ORiGiNaL ARTiCLE

Lifestyle and health factors associated with progressing and remitting trajectories of untreated lower urinary tract symptoms among elderly men

LM Marshall1,2,3,10, KF Holton4,10, JK Parsons5,6,7,10, JA Lapidus2,8,10, K Ramsey2,8 and E Barrett-Connor9 for the Osteoporotic Fractures in Men (MrOS) Study Group

BACKGROUND: Knowledge of factors associated with the course of lower urinary tract symptoms (LUTS) before treatment is needed to inform preventive interventions. In a prospective study of elderly men untreated for LUTS, we identified factors associated with symptom progression and remission.

METHODS: In community-dwelling US men aged ≥65 years, the American Urological Association Symptom Index (AUA-SI) was repeated four times, once at baseline (2000–2002) and then every 2 years thereafter. Analyses included 1740 men with all four AUA-SI assessments, who remained free from diagnosed prostate cancer, and who reported no treatment for LUTS or BPH during follow-up that averaged 6.9 (±0.4) years. LUTS change was determined with group-based trajectory modeling of the repeated AUA-SI measures. Multivariable logistic regression was then used to determine the baseline factors associated with progressing compared with stable trajectories, and with remitting compared with progressing trajectories. Lifestyle, body mass index (BMI) (kg/m²), mobility, mental health (Short-Form 12), medical history and prescription medications were considered for selection. Odds ratios (ORs) and 95% confidence intervals (CIs) were estimated for variables in each model.

RESULTS: We identified 10 AUA-SI trajectories: 4 stable (1277 men, 73%), three progressing (345 men, 20%), two remitting (98 men, 6%) and one mixed (20 men, 1%). Men in progressing compared with stable trajectories were more likely to have mobility limitations (OR = 2.0, 95% CI: 1.0–3.8), poor mental health (OR = 1.9, 95% CI: 1.1–3.4), BMI ≥25.0 kg m⁻² (OR = 1.7, 95% CI: 1.0–2.8), hypertension (OR = 1.5, 95% CI: 1.0–2.4) and back pain (OR = 1.5, 95% CI: 1.0–2.4). Men in remitting compared with progressing trajectories more often used central nervous system medications (OR = 2.3, 95% CI: 1.1–4.9) and less often had a history of problem drinking (OR = 0.4, 95% CI: 0.2–0.9).

CONCLUSIONS: Several non-urological lifestyle and health factors were independently associated with risk of LUTS progression in older men.

Prostate Cancer and Prostatic Disease (2014) 17, 265–272; doi:10.1038/pcan.2014.22; published online 8 July 2014

INTRODUCTION

Male lower urinary tract symptoms (LUTS) represent a cluster of chronic urinary disorders that are highly prevalent worldwide,1,2 especially among elderly men.3–6 Multiple etiologies, including BPH and bladder overactivity, manifest as LUTS.7 LUTS severity is assessed with the validated American Urological Association Symptom Index (AUA-SI) or International Prostate Symptom Score.8 Moderate and severe LUTS exert a substantial negative effect on public health through diminished quality of life,7,8 increased risk of falls and mortality,9,10 and annual treatment costs totaling upwards of $3.9 billion in the United States.11,12 Given that the average life expectancy among US men who reach age 65 years has increased in the past decade,13 the health burden of male LUTS is unlikely to abate without preventive interventions.

Prevention of LUTS progression requires knowledge of the natural symptom course before treatment is initiated. To date, prospective studies of risk factors for LUTS included a mixture of men with and without treatment.14–17 However, factors other than symptom severity influence treatment decisions18 and men with mild symptoms often report treatment.8,19 Therefore, to distinguish risk factors for natural LUTS progression, additional studies among untreated men are needed.

Symptom progression is just one aspect of LUTS natural history in men.17,20–26 Apparently spontaneous symptom remission and symptom stability are also consistently documented.20–26 Identification of these patterns requires repeated AUA-SI or International Prostate Symptom Score assessments, because LUTS fluctuate considerably within men over time.20 To date, nearly all previous

1Department of Orthopaedics and Rehabilitation, Oregon Health and Science University, Portland, OR, USA; 2Department of Public Health and Preventive Medicine, Oregon Health and Science, Portland, OR, USA; 3Department of Medicine, Bone and Mineral Unit, Oregon Health and Science University, Portland, OR, USA; 4Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR, USA; 5Division of Urology, University of California San Diego, La Jolla, CA, USA; 6Moores Cancer Center, University of California San Diego, La Jolla, CA, USA; 7Department of Surgery, San Diego Veterans Affairs Medical Center, La Jolla, CA, USA; 8Biostatistics Design Program, Oregon Clinical and Translational Research Institute, Oregon Health and Science University, Portland, OR, USA and 9Department of Family and Preventive Medicine, University of California San Diego, La Jolla, CA, USA. Correspondence: Dr LM Marshall, Department of Orthopaedics and Rehabilitation, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Mailcode: OP31, Portland, OR 97239-3098, USA.

