Supplementary Information

Hypersaline sapropels act as hotspots for microbial dark matter

Adrian-Ştefan Andrei¹,²*, Andreea Baricz³, Michael S. Robeson II⁴,⁵, Manuela Raluca Păușan⁶, Tudor Tămaș⁷, Cecilia Chiriac³, Edina Szekeres³, Lucian Barbu-Tudoran¹, Erika Andrea Levei⁸, Cristian Coman³, Mircea Podar⁴, and Horia Leonard Banciu¹*

Department of Molecular Biology and Biotechnology, Faculty of Biology and Geology, Babeş-Bolyai University, Cluj-Napoca, Romania¹; Institute of Hydrobiology, Department of Aquatic Microbial Ecology, Biology Center of the Academy of Sciences of the Czech Republic, České Budějovice, Czechia²; National Institute of Research and Development for Biological Sciences (NIRDBS), Institute of Biological Research, Cluj-Napoca, Romania³; Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA⁴; Interstitial Genomics, LLC, Longmont, Colorado, USA⁵; Department for Internal Medicine, Medical University of Graz, Graz, Austria⁶; Department of Geology, Faculty of Biology and Geology, Babeş-Bolyai University, Cluj-Napoca, Romania⁷; INCDO-INOE 2000, Research Institute for Analytical Instrumentation, Cluj-Napoca, Romania⁸.

*Corresponding authors: Department of Molecular Biology and Biotechnology, Babeş-Bolyai University, 5-7 Clinicilor Str., 400006 Cluj-Napoca, Romania. Telephone: +40-264431691; fax: +40-264431858. E-mail: stefan.andrei@ubbcluj.ro; horia.banciu@ubbcluj.ro.
Supplementary methods

Analytical techniques
The extraction and estimation of dissolved CH₄ concentrations at the sediment-water interface were determined at the sampling site, using the head-space method on an instrumental package (West System, Pontedera, Italy) equipped with semiconductor (range 0-2000 ppmv; lower detection limit of 1 ppmv; resolution 1 ppmv), catalytic (range 2000 ppmv – 3 % v/v) and thermal conductivity (range 3 % - 100 % v/v) detectors.

The organic matter content (% OM) of sapropel samples was determined by using the loss-on-ignition (LOI) and wet oxidation techniques. LOI determination was executed as described by Ball¹, with the assumption that the total organic carbon content (% TOC) is 50 % of the OM. The dichromate oxidation followed by titration was performed as described by Walkley and Black², following a % TOC correction estimation by a factor of 1.16 (equivalent to ca. 86 % organic carbon recovery).

As most of the organic nitrogen in aquatic sediments seems to be deposited under the form of amide bonds³, the total alkaline extractable protein content was estimated in the sapropels by the Lowry method⁴ modified by Rice⁵. Ammonium nitrogen was quantified by colorimetry using a Lambda 25 spectrophotometer (Perkin Elmer, Beaconsfield, UK). The contents of total nitrogen (TN) as bound nitrogen (including free ammonia, ammonium, nitrite, nitrate and organic nitrogen, but not dissolved nitrogen gas) were assessed by thermal oxidation, conversion of nitrogen oxides to NO, followed by NO oxidation with ozone and subsequent chemiluminescence detection using the Multi N/C 2100 S Analyzer (Analytik Jena, Jena, Germany). Organic nitrogen (ON) in the form of dissolved organic nitrogen was calculated by subtracting ammonium nitrogen, nitrate and nitrite nitrogen from the total nitrogen. Total carbon (TC), total dissolved carbon (TDC) and dissolved organic carbon (DOC - calculated as difference between total dissolved carbon and dissolved inorganic carbon measured upon sample acidification) were quantified by combustion and NDIR detection of CO₂ released using the multi N/C 2100 S Analyzer. Chloride (Cl⁻), carbonate (as CaCO₃) and bicarbonate (HCO₃⁻) anions were measured by titrimetric methods. Phosphate (PO₄³⁻), sulfate (SO₄²⁻), nitrate (NO₃⁻), and nitrite (NO₂⁻) were measured by ion chromatography on a 761 Compact IC (Metrohm, Herisau, Switzerland). The concentration of sulfides was determined by methylene blue method after fixation of samples with 2 % (v/v) Zn-acetate⁶. Concentrations of major metals (Mg, Ca, Na, K, Fe, Mn) were measured by inductively coupled plasma atomic emission spectrometry.
(ICP-AES) using OPTIMA 5300 DV spectrometer (Perkin Elmer, Norwalk, USA) after homogenization of sediments and digestion in concentrated \textit{aqua regia}. Relative expanded measurement uncertainty (U_{rel}) was calculated according to ISO-GUM using a coverage factor (k) of 2 (k = 2), equivalent to a confidence of approximately 95\%. Uc ranged from 4.5 to 13\% depending on the compound as follows: 8\% for TC, HCO$_3$; Fe, Mn, Mg and Ca; 9.5\% for PO$_4^{3-}$; 9.8\% for Na$^+$; 10\% for TN, TDC, CO$_3^{2-}$, SO$_4^{2-}$, HS$^-$ and K; 11\% for NO$_3^-$ and ON; 13\% for NO$_2^-$, NH$_4^+$ and Cl$^-$.

