Speed Limits in Autonomous Vehicular Networks
due to Communication Constraints

Rajat Talak, Sertac Karaman, and Eytan Modiano

Abstract—Autonomous vehicles need to be aware of other vehicles in their vicinity in order to avoid collisions and successfully perform their tasks. Such network awareness is ensured by exchanging location and control information over wireless radio channels. However, wireless interference constraints limit the number of messages that can be exchanged between the vehicles. In this paper, we study the impact of such communication constraints on maximum vehicle speed in dense autonomous vehicular networks. We define hazard rate to be the fraction of time a vehicle enters an ‘uncertainty region’, i.e., a region where there is a positive probability of other vehicles being present due to lack of situational awareness. We show that the hazard rate follows a threshold behavior with respect to maximum speed as the network density increases to infinity. We show that for a 2D network the hazard rate tends to 1, if the maximum speed decreases slower than $n^{-3/2}$, and decreases to 0, if v decreases faster than $n^{-3/2}$. For the network hazard rate, which is the fraction of time any vehicle enters its uncertainty region, the threshold is n^{-2}. Finally, we extend these results to a 3D network and show that the thresholds for the 3D network are larger than in the 2D network.

I. INTRODUCTION

In recent years, network of unmanned aerial vehicles (UAVs) have become prevalent, with applications ranging from surveillance, environment monitoring, product delivery, disaster monitoring and many more. Moreover, it is now possible to deploy very dense networks of ‘micro’ vehicles, with sizes as small as 10-50 cm [1], [2]. The vehicles in such networks need to be aware of other vehicles in the network, and need to exchange timely information required for control and planning. Wireless communications can be used to exchange position and control information [3], [4]. However, delays in exchanging such time sensitive information can result in uncertainty, and potentially lead to collisions between vehicles that are not fully aware of each others location.

The amount of time that has passed since vehicles last exchanged location information is a crude measure of uncertainty regarding vehicles’ position, as vehicles may have moved in the time that elapsed. The ‘uncertainty region’ is the region where a vehicle may have traveled to since the last position update, as illustrated in Figure 1. As shown in the figure, time T_B and T_C have elapsed since A received the last update from B and C, respectively. The uncertainty region for A is then the region covered by circles Q_1 and Q_2. Note that the uncertainty regions for two different vehicles tend to be different, and depend on when the vehicle received last update from other nodes.

While ideally the uncertainty region should be kept very small, in dense networks this may not be possible due to limits on communications. In particular, wireless interference constraints limit the number of simultaneous transmissions that can take place [5]. As can be seen from Figure 1, the uncertainty region is a function of the vehicles’ speed, and the time that has elapsed since the most recent update. Thus, if it is not possible to transmit position updates more frequently, vehicles may need to reduce their speed in order to avoid hazardous conditions. This situation is exacerbated in dense networks, where vehicles are in closer proximity.

We consider a network of n autonomous vehicles in a two dimensional (2D) and three dimensional (3D) bounded region. The nodes move according to an independent, stationary, and ergodic random process, with maximum speed v. We define the hazard rate of a vehicle to be the fraction of time the vehicle is in its uncertainty region and the network hazard rate to be the fraction of time any vehicle is in its uncertainty region, and study the hazard rates as $n \to \infty$.

Our main result is that the hazard rates follow a threshold curve with respect to v as $n \to \infty$. For the 2D network, we show that, under any communication scheme, if v decreases slower than $n^{-3/2}$ the hazard rate of any vehicle will go to 1...
as \(n \to \infty \). This means that every vehicle almost surely will be in its uncertainty region. However, if \(v \) decreases faster than \(n^{-3/2} \), then a simple communication scheme ensures that the hazard rate of any vehicle will be 0 as \(n \to \infty \), i.e., vehicle will not be in its uncertainty region with probability one. Also, for the 2D network, the speed threshold for the network hazard rate is \(n^{-2} \). For the 3D network, the speed thresholds for both hazard rates are smaller than the 2D case. We also show that in both cases a simple round-robin scheme, in which vehicles transmit in a preassigned order, attains the minimum hazard rates.

A. Related Work

Dense network of communicating mobile nodes have been studied for communication delay and capacity [6]–[8]. In [7], it was first shown that mobility improves capacity. Subsequently, communication delay has been studied under various node mobility models such as Markov [9], [10], random way point [11], and Brownian Motion [12]. A general observation has been that increasing node speed improves communication delay. Such a relation between delay and node/vehicle speed is also known for load-carry-and-deliver or data ferrying protocols [13], [14]. However, a constraint on vehicle speed due to communication constraints has never been considered.

