Central Regulation of Urine Production by a Selective \(\mu \)-Opioid Agonist, [d-Ala\(^2\), N-Me-Phe\(^4\), Gly\(^5\)-ol]-Enkephalin, in Rats

Hiromi Tsushima, Mayumi Mori and Tomohiro Matsuda

Department of Pharmacology, Nagoya City University Medical School, Kawasaki, Mizuho-ku, Nagoya 467, Japan

Received November 8, 1996 Accepted February 12, 1997

ABSTRACT—We have investigated opioid mechanisms concerning regulation of urine production in the hypothalamic supraoptic nucleus (SON). In this study, the effect of [d-Ala\(^2\), N-Me-Phe\(^4\), Gly\(^5\)-ol]-enkephalin (DAMGO), a potent selective \(\mu \)-opioid agonist, microinjected into the SON of anesthetized hydrated rats, on the urine outflow rate was examined. DAMGO caused a dose-dependent decrease in the urine outflow rate with no significant changes in blood pressure nor heart rate. The ED\(_{50}\) value for the anti-diuresis was calculated to be 0.055 nmol from the dose-response curve. The antidiuresis elicited by DAMGO (0.1 nmol) was partially inhibited by intra-SON pre-injection of naloxone (3 nmol), a relatively \(\mu \)-selective opioid antagonist, and timolol (100 nmol), a \(\beta \)-adrenoceptor antagonist, but not by intra-SON pre-injection of phenoxybenzamine (20 nmol), an \(\alpha \)-adrenoceptor antagonist, nor atropine (300 nmol), a muscarinic antagonist. Intravenous injection of d(CH\(_2\))\(_5\)-D-Tyr(Et)VAVP (16.7 \(\mu \)g), a vasopressin receptor antagonist, did not influence the DAMGO-induced antidiuresis. These findings suggest that antidiuresis mediated through \(\mu \)-opioid receptors in the SON involves \(\beta \)-adrenoceptors in the nuclei, but does not involve an increase in vasopressin release.

Keywords: Vasopressin, Urine production, Supraoptic nucleus, [d-Ala\(^2\), N-Me-Phe\(^4\), Gly\(^5\)-ol]-Enkephalin, \(\mu \)-Opioid receptor

It has been believed that oral and intravenous administrations of morphine elicit antidiuresis, resulting from increased vasopressin release from the neurohypophysis after the opioid affects cell bodies of vasopressin-containing neurons in the hypothalamic supraoptic (SON) and paraventricular nuclei (PVN) and/or their terminals in the neurohypophysis. However, effects of morphine applied in the central nervous system on vasopressin release are controversial. Intracerebroventricular injections of morphine produce antidiuresis, not diuresis (1). On the other hand, electrophysiological studies show morphine-induced inhibition on the activities of the magnocellular neurons (2), suggesting the decrease in vasopressin release from the neurohypophysis into the circulation. Concerning the plasma vasopressin level, both the increase (3, 4) and the decrease (4, 5), and also no effect (1, 6) by morphine injected into the cerebroventricle are reported. We have previously showed antidiuretic effects of morphine, directly microinjected into the SON and PVN (7). The most likely reason for the discrepancy is differences in action sites for the opioid. A drug injected into the cerebroventricle widely spreads and diffuses over the regions around the ventricle and/or the ventricular wall and then indirectly influences the vasopressin release through neurons. Moreover, it is one of the reasons that morphine has affinity to both \(\mu \)- and \(\delta \)-opioid receptors (8). In this study, we used an opioid peptide, [d-Ala\(^2\), N-Me-Phe\(^4\), Gly\(^5\)-ol]-enkephalin (DAMGO), which is the most potent and specific for \(\mu \)-receptors among opioid agonists (8), and investigated the role of \(\mu \)-receptors in the SON in the regulation of urine production.

MATERIALS AND METHODS

Animals
Male Wistar rats, 9- to 10-week-old (Kitayama Labes Co., Ina) housed in a 12-hr dark/light cycle at 22±1°C were used. They were deprived of food for 17 hr before the experiment, but allowed free access to tap water.

