On polynomial approximations to solutions of implicit differential equations

Ihor Korol
ON POLYNOMIAL APPROXIMATIONS TO SOLUTIONS OF
IMPLICIT DIFFERENTIAL EQUATIONS

IHOR KOROL
Mathematical Faculty, Uzhgorod National University
Pidhirna 49, 88000 Uzhgorod, Ukraine
math1@univ.uzhgorod.ua

[Received: April 4, 2002]

Abstract. In this paper the possibility to present by a polynomial an independent variable
for the approximate solutions of the systems of implicit ordinary differential equations under
multi-point boundary conditions is substantiated.

Mathematical Subject Classification: 34A09, 34B10
Keywords: multi-point boundary value problems, implicit differential equations, numerical-
analytic method, determining equation.

1. Introduction

There is a large number of methods which mathematicians elaborated for studying
boundary value problems (BVPs). In the papers [1], [2] the numerical-analytic method
based upon successive approximations was introduced. The polynomial version of this
method in which the successive approximations are polynomials was proposed in [1]
and then developed in [3], [4] for three- and multi-point boundary conditions. In this
paper the issue of existence and approximate construction of the solutions of multi-
point boundary conditions for the systems of implicit ordinary differential equations
of the first order are studied by using polynomial approximations.

2. Construction of successive polynomial approximations

Let us consider a system of implicit equations

\[\frac{dx}{dt} = f(t, x, \frac{dx}{dt}), \]

with a multi-point boundary conditions

\[A_0 x(0) + \sum_{k=1}^{q} A_k x(t_k) + A_{q+1} x(T) = d, \]

where \(x, d \in \mathbb{R}^n \), \(f : [0, T] \times D_1 \times D_2 \to \mathbb{R}^n \), \(D_1, D_2 \) are closed bounded domains in
\(\mathbb{R}^n \), \(0 = t_0 < t_1 < \ldots < t_q < t_{q+1} = T \), \(A_k \) \((k = 0, 1, \ldots, q + 1) \) - are \(n \times n \) matrices
so that \(\det \left[\sum_{k=1}^{q} A_{k} t_{k} \right] \neq 0 \).

First of all we will introduce some notations [1].

It is known that for \(f(t) \in C[0,T] \) there is a unique polynomial \(P_m(t) \) among all the polynomials \(P_m(t) \) with no more than \(m \) degree which is the best approximation for \(f(t) \):

\[
E_m(f) = \| f(t) - P_m(t) \| = \inf_{P_m(t)} \| f(t) - P_m(t) \|.
\]

Let us set in the interval \([0,T]\) the nodes

\[
t_i = \frac{T}{2} \left(\cos \frac{(2i-1)\pi}{2(p+1)} + 1 \right), \quad i = 1,2,\ldots,p+1,
\]

which are obtained by the substitution \(\tau = \frac{T}{2} (\tau' + 1) \) from the corresponding zeroes \(\tau_i' \in [-1,1] \) of the Chebyshev polynomials

\[
T_{p+1}(t) = \cos ((p+1) \arccos t).
\]

For arbitrary continuous function \(x_r(t) \) by \(f^p(t,x_r(t),y_r(t)) \) we denote the Lagrange interpolation polynomial with \(p \) degree and with respect to the points (2.3):

\[
f^p(t,x_r(t,x_0),y_r(t,x_0)) = f_1^p(t,x_r(t,x_0),y_r(t,x_0)), \ldots, f_n^p(t,x_r(t,x_0),y_r(t,x_0))
\]

where \(y_r(t) := \frac{dx_r(t)}{dt}, \quad f_j^p(t,x_r(t,x_0),y_r(t,x_0)) = a_{0j} + a_{1j} t + \ldots + a_{pj}, \quad j = 1,2,\ldots,n, \quad f_j^p(t_i,x_r(t_i),y_r(t_i)) = f_j(t_i,x_r(t_i),y_r(t_i)), \quad i = 1,2,\ldots,p+1.

