Automated detection and tracking of many cells by using 4D live-cell imaging data

Terumasa Tokunaga1,2, Osamu Hirose2,3, Shotaro Kawaguchi3, Yu Toyoshima2,4, Takayuki Teramoto2,5, Hisaki Ikekaba6, Sayuri Kuge2,5, Takeshi Ishihara2,5, Yuichi Inoue2,4 and Ryo Yoshida1,2,6,7,*

1The Institute of Statistical Mathematics, Research Organization of Information and Systems, 10-3 Midori-cho, Tachikawa, Tokyo 190-8562, 2CREST, JST, 3Kanazawa University, Kakuma, Kanazawa 920-1192, 4The University of Tokyo, Building 3, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-0032 5Kyushu University, 6-10-1 Hakoizaki, Higashi-ku, Fukuoka 812-8581, 6The Graduate University for Advanced Studies, 10-3 Midori-cho, Tachikawa, Tokyo 190-8562 and 7JST, ERATO, 2-2-2 Hikaridai Seika-cho, Soraku-gun, Kyoto-fu, JAPAN

ABSTRACT

Motivation: Automated fluorescence microscopes produce massive amounts of images observing cells, often in four dimensions of space and time. This study addresses two tasks of time-lapse imaging analyses: detection and tracking of the many imaged cells, and it is especially intended for 4D live-cell imaging of neuronal nuclei of Caenorhabditis elegans. The cells of interest appear as slightly deformed ellipsoidal forms. They are densely distributed, and move rapidly in a series of 3D images. Thus, existing tracking methods often fail because more than one tracker will follow the same target or a tracker transits from one to other of different targets during rapid moves.

Results: The present method begins by performing the kernel density estimation in order to convert each 3D image into a smooth, continuous function. The cell bodies in the image are assumed to lie in the regions near the multiple local maxima of the density function. The tasks of detecting and tracking the cells are then addressed with two hill-climbing algorithms. The positions of the trackers are initialized by applying the cell-detection method to an image in the first frame. The tracking method keeps attaching them to the local maxima in each subsequent image. To prevent the tracker from following multiple cells, we use a Markov random field (MRF) to model the spatial and temporal covariation of the cells and to maximize the image forces and the MRF-induced constraint on the trackers. The tracking procedure is demonstrated with dynamic 3D images that each contain >100 neurons of C. elegans.

Availability: http://daweb.ism.ac.jp/yoshidalab/crest/ismb2014

Supplementary information: Supplementary data are available at http://daweb.ism.ac.jp/yoshidalab/crest/ismb2014

Contact: yoshidar@ism.ac.jp

1 INTRODUCTION

Fluorescence microscopy imaging of live cells has been a powerful tool for studying cellular and molecular dynamics in many applications (Peng, 2008; Swedlow et al., 2009). Automated microscopes generate vast numbers of images of the observed cells, and the images are often in four dimensions of space and time. The cells in these images are densely distributed, move rapidly and are often similar in appearance. It is thus impossible in practice to manually track hundreds of such cells as their movement is captured in a sequence of images. This has led to growing interest in computational methods that can automatically detect and track multiple moving cells (Altinok et al., 2006, 2007; Gerlich et al., 2003; Hadjidemetriou et al., 2004; Jaqaman et al., 2008; Meijering et al., 2006; Shen et al., 2010; Small et al., 2008a, b; Thomann et al., 2002).

The appearance of imaged cells can vary from globular to more complicated forms. They move independently, or sometimes their movement is coordinated. Cell tracking methods have been developed for particular cases of interest [see Meijering et al. (2012) for a comprehensive survey]. In general, tracking procedures consist of two steps: (i) relevant objects are segmented from the background in each frame by using, for example, the watershed algorithm (Grau et al., 2004; Malpica et al., 1997; Vincent and Soille, 1991), and (ii) each of the segmented objects is then linked to the nearest object in the subsequent frame (Hadjidemetriou et al., 2004; Meijering et al., 2006). To reduce the number of failures in the process of matching nearest neighbors, closeness is defined not only on the spatial distance between the objects, but also on other available information, such as variations in volume, morphology, intensity and other features (Meijering et al., 2012). The integration of such information is essential when the imaged cells move in a complex manner. However, in several studies, such information is limited or even unavailable. For instance, when fluorescent cells are much smaller than the optical resolution of microscopes, it is difficult to evaluate morphological features because most objects have similar appearances. This is especially true when the objects have inherently similar shapes, are closely spaced, and are barely distinguishable from the background. In such cases, tracking must be done using only the central coordinates of the cells.

