Instanton Calculations in the β-deformed AdS/CFT Correspondence

George Georgiou and Valentin V. Khoze

Department of Physics and IPPP, University of Durham, Durham, DH1 3LE, UK
E-mail: george.georgiou@durham.ac.uk valya.khoze@durham.ac.uk

Abstract: We consider non-perturbative effects in the β-deformed $\mathcal{N} = 4$ supersymmetric gauge theory in the context of the AdS/CFT correspondence. We concentrate on certain types of the n-point correlation functions of the Yang-Mills operators which correspond to the lowest Kaluza-Klein modes propagating on the dual supergravity background found by Lunin and Maldacena in [1]. In particular, we calculate all multi-instanton contributions to these correlators in the β-deformed SYM and find a compelling agreement with the results expected in supergravity.
1. Introduction

β-deformations of the $\mathcal{N} = 4$ supersymmetric Yang-Mills define a family of conformally-invariant four-dimensional $\mathcal{N} = 1$ supersymmetric gauge theories. Remarkably, these β-deformed theories mirror many non-trivial characteristic features of the $\mathcal{N} = 4$ SYM, including the S-duality, the AdS/CFT correspondence and the perturbative large-N equivalence to the parent $\mathcal{N} = 4$ theory, thus providing a continuous class of interesting generalizations of the $\mathcal{N} = 4$ SYM. One may expect that by studying properties of the β-deformed theories and, in particular, the dependence of observables on the continuous deformation parameter β we can understand better the gauge dynamics of this class of theories and of the $\mathcal{N} = 4$ as well.

Dualities between gauge and string theories have been studied intensively for more than three decades. The AdS/CFT correspondence formulated in [2–4] provides a concrete realization of such a duality. In its original formulation, the AdS/CFT duality relates the string theory on a curved background $AdS_5 \times S^5$ to the $\mathcal{N} = 4$ supersymmetric Yang-Mills theory living on the boundary of AdS_5. Understanding this duality in detail beyond the BPS and the near BPS limits remains a challenge mainly due to the fact that one has to deal with the weak-to-strong coupling correspondence.

The AdS/CFT duality extends to the β-deformed theories [1] where it relates the β-deformed $\mathcal{N} = 4$ SYM and the supergravity on the deformed $AdS_5 \times \tilde{S}^5$ background. The gravity dual was found by Lunin and Maldacena in Ref. [1], and this provides a precise formulation of the AdS/CFT duality in the deformed case, which can be probed and studied using instanton methods developed earlier for the $\mathcal{N} = 4$ case in [5–8] and in [9–12].

Several perturbative calculations in the β-deformed theories were carried out recently in [13–16] where it was noted that there are many similarities between the deformed and the undeformed theories which emerge in the large number of colours limit. In particular, in [16] it was shown that in perturbation theory there is a close relation between the scattering amplitudes in the β_R-deformed and in the original $\mathcal{N} = 4$ theory. This correspondence holds in the large-N limit and to all orders in (planar) perturbation theory. It states that for real values of β all amplitudes in the β-deformed theory are given by the corresponding $\mathcal{N} = 4$ amplitudes times an overall β-dependent phase factor. The phase factor depends only on the external legs and is easily determined for each class of amplitudes [16]. It follows from these considerations [16] that the recent proposal of Bern, Dixon and Smirnov [17] which determines all multi-loop MHV planar amplitudes in the $\mathcal{N} = 4$ superconformal Yang-Mills theory can be carried over to a wider family of gauge theories obtained by real β-deformations of the $\mathcal{N} = 4$ Yang-Mills.

The purpose of this paper is to consider non-perturbative instanton effects in the β-
deformed theories and in the context of the AdS/CFT correspondence. The Lunin-Maldacena example [1] of the AdS/CFT duality relates the large-N limit of the β-deformed $\mathcal{N} = 4$ gauge theory to the type IIB string theory on the appropriately β-deformed $AdS_5 \times \tilde{S}^5$ background. The β-deformed gauge theory is living on the 4-dimensional boundary of the AdS_5 space. It is expected that each chiral primary operator (and its superconformal descendants) in this boundary conformal theory corresponds in supergravity to a particular Kaluza-Klein mode on the deformed sphere \tilde{S}^5. In this paper we will consider only the operators which correspond to the supergravity states which do not depend on \tilde{S}^5 coordinates, i.e. which are the lowest Kaluza-Klein modes on the deformed sphere. Furthermore, to simply the derivations, we will restrict ourselves to a particular class of such operators, considered previously in [5, 8], and to the minimal in n classes of their correlators G_n.

Following the approach developed in Ref. [8], we will evaluate all multi-instanton contributions to these correlation functions in the appropriate large-N scaling limit and to the leading non-vanishing order in perturbation theory around instantons. We will show that these correlation functions in the β-deformed $\mathcal{N} = 4$ SYM are in precise correspondence with the supergravity expectations. More precisely, we will be able to reproduce a class of leading higher-derivative corrections to the supergravity effective action, S_{eff}, from Yang-Mills instantons. In particular, we will see that the multi-instanton contributions to G_n will reconstruct the appropriate moduli forms $f_n(\tau, \bar{\tau})$ present in the S_{eff}. This is a particularly non-trivial observation since the dilaton-axion τ parameter in the deformed supergravity solution is not anymore equal to the complexified coupling τ_0 of the gauge theory. The dilaton ϕ is, in fact, a non-trivial function of the coordinates μ_i on the deformed sphere [1]

$$e^\phi = G^{1/2}(\beta; \mu_1, \mu_2, \mu_3) \cdot \frac{g^2}{4\pi}$$

Here g^2 is the Yang-Mills coupling constant and G is the function appearing in the Lunin-Maldacena solution in Eqs. (2.2)-(2.4) below. It will turn out, that in the β-deformed $\mathcal{N} = 4$ SYM, a proper inclusion of instanton collective coordinates will effectively upgrade the usual exponent of the k-instanton action $e^{2\pi ik\tau_0}$ into the required expression $e^{2\pi ik\tau}$.

The rest of our findings parallels those in Ref. [8]. We shall find that in the appropriately taken large-N scaling limit, the k-instanton collective coordinate measure has a geometry of a single copy of the 10-dimensional space $AdS_5 \times \tilde{S}^5$. We shall also observe that this k-instanton measure includes the partition function of the $SU(k)$ matrix model, thus matching the description of the D-instantons as D(-1) branes in string theory. In the Appendix we show that the full Yang-Mills k-instanton integration measure in the deformed theory is equivalent to the partition function of k D-instantons in the corresponding string theory where β-deformations are introduced via star products.

1The large-N limit appropriate for the comparison with the supergravity solution of [1], will also require that the deformation parameter β is kept small. Hence, starting from Section 5 we will take $N \to \infty$ and $\beta \to 0$.

2
In Sections 2–7 we consider the transformations with a real deformation parameter \(\beta = \beta_R \). The generalization to the case of complex deformations is carried out in Section 8. That Section contains the main results of the paper. There we explain how our instanton approach and the matching between the supergravity and the gauge theory expressions found at real values of \(\beta \) also apply for complex deformations.

The real-\(\beta \)-deformation of the \(\mathcal{N} = 4 \) supersymmetric gauge theory is described by the superpotential

\[
i g \text{Tr}(e^{i \pi \beta_R} \Phi_1 \Phi_2 \Phi_3 - e^{-i \pi \beta_R} \Phi_1 \Phi_3 \Phi_2),
\]

where \(\Phi_i \) are chiral \(\mathcal{N} = 1 \) superfields. The resulting superpotential preserves the \(\mathcal{N} = 1 \) supersymmetry of the original \(\mathcal{N} = 4 \) SYM and leads to a theory with a global \(U(1) \times U(1) \) symmetry (in addition to the usual \(U(1)_{RR} \) R-symmetry of the \(\mathcal{N} = 1 \) susy) [1]

\[
U(1)_1 : \quad (\Phi_1, \Phi_2, \Phi_3) \rightarrow (\Phi_1, e^{i \varphi_1} \Phi_2, e^{-i \varphi_1} \Phi_3)
\]

\[
U(1)_2 : \quad (\Phi_1, \Phi_2, \Phi_3) \rightarrow (e^{-i \varphi_2} \Phi_1, e^{i \varphi_2} \Phi_2, \Phi_3)
\]

It is known [15, 16] that (1.2) describes an exactly marginal deformation of the theory in the limit of large number of colors.

The more general case of complex \(\beta \)-deformations will be discussed in detail in Section 8. These deformations are characterized by the superpotential (8.1). The resulting deformed gauge theory is an \(\mathcal{N} = 1 \) supersymmetric gauge theory with a global symmetry (1.3). Importantly, the complex \(\beta \)-deformation is exactly marginal if the parameters of the deformation satisfy a certain condition – the Leigh-Strassler constraint [18]. For the real \(\beta_R \) case this constraint is trivial in the large \(N \) limit. Another important feature of the \(\beta \)-deformed gauge theory is the \(SL(2, Z)_s \) duality. It was pointed in [19] that under the \(SL(2, Z)_s \) transformations, the coupling constant and the deformation parameter \(\beta \) must transform as modular forms. Other aspects of the \(\beta \)-deformed gauge theory have been studied in in Refs. [20–33].

2. Supergravity Dual

The gravity dual of the \(\beta \)-deformed \(\mathcal{N} = 4 \) gauge theory was identified by Lunin and Maldacena in [1]. The \(U(1) \times U(1) \) global symmetry (1.3) of the \(\beta \)-deformed SYM plays an important rôle in this approach. One starts with the original \(AdS_5 \times S^5 \) background and compactifies it on a two-torus in such a way that the isometries of the torus match with the global \(U(1) \times U(1) \) symmetry in gauge theory. The idea [1] is then to use the \(SL(2, R) \) symmetry of type IIB supergravity compactified along the two-torus to generate a new solution of the supergravity equations. The \(SL(2, R) \) transformation acts on the complex parameter \(\tau = B_{12} + i \sqrt{g} \) of the
original gravitational theory. Here B_{12} is the NS-NS two-form field along the torus directions, and g is the determinant of the metric on the torus. The $SL(2, R)$ acts on this torus τ-parameter as follows

$$\tau \rightarrow \frac{\tau}{1 + \beta R \tau} \quad (2.1)$$

The geometry obtained in this way is (in the string frame) the product of $AdS_5 \times \tilde{S}^5$, where \tilde{S}^5 is a deformed five-sphere. In what follows we write down only the part of the supergravity solution which will be relevant for our purposes,\(^2\)

$$ds^2_{str} = R^2 \left[ds^2_{AdS_5} + \sum_i (d\mu_i^2 + G\mu_i^2 d\phi_i^2) + \hat{\gamma}^2 G\mu_1^2 \mu_2^2 \mu_3^2 (\sum_i d\phi_i)^2 \right], \quad (2.2)$$

$$e^\phi = e^{\phi_0} G^{1/2}, \quad (2.3)$$

$$G^{-1} = 1 + \hat{\gamma}^2 (\mu_1^2 \mu_2^2 + \mu_2^2 \mu_3^2 + \mu_1^2 \mu_3^2), \quad \hat{\gamma} := R^2 \beta \mu_0, \quad R^4 = 4\pi e^{\phi_0} N \quad (2.4)$$

The deformed five-sphere in the supergravity solution above is parameterized by the three radial variables μ_i, which satisfy the condition $\sum_{i=1}^3 \mu_i^2 = 1$, and the three angles ϕ_i.

The complete supergravity solution (which is valid for generic complex values of β) can be found in the original paper [1]. In addition to the five-form field F_5 already present in the $AdS_5 \times S^5$ geometry, the solution also includes the NS-NS two-form potential B_2 and the RR potential C_2.

It is important to note that the dilaton ϕ is no longer constant, but depends on the coordinates μ_i of the deformed five-sphere. The constant parameter is ϕ_0 which has the meaning of the dilaton of the parent undeformed solution, and it maps to the coupling constant of the dual gauge theory. However, it is ϕ and not ϕ_0 which plays the role of the dilaton in the deformed supergravity solution. The dilaton ϕ and the axion C are assembled in the standard way into a complex τ

$$\tau = ie^{-\phi} + C \quad (2.5)$$

Equation (2.3) relates this τ to the complexified coupling constant of the dual gauge theory,

$$\tau_0 = ie^{-\phi_0} + C = \frac{4\pi i}{g^2} + \frac{\theta}{2\pi} \quad (2.6)$$

\(^2\)As mentioned earlier we also restrict to real values of $\beta = \beta_R$ which was called γ in [1]. We will comment on the complex deformations in Section 8.
In summary, the dictionary between the parameters of the deformed Yang-Mills theory and type IIB superstring theory on $AdS_5 \times S^5_\gamma$ is as follows:

$$e^{-\phi} G^{1/2} = e^{-\phi_0} = \frac{4\pi}{g^2}, \quad C = \frac{\theta}{2\pi}$$

$$R^2 = \sqrt{g^2 N}$$

(2.7) (2.8)

and R is the radius of the AdS_5 space in units of $\sqrt{\alpha'}$. The supergravity background is a valid approximation to string theory in the small curvature regime [1]:

$$R \gg 1, \quad R\beta \ll 1$$

(2.9)

In terms of the gauge theory variables, the appropriate limit to consider is

$$g^2 N \gg 1, \quad N \gg 1, \quad \beta \ll 1$$

(2.10)

In the above, the $N \gg 1$ condition arises from the fact that the $SL(2, Z)$ duality can be used to map large string couplings to values which are not large.

As is well known, the supergravity action of type IIB theory is invariant under the non-compact symmetry group $SU(1, 1) \sim SL(2, R)$. The action of this symmetry leaves the metric invariant, but acts upon the dilaton-axion field τ of Eq. (2.5)

$$\tau \rightarrow \tau' = \frac{a\tau + b}{c\tau + d}, \quad ad - bc = 1, \quad a, b, c, d \in R.$$

(2.11)

The string theory is invariant only under the $SL(2, Z)$ subgroup of the $SL(2, R)$. This implies that the string theory effective action S_{IB} must be invariant under the $SL(2, Z)$ S-duality transformation.