Let us denote by

\[
\mathcal{T}(f,x,y,t,x_0) = f(t,x(t,x_0),y(t,x_0)) - \frac{1}{T} \int_{0}^{T} f(s,x(s,x_0),y(s,x_0)) \, ds,
\]

\[
\mathcal{L}(f,x,y,t,x_0) = \int_{0}^{t} \left(f(\tau,x(\tau,x_0),y(\tau,x_0)) - \frac{1}{T} \int_{0}^{T} f(s,x(s,x_0),y(s,x_0)) \, ds \right) d\tau.
\]

We assume that the following conditions hold for the BVP (2.1), (2.2):

a) the vector-function \(f(t,x,y) \) is continuous in \(\Omega = [0,T] \times D_1 \times D_2 \) (and therefore it is bounded by some vector \(M \)) and Lipschitzian in \(x \) and \(y \), i.e.,

\[
|f(t,x,y)| \leq M, \quad |f(t,x,y) - f(t,x',y')| \leq K_1|x-x'| + K_2|y-y'|,
\]

where \(M \) and \(n \times n \) matrices \(K_1, K_2 \) have non-negative components. The absolute value sign and the inequalities we understand component-wise;

b) domains \(D_1 \) and \(D_2 \) satisfy the conditions

\[
D_{\beta_1} := \{ x \in \mathbb{R}^n \mid B(x,\beta_1(x)) \subset D_1 \} \neq \emptyset, \quad B(0,\beta_2(x)) \subset D_2,
\]
where \(B(x, \rho(x)) \) is the ball of radius \(\rho(x) \) with center \(x \) and

\[
\beta_1(x) = \left(\frac{T}{2} E + G \right) \cdot (M' + L_p) + T|d(x)|, \quad G = T \cdot \sum_{k=1}^{q} |HA_k| \cdot \alpha_1(t_k),
\]

\[
\beta_2(x) = 2(M + L_p) + \frac{1}{T} G (M' + L_p) + |d(x)|, \quad H = \left[\sum_{k=1}^{q+1} \alpha_k(t_k) \right]^{-1},
\]

\[
d(x) = H \cdot \left(d - \sum_{k=0}^{q+1} A_k x \right), \quad \alpha_1(t) = 2t \left(1 - \frac{t}{T} \right),
\]

\[
M' = \frac{1}{2} \left[\max_{(t,x,y) \in \Omega} f(t,x,y) - \min_{(t,x,y) \in \Omega} f(t,x,y) \right],
\]

\[
L_p = (5 + lg) \max_{r} \left[f \left(t, x_r^{p+1}(t,x_0), y_r^p(t,x_0) \right) \right] =
\]

\[
= (5 + lg) \cdot \left(\max_{r} \left[f_1 \left(t, x_r^{p+1}(t,x_0), y_r^p(t,x_0) \right) \right], \ldots
ight.
\]

\[
\left. \left. \ldots, \max_{r} \left[f_n \left(t, x_r^{p+1}(t,x_0), y_r^p(t,x_0) \right) \right] \right) ;
\]

c) the eigenvalues \(\lambda_j(Q) \) of the matrix \(Q = K_1 \left(\frac{T}{2} E + G \right) + K_2 \left(2E + \frac{1}{T} G \right) \) satisfy the inequalities

\[
|\lambda_j(q)| < 1, \quad j = 1, \ldots, n. \tag{2.5}
\]

Let us introduce the sequence of polynomials with \(p + 1 \) degree

\[
x_m^{p+1}(t,x_0) = x_0 + L \left(f_p, x_m^{p+1}, y_m^p, t, x_0 \right) + tHd(x_0) -
\]

\[
-tH \sum_{k=1}^{q} A_k L \left(f_p, x_m^{p+1}, y_m^p, t, x_0 \right), \quad x_0^{p+1}(t,x_0) = x_0, \quad m = 1, 2, \ldots \tag{2.6}
\]

