Noninvasive assessment of liver fibrosis in patients with chronic hepatitis B

Masaru Enomoto, Hiroyasu Morikawa, Akihiro Tamori, Norifumi Kawada

Abstract

Infection with hepatitis B virus is an important health problem worldwide: it affects more than 350 million people and is a leading cause of liver-related morbidity, accounting for 1 million deaths annually. Hepatic fibrosis is a consequence of the accumulation of extracellular matrix components in the liver. An accurate diagnosis of liver fibrosis is essential for the management of chronic liver disease. Liver biopsy has been considered the gold standard for diagnosing disease, grading necroinflammatory activity, and staging fibrosis. However, liver biopsy is unsuitable for repeated evaluations because it is invasive and can cause major complications, including death. Several noninvasive evaluations have been introduced for the assessment of liver fibrosis: serum biomarkers, combined indices or scores, and imaging techniques including transient elastography, acoustic radiation force impulse, real-time tissue elastography, and magnetic resonance elastography. Here, we review the recent progress of noninvasive assessment of liver fibrosis in patients with chronic hepatitis B. Most noninvasive evaluations for liver fibrosis have been validated first in patients with chronic hepatitis C, and later in those with chronic hepatitis B. The establishment of a noninvasive assessment of liver fibrosis is urgently needed to aid in the management of this leading cause of chronic liver disease.

© 2014 Baishideng Publishing Group Inc. All rights reserved.

Key words: Acoustic radiation force impulse; Biomarkers; Biopsy; Elastography; Fibrosis; Hepatitis B; Noninvasive evaluations

Core tip: The usefulness of noninvasive evaluations for predicting liver fibrosis remains to be fully evaluated in chronic hepatitis B. Few indices/scores based on combinations of serum biomarkers were originally proposed for use in patients with chronic hepatitis B. Transient elastography is less accurate for chronic hepatitis B than for chronic hepatitis C. Limited data are available regarding the usefulness of acoustic radiation force impulse, real-time tissue elastography, and magnetic resonance elastography in chronic hepatitis B. However, these methods are suitable for repeated evaluations and can be useful for assessing the clinical stage of disease, predicting complications of cirrhosis, and monitoring the response to treatment.

Enomoto M, Morikawa H, Tamori A, Kawada N. Noninvasive assessment of liver fibrosis in patients with chronic hepatitis B. World J Gastroenterol 2014; 20(34): 12031-12038 Available from: URL: http://www.wjgnet.com/1007-9327/full/v20/i34/12031.htm DOI: http://dx.doi.org/10.3748/wjg.v20.i34.12031

INTRODUCTION

Hepatic fibrosis, regardless of the underlying etiology, is a consequence of the accumulation of extracellular matrix components in the liver. This process is caused by persistent liver damage and consequent wound healing re-
action and can progress to cirrhosis, portal hypertension, and hepatocellular carcinoma (HCC), leading to increased morbidity and mortality. An accurate diagnosis of liver fibrosis is thus essential for the management of chronic liver diseases.

Liver biopsy has been considered the “gold standard” for diagnosing chronic liver disease, grading necroinflammatory activity, and staging liver fibrosis. However, sampling error can lead to underestimation of the degree of liver fibrosis, especially when the biopsy specimens are small or fragmented. In addition, interpretation of the results is subject to significant intraobserver and interobserver variability. Moreover, liver biopsy is unsuitable for repeated evaluations because it is invasive and can cause major complications, including death. Therefore, several serum biomarkers, combined indices/scores, and imaging techniques for the noninvasive assessment of liver fibrosis have been introduced.

Infection with hepatitis B virus (HBV) is an important health problem worldwide: it affects more than 350 million people and is a leading cause of liver-related morbidity, accounting for 1 million deaths annually. However, most noninvasive evaluations of liver fibrosis have been validated first in patients with chronic hepatitis C and only then in patients with chronic hepatitis B. Herein, we review the recent progress in the noninvasive assessment of liver fibrosis in patients with chronic hepatitis B.

SERUM MARKERS

Several surrogate serum markers have been proposed as alternatives for the noninvasive assessment of liver fibrosis. In general, markers of fibrosis can be divided into two groups: direct and indirect. Serum direct markers reflect extracellular matrix turnover. They include glycoproteins such as serum hyaluronate, laminin, and YKL-40; collagens such as procollagen III N-terminal propeptide and type IV collagen 7S; collagenases and collagenase inhibitors such as matrix metalloproteinases and tissue inhibitory metalloproteinase-1. Indirect markers reflect alterations in hepatic function rather than metabolism of the hepatic extracellular matrix. They include the platelet count, coagulation studies, and the levels of aspartate and alanine aminotransferases (AST and ALT). The advantages of biomarkers as measures of fibrosis include their high applicability and interlaboratory reproducibility and their wide availability for repeated assays. However, none is liver-specific: the results of all such tests can be influenced by comorbid conditions.

