Gender-Specific Associations of Speech-Frequency Hearing Loss, High-Frequency Hearing Loss, and Cognitive Impairment Among Older Community Dwellers in China

Jingru Wang
Shanghai University of Traditional Chinese Medicine

Feng Wang
Shanghai University of Traditional Chinese Medicine

Peipei Han
Shanghai University of Medicine and Health Sciences

Yuewen Liu
Shanghai University of Medicine and Health Sciences

Weibo Ma
Shanghai University of Traditional Chinese Medicine

Xing Yu
Shanghai University of Medicine and Health Sciences

Fandi Xie
Shanghai Jiang wan Hospital

Shumeng Niu
Shanghai Jiang wan Hospital

Hao Hu
Shanghai Jiang wan Hospital

Xiaohan Zhu
Shanghai University of Medicine and Health Sciences

Ying Yu
Shanghai University of Medicine and Health Sciences

Qi Guo (guoqijp@gmail.com)
Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital

Research Article

Keywords: Hearing loss, High-frequency hearing loss, Speech-frequency hearing loss, Cognitive impairment, Gender difference

DOI: https://doi.org/10.21203/rs.3.rs-148923/v1

License: © This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
Abstract

Objectives

The purpose of this study was to investigate the relationship between speech-frequency hearing loss (SFHL), high-frequency hearing loss (HFHL), and cognitive impairment (CI). Then to determine whether there are any differences in gender among older community dwellers in China.

Methods

This study involved 1,012 adults aged ≥ 60 years (428 male; average age, 72.61 ± 5.51 years). The participants had their hearing and cognition measured using pure tone audiometry and Mini Mental State Examination (MMSE), respectively. We used the audiometric definition of hearing loss (HL) adopted by the World Health Organization (WHO). Speech-frequencies were measured as 0.5 kHz, 1 kHz, 2 kHz, and 4 kHz; high-frequencies were measured as 4 kHz and 8 kHz. Pure tone average (PTA) was measured as hearing sensitivity.

Results

Our studies demonstrated a 37.6% prevalence of HL in males and a 36.0% prevalence of HL in females. Adjusted for confounding variables, the results from a multivariate analysis showed that SFHL was associated with CI in females (OR = 2.400, 95% Confidence Interval = 1.313–4.385) and males (OR = 2.189, 95% Confidence Interval = 0.599–2.944). However, HFHL was associated with CI only in females (OR = 2.943, 95% Confidence Interval = 1.505–5.754). HL was associated with poorer cognitive scores (P < 0.05). "Registration" (P < 0.05) in MMSE was associated with speech- and high-frequency hearing sensitivity.

Conclusion

The associations between HL and CI varied according to gender in older community-dwellers, suggesting that different mechanisms are involved in the etiology of HL. Moreover, hearing sensitivity was negatively associated with cognition scores; therefore, early screening for HL and CI among older community-dwelling adults is advised.

1 Introduction

Cognitive impairment (CI) is prevalent among older people, with nearly 43.8 million people having CI worldwide [1]. In China, the incidence of CI is 62.7% in females and 45.4% in males over 75 years of age, indicating a statistically significant gender difference [2]. The global costs for dementia are estimated to be $9.12 trillion (USD) in 2050 [3]. Dementia is a severe stage of CI with no modified treatments, so a focus on reducing modifiable risk factors is justified [4]. Many modifiable risk factors for CI have been identified, including social interactions, physical activity (PA), and years of formal education [5]. Evidence also indicates that hearing loss (HL) could be a risk factor [6, 7].

In recent years, more studies have concentrated on the relationship between HL and cognitive decline. Some researchers have proposed a strong correlation between HL and CI in older adults [8], however, others have not shown any association [9, 10]. The heterogeneity may be related to differences in cognitive tests and HL assessment methods. Presently, there is inconclusive evidence about their relationship, and the detailed mechanisms remain unknown. However, HL is reportedly associated with increased cognitive demand during speech perception [11]. HL most commonly encountered in older adults is age-related hearing loss (ARHL), which begins with high-frequency hearing loss (HFHL) and gradually affecting mid- and low-frequencies [12]. The clinical manifestation is speech perception difficulty in a noisy environment, which develops gradually to speech perception difficulty in a quiet environment. Speech perception is a process in which people hear, interpret and understand the sounds of language. Cognitive functions are instinctively involved in speech perception. Two cognitive factors decline with age, which may affect speech perception performance, namely, working memory capacity and the rate of information processing [13]. Different-frequencies HL may be associated with CI, but few studies have investigated their link. Exploring the relationship between different-frequencies HL and CI is helpful to reveal the influence of ARHL on CI in different stages of the disease and work toward a more targeted early intervention. Moreover, a few studies have revealed gender differences in HL [14, 15]; some studies have found that HL is more prevalent in males than females, and that the decline in hearing thresholds at 6 kHz to 12 kHz was significantly rapid in females than males [16]. Aging also plays a role; for example, older adults female (> 70 years) demonstrated a faster rate of change at 0.25 kHz to 2 kHz than younger female (60–69 years), and older adults male had a faster rate of change at 6 kHz than younger male [16]. Since there is a protective role of estrogen with regard to HL, HL may play different roles on cognitive health by gender [15]. However, currently there is a paucity of research examining gender-specific associations between HL and CI in old age.

The purpose of this study was to analyze the associations between HL at different frequencies and CI in community-dwelling adults in China, in order to allow early screening for HL and CI to play a warning role and investigate whether there is a gender difference between HL and CI. Because HL and CI are two major geriatric health issues and are related to the quality of late life, determining gender differences in these associations will be helpful in developing gender-specific health policies that can contribute to the well-being of older adults.

2 Materials And Methods

2.1 Study Participants
This cross-sectional study was conducted in four different communities in Chongming District, Shanghai. We collected the physical examination data of older adults living in four different communities from June to July 2019, including demographic and health-related parameters (Table 1). We recruited a total of 1,136 subjects aged 60 years and older. Finally, our study samples included 1,012 subjects after excluding participants who (a) had mental illness or other neurodegenerative diseases; (b) were diagnosed with dementia; (c) had hearing aids; (d) had a medical history of sudden deafness, otitis media, otitis externa, ototoxic drug therapy, and oto logic surgery; (e) had missing data; (f) had extreme value in physical performance; and (g) were unable to communicate with interviewers or grant informed consent.