The string effective action S_{IB} is related via the AdS/CFT holographic formula [3, 4] to correlation functions in the gauge theory,

$$\exp - S_{\text{IB}}[\Phi_O; J] = \left\langle \exp \int d^4 x J(x) O(x) \right\rangle$$

(2.12)

Here Φ_O are Kaluza-Klein modes of the supergravity fields which are dual to composite gauge theory operators O. The boundary conditions of the supergravity fields are set by the gauge theory sources on the boundary of AdS_5 via $\Phi_O(x) \propto J(x)$.

Constructing all the Kaluza-Klein modes on the deformed five-sphere is a non-trivial task, hence, in this paper we are restricting ourselves to the lowest Kaluza-Klein modes which do not depend on the coordinates of the deformed sphere.

D-instanton contributions in supergravity arise as $(\alpha')^3$ corrections [9] to the classical IIB theory. The D-instanton contribution to an n-point correlator G_n comes from a tree level
Feynman diagram with one vertex located at a point \((x_0, \rho, \hat{\Omega})\) in the bulk of \(AdS_5 \times \tilde{S}^5\). The diagram also has \(n\) external legs connecting the vertex to operator insertions on the boundary. There is a bulk-to-boundary propagator associated with each external leg \([4,34]\). For example, an \(SO(6)\) singlet scalar free field of mass \(m\) on \(AdS_5\) has the bulk-to-boundary propagator

\[
K_\Delta(x_0, \rho; x_0, x_0) = \frac{\rho^\Delta}{(\rho^2 + (x - x_0)^2)^\Delta},
\]

where \((mL)^2 = \Delta(\Delta - 4)\). At leading order beyond the Einstein-Hilbert term in the derivative expansion, the IIB effective action is expected to contain \([35], [9]\) an \(\mathcal{R}^4\) term\(^3\)

\[
(\alpha')^{-1} \int d^{10}x \sqrt{-g_{10}} e^{-\phi/2} f_4(\tau, \bar{\tau}) \mathcal{R}^4
\]

as well as its superpartners, including a totally antisymmetric 16-dilatino effective vertex of the form \([36,37]\)

\[
(\alpha')^{-1} \int d^{10}x \sqrt{-g_{10}} e^{-\phi/2} f_{16}(\tau, \bar{\tau}) \Lambda^{16} + \text{H.c.}
\]

The dilatino \(\Lambda\) is a complex chiral \(SO(9,1)\) spinor which transforms under the local \(U(1)\) symmetry with the charge \(q_\Lambda = 3/2\). Under the \(SL(2,\mathbb{Z})\) transformations \((2.11)\) all fields \(\Phi\) are multiplied by a (discrete) phase,

\[
\Phi \rightarrow \left(\frac{c\tau + d}{c\tau + d}\right)^{-q_\Phi/2} \Phi,
\]

and the charge \(q_\Phi\) for the dilatino is \(3/2\) and for the \(\mathcal{R}\) field it is zero.

Equations \((2.14)-(2.15)\) are written in the string frame with the coefficients \(f_n(\tau, \bar{\tau})\) being the modular forms of weights \(((n-4), -(n-4))\) under the \(SL(2,\mathbb{Z})\) transformations \((2.11)\),

\[
f_n(\tau, \bar{\tau}) := f^{(n-4),-(n-4)}(\tau, \bar{\tau}) \rightarrow \left(\frac{c\tau + d}{c\tau + d}\right)^{n-4} f^{(n-4),-(n-4)}(\tau, \bar{\tau}).
\]

The modular properties of \(f_n\) precisely cancel the phases of fields in \((2.16)\) acquired under the \(SL(2,\mathbb{Z})\). Thus the full string effective action is invariant under the \(SL(2,\mathbb{Z})\) and this modular symmetry ensures the S-duality of the type IIB superstring.

The modular forms \(f_n\) have been constructed by Green and Gutperle in \([35]\). In the weak coupling expansion the expressions for \(f_n\) contain an infinite sum of exponential terms

\[
e^{-\phi/2} f_n \ni \sum_{k=1}^\infty \text{const} \cdot \left(\frac{k}{G^{1/2} g^2}\right)^{n-7/2} e^{2\pi ik\tau} \sum_{d/k} \frac{1}{d^2},
\]

\(^3\)Here, \(\mathcal{R}^4\) denotes a particular contraction \([35]\) of four ten-dimensional Riemann tensors.
In the original undeformed $\mathcal{N} = 4$ scenario, $\tau = \tau_0$ and the modular forms f_n in the string effective action can be thought of as functions of the gauge coupling constants τ_0 and $\bar{\tau}_0$. In this case, each of the terms in the expression above must correspond to a contribution of an instanton of charge k. On the other hand, the k-instanton contributions can be independently calculated directly in gauge theory. These calculations have been performed in [5, 6] at the 1-instanton level and in [7, 8] for the general k-instanton case. Remarkably, the SYM results of [5–8] tuned out to be in precise agreement with the supergravity predictions for the effective action Eqs. (2.14)-(2.18) and in Eq. (2.20) below.

The goal of the present paper is to attempt to reproduce these results in the β-deformed case. Hence we want to interpret the sum on the right hand side of (2.18) again as coming from multi-instantons in gauge theory. We see that, at least potentially, there is a puzzle in this interpretation as the Yang-Mills k-instantons are expected to contribute factors proportional to $e^{2\pi i k \tau_0}$ rather than to $e^{2\pi i k \tau}$. In the rest of the paper when we perform an explicit k-instanton calculation in the β-deformed SYM we will find the resolution of this puzzle.

The main object of interest for us are the n-point correlation functions of certain composite operators in the β-deformed SYM. We can consider the same classes of the operators as in [5, 8, 12] which correspond to the lowest KK-modes in supergravity. Specifically we will analyze the gauge-invariant chiral correlators G_n, $n = 16, 8$ or 4, defined by:

\begin{align}
G_{16} &= \langle \mathcal{O}(x_1) \cdots \mathcal{O}(x_{16}) \rangle, \quad \mathcal{O} := \Lambda^A_{\alpha} = g^{-2} \sigma^{mn}_\alpha \beta \text{tr}_N F_{mn} \lambda^A_\beta, \\
G_8 &= \langle \mathcal{O}(x_1) \cdots \mathcal{O}(x_8) \rangle, \quad \mathcal{O} := B^{[AB]}_{mn} = g^{-2} \text{tr}_N (\lambda^A \sigma_{mn} \lambda^B + 2i F_{mn} \Phi^{AB}), \\
G_8 &= \langle \mathcal{O}(x_1) \cdots \mathcal{O}(x_8) \rangle, \quad \mathcal{O} := \mathcal{E}^{(AB)} = g^{-2} \text{tr}_N (\lambda^A \lambda^B + t^{(AB)}_{[abc]} \phi^a \phi^b \phi^c), \\
G_4 &= \langle \mathcal{O}(x_1) \cdots \mathcal{O}(x_4) \rangle, \quad \mathcal{O} := Q^{ab} = g^{-2} \text{tr}_N (\phi^a \phi^b - \frac{1}{6} \delta^{ab} \phi^c \phi^c),
\end{align}

where t in Eq. (2.19c) is a numerical tensor. In the notation of Ref. [12] these correlators were called the minimal ones. The non-minimal correlators G_n with higher n were considered in [12] in the context of the original $\mathcal{N} = 4$ AdS/CFT correspondence. In the present paper we will concentrate on the minimal case above, and paying particular attention to the correlators in (2.19a) and (2.19b).

The AdS/CFT holographic relation then predicts that these correlators must lead on the supergravity side to the following expressions:

\begin{equation}
G_n \sim (\alpha')^{-1} \int d^4x \frac{d\rho}{\rho^3} \int G d^5\hat{\Omega} \ t_n e^{-\phi/2} f_n(\tau, \bar{\tau}) \prod_{i=1}^n K(x_0, \rho; x_i, 0)
\end{equation}

Here $G d^5\hat{\Omega}$ represents the volume form on the \hat{S}^5 and each K denotes the bulk-to-boundary propagator which corresponds to each particular operator in (2.19a)-(2.19d). Various index contractions between the n states (propagators) are schematically represented by a tensor t_n.

7
We want to verify the above relations using multi-instanton calculations in the \(\beta \)-deformed SYM theory. As in Ref. [8] it will actually be sufficient for this purpose to concentrate on the multi-instanton partition function. The correlators can be obtained from the latter by inserting in it the operators calculated on the instanton solution.

3. Marginal \(\beta \)-deformations of \(\mathcal{N} = 4 \) SYM

The \(\beta \)-deformed Yang-Mills is an \(\mathcal{N} = 1 \) supersymmetric conformal gauge theory with a global \(U(1) \times U(1) \) symmetry (1.3). Lunin and Maldacena have pointed out [1] that the \(\beta_R \)-deformation in (1.2) can be understood as arising from introducing the star products between the fields in the \(\mathcal{N} = 4 \) Lagrangian,

\[
f \ast g \equiv e^{i\pi \beta_R (Q_1^2 - Q_2^2)} fg
\]

(3.1)

Here \((Q_1^{\text{field}}, Q_2^{\text{field}})\) are the \(U(1) \times U(1) \) charges of the fields \((f, g)\). The values of the charges for component fields are read from (1.3):

\[
\begin{align*}
\Phi_1, \lambda_1 : \quad & (Q_1, Q_2) = (0, -1) \\
\Phi_2, \lambda_2 : \quad & (Q_1, Q_2) = (1, 1) \\
\Phi_3, \lambda_3 : \quad & (Q_1, Q_2) = (-1, 0) \\
A_m, \lambda_4 : \quad & (Q_1, Q_2) = (0, 0)
\end{align*}
\]

(3.2-3.5)

and for the conjugate fields \((\bar{\Phi}_i, \bar{\lambda}_i)\) the charges are opposite.

The component Lagrangian of the \(\beta_R \)-deformed theory is easily read from the \(\mathcal{N} = 4 \) Lagrangian

\[
\mathcal{L} = \text{Tr} \left(\frac{1}{4} F^{\mu\nu} F_{\mu\nu} + (D^\mu \Phi^i)(D_\mu \Phi_i) - \frac{g^2}{2} [\Phi_i, \Phi_j]_s [\Phi^i, \Phi^j]_s + \frac{g^2}{4} [\Phi_i, \Phi^i][\Phi_j, \Phi^j] \\
+ \lambda_A \sigma^\mu D_\mu \lambda^A - ig([\lambda_4, \lambda_3] \Phi^i + [\bar{\lambda}^4, \bar{\lambda}^3] \Phi_i) + \frac{i g}{2} (\epsilon^{ijk}[\lambda_i, \lambda_j]_s \Phi_k + \epsilon_{ijk}[\bar{\lambda}^i, \bar{\lambda}^j]_s \Phi^k) \right)
\]

(3.6)

In the above equation the star products (3.1) are used for fields charged under the \(U(1)_1 \times U(1)_2 \). We have also used the fact that the star product is trivial between two fields which have opposite \(U(1)_1 \times U(1)_2 \) charges. We have also introduced the \(\beta_R \)-deformed commutator of fields which is simply

\[
[f_i, g_j]_s := f_i \ast g_j - g_j \ast f_i = e^{i\pi \beta_{ij}} f_i g_j - e^{-i\pi \beta_{ij}} g_j f_i ,
\]

(3.7)

and \(\beta_{ij} \) is defined as

\[
\beta_{ij} = -\beta_{ji}, \quad \beta_{12} = -\beta_{13} = \beta_{23} := \beta_R .
\]

(3.8)
More generally, and for future reference we also define a 4×4 deformation matrix β_{AB} with $A, B = 1, \ldots, 4$

$$
\beta_{AB} = -\beta_{BA}, \quad \beta_{4i} = 0, \quad \beta_{12} = -\beta_{13} = \beta_{23} := \beta_R.
$$

The component Lagrangian in the form (3.6) is well-suited for tracing the β_R-dependence in perturbative calculations and it was utilized in [16].

For carrying out multi-instanton calculations in the formalism of [8,11] it is more convenient to switch to a different basis for scalar fields. We assemble the three complex scalars Φ^i into an adjoint-valued antisymmetric tensor field $\Phi^{AB}(x)$, subject to a specific reality condition:

$$
\frac{1}{2} \epsilon^{ABCD} \Phi_{CD} = \bar{\Phi}^{AB},
$$

which implies that it transforms in the vector 6 representation of $SO(6)_R$ symmetry of the $\mathcal{N} = 4$ SYM. In terms of the six real scalars ϕ^a it can be written as [8]

$$
\Phi^{AB} = \frac{1}{\sqrt{8}} \Sigma^{AB}_a \phi^a, \quad \bar{\Phi}^{AB} = - \frac{1}{\sqrt{8}} \Sigma^{AB}_a \phi^a, \quad a = 1, \ldots, 6
$$

where the coefficients Σ^{AB}_a and $\bar{\Sigma}^{AB}_a$ are expressed in terms of the 't Hooft η-symbols:

$$
\Sigma^{AB}_a = (\eta^{1}_{AB}, i\bar{\eta}^{1}_{AB}, \eta^{2}_{AB}, i\bar{\eta}^{2}_{AB}, \eta^{3}_{AB}, i\bar{\eta}^{3}_{AB}),
$$

$$
\bar{\Sigma}^{AB}_a = (- \eta^{1}_{AB}, i\bar{\eta}^{1}_{AB}, -\eta^{2}_{AB}, i\bar{\eta}^{2}_{AB}, -\eta^{3}_{AB}, i\bar{\eta}^{3}_{AB})
$$

Here η and $\bar{\eta}$ are the selfdual and anti-selfdual 't Hooft symbols [38]:

$$
\bar{\eta}^{c}_{AB} = \eta^{c}_{AB} = \epsilon_{cAB} \quad A, B \in \{1,2,3\},
$$

$$
\bar{\eta}^{c}_{1A} = \eta^{c}_{1A} = \delta_{cA},
$$

$$
\bar{\eta}^{c}_{AB} = -\eta^{c}_{BA}, \quad \bar{\eta}^{c}_{BA} = -\eta^{c}_{AB}.
$$

The relation between the two bases of scalar fields is then given by

$$
\Phi_1 = \frac{1}{\sqrt{2}}(\phi^1 + i\phi^2) = 2 \bar{\Phi}^{23} = 2 \Phi^{14}
$$

$$
\Phi_2 = \frac{1}{\sqrt{2}}(\phi^3 + i\phi^4) = 2 \Phi^{31} = 2 \Phi^{24}
$$

$$
\Phi_3 = \frac{1}{\sqrt{2}}(\phi^5 + i\phi^6) = 2 \Phi^{12} = 2 \Phi^{34}
$$

and their $U(1)_1 \times U(1)_2$ charges can be read off (3.2)-(3.4)

4. Instantons in the β-deformed $\mathcal{N} = 4$ SYM

In pure gauge theory, instantons obey the self-duality equation

$$
F_{mn} = *F_{mn}
$$

(4.1)
The ADHM \(k\)-instanton \([39–41]\) is the gauge configuration, \(A_m\), which is the general solution of (4.1) with the topological charge \(k\). When gauge fields are coupled to fermions and scalars, as in the \(\mathcal{N} = 4\) SYM, one needs to consider the coupled classical Euler-Lagrange equations instead of (4.1). Instanton configurations then also include fermion and scalar-field components. Our goal, however, is not just to find classical solutions, but rather to calculate their quantum contributions to correlators \(G_n\), which includes the effects of a perturbative expansion in the instanton background. The way to take the leading perturbations into account automatically is to modify the background configuration itself as explained in [8]; however, the instanton supermultiplet is then no longer an exact solution to the coupled equations of motion. In particular, \(k\)-instanton fermion components in the \(\mathcal{N} = 4\) \(SU(N)\) SYM are defined [8] to contain all of the \(8kN\) fermion zero modes of the Dirac operator, \(\slashed{D}\) and not just the 16 exact unlifted zero modes. Similarly, in the \(\beta\)-deformed theory, the same total of \(8kN\) fermion zero modes will be included into the \(k\)-instanton supermultiplet, even though only 4 of them are exact in the theory with \(\mathcal{N} = 1\) supersymmetry.

