Magnetoelectric Coupling and Electric Control of Magnetization in Ferromagnet-Ferroelectric-Metal Superlattices

Tianyi Cai,1,3 Sheng Ju,2 Jaekwang Lee,1 Na Sai,1 Alexander A. Demkov,1 Qian Niu,1 Zhenya Li,2 Junren Shi,3 and Enge Wang3

1 Department of Physics, The University of Texas, Austin 78712
2 Department of Physics and Jiangsu Key Laboratory of Thin Films, Soochow University, Suzhou, 215006, China
3 Institute of Physics and ICQS, Chinese Academy of Sciences, Beijing 100080, China

Ferromagnet-ferroelectric-metal superlattices are proposed to realize the large room-temperature magnetoelectric effect. Spin dependent electron screening is the fundamental mechanism at the microscopic level. We also predict an electric control of magnetization in this structure. The naturally broken inversion symmetry in our tri-component structure introduces a magnetoelectric coupling energy of PM^2. Such a magnetoelectric coupling effect is general in ferromagnet-ferroelectric heterostructures, independent of particular chemical or physical bonding, and will play an important role in the field of multiferroics.

Ferroelectricity and ferromagnetism are important in many technological applications and the quest for multiferroic materials, where these two phenomena are intimately coupled, is of significant technological and fundamental interest. In general, ferroelectricity and ferromagnetism tend to be mutually exclusive or interact weakly with each other when they coexist in a single-phase material. Increasing the spin-orbit interaction of the electrons or strategically designing a single-phase material may enhance the magnetoelectric (ME) coupling effect in a single phase multiferroic material. Practical applications of the ME effect, however, remain hindered by the small electric polarization and low Curie temperature.

Artificial composites of ferroic materials may enable the room-temperature ME effect, since both large and robust electric and magnetic polarizations can persist to room temperature. Two types of ME coupling at a ferromagnet(FM)-dielectric interface have been reported, one employing the mechanical interaction or chemical bonding and the other mediated by carriers (screening charges). The role of electrostatic screening in ferroelectric capacitors has been studied by macroscopic models. Recently, ab-initio studies of nanoscale ferroelectric(FE) capacitors and FE tunnel junctions have further confirmed that electrostatic screening is the fundamental mechanism at the FE/normal metal (NM) interface. In this letter we propose a strategy of achieving robust ME coupling in a tri-component FM/FE/NM superlattice. The additional magnetization, caused by spin-dependent screening, will accumulate at each FM/FE interface. Due to the broken inversion symmetry between the FM/FE and NM/FE interfaces, there would be a net additional magnetization in each FM/FE/NM unit cell, unlike the symmetric structures discussed in the previous work. The addition of magnetization in this superlattice will result in a large global magnetization.

The tri-component superlattice is illustrated in Fig.1 (a). When the FE layer is polarized, surface charges are created. These bound charges are compensated by the screening charge in both FM and NM electrodes. In the FM metal, the screening charges are spin polarized due to the ferromagnetic exchange interaction. The spin dependence of screening leads to additional magnetization in the FM electrode as illustrated in Fig.1(b). If the density of screening charges is denoted as η and the spin polarization of screening charges as ζ, we can directly express the induced magnetization per unit area as

$$\Delta M = \frac{\eta}{e} \zeta \mu_B.$$

(1)

As this effect depends on the orientation of the electric polarization in FE, the magnetoelectric (ME) coupling is expected.
Before starting specific calculations, let’s consider two simple cases. (1) In an ideal capacitor where all the surface charges reside at the metal (FM or NM)/FE interfaces, the density of screening charge η reaches its maximum value, $\eta = \eta_0$, where η_0 is the spontaneous polarization of the FE. This results in a large induced magnetization δM.

Induced Magnetization from screening charges.

For simplicity, we will first consider the case of zero bias, as illustrated in Fig. 1c. Here, the following assumptions are made. (1) The difference in the work function between FM and NM is ignored. (2) To screen the bound charges in FE, the charges in metal electrodes will accumulate at the FM/FE side, and there is a depletion at the NM/FE side. In this process, the total amount of charge is conserved, however, the spin density is not conserved because of the ferromagnetic exchange interaction in the FM metal.

