Two-mode Bose-Einstein condensate in a high-frequency driving field that directly couples the two modes

Qi Zhang,1 Peter Hänggi,1,2 and Jiangbin Gong1,2,

1Department of Physics and Center for Computational Science and Engineering, National University of Singapore,117542, Republic of Singapore
2Institut für Physik, Universität Augsburg, Universitätstraße 1, D-86135 Augsburg, Germany
3NUS Graduate School for Integrative Sciences and Engineering, Singapore 117597, Republic of Singapore

(Dated: April 17, 2008)

A two-mode Bose-Einstein condensate coupled by a high-frequency modulation field is found to display rich features. An effective stationary Hamiltonian approach reveals the emergence of additional degenerate eigenstates as well as new topological structures of the spectrum. Possible applications, such as the suppression of nonlinear Landau-Zener tunneling, are discussed. An interesting phenomenon, which we call “deterministic symmetry-breaking trapping” associated with separatrix crossing, is also found in an adiabatic process.

PACS numbers: 03.75.Nt, 32.80.Qk, 03.75.Lm

I. INTRODUCTION

Significant research efforts have been devoted to the nonlinear dynamics of interacting cold atoms, e.g., a Bose-Einstein condensate (BEC) in an external driving field. One main motivation is to understand how we can actively control the nonlinear dynamics and how the self-interaction of cold atoms can be used to simulate fundamental models [1]. Examples include the control of the BEC self-trapping [2, 3, 4], effective turning-off of the self-interaction [5], controlled Mott-insulator transitions associated with a BEC in an optical lattice [6], stabilization of bright BEC solitons by an oscillating magnetic field tuned close to the Feshbach resonance [7], as well as production of ultracold molecules using stimulated Raman adiabatic passage [8, 9]. On a deeper level, BEC systems offer a useful tool to explore more aspects of many-body systems. In particular, the dynamics of a BEC in the large-particle-number limit is described by a mean-field nonlinear Schrödinger equation (Gross-Pitaevskii equation). The resulting nonlinearity often challenges existing theories for linear systems. For example, the adiabatic following of a two-mode nonlinear system with an external field may necessarily break down [10].

Here we aim to examine how an adiabatic Landau-Zener (LZ) tunneling process of a BEC may be manipulated by an external driving field, thus extending an earlier study for linear systems [11]. As a second motivation on a more fundamental level, we shall expose some nonlinear dynamics phenomena that do not exist in the mean-field dynamics of a BEC under field-free conditions. Specifically, we consider a two-mode BEC under a high-frequency field that directly couples the two modes (hence called “off-diagonal” driving below). A bi-

*Electronic address: phyg@nus.edu.sg
occupying two bands, with the well-depth of the optical lattice periodically modulated. In principle, these procedures should be achievable, considering previous experiments on two-mode BECs16,18. What might be even more feasible in realizing this two-mode system under off-diagonal modulation is to consider the internal states of a BEC, such as 87Rb17, where there exist two internal states separated by a relatively large hyperfine energy. Then, the energy bias γ can be effectively realized by the detuning of the coupling field from the resonance and the off-diagonal modulation may be achieved by modulating the intensity of the coupling field. Considering recent studies of two-mode nonlinear Schrödinger equations using nonlinear optical waveguides (for example, see in Ref. 4), it might be also possible to realize our system in nonlinear optics.

Consider first the non-driven case, i.e. $A = 0$. Then $H(t)$ reduces to the standard model of nonlinear LZ tunneling10. Therein the eigen-spectrum diagram as a function of γ is known to display a loop structure at the tip of the lower (upper) level for $c > \Delta_0$ ($c < -\Delta_0$). Such a loop structure, absent in linear systems, directly leads to a nonzero LZ transition probability even when γ changes adiabatically. As shown below, new system properties emerge if the driving field is turned on. Without loss of generality we will restrict ourselves to the $c > 0$ case, which requires an attractive interaction for bosons in a double-well potential or a repulsive interaction for bosons in two energy bands of an optical lattice.

