RECURRENCE, POINTWISE ALMOST PERIODICITY AND ORBIT CLOSURE RELATION FOR FLOWS AND FOLIATIONS

TOMOO YOKOYAMA

Abstract. In this paper, we obtain a characterization of the recurrence of a continuous vector field w of a closed connected surface M as follows. The following are equivalent: 1) w is pointwise recurrent. 2) w is pointwise almost periodic. 3) w is minimal or pointwise periodic. Moreover, if w is regular, then the following are equivalent: 1) w is pointwise recurrent. 2) w is minimal or the orbit space M/w is either $[0,1]$ or S^1. 3) R is closed (where $R := \{(x,y) \in M \times M \mid y \in \overline{O(x)}\}$ is the orbit closure relation). On the other hand, we show that the following are equivalent for a codimension one foliation F on a compact connected manifold: 1) F is pointwise almost periodic. 2) F is minimal or compact. 3) F is R-closed. Also we show that if a foliated space on a compact metrizable space is either minimal or both compact and without infinite holonomy, then it is R-closed.

1. Preliminaries

In [AGW] and [H], it is showed that the following properties are equivalent for a finitely generated group G on either a compact zero-dimensional space or a graph X: 1) (G,X) is pointwise recurrent. 2) (G,X) is pointwise almost periodic. 3) The orbit closure relation $R = \{(x,y) \in X \times X \mid y \in G(x)\}$ is closed.

In this paper, we study the equivalence for these three notions for vector fields on surfaces and codimension one foliations on manifolds, and show the some equivalence. We assume that every quotient space has the usual quotient topology and that every decomposition consists of nonempty elements. By a decomposition, we mean a family \mathcal{F} of pairwise disjoint subsets of a set X such that $X = \biguplus \mathcal{F}$. Let X be a topological space and \mathcal{F} a decomposition of X. For any $x \in X$, denote by L_x the element of \mathcal{F} containing x. Write $E_\mathcal{F} := \{(x,y) \mid y \in L_x\}$. Then $E_\mathcal{F}$ is an equivalence relation (i.e. a reflexive, symmetric and transitive relation). For a (binary) relation E on a set X (i.e. a subset of $X \times X$), let $E(x) := \{y \in X \mid (x,y) \in E\}$ for an element x of X. For any $A \subseteq X$, let $E(A) := \cup_{y \in A} E(y)$. A is said to be E-saturated if $A = \cup_{x \in A} E(x)$. Let $1_X := \{(x,x) \mid x \in X\}$ be the diagonal on $X \times X$. Thus $1_X \subseteq E$ if and only if E is reflexive (i.e. $x \in E(x)$ for all $x \in X$). Let $E^{-1} := \{(y,x) \mid (x,y) \in E\}$ (i.e. the image of E under the bijection $T : X \rightarrow X$ which interchanges coordinates). Clearly, E is symmetric if and only if $E = E^{-1}$. For any relation E on X, E is transitive if and only if $E(E(x)) \subseteq E(x)$. For an equivalence relation E, the collection of equivalence classes $\{E(x) \mid x \in X\}$ is a decomposition of X, denoted by \mathcal{F}_E. Note that decompositions (consisting of nonempty elements) can be corresponded to equivalence relations. Therefore we

\textit{Date:} May 1, 2014.

The author is partially supported by the JST CREST Program at Department of Mathematics, Hokkaido University.
can identify decompositions with equivalence relations. For a relation E on a topological space X, E define the relation \hat{E} on X with $\hat{E}(x) = \overline{E(x)}$. Denote by \overline{E} the closure of E in $X \times X$. We call E pointwise almost periodic if \hat{E} is an equivalence relation, R-closed if \hat{E} is closed (i.e. $\hat{E} = \overline{E}$), compact if each element of E is compact, and it is minimal if each element of E is dense in X. By identification, we also said that F is R-closed if so is $E_{\mathcal{F}}$ and others are defined in similar ways. Notice that if F is either a foliation or the set of orbits of a flow, then $\hat{E}_{\mathcal{F}}$ is transitive. By a flow, we mean a continuous action of a topological group G on X. We call that F is trivial if it consists of singletons or is minimal. We characterize the transitivity for \hat{E}.

Lemma 1.1. \hat{E} is transitive if and only if $E(\hat{E}(x)) \subseteq \hat{E}(x)$.

Proof. Since $\hat{E}(x)$ is closed, $E(y) \subseteq \hat{E}(x)$ implies $\hat{E}(y) = \overline{E(y)} \subseteq \hat{E}(x)$. □

Now we state a useful tool.

Lemma 1.2. If E is an equivalence relation, then \hat{E} is an equivalence relation if and only if it is symmetric (i.e. symmetry implies transitivity).

Proof. Let $y \in \hat{E}(x)$ and $z \in E(y)$. By the symmetry assumption, we have $x \in \hat{E}(y)$. Since E is an equivalence relation, $E(y) = E(z)$ and so $\hat{E}(y) = \hat{E}(z)$. So $x \in \hat{E}(z)$ and, by symmetry again, $z \in \hat{E}(x)$ and so $E(y) \subseteq \hat{E}(x)$. Then $E(\hat{E}(x)) \subseteq \hat{E}(x)$. Hence \hat{E} is transitive by Lemma 1.1. □

Notice that the twist map $T : X \to X$ is a homeomorphism and so $E = E^{-1}$ implies $\overline{E} = \overline{E}^{-1}$. In particular, \overline{E} is symmetric whenever E is an equivalence relation. In particular, the previous lemma implies the following statement.

Corollary 1.3. Suppose that E is an equivalence relation. If \hat{E} is closed, then \hat{E} is an equivalence relation.

