The role of vermicompost and PGPR on growth and formation of bulbils shallot (Allium cepa L. Aggregatum)

E Triharyanto*, N D Damayanti, S Nyoto and E S Muliawati

1Department of Agrotechnology, Faculty of Agriculture, Sebelas Maret University. Jl. Ir Sutami 36 A, Keningan, Surakarta, 57126 Indonesia
*Corresponding author: eddytriharyanto@staff.uns.ac.id

Abstract. One of the effects of climate change is a decrease in land productivity and subsequently causes a decrease in crop production. The decrease in land quality will be higher with the use of inorganic fertilizers. Alternative solutions to these problems are the use of vermicompost fertilizers and PGPR. The aim of this research was to examine the role of Vermicompost fertilizers and PGPR on the growth and formation of bulb tubers. The research design used Randomized Complete Block Design (RCBD) with 2 factors, the first factor was Vermicompost (5 tons ha⁻¹, 10 tons ha⁻¹, 15 tons ha⁻¹, 20 tons ha⁻¹), the second factor was PGPR (with PGPR and without PGPR), repeated as many as 3 times. The results showed that the combination of Vermicompost and PGPR significantly affected the number of bulbils, the combination of vermicompost 5 tons ha⁻¹ + with PGPR produced the highest bulbils. Vermicompost and PGPR had no significant effect on plant height, net assimilation rate, fresh weight, bulb weight, number of bulbils, and number of bulbs. There was no significant interaction between the treatment of vermicompost and PGPR on plant height, net assimilation rate, fresh weight, bulb weight, a number of bulbs.

1. Introduction

Shallots (Allium ascalonicum L.) are vegetable commodities that have high economic value and have many benefits. This causes the consumption of shallots for the population of Indonesia in 2018 to be quite high, reaching an average of 2.56 kg per capita year⁻¹. However, shallot production is currently still concentrated in several provinces. Some of the main shallot-producing provinces include Central Java, East Java, West Nusa Tenggara, West Java, South Sulawesi and West Sumatra. The growth of shallot production in 2017 has decreased compared to 2016 [1]. Production reduction is due to climate change and land productivity. This is because land productivity is highly dependent on climate change. Excessive use of inorganic fertilizers can harden the soil and reduce soil fertility due to reduced soil microbial diversity [2].

The use of organic fertilizers can be an effort to maintain soil fertility and health. Organic fertilizers can improve physical properties, namely decreasing sodicity, decreasing density, water infiltration rate, increasing porosity and aeration, increasing brine washing and chemical properties, namely decreasing acidity, increasing carbon content, soil nitrogen, and biological properties that help the growth of macro and microorganisms. Apart from increasing soil fertility, organic fertilizers can increase plant productivity [3]. The application of organic fertilizers can increase the yield of shallot bulbs [4]. The application of organic fertilizers and biological fertilizers affects the root biomass and the number of shallot tubers, i.e. the root biomass has a positive correlation with the number of shallot bulbs. [5-6]. Compost and liquid organic fertilizer can support the growth and increase in yield of the valley variety palu shallot [7].
One of the efforts to support the growth and yield of shallots requires the use of vermicompost and PGPR (Plant Growth Promoting Rhizobacteria). This is because vermicompost can reduce the population of fungal pathogens and increase beneficial microorganisms, namely Trichoderma and Paecilomyces lilacinus so that it can increase the yield of shallot bulbs [8]. Vermicompost can increase the growth, development and production of various types of plants. In addition, vermicompost contains several hormones that plants need for growth, namely gibberellins, auxins, and cytokines [9]. PGPR (Plant Growth Promoting Rhizobacteria) is a group of beneficial bacteria that actively colonizes parts of the root system, namely Bacillus sp., Azobacter sp., and Pseudomonas sp. [10]. PGPR 15 g l⁻¹ application can increase the number of leaves and the number of tubers of shallots [11]. Meanwhile, the combination of PGPR and organic fertilizers produced the highest growth and yield of shallots. This is because the addition of organic matter can affect the nutrient supply needed by plants. The novelty of this research is combining vermicompost with PGPR in shallot cultivation. This study aims to examine the role of vermicompost and PGPR on the growth and formation of shallot bulbils.

