INTRA PARTUM FOETAL DISTRESS

J. KUBHEKA; M. LEPHADI; V. MAJOLA; E. MBAWA; A. MOKOENA; C. MONAHENG; F. MULAUDZI; Z. NGETU; G. NOMTULI AND E. PETERS

INTRODUCTION
The occurrence of neonatal asphyxia at Baragwanath Hospital is a daily problem. The question was raised as to whether intra partum foetal distress, apgar scoring at birth and the biochemical analysis of blood acid base status from the chorionic arteries can predict any short-term neurological defects.

AIMS OF THE STUDY
• To detect factors directly related to the incidence of asphyxia neonatorum.
• To detect factors coincidentally related to the incidence of asphyxia neonatorum.
• To establish parameters to detect complications with their sequelae.
• To reduce the occurrence of asphyxia neonatorum thus improve the quality of life.

THE HYPOTHESIS
There is no correlation between apgar scoring, biochemical analysis of chorionic arterial blood and short-term neurological defects within the first twenty four hours of neonatal life.

This research project won the 1984 Juta Nursing Research Prize for students on courses leading to a post-registration diploma or certificate in Nursing. The researchers were studying for the Diploma in Advanced Midwifery and Neonatal Nursing Science at Baragwanath Hospital.

TYPE OF STUDY
A prospective clinical study consisting of asphyxiated and non-asphyxiated groups was undertaken. Twenty-nine mothers with clinical signs of foetal distress (these represented the asphyxiated group) were monitored during labour. The non-asphyxiated group consisted of twenty-nine mothers who were also monitored during labour; of these twenty-six presented later with only one of the clinical signs of foetal distress when the second stage of labour was imminent. The subjects chosen were full term and the babies' birth weights had to exceed 2,2 kilograms.

The investigators assessed both maternal and foetal condition and obtained the following data from the mother's clinical records.

Data directly related to the study

• Clinical signs of foetal distress: These are listed in table 1.

• Technological signs of foetal distress
 The asphyxiated group only was monitored with internal cardiotocography. The foetal heart rate and the uterine contractions were plotted on the Philpott charts as indicated in table 1.

Two heparinised syringes were used to withdraw blood from both umbilical arteries within fifteen minutes of expulsion of the placenta. These samples were immediately taken for analysis to the acid base machine (Radiometer ABI 3).

In a pilot study concern was raised because of difference in acid base status between blood from the two chorionic arteries of the same placenta. Because of this phenomenon, specimens were taken in each case from both chorionic arteries and the results compared.

Data co-incidentally related to the study

• Medical History
 Hypertension
 Cardiac disease
 Anaemia
 Diabetes mellitus
 Other

• Obstetrical Data
 Ante-partum haemorrhage
 Poly-hydramnios
 Pre-eclampsia
 Other

Booking status

Number of ante-natal clinic visits
NAME:	AGE:	PARITY:	STILLBIRTHS:	EDD:	BOOKED	No. of ANC visits	Medical Problems
							Hypertension YES NO
							Cardiac YES NO
							Anaemia YES NO
							Diabetes YES NO
							Other

Obstetrical Problems
APH
Polyhydramnios
Pre-eclampsia
Other

Blood Tests
RH
Group
Antibodies
Rubella

Clinical Signs of Foetal Distress
— meconium stained liquor
— foetal bradycardia
— foetal trachycardia
— excessive foetal movement
— decreased foetal movements
Cardiotocograph

DATE:	TIME:

Rupture of membranes:
Colour of Liquor:
Clear
Meconium stained
Liquor on inspection:
Thick
Medium
Thin
Delivery:
Normal
Forceps
Vacuum
C/S

1st Stage: DATE:	Hrs	mins.

Duration of 1st stage of Labour	Hrs	mins.