In the general case of $A \neq 0$ with $\omega \gg \gamma, c, \Delta_0$, it is found that $|a|^2 = 1 - |b|^2$ also oscillates at the frequency ω. To expose possibly new physics hidden in the oscillations, another pair of wave function parameters (a',b') are found to be very useful, i.e.,

\begin{align}
 a' &= \frac{a + b}{2} e^{-i\frac{\omega}{2} \cos(\omega t)} + \frac{a - b}{2} e^{i\frac{\omega}{2} \cos(\omega t)}, \\
 b' &= \frac{a + b}{2} e^{-i\frac{\omega}{2} \cos(\omega t)} - \frac{a - b}{2} e^{i\frac{\omega}{2} \cos(\omega t)}.
\end{align}

Their equations of motion are given by

\begin{align}
 \frac{i}{\hbar} \frac{da'}{dt} &= \frac{1}{2} [\gamma \cdot \cos(\theta) + c \cdot \sin^2(\theta)] (|b'|^2 - |a'|^2) \\
 &\quad - ic \cdot \sin(\theta) \cos(\theta) (a'^* b' - a' b'^*) a' \\
 &\quad + \frac{1}{2} [\Delta_0 + i \gamma \cdot \sin(\theta) + c \cdot \sin^2(\theta)] (a'^* b' - a' b'^*) b' \\
 &\quad - a' b'^* + ic \cdot \sin(\theta) \cos(\theta) (|a'|^2 - |b'|^2) a' \\
 &\quad + \frac{1}{2} [\Delta_0 - i \gamma \cdot \sin(\theta) - c \cdot \sin^2(\theta)] (a'^* b' - a' b'^*) b',
\end{align}

and

\begin{align}
 \frac{i}{\hbar} \frac{db'}{dt} &= \frac{1}{2} [\Delta_0 - c \cdot \cos(\theta)] (|b'|^2 - |a'|^2) \\
 &\quad - \gamma \cdot \cos(\theta) \cos(\theta) (|a'|^2 - |b'|^2) a' \\
 &\quad + \frac{1}{2} [\Delta_0 - c \cdot \cos(\theta)] (a'^* b' - a' b'^*) b',
\end{align}

where $\theta = \frac{\omega}{2} \cos(\omega t)$. Along with previous studies that focused on high-frequency driving fields[4,12,13,14], we consider now sufficiently large ω, such that the oscillation in θ is much faster than the natural time scale of the system as characterized by Δ_0, γ, c (numerically, we find that the regime of $\omega > 10 \Delta_0, \omega > 10 c,$ and $\omega > 10 \gamma$, where γ_0 is the initial value of $|\gamma|$ that is sufficiently large to ensure the LZ dynamics, can be safely regarded as a high-frequency regime; experimentally, a high-frequency driving field should not interfere with the two-mode descriptions). Then Eq. (3) can be significantly reduced by considering the averages of (a',b') over $2\pi/\omega$. Speaking more rigorously, upon the large frequency condition, a zeroth-order approximation of a “1/ω” expansion can be used to yield

\begin{align}
 \frac{i}{\hbar} \frac{da'}{dt} &= \frac{1}{2} [\gamma' + c Z (|b'|^2 - |a'|^2)] a' \\
 &\quad + \frac{1}{2} [\Delta_0 + c Y (a'^* b' - a' b'^*)] b' \\
 \frac{i}{\hbar} \frac{db'}{dt} &= \frac{1}{2} [\Delta_0 - c Z (a'^* b' - a' b'^*)] a' \\
 &\quad + \frac{1}{2} [-\gamma' - c Z (|b'|^2 - |a'|^2)] b',\tag{4}
\end{align}

where $\gamma' = \gamma(\cos(\theta)/\omega) = \gamma J_0(A/\omega)$13, $c Z = c(\cos^2(\theta)/\omega) = [1 + J_0(2A/\omega)]/2 c, c Y = c(\sin^2(\theta)/\omega) = c[1 - J_0(2A/\omega)]/2 c$, J_0 is the zeroth order Bessel function of the first kind. Evidently, these newly defined parameters reflect the action of the high-frequency driving field. We stress that the validity of this kind of high-frequency approximation has been checked numerically and has been used in many situations.

