Low temperature modifies seedling leaf anatomy and gene expression in *Hypericum perforatum*

Hongyan Su¹, Ling Jin², Mengfei Li¹* and Paul W. Pare³*

¹State Key Laboratory of Arid Land Crop Science, Gansu Agricultural University, Lanzhou, China, ²College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou, China, ³Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, United States

Hypericum perforatum, commonly known as St John’s wort, is a perennial herb that produces the anti-depression compounds hypericin (Hyp) and hyperforin. While cool temperatures increase plant growth, Hyp accumulation as well as changes transcript profiles, alterations in leaf structure and genes expression specifically related to Hyp biosynthesis are still unresolved. Here, leaf micro- and ultra-structure is examined, and candidate genes encoding for photosynthesis, energy metabolism and Hyp biosynthesis were differentially regulated with an altered growing temperature. The anatomical changes and genes expression are consistent with the plant’s ability to accumulate enhanced Hyp levels at low temperatures.

KEYWORDS

hypericum perforatum, temperature, green tissue, dark gland, secretory cell, hypericin

1 Introduction

Hypericum perforatum L. (St John’s wort) is a perennial herb widely distributed in Europe, Asia, Northern Africa and Northern America (Bagdonaite et al., 2010). Aerial parts contain the metabolites hypericin (Hyp) and hyperforin that are used in traditional medicine as anti-depression, anti-viral, anti-microbial and anti-tumor agents, as well as other plant constituents such as flavonoids, tannins and volatile oils (Barnes et al., 2001; Napoli et al., 2018).
St John’s wort has traditionally been used as an external anti-inflammatory and healing remedy for the treatment of swellings, wounds and burns. It is of interest recently due to new and important therapeutic applications (Bombardelli and Morazzoni, 1995; Nahrstedt and Butterweck, 1997; Erdelmeier, 1998). The species is characterized by the presence of different types of secretory structure: translucent glands or cavities, black nodules and secretory canals (Ciccarelli et al., 2001). The frequency and diversity of these secretory structures is evidence of the intense secretory activity of the species. Previous studies have found that H. perforatum growth and Hyp accumulation are affected by the germplasm source (Couceiro et al., 2006; Soták et al., 2016; Zhang et al., 2021) as well as environmental factors such as light quality (Germ et al., 2010; Najafabadi et al., 2019; Tavakoli et al., 2020; Karimi et al., 2022), drought (Gray et al., 2003), and temperature (Zobayed et al., 2005; Couceiro et al., 2006; Yao et al., 2019; Tavakoli et al., 2020; Kaundal et al., 2021). Lower temperatures can enhance plant growth and Hyp accumulation; indeed cooler growth conditions can significantly increase plant biomass by inducing gene expression that favor growth (Brunaková et al., 2015; Yao et al., 2019; Tavakoli et al., 2020). Previous studies have found that ca. 750 genes are differentially expressed and 150 genes are involved in plant growth, Hyp biosynthesis and/or environmental responses in H. perforatum seedlings at different temperatures (Su et al., 2021). Based on this previous study, St John’s wort expression levels for low-level gene candidates have been quantified by qRT-PCR (real time quantitative PCR), to further probe the mechanism of seedlings performance under a cool temperature. Secretory structures associated with leaf metabolite accumulation were also monitored under reduced temperature conditions.

2 Materials and methods

2.1 Plant materials

H. perforatum seedlings were grown from seed [collected Kangxian county (33°16′20″N, 105°31′50″E; 1050 m a.s.l.) located in Gansu province, China] and acclimated to defined temperatures according to previously published protocols (Yao et al., 2019; Su et al., 2021). Specifically, seeds were successively disinfected with 70% ethanol (v/v) and 0.1% HgCl₂ (w/v), and then the sterilized seeds were inoculated on Murashige and Skoog (MS) + 20.0 g/L sucrose + 4.0 g/L agar (pH 5.8) and germinated at 22°C (24 h/d photoperiod, white light, 500 µmol-m⁻²·s⁻¹ Flux; 50 ± 5% relative humidity) in illuminated incubators (PDX-600A, KunCheng Scientific Instruments Co., Ltd., Shanghai, China). After 20 days growth at 15 and 22°C, the treated seedlings (Figure S2) were collected for seedlings dry weight (DW), Hyp quantification, anatomical observation and qRT-PCR validation. Herein, each treatment had 40 flasks with 3 seedlings per flask. Additionally, the criteria for choosing the temperatures is based on our previous findings that the aerial parts biomass and Hyp accumulation in H. perforatum are greater at 15°C compared with 22 and 30°C (Yao et al., 2019).

