Glyoxal-induced formation of advanced glycation end-products in type 1 collagen decreases both its strength and flexibility in vitro

Kei-ichiro Kitamura1, Jun Hirayama2, Yoshiaki Tabuchi3, Takao Minami1, Hajime Matsubara4, Atsuhiko Hattori5, Nobuo Suzuki6

1Department of Clinical Laboratory Science, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan, 2Department of Clinical Engineering, Faculty of Health Sciences, Komatsu University, Komatsu, Japan, 3Life Science Research Center, University of Toyama, Toyama, Japan, 4Noto Center for Fisheries Science and Technology, Kanazawa University, Kanazawa, Japan, 5Department of Biology, College of Liberal Arts and Sciences, Tokyo Medical and Dental University, Ichikawa, Japan, and 6Noto Marine Laboratory, Institute of Nature and Environmental Technology, Kanazawa University, Kanazawa, Japan

Keywords
Carboxymethyl arginine, Fish scales, Type 1 collagen

*Correspondence
Nobuo Suzuki
Tel: +81-768-74-1151
Fax: +81-768-74-1644
E-mail address: nobuos@staff.kanazawa-u.ac.jp

J Diabetes Investig 2021
doi: 10.1111/jdi.13528

INTRODUCTION
Types 1 and 2 diabetes induce secondary pathologies, including bone disease1. In patients with type 1 diabetes, reduced bone mineral density and diabetic vascular complications have been reported to increase the risks of fracture and osteoporosis2. Conversely, patients with type 2 diabetes have comparable or even higher bone mineral density than healthy individuals2. Deranged bone turnover, as well as diabetic vascular complications, has been proposed to be related to an increased risk of fracture and osteoporosis3. However, the mechanism underlying diabetes-induced fracture and osteoporosis has not been fully understood4.

Advanced glycation end-products (AGEs) are compounds that are physiologically formed through the non-enzymatic glucose-dependent modification (glycation) of proteins5. In addition to glucose, carbonyl compounds, such as methylglyoxal, glycolaldehyde and glyoxal, generate various types of AGEs6. For example, methylglyoxal reacts with proteins to form carboxymethyl lysine7, whereas the reaction of glycolaldehyde with proteins generates glyceraldehyde-derived pyridinium8. Furthermore, glyoxal induces the formation of carboxymethyl lysine and carboxymethyl arginine (CMA). Carboxymethyl lysine is one of the major antigenic AGE structures accumulating in various proteins9, whereas CMA is produced by oxidation in glycated collagen and, thus, is the AGE specific to collagen10.

The glycation of type 1 collagen is stimulated by a high plasma glucose concentration observed in patients with diabetes, and AGEs have been confirmed as a vital risk factor for developing diabetic complications11,12. With respect to the quality of the bone, the possibility of altering bone matrix collagen properties through non-enzymatic glycation was reported in type 2 diabetes patients13. In addition, a study reported that serum levels of pentosidine, an AGE product, and poor glycemic control were associated with prevalent fractures in type 1 diabetes patients independent of bone mineral density14.

In line with these findings, elucidation of the effect of glyoxal, the inducer of collagen-specific CMA, on the characteristics of type 1 collagen is expected to give insight into the mechanism underlying diabetes-induced bone diseases.
Similar to mammalian bones, fish scales are composed of osteoblasts, osteoclasts and calcified bone matrixes, including type 1 collagen15, and they use a parathyroid hormone and calcitonin to regulate calcium metabolism in osteoblasts and osteoclasts, and help maintain blood calcium levels16,17. In addition, fish scales are small and are present on the body surface, facilitating the extraction of bone components and the analysis of bone metabolism using low molecular compounds. The present study utilized fish scales to analyze the formation of AGEs in type 1 collagen and the effect of glyoxal on the characteristics of type 1 collagen in vitro.

