Pathways of N removal and \(\text{N}_2\text{O} \) emission from a one-stage autotrophic N removal process under anaerobic conditions

Kai Li, Fang Fang, Han Wang, Chao Wang, Youpeng Chen, Jinsong Guo, Xixi Wang & Fuyang Jiang

To investigate the pathways of nitrogen (N) removal and \(\text{N}_2\text{O} \) emission in a one-stage autotrophic N removal process during the non-aeration phase, biofilm from an intermittent aeration sequencing batch biofilm reactor (SBBR) and organic carbon-free synthetic wastewater were applied to two groups of lab-scale batch experiments in anaerobic conditions using a \(^{15}\text{N}\) isotopic tracer and specific inhibitors, respectively. Then, the microbial composition of the biofilm was analysed using high-throughput sequencing. The results of the \(^{15}\text{N}\) isotopic experiments showed that anaerobic ammonium oxidation (Anammox) was the main pathway of N transformation under anaerobic conditions and was responsible for 83–92% of \(\text{N}_2 \) production within 24 h. Furthermore, experiments using specific inhibitors revealed that when nitrite was the main N source under anaerobic conditions, \(\text{N}_2\text{O} \) emissions from heterotrophic denitrification (HD) and ammonia-oxidizing bacteria (AOB) denitrification were 64% and 36%, respectively. Finally, analysing the microbial composition demonstrated that Proteobacteria, Planctomycetes, and Nitrospirae were the dominant microbes, corresponding to 21%, 13%, and 7% of the microbial community, respectively, and were probably responsible for HD, Anammox, and AOB denitrification, respectively.

Nitrous oxide (\(\text{N}_2\text{O} \)), a powerful greenhouse and ozone-depleting gas, has a lifetime of approximately 118 to 131 years and is 300–fold more potent than carbon dioxide (CO\(\text{2} \))\(^1\text{2}\). \(\text{N}_2\text{O} \) contributes 6 to 8% of the anthropogenic greenhouse effect worldwide\(^3\). Moreover, the atmospheric concentration of \(\text{N}_2\text{O} \) has increased at an annual rate of 0.2 to 0.3% over the past decade\(^4\). \(\text{N}_2\text{O} \) can be produced in biological wastewater treatments, especially treatments involving biological nitrogen (N) removal\(^5\text{6}\). Recently, wastewater treatment plants (WWTPs) were found to exhibit gradually rising \(\text{N}_2\text{O} \) emissions due to increases in population density and industrial activity\(^7\). Therefore, studying the \(\text{N}_2\text{O} \) emissions of biological N removal systems is beneficial for controlling the greenhouse effect and protecting the ozone layer.

The one-stage autotrophic N removal process is especially well suited for treating wastewater containing high ammonia but low organics, such as landfill leachate, livestock wastewater and agricultural effluent\(^8\), because it has several advantages: a low demand for aeration, no consumption of organic carbon and low sludge production\(^9\text{10}\). In a spatial model of biofilm from a one-stage completely autotrophic N removal process, ammonia-oxidizing bacteria (AOB) and anaerobic ammonium-oxidizing bacteria (AnAOB) grew in different regions according to the concentration of dissolved oxygen (DO)\(^11\). In this case, ammonia was initially oxidized to nitrite by AOB located in an area of higher DO, i.e., the surface of the biofilm. Then, the nitrite and remaining ammonia are converted to \(\text{N}_2 \) by AnAOB in anaerobic zones\(^6\). Kartal et al.\(^12\) presented Eq. 1 to describe the Anammox process.

\[
\text{NH}_4^+ + \text{NO}_2^- \rightarrow \text{N}_2 + 2\text{H}_2\text{O}
\] (1)
Ammonium is the main N source during one-stage autotrophic N removal. Meanwhile, nitrite is produced by the oxidation of ammonia, and N₂ forms through the pairing of one N atom from ammonium and another N atom from nitrite. Although the Anammox process is not fully understood, it is generally thought to produce no N₂O gas. Thus, improving the Anammox activity would be beneficial for reducing N₂O emissions. However, the Anammox activity and its contribution to the removal of total N (TN) have not been measured in one-stage autotrophic N removal, making reducing the N₂O generated in this process difficult.

In addition, heterotrophic denitrifying bacteria were also found in the systems used to treat wastewater containing high levels of ammonia-N without organics, which suggests that heterotrophic denitrification (HD) is likely an additional pathway for N removal in the one-stage autotrophic N removal process. Traditionally, AOB denitrification and HD have been considered the two main pathways responsible for N₂O emissions from biological N removal processes when DO is limited. The presence of AOB and HD bacteria in the system indicates that the one-stage autotrophic N removal process might be a potential source of N₂O emissions. In HD, N₂O is believed to be an intermediate produced during denitrification that can be converted into N₂ by nitrous oxide reductase (N_O). In contrast, AOB denitrification is thought to contribute the same level of N₂O emissions as HD, or perhaps more, in terrestrial and marine ecosystems because of the lack of genes encoding traditional N_O. Typically, AOB denitrification can be influenced by the concentration of DO or elevated nitrite, where HD is closely related to nitrite accumulation, oxygen inhibition and the presence of biodegradable organic compounds.