Several algorithms, indices, or scores derived from combinations of serum biomarkers have been proposed, namely, the Fibrotest®, Forns index®, AST-to-platelet ratio index (APRI)®, and ELF (Enin, France), which has become a popular tool, is a rapid, objective, and promising technique for staging liver fibrosis by measuring the stiffness of the liver, expressed in units of kilopascals (kPa). This system is equipped with a probe including an ultrasonic transducer mounted on the axis of a vibrator. The vibration transmitted from the vibrator toward the tissue induces an elastic shear wave that propagates through the liver. These propagations are followed by pulse-echo ultrasound acquisition, and their velocity, which is directly related to tissue stiffness, is measured. In a morphometric analysis, Wong et al. found that the liver stiffness as assessed by transient elastography correlates significantly with the proportion of the liver affected by fibrosis, particularly pericellular fibrosis rather than perportal or perivenular fibrosis.

Liver stiffness measurement has generally been considered reliable when it fulfills all of the following criteria: (1) the mean AUROC for the Fibrotest than for the APRI and Forns index. Combined indices/scores including hepatic aminotransferase levels, false-positive results may occur in patients with hemolysis or cholestasis and in those who have recently consumed alcohol. Hui et al. and Zeng et al. have developed liver fibrosis scores specifically for patients with chronic hepatitis B, although their usefulness remains to be validated by other groups.

TRANSIENT ELASTOGRAPHY

Transient elastography (FibroScan®, EchoSens, Paris, France), which has become a popular tool, is a rapid, objective, and promising technique for staging liver fibrosis by measuring the stiffness of the liver, expressed in units of kilopascals (kPa). This system is equipped with a probe including an ultrasonic transducer mounted on the axis of a vibrator. The vibration transmitted from the vibrator toward the tissue induces an elastic shear wave that propagates through the liver. These propagations are followed by pulse-echo ultrasound acquisition, and their velocity, which is directly related to tissue stiffness, is measured. In a morphometric analysis, Wong et al. found that the liver stiffness as assessed by transient elastography correlates significantly with the proportion of the liver affected by fibrosis, particularly pericellular fibrosis rather than perportal or perivenular fibrosis.

Liver stiffness measurement has generally been considered reliable when it fulfills all of the following criteria: (1) the mean AUROC for the Fibrotest than for the APRI and Forns index. Combined indices/scores including hepatic aminotransferase levels, false-positive results may occur in patients with hemolysis or cholestasis and in those who have recently consumed alcohol. Hui et al. and Zeng et al. have developed liver fibrosis scores specifically for patients with chronic hepatitis B, although their usefulness remains to be validated by other groups.

In a meta-analysis of 50 elastography studies performed mainly in patients with chronic hepatitis C, the mean AUROC curves for the diagnosis of significant fibrosis (≥ F2), severe fibrosis (F3/F4), and cirrhosis (F4) were 0.84, 0.89, and 0.94, respectively. The diagnostic accuracy of transient elastography was generally high for cirrhosis but poorer for significant fibrosis. The results of liver stiffness measurement can be affected by factors other than fibrosis, including necroinflammatory activ-
Table 1 Performance of serum fibrosis markers for identification of significant fibrosis (≥ F2) and cirrhosis (F4) in patients with hepatitis B

Ref.	Year	Patients (n)	Diagnosis for ≥ F2	Diagnosis for F4							
			Patients (%)	AUROC	Cutoff (kPa)	Se/Sp (%)	Patients (%)	AUROC	Cutoff (kPa)	Se/Sp (%)	
Originally for patients with HCV	Fibrotest (includes α2-macroglobulin, haptoglobin, apolipoprotein A1, bilirubin, and GGT)	2007	110	68	0.85	F2	81/90	20	0.76	F4	56/96
1Bottero et al[54]	2009	108	56	0.77	0.48	70/72	15	0.87	0.73	75/85	
Forns index (includes age, platelet count, cholesterol, and GGT)	2007	110	68	0.63	4.20	58/78	20	-	-	-	
1Bottero et al[54]	2009	108	56	0.72	0.48	8.40	43/93	20	-	-	-
APRI (includes AST and platelet count)	2007	110	68	0.72	0.50	71/87	20	0.64	2.00	43/85	
1Bottero et al[54]	2009	108	56	0.73	-	-	15	0.76	-	-	
FIB-4 (includes age, AST, ALT, and platelet count)	2010	668	79	0.70	-	-	34	0.73	-	-	
1Bottero et al[54]	2009	108	56	0.74	-	-	15	0.80	-	-	
Fibrometer (includes age, platelet count, PI index, AST, α2-macroglobulin, hyaluronate, and urea)	2007	110	68	0.72	0.50	71/87	20	0.64	2.00	43/85	
1Bottero et al[54]	2009	108	56	0.74	-	-	15	0.80	-	-	
Originally for patients with HBV	Hui score (includes body mass index, bilirubin, albumin, and plate count)	2009	108	56	0.74	0.46	73/68	15	0.89	0.83	81/85
Zeng score (includes age, α2-macroglobulin, hyaluronate, and GGT)	2009	108	56	0.74	0.46	73/68	15	0.89	0.83	81/85	

Study subjects were coinfected with human immunodeficiency virus. APRI: AST to platelet ratio index; AST: Aspartate aminotransferase; ALT: Alanine aminotransferase; AUROC: Area under the receiver operating characteristic curve; GGT: γ-Glutamyltranspeptidase; HBV: Hepatitis B virus; HCV: Hepatitis C virus; PT: Prothrombin.