MATERIALS AND METHODS

Evaluation of the effects of carbonyl compounds on type 1 collagen

Type 1 collagen was isolated from the regenerating scales of goldfish (Carassius auratus), as described previously18, and incubated with glyoxal (Wako Chemical Industries and Tokyo Chemical Industries, Tokyo, Japan), methylglyoxal (Sigma-Aldrich, St. Louis, MO, USA) or glycolaldehyde (Sigma-Aldrich) at 20°C. The samples were then fractionated by sodium dodecyl sulfate–polyacrylamide gel electrophoresis (SDS-PAGE) and stained with Coomassie Brilliant Blue or analyzed through western blotting (WB) as described below.

Western blotting

WB was carried out as described previously19. Proteins were detected using the following primary antibodies: mouse monoclonal CMA antibody (AGE-M04, 1:500 dilution; Cosmo Bio Co., Ltd., Tokyo, Japan) and rabbit polyclonal goldfish type 1 collagen antibody (CL50171AP-G, 1:1,000 dilution; Cedarlane Co., Ltd., Tokyo, Japan) were also used. Fluorescence images were acquired using an Odyssey Infrared Imager (LI-COR Biosciences). Secondary fluorescent IRDye conjugated anti-mouse and anti-rabbit antibodies (1:10,000 dilution; LI-COR Biosciences, Lincoln, NE, USA) were also used.

Determination of the mechanical properties of type 1 collagen

The mechanical properties of type 1 collagen were determined through a three-point bending test using a mechanical tester (CR-500DX-SII; Sun Scientific, Tokyo, Japan; Figure 1). To prepare specimens, type 1 collagen was poured into a plastic molding die and lyophilized. A loading force was applied to the middle of the specimen using the loading actuator. The minimum loading force inducing specimen destruction, the force loading area, the height of the specimen before loading the force (original height: 2 mm) and the height of the specimen at the moment of destruction (height at destruction) were measured. These measured values were applied to equations 1 and 2 to calculate the bending stress (MPa) and deformation rate (%) of the specimen.

\textbf{Equation 1}

\[
\text{Bending strength} = \frac{\text{Maximum loading force}}{\text{Compression area}} \quad \text{[Mpa]}
\]

\textbf{Equation 2}

\[
\text{Deformation rate} = \frac{(\text{Original height}) - (\text{Height at destruction}) \times 100}{\text{Original height}} \quad \%\text{[}\%	ext{]}
\]

RESULTS

To evaluate the effect of glyoxal on type 1 collagen in vitro, type 1 collagen was isolated from the scales of goldfish, incubated with glyoxal for 0, 24, 48 or 72 h, and analyzed by SDS-PAGE. Type 1 collagen molecules comprise α1 and α2 chains; they were detected as bands corresponding to approximately 116 kDa (Figure 2a). The crosslinking in two or three of the α1/α2 chains resulted in the appearance of two types of low-mobility bands: one corresponding to a β chain and the other to a γ chain (Figure 2b). Incubation for 24 h induced band shifts of the α, β and γ chains, and further increased the intensity of the γ chain signal (Figure 2b). Further incubation induced new lower-mobility bands corresponding to δ chains, and decreased the signal intensities of the α and β chains in a time-dependent manner (Figure 2b).

Next, type 1 collagen was incubated with various concentrations of glyoxal for 72 h and analyzed by WB. Signals
corresponding to the \(\alpha \), \(\beta \) and \(\gamma \) chains were detected in the type 1 collagen that was not incubated with glyoxal (Figure 2c, upper panel). Incubation with 500 \(\mu \)mol/L and 100 \(\mu \)mol/L glyoxal caused a significant shift in the mobility of the \(\alpha \), \(\beta \) and \(\gamma \) chains (lanes b and c). In addition, incubation with a higher concentration of glyoxal induced new lower-mobility bands corresponding to the \(\delta \) chains, and decreased the signal intensities of the \(\alpha \) and \(\beta \) chains (lane a), consistent with the result in Figure 2a,b. Notably, the formation of CMA was detected in \(\alpha \), \(\beta \), \(\gamma \) and \(\delta \) chains in the type 1 collagens incubated with glyoxal (Figure 2c, lower panel).