However, the contributions of AOB denitrification and HD to N₂O emissions when the one-stage autotrophic N removal process used to treat high-ammonia-N, organic-free wastewater remains unclear, especially under anaerobic conditions, such as non-aeration during the application of intermittent aeration or the inner space of the micro-biofilm environment when limited oxygen is supplied to the bulk liquid. Clearly, the emission of N₂O under anaerobic conditions is an important contribution of the total N₂O emissions of this system. Therefore, better understanding these mechanisms is essential for formulating operating strategies to minimize N₂O.

This study was conducted to investigate the pathways of N removal and N₂O emission from one-stage autotrophic Nitrogen removal process under anaerobic conditions. Biofilm from a sequencing batch biofilm reactor (SBBR) was used for two groups of batch experiments, and the microbial composition was analysed. First, an ¹⁵N isotope tracer technique was applied to investigate the contributions of Anammox and denitrification to TN removal via a one-stage autotrophic N removal process (batch test 1). Then, the N₂O emissions corresponding to AOB denitrification and HD were quantified using specific inhibitors in this system (batch test 2). Finally, the microbial diversity and functional microorganisms associated with N₂O emissions were analysed via high-throughput sequencing technology.

Results and Discussion
Performance of N transformation in the SBBR. The SBBR operated for more than one year with a stable effluent nutrient level and TN removal efficiency exceeding 80%. Figure 1 presents the N transformation performance of the SBBR in the final month of operation. The effluent TN remained in the range of 37.9–40.4 mg N L⁻¹, and the TN removal efficiency was 80.6 ± 0.6% (Fig. 1(A)). The N compounds involved in the cycle are also shown in Fig. 1(B). The NH₄⁺-N concentration gradually decreased from 89.3 mg N L⁻¹ to 0 mg N L⁻¹ as NO₂⁻-N production increased from 11.2 mg N L⁻¹ to 31.2 mg N L⁻¹, whereas the NO₃⁻-N concentration did not exceed 5 mg N L⁻¹ during this whole phase. In particular, NH₄⁺-N exhibited a higher disappearance rate during aeration phases than during non-aeration followed by the increase of NO₂⁻-N. This behaviour suggests that nitrosation occurred during the aeration phase, whereas during the non-aeration phase, NH₄⁺-N and NO₂⁻-N simultaneously disappeared via the Anammox process. These results indicate that nitrosation-Anammox is the main pathway for N removal in this system. However, during 22 to 24 h of NO₂⁻-N degradation, the NH₄⁺-N phase was completely removed, suggesting that denitrification occurred.

The N₂O emissions corresponding to a single cycle of the SBBR are shown in Fig. 1(C). According to Eq. 6, the N₂O-N emission factor throughout the process (EF_total) was 3.3% in the SBBR, which is similar to the result reported by Liu et al., and 2.7% of the TN input was converted to N₂O-N in the simultaneous nitrification-denitrification (SND) process with intermittent aeration (aeration DO: 1.5–2.0 mg/L). Jia et al., who used a lower DO (0.35–0.80 mg/L) during the aerobic phase, found that EF_total was 7.7%. These results indicated that at the one-stage, completely autotrophic N removal and SND processes likely had similar sources of N₂O emission, mainly during phases of low DO. However, the rates of N₂O emission during the aeration intervals were much higher than those during the non-aerated intervals, probably because the later are associated with lower gas/liquid transfer coefficients. As a result, N₂O emission occurs in both production processes, and stripping from the liquid occurs during aerated intervals. Furthermore, the dissolved N₂O increased during the non-aeration phase, suggesting that this phase is an important stage in N₂O generation and may generate more N₂O than the aeration phase. Specifically, the maximum rate of N₂O emission was observed between 4 and 6 h, when the increase in nitrite was maximized. This finding indicates that N₂O emission was affected by nitrite accumulation.

