Multi-q Mesoscale Magnetism in CeAuSb2

Marcus, Guy G.; Kim, Dae-Jeong; Tutmaher, Jacob A.; Rodriguez-Rivera, Jose A.; Birk, Jonas Okkels; Niedermeyer, Christof; Lee, Hannoh; Fisk, Zachary; Broholm, Collin L.

Published in:
Physical Review Letters

Link to article, DOI:
10.1103/PhysRevLett.120.097201

Publication date:
2018

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Marcus, G. G., Kim, D-J., Tutmaher, J. A., Rodriguez-Rivera, J. A., Birk, J. O., Niedermeyer, C., ... Broholm, C. L. (2018). Multi-q Mesoscale Magnetism in CeAuSb2. Physical Review Letters, 120(9), [097201]. https://doi.org/10.1103/PhysRevLett.120.097201
Multi-\(q\) Mesoscale Magnetism in CeAuSb

Guy G. Marcus,1,* Dae-Jeong Kim,2 Jacob A. Tutmaher,1 Jose A. Rodriguez-Rivera,3,4 Jonas Okkels Birk,5,6 Christof Niedermeyer,5 Hannah Lee,2 Zachary Fisk,2 and Collin L. Broholm1,4

1Institute for Quantum Matter and Department of Physics and Astronomy, The Johns Hopkins University, Baltimore, Maryland 21218, USA
2Department of Physics and Astronomy, University of California at Irvine, Irvine, California 92697, USA
3Department of Materials Sciences, University of Maryland, College Park, Maryland 20742, USA
4NIST Center for Neutron Research, Gaithersburg, Maryland 20899, USA
5Laboratory for Neutron Scattering and Imaging, Paul Scherrer Institut, CH 5232 Villigen-PSI, Switzerland
6Department of Physics, Technical University of Denmark (DTU), DK-2800 Kgs. Lyngby, Denmark

(Received 5 July 2017; revised manuscript received 28 September 2017; published 28 February 2018)

We report the discovery of a field driven transition from a single-\(q\) to multi-\(q\) spin density wave (SDW) in the tetragonal heavy fermion compound CeAuSb\(_2\). Polarized along \(c\), the sinusoidal SDW amplitude is \(1.8(2)\mu_\text{B}/\text{Ce}\) for \(T \ll T_N = 6.25(10)\) K with a wave vector \(\mathbf{q}_1 = (\eta, \eta, 1/2)\) \([\eta = 0.136(2)]\). For \(\mathbf{H}||\mathbf{c}\), harmonics appearing at \(2\mathbf{q}_1\) evidence a striped magnetic texture below \(\mu H_1 = 2.78(1)\) T. Above \(H_1\), these are replaced by coupled harmonics at \(\mathbf{q}_1 + \mathbf{q}_2 = (2\eta, 0, 0) + c^*\) until \(\mu H_2 = 5.42(5)\) T, where satellites vanish and magnetization nonlinearly approaches saturation at 1.64(2)\(\mu_\text{B}/\text{Ce}\) for \(\mu H \approx 7\) T.

DOI: 10.1103/PhysRevLett.120.097201

From micelles and vesicles in surfactant solutions [1,2] to mixed phase type-II superconductors [3,4], the spontaneous formation of large scale structure in condensed matter is a subject of great beauty, complexity, and practical importance. The phenomenon is often associated with competing interactions on distinct length scales and sensitivity to external fields that shift a delicate balance. Heavy fermion systems epitomize this scenario in metals, which place \(f\) electrons with strong spin-orbit interactions near the transition between localized and itinerant [5,6]. Whether their magnetism is described by oscillatory Ruderman-Kittel-Kasuya-Yosida exchange interactions between localized moments or by wave vector nesting involving \(f\)-electron Fermi surfaces, these strongly interacting Fermi liquids are prone to the development of long wavelength modulation of spin and charge, and owing to the similarity of the \(f\)-electron bandwidth to the Zeeman energy scale there is strong sensitivity to applied magnetic fields.