E-mail: marshal@ohsu.edu

10These authors contributed equally to this work.

Received 24 February 2014; revised 29 April 2014; accepted 15 May 2014; published online 8 July 2014
Lower urinary tract symptom trajectories in men
LM Marshall et al

MATERIALS AND METHODS

Setting
We used data collected prospectively in the Osteoporotic Fractures in Men Study, a cohort of community-dwelling men aged ≥65 years. Participants were recruited in 2000–2002 from six US regions. Men completed baseline questionnaires and in-person research visits. Subsequently, data were updated about every 2 years (Figure 1). Institutional Review Boards at each institution approved the study. All men gave written informed consent.

Urinary measures
The AUA-SI, prostate disease history and medication use were obtained at all four time points. Categories of LUTS severity defined from the AUA-SI were mild (0–7 points), moderate (8–19 points) or severe (20–35 points). Urinary bother was categorized as 0–2, 3 and 4–6. Men reported histories of diagnosed BPH, laser surgery or TURP and medication use for prostate symptoms. Current prescription medications were inventoried at each time point and matched to ingredients using a standardized method as described previously. LUTS medications were α-blockers, urinary antispasmodics, anticholinergics and 5-α-reductase inhibitors.

Baseline factors
Cigarette smoking was coded into lifetime pack-years and current alcohol consumption into average drinks per week. History of problem drinking was defined as two or more positive responses to the CAGE questionnaire. Caffeine consumption (mg per day) was obtained from a Block Food Frequency Questionnaire and categorized into quartiles. Physical activity was obtained with the validated Physical Activity Scale for the Elderly, which assesses amount of leisure and household activities. Self-reported daily walking for exercise was also assessed. Mobility limitation was defined as difficulty walking two to three blocks or difficulty climbing one flight of stairs. Health-related quality of life was obtained with the Short Form-12 physical component (PCS) and mental component (MCS) scores. A MCS ≤50 is a valid measure of common mental health disorders (depression or anxiety disorders). Medical conditions included reports of physician-diagnosed diabetes, hypertension, angina, myocardial infarction, stroke, prostatitis and cancers of the prostate, colon/rectum, lung and skin, as well as dizziness, history of falls and back pain in the past year.

Height and weight were classified into standard body mass index (BMI) categories as <25.0 (normal), 25.0–29.9 (overweight), or ≥30.0 (obese). Baseline prescription medications included hypoglycemics (insulin and glucose), diuretics (thiazide, loop and potassium sparing) and other anti-hypertensives (ACE inhibitors, angiotensin II receptor antagonists, ß-blockers and calcium channel blockers), statins (HMG-CoA reductase inhibitors) and central nervous system (CNS) medications (antiepileptics, benzodiazepines, antidepressants, opioids and sedatives). α-Blockers could not be included as anti-hypertensives because the use of these medications was an exclusion criterion (described below). Herbal supplements for LUTS were saw palmetto, South African star grass, stingling nettle, rye grass pollen, pumpkin seed, or African plum from self-report or inventory listing. Men with missing medication information were

Figure 1. Study flow diagram illustrating the selection of the analytic cohort of 1740 men from the Osteoporotic Fractures in Men (MrOS) Study, USA, 2000–2009.
categorized as 'normal' and 'overweight/obese' improved model fit. Odds ratios (ORs) and their 95% confidence intervals (CIs) are reported for the final multivariable models. Therefore, final models contained the medical history variables. BMI, body mass index; LUTS, lower urinary tract symptom; MrOS, Osteoporotic Fractures in Men Study; PASE, Physical Activity Scale for the Elderly; SF-12, Short Form 12.

RESULTS
The 1740 men in the analytic cohort reflected the baseline untreated cohort on nearly all characteristics, including mean age, but had slightly lower mean AUA-SI scores (Table 1). In the analytic cohort, mean (s.d.) change in the AUA-SI score from baseline to the fourth assessment was 1.0 (4.6).

Trajectory results
We identified 10 trajectories of AUA-SI scores (Figure 2), illustrated with mean scores at each time point. Four trajectories consistent with LUTS stability (blue) contained 1277 (73%) men and were observed in the low and high AUA-SI range. Three trajectories consistent with progression (red) contained 345 men (20%), primarily in the moderate range, and had distinct profiles including abrupt increase late in follow-up. Two trajectories consistent with remission (green) contained 98 (6%) men and were in the moderate–high range. One trajectory had mixed progression and remission (yellow) and contained 20 men (1%). Supplementary Tables S1–S3 provide mean posterior probabilities and distributions of urinary measures in each trajectory. Patterns of urinary bother, which increased in progressing groups and decreased in remitting groups, further support the internal consistency of the trajectory results.

