Finite generation of extensions of associated graded rings along a valuation

Steven Dale Cutkosky

Abstract

In this paper we consider the question of when the associated graded ring along a valuation, $\text{gr}_{\nu^*}(S)$, is a finite $\text{gr}_{\nu^*}(R)$-module, where S is a normal local ring which lies over a normal local ring R and ν^* is a valuation of the quotient field of S which dominates S.

We begin by discussing some examples and results, allowing us to refine the conditions under which finite generation can hold. We must impose the condition that the extension of valuations is defectless and performs a birational extension of R along the valuation to obtain finite generation (replacing S with the local ring of the quotient field of S determined by the valuation which lies over the extension of R). With these assumptions, we have that finite generation holds, when R is a two-dimensional excellent local ring.

Our main result (in Theorem 1.5) is to show that for an arbitrary valuation in an algebraic function field over an arbitrary field of characteristic zero, after a birational extension along the valuation, we always have finite generation (all finite extensions of valued fields are defectless in characteristic zero). This generalizes an earlier result, in [Cutkosky, Math. Proc. Cambridge Soc. 106 (2016) 233–255], showing that finite generation holds (after a birational extension) with the additional assumptions that ν has rank 1 and has an algebraically closed residue field. There are essential difficulties in removing these assumptions, which are addressed in the proof in this paper.

We obtain general results for unramified extensions of excellent local rings in Proposition 1.7, showing that after blowing up, the extension of associated graded rings is finitely generated of an extremely simple form. This proposition plays an essential role in the Proof of Theorem 1.5.

1. Introduction

Suppose that K is a field. Associated to a valuation ν of K is a value group Φ_ν and a valuation ring V_ν with maximal ideal m_ν. Let R be a local domain with quotient field K. We say that ν dominates R if $R \subset V_\nu$ and $m_\nu \cap R = m_R$, where m_R is the maximal ideal of R. We have an associated semigroup $S^R(\nu) = \{\nu(f) \mid 0 \neq f \in R\}$, as well as the associated graded ring of R along ν

$$\text{gr}_\nu(R) = \bigoplus_{\gamma \in \Phi_\nu} \mathcal{P}_\gamma(R)/\mathcal{P}_\gamma^+(R) = \bigoplus_{\gamma \in S^R(\nu)} \mathcal{P}_\gamma(R)/\mathcal{P}_\gamma^+(R)$$

(1)

which is defined by Teissier in [35]. Here

$$\mathcal{P}_\gamma(R) = \{f \in R \mid \nu(f) \geq \gamma\}$$

and

$$\mathcal{P}_\gamma^+(R) = \{f \in R \mid \nu(f) > \gamma\}.$$

This ring plays an important role in local uniformization of singularities [35, 36]. The ring $\text{gr}_\nu(R)$ is a domain, but it is often not Noetherian, even when R is. In fact, a necessary condition for $\text{gr}_\nu(R)$ to be Noetherian is that Φ_ν be a finitely generated group.

Some recent papers on valuation theory and local uniformization in positive characteristic are: Cossart and Piltant [9, 10], Ghezzi, Há and Kashcheyeva [21], Ghezzi and Kashcheyeva

Received 24 June 2017; revised 20 January 2018; published online 31 March 2018.

2010 Mathematics Subject Classification 14B05, 14B25, 13B10, 11S15 (primary).

This work was partially supported by NSF grant DMS-1700046.
Suppose $K \rightarrow K^*$ is a finite extension of fields and ν^* is a valuation, which is an extension of ν to K^*. We have the classical indices

$$e(\nu^*/\nu) = [\Phi_{\nu^*} : \Phi_\nu]$$

and

$$f(\nu^*/\nu) = [V_{\nu^*}/m_{\nu^*} : V_\nu/m_\nu]$$

as well as the defect $\delta(\nu^*/\nu)$ of the extension. Ramification of valuations and the defect are discussed in [19, 40, Chapter VI] and Kuhlmann’s papers [29, 31]. A survey is given in [16, Subsection 7.1]. By Ostrowski’s lemma, if ν^* is the unique extension of ν to K^*, we have that

$$[K^* : K] = e(\nu^*/\nu)f(\nu^*/\nu)p^{\delta(\nu^*/\nu)}$$

(2)

where p is the characteristic of the residue field V_ν/m_ν. From this formula, the defect can be computed using Galois theory in an arbitrary finite extension. If V_ν/m_ν has characteristic zero, then $\delta(\nu^*/\nu) = 0$ and $p^{\delta(\nu^*/\nu)} = 1$, so there is no defect. Further, if $\Phi_\nu = \mathbb{Z}$ and K^* is separable over K then there is no defect.

Now suppose $K \rightarrow K^*$ is a finite separable field extension and ν^* is a valuation of K^* with restriction ν to K. Suppose that R and S are normal, excellent local rings with quotient field $QF(R) = K$ of R and quotient field $QF(S) = K^*$ of S. Suppose that S dominates R and ν^* dominates S. We have the following basic question:

Question 1.1. When is $gr_{\nu^*}(S)$ a finitely generated $gr_\nu(R)$-algebra?

We will see that Question 1.1 has a good general answer, but we must refine the question, which we will do by consideration of examples.

In [14, Corollary 6], it is shown that if $K = K^*$, R and S are two-dimensional excellent regular local rings with $R \neq S$, and ν is not discrete, then $gr_\nu(S)$ is not a finitely generated $gr_\nu(R)$-algebra. Thus to obtain a good answer to Question 1.1 for general valuations, we must restrict to the case that S lies over R (S is the local ring, which is the localization of the integral closure of R in K^* that is dominated by ν^*).

An algebraic local ring A in an algebraic function field L over a field k is a local ring, which is a localization of a finite type k-algebra such that $QF(A) = L$. We always assume that a valuation ν of an algebraic function field L over a field k is a k-valuation; that is, $\nu|(k \setminus 0) = 0$. Now it can happen, even when S lies over R and R and S are algebraic regular local rings in two-dimensional algebraic function fields over an arbitrary field, that $gr_{\nu^*}(S)$ is not a finitely generated $gr_\nu(R)$-algebra ([12, Example 1.2; 17, Example 9.4]. However, if R has dimension 2 and contains a field k of characteristic zero, then there exists a regular local ring R_1 which dominates R and is dominated by ν such that if S_1 is the normal local ring of K^* which lies over R_1 and is dominated by ν^*, then $gr_{\nu^*}(S_1)$ is a finite $gr_\nu(R_1)$-module. Further, this property is stable under further blowing up [13, 18, 21].

Suppose that S lies over R. Then it may be that $gr_{\nu^*}(S)$ is not integral over $gr_\nu(R)$ [12, Example 1.1], even when K and K^* are algebraic function fields over an arbitrary field k. However, after some blowing up $R \rightarrow R_1$ along ν, we obtain that $gr_{\nu^*}(S_1)$ is integral over $gr_\nu(R_1)$, where S_1 is the normal algebraic local ring of K^* which is dominated by ν^* and lies over R_1 [12, Theorem 1.4]. This explains the finiteness of $gr_{\nu^*}(S_1)$ over $gr_\nu(R_1)$ in the two-dimensional result cited above from [13, 18, 21].

Suppose that R_1 is a local domain with quotient field K. We will say that R_1 is a birational extension of R if R_1 dominates R and R_1 is a localization of a finite type R-algebra. This leads us to a refinement of Question 1.1:
QUESTION 1.2. Does there exist a birational extension $R \to R_1$ such that R_1 is normal and ν dominates R_1 such that $\text{gr}_{\nu^*}(S_1)$ is a finitely generated $\text{gr}_{\nu}(R_1)$-module, where S_1 is the normal local ring with quotient field K^* which lies over R_1 and is dominated by ν^*?

In [16, Subsection 7.11] (recalled in [12, Example 1.3]), an example is given in a separable extension $K \to K^*$ of two-dimensional algebraic function fields over an algebraically closed field k of positive characteristic p such that $\text{gr}_{\nu^*}(S_1)$ is not a finitely generated $\text{gr}_{\nu}(R_1)$-algebra for all regular local rings R_1 birationally dominating R which are dominated by ν. This example has positive defect $\delta(\nu^*/\nu) > 0$. This example is not sporadic, but illustrates a general principal in dimension 2 which we now state.

Theorem 1.3 [14, Theorem 1]. Suppose that R is a two-dimensional excellent local domain with quotient field K. Further suppose that K^* is a finite separable extension of K and S is a two-dimensional local domain with quotient field K^* such that S dominates R. Suppose that ν^* is a valuation of K^* such that ν^* dominates S. Let ν be the restriction of ν^* to K. Then the extension $(K, \nu) \to (K^*, \nu^*)$ is without defect if and only if there exist regular local rings R_1 and S_1 such that R_1 is a local ring of a blow up of R, S_1 is a local ring of a blowup of S, ν^* dominates S_1, S_1 dominates R_1 and $\text{gr}_{\nu^*}(S_1)$ is a finitely generated $\text{gr}_{\nu}(R_1)$-algebra.

Thus to obtain a good answer to Question 1.2 for general valuations, we must assume $K \to K^*$ is defectless ($\delta(\nu^*/\nu) = 0$). This leads us to our final formulation of the question.

Question 1.4. Suppose $K \to K^*$ is defectless. Does there exist a birational extension $R \to R_1$ such that R_1 is normal and ν dominates R_1, and $\text{gr}_{\nu^*}(S_1)$ is a finitely generated $\text{gr}_{\nu}(R_1)$-module, where S_1 is the normal local ring with quotient field K^* which lies over R_1 and is dominated by ν^*?

Question 1.4 has a positive answer when R is assumed to have dimension 2, as follows from results of [13, 16, 21, 22]. In this paper we give a positive answer to Question 1.4 in algebraic function fields of arbitrary dimension over an arbitrary field of characteristic zero. We prove the following theorem in Section 7.

Theorem 1.5. Suppose that K is an algebraic function field over a field k of characteristic zero and K^* is a finite extension of K. Suppose that ν^* is a k-valuation of $K^*/k^*(k \setminus 0) = 0)$. Let ν be the restriction of ν^* to K, and suppose that \bar{R} is an algebraic local ring of K which is dominated by ν. Then there exists an algebraic regular local ring R of K which dominates \bar{R} and is dominated by ν such that if S is the local ring of the integral closure of R in K^* which is dominated by ν^*, then $\text{gr}_{\nu^*}(S)$ is a free $\text{gr}_{\nu}(R)$-module of finite rank ef where $e = [\Phi_{\nu^*}/\Phi_{\nu}]$ and $f = [V_{\nu^*}/m_{\nu^*} : V_{\nu}/m_{\nu}]$.

We deduce the following proposition from the Proof of Theorem 1.5.

Proposition 1.6. Let assumptions and conclusions be as in Theorem 1.5. Further assume that K contains an algebraically closed field k' such that $k' \cong V_{\nu}/m_{\nu}$. Then Φ_{ν^*}/Φ_{ν} acts on $\text{gr}_{\nu^*}(S)$ with $\text{gr}_{\nu^*}(S)^{\Phi_{\nu^*}/\Phi_{\nu}} \cong \text{gr}_{\nu^*}(R)$.

Theorem 1.5 generalizes [12, Theorem 1.6], which establishes Theorem 1.5 with the restrictions that ν^* has rank 1, k is algebraically closed and $V_{\nu^*}/m_{\nu^*} \cong k$. The proof in [12] relies on the fact that for a valuation ν of K of rank 1 dominating \bar{R}, there is a natural extension $\hat{\nu}$ of ν to the quotient field of the completion \hat{R} which dominates \bar{R}, such that the value group is not very different from that of ν [15, 34]. After blowing up to obtain that \bar{R} is regular and the
discriminant ideal of $R \to K^*$ is generated by a monomial in a regular system of parameters x_1, \ldots, x_n in R, the Abhyankar Jung Theorem [1] gives an inclusion of k-algebras (assuming k is algebraically closed of characteristic zero)

$$\hat{R} = k[[x_1, \ldots, x_n]] \to \hat{S} \to k[[x_1^{1/k}, \ldots, x_n^{1/k}]]$$

such that \hat{S} is the invariant ring of a subgroup of \mathbb{Z}_n^d. Then using the strong monomialization theorem of [11, 16] after blowing up some more to obtain a monomial map which captures the invariants of the extension of valuations, we show that there is a set of generators of \hat{S} as an \hat{R}-module whose values are a complete set of representatives of the cosets of Φ_v in $\Phi_{v'}$, from which the conclusions of Theorem 1.5 follow, in the case that ν has rank 1 and $k = V_{v'}/m_{v'}$ is algebraically closed (of characteristic zero).

The significant difficulty in extending this proof to the general case of the statement of Theorem 1.5 is when ν has arbitrary rank. In this case the structure of an extension ν' of ν to a valuation dominating \tilde{R} is not well understood, although the structure is known to be complicated [26]. In fact, even under a finite unramified extension the semigroup of a valuation of rank > 1 can increase, as shown in the example at the end of Section 5, although the value groups will stay the same.

We prove the following proposition on the extension of associated graded rings under an unramified extension. Related problems are considered in [26].

Proposition 1.7. Suppose that R and S are normal local rings such that R is excellent, S lies over R and S is unramified over R, ν' is a valuation of the quotient field L of S which dominates S, and ν is the restriction of ν' to the quotient field K of R. Suppose that L is finite separable over K. Then there exists a normal local ring R', which is a birational extension of R and is dominated by ν such that if R'' is a normal local ring which is a birational extension of R' and is dominated by ν' and S'' is the normal local ring of L which is dominated by ν' and lies over R'', then $R'' \to S''$ is unramified, and

$$\text{gr}_{\nu'}(S'') \cong \text{gr}_{\nu'}(R'') \otimes_{R''/m_{R''}} S''/m_{S''}.$$

As remarked above, we give an example at the end of Section 5 showing that a birational extension of R may be necessary to obtain the conclusions of Proposition 1.7.

We use ramification theory and Proposition 1.7 to reduce the Proof of Theorem 1.5 to the case when ν^* is the unique extension of ν to K^* and we have an equality of residue fields $V_{v'}/m_{v'} = V_{\nu}/m_{\nu}$. We derive in Theorem 7.1 an extension of the strong monomialization theorem of [11, 16] which allows us to find, after some blow ups along the valuation to capture in $R \to S$ invariants of the extension of valuations, a set of generators of \hat{S} as an R-module whose values are a complete set of representatives of the cosets of Φ_v in Φ_{v^*}, from which Theorem 1.5 follows.

2. **Notation**

We will denote the maximal ideal of a local ring R by m_R. We will denote the quotient field of a domain R by $QF(R)$. Suppose that $R \subset S$ is an inclusion of local rings. We will say that R dominates S if $m_S \cap R = m_R$. Suppose that \tilde{R} is a local domain with quotient field $K = QF(R)$. We will say that \tilde{R} is a birational extension of R if \tilde{R} dominates R and \tilde{R} is a localization of a finite type R-algebra. Suppose that K^* is a finite extension of a field K, R is a local ring with quotient field $QF(R) = K$ and S is a local ring with quotient field $QF(S) = K^*$. Suppose that R and S are normal. We will say that S lies over R and R lies below S, if S is a localization at a maximal ideal of the integral closure of R in K^*. If R is a local ring, \tilde{R} will
denote the completion of R at its maximal ideal. If M is a finite field extension of a field L, we will denote the group of L-automorphisms of M by $\text{Aut}(M/L)$. If M is Galois extension of L, we will write $G(M/L) = \text{Aut}(M/L)$.