This study tackles the problem of tracking many cells while relying only on the central coordinates. The cells of interest appear as slightly deformed ellipsoidal forms. In addition, they move rapidly in coordination with one another. Widely used tracking methods, such as nearest matching methods (Hadjidemetriou et al., 2004; Meijering et al., 2006), particle filters (Doucet et al., 2001; Khan et al., 2004; Small et al., 2008a, b; Shen et al., 2010) and graph-based optimization (Jaqaman et al., 2008), often fail because trackers change from the followed target to a different one (turnover) or because two or more trackers coalesce on the same target during rapid moves. One way to overcome such difficulties is to utilize a spatiotemporal pattern...
of covariation for the moving cells. In conventional methods, in which the trackers follow each object individually, many such turnovers and coalescences occur in the transition of objects. In particular, when using nearest neighbor matching of segmented objects, the occurrence of only a few turnovers can trigger a series of many tracking failures. However, when cells are known to move in a coordinated way and the transition pattern is modeled, such errors can be corrected by successful trackers, which can return the failed trackers to their correct positions. In other words, unlike the independent tracking of multiple cells, the performance is enhanced by allowing the trackers to interact cooperatively by sharing the direction and distance of the moves.

The present method aims to improve the tracking performance by utilizing the spatiotemporal covariation of the moving cells. The proposed method relies on the kernel density estimation (KDE) (Silverman, 1986; Wand and Jones, 1986) and several optimization modules. It begins by using KDE to convert each image to a smooth, continuous density function in 3D space. The cells in the image are assumed to appear as slightly deformed ellipsoidal forms and to lie in the regions around the local maxima of the density functions. The tasks of detecting and tracking the cells are addressed by using hill-climbing algorithms for the continuous functions. For detecting the cells, we introduce a new optimization method, the repulsive parallel hill-climbing (RPHC) algorithm, which detects all of the existing local maxima and thus reduces the chances of failing to detect the darker and smaller objects. The trackers are initialized at the detected positions in the first frame. The tracking algorithm keeps them near the local maxima, which change with time. To prevent the trackers from turnovers and coalescences, we used a Markov random field (MRF) prior to model the spatial and temporal covariation of the moving cells. By using the MRF-induced cooperation, the present method tries to keep the trackers near to the varying local maxima of the density functions by optimizing the image forces under a constraint on the covariation of the objects. The present method is an extension of Smal et al. (2008b) and Khan et al. (2004), which proposed similar tracking methods based on the particle filter and MRF priors. They aimed to track the movements of several tens of targets interacting with each other. This study differs from their works in the prior construction as shown in later. In addition, this study is conducted for a much larger number of targets, e.g. several hundreds of cells, while the motions of targets are more strongly correlated than those considered by the previous studies. The tracking procedure will be demonstrated below with data that we acquired from live imaging of neuronal nuclei of Caenorhabditis elegans.

2 METHODS

2.1 Data

With confocal laser microscopy, live-cell imaging experiments were carried out to identify simultaneously multiple neurons of adult C.elegans. The neuronal nuclei of C.elegans were labeled with mCherry, a well-known red fluorescent protein (Shaner et al., 2004), which was fused to four nuclear localization signals and was expressed specifically in neurons. The microscope measured the intensities of this tracer in order to follow the positions and movements of the imaged objects. In this study, the following two types of data were analyzed.

- **DATA1.** A set of static 3D gray-scale images was used to test the cell detection algorithm. Each image stack contained 148-200 neurons whose positions were identified manually by human observers in order to define the ground truth. Figure 1 shows a 3D image which consists of a 203 slice stack of 512 × 256 images. The voxel-specific intensities w_i were defined over a set of n voxels, $\{x_i \in \mathbb{R}^3 | i = 1, \ldots, n\}$, where the total number of voxels was $n = 512 \times 256 \times 203 (x, y, z)$. According to the spatial distribution of the fluorescent protein within a nucleus, the appearance of each neuron can vary slightly in size and shape, and can be either ellipsoidal or somewhat more complicated. We obtained 10 datasets of this type.

