Abstract

We propose a method of constructing the separability criteria for multipartite quantum states on the basis of entanglement witnesses. The entanglement witnesses are obtained by finding the maximal expectation values of Hermitian operators and then optimizing over all possible Hermitian operators. We derive a set of multipartite separability criteria for the four-qubit Greenberger–Horne–Zeilinger (GHZ) diagonal states. The derived criterion set contains four criteria that are necessary and sufficient for the multipartite separability of the highly symmetric four-qubit GHZ diagonal states; the criteria completely account for the numerically obtained boundaries of the tripartite separable state set. One of the criteria is just the tripartite separability criterion of the four-qubit generalized Werner states.

PACS number(s): 03.65.Ud; 03.67.Mn;

1 Introduction

Multipartite entanglement is the main quantum resource in quantum computation, quantum simulation, and multipartite quantum communication. However, determining whether a given quantum state is multipartite entangled is a theoretically and experimentally challenging task. Many criteria have been developed to characterize and detect multipartite entanglement; see Ref. [1] for an overview. A solution to the entanglement detection problem, known as entanglement witnessing, relies on the geometry of the set of all separable quantum states [2,3]. The entanglement witness (EW) method can easily be extended to multipartite cases [4]. Recent developments of the entanglement detection criteria are an EW for continuous variable systems [5], an ultrafine EW [6], the semiquantum nonlocal game (SQNLG) [7], the EW game [8], the relaxed nonlocality detection method [9], the statistical speed [10], and the separability eigenvalue equation (SEE) [11]. Most of them are based on EWs. In principle, there exist the extremal EW [11] and extremal SQNLG such that the entanglement criteria are necessary and sufficient. Practically, finding a solution to the SEE or finding an extremal SQNLG is still very difficult if not impossible. Multipartite entanglement of a quantum state has rich structures [12]. It has many levels of entanglement, which are usually characterized by the entanglement depth [13], i.e., the extent to which the quantum state is many-body entangled. Genuine multipartite entanglement involving all parties of the system has the largest depth, and bipartite entanglement has the smallest depth. All the other types of entanglement, with depths between these extremes, can be called partial entanglement. The entanglement depth structure further complicates the detection and characterization of multipartite entanglement. EWs can be used to distinguish different classes of multipartite entanglement. There is subtle difference between multipartite entanglement and multipartite separability. We will use multipartite separability to characterize quantum states in the following.

The goal of this paper is to find a way to construct precise separability criteria for multipartite states. The proper starting point for this aim is to investigate the states that are diagonal in the Greenberger–Horne–Zeilinger (GHZ) basis [14]. GHZ diagonal states arise frequently as special multipartite quantum states in quantum information processing. They are tractable in many theoretical problems such as quantum channel capacity [15]. Most of the multipartite entangled states prepared in experiments are GHZ states. There have been recent experiments on four-qubit GHZ states; long-lived four-qubit GHZ states have been realized [16], and a test of the irreducible four-qubit GHZ paradox has been produced [17]. When imperfections in the preparation and decay are considered, the prepared states are usually GHZ diagonal states. The precise relationship between the positive partial transpose (PPT) criterion and full separability of GHZ diagonal states has been studied [18], and a simple condition has been given for the equivalence of the PPT criterion and full separability. When the condition is not fulfilled, the boundary between full separability and entanglement cannot be determined using the PPT criterion. Then a complicated EW should be devised to detect the boundary. For three-qubit GHZ diagonal states, an EW has been found [19,20]; hence, the necessary and sufficient criterion of full separability is known. Research on the multipartite entanglement of GHZ diagonal states has concentrated on the criteria of biseparability and full separability [21]. To be concrete while still considering the rich structure of multipartite entanglement, we will consider the problem of tripartite separability, which is neither the problem of biseparability nor that of full separability, for four-qubit GHZ diagonal states.

1

Precise detection of multipartite entanglement in four-qubit Greenberger–Horne–Zeilinger diagonal states

Xiao-yu Chen1*, Li-zhen Jiang1, Zhu-an Xu2

1College of Information and Electronic Engineering, Zhejiang Gongshang University, Hangzhou, 310018, China
2Department of Physics, Zhejiang University, Hangzhou, Zhejiang 310027, China

*Email:xychen@zjgsu.edu.cn
2 Preliminary

Suppose there is a composed Hilbert space $\mathcal{H} = \mathcal{H}_1 \otimes \cdots \otimes \mathcal{H}_n$. Consider a partition $\mathcal{I} = \{\mathcal{I}_1, \ldots, \mathcal{I}_k\}$ of the index set $\mathcal{J} = \{1, \ldots, n\}$. A quantum state $\sigma_\mathcal{I}$ is called separable for the given partition \mathcal{I} if it can be written as a classical mixture of product states:

$$\sigma_\mathcal{I} = \sum_i q_i |\psi^{(i)}_{\mathcal{I}_1}\rangle\langle \psi^{(i)}_{\mathcal{I}_1}| \otimes \cdots \otimes |\psi^{(i)}_{\mathcal{I}_k}\rangle\langle \psi^{(i)}_{\mathcal{I}_k}|,$$

where q_i is a classical probability distribution, and $|\psi^{(i)}_{\mathcal{I}_j}\rangle$ is a pure state of subset \mathcal{I}_j. A state σ is called k-separable if it can be written as

$$\sigma = \sum_{|\mathcal{I}|:|\mathcal{I}|=k} q'_I \sigma_\mathcal{I},$$

where $|\mathcal{I}|$ is the number of elements in the set \mathcal{I}, and q'_I is a classical probability distribution. The summation is over all possible k-partite partitions. If a quantum state cannot be written in the form of Eq. (2), it is referred to as k-inseparable. A 2-inseparable (not bisepareable) state is also called genuinely entangled.

A four-qubit GHZ diagonal state takes the form

$$\rho = \sum_{j=1}^{16} p_j |\psi^{(j)}_{\text{GHZ}}\rangle\langle \psi^{(j)}_{\text{GHZ}}|,$$

where p_j is a probability distribution. The GHZ state basis consists of 16 vectors, $|\psi^{(j)}_{\text{GHZ}}\rangle = \frac{1}{\sqrt{2}} (|0\rangle_{x_1} |0\rangle_{x_2} |0\rangle_{x_3} |0\rangle_{x_4}) \pm |1\rangle_{x_1} |1\rangle_{x_2} |1\rangle_{x_3} |1\rangle_{x_4})$, where $x_i, \overline{x}_i \in \{0, 1\}$, and $x_i \neq \overline{x}_i$. In binary notation, $j - 1 = 0_{j2}x_{3j4}$ for the “+” states, and $j - 1 = 1_{j2}x_{3j4}$ for the “−” states.

The highly symmetric four-qubit GHZ diagonal state investigated in this paper, which takes the form

$$\rho = \rho_1 |\psi^{(1)}_{\text{GHZ}}\rangle\langle \psi^{(1)}_{\text{GHZ}}| + p_{16} |\psi^{(16)}_{\text{GHZ}}\rangle\langle \psi^{(16)}_{\text{GHZ}}|$$

$$+ p_2 \sum_{j=2}^{8} |\psi^{(j)}_{\text{GHZ}}\rangle\langle \psi^{(j)}_{\text{GHZ}}| + p_{15} \sum_{j=9}^{15} |\psi^{(j)}_{\text{GHZ}}\rangle\langle \psi^{(j)}_{\text{GHZ}}|,$$

is a special GHZ diagonal state with $\rho_1 \geq 0$ and normalization

$$p_1 + p_{16} + 7(p_2 + p_{15}) = 1.$$

A generalized Werner state (a GHZ state mixed with white noise [22]),

$$\rho_W = p|\psi_{\text{GHZ}}\rangle\langle \psi_{\text{GHZ}}| + \frac{1-p}{16} I,$$

is a special highly symmetric GHZ diagonal state, where $|\psi_{\text{GHZ}}\rangle = |\psi^{(1)}_{\text{GHZ}}\rangle$, and I is the 16×16 identity matrix.

An EW is a Hermite operator \hat{W} such that $Tr \rho \hat{W} \geq 0$ for all separable states ρ (k-separable or separable in some given sense) and $Tr \rho \hat{W} < 0$ for at least one entangled state ρ (with a certain associated entanglement depth). We may assume $\hat{W} = \Lambda I - \hat{M}$, where Λ is the identity operator, and $\Lambda = \max_{\rho} Tr \rho \hat{M}$ such that \hat{W} is an optimal EW (the equality in $Tr \rho \hat{W} \geq 0$ can be reached). We may express the multi-qubit state and the EW using their characteristic functions. Thus, the operator \hat{M} is characterized by real parameters M_i ($i = 1, \ldots, 4^n - 1$) in detecting the entanglement of an n-qubit state. Here the number of parameters M_i is equal to the number of free real parameters for describing the density matrix. One of the widely used numerical methods of finding a proper EW employs semidefinite programming. The procedure of analytically finding a precise EW is divided into two steps. The first step is to find Λ for the given M_i. Notice that any operator \hat{M} corresponds to a valid EW if Λ is obtained. Hence, the first step gives a valid necessary criterion of separability. The second step is to adjust the parameters M_i such that the EW detects all the entanglement of a given depth. The parameters M_i should match the state under consideration, so the second step gives the sufficient criterion of separability.