2. Materials and methods
This research was conducted on the land of Dukuh Pancot, Ngringo Village, Jaten District, Karanganyar has an average elevation of 92 MASL. The materials used were Bima Brebes variety of shallot bulbs, vermicompost organic fertilizer, and PGPR. The study used a randomized complete block design (RCBD) with 2 factors. The first factor is the dose of vermicompost consisting of 4 levels, namely 5 tons ha⁻¹, 10 tons ha⁻¹, 15 tons ha⁻¹, 20 tons ha⁻¹. The second factor, namely PGPR consisting of 2 levels, namely the provision of PGPR and without the provision of PGPR. Each treatment was repeated 3 times. The spacing in this study was 20 x 20 cm. The size of the planting plot is 1 x 2 m.

The research variables observed were plant height, net assimilation rate, fresh weight, the weight of bulbs per plot, number of bulbils per plant, number of bulbs per plant. The calculation of the net assimilation rate is carried out based on the dry weight of the plant leaf area per unit time using the formula:

\[
LAB = \frac{1}{A} x \frac{\Delta W}{\Delta t} x \frac{\log A_2 - \log A_1}{A_2 - A_1} x \frac{\log W_2 - \log W_1}{t_2 - t_1}
\]

Information:
LAB = net assimilation rate
A₂ = area of plant leaves in t₂ observation
A₁ = area of plant leaves in t₁ observation
The research data were analyzed using analysis of variance based on the F test with a test level of α 5% (95% confidence level). If the significant effect is carried out further analysis using Duncan's Multiple Range Test (DMRT).

3. Results and discussion

3.1. Observation of temperature
Microclimatic conditions, especially temperature, are very suitable for the cultivation of shallot plants. It can be seen in Table 1 that the average temperature is around 28°C to 30°C (Table 1). Air temperature is good for the growth of shallot plants between 25°C to 32°C with dry climates [12]. Based on rainfall data shows fluctuation. This is one of the influences of climate change. In June, August and September it should be dry season but there is high rainfall intensity, namely 42 mm, 82 mm, and 22 mm. Rainfall fluctuations interact with vegetation and hydrology [13].
Table 1. Observation of temperature and rainfall.

Month	Temperature (°C)	Rainfall (mm)			
	Average	Min	Max		
June	30.05	26	34	76	
July	28.5	22	35	48	
August	29.5	23	36	22	
September	30	24	36	42	

3.2. Plant height
The vermicompost treatment had a significant effect on plant height (Table 2). The highest average yield of plant height was in the vermicompost treatment of 20 tons ha⁻¹, namely 36.63 cm and the lowest was in the vermicompost treatment of 5 tons ha⁻¹, namely 33.66 cm. These results indicate that the higher the vermicompost dose, the higher the plant height. This is because vermicompost contains auxins, cytokinins, GA, and humic acid which act as growth regulators [14]. The hormones auxin and gibberellin are present in the embryo and apical meristem which have a function as cell elongation. GA3 regulates rod elongation and controls the IAA signaling pathway. GA3 and IAA induce cell wall expansion by activating the expression of genes encoding cell wall structural proteins such as Expansin (EXP) so that these two hormones have an effect on plant height [15].

Table 2. Effect of vermicompost + PGPR on plant height (cm) shallots.

Vermicompost Fertilizer	PGPR With PGPR	PGPR Without PGPR	Average
5 ton ha⁻¹	33.74	33.56	33.66a
10 ton ha⁻¹	33.54	36.45	35.00ab
15 ton ha⁻¹	35.45	35.63	35.54ab
20 ton ha⁻¹	35.93	37.33	36.63b
Average	34.66	35.74	

Note: numbers followed by different letters in the column show the results are significantly different at the 5% level.

