Immunological Effects of Chlorinated Dibenzo-p-dioxins

Nancy I. Kerkvliet

Department of Agricultural Chemistry, Oregon State University, Corvallis, Oregon

2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) and structurally similar halogenated aromatic hydrocarbons cause a broad range of immunologic effects in experimental animals including decreased host resistance to infectious disease and suppressed humoral and cell-mediated immune responses. In the mouse, TCDD immunotoxicity has been shown to be an aryl hydrocarbon (Ah) receptor-dependent process. However, despite considerable research, the biochemical and molecular alterations that occur subsequent to Ah receptor activation that lead to altered immune reactivity remain to be elucidated. In addition to immune suppression, TCDD promotes inflammatory responses. This effect may result from upregulation of the production of inflammatory cytokines such as interleukin-1 and tumor necrosis factor. Nonhuman primates exposed to TCDD show suppressed antibody responses and changes in lymphocyte subsets in the peripheral blood. The immunotoxic effects of TCDD in humans are poorly characterized, and few studies have examined the immune status of individuals with known, documented exposure to TCDD. It is important for laboratory research to focus on defining TCDD-sensitive immunologic biomarkers in animal models that can also be used in human subjects. Understanding the mechanisms that underlie species differences in TCDD immunotoxicity is also of critical importance for extrapolation of effects seen in laboratory animals to man. — Environ Health Perspect 103(Suppl 9):47-53 (1995)

Key words: dioxins, immunotoxicity of HAH, health effects of dioxins

Introduction

2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) has posed much concern to both the public and the scientific community because of its toxic potency and widespread distribution in the environment. TCDD is the most toxic member of a large class of planar halogenated aromatic hydrocarbons (HAH) that include other environmental contaminants such as polychlorinated biphenyls (PCBs) and dibenzofurans (PCDFs). These chemicals are unusual in that most of their toxicity is elicited through their initial binding to a specific intracellular protein, the aryl hydrocarbon (Ah) receptor (AhR) (1,2). In a process similar to steroid hormone receptor-mediated responses, the receptor–ligand complex is translocated from the cytoplasm to the nucleus where it binds to DNA at specific sequences called dioxin-response elements (DREs) to modify transcription of the DRE-containing genes (3,4). A widely held hypothesis is that altered transcription leads to over production or underproduction of specific protein products that mediate the ultimate biochemical and toxic effects of TCDD and related HAH. In support of the AhR hypothesis, differences in toxic potency between various chlorinated congeners of dioxins, furans, and biphenyls generally correlate well with differences in their binding affinity for the Ah receptor (5).

Immunotoxicity Studies

Laboratory Animal Studies

The immune system appears to be one of the most sensitive targets for the toxicity of TCDD and related HAH. Studies in the 1970s demonstrated that exposure of laboratory rodents to low doses of TCDD by diet or by gavage resulted in involution of the thymus, increased susceptibility to various infectious diseases, and suppression of both cell-mediated and humoral immune functions (6,7). Subsequently, many different animal models in addition to rodents have been used to demonstrate the immunotoxicity of TCDD. Unfortunately, due to differences in experimental design and outcomes, a defined TCDD-induced immune deficiency syndrome has not emerged. Likewise, because of the difficulties associated with the measurement of many immune functions in some species of animals, there is no clear ranking of species sensitivity to TCDD immunotoxicity.

The type of immune response that is most sensitive to suppression following TCDD exposure is also difficult to generalize from animal studies. For example, the antibody response to sheep red blood cells (SRBC) in C57Bl/6 mice is very sensitive to suppression by TCDD, with a single dose of TCDD of 0.7 μg/kg sufficient to suppress this response to 50% of the control level (8–10). In contrast, a dose of TCDD as high as 30 μg/kg does not suppress this response in rats (11). However, even in mice, antibody responses to different antigens may differ more than 10-fold in sensitivity to suppression by TCDD as compared to the response to SRBC (8,9), which indicates that the nature of the antigenic stimulus is also an important factor. This is not unexpected given that different types of antigens are known to evoke different cellular interactions (e.g., antigen-presenting cells for soluble vs particulate antigens, requirement for different T-helper cell subtypes for humoral and cell-mediated responses, sensitivity to suppressor T-cell regulation, etc.). Understanding the mechanism(s) of TCDD toxicity to these different subsets of cells of the immune system will be necessary for understanding why certain immune responses are more sensitive to TCDD than others.

Involution of the thymus gland following TCDD exposure is a hallmark of TCDD toxicity in several animal species (2,12); however, no direct relationship between the effects of TCDD on the thymus and effects on immune function have been demonstrated following exposure of animals to TCDD (13,14). In adult animals, immune suppression occurs at doses of TCDD below that required for thymic atrophy (15–17), suggesting that thymus toxicity and systemic immune toxicity are independent. On the other hand, the effects of prenatal exposure to TCDD on the fetal...
However, the specific cellular defects induced by TCDD have not been fully elucidated despite considerable research. One of the problems has been a difficulty in demonstrating direct effects of TCDD on in vitro responses of lymphoid cells (35,36). This is especially true with T cells; direct effects of TCDD on T cells in vitro have not been observed even though T-cell functions in vivo are clearly altered by TCDD (14,32,33,36–38). Furthermore, when in vitro effects of TCDD are observed, they may be inconsistent with the in vivo immunotoxic effects of TCDD. For example, in vitro suppression of the antibody response to SRBC has been reported by some laboratories to be independent of the AhR (39,40), whereas suppression of this response in vivo is clearly AhR-dependent. Although the basis for the discrepancies between in vivo and in vitro effects is not known, differences in culture conditions may be partially responsible since the in vitro effects of TCDD on lymphoid cells appear to be influenced by unknown factors present in serum-supplemented tissue culture media (41,42). Interestingly, serum was also shown to modulate the induction of H3501A1-dependent enzyme activity by TCDD in primary cultures of hepatocytes (42), demonstrating that the serum phenomenon is not restricted to effects on lymphocytes.