The two steps for finding the entanglement criteria are just the two types of optimization. The first step is the maximization to obtain Λ (and thus the optimal EW) for a given set of parameters M_i. The second step is optimization with respect to M_i such that the criterion is tight. Randomly choosing the parameters M_i will lead to very inefficient optimization in the two steps. Thus, the problem is how to choose M_i properly. Given the GHZ diagonal states of (3), we may assume M_i ($i = 1, \ldots, 15$) as free parameters. It is very difficult to treat 15 parameters analytically. Therefore, we seek some symmetries to reduce the number of parameters M_i. Then we derive the EWs by two optimization steps. It follows that some necessary criteria of entanglement for the GHZ diagonal states of (3) can be obtained. To check whether the criteria are also sufficient, we explicitly decompose the states of (3), which are special states of (3), into tripartite separable states. We prove that the set of criteria is not sufficient for general states of (3), and some other criteria should be found to realize sufficiency. On the other hand, we find that one of the criteria we obtained suffices as the necessary and sufficient criterion for the states of (6), which are special states of (3).

We describe the framework of the criteria as follows. Let $\mathcal{S}_1, \mathcal{S}_2, \ldots, \mathcal{S}_N$ be a hierarchy of state sets such that $\mathcal{S}_1 \subset \mathcal{S}_2 \subset \cdots \subset \mathcal{S}_N$. Let \mathcal{C}_i be the set of necessary and sufficient entanglement criteria for state set \mathcal{S}_i. Notice that $\mathcal{S}_1 \subset \mathcal{S}_2$, so the criterion set \mathcal{C}_1 detects at least some of the states in \mathcal{S}_2 necessarily and sufficiently. We have $\mathcal{C}_1 \subset \mathcal{C}_2$, and eventually $\mathcal{C}_1 \subset \mathcal{C}_2 \subset \cdots \subset \mathcal{C}_N$. Thus, for a larger state set, we may add additional criteria to the criterion set. Each criterion set \mathcal{C}_i can be converted to an EW set \mathcal{W}_i, where \mathcal{W}_i can detect the entanglement of \mathcal{S}_i necessarily and sufficiently. Hence, we have $\mathcal{W}_1 \subseteq \mathcal{W}_2 \subseteq \cdots \subseteq \mathcal{W}_N$.

To detect the multipartite entanglement of multi-qubit systems (the state set \mathcal{S}_N), we should consider a hierarchy of state sets. The sets can be the graph-diagonal state set \mathcal{S}_1, GHZ diagonal-state set \mathcal{S}_2, highly symmetric GHZ diagonal-state set \mathcal{S}_3, or generalized Werner state set \mathcal{S}_4. We will show that $\mathcal{C}_1 \subset \mathcal{C}_2 \subset \mathcal{C}_3$. The generalized Werner state set has been considered for the four-qubit case, and all the parameters M_i have been determined [20]. The necessary and sufficient criterion of tripartite separability has been given [20]. We will recognize the criterion...
obtained[20] from the criterion set C_2 and denote it as the criterion set C_1. We will build the criterion set C_2, which is necessary and sufficient for the state set S_2 and is a fairly good necessary criterion set for larger state sets S_j with $j \geq 3$. Further, we find that the two EW sets W_1 and W_2 share some common parameters M_i.

\section{Optimal entanglement witness}

Let \hat{M} be a Hermitian operator that is a linear combination of the tensor products of the Pauli operators appearing in the four-qubit GHZ diagonal states, namely,

$$\hat{M} = M_{11}ZZZ + M_{21}IZI + M_{31}ZII + M_{41}III$$

where $M_{ij} = M_{i1}M_{j2}M_{k3}M_{l4}$ is the matrix, and the Bloch vectors of pure states $M_{11}, M_{12}, \ldots, M_{16}$ are easily obtained as

$$M_i = \frac{1}{2}(\psi_1|\psi_2)(\psi_3|\psi_4)$$

where $|\psi_i\rangle$ are the entries of the matrix M. For a given four-qubit state $|\psi\rangle$, we can maximize the mean $\langle\psi|\hat{M}|\psi\rangle$ as the largest eigenvalue of the matrix M. For GHZ diagonal states, the structure of the matrix \mathcal{M} is of the “X” type. The matrix contains diagonal and antidiagonal entries, and all the other entries are zeros. Thus, the candidates for the largest eigenvalue of \mathcal{M} are easily obtained as

$$\lambda_1 = \frac{1}{2}(M_{11} + M_{44} + \sqrt{(M_{11} - M_{44})^2 + 4|M_{14}|^2})$$

$$\lambda_2 = \frac{1}{2}(M_{22} + M_{33} + \sqrt{(M_{22} - M_{33})^2 + 4|M_{23}|^2})$$

where \mathcal{M}_{mn} are the entries of the matrix \mathcal{M}. Let the Bloch vectors of pure states $|\psi_i\rangle (i = 1, 2)$ be

$$|\psi_i\rangle = (\sin \theta_i, \cos \theta_i, \sin \phi_i, \cos \phi_i)$$

we have

$$M_{11} = M_{22} = M_{33} = M_{44} = K_0 + K_2 \cos \theta_2 + K_4 \cos \theta_2 + K_6 \cos \theta_2$$

$$M_{12} = M_{13} = M_{14} = M_{23} = M_{34} = M_{41} = M_{42} = M_{43} = 0$$

where $(K_0, K_2, K_4, K_6) = (M_1, M_2, M_3, M_4, M_5, M_6, M_7)$, and $M_{14} = \sin \theta_1 \sin \theta_2 g_1(\varphi_1, \varphi_2)$, $M_{23} = \sin \theta_1 \sin \theta_2 g_2(\varphi_1, \varphi_2)$, $M_{12} = \sin \theta_1 \sin \theta_2 g_3(\varphi_1, \varphi_2)$, $M_{13} = \sin \theta_1 \sin \theta_2 g_4(\varphi_1, \varphi_2)$, $M_{14} = \sin \theta_1 \sin \theta_2 g_5(\varphi_1, \varphi_2)$, $M_{23} = \sin \theta_1 \sin \theta_2 g_6(\varphi_1, \varphi_2)$, $M_{24} = \sin \theta_1 \sin \theta_2 g_7(\varphi_1, \varphi_2)$, $M_{34} = \sin \theta_1 \sin \theta_2 g_8(\varphi_1, \varphi_2)$, $M_{32} = \sin \theta_1 \sin \theta_2 g_9(\varphi_1, \varphi_2)$, $M_{42} = \sin \theta_1 \sin \theta_2 g_{10}(\varphi_1, \varphi_2)$, $M_{43} = \sin \theta_1 \sin \theta_2 g_{11}(\varphi_1, \varphi_2)$, $M_{44} = \sin \theta_1 \sin \theta_2 g_{12}(\varphi_1, \varphi_2)$, $M_{11} = \sin \theta_1 \sin \theta_2 g_{13}(\varphi_1, \varphi_2)$, $M_{22} = \sin \theta_1 \sin \theta_2 g_{14}(\varphi_1, \varphi_2)$, $M_{33} = \sin \theta_1 \sin \theta_2 g_{15}(\varphi_1, \varphi_2)$, $M_{44} = \sin \theta_1 \sin \theta_2 g_{16}(\varphi_1, \varphi_2)$.

The assumption may limit the entanglement detection power of the optimal EW derived from the operator \tilde{M}. However, it greatly simplifies the analysis. The maximal eigenvalue is already the maximal mean of \hat{M} for all partitions (and thus the tripartite separability) by symmetry. The symmetric assumption of the parameters M_i leads to $K_3 = K_4 = K_5 = K_13 = 0$; then λ_2 is

$$\lambda_2 = K_1 + K_7 \cos \theta_1 \cos \theta_2 + \tilde{g}_2 |\sin \theta_1 | \sin \theta_1$$

where $\tilde{g}_2 = \max(|K_9|, |K_{15}|)$.

For the particular tripartite separable problem of four-qubit GHZ diagonal states, we further assume

$$M_1 = 0$$

and thus $K_1 = 0 (i = 0, \ldots, 5)$, and $K_6 = -K_7 = M_7$. Let $\Lambda_i = \max(\theta_1, \theta_2 \Lambda_i)$; then

$$\Lambda_1 = \max(|M_7|, \tilde{g}_1)$$

$$\Lambda_2 = \max(|M_7|, \tilde{g}_2)$$
The maximal mean of \hat{M} over all possible tripartite separable states is
\[\Lambda = \max(\Lambda_1, \Lambda_2) = \max(|M_1|, g_1, g_2). \] (17)

The present parameters M_i are compatible with and closely related to the EW for the triseparability of generalized Werner states. The generalized Werner state EW has $M_1 = M_2 = M_3 = M_4 = M_5 = M_6 = 0$, $M_7 = 2$, $M_8 = M_{15} = 1$, and $M_9 = M_{10} = M_{11} = M_{12} = M_{13} = M_{14} = -1$ [20]. Assumptions (10), (11), and (14) on the parameters M_i reveal the relationship between the two sets of EWs; namely, \mathcal{W}_1 and \mathcal{W}_2 share some common M_i.

