Milan Melník, Peter Mikuš, Clive E. Holloway

Crystallographic and structural characterization of heterometallic platinum complexes
Part X. Heteropolynuclear pt complexes

Abstract: This review covers heteropolynuclear platinum complexes. There are over sixty examples with heterometal atoms as partners including non-transition metals, K, Cs, Mg, Ca, Sr, Tl, Sn, Pb, Zn, Cd, and transition metals: Cu, Ag, Fe, Co, Ni, Rh and Pd. In addition, there are examples for the lanthanides, Eu and Yb. The most common are Ag (x16) and K (x14). The predominant geometries for Pt(II) is square-planar and for Pt(IV) is octahedral. The overall structures are complex. In spite of the wide variety of heterometal atoms partners of platinum, there is “real” Pt-M bonds only with silver, ranging from 2.678 to 2.943(1) Å (ave 2.855 Å). The mean Pt-Pt bond distance is 2.869 Å.

Keywords: structure, heteropolynuclear, platinum, classify, analyze

DOI: 10.1515/chem-2015-0095
received July 9, 2014; accepted January 14, 2015.

1 Introduction

There has been increasing interest in recent years in the synthesis of heterometallic compounds. Structural details have attracted much attention from the viewpoint of nano-scale science, supramolecular chemistry, crystal engineering and solid state chemistry properties. Weak interactions such as hydrogen-bonding, charge transfer interactions and weak metal-metal heteronuclear bonding, along with strong chemical bonds, have been found to be important in such systems. The heterometallic platinum complexes are no exception. Up to the end of the year 2000 there have been numerous published structural studies on heterometallic platinum complexes (clusters). We have already analyzed and discussed the factors which can lead to better understanding of the stereochemical interactions in the heterobinuclear to heterooligonuclear platinum clusters [1-9]. This review article presents a brief survey on the crystal and structural data of heteropolynuclear platinum complexes. This review together with its precursors [1-9], represents the first comprehensive overview of almost one thousand and five hundred heterometallic platinum complexes (clusters) for which the structures have been established by X-ray crystallographic techniques.

2 Heteropolynuclear Pt complex

Due to complex nature of the structures of these heteropolynuclear complexes, the systems have been classified according to the coordination number of the platinum. The complexes have been listed and referenced in order of increasing coordination number, increasing complexity of the inner coordination sphere, and increasing atomic number of the principle coordinating donor.

2.1 Complexes with PtO₄ and PtN₄ chromophores

There are over twenty heteropolynuclear platinum complexes with PtO₄ and PtN₄ chromophores for which the crystallographic and structural parameters are gathered in Table 1. The structure of monoclinic colorless [Pt(µ-acac),Ag(µ-CF₃SO₃),Ag(H₂O)] [10] can be described as a 2-D sheet comprised of three units, {Ag(H₂O)}₂[Ag(CF₃SO₃)]
Table 1: Crystallographic and structural data for heteropolynuclear platinum complexes with PtO₄ and PtN₄ chromophores.

COMPOUND	Cr. sys.	Sp.gr.	a [Å]	b [Å]	c [Å]	α [°]	β [°]	γ [°]	Chromophore	M-L [Å]	M-M [Å]	L-M-L [°]	Ref		
[Pt(µ-acac)₂Ag.₃(µ-CF₃SO₃)₂Ag.₃(H₂O)]₂	m	m	13.039(7)	12.287(3)	102.90(2)	102.04(1)	115.17(3)	43.58(4)	PtO₄	acacO,1.978(9,12)	acacO,2.53(1,6)	H₂O,2.28(1)	acacO,2.43(1,9)	10	
[Pt(µ-ox)₂Ag.₂(H₂O)₂]	m	m	9.745(2)	7.913(1)	117.05(1)	115.81(9)	102.32(17)	93.7(5)	PtO₄	oxO,2.003(4,0)	oxO,2.595(6,37)	H₂O,2.463(9,39)	not given	10	
Rb₁.₆₇Pt(µ-ox)₂.1.₅H₂O	tr	C₂/m	12.690(10)	17.108(14)	11.357(3)	99.54(9)	115.81(9)	102.32(17)	PtO₄	RbO₇	RbO₈	oxO,2.01(2,4)	11		
K₁.₆₇Pt(µ-ox)₂.1.₂H₂O	tr	C₂/m	9.749(9)	11.403(18)	10.694(3)	99.54(9)	115.81(9)	102.32(17)	PtO₄	KOn	oxO,2.00(1)	not given	12		
Ni₁.₈₄Pt(µ-ox)₂.6H₂O	m	C₂/n	7.086(7)	14.085(7)	127.0(1)	127.3(1)	100.59(4)	111.73(4)	PtO₄	NiO₆	oxO,2.00(1)	not given	13		
Co₁.₈₃Pt(µ-ox)₂.6H₂O	m	C₂/m	14.379(2)	16.501(2)	5.682(1)	93.7(5)	115.81(9)	102.32(17)	PtO₄	CoO₆	oxO,2.003(7)	2.024(8)	H₂O,2.138(7)	2.243(9,16)	15
Mg₁.₈₂Pt(µ-ox)₂.₅.₅H₂O	m	Cccm	16.56(1)	14.27(1)	5.70(1)	93.7(5)	115.81(9)	102.32(17)	PtO₄	MgO₆	oxO,1.98(3)	2.01(3)	H₂O,2.135(5)	2.23(5)	16
Ca⁻¹⁻⁻Pt(µ-ox)₂.3.H₂O	m	C₂/m	9.33(3)	10.72(3)	6.36(1)	93.7(5)	115.81(9)	102.32(17)	PtO₄	CaO₂	oxO,2.00(1)	not given	17		
[Cu(en)₂]⁻¹⁻⁻Pt(µ-ox)₂.2H₂O	m	C₂/m	21.52(4)	24.14(4)	14.16(4)	93.7(5)	115.81(9)	102.32(17)	PtO₄	CuN₂O₂	oxO,2.00(2)	not given	18		
[Ni(oaoH₂)₂]⁻⁻⁻Pt(µ-ox)₂.2H₂O	m	m	3.673(1)	9.418(6)	12.25(8)	94.01(2)	95.11(2)	111.73(4)	PtO₄	CuN₂O₂	oxO,2.007(4)	2.019(4)	N,N,86.4(7)	19	
{Ni(oao)}⁻⁻⁻Pt(µ-ox)₂.2H₂O	m	m	13.622(4)	13.417(4)	92.14(2)	94.01(2)	95.11(2)	111.73(4)	PtO₄	CuN₂O₂	oxO,2.007(4)	2.019(4)	N,N,86.4(7)	20	
Table 1: Crystallographic and structural data for heteropolynuclear platinum complexes with PtO₄ and PtN₄ chromophores.

COMPOUND (colour)	Cr. sys.	Sp.gr.	a [Å]	b [Å]	c [Å]	α [°]	β [°]	γ [°]	Chromophore	M-L [Å]	M-M [Å]	L-M-L [°]	Ref
K₂Pt(µ-memal)₂. 2H₂O (red)	tr	Pim	4.059(1)	9.107(2)	10.111(2)	98.49(1)	101.28(1)	101.84(1)	PtO₄	0.200(4)	2.010(4)		21
		1							KO				
K₂Pt(µ-piv) 3thf (pale brown)	m	P2₁/n	13.029(3)	15.948(4)	20.253(5)				PtO₄	0.209(7,4)	2.018(6,4)		22
		4							KO				
trans-[(NH₄)₂Pt(µ-η²-meu)₂Ag(NO₃)₂(H₂O)]	or	Pna₂	13.206(6)	7.238(9)	22.65(10)				PtO₄				
NHDMe)Ag(
(NO₃)₄H₂O													
(colorless)		4											
cis-[(NH₄)₂Pt(µ-η²-NHCOMe)₂Ag(NH₄)₂NO₃	tg	I₄/ a	15.874(2)						PtN₄				
NHDMe)Ag(
(NO₃)₄H₂O													
(colorless)		16											
trans-[(NH₄)₂Pt(µ-η²-NHCOMe)₂Ag(NH₄)₂NO₃	tr	Pm	7.143(3)	8.416(5)	11.544(6)				PtN₄				
(NO₃)₄H₂O													
(colorless)		2											
trans-[(NH₄)₂Pt(µ-η²-NHCOMe)₂Ag(NH₄)₂NO₃	m	C₂/c	5.345(1)	23.998(5)	12.47(4)				PtN₄				
(NO₃)₄H₂O													
(colorless)		8											
trans-[(NH₄)₂Pt(µ-η²-MeH)(µ-η³-MeH)Ag(NO₃)₃.H₂O	m	P2₁/n	15.107(3)	6.971(1)	24.447(5)				PtN₄				
(NO₃)₄H₂O													
(colorless)		4											
trans-[(NH₄)₂Pt(µ-η²-MeH)(µ-η³-MeH)Ag(NO₃)₃.H₂O	tr	Pm	7.520(2)	12.025(2)	14.962(3)				PtN₄				
(NO₃)₄H₂O													
(colorless)		2											
trans-[(NH₄)₂Pt(µ-η³-NHCOMe)₂Ag(NH₄)₂NO₃	m	C₂/c	5.345(1)	23.998(5)	12.47(4)				PtN₄				
(NO₃)₄H₂O													
(colorless)		8											
trans-[(NH₄)₂Pt(µ-η³-NHCOMe)₂Ag(NH₄)₂NO₃	tr	Pm	7.520(2)	12.025(2)	14.962(3)				PtN₄				
(NO₃)₄H₂O													
(colorless)		2											
cis-[(NH₄)₂Pt(µ-η³-NHCOMe)₂Ag(NH₄)₂NO₃	tr	Pm	7.520(2)	12.025(2)	14.962(3)				PtN₄				
(NO₄)₂H₂O													
(colorless)		2											
trans-[(NH₄)₂Pt(µ-η³-NHCOMe)₂Ag(NH₄)₂NO₃	m	C₂/c	5.345(1)	23.998(5)	12.47(4)				PtN₄				
(NO₄)₂H₂O													
(colorless)		8											
trans-[(NH₄)₂Pt(µ-η³-NHCOMe)₂Ag(NH₄)₂NO₃	tr	Pm	7.520(2)	12.025(2)	14.962(3)				PtN₄				
(NO₄)₂H₂O													
(colorless)		2											
cis-[(NH₄)₂Pt(µ-η³-NHCOMe)₂Ag(NH₄)₂NO₃	tr	Pm	7.520(2)	12.025(2)	14.962(3)				PtN₄				
(NO₄)₂H₂O													
(colorless)		2											

Footnotes:
a. Where more than one chemically equivalent distance or angle is present, the mean value is tabulated. The first number in parenthesis is the e.s.d., and the second is the maximum deviation from the mean.
b. The chemical identity of the coordinated atom or ligand is specified in these columns.
c. There are four crystallographically independent molecules.
d. Five-membered metallocyclic ring.
e. Six-membered metallocyclic ring.
and \{Pt(acac)\}_2. The repeating unit is shown in Fig. 1(a) and (b) where an inversion center at the midpoint of two Ag(1) atoms is observed. Two of the silver atoms, Ag(1) and Ag(1’), are quadruple bridged by triflates in µ3-0,0” fashion. The \{Ag_2(CF_3SO_3)_4\} moiety has the so called “lantern” type structure. The two external \{Pt(acac)\}_2 units are connected to this \{Ag_2(CF_3SO_3)_4\} moiety through the \{Ag(H_2O)\} units. The repeating units are further connected to each other by the Ag(1)-Pt bond (2.814(1) Å to form the 2-D sheet (Fig. 1c).

Another monoclinic colorless Pt(µ-ox) Ag_2(H_2O)_2 \[10\] has a stacked 2-D layer structure composed of \(\{Pt(ox)\}_2\)\^2\^- anions and water and a silver(I) atom connected by three types of Ag-O bonds (Table 1). There are two interlayer interactions, one being a Pt to Ag dative bond (2.943(1) Å), and the other a water O(3) to Ag coordination bond (2.502(9) Å).