Pathways of N removal. Table 1 shows the substrate addition strategies and N removal performances of batch test 1. The rates of TN removal in group A and group B were −0.08 mg (L h⁻¹) and 0.07 mg (L h⁻¹), respectively, and were far below that of group C (5.82 mg (L h⁻¹)), reflecting both the anaerobic conditions of the experiments and the negligible effect of endogenous metabolism on TN removal. The concentrations of nitrogenous compounds and rates of N transformation (i.e., the appearance or disappearance rates of TN, NH₄⁺-N, NO₂⁻-N, NO₃⁻-N, and N₂O-N) were measured in group C. The results (Fig. 2(B)) demonstrated that the rate of disappearance of NH₄⁺-N (rNH₄⁺-N) decreased gradually from 0.4 to 0.2 mg (g MLSS h⁻¹). Meanwhile, the rate of disappearance of NO₂⁻-N (rNO₂⁻-N) decreased gradually from 0.5 to 0.4 mg (g MLSS h⁻¹) rNH₄⁺-N and rNO₂⁻-N displayed similar, gradually reducing trends, but rNO₂⁻-N was always higher than rNH₄⁺-N. The
average rNH4\(^+\)-N and rNO2\(^-\)-N were 0.3 and 0.4 mg (g·MLSS·h\(^{-1}\))\(^{-1}\), respectively, and the related ratio of rNO2\(^-\)-N to rNH4\(^+\)-N was 1.34, which is similar to the Anammox stoichiometry (1.32) for this ratio according to Strous et al.\(^{29}\) and van der Heijden et al.\(^{30}\). This finding indicates that Anammox plays the main role in the N removal process. During the test, the ratio of rNH4\(^+\)-N to rNO2\(^-\)-N decreased gradually from 91% to 60%, indicating a gradual increase in the relative contribution of denitrification to N removal.

The value of R\(_{30/29}\) (Fig. 2) was determined by IRMS, and the relative contributions of Anammox and denitrification were calculated (Fig. 2(B)) via Eqs 2 and 3. The results showed that R\(_{30/29}\) gradually increased from 0.09
to 0.19; thus, 83–91% of all N₂ was produced by Anammox, and 9–17% was generated via denitrification. These results suggested that Anammox plays the primary role in N removal, consistent with the conclusion drawn above. In addition, the relative contribution of denitrification was found to gradually increase during the operation. Previous studies have shown that autotrophs supply heterotrophs with soluble microbial products (SMPs) for use as electron donors and carbon sources, subsequently, in turn, autotrophs receive inorganic carbon from heterotrophs metabolizing SMPs. Therefore, the increased denitrification was probably attributable to the synthesis of SMPs, which can act as a potential electron donor for denitrification, by AOB.

N₂O emission under anaerobic conditions. The N₂O-N emission from batch test 1 gradually decreased from 17.0 to 8.2 μg (g·MLSS·h)^−1^ (Fig. 2(B)), and the EF (total) was 1.6%, as calculated using Eq. 6. The EF (total) of batch test 1 was significantly lower than that of the SBBR (3.3%) because of the absence of nitrification, which is another source of N₂O emission under aerobic conditions. Furthermore, DO exerts an important influence on N₂O emission from denitrification via HD bacteria and AOB, and the DO concentration of batch test 1 differed substantially from that of the SBBR, which may also affect N₂O emission. The isotopic composition of N₂O from batch test 1 was determined by IRMS (Fig. 2(C)). The results showed that R⁺/⁻ was much larger than R⁺, indicating that the pathways of N₂O emission are quite different from those of N₂ production. Additionally, the values of R⁺/⁻ gradually declined from 14.2 to 10.7, whereas according to Eq. 6, the ratio of D₀ to D₀ was equal to 26. This finding suggested that denitrification is not the only pathway to generate N₂O. However, Anammox does not generate N₂O. Thus, a pathway for N₂O emission other than denitrification may exist and could potentially be an intermediate step in the denitrification process.

N₂O emission from AOB denitrification and HD. To estimate the pathways of N₂O emission during the process of denitrification, an approach using specific inhibitors was applied to determine the proportions of the total N₂O emission corresponding to AOB denitrification and HD. No significant N₂O emission was observed in group I without the addition of NO₂⁻-N and inhibitors (Fig. 3). As NO₂⁻-N was added to system (group II), AOB denitrification and HD occurred simultaneously, and the average N₂O-N release rate was 11.6 μg (g·MLSS·h)^−1^, whereas according to Eq. 6, the ratio of D₀ to D₀ was equal to 26. This finding suggested that denitrification is not the only pathway to generate N₂O. However, Anammox does not generate N₂O. Thus, a pathway for N₂O emission other than denitrification may exist and could potentially be an intermediate step in the denitrification process.