This is interpreted as the following statement.

Corollary 1.4. If F is an R-closed decomposition, then F is pointwise almost periodic.

The converse of this corollary is not true (see Example 4). A map $p : X \to Y$ is said to be perfect if it is continuous, closed, surjective and each fiber $p^{-1}(y)$ for any $y \in Y$ is compact. Recall that a net is a function from a directed set to a topological space.

Lemma 1.5. If a relation E is closed and X is T_1, then $E(x)$ is closed for any $x \in X$. Moreover if E is an equivalence relation and X is compact Hausdorff, then the quotient map $q : X \to X/E$ is perfect.

Proof. Note that each singleton is closed in a T_1-space. Since $\{x\} \times E(x) = E \cap (\{x\} \times X)$, we have $E(x)$ is closed in X. Suppose that E is an equivalence relation and X is compact Hausdorff. We will show that q is closed. Otherwise there is a closed subset B of X such that $E(B)$ is not closed. Fix any $y \in \overline{E(B)} - E(B)$. Let (y_α) be a net in B and $x_\alpha \in E(y_\alpha)$ such that $y_\alpha \to y$. Then $(x_\alpha, y_\alpha) \in E$. Since B is closed and so compact, we may assume that (x_α) converges to some element $x \in B$, by taking a subnet of (x_α). Since $y \notin E(x) \subseteq E(B)$, we have...
(x, y) /∈ E. Since (x₀, y₀) ∈ E and they converge to (x, y), we have (x, y) ∈ \overline{E}, which contradicts that E is closed. Since each fiber of every element of X/E is of the form E(x) for some x ∈ X and so compact, we have that q is perfect. □

A pointwise almost periodic \(\mathcal{F} \) is weakly almost periodic in the sense of Gottschalk \cite{G} if the saturation \(\bigcup_{x \in A} \mathcal{F}_x \) of orbit closures for any closed subset \(A \) of X is closed. Note that a pointwise almost periodic decomposition \(\mathcal{F} \) is weakly almost periodic if and only if the quotient map \(q : X \to \hat{\mathcal{F}}_X := X/\hat{\mathcal{F}} \) is closed. This implies the following interpretation.

Lemma 1.6. Suppose that \(X \) is a compact Hausdorff space. If a decomposition \(\mathcal{F} \) is R-closed, then \(\mathcal{F} \) is weakly almost periodic.

2. General cases for Flows and Foliated spaces

For an equivalence relation \(E \) on \(X \) and for an element \(x \) of \(X \), recall that the class \(\hat{E}(x) \) of \(x \) is defined by \(\hat{E}(x) := \{ y \in X \mid \hat{E}(y) = \hat{E}(x) \} \) \cite{BHSV}. These classes imply an equivalence relation on \(E \). Then the quotient space by this equivalence relation is denoted by \(X/\hat{E} \) and is called the orbit class space \cite{BHSV} (or the quasi-orbits space). Write \(\hat{\mathcal{F}} := \mathcal{F}_\hat{E} \). By identification, \(\hat{L} \in \hat{\mathcal{F}} \) if and only if there is \(L \in \mathcal{F} \) such that \(\hat{L} = \{ y \in X \mid \mathcal{F}_L = \mathcal{F}_{L_y} \} \). In the case that \(\mathcal{F} \) is pointwise almost periodic, \(X/\hat{\mathcal{F}} \) is exactly the quotient space of \(\mathcal{F}_\hat{E} \) with the quotient topology and \(X/\hat{\mathcal{F}} = X/\hat{\mathcal{F}}_E = X/\hat{\mathcal{F}}_{\mathcal{F}} \). If \(\hat{E} \) is an equivalence relation, then \(\hat{E} = \hat{E} \) and so \(X/\hat{E} = X/\hat{E} \). Recall the following fact.

Lemma 2.1. \cite{B} Proposition 8.3.8, 8.6.14) Let \(E \) be an equivalence relation in \(X \). If \(X/E \) is Hausdorff, then \(E \) is closed. If \(X \) is T₃, then the converse holds.

Recall that a topological space is T₃ if it is Hausdorff and regular. This fact implies a useful tool.

Lemma 2.2. Let \(\mathcal{F} \) be a pointwise almost periodic decomposition on a T₃ space \(X \). Then \(\mathcal{F} \) is R-closed if and only if \(X/\mathcal{F} \) is Hausdorff.

Proof. Since \(\mathcal{F} \) is pointwise almost periodic, we have that \(\hat{\mathcal{F}}_E \) is an equivalence relation. Suppose that \(\mathcal{F} \) is R-closed. Then \(\hat{\mathcal{F}}_E \) is closed. By Lemma 2.1 \(X/\hat{\mathcal{F}}_E = X/\mathcal{F} \) is Hausdorff. Conversely, suppose that \(X/\mathcal{F} \) is Hausdorff. Since \(X/\hat{\mathcal{F}}_E = X/\mathcal{F} \), Lemma 2.1 implies that \(\hat{\mathcal{F}}_E \) is closed. This shows that \(\mathcal{F} \) is R-closed. □

In this lemma, the regularity of \(X \) is necessary even if \(X \) is Hausdorff (see Example 3). However we don’t know whether the regularity is necessary when \(\mathcal{F} \) is the orbit space of a flow. Now we state an observation.

Lemma 2.3. Let \(\mathcal{F} \) be a decomposition on \(X \). If either \(\mathcal{F} \) is minimal or \(X/\mathcal{F} \) is Hausdorff, then \(\mathcal{F} \) is R-closed.

