Comparative Study of the Antimicrobial Properties of Fresh and Freeze-Dried Leaf and Seed of *Buccholzia coriacea*

M. G. Ajayi a, O. D. Ajayi b, W. G Ayoade c and G. O. Daramola d,e,*

a Department of Chemical Science, Bamidele Olumilua University of Education, Science and Technology, Ikere-Ekiti, Ekiti State, Nigeria.

b University Health Centre, Bamidele Olumilua University of Education, Science and Technology, Ikere-Ekiti, Ekiti State, Nigeria.

c Department of Chemistry, Federal University of Technology, Akure, Ondo State, Nigeria.

d Department of Medical Microbiology and Parasitology, University Teaching Hospital, Ado-Ekiti, Ekiti State, Nigeria.

e Department of Pure Sciences, National Open University of Nigeria, Ado-Ekiti Study Centre, Ekiti State, Nigeria.

Authors’ contributions

This work was carried out in collaboration among all authors. All authors read and approved the final manuscript.

Article Information

DOI: 10.9734/JAMB/2022/v22i230440

Open Peer Review History:

This journal follows the Advanced Open Peer Review policy. Identity of the Reviewers, Editor(s) and additional Reviewers, peer review comments, different versions of the manuscript, comments of the editors, etc are available here: https://www.sdiarticle5.com/review-history/84049

Original Research Article

ABSTRACT

The utilization of plant materials as alternative therapies to control pathogenic bacteria has recently attracted. The effect of the fresh seed, freeze-dried seed, fresh leaf and freeze-dried leaf of using ethanol and aqueous extracts was tested on some organisms using standard laboratory procedures. The bacteria used were *Escherichia coli, Bacillus subtilis, Staphylococcus aureus, Salmonella typhi, Klebsella pneumonia and oryzae*, while the fungi used were *Trichoderma harzianum, Fusconium oxysporium, Aspergillus niger, Aspergillus flavus and Penicillium notatum*. The results showed that the ethanol extracts of *B. coriacea* fresh seed showed inhibitory zones ranging from 2–12 mm, while the aqueous extract showed inhibitory zones ranging from 2-10 mm. The ethanol extracts of *B. coriacea* freeze dried seed showed inhibitory zones ranging from 5–38 mm, while the aqueous extract showed inhibitory zones ranging from 4-36 mm. The ethanol extracts of *B. coriacea* fresh
leaf showed inhibitory zones ranging from 2–26 mm, while the aqueous extract showed inhibitory zones ranging from 2-24 mm. The aqueous and ethanol extracts of *B. coriacea* freeze dried leaf showed inhibitory zones ranging from 3-40mm respectively. The study conclude that the aqueous and ethanol extract of freeze dried seed of *B. coriacea* showed better antifungal and antibacterial activity against the test organisms compared with the aqueous and ethanol extract of fresh seed of *B. coriacea*. Similarly, the aqueous and ethanol extract of freeze dried leaf of *B. coriacea* showed better antifungal and antibacterial activity against the test organisms compared with the aqueous and ethanol extract of fresh leaf of *B. coriacea*. The ethanol extract showed better antifungal and antibacterial activity than aqueous extract.

Keywords: Antimicrobial; aqueous extract; ethanol extract; freeze dried.

1. INTRODUCTION

Plants have been used in traditional medicine for millennia, and recent scientific research have revealed a link between traditional and folkloric uses of particular plants, bolstering the quest for pharmacological active components in plants [1]. Medicinal plants have a high economic value in the world of herbal medicine, and they are still the primary source of primary care for about 75-80 percent of the population, primarily in developing countries, due to their cultural acceptability, compatibility with the human body, and lack of side effects [2]. Phytomedicine, pharmacognosy, herbal science, and pharmaceutical chemistry are just a few of the fields where plants have proven their worth (Kigigha et al., 2015). The existence of bioactive and chemical compounds in essential oils found in various portions of plants [3] and bioactive components present in plants such as flavonoids, glycosides, saponins, and tannins [4] may have contributed to their utility. is one of these therapeutic plants.