- **DATA2.** We obtained a time series of 512 × 256 × 20 images for each time frame $t \in \{1, \ldots, T\}$, where $T = 500$. The data were used to assess the performance of the cell-tracking algorithm. At each frame t, the voxel-specific intensities w_{ij} were measured over n voxels $\{x_i \in \mathbb{R}^3 | i = 1, \ldots, n\}$ ($n = 512 \times 256 \times 20$). We obtained three different datasets of this type. For each dataset, the total observational time was ~3.25 min with 2.56 frames per second. In the series of experiments, a worm’s body was inserted and fixed to a polydimethylsiloxane-based microfluidic device tube attached to the microscope (Chronis et al., 2007), and there was no stimulation. Although sufficiently immobilized and attached to the device, the worm can slightly change its body posture in the field of view. As seen from Figure 2 and the video in Supplementary Material 1, the shift of the imaged neurons tends to be almost in parallel, retaining their relative positions, but some groups of neurons often move together in a direction that is slightly different from that of the others. These groups often exhibit significantly greater mobility than average. These dynamic properties are modeled and are automatically explored by using the MRFs. It is noted that there are no cell divisions during the experiments, and thus the present method is designed to have a fixed number of trackers.

2.2 Outline of the method

The automated tracking procedure that we propose consists of four internal processing steps (see Figure 3 for a schematic view):

(a) For each time frame t, use KDE to transform the 3D image to a continuous density function.

(b) At the initial frame $t = 1$, detect all of the local maxima of the density function by using a hill-climbing algorithm. Identify the number g and the central coordinates $\Psi_t = \{\psi_1, \ldots, \psi_g\}$ of the imaged cell. The g trackers are initialized at those positions.

(c) For each of the adjacent frames $t-1, t$ for $t \in \{2, \ldots, T\}$, track the centers of the cells by shifting the g trackers from Ψ_{t-1} to Ψ_t near the local maxima of the density function of the current frame t. This is done by maximizing the objective function that consists of the image force induced by the density function and the constraint on the transitions of the g trackers.

(d) For each t, segment a region of each cell for which neighboring voxels will be allocated to the tracked cell center.

2.3 KDE

KDE converts each digital image to a continuous density function. This aims to reduce image noises instead of using existing image blur filters, and to use optimization techniques designed for continuous objective functions in the subsequent processes.
Automated detection and tracking of cells

For each t, the image I_t is converted to the density function $p(x)$ as

$$p(x) = \sum_{i=1}^{n} w_i k_i(x - x_i),$$

with $k_i(x - x_i) \propto \exp\left(-\frac{1}{2h}(x - x_i)^T \Sigma^{-1}(x - x_i)\right).$

(1)

For notational simplicity, the frame index t is omitted here. This is a mixture of the n Gaussian distributions, $k_i(x - x_i)$, with each centered at a voxel position x_i. The normalized voxel intensities w_i comprise the mixing rates, which should sum to one. The function is continuous on $x \in \mathbb{R}^3$. Hence, hill-climbing algorithms for continuous functions can be used, and by repeating them many times with different initial values, the local maxima $\{x | \nabla \log p(x) = 0, \nabla^2 \log p(x) \leq 0\}$ can be discovered. With this conversion, we can compute the gradient and the Hessian matrix at any $x \in \mathbb{R}^3$, and thus can identify the local maximum achieving the exact zero gradient while it is difficult to define accurately the local maximum for usual peak detection methods that rely on raw digital images.

To reduce the noise and artifacts in the images, it is important to control the covariance parameters of the kernel densities that comprise the bandwidth $h \in \mathbb{R}_+$ and the coordinate-specific dispersions in $\Sigma = \text{diag}(\sigma_x, \sigma_y, \sigma_z)$. The density function becomes either over- or under-smoothed as the covariance components vary from larger to smaller values. Hence, the choice of these parameters has a strong influence on the ability to find the local maxima. In this study, we tuned the covariance parameters so that they were specifically optimized for analyzing the live-cell-imaging data that we measured. The coordinate-specific dispersions were fixed at $(\sigma_x, \sigma_y, \sigma_z) = (10, 10, 10)$ and $(\sigma_x, \sigma_y, \sigma_z) = (5.06, 5.06, 1.00)$ for DATA1 and DATA2, respectively. We chose these values in the following way; relatively smaller objects had been previously segmented from several images using the k-means clustering method as shown in Appendix B, and observed scale ratios in the three directions (x, y, z) were referred to determine these values. To determine the global scale h, we first isolated subimages that included tightly clustered cells from some of the target datasets, as shown in Figure 4. Here, the number of cells in each subimage was determined by expert human observers. By performing KDE with each subimage and using the cell-detection method described in the next subsection, we counted the number of local maxima that appeared in each grid point of width h (Figure 4). We then selected the value of h that yielded an appropriate number of local maxima; this was 0.52 and 0.97 for DATA1 and DATA2, respectively. These parameter values were applied to all the data of the same type.