As shown in Fig. 1, the local induced magnetization, defined as $\delta M(x) = [\delta n^\downarrow(x) - \delta n^\uparrow(x)]/\mu_B$, is a function of distance from the interface x. Here, $\delta n^\sigma(x)$ is the density of the induced screening charges with spin σ. Zhang [12] considered the FM/dielectric interface within the linearized Thomas-Fermi model and derived two coupled equations relating the local induced magnetization $\delta M(x)$ and screening potential $V_0(x)$.

\[
\begin{align*}
\delta M(x) &= -\frac{M_0/\mu_B}{1 + JN_0} eV_0(x) \\
\frac{d^2V_0(x)}{dx^2} &= \frac{1}{\lambda_{FM}} V_0(x)
\end{align*}
\]

The screening length in the FM electrode is defined as $\lambda_{FM} = \left(\frac{e^2N_0N_0 + N_0^2J + J(M_0/\mu_B)^2}{1 + JN_0}\right)^{-1/2}$, where $N_0 = N^+ + N^-$ is the total density of states, $M_0 = (N^+ - N^-)/\mu_B$ can be thought of as the spontaneous magnetization, ε_0 is the vacuum dielectric constant, and J is the strength of the ferromagnetic exchange coupling in the FM layer.

We solve the above equations for our unit cell and obtain

\[
V_0(x) = \begin{cases}
\frac{\eta \lambda_{FM} e^x/\lambda_{FM}}{\varepsilon_0}, & -t_{FM} \leq x \leq 0; \\
\frac{\eta N_0 M_0 e^{-(x-t_{FE})/\lambda_{NM}}}{\varepsilon_0}, & t_{FE} \leq x \leq t_{FE} + t_{NM},
\end{cases}
\]

where η is the density of screening charges, $\lambda_{FM(NM)}$ is the screening length of FM(NM) electrode, and t_{FM}, t_{FE} and t_{NM} are the thickness of FM, FE and NM layer, respectively. From above equations, we see that the local induced magnetization $\delta M(x)$ decays exponentially away from the FM/FE interface. This distribution is identical to that of screening charges, because in our model the effective interaction J in FM is assumed to be a constant. The total induced magnetization ΔM can be calculated by integrating $\delta M(x)$ over the FM layer,

\[
\Delta M = \int_{\text{FM layer}} \delta M(x) = -\frac{\eta M_0/e}{N_0 + JN_0^2 - J(M_0/\mu_B)^2}.
\]

The effective spin polarization of screening electrons can then be written as

\[
\zeta = -\frac{M_0}{N_0 + JN_0^2 - J(M_0/\mu_B)^2}.
\]

We have considered the induced magnetization in FM/FE/NM tri-component superlattice with several FM electrodes, i.e., Fe, Co, Ni and CrO$_2$. Detailed parameters and calculated values of ΔM are listed in Table I. The magnitude of ΔM is found to depend strongly on the choice of the FE and FM. Among the normal FM metals (Ni, Co and Fe), the largest ΔM is observed in Ni for its smallest J and highest spontaneous spin polarization $M_0/\mu_B N_0$. On the other hand, we also predict a large ΔM for the 100% spontaneous spin polarization in half-metallic CrO$_2$.

To confirm the validity of our model, we perform first-principles calculations of the Fe/FE/Pt superlattice [23]. The calculations are within the local-density approximation to density-functional theory and are carried out with VASP [24]. We choose BaTiO$_3$ (BTO) and PbTiO$_3$ (PTO) for the FE layer. Starting from the ferroelectric P4mm phase of BTO and PTO with polarization pointing along the superlattice stacking direction, we perform structural optimization of the multilayer structures by minimizing their total energies. The in-plane lattice constants are fixed to those of the tetragonal phase of bulk FEs. Fig. 2 shows the calculated induced magnetic moment relative to that of bulk Fe near the Fe/BTO interface when the polarization in BaTiO$_3$ points toward the Fe/BTO interface. It is evident that the induced moments decay exponentially as the distance from the interface increases. This result is in line with our model for the magnetization accumulation in the FM at the FE/FM interface. A numerical fitting of the exponential function yields a screening length of ~ 0.7 Å for the Fe/BaTiO$_3$/Pt structure. This value is comparable to the screening length parameters calculated using the theoretical model as shown in Table I.