This study was conducted in accordance with the recommendations of national and international guidelines, and our ethical committee. All of the subjects gave their written informed consent in accordance with the Declaration of Helsinki. The protocol was approved by the Ethical Committee of the Shanghai University of Medicine and Health Sciences.

2.2 Hearing Assessment

The subjects’ hearing was measured using pure tone audiometry (BTJ09; JiangSu BetterLife Medical Co., Ltd, China.). Air conduction thresholds (dB) were measured for both ears at seven frequencies (0.125 kHz, 0.25 kHz, 0.5 kHz, 1 kHz, 2 kHz, 4 kHz, and 8 kHz), and across an intensity range of 0 dB to 100 dB, but we did not measure 6 kHz for the limited time. The speech-frequency pure tone average (PTA) was computed as mean thresholds at 0.5 kHz, 1 kHz, 2 kHz, and 4 kHz, which are most important and represent speech perception [17]. The high-frequency PTA was computed as mean thresholds at 4 kHz and 8 kHz. Pure tone threshold averages in the better ear were calculated to identify grades of hearing disorder in adults according to the World Health Organization (WHO) Prevention of Deafness and Hearing Impairment (PDH) standard 97.3 [18].

2.3 Cognition Assessment

Cognitive performance was measured using the Mini Mental State Examination (MMSE). The MMSE items assess several cognitive domains, which are summed to a maximum total score of 30 points. The items may be clustered in six domains measuring different cognitive processes: orientation to time (5 points), orientation to place (5 points), registration (3 points), attention (5 points), recall (3 points), and language (9 points). Considering the participants’ education, CI was defined as MMSE ≤ 17 for illiterates; MMSE ≤ 20 for primary school graduates; and MMSE ≤ 24 for junior high school graduates or those with higher-level education [19]. It is worth noting that a correlation between better cognitive performance (higher MMSE score) and better hearing (lower thresholds) is represented by a negative correlation coefficient.

2.4 Other Covariates

All of the participants were asked to complete a questionnaire by face-to-face interviews, physical examination, and blood sample collection during baseline. The data on sociodemographic characteristics, behavioral characteristics, and medical history were obtained with questionnaires. The sociodemographic characteristics included sex, age, education level, monthly income, living status, and marital status. Height and weight were measured, and body mass index (BMI) was calculated as weight in kilograms divided by the square of height in meters. Education level was categorized as illiterates, primary school graduation, high school graduation and above. Monthly income was categorized as < 1,000 yuan, 1,000–3,000 yuan, 3,000–5,000 yuan, and > 5,000 yuan.

2.5 Statistical Analysis

All statistical analyses were performed using the SPSS 25.0 edition for Microsoft Windows (SPSS Institute Inc., Chicago, IL, USA). The descriptive characteristics for categorical variables were summarized as percentages, and significant differences were evaluated using a χ² test. Continuous variables were summarized as mean ± SD or median (interquartile range) values, and comparisons were performed using the t test. A multiple logistic regression model was used to examine the association of different frequency hearing loss with CI. The model was stratified according to gender. We generated a model adjusted for age, BMI, marital status, living alone, monthly income, education, IPAQ, ADL, IADL, diabetes, hypertension, hyperlipidemia, and stroke. The linear regression models were also adjusted for the same covariates; the association of different frequencies of hearing sensitivity with cognitive domains (time, place, registration, recall, attention and calculation, and language) was evaluated. All of the tests were two-tailed, and the differences were considered to be statistically significant at P < 0.05.

3 Results
3.1 Study Sample

A total of 1,136 participants were evaluated in person by study personnel. Of these, 124 were excluded: 47 had incomplete questionnaire information at baseline, 34 had incomplete hearing assessments data, 40 had incomplete MMSE data, 2 had incomplete education level data, and 1 had maximum data of 4 meters walking speed.

3.2 Participant Characteristics

The demographic characteristics and the distribution of different covariates between the normal hearing and HL groups are described in Table 1. Of 1,012 people included in the analyses, 371 had HL (43.4% male) and 641 (41.7% male) had normal hearing. The PTA in the better ear for speech-frequencies 0.5–4 kHz was 56.54 dB HL (±8.66) in males with HL and 56.92 dB HL (±9.36) in females with HL; the high-frequencies 4–8 kHz PTA was 61.52 dB HL (±9.69) in males with HL and 60.02 dB HL (±9.94) in females with HL. Compared to males with normal hearing, males with HL were more likely to be older (71.42 years vs 74.57 years; P<0.001), and had lower MMSE scores (26.54 vs 24.58; P<0.001). These characteristics were also evident in females. Moreover, there are different associations by gender. For example, the HL in females showed a relationship with marital status (P<0.001), living alone (17.1% vs 29.5%; P<0.001), education level (P<0.001), and drinking history (P=0.010), but these results are not significant in males (all P>0.05). Meanwhile, compared to those with normal hearing, those with HL did not demonstrate differences in terms of smoking history among males and females (P>0.05).

3.3 Association of CI with HL

Table 2 presents the association of HL with CI. Compared to males with normal hearing, the SFHL in males was associated with CI in model 1 with unadjusted covariates (odds ratio [OR]: 2.600, 95% Confidence Interval: 1.411–4.791). After adjusting the model for age, we found a statistically significant association between SFHL and CI (OR: 2.071, 95% Confidence Interval: 1.091–3.933). But the significant association was lost in the final model adjusted for covariates (age, BMI, marital status, living alone, monthly income, education, IPAQ, ADL, IADL, diabetes, hypertension, hyperlipidemia, and stroke). Moreover, the statistically significant association between HFHL and CI disappeared in all of models. In females, CI was associated with both speech- and high-frequency HL in model 1 with unadjusted covariates (OR: 4.872, 95% Confidence Interval: 3.154–7.526; OR: 6.093, 95% Confidence Interval: 3.530–10.518, respectively). After adjusting the model for covariates (age, BMI, marital status, living alone, monthly income, education, IPAQ, ADL, IADL, diabetes, hypertension, hyperlipidemia, and stroke), we still found a statistically significant association between SFHL and CI (OR: 2.364, 95% Confidence Interval: 1.262–4.428), and statistically significant association between HFHL and CI (OR: 3.170, 95% Confidence Interval: 1.557–6.454).