Analytic cohort
The 3594 men with no baseline history of prostate cancer, BPH surgery, or medication use for LUTS or BPH were followed through the fourth AUA-SI assessment. Men who died or withdrew (n = 456, 12%), had incident prostate cancer (n = 213, 6%), missing AUA-SI (n = 120, 3%), reported BPH treatment or used prescription LUTS medications (n = 946, 26%), or experienced abrupt increase late in follow-up. Two trajectories were excluded (Figure 1). The analytic cohort of 1740 had mean (s.d.) follow-up of 6.9 (0.4) years. Treatment onset, which may occur in men with mild LUTS,19 was not used as a marker of LUTS progression.

Statistical analyses
Statistical analyses were performed with SAS 9.1 software (SAS Institute, Cary, NC, USA). Two-sided \(P \)-values were estimated.

LUTS trajectory analysis
Group-based trajectory modeling was applied to the repeated AUA-SI scores as the continuous dependent variable. Trajectory modeling applies a semi-parametric mixture model to longitudinal data using the maximum likelihood method.27 This method assumes that the population contains an unspecified number of underlying groups, each with different probability distribution for the longitudinal sequence of the dependent variable. Modeling started with three trajectories. As the trajectory number was successively increased by one, model fit was assessed with the product of the change in the Bayesian Information Criterion (2\(\Delta \)BIC). Values >10 are considered evidence of better fit of the larger trajectory number compared with the next smallest.27,28 Mean posterior probabilities in each trajectory were computed and values >0.70 indicate high internal reliability.27 We specified that the sample size in any trajectory must be at least 1% of the analytic cohort. Ultimately, the 10 trajectory model optimized fit, internal reliability and sample size. Plots of individual AUA-SI scores in each trajectory confirmed that trajectory analysis successfully grouped men with similar longitudinal patterns (see examples in the online Supplementary Figure).

Risk factor analyses
We performed risk factor analyses within strata of mild or moderate baseline LUTS. Too few men had severe untreated baseline LUTS for further study. In each stratum, men with stable trajectories formed the referent group to whom improvement with progressing LUTS were compared. Men with remitting LUTS were compared with men with progressing LUTS, because factors associated with symptom improvement could also inform LUTS prevention. Baseline variables that differed between the outcome and referent groups with \(P \)-values <0.25 were candidates for selection in forward, stepwise logistic regression modeling.

In separate models for each comparison defined above, candidate variables associated with the outcome at \(P < 0.15 \) were retained. We used this larger \(\alpha \)-level so as not to ignore potentially important associations for variables with low baseline prevalence. When a medical history variable was replaced with an appropriate medication variable, model fit worsened. Therefore, final models contained the medical history variables. BMI categorized as ‘normal’ and ‘overweight/obese’ improved model fit. Odds ratios (ORs) and their 95% confidence intervals (CIs) are reported for the final multivariable models.

Table 1. Baseline characteristics among men with no history of LUTS treatment and the analytic sample derived from this initial cohort, the MrOS Study, USA, 2000–2009

Characteristic	Men with no history of treatment for LUTSa	Analytic sample, N = 1740
Mean (s.d.)	Mean (s.d.)	
Age (years)	72.7 (5.6)	71.4 (4.8)
BMI (kg m\(^{-2}\))	27.3 (3.8)	27.3 (3.7)
PASE score\(^b\)	152 (69)	158 (66)
SF-12 physical component score	50.0 (9.6)	51.4 (8.1)
SF-12 mental component score	55.7 (6.8)	56.3 (6.0)
AUA-SI	7.3 (5.7)	6.0 (4.8)
Race/ethnicity (%)		
Caucasian	89	90
African American	4	3
Asian	3	3
Hispanic/other	3	3
High school education or less	24	23
Live alone	13	11
Cigarette smoking (%)		
≥40 Pack-years	17	15
20–39.9 Pack-years	17	19
<20 Pack-years	27	27
None	38	39
Alcohol consumption (%)		
≥14 Drinks per week	12	13
7–13.9 Drinks per week	14	16
≤6.9 Drinks per week	40	40
None	33	32
History of problem drinking	16	16
Walk daily for exercise	50	51
Mobility limitation	11	8
BPH	29	25
Diabetes	11	9
Hypertension	38	36
Anti-hypertensive use (%)		
Diuretic	17	13
Non-diuretic	27	25
Statins	25	24
Central nervous system medication use	10	8
Herbal supplements for LUTS/BPH	12	10

Abbreviations: AUA-SI, American Urological Association Symptom Index; BMI, body mass index; LUTS, lower urinary tract symptom; MrOS, Osteoporotic Fractures in Men Study; PASE, Physical Activity Scale for the Elderly; SF-12, Short Form 12.

\(a \)Men untreated at baseline and with no prostate cancer history. \(b \)PASE. Higher scores indicate greater activity. Percentages may not add to 100% due to rounding.