Good introductions to the valuation theory which we require in this paper can be found in [40, Chapter VI] and in [4]. Let ν be a valuation of a field K. We will denote by V_ν the associated valuation ring, and the maximal ideal of V_ν by m_ν. The value group of a valuation ν will be denoted by Φ_ν. If R is a subring of V_ν, then the center of ν (the center of V_ν) on R is the prime ideal $R \cap m_\nu$.

Let $\text{gr}_\nu(R)$ be the associated graded ring of R along ν defined in (1). For $f \in R$, let the initial form $\text{in}_\nu(f) \in \text{gr}_\nu(R)$ be the class of f in $\mathcal{P}_\nu(f)(R)/\mathcal{P}_\nu^+(f)(R)$.

Suppose that R is a local domain. A monoidal transform $R \to R_1$ is a birational extension of local domains such that $R_1 = R[\frac{x}{x_1}]_{m}$, where P is a prime ideal of R such that R/P is regular, $0 \neq x \in P$ and m is a prime ideal of $R[\frac{x}{x_1}]$ such that $m \cap R = m_R$. $R \to R_1$ is called a quadratic transform if $P = m_R$.

If R is regular, and $R \to R_1$ is a monoidal transform, then there exists a regular system of parameters (x_1, \ldots, x_n) in R and $r \leq n$ such that

$$R_1 = R \left[\frac{x_2}{x_1}, \ldots, \frac{x_r}{x_1} \right]_{m}.$$

Suppose that ν is a valuation of the quotient field of R with valuation ring V_ν which dominates R. Then $R \to R_1$ is a monoidal transform along ν (along V_ν) if ν dominates R_1.

We will use the following properties of an excellent ring R (from [24, Scholie IV.7.8.3]). If R' is a localization of a finite type R-algebra then R' is excellent. If R is a domain and R' is the integral closure of R in a finite field extension of the quotient field of R, then R' is a finite R-module. If R is a normal local ring, then its completion \hat{R} is a normal local ring.

If Λ is a subset of a group H, then we will denote the group generated by Λ by $G(\Lambda)$.

3. Associated graded rings in splitting fields and inertia fields

We now introduce some notation which we will use throughout this section. We refer to [40, Chapter VI, Sections 10 and 11]. Suppose that K is a field with a valuation ν, and that ν dominates an excellent normal local ring R which has K as its quotient field. Let V_ν be the valuation ring of ν with maximal ideal m_ν. Let r be the rank of ν, which is finite since ν dominates the Noetherian local ring R (by [40, Proposition 1, p. 330]). Let

$$0 = \Phi_r \subset \Phi_{r-1} \subset \cdots \subset \Phi_1 \subset \Phi_0 = \Phi_\nu$$

be the chain of isolated subgroups of the value group Φ_ν of ν. Let

$$0 = I_0 \subset I_1 \subset \cdots \subset I_r = m_\nu$$

be the chain of prime ideals in V_ν. The Φ_i are related to the I_i as follows. Let

$$U_i = \{ \nu(a) \mid 0 \neq a \in I_i \}.$$

Then Φ_i is the complement of U_i and $-U_i$ in Φ_ν.

For $1 \leq i \leq r$, let ν_i be the specializations of ν; the valuation ring of ν_i on A is $V_{\nu_i} = (V_\nu)_{I_i}$ and the value group of ν_i is Φ_0/Φ_i. We have that $\nu_r = \nu$.

If A is a subring of V_ν, then the centers of the specializations of V_ν on A is the chain of prime ideals

$$0 = I_0 \cap A \subset I_1 \cap A \subset \cdots \subset I_r \cap A = m_\nu \cap A.$$
Let K^* be a finite extension field of K, and let ν^* be an extension of ν to K^*. Let $\nu^*_1 = \nu^*, \nu^*_2, \ldots, \nu^*_a$ be all of the extensions of ν to K^*. Let
\[
0 = I_{i,0}^* \subset I_{i,1}^* \subset \cdots \subset I_{i,r}^* = m_{\nu^*_i}
\]
be the chain of prime ideals in $V_{\nu^*_i}$ for $1 \leq i \leq a$. Let $\nu^*_{j,i}$ be the specializations of $V_{\nu^*_i}$, with valuation rings $V_{\nu^*_{j,i}} = (V_{\nu^*_i})_{I_{j,i}}^*$. Let
\[
0 = I_{1}^* \subset \cdots \subset I_{a}^* \subset \Phi_0^* = \Phi^*.
\]
be the isolated subgroups of the value group Φ^* of ν^*. The value group of $V_{\nu^*_{1,i}}$ is Φ_0^*/Φ_1^*.

Define a chain of prime ideals in R by
\[
0 = P_0 = I_0 \cap R \subset P_1 = I_1 \cap R \subset \cdots \subset P_r = I_r \cap R = m_R.
\]
We have that $P_j = I_{i,j} \cap R$ for $1 \leq i \leq a$ and $0 \leq j \leq r$.

Lemma 3.1. There exists a normal local ring R' which birationally dominates R, such that ν dominates R', and if R'' is a normal local ring which birationally dominates R' and is dominated by ν, then the prime ideals $I_i \cap R''$ are all distinct, and
\[
\text{trdeg}_{QF(R''/R\cap I_1)}QF(V_\nu/I_i) = 0
\]
for all i.

Proof. Let $I_{r+1} = V_\nu$. We have that $\text{trdeg}_{QF(R/R\cap I_1)}QF(V_\nu/I_i) < \infty$ for $0 \leq i \leq r$ by [40, Proposition 1, p. 330]. Thus there exist $z_{1,j}, \ldots, z_{a,j} \in I_j$ for $1 \leq j \leq r+1$ such that for $0 \leq i \leq r$,
\[
z_{i,1}, \ldots, z_{i,a+1,i+1}
\]
is a transcendence basis of $(V_\nu/I_i)_{I_i}$ over $QF(R/R\cap I_i)$. Let A be the integral closure of
\[
R[z_{i,j} \mid 1 \leq j \leq r+1, 1 \leq i \leq a]
\]
in K, and let $R' = A_{\nu^*}$. Then R' satisfies the conclusions of the lemma. \qed

After replacing R with R', we may assume that $R = R'$ satisfies the conclusions of Lemma 3.1. Let T be the integral closure of R in K^* and let $m_j = T \cap m_{\nu^*_i}$ for $1 \leq j \leq a$ and $m = m_1$. The ring T is a finite R-module since R is excellent.

Lemma 3.2. There exists a birational extension R' of R, where R' is a normal local ring which is dominated by ν, such that if R'' is a normal local ring which is a birational extension of R' which is dominated by ν and $V_{\nu^*_{j,i}} \neq V_{\nu^*_{k,i}}$ for some i, j, k, then $I_{j,i}^* \cap C \neq I_{k,i}^* \cap C$ and $I_{j,i}^* \cap C \not\subset I_{k,r}^* \cap C$ where C is the integral closure of R'' in K^*.

Proof. Let $A = \cap_{j=1}^a V_{\nu^*_j}$ be the integral closure of V_ν in K^*, so that $A_{A \cap I_{j,i}^*} = V_{\nu^*_j}$, for all i, j (by [4, Proposition 2.36, Lemma 2.37]). We will first show that
\[
I_{j,i}^* \cap A \neq I_{k,i}^* \cap A \implies I_{j,i}^* \cap A \not\subset I_{k,r}^* \cap A. \tag{7}
\]
Suppose $P = A \cap I_{j,i}^* \subset M = A \cap I_{k,r}^*$. By [4, Lemma 2.17], $A_P = V_{\nu^*_{j,i}}$, and $A_M = V_{\nu^*_{k,i}}$, so $V_{\nu^*_{j,i}}$ is a specialization (localization) of $V_{\nu^*_j}$. Since $V_{\nu^*_j}$ has dimension i, we have that $V_{\nu^*_j} = V_{\nu^*_{k,i}}$, and thus $I_{j,i}^* \cap A = I_{k,i}^* \cap A$.

By (7), there exist $u_{k,j,i} \in A \cap I_{j,i}^*$ such that $u_{k,j,i} \not\in A \cap I_{k,r}^*$ if $A \cap I_{j,i}^* \neq A \cap I_{k,r}^*$. \tag{8}
There exist relations

\[u_{k,j,i}^{c_{k,j,i}} + \alpha_{k,j,i,c_{k,j,i}}u_{k,j,i}^{c_{k,j,i}-1} + \cdots + \alpha_{k,j,i,0} = 0 \]

with \(\alpha_{k,j,i,l} \in V_\nu \) for \(0 \leq l \leq c_{k,j,i} - 1 \). Let \(B \) be the integral closure of

\[R[\{\alpha_{k,j,i,l} \mid 1 \leq i \leq r, 0 \leq l \leq c_{k,j,i} - 1\}] \]

in \(K \) and let \(R' = B_{\nu_0} \cap B \).

Suppose that \(R'' \) is a birational extension of \(R' \), which is normal and is dominated by \(\nu \). Let \(C \) be the integral closure of \(R'' \) in \(K^* \). Suppose \(V_{\nu'_j} \neq V_{\nu'_i} \). Then \(I_{\nu_j} \cap A \neq I_{\nu_i} \cap A \). Thus \(u_{k,j,i} \in I_{\nu_j} \cap C \) is such that \(u_{k,j,i} \notin I_{\nu_i} \cap C \) by (8). Since \(I_{\nu_j} \cap C \subset I_{\nu_i} \cap C \), we further have that \(u_{k,j,i} \notin I_{\nu_j} \cap C \).

From now on in this section, assume that \(K^* \) is a Galois extension of \(K \). Decomposition and inertia groups are defined and analyzed in \([40, \text{Chapter VI, Section 12}] \) and in \([4, \text{Sections 7 and 11}] \).

Lemma 3.3. We have that the decomposition groups \(G^*(V_{\nu_j}/V_\nu) \subset G^*(T_{m_j}/R) \) and

\[G^*(V_{\nu_j}/V_\nu) = G^*(T_{m_j}/R) \]

if and only if \(\nu_j^* \) is the unique extension of \(\nu \) to \(K^* \) which dominates \(T_{m_j} \).

Proof. Certainly \(G^*(V_{\nu_j}/V_\nu) \subset G^*(T_{m_j}/R) \) since \(m_{\nu_j} \cap T_{m_j} = m_{T_{m_j}} \). Suppose that \(\nu' \) is an extension of \(\nu \) to \(K^* \) which dominates \(T_{m_j} \). Then there exists \(\sigma \in G(K^*/K) \) such that \(\sigma(V_{\nu_j}) = V_{\nu'} \), and we have that \(\sigma(T_{m_j}) = T_{m_j} \), so \(\sigma \in G^*(T_{m_j}/R) \). Thus \(G^*(V_{\nu_j}/V_\nu) \subset G^*(T_{m_j}/R) \) if and only if \(\nu_j^* \) is the unique extension of \(\nu \) to \(K^* \) which dominates \(T_{m_j} \).

Let \(T^* \) be the integral closure of \(R \) in \(K^* = K^*(V_{\nu_j}/V_\nu) \) and let \(n_j = m_{\nu_j} \cap T^* \) for \(1 \leq j \leq a, n = n_1 \). Let \(\nu_j^* \) be the restriction of \(\nu_j^* \) to \(K^* \) for \(1 \leq j \leq a, \nu^* = \nu_1^* \).

We recall a technique to compute norms and traces. Let \(K' \) be an intermediate field of the Galois extension \(K \to K^* \). Let \(T' \) be the integral closure of \(R \) in \(K' \). Let \(G = G(K^*/K) \) be the Galois group of \(K^* \) over \(K \) and \(G' = G(K^*/K') \) be the Galois group of \(K^* \) over \(K' \). Let \(\sigma_1, \ldots, \sigma_n \) be a complete set of representatives of the cosets of \(G' \) in \(G \). Then the norm and trace of an element \(x \in T' \) of \(K' \) over \(K \) can be computed (by \([39, \text{formulas (19) and (20)}, \text{p. 91}] \)) as

\[N(x) = N_{K'/K}(x) = \prod_{i=1}^n \sigma_i(x) \]

and

\[Tr(x) = Tr_{K'/K}(x) = \sum_{i=1}^n \sigma_i(x). \]

We have that \(N_{K'/K}(x), Tr_{K'/K}(x) \in R \) by \([39, \text{formulas (8) and (9)}, \text{p. 88; Theorem 4, p. 260}] \).

Let \(G = G(K^*/K) \) be the Galois group of \(K^* \) over \(K \) and let

\[G_{j,i} = G^*(V_{\nu_j}/V_\nu) \]

for \(1 \leq i \leq r \). For fixed \(j \), we have inclusions

\[(1) \subset G_{j,r} = G^*(V_{\nu_j}/V_\nu) \subset G_{j,r-1} \subset \cdots \subset G_{j,2} \subset G_{j,1} \subset G \]
with a tower of fixed fields

\[K \subset K^{j,1} \subset K^{j,2} \subset \cdots \subset K^{j,r-1} \subset K^{j,r} \subset K^*, \]

where \(K^{j,i} = K^{G_{j,i}} \). Let \(G_i = G_{1,i} \) for \(1 \leq i \leq r \).

Lemma 3.4. Let \(R' \) be the birational extension of \(R \) of the conclusions of Lemma 3.2. If \(R'' \) is a normal local ring which is a birational extension of \(R' \) which is dominated by \(\nu \), then

\[G_{j,i} = G^*(V_{\nu^*_j,i}/V_{\nu^*_i}) = G^*(C_{\nu^*_j,i} \cap C/R'_j \cap R'') \]

for \(1 \leq j \leq a \) and \(1 \leq i \leq r \), where \(C \) is the integral closure of \(R'' \) in \(K^* \).

Proof. By Lemma 3.2, \(I_{j,i}^* \cap C = I_{k,i}^* \cap C \) implies \(V_{\nu^*_j,i} = V_{\nu^*_k,i} \). Suppose \(\sigma \in G(K^*/K) \). Then \(\sigma(I_{j,i}^* \cap C) = I_{j,i}^* \cap C \) implies \(\sigma(I_{j,i}^*) = I_{j,i}^* \), so that

\[G^*(C_{\cap I_{j,i}^*}/(R'' \cap \nu^*_i)) = G^*(V_{\nu^*_j,i}/V_{\nu^*_i}). \]

Now

\[G^*(V_{\nu^*_j,i}/V_{\nu^*_i}) \subset G^*(C_{\cap I_{j,i}^*}/(R'' \cap \nu^*_i)) \]

since \(V_{\nu^*_j,i} \) dominates \(C_{\cap I_{j,i}^*} \) and \(V_{\nu^*_i} \) dominates \((R'')_{\cap \nu^*_i} \). \(\square \)

After replacing \(R \) with \(R' \), we may assume that \(R = R' \) satisfies the conclusions of Lemma 3.2. Let \(S_i \) be a subset of \(\{1, 2, \ldots, a\} \) such that \(1 \in S_i \), if \(1 \leq k \leq a \) then \(V_{\nu^*_k,i} = V_{\nu^*_j,i} \) for some \(j \in S_i \) and \(V_{\nu^*_j,i} \neq V_{\nu^*_k,i} \) if \(j \neq k \) are in \(S_i \).

Then

\[G_{j,i} = G^*(T_{Q_{j,i}}/R_P) \]

for \(j \in S_i \) and \(1 \leq i \leq r \), where \(Q_{j,i} = T \cap m_{\nu^*_j,i} \) for \(j \in S_i \).

Lemma 3.5. For fixed \(i \) with \(1 \leq i \leq r \), the prime ideals \(\{Q_{j,i}\}_{j \in S_i} \) in \(T^* \) are pairwise coprime, where \(Q_{j,i} = Q_{j,i} \cap T^* \).

