Ambiguidade genital em indivíduo 46,XY: relato de caso

Genital ambiguity in a 46,XY individual: case report

Jadi Colaço, Andressa Peche Tochetto1, Amanda Milman Magdaleno1, Carolina Perez Moreira1, Tadiela Lodéa Rodrigues2, Lionel Leitzke3, Paulo de Jesus Hartmann Nader1,4, Guilherme Guaragna Filho4,5

Resumo
A ambiguidade genital faz parte dos distúrbios da diferenciação do sexo. Seu pronto reconhecimento e sua investigação etiológica precoce e precisa são fundamentais para seu manejo adequado. Descrevemos um paciente com genitália ambígua, nascido de parto cesariano devido à pré-eclâmpsia grave e oligodrâmnio com 34 semanas e 2 dias, 1505g, considerado pequeno para idade gestacional (PIG). Ao exame apresentava falus de 1.9cm, meato uretral penoescrotal e gônadas palpáveis bilateralmente. Na investigação, apresentou testosterona (T), androstenediona (A) e di-hidrotestosterona (DHT) normais; relações T/DHT de 9.7 (<10) e T/A de 7.4 (>0.8) e cariótipo 46,XY. Decidido pelo registro no sexo masculino. Realizado teste de estímulo com testosterona, apresentando aumento peniano de 1.5cm. A restrição do crescimento intrauterino é fator de risco considerável para ambiguidade genital em indivíduos 46,XY. Esta parece ser a etiologia nesse caso, visto sua avaliação hormonal e citogenética normais e a resposta ao estímulo com testosterona.

Abstract
Genital ambiguity is part of the disorders of sex development. Its prompt recognition and early and precise etiological investigation are fundamental to its proper management. A patient with ambiguous genitalia, born cesarean due to severe pre-eclampsia and oligohydramnios at 34 weeks and 2 days, 1505g, considered small for gestational age (SGA). Examination showed an 1.9cm falus, penoscrotal urethral meatus and bilaterally palpable gonads. In the investigation, he presented normal testosterone (T), androstenedione (A) and dihydrotestosterone (DHT); T/DHT ratio of 9.7 (<10) and T/A of 7.4 (>0.8) and karyotype 46,XY. It was decided for male sex assignment. Testosterone stimulus test was performed, showing penis enlargement of 1.5cm. Intrauterine growth restriction is a considerable risk factor for genital ambiguity in individuals 46,XY. This seems to be the etiology in this case, given its normal hormonal and cytogenetic evaluation and the response to the testosterone stimulus. Disorders of Sex Development, Fetal Growth Retardation, Testis.

Palavras-chave:
Transtornos do Desenvolvimento Sexual, Retardo do Crescimento Fetal, Testículo.

Keywords:
Disorders of Sex Development, Fetal Growth Retardation, Testis.

1 Universidade Luterana do Brasil (ULBRA), Curso de Medicina - Canoas - Rio Grande do Sul - Brasil.
2 Hospital Universitário da ULBRA, Serviço de Psicologia - Canoas - Rio Grande do Sul - Brasil.
3 Hospital Universitário da ULBRA, Serviço de Cirurgia Pediátrica - Canoas - Rio Grande do Sul - Brasil.
4 Hospital Universitário da ULBRA, Serviço de Pediatria - Canoas - Rio Grande do Sul - Brasil.
5 Universidade Federal do Rio Grande do Sul (UFRGS), Faculdade de Medicina, Departamento de Pediatria - Porto Alegre - Rio Grande do Sul - Brasil.

Endereço para correspondência:
Jadi Colaço.
Universidade Luterana do Brasil (ULBRA). Av. Farroupilha, 8001 - São José, Canoas - RS, Brasil. CEP: 92425-020. E-mail: jadi.ulbra@gmail.com
INTRODUÇÃO

A ambiguidade genital é uma das formas de apresentação clínica dos distúrbios da diferenciação do sexo (DDS), antigamente conhecido como intersexo ou hermafroditismo. Estes são condições congênitas em que o desenvolvimento cromossômico, gonadal e/ou do sexo anatômico é atípico. Nesse contexto, os DDS com cariótipo 46,XY são condições bastante desafiadoras pois, mesmo com uma gama de possíveis causas etiológicas, de 30% a 40% dos casos ainda não tem uma causa genética determinada.

Além disso, a genitália ambígua nos DDS 46,XY pode se apresentar em diversos graus. Com isso, o pronto reconhecimento desse quadro, assim como sua investigação etiológica precoce e precisa, é fundamental para seu manejo adequado, evitando inadequações quanto ao sexo de criação.

