A flexible method to create wave file features

Ghazi M. J. Qaryouti
Department of Mechatronics Engineering, Faculty of Engineering Technology, Al-Balqa Applied University, Jordan

ABSTRACT

Digital audio signal is one of the most important data type at present, it is used in various vital applications, such as human knowledge, security and banking applications, most applications require signal identification and recognition, and to increase the efficiency of these applications we must seek a method to represent the audio file by a small set of values called a features vector. In this paper research we will introduce an enhanced method of features extraction based on k-mean clustering. The method will be tested and implemented to show how the proposed method can reduce the efforts of voice identification, and can minimize the recognition time a set of voice extracted features must be used instead of using the voice wave file.

This is an open access article under the CC BY-SA license.

1. INTRODUCTION

Digital voice signal (wave file) is usually of a large size where the acoustic signal consists of a set of values distributed in one column (mono signal) or distributed in two columns (stereo signal), these values usually are the results of sampling and quantization of the original analogue voice signal [1, 2]. Since the volume of the wave file is very large, [3, 4] it is difficult to conduct the matching of two voices using all the values, where the process of matching will require a large amount of time, which in turn leads to delay in the process of wave file recognition [5-7]. Table 1 shows the results of voice matching with itself, and here we can see that the bigger wave file size will increase the matching time, and the process of matching requires a big amount of time [8, 9].

To decrease the recognition time [10], we have to seek a method based on features extraction, this method will generate a set of features for any wave file, and this set must be a unique and can be used as a key or a voice signature to retrieve or recognize the wave file. Any normalized wave file can be represented by a sinusoidal signal as shown in Figure 1 [1, 3], this signal can characterize by the following parameters: amplitude, frequency and phase shifting. If the features are based on these parameters, to any changes on these parameters must not affect the extracted voice features.

Many researchers introduced various methods of voice features extraction based on calculation: Crest factor, dynamic range, sigma (mean of the normalized data), and Mu (standard deviation of the normalized data) [11, 12]. The crest factor [13] is the ratio of peak value to RMS value of waveform as shown in Figure 2. This ratio is also called to peak-to-RMS ratio. Dynamic range [14-16] is the ratio between the largest and smallest intensity values of a changeable sound that can be reliably transmitted or reproduced by a particular sound system, measured in decibels. It’s the measurement between the noise floor and the
maximum sound pressure level and what a microphone can capture. In [9, 12] a method was proposed to generate voice signal features based on the above-mentioned parameters, any changes in amplitude, frequency, and phase shift will be reflected as some changes in voice signal features, thus will lead to more difficulties in the voice recognition process [17-19].

Table 1. Matching time for different wave files

Wave file	File size (Samples)	Matching time (Seconds)
W1	73574	0.006
W2	79460	0.008
W3	67688	0.0076
W4	35316	0.005
W5	82404	0.0079
W6	73574	0.006
W7	126548	0.014
W8	96098	0.01
W9	111832	0.013
W10	179520	0.018
Average	92601	0.0097

Cost of 1 sample $= 9700/92601 = 0.1048$ microseconds

Figure 1. Sinusoidal signal

Figure 2. Crest factor calculation for a Sinusoidal signal

2. WAVE FILE HISTOGRAM

Data histogram [20-23] is an array of elements, each of which points to the repetition of one value in the data set [24-27]. Calculating the wave file histogram is an initial task of the proposed later in this paper method of features extraction. The wave file histogram can be calculated using the following MATLAB function. First we have to set the size of the histogram; here we use (1):