Acoustic radiation force impulse

Acoustic radiation force impulse (ARFI; Siemens AG, Erlangen, Germany) imaging involves mechanical excitation of tissue using short-duration acoustic pulses to generate localized tissue displacement. The harder the tissue, the faster the shear wave spreads. The displacement results in shear-wave propagation, which is tracked using correlation-based ultrasonic methods and recorded in m/s. This examination is performed during B-mode ultrasonography.

Sporea et al[53] showed that the mean liver stiffness values obtained by ARFI were similar between patients with chronic hepatitis B and those with chronic hepatitis C at the same stage of fibrosis. Friedrich-Rust et al[43] reported that the diagnostic accuracy of ARFI for the histological staging of liver fibrosis in patients with chronic hepatitis B is generally lower for chronic hepatitis B than for chronic hepatitis C because macronodular cirrhosis, characterized by large nodules delimited by thin septa, is more common in patients chronically infected with HBV.
B was comparable to that of transient elastography.

REAL-TIME TISSUE ELASTOGRAPHY

Real-time tissue elastography (Hitachi Medical Systems, Tokyo, Japan) is a new ultrasound-based diagnostic method for the evaluation of tissue elasticity and can be performed during routine B-mode screening of the liver. This technology has already been proven diagnostically valuable for the detection of mass lesions in the breast, prostate, and pancreas. A computer-assisted apparatus is used to calculate the relative hardness of the tissue from the degree of tissue distortion and displays this information as a color image. Ultrasound elastography does not demonstrate physical elasticity directly but rather shows the relative degree of tissue strain under subtle compression.

A Chinese study of real-time tissue elastography in 71 patients with chronic hepatitis B found a strong negative correlation between the elastic strain ratio and the histological stage of fibrosis. The AUROC curve for detection of significant fibrosis (F2) was higher for real-time elastography than for blood parameters, such as the APRI and Forns index. Similar results were also reported in another Chinese study.

MAGNETIC RESONANCE ELASTOGRAPHY

Magnetic resonance (MR) elastography is a promising imaging technique that noninvasively measures the stiffness of the liver as well as that of other organs by analyzing the propagation of mechanical waves through tissue. Its clear advantages include the potential to assess the entire liver parenchyma, the dispensability of an acoustic window, and operator independence. In addition, this method may be useful for quantifying hepatic fat content.

Venkatesh et al. examined 63 patients with chronic hepatitis B and reported that MR elastography was significantly more accurate for the detection of biopsy-confirmed significant fibrosis and cirrhosis than were serum fibrosis markers such as APRI. As there are only limited data on the accuracy of MR elastography in patients with chronic hepatitis B, further studies are required for validation.

COMBINATIONS OF BIOMARKERS AND IMAGING METHODS

Combinations of serum markers and imaging studies can detect advanced fibrosis in patients with chronic hepatitis B with a high degree of accuracy. A Korean study developed a liver stiffness measurement-spleen diameter to platelet ratio index (LSPI) for the assessment of liver fibrosis: (liver stiffness measurement × spleen diameter/platelet count) × 100. Another Korean study established a model for predicting significant fibrosis, called the HALF index, consisting of liver stiffness values and the serum haptoglobin, apolipoprotein A1, and α2-macroglobulin levels.

CLINICAL APPLICATIONS

Assessing the clinical stage of disease

The natural course of chronic HBV infection acquired perinatally or during infancy consists of four distinct phases: “immune tolerance,” “immune reactivity,” “inactive carrier state,” and “reactivation.” Assessment of the clinical stage of disease is usually based on the ALT activity, HBV DNA level, and titers of hepatitis e antigen (HBeAg) and anti-HBe antibodies; however, noninvasive evaluations could also be helpful to discriminate HBeAg-negative patients who have significant fibrosis despite normal ALT activity from inactive carriers of HBV. Some patients may then require further assessment by liver biopsy for proper evaluation of indication of antiviral therapy.

Predicting complications of cirrhosis

Noninvasive methods can be used to predict complications of cirrhosis. In a Korean prospective study of 1130 patients with chronic hepatitis B, 57 patients developed HCC during the 24-51-mo follow-up period. Multivariate analysis showed that patients with higher liver stiffness measurements by transient elastography were at significantly greater risk of developing HCC, with the following hazard ratios: 3.07 for 8.1-13 kPa; 4.68 for 13.1-18 kPa; 5.55 for 18.1-23 kPa; and 6.60 for > 23 kPa. Wong et al. proposed the LSM-HCC score, a liver stiffness-based HCC risk score based on transient elastography data.
from 1555 consecutive patients with chronic HBV infection. This score was constructed from the liver stiffness measurement, age, serum albumin level, and HBV DNA level and ranges from 0 to 30. When a cutoff value of 11 was used, the score excluded future HCC with a high negative predictive value (99.4%-100%) after 5 years.