3.3. Net assimilation rate
Based on Table 3, vermicompost and PGPR treatment did not have a significant effect on the net assimilation rate. Factors that can affect the size of the net assimilation rate value are leaf area and plant stover dry weight. Plant growth can be said to be increased as seen from the increase in the number of leaf area which is in line with the increase in the net assimilation rate which is accumulated in the form of dry stover weight [16]. Leaf area can affect how much solar radiation a plant receives. The larger the leaf area of the shallot plant, the higher the photosynthate yield produced for the growth and development of shallot plants [17].

Table 3. The effect of vermicompost + PGPR on the net assimilation rate of shallots.

Vermicompost	PGPR (gr.cm⁻².hari⁻¹)	Average (gr.cm⁻².hari⁻¹)		
	With PGPR	Without PGPR		
5 ton ha⁻¹	0.173	0.151	0.162	
10 ton ha⁻¹	0.271	0.155	0.213	
15 ton ha⁻¹	0.119	0.135	0.127	
20 ton ha⁻¹	0.212	0.164	0.188	
Average	0.194	0.151		
3.4. Fresh weight
The results showed that the interaction between vermicompost and PGPR was not significantly different. The fresh weight of shallot stover is influenced by the availability of nutrients and water by the plant roots [18]. This shows that the application of vermicompost and PGPR can supply nutrients to support the growth of shallots (Table 4).

Table 4. Effects of vermicompost + PGPR on fresh weight (g) shallots.

Vermicompost	PGPR	Average	
	With PGPR	Without PGPR	
5 tons ha⁻¹	13.40	6.58	9.99
10 tons ha⁻¹	7.96	8.13	8.05
15 tons ha⁻¹	10.40	9.38	9.90
20 tons ha⁻¹	12.63	16.58	14.60
Average	11.09	10.17	

3.5. Bulbs weight per plot
The results showed that the combination of vermicompost and PGPR treatment had no significant effect on tuber weight per plot (Table 5). The combination of vermicompost 20 tons ha⁻¹ without PGPR showed the highest tuber weight, namely 2.38 g. This shows that the higher the vermicompost dose, the higher the tuber yield. This is because vermicompost can increase soil nitrogen and phosphorus so that plant nitrogen and phosphorus uptake increase. Bacterial and fungal strains increased P uptake by plants and were recorded as having higher available P [19].

Table 5. Effects of vermicompost + PGPR on bulbs weight per plot (kg) of shallots.

Vermicompost	PGPR	Average	
	With PGPR	Without PGPR	
5 tons ha⁻¹	2.16	1.84	2.00
10 tons ha⁻¹	1.93	2.11	2.02
15 tons ha⁻¹	2.00	2.23	2.11
20 tons ha⁻¹	2.07	2.38	2.23
Average	2.04	2.14	

3.6. Number of bulbils per plant
The results showed that the interaction between giving vermicompost + PGPR had a significant effect on the number of bulbils per plant. Vermicompost 5 tons ha⁻¹ with PGPR produced the highest number of bulbils per plant, namely 1 bulbil (Table 6). This is because vermicompost contains high amounts of salicylic acid, benzoic acid, and carboxylic acid aminocyclopropane which increases the accumulation of jasmonate and modifies cytokines, so that vermicompost can increase endogenous phytohormones [20]. In addition, PGPR can increase indole-3-acetic acid (IAA), salicylic acid (SA) and abscisic acid (ABA) in plants so that they can support plant growth and yield [21]. The combination of vermicompost with Bacillus has a significant increase in plant height, leaf area, chlorophyll, and total yield compared to the control treatment [22]. This is influenced by PGPR which is more effective when followed by the addition of organic fertilizers. The addition of organic fertilizers acts as a source of energy and food for PGPR microbes so that it can increase microbial activity in the supply of nutrients.
Table 6. Effects of vermicompost + PGPR on the number of bulbils per plant.