Proof. Suppose \(j, k \in S_i \) with \(j \neq k \) and \(Q^*_j, i \) and \(Q^*_k, i \) are not coprime. Then there exists a maximal ideal \(Q^*_{t,i} \) of \(T^* \) such that \(Q^*_{j,i} \subset Q^*_{t,i} \) and \(Q^*_{k,i} \subset Q^*_{t,i} \). There exists a maximal ideal \(Q_{n,r} \) of \(T \) such that \(Q_{n,r} \cap T^* = Q_{t,i} \) (by [4, Lemma 1.20, p. 13]) and there exist prime ideals \(Q_{a,i} \subset Q_{n,r} \) and \(Q_{b,i} \subset Q_{n,r} \) such that \(Q_{a,i} \cap T^* = Q^*_{j,i} \) and \(Q_{b,i} \cap T^* = Q^*_{k,i} \) by the going down theorem [4, Proposition 1.24B, p. 15]. But \(Q_{a,i} \) and \(Q_{b,i} \) are necessarily distinct, giving a contradiction to the conclusions of Lemma 3.2. \(\square \)

For \(0 \leq i \leq r - 1 \), let \(\sigma^i_1 = \text{id}, \sigma^i_2, \ldots, \sigma^i_r \in G_i \) be a complete set of representatives of the cosets of \(G_{i+1} \) in \(G_i \). Then

\[\sigma^0_1, \sigma^1_{i+1} \cdots \sigma^{i-1}_{i+1}, \ 1 \leq i \leq t_j \text{ and } 0 \leq j \leq r - 1 \]

is a complete set of representatives of the cosets of \(G_r = G^*(V_{\nu^*_r}/V_{\nu^*_i}) \) in \(G \).

Suppose that \(i \) is fixed with \(1 \leq i \leq r \). By Lemma 3.5 and the Chinese remainder theorem, given \(n_i \in \mathbb{N} \), there exists \(y_i \in T^* \) such that

\[y_i \equiv 1 \mod (Q^*_{j,i})^{n_i} \text{ and } y_i \equiv 0 \mod (Q^*_{j,i})^{n_i} \text{ if } j \in S_i \text{ and } j > 1. \]

By equations (11), (10) and [4, Proposition 1.46], \(Q_{1,i} \) is the unique prime ideal of \(T \) lying over \(Q^*_{1,i} \) for \(0 \leq i \leq r \). Thus

\[y_i \equiv 1 \mod Q^*_{1,i} \text{ and } y_i \equiv 0 \mod Q^*_{j,i} \text{ if } j \in S_i \text{ and } j > 1. \]
Lemma 3.6. Suppose

\[\tau = \sigma_1^0 \sigma_1^1 \cdots \sigma_{k-1}^{k-1} \sigma_k \cdots \sigma_{r-1}^{r-1} \]

with \(i_k > 1 \). Then

\[\tau(y_j) \equiv 1 \mod (Q_{1,j})^{\nu_j} \text{ if } k \geq j \]

and

\[\tau(y_j) \equiv 0 \mod (Q_{1,j})^{\nu_j} \text{ if } k \leq j - 1. \]

Proof. If \(k \geq j \), then \(\tau \in G_k \subset G_j \) so \(\tau(y_j) \equiv 1 \mod (Q_{1,j})^{\nu_j} \) if \(k \geq j \).

Now suppose \(k \leq j - 1 \). If \(\sigma \in G_a \) then \(\sigma \) permutes the \(Q_{i,b} \) with \(a \leq b \) which contain \(Q_{1,a} \), and permutes the \(Q_{i,b} \) with \(a < b \) which do not contain \(Q_{1,a} \). We have that \(\sigma_{i_{k+1}}^{k+1} \cdots \sigma_{i_r}^{r-1} \in G_{k+1} \) so

\[\sigma_{i_{k+1}}^{k+1} \cdots \sigma_{i_r}^{r-1} \equiv 0 \mod Q_{1,j}^{\nu_j} \text{ if } Q_{1,k+1} \not\subset Q_{i,j}. \]

Thus \(\tau(y_j) \equiv 0 \mod (Q_{1,j})^{\nu_j} \).

An element \(\sigma \in G \) is in \(G_i \) if and only if the conjugate valuation \(\nu_{i,i}^* \sigma = \nu_{i,i}^* \) (p. 68, [40]). Thus for \(0 \neq f \in K^* \) and \(\sigma \in G_i \),

\[\nu^*(\sigma(f)) - \nu^*(f) \in \Phi_i^*. \]

Since \(Q_{1,i} = I_{1,i} \cap T \), and since the conclusions of Lemma 3.1 are assumed to hold for \(R = R' \), we have by (5) that

\[\nu^*(Q_{1,i}) = \min \{ \nu^*(g) \mid g \in Q_{1,i} \}. \]

where

\[\nu^*(Q_{1,i}) = \nu^*(y_1 \cdots y_r f) = \nu^*(y_1) + \cdots + \nu^*(y_r) + \nu^*(f) = \nu^*(f) \]

by (12) and since \(Q_{1,j} \subset Q_{1,r} \) for all \(j \). For \(0 \leq i \leq r - 1 \), let

\[\varphi_i(f) = \min \{ \nu^*(\sigma(f)) - \nu^*(f) \mid \sigma \in G_i \}. \]

We have that \(\varphi_i(f) \in \Phi_i^* \). Let \(n_i \in \mathbb{N} \) be such that

\[n_{i+1} \nu^*(Q_{1,i+1}) = \varphi_i(f) \] for \(0 \leq i \leq r - 1. \]

Suppose \(\tau \) is as in the assumptions of Lemma 3.6 with \(\tau \neq \text{id} \). Then

\begin{align*}
\nu^*(\tau(y_1 \cdots y_r f)) - \nu^*(f) &= [\nu^*(\tau(f)) - \nu^*(f)] + \nu^*(\tau(y_1)) + \cdots + \nu^*(\tau(y_r)) \\
&\geq \varphi_k(f) + \nu^*(\tau(y_{k+1})) + \cdots + \nu^*(\tau(y_r)) \\
&\geq \varphi_k(f) + n_{k+1} \nu^*(Q_{1,k+1}) + \cdots + n_r \nu^*(Q_{1,r}) \quad \text{by Lemma 3.6.} \\
&> 0 \quad \text{by (14).}
\end{align*}

We have that \(\text{Tr}_{K^*/K}(y_1 \cdots y_r f) \in R \) and

\[\nu^*(\text{Tr}_{K^*/K}(y_1 \cdots y_r f) - f) > \nu^*(f) \]

by equations (13) and (15).
We thus have established the following proposition.

Proposition 3.7. Suppose that \(K^* \) is a Galois extension of a field \(K \), \(\nu \) is a valuation of \(K \) and \(\nu^* \) is an extension of \(\nu \) to \(K^* \). Suppose that \(R \) is a normal excellent local ring with quotient field \(K \) which is dominated by \(\nu \). Then there exists a birational extension \(R' \) of \(R \) such that \(R' \) is a normal local ring which is dominated by \(\nu \) and if \(R'' \) is a normal local ring with quotient field \(K \) which birationally dominates \(R' \) and is dominated by \(\nu \) and if \(S \) is the local ring of the normalization of \(R'' \) in the fixed field \(K^* \) of the decomposition group \(G^*(V_{\nu''}/V_{\nu}) \), then

\[
\text{gr}_{\nu''}(S) = \text{gr}_{\nu'}(R).
\]

Let \(R'' = T_m \) be the local ring of the integral closure \(T \) of \(R \) in \(K^* \) which is dominated by \(\nu^* \). If \(A \) is a local ring, we will write \(k(A) = A/m_A \) to denote the residue field of \(A \).

If \(F \) is a finite field extension of \(E \), then \(F_s \) will denote the separable closure of \(E \) in \(F \), and \([F : E]_s \) will denote the degree \([F_s : E] \). Recall that \(G^*(R''/R) = G^*(V_{\nu''}/V_{\nu}) \) by Lemma 3.4 and our assumptions on \(R \).

Lemma 3.8. There exists a normal local ring \(R' \) which birationally dominates \(R \), such that \(\nu \) dominates \(R' \), and if \(R'' \) is a normal local ring which birationally dominates \(R' \) and is dominated by \(\nu \), then

\[
G^i((R'')^*/R') = G^i(V_{\nu''}/V_{\nu}),
\]

where \((R'')^*\) is the local ring of the integral closure of \(R'' \) in \(K^* \) which is dominated by \(\nu^* \).

Let \(k((R'')^*)_s \) be the separable closure of \(k(R'') \) in \(k((R'')^*) \). We further have that any basis of \(k((R'')^*)_s \) over \(k(R'') \) is a basis of \(k(V_{\nu''}) \) over \(k(V_{\nu}) \); in particular, \(k((R'')^*)_s \) and \(k(V_{\nu}) \) are linearly disjoint over \(k(R'') \).

Proof. The residue field \(k(V_{\nu'}) \) is finite over \(k(V_{\nu}) \) by [40, Corollary 2, p. 26]. Let \(k(V_{\nu'})_s \) be the separable closure of \(k(V_{\nu}) \) in \(k(V_{\nu'}) \). Let \(\tilde{t}_1, \ldots, \tilde{t}_h \in k(V_{\nu'})_s \) be a \(k(V_{\nu}) \)-basis. For \(1 \leq i \leq h \), let

\[
f_i(x) = x^{m_i} + \tilde{a}_{1,i}x^{m_i-1} + \cdots + \tilde{a}_{m_i,i} \in k(V_{\nu})[x]
\]

be the minimal polynomial of \(\tilde{t}_i \) over \(k(V_{\nu}) \). Each \(f_i(x) \) is a separable polynomial.

Let \(A = \cap_{j} V_{\nu_j} \) be the integral closure of \(V_{\nu} \) in \(K^* \). Let \(t_1, \ldots, t_h \) be lifts of the \(\tilde{t}_i \) to \(A \). Let

\[
g_i(x) = x^{n_i} + b_{1,i}x^{n_i-1} + \cdots + b_{n_i,i} \in V_{\nu}[x]
\]

be such that \(g_i(t_i) = 0 \) for \(1 \leq i \leq h \). Let \(a_{j,i} \) be lifts of the \(\tilde{a}_{j,i} \) to \(V_{\nu} \) and let \(B \) be the integral closure of

\[
R[\{a_{j,i} | 1 \leq i \leq h, 1 \leq j \leq m_i\}, \{b_{j,i} | 1 \leq i \leq h, 1 \leq j \leq n_i\}]
\]

in \(K \) and let \(R' = B_{B \cap m_v} \). Suppose that \(R'' \) is a normal local ring which birationally dominates \(R' \) and is dominated by \(\nu \). Let \((R'')^* \) be the local ring of the integral closure of \(R'' \) in \(K^* \) which is dominated by \(\nu^* \).

Now \(t_i \in (R'')^* \) for \(1 \leq i \leq h \) and \(f_i(x) \in k(R'')[x] \) for \(1 \leq i \leq h \) since \(R'' \) dominates \(R' \). Thus \(\tilde{t}_i \in k((R'')^*) \) is separable over \(k(R'') \) for \(1 \leq i \leq h \) since \(f_i(x) \) is a separable polynomial, and so

\[
h \leq [k((R'')^*) : k(R'')].
\]
We have that \(G^s((R')^s/R^s) = G^s(V_{\nu'}/\nu) \) (by Lemma 3.4), and \(G^i(V_{\nu'}/\nu) \subset G^i((R')^s/R^s) \) by [4, Proposition 1.50]. By [4, Theorem 1.48], we have that \(k((R')^s) \) is a normal extension of \(k(R') \) and \(k(V_{\nu'}) \) is a normal extension of \(k(V_{\nu}) \), with automorphism groups

\[
\text{Aut}(k((R')^s)/k(R^s)) \cong G^s((R')^s/R^s)/G^s((R')^s/R^s)
\]

and

\[
\text{Aut}(k(V_{\nu'})/k(V_{\nu})) \cong G^s(V_{\nu'}/\nu)/G^i(V_{\nu'}/\nu).
\]

We then have a natural short exact sequence of groups

\[
0 \rightarrow G^i((R')^s/R^s)/G^i(V_{\nu'}/\nu) \rightarrow \text{Aut}(k(V_{\nu'})/k(V_{\nu})) \rightarrow \text{Aut}(k((R')^s)/k(R^s)) \rightarrow 0.
\]

Now \(|\text{Aut}(k(V_{\nu'})/k(V_{\nu}))| = h \) and

\[
h \leq [k((R')^s) : k(R^s)]_\nu = |\text{Aut}(k((R')^s)/k(R^s))| \]

by (17), so \(G^i((R')^s/R^s) = G^i(V_{\nu'}/\nu) \). We further have that the basis \(\bar{t}_1, \ldots, \bar{t}_h \) of \(k(V_{\nu'})_s \) over \(k(V_{\nu}) \) is a basis of \(k((R')^s)_s \) over \(k(R^s) \). Thus any basis of \(k((R')^s)_s \) over \(k(R^s) \) is a basis of \(k(V_{\nu'})_s \) over \(k(V_{\nu}) \).

Proposition 3.9. Suppose that \(K^* \) is a Galois extension of a field \(K \), \(\nu^* \) is a valuation of \(K \) and \(\nu^* \) is an extension of \(\nu \) to \(K^* \). Suppose that \(R \) is a normal local ring with quotient field \(K \) which is dominated by \(\nu \). Then there exists a birational extension \(R' \) of \(R \) such that \(R' \) is a normal local ring which is dominated by \(\nu \) and if \(R'' \) is a normal local ring with quotient field \(K \) which birationally dominates \(R' \) and is dominated by \(\nu \), and if \(R^* \) is the local ring of the normalization of \(R'' \) in the fixed field \(K^* \) of the decomposition group \(G^s(V_{\nu'}/\nu) \) which is dominated by \(\nu^* \) and \(R^* \) is the local ring of the normalization of \(R'' \) in the fixed field \(K^* \) of the inertia group \(G^i(V_{\nu'}/\nu) \) which is dominated by \(\nu^* \), then we have a natural isomorphism of graded rings

\[
gr_{\nu'}(R') \cong gr_{\nu^*}(R^*) \otimes_{k(R^*)} k(R^*).
\]

Proof. Let \(R' \) be a birational extension of \(R \), which is a normal local ring and is dominated by \(\nu \) and satisfies the conclusions of Lemmas 3.1, 3.2 (which implies Lemma 3.4) and 3.8. Let \(R'' \) be a normal local ring which is a birational extension of \(R' \) and is dominated by \(\nu \). Without loss of generality, we may assume that \(R \) satisfies the conclusions of Lemmas 3.1, 3.2, and 3.8 and \(R = R'' \). In particular, we have

\[
G^s(R^*/R) \cong G^s(V_{\nu'}/\nu) \quad \text{and} \quad G^i(R^*/R) \cong G^i(V_{\nu'}/\nu).
\]

(18)

Let \(\nu^i \) be the restriction of \(\nu^* \) to the inertia field \(K^i = K^{G^i(V_{\nu'}/\nu)} \), and let \(\nu^i \) be the restriction of \(\nu^* \) to the splitting field \(K^s = K^{G^s(V_{\nu'}/\nu)} \). By Theorem 1.48[4] and (18), we have that \(R^s \rightarrow R^s \) is unramified, \(k(R^s) = k(R^s)_s \) and \(k(V_{\nu'}) = k(V_{\nu'})_s \). By [4, Theorem 1.47] and (18), \(k(V_{\nu'}) = k(V_{\nu'}) \) and \(k(R^s) = k(R) \). Let \(\bar{a}_1, \ldots, \bar{a}_n \) be a basis of \(k(R^s) \) over \(k(R^s) \). Then \(\bar{a}_1, \ldots, \bar{a}_n \) is a basis of \(k(V_{\nu'})_s \) over \(k(V_{\nu'})_s \). The extension \(R^s \rightarrow R^s \) is unramified, so \(m_{R^s} = m_{R^s} \). Thus

\[
a_1 R^s + \cdots + a_n R^s = m_{R^s} R^s = R^s.
\]