While T-cell responses appear to be resistant to direct effects of TCDD, several laboratories have reported that TCDD directly alters B-lymphocyte functions in vitro (13,40,43,44). Studies using both murine and human B cells suggest that TCDD alters the terminal differentiation of B cells into antibody-secreting plasma cells without altering B-cell proliferation (43–45). The induction of protein kinase activity (46–48) and altered calcium homeostasis (49) have been implicated in the immunotoxic effects of TCDD on B cells. Snyder et al. (48) reported that TCDD induced the phosphorylation of 29, 45, 52, and 63 kDa proteins in B cells, which by density gradient were characterized as activated B cells. Interferon-γ (IFNγ) was shown to antagonize the TCDD-induced phosphorylation and to reverse the TCDD-induced suppression of the antibody response to SRBC in vitro. Interestingly, suppression of IFNγ production has recently been correlated with the in vitro suppression of cytotoxic T-lymphocyte activity in TCDD- and PCB-treated mice [NI Kerkvliet, unpublished data; (50)]. Thus, changes in IFNγ production may represent an underlying mechanism for TCDD-induced immunotoxicity.

Activities associated with innate immune function have also been examined following TCDD exposure and have generally been found to be resistant to suppression when assessed ex vivo. Macrophage-mediated phagocytosis, macrophage-mediated tumor cell cytosis or cytostasis, oxidative reactions of neutrophils and macrophages, and natural killer (NK) cell activity were not suppressed following TCDD exposure, with doses as high as 30 μg/kg failing to suppress NK and macrophage functions (51,52). A potentially important exception is the reported inhibition of phorbol ester-activated antitumor activity of neutrophils by TCDD (34). On the other hand, the pathology associated with TCDD toxicity often includes neutrophilia and an inflammatory response in certain tissues (e.g., liver and skin) characterized by activated macrophage and neutrophil accumulation (53–55). While these observations may simply reflect a normal inflammatory response to tissue injury, there is increasing experimental evidence to suggest that inflammatory cells may be activated by TCDD exposure. For example, TCDD exposure has been shown to produce an enhanced inflammatory response in the peritoneal cavity of mice following SRBC injection (56). This effect of TCDD was characterized by a 2- to 4-fold increase in the number of neutrophils and macrophages locally infiltrating the intraperitoneal site of SRBC injection. However, the time course of the cellular influx was not altered by TCDD exposure. Likewise, the expression of activation markers (I-A and F4/80) and the antigen-presenting function of the peritoneal exudate cells was unaltered by TCDD exposure. Thus, the effect of TCDD appeared to reflect a qualitative rather than a quantitative change in the inflammatory response. Interestingly, although enhanced antigen clearance/degradation caused by the increased numbers of phagocytic cells could result in a decreased antibody response in TCDD-treated mice, increasing the amount of antigen used for sensitization did not alter the immunosuppressive effect of TCDD (56). Thus, a relationship between the inflammatory and immunosuppressive effects of TCDD in the SRBC model was not apparent.

One mechanism by which TCDD could augment inflammatory responses is through enhanced production of inflammatory mediators. For example, recent evidence suggests that the hypersusceptibility of
TCDD- and PCB-treated animals to endotoxin (57, 58) and the increased inflammatory response to SRBC (59) may be related to an increased production of tumor necrosis factor (TNF). The ability of methylprednisolone to reverse the mortality associated with TCDD/endotoxin treatment is also consistent with a proinflammatory mechanism (60). Similarly, increased inflammatory mediator production may underlie the enhanced rat paw edema response to carrageenan and dextran in TCDD-treated rats (61, 62). A primary effect of TCDD on inflammatory mediator production is supported by the recent findings that keratinocytes exposed to TCDD in vitro have increased mRNA for interleukin-1β, plasminogen activator inhibitor-2, and transforming growth factor α and decreased mRNA for transforming growth factor β (63, 64). Interestingly, mRNA for TNF was not altered by TCDD treatment (64). The effects of TCDD on keratinocytes are similar to the effects of TCDD on the macrophage cell line IC-21 in that TCDD treatment increased endotoxin induction of mRNA for interleukin-1 but not TNF (65).

The influence of TCDD exposure on inflammatory mediator production and action is an important area for further study. In this regard, it is relevant to note that treatment of mice with a soluble TNF-binding protein, under conditions that resolved the hyperinflammatory response to SRBC induced by TCDD exposure, did not affect TCDD-induced suppression of the anti-SRBC antibody response (66). Similarly, daily treatment of mice with aminoguanidine, an inhibitor of inducible nitric oxide synthase, did not influence the suppression of the anti-SRBC antibody response by TCDD (66). Thus, the relationships, if any, between the proinflammatory and immunosuppressive effects of TCDD remain to be elucidated.