Here, we examine the magnetism of the heavy fermion system CeAuSb\(_2\), which was previously shown to have two distinct ordered phases versus field \(H\) and temperature \(T\). By establishing the corresponding magnetic structures, we gain new insight into the mechanisms that give rise to the attendant electronic transport anomalies and control the overall phase diagram shown in Fig. 1. Specifically, we show that the application of a magnetic field along the tetragonal axis of CeAuSb\(_2\) induces a transition from a single-\(q\) to a multi-\(q\) magnetic texture, both \(c\) polarized and modulated on a length scale exceeding the lattice spacing by an order of magnitude.

CeAuSb\(_2\) is a member of the Re\(TX_2\) series of compounds (Re = La, Ce, Pr, Nd, Sm; T = Cu, Ag, Au; X = Sb, Bi) [7–10]. They crystallize in space group \(P4/nmm\) (see the inset to Fig. 1) and commonly display metamagnetic transitions and magnetotransport anomalies, so our findings in CeAuSb\(_2\) may have relevance throughout the series. CeAuSb\(_2\) is Ising-like with a (001) easy axis and lattice parameters \(a = 4.395\) Å and \(c = 10.339\) Å at \(T = 2\) K. The Néel temperature is \(T_N = 6.25(10)\) K and

![FIG. 1. Phase diagram for CeAuSb\(_2\) with boundaries determined from magnetization (squares), resistivity (diamonds), and neutron diffraction (circles). Inset: crystallographic unit cell of tetragonal CeAuSb\(_2\). Magnetic moments shown on Ce sites illustrate the \(\Gamma'_3\) structure (\(\uparrow \downarrow\)) that is difficult to distinguish from the \(\Gamma'_1\) structure (\(\uparrow \downarrow\)) through neutron diffraction when the \(c\) component of the magnetic wave vector is \(1/2\) \(c^*\).](image-url)
the lower (upper) critical field between distinct magnetic phases is \(\mu H_1 = 2.78(1) \) T \([\mu H_2 = 5.42(5) \) T] at low \(T \) (Fig. 1) [11]. Superconductivity has not been reported for any compound in the ReTX2 series and it is absent in CeAuSb2 under applied pressure up to 5.5 GPa [12].

We grew high-purity single crystals of CeAuSb2 via the self-flux method and used 8.5(1) and 114.5(1) mg crystals for diffraction in the \((hh\ell)\) and \((h0k)\) reciprocal lattice planes, respectively. To determine the magnetic structure, we mapped neutron diffraction intensity in the \((hh\ell)\) and \((h0k)\) planes using the Multi Axis Crystal Spectrometer (MACS) instrument at NIST [13]. The sample was rotated by 180 deg about the vertical axis and the intensity data were mapped to one quadrant. Field dependence with \(H \parallel c \) was studied in the \((hh0)\) plane on MACS with a vertical field magnet and in the \((hh\ell)\) plane on the Re-Invented Three Axis Spectrometer (RITA-II) at PSI [14] using a horizontal field magnet. Absolute normalization was achieved by comparing nuclear diffraction to expectations for the accepted chemical structure [7], as described in the Supplemental Material [15].

The difference between diffraction data acquired below (2 K) and above (8 K) \(T_N \) is shown in Fig. 2(a). Three out of a quartet of satellite peaks are apparent around \((111)\) and a single satellite is visible near the origin [24]. These peaks are indexed by \(q_1 = (\eta \eta 1/2) \) with \(\eta = 0.136(2) \), indicating a long range ordered magnetic structure that doubles the unit cell along \(c \) and is modulated in the basal plane with a wavelength \(\lambda_m = (a/\sqrt{2})n = 23 \) Å. The absence of satellite peaks of the form \((\eta, \eta, 1/2 + n)\) for integer \(n \geq 1 \) is consistent with diffraction from spins polarized along the \(c \) axis as illustrated in Fig. 1. To check this hypothesis and establish the size of the ordered moment, we extracted the intensity of magnetic Bragg peaks by integrating over the relevant areas of the two-dimensional intensity map in Fig. 2(a). The corresponding magnetic diffraction cross sections at \(\mu H = 0 \) T are compared to a striped model with spins oriented along \(c \) in Fig. 2(c), which provides an excellent account of the data with a spin density wave amplitude of \(m_{q_1} = 1.8(2) \mu_B \).