\(^{\text{deceased.}} \)
Experimental procedure

The rats were orally administered with tap water (5 ml/100 g body weight) followed by 12% ethanol (5 ml/100 g body weight) for anesthesia 45 min later. After being cannulated in the trachea, urinary bladder and jugular vein, they were mounted in a stereotaxic instrument. The coordinates of the SON and PVN were 7.3 mm from the lambda, 1.3 mm from the midline, 8.8 mm from the dural surface and 5.6 mm, 0.3 mm, 7.8 mm, respectively. When blood pressure was examined simultaneously with the urine outflow rate, another polyethylene cannula connected with a pressure transducer was inserted into the carotid artery. An electrocardiograph was used for measurement of heart rate. During the experiment, Locke’s solution containing 3% ethanol was infused at 0.1 ml/min through the cannula in the vein. Ethanol-anesthesia and -infusion brought about a stable anesthetic condition and measurable outflow rate of urine for several hours. Urinary drops flowing from the bladder cannula were continuously counted with a photoelectric drop counter. The urine outflow rate reached a constant level at approximately 30 min after the rats were all prepared, and then a stainless steel cannula (o.d.: 200 μm) connected to a microsyringe was inserted into the nuclei for administration of DAMGO, phenoxybenzamine, timolol and atropine (1 μl). Arg-vasopressin and d(CH$_2$)$_2$-d-Tyr(Et)VAVP (0.1 ml) were intravenously injected through the jugular vein cannula. In the experiments with naloxone (0.3, 3, 30 nmol), phenoxybenzamine (20 nmol), timolol (100 nmol), atropine (300 nmol) and d(CH$_2$)$_2$-d-Tyr(Et)VAVP (16.7 μg), DAMGO (0.1 nmol) was microinjected into the nucleus at 30–40 min after the pretreatment with the antagonists. The influence of these antagonists was determined by comparison between the two DAMGO-induced effects on urine production with and without the antagonists. All drugs were dissolved in saline.

Identification of injection sites

After the experiments were finished, methylene blue was injected into the nuclei. The stained site in the coronal 15-μm sections cut with a freezing microtome were verified under a microscope.

Statistical analyses

Data were reported as values of the mean±S.E., and a statistical difference between the means was considered to be significant when the P value was less than 0.05 by Scheffe’s test following ANOVA.

Drugs

The following drugs were used: [D-Ala2, N-Me-Phe4, Gly5-ol]-enkephalin and Arg-vasopressin (grade IV) (Sigma Chemical Co., St. Louis, MO, USA); timolol malate (Nippon Merck-Banyu Co., Tokyo); phenoxybenzamine hydrochloride (Nacalai Tesque, Kyoto); atropine sulfate (Iwaki Co., Tokyo); naloxone hydrochloride (Sankyo Chemical Co., St. Louis, MO, USA).}

![Fig. 1. Antidiuretic effects induced by microinjection of DAMGO into the SON. A) ○: Vehicle, ●: 0.01 nmol, △: 0.05 nmol, ▲: 0.1 nmol, ■: 0.3 nmol, ■: 1 nmol of DAMGO. The ordinate and abscissa indicate the urine outflow rate as a percentage of the control level and time in min after administration of DAMGO, respectively. B) ○: Vehicle, ●: DAMGO. The ordinate indicates the urine outflow rate as a percentage of the control level at 40 min after drug administration in panel A. The abscissa shows the dose of DAMGO (nmol). Each value is the mean±S.E. of 4–19 experiments.](image-url)
Antidiuresis of DAMGO in the SON

As shown in Fig. 1 (A and B), microinjection of DAMGO from 0.01 nmol to 1 nmol into the SON produced antidiuretic effects in time- and dose-dependent manners. During antidiuresis, neither blood pressure nor heart rate significantly changed (n = 3, data not shown). The ED50 value was estimated to be 0.055 nmol (Fig. 1B). The antidiuresis induced by intra-PVN injection of DAMGO showed a similar time-course and potency (ED50 value: 0.045 nmol) to those in the SON (data not shown).