Using our theoretical model we also calculate the ME coupling coefficient τ, which is defined as the ratio of the magnetization change $2\mu_0\Delta M/\lambda_{FM} \tau$ to the coercive field $V_C/(l \times t_{FE})$, where V_C is the coercive voltage and l is the number of the unit cell. The τ values listed in Table I reach as large as 0.015 G cm/V in Ni. For comparison, τ of about 0.01 G cm/V arising from the chemical bonding between Fe and Ti atoms is predicted for the Fe/BaTiO$_3$ bilayer [11]. The ME coefficient measured in epitaxial BiFeO$_3$-CoFe$_2$O$_4$ columnar nanostructures [10] is also of 0.01 G cm/V. We should point out that in our calculation the coercive field is assumed to be 200 kV/cm, if we choose the coercive field of 10 kV/cm same as Ref. [11], τ will be 20 times larger than those listed in Table I. Therefore, the ME effect arising from spin-dependent electron
duced magnetization ΔM and magnetization), we obtain the following limiting case: the screening length $\lambda \rightarrow 0$ and spin polarization $\zeta \rightarrow \pm 100\%$. In general, the leading term in Eq.(6) is linear, which is consistent with the computational result of Ref.12. It is also clear that this effect depends on the magnetization of the ferromagnetic metal.

First-principle calculations confirm the central conclusion that the ME coupling in the tri-component system is linear in polarization of FE. We compare a superlattice with BTO and that with PTO. The induced magnetization difference is 3.6 times larger in the the case of PTO. This ratio is almost exactly that of the bulk spontaneous polarization of BTO and PTO.

Electric control of magnetization. So far, we have discussed the magnetoelectric coupling effect in the case of no external bias. A natural question is what happens to ΔM when external bias V_0 is applied. In this case, the electric polarization P will have two parts: the spontaneous polarization P_0 and induced polarization. The equation determining P is obtained by minimizing the free energy. From the continuity of the normal component of the electric displacement, we find equation relating η and P: $\eta = (\epsilon_{FE} \eta_F + P)/(\epsilon_{BTO} \eta_B + P)$. Here, ϵ_{FE} is the dielectric constant of the FE layer. These two equations need to be solved self-consistently. The value of η at a given bias can then be calculated and the induced magnetization ΔM is given by Eq.(4).

The free energy density F includes contributions from the FE layer, FM layer and FM/FE interface and takes the form

$$F = \frac{t_{FE} \cdot F(P) + t_{FM} \cdot F(M) + F_I(P, M)}{t_{FE} + t_{FM} + t_{NM}}.$$

M is the magnetization of the bulk ferromagnet, and here $M=M_0$ because of zero external magnetic field. The interface energy $F_I(P, M)$ is the sum of the electrostatic energy and magnetic exchange energy of the screening charges

$$F_I(P, M) = \frac{(\lambda_F + \lambda_{NM})}{2 \epsilon_0} \eta^2 + \frac{J}{2 \mu_B^2} (M + \Delta M) \cdot \Delta M.$$

For FE, the free energy density $F(P)$ can be expressed as $F(P) = F_P + \alpha_P P^2 + \beta_P P^4 + \int_0^P E_B dP$, where F_P is the free energy density in the unpolarized state. α_P and β_P are the usual Landau parameters of bulk ferroelectric. E_B is the depolarization field in the FE film. Similarly, $F(M)$ can be expanded as a series in order parameter M, i.e., $F(M) = F_M + \mu_M M^2 + \nu_M M^4$, where F_M is the free energy density of bulk ferromagnet, μ_M and ν_M are the Landau parameters of bulk ferromagnet. The calculated induced magnetization as function of applied bias is shown in Fig.3. Clearly, the electrically controllable magnetization reversal is realized.

To discuss the macroscopic properties of the electric control of magnetization, we analyze the magnetoelectric coupling energy in our tri-component superlattice. For

FM	J (eV nm$^{-3}$)	N_0 (eV$^{-1}$ nm$^{-3}$)	$M_0/\mu_B N_0$	λ_{FM} (Å)	ΔM (μ_B nm$^{-2}$)	τ (G cm/V)
Ni	0.65	1.74	-97.3%	0.9	-0.280	0.015
Co	1.25	0.89	-58.4%	1.5	-0.126	0.004
Fe	2.40	1.11	56.8%	1.3	0.078	0.003
CrO$_2$	1.8	0.69	100%	1.7	0.323	0.010