4 Matched entanglement witness

The optimal EW can be constructed as $\hat{W} = \Lambda \mathbb{1} - \hat{M}$. If \hat{W} can detect the entanglement of a state ρ, then $\text{Tr} \rho \hat{W} < 0$; namely, $\text{Tr} \rho \hat{M} > \Lambda$. A four-qubit GHZ diagonal state can be written as
\[\rho = \frac{1}{16}(III + R_1 IZZZ + R_2 IZZ + R_3 IZZZ + R_4 ZZI + R_5 IZZ + R_6 ZZ + R_7 ZZZZ + R_8 XXXX + R_9 XYY + R_{10} XYXX + R_{11} YXY + R_{12} YXX + R_{13} YXY + R_{14} YYY + R_{15} YYYY). \] (18)

Then $\text{Tr} \rho \hat{M} = \sum_{i=1}^{15} M_i R_i = \sum_{i=1}^{15} K_i T_i$, with $T_{2i}, T_{2i+1} = \frac{1}{2}(R_{2i} \pm R_{2i+1})$ for $i = 0, 1, 2, 3, 5, 6$ (we assume $R_0 = 0$ here), and $T_{2i}, T_{2i+1} = \frac{1}{2}(R_{2i} \mp R_{2i+1})$ for $i = 4, 7$. Let
\[\mathcal{L} = \sum_{i=1}^{15} \Lambda K_i T_i. \] (19)

Using the convention $\sum_{i=1}^{15} K_i T_i > 0$, we say that the entanglement of ρ is detected if $\mathcal{L} < 1$. For all possible optimal EWs, we want to find an EW with the smallest \mathcal{L}. We will call it the matched EW with respect to the given state ρ.
\[\mathcal{L}_{\text{min}} = \min_{\hat{M}} \mathcal{L}. \] (20)

To minimize \mathcal{L} with respect to K_i ($i = 1, \ldots, 15$), we first consider $\tilde{R}_1 = \max_{i=8,10,12,14} \sqrt{K_i T_i / g_i}$. We have [20]
\[\tilde{R}_1 = \begin{cases} \sqrt{\frac{T_{8} T_{10} T_{12} T_{14} T_{8} T_{10} T_{12} T_{14}}{T_{8} T_{10} T_{12} T_{14}}} & \text{for } T_{8} T_{10} T_{12} T_{14} > 0 \text{ and } Q > 0, \\
\max_{i=8,10,12,14} |t_i|, & \text{otherwise,}
\end{cases} \] (21)

where $Q = \frac{Q_0 Q_1 Q_2 Q_3}{T_{8} T_{10} T_{12} T_{14}}$, with $(Q_0, Q_1, Q_2, Q_3) = (T_{8} T_{10} T_{12} T_{14} (\frac{T_{8} T_{10} T_{12} T_{14} + T_{8} T_{10} T_{12} T_{14}}{T_{8} T_{10} T_{12} T_{14}}))$; $(t_8, t_{10}, t_{12}, t_{14}) = (T_8, T_{10}, T_{12}, T_{14})$.

Let $R_2 = \max_{i=9,15} \sqrt{K_i T_i / g_i} = |T_9| + |T_{15}|$. When $\tilde{R}_1 \geq R_2$, the minimization of \mathcal{L} is simplified to $\mathcal{L}_{\text{min}} = \min_{g_2 \leq \tilde{g}_2} \tilde{\mathcal{L}}$, with
\[\tilde{\mathcal{L}} = \min_{M_i, \tilde{g}_2} \frac{\Lambda}{M_7 T_7 + g_1 \tilde{R}_1 + g_2 R_2} = \frac{1}{|R_7| + R_1 + R_2 g_2 / \Lambda}. \] (22)

We may leave the minimization with respect to \tilde{g}_2 pending. Alternatively, when $\tilde{R}_2 \geq \tilde{R}_1$, we have $\mathcal{L}_{\text{min}} = \min_{\tilde{g}_2 \leq \tilde{g}_2} \tilde{\mathcal{L}}$, with
\[\tilde{\mathcal{L}} = \frac{1}{|R_7| + R_2 + R_1 g_1 / \Lambda}. \] (23)

When $\tilde{g}_2 = \tilde{g}_1$, we would obtain \mathcal{L}_{min}. However, care must be taken when we write the expression \mathcal{L}_{min}. The reason is that \tilde{g}_1 and \tilde{g}_2 may not be independent; they are correlated owing to our assumptions on the parameters M_i. The details can be found in Appendix B. When $M_9 = 0$, we have $\tilde{g}_2 = \tilde{g}_1$. For $M_9 = 0$, \tilde{R}_1 is reduced to $|T_8| + |T_{14}|$ instead of expression (21). The correct result should be
\[\mathcal{L}_{\text{min}} = \frac{1}{|R_7| + |R_8| + |R_{15}|}. \] (24)

5 Separability criterion

The separability criteria are $\tilde{\mathcal{L}} \geq 1$ and $\mathcal{L}_{\text{min}} \geq 1$. The separability criteria for the partition $1|2|34$ derived from (22) is
\[|R_7| + x \tilde{R}_1 \leq 1, \] (25)

where $x \in (0, 1)$. When $x = 0$, we have the separability criterion
\[|R_7| + \tilde{R}_1 \leq 1. \] (26)

An interesting case appears for criterion (20) when \tilde{R}_1 is equal to its second line in (21). With the entries of ρ, we have $T_8 = -8 \rho_{16}, t_{10} = 8 \rho_{14}, t_{12} = 8 \rho_{5}, t_{14} = 8 \rho_{8}, 9$. Hence, when conditions $T_8 T_{10} T_{12} T_{14} > 0$ and $Q > 0$ are not fulfilled, we have the triseparability criterion.

Criterion I:
\[\max(|\rho_{16}|, |\rho_{4,13}|, |\rho_{5,15}|, |\rho_{8,9}|) \leq \frac{1}{2} \min(\rho_{1,1}, \rho_{4,4} + \rho_{6,6} + \rho_{7,7}, \rho_{2,2} + \rho_{3,3} + \rho_{5,5} + \rho_{8,8}). \] (27)

Criterion (27) is a necessary criterion for tripartite separability. The criterion derived from (21) is
\[|R_7| + |R_8| + |R_{15}| \leq 1. \] (28)

Criteria (27) and (28) give rise to the linear boundaries (straight lines in Figs.1 and 2) of the tripartite separable state set. We anticipate that the nonlinear boundaries (curves in the figures) are attributed to the first line of formula (21). However, this is not the case, at least for the example in the next section. There is another way of minimizing \mathcal{L} in (20). We may write $\sum_{i=1}^{15} M_i R_i = M_7 R_7 + M_8 R_8 + M_9 \sum_{i=9}^{14} R_i + M_{15} R_{15}$ owing to our assumptions on M_i. We may rewrite it as $M_7 R_7 + \sum_{i=9}^{15} K_i T_i$, where $T_8 = R_8, T_{10} = T_{12} = \frac{1}{4}(\sum_{i=8}^{14} R_i)$, and $T_{14} = -R_{15}$. We then have the tripartite separability criterion
\[|R_7| + \tilde{R}_1' \leq 1, \] (29)

where \tilde{R}_1' is defined just as \tilde{R}_1 in (20), with T_i being replaced by T_i'. We simplify the separability criterion (29)
to

$$1 - |R_7| \geq |R_8 - R_{15}| \sqrt{1 - \frac{(\sum_{i=8}^{15} R_i)^2}{16 R_8 R_{15}}}$$ \hspace{1cm} (30)

if \(R_8 R_{15} < 0\) and \(|8R_8 R_{15}| \geq |(\sum_{i=8}^{15} R_i)(R_8 + R_{15})|\).

We can see that the above case corresponds to \(\tilde{g}_2 < \tilde{g}_1\). There is also the case \(\tilde{g}_2 = \tilde{g}_1\). It can be obtained by setting

$$\tilde{g}_1 = |M_7| = \max(|M_8 + M_9|, |M_9 + M_{15}|).$$ \hspace{1cm} (31)

The number of free parameters is reduced from three, \((M_8, M_9, M_{15})\), to two owing to condition \(\mathbf{31}\). Notice that we may fix one of them (see \(M_9\)) without affecting \(\mathcal{L}\). Hence, there is only one free parameter (see \(M_{15}\)) left for minimizing \(\mathcal{L}\). We then have the separability criterion

Criterion IV:

$$|R_7| + \tilde{R}'' \leq 1,$$ \hspace{1cm} (32)

where \(\tilde{R}'' = \min_{M_{15}} \sum_{i=8}^{15} |M_i R_i|\) subject to \(\mathbf{31}\), and \(M_i = M_9 = -1 (i = 10, ..., 14)\).