In triclinic “copper colored” Rb_1.67Pt(ox)_2.15H_2O \[11\], the planar \{Pt(ox)\}_2 anions stack parallel to the b axis of the crystal. The Pt atoms of non-integral oxidation state Pt(+2.33) form a six-fold distorted chain along the b axis.

Three independent Pt-Pt distances are 2.715(2), 2.832(3) and 3.014(2) Å, with Pt-Pt-Pt angles of 177.93(12) and 174.34(7)°. The oxalate ligands are bidentate -O,O’ and are staggered (46°, 55°, 80°) with respect to the ligands directly above and below them along the chain, while the alternate ligands are eclipsed or staggered (~90°).

There are four independent \(\{Pt(ox)\}_2\)\^3\^- anions based on the assumption of D_{2h} symmetry. The structure contains five independent rubidium atoms, three being seven-, while two are eight- coordinated (Table 1). The neighboring Pt chains are linked by the coordination of the terminal oxygen atoms to the Rb atoms.

In triclinic K_1.6Pt(ox)_2 × 1.2H_2O complex \[12\] the \(\{Pt(ox)\}_2\)\^2\^- groups are stacked face-to-face along the b axis to form a tetrahedral distorted linear chain. There are two independent Pt-Pt bond distances, Pt(1)-Pt(3) 2.837 and Pt(3)-Pt(2) 2.868 Å and a Pt(1)-Pt(3)-Pt(2) angle of 175°. The bidentate oxalate ligands are staggered (~45°) with respect to the ligand directly above and below it in the chain. The structure of monoclinic K_2Pt(ox)_2 × H_2O \[13\] is one-dimensional polymeric.

There are four bis(oxalato)platinate salts of the general formula M Pt(ox)_x × yH_2O, where M is a bivalent cation: Ni \[14\], Co \[15\], Mg \[16\] or Ca \[17\], x = 0.82 - 1.0 and y = 3.5 - 6.0. Their one-dimensional polymeric structures are similar. Within a platinum chain, oxalate ligands are staggered with respect to the ligands located directly above and below them. The mean Pt-Pt bond distance in these salts is 2.84 Å. The M(II) atoms are located between the planes containing \(\{Pt(ox)\}_2\)\^3\^- anions and are coordinated by water molecules. The Pt(II) atoms are four-coordinated (PtO_4), and the M(II) atoms are six-coordinated (MO_6).

Pale yellow \{Cu(en)\}_0.8Pt(ox)_2.2H_2O \[18\] has an orthorhombic lattice and a 5-fold platinum sequence along the elongated chain. The mean Pt-Pt bond distance is 2.83(1) Å. Triclinic red brown \{Cu(en)\}_2Pt(ox)_2 \[19\] contains two crystallographically related planar \(\{Pt(ox)\}_2\)\^3\^- anions and two crystallographically non-equivalent \{Cu(en)\}_2\^2\^- cations. The structure is built up of zig-zag chains of \(\{Pt(ox)\}_2\)\^3\^- anions running in channels formed by the \{Cu(en)\}_2\^2\^- cations. The Pt atoms form a zig-zag chain with alternating Pt...Pt distances of 3.554(1) Å within, the dimers and 3.855(1) Å between the dimers. The Pt...Pt...Pt angle is 140.39°, whereas the line connecting the two Pt atoms of a dimer is tilted by 22° with respect to the normal of the \(\{Pt(ox)\}_2\)\^3\^- plane. The coordination around the Cu(II) atoms is different. Besides its four N neighbors Cu(1) is coordinated to O(8), and to O(8’) (Cu-O 2.55(1) Å) of two adjacent \(\{Pt(ox)\}_2\)\^3\^- anions. Thus the coordination around
Cu(1) is tetragonal bipyramidal (PtN₃O₂). The Cu(2) atom has a somewhat distorted square-planar environment (CuN₄).

The structure of a triclinic \{PtNi\}_n complex [20] contains segregated parallel stacks of \{Pt(ox)\}_3^2 cations, \{Ni(oaoH₂)₂\}_2 cations and neutral \{Ni(oao)₂\}_2 complex units running along an axis, interlinked by a network of strong intermolecular H bridges. All M(II) atoms are tetracoordinated (PtO₄, NiN₄).

The X-ray analysis of triclinic red K₂Pt(memal)₂ × 2H₂O [21] shows that the 2-methylmalonate ligand is in a boat conformation, and their [Pt(memal)₂]²⁻ anionic units stack as a column and chain along the crystallographic a axis, with the Pt...Pt separation of 4.059(2) Å. Hydrogen-bonding interactions between pairs of lattice waters and the O(4) atoms of neighboring anionic units link neighboring “columns” of anionic units in chains that run along the unit cell a,c diagonal. The potassium atom is seven coordinated (KO₇).

The structure of monoclinic pale brown \{PtK₂\}_n complex [22] is built up from the \{Pt(piv)₄\}_2⁻ anion, K⁺ cations and solvate thf molecules, held together by ionic and van der Waals interactions and C-H...O bonds. The Pt(II) atom has a distorted square-planar environment (PtO₄). The nearest environment of the potassium atoms includes six oxygen atoms (KO₆).

Orthorhombic colorless trans-\{(NH₃)₂Pt(µ-meu)₂Ag(NO₃)(H₂O)\} × H₂O [23] has a polymeric structure with PtAg₂ entities linked via O(4) sites of the 1-methyluracilato ligand. The two meu rings in each trinuclear entity are arranged head-to-tail with respect to the Pt-N(3) bonds. They are nearly coplanar with each other (donation 6°). The Pt(II) coordination geometry is close to square-planar (PtN₄). Both silver (I) atoms are coordinated by oxygen (O(4), O(2), of meu H₂O and NO₃⁻). The Pt-Ag bond distances are Pt-Ag(1) 2.896(3) Å and Pt-Ag(2) 2.863(3) Å, and the intermolecular Ag...Ag separation is 3.597 Å.

There are two colorless \{PtAg\}_n complexes, tetragonal cis- and triclinic trans-\{(NH₃)₂Pt(µ-meu)₂Ag(NO₃)(H₂O)\} × nH₂O (n = 4(cis) and 1.5(trans)) [24] for which structural data are available (Table 1). The cations are built up of infinite chains of alternating Pt and Hg atoms bridged by the amidate ligands (Fig. 2). The Pt-Ag bond distances (cis- vs trans-) are 2.897(1) and 2.903(1) Å and 2.925(2) and 2.919(2) Å. The Pt-Ag-Pt angles are 165.7(1)° (cis) and 162.0(1)° (trans). The acetamide moiety is coordinated to Ag via the amide oxygen and to Pt via the deprotonated amide nitrogen. The coordination geometry of Pt(II) is square-planar (PtN₄). The coordination sphere around the Pt atom in the cis- complex is somewhat less crowded than that in the trans- complex as can be seen from the sum of the four Pt-N bond distances, 8.18 vs 8.10 Å.

In polymeric trans- \{(NH₃)₂Pt(µ-pymo)₂Ag(H₂O)\}NO₃ [25] the trans \{(NH₃)₂Pt(pymo)₂\} moiety adopts an anti-conformation. Nevertheless, the \{(H₂O)Ag(pymo)₂\} residues present a syn-conformation that leads to a meander-like global structure. In the polymer the Pt atoms alternate with the Ag atoms. The orientation of the pyrimidine ligands is head-to-tail in the trans-\{(NH₃)₂Pt(pymo)₂\} entities. Silver coordination occurs as expected at the basic N3 donor atom, leading to the polymeric structure. The pyrimidine residues in the \{(H₂O)Ag(pymo)₂\} entities display a head-to-head orientation, which is stabilized by H-bonding interaction with the amino groups bound to Pt of neighboring chain. This results in an alternating head-to-tail orientation of the pyrimidine at the Pt centers, and head-to-head orientation of the pyrimidine residues at the Ag centers, which gives rise to a meander-like overall structure.

The structure of trans-\{(NH₃)₂Pt(meh)(mea)Ag(NO₃)(H₂O)\}²⁺ cation is shown in (Fig. 3) [26]. In the complex cation two purine bases are both coordinated to Pt(II) via the N(7) positions. The Ag(I) atom takes part in a bridging fashion through N(1) and N(3) of 9-methyladenine, leading to a helical \{Ag-N-C-N\}_₈ backbone with 9-methyladenine acting as a tridentate ligand. The Ag...Ag separation
of 5.992(1) Å is shorter than that for Pt...Pt (6.971(1) Å). Methylhypoxantine is not involved in Ag(I) coordination at all and both nucleobases are neutral.

The structure of triclinic colorless trans-\[[\{(\text{NH}_3)_2\text{Pt}(\mu-\eta^2-\text{meh})(\mu-\eta^3-\text{Mea})\text{Ag(NO}_3\text{(H}_2\text{O})\}2\text{Ag}\}. (\text{NO}_3\}3 \times 6\text{H}_2\text{O}\] [27] consists of a purine quartet (two neutral 9-methyladenine (mea) and two anionic 9-methylhypoxantine (meh) units), with four bases cross-linked by two trans- \{(\text{NH}_3)_2\text{Pt}\}^{2+} units and two Ag\(^+\) cations. Individual metalated base quartets, which have dimensions of 14.25(2) Å x 10.36(2) Å (separations between adjacent 9-methyl groups), are bonded through additional Ag\(^+\) cations into an infinite array. The adenine base carries a Pt(II) at N(7) and two Ag(I) at N(1) and N(3). The hypoxantinate carries a Pt(II) at N(7) and one Ag(I) at N(1). Molecular rectangles of the complex cation are roughly parallel (distance ca. 7.0 Å), but slightly shifted, resulting in intermolecular Pt...Pt distances of 7.520(2) Å, which is much shorter than the intramolecular distance of (10.703(3) Å). The Ag...Ag separation is 7.404(3) Å.

Inspection of the data in Table 1 reveals that these complexes crystallize in four crystal systems: tetragonal (x1) < orthorhombic (x5) < monoclinic (x7) < triclinic (x8). The Pt(II) atoms have a distorted square-planar geometry with Pt-O and Pt-N inner coordination spheres. The mean Pt-O bond distance elongates in the order: 1.98 Å (acac) < 2.005 Å (ox) < 2.015 Å (piv) < 2.05 Å (mal). The mean Pt-N bond distances are 2.03 Å (purine bases) < 2.06 Å (NH\(_3\)). There is a variety of bidentate chelated -0,-0\(^-\) ligands which create five-membered metallocyclic rings \{-Pt-OC\(_2\)O\} with the mean O-Pt-O angle of 83°.

There are nine different heterometal atoms (Rb, Mg, Ca and Co (each x1), Cu and Ni (each x2), K (x4) and Ag (x9)) involved in these polymeric platinum complexes, which are mostly one-dimensional. However, from all these heterometal atoms there are only Pt-Ag bond distances which are below 3.0 Å, having a mean value of 2.883 Å (range 2.787(1)–2.943(1) Å). In some of the complexes Pt-Pt bond distances were also found with the mean value of 2.840 Å (range 2.717(3)–2.949(2) Å). The Pt...Pt separations
range from 3.015(3) Å to 10.703(3) Å, and Ag...Ag from 3.597(3) to 7.404(3) Å. However, it must be noted that for some examples the data are not available.

Triclinic Rb$_{0.67}$Pt(ox)$_2 \times 1.5$H$_2$O [11] contains four crystallographically independent molecules within the same crystal differing mostly by degree of distortion and are classical examples of distortion isomerism [29].