Also known as *Buchholzia coriacea* is a perennial plant of the Capparaceae family [5]. It is a small to medium-sized evergreen plant that may grow up to 20 meters in height and is found in Nigeria, Cameroon, Gabon, Central African Republic, Congo, Angola, and Ghana, among other places [6]. The leaves are big and glossy, measuring 15-25 cm long and 5-7.5 cm wide [7], with prominent creamy white blossoms and medicinally valuable edible seeds. When fresh, the seeds are blackish, covered in purple aril, and have a harsh pungent flavor with a scrathing spicy flavor [8]. The seeds have been given a variety of local names by Nigerians. It is known as 'Ndo' in Mende (Sierra Leone), 'Doe-fiah' in Kru-basa (Liberia), 'Eson-bese' in Akan-asante (Ghana), 'Banda' in Munga (West Cameroons), 'Esson bossi' in Central Africa, 'Kola Pimente' in French, 'Owi' in Edo State, 'Okpokolo' in Igbo, 'Uwuro' and 'Aponmu' in Yoruba [9].

The seeds derived its popular name “due to its effective potency against numerous diseases [10]. Because of its capacity to improve memory, it is also known as memory nut [5]. *Buchholzia coriacea* seeds have long been used to treat diabetes, rheumatism, hypertension, the common cold, catarrh, and cough [11]. Complications such as chest pain, wrist pain, irregular menstruation [12] malaria, premature ejaculation [13], and diarrhea have also been alleviated by the administration of these seeds [14]. *Buchholzia coriacea* is a wonderful plant that can help to boost the nervous system and purify the blood. In Africa, it has been used specifically to cure migraines [13]. ’s antibacterial qualities have been attributed to its bioactive components like as alkaloids and tannins [15,16,17,18,19, 16].

Antimicrobial (antibacterial and antifungal) properties of seed have been discovered in numerous studies [20,6,21,22,14,23]. The method of drying and the solvent used for extraction have an impact on the final result of sensitivity test of plant materials. According to Ibrahim & Fagbonun [5], methanol extracts of *Buchholzia coriacea* seed show a superior efficacy against a wide spectrum of bacteria when compared to ethanol extract. Fresh express extract of Wonderful kola has a better effect than methanol and hexane extracts, according to Ezekiel and Onyeoziri [20]. Fresh express extract of seed has greater efficacy compared to oven dried uncooked and cooked seed, according to Nwachukwu et al. [24]. Methanol has a better effect than aqueous leaf extract of, according to Osadebe et al. [21]. In comparison to hot water extracts, Mbata et al. [6] found that methanol extract has a stronger effect against various gram positive and negative bacteria. All of these studies on the
antimicrobial properties of have focused only on the fresh seed, bark and leaf of the plant; and nowork has been reported on freeze dried leaf and leaf so far. Hence, this study aimed to determine the antimicrobial efficacy of fresh leaves and seeds, compared with freeze dried leaf and seed of.

2. METHODOLOGY

2.1 Plant Collection and Authentication

The seeds and mature leaves of Buchholzia coriacea were purchased from Bode market, Molete, Ibadan, Oyo-State, Nigeria and authenticated in the Department of Crop, Soil and Pest Management, The Federal University of Technology, Akure, Ondo State, Nigeria.

2.2 Preparation of Seed and Leaf Extract

The leaves were sorted, washed, chopped and divided into two parts. The first part was blended fresh using an electric blender and refrigerated at 4°C. The second part was freeze dried, ground into a fine powder using a dry grinder and refrigerated at 4°C prior analysis. The seeds of were also treated the same way to obtain aqueous and ethanol extracts of fresh seed and freeze dried seed respectively. The extracts were prepared in different concentrations; 500mg, 250mg, 125mg and 50mg respectively.

2.3 Ethanol Extract Preparation

A Satoric AG Gottingen Electronic weighing scale was used to weigh 200 grams of pulverized kola seed. The weighed sample was soaked in 500 mL of ethanol in a conical flask, mixed and left for 24 hours with interval stirring. The mixture was filtered using Whatman No.1 filter paper (Azoro, 2002) into a clean beaker and the ethanol was recovered using a Soxhlet apparatus and was evaporated to dryness using a steam bath at 100°C.

2.4 Aqueous Extract Preparation

Two hundred grams (200 g) of the pulverized kola seed was weighed and macerated in 500ml of distilled water. The mixtures were vigorously swirled. After the elapse of 24 h with interval stirring, the mixture was filtered using Whatman No.1 filter paper (Azoro, 2002) into a clean beaker, and the filtrate was concentrated to dryness by evaporation using the steam bath at 100 °C.

2.5 Control Sample

Standardized antibiotics (Gentamycin and Fluconazole) were aseptically used as the control in order to compare the diameter of zone of clearance from the extracts.