Vermicompost	PGPR	Average	
	With PGPR	Without PGPR	
5 tons ha⁻¹	1.00 b	0.00 a	0.50
10 tons ha⁻¹	0.00 a	0.67 ab	0.33
15 tons ha⁻¹	0.33 ab	0.67ab	0.50
20 tons ha⁻¹	0.33 ab	0.33 ab	0.30
Average	0.42	0.42	

3.7. Number of bulbs per plant

A fertilizer dose of 20 tons ha⁻¹ + without PGPR gave the highest yield than the other treatments (Table 7). The number of bulbs is closely related to the number of tillers produced, one tuber is produced from one tiller. Macro elements P and K play a role in the formation and filling of tubers. The P element functions as tuber formation and accelerates carbohydrate metabolism, while the K element functions to increase bulbs' weight [23].

Table 7. Effects of vermicompost + PGPR on the number of bulbs per shallot plant.

Vermicompost	PGPR	Average	
	With PGPR	Without PGPR	
5 tons ha⁻¹	12.40	10.40	11.40
10 tons ha⁻¹	10.47	12.33	11.40
15 tons ha⁻¹	11.07	11.80	11.43
20 tons ha⁻¹	10.80	12.60	11.70
Average	11.18	11.78	

4. Conclusion

Application of vermicompost with PGPR as an effort to mitigate climate change in supporting the growth and yield of shallots. The combination of vermicompost 5 tons ha⁻¹ with PGPR showed the highest formation of bulbils. The dose of vermicompost fertilizer of 5 tons ha⁻¹ is sufficient to support the growth and yield of shallot bulbs and does not require the application of PGPR.

Acknowledgments

In The authors wish to express sincere thankfulness to Universitas Sebelas Maret for financial support on the Research Program with Non-Tax State Revenue funds for the 2020 budget year with contract number: 452/UN27.21/PN/2020.

References

[1] BPS 2018 *Statistik Tanaman Sayuran dan Buah-buahan Semusim Indonesia* (Jakarta: BPS Indonesia)

[2] Rahman M M, Nahar K, Ali M, Sultana N, Minnatul M et al. 2020 Effect of Long - Term Pesticides and Chemical Fertilizers Application on the Microbial Community Specifically Anammox and Denitrifying Bacteria in Rice Field Soil of Jhenaidah and Kushtia District, Bangladesh *Bull. Environ. Contam. Toxicol.* 104 828-33

[3] Jjagwe J, Chelimo K, Karungi J, Komekech A J, and Lederer J 2020 Comparative Performance of Organic Fertilizers in Economic Results *agronomy* 10 69

[4] Hantari D, Purnomo D, and Triharyanto E 2019 The effects of fertilizer composition and gibberellin on flowering and true shallot seed formation of three shallot varieties at the highlands *IOP Conf. Ser. Earth Environ. Sci.* 423 012032

[5] Saleh S, Anshary A, Made U, and Basir-cyio M 2021 Application of Mycorrhizae and Beauveria in Organic Farming System Effectively Control Leafminers and Enhance Shallot Production
AGRIVITA J. Agric. Sci. 43 79–88

[6] Triharyanto E, Syamsiyah J, Nyoto S, and Wardyani E A L 2020 Phosphate solubilizing bacteria application to lowland shallot varieties cultivated in highland IOP Conf. Ser. Earth Environ. Sci. 423 012040

[7] Ansar M, Bahrudin, Fathurrahman, Darman S, Thaha A R, et al. 2021 Application of bokashi goat manure and organic liquid fertilizer to improve the growth and yield of Lembah Palu shallot variety Application of bokashi goat manure and organic liquid fertilizer to improve the growth and yield of Lembah Palu shallot variety IOP Conf. Ser. Earth Environ. Sci. 681 012047

[8] Were S A, Narla R, Mutitu E W, Muthomi J W, Munyya L M, el at. 2021 Biochar and vermicompost soil amendments reduce root rot disease of common bean (Phaseolous Vulgaris L.) African J. Biol. Sci. 3 176–96

