Antioxidant Activity and Element Content of *Suillus collinitus*

Celal Bal1,a,*

1Oguzeli Vocational School, Gaziantep University, Gaziantep, Turkey
aCorresponding author

A R T I C L E I N F O

A B S T R A C T

Mushrooms used as food have medicinal importance due to their antioxidant compounds. In this context, it is very important to determine the biological potential of fungi and to reveal these medicinal properties. In this study, it was aimed to determine the element contents, total antioxidant status, total oxidant status, oxidative stress index of *Suillus collinitus* (Fr.) Kuntze mushroom. In this context, the mushroom samples were extracted with ethanol in the Soxhlet extractor. Element contents were determined using atomic absorption spectrometry. Total antioxidant (TAS) and total oxidant (TOS) levels and oxidative stress index (OSI) were determined using Rel Assay commercial kits. As a result of the study, it was determined that the TAS value of *S. collinitus* was 2.467 ± 0.145 mmol/L, TOS value was 17.845 ± 0.273 µmol/L and OSI value was 0.677 ± 0.030. In addition, the Fe content (350.72 ± 10.23), Cu content (68.11 ± 2.51), Pb content (11.58 ± 2.43), Zn content (10.46 ± 1.28) and Ni content (1.47 ± 0.21 mg.kg⁻¹) of *S. collinitus* measured. As a result, *S. collinitus* mushroom is thought to be a natural source of antioxidants. It has also been observed that the element contents are at normal levels.

Keywords: *Suillus collinitus* Antioxidant Oxidative stress Element content Medicinal mushroom

Introduction

A better understanding of the high nutritional value and medicinal importance of mushrooms in recent years has led to an increased interest in mushrooms. In addition to nutritional values, it has been determined that the active ingredients in its content have a therapeutic effect (Arpaz et al., 2017). Many studies have shown that mushrooms have different biological activities. In studies on mushrooms, it has been reported to have many activities such as antioxidant, antitumor, antimicrobial, anti- aromatase activity, anti-inflammatory activity, antiproliferative activity and immunomodulatory activity (Akgul et al., 2017; Bal et al., 2017; Kikuchi et al., 2017; Sriramulu and Sumathi, 2017; Wang et al., 2018; Sevindik 2018a; Gürgen et al., 2020; Mushtaq et al., 2020). Turkey has a high diversity in terms of biodiversity. This diversity is increasing due to the different phytogeographical regions (Akata et al., 2018). In this study, *Suillus collinitus* mushroom collected from Gaziantep/Oguzeli (Turkey) was used as a material. *Suillus collinitus*, one of the edible mushrooms, is porous and mostly spreads in pine forests. Cap height is 8-11 cm. Its surface is slippery. Their color is light brown. It has a sour smell and a different taste. It spreads in clusters (Bonfante, 1998).

Antioxidant activity studies previously performed on *Suillus* species are shown in table 1.

In this study, TAS, TOS, OSI and some element contents of *S. collinitus* mushroom were determined.

Materials and Methods

Study material *S. collinitus* samples were collected from Oguzeli/Gaziantep (Turkey). The samples were dried in an oven at 40°C 30 g of the dry samples was weighed and extracted in the soxhlet apparatus at 50°C for about 6 hours (BUCHI Extraction System Model B-811). The dry extract was then concentrated in a rotary evaporator (BUCHI Rotavapor Model R-144).

Determination of Element Content

Fe, Zn, Cu, Pb and Ni contents of *S. collinitus* were determined by using atomic absorption spectrophotometer device (Agilent 240FS AA). Before reading, the samples were dried at 80°C to constant weight. 0.5 g of the dry...
samples were mineralized using a microwave solubilizer (Milestone Ethos Easy) in a mixture of 9 mL HNO3 + 1 mL H2O2 (Sevindik and Akata, 2019).

TAS, TOS and OSI Tests

Total antioxidant status and the total oxidant status of study material Rel Assay brand commercial kits (Rel Assay Kit Diagnostics, Turkey) was used. The calibrator Trolox was used in antioxidant kits. Results are shown in mmol Trolox equiv./L. Calibrator hydrogen peroxide was used in oxidant kits. Results are shown as mmol H2O2 equiv./L (Erel, 2004, 2005). The oxidative stress index was calculated with the formula TOS / (TASx10) (Erel, 2004, 2005). The oxidative stress index shows how much the fungus suppresses oxidative stress. In cases where the antioxidant defense system is insufficient, supplementary antioxidant sources are used (Mohammed, 2020). In this study, TAS, TOS and OSI values of *Suillus collinitus* mushroom were determined. The findings obtained are shown in Table 3.