A critical speed limit for a collision-free trajectory through a dense forest was proved in [15]. The obstacles were modeled as static objects derived from a stationary marked point process. In our model, the obstacles, being other vehicles, are also in motion.

B. Outline

The paper is organized as follows. We describe our system model in Section II for the 2D network model. In Section III, we state and prove the main results with respect to an individual vehicle’s hazard rate, and in Section IV, study the network-wide hazard rate. We discuss the 3D model and its threshold results in Section V, and conclude in Section VI.

II. Problem Definition

We consider a system with \(n \) autonomous vehicles that move inside a square torus \(S = [0,1]^2 \). For the torus, the distance between two points \(x = (x_1,x_2) \in S \) and \(y = (y_1,y_2) \in S \) is given by

\[
d(x,y) = \min_{e \in \{-1,0,1 \}^2} \|x + e - y\|_2 ,
\]

where \(\|\cdot\|_2 \) is the Euclidean norm. Figure 2 illustrates the distance function \(d \) on unit torus \(S \). We denote \(N = \{1,2,\ldots,n\} \) to be the set of autonomous vehicles.

We also use the following notations. We use \(\mathbf{P} \left[\cdot \right] \) and \(\mathbb{E} \left[\cdot \right] \) to denote probability and expectation, respectively. For functions \(f \) and \(g \) we say \(f(n) = \mathcal{O} \left(g(n) \right) \) if there exists a \(C > 0 \) such that \(\lim_{n \to \infty} \frac{f(n)}{g(n)} \leq C \). We write \(f(n) = \Theta \left(g(n) \right) \) if \(f(n) = \mathcal{O} \left(g(n) \right) \) and \(g(n) = \mathcal{O} \left(f(n) \right) \).

\[\chi_i(t) = (x_1^i(t),x_2^i(t),\ldots,x_n^i(t)) , \]
\[\Theta_i(t) = (\Delta_1^i(t),\Delta_2^i(t),\ldots,\Delta_n^i(t)) , \]

Fig. 2. Undotted black line traces the shortest distance path between points \(x \) and \(y \) on unit torus \(S \).

A. Mobility Model

Each vehicle moves according to an independent, stationary, ergodic random process with uniform stationary distribution. We also assume that this motion is such that, if at time \(t \) the vehicle is at location \(x \), then its location at time \(t + \tau \) can be anywhere inside the region \(B(x,v\tau) \), for all \(t \) and \(\tau > 0 \). Thus, the variable \(v \) is the maximum speed that vehicles in the network can possibly achieve. Random waypoint and Markov mobility are two examples of such motion models [9], [11], [16], [17].

B. Communication Model

The autonomous vehicles exchange location information with each other over wireless radio channel. Each vehicle maintains two lists. The first list tracks the last received location of every vehicle and the second list tracks the time validity of this information. More precisely, a vehicle \(i \) at time \(t \) maintains lists:

\[\chi_i(t) = (x_1^i(t),x_2^i(t),\ldots,x_n^i(t)) , \]

where \(x_k^i(t) \) denotes the last communicated location of vehicle \(k \) to vehicle \(i \) by time \(t \); here \(x_1^i(t) \) is the exact location of vehicle \(i \), and

\[\Theta_i(t) = (\Delta_1^i(t),\Delta_2^i(t),\ldots,\Delta_n^i(t)) , \]

where \(\Delta_k^i(t) \) is the time elapsed since vehicle \(k \) was at location \(x_k(t) \). This means that at time \(t \), the location of vehicle \(k \) can be anywhere inside the circle of radius \(v\Delta_k^i(t) \) centered at \(x_k^i(t) \). In the absence of a new information packet from vehicle \(k \) to vehicle \(i \), \(\Delta_k^i(t) \) increases linearly in \(t \) at rate 1. On the other hand, if it receives a packet from vehicle \(k \), \(\Delta_k^i(t) \) is reset to zero. Since vehicle \(i \) always knows its location we set \(\Delta_i^i(t) = 0 \).

