Quantum chromodynamics (QCD)-like phase diagram with Efimov trimers and Cooper pairs in resonantly interacting SU(3) Fermi gases

Hiroyuki Tajima and Pascal Naidon
Quantum Hadron Physics Laboratory, RIKEN Nishina Center (RNC), Wako, Saitama, 351-0198, Japan
E-mail: hiroyuki.tajima@riken.jp

Keywords: Bose–Einstein-condensation (BEC–BEC) crossover, Efimov effect, quantum chromodynamics (QCD) phase diagram, SU(3) Fermi gas, pseudogap, in-medium bound states, color superfluidity

Abstract
We investigate color superfluidity and trimer formation in resonantly interacting SU(3) Fermi gases with a finite interaction range. The finite range is crucial to avoid the Thomas collapse and treat the Efimov effect occurring in this system. Using the Skorniakov–Ter-Martirosian equation with medium effects, we show the effects of the atomic Fermi distribution on the Efimov trimer energy at finite temperature. We show the critical temperature of color superfluidity within the many-body T-matrix approximation. In this way, we can provide a first insight into the phase diagram as a function of the temperature T and the chemical potential μ. This phase diagram consists of trimer, normal, and color-superfluid phases, and is similar to that of quantum chromodynamics at finite density and temperature.

1. Introduction

The concept of quantum simulation has opened new possibilities for exploring the properties of novel materials as well as exotic matter in extreme conditions [1–3]. Recently, ultracold atoms have been used as quantum simulators of strongly correlated systems thanks to the tunability of their physical parameters such as interparticle interaction [4–7]. For example, ultracold atomic Fermi gases loaded into an optical lattice can realize the Hubbard model, which is relevant to high-T_c cuprate superconductors [3, 8–11]. The antiferromagnetic behavior which plays an important role for the superconducting mechanism of high-T_c cuprates has been observed in this atomic system [3, 11]. As another example, strongly interacting two-component Fermi gases can be used as quantum simulators of dilute neutron matter [12–14]. Indeed, the observed thermodynamic quantities of homogeneous Fermi gases near the unitarity limit [15–18] quantitatively reproduce the equation of state of neutron matter obtained by numerical simulations [19] which is crucial for understanding the interior of a neutron star [20, 21].

The analog simulation of quantum chromodynamics (QCD) [22, 23], where quarks with three colors strongly interact with each other, can be regarded as one of the next important challenges for cold-atom physics [24–26]. While numerous efforts have been made to explore the phase diagram of finite-density QCD where various phenomena such as color superconductivity [27] have been theoretically proposed, they could not be confirmed by high-energy experiments due to the extreme densities, nor by exact numerical simulations due to the sign problem. On the other hand, three-component fermion systems have been experimentally realized by using mixtures of fermionic atoms in three different internal states [26, 28–35]. These systems reach the quantum degenerate regime around $T \approx 0.3T_F$ [28] where T_F is the Fermi degenerate temperature of non-interacting atoms. In this regime, the existence of color superfluidity similar to color superconductivity in QCD has been theoretically examined in three-component Fermi gases [36–44]. Although there are several differences between these atomic systems and QCD, they constitute a good starting point to study the strong-coupling effects in three-component fermion systems.

In most of the previous works on color superfluidity [36–39, 41–44], zero-range interactions have been used to describe the attraction between the three components. However, such zero-range interactions are known to
lead to a collapse of the system [45, 46] in connection with the existence of Efimov trimer [30, 33, 35, 47–51]. A finite range of interactions is therefore necessary to prevent the collapse and properly treat Efimov trimers. The effect of finite range and the Efimov trimers on the phase diagram of three-component fermionic system was studied in [52]. However, this study was limited to zero temperature.

In this paper, we investigate in-medium Efimov trimers and color superfluidity in resonantly interacting SU(3) Fermi gases with finite interaction range and finite temperature. By including medium effects in the Skorniakov–Ter-Martirosian (STM) equation [53] which exactly describes Efimov physics in a three-body problem [34], we discuss how the trimer energy is changed at finite temperature. To explore many-body physics related to color superfluidity, we employ the non-selfconsistent T-matrix approximation (TMA) [55–65], which can correctly describe the Bardeen–Cooper–Schrieffer to Bose–Einstein-condensation (BCS–BEC) crossover [66–71] in strongly interacting two-component 40K [72] and 4Li [73] Fermi gases. Combining the results of these two approaches, we obtain the phase diagram with respect to the temperature T and the chemical potential μ.

This paper is organized as follows. In section 2, we explain the Hamiltonian for resonant SU(3) Fermi gases and our framework of in-medium STM equation and non-selfconsistent TMA. In section 3, we show our numerical results of the in-medium Efimov trimer energy and discuss the finite temperature behavior of them, as well as the color-superfluid instability. Finally, we summarize this paper in section 4. For simplicity, we take ℏ = k_B = 1 and the system volume V is taken to be unity.

2. Formalism

2.1. Hamiltonian

We consider a symmetric three-component fermionic system. We model the interaction between two different components by a two-channel Feshbach resonance model [7, 52] consisting of an open channel and a closed channel described by a single diatomic molecular state. We neglect the interaction within the open channel which corresponds to the limit of closed-channel dominated resonances. Furthermore, the open channel between two fermions and molecular states is taken as a contact-type coupling. The three-component fermionic system is therefore described by the following Hamiltonian

\[H = \sum_{j=1,2,3} \sum_{p} \xi_{j}^{p} c_{p,j}^{†} c_{p,j} + \sum_{i<j} \sum_{q} \xi_{q}^{i,j} c_{q,i}^{†} c_{q,j} + g \sum_{i<j} \sum_{p,q} (b_{q,i}^{†} c_{p,q+i+j} c_{p,q+i+j}^{†} + \text{h.c.}), \]

where \(\xi_{j}^{p} = \frac{p^2}{2m} - \mu \) and \(\xi_{q}^{i,j} = \frac{q^2}{4m} + \nu - 2\mu \) are the kinetic energies of a fermion with mass m and the diatomic molecule, respectively, and \(\mu \) is the fermionic chemical potential. \(c_{p,j} \) and \(b_{q,i} \) are annihilation operators of a Fermi atom with the internal state \(j = 1, 2, 3 \) and a diatomic molecule made of \(i-j \) atomic pair. The energy of diatomic molecules \(\nu \) and the atom-dimer Feshbach coupling g are related to the scattering length a and the range parameter \(R_{e} \) as follows,

\[\frac{m}{4\pi\alpha} = -\frac{\nu}{g} + \sum_{p} \frac{m}{p^2}, \]

\[R_{e} = \frac{4\pi}{m^{2}g^{2}}. \]

We note that the effective range \(r_{e} \) of this two-channel interaction is here negative and is associated with \(R_{e} = -\frac{1}{2}r_{e} \). In this paper, we focus on the unitarity limit \(1/\alpha = 0 \).

