argentipes was observed to be higher than for males suggesting that they are highly resistant to DDT’s toxicity. Our results support the monitoring of tolerance limit with respect to time and hence points towards an urgent need to change the World Health Organization’s protocol for susceptibility identification in resistant P.argentipes.

INTRODUCTION

Controlling vector populations in order to manage vector-borne epidemics has been one of the preferred options for a long time. Presently, insecticide resistance, a pervasive natural phenomenon that occurs after an extensive, indiscriminate, and prolonged application of a particular insecticide, is high; it became a lingering issue, obstructing every strategy for controlling the vector populations in Integrated Vector Management (IVM) and Integrated Disease Management (IDM). The development and severity of resistance to insecticides in vectors are primarily controlled by human actions while lack of concern in dealing with resistance can set the stage for upsurge in vector populations leading to the reversals in public health programs.

In the context of visceral leishmaniasis (VL), it should be noted that adult female Phlebotomus argentipes Annandale and Brunetti (Diptera: Psychodidae), inoculated with mature parasite Leishmania donovani (Kinetoplastida: Trypanosomatidae) serve as a secondary, invertebrate host as well as vector for the lethal disease VL or Kala-azar which primarily affects the human hosts in Indian subcontinent (1). Therefore, in Indian subcontinent VL transmission is of anthroponotic nature i.e., transmission of parasite is from human to sand fly and vice-versa. Additionally, dichlorodiphenyltrichloroethane (DDT) is undoubtedly an insecticide of choice to control the nuisance caused by P. argentipes due to lower procurement cost and easier application as compared to carbamates and other insecticides available (2).

Historically, phlebotomine sand flies in India were susceptible to all insecticides prior to 1976. However, continued spraying of 1 g /m² DDT since 1976 to control Kala-azar in Bihar (3) evoked the problem of resistance among them. During 1979, the case with the highest degree of DDT resistance to P. papatasi was reported from North Bihar (4-5), while resistance to DDT in P. argentipes was reported first from the village of Samastipur district (6). Since then, many studies have been performed for portraying the development and dominance of insecticide resistance against DDT in P. argentipes from different pockets of Bihar (7-15) after its first emergence and testimonial reporting in the case of house flies (16).

Prior to screening insecticide resistance/susceptibility in the field, performing reliable laboratory tests for observing insects’ susceptibility towards any insecticide following an hour-long exposure to that insecticide impregnated filter paper at discriminating concentrations are supposed to be very relevant and noteworthy. This method is in accordance with the recommendations of the World Health Organization (WHO), (17).

However, an increase in the number of survivors in
each replicate of the DDT susceptibility test indicates increasing insecticide resistance among \(P. \ argentipes \) (15). In that situation, susceptibility estimation following insecticide exposure to sand flies for just an hour seems to be trivial and futile. To resolve this issue, the WHO strongly recommends for an increment in time of exposure to the discriminating concentration of insecticide (18). But till now, none of the reports explicates the maximum limit of insecticide exposure time to which highly resistant \(P. \ argentipes \) can combat its effect. Therefore, the present study was conducted as a preliminary assessment to investigate the maximum limit of DDT (4%) exposure time to which highly resistant \(P. \ argentipes \) could resist the effect of DDT and survive. This study objective adds to an attribute for an urgent need of change in rhetoric form of the WHO protocol for susceptibility estimation among highly resistant \(P. \ argentipes \).

MATERIALS AND METHODS

Sampling of DDT resistant sand flies: DDT resistant sand flies were derived from the DDT resistant \(P. \ argentipes \) colony (12th generation at the time of the writing of this manuscript) that was housed at the insectary of Rajendra Memorial Research Institute of Medical Sciences (Indian Council of Medical Research), Agamkuan, Patna-07, Bihar, India. The original colony of DDT resistant \(P. \ argentipes \) was established during 2014-2015 by collecting sand flies, testing their susceptibility towards DDT at a diagnostic dose of 4% (15) and rearing under the controlled conditions of the insectarium with stable temperature and relative humidity of 28 ± 2°C and 80 ± 5% respectively with 12 h of light/dark cycles (19-23). Additionally, the non-resistant sand flies serving as control samples for the bioassay test were procured from the general colony of \(P. \ argentipes \) being reared under the controlled environment of insectarium of this research institute. All the susceptibility bioassay tests were conducted at the controlled laboratory environment of Vector Biology and Control Department, RMRIMS (ICMR), Agamkuan, Patna-07, Bihar, India.