2.6 Test Organisms

The microorganisms used were obtained from Department Of Microbiology, Federal University Of Technology, Akure, Ondo State. The bacteria include Escherichia coli, Bacillus subtilis, Staphylococcus aureus, Salmonella typhi, Klebsella pneumonia and Xanthomonas oryzae. These organisms were further streaked on nutrient agar and incubated at 37°C for 18 hours respectively. The isolates identities were further confirmed using standard biochemical procedures as described by Leber [25], the isolates were stored on agar slant at 4°C prior to their use. The fungi used were Trichodirma harzianum, Fusconium oxysporium, Aspergillus niger, Aspergillus flavus and Penicillum notatum. These were maintained on malt extract agar.

2.7 Screening for Antimicrobial Activities

The process involves the use of test organisms to screen for the inhibitory properties of the extracts by measuring the diameters of slants and stored at 4°C. Control experiment was set up the same way but without the addition of any of the extracts. The zone of inhibition of extracts and control experiments was measured.

2.7.1 Determination of antibacterial activity of the extracts

Nutrient agar was poured into Petri dishes, allowed to set and bored with a Durham tube. Bacterial culture was used to inoculate each of the agar plates after which about 0.01 ml of the extract was added. Incubation was done at 37°C for 24 h after which the plates were inspected for zones of inhibition.

2.7.2 Determination of antifungal activity of the extracts

Nutrient agar was poured into Petri dishes, allowed to set and bored with a Durham tube. Fungal culture was used to inoculate each of the agar plates after which about 0.01 ml of the extract was added. Incubation was done at 28°C for 120 hours after which the plates were inspected for zones of inhibition.
The above procedure was applied for aqueous and ethanol extracts of the fresh leaf, freeze dried leaf, fresh seed and freeze dried seeds, and concentrations of 500mg, 250mg, 125mg and 50mg of each extracts was prepared.

3. RESULTS

Results of antimicrobial properties of ethanol and aqueous extract of fresh dried seed, fresh leaf, freeze dried seed and freeze dried leaf of was presented in Fig. 1-8.

The ethanol extracts of *B. coriacea* fresh seed showed inhibitory zones ranging from 2–12 mm, while the aqueous extract showed inhibitory zones ranging from 2-10 mm (Fig. 1 & 2). From the result of antimicrobial screening it can be observed that the ethanol and aqueous seed extract of *B. coriacea* recorded antibacterial activity against the bacterial test isolates (except *Salmonella typhi*), with the best activity recorded against *B.subtilis*. Antifungal activity was also recorded against all fungal isolates (except *Fuscomium oxysporium*), with the best activity recorded against *Penicillium notatum*. The use of Gentamycin (50mg) as control only showed better antibacterial activity against *E. coli* (10nm) at high concentration (500mg) than the aqueous (5mm) and ethanol (7mm) extract of fresh seed of , while the aqueous and ethanol extract of fresh seed of at high concentration showed better antifungal activity than Fluconazole (50µg/ml) used as control.

Also looking at Fig. 3 & 4, it can be observed that the aqueous and ethanol extract of freeze dried seed of *B. coriacea* recorded antibacterial activity against all the bacterial test isolates. The ethanol extracts of *B. coriacea* freeze dried seed showed inhibitory zones ranging from 5–38 mm, while the aqueous extract showed inhibitory zones ranging from 4-36 mm. The highest bacterial activity of the ethanol and aqueous extract was recorded against *Klebsellapneumonia*. Also, antifungal activity was recorded against all fungal isolates. The best fungal activity of the ethanol and aqueous extract was recorded against *Aspergillus niger*. The ethanol extract recorded better antifungal activity than antibacterial activity. The use of Gentamycin (50mg) as control only showed better antibacterial activity against *Bacillus subtilis* and *Staphylococcus aureus* at concentration of 50mg/ml compared with the aqueous and ethanol extract of freeze dried seed of , while the aqueous and ethanol extract of freeze dried seed of at all concentration showed better antifungal activity than Fluconazole (50µg/ml).

