Cannibalism and Predation as Paths for Horizontal Passage of *Wolbachia* between Terrestrial Isopods

Winka Le Clec’h, Frédéric D. Chevalier*, Lise Genty, Joanne Bertaux, Didier Bouchon, Mathieu Sicard*
Laboratoire Écologie et Biologie des Interactions, équipe Écologie, Évolution, Symbiose, UNR 7267 CNRS, Bâtiment B8, Poitiers, France

Abstract

The alpha-proteobacteria *Wolbachia* are the most widespread endosymbionts in arthropods and nematodes. Mainly maternally inherited, these so-called sex parasites have selected several strategies that increase their vertical dispersion in host populations. However, the lack of congruence between the *Wolbachia* and their host phylogenies suggests frequent horizontal transfers. One way that could be used for horizontal *Wolbachia* transfers between individuals is predation. The aim of this study was to test whether horizontal passage of *Wolbachia* is possible when an uninfected terrestrial isopod eats an infected one. After having eaten *Armadillidium vulgare* harbouring Wolbachia, the predator-recipients (the two woodlouse species *A. vulgare* and *Porcellio dilatatus dilatatus*) that were initially *Wolbachia*-free were tested positive for the presence of *Wolbachia* both by quantitative PCR and Fluorescence in situ Hybridization (FISH). Even if the titers were low compared to vertically infected individuals, this constitutes the first demonstration of *Wolbachia* occurrence in various organs of an initially uninfected host after eating an infected one.

Introduction

Wolbachia *pipientis* are endocytoplasmic alpha-proteobacteria widespread among arthropods [1,2] and filarial nematodes [3]. These symbions are mainly maternally inherited and several extended phenotypes have been naturally selected to increase their vertical transmission through generations. The extended phenotypes of the *Wolbachia* in their hosts that lead to an increased number of infected females are cytoplastic incompatibility [1,4,5], male killing [6,7], thylakoid parthenogenesis [8–10] and feminization of genetic males [11–13]. Even if the vertical transmission corresponds to the main transmission route for *Wolbachia*, several co-phylogenetic studies have revealed a lack of congruence between host and symbiont phylogenies, showing the ability of these symbionts to jump horizontally from one host to another [14–22]. Experimentally, it is possible to mimic such horizontal transfers (i.e. infection of individuals that were born without *Wolbachia*) by injecting *Wolbachia* in asymbiotic individuals [23–31]. However, the paths used by *Wolbachia* to pass horizontally from one individual to another in the wild are not well understood. It is obvious that such transfers would be more likely to occur between individuals that are ecologically connected. For instance, one path for *Wolbachia* to infect a new host is the hybridization process that can occur between two host species as demonstrated in the *Nasonia* species complex [21]. Interspecific interactions such as host-parasite relationships can also open a gate for *Wolbachia* to pass from one host species to another. In this context, Huigens et al. [10,32] have experimentally demonstrated natural inter- and intraspecific horizontal transfers of parthenogenesis-inducing *Wolbachia* between parasitoid wasps of the genus *Trichogramma* sharing a same host egg. Furthermore, Heath et al. [33] showed that *Wolbachia* could pass from *Drosophila simulans* to the parasitoid wasp *Leptopilina boulardi*. Blood contact between two injured individuals is another possible path for horizontal transfer of *Wolbachia* as experimentally demonstrated for the terrestrial crustacean *Armadillidium vulgare* [34].