Their derivatives look as follows:

\[
y_m^p(t,x_0) = L \left(f_p, x_m^{p+1}, y_m^p, t, x_0 \right) + Hd(x_0) -
\]

\[
-H \sum_{k=1}^{q} A_k L \left(f_p, x_m^{p+1}, y_m^p, t, x_0 \right), \quad y_0^p(t,x_0) = 0, \quad m = 1, 2, \ldots \tag{2.7}
\]

Here the above index means that this expression is a polynomials of a correspondent degree. It is easy to see that all the members of the sequence (2.6) satisfy the boundary condition (2.2) for arbitrary \(x_0 \in D_{\beta_1} \).

The next theorem establishes the convergence of the sequence (2.6) and the properties of the limit functions.

Theorem 1. Let BVP (2.1), (2.2) satisfy the conditions a)-c). Then:

1. the sequences (2.6) and (2.7) converge to the functions \(x^*(t,x_0) \) and \(y^*(t,x_0) \), respectively, as \(m \to \infty \), uniformly in \((t,x_0) \in [0,T] \times D_{\beta_1} \):

\[
x^*(t,x_0) = \lim_{m \to \infty} x_m^{p+1}(t,x_0), \quad y^*(t,x_0) = \lim_{m \to \infty} y_m^p(t,x_0),
\]
where \(y^*(t, x_0) = \frac{dx^*(t, x_0)}{dt}\);

(2) the limit function \(x^*(t, x_0)\) satisfies the "perturbed" BVP

\[
\frac{dx}{dt} = f(t, x, \frac{dx}{dt}) + \Delta(x_0),
\]

where

\[
\Delta(x_0) = -\frac{1}{T} \int_0^T f^p(s, x^*(s, x_0), y^*(s, x_0))\, ds + Hd(x_0) -
\]

with the initial value \(x^*(0, x_0) = x_0\);

(3) the following error estimations hold:

\[
|x^*(t, x_0) - x_m^{p+1}(t, x_0)| \leq (\alpha_1(t)E + G) \cdot W_{m-1}^p, \quad (2.10)
\]

\[
|y^*(t, x_0) - y_m^p(t, x_0)| \leq \left(2E + \frac{1}{T}G\right) \cdot W_{m-1}^p, \quad (2.11)
\]

where

\[
W_{m-1}^p = \left[\sum_{k=0}^{m-1} Q^i\right] \cdot L_p + Q^{m-1}(E - Q)^{-1}.
\]

\[
\cdot \left[K_1 \left\{(\frac{T}{2}E + G) M' + T|d(x_0)|\right\} + K_2 \left\{2M + \frac{T}{2}GM' + |d(x_0)|\right\}\right].
\]

Proof. In addition to (2.6), (2.7) let us introduce the sequence of functions.

\[
x_m(t, x_0) = x_0 + \mathcal{L}(f, x_{m-1}, y_{m-1}, t, x_0) + tHd(x_0) -
\]

\[
-tH \sum_{k=1}^q A_k \mathcal{L}(f, x_{m-1}, y_{m-1}, t_k, x_0), \quad x_0(t, x_0) = x_0, \quad m = 1, 2, \ldots, \quad (2.12)
\]

\[
y_m(t, x_0) := \frac{dx_m(t, x_0)}{dt} = \mathcal{L}(f, x_{m-1}, y_{m-1}, t, x_0) + Hd(x_0) -
\]

\[
-tH \sum_{k=1}^q A_k \mathcal{L}(f, x_{m-1}, y_{m-1}, t_k, x_0), \quad y_0(t, x_0) = 0, \quad m = 1, 2, \ldots \quad (2.13)
\]

Also we introduce some notations:

\[
x_m := x_m(t, x_0), \quad x_m^{p+1} := x_m^{p+1}(t, x_0), \quad r_{m+1}(t, x_0) := |x_{m+1}(t, x_0) - x_m(t, x_0)|,
\]

\[
y_m := y_m(t, x_0), \quad y_m^p := y_m^p(t, x_0), \quad \tilde{r}_{m+1}(t, x_0) := |y_{m+1}(t, x_0) - y_m(t, x_0)|.
\]