For simplicity, in this work, we assume a single cell broadcast channel model. When a single vehicle transmits a packet, all other vehicles can receive it correctly. A packet transmitted by a vehicle contains the vehicles current location. We consider a time slotted system [18]. Duration of each slot, denoted by \(\delta \), equals the time required for a single
packet transmission. A single packet can be transmitted in one slot. However, two or more packet transmissions during a slot leads to failure in packet reception due to wireless interference [5], [18].

A communication scheme is an agreed set of rules that determines when each vehicle transmits. We call a communication scheme recurrent if, in it, each vehicle transmits infinitely often. We say it is \(O(n) \)-recurrent if it is recurrent and each vehicle transmit every \(O(n) \) time slots, i.e., \(\limsup_{k \to +\infty} \max_{i \in N} \tau^i(k) = O(n) \) for all \(i \in N \), where \(\tau^i(k) \) is the \(k \)th inter-transmission time between two transmissions of \(i \). A round robin scheme is one where, in slot \(m \), vehicle \(i_m = 1 + m \bmod (n - 1) \in N \) transmits.

We consider communication schemes that are location independent. That is, vehicles do not use their location information to schedule transmissions. Thus, a real-world autonomous vehicular system can perform at least as good as the performance characterized here.

C. Performance Measure

At time \(t \), for vehicle \(i \), vehicle \(k \) can be anywhere inside the circle or ball with radius \(v\Delta_i^k(t) \) centered at \(x_k^i(t) \); denoted as \(B(x_k^i(t), v\Delta_i^k(t)) \), where \(B(x, r) = \{ y \in S | d(x, y) < r \} \). This circle is called the region of uncertainty of vehicle \(k \) with respect to vehicle \(i \). Then, the net uncertainty region of vehicle \(i \) with respect to all other vehicles is defined as

\[
R_i^i(t) = \bigcup_{k=1}^{n} B(x_k^i(t), v\Delta_i^k(t)).
\] (4)

Informally speaking, the net uncertainty region for vehicle \(i \) is the set of all locations that may include another vehicle which vehicle \(i \) is unaware of. To guarantee location-awareness for vehicle \(i \), we would like to make sure that vehicle \(i \) does not lie inside its own uncertainty region \(R_i^i(t) \). In this way, vehicle \(i \) can be aware of any vehicle that approaches its location.

We define \(A_i^i(t) \) to be the event that vehicle \(i \) lies in \(R_i^i(t) \),

\[
A_i^i(t) = \{ x_i^i(t) \in R_i^i(t) \},
\] (5)

and \(\gamma_n^i \) to be the fraction of times vehicle \(i \) lies in \(R_i^i(t) \), i.e.,

\[
\gamma_n^i = \mathbb{E} \left[\lim_{T \to +\infty} \frac{1}{T} \int_0^T \mathbb{I}_{A_i^i(t)} dt \right],
\] (6)

where \(\mathbb{I}_A \) is the indicator function for event \(A \). Using dominated convergence theorem [19], we have

\[
\gamma_n^i = \lim_{T \to +\infty} \frac{1}{T} \int_0^T \mathbb{P} \left[A_i^i(t) \right] dt.
\] (7)

We call \(\gamma_n^i \) as the hazard rate for vehicle \(i \). The hazard rate denotes the rate at which vehicle \(i \) goes into its uncertainty region, hence the rate at which vehicle \(i \) may miss another vehicle passing by its location without vehicle \(i \) knowing.

In Section III, we minimize the hazard rate for a vehicle as \(n \to \infty \) for different values of \(v \). We also show that the simple round robin scheme attains the minimum.

This individual location awareness does not entail location awareness for the entire network. For the latter, we also consider the event that any vehicle may lie in its uncertainty region at time \(t \):

\[
A(t) = \bigcup_{i=1}^{n} A_i^i(t),
\] (8)

and define network hazard rate to be

\[
\gamma_n = \mathbb{E} \left[\lim_{T \to +\infty} \frac{1}{T} \int_0^T \mathbb{I}_{A(t)} dt \right],
\] (9)

\[
= \lim_{T \to +\infty} \frac{1}{T} \int_0^T \mathbb{P} \left[A(t) \right] dt.
\] (10)

the hazard rates depend on the communication scheme used to exchange information. In Section IV we minimize the network hazard rate.

III. ANALYSIS FOR INDIVIDUAL LOCATION AWARENESS

In this section we minimize the individual hazard rate as \(n \to \infty \). We show that, in the limit, the hazard rate \(\gamma_n^i \) exhibits a phase transition with respect to maximum speed \(v \).