3.4 Association of Cognition with Hearing Sensitivity

To determine the independent associations between cognition and hearing sensitivity of different frequencies, Tables 3, 4, and 5, respectively, showed linear regression between PTA and MMSE domains of CI by gender. We found in these tables that hearing sensitivity negatively affected the cognitive function (all P<0.05) in model 1. In addition, there was a significant negative correlation between hearing sensitivity and cognitive domains (time, place, registration, recall, attention/calculation, and language) (all P<0.05). After adjusting for covariates (age, BMI, marital status, living alone, monthly income, education, IPAQ, ADL, IADL, diabetes, hypertension, hyperlipidemia, and stroke), the association had changed in some cognitive domains. Table 3 showed that speech-frequencies PTA negatively affected all cognitive domains (all P<0.05). High-frequencies PTA negatively affected all cognitive domains, except the orientation of place (P=0.099) and time (P=0.065). In addition, Table 4 showed a linear regression between hearing sensitivity and cognitive domains in males. We found that high-frequencies PTA affected negatively only the registration of five cognitive domains (P=0.001), while speech-frequencies PTA affected the cognitive domains, except the orientation of place and language function (P=0.597; P=0.072, respectively) in model 2. Table 5 showed a linear regression between hearing sensitivity and cognitive domains in females. We found that high-frequencies PTA negatively affected the orientation of time and language (all P<0.05) in the unadjusted model, but after adjusting for confounding variables, these correlations disappeared. Moreover, there was an association in speech-frequencies PTA. Registration was associated with high- and speech-frequencies PTA in all models. It is worth noting that this also existed in males.

4 Discussion

The purpose of our study was to investigate the relationship between SFHL, HFHL, and CI, then to determine whether any association differs by gender among older community dwellers in China. Our cross-sectional study results showed that speech- and high-frequency HL may be associated with a higher risk of CI. Furthermore, we found that SFHL was more strongly associated with CI in males and females, while HFHL had a different association with CI among males and females. Hearing sensitivity was negatively and independently related to MMSE scores, regardless of gender. We explored which cognitive domains on the MMSE and their associations by gender. For example, the HL in females showed a relationship with marital status (P<0.001), living alone (17.1% vs 29.5%; P<0.001), education level (P<0.001), and drinking history (P=0.010), but these results are not significant in males (all P>0.05). Meanwhile, compared to those with normal hearing, those with HL did not demonstrate differences in terms of smoking history among males and females (P>0.05).

Our research shows a significant correlation between HFHL and CI, and the significance still exists after adjusting for confounding factors. As the most common type of HL in older adults, the incidence of HFHL increases with age, and older people are more likely to have decreased cochlear blood supply and loss of outer hair cells at cochlear basal [25]. HL is one of the most common challenges in older adults over the age of 60 years and a main causes of speech perception [26]. Difficulties in understanding language in older adults as a result from age-related defects in peripheral and central auditory pathways [12]. Age-related decline in auditory processing aggravates age-related differences in all aspects of cognitive processing, such as processing speed, working memory, and attention [27]. Recently, researchers showed that older adults are already using additional cognitive resources for any condition involving speech perception in noise [28]. These studies suggested that there is an inherent connection between HFHL and CI.
Moreover, several studies have shown that females have a lower hearing threshold and an increased sensitivity compared to males [29,30]. Although females experience a rapid hearing loss after menopause, the onset of HL is delayed and they have a better hearing function than males of the same age [31,32]. Our results are similar. This may be related to the protective effect of estrogen on hearing, and the loss of estrogen receptors in the inner ear of males can increase the risk of HL [33]. Our study also shows that females have more sensitive hearing at 4 kHz and 8 kHz but that males have more sensitive hearing at 0.5 kHz and 1 kHz. Similarly, one study showed the same results [34], and another study after adjusting for age using covariance analysis found significant gender differences in pure tone thresholds at 4 kHz and 8 kHz [32]. It is not unclear whether these gender differences can solely be attributed to estrogen; however, in measuring hearing, gender as a biological variable has attracted the attention of researchers [14]. It is worth noting that there is a significant correlation between HFHL and CI in females, while similar results can be found merely in males with hypertension (OR: 2.585, 95% Confidence Interval: 1.099–6.082). Certainly, there may be gender differences, or other potential mechanisms in the effect of HL on CI may be involved. Moreover, micro-vessel damage may lead to HL, and hypertension is one of the main risk factors of peripheral arterial disease [35]. To some extent, micro-vessel atherosclerosis caused by hypertension may be associated with a reduction in the level of oxygen and the nutrition supply for the inner ear. One study supported the association between hearing and hypertension, particularly at higher frequencies [36]. Another assumed that hypertension may damage not only the inner ear but also the primary auditory cortex [37]. However, a Malaysia study showed that high-frequencies PTA (4 kHz and 8 kHz) was not significantly related to cognition [38]. The reason may be due to our subgroup analysis that was performed using gender. Actually, there are few studies on gender differences between HFHL and CI. The results of this cross-sectional study need to be confirmed by additional prospective cohort studies.

Our research also shows a significant correlation between SFHL and CI, and the significance still exists after adjusting for confounding factors. Our results in line with previous research showing significant associations between greater HL and poorer cognitive function in both cross-sectional and prospective studies [39,40]. On the contrary, other studies have not found similar results [11]. One major limitation across these previous studies has been how HL was measured and how the variability of audiometric data were analyzed. The strengths of our present study include results from a population-based cohort of older community-dwelling adults and HL adopted by the WHO [41]. The difficulty of speech perception in quiet background is the most prominent feature of SFHL in older adults. A previous study demonstrated that older adults with HL showed reduced recruitment of the articulatory motor cortex during listening to speech at 0.5 to 4 kHz versus whom with normal hearing [38]. The older adults with HL were also damaged in speech perception in noise background. The current findings suggest that auditory input from the cochlear to the auditory system in older adults are reduced, which leads to a reduced recruitment of the articulatory motor system in speech processing and supports the auditory-motor decline hypothesis [42]. Communication disorders caused by HL can result in social isolation and loneliness in older adults, and many epidemiologic and neuroanatomic studies have supported correlations between loneliness and CI. The effect of HL on cognitive load is suggested by studies indicating that under conditions of auditory perception is difficult, and more cognitive resources are devoted to auditory perceptual processing, thus damaging other cognitive processes such as working memory [43]. Neuroimaging studies had already indicated that older adults have a compensatory recruitment of regions in their prefrontal and temporoparietal cortex, which to maintain auditory speech processing [26, 44], and this pattern of neural compensation may explain the general preservation of language comprehension, which is seen even in people with advanced dementia [45].

