A Randomized, Double-Blind, Placebo-Controlled Trial of *Lessertia frutescens* in Healthy Adults

Quinton Johnson1,2*, James Syce1,2, Haylene Nell3, Kevin Rudeen2,4, William R. Folk1,2,5

1 South African Herbal Science and Medicine Institute, University of the Western Cape, Bellville, South Africa, 2 The International Centre for Indigenous Phytotherapy Studies, University of the Western Cape, Bellville, South Africa, 3 Tierveli Trial Centre, Karl Bremer Hospital, Bellville, South Africa, 4 School of Health Professions, University of Missouri-Columbia, Missouri, United States of America, 5 School of Medicine, University of Missouri-Columbia, Missouri, United States of America

ABSTRACT

Objectives: Indigenous medicines are widely used throughout Africa, despite a lack of scientific evidence for their safety or efficacy. The aims of this study were: (a) to conduct a pilot study of the safety of a common indigenous South African phytotherapy, *Lessertia frutescens* (*Sutherlandia*), in healthy adults; and (b) to contribute to establishing procedures for ethical and scientifically rigorous clinical trials of African indigenous medicines.

Design: A randomized, double-blind, placebo-controlled trial of *Sutherlandia* leaf powder in healthy adults.

Setting: Tierveli Trial Centre, Karl Bremer Hospital, Bellville, South Africa.

Participants: 25 adults who provided informed consent and had no known significant diseases or allergic conditions nor clinically abnormal laboratory blood profiles during screening.

Intervention: 12 participants randomized to a treatment arm consumed 400 mg capsules of *Sutherlandia* leaf powder twice daily (800 mg/d). 13 individuals randomized to the control arm consumed a placebo capsule. Each participant received 180 capsules for the trial duration of 3 mo.

Outcome Measures: The primary endpoint was frequency of adverse events; secondary endpoints were changes in physical, vital, blood, and biomarker indices.

Results: There were no significant differences in general adverse events or physical, vital, blood, and biomarker indices between the treatment and placebo groups (*p* > 0.05). However, participants consuming *Sutherlandia* reported improved appetite compared to those in the placebo group (*p* = 0.01). Although the treatment group exhibited a lower respiration rate (*p* < 0.04) and higher platelet count (*p* = 0.03), MCH (*p* = 0.01), MCHC (*p* = 0.02), total protein (*p* = 0.03), and albumin (*p* = 0.03), than the placebo group, these differences remained within the normal physiological range, and were not clinically relevant. The *Sutherlandia* biomarker canavanine was undetectable in participant plasma.

Conclusion: Consumption of 800 mg/d *Sutherlandia* leaf powder capsules for 3 mo was tolerated by healthy adults.
INTRODUCTION

The vast majority of people in South Africa use traditional medicines, which the government has recently recognized as an integral part of the public health system. However, there have been no scientific studies of traditional medicines to evaluate their safety and efficacy, nor is there agreement as to the ethical and regulatory norms for the conduct of clinical trials of such phytotherapies.

Infusions and stem and leaf decoctions of the indigenous South African plant Lessertia frutescens (L.) Goldblatt & J. C. Manning (syn. Sutherlandia frutescens [L.] R. Br.), commonly called Sutherlandia, have been widely used in South Africa as traditional medicines since they were first adopted by the Khoi, San, and Nama peoples. In fact, the traditional Tsawana name “Phetola” means “it changes” many illnesses into favorable outcomes. More specifically, it is taken to treat symptoms associated with AIDS [1–3], and to combat cancer [4–6], infections [7], inflammation [8,9], and stress [10].

A study in vervet monkeys (Chlorocebus aethiops) found that up to nine times the advertised dose of Sutherlandia (81 mg/kg body weight per day for 3 mo) resulted in no significant changes to relevant haematological, biochemical, and physiological parameters [11]. The present investigation aimed to (a) monitor adverse events in healthy human participants; (b) monitor changes in physical, vital, blood, and biomarker indices; (c) contribute to establishing procedures for the ethical and scientific conduct of a human clinical trial of a traditional medicine.

Objective

Our objective was to conduct a pilot study of the safety of Sutherlandia leaf powder capsules in healthy adults.