Results and Discussion

Element Contents

Fungi play a role in breaking down organic cover in the ecosystem. During the breakdown of the organic cover, they accumulate different levels of elements in their bodies depending on the substrate content they use (Baba et al., 2012; Baba et al., 2020). In our study, the Fe, Zn, Cu, Pb and Ni contents of *Suillus* species were determined. The findings obtained are shown in Table 2.

In previous studies, the levels of elements detected in wild mushrooms have been reported in the literature. These values were reported as 14.6-835.0 for Fe, 29.8-158.0 for Zn, 71.0-95.0 for Cu, 2.86-6.88 for Pb and 1.18-5.14 for Ni in mg/kg (Vetter, 1990; Sevindik et al., 2017; Krupodorova and Sevindik, 2020). Compared to these values, it was determined that the Zn, Cu and Ni contents of *S. collinitus* were lower than the literature ranges, the Pb content was higher than the literature ranges, and the Fe levels were within the literature ranges. In this context, it is seen that the element levels of *S. collinitus* are at normal levels.

TAS, TOS and OSI Values

Living organisms produce reactive oxygen species (ROS) as a result of metabolic activities. While these ROS compounds have a beneficial effect in low amounts, they cause oxidative stress when they reach high levels (Kattoor et al., 2017; Mohammed et al., 2018). As a result of oxidative stress in living things, different diseases such as cardioiological disorders, Alzheimer, Parkinson's and cancer occur (Salim, 2017; Mohammed et al., 2019). The antioxidant defense system plays a role in reducing oxidative stress. In cases where the antioxidant defense system is insufficient, supplementary antioxidant sources are used (Mohammed, 2020). In this study, TAS, TOS and OSI values of *Suillus collinitus* mushroom were determined. The findings obtained are shown in table 3.

Table 1. Antioxidant activities of Suillus species

Suillus species	References
Suillus aeruginascens	Macákóvá et al., 2009;
Suillus bellini	Ribeiro et al., 2006; Kalogeropoulos et al., 2013;
Suillus bovinus	Robaszkiewicz et al., 2010;
Suillus collinitus	Akata et al., 2012; Heleno et al., 2010;
Suillus granulatus	Macákóvá et al., 2009; Ribeiro et al., 2006
Suillus granulatus	Ribeiro et al., 2006; Reis et al., 2014; Tel et al., 2014; Zhou et al., 2016; Chen et al., 2018;
Suillus grevillei	Mushtaq et al., 2020; Macákóvá et al., 2009
Suillus lakei	Barranco et al., 2010;
Suillus latexus	Ribeiro et al., 2006; Macákóvá et al., 2009; Barranco et al., 2010; Jaworska et al., 2014; Macákóvá et al., 2009; Keles et al., 2011; Heleno et al., 2010;
Suillus mediterraneensis	Macákóvá et al., 2009;
Suillus placidus	Macákóvá et al., 2009;
Suillus variegates	Macákóvá et al., 2009; Robaszkiewicz et al., 2010
Table 2. Element Levels of *S. collinitus*

Elements	Fe	Zn	Cu	Pb	Ni
S. collinitus	350.72 ± 10.23	10.46 ± 1.28	68.11 ± 2.51	11.58 ± 2.43	1.47 ± 0.21

Values are presented as mean ± S.D, n=3 (Experiments were made as 3 parallel)

Table 3. TAS, TOS ve OSI Values

Material	TAS	TOS	OSI
S. collinitus	2.467 ± 0.145	17.845 ± 0.273	0.677 ± 0.030

Values are presented as mean ± S.D.; n=6 (Experiments were made as 5 parallel)

Conclusion

In this study, the antioxidant activity of *S. collinitus* and the levels of some elements were determined. As a result of the studies, it has been determined that the mushroom has antioxidant potential. Element levels were found to be at normal levels according to the stated literature values.

References

Akata I, Ergonul B, Kalyoncu F. 2012. Chemical compositions and antioxidant activities of 16 wild edible mushroom species grown in Anatolia. International Journal of Pharmacology, 8(2): 134-138.

Akata I, Kabaktepe Ş, Sevindik M, Akgül H. 2018. Macrofungi determined in Yuvacik Basin (Kocaeli) and its close environs. Kastamonu Üniversitesi Orman Fakültesi Dergisi, 18(2): 152-163.

Akgul H, Sevindik M, Coban C, Alii H, Selamoglu Z. 2017. New approaches in traditional and complementary alternative medicine practices: Auricularia auricula and Trametes versicolor. J Tradit Med Clin Natur, 6(2): 239.