Liver stiffness values have also been shown to correlate with the presence and severity of esophageal varices. Using transient elastography data from 577 consecutive patients with B-viral cirrhosis, a Korean group developed a liver stiffness measurement-based model, the liver stiffness measurement-spleen diameter-to-platelet ratio score liver stiffness measurement (LSPS × spleen diameter/platelet count), for assessment of the cumulative risk of future esophageal variceal bleeding.[13] Multivariate analysis found an LSPS of ≥6.5 (P = 0.003), along with large variceal size and Child-Pugh classification B/C, to be a significant predictor of a first occurrence of esophageal variceal bleeding. A Chinese study found significant linear correlations between liver and spleen stiffness as measured by ARFI and the stage of fibrosis in 138 patients with hepatitis B-related cirrhosis.[14] As there was also a significant linear correlation between spleen stiffness and the varix grade, ARFI can be used as a noninvasive method for assessing the presence and severity of esophageal varices.

Monitoring response to treatment
Several studies have reported significant decreases in liver stiffness and biomarker levels in patients with chronic hepatitis B who were treated with interferon-α or nucleos(t)ide analogues[7][8] as well as in patients with chronic hepatitis C who achieved sustained virologic response to interferon.[8][9] We studied the liver stiffness measurement by transient elastography in 20 patients with chronic hepatitis B.[8][9] The liver stiffness values in patients treated with entecavir decreased significantly from 11.2 kPa (range: 7.0-15.2 kPa) to 7.8 kPa (range: 5.1-11.9 kPa; P = 0.0099) during 12 mo of treatment. Fung et al[8][9] also reported liver stiffness measurement during antiviral therapy in 58 chronic HBV infected patients with baseline ALT levels from ×1 to ×10, the upper limit of the normal. The ALT level became normal after a median of 3 mo of antiviral therapy. The AUROC curve for diagnosis of significant fibrosis by liver stiffness was 0.68 in patients with an elevated ALT level at baseline versus 0.73 after ALT level normalization, suggesting that even mild-to-moderate elevation in the ALT level may increase liver stiffness. The decrease in liver stiffness during the first few months of nucleos(t)ide analogue treatment may be attributable to improvement in necroinflammation rather than regression of liver stiffness.

CONCLUSION
The usefulness of noninvasive evaluations for predicting liver fibrosis has been less extensively studied and validated for chronic hepatitis B than for chronic hepatitis C. Few algorithms or indices/scores based on combinations of serum biomarkers were originally proposed for use in patients with chronic hepatitis B. Transient elastography is less accurate in patients with chronic hepatitis B than in those with chronic hepatitis C. Limited data are available on the usefulness of ARFI, real-time tissue elastography, and magnetic resonance elastography in patients with chronic hepatitis B. In addition, these methods do not provide information on necroinflammatory activity, steatosis, iron deposition, or other findings that can be obtained by liver biopsy. However, they are suitable for repeated evaluations and can be useful for assessing the clinical stage of disease, predicting complications of cirrhosis, and monitoring the response to treatment.

REFERENCES
1 Friedman SL. Evolving challenges in hepatic fibrosis. Nat Rev Gastroenterol Hepatol 2010; 7: 425-436 [PMID: 20585339 DOI: 10.1038/nrgastro.2010.97
2 Kawada N. Evolution of hepatic fibrosis research. Hepatol Res 2011; 41: 199-208 [PMID: 21338451 DOI: 10.1111/j.1872-034X.2011.00776.x
3 Rockey DC, Caldwell SH, Goodman ZD, Nelson RC, Smith AD. Liver biopsy. Hepatology 2009; 49: 1017-1044 [PMID: 19243014 DOI: 10.1002/hep.22742
4 Mani H, Kleiner DE. Liver biopsy findings in chronic hepatitis B. Hepatology 2009; 49: 561-571 [PMID: 19399798 DOI: 10.1002/hep.22930
5 Huang JF, Hsieh MY, Dai CY, Hou NJ, Lee LP, Lin ZY, Chen SC, Wang LY, Hsieh MY, Chang WY, Yu ML, Chuang WL. The incidence and risks of liver biopsy in non-cirrhotic patients: An evaluation of 3806 biopsies. Gut 2007; 56: 736-737 [PMID: 17440193
6 Myers RP, Fong A, Shaheen AA. Utilization rates, complications and costs of percutaneous liver biopsy: a population-based study including 4275 biopsies. Liver Int 2008; 28: 705-712 [PMID: 18433597 DOI: 10.1111/j.1478-3231.2008.01691.x
7 Liaw YF, Leung N, Kao JH, Piratvisuth T, Gane E, Han KH, Guan R, Lau GK, Locarnini S. Asian-Pacific consensus statement on the management of chronic hepatitis B: A 2008 update. Hepatol Int 2008; 2: 263-283 [PMID: 19669255 DOI: 10.1007/s12072-008-9080-3
8 Lok AS, McMahon B. Chronic hepatitis B: update 2009. Hepatology 2009; 50: 661-662 [PMID: 19714720 DOI: 10.1002/hep.23190
9 European Association For The Study Of The Liver. EASL clinical practice guidelines: Management of chronic hepatitis B virus infection. J Hepatol 2012; 57: 167-185 [PMID: 22436845 DOI: 10.1016/j.jhep.2012.02.010
10 Pinzani M, Vizzutti F, Arena U, Marra F. Technology Insight: noninvasive assessment of liver fibrosis by biochemical scores and elastography. Nat Clin Pract Gastroenterol Hepatol 2008; 5: 95-106 [PMID: 18253138 DOI: 10.1038/ncpgastro.2007.142
11 Martinez SM, Crespo G, Navasa M, Forns X. Noninvasive assessment of liver fibrosis. Hepatology 2011; 53: 325-335 [PMID: 21254180 DOI: 10.1002/hep.24013
12 Castera L. Noninvasive methods to assess liver disease in patients with hepatitis B or C. Gastroenterology 2012; 142: 1293-1302.e4 [PMID: 22537436 DOI: 10.1053/j.gastro.2012.02.017
13 Imbert-Bismut F, Ratziu V, Pierion L, Charlotte F, Benhamou Y, Paymard T. Biochemical markers of liver fibrosis in patients with hepatitis C virus infection: a prospective study. Lancet 2001; 357: 1069-1075 [PMID: 11297957
14 Forns X, Ampurdanés S, Llovet JM, Aponte J, Quintó L,
Enomoto M et al. Noninvasive staging of fibrosis in HBV