METHODS

Participants

The study took place at Tiervlei Trial Centre, Karl Bremer Hospital, Bellville, South Africa. Forty-one adults were recruited and screened from August to September 2004. Participant inclusion criteria were body weights within 25% of an appropriate body mass index and no significant diseases or clinically significant abnormal laboratory values during screening. Participants had no history of allergic conditions (asthma, urticaria, eczema; autoimmune disorders), systemic lupus erythematosis; dyspepsia, gastric ulcer, or duodenal ulcer; or psychiatric disorders. Their 12-lead ECGs had no significant abnormalities. They were not on regular medical treatment, and did not take any medication 14 d prior to the study. They had a smoking history or less than ten pack-years, no recent history of alcoholism (>2 y) or consumption of alcohol within 48 h of receiving study medication, and did not use any recreational drugs or have a history of drug addiction. Female participants were tested and found not to be pregnant, and all women were requested to use appropriate means of contraception. Participants who did not meet the aforementioned criteria were excluded from the study. All participants were able to communicate effectively with study personnel, were informed of the nature of the study, and provided informed consent.

The study protocol (protocol number M03/11/06) was approved by the Stellenbosch University Institutional Re-
search Board (IRB) on 10 March 2004 with assurances to provide amendments to the board regarding any changes to the protocol, report unexpected serious adverse events or adverse drug reactions suspected to be related to the study drug, notify in the event the study was discontinued, adhere to the principles of informed consent for all participants (providing patient information and consents in English, Afrikaans, and Xhosa languages), and provide progress reports twice each year during the trial. The protocol was also approved by the South African Medicine Control Council (MCC protocol number TICIPS001) on 20 July 2004, with assurances that sufficient amounts of product of assayed quality to conduct the trial was available, and to notify the MCC of any severe adverse events or if the trial was discontinued, provide progress reports during the trial, and to administer the medicine under the direction of an authorized trialist. To ensure medical coverage for potential harm of the individuals from participation in the study trial, the trial was underwritten by a national (South African) insurance company as a requirement by both the Stellenbosch IRB and MCC. Application materials, including the protocol, were provided to the University of Missouri Health Sciences IRB, reviewed and approved on 7 April 2004 (project number 1042077) for conduct of activities in South Africa as approved by the local Stellenbosch IRB and South African MCC reviewing agencies.

Interventions

Of the 41 participants, 25 who met the trial criteria were enrolled in the study and randomized to two groups (Figure 1): 12 randomized to a treatment arm consumed capsules containing 400 mg of *Sutherlandia* leaf powder (400 mg of plant material per capsule; 600 μg of canavanine per capsule) twice daily (800 mg/day) and 13 randomized to the control arm consumed a placebo capsule of lettuce leaf powder twice per day. The treatment and placebo materials were placed in rapidly releasing capsules, and these were assessed pharmaceutically for content uniformity, stability, and release characteristics as well as microbial, heavy metal, and pesticide contamination, before the products were packaged and used in the 3-mo clinical trial. Furthermore, the clinical trial conformed to MCC and NCCAM guidance on the quality of biologically active ingredients and placebo materials used in complementary, alternative, and traditional medicine products.

Outcomes

The primary endpoints of this study were incidence (number) and type of adverse events recorded during the treatment period.

The secondary endpoints were: (a) changes in weight, blood pressure, heart rate, respiratory rate, body temperature from baseline to end of treatment; and (b) changes in haematological and biochemical parameters from baseline to end of treatment.

Sample Size

In the absence of previous data, a convenience sample size of about 12 participants per treatment group was chosen for this first study of a South African traditional medicine in healthy humans. This relatively small sample size is a limitation of the study. It does, however, give sufficient power to detect an effect size of 1.20 with 80% power based on doing a two-sample t-test at a significance level of 0.05 with a two-sided alternative. Effect size is defined as the difference in group means divided by the standard deviation of the response variable under consideration. This applies to numeric variables. For categorical variables, the numbers are too small to do meaningful tests.

Randomization: Sequence Generation

To achieve randomization, a list of random numbers allocating to the two treatments (A, active treatment; B, placebo) a maximum of 13 participants per group was generated using a GraphPad Software (http://www.graphpad.com) calculator option. For each number, a 3-mo supply of the relevant treatment (active or placebo) was labeled with that particular number. The randomized number generation and labeling of the treatments were performed by one person at the School of Pharmacy, University of the Western Cape, and the labeled materials (for 3-mo dosing of each of 25 participants) shipped to the clinical trial site.