From Fig. 7 & 8, the aqueous and ethanol extracts of *B. coriacea* freeze dried leaf showed inhibitory zones ranging from 3-40mm respectively. It can be observed that the aqueous and ethanol extract of freeze dried leaf of *B. coriacea* recorded antibacterial activity against all the bacterial test isolates at different concentrations except for *Bacillus subtilis* which did not show any antibacterial activity at 2mg. The highest bacterial activity of the ethanol and aqueous extract was recorded against *Escherichia coli* at a concentration of 500mg/ml. Also, antifungal activity was recorded against all fungal isolates. The highest fungal activity of the ethanol and aqueous extract was recorded against *Penicillium notatum* (40mm) at a concentration of 500mg/ml. The ethanol extract recorded better antifungal activity than antibacterial with best activity at higher concentration. The use of Gentamycin (50mg) as control only showed slightly better antibacterial activity against *Bacillus subtilis* at concentration of

References

[1] Ajay, et al. JAMB, 22(2): 72-85, 2022; Article no.JAMB.84049
50mg/ml compared with the aqueous and ethanol extract of freeze dried leaf of , while the aqueous and ethanol extract of freeze dried leaf of at all concentration showed better antifungal activity than Fluconazole (50µg/ml) used as control.

Fig. 1. Result of antimicrobial screening of ethanol extract of fresh seed of with Zone of inhibition in mm

Fig. 2. Result of antimicrobial screening of aqueous extract of fresh seed of with Zone of inhibition in mm
Fig. 3. Result of antimicrobial screening of ethanol extract of freeze dried seed of with Zone of inhibition in mm

Fig. 4. Result of antimicrobial screening of aqueous extract of freeze dried seed of with Zone of inhibition in mm
Fig. 5. Result of antimicrobial screening of ethanol extract of fresh leaf of with Zone of inhibition in mm

Fig. 6. Result of antimicrobial screening of aqueous extract of fresh leaf of with Zone of inhibition in mm

Fig. 7. Result of antimicrobial screening of ethanol extract of freeze dried leaf of with Zone of inhibition in mm
Fig. 8. Result of antimicrobial screening of aqueous of freeze dried leaf of with Zone of inhibition in mm

Fig. 9. The pictures of *Buchholzia coriacea* tree, leaves and seeds
Table 1. Fresh seed of Wonderful cola with Zone of inhibition in mm at different concentration in mg/ml

S/N	Microorganism	Bacteria	500mg	250mg	125mg	50mg	CONTROL
1	Escherichia coli Eth	Gentamycin	7mm	7mm	4mm	4mm	10mm
	Aq		5mm	5m	4mm	4mm	10mm
2	Bacillus subtilis Eth		11mm	7mm	2mm	2mm	9mm
	Aq		9mm	5mm	2mm	2mm	7mm
3	Staphylococcus aureus Eth		8mm	6mm	4mm	4mm	7mm
	Aq		6mm	6mm	4mm	4mm	6mm
4	Salmonella typhi Eth		-	-	-	-	4mm
	Aq		-	-	-	-	4mm
5	Klebsella pneumonia Eth		6mm	4mm	2mm	2mm	5mm
	Aq		6mm	4mm	2mm	2mm	5mm
6	Xanthiomonas oryzae Eth		10mm	-9mm	8.5mm	5mm	6mm
	Aq		10mm	10mm	-7mm	5mm	6mm

Fungi

S/N	Microorganism	Fluconazole	500mg	250mg	125mg	50mg	CONTROL
1	Trichoderma harzionium Eth		10mm	8mm	4mm	5mm	6mm
	Aq		12mm	10mm	3mm	5mm	6mm
2	Fusconium oxysporium Eth		-	-	-	-	5mm
	Aq		-	-	-	-	5mm
3	Aspergillus niger Eth		10mm	8mm	5mm	4mm	5mm
	Aq		7mm	8mm	4mm	4mm	5mm
4	Aspergillus flavus Eth		10mm	7mm	5mm	4mm	6mm
	Aq		10mm	8mm	5mm	5mm	6mm
5	Penicillium notatum Eth		12mm	9mm	4mm	5mm	6mm
	Aq		10mm	8mm	4mm	5mm	8mm

Table 2. Freeze dried seed of Wonderful cola with Zone of inhibition at different concentration in mm

s/n	Microorganism	Bacteria	500mg	250mg	125mg	50mg	Control
1	Escherichia coli		10mm	10mm	10mm	8mm	10mm
			8mm	8mm	6mm	4mm	10mm
2	Bacillus subtilis		15mm	14mm	10mm	5mm	9mm
			12mm	12mm	9mm	5mm	7mm
3	Staphylococcus aureus		10mm	8mm	5mm	4mm	7mm
			9mm	8mm	5mm	4mm	6mm
4	Salmonella typhi		10mm	10mm	7mm	6mm	4mm
			8mm	8mm	5mm	5mm	4mm
5	Klebsella pneumonia		17mm	12mm	12mm	10mm	5mm
			15mm	11mm	11mm	10mm	5mm
6	Xanthiomonas oryzae		12mm	10mm	10mm	9mm	6mm
			12mm	10mm	10mm	9mm	6mm