Martinez-Bauer E, Braguera M, Sanchez-Tapias JM, Rodes J. Identification of chronic hepatitis C patients without hepatic fibrosis by a simple predictive model. Hepatology 2002; 36: 968-972 [PMID: 12229748]

15 Wai CT, Guerin JP, Fontana RJ, Kalbfleisch JD, Marrero JA, Conjeevaram HS, Lok AS. A simple noninvasive index can predict both significant fibrosis and cirrhosis in patients with chronic hepatitis C. Hepatology 2003; 38: 518-526 [PMID: 12883497]

16 Valtet-Fichard A, Mallet V, Nalpas B, Verkarre V, Nalpas A, Dhalluin-Venier V, Fontaine H, Pol S, FIB-4: an inexpensive and accurate marker of fibrosis in HCV infection. comparison with liver biopsy and fibrotest. Hepatology 2007; 46: 32-36 [PMID: 17567829]

17 Caës P, Oberti F, Michalak S, Hubert-Fouchard I, Rousselet MC, Konate A, Gallois Y, Ternisien C, Chevalleria Y, Lune L. A novel panel of blood markers to assess the degree of liver fibrosis. Hepatology 2005; 42: 1373-1381 [PMID: 16317693]

18 Koda M, Matunaga Y, Kawakami M, Kishimoto Y, Suou S, Kim do Y, Park JY, Ahn SH, Chon CY, Kim JK, Marra F, Pinzani M. Acute viral hepatitis increases liver stiffness values measured by transient elastography. Hepatology 2008; 35: 1599-1605 [PMID: 18907808]

19 Sebastiani G, Vario A, Guido M, Alberti A. Sequential algorithms combining non-invasive markers and biopsy for the assessment of liver fibrosis in chronic hepatitis B. World J Gastroenterol 2007; 13: 525-531 [PMID: 17228217]

20 Bottero J, Lacombre K, Guéicot J, Serfati L, Mailhes P, Bonnard P, Wendum D, Molina JM, Lascoux-Combe C, Girard PM. Performance of 11 biomarkers for liver fibrosis assessment in HIV/HBV co-infected patients. J Hepatol 2009; 50: 1074-1083 [PMID: 19398234 DOI: 10.1001/jhep.2009.01.022]

21 Wong GL, Wong VW, Choi PC, Chan AW, Chan HL. Acute viral hepatitis increases liver stiffness values measured by transient elastography. Hepatology 2008; 35: 207-214 [PMID: 18095306]

22 Sagir A, Erhardt A, Schmitt M, Häussinger D. Transient elastography is unreliable for detection of cirrhosis in patients with acute liver damage. Hepatology 2008; 47: 592-595 [PMID: 18098325]

23 Bottero J, Lacombre K, Guéicot J, Serfati L, Mailhes P, Bonnard P, Wendum D, Molina JM, Lascoux-Combe C, Girard PM. Performance of 11 biomarkers for liver fibrosis assessment in HIV/HBV co-infected patients. J Hepatol 2009; 50: 1074-1083 [PMID: 19398234 DOI: 10.1001/jhep.2009.01.022]

24 Castera L. Hepatitis B: are non-invasive markers of liver fibrosis reliable? Liver Int 2010; 31: 1095-1103 [PMID: 20180785 DOI: 10.1111/j.1600-0038.2010.01476.x]

25 Kim BK, Kim do Y, Park JY, Ahn SH, Chan CY, Kim JK, Paik YH, Lee KS, Park YN, Han KH. Validation of FIB-4 and comparison with other simple noninvasive indices for predicting liver fibrosis and cirrhosis in hepatitis B virus-infected patients. Liver Int 2010; 30: 546-553 [PMID: 20770494 DOI: 10.1111/j.1478-3219.2009.02192.x]

26 Fraquelli M, Rigamonti C, Casazza G, Conte D, Donato MF, Ronchi G, Colombo M. Reproducibility of transient elastography in the evaluation of liver fibrosis in patients with chronic liver disease. Gut 2007; 56: 968-973 [PMID: 17255218]