$$nBins = \text{round}(|\text{dataset}|/15)$$ \hspace{1cm} (1)
Then we start arranging the wave file values, by calculation the repetition of each value, saving this repetition in the corresponding index of the histogram. Figure 3 shows the calculated histogram of a wave file example:

```
function [Hn,Xn] = WAV_Hist(Data)
    nBins = round(length(Data) / 15);
    [H,X] = hist(Data, nBins); [Max,Max] = max(H); sumH = sum(H);
    curSum = 0; T = 0.99; i1 = TMax; i2 = TMax; I1 = i1; I2 = i2;
    stop1 = 0; stop2 = 0;
    while ((i1>=1) || (i2<=length(X)))
        if (i1==i2)
            if (stop1==1) curSum = curSum + H(i1); end
            if (stop2==1) curSum = curSum + H(i2); end
            else curSum = curSum + H(i1);
        end
        if (curSum <= sumH * T)
            I1 = i1; I2 = i2;
            if (i1>1) i1 = i1 - 1;
            else stop1 = 1;
        end
        if (i2<length(X)) i2 = i2 + 1;
        else stop2 = 1; end
        else break; end
    end
    Xn = X(I1:I2); Hn = H(I1:I2);
```

Figure 3. Wave file histogram (example)

3. K-MEAN CLUSTERING

Clustering means arranging data set values in groups (clusters), then the sums of values in each cluster, or the number of points in each cluster can be used as features for the data set [22]. K-mean clustering is implemented by applying a set of procedures which can be explained by the following example:

- **Initialization:**
 - Here we have to select the data set, number of clusters, and the centroid of each cluster:
 - Data set = 15, 15, 16, 19, 19, 20, 20, 21, 22, 28, 35, 40, 41, 42, 43, 44, 60, 61, 65
 - Clusters=2,
 - C1=16, C2=22
- **Perform the following tasks while centroid changing:**
 - Find distances to each cluster by taking the absolute value of the deference between the data item and the cluster centroid.

A flexible method to creat wave file features (Ghazi M. J. Qaryouti)
– Select the cluster to which the data item belongs by selecting the nearest cluster depending on the distance.
– Calculate the new centroid by averaging the data items belong to the cluster.

Table 2 and Table 3 shows the results of calculations:

Table 2. Calculation results of passes 1 and 2

| x_i | Distance 1 $|x_i - c_1|$ | Distance 2 $|x_i - c_2|$ | Nearest Cluster and new Centroid 15.33 and 36.25 | Distance 1 $|x_i - c_1|$ | Distance 2 $|x_i - c_2|$ | Nearest Cluster and new Centroid 18.56and 45.9; |
|-------|----------------|----------------|--------------------------|----------------|----------------|--------------------------|
| 15 | 1 | 7 | 1 | 0.33 | 21.25 | 1 |
| 16 | 0 | 6 | 1 | 0.67 | 20.25 | 1 |
| 19 | 3 | 3 | 2 | 3.67 | 17.25 | 1 |
| 20 | 4 | 2 | 2 | 4.67 | 16.25 | 1 |
| 21 | 5 | 1 | 2 | 5.67 | 15.25 | 1 |
| 22 | 6 | 0 | 2 | 6.67 | 14.25 | 1 |
| 28 | 12 | 6 | 2 | 12.67 | 8.25 | 2 |
| 35 | 19 | 13 | 2 | 19.67 | 1.25 | 2 |
| 40 | 24 | 18 | 2 | 24.67 | 3.75 | 2 |
| 41 | 25 | 19 | 2 | 25.67 | 4.75 | 2 |
| 42 | 26 | 20 | 2 | 26.67 | 5.75 | 2 |
| 43 | 27 | 21 | 2 | 27.67 | 6.75 | 2 |
| 44 | 28 | 22 | 2 | 28.67 | 7.75 | 2 |
| 60 | 44 | 38 | 2 | 44.67 | 23.75 | 2 |
| 61 | 45 | 39 | 2 | 45.67 | 24.75 | 2 |
| 65 | 49 | 43 | 2 | 49.67 | 28.75 | 2 |