© 2014 Macmillan Publishers Limited

Prostate Cancer and Prostatic Disease (2014), 265 – 272
Percentages of men in stable, progressing or remitting trajectories differed by baseline LUTS severity (Figure 3). In men with mild baseline LUTS, 90% were in stable trajectories. Of men with moderate baseline LUTS, 49% were classified into progressing and 17% into remitting trajectories. Of the 28 men had severe baseline LUTS, most were classified into remitting or stable trajectories.

Risk factors
In univariable analyses, men in progressing compared with stable trajectories more often had MCS < 50, history of non-prostate cancer, mobility limitations, overweight, dizziness and no daily walking for exercise were 1.5- to 2-fold more likely to have progressing compared with stable LUTS. When Physical Activity Scale for the Elderly score replaced the walking variable, the OR was elevated for the lowest level of physical activity (0–99 points) compared with the highest (> 200 points) (1.6, 95% CI: 0.9–2.9) but were null for 100–149 (0.8, 95% CI: 0.5–1.5) and 150–199 points (0.9, 95% CI: 0.5–1.5).

Among men with moderate baseline LUTS, those with progressing compared with stable LUTS were 1.5- to 2.5-fold more likely to have MCS < 50, hypertension and back pain, and were less likely to have diabetes. Men with remitting compared with progressing LUTS were 2.3-fold more likely to use CNS medications at baseline, but were less likely to have histories of problem drinking, hypertension or angina.

DISCUSSION
Several distinct AUA-SI trajectories were identified among 1740 elderly men untreated for LUTS and trajectory types differed by baseline LUTS severity. Most men with mild baseline LUTS followed stable trajectories, whereas half of men with moderate baseline LUTS experienced progression and a fifth experienced remission. These data may allow clinicians to advise older men that prospects for worsening (or improving) symptoms are based on their current symptom level. Similarly, the baseline lifestyle and health factors associated with LUTS progression differed somewhat for progression from mild or from moderate baseline symptoms. Clinical or public health interventions that target these factors within different levels of LUTS severity may promote the prevention of symptom progression in older men.

In multivariable analyses among men with mild baseline LUTS (Table 4), men with MCS < 50, history of non-prostate cancer, mobility limitations, overweight, dizziness and no daily walking for exercise were 1.5- to 2-fold more likely to have progressing compared with stable LUTS. When Physical Activity Scale for the Elderly score replaced the walking variable, the OR was elevated for the lowest level of physical activity (0–99 points) compared with the highest (> 200 points) (1.6, 95% CI: 0.9–2.9) but were null for 100–149 (0.8, 95% CI: 0.5–1.5) and 150–199 points (0.9, 95% CI: 0.5–1.5).

Among men with moderate baseline LUTS, those with progressing compared with stable LUTS were 1.5- to 2.5-fold more likely to have MCS < 50, hypertension and back pain, and were less likely to have diabetes. Men with remitting compared with progressing LUTS were 2.3-fold more likely to use CNS medications at baseline, but were less likely to have histories of problem drinking, hypertension or angina.
Table 2. Comparison of baseline demographic, lifestyle, quality of life and medical factors among elderly men in stable and progressing trajectories stratified by mild or moderate LUTS.a

Trajectory type	AUA-SI 1–7 points (mild)	AUA-SI 8–19 points (moderate)				
Number in group						
	Progressing	Stable	P-value	Progressing	Stable	P-value
Age group						
65–69 Years	42%	45%	0.73	41%	32%	0.16
≥75 Years	27%	24%		28%	34%	
White race						
High school education or less						
Live alone	17%	11%	0.37	9%	15%	0.06
BMI ≥ 25.0 kg m⁻²	81%	72%	0.05	76%	72%	0.34
Cigarette smoking						
≥40 Pack-years	15%	15%	0.94	19%	19%	0.91
<20 Pack-years	25%	27%		27%	24%	
None	42%	40%		36%	39%	
Alcohol consumption			0.43	0.66		
≥14 Drinks per week	12%	13%		13%	14%	
7–13.9 Drinks per week	19%	15%		18%	13%	
<7 Drinks per week	35%	42%		36%	39%	
None	35%	30%		33%	34%	
Caffeine intake			0.56	0.82		
Quartile 1	27%	24%		20%	23%	
Quartile 2	25%	24%		25%	24%	
Quartile 3	24%	24%		25%	23%	
Quartile 4	25%	27%		30%	30%	
Physical activity scoreb			0.04	0.45		
0–99 Points	27%	16%		20%	22%	
100–149 Points	25%	31%		31%	33%	
150–199 Points	24%	28%		30%	23%	
≥200 Points	24%	26%		19%	22%	
Walk daily for exercise	42%	53%	0.03	48%	51%	0.51
Mobility limitation			0.002	0.88		0.98
SF-12 physical component score			0.29	0.38		
SF-12 mental component score			0.02	0.01		
Medical history						
Diabetes	11%	8%	0.26	9%	13%	0.17
Hypertension	44%	34%	0.06	43%	33%	0.05
Angina	8%	11%	0.33	16%	12%	0.33
Myocardial infarction	10%	9%	0.88	12%	16%	0.31
Stroke	5%	3%	0.19	5%	3%	0.51
Cancer (other than prostate)	23%	23%	0.04	21%	20%	0.97
Trouble with dizziness	25%	16%	0.02	27%	23%	0.40
Back pain in past year	68%	59%	0.08	74%	64%	0.04
Prostatitis	9%	5%	0.11	12%	10%	0.54
Medications or supplements						
Hypoglycemic	11%	6%	0.05	6%	10%	0.15
Anti-hypertensive			0.71			0.25
Diuretic	15%	12%		18%	12%	
Non-diuretic	27%	26%		26%	29%	
Statin	19%	24%	0.25	29%	25%	0.38
Antidepressant	8%	3%	0.02	4%	3%	0.63
Central nervous system	9%	6%	0.35	10%	8%	0.37
Herbal use for LUTS/BPH	7%	7%	0.98	20%	15%	0.26