Akgül H, Sevindik M, Akata I, Altuntas D, Bal C, Doğan M. 2016. Macropleiotopsis procera (Scop.) Singer. Mantaranın Ağır Metal İçerikleri ve Oksidatif Stres Durumunun Belirlenmesi. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 20(3): 504-508.

Arpaz F, Güler P, Türk M. 2017. Suillus collinitus (Fr.) Kunz’ten Sıtótoksit, Aptopik ve Nekrotik Etikleri. Life Sciences, 12(4): 56-63.

Baba H, Ergün N, Özbüçakcı S. 2012. Antaya (Hatay)’dan toplanan bazı makrofungüs türlerinde ağır metal birikimi ve mineral tayini. Research Journal of Biology Sciences, 5(1): 5-6.

Baba H, Sevindik M, Dogan M, Akgul H. 2020. Antioxidant, Antimicrobial Activities And Heavy Metal Contents of Some Myxomycetes. Fresenius Environmental Bulletin, 29(09): 7840-7846.

Bal C, Akgül H, Sevindik M, Akata I, Yumurutas O. 2017. Determination of the anti-oxidative activities of six mushrooms. Fresenius Envir Bull, 26(10): 6246-6252.

Barranco PG, Ocanas LG, Cabrera LV, Carmona MCS, Ocanas FG, Gomez XSR, Rangel RL. 2010. Evaluation of antioxidant, immunomodulating, cytotoxic and antimicrobial properties of different strains of Basidiomycetes from Northeastern Mexico. Journal of Medicinal Plants Research, 4(17): 1762-1769.

Bonfante P, Balestrini R, Martino, E, Perotto S, Plassard C, Mousain D. 1998. Morphological analysis of early contacts between pine roots and two ectomycorrhizal Suillus strains. Mycorrhiza, 8(1): 1-10.

Chen S, Su T, Wang Z. 2018. Structural characterization, antioxidant activity, and immunological activity in vitro of polysaccharides from fruiting bodies of Suillus granulatus. Journal of food biochemistry, 42(3): e12515.

Erel O. 2004. A novel automated direct method for total antioxidant capacity using a new generation, more stable ABTS radical cation. Clinical biochemistry, 37(4): 277-285.

Erel O. 2005. A new automated colorimetric method for measuring total oxidant status. Clinical biochemistry, 38(12): 1103-1111.

Gürgen A, Sevindik M, Yıldız S, Akgül H. 2020. Determination of Antioxidant and Oxidant Potentials of Pleurotus citrinopileatus Mushroom Cultivated on Various Substrates. Kahramanmaras Sütçü İman Üniversitesi Tarım ve Doğa Dergisi, 23(3): 586-591.

Heleno SA, Barros L, Sousa MJ, Martins A, Ferreira IC. 2010. Tocopherols composition of Portuguese wild mushrooms with antioxidant capacity. Food Chemistry, 119(4): 1443-1450.

Jaworska G, Pogoń K, Bernal S, Szkołczyk A, Kapusta I. 2014. Vitamins, phenolics and antioxidant activity of culinary prepared Suillus luteus (L.). Roussel mushroom. LWT-Food Science and Technology, 59(2): 701-706.

Kattoor AJ, Podhineti NVK, Palagiri D, Mehta JL. 2017. Oxidative stress in atherosclerosis. Current atherosclerosis reports, 19(11): 42.

Keles A, Koca I, Gençcelep H. 2011. Antioxidant properties of wild edible mushrooms. Journal of Food Processing & Technology, 2(6): 2-6.

Kikuchi T, Motoyashiki N, Yamada T, Shibatani K, Ninomiya K, Morikawa T, Tanaka R. 2017. Ergostane-type sterols from king trumpet mushroom (Pleurotus eryngii) and their inhibitory effects on aromatase. International journal of molecular sciences, 18(11): 2479.

Krupedorova T, Sevindik M. 2020. Antioxidant Potential and Some Mineral Contents of Wild Edible Mushroom Ramaria stricta. AgroLife Scientific Journal, 9(1): 186-191.

Macáková K, Opletal L, Polášek M, Samková V, Jahodář L. 2009. Free-radical scavenging activity of some European Boletales. Natural product communications, 4(2): 1934578X0900400219.

Mohammed FS. 2020. Phenolic Contents, Antioxidant and Antimicrobial Activities of Allium stamineum Collected from Duhok (Ira). Fresenius Environmental Bulletin, 29(09): 7526-7531.

Mohammed FS, Akgul H, Sevindik M, Khaled BMT. 2018. Phenolic content and biological activities of Rhus coriaria var. zebaria. Fresenius Environmental Bulletin, 27(8): 5694-5702.