For X-ray fluorescence analysis (XRF), sapropel samples were dried to constant weight at 60 °C and grinded to pass a < 200 µm sieve. Major and trace elements (Cl, Fe, Ca, K, Ti, S, Mn, Cu, Zn, etc.) were determined by using a dispersive X-ray fluorescence spectrometer (Innov-X Alpha 6500, The Netherlands) equipped with X-ray tube, W anode and Si PiN diode detector. XRF spectra were recorded at Kα line on samples placed in small plastic cups covered by Mylar X-ray window film. The energy-dispersive X-ray (EDX) spectroscopic analyses of dried sapropel samples were performed over an area of 250 x 200 µm2, at 20 keV beam energy using a FEI Quanta 3D FEG dual beam SEM equipped with an energy dispersive X-ray detector.

The mineral composition of bulk sediment samples was assessed by X-ray diffraction (XRD), using a Bruker D8 Advance diffractometer with CoKα$_1$ with $\lambda = 1.78897$, Fe filter and a one-dimensional detector using corundum (NIST SRM1976a) as internal standard. The data were collected on a 5 - 64º 2θ interval, at a 0.02º 2θ, with the measuring step of 0.2 seconds. The clay fraction was analyzed on oriented samples (pipetted from suspension in distilled water), which were further treated with ethylene glycol. Data were collected on the same interval as mentioned above, with a measuring step of 0.5 seconds. The identification of mineral phases was performed with the Diffrac.Eva 2.1 software from Bruker AXS, using the PDF2 (2012) database.

SEM, cell counts, chlorophyll \textit{a} and total carotenoids analyses

For SEM analyses, samples of sapropel and plant material recovered from sapropels were fixed in 4\% glutaraldehyde, filtered onto 0.25 µm polycarbonate Millipore filters (Bedford, MA, USA) and subsequently washed with 1 x PBS (pH 7.4). Henceforth, they were subjected to an alcohol dehydration series after which they were fixed with 100\% hexamethyldisilizane (Electron Microscopy Sciences, Hatfield, Pennsylvania) and air-dried. After mounting on SEM specimen holders they were sputter-coated (Agar Automatic Sputter Coater, Agar Scientific, UK) with 7-10 nm of gold and visualized with a Jeol JEM 5510LV scanning electron microscope operated at 15 kV. For total cell counts, sapropel pore water samples were fixed in 1\% glutaraldehyde
and filtered through black, gridded cellulose ester membrane filters (0.45 µm, d=47 mm). Subsequently, they were stained directly using 5 µg/mL of DAPI (4′,6-diamidino-2-phenylindole, dihydrochloride) solution and examined by epifluorescence (BX60, Olympus Optical, Tokyo, Japan). Chlorophyll a and total carotenoids concentrations were determined as described by Wetzel and Likens.7

Fungal community analyses

The collected sapropel samples were subsampled (i.e. 3 subsamples from each sapropel sample) and small pices of decaying plant material (leaves) were recovered from Ursu and Fara Fund and processed for DNA extraction using the ZR Soil Microbe DNA MiniPrep kit (Zymo Research) in accordance with the manufacturer’s instructions. The PCR reactions were carried out in triplicates using the primers pair FR1-GC/FF390 as described by Vainio and Hantula.8

The purified PCR-amplified DNA products were compared (700 ng) by DGGE analysis on 8 % (w/v) polyacrylamide gels (containing 37.5:1 of acrylamide to bisacrylamide) with a linear denaturing gradient ranging from 40 % to 65 % (the 100 % denaturant contains 40 % v/v formamide and 7 M urea). Gels electrophoresis were run for 18 h at a constant temperature (58 °C) and voltage (50 V) in 1% Tris-acetate-EDTA buffer, using the DCode™ Universal Mutation Detection System (Bio-Rad, Hercules, CA, USA). Subsequently, the gels were stained with a 1 x SYBR Gold® solution (Invitrogen, Carlsbad, CA) for 40 minutes and visualized using the UVP Imaging and Analysis System and LabWorks software (UVP Inc.). The most intense DGGE bands were excised and incubated overnight in ultrapure water at 4 °C. 3 µl of the DNA-containing water was used in PCR reactions and the purified products were cloned using a commercial system (InsTAclone™ PCR cloning kit, Thermo Scientific) according to the manufacturer’s instructions. Plasmids were purified using the GeneJet Plasmid Miniprep kit (Thermo Scientific) and sequenced using the Sanger method at a commercial company (Macrogen Europe). The fungal community DGGE fingerprints were analyzed with the software package BioNumerics 6.5 (Applied Maths, Ghent, Belgium) according to the provider’s instructions.