Another important ecological link between hosts that can potentially be used by *Wolbachia* to pass horizontally from one host to another is their trophic connection within the food chain. Several previous studies sought to investigate the capacity of *Wolbachia* to pass between individuals of different species via predation. This has been tested for spiders [19,35], mites [36] and for some mosquito predators that were infected by the pathogenic *Wolbachia* strain aMelpop [37]. Despite these efforts, no successful horizontal transfer via predation could be demonstrated to date. In one case, predators became *Wolbachia*-positive when *Phytoseiulus persimilis* mites were experimentally fed with symbiotic larvae of the spider mite *Tetranychus urticae* [36]. However, the *Wolbachia* were restricted to the predator gut and starvation sufficed to erase all trace of infection. These results as well as those obtained on ticks that were thought to be infected by *Wolbachia* but were in fact infected by endoparasitoids that hosted the symbions [38] point out that the detection of *Wolbachia* in specimens collected from the wild is not always a proof of an actual infection of the focal species. Indeed, the detected *Wolbachia* can be restricted to the intestine containing prey during digestion or to parasites infecting this species. Testing a potential route of horizontal passage of *Wolbachia*...
They concluded that this was not a path used by *Wolbachia* as they found no infection in the recipients. However, in uninfected individuals the transmission between individuals requires experiments with different organs separately for the presence of *Wolbachia*. The ability of woodlice to get infected by eating their congeners has previously been tested by Juchault et al. [42], who fed some uninfected *A. vulgare* with pieces of individuals infected with *Wolbachia*. They concluded that this was not a path used by *Wolbachia* as they found no infection in the recipients. However, in that case, the presence of *Wolbachia* in the recipients was only tested in ovaries by transmission electron microscopy, which offers relatively long lifespan (a few years) that allows the monitoring of the infection status in the same individuals for months after the initial infection. Furthermore, their size makes it possible to test different organs separately for the presence of *Wolbachia*. The ability of woodlice to get infected by eating their congeners has previously been tested by Juchault et al. [42], who fed some uninfected *A. vulgare* with pieces of individuals infected with *Wolbachia*. To do so, we designed an experiment that increased the probability of predation and cannibalism for the woodlice: Before putting predator and prey together, infected "prey" individuals were weakened by withdrawing a large amount of hemolymph while uninfected "predator" individuals were starved. Using this approach, all "prey" individuals were eaten by "predator" individuals within two days. In the months following the predation event, the presence and quantities of *Wolbachia* in the tissues of the "predators" were assessed by quantitative PCR and Fluorescence in situ Hybridization. Thereby, we show for the first time the occurrence of *Wolbachia* in various organs of an initially uninfected host after eating an infected one.

Materials and Methods

Ethic Statement

All experimental procedures and animal manipulations did not require an ethics statement.

Biological Materials

All the animals used in these experiments were reared at 20°C in plastic breeding boxes, in natural photoperiod, on a moistened potting mix derived from peat from sphagnum moss (pH 6.4 and conductivity = 50.0 mS/m) with dead lime-tree leaves as a food source. The "predators" (i.e. animals eating an infected terrestrial isopod) for all experiments came from controlled asymbiotic (i.e. *Wolbachia*-free) lineages of *Armadillidium vulgare* and *Porcellio dilatatus dilatatus*. The animals used to create these asymbiotic *A. vulgare* and *P. d. dilatatus* control lineages were collected in Nice (France) in 1967 and in Rom (France) in 1988, respectively, and have since been reared in the laboratory. *Wolbachia* donors, hereafter called the "preys" (i.e. animals eaten by the "predators"), were *A. vulgare* infected with the *nValC* strain, from a controlled infected lineage created with animals sampled in Niort (France) and reared in the laboratory since 1961.

Cannibalism and Predation Experiments

Thirty asymbiotic one-year-old *A. vulgare* and *P. d. dilatatus* females were starved during three months in rearing boxes with no other food source than the substrate (i.e. no dead lime-tree leaves). After three months, starved *A. vulgare* or *P. d. dilatatus" predators" were individually placed in boxes with one *A. vulgare" prey". Before being put together with the "predator", the *A. vulgare" preys" were weakened by collecting 10 µL of their hemolymph after piercing their cuticle with a thin needle [44]. A fraction of the collected hemolymph was used to check the *Wolbachia* infection status of the "prey". After 48 hours, all the "preys" had been eaten by the "predators". "Predators" were then maintained in individual boxes with substrate and lime-tree leaves at libitum as a food source. For each "predator" species, animals were dissected at both 90 days and 180 days post-ingestion (PI) for DNA extraction and FISH experiments.