Proof. If \(\mathcal{F} \) is minimal, then \(\mathcal{F} = \hat{\mathcal{F}}_E \) is a singleton and so closed. If \(X/\mathcal{F} \) is Hausdorff, then all orbits are closed and so \(\mathcal{F} \) is pointwise almost periodic. By Lemma 2.1 if suffices to show that \(X/\hat{\mathcal{F}} \) is Hausdorff. But \(X/\hat{\mathcal{F}} = X/\mathcal{F} \) is Hausdorff. □

This observation implies the following statement.

Proposition 2.4. A foliated space \((X, \mathcal{F}) \) on a compact metrizable space either which is minimal or which is compact and without infinite holonomy, is R-closed.
Proof. If \mathcal{F} is minimal, then Lemma 2.3 implies that \mathcal{F} is R-closed. If \mathcal{F} is a compact foliated space without infinite holonomy, then Theorem 4.2 \cite{Ep2} implies that X/\mathcal{F} is Hausdorff. By Lemma 2.3, we have that \mathcal{F} is R-closed. \hfill \square

Note that Epstein \cite{Ep} et al have shown that each compact codimension two foliation on a compact manifold has finite holonomy. This implies that the set of R-closed codimension two foliations contains properly the set of codimension two foliations which are minimal or compact. Therefore the author is interested in the characterization of the R-closedness for codimension two foliations. Our statement is similar to the statement \cite{M}(A.2)3. However notice that it is not true, because pointwise almost periodicity does not correspond to R-closedness (cf. Example 4).

3. On the R-closedness of \mathcal{F}

In this section, we will show that the following three notions are equivalent for an equivalence relation E on a compact Hausdorff space: 1) R-closed, 2) D-stable, and 3) L-stable. A point x in X is said to be D-stable (or of characteristic 0) if $\hat{E}(x) = D(x)$ for any $x \in X$, where $D(x)$ is its (bilateral) prolongation defined as follows: $D(x) = \{ y \in X \mid y_\alpha \in E(x_\alpha), y_\alpha \to y, \text{ and } x_\alpha \to x \text{ for some nets } (y_\alpha), (x_\alpha) \subseteq X \}$. An equivalence relation E is said to be D-stable (or of characteristic 0) if each point is D-stable (i.e. $D = \hat{E}$). Note that some authors require also non-triviality for the definition of D-stability. Recall a well-known fact that an equivalence relation E on a Hausdorff space is D-stable if and only if \hat{E} is closed. This fact implies the following corollary.

Corollary 3.1. Suppose that X is Hausdorff and that \mathcal{F} is a decomposition on X. Then \mathcal{F} is D-stable if and only if \mathcal{F} is R-closed.

Now we consider the following Lyapunov stable type condition. We call that E is L-stable if for any open neighborhood U of $\hat{E}(x)$ and for an element x of X, there is a E-saturated open neighborhood V of $\hat{E}(x)$ contained in U. Note that this notion is similar to upper semicontinuity.

Lemma 3.2. Assume that E is an L-stable equivalence relation on X. If X is T_1, then \hat{E} is an equivalence relation. If X is compact Hausdorff, then \hat{E} is a closed equivalence relation.

Proof. Fix $x \in \hat{E}(y)$. Then every neighborhood of x meets $E(y)$. Since E is L-stable, every neighborhood of $\hat{E}(x)$ contains $E(y)$. Because X is T_1, the intersection of the neighborhoods of a closed set is exactly the closed set itself. Hence, $y \in E(y) \subseteq \hat{E}(x)$. This shows that \hat{E} is an equivalence relation. Suppose that X is T_4. To apply Theorem 3.10 \cite{Ke} for \hat{E}, we show that $U := \cup \{ x \in U \mid \hat{E}(x) \subseteq U \}$ is open for any open subset U of X. Fix $x \in U$. By the normality, there is a closed neighborhood V of $\hat{E}(x)$ contained in U. Since E is L-stable, there is an E-saturated neighborhood A of $\hat{E}(x)$ contained in V. Since V is closed, we have $\hat{E}(A) \subseteq V \subseteq U$ and so $\hat{E}(A) \subseteq U$. Since $\hat{E}(A)$ is an E-saturated neighborhood of x, we have that \hat{U} is open. By Theorem 3.10 \cite{Ke}, the quotient map $q : X \to X/\hat{E}$ is closed. Since each fiber $\hat{E}(x)$ for an element x of X is compact, we have that q is perfect. The fact Theorem XI.5.2 (p.235) \cite{D} implies that X/\hat{E} is Hausdorff. By Lemma 2.1, we have that \hat{E} is closed. \hfill \square
We state that the equivalence between the \((R-)\)closedness and the \(L\)-stability.

Proposition 3.3. Suppose that \(E\) is an equivalence relation on a compact Hausdorff space \(X\). Then \(\hat{E}\) is a closed equivalence relation if and only if \(E\) is \(L\)-stable.

Proof. By the previous lemma, it suffices to show that if \(\hat{E}\) is a closed equivalence relation, then \(E\) is \(L\)-stable. By Lemma 1.5, we have that the quotient map \(q : X \rightarrow X/\hat{E}\) is closed. For any open neighborhood \(U\) of \(\hat{E}(x)\) for each \(x \in X\), we have \(X - U\) is closed and so \(q(X - U)\) is closed. Then \(S := q^{-1}(q(X - U)) = \hat{E}(X - U)\) is closed such that \(S \cap \hat{E}(x) = \emptyset\), because \(q(x) \notin q(X - U)\). Then \(X - S\) is open \(\hat{E}\)-saturated and so \(E\)-saturated such that \(\hat{E}(x) \subseteq X - S \subseteq U\) □

This implies the following result.