References

1. Ball, D.F. Loss-on-ignition as an estimate of organic matter and organic carbon in non-calcareous soils. *J. Soil Sci.* 15, 84-92 (1964).
2. Walkley, A. & Black, I.A. 1934. An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. *Soil Sci.* 37,
3. Fernandes, L., Garg, A. & Borole D.V. Amino acid biogeochemistry and bacterial contribution to sediment organic matter along the western margin of the Bay of Bengal. *Deep Sea Res. Part I: Oceanogr. Res. Papers* **83**, 81-92 (2014).
4. Lowry, O.H., Rosebrough, N.J., Farr, A.L. & Randall, R.J. Protein measurement with the Folin phenol reagent. *J. Biol. Chem.* **193**, 265-275 (1951).
5. Rice, D.L. The detritus nitrogen problem: new observations and perspectives from organic geochemistry. *Mar. Ecol. Prog. Ser.* **9**, 153-162 (1982).
6. Trüper, H.G. Schlegel, H.G. Sulfur metabolism in Thiorhodaceae. 1. Quantitative measurements on growing cells of *Chromatium okenii*. *Antonie van Leeuwenhoek* **30**, 225–238 (1964).
7. Wetzel, R.G. & Likens, G.E. *Limnological Analyses* 39 (Springer-Verlag, New York, 1991)
8. Vainio, E.J. & Hantula, J. Direct analysis of wood-inhabiting fungi using denaturing gradient gel electrophoresis of amplified ribosomal DNA. *Mycol. Res.* **104**, 927-936 (2000).
Table S1. Semiquantitative analysis of elements in dried sapropel samples from Ursu and Fara Fund lakes by X-ray fluorescence (XRF) and scanning-electron microscopy/energy-dispersive X-ray (SEM/EDX). Values are average of three measurements in XRF and five different scanning of distinct spot areas in SEM/EDX.

Element	Ursu Lake sediment	Fara Fund Lake sediment		
	XRF	EDX	XRF	EDX
Major elements (>1 %)				
C	NA	6.8	NA	5.3
O	NA	37.8	NA	35.2
Si	NA	21.8	NA	28.4
Na	NA	5.3	NA	3.7
Al	NA	6.2	NA	7.3
Cl	4.4	6.6	2.9	4.3
Fe	3.2	2.3	2.2	2.1
Ca	1.9	1.2	1.0	0.8
K	1.1	1.2	1.8	1.3
Minor elements (0.1-1 %)				
Mg	NA	0.8	NA	0.6
Ti	0.44	0.3	0.45	0.5
S	0.13	0.6	0.10	0.5
Mn	0.15	0.2	0.04	0.1
Trace elements (<0.1 %)				
Ba	0.022	ND	0.019	ND
Zr	0.014	ND	0.020	ND
Sr	0.013	ND	0.014	ND
Cu	0.010	Traces	0.010	Traces
Zn	0.011	ND	0.006	ND
Rb	0.007	ND	0.005	ND
Co	0.005	Traces	<0.002	Traces
Br	0.001	Traces	<0.0007	Traces
Pb	0.002	Traces	0.002	Traces

Elements below detection limits of XRF

Ni, Cr, As, Se, Mo*, Ag, Cd, Sn, Sb, I, Au, Hg

* Traces of Mo were observed by EDX analysis.

Abbreviations: NA – not analyzed; ND – not detected.
Table S2. Total read counts and alpha diversity estimates for the sapropels from Ursu and Fara Fund lakes

	Ursu Lake	Fara Fund Lake
Total read counts	84,125	63,102
Number of OTUs per sample	2,121	1,806
Good's coverage	0.992	0.985
Phylogenetic diversity (PD)	113.731	93.981
Simpson (S)	0.996	0.995
Shannon (H)	9.444	9.053
Table S3. Nearest BLAST hits of the archaeal and bacterial OTUs classified within the uncultivated and candidate bacterial and archaeal phyla. Operational taxonomic units are organized by decreasing abundance of each phylum as well as decreasing abundance of each OTU within the respective phylum.