The ability of TCDD to augment the production of certain inflammatory chemoaactive mediators suggests that TCDD exposure could result in enhanced host resistance to pathogenic infection since the rapid influx of phagocytes to the site of pathogen invasion is an important factor in host resistance. However, since TCDD exposure is at the same time immunosuppressive, which results in decreased specific immune responses generated by T and B lymphocytes, the overall impact of TCDD exposure on disease susceptibility will probably vary depending on the nature of the pathogen and on the major mode of host response to the specific infectious agent. These divergent effects of TCDD on inflammation and immunity may, in fact, help to explain the disparate effects of TCDD in different host resistance models that have been previously reported (20, 52, 67, 68).

Studies in Nonhuman Primates

A limited number of studies using nonhuman primates have been conducted to assess TCDD immunotoxicity. Few immunologic effects were found in rhesus monkeys and their offspring that were chronically exposed to TCDD in food at levels of 5 or 25 parts per trillion (ppt) for 4 years (69). Although T-cell numbers decreased in the TCDD-fed mothers (with a selective decrease in CD4+ cells), T-cell function as measured by proliferation to mitogens, allogeneic cells, or xenogeneic antibodies was not affected. NK cell activity and the antibody response to tetanus toxoid were also normal. Interestingly in the offspring, T-cell numbers were increased as was the antibody response to tetanus toxoid. (It is relevant to note that the antibody response to SRBC was not measured in these studies because the antibody response to SRBC but not to tetanus toxoid was decreased in monkeys exposed to much higher levels of PCB (70).)

In other studies, a single injection of TCDD in marmosets (Callithrix jacchus) resulted in a decrease in the percentages of CD20+ B cells and CD4+ T cells and an increase in the percentage of CD8+ T cells in the blood without affecting the total numbers of these cells (71). The CD4+ subset that was most affected was the CD4+CD829+ helper-inducer or memory subset, with significant effects observed after a TCDD dose of 10 ng/kg but not after a dose of 3 ng/kg. The changes in the T-cell subsets were intensified following culture of the cells with mitogens (72). Paradoxically, however, chronic exposure of young marmosets to lower levels of TCDD (0.3 ng/kg/week for 24 weeks) produced the opposite effect of acute exposure on the CD4+CD829+ subset, with TCDD treatment resulting in a significant increase in this population (73). Upon transfer of the animals to a higher dose of TCDD (1.5 ng/kg/week) for 3 weeks, the enhancing effect was reversed and suppression of the CD4+CD829+ subset was observed. After discontinuation of dosing, the reduction in the percentage and absolute number of CD4+CD829+ cells persisted for 5 weeks, reaching normal range 7 weeks later. Based on these results the authors concluded that "extrapolations of the results obtained at higher doses to very low exposures is not justified with respect to the effects induced by TCDD on the immune system of marmosets" (73). The relevance of these changes in subset distributions to immune function in the marmoset have not been determined. Interestingly, a similar reduction in the "memory" CD4+ T-cell subset was observed in C57Bl/6 mice treated once a week for 60 weeks with 0.2 μg/kg TCDD (74), suggesting that the memory CD4+ T-cell may represent a very sensitive biomarker of exposure to TCDD. A reduction in the memory T-cell population is consistent with the immunosuppressive effects of TCDD.

Human Studies

The immunotoxicity of TCDD in humans has been the subject of a limited number of studies in which cohorts were exposed to TCDD either occupationally or as a result of residence in a TCDD-contaminated area. Mocarelli et al. (75) reported on the immune status of 44 children, 20 of whom had chloracne, that were exposed to TCDD following an explosion at a herbicide factory in Seveso, Italy. No abnormalities were found in serum immunoglobulin concentrations, levels of circulating complement, or lymphoproliferative responses to T- and B-cell mitogens. Interestingly, in a study conducted 6 years after the explosion, a different cohort of TCDD-exposed children exhibited a significant increase in complement protein levels, which correlated with the incidence of chloracne, as well as increased numbers of peripheral blood lymphocytes and increased lymphoproliferative responses (76). No specific health problems were correlated with dioxin exposure in these children.

Webb et al. (77) reported the findings from immunologic assessment of 41 persons from Missouri with documented adipose tissue levels of TCDD resulting from occupational, recreational, or residential exposure. Of the participants, 16 had tissue TCDD levels less than 20 ppt, 13 had levels between 20 and 60 ppt, and 12 had levels greater than 60 ppt. The highest level was 750 ppt. Data were analyzed by multiple regression based on adipose tissue level and the clinical-dependent variable. Increased TCDD levels were correlated with an increased percentage and total number of T lymphocytes. CD8+ and T11+ T cells accounted for the increase, while CD4+ T cells were not altered in percent or number. Lymphoproliferative responses to T-cell mitogens or tetanus toxoid were not
altered nor was the cytotoxic T-cell response. Serum immunoglobulin A (IgA) was increased but IgG was not. No adverse clinical disease was associated with these TCDD levels in these subjects. Only 2 of the 41 subjects reported a history of chloracne. These findings differ from those reported for the Quail Run Mobile Home Park residents (tissue levels unknown) in which decreased T-cell numbers (T3+, CD4+, and T11+) and suppressed cell-mediated immunity was reported (78). However, subsequent retesting of these anergic subjects failed to confirm the suppressed immunity (79). On the other hand, when sera from some of these individuals were tested for levels of the thymic peptide thymosin α-1, the entire frequency distribution for the TCDD-exposed group was shifted toward lower thymosin α-1 levels (80). A statistically significant difference between the TCDD-exposed persons and controls remained after controlling for age, sex, and socioeconomic status, with a trend of decreasing thymosin α-1 levels as the number of years of residence in the TCDD-contaminated residential area increased. The thymosin α-1 levels were not correlated with changes in other immune system parameters or with any increased incidence of clinically diagnosed immune suppression. The decrease in thymosin α-1 levels in this cohort contrasts with the increase in thymosin α-1 seen in PCB-treated monkeys (81).