In statistics, various methods for selecting the bandwidth have been established for multivariate cases, including the minimum-risk procedure based on the integrated mean square error and the cross-validation method [refer to Silverman (1986) and Wand and Jones (1986) for reviews]. These are still useful for image processing, given trivial modifications (conventional procedures presume equal mixing rates, $w_i = 1/n$, and hence it is necessary to derive variants for unequal mixing rates when using the existing techniques). However, we decided not to use any of the existing procedures because numerical tests showed they have a tendency of yielding over- or under-estimates.

In subsequent steps, it is necessary to compute the kernel density many times. This becomes a computational bottleneck due to the large number of basis functions, e.g. $n = 2, 621, 440$ for DATA2. Therefore, for each 3D image, we reduced n by conducting a threshold operation in which voxel intensities $<5\%$ upper quantile were set to zero. To control the threshold level, many other techniques can be applied, for example,

![Fig. 1. Static 3D image of 157 neurons (512 × 256 × 203). The white circles indicate the positions of the neurons, which were detected by expert human observers. Imaged cells appear as slightly deformed ellipsoids, as seen in the enlargement.](image1)

![Fig. 2. Examples of dynamic image frames (512 × 256 × 20). The top and bottom panels show the images at $t = 30$ and $t = 34$, respectively. The full movie is available in Supplementary Material 1.](image2)

![Fig. 3. Outline of the proposed method. For each time frame, the 3D image is transformed to the continuous density function by using the KDE technique. Using the image at $t = 1$, a hill-climbing method for continuous functions is used to initialize the trackers’ positions at the local maxima of the density function. The tracking method then tries to keep the trackers near to the local maxima as they change with time in the subsequent images.](image3)
On 27 July 2018 by guest. Downloaded from https://academic.oup.com/bioinformatics/article-abstract/30/12/i43/385877

At step s, the position $\psi^{(s)}$ is renewed to $\psi^{(s+1)}$ by taking the weighted average of x_i, $i = 1, \ldots, n$. Points x_i that are closer (as determined by the normalized weights $u_i(\psi^{(s)})$) to the current position $\psi^{(s)}$ tend to have a greater influence on the new position. In a way similar to the expectation-maximization algorithm for a Gaussian finite mixture, it can be proved that this hill-climbing procedure produces a non-decreasing sequence of $p(\psi^{(s)})$, $s = 0, 1, 2, \ldots$, and converges to the nearest local maxima. In a context of cluster analyses, a mode-finding method of this type was described in Hinneburg and Gabriel (2007), which also provided some techniques for speeding up the computation. Equation (2) can be derived as a trivial variant of their algorithm.

Finding all of the local maxima requires repeating the search from many different initial positions because many searches may converge to the same local maximum that may correspond to a significantly bright and large object. Figure 5 shows an experimental result in which 500 different initial positions were generated uniformly over 3D space (DATA1), and the 500 independent trials found 118 different local maxima. Among the 157 cells that were manually identified, 41 of the darker and smaller cells rest undetected.

In order to improve the detection performance, the RPHC algorithm was used. Given m initial seeds, $\psi_1^{(0)}, \ldots, \psi_m^{(0)}$, the method computes the following recursive formula in parallel for $j = 1, \ldots, m$;

$$
\psi^{(s+1)} = \sum_{j=1}^{m} u_j(\psi^{(s)}) \prod_{j \neq k} I(x_j \notin R_k[|\psi_k^{(s)}|])
$$

with $u_j(\psi^{(s)}) \propto w_jk_j(\psi^{(s)} - x_j)$.

where $I(\cdot)$ is an indicator function that takes the value one if the argument is true and is zero otherwise. The set $R_k[|\psi_k^{(s)}|]$ denotes a local ellipsoidal region of volume v centered at $\psi_k^{(s)}$, which defines a neighboring area of the k-th object at step s. This equation differs from Equation (2) in the weight components $u_k(\psi^{(s)})$. The voxel position x_i and the corresponding kernel density are removed from the operation of renewing the j-th position by assigning $u_i = 0$ if the voxel is already occupied by the neighboring areas $R_k[|\psi_k^{(s)}|]$ of the other positions $\psi_k^{(s)}$, $k \neq j$. Hence, the j-th process $\psi_j^{(s)}$ tends to deviate from the others due to the repulsion acting on $\psi_j^{(s)}$, ..., $\psi_m^{(s)}$ (see Figure 6).