RELATO DE CASO

Paciente nascido de parto cesariano, com idade gestacional de 34 semanas e 2 dias, devido à pré-eclâmpsia grave, com restrição do crescimento intrauterino (RCIU) e oligodrâmnio. Apresentava ao nascimento Apgar 8/9, comprimento de 37.5cm e peso de 1.505g, considerado como pequeno para idade gestacional (PIG) segundo a curva de Battaglia e Lubchenco. A mãe apresentava diagnóstico prévio de obesidade (índice de massa corporal de 43,3kg/m²) e diabetes mellitus tipo 2, tendo tratado com metformina e insulina na gestação. A ultrassonografia gestacional apontava como o sexo feminino. No exame inicial, foi identificada ambiguidade genital com falus de 1.9cm, com chordee, meato uretral penoescrotal e fusão completa das saliências labioescrotais, porém de aspecto bifido e sem enrugamento ou pigmentação; havia inversão penoescrotal parcial e gônadas de tamanho normal, palpáveis bilateralmente (Figura 1A). O escore de masculinização externa (EMS), conforme Ahmed et al., era de 5.5. Ademais, apresentava artéria umbilical única. Na investigação pela equipe interdisciplinar, apresentou dosagens hormonais dentro do esperado para período da minipuberdade (Tabela 1) e cariótipo 46,XY. Após avaliação, a equipe assistente, em conjunto com os pais, decidiu pelo registro no sexo masculino.

No acompanhamento ambulatorial, foi realizado teste de estímulo com cipionato de testosterona intramuscular, dose mensal de 40mg por 3 meses consecutivos, apresentando hiperpigmentação e aumento no tamanho do pênis (agora medindo 3.4cm, Figura 1B). Foi considerado como uma boa resposta. Com 1 ano e 10 meses, foi realizado teste de estímulo com β-HCG 1500UI por 3 dias consecutivos e coletado exames 24 horas após a última aplicação. Paciente apresentou resposta adequada da testosterona (maior que 150ng/dl, Tabela 1).

DISCUSSÃO

A ambiguidade genital é o espectro de maior gravidade entre DDS, sendo classificada como uma emergência médica. É uma condição rara, com sua prevalência global real sendo controversa. Dependendo da causa, os DDS podem ter repercussão por toda a vida, afetando não só o processo de diferenciação sexual, como também o desenvolvimento puberal na adolescência e a fertilidade na vida adulta. O reconhecimento e manejo de uma genitália ambígua deve ocorrer logo ao nascimento, tendo como medida inicial a retenção provisória do registro civil e a explicação do quadro à família. Nesse contexto, exames hormonais e citogenéticos são muito importantes para o diagnóstico etiológico adequado e consequente definição do sexo para liberação do registro civil e correção cirúrgica.

No caso apresentado, tendo o resultado do cariótipo, não identificou-se anormalidade cromossômica, sendo o paciente classificado como um DDS 46,XY, conforme o proposto pelo consenso de 2006. A definição etiológica da ambiguidade genital nesses indivíduos é complexa, pois a diferenciação sexual...
Tabela 1. Dosagens hormonais na investigação.

	4 dias de vida	46 dias de vida	Pós β-HCG (660 dias de vida)
FSH (mIU/mL)*	1.45	3.99	
LH (mIU/mL)**	5.05	9.99	
Testosterona (ng/dL)	179.0	156.0	221.0
DHT (pg/mL)†	82.0		228.0
Androstenediona (ng/mL)	2.4		0.3
Relação T/DHT†	21.83		9.7
Relação T/A10	0.746		7.4

*Hormônio Folículo-Estimulante; **Hormônio Luteinizante; †Di-hidrotestosterona; ‡Relação Testosterona/Di-hidrotestosterona; 10 Relação Testosterona/Androstenediona.

masculina depende de um número maior de eventos do que no sexo feminino. Entre as causas mais frequentes de DDS 46,XY, se destacam a deficiência da 5α-reductase tipo 2 (D5αR2), cuja conversão de testosterona (T) em di-hidrotestosterona (DHT) está prejudicada; a deficiência da 17-β-hidroxysteroida desidrogenase tipo 3 (17-β-HSD3), que afeta a conversão da androstenediona (A) em T; e a síndrome de insensibilidade parcial aos andrógenos (PAIS), cujo problema se encontra no receptor de andróginos. Além desses, ressalta-se também os casos idiopáticos, compreendendo uma parcela significativa dos casos e que a RCIU parece apresentar importante relação com sua gênese.

Na investigação do paciente, foram realizadas dosagens hormonais no período da minipuberdade (primeiros 3-4 meses de vida), assim como o teste de estímulo com β-HCG conforme preconizado pelos consensos. Assim, os valores de testosterona dentro da normalidade assim como as gônadas palpáveis e tôpicas, levam a descartar o diagnóstico de disgenesia gonadal. Avaliando a relação entre os vários andrógenios dosados após o teste de estímulo com β-HCG, a relação T/A mostrou-se maior que 0.8, excluindo a 17-β-HSD3 e a relação T/DHT apresentou valor abaixo de 10, sugerindo fortemente não se tratar de D5αR2. Ademais, o paciente apresentou uma resposta considerada boa ao estímulo com testosterona (incremento do tamanho peniano de 1.5cm), o que sinaliza fortemente contra a hipótese de PAIS. Entretanto, ressalta-se que a análise molecular continua sendo o método mais preciso para o diagnóstico das causas acima citadas, porém sua realização é dispendiosa e restrita a poucos centros.