Two studies have evaluated the immunologic function of Vietnam veterans exposed to TCDD via use of the pesticide Agent Orange. When U.S. Army ground troops were matched with a comparison population, no differences in lymphocyte subsets or serum immunoglobulins were found (82). In the U.S. Air Force Ranch Hand Study, comprehensive immunologic profiles were developed for each participant and correlated with serum TCDD concentrations (83). The only significant positive association with TCDD exposure was increased serum IgA level. Roegner et al. (83) suggested that the increase in serum IgA was consistent with a subclinical inflammatory response, but no other evidence for an inflammatory response was obtained.

The basis for the lack of consistent or significant exposure-related effects to TCDD in these human populations is unknown and may be dependent on several factors. Most notable in this regard is the inherent difficulties in assessing subclinical immunomodulation in an outbred human population. Most immunologic assays have a very broad range of normal responses that reduce the sensitivity to detect small changes. Similarly, the assays used to examine immune function in humans exposed to TCDD have unfortunately been based to a greater extent on what was clinically feasible (e.g., lymphocyte phenotype, mitogen responsiveness) rather than on assays that have been shown to be sensitive to TCDD in animal studies (e.g., antibody response to SRBC). Thus, the lack of consistent or significant immunotoxic effects in humans resulting from TCDD exposure may be as much a function of the assays used as the immune status of the cohort. In addition, few studies have examined the immune status of individuals with known, documented exposure to TCDD. Rather, cohorts based on presumption of exposure have been studied. There is some evidence to suggest that the lack of consistent, significant effects may sometimes be due to the inclusion of subjects that had little or no actual exposure to TCDD (77). Likewise, the important role that Ah phenotype plays in TCDD immunotoxicity has not been considered when addressing human sensitivity. Finally, in most studies, the assessment of immune function in exposed populations was carried out long after exposure to TCDD ceased. Thus, recovery from any immunotoxic effects of TCDD may have occurred by the time of testing.

As an alternate approach to evaluating the sensitivity of the human immune system to TCDD, several laboratories have recently reported on the direct in vitro effects of TCDD on human lymphocytes. Neubert et al. (72) reported that TCDD reduced the percentage of CD20 B cells and CD4/CD8 T cells in pokeweed mitogen-stimulated cultures of peripheral blood lymphocytes at concentrations as low as 10^{-12} to 10^{-14} M TCDD. These results, however, were not corroborated in similar studies reported by Lang et al. (35) in which concentrations of TCDD ranging from 10^{-7} to 10^{-11} M were tested. In another model, Wood and Holsapple (84) reported that proliferation and antibody secretion by pokeweed mitogen-stimulated human tonsillar lymphocytes were not altered by exposure to TCDD at concentrations ranging from 3 \times 10^{-8} to 10^{-10} M. Yer these same concentrations of TCDD significantly suppressed the ability of human tonsillar B cells of some donors to produce antibodies in response to toxic shock syndrome toxin (85). Because of the limited amount of data available and the lack of corroboration between laboratories, no conclusions can yet be drawn regarding the relative sensitivity of human lymphoid cells to TCDD.

Research Needs

For the field of immunotoxicology in general, there is a strong need to establish a broad database of normal values for the clinical immunology end points that may be of use as biomarkers of immune function in immunotoxicity assessments. To validate these biomarkers, there is a parallel need for animal research to identify TCDD-sensitive immune end points in animals that can also be measured in humans in order to establish correlative changes in the biomarker and immune function. In particular, it will be important to determine in animal models how well changes in immune function in the lymphoid organs (e.g., spleen, lymph nodes) correlate with changes in the expression of lymphocyte subset/activation markers in peripheral blood. Also limited at the present time are good correlative data between changes in immune function measurements and changes in host resistance to specific disease challenges induced by xenobiotic exposure. Until such correlations are established, the interpretation of changes observed in subsets/activation markers in human peripheral blood lymphocytes in terms of health risk will be limited to speculation. Research must also continue to develop and characterize immune models using multiple animal species that will lead to an understanding of the underlying mechanisms of HAH immunotoxicity. For example, there is a clear need to document Ah receptor involvement in the immunotoxicity of TCDD and related HAH in species other than mice. These studies need to go beyond descriptive immunotoxicity assessment to determine the mechanistic basis for differences in species sensitivity to TCDD immunotoxicity following both acute and chronic exposure. Until then, risk assessment must be based on the best available data derived from well-controlled animal studies on TCDD immunotoxicity. Because the antibody response to SRBC has been widely studied and has been shown to be dose-dependently suppressed by TCDD and related HAH in several animal species, including nonhuman primates, this database would appear to be best suited for current application to risk assessment. The approaches used to establish acceptable exposure levels for humans for immunotoxicity should be based on the same procedures that are used for other noncarcinogenic toxic end points.
REFERENCES