Microbial distributions. Figure 4 presents the microbial composition of the biofilm based on the 16S rDNA amplicon pyrosequencing. These results suggest that the dominant microorganisms in the biofilm were
Candidatus brocadia, Anaerolineaceae, Gemmatimonadaceae, Ardenticaenia, Nitrospira, Xanthomonadales, Nitrosomonas and Denitratisoma, with relative abundances of 11.2%, 10.4%, 10.1%, 8.7%, 7.0%, 4.2%, 4.1%, and 3.3%, respectively (Fig. 4(A)). C. brocadia, Nitrosomonas and Denitratisoma have been reported to be Anammox, AOB denitrification and HD bacteria, respectively35. In addition, Nitrospira has been shown to be distributed in the outer layers of biofilms and to possess the ability to convert nitrite into nitrate36, whereas Xanthomonadales was classified as a member of Gamma proteobacteria, which are regarded as a type of HD bacteria. However, the roles of some species in N removal remain unknown. Thus, each phylum was classified based on 16S rDNA to investigate the biological bases for N removal and N 2O emissions (Fig. 4(B)). Chloroflexi, Proteobacteria, Acidobacteria, Planctomycetes, Gemmatimonadetes, Nitrospirae and Bacteroidetes were the main phyla. Most of the Anammox bacteria, HD bacteria and AOB for wastewater treatment could be classified as Proteobacteria, Planctomycetes and Nitrospirae, respectively37–39, which corresponded to 21%, 13%, and 7% of the total bacteria in the biofilm of this system. Thus, these bacteria might be the main sources of N2O emissions under anaerobic conditions.

Conclusions

The relative contributions of denitrification and Anammox to N 2O production were calculated to investigate the N removal pathways in a one-stage autotrophic N removal system under anaerobic conditions. Anammox played the most important role in N removal, and denitrification emitted the most N 2O, despite contributing little to N removal. Furthermore, HD created more N 2O emissions than AOB denitrification under anaerobic conditions, although AOB denitrification was expected to be the more worrisome source of these emissions. Therefore, improving Anammox and decreasing denitrification contributed to reducing the N2O emissions of the system.

Materials and Methods

SBBR operation and synthetic wastewater. The SBBR consisted of a rigid Plexiglas® cylinder with an effective volume of 30 L, including approximately 9 L (30%, V/V) of flexible medium for biofilm growth. The bioreactor was operated at 30 ± 2 °C with intermittent aeration (aeration:non-aeration = 2 h:2 h) and a cycle time of 24 h (i.e., 4 min of feeding, 23 h of reaction, 30 min of settling and 26 min of decanting). The DO concentration in the aeration phase was controlled at 1.5 to 2.0 mg L −1. In each cycle, approximately 10.5 L of wastewater was fed into the bioreactor, and the same amount of supernatant was withdrawn after settling, resulting in a hydraulic retention time (HRT) of 48 h. The synthetic wastewater fed into the parent SBBR contained 1.13-g L −1 NH4HCO3 (200-mg L −1 NH4 + -N), 583.61-mg L −1 NaHCO3 and 20-mg L −1 KH2PO4. NH4HCO3 and KH2PO4 were added as N and phosphorus sources, and NaHCO3 was used to regulate the pH between 7.8 and 8.2. In addition, an appropriate amount of trace elementswere added to support microorganism growth, as described by Jia et al.40.

Isotopic tracer experiment. To distinguish the contributions of Anammox and denitrification to N removal in the one-stage autotrophic N removal process, a 15N-NaNO2 isotopic tracer was added to a sealed bottle with an active volume of 30 ml, including approximately 15 ml (50%, V/V) of flexible medium for biofilm growth. The bioreactor was operated at 30 ± 2 °C with intermittent aeration (aeration:non-aeration = 2 h:2 h) and a cycle time of 24 h (i.e., 4 min of feeding, 23 h of reaction, 30 min of settling and 26 min of decanting). The DO concentration in the aeration phase was controlled at 1.5 to 2.0 mg L −1. In each cycle, approximately 10.5 ml of wastewater was fed into the bioreactor, and the same amount of supernatant was withdrawn after settling, resulting in a hydraulic retention time (HRT) of 48 h. The synthetic wastewater fed into the parent SBBR contained 1.13-g L −1 NH4HCO3 (200-mg L −1 NH4 + -N), 583.61-mg L −1 NaHCO3 and 20-mg L −1 KH2PO4, NH4HCO3 and KH2PO4 were added as N and phosphorus sources, and NaHCO3 was used to regulate the pH between 7.8 and 8.2. In addition, an appropriate amount of trace elementswere added to support microorganism growth, as described by Jia et al.40.

Figure 3. The rates of nitrogen transformation in batch experiments with inhibitors. (I) With no addition of nitrite or inhibitor; (II) with the addition of nitrite; and (III) with the addition of nitrite and inhibitors.
To check the anaerobic conditions, two control groups were performed: (A) pure water and (B) synthetic wastewater with NH_4HCO_3 only. The off-gas was collected every 6 h for 24 h to simultaneously analyse the isotopic compositions of N_2 and N_2O, and 2-ml liquid samples were collected to determine the concentrations of NH_4^+-N, NO_2^−-N and NO_3^−-N. Finally, 100 μl of 50% ZnCl_2 was added to the liquid samples to inhibit microbial activity.