Tissue Samples and DNA Extractions for *Wolbachia* Quantification

Total DNA was extracted from the hemocytes (i.e. immune cells) collected from each "prey" and the ovaries, central nervous system (i.e. nerve cells and neighbouring adipocytes) and hemocytes of each "predator" after dissection at 90 days and 180 days PI as described by Kocher et al. [45]. For each sample, concentration and quality (OD ratios 260/280 nm and 260/230 nm) of the extracted DNA were measured using the Nanodrop 1000 spectrophotometer (Thermo) to remove any low quality DNA sample.

Quantification of *Wolbachia* in Host’s Tissues by qPCR

The quantification of *Wolbachia* by quantitative PCR (qPCR) was performed on (i) 10 "predators" per species (i.e. *A. vulgare* and *P. d. dilatatus*) at t = 0 before any contact of asymbiotic animals with infected "prey", (ii) 15 "predators" per species at 90 days PI and (iii) 13 "predators" for *P. d. dilatatus* and only two for *A. vulgare* at 180 days PI. Moreover, *Wolbachia* quantification was performed on the hemocytes collected from all 60 *A. vulgare" prey" individuals. qPCR reactions were performed using the LightCycler 480 system (Roche) as follows: 10 min at 95°C followed by 45 cycles [10 sec at 95°C, 10 sec at 60°C, 20 sec at 72°C]. A melting curve (65°C to 97°C) was recorded at the end of each reaction in order to check the specificity of the PCR product. The reaction mixture consisted of 5 µL of SYBRGreen MasterMix (Roche), 0.5 µL of each 10 µM specific primers [*wsp*208f (5'- TGG-TGC-ATT-TAC-TCC-AG-3') and *wsp*413r (5'-TGC-CTT-GAT-AAG-CAA-AAC-CA-3')], amplifying 205 bp of the single-copy *Wolbachia* surface protein (*wsp*) gene, 3 µL of sterile water and 1 µL of template DNA (between 10 ng and 90 ng of DNA). A Standard curve was plotted using seven dilutions of a purified *wsp* PCR product (*wsp* copies µL⁻¹: 2.63 x 10⁷, 2.63 x 10⁶, 2.63 x 10⁵, 2.63 x 10⁴, 2.63 x 10³, 2.63 x 10², 2.63 x 10¹). The number of *wsp* copies was estimated according to the standard curve. The total DNA quantity (i.e. host+*Wolbachia*) of each sample was used to normalize the resulting *wsp* gene copy counts. The results are thus given in number of *wsp* copies per ng of total DNA.

Wolbachia Localization in "Predator" Hemocytes Using Fluorescence in situ Hybridization (FISH)

Hemocytes were sampled from "predators" of each species (i.e. two *A. vulgare* females and five *P. d. dilatatus* females) 180
days PI. Each animal yielded ~10 μL of hemolymph that were pooled for each species in a microtube kept on ice. Fluorescence in situ Hybridization was performed according to Chevalier et al. [46] on a total of 4 μL for each pool fixed with 1% paraformaldehyde-PBS solution (137 mM NaCl, 6 mM Na2HPO4, 12H2O, 1.5 mM KH2PO4, 3 mM KCl, pH 7.3), at 35% formamide with the probes W1-Cy3 (5′-AAATCCGGCCGARCCGCCACCC-3′) and W2-Cy3 (5′-CTTCTGTGAGTACCGTCATTAT-3′) targeting *Wolbachia* 16S rRNA [47]. As in Chevalier et al. [46] the samples were further stained with FTTC-phalloidin (20 ng, Sigma) mixed into the hybridization buffer and with DAPI (Sigma) mixed into the mounting medium (AF1 antifading, Citifluor, England, 2.5 mg mL⁻¹). Detection was performed with an epifluorescent microscope (Axio Observer-A1, Zeiss) with Apotome (structured illumination) equipped with a 63X/1.25 objective (oil immersion) and with the AxioVision 4.8.1 software (Zeiss). The number of hemocytes and their *Wolbachia* colonization status were counted on ten random images per pool, using ImageJ software (version 1.45; [48]). Hemocytes touching the image borders, i.e. incomplete ones, were ignored.