1. Poland A, Glover E, Kende AS. Stereospecific, high affinity binding of 2,3,7,8-tetrachlorodibenzo-p-dioxin by hepatic cytosol. Evidence that the binding species is the receptor for induction of aryl hydrocarbon hydroxylase. J Biol Chem 251:4936-4946 (1976).
2. Poland A, Knutson JC. 2,3,7,8-Tetrachlorodibenzo-p-dioxin and related halogenated aromatic hydrocarbons: examination of the mechanism of toxicity. Annu Rev Pharmacol Toxicol 22:517-554 (1982).
3. Cuthill S, Wilhelmsson A, Mason GGF, Gillner M, Poellinger L, Gustafson J-A. The dioxin receptor: a comparison with the glucocorticoid receptor. J Steroid Biochem 30:277-280 (1988).
4. Whitlock JP. Genetic and molecular aspects of 2,3,7,8-tetrachlorodibenzo-p-dioxin action. Annu Rev Pharmacol Toxicol 30:251-277 (1990).
5. Safe S. Polychlorinated biphenyls (PCBs), dibenzo-p-dioxins (PCDDs), dibenzofurans (PCDFs) and related compounds: environmental and mechanistic considerations which support the development of toxic equivalency factors (TEFs). Crit Rev Toxicol 21:51-88 (1990).
6. Vos JG, Luster MI. Immune alterations. In: Halogenated Biphenyls, Terphenyls, Naphthalenes, Dibenzofurans and Related Products (Kimbrough RD, Jensen SS, eds). Amsterdam:Elsevier, 1989:295-322.
7. Holappa MP, Snyder NK, Wood SC, Morris DL. A review of 2,3,7,8-tetrachlorodibenzo-p-dioxin-induced changes in immune competency: 1991 update. Toxicology 69:219-255 (1991).
8. Kerkvliet NI, Stepan LB, Brauner JA, Deyo JA, Henderson MC, Tomar RS, Buhrer DR. Influence of the Ah locus on the humoral immunotoxicity of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD): evidence for Ah receptor dependent and Ah receptor independent mechanisms of immunosuppression. Toxicol Appl Pharmacol 105:26-36 (1990).
9. House RV, Lauer LD, Murray MJ, Thomas PT, Ehlrich JP, Burleson GR, Dean JH. Examination of immune parameters and host resistance mechanisms in B6C3F1 mice following adult exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin. J Toxicol Environ Health 31:203-215 (1990).
10. Silkworth JB, Cutler DS, O'Keeffe PW, Lipinskas T. Potentiality and antagonism of 2,3,7,8-tetrachlorodibenzo-p-dioxin effects in a complex environmental mixture. Toxicol Appl Pharmacol 119:236-247 (1993).
11. Smialowicz RJ, Riddle MM, Williams WC, Diliberto JJ. Effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) on humoral immunity and lymphocyte subpopulations: differences between mice and rats. Toxicol Appl Pharmacol 124:248-256 (1994).
12. McConnell EE, Moore JA, Haseman JK, Harris MW. The comparative toxicity of chlorinated dibenzo-p-dioxins in mice and guinea pigs. Toxicol Appl Pharmacol 44:345-356 (1978).
13. Tucker AN, Vore SJ, Luster MI. Suppression of B cell differentiation by 2,3,7,8-tetrachlorodibenzo-p-dioxin. Mol Pharmacol 29:372-377 (1986).
14. Kerkvliet NI, Brauner JA. Mechanisms of 1,2,3,4,6,7,8-heptachlorodibenzo-p-dioxin (HpCDD)-induced humoral immune suppression: evidence of primary defect in T cell regulation. Toxicol Appl Pharmacol 87:18-31 (1987).
15. Silkworth JB, Antrim L. Relationship between Ah receptor-mediated polychlorinated biphenyl (PCB)-induced humoral immunosuppression and thymic atrophy. J Pharmacol Exp Ther 35:606-611 (1985).
16. Holappa MP, McCay JA, Barnes DW. Immunosuppression without liver induction by subchronic exposure to 2,7-dichlorodibenz-p-dioxin in adult female B6C3F1 mice. Toxicol Appl Pharmacol 83:445-455 (1986).
17. Kerkvliet NI, Brauner JA. Flow cytometric analysis of lymphocyte subpopulations in the spleen and thymus of mice exposed to an acute immunosuppressive dose of 2,3,7,8-tetrachlorodibenzo-p-dioxin. Environ Res 52:146-164 (1990).
18. Benjamini E, Leskowitz S. Immunology. A Short Course. 2d ed. New York:Wiley-Liss, 1991.
19. Thomas PT, Hinsdill RD. The effect of perinatal exposure to tetrachlorodibenzo-p-dioxin on the immune response of young mice. Drug Chem Toxicol 2:77-98 (1979).
20. Luster MI, Boorman GA, Tucker AN, Harris MW, Luebbe RW. Padarathsingh ML, Moore JA. Examination of bone marrow, immunologic parameters and host susceptibility following perinatal exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Int J Immunopharmacol 2:301-310 (1980).
21. Vos JG, Moore JA. Suppression of cellular immunity in rats and mice by maternal treatment with 2,3,7,8-tetrachlorodibenzo-p-dioxin. Int Arch Allergy Immunol 47:777-794 (1974).
22. Holloway SD, Lindstrom P, Blaylock BL, Comment CE, Germolec DR, Heindell JJ, Luster MI. Perinatal thymocyte antigen expression and postnatal immune development altered by gestational exposure to tetrachlorodibenzo-p-dioxin (TCDD). Teratology 44:385-393 (1991).
23. Takagi Y, Aburada S, Otake T, Ikegami N. Effect of polychlorinated biphenyls (PCBs) accumulated in the dam's body on mouse fetal immunocompetence. Arch Environ Contam Toxicol 16:375-381 (1987).
24. deHeer C, van Driesten G, Schuurman A-J, Rozing J, van Loveren H. No evidence for emergence of autoantigeneic VB6+ T cells in MLS-1a mice following exposure to a thymotoxic dose of 2,3,7,8-tetrachlorodibenzo-p-dioxin. Toxicology (in press).
25. Vecchi A, Sironi MA, Canegrati M, Recchi M, Garattini S. Immunosuppressive effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin in strains of mice with different susceptibility to induction of aryl hydrocarbon hydroxylase. Toxicol Appl Pharmacol 68:434-441 (1983).
26. Silkworth JB, Grabstein EM. Polychlorinated biphenyl immunotoxicity: dependence on isomer planarity and the Ah gene complex. Toxicol Appl Pharmacol 65:109-115 (1982).
27. Kerkvliet NI, Brauner JA, Matlock JP. Humoral immunotoxicity of polychlorinated diphenyl ethers, phenoxyphens, dioxins and furans present as contaminants of technical grade pentachlorophenol. Toxicology 36:307-324 (1985).
28. Vecchi A, Mantovani A, Sironi M, Luini M, Cairo M, Garattini S. Effect of acute exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin on humoral antibody production in mice. Chem Biol Interact 30:337-341 (1980).
29. Davis D, Safe S. Immunosuppressive activities of polychlorinated dibenzo furan congeners: quantitative structure-activity relationships and interactive effects. Toxicol Appl Pharmacol 94:141-149 (1988).
30. Silkworth JB, Cutler DS, O'Keeffe PW, Lipinskas T. Potentiality and antagonism of 2,3,7,8-tetrachlorodibenzo-p-dioxin effects in a complex environmental mixture. Toxicol Appl Pharmacol 119:236-247 (1993).
31. Clark DA, Sweeney G, Safe S, Hancock E, Kilburn DG, Gauldie J. Cellular and genetic basis for suppression of cytoxic T cell generation by holoaromatic hydrocarbons. Immunopharmacology 6:143-153 (1983).
32. Kerkvliet NI, Steppan LB, Smith BB, Youngberg JA, Henderson MC, Buhrer DR. Role of the Ah locus in suppression of cytoxic T lymphocyte (CTL) activity by halogenated aromatic hydrocarbons (PCBs and TCDD): structure-activity relationships and effects in C57B/L6 mice. Fundam Appl Toxicol 14:532-541 (1990).
33. Luster MI, Hong LH, Boorman GA, Clark G, Hayes HT, Greenlee WF, Dold K, Tucker AN. Acute myelotoxic responses in mice exposed to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Toxicol Appl Pharmacol 60:157-165 (1980).
34. Ackermann MF, Gasiwczew TA, Lamm KR, Germolec DR,
Luster MI. Selective inhibition of polymorphonuclear neutrophil activity by 2,3,7,8-tetrachlorodibenzo-p-dioxin. Toxicol Appl Pharmacol 101:470–480 (1989).