Table 3. Calculation results of passes 3 and 4

| x_i | Distance 1 $|x_i - c_1|$ | Distance 2 $|x_i - c_2|$ | Nearest Cluster and new Centroid 19.50and 47.89 | Distance 1 $|x_i - c_1|$ | Distance 2 $|x_i - c_2|$ | Nearest Cluster and new Centroid 19.50and 47.89 |
|-------|----------------|----------------|--------------------------|----------------|----------------|--------------------------|
| 15 | 3.56 | 30.9 | 1 | 4.50 | 32.89 | 1 |
| 15 | 3.56 | 30.9 | 1 | 4.50 | 32.89 | 1 |
| 16 | 2.56 | 29.9 | 1 | 3.50 | 31.89 | 1 |
| 19 | 0.44 | 26.9 | 1 | 0.50 | 28.89 | 1 |
| 19 | 0.44 | 26.9 | 1 | 0.50 | 28.89 | 1 |
| 20 | 1.44 | 25.9 | 1 | 0.50 | 27.89 | 1 |
| 20 | 1.44 | 25.9 | 1 | 0.50 | 27.89 | 1 |
| 21 | 2.44 | 24.9 | 1 | 1.50 | 26.89 | 1 |
| 22 | 3.44 | 23.9 | 1 | 2.50 | 25.89 | 1 |
| 28 | 9.44 | 17.9 | 1 | 8.50 | 19.89 | 1 |
| 35 | 16.44 | 10.9 | 2 | 15.50 | 12.89 | 2 |
| 40 | 21.44 | 5.9 | 2 | 20.50 | 7.89 | 2 |
| 41 | 22.44 | 4.9 | 2 | 21.50 | 6.89 | 2 |
| 42 | 23.44 | 3.9 | 2 | 22.50 | 5.89 | 2 |
| 43 | 24.44 | 2.9 | 2 | 23.50 | 4.89 | 2 |
| 44 | 25.44 | 1.9 | 2 | 24.50 | 3.89 | 2 |
| 60 | 41.44 | 14.1 | 2 | 40.50 | 12.11 | 2 |
| 61 | 42.44 | 15.1 | 2 | 41.50 | 13.11 | 2 |
| 65 | 46.44 | 19.1 | 2 | 45.50 | 17.11 | 2 |

4. THE PROPOSED METHOD

The proposed method of wave file features extraction is based on k-mean clustering and it can be implemented applying the following steps:
– Get the wave file.
– Calculate the wave file histogram to be used as an input data set for clustering.
– Initialization by selecting the number of clusters and a centroid for each cluster.
– Apply k-mean clustering.
– Save the clusters as a feature for the wave file.
4.1. Implementation and experimental results

A necessary Matlab codes were written to create a features for a wav files using statistical method and k-mean method, below we will discuss the obtained experimental results.

4.1.1. Statistical method

a. Experiment 1

We took a sinusoidal signal and for different parameter values (amplitude, frequency and phase shifting) we calculate some statistical parameters, Table 4 shows the results of this experiment. From Table 4 we can see:
- Changing the signal parameters leads to changing the features set.
- Changing the features set means that the modified signal will be considered as a new signal thus will increase the memory space required to store the signals, and increase the required time for signal identification.

Signal	Dynamic range (db)	Crest factor (db)	Mean	RMS value
1) Y1=sin(10x+5)	80.7663	3.0098	-9.8742e-006	0.70712
2) Y2=5sin(10x+5)	68.0299	0.38655	-2.3672e-005	0.95644
3) Y3=5sin(20x+5)	76.3293	0.38656	-2.3711e-005	0.95644
4) Y4=5sin(20x+15)	76.3293	0.38655	-3.038e-006	0.95644

b. Experiment 2

Here we took the first version of the digital signal, and used it to create wave file with different sampling frequencies, Table 5 shows the results of this experiment. From the results shown in Table 5 we can see that the features set remain the same for the same wave file recorded with different sampling frequencies, which mean that all the wave file versions can be considered as one file with a stable set of features.

Sampling frequency	Dynamic range(db)	Crest factor(db)	Mean	RMS value
1000	80.7663	3.0098	-9.8742e-006	0.70712
1500	80.7663	3.0098	-9.8742e-006	0.70712
2000	80.7663	3.0098	-9.8742e-006	0.70712
2500	80.7663	3.0098	-9.8742e-006	0.70712
3000	80.7663	3.0098	-9.8742e-006	0.70712

c. Experiment 3

Statistical method of wave file features extraction was implemented using various wave files, Table 6 shows the results of this experiment. From the results shown in Table 6 we can see that statistical method is good for wave file features extraction, each wave file has a unique features set, which can be used as a signature or a key to identify or recognize the wave file.