2.2. Non-selfconsistent TMA

We first employ the non-selfconsistent TMA within the Matsubara formalism [55–65] to determine thermodynamic properties such as critical temperature \(T_{c} \) of color superfluidity. In this framework, the thermal Green’s function of dressed atoms is given by

\[G(p) = \frac{1}{i\omega_n - \xi_{p}^{F} - \Sigma(p)}, \]

where we used the four-momentum notation \(p = (p, i\omega_{n}) \) and \(\omega_{n} = (2n + 1)\pi T \) is the fermionic Matsubara frequency. \(\Sigma(p) \) is the fermionic self-energy. In the case of just two fermions in vacuum, the self-energy is given by the diagram shown in figure 1(a). Retaining only this diagram, we obtain [65]

\[\Sigma(p) = 2g^{2}T \sum_{Q} D(Q) G_{0}(Q - p), \]

where \(Q = (Q, i\nu_{d}) \) and \(\nu_{d} = 2\pi n'T \) is the bosonic Matsubara frequency. \(G_{0}(p) = 1/(i\omega_{n} - \xi_{p}^{F}) \) and \(D(Q) \) are the in-medium Green’s functions of a non-interacting fermion and a dressed molecule, respectively. We note that although this equation (5) has the same form as that in vacuum, here \(G_{0} \) and \(D \) contain the medium...
effects. We also note that the factor 2 in equation (5) comes from the degree of freedom with respect to internal states.

Similarly, the thermal Green’s function of dressed molecules with the ultraviolet renormalization is given by

\[D(Q) = \frac{1}{\nu \omega' - \xi^D_Q - \Xi(Q)}, \]

where \(\Xi(Q) \) is the bosonic self-energy diagrammatically shown in figure 1(b). Here again, we take the vacuum form

\[\Xi(Q) = -g^2 T \sum_p G_0(p + Q)G_0(-p) = g^2 \sum_p \frac{1 - f(\xi^D_Q + t)}{\nu \omega' - \xi^D_Q + t}, \]

where \(f(\xi) = 1/(e^{\xi/T} + 1) \) is the Fermi–Dirac distribution function. The chemical potential \(\mu/\xi_F \) with fixed number density \(n \) (where \(\xi_F = (2\pi^2 n)^{1/3}/(2m) \) is the Fermi energy of an ideal Fermi gas at \(T = 0 \)) is obtained by solving the number equation,

\[n = 3T \sum_Q G(p) - 6T \sum_Q D(Q). \]

In addition, we obtain the critical temperature \(T_c \) from the Thouless criterion \(D^{-1}(Q = 0, \nu \omega' = 0) = 0 \) \([74]\), which gives \(1/a = 0 \)

\[\frac{m^2 \mu R_s}{2\pi} + \sum_p \left[\frac{1}{2\xi^F_p} \tanh \left(\frac{\xi^F_p}{2T_c} \right) \right] - \frac{m^2}{p^2} = 0. \]

2.3. In-medium STM equation

To determine the trimer energy \(E_3^M \) in the medium, we consider the three-body \(T \)-matrix equation \([75, 76]\) which is diagrammatically shown in figure 2. In the vacuum case, it gives the so-called STM equation which exactly describes Efimov physics in three-body problems. Using the thermal Green’s functions within the Matsubara formalism, we obtain the in-medium three-body \(T \)-matrix

\[T_3^M(p, p'; P) = -g^2 G_0(p - p' - q) D(q) G_0(q) D(p - q) T_3^M(q, p'; P). \]

We note that \(p, p', \) and \(P \) are the four-momenta of incoming fermion, outgoing fermion, and the center-of-the-mass, respectively (we suppress the index of internal states for simplicity). The factor 2 in the second term of rhs of equation (10) comes from the degree of freedom with respect to internal states. \(G_0(q) \) with \(q = (q, i\Omega_n) \) indicates intermediate states of fermions which are integrated. By including Pauli-blocking effects on \(G_0(p) \) (see appendix), we obtain the in-medium STM equation in the unitarity limit \((1/a \to 0) \).
where $\kappa(q)^2 = \frac{3}{2}q^2 - mE^M_3L(p)$ is the function defined by equation (A.9) in appendix, and

$$F(p, q) = 1 - f(\xi^{\mathcal{E}}_{p+q/2}) - f(\xi^{\mathcal{E}}_{p-q/2})$$

is the statistical factor associated with the Fermi–Dirac distribution of atoms given by $f(\xi^{\mathcal{E}}_p) = 1/(e^{\xi^{\mathcal{E}}_p/T} + 1)$.

One can find that the ordinary STM equation in a three-body problem is recovered by setting $F(p, q) = 1$. A similar equation to equation (11) was used in [77, 78]. We note however that these works are restricted to $T = 0$ and moreover, the form of $F(p, q)$ in these works corresponds to

$$F(p, q) = \theta(\xi^{\mathcal{E}}_{p+q/2})\theta(\xi^{\mathcal{E}}_{p-q/2}),$$

instead of equation (12). Here $\theta(x)$ denotes the Heaviside step function. Equation (13) corresponds to the absence of propagator for holes below the Fermi sea (see equation (A.12)). While there is no physical reason to neglect this propagator, interestingly, this choice allows the possibility of positive-energy solutions, called Cooper triples. However, if we solve equation (11) with equation (13) extended to finite temperature, namely,

$$F(p, q) = [1 - f(\xi^{\mathcal{E}}_{p+q/2})][1 - f(\xi^{\mathcal{E}}_{p-q/2})],$$

such positive-energy solutions cannot be calculated due to the appearance of divergences coming from the denominators in equation (11). Our equation (12) leads to the same problem at any temperature, and therefore does not allow positive-energy solutions, even at $T = 0$. We suppose that this is a technical issue due to the incompleteness of the theories, which should be addressed in the future. Nevertheless, in [79], it was found that the difference between the choices of equations (12) and (14) are not significant at finite temperature and negative energy. Therefore, we focus on the region where $E^M_3 \leq 0$. We briefly note that similar in-medium three-body equations were employed in nuclear physics [80–87].