Now \(R^s \) is the unique local ring of \(K^i \) lying over \(R^s \) by [4, Proposition 1.46], so \(R^s \) is the integral closure of the excellent local ring \(R^s \) in \(K^i \), and so \(R^s \) is a finitely generated \(R^s \)-module. Thus \(R^s = a_1 R^s + \cdots + a_n R^s \) by Nakayama’s lemma. Let \(0 \neq f \in R^s \). Then \(f = a_1 g_1 + \cdots + a_n g_n \) with \(g_1, \ldots, g_n \in R^s \). Let \(\lambda = \min \{ \nu^*(g_i) \} \). After possibly reindexing the \(g_i \), we may assume that \(\nu(g_i) = \lambda \) for \(1 \leq i \leq r \) and \(\nu(g_i) > \lambda \) if \(r < i \leq n \). Let \(b_i \) be the residue of \(\frac{g_i}{g_1} \) in
\(k(V_{\nu^i}) \) for \(1 \leq i \leq r \), which are necessarily all nonzero, so we have that \(\sum_{i=1}^{r} a_i b_i \neq 0 \) in \(k(V_{\nu^i}) \), since \(\overline{a}_1, \ldots, \overline{a}_r \) are linearly independent over \(k(V_{\nu^i}) = k(V_{\nu^r}) \). Thus

\[
\nu^* \left(\sum_{i=1}^{r} a_i \frac{g_i}{g_1} \right) = 0,
\]

so that

\[
\nu^*(f) = \nu^* \left(\sum_{i=1}^{r} a_i g_i \right) = \nu^*(g_1) = \cdots = \nu^*(g_r)
\]

and

\[
\nu^*(f - a_1 g_1 - \cdots - a_r g_r) > \nu^*(f).
\]

Thus we have equality of semigroups \(S^{R^i}(\nu^i) = S^{R^i}(\nu) \) and for all \(\gamma \in S^{R^i}(\nu^i) \) we have a natural isomorphism

\[
\mathcal{P}_\nu(R^i)/\mathcal{P}_\gamma^+(R^i) \cong \left[\mathcal{P}_\nu(R^i)/\mathcal{P}_\gamma^+(R^i) \right] \otimes_{k(R^i)} k(R^i),
\]

showing that

\[
gr_{\nu^i}(R^i) \cong gr_{\nu^i}(R^i) \otimes_{k(R^i)} k(R^i).
\]

4. Some basic results on ramification

In this section we extract some results from Abhyankar’s paper [3]. Suppose that \(K \) is a field and \(K' \) is a finite separable extension of \(K \). Suppose that \(R \) is a normal, excellent local ring with quotient field \(K \) and \(R' \) is a normal local ring of \(K' \) which lies over \(R \). Let \(E \) be the quotient field of \(\hat{R} \) and \(E' \) be the quotient field of \(\hat{R}' \). Define

\[
d(R' : R) = [E' : E],
\]

\[
g(R' : R) = [R' / m_{R'} : R / m_R],
\]

and

\[
r(R' : R) = d(R' : R)/g(R' : R).
\]

We have that \(d(R' : R), g(R' : R), r(R' : R) \) are all multiplicative in towers of fields.

Now suppose that \(K^* \) is a finite Galois extension of \(K \) and that \(R^* \) is a normal local ring of \(K^* \) which lies over \(R \). Let \(R^* = R^* \cap K^* \) where \(K^* = (K^*)^{G(R^*/R)} \) is the splitting field of \(R^* \) over \(R \). Let \(R' = R^* \cap K^1 \) where \(K^1 \) is the inertia field \(K^1 = (K^*)^{G(R'/R)} \) of \(R^* \) over \(R \). Let \(E, E^*, E', E^* \) be the respective quotient fields of the complete local rings \(\hat{R}, \hat{R}^*, \hat{R}' \) and \(\hat{R}^* \).

Proposition 4.1. Let \(R \) be a normal excellent local ring. Let \(K \) be the quotient field of \(R \). Let \(K^* \) be a finite separable extension of \(K \) and let \(n = [K^* : K] \). Let \(x \in R \) be a primitive element of \(K^* \) over \(K \), with minimal polynomial \(f(t) \in R[t] \) (such an \(x \) exists by [39, Theorem 4, p. 260]). Let \(S_i \) for \(1 \leq i \leq h \) be the local rings in \(K^* \) lying over \(R \) and \(S \) be the integral closure of \(R \) in \(K^* \). Then \(\hat{R} \) and \(\hat{S}_i \) are normal local domains, the natural homomorphisms \(\hat{R} \rightarrow \hat{S}_i \) are injective for all \(i \) and we have a natural isomorphism

\[
S \otimes_R \hat{R} \cong \bigoplus_{i=1}^{h} \hat{S}_i.
\]

Let \(E \) be the quotient field of \(\hat{R} \) and \(E_i \) be the quotient field of \(\hat{S}_i \) for \(1 \leq i \leq h \). Let \(e_i = [E_i : E] \). Then \(n = e_1 + \cdots + e_h \). Further, \(x \) is a primitive element of \(E_i \) over \(E \) for all \(i \) with minimal polynomial \(f_i(t) \in E[t] \) and there is a factorization \(f(t) = f_1(t) \cdots f_h(t) \) in \(E[t] \).

Proof. We have that \(\hat{R} \) is a normal local domain since \(R \) is normal and excellent. By [40, Theorem 16, p. 277; 40, Corollary 2, p. 283], we have a natural isomorphism

\[
S \otimes_R \hat{R} \cong \bigoplus \hat{S}_i.
\]
We have that the \hat{S}_i are normal local domains since the S_i are normal and excellent. We have that

$$K^* \otimes_K E \cong E[x] \cong E[t]/(f(t)).$$

Let A be a ring. The total quotient ring of A is $\text{QR}(A) = S^{-1}A$ where S is the multiplicative set of all nonzero divisors of A. Let $g \in K^* \otimes_K E = E[x]$. Then $g = \frac{a}{b}$ where $a \in \hat{R}[x]$ and $b \in \hat{R} \setminus \{0\}$. Since \hat{R} is a domain, b is not a zero divisor in $S \otimes_R \hat{R}$ by \cite{40}, Theorem 16, p. 277. Thus $K^* \otimes_K E \subset \text{QR}(S \otimes_R \hat{R})$. Since the reduced ring $S \otimes_R \hat{R}$ is naturally a subring of $\text{QR}(S \otimes_R \hat{R})$, we have a natural inclusion $S \otimes_R \hat{R} \subset K^* \otimes_K E$. Now $f(t)$ is reduced in $E[t]$ since K^* is separable over K. We have that $K^* \otimes_K E \cong \oplus E[t]/(f_i(t))$ is a direct sum of fields, where $f_i(t)$ are the irreducible factors of $f(t)$ in $E[t]$ by the Chinese remainder theorem. Thus $\text{QR}(S \otimes_R \hat{R}) = K^* \otimes_K E$. Now $S \otimes_R \hat{R}$ is reduced, so $\text{QR}(S \otimes_R \hat{R}) \cong \oplus_i E_i$. Thus after reindexing, we have that $E_i \cong E[t]/(f_i(t))$ and we have that

$$\sum [E_i : E] = \sum \deg(f_i) = \deg(f) = [K^* : K].$$

Since R^* is the unique local ring of K^* which dominates R^* by \cite[Proposition 1.46]{4}, we have by Proposition 4.1 that

$$[K^* : K^i] = d(R^* : R^i) \text{ and } [K^*: K^i] = d(R^* : R^i).$$

By Proposition 4.1 and \cite[Theorem 1.48]{4}, we have that

$$[K^i : K^*] = d(R^i : R^*) = g(R^* : R).$$

We have that $\hat{R}^* \cong \hat{R}$ by \cite[Theorem 1.47; 32, Theorem 30.6]{4} and so $E^* \cong E$. Thus

$$d(R^* : R) = 1.$$ \hfill (21)

Lemma 4.2. Let notations be as above. Then $r(R' : R)$ is a positive integer.

Proof. Let K^* be a finite Galois extension of K which contains K', and let R^* be a normal local ring of K^* such that R^* lies over R'. We have that

$$G^s(R^*/R') = G^s(R^*/R) \cap G(K^*/K') \text{ and } G^i(R^*/R') = G^i(R^*/R) \cap G(K^*/K'),$$

so $(K')^s = K'K^s$ and $(K')^i = K'K^i$. Thus we have a commutative diagram of fields

\[
\begin{array}{ccc}
K^* & \rightarrow & (K')^i \\
\uparrow & & \uparrow \\
K^i & \rightarrow & (K')^s \\
\uparrow & & \uparrow \\
K^s & \rightarrow & K' \\
\end{array}
\]

where $K^* = (K^*)^{G^s(R^*/R)}$, $K^i = (K^*)^{G^i(R^*/R)}$, $(K')^s = (K^*)^{G^s(R^*/R')}$ and $(K')^i = (K^*)^{G^i(R^*/R')}$. Considering the induced commutative diagram of fields

\[
\begin{array}{ccc}
E^* & \rightarrow & (E')^i \\
\uparrow & & \uparrow \\
E^i & \rightarrow & (E')^s \\
\uparrow & & \uparrow \\
E & \rightarrow & E'
\end{array}
\]
where \(E, E', E^*, E'^*, (E')^i \) are the respective quotient fields of \(\hat{R}, \wedge R', \wedge R^*, \wedge R'^* \), we see from (20) and (21) that
\[
d(R' : R)g(R^* : R') = g(R^* : R)d((R')^i : R^*).
\]
Thus \(d(R' : R) = g(R' : R)d((R')^i : R^*) \).

We also read off the following formulas from the commutative diagrams of Lemma 4.2 and from (19), (20) and (21):
\[
[K^* : K^i][R^*/m_{R^*} : R/m_R]_s = d(R' : R)[K^* : (K')^i][R^*/m_{R^*} : R'/m_{R^*}]_s,
\]
so that
\[
[K^* : K^i] = r(R' : R)[K^* : (K')^i] \quad (22)
\]
and
\[
[K^* : K^*] = d(R' : R)[K^* : (K')^*]. \quad (23)
\]

Lemma 4.3. Let notation be as above. Then

1. \(G^i(R^*/R) \subset G(K^* / K') \) if and only if \(r(R' : R) = 1 \) and
2. \(G^*(R^*/R) \subset G(K^* / K') \) if and only if \(d(R' : R) = 1 \).

Proof. The lemma follows from equations (22) and (23) and the observations that
\(G^i(R^*/R) \subset G(K^* / K') \) if and only if \((K')^i = K^i \) and \(G^*(R^*/R) \subset G(K^* / K') \) if and only if \((K')^* = K^* \).

Proposition 4.4. Suppose that \(R \) is an excellent normal local ring with quotient field \(K \), \(K' \) is a finite field extension of \(K \) and \(R' \) is a normal local ring of \(K' \) which lies over \(R \). Then \(R \to R' \) is unramified if and only if \(r(R'/R) = 1 \).

Proof. The extension \(R \to R' \) is unramified if and only if \(\hat{R} \to \hat{R}' \) is unramified, which holds if and only if \(D(\hat{R}' / \hat{R}) = \hat{R} \) by [4, Theorems 1.44, 1.44A] (the proof of Theorem 1.44A, which is given in [3], holds when \(R \) is excellent). The discriminant ideal \(D(\hat{R}' / \hat{R}) \) is defined on [4, p. 31]. This condition holds if and only if
\[
[R'/m_{R'} : R/m_R]_s = [E' : E],
\]
where \(E' \) is the quotient field of \(\hat{R}' \) and \(E \) is the quotient field of \(\hat{R} \) by [4, Theorem 1.45]. But this is equivalent to the condition that \(r(R'/R) = 1 \). □

5. The extension of associated graded rings in an unramified extension

In this section we prove Proposition 1.7. We have the following assumptions. Suppose that \(R \) and \(S \) are normal local rings such that \(R \) is excellent, \(S \) lies over \(R \), \(\nu \) is a valuation of the quotient field \(L \) of \(S \) which dominates \(S \), and \(\nu \) is the restriction of \(\nu \) to the quotient field \(K \) of \(R \). Suppose that \(L \) is finite separable over \(K \).

Lemma 5.1. Suppose that \(S_0 \) is a local ring, which is a birational extension of \(S \) and is dominated by \(\nu \). Then there exists a normal local ring \(R' \) which is a birational extension of \(R \) and is dominated by \(\nu \), which has the property that if \(R'' \) is a normal local ring which is a birational extension of \(R' \) and is dominated by \(\nu \), and if \(S'' \) is the normal local ring of \(L \) which lies over \(R'' \) and is dominated by \(\nu \), then \(S'' \) dominates \(S_0 \).
Proof. There exist $f_1, \ldots, f_n \in V_\psi$ such that S_0 is a localization of $S[f_1, \ldots, f_n]$. Let A be the integral closure of V_ψ in L so that V_ψ is the localization of A at $m_\psi \cap A$. Thus we may write, for $1 \leq i \leq n$, $f_i = \frac{b_i}{c_i}$ with $b_i, c_i \in A$, $\nu(b_i) \geq 0$ and $\nu(c_i) = 0$. For $1 \leq i \leq n$, let

$$b_i^{n_i} + d_i, b_i^{n_i} - 1 + \cdots + d_i, m_i = 0 \text{ and } e_i^{n_i} + e_i, 1, c_i^{n_i} - 1 + \cdots + e_i, n_i = 0$$

be equations of integral dependence of b_i and c_i over V_ψ, so that all $d_i, j, e_{i, j} \in V_\psi$. Let B be the integral closure of

$$R[\{d_{i, j} \mid 1 \leq j \leq m_i, 1 \leq i \leq n\}, \{e_{i, j} \mid 1 \leq j \leq n_i, 1 \leq i \leq n\}]$$

in K, and let $R' = B_{m_\psi \cap B}$. Suppose that R'' and S'' are as in the statement of the lemma. Then S'' is the localization of the integral closure C of R'' in L at $C \cap m_\psi$. We have that $b_i, c_i \in C$ for $1 \leq i \leq n$ and $c_i \notin m_\psi \cap C$ for $1 \leq i \leq n$ so $f_1, \ldots, f_n \in S''$. Thus $S_0 \subseteq S''$ and S'' dominates S_0. \hfill \square

We now impose the further condition that S is unramified over R, and prove Proposition 1.7. Let K^* be a Galois closure of L over K. Let ν^* be an extension of ν to K^*. Let R^* be the local ring of K^* which is dominated by ν^* and lies over S. Now $G^i(R^*/R) \subset G(K^*/L)$ by Lemma 4.3 and Proposition 4.4, since $R \to S$ is unramified. Further, $G^i(V_{\nu^*}/V_\psi) \subset G^i(R^*/R)$ by [4, Proposition 1.50]. Thus $G^i(V_{\nu^*}/V_\psi) \subset G(K^*/L)$, so $L \subseteq K^i = (K^*)G^i(V_{\nu^*}/V_\psi)$.