We have shown that there are four criteria for the tri separability of four-qubit GHZ diagonal states. We will show that these criteria are necessary and sufficient for the tri separability of highly symmetric four-qubit GHZ diagonal states. We may denote the criterion set as \(\mathcal{C}_2 = \{\text{criterion I, criterion II, criterion III, criterion IV}\}\). Let us denote \(\mathcal{C}_1 = \{\text{Criterion I}\}\). Because criterion I is the necessary and sufficient criterion of tri separability for generalized Werner states (see Appendix C), we have \(\mathcal{C}_1 \subset \mathcal{C}_2\).

6 Application to highly symmetric GHZ diagonal states

As defined in Eq.(4), a four-qubit highly symmetric GHZ diagonal state \(\rho\) is a mixture of GHZ basis states with the probabilities \(\{p_i, i = 1, ..., 16\}\) and \(p_2 = p_3 = ... = p_8;\)

\(p_9 = p_{10} = ... = p_{15}\). The state is symmetric under interchange of any pair of qubits. Hence, we obtain four positive parameters, \(p_1, p_2, p_{15},\) and \(p_{16}\), with the normalization

$$p_1 + p_16 + 7(p_2 + p_{15}) = 1.$$ \hspace{1cm} (33)

The nonzero entries of \(\rho\) are \(p_{11} = p_{16,16} = \frac{1}{2}(p_1 + p_{16});\)

\(p_{1,16} = p_{16,1} = \frac{1}{2}(p_1 + p_{16});\) \(p_{2,2} = p_{3,3} = ... = p_{15,15} = \frac{1}{2}(p_2 + p_{15});\) and \(p_{2,15} = p_{3,14} = ... = p_{15,2} = \frac{1}{2}(p_2 + p_{15})\).

We numerically calculated the boundaries of the tripartite separable state sets for the above states for \(p_{16} = 0\) and \(p_{16} = 0.3\). We chose \(p_2\) and \(p_{15}\) as free parameters, and \(p_1\) was determined by the normalization in \(\mathbf{33}\). The boundaries are shown in Figs.1 and 2. The numerical calculation has rounds of three steps: (i) choose \(M_i\) randomly, (ii) calculate \(\Lambda\), and (iii) record the minimal \(\mathcal{L}\). Let \(p_{15} = \frac{v}{q}, p_2 = \frac{1-v}{q},\) and \(v \in [0, 1]\). The normalization in \(\mathbf{33}\) gives the upper bound of \(1/q\). Because

$$p_1 = 1 - p_{16} - 7(p_2 + p_{15})$$

we have

$$p_2 + p_{15} \leq \frac{1}{7}(1 - p_{16}).$$ \hspace{1cm} (34)

The equality in \(\mathbf{34}\) gives the straight-line boundary FG in Fig.1, with \(q = \frac{1}{1-p_{16}} = 7\).

For convenience, we list the relevant \(R_j\) below:

$$R_7 = R_1 = 1 - 8(p_2 + p_{15})$$

$$R_8 = 1 - 2p_{16} - 14p_{15}$$

$$R_{15} = -R_9 = 1 - 2p_{16} - 8p_2 - 6p_{15}.$$ \hspace{1cm} (37)

6.1 Necessary criteria

Except for the physical–unphysical boundary determined by \(\mathbf{33}\), all the other boundaries in Figs.1 and 2 are related to the necessary criteria of tripartite separability. For our state \(\rho\), criterion I is

$$|p_1 - p_{16}| \leq 2(p_2 + p_{15}).$$ \hspace{1cm} (38)

When \(p_1 > p_{16}\), the criterion gives a lower bound of \(1/q\) corresponding to the straight-line boundary AB in Figs.1 and 2, with \(q = 9\) and \(q = 22.5\), respectively. When \(p_1 < p_{16}\) the criterion gives an upper bound of \(1/q\) corresponding to the straight-line boundary FG in Fig.2, with \(q = 12.5\).

Criterion II can be written as \(R_8 + R_{15} + R_7 \leq 1, -R_8 + R_{15} - R_7 \leq 1, -R_8 + R_{15} + R_7 \leq 1, R_8 - R_{15} - R_7 \leq 1, R_8 - R_{15} + R_7 \leq 1, -R_8 - R_{15} + R_7 \leq 1\) for different

\[\begin{array}{cc}
\text{Criterion I:} & |1 - p_{16} - 7(p_2 + p_{15})| \leq \frac{1}{7}(1 - p_{16}) \\
\text{Criterion II:} & \sum_{i=8}^{15} |R_i|^2 \leq 1 \\
\text{Criterion III:} & \sum_{i=8}^{15} |R_i|^2 \leq 1 \\
\text{Criterion IV:} & |R_7| + \tilde{R}'' \leq 1
\end{array}\]
We denote the intersections of the criteria as points A, B, ..., in Figs.1 and 2. Let $\alpha = \frac{9}{16}$, then

$$v = \frac{1}{2} [1 + \frac{K + 1}{\tau(K)}], \quad \alpha = 7 + \frac{7 - K}{\tau(K)}. \quad (50)$$

The curve CD (dot-dashed) is tangent to the curve BC (solid) in Fig.3 at point C. Combining Eq. (50) with power equation (17) gives the coordinates of point C: $v_C = 0.7492394, \alpha_C = 8.900032$. The curves HI in Fig.2 and DE in Fig.1 can be analyzed similarly.

The numerical curves CD and HI in Fig.2 and CDE in Fig.1 are obtained by a random search of the EW operators. The parameters for points C and H obtained by

$$v_A = \frac{1}{6}; \quad v_B = \frac{1}{16}(5 + \sqrt{41}) \approx 0.7127. \quad (46)$$

We obtain $v_A = \frac{1}{6}$ from (58) and (59). The value of v_B is the result of the equality in criterion III. Because $R_7 = 1 - \frac{8(1-2p_{16})}{\alpha}$, we have $R_7 > 0$ for points B and G in Fig.2 and also for point B in Fig.1. The equality in criterion III can be reduced to a power equation of v:

$$\sum_{i=0}^{4} a_i v^i = 0, \quad (47)$$

where $a_4 = 256, a_3 = 96\alpha - 1184, a_2 = 1364 - 1440\alpha, a_1 = 60\alpha - 520, \text{and } a_0 = (\alpha - 10)^2$. Equation (17) determines the curves BC and GH in Fig.2 and the curve BC in Fig.1. For $\alpha = 9$, the power equation is $(16v^2 - 10v - 1)^2 = 0$, which gives the solution v_B in (46). Furthermore, for $\alpha = 5$, the power equation is $(16v^2 - 22v - 5)^2 = 0$. The solution $v = v_C = \frac{1}{16}(11 - \sqrt{41}) \approx 0.2873$ determines the location of point G in Fig.2. We have $\alpha = 5$ for the straight line FG in Fig.2 with $v \in [v_F, v_G]$. Further, $v_F = \frac{5}{4}$ comes from (58) and (14). We can see that $v_G = 1 - v_B$ and $v_F = 1 - v_A$ in Fig.2. The power equation in (17) is invariant under the transformation $\alpha - 7 \Rightarrow 7 - \alpha, v \Rightarrow 1 - v$. Thus, we need to analyze only the curve BC instead of both BC and GH in Fig.2.

The curves CD and HI in Fig.2 and CDE in Fig.1 correspond to separability criterion IV. To simplify the notation, let $s = 1 - \frac{M_A + M_F}{2M_4}$ and $t = \frac{M_A - M_F}{2M_4}$. The condition in (44) leads to

$$|t| = \left|1 - \frac{4}{s^2}(s - 2) - \frac{2}{s^2} \sqrt{(1-s)(4-s^2)} \right|. \quad (48)$$

Let $K = -\frac{R_7}{R_5}$; then $\tilde{R}'' = R_{15} \tau(K)$, with

$$\tau(K) = \max_{s \in [0,1]} s(1-K) + |t|(1+K) + K + 5 \left|s - |t| - 2 \right|. \quad (49)$$

Criterion III and IV intersect at point C (or H). In Fig.3, we show that the boundary in (α, v) coordinates changes from criterion III to criterion IV when α decreases. The exact coordinates of C should be determined. Criterion IV becomes $R_{15} \tau(K) \leq 1 - R_7$. When $R_7 > 0$, we have $1 - R_7 = \frac{s}{4} = \frac{8}{\alpha}(1-2p_{16})$, and $R_{15} = (1 - \frac{8-2v}{\alpha})(1-2p_{16})$. The equality in criterion IV is simplified to $(\alpha - 8 + 2v)\tau(K) = 8$. K is defined as $K = -\frac{R_7}{R_5} = \frac{\alpha}{8 - 2v}$. Hence, the boundary curve CD in both Figs.1 and 2 is determined by the following parameter equation:

$$v = \frac{1}{2} [1 + \frac{K + 1}{\tau(K)}], \quad \alpha = 7 + \frac{7 - K}{\tau(K)}. \quad (50)$$

The curve CD (dot-dashed) is tangent to the curve BC (solid) in Fig.3 at point C. Combining Eq. (50) with power equation (17) gives the coordinates of point C: $v_C = 0.7492394, \alpha_C = 8.900032$. The curves HI in Fig.2 and DE in Fig.1 can be analyzed similarly.