2.2 Complexes with PtC$_4$ and PtS$_4$ chromophores

There are twenty examples with a PtC$_4$ chromophore and five examples with a PtS$_4$ chromophore, and their crystallographic and structural parameters are listed in Table 2. Monoclinic deep yellow [PtTl$_2$(C$_6$F$_5$)$_2$(C≡CBut)$_2$(Me$_2$CO)$_2$] [30] has a very unusual one-dimensional chain extending along the crystallographic c axis of the lattice, a short section of which is depicted in Fig. 4. Each C$_6$F$_5$ ligand serve as bridge via C atoms to the Pt(II) atom and via one F atom to the Tl(I) atom. In addition the C≡CBut ligand also serve as bridge via C' atom to the Pt(II) and Tl(I) atom. The acetone molecule is terminally coordinated via O atom to the Tl(I) atom. The polymeric complex can be regarded as trinuclear octahedral fragments, trans-trans-trans-{PtTl$_2$(C$_6$F$_5$)$_2$(C≡CBut)$_2$}, linked through alkynyl-thallium interactions. Both Pt-Tl distances within the octahedral unit are 3.135(1) Å, but the Pt...Tl (3.785(1) Å) and Tl...Tl (3.982(1) Å) separations between the units exclude any bonding interaction. Each metal atom is four-coordinate (PtC$_4$, TlF$_2$OC).

There are sixteen polymeric complexes [31-43] in which square-planar {Pt(µ-η2-CN)$_4$}$_2^-$ units are stacked in columns whose axes are occupied by platinum atoms. A wide variety of heterometal atoms are involved in these polymeric (one-dimensional chain) platinum complexes: K (x4), Cu and Yb (each x3), Sn, Sr, Fe, Ni, Zn, Cd, Ag and Eu (each x1). There are also examples which contain KYb [34] and K$_2$M (M = Pb [37] or Sr [38]) with platinum. In general, the CN$^-$ group serves as the bridges {Pt-C-N-M}. The structure of triclinic colorless [(dmf)$_{10}$Yb$_2${Pt(CN)$_4$}]$_2$ [33] is shown in Fig. 5 as an example. It consists of two parallel running zig-zag chains that are inverted with respect to each other. They are generated by {Pt(CN)$_4$}$^{2-}$ ions bridging Yb(III) atoms in a cis-fashion. The chains are linked by a series of {Pt(CN)$_4$}$^{2-}$ units bridging the Yb atoms in a trans-fashion. Each Yb(III) atom is bound to three N (bridging cyanide groups) and five O (dmf) atoms, resulting in slightly distorted square antiprisms. The mean Pt-C(CN) bond distance is 1.99 Å (range 1.96–2.07 Å). The Pt-Pt distances range from 2.85(2) Å [34] to 13.50 Å.

![Figure 4: Section of the polymeric PtTl$_2$(C$_6$F$_5$)$_2$(C≡CBut)$_2$(Me$_2$CO)$_2$ [30].](image4)

![Figure 5: Section of the polymeric [(dmf)$_{10}$Yb$_2$Pt(CN)$_4$]$_2$ [33].](image5)
Table 2: Crystallographic and structural data for heteropolynuclear platinum complexes with PtC₄ and PtS₄ chromophores.

COMPOUND	Cr. sys.	Sp. Grp	Z	a [Å]	b [Å]	c [Å]	α [°]	β [°]	γ [°]	Chromophore	M-L [Å]	M-M [Å]	M-L-M [°]	L-M-L [°]	Ref				
[PtL₂(µ-η²-C₆F₅)₂]₂(µ-C≡CBut)₂(Me₂CO)₂	m	P2/c	4	16.197(3)	23.537(3)	11.002(1)				PtC₄	μCσ 2.030(11)	Cₛ²F₂ 2.08(2,3)	μL²F₂.912(8,25)	μC² 2.905(10)	2.83(2)	3.785(1)	C, Cl 72.0(3)	107.8(3)	30
K₂Pt(µ-η²-CN)₄.Cl₄.2.6H₂O	tg	P6/mmm	2	9.866(2)	5.759(2)					PtC₄	NC 2.06(8)	2.07(8)	not given		Pt 2.880(1)	C, C 90.0(-2.6)		31	
K₂Pt(µ-η²-CN)₄.Cl₄.2.3H₂O	tr	P3/m	4	10.323(14)	9.285(13)	11.865(17)				PtC₄	NC 2.05(9,5)	not given	not given		Pt 2.967(1)	C, C 90.0(3,31)	Pt, Pt 173.2(2)	32	
K₂Pt(µ-η²-CN)₄.3H₂O	or	Pbcn	4	13.426(5)	11.848(4)	6.956(2)				PtC₄	NC 1.982(2)	1.99(2)	not given		Pt 3.478(1)	C, C 90.0(2,1.9)		32	
{[(dnf)₁₀.Yb₂.[Pt(µ-η²-CN)₄]₂}	tr	P2/1	2	8.825(1)	10.546(2)	99.10(1)				PtC₄	NC 1.99(2,3)	2.03(4,3)	dmfO 2.33(3,3)	CN 2.40(4,6)	C, C 88.3(4)	C, C 90.0(12,16)	177.7(12,10)	34	
{[(NH₄)(dmf)₄.Yb.[Pt(µ-η²-CN)₄]₂}	tr	P2/1	2	8.918(1)	93.27(2)	98.59(1)				PtC₄	NC 1.99(6,14)	172.6(3)	not given		O, O 72.2-152.3(3)	N,N 78.2(10,2.1)	119.9-141.8(1)	175.2(9)	34
{K(dnf)₇.Yb.2.[Pt(µ-η²-CN)₄]₂}	m	P2/1	4	9.032(1)	29.062(1)	94.51(1)				PtC₄	NC 1.94(3,1)	2.03(4,3)	dmfO 2.33(3,3)	CN 2.40(4,6)	C, C 90.0(12,16)	177.7(12,10)	34		
{K(dnf)₇.Yb.2.[Pt(µ-η²-CN)₄]₂}	tr	P2/1	2	8.825(1)	10.546(2)	99.10(1)				PtC₄	NC 1.99(2,3)	2.03(4,3)	dmfO 2.33(3,3)	CN 2.40(4,6)	C, C 90.0(12,16)	177.7(12,10)	34		
[Pt(CN)₂(µ-η²-CN)₂.Ag(η⁴-cyclam)]	m	P2/n	2	10.253(18)	9.263(1)	95.479(7)				PtC₄	NC 1.99(1)	μNC 1.98(1)	η⁴N 2.020(8,10)	μC² 2.529(9)	C, C 86.6(4)	C, C 90.0(3,4,3)	180.0	36	
COMPOUND	Cryst.	Sp. Grp	a [Å]	b [Å]	c [Å]	α [°]	β [°]	γ [°]	Chromophore	M-L [Å]	M-M [Å]	M-L-M [°]	Ref						
----------	--------	---------	-------	-------	-------	-------	-------	-------	-------------	--------	--------	-----------	-----						
\{K₂Pb[Pt(μ-η²-CN)₄]₂.6H₂O\} (pale yellow)	m	P₂₁	6.487(1)	17.928(3)	9.316(2)	107.76(3)			PtC₄	NC 2.00(2,4)	3.298(1)	0.0(2,2)	37						
\{K₂Sr[Pt(μ-η²-CN)₄]₂.6H₂O\}	m	P₂₁	9.373	17.957	6.653				PtC₄	SrO₄N₂	µNC 1.992(3)	1.993(3)	F,101.08(11)	38					
\{Cu(η²-bpy).Pt(µ-η²-CN₄)₂.2H₂O\} (blue)	tg	P₄₁/mmc	7.613(2)	13.501(2)					PtC₄	CuN₄	µNC 1.96(2)	13.50	C, C 90.0(1,5)	40					
\{(NH₃)₂MPt(CN)₄.2C₆H₆\} (sky blue)	tg	P₄₁	7.60(18)								Fe 5.243(2)	C, C 90.0(3,3,6)	41						
\{Pt(S₂CNEt₂)₂.Cu₂Cl₂\} (yellow)		I₄₁/a	15.855(2)	15.037(3)															
\{Pt(µ-S₂CNEt₂)₆.Ag₂\}(ClO₄)₂ (orange yellow)	or	Pbcn	17.166(2)	11.241(6)															
\{Pt(S₂C₂O₂)₂Mn.(H₂O)₃\}₄.5H₂O (black)	m	P₂₁/c	11.772(4)	20.806(11)	103.52(4)								46						

Continued Table 2: Crystallographic and structural data for heteropolynuclear platinum complexes with PtC₄ and PtS₄ chromophores.

COMPOUND	Cryst.	Sp. Grp	a [Å]	b [Å]	c [Å]	α [°]	β [°]	γ [°]	Chromophore	M-L [Å]	M-M [Å]	M-L-M [°]	Ref	
\{K₂Pb[Pt(μ-η²-CN)₄]₂.6H₂O\} (pale yellow)	m	P₂₁	6.487(1)	17.928(3)	9.316(2)	107.76(3)			PtC₄	NC 2.00(2,4)	3.298(1)	0.0(2,2)	37	
\{K₂Sr[Pt(μ-η²-CN)₄]₂.6H₂O\}	m	P₂₁	9.373	17.957	6.653					SrO₄N₂	µNC 1.992(3)	1.993(3)	F,101.08(11)	38
\{Cu(η²-bpy).Pt(µ-η²-CN₄)₂.2H₂O\} (blue)	tg	P₄₁/mmc	7.613(2)	13.501(2)										
\{(NH₃)₂MPt(CN)₄.2C₆H₆\} (sky blue)	tg	P₄₁	7.60(18)											
\{Pt(S₂CNEt₂)₂.Cu₂Cl₂\} (yellow)		I₄₁/a	15.855(2)	15.037(3)										
\{Pt(µ-S₂CNEt₂)₆.Ag₂\}(ClO₄)₂ (orange yellow)	or	Pbcn	17.166(2)	11.241(6)										
\{Pt(S₂C₂O₂)₂Mn.(H₂O)₃\}₄.5H₂O (black)	m	P₂₁/c	11.772(4)	20.806(11)	103.52(4)								46	
Table 2: Crystallographic and structural data for heteropolynuclear platinum complexes with PtC4 and PtS4 chromophores.a.

COMPOUND	Cr. sys.	Sp.Grp	Z	a [Å]	b [Å]	c [Å]	α [o]	β [o]	γ [o]	Chromo-	M-L	M-M [Å]	L-M-M [°]	Ref
(K[db18C6])_2	tr	Pī	1	11.819(3)	99.72(3)	11.116(1)	93.479(9)	82.77(3)	106.21(2)	PtS4	5.2436(6)	5.087(1)	Cu(40)	48
[Pt(SCN)]_4	P2_/n		2	15.856(1)						KO N	0.7872(2-2.887)	µH2O 2.807	0 180	
(H2O)										KO N	0.7872(2-2.887)	µH2O 2.807	0 180	

Footnotes:
a. Where more than one chemically equivalent distance or angle is present, the mean value is tabulated. The first number in parenthesis is the e.s.d., and the second is the maximum deviation from the mean.
b. The chemical identity of the coordinated atom or ligand is specified in these columns.
c. M = Ni, Cu, Zn or Cd
d. Four-membered metallacyclic ring.

[40]. The Pt-M distances are: 5.087(1) Å (M = Cu [40]), 5.2436(6) Å (M = Fe [41]) and 5.491(1) Å (M = Pb [37]). It must be noted that in most examples the specific data are unavailable.

In two tetragonal yellow Pt(S2CNEt2)CuX2 (X = Cl or Br) [44] examples a helical chain of {CuX}_n extends around a 4_1 axis, and each {Pt(S2CNEt2)}_2 group links two of the helical chains with its four S atoms. Each Cu(I) atom is surrounded by two S and two halogen atoms and has a slightly distorted tetrahedral geometry.

The crystal of orthorhombic orange yellow {PtAg}_2 complex [45] is an alternate pile of extended two-dimensional lattices of {Pt(S2CNEt2)Ag}_n cations and anionic layers containing ClO_4-. The {Pt(S2CNEt2)Ag}_n un, with two extra Pt(S2CNEt2) groups and two extra Ag atoms (all labeled with an X) to show the connections between neighboring units, is shown in Fig. 6. It has C_2 symmetry, with the Pt(1)-Ag(1) bond distance of 2.932(2) Å and the Ag(1)-Pt(1)-Ag(1°) bond angle of 166.8(1)°. The Pt(2) and Ag(1) are separated by 3.045(2) Å, and the Pt(2)-S(3)-Ag(1) angle is 78.2(2)°. Each Pt(II) atom is surrounded by four S atoms in a square-planar geometry. The Ag(I) atom is two coordinate (AgS2).