Statistical Analysis

All statistical analyses were performed using R software (version 2.10.1). Since data distribution did not follow a normal distribution (Shapiro test, p<0.05), *Wolbachia* titers in tissues were compared with a Kruskal-Wallis followed by Dunn’s multiple comparison test or simple pairwise comparison Wilcoxon-Mann-Whitney tests.

Results

Wolbachia Quantification in the Different Host Tissues of “Predators”

The *Wolbachia* were quantified by qPCR in hemocytes of the symbiotic “preys” and in three “predator” tissues: ovaries, central nervous system (CNS) and hemocytes at 90 and 180 days post-ingestion (PI). All the “preys” harboured high titers of *Wolbachia* (mean of *Wolbachia* W. vulgare and *P. d. dilatatus* and Armadillidium vulgare) revealed that the symbiont colonizes all tissues of the asymbiotic “predators” after ingestion of infected “preys”. Comparison of *Wolbachia* titers between the two predator species (i.e. *P. d. dilatatus* or *A. vulgare*) revealed that bacterial loads were higher in *A. vulgare*, the native host of wVulC strain, at 90 days PI. Comparison of *Wolbachia* titers in the different tissues of *P. d. dilatatus* between 90 and 180 days PI showed that the infection was stable in ovaries and CNS but decreased in hemocytes. (Nat.titer: The *Wolbachia* titer in the “prey” hemolymph; #: No *A. vulgare* were infected with *Wolbachia* among the two tested animals).

![Figure 1](https://example.com/figure1.png)

Figure 1. Wolbachia loads in CNS, ovaries and hemocytes of the predators *Porcellio d. dilatatus and Armadillidium vulgare*. The *Wolbachia* quantifications performed at 90 and 180 days post-ingestion (PI) revealed that the symbiont colonizes all tissues of the asymbiotic “predators” after ingestion of infected “preys”. Comparison of the *Wolbachia* titers between the two predator species (i.e. *P. d. dilatatus* or *A. vulgare*) revealed that bacterial loads were higher in *A. vulgare*, the native host of wVulC strain, at 90 days PI. Comparison of *Wolbachia* titers in the different tissues of *P. d. dilatatus* between 90 and 180 days PI showed that the infection was stable in ovaries and CNS but decreased in hemocytes. (Nat.titer: The *Wolbachia* titer in the “prey” hemolymph; #: No *A. vulgare* were infected with *Wolbachia* among the two tested animals).

doi:10.1371/journal.pone.0060232.g001

Detection of *Wolbachia* in the “Predator” Hemocytes from Both Species Using Fluorescence in situ Hybridization (FISH)

Wolbachia quantification by qPCR revealed that “predators” were infected by *Wolbachia* at a low level after the ingestion of symbiotic (i.e. *Wolbachia*-positive) “preys”. This was confirmed by FISH detection of *Wolbachia* with specific probes on one pool of hemolymph per species, with two animals for *A. vulgare* and five for *P. d. dilatatus* (Figures 2A and B) and *A. vulgare* (Figures 2C and D) “predators” were colonized (3 and 8%, respectively). The fact that the probes target the transcript of the 16S rRNA gene further indicates that the *Wolbachia* were alive.
Table 1. *Wolbachia* detection in predators 180 days after ingestion of an infected prey.