Abbreviations: AUA-SI, American Urological Association Symptom Index; BMI, body mass index; LUTS, lower urinary tract symptom; PASE, Physical Activity Scale for the Elderly.

*aVariables with P ≤ 0.25 were considered for selection in logistic regression.

*bPASE. Higher scores indicate greater activity.
Prostate Cancer and Prostatic Disease (2014), 265 – 272

Table 3. Comparison of baseline demographic, lifestyle, quality of life and medical factors among elderly men in remitting compared to progressing trajectories

Trajectory type	Remitting	Progressing	P-value
Number in group	82	242	

Age group			
65–69 Years	35%	41%	0.49
70–74 Years	30%	31%	
≥ 75 Years	34%	28%	

White race			
91%	93%	0.56	

Cigarette smoking			
10%	19%	0.17	

Alcohol consumption			
≥ 14 Drinks per week	10%	13%	0.67
7–13.9 Drinks per week	15%	18%	
< 6.9 Drinks per week	40%	36%	
None	41%	36%	

Physical activity score			
0.84			

Medical history			
5%	9%	0.22	

Medications or supplements			
4%	6%	0.39	

Abbreviations: AUA-SI, American Urological Association Symptom Index; BMI, body mass index; LUTS, lower urinary tract symptom; PASE, Physical Activity Scale for the Elderly.

Variables with P < 0.25 were considered for selection in logistic regression. *PASE. Higher scores indicate greater activity.

benzodiazepines, which enhance GABA actions, was more common among men in remitting than in progressing trajectories in our study (data not shown). Although the use of certain CNS medications could worsen LUTS,15 their therapeutic potential warrants a more complete understanding of neurological contributions to lower urinary tract function.

The current results agree with our earlier report that LUTS progression is positively associated with overweight and inversely associated with physical activity.16 However, others showed no associations of BMI with LUTS progression14,15 or of physical activity with either LUTS progression or remission.17 In older men, overweight and low physical activity may contribute to lower urinary tract dysfunction through pathways involving microvascular disease,43,44 metabolic derangements,45 or autonomic nervous system overactivity.46 Consistent with these mechanisms, our results also show associations of hypertension and dizziness (a marker of orthostatic control) with LUTS progression. Our results also document that mobility and back pain may contribute to LUTS progression. Men with mobility limitations or back pain may perceive their symptoms as becoming more severe over time, if difficulty with ambulation alone, or because of pain, interferes with their ability to get to or use a toilet. Alternatively, degenerative spinal conditions such as disc herniation or lumbar stenosis could contribute to both back pain and urologic dysfunction by impinging on the spinal cord or nerve roots.47–49

Risk factors for LUTS progression and remission identified in this study differ from those reported previously for three key reasons. First, we used trajectory modeling to account for LUTS fluctuation within men. Most earlier studies focused on change of a certain magnitude from a single previous time point, such as transition from mild (AUA-SI 0–7 points) to moderate LUTS (AUA-SI ≥ 8 points)15,16 or 2–3 point difference in AUA-SI voiding or storage subscores.17 These definitions may introduce misclassification if men who progress are combined with men whose symptoms are randomly fluctuating, or if men with stable and remitting symptoms are combined in the referent group. Misclassification would tend to bias associations with risk factors toward the null, which may explain why we but not others14,15,17 observed associations with BMI and physical activity. Second, we studied men with untreated LUTS. Studies that included a mix of men with and without treatment for LUTS may have identified factors associated with treatment decisions or treatment effects.14–17 Third, we studied older men whose risk factors for LUTS progression or remission may differ from those in younger men.