The structure of monoclinic black {Pt(S2C2O2)2Mn(H2O)}_2 × 4.5H2O [46] consists of extended zig-zag chains {...Pt(S2C2O2)2Mn(H2O)(O2C2S2)Pt...} stacking along and cis-crossing glide plane c. Each layer of stacked chains is separated from the next one by intervening water molecules. The Pt(II) atom is planar tetracoordinated to the sulfur atoms of two dithiooxalate groups. The Mn(II) atom is heptacoordinated to oxygen atoms located at the vertices of a pentagonal bipyramid. Four of these, O(1), O(2), O(3), O(4) belong to two dithiooxalate groups and the others, O_w(1), O_w(2), O_w(3), are from water molecules. Within the chains O atoms [except O_w(1) and O_w(2)] form flat ribbons quasi-perpendicular to glide planes. These ribbons are nearly parallel to crystallographic plane (100).

A structural analysis of triclinic orange [PtK]n complex [47] shows the complex displays a quasi-one-dimensional infinite chain of two {K(db18C6)}+ cations and a [Pt(SCN)]_3 anion, bridged by K...π interactions between adjacent {K(db18C6)}+ units. The principal interactions of the K+ cation involve the six oxygen atoms of the crown and one N atom from the SCN- group. Each Pt(II) atom is in a square-planar environment (PtS2).

The structure of monoclinic orange [(K[18C6])_2[Pt(SCN)]_2(H2O)]_n [48] is shown in Fig. 7. It displays a one-dimensional infinite chain of two (K18C6)+ cations and a (PtSCN)_3 anion bridged alternately by N and O atoms as described below. The Pt(II) atom is located on the two fold axis and is coordinated by four S atoms from four SCN groups, and has a square-planar configuration. The K(1) atom lies almost symmetrically within the crown ether, and is also coordinated by one N atom from the SCN group of the Pt moiety (K-N, 2.837 Å). The two K(1) complex cations share an oxygen atom of a water molecule (K-O, 2.807 Å) which serves as a bridge, with K-O-K angle of 180°, to complete the one-dimensional infinite chain structure.

Inspection of the data in Table 2 reveals that the complexes crystallize in four crystal systems: orthorhombic (x2) < triclinic (x6) < tetragonal (x7) < monoclinic (x8). Each Pt(II) atom has a square-planar arrangement with different degrees of distortion. The sums of all four Pt-L bond distances are 7.87 Å for PtC, and 9.36 Å for PtS2. The PtC4 are less crowded than the PtC4 by virtue of the covalent radii, S (1.02 Å) vs C (0.77 Å). The mean Pt-C vs Pt-S bond distances are 1.97 vs 2.31 Å.
2.3 Complexes with heterogenous chromophores

Crystallographic and structural data for heteropolynuclear platinum complexes with heterogenous coordination spheres about platinum are gathered in Table 3. Their structures are all complex. The X-ray analysis of monoclinic orange KPt(mtso)Cl$_3$ [49] shows that there are two complex {Pt(mtso)Cl$_3$}$^-$ anions differing mostly by degree of distortion. Each Pt(II) atom has a square-planar configuration (PtCl$_3$S). In the crystal structure the potassium atoms differ from each other, with K(1) is surrounded by four chlorine atoms and one oxygen atom and K(2) by six chlorine atoms and one oxygen atom. The mean Pt-Cl bond distance located trans to the S atom is 2.322 Å, which is about 0.021 Å longer than the remaining Pt-Cl bond distances located cis to the S atom (2.301 Å). This difference is caused by the strong trans effect of the sulfoxide ligand.

The structure of triclinic red K$_2$Pt(ox)Cl$_2$.H$_2$O [21] is that of a zig-zag chain. The Pt(II) atom has a square-planar geometry (PtO$_2$Cl$_2$). The chlorine is positioned above the oxalate carbonyl carbon of the adjacent complex, resulting in an electro statistically favored conformation. The Pt...Pt separations are 3.799(2) Å in the same unit cell and 3.815(2) Å in adjacent unit cells. The potassium atoms, K(1) and K(2) are eight- and seven- coordinated, respectively.

The structure of hexagonal yellow {PtAg$_2$}$_n$ complex [50] contains well separated [{((phpy)$_2$Pt$_2$Ag(Me$_2$CO))}$^+$ cations and ClO$_4^-$ anions. The complex cations form
Table 3: Crystallographic and structural data for heteropolynuclear platinum complexes with heterogeneous coordination spheres about Pt∗.

COMPOUND	Cr. sys.	Sp.Grp	Z	a [Å]	b [Å]	c [Å]	α [°]	β [°]	γ [°]	Chromophore	M-L [Å]	M-M [Å]	L-M-L [°]	Ref								
Kp(mtsO)Cl3 (orange)	m	P21	4	15.093(3)	12.060(3)	7.499(2)	101.39(2)	PtCl3S	µCl∗ 2.30(4,10)	2.322(5,2)	S 2.202(4)	not given	49									
KPt(ox)Cl2.H2O (red)	tr	Pī	2	7.136(2)	7.308(2)	10.130(4)	86.75(3)	74.58(3)	PtO2Cl2	O 2.03(1,1)	Cl 2.294(4,4)	not given	21									
\[(\eta^{2}-phasis)Pt\]2\{(\η^{2}-phen)Pt\}2.Ag(Me2CO).ClO4 (yellow)	hx	P6b	6	14.8050(6)																		
\[(\eta^{2}-phil)Pt\]2\{(\η^{2}-mceu)\}.Cs(H2O)2.H2O (colorless)	m	P21/n	4	7.167(1)	12.900(3)	18.697(4)	98.30(3)	86.61(3)	15.970(5)			CsO I2	Cs 7.005(2)	7.167(1)	3.962(2,26)	177.46(2)	177.4(3)	I,I 177.46(2)	N,N 177.4(3)	I,I 177.46(2)	N,N 177.4(3)	51
\[(NBu4)Pt(C6Cl5)2.\{(µ-Cl)2Ag\} (yellow)	m	C2/c	4	19.300(3)	26.523(4)	8.450(2)	103.53(2)	PtC2Cl2	C 2.08(2)	µCl 2.324(3)	2.477(5)	3.010(8)	Ag 3.203(1)	3.778(6)	Ag 3.689(6)	RP 177.2(1)	C.C 175.8(8)	52				
Pd(µ-Cl)Pt.\{(µ-η^{2}-C≡CH)\}.Ag(OClO3) (pale yellow)	rh	R3c	18	21.200(4)																		
[Pt(µSCH2CH2PPh2)2.Ag(NO3)] (colorless)	or	Pbn	4	14.814	10.926	12.298																
KPd(µ-acac)Cl (red)	m	C2/c	4	26.84	13.72	7.81	104.8	PtO2ClI	O 2.020(14,52)	2.106(17)	µCl 2.276(5)	not given	0,0 94.9(6)	0,0 94.9(6)	0,0 94.9(6)	0,0 94.9(6)	0,0 94.9(6)	57				
a helical chain consisting of an alternating stack of \{Pt(phpy)_2\} and \{Ag(Me_2CO)\} units connected by Pt → Ag dative bonds (ave 2.772 Å). Since the helical chain has a crystallographic 6_1 axis and the two sets of platinum and silver units are arranged asymmetrically, one cycle of the helix is comprised of Pt_12Ag_12. The helix is about 23 Å in diameter and 41.608 Å in pitch. The grooves of the helices are mutually occupied by adjacent helices. The Pt-Ag-Pt angles of 115.62(3) and 132.76(4)° are somewhat bigger than the Ag-Pt-Ag bond angles with the values of 113.89(3) and 129.51(3)°.

In polymeric monoclinic colorless \[(\text{NH}_3)(\text{I})\text{Pt}(\mu-\text{I})\text{(}\mu-\text{meu})_2\text{Cs(H}_2\text{O})_2\times2\text{H}_2\text{O}\]\([51]\) the Cs(I) atoms bridge the complex ions via water molecules [O_w(2) and O_w(4)], as well as through iodine atoms of two anions. The polymeric network of the complex can be dissected into two interconnected chains running along the y and x axes, respectively. In the first one Cs(I) atoms are arranged in a zig-zag fashion (Cs...Cs distances 7.005(2) Å). When viewed along the x axis the Cs(I) atoms are arranged in a collinear fashion, bridging pairs of Pt(II) containing anions (Cs...Cs distances 7.167(1) Å). Each Pt(II) atom

Table 3: Crystallographic and structural data for heteropolynuclear platinum complexes with heterogeneous coordination spheres about Pt_+.

COMPOUND (colour)	Cr. sys.	Sp. Grp.	a [Å]	b [Å]	c [Å]	α [°]	β [°]	γ [°]	Chromophore	M-L [Å]	M-M [Å]	M-L-M [°]	L-M-L [°]	Ref
(C_5Cl_5)PPh_3Pt. (µ-Cl)_2Ag	or	Pna_2_1	10.327(3)	18.094(6)	18.451(5)				PtCl_2CP					
1.5CH_3Cl _2 (yellow) (at 100(l) K)	4		8.4009(9)	12.790(2)	10.467(2)				Pt_\(n\)O_2C_2._NBr					
(CH_3)_2Pt(µ-Himpa). (µ-Br)_2Ag	or	Pna_2_1	13.78(2)	14.523(4)	13.38(2)	118.33(5)			Pt_\(n\)O_2C_2._NBr					
(µ-Br)Ag	4		9.98(5)	5.84(5)					K_2Pt(CN)_5.3H_2O (red)					

Footnotes:

a. Where more than one chemically equivalent distance or angle is present, the mean value is tabulated. The first number in parenthesis is the e.s.d., and the second is the maximum deviation from the mean.

b. The chemical identity of the coordinated atom or ligand is specified in these columns.

c. Five-membered metallocyclic ring.

d. Three-membered metallocyclic ring.
has a square-planar environment (PtN$_2$I$_2$), and the Cs(I) pseudo-octahedral (CsO$_4$I$_2$).

Monoclinic [PtAg]$_n$ complex [52] contains well separated [NBu$_4$]$^+$ cations and [Pt(C$_6$Cl$_5$)$_2$(µ-Cl)$_2$Ag]$^-$ anions. The chain of complex anions consists of planar {Pt(C$_6$Cl$_5$)$_2$Cl$_2$} units linked by Ag(I) atoms in which there are two types of Ag-Cl bond, those which result in Pt(µ-Cl)Ag links and those in which ortho-Cl atoms of C$_6$Cl$_5$ units make close approaches (3.01 nd 3.09 Å) to Ag(I) atoms. The Pt...Ag separation is 3.203(1) Å. Each Pt(II) atom has a square-planar geometry (PtC$_2$Cl$_2$), and the Ag(I) atom is two coordinate (AgCl$_2$).

The structure of triclinic colorless [(PMe$_2$Ph)$_2$Pt(C≡CBut)$_2$Cu$_2$Cl$_2$]$_n$ [53] is shown in Fig. 8. There are two crystallographically independent {Pt(C≡CBut)$_2$(PMe$_2$Ph)$_2$} units in the unit cell, linked to Cu$_2$Cl$_2$ moieties through the alkyne ligands to form a linear polymer. Each Pt(II) atom has a trans-square-planar (PtC$_2$P$_2$) arrangement. Each Cu(I) atom is η2-coordinated to an alkyne group with slightly shorter distances to the β-carbon than to the α-carbon atoms of the alkyne groups (α-distances: Cu(1)-C(9) 2.044(9) Å; Cu(2)-C(23) 2.035(9) Å; β-distances: Cu(1)-C(10) 1.988(9) Å, Cu(2)-C(24) 1.986(9) Å). The copper atoms are linked through double chloro bridges to each other, linking the whole system into a linear chain.

In a linear polymer of [(PMe$_2$Ph)$_2$Pt(C=CH)$_2$Ag(OClO$_3$)]$_n$ [54] each Pt(II) atom has a trans-square-planar arrangement (PtC$_2$P$_2$). The Ag(I) atom is η2-coordinated to each of the two alkyne ligands on the same face of each Pt coordination plane, forming a zigzag chain with a perchlorate anion in each cavity along the chain. In addition to the coordinated Ag-O (2.651(1) Å), there are number of ClO$_4^-$-to-chain contacts which might help to stabilize this arrangement. The Pt...Ag separations are 3.689(6) and 3.778(6) Å.