	Total	Alive	Wolbachia detection in ovaries	Wolbachia detection in CNS	Wolbachia detection in hemocytes
Porcellio d. dilatatus	15	13	4/13	13/13	13/13
Armadillidium vulgare	15	2	0/2	1/2	1/2

doi:10.1371/journal.pone.0060232.t001

Figure 2. Fluorescence *in situ* Hybridization (FISH) detection of *Wolbachia* in circulating hemocytes of the “predators” *Porcellio d. dilatatus* and *Armadillidium vulgare* 180 days after having ingested an infected prey. Some hemocytes of *P. d. dilatatus* (A and B) and of *A. vulgare* (C and D) were infected with *Wolbachia* (3 and 8% of hemocytes, respectively). A-D: *Wolbachia* in red, Actin in green, nuclei in blue. doi:10.1371/journal.pone.0060232.g002
Discussion

Predation, though a brief interaction between living individuals of two species, is used by many parasites that pass horizontally from one host to another [50]. Cannibalism, which is one peculiar case of predation that occurs between individuals belonging to the same species, can also lead to horizontal parasite transmission [51]. The horizontal passage of Wolbachia from one individual to another by the predation route was tested unsuccessfully in several studies [36,37]. Phylogenetic analyses of the Wolbachia infecting spiders and their prey in the same ecosystem also indicated that Wolbachia would not frequently navigate between species using this route [35]. On a different note, some Endosymbiont Based Control Strategies rely on the principle that after introduction into a new host and release in the environment, Wolbachia will not escape and potentially spread along the food chain through predators. Indeed, when artificially introduced into the mosquito Aedes aegypti, the Wolbachia strain \textit{w}MelPop was not found in the five natural predator species tested after feeding on larvae or adults [37]. In one case, predators became Wolbachia-positive when \textit{Phytoseiulus persimilis} mites were experimentally fed with symbiotic larvae of the spider mite \textit{Tetranychus urticae} [36]. However, the Wolbachia were restricted to the predator gut and starvation sufficed to erase all trace of infection, showing that, in this case, the Wolbachia did not cross the intestine wall.

Here, we show that after ingestion of an \textit{A. vulgare} “prey”, \textit{w}VulC Wolbachia cells were detected in organs and blood of two different “predator” species. This indicates for the first time that some Wolbachia were able to resist the digestive process, to pass through the intestine barrier and to infect the tested species (i.e. ovaries, CNS and hemocytes). The efficiency of such a transfer was very high since 100% of the “predators” of both species were infected by \textit{w}VulC, even if all their tested tissues were not always infected at 180 days PI. Overall, the titers of Wolbachia were higher after intraspecific passages in \textit{A. vulgare} via cannibalism than after interspecific passages in \textit{P. d. dilatatus} via predation. However, the \textit{w}VulC titers in all tested tissues remained very low compared to those recorded in naturally infected \textit{A. vulgare} or after injection of Wolbachia in the haemocoele of initially asympotic individuals of \textit{P. d. dilatatus} or \textit{A. vulgare} [49]. Moreover, following this ingestion the presence of Wolbachia \textit{w}VulC strain seems to colonize the CNS in a more extensive way than the other tissues [49]. This tissue seems to constitute a kind of refuge for the Wolbachia, possibly because nerve cells are renewed less frequently compared to hemocytes and oocytes. However, in the nerve cells of individuals infected by the predation route, the infection was stable but low and did not trigger the pathogenic phenotype described in \textit{P. d. dilatatus} infected with \textit{w}VulC from \textit{A. vulgare} ovaries [49].

In this study, we demonstrate that predation and cannibalism can lead to the ingestion of Wolbachia in terrestrial isopods. Moreover, following this ingestion the presence of Wolbachia is not restricted to the intestine as other organs were capable of positive detection. This demonstrates that \textit{Wolbachia w}VulC is capable of crossing the intestine barrier and to survive, at least transiently, in a predator’s body.

Acknowledgments

We thank all the technical staff of the UMR CNRS 7267. We also thank Jessica Dittmer for comments on previous versions of the manuscript.