As a result, our strategy (see Section 2 of Ref. [8] and in Section 4 of Ref. [11] for more detail) is to solve Euler-Lagrange equations iteratively, order by order in the Yang-Mills coupling. In this paper we restrict our attention to the leading semiclassical order, meaning the first non-vanishing order in \(g\) at each topological level. The relevant equations which define these leading order instanton component fields are the self-duality equation (4.1) together with the fermion zero-mode equation

\[
\mathcal{D}^{\dot{\alpha}} \lambda^A = 0 \tag{4.2}
\]

and the equation for the scalar field, which for the \(\beta\)-deformed theory takes the form

\[
\mathcal{D}^2 \Phi^{AB} = \sqrt{2} i \left(\lambda^A \ast \lambda^B - \lambda^B \ast \lambda^A \right) \tag{4.3}
\]

Here \(\mathcal{D}^{\dot{\alpha}} = D^m \sigma_m^{\dot{\alpha}}\) and \(\mathcal{D}^2 = D^m D_m\) where \(D_m\) is the covariant derivative in the instanton background \(A_m\).

For convenience, in deriving classical equations above, we have rescaled all fields in the Lagrangian with an overall factor of \(1/g\), so that the only \(g\) dependence in the action is through the overall coefficient \(1/g^2\). Hence, \(g\) does not appear on the right hand side of (4.3). The explicit \(g\) dependence in the Euler-Lagrange equations can be trivially restored by undoing this rescaling.

Equation (4.1) specifies the gauge field instanton component \(A_m\) of topological charge \(k\). The second equation (4.2) defines gaugino components \(\lambda^A\) of the instanton. As already mentioned, all \(8kN\) adjoint fermion zero mode solutions of (4.2) are included in the \(k\)-instanton supermultiplet. Only 4 of these modes are protected by the \(\mathcal{N} = 1\) superconformal invariance of the theory and are exact zero modes. Remaining \(8kN - 4\) fermion zero modes will be lifted
by interactions, this means that the instanton action will depend on collective coordinates of these fermion modes.

The last equation (4.3) determines the scalar field instanton components Φ^{AB} in terms of the gauge-field and gaugino components. β-deformation affects only this equation and it appears via the star product in the commutator on the right hand side. Apart from this obvious modification in (4.3), all three equations (4.1)-(4.3) are the same as in the undeformed $\mathcal{N} = 4$ SYM of Ref. [8].

In order to evaluate correlators G_n in the SYM picture, one inserts the n appropriate gauge-invariant operators under the integration $\int d\mu_{\text{phys}}^k \exp(-S_{\text{inst}}^k)$ where S_{inst}^k is the k-instanton action and $d\mu_{\text{phys}}^k$ is the collective coordinate measure.

The ADHM gauge-field and the gaugino components of the instanton are parameterized by a set of collective coordinates. The scalar field is entirely determined in terms of A_m and λ^A in (4.3) and no new collective coordinates of the instanton are associated with Φ^{AB}. In general, there are $4kN$ independent bosonic and $8kN$ independent fermionic collective coordinates of a k-instanton configuration in our model. The simplest way to define the collective coordinate integration measure $d\mu_{\text{phys}}^k$ is to consider an even larger set of instanton collective coordinates which are not all independent, but satisfy certain algebraic equations – the ADHM constraints (4.5).

These bosonic and fermionic collective coordinates live, respectively, in an $(N + 2k) \times 2k$ complex matrix a, and in an $(N + 2k) \times k$ Grassmann-valued complex matrix \mathcal{M}^A, where the $SU(4)_R$ index $A = 1, 2, 3, 4$ labels the supersymmetry. In components:

\begin{equation}
\begin{aligned}
a &= \left(w_{ui\dot{\alpha}} \right)_{\beta \dot{\alpha} \bar{a}}, \\
\mathcal{M}^A &= \left(\frac{\mu_{ui\dot{\alpha}}^A}{(\bar{M}_{\beta \dot{\alpha}}^A)^{\bar{a}}_{\dot{\alpha}}^{\bar{a}}} \right)
\end{aligned}
\end{equation}

where both a'_m (defined by $a'_m = a'_m \sigma^m_{\beta \dot{\alpha}}$) and $\mathcal{M}^A_{\beta \dot{\alpha}}$ are Hermitian $k \times k$ matrices. These matrices are subject to the ADHM constraints:

\begin{equation}
\begin{aligned}
\text{tr}_2 (\tau^c a a)_{ij} = 0, \\
(\mathcal{M}^A a + a \mathcal{M}^A)_{\beta \dot{\alpha} i j} = 0
\end{aligned}
\end{equation}

as well as to a $U(k)$ symmetry

\begin{equation}
\begin{aligned}
w_{ui\dot{\alpha}} &\to w_{uju}U_{ji}, \\
da'_{mij} &\to U^{-1}_{ik} a'_{mkl} U_{lj}, \\
U &\in U(k),
\end{aligned}
\end{equation}

We use notations of Refs. [8,11] throughout. The indices $u, v = 1, \ldots, N$ are $SU(N)$ indices; $\alpha, \dot{\alpha}, \text{etc.} = 1, 2$ are Weyl indices (traced over with tr_2); $i, j = 1, \ldots, k$ (k being the topological number) are instanton indices (traced over with tr_k); and $m, n = 1, 2, 3, 4$ are Euclidean Lorentz indices. Pauli matrices are $(\tau^c)^\beta_{\dot{\alpha}}$ where $c = 1, 2, 3$.

11
In the dilute instanton gas limit, the individual collective coordinates of the k far-separated instantons are

$$x^i_n = -(a'_n)^i_i, \quad \rho^2 = \frac{1}{2} \bar{w}_{ia} \omega^a_{ia}, \quad (t^c_i)_{uv} = \rho^{-2} w_{ui\dot{a}} (\tau^c)^{i\dot{i}}_{\beta\dot{\beta}} \bar{w}^{\dot{\beta}}_{iv},$$

where x^i_n are positions, ρ_i are the sizes and t^c_i are the SU(2) generators of the individual instantons $i = 1, \ldots, k$.

The gauge field, gaugino and scalar field components of the k-instanton configuration which solve equations (4.1)-(4.3) can be found in Ref. [8, 11] for the original $\mathcal{N} = 4$ SYM. The multi-instanton components in the β-deformed theory are obtained from the $\mathcal{N} = 4$ expressions in [8,11] simply by applying the star products for all quantities charged under the $U(1) \times U(1)$ symmetry.

This multi-instanton configuration gives rise to the k-instanton action

$$S^k_{\text{inst}} = \frac{8\pi^2 k}{g^2} + ik\theta + S^k_{\text{quad}}. \quad (4.8)$$

Here S^k_{quad} is a term quadrilinear in fermionic collective coordinates, with one fermion collective coordinate chosen from each of the four gaugino sectors $A = 1, 2, 3, 4$:

$$S^k_{\text{quad}} = \frac{\pi^2}{g^2} \epsilon_{ABCD} \text{tr}_k \left(\Lambda_{A+B} L^{-1} \Lambda_{C+D} \right). \quad (4.9)$$

The $k \times k$ anti-Hermitian fermion bilinear Λ_{A+B} is given by

$$\Lambda_{A+B} := \frac{1}{2\sqrt{2}} (\mathcal{M}^A \ast \mathcal{M}^B - \tilde{\mathcal{M}}^B \ast \mathcal{M}^A) \quad (4.10)$$

and L is a linear self-adjoint operator that maps the k^2-dimensional space of such matrices onto itself:

$$L \cdot \Omega = \frac{1}{2} \{ \Omega, \bar{w}^{\dot{a}} w_a \} + [a'_n, [a'_n, \Omega]]. \quad (4.11)$$

The expression for the k-instanton action in the $\mathcal{N} = 4$ theory was first derived in [42] and subsequently used in [8,11]. The only modification of this expression in the β-deformed theory is the appearance of the star product between the fermionic collective coordinates in (4.10).

In general, the Grassmann collective coordinates \mathcal{M}^A and $\tilde{\mathcal{M}}^A$ are so far the only parameters appearing in the instanton configuration which are charged under the $U(1) \times U(1)$. Hence the β-dependence is recovered from the $\mathcal{N} = 4$ results by introducing the star products in

5The $*$-subscript in Λ_{A+B} is used to indicate that the right hand side of (4.10) contains the star-product of the Grassmann collective coordinates \mathcal{M}^A and $\tilde{\mathcal{M}}^A$.
expressions involving \mathcal{M}^A and $\bar{\mathcal{M}}^A$ parameters. In the original $\mathcal{N} = 4$ theory, S_{quad}^k lifts all the adjoint fermion modes except the 16 exact supersymmetric and superconformal modes. The β-deformed theory lifts $8kN - 4$ fermion modes. The unlifted modes are the two supersymmetric $\lambda_{\text{ss}}^{A=4}$ and two superconformal modes $\lambda_{\text{sc}}^{A=4}$ of the unbroken $\mathcal{N} = 1$ supersymmetry.

Following Ref. [8], we now want to simplify S_{quad}^k by integrating in some new bosonic parameters. The idea is to replace the fermion quadrilinear S_{quad}^k with a fermion bilinear coupled to a set of auxiliary Gaussian variables. These take the form of an anti-symmetric tensor $\chi^{AB} = -\chi^{BA}$ whose elements are $k \times k$ matrices in instanton indices. We have

$$\exp \left(-S_{\text{quad}}^k \right) = \pi^{-3k^2} \left(\det_k L \right)^3 \int d^{6k^2} \chi \exp \left[-\text{tr}_k (\epsilon_{ABCD} \chi_{AB} L \chi_{CD}) + 4\pi i g^{-1} \text{tr}_k (\chi_{AB} \Lambda_{A*B}) \right]$$

(4.12)

The variable χ_{AB} transforms in the vector representation of the $SO(6) \cong SU(4)$ R-symmetry and is subject to the reality condition $\chi^{\dagger AB} = \frac{1}{2} \epsilon^{ABCD} \chi_{CD}$

Next we turn to the k-instanton $\mathcal{N} = 4$ collective coordinate measure. This measure involves integrations over all bosonic and fermionic collective coordinates of the k-instanton, subject to the bosonic and fermionic ADHM constraints (4.5). These constraints are implemented via insertions of the appropriate delta functions [43]. The k-instanton integration measure for $\mathcal{N} = 4$ SYM reads [8]:

$$\int d\mu_{\text{phys}}^k = \frac{2^{-k^2/2} (C_1)^k}{\text{Vol} U(k)} \int d^{4k^2} a \' d^{2kN} \bar{w} d^{2kN} w \prod_{A=1}^4 d^{2k^2} \mathcal{M}^A \ d^{kN} \bar{\mu}^A \ d^{kN} \mu^A$$

$$\times \left(\det_k L \right)^{-3} \prod_{r=1}^{k^2} \prod_{c=1,2,3} \delta \left(\frac{1}{2} \text{tr}_k T^r (\text{tr}_2 \tau^c \bar{a} a) \right) \prod_{A=1}^4 \prod_{\dot{\alpha}=1,2} \delta \left(\text{tr}_k T^r (\mathcal{M}^A a_{\dot{\alpha}} + \bar{a}_{\dot{\alpha}} \mathcal{M}^A) \right) \right] .$$

(4.13)

The constant C_1 is fixed at the 1-instanton level [8]

$$C_1 = 2^{-2N+1/2} \pi^{-6N} g^{4N}$$

(4.14)

by comparing Eq. (4.13) with the standard 1-instanton ’t Hooft-Bernard measure [38,44]. The integrals over the $k \times k$ matrices a_n', \mathcal{M}^A and \mathcal{A}^{AB} are defined in (4.13) as the integral over the components with respect to a Hermitian basis of $k \times k$ matrices T^r normalized so that $\text{tr}_k T^r T^s = \delta^{rs}$.

The complete instanton partition function, $\int d\mu_{\text{phys}}^k \exp(-S_{\text{inst}}^k)$, in the β-deformed gauge
theory is given by

\[
\frac{(C_1)^k 2^{-k^2/2} \pi^{-3k^2}}{\text{Vol} U(k)} \int d^{1k^2} a' d^{2kN} \bar{w} d^{2kN} w \, d^{6k^2} \chi \prod_{A=1}^{4} d^{2k^2} \mathcal{M}^A d^{kN} \bar{\mu}^A d^{kN} \mu^A \\
\prod_{r=1}^{k^2} \left[\prod_{c=1,2,3} \delta \left(\frac{1}{2} \text{tr}_k T^r (\text{tr}_2 \tau^c \tilde{a}^c) \right) \prod_{A=1}^{4} \prod_{\hat{a}=1,2} \delta \left(\text{tr}_k T^r (\bar{\mathcal{M}}^A a_{\hat{a}} + \bar{a}_{\hat{a}} \mathcal{M}^A) \right) \right] \exp \left[-8\frac{\pi^2}{g^2} - \text{tr}_k \left(\epsilon_{ABCD} \chi_{AB} \mathcal{L} \chi_{CD} \right) + \frac{4\pi i}{g} \text{tr}_k \left(\chi_{AB} \Lambda_{A*B} \right) \right]
\]

We note that this expression differs from the original $\mathcal{N} = 4$ result of [8] only through the star product in the last term in the exponent. In the following Section we will see that this fact has profound consequences.