The isotope composition of N_2 was analysed to quantify the contributions of Anammox and denitrification to N_2 production. In incubations with ^15NO_2^− and NH_4^+, N_2 production via Anammox consisted of one N atom from NO_2^− and another from NH_4^+, leading to the production of ^29N_2, whereas the denitrification of two N atoms from NO_2^− was assumed to produce ^30N_2. However, because the F of ^15NO_2^− was not 100%, ^28N_2, ^29N_2, and ^30N_2 were produced via Anammox, and ^28N_2, ^29N_2, and ^30N_2 were generated via denitrification. Therefore, the N_2 production mass of Anammox and denitrification could be respectively calculated according to Thamdrup and Dalsgaard.

The calculations were described as Eqs 2 and 3:
where D_{N_i} and A_{N_i} represented the mass of N_i produced by denitrification and Anammox, respectively; P_{29} and P_{30} represent the production amount of $29N_2$ and $30N_2$, respectively, and F represents the fraction of ^{15}N in the NO$_3^-$ pool. In this system, Anammox and denitrification were the only two pathways of N removal, the relative contributions of denitrification (Cd) and Anammox (Ca) to N_i production can be described as the ratio of D_{N_i} to D_{N}, plus A_{N_i}, and that of A_{N_i} to D_{N_i} plus A_{N_i}, respectively. Therefore, Cd and Ca can be described by Eqs. 4 and 5, respectively:

$$Cd = \frac{1}{F \times (R_{30/29}^{-1} + 2) - 1} \times 100\%$$

(4)

$$Ca = (1 - Cd) \times 100\%$$

(5)

In which $R_{30/29}$ represents the ratio of $^{30}N_2$ production to $^{29}N_2$ production. The isotopic composition of N_2O was also investigated. N_2O was generated as an intermediate both nitrification and denitrification during the process of biological N removal\(^\text{42}\). Therefore, denitrification should be the only pathway of N_2O emission under anaerobic conditions, and N_2O should possess an isotopic composition similar to that of the N_2 produced by denitrification; that is, the ratio of $^{46}N_2O$ to $^{45}N_2O$ ($R_{46/45}$) should be equal to the ratio of $^{30}N_2$ to $^{29}N_2$ of denitrification. The ratio of $^{30}N_2$ to $^{29}N_2$ corresponding to denitrification can be expressed using Eq. 6 according to Thamdrup and Dalsgaard\(^\text{41}\)

$$\frac{D_{30}}{D_{29}} = \frac{F}{2 \times (1 - F)}$$

(6)

where D_{30} and D_{29} represent the production of $^{30}N_2$ and $^{29}N_2$ via denitrification, respectively. Thus, if $R_{46/45}$ was not equal to the ratio of D_{30} to D_{29}, denitrification was not the only pathway for N_2O emission.

Experiments involving specific inhibitors. The use of inhibitors can facilitate investigating the magnitudes of the various processes at the source of N_2O production under anaerobic conditions. Allylthiourea (ATU) was used as the inhibitor of the nitrification of ammonia to nitrite, whereas NaClO$_3$ was used to inhibit the conversion of nitrite to nitrate catalysed by nitrite oxide-reductase\(^\text{37}\). The co-use of ATU and NaClO$_3$ can effectively inhibit the production of N_2O via AOB denitrification\(^\text{37}\), whereas N_2O emissions by heterotrophic bacteria are not significantly affected by the presence of ATU and NaClO$_3$\(^\text{37}\). Therefore, the emission of N_2O produced by HD alone and by both AOB denitrification and HD can be quantified by batch experiments with or without the inhibitors.

Thus, three batch experiments were conducted: (I) no addition of nitrite or inhibitor, (II) the addition of nitrite, and (III) the addition of both nitrite and nitrification inhibitors (ATU and NaClO$_3$). Three devices were assembled for these the batch experiments using an isotopic tracer; then, a 1-L mixture containing 100 mg wet weight of biofilm and 900 ml of wastewater (NH$_4$-N: 9.7 mg L$^{-1}$; NO$_2^-$-N: 1.8 mg L$^{-1}$; and NO$_3^-$-N: 23.6 mg L$^{-1}$) from the SBR was introduced into a sealed Erlenmeyer flask, and then, NaNO$_2$, ATU, and NaClO$_3$ were added to the effluent at concentrations of 100.0 mg N L$^{-1}$, 10.0 mg L$^{-1}$, and 1.0 g L$^{-1}$, respectively. Helium gas was introduced into the wastewater to ensure anaerobic conditions. The solution and off-gas in the devices were sampled every 6 h for 24 h, and the concentrations of NH$_4^+$-N, NO$_2^-$-N, NO$_3^-$-N and TN in the wastewater were measured to investigate the characteristics of N transformation. The N_2O emissions were also detected to identify the contributions of AOB denitrification and HD. The amount of N_2O emissions can be described as follows: II–I, the sum of AOB denitrification and HD; III–I, HD; and (II–I)–(III–I), AOB denitrification (Fig. 5).