2.2 Measurement of chlorophyll and carotenoid contents

Chlorophyll and carotenoid contents were measured according to a previous protocol (Li et al., 2009; Yang et al., 2014). Briefly, fresh whole leaves (0.1 g) were finely ground in 80% acetone (v/v, 5 mL) and centrifuged at 5000 r/min and 4°C for 10 min. The supernatant was diluted to 25 mL with 80% acetone (v/v). Absorbance was taken at 662, 646 and 470 nm using a spectrophotometer (UV-6100, Shanghai, China). The specific calculations are as follows:

Chlorophyll a concentration : Cₐ (mg/L) = 12.2A₆₆₂−2.81A₆₄₆
Chlorophyll b concentration : Cₐ (mg/L) = 20.13A₆₄₆−5.03A₆₆₂
Carotenoid concentration : C (%) = Cₐ + Cₐ

where “A₆₆₂”, “A₆₄₆” and “A₄₇⁰” represent the absorbance at 662, 646 and 470 nm, as well as “C”, “V” and “M” represent the concentration of pigment (mg/L), volume of extract (L) and sample fresh weight (FW, g), respectively.

2.3 HPLC quantification of Hyp content

Hyp content was quantified according to previous protocols (Couceiro et al., 2006; Yao et al., 2019). Briefly, air-dried aerial parts of seedlings were finely powdered, samples (0.1 g) were soaked in 95% ethanol (v/v; 20 mL) and agitation in the dark at 22°C for 72 h, and centrifuged at 8000 r/min and 4°C for 10 min. The supernatant was evaporated and concentrated using a vacuum in a rotary evaporator at 60°C, and then the concentrated residue was re-dissolved in methanol (10 mL,
chromatography grade). After filtered with a durapore membrane (0.22 μm; Millipore, Sigma, USA), extracts (10 μL) were analyzed at 590 nm by HPLC (Eclipse Plus C18, 250 mm × 4.6 mm, 5 μm; Column temperature 30°C; Agilent 1100 series, Santa Clara, California, USA) and mobile phase with acetonitrile: 50 mmol/L triethylamine (70:30, v/v) at a flow rate of 1.0 mL/min. Hyp content was evaluated on peak area comparison with a reference standard (hypericin, 56690; Sigma Chemical Co., St. Louis, MO, USA). The specific calculations are as follows:

\[
\text{Hyp content (mg/g DW)} = \frac{Y / Y_0 \times \Omega \times V}{(M1 \times 1000)}
\]

where “\(\Omega\)”, “\(Y_0\)”, “\(Y\)”, “\(V\)”, “\(M1\)” represent the standard concentration of Hyp (μg/mL), standard peak area of Hyp (mAUxs), sample peak area (mAUxs), volume of extract (L) and sample DW (g), respectively.

2.4 Leaf micro-structure observations

The middle adaxial leaf of 20 day-old plants was paraffin sectioned based on Li and Zhang, 2016. Briefly, fresh leaves were fixed with a formaldehyde-alcohol-acetic acid (FAA) solution at 4°C for 12 h; fixed samples were then washed with 70% ethanol (v/v) at 22°C for 10 min (thrice), and sequentially dehydrated in 30% ethanol (2 h), 50% (2 h), 70% (12 h), 85% (1 h), 95% (1 h), and 100% (0.5 h) (twice, v/v); dehydrated samples were then sequentially transparentized in the mixture of ethanol and dimethylbenzene (2:1, 1:1, 1:2 and 0:1, v/v) at 22°C for 10 min (thrice), and sequentially dehydrated in 4°C for 12 h and 68°C for 48 h; finally, the embedded samples were sliced (75 nm) with an ultra-microtome (EM UC6, Leica, Germany) and stained with uranyl acetate and lead citrate, and then ultra-structure was observed by a transmission electron microscope (JEM-1230, JEOL Ltd., Japan).