Corollary 3.4. Suppose that \(\mathcal{F}\) is a decomposition on a compact Hausdorff space. Then \(\mathcal{F}\) is \(R\)-closed if and only if \(\mathcal{F}\) is \(L\)-stable.

We summarize the properties.

Corollary 3.5. Let \(E\) be an equivalence relation on a compact Hausdorff space. The following are equivalent:
1) \(E\) is \(R\)-closed (i.e. \(\hat{E}\) is closed).
2) \(E\) is \(D\)-stable.
3) \(E\) is \(L\)-stable.

4. On the density of \(E\)

Consider the case with dense elements.

Proposition 4.1. Suppose that an equivalence relation \(E\) of \(X\) has a dense element. The following are equivalent:
1) \(\hat{E}\) is symmetric.
2) \(\hat{E}\) is an equivalence relation.
3) \(\hat{E}\) is a closed equivalence relation.
4) \(E\) is minimal.

Proof. Trivially 3) \(\Rightarrow\) 2). By Lemma 1.2, 2) \(\iff\) 1). We show that 2) \(\Rightarrow\) 4). If \(\hat{E}\) is an equivalence relation, then \(X\) is decomposed into the closures of elements of \(\mathcal{F}_E\). Since there is a dense element of \(E\), we have \(\mathcal{F}_E = \{X\}\) and so \(E\) is minimal. Finally, we show that 4) \(\Rightarrow\) 3). If \(E\) is minimal, then the closure of each element of \(\mathcal{F}_E\) is the entire \(X\) and so \(\hat{E} = X \times X\) is a closed equivalence relation trivially. □

Note that there is a recurrent flow with a dense orbit on a compact metrizable space such that \(\hat{E}_\mathcal{F}\) is not symmetric but transitive, where \(\mathcal{F}\) is the set of orbits of a flow (e.g. p.764 [Go]). We say that an element \(x\) of \(X\) is almost periodic if \(\hat{E}(y) = \hat{E}(x)\) for any \(y \in \hat{E}(x)\). Considering the closure of an orbit of each \(x \in X\) as the whole topological space, we obtain the following statement.

Corollary 4.2. Let \(x\) be an element of \(X\). The following are equivalent:
1) \(x\) is almost periodic.
2) the restriction \(\hat{E}_{|\hat{E}(x)}\) to \(\hat{E}(x)\) is symmetric
3) \(\hat{E}_{|\hat{E}(x)}\) is a closed equivalence relation.
5. Codimension one foliations

In this section, we consider \mathcal{F} as a codimension one foliation. Let M be a compact connected manifold and \mathcal{F} a continuous codimension one foliation on M tangent or transverse to the boundaries. Recall that \mathcal{F} is said to be compact if each leaf of \mathcal{F} is compact. Note that every codimension one compact foliation on a compact manifold has no infinite holonomy.

Lemma 5.1. If \mathcal{F} is pointwise almost periodic, then \mathcal{F} is minimal or compact.

Proof. Recall each minimal set is either a closed leaf, an exceptional minimal set, or the whole manifold. Since \mathcal{F} is pointwise almost periodic, any compact leaf of \mathcal{F} has no infinite holonomy. Suppose \mathcal{F} is not minimal. By the almost periodicity, each proper leaf is compact and there are no locally dense leaves. Then \mathcal{F} consists of compact leaves and exceptional leaves. We show that there is a compact leaf L of \mathcal{F}. Otherwise, M is the union of exceptional leaves. By Theorem [S], M consists of finitely many exceptional minimal sets. Since each exceptional minimal set is nowhere dense, we have that M is nowhere dense. This contradicts to that M is a manifold. Then the union C of compact leaves is nonempty. Since any compact leaf of \mathcal{F} has no infinite holonomy, we have that C is open. By Theorem 4.1.1(p.94)[HH], we have that ∂C contains no exceptional minimal sets and so C is clopen. Hence M consists of compact leaves.

Theorem 5.2. The following are equivalent:
1) \mathcal{F} is pointwise almost periodic.
2) \mathcal{F} is R-closed.
3) \mathcal{F} is minimal or compact.

Proof. Since M is compact Hausdorff, Corollary 1.4 implies that 2) \Rightarrow 1). By Lemma 5.1 we obtain 1) \Rightarrow 3). Since any compact codimension one foliation \mathcal{F} has no infinite holonomy, by Proposition 2.4 we have 3) \Rightarrow 2).

Corollary 5.3. Suppose that \mathcal{F} is not minimal. The following are equivalent:
1) \mathcal{F} is pointwise almost periodic.
2) \mathcal{F} is compact.
3) M/\mathcal{F} is either closed interval or a circle.
4) \mathcal{F} is R-closed.

Proof. By Theorem 5.2 we obtain 1) \iff 2) \iff 4). Taking the doubling of M, we may assume that M is closed and \mathcal{F} is transversally orientable. Lemma 2.3 implies that 3) \Rightarrow 4). Thus it suffices to show that 2) \Rightarrow 3). Suppose that 2) (and 4)) holds. By Lemma 2.2 M/\mathcal{F} is Hausdorff. Since \mathcal{F} is compact, codimension one, and transversally orientable, we have that \mathcal{F} is without holonomy and so each leaf of \mathcal{F} has a product neighborhood of it. Hence M/\mathcal{F} is a closed 1-manifold and so a circle.