By Lemmas 3.1, 3.2 (which implies Lemma 3.4) and 3.8, there exists a normal local ring R' which is a birational extension of R and is dominated by ν such that the conclusions of Lemmas 3.1, 3.2 and 3.8 hold for the field extension $K \to K^*$, V_{ν^*} over V_ψ and R'. Further, by Lemmas 3.1, 3.2 and 3.8, there exists a normal local ring S' which is a birational extension of S and is dominated by ν such that the conclusions of Lemmas 3.1, 3.2 and 3.8 hold for the field extension $L \to K^*$, V_{ν^*} over V_ψ and S'. By Lemma 5.1, we may assume that the normal local ring of L, which lies over R' and is dominated by ν, dominates S'. Replacing R with R' and S with the normal local ring of L which lies over R' and is dominated by ν, we may assume that the conclusions of Lemmas 3.1, 3.2 and 3.8 hold for R and S.

Let $L^* = (K^*)G^i(V_{\nu^*}/V_\psi)$, $K^* = (K^*)G^i(V_{\nu^*}/V_\psi)$ and $K^i = (K^*)G^i(V_{\nu^*}/V_\psi)$. We have that

$$G(K^*/K^*L) = G(K^*/L) \cap G^i(V_{\nu^*}/V_\psi) = G^i(V_{\nu^*}/V_\psi)$$

so L^* is the join $L^* = K^*L$. We then have a commutative diagram of fields

$$\begin{array}{ccc}
L & \to & L^* = K^*L \\
\downarrow & & \downarrow \\
K & \to & K^i \to K^*.
\end{array}$$

Let $S^* = L^* \cap R^*$, $R^* = K^* \cap R^*$ and $R^i = K^i \cap R^*$. Then

$$\text{gr}_\nu(S) \cong \text{gr}_{\nu^*}(S^*)$$

by Proposition 3.7, and $S^*/m_{S'} \cong S/m_S$. Also,

$$\text{gr}_{\nu^*}(R^*) \cong \text{gr}_\nu(R)$$

by Proposition 3.7, with $R^*/m_{R'} \cong R/m_R$. We have that S^* is finite over R^* since S^* is the unique local ring of L^* lying over R^*, and the elements of a basis of S/m_S over R/m_R are linearly independent over $k(V_{\nu^*})$ since $k(V_{\nu^*})$ and $k(R^*)$ are linearly disjoint over $k(R)$ by Lemma 3.8. Thus the Proof of Proposition 3.9 shows that

$$\text{gr}_{\nu^*}(S^*) \cong \text{gr}_{\nu^*}(R^*) \otimes_{R/m_R} S/m_S.$$
We now give an example showing that taking a birational extension of R may be necessary to obtain the conclusions of Proposition 1.7. Let k be a field of characteristic $\neq 2$ and $k(x,y,z)$ be a three-dimensional rational function field. Let $k' = k(z)$, which is a one-dimensional rational function field. Let ν_1 be the k'-valuation of $k'(x,y)$, which is determined by a generating sequence $P_0 = x, P_1 = y, P_2 = y^2 - (z + 1)x^2, P_3, \ldots$ in $k'[x,y]$ where $\nu_1(P_0) = \nu_1(P_1) = 1, \nu_1(P_2) = \frac{5}{2}$ and all the P_i are in $k[x,y,z]$ (for instance using the algorithm of [17]). We have that $\nu_1(P_{i+1}) > \nu_1(P_i)$ if $i > 1$ and the semigroup $S^{k'[x,y][x,y]}(\nu_1)$ is generated by $\nu(P_0), \nu(P_1), \nu(P_2), \nu(P_3), \ldots$. Let ν_2 be an extension to V_{ν_1}/m_{ν_1} of the k'-valuation of k' defined by $\nu_2(g(z)) = \text{ord}_z(g)$ for $g \in k[z]$. Let ν be the composition of ν_1 and ν_2, and let $R = kx,y,z$ which is dominated by ν. We have that $R_{(x,y)} = k'x,y$.

Let $S = (R[w]/w^2 - (z + 1)(x,y,z,w - 1))$. The extension $\nu \to S$ is unramified. Let $\nu^* = \nu^*$ be an extension of ν to $K = \text{QF}(S)$ which dominates S and is composite with extensions ν_1 to K^* and ν_2 to V_{ν_1}/m_{ν_1}.

By the explanation [4, p. 56] or [40, Theorem 17, p. 43], we have a commutative diagram of homomorphisms of value groups, where the horizontal sequences are short exact and the vertical arrows are injective,

$$
\begin{array}{cccccc}
0 & \to & \Phi_{\nu_2} & \to & \Phi_{\nu} & \to & \Phi_{\nu_1} & \to & 0 \\
\downarrow & & \downarrow & & \downarrow & & \downarrow & & \\
0 & \to & \Phi_{\nu_2} & \to & \Phi_{\nu^*} & \to & \Phi_{\nu_1} & \to & 0
\end{array}
$$

which induces a commutative diagram of homomorphisms of semigroups, where the horizontal arrows are surjective and the vertical arrows are injective,

$$
\begin{array}{c}
S^R(\nu) \to S^{R_{(x,y)}}(\nu_1) \\
\downarrow & & \downarrow \\
S^S(\nu^*) \to S^{S_{(x,y)}}(\nu_1)
\end{array}
$$

We have that

$$
\frac{5}{2} = \nu_1(P_2) = \nu_1(y - wx) + \nu_1(y + wx).
$$

Letting $\frac{5}{2}$ and w be the respective classes of $\frac{5}{2}$ and w in V_{ν_1}/m_{ν_1}, we deduce from P_2 that $\frac{5}{2} = \pm w$. Without loss of generality, $\frac{5}{2} = w$. Then $\nu_1(y + wx) = 1$. Thus

$$\nu_1(y - wx) = \frac{3}{2} \notin S^{R_{(x,y)}}(\nu_1).$$

6. Conventions on valuations in algebraic function fields

We recall some classical invariants of valuations ([4, 40, Chapter VI]) and establish some notation which we will follow for the remainder of the paper.

Suppose that K is a field of algebraic functions over a field k. We will say that a local domain R with quotient field K is an algebraic local ring of K if R is a localization of a finite type k-algebra. A valuation ν of K will be called a k-valuation if $\nu(f) = 0$ for all nonzero $f \in k$. If X is an integral k-scheme with function field K, then a point $p \in X$ is called a center of the valuation ν (or the valuation ring V_{ν}) if V_{ν} dominates $O_{X,p}$.

Suppose that ν is a k-valuation of K with valuation ring V_{ν} and value group Φ_{ν}. Let m_{ν} be the maximal ideal of V_{ν}. The rank r of V_{ν} is finite since $r \leq \text{trdeg}_k K < \infty$ by the Corollary [40, Chapter VI, Section 11, p. 50]. We have the chains of isolated subgroups Φ_1 of Φ_{ν} of (3) and of prime ideal I_i in V_{ν} of (4).

For $i < j, (V_{\nu}/I_i)_{I_j}$ is a rank $j - i$ valuation ring with value group Φ_i/Φ_j and with quotient field $(V_{\nu}/I_i)_{I_j}$. V_{ν} is said to be composite with the valuation ring $(V_{\nu}/I_i)_{I_j}$. Set

$$\lambda_i = \text{trdeg}_k(V_{\nu}/I_i)_{I_j},$$
for $0 \leq i \leq r$. The rational rank of $(V_\nu/I_{i-1})_{I_i}$ is
\[s_i = \operatorname{ratrank}(V_\nu/I_{i-1})_{I_i} := \dim_{\mathbb{Q}}(\Phi_{i-1}/\Phi_i) \otimes \mathbb{Q} \]
for $1 \leq i \leq r$. The numbers s_i and λ_i are $< \infty$ by [2, Theorem 1] or by [40, Proposition 2, Appendix 2].

Now suppose that K^* is a finite extension of K, and ν^* is an extension of ν to K^*. Let V_{ν^*} be the valuation ring of ν^*, and let Φ_{ν^*} be the value group. Recall from Section 3 that the prime ideals of V_{ν^*} are a finite chain
\[0 = I_0^* \subset \cdots \subset I_r^* = m_{\nu^*} \subset V_{\nu^*} \]
with $I_i^* \cap V_{\nu^*} = I_i$, $0 \leq i \leq r$, and with isolated subgroups
\[0 = \Phi_0^* \subset \cdots \subset \Phi_r^* = \Phi_{\nu^*} \]
which have the property that $\Phi_i^* \cap \Phi_{\nu^*} = \Phi_i$ for $0 \leq i \leq r$ and Φ_i^*/Φ_i is a finite (Abelian) group for $0 \leq i \leq r$ [40, Chapter VI, Section 11]. We further have that
\[\operatorname{trdeg}_{k}(V_{\nu^*}/I_i^*)_{I_i} = \operatorname{trdeg}_{k}(V_\nu/I_i)_{I_i} = \lambda_i \]
for $0 \leq i \leq r$ and
\[\operatorname{ratrank}(V_{\nu^*}/I^*_{i-1})_{I_i} = \operatorname{ratrank}(V_{\nu}/I_{i-1})_{I_i} = s_i \]
for $1 \leq i \leq r$. Set $t_i = \lambda_{i-1} - \lambda_i$ for $1 \leq i \leq r$.

The reduced ramification index of ν^* relative to ν is defined to be [40, Chapter VI, Section 11, p. 53]
\[e = [\Phi_{\nu^*} : \Phi_\nu]. \quad (24) \]
The residue degree of ν^* with respect to ν is defined to be [40, Chapter VI, Section 11, p. 53]
\[f = [V_{\nu^*}/m_{\nu^*} : V_\nu/m_\nu]. \quad (25) \]

7. An Abyankar Jung Theorem along a valuation

In this section, we prove Theorem 1.5 and Proposition 1.6. Let notation be as in the statement of Theorem 1.5.

Let $u_1, \ldots, u_{\lambda_\nu} \in V_\nu$ be such that their classes $\overline{u_1}, \ldots, \overline{u_{\lambda_\nu}}$ in V_ν/m_ν are a transcendence basis of V_ν/m_ν over k. Then $k(u_1, \ldots, u_{\lambda_\nu})$ is a rational function field over k which is contained in V_ν and V_ν/m_ν is an algebraic extension of $k(u_1, \ldots, u_{\lambda_\nu})$. Let T'' be the integral closure of $\mathcal{R}[u_1, \ldots, u_{\lambda_\nu}]$ in K, and $R'' = T''_{T'' \cap m_\nu}$. Suppose that $f \in k[u_1, \ldots, u_{\lambda_\nu}]$ is nonzero. Then $\nu(f) = 0$ since $u_1, \ldots, u_{\lambda_\nu}$ are algebraically independent over k in V_ν/m_ν. Thus $f \notin m_{R''} = m_\nu \cap R''$, and so $\frac{1}{f} \in R''$. In particular, $k(u_1, \ldots, u_{\lambda_\nu}) \subset R''$. We may thus replace k with $k(u_1, \ldots, u_{\lambda_\nu})$ and \mathcal{R} with R'' allowing us to assume that V_ν/m_ν is algebraic over k. Observe that $\mathcal{R}/m_\mathcal{R}$ is then necessarily a finite field extension of k since $\mathcal{R}/m_\mathcal{R}$ is a finitely generated algebraic field extension of k.

We will use the following generalization of the strong monomialization theorem [16, Theorem 4.8]. Theorem 4 [16] is itself a generalization of the local monomialization theorem of [11].

Theorem 7.1. Let k be a field of characteristic zero, K an algebraic function field over k, K^* a finite algebraic extension of K, ν^* a k-valuation of K^*. Suppose that \tilde{S} is an algebraic local ring with quotient field K^* which is dominated by ν^* and \tilde{R} is an algebraic local ring
with quotient field K which is dominated by \tilde{S}. Let notation be as in Section 6 for $V = V_\nu$, $V^* = V_{\nu^*}$. Then there exists a commutative diagram
\[
\begin{array}{ccc}
R_0 & \rightarrow & S \\
\uparrow & & \uparrow \\
\tilde{R} & \rightarrow & \tilde{S}
\end{array}
\] (26)
such that $\tilde{R} \rightarrow R_0$ and $\tilde{S} \rightarrow S$ are sequences of monoidal transforms such that V^* dominates S, S dominates R_0 and there are regular parameters (x_1, \ldots, x_n) in R_0, (y_1, \ldots, y_n) in S such that
\[
I_i \cap R_0 = (x_1, \ldots, x_{t_1+\cdots+t_i})
\]
\[
I^*_i \cap S = (y_1, \ldots, y_{t_1+\cdots+t_i})
\]
for $1 \leq i \leq r$ and there are relations
\[
x_1 = y^*_1 g_{11}^{(1)} \cdots g_{1s_1}^{(1)} y^{h_{1, t_1+1}} y_{t_1+1} \cdots y^{h_{1n}} y_1 \\
\vdots \\
x_{s_1} = y^*_1 g_{11}^{(1)} \cdots g_{1s_1}^{(1)} y^{h_{1, t_1+1}} y_{t_1+1} \cdots y^{h_{1n}} y_{s_1} \\
x_{s_1+1} = y_{s_1+1} \\
\vdots \\
x_{t_1} = y_{t_1} \\
x_{t_1+1} = y_{t_1+1} g_{21}^{(2)} y^{h_{2, t_1+2}} y_{t_1+2} \cdots y^{h_{2n}} y_2 \\
\vdots \\
x_{t_1+s_2} = y_{t_1+s_2} g_{2s_2}^{(2)} y^{h_{2, t_1+s_2+2}} y_{t_1+s_2+2} \cdots y^{h_{2n}} y_{s_2} \\
x_{t_1+s_2+1} = y_{t_1+s_2+1} \\
\vdots \\
x_{t_1+t_2} = y_{t_1+t_2} \\
x_{t_1+\cdots+t_{r-1}+1} = y_{t_1+\cdots+t_{r-1}+1} g_{r_1}^{(r)} y^{h_{r_1}+1} y_{t_1+\cdots+t_{r-1}+s_r} y^{h_{r_1}+1} \delta_{r_1} \\
\vdots \\
x_{t_1+\cdots+t_{r-1}+s_r} = y_{t_1+\cdots+t_{r-1}+s_r} g_{r_1}^{(r)} y^{h_{r_1}+1} y_{t_1+\cdots+t_{r-1}+s_r} y^{h_{r_1}+1} \delta_{r_r} \\
x_{t_1+\cdots+t_{r-1}+s_r+1} = y_{t_1+\cdots+t_{r-1}+s_r+1} \\
\vdots \\
x_{t_1+\cdots+t_r} = y_{t_1+\cdots+t_r}
\]
where $n = t_1 + \cdots + t_r$ and for $1 \leq i \leq r$,
\[
\det \begin{pmatrix} g_{11}(i) & \cdots & g_{1s_1}(i) \\ \vdots & \ddots & \vdots \\ g_{s_1}(i) & \cdots & g_{s_1s_1}(i) \end{pmatrix} \neq 0,
\]
δ_{ij} are units in S, $h_{i,j}(l)$ are natural numbers such that for $1 \leq l \leq k \leq r-1$ and $1 \leq i \leq s_l$, $h_{i,j}(l) = 0$ if $t_1 + \cdots + t_k + s_{k+1} < j \leq t_1 + \cdots + t_{k+1}$.

