Inheritance of deleterious mutations at both BRCA1 and BRCA2 in an international sample of 32,295 women

Rebbeck, Timothy R; Friebel, Tara M; Mitra, Nandita; Wan, Fei; Chen, Stephanie; Andrulis, Irene L; Apostolou, Paraskevi; Arnold, Norbert; Arun, Banu K; Barrowdale, Daniel; Benitez, Javier; Berger, Raanan; Berthet, Pascaline; Borg, Ake; Buys, Saundra; Caldes, Trinidad; Carter, Jonathan; Chiquette, Jocelyne; Claes, Kathleen B M; Couch, Fergus J; Cybulski, Cezary; Daly, Mary B; de la Hoya, Miguel; Diez, Orland; Domchek, Susan M; Nathanson, Katherine L; Durda, Katarzyna; Ellis, Steve; Evans, D Gareth; Foretova, Lenka; Friedman, Eitan; Frost, Debra; Ganz, Patricia A; Garber, Judy; Glendon, Gord; Godwin, Andrew K; Greene, Mark H; Gronwald, Jacek; Hahnen, Eric; Hallberg, Emily; Hamann, Ute; Imyanitov, Evgeny N; Isaacs, Claudine; Jakubowska, Anna; Janavicius, Ramunas; Jaworska-Bieniek, Katarzyna; John, Esther M; Karlan, Beth Y; Kaufman, Bella; Thomassen, Mads; EMBRACE

Published in:
Breast Cancer Research (Online)

DOI:
10.1186/s13058-016-0768-3

Publication date:
2016

Document version
Final published version

Document license
CC BY

Citation for published version (APA):
Rebbeck, T. R., Friebel, T. M., Mitra, N., Wan, F., Chen, S., Andrulis, I. L., Apostolou, P., Arnold, N., Arun, B. K., Barrowdale, D., Benitez, J., Berger, R., Berthet, P., Borg, A., Buys, S., Caldes, T., Carter, J., Chiquette, J., Claes, K. B. M., ..., EMBRACE (2016). Inheritance of deleterious mutations at both BRCA1 and BRCA2 in an international sample of 32,295 women. Breast Cancer Research (Online), 18, [112].
https://doi.org/10.1186/s13058-016-0768-3
Inheritance of deleterious mutations at both BRCA1 and BRCA2 in an international sample of 32,295 women

Timothy R. Rebbeck1*, Tara M. Friebel1, Nandita Mitra2, Fei Wan3, Stephanie Chen4, Irene L. Andrilis7,8, Paraskevi Apostolou9, Norbert Arnold10, Banu K. Arun11, Daniel Barrowdale5, Javier Benitez12,13,14, Raanan Berger15, Pascaline Berthet16, Ake Borg17, Saundra S. Buys18, Trinidad Caldes19, Jonathan Carter20, Jocelyne Chiquette21, Kathleen B. M. Claes22, Fergus J. Couch23, Cezary Cybulski24, Mary B. Daly25, Miguel de la Hoya19, Orland Diez26, Susan M. Domchek27, Katherine L. Nathanson27, Katarzyna Durda24, Steve Ellis28, EMBRACE28, D. Gareth Evans29, Lenka Foretova30, Eitan Friedman31,32, Debra Frost28, Patricia A. Gan33, Judy Garber1, Gord Glendon34, Andrew K. Godwin35,36, Mark H. Greene37, Jacek Gronwald24, Eric Hahnen38, Emily Hallberg39, Ute Hamann40, Thomas V. O. Hansen41, HEBON42, Evgeny N. Imyanitov43, Claudine Isaacs44, Anna Jakubowska24, Ramunas Janavicius45,46, Katarzyna Jaworska-Bieniek44, Esther M. John47, Beth Y. Karlan48, Bella Kaufman15, KConFab investigators49, Ava Kwong50,51, Yael Laitman31,32, Christine Lasset52, Conxi Lazaro53, Jenny Lester48, Niklas Loman54, Jan Lubinski24, Siranoush Manoukian55, Gillian Mitchell56,57, Marco Montagna58, Susan L. Neuhausen59, Heli Nevalinna60, Dieter Niederacher61, Robert L. Nussbaum62, Kenneth Offit63, Edith Olah64, Olufunmilayo I. Olopade65, Sue Kyung Park66, Marion Piedmonte67, Paolo Radice68, Christine Rappaport-Fuerhauser69, Matti A. Rookus70, Caroline Seynaeve71, Jacques Simard72, Christian F. Singer73, Penny Soucy72, Melissa Southey74, Dominique Stoppa-Lyonnet75, Grzegorz Sukienicki24, Csilla I. Szabo76, Mariella Tancredid77, Manuel R. Teixeira78, Soo-Hwang Teo79,80, Mary Beth Terry81, Mads Thomassen82, Laima Tihomirova83, Marc Tischkowitz84, Amanda Ewart Toland85, Aleksandra Toloczko-Grabarek24, Nadine Tung86, Elizabeth J. van Rensburg87, Danylo Villano88, Shan Wang-Gohrke89, Barbara Wappenschmidt90, Jeffrey N. Weitzel90, Jamal Zidan91,92, Kristin K. Zorn93, Lesley McGuffog9, Douglas Easton9, Georgia Chenevix-Trench9, Antonis C. Antoniou6 and Susan J. Ramus4,94

Abstract

Background: Most BRCA1 or BRCA2 mutation carriers have inherited a single (heterozygous) mutation. Transheterozygotes (TH) who have inherited deleterious mutations in both BRCA1 and BRCA2 are rare, and the consequences of transheterozygosity are poorly understood.

(Continued on next page)
Background

Women who have inherited mutations in BRCA1 or BRCA2 are at greatly increased risk of developing breast cancer (BC) and ovarian cancer (OC) [25, 38]. Identification of a mutation at these loci can lead to risk or mortality reduction if optimal surveillance, risk-reducing mastectomy (RRM), and risk-reducing salpingo-oophorectomy (RRSO) are applied [8, 29]. In addition, treatment of cancers in mutation carriers has advanced with the development of PARP inhibitors, which take advantage of BRCA1/2 function in tumors [37]. Reports on several BRCA1/2 transheterozygotes (TH) have been reported in the literature, mainly without further details on tumor or patient phenotype. Ramus et al. [27] reported on one TH who had been diagnosed with both BC and OC, and was identified as having a mutation in BRCA1 c.68_69delAG (185/187delAG) and BRCA2 c.5946delIT (6174delIT). LOH in these tumors was not found. Additional reports identified TH for BRCA1 c.2389G > T and BRCA2 c.3068dupA [21], BRCA1 c.68_69delAG and a BRCA2 c.5946delIT [36], and TH with BRCA1 c.68_69delAG and BRCA2 c.5946delIT [11] in four cases. In addition, a number of reports of TH with LOH in cancer samples have been published. Randall et al. [28] reported one TH identified with a BRCA1 c.3770_3771delGA and BRCA2 c.5946delIT, and being affected with both BC and OC. For the BC, only LOH at the BRCA1 locus was found (not at BRCA2), and the OC sustained LOH at both BRCA1 and BRCA2. Tesoriero et al. [35] reported a TH with BRCA1 c.3770_3771delGA and BRCA2 c.5946delIT. The BC of this patient lost the wild-type BRCA2 allele. Bell et al. [1] reported on a TH with c.5266dupC BRCA1 and c.5946delIT BRCA2 mutation having three independent BCs. They showed that LOH occurred in two BRCA2 and one BRCA1 tumor. A large clinic-based series of 1191 carriers from Israel [20] identified 16 TH females, 14 with
the c.68_69delAG BRCA1 and c.5946delT BRCA2 mutations and two with the c.5266dupC BRCA1 and c.5946delT BRCA2 mutations. A study from Germany identified eight female TH from 8162 BC/OC families and compared the clinical characteristics of the TH to their SH relatives and to SH in the family-based study [14].

To characterize the nature of TH and clinical phenotypes of TH, we used the Consortium of Investigators of Modifiers of BRCA1/2 (CIMBA) dataset of 32,295 female BRCA1/2 mutation carriers ascertained in high-risk clinics and population-based studies. From this dataset, we investigated the occurrence of TH, we compared the characteristics and features of BC and OC in TH and single BRCA1 or BRCA2 mutations, and we examined LOH in as many cancer samples as possible.

Methods

Study sample

Details of CIMBA participating centers and data collection have been reported previously [5]. All the included mutation carriers participated in clinical and research studies at the host institutions after providing informed consent under IRB-approved protocols. Fifty-five centers and multicenter consortia (Additional file 1: Table S1) submitted data that met the CIMBA inclusion criteria [5]. Only female carriers with pathogenic BRCA1/2 mutations, concerning TH, SH1, and SH2 mutation carriers, were included in the current analysis. Pathogenicity of mutation was defined as follows: 1) generating a premature termination codon (PTC), except variants generating a PTC in exon 27 after codon 3010 of BRCA2; 2) large in-frame deletions that span one or more exons; and 3) deletion of transcription regulatory regions (promoter and/or first exon) expected to cause lack of expression of mutant allele. We also included missense variants considered pathogenic by using multifactorial likelihood approaches [4, 12]. Mutations that did not meet the above criteria but have been classified as pathogenic by Myriad Genetics, Inc. (Salt Lake City, UT, USA) were also included.

Loss of heterozygosity

From 10 TH individuals, tumor tissue was available from twelve tumors, and blood DNA from 10 TH. From one case, tumor tissue from both BC and OC was available, and from another case affected with bilateral BC, tumor samples were available from both breast tumors. Hematoxylin and eosin (H&E) slides from each tumor were examined by a specialist pathologist. Areas of >80 % tumor cells were marked for macro-dissection. DNA from two 10-micron unstained slides was extracted using the Qiagen QIAmp DNA FFPE Tissue Kit using the standard protocol but with 500 μl deparaffinization solution.

We performed micro-satellite analysis to objectively detect LOH as described previously [16]. We amplified patient tumor and blood DNA for two markers within BRCA1 (D17S855 and D17S1322) and four markers around BRCA2 (D13S290, D13S260, D13S1698, and D13S171). The heterozygosity for these markers ranged from 0.46 to 0.82 [17, 26]. Primer sequences and distance from BRCA1 or BRCA2 are given in Additional file 1 (Table S2). After polymerase chain reaction (PCR) amplification, samples were size-separated on a 96 capillary DNA analyzer (Applied Biosystems 3730xl). Data were analyzed using Genemapper Software (Applied Biosystems). For micro-satellites that were heterozygous, the ratios of allele peak heights for each tumor sample were compared to the allele peak heights for the blood DNA sample using the following formula L = (at1 X an1)/(at2 X an2), where L = the ratio; a = the height of the peak; n1 and n2 = normal allele 1 and normal allele 2; t1 and t2 = tumor allele 1 and tumor allele 2. All ten cases were informative for at least one marker in BRCA1. Where cases were informative for both markers, the LOH data were consistent for the two nearby markers. All ten cases were also informative for at least one of the four markers in BRCA2. In two cases, the data were not consistent across all markers in the
1.74 MB region and the data for the marker closest to \textit{BRCA2} was used.