6. Flows on compact surfaces

Let X be a compact topological space and G a topological group. Recall that a subset S of G is said to be (left) syndetic if there is a compact set K of G with $KS = G$. Consider a flow (X, G) (i.e. a continuous (left) action of G on X). For a point $x \in X$ and an open U of X, let $N(x, U) = \{g \in G \mid gx \in U\}$. We say that x is an almost periodic point if $N(x, U)$ is syndetic for every neighborhood U of
A flow \(G \) is pointwise almost periodic if every point \(x \in X \) is almost periodic. Note that a flow on a compact Hausdorff space is pointwise almost periodic if and only if the set of orbits is pointwise almost periodic. A point \(x \in X \) is recurrent (or Poisson stable) if \(x \in \alpha(x) \cap \omega(x) \), where \(\alpha(x) \) (resp. \(\omega(x) \)) is an alpha (resp. omega) limit set of \(x \). A flow \(G \) is (pointwise) recurrent if every point of \(X \) is recurrent. Note that a pointwise almost periodic flow on a compact Hausdorff space \(X \) is pointwise recurrent and that a pointwise almost periodic flow on it is equivalent to a flow whose orbit closures form a decomposition of it.

Let \(M \) be a compact connected surface and \(w \) a continuous vector field of \(M \). Note that if \(w \) is pointwise recurrent, then \(w \) is tangent to the boundary \(\partial M \). In this section, we consider \(F \) as the set of the orbits of the vector field \(w \). Write \(M/w := M/\mathcal{F} \) and \(M/\mathcal{W} := M/\overline{\mathcal{F}} \). Now \(R = \hat{E}_F = \{ (x, y) \mid y \in \overline{O_w(x)} \} \).

Lemma 6.1. If \(w \) is not minimal but pointwise recurrent, then \(M = \text{Sing}(w) \sqcup \text{Per}(w) \).

Proof. Since \(w \) is recurrent, we have that \(w \) preserves the boundary of \(M \), has no saddles, and is non-wandering (i.e. \(x \in J^+(x) \) for any \(x \in M \) where \(J^+(x) = \{ y \in M \mid t_n x_n \to y \text{ for some } x_n \to x \text{ and } t_n \to +\infty \} \)). By taking the double of \(M \) if necessary, we may assume that \(M \) is closed. Since the Denjoy flow has wandering points, by Corollary 3.5 [A], we have \(M = \text{Sing}(w) \sqcup \text{Per}(w) \). \(\square \)

This implies the following corollary.

Corollary 6.2. Let \(w \) be a continuous vector field of a compact connected surface \(M \). The following are equivalent:

1) \(w \) is pointwise recurrent.
2) \(w \) is pointwise almost periodic.
3) \(w \) is either minimal or pointwise periodic.

Recall that a vector field is said to be nontrivial if it is neither identical nor minimal.

Corollary 6.3. Suppose that \(w \) is nontrivial. Then \(w \) is pointwise recurrent if and only if \(w \) is pointwise periodic.

Next, we show the openness of \(\text{Per}(w) \).

Lemma 6.4. Suppose that \(w \) is pointwise recurrent. Then \(\text{Per}(w) \) is open. Moreover, if \(\text{Per}(w) \) is nonempty, then each connected component of \(\text{Per}(w) \) is an annulus or a torus, and \(\text{Per}(w)/\text{Per}(w) \) is a 1-manifold.

Proof. By Lemma 6.1, we have \(M = \text{Sing}(w) \sqcup \text{Per}(w) \). Suppose that there are periodic points. By the Flow box theorem, each periodic orbit has a product neighborhood of it which consists of periodic orbits. Hence the set \(\text{Per}(w) \) of periodic orbits of \(w \) is open and the quotient space of \(\text{Per}(w) \) is a 1-manifold. Then each connected component of \(\text{Per}(w) \) is an annulus or a torus. \(\square \)

From now on, we assume that \(M \) is orientable. Note that we can obtain the similar results for the non-orientable case, by taking the double cover of \(X \). For simplicity, we consider only the orientable case. Recall that \(w \) is \(R \)-closed if \(R := \{(x, y) \in M \times M \mid y \in \overline{O(x)} \} \) is closed.
Lemma 6.5. If w is nontrivial and R-closed, then M/w is a closed interval or a circle, and each connected component of $\partial \text{Per}(w) := \overline{\text{Per}(w)} - \text{Per}(w)$ is an element of F which is a center.

Proof. By Lemma 2.2, we have that $M/w = M/\overline{w}$ is Hausdorff. By Lemma 6.4, we have that M/w is a closed interval or a circle and that each connected component of $\partial \text{Per}(w)$ is an element of F which is a center. \hfill \Box

Now, we state the characterization of R-closedness.

Theorem 6.6. Suppose that w is nontrivial. The following are equivalent:
1) w is R-closed.
2) w consists of at most two centers and other periodic orbits.
3) The orbit space M/w is either a circle reduced from a torus or is a closed interval reduced from a closed disk, a closed annulus or a sphere.

In particular, w is pointwise periodic if one of equivalent conditions holds.

Proof. By Lemma 6.5, we have that 1) \Rightarrow 2) and that 1) \Rightarrow 3) holds. Since M/w is Hausdorff, we obtain that $M/w = M/\overline{w}$ is Hausdorff. By Lemma 6.2, we have that w is R-closed. Suppose that 2) holds. By the Flow box theorem, we have that $\text{Per}(w)$ is open and $\text{Per}(w)/w|_{\text{Per}(w)} = \overline{\text{Per}(w)}/w|_{\text{Per}(w)}$ is a 1-manifold. Since singularities are finite and so isolated, $M/w = M/\overline{w}$ is Hausdorff. By Lemma 2.2, we have that w is R-closed. \hfill \Box

Recall that R-closedness and D-stability for vector fields are equivalent. Therefore Theorem 4.3, 4.4 [APS] are related to our characterization. Consider the regular case. Recall that we say that a vector field w is regular if w is topologically equivalent to a vector field whose singular points are non-degenerate. In the two dimensional case, each singularity of a regular vector field is either a sink, a source, a (topological) saddle, or a center.