Let
\[
T = \{ j \mid t_1 + \cdots + t_k < j \leq t_1 + \cdots + t_k + s_{k+1} \text{ for some } 0 \leq k \leq r-1 \}.
\]
Then $\{\nu^*(y_j) \mid j \in T\}$ is a rational basis of $\Phi_{\nu^*} \otimes \mathbb{Q}$ and $\{\nu^*(x_j) \mid j \in T\}$ is a rational basis of $\Phi_{\nu} \otimes \mathbb{Q}$.
The statement of Theorem 7.1 differs from the statement of [16, Theorem 4.8] in that we have the stronger statement that
\[x_{t_1 + \ldots + t_{i-1} + j} = y_{t_1 + \ldots + t_{i-1} + j} \]
for \(1 \leq i \leq r \) (with the convention \(t_1 + \cdots + t_{i-1} = 0 \) if \(i = 0 \)) and for \(s_i < j < t_i \). We continue to have that \(\nu(x_{t_1 + \ldots + t_{i-1} + 1}), \ldots, \nu(x_{t_1 + \ldots + t_{i-1} + s_i}) \) is a basis of the \(\mathbb{Q} \)-vector space \(G(\nu(x_{t_1 + \ldots + t_{i-1} + 1}), \ldots, \nu(x_{t_1 + \ldots + t_{i-1} + s_i})) \otimes \mathbb{Q} \).

Proof. We may assume that the conclusions of [16, Theorem 4.8] hold. For \(i < k, 1 \leq j < t_i, 1 \leq l \leq t_k \), define a monoidal transform \(S(i, j, k, l) \) from \(S \) to \(S' \) along \(\nu^* \), where \(S' \) has regular parameters \(y'_m \) by
\[y_m = \begin{cases} y'_{t_1 + \ldots + t_{i-1} + j} y_{t_1 + \ldots + t_{i-1} + 1 + l} & \text{if } m = t_1 + \cdots + t_{i-1} + j \\ y'_m & \text{if } m \neq t_1 + \cdots + t_{i-1} + j. \end{cases} \]
The monoidal transform \(S(i, j, k, l) \) is along \(\nu^* \) since \(\nu^*(y_{t_1 + \ldots + t_{i-1} + j}) > \nu^*(y_{t_1 + \ldots + t_{i-1} + 1}) \) as \(i < k \).

We will prove the theorem by induction on \(m \), where \(m \) is the smallest index with \(1 \leq m \leq t_1 + \cdots + t_r \) such that \(x_m \) is not in the form required by Theorem 7.1. Then we have an expression \(x_m = t_1 + \cdots + t_{i-1} + j \) with \(s_i < j < t_i \). Thus (with the notation of [16, Theorem 4.8])
\[x_{t_1 + \ldots + t_{i-1} + j} = \delta_{i,j} y_{t_1 + \ldots + t_{i-1} + j} \]
with all \(h_{j,k}(i) \) nonnegative integers, and \(h_{j,k}(i) = 0 \) if \(k \neq t_1 + \cdots + t_{u-1} + v \) with \(1 \leq u \leq s_u \) for some \(t \). The rank of the \(s_u \times s_u \) matrix \((g_{\alpha,\beta}(u))\) is \(s_u \) for \(1 \leq u \leq r \). Thus each column of \((g_{\alpha,\beta}(u))\) is nonzero, and so there exists a sequence of monoidal transforms \(S \to S' \) along \(\nu^* \) of the type \(S(i, j, u, l) \) with \(i < u \leq r \) and \(1 \leq l \leq s_u \) such that we have new regular parameters \(y'_m \) in \(S' \) with
\[y_m = \begin{cases} y'_{t_1 + \ldots + t_{i-1} + j} (y'_{i} + \cdots + t_{u-1} + s_r) y_{t_1 + \ldots + t_{i-1} + s_r} & \text{if } m = t_1 + \cdots + t_{i-1} + j \\ y'_m & \text{if } m \neq t_1 + \cdots + t_{i-1} + j. \end{cases} \]
such that \(b_l \) are nonnegative integers with \(b_{t_1 + \ldots + t_{u-1} + v} = 0 \) if \(s_u < v \leq t_u \) for \(i + 1 \leq u \leq r \) and
\[x_m = \delta_{i,j} y'_{t_1 + \ldots + t_{i-1} + j} M \]
where
\[M = (y_{t_1 + \ldots + t_{i-1} + 1} b_{t_1 + \ldots + t_{i-1} + 1 + s_r} + h_{j,1} + \cdots + h_{j,1} + t_{i-1} + s_r) y_{t_1 + \ldots + t_{i-1} + s_r} \]
if \(m = t_1 + \cdots + t_{i-1} + j \) and since each column of \((g_{\alpha,\beta}(u))\) is nonzero, we can choose the \(b_{t_1 + \ldots + t_{u-1} + v} \) so that there exist nonnegative integers \(c_{t_1 + \ldots + t_{u-1} + v} \) such that
\[\prod (x_{t_1 + \ldots + t_{u-1} + v})^{c_{t_1 + \ldots + t_{u-1} + v}} = \gamma M \]
where \(\gamma \) is a unit in \(S \) and the product is over \(i \leq u - 1 \leq r - 1 \) and \(1 \leq v \leq s_u \). Further, the expression of \(x_m \) in terms of the \(y'_l \) is obtained from the expression of \(x_m \) in terms of the \(y_l \) by replacing \(y_l \) with \(y'_l \) for \(1 \leq l \leq t_1 + \cdots + t_r \) if \(m \neq t_1 + \cdots + t_{i-1} + j \).

Now we have a monoidal transform \(R \to R' \) along \(\nu \) which factors through \(S' \) defined by
\[x_m = \begin{cases} x'_{t_1 + \ldots + t_{i-1} + 1} \prod (x'_{t_1 + \ldots + t_{u-1} + v})^{c_{t_1 + \ldots + t_{u-1} + v}} & \text{if } m = t_1 + \cdots + t_{i-1} + j \\ x'_m & \text{if } m \neq t_1 + \cdots + t_{i-1} + j. \end{cases} \]
We obtain that
\[x'_{t_1 + \ldots + t_{i-1} + j} = \gamma \delta_{i,j} y'_{t_1 + \ldots + t_{i-1} + j} \]
and if \(m \neq t_1 + \cdots + t_{i-1} + j \), then the expression for \(x'_m \) is terms of the \(y'_l \) is obtained by replacing the \(y_l \) variables with \(y'_l \) in the expression for \(x_m \) in terms of the \(y_l \). Finally, we have new variables \(y''_l \) in \(S' \), obtained by letting

\[
y''_l = \begin{cases}
\gamma \delta_{i,j} y'_l t_{i-1} + \cdots + t_{i-1} + j & \text{if } l = t_1 + \cdots + t_{i-1} + j \\
y'_l & \text{if } l \neq t_1 + \cdots + t_{i-1} + j,
\end{cases}
\]

proving the induction statement. \(\square \)

We now summarize some results on toric rings from [7]. Suppose that \(M \) is a finitely generated submonoid (subsemigroup) of \(\mathbb{Z}^n \) for some \(n \geq 0 \). Let

\[
\tilde{M}_{\mathbb{Z}^n} = \{ v \in \mathbb{Z}^n \mid mv \in M \text{ for some } m \in \mathbb{Z}_{\geq 0} \}.
\]

We have that \(\tilde{M}_{\mathbb{Z}^n} = (\mathbb{R}_{\geq 0} M) \cap \mathbb{Z}^n \) ([7, Proposition 2.2]).

Proposition 7.2 ([7, Proposition 2.43]). Suppose \(v_1, \ldots, v_n \in \mathbb{Z}^n \) are linearly independent. Let \(\text{par}(v_1, \ldots, v_n) = \{ q_1 v_1 + \cdots + q_n v_n \mid 0 \leq q_i < 1 \text{ for } i = 1, \ldots, n \} \).

Let \(M = \mathbb{Z}_{\geq 0} v_1 + \cdots + \mathbb{Z}_{\geq 0} v_n \) be the submonoid of \(\mathbb{Z}^n \) generated by \(v_1, \ldots, v_n \). Then

\(a \Lambda = \mathbb{Z}^n \cap \text{par}(v_1, \ldots, v_n) \) is a system of generators of the \(M \)-module \(\tilde{M}_{\mathbb{Z}^n} \); that is, \(M_{\mathbb{Z}^n} = \bigcup_{x \in \Lambda} (x + M) \);

\((a + M) \cap (b + M) = \emptyset \) for \(a, b \in \Lambda \) with \(a \neq b \);

\(|\Lambda| = [QU \cap \mathbb{Z}^n : U] \) where \(U \) is the sublattice of \(\mathbb{Z}^n \) generated by \(M \).

Lemma 7.3 ([7, Lemma 4.40]). Suppose that \(k \) is a ring, \(M \) is a finitely generated submonoid of \(\mathbb{Z}^n \) and \(k[z_1, \ldots, z_n] \) is a polynomial ring over \(k \). Then \(k[z^v \mid v \in M_{\mathbb{Z}^n}] \) is the integral closure of \(k[v \mid v \in M] \) in \(k[z_1, \ldots, z_n] \).

Suppose that \(R_0 \to S \) satisfies the conclusions of Theorem 7.1 and that \(R_0/m_{R_0} \cong S/m_S \). Then after replacing the \(x_i \) with the product of \(x_i \) times an appropriate unit in \(R_0 \), we may assume that \(\delta_{i,j} \equiv 1 \mod m_S \) for all \(i, j \). Let \(A = (a_{ij}) \) where

\[
x_i = \delta_i \prod_{j=1}^{n} y_j^{a_{ij}}
\]

with \(\delta_i \in S \) units satisfying \(\delta_i \equiv 1 \mod m_S \). As in [16, Theorem 4.2], from the adjoint matrix of \(A \), for all \(i = t_1 + \cdots + t_{u-1} + b \) with \(1 \leq a \leq r \) and \(1 \leq b \leq s_a \), we have expressions

\[
f_i = \prod_{j=1}^{n} x_j^{b_{ij}} = (\prod_{j=1}^{n} \delta_j^{b_{ij}}) y_i^{e_i}
\]

where the products are over \(j = t_1 + \cdots + t_{u-1} + v \) with \(1 \leq u \leq r \) and \(1 \leq v \leq s_u \), all \(b_{ij} \in \mathbb{Z} \) and \(e = |\text{Det}(A)| \). Let

\[
R = \overline{R_0[\Omega]}_{m_{\nu} \cap R_0[\Omega]},
\]

where,

\[
\Omega = \{ f_i \mid i = t_1 + \cdots + t_{u-1} + v \text{ for } 1 \leq u \leq r, 1 \leq v \leq s_u \}
\]

and \(\overline{R_0[\Omega]} \) denotes the integral closure of \(R_0[\Omega] \) in \(K \). Then \(S \) dominates \(R \) and \(\sqrt{m_R S} = m_S \).

Let

\[
\Theta = \{ x_i \mid x_i = x_{t_1 + \cdots + t_{u-1} + v} \mid 1 \leq u \leq r, 1 \leq v \leq s_u \}.
\]
We have that $m_\nu \cap R_0[\Omega] = (x_1, \ldots, x_n, \Omega)$ and $kx_1, \ldots, x_n \to R_0$ is unramified, so

$$kx_1, \ldots, x_n, \Omega \to R_0[\Omega]_{m_\nu \cap R_0[\Omega]}$$

is unramified as $(x_1, \ldots, x_n, \Omega)R_0[\Omega]_{m_\nu \cap R_0[\Omega]}$ is the maximal ideal of $R_0[\Omega]_{m_\nu \cap R_0[\Omega]}$. There exist Laurent monomials M_1, \ldots, M_n in the variables in Θ such that letting $\Sigma = \{M_1, \ldots, M_n\}$, $k[x_1, \ldots, x_n, \Omega, \Sigma]$ is the integral closure of $k(x_1, \ldots, x_n)$ in $k(x_1, \ldots, x_n)$ by Lemma 7.3.

We have that $\nu(M_i)$ is positive for $1 \leq i \leq \alpha$, since some power of M_i is a monomial in elements of Ω and Θ by (27). Thus $m_\nu \cap R_0[\Omega, \Sigma] = (x_1, \ldots, x_n, \Omega, \Sigma)$. Now

$$kx_1, \ldots, x_n, \Omega, \Sigma \to R_0[\Omega, \Sigma](x_1, \ldots, x_n, \Omega, \Sigma)$$

(30)

is unramified, and thus by [23, Corollary 9.11, Exposé I], $R_0[\Omega, \Sigma](x_1, \ldots, x_n, \Omega, \Sigma)$ is normal. The elements of Ω and Σ are Laurent monomials in the variables Θ.

Recall that

$$\{\nu(x_i) \mid x_i \in \Theta\}$$

is a basis of the \mathbb{Q}-vector space $\Phi_\nu \otimes_{\mathbb{Z}} \mathbb{Q}$. (31)

Now [20, Proposition, p. 48] there exists a toric resolution of singularities of $\text{Spec}(k[x_1, \ldots, x_n, \Omega, \Sigma])$, so there exist Laurent monomials $N = \{N_1, \ldots, N_\beta\}$ in the variables of Θ such that

$$\nu(N_j) \geq 0 \text{ for all } j,$$

and $k[x_1, \ldots, x_n, \Omega, \Sigma, N]$ is a regular ring. By (31) and (32), we have that $\nu(N_j) > 0$ for all j, so that

$$kx_1, \ldots, x_n, \Omega, \Sigma, N.$$

Thus $kx_1, \ldots, x_n, \Omega, \Sigma, N$ is a regular local ring, which is dominated by ν. Thus we have that

$$kx_1, \ldots, x_n, \Omega, \Sigma, N \to R_0[\Omega, \Sigma, N](x_1, \ldots, x_n, \Omega, \Sigma, N)$$

is unramified and

$$R_0[\Omega, \Sigma, N](x_1, \ldots, x_n, \Omega, \Sigma, N)$$

is a regular local ring which is dominated by ν.

Now each $N_j = \gamma_j \tilde{N}_j$ where $\gamma_j \in S$ is a unit and \tilde{N}_j is a Laurent monomial in the variables

$$\tilde{\Theta} = \{y_i \mid y_i = y_{i_1} + \cdots + y_{i_u} + v \mid 1 \leq u \leq r, 1 \leq v \leq s_u\}.$$

Let $\tilde{N} = \{\tilde{N}_1, \ldots, \tilde{N}_\beta\}$. Then $S[\tilde{N}](y_1, \ldots, y_n, \tilde{N}) = S[\tilde{N}](y_1, \ldots, y_n, \tilde{N})$ is dominated by ν^*. By Lemma 7.3, by adding finitely many more Laurent monomials $P = \{P_1, \ldots, P_\gamma\}$ in the variables $\tilde{\Theta}$, we have that $k[y_1, \ldots, y_n, \tilde{N}, \tilde{P}]$ is normal and is dominated by ν^*, $k[y_1, \ldots, y_n, \tilde{N}, \tilde{P}] \to k[y_1, \ldots, y_n, \tilde{N}, \tilde{P}]$ is finite and

$$ky_1, \ldots, y_n, \tilde{N}, \tilde{P} \to S[\tilde{N}, \tilde{P}](y_1, \ldots, y_n, \tilde{N}, \tilde{P})$$

is unramified. Further, $S[\tilde{N}, \tilde{P}](y_1, \ldots, y_n, \tilde{N}, \tilde{P})$ is normal by [23, Corollary 9.11, Exposé I], lies over $S[\tilde{N}](y_1, \ldots, y_n, \tilde{N})$ and is dominated by ν^*. Thus $S[\tilde{N}, \tilde{P}](y_1, \ldots, y_n, \tilde{N}, \tilde{P})$ is the normal local ring of K^* which is dominated by ν^* and lies over $R_0[\Omega, \Sigma, N](x_1, \ldots, x_n, \Omega, \Sigma, N)$. Let $C = k[x_1, \ldots, x_n, \Omega, \Sigma, N]$. The k-algebra C is \mathbb{Z}^a-graded by the grading $d_1 x_i = e_i \in \mathbb{Z}^n$ for $1 \leq i \leq n$, where e_i is the vector with a 1 in the ith place and zeros everywhere else. Let $m = (x_1, \ldots, x_n, \Omega, \Sigma, N)$ be the \mathbb{Z}^a-graded maximal ideal of C. Since C is an n-dimensional regular ring, $\text{dim}_k m/m^2 = n$. Let $T_1, \ldots, T_n \in \{x_1, \ldots, x_n\} \cup \Omega \cup \Sigma \cup \tilde{N}$ form a k-basis of m/m^2. A nonzero homogeneous element U of C (with respect to the \mathbb{Z}^a-grading) is uniquely determined up to multiplication by a nonzero element of k. Thus for $l \in \mathbb{N}$, a nonzero
homogeneous element U of $m^l \setminus m^{l+1}$ is a monomial in T_1, \ldots, T_n times a nonzero element of k. Thus $C = k[T_1, \ldots, T_n]$. Since $\dim C = n$, T_1, \ldots, T_n are algebraically independent over k, and so C is a polynomial ring over k in the variables T_1, \ldots, T_n.