In the Appendix we also give an alternative string theory derivation of (4.15). We show there that our gauge theory expression (4.15) is identical to the partition function of k D-instantons in string theory with the β-deformation.

5. The large-N saddle-point integration: 1-instanton case

We will first carry out integrations over collective coordinates in the simplest case of a single instanton $k = 1$. The generalization to multi-instantons will be discussed in the following Section.

One way to carry out the single-instanton calculation, is to first solve the ADHM constraints (4.5), and then to integrate out the corresponding delta-functions in (4.15). The collective coordinates (4.4) which satisfy the $k = 1$ ADHM constraints can be written in the simple canonical form [6,45]:

\[
a = \begin{pmatrix}
0 & 0 \\
\vdots & \vdots \\
0 & 0 \\
\rho & 0 \\
-x_0^m \sigma_m \\
\end{pmatrix}, \quad \mathcal{M}^A = \begin{pmatrix}
\nu_1^A \\
\vdots \\
\nu_{N-2}^A \\
4i\rho \tilde{\eta}^A_{11} \\
4i\rho \tilde{\eta}^A_{22} \\
4\xi_1^A \\
4\xi_2^A \\
\end{pmatrix}
\]

Here we follow the usual notation where $\rho \in \mathbb{R}$ and $x_0^m \in \mathbb{R}^4$ denote the size and position of the instanton, and ξ_{α}^A and $\tilde{\eta}^{A\alpha}$ are the supersymmetric and superconformal fermion zero
modes, respectively. Equation (5.1) assumes the canonical ‘North pole’ embedding of the $SU(2)$ instanton within $SU(N)$; more generally there is a manifold of equivalent instantons obtained by acting on (5.1) by transformations Ω in the coset space $\Omega \in U(N) / (U(N-2) \times U(1))$. The complex Grassmann coordinates ν^A_i in Eq. (5.1) (which do not carry a Weyl spinor index) may be thought of as the superpartners of the coset embedding parameters Ω. Together, ξ^A_α, $\bar{\eta}^A_\dot{\alpha}$, ν^A_i and $\bar{\nu}^A_i$ constitute $8N$ fermionic collective coordinates of a single instanton in the $\mathcal{N}=4$ SYM.

After integrating out the delta functions imposing the ADHM constraints, and integrating over the instanton iso-orientations Ω, the instanton measure (4.15) for $k=1$ reduces to:

$$\int d\mu_{\text{phys}}^1 e^{-S_{\text{inst}}^1} = \frac{2^{-31}}{(N-1)!(N-2)!} \int d^4x_0 \, d\rho \, d^6\chi \prod_{A=1}^{4} d^2 \xi^A \, d^2 \bar{\eta}^A \, d^{(N-2)} \nu^A \, d^{(N-2)} \bar{\nu}^A \rho^{4N-7} \exp \left[-\frac{8\pi^2}{g^2} + i\theta - 2\rho^2 \chi^a \chi_a + \frac{4\pi i}{g} \chi_{AB} \Lambda_{AB} \right] \quad (5.2)$$

The integral is expressed in terms of the collective coordinates (5.1) and we have substituted the 1-instanton expression $L = 2\rho^2$. The fermion bilinear in the 1-instanton case reads

$$\Lambda_{AB} = \frac{1}{2\sqrt{2}} \sum_{i=1}^{N-2} \left(e^{i\pi \beta_{AB}} \bar{\nu}^A_i \nu^B_i - e^{-i\pi \beta_{AB}} \bar{\nu}^B_i \nu^A_i \right) + i8\sqrt{2} \sin(\pi \beta_{AB}) \left(\rho^2 \bar{\eta}^A \cdot \bar{\eta}^B + \chi^A \cdot \chi^B \right) \quad (5.3)$$

In the expression above we used the fact the products of Grassmann parameters with the Weyl index $\xi^A \cdot \xi^B := \xi^{A\alpha}_\alpha \xi^B_\alpha$ and $\bar{\eta}^A \cdot \bar{\eta}^B := \bar{\eta}^A_\dot{\alpha} \bar{\eta}^B_{\dot{\alpha}}$ are symmetric in A and B. The 4×4 antisymmetric matrix β_{AB} was defined in (3.9).

It is worth noting that the second term on the right hand side of (5.3) is non-vanishing only for non-zero values of the deformation parameter β_{AB}. This implies that there are precisely four exact fermion zero modes in the β-deformed theory which do not enter (5.3): two supersymmetric ones, ξ^A_4, and two superconformal $\bar{\eta}^A_4$ modes. In the undeformed $\mathcal{N}=4$ theory, all 16 supersymmetric and superconformal modes were absent from Λ_{AB} and hence from the instanton action.

However, even though only 4 out of 16 supersymmetric and superconformal modes are exact, they will altogether be irrelevant for our purposes. The main point here is the fact that we can choose such correlators that all 16 of these modes will be saturated by the instanton expressions for the Yang-Mills operators inserted into the partition function (5.2). At the same time we require that all of the remaining ν and $\bar{\nu}$ modes in the instanton partition function should not be lifted by the insertions of the operators. For this to be correct, we first of all need to restrict ourselves to the insertions of gauge invariant composite operators which correspond to zero KK modes on the deformed sphere \tilde{S}^5 in supergravity.\footnote{Insertions of the operators corresponding to non-zero KK modes would lift some of the ν and $\bar{\nu}$ modes, as in the $\beta = 0$ case studied in [8,12].} Secondly, we have to restrict
to the minimal correlators (2.19a)-(2.19d) of these operators. In the case of \(\langle \Lambda^{16}\rangle\) correlator (2.19a) and the \(\langle B^8\rangle\) correlator (2.19b) all of the 16 supersymmetric/superconformal modes and none of the \(\nu\) and \(\bar{\nu}\) modes are lifted by the operator insertions.\(^9\) In summary, for our purposes of calculating the minimal correlators in (2.19a), (2.19b) (and also in (2.19c), (2.19d) in the small-\(\beta\) regime) one can always neglect the second term on the right hand side of (5.3), which is what we will do from now on.

We can now start integrating out fermionic collective coordinates \(\nu_i^A\) and \(\bar{\nu}_i^A\) from the instanton partition function (5.2). For each value of \(i = 1, \ldots, N - 2\) this integration gives a factor of

\[
\left(\frac{4\pi}{g} \frac{1}{\sqrt{2}}\right)^4 \det_4 \left(e^{i\pi \beta_{AB} \chi_{AB}} \right)
\]

The determinant above can be calculated directly. It will be useful to express the result in terms of the three complex variables \(X_i\) which are defined in terms of \(\chi_{AB}\) in the way analogous to Eqs. (3.15):

\[
\begin{align*}
X_1 &= \chi^1 + i\chi^2 = 2\sqrt{2} \chi_{23}^\dagger = 2\sqrt{2} \chi_{14} \\
X_2 &= \chi^3 + i\chi^4 = 2\sqrt{2} \chi_{31}^\dagger = 2\sqrt{2} \chi_{24} \\
X_3 &= \chi^5 + i\chi^6 = 2\sqrt{2} \chi_{12}^\dagger = 2\sqrt{2} \chi_{34}
\end{align*}
\]

In terms of these degrees of freedom, the \(\beta\)-deformed determinant takes the form

\[
\det_4 \left(e^{i\pi \beta_{AB} \chi_{AB}} \right) = \frac{1}{64} \left((|X_1|^2 + |X_2|^2 + |X_3|^2)^2 - 4 \sin^2(\pi \beta_R) (|X_1|^2|X_2|^2 + |X_2|^2|X_3|^2 + |X_1|^2|X_3|^2) \right)
\]

It follows that the determinant depends only on the three absolute values of \(|X|\) and is independent of the three angles. We can further change variables as follows:

\[
|X_i| = r \mu_i , \quad \sum_{i=1}^3 \mu_i^2 = 1
\]

and write

\[
\left(\frac{4\pi}{g} \frac{1}{\sqrt{2}}\right)^4 \det_4 \left(e^{i\pi \beta_{AB} \chi_{AB}} \right) = \left(\frac{\pi}{g}\right)^4 r^4 \left(1 - 4 \sin^2(\pi \beta_R) Q \right)
\]

\(^9\)For the non-minimal correlators involving higher values of \(n\) this is not the case anymore. At the same time, even the minimal correlators \(\langle \mathcal{E}^8\rangle\) and \(\langle Q^4\rangle\) in (2.19c)-(2.19d) can receive corrections from saturating some of the \(\nu\) and \(\bar{\nu}\) modes by the operator insertions. This would then require one to keep (part or all) of the 12 lifted supersymmetric/superconformal modes in the exponent. These corrections can in principle be straightforwardly calculated in the small \(\beta\)-limit, which is the regime relevant for comparison with the supergravity. We thank Stefano Kovacs for pointing this out to us. For more detail on the fermion-zero-mode structure of the operator insertions we refer the reader to Ref. [12].
where

\[Q := \mu_1^2 \mu_2^2 + \mu_2^2 \mu_3^2 + \mu_1^2 \mu_3^2 \] (5.9)

We also split the integral over \(d^6 \chi \) in the partition function into an integral over \(r \) and the integral over the 5-sphere \(\hat{\Omega} \):

\[\int d^6 \chi = \int r^5 dr \int d^5 \hat{\Omega}, \quad \text{where} \quad \int d^5 \hat{\Omega} \propto \int d\mu_1^2 d\mu_2^2 d\mu_3^2 \delta(\sum_{i=1}^{3} \mu_i^2 - 1) \] (5.10)

In summary after integrating out all of the \(\nu \) and \(\bar{\nu} \) fermionic collective coordinates we find

\[\int d\mu_{\text{phys}}^1 e^{-S_{\text{inst}}} = \frac{g^8}{2^{31} \pi^{13} (N-1)!(N-2)!} \int d^4 x_0 \frac{d\rho}{\rho^5} d^5 \hat{\Omega} \prod_{A=1,2,3,4} d^2 \xi_A d^2 \bar{\eta}_A e^{-\frac{8\pi^2}{g^2}+i\theta} \left(1 - 4 \sin^2(\pi \beta_R) Q \right)^{N-2} \rho^{4N-2} I_N \] (5.11)

Here \(I_N \) denotes the \(r \) integration, which it is instructive to separate out:

\[I_N = \int_0^\infty dr \, r^{4N-3} e^{-2\rho^2 r^2} = \frac{1}{2} \left(2\rho^2 \right)^{2N+1} \int_0^\infty dx \, x^{2N-2} e^{-x} = \frac{1}{2} \left(2\rho^2 \right)^{1-2N} (2N-2)! \] (5.12)

From Eqs. (5.11)-(5.12) one sees that the \(x_0 \) and \(\rho \) integrations assemble into the scale-invariant \(AdS_5 \) volume form \(d^4 x_0 d\rho \rho^{-5} \) and also the integration over the 5-sphere arises from \(d^5 \hat{\Omega} \). However, it also follows that the final result given by Eqs. (5.11)-(5.12) is so far unsatisfactory from the perspective of the supergravity interpretation. First of all, the \(\chi \) variables gave rise to the integration over the undeformed sphere \(S^5 \). Secondly, the \(\beta_R \)-dependent factor, \(\sin^2(\pi \beta_R) Q \), is neither spherically-invariant (due to its \(Q \)-dependence) nor can it be easily associated with the deformed sphere \(\tilde{S}^5 \). Finally, the exponent of the instanton action in (5.12) is of the form \(e^{\frac{8\pi^2}{g^2}+i\theta} \) which is not of the form \(e^{2\pi i \tau} \) expected in supergravity.

Quite remarkably, all of these perceived problems of Eqs. (5.11)-(5.12) can be resolved by taking the large-\(N \) limit and carefully specifying the appropriate order of limits procedure. We will now describe this procedure in detail.

On the gauge theory side we have no choice but to work in the weak-coupling limit. To justify working with the leading-order instanton and neglecting and infinite set of higher order terms in perturbation theory in the instanton background, we must take the limit \(g^2 N \to 0 \) and only after that impose the large \(N \) limit. In addition, so far we have been treating the \(\beta \)-deformation parameter as an independent fixed constant. However, as we have seen in Section 2, the validity of the Lunin–Maldacena supergravity solution is restricted to the regime of small \(\beta \). We proceed with the Yang-Mills instanton calculation by taking the limits in the following order:
1. \(g^2 \ll 1 \) with \(N \) and \(\beta_R \) being fixed

2. \(N \gg 1 \), \(\beta_R^2 \ll 1 \)

The second limit shall be taken in such a way that \(\beta_R^2 N \) is held fixed. In fact, our Yang-Mills results are more general than that and hold for any values of the parameter \(\beta_R^2 N \). It can be shown that the derivation below holds for \(\beta_R^2 N \gg 1 \) and \(\beta_R^2 N \ll 1 \).

We now consider the factor

\[
\mathcal{F} := e^{-\frac{8\pi^2}{g^2} + i\theta} (1 - 4 \sin^2(\pi \beta_R) Q)^{N-2} \tag{5.13}
\]

which appears on the right hand side of (5.11) and simplify it according to the limits above. First, we replace the \(\sin^2(\pi \beta_R) \) by \((\pi \beta_R)^2 \) which is justified since \(\beta_R^2 \ll 1 \). Next, we note that in our limit

\[
(1 - 4 (\pi \beta_R)^2 Q)^{N-2} \sim \exp [N \log(1 - 4\pi^2 \beta_R^2 Q)] \sim \exp [-N\beta_R^2 4\pi^2 Q] \tag{5.14}
\]

In the last expression above we have neglected the higher-order terms \(\mathcal{O}(N\beta_R^4 Q^2) \sim 1/N \ll 1 \) which arose from the expansion of the logarithm.