The numerical curves CD and HI in Fig.2 and CDE in Fig.1 are obtained by a random search of the EW operators. The parameters for points C and H obtained by...
the random search are \(v_C = 0.7492, \alpha_C = 8.90, v_H = 0.2508, \alpha_H = 5.50 \). In Fig.2, D is the end point of criterion IV with \(\alpha_D = 7.3333 \). In Fig.1, E is the end point of criterion IV with \(\alpha_E = 7.273, v_E = 0.9091 \). The numerical curves fit separability criterion IV well.

6.2 Sufficient criteria

The sufficient condition of separability relies on the ability to decompose the state into a probability mixture of product states. It is usually rather technically complex to write the decomposition. For our known operator \(M \), we will find the eigenvectors corresponding to its largest eigenvalue \(\lambda \) and use these eigenvectors to construct the explicit decomposition of a state \(\rho \) at the boundary.

6.2.1 Sufficiency of criterion I

The choice of \(M_I = 0, M_T = 1 \) and \(M_8 = M_9 = \frac{1}{2} \) leads to criterion I. The matrix \(M \) is

\[
M = \begin{pmatrix}
c_1c_2 & 0 & 0 & s_1s_2e^{i(\varphi_1+\varphi_2)} \\
0 & -c_1c_2 & 0 & 0 \\
0 & 0 & -c_1c_2 & 0 \\
s_1s_2e^{-i(\varphi_1+\varphi_2)} & 0 & 0 & c_1c_2
\end{pmatrix}
\]

where \(c_i = \cos \theta_i \), and \(s_i = \sin \theta_i \). The largest eigenvalue of \(M \) is \(\lambda = 1 \). The corresponding eigenvector is

\[
|\psi_{34}\rangle = \frac{1}{\sqrt{2}}(|00\rangle + e^{-i(\varphi_1+\varphi_2)}|11\rangle).
\]

The tripartite product state can be given by \(|\psi(\varphi_1, \varphi_2)\rangle = |\psi_1\rangle|\psi_2\rangle|\psi_{34}\rangle \), where \(|\psi_k\rangle = \frac{1}{\sqrt{2}}(|0\rangle + e^{i\varphi_k}|1\rangle), k = 1, 2 \), and we have set \(\theta_1 = \theta_2 = 0 \) for simplicity. Let \(g(\varphi_1, \varphi_2) = |\psi(\varphi_1, \varphi_2)\rangle|\psi(\varphi_1, \varphi_2)\rangle \). Further, let \(g_1(\varphi_1, \varphi_2) = \frac{1}{8}\sum_{k_1, k_2=0}^1 g((-1)^{k_1}(\varphi_1 + k_1\pi), (-1)^{k_2}(\varphi + k_2\pi)) \) be a mixture of \(g \) for different angles \(\varphi_k \). The state \(g_1 \) is tripartite separable with the partition 1|2|34.

Averaging over all six partitions, we then have a tripartite separable state \(\bar{\rho}_1 = \frac{1}{8}\sum_{j=1}^6 \rho_1(j) \) (where \(j \) denotes different partitions). The explicit \(\bar{\rho}_1 \) is shown in Appendix D, and we set \(\varphi_+ = \varphi_1 + \varphi_2 \) there. The highly symmetric GHZ diagonal state on the tripartite separable boundary (straight lines AB in Figs.1 and 2 and FG in Fig.2) can be expressed as

\[
\rho = (1 - \kappa)\rho' + \kappa\bar{\rho}_1,
\]

where \(\rho' \) is a fully separable state, and \(\kappa = \frac{4(\alpha - 7(1 - 2\alpha))}{\alpha} \) (see Appendix D). The antidiagonal part of state \(\rho \) compared with Eq. (53) is characterized by

\[
R_8 = \frac{\kappa}{2}(\cos^2 \varphi_+ + \cos \varphi_+ \cos \varphi_-),
\]

\[
R_{15} = \frac{\kappa}{2}(\cos^2 \varphi_+ - \cos \varphi_+ \cos \varphi_-),
\]

\[
R_9 = -\frac{\kappa}{6}(1 + \sin^2 \varphi_+).
\]

For the four-qubit highly symmetric GHZ diagonal states, we have \(R_9 + R_{15} = 0 \). This leads to

\[
\cos \varphi_+ = \frac{1}{8}(3\cos \varphi_- \pm \sqrt{9\cos^2 \varphi_- + 32}).
\]

Consequently, \(\cos \varphi_+ \in (-1, -\frac{\sqrt{19} - 3}{8} \cup [\frac{\sqrt{19} - 3}{8}, 1]) \). We thus have \(R_8 = \frac{7\cos^2 \varphi_-}{2 - \cos \varphi_-} \). On the other hand, we have \(R_9 \approx \frac{\alpha}{\alpha - 8 + 2\nu} \). Thus,

\[
v = \frac{1}{6}[\alpha - 4(2 - \alpha)\cos^2 \varphi_-].
\]

Hence, \(v \in [\frac{7}{8}, \frac{19}{10}(5 + \sqrt{11})] \) when \(\alpha = 9 \) (straight line AB in Fig.1 or 2). Namely, \(v_A = \frac{7}{8} \), and \(v_B = \frac{19}{10}(5 + \sqrt{11}) \). Further, \(v \in [\frac{1}{10}(11 - \sqrt{11}), \frac{5}{10}] \) when \(\alpha = 5 \) (straight line FG in Fig.2). Namely, \(v_F = \frac{1}{10}(11 - \sqrt{11}) \). These results are exactly the same as those obtained by the necessary criteria. Thus, the straight lines AB in Figs.1 and 2 and FG in Fig.2 are exact boundaries of the tripartite separable state set.

6.2.2 Sufficiency of criterion II

The choice of \(M_T = \pm 1, M_8 = \pm 1, M_9 = 0 \), and \(M_{15} = \pm 1 \) leads to criterion II. First, we consider the case \(M_8 = M_{15} = 1 \). The matrix \(M \) is

\[
M = \begin{pmatrix}
c_1c_2 & 0 & 0 & s_1s_2b_+ \\
0 & -c_1c_2 & 0 & 0 \\
0 & 0 & -c_1c_2 & 0 \\
s_1s_2b_- & 0 & 0 & c_1c_2
\end{pmatrix}
\]

where \(b_\pm = \cos \varphi_\pm \), and \(M_T = 1 \) is assumed. The four eigenvalues of \(M \) reach their maximal value of 1 under different conditions. These conditions are (i) \(\theta_1 - \theta_2 = 0, \varphi_+ = 0 \), (ii) \(\theta_1 - \theta_2 = 0, \varphi_+ = \pi \), (iii) \(\theta_1 - \theta_2 = \pi, \varphi_- = 0 \), and (iv) \(\theta_1 - \theta_2 = \pi, \varphi_- = \pi \) for the four eigenvalues, respectively. We consider case (i) first. The corresponding eigenvector is

\[
|\psi_{34}\rangle = \frac{1}{\sqrt{2}}(|00\rangle + |11\rangle).
\]
The state $\varrho_2(\theta, \varphi)$ comes from the first eigenvalue of \mathcal{M}. Similarly, we have the other three states, $\varrho_i(\theta, \varphi)$ ($i = 3, 4, 5$), derived from the other three eigenvalues of \mathcal{M}. Let $\varrho_{23}(\theta, \varphi) = \frac{1}{4} \sum_{j=1}^{3} \varrho_j(\theta, \varphi)$ and $\varrho_{45}(\theta, \varphi) = \frac{1}{4} \sum_{j=1}^{3} \varrho_j(\theta, \varphi)$. The states are derived from the partition $1/2/34$. Averaging over all six partitions, we have $\varrho_{23}(\theta, \varphi) = \frac{1}{4} \sum_{j=1}^{3} \varrho_{23}(\theta, \varphi, j)$ (where j denotes different partitions); see Appendix D.