35. Lang DS, Becker S, Clark GC, Devlin RB, Koren HS. Lack of direct immunosuppressive effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) on human peripheral blood lymphocyte subsets in vivo. Arch Toxicol 68:296–302 (1994).

36. DeKrey G, Kerkvliet NI. Suppression of cytotoxic T lymphocyte activity by 2,3,7,8-tetrachlorodibenzo-p-dioxin occurs in vivo, but not in vitro, and is independent of corticosterone elevation. Toxicology 97:105–112 (1995).

37. Tomar RS, Kerkvliet NI. Reduced T helper cell function in mice exposed to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Toxicol Lett 57:55–64 (1991).

38. Lundberg K, Dencker L, Gronvik K-O. 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) inhibits the activation of antigen-specific T cells in mice. Int J Immunopharmacol 14:699–705 (1992).

39. Davis D, Safe S. Halogenated aryl hydrocarbon-induced suppression of the in vitro plaque-forming cell response to sheep red blood cells is not dependent on the Ah receptor. Immunopharmacology 21:183–190 (1990).

40. Holsapple MP, Dooley RK, McNerney PJ, McCoy JA. Direct suppression of antibody responses by chemicals dibenzodioxin intercultured spleen cells from (C57Bl/6 x C3H)F1 and DBA/2 mice. Immunopharmacology 12:175–186 (1984).

41. Morris DL, Jordan SD, Holsapple MP. Effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) on humoral immunity. I: Similarities to Staphylococcus aureus Cowan Strain I (SAC) in the in vitro T-dependent antibody response. Immunopharmacology 21:159–170 (1991).

42. Morris DL, Jeong HG, Stevens WD, Chun YJ, Karras JG, Holsapple MP. Serum modulation of the effects of TCDD on the in vitro antibody response and on enzyme induction in primary hepatocytes. Immunopharmacology 27:93–105 (1994).