The X-ray diffraction study of rhombohedral light brown [Pd(µ-Cl)$_n$Pt(µ-C(PPh$_2$)$_2$)$_n$] [55] reveals an infinite chain structure of alternating Pd and Pt units (Fig. 9). The asymmetric unit of the crystal contains one {PdCl$_2$Pt(P(PPh$_2$)$_2$)$_2$} fragment with subsequent units in the infinite chain related by the diagonal glide in which the Pd, Pt, and carbene carbons lie. The coordination units about the metal atoms are coplanar as are the adjacent units of the chain. The Pd(0) is three- (PdCl$_2$C) and the Pt(II) is four (PtCl$_2$P$_2$) coordinate.

Figure 8: Structure of [(PMe$_2$Ph)$_2$Pt(C≡CBut)$_2$Cu$_2$Cl$_2$]$_n$ [53].

Figure 9: Structure of [(PMe$_2$Ph)$_2$Pt(C≡CBut)$_2$Cu$_2$Cl$_2$]$_n$ [53].

In monoclinic red [PtK]$_n$ complex [57] the {Pt(acac)$_2$Cl} anions are linked via electrostatic inter-discrete pseudo-polymeric chains parallel to the crystallographic b axis. Each unit cell contains two such chains separated by van der Waals interactions. The Pt(II) atom has a square-planar geometry (PtO$_2$CCl). The crystallographically non-equivalent linked K$^+$ cations are each six-coordinated; K(1) is coordinated by three pairs of oxygen atoms at distances of 2.72, 2.74 and 2.94 Å, while K(2) is coordinated by a pair of oxygen atoms (2.85 Å) and by two pairs of chlorine atoms at 3.25 and 3.26 Å.

In orthorhombic yellow [(C$_6$Cl$_5$)(PPh$_3$)Pt(µ-Cl)$_2$Ag] × 1.5 CH$_2$Cl$_2$ [58] each of the repeated units of the polymer is formed by interaction of the square-planar trans-Pt(Cl)$_2$(C$_6$Cl$_5$)(PPh$_3$)$_2$ and the Ag$^+$ cation through a Pt-Ag bond (2.855(2) Å), which is supported by a bridging Pt(µ-Cl)$_2$Ag (Ag(1)-Cl(2), 2.556(6) Å and Pt-Cl(2)-Ag(1), 71.6(2)°). The other chlorine atom bonded to the Pt centre Cl(1) acts as a bridge between the Pt and Ag(1A) of a neighboring unit(Ag(1A)-Cl(1), 2.458(5/Å). However, the Ag(A-µCl(1)-Pt(1) angle is 100.7(2)° and the Ag(1A)...Pt(1) separation is 3.679(2) Å.

The structure of orthorhombic colorless [Pt(µ-SCH$_2$CH$_2$Ph)$_2$]$_n$ [56] consists of infinite chains running along the c axis. Each silver(I) atom is coordinated almost linearly to two sulfur atoms belonging to the square-planar coordination spheres of two different platinum(II) atoms (PtS$_2$P$_2$).
In orthorhombic yellow \([\text{Pt(CH}_3\text{)}_2(\mu-\text{Himpa})(\mu-\text{Br})\text{Ag}]_n\) [59] a pseudo-octahedral coordination about the Pt(IV) atom is built up by a tridentate Himpa ligand through N, and phosphonates O atoms trans to methyl group and through carboxylate O atom trans to bromine. The bromine ligand, as well as being bonded to Pt(IV), is also bonded to Ag(1) (Ag-Br, 2.810(2) Å) with a Pt-Br-Ag bond angle of 111.5(1)°. A distorted tetrahedral stereochemistry about silver is completed by three oxygen atoms from different Himpa ligands, a carboxylate oxygen which is not bonded to platinum, a phosphate oxygen which is not protonated and also not bonded to Pt, and a phosphate oxygen which is bonded to \([\text{Pt}(\text{AgO}_3\text{Br})]\). The angles about the Ag(I) atom range from 85.5(1) to 139.5(3)°. The result is a network structure which extends throughout the unit cell in two dimensions.

A view of the extended network of monoclinic white \([\text{PtAg}]_n\) [59] is shown in Fig. 10. There are two complex anions \([\text{Pt}((\mu_3-\text{Br})(\mu-\text{Himpa})(\text{CH}_3)_2)]^-\) and \([\text{Pt}((\mu_3-\text{Br})(\mu-\text{impa})(\text{CH}_3)_2)]^-\) which are isostructural. These anions are held together in a ribbon structure by three independent silver(I) atoms which have quite different environments. While Ag(1) and Ag(2) are each in a distorted trigonal bipyramidal environment, \((\text{AgO}_3\text{Br})\), the Ag(3) atom has a distorted square-pyramidal environment \((\text{AgO}_2\text{Br})\). There are also relatively close contacts (3.2–3.3 Å) between pairs of silver atoms, Ag(1)-Ag(3), Ag(2)-Ag(3) and Ag(2)-Ag(2'). The Ag(1) and Ag(3) are bridged by two carboxylate groups \((\text{Ag(1)}-\text{O(51)}-\text{C(51)}-\text{O(521)}-\text{Ag(3)})\) and \((\text{Ag(1)}-\text{O(522)}-\text{C(52)}-\text{O(512)}-\text{Ag(3)})\), and one phosphate group \((\text{Ag(1)}-\text{O(121')-P(1)}\text{O(111')-Ag(3)})\). The planes of the coordinated carboxylate groups are at an angle of approximately 90°. Each bromine atom bridges between a platinum atom and two silver atoms, Br(1) is bonded to Pt(1), Ag(1) and Ag(3') and Br(2) to Pt(2), Ag(2) and Ag(3)). Each Pt(IV) atom has a pseudo-octahedral environment \((\text{PtO}_2\text{C}_2\text{NBr})\). The Pt(1)-N(31) 2.04(1) Å and Pt(2)-N(32) 2.06(1) Å bond lengths trans to bromine are shorter than the Pt-N bond lengths trans to a methyl group in yellow \([\text{PtAg}]_n\) [59], with the values of 2.18(2) and 2.20(2) Å, respectively. The mean O-Pt-N “bite” angle in the white complex of 85.0° is somewhat more open than the respective angle found in the yellow complex, with the mean value of 82.6°. This can be related to the much stronger trans effect of methyl versus bromine.

The X-ray analysis of tetragonal red polymeric K\(\text{Pt(CN)}_3\cdot3\text{H}_2\text{O}\) complex [60] shows two different platinum atoms, Pt(II) and Pt(IV). The anion chain consists of planar \([\text{Pt(CN)}]_3\) and octahedral \([\text{Pt(CN)}]_6\) units linked by cyanide groups with mean Pt(II)-Pt(IV) bond distance of 2.92 Å. Unfortunately data for the K(I) atom is not available, but one can expect that the cations are also involved in this polymeric chain.

Inspection in data in Table 3 reveals that there are fourteen heteropolymeric platinum complexes which crystallize in several crystal systems: hexagonal, rhombohedral, and tetragonal (each x1) < triclinic (x2) < orthorhombic (x3) < monoclinic (x6). Eleven complexes contain platinum in an oxidation state +2, two contain platinum in oxidation state +4 and one contains mixed-valence +2 and +4. Each Pt(II) atom is four- (square-planar) and each Pt(IV) atom is hexa- coordinated. There are five heterometal atoms Ag (x7), K (x4), Cs, Cu and Pd (each x1), which are involved in these polymeric platinum complexes.

3 Conclusions

This review has classified and analyzed over sixty heteropolynuclear platinum complexes. There is only one example which contains a K(I) atom with mixed-valence platinum atoms, Pt(II) and Pt(IV) [60], and two examples in which both Pt(IV) and Ag(I) are found. In all the
remaining examples the platinum is in +2 oxidation state. Each Pt(II) atom has a square-planar environment with different degrees of distortion. There is wide variability of the inner coordination sphere about the Pt(II) atoms: PtO₄ (x14), PtN₄ (x8), PtC₄ (x20), PtS₄ (x5), PtCl₂S, PtO₂Cl₂, PtN₂C₂, PtC₂Cl₂, PtC₂P₂ (x3), PtS₂P₂, PtO₂Cl and PtCl₂CP. In the mixed-valence complex, Pt(II) is planar (PtC₄) and Pt(IV) is octahedral (PtO₂C₂NBr).

There is an example [(NH₃)₂Pt(NHCOMe)₂Ag(NO₃)] x nH₂O [24] which exists in two isomeric forms, cis- (n = 4) and trans- (n = 1.5). There is wide variety of heterometal atoms involved in the heteropolynuclear platinum complexes. There are non-transition: K (x14), Mg, Ca, Sr, Tl, Sn, Pb, Zn and Cd (each x1); transition: Ag (x16), Cu (x6), Ni (x3), Fe, Rh, and Pd (each x1), and even lanthanide: Yb (x3) and Eu (x1). In spite of the wide variability of the heterometal atoms, there is only “real” Pt-M bond with Ag, ranging from 2.6781(9) Å [50] to 2.943(1) Å [10] (ave 2.855 Å). There are also examples in which the Pt...Ag separation is over 3.0 Å, range from 3.045(2) Å [45] to 3.778(6) Å [54] (ave 3.479 Å). The mean Pt-Pt bond distance is 2.869 Å (range 2.717(3) Å [11] – 2.976(1) Å [32]). In several examples the Pt...Pt separation is over 3.0 Å (3.015(3) Å [11], 13.50 Å [40]).

This review, together with its precursors [1-9], represents the first comprehensive overview of about one thousand and five hundred heterometallic platinum clusters for which structural parameters were available, illustrating a rich diversity in the chemistry of platinum. These clusters crystallize in seven different crystal systems: monoclinic (57.3%) > triclinic (29.5%) > orthorhombic (9.2%) > tetragonal (2.55%) > hexagonal (0.52%) > trigonal (0.46%) > rhombohedral (0.27%) > cubic (0.2%). Space groups P2₁/n and Pī are by far the most prevalent. There are almost sixty clusters [61-116] which contain two crystallographically independent molecules within the same crystal. In PtOs₇(H₂)₃(CO)₁₅ [117] three such molecules are present, in (PPh₃)₄Pt(S)₂Fe(CO)₄ [118] four molecules and in Cl₂Pt(totpp),Fe [119] eight such molecules are present. All these molecules differ mostly by degree of distortion. The coexistence of such molecules is typical of the general class of distortion isomerism [29]. There are also nine derivatives [94,96,120-127] which exist in two isomeric forms. These isomers differing from each other only by degree of distortion are also examples of distortion isomerism.

Analysis of the crystallographic and structural data of almost two thousand monomeric platinum coordination compounds showed [128] that about 10% of these complexes exist as isomers: distortion (65%), cis-trans (30%), mixed isomers (cis-trans plus distortion), and ligand isomerism. Despite the importance of cis-trans geometry in the chemistry of Pt(II) compared to other transition metal systems, within platinum chemistry, distortion isomerism is far more common.

It is hoped that this overview will help to focus attention on the area of platinum chemistry that could be enhanced by further study, and assist in allowing comparative behavior of the platinum atom in the situations which can arise from the wide spread use of platinum.

Acknowledgements: This work was supported by the projects VEGA 1/0664/12 and KEGA 031UK-4/2012.