A. Ursu Lake

OTU*	Classification	Sequence number	Nearest match (% identity)	Source location of the match	GenBank ID
192	Bacteria	118	Clone MEDEE_16SB_65_MIF (98 %)	Hypersaline Lake Medee, Eastern Mediterranean	JX446064.1
388	Bacteria	88	Clone MS-A229 (87 %)	Calcareous sandy sediment, Spain	FJ94902.1
465	Bacteria	88	Clone MEDEE_16SB_542_MIF (98 %)	Hypersaline Lake Medee, Eastern Mediterranean	JX446043.1
421	Bacteria	87	Clone C149 (99 %)	Soil, China	KJ817694.1
411	Bacteria	84	Clone B0618R002_D01 (96 %)	Rice paddy soil, Japan	ABE58668.1
190	Bacteria	82	Clone GUAY_50enr_Bac50 (94 %)	Hydrothermal sediments, Guaymas Basin, Pacific Ocean	FR682656.1
284	Bacteria	80	Clone: p816_b_5.05 (91 %)	Trough	AB305603.1
573	Bacteria	75	Clone GUAY_37enr_Bac5s (89 %)	Hydrothermal sediments, Guaymas Basin, Pacific Ocean	FR682626.1
436	Bacteria	71	Clone Shimokita-2-70 (89 %)	Deep-sea surface sediment, Shimokita, Pacific Ocean	AB734635.1
538	Bacteria	63	Clone TKTMmv-a-B4(5 (88 %)	Hydrothermal vent, Okinawa, Japan	ABE61531.1
691	Bacteria	63	Clone MEDEE_16SB_542_MIF (96 %)	Sediment, Okinawa Trough, Japan	AB825411.1
4027	Bacteria	56	Clone MEDEE_16SB_542_MIF (96 %)	Hypersaline Lake Medee, Eastern Mediterranean	JX446043.1
707	Bacteria	48	Clone pYK04-20B-60 (99 %)	Hypersaline vent, Okinawa, Japan	AB464834.1
409	Bacteria	45	Clone MAT-CH-CH-11 (97 %)	Hypersaline microbial mat, Candelaria lagoon, Puerto Rico	EU245196.1
694	Bacteria	44	Clone N2_D1 (100 %)	Microbial mat petola, Slovenia	FN768681.2
934	Bacteria	44	Clone Pre-sep_090802W1 (87 %)	Hot spring, USA	KM897417.1
976	Bacteria	44	Clone MEDEE_16SB_42_MIF (98 %)	Hypersaline Lake Medee, Eastern Mediterranean	JX446051.1
571	Bacteria	43	Clone SBYZ_1565 (94 %)	Hypersaline mat, Guerrero Negro, Mexico	JN496253.1
85	OP1	878	Clone MEDEE_16SB_42_MIF (98 %)	Hypersaline sediment, Death Valley, USA	AB533929.1
124	OP1	143	Bacterium Medee_0001 (100 %)	Brine, Medee Lake, Eastern Mediterranean	JX456400.1
102	OP1	87	Clone G06U47 (99 %)	Evaporitic crust, Guerrero Negro, Mexico	EF106490.1
417	OP1	46	Clone GeoB15101-6-85-Bac93 (96 %)	Urania Basin brine, Eastern Mediterranean	KM278921.1
179	OP3	626	Clone MEDEE_16SB_09_UIF (98 %)	Water, Hypersaline Lake Medee, Eastern Mediterranean	JX446112.1
676	OP3	62	Clone p816_b_5.05 (87 %)	Hydrothermal sediments, Southern Okinawa Trough, Japan	AB305603.1
654	OP3	54	Clone E6aB08 (100 %)	Hypersaline endoevaporitic microbial mat, Elat, Israel	DQ103867.1
728	OP3	50	Clone 113B509 (93 %)	Sediment - Cheren mud volcano, Eastern Mediterranean	EF875713.1
880	OP3	43	Clone WLS4-5 (98 %)	Wuliangshai Lake, China	KC456412.1
970	OP3	43	Clone B41.20 (95 %)	Sediments, Bohai Sea	KF856854.1
278	WS3	318	Clone SBZP_6337 (100 %)	Hypersaline mat, Guerrero Negro, Mexico	JN539471.1
137	WS3	206	Clone HA9-SRB-CD3 (97 %)	Sediment, hydrothermal vent, Bransfield Strait, Antarctica	FM868270.1
288	WS3	170	Clone SBZI_6025 (99 %)	Hypersaline mat, Guerrero Negro, Mexico	JN526162.1
535	WS3	68	Clone PM-150-Bac-24 (96 %)	Sediment, cold seep, Pakistan Margin	JQ925060.1
754	WS3	46	Clone V1F127B (97 %)	Iron oxide sediments, Volcano 1, Tonga Arc	FJ905749.1
1043	WS3	44	Clone SBZC_5732 (100 %)	Hypersaline mat, Guerrero Negro, Mexico	JN509263.1
49	WWE1	508	Clone 104B375 (92 %)	Sediment, Cheren mud volcano, Eastern Mediterranean	EF887304.1
OTU*	Classification	Sequence number	Nearest match (% identity)	Source location of the match	GenBank ID
-------	----------------	----------------	----------------------------	------------------------------	-------------
446	Parvarchaeota	133	Clone Exp331_INH_50U_57	Ocean drilling core sediment, Okinawa, Japan	AB825844.1
190	Bacteria	319	Clone GUAY_50enr_Bac50	Hydrothermal sediments, Guaymas Basin, Pacific Ocean	FR682656.1
112	Bacteria	256	Clone GeoB15101-6-B5-Bact-49	Urania Basin brine lake, Eastern Mediterranean	KM278882.1
335	Bacteria	86	Clone GeoB15101-6-B5-Bact-49	Urania Basin brine lake, Eastern Mediterranean	KM278882.1
284	Bacteria	83	Clone p816_b_5_05(91 %)	Trough	AB305603.1