Theorem 1: If \(v \) scales in \(n \) such that,

1) \(vn^{3/2} \to \infty \) then for any communication scheme,

\[
\lim_{n \to \infty} \gamma_n^i = 1,
\] (11)

for all \(i \in N \).

2) \(vn^{3/2} \to 0 \) then for the round robbin scheme

\[
\lim_{n \to \infty} \gamma_n^i = 0,
\] (12)

for all \(i \in N \).

This result implies that the hazard rate for vehicle \(i \), \(\gamma_n^i \), follows a threshold behaviour with respect to maximum speed \(v \), in the asymptotic as \(n \to \infty \). Further, if any vehicle \(i \) intends to avoid its uncertainty region then the maximum speed should scale down faster than \(n^{-3/2} \).

The key reason for \(n^{-3/2} \) threshold is that the delays, \(\Delta_i^k(t) \) for \(i, k \in N \), grow at best linearly in \(n \) for any communication scheme. When this is the case the area of each ball \(B(x_k^i(t), v\Delta_i^k(t)) \) is \(\pi v^2 n^2 \). Since there are \(n - 1 \) of them in the net uncertainty region \(R_i^i(t) \), the area of \(R_i^i(t) \) is roughly \(\pi v^2 n^3 \). Thus, when \(vn^{3/2} \to 0 \), the area of \(R^i(t) \) goes to zero.

Theorem 1 also states that the round robbin scheme achieves the best performance, as \(n \to \infty \). This is because, the round robbin scheme ensures that \(\Delta_i^k(t) \leq n\delta \) for all \(i, k \in N \) as each vehicle transmits once every \(n \) slots.

We make two key observations: First, in a single cell broadcast channel, when one vehicle transmits a packet every other vehicle receives that packet. As a result, the last
location communicated by any vehicle \(k \) be same for all other vehicles, i.e.,
\[
x_i^k(t) = x_j^k(t),
\]
(13)
for all \(i, j \in N \setminus \{k\} \). This also implies that the time since
location of vehicle \(k \) was communicated will be same for all vehicles, i.e.,
\[
\Delta_k^i(t) = \Delta_k^j(t),
\]
(14)
for all \(i, j \in N \setminus \{k\} \). Let us, therefore, denote
\[
\Delta_k^i(t) = \Delta_k^j(t),
\]
(15)
for any \(i \) and all \(k \in N \setminus \{i\} \). We then know that such a
collection \(\{\Delta_k^i(t)\}_{k \in N} \) is well defined.

The second observation is an invariant property that is
satisfied by all communication schemes. Let \(f_t \) denotes the fraction of vehicles with \(\Delta_k^i(t) \) greater than \(\delta [\frac{n}{2}] \), given by
\[
f_t = \frac{1}{n} \sum_{k \in N} I\{\Delta_k^i(t) > \delta [\frac{n}{2}]\},
\]
(16)
The following lemma guarantees a lower bound on \(f_t \) for any
communication scheme.

Lemma 1: For any communication scheme, if \(t > n\delta \) then
\[
f_t \geq \frac{1}{2} - \frac{1}{n}, \text{ a.s.}
\]
(17)

Proof: Let \(n_t \) denote the number of nodes that transmitted
in the previous \(\lceil \frac{n}{2} \rceil \) slots before the current slot. Then
\(n_t \leq \lceil \frac{n}{2} \rceil \leq \frac{n}{2} + 1 \). Also, none of these \(n_t \) nodes can have
\(\Delta_k^i(t) > \delta [\frac{n}{2}] \), while, all other \(n - n_t \) nodes will have
\(\Delta_k^i(t) > \delta [\frac{n}{2}] \). This proves the result.

This shows that at least nearly half the vehicles have the
delay, \(\Delta_k^i(t) \), greater than \(\delta [\frac{n}{2}] \). We now prove Theorem 1.