Equation (4) no longer explicitly contains a time-dependent field. We can then define an effective static Hamiltonian H_{eff} that generates Eq. (4). That is,

\begin{align}
 H_{\text{eff}} = \frac{1}{2} \left(\gamma + c Z (|b'|^2 - |a'|^2) \right) \Delta_0 + c Y (a'^* b' - a' b'^*) - \gamma - c Z (|b'|^2 - |a'|^2),
\end{align}

where, for simplicity, we have replaced a' by a, b' by b, and so on. If we compare H_{eff} with the original Hamiltonian in Eq. (1) for $A = 0$, one sees that the nonlinear parameter $c Z$ can be regarded as a rescaled parameter c, and the nonlinear term containing $c Y$ is new. In addition, the ratio of $c Z$ and $c Y$ is given by $[1 + J_0(2A/\omega)]/[1 - J_0(2A/\omega)]$, easily adjustable by choosing different ω and A.

The effective Hamiltonian in Eq. (5) can be recognized as the one describing a single spin in a biaxial crystal field, with the $c Y$ ($c Z$) term describing the anisotropy in the Y (Z) direction. Indeed, H_{eff} can also be written as $H_{\text{spin}} = \gamma S_Z + \Delta_0 S_X - c Z S_Y^2 - c Y S_X^2$, where $S_Z = |a|^2 - |b|^2$, $S_X = a^2 b^* + b^2 a^*$, and $S_Y = a^2 b^* - b^2 a^*$. The corresponding second-quantization Hamiltonian exactly describing the quantum system with N bosons on the two modes is given by

\begin{align}
 \hat{H}_{Q} &= \gamma (\hat{a}^\dagger \hat{b}^\dagger - \hat{b} \hat{a}^\dagger) + \Delta_0 (\hat{a}^\dagger \hat{b}^\dagger + \hat{b} \hat{a}^\dagger) - c Z (\hat{a}^\dagger \hat{b}^\dagger / 2)^2 \\
 &\quad + c Y (\hat{a}^\dagger \hat{b}^\dagger \hat{a}^\dagger \hat{b}^\dagger / 2)^2.
\end{align}
FIG. 1: Upper panels: Level structures of the stationary effective Hamiltonian H_{eff} [see Eq. (4)], as a function of γ. The dashed lines denote the new mean-field levels that are absent in a non-driven two-mode BEC. Symbols T, D_R, and D_L indicate how the involved levels are connected with the phase space structures shown in Fig. 2. Bottom panels: Parallel results in a fully quantum treatments for $N = 20$.

III. DETAILED RESULTS

We now present in Fig. 1 the eigen-spectrum of H_{eff} as a function of γ. Evidently, the typical level structures (such as the loop structure) for a nonlinear LZ tunneling model [10] are also possessed by our system. On top of that, additional mean-field eigenstates (dashed lines) that are absent in a non-driven case also emerge through level bifurcations. The new eigenstates are directly caused by the c_Y term induced by the driving field. In particular, if a loop structure exists and if $c_Y < c_Z$, then the additional level lies inside the loop, as shown in Fig. 1(b); and if $c_Y > c_Z$ and $c_Y > \Delta_0$, then level bifurcation takes place on the lowest branch and the additional level can be below the loop structure, as shown in Fig. 1(c). Figure 1(c) shows that the additional level may also exist in the absence of a loop structure. In the bottom panels of Fig. 1, we also show fully quantum mechanical levels calculated from Eq. (4) for $N = 20$. The results confirm that the additional eigenstates we obtain on the mean-field level do have physical implications for fully quantum levels, even in the cases with a not very large N.

Let us now examine Eq. (4) from a phase space perspective, by mapping the mean-field trajectories of Eq. (4) to that of a well-defined classical Hamiltonian system. The associated phase space can be defined in terms of s and ϕ, where $\phi = \phi_b - \phi_a$, $s = |b|^2 - |a|^2$, with $a = |a|e^{i\phi_a}$ and $b = |b|e^{i\phi_b}$. Using this pair of canonical variables, the involved classical Hamiltonian is:

$$H_c = \frac{1}{2} \left[-\gamma s - \frac{c_Z}{2} s^2 + \Delta_0 \sqrt{1 - s^2} \cos(\phi) - \frac{c_Y}{2} (1 - s^2) \sin^2(\phi) \right].$$

(7)