Randomization: Allocation Concealment

The person generating the randomized list also did the labeling of the treatments and kept the randomized list.

Randomization: Implementation

At the trial site, participants were sequentially allocated to the treatments in the order in which they were recruited, i.e., the first person who qualified for inclusion was given treatment number 1, the second one treatment number 2, and so on. When allocated, the participant ID number was added to the label details on the capsule containers. The clinician on site made this allocation.

![Figure 1. Trial Profile](consort.png)

www.plosclinicaltrials.org 0003 April | 2007 | e16
Blinding
The placebo and treatment capsules containing plant materials were packed in identical nontransparent containers. Neither the participants nor the clinicians knew which treatment they received or dispensed. The data collected were retrieved from the case report form by another researcher, at the South African Herbal Science and Medicine Institute, the University of the Western Cape, who loaded it into a database. Once accuracy of the data was confirmed (i.e., clean file status), the database was forwarded to the statisticians who, only at this time, were supplied with the randomized treatment list. The statisticians then identified the participants allocated to each treatment.

Laboratory Measurements and Blood Sampling
Participants were provided with diaries in which to self-report all adverse events for the duration of the trial. Participants were screened (at the baseline visit, participants were screened for physical, vital, haematological, biochemical, and endocrine indices), randomized (at postbaseline, participants were provided with capsules containing either

Sutherlandia or placebo material), treated, and assessed (at months 1–3) for the same parameters that were determined at the baseline visit. Participants were subjected to a physical examination (weight, blood pressure, heart rate, respiratory rate, body temperature, and ECG measurement), and they provided blood samples for haematology, endocrine, and biochemistry analysis by standard laboratory methods. The plasma samples of trial participants were analyzed for canavanine by liquid chromatographic separation and mass spectrophotometric determination, with a Waters API Q-TOF Ultima LCMSMS system (http://www.waters.com). Other biochemical variables were measured with Abbott AxSYM (http://www.abiotteldiagnostics.com) and Beckman Coulter CX9 ALX (http://www.beckmancoulter.com) systems, respectively. All haematology indices were measured using a Beckman Coulter Gen-S system, while CD3, CD4, and CD8 counts were determined by flow cytometry, with a Beckman Coulter EPICS system.

Statistical Methods
Analysis for adverse events was done descriptively. With the small number of participants in each group the power to detect all but very large differences is relatively small. Doing Chi-square tests and finding that results are insignificant would not be very informative. Consequently, the number of participants who experienced adverse events of different types is given. Some participants reported the same adverse event (e.g., “increased appetite”) on more than one occasion. For this reason we counted the number of participants who experienced an adverse event at least once for the summary rather than giving a count of the number of times the event was reported. Counts, proportions, and 95% confidence intervals for the proportions are given.

For the statistical analysis of all the haematology and biochemistry parameters, a repeated measures ANOVA model was used, with the treatment group as one factor and PREPOST, an indicator for the post-treatment measurement, as a factor with repeated measures. The interaction term (treatment by PREPOST) measures the difference between the comparison of *Sutherlandia* (treatment) versus placebo groups at PRE (baseline) and the comparison of *Sutherlandia* versus placebo groups at POST (months 1–3: treatment). The Kenward-Roger denominator degrees of freedom method was used for the fixed effects testing, whilst Proc Mixed in SAS Version 9.1 (http://www.sas.com) was used for the modelling. Least squares means were used to estimate treatment effects at the combined visits 3–5 based on the mean response models. Comparisons between pretreatment and post-treatment were obtained for all indices in the study. Statistical significance for these outcomes was set at the 5% level. Again, in the spirit of being conservative, adjustments for multiple tests (such as the Bonferroni adjustment) were not made. This most likely resulted in some false positives.