2.5 Leaf ultra-structure analysis

Leaf ultra-structure was observed by transmission electron microscopy (Kornfeld et al., 2007), specific protocols and instrumentation followed previously published literature (Li et al., 2020). Briefly, small pieces (4 mm × 2 mm) of the middle adaxial leaf without mainly veins were firstly immersed into glutaraldehyde (2.5%, v/v) at 4°C for 12 h, then washed with 0.2 M sodium phosphate buffer (pH 7.4) at 22°C for 15 min (thrice), and then fixed with osmium tetroxide (1%, w/v) at 4°C for 5 h; secondly, the fixed samples were washed with the above buffer and then extracted sequentially in 50% ethanol (15 min), 70% (12 h), 80% (15 min), 90% (15 min), 100% (15 min), and acetone (100%) for 15 min (twice, v/v), the mixture agent of acetone and embedding (v/v, 1:1) for 7 h, and embedding medium (Epoxy resin, composed of MNA, EPon-812, DDSA and DMP-30) at 22°C for 12 h; thirdly, the treated leaves were transferred to a embedding plate and immersed in a embedding medium, and then dried sequentially at 35°C for 10 h, 45°C for 12 h and 68°C for 48 h; finally, the embedded samples were sliced (75 nm) with an ultra-microtome (EM UC6, Leica, Germany) and stained with uranyl acetate and lead citrate, and then ultra-structure was observed by a transmission electron microscope (JEM-1230, JEOL Ltd., Japan).

2.6 Gene excavation

RNA sequencing was by unigene expression analysis and basic annotation was conducted; 1584 high-level expressed genes with 749 characterized genes and 150 genes involved in plant growth, Hyp biosynthesis and environmental response have been identified with \(\log_{2}(\text{fold-change}) > 1\) in previously published article (Su et al., 2021). In this study, low-level genes were identified according to a criteria of \(0.2 < \log_{2}(\text{fold-change}) < 1.0\) (Robinson et al., 2009; Love et al., 2014), since low-level genes also play important roles in many biological processes (Maia et al., 2007; Gotor et al., 2010). Differentially Expressed Genes (DEGs) were annotated against the Swiss-Prot database (https://www.uniprot.org/), and 64 candidate genes (Table S1 and Table 1) involved in photosynthesis, energy and Hyp biosynthesis were dug out based on the biological functions.

2.7 qRT-PCR quantification

Primer sequences of the selected 32 candidate genes (Table S2) were designed using a Primer-BLAST tool in NCBI. The coding sequences (CDS) of the 32 genes are shown in Table S3. Actin (ACT) was selected as a reference gene. The extraction of total RNA, synthesis of first-strand cDNA and PCR amplification were performed using RNA kit, RT kit and SuperReal PreMix, respectively. The RNA quality was assessed using an Ultramicro spectrophotometer (Micro Drop, BIO-DL, Shanghai, China) (Table S4) and the integrity was evaluated by 1.0% (w/v) agarose gel electrophoresis (Figure S3), reverse transcription was performed to generate cDNA on the following protocol: 42°C for 15 min and then 95°C for 3 min, one cycle, PCR amplification was performed on the following protocol: one cycle at 95°C for 15 min, and 35 cycles at 95°C for 10 s, 60°C for 20 s and 72°C for 30 s, and melting curve analysis was performed after a 34 s incubation at 72°C (Yao et al., 2019). The concentrations of cDNA and primer were respectively diluted to 100 ng/μL (2 μL) and 10 μM (1.2 μL) for gene expression analysis. Gene expression was quantified using a
LightCycler 96 (Roche, Switzerland). Relative expression level (REL) of gene at 15°C compared with 22°C (Control) was evaluated based on a $2^{-\Delta\Delta Ct}$ method according to the following formula (Willems et al., 2008):

$$\Delta Ct_{Test \ gene} = Ct_{Test \ gene} - Ct_{Reference \ gene}$$

$$\Delta Ct_{Control \ gene} = Ct_{Control \ gene} - Ct_{Reference \ gene}$$

$$-\Delta\Delta Ct = -(\Delta Ct_{Test \ gene} - \Delta Ct_{Control \ gene})$$

$$REL \ (Test \ gene/Control \ gene) = 2^{-\Delta\Delta Ct}$$

2.8 Statistical analysis

Three biological replicates were performed; SPSS 22.0 software was used for a t-test analysis with $P<0.05$ for differences.