Proof of Theorem 1: We first prove the second part of
the claim. Since the round robbin scheme does not depend
on vehicle location, \(P[A^i(t)] \) can be written as
\[
P[A^i(t)] = \sum_{k \in N \setminus \{i\}} B\left(U_k, v\Delta_k^i(t)\right),
\]
(18)
where \((U_1, \ldots, U_n) \) are independent and identically
distributed random variables, uniformly distributed over \(S \). Since, \(\Delta_k^i(t) = 0 \) we can also write \(P[A^i(t)] \) to be
\[
P[A^i(t)] = \sum_{j \in N} \sum_{k \in N} B\left(U_j, v\Delta_j^i(t)\right),
\]
(19)
where \(V \) is another uniformly distributed random variable
over \(S \) that is independent of all \(U_j \). For round robbin
scheme, the delays \(\Delta_j^i(t) \) are bounded above by \(n\delta \) as in any
time duration of \(n\delta \) there is at least once that every vehicle
transmits. This upper bound on \(\Delta_j^i(t) \) implies
\[
P[A^i(t)] \leq \sum_{j \in N} B\left(U_j, n\delta/2\right),
\]
(20)
\[
= \sum_{j \in N} \left(1 - \left(1 - \pi(n\delta)^2\right)^n\right),
\]
(21)
\[
= 1 - \left(1 - \left(1 - \pi(n\delta)^2\right)^n\right),
\]
(22)
The events \(\{V \notin B(U_j, n\delta)\} \) are independent because the
\(U_j \)s and \(V \) are independent. This implies,
\[
P[A^i(t)] \leq 1 - \prod_{j \in N} P[V \notin B(U_j, n\delta)],
\]
(23)
\[
= 1 - \prod_{j \in N} \left(1 - \pi(n\delta)^2\right),
\]
(24)
\[
= \Theta\left(1 - e^{-c(n\delta/2)^2}\right).
\]
(25)
Thus, if \(n\delta/2 \to 0 \) then \(P[A^i(t)] \to 0 \) as \(n \to \infty \). Since \(\gamma_{n} \)
is a Cesaro mean of \(P[A^i(t)] \), we have \(\gamma_{n} \to 0 \) as \(n \to 0 \). This proves the second part of the result.

We now prove the first claim. Since our communication
schemes are location independent, we still have (19) to be
true. Take \(t > n\delta \) and define \(\Delta_k^i(t) \) as follows:
\[
\Delta_k^i(t) = \begin{cases} 0 & \text{if } \Delta_k^i(t) \leq \delta \left[\frac{n}{2}\right] \\ \frac{n}{2} - 1 & \text{otherwise} \end{cases}
\]
(26)
We know from Lemma 1 that the number of \(k \in [n] \) with
\(\Delta_k^i(t) = \frac{n}{2} \) is at least \(\frac{n}{2} - 1 \). Using this and (19) we have
\[
P[A^i(t)] \geq \sum_{j=1}^{\frac{n}{2}-1} B\left(U_j, \frac{v\Delta_j^i(t)}{2}\right),
\]
(27)
where \(U_j \) are the locations corresponding to vehicles that
have \(\Delta_j^i(t) = \frac{n}{2} \). Since the communication scheme is location
independent, \(U_j \)s would be independent and uniformly
distributed over \(S \). This implies
\[
P[A^i(t)] \geq \sum_{j=1}^{\frac{n}{2}-1} B\left(U_j, \frac{v\Delta_j^i(t)}{2}\right),
\]
(29)
\[
= 1 - \prod_{j=1}^{\frac{n}{2}-1} \left(1 - \left(1 - \pi(n\delta)^2\right)^n\right),
\]
(30)
\[
= 1 - \left(1 - \left(1 - \pi(n\delta)^2\right)^n\right)^{\frac{n}{2}-1},
\]
(31)

5001
which is of order \(\Theta \left(1 - e^{-c(n^{3/2}v_{\delta})^2}\right) \). Thus, if \(vn^{3/2} \to \infty \), then \(P[A_i(t)] \to 1 \) as \(n \to +\infty \). Since \(\gamma_n^i \) is Cesaro mean of this sequence, \(\gamma_n^i \to 1 \) as \(n \to +\infty \).

IV. ANALYSIS FOR NETWORK LOCATION AWARENESS

In this section, we minimize the network hazard rate, \(\gamma_n \), as \(n \to \infty \). We show that, in the limit, \(\gamma_n \) has a threshold behaviour.

Theorem 2: If \(v \) scales in \(n \) such that
1) \(vn^2 \to \infty \) then for any communication scheme
\[
\lim_{n \to +\infty} \gamma_n = 1. \tag{32}
\]
2) \(vn^2 \to 0 \) then for the round robbin scheme
\[
\lim_{n \to +\infty} \gamma_n = 0. \tag{33}
\]

This result implies that the network hazard rate also follows a threshold behaviour with respect to maximum speed \(v \), as \(n \to \infty \). The speed threshold for the network hazard rate is \(n^{-2} \), which is smaller than the threshold for the hazard rate. Thus, the vehicles need to move more slowly if they want to ensure network wide location awareness.