As the maintenance procedure for the \(P. \ argentipes \) colony (of resistant and non-resistant towards 4% DDT), rabbits were used to provide blood meals to the freshly emerged adult sand flies (15); these rabbits were obtained from the Animal House Division of RMRIMS (ICMR), Agamkuan, Patna-07, Bihar, India. After completion of the blood-feeding process for 2-3 h, the rabbits were returned back to the animal house where they were kept in separate animal cages (12 sq. ft. with grids of 2.5 inches) and were provided with food and water according to the diet chart of the animal house of the research institute. In this study, "Principles of laboratory animal care" (NIH publication No. 85-23, revised 1985) were followed when conducting experiments that involve animals. Protocols established by an animal ethics committee of Indian Council of Medical Research (ICMR), Government of India, were also followed while conducting the experiments that used animals during this research study. All experiments were conducted under the guidance of the Institutional Ethical Committee of RMRIMS (ICMR), Agamkuan, Patna-07, Bihar, India.

Insecticide susceptibility test: Investigatory experiments for exploring the maximum limit of insecticide exposure time to which DDT resistant \(P. \ argentipes \) can resist the effect of DDT were carried out with one-day old, sucrose-fed, adult sand flies obtained from the 1st, 3rd and 5th generations of the colony that had been reared during the months of September 2014, November 2014, and February 2015, respectively. The insecticide susceptibility tests were carried out in accordance with the protocol established by the WHO (17) and the followed in the previous reporting (15).

Insecticide susceptibility testing apparatus used in our study contained green-dot marked ‘holding tube’ for lining with filter paper, red-dot marked ‘exposure tube’ for lining with 4% DDT impregnated paper and a sliding unit, purposely for screwing and joining both the plastic tubes (125 mm length and 44 mm in diameter) of the apparatus. Papers were fastened along the walls of tubes with the help of metal clips affixed at both ends of the holding and exposure tubes (17). Overall 16 test replicates were performed by the gentle release

Table 1. Susceptibility test result for estimating LT\(_{50}\), LT\(_{90}\) and LT\(_{95}\) for resistant \(P. \ argentipes \) responded towards the prolonged exposure of DDT at discriminating time intervals of 60 min

Observed parameter	Insecticide exposure time (in min)							
	60	120	180	240	300	360	420	480
CONTROL								
No. of sand flies tested (NT)								
Alive	40	40	40	40	40	40	40	40
mortality %	0	0	0	0	0	0	0	0
EXPERIMENT								
No. of sand flies tested (NT)		60		50	Male); Total = 110			
No. of Alive (NA) ± %	109 ± 99.09%	106 ± 96.36%	82 ± 74.54%	56 ± 50.90%	32 ± 29.09%	3 ± 2.72%	0 ± 0%	0 ± 0%
No. of Senseless (NS) ± %	1 ± 0.90%	3 ± 2.72%	15 ± 13.63%	22 ± 20%	13 ± 11.81%	10 ± 9.09%	1 ± 0.90%	0 ± 0%
No. of Dead (ND) ± %	0 ± 0%	1 ± 0.90%	13 ± 11.81%	32 ± 29.09%	65 ± 59.09%	97 ± 88.18%	109 ± 99.09%	110 ± 100%
Observed Mortality=ND/NT*100	0	0.90	11.81	29.09	59.09	88.18	99.09	100
Lethal Time for 50% tested \(P. \ argentipes \) (LT\(_{50}\)) against 4% DDT	280 min; at CI of 95%							
Lethal Time for 90% tested \(P. \ argentipes \) (LT\(_{90}\)) against 4% DDT	370 min; at CI of 95%							
Lethal Time for 95% tested \(P. \ argentipes \) (LT\(_{95}\)) against 4% DDT	400 min; at CI of 95%							
Maximum Exposure Time for Resistant Sand Flies