3 Results and discussion

3.1 Low temperature increases chlorophyll and carotenoid content

To probe physical and physiological changes in leaves with a change in median growth temperature, a series of growth.
parameters were monitored. A 1.1- and 1.2-fold increase of chlorophyll (a + b) and carotenoid contents was observed at 15 compared with 22°C, respectively (Figure S4). These results were consistent with previous reports that low temperature can significantly increase chlorophyll content, plant growth and subsequently enhance biomass accumulation in comparison with high temperatures (22 and 30°C) (Yao et al., 2019; Su et al., 2021). Five photosynthetic encoded genes (i.e. psbA, psbC, ycf4, ycf5 and matK) were up-regulated at 15°C compared with 22 and 30°C (Yao et al., 2019); and nine genes encoding chlorophyll a-b binding proteins (i.e. CAB, CAB1, CAB1B, CAB3, CAB3C, CAB96, ELL_PEA, OHP2 and RB8C-S) were up-regulated at 15°C compared with 22 (Su et al., 2021). The up-regulation of these genes encoding chlorophyll a-b binding, light-induced and light-harvesting complexes proteins indirectly indicate that lower temperatures can improve the accumulation of chlorophyll pigments, which successively enhance photosynthesis and plant growth.

3.2 Low temperature increases biomass and Hyp content

As shown in Figure 1, there were greater biomass and Hyp content at lower temperature, with a 1.2-fold increase of the whole seedlings DW (Figure 1A) and 4.5-fold increase of Hyp content in aerial parts at 15 compared with 22°C (Figure 1B). The representative chromatograms of reference standard (50 μg/mL, injection volume 10 μL) as well as the extracts (10 mL, injection volume 10 μL) of aerial parts of seedlings at 15 and 22°C were shown in Figure 1C. Previous studies on *H. perforatum* have found that cooler temperatures can enhance Hyp accumulation. Specifically, there was a 1.4-fold increase of Hyp content on a DW basis at 15 compared with 22°C after the seedlings treated for 45 days (Yao et al., 2019); a maximum Hyp content on a DW basis at 4 and 8°C compared with 16 and 25°C, with about 10-fold increase at 4 compared with 25°C after the seedlings treated for 7 days (Tavakoli et al., 2020). These findings further demonstrate that Hyp accumulation in *H. perforatum* can be significantly enhanced by cooler temperatures. In fact, extensive experiments have demonstrated that bioactive compounds can be improved at cooler temperatures, such as podophyllotoxin content in *Sinopodophyllum hexandrum* at 15 compared with 22°C (Li et al., 2020), ferulic acid content in *Angelica sinensis* at 15 compared with 22°C (Dong et al., 2022), and total ginsenosides content in *Panax ginseng* at 10 compared with 25°C (Wang et al., 2019).

3.3 Low temperature changes leaf cell micro-structure

Leaf tissue structure alterations [i.e. lower epidermis (LE), upper epidermis (UE), palisade cell (PC), spongy tissue (ST) and leaf veins (LV)] as well as organelle density [i.e. chloroplast (Ch), dark gland (DG) and secretory cell (SC)] were observed based on growing temperatures (Figure 2). A 1.1-fold increase in leaf thickness was detected (Figure 3A). Previous studies have found that *H. perforatum* leaf morphology (e.g. leaf length/width, stem height and DG) are significantly affected by species, geographic,
light and temperature conditions (Briskin and Gavienowski, 2001; Walker et al., 2001; Cirak et al., 2007; Stoyanova-Koleva et al., 2015; Su et al., 2021). Since Hyp biosynthesis occurs in dark glands (DG) and secretory cells (SC) is associated with Hyp accumulation (Lv and Hu, 2001; Zobayed et al., 2006; Kornfeld et al., 2007; Rizzo et al., 2019), these organelles were monitored. Increases in DG size and SC number of 1.2-fold and 1.9-fold, respectively for plants growing at the lower temperature was observed (Figures 3B, C). Studies with *Camellia oleifera* grown at 15 compared with 16°C exhibited an increased leaf thickness, of 1.2-fold (Hu et al., 2016). Previous studies on *H. perforatum* have found that the number of DG is more at 15°C compared with 22°C (Su et al., 2021). Thus, larger size of DG and more number of SC in this study further confirm previous studies that higher Hyp accumulates to a greater level at 15°C than 22°C (Su et al., 2021).