We found that impairment on the MMSE overall is independently and significantly negatively related to hearing sensitivity after adjusting for confounding variables. Hearing sensitivity is also significantly related to hearing status. Similarly, one report by Lin et al. demonstrated that those with HL performed worse in MMSE scores than those with normal hearing [46]. In the “Registration” sections of MMSE, high- and speech-hearing sensitivity has a significantly negative correlation with registration scores in males and females. The causes of cognitive decline in adults with HL could be explained by the information degradation hypothesis, and HL can be interpreted as that to put an increased burden on cognitive processing on account of the effort required to decode the degraded sensory input [47]. Other studies have approved that performance in cognitive tests might be affected by the quality of auditory-presented sensory input such as memory [48]. Moreover, time, recall, and attention/calculation sections of MMSE have a significantly negative correlation with speech-hearing sensitivity in males after adjusting for confounding variables. This may be due to further advancement in the HL pathophysiological process, and speech-frequency hearing sensitivity was related to broader cognitive domains than high-frequency hearing sensitivity. Similarly, a meta-analysis reported that HL was associated with cognitive decline involving multiple domains, including working memory and visuospatial ability [9]. It is noteworthy that high-/speech-hearing sensitivity has not significantly correlated with language scores in males and females. A cross-sectional study also analyzed the possible relationship between hearing sensitivity and cognition on language tests, which shown there are no significant relationship between hearing sensitivity and speech function, no matter what CI [49]. These results suggested cognitive function, rather than simply auditory problems, is attributed to the impaired speech function in older adults.

5 Limitations

First, as this was a cross-sectional study design, although correlations among speech-, high-frequency HL, and CI were found in older adults, the causation is still unknown. Second, all of our subjects are from four communities in Chongming District, Shanghai, and we required them to arrive at the prescribed place of physical examination by themselves and provide their informed consent. Therefore, subjects with severe CI were not included in our study. In the future, we will improve our research design and more accurately ascertain the association between CI and HL at different frequencies among older community dwellers in China.

6 Conclusion

Our study suggests that speech- and high-frequency HL are associated with CI, but males and females demonstrate different results, suggesting that different mechanisms are involved in the etiology of HL. Moreover, we found that hearing sensitivity is negatively associated with cognitive domains, and that registration is most significant. The associations between hearing frequencies and cognitive health may vary according to gender. Gender-specific strategies
in healthcare policies are needed. In view of our limited ways to assess cognitive function, future research should focus on a more comprehensive approach to assessing cognition and implementing a longitudinal study in order to explore the causal relationships between HL and CI.

7 List Of Abbreviations

speech-frequency hearing loss SFHL
high-frequency hearing loss HFHL
age-related hearing loss ARHL
cognitive impairment CI
Mini Mental State Examination MMSE
hearing loss HL
World Health Organization WHO
Pure tone average PTA
physical activity PA
body mass index BMI
Activity of daily living scale ADL
Instrumental activity of daily living IADL
International Physical Activity Questionnaire IPAQ

8 Declarations

DATA AVAILABILITY STATEMENT
The raw data supporting the conclusions of this article will be made available by the authors, without undue reservation.

ETHICS STATEMENT
This study was approved by the Shanghai University of Medicine and Health Sciences ethics committee. Every participant was fully informed of research nature. All participants signed an informed consent form to participate before data collection.

CONFLICT OF INTEREST STATEMENT
No competing financial interests exist.

AUTHOR CONTRIBUTIONS
Jingru Wang, Feng Wang, Peipei Han contributed to the statistical analysis. Yuewen Liu, Xing Yu, Weibo Ma, Fandi Xie, Shumeng Niu, Hao Hu, and Xiaohan Zhu contributed to the conception or design of the work. Jingru Wang and Feng Wang wrote the Manuscript. Ying Yu and Qi Guo guided the other authors in data analysis. Qi Guo critically revised the manuscript. All authors have read and approved the manuscript, and ensure that this is the case. All authors have agreed both to be personally accountable for the author's own contributions and to ensure that questions related to the accuracy or integrity of any part of the work.

FUNDING
This work was supported by Shanghai Sailing Program (20YF1418200), Wu Jieping medical foundation (320.6750.17073), and the funding of Youth Fund Project of Research Planning Foundation on Humanities and Social Sciences of the Ministry of Education (20YJCZH001).

AKNOWLEDGEMENTS
The authors thank all the staff and the participants who participated in this study.

9 References

1. GBD 2016 Dementia Collaborators. Global, regional, and national burden of Alzheimer's disease and other dementias, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol. 2019;18(1):88–106. DOI: https://doi.org/10.1016/S1474-4422(18)30403-4
2. Wang J, Xiao LD, Wang K, Luo Y, Li X. Gender differences in cognitive impairment among rural elderly in China. Int J Environ Res Public Health. 2020;17(10):3724. DOI: https://doi.org/10.3390/ijerph17103724

3. Jia J, Wei C, Chen S, Li F, Tang Y, Qin W, et al. The cost of Alzheimer’s disease in China and re-estimation of costs worldwide. Alzheimers Dement. 2018;14(4):483–491. DOI: https://doi.org/10.1016/j.alz.2017.12.006

4. Norton S, Matthews FE, Barnes DE, Yaffe K, Brayne C. Potential for primary prevention of Alzheimer’s disease: an analysis of population-based data. Lancet Neurol. 2014;13(8): 788–794. DOI: https://doi.org/10.1016/S1474-4422(14)0136-X

5. Baumgart M, Snyder HM, Carrillo MC, Fazio S, Kim H, Johns H. Summary of the evidence on modifiable risk factors for cognitive decline and dementia: A population-based perspective. Alzheimers Dement. 2015;11(6):718–726. DOI: https://doi.org/10.1016/j.jalz.2015.05.016