388	Bacteria	70	Clone MS-A229(87 %)	Calcareous sandy sediment, Spain	FJ949402.1
1957	Bacteria	70	Clone LGNSa2_BC_022(95 %)	Hypersaline mat, Guerrero Negro, Mexico	EU687381.1
646	Bacteria	61	Clone Napoli-4B-82(91 %)	Napoli mud volcano hypersaline marine sediment	AY952796.1
409	Bacteria	57	Clone MAT-CR-H3-H11(97 %)	Hypersaline microbial mat, Candelaria lagoon, Puerto Rico	EU245196.1
495	Bacteria	51	Clone 90b(92 %)	Anaerobic reactor fed from the chemical industry	FJ462088.1
545	Bacteria	51	Clone AS07-7-39(88 %)	Biofilm from subsurface sulfidic cave sediment	KM410351.1
889	Bacteria	51	Clone TVG12-B32(93 %)	Deep-sea hydrothermal vent sediments, Pacific Ocean	KM071721.1
849	Bacteria	48	Clone NNTCHY2917(92 %)	Anaerobic UASB reactor fed with domestic sewage	KM071721.1
571	Bacteria	43	Clone SBY2Z_1565(94 %)	Hypersaline mat, Guerrero Negro, Mexico	JN496253.1
165	Bacteria	41	Clone LGNSa2_BC_022(94 %)	Hypersaline mat, Guerrero Negro, Mexico	EU687381.1
9	Bacteria	41	Clone LGNSa2_BC_022(100 %)	Hypersaline mat, Guerrero Negro, Mexico	EU687381.1
293	Bacteria	37	Clone TOSC-55(88 %)	Sediment	LN650518.1
518	Parvarchaeota	35	Clone OGAP_AB16_38cm_06(91 %)	West Pacific abyssal plain sediments	AB827103.1
227	Parvarchaeota	35	Clone OGAP_AB16_38cm_27(91 %)	West Pacific abyssal plain sediments	AB827103.1
618	Parvarchaeota	35	Clone Naples(95 %)	Evaporite crust, Guerrero Negro, Mexico	EF106720.1
679	Parvarchaeota	35	Clone A42(94 %)	Moderate saline soil, China	EU328116.1
652	Parvarchaeota	35	Clone Exp331_INH_65U_06(92 %)	Ocean drilling core sediment, Okinawa, Japan	AB825870.1
OTU	Family	OTU Description	Location	Sequence Accession	
-----	--------	-----------------	----------	------------------	
3125	Parvarchaeota	Clone P53A (98 %)	Evaporitic crust, Guerrero Negro, Mexico	EF106700.1	
906	Parvarchaeota	Clone GNA02D12 (98 %)	Hypersaline mat, Guerrero Negro, Mexico	EU731484.1	
1371	Parvarchaeota	Clone Y17A (97 %)	Hypersaline mat, Guerrero Negro, Mexico	EF106701.1	
3987	Parvarchaeota	Clone TVG1-A103 (90 %)	Deep-sea hydrothermal vent sediments, East Pacific Ocean	KJ564030.1	
90	Parvarchaeota	Clone GN21D13B (99 %)	Hypersaline mat, Guerrero Negro, Mexico	EU731482.1	
142	SAR406	Clone Kasin-B3-C09 (92 %)	Hypersaline sediment, Kalmykian Steppe, Russia	HE604724.1	
301	SAR406	Clone ST-12K17 (98 %)	Brine-seawater interface, Shaban Deep, Red Sea	AJ347757.1	
1911	SAR406	Clone ST-12K17 (95 %)	Brine-seawater, Shaban Deep, Red Sea	AJ347757.1	
1191	SAR406	Clone E10Dbac (99 %)	Great Salt Lake sediment, USA	DQ386205.1	
179	OP3	Clone MEDEE_16SB_09_UIF (98 %)	Water, Hypersaline Lake Medee, Eastern Mediterranean	JX446112.1	
487	OP3	Clone SCS_HX36_154 (96 %)	Surface sediment, China Sea	HM598263.1	
821	OP3	Clone Clip 7 (95 %)	Stratified lagoon, Clipperton Island	HQ691945.1	
137	WS3	Clone HA9-SRB-CD3 (97 %)	Sediment from hydrothermal vent, Bransfield Strait, Antarctica	FM868270.1	
278	WS3	Clone SBZP_6337 (100 %)	Hypersaline mat, Guerrero Negro, Mexico	JN599471.1	
250	Caldithrix	Clone SBYZ_5190 (98 %)	Hypersaline mat, Guerrero Negro, Mexico	JN493439.1	
3721	Caldithrix	Clone SBYZ_5190 (98 %)	Hypersaline mat, Guerrero Negro, Mexico	JN493439.1	
520	Caldithrix	Clone SBYZ_5190 (95 %)	Hypersaline mat, Guerrero Negro, Mexico	JN493439.1	
454	OD1	Clone Kasin-B1-G09 (90 %)	Hypersaline sediment, Kalmykian Steppe, Russia	HE604802.1	
1189	OD1	Clone HA-EUB-T9-47 (95 %)	Sediment from hydrothermal vent, Bransfield Strait, Antarctica	FM867974.1	
850	OD1	Clone HA-EUB-T9-47 (89 %)	Sediment from hydrothermal vent, Bransfield Strait, Antarctica	FM867974.1	
510	OD1	Clone Kasin-B2-D09 (99 %)	Hypersaline sediment, Kalmykian Steppe, Russia	HE604672.1	
2433	OD1	Clone Kasin-B2-D09 (96 %)	Hypersaline sediment, Kalmykian Steppe, Russia	HE604672.1	
307	WWE1	Clone 104B378 (98 %)	Sediment from hydrothermal vent, Bransfield Strait, Antarctica	EF687307.1	
49	WWE1	Clone MAT-CR-H3-B03 (91 %)	Hypersaline microbial mat, Candelaria lagoon, Puerto Rico	EU245152.1	