Author Contributions

Conceived and designed the experiments: WL, FC MS. Performed the experiments: WL, LG. Analyzed the data: WL DB LG MS. Contributed reagents/materials/analysis tools: JB. Wrote the paper: WL FC LG JB DB MS.

References

1. Werren JH (1997) Biology of Wolbachia. Annu Rev Entomol 42: 587–609.
2. Hilgenboecker K, Hammerstein P, Schlattmann P, Telschow A, Werren JH (2008) How many species are infected with Wolbachia? A statistical analysis of current data. FEMS Microbiol Lett 281: 215–220.
3. Bandi C, Anderson TJ, Grenchi C, Blaxter ML (1998) Phylogeny of Wolbachia in filarial nematodes. Proc Biol Sci 265: 2407–2413.
4. Yen JH, Barr AR (1971) The etiological agent of cytoplasmic incompatibility in \textit{Caes pipiens}. J Invertebr Pathol 22: 242–250.
5. Serbus LR, Casper-Linder C, Landmann F, Sullivan W (2008) The genetics and cell biology of Wolbachia-host interactions. Annu Rev Genet 42: 683–707.
6. Hurst GDD, Jiggins EF, Schulenburg J, Bertrand D, West SA (1999) Male-killing Wolbachia in two species of insect. Proc Biol Sci 266: 735–740.
7. Janecke J (2007) Fighting back against male-killers. Trends Ecol Evol 22: 167–170.
8. Stouthamer R, Luck RF, Hamilton WD (1990) Antibiotics cause parthenogenetic Triechoptera (Trichochromatidae) to revert to sex. Proc Natl Acad Sci USA 87: 2424–2427.
9. Stouthamer R (1997) Inherited microorganisms and arthropod reproduction. In: O’Neill SL, Hoffmann AA, Werren JH, editors. Influencial passengers. Oxford University Press, USA. 102–124.
10. Huigens ME, Luck RF, Klassen RH, Maas MF, Timmernann MJ, et al. (2000) Infectious parthenogenesis. Nature 405: 178–179.
11. Martin G, Juchault P, Legrand J (1973) Mise en e´vidence d’un micro-organisme ligne´e the´lyge`ne. C R Acad Sci Paris 276: 2313–2316.
12. Martin G, Juchault P, Legrand J (1973) Mise en evidence d’un micro-organisme intracytoplasmique symbiote de l’espice`ne Ammadiilus vulgare dont la presence accompagne l’isosexualite ou la feminisation totale des males genetiques de la lique`ne thyge`ne. C R Acad Sci Paris 276: 2313–2316.
13. Rigaud T, Gouyet G, Gouyet C, Raimond R, Moquet J, Juchault P (1991) Feminizing endocystodeiosis in the terrestrial crustacean \textit{Ammadiilus vulgare} latr. (isopoda): recent acquisitions. Endocystodeiosis & Cell Res 7: 259–273.
14. Bouchon D, Rigaud T, Juchault P (1998) Infection in isopod crustaceans: molecular identification and host feminization. Proc Biol Sci 265: 1081–1090.
15. O’Neill SL, Giordano R, Colbert AM, Karr TL, Robertson HM (1992) 16S rRNA phylogenetic analysis of the bacterial endosymbionts associated with cytoplasmic incompatibility in insects. Proc Natl Acad Sci USA 89: 2699–2702.
15. Stouthamer R, Bereuwert JA, Luck RF, Werren JH (1993) Molecular identification of microorganisms associated with parthenogenesis. Nature 361: 66–68.

16. Werren JH, Zhang W, Guo LR (1995) Evolution and phylogeny of Wolbachia: Biological and ecological aspects of transovarial transmission. Proc. Biol. Sci. 261: 53–63.

17. Zhou W, Rousset F, O’Neill S (1998) Phylogeny and PCR-based classification of Wolbachia strains using rpoB gene sequences. Proc. Biol. Sci. 265: 509–515.