Since $\delta_i \equiv 1 \mod m_S$ for all i in (28), and since a complete local ring is Henselian, and k has characteristic zero, there exist units $\varepsilon_i \in \tilde{S}$ for $1 \leq i \leq n$ such that $\varepsilon_i = 1$ if $y_i \notin \tilde{\Theta}$, and setting $z_i = \varepsilon_i y_i$,

$$x_i = \prod z_j^{a_{j,i}} \quad \text{for } x_i \in \Theta \text{ and } x_i = y_i = z_i \text{ for } x_i \notin \Theta$$ \hspace{1cm} (33)

where the product is over z_j with $y_j \notin \tilde{\Theta}$. Let

$$R_1 = R_0[\Omega, \Sigma, N](x_1, \ldots, x_n, \Omega, \Sigma, N) \text{ and } S_1 = S[\tilde{N}, \tilde{P}](y_1, \ldots, y_n, \tilde{N}, \tilde{P}).$$ \hspace{1cm} (34)

Define Laurent monomials \tilde{N} and \tilde{P} in the variables $\{z_i | y_i \notin \tilde{\Theta}\}$ by replacing the variables y_i in the monomials in N and P with the z_i. Then $k[z_1, \ldots, z_n, \tilde{N}, \tilde{P}]$ is normal, since it is normal when we replace the z_i variables with the y_i variables. We have a commutative diagram of k-algebra homomorphisms

$$R_0 \quad \rightarrow \quad \tilde{S}$$

$$\uparrow$$

$$k[x_1, \ldots, x_n] \quad \rightarrow \quad k[z_1, \ldots, z_n]$$

where the map $k[z_1, \ldots, z_n] \rightarrow \tilde{S}$ is defined by $z_i \mapsto \varepsilon_i y_i$ for $1 \leq i \leq n$ and the map $k[x_1, \ldots, x_n] \rightarrow k[z_1, \ldots, z_n]$ is defined by $x_i \mapsto \prod z_j^{a_{j,i}}$ for $1 \leq i \leq n$. We have that the induced homomorphisms $k[x_1, \ldots, x_n]_{(z_1, \ldots, z_n)} \rightarrow R_0$ and $k[z_1, \ldots, z_n]_{(z_1, \ldots, z_n)} \rightarrow \tilde{S}$ are unramified.

We have an induced commutative diagram of k-algebra homomorphisms

$$R_1 \quad \rightarrow \quad \tilde{S}_1$$

$$\uparrow$$

$$k[T_1, \ldots, T_n] \quad \rightarrow \quad k[z_1, \ldots, z_n, \tilde{N}, \tilde{P}]$$

where the induced homomorphisms $k[T_1, \ldots, T_n]_{(T_1, \ldots, T_n)} \rightarrow R_1$ and $k[z_1, \ldots, z_n, \tilde{N}, \tilde{P}]_{(z_1, \ldots, z_n, \tilde{N}, \tilde{P})} \rightarrow \tilde{S}_1$ are unramified and the T_j are Laurent monomials in the z_i variables.

We have that $k[z_1, \ldots, z_n, \tilde{N}, \tilde{P}]$ is finite over $k[z_1, \ldots, z_n, \tilde{N}]$ since $k[y_1, \ldots, y_n, \tilde{N}, \tilde{P}]$ is finite over $k[y_1, \ldots, y_n, \tilde{N}]$. The k-algebra $k[z_1, \ldots, z_n]$ is finite over $k[x_1, \ldots, x_n, \Omega]$ since $f_i = z_i^\varepsilon$ by (29) and by (33). Thus $k[z_1, \ldots, z_n, \tilde{N}, \tilde{P}]$ is finite over $k[T_1, \ldots, T_n] = k[x_1, \ldots, x_n, \Omega, \Sigma, N]$ and so $k[z_1, \ldots, z_n, \tilde{N}, \tilde{P}]$ is the integral closure of $k[T_1, \ldots, T_n]$ in $k(z_1, \ldots, z_n)$. Let $D = k[z_1, \ldots, z_n, \tilde{N}, \tilde{P}]$. Express $T_j = \prod z_j^{e_{i,j}}$ for $1 \leq i \leq n$. Let $E = (e_{i,j})$.

Recall the notation introduced before the statement of Proposition 7.2. Let M be the submonoid of \mathbb{Z}^n generated by

$$\{(e_{i,1}, \ldots, e_{in}) | 1 \leq i \leq n\}.$$

Then $D = k[z^v | v \in \tilde{M}_{\mathbb{Z}}]$ by Lemma 7.3. Now $k[x_1, \ldots, x_n] \rightarrow k[T_1, \ldots, T_n]$ is birational and the T_i are Laurent monomials in x_1, \ldots, x_n, so there exists an $n \times n$ matrix $Q = (q_{ij})$ such that $x_i = \prod T_j^{q_{ij}}$ with $|\text{Det}(Q)| = 1$. Thus $A =QE$, and so $|\text{Det}(E)| = |\text{Det}(A)|$. We have

$$|\text{Det}(E)| = |\mathbb{Z}^n : EZ^n| = |\mathbb{Z}^n : AZ^n| = |\text{Det}(A)|.$$ \hspace{1cm} (35)

By Proposition 7.2, there exists a subset A of \mathbb{Z}^n such that D is a free $k[T_1, \ldots, T_n]$-module with $k[T_1, \ldots, T_n]$-basis $\{z^\sigma | \sigma \in A\}$ and $|A| = |\mathbb{Z}^n : EZ^n|$. We have that $z^\sigma = \lambda_{\sigma} z^\sigma$ where $\lambda_{\sigma} \in \tilde{S}_1$ are units. $y^\sigma = \lambda_{\sigma}^{-1} z^\sigma \in \tilde{S}_1 \cap K_* = \tilde{S}_1$ by [3, Lemma 2]. There exist $g_1, \ldots, g_c \in R_1$ such that
\(\{g_1, \ldots, g_e\} \) is a \(k \)-basis of \(S_1/m_{S_1} = R_1/m_{R_1} \), where \(g_i \) is the class of \(g_i \) in \(R_1/m_{R_1} \). Now \(D_{(z_1, \ldots, z_n, N, P)} \to \hat{S}_1 \) is unramified, so \(m_D \hat{S}_1 = m_{S_1} \), where \(m_D = (z_1, \ldots, z_n, N, P) \) and so
\[
\hat{S}_1 = \sum_{i=1}^{c} g_i \hat{D} + m_D \hat{S}_1.
\]
We have that \(\hat{S}_1 \) is a finite \(\hat{D} \)-module, so \(\hat{S}_1 = \sum_{i=1}^{c} g_i \hat{D} \) by Nakayama’s lemma. Hence
\[
\hat{S}_1 = \sum_{i=1}^{c} \sum_{\sigma \in \Lambda} g_i (\lambda_\sigma y^\sigma) \hat{D} = \sum_{\sigma \in \Lambda} (\lambda_\sigma y^\sigma) \hat{R}_1.
\]
Now \(S_1 \) lies over \(R_1 \), so there exists \(t \) such that \(m_{S_1}^t \subseteq m_{R_1} S_1 \) which implies \(m_{S_1}^t \subseteq m_{R_1} \hat{S}_1 \).
Thus there exist \(\tau_\sigma \in S_1 \) such that \(\tau_\sigma \equiv \lambda_\sigma \mod m_{S_1}^t \), so that \(\hat{S}_1 = \sum_{\sigma \in \Lambda} (\tau_\sigma y^\sigma) \hat{R}_1 + m_{R_1} \hat{S}_1 \).
This implies \(\hat{S}_1 = \sum (\tau_\sigma y^\sigma) \hat{R}_1 \) by Nakayama’s lemma, since \(\hat{S}_1 \) is a finitely generated \(\hat{R}_1 \)-module. Now \(S_1/m_{S_1}^t \cong \hat{S}_1/m_{S_1}^t \hat{S}_1 \) and \(m_{S_1} \subseteq m_{R_1} S_1 \) which implies \(S_1 = \sum_{\sigma \in \Lambda} (\tau_\sigma y^\sigma) R_1 + m_{R_1} S_1 \). If \(R_1 \to S_1 \) is finite, we then have
\[
S_1 = \sum_{\sigma \in \Lambda} (\tau_\sigma y^\sigma) R_1
\]
by Nakayama’s lemma.

Proposition 7.4. With the above notation, assume \(R_1 \to S_1 \) is finite,
\[
e = [\Phi_{\nu^*}/\Phi_{\nu}] = |\text{Det}(A)| \quad \text{and} \quad \mathbb{Z}^n/A^\nu \mathbb{Z}^n \cong \Phi_{\nu^*}/\Phi_{\nu}
\]
by the map \((b_1, \ldots, b_n) \mapsto b_1 \nu^*(y_1) + \cdots + b_n \nu^*(y_n) \). Then
\[
\{\nu^*(\tau_\sigma y^\sigma) | \sigma \in \Lambda\}
\]
is a complete set of representatives of the cosets of \(\Phi_{\nu^*} \) in \(\Phi_{\nu} \).

Proof. Assume that \(\sigma_1, \sigma_2 \in \Lambda \) and \(\nu^*(\tau_{\sigma_1} y^{\sigma_1}) - \nu^*(\tau_{\sigma_2} y^{\sigma_2}) \in \Phi_{\nu} \). Then \(\nu^*(y^{\sigma_1 - \sigma_2}) \in \Phi_{\nu} \).
By (38), \(y^{\sigma_1 - \sigma_2} = ux^\lambda \) for a suitable unit \(u \in S \) and \(\lambda \in \mathbb{Z}^n \), and so \(x^{\sigma_1 - \sigma_2} = x^\lambda \). Thus, writing \(\lambda \) as a difference of elements of \(M, \sigma_1 = \sigma_2 \) by Proposition 7.2(b). The proposition now follows since
\[
|\Lambda| = |\text{Det}(E)| = |\text{Det}(A)| = e
\]
by (35) and (37).

We now give the proof of Theorem 1.5. Let notation be as in the statement of the theorem. Let \(\overline{K} \) be a Galois closure of \(K \to K^* \), and \(\varphi \) be an extension of \(\nu^* \) to \(\overline{K} \). Let \(K^s = \overline{K}^G(V_\varphi/\nu^*) \), \(K^i = \overline{K}^G(V_\varphi^*/\nu^*) \) and \((K^s)^s = \overline{K}^G(V_\varphi^*/\nu^*) \). We have that \((K^s)^s = K^s K^s \) since
\[
G(\overline{K}/K^s K^s) = G(\overline{K}/K^s) \cap G^s(V_\varphi/\nu^*) = G^s(V_\varphi/\nu^*).
\]
Let \(K' = K^i \cap (K^s)^s \) and \(\nu' = \varphi|K' \). Let \((\nu')^s = \varphi|(K^s)^s \). We have a commutative diagram of field extensions
\[
\begin{array}{cccc}
K^s & \to & K' & \to & K^i \\
\downarrow & & \downarrow & & \downarrow \\
K & \to & (K^s)^s & \to & \overline{K}.
\end{array}
\]
Let \(H = G(\overline{K}/K') \), which is the subgroup of \(G(\overline{K}/K) \) which is generated by \(G^i(\overline{V}_\nu/V_\nu) \) and \(G^s(\overline{V}_\nu/V_\nu') \). If \(\sigma \in H \), we have that \(\sigma : V_\nu \to V_\nu' \). Thus \(V_{\nu'} = V_{\nu'}^H \). We have a commutative diagram

\[
\begin{array}{ccc}
V_\nu & \xrightarrow{\sigma} & V_\nu' \\
\downarrow & & \downarrow \\
V_\nu/m_\nu & \xrightarrow{\sigma} & V_{\nu'}/m_{\nu'}
\end{array}
\]

for \(\sigma \in H \) where \(\sigma \) is the induced homomorphism, so \(H \) acts on \(V_\nu/m_\nu \) and \(V_{\nu'}/m_{\nu'} = (V_\nu/m_\nu)^H \). Now \(\sigma \in G^i(\overline{V}_\nu/V_\nu) \) implies \(\sigma : V_{\nu'}/m_{\nu'} \to V_{\nu'}/m_{\nu'} \) is the identity map (by \([4, \text{Theorem 1.48}]\)). Thus

\[
(V_{\nu'}/m_{\nu'})^H = (V_{\nu'}/m_{\nu'})^{G^i(\overline{V}_\nu/V_\nu)} = V_{(\nu'\nu')}^{i}/m_{(\nu'\nu')}, = V_{\nu'}/m_{\nu'}
\]

by \([4, \text{Theorems 1.47 and 1.48}]\). Thus

\[
V_{\nu'}/m_{\nu'} = V_{(\nu'\nu')}^{i}/m_{(\nu'\nu')} = V_{\nu'}/m_{\nu'}. \tag{39}
\]

We have \(\Phi_{i|K'} = \Phi_\nu \) and \(\Phi_{i|(K')^s} = \Phi_{\nu^s} \) (by \([40, \text{Theorem 23, p. 71}]\) or Proposition 3.7 and Proposition 3.9). By Lemmas 3.4, 5.1, and Proposition 3.7, there exists a normal algebraic local ring \(R_2 \) of \(K \) which is dominated by \(\nu \) and dominates \(\overline{R} \) such that if \(R \) is a normal algebraic local ring of \(K \) which dominates \(R_2 \), then letting \(S \) be the normal local ring of \(K' \) which is dominated by \(\nu^s \) and lies over \(R \) and \(\overline{R} \) be the normal local ring of \(\overline{K} \) which is dominated by \(\nu \) and lies over \(R \), we have that \(G^s(\overline{R}/R) = G^s(\overline{V}_\nu/V_\nu) \), \(G^s(\overline{R}/S) = G^s(\overline{V}_\nu/V_{\nu'}) \),

\[
gr_{\nu'}(S) \cong gr_{\nu}(S^s) \text{ and } gr_{\nu}(R) \cong gr_{\nu}(R^s)
\]

where \(S^s \) is the local ring of \((K')^s \) which lies over \(S \) and \(R^s \) is the local ring of \(K^s \) which lies over \(R \). Further, \(R \to R^s \) and \(S \to S^s \) are unramified.