27 Millonig G, Reimann FM, Friedrich S, Fononhui H, Mehrabi A, Büchler MW, Seitz HK, Mueller S. Extrahepatic cholestasis increases liver stiffness (FibroScan) irrespective of fibrosis. Hepatology 2008; 48: 1718-1723 [PMID: 18836992 DOI: 10.1002/hep.22277]

28 Mori M, Fuji J, Ogawa T, Kobayashi S, Iwami S, Morikawa H, Enomoto M, Tumori A, Sawada A, Takeda S, Kawada N. Close correlation of liver stiffness with collagen deposition and presence of myofibroblasts in non-alcoholic fatty liver disease. Hepatol Res 2011; 41: 897-903 [PMID: 21628361 DOI: 10.1111/j.1872-034X.2011.00842.x]

29 Oliveri F, Coco B, Ciccasselli P, Colombatto P, Romagnoli V, Cherubini B, Biono F, Brunetto MR. Liver stiffness in the hepatitis B virus carrier: a non-invasive marker of liver disease influenced by the pattern of transaminases. World J Gastroenterol 2008; 14: 6154-6162 [PMID: 18985805]

30 Marcellin P, Ziol M, Bedossa P, Dovin C, Poupon R, de Ledinghen V, Beaurrand M. Non-invasive assessment of liver fibrosis by stiffness measurement in patients with chronic hepatitis B. Liver Int 2009; 29: 242-247 [PMID: 18637046 DOI: 10.1111/j.1478-3231.2008.01802.x]

31 Chan HL, Wong GL, Choi PC, Chan AW, Chim AM, Yiu KK, Chan FK, Sung JY, Wong VW. Alanine aminotransferase-based algorithms of liver stiffness measurement by transient elastography (Fibroscan) for liver fibrosis in chronic hepatitis B. J Viral Hepat 2009; 16: 36-44 [PMID: 18673426 DOI: 10.1111/j.1365-2893.2008.01037.x]
Zoulim F. Proficiency of transient elastography compared to liver biopsy for the assessment of fibrosis in HIV/HBV-coinfected patients. J Viral Hepat 2011; 18: 61-69 [PMID: 21396798 DOI: 10.1111/j.1365-2893.2010.01275.x]

Ganne-Carrie N, Ziol M, de Ledinghen V, uwon C, Marcellin P, Castela L, Dhuemaux D, Trinchet JC, Beaugrand M. Accuracy of liver stiffness measurement for the diagnosis of cirrhosis in patients with chronic liver diseases. Hepatology 2006; 44: 1511-1517 [PMID: 17133503]

Gaia S, Carenzi S, Barilli AL, Bugianesi E, Smedile A, Brunello F, Marzano A, Rizzetto M. Reliability of transient elastography for the detection of fibrosis in non-alcoholic fatty liver disease and chronic viral hepatitis. J Hepatol 2011; 54: 64-71 [PMID: 20929598 DOI: 10.1016/j.jhep.2010.06.022]

Fraquelli M, Rigamonti C, Casazza G, Donato MF, Ronchi G, Conte D, Rumi M, Lamperotti P, Colombo M. Etiology-related determinants of liver stiffness values in chronic viral hepatitis B or C. J Hepatol 2011; 54: 621-628 [PMID: 2146243 DOI: 10.1016/j.jhep.2010.07.017]

Fung J, Lai CL, Chan SC, But D, Seto WK, Cheng C, Wong DK, Lo CM, Fan ST, Yuen MF. Correlation of liver stiffness and histological features in healthy persons and in patients with occult hepatitis B, chronic active hepatitis B, or hepati-
sis B cirrhosis. Am J Gastroenterol 2010; 105: 1116-1122 [PMID: 19920809 DOI: 10.1038/ajg.2009.665]

Coco B, Oliveri F, Maina AM, Ciccorossi P, Sacco R, Colombatto P, Bonino F, Brunetto MR. Transient elastography: a new surrogate marker of liver fibrosis influenced by major changes of transaminases. J Viral Hepat 2007; 14: 360-369 [PMID: 17439526]

Ogawa E, Furusyo N, Toyoda K, Takeoka H, Otaguro S, Hamada M, Murata M, Sawayama Y, Hayashi J. Transient elastography for patients with chronic hepatitis B and C virus infection: Non-invasive, quantitative assessment of liver fibrosis. Hepatol Res 2007; 37: 1002-1010 [PMID: 17686672]

Vigano M, Paggi S, Lamperotti P, Fraquelli M, Massironi S, Ronchi G, Rigamonti C, Conte D, Colombo M. Dual cut-off transient elastography to assess liver fibrosis in chronic hepatitis B: a cohort study with internal validation. Aliment Pharmacol Ther 2011; 34: 353-362 [PMID: 21631559 DOI: 10.1111/j.1365-2036.2011.04722.x]

Nightingale K, Soo MS, Nightingale R, Trahey G. Acoustic radiation force impulse imaging: in vivo demonstration of clinical feasibility. Ultrasound Med Biol 2002; 28: 227-235 [PMID: 11937326]

Friedrich-Rust M, Wunder K, Kriener S, Sirli R, Bota S, Popescu A, Sendrou M, Jurchis A, Richter S, Bojunga J, Herrmann E, Poynard T, Dietrich CF, Ganne-Carrié N, Ong MF, Herrmann E, Dries V, Samaras P, Zeuzem S, Sarrazin C. Real-time elastography for noninvasive assessment of liver stiffness in patients with chronic hepatitis C. J Gastroenterol 2011; 46: 350-358 [PMID: 20697747 DOI: 10.1007/s00535-010-0301-x]