Delivery:	Cord around the neck YES NO

Baby: Time of birth	IF yes number of times

Sex	M	F

Weight	Tight or loose

Condition	Alive	Fresh SB	True knots

Apgar	1 min	5 mins	15 mins

Heart rate
Absent
L 100
100
2

Respiratory Rate
None
Slow or irregular
Good and regular
0
1
2

Muscle tone
Flaccid
Slight flexion of Limbs
Active movement
0
1
2

Reflex Activity
None
Grimaces
Coughs or sneezes
0
1
2

Colour
Pale or blue
Body Pink
Limbs Blue
Pink all over
0
1
2

Total

VOL 8 NO 3
CURATIONIS 49
TABLE 1 (continued)

RESUSCITATION	YES	NO
Suctioned		
If suctioned meconium in mouth/nose		
Intubated		
If intubated meconium in trachea		
IPPR	YES	NO
Time of first spontaneous breath	mins	
Transferred to T/A ICU	66	67

PLACENTAL ARTERIAL BLOOD GASES FROM FOETAL SIDE OF PLACENTA

First artery	Second artery
PH	PCO₂
PO₂	HCO₃
BE	

NEUROLOGICAL ASSESSMENT AT 12-24 HOURS

DATE OF ASSESSMENT	TIME OF ASSESSMENT

1) Increase in level of apparent alertness | YES | NO |
2) Any seizure | YES | NO |
3) Apnoeic spells | YES | NO |
4) Jitteriness | YES | NO |
5) Weakness | YES | NO |
6) Proximal limb weakness | Upper limbs | Lower limbs | YES | NO | YES | NO |

Liquor

Colour, thickness and duration of rupture of membranes.

Labour

Duration of the first and second stages and the method of delivery. Special note was made of the occurrence of the cord around the neck — whether tight or loose, how many times, the presence of true knots in the cord.

Resuscitation

Whether the newborn was suctioned and characteristics of the secretations obtained. Whether intubated and the method of ventilation employed. Accurate timing of the occurrence of the first spontaneous breath.

Immediate examination of the neonate

Special note was taken of infarcts which became significant if they covered a large enough area to interfere with the uterine placental foetal exchange (1.p 591).

A retro-placental clot, which signifies premature separation of the placenta thus interfering with the uterine placental foetal exchange, was also noted.

Results and analysis

A total of fifty-eight patients in labour enrolled in the study. Comparisons were made between:

- the intrapartum non-asphyxiated group (N=28) and the intrapartum asphyxiated group (N=28)

- the subjects who had babies with apgar score ≥7 (N=36) and apgar score <7 (N=22).

- the blood values of the two chorionic arteries of all placentae

- intrapartum asphyxia, neonatal asphyxia and short-term neurological defects.

The t-test was used to test correlated samples and the chi-square for discrete data.

Findings

Intrapartum non-asphyxiated group versus intrapartum asphyxiated group

There was a significant difference between the two samples regarding:

- hypertension during pregnancy. More hypertension occurred in the experimental group (p=0,05)

- normal deliveries/caesarian section and intubation. Not surprisingly more caesarian sections (p=0,02) and intubations (p=0,05) were performed on cases from the experimental group

- cord around the neck. This was more common in the experimental group (p=0,05)

- apgar scores. Apgar scores at one minute (p<0,001), at 5 minutes (p<0,001) and at 15 minutes (p<0,01) were lower in the intrapartum asphyxiated group with the great correlation at 15 minutes

- birth weight. The birth weight in the experimental group was significantly lower (p<0,05).

There was no significant difference between the groups regarding:

- maternal age, parity, booking status, post dates (≥7 days past EDD), WR (Wasserman positive)
— hypertension during labour (diastolic ≥90), delay in cervical dilatation, instrumental deliveries (forceps and vacuum)
— chorionic arterial PH, CO₂ HCO₃ between the two chorionic arteries.

Apger ≥ 7 group versus 7< group

There was a significant difference between the two groups regarding:

— parity. Mothers of low parity occurred more in the neonatal asphyxiated group (p<0,05) primigravids as such were not compared, but this could have been a contributory factor.