Pretreatment with naloxone at 0.3 nmol into the SON tended to inhibit the effect of 0.1 nmol DAMGO microinjected into the same nucleus, but not significantly. A tenfold dose of naloxone significantly diminished the DAMGO-induced effect at only 40 min after administration. For a blockade of DAMGO-induced antidiuresis, 30 nmol of naloxone was needed (Fig. 2A). Microinjection of naloxone at 30 nmol itself into the SON elicited weak decreases in the urine outflow rate (urine outflow rate: 100 ± 5.1% at 10 min, 86 ± 12% at 20 min, 59 ± 17% at 30 min, 87 ± 12% of the control level at 40 min after administration, n = 5). The smaller doses did not produce any significant change in the urine outflow rate.

Figure 2B shows that timolol at 100 nmol inhibited the DAMGO-induced antidiuresis, but neither phenoxybenzamine at 20 nmol nor atropine at 300 nmol influenced it. Timolol alone increased the urine outflow rate up to 218 ± 22% of the control level at 40 min after administration. The other antagonists did not alter the rate (phenoxybenzamine: 121 ± 3.4% at 30 min, atropine: 82 ± 7.4% of the control level at 40 min after the administration). The vasopressin receptor antagonist did not diminish the DAMGO (0.1 nmol)-induced effect, although it obviously inhibited antidiuresis induced by i.v. injection of 4 mU Arg-vasopressin (urine outflow rate by Arg-vasopressin with versus without the antagonist: 63 ± 9.3% versus 30 ± 4.6% at 10 min, 74 ± 7.5% versus 10 ± 1.6% at 20 min, 89 ± 4.4% versus 93 ± 1.4% at 30

RESULTS

Co., Tokyo); d(CH2)5-D-Tyr(Et)VAVP [1-(mercapto-

43,~-cyclopentamethylene propionic acid) 2-(O-ethyl) d-
tyrosine, 4-valine, arginine vasopressin] (gift from Prof.

K.G. Hofbauer, Ciba-Geigy, Ltd., Basel Switzerland). The other chemicals were of the highest analytical grade available.
DISCUSSION

From pharmacological and binding studies, DAMGO was demonstrated to be a selective and potent μ-opioid receptor agonist (8). Its affinity to μ-receptors is more than 100-fold higher than its affinities to δ- and κ-opioid receptors. Autoradiography shows the presence of μ-receptors in the SON (9, 10). Therefore, most of the DAMGO-induced antidiuretic effects in this study involved an activation of μ-opioid receptors. This was supported by the experiments with naloxone: the small doses of naloxone (3–30 nmol) diminished the DAMGO-induced effect. In our previous studies, higher doses of naloxone, 600 nmol or more, were required for inhibition of the antidiuresis induced by δ- or κ-agonists using the same methods (11, 12). Binding studies show that naloxone has slightly higher affinity to μ-receptors than the other opioid receptors (8, 13). Indeed, central injection of naloxone at 2–30 nmol are reported to inhibit μ-receptor-mediated effects induced by administration of DAMGO into the same regions as injection of naloxone (14–16).

The ED₅₀ value, 55 pmol, for the DAMGO-induced antidiuresis in the SON is the lowest among those for the other opioid agonists that we have tested under the same experimental condition: 19 nmol for morphine (a μ- and δ-agonist, Ref. 7), 13 nmol for fentanyl (a μ-agonist, Ref. 17), 111 nmol for Met-enkephalin (a δ-agonist, Ref. 18), 1.3 nmol for D-Ala²-Met⁵-enkephalinamide (a μ- and δ-agonist, Ref. 18), 1 nmol for D-Ala²-D-Leu⁵-enkephalin (a δ-agonist, Ref. 11) and 10 nmol for dynorphin (a κ-agonist, Ref. 12). This shows that μ-receptors in the SON play a major role in the regulation of urine production, although the potent effect may be partially due to the long metabolic half-life of DAMGO since it is a D-form amino acid.