Wav file	Dynamic range(db)	Crest factor(db)	Mean	RMS value
bird	32.0412	12.7755	-0.0033595	0.071792
bear_growl_y	42.0761	11.737	-0.039608	0.25689
bird_caw1	42.0761	15.8556	-0.0091737	0.15989
bird_caw2	42.0761	14.6131	-0.0093481	0.18448
bird_chirp	42.0761	13.5213	-0.0092506	0.20918
bird_chirping2	42.0761	14.0603	-0.0036374	0.1966
bison	42.0761	11.4746	-0.006455	0.27493
cat_big_x	42.0761	14.0567	0.0016065	0.19668
cat_fight	42.0761	10.935	-0.043354	0.28174
chicken	41.1381	18.2011	-0.0089245	0.10956
cow1	42.0761	8.8379	-0.0044406	0.35867
dog_x	42.0761	11.3235	-0.0031504	0.26941
4.1.2. Proposed k-mean of features extraction

a. Experiment 4

We took a sinusoidal signal and for different parameter values (amplitude, frequency and phase shifting), then we implemented k-mean method. Table 7 shows the results of this experiment.

Table 7. Experiment 4 results

Signal	Features(x=-4π:0.001:4π)	Clusters=4		
Y1=sin(10x+5)	213.1222	530.0000	795.0000	47.3315
Y2=5sin(10x+5)	213.1222	530.0000	795.0000	47.3315
Y3=5sin(20x+5)	213.1222	530.0000	795.0000	47.3315
Y4=5sin(20x+15)	213.1222	530.0000	795.0000	47.3315

From Table 7 we can see:

- Changing the signal parameters does not lead to changing the features set.
- Changing the features set means that the modified signal will be considered as the new same signal thus this will not affect the memory space and the recognition time.

b. Experiment 5

Here we took the first version of the digital signal, and used it to create wave file with different sampling frequencies, Table 8 and Table 9 shows the results of this experiment. From the results shown in Table 8 and Table 9 we can see that the features set remain the same for the same wave file recorded with different sampling frequencies, which mean that all the wave file versions can be considered as one file with a stable set of features.

Table 8. Experiment 5-1 results

Sampling frequency	Features set
1000	1374
1500	1374
2000	1374
2500	1374
3000	1374

Table 9. Experiment 5-2 results

Sampling frequency	Features set(1.0e+003)
Bird wave file	
11025	1.2416
12000	1.2416
10000	1.2416
8500	1.2416
6000	1.2416
15000	1.5593
12000	1.5593
11025	1.5593
10000	1.5593
6000	1.5593
3000	1.5593
1000	1.5593

Bison wave file	
11025	4.3880
12000	4.3880
10000	4.3880
6000	4.3880
3000	4.3880
1000	4.3880

From the results shown in Table 8 and Table 9 we can see that the features set remain the same for the same wave file recorded with different sampling frequencies, which mean that all the wave file versions can be considered as one file with a stable set of features.

c. Experiment 6

K-mean method of wave file features extraction was implemented using various wave files, Table 10 shows the results of this experiment. From the results shown in Table 10 we can see that k-mean method is good for wave file features extraction, each wave file has a unique features set, which can be used as a signature or a key to identify or recognize the wave file.

Table 10. Experiment 6 results

Sampling frequency	Features set(1.0e+003)
Bird wave file	
11025	4.3880
12000	4.3880
10000	4.3880
6000	4.3880
3000	4.3880
1000	4.3880

Bison wave file	
11025	4.3880
12000	4.3880
10000	4.3880
6000	4.3880
3000	4.3880
1000	4.3880
A flexible method to create wave file features (Ghazi M. J. Qaryouti)