RESULTS

Recruitment and Participant Flow
A total of 41 participants were recruited and screened (visit 1: baseline physical, vital, and blood indices) between August and September 2004. Of these, 25 consented, met the trial criteria, and were subjected to a blood draw for haematology, endocrine and biochemistry analysis, to establish baseline (pretreatment) values. Thereafter, they were randomized (postbaseline) to receive treatment capsules (n = 12) or placebo control capsules (n = 13) that contained a small amount of dried lettuce leaves twice per day, treated, and assessed (at months 1–3). Participants were given a diary to record the times they took their trial medication, adverse effects they may have experienced, and other medications they may have taken over the course of the trial. During the three-month study period, one adult was lost to follow-up and another withdrew from the treatment group. In the placebo group, two adults withdrew and another became pregnant.

Baseline Data
Baseline data for vital, physical, haematological, biochemical, and endocrine indices were similar for the 25 eligible participants (Table 1).

Outcomes and Estimation
In summarising the adverse events reported by participants at any of the follow-up visits, we note that one individual in the placebo group was only in the study for 5 d, with no follow-up data. That individual is not included in the summary given so there are 12 participants in each group. While the number of days in the study did vary from participant to participant, the cumulative number of exposure days for the two groups were similar, with 957 and 972 total days for the treatment and placebo groups, respectively. A count was made of the number of participants who reported a particular type of adverse event at least once. The results are summarized in Table 2, where, in addition to the counts, the percentage of participants (out of 12) who experienced the event at least once is given along with an exact 95% confidence interval estimate of the proportion. As shown in the table, the types of events include cardiovascular (e.g., palpitations, nosebleeds), central nervous system (CNS; e.g., headaches, nervousness, insomnia, dizziness), gastrointestinal tract (GIT), infection, allergy, appetite, malaise, or general adverse events. The last line of Table 2 gives the number of participants who reported any adverse event at any time. We would point out that with the small number of participants, it is unlikely that rare adverse events would be seen in this study.
Table 1. Baseline Data (Mean ± Standard Deviation) for Trial Participants

Index	Baseline	Treatment
	Placebo	Treatment
BP systolic, mm Hg	122 (17.61)	122 (16.17)
BP diastolic, mm Hg	78 (11.48)	77 (9.20)
Pulse, b/m	70 (0.90)	74 (10.70)
ECG	Normal	Normal
Respiratory rate, c/m	18 (1.66)	17 (1.97)
Oral temperature, °C	37 (0.35)	36 (0.47)
Weight, kg	68 (16.30)	67 (14.77)
Height, m	1.65 (0.08)	1.68 (0.11)
BMI, kg/m²	25 (4.43)	24 (3.69)
Age, y	34 (8.62)	30 (5.62)
White cell count, \times 10^9/l	6.60 (1.98)	6.93 (2.61)
Red cell count, \times 10^12/l	4.44 (0.36)	4.63 (0.65)
Haemoglobin, g/dl	13.45 (1.01)	13.69 (1.24)
Haematocrit, %	39 (3.0)	40 (4.0)
MCV, fl	88.56 (4.12)	87.63 (5.78)
RCDW, %	13.37 (0.93)	13.41 (0.83)
Neutrophils, \times 10^9/l	3.85 (1.58)	4.20 (1.92)
Monocytes, \times 10^9/l	0.41 (0.12)	0.54 (0.32)
Lymphocytes, \times 10^9/l	2.13 (0.45)	1.97 (0.66)
Eosinophils, \times 10^9/l	0.18 (0.15)	0.21 (0.14)
Basophils, \times 10^9/l	0.03 (0.01)	0.02 (0.01)
CD3 count, \times 10^12/l	1,480 (380)	1,559 (467)
CD4 count, \times 10^12/l	907 (301)	930 (266)
CD8 count, \times 10^12/l	509 (149)	554 (219)
CD4/CD8 ratio	1.89 (0.67)	1.80 (0.58)
Sodium, mmol/l	140 (1.96)	140 (1.98)
Potassium, mmol/l	4.30 (0.43)	4.28 (0.37)
Chloride, mmol/l	107 (3.07)	106 (1.31)
Urea, mmol/l	3.78 (1.33)	3.47 (1.67)
Creatinine, µmol/l	71 (18.18)	72 (11.84)
Bilirubin total, mmol/l	12.25 (3.91)	12.83 (4.00)
Alkaline phosphatase, µmol/l	58.77 (20.74)	56.08 (12.01)
T-Glutamyl transferase, U/l	16.69 (6.61)	18.92 (11.63)
Alanine transaminase, U/l	25.85 (10.96)	22.50 (11.33)
Aspartate transaminase, U/l	23.62 (3.75)	20.92 (3.90)
Lactate dehydrogenase, U/l	451 (49.43)	427 (69.48)
Creatine kinase, µmol/l	132 (49.19)	143 (42.70)
P-Glucose (random), mmol/l	5.26 (1.04)	4.99 (0.59)
Calcium, mmol/l	2.26 (0.08)	2.30 (0.09)
Calcium (corrected), mmol/l	2.26 (0.06)	2.29 (0.05)
Magnesium, mmol/l	0.86 (0.07)	0.80 (0.10)
Phosphorus, inorganic, mmol/l	1.09 (0.18)	1.05 (0.19)
Free thyroxine, pmol/l	12.41 (1.29)	13.26 (1.67)
Free tri-iodothyroxine, pmol/l	3.51 (0.41)	3.63 (0.68)
TSH, mIU/l	1.35 (0.54)	1.13 (0.54)
Cholesterol, mmol/l	4.89 (1.30)	4.49 (0.99)
Triglycerides, mmol/l	0.72 (0.43)	0.83 (0.71)
HDL cholesterol, mmol/l	1.18 (0.30)	1.15 (0.35)
LDL cholesterol, mmol/l	3.38 (1.21)	2.97 (1.02)