Abbreviations

- acac: acetylacetonate
- bpe: 1,2-bis(4-pyridyl)ethylene
- bpy: 2,2’-bipyridyl
- Bu: butyl
- Bu': terc-butyl
- C₆Cl₅: pentachlorophenyl
- C₆F₅: pentafluorophenyl
- C₆H₆: benzene
- 18C₆: 18-crown-6
- cyclam: 1,4,8,11-tetraazacyclotetradecane
- db18C₆: dibenzo-18-crown-6
- dmf: dimethylformamide
- en: ethylenediamine
- Et: ethyl
- Himpa: N-(phosphonomethyl)glycinate(2-)
- hx: hexagonal
- impa: N-(phosphonomethyl)glycinate(3-)
- m: monoclinic
- Me: methyl
- Me₂CONH: acetamidate
- mea: 9-methyladenine
- meh: 9-methylhypoxantin
- memal: 2-methylmalonate
- meu: 1-methyluracilate
- mtso: methyl-para-tolyl-sulfoxide
- oao: oxamide oximato
- oaoH₂: oxamide oxime
- or: orthorhombic
- ox: oxalate
- phpy: 2-phenylpyridinate
- piv: pivalate
- PMe₂Ph: dimethylphenylphosphine
References

[1] Holloway C.E., Melnik M., Crystallographic and structural characterisation of heterometallic platinum compounds: Part I. Heterobinuclear Pt compounds, Centr. Eur. J. Chem., 2011, 9, 501-548.

[2] Melník M., Sprušanský O., Holloway C.E., Crystallographic and structural characterization of heterometallic platinum compounds. Part II. Heterobinuclear Pt compounds with Pt2M (M = transition or lanthanide metal) > 3.0 Å, Centr. Eur. J. Chem., 2012, 10, 1709-1759.

[3] Melník M., Mikuš P., Holloway C.E., Crystallographic and structural characterization of heterometallic platinum compounds. Part III: heterotrinuclear compounds, Centr. Eur. J. Chem., 2013, 11, 827-900.

[4] Melník M., Mikuš P., Holloway C.E., Crystallographic and structural characterization of heterometallic platinum compounds part IV: heterotetranuclear clusters, Centr. Eur. J. Chem., 2013, 11, 1902-1953.

[5] Melník M., Mikuš P., Holloway C.E., Crystallographic and structural characterization of heterometallic platinum complexes part V: heteropentanuclear complexes, Centr. Eur. J. Chem., 2014, 12, 283-306.

[6] Melník M., Mikuš P., Holloway C.E., Crystallographic and structural characterization of heterometallic platinum complexes part VI. Heterohexamuclear complexes, Centr. Eur. J. Chem., 2014, 12, 1101-1126.

[7] Melník M., Mikuš P., Holloway C.E., Crystallographic and structural characterization of heterometallic platinum compounds part VII. Heterohepta and heteroctaetnuclear clusters, Centr. Eur. J. Chem., 2015, 13, 297-316.

[8] Melník M., Mikuš P., Holloway C.E., Crystallographic and structural characterization of heterometallic platinum compounds part VIII. Heteronona and heterodecanuclear clusters, Centr. Eur. J. Chem., 2015, 13, 425-447.

[9] Melník M., Mikuš P., Holloway C.E., Crystallographic and structural characterization of heterometallic platinum compounds part IX. Heterooligouncanuclear clusters, Centr. Eur. J. Chem., 2015, 13, 701-724.

[10] Yamaguchi T., Yamazaki F., Ito T., A short platinum to silver dative bond and its application in the construction of extended structures: syntheses and structures of Ag2[Pt(Oxo)2]2•2H2O and [Ag(H2O)]2[A2(C3F5SO3)4][Pt(acac)2]2, J. Chem. Soc., Dalton Trans., 1999, 273-274.

[11] Kobayashi A., Sasaki Y., Kobayashi H., Structure of commensurate peierls state of Rb1.67Pt(C2O4)2•1.5H2O, 1978, 7, 1167-1170.; Structural Studies of Commensurate Peierls State of Rb1.67Pt(C2O4)2•1.5H2O, 1979, 52, 3682-3691.

[12] Kobayashi H., Shiratori K., Kobayashi A., Sasaki Y., Sinusoidally modulated structure of a partially oxidized platinum complex, K1.6Pt(C2O4)2•1.2H2O, Solid State Commun., 1977, 23, 409-413.

[13] Matses R., Krogmann K., Die Kristallstruktur von Kaliumdialkylatplatinitat (II), K2Pt(C2O4)2•2H2O, Z. Anorg. Allg. Chem., 1964, 332, 247-256.

[14] Holloway A., Kondo H., Sasaki Y., Kobayashi H., Underhill A.E., Watkins D.M., Structural Studies of Partially Oxidized One-dimensional Bis(oxalato)platinitates Salts Containing Bivalent Cations: NiO.84[Pt(C2O4)2]. 6H2O, Bull. Chem. Soc. Jpn., 1982, 55, 2074-2083.

[15] Schultz A.J., Underhill A.E., Williams J.M., Preparation and crystal structure of the new paramagnetic one-dimensional conductor Co0.83[Pt(C2O4)2].6H2O, Inorg. Chem., 1978, 17, 1313-1315.

[16] Krogmann K., Strukturen mit Pt-Ketten. II. „Violette“ Magnesiumdialkylatplatinitat MnO.82Pt2(C2O4)2• 5.3 H2O, Z. Anorg. Allg. Chem., 1968, 358, 97-110.

[17] Krogmann K., Strukturen mit Platin-Ketten IV. Rote Dialkylatplatinitate(II), Z. Naturforsch., 1968, 23b, 1012-1018.

[18] Mizuno M., New 1-D platinum chain compounds with commensurate peierls structure, Synthetic Met., 1987, 19, 963-966.; Lee K.H., Kim J.H., Mizuno M., Preparation and Properties of New Metal-chain Compounds With Commensurate Peierls Structure, Bull. Korean Chem. Soc., 1987, 8, 137-139.

[19] Bekaroglu O., Sharif M.E., Endres H., Keller H.J., A platinum zigzag chain in is(ethylenediamine)coppper(II) bis(oxalato) platinate(II): the crystal structure of [Cu(C2N2H8)2][Pt(C2O4)2], Acta Crystallogr., Sect. B, 1976, 32, 2983-2986.

[20] Endres H., Liebich-Brudy G., Bis(oxamidoxim)nickelic(II)-[Bis(oxalato)platinitat(II)]-Dihydrat x [Bis(oxamidoximate) nickelic(II)]:Getrennte parallele Stapel im Verhältnis 2:1, Z. Naturforsch., 1986, 41b, 339-345.

[21] Dunham S.O., Larsen R.D., Abbott E.H., Nuclear magnetic resonance investigation of the formation of oxalato, malonato, and 2-methylmalonato complexes of platinum(II). Crystal and molecular structures of potassium anti-bis(2-methylmalonato) platinate(II) dihydrate and potassium dichloro(oxalato) platinate(II) hydrate, Inorg. Chem., 1991, 30, 4328-4335.

[22] Cherkashina N.V., Koizitsyna N.Yu., Aleksandrov G.G., Vargaftik M.N., Moiseev I.I., Synthesis and structure of the first platinum(II) pivalate complexes, Mendeleev Commun., 2002, 12, 49-50.

[23] Schöllhorn H., Thewalt U., Lippert B., 1-Methyluracil (Hmeu) as tetradentate ligand: crystal structure of trans-(NH3)2Pt(NHCOMe)2Ag•NO3.4H2O, J. Chem. Soc., Chem. Commun., 1984, 769-770.; Dieter I., Lippert B., Schöllhorn H., Thewalt U., Coordination g2(NO3)2(H2O)•H2O, J. Chem. Soc. Chem. Commun., 1984, 769-770.; Leu K.H., Kim J.H., Mizuno M., Preparation and Properties of New Metal-chain Compounds With Commensurate Peierls Structure, Bull. Korean Chem. Soc., 1987, 8, 137-139.

[24] Endres H., Liebich-Brudy G., Bis(oxamidoxim)nickelic(II)-[Bis(oxalato)platinitat(II)]-Dihydrat x [Bis(oxamidoximate) nickelic(II)]:Getrennte parallele Stapel im Verhältnis 2:1, Z. Naturforsch., 1986, 41b, 339-345.

[25] Emxleben A., Lippert B., From simple trans-[a2Pt(2-hydroxyypyrimidine)2][Pt(acac)2]2+ (a = NH3, CH3NH2) complexes
to structures of higher complexity. Molecular recognition of 2-aminopyrimidine by hydrogen bond formation and reactivity toward additional metal ions, Inorg. Chem., 2000, 39, 1059-1065.

[26] Rother I., Freisinger E., ErxlXen A., Lippert B., trans-a2PtII-(a = NH3, CH3NH2) modified purine base pairs and triples: Hydrogen bonding between self-complementary pairs and triples and heterometal (Ag+)-coordination leading to a 1 D helix, Inorg. Chim. Acta, 2000, 300-302, 339-352.

[27] Rother I.B., Willermann M., Lippert B., Canonical and unconventional pairing schemes between bis(nucleobase) complexes of trans-a2PtII:Artificial nucleobase quartets and C–H...N bonds, Supramol. Chem., 2002, 14, 189-197.

[28] Lippert B., Neugebauer D., A heteronuclear (Pt4,Ag) complex consisting of 1-methyluracil and its conversion into a crystalline platinum blue, Inorg. Chem., 1982, 21, 451-452.

[29] Melnik M., Structural isomerism of copper(I) complexes. Coord. Chem. Rev., 1982, 47, 239-261.

[30] Merino R.I., A polymeric platinum (II)-thallium (I) complex stabilized by alkynyl-thallium-thallium binding interactions, Inorg. Chem., 1997, 36, 6461-6464.

[31] Krogmann K., Hausen H.D., Strukturen mit Pt-Ketten. III. Erdalka meta-Ino I., Kuroda-Sowa T., Mackawa M., Knoeppel D.W. Shore S.G. Unusual One-Dimensional Transition Metal Arrays: The Effect of Hydrogen Bonding on the Structure When K+ Is Replaced by [NH4]+, Inorg. Chem., 2001, 40, 4353-4360.

[32] Kneepke D.W. Shore S.G. Unusual One-Dimensional Ladder Structures Containing Divalent Europium and the Tetracyanomonolates Ni(CN)42- and Pt(CN)42-. Inorg. Chem., 1996, 35 (18), 5328-5334.

[33] Munakata M., Zhang I.Ch., Iino I., Kuroda-Sowa T., Mackawa M., Suenaga Y., Oiji N., 1-D cyano-bridged heterometallic complexes of tetracyanometalates Ni(CN)42- and Pt(CN)42-. Inorg. Chim. Acta, 2001, 317, 268-275.

[34] Balch A.L., Feng H.Y., Nagle J.K., Shore S.G., , Syntheses and Structural Characterizations of Sheet- and Column-like Lanthanide-Transition Metal Arrays: The Effect of Hydrogen Bonding on the Structure When K+ Is Replaced by [NH4]+, Inorg. Chem., 2001, 40, 4353-4360.

[35] Chen W., Fenghui L., You X., [Pt(CN)2•2Me3SnCN•2Me3SnOH•bpe]n (bpe=trans-1,2-bis(4-pyridyl)ethylene), the First Double-Sinusoidal Platinum-Tin Coordination Polymer, Chem. Letters, 2002, 31, 734-735.

[36] Morita M., Miyoshi T., Miyamoto T., Iwamoto T., Sasaki Y., New Clathrate Compounds, Diaminometal(Ni, Cu, Zn, or Cd) Tetracyanopalladate(II) and Tetracyanoplatinate(II) Aromatics Clathrates. Bull. Chem. Soc. Jpn., 1967, 40, 1556-1559.

[37] Kubo K., Ebihara M., Kawamura T., (CuX)n Helical Chains in [PtL2CuX2] (X = Br, Cl), Acta Crystallogr., Sect. C, 1995, 51, 2010-2013.

[38] Ebihara M., Sakurai K., Kawamura T., Katayama H., Masuda H., Taga T., Covalent Bonding of Two Ag(I) Atoms to a Square-Planar Pt(II) Atom in [Pt3(S2CNEt2)2Ag2]ClO4,2, Chem. Letters, 1990, 19, 415-418.

[39] Gleizes A., Verdaguer M., Structurally ordered bimetallie one-dimensional cata-mu-dithiooxalato compounds: synthesis, crystal and molecular structures, and magnetic properties of AMn(S2C2O2)2(H2O)3.A.5H2O (A = copper, nickel, palladium, or platinum), J. Amer. Chem. Soc., 1984, 106, 3727-3737.