The nonlinear eigenstates of H_{eff} now become fixed points in the phase space of H_c. Figure 2 displays phase space portraits of H_c for the parameters used in Fig. 1(a), for several values of γ covering the regime of level bifurcation. In particular, the lower parts of Fig. 2(b), 2(c) and 2(d) near $\phi = \pi$ clearly show the splitting of one fixed point into three fixed points, thus associating the level bifurcation in Fig. 1 with the splitting of a fixed point. Because both the elliptic (stable) fixed points (marked by “D_R” and “D_L” in Fig. 2) yield the dashed line in Fig. 1(a), the additional level shown in Fig. 1 in fact denotes two-fold degenerate eigenstates. By contrast, the hyperbolic (unstable) fixed point marked by “T” in Fig. 2(d) yields the level right above the degenerate eigenstates [also marked by “T” in Fig. 1(a)]. In Fig. 2(f) and 2(g), the above-mentioned three fixed points start to merge back to one fixed point, in parallel with the level merging seen in Fig. 1(a) as γ increases further. Examining the phase space globally, it is also clear that the number of the fixed points and hence the number of the nonlinear eigenstates of H_{eff} can vary from two to six, a clear sign that the nonlinear dynamics of a driven BEC can be very rich.

It should also be noted that the above-mentioned two-
fold degeneracy occurs in a high-dimensional parameter space. In particular, for fixed nonlinear parameter \(c \) and fixed field parameters \(A \) and \(\omega \), the degeneracy can still occur in a two-parameter space of \(\Delta_0 \) and \(\gamma \). This is in contrast to the well-studied non-driven model of a two-mode BEC where degeneracy occurs only along a line for fixed \(c \), \(A \) and \(\omega \).

So, how does the additional eigenstate shown in Fig. 1(a) [cases in Fig. 1(b) and Fig. 1(c) are physically less appealing] affect the adiabatic dynamics? To answer this question we numerically solve Eq. (1) for the parameters used in Fig. 1(a), with \(\gamma \ll 0 \) and the initial state put on the lowest level. As \(\gamma \) increases very slowly, the system’s state is found to follow the non-degenerate lowest level up to the bifurcation point. When \(\gamma \) increases beyond the “phase transition” point where the new two-fold degenerate level emerges, the two-fold degenerate level becomes the lowest and the system is found to move along the new level. As \(\gamma \) increases further, the two-fold degenerate level finally disappears and the system reaches the non-degenerate lowest level again, thus completing the LZ process. During the entire process, the system remains at the lowest level available and no transitions to any upper levels are found. Hence, the new two-fold degenerate level induced by the driving field offers a means to circumvent the loop structure and hence totally suppress the nonlinear LZ transition that is doomed to happen if the two-fold degenerate state were not there. To connect this observation of totally suppressed LZ tunneling in the \((a', b') \) representation [see Eq. (2)] with the direct observable \((a, b) \) in experiments, note that (i) initially if \(A = 0 \) then \(a = a' \) and \(b = b' \), and (ii) if \(A \) is switched on slowly enough as compared with \(\omega \) but fast enough as compared with the change rate of \((a', b') \) (characterized by \(\gamma \), \(\Delta_0 \) and \(c \)), then the initial values of \((a, b) \) are passed to \((a', b') \).

One more aspect of the above nonlinear LZ process remains to be examined. Because the dashed line in Fig. 1(a) denotes a two-fold degenerate eigenstate, we should study which state the system will reside in when it slowly pass the level bifurcation point with an increasing \(\gamma \). Since the phase space structure shown in Fig. 2 always possesses a mirror symmetry with respect to \(\phi = \pi \), one may intuitively expect that during the LZ process the system is trapped by either of the two stable points \(D_R \) or \(D_L \) in a random fashion, with equal probability. However, we find that this picture is incorrect here. Instead, the system is found to be deterministically trapped by \(D_R \) [see Fig. 2(d)]. Physically, this deterministic trapping means that the relative phase between \(a' \) and \(b' \) is not random during the LZ process, i.e., it is robust to small fluctuations in the initial state. A careful analysis enables us to explain this intriguing observation qualitatively. As \(\gamma \) increases, the fixed point with \(\phi = \pi \) [see the lower part of Fig. 2(c) and Fig. 2(d)] moves upwards in the phase space. When this fixed point becomes unstable [denoted “T” in Fig. 2(d)], the adiabatic following must break down and hence the actual trajectory will find itself slightly below the up-moving fixed point. As such, the trajectory starts to slowly move counter-clockwise around a separatrix, or from left to right, as illustrated in Fig. 3. At the same time, because \(\gamma \) is increasing, the separatrix deforms and swells, and as a result the trajectory necessarily crosses the separatrix on the right and hence gets trapped by \(D_R \). Indeed, if we reverse the adiabatic process, i.e., passing the bifurcation point with a decreasing \(\gamma \), then one can predict that the system will be trapped by \(D_L \), a prediction confirmed numerically. This counter-intuitive “deterministic symmetry-breaking trapping” is complementary to a well-known separatrix-crossing-induced phenomenon, i.e., “quasi-random” trapping in classical mechanics (which has been systematically applied to a few BEC systems [3]). Encouraged by the finding here and in efforts to confirm the generality of our finding, we also studied the adiabatic following dynamics of a modified rotating pendulum system whose fixed point moves with an external parameter. Analogous results are also found in this pendulum case. Hence, it should be of some interest to carry out an experimental BEC study of the observed symmetry-breaking separatrix crossing here. Such kind of experiments might also offer new insights into the validity of the mean-field description of a BEC.