Lemma 6.7. Suppose w is nontrivial. Then R is closed if and only if w is pointwise almost periodic and topologically equivalent to a regular vector field.

Proof. Suppose that R is closed. By Theorem 6.6, we have that w is pointwise periodic and is topologically equivalent to a regular vector field. Conversely, suppose that w is pointwise almost periodic and regular. By Corollary 6.2, w is pointwise periodic. Since w has no saddle points, by the Poincaré-Hopf index formula, we obtain that w consists of periodic orbits and at most two centers. By Theorem 6.5, we obtain w is R-closed. \hfill \Box

Now we state the following characterization in the regular case.

Proposition 6.8. Let w be a continuous regular nontrivial vector field of M. The following are equivalent:
1) w is pointwise recurrent.
2) w is pointwise almost periodic.
3) w is R-closed.
4) w is pointwise periodic.
5) $\text{Sing}(w)$ consists of centers and w has neither exceptional minimal sets nor limit cycles.
6) the orbit space M/w is either a circle reduced from a torus, or a closed interval reduced from either a closed annulus, a closed disk, or a sphere.
Proof. By Corollary 6.2 and Lemma 6.7, \(1 \Leftrightarrow 2 \Leftrightarrow 3 \Leftrightarrow 4 \). By Theorem 6.6, \(3 \Leftrightarrow 6 \). Suppose that \(4 \) holds. Since \(w \) is regular, \(\text{Sing}(w) \) consists of centers and so \(5 \) holds. Finally, we show that \(5 \Rightarrow 4 \). Suppose that \(5 \) holds. We show that there are no exceptional orbits. Otherwise there is a local exceptional minimal set \(K \). Then there is a periodic orbit which is contained in the closure of \(K \), because \(\text{Sing}(w) \) consists of centers and \(w \) has no exceptional minimal sets. So this means that there is a limit cycle, which contradicts. We show that each orbit is closed. Otherwise the boundary of the set of non-closed orbits contains minimal sets. Since there are no exceptional orbits and since \(\text{Sing}(w) \) consists of centers, the minimal sets are closed orbits and so there is limits cycles, which contradicts. Therefore \(4 \) holds. □

By the existence of the Denjoy flow, the condition that \(w \) has no exceptional minimal sets in \(4 \), is necessary. Finally we consider the divergence-free case. Recall that a \(C^1 \) vector field \(w \) on a Riemannian manifold with a volume form \(d\text{vol} \) is divergence-free if \(L_w d\text{vol} = (\text{div } w) d\text{vol} \), where \(L_w \) is the Lie derivative along \(w \).

Corollary 6.9. Suppose that \(w \) is regular and divergence-free and has singularities. The following are equivalent:
1) \(w \) is pointwise recurrent.
2) \(w \) is pointwise almost periodic.
3) \(w \) is \(R \)-closed.
4) \(w \) is pointwise periodic.
5) \(w \) has neither saddles nor \(\partial \)-saddles.
6) \(w \) has neither saddles nor \(\partial \)-saddles and is structurally stable in the set of divergence-free vector fields up to topological equivalence.
7) \(M/w \) is a closed interval.
If an equivalent condition holds, then \(M \) is either a closed disk or a sphere and has one or two singularities, which are centers.

Proof. By proposition 6.8 we obtain \(1 \Leftrightarrow 2 \Leftrightarrow 3 \Leftrightarrow 4 \Leftrightarrow 7 \). By taking the doubling of \(M \) if necessary, we may assume that \(M \) has no boundaries. Obviously, \(4 \Rightarrow 5 \). We show that \(5 \Rightarrow 6 \). Suppose \(5 \) holds. Since \(w \) is regular and has singularities, by Poincaré-Hopf theorem, we have \(M = S^2 \). By Theorem 2.1.2 [MW], \(w \) is structurally stable in the set of divergence-free vector fields. Finally, we show that \(6 \Rightarrow 7 \). Suppose \(6 \) holds. By Theorem 1.4.6 [MW], \(w \) is determined by the saddle connection diagram (the union of saddle connection) up to topological equivalence. Since \(w \) has no saddles, we obtain that \(w \) has two centers and periodic orbits. By proposition 6.8 we have that \(7 \) holds. □

7. Examples

Recall a well-known fact that a point in a compact Hausdorff space is pointwise almost periodic if and only if its orbit closure is a minimal set. On the other hand, this is not true for non-compact cases. For instance, in Theorem 2.2 [FK], they have constructed a homeomorphism \(f_B \) on a non-compact Hausdorff space which is not \(R \)-closed but pointwise almost periodic as a flow such that there is an orbit closure which is not minimal. Note that a minimal set of an \(R \)-closed homeomorphism on a locally compact Hausdorff space needs not be compact (e.g. any non-trivial translation on \(\mathbb{Z} \)). Though there is a minimal mapping on a locally compact \(T_1 \) space which is pointwise almost periodic (see Theorem 3.2 [FK]), there
is no minimal homeomorphism on a locally compact non-
compact space which is pointwise almost periodic as a flow. Otherwise fix a compact neighborhood C of a
point x and an open neighborhood $U \subseteq C$ of x. The almost periodicity implies that
$\bigcup_{i=0}^{N} f^i(U) \supseteq O_f(x)$ for some $N > 0$. Since $X - \bigcup_{i=0}^{N} f^i(U)$ is closed saturated,
the minimality implies that $X - \bigcup_{i=0}^{N} f^i(U) = \emptyset$. Therefore $X = \bigcup_{i=0}^{N} f^i(C)$ is
compact. Moreover the well-known fact is not true even for compact cases (see following two examples).

