International *Mycoplasma pneumoniae* typing study: interpretation of *M. pneumoniae* multilocus variable-number tandem-repeat analysis

V. J. Chalker¹, S. Pereyre², S. Dumke³, J. Winchell⁴, P. Khosla¹, H. Sun², C. Yan³, C. Vink⁷ and C. Bébéar²,³, for the ESCMID Study Group for Mycoplasma Infections

1) Public Health England Colindale, London, UK, 2) USC EA 3671 Mycoplasmal and Chlamydial Infections in Humans, University of Bordeaux, 3) USC EA 3671 Mycoplasmal and Chlamydial Infections in Humans, Institut National de la Recherche Agronomique, Bordeaux, France, 4) TU Dresden, Medical Faculty Carl Gustav Carus, Institute of Medical Microbiology and Hygiene, Dresden, Germany, 5) Respiratory Diseases Branch, Centers for Disease Control and Prevention, Atlanta, GA, USA, 6) Department of Bacteriology, Capital Institute of Pediatrics, Beijing, China and 7) Erasmus MC Sophia Children’s Hospital, Laboratory of Pediatrics, Rotterdam, The Netherlands

Abstract

Typing of *Mycoplasma pneumoniae* by multiple-locus variable-number tandem repeat analysis (MLVA) is increasingly in use. However, no specific internationally agreed guidance is available. Thirty *M. pneumoniae* DNA samples including serial dilutions of a type strain were sent to six international laboratories to perform MLVA and results were compared. Good correlation was observed, indicating that this methodology can be robustly performed in multiple sites. However, differences due to interpretation of fragment size, repeat sequence identification and repeat numbering led to inconsistency in the final profiles assigned by laboratories. We propose guidelines for interpreting *M. pneumoniae* MLVA typing and assigning the number of repeats.

Keywords: Interpretation guidelines, molecular typing, multiple-locus variable-number tandem repeat analysis (MLVA), *Mycoplasma pneumoniae*, standardisation

Original Submission: 11 February 2015; Revised Submission: 5 May 2015; Accepted: 15 May 2015
Available online 23 May 2015

Introduction

Mycoplasma pneumoniae causes human respiratory tract infections [1]. Typing of isolates and positive clinical samples is necessary to support epidemiologic data for the detection of outbreaks and understand the transmission of infection. In contrast to typing based on sequence differences in the PI gene of *M. pneumoniae* [2], multiple-locus variable-number tandem repeat analysis (MLVA) is reportedly highly discriminatory [3] and is now increasingly in use for strain characterization internationally [4–11]. Investigating the five loci selected (MPN1, MPN13–16), it has been reported that the MPN1 locus is not stable, thus calling into question the reliability of the marker [12]. Therefore, several authors have proposed an alteration to the naming system to reflect this [12,13]. Despite the availability of general guidelines for the MLVA procedure [14,15], specific internationally agreed guidelines for the execution and interpretation of MLVA of *M. pneumoniae* are not yet available.

In this study, 24 *M. pneumoniae* clinical isolates were included, as well as the reference strain M129 (ATCC 29342). The clinical isolates, all derived from sputum specimens, were obtained from the Public Health England Respiratory and Vaccine Preventable Bacteria Reference Unit culture collection. DNA was extracted from bacterial cultures in *Mycoplasma* liquid medium (*Mycoplasma Experience Ltd.*, UK) using the MagNA Pure Compact Nucleic Acid Isolation Kit I (Roche). The commercial quantitative type strain NCTC10119 FH (Minerva Biolabs) was used to determine sensitivity of MLVA at four dilutions (1000, 100, 10 and 1 copy/μL). MLVA was performed in a blinded manner using a previously described method [3] in six international laboratories (China, England, France, Germany, Netherlands, United States of America). Results were collated, including fragment size, calculated MLVA repeat number and MLVA profile. No guidelines were given to the participating laboratories other than that already available in the literature. Naming of profiles was based on the method in which naming is
based on a string of allele numbers in the order MPN1, MPN13, MPN14, MPN15, MPN16 showing the actual number of repeats at each locus [5]. ‘No amplification’ was assigned to loci that failed to amplify [16].