6. Gallacher J, Iluaba V, Ben-Shlomo Y, Bayer A, Fish M, Babisch W, et al. Auditory threshold, phonologic demand, and incident dementia. Neurology. 2012;79(15):1583–1590. DOI: https://doi.org/10.1212/WNL.0b013e31826e263d

7. Lin FR, Albert M. Hearing loss and dementia—who is listening? Aging Ment Health. 2014;18(6):671–673. DOI: https://doi.org/10.1080/13607863.2014.915924

8. Panza F, Lozupone M, Sardone R, Battista P, Piccinnini M, Dibello V, et al. Sensory frailty: age-related hearing loss and the risk of cognitive impairment and dementia in later life. Ther Adv Chronic Dis. 2018; DOI: https://doi.org/10.1177/2046228188100000

9. Loughrey DG, Kelly ME, Kelley GA, Brennan S, Lawlor BA. Association of age-related hearing loss with cognitive impairment, cognitive function, and dementia: A systematic review and Meta-analysis. JAMA Otolaryngol Head Neck Surg. 2018;144(2):115–126. DOI: https://doi.org/10.1001/jamaoto.2017.2513

10. Fischer ME, Cruickshanks KJ, Schubert CR, Pinto AA, Carlsson CM, Klein BE, et al. Age-related sensory impairments and risk of cognitive impairment. Journal of the American Geriatrics Society. 2016;64(10):1981–1987. DOI: https://doi.org/10.1111/jgs.14308

11. Gussekloo J, de Craen AJ, Ouder C, van Boxtel MP, Westendorp RG. Sensory impairment and cognitive functioning in oldest-old subjects: the Leiden 85 + Study. Am J Geriatr Psychiatry. 2005;13(9):781–786. DOI: https://doi.org/10.1168/ajp.ajp.13.9.781

12. Gates GA, Mills JH. Presbycusis. Lancet. 2005;366(9491):1111–1120. DOI: https://doi.org/10.1016/S0140-6736(05)67423-5

13. Kim BJ, Oh SH. Age-related changes in cognition and speech perception. Korean J Audiol. 2013;17(2):54–58. DOI: https://doi.org/10.7874/kja.2013.17.2.54

14. Nolan LS. Age-related hearing loss: Why we need to think about sex as a biological variable. Journal of neuroscience research. 2020;98(9):1705–1720. DOI: https://doi.org/10.1002/jnr.24647

15. Delhez A, Lefebvre P, Péqueux C, Malgrange B, Delacroix L. Auditory function and dysfunction: estrogen makes a difference. Cell Mol Life Sci. 2020;77(4):619–635. DOI: https://doi.org/10.1007/s00018-019-03295-y

16. Lee FS, Matthews LJ, Dubno JR, Mills JH. Longitudinal study of pure-tone thresholds in older persons. Ear Hear. 2005;26(1):1–11. DOI: https://doi.org/10.1097/00003446-20050200-00001

17. Kiely KM, Gopinath B, Mitchell P, Luszcz M, Anstey KJ. Cognitive, health, and socio-demographic predictors of longitudinal decline in hearing acuity among older adults. J Gerontol A Biol Sci Med Sci. 2012,67(9):997–1003. DOI: https://doi.org/10.1093/gerona/gls066

18. WHO Programme for the Prevention of Blindness and Deafness: WHO ear and hearing disorders survey. https://apps.who.int/iris/handle/10665/67892 (1999). Accessed 17 June 2012.

19. Zhang MY, Katzman R, Salmon D, Jin H, Cai GJ, Wang ZY, et al. The prevalence of dementia and Alzheimer’s disease in Shanghai, China: impact of age, gender, and education. Ann Neurol. 1990;27(4):428–437. DOI: https://doi.org/10.1002/ana.410270412

20. Jiang CQ, Xu L, Lam TH, Zhang WS, Li F, Tang Y, et al. Zhonghua liu xing bing xue za zhi = Zhonghua liuxingbingxue zazhi. 2009;30(5):462–465. DOI: https://doi.org/10.1212/WNL.0b013e318131826e

21. Loughrey DG, Kelly ME, Kelley GA, Brennan S, Lawlor BA. Association of age-related hearing loss with cognitive impairment, cognitive function, and dementia: A systematic review and Meta-analysis. JAMA Otolaryngol Head Neck Surg. 2018;144(2):115–126. DOI: https://doi.org/10.1001/jamaoto.2017.2513

22. Ballinger TE, Leng X, Miller ME, Kitzman DW, Pahor M, Berry MJ, et al. Chronic inflammation is associated with low physical function in older adults across but have no higher cardiovascular risk: results from a cross-sectional study. Eur J Neurol. 2017;24(2):419–426. DOI: https://doi.org/10.1111/ene.13222

23. Brinkley TE, Leng X, Miller ME, Kitzman DW, Pahor M, Berry MJ, et al. Chronic inflammation is associated with low physical function in older adults across multiple comorbidities. J Gerontol A Biol Sci Med Sci. 2009;64(4):455–461. DOI: https://doi.org/10.1093/gerona/gln038

24. Pepper JL, Wingfield A. The neural consequences of age-related hearing loss. Trends Neurosci. 2016;39(7):486–497. DOI: https://doi.org/10.1016/j.tins.2016.05.001

25. Pepper JL, Troiani V, Grossman M, Wingfield A. Hearing loss in older adults affects neural systems supporting speech comprehension. J Neurosci. 2011;31(35):12638–12643. DOI: https://doi.org/10.1523/JNEUROSCI.2559-11.2011

26. Schoof T, Rosen S. The role of auditory and cognitive factors in understanding speech in noise by normal-hearing older listeners. Front Aging Neurosci. 2014, 307. DOI: https://doi.org/10.3389/fgagi.2014.00307

27. Wingfield A, Tun P, McCoy S. Hearing loss in older adulthood: What it is and how it interacts with cognitive performance. Curr Dir Psychol Sci. 2005;14(3):144–148. Retrieved December 11, 2020, DOI: http://www.jstor.org/stable/20183009