Figure 3(a) reports the \(T \) dependence of this ordered moment as extracted from the wave vector integrated magnetic neutron diffraction intensity at \((1-\eta, 1-\eta, 1/2)\) obtained by zero-field cooling to 100 mK. Near \(T_N \) these data can be described as \(m_{q_1}(T) \propto (1 - T/T_N)^{-\beta} \) where \(\beta = 0.32(5) \), consistent with the \(\beta = 0.326 \) for the 3D Ising model [25], but also with \(\beta = 0.3645(25) \) for the 3D Heisenberg model [26]. Landau theory at such a second order phase transition predicts the magnetic structure forms a single irreducible representation of the little group \(G_q \) associated with a given wave vector. The \(q_1 \) diffraction data are consistent with either \(\Gamma_3 (\uparrow \downarrow) \) or \(\Gamma_3 (\uparrow \downarrow) \). Here, the arrows indicate the direction along \(c \) of the two spins within a unit cell (Fig. 1).

Initial application of a magnetic field \(H \parallel c \) has little effect on the staggered magnetization \(m_{q_1} \) until an abrupt reduction by 0.65(5)\(\mu_B \) at \(\mu H_1 = 2.78(1) \) T [Fig. 3(b)]. Continuing this isothermal field sweep (IFS) to higher fields, \(m_{q_1} \) is continually suppressed before eventually falling below the detection limit above \(\mu H_2 = 5.42(5) \) T.

The characteristic wave vector exhibits clear hysteresis across \(H_2 \). Figures 3(c) and 3(d) show that \(\eta \) locks into two distinct plateaus for increasing IFS each terminated by regimes where \(\eta \), to within resolution, decreases continuously with increasing \(H \). For decreasing IFS, \(\eta \) follows a different, nonintersecting trajectory without plateaus. This hysteresis in \(q_1 \) persists to the lowest fields and for temperatures up to at least 2 K (see Supplemental Material [15]), while no hysteresis is observed in the field dependence of the staggered magnetization [Fig. 3(b)] or the uniform magnetization \(m_0 \) [Fig. 3(e)]. For \(T = 2 \) K, \(m_0 \) increases linearly with applied field at a rate of \(m_0 = 0.12(1)/\mu_B T^{-1}/\text{Ce} \) until an abrupt increase of \(\Delta m_0 = 0.23(3) \mu_B/\text{Ce} \) at \(H_1 \). Above this transition, \(m_0 \) continues to increase linearly at a similar rate until \(H_2 \), where the incommensurate magnetic peaks vanish. Interestingly, \(m_0 \) continues to increase for \(H > H_2 \) until saturating at \(m_{0,\text{max}} = 1.64(2) \mu_B/\text{Ce} \). Extending to at least \(\mu_0 H = 30 \) T [11], this magnetization plateau indicates the magnetism of CeAuSb2 is dominated by an isolated Kramers doublet of the form \(a | \pm 5/2 \rangle \pm b | \mp 3/2 \rangle \). Correspondingly, we expect the magnetization per Ce is capped near \(m_{0,\text{max}} \) even in the ordered state.
Application of the $P4/mmm$ symmetry operations to q_1 yields a second, symmetrically equivalent wave vector $q_2 = (\eta 1/2)$. The observation of q_1 satellite peaks for all $H < H_2$ leaves open whether distinct, single-q domains or a multi-q modulation describes magnetic structure in the various regimes. As we shall now show, this is resolved by analysis of field dependent magnetic diffraction data. Figure 2(d) shows representative line scans of elastic neutron diffraction along $(h00)$ for $H < H_1$. We find a weak, field-induced peak at $(2\eta, 2\eta, 0) = 2q_1 - c^*$, which indicates the spatial modulation of magnetization ceases to follow a simple sinusoidal form in a field. The new Fourier component is supported by a single q_1 domain and is not accompanied by harmonics of the form $q_1 \pm q_2$. This constitutes evidence that the $H < H_1$ SDW state is stripped and consists of distinct q_1 and q_2 domains. Furthermore, the presence of a magnetic satellite peak at momentum transfer $Q = (2\eta, 2\eta, 0)$ implies that for this Fourier component of the SDW the two Ce$^{3+}$ sites within a unit cell contribute in phase. Thus, the second harmonic m_{2q_1} forms a representation of Γ_2. This does not, however, constrain the fundamental modulation m_{q_1}, for which both Γ_2 and Γ_3 are consistent with the data.