Yada N, Kudo M, Morikawa H, Fujimoto K, Kato M, Kawasaki N. Assessment of liver fibrosis with real-time tissue elastography in chronic viral hepatitis. Oncology 2013; 84 Suppl 1: 13-20 [PMID: 23428853 DOI: 10.1159/000345884]

Xie L, Chen X, Guo Q, Dong Y, Guan Y, Zhang X. Real-time elastography for diagnosis of liver fibrosis in chronic hepatitis B. J Ultrason Med 2012; 31: 1053-1060 [PMID: 22733854]

Wang G, Guo L, Shi X, Pan W, Bai Y, Ai H. Real-time elastography with a novel quantitative technology for assessment of liver fibrosis in chronic hepatitis B. Eur J Radiol 2012; 81: e31-e36 [PMID: 21216123 DOI: 10.1016/jejradi.2012.10.013]

Muthupillai R, Lomas DJ, Rossman P, Greenleaf JF, Man-
duca A, Ehman RL. Magnetic resonance elastography by direct visualization of propagating acoustic strain waves. Science 1995; 269: 1854-1857 [PMID: 7569924]

Huwart L, Sempoux C, Vicaut E, Salamneh A, Annelt L, Danse E, Peeters F, ter Beek LC, Rahier J, Sinkus R, Hor-smans Y, Van Beers BE. Magnetic resonance elastography for the non-invasive staging of liver fibrosis. Gastroenterology 2008; 135: 32-40 [PMID: 18471441 DOI: 10.1015/j.gastro.2008.03.076]

Wang QB, Zhu H, Liu HL, Zhang B. Performance of mag-
netic resonance elastography and diffusion-weighted im-
aging for the staging of hepatic fibrosis: A meta-analysis. Hepatology 2012; 56: 239-247 [PMID: 22278566 DOI: 10.1002/hep.25610]

Venkatesh SK, Wang G, Lim SG, Wee A. Magnetic resonance elastography for the detection and staging of liver fibrosis in chronic hepatitis B. Eur Radiol 2014; 24: 70-78 [PMID: 23928932 DOI: 10.1007/s00330-013-2978-y]

Kim BK, Han KH, Park JY, Ahn SH, Chon CY, Kim JK, Paik YH, Lee KS, Park YN, Kim do Y. A novel liver stiffness measure-
ment-based prediction model for cirrhosis in hepatitis B patients. Liver Int 2010; 30: 1073-1081 [PMID: 20492510 DOI: 10.1111/j.1478-3275.2010.02269.x]

Lee HJ, See YS, Kim DJ, Kang HS, An H, Kim JH, Cheong JY, Yim HJ, Yeon JE, Lee HS, Byun KS, Cho SW, Kim DJ, Um SH, Kim CD, Ryu HS. Application of the HALF index obviates the need for liver biopsy in half of all patients with chronic hepatitis B. J Gastroen
terol Hepatol 2011; 26: 987-995 [PMID: 21198828 DOI: 10.1111/j.1440-1746.2010.06609.x]

Mainone S, Calvaruso V, Pleguezuelo M, Squadrito G, Amaddeo G, Jacobs M, Khamna P, Raimondo G, Dusheiko G. An evaluation of transient elastography in the discrimi
nation of HBeAg-negative disease from inactive hepatitis B carriers. J Viral Hepat 2009; 16: 769-774 [PMID: 19709363 DOI: 10.1111/j.1365-2893.2009.01120.x]

Ngo Y, Benhamou Y, Thibault V, Ingiliz P, Muntaneau M, Lebray P, Thabut D, Morra R, Messous D, Charlotte F, Im-
bert-Bismut F, Bonnefont-Rousselot D, Moussalli J, Ratziu V, Poynard T. An accurate definition of the stage of inactive hep-
atitis B virus carrier by a combination of biomarkers (FibroTest-ActiTest) and viral load. PLoS One 2008; 3: e2573 [PMID: 18596917 DOI: 10.1371/journal.pone.0002573]

Castéra L, Bernard PH, Le Bail B, Foucher J, Trimoulet P, Morreouche W, Couzigou P, de Ledinghen V. Transient elastography and biomarkers for liver fibrosis assessment and follow-up of inactive hepatitis B carriers. Aliment Pharmacol Ther 2011; 33: 455-465 [PMID: 21235998 DOI: 10.111/
Enomoto M et al. Noninvasive staging of fibrosis in HBV

J. Hepatol 2011; 55: 885-894 [PMID: 21391935 DOI: 10.1002/jhep.21421]

Wong GL, Chan HL, Wong CK, Leung C, Chan CY, Ho PP, Chung VC, Chan ZC, Tse YK, Chim AM, Lau TK, Wong VW. Liver stiffness-based optimization of hepatocellular carcinoma risk score in patients with chronic hepatitis B. J Hepatol 2014; 60: 339-345 [PMID: 24128413 DOI: 10.1016/j.jhep.2013.09.029]

