AXI-PACK: Near-Memory Bus Packing for Bandwidth-Efficient Irregular Workloads

Chi Zhang
ETH Zurich
<chizhang@iis.ee.ethz.ch>

Paul Scheffler
ETH Zurich
<paulsc@iis.ee.ethz.ch>

Thomas Benz
ETH Zurich
<tbenz@iis.ee.ethz.ch>

Matteo Perotti
ETH Zurich
<mperotti@iis.ee.ethz.ch>

Luca Benini
ETH Zurich/University of Bologna
<lbenini@iis.ee.ethz.ch>
Introduction

• Data-intensive applications with irregular memory access
 • Applications
 • Graph analytics
 • Fluid dynamics
 • Recommender systems
 • Large and sparse datasets
 • Common irregular memory access patterns\(^1\)
 • Strided
 • Indirect (Gather)

• Challenges to processors
 • Poor utilization of bus bandwidth
 • Frequent cache trashing
 • Long latencies

\(^1\) Z. Wang and T. Nowatzki, “Stream-based memory access specialization for general purpose processors,” 2019 ACM/IEEE 46th Annu. Int. Symp. Comput. Architecture (ISCA), pp. 736–749, 2019.
State-of-art Solutions

• Core-side stream ISA extensions
 • Decouple computing and memory access
 • Drawbacks
 • Ignore downstream interconnects and memory systems
 • High index-fetching overhead and bus traffic
 • Inherent inefficiency of narrow bus accesses

• Memory-side extensions
 • Prefetch and pack irregular elements on the memory side
 • Drawbacks
 • Not well co-integrated with Core-side
 • Occupy virtual or physical memory
 • Ahead-of-time invocation
 • Non-standard solutions
Proposal

• **AXI-PACK**: on-chip protocol for high bandwidth irregular access
 • **Extension** of Advance eXtensible Interface4 (AXI4) on-chip protocol
 • In AXI-Pack:
 • Core-side issues **pattern-aware requests**
 • Memory-side response **densely packed data stream**
 • **Connect** core-side and memory-side extensions

• **AXI-PACK Novelties**
 • **End-to-end** irregular memory streaming
 • **Process-In-Memory** protocol
 • **Bus-packing** enables high bus utilization
 • Based on **standard** protocol
 • **Backward compatibility** and **transparency**
 • **Scalable** for multi-master, multi-slave
Design Work & Results

• Design work
 • Define AXI4 user extension for AXI-PACK
 • ~7% extension
 • Extend a RISC-V vector processor
 • Design an AXI-Pack adapter for banked Memory

• Results
 • Speedup irregular workloads
 • 5.4x (stride) and 2.4x (indirect)
 • light-weight and scalable
 • 6.2% area of RSIC-V vector processor
 • Save energy
 • 5.3x (stride) and 2.1x (indirect) energy efficiency