3. Results

Figure 3 shows the ground-state trimer energy E^M_3 with the medium effects, which can be obtained numerically from equation (11) as a dimensionless function

$$E^M_3 = \frac{1}{mR^2_s}X(R_s/\lambda_T, \mu/T),$$

where $\lambda_T = \frac{\hbar}{\sqrt{2mT}}$ is the thermal de Broglie wavelength. Physically, the range parameter R_s gives the typical size of the Efimov trimer [88]. In this regard, the ratio between R_s and λ_T represents how trimer states are affected by finite temperature effects. In the case of $R_s \ll \lambda_T$ and $\mu/T \lesssim 0$, E^M_3 approaches the vacuum limit given by $E^V_3 = -0.013\,85/(mR^2_s)$ which is close to that of a universal trimer [89], since the trimer size is small enough compared to the typical thermal length scale.
In addition, the ratio μ/T is associated with the fugacity $z = e^{\mu/\epsilon_F}$ and represents Pauli-blocking effects due to the atomic Fermi distribution, which plays a significant role when $\mu > 0$. The absolute value of E_3^M is greatly reduced in the Fermi degenerate region. Finally, E_3^M disappears in the region where μ/T and R_*/λ_T are relatively large. The physical interpretation of these effects is that Fermi atoms from the medium weaken the E_3^M attraction between three atoms forming a trimer state. This phenomenon is somewhat similar to the Gor’kov–Melik-Barkhudarov (GMB) correction in weak-coupling superconductors for which the size of Cooper pairs is large [90] and the pairing interaction is screened by the medium [91–95].

To see how these effects would appear in actual experiments at given temperatures and densities, we plot in figure 4(a) the typical temperature dependence of trimer energy E_3^M at different range parameters according to the density equation of state obtained from the non-selfconsistent T-matrix approximation (TMA) above T_c. k_F and ϵ_F are the Fermi degenerate temperature, the Fermi momentum, and the Fermi energy of ideal Fermi gases, respectively.

Figure 4. (a) Trimer energy E_3^M with medium effects as a function of T/T_F obtained from the chemical potential μ/ϵ_F calculated within the non-selfconsistent T-matrix approximation (TMA) above T_c. k_F and ϵ_F are the Fermi degenerate temperature, the Fermi momenta, and the Fermi energy of ideal Fermi gases, respectively.

In addition, the ratio μ/T is associated with the fugacity $z = e^{\mu/\epsilon_F}$ and represents Pauli-blocking effects due to the atomic Fermi distribution, which plays a significant role when $\mu > 0$. The absolute value of E_3^M is greatly reduced in the Fermi degenerate region. Finally, E_3^M disappears in the region where μ/T and R_*/λ_T are relatively large. The physical interpretation of these effects is that Fermi atoms from the medium weaken the E_3^M attraction between three atoms forming a trimer state. This phenomenon is somewhat similar to the Gor’kov–Melik-Barkhudarov (GMB) correction in weak-coupling superconductors for which the size of Cooper pairs is large [90] and the pairing interaction is screened by the medium [91–95].

To see how these effects would appear in actual experiments at given temperatures and densities, we plot in figure 4(a) the typical temperature dependence of trimer energy E_3^M at different range parameters according to the density equation of state obtained from the non-selfconsistent T-matrix approximation (TMA) above T_c. By numerically solving the number equation equation (8), we obtain the temperature-dependent chemical potential μ as shown in figure 4(b). We then use μ as an input for in-medium STM equation given by equation (11). This gives E_3^M, shown in figure 4(a). E_3^M has a peak structure which can be understood from two effects, that is, the evolution of the Fermi chemical potential and the decrease of λ_T compared to the trimer size. In the high-temperature limit, we can neglect the interaction effects and μ is given by the number equation of ideal gases $n = 3\sum_x e^{-\mu/\epsilon_F}$. This gives approximately $\mu \approx -\frac{3}{2}T \ln T$ and for large temperatures E_3^M reproduces the vacuum result E_3^V due to the large negative μ. Decreasing the temperature makes the density and temperature effects more visible which weakens the trimer (E_3^M increases). However, at very low temperature μ becomes almost constant while λ_T increases as $1/\sqrt{T}$ with decreasing temperature. As a result, it becomes larger and larger compared to trimer size R_* (which is fixed in this figure), which suppresses the temperature effects and the trimer strengthens (E_3^M decreases). This decrease becomes sharper with increasing R_* as shown in figure 4(a). We note that our calculation is stopped at $T = T_c$, where equation (8) is invalid below T_c due to the existence of the superfluid gap.

From these results, we get a first insight into the phase diagram with respect to the chemical potential μ and temperature T, as shown in figure 5. We expect a trimer phase (TP) where all of the atoms are bound into
ground-state Efimov trimers, a color superfluid phase (CSF) where all three kinds of pairs are condensed, and a normal phase (NP) where the atoms form neither trimers nor condensed pairs. The boundary between TP and NP is estimated by the curve where \(E_0^M = 0 \). This curve does not represent any phase transition between trimer and NPs but it should be a good indication of how the trimer character disappears in the high-density region of this system. CSF is defined by the region below \(T_c \). We note that \(T_c \) approaches zero in the low-density (zero-range) limit at \(mR^* \). We also note that the high-density limit of the critical temperature \(T_{Tc} \) is simply obtained from the BEC temperature of diatomic molecules in the presence of thermally excited fermions and \(\mu \) approaches zero in this limit. This indicates that the system undergoes a crossover from unitary Cooper pairs to BEC of closed channel molecules. This behavior is specific to the narrow-resonance two-channel model used in this work. Interestingly, figure 6 is similar to the phenomenological phase diagram of QCD consisting of the hadron phase (analogue of TP), the color superconducting phase (analogue of CSF), and the deconfined quark phase (analogue of NP) [23]. However, while the phase transition at \(T = T_c \) between CSF and NP is of the second order, that of color superconductivity is of the first order due to the gauge coupling [27, 96]. Moreover, the conjectured BEC–BCS crossover [97, 98] in QCD with increasing the chemical potential is opposite to the BCS–BEC crossover found in this model at \(1/a = 0 \). We stress again this is a particularity of the narrow-resonance two-channel model.
Although our in-medium STM equation cannot be justified near \(T = T_c \) where the Bose–Einstein distribution of diatomic molecules increases in the low-energy region, one can find a quantum-phase-transition-like behavior around \(\mu mR_k^d = 0 \). The inset of figure 5 shows the magnification around \(\mu mR_k^d = 0 \), where the two curves we calculated cross each other. In reality, the region near this point is expected to be dominated by strong multi-body correlation due to the competition between trimer formation and color superfluidity \([82] \), which cannot be captured by our treatment.