Let the constructed tripartite separable GHZ diagonal state be

$$\rho = p\varrho_{23}(\theta, \varphi) + (1-p)\varrho_{45}(\theta, \varphi),$$

which is a probability mixture of the two states. Comparing the state ρ with Eq. (13), we have

$$R_1 = \frac{1}{6} (2p - 1)(1 + \cos^2 \theta), \quad R_7 = \cos^2 \theta,$$

$$R_8 = \sin^2 \theta (p \cos^2 \varphi + (1-p) \cos^2 \varphi'),$$

$$R_9 = \frac{1}{6} \sin^2 \theta (2p - 1),$$

$$R_{15} = \sin^2 \theta (p \sin^2 \varphi + (1-p)\sin^2 \varphi').$$

Using $R_0 + R_{15} = 0$, we can express p as a function of $\sin^2 \varphi$ and $\sin^2 \varphi'$. We calculate the minimum of $K = \frac{1}{4} \frac{1}{\cos \theta}$ with respect to $\sin^2 \varphi$ and $\sin^2 \varphi'$. Then we find $K \geq 5$. On the other hand, $K = \frac{-14\alpha}{\alpha - 8\pi v}$. The equation for line EF in Fig.1 is $p_{15} = \frac{1}{8}$; namely, $\alpha = 8v(1-2p_{15}) = 8$ (notice that $p_{16} = 0$ in Fig.1). Thus, $v = \frac{4K}{5\pi - \frac{1}{10}} \leq \frac{10}{17}$. We find that the coordinates of E in Fig.1 are $v_E = \frac{4}{5} \approx 0.9091, \alpha_E = \frac{50}{17} \approx 2.7227$, in perfect agreement with the numerical result. The equation for line IJ in Fig.2 is $p_2 = 0$; namely, $v = 0$. We have $K = \frac{\alpha}{\alpha - 8\pi v} \geq 5$; then $\alpha \in [\frac{20}{3}, 8]$ or $\alpha \in [\frac{20}{3}, \alpha_I = 8]$. Because $p_2 = \frac{1}{2} - 2\mu_4$ for line IJ in Fig.2, $p_2 = 0.06$ for point I, and $p_2 = 0.05$ for point J. The sufficient condition is in complete agreement with the necessary condition.

The choice of $M_9 = 1$ and $M_{15} = -1$ leads to separability criterion (12) when $M_7 = -1$ and separability criterion (13) when $M_7 = 1$. They correspond to lines GH in Fig.1 and DE in Fig.2, respectively. We can obtain the triseparable GHZ diagonal state with $K = -\frac{1}{4\pi v} \geq 5$ as in the previous situation. Thus, $-\frac{14\alpha}{\alpha - 8\pi v} \geq 5$. The equation for line GH in Fig.1 is $p_2 = \frac{1}{8}$ or $\alpha = 8(1-v)(1-2p_{15})$ (notice that $p_{16} = 0$ in Fig.1). Therefore, $v \leq \frac{1}{8}$. This is consistent with $v_G = \frac{7}{6}$. Point G is in the triseparable state set. In the line $p_2 = \frac{1}{8}$, the points with $v > \frac{1}{8}$ are nonphysical, although they do not conflict with $v \leq \frac{1}{8}$. The equation for the line DE in Fig.2 is $p_15 = 0$; namely, $v = 1$. We have $-\frac{14\alpha}{\alpha - 8\pi v} \geq 5$; thus, $\alpha \in [\frac{20}{3}, \frac{40}{3}]$. The sufficient criterion coincides with the necessary criterion.

We have omitted the analyses of R_1 and R_7 except for criterion (30).

6.2.3 Sufficiency of criteria III and IV

For criteria III and IV, the matrix \mathcal{M} takes the form

$$\mathcal{M} = \begin{pmatrix}
-M_{7}c_1c_2 & 0 & 0 & s_1s_2g_1 \\
0 & -M_{7}c_1c_2 & s_1s_2g_2 & 0 \\
s_1s_2g_1^* & 0 & 0 & -M_{7}c_1c_2 \\
0 & 0 & 0 & M_{7}c_1c_2
\end{pmatrix}.$$
Then
\[
\varrho_7 = \frac{1}{16} \{ (I + \cos^2 \theta ZZ)(I + ZZ) \\
+ \sin^2 \theta [(r_0 XX + r_3 YY)(XX - YY) \\
+ (r_1 XY + r_2 YX)(XY + YX)] \},
\]
(70)
where \(r_0 = \cos \phi_1 \cos \phi_2 \cos \phi_3, \ r_1 = \cos \phi_1 \sin \phi_2 \sin \phi_3, \)
\(r_2 = \sin \phi_1 \cos \phi_2 \sin \phi_3, \) and \(r_3 = \sin \phi_1 \sin \phi_2 \cos \phi_3. \)
Averaging over all six partitions, \(\bar{\varrho}_7 = \frac{1}{6} \sum_{j=1}^{6} \varrho(j) \) (where \(j \) denotes different partitions), we have the triseparable state \(\rho = \bar{\varrho}_7 \) with
\[
R_7 = \cos^2 \theta, \ R_8 = \sin^2 \theta r_0, \ \ R_9 = \frac{1}{6} \sin^2 \theta (r_0 + r_3 + 2r_1 + 2r_2), \ R_{15} = -\sin^2 \theta r_3.
\]
(71)
(72)
(73)
The variables \(r_i \) are related as follows:
\((r_0 r_1 + r_2 r_3)(r_0 r_2 + r_1 r_3)(r_0 r_3 + r_1 r_2) = r_0 r_1 r_2 r_3. \)
If we set \(r_1 = r_2, \) this reduces to
\[
(r_0 + r_3)^2 \ (r_0 r_3 + r_1^2) = r_0 r_3.
\]
(74)
Namely,
\[
\sin^2 \theta = |R_8 - R_{15}| \sqrt{1 - \frac{(R_8 + R_{15} + 6R_9)^2}{16R_8R_{15}}} = R'_1.
\]
(75)
Notice that \(R_7 = \cos^2 \theta; \) thus, we arrive at \(R_7 + R'_1 = 1. \)
Therefore, the states represented by curves BC in both Figs.1 and 2 and GH in Fig.2 are triseparable. Criterion III is necessary and sufficient.

The eigenvalue \(\lambda_2 \) may also contribute to the separable state with its eigenvectors \(|\psi_{34}⟩ = |01⟩ \) and \(|\psi_{34}⟩ = |10⟩ \) when \(\tilde{g}_2 < \tilde{g}_1. \) These terms can modify only the diagonal components of the density matrix of the separable state. However, the eigenvector of \(\lambda_2 \) does contribute to the antidiagonal components of the density matrix (in the computational basis) when \(\tilde{g}_2 > \tilde{g}_1. \) This is the case for criterion IV. We have the eigenvector \(|\psi_{34}⟩ = \frac{1}{\sqrt{2}}(|01⟩ + e^{-i\varphi_3}|10⟩) \) (where \(\varphi_3 = 0, \pi \) for eigenvalue \(\lambda_2 \).
The product state is \(|\psi⟩ = |\psi_1⟩|\psi_2⟩|\psi_{34}⟩, \) where \(|\psi_1⟩ = \cos \frac{\varphi_3}{2}|0⟩ + \sin \frac{\varphi_3}{2}|1⟩, \) and \(|\psi_2⟩ = -\sin \frac{\varphi_3}{2}|0⟩ + \cos \frac{\varphi_3}{2} e^{i\varphi_3}|1⟩. \)
The constructed triseparable state is
\[
\varrho_8 = \frac{1}{16} \{ (I - \cos^2 \theta ZZ)(I - ZZ) - \sin^2 \theta XX(XX + YY) \}.
\]
(76)
Averaging over all the partitions, we have the triseparable state \(\bar{\varrho}_8. \)
Mixing this state with the state \(\bar{\varrho}_7, \) we obtain the triseparable state \(\rho = (1 - \eta)\bar{\varrho}_7 + \eta\bar{\varrho}_8, \) where
\[
R_8 = \sin^2 \theta [(1 - \eta)r_0 - \eta], \ R_9 = \frac{1}{6} \sin^2 \theta [(1 - \eta)(-r_0 + r_3 + 4r_1) - \eta], \ R_{15} = -\sin^2 \theta (1 - \eta) r_3, \ R_7 = \cos^2 \theta.
\]
(77)
(78)
(79)
Let \(R'_8 = \frac{R_8}{1 - |R_7|}, \ R'_1 = \frac{R_8}{1 - |R_7|}, \) and \(R'_9 = \frac{R_8 + 6R_9 + R_{15}}{4(1 - |R_7|)}; \) then Eq. (74) leads to
\[
1 - \eta - |R'_8 - R'_1 + \eta| \sqrt{1 - \frac{R'_{8}^2}{(R_8 + \eta)R_{15}}} = 0.
\]
(81)

Equation (81) is a power equation of \(\eta. \) For any state on the curve CD described by Eq. (70), the coefficients of Eq. (81) are determined by a single parameter \(K. \) The solution of (81) is denoted as \(\eta(K). \) The left side of Eq. (81) reaches its local maximal value of 0 at \(\eta(K). \) Hence, all the states on curve segment CD are triseparable. Criterion IV is necessary and sufficient when applied to curve segment CD (and similarly to HI in Fig.2 and DE in Fig.1).

The value of \(\eta(K) \) is equal to 0 at point C, with \(K = 0.6626275, \) \(v = 0.7492394, \) and \(\alpha = 8.900032 \) as determined for \(\eta(K) = 0. \) If we further reduce \(K \) (increase \(\alpha \)), we will obtain a negative \(\eta(K). \) Hence, C is the end point for sufficiency of criterion IV.