Dessa forma, com esse perfil hormonal, tendo em vista que na gestação apresentou fatores que precipitam falência placentalícia (oligodrâmnio, pré-eclâmpsia e artéria umbilical única) e o paciente nascer PIG, o mais provável é que o quadro seja devida à RCIU. Estudos sugerem que insuficiência placentalícia no primeiro trimestre de gestação (quando ocorre todo o processo de diferenciação sexual), leva a uma secreção inadequada de HCG, essencial nesse período para estimular as células de Leydig fetais, resultando em uma produção insuficiente de testosterona e, consequentemente, de DHT. Esta última imprescindível para induzir a diferenciação da genitália externa masculina.

Por outro lado, além da RCIU, a mãe apresentava diabetes na gestação. Nesse contexto, estudos sugerem que diabetes na gestação podem também gerar disfunção placentalícia, afetando o balanço hormonal fetal. No entanto, é pouco provável que essa doença esteja ligada a etiologia principal do quadro, porque nesses casos os recém-nascidos apresentam macrossomia, sendo considerados como grande para idade gestacional (GIG).

A relevância desse caso reside não só na sua raridade, como também na dificuldade de seu manejo. As consequências psicossociais relativas aos DDS com abordagem inadequada podem ser catastróficas. Para evitar isso, é necessário que o indivíduo com DDS e sua família sejam acompanhados por uma equipe multidisciplinar experiente no tema.

REFERÊNCIAS

1. Lee PA, Houk CP, Ahmed SF, Hughes IA, International Consensus Conference on Intersex organized by the Lawson Wilkins Pediatric Endocrine Society and the European Society for Paediatric Endocrinology. Consensus Statement on Management of Intersex Disorders. International consensus conference on intersex. Pediatrics. 2006 Ago;118(2):e488-500.
2. Poyrazoglu S, Darendeliler F, Ahmed SF, Hughes I, Bryce J, Jiang J, et al. Birth weight in different etiologies of disorders of sex development. J Clin Endocrinol Metab. 2017 Mar;102(3):1044-50.
3. De Paula G, Barros BA, Carpiní S, Tincani BJ, Mazzola TN, Guaranaga MS, et al. 408 cases of genital ambiguity followed by single multidisciplinary team during 23 years: etiologic diagnosis and sex of rearing. Int J Endocrinol. 2016 Nov;2016:4963574.
4. Battaglia FC, Luchbenco LO. A practical classification of newborn infants by weight and gestational age. J Pediatr. 1967 Ago;71(2):159-63.
5. Ahmed SF, Khwaja O, Hughes IA. The role of a clinical score in the assessment of ambiguous genitalia. BJU Int. 2000;85(1):120-4.
6. Lee PA, Nordenström A, Houk CP, Ahmed SF, Aucus R, Baratz A, et al. Global disorders of sex development update since 2006: perceptions, approach and care. Horm Res Paediatr. 2016;85(3):158-80.
7. Ahmed S, Iqbal A, Hughes IA. The testosterone: androstenedione ratio in male undermasculinization. Clin Endocrinol (Oxf). 2000 Dez;53(6):697-702.
8. Mendonça BB, Batista R, Domenic S, Costa EM, Arnhold U, Russell DW, et al. Steroid 5α-reductase 2 deficiency. J Steroid Biochem Mol Biol. 2016 Out;163:206-11.
9. Burstein S, Grumbach MM, Kaplan S. Early determination of androgen-receptor deficiency is important in the management of microphallus. Lancet. 1979;2(8150):983-6.
10. Ishi T, Hayashi M, Suwani A, Amano N, Hasegawa T. The effect of intra-muscular testosterone enanthate treatment on stretched penile length in prepubertal boys with hypospadias. Urology. 2010;76(1):97-100.
11. Ahmed SF, Bashamboo A, Lucas-Herald A, McEreavey K. Understanding the genetic aetiology in patients with XY DSD. Br Med Bull. 2013;106:67-89.
12. Chen MJ, Macias CG, Ginn S, Dietrich J, Roth DR, Schlomer B, et al. Intrauterine growth restriction and hypospadias: is there a connection?. Int J Pediatr Endocrinol. 2014 Out;2014(1):20.
13. Toufaily MH, Roberts DJ, Westgate MN, Hunt AT, Holmes LB. Hypospadias, intrauterine growth restriction, and abnormalities of the placenta. Birth Defects Res. 2018;2018(102):122-7.
14. Yinon Y, Kingdom JC, Proctor LK, Kelly EN, Salle JL, Wherrett D, et al. Maternal diabetes mellitus and genital anomalies in male offspring: a nationwide cohort study in 2 Nordic countries. Epidemiology. 2018 Mar;29(2):280-9.