Fungi

s/n	Microorganism	Fluconazole	500mg	250mg	125mg	50mg	Control
1	Trichoderma harzionium		16mm	14mm	10mm	5mm	6mm
			15mm	14mm	8mm	5mm	6mm
2	Fusconium oxysporium		20mm	12mm	8mm	4mm	5mm
			18mm	12mm	8mm	4mm	5mm
3	Aspergillus niger		38mm	30mm	22mm	10mm	5mm
			36mm	28mm	15mm	10mm	5mm
4	Aspergillus flavus		20mm	15mm	8mm	5mm	6mm
			20mm	5mm	10mm	4mm	6mm
5	Penicillium notatum		20mm	19mm	14mm	12mm	6mm
			20mm	19mm	14mm	12mm	8mm
Table 3. Fresh leaf of Wonderful cola with Zone of inhibition at different concentration in mm

s/n	Microorganism	500mg	250mg	125mg	50mg	Control
						Gentamycin
1	Escherichia coli Eth	9mm	9mm	6mm	5mm	6mm
	Aq	8mm	8mm	6mm	5mm	6mm
2	Bacillus subtilis	12mm	7mm	5mm	2mm	5mm
		10mm	7mm	4mm	2mm	5mm
3	Staphylococcus aureus	14mm	10mm	7mm	6mm	4mm
		12mm	11mm	7mm	6mm	4mm
4	Salmonella typhi	12mm	10mm	8mm	7mm	5mm
		11mm	10mm	7mm	7mm	5mm
5	Klebsella pneumonia	6mm	-	-	6mm	6mm
		5mm	-	-	6mm	6mm
6	Xanthiomonas oryzae	15mm	14mm	8mm	6mm	7mm
		15mm	13mm	8mm	6mm	6mm

Table 4. Freeze dried leaf of Wonderful cola with Zone of inhibition at different concentration in mm

s/n	Microorganism	500mg	250mg	125mg	50mg	Control
						Gentamycin
1	Escherichia coli	15mm	15mm	10mm	8mm	10mm
		12mm	11mm	8mm	7mm	10mm
2	Bacillus subtilis	5mm	4mm	1mm	-	9mm
		5mm	4mm	1mm	-	7mm
3	Staphylococcus aureus	12mm	10mm	8mm	8	7mm
		10mm	10mm	8mm	8	6mm
4	Salmonella typhi	10mm	6mm	4mm	5mm	4mm
		10mm	7mm	4mm	5mm	4mm
5	Klebsella pneumonia	12mm	9mm	5mm	4mm	5mm
		11mm	8mm	5mm	4mm	5mm
6	Xanthiomonas oryzae	8mm	6mm	3mm	3mm	6mm
		8mm	6mm	3mm	3mm	6mm

Fungi

s/n	Microorganism	500mg	250mg	125mg	50mg	Control
						Fluconazole
1	Trichoderma harzionum	20mm	18mm	15mm	10mm	6mm
		20mm	15mm	12mm	1.9mm	6mm
2	Fusconium oxysporium	26mm	20mm	20mm	30mm	5mm
		24mm	19mm	20mm	21mm	5mm
3	Aspergillus niger	30mm	20mm	20mm	20mm	5mm
		20mm	16mm	10mm	12mm	5mm
4	Aspergillus flavus	34mm	26mm	25mm	26mm	6mm
		32mm	26mm	28mm	27mm	6mm
5	Penicillium notatum	40mm	37mm	27mm	28mm	6mm
		40mm	36mm	25mm	28mm	8mm
4. DISCUSSION

The utilization of plant materials as alternative therapies to control pathogenic bacteria has recently sparked a lot of attention [26]. Because of the increasing failure of chemotherapeutics and infections' antibiotic resistance, various medicinal plants have been investigated for their antibacterial efficacy [2]. This study was carried out to determine the antimicrobial efficacy of fresh leaves and seeds of compared with its freeze dried leaf and seed.

The result of this study showed that the ethanol and aqueous seed extract of B. coriacea recorded antibacterial activity against bacterial test isolates (B. subtilis, E. coli, S. aureus, K. pneumonia and X. oryzae). Antifungal activity was also recorded against A. niger, A. flavus, T. harzianum and P. notatum. This observation is in agreement with previous studies which have variously shown that seed and leaf contain antimicrobial (antibacterial and antifungal) activities [20, 6, 21, 22, 14, 23].