7 Conclusion

We proposed a road map for finding the separability criteria of multipartite entangled states. The separability criteria are obtained with respect to a certain level of separability or entanglement depth. For a hierarchy of state sets \(S_1 \subset S_2 \subset \cdots \subset S_N, \) there is a hierarchy of criterion sets \(C_1 \subset C_2 \subset \cdots \subset C_N. \) Each criterion set detects the separability of the corresponding state set necessarily and sufficiently. The necessity and sufficient criteria of a criterion are related in the form of the eigenvalue and eigenvector of a certain matrix. Thus, the route to the necessary condition indicates the route to the sufficient condition.

We developed the criterion set \(C_2 \) for the triseparability of the highly symmetric four-qubit GHZ diagonal state set \(S_2. \) The criterion set \(C_2 \) contains four criteria. All the criteria are necessary and sufficient in their application regions. One of the criteria is the only criterion (the only criterion in set \(C_1 \)) that is necessary and sufficient for the triseparability of the generalized Werner state set \(S_1. \) The set \(S_1 \) for generalized Werner states is a subset of the set \(S_2 \) for highly symmetric GHZ diagonal states. Moreover, the EW set \(W_2 \) for deriving \(C_2 \) shares some properties with the EW set \(W_1 \) for deriving \(C_1. \) We showed that \(C_1 \subset C_2. \) Our criterion set \(C_2 \) is also applicable to the four-qubit GHZ diagonal state set \(S_3, \) although it is not sufficient for some of the states in \(S_3. \) Numerical calculation showed that \(C_2 \subset C_3 \) (see Appendix E), where \(C_3 \) is the necessary and sufficient criterion set for \(S_3. \) Hence, we have \(C_1 \subset C_2 \subset C_3. \)

With an explicit example, we showed that a larger criterion set for precisely detecting the entanglement of a larger state set would be developed more easily from a smaller criterion set for a smaller state set.

Acknowledgement

Supported by the National Natural Science Foundation of China(Grant No11375152) and (partially) supported by National Basic Research Program of China (Grant No. 2014CB921203) are gratefully acknowledged.
References

[1] O. Gühne, and G. Tóth, Entanglement detection, Phys. Rep. 474,1,(2009).
[2] R. Horodecki, P. Horodecki, M. Horodecki, and K. Horodecki, Quantum entanglement, Rev. Mod. Phys. 81, 865 (2009).
[3] M. Horodecki, P. Horodecki, and R. Horodecki, Separability of mixed states: necessary and sufficient conditions, Phys. Lett. A 223, 1 (1996).
[4] M. Horodecki, P. Horodecki, and R. Horodecki, Separability of n-particle mixed states: necessary and sufficient conditions in terms of linear maps, Phys. Lett. A 283, 1 (2001).
[5] S. Gerke, J. Sperling, W. Vogel, Y. Cai, J. Roslund, N. Trep, and C. Fabre, Is genuine multipartite entanglement really genuine?, Phys. Rev. Lett. 117, 110502 (2016).
[6] F. Shahandeh, M. Ringbauer, J. C. Loredo, and T. C. Ralph, Ultrafine Entanglement Witnessing, Phys. Rev. Lett. 118, 110502 (2017).
[7] F. Buscemi, All Entangled Quantum States Are Non-local, Phys. Rev. Lett. 108, 200401 (2012).
[8] X. Chen, X. Y. Hu, and D. L. Zhou, Entanglement witness game, Phys. Rev. A 95, 052326 (2017).
[9] F. Baccari, D. Cavalcanti, P. Wittek, and A. Acn, Efficient Device-Independent Entanglement Detection for Multipartite Systems, Phys. Rev. X 7, 021042 (2017).
[10] L. Perrè, Y. Li, W. D. Li, and A. Smerzi, Witnessing Entanglement without Entanglement Witness Operators, PNAS 113 (41) 11459-11464 (2016).
[11] J. Sperling and W. Vogel, Multipartite Entanglement Witnesses, Phys. Rev. Lett. 111, 110503 (2013).
[12] M. Huber and J. I. de Vicente, Structure of Multi-dimensional Entanglement in Multipartite Systems, Phys. Rev. Lett. 110, 030501 (2013).
[13] A. S. Sørensen and K. Molmer, Entanglement and Extreme Spin Squeezing, Phys. Rev. Lett. 86, 4431 (2001).
[14] A. Kay, Optimal detection of entanglement in Greenberger-Horne-Zeilinger states, Phys. Rev. A, 83, 020203(R) (2011).
[15] X. Y. Chen, Graph-state basis for Pauli channels, Phys. Rev. A, 83, 052316, (2011).
[16] H. Kaufmann, T. Ruster, C. T. Schmiegelow, M. A. Luda, V. Kaushal, J. Schulz, D. von Lindenfels, F. Schmidt-Kaler, and U. G. Poschinger, Scalable creation of long-lived multipartite entanglement, Phys. Rev. Lett. 119, 150503 (2017).
[17] Z.-E. Su, W.-D. Tang, D. Wu, X.-D. Cai, T. Yang, L. Li, N.-L. Liu, C.-Y. Lu, M. Zukowski, and J.-W. Pan, Experimental Test of Irreducible Four-Qubit Greenberger-Horne-Zeilinger Paradox, Phys. Rev. A 95, 030103(R) (2017).
[18] O. Gühne, Entanglement criteria and full separability of multi-qubit quantum states, Phys. Lett. A, 375, 406-410 (2011).
[19] X.Y. Chen, L.Z. Jiang, P. Yu, M. Tian, Necessary and sufficient fully separable criterion and entanglement for three-qubit Greenberger-Horne-Zeilinger diagonal states, Quant. Inf. Process. 14,2463-2476(2015)
[20] X.Y. Chen, L.Z. Jiang, Z. A. Xu, Matched witness for multipartite entanglement, Quant. Inf. Process. 16, 95,(2017)
[21] O. Gühne, and M. Seevinck, Separability criteria for genuine multipartite entanglement, New J. Phys. 12, 053002 (2010).
[22] A.O. Pittenger and M.H. Rubin, Note on Separability of the Werner states in arbitrary dimensions, Optics Comm. 179, 447(2000)

Appendix A: Proof of formula for \tilde{g}_j

The definition of g_1 yields $|g_1(\varphi_1, \varphi_2)| = |(K_8 \cos \varphi_1 \cos \varphi_2 + K_{14} \sin \varphi_1 \sin \varphi_2)^2 + (K_{10} \cos \varphi_1 \sin \varphi_2 + K_{12} \sin \varphi_1 \cos \varphi_2)^2|^{\frac{1}{2}}$. Hence

$$\tilde{g}_1 = \max_{\varphi_1, \varphi_2} |g_1(\varphi_1, \varphi_2)|$$

$$= \max_{\varphi_1, \varphi_2} (K_8 \cos \varphi_1 \cos \varphi_2 \cos \varphi_3 + K_{14} \sin \varphi_1 \sin \varphi_2 \cos \varphi_3 + K_{10} \cos \varphi_1 \sin \varphi_2 \sin \varphi_3 + K_{12} \sin \varphi_1 \cos \varphi_2 \sin \varphi_3).$$

According to Lemma 1 of [20], the maximization can be evaluated analytically. Hence the formula for \tilde{g}_1 as a function of $K_8, K_{10}, K_{12}, K_{14}$ follows. We have similar result for \tilde{g}_2.

Appendix B: Supplementary to criterion I

In [25], we have set $x = \frac{\alpha}{\lambda} = 0$ to derive (26) which leads to criterion I. If we set $x = \frac{\alpha}{\lambda} > 0$ in [22], we would get a smaller \tilde{L}. The minimal \tilde{L} would be $\tilde{L}_{\text{min}} = (|R_7| + \tilde{R}_1 + \tilde{R}_2)^{-1}$ when $x = 1$. This is not true. The reason is that the symmetric assumption (11) may be violated when we set $\tilde{g}_2 = \tilde{g}_1$. When the symmetric assumptions are violated, we have to calculate the largest eigenvalues of six different \mathcal{M} matrices, then Λ is the maximum of all the eigenvalues.