The effects of glyceraldehyde and methylglyoxal on type 1 collagen were evaluated. Both were found to induce new lower-mobility bands corresponding to the \(\beta \), \(\gamma \) or \(\delta \) chains in a concentration- or time-dependent manner (Figure 3).
We carried out a three-point bending test to determine the bending stress and deformation rate of type 1 collagen, which are indicators of its strength and flexibility, respectively. For this, type 1 collagen was isolated from goldfish scales and incubated with glyoxal for 0, 24, 48 or 72 h. As shown in Figure 4, incubation with glyoxal for ≥24 h significantly decreased the bending stress (strength) and deformation rate (flexibility) of type 1 collagen.

DISCUSSION

Our previous study evaluated the bone metabolism for high-glucose concentration in goldfish scales collected from fish with alloxan-induced hyperglycemia. The enzymatic activity and messenger ribonucleic acid expression of osteoblast and osteoclast markers were not significantly different between hyperglycemic and euglycemic goldfish scales. Accordingly, we proposed that hyperglycemia affects bone components other than bone cells, such as collagen and the bone matrix, leading to the deterioration of bone quality in a goldfish scale bone model. In support of this notion, the current study found that glyoxal-induced AGE formation causes decreased flexibility and strength in type 1 collagen. It should be stressed that hyperglycemia-induced glycation forms disorganized structures of collagen fibrils, which have a negative effect on the structural dynamics and stabilization of the diabetic bone matrix. In addition, it was reported that increased pentosidine in bone collagen was inversely correlated with the bone formation rate, bone volume ratio and mineral apposition rate in dialysis patients. Taken together, it is conceivable that different AGES have distinct effects on the characteristics of bone components and induce bone defects.

Our recent study using goldfish scales in outer space uncovered the molecular mechanism underlying microgravity-induced
osteoporosis-like loss of bone mass in astronauts. Furthermore, the current study established in vitro systems for analyzing the formation of AGEs in type 1 collagen and the effects of carbonyl compounds on the characteristics of collagen, thereby significantly increasing the value of fish scales for analyzing bone diseases and their association with other pathologies, such as hyperglycemic disease.

ACKNOWLEDGMENTS
This work was supported by the Japan Society for the Promotion of Science Grant-in-Aid for Scientific Research (24500848 [KK], 15K01705 [KK], 18K11016 [AH], 18KT0068 [JH], 20H04565 [JH], 20K06718 [NS] and 20K12619 [YT]).

DISCLOSURE
The authors declare no conflict of interest.