This allows us to write down the \(\mathcal{F} \)-factor defined in (5.13) as

\[
\mathcal{F} = \exp \left[-\frac{8\pi^2}{g^2} + i\theta - N\beta_R^2 4\pi^2 Q \right] = \exp \left[-\frac{8\pi^2}{g^2} \left(1 + \frac{1}{2} N\beta_R^2 g^2 Q \right) + i\theta \right] \tag{5.15}
\]

We stress that the expression above is exact in the ordered weak-coupling–large-\(N \)–small-\(\beta \) limit which we use in our semi-classical Yang-Mills calculation.

We now compare this \(\mathcal{F} \)-factor arising from the Yang-Mills instanton in the weak coupling limit to \(e^{2\pi i \tau} \) in the Lunin-Maldacena supergravity solution. We recall that \(\tau \) is the parameter which combines the natural dilaton and the axion of the deformed supergravity solution

\[
\tau = i e^{-\phi} + C := i\tau_2 + \tau_1 \tag{5.16}
\]

This \(\tau \) is related to \(\tau_0 \) and hence to the SYM couplings via a non-trivial function \(G \) as follows\(^\text{10}\)

\[
e^{-2\pi \tau_2} = e^{-2\pi \tau_{02} G^{-1/2}}, \quad \tau_0 = \frac{2\pi i}{g^2} + \frac{\theta}{2\pi} := i\tau_{02} + \tau_{01} \tag{5.17}
\]

\(^\text{10}\)The axion \(C \) or the Yang-Mills \(\theta \) parameter are not changed by this transformation and the real parts of the two \(\tau \)'s are the same \(\tau_1 = \tau_{01} \). When working with instantons we will not pay attention to the \(\theta \) parameter, if required it can always be trivially restored in the instanton action.
Here G is the function of the coordinates μ_i on the deformed sphere, and it also depends on the deformation parameter $\hat{\gamma}$

\[
G^{-1} = 1 + \hat{\gamma}^2(\mu_1^2\mu_2^2 + \mu_2^2\mu_3^2 + \mu_1^2\mu_3^2), \quad \hat{\gamma}^2 = \beta^2_R N g^2
\]

(5.18)

We now want to take the same weak-coupling–large-N–small-β limit of the supergravity expressions (5.17)-(5.18). We find

\[
e^{-2\pi t_2} = \exp\left[-\frac{8\pi^2}{g^2} (1 + N\beta^2_R g^2 Q)^2\right] = \exp\left[-\frac{8\pi^2}{g^2} - 4\pi^2 N\beta^2_R Q + \sim (N\beta^2_R)^2 g^2 Q^2 + \ldots\right]
\]

(5.19)

The linear in Q term is unaffected in the limit, while the quadratic term is negligible, $(N\beta^2_R)^2 g^2 Q^2 \sim g^2 \ll 1$. This gives

\[
e^{2\pi i t} = \mathcal{F}.
\]

(5.20)

From these considerations we conclude that the \mathcal{F}-factor which arises from the Yang-Mills instanton calculation in the semi-classical limit of the deformed theory is equivalent to the corresponding supergravity factor $e^{2\pi i t}$ of Eq. (5.17) in the Lunin-Maldacena background. For this equivalence it is necessary to identify the μ_i coordinates of the instanton χ-collective-coordinates defined in (5.7), (5.9) with the μ_i coordinates of the deformed \tilde{S}^5 sphere of the Lunin-Maldacena background. This implies that the integration measure over the ‘angles of’ χ_a, or more precisely over the the 5-dimensional manifold Ω in (5.10) should correspond to the volume element on the deformed \tilde{S}^5 sphere. This volume element $\omega_{\tilde{S}^5}$ over the deformed sphere \tilde{S}^5 can be found from the Lunin-Maldacena metric. In the string frame we get

\[
\int \omega_{\tilde{S}^5} = \int \omega_{S^5} G
\]

(5.21)

where ω_{S^5} is the volume element of the original 5-sphere, and G is given in (5.18).

We have seen above that when $G^{-1/2}$ appears in the exponent weighted with the instanton action, it gives rise to two terms in the semiclassical limit: the order-1 term and the order-Q term. However, when G appears in the pre-exponent, as on the right hand side of (5.21), it is indistinguishable from unity. Indeed,

\[
G = (1 + g^2N\beta_R Q)^{-1} = 1 - g^2N\beta_R^2 Q + \ldots \to 1
\]

(5.22)

since $g^2N\beta_R^2 Q \sim g^2 \ll 1$ and should be neglected. This amounts to identifying

\[
\int \omega_{\tilde{S}^5} = \int d^5\tilde{\Omega} \to \int d^5\tilde{\Omega}
\]

(5.23)
For consistency we can also re-calculate I_N in (5.11) in the large-N limit. First one rescales $r \to \sqrt{N}r$, or equivalently, $\chi^a \to \sqrt{N}\chi^a$, so that N factors out of the exponent. The integral then becomes

$$I_N = N^{2N-1} \int_0^\infty dr \, r^{-3} e^{2N(\log r^2 - r^2)} ,$$

which is in a form amenable to a standard saddle-point evaluation. The saddle-point is at $r = \rho^{-1}$ and, to leading order, a Gaussian integral around the solution gives

$$\lim_{N \to \infty} I_N = \rho^2 - 4N N^{2N-1} e^{-2N} \sqrt{\frac{\pi}{N}} ,$$

which is valid up to $1/N$ corrections.

Our final result for the single-instanton partition function in the semi-classical large-N limit takes the following simple form:

$$\int d\mu_{\text{phys}}^1 e^{-S_{\text{inst}}} \to \frac{\sqrt{Ng}}{2\pi \sqrt{g_0}} \int d^4 x_0 \frac{d\rho}{\rho^5} d^5 \hat{\Omega} \prod_{A=1,2,3,4} d^2 \xi^A d^2 \bar{\eta}^A e^{-2\pi \tau_2 G^{-1/2} + 2\pi \tau_1}$$

where the integration over $d^10 X \sqrt{-g_{10}}$ is the integration of the 10-dimensional space which corresponds to the Lunin-Maldacena background. This 10-dimensional bosonic integration can be factored into the AdS_5-part parameterized by the instanton position and the scale-size, $d^4 x_0 \frac{d\rho}{\rho^5}$, times the 5-dimensional integration over the deformed sphere \hat{S}^5 parameterized by $d^5 \hat{\Omega} G \to d^5 \hat{\Omega}$. The main feature of our 1-instanton result (5.26) is the appearance of the complete dilaton-axion factor in the exponent, $e^{2\pi i r}$.

6. Multi-instanton large-N integration

In this Section we return to the general case of k instantons. Following the saddle-point approach of [8] and also building upon the 1-instanton calculation of the previous Section, we will evaluate the multi-instanton partition function (4.15).

The first step is to reduce the k-instanton measure to the $SU(N)$-gauge-invariant expression [8]. The expression (4.15) can be simplified by transforming to a smaller set of gauge-invariant collective coordinates (i.e., variables without an uncontracted ‘u’ index). In the bosonic sector this means changing variables from $\{w, \bar{w}\}$ to the W variables introduced as follows:

$$(W^\alpha_{\beta})_{ij} = \bar{w}^{\alpha}_{iu} w_{ju\beta} , \quad W^0 = \text{tr}_2(W) , \quad W^c = \text{tr}_2(\tau^c W) , \quad c = 1, 2, 3 .$$
This enables us to reduce the number of bosonic integrations using the Jacobian identity is proved in [8]:

\[d^{2Nk} \bar{w} d^{2Nk} w = c_{k,N} \left(\det_{2k} W \right)^{N-2k} d^{k^2} W^0 \prod_{c=1,2,3} d^{k^2} W^c, \]

(6.2)

where \(c_{k,N} \) is a constant. An important feature of this change of variables is that it allows us to eliminate the bosonic ADHM constraints [8, 43]. The ADHM constraints in Eq. (4.15), which are quadratic in the \(\{ w, \bar{w} \} \) coordinates, become linear in terms of \(W_0 = W^c + \left[a_n', a_m' \right] \text{tr}_2 (\tau^c \bar{\sigma}^{nm}) = W^c - i \left[a_n', a_m' \right] \bar{\eta}_{nm}^c. \)

(6.3)

We therefore use Eq. (6.3) to eliminate \(W^c \) from the measure together with the delta-functions of the bosonic ADHM constraints. Furthermore, we note that as \(N \to \infty \), the Jacobian factor of \(\left(\det W \right)^N = \exp(N \text{tr} \log W) \) in (6.2) will be amenable to a saddle-point treatment.

In the fermion sector, following [8, 43], we change variables from \(\{ \mu, \bar{\mu} \} \) to \(\{ \zeta, \bar{\zeta}, \nu, \bar{\nu} \} \) defined by

\[\mu^A_{iu} = w_{a^A} \zeta_{\bar{a}^A}^{ia} + \nu^A_{iu}, \quad \bar{\mu}^A_{iu} = \bar{\zeta}_{\bar{a}^A}^{ia} \bar{w}_{jui}^A + \bar{\nu}^A_{iu}, \]

(6.4)

where the \(\nu \) modes form a basis for the \(\perp \)-space of \(w \):

\[0 = \bar{w}_{jui}^A \nu^A_{ju} = \bar{\nu}^A_{ju} w_{jui} \bar{\zeta}_{\bar{a}^A}^{ia} . \]

(6.5)

In these variables the fermionic ADHM constraints in Eq. (4.15) have the gauge-invariant form

\[0 = \bar{\zeta}^A W + W \zeta^A + [\mathcal{M}^A, \alpha'] \]

(6.6)

which can be used to eliminate \(\bar{\zeta}^A \) in favor of \(\zeta^A \) and \(\mathcal{M}^A \); doing so gives a factor which precisely cancels the Jacobian for the change of variables (6.4).

Since the \(\nu \) and \(\bar{\nu} \) modes are absent from the constraint (6.6), they can now be straightforwardly integrated out. First, we decompose \(\Lambda_{A*B} = \hat{\Lambda}_{A*B} + \check{\Lambda}_{A*B} \), where

\[\hat{\Lambda}_{A*B} \]

(6.7)

and

\[\check{\Lambda}_{A*B} = \frac{1}{2 \sqrt{2}} \left(\bar{\zeta}^A W - \bar{\zeta}^A W \zeta^A + [\mathcal{M}^A, \alpha'] \right) . \]

(6.8)

Second, we calculate

\[\int d^{4k(N-2k)} \nu d^{4k(N-2k)} \bar{\nu} \exp \left(\frac{4\pi i}{g} \text{tr}_k (\chi^A_{AB} \hat{\Lambda}_{A*B}) \right) \left(\frac{8\pi^2}{g^2} \right)^{2k(N-2k)} (\det_{4k} e^{i\beta_{AB}} (\chi^A_{AB})^{N-2k}} \]

(6.9)
To simplify notation we introduce a notation $q_{AB} = e^{i\pi\beta_{AB}}$, so the determinant in (6.9) can be written as\(^{11}\) $(\det_{2k} q_{\chi})^{N}$. It too will contribute to the saddle-point equations in the large-N limit, similarly to the $(\det W)^{N}$ factor in Eq. (6.2). The third and final contribution to these equations will be the Gaussian term $\chi L \chi$ in Eq. (4.15), once one rescales $\chi_{AB} \rightarrow \sqrt{N} \chi_{AB}$ so that N factors out in front. Combining the above manipulations, we write down the final expression for the $SU(N)$-gauge-invariant measure (cf. [8]):

$$
\int d\mu^{k}_{\text{phys}} e^{-S_{\text{inst}}^{k}} = \frac{g^{2k} N^{k} e^{-8\pi^{2} k^{2}/g^{2} + i k \theta}}{2^{27k^{2}/2 - k/2} \pi^{13k^{2}} \text{Vol}(U(k))} \int d^{2k} W^{0} d^{4k} a' d^{6k^{2}} \chi \prod_{A=1,2,3,4} d^{2k^{2}} M^{A} d^{2k^{2}} \zeta^{A}
\times (\det_{2k} W \det_{4k} q_{\chi})^{-2k} \exp \left[- N S_{\text{eff}}^{k(\beta)} + 4 \pi i g^{-1} \sqrt{N} \text{tr}_{k}(\chi_{AB} \tilde{\Lambda}_{A+B}) \right]
$$

(6.10)

The constant in front of the integral is written in the large-N limit. In the exponent in the last line of (6.10) we have grouped all of the order-N terms into the quantity $N S_{\text{eff}}^{k(\beta)}$. The quantity $S_{\text{eff}}^{k(\beta)}$ is the sum of the three terms relevant for the large-N saddle point approach mentioned above plus a constant piece

$$
S_{\text{eff}}^{k(\beta)} := -\text{tr}_{2k} \log W - \text{tr}_{4k} \log q_{\chi} + \epsilon_{ABCD} \text{tr}_{k}(\chi_{AB} L \chi_{CD}) - 2k (1 + 3 \log 2)
$$

(6.11)

This expression involves the $11k^{2}$ bosonic variables comprising the eleven independent $k \times k$ Hermitian matrices W^{0}, a'^{n} and χ_{n}. As mentioned earlier, the remaining components W^{c}, $c = 1,2,3$, are eliminated in favor of the a'^{n} via the ADHM constraint. The action is also invariant under the $U(k)$ symmetry which acts by adjoint action on all the variables.

We can apply the large-N saddle-point formalism to the integral in (6.10), but before doing so we want to slightly simplify $S_{\text{eff}}^{k(0)}$ with respect to its β_{k}-dependence. Specifically, we consider the $\text{tr}_{4k} \log q_{\chi}$ term in $S_{\text{eff}}^{k(\beta)}$ and split the $U(k)$ variables χ_{ij} into the sum of the $U(1)$ variables $\chi^{*} \delta_{ij}$ and the $SU(k)$ degrees of freedom $\hat{\chi}_{ij}$

$$
\chi_{Ai Bj} = \chi_{AB}^{*} \delta_{ij} + \hat{\chi}_{Ai Bj}, \quad \text{tr}_{k} \hat{\chi}_{AB} = 0
$$

(6.12)

We then expand the $\text{tr}_{4k} \log q_{\chi}$ as follows

$$
S_{\text{eff}}^{k(\beta)} \in N \text{tr}_{4k} \log q_{\chi} = Nk \text{tr}_{4} \log q_{\chi}^{*} + N \text{tr}_{4k} \log \left(1 + (q_{\chi}^{*})^{-1}(q_{\hat{\chi}}) \right)
$$

(6.13)

and further re-write it as

$$
Nk \text{tr}_{4}(\log q_{\chi}^{*} - \log \chi^{*}) + N \text{tr}_{4k} \log \left(\chi^{*} + \chi^{*}(q_{\chi}^{*})^{-1}(q_{\hat{\chi}}) \right)
$$

(6.14)

We can now take the small-β_{n} limit (accompanied by the large-N limit). The first term on the right hand side in (6.14) is equal to k times the single instanton result derived in the previous

\(^{11}\)Note, that q_{χ} is a shorthand for $q_{AB} \chi_{AB}$ which is a product of matrix elements and not the product of two matrices.
Section, which is k times $N \beta_R^2 4 \pi^4 Q$. Hence, for this term, the relevant contribution comes at the order-$N \beta_R^2$ in the $N \to \infty$, $\beta_R \to 0$ limit.