It is expected that the m search processes will tend to climb different hills, and that with a single parallel run, they will therefore converge on different local modes.

In our implementation, the neighbor is given by the ellipsoidal region $R_k[|\psi_k^{(s)}|]=\{x|v(x-\psi_k^{(s)})H^{-1}(x-\psi_k^{(s)}) \leq v \}$, where the volume v is reduced from a positive value to zero in stages as the step s increases. The Hessian matrix $\delta^2 \log p(x)/\delta x \delta x^T|_{\psi_k}$ is set to the covariance matrix Σ_k, which approximates the local curvature in a neighborhood of ψ. A method for computing the Hessian matrix is described in Appendix A. The volume decreases linearly as $v_1 = v_0 - \beta$ with a small positive β until it converges to zero. It should be noted that the iteration must converge to zero volume in order to remove the bias caused by the repulsion of the nonzero v. The initial volume v_0 and the rate of decrease β should be determined by the cell volumes. Appendix B describes a procedure for obtaining initial estimates of the cell volumes and setting the parameters for the reduction process.

In Supplementary Material 2, we provide a demonstration movie that shows the search process of the RPHC algorithm applied to synthetic data in which 96 cells were allocated at equally spaced grid points. For the purpose of demonstration, 120 initial positions were allocated within a small region near a corner of the 3D space. For an initial period of time, the 120 search processes repelled each other, and they gradually diffused over the entire space due to the repulsion. At convergence, they had determined all 96 local maxima. More detailed tests with real data will be shown in Section 3.

2.5 Cell tracking

After applying the RPHC algorithm to the image in the first frame $t = 1$, the trackers were placed at the positions $\Psi_1 = (\psi_1^{(1)}, \ldots, \psi_m^{(1)})$ of the g non-overlapping objects in which redundant positions were removed.
from the m points of convergence. The objective of multi-object tracking is to keep the trackers targeting the local maxima, which change with time. There are two kinds of tracking errors to be considered: (i) different trackers merge to the same target, and (ii) a tracker switches to a different target.

To prevent the trackers from merging and switching, we use the spatiotemporal covariation of the movement of the cells. As a result, the j-th tracker is encouraged to transit from \(\psi_{i,j-1} \) to \(\psi_{i,j} \) in conjunction with the other trackers that belong to a set \(C_j \), called the neighbor set of \(j \). To be specific, we build a transition model based on an MRF as

\[
\psi_{i,j} - \psi_{i,j-1} = -\frac{1}{\alpha} \sum_{k \in C_j} (\psi_{i,k} - \psi_{i,j-1} + \eta_{i,k}),
\]

where \(\eta_{i,k} \sim N(0, \lambda_{i,k}) \). The direction and distance of the move \(\psi_{i,j-1} \rightarrow \psi_{i,j} \) are correlated with those of \(\psi_{i,j-1} \rightarrow \psi_{j,k} \) for the neighboring trackers \(k \in C_j \). The degree of correlation is controlled by the magnitude of the variance \(\lambda_{i,k} \). As \(\lambda_{i,k} \) becomes smaller, the higher correlations are induced to the transition of \(\psi_{i,j} \) and \(\psi_{j,k} \). The construction of \(C_j \) will be described below.

With the transition model of Equation (4) and the current guess \(\Psi_{i-1} \), the tracking model explores the new \(\Psi_i \) by finding the maximum of the conditional density with respect to \(\Psi_i \):

\[
p(\Psi_i | \Psi_{i-1}, I_i) \propto \prod_{j=1}^{g} \exp \left\{ \left[-\frac{1}{2\lambda_{i,k}} \right] \sum_{k \in C_j} \| (\psi_{i,k} - \psi_{i,j-1}) - (\psi_{i,j-1} - \psi_{i,j-1}) \|^2 \right\}
\]

where \(\| \cdot \|^2 \) denotes the square of the Mahalanobis distance with the covariance matrix \(\Sigma \). The first component is the Gibbs distribution with the temperature \(2\gamma \), whose energy involves the logarithmic transformation of the current kernel density. This yields an image force on the tracker \(\psi_{i,j} \), which is then attracted to a high-probability region of the KDE. The MRF model in Equation (4) defines the second component, which enforces the spatiotemporal covariation and eliminates the overlaps when renewing the trackers’ positions.