REFERENCES
1. Wu YY, Xiao E, Graves DT. Diabetes mellitus related bone metabolism and periodontal disease. Int J Oral Sci. 2015; 7 (2): 63–72.
2. Wongdee K, Charoenphandhu N. Update on type 2 diabetes-related osteoporosis. World J Diabetes. 2015; 6(5): 673–678.
3. Montagnani A, Gonnelli S, Alessandri M, et al. Osteoporosis and risk of fracture in patients with diabetes: an update. Aging Clin Exp Res. 2011; 23(2): 84–90.
4. Ponti F, Guerri S, Sassi C, et al. Imaging of diabetic bone. Endocrine 2017; 58(3): 426–441.
5. Sanches CP, Vianna AGD, Barreto FC. The impact of type 2 diabetes on bone metabolism. Diabetol Metab Syndr. 2017; 9: 85.
6. Nagai R, Matsumoto K, Ling X, et al. Glycolaldehyde, a reactive intermediate for advanced glycation end products, plays an important role in the generation of an active ligand for the macrophage scavenger receptor. Diabetes 2000; 49(10); 1714–1723.
7. Nagai R, Fujiwara Y, Mera K, et al. Immunochemical detection of Neptilson-(carboxyethyl)lysine using a specific antibody. J Immunol Methods. 2008; 332(1–2): 112–120.
8. Usui T, Shimohira K, Watanabe H, et al. Detection and determination of glycidaldehyde-derived advanced glycation end product. BioFactors 2004; 21(1–4): 391–394.
9. Glomb MA, Monnier VM. Mechanism of protein modification by glyoxal and glycolaldehyde, reactive intermediates of the Maillard reaction. J Biol Chem. 1995; 270(17): 10017–10026.
10. Iijima K, Murata M, Takahara H, et al. Identification of N-(omega)-carboxymethylarginine as a novel acid-labile advanced glycation end product in collagen. Biochem J. 2000;347(Pt 1):23–27.
11. Schleicher ED, Wagner E, Nerlich AG. Increased accumulation of the glyoxidation product N(epsilon)-(carboxymethyl)lysine in human tissues in diabetes and aging. J Clin Invest. 1997; 99(3): 457–468.
12. Compton J. Type 2 diabetes mellitus and bone. J Intern Med. 2018; 283(2): 140–153.
13. Reiser KM. Nonenzymatic glycation of collagen in aging and diabetes. Proc Soc Exp Biol Med. 1991; 196(1): 17–29.
14. Neumann T, Lodes S, Kästner B, et al. High serum pentosidine but not esRAGE is associated with prevalent fractures in type 1 diabetes independent of bone mineral density and glycaemic control. Osteoporos Int. 2014; 25(5): 1527–1533.
15. Suzuki N, Somei M, Seki A, et al. Novel bromomelatonin derivatives as potentially effective drugs to treat bone diseases. J Pineal Res. 2008; 45(3): 229–234.
16. Suzuki N, Danks JA, Maruyama Y, et al. Parathyroid hormone 1 (1–34) acts on the scales and involves calcium metabolism in goldfish. Bone 2011; 48(5): 1186–1193.
17. Kase Y, Ikari T, Sekiguchi T, et al. Sardine procalcitonin amino-terminal cleavage peptide has a different action from calcitonin and promotes osteoblastic activity in the scales of goldfish. Comp Biochem Physiol A Mol Integr Physiol. 2017; 211: 77–83.
18. Pacak CA, Powers JM, Cowan DB. Ultrarapid purification of collagen type I for tissue engineering applications. Tissue Eng Part C Methods. 2011; 17(9): 879–885.
19. Tabuchi Y, Hasegawa H, Suzuki N, et al. Low-intensity pulsed ultrasound promotes the expression of immediate-early genes in mouse ST2 bone marrow stromal cells. J Med Ultrason. 2020; 47(2): 193–201.
20. Kitamura KI, Andoh T, Okesaku W, et al. Effects of hyperglycemia on bone metabolism and bone matrix in goldfish scales. Comp Biochem Physiol A Mol Integr Physiol. 2017; 203: 152–158.
21. Yamashita M, Katz EP, Otsubo K, et al. Cross-linking and stereospecific structure of collagen in mineralized and nonmineralized skeletal tissues. Connect Tissue Res. 1989; 21(1–4): 159–167; discussion 68–9.
22. Yamashita M, Shiba M. Lysine hydroxylation and cross-linking of collagen. Methods Mol Biol. 2008; 446: 95–108.
23. Mitome J, Yamamoto H, Saito M, et al. Nonenzymatic cross-linking pentosidine increase in bone collagen and are associated with disorders of bone mineralization in dialysis patients. Calcif Tissue Int. 2011; 88(6): 521–529.
24. Ikegame M, Hattori A, Tabata MJ, et al. Melatonin is a potential drug for the prevention of bone loss during space flight. J Pineal Res. 2019; 67(3): e12594.
25. Furusawa Y, Yamamoto T, Hattori A, et al. De novo transcriptome analysis and gene expression profiling of fish scales isolated from Carassius auratus during space flight: Impact of melatonin on gene expression in response to space radiation. Mol Med Rep. 2020; 22(6): 2627–2636.
26. Yamamoto T, Ikegame M, Hirayama J, et al. Expression of sclerostin in the regenerating scales of goldfish and its increase under microgravity during space flight. Biomed Res. 2020; 41(6): 279–288.