Finally, we look at pairing fluctuations above \(T_c \). Indeed, it is known that pairing fluctuations become strong near \(T_c \) in two-component Fermi gases near the unitarity limit.

Figure 6 shows the single-particle spectral function

\[
A(p, \omega) = -\frac{1}{\pi} \text{Im} G(p, \omega_{\text{in}} \rightarrow \omega + i\delta)
\]

obtained from the analytic continuation of \(G(p) \) given by equation (4) (\(\delta \) is an infinitesimally small positive number), at \(\mu mR_k^d = 0.0298 \) and \(TmR_k^d = 0.0302 \) which is just above \(T_c \) indicated in the inset of figure 5. One can see that the atomic dispersion has a gap structure near \(\omega = 0 \) even in the absence of the superfluid gap. This excitation gap in the NP originates from strong pairing fluctuations (preformed Cooper pair) and is called pseudogap, which has been extensively discussed for various strongly correlated quantum systems such as high-\(T_c \) superconductors \([99,100]\), ultracold Fermi gases \([55–65,101–108]\), color superconductivity \([109,110]\), and nuclear matter \([111–114]\). This single-particle excitation property is accessible by photo-emission spectrum measurement in cold atom systems \([102–105]\). In principle, such experiments could also observe many-body effects associated with in-medium Efimov trimers. However, treating such many-body effects theoretically would require a self-consistent approach including both two-body and three-body correlations in the self-energy.

The pseudogap can also be seen in the single-particle density of states \(\rho(\omega) \), which is defined by

\[
\rho(\omega) = \sum_p A(p, \omega).
\]

It is shown in figure 7(a) at \(T = T_c \). This quantity clearly shows the pseudogap effect as a dip structure around \(\omega = 0 \). The pseudogap disappears away from \(\mu = T = 0 \), that is, in the high-density (large range parameter) limit as found in the case of two-component Fermi gases with negative effective range \([65]\). To characterize this many-body phenomenon, we introduce the pseudogap size \(\Delta_{\text{pg}} \) defined as the half width of the dip \([60]\) (see the inset of figure 7(b)). One can find that \(\Delta_{\text{pg}} \) grows when \(\mu mR_k^d \) approaches zero and reaches a maximum value \(\Delta_{\text{pg}} \approx 0.55 \) at \(\mu mR_k^d = 0 \). This enhancement of \(\Delta_{\text{pg}} \) indicates that many-body effects associated with pairing fluctuations are important in the region around \(\mu = T = 0 \) in the phase diagram of figure 5. This confirms the expected competition between formation of Cooper pairs and that of Efimov trimers. This competition would occur around \(E_{\text{fi}} = 0 \), which is shown as the vertical dashed line in figure 7(b).

4. Summary

In this paper, we have investigated some of the strong-coupling effects occurring in resonantly interacting SU(3) Fermi gases with a finite interaction range, namely, the in-medium Efimov trimer and the critical temperature \(T_c \) of color superfluidity.

The trimer formation is weakened by the medium effects, which consist of thermal agitation and Fermi pressure due to Pauli exclusion. The trimer is affected by thermal agitation when the thermal de Broglie wavelength is comparable to the trimer size given by the range of interaction. The Pauli-blocking effects are significant when the chemical potential \(\mu \) becomes large. As in the case of the GMB corrections in weakly coupled superconductors where the pairing interaction forming loosely bound Cooper pairs is screened by electrons from the medium, the medium effects in three-component Fermi gases become stronger when the trimer size or the atomic Fermi sphere becomes larger. We have shown how these effects would appear in actual experiments varying temperature at fixed number density.

Finally, we have investigated the phase diagram with respect to the chemical potential \(\mu \) and temperature \(T \). Our calculations indicate the existence of three phases: trimer, normal, and color superfluid phases. Interestingly, the obtained phase diagram is analogous to the phenomenological QCD phase diagram which consists of hadron, deconfined quark, and color superconducting phases. We emphasize that the finite interaction range plays an important role to obtain such a QCD-like phase diagram in this atomic system.

Near \(\mu = T = 0 \) in our phase diagram, the system is expected to be dominated by strong two-body and three-body correlations resulting from the competition between trimer formation and color superfluidity. This idea is supported by our calculation of the in-medium trimer energy and the single-particle spectral function which exhibits strong pairing fluctuations near the CSF transition. A self-consistent treatment of two-body and three-body correlations is required to understand this interesting regime, which is left as a future problem. Our
analysis does not exclude the possibility of trimer superfluidity due to a possible residual attraction between the trimers [115]. Such a state would be similar to the p-wave superfluidity in a Bose–Fermi mixture [116]. Although we consider a resonant interaction in this paper, the phase diagram would quantitatively change when tuning the scattering length. In particular, the CSF (or molecular BEC) would start at a lower chemical potential in the case of a finite scattering length [52].

Acknowledgments

H T thanks T Hatsuda, Y Nishida, and G Baym for useful discussion. HT was supported by a Grant-in-Aid for JSPS fellows (No.17J03975). PN was supported by the RIKEN Incentive Research Project. This work was supported by RIKEN iTHEMS program and JSPS Grant-in-Aid for Scientific Research (S), No.18H05236.