μ-Receptors are shown to exist on adrenergic and cholinergic nerve terminals and to change the release of neurotransmitters. Therefore, involvement of adrenoceptors and/or cholinoreceptors on the DAMGO-induced effect was investigated. In the adrenoceptor and cholinoreceptor antagonist-pretreated experiments, only the δ-antagonist blocked the DAMGO-induced effect. This did not result from an increase in the urine outflow rate after administration of the δ-antagonist into the nucleus, because morphine (7) and D-Ala²-Met⁵-enkephalinamide (18) after the pretreatment with timolol caused antidiuretic effects to similar extents as those induced without the pretreatment. Moreover, timolol inhibited the antidiuresis of D-Ala²-D-Leu⁵-enkephalin microinjected into only the PVN, but not the SON, in spite of the diuretic condition after administration of timolol into both the nuclei (11). Therefore, it is supposed that β-adrenoceptors are involved in the DAMGO-induced antidiuresis and DAMGO promotes the release of norepinephrine/epinephrine in the SON. In general, opioid receptors are known to inhibit neurotransmitter release. However, some studies demonstrated that opioids promote neurotransmitter release, and the mechanisms for the release are suggested to be an increase in intracellular calcium concentration and prolongation of action potential duration following an increase in calcium conductance and a decrease in potassium conductance (19–21).

The vasopressin receptor antagonist did not diminish the DAMGO-induced effect, suggesting that it did not result from increased vasopressin release. There are some reports that intracerebroventricular injection of morphine produced antidiuresis without any change in the plasma vasopressin level (1, 6). Our finding indicated that μ-receptors in the SON, as well as in the tissues surrounding the ventricle, did not participate in the regulation of vasopressin release. During the DAMGO-induced antidiuresis, no changes in blood pressure nor heart rate were observed. Koepke et al. demonstrated that intrahypothalamic injection of a β-agonist elicited a decrease in urine production that resulted from modification of renal function through neurons (22). It is consistent with our previous finding that microinjection of β-agonists into the PVN did not increase vasopressin release, but decreased the urine outflow rate (23). Moreover, electrophysiological studies show neural connections between the hypothalamus and the kidney (24). Taken together, there is a possibility that the neurons in the hypothalamus contribute to renal function.

In conclusion, microinjection of DAMGO into the SON elicited a potent antidiuretic effect that involves μ-opioid and β-adrenoceptors in the SON. However, DAMGO did not promote vasopressin release. The underlying mechanism might be an increase in water reabsorption in the urinary tubules through neurons to the kidney from the hypothalamus.

REFERENCES

1. Grell S, Dencker CJ and Fjalland B: Morphine antidiuresis in conscious rats: Contribution of vasopressin and blood pressure. Acta Pharmacol Toxicol 56, 38–43 (1985)

2. Ogata N and Matsuo T: Pharmacological characterization of the magnocellular neuroendocrine cells of the guinea pig supraoptic nucleus in vitro. Neuropharmacology 23, 1215–1218 (1984)