doi:10.1371/journal.pctr.0020016.t001

Table 3 provides a list of the vital, physical, haematological, biochemical, and endocrine data that were not significantly different between the treatment and placebo groups (p > 0.05).

Most of the vital and physical, haematological, biochemical, and endocrine endpoints that were measured were within the normal physiological range and not significantly different for the Sutherlandia and placebo groups. These include: diastolic and systolic blood pressure (BP), electrocardiogram (ECG), heart rate, body temperature (oral), and weight and height; white cell and red cell counts, haemoglobin, haematocrit, mean corpuscular volume (MCV), and red cell diameter and width (RCDW); neutrophil, monocyte, lymphocyte, eosinophil, and basophil counts; CD3, CD4, CD8 counts, and CD4:CD8 ratio; sodium, potassium, and chloride; urea, creatinine, and bilirubin; alkaline phosphatase, T-glutamyl transferase, alanine transaminase, aspartate transaminase, lactate dehydrogenase, creatine kinase, plasma glucose (random), calcium and corrected calcium, magnesium, and phosphorous; free thyroxine, free tri-iodothyroxine, and TSH; and cholesterol, LDL-cholesterol, HDL-cholesterol, and triglycerides. No canavanine was detected in any of the samples.

Table 4 contains the data for the six variables that were statistically different between the treatment and placebo groups (p < 0.05). The Sutherlandia group had a lower respiration rate (p < 0.04), but higher platelet count (p = 0.03) than the placebo group. In relation to baseline values, mean corpuscular haemoglobin (MCH; p = 0.01) and mean corpuscular haemoglobin concentration (MCHC; p = 0.02) levels were lower for the Sutherlandia compared to placebo group.

In addition, the Sutherlandia group had higher total protein (p = 0.03) and albumin levels (p = 0.03) than the placebo group.

Note that the p-values given are for testing the significance of the group by post interaction term. This is equivalent to a test for group differences in the amount of change from pre-treatment to post-treatment. Despite these differences, all the measurements fell within the normal physiological range for these indices, and were of no clinical relevance.

DISCUSSION

Interpretation

This pilot study is the first to provide scientific information on the safety of the South African traditional medicine L. frutescens (Sutherlandia) in healthy humans, and contribute to establishing rigorous and ethical procedures for conducting clinical trials on indigenous phytotherapies. Sutherlandia is used for a variety of conditions, including those associated with AIDS. Analysis for adverse events was done descriptively and included: cardiovascular (palpitations, nosebleeds), CNS (headaches, nervousness, insomnia, dizziness), GIT, infection, allergy, appetite, malaise, or general adverse events. With the small number of participants, which is a limitation to the study, it is unlikely that rare adverse events would be seen.