Mohammed FS, Daştan T, Sevindik M, Selamoglu Z. 2019. Antioxidant, antimicrobial activity and therapeutic profile of Satureja hortensis from Erzincan Province. Cumhuriyet Tip Dergisi, 41(3): 558-562.

Mohammed FS, Şahik AE, Sevindik E, Pehlivan M, Sevindik M. 2020. Determination of Antioxidant and Oxidant Potentials of Thymus spicata Collected from Duhok-Iraq. Turkish Journal of Agriculture-Food Science and Technology, 8(5): 1171-1173.

Mushtag W, Baba, H, Akata I, Sevindik M. 2020. Antioxidant Potential and Element Contents of Wild Edible Mushroom Suillus granulatus. Kahramanmaras Sütçü İman Üniversitesi Tarım ve Doğa Dergisi, 23(3): 592-595.

Reis FS, Stojković D, Barros L, Glamočlija J, Ćirić A, Soković M, Ferreira IC. 2014. Can Suillus granulatus (L.) Roussel be classified as a functional food? Food and function, 5(11): 2861-2869.
Ribeiro B, Rangel J, Valentião P, Baptista P, Seabra RM, Andrade PB. 2006. Contents of carboxylic acids and two phenolics and antioxidant activity of dried Portuguese wild edible mushrooms. Journal of agricultural and food chemistry, 54(22): 8530-8537.

Robaszkiewicz A, Bartosz G, Lawrynowicz M, Soszyński M. 2010. The Role of Polyphenols, β-Carotene, and Lycopene in the Antioxidative Action of the Extracts of Dried, Edible Mushrooms. Journal of nutrition and metabolism, 2010. https://dx.doi.org/10.1155/2010/173274

Salim S. 2017. Oxidative stress and the central nervous system. Journal of Pharmacology and Experimental Therapeutics, 360(1): 201-205.

Sevindik M. 2018a. Investigation of antioxidant/oxidant status and antimicrobial activities of Lentinus tigrinus. Advances in pharmacological sciences, 2018. https://doi.org/10.1155/2018/1718025

Sevindik M. 2018b. Investigation of Oxidant and Antioxidant Status of Edible Mushroom Clavariadelphus truncatus. Mantar Dergisi, 9(2): 165-168.

Sevindik M. 2018c. Antioxidant and antimicrobial activity of Cerrena unicolor. Mycopath, 16(1): 11-14

Sevindik M. 2019. Wild Edible Mushroom Cantharellus cibarius as a Natural Antioxidant Food. Turkish Journal of Agriculture-Food Science and Technology, 7(9): 1377-1381.

Sevindik M, Akgul H, Akata I, Alli H, Selamoglu Z. 2017. Fomitopsis pinicola in healthful dietary approach and their therapeutic potentials. Acta alimentaria, 46(4): 464-469.

Sevindik M, Akgul H, Bal C, Selamoglu Z. 2018. Phenolic contents, oxidant/antioxidant potential and heavy metal levels in Cyclocybe cylindracea. Indian Journal of Pharmaceutical Education and Research, 52(3): 437-441.

Sevindik M, Akgul H, Selamoglu Z, Braidy N. 2020. Antioxidant and Antigenotoxic Potential of Infundibulicybe geotropa Mushroom Collected from Northwestern Turkey. Oxidative Medicine and Cellular Longevity, 2020. https://doi.org/10.1155/2020/5620484

Sriramulu M, Sumathi S. 2017. Photocatalytic, antioxidant, antibacterial and anti-inflammatory activity of silver nanoparticles synthesised using forest and edible mushroom. Advances in Natural Sciences: Nanoscience and Nanotechnology, 8(4): 045012.

Tel G, Deveci E, Kuçükaydın S, Özler MA, Duru ME, Harmandar M. 2014. Evaluation of antioxidant activity of Armillaria tabescens, Leucopaxillus gentianaeus and Suillus granulatus: The mushroom species from Anatolia. Eurasian Journal of Analytical Chemistry, 8(3): 136-147.

Vetter J. 1990. Mineral element content of edible and poisonous macrofungi. Acta Alimentaria, 19(1): 27- 40.

Wang Y, Tian Y, Shao J, Shu X, Jia J, Ren X, Guan Y. 2018. Macrophage immunomodulatory activity of the polysaccharide isolated from Collybia radicata mushroom. International journal of biological macromolecules, 108: 300-306.

Zhou F, Yan S, Chen S, Gong L, Su T, Wang Z. 2016. Optimization extraction process of polysaccharides from Suillus granulatus and their antioxidant and immunological activities In vitro. Pharmacognosy Magazine, 12(Suppl 2): S277.