To seek the solution for \(\alpha \), we conduct the following recursion for \(j = 1, \ldots, g \) and \(s = 0, 1, 2, \ldots \) until convergence;

\[
\psi_{i,j}^{(s+1)} = \alpha \sum_{j=1}^{g} u_i(\psi_{i,j}^{(s)}) x_i + \sum_{k \in C_j} \alpha \psi_{i,j}^{(s)} - \psi_{i,j-1}^{(s)}
\]

\[
\alpha = \frac{\gamma^2 - \sum_{k \in C_j} \lambda_{i,k}}{\gamma^2 + \sum_{k \in C_j} \lambda_{i,k}},
\]

where \(\lambda_{i,k} \) denotes the square of the Mahalanobis distance with the covariance matrix \(\Sigma \). The first component is the Gibbs distribution with the temperature \(2\gamma \), whose energy involves the logarithmic transformation of the current kernel density. This yields an image force on the tracker \(\psi_{i,j} \), which is then attracted to a high-probability region of the KDE. The MRF model in Equation (4) defines the second component, which enforces the spatiotemporal covariation and eliminates the overlaps when renewing the trackers’ positions.

To seek the solution for \(\alpha \), we conduct the following recursion for \(j = 1, \ldots, g \) and \(s = 0, 1, 2, \ldots \) until convergence;

\[
\psi_{i,j}^{(s+1)} = \alpha \sum_{j=1}^{g} u_i(\psi_{i,j}^{(s)}) x_i + \sum_{k \in C_j} \alpha \psi_{i,j}^{(s)} - \psi_{i,j-1}^{(s)}
\]

\[
\alpha = \frac{\gamma^2 - \sum_{k \in C_j} \lambda_{i,k}}{\gamma^2 + \sum_{k \in C_j} \lambda_{i,k}},
\]

3 RESULTS AND DISCUSSION

3.1 Cell detection

The RPHC algorithm was applied to each of the 10 datasets (DATA1) in which 148–200 manually identified cells were imaged. For the hill-climbing, 500 initial values were allocated uniformly over the entire 3D space. The results were compared...
to those of the hill-climbing without repulsion [500 independent trials of Equation (2)] and the watershed segmentation (Grau et al., 2004; Malpica et al., 1997; Vincent and Soille, 1991). For the watershed segmentation, we used the MATLAB function watershed after performing a noise-reduction process (smooth3 in MATLAB). We then computed the center of each segmented region to define a point estimate of the cell position. For each method, a detected position was called a **true positive** if it was within a radius of 5 pixels of a manually identified cell position; otherwise, it was called a **false positive**. A manually identified position that was overlooked by a computational method was called a **false negative**. The detection performances for the 10 datasets are summarized in Table 1. On average, the inclusion of the repulsive force in the parallel hill-climbing process increased the rate of true positives by >10%, with only a slight increase in the rate of false positives (see the results of the independent hill-climbing and RPHC algorithm in Table 1). Figure 7 shows the 151 positions detected by the RPHC algorithm, and Figure 8 shows the ROIs resulting from the Bayes’ voxel allocation rule. For this dataset, the RPHC algorithm resulted in 138 true positives, 13 false positives and 19 false negatives, whereas those of the independent hill-climbing algorithm were 116 true positives, 2 false positives and 41 false negatives.

The hill-climbing algorithm is ensured **theoretically** to converge to a local maximum in spite of the presence or absence of repulsion. In this task, it is important to discover all existing local maxima, and the decision whether or not each identified position is a false positive or true positive is to be left up to expert knowledge or an additional post-processing step. Indeed, some positions called the false positives were identified as cells the human observers failed to find. In this regard, the RPHC algorithm that identified much larger numbers of local maxima outperformed the independent search. It should be remarked that the independent search even with 1000 initial seeds only identified \(\frac{33}{24} \times 100 \% \) of the manually identified positions on average (Table 1), and thus showed no significant improvements while the computation time was doubled.