The key reason is again that the delays, \(\Delta_k^i(t) \) for all \(i, k \in N \), grow at best linearly in \(n \) for any communication scheme. A random geometric graph \(G(n, r) \) is a graph with \(n \) nodes independent and uniformly distributed on \(S \) with an edge between two nodes located at \(x \) and \(y \) if \(d(x, y) < r \). We can then roughly think of the event \(A(t) \) to be the event that there exists an edge in a random geometric graph \(G(n, r) \) with \(r \approx vn \); because \(r \) approximates \(\Delta_k^i(t) \). From [20], we know that the probability that there is an edge in \(G(n, r) \) goes to zero (or one) if \(r n \to 0 \) (or if \(r n \to \infty \)). This implies the \(n^{-2} \) threshold for maximum speed \(v \).

Theorem 2 also shows that the round robbin scheme attains the best performance. This is because, in the round robbin scheme, the delays grow linearly in \(n \). We now prove Theorem 2.

Proof of Theorem 2: For any time \(t \geq 0 \), the probability \(P[A(t)] \) is given by

\[
P[A(t)] = P \left[\bigcup_{i \in [n]} \left\{ x_i^j(t) \in U_i^j \right\} \right].
\]

Since the communication schemes we consider are vehicle location independent we can write \(P[A(t)] \) as

\[
P[A(t)] = P \left[\bigcup_{i \in [n]} \left\{ U_i \subseteq U_i^j \right\} \right], \tag{34}
\]

where \(U_i \)s are independent, uniformly distributed random variables over \(S \). For the round robbin scheme we also have \(\Delta_k^i(t) \leq n \delta \). This implies,

\[
P[A(t)] \leq P \left[\bigcup_{i \in [n]} \left\{ U_i \subseteq U_i^j \right\} \right]. \tag{35}
\]

Now, note that if \(G(n, n \delta) \) is a random geometric graph on the torus \(S \) then the event

\[
\bigcup_{i \in [n]} \left\{ U_i \subseteq \bigcup_{k \in [n] \setminus \{i\}} B(U_k, n \delta) \right\}, \tag{36}
\]

is same as the event that there is at least one node in the graph \(G(n, n \delta) \). Thus,

\[
P[A(t)] \leq P[M \geq 1], \tag{37}
\]

where \(M \) is the number of edges in the graph \(G(n, n \delta) \). For a random geometric graph \(G(n, r) \), \(P[M \geq 1] \to 0 \) if \(r n \to 0 \) as \(n \to +\infty \). Hence, if \(vn^2 \to 0 \) we have \(P[A(t)] \to 0 \) as \(n \to +\infty \). Since \(\gamma_n \) is a Cesaro mean sequence of \(P[A(t)] \), we have \(\gamma_n \to 0 \). This proves the first part.

For the second part, define

\[
\tilde{\Delta}_k^i(t) = \begin{cases} 0 & \text{if } \Delta_k^i(t) \leq \delta \left(\frac{n}{2}\right) \\ \text{otherwise} & \end{cases}, \tag{38}
\]

By Lemma 1 there are at least \(\frac{n}{2} - 1 \) vehicles at any time slot \(t \) such that \(\tilde{\Delta}_k^i(t) > \delta \left(\frac{n}{2}\right) \). Using (34) we get

\[
P[A(t)] = P \left[\bigcup_{i \in [n]} \left\{ \bigcup_{k \in [n] \setminus \{i\}} B(U_k, \delta \left(\frac{n}{2}\right)) \right\} \right], \tag{39}
\]

\[
\geq P \left[\bigcup_{i \in [n]} \left\{ \bigcup_{k \in [n] \setminus \{i\}} B(U_k, \delta \left(\frac{n}{2}\right)) \right\} \right], \tag{40}
\]

\[
\geq P \left[\bigcup_{i \in [n]} \left\{ \bigcup_{k \in [\frac{n}{2} - 1] \setminus \{i\}} B(U_k', \delta \left(\frac{n}{2}\right)) \right\} \right], \tag{41}
\]