Example 1. Let G be a trivial group and $X = \{0, 1\}$ a two point set with a
topology $\{\emptyset, X, \{1\}\}$. Since the closed sets are $\emptyset, X, \{0\}$, the closed sets of the product
space are $\emptyset, \{(0, 0)\}, \{(0, 0), X \times \{0\}, X \times X - \{(1, 1)\}, X \times X$. Trivially X
is compact and G is periodic. In particular, G is pointwise almost periodic as a flow. $R = \{(0, 0), (1, 1), (1, 0)\} = X \times X - \{(0, 1)\}$ is not closed. Since $G_1 = X$, the
$X/G = X$ is not Hausdorff. Moreover the orbit of 1 is not minimal but periodic.

A next example shows them even if X is a T_1-space

Example 2. Let $\alpha \in \mathbb{R} - \mathbb{Q}$ be an irrational number, $G = \mathbb{Z}$ a discrete group and
$X = \mathbb{R}/\mathbb{Z}$ a topological space with a topologen $\tau = \{\emptyset\} \cup \{U, U \setminus F \mid U \text{ is cofinite in } X\}$, where $F := \mathbb{Z}x/\mathbb{Z} \subset X$. G acts by $n \cdot [x] := [\alpha n + x]$. Then X is a compact T_1-space, G is continuous and pointwise almost periodic as a flow, R is not closed, and Gx for any $x \in X - F$ is not minimal.

Indeed, notice that the set C_X of closed subsets is $\{\emptyset, X\} \cup \{E, E \cup F \mid E \text{ is finite in } X\}$. For all $n \in G$, since $n \cdot F = F$, we have that $n \cdot C_X = C_X$ and so G acts continuously. For any $x \in F$, each neighborhood of x is finite. Hence X is compact. For any $x \in X$, every neighborhood of x contains all but finitely many points of its orbit and so G is pointwise almost periodic as a flow. Since τ contains the cofinite topology, each point of X is closed and so X is T_1. For any $x \in X - F$, since $Gx = X$ and F is a proper closed subset, we obtain that $\overline{Gx} = M$ is not minimal. For any $x, y \in X - F$, we have $Gx \times \{y\} \subset R$. Since any neighborhood of 0 is cofinite and so meets Gx, we obtain $0 \in Gx$ and so $(0, y) \notin Gx \times \{y\} \subseteq \overline{R}$. Since $y \notin F \cup \overline{\emptyset}$, we have $(0, y) \notin R$. Thus R is not closed.

Replacing the topology in the above example, we obtain two homeomorphisms on non-
compact Hausdorff spaces such that the first homeomorphism constructed in
Proposition 1.5 [ML] is pointwise almost periodic as a flow and have a non-
minimal orbit closure, and the second homeomorphism constructed in Proposition
1.7 [ML] has an orbit closure of an almost periodic point which contains a non
almost periodic point. A next example also shows that Lemma 2.2 is not true in
general.

Example 3. Let $\alpha \in \mathbb{R} - \mathbb{Q}$ be an irrational number, $X = \mathbb{R}/\mathbb{Z}$, $F = \{\alpha n \mid n \in \mathbb{Z}\}/\mathbb{Z}$, τ the topology on X induced by the Euclidean topology on \mathbb{R}, and $E := 1_X \cup (F \times F)$ an equivalence relation on X. Equip with X a topology generated by τ and $\{U \setminus F \mid U \in \tau\}$. Put $F = F_E$. Then X is a non-compact Hausdorff space, F is pointwise almost periodic, $R = \hat{E}$ is closed, and X/\hat{F} is non-Hausdorff. Indeed, since F is closed, we have $\hat{E} = E$ and so F is pointwise almost periodic.

Now we show that R is closed. Fix $x \neq y \in X$. If $x, y \notin F$, then there are disjoint neighborhoods $U_x, U_y \in \tau$ of x and y on X. Then $(U_x \setminus F) \times (U_y \setminus F)$ is a neighborhood of (x, y) which does not meet \hat{E}. If $x \in F$ and $y \notin F$, then there are disjoint neighborhoods $U_x, U_y \in \tau$ of x and y on X. Then $U_x \times (U_y \setminus F)$
is a neighborhood of \((x, y)\) which does not meet \(\hat{E}\). This shows that \(\hat{E}\) is closed. For \(x \in X - F\), since \(x\) and \(F\) can’t be separated by disjoint open sets, \(X/\hat{F}\) is non-Hausdorff.

A next example also shows that there is a flow on a compact surface such that \(G\) is pointwise almost periodic and \(R\) is not closed but symmetric.

Example 4. Let \(G\) be an additive group \(\mathbb{R}\) (resp. \(\mathbb{Z}\)), \(X = \{(x, y) \mid x^2 + y^2 \leq 1\}\) a unit closed disk, and \(v = (y(1 - (x^2 + y^2)), -x(1 - (x^2 + y^2)))\) a vector field. \(G\) acts by \(t \cdot (x, y) := v_t(x, y)\). Then the fix point set of \(G\) is the union of the boundary and the origin, the other orbits are periodic (resp. almost periodic) orbits, and the orbit (resp. orbit class) space is not \(T_1\). Hence \(G\) is pointwise almost periodic and \(R\) is not closed but symmetric.