* Only OTUs with abundances above 0.05% are included.
Table S4. Taxonomic composition of sediments from Ursu and Fara Fund lakes (A) and the extended phylum level diversity (B).

A.

Phylum-level taxonomy*

Phylum	Abundance (%)	Lake	Phylum	Abundance (%)	Lake
OD1	1.1	Ursu	Proteobacteria	32.4	Ursu
WWE1	1.2	Ursu	SAR406	1.0	Fara Fund
Caldithrix	1.3	Ursu	Acidobacteria	1.7	Fara Fund
WS3	1.4	Ursu	Euryarchaeota	1.8	Fara Fund
OP1	1.5	Ursu	Gemmatimonadetes	1.8	Fara Fund
OP3	1.7	Ursu	Planctomycetes	1.9	Fara Fund
Planctomycetes	2.4	Ursu	Parvarchaeota	2.2	Fara Fund
Actinobacteria	2.6	Ursu	Firmicutes	2.4	Fara Fund
Crenarchaeota	2.7	Ursu	Spirochaetes	3.1	Fara Fund
Parvarchaeta	3.6	Ursu	Crenarchaeota	5.7	Fara Fund
Euryarchaeota	4.4	Ursu	Actinobacteria	7.4	Fara Fund
Spirochaetes	4.8	Ursu	Chloroflexi	7.8	Fara Fund
Chloroflexi	8.7	Ursu	Bacteroidetes	10.6	Fara Fund
Bacteroidetes	11.6	Ursu	Proteobacteria	39.3	Fara Fund

Class-level taxonomy*

Class	Abundance (%)	Lake	Class	Abundance (%)	Lake
Rhodothermi	1.3	Ursu	MBGB	1.6	Fara Fund
Phycisphaerae	1.6	Ursu	Acidimicrobia	1.7	Fara Fund
Saprospirae	2.0	Ursu	Actinobacteria	1.7	Fara Fund
MBGB	2.2	Ursu	Clostridia	1.8	Fara Fund
Actinobacteria	2.2	Ursu	Parvarchaeta	2.2	Fara Fund
Thermoplasmata	3.2	Ursu	Bacteroidia	2.5	Fara Fund
Parvarchaeta	3.5	Ursu	Ellin6529	2.8	Fara Fund
Spirochaetes	4.0	Ursu	Spirochaetes	3.0	Fara Fund
Bacteroidia	5.0	Ursu	Thermoleophilia	3.1	Fara Fund
Alphaproteobacteria	6.4	Ursu	Anaerolinea	3.1	Fara Fund
Anaerolinea	7.9	Ursu	Thaumarchaeota	3.4	Fara Fund
Gammaproteobacteria	8.1	Ursu	Betaproteobacteria	4.2	Fara Fund
Deltaproteobacteria	16.6	Ursu	Gammaproteobacteria	6.8	Fara Fund
Rhodothermi	1.0	Fara Fund	Alphaproteobacteria	12.1	Fara Fund
Phycisphaerae	1.1	Fara Fund	Deltaproteobacteria	16.1	Fara Fund
Saprospirae	1.1	Fara Fund			