— Chorionic blood pH. A low pH was found to be significantly different in the low apgar group (p<0,05). However the pH was influenced by one very low value (pH =6,71) and if this extreme subject is taken out, there was no significant difference.

There was no significant difference between the two groups:

— maternal age, booking status, post dates, WR and hypertension
— cervical dilatation, chorionic arterial CO₂ HCO₃ and cord around the neck.

Blood values of the two chorionic arteries of all placentae

No significant difference was found when comparing the pH, PCO₂ and HCO₃ between isoplacental chorionic arteries.

Asphyxia and short-term neurological defects

Only two neonates were judged to be neurologically abnormal at 24 hours of age. These small numbers prohibit statistical analysis.

LIMITATIONS

— Observations were made late in labour, a common problem in the hospital is that patients present late in labour.
— The unavailability of cardiotocographs for the non-asphyxiated group and even for six subjects in the foetal distress group.
— Loss of data for two asphyxiated subjects and two non-asphyxiated subjects because the acid base machine was out of order for twenty-four hours.

CONCLUSION AND DISCUSSION

• The presence of clinical signs of intrapartum asphyxia, as well as ante-natal factors, can predict low apgar scores.
• Although cord around the neck showed to be a predictor of intrapartum foetal distress, it could not be shown as a predictor of post-partum asphyxia (low pH).
• Queenan (Queenan: 27) states that foetus of high risk pregnancies showed significantly lower pH and high base deficits . . . The investigator’s finding also contradiicted Babson’s statement (Babson: 52) that there is an accurate correlation between the degree of foetal distress and foetal blood pH. Our findings disclosed a more accurate correlation between foetal distress and apgar scoring.

RECOMMENDATIONS

— To do a similar study in a larger group in order to test short-term neurological outcomes.
— An improvement in facilities and services to avoid a delay in implementing immediate action to facilitate delivery.
— Availability of proper functioning cardiotocographs and introducers to have made it possible for the investigators to use equal instruments for subjects in both groups.
— That mothers receive good antenatal care and vigilant monitoring during labour, followed by an accurate assessment of the newborn infant, especially with regard to apgar scoring.
— It would appear that it is unnecessary to provide acid base facilities to prevent or assess neonatal asphyxia.

SUMMARY

Low apgar scores can be predicted from the clinical diagnosis of intrapartum foetal distress but neither low apgar score nor intrapartum foetal distress correlated with arterial acid base changes.

Too few babies had neurological deficit to warrant analysis.

ACKNOWLEDGEMENTS

The superintendent — Dr C van den Heever and Mrs B. Stander for allowing us to use the Maternity wards for our research.
Dr K.D. Bolton MB DCH FCP (SA) Principal Paediatrician, Neonatal Intensive Care Unit, for his clinical guidance, interpreting the chorionic arterial blood bases and negotiation for statistical assessment and analysis.
Dr J. Pettifor for computer facilities and assistance.
The Maternity staff for their patience and kind co-operation.
To our patients for allowing us to do research on them and their babies.
To our typist Miss L.L. Mvumvu who took all the effort to type the manuscript for us.
Miss J. Harding — Vice Principal, Miss L. Acres — Senior Tutor and Miss I. Rashana — Senior Matron for their guidance and assistance.

BIBLIOGRAPHY

Books
Olds S.B. et al (1980) Obstetric nursing Addison-Wesley. 1st Ed.
Marlow D. (1973) A textbook of paediatric nursing. Philadelphia W.B. Saunders 5th Ed.
Queenan J.T. (1980) Management of high risk pregnancy Philadelphia Medical Economic Company Book Division.
Babson S.G. (1980), et al. Diagnosis and management of the fetus and neonate at risk. St Louis, C. V. Mosby. 4th Ed.
Philpott R.H. et al (1978) Obstetrics, family planning and paediatrics. Pietermaritzburg University of Natal Press. 2nd Ed.

JOURNALS
Medicine International p. 1669 February 1984.
Continuing Medical Education p. 82 Volume 1, November 1984.