[40] Li X., Dou J.M., Liu Y., Zhu L.Y., Zheng P.J., A novel PtIII–dibenzo-18-crown-6 and DB18C6 complex, Acta Crystallogr., Sect. C, 2000, 56, 1185-1187.

[41] Liu Y., Dou J.M., Zhuh L.Y., Sun D.Z., Zheng P.J., [K(18C6)]2[Pt(SCN)4] (H2O): A novel one-dimensional coordination polymer with K-N bonds. Ind. J. Chem.-A 2000, Vol.39A, 983-984.

[42] Spevak V.N., Lobadyn V.I., Skvortsov A.N., Konovolov V.E., Bel’skii V.K., Skvortsov N.K. AN;H-1 and C-13 NMR and CD spectra of platinum complexes with (a)-methyl p-tolyl sulfoxide. Molecular structure and absolute configuration of potassium (t)-trichloro(S-methyl p-tolyl sulfoxide)platinate(I). Rusian J. General Chem., 1999, 69, 715-720.

[43] Yamaguchi T., Yamazaki F., Ito T., A Helical Metal–Metal Bonded Chain via the Pt–Ag Dative Bond, J. Amer. Chem. Soc., 2001, 123, 743-744.

[44] Freisinger E., Schneider A., Drumm M., Hegmans A., Lippert B., Exocyclic oxygen atoms of platinated nucleobases as binding sites for alkali metal ions, J. Chem. Soc., Dalton Trans., 2000, 3281-3287. Freisinger, A. Schneider, M. Drumm, A. Hegmans, S. Meier, B. Lippert, J. Chem. Soc., Dalton Trans., 3281 (2000).

[45] Usón R., Forniés J., Tomás M., Casas J.M., Cotton F.A., Falvello L.R., Synthesis and molecular structure of (NBu4)4[Pt(C6Cl5)2(μ-Cl)2Ag2] (μ-Cl)2Ag2: A novel chain polymeric compound, Polyhedron, 1985, 5, 901-902.

[46] Yamazaki F., Deeming J., Animis B., Hursthouse M.B., Malik K.M.A., A Helical Metal–Metal Bonded Chain via the Pt–Ag Dative Bond, J. Amer. Chem. Soc., 2001, 123, 743-744.

[47] Freisinger E., Schneider A., Drumm M., Hegmans A., Meier S., Lippert B., Hexocyclic oxygen atoms of platinated nucleobases as binding sites for alkali metal ions, J. Chem. Soc., Dalton Trans., 2000, 3281-3287. Freisinger, A. Schneider, M. Drumm, A. Hegmans, S. Meier, B. Lippert, J. Chem. Soc., Dalton Trans., 3281 (2000).

[48] Al-Resayes S.I., Hitchcock P.B., Nixon J.F., Synthesis, crystal, and molecular structure of the novel infinite chain mixed metal carbene complex [Pd(μ-C)2Pt(CPPh3)2]n derived from co-ordinated bis(diphenylphosphino)methane (dppm), J. Chem. Soc., Chem. Commun., 1986, 1710-1711.
[56] Strickler P., Die Kristallstruktur eines polynuclearen Silber-Platin-Mercaptophosphin-Komplexes, Helv. Chim. Acta, 1969, 52, 270-279.

[57] Mason R., Robertson G.B., Pauling P.J., Molecular and crystal structure of potassium bisacetylacetonochloroplatinate(ll), J. Chem. Soc. A, 1969, 485-492.

[58] Usón R., Forniés J., Tomás M., Ara I., Synthesis and Reactivity of a New Class of Neutral Polymeric Complexes [PTAgX2(C6CIS)], Crystal Structure of [PTAgCl2(C6CIS)(PPH3)x].cndot.1.5xCH2Cl2, Inorg. Chem., 1994, 33, 4023-4028.

[59] Appleton T.G., Byriel K.A., Hall J.R., Kennard C.H.L., Lynch D.E., Sinkinson J.A., Smith G., Reactions of di- and trimethylplatinum(IV) complexes with N-(phosphonomethyl)glycine (glyphasate) and iminobis(methylenephosphonic acid). Crystal structures of three dimethylplatinum(IV) complexes with N-(phosphonomethyl)glycine coordinated facially, Inorg. Chem., 1994, 33, 444-455.

[60] Piccinin A., Toussaint J., Crystal structure of polymeric K2Pt(CN)5.3H2O complex. Bull. Soc. Roy. Sc. Liége, 1967, 36, 122-124.

[61] Levy Ch.J., Vittal J.J., Puddephatt R.J., Synthesis and Reactivity of 2,8,12,18-tetraethyl-3,7,13,17-tetramethylporphyrin. Crystal structure of polymeric K2Pt(CN)5.3H2O complex. Bull. Soc. Roy. Sc. Liége, 1967, 36, 122-124.

[62] Dahlenburg L., Mertel S., Chiral chelate phosphanes: XI. Application of cyclopentane-based C2 chiral bis(phosphine) ligands C5H5(PR2)2 to Pt-Sn-catalyzed styrene hydroformylation, J. Organomet. Chem., 2001, 630, 221-233.

[63] Farkas E., Kollár L., Moret M., Sironi A., Halogen Exchange in Di-hydrido-bridged platinum(II)-tungsten(IV) complexes. [Pt(NH3)2(NHCOtBu)2]Xn (X = BF4−, n = 2 or 3), Eur. J. Inorg. Chem., 2002, 2664-2670.

[64] Yamada Y., Uchida M., Miyashita Y., Fujisawa K., Konno T., Okamoto K., Synthesis, Crystal Structures, and Some Properties of S-Bridged Pt(II)-M(III) (M = Co, Rh) Dinuclear Complexes with Square-Planar and Octahedral Geometries, Bull Chem. Soc. Jpn., 2000, 73, 913-922.

[65] Baumann T.F., Nasir M.S., Sibert J.W., White A.J.A., Olmstead M.M., Williams D.J., Barrett A.G.M., Hoffman B.M., solitaire-Porphyrazines: Synthetic, Structural, and Spectroscopic Investigation of Complexes of the Novel Binucleating Porphyrazines: Synthetic, Structural, and Spectroscopic Investigation of Complexes of the Novel Binucleating Porphyrazines: Synthetic, Structural, and Spectroscopic Investigation of Complexes of the Novel Binucleating Norphthalocyanine-2,3-dithiolato Ligand, J. Amer. Chem. Soc., 1996, 118, 10479-10486.

[66] Toronto D.V., Balch A.L., Formation of Trinuclear Complexes by Addition of Mercury(II) Halides and Gold(II) Halides to Pt2(NH3)6(dpm)2, Inorg. Chem., 1994, 33, 6132-6139.

[67] Zhaohni Li, Zhi-Heng Loh, Fong S.W.A., Yaw-Kai Yan, Henderson W., Mok K.F., Hor T.S.A., Ligand-stabilization of an unusual square-based pyramidal geometry of Cd(II) and Zn(II) in an heterometallic (MPT252) core (M = Cd, Zn), J. Chem. Soc., Dalton Trans., 2000, 1027-1031.

[68] Micklitz W., Müller G., Huber B., Riede J., Rashvau F., Heinze J., Lippert B., Trinuclear, mixed Pt2Pd1-methyluracil and -1-methylthymine blues with +2.33 average metal oxidation state. Preparation, crystal structures, and solution studies, J. Amer. Chem. Soc., 1988, 110, 7084-7092.

[69] Chen W., Matsumoto K., Synthesis and Structural Characterization of Trinuclear, Amide-Bridged Heterometallic Complexes [(Pt(NH3)2)(NCO(OBu)2)]2Mn (M = Mn, Fe, Co, Ni, Cu; X = BF4−, ClO4−; n = 2 or 3), Eur. J. Inorg. Chem., 2002, 2664-2670.

[70] Usón R., Forniés J., Falvello L.R., Tomás M., Casas J.M., Synthesis and Structural Characterization of Heterobimetallic Platinum−Phosphine−Tin(II) Halide Systems. Characterization of Group 14−Platinum(IV) Complexes, Inorg. Chem., 2001, 630, 221-233.

[71] Dong-Youn Noh, Eun-Me Seo, Ha-Jin Lee, Hong-Young Jang, Young-Gun Choi, Young-Hwan Kim, Jongkie Hong, Syntheses and characterization of heterobimetallic complexes (dpf) Pd(phenolate) (dpf) bis(diphenyolphosphino)ferrocene; X-ray crystal structures of (dpf)PdL where L=dmft, phdt and i-mnt, Polyhedron, 2001, 20, 1939-1945.

[72] Hodgson M.J., Healy P.C., Williams M.L., Arnold D.P., Peripherally-metallated porphyrins: preparations, spectroscopic properties and structural studies of trans-[PtBr(MDPP)(PPH3)]2 (DPF = diamin of 5,15-diphenyolphosphin, M = Mn, Co, Ni, Zn) and related meso-n1-organoplatinum porphyrins, J. Chem. Soc., Dalton Trans., 2002, 4497-4504.

[73] Hutton A.T., Shebanzadeh B., Shaw B.L., Symmetrical n1-, or o-n-acyclic bridges in bimetallic µ₂-PtCH2Pd2(dpdp) complexes: crystal structures of [MePt(µ-n1–C=C(Me)Ph2)][BF4] and [ClPd(µ-o-n-C6H5)2][BF4], J. Organomet. Chem., 2001, 630, 221-233.
[81] Yoshida T., Tanaka S., Adachi T., Yoshida T., Onitsuka K., Sonogashira K., Reactions of 1,1'-Ferrocenediylbis[chloro-([1,2,5,6-n]-1,5-cyclooctadiene)]platinum with Triarylphosphine and Molecular Oxygen, Angew. Chem. Int. Ed. Engl., 1995, 34, 319-321.

[82] Weiss D., Steinken T., Winter M., Fischer R.A., Fröhlich N., Uddin J., Frenking G., (dcep)Pt(Ecp)*2 (E = Al, Ga): Synthesis, Structure, and Bonding Situation of the First Aluminum(I) and Gallium(I) Complexes of Phosphine-Substituted Transition Metal Centers, Organometallics, 2000, 19, 4583-4588.

[83] Bachert I., Bartusek I., Braunstein P., Guillon E., Rosé J., Kickelbick G. Synthesis of Co2Pt, Co2Pd and MoPd2 mixed-metal clusters with the P-N-P assembling ligands (Ph2P)2NH (dppa) and (Ph2P)2NMe (dppeMe). Crystal structure of [Co2Pt(μ-3:CO) (CO)6] (μ-dppa). J. Organomet. Chem., 1999, 580, 257-264.

[84] Kuwata S., Mizobe Y., Hidai M., Reactions of a diruthenium complex bridged by disulfide and thiolate ligands with zero-valent noble metal complexes. Syntheses of mixed metal-sulfide-thiolate clusters containing trinuclear PdRu2 and tetraneuronal Pd2Ru2 cores. J. Amer. Chem. Soc., 1993, 115, 8499-8500.

[85] Deeming A.J., Cockerton B.R., Doherty S., Substitution of chloride in [PtCl2(PEt3)2] by the chiral anionic ligand [MoO(μ-3:CO)(Ph2P)] to give mixed platinum-molybdenum compounds and a 31P NMR analysis of their fluxionality. X-ray crystal structure of [PtCl(PEt3)]2(μ-PPh2)Mo(CO)3] and trans-[Pt(TeP)2(μ-PPh2)Mo(CO)2]2, Polyhedron, 1997, 16, 1945-1956.

[86] Bruce M.J., Hall B.C., Low P.J., Smith M.E., Skelton B.W., White A.H., Heterometallic complexes containing C4 chains. X-ray structures of [Cp(CO)3W]C⋯CC⋯C{Ir(CO)(PPh3)2(O2)} and cis-[Cp(CO)3W]C⋯CC⋯C{Ir(CO)(PPh3)2(O2)}, J. Organomet. Chem., 2000, 2362-2369.