28. Hoffman HJ, Dobie RA, Losonczy KG, Themann CL, Flamme GA. Declining prevalence of hearing loss in US adults aged 20 to 69 Years. JAMA Otolaryngol Head Neck Surg. 2017;143(3):274–285. DOI: https://doi.org/10.1001/jamaoto.2016.3527
30. Snihur AW, Hampson E. Sex and ear differences in spontaneous and click-evoked otoacoustic emissions in young adults. Brain Cogn. 2011;77(1):40–47. DOI: https://doi.org/10.1016/j.bandc.2011.06.004

31. Jönsson R, Rosenhall U, Gause-Nilsson I, Steen B. Auditory function in 70- and 75-year-olds of four age cohorts. A cross-sectional and time-lag study of presbyacusis. Scand Audiol. 1998;27(2):81–93. DOI: https://doi.org/10.1080/010503998420324

32. Kim S, Lim EJ, Kim HS, Park JH, Jang SS, Lee SH. Sex differences in a cross sectional study of age-related hearing loss in Korean. Clin Exp Otorhinolaryngol. 2010;3(1):27–31. DOI: https://doi.org/10.3342/ceo.2010.3.1.27

33. Hultcrantz M, Simonoska R, Stenberg AE. Estrogen and hearing: a summary of recent investigations. Acta Otolaryngol. 2006;126(1):10–14. DOI: https://doi.org/10.1080/00016480510038617

34. Pearson JD, Morrell CH, Gordon-Salant S, Brant LJ, Metter EJ, Klein LL, et al. Gender differences in a longitudinal study of age-associated hearing loss. J Acoust Soc Am. 1995;97(2):1196–1205. DOI: https://doi.org/10.1121/1.412231

35. Matsunaga M, Yatsuya H, Iso H, Yamashita K, Li Y, Yamagishi K, et al. Similarities and differences between coronary heart disease and stroke in the associations with cardiovascular risk factors: The Japan Collaborative Cohort Study. Atherosclerosis. 2017;261:124–130. DOI: https://doi.org/10.1016/j.atherosclerosis.2017.03.003

36. Agarwal S, Mishra A, Jagade M, Kasbekar V, Nagle SK. Effects of hypertension on hearing. Indian J Otolaryngol Head Neck Surg: official publication of the Association of Otolaryngologists of India. 2013;65(Suppl 3):614–618. DOI: https://doi.org/10.1007/s12070-013-0630-1

37. Umesawa M, Sairenchi T, Haruyama Y, Nagao M, Kobashi G. Association between hypertension and hearing impairment in health check-ups among Japanese workers: a cross-sectional study. BMJ open. 2019;9(4):e028392. DOI: https://doi.org/10.1136/bmjopen-2018-028392

38. Mukani S, Ishak WS., Maamor N, Wan Hashim WF. A preliminary study investigating the association between hearing acuity and a screening cognitive tool. Ann Otol Rhinol Laryngol. 2017;126(10):697–705. DOI: https://doi.org/10.1177/0003489417727547

39. Valentijn SA, van Boxtel MP, van Hooren SA, Bosma H, Beckers HJ, Ponds RW, et al. Change in sensory functioning predicts change in cognitive functioning: results from a 6-year follow-up in the maastricht aging study. J Am Geriatr Soc. 2005;53(3):374–380. DOI: https://doi.org/10.1111/j.1532-5415.2005.53152.x

40. Peters CA, Potter JF, Scholer SG. Hearing impairment as a predictor of cognitive decline in dementia. J Am Geriatr Soc. 1988;36(11):981–986. DOI: https://doi.org/10.1111/j.1532-5415.1988.tb04363.x

41. WHO: Prevention of Deafness and Hearing Impaired Grades of Hearing Impairment. https://www.who.int/pbd/deafness/hearing_impairment_grades/en/ (2013). Accessed 25 November 2013.

42. Panouillères M, Möttönen R. Decline of auditory-motor speech processing in older adults with hearing loss. Neurobiol Aging. 2018;72:89–97. DOI: https://doi.org/10.1016/j.neurobiolaging.2018.07.013

43. Füllgrabe C. On the possible overestimation of cognitive decline: The impact of age-related hearing loss on cognitive-test performance. Front neurosci. 2020;14:454. DOI: https://doi.org/10.3389/fnins.2020.00454

44. Wingfield A, Grossman M. Language and the aging brain: patterns of neural compensation revealed by functional brain imaging. J Neuropsychol. 2006;9(6):2830–2839. DOI: https://doi.org/10.11172/jn.00628.2006

45. Rousseaux M, Sève A, Vallet M, Pasquier F, Mackowiak-Cordoliani MA. An analysis of communication in conversation in patients with dementia. Neuropsychologia. 2010;48(13):3884–3890. DOI: https://doi.org/10.1016/j.neuropsychologia.2010.09.026

46. Lin FR, Ferrucci L, Metter EJ, An Y, Zonderman AB, Resnick SM. Hearing loss and cognition in the Baltimore Longitudinal Study of Aging. Neuropsychology. 2011;25(6):763–770. DOI: https://doi.org/10.1037/a0024238

47. Wayne RV, Johnsrude IS. A review of causal mechanisms underlying the link between age-related hearing loss and cognitive decline. Ageing Res Rev. 2015;23(Pt B):154–166. DOI: https://doi.org/10.1016/j.arr.2015.06.002

48. McCoy SL, Tun PA, Cox LC, Colangelo M, Stewart RA, Wingfield A. Hearing loss and perceptual effort: downstream effects on older adults’ memory for speech. Q J Exp Psychol A. 2005;58(1):22–33. DOI: https://doi.org/10.1080/02724980443000151

49. Lodeiro-Fernández L, Lorenzo-López L, Maseda A, Núñez-Navaira L, Rodríguez-Villamil JL, Millán-Calenti JC. The impact of hearing loss on language performance in older adults with different stages of cognitive function. Clin Interv Aging. 2015;10:695–702. DOI: https://doi.org/10.2147/CIA.S81260