There are limitations to this research. First, we could not assess the reasons that men did not undergo treatment for LUTS. However, ~88% of men remained untreated at each AUA-SI assessment period, a proportion similar to that observed in other community-dwelling cohorts,6,28 suggesting that the Osteoporotic Fractures in Men (MrOS) cohort is not unusual with regard to LUTS treatment initiation. Second, we did not have specific urological metrics. However, such measures would not have necessarily informed this analysis because our aim was to study long-term changes in urinary symptoms that are well-represented by the AUA-SI. Third, some of the factors studied, such as CNS medication use, had low baseline prevalence, which resulted in wide CIs for OR estimates. Finally, the analytic cohort consisted of men aged 65 or older, who survived an average of 6.9 years and results may not apply to all men at risk for LUTS progression.

This study has multiple strengths. First, MrOS was specifically designed to study LUTS prospectively in elderly men.30 Second, the large sample size and excellent follow-up allowed us to evaluate multiple trajectory solutions and optimally characterize long-term LUTS changes. The small overall mean change in the AUA-SI during follow-up observed by us and others,20,22,23 belies the dynamic nature of untreated LUTS among elderly men. Trajectory analysis revealed rare patterns that have not been described previously, including persistently severe symptoms and...
mixed progression and remission. Finally, the comprehensive data available in MrOS allowed a comprehensive investigation of risk factors for LUTS change.

CONCLUSION
Several lifestyle and factors were associated with progressing and remitting LUTS trajectories. Back pain and CNS medication use may represent novel etiologies of LUTS that could be explored in future research. Intervening on lifestyle and health factors, especially mental health, has the potential to reduce the burden of LUTS in older men.

CONFLICT OF INTEREST
Dr Parsons and Dr Marshall received funding as co-Principal Investigators for this research from the US National Institutes of Health under grant R21 DK083675. Dr Parsons also reports relationships with AMS and Sophiris outside the submitted work. All other authors declare no conflict of interests.

ACKNOWLEDGEMENTS
This work was supported by the National Institute for Diabetes and Digestive and Kidney Diseases (Grant R21 DK083675 to LMM and JKP). The MrOS Study is supported by National Institutes of Health funding. The following institutes provide support: the National Institute on Aging (NIA), the National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), the National Center for Advancing Translational Sciences (NCATS) and NIH Roadmap for Medical Research under the following grant numbers: U01 AG027810, U01 AG042124, U01 AG042139, U01 AG042140, U01 AG042143, U01 AG042145, U01 AG042168, U01 AR066160 and UL1 TR000128.

REFERENCES
1 Boyle P, Robertson C, Mazzetta C, Kech M, Hobbs FD, Fourcade R et al. The prevalence of lower urinary tract symptoms in men and women in four centres. The UEPiK study. BJU Int. 2003; 92: 409–414.
2 Irwin DE, Kopp ZS, Agapit B, Milsom I, Abrams P. Worldwide prevalence estimates of lower urinary tract symptoms, overactive bladder, urinary incontinence and bladder outlet obstruction. BJU Int 2011; 108: 1132–1138.
3 Parsons JK, Bergstrom J, Silberstein J, Barrett-Connor E. Prevalence and characteristics of lower urinary tract symptoms in men aged > or = 80 years. Urology 2008; 72: 318–321.
4 Haiderg D, Waldhor T, Madersbacher S, Schatzl G, Vutuc C. Prevalence of lower urinary tract symptoms in Australian males: update 2009. Urol Int 2011; 87: 385–391.
5 Abrams P, Cardozo L, Fall M, Griffiths D, Rosier P, Ulmsten U et al. The standardisation of terminology in lower urinary tract function: report from the standardization sub-committee of the International Continence Society. Urology 2003; 61: 37–49.
6 Barry MJ, Fowler Jr. FJ, O’Leary MP, Bruskewitz RC, Holtgrewe HL, Mebust WK et al. The American Urological Association symptom index for benign prostatic hyperplasia. The Measurement Committee of the American Urological Association. J Urol 1992; 148: 1549–1557.
7 Taylor BC, Wilt TJ, Fink HA, Lambert LC, Marshall LM, Hoffman AR et al. Prevalence, severity, and health correlates of lower urinary tract symptoms among older men: the MrOS study. Urology 2006; 68: 804–809.
8 Kupelian V, Wei JT, O’Leary MP, Kusek JW, Litman HJ, Link CL et al. Prevalence of lower urinary tract symptoms and effect on quality of life in a racially and ethnically diverse random sample: the Boston Area Community Health (BACH) Survey. Arch Int Med 2006; 166: 2381–2387.

Table 4. Factors independently associated with progressing or remitting LUTS trajectory according to baseline AUA-SI score

Factor	Progressing versus stable Referent level	OR (95% CI)	P-value	
Baseline AUA-SI score 0–7 points				
SF-12 mental component score	<50 Points	≥ 55 Points	1.9 (1.1–3.4)	0.03
History of cancer (not prostate)	No cancer	1.7 (1.0–2.9)	0.03	
Mobility limitation	No mobility limitation	2.0 (1.0–3.8)	0.04	
Overweight or obese (BMI ≥ 25.0 kg m⁻²)	Normal/underweight (BMI < 25.0 kg m⁻²)	1.7 (1.0–2.8)	0.06	

Table 4 continued.