We note [1] that

\[
|f^p(t, x_m^{p+1}, y_m^p) - f(t, x_m^{p+1}, y_m^p)| \leq L_p, \quad (2.14)
\]

and making use of (2.4) we get

\[
|f^p(t, x_m^{p+1}, y_m^p) - f(t, x_m, y_m)| \leq |f^p(t, x_m^{p+1}, y_m^p) - f(t, x_m^{p+1}, y_m^p)| +
\]

\[
+ |f(t, x_m^{p+1}, y_m^p) - f(t, x_m, y_m)| \leq L_p + K_1|x_m^{p+1} - x_m| + K_2|y_m^p - y_m|.
\]
On polynomial approximations to solutions of implicit differential equations

Using Lemma 3 of [5] we have that

\[|\mathcal{L}(f, x, y, t, x_0)| \leq \alpha_1(t)M' \leq \frac{T}{2}M', \]

(2.16)

\[|TH\sum_{k=1}^{q} A_k \mathcal{L}(f, x, y, t, x_0)| \leq GM', \]

(2.17)

\[\left| \mathcal{L}\left(f^{p}, x^{p+1}_{m}, y^{p}_{m}, t, x_0 \right) - \mathcal{L}\left(f^{p}, x^{p+1}_{m}, y^{p}_{m}, t, x_0 \right) \right| \leq \alpha_1(t)L_p, \]

(2.18)

\[\left| TH\sum_{k=1}^{q} A_k \left[\mathcal{L}\left(f^{p}, x^{p+1}_{m}, y^{p}_{m}, t, x_0 \right) - \mathcal{L}\left(f^{p}, x^{p+1}_{m}, y^{p}_{m}, t, x_0 \right) \right] \right| \leq GL_p. \]

(2.19)

We have to show that (2.6) is a Cauchy sequence in the space of continuous vector functions. To begin with, we establish for arbitrary \((t, x_0) \in [0, T] \times D_B\), and \(m = 0, 1, 2, \ldots\) that \(x^{p+1}_m(t, x_0) \in D_1\) and \(y^{p+1}_m(t, x_0) \in D_2\) by using (2.16)-(2.19):

\[|x^{p+1}_1 - x_0| \leq |\mathcal{L}\left(f^{p}, x^{p+1}_{0}, y^{p}_{0}, t, x_0 \right)| + |TH\sum_{k=1}^{q} A_k \mathcal{L}\left(f^{p}, x^{p+1}_{0}, y^{p}_{0}, t, x_0 \right)| + + T|d(x_0)| \leq |\mathcal{L}\left(f^{p}, x^{p+1}_{0}, y^{p}_{0}, t, x_0 \right)| + |TH\sum_{k=1}^{q} A_k \mathcal{L}\left(f^{p}, x^{p+1}_{0}, y^{p}_{0}, t, x_0 \right)| + \]

\[+ T|d(x_0)| + \left| TH\sum_{k=1}^{q} A_k \left[\mathcal{L}\left(f^{p}, x^{p+1}_{0}, y^{p}_{0}, t, x_0 \right) - \mathcal{L}\left(f, x_0, y_0, t, x_0 \right) \right] \right| \leq (\alpha_1(t)E + G) (L_p + M') + T|d(x_0)| \leq \beta_1(x_0), \]

\[|y^{p+1}_1| \leq |\mathcal{L}\left(f^{p}, x^{p+1}_{0}, y^{p}_{0}, t, x_0 \right)| + |d(x_0)| + |H\sum_{k=1}^{q} A_k \mathcal{L}\left(f^{p}, x^{p+1}_{0}, y^{p}_{0}, t, x_0 \right)| \leq \]