Table 10. Experiment 6 results

Wav file	Features set (×1000)
bird	1.2416 3.3080 4.9620 0.7537
beargrowl	1.7797 5.3800 8.0700 1.1491
bird_caw1	1.1913 3.3080 4.9620 0.7665
bird_caw2	1.5103 4.2960 6.4440 1.0081
bird_chirp	0.8042 2.2280 3.3420 0.5109
bird_chirping2	0.8007 2.2312 3.3468 0.5261
bison	1.5593 4.3880 6.5820 0.9327
catbigx	1.5197 4.4880 6.7320 1.0143
catfight	1.1934 3.7468 5.6202 0.7035
chicken	0.3662 1.0000 1.5000 0.2420
cow1	0.6767 1.8120 2.7180 0.3821
dog_x	0.7145 1.8352 2.7528 0.4367

Table 11. Experiment 7 results

Wave file	Features set (×1000)
Bird wave file	Bird wave file
X=bird	1.2416 3.3080 4.9620 0.7537
X=4X	1.2416 3.3080 4.9620 0.7537
X=X+5	1.2416 3.3080 4.9620 0.7537
X=X-10	1.2416 3.3080 4.9620 0.7537
X=2X+7	1.2416 3.3080 4.9620 0.7537

Table 12. Comparisons between k-mean and statistical methods

Wave file	K-mean method	Statistical method
Original	Good	Good
Modified parameters	Good	Bad
Various sampling frequencies	Good	Good
Amplified	Good	Bad
Attenuated	Good	Bad

5. CONCLUSION

Experimental investigations of statistical and k-mean methods of wave file features extraction were proposed. Experimental results showed that k-mean method is more flexible by maintaining a stable set of features for the original wave file and other modified versions, which leads to minimizing the memory space and the required processing time needed for voice identification or recognition.