Appendix. Derivation of the in-medium STM equation

Since we calculate the ground-state trimer energy E^M_3 with the medium effects, we set $P = (0, \ i\zeta)$ in the three-body T-matrix equation given by equation (10) [75, 76] (where $i\zeta = (2l + 1)\pi T$ is the fermionic Matsubara frequency). We obtain

$$T^M_3(p, p'; P) = -2g^2 T \sum_q G_0(p - q) G_0(q) D(p - q) T^M_3(q, p'; P), \quad (A.1)$$

Figure 7. (a) Single-particle density of states $\rho(\omega)$ and (b) pseudogap size Δ_{pg} [60] at $T = T_c$ where ρ_0 is that at a Fermi level in a non-interacting Fermi gas. The vertical dashed line shows $E^M_3 = 0$. Δ_{pg} is determined from the half width of the dip in $\rho(\omega)$ around $\omega = 0$ as shown in the inset of the panel (b), where the horizontal dotted lines exhibit the local maximum, the half depth, and the local minimum, respectively.
where we ignore the first term of rhs of equation (10) which is negligible near the pole of T^M_3. The summation over the Matsubara frequencies Ω_n (where $q = (\mathbf{q}, \Omega_n)$) in equation (A.1) can be replaced by the contour integral with respect to an anticlockwise path C enclosing the pole of the Fermi–Dirac distribution function $f(x)$, namely, $x = i\Omega_n$ as

$$T \sum_{\Omega_n} = -\oint_C \frac{dx}{2\pi i} f(x), \quad \text{(A.2)}$$

since $\text{Res}(f(x = i\Omega_n)) = -T$. We note that C can be deformed to a clockwise path C' which encloses the poles of G_0, D, and T^M_3, which give medium effects associated with the momentum distributions of atoms, molecules, and trimers, respectively. For simplicity, we consider only the pole of G_0 to incorporate the effects of the atomic Fermi–Dirac distribution. This approximation is justified in the high temperature regime where the fugacity $\zeta = e^{\mu/T}$ is small. In this regime, the atomic Fermi distribution function is approximately given by

$$f(\xi) \approx e^{-\frac{\xi - \mu}{T}},$$

and trimers, respectively. For simplicity, we consider only the pole of Fermi

$$G_0 \text{and } T^M_3 \text{, which give medium effects associated with the momentum distributions of atoms, molecules, and trimers, respectively. For simplicity, we consider only the pole of } G_0 \text{ to incorporate the effects of the atomic Fermi–Dirac distribution. This approximation is justified in the high temperature regime where the fugacity } \zeta = e^{\mu/T} \text{ is small. In this regime, the atomic Fermi distribution function is approximately given by}$$

$$f(\xi) \approx e^{-\frac{\xi - \mu}{T}},$$

$$T^M_3(p, p'; P) = 2g^2 \sum_q \int_C \frac{dx}{2\pi i} f(x)D(P - q)T^M_3(q, p'; P)\]

$$= 2g^2 \sum_q \left[\frac{\{1 - f(\xi^q_{p+q})\}D(P - q)T^M_3(q, p'; P)}{\zeta_q - i\omega_n - \xi^q_{p+q}} \right. \]

$$\left. - \frac{f(\xi^q_q)D(p - q)T^M_3(q, p'; P)}{\zeta_q - i\omega_n - \xi^q_q - \xi^q_{p+q}} \right]. \quad \text{(A.3)}$$

where $\zeta_q = (q, i\zeta_q - i\omega_n - \xi^q_{p+q})$ and $\zeta_{q'} = (q', \xi^q_{q'}p)$. To obtain the in-medium STM equation, we perform the analytic continuations $i\omega_n \rightarrow \xi^q_q$ and $i\zeta_q \rightarrow E^M_3 - 3\mu$ in equation (A.3). In this way, we obtain

$$T^M_3(p, p'; P) = 2g^2 \sum_q \left[\frac{\{1 - f(\xi^q_{p+q})\}D(q, \xi^q_{p+q} + \xi^q_p)}{E^3 - 3\mu - \xi^q_p - \xi^q_{p+q}} \right. \]

$$\times T^M_3((q, E^3_3 - 3\mu - \xi^q_p - \xi^q_{p+q}), p'; P)\]

$$\left. - \frac{f(\xi^q_q)D(q, E^3_3 - 3\mu - \xi^q_q)T^M_3((q, \xi^q_q), p'; P)}{E^3 - 3\mu - \xi^q_q - \xi^q_{p+q}} \right]. \quad \text{(A.4)}$$

Furthermore, the first integrand in equation (A.4) gives dominant contributions near its pole, corresponding to

$$E^3_3 - 3\mu - \xi^q_p - \xi^q_{p+q} = 0.$$ We can then approximate the arguments of D and T^M_3 as

$$D(q, \xi^q_{p+q} + \xi^q_p) \approx D(q, E^3_3 - 3\mu - \xi^q_q), \quad \text{(A.5)}$$

and

$$T^M_3((q, E^3_3 - 3\mu - \xi^q_q), p'; P) \approx T^M_3((q, \xi^q_q), p'; P). \quad \text{(A.6)}$$

By substituting equations (A.5) and (A.6) into equation (A.4), we obtain

$$T^M_3(p, p'; P) = 2g^2 \sum_q \left[\frac{1 - f(\xi^q_q) - f(\xi^q_{p+q})}{E^3 - 3\mu - \xi^q_p - \xi^q_{p+q}} \right. \]

$$\times D(q, E^3_3 - 3\mu - \xi^q_q)T^M_3((q, \xi^q_q), p'; P), \quad \text{(A.7)}$$

where

$$D(q, E^3_3 - 3\mu - \xi^q_q) \approx \frac{4\pi}{mg^2} \sum_k \frac{1}{\left\{ \frac{f(k, q)}{k^2 + s(q)^2} - \frac{1}{k^2} \right\} - R_\kappa(q)^2}. \quad \text{(A.8)}$$

is obtained from the analytic continuation of equation (6). We note that $\kappa(q)^2 = \frac{3}{2}q^2 - mE^3_3$ and $F(k, q)$ is the statistical factor defined by equation (12). We introduce
\[L(q) = \frac{m g^2}{4 \pi} D(q, E_s^M) - 3 \mu - \frac{\xi^F}{q} T_5^M(q, \xi^F, p'; P). \] (A.9)

We note that although \(L(q) \) implicitly depends on \(p' \) and \(P \), they do not change the equation of \(E^M \) because we consider only the s-wave component. By using \(L(q) \), equation (A.7) can be rewritten by

\[
\left[-R_{\alpha k}(p)^2 + 4\pi \sum_k \left\{ \frac{F(k, p)}{k^2 + \alpha^2(p)^2} - \frac{1}{k^2} \right\} \right] L(p) = 8\pi \sum_q \frac{1 - f(\xi^F_{p+q}) - f(\xi^F_q)}{m E^M_q - p^2 - q^2 - p \cdot q} L(q). \] (A.10)

Finally, we obtain the in-medium STM equation, that is, equation (11) by making the substitutions \(q \to q + p/2 \) and \(p \to -p \) in equation (A.10). We note that by taking the vacuum limit \(\mu \to -\infty \) where \(f(\xi^F_q) \to 0 \), equation (11) reproduces the ordinary STM equation of a three-body problem at \(1/a = 0 \) [52] given by

\[
\left[-R_{\alpha k}(p)^2 + 4\pi \sum_k \left\{ \frac{1}{k^2 + \alpha^2(p)^2} - \frac{1}{k^2} \right\} \right] L(p) = -8\pi \sum_q \frac{L(q + p/2)}{q^2 + \alpha^2(p)^2}, \] (A.11)

which gives the ground-state trimer energy \(E_s^T = -0.013 \ 85/(mR_s^2) \) in vacuum.