To complement the information obtained from microsatellite analysis, we also undertook DNA sequence analysis. For each individual, a small region (<200 bp) around each of their two mutations was PCR-amplified from both tumor and blood DNA. DNA from peripheral blood of a healthy control individual was also amplified for each fragment as a control for no mutation. We used 10 ng of DNA in the PCR reaction, using standard protocol and primer sequences (given in Additional file 1: Table S3). All three samples for each mutation were then treated with EXO-SAP-IT (Affymetrix) and Sanger sequenced using standard methods [32]. This sequencing was used to confirm the presence of each mutation in the blood DNA from the patient and not in the control sample. We also assessed the mutation status in the tumor to determine if LOH had occurred. Since we extracted areas of >80 % tumor cells, both alleles can be present even when LOH is present, due to contaminating normal tissue. Therefore, for each tumor we determined for each mutation if the two alleles were at an equal ratio compared to the germline sample or if there was a decrease in one of the two alleles.

\textbf{Statistical Analysis}

For comparison of TH and SH mutation carriers, contingency table analysis using a chi-square test was used for dichotomous variables, and a \textit{t} test for continuous variables. Fisher’s exact tests were used if sample sizes in any contingency table cell were less than five. Analyses were done in STATA, v. 13.1.

\textbf{Results}

\textbf{Characteristics of TH versus SH1 and SH2 mutation carriers}

Table 1 describes the 93 female TH from 84 families identified from the CIMBA database. Among the matched TH-SH1/SH2 sets, 25 had no cancer diagnosis. The average age of these women was 39 years and the average age at diagnosis of BC was 41 years. Only 16 women were less than age 41 and 9 women were over age 41 at the time of diagnosis (mean age 49.9, range 41.4–67.9). Table 2 shows that OC age for the matched \textit{BRCA1} TH cases was 51.1 years and SH1 controls was 50.9 years ($p = 0.154$). For the matched \textit{BRCA2} set the average OC age for the TH cases was 54.7 years and for SH2 controls was 56.8 years ($p = 0.421$) (Fig. 1).

The most common TH involved inheritance of two of the three common Jewish mutations: 5 (5.4 %) women inherited \textit{BRCA1} c.5266dupC and \textit{BRCA2} c.5946delT; 31 (33.3 %) women inherited \textit{BRCA1} c.68,69delAG and \textit{BRCA2} c.5946delT. Six (6.5 %) women carried one of the three common Jewish mutations and another mutation. The majority of the remaining TH were observed only once. The majority of the TH self-identified as non-Hispanic Caucasian or Jewish. Of the 6907 women who carried one of the Jewish founder mutations, 2732 (39.6 %) self-identified as Jewish, 947 (13.7 %) were unknown, and 3225 (46.7 %) reported an ethnicity other than Jewish. We observed two TH in Hispanics and six TH in Asians (four of which were Korean). Of the 93 TH, 51 were diagnosed with BC only, 4 with OC only, 13 with both BC and OC, and 25 with no cancer diagnosis.

The matched datasets included 91 TH and 9316 SH1 for the \textit{BRCA1} matched analysis, and 89 TH and 3370 SH2 for the \textit{BRCA2} matched analysis. Two \textit{BRCA1} mutations were observed among the TH in our dataset that were not observed among SH1 (c.1390delA and c.3196G > T), and four \textit{BRCA2} mutations were observed in the TH dataset that were not observed among the SH2 (c.8633-?_8754 + ?amp, c.739,740delAT, c.5380delG, and c.2269A > T). These six carriers were not included in the analysis (denoted by an asterisk in Table 1). TH were more likely to be born more recently (i.e., since 1961) than SH2 mutation carriers but not when compared to SH1s (Table 2). The TH group consisted of more individuals from Asian ancestry compared to the SH1 and SH2 groups, with an excess of women having a Jewish ancestry vs. the SH1 group. TH were more likely to have ever been diagnosed with BC than SH1 or SH2 individuals (68.1 % vs. 52.0 %; \textit{p} = 0.002, and 67.4 % vs. 50.4 %; \textit{p} = 0.002), and TH were more likely to be diagnosed with OC than SH2 women (16.9 % vs. 9.3 %; \textit{p} = 0.017), which was not observed in TH vs. SH1 women, perhaps due to the lower incidence of OC in \textit{BRCA2} vs. \textit{BRCA1}. Age at BC diagnosis was significantly different for TH vs. SH2 (40.5 years vs. 45.0 years; \textit{p} = 0.001), but there was no difference between TH and SH1.

There were 64 TH cases with BC. Of these, 62 TH were matched to 4846 SH1s and 60 TH were matched to 1699 SH2 (Table 3). TH were more likely to have estrogen receptor (ER)- and progesterone receptor (PR)-positive BC than SH1s (ER: 42.9 % vs. 24.0 %; \textit{p} = 0.010; PR: 40.6 % vs. 20.0 %; \textit{p} = 0.013). In contrast, the BCs of TH were less likely ER- and PR-positive than in SH2s (ER: 42.9 % vs. 76.5 %; \textit{p} = 0.001; PR: 40.6 % vs. 62.8 %; \textit{p} = 0.012). The proportion of ER- and PR-positive BCs in TH was intermediate to that of SH1 and SH2. No difference was seen regarding the HER2 status between the BCs of TH and SH1s and SH2s, respectively, although the available numbers were small. No differences in other BC characteristics (morphology, grade, stage) were observed.

Only 17 TH were diagnosed with OC, and thus we had limited data on features of OC to make inferences regarding differences in TH compared with SH1 or SH2. No statistically significant differences were observed for OC traits between TH and SHs (Table 4). Surprisingly, four borderline tumors were reported in both the SH1 and SH2 groups.
BRCA1 mutation	BRCA2 mutation	N	%	Breast cancer only	Ovarian cancer only	Breast + ovarian cancer	No cancer	Self-identified race/ethnicity	Country of ascertainment				
c.197_80 + 7dup	c.86337_8754 + ?dup*	1	1.1	1	1.1	0	0.0	0	0.0	Jewish	Hungary		
c.68_69delAG	c.5946delT	31	33.3	13	13.9	1	1.1	3	3.2	Caucasian, Jewish, NR	USA, Hungary, Israel		
c.68_69delAG	c.5722_5723delCT	1	1.1	1	1.1	0	0.0	0	0.0	Caucasian	Germany		
c.1016delA	c.7379_7382delACAA	1	1.1	1	1.1	0	0.0	0	0.0	Asian	USA		
c.1390delA*	c.658_659delGT	1	1.1	1	1.1	0	0.0	0	0.0	Hispanic	USA		
c.1504_1508delS	c.2798_2799delCA	1	1.1	1	1.1	0	0.0	0	0.0	Asian	Korea		
c.1504_1508delS	c.452_463delAA	1	1.1	0	0.0	0	0.0	1	1.1	Caucasian	Germany		
c.1687C > T	c.6469C > T	1	1.1	0	0.0	0	0.0	1	1.1	Caucasian	Italy		
c.1793T > 7	c.8537_8538delAG	1	1.1	0	0.0	0	0.0	1	1.1	Caucasian	USA		
c.181 T > G	c.1318_1319dupCT	3	3.2	1	1.1	0	0.0	0	0.0	Caucasian	Austria		
c.211A > G	c.4380_4381delTT	1	1.1	1	1.1	0	0.0	0	0.0	Caucasian	UK		
c.212 + 1G > A	c.739_740delAT*	1	1.1	1	1.1	0	0.0	0	0.0	Caucasian	Spain		
c.213-12A > G	c.7180A > T	1	1.1	1	1.1	0	0.0	0	0.0	Caucasian	Italy		
c.2389G > T	c.3068dupA	1	1.1	1	1.1	0	0.0	0	0.0	Caucasian	Canada		
c.2405_2406delTG	c.4284dupT	1	1.1	0	0.0	0	0.0	1	1.1	Caucasian	Italy		
c.246delT	c.517-2A > G	2	2.2	1	1.1	0	0.0	0	0.0	Caucasian	UK		
c.301 + 1G > A	c.5682C > G	1	1.1	1	1.1	0	0.0	0	0.0	Caucasian	USA		
c.3048_3052dupS	c.2830A > T	2	2.2	1	1.1	0	0.0	0	0.0	NR	Sweden		
c.3155delA	c.3160_3163delGATA	2	2.2	1	1.1	0	0.0	0	0.0	1	1.1	Caucasian	Australia
c.3196G > T*	c.658_659delGT	1	1.1	1	1.1	0	0.0	0	0.0	Caucasian	Germany		
c.3228_3229delAG	c.3689delC	1	1.1	0	0.0	0	0.0	0	0.0	Caucasian	UK		
c.3228_3229delAG	c.9253dupA	1	1.1	1	1.1	0	0.0	0	0.0	Caucasian	Italy		
c.3400G > T	c.2808_2811delACAA	2	2.2	1	1.1	0	0.0	0	0.0	Caucasian	UK		
c.3477_3480delAAAG	c.9401delG	1	1.1	0	0.0	1	1.1	0	0.0	Caucasian	Italy		
c.3627dupA	c.6724_6725delGA	1	1.1	1	1.1	0	0.0	0	0.0	Asian	Korea		
c.3700_3704delS	c.681_1G > A	1	1.1	1	1.1	0	0.0	0	0.0	Caucasian	Australia		
c.3700_3704delS	c.1815dupA	1	1.1	1	1.1	0	0.0	0	0.0	Caucasian	Germany		
c.3756_3759delGTCT	c.7757G > A	1	1.1	1	1.1	0	0.0	0	0.0	Caucasian	USA		
c.3759_3760delTATG	c.9699_9702delTATG	1	1.1	0	0.0	0	0.0	1	1.1	Hispanic	USA		
c.3770_3771delAG	c.5946delT	2	2.2	1	1.1	0	0.0	1	1.1	NR, Jewish	Australia, USA		
Table 1 Transheterozygote BRCA1 + BRCA2 mutations in 93 women (Continued)