REFERENCES

[1] Brijesh N. S. and Jaymin K. B., "Comparative analysis and implementation of structured edge active contour," International Journal of Electrical and Computer Engineering (IJECE), vol. 10, no. 2, pp. 1842-1848, 2020.
[2] Barker J., et al., "The third ‘CHIME’ speech separation and recognition challenge: Dataset, task and baselines," IEEE Workshop on Automatic Speech Recognition and Understanding (ASRU), 2015, pp. 504-511.
[3] S. K. Dustoor, "Comparative Analysis of Steganographic Algorithms impacting the information in the Speech Signal for enhancing the Message Security in next Generation Mobile devices," World Congress on Information and Communication Technologies, pp. 279-284, 2011.
[4] Bin, et al., "Dynamic range estimation," IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 25, no. 9, pp. 1618-1636, 2006.
[5] B. Wu, et al., "An analytical approach for dynamic range estimation," Proceedings of the 41st annual Design Automation Conference, 2004, pp. 472-477.
[6] A. Marathe, P. Jain, V. Vyas, "Iterative improved learning algorithm for petrographic image classification accuracy enhancement," International Journal of Electrical and Computer Engineering (IJECE), vol. 9, no. 1, pp. 289-296, 2019.
[7] F. Gouyon, et al., "Classifying percussive sounds: a matter of zero-crossing rate in Proceedings of the COST G-6,“ Conference on Digital Audio Effects (DAFX-00), 2000.
[8] D. D. Jaslene, "Feature Selection and Extraction of Audio," International Journal of Innovative Research in Science, Engineering and Technology, vol. 5, no. 3, pp. 3148-3155, 2016.
[9] Sanjivani S., et al., "An Overview of Technical Progress in Speech Recognition," International Journal of Advanced Research in Computer Science and Software Engineering, vol. 3, no. 3, pp. 488-497, 2013.
[10] M. I. Ouloul, et al., “An Efficient Face Recognition Using SIFT Descriptor in RGB-D Images,” International Journal of Electrical and Computer Engineering (IJECE), vol. 5, no. 6, pp. 1227-1233, 2015.
[11] S. Narang and D. Gupta, ”Speech Feature Extraction Techniques: A Review,” International Journal of Computer Science and Mobile Computing, vol. 4, no. 3, pp. 107-114, 2015.
[12] M. J. Fadhil, R. A. Fayadh, and M. K. Wali, "Design and implementation a prototype system for fusion image by using SWT-PCA algorithm with FPGA technique,” International Journal of Electrical and Computer Engineering (IJECE), vol. 10, no. 1, pp. 757-766, 2020.
[13] Rybach, et al., "The RWTH Aachen University Open Source Speech Recognition system,” Tenth Annual Conference of the International Speech Communication Association, 2009.
[14] K. Matrouk, Ziad Alqadi, et al., "Speech Fingerprint to Identify Isolated Word-Person," World Applied Sciences Journal, vol. 31, no. 10, pp. 1767-1771, 2014.
[15] S. Khawatreh, Ziad Alqadi et al., "A Novel Methodology to Extract Voice Signal Features," International Journal of Computer Applications, vol. 179, no. 9, pp. 40-43, 2018.
[16] E. Bennalek, et al., "Voice Assessments for Detecting Patients with Parkinson’s Diseases in Different Stages," International Journal of Electrical and Computer Engineering (IJECE), vol. 8, no. 6, pp. 4265-4271, 2018.
[17] V. Jaiswal, V. Sharma, and S. Varma, "MMFO: modified moth flame optimization algorithm for region based RGB color image segmentation,” International Journal of Electrical and Computer Engineering (IJECE), vol. 10, no. 1, pp. 196-201, 2020.
[18] F. P. George, et al., "Recognition of emotional states using EEG signals based on time-frequency analysis and SVM classifier," International Journal of Electrical and Computer Engineering (IJECE), vol. 9, no. 2, pp. 1012-1020, 2019.
[19] Majed O. Al-Dwairi, et al, "A new method for voice signal features creation," International Journal of Electrical and Computer Engineering (IJECE), vol. 9, no. 5, pp. 4092-4098, 2019.
[20] Ayman Al-Rawashdeh, Ziad Al-Qadi, "Using wave equation to extract digital signal features," Engineering, Technology & Applied Science Research, vol. 8, no. 4, pp. 1356-1359, 2018.
[21] J Al Azzeh, Z Alqadi, and Qazem M Jabber, “Statistical Analysis of Methods Used to Enhanced color Image Histogram,” XX International Scientific and Technical Conference, 2017, pp. 8-15.
[22] Tareq Khan, "Smart Microwave Oven with Image Classification and Temperature Recommendation Algorithm," International Journal of Electrical and Computer Engineering (IJECE), vol. 8, no. 6, pp. 4239-4252, 2018.
[23] Jihad Nadir, Ashraf Abu Ein, and Ziad Alqadi, "A Technique to Encrypt-decrypt Stereo Wave File," International Journal of Computer and Information Technology, vol. 5, no. 5, pp. 465-470, 2016.
[24] Ashraf Abu-Ein, Ziad AA Alqadi, Jihad Nader, "A technique of hiding secret text in wave file,” International Journal of Computer Applications, pp. 0975-8887, 2016.
[25] A. S. Jamil Al-Azzeh, et al., “Adaptation of matlab K-means clustering function to create color image features,” International Journal of Research in Advanced Engineering and Technology, vol. 5, no. 2, pp. 10-18, 2019.
[26] M. Q. Shatnawi, M. Alrousan, S. Amareen, "A new approach for content-based image retrieval for medical applications using low-level image descriptors," International Journal of Electrical and Computer Engineering (IJECE), vol. 10, no. 4, pp. 4363-4371, 2020.
[27] Vijaya S. M. and Suresh K, “An efficient design approach of ROI based DWT using vedic and wallace tree multiplier on FPGA platform,” International Journal of Electrical and Computer Engineering (IJECE), vol. 9, no. 4, pp. 2433-2442, 2019.

BIOGRAPHY OF AUTHOR

Ghazi M. J. Qaryouti received his B.Sc. in electrical Engineering from Damascus university in 1982, and M.S in Mechatronics Engineering from Al-Balqa Applied University Jordan in 2006, and Ph.D. degrees in Mechatronics Engineering from De Montfort University in Leicester, UK in 2015 His research interests are in Power Electronics and Electric Machine Drives, CNC Machine, 3D Printer, Energy Efficiency and Management, Renewable System, Image processing, and signals conditioning. Email : ghazi_qaryouti@bau.edu.jo