Tables
Variables	ALL (N=1012)	Male (N=641)	Female (N=371)	Male (N=267)	Female (N=161)	Male (N=374)	Female (N=210)
Age(y)	70.99±4.71	75.38±6.25	71.42±4.77	74.57±6.08	70.68±4.65	76.00±6.75	
Male(%)	267(41.65)	161(43.40)	0.589	/	/	/	/
Speech-PTA(dB HL)	37.14±7.43	56.75±9.05	37.03±7.10	56.54±8.66	37.21±7.67	56.92±9.25	
High-PTA(dB HL)	37.23±7.70	60.72±9.86	37.50±7.48	61.52±9.69	37.07±7.83	60.02±9.51	
BMI(kg/m²)	23.77±3.38	23.50±3.76	23.40±3.28	23.14±3.79	24.04±3.44	23.77±3.71	
SBP(mmHg)	129.66±18.90	133.00±21.16	127.54±17.88	130.97±19.47	131.19±19.48	134.57±2	
DBP(mmHg)	73.17±10.45	73.40±11.54	74.26±10.26	75.19±10.81	72.38±10.53	72.02±11	
Marital status			0.001		0.533		
Married(%)	529(82.53)	254(68.4)	243(91.01)	141(87.58)	286(76.47)	113(53.8)	
Windowed(%)	109(17.00)	115(30.99)	22(8.24)	19(11.18)	87(23.26)	96(45.71)	
Single(%)	1(0.16)	2(0.54)	1(0.37)	1(0.62)	0(0.00)	1(0.48)	
Divorced(%)	2(0.31)	0(0.00)	1(0.37)	0(0.00)	1(0.27)	0(0.00)	
Living alone(%)	92(14.40)	86(23.20)	28(10.50)	24(14.90)	0.175	64(17.10)	62(29.50)
Monthly income			0.030		0.081		
≥1000(%)	54(8.40)	44(11.90)	17(6.39)	13(8.13)	37(9.89)	31(14.83)	
1000-3000(%)	367(57.30)	229(62.10)	134(50.38)	98(61.25)	233(62.3)	131(62.36)	
3000-5000(%)	97(15.20)	44(11.90)	51(19.17)	22(13.75)	46(12.3)	22(10.53)	
≥5000(%)	122(19.10)	52(14.10)	64(24.00)	27(16.88)	58(15.51)	25(11.96)	
Education			0.411				
Illiteracy(%)	70(10.92)	84(22.64)	15(5.62)	10(6.21)	55(14.71)	74(35.24)	
Primary(%)	375(58.50)	200(53.91)	135(50.56)	91(56.52)	240(64.17)	109(51.9)	
≥High school (%)	196(30.58)	87(23.45)	117(43.82)	60(37.27)	79(21.12)	27(12.86)	
Smoking			0.682		0.650		
Current(%)	99(15.47)	54(14.59)	98(36.7)	52(32.3)	1(0.27)	2(0.96)	
Never(%)	440(68.75)	250(67.57)	69(25.84)	45(27.95)	371(99.46)	205(98.06)	
Former(%)	101(15.78)	66(17.84)	100(37.45)	64(39.75)	1(0.27)	2(0.96)	
Drinking			0.086		0.402		
Daily(%)	88(13.77)	55(14.86)	75(28.2)	37(23.13)	13(3.49)	18(8.57)	
Occasional(%)	95(14.87)	52(14.05)	56(21.05)	32(20.00)	39(10.46)	20(9.52)	
Former(%)	67(10.49)	58(15.67)	54(20.30)	43(26.88)	13(3.49)	15(7.14)	
Never(%)	389(60.88)	205(55.41)	81(30.45)	48(30.00)	308(82.57)	157(74.71)	
Disease history							
Diabetes(%)	130(21.74)	77(22.92)	48(19.12)	41(27.52)	0.051	82(23.63)	36(19.25)
Hypertension(%)	457(71.2)	279(75.41)	191(71.54)	111(69.38)	0.635	266(71.12)	168(80.0)
Hyperlipidemia(%)	305(54.17)	167(52.68)	97(42.17)	58(41.43)	0.888	208(62.46)	109(61.5)
Stroke(%)	32(5.09)	32(8.79)	23(8.75)	10(6.29)	0.363	9(2.46)	22(10.73)
Variables	Model 1	Model 2	Model 3				
-----------	---------	---------	---------				
	OR(95%CI)	P	OR(95%CI)	P	OR(95%CI)	P	
ALL							
HFHL	3.85(2.508,5.914)	0.001	2.52(1.608,3.961)	0.001	2.12(1.286,3.521)	0.003	
SFHL	3.84(2.706,5.457)	0.001	2.49(1.708,3.652)	0.001	2.30(1.470,3.597)	0.001	
Male							
HFHL	1.87(0.926,3.794)	0.081	1.54(0.749,3.179)	0.239	1.32(0.599,2.944)	0.486	
SFHL	2.6(1.411,4.791)	0.002	2.07(1.091,3.933)	0.026	2.18(1.033,4.638)	0.041	
Female							
HFHL	6.09(3.53,10.518)	0.001	3.44(1.923,6.181)	0.001	2.94(1.505,5.754)	0.002	
SFHL	4.87(3.154,7.526)	0.001	2.75(1.702,4.466)	0.001	2.40(1.313,4.385)	0.004	

Note: HFHL, high-frequency hearing loss; SFHL, speech-frequency hearing loss; MMSE, mini-mental status examination.

Table 2. Logistic regression between hearing loss and cognitive impairment, stratified by gender.

Abbreviation: PTA, pure-tone average; High PTA was defined as pure tone average of the threshold at 4, and 8 kHz in the better ear; Speech PTA was defined as pure tone average of the threshold at 0.5, 1, 2, and 4 kHz in the better ear; HL, hearing loss, and was defined as more than 40 dB loss in the better ear; BMI, body mass index; SBP, systolic blood pressure; DBP, diastolic pressure; IPAQ, international physical activity questionnaire; ADL, activity of daily living; IADL, instrumental activity of daily living; MMSE, mini-mental status examination.

Model 1: unadjusted model.
Model 2: adjusted for age.
Model 3: adjusted for age, BMI, marital status, living alone, monthly income, education, drinking, smoking, IPAQ, ADL, IADL, diabetes, hypertension, hyperlipidemia, and stroke.
Table 3. Linear regression between hearing sensitivity and cognitive impairment.