The field dependence of $m_{2q_1}(H)$ is shown in Fig. 3(b). As directly apparent from Fig. 2(d), there is no evidence for this harmonic in a zero field. A linear in H fit to $m_{2q_1}(H)$ yields $m'_{2q_1} = 0.14(2) \mu_B T^{-1}/\text{Ce}$, which is indistinguishable from m_0' so that $|m_{2q_1}(H)| \approx |m_0(H)|$ throughout the striped phase [Figs. 3(b) and 3(e)]. Note that intensity data are insensitive to the relative phase between the fundamental and harmonic spin density waves and so cannot directly determine the real space spin structure. Combining the three Fourier components we obtain $m_j(r) = m_0 + \nu' m_{q_1} \cos(q_1 \cdot r) + m_{3q_1} \cos(2q_1 \cdot r)$ on sublattice j, where $\nu = \pm 1$ encodes the lack of an experimental distinction between Γ_2 and Γ_3 for the q_1 modulation. Without loss of generality, we pick $m_0 > 0$ and $m_{q_1} > 0$. To ensure $|m_j(r)|$ does not exceed $m_{0,max}$ defined by the Kramers doublet ground state at any r requires $m_{q_1} < 0$, so that $m_0(H) \approx -m_{2q_1}(H)$. The corresponding $m_j(r) = \nu' m_{q_1} \cos(q_1 \cdot r) + m_0[1 - \cos(2q_1 \cdot r)]$ is shown in Fig. 4(a) for H immediately below H_1. Qualitatively, we find stripes where $m_j(r) > 0$ broaden with field at the expense of stripes where $m_j(r) < 0$. Given only the fundamental and second harmonics and assuming $m_{2q_1} = -m_0$, a global maximum in $m_j(r)$ exceeding $m_{0,max}$ would occur if m_0 were to exceed $m_{q_1}/4$. The similarity of $m_0(H_1) = 0.32 \mu_B$ to $m_{q_1}(H_1)/4 = 0.43(1) \mu_B$ indicates the phase transition at H_1 is associated with reaching the maximum magnetization possible for a striped phase with an individual Ce moment limited at $m_{0,max}$ and the spatial modulation dominated by just three Fourier components m_0, m_{q_1}, and m_{2q_1}.

Figure 3(f) shows the longitudinal magnetoresistivity versus H at 2 K where $\rho(T)$ is dominated by the residual component. For $H = H_1$ there is an abrupt increase in resistivity that is subsequently reversed for $H > H_2$. This decrease in ρ is approximately twice as large as the increase in ρ at H_1. One interpretation is that parts of the Fermi surface develop a gap in the ordered regimes, and that this gapped area of the Fermi surface doubles for $H_1 < H < H_2$ compared to $H < H_1$ and vanishes for $H > H_2$.
Figure 3(b) shows m_{2q_1} abruptly vanishes for $H > H_1$. The false color map of the $(h\bar{h}0)$ plane at $\mu_0H = 4$ T in Fig. 2(b) shows the $2q_1$ harmonic is replaced by satellites spanned by $q_1 \pm q_2$ that surround $(110), (1\bar{1}0),$ and (000). These indicate the simultaneous presence at the atomic scale of m_{q_1} and m_{q_2} and their interference term $m_{q_1 \pm q_2}$. Because the magnetic diffraction occurs for $Q \perp \mathbf{e}^*$, we infer that $m_{q_1 \pm q_2}$ transforms as Γ_2. Figure 3 shows $m_{q_1 \pm q_2}$ abruptly jumps to and then holds an essentially constant value of $0.7(1)\mu_B/Ce$ for $H_1 < H < H_2$. The similarity to the plateau-like dependence of the residual magnetoresistivity is consistent with both phenomena arising from the opening of an additional gap on the Fermi surface; two nesting wave vectors, rather than one, gap out twice as much of the Fermi surface, thereby doubling the residual resistivity as observed [Fig. 3(f)].