c.3839_3843 delinsAGGC	c.1636delT	2	2.2	0	0.0	1	1.1	0	0.0	1	1.1	NR	France
c.390C > A	c.3018delA	1	1.1	1	1.1	0	0.0	0	0.0	0	0.0	Asian	Korea
3910delG	c.2830A > T	1	1.1	1	1.1	0	0.0	0	0.0	0	0.0	Caucasian	Germany
c.3916_3917delTT	c.5380delG*	1	1.1	0	0.0	0	0.0	1	1.1	0	0.0	Caucasian	Italy
c.4035delA	c.658_659delGT	1	1.1	0	0.0	0	0.0	0	0.0	1	1.1	Caucasian	Australia
c.4065_4068delTCAGA	c.5350_5351delAA	1	1.1	1	1.1	0	0.0	0	0.0	0	0.0	Caucasian	USA
c.4186-4357 + ?del	c.2636_2637delCT	2	2.2	1	1.1	0	0.0	0	0.0	1	1.1	Caucasian	UK
c.427G > T	c.8730delT	1	1.1	1	1.1	0	0.0	0	0.0	0	0.0	Caucasian	Denmark
c.5030_5033-delCTAA	c.1399A > T	1	1.1	1	1.1	0	0.0	0	0.0	0	0.0	Asian	Korea
c.5123C > A	c.6275_6276delTT	1	1.1	1	1.1	0	0.0	0	0.0	0	0.0	Caucasian	Germany
c.5136G > A	c.4965delC	1	1.1	1	1.1	0	0.0	0	0.0	0	0.0	Asian	USA
c.5193 + 1delG	c.658_659delGT	1	1.1	0	0.0	1	1.1	0	0.0	0	0.0	Caucasian	Germany
c.5215C > T	c.6753_6754delTT	1	1.1	1	1.1	0	0.0	0	0.0	0	0.0	Caucasian	Austria
c.5266dupC	c.8364G > A	1	1.1	1	1.1	0	0.0	0	0.0	0	0.0	Caucasian	Austria
c.5266dupC	c.5946delT	5	5.4	3	3.2	0	0.0	1	1.1	1	1.1	Jewish	UK, Israel
c.5266dupC	c.4478_4481delAAAG	1	1.1	1	1.1	0	0.0	0	0.0	0	0.0	Caucasian	Germany
c.5266dupC	c.5645C > A	1	1.1	0	0.0	0	0.0	1	1.1	0	0.0	Caucasian	Germany
c.5406 + 664*8273del	c.9748dupT	1	1.1	1	1.1	0	0.0	0	0.0	0	0.0	Caucasian	Greece
c.548-7_4185 + ?del	c.2269A > T*	1	1.1	0	0.0	0	0.0	1	1.1	1	0.0	Caucasian	Germany
c.962G > A	c.2231C > G	1	1.1	1	1.1	0	0.0	0	0.0	0	0.0	Caucasian	Germany

| Total | 93 | 100 | 51 | 54.8 | 4 | 4.3 | 13 | 14.0 | 25 | 26.9 |

Mean age (range) 39.9 (23–67) 59.2 (57–62) 41.9 (26–53) 39.1 (20–68)

*Not included in the matched analysis because one of the mutations found in the TH was not found among the SH1/SH2 carriers

HGVS Human Genome Variation Society, NR not reported
Variable	Value	BRCA1 + BRCA2 (TH) N(%)	BRCA1 (SH1) N(%)	P value*	P value*	BRCA1 + BRCA2 (TH) N(%)	BRCA2 (SH2) N(%)	P value**	P value**
Total matched	91	9316	89			3370			
Year of birth	<1940	5 (5.5)	886 (9.5)	0.424	(ref)	5 (5.6)	486 (14.4)	0.025	(ref)
	1941–1950	20 (22.0)	1628 (17.4)	0.112	19 (21.3)	735 (21.8)	0.000		
	1951–1960	21 (22.6)	2607 (28.0)	0.474	19 (21.3)	914 (27.1)	0.156		
	1961–1970	27 (29.0)	2409 (25.9)	0.153	27 (30.3)	724 (21.5)	0.005		
	>1970	18 (19.8)	1779 (19.0)	0.245	19 (21.3)	511 (15.2)	0.007		
Ethnicity	White	47 (51.6)	5736 (61.6)	<0.001	(ref)	45 (50.6)	1686 (50.0)	0.007	(ref)
	African American	0 (0)	20 (0.2)	1.00*	0 (0)	15 (0.4)	1.00*		
	Asian	6 (6.6)	82 (0.9)	<0.001	6 (6.7)	66 (2.0)	0.004		
	Hispanic	1 (1.1)	143 (1.5)	1.00	2 (2.2)	57 (1.7)	0.667		
	Jewish	30 (33.0)	1779 (19.1)	0.002	29 (32.6)	936 (27.8)	0.573		
	Other	7 (7.7)	1556 (16.7)	–	7 (7.9)	610 (18.1)	–		
Breast cancer	No	29 (31.9)	4470 (48.0)	0.002	29 (32.6)	1671 (49.6)	0.002		
	Yes	62 (68.1)	4846 (52.0)	–	60 (67.4)	1699 (50.4)			
Age of breast cancer	Mean (range)	40.4 (23–67)	41.9 (18–82)	0.231	40.5 (23–67)	45.0 (19–82)	<0.001		
Ovarian cancer	No	74 (81.3)	7766 (83.4)	0.603	74 (83.1)	3056 (90.7)	0.017		
	Yes	17 (18.7)	1550 (16.6)	–	15 (16.9)	314 (9.3)			
Age of ovarian cancer	Mean (range)	54.1 (36–66)	50.9 (20–85)	0.154	54.7 (42–66)	56.8 (26–89)	0.421		
Bilateral mastectomy	No	58 (63.7)	4807 (51.6)	0.599	58 (65.2)	1856 (55.0)	0.646		
	Yes	8 (9.0)	809 (8.7)	–	8 (9.0)	305 (9.1)			
Prophylactic oophorectomy	No	45 (49.5)	3583 (38.4)	0.307	45 (50.6)	1388 (41.2)	0.272		
	Yes	24 (26.4)	2476 (26.6)	–	24 (27.0)	980 (29.1)			
Follow up age (if no cancer)	Mean (range)	39.1 (20–68)	40.5 (18–99)	0.587	39.1 (20–68)	44.1 (18–94)	0.068		

*Matched BRCA1 mutation carriers vs BRCA1 + BRCA2 mutation carriers; **matched BRCA2 mutation carriers vs BRCA1 + BRCA2 mutation carriers

Significant p values are shown in bold type.
Loss of heterozygosity

Due to the frequent LOH in SH individuals, we examined the hypothesis that either BRCA1 or BRCA2 would be lost in each of the TH individuals due to LOH, and that whichever gene was lost could have an impact on their tumor characteristics. Of the 68 TH individuals with cancer, LOH analysis of three tumors from two cases had previously been published by our group using the same methods as the newly identified cases [27]. In the context of the current study, 12 additional tumor samples from 10 patients were analyzed (Table 5). We first used micro-satellite markers and an objective ratio of peak heights to determine if there was loss of one of the alleles when an individual was heterozygous [3] (Additional file 1: Tables S4 and S5). LOH analysis with micro-satellite markers normally includes linkage or segregation data to determine if the normal allele is lost. Since we did not have samples from other family members, we performed Sanger sequencing at the position of the mutations in both germline and tumor samples to determine which allele was lost. One sample failed for the sequencing so it was not possible to determine whether the normal or mutated allele was lost. Some samples showed loss of the mutant allele, which would suggest random loss. Tumors that exhibited LOH by micro-satellite analysis but did not indicate a decrease of the normal allele by sequencing were not considered to exhibit classic LOH. Following both sets of analyses and including our previously published data, one breast tumor (case 8) and one OC (case 2) showed LOH for BRCA1, two breast tumors (cases 9 and 11) showed LOH of BRCA2, and the remaining tumors provided no evidence for LOH at either BRCA1 or BRCA2 (Table 5).

Discussion

This study describes the characteristics of TH compared with SH1 and SH2 mutation carriers and supplements the existing literature regarding LOH in TH. Previously, 35 female TH individuals have been reported in the literature in a series of papers [1, 11, 14, 20, 21, 27, 28, 35, 36]. Only three relatively small studies have so far compared the characteristics of TH to SH women. Lavie et al. [20] reported a non-significant difference in BC occurrence; seven of the 16 TH women (46.7 %) had a personal history of breast carcinoma compared with 372 of 926 (40.2 %) carriers of a single mutation (odds ratio (OR) = 1.3, 95 % confidence interval (CI) 0.4–4.0) [20]. The mean age at diagnosis in TH was 44.6 years, compared with 48.1 in SH. In contrast, Heidemann et al. [14] based on a study of 8 TH individuals

![Fig. 1 Age of breast and ovarian cancer diagnosis by mutation status](image-url)
Table 3 Breast tumor characteristics of BRCA1, BRCA2, and transheterozygote BRCA1 + BRCA2 mutation carriers

Trait	Value	BRCA1 + BRCA2 (TH) N(%)	P value	BRCA1 (SH1) N(%)	P value	BRCA2 (SH2) N(%)	P value
N	62	4946	60	1699			
HER2							
Negative	14 (93.3)	908 (88.7)	1.00	15 (93.8)	274 (86.2)	0.706	
Positive	1 (7.7)	116 (11.3)	1 (6.3)	44 (13.8)			
PR							
Negative	19 (59.4)	1260 (80.0)	0.013	19 (59.4)	215 (37.2)	0.012	
Positive	13 (40.6)	356 (20.0)	13 (40.6)	363 (62.8)			
ER							
Negative	20 (57.1)	1347 (76.0)	0.010	20 (57.1)	150 (23.5)	<0.0001	
Positive	15 (42.9)	424 (24.0)	15 (42.9)	487 (76.5)			
Nodal status							
Negative	20 (66.7)	1197 (65.1)	0.854	19 (65.5)	399 (61.3)	0.647	
Positive	10 (33.3)	643 (35.0)	10 (34.5)	252 (38.7)			
Grade							
Well differentiated	2 (7.1)	36 (2.3)	0.161	2 (7.1)	36 (6.4)	0.690	
Moderately differentiated	8 (28.8)	342 (22.1)	8 (28.8)	207 (36.6)			
Poorly/undifferentiated	18 (64.3)	1172 (75.6)	18 (64.3)	322 (57.0)			
Stage							
0	1 (4.8)	34 (3.6)	0.541	1 (4.6)	48 (13.9)	0.065	
1	7 (33.3)	399 (42.2)	7 (31.8)	123 (35.7)			
2	13 (61.9)	440 (46.6)	14 (63.6)	124 (35.9)			
3	0 (0)	65 (6.9)	0 (0)	36 (10.4)			
4	0 (0)	7 (0.7)	0 (0)	14 (4.1)			
Morphology							
Ductal	26 (70.3)	1544 (74.3)	0.345	27 (73.0)	629 (78.8)	0.359	
Lobular	3 (8.1)	61 (2.9)	3 (8.1)	70 (8.8)			
Medullary	3 (8.1)	173 (8.3)	2 (5.4)	13 (1.6)			
Other	5 (13.5)	301 (14.5)	5 (13.5)	86 (10.8)			
Number of positive nodes (SD)	2 (6.1)	1.2 (3.4)	0.215	2.1 (6.2)	1.7 (3.9)	0.627	
Tumor size (SD)	19.0 (14.9)	18.3 (12.5)	0.775	19.0 (14.9)	19.2 (14.6)	0.932	