Order-level taxonomy*

Order	Abundance (%)	Lake	Order	Abundance (%)	Lake
MSBL9	1.0	Ursu	GCA004	1.2	Fara Fund
Rhodothermales	1.3	Ursu	Myxococcales	1.3	Fara Fund
Thiotrichales	1.4	Ursu	Burkholderiales	1.3	Fara Fund
Saprospirales	2.0	Ursu	MND1	1.4	Fara Fund
Chromatiales	2.1	Ursu	OPB11	1.7	Fara Fund
Actinomycetales	2.1	Ursu	Actinomycetales	1.7	Fara Fund
Desulfarculales	2.5	Ursu	Acidimicrobia	1.7	Fara Fund
Desulfovibrionales	2.6	Ursu	Rhodobacteriales	1.7	Fara Fund

*Note: Abundances are given as percentages of the total community, and lakes are indicated as Ursu or Fara Fund.
Family-level taxonomy

Family	Abundance (%)	Lake	Family	Abundance (%)	Lake
Balneolaceae	1.3	Ursu	Comamonadaceae	1.3	Fara Fund
Piscirickettsiaceae	1.4	Ursu	Rhodobacteraceae	1.6	Fara Fund
Saprospiraceae	2.0	Ursu	Desulfarculaceae	1.9	Fara Fund
Desulfobacteriaceae	2.5	Ursu	Sphingomonadaceae	1.9	Fara Fund
Rhodobacteraceae	3.1	Ursu	Sinobacteraceae	2.7	Fara Fund
Spirochaetaceae	4.0	Ursu	Spirochaetaceae	3.0	Fara Fund
Desulfovibrioaceae	8.3	Fara Fund	Nitrososphaeraceae	3.4	Fara Fund
Halanaerobiaceae	1.0	Fara Fund	Hyphomicrobiaceae	4.4	Fara Fund
Desulfohalobiaceae	1.0	Fara Fund			

Genus-level taxonomy

Genus	Abundance (%)	Lake	Genus	Abundance (%)	Lake
KSA1	1.2	Ursu	Spirochaeta	1.8	Fara Fund
Desulfotignum	1.4	Ursu	Rhodoplanae	2.8	Fara Fund
Desulfovermiculus	1.7	Ursu	Candidatus	3.4	Fara Fund
Spirochaeta	1.8	Ursu			

*Only taxa with abundances ≥ 1% are presented.

Domain

Archaea

Genus	No of OTUs	No of reads	% of total reads
Parvarchaeota	231	2988	3.55
Crenarchaeota	33	2293	2.73
Eurarchaeota	107	3675	4.37
Caldithrix	22	1081	1.28
Thermi	5	780	0.93
AC1	8	199	0.24
Acidobacteria	69	316	0.38
Actinobacteria	198	2198	2.61
Armatimonadetes	2	9	0.01
Bacteroidetes	248	9750	11.59
BH80-139	1	0	0.00
BRC1	18	132	0.16
Chlamydia	19	100	0.12
Chlorobi	18	517	0.61
Chloroflexi	171	7346	8.73
Cyanobacteria	8	356	0.42
Deferrribacteres	3	48	0.06
Elusimicrobia	9	62	0.07
FCPU426	1	10	0.01
FBP	1	0	0.00