On the other hand, as indicated by many previous studies, the watershed segmentation exhibited obvious oversegmentation, as shown in Table 1. For example, for the dataset shown in Figure 9, the watershed segmentation resulted in 245 detected

Table 1. Comparison of the cell-detection performances

	Independent_500	Independent_1000	RPHC	Watershed
False positive rate	0 (0)	0 (0)	0.0301 (0.0305)	0.3453 (0.1182)
True positive rate	0.7190 (0.0257)	0.7383 (0.0287)	0.8041 (0.0362)	0.8021 (0.0381)

The columns indicate the independent hill-climbing algorithm with 500 and 1000 initial positions (Independent_500 and Independent_1000), the RPHC algorithm (RPHC) and the watershed segmentation (Watershed). Rates of false positives and true positives were averaged over the 10 datasets (DATA1). The values in parentheses indicate the standard deviations.
objects, whereas the number of cells estimated by human observers was 157 and that by the RPHC algorithm was 151.

Figure 8 shows the ROIs resulting from the Bayes’ voxel allocation rule. It is apparent that most of the ROIs were segmented successfully, while some cells were segmented at unnatural boundaries. In the segmentation method, the boundary of each segment resulted from the positional relationship of the cells, since any overlap was not permitted in the segmentation rule. Thus some ROIs were separated by the unnatural boundary when the cells are located closely. This drawback is yet to be addressed.

3.2 Cell tracking

The tracking algorithm is first illustrated with one of the three dataset in DATA2. For the initial frame, the trackers were initialized at the positions of 111 objects that had been detected by the RPHC algorithm. The tracking algorithm was then run for 500 frames. As shown in the full movie of the tracking process (Supplementary Material 3), in all frames, the trackers’ positions can be seen to be attracted to neighboring areas of the local modes of the KDEs. In particular, turnover and coalescence of the tracked positions occurred rarely, other than for a fraction of the 111 trackers. The tracking process indicates that it is reasonable to represent the adjacency relationship of cells by a tree. Also, the minimum spanning tree (MST) varied in structure only slightly throughout the tracking process.

Table 2. Performances of the tracking method on the three datasets (D1–D3) in DATA2

Number of trackers	Return rate	Non-overlaping rate
D1 111	0.9136	0.9454
D2 121	0.7520	0.9504
D3 113	0.7011	0.8230

The columns indicate the number of trackers and the two performance measures: (i) the rate of trackers that returned to the correct positions (return rate) and (ii) the rate of non-overlapping trackers that successfully avoided coalescence (non-overlapping rate).

To assess the performance on the three datasets in a quantitative way, we defined the ground truth in the following way: each original image sequence \(\{I_1, \ldots, I_T\} \) was joined to the time-reversal set, and thus we have \(\{I_1, \ldots, I_T, I_{T-1}, \ldots, I_1\} \) of the length \(2T-1 \). The performance was evaluated on the number of trackers that returned to the initial positions at the final frame \(I_T \). A tracker was called a success if it was in a radius of 5 pixels of the initial position in the final frame. As an additional criterion, we used the number of merges in trackers in the final frame. We conclude upon the results summarized in Table 2 that the present method could track 70–91% of the moving objects.

One major difficulty arose during a phase in which the cells exhibited large mobility. In such a case, methods that rely only on the nearest-neighbor matching are prone to serious tracking errors. Figures 10 and 11 show the transitions of 111 individual trackers at a phase of the tracking processes of the proposed method and the particle filter algorithm (Jaqaman et al., 2008; Smal et al., 2008b; Shen et al., 2010). Our own program for the particle filter was developed with reference to Arulampalam et al. (2002), which is substantially based upon the principle of nearest neighbor matching. Figure 11 and the full movie in Supplementary Material 4 illustrate the tracking failure of the particle filter. As shown in Figure 11, many trackers failed to follow the targets when many of the cells underwent significantly large moves. In addition, the full movie shows that the errors accumulated with time due to the absence of error-correction functionality.

4 CONCLUDING REMARKS

This article presented a series of image processing steps for tracking many moving cells in a series of 3D images. The appearance of the cells was almost homogeneous deformed ellipsoids. The method relied only on the central coordinates of the objects, since any other features such as morphology, volume or intensity were very limited. The basis of the method was KDE. By using KDE to transform the images, the tasks of cell detection and tracking could be addressed in a unified manner that involved the two hill-climbing methods designed for continuous probability density functions. In particular, we presented two novel techniques; the RPHC algorithm for cell detection, and multi-cell tracking based on the MRF. The former initialized trackers in
ACKNOWLEDGEMENT

The authors thank Manami Kanamori for important contributions to the experiments. We thank Masayuki Henmi for useful discussions and comments.

Funding: The CREST program ‘Creation of Fundamental Technologies for Understanding and Control of Biosystem Dynamics’ of Japan Science and Technology Agency (JST).