For $H_1 < H < H_2$ the c oriented staggered magnetization can be described as

$$m_j(r) = m_0 + \frac{1}{2}\nu m_{q_1}[\cos(q_1 \cdot r) + \cos(q_2 \cdot r)]$$

$$+ \frac{1}{2}m_{q_1 \pm q_2}[\cos((q_1 + q_2) \cdot r)]$$

$$+ \delta \cos((q_1 - q_2) \cdot r)$$

Again, $\nu = \pm 1$ correspond to Γ_2 and Γ_3, respectively, for the fundamental components. Although we expect only one to be realized, either is consistent with the present diffraction data a priori. m_0 and $m_{q_1} = m_{q_2}$, can again be chosen positive without loss of generality while $m_{q_1 \pm q_2} < 0$ is required to ensure $m_j(r) < m_{0,\text{max}}$. The two qualitatively distinct magnetic textures for $\delta = \pm 1$ are illustrated in Figs. 4(b) and 4(c). For $\delta = 1$, $m(r)$ describes a checkered pattern with fourfold symmetry. The maximum Ce$^{3+}$ moment in this structure is actually reduced relative to the striped phase immediately above H_1 [Fig. 4(d)]. In contrast, for the “woven” phase ($\delta = -1$) the measured Fourier amplitudes imply that $\max(m_j(r))$ is field independent and pinned at $m_{0,\text{max}}$ throughout. While our diffraction does not provide definitive proof, this simple pattern that recalls the extended nature of the magnetization plateau makes the woven state an attractive hypothesis.

The woven SDW breaks the fourfold axis: lobes of c-polarized spins extend along \mathbf{a} (b) for $m_{q_1 \pm q_2} > 0$ ($m_{q_1 \pm q_2} < 0$). Either between sublattices (Γ_3) or at the transition between unit cells along c (Γ_2), the woven pattern shifts within the basal plane by half of its period in the direction of the prolate axis of the least magnetized lobes. As was the case for $H < H_1$, there remain two spatially separated domains only now composed of c-polarized lobes of spins extending along either \mathbf{a} or \mathbf{b}.

The development of magnetization in the multi-q regime is qualitatively distinct from that in the low-field phase. This is apparent in Fig. 3(b) where the fundamental amplitude m_{q_1} decreases with field at a rate of $m_{q_1}' = -0.13(1)\mu_B$ T$^{-1}$/Ce while the harmonic $m_{q_1 \pm q_2}$ is field independent and $m_{q_1}' = 0.12(1)\mu_B$ T$^{-1}$/Ce maintains the same value for $H > H_1$ as in the striped phase. Figure 4(d) shows that this corresponds to increasing the magnetization only of regions polarized antiparallel to \mathbf{H}.

Throughout the magnetization process, the magnetic wavelength λ_m varies by less than 5%, as seen in Figs. 3(c) and 3(d). This contrasts with other cerium-based Ising systems. For example, CeSb undergoes a series of field driven phase transitions that alter the direction of magnetization of entire planes of spins from a \(\uparrow\uparrow\downarrow\downarrow\downarrow\) sequence $[q = (001/2)]$, to $\uparrow\uparrow\downarrow\downarrow\downarrow\uparrow\uparrow\downarrow\uparrow\uparrow\downarrow\uparrow\uparrow\downarrow\uparrow\downarrow\uparrow\downarrow$ sequence $[q = (000/3)]$, all the way to full ferromagnetism $\delta = 0$ [27]. These square-wave structures are characterized by a strong third order harmonic and their magnetic 4f electrons can be modeled as localized Ising degrees of freedom subject to oscillatory Ruderman-Kittel-Kasuya-Yosida interactions.