![FIG. 2: (Color online). Layer-resolved induced magnetic moment of Fe near the interface between Fe and BaTiO$_3$ in the Fe/BaTiO$_3$/Pt superlattice. Solid line is the fitted exponential function for the induced moment as a function of the distance from the interface.](image)

| TABLE I: Parameters extracted from band structures of Ni, Co, Fe from Ref.12, CrO$_2$ from Ref.22. Here, ΔM is the value at $V_0=V_C$, where V_0 is the applied bias and V_C is the coercive bias. |

FM	J (eV nm$^{-3}$)	N_0 (eV$^{-1}$ nm$^{-3}$)	$M_0/\mu_B N_0$	λ_{FM} (Å)	ΔM (μ_B nm$^{-2}$)	τ (G cm/V)
Ni	0.65	1.74	-97.3%	0.9	-0.280	0.015
Co	1.25	0.89	-58.4%	1.5	-0.126	0.004
Fe	2.40	1.11	56.8%	1.3	0.078	0.003
CrO$_2$	1.8	0.69	100%	1.7	0.323	0.010
Considering the lowest order term of the magnetoelectric metal electrodes. V_a is the applied bias and l is the number of the unit cell. Here, the thickness of FE layer is 3 nm. However, a thicker FE layer can be used to avoid the possible electron tunneling effect.

The macroscopic average polarization to be represented by the electric polarization obtained for a unit cell, this cell needs to be chosen with special care \[25\]. Therefore, by the electric polarization obtained for a unit cell, this possible electron tunneling effect.

From Eq. (10), with a thinner metallic electrode, the ME effect will be larger, as long as the thickness of metallic electrodes are larger than the screening length, which is easy to achieve.

To summarize, expanding upon the theory of spin-dependent screening, we develop a theory of additional magnetization in tri-component superlattice. We show that the additional magnetization can be electrically controlled, and is linear in FE polarization. The latter can be switched if the coercive voltage of the ferroelectric is reached. We demonstrate that an asymmetric FM/FE/NM structure has practical advantages over previously discussed symmetric structure.

Acknowledgments: TC and QN were supported by DOE (DE-FG03-02ER45985), NSF (DMR0906025), Welch Foundation (F-1255), and NSFC (10740420252). SJ were supported by K. C. Wong Education Foundation, Hong Kong and China Postdoctoral Science Foundation. JL, NS and AAD were supported by the Office of Naval Research (N000 14-06-1-0362) and Texas Advance Computing Center.

\[P = \frac{P \cdot t_{FE} + \eta(t_{FM} + t_{NM})}{t_{FE} + t_{FM} + t_{NM}}. \]

The macroscopic average magnetization \vec{M} is

\[\vec{M} = \frac{M \cdot t_{FM} + \Delta M}{t_{FE} + t_{FM} + t_{NM}}. \]

Considering the lowest order term of the magnetoelectric coupling, \vec{P} and \vec{M} can be expanded as $\vec{P} = c_p P + c'_p P M; \vec{M} = c_m M + c'_m P M$. Therefore, the total free energy (Eq. (7)) can be expressed as the power series of \vec{P} and \vec{M}, $F(\vec{P}, \vec{M}) = F_0 + \alpha P^2 + \beta P^4 + \mu M^2 + \nu M^4 + \chi P M^2 + \cdots$. We would like to point out that biquadratic ME coupling $P^2 M^2$ is easily achievable, but is usually weak and is not electrically controllable. However, because of the naturally broken inversion symmetry, the large ME coupling $P M^2$ is possible in our tri-component structure.

The ME coupling in FM/FE/NM superlattices may be observed experimentally and may have practical applications. Though the net additional magnetization of each FM/FE/NM unit cell is small, stacking several of them in a superlattice will result in a large overall magnetization.