43. Luster MI, Germolec DR, Clark C, Wiegand G, Rosenthal GJ. Selective effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin and corticosteroid on in vitro lymphocyte maturation. J Immunol 140:928–935 (1988).

44. Wood SC, Holsapple MP. Direct suppression of superantigen-induced IgM secretion in human lymphocytes by 2,3,7,8-TCDD. Toxicol Appl Pharmacol 122:308–313 (1993).

45. Morris DL, Holsapple MP. Effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) on humoral immunity. II: B cell activation. Immunopharmacology 21:171–182 (1991).

46. Kramer CM, Johnson KW, Dooley RK, Holsapple MP. 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) enhances antibody production and protein kinase activity in murine B cells. Biochem Biophys Res Commun 145:25–32 (1987).

47. Clark GC, Blank JA, Germolec DR, Luster MI. 2,3,7,8-Tetrachlorodibenzo-p-dioxin stimulation of tyrosine phosphorylation in B lymphocytes: potential role in immunosuppression. Mol Pharmacol 39:495–501 (1991).

48. Snyder NK, Kramer CM, Dooley RK, Holsapple MP. Characterization of protein phosphorylation by 2,3,7,8-tetrachlorodibenzo-p-dioxin in murine lymphocytes: indirect evidence for a role in the suppression of humoral immunity. Drug Chem Toxicol 16:135–163 (1993).

49. Karras JG, Holsapple MP. Inhibition of calcium-dependent B cell activation by 2,3,7,8-tetrachlorodibenzo-p-dioxin. Toxicol Appl Pharmacol 125:264–270 (1994).

50. DeKrey GK, Steppan LB, Fowles JR, Kerkvliet NI. 3,4,5,3',4',5'-Hexachlorobiphenyl-induced immune suppression: altered cytokine production by spleen cells during the course of allograft rejection. J Immunol 150:322A (1993).

51. Mantovani A, Vecchi A, Luini W, Sironi M, Candiari GP, Spreafico F, Garattini S. Effect of 2,3,7,8-tetrachlorodibenzo-p-dioxin on macrophage and natural killer cell mediated cytotoxicity in mice. Biomedicine 32:200–204 (1980).

52. Vos JG, Kreekemorgen JG, Engel HWB, Minderhout A, Van Noorle J, Boeche H. Studies on 2,3,7,8-tetrachlorodibenzo-p-dioxin induced immune suppression and decreased resistance to infection: endotoxin hypersensitivities, serum zinc concentrations and effect of thymosin treatment. Toxicology 9:75–86 (1978).

53. Weissberg JB, Zinkel JG. Effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin upon hemostasis and hematologic function in the rat. Toxicol Appl Pharmacol 51:119–123 (1973).

54. Vos JG, Moore JA, Zinkel JG. Toxicity of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) in C57Bl/6 mice. Toxicol Appl Pharmacol 29:229–241 (1974).

55. Puhl SM, Sakamoto M. Effect of 2,3,7,8-tetrachlorodibenzo-p-dioxin on murine skin. J Invest Dermatol 90:354–358 (1988).

56. Kerkvliet NI, Oughton JA. Acute inflammatory response to sheep red blood cell challenge in mice treated with 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD): phenotypic and functional analysis of peritoneal exudate cells. Toxicol Appl Pharmacol 119:248–257 (1993).

57. Clark GC, Taylor MJ, Trittcher AN, Lucier GW. Tumor necrosis factor involvement in 2,3,7,8-tetrachlorodibenzo-p-dioxin-mediated endotoxin hypersensitivity in C57Bl/6 mice congenic at the Ah locus. Toxicol Appl Pharmacol 111:422–431 (1991).

58. Taylor MJ, Lucier GW, Mahler JF, Thompson M, Lockhart AC, Clark GC. Inhibition of acute TCDD toxicity by treatment with antitumor necrosis factor antibody or dexamethasone. Toxicol Appl Pharmacol 117:126–132 (1992).

59. Moos AB, Baecher-Steppan L, Kerkvliet NI. Acute inflammatory response to sheep red blood cells in mice treated with 2,3,7,8-tetrachlorodibenzo-p-dioxin: the role of proinflammatory cytokines, IL-1 and TNF. Toxicol Appl Pharmacol 127:331–335 (1994).

60. Rosenthal GJ, Lebetkin E, Thigpen JE, Wilson R, Tucker AN, Luster MI. Characteristics of 2,3,7,8-tetrachlorodibenzo-p-dioxin induced endotoxin hypersensitivity: association with hepatotoxicity. Toxicology 56:239–251 (1989).

61. Theobald HM, Moore RW, Katz LB, Peiper RO, Peterson RE. Enhancement of carrageenan and dextran-induced edemas by 2,3,7,8-tetrachlorodibenzo-p-dioxin and related compounds. J Pharmacol Exp Ther 225:576–583 (1983).

62. Katz LB, Theobald HM, Bookska RF, Peterson RE. Characterization of the enhanced paw edema response to carrageenan and dextran in 2,3,7,8-tetrachlorodibenzo-p-dioxin-treated rats. J Pharmacol Exp Ther 230:670–677 (1984).

63. Sutter TR, Guzman K, Dold KM, Greenlee WF. Targets for dioxin: genes for plasminogen activator inhibitor-2 and intercellular adhesion molecule 1. J Biol Chem 264:415–418 (1991).