\[\leq |\mathcal{L}\left(f^{p}, x^{p+1}_{0}, y^{p}_{0}, t, x_0 \right) - \mathcal{L}\left(f, x_0, y_0, t, x_0 \right)| + |d(x_0)| + + |H\sum_{k=1}^{q} A_k \left[\mathcal{L}\left(f^{p}, x^{p+1}_{0}, y^{p}_{0}, t, x_0 \right) - \mathcal{L}\left(f, x_0, y_0, t, x_0 \right) \right]| + \]

\[+ |H\sum_{k=1}^{q} A_k \mathcal{L}\left(f, x_0, y_0, t, x_0 \right)| \leq 2(M + L_p) + G (M' + L_p) + |d(x_0)| \leq \beta_2(x_0). \]

It follows that \(x^{p+1}_m(t, x_0) \in D_1, \ y^{p+1}_m(t, x_0) \in D_2\). By induction in a similar way we can establish that

\[|x^{p+1}_m - x_0| \leq \beta_1(x_0), \ |y^{p+1}_m| \leq \beta_2(x_0). \]
Now we consider the differences $x_m - x_m^{p+1}$ and $y_m - y_m^p$. For $m = 1$ we have
\[
| x_1 - x_1^{p+1} | \leq | \mathcal{L}(f, x_0, y_0, t, x_0) - \mathcal{L}(f^p, x_0^{p+1}, y_0^p, t, x_0) | + \\
+ TH \sum_{k=1}^q A_k \left| \mathcal{L}(f, x_0, y_0, t, x_0) - \mathcal{L}(f^p, x_0^{p+1}, y_0^p, t, x_0) \right| \leq \alpha_1(t)E + G \|L_p\| \tag{2.20}
\]
\[
| y_1 - y_1^p | \leq | \mathcal{Z}(f, x_0, y_0, t, x_0) - \mathcal{Z}(f^p, x_0^{p+1}, y_0^p, t, x_0) | + \\
+ H \sum_{k=1}^q A_k \left| \mathcal{L}(f, x_0, y_0, t, x_0) - \mathcal{L}(f^p, x_0^{p+1}, y_0^p, t, x_0) \right| \leq \alpha_1(t)E + G \|L_p\| \tag{2.21}
\]
Using (2.14)-(2.21) and Lemma 4 of [5] we get
\[
| x_2 - x_2^{p+1} | \leq | \mathcal{L}(f, x_1, y_1, t, x_0) - \mathcal{L}(f^p, x_1^{p+1}, y_1^p, t, x_0) | + \\
+ TH \sum_{k=1}^q A_k \left| \mathcal{L}(f, x_1, y_1, t, x_0) - \mathcal{L}(f^p, x_1^{p+1}, y_1^p, t, x_0) \right| \leq \alpha_1(t)E + K_1 (\alpha_2(t)E + \alpha_1(t)G) + \alpha_1(t)K_2 (2E + \frac{1}{T}G) \|L_p\| + \\
+ TH \sum_{k=1}^q A_k [\alpha_1(t_k)E + K_1 (\alpha_2(t_k)E + \alpha_1(t_k)G) + \alpha_1(t_k)K_2 (2E + \frac{1}{T}G)] \|L_p\| \leq \alpha_1(t)E + G \|E + K_1 (\frac{1}{T}E + G) + K_2 (2E + \frac{1}{T}G) \|L_p\| \leq \alpha_1(t)E + G \|E + Q \|L_p\| , \tag{2.22}
\]
We can obtain by induction that
\[
| x_m(t, x_0) - x_m^{p+1}(t, x_0) | \leq (\alpha_1(t)E + G) \left[\sum_{i=1}^{m-1} Q^i \right] \|L_p\| , \tag{2.22}
\]
\[
| y_m(t, x_0) - y_m^p(t, x_0) | \leq (2E + \frac{1}{T}G) \left[\sum_{i=1}^{m-1} Q^i \right] \|L_p\| . \tag{2.23}
\]
Now we have to estimate \(r_{m+1}(t, x_0) \) and \(\hat{r}_{m+1}(t, x_0) \) for every \(m = 0, 1, 2, \ldots \) by using Lemmas 3 and 4 of [5]:

\[
\begin{align*}
\quad r_1(t, x_0) & \leq |\mathcal{L}(f, x_0, y_0, t, x_0)| + T|d(x_0)| + \\
+ TH \sum_{k=1}^{q} A_k \mathcal{L}(f, x_0, y_0, t_k, x_0) & \leq \left(\frac{T}{2} E + G \right) M' + T|d(x_0)| = \gamma_1(x_0),
\end{align*}
\]

\[
\begin{align*}
\hat{r}_1(t, x_0) & \leq |\mathcal{Z}(f, x_0, y_0, t, x_0)| + |d(x_0)| + \left| H \sum_{k=1}^{q} A_k \mathcal{L}(f, x_0, y_0, t_k, x_0) \right| \\
& \leq 2M + |d(x_0)| + \frac{1}{2}GM' = \gamma_2(x_0),
\end{align*}
\]

\[
\begin{align*}
\quad r_2(t, x_0) & \leq |\mathcal{L}(f, x_1, y_1, t, x_0) - \mathcal{L}(f, x_0, y_0, t, x_0)| + \\
+ TH \sum_{k=1}^{q} A_k \left[\mathcal{L}(f, x_1, y_1, t_k, x_0) - \mathcal{L}(f, x_0, y_0, t_k, x_0) \right] & \leq 2 \max_{t \in [0, T]} |K_1 r_1(\tau, x_0) + K_2 \hat{r}_1(\tau, x_0)| + \\
+ \left(1 - \frac{T}{t} \right) \int_{0}^{t} \left[K_1 r_1(\tau, x_0) + K_2 \hat{r}_1(\tau, x_0) \right] d\tau & < (a_1(t)E + G) \cdot [K_1 \gamma_1(x_0) + K_2 \gamma_2(x_0)],
\end{align*}
\]

\[
\begin{align*}
\hat{r}_2(t, x_0) & \leq |\mathcal{Z}(f, x_1, y_1, t, x_0) - \mathcal{Z}(f, x_0, y_0, t, x_0)| + \\
+ TH \sum_{k=1}^{q} A_k \left[\mathcal{L}(f, x_1, y_1, t_k, x_0) - \mathcal{L}(f, x_0, y_0, t_k, x_0) \right] & \leq 2 \max_{t \in [0, T]} |K_1 r_1(\tau, x_0) + K_2 \hat{r}_1(\tau, x_0)| + \\
+ \left(1 - \frac{T}{t} \right) \int_{0}^{t} \left[K_1 r_1(\tau, x_0) + K_2 \hat{r}_1(\tau, x_0) \right] d\tau & < (a_1(t)E + G) \cdot [K_1 \gamma_1(x_0) + K_2 \gamma_2(x_0)].
\end{align*}
\]

Similarly,
I. Korol

From (2.24) and assumption c) we obtain the inequality

\[
\begin{align*}
\frac{d}{dt} r_3(t, x_0) & \leq \left\{ \left(1 - \frac{1}{2} \right) \int_0^t \left[K_1 (\alpha_1(\tau)E + G) + K_2 \left(2E + \frac{1}{T}G\right) \right] d\tau + \\
& + \frac{1}{T} \int_0^T \left[K_1 (\alpha_1(\tau)E + G) + K_2 \left(2E + \frac{1}{T}G\right) \right] d\tau + \\
& + \frac{1}{T} \sum_{k=1}^q A_k \left(1 - \frac{1}{2} \right) \int_0^{t_k} \left[K_1 (\alpha_1(\tau)E + G) + K_2 \left(2E + \frac{1}{T}G\right) \right] d\tau + \\
& + \frac{1}{T} \sum_{k=1}^q A_k \left[K_1 \left(2E + \frac{1}{T}G\right) \right] \cdot [K_1 \gamma_1(x_0) + K_2 \gamma_2(x_0)] \leq \right. \\
\end{align*}
\]

\[
\leq (\alpha_1(t)E + G) \cdot Q \cdot [K_1 \gamma_1(x_0) + K_2 \gamma_2(x_0)],
\]