Physicochemical analysis. The concentrations of TN, NH$_4^+$-N, NO$_2^-$-N, and NO$_3^-$-N were measured using a flow injection analyser (HachQuickchem 8500S2, Hach Inc., Loveland, CO, USA). Alkalinity and biomass dry weight (mixed liquid suspended solids, MLSS) were measured according to standard methods for water and wastewater\(^\text{44}\). The concentration of N_2O was determined with an Agilent 7820A gas chromatograph (Agilent Technology Inc., Santa Clara, CA, USA) according to Lin et al.\(^\text{40}\). The dissolved N_2O in wastewater was determined using the head space gas method described by Tsuneda et al.\(^\text{44}\). The values of $R_{46/45}$ for N_2 and $R_{46/45}$ for N_2O were measured by isotope-ratio mass spectrometry (IRMS;MAT253, Thermo Finnigan LLC, San Jose, CA, USA) according to the method described by Cao et al.\(^\text{45}\). The N_2O-N emission factors per TN converted during the interval i–$i + 1$ (h) and the whole process were calculated using Eqs 7 and 8, respectively:

$$EF_{(i)} = \frac{r_{(i)}N_2O - N}{r_{(i)}TN} \times 100\%$$

(7)

$$EF_{(\text{total})} = \frac{\sum_{i=1}^{n} r_{(i)}N_2O - N \cdot t_{(i)}}{\sum_{i=1}^{n} r_{(i)}TN \cdot t_{(i)}} \times 100\%$$

(8)
where $r_{i}^{\text{N}_2\text{O}}$ and r_{i}^{TN} represent the average rates of N_2O emissions and TN removal, respectively during the interval $i-1$ to i (h); and t_{i} is the duration of interval $i-1$ to i (h).

Microbial composition. To analyse the microbial composition in the one-stage autotrophic N removal process, biofilm from the SBBR was collected and centrifuged for to extract the DNA. The total genomic DNA was extracted using an E.Z.N.A.® Soil DNA Kit (OMEGA Bio-Tek, Inc., Norcross, GA, USA), and the bacterial 16S rDNA genes of the biofilm were sequenced using Illumina MiSeq technology at the Shanghai Majorbio Bio-pharm Technology Co., Ltd. (Shanghai, China). Ultra-fast sequence analysis (USEARCH) was used to cluster the operational taxonomic units (OTUs) of a 16S DNA gene based on 97% similarity, and the statistical abundances of different OTUs in the samples reflect those of different microbial species. Then, the microbial composition was analysed according to sequencing information and data from the National Center of Biotechnology Information (NCBI) reference genome. Finally, microorganisms were classified as Anammox bacteria, AOB and HD bacteria based on the pathway of N metabolism. Simultaneously, the relative proportions of these microorganisms were calculated based on the OTU abundances.