3.4 Low temperature changes leaf cell ultra-structure

Vacuole (V) occupied most of the space of whole cell, and chloroplasts (Ch) were near to the cell wall (CW) (Figure 4A, F); mitochondria (Mi) were near to the Ch (Figures 4B, G); starch grains (S) (Figures 4C, H), thylakoid grana (TG) and osmiophilic granules (OG) (Figures 4D, I) presented in the Ch; and hemispherical droplets (HD) (Figures 4E, J) appeared in the epidermal cell. Based on the observations (n=10), the number of Ch, Mi, S, TG and OG appeared to be greater and the size of HD was significantly larger at 15°C compared with 22°C (Figure 4). The number of Ch, Mi, S, TG and OG affected by abiotic stresses such as temperatures has been observed in other plants (Zhang et al., 2005; Li et al., 2020). Here, an increase in the number of Ch, Mi, S, TG and OG may be a low-temperature response for energy acquisition and utilization, since previously studying *H. perforatum* have reported that cooler temperature can enhance plant growth (Yao et al., 2019; Su et al., 2021). The HD, which seems to adhere to membranes or is somehow trapped in a hemispherical shape, may be associated with Hyp biosynthesis (Kornfeld et al., 2007). Here, an increase in the size of HD may play a certain role in enhancing Hyp biosynthesis at lower temperature.

3.5 Low temperature regulates gene expression related to photosynthesis and energy

Thirty-five genes related to photosynthesis and energy (Taiz and Zeiger, 2010) was observed to be differentially regulated with temperature (Table S1), and 16 genes were selected to validate the expression levels. Fifteen genes (i.e. *CAB13, CAB2R, LHCB1.2, CAP10A, PGRL1A, Os01g0913000, TRM1, CURT1B, THF1, At3g63540, TERC, NMAT1, NMAT2, SPS3 and EMB2247*) presented a 1.4 to 9.3-fold up-regulation, while *PGR5* presented a 0.9-fold down-regulation at 15°C compared with 22°C (Figure 5). In previous studies, 12 high-level genes (i.e. six *CABs, ELI_PEA, ELIP2, OHP2, RBCS-C, RCA and RBCS-8B*) related to photosynthesis were differentially expressed at 15°C compared with 22°C (Su et al., 2021).

For the specific biological functions of the selected 8 genes related to chloroplast, *CAB13, CAB2R, LHCB1.2 and CAP10A* encode light-harvesting chlorophyll a-b binding proteins (LHCs) that functions as a light receptor and play indispensable roles in capturing and delivering excitation energy to photo systems (Zou et al., 2020), *PGRL1A* and *PGR5*
are involved in electron flow (Munekage et al., 2002; Hertle et al., 2013), Os01g0913000 and TRM1 are involved in various redox reactions (Capitani et al., 2000; Glauser et al., 2004). For selected genes associated with the thylakoid membrane, CURT1B determines thylakoid architecture by inducing membrane curvature (Armbruster et al., 2013), THF1 is required for the formation of mature thylakoid stacks from the normal vesicles (Wang et al., 2004), At3g63540 is involved in the folding and proteolysis of thylakoid proteins (Peltier et al., 2002), and TERC is involved in the thylakoid formation (Kwon and Cho, 2008; Schneider et al., 2014). For these four genes related to mitochondrion, NMAT1 and NMAT2 are required for mitochondrial biogenesis and the regulation of fundamental metabolic pathways during early developmental stages (Nakagawa and Sakurai, 2006), SPS3 is involved in the ubiquinone-9 biosynthesis from solanesyl diphosphate (Ducluzeau et al., 2012), and EMB2247 is involved in the formation of carbon-oxygen bonds in aminoacyl-tRNA (Berg et al., 2005). The up-regulation of these genes involved in photosynthesis and energy will confer *H. perforatum* seedlings to grow robust and adapt cooler temperatures compared with higher temperatures.
3.6 Low temperature regulates gene expression related to Hyp biosynthesis