Bacteria

Domain	Phylum	No of OTUs	No of reads	% of total reads		
Archaea	Parvarchaeota	231	2988	3.55		
Archaea	Crenarchaeota	33	2293	2.73		
Archaea	Eurarchaeota	107	3675	4.37		
Bacteria	Caldithrix	22	1081	1.28		
Bacteria	Thermi	5	780	0.93		
Bacteria	AC1	8	199	0.24		
Bacteria	Acidobacteria	69	316	0.38		
Bacteria	Actinobacteria	198	2198	2.61		
Bacteria	Armatimonadetes	2	9	0.01		
Bacteria	Bacteroidetes	248	9750	11.59		
Bacteria	BH80-139	1	0	0.00		
Bacteria	BRC1	18	132	0.16		
Bacteria	Chlamydia	19	100	0.12		
Bacteria	Chlorobi	18	517	0.61		
Bacteria	Chloroflexi	171	7346	8.73		
Bacteria	Cyanobacteria	8	356	0.42		
Bacteria	Deferrribacteres	3	48	0.06		
Bacteria	Elusimicrobia	9	62	0.07		
Bacteria	FCPU426	1	10	0.01		
Bacteria	FBP	1	0	0.00		
Bacteria	Fibrobacteres	6	75	19	0.09	0.03
--------------	---------------	-----	-----	-----	-------	------
Bacteria	Firmicutes	96	486	1505	0.58	2.39
Bacteria	Fusobacteria	4	8	18	0.01	0.03
Bacteria	GAL15	1	0	3	0.00	0.00
Bacteria	Gemmatimonadetes	42	641	1116	0.76	1.77
Bacteria	GN02	9	96	18	0.11	0.03
Bacteria	GN04	17	356	13	0.42	0.02
Bacteria	H-178	3	176	0	0.21	0.00
Bacteria	Hyd24-12	5	221	72	0.26	0.11
Bacteria	KSB3	6	276	11	0.33	0.02
Bacteria	LCP-89	5	82	26	0.10	0.04
Bacteria	Lentisphaerae	24	724	73	0.86	0.12
Bacteria	Nitrospirae	8	202	0	0.00	0.32
Bacteria	NKB19	17	202	15	0.24	0.02
Bacteria	OD1	79	908	536	1.08	0.85
Bacteria	OP1	17	1286	167	1.53	0.26
Bacteria	OP11	8	143	17	0.17	0.03
Bacteria	OP3	51	1402	623	1.67	0.99
Bacteria	OP8	9	673	88	0.80	0.14
Bacteria	OP9	3	251	491	0.30	0.78
Bacteria	PAUC34f	3	58	0	0.07	0.00
Bacteria	Planctomycetes	227	2017	1195	2.40	1.89
Bacteria	Proteobacteria	858	27270	24794	32.42	39.29
Bacteria	SAR406	12	251	644	0.30	1.02
Bacteria	SBR1093	1	120	0	0.14	0.00
Bacteria	Spirochaetes	95	4074	1967	4.84	3.12
Bacteria	SR1	3	35	3	0.04	0.00
Bacteria	Synergistetes	4	53	24	0.06	0.04
Bacteria	TA06	1	5	0	0.01	0.00
Bacteria	Tenericutes	7	45	45	0.05	0.07
Bacteria	Thermotogae	4	738	254	0.88	0.40
Bacteria	TM6	26	187	98	0.22	0.16
Bacteria	TM7	9	34	31	0.04	0.05
Bacteria	Verrucomicrobia	60	593	538	0.70	0.85
Bacteria	WS1	11	133	75	0.16	0.12
Bacteria	WS2	3	27	0	0.03	0.00
Bacteria	WS3	41	1158	552	1.38	0.87
Bacteria	WWE1	17	1020	222	1.21	0.35
Bacteria	ZB3	2	35	0	0.04	0.00
Supplementary figures

Figure S1

(A) Mineral composition of Ursu (U) and Fara Fund (FF) sapropels from three distinct sediment samples. (Q - quartz, P – plagioclase feldspar, O – orthoclase feldspar, M – muscovite, Ch – chlorite, A – amphibole, C – calcite, D – dolomite, H – halite). (B) X-ray diffractions on the <2µm size fraction separated from the sapropels (gray – oriented sample; black – sample treated with ethylene glycol): M1 – montmorillonite, M – muscovite, K – Kaolinite, Ch – chlorite; small amounts of quartz (Q) and plagioclase feldspar (P) are also present in the samples.
Epifluorescence microscopy images from Ursu and Fara Fund sapropels. (A) epifluorescence DAPI image of prokaryotic morphotypes (indicated by arrows) in Fara Fund Lake sapropel. (B) superimposed image of Ursu Lake sapropel showing the presence of chlorophyll-containing microorganisms (indicated by arrows). (C) and (D) show the presence of filamentous photosynthetic bacteria in Ursu Lake sapropel (indicated by arrows).
Figure S3

Habitat distribution of the Ursu and Fara Fund sapropels' OTUs (>0.1% abundance) closest blastn hits, as found in the NCBI's nucleotide database.
Figure S4

SEM images of fungal morphotypes (indicated by arrows) present in the sapropel samples (A and B) and on the surface of plant material recovered from sapropels (C and D).
Figure S5

(A) Dendrogram constructed using the fungal community fingerprints generated from twelve environmental samples. (B) Fungal phylogenetic tree created using the V7-V8 SSU rDNA hypervariable regions. Legend: L-lane; B-band.