References

1. IPCC. *Changes in atmospheric constituents and in radiative forcing*. In *Climate change 2007: The physical science basis* (ed. Solomon, S. et al.) 130–234 (Cambridge University Press, 2007).
2. IPCC. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. *Climate change 2013: The physical science basis* (ed. Stocker, T. F. et al.) 465–570 (Cambridge University Press, 2014).
3. Montzka, S. A., Dlugokencky, E. J. & Butler, J. H. Non-CO2 greenhouse gases and climate change. *Nature* **476**, 43–50 (2011).
4. Bange, H. W. Global change: It’s not a gas. *Nature* **408**, 301–302 (2000).
5. Foley, J., de Haas, D., Yuan, Z. & Lant, P. Nitrous oxide generation in full-scale biological nutrient removal wastewater treatment plants. *Water Res.* **44**, 831–844 (2010).
6. Kampschreur, M. I. et al. Dynamics of nitric oxide and nitrous oxide emission during full-scale reject water treatment. *Water Res.* **42**, 812–826 (2008).
7. Garnier, J. et al. Nitrogen behaviour and nitrous oxide emission in the Tidal Seine river estuary (France) as influenced by human activities in the upstream watershed. *Biogeochemistry* **77**, 305–326 (2006).
8. Zhang, X. et al. Autotrophic nitrogen removal from domestic sewage in MBR–CANON system and the biodiversity of functional microbes. *Bioresource Technol.* **150**, 113–120 (2013).
9. Sleekers, A. O. et al. Completely autotrophic nitrogen removal over nitrite in one single reactor. *Water Res.* **36**, 2475–2482 (2002).
10. Third, K. A., Sleekers, A. O., Kuenen, J. G. & Jetten, M. S. M. The CANON system (completely autotrophic nitrogen removal over nitrite) under ammonium limitation: Interaction and competition between three groups of bacteria. *Syst. Appl. Microbiol.* **24**, 588–596 (2001).
11. Hao, X., Heijnen, J. J. & van Loosdrecht, M. C. M. Sensitivity analysis of a biofilm model describing a one-stage completely autotrophic nitrogen removal (CANON) process. *Biotechnol. Bioeng.* **77**, 266–277 (2002).
12. Kartal, B., Kuenen, J. G. & van Loosdrecht, M. C. M. Sewage treatment with anammox. *Science* **328**, 702–703 (2010).
13. van de Graaf, A. A. et al. Anaerobic oxidation of ammonium is a biologically mediated process. *Appl. Environ. Microbiol.* **61**, 1246–1251 (1995).
14. Kartal, B. et al. Anammox bacteria disguised as denitrifiers: Nitrate reduction to dinitrogen gas via nitrite and ammonium. *Environ. Microbiol.* **9**, 635–642 (2007).
15. van der Star, W. R. L. et al. The membrane bioreactor: A novel tool to grow anammox bacteria as free cells. *Biotechnol. Bioeng.* **101**, 286–294 (2008).
16. Chu, Z.-R. et al. Microbial characterization of aggregates within a one-stage nitritation–anammox system using high-throughput amplicon sequencing. *Chem. Eng. J.* **262**, 41–48 (2015).
17. Huang, T. et al. Ammonia-oxidation as an engine to generate nitrous oxide in an intensively managed calcareous Fluvo-aquic soil. *Sci. Rep.* **4**, 3950 (2014).
18. Wunderlin, P., Mohn, J., Joss, A., Emmenegger, L. & Siegrist, H. Mechanisms of N_2O production in biological wastewater treatment under nitrifying and denitrifying conditions. *Water Res.* **46**, 1027–1037 (2012).
19. Arai, H., Igarashi, Y. & Kodama, T. Expression of thienirandornegenes for denitrification of *Pseudomonas aeruginosa* requires a novel CRP/FNR-related transcriptional regulator, DNR, in addition to ANR. *FEMS Lett.* **371**, 73–76 (1995).
20. Dore, J. E., Popp, B. N., Karl, D. M. & Sansone, F. J. A large source of atmospheric nitrous oxide from subtropical north pacific surface waters. *Nature* **396**, 63–66 (1998).
21. Kim, S.-W., Miyahara, M., Fushinobu, S., Wakiaghi, T. & Shoun, H. Nitrous oxide emission from nitrifying activated sludge dependent on denitrification by ammonia-oxidizing bacteria. *Bioresour. Technol.* **101**, 3958–3963 (2010).
22. Wrag, N., Velthof, G. L., van Beusichem, M. L. & Oenema, O. Role of nitritifier denitrification in the production of nitrous oxide. *Soil Biol. Biochem.* **33**, 1723–1732 (2001).
23. Colliver, B. B. & Stephenson, T. Production of nitrogen and dinitrogen oxide by autotrophic nitrifiers. *Biotech. Adv.* **18**, 219–232 (2000).
24. von Schultheiss, R., Wild, D. & Gojer, W. Nitric and nitrous oxides from denitrifying activated sludge at low oxygen concentration. *Water Sci. Technol.* **30**, 123–132 (1994).
25. Lu, H. & Chandran, K. Factors promoting emissions of nitrous oxide and nitric oxide from denitrifying sequencing batch reactors operated with methanol and ethanol as electron donors. *Bioresour. Technol.* **106**, 390–398 (2010).
26. Iokawa, H., Hanaki, K. & Matsuo, T. Nitrous oxide production in high-load biological nitrogen removal process under low COD/N ratio condition. *Water Res.* **35**, 657–664 (2001).
27. Liu, X., Peng, Y., Wu, C., Aki, T. & Peng, Y. Nitrous oxide production during nitrogen removal from domestic wastewater in lab-scale sequencing batch reactor. *J. Environ. Sci.* **20**, 641–645 (2008).