Table 2. Observed Lethal Time (LT) values for the experimented male and female *P. argentipes*

Observed Lethal Time (LT) against 4% DDT	Experimented *P. argentipes*	
	Male sand flies	Female sand flies
LT50	60.33 min; at 282.36 min; at Cl of 95%	Cl of 95%
LT90	128.04 min; at 389.00 min; at Cl of 95%	Cl of 95%
LT95	133.00 min; at 472.07 min; at Cl of 95%	Cl of 95%

RESULTS

Out of 16 experimental replicates, only 11 test replicates were included in the evaluation of results due to successful completion of the test; the results of the remaining 5 experimental sets were discarded due to unsatisfactory results because of test samples (i.e., sand flies) escaping or being trapped crushed inside the screw of experimental setup during the experimental session. Therefore, from the study of overall 11 experimental replicates, it was observed that out of 110 tested *P. argentipes* (comprising 60 females and 50 males), 99.09\% had competitively tolerated the threshold exposure period of an hour towards DDT, suggesting an urgent need for the estimation of their susceptibility status towards the insecticide, as recommended by the WHO (17-18). For that purpose, experimental setups were upheld for prolonged exposure of sand flies towards the insecticide. Approximately 50\% test mortality along with record numbers of senseless sand flies (i.e., 20\%) were observed in 300 min and 240 min respectively of prolonged exposure to DDT. Moreover, highly resistant sand flies struggled to survive for 420 min for their survival and ultimately achieved absolute mortality in 480 min of insecticide exposure. The LT50, LT90, and LT95 values for overall experimented *P. argentipes* were observed to be at 280 min, 370 min, and 400 min, respectively with 95\% confidence interval (CI; Table 1). However, the LT values against 4\% DDT for killing 50\%, 90\% and 95\% experimented male sand flies (i.e., 60.33 min, 128.04 min, and 133 min) were comparatively lower than those recorded for the experimented female *P. argentipes* (i.e., 282.36 min, 389 min, and 472.07 min) respectively with 95\% CI (Table 2). The statistical analysis of data revealed the significance of the result ($\chi^2 = 9.7; d.f = 4; p = 0.04$). The data on resistant *P. argentipes*’ response towards the prolonged exposure of DDT for estimating LT50, LT90, and LT95 at the discriminating time intervals of 60 min have been illustrated in Table 1, Fig. 1, and Table 2.

DISCUSSION

For many years, DDT has been used worldwide for controlling sand flies through direct intervention or inadvertently as a collateral benefit of anti-malaria campaigns (24-30). Continuous and rigorous use of DDT for controlling insects had definitely invited unavoidable circumstances of lowest susceptibility among the *P. argentipes* in Vaishali district at Bihar (24, 9-11). In terms of insecticide effect, susceptibility and resistance factors are antagonistic to each other. The lowest susceptibility towards a particular insecticide is supposed to be the other face of the same coin indicating the highest resistance against that insecticide and vice-versa among the insect population (15).

In a recent report, dealing with the susceptibility profile of *P. argentipes* derived from different pockets of Bihar, sand flies of the Daulatpur Chandi village of Vaishali district (25.683°N, 85.216°E) had exhibited the highest resistance towards DDT (14). Over here, the percentage mortality range (41%-52.73\%) and corrected mortality rate (44.83\%) for *P. argentipes* observed with...
insecticide tube assay recommended by the WHO, were estimated to be the lowest as compared to the other districts of Bihar, indicating the presence of sand flies that were highly resistant towards DDT (15).