Significant p values are shown in bold type
ER estrogen receptor, PR progesterone receptor, SD standard deviation

Table 4 Ovarian tumor characteristics of BRCA1, BRCA2, and transheterozygote BRCA1 + BRCA2 mutation carriers

Trait	Value	BRCA1 + BRCA2 (TH) N(%)	P value	BRCA1 (SH1) N(%)	P value	BRCA2 (SH2) N(%)	P value
N	17	1550	15	314			
Grade							
Well differentiated	0	8 (2.8)	0.930	0	4 (6.2)	0.847	
Moderately differentiated	1	60 (20.8)	1 (25)	12 (18.5)			
Poorly/undifferentiated	3	220 (76.4)	3 (75)	49 (75.4)			
Stage							
1	0	39 (17.4)	0.600	0	6 (13.3)	0.589	
2	1	31 (13.8)	1 (33.3)	5 (11.1)			
3	2	120 (53.6)	2 (66.7)	28 (62.2)			
4	0	34 (15.2)	0	6 (13.3)			
Morphology							
Serous	5	292 (66.8)	0.905	5 (83.3)	71 (73.2)	0.943	
Mucinous	0	4 (0.9)	0	2 (2.0)			
Endometroid	0	44 (10.1)	0	7 (7.2)			
Clear cell	0	6 (1.4)	0	2 (2.0)			
Other	1	91 (20.8)	1 (16.7)	15 (15.5)			
Behavior							
Invasive	7	449 (99.1)	0.803	6 (100)	89 (95.7)	0.604	
Borderline	0	4 (0.9)	0	4 (4.3)			
suggested that TH develop BC at an earlier age and have more severe disease than those with single heterozygous \textit{BRCA} mutation [14]. Zuradelli et al. [39] reported TH, and provided the possible association between TH and gastric cancer. Similar to the results from the study by Lavie et al. on 16 Ashkenazi Jewish female TH [20], we report that TH were more likely than both SH1 or SH2 to be diagnosed with BC, which was also observed in our series. In addition to prior reports, we observed that TH were more likely to be diagnosed with OC compared with SH2s, but not compared with with SH1s. TH breast tumors were more likely to be ER-/PR-positive than in SH1, but less likely than in SH2 patients, without other different tumor or disease characteristics.

A number of TH had not been diagnosed with cancer by the time this analysis was completed. Twenty-five TH in our cohort had no BC or OC diagnosis at the time of counseling or genotyping. The average age of these TH individuals was 39.1 years (range 20–68). Of these, 16 (64 %) were less than 41 years old at the time of study, which is the average age of BC diagnosis, and 23 (92 %) were younger than the average age of OC diagnosis (54 years) in the CIMBA data. Of these 25 unaffected TH women, 7 (28 %) reported a RRSO compared to 2751 (22.6 %) who underwent RRSO among the total set of SH controls without BC or OC (12,154). Two (8.0 %) cancer-free TH underwent bilateral risk-reducing mastectomy compared to 1076 (8.9 %) SH. In addition, we had missing data for a number of relevant variables that could have impacted some inferences. For example, of the 62 breast cancers in the TH groups, only 21 (34 %) reported stage information.

Although this is the largest series of TH women reported to date, the study is still limited in a number of ways. TH were more likely to be born more recently (i.e., since 1961) than SH2, but not SH1. Since there is evidence that birth cohort may have an important effect on cancer risk [18], the risk associations reported here may require additional evaluation in the future. The higher incidence of BC in the TH group versus both SH1 and SH2 groups, and of OC in the TH vs. the SH2 cohort could be explained by non-random inclusion of TH in the sample, leading to potential biases in associations, and this may limit generalizability of the dataset. Our analyses also do not account for potentially important confounders and the longitudinal nature of the data to follow cancer cases from time of testing to either cancer diagnosis or censoring after risk-reducing surgery. Furthermore, the great majority of missing data on cancer features avoids that certain questions may be appropriately addressed from this type of dataset. Additional future studies are required to completely evaluate these clinically important unresolved issues, and hopefully with the ongoing multinational collaboration within consortia like CIMBA this will be possible in time.

Table 5: Loss of heterozygosity in tumor tissue

Case	Diagnosis	Tissue studied	BRCA1 mutation	BRCA2 mutation	LOH in breast tumor	LOH in ovarian tumor				
					Micro-satellite data	Sequence data	Inference	Micro-satellite data	Sequence data	Inference
1	DCIS	DCIS	c.5136G > A	c.4965delC	BRCA1, BRCA2	No	No LOH			
2	Breast	Invasive Br	c.1793 T > A	c.8537,8538delAG	BRCA2, BRCA1	No	No LOH			
3	Invasive breast	Invasive Br	c.68,69delAG	c.5946delIT	BRCA1	No	No LOH			
5	Invasive breast	DCIS	c.181 T > G	c.1318,1319dupCT	No	BRCA2	No LOH			
6	L bilateral	DCIS	c.5251C > T	c.6753,6754delTT	No	No	No LOH			
6R	L bilateral	DCIS	c.5251C > T	c.6753,6754delTT	BRCA1	No	No LOH			
7	Invasive breast	DCIS	c.5266dupC	c.8364G > A	No	BRCA1	No LOH			
8	Invasive breast	DCIS	c.3700_3704del5	c.681 + 1G > A	BRCA1, BRCA2	BRCA1	BRCA1 LOH			
9	Invasive breast	DCIS	c.68,69delAG	c.5946delIT	BRCA2	BRCA1, BRCA2	BRCA2 LOH			
10	Invasive breast	Invasive Br	c.68,69delAG	c.5946delIT	BRCA1, BRCA2	Failed	Failed			
11a	Invasive breast	Invasive Br	c.3770_3771delAG	c.5946delIT	a	a	BRCA2 LOH			
12a	Breast	Invasive Br	c.68,69delAG	c.5946delIT	a	a	No LOH			
2	Ovary	Ovarian cancer	c.1793 T > A	c.8537,8538delAG	BRCA1	BRCA1	BRCA1 LOH			
4	Ovary	Ovarian cancer	c.68,69delAG	c.5946delIT	a	a	No LOH			
12a	Ovary	Ovarian cancer	c.68,69delAG	c.5946delIT	a	a	No LOH			

*Previously published, a with micro-invasion, c case failed due to no PCR amplification in the sequencing, d no LOH in either the right or left breast tumor
DCIS ductal carcinoma in situ, Inv Br invasive breast cancer, LOH loss of heterozygosity, Ov ovarian cancer
Differences in breast tumor hormone receptor status suggest that TH cases developing BC have an intermediate cancer phenotype between \textit{BRCA1} and \textit{BRCA2}, which would be consistent with the tumors being driven by loss of either \textit{BRCA1} or \textit{BRCA2}. We attempted to determine the frequency of loss of each gene in a subset of cases where tumor material was available. Previously published data suggest a high rate of LOH with loss of the normal allele in the majority of \textit{BRCA1} and \textit{BRCA2} cases with strong family history at approximately 80 and 70 years, respectively [24]. However, we did not find loss of either \textit{BRCA1} or \textit{BRCA2} in the majority of tumors. The low frequency of LOH was consistent with the results from a previously published case (case 12) where we did not find LOH of either gene in either the breast or ovarian tumor [27]. Three other papers on TH showed LOH with loss of the normal allele [1, 28, 35]. One potential reason for the low frequency of LOH in this study could be that seven of the breast tumor samples were areas of ductal carcinoma \textit{in situ} (DCIS) with micro-invasion rather than a region of the invasive breast tumor. However, we identified two tumors with LOH in these types of samples so this explanation is unlikely to be the major cause of the low rate of LOH.

The observed ages at diagnosis of BC in TH, SH1, and SH2, and the distributions of tumor characteristics may also reveal the interactions of \textit{BRCA1} and \textit{BRCA2} mutations, which may have implications for modeling the cancer susceptibility in TH. The observed age distributions rule out a multiplicative model for the interactions of \textit{BRCA1} and \textit{BRCA2} mutations on BC risk. Given the well-established BC risks for \textit{BRCA1} and \textit{BRCA2} mutations, a multiplicative model would imply very high cancer risk at young ages. However, the present study suggests that ages at BC diagnosis in TH are not significantly different from those in \textit{BRCA1} mutation carriers. Therefore, a multiplicative model of cancer risk for \textit{BRCA1} and \textit{BRCA2} is inconsistent with the current observations. This observation, combined with the fact that the tumor characteristics are intermediate to SH1 and SH2, suggests that an additive model for the joint effects of \textit{BRCA1} and \textit{BRCA2} mutations is more plausible. These results could be used for modeling the cancer risks for TH carriers and could be incorporated into risk prediction models.

Micro-satellite analysis alone did show a decrease in one of the two alleles in more of the tumors (6 out of 12 \textit{BRCA1} and 5 out of 12 \textit{BRCA2}); however, the sequencing data suggested that the mutant allele rather than the normal allele was lost in many of the tumors. Although the early publications in high-risk families showed very high rates of LOH, exclusively with loss of the normal allele, more recently there have been many publications showing larger numbers of cases with no LOH [19, 23, 24] and an increasing number of tumors with loss of the mutant allele [19, 24]. The second hit in these tumors could be due to a somatic mutation of the normal chromosome or due to promoter methylation, rather than LOH. Unfortunately, the amount of material from these tumors was very limited, and it was not possible to perform additional experiments to investigate alternative mechanisms. Methylation of \textit{BRCA1} has been shown to be a mechanism of decreased \textit{BRCA1} expression in sporadic BC [2, 34], although this is less frequent in \textit{BRCA1} carriers [10, 33]. Why the mechanism of LOH with loss of the normal allele in TH might be different compared with SH is unclear. Tumor material was only available in a small proportion of the cases with cancer. Therefore, it is difficult to interpret the results of the tumor study more broadly. Despite the small numbers, we did not find evidence to support the hypothesis that the tumors would either have LOH of \textit{BRCA1} or \textit{BRCA2}. The TH breast tumor characteristics, however, do appear to be intermediate in phenotype to SH1 and SH2, suggesting some cancers are being driven by inactivation of \textit{BRCA1} and some by inactivation of \textit{BRCA2}. Additional studies that explore other causes of inactivation (e.g., methylation or somatic mutation) are warranted.