where \(U'_k \) denote location of vehicles with \(\tilde{\Delta}_k^i(t) = \frac{n \delta}{2} \). Since the communication schemes under consideration are location independent, \(U'_k \)s will be independent and uniformly distributed over \(S \). Since there are \(\left[\frac{n}{2} - 1\right] \) of them we have

\[
P[A(t)] \geq P \left[\bigcup_{i \in [n]} \left\{ \bigcup_{k \in [\frac{n}{2} - 1] \setminus \{i\}} B(V_k, \delta \left(\frac{n}{2}\right)) \right\} \right], \tag{42}
\]

where \(V_i \), for \(i \in N' = \{1, 2, \ldots, \left[\frac{n}{2} - 1\right]\} \), are independent and uniformly distributed over \(S \). We, therefore have,

\[
\bigcup_{i \in [n]} \left\{ V_i \subseteq \bigcup_{k \in [\frac{n}{2} - 1] \setminus \{i\}} B(V_k, \delta \left(\frac{n}{2}\right)) \right\} = \{M \geq 1\}, \tag{43}
\]

where \(M \) is the number of edges in the random geometric graph \(G(\left[\frac{n}{2} - 1\right], \frac{n \delta}{2}) \). For \(G(n, r) \), \(P[M \geq 1] \to 0 \) if \(r n \to \infty \). Hence, if \(vn^2 \to \infty \) we have \(P[A(t)] \to 1 \) as \(n \to \infty \). Since \(\gamma_n \) is a Cesaro mean of \(P[A(t)] \), we have \(\gamma_n \to 1 \) as \(n \to \infty \).
TABLE I

	2D Network	3D Network
individual hazard rate	\(n^{-3/2} \)	\(n^{-5/3} \)
network hazard rate	\(n^{-2} \)	\(n^{-5/3} \)

A. Generalization to All \(O(n) \)-recurrent Schemes

It turns out that the results of Theorem 1 and 2 for the round robbin scheme hold for any \(O(n) \)-recurrent communication scheme.

Corollary 1: For any \(O(n) \)-recurrent communication scheme, if \(v \) scales in \(n \) such that

1. \(vn^{3/2} \to 0 \) then, for all \(i \in N \),
 \[
 \lim_{n \to \infty} \gamma_i^n = 0. \tag{43}
 \]
2. \(vn^2 \to 0 \) then
 \[
 \lim_{n \to \infty} \gamma_n = 0. \tag{44}
 \]

Proof: The proof is same as that of Theorem 1 and Theorem 2, as for an \(O(n) \)-recurrent scheme, \(\Delta_k(t) \leq cn \) for all \(i, k \in N \), all large \(t \) and some positive constant \(c \).

V. 3D NETWORK MODEL

We now extend the threshold results proved in Theorem 1 and 2 to a similar network in three dimensional space. Consider \(n \) autonomous vehicles inside the space \(S_3 = [0, 1]^3 \). The distance between two points \(x = (x_1, x_2, x_3) \in S_3 \) and \(y = (y_1, y_2, y_3) \in S_3 \) is given by

\[
d_3(x, y) = \min_{e \in \{-1, 0, 1\}^3} \|x + e - y\|_2. \tag{45}
\]

The rest of the system model is same as stated in Section II. In this case, we can again show that, both the individual and network hazard rate has a threshold behaviour with respect to maximum speed \(v \). The thresholds, however, are different.

Theorem 3: Hazard rates \(\gamma_i^n \) and \(\gamma_n \) have threshold behaviour with respect to \(v \), as \(n \to \infty \). This threshold for \(\gamma_i^n \) is \(n^{-4/3} \) and for \(\gamma_n \) it is \(n^{-5/3} \). And, the round robbin scheme attains the smallest hazard rates as \(n \to \infty \).

This result shows that the speed thresholds for the 3D network are larger than those for the 2D network of Section II. We compare them in Table I. This implies that it is better to plan an autonomous vehicular network over a three dimensional space than a two dimensional one, as the former provides for higher mobility. We now state the proof of Theorem 3.

Proof of Theorem 3: The proof is same as that of Theorem 1 and 2. We use the fact that for a random geometric graph \(G(n, r) \) on \(S_3 \) the probability that there is at least one edge, \(P[M \geq 1] \to 0 \) if \(n^{2/3}r \to 0 \) and \(P[M \geq 1] \to 1 \) if \(n^{2/3}r \to \infty \); see [20].