At \(T = 0 \), we can obtain the same equation by using the time-ordered Green’s function [117]

\[
G^T_{\alpha i}(p) = \frac{1 - f(\xi^F_p)}{\omega + i\delta - \xi^F_p} + \frac{f(\xi^F_p)}{\omega - i\delta - \xi^F_p}, \] (A.12)

which consists of the propagator of a particle above the Fermi sea and that of a hole below the Fermi sea. Here, \(\delta \) is an infinitesimally small positive number. If the hole propagator is neglected, the statistical factor of [77], equation (13) is obtained.

References

[1] Bloch I, Dalibard J and Nascimbène S 2012 Quantum simulations with ultracold quantum gases Nat. Phys. 8 267
[2] Georgescu I M, Ashhab S and Nori F 2014 Quantum simulation Rev. Mod. Phys. 86 153
[3] Gross C and Bloch I 2013 Quantum simulations with ultracold atoms in optical lattices Science 357 995
[4] Dalfovo F, Giorgini S, Pitaevskii L P and Stringari S 1999 Theory of Bose–Einstein condensation in trapped gases Rev. Mod. Phys. 71 463
[5] Bloch I, Dalibard J and Zwerger W 2008 Many-body physics with ultracold gases Rev. Mod. Phys. 80 885
[6] Giorgini S, Pitaevskii L P and Stringari S 2008 Theory of ultracold atomic Fermi gases Rev. Mod. Phys. 80 1215
[7] Cirac J I, Maraner P and Pachos J K 2010 Cold atom simulation of interacting relativistic quantum field theories Phys. Rev. Lett. 105 190403
[8] Gross C and Bloch I 2017 Quantum simulations with ultracold atoms in optical lattices Berlin: Springer
[9] Akmal A, Pandharipande V R and Ravenhall D G 1998 Equation of state of nucleon matter and neutron star structure Phys. Rev. C 58 1804
[10] Akmal A, Pandharipande V R and Ravenhall D G 1998 Equation of state of nucleon matter and neutron star structure Phys. Rev. C 58 1804
[11] Alford M G, Schmitt A, Rajagopal K and Schaäfer T 2008 Color superconductivity in dense quark matter Rev. Mod. Phys. 80 1455
[28] Ottenstein T B, Lompe T, Kohmen M, Wenz A N and Jochim S 2008 Collisional stability of a three-component degenerate Fermi gas Phys. Rev. Lett. 101 203202

[29] Huckans J H, Williams J R, Hazlett E L, Stites R W and O’Hara K M 2009 Three-body recombination in a three-state Fermi gas with widely tunable interactions Phys. Rev. Lett. 102 165302

[30] Williams J R, Hazlett E L, Huckans J H, Stites R W, Zhang Y and O’Hara K M 2009 Evidence for an excited-state Efimov trimer in a three-component Fermi gas Phys. Rev. Lett. 103 130404

[31] Wenz A N, Lompe T, Ottenstein T B, Serwane F, Zürn G and Jochim S 2009 Universal trimer in a three-component Fermi gas Phys. Rev. A 80 040702(R)

[32] Spiegelhalder F M, Trenkwalder A, Naïd D, Hendl G, Schreck F and Grimm R 2009 Collisional stability of 40K immersed in a strongly interacting Fermi gas of 6Li Phys. Rev. Lett. 103 232003

[33] Nakajima S, Horkoshi M, Mukaiyama T, Naidon P and Ueda M 2010 Nonuniversal Efimov atom-dimer resonances in a three-component Fermi gas of 6Li Phys. Rev. Lett. 105 023201

[34] Lompe T, Ottenstein T B, Serwane F, Viering K, Wenz A N, Zürn G and Jochim S 2010 Atom-dimer scattering in a three-component Fermi gas Phys. Rev. Lett. 105 100401

[35] Nakajima S, Horkoshi M, Mukaiyama T, Naidon P and Ueda M 2011 Measurement of an Efimov trimer binding energy in a three-component mixture of 6Li Phys. Rev. Lett. 106 143201

[36] He I, Jin M and Zhang P 2006 Superfluidity in a three-flavor Fermi gas with SU(3) symmetry Phys. Rev. A 74 033604

[37] Paananen T, Martikainen J-P and Tormä P 2006 Pairing in a three-component Fermi gas Phys. Rev. A 73 053606

[38] Rapp A, Zaránd G, Honerkamp C and Hofstetter W 2007 Color superfluidity and ‘Bayron’ formation in ultracold fermions Phys. Rev. Lett. 98 160405

[39] Catelani G and Yuzbashyan E A 2008 Phase diagram, extended domain walls, and soft collective modes in a three-component fermionic superfluid Phys. Rev. A 78 053615

[40] Floerchinger S, Schmidt R, Moroz S and Wetterich C 2009 Functional renormalization for trion formation in ultracold fermion gases Phys. Rev. A 79 013603

[41] Bedaque P F and D’Incao J P 2009 Superfluid phases of the three-species fermion gas Ann. Phys. 324 1763

[42] Kantian A, Dalmonte M, Diehl S, Hofstetter W, Zoller P and Daley A J 2009 Atomic color superfluid via three-body loss Phys. Rev. Lett. 103 240401

[43] Martikainen J-P, Kinnunen J J, Törnä P and Pethick C J 2009 Induced interactions and the superfluid transition temperature in a three-component Fermi gas Phys. Rev. Lett. 103 260403

[44] Ozawa T and Baym G 2010 Population imbalance and pairing in the BCS–BEC crossover of three-component ultracold fermions Phys. Rev. A 82 063615