[9] Tringovska I and Dintcheva T 2012 Vermicompost as Substrate Amendment for Tomato Transplant Production Sustain. Agric. Res. 1 115–22

[10] Anikwe M A N, Eze J C, Chima M C, and Ikenganyia E E 2016 Soil physicochemical quality in contrasting tillage systems and its effect on nodulation and nodulation effectiveness of groundnut, Bambara groundnut and soybean in a degraded Ultisol in Agbani, Enugu Southeastern Nigeria Rhizosphere 1 14–6

[11] Ariska F, Widodo, and Marlin 2020 Morphological Responses of Bawang Dayak (Eleutherine palmifolia (L.) Merr.) to Plant Growth Promoting Rhizobacteria Application Akta Agrosia 23 33–37

[12] Xiao Y, Liu S, Zhang M, Chen B, Xu Z, Pan Y, Shi X, Wu Z and Luo T 2020 Biotic and abiotic properties most closely associated with subtropical forest soil respiration differ in wet and dry seasons: A 10-year in situ study Agric. For. Meteorol. 292–293 108134

[13] Souza R, Hartzel S, Feng X, Antononi A C D, de Souza E S Menezes R S C, and Porporato A 2020 Optimal management of cattle grazing in a seasonally dry tropical forest ecosystem under rainfall fluctuations J. Hydrol. 588 125102

[14] Arancon N, van Cleave J, Hamasaki R, Nagata K, and Fels J 2020 The influence of vermicompost water extracts on growth of plants propagated by cuttings growth of plants propagated by cuttings J. Plant Nutr. 43 176–85

[15] Kou E, Huang X, Zhu Y, Liu H, Sun G, Chen R, Hao Y, and Song S 2021 Crossstalk between auxin and gibberellin during stalk elongation in flowering Chinese cabbage Sci. Rep. 11 3976

[16] Rogowska P, Wasilewska-Debowska W, Krupnik T, Drożak A, Zienkiewicz M, Krysiak M, Romanowska E 2019 Photosynthesis and organization of maize mesophyll and bundle sheath thylakoids of plants grown in various light intensities Environ. Exp. Bot. 162 72–86

[17] Triharyanto E, Sudali, and Rawandari S 2018 Adaptation of six shallots varieties to phosphate solubilizing bacteria on the flower formation, seeds fromation, and yields on the lowland IOP Conf. Ser. Earth Environ. Sci. 142 012067

[18] Golubkina N, Zamana S, Seredin T, Poluboyarinov P, Sokolov S, Baranova, Krivenkov L, Pietrantonio L, and Caruso G 2019 Effect of Selenium Biofortification and Beneficial Microorganism Inoculation on Yield, Quality and Antioxidant Properties of Shallot Bulbs Plants (Basel) 8 102

[19] Qarni A et al. 2021 Isolation and Characterization of Phosphate Solubilizing Microbes from Rock Phosphate Mines and Their Potential Effect for Sustainable Agriculture Sustainability 13 2151

[20] Benazzouk S, Dobre P I, Djazouli Z, Motyka V and Lutts S 2020 Positive impact of vermicompost leachate on salt stress resistance in tomato (Solanum lycopersicum L.) at the seedling stage: a phytohormonal approach Plant and Soil 446 145-62

[21] Kousar B, Bano A, and Khan N 2020 PGPR Modulation of Secondary Metabolites in Tomato Infested with Spodoptera litura Agronomy 10 778

[22] Jahil H M and Kamal J A 2021 Effect of Bacterial Inoculation, Bacillus Megaterium, Vermicompost, and Phosphate Pock on Growth and Yield of sunflower (Helianthus annuus
L.) IOP Conf. Ser. Earth Environ. Sci. 735 012087

[23] Pane M A, Damanik M M B, and Sitorus B 2014 Pemberian Bahan Organik Kompos Jerami Padi dan Abu Sekam Padi dalam Memperbaiki Sifat Kimian Tanah Ultisol Serta Pertumbuhan Tanaman Jagung J. Online Agroekoteknologi 2 1426-32