VI. CONCLUSIONS

We analyzed the impact of wireless interference constrains on maximum attainable speed in an autonomous vehicular network. We defined hazard rate, a measure of network safety, and showed that it follows a threshold behaviour with respect to maximum speed \(v \) as \(n \to \infty \). We saw that below the threshold, a simple round robbin scheme attained the minimum hazard rate as \(n \to \infty \). The speed thresholds for the 3D network were proved to be higher than those for the 2D network. This shows that planning autonomous vehicular networks over a three dimensional space can ensure greater safety or network awareness.

REFERENCES

[1] V. Kumar and N. Michael, “Opportunities and challenges with autonomous micro aerial vehicles,” Int. J. Robotics Research, vol. 31, pp. 1279–1291, Sep. 2012.
[2] A. Kushlevy, D. Mellinger, C. Powers, and V. Kumar, “Towards a swarm of agile micro quadrotors,” Autonomous Robots, vol. 35, pp. 287–300, Nov. 2013.
[3] O. K. Sahinoglu, “Networking models in flying ad-hoc networks (FANETs): Concepts and challenges,” J. Intell. Robotics Syst., vol. 74, pp. 513–527, Apr. 2014.
[4] I. Bekmezci, O. K. Sahinoguz, and S. Temel, “Flying ad-hoc networks (FANETs): A survey,” Ad Hoc Networks, vol. 11, pp. 1254–1270, May 2013.
[5] A. Kumar, D. Manjunath, and J. Kuri, Wireless Networking. Morgan Kaufmann Publishers, 2008.
[6] P. Gupta and P. Kumar, “The capacity of wireless networks,” IEEE Trans. Info. Theory, vol. 46, pp. 388–404, Mar. 2000.
[7] M. Grossglauser and D. Tse, “Mobility increases the capacity of ad hoc wireless networks,” IEEE/ACM Trans. Netw., vol. 10, pp. 477–486, Aug. 2002.
[8] M. Neely and E. Modiano, “Capacity and delay tradeoffs for ad hoc mobile networks,” IEEE Trans. Info. Theory, vol. 51, pp. 1917–1937, Jun. 2005.
[9] A. El Gamal, J. Mammen, B. Prabhakar, and D. Shah, “Optimal throughput-delay scaling in wireless networks - part I: the fluid model,” IEEE Trans. Info. Theory, vol. 52, pp. 2568–2592, Jun. 2006.
[10] A. Clementi, F. Pasquale, and R. Silvestri, “Opportunistic MANETs: Mobility can make up for low transmission power,” IEEE/ACM Trans. Netw., vol. 21, pp. 610–620, Apr. 2013.
[11] G. Sharma and R. Mazumdar, “On achievable delay/capacity trade-offs in mobile ad hoc networks,” in Proc. WIOpt, Mar. 2004.
[12] X. Lin, G. Sharma, R. Mazumdar, and N. Shroff, “Degenerate delay-capacity tradeoffs in ad-hoc networks with brownian mobility,” IEEE Trans. Info. Theory, vol. 52, pp. 2777–2784, Jun. 2006.
[13] C. M. Cheng, P. H. Hsiao, H. T. Kung, and D. Vlah, “Maximizing throughput of uav-relaying networks with the load-carry-and-deliver paradigm,” in Proc. WCNC, pp. 4417–4425, Mar. 2007.
[14] W. Zhao, M. Ammar, and E. Zegura, “A message ferrying approach for data delivery in sparse mobile ad hoc networks,” in Proc. Mobihoc, pp. 187–198, May 2004.
[15] S. Karaman and E. Frazzoli, “High-speed flight in an ergodic forest,” in Proc. ICRA, pp. 2899–2906, May 2012.
[16] J. Y. L. Boudec and M. Vojnovic, “Perfect simulation and stationarity of a class of mobility models,” in Proc. INFOCOM, vol. 4, pp. 2743–2754, Mar. 2005.
[17] A. Clementi, A. Monti, F. Pasquale, and R. Silvestri, “Information spreading in stationary markovian evolving graphs,” IEEE Trans. Parallel and Dist. Sys., vol. 22, pp. 1425–1432, Sep. 2011.
[18] D. P. Bertsekas and R. G. Gallager, Data Networks. Prentice Hall, 2 ed., 1992.
[19] R. Durrett, Probability: Theory and Examples. Cambridge University Press, 4 ed., 2010.
[20] M. Penrose, Random Geometric Graphs. Oxford Studies in Prob., 1 ed., 2003.