Conclusions

We report evidence that the \textit{BRCA1} mutation in TH may drive these clinical TH phenotypes based on elevated OC risk in TH vs. SH2 but not SH1, and earlier age of BC diagnosis in TH vs. SH2 but not SH1. Therefore, TH may be managed more like \textit{BRCA1} mutation carriers than \textit{BRCA2} mutation carriers. In contrast, TH breast tumor characteristics (e.g., ER/PR status) are intermediate in phenotype to SH1 and SH2. Future studies are warranted to understand whether TH should be managed differently to SH1 or SH2 carriers, and, if so, to enable individualized counseling and clinical management appropriate for TH mutation carriers.

Additional files

Additional file 1: Table S1. Ethics committees that granted approval for the access and use of the data for this study. Table S2. Participant counts by center and mutation. Table S3. Primers used for PCR and Sanger sequencing. Table S4. Primers used in micro-satellite analysis for loss of heterozygosity. Table S5. Micro-satellite loss of heterozygosity and sequencing analysis results. (DOC 177 kb)

Abbreviations

BC: Breast cancer; CIMBA: Consortium of Investigators of Modifiers of \textit{BRCA1}; DCIS: Ductal carcinoma \textit{in situ}; ER: Estrogen receptor; LOH: Loss of heterozygosity; OC: Ovarian cancer; PTC: Premature termination codon; PR: Progesterone receptor; RRSO: Risk-reducing salpingo-oophorectomy; SH1: Single mutation at \textit{BRCA1}; SH2: Single mutation at \textit{BRCA2}; TH: Transheterozygosity, transheterozygote.
Acknowledgments

ACA and the CIMBA data management are funded by Cancer Research UK (C12292/A20861 and C12292/A11174). TRR was supported by R01-CA083855, R01-CA102776, and P50-CA083638. KLN, TMF, and SMD are supported by the Basser Research Center at the University of Pennsylvania. BP is supported by R01-CA112520. Cancer Research UK provided financial support for this work. ACA is a Senior Cancer Research UK Cancer Research Fellow. DFE is Cancer Research UK Principal Research Fellow. Tumor analysis was funded by STOP CANCER (to SJR). Study-specific acknowledgements are as follows:

Study	Funding	Acknowledgements
BCFR - all	This work was supported by grant UM1 CA164920 from the National Cancer Institute. The content of this manuscript does not necessarily reflect the views or policies of the National Cancer Institute or any of the collaborating centers in the Breast Cancer Family Registry (BCFR), nor does mention of trade names, commercial products, or organizations imply endorsement by the US Government or the BCFR.	Maggie Angelakos, Judi Maskiell, Gillian Dite, Helen Tsimiklis. We wish to thank members and participants in the New York site of the Breast Cancer Family Registry for their contributions to the study. We wish to thank members and participants in the Ontario Familial Breast Cancer Registry for their contributions to the study. BFOCC-LT acknowledge Vilius Rudaitis and Laimonas Griskevičius. BFOCC-LV acknowledge Drs Janis Eglitis, Anna Kriļova and Aivars Stengrevics.
BCFR-AU		
BCFR-NY		
BCFR-ON		
BFBOCC-LT	BFBOCC is partly supported by: Lithuania (BFBOCC-LT): Research Council of Lithuania grant SEN-18/2015	
BIDMC	BIDMC is supported by the Breast Cancer Research Foundation	
BMBSA	BRCA gene mutations and breast cancer in South African women (BMBSA) was supported by grants from the Cancer Association of South Africa (Cansa) to Elizabeth J. van Rensburg	BMBSA wish to thank the families who contribute to the BMBSA study
BRICOH	SLN was partially supported by the Morris and Horowitz Families Endowed Professorship.	We wish to thank Yuan Chun Ding and Linda Steele for their work in participant enrollment and biospecimen and data management.
CBCS		We thank Bent Ejlertsen Ejlertsen and Anne-Marie Gerdes for the recruitment and genetic counseling of participants
CNIO	This work was partially supported by Spanish Association against Cancer (AECC08), RTICC 06/0020/1060, FISPI08/1120, Mutua Madrileña Foundation (FMMA) and SAF2010-20499	We thank Alicia Barroso, Rosario Alonso and Guillermo Pita for their assistance.
COH-CCGCRN	City of Hope Clinical Cancer Genetics Community Network and the Hereditary Cancer Research Registry, supported in part by Award Number RC4CA153828 (PI: J. Weitzel) from the National Cancer Institute and the Office of the Director, National Institutes of Health. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.	
CONSIT TEAM	Funds from Italian citizens who allocated the 5x1000 share of their tax payment in support of the Fondazione IRCCS Istituto Nazionale Tumori, according to Italian laws (INT-institutional strategic projects: 5x1000) to SM.	Bernard Peissel, Jacopo Azzollini and Daniela Zaffaroni of the Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy; Bernardo Bonanni, Monica Barile and Irene Feroce of the Istituto Europeo di Oncologia, Milan, Italy; Alessandra Viel and Riccardo Dolcetti of the CRO Aviano National Cancer Institute, Aviano (PN), Italy; Barbara Pasini and Francesca Vignolo-Lutati of the University of Turin, Turin, Italy; Laura Papi and Gabriele Capone of the University of Florence, Florence, Italy; Laura Ottini and Giuseppe Giannini of the "Sapienza" University, Rome, Italy; Liliana Varesco of the IRCCS AOU San Martino – IST, Istituto Nazionale per la Ricerca sul Cancro, Genoa, Italy; Maria Grazia Tibiletti of the Ospedale di Circolo Università dell'Insubria, Varese, Italy; Antonella Savarese and Aline Martayan of the Istituto Nazionale Tumori Regina Elena, Rome, Italy; Stefania Tommasi of the Istituto Nazionale Tumori "Giovanni Paolo II" - Bari, Italy.
CORE The CIMBA data management and data analysis were supported by Cancer Research UK grants C12292/A20861, C12292/A11174. ACA is a Cancer Research UK Senior Cancer Research Fellow. GCT is an NHMRC Senior Principal Research Fellow.

UK grants C12292/A20861. We wish to thank Sue Healey for her many contributions to CIMBA.

DEMOKRITOS This research has been co-financed by the European Union (European Social Fund – ESF) and Greek national funds through the Operational Program “Education and Lifelong Learning” of the National Strategic Reference Framework (NSRF) – Research Funding Program of the General Secretariat for Research & Technology: SY11_10_19 NBCA. Investing in knowledge society through the European Social Fund.

DKFZ The DKFZ study was supported by the DKFZ.

EMBRACE EMBRACE is supported by Cancer Research UK Grants C1287/A10118 and C1287/A11900. D. Gareth Evans and Fiona Laloo are supported by an NIHR grant to the Biomedical Research Centre, Manchester. The Investigators at The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust are supported by an NIHR grant to the Biomedical Research Centre at The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust. Ros Eeles and Elizabeth Bancroft are supported by Cancer Research UK Grant C5047/A8385. Ros Eeles is also supported by NIHR support to the Biomedical Research Centre at The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust.

RE is supported by NIHR support to the Biomedical Research Centre at The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust.

FCCC The authors acknowledge support from The University of Kansas Cancer Center (P30 CA168524) and the Kansas Bioscience Authority Eminent Scholar Program. A.K.G. was funded by SU01CA113916, R01CA140323, and by the Chancellors Distinguished Chair in Biomedical Sciences Professorship.

We thank Ms. JoEllen Weaver and Dr. Betsy Bove for their technical support.

GC-HBOC The German Consortium of Hereditary Breast and Ovarian Cancer (GC-HBOC) is supported by the German Cancer Aid (grant no 110837), Rita K. Schmutzler and by the Center for Molecular Medicine Cologne (CMMC).

Genetic Modifiers of Cancer Risk in BRCA1/2 Mutation Carriers (GEMO) study: National Cancer Genetics Network «UNICANCER Genetic Group», France. We wish to pay a tribute to Olga M. Snirnichkova, who with Dominique Stoppa-Lyonnet initiated and coordinated GEMO until she sadly passed away on the 30th June 2014, and to thank all the GEMO collaborating groups for their contribution to this study. GEMO Collaborating Centers are: Coordinating Centres, Unité Mixte de Génétique Constitutionnelle des Cancers Fréquents, Hospices Civils de Lyon - Centre Léon Bérard, & Equipe «Génétique du cancer du sein», Centre de Recherche en Cancérologie de Lyon: Olga Snirnichkova, Sylvie Mazoyer, Francesca Damiali, Laure Bary-Houx, Carole Verny-Pierre, Mélanie Léone, Nadia Bouty-Kryza, Alain Calender, Sophie Giraud; and Service de Génétique Oncologique, Institut Curie, Paris: Dominique Stoppa-Lyonnet, Marion Gauthier-Villars, Bruno Buecher, Claude Houdayer, Etienne Rouleau, Lisa Golmard, Agnès Collet, Virginie Moncoutier, Muriel Belotti, Antoine de Pauw, Camille Elan, Catheline Nougues, Emmanuelle Fourme, Anne-Marie Birot, Institut Gustave Roussy, Villette: Brigitte Bressac-de-Paillerets, Olivier Caron, Marine Guillad-Bataille, Centre Jean Perrin, Clermont-Ferrand: Yves-Jean Bigon, Nancy Uhrhammer. Centre Léon Bérard, Lyon: Christine Lasset, Valérie Bonadona, Sandrine Handallou. Centre François Baclesse, Caen: Agnès Hardouin, Pascalle Berthet, Dominique Vaur, Laurent Castéra. Institut Paoli Calmettes, Marseille: Hagay Sobol, Violaine Bourdon, Tetsuro Noguchi, Audrey Remeniers, François Eisinger. CHU Arnaud-de-Villeneuve, Montpellier: Isabelle Coupier, Pascal Pujol. Centre Oscar Lambret, Lille: Jean-Philippe Peyrat, Joëlle Fournier, François Révillon, Philippe Vennin, Claude Adenis. Centre Paul Strauss, Strasbourg: Danièle Muller, Jean-Pierre Fricker. Institut Bergonié, Bordeaux: Emmanuelle Barouk-Simonet, Françoise Bonnet, Virginie Bubien, Nicolas Sevenet, Michel Longy. Institut
Claudius Regaud, Toulouse: Christine Toulas, Rosine Guimbaud, Laurence Gladieux, Viviane Felled. CHU Grenoble: Dominique Leroux, Hélène Dreyfus, Christine Rebischung, Magalie Peysselon. CHU Dijon: Fanny Coron, Laurence Faire. CHU St-Étienne: Fabienne Prieur, Marine Lebrun, Caroline Kientz. Hôtel Dieu Centre Hospitalier, Chambéry: Sandra Ferr F. Centre Antoine Lacassagne, Nice: Marc Frémy. CHU Limuges: Laurence Venet-Bouvet. CHU Nantes: Capucine Delmate. CHU Bretagne, Tours: Isabelle Monemousque. Groupe Hospitalier Pitie-Salpétriére, Paris: Florence Coulet, Christelle Colas, Florent Soubrier, Mathilde Warcoin. CHU Vandoeuvre-les-Nancy : Johanna Sokolowska, Myriam Bronner. CHU Besançon: Marie-Agnès Collonge-Rame, Alexandre Damette. Creighton University, Omaha, USA: Henry T. Lynch, Carrie L. Snyder.