However, a careful fluctuations analysis along the lines of [8], shows that in the second term in (6.14) the dominant contribution comes at the order $N \beta_R^2$ in the $N \to \infty$, $\beta_R \to 0$ limit. Thus we set $q = 1$ in the second term which then reads:

$$N \text{tr}_{4k} \log (\chi^* + \hat{\chi}) = N \text{tr}_{4k} \log \chi$$ \hspace{1cm} (6.15)

In summary, we express

$$NS_{k}^{(\beta)}_{\text{eff}} = -Nk \text{tr}_{4}(\log q\chi^* - \log \chi^*) + S_{\text{eff}}^{k(0)}$$ \hspace{1cm} (6.16)

where $S_{\text{eff}}^{k(0)}$ is given by (6.11) with the substitution $\beta = 0$ or equivalently $q = 1$. The first term in (6.16) is combined with the k-instanton action $8\pi^2 k/g^2 + ik\theta$ in exactly the same way as in Eqs. (5.15), (5.26) in the previous Section. This amounts to promoting the Yang-Mills multi-instanton gauge action to the appropriate τ-dependence required in the supergravity effective action

$$\exp \left[-\frac{8\pi^2 k}{g^2} + ik\theta - Nk\beta_R^2 4\pi^2 Q \right] = e^{-2\pi k\tau_{0a}G^{-1/2} + 2\pi k\tau_{1} = e^{2\pi ik\tau}$$ \hspace{1cm} (6.17)

What remains is $S_{\text{eff}}^{k(0)}$, which does not depend on the deformation parameter, it is the same as in the $\mathcal{N} = 4$ SYM theory and is amendable to the large-N saddle-point treatment. The saddle-point approach has been set up and the integrations around the saddle-point solution have been carried out in [8]. Here we will only give a brief summary of the result. It turns out that the dominant contribution to the integral comes from the maximally degenerate saddle-point solution:

$$W^0 = 2\rho^2 1_{[k] \times [k]}, \quad \chi_a = \rho^{-1} \hat{\Omega}_a 1_{[k] \times [k]}, \quad a'_m = -x_n 1_{[k] \times [k]},$$ \hspace{1cm} (6.18)

which corresponds to k coincident Yang-Mills instantons of the same scale-size ρ which live in the mutually commuting $SU(2)$ subgroups of the $SU(N)$. In the supergravity interpretation this saddle-point corresponds to a configuration living at a common point $\{x_n, \hat{\Omega}_a, \rho\}$ in the deformed $AdS_5 \times \tilde{S}^5$. This is a point-like object – the D-instanton of charge k.

Around the special solution, the bosonic fluctuations fall into three sets. First, there are 10 zero modes which correspond to the position of the k-instanton “bound state” in $AdS_5 \times \tilde{S}^5$. These are exactly the same as in the 1-instanton case. Second, there are k^2 fluctuations called φ which have a nonzero quadratic coefficient in the small-fluctuations expansion. The remaining $10k^2 - 10$ fluctuations first appear beyond quadratic order and they correspond to the traceless $SU(k)$ parts $\hat{\chi}_{AB}$, and a'_m of the ten $k \times k$ matrices χ_{AB} and a'_m. Since fluctuations over φ are Gaussian, they can be straightforwardly integrated out.
To complete the expansion, we include the fermion terms in the exponent of (6.10). The second term in the exponent involves fermionic degrees of freedom appearing in \(\tilde{\Lambda}_{A+B} \). Here we again are interested in the leading order non-vanishing contributions in the \(\beta_R \to 0 \) limit. This amounts to dropping the star product \(\tilde{\Lambda}_{A+B} \to \tilde{\Lambda}_{AB} \). The resulting fermion terms in the exponent involve the traceless parts \(\tilde{\zeta}^{\hat{\alpha}A} \) and \(\tilde{M}^{\hat{\alpha}}_A \) coupled to \(\hat{a}'_m \) and \(\hat{\chi}_{AB} \).

Remarkably, in the large-\(N \) limit, the leading-order terms of the effective action around the saddle-point solution, with the quadratic fluctuations \(\varphi \) integrated out, precisely assemble themselves into the dimensional reduction from ten to zero of \(\mathcal{N} = 1 \) supersymmetric Yang-Mills with gauge group \(SU(k) \) in flat space. The \(SU(k) \) adjoint-valued ten-dimensional gauge field and Majorana-Weyl fermion are defined in terms of the fluctuations:

\[
A_\mu = N^{1/4} \left(\rho^{-1/2} \hat{a}'_m, \rho X^a \right), \quad \Psi = \left(\frac{\pi}{2g} \right)^{1/2} N^{1/8} \left(\rho^{-1/2} \tilde{M}^A_\alpha, \rho^{1/2} \tilde{\zeta}^{\hat{\alpha}A} \right). \tag{6.19}
\]

The action for the dimensionally reduced gauge theory is

\[
S(A_\mu, \Psi) = -\frac{1}{2} \text{tr}_k [A_\mu, A_\nu]^2 + \text{tr}_k \left(\bar{\Psi} \Gamma_\mu [A_\mu, \Psi] \right). \tag{6.20}
\]

We conclude that the effective gauge-invariant measure for \(k \) instantons in the large-\(N \) limit factorizes into a 1-instanton-like piece, for the position of the bound state in \(AdS_5 \times S^5 \) and the 16 supersymmetric and superconformal modes, times the partition function \(\hat{Z}_k \) of the dimensionally-reduced \(\mathcal{N} = 1 \) supersymmetric \(SU(k) \) gauge theory in flat space:

\[
\int d\mu^k_{\text{phys}} e^{-S_{\text{inst}}} = \frac{\sqrt{Ng^8}}{k^3 2^{17k^2/2-\frac{k}{2}+25} \pi^{9k^2/2+9}} \times \int \frac{d\rho}{\rho^5} d^4 x d\Omega_5 \prod_{A=1,2,3,4} d^2 \xi^A d^2 \bar{\eta}^A e^{-8\pi^2 k/g^2} \hat{Z}_k, \tag{6.21}
\]

where \(\hat{Z}_k \) is the partition function of an \(\mathcal{N} = 1 \) supersymmetric \(SU(k) \) gauge theory in ten dimensions dimensionally reduced to zero dimensions:

\[
\hat{Z}_k = \frac{1}{\text{Vol } SU(k)} \int_{SU(k)} d^{10} A d^{16} \Psi e^{-S(A_\mu, \Psi)}. \tag{6.22}
\]

Notice that the rest of the measure, up to numerical factors, is independent of the instanton number \(k \). When integrating expressions which are independent of the \(SU(k) \) degrees-of-freedom, \(\hat{Z}_k \) is simply an overall constant factor. A calculation of Ref. [46,47] revealed that \(\hat{Z}_k \) is proportional to \(\sum_{d|k} d^{-2} \), a sum over the positive integer divisors \(d \) of \(k \). In our notation we have [8,46,47]:

\[
\hat{Z}_k = 2^{17k^2/2-\frac{k}{2}-2\pi^{9k^2/2-9/2} k^{-1/2}} \sum_{d|k} \frac{1}{d^2}. \tag{6.23}
\]
In summary, on gauge invariant and SU(k) singlet operators, our effective large-N collective coordinate measure has the following simple form:

$$\int d\mu_{\text{phys}}^k e^{-S_{\text{inst}}^k} = \frac{\sqrt{Ng^2}}{2^{33}\pi^{27/2}} \frac{k^{-7/2}}{g^2} \sum_{d|k} \frac{1}{d^2} \int d^4x \, d\rho \, d^5\hat{\Omega} \prod_{A=1,2,3,4} d^2\xi^A d^2\bar{\eta}^A e^{2\pi ik\tau}. \quad (6.24)$$

We can already identify a number of key features of the k-instanton measure which are important for the comparison with the supergravity results (2.14)-(2.18). First, the factor of $(k/g^2)^{-7/2}$ in the measure maps nicely to the factor in $(k/g^2)^{n-7/2}$ for $n = 0$ on the right hand side of (2.18). Second, we recognize the inverse divisors squared contributions $\sum_{d|k} \frac{1}{d^2}$ in (6.24) and (2.18). The matching of $e^{2\pi ik\tau}$ factors has been mentioned earlier and it is one of our main results. The factor of $\sqrt{Ng^2}$ in (6.24) gives rise to $(\alpha')^{-1}$ in (2.14), and the volume element of the AdS_5 is represented via $d^4x \, d\rho / \rho^5$ in (6.24). Finally, the integration over $d^5\hat{\Omega}$ gives rise to the volume factor of the 5-sphere. However, as we have already explained earlier, in our semi-classical limit we cannot distinguish between the deformed and the undeformed spheres in the pre-exponent. The deformation is, however, manifest in the exponential factor $e^{2\pi ik\tau}$.

7. Correlation functions

Finally, we can use our measure to calculate the correlation functions $G_n(x_1, \ldots, x_n)$ listed in (2.19a)-(2.19d). This entails inserting into Eq. (6.24) the appropriate product of gauge-invariant composite chiral operators $O_1(x_1) \times \cdots \times O_n(x_n)$, which together contain the requisite 16 exact fermion modes to saturate the 16 Grassmann integrations\(^{12}\) in (6.24). Since, at leading order in N, the k instantons sit at the same point in $AdS_5 \times S^5$, it follows that $O_j^{(k)}$ is simply proportional to its single-instanton counterpart: $O_j^{(k)} = kO_j^{(1)}$. Therefore G_n scales like $(k/g^2)^n$. This promotes the factor in the partition function to the full value required to match with (2.18)

$$\left(\frac{k}{g^2}\right)^{-7/2} \rightarrow \left(\frac{k}{g^2}\right)^{n-7/2} \quad (7.1)$$

and, as before, factors of G in the pre-exponent in (2.18) cannot be tested in our limit.

Furthermore, it was shown in [5, 8] that the instanton contributions to the operators O precisely match the functional form of the bulk-to-boundary propagators in (2.20). We thus conclude that our Yang-Mills multi-instanton results for the correlators G_n which follow from Eq. (6.24) completely reconstruct the supergravity expressions Eqs. (2.14)-(2.18),(2.20).

As the final comment we recall that the matching between the supergravity and the SYM results holds in the opposite limits. The SYM expression is derived in the weak coupling limit

\(^{12}\)We also refer the reader to the earlier discussion following Eq. (5.3) and to footnote 9.
$g^2N \to 0$, $N \to \infty$ while the supergravity is a good approximation to string theory in the strong coupling limit $g^2N \to \infty$, $N \to \infty$. This use of different limits on the two sides of the AdS/CFT correspondence is, of course, the consequence of the strong-to-weak coupling nature of the AdS/CFT. Nevertheless, even though the two sets of limits are mutually exclusive, we have shown that the leading order results in the SYM and in supergravity agree with each other. This agreement between the strong and the weak coupling limits holds in the instanton case (as it did hold in the original $\mathcal{N} = 4$ settings in [5–8]), but it is not expected to hold in perturbation theory. At present no non-renormalization theorem is known which would apply to these instanton effects and explain the agreement. However the fact that there is an agreement between the results on the two sides of the correspondence must imply a non-trivial consistency of the AdS/CFT. We refer the reader to Refs. [8,48] for a more detailed discussion on this point.

8. Complex β deformations

We now consider the more general case of marginal deformations with complex values of the deformation parameters. We will first explain how to extend the instanton calculation on the gauge theory side from real to complex β-deformations. We will carry out this calculation for arbitrary (not necessarily small) values of the deformation parameter $\beta \in C$. We will also encounter an interesting finite renormalization of the gauge coupling τ_0 which has been predicted in [19]. One of the main results is the instanton prediction for the dilaton-axion field τ. We will show that in the limit of small β it will match precisely with the τ field of the Lunin-Maldacena supergravity dual [1]. The small-β limit is required [1] to ensure the validity of the supergravity approximation to full string theory. At the same time, the SYM instanton calculation is valid for any finite values of complex β and (as always) it is valid to the leading order at weak coupling $g^2 \ll 1$, and the large-N limit.

The gauge theory description follows from the superpotential

$$ih \text{Tr}(e^{i\pi\beta}\Phi_1\Phi_2\Phi_3 - e^{-i\pi\beta}\Phi_1\Phi_3\Phi_2),$$

(8.1)

where h and β are two complex parameters, and we will also use β,

$$\beta = \beta_R + i\beta_{Im}$$

(8.2)

Leigh and Strassler [18] have made an important observation that the superpotential (8.1) gives an exactly marginal deformation of the $\mathcal{N} = 4$ SYM theory if the three complex parameters, τ_0, h and β satisfy a single constraint, $\gamma(\tau_0, h, \beta) = 0$. We have already mentioned that for real values of β this constraint can be solved exactly in the large-N limit, and amounts to $h = g$ with $\beta = \beta_R$ and arbitrary. For complex deformations, the exact form of the function γ in the
conformal constraint is not known. In principle, one can solve the constraint in perturbation theory. To the leading order in $g^2 \ll 1$ and $N \ll 1$ it gives

$$|h|^2 \cosh(2\pi \beta_{lm}) = g^2$$

(8.3)

see e.g. [13, 15, 16]. It will turn out, however, that for our calculation we will not need to know the explicit resolution of the constraint.