A model of competing near neighbor exchange interactions that reproduces the critical wave vectors q_1 and q_2, the Weiss temperature, and the upper critical field is possible.
for CeAuSb$_2$. At a minimum, it involves antiferromagnetic $J_c > 0$ between Ce sites on the c bond and basal-plane interactions $J_2 < 0$ on the a bond, $J_3 < J_1/4$ on the $(a + b)$ bond, and $J_3 = -J_1/4 \cos 2\pi \eta$ on the $2a$ bond [28]. In such a local-moment model for CeAuSb$_2$, a third order harmonic of $0.60(7) \mu_B$ would be expected. However, our data establish a quantitative limit of $|m_{3q_1}| < 0.1 \mu_B$. This precludes square-wave modulation for $H < H_1$ and points to an itinerant description that nonetheless upholds the limits on Ce polarization set by its crystal field ground state. To examine the possibility of a Fermi surface (FS) nesting induced SDW, we calculated the FS using the generalized gradient approximation [Fig. 3(g)]. Near the Fermi level, the band structure is dominated by f electrons with an order of magnitude smaller contribution to the density of states coming from strongly dispersive p bands. While there are no ideal nesting conditions, q_1, $2q_1$, and $q_1 \pm q_2$ do connect areas of the quasi-2D FS that extend along c, consistent with a SDW instability.

The distinct hysteresis of the SDW wave vector shown in Fig. 3(d) versus field indicates a truly incommensurate modulation and a profound rearrangement of static magnetism at H_1 and H_2. Upon reducing the field at low T, nucleation of the multi-q state from the paramagnetic state at H_2 can be expected to allow for greater adherence to constraints imposed by impurities and defects than when nucleating the multi-q state from within the striped state upon increasing the field past H_1. Within the SDW picture, the corresponding subtle differences in magnetic order provide a natural explanation for weakly field-hysteretic electronic transport [11,15,29].

Our results provide a phenomenological description of the magnetization process in CeAuSb$_2$ that links the critical magnetization at the metamagnetic transitions to the limited dipole moment of a Ce$^{3+}$ Kramers doublet. Net magnetization is achieved by adding both a uniform and a single harmonic component to a sinusoidal magnetization wave while maintaining the fundamental wavelength and maximum amplitude. Despite these local moment features, the absence of a third harmonic at low T suggests Kondo-like screening or a fully itinerant picture will be appropriate as we seek a unified understanding of the metamagnetic transitions in the ReTX_2 family of heavy fermion compounds.

We are glad to thank Christian Batista, Martin Mourigal, Sid Parameswaran, Chandra Varma, Yuan Wan, and Andrew Wills for helpful discussions. This research was funded by the U.S. Department of Energy, Office of Basic Science, Division of Materials Sciences and Engineering, Grant No. DE-FG02-08ER46544. G. M. G. acknowledges generous support from the National Science Foundation Graduate Research Fellowship Program Grant No. DGE-1232825.

*guygma@jhu.edu

[1] E. W. Kaler, A. K. Murthy, B. E. Rodriguez, and J. A. Zasadzinski, Science 245, 1371 (1989).

[2] S. A. Safran, P. Pincus, and D. Andelman, Science 248, 354 (1990).

[3] G. Blatter, M. V. Feigel’man, V. B. Geshkenbein, A. I. Larkin, and V. M. Vinokur, Rev. Mod. Phys. 66, 1125 (1994).

[4] B. Rosenstein and D. Li, Rev. Mod. Phys. 82, 109 (2010).

[5] S. Hoshino and Y. Kuramoto, Phys. Rev. Lett. 111, 026401 (2013).

[6] Z. Fisk, H. Ott, T. Rice, and J. Smith, Nature (London) 320, 124 (1986).