[45] Thomas L H 1935 The interaction between a neutron and a proton and the structure of 3H Phys. Rev. 47 903

[46] Blume D, Rittenhouse S T, von Stecher J and Greene C H 2008 Stability of inhomogeneous multicomponent Fermi gases Phys. Rev. A 77 033627

[47] Efimov V 1970 Energy levels arising from resonant two-body forces in a three-body system Phys. Lett. B 33 563

[48] Efimov V 1971 Weakly-bound states of three resonantly-interacting particles Sov. J. Nucl. Phys. 12 589

[49] Braaten E and Hammer H-W 2007 Efimov physics in cold atoms Ann. Phys. 322 120

[50] Naidon P and Endo S 2017 Efimov physics: a review Rep. Prog. Phys. 80 056001

[51] Greene C H, Giannakeas P and Pérez-Ríos J 2017 Universal few-body physics and cluster formation Rep. Mod. Phys. 89 035006

[52] Nishida Y 2012 New type of crossover physics in three-component Fermi gases Phys. Rev. Lett. 109 240401

[53] Skorniakov G and Ter-Martirosian K 1957 Three body problem for short range forces I. Scattering of low energy neutrons by deuteron Sov. Phys.—JETP 4 648

[54] Naidon P and Ueda M 2011 The Efimov effect in lithium 6 C. R. Phys. 12 13

[55] Pieri P and Strinati G C 2000 Strong-coupling limit in the evolution from BCS superconductivity to Bose–Einstein condensation Phys. Rev. B 61 15370

[56] Perali A, Pieri P, Strinati G C and Castellani C 2002 Pseudogap and spectral function from superconducting fluctuations to the bosonic limit Phys. Rev. B 66 024510

[57] Perali A, Pieri P and Strinati G C 2004 Quantitative comparison between theoretical predictions and experimental results for the BCS–BEC crossover Phys. Rev. Lett. 93 100404

[58] Tschieh S, Watanabe R and Ohashi Y 2009 Single-particle properties and pseudogap effects in the BCS–BEC crossover regime of an ultracold Fermi gas above Tc Phys. Rev. A 80 033613

[59] Tschieh S, Watanabe R and Ohashi Y 2010 Photoemission spectrum and effect of inhomogeneous pair fluctuations in the BCS–BEC crossover regime of an ultracold Fermi gas Phys. Rev. A 82 033629

[60] Watanabe R, Tschieh S and Ohashi Y 2010 Superfluid density of states and pseudogap phenomenon in the BCS–BEC crossover regime of a superfluid Fermi gas Phys. Rev. A 82 043630

[61] Perali A, Palestini F, Pieri P, Strinati G C, Stewart J T, Gaebler J P, Drake T E and Jin D S 2011 Evolution of the normal state of a strongly interacting Fermi gas from a pseudogap phase to a molecular Bose gas Phys. Rev. Lett. 106 060402

[62] Mueller E J 2011 Evolution of the pseudogap in a polarized Fermi gas Phys. Rev. A 83 053623

[63] Palestini F, Perali A, Pieri P and Strinati G C 2012 Dispersions, weights, and widths of the single-particle spectral function in the normal phase of a Fermi gas Phys. Rev. B 85 024517

[64] Ota M, Tajima H, Hanai R, Iotani D and Ohashi Y 2017 Local photoemission spectra and effects of spatial inhomogeneity in the BCS–BEC crossover regime of a trapped ultracold Fermi gas Phys. Rev. A 95 053623

[65] Tajima H 2018 Precursor of superfluidity in a strongly interacting Fermi gas with negative effective range Phys. Rev. A 97 043613

[66] Eagles D M 1969 Possible pairing without superconductivity at low carrier concentrations in bulk and thin-film superconducting semiconductors Phys. Rev. 186 456

[67] Leggett A J 1980 Diatomic molecules and cooper pairs Modern Trends in the Theory of Condensed Matter ed A Peralski and R Przystawa (Berlin: Springer)

[68] Nozieres P and Schmitt-Rink S 1985 Bose condensation in an attractive fermion gas: from weak to strong coupling superconductivity J. Low Temp. Phys. 59 195

[69] Sá de Melo C A R, Randera M and Engelbrecht J R 1993 Crossover from BCS to Bose superconductivity: transition temperature and time-dependent Ginzburg–Landau theory Phys. Rev. Lett. 71 3202