Performing laboratory tests for observing insects’ susceptibility following an hour exposure to insecticide impregnated paper, at discriminating concentrations is relevant and noteworthy prior to screening insecticide resistance/susceptibility for insects in the field (17). However, the technique itself possess various limitations, such as environmental factors, quality control and shelf life of insecticide impregnated papers, insufficient number, and physiological conditions of testing samples participating the experimental session (17-18, 31), that even a minute fluctuation in any of the factor(s) may cause deviations from the expected outcome with respect to the insects’ susceptibility to an insecticide. In that situation, accessing susceptibility at different exposure time as well as increasing exposure time corresponding to the large number of survivors or resistant insects is also recommended by the WHO (18). However, to date, there have been no reports explaining the maximum limit of insecticide exposure time to which resistant P. argentipes can combat its effect. Therefore, an urgent demand of this study had paved the way for elucidating an approach for quantifying the maximum limit of DDT (4%) exposure time to which resistant P. argentipes struggle to resist the effect of DDT for their survival.

On the basis of bioassay experiment performed in accordance with the insecticide susceptibility test recommended by the WHO at varying time interval of 60 min, it was observed that the maximum number of resistant P. argentipes survived the threshold period of 60 min of DDT exposure and tolerated the insecticidal pressure up to 420 min of this insecticide exposure and achieved absolute mortality in 480 min. In our experiments, we focused on the mortality of test specimens rather than the knockdown time (KT), because under the effect of continuous exposure of DDT, the sand flies were expected to die faster and in higher numbers (17-18); hence, estimating KT becomes futile and can be neglected. However, Lethal time (LT) has been calculated as 280 min, 370 min and 400 min for killing 50%, 90% and 95% test sand flies respectively, under the effect of DDT. These figures are much higher than the previously observed results documented from the different pockets of Bihar state (3-6, 8-11). From the earlier studies, LT50 for P. argentipes against 4% DDT was ranged between 52-69 min (11) whereas later this value i.e., LT against DDT for killing 50% and 90% population of P. argentipes was reported to have increased up to 1.28 h and 3.57 h respectively (6). Additionally, the present study reveals high LT values for killing 50%, 90% and 95% experimented female P. argentipes (i.e., 282.36 min, 389 min and 472.07 min) as compared to that of male sand flies (i.e., 60.33 min, 128.04 min and 133 min). This suggests that female sand flies are highly resistant to the toxic effects of an insecticide (10-14, 24, 27-30), making it physically potent to draw blood meal from the vertebrate host and offer favorable environment to pathogenic parasite for harboring them into its gut (1). Therefore, the result from this study, depicts an increased level of LT among P. argentipes, providing fresh, baseline information to an extent with respect to the exposure time to which highly resistant sand flies can combat the pressure of DDT for their survival. The result strongly corroborates with the developed status of insecticide resistance at peak (15, 32) and adds an attribute towards an urgent need of change in rhetoric form of the WHO protocol for susceptibility identification in resistant P. argentipes, ultimately controlling the menace caused by them.

Acknowledgments Present work is a part of study under PhD program [Registration No. 3700/Ph.D. (Sc.) proceed 2014] entitling “Study of behavioral responses in the offspring emerged out from single resistant insect of 4% DDT resistant strain Phlebotomus argentipes (Diptera: Psychodidae) the vector of kala-azar (Visceral leishmaniasis) in Indian subcontinent” progressing under the supervision of University of Calcutta, Kolkata, India and financially sponsored by University Grant Commission, India with vide grant number [RGNF 2012-13-ST-BH-20305] and RMRIMS (ICMR), Agamkuan, Patna-07, Bihar, with study title “Understanding behavior profile of DDT resistant sand flies for exploring scope of IGR as an alternate technique for containing the population of P. argentipes” [Id.No. INT-119-VBC/2015] approved by the Scientific Advisory Committee (SAC) of RMRIMS (ICMR) in year 2015.