Conflict of Interest: none declared.

REFERENCES

Altinok, A. et al. (2006) Activity analysis in microtubule videos by mixture of hidden Markov models. CVPR, 2, 1662–1669.

Altinok, A. et al. (2007) Model based dynamics analysis in live cell microtubule image. BMC Cell Biol., 8, S4.

Arulampalam, M.S. et al. (2002) A tutorial on particle filters for online nonlinear/ non-Gaussian Bayesian tracking. IEEE Transact. Signal Process., 50, 174–188.

Carreira-Perpınan, M.A. (2000) Mode-finding for mixtures of Gaussian distributions. IEEE Transact. Patt. Anal. Mach. Intell., 22, 1138–1143.

Chromis, N. et al. (2007) Microfluidics for in vivo imaging of neuronal and behavioral activity in Caenorhabditis elegans. Nat. Methods, 4, 727–731.

Doucet, A. et al. (2001) Particle filters for state estimation of jump Markov linear systems. IEEE Transact. Signal Process., 49 (3), 613–624.

Gertler, D. et al. (2003) Quantitative motion analysis and visualization of cellular structures. Methods, 29, 3–13.

Grau, V. et al. (2004) Improved watershed transform for medial image segmentation using prior information. IEEE Transact. Med. Imaging, 23, 447–458.

Hadjidemetrou, S. et al. (2004) Automatic quantification of microtubule dynamics. J S Biomed Imaging, 1, 656–659.

Hinneburg, A. and Gabriel, H.-H. (2007) Denclue 2.0. Fast clustering based on kernel density estimation. LNCS, 4723, 70–80.

Jaqaman, K. et al. (2008) Robust single-particle tracking in live-cell time-lapse sequences. Nat. Methods, 5, 695–702.

Khan, Z. et al. (2004) An MCMC-based particle filter for tracking multiple interacting targets. LNCS, 3024, 279–290.

Malpica, N. et al. (1997) Applying watershed algorithms to the segmentation of clustered nuclei. Cytometry, 28, 287–297.

Meijering, E. et al. (2006) Tracking in molecular bioimaging. IEEE Signal Process. Mag., 23, 46–53.

Meijering, E. et al. (2012) Methods for cell and particle tracking. Methods Enzymol., 504, 183–200.

Otsu, N. (1979) A threshold selection method from gray-level histograms. IEEE Transact. Syst. Man Cybernet., 9, 62–66.

Peng, H. (2008) Bioimage informatics: a new area of engineering biology. Bioinformatics, 24, 1827–1836.

Prim, R.C. (1957) Shortest connection networks and some generalizations. Bell Syst. Tech. J., 39, 1389–1401.
APPENDIX A GRADIENT AND HESSIAN OF KDE

The exact formulae for the gradient and the Hessian matrix can be derived by noting the analogy of Equation (1) to the conventional Gaussian finite mixture:

Gradient: \(g(x) := \frac{\partial \log p(x)}{\partial x} = -\sum_{i=1}^{n} u_i(x)(\Sigma h)^{-1}(x - x_i); \)

Hessian: \(H(x) := \frac{\partial^2 \log p(x)}{\partial x \partial x^T} = -g(x)g(x)^T + (\Sigma h)^{-1} + \sum_{i=1}^{n} u_i(x)(\Sigma h)^{-1}(x - x_i)(x - x_i)^T. \)

As a reference for the derivation, see, for example, Carreira-Perpinan (2000).

APPENDIX B PRIMARY ESTIMATE OF CELL VOLUME AND DESIGN OF VOLUME REDUCTION PROCESS

First, a sample \(\{x_1, \ldots, x_n\} \) of size \(n \) is resampled from the \(n \) voxels, with probabilities \(w_1, \ldots, w_n \). Suppose that we have a primary guess \(g \) on the number of cells present in an image. Performing the \(k \)-means algorithm on the sample brings a segmentation of the \(n \) voxels into \(g \) non-overlapping clusters. A cluster of voxels can be an estimate for a cell-embedded region. Principal component analysis was applied to the within-cluster voxels, and the product of the resulting three eigenvalues, \(\lambda_1, \lambda_2, \lambda_3 \), gives an estimate for the cell volume. Finally, the 5% upper-quantile of the estimated \(g \) volume was set to \(v_0 \). The rate of the volume reduction was chosen as \(\beta = v_0/500 \) so that the volume converges to zero at the end of 500 iterations.