[7] O. Sologub, K. Hiebl, P. Rogl, H. Noël, and O. Bodak, J. Alloys Compd. 210, 153 (1994).

[8] C. Adriano, P. F. S. Rosa, C. B. R. Jesus, J. R. L. Mardejan, T. M. Garitezi, T. Grant, Z. Fisk, D. J. Garcia, A. P. Reyes, P. L. Kuhns, R. R. Urbano, C. Giles, and P. G. Pagliuso, Phys. Rev. B 90, 235120 (2014).

[9] S. M. Thomas, P. F. S. Rosa, S. B. Lee, S. A. Parameswaran, Z. Fisk, and J. Xia, Phys. Rev. B 93, 075149 (2016).

[10] E. M. Seibel, W. Xie, Q. D. Gibson, and R. J. Cava, J. Solid State Chem. 230, 318 (2015).

[11] L. Balicas, S. Nakatsuji, H. Lee, P. Schlottmann, T. P. Murphy, and Z. Fisk, Phys. Rev. B 72, 064422 (2005).

[12] S. Seo, V. A. Sidorov, H. Lee, D. Jang, Z. Fisk, J. D. Thompson, and T. Park, Phys. Rev. B 85, 205145 (2012).

[13] J. A. Rodriguez, D. M. Adler, P. C. Brand, C. Broholm, J. C. Cook, C. Brocker, R. Hammond, Z. Huang, P. Hundertmark, J. W. Lynn, N. C. Maliszewskij, J. Moyer, J. Orndorff, D. Pierce, T. D. Pike, G. Scharfa, S. A. Smeek, and R. Vilaseca, Meas. Sci. Technol. 19, 034023 (2008).

[14] K. Lefmann, C. Niedermayer, A. B. Abrahamsen, C. R. H. Bahl, N. B. Christensen, H. S. Jacobsen, T. L. Larsen, P. Häfliger, U. Filges, and H. M. Rønnow, Physica (Amsterdam) 385–386B, 1083 (2006).

[15] See Supplemental Material at http://link.aps.org/supplemental/10.1103/PhysRevLett.120.097201 for supporting measurements and general experimental details, which includes Refs. [16–23].

[16] J. Rodriguez-Carvajal and F. Bourée, EPJ Web Conf. 22, 00010 (2012).

[17] A. S. Wills, Physica (Amsterdam) 276–278B, 680 (2000).

[18] G. Kresse and J. Furthmuller, J. Compos. Mater. 6, 15 (1996).

[19] G. Kresse and J. Furthmuller, Phys. Rev. B 54, 11169 (1996).

[20] G. Kresse and J. Hafner, Phys. Rev. B 47, 558 (1993).

[21] J. P. Perdew, A. Ruzsinszky, G. I. Csonka, O. A. Vydrov, G. E. Scuseria, L. A. Constant, X. Zhou, and K. Burke, Phys. Rev. Lett. 100, 136406 (2008).

[22] J. K. Jang and J. Y. Rhee, Curr. Appl. Phys. 16, 475 (2016).

[23] T. Jeong, Physica (Amsterdam) 38B, 249 (2007).

[24] The (1 + η, 1 + η, 1.5) location lies at the limit of detector coverage where statistical error is enhanced.

[25] A. Pelissetto and E. Vicari, Phys. Rep. 368, 549 (2002).

[26] J. C. Le Guillou and J. Zinn-Justin, Phys. Rev. B 21, 3976 (1980).

[27] T. Chattopadhyay, P. Burlet, J. Rossat-Mignod, H. Bartholin, C. Vettier, and O. Vogt, Phys. Rev. B 49, 15096 (1994).

[28] L. Seabra, P. Sindzingre, T. Momoi, and N. Shannon, Phys. Rev. B 93, 085132 (2016).

[29] L. Zhao, E. A. Yelland, J. A. N. Bruin, I. Sheikin, P. C. Canfield, V. Fritsch, H. Sakai, A. P. Mackenzie, and C. W. Hicks, Phys. Rev. B 93, 195124 (2016).