The authors cordially express their gratitude towards NK Sinha, SA Khan, AK Mandal, BB Prasad and all members of Vector Biology and Control Department for their excellent technical support and help during the experiment and manuscript documentation session. Thanks are also due to the SAC of RMRIMS (ICMR), Institutional Ethical Committee (IEC) as well as to the Animal Ethics Committee (AEC) for their mandatory approval to conduct the research study. Last but not least, we are also thankful to the research publication committee of RMRIMS for considering the manuscript worth publication.

Conflict of interest None to declare.

REFERENCES

1. Swaminath CS, Short HE, Anderson LA. Transmission of Indian kala-azar to man by the bites of Phlebotomus argentipes, ann and brun. 1942. Indian J Med Res. 2006; 123: 473-7.
2. Borgdon WG, McAllister JC. Insecticide resistant and vector control. Emerg Infect Dis. 1998; 4: 605-13.
3. Mukhopadhyay AK, Chakravarty AK, Kureel VR, et al. Resurgence of Phlebotomus argentipes and P. papatasi in parts of Bihar (India), after DDT spraying. Indian J Med Res. 1987; 85: 158-60.
4. Kaul SM, Wattal BL, Bhatnagar VN, et al. Preliminary observations on the susceptibility status of Phlebotomus argentipes and P. papatasi to DDT in two districts of north Bihar (India). J Commun Dis. 1978; 10: 208-11.
5. Joshi GC, Kaul SM, Wattal BL. Susceptibility of sand flies to organochlorine insecticides in Bihar (India) – further reports. J Commun Dis. 1979; 11: 209-13.
6. Mukhopadhyay AK, Sexena NRLK, Narasimhan MVVL. Susceptibility status of Phlebotomus argentipes to DDT in some Kala-azar endemic districts of Bihar, India. Indian J Med Res. 1990; 91: 458-60.
7. Rahman SJ, Wattal BL, Mathur KK, et al. Susceptibility of laboratory reared strain of Phlebotomus papatasi (Scopoli) to organochlorine insecticides. J Commun Dis. 1982; 14: 122-4.
Maximum Exposure Time for Resistant Sand Flies