[70] Ohashi Y and Griffin A 2002 BCS–BEC crossover in a gas of Fermi atoms with a Feshbach resonance Phys. Rev. Lett. 89 130402
[71] Chen Q, Stajic J, Tan S and Levin K 2005 BCS–BEC crossover from high temperature superconductors to ultracold superfluids Phys. Rep. 412 1
[72] Regal C A, Greiner M and Jin D S 2004 Observation of resonance condensation of fermionic atom pairs Phys. Rev. Lett. 92 040403
[73] Zwerlein M W, Stan C A, Schunk C H, Raupach S M F, Kerman A J and Ketterle W 2004 Condensation of pairs of fermionic atoms near a Feshbach resonance Phys. Rev. Lett. 92 120403
[74] Thouless DJ 1960 Perturbation theory in statistical mechanics and the theory of superconductivity Ann. Phys. 10 535
[75] Brodsky I V, Kagan M Y, Klaptsov A V, Combescot R and Leyronas X 2006 Exact diagrammatic approach for dimer–dimer scattering and bound states of three and four resonantly interacting particles Phys. Rev. A 73 032724
[76] Iškin M 2010 Dimer–atom scattering between two identical fermions and a third particle Phys. Rev. A 81 043654
[77] Niemann P and Hammer H W 2012 Pauli-blocking effects and Cooper triples in three-component Fermi gases Phys. Rev. A 86 013628
[78] Nygaard G N and Zinner N T 2014 Efimov three-body states on top of a Fermi sea New J. Phys. 16 023026
[79] Tajima H and Naidon P 2019 Multi-body correlations in SU(3) Fermi gases J. Low. Temp. Phys. 196 163
[80] Beyer M, Röpke G and Sedrakian A 1996 Medium modifications of the nucleon–deuteron break-up cross section in the Faddeev approach Phys. Lett. B 376 7
[81] Beyer M, Schadow W, Kuhrt C and Röpke G 1999 Three-body properties in nuclear matter at thermal equilibrium Phys. Rev. C 60 034304
[82] Pepin S, Birse M C, McGovern J A and Walet N R 2000 Nucleons or diquarks: competition between clustering and color superconductivity in quark matter Phys. Rev. C 61 055209
[83] Barbieri C and Dickhoff W H 2001 Faddeev description of two-hole–one-particle motion and the single-particle spectral function Phys. Rev. C 63 034331
[84] Kuhrt C, Beyer M, Danielewicz P and Röpke G 2001 Medium corrections in the formation of light charged particles in heavy-ion reactions Phys. Rev. C 63 034605
[85] Beyer M, Mattioli S, Frederico T and Weber H J 2001 Three-quark clusters at finite temperatures and densities Phys. Lett. B 521 33
[86] Kvinikhidze A N and Blankleider B 2005 Three-body problem at finite temperature and density Phys. Rev. C 72 054001
[87] Mattioli S and Beyer M 2005 Dissociation of hadrons in quark matter within a finite-temperature field–theory approach on the light frontFew-Body Syst. 36 177
[88] Petrov D S 2004 Three–boson problem near a narrow Feshbach resonance Phys. Rev. Lett. 93 143201
[89] Gogolin A, Moro C and Egger R 2008 Analytical solution of the bosonic three–body problem Phys. Rev. Lett. 100 140404
[90] Gor’kov L P and Melik-Barkhudarov T K 1961 Contribution to the theory of superfluidity in an imperfect Fermi gas Sov. Phys.—JETP 13 1018
[91] Floercher S, Scherer M, Diehl S and Wetterich C 2008 Particle–hole fluctuations in BCS–BEC crossover Phys. Rev. B 78 174528
[92] Yu Z-Q, Huang K and Yin L 2009 Induced interaction in a Fermi gas with a BEC–BEC crossover Phys. Rev. A 79 053636
[93] Ruan X-U, Gong H, Du L, Sun W-M and Zong H-S 2013 Effect of the induced interaction on the superfluid–transition temperature of ultracold Fermi gases within the T–matrix approximation Phys. Rev. A 87 043608
[94] Pisanì L, Perali A, Pierri P and Strinati G C 2018 Entanglement between pairing and screening in the Gorkov–Melik-Barkhudarov correction to the critical temperature throughout the BCS–BEC crossover Phys. Rev. B 97 014528
[95] Pisanì L, Pierri P and Strinati G C 2018 Gap equation with pairing correlations beyond the mean-field approximation and its equivalence to a Hugenholtz–Pines condition for fermion pairs Phys. Rev. B 98 104507
[96] Matsurã T, Iida K, Hatsuda T and Baym G 2004 Thermal fluctuations of gauge fields and first order phase transitions in color superconductivity Phys. Rev. D 69 074012
[97] Abuki H, Hatsuda T and Ilakura K 2002 Structural change of Cooper pairs and momentum–dependent gap in color superconductivity Phys. Rev. D 65 074014
[98] Nishida Y and Abuki H 2003 BCS–BEC crossover in a relativistic superfluid and its significance to quark matter Phys. Rev. D 72 096004
[99] Renner C, Revaz B, Genoud J-Y, Kadowaki K and Fischer O 1998 Pseudogap precursor of the superconducting gap in under– and overdoped Bi$_2$Sr$_2$CaCu$_2$O$_{8+}$ Phys. Rev. Lett. 80 149
[100] Fischer O, Kugler M, Maggio-Aprile I, Berthod C and Renner C 2007 Scanning tunneling spectroscopy of high–temperature superconductors Rev. Mod. Phys. 79 353
[101] Mueller E J 2017 Review of pseudogaps in strongly interacting Fermi gases Rep. Prog. Phys. 80 104401
[102] Stewart J T, Gaebler J P and Jin D S 2008 Using photoemission spectroscopy to probe a strongly interacting Fermi gas Nature 454 744
[103] Gaebler JP, Stewart J T, Drake T E, Jin D S, Perali A, Pierri P and Strinati G C 2010 Observation of pseudogap behaviour in a strongly interacting Fermi gas Nat. Phys. 6 569
[104] Feld M, Froehlich B, Vogt E, Koschorreck M and Kohl M 2011 Observation of pseudogap in a two-dimensional Fermi gas Nature 480 75
[105] Sagi Y, Drake T E, Paudel R, Chapurin R and Jin D S 2015 Breakdown of the Fermi liquid description for strongly interacting fermions Phys. Rev. Lett. 114 075301
[106] Magierski P, Wlazek G and Bulga A 2011 Onset of a pseudogap regime in ultracold Fermi gases Phys. Rev. Lett. 107 145304
[107] Wlazek G, Magierski P, Drut J E, Bulga A and Roche K J 2013 Cooper pairing above the critical temperature in a unitary Fermi gas Phys. Rev. Lett. 110 090401
[108] Tajima H, Kashimura T, Hanai R, Watanabe R and Ohashi Y 2014 Unifom spin susceptibility and spin–gap phenomenon in the BCS–BEC–crossover regime of an ultracold Fermi gas Phys. Rev. A 89 033617
[109] Kitazawa M, Koide T, Kumihoro T and Nemoto Y 2004 Pseudogap of color superconductivity in heated quark matter Phys. Rev. D 70 056003
[110] He L and Zhang P 2007 Relativistic BCS–BEC crossover at finite temperature and its application to color superconductivity Phys. Rev. D 76 056003
[111] Schnell A, Röpke G and Schuck P 1999 Precritical pair fluctuations and formation of a pseudogap in low–density nuclear matter Phys. Rev. Lett. 83 1996
[112] Bozek P 1999 Superfluid nuclear matter calculations Nucl. Phys. A 657 187
[113] Abe T and Seki R 2009 Lattice calculation of thermal properties of low–density neutron matter with pionless NN effective field theory Phys. Rev. C 79 054002
[114] Huang-X-G 2010 BCS–BEC crossover in symmetric nuclear matter at finite temperature: pairing fluctuation and pseudogap Phys. Rev. C 81 034007
[115] Endo S, Garcia-Garcia A M and Naidon P 2016 Universal clusters as building blocks of stable quantum matter Phys. Rev. A 93 053611
[116] Kinnunen J, Wu Z and Bruun G M 2018 Induced p–wave pairing in Bose–Fermi mixtures Phys. Rev. Lett. 121 253402
[117] Fetter A L and Walecka J D 1971 Quantum Theory of Many-Particle Systems (New York: Dover)