Kim BK, Kim do Y, Han KH, Park JY, Kim JK, Paik YH, Lee KS, Choy CY, Ahn SH. Risk assessment of esophageal variceal bleeding in B-viral liver cirrhosis by a liver stiffness measurement-based model. Am J Gastroenterol 2011; 106: 1654-162, 1730 [PMID: 21691339 DOI: 10.1038/ajg.2011.160]

Ye XP, Ran HT, Cheng J, Zhu YF, Zhang DZ, Zhang P, Zheng YY. Liver and spleen stiffness measured by acoustic radiation force impulse elastography for noninvasive assessment of liver fibrosis and esophageal varices in patients with chronic hepatitis B. J Ultrasound Med 2012; 31: 1245-1253 [PMID: 22837289]

Wong VW, Wong GL, Yan KK, Chim AM, Chan HY, Tse CH, Choi PC, Chan AW, Sung JJ, Chan HL. Durability of peginterferon alfa-2b treatment at 5 years in patients with hepatitis B e antigen-positive chronic hepatitis B. Hepatology 2011; 51: 1945-1953 [PMID: 20209602 DOI: 10.1002/hep.23568]

Poynard T, Zoulim F, Ratziu V, Degos F, Imbert-Bismut F, Deny P, Landais P, El Hasnaoui A, Slama A, Blin P, Thibault V, Parvaz P, Munteanu M, Trepo C. Longitudinal assessment of histology surrogate markers (FibroTest-ActiTest) during lamivudine therapy in patients with chronic hepatitis B infection. Am J Gastroenterol 2005; 100: 1970-1980 [PMID: 16128941]

Poynard T, Ngo Y, Marcellin P, Hadziyannis S, Ratziu V, Bonhamou Y. Impact of adefovir dipivoxil on liver fibrosis and activity assessed with biochemical markers (FibroTest-ActiTest) in patients infected by hepatitis B virus. J Viral Hepat 2009; 16: 203-213 [PMID: 19175871 DOI: 10.1111/j.1365-2893.2008.01065.x]

Wong GL, Wong VW, Choi PC, Chan AW, Chim AM, Yu KK, Chiu SH, Chan FK, Sung JJ, Chan HL. On-treatment monitoring of liver fibrosis with transient elastography in chronic hepatitis B patients. Antivir Ther 2011; 16: 165-172 [PMID: 21447865 DOI: 10.3851/IMP1726]

Fung J, Lai CL, Wong DK, Seto WK, Hung I, Yuen MF. Significant changes in liver stiffness measurements in patients with chronic hepatitis B: 3-year follow-up study. J Viral Hepat 2011; 18: e200-e205 [PMID: 21692933 DOI: 10.1111/j.1365-2893.2010.01428.x]

Ogawa E, Furusyo N, Murata M, Ohsahi H, Toyoda K, Tanai H, Ibata T, Ikezaki H, Hayashi T, Kainuma M, Hayashi J. Longitudinal assessment of liver stiffness by transient elastography for chronic hepatitis B patients treated with nucleoside analog. Hepatol Res 2011; 41: 1178-1188 [PMID: 21917085 DOI: 10.1111/j.1872-034X.2011.00869.x]

Osakabe K, Ichino N, Nakishita T, Sugiyama H, Kato M, Kitahara S, Hashimoto S, Kawabe N, Harata M, Nitta Y, Muroa M, Nakanoto T, Shimazaki H, Arima Y, Suzuki K, Yoshio K. Reduction of liver stiffness by antiviral therapy in chronic hepatitis B. J Gastroenterol 2011; 46: 1324-1334 [PMID: 21822591 DOI: 10.1007/s00535-011-0444-4]

Enomoto M, Mori M, Ogawa T, Fuji H, Kobayashi S, Iwai S, Morikawa H, Tamori A, Sakaguchi H, Sawada A, Takeda S, Habu D, Shiomi S, Kawada N. Usefulness of transient elastography for assessment of liver fibrosis in chronic hepatitis B: Regression of liver stiffness during entecavir therapy. Hepatol Res 2010; 40: 853-861 [PMID: 20887589 DOI: 10.1111/j.1872-034X.2010.00687.x]

Fung J, Lai CL, Cheng C, Wu R, Wong DK, Yuen MF. Mild-to-moderate elevation of alanine aminotransferase increases liver stiffness measurement by transient elastography in patients with chronic hepatitis B. Am J Gastroenterol 2011; 106: 492-496 [PMID: 2157442 DOI: 10.1038/ajg.2010.463]

Takeda T, Yasuda T, Nakayama Y, Nakaya M, Kimura M, Yamashita M, Sawada A, Abo K, Takeda S, Sakaguchi H, Shiomi S, Asai H, Seki S. Usefulness of noninvasive transient elastography for assessment of liver fibrosis stage in chronic hepatitis C. World J Gastroenterol 2006; 12: 7768-7773 [PMID: 17203518]

P- Reviewer: El-Shabrawi MH, Jiang HQ, Squadrito G, Uto H
S- Editor: Qi Y L- Editor: A E- Editor: Ma S

WJG | www.wjgnet.com

12038 September 14, 2014 | Volume 20 | Issue 34 |