We can show by induction that for arbitrary \(m = 0, 1, 2, \ldots \)

\[
\begin{align*}
r_{m+1}(t, x_0) & \leq (\alpha_1(t)E + G) \cdot Q^{m-1} \cdot [K_1 \gamma_1(x_0) + K_2 \gamma_2(x_0)] , \quad (2.24) \\
\hat{r}_{m+1}(t, x_0) & \leq \left(2E + \frac{1}{T}G\right) \cdot Q^{m-1} \cdot [K_1 \gamma_1(x_0) + K_2 \gamma_2(x_0)] . \quad (2.25)
\end{align*}
\]

From (2.24) and assumption c) we obtain the inequality

\[
\begin{align*}
|\gamma_{m+j}(t, x_0) - \gamma_m(t, x_0)| & \leq \sum_{i=0}^{j} |\gamma_{m+i+1}(t, x_0) - \gamma_{m+i}(t, x_0)| \leq \\
& \leq \sum_{i=0}^{j} r_{m+i+1}(t, x_0) \leq \sum_{i=0}^{j} (\alpha_1(t)E + G) Q^{m+i-1} [K_1 \gamma_1(x_0) + K_2 \gamma_2(x_0)] \leq \\
\leq (\alpha_1(t)E + G) \cdot Q^{m-1} (E - Q)^{-1} \cdot [K_1 \gamma_1(x_0) + K_2 \gamma_2(x_0)].
\end{align*}
\]

For the derivatives \(y_m(t, x_0) \) from (2.25) in a similar way we have:

\[
\begin{align*}
|y_{m+j}(t, x_0) - y_m(t, x_0)| & \leq \\
& \leq (2E + \frac{1}{T}G) Q^{m-1} (E - Q)^{-1} [K_1 \gamma_1(x_0) + K_2 \gamma_2(x_0)]. \quad (2.27)
\end{align*}
\]
It follows that (2.12) and (2.13) are uniformly convergent sequences:
\[\lim_{m \to \infty} x_m(t, x_0) = x^*(t, x_0), \lim_{m \to \infty} y_m(t, x_0) = y^*(t, x_0). \]
Taking the limit as \(j \to \infty \) in (2.26) and (2.27) we get the error estimates
\[\left|x^*(t, x_0) - x_m(t, x_0)\right| \leq (\alpha_1(t)E + G) \cdot Q^{m-1} (E - Q)^{-1} \cdot \left[K_1 \gamma_1(x_0) + K_2 \gamma_2(x_0)\right], \]
\[\left|y^*(t, x_0) - y_m(t, x_0)\right| \leq (2E + \frac{1}{2}G) \cdot Q^{m-1} (E - Q)^{-1} \cdot \left[K_1 \gamma_1(x_0) + K_2 \gamma_2(x_0)\right]. \]
Combining the last two inequalities with (2.22) and (2.23), we get the error estimates (2.10) and (2.11). Passing to the limit as \(m \to \infty \) in (2.6) we obtain that \(x^*(t, x_0) \) satisfies the integral equation
\[x(t) = x_0 + L(f, x, y, t, x_0) + tHd(x_0) - tH \sum_{k=1}^{q} A_k L(f, x, y, t^k, x_0). \]
While differentiating it, we get that \(x^*(t, x_0) \) is a solution of the perturbed BVP (2.8)-(2.9).

The following statement gives necessary and sufficient conditions for the existence of a solution of the BVP (2.1)-(2.2).