18. Vavra F, Fleury F, Lepetit D, Foulquier P, Boulêtreau M (1999) Phylogenetic evidence for horizontal transmission of Wolbachia in host-parasitoid associations. Mol. Biol. Evol. 16: 1711–1723.

19. Cordaux R, Michel-Salzat A, Bouchon D (2001) Wolbachia infection in crustaceans: novel hosts and potential routes for horizontal transmission. J. Evol. Biol. 14: 237–243.

20. Baldo L, Hotopp JCD, Joly KA, Boerdeniet SR, Biber SA, et al. (2006) Multilocus sequence typing system for the endosymbiont Wolbachia pipientis. Appl. Environ Microbiol. 72: 7098–7110.

21. Kraaijeveld K, Franco P, De Knijff P, Stouthamer R, Van Alphen JJM (2011) Modes of acquisition of Wolbachia: horizontal transfer, hybrid introgression, and coevolution in the Naosia species complex. Evolution 65: 163–183.

22. Kageyama D, Narita S, Noda H (2008) Transfection of feminizing Wolbachia. J. Invertebr. Pathol. 98: 156–159.

23. Rigaud T, Pennings PS, Juchault P (2010) Wolbachia bacteria effect after experimental interspecific transfers in terrestrial isopods. J. Invertbr. Pathol. 107: 251–257.

24. Heath BD, Butcher DJ, Whitfield WGF, Hubbard SF (1999) Horizontal transfer of endosymbiotic bacteria effects after experimental interspecific transfers in terrestrial isopods. J. Invertbr. Pathol. 77: 251–257.

25. Rigaud T, Juchault P (2005) Success and failure of horizontal transfers of feminizing Wolbachia endosymbionts in woodlice. J. Evol. Biol. 18: 249–255.

26. Ruang-Areerate T, Kittayapong P (2006) Wolbachia infection on predator-prey relationships: evaluating survival and horizontal transfer between a Meliponini infected Aedes aegypti and its predators. J. Med. Entomol. 43: 624–630.

27. Plante D, Bouchard A, Malard M, Hermouet A, Capron G, et al. (2012) Detection of Wolbachia in the tick Ixodes ricinus is due to the presence of the hymenoptera endoparasitoid Iapalypus hookeri. PLoS ONE 7: e38092.

28. Farmer EE, Dubugnon L (2009) Deterriorious crustaceans become herbivores on jasmonate-deficient plants. Proc. Natl. Acad. Sci. USA 106: 935–940.

29. Warburg M, Linsenmair K, Bercovitz K (1984) The effect of climate on the distribution and abundance of isopods. Symp. Zool. Soc. Lond. 53: 339–367.

30. Pokarzhevskii AD, Van Straalen NM, Zaboev DP, Zaitsev AS (2003) Microbial links and element flows in nested detrital food webs. Pedobiologia 47: 213–224.

31. Juchault P, Legrand J, Martin G (1974) Four intracellular genomes direct weevil biology: nuclear, mitochondrial, principal endosymbiont and Wolbachia. Proc. Natl. Acad. Sci. USA 96: 6814–6819.

32. Raubeson WR (1979) Image. National Institutes of Health, Bethesda, Maryland, USA.

33. Le Clec’h W, Braquant-Varnier C, Raimond M, Couraud A, Bouchon D, et al. (2012) High virulence of Wolbachia after host switching: when autophagy hurts. PLoS Pathog. 8: e1002844.

34. Combes C (1995) Interactions durables, écologie et évolution du parasitisme. Paris: Masson. 518 p.

35. Khan K (1981) Studies of pathogens of termites of Pakistan. PhD thesis. Pakistan, University of the Punjab.

36. Aertsen A, Michiels CW (2004) Stress and how bacteria cope with death and survival. Crit. Rev. Microbiol. 30: 263–273.