There were no significant differences in cardiovascular, CNS, GIT, infection, allergy, malaise, or general adverse events between the treatment and the placebo groups. Whilst participants in the treatment group experienced more events related to appetite, the constraints of the investigation related to limited sample size precludes firm conclusions from being drawn about these preliminary data or any speculation related to mechanisms of action. It is nonetheless interesting to have observed this outcome, since Sutherlandia is purported to prevent wasting, and is in contrast to the report that cachectic patients consuming Sutherlandia exhibited side effects such as diarrhea, mild diuresis, dry mouth, and dizziness [12].

There were no significant differences between the treatment group and placebo group for most of the vital, physical, haematological, biochemical, or endocrine parameters. In adjusting for baseline values, the treatment group had higher MCH, MCHC, platelet, total protein and albumin count, and
lower respiration rate compared to the placebo group, but these differences were not clinically significant. Whilst the latter outcome is noted, we do not have any dose-escalation or pharmacokinetic data from this pilot study, in relation to *Sutherlandia* and its effect on vital, physical, haematological, biochemical, and endocrine indices, which is a limitation of this investigation.

Generalizability

Sutherlandia in the amount studied (800 mg/day) is widely advertised as being safe and is undoubtedly consumed by many, and it was tolerated by the limited number of healthy adults in this pilot study. Nevertheless, additional studies are warranted to assess the safety and efficacy of this and other phytotherapies.

This study has established a precedent for the ethical and scientifically rigorous evaluation of indigenous medicines used by the public, and it is hoped that additional studies will quickly follow.

Overall Evidence

Until now, no human studies have been conducted to assess the safety or efficacy of *L. frutescens* (*Sutherlandia*) with its claimed benefits ascribed to constituents including pinitol, γ-amino butyric acid (GABA), and L-canavanine [13,14]. It is not known if these constituents work in isolation or in unison. GABA is an inhibitory neurotransmitter present in appreciable quantities [14], and it may potentially have beneficial effects on stress, anxiety, and depression, which adversely affect the course of HIV disease [15]. Canavanine is a potent L-arginine antagonist, with antiviral, antifungal, antibacterial, and anticancer value [16–19]. Concerns have been raised over the possible induction by canavanine of autoimmune diseases (such as systemic lupus erythematosus), which is thought only to occur at very high doses in predisposed individuals or in the presence of low arginine levels [20]. However, canavanine was not detected in the plasma of the trial participants, perhaps because of the dosage and its metabolism, and possible biotransformation into another molecular entity through the P450 system, which is affected by *L. frutescens* [21].

A recent Cochrane review of nine randomised placebo-controlled trials involving 499 individuals with HIV infection and AIDS, wherein eight different Chinese herbal medicines were tested, was recently completed [22]. Evidence for the effect of the eight herbal medicines identified in the review for treatment of HIV infection and AIDS was not compelling. Moreover, the review concluded that a need exists for larger and more rigorously designed trials. To our knowledge, this is the first report of a double-blind, randomized, placebo-controlled study assessing the safety of the African indigenous medicine *Sutherlandia*. This investigation provides a vital step for better understanding the clinical value of traditional phytotherapies in healthy humans. Given that this African indigenous medicine is so extensively used [23], and is taken

Table 2. Counts, Percentages, Group Differences and 95% Confidence Interval Estimates of Proportion of Subjects Reporting at Least One Adverse Event of the Type Described

Adverse Events	Treatment Group	Placebo Group	Group Difference and CI								
	Count	Percentage	LCL	UCL	Count	Percentage	LCL	UCL	Percentage	LCL	UCL
Cardiovascular	2	0.1667	0.0209	0.4841	2	0.1667	0.0209	0.4841	0.0000	0.3643	0.3643
CNS	4	0.3333	0.0992	0.6511	6	0.5000	0.2109	0.7891	0.1667	0.5536	0.2779
GIT	6	0.5000	0.2109	0.7891	2	0.1667	0.0209	0.4841	0.3333	0.1110	0.6721
Infections	5	0.4167	0.1517	0.7233	6	0.5000	0.2109	0.7891	0.1667	0.4905	0.3531
All	8	0.6667	0.3489	0.9008	10	0.8333	0.5159	0.9791	0.1667	0.5313	0.2428