The impact of fresh kola, hexane, and methanol extracts of B. coriacea on various foodborne pathogens (Escherichia coli, Enterococcus faecalis, Staphylococcus aureus, Trichoderma viride, and Aspergillus niger) was studied by Ezekiel and Onyeoziri [20]. The fresh kola showed inhibitory zones with the test bacteria: E. coli (62 mm), E. faecalis (40 mm) and S. aureus (50 mm). The growth of the two test fungi T. viride and A. niger was completely inhibited. According to Umeokoli et al. [23], the aqueous seed extract of B. coriacea has antibacterial activity against all of the bacterial test isolates (excluding E. coli and K. pneumonia), with S. subtilis having the best activity. Only C. albicans was found to have antifungal action. Antibacterial activity was also seen in the methanol seed extract of B. coriacea against all of the bacterial test isolates, as well as antifungal activity against Candida albicans and Aspergillus niger. The methanol extract had superior antifungal activity than antibacterial activity, with the highest action against the mold A. niger, which is consistent with our findings.

In this study, the ethanol extracts of B. coriacea fresh seed showed inhibitory zones ranging from 2–12 mm with all test organisms (B. subtilis, E. coli, S. typhi, K. pneumonia, X. oryzae and S. aureus). The aqueous extract of B. coriacea fresh seed showed inhibitory zones of 2-10 mm with the test bacteria. Obidegwe & Okazi [27] reported that the ethanol extracts of B. coriacea showed inhibitory zones ranging from 14–27 mm with all test organisms (Pseudomonas spp., E. coli, S. aureus, Klesiella sp., Streptococcus sp., and Candida albicans), while the aqueous extract of B. coriacea showed inhibitory zones of 2-14 mm [27]. The isolates were treated with n-hexane, methanol, and chloroform extracts of B. coriacea leaf in a related study by Chika et al. [28], and it elicited modest antibacterial activities against the test isolates with E. coli, Staphylococcus aureus, Shigella species, Klebsiella pneumoniae, and Bacillus subtilis susceptible. According to Okoli et al. [29], extracting solvents can cause variations in spice extractive components, which can affect antibacterial activity. S. aureus, E. coli, S. typhi, P. aeruginosa, Candida albicans, and A. flavus have all been found to be inhibited by stem bark portions of B. coriacea [30].

The freeze dried leaf and seed exhibited greater inhibitory effect on the test organisms than the fresh seed and leaf, showing inhibitory zones ranging from 3-40 mm with the test bacteria (B. subtilis, E. coli, S. typhi, K. pneumonia, X. oryzae and S. aureus) it was exposed to and it completely inhibited the growth of T. harzianum, F. oxysporium, A. niger, A. flavus and P. notatum. When Ezekiel and Onyeoziri [20] investigated the effect of fresh kola, hexane, and methanol extracts of B. coriacea on several foodborne pathogens (Escherichia coli, Enterococcus faecalis, Staphylococcus aureus, Trichoderma viride and Aspergillus niger), they found a similar result. The heat applied during drying may account for the dried leaf extracts of B. coriacea having a lower inhibitory activity than the frozen seed and freeze dry leaf of B. coriacea (Saviri et al., 1986). Freeze drying [31] is a low-temperature dehydration method that involves freezing the product, reducing the pressure, and then sublimating the ice [32]. This is in contrast to most traditional methods of dehydration, which use heat to evaporate water [33]. Because of the low temperature employed in processing, the rehydrated product has good quality as most of the bioactive compounds has been preserved which could explain why freeze seed and freeze dry leaf had a better inhibitory impact on the test organisms than other drying processes employed in other studies reported.

Changes in the inhibitory impact of freeze dried seed and freeze dried leaf on the test organisms could potentially be attributable to differences in the solvents’ polarity, specificity, and affinity level [34]. Furthermore, the differences in zone of
inhibition could be attributable to the concentration of plant extract employed in the study [3]. The physiology, metabolism, nutrition, and biochemistry of the microbial isolates may also have an impact on the sensitivity of an extract to and organisms [17,18]. Variations in sensitivity could be caused by the age and type of plants employed, as well as environmental factors [17,18].