28. Jia, W. et al. Nitrous oxide emission in low-oxygen simultaneous nitrification and denitrification process: Sources and mechanisms. *Bioresour. Technol.* **136**, 444–451 (2013).
29. Strous, M., Heijnen, J. J., Kuenen, J. G. & Jetten, M. S. M. The sequencing batch reactor as a powerful tool for the study of slowly growing anaerobic ammonium-oxidizing microorganisms. *Appl. Microbiol. Biotechnol.* **50**, 589–596 (1998).
30. van der Heijden, R. T. J. M., Heijnen, J. J., Hellinga, C., Romein, B. & Luyben, K. C. A. M. Linear constraint relations in biochemical reaction systems: I. Classification of the calculability and the balanceability of reaction rates. *Biotechnol. Bioeng.* **43**, 3–10 (1994).
31. Merkey, B. V., Rittmann, B. E. & Chopp, D. L. Modeling how soluble microbial products (SMP) support heterotrophic bacteria in autotroph-based biosilms. *J. Theor. Biol.* **259**, 670–683 (2009).
32. Kindaichi, T., Ito, T. & Okabe, S. Ecophysiological interaction between nitrifying bacteria and heterotrophic bacteria in autotrophic nitrifying biofilms as determined by microautoradiography-fluorescence in situ hybridization. *Appl. Environ. Microbiol.* **70**, 1641–1650 (2004).
33. Ni, B.-J., Rittmann, B. E. & Yu, H.-Q. Soluble microbial products and their implications in mixed culture biotechnology. *Trends Biotechnol.* **29**, 454–463 (2011).
34. Wolf, I. & Brumme, R. Contribution of nitrification and denitrification sources for seasonal N2O emissions in an acid German forest soil. *Soil Biol. Biochem.* **34**, 741–744 (2002).
35. Zamora, L. M. & Oschlies, A. Surface nitrification: A major uncertainty in marine N2O emissions. *Geophys. Res. Lett.* **41**, 4247–4253 (2014).
36. Goreau, T. J. et al. Production of NO2- and N2O by nitrifying bacteria at reduced concentrations of oxygen. *Appl. Environ. Microbiol.* **40**, 526–532 (1980).
37. Tallon, G., Garnier, J., Billen, G. & Gousailles, M. Nitrous oxide emissions from denitrifying activated sludge of urban wastewater treatment plants, under anoxia and low oxygenation. *Bioresour. Technol.* **99**, 2200–2209 (2008).
38. Ma, J., Wang, Z., He, D., Li, Y. & Wu, Z. Long-term investigation of a novel electrochemical membrane bioreactor for low-strength municipal wastewater treatment. *Water Res.* **48**, 98–110 (2015).
39. Hoi, S., Elshara, N., Washio, S. & Sugita, H. Nitrite-oxidizing bacteria, Nitrospira, distribution in the outer layer of the biofilm from filter materials of a recirculating water system for the goldfish *Carassiusauratus*. *Aquaculture* **264**, 297–308 (2007).
40. Jia, L., Guo, J.-S., Fang, F., Chen, Y.-P. & Zhang, Q. Effect of organic carbon on nitrogen conversion and microbial communities in the completely autotrophic nitrogen removal process. *Environ. Technol.* **33**, 1141–1149 (2012).
41. Thamdrup, B. & Dalsgaard, T. Production of N2O through anaerobic ammonium oxidation coupled to nitrate reduction in marine sediments. *Appl. Environ. Microbiol.* **68**, 1312–1318 (2002).
42. Yan, X., Han, Y., Li, Q., Sun, J. & Su, X. Impact of internal recycle ratio on nitrous oxide generation from anaerobic/anoxic/oxic biological nitrogen removal process. *Biochem. Eng. J.* **106**, 11–18 (2016).
43. Rice, E. W., Baird, A. D. & Eaton, L. S. Standard methods for the examination of water and wastewater (American Public Health Association, 2012).
44. Tsuneda, S., Mikami, M., Kimochi, Y. & Hirata, A. Effect of salinity on nitrous oxide emission in the biological nitrogen removal process for industrial wastewater. *J. Hazard. Mater.* **119**, 93–98 (2005).
45. Cao, Y. C., Sun, G. Q., Han, Y., Sun, D. I. & Wang, X. Determination of nitrogen, carbon and oxygen stable isotope ratios in N2O, CH4 and CO2 at natural abundance levels by mass spectrometer. *ActaPedol. Sin.* **45**, 249–258 (2008).

Acknowledgements

This report is based on work supported by the Natural Science Foundation of China (Project Nos 51278509 and 51578527). The authors also acknowledge the Institute of Soil Science, Chinese Academy of Sciences, for helping with isotopic data analysis.

Author Contributions

K.L. and F.F. designed the protocol. H.W. operated the SBR and prepared the biofilm samples. K.L., E.F., and C.W. performed the batch experiments. X.W. and F.J. measured the concentrations of nitrogenous compounds. Y.C. and J.G. supervised the project. K.L. and F.F. analysed the data and wrote the manuscript.

Additional Information

Competing financial interests: The authors declare no competing financial interests.

How to cite this article: Li, K. et al. Pathways of N removal and N2O emission from a one-stage autotrophic N removal process under anaerobic conditions. *Sci. Rep.* **7**, 42072; doi: 10.1038/srep42072 (2017).

Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