3.6.1 Mapping genes related to Hyp biosynthesis

While previous studies have revealed that Hyp is biosynthesized in two separated tissues including: (1) green tissue from glucose to acetyl- and malonyl-CoA, and (2) dark gland from octa-β-ketoacyl chain to Hyp (Zobayed et al., 2006; Rizzo et al., 2019; Yao et al., 2019; Rizzo et al., 2020; Su et al., 2021), Hyp biosynthetic has not been fully elucidated and some genes have still not been identified. In this study, twenty-nine genes participating in Hyp biosynthesis were identified, with 21 genes in green tissue including in glycolysis (10 genes, 8 up-regulated and 2 down-regulated) and fatty acid metabolism (11 genes, 10 up-regulated and 1 down-regulated), and 8 genes in dark gland (6 up-regulated and 2 down-regulated) (Table 1). In the green tissue, acetyl-CoA is formed through photosynthesis, glycolysis (i.e. PFK2, PFK3, PFK4, PFK5, LTA2, ENO1, HXK1, HXK2, PFP-ALPHA and PFP-BETA) and pyruvate dehydrogenase (i.e. PDH-E1), malonyl-CoA is formed from acetyl-CoA via acetyl-CoA carboxylase, meanwhile, fatty acid metabolism (i.e. CUT1, ACOT13, Acot9, LPD1, At3g45770, MPP2, AIM1, ECR, HACD2 and KCR1) is involved in the biosynthesis of the acetyl-CoA and malonyl-CoA. For the biosynthetic pathway in the dark gland, an octa-β-ketoacyl chain is formed with one acetyl-CoA and seven malonyl-CoAs by the PKS (i.e. PKSA and PKSG5), emodin anthrone is formed through a series of aldolic condensation, thioesterase (TER) (i.e. FGRAMPH1_01T20223), decarboxylic and dehydration reactions, then emodin dianthrone is produced by the oxidation of emodin anthrone as well as the coupling of emodin with emodin anthrone by the phenoloxidative coupling protein (POCP) (i.e. MALDI and STH-2); finally, Hyp is generated by POCP or berberine bridge enzyme (BBE) (i.e. ArhG20800) as well as light, oxidation and dehydration reactions (Figure 6). While there is a competitive relationship between the PKS and octaketide synthase (OKS) (i.e. CHS and CHS1) in this study, because the OKS can catalyze the 4-coumaroyl-CoA and malonyl-CoA precursors into flavonoids (i.e. 2′,4′,4′-tetrahydroxycalcone) (Ferrer et al., 1999).

3.6.2 Expression level of genes in green tissue

The relative expression of selected genes in the green tissue were observed to be differentially regulated, with up-regulation of 1.6-, 1.6-, 1.1-, 1.1-, 1.4- and 1.1-fold for the 6 genes HXK1, PFP-ALPHA, CUT1, Acot9, AIM1 and KCR1, while down-regulation of 0.8- and 0.8-fold for the 2 genes PFK2 and ENO1, respectively at 15°C compared with 22°C (Figure 7). For selected genes involved in glycolysis, PFK2 is involved in the formation of fructose 1,6-bisphosphate by phosphorylating D-fructose 6-phosphate (Mustroph et al., 2007), ENO1 is involved in catalyzing the formation of phosphoenolpyruvate from 2-phosphoglycerate (Allen and Whitman, 2021), HXK1 and PFP-ALPHA are involved in the formation of D-glyceraldehyde 3-phosphate and glyceraldehyde phosphate (Todd et al., 1995; Giese et al., 2005). For genes involved in fatty-acid metabolism, CUT1 participates in both decarboxylation and acyl-reduction wax synthesis pathways (Fiebig et al., 2000), Acot9 is involved in the formation of free fatty acid and coenzyme A by hydrolyzing of acyl-CoAs (Poupon et al., 1999), AIM1 is involved in the peroxisomal beta-oxidation pathway for the biosynthesis of benzoic acid (Bussell et al., 2000).
and *KCR1* is responsible for the first reduction step in very long-chain fatty acids synthesis (Beaudoin et al., 2009). The up-regulation of these genes in green tissue at cooler temperature is likely to provide abundant acetyl-CoA and malonyl-CoA as precursors for downstream Hyp biosynthesis.

3.6.3 Expression level of genes in dark gland

The relative expression of selected genes in dark glands were also observed to be differentially regulated, with up-regulation of 1.5-, 1.5- and 1.2-fold for the 3 genes *PKSA*, *FGRAMPH1_01T20223* and *At4g20800*, while down-regulation of 0.9-, 0.9- and 0.5-fold for the...
genes PKSG5, MALD1 and STH-2, respectively at 15°C compared with 22°C (Figure 8). Both PKSA and PKSG5 encode polyketide synthase that are involved in the condensation of malonyl-CoA units (Mizuuchi et al., 2008; Flores-Sanchez et al., 2010), FGRAMPH1_01T20223 is predicted to encode TER1 that participates in the formation of emodin anthrone (Kong et al., 2013), MALD1 and STH-2 are predicted to encode POCP, and At4g20800 encodes BBE-like 17 that catalyzes the oxidation of aromatic allylic alcohols (Daniel et al., 2015). The up-regulation of these genes (PKSA, FGRAMPH1_01T20223 and At4g20800) in dark glands at a cooler temperature is predicted to play a role in inducing Hyp biosynthesis and accumulation. In this study, the two CHS and CHSI genes are not up-regulated, and the