3. Firemark HM and Weitzman RE: Effects of β-endorphin, morphine and naloxone on arginine vasopressin secretion and the
electroencephalogram. Neuroscience 4, 1895–1902 (1979)
4 Aziz LA, Forsling ML and Woolf CJ: The effect of intracerebroventricular injections of morphine on vasopressin release in the rats. J Physiol (Lond) 311, 401–409 (1981)
5 Russell JA, Neumann I and Landgraf R: Oxytocin and vasopressin release in discrete brain areas after naloxone in morphine-tolerant and -dependent anesthetized rats: Push-pull perfusion study. J Neurosci 12, 1024–1032 (1992)
6 Danesh S and Walker IA: Effects of central administration of morphine on renal function in conscious rats. J Pharmacol Exp Ther 244, 640–645 (1988)
7 Tsushima H, Mori M and Matsuda T: Antidiuretic effects of morphine microinjected into the hypothalamic supraoptic and paraventricular nuclei in a water-loaded and ethanol-anesthetized rat. Jpn J Pharmacol 45, 449–457 (1987)
8 Chang K-J: Opioid receptors: Multiplicity and sequelae of ligand-receptor interaction. In The Receptors, Edited by Conn PM, Vol 1, pp 1–81, Academic Press Inc, Orlando (1984)
9 Mansour A, Khachaturian H, Lewis ME, Akil H and Watson SJ: Anatomy of CNS opioid receptors. Trends Neurosci 11, 308–314 (1988)
10 Desjardins GC, Brawer JR and Beaudet A: Distribution of μ, δ and κ opioid receptors in the hypothalamus of the rat. Brain Res 536, 114–123 (1990)
11 Tsushima H, Mori M and Matsuda T: Effects of d-Ala²-d-Leu⁵-enkephalin, microinjected into the supraoptic and paraventricular nuclei, on urine outflow rate. Jpn J Pharmacol 63, 181–186 (1993)
12 Tsushima H, Mori M and Matsuda T: Microinjection of dynorphin into the supraoptic and paraventricular nuclei produced antidiuretic effects through vasopressin release. Jpn J Pharmacol 63, 461–468 (1993)
13 Emmerson PJ, Liu MR, Woods JH and Medzihradsky F: Binding affinity and selectivity of opioids at μ, δ and κ receptors in monkey brain membranes. J Pharmacol Exp Ther 271, 1630–1637 (1994)
14 Baumeister AA: The effects of bilateral intranigral microinjection of selective opioid agonists on behavioral responses to noxious thermal stimuli. Brain Res 557, 136–145 (1991)
15 Dickinson AH, Sullivan AF, Knox R, Zajac JM and Roques BP: Opioid receptor subtypes in the rat spinal cord: electrophysiological studies with μ- and δ-opioid receptor agonists in the control of nociception. Brain Res 413, 36–44 (1987)
16 Chikai T and Saeki K: Effect of minute amounts of [d-Ala², MePhe⁵, Gly(ol)³]enkephalin injected into the tuberomammillary nucleus of rats on histamine release from the cerebral cortex. Neurosci Lett 196, 137–139 (1995)
17 Tsushima H, Mori M and Matsuda T: Effects of fentanyl, injected into the hypothalamic supraoptic and paraventricular nuclei, in a water-loaded and ethanol-anesthetized rat. Neuropharmacology 29, 757–763 (1990)
18 Tsushima H, Mori M and Matsuda T: Antidiuretic effects of methionine-enkephalin and 2-α-alanine-5-methionine-enkephalinamide microinjected into the hypothalamic supraoptic and paraventricular nuclei in a water-loaded and ethanol-anesthetized rat. Jpn J Pharmacol 42, 507–515 (1986)
19 Crain CM and Shen K: Opioids can evoke direct receptor-mediated excitatory effects on sensory neurons. Trends Pharmacol Sci 11, 77–81 (1990)
20 Keren O, Garty M and Sarne Y: Dual regulation by opioids of ³H-norepinephrine release in the human neuroblastoma cell-line SK-N-SH. Brain Res 646, 319–323 (1994)
21 Smart D and Lambot DG: The stimulatory effects of opioids and their possible role in the development of tolerance. Trends Pharmacol Sci 17, 264–269 (1996)
22 Koepke JP, Jones S and Dibona GF: Hypothalamic β2-adrenoceptor control of renal sympathetic nerve activity and urinary sodium excretion in conscious, spontaneously hypertensive rats. Circ Res 58, 241–248 (1986)
23 Tsushima H, Fujimoto S and Matsuda T: Effects of β2- and β2-adrenoceptor agonists applied into the hypothalamic paraventricular nuclei of spontaneously hypertensive rats on urine production. Jpn J Pharmacol 64, 201–207 (1994)
24 Simon JK and Ciriello J: Contribution of afferent renal nerves to the metabolic activity of central structure involved in the control of the circulation. Can J Physiol Pharmacol 67, 1130–1139 (1989)