Baseline AUA-SI score 8–19 points	Progressing versus stable Referent level	OR (95% CI)	P-value	
SF-12 mental component score	<50 Points	≥ 55 Points	2.5 (1.3–4.9)	0.005
History of diagnosed hypertension	No hypertension	1.5 (1.0–2.4)	0.06	
Back pain in past 12 months	No back pain	1.5 (1.0–2.4)	0.07	
Live with spouse, family, or roommate	Live alone	1.8 (1.0–3.4)	0.07	
White (Caucasian)	Non-white	1.9 (0.9–3.9)	0.10	
History of diabetes	No diabetes	0.6 (0.3–1.2)	0.12	

Table 4 continued.

Remitting versus progressing Referent level	Progressing versus stable Referent level	OR (95% CI)	P-value
Central nervous system medication	No use	2.3 (1.1–4.9)	0.03
History of problem drinking	No such history	0.4 (0.2–0.9)	0.03
History of diagnosed hypertension	No hypertension history	0.6 (0.3–1.0)	0.04
History of diagnosed angina	No angina history	0.4 (0.2–1.1)	0.07
High school education or less	Some college or more	1.7 (0.9–3.1)	0.08

Abbreviations: AUA-SI, American Urological Association Symptom Index; BMI, body mass index; CI, confidence interval; LUTS, lower urinary tract symptom; OR, odds ratio; SF-12, Short Form 12.

*Factors evaluated during model building were those from univariable analyses with P ≤ 0.25 and retained in the stepwise selection procedure at P ≤ 0.15 as described in Materials and Methods.
9 Parsons JK, Mougey J, Lambert L, Will TJ, Fink HA, Garzotto M et al. Lower urinary tract symptoms increase the risk of falls in older men. BJU Int 2009; 104: 63–68.

10 Kupelian V, Fitzgerald MP, Kaplan SA, Norgaard JP, Chiu GR, Rosen RC. Association of nocturia and mortality: results from the Third National Health and Nutrition Examination Survey. J Urol 2011; 185: 571–577.

11 Wei JT, Calhoun C, Jacobsen SJ. Urologic diseases in America project: benign prostatic hyperplasia. J Urol 2005; 173: 1256–1261.

12 Hu TW, Wagner TH, Bentkover JD, LeBlanc K, Piancietini A, Stewart WF et al. Estimated economic costs of overactive bladder in the United States. Urology 2003; 61: 1123–1128.

13 National Center for Health Statistics. Health United States, 2013: With Special Feature on Emergency Care. Hyattsville, MD. 2013. Available at http://www.cdc.gov/nchs/data/hus/hus13.pdf (last accessed 19 July 2013).

14 Burke JP, Rhodes T, Jacobson DJ, McGree ME, Roberts RO, Girman CJ et al. Association of anthropometric measures with the presence and progression of benign prostatic hyperplasia. Am J Epidemiol 2006; 164: 41–46.

15 Kok ET, Schouten BW, Bohnen AM, Groeneveld FP, Thomas S, Bosch JL. Risk factors for lower urinary tract symptoms suggestive of benign prostatic hyperplasia in a community based population of healthy aging men: the Krimpen study. J Urol 2009; 181: 710–716.

16 Parsons JK, Messer K, White M, Barrett-Connor E, Bauer DC, Marshall LM. Obesity increases and physical activity decreases lower urinary tract symptom risk in older men: the Osteoporotic Fractures in Men (MrOS) Study. Eur Urol 2011; 60: 1173–1180.

17 Martin S, Lange K, Haren MT, Taylor AW, Wittert G. Risk factors for progression and improvement of lower urinary tract symptoms (LUTS) in a prospective cohort of men. J Urol 2014; 191: 130–137.

18 Wolters R, Wensing M, van Weel C, van der Wit GJ, Grol RP. Lower urinary tract symptoms: social influence is more important than symptoms in seeking medical care. BJU Int 2002; 90: 655–661.

19 Krambeck AE, Jacobson DJ, McGree ME, Lightner DJ, Lieber MM, Jacobsen SJ et al. Effectiveness of medical and surgical therapies for lower urinary tract symptoms in the community setting. BJU Int 2012; 110: 1332–1337.

20 Jacobsons SJ, Girmian CJ, Guess HA, Rhodes T, Oesterling JE, Lieber MM. Natural history of prostatism: longitudinal changes in voiding symptoms in community dwelling men. J Urol 1996; 155: 595–600.

21 Lee AJ, Garraway WM, Simpson RJ, Fisher W, King D. The natural history of lower urinary tract symptoms in men--result of a longitudinal community-based study in Japan. Eur Urol 2003; 43: 374–380.