As before, in writing down classical equations we always rescale all fields with an overall factor of $1/g$, so that the action goes as $1/g^2$. The instanton configuration at the leading order in weak coupling is defined by equations (4.1)-(4.3), with the scalar field equation (4.3) being slightly modified as

$$D^2 \Phi_{AB} = \frac{h}{g} \sqrt{2} i \left(e^{i\pi \beta_{AB}} \lambda^A \lambda^B - e^{-i\pi \beta_{AB}} \lambda^B \lambda^A \right) \quad \text{for } A, B \neq 4,$$

(8.4)

$$D^2 \Phi_{AB} = \sqrt{2} i \left(\lambda^A \lambda^B - \lambda^B \lambda^A \right) \quad \text{for } A \text{ or } B = 4$$

(8.5)

The factor of h/g on the right hand side of (8.4) accounts for the change of the coupling constant from g in (1.2) to h in (8.1). Deformation parameters h and β are complex and $\beta_{AB} = \beta_R^{AB} + i\beta_{im}^{AB}$.

We note that the resulting instanton configuration depends on h holomorphically, i.e. it does not depend on h^*. At leading order in g the dependence on h^* can come only through the equation conjugate to (8.4), which involves anti-fermion zero modes $\bar{\lambda}$ on the right hand side. These are vanishing in the instanton background. It is clear then that the anti-instanton configuration, will depend on h^* and not on h.

Equations (8.4)-(8.5) imply that the fermion quadrilinear term (4.9) in the instanton action acquires an additional factor of h/g

$$S^k_{quad} = \frac{\pi^2}{g^2} \frac{h}{g} \epsilon_{ABCD} \text{tr}_k \left(\Lambda_{AB} L^{-1} \Lambda_{CD} \right)$$

(8.6)

where Λ_{AB} is given by (cf. (4.10))

$$\Lambda_{AB} = \frac{1}{2\sqrt{2}} \left(e^{i\pi \beta_{AB}} \bar{\mathcal{M}}^A \mathcal{M}^B - e^{-i\pi \beta_{AB}} \bar{\mathcal{M}}^B \mathcal{M}^A \right)$$

(8.7)

Following the approach of Section 5 we now concentrate on the 1-instanton sector and bilinearize the quadrilinear term (8.6) by introducing collective coordinates χ_{AB}. We then can integrate out fermionic collective coordinates ν_A^i and $\bar{\nu}_i^A$. For each value of $i = 1, \ldots, N - 2$ this integration gives a factor of the determinant (5.4) times an appropriate rescaling by h/g. The rule (8.6) is that there is one power of h/g for each factor of $1/g^2$. In total we have

$$\left(\frac{1}{g} \right)^4 \text{det}_4 \left(e^{i\pi \beta_{AB}} \chi_{AB} \right) \rightarrow \left(\frac{1}{g} \right)^4 \left(\frac{h}{g} \right)^2 \text{det}_4 \left(e^{i\pi \beta_{AB}} \chi_{AB} \right).$$

(8.8)
This determinant can be evaluated as in Eq. (5.8). The resulting characteristic instanton factor is

\[F = e^{-\frac{8\pi^2}{\kappa^2} + i\theta} \left[\left(\frac{h}{g} \right)^2 \left(1 - 4Q \sin^2(\pi\beta) \right) \right]^{N-2} \]

(8.9)

where \(\beta \) and \(h \) are complex parameters and the function \(Q \) is the same as in (5.9). In the large-\(N \) limit we can write

\[F = \exp \left[2\pi i \tau_0 + 2N \log \left(\frac{h}{g} \right) + N \log \left(1 - 4Q \sin^2(\pi\beta) \right) \right] \]

(8.10)

Dorey, Hollowood and Kumar [19] have argued that the certain combinations of parameters in the \(\beta \)-deformed gauge theory must transform as modular forms under the action of \(SL(2, \mathbb{Z}) \). More precisely, [19]

\[\tau_r \rightarrow \frac{a\tau_r + b}{c\tau_r + d}, \quad \beta \rightarrow \frac{\beta}{c\tau_r + d}, \quad (h/g)^2 \sin(\pi\beta) \rightarrow \frac{(h/g)^2 \sin(\pi\beta)}{c\tau_r + d}. \]

(8.11)

Here the parameter \(\tau_r \) is obtained from the complexified gauge coupling \(\tau_0 = 4\pi i/g^2 + \theta/(2\pi) \) by a finite shift (or renormalization),

\[\tau_r := \tau_0 - \frac{iN}{\pi} \log \frac{h}{g}. \]

(8.12)

It is pleasing to note that the first two terms on the right hand side of our instanton prediction (8.10) assemble precisely into \(2\pi i \tau_r \),

\[F = \exp \left[2\pi i \tau_r + 2N \log \left(1 - 4Q \sin^2(\pi\beta) \right) \right] \]

(8.13)

If we now take the small deformation limit, \(\beta_R \ll 1, \beta_{1m} \ll 1 \), appropriate for comparison with the Lunin-Maldacena solution, we find\(^\text{13}\)

\[F = \exp \left[2\pi i \tau_r - 4\pi^2 NQ (\beta_R^2 - \beta_{1m}^2 + 2i\beta_R\beta_{1m}) \right] \]

(8.14)

To compare the SYM instanton prediction of Eq. (8.13) or Eq. (8.14) to the supergravity contribution \(F = e^{2\pi i \tau} \), we need the expressions for the dilaton \(\phi \) and the axion \(C \) fields in the Lunin-Maldacena background [1] for complex \(\beta \). The Lunin-Maldacena supergravity solution is given in terms of fields which depend on the filed theory parameters \(\beta \) and \(\tau_r \). Here it is important to stress that that these parameters must be those which transform as modular forms

\(^{13}\)We would like to stress that even in the small deformation limit, the difference between the parameters \(\tau_r \) and \(\tau_0 \) is significant. This difference is given by the second term on the right hand side of Eq. (8.10). In the weak-coupling limit one can resolve the conformal constraint and approximate this term via \(2N \log (h/g) \sim -N \log (\cosh(2\pi\beta_{1m})) \sim -2\pi^2 N\beta_{1m}^2 \). This contribution is not small in the large-\(N \) limit.
under the $SL(2,\mathbb{Z})$ in (8.11). Hence the supergravity dual depends on τ_r rather than on τ_0. It is convenient to represent the shifted coupling τ_r of Eq. (8.12) as

$$\tau_r = \frac{4\pi i}{g_r^2} + \frac{\theta_r}{2\pi} = ie^{-\phi_0} + C^0$$

The last equality defines the parameters $e^{-\phi_0}$ and C^0 appearing in the supergravity solution. They should be distinguished from the imaginary and real parts of the original complexified gauge coupling

$$\tau_0 = \frac{4\pi i}{g^2} + \frac{\theta}{2\pi}.$$

The dilaton and axion field components of the Lunin-Maldacena supergravity dual [1] are given by

$$e^\phi = e^{\phi_0} G^{1/2} H, \quad C = C^0 - \hat{\gamma} \hat{\kappa} e^{-\phi_0} H^{-1} Q,$$

$$G^{-1} = 1 + (\hat{\gamma}^2 + \hat{\kappa}^2) Q, \quad H = 1 + \hat{\kappa}^2 Q,$$

where the function Q is the same as previously and, similarly to the real case, we have defined

$$\hat{\gamma} := \beta_R g_r \sqrt{N}, \quad \hat{\kappa} := \beta_{1m} g_r \sqrt{N}.$$

We now compare the characteristic exponential factor (8.14) arising from the Yang-Mills instanton, to the exponential $e^{2\pi i \tau}$ expected in the modular form terms in the IIB effective action in the Lunin-Maldacena background. We have

$$e^{2\pi i \tau} = e^{2\pi i (ie^{-\phi_0} + C)} = \exp \left[-2\pi e^{-\phi_0} [1 + \frac{1}{2}(\hat{\gamma}^2 - \hat{\kappa}^2)Q] + 2\pi i (C^0 - e^{-\phi_0} \hat{\gamma} \hat{\kappa} Q) \right]$$

In the second equality we have used the expressions for the dilaton and the axion fields of the β-deformed background in the weak-coupling large-N small-β limit, i.e. in the expansion in terms of $\hat{\kappa}$ and $\hat{\gamma}$ we ignore terms of order cubic or higher. By employing the relations (8.19) for the hatted parameters, we arrive at

$$e^{2\pi i \tau} = \exp \left[-\frac{8\pi^2}{g_r^2} i \theta_r - 4\pi^2 NQ (\beta_R^2 - \beta_{1m}^2) - i 8\pi^2 NQ \beta_R \beta_{1m} \right],$$

By comparing the last equation to (8.14) it is immediate to see that

$$\mathcal{F} = e^{2\pi i \tau}.$$

This provides a detailed and a non-trivial test of both, the Lunin-Maldacena supergravity solution for complex β-deformations, and the expected structure of the string theory effective action.
Acknowledgements

VVK acknowledges an early conversation with David Berman which has triggered our interest in instanton contributions to the Lunin-Maldacena duality. We thank Chong-Sun Chu and Stefano Kovacs for useful discussions and comments on the manuscript and Stefano for helpful remarks on the structure of the relevant correlation functions in the instanton background. The research of GG is supported by PPARC through a Postdoctoral Fellowship. VVK is supported by a PPARC Senior Fellowship.

Appendix A: D-instanton partition function

In this Appendix we show construct the D-instanton partition function in the β-deformed string theory and show that it reproduces the corresponding gauge theory result in Section 4.

In string theory, D-instanton is a point-like defect – the D(-1) brane, hence its partition function is described in terms of a matrix model integral. The partition function of k D-instantons on N D3-branes in the type IIB theory was previously constructed in Ref. [8]. Here we will generalize this construction to include the β-deformation effects on the string theory side.

Following Ref. [8] we first consider the kD(-1) branes in interacting with the ND3 branes in the standard type IIB string theory. This description accounts for the D-instanton effects in the undeformed $AdS_5 \times S^5$ background dual to the $\mathcal{N} = 4$ Yang-Mills. From the perspective of the kD(-1) world-volume, the kD(-1)/ND3 brane system is described by the partition function [8],

$$Z_{k,N} = \int d\mu_{k,N} e^{-S_{k,N}} . \quad (A.1)$$

Here the D-instanton integration measure $d\mu_{k,N}$ and action $S_{k,N}$ are over the D-instanton collective coordinates, and the D-3 brane degrees of freedom are turned off. This is a $0+0$-dimensional matrix model which can be obtained by the dimensional reduction from the $U(k) \times U(N)$ gauge theory describing kDp branes and $ND(p+4)$ branes. The $kDp/ND(p+4)$ brane system can live in the maximal dimension $p = 5$ which corresponds to the 6-dimensional gauge theory on the world-volume of the D5-branes. Then the cases $5 \geq p \geq -1$ follow by dimensional reduction. The D-instanton partition function corresponds to the minimal case of $p = -1$. For $p = 5$ there is no need to include the $U(1)$ factor in the $U(k)$ gauge group since the collective coordinates of the k-instanton are homogeneous. Hence for the purposes of this paper we will not distinguish between the $U(k) \times U(N)$ and $U(k) \times SU(N)$ cases. However, the $U(1)$ factor in the $U(k)$ groups is physically significant, it describes the centre of mass degrees of freedom of the k-instanton which are important.
Component	Description	$U(k)$	$U(N)$
$\chi^{1\ldots6}$	Gauge Field	$k \times k$	1
$\lambda \dot{\alpha}$	Gaugino	$k \times k$	1
$D^{1\ldots3}$	Auxiliary Field	$k \times k$	1
$a'_{\dot{\alpha}}$	Scalar Field	$k \times k$	1
$M'_{\dot{\alpha}}$	Fermion Field	$k \times k$	1

Table 1: Components of the $(1,1)$ vector multiplet in $d=6$. They describe k D5 branes in isolation.

Component	Description	$U(k)$	$U(N)$
$w_{\dot{\alpha}}$	Scalar Field	k	N
μ	Fermion Field	k	N
$\bar{w}_{\dot{\alpha}}$	Scalar Field	\bar{k}	N
$\bar{\mu}$	Fermion Field	\bar{k}	N

Table 2: Components of bi-fundamental hypermultiplets in $d=6$. They describe interactions between k D5 and N D9 branes.

practical calculations it is most convenient to start with the maximal case $p = 5$ to specify the field content of the model, and then reduce to zero dimensions, $p = -1$.

The content of the kD5/ND9 system is described by the $(1,1)$ vector multiplet and two bi-fundamental hypermultiplets in the 6-dimensional world-volume of kD5 branes. The vector multiplet transforms in the adjoint representation of the $U(k)$ gauge group and represents the open-string degrees of freedom of the kD5 branes in isolation. On the other hand, the $U(k) \times U(N)$ bi-fundamental hypermultiplets incorporate the modes of the open strings stretched between the k branes and the N branes (two species of hypermultiplets correspond to two orientations of the open strings). Thus the hypermultiplets describe the interactions between D-instantons and the spectator branes. The component fields of the vector multiplet are listed in the Table 1, and the hypermultiplet fields are listed in Table 2.