GEORGETOWN CI received support from the Non-Therapeutic Subject Registry Shared Resource at Georgetown University (NIH/NCI grant P30-CA051008), the Fisher Center for Familial Cancer Research, and Swing Fore the Cure.

HCSC Was supported by a grant RD12/0036/0006 and 15/00059 from ISCIII (Spain), partially supported by European Regional Development FEDER funds

HEBCS The HEBCS was financially supported by the Helsinki University Hospital Research Fund, Academy of Finland (266528), the Finnish Cancer Society and the Sigrid Juselius Foundation.

HEBON The HEBON study is supported by the Dutch Cancer Society grants NKI1998-1854, NKI2004-3088, NKI2007-3756, the Netherlands Organization of Scientific Research grant NWO 91109024, the Pink Ribbon grant 110005 and the BBMRI grant NWO 184.021.007/CP46. HEBON thanks the registration teams of the Comprehensive Cancer Centre Netherlands and Comprehensive Centre South (together the Netherlands Cancer Registry) and PALGA (Dutch Pathology Registry) for part of the data collection.

HRBCP HRBCP is supported by The Hong Kong Hereditary Breast Cancer Family Registry and the Dr. Ellen Li Charitable Foundation, Hong Kong

HUNBOCS Hungarian Breast and Ovarian Cancer Study was supported by Hungarian Research Grants KTIA-OKTA CK-80745, OKTA K-112228 and the Norwegian EEA Financial Mechanism Hu0115/NA/2008-3/OP-9

HVH We wish to thank the Hungarian Breast and Ovarian Cancer Study Group members (Janos Papp, Tibor Vazsko, Aniko Bozsik, Timea Pocz, Judit Franck, Maria Balogh, Gabriella Dornokos, Judit Ferenczi, Department of Molecular Genetics, National Institute of Oncology, Budapest, Hungary) and the clinicians and patients for their contributions to this study.

We wish to thank The Hong Kong Sanatorium and Hospital for their continued support

HEBON The Hereditary Breast and Ovarian Cancer Research Group Netherlands (HEBON) consists of the following Collaborating Centers: Coordinating center: Netherlands Cancer Institute, Amsterdam, NL: M.A. Rookus, F.B.L. Hogervorst, F.E. van Leeuwen, S. Verhoeof, M.K. Schmidt, N.S. Russell, J.L. de Lange, R. Wijnands; Erasmus Medical Center, Rotterdam, NL: J.M. Collée, A.M.W. van den Ouweland, M.J. Hooning, C. Seynae, C.H.M. van Deren, J.M. Obdeijn; Leiden University Medical Center, NL: C.J. van Asperen, J.T. Wijnen, R.A.E. Vennema, P. Devilee, T.C.T.E.F. van Cronenburg; Radboud University Nijmegen Medical Center, NL: C.M. Kets, A.R. Mensenkamp; University Medical Center Utrecht, NL: M.G. Meeuwsen, R.B. van der Luijt, C.C. van der Pol; Amsterdam Medical Center, NL: C.M. Aals, T.A.M. van Os; VU University Medical Center, Amsterdam, NL: J.P. Gille, Q. Waisfisz, H.F. Meijers-Heijboer; University Hospital Maastricht, NL: E.B. Gómez-Garcia, M.J. Blok; University Medical Center Groningen, NL: J.C. Oosterwijk, A.H. van der Hout, M.J. Mouts, G.H. de Bock; The Netherlands Foundation for the detection of hereditary tumours, Leiden, NL: H.F. Vasen; The Netherlands Comprehensive Cancer Organization (IKNL): S. Siesling, J. Verloopen; The Dutch Pathology Registry (PALGA); L.C. Verloop. The HEBON study is supported by the Dutch Cancer Society grants NKI1998-1854, NKI2004-3088, NKI2007-3756, the Netherlands Organization of Scientific Research grant NWO 91109024, the Pink Ribbon grants 110005 and 2014-187.WO76, the BBMRI grant NWO 184.021.007/CP46 and the Transcan grant JTC 2012 Cancer 12-054. HEBON thanks the registration teams of IKNL and PALGA for part of the data collection.

We wish to thank Hong Kong Sanatorium and Hospital for their continued support

We wish to thank the Oncogenetics Group (VHO) and the High Risk and Cancer Prevention Unit of the University Hospital Vall d’Hebron. Acknowledgements to the Cellex Foundation for providing research facilities and equipment.
(Continued)

ICO ICO: Contract grant sponsor: Asociación Española Contra el Cáncer, Spanish Health Research Fund; Carlos III Health Institute; Catalan Health Institute and Autonomous Government of Catalonia. Contract grant numbers: ISCII: RETIC RD06/0020/1051, RD12/0036/008, P110/01422, P110/00748, P113/00285, PIE13/00022, 2009SGR290 and 2014SGR364.

We wish to thank the ICO Hereditary Cancer Program team led by Dr. Gabriel Capella.

IHCC The IHCC was supported by Grant PBZ_KBN_122/POS/2004.

INHERIT This work was supported by the Canadian Institutes of Health Research for the “CIHR Team in Familial Risks of Breast Cancer” program, the Canadian Breast Cancer Research Alliance-grant #019511 and the Ministry of Economic Development, Innovation and Export Trade – grant # PSR-SILIRI-701.

We would like to thank Dr. Martine Dumont, Martine Tranchant for sample management and skillful technical assistance. J.S. is Chairholder of the Canada Research Chair in Oncogenetics. J.S. and P.S. were part of the QC and Genotyping coordinating group of iCOGS (BCAC and CIMBA).

IOCHBOCS IOCHBOCS is supported by Ministero della Salute and “5x1000” Istituto Oncologico Veneto grant.

IPOBCS This study was in part supported by Liga Portuguesa Contra o Cancro.

We wish to thank Drs. Ana Peixoto, Catarina Santos, Patricia Rocha and Pedro Pinto for their skillful contribution to the study.

KCONFAB kConFab is supported by a grant from the National Breast Cancer Foundation, and previously by the National Health and Medical Research Council (NHMRC), the Queensland Cancer Fund, the Cancer Councils of New South Wales, Victoria, Tasmania and South Australia, and the Cancer Foundation of Western Australia;

KOHIBRA KOHIBRA is supported by a grant from the National R&D Program for Cancer Control, Ministry for Health, Welfare and Family Affairs, Republic of Korea (1020350).

MAYO MAYO is supported by NIH grants CA116167, CA128978 and CA176785, an NCI Specialized Program of Research Excellence (SPOR) in Breast Cancer (CA116201), a grant from the Breast Cancer Research Foundation, and a generous gift from the David F. and Margaret T. Grohne Family Foundation.

We thank the investigators of the Australia New Zealand NRG Oncology group.

MODSQUAD MODSQUAD was supported by MH CZ - DRO (MMC, 00209805) and by the European Regional Development Fund and the State Budget of the Czech Republic (RECAIMO, CZ.1.05/2.1.00/03.0101) to LF, and by Charles University in Prague project UNCE204024 (MZ).

Modifier Study of Quantitative Effects on Disease (MODSQUAD): MODSQUAD acknowledges ModSQuaD members Csilla Sabo (National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA); Lenka Foretova and Eva Machackova (Department of Cancer Epidemiology and Genetics, Masaryk Memorial Cancer Institute and MF MU, Brno, Czech Republic); and Michal Zikan, Petr Pohlreich and Zdenek Kleibl (Oncogynecologic Center and Department of Biochemistry and Experimental Oncology, First Faculty of Medicine, Charles University, Prague, Czech Republic).

MSKCC MSKCC is supported by grants from the Breast Cancer Research Foundation, the Robert and Kate Niehaus Clinical Cancer Genetics Initiative, and the Andrew Sabin Research Fund.

Anne Lincoln, Lauren Jacobs

NCI The research of Drs. MH Greene and PL Mai was supported by the Intramural Research Program of the US National Cancer Institute, NIH, and by support services contracts NO2-CP-11019-50 and N02-CP-65504 with Westat, Inc, Rockville, MD. For CIMBA PRS paper: The research of Drs. MH Greene and JT Loud was supported by the Intramural Research Program of the US National Cancer Institute, NIH, and by support services contracts NO2-CP-11019-50 and N02-CP-65504 with Westat, Inc, Rockville, MD.

NNPIO This work has been supported by the Russian Federation for Basic Research (grants 14-04-93959 and 15-04-01744).

NRG Oncology This study was supported by NRG Oncology Operations grant number U10 CA180868 as well as NRG SDMC grant U10 CA180822, Gynecologic Oncology Group (GOG) Administrative Office and the GOG Tissue Bank (CA 27469) and the GOG Statistical and Data Center (CA 37517). Drs. Greene, Mai and Rebbeck et al. Breast Cancer Research (2016) 18:112
Organization	Support Details
Savage	Supported by funding from the Intramural Research Program, NCI.
OCGN	We wish to thank members and participants in the Ontario Cancer Genetics Network for their contributions to the study.
OSU CCG	OSUCCG is supported by the Ohio State University Comprehensive Cancer Center.
PBCS	This work was supported by the ITT (Istituto Toscano Tumor) grants 2011-2013.
SEABASS	Ministry of Science, Technology and Innovation, Ministry of Higher Education (UM.C/HIR/MOHE/06) and Cancer Research Initiatives Foundation
SMC	This project was partially funded through a grant by the Israeli cancer association and the funding for the Israeli Inherited breast cancer consortium
SWE-BRCA	SWE-BRCA collaborators are supported by the Swedish Cancer Society
UCHICAGO	UCHICAGO is supported by NCI Specialized Program of Research Excellence (SPOR) in Breast Cancer (CA125183), R01 CA142996, 1U01CA161032 and by the Ralph and Marion Falk Medical Research Trust, the Entertainment Industry Fund National Women’s Cancer Research Alliance and the Breast Cancer research Foundation. OIO is an ACS Clinical Research Professor.
UCLA	Jonsson Comprehensive Cancer Center Foundation; Breast Cancer Research Foundation
UCSF	UCSF Cancer Risk Program and Helen Diller Family Comprehensive Cancer Center
UKFOCR	UKFOCR was supported by a project grant from CRUK to Paul Pharoah.
UPENN	National Institutes of Health (NIH) (R01-CA102776 and R01-CA083855; Breast Cancer Research Foundation; Susan G. Komen Foundation for the cure, Basser Research Center for BRCA
UPITT/MWH	Frieda G. and Saul F. Shapiro BRCA-Associated Cancer Research Program; Hackers for Hope Pittsburgh
VFCTG	Victorian Cancer Agency, Cancer Australia, National Breast Cancer Foundation

We wish to thank Yip Cheng Har, Nur Aishah Mohd Taib, Phua Sze Yee, Norhashimah Hassan and all the research nurses, research assistants and doctors involved in the MyBrCa Study for assistance in patient recruitment, data collection and sample preparation. In addition, we thank Philip Iau, Sng Jen-Hwei and Sharifah Nor Akmal for contributing samples from the Singapore Breast Cancer Study and the HUKM-HKL Study respectively. The Malaysian Breast Cancer Genetic Study is funded by research grants from the Malaysian Ministry of Science, Technology and Innovation, Ministry of Higher Education (UM.C/HIR/MOHE/06) and charitable funding from Cancer Research Initiatives Foundation.