5. CONCLUSION AND RECOMMENDATIONS

The study conclude that the aqueous and ethanol extract of freeze dried seed of B. coriacea showed better antifungal and antibacterial activity against the test organisms compared with the aqueous and ethanol extract of fresh seed of B. coriacea. Similarly, the aqueous and ethanol extract of freeze dried leaf of B. coriacea showed better antifungal and antibacterial activity against the test organisms compared with the aqueous and ethanol extract of fresh leaf of B. coriacea. The ethanol extract showed better antifungal and antibacterial activity than aqueous extract. The extracts' reduced inhibitory activities in traditional drying procedures demonstrate that excessive exposure to air, sunlight, too much artificial heat, and quick drying can result in loss of bioactive compounds. Plant products should be developed into standardized, quality-controlled phytopharmaceuticals, and the characterization of B. coriacea bioactive components should be promoted and researched.

DISCLAIMER

The products used for this research are commonly and predominantly use products in our area of research and country. There is absolutely no conflict of interest between the authors and producers of the products because we do not intend to use these products as an avenue for any litigation but for the advancement of knowledge. Also, the research was not funded by the producing company rather it was funded by personal efforts of the authors.

COMPETING INTERESTS

Authors have declared that no competing interests exist.

REFERENCES

1. Egharevba HO, Kun OF. Preliminary Phytochemical and proximate Analysis of the Leaves of Piliostigma thonningii (Schumach) Mile-Redhead. Ethnobotanical Leaflets. 2010;14(4):570-577.
2. Iroha IR, Ozor HO, Moses IB, Onuora AL, Kalu AC. Antimicrobial Activity of Ethyl Acetate and Ethanol Seed Extracts of Buchholzia coriacea against Multidrug-resistant Clinical Isolates of Salmonellasppecies and Escherichia coli. Arch Clin Microbiology. 2020;11(3):109-113.
3. Izah SC, Uhumwungho EJ, Eledo BO. Medicinal potentials of Buchholzia coriacea. Medicinal Plant Research. 2018;8(5):27-42.
4. Afolabi BT, Agu GC, Onajobi IB. Phytochemical screening and antibacterial activity of Garcinia kola (Hacket) and Kola nitida (vent) Extracts. Nigerian Journal of Technology. 2020;39(2):379 – 385.
5. Ibrahim TA, Fagbonun ED. Antibacterial and antifungal activity of ethanol and methanol extract of dried seeds of Buchholziacoriacea. Greener Journal of Agricultural Sciences. 2013;3(6):458-463.
6. Mbata TI, Duru CM, Onwumelu HA. Antibacterial activity of crude seed extracts of Buchholzia coriacea on some pathogenic bacteria. Journal of Developmental Biology and Tissue Engineering. 2009;1(1):1 – 5.
7. Akinyele AO. Effects of growth hormones, rooting media and leaf size on juvenile stem cuttings of Buchholzia coriacea Engler. Annual Forrest Reserve. 2010;53(2):127-133.
8. Odebiyi A, Sofowara AE, AE. Phytochemical screening of Nigerian medicinal plants. Lloydia. 1978;41(2):234-246.
9. Sofowora EA. Medicinal Plants and Traditional medicine in Africa: Nigeria’s useful plants. Nigeria Field. 2008;24(3):13-34.
10. Adelere IA, Agbaje L, Aboyeji DO, Abdul-salam R, Adabara NU, Bala JD. Biosynthesis of silver nanoparticles using aqueous extract of Buchholzia coriacea seeds and their antimicrobial activities. Annals of Food Science and Technology. 2017;18 (4):671-679.
11. Adisa RA, Choudhary MI, Olorunsoyo OO. Hypoglycemic activity of Buchholzia coriacea seeds in streptozotocin-induced diabetes in streptozotocin-diabetic rats. J. Appl. Zool. 2017;1(1):71-77.
diabetic rats and mice. Experimental and Toxicological Pathology. 2011;63(5):619-625.
12. Ezefekoa GO, Orji MU, Mbata TI, Patrick AO. Antimicrobial activities of Cajanus cajan, Garcinia kola and Xylopia aethiopica on pathogenic microorganisms. Biotechnology. 2004;3(1):41-43.
13. Jaiyesimi AF, Ogbole O, Anthony O, Egbeubunmi O. Larvicidal effect of pet, ether, chloroform fractions and methanol extract of Buchholzia coriacea Engle seed. International Journal of Pharmaceutical Sciences and Research. 2011;2(7):1736-1738.