LCL, lower confidence limit; UCL, upper confidence limit

Table 3. Vital, Physical, Haematological, Biochemical, and Endocrine Endpoints that Were Not Significantly Different between the Treatment and Placebo Groups (p > 0.05), and within the Normal Physiological Range for Humans

Endpoint	Treatment Group	Placebo Group	Group Difference and CI
BP systolic and diastolic			
ECG and BMI			
Pulse			
Oral temperature			
Weight			
Height			
White cell count			
Red cell count			
Haemoglobin			
Haemocrit			
MCV			
RCDW			
Neutrophils, monocytes, lymphocytes, eosinophils, and basophils			
CD3, CD4, CD8, and CD4:CD8			
Sodium, potassium, and chloride			
Urea, creatinine, and bilirubin			
Alkaline phosphate			
T-Glutamyl transferase			
Alanine transaminase			
Aspartate transaminase			
Lactate dehydrogenase			
Creatine kinase			
P-Glucose (random)			
Calcium and corrected calcium			
Magnesium and phosphorous			
Free thyroxine, free tri-iodothyroxine, and TSH			
Total cholesterol, LDL-cholesterol, and HDL-cholesterol			
Triglycerides			

The *Sutherlandia* active canavanine was not detected in any participant sera.

doi:10.1371/journal.pctr.0020016.t003
Table 4. Vital, Physical, Haematological, and Biochemical Endpoints (Mean ± Standard Deviation) that Were Significantly Different between the Treatment and Placebo Groups (p < 0.05), and within the Normal Physiological Range for Humans

Index	Baseline	Treatment	Month 1	Placebo	Treatment	Month 2	Placebo	Treatment	Month 3	Placebo	Treatment	p-Value
Respiratory rate (c/min)	17.46 (1.66)	17.33 (1.97)	19.46 (1.66)	18.83 (2.33)	18.91 (1.04)	18.00 (1.55)	19.20 (1.03)	18.40 (1.26)	0.04			
MCH (pg)	30.15 (1.56)	29.77 (2.08)	30.26 (1.70)	30.26 (1.66)	30.13 (2.04)	29.96 (1.69)	29.20 (2.00)	29.75 (1.48)	0.01			
MCHC (g/dl)	34.25 (0.64)	33.93 (0.63)	34.02 (0.40)	34.37 (0.31)	33.80 (0.27)	34.11 (0.27)	33.15 (0.33)	33.42 (0.36)	0.02			
Platelets (x 10^6/µl)	273.00 (44.57)	244.25 (44.75)	268.00 (47.71)	269.00 (48.04)	265.00 (56.36)	272.00 (54.57)	282.00 (53.68)	0.03				
Total protein (g/l)	72.31 (4.46)	71.92 (4.25)	71.85 (2.91)	74.92 (3.53)	71.82 (3.52)	74.10 (4.46)	72.40 (3.41)	75.50 (3.44)	0.03			
Albumin (g/l)	40.77 (2.83)	39.92 (3.40)	40.38 (3.07)	41.50 (2.71)	40.48 (2.27)	39.73 (3.48)	39.10 (2.60)	38.30 (2.72)	0.03			

A repeated-measures ANOVA statistical model was used to evaluate the differences between groups. Note that the p-values given are for testing the significance of the group by postinteraction term. This is equivalent to a test for group differences in the amount of change from pre to post. Despite these differences, all the measurements fell within the normal physiological range for these indices, and were of no clinical relevance.

AUTHOR CONTRIBUTIONS

QI, JS, KR, and WRF made primary contributions to the design and conduct of the study, analysis and interpretation of results, and preparation of the manuscript. HN conducted and controlled the quality of the trial and contributed to the study results.

REFERENCES

1. Mills E, Cooper C, Kanfer I (2005) Traditional African medicine in the treatment of HIV. Lancet Infect Dis 5: 465–467.

2. Mills E, Foster BC, van Heeswijk R, Phillips E, Wilson K, et al. (2005) Impact of African herbal medicines on antiretroviral metabolism. AIDS 19: 93–97.

3. Hansen CM, Osthuen V, van de Venter M (2005) Anti-HIV activities of organic and aqueous extracts of Sutherlandia frutescens and Lobostemon trigonum. J Ethnopharmacol 96: 113–119.