SMC team wishes to acknowledge the assistance of the Meirav Comprehensive breast cancer center team at the Sheba Medical Center for assistance in this study.

Swedish scientists participating as SWE-BRCA collaborators are: from Lund University and University Hospital: Åke Borg, Håkan Olsson, Helena Jernström, Karin Henriksson, Katja Harbst, Maria Soller, Ulf Kristoffersson; from Gothenburg Sahlgrenska University Hospital: Anna Olverholm, Margareta Nordling, Per Karlsson, Zakaria Einbeigi; from Stockholm and Karolinska University Hospital: Anna von Wachenfeldt, Annelie Liljegren, Annika Lindblom, Brita Arver, Gisela Barbany Bustinza, Johanna Rantala; from Umeå University Hospital: Beatrice Melin, Christina Edwindsdotter Arndor, Monica Emanuelsson; from Uppsala University: Hans Ehrencrona, Maritta Hellström Pigg, Richard Rosenquist; from Linköping University Hospital: Marie Stenmark-Askmal, Sigrun Liedgren

We wish to thank Cecilia Zvocec, Qun Niu, physicians, genetic counselors, research nurses and staff of the Cancer Risk Clinic for their contributions to this resource, and the many families who contribute to our program.

We thank Joyce Seldon MSGC and Lorna Kwan, MPH for assembling the data for this study.

We would like to thank Dr. Robert Nussbaum and the following genetic counselors for participant recruitment: Beth Crawford, Kate Loranger, Julie Mak, Nicola Stewart, Robin Lee, Amie Blanco and Peggy Conrad. And thanks to Ms. Salina Chan for her data management.

We thank Simon Gayther, Carole Pye, Patricia Harrington and Eva Wozniak for their contributions towards the UKFOCR.

Geoffrey Linderman, Marion Harris, Martin Delatycki of the Victorian Familial Cancer Trials Group. We thank Sarah Sawyer...
(Continued)

Funding
Described above.

Authors’ contributions
The following authors made substantial contributions to conception and design, or acquisition of data, or analysis and interpretation of data, and were involved in drafting the manuscript or revising it critically for important intellectual content: TRR, TMF, NM, FW, ACA, and SJR. All authors have given final approval of the version to be published.

Competing interests
The authors declare that they have no competing interests.

Ethics approval and consent to participate
Ethics approval was obtained at each participating center for the collection of the data described in this report. Informed consent was obtained from each participant for inclusion in this research.

Author details
1Department of Epidemiology, Dana Farber Cancer Institute and Harvard T.H. Chan School of Public Health, 1101 Dana Building, 450 Brookline Avenue, Boston, MA, USA. 2Department of Biostatistics and Epidemiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA. 3Biostatistics Unit, Group Health Research Institute, Seattle, WA, USA. 4Department of Preventive Medicine, Keck School of Medicine, USC/Norris Comprehensive Cancer Center, University of Southern California, California, USA. 5Department of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, Australia. 6Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK. 7Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada. 8Department of Molecular Genetics and Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada. 9Department of Molecular Genetics and Pathology, and Health Sciences Research, Mayo Clinic, 200 First Street SW, Rochester, Minnesota, USA. 10Department of Genetics and Pathology, Pomeranian Medical University, Polabska 4, Szczecin, Poland. 11Division of Population Science, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111, USA. 12Oncogenetics Group, Vall d’Hebron Institute of Oncology (VHIO), Clinical and Molecular Genetics Area, Vall d’Hebron University Hospital, Passeig Vall d’Hebron 119-129, Barcelona, Spain. 13Department of Medicine, Abramson Cancer Centre, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA. 14Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Strangeways Research Laboratory, Worts Causeway, Cambridge, UK. 15Genomic Medicine, Manchester Academic Health Sciences Centre, Institute of Human Development, Manchester University, Central Manchester University Hospitals NHS Foundation Trust, Manchester, UK. 16Department of Cancer Epidemiology and Genetics, Masaryk Memorial Cancer Institute, Zluty kopek 7, Brno 65653, Czech Republic. 17The Susanne Levy Gertner Oncogenetics Unit, Institute of Human Genetics, Chaim Sheba Medical Center, Ramat Gan 52621, Israel. 18Sackler Faculty of Medicine, Tel Aviv University, Ramat Aviv 69978, Israel. 19UCLA Schools of Medicine and Public Health, Division of Cancer Prevention & Control Research Jonsson Comprehensive Cancer Center, 650 Charles Young Drive South, Room A2-125 HS, Los Angeles, CA 90095-6900, USA. 20Ontario Cancer Genetics Network: Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada. 21Department of Pathology and Laboratory Medicine, 3901 Rainbow Boulevard, 4019 Wahi Hall EastMS 3040 Kansas, USA. 22University of Kansas Medical Center, Kansas City, Kansas, USA. 23Clinical Genetics Branch, DCEG, NCI, NIH, 9609 Medical Center Drive, Room 6E-454, Bethesda, MD, USA. 24Center for Hereditary Breast and Ovarian Gynaecology and Obstetrics, University Hospital of Schleswig-Holstein, Campus Kiel, Christian-Albrechts University, Kiel, Germany. 25Department of Breast Medical Oncology and Clinical Cancer Genetics Program, University Of Texas MD Anderson Cancer Center, 1515 Pressler Street, CBP 5, Houston, TX, USA. 26Human Genetics Group, Spanish National Cancer Centre (CNIO), Madrid, Spain. 27Biomedical Network on Rare Diseases (CIBERER), Madrid, Spain. 28Human Genotyping (CEGEN) Unit, Human Cancer Genetics Program, Spanish National Cancer Research Centre (CNIO), Madrid, Spain. 29The Institute of Oncology, Chaim Sheba Medical Center, Ramat Gan, 52621, Israel. 30Centre François Baclesse, 3 avenue Général Harris, Caen, France. 31Department of Oncology, Clinical Sciences, Lund University and Skåne University Hospital, Lund, Sweden. 32Department of Medicine, Huntsman Cancer Institute, 2000 Circle of Hope, Salt Lake City, UT 84112, USA. 33Molecular Oncology Laboratory, Hospital Clínic de San Carlos, IDIISC (El Instituto de Investigación Sanitaria del Hospital Clínico San Carlos), Martín Lagos s/n, Madrid, Spain. 34Gynaecological Oncology, The University of Sydney Cancer Centre, Royal Prince Alfred Hospital, Sydney, Australia. 35Unité de recherche en santé des populations, Centre des maladies du sein Deschênes-Fabia, Hôpital du Saint-Sacrement, 1050 chemin Sainte-Foy, Québec, Canada. 36Center for Medical Genetics, Ghent University, De Pintelaan 185, 9000 Gent, Belgium. 37Department of Laboratory Medicine and Pathology, and Health Sciences Research, Mayo Clinic, 200 First Street SW, Rochester, Minnesota, USA. 38Department of Genetics and Pathology, Pomeranian Medical University, Polabska 4, Szczecin, Poland. 39Division of Population Science, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111, USA. 40Oncogenetics Group, Vall d’Hebron Institute of Oncology (VHIO), Clinical and Molecular Genetics Area, Vall d’Hebron University Hospital, Passeig Vall d’Hebron 119-129, Barcelona, Spain. 41Department of Medicine, Abramson Cancer Centre, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA. 42Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Strangeways Research Laboratory, Worts Causeway, Cambridge, UK. 43Genomic Medicine, Manchester Academic Health Sciences Centre, Institute of Human Development, Manchester University, Central Manchester University Hospitals NHS Foundation Trust, Manchester, UK. 44Department of Cancer Epidemiology and Genetics, Masaryk Memorial Cancer Institute, Zluty kopek 7, Brno 65653, Czech Republic. 45The Susanne Levy Gertner Oncogenetics Unit, Institute of Human Genetics, Chaim Sheba Medical Center, Ramat Gan 52621, Israel. 46Sackler Faculty of Medicine, Tel Aviv University, Ramat Aviv 69978, Israel. 47UCLA Schools of Medicine and Public Health, Division of Cancer Prevention & Control Research Jonsson Comprehensive Cancer Center, 650 Charles Young Drive South, Room A2-125 HS, Los Angeles, CA 90095-6900, USA. 48Ontario Cancer Genetics Network: Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada. 49Department of Pathology and Laboratory Medicine, 3901 Rainbow Boulevard, 4019 Wahi Hall EastMS 3040 Kansas, USA. 50University of Kansas Medical Center, Kansas City, Kansas, USA. 51Clinical Genetics Branch, DCEG, NCI, NIH, 9609 Medical Center Drive, Room 6E-454, Bethesda, MD, USA. 52Center for Hereditary Breast and Ovarian
Cancer, Center for Integrated Oncology (CIO) and Center for Molecular Medicine Cologne (CMMC), Medical Faculty, University of Cologne and University Hospital Cologne, Cologne, Germany. 60Department of Health Sciences Research, Mayo Clinic, 3140 E. Scottsdale Blvd, Scottsdale, AZ, USA. 61Molecular Genetics of Breast Cancer, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 580, 69120 Heidelberg, Germany. 62Center for Genomic Medicine, Rigshospitalet, Copenhagen University Hospital, Blegdamsvej 9DK-2100, Copenhagen, Denmark. 63The Hereditary Breast and Ovarian Cancer Research Group Netherlands (HEBON) Coordinating center: Netherlands Cancer Institute, Amsterdam, The Netherlands. 64N.N. Petrov Institute of Oncology, St-Petersburg, 197758, Russia. 65Lombardi Comprehensive Cancer Center, Georgetown University, 3800 Reservoir Road NW, Washington, DC, USA. 66Department of Molecular and Regenerative Medicine, Vilnius University Hospital Santariskiu Clinics, Hematology, oncology and transfusion medicine center, Santariskiu st, Vilnius, Lithuania. 67State Research Institute Centre for Innovative medicine, Zygymantu st 9, Vilnius, Lithuania. 68Department of Epidemiology, Cancer Prevention Institute of California, 2201 Walnut Avenue, Suite 300, Fremont, CA 94538, USA. 69Women’s Cancer Program at the Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, 8700 Beverly Boulevard, Suite 290W, Los Angeles, CA, USA. 70Kathleen Cunningham Consortium for Research into Familial Breast Cancer, Peter MacCallum Cancer Centre, Melbourne, Australia. 71The Hong Kong Hereditary Breast Cancer Family Registry, Cancer Genetics Center, Hong Kong Sanatorium and Hospital, Hong Kong, Hong Kong. 72Department of Genetics, The University of Hong Kong, Hong Kong. 73Unité de Prévention et d’Épidémiologie Génétique, Centre Léon Bérard, 28 rue Laennec, Lyon, France. 74Molecular Diagnostic Unit, Hereditary Cancer Program, IDIBELL (Bellvitge Biomedical Research Institute) Catalan Institute of Oncology, Gran Via de l’Hospitalet, 199-203, 08008, L’Hospitalet Barcelona, Barcelona, Spain. 75Department of Oncology, Lund University Hospital, Lund, Sweden. 76Unit of Medical Genetics, Department of Preventive and Predictive Medicine, Fondazione IRCCS (Istituto Di Ricovero e Cura a Carattere Scientifico) Istituto Nazionale Tumori (INT), Via Giacomo Venezia 1, 20133 Milan, Italy. 77Familial Cancer Centre, Peter MacCallum Cancer Centre, Locked Bag 1, A/Bleckett Street, Melbourne, VIC 8006, Australia. 78Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC 3052, Australia. 79Immunology and Molecular Oncology Unit, Veneto Institute of Oncology ICD – IRCCS, Via Gattamelata 64, Padua, Italy. 80Department of Population Sciences, Beckman Research Institute of City of Hope, Duarte, CA, USA. 81Department of Obstetrics and Gynecology, University of Helsinki and Helsinki University Hospital, Biocmedicum Helsinki, P.O. BOX 700(Haartmaninkatu 8), 00029, HUS, Helsinki, Finland. 82Department of Gynaecology and Obstetrics, University Hospital Düsseldorf, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany. 83213 Parnassus Ave., HSE 901E, San Francisco, CA 94143-0794, USA. 84Clinical Genetics Research Laboratory, Department of Medicine, Cancer Biology and Genetics, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA. 85Department of Molecular Genetics, National Institute of Oncology, Budapest, Hungary. 867841 South Maryland Avenue, MC 2115 Chicago, IL, USA. 87Department of Preventive Medicine, Seoul National University College of Medicine, 133 Daehak-ro, Jongno-gu, Seoul 100-799, Korea. 88NIGR Oncology, Statistics and Data Management Center, Roswell Park Cancer Institute, Elm St & Carlton St, Buffalo, NY 14263, USA. 89Unit of Molecular Bases of Genetic Risk and Genetic Testing, Department of Preventive and Predictive Medicine, Fondazione IRCCS (Istituto Di Ricovero e Cura a Carattere Scientifico) Istituto Nazionale Tumori (INT), Via Giacomo Venezia 1, 20133 Milan, Italy. 902050 Havia 12-14, 21000 Copenhagen, Denmark. 91Institute of Oncology, Gran Via de l’Hospitalet, 199-203, 08008, L’Hospitalet Barcelona, Barcelona, Spain. 92The Faculty of Medicine, Bar-Ilan University, Zefat, Israel. 934301 West Markham Street, Slot 759, Little Rock, AR 72205, USA. 94Present Address: Schla's Women’s and Children’s Health, University of New South Wales and The Kinghorn Cancer Centre, Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, NSW 2010, Australia.