14. Ibrahim TA, Fagbohun ED. Antibacterial and antifungi activities of ethanol and methanol extract of dried seeds of Buchholziacoriacea, Research and Reviews: Journal of Microbiology and Biotechnology. 2014;3(2):5-9.
15. Doherty VF, Olaniran OA, Kanife UC. Antimicrobial activities of Aframomummelegueta (Alligator pepper). International Journal of Biology. 2010;2(2):126-131.
16. Kigigha LT, Kalunta CG. Antimicrobial efficacy of leaf extracts of Piper nigrum against Escherichiacoli, Staphylococcus aureus and Candidaalbicans. Journal of Basic Pharmacology and Toxicology. 2017;1(2):32-36.
17. Kigigha LT, Biye SE, Ihaz SC. Phytochemical and antibacterial activities of Musanga cecropioides tissues againstEscherichiacoli, Pseudomonas aeruginosa, Staphylococcus aureus, Proteus and Bacillus species. International Journal of Applied Research and Technology. 2016;5(1):100-107.
18. Epidi JO, Ihaz SC, Ohimain El. Antibacterial and synergistic efficacy of extracts of Alstoniabooniei tissues. British Journal of Applied Science. 2016;1(1):21-26.
19. Kalunta CG. Antimicrobial effect of different seed extracts of Piper nigrum against Escherichiacoli, Staphylococcus aureus and Candidaalbicans. Biotechnology Research. 2017;3(3):71-76.
20. Ezekiel OO, Onyeoziri NF. Preliminary studies on the antimicrobial properties of Buchholzia coriacea. African Journal of Biotechnology. 2009;8(1):472-478.
21. Osadebe PO, Awemu GA, Ezealisijii KM, Agbo MO. Phytochemical and antimicrobial studies of the leaf extracts of Buchholziacoriacea. International Journal of Current Research and Review. 2011;13(2):17-22.
22. Ejikeugwu C, Umeokoli B, Iroha I, Ugwu M, Esimone C. Phytochemical and antibacterial screening of crude extracts from leaves and. American Journal of Life Sciences. 2014;2(6):9-12.
23. Umeokoli BO, Abba C, Ezeh P, Ajaghaku D. Antimicrobial, anti-inflammatory, and chemical evaluation of Buchholzia coriacea seed. American Journal of Life Sciences. 2016;4(5):106-112.
24. Nwachukwu MI, Duru MKC, Amadi BA, Nwachukwu IO Comparative evaluation of phytoconstituents, antibacterial activities and proximate contents of fresh, oven dried uncooked and cooked samples of Buchholzia coriacea Seed and Their Effects on Hepatocellular Integrity. International Journal of Pharmaceutical Science Invention. 2014;3(6):41-49.
25. Leber A. Biochemical procedures. In: Clinical microbiology procedures, Handbook, Fourth Edition. 2016;11-16.
26. Nostro A, Cellini L, Bartolomeo S. Effects of Combining extracts (From Propolis or Zingiberofficinale) with Clarithromycin on Helicobacterpylori. Phytotherapy Research. 2006;20 (3):187-190.
27. Obidegwe AO, Okazi PI. Antimicrobial and Antihelmintic Effect of (Buchholzia coriacea). Journal of Developmental Biology and Tissue Engineering. 2016;11(1):11-15.
28. Chika E, Ikegbunam M, Ugwu C, Araka O, Iroha I, Adikwu M, Esimone C. Evaluation of antibacterial activity of the leave extracts of Buchholzia coriacea. Asian Journal of Pharmaceutical and Biological Research. 2(4):204-208.
29. Okoli BJ, Okere OS, Adeyemo SO. Antiplasmodial activity of Buchholzia coriacea. Journal of Medical and Applied Biosciences. 2010;2(1):21-29.
30. Ajaiyeoba EO, Onocha PA, Nwozo SO, Sama W. Antimicrobial and cytotoxicity evaluation of Buchholzia coriacea stem bark. Fitoterapia. 2003;7(1):706-709.
31. Ratti C. Advances in Food Dehydration. CRC Press. 2008;209–235.

32. Fellows P. Freeze drying and freeze concentration. Food processing technology: principles and practice (4th ed.). Kent: Woodhead Publishing/Elsevier Science. 2017;929–940

33. Prosapio V, Norton I, De-Marco I. Optimization of freeze-drying using a Life Cycle Assessment approach: Strawberries’ case study. Journal of Cleaner Production. 2017;16 (8):1171–1179.

34. Adelere IA, Lateef A. Novel Approach to the Green Synthesis of Metallic Nanoparticles: The use of agro-wastes, enzymes and pigments. Nanotechnology Reviews. 2016;15(4):196-200.

© 2022 Ajay et al.; This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Peer-review history:
The peer review history for this paper can be accessed here:
https://www.sdiarticle5.com/review-history/84049