Results

Regarding fragment sizes, excellent parity was seen among laboratories, with <7 bp difference in fragment sizes between all DNA samples and all laboratories. Table 1 includes expected fragment size and repeat numbers in order to clarify predicted fragment size and repeat number. Regarding the fragment repeat numbers, a total of three errors on assigning and collating the MLVA repeat number from the accurate fragment size (transcription errors) were noted from two separate laboratories (Table 2). In addition, there was an inconsistency in the results reported for two of the loci, MPN13 and MPN15. This was due to a different interpretation of fragment repeat number when encountering a point number. Specifically, four of the laboratories rounded ≥3.2 copies up to 4 repeats for MPN13, whereas two other laboratories rounded <3.5 down to 3 repeats. This highlights the need for an internationally agreed protocol regarding the interpretation of MLVA repeat numbers. In addition, one laboratory made calculating errors linked to the determination of the sequence of MPN15. The MPN15 sequence was manually determined as TGTCATTTTTTACTTCCCATCAT, in contrast to the accurate TTGTCCATTTTTTCTTCCATC sequence calculated using tandem repeat finder software with settings match, mismatch, indel of (2,3,5). It should be noted that the use of settings other than (2,3,5) can give alternative repeat sequence and length for some loci. For example, using settings (2,7,7) for *M. pneumoniae* M129, the MPN15 repeat would be only 20 bp with a different sequence (TTGTCCATTTTTTCTTCCATC instead of TTGTCCATTTTTTCTTCCATC).

Excluding the three transcription errors, and after correcting for interpretation differences by rounding up partial repeat numbers to the next integer value, all laboratories determined identical fragment repeat numbers for the M129 strain, and 20 of the 24 clinical isolates gave consistent fragment repeat numbers (Table 2). Actual technical differences were seen in only four samples: samples 8, 10, 21 and 30. Interestingly, these samples had lower-than-average DNA concentration on initial DNA extraction (less than 3 μg/mL DNA, compared to 7 μg/mL for the other samples). To compare the sensitivity, a serial dilution of the NCTC10119 strain was included. All laboratories determined the MLVA profile in the presence of 1000 copies/μL. However, only three laboratories obtained a full profile, while the other three reported partial profiles for

Table 1. Target sequences, repeat size and fragment size of *Mycoplasma pneumoniae* MLVA loci MPN1, MPN13, MPN14, MPN15 and MPN16 according to number of repeats

Characteristic	MPN1	MPN13	MPN14	MPN15	MPN16
Repeat sequence based on M129	CCGAGCTAAGCG TATTAATAACTATTCT TGGACAAAATGGAAGTAAAAA	TTG TccatTTTTTCTTCCATC			
Repeat size (bp)	12	16	21	21	47
Repeat number	0	287	364	294	108
M129 fragment size (bp)	333	415	399	241	353
M129 repeat number	3.8	4	3.2	4	5
MLVA, multiple-locus variable-number tandem repeat analysis. The *M. pneumoniae* M129 MLVA type is 44572 with 3.8 repeats in MPN1 (rounded up to 4), 3.2 repeats in MPN13 (rounded up to 4), 5 repeats in MPN14, 6.3 repeats in MPN15 (rounded up to 7) and 2 repeats in MPN16.					

Tandem repeat finder software. The settings used are (2,3,5) (match, mismatch, indel) [17]. The use of other settings can give alternative repeat sequence and length for some loci. For example, using settings (2,7,7) for *M. pneumoniae* M129:

- MPN13 CTTATTAATAACTATT 2.3 repeats of 16 bp,
- MPN15 TTGTCCATTTTTTTTCCATC 6.3 repeats of 20 bp.

Crown Copyright © 2015 New Microbes and New Infections published by Elsevier Ltd on behalf of European Society of Clinical Microbiology and Infectious Diseases, NMNI, 7, 37–40

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)
the 100 copies/μL standard; two of these partial profiles differed in the repeat number for MPN14. A full profile was obtained with the 10 copies/μL standard by only two laboratories. None of the laboratories obtained a full profile for the lowest dilution tested (1 copy/μL). When examining both the serial dilution and the low-loaded sample results, it was apparent that in laboratory 5, which increased the number of repeat fragments listed in Table 1 should be considered as the expected MLVA profile after correction for transcription errors and interpretation differences. MLVA profiles with initial transcriptional errors.

First, predicted fragment sizes and repeat numbers should be assigned using the information provided in Table 1. Sequence of repeat fragments listed in Table 1 should be considered as the sequence of interest.

Second, if tandem repeat finder software is used (http://tandem.bu.edu/trf/trf.html) [17] to determine repeat numbers, the following settings should be used: match, mismatch, indel (2,3,5).

Third, the repeat number should be expressed as whole integers, and partial sequences should be rounded up to the next integer number. The rounding up or down convention is matter of debate [14,15]. However, as previously reported [15], rounding the partial number of repeats up and not down will avoid rounding down to zero a repeat number such as 0.7, which is ambiguous, as it may be understood as ‘lack of repeat.’ Thus, using a ‘rounding up’ convention, zero will unambiguously be defined as ‘lack of repeat.’ Moreover, by retaining a rounding-up approach, future data will correspond with historical data in previous publications related to M. pneumoniae MLVA typing.