64. Gaido K, Maness SC. Regulation of gene expression and acceleration of differentiation in human keratinocytes by 2,3,7,8-tetrachlorodibenzo-p-dioxin. Toxicol Appl Pharmacol 127:199–208 (1994).

65. Steppan LB, Kerkvliet NI. Influence of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) on the production of inflammatory cytokine mRNA by C57Bl/6 macrophages. Toxicologist 11:35 (Abs 45) (1991).

66. Moos AB, Kerkvliet NI. The role of tumor necrosis factor in 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)-induced suppression of antibody response to sheep red blood cells. Toxicol Lett (in press).

67. Thigpen JE, Faith RE, McConnell EE, Moore JA. Increased susceptibility to bacterial infection as a sequel of exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin. Infect Immun 12:1319–1324 (1975).

68. Hinsdill RD, Couch DL, Speirs RS. Immunosuppression in mice induced by dioxin (TCDD) in feed. J Environ Pathol Toxicol 4:401–425 (1980).

69. Hong R, Taylor K, Azimou A. Immune abnormalities associated with chronic TCDD exposure in rhesus. C hemosphere 18:313–320 (1989).

70. Thomas PT, Hinsdill RD. Effect of polychlorinated biphenyls on the immune responses of rhesus monkeys and mice. Toxicol Appl Pharmacol 44:41–45 (1978).
the immune system. 1: Effects on peripheral lymphocyte subpopulations of a non-human primate (Callithrix jacchus) after treatment with 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Arch Toxicol 64:345–359 (1990).

72. Neubert R, Jacob-Muller U, Helge H, Stahlmann R, Neubert D. Polyhalogenated dibenzo-p-dioxins and dibenzofurans and the immune system. 2: In vitro effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) on lymphocytes of venous blood from man and a non-human primate (Callithrix jacchus). Arch Toxicol 65:213–219 (1991).

73. Neubert R, Golor G, Stahlmann R, Helge H, Neubert D. Polyhalogenated dibenzo-p-dioxins and dibenzofurans in the immune system. 4: Effects of multiple-dose treatment with 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) on peripheral lymphocyte subpopulations of a non-human primate (Callithrix jacchus). Arch Toxicol 66:250–259 (1992).

74. Oughton JA, Pereira CB, DeKrey GK, Collier JM, Frank AA, Kerkvliet NI. Phenotypic analysis of spleen, thymus, and peripheral blood cells in aged C57Bl/6 mice following long-term exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin. Fundam Appl Toxicol 25:60–69 (1995).

75. Mocarelli P, Marocchi A, Brambilla P, Gerthoux P, Young DS, Mantel N. Clinical laboratory manifestations of exposure to dioxin in children, a six-year study of the effects of an environmental disaster near Seveso, Italy. JAMA 256:2687–2695 (1986).

76. Tognoni G, Bonaccorsi A. Epidemiological problems with TCDD (A critical view). Drug Metab Rev 13:447–469 (1982).

77. Webb KB, Evans RG, Knutsen AP, Roodman ST, Roberts DW, Schramm WF, Gibson BB, Andrews JS, Needham LL, Patterson DG. Medical evaluation of subjects with known body levels of 2,3,7,8-tetrachlorodibenzo-p-dioxin. J Toxicol Environ Health 28:183–193 (1989).

78. Hoffman RE, Stehr-Green PA, Webb KB, Evans RG, Knutsen AP, Schramm RWF, Staake JL, Gibson BB, Steinberg KK. Health effects of long-term exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin. JAMA 255:2031–2038 (1986).

79. Evans RG, Webb KB, Knutsen AP, Roodman ST, Roberts DW, Bagby JR, Garrett WA, Andrews JS. A medical follow-up of the health effects of long-term exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin. Arch Environ Health 43:273–278 (1988).

80. Stehr-Green PA, Naylor PH, Hoffman RE. Diminished thymosin alpha-1 levels in persons exposed to 2,3,7,8-tetrachlorodibenzo-p-dioxin. J Toxicol Environ Health 28:285–295 (1989).

81. Tryphonas H, Luster MI, Schifman G, Dason LL, Hodgson M, Germolec D, Hayward D, Bryce F, Loo JCK, Mandy F, Arnold DL. Effect of chronic exposure of PCB (Aroclor 1254) on specific and nonspecific immune parameters in the Rhesus (Macaca mulatta) monkey. Fundam Appl Toxicol 16:773–786 (1991).

82. Centers for Disease Control Vietnam Experience Study. Health status of Vietnam veterans. II: Physical health. JAMA 259:2708–2714 (1988).

83. Roegner RH, Grubbs WD, Lustik MB, Brockman AS, Henderson SC, Williams DE, Wolfe WH, Michalek JE, Miner JC. Air Force Health Study: An Epidemiologic Investigation of Health Effects in Air Force Personnel Following Exposure to Herbicides. NTIS #AD A-237-516 through AD A-237-524, Springfield, VA:National Technical Information Service, 1991.

84. Wood SC, Karras JG, Holsapple MP. Integration of the human lymphocyte into immunotoxicological investigations. Fundam Appl Toxicol 18:450–459 (1992).

85. Wood SC, Holsapple MP. Direct suppression of superantigen-induced IgM secretion in human lymphocytes by 2,3,7,8-TCDD. Toxicol Appl Pharmacol 122:308–313 (1993).