22 Sarma AV, McLaughlin JC, Jacobsen SJ, Logie J, Dolin P, Dunn RL et al. Longitudinal change in lower urinary tract symptoms among a cohort of black American men: the Flint Men’s Health Study. Urology 2003; 61: 595–600.

23 Parsons JK, Will TJ, Wang PY, Barrett-Connor E, Bauer DC, Marshall LM. Progression of lower urinary tract symptoms in older men: a community based study. J Urol 2010; 183: 1915–1920.

24 Maserejian NN, Chen S, Chiu GR, Araujo AB, Kupelian V, Hall SA et al. Treatment status and progression or regression of lower urinary tract symptoms in a general adult population sample. J Urol 2014; 191: 107–113.

25 Parsons JK, Keating MH, Forouzanfar MH, Landon BE, Ashburner J, Osborn J et al. Effectiveness of medical and surgical therapies for lower urinary tract symptoms suggestive of benign prostatic hyperplasia. J Urol 2009; 182: 63–68.

26 Mahoney EM, Pahor M, Chrischilles EA, Guralnik JM, Brown SL, Wallace RB, Carbonin P. Drug data coding and analysis in epidemiologic studies. Eur J Epidemiol 1994; 10: 405–411.

27 Ewing JA. Detecting alcoholism. The CAGE questionnaire. JAMA 1984; 25: 1905–1907.

28 Van Den Bergh BM, Buchanan RG, Welsh J, Costa RJ, Schnoll SH. Screening for drinking disorders in the elderly using the CAGE questionnaire. J Am Geriatr Soc 1992; 40: 662–665.

29 Block G, Hartman AM, Naughton D. A reduced dietary questionnaire: development and validation. Epidemiol 1990; 1: 58–64.

30 Washburn RA, Smith KW, Jette AM, Janney CA. The Physical Activity Scale for the Elderly (PASE): development and evaluation. J Clin Epidemiol 1993; 46: 153–162.

31 Guralnik JM, Ferrucci L, Simonsick EM, Salive ME, Wallace RB. Lower-extremity function in persons over the age of 70 years as a predictor of subsequent disability. N Engl J Med 1995; 332: 556–561.

32 Ware Jr J, Kosinski M, Keller SD. A 12-item short-form health survey: construction of scales and preliminary tests of reliability and validity. Med Care 1996; 34: 220–233.

33 Gill SC, Butterworth P, Rodgers B, Mackinnon A. Validity of the mental health component scale of the 12-item Short-Form Health Survey (MCS-12) as measure of common mental disorders in the general population. Psychiatr Res 2007; 152: 63–71.

34 Mokdad AH, Serdula MK, Dietz WM, Bowman BA, Marks JS, Koplan JP. The spread of the obesity epidemic in the United States, 1991–1998. JAMA 1999; 282: 1519–1522.

35 Block G, Hartman AM, Naughton D. A reduced dietary questionnaire: development and validation. Epidemiol 1990; 1: 58–64.

36 Washburn RA, Smith KW, Jette AM, Janney CA. The Physical Activity Scale for the Elderly (PASE): development and evaluation. J Clin Epidemiol 1993; 46: 153–162.

36 Perreira KM, Sloan FA. Excess alcohol consumption and health outcomes: a 6-year follow-up of men over age 50 from the health and retirement study. Addiction 2002; 97: 301–310.

37 Andersson KE, Wein AJ. Pharmacology of the lower urinary tract: basis for current and future treatments of urinary incontinence. Pharmacol Rev 2004; 56: 581–631.

38 Parsons JK, Sarma AV, McVary K, Wei JT. Obesity and benign prostatic hyperplasia: clinical connections, emerging etiologic paradigms and future directions. J Urol 2012; 189: S1022–S1026.

39 Parsons JK, Kasehi C. Physical activity, benign prostatic hyperplasia, and lower urinary tract symptoms. Eur Urol 2008; 53: 1228–1235.

40 De Nunzio C, Aronson W, Freedland SI, Giovannucci E, Parsons JK. The correlation between metabolic syndrome and prostate diseases. Eur Urol 2013; 61: 546–570.

41 McVary KT, Rademaker A, Lloyd GL, Gann P. Autonomic nervous system overactivity in men with lower urinary tract symptoms secondary to benign prostatic hyperplasia. J Urol 2005; 174: 1327–1338.

42 Yamanishi T, Yasuda K, Sakakibara R, Murayama N, Hattori T, Ito H. Detrusor overactivity and penile erection in patients with lower lumbar spine lesions. Eur Urol 1999; 36: 360–364.

43 Bartolin Z, Savic I, Persec Z. Relationship between clinical data and urodynamic features of lumbar spinal stenosis and disc herniation with neuropathic bladder. Spine 2004; 29: 869–873.

Supplementary Information accompanies the paper on the Prostate Cancer and Prostatic Diseases website (http://www.nature.com/pcan)