8. Dhiman RC, Sen AB. Epidemiology of kala-azar in rural Bihar (India) using village as a component unit of study. Indian J Med Res. 1991; 93: 155-60.
9. Singh R, Das RK, Sharma SK. Resistance of sand flies to DDT in kala-azar endemic districts of Bihar in India. Bull World Health Organization (WHO). 2001; 79: 793.
10. Dhiman RC, Raghavendra K, Kumar V, et al. Susceptibility status of *Phlebotomus argenteipes* to insecticides in districts Vaishali and Patna (Bihar). J Commun Dis. 2003; 35: 49-51.
11. Kishore K, Kumar V, Kesari S, et al. Susceptibility of *Phlebotomus argenteipes* against DDT in endemic Districts of North Bihar, India. J Commun Dis. 2004; 36: 41-4.
12. Kumar V, Kesari S, Kumar AJ, et al. Vector density and the control of kala-azar in Bihar, India. Mem Inst Oswaldo Cruz. 2009; 104: 1019-22.
13. Dinesh DS, Das ML, Picado A, et al. Insecticide Susceptibility of *Phlebotomus argenteipes* in Visceral leishmaniasis Endemic Districts in India and Nepal. Plos Negl Trop Dis. 2010; 4: e859.
14. Singh R, Kumar P. Susceptibility of the sand fly *Phlebotomus argenteipes* Annandale and Brunetti (Diptera: Psychodidae) to Insecticides in Endemic Areas of Visceral leishmaniasis in Bihar, India. Jpn J Infect Dis. 2015; 68: 33-7.
15. Rama A, Kumar V, Kesari S, et al. Monitoring Susceptibility Status of *Phlebotomus argenteipes* (Diptera: Psychodidae) at Bihar (India) for the Procurement of Homozygous DDT Resistant Colony. J Trop Dis. 2015; 3: 170.
16. Sacca G. “Sull’esistenza di Mosche Domestiche Resistenti al DDT.” Riv di Parassitol. 1947; 8:127-8.
17. World Health Organization (WHO). Instructions for determining the susceptibility or resistance of adult mosquitoes to organochlorine, organophosphate and carbamate insecticides – diagnostic test. Geneva: WHO; 1981.
18. World Health Organization (WHO). Manual on practical entomology in Malaria. Prepared by the WHO division of Malaria and other parasitic diseases. Part 2, Methods and techniques. Geneva: WHO; 1975.
19. Killick-Kendrick RK, Leany AJ, Ready PD. The establishment, maintenance and productivity of a laboratory colony of *Lutzomyia longipalpis* (Diptera: Psychodidae). J Med Entomol. 1977; 13: 409-418.
20. Modi GB, Tesh RB. A simple technique for mass rearing *Lutzomyia longipalpis* and *Phlebotomus papatasi* (Diptera: Psychodidae) in the laboratory. J Med Entomol. 1983; 20: 568-9.
21. Kumar V, Rama A, Kesari S, et al. Oviposition behaviour of *Phlebotomus argentipes* - A laboratory-based study. Mem Inst Oswaldo Cruz. 2013; 108:1065-7.
22. Rama A, Kumar V, Kesari S, et al. Exploring semiochemical based oviposition response of *Phlebotomus argenteipes* (Diptera: Psychodidae) towards pre-existing colony ingredients. IIMPS. 2014; 4:35-46.
23. Rama A, Kesari S, Dinesh DS, et al. Vertebrate excreta based semiochemical influencing oviposition & neonates’ survival in *Phlebotomus argenteipes* - Visceral leishmaniasis vector in Indian subcontinent. JEZS. 2014; 2:172-8.
24. Kaul SM, Sharma RS, Dey KP, et al. Impact of DDT indoor residual spraying on *Phlebotomus argenteipes* in a kala-azar endemic village in eastern Uttar Pradesh. Bull. World Health Organ. 1994; 72:79-81.
25. Alexander B, Maroli M. Control of phlebotomine sand flies. Med Vet Entomol. 2003; 17: 1-18.
26. Surendran S, Karunarathne SHPP, Adams Z, et al. Molecular and biochemical characterization of a sand fly population from Sri Lanka: Evidence for insecticide resistance due to altered esterases and insensitive acetylcholinesterase. Bull Entomol Res. 2005; 95: 371-80.
27. Kishore K, Kumar V, Kesari S, et al. Vector control in leishmaniasis. Indian J Med Res. 2006; 123: 467-72.
28. Afshar A, Rassi Y, Sharifi I, et al. Susceptibility status of *Phlebotomus papatasi* and *P. sergenti* (Diptera: Psychodidae) to DDT and deltamethrin in a focus of Cutaneous leishmaniasis after earthquake strike in Bam, Iran. Iran J Arthropod Borne Dis. 2011; 5: 32-41.
29. Faraj C, Ouahabi S, Adlaoui EB, et al. Insecticide susceptibility of *Phlebotomus (Paraphlebotomus) sergenti* and *Phlebotomus (Phlebotomus) papatasi* in endemic foci of Cutaneous leishmaniasis in Morocco. Parasit Vectors. 2012; 5: 51.
30. Saeidi Z, Vatandoost H, Akhavan AA, et al. Baseline susceptibility of a wild strain of *Phlebotomus papatasi* (Diptera: Psychodidae) to DDT and pyrethroids in an endemic focus of zoonotic Cutaneous leishmaniasis in Iran. Pest Manag Sci. 2012; 68: 669-75.
31. World Health Organization (WHO). Criteria and meaning of tests for determining the susceptibility or resistance of insects to insecticides. Document WHO/VBC/81.6. Tech Rep Ser 1-4. p.585. Geneva: WHO; 1981.
32. Kumar V, Shankar L, Kesari S, et al. Insecticide susceptibility of *Phlebotomus argenteipes* & assessment of vector control in two districts of West Bengal, India. Indian J Med Res. 2015; 142: 211-5.