Theorem 2. Under the conditions of Theorem 1, the limit function \(x^*(t, x_0) \) is a solution of the BVP (2.1)-(2.2) if and only if \(x_0^* \) verifies the determining equation
\[\Delta(x_0) = -\frac{1}{T} \int_{0}^{T} f(s, x^*(s, x_0), y^*(s, x_0)) ds + Hd(x_0) + H \sum_{k=1}^{q} A_k L(f, x^*, y^*, t_k, x_0) = 0. \]

Proof. The proof can be carried out in the same way as for the corresponding statements from [2] (Theorem 2.3).\(\Box \)

3. Sufficient existence conditions

Consider the \(m \)-th approximation to the determining equation (2.28)
\[\Delta_m^p(x_0) = -\frac{1}{T} \int_{0}^{T} f^p(s, x_m^{p+1}(s, x_0), y_m^p(s, x_0)) ds + Hd(x_0) + H \sum_{k=1}^{q} A_k L(f^p, x_m^{p+1}, y_m^p, t_k, x_0) = 0. \]

Theorem 3. Suppose that the conditions of Theorem 1 hold. Furthermore, assume that
\[\text{d) there exists a closed, convex subset } D' = D'_1 \times D'_2 \subset D_1 \times D_2 \text{ so that for arbitrary } m \text{ and fixed } p \text{ the approximate determining equation (3.1) has only one solution } x_0 = x_{0m}^p \text{ with non-zero topological index;} \]
e) on the boundary ∂D of the subset D the inequality
\[
\inf_{x_0 \in \partial D} |\Delta_{m_0} (x_0)| > \left(E + \frac{1}{T} G \right) W_m
\]
holds.

Then there exists a solution $x = x^*(t)$ to the BVP (2.1)-(2.2) with the initial value $x^*(0) = x_0^0$, where $x_0^0 \in D_1'$.

Proof. Similarly to (2.15) and making use of (2.10) and (2.11), we get
\[
|f(t,x^*,y^*) - f^p(t,x_{m_0}^{p+1},y_{m_0}^{p})| \leq \left[K_1 (\alpha_1 (t) E + G) + K_2 \left(2E + \frac{1}{T} G \right) \right] W_{m-1}^p + L_{p}.
\]

For the deviation of the exact and approximate determining functions we have that
\[
|\Delta(x_0) - \Delta^p_{m_0}(x_0)| \leq \frac{1}{T} \int_0^T |f^p(s,x^*(s,x_0),y^*(s,x_0)) - f^p(s,x_{m_0}^{p+1}(s,x_0),y_{m_0}^p(s,x_0))| + H \sum_{k=1}^q A_k |\mathcal{L}(f^p,x^*,y^*,t_k,x_0)|
\]
\[-L(f^p,x_{m_0}^{p+1},y_{m_0}^p,t_k,x_0)| \leq (E + \frac{1}{T} G) (QW_{m-1}^p + L_{p}) \leq (E + \frac{1}{T} G) W_m^p.
\]

Similarly to Theorem 3.1 of [2], one can prove that the vector fields $\Delta(x_0)$ and $\Delta^p_{m_0}(x_0)$ are homotopic, which completes the proof of Theorem 3.

\[\square\]

REFERENCES

[1] Samoilenko, A. M. and Ronto, N. I.: Numerical-Analytic Methods of Investigating Solutions of Boundary Value Problems, Naukova Dumka, Kiev, 1985 (in Russian).

[2] Samoilenko, A. M. and Ronto, N. I.: Numerical-Analytic Methods in the Theory of Boundary Value Problems, Naukova Dumka, Kiev, 1992 (in Russian).

[3] Ronto, M. and Samoilenko, A. M.: Numerical-Analytic Methods in the Theory of Boundary Value Problems, World Scientific, Singapore, 2000.

[4] Korol, I. I. and Korol, I. Yu.: Using of polynomial approximation method for solving of multi-point BVPs, Naukovij Visnik Uzhgorods’koho Universitetu, Matematika, 4, (1999), 71-78.

[5] Ronto, M. and Mészáros, J.: Some remarks on the convergence analysis of the numerical-analytic method based upon successive approximations, Ukrainskij Matematicheskij Zhurnal, 48(1), (1996), 90-95.