[1] M. Fiebig, J. Phys. D 38, R123 (2005).
[2] N. A. Hill, J. Phys. Chem. 104, 6694, (2000).
[3] W. Eerenstein, N. D. Mathur, and J. F. Scott, Nature (London) 442, 759 (2006).
[4] S.-W. Cheong and M. Mostovoy, Nature Materials 6, 13 (2007).
[5] R. Ramesh and N. A. Spaldin, Nature Materials 6, 21 (2007).
[6] Y. Tokura, J. Magn. Magn. Mater. 310, 1145 (2007).
[7] A. Malashevich and D. Vanderbilt, Phys. Rev. Lett. 101, 073210 (2008).
[8] C. J. Fennie and K. M. Rabe, Phys. Rev. Lett. 97, 267602 (2006).
[9] H. Zheng, J. Wang, S. E. Lofland, Z. Ma, L. Mohasses-Ardabili, T. Zhao, L. Salamanca-Riba, S. R. Shinde, S. B. Ogale, F. Bai, D. Viehland, Y. Jia, D. G. Schlom, M. Wuttig, A. Roytburd, R. Ramesh1, Science 303, 661 (2004).
[10] F. Zavaliche, T. Zhao, H. Zheng, F. Straub, M. P. Cruz, P.-L. Yang, D. Hao, and R. Ramesh, Nano Letters 5, 1793 (2005).
[11] C. G. Duan, S. S. Jaswal, and E. Y. Tsymbal, Phys. Rev. Lett. 97, 047201 (2006).
[12] S. F. Zhang, Phys. Rev. Lett. 83, 640 (1999).
[13] J. M. Rondinelli, M. Stengel and N. A. Spaldin, Nature Nanotechnology 3, 46 (2008).
[14] C.G. Duan, J.P. Velev, R.F. Savirianov, Z.Q. Zhu, J.H. Chu, S.S. Jaswal, and E.Y. Tsymbal, Phys. Rev. Lett. 101, 137201 (2008).
[15] T. Maruyama, Y. Shiota, T. Nozaki, K. Ohta, N. Toda, M. Mizuguchi, A. A. Tulapurkar, T. Shinjo, M. Shiraishi, S. Mizukuchi, Y. Ando, and Y. Suzuki, Nature Nanotechnology 4, 158 (2009).
[16] P. Batra and B. B. Silverman, Solid State Commun. 11, 291 1972; P. Wurfel and I. P. Batra, Ferroelectrics 12, 55 (1976).
[17] J. Junquera and P. Ghosez, Nature 422, 506 (2003).
[18] N. Sai, A. M. Kolpak and A. M. Rappe, Phys. Rev. B 72
[19] E. Y. Tsymbal and H. Kohlstedt, Science 313, 181 (2006).
[20] M. Ye. Zhuravlev, R. F. Sabirianov, S. S. Jaswal, and E. Y. Tsymbal, Phys. Rev. Lett. 94, 246802 (2005).
[21] S. Ju, T. Y. Cai, G. Y. Guo, and Z. Y. Li, Phys. Rev. B 75, 064419 (2007).
[22] A. M. Bratkovsky, Phys. Rev. B 56, 2344 (1997).
[23] J.K. Lee, N. Sai, T.Y. Cai, Q. Niu, and A. A. Demkov, in preparation.
[24] The DFT calculations were performed within the local spin density approximation as implemented in VASP (G. Kresse and J. Furthmüller, Phys. Rev. B 54 11169 (1996)). We have used a planewave energy cutoff of 600 eV and a 6x6x1 Γ centered k-point mesh for the integration of the Brillouin zone.
[25] The polarization (i.e. computed via the Berry phase) is of course cell independent. There is, however, one “natural” cell for which the macroscopic average polarization can be represented by the cell dipole. That fact is used in Eq.(9) and unit cell B is chosen. In one-dimensional case, assuming electric current J is a non-spinor and choosing an appropriate gauge, the fundamental laws of electrodynamics are \(\frac{dP}{dx} = -\rho \) (1′) and \(J = \frac{\partial P}{\partial t} \) (2′). Here, \(P \) is the electric polarization and \(\rho \) is the charge density. Choosing an appropriate unit cell, the macroscopic average polarization can be represented by the cell dipole, i.e., \(\int_{x_1}^{x_2} P dx = \int_{x_1}^{x_2} \rho(x) dx \) (3′), where \(x_1 \) and \(x_2 \) are the boundaries of the unit cell. Combing Eq.(3′) with Eqs.(1′) and (2′), it is found that the left hand of Eq.(3′) is \(\int_{x_1}^{x_2} J dx \), while the right hand of Eq.(3′) is the sum of \(-J(x) [x_{x_2}^{x_1} \rho(x)] dx \) and \(\int_{x_1}^{x_2} J dx \). Thus, only when the condition of no charge exchange between the neighboring unit cells is satisfied, i.e., \(J(x_1) = J(x_2) = 0 \), the macroscopic average electric polarization can be represented by the cell dipole. Unit cell A isn’t the appropriate one because the current will develop across it during polarization switching.