Take an example of EW with $K_8 = 1, K_{10} = K_{12} = K_{14} = -1, K_9 = x, K_{11} = K_{13} = K_{15} = -x$ with $x \geq 0$.

\[\tilde{\theta} = \max_{\varphi} \left| \left(\begin{array}{ccc} \cos \varphi & \sin \varphi & 0 \\ \sin \varphi & -\cos \varphi & 0 \\ 0 & 0 & 1 \end{array} \right) \begin{pmatrix} K_8 & K_{14} & K_{10} \\ K_{14} & K_8 & K_{12} \\ K_{10} & K_{12} & K_8 \end{pmatrix} \begin{pmatrix} \cos \varphi & \sin \varphi & 0 \\ \sin \varphi & -\cos \varphi & 0 \\ 0 & 0 & 1 \end{pmatrix} \right| = \max_{\varphi} \left| (K_8 \cos 2\varphi + K_{14} \sin 2\varphi)^2 + (K_{10} \cos 2\varphi + K_{12} \sin 2\varphi)^2 \right|^{\frac{1}{2}}.\]
for partition $1|2|34$, we have $\bar{g}_1 = 1$, $\bar{g}_2 = x$ for this partition. Then $M_9 = -M_{10} = -M_{12} = -M_{14} = -\frac{1}{2}(1 + x)$, $M_6 = M_{11} = M_{13} = -M_{15} = \frac{1}{2}(x - 1)$. If we interchange the second qubit and the third qubit in partition $1|2|34$, we arrive at partition $1|3|24$. The parameters M_i undergo interchanges $M_9 \leftrightarrow M_{10}$, $M_{13} \leftrightarrow M_{14}$. For partition $1|3|24$, we have $\bar{g}_1 = 1 + x$, $\bar{g}_2 = 0$. Similarly for partitions $1|4|23$ and $2|4|13$, we have $\bar{g}_1 = 1$, $\bar{g}_2 = x$; for partitions $2|3|14$ and $3|4|12$, we have $\bar{g}_1 = 1 + x$, $\bar{g}_2 = 0$. Notice that Λ is the maximum of all these \bar{g}_1, \bar{g}_2 in the six partitions. Hence $\Lambda = 1 + x$. We may set $|M_7| = \Lambda$ and keep the assumption \ref{eq:10}. Then after taking optimization with respect to x, we have

$$L_{\text{min}} = \frac{1}{|R_7| + \max (R_1, R_2)}.\$$

Here $\tilde{R}_j = \max_{m=7,9,11,13} |t_{m+j}|$, with $(t_9, t_{11}, t_{13}, t_{15}) = (T_9, T_{11}, T_{13}, T_{15})\Gamma$. From \ref{eq:22}, the entanglement criterion for the triseparability follows:

Criterion I: \[\sum_{i=1}^{16} |\rho_{i,17-i}| \leq \frac{1}{2} \min (\rho_{1,1} + \rho_{4,4} + \rho_{6,6} + \rho_{7,7} - \rho_{10,10} + \rho_{11,11} + \rho_{13,13} + \rho_{16,16} + \rho_{2,2} + \rho_{3,3} + \rho_{5,5} + \rho_{8,8} + \rho_{9,9} + \rho_{12,12} + \rho_{14,14} + \rho_{15,15}).\]

It is an update version of criterion I. The right hand of the criterion can be substituted by $\frac{1}{2} \min (\rho_{1,1} + \rho_{4,4} + \rho_{6,6} + \rho_{7,7} + \rho_{10,10} + \rho_{11,11} + \rho_{13,13} + \rho_{16,16} + \rho_{2,2} + \rho_{3,3} + \rho_{5,5} + \rho_{8,8} + \rho_{9,9} + \rho_{12,12} + \rho_{14,14} + \rho_{15,15}).$

Appendix C: Criterion for generalized Werner states

For generalized Werner states ρ_W, we have EW with parameters M_i described at the end of section \ref{sec:3}. Then $K_8 = -K_{10} = -K_{12} = -K_{14} = 2, K_6 = -K_7 = 2$, all the other $K_j = 0$. It follows that $(\zeta, \beta, \gamma, \delta) = \frac{1}{4} (K_8, K_{10}, K_{12}, K_{14})\Gamma = (-1, 0, 0, 0)$, hence $\vec{\zeta}\delta\gamma\delta = 0$. Thus \bar{g}_1 is determined by the second line of the formula for \bar{g}_1. We have $\bar{g}_1 = 2$. Together with $M_7 = 2$ and $\bar{g}_2 = 0$, we arrive at $\Lambda = \max (|M_7|, \bar{g}_1, \bar{g}_2) = 2$. The optimal EW is $\tilde{W} = 2I - M$. We have $Tr(\rho\tilde{W}) = 2 - \sum_{i=1}^{15} M_i R_i - 2(2R_7 + R_8 + R_{15} - 6R_9) \geq 0$. It leads to criterion I. Applying it to generalized Werner states, we have the triseparable condition $p \geq \frac{1}{2}$. generalized Werner state with $p = \frac{1}{2}$ can be decomposed to tripartite separable states\ref{eq:20}. Thus criterion I is the necessary and sufficient criterion for generalized Werner states.

Appendix D: Details of the states in subsection \ref{sec:6.2}

In subsection \ref{sec:6.2} the triseparable state is a proper mixture of \bar{g}_1 and ρ' for the necessary and sufficient criterion I. The explicit expression of \bar{g}_1 is

$$\bar{g}_1(\varphi_1, \varphi_2) = \frac{1}{16} \{III + \frac{1}{6}(IZIZ + IZZ + IZIZ + ZIIZ + ZIZI + ZIIZ + ZZZZ\}

+ZZIZ + ZZII\} + \frac{1}{2}(\cos^2 \varphi_+ + \cos \varphi_+ \cos \varphi_-)XXXY + XXY + YXY + YXXY + YXXY + YXY + YXXY\}

\frac{1}{2}(\cos^2 \varphi_+ - \cos \varphi_+ \cos \varphi_-)YYYY\}

The fully separable state ρ' is

$$\rho' = \frac{1}{16} \{III + (1 - \frac{\kappa}{6(1 - \kappa)})(IZIZ + IZZ + ZIZI + ZZZI + ZIIZ + ZIIZ + ZZZZ\}

+\frac{1}{2}(1 + \sin^2 \varphi_+)XXXY + XXY + YXY + YXXY + YXY + YXXY + YXXY\}

\frac{1}{2}(\cos^2 \varphi_+ - \cos \varphi_+ \cos \varphi_-)YYYY\}

The positive definiteness of ρ' can be proven as follows. From \ref{eq:36} and \ref{eq:46}, we have $R_8 + R_{15} = 2(1 - 2p_{16})(1 - \frac{\alpha}{\alpha - 6}).$ Using \ref{eq:67} leads to $R_8 + R_{15} = \frac{4(\alpha - 1)}{\alpha - 6} + 2p_{16}\cos^2 \varphi_+.$ From \ref{eq:53} and \ref{eq:54}, we have $\kappa \cos^2 \varphi_+ = [R_8 + R_{15}],$ hence $\kappa = \frac{4(\alpha - 1)}{\alpha - 6} + 2p_{16}.$ When $\alpha = 9$ (straight line AB in Fig.1 and Fig.2), the physical condition $p_1 \geq 0$ leads to $p_{16} \geq \frac{1}{2},$ thus we also have $\kappa \geq \frac{9}{8}.$ So that $\frac{1}{2} \frac{1}{\alpha - 6} \geq 0,$ and ρ' is positive definite.

The triseparable state for the necessity and sufficiency of criterion \ref{eq:39} is a mixture of triseparable states \bar{g}_{23} and $\bar{g}_{45},$ with

$$\bar{g}_{23(45)}(\varphi, \theta) = \frac{1}{16} \{III + \frac{1}{6}(1 + \cos^2 \theta)(IZIZ + IZZ\}

+IZIZ + IZII + ZIIZ + ZZZZ\} + \cos^2 \theta ZZZZ\}

+\sin^2 \theta(\cos^2 \varphi XX + \sin^2 \varphi YYY + \frac{1}{6}(XXY + XXY + YXX + YYX + YXX))\}.

Appendix C: Criterion set C_2 is not equal to C_3

We may wander if the criterion set C_2 suffices for GHZ diagonal states, namely $C_2 = C_3,$ where C_3 is the necessary and sufficient triseparability criterion set for all four qubit GHZ diagonal states. The above example indicates that $C_2 \subset C_3$ is unlikely true. In some circumstances, we should make use of the parameters M_i which are not symmetric under qubit exchange. In fact, the following numerical calculation shows that $C_2 \neq C_3.$ Since we know that $C_2 \subseteq C_3,$ hence we have $C_2 \subset C_3.$

The numerical example is $[R_8, ..., R_{15}] = [0.3255, -0.5260, 0.0739, 0.4046, -0.8764, -0.4321, -0.5037, 0.8752].$ Using symmetric M_i (i.e., $M_i = M_{i+1}$ (namely, equation \ref{eq:11} fulfills), we calculate $\Lambda_{\text{sym}} = \max (\bar{g}_1, \bar{g}_2),$ the minimum of
the expression $\frac{\Lambda_{\text{sym}}}{\sum_{i=8}^{15} M_i R_i}$ with respect to symmetric M_i is 0.6641. Using asymmetric M_i, we calculate Λ_{asym} which is the maximum of \tilde{g}_1 and \tilde{g}_2 of all the six partitions, the minimum of the expression $\frac{\Lambda_{\text{asym}}}{\sum_{i=8}^{15} M_i R_i}$ with respect to asymmetric M_i is 0.5347. Hence asymmetric EW (without condition (11)) is better than symmetric EW (with condition (11)) in detecting entanglement of some GHZ diagonal states.