Received: 12 April 2016 Accepted: 7 October 2016

Published online: 11 November 2016

References

1. Bell DW, Erban J, Sgroi DC, Haber DA. Selective loss of heterozygosity in multiple breast cancers from a carrier of mutations in both BRCA1 and BRCA2. Cancer Res. 2002;62(10):2741–3.
2. Birgisdottir V, Stefansson OA, Bodvarsdottir SK, Hilmarsdottir H, Jonasson JG, Eyfjord JE. Epigenetic silencing and deletion of the BRCA1 gene in sporadic breast cancer. Breast Cancer Res. 2006;8(4):R88.
3. Canzian F, Salovaara R, Hemminki A, Kristo P, Chadwick RB, Aaltonen LA, de la Chapelle A. Semiautomated assessment of loss of heterozygosity and replication error in tumors. Cancer Res. 1996;56(14):3331–7.
4. Chenevix-Trench G, Healey S, Lakhani S, Waring P, Cummings M, Brinkworth R, Deffenbaugh AM, Burbidge LA, Pruss D, Judkins T, et al. Genetic and histopathologic evaluation of BRCA1 and BRCA2 DNA sequence variants of unknown clinical significance. Cancer Res. 2006;66(4):2019–27.
5. Chenevix-Trench G, Milne RL, Antoniou AC, Couch FJ, Easton DF, Coldgard DE. An international initiative to identify genetic modifiers of cancer risk in BRCA1 and BRCA2 mutation carriers: the Consortium of Investigators of Modifiers of BRCA1 and BRCA2 (CIMBA). Breast Cancer Res. 2007;9(2):104.
6. Collins N, McManus R, Wooster R, Mangion J, Seal S, Lakhani SR, Olmston W, Daly PA, Ford D, Easton DF. Consistent loss of the wild type allele in breast cancers from a family linked to the BRCA2 gene on chromosome 13q12-13. Oncogene. 1995;10(8):1673–5.
7. Cornells RS, Neuhausen SL, Johansson O, Arason A, Kelsell D, Ponder BA, Tonin P, Hamann U, Lindblom A, Lalle P. High allele loss rates at 17q12-q21 in breast and ovarian tumors from BRCA1-linked families. The Breast Cancer Linkage Consortium. Genes Chromosomes Cancer. 1995;13(3):203–10.
8. Dombreck SM, Friel RB, Singer TM, SFav C, Evans DG, Lynch HT, Isaacs C, Garber JE, Neuhausen SL, Matloff E, Eeles R, et al. Association of risk-reducing surgery in BRCA1 or BRCA2 mutation carriers with cancer risk and mortality. JAMA. 2010;304(9):967–72.
9. Dombreck SM, Tang JB, Stopfer J, Lilli DR, Hamel N, Tischkowitz M, Monteiro JE, Neuhausen SL, Matloff E, Eeles R, et al. Association of risk-reducing surgery in BRCA1 or BRCA2 mutation carriers with cancer risk and mortality. JAMA. 2010;304(9):967–72.
10. Domchek SM, Tang JB, Stopfer J, Lilli DR, Hamel N, Tischkowitz M, Monteiro JE, Neuhausen SL, Matloff E, Eeles R, et al. Association of risk-reducing surgery in BRCA1 or BRCA2 mutation carriers with cancer risk and mortality. JAMA. 2010;304(9):967–72.
11. Eyfjord JE. Epigenetic silencing and deletion of the BRCA1 gene in sporadic breast cancer. Breast Cancer Res. 2006;8(4):R88.
12. Foulkes WD, Rebbeck TR, Hirsch AM, Liu Q, Wrensch MR, et al. Double hit breast cancer. JAMA. 2010;304(9):967–72.
heterozygotes for the Ashkenazi founder mutations in BRCA1 and BRCA2 genes. Am J Hum Genet. 1998;63(4):1224–7.

12. Goldgar DE, Easton DF, Delfnevaugh AM, Monteiro AN, Tavtigian SV, Couch FJ. Integrated evaluation of DNA sequence variants of unknown clinical significance: application to BRCA1 and BRCA2. Am J Hum Genet. 2000;67(4):535–44.

13. Gudmundsson J, Johanesdottir G, Bergholmson JT, Asason A, Ingvarsson S, Eglisson V, Bardadottir RB. Different tumor types from BRCA2 carriers show wild-type chromosome deletions on 13q12-13. Cancer Res. 1995;55(21):4830–2.

14. Heidemann S, Fischer C, Engel C, Fischer B, Harder L, Schlegelberger B, Niederacher D, Goedeke TO, Doeklein SC, Dikow N, et al. Double heterozygosity for mutations in BRCA1 and BRCA2 in German breast cancer patients: implications on test strategies and clinical management. Breast Cancer Res Treat. 2012;134(3):1229–39.

15. Howlett NG, Taniguchi T, Olson S, Cox B, Waisfisz Q, De Die-Smulders CE, Howlett PA, Raper SB, Wang Z, Henshaw SM, et al. Double heterozygosity for mutations in BRCA1 and BRCA2 germ line in ovarian cancer families. Hum Mutat. 2002;19(3):307–8.

16. King MC, Marks JH, Mandell JB. Breast and ovarian cancer risks due to inherited mutations in BRCA1 and BRCA2. Science. 2003;302(5646):643–6.

17. King TA, Lu WI, Broggi E, Vee CJ, Gemignani ML, Olvera N, Levine DA, Norman L, Robson ME, Offit K, et al. Heterogenic loss of the wild-type BRCA allele in human breast tumorigenesis. Ann Surg Oncol. 2007;14(9):2510–8.

18. Lavie O, Narod SA, Lejbkowicz F, Poon CS, et al. Recurrent BRCA1 and BRCA2 germline mutations in ovarian cancer: a founder mutation of BRCA1 identified in the Chinese population. Hum Mutat. 2002;19(3):307–8.

19. King MC, Marks JH, Mandell JB. Breast and ovarian cancer risks due to inherited mutations in BRCA1 and BRCA2. Am J Hum Genet. 1999;65(2):567–4.

20. King MC, Marks JH, Mandell JB. Breast and ovarian cancer risks due to inherited mutations in BRCA1 and BRCA2. Nat Genet. 1992;2(2):128–30.

21. King MC, Marks JH, Mandell JB. Breast and ovarian cancer risks due to inherited mutations in BRCA1 and BRCA2. J Clin. 2007;57(2):75–80.

22. King MC, Marks JH, Mandell JB. Double heterozygosity for BRCA1 and BRCA2 gene mutations: clinical, pathological, and family characteristics. Breast Cancer Res Treat. 2010;124(1):251–8.