Variables	Model 1	Model 2		
	β(95%CI)	P	β(95%CI)	P
High PTA				
MMSE	-0.084(-0.102,-0.066)	0.001	-0.038(-0.055,-0.022)	0.001
time	-0.014(-0.018,-0.010)	0.001	-0.004(-0.009,0.000)	0.065
place	-0.010(-0.013,-0.006)	0.001	-0.003(-0.007,0.001)	0.099
registration	-0.008(-0.011,-0.006)	0.001	-0.007(-0.009,-0.004)	0.001
recall	-0.013(-0.018,-0.009)	0.001	-0.008(-0.014,-0.003)	0.002
attention/calculation	-0.021(-0.027,-0.014)	0.001	-0.012(-0.019,-0.003)	0.001
language	-0.019(-0.023,-0.014)	0.001	-0.004(-0.009,0.000)	0.050
Speech PTA				
MMSE	-0.131(-0.151,-0.111)	0.001	-0.061(-0.081,-0.042)	0.001
time	-0.021(-0.026,-0.016)	0.001	-0.008(-0.014,-0.003)	0.003
place	-0.017(-0.021,-0.013)	0.001	-0.007(-0.011,-0.002)	0.003
registration	-0.012(-0.014,-0.009)	0.001	-0.009(-0.012,-0.005)	0.001
recall	-0.019(-0.025,-0.014)	0.001	-0.011(-0.017,-0.004)	0.001
attention/calculation	-0.033(-0.040,-0.026)	0.001	-0.020(-0.028,-0.012)	0.001
language	-0.029(-0.035,-0.023)	0.001	-0.007(-0.013,-0.002)	0.010

Note: PTA, pure-tone average; High PTA was defined as pure tone average of the threshold at 4, and 8 kHz in the better ear; Speech PTA was defined as pure tone average of the threshold at 0.5, 1, 2, and 4 kHz in the better ear.

Model 1: unadjusted.

Model 2: adjusted for age, BMI, marital status, living alone, monthly income, education, drinking, smoking, IPAQ, ADL, IADL, diabetes, hypertension, hyperlipidemia, and stroke.
Table 4. Linear regression between hearing sensitivity and cognitive impairment in male.

Variables	Model 1		Model 2	
	β(95%CI)	P	β(95%CI)	P
High PTA				
MMSE	-0.042(-0.064,-0.019)	0.001	-0.027(-0.051,0.003)	0.027
time	-0.006(-0.012,0.000)	0.059	-0.002(-0.009,0.005)	0.539
place	-0.002(-0.005,0.001)	0.242	0.000(-0.003,0.004)	0.835
registration	-0.008(-0.011,-0.004)	0.001	-0.007(-0.012,-0.003)	0.001
recall	-0.008(-0.015,0.000)	0.037	-0.008(-0.016,0.000)	0.064
attention/calculation	-0.011(-0.020,0.003)	0.111	-0.009(-0.018,0.001)	0.078
language	-0.007(-0.014,-0.001)	0.024	-0.002(-0.008,0.005)	0.577
Speech PTA				
MMSE	-0.082(-0.108,-0.055)	0.001	-0.066(-0.095,-0.037)	0.001
time	-0.012(-0.019,-0.005)	0.001	-0.009(-0.018,0.000)	0.025
place	-0.005(-0.009,-0.001)	0.021	-0.001(-0.006,0.003)	0.597
registration	-0.012(-0.016,-0.007)	0.001	-0.011(-0.016,-0.006)	0.001
recall	-0.017(-0.026,-0.008)	0.001	-0.015(-0.025,0.005)	0.003
attention/calculation	-0.022(-0.033,-0.012)	0.001	-0.022(-0.033,-0.010)	0.001
language	-0.014(-0.021,-0.006)	0.001	-0.007(-0.015,0.001)	0.072

Note: PTA, pure-tone average; High PTA was defined as pure tone average of the threshold at 4, and 8 kHz in the better ear; Speech PTA was defined as pure tone average of the threshold at 0.5, 1, 2, and 4 kHz in the better ear.

Model 1: unadjusted.
Model 2: adjusted for age, BMI, marital status, living alone, monthly income, education, drinking, smoking, IPAQ, ADL, IADL, diabetes, hypertension, hyperlipidemia, and stroke.

Table 5. Linear regression between hearing sensitivity and cognitive impairment in female.

Variables	Model 1		Model 2	
	β(95%CI)	P	β(95%CI)	P
High PTA				
MMSE	-0.130(-0.155,-0.106)	0.001	-0.047(-0.071,-0.024)	0.001
time	-0.022(-0.027,-0.016)	0.001	-0.004(-0.010,0.003)	0.158
place	-0.019(-0.024,-0.014)	0.001	-0.007(-0.012,-0.001)	0.301
registration	-0.009(-0.013,-0.006)	0.001	-0.007(-0.011,-0.002)	0.001
recall	-0.018(-0.023,-0.012)	0.001	-0.009(-0.017,-0.002)	0.020
attention/calculation	-0.032(-0.041,-0.023)	0.001	-0.015(-0.025,-0.004)	0.001
language	-0.031(-0.038,-0.024)	0.001	-0.006(-0.013,0.000)	0.062
Speech PTA				
MMSE	-0.165(-0.193,-0.137)	0.001	-0.055(-0.082,-0.027)	0.001
time	-0.027(-0.033,-0.020)	0.001	-0.005(-0.012,0.003)	0.110
place	-0.026(-0.032,-0.020)	0.001	-0.010(-0.017,-0.003)	0.003
registration	-0.012(-0.015,-0.008)	0.001	-0.007(-0.012,-0.003)	0.003
recall	-0.021(-0.028,-0.014)	0.001	-0.009(-0.018,-0.000)	0.053
attention/calculation	-0.040(-0.050,-0.030)	0.001	-0.016(-0.028,-0.004)	0.003
language	-0.039(-0.047,-0.031)	0.001	-0.007(-0.014,0.001)	0.117
Note: PTA, pure-tone average; High PTA was defined as pure tone average of the threshold at 4, and 8 kHz in the better ear; Speech PTA was defined as pure tone average of the threshold at 0.5, 1, 2, and 4 kHz in the better ear.

Model 1: unadjusted.

Model 2: adjusted for age, BMI, marital status, living alone, monthly income, education, drinking, smoking, IPAQ, ADL, IADL, diabetes, hypertension, hyperlipidemia, and stroke.

Supplementary Files

This is a list of supplementary files associated with this preprint. Click to download.

- Questionnaire.pdf