Letting \(R' \) be the normal local ring of \(K' \) which is dominated by \(\nu' \) and lies over \(R \), we may assume by Lemmas 3.4, 3.8, and 5.1 that \(R_2 \) is such that (for \(R \) which dominates \(R_2 \))

\[
G^i(\overline{R}/R') = G^i(\overline{V}_\nu/V_{\nu'})
\]

and

\[
G^i(\overline{R}/S^s) = G^i(\overline{V}_\nu/V_{(\nu')s}).
\]

Thus \([V_\nu/m_\nu : V_{\nu'}/m_{\nu'}] = [\overline{R}/m_{\overline{R}} : R'/m_{R'}] \) and

\[
[V_{\nu'}/m_{\nu'} : V_{(\nu')s}/m_{(\nu')s}] = [\overline{R}/m_{\overline{R}} : S^s/m_{S^s}]
\]

by \([4, \text{Theorem 1.48}]\), and so by \((39) \),

\[
[S^s/m_{S^s} : R'/m_{R'}] = [V_{(\nu')s}/m_{(\nu')s} : V_{\nu'}/m_{\nu'}] = 1. \tag{41}
\]

We have that \(gr_{\nu'}(R') \cong gr_{\nu}(R) \otimes_{R/m_{R}} S/m_{S} \) by Proposition 1.7.

By \([16, \text{Theorems 6.1, 4.10}]\), there exists a normal algebraic local ring \(F_1 \) of \(K^s \) such that if \(F \to G \) is a dominant map of regular algebraic local rings of \(K^s \) and \((K^s)^s \) respectively such that \(F \) dominates \(F_1 \) and \(F \to G \) satisfies the conclusions of Theorem 7.1, then

\[
|\text{Det}(A)| = e = |[\Phi_{\nu^{s'/\nu}}]| \text{ and }
\]

\[
Z^n/A^tZ^n \cong \Phi_{\nu^{s'/\nu}} \tag{42}
\]

by the map \((b_1, \ldots, b_n) \to b_1\nu^s(y_1) + \cdots + b_n\nu^s(y_n)\), where \(A \) is the matrix of exponents of the conclusions of Theorem 7.1.

By Lemma 5.1, there exists a normal algebraic local ring \(R_3 \) of \(K \) which is dominated by \(\nu \), such that \(R_3 \) dominates \(R_2 \) and if \(R \) is a normal algebraic local ring of \(K \) which dominates \(R_3 \) and is dominated by \(\nu \) and \(R^s \) is the local ring of \(K^s \) which is dominated by \(\nu \) and lies over \(R \), then \(R^s \) dominates \(F_1 \).
Now suppose that \(R_0 \) is an algebraic regular local ring of \(K \) which dominates \(R_3 \) and is dominated by \(\nu \), and that \(R_0 \to S \) satisfies the conclusions of Theorem 7.1, where \(S \) is a local ring of \(K^* \). We then construct a commutative diagram

\[
\begin{array}{ccc}
R_1 & \to & S_1 \\
\uparrow & & \uparrow \\
R_0 & \to & S
\end{array}
\]

where \(R_1 \) and \(S_1 \) are defined by (34). Let

\[
\begin{array}{ccc}
R'_1 & \to & S'_1 \\
\uparrow & & \uparrow \\
R'_0 & \to & S
\end{array}
\]

be the sequence of normal algebraic local rings in \(K' \), respectively \((K^*)^e \) lying over these rings. We have that \(R_0 \to R'_0, R_1 \to R'_1, S \to S^e \) and \(S_1 \to S'_1 \) are unramified by Proposition 1.7, and by (41),

\[
S^e/m_{S^e} = R'_0/m_{R'_0} \quad \text{and} \quad S'_1/m_{S'_1} = R'_1/m_{R'_1}. \tag{44}
\]

Now \(R'_1 \to S'_1 \) is finite since \(S'_1 \) is the unique local ring of \((K^*)^e \) which lies over \(R'_1 \) by [4, Proposition 1.46], as \(G^e(V_\nu/V_\nu) = G^e(R_1/R_1) \) where \(R_1 \) is the local ring of \(K \) which dominates \(R_1 \) and is dominated by \(\bar{\nu} \). Thus

\[
S'_1 = \sum_{\sigma \in \Lambda} (\tau_\sigma y^\sigma) R'_1
\]

by (36) and (44), and \(\{\tau_\sigma y^\sigma\}_{\sigma \in \Lambda} \) is a complete set of representatives of \(\Phi^e/\Phi_\nu \) by (42), (43) and Proposition 7.4. In particular, if \(f \in S'_1 \), then we have an expression

\[
f = \sum g_\sigma (\tau_\sigma y^\sigma) \tag{45}
\]

with \(g_\sigma \in R'_1 \) and \(\varphi(g_\sigma \tau_\sigma y^\sigma) \) are all distinct for the terms with \(g_\sigma \neq 0 \). Thus

\[
\varphi(f) = \min\{\varphi(g_\sigma) + \varphi(\tau_\sigma y^\sigma) \mid \sigma \in \Lambda\}, \tag{46}
\]

and the expression (45) is unique. Thus

\[
S'_1 \cong \bigoplus_{\sigma \in \Lambda} R'_1 \tau_\sigma y^\sigma. \tag{47}
\]

Thus, since \(\text{in}_\varphi(\tau_\sigma) \in S_1/m_{S_1} \cong R'_1/m_{R'_1} \) for all \(\sigma \),

\[
\text{gr}_\varphi(S_1) \cong \text{gr}_\varphi(S'_1) \cong \bigoplus_{\sigma \in \Lambda} \text{gr}_\varphi(R'_1) \text{in}_\varphi(y^\sigma) \cong \bigoplus_{\sigma \in \Lambda} (\text{gr}_\varphi(R_1) \otimes_{R_1/m_{R_1}} S_1/m_{S_1}) \text{in}_\varphi(y^\sigma)
\]

by (40) and Proposition 1.7, establishing Theorem 1.5.
We now prove Proposition 1.6. Let notation and assumptions be as in the statement of Proposition 1.6, and continue with the notation of the proof of Theorem 1.5. Let \(L = \mathbb{QF}(R_1^*) = K^* \) and \(M = \mathbb{QF}(S_1^*) = (K^*)^* \). Since \(k' \cong V_\sigma/m_{\nu'} \) is algebraically closed, \(G'(V_\sigma/V_\mu) = G'(V_\sigma/V_\nu) \) and \(G'(V_\sigma/V_\nu) = G'(V_\sigma/V_\nu) \). Since \(k' \) has characteristic zero, the corollary on [40, p. 77] implies that \(G'(V_\sigma/V_\nu) \cong \Phi_\sigma/\Phi_\nu \), which is Abelian, so \((K^*)^i = \mathbb{QF}(\nu') \). Now \(G((K^*)^i/K^i) = G'(\nu')/K^i) \), so

\[G(M/L) = G((K^*/K^i) \cong \Phi_{\nu^i}/\Phi_{\nu^i} \cong \Phi_{\nu^i}/\Phi_{\nu}, \]

again by [40, Corollary, p. 77 and Theorem 23, p. 71] or Proposition 3.7. Let \(G = G(M/L) \). The ring \(S_1^* \) is the integral closure of \(R_1^* \) in \(M \) so \(G \) acts on \(S_1^* \) and \((S_1^*)^G = R_1^* \) since \(R_1^* \) is normal. Now \(\nu(\sigma(f)) = \nu(f) \) for all \(\sigma \in G \) and \(f \in S_1^* \) by [40, (3), p. 68] (since \(G = G'(M/L) \)) so \(G \) acts on \(\nu_{\sigma}(S_1^*) \). We will now show that \((\nu_{\sigma}(S_1^*))^G = \nu_{\sigma}(R_1^*) \).

Suppose \(u \in S_1 \) and \(\sigma(\nu_{\sigma}(u)) = \nu_{\sigma}(u) \) for all \(\sigma \in G \). Then there exist \(h_\sigma \in S_1^* \) such that \(\sigma(u) = u + h_\sigma \) with \(\nu(h_\sigma) > \nu(u) \) for all \(\sigma \in G \), and so there exist \(f_\sigma \in m_{\nu^i} \) such that \(\sigma(u) = (1 + f_\sigma)u \) for all \(\sigma \in G \). Let

\[y = \Tr_{M/L}(u) = (e + h)u \]

with \(h \in m_{\nu^i} \). We have that \(y \) is an element of \(L = K^* \), and \(e + h \) is a unit in \(V_\sigma \) (since \(k' \) has characteristic zero). Thus \(\nu(y) = \nu(y) \in \Phi_{\nu} \). From the expression

\[u = \sum g_\sigma(\tau_\sigma y^\sigma) \]

of (45), we have that \(\nu_{\tau}(u) = \nu_{\tau}(g_0) \in \nu_{\tau}(R_1^*) \), completing the proof of Proposition 1.6, since \(\nu_{\tau}(S_1^*) \cong \nu_{\tau}(S_1) \) and \(\nu_{\tau}(R_1^*) \cong \nu_{\tau}(R_1^*) \) by equation (40), as \(R_1 \) dominates \(R_3 \).

References

1. S. Abhyankar, ‘On the ramification of algebraic functions’, Amer. J. Math. 77 (1955) 575–592.
2. S. Abhyankar, ‘On the valuations centered in a local domain’, Amer. J. Math. 78 (1956) 321–348.
3. S. Abhyankar, ‘Local uniformization of algebraic surfaces over ground fields of characteristic \(p \neq 0 \)’, Ann. of Math. (2) 63 (1956) 491–526.
4. S. Abhyankar, Ramification theoremic methods in algebraic geometry (Princeton University Press, Princeton, N.J., 1959).
5. A. Benito and O. Villamayor U, ‘Techniques for the study of singularities with application to resolution of 2-dim schemes’, Math. Ann. 353 (2012) 1937–1068.
6. A. Bravo and O. Villamayor U, ‘Singularities in positive characteristic, stratification and simplification of the singular locus’, Adv. Math. 224 (2010) 1349–1418.
7. W. Bruns and J. Gubeladze, Polytopes, rings and K-theory (Springer, New York, 2009).
8. V. Cossart, U. Jannsen and S. Saito, ‘Canonical embedded and non-embedded resolution of singularities for excellent two-dimensional schemes’, Preprint, 2009, arXiv:0905.2191.
9. V. Cossart and O. Piltant, ‘Resolution of singularities of threefolds in positive characteristic I. Reduction to local uniformization on Artin-Schreier and purely inseparable coverings’, J. Algebra 320 (2008) 1051–1082.
10. V. Cossart, O. Piltant, ‘Resolution of singularities of threefolds in positive characteristic II’, J. Algebra 321 (2009) 1836–1976.
11. S. D. Cutkosky, ‘Local factorization and monomialization of morphisms’, Astérisque 260 (1999).
12. S. D. Cutkosky, ‘A generalization of the Abhyankar Jung theorem to associated graded rings of valuations’, Math. Proc. Cambridge Philos. Soc. 160 (2016) 233–255.
13. S. D. Cutkosky, ‘Ramification of valuations and local rings in positive characteristic’, Comm. Algebra 44 (2016) 2828–2866.
14. S. D. Cutkosky, ‘The role of defect and splitting in finite generation of extensions of associated graded rings along a valuation’, Algebra Number Theory 11 (2017) 1461–1488.
15. S. D. Cutkosky and L. Ghezzi, ‘Completions of valuation rings’, Contemp. Math. 386 (2005) 13–34.
16. S. D. Cutkosky and O. Piltant, ‘Ramification of valuations’, Adv. Math. 183 (2004) 1–79.
17. S. D. Cutkosky and P. A. Vinh, ‘Valuation semigroups of two dimensional local rings’, Proc. Lond. Math. Soc. 108 (2014) 350–384.
18. S. D. Cutkosky and P. A. Vinh, ‘Ramification of local rings along valuations’, J. Pure Appl. Algebra 219 (2015) 2489–2505.
19. O. Endler, Valuation theory (Springer, Berlin Heidelberg, 1972).
20. W. Fulton, Introduction to toric varieties (Princeton University Press, Princeton, NJ, 1993).
21. L. Ghezzi, H. T. Hà and O. Kashcheyeva, ‘Toroidalization of generating sequences in dimension two function fields’, J. Algebra 301 (2006) 838–866.
22. L. Ghezzi and O. Kashcheyeva, ‘Toroidalization of generating sequences in dimension two function fields of positive characteristic’, J. Pure Appl. Algebra 209 (2007) 631–649.
23. A. Grothendieck, Revêtements étalés et groupe fondamental, Lecture Notes in Mathematics 224 (Springer, Berlin Heidelberg, 1971).
24. A. Grothendieck and A. Dieudonné, ‘Eléments de géométrie algébrique IV’, Publ. Math. Inst. Hautes. Études Sci. 24 (1965) 5–231.
25. H. Hauser, ‘On the problem of resolution of singularities in positive characteristic (or: a proof we are waiting for)’, Bull. Amer. Math. Soc. (N.S.) 47 (2010) 1–30.
26. F. J. Herrera Govantes, M. A. Olalla Acosta, M. Spivakovsky and B. Teissier, ‘Extending valuations to formal completions’, Valuation Theory in Interaction, EMS Series of Congress Reports (European Mathematical Society, Zurich, 2014) 252–265.
27. H. Hironaka, ‘Three key theorems on infinitely near singularities’, Singularités Franco-Japonaises, Séminaires and Congrès 10 (Société Mathématique de France, Paris, 2005) 87–126.
28. H. Knaf and F.-V. Kuhlmann, ‘Every place admits local uniformization in a finite extension of the function field’, Adv. Math. 221 (2009) 428–453.
29. F.-V. Kuhlmann, ‘Valuation theoretic and model theoretic aspects of local uniformization’, Resolution of singularities - A research textbook in tribute to Oscar Zariski, Progress in Mathematics 181 (eds H. Hauser, J. Lipman, F. Oort and A. Quirós; Birkhäuser, Basel, 2000) 4559–4600.
30. F.-V. Kuhlmann, ‘Value groups, residue fields, and bad places of algebraic function fields’, Trans. Amer. Math. Soc. 356 (2004) 363–395.
31. F.-V. Kuhlmann, ‘A classification of Artin Schreier defect extensions and a characterization of defectless fields’, Illinois J. Math. 54 (2010) 397–448.
32. M. Nagata, Local rings (Interscience Publishers, New York/London, 1962).
33. J. Novacoski and M. Spivakovsky, ‘Reduction of local uniformization to the rank 1 case’, Valuation theory in interaction, EMS Series of Congress Reports (European Mathematical Society, Zurich, 2014) 404–431.
34. M. Spivakovsky, ‘Valuations in function fields of surfaces’, Amer. J. Math. 112 (1990) 107–156.
35. B. Teissier, ‘Valuations, deformations and toric geometry’, Valuation theory and its applications II, Fields Institute Communications 33 (eds F. V. Kuhlmann, S. Kuhlmann and M. Marshall; American Mathematical Society, Providence, RI, 2003) 361–459.
36. B. Teissier, ‘Overweight deformations of affine toric varieties and local uniformization’, Valuation theory in interaction, Proceedings of the Second International Conference on Valuation Theory, Segovia-El Escorial, 2011, Congress Reports Series (eds. A. Campillo, F.-V. Kuhlmann and B. Teissier; European Mathematical Society Publishing House, Zurich, 2014) 474–565.
37. M. Temkin, ‘Inseparable local uniformization’, J. Algebra 373 (2013) 65–119.
38. M. Vaquié, ‘Famille admissible de valuations et défaut d’une extension’, J. Algebra 311 (2007) 859–876.
39. O. Zariski and P. Samuel, Commutative Algebra Volume I (Van Nostrand, New York, 1958).
40. O. Zariski and P. Samuel, Commutative Algebra Volume II (Van Nostrand, New York, 1960).

Steven Dale Cutkosky
Department of Mathematics
University of Missouri
Columbia, MO 65211
USA

cutkoskys@missouri.edu