4. Kundu JR, Mossanda KS, Na HK, Sury VJ (2005) Inhibitory effects of the extracts of Sutherlandia frutescens (L) R. Br. and Harpagophytum procumbens DC on phorbol ester-induced COX-2 expression in mouse skin: AP-1 and CREB as potential upstream targets. Cancer Lett 218: 21–30.

5. Chinkwo KA (2005) Sutherlandia frutescens extracts can induce apoptosis in cultured carcinoma cells. J Ethnopharmacol 98: 163–179.

6. Tai J, Cheung S, Chan E, Hasman D (2004) In vitro culture studies of Sutherlandia frutescens on human tumor cell lines. Journal of Ethnopharmacology 95: 9–19.

7. Katerere DR, Eloff N (2005) Antibacterial and antioxidant activity of Sutherlandia frutescens (Fabaceae), a reputed anti-HIV/AIDS phytomedicine. Phytother Res 19: 779–781.

8. Ojewale JA (2004) Analgesic, anti-inflammatory and hypoglycemic effects of Sutherlandia frutescens R. Br. (varietys Incana E. BR. & Fabaceae) shoot aqueous extract. Methods Find Exp Clin Pharmacol 26: 409–416.

9. Fernandes AC, Cromarty AD, Albrecht C, Jansen van Rensburg CE (2004) The antioxidant potential of Sutherlandia frutescens. J Ethnopharmacol 95: 1–5.

10. Prevoo D, Smith C, Swart P, Swart AC (2004) The effect of Sutherlandia frutescens on steroidogenesis: confirming indigenous wisdom. Endocr Res 30: 745–751.

11. Seier JV, Mihlbil M, Dhamas LA, Loza J, Laubsher R (2002) A toxicity study of Sutherlandia leaf powder (Sutherlandia frutescens sub-species microphylla) consumption. Tygerberg (South Africa): Medical Research Council.

12. Dalvi S (2003) Sutherlandia for immune support. Positive Health 23–25.

13. Singh RK, Pandey BL, Tripathi M, Pandey VB (2001) Anti-inflammatory effects of (+)-sinтол. Finchipura 72: 168–179.

14. Gericke N, Albrecht CF, Van Wyk B, Mayung B, Mutwa C, et al. (2001) Sutherlandia frutescens. Aust J Med Herbalism 13: 9–15.

15. Leserman J (2005) HIV disease progression: Depression, stress and possible mechanisms. Biol Psychiatry 58: 290–296.

16. Rosenthal GA (1997) L-Carnitine: A potent antimitabolite and antitumor agent from leuconomatous plants. Life Sci 60: 1635–1641.

17. Rosenthal GA (1998) A potential chemotherapeutic agent for human pancreatic cancer. Pharm Biol 36: 194–201.

18. Diviyani S, Chittra D, Patwardhan B (2004) Immunoprotection by botanical drugs in cancer chemotherapy. J Ethnopharmacol 90: 49–55.

19. Song JY, Han SK, Yoon EN, Yun YS, et al (2002) Induction of secretory and tumoricidal activities in peritoneal macrophages by ginsan. Int Immunopharmacol 2: 857–865.

20. Brown DL, Naik M, Grosenhim WE (2000) Does L-canavanine ingestion induce murine SLE? Paradoxical effects on survival of BALB/c mice. J Nutr Immunol 5: 17–27.

21. Patwardhan B, Guatam M (2005) Botanical immunomodulators: Scope and opportunities. Drug Discov Today 10: 495–502.

22. Liu JP, Manheimer E, Yang M (2005) Herbal medicines for treating HIV infection and AIDS. Cochrane Database Syst Rev 2005: CD003937. Available: http://www.cochrane.org/reviews/esmolab003937.html. Accessed 24 March 2007.

23. Mills E, Cooper C, Seely D, Kanfer I (2005) African herbal medicines in the treatment of HIV: Hypoxis and Sutherlandia. An overview of evidence and pharmacology. Nutr J 4: 19.

doi:10.1371/journal.pctr.0020016.s002 (357 KB DOC).

doi:10.1371/journal.pctr.0020016.s001 (43 KB DOC).

doi:10.1371/journal.pctr.0020016.t004

by many for the treatment of a variety of conditions including those associated with HIV and AIDS, additional safety and efficacy trials are warranted in the interest of public health.