IV. CONCLUSION

To conclude, we have theoretically examined the dynamics of a two-mode BEC driven by a high-frequency driving field that directly couples the two modes. Based on our results here we expect rich phenomena in general for a multi-mode BEC under a high-frequency driving field. Though our results are purely theoretical, it is our hope that the results here will stimulate future experiments on the dynamics of a BEC in high-frequency driv-
ing fields and on the control of nonlinear LZ tunneling dynamics.

Acknowledgments

One of the authors (J.G.) is supported by the start-up funding (WBS grant No. R-144-050-193-101 and No. R-144-050-193-133) and the NUS “YIA” funding (WBS grant No. R-144-000-195-123), both from the National University of Singapore. One of the authors (P.H.) acknowledges support by the DFG, via the collaborative research grant SFB-486, project A-10.

[1] O. Morsch and M. Oberthaler, Rev. Mod. Phys. 78, 179 (2006).
[2] M. Albiez et al., Phys. Rev. Lett. 95, 010402 (2005).
[3] M. Holthaus, Phys. Rev. A 64, 011601 (2001); C. Weiss and T. Jinasundera, Phys. Rev. A 72, 053626 (2005).
[4] X. Luo, Q. Xie, and B. Wu, Phys. Rev. A 76, 051802 (2007).
[5] D. Jaksch, J.I. Cirac, and P. Zoller, Phys. Rev. A 65, 033625 (2002).
[6] A. Eckardt, C. Weiss, and M. Holthaus, Phys. Rev. Lett. 95, 260404 (2005); C. E. Creffield and T.S. Monteiro, Phys. Rev. Lett. 96, 210403 (2006).
[7] H. Saito and M. Ueda, Phys. Rev. Lett. 90, 040403 (2003); F. Kh. Abdullaev et al., Phys. Rev. A 67, 013605 (2003).
[8] H. Pu et al., Phys. Rev. Lett. 98, 050406 (2007); P.D. Drummond et al., Phys. Rev. A 65, 063619 (2002).
[9] A.P. Itin and S. Watanabe, Phys. Rev. E 76, 026218 (2007).
[10] B. Wu and Q. Niu, Phys. Rev. A 61, 023402 (2000); J. Liu, B. Wu, and Q. Niu, Phys. Rev. Lett. 90, 170404 (2003).
[11] M. Wubs et al., New J. Phys. 7, 218 (2005).
[12] F. Grossmann et al., Phys. Rev. Lett. 67, 516 (1991).
[13] Y. Kayanuma and Y. Mizumoto, Phys. Rev. A 62, 061401 (R) (2000).
[14] G.F. Wang, L.B. Fu, and J. Liu, Phys. Rev. A 73, 013619 (2006).
[15] J. Liu et al., Phys. Rev. A 66, 023404 (2002).
[16] Y. Shin et al., Phys. Rev. Lett. 92, 050405 (2004); Michael Albiez et al., Phys. Rev. Lett. 95, 010402 (2005).
[17] M. R. Mathews et al., Phys. Rev. Lett. 83, 3358 (1999).
[18] M. Jona-Lasinio et al., Phys. Rev. Lett. 91, 230406 (2003).