[87] Farrugia L.J., Green M., Harkey D.R., Murray M., Orpen A.G., Stone F.G.A., Chemistry of the unsaturated cluster compounds [Os3Pt(μ-H)2(CO)10(Pcyclo-C6H11)]3; X-ray crystal structures of [Os3Pt(μ-H)2(CO)11(Pcyclo-C6H11)], [Os3Pt(μ-H)4(CO)10(Pcyclo-C6H11)3] and [Os3Pt(μ-H)2(μ-C2H2)(CO)10(–Pcyclo-C6H11)3][two isomers], J. Chem. Soc., Dalton Trans., 1985, 173-179.

[88] Farrugia L.J., Green M., Harkey D.R., Orpen A.G., Stone F.G.A., Reversible addition of hydrogen and carbon monoxide to a closo-triosmiumplatinum cluster: X-ray crystal structures of [Os3Pt(μ-H)4(CO)10(Pcyclo-C6H11)]3 and [Os3Pt(μ-H)2(μ-C2H2)(CO)10(–Pcyclo-C6H11)3][two isomers], J. Chem. Soc., Chem. Commun., 1983, 310-312.

[89] Adams R.D., Hor T.S.A., Cluster synthesis. 7. Role of bridging sulfido ligands in the synthesis of platinum osmium carbonyl cluster compounds, Inorg. Chem., 1984, 23, 4723-4732.

[90] Farrugia L.J., MacDonald N., Peacock R.D., Structure of 1,2;1,3-di-μ-carbonyl-1,1,2,3,3,4-heptacarbonyl-2,3-μ-η3-cyclooctenyl-2,4-μ-hydrido-4-tricyclohexylphosphine-tetrahydroro-trirutheniumplatinum, Acta Crystallogr., Sect. C, 1991, 47, 2561-2564.

[91] Antognazza P., Beringhelli T., D’Alfonso G., Minoja A., Ciani G., Moret M., Sironé A., Rhenium-platinum mixed-metal clusters. Synthesis and solid-state structural characterization of [Re2Pt(μ-H)2(CO)8(COD)] and [Re3Pt(μ-H)2(CO)11(C6H5)], J. Organomet. Chem., 1992, 431, 11, 1777-1784.

[92] Ciani G., Moret M., Sironé A., Beringhelli T., D’Alfonso G., Della Pergola R., Stepwise addition of PtPPh3 fragments on [Re2Pt(μ-H)2(CO)8(COD)] and [Re3Pt(μ-H)2(CO)11(C6H5)], J. Chem. Soc., Chem. Commun., 1990, 1668-1670.

[93] Adams R.D., Chen G., Lii J.Ch., Wu W., Cluster synthesis. 30. New platinum-osmium carbonyl cluster complexes from the reaction of Os3(CO)10(NCMe)2 with bis(cyclooctadiene)platinum, Inorg. Chem., 1991, 30, 1007-1013.

[94] Douglas G., Jennings M.C., Manojlovic-Muir L., Puddephatt R.J., Synthesis and structure of the cluster cation tris-μ-H-bis(diphenylphosphino)methane-μ3-sulfido[(triphenylphosphine)gold]-μ3-chlorosilver] triplatinum(1+), containing both platinum-gold and platinum-silver bonds, Inorg. Chem., 1988, 27, 4516-4520.
[104] Freeman M.J., Miles A.D., Murray A.G., Stone F.G.A., The synthesis and x-ray crystal structure of the hexanuclear metal cluster complex [Ir3P3(μ3-CO)3(CO)3(η-C5Me5)3], Polyhedron, 1984, 3, 1097-1105.

[105] Rauter H., Multikainen I., Blomberg M., Lock C.L.L., Amo-Ochoa P., Freisinger E., Zangrdo L.E., Chiappini E., Lippert B., Cyclic Metal Complexes of Nucleobases and Other Heterocycles: Molecular Boxes, Rectangles, and Hexagons, Angew. Chem. Int. Ed. Engl., 1997, 36, 1296-1301.

[106] Espinet P., Forniés J., Martínez F., Tomás M., Lalinde E., Moreno M.T., Ruiz A., Welch A.J., Polynuclear platinum–silver, – copper, and –gold acetylide complexes. Molecular structure of \([Pt2Ag4(Cl\text{triple bond, length half m-dash}CBut)8]^{-}\), J. Chem. Soc., Dalton Trans., 1990, 791-798.

[107] Adams R.D., Wu W., Cluster synthesis 37—Platinum-ruthenium carbido-cluster complexes: The syntheses and structural characterizations of PtRu5(CO)16, Pt2Ru5(CO)13(COD), and Pt3Ru5(CO)14(COD), J. Cluster Sc., 1991, 2, 271-290.

[108] Hermans S., Khimyak T., Johnson B.F.G., High yield synthesis of Ru–Pt mixed-metal cluster compounds, J. Chem. Soc., Dalton Trans., 2001, 3293-3302.

[109] Adams R.D., Captain B., Fu W., Pellechia P.J., Facile dynamical intramolecular exchange of a phosphine ligand between two different metal atoms, Chem. Commun., 2000, 937-938.

[110] Adams R.D., Wu W., An unusual electron-rich carbido platinum-ruthenium cluster from the reaction of diphenylacetylene with PtRu5(CO)16, Coordination Chemistry of Its 1,3-Alternate Conformer towards New platinum-osmium carbonyl cluster complexes from the reaction of diphenylacetylene with PtRu5(CO)16, (mu-6-C). Synthesis and crystallographic characterizations of PtRu5(CO)13(mu-PhC2Ph)(mu-3-PhC2Ph)(mu-s.5-C) and Ru6(CO)13(mu-3-PhC2Ph)2(mu-6-C), Organometallics, 1993, 12, 1238-1242.

[111] Adams R.D., Wu W., Cluster synthesis. 34. Unsaturation in a high-nuclearity platinum-osmium carbonyl cluster complex. Studies of the synthesis, structure, and reactivity of Pt2Os4(CO)11(COD), Inorg. Chem., 1991, 30, 3605-3612.

[112] Navarro J.A.R., Freisinger E., Lippert B., [Ethylenediamine] Pt(uracilate)4 – A Metal Analogue of Calix[4]arene: Coordination Chemistry of Its 1,3-Alternate Conformer towards First-Row Transition-Metal Ions, Eur. J. Inorg. Chem., 2000, 147-151.

[113] Adams R.D., Li Z., Li J.Ch., Wu W., Cluster synthesis. 40. New high-nuclearity platinum-ruthenium carbonyl cluster complexes. Synthesis and structural characterizations of Ru8Pt2(CO)23(μ-3-H2), Ru7Pt3(CO)22(μ-3-H2), and Ru8Pt2(CO)23(μ-3-H2), Ru7Pt3(CO)22(μ-3-H2), and Ru8Pt2(CO)23(μ-3-H2)2, Synthesis and structural characterizations of Pt2Ru5(CO)16, Pt2Ru5(CO)13(COD)2, and Pt3Ru5(CO)14(COD), J. Cluster Sc., 1991, 2, 271-290.

[114] Adams R.D., Barnard T., Li Z., Wu W., Yamamoto J.H., The synthesis and structural analysis of the new high nuclearity platinum-ruthenium cluster complex Pt2Ru8(CO)18(μ3-EtC2Et)(μ4-EtC2Et) containing three alkylene ligands, J. Cluster Sc., 1994, 5, 551-564.

[115] Rubinstein L.I., Pignolet L.H., Kinetic Investigation of Homogeneous H2–D2 Equilibration Catalyzed by Pt–Au Cluster Compounds. Characterization of the Cluster \([H]Pt(AuPPh3)9\) (NO3)2, Inorg. Chem., 1996, 35, 6755-6762.

[116] Ceriotti A., Demartin F., Longoni G., Manassero M., Marchionna M., Piva G., Sansoni M., Synthesis and Structure of the \([Ni38Pt6(CO)48H6–n]^–\) (n=5, 4) Ions: Ni-Pt Clusters as Models for “Cherry” Crystallography, Angew. Chem. Int. Ed. Engl., 1985, 24, 697-698.

[117] Adams R.D., Pompeo M.P., Wu W., Cluster synthesis. 33. New platinum-osmium carbonyl cluster complexes from Pt2Os5(CO)17(μ-H2): synthesis and characterization of PtOs5(CO)15(μ-3-S)(μ-H6), PtOs5(CO)18(μ-H4), and PtOs4(CO)14(μ-H2), Inorg. Chem., 1991, 30, 2899-2905.

[118] Pasynskii A.A., Kolobkov B.I., Nefedov S.E., Eremenko I.L., Kolton E.S., Ivanov A.I., Yu. T. Struchkov, Synthesis and molecular structures of S2Fe2(CO)6 heterometallic derivatives, containing (Ph3P)2Pt or CpRe(CO) fragments, J. Organomet. Chem., 1993, 454, 229-236.

[119] Lindner E., Kehrer U., Steimann N., Ströbele M., Preparation, properties, and reactions of metal-containing heterocycles: Part CV. Synthesis and structure of polyoxadiphosphaphlatinaferrocenophanes, J. Organomet. Chem., 2001, 630, 266-274.

[120] Liu H., Tan A.L., Mo K.F., Mak T.C.W., Batsanov A.S., Howard J.A.K., Hor T.S.A., From Aggregates to Clusters. Facile Formation of Hetero-Metal–Metal Bonds through Reductive Desulfurization by CO in a Decapacitative Transformation of a (Pt2MS2) Tbp Frame to a (Pt2MS) Tetrahedral Core (M = Ag, Cu, and Ru), J. Amer. Chem. Soc., 1997, 119, 11006-1101.

[121] Ranatunge-Bandarage P.R., Duffy N.W., Johnston S.M., Robinson B.H., Simpson J., Synthesis and stereochemistry of bis(platinum) complexes of ferrocenylamines, Organometallics, 1994, 13, 511-521.

[122] Vicente J., Chicote M.T., Huertas S., Jones P.G., Fischer A.K., Herodi- [M4Au] (M = Pt, Pd), Tri- [PdAg2, PtAg2, PtAu2, Pt2M (M = Ni, Pt, Cd, Hg)], and Tetranuclear (Pt2Ag2, Pt2Au2) 1,1-Ethenylenedithiolato Complexes, Inorg. Chem., 2001, 40, 6193-6200.

[123] Vicente J., Chicote M.T., Huertas S., Bautista D., Jones P.G., Fischer A.K., Mononuclear (Pd, Pt), Heterodinuclear (PdAg, PtAg), and Tetranuclear (Pd2Ag2, Pt2Ag2) 1,1-Ethenylenedithiolato Complexes, Inorg. Chem., 2001, 40, 2051-2057.

[124] Green M., Hankey D.R., Murray M., Orpen A.G., Stone F.G.A., Synthesis, dynamic behaviour, and molecular structures of μ-methylene platinumtriosmium complexes: X-ray crystal structures of two isomers of [Os3Pt(μ-H2)(μ-CH2) (CO)10{P(C6H11)3}], J. Chem. Commun., 1981, 689-691.

[125] Adams R.D., Chen G., Wu W., The synthesis and structural analysis of Pt2Ru4(CO)18 and the products obtained from its reactions with 1, 2-bis(diphenylphosphino)ethane, J. Cluster Sc., 1994, 4, 119-132.

[126] Antonucci V., Aricó A.S., Calderazzo F., LABELLA L., Marchetti F., A New Polyomorph of the Heteronuclear Cluster Ru4Pt2(CO)18, J. Cluster Sc., 2001, 12, 293-301.

[127] Kappen T.G.M.M., Schlebos P.P.J., Bouij J.J., Bosman W.P., Beurskens G., Smits J.M.M., Beurskens P.T., Steggerda J.J., Cluster Growth: Some Representative Reactions. Crystal Structures of [Pt(H)(AgNO3)(AuPPh3)8](NO3) and [Pt(H) (AgNO3)2(AuPPh3)8](NO3), Inorg. Chem., 1995, 34, 2121-2132.

[128] Mélénik M., Holloway C.E., Stereochemistry of platinum coordination compounds, Coord. Chem. Rev., 2006, 250, 2261-2270.