The D-instanton integration measure is uniquely determined by the action of this $U(k)$ theory with hypermultiplets. Dimensionally reducing from $d = 6$ to 0 dimensions one finds [8]
the partition function:

\[Z_{k,N} = \frac{g_0^4}{\text{Vol} U(k)} \int d^{4k^2} a^\alpha d^{8k^2} \mathcal{M}^\alpha d^{8k^2} \chi d^{8k^2} \lambda d^{3k^2} D d^{2kN} w d^{2kN} \bar{w} d^{4kN} \mu d^{4kN} \bar{\mu} \exp[-S_{k,N}] \]

where \(S_{k,N} = g_0^{-2} S_G + S_K + S_D \) and

\begin{align}
S_G &= \text{tr}_k \left(-[\chi_a, \chi_b]^2 + \sqrt{2i\pi} \lambda_{\dot{\alpha}A}[\chi_{AB}, \lambda_{\dot{\beta}B}]^* + 2 D^c D^\alpha \right), \\
S_K &= -\text{tr}_k \left([\chi_a, a_n']^2 + \chi_a \bar{w}_u \bar{w}_u \chi_a + \sqrt{2i\pi} \mathcal{M}^{\alpha A}[\chi_{AB}, \mathcal{M}^{\beta B}_\alpha] + 2 \sqrt{2i\pi} \bar{\mu}_u \chi_{AB} \mu_u^B \right), \\
S_D &= i\pi \text{tr}_k \left([a'_{\dot{\alpha}A}, \mathcal{M}^{\alpha A}] \lambda^\dot{\alpha} + \bar{\mu}_u A \bar{w}_u \chi^\dot{\alpha} A + \bar{w}_u \bar{\mu}_u A \lambda^\dot{\alpha} A + \pi^{-1} D^c (\tau^c)^\beta \bar{\alpha} (\bar{w}^\dot{\alpha} w_\beta + \bar{a}^\dot{\alpha} \alpha a'_{\dot{\beta}B}) \right).
\end{align}

Equations above define the \(kD \)-instanton measure in string theory in the flat background and in presence of the \(ND-3 \) branes. We now want to \(\beta \)-deform this background. Lunin and Maldacena have argued in [1] that the open string field theory in the \(\beta \)-deformed background is obtained from the theory on the undeformed background precisely by changing the star-product between the fields carrying the relevant \(U(1) \) charges. In our case, this implies that the star product should be used instead of ordinary products for all fields transforming under the \(SO(6) = U(4) \) R-symmetry. This requires star products in expressions involving \(\chi, \lambda \) and \(D \) fields in the equations (A.3a)-(A.3c) above. We also recall that the star product is trivial between the fields of opposite charges and hence can be dropped in the terms which are quadratic in charged fields. This amounts to the following equations for the action terms in (A.2) in the \(\beta \)-deformed background:

\begin{align}
S_G^\beta &= \text{tr}_k \left(-[\chi_a, \chi_b]_* [\chi_a, \chi_b]_* + \sqrt{2i\pi} \lambda_{\dot{\alpha}A} * [\chi_{AB}, \lambda_{\dot{\beta}B}]_* + 2 D^c D^\alpha \right), \\
S_K^\beta &= -\text{tr}_k \left([\chi_a, a_n']^2 + \chi_a \bar{w}_u \bar{w}_u \chi_a + \sqrt{2i\pi} \mathcal{M}^{\alpha A} * [\chi_{AB}, \mathcal{M}^{\beta B}_\alpha]_* + 2 \sqrt{2i\pi} \bar{\mu}_u A * \chi_{AB} * \mu_u^B \right), \\
S_D^\beta &= i\pi \text{tr}_k \left([a'_{\dot{\alpha}A}, \mathcal{M}^{\alpha A}] \lambda^\dot{\alpha} + \bar{\mu}_u A \bar{w}_u \chi^\dot{\alpha} A + \bar{w}_u \bar{\mu}_u A \lambda^\dot{\alpha} A + \pi^{-1} D^c (\tau^c)^\beta \bar{\alpha} (\bar{w}^\dot{\alpha} w_\beta + \bar{a}^\dot{\alpha} \alpha a'_{\dot{\beta}B}) \right) = S_D
\end{align}

The D-instanton partition function \(Z_{k,N} \) depends explicitly on the inverse string tension \(\alpha' \) through the zero-dimensional coupling \(g_0^2 \propto (\alpha')^{-2} \) which appears in \(g_0^{-2} S_G^\beta \) which comes from the dimensional reduction of the \(d = 6 \) gauge action. In the field theory limit the fundamental string scale is set to zero, \(\alpha' = 0 \), to decouple the world-volume gauge theory from gravity. Thus, as explained in [8], to derive the ADHM-instanton measure in conventional supersymmetric gauge theory one must take the limit \(\alpha' \to 0 \). In this limit \(g_0^2 \to \infty \) equations of motion for \(D^c \) are precisely the non-linear ADHM constraints, first equation in (4.5). Similarly equations of motion for \(\lambda \) are the fermionic ADHM constraints in (4.5). Integration over \(D^c \) and \(\lambda^\dot{\alpha} A \) yields \(\delta \)-functions which impose the constraints.

32
We can now make contact with our result (4.15) for the instanton partition function in
gauge theory derived in Section 4. First, we integrate out the D_c and λ_α^A variables, thus getting
the δ-functions of the ADHM constraints, precisely as in (4.15). Second, we rewrite S_K^β as,

$$S_K^\beta = \text{tr}_k \chi_a L \chi_a - 4\pi i \text{tr}_k \chi_{AB} A_{A*B}.$$ \hspace{1cm} (A.5)

This is equal to (minus) the exponent appearing in equation (4.12). On integrating out the
gauge field χ_a, the instanton action reduces to the fermion quadrilinear term (4.9). We have
therefore reproduced our result for the ADHM measure in the β-deformed gauge theory, up
to an overall normalization constant. This is completely analogous to the matching between
D- and gauge-instanton partition functions discovered in [8] – the only novelty in the present
case is the appearance of the star products on both sides of the correspondence. What this
matching really tests in the β-deformed theory is the validity of the prescription for introducing
β-deformations in the open-string theory conjectured by Lunin and Maldacena and which we
have used to derive the results (A.4a)-(A.4c) above.

References

[1] O. Lunin and J. Maldacena, “Deforming field theories with U(1) x U(1) global symmetry and
their gravity duals,” JHEP 0505 (2005) 033 hep-th/0502086.

[2] J. M. Maldacena, “The large N limit of superconformal field theories and supergravity,” Adv.
Theor. Math. Phys. 2 (1998) 231 [Int. J. Theor. Phys. 38 (1999) 1113] hep-th/9711200.

[3] S. S. Gubser, I. R. Klebanov and A. M. Polyakov, “Gauge theory correlators from non-critical
string theory,” Phys. Lett. B 428 (1998) 105 hep-th/9802109.

[4] E. Witten, “Anti-de Sitter space and holography,” Adv. Theor. Math. Phys. 2 (1998) 253 hep-
th/9802150.

[5] M. Bianchi, M. B. Green, S. Kovacs and G. Rossi, “Instantons in supersymmetric Yang-Mills and
D-instantons in IIB superstring theory,” JHEP 9808 (1998) 013 hep-th/9807033.

[6] N. Dorey, V. V. Khoze, M. P. Mattis and S. Vandoren, “Yang-Mills instantons in the large-N
limit and the AdS/CFT correspondence,” Phys. Lett. B 442 (1998) 145 hep-th/9808157.

[7] N. Dorey, T. J. Hollowood, V. V. Khoze, M. P. Mattis and S. Vandoren, “Multi-instantons and
Maldacena’s conjecture,” JHEP 9906 (1999) 023 hep-th/9810243.

[8] N. Dorey, T. J. Hollowood, V. V. Khoze, M. P. Mattis and S. Vandoren, “Multi-instanton calculus
and the AdS/CFT correspondence in N = 4 superconformal field theory,” Nucl. Phys. B 552
(1999) 88 hep-th/9901128.

[9] T. Banks and M. B. Green, “Non-perturbative effects in AdS(5) x S^5 string theory and d = 4
SUSY Yang-Mills,” JHEP 9805 (1998) 002 hep-th/9804170.
[10] M. B. Green, “Interconnections between type II superstrings, M theory and N = 4 Yang-Mills,” hep-th/9903124.

[11] N. Dorey, T. J. Hollowood, V. V. Khoze and M. P. Mattis, “The calculus of many instantons,” Phys. Rept. 371 (2002) 231 hep-th/0206063.

[12] M. B. Green and S. Kovacs, “Instanton-induced Yang-Mills correlation functions at large N and their AdS(5) x S**5 duals,” JHEP 0304 (2003) 058 hep-th/0212332.

[13] D. Z. Freedman and U. Gursoy, “Comments on the beta-deformed N = 4 SYM theory,” JHEP 0511 (2005) 042 hep-th/0506128.

[14] S. Penati, A. Santambrogio and D. Zanon, “Two-point correlators in the beta-deformed N = 4 SYM at the next-to-leading order,” JHEP 0510 (2005) 023 hep-th/0506150.

[15] A. Mauri, S. Penati, A. Santambrogio and D. Zanon, “Exact results in planar N = 1 superconformal Yang-Mills theory,” JHEP 0511 (2005) 024 hep-th/0507282.

[16] V. V. Khoze, “Amplitudes in the beta-deformed conformal Yang-Mills,” JHEP 0602 (2006) 040 hep-th/0512194.

[17] Z. Bern, L. J. Dixon and V. A. Smirnov, “Iteration of planar amplitudes in maximally supersymmetric Yang-Mills theory at three loops and beyond,” Phys. Rev. D 72 (2005) 085001 hep-th/0505205.

[18] R. G. Leigh and M. J. Strassler, “Exactly marginal operators and duality in four-dimensional N=1 supersymmetric gauge theory,” Nucl. Phys. B 447, 95 (1995) hep-th/9503121.

[19] N. Dorey, T. J. Hollowood and S. P. Kumar, “S-duality of the Leigh-Strassler deformation via matrix models,” JHEP 0212 (2002) 003 hep-th/0210239.

[20] D. Berenstein and R. G. Leigh, “Discrete torsion, AdS/CFT and duality,” JHEP 0001 (2000) 038 hep-th/0001055.

[21] D. Berenstein, V. Jejjala and R. G. Leigh, “Marginal and relevant deformations of N = 4 field theories and non-commutative moduli spaces of vacua,” Nucl. Phys. B 589 (2000) 196 hep-th/0005087.

[22] N. Dorey, “S-duality, deconstruction and confinement for a marginal deformation of N=4 SUSY Yang-Mills,” JHEP 0408 (2004) 043 hep-th/0310117.

[23] T. J. Hollowood and S. Prem Kumar, “An N = 1 duality cascade from a deformation of N = 4 SUSY Yang-Mills,” JHEP 0412 (2004) 034 hep-th/0407029.

[24] N. Dorey and T. J. Hollowood, “On the Coulomb branch of a marginal deformation of N = 4 SUSY Yang-Mills,” JHEP 0506 (2005) 036 hep-th/0411163.

[25] S. A. Frolov, R. Roiban and A. A. Tseytlin, “Gauge - string duality for superconformal deformations of N = 4 super Yang-Mills theory,” JHEP 0507 (2005) 045 hep-th/0503192.
[26] S. Frolov, “Lax pair for strings in Lunin-Maldacena background,” JHEP 0505 (2005) 069 hep-th/0503201.

[27] N. Beisert and R. Roiban, “Beauty and the twist: The Bethe ansatz for twisted N = 4 SYM,” JHEP 0508 (2005) 039 hep-th/0505187.

[28] S. A. Frolov, R. Roiban and A. A. Tseytlin, “Gauge-string duality for (non)supersymmetric deformations of N = 4 super Yang-Mills theory,” Nucl. Phys. B 731 (2005) 1 hep-th/0507021.

[29] G. C. Rossi, E. Sokatchev and Y. S. Stanev, “New results in the deformed N = 4 SYM theory,” Nucl. Phys. B 729 (2005) 581 hep-th/0507113.

[30] S. M. Kuzenko and A. A. Tseytlin, “Effective action of beta-deformed N = 4 SYM theory and AdS/CFT,” Phys. Rev. D 72, 075005 (2005) hep-th/0508098.

[31] R. Hernandez, K. Sfetsos and D. Zoakos, “Gravity duals for the Coulomb branch of marginally deformed N = 4 Yang-Mills,” hep-th/0510132.

[32] H. Y. S. Chen and S. Prem Kumar, “Precision test of AdS/CFT in Lunin-Maldacena background,” hep-th/0511164.

[33] H. Y. Chen and K. Okamura, “The anatomy of gauge / string duality in Lunin-Maldacena background,” hep-th/0601109.

[34] D. Z. Freedman, S. D. Mathur, A. Matusis and L. Rastelli, “Correlation functions in the CFT(d)/AdS(d + 1) correspondence,” Nucl. Phys. B 546 (1999) 96 hep-th/9804058.

[35] M. B. Green and M. Gutperle, “Effects of D-instantons,” Nucl. Phys. B 498 (1997) 195 hep-th/9701093.

[36] M. B. Green, M. Gutperle and H. h. Kwon, “lambda**16 and related terms in M-theory on T**2,” Phys. Lett. B 421 (1998) 149 hep-th/9710151.

[37] A. Kehagias and H. Partouche, “The exact quartic effective action for the type IIB superstring,” Phys. Lett. B 422 (1998) 109 hep-th/9710023;
“D-instanton corrections as (p,q)-string effects and non-renormalization theorems,” Int. J. Mod. Phys. A 13 (1998) 5075 hep-th/9712164.

[38] G. ’t Hooft, “Computation Of The Quantum Effects Due To A Four-Dimensional Pseudoparticle,” Phys. Rev. D 14 (1976) 3432 [Erratum-ibid. D 18 (1978) 2199].

[39] M. F. Atiyah, N. J. Hitchin, V. G. Drinfeld and Y. I. Manin, “Construction Of Instantons,” Phys. Lett. A 65 (1978) 185.

[40] E. Corrigan, D. B. Fairlie, S. Templeton and P. Goddard, “A Green’s Function For The General Selfdual Gauge Field,” Nucl. Phys. B 140 (1978) 31.

[41] N. H. Christ, E. J. Weinberg and N. K. Stanton, “General Self-Dual Yang-Mills Solutions,” Phys. Rev. D 18 (1978) 2013.
[42] N. Dorey, V. V. Khoze and M. P. Mattis, "On mass-deformed N = 4 supersymmetric Yang-Mills theory," Phys. Lett. B 396 (1997) 141 hep-th/9612231.

[43] N. Dorey, T. J. Hollowood, V. V. Khoze and M. P. Mattis, "Supersymmetry and the mult-instanton measure. II: From N = 4 to N = 0," Nucl. Phys. B 519 (1998) 470 hep-th/9709072.

[44] C. Bernard, Phys. Rev. D19 (1979) 3013.

[45] V. V. Khoze, M. P. Mattis and M. J. Slater, "The instanton hunter’s guide to supersymmetric SU(N) gauge theory," Nucl. Phys. B 536 (1998) 69 hep-th/9804009.

[46] G. W. Moore, N. Nekrasov and S. Shatashvili, “D-particle bound states and generalized instantons,” Commun. Math. Phys. 209 (2000) 77 hep-th/9803265.

[47] W. Krauth, H. Nicolai and M. Staudacher, "Monte Carlo approach to M-theory," Phys. Lett. B 431 (1998) 31 hep-th/9803117.

[48] R. Gopakumar and M. B. Green, “Instantons and non-renormalisation in AdS/CFT,” JHEP 9912 (1999) 015 hep-th/9908020.