Indeed, the boundary points are singular but not separated by saturated neighborhoods. Let \(S_r := \{(x, y) \mid x^2 + y^2 = r^2\}\) be a circle. Then \(G\) acts \(S_r\) as rotations. Hence \(G\) is pointwise almost periodic. For \(r_n := 1 - 1/\sqrt{\pi}\), \(\mathbb{Z} \subseteq G\) acts \(S_{r_n}\) as irrational rotations. Since \((r_n, -r_n) \in R\) but \((1, -1) \notin R\), we have \(R\) is a non-closed equivalence relation.

The following example shows the existence of a pointwise periodic \(R\)-closed homeomorphism on a compact metrizable space which is not periodic.

Example 5. Let \(Y = S^1 \times \{1/n \in \mathbb{R} \mid n \in \mathbb{Z}_{\geq 1}\}\) and \(f : Y \to Y\) a homeomorphism by \(f(x, y) := (x + y, y)\). Denote by \(X\) the one point compatification of \(Y\). Then canonical extension of \(f\) with the new fixed point is also a homeomorphism. Hence \(f\) is not periodic but pointwise periodic and \(X\) is a compact metrizable space. Since the orbit space is Hausdorff, we have that \(f\) is \(R\)-closed.

References

[AGW] Auslander, J.; Glasner, E.; Weiss, B., *On recurrence in zero dimensional flows* Forum Math. 19 (2007), no. 1, 107–114.

[A] Athanassopoulos, K., *The flow near nontrivial minimal sets on 2-manifolds* Math. Proc. Cambridge Philos. Soc. 108 (1990), no. 3, 569–573.

[A2] Athanassopoulos, K., *A characterization of Denjoy flows* Bull. London Math. Soc. 24 (1992), no. 1, 8386.

[APS] Athanassopoulos, K., Petrescou, T., Strantzalos, P., *A class of flows on 2-manifolds with simple recurrence* Comment. Math. Helv. 72 (1997), no. 4, 618–635.

[Br] L. Brouwer, *Beweis des ebenen Translationenssatzes* Math. Ann. 72 (1912) 37–54.

[BHSV] C. Bonatti, H. Hattab, E. Salhi, G. Vago, *Hasse diagrams and orbit class spaces* Topology Appl. 158 (2011), no. 6, 729–740.

[Bo] N. Bourbaki, *General topology. Chapters 1-4* Elements of Mathematics (Berlin), Springer-Verlag, Berlin, 1989. Translated from the French. Reprint of the 1966 edition.

[CGL] Cobo, M., Gutierrez, C., Llibre, J., *Flows without wandering points on compact connected surfaces* Trans. Amer. Math. Soc. 362 (2010), no. 9, 4569–4580.

[D] Dugundji, J. *Topology* Allyn & Bacon, Inc., Boston, 1966.

[Ep] D.B.A. Epstein. *Periodic flows on three-manifolds* Ann. of Math., 95, 66–82, 1972.

[Ep2] D.B.A. Epstein, *Foliations with all leaves compact* Ann. Inst. Fourier Grenoble 26 (1976), 265–2822.

[EK] Elaydi, S., Kaul, S. K., *On characteristic 0 and locally weakly almost periodic flows* Math. Japon. 27 (1982), no. 5, 613–624.

[FK] C. Fujita, H. Kato, *Almost periodic points and minimal sets in topological spaces* Appl. Gen. Topol. 10 (2009) 239–244.

[G] Gutierrez, C., *Foliations on surfaces having exceptional leaves* Dynamical systems, Valparaiso 1986, 73–85, Lecture Notes in Math., 1331, Springer, Berlin, 1988.
[Go] Gottschalk, W. H., *Almost period points with respect to transformation semi-groups* Ann. of Math. (2) 47, (1946). 762–766.

[GH] Gottschalk, W. H., Hedlund, G.A., *Topological Dynamics* Vol. 36, AMS Colloquium Publications, Providence, 1955.

[H] Hattab, H., *Pointwise recurrent one-dimensional flows* Dyn. Syst. 26 (2011), no. 1, 77–83.

[HS] H. Hattab, E. Salhi, *Groups of homeomorphisms and spectral topology* Topology Proceedings Vol. 28, No.2 (2004), 503–526.

[HH] Hector, G.; Hirsch, U. *Introduction to the geometry of foliations. Part B. Foliations of codimension one*. Aspects of Mathematics, E3. Friedr. Vieweg & Sohn, Braunschweig, 1983.

[Ke] Kelley, J. L., *General topology* Graduate Texts in Mathematics, No. 27. Springer-Verlag, New York-Berlin, 1975.

[LL] J. Lpez, V. S. Lpez, G., *Transitive flows on manifolds* Rev. Mat. Iberoamericana 20 (2004), no. 1, 107–130.

[MW] Ma, T., Wang, S., *Geometric theory of incompressible flows with applications to fluid dynamics* Mathematical Surveys and Monographs, 119. American Mathematical Society, Providence, RI, 2005. x+234 pp.

[ML] J.-H. Mai, X.-H. Liu, *A note on almost periodic points and minimal sets in \(T_1\)- and \(T_2\)-spaces* Discrete Dyn. Nat. Soc. 2008, Art. ID 262475, 5 pp.

[S] Salhi, E., *Sur les ensembles minimaux locaux* C. R. Acad. Sci. Paris Sr. I Math. 295 (1982), no. 12, 691–694.

[V] de Vries, J., *Elements of topological dynamics* Mathematics and its Applications, 257. Kluwer Academic Publishers Group, Dordrecht, 1993.

[Y] T. Yokoyama, *\(R\)-closed homeomorphisms on surfaces* preprint.

Department of Mathematics, Hokkaido University, Kita 10, Nishi 8, Kita-Ku, Sapporo, Hokkaido, 060-0810, Japan.

E-mail address: yokoyama@math.sci.hokudai.ac.jp