Fourth, the MPN1 target should be removed from future MLVA typing.

This study highlights the need for standardization of interpre-
tive criteria for data analysis internationally. It indicates that comparison of existing published MLVA data between labora-
tories may be flawed in some cases, diminishing reliability of strain investigation involving more than one laboratory. The following recommendations are considered pertinent by our collaborative group in enabling standardization of interpretive data.

TABLE 2. MLVA profiles collated from six international laboratories after investigation of 30 Mycoplasma pneumoniae DNA samples

Sample	Expected profile	Lab 1	Lab 2	Lab 3	Lab 4	Lab 5	Lab 6
1 (M129)	44572	44572	43562	44572	44572	44572	43662
2 (1000 copies/μL)	43662	43662	42662	43662	43662	43662	43662
3 (100 copies/μL)	43662	43662	42662	43662	43662	43662	43662
4 (10 copies/μL)	43662	43662	-	4-6	-	-	-
5 (1 copy/μL)	43662	43662	-	-	-	-	-
6	43662	43662	42662	43662	43662	43662	43662
7	43662	43662	42662	43662	43662	43662	43662
8	53662	53662	52662	53662	53662	53662	53662
9	54572	54572	53562	54572	54572	54572	54572
10	63662	63662	62662	63662	63662	63662	63662
11	34572	34572	33562	34572	34572	34572	34572
12 (M129)	44572	44572	43562	44572	44572	44572	43662
13	43662	43662	42662	43662	43662	43662	43662
14	33562	33562	32562	33562	33562	33562	33562
15	63662	63662	62662	63662	63662	63662	63662
16	53662	53662	52662	53662	53662	53662	53662
17	23662	23662	22662	23662	23662	23662	23662
18	44572	44572	43562	44572	44572	44572	44572
19	23562	23562	22562	23562	23562	23562	23562
20	43372	43372	42372	43372	43372	43372	43372
21	54572	54572	53562	54572	54572	54572	54572
22	54572	54572	53562	54572	54572	54572	54572
23	43662	43662	42662	43662	43662	43662	43662
24	34572	34572	33562	34572	34572	34572	34572
25	63662	63662	62662	63662	63662	63662	63662
26	63562	63562	62662	63562	63562	63562	63562
27	23662	23662	22662	23662	23662	23662	23662
28	33662	33662	32662	33662	33662	33662	33662
29	33662	33662	32662	33662	33662	33662	33662
30	54572	- - - - - - - - - - - -	54572	- - - - - - - - - - - -			

First, predicted fragment sizes and repeat numbers should be assigned using the information provided in Table 1. Sequence of repeat fragments listed in Table 1 should be considered as the sequence of interest.

Second, if tandem repeat finder software is used (http://tandem.bu.edu/trf/trf.html) [17] to determine repeat numbers, the following settings should be used: match, mismatch, indel (2,3,5).

Third, the repeat number should be expressed as whole integers, and partial sequences should be rounded up to the next integer number. The rounding up or down convention is matter of debate [14,15]. However, as previously reported [15], rounding the partial number of repeats up and not down will avoid rounding down to zero a repeat number such as 0.7, which is ambiguous, as it may be understood as ‘lack of repeat.’ Thus, using a ‘rounding up’ convention, zero will unambiguously be defined as ‘lack of repeat.’ Moreover, by retaining a rounding-up approach, future data will correspond with historical data in previous publications related to M. pneumoniae MLVA typing.

Fourth, the MPN1 target should be removed from future analyses due to its instability[12,13]. The identification of additional MLVA targets that have greater stability than target MPN1

Crown Copyright © 2015 New Microbes and New Infections published by Elsevier Ltd on behalf of European Society of Clinical Microbiology and Infectious Diseases, NMNI, 7, 37–40.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)
and enable greater discrimination power than MPN16 should be advanced. With the removal of the MPN1 allele, adoption of the following naming system is recommended: MLVA-1, -2, -3 and -4, where each digit corresponds to repeat numbers at loci MPN13, MPN14, MPN15 and MPN16, respectively.

In conclusion, although whole genome sequencing has become rapid and affordable to replace older typing methods in the future for either clinical strains or clinical specimens [18], MLVA typing using the method by Dégrange et al. [3] is widely in use for M. pneumoniae. MLVA typing was performed with good correlation in six international laboratories, indicating that this methodology can be correctly performed on M. pneumoniae at different locations. Differences due to interpretation of fragment size, repeat sequence identification and repeat numbering led to inconsistencies in the final profiles assigned by laboratories. With users following the interpretation guidelines we provide, full interlaboratory strain comparison should be achieved.

Conflict of Interest

None declared.

References

[1] Atkinson TP, Balish MF, Waites KB. Epidemiology, clinical manifestations, pathogenesis and laboratory detection of Mycoplasma pneumoniae infections. FEMS Microbiol Rev 2008;32:956–73.
[2] Spuesens EB, Oduber M, Hoogenboezem T, Sluijter M, Hartwig NG, van Rossum AM, et al. Sequence variations in RepMP2/3 and RepMP4 elements reveal intragenomic homologous DNA recombination events in Mycoplasma pneumoniae. Microbiology 2009;155:2182–96.
[3] Dégrange S, Cazanave C, Charron A, Renaudin H, Bébéar C, Bébéar CM. Development of multiple-locus variable-number tandem-repeat analysis for molecular typing of Mycoplasma pneumoniae. J Clin Microbiol 2009;47:914–23.
[4] Chalker V, Stocki T, Litt D, Bermingham A, Watson J, Fleming D, et al. Increased detection of Mycoplasma pneumoniae infection in children in England and Wales, October 2011 to January 2012. Euro Surveill 2012;17:20081.
[5] Dumke R, Jacobs E. Culture-independent multi-locus variable-number tandem-repeat analysis (MLVA) of Mycoplasma pneumoniae. J Microbiol Methods 2011;86:393–6.
[6] Pereyre S, Charron A, Hidalgo-Grass C, Touati A, Moses AE, Nir-Paz R, et al. The spread of Mycoplasma pneumoniae is polyclonal in both an endemic setting in France and in an epidemic setting in Israel. PLoS One 2012;7:e38585.
[7] Spuesens EB, Meijer A, Bierschenk D, Hoogenboezem T, Donker GA, Hartwig NG, et al. Macrolide-resistance determination and molecular typing of Mycoplasma pneumoniae in respiratory specimens collected between 1997 and 2008 in the Netherlands. J Clin Microbiol 2012;50:1999–2004.
[8] Xue G, Wang Q, Yan C, Jeffreys N, Wang L, Li S, et al. Molecular characterizations of PCR-positive Mycoplasma pneumoniae specimens collected from Australia and China. J Clin Microbiol 2014;52:1478–82.
[9] Zhao F, Liu G, Cao B, Wu J, Gu Y, He, et al. Multiple-locus variable-number tandem-repeat analysis of 201 Mycoplasma pneumoniae isolates from Beijing, China, from 2008 to 2011. J Clin Microbiol 2013;51:636–9.
[10] Pereyre S, Touati A, Petitjean-Lecherbonnier J, Charron A, Vabret A, Bébéar C. The increased incidence of Mycoplasma pneumoniae in France in 2011 was polyclonal, mainly involving M. pneumoniae type I strains. Clin Microbiol Infect 2013;19:E212–7.
[11] Chalker V, Stocki T, Mentasti M, Fleming D, Harrison T. Increased incidence of Mycoplasma pneumoniae infection in England and Wales in 2010: multilocus variable number tandem repeat analysis typing and macrolide susceptibility. Euro Surveill 2011;16:19865.
[12] Benitez AJ, Diaz MH, Wolff BJ, Pimentel G, NJeng MK, Estavez A, et al. Multilocus variable-number tandem-repeat analysis of Mycoplasma pneumoniae clinical isolates from 1962 to the present: a retrospective study. J Clin Microbiol 2012;50:3620–6.
[13] Sun H, Xue G, Yan C, Li S, Cao L, Yuan Y, et al. Multiple-locus variable-number tandem-repeat analysis of Mycoplasma pneumoniae clinical specimens and proposal for amendment of MLVA nomenclature. PLoS One 2013;8:e64607.
[14] Nador CA, Trees E, Ng LK, Moller Nielsen E, Reimer A, Maxwell N, et al. Development and application of MLVA methods as a tool for inter-laboratory surveillance. Euro Surveill 2013;18:20565.
[15] Pourcel C, Vergnaud G. Strain typing using multiple ‘variable number of tandem repeat’ analysis and genetic element CRISPR. In: Persing DH, editor. Molecular microbiology: diagnostic principles and practice. 2nd ed. Washington, DC: ASM Press; 2011. p. 179–97.
[16] Larsson JT, Torpø Dahl M, Petersen RF, Sørensen G, Lindstedt BA, Nielsen EM. Development of a new nomenclature for Salmonella typhimurium multilocus variable number of tandem repeats analysis (MLVA). Euro Surveill 2009;14:19174.
[17] Benson G. Tandem repeats finder: a program to analyze DNA sequences. Nucleic Acids Res 1999;27:573–80.
[18] Bertelli C, Greub G. Rapid bacterial genome sequencing: methods and applications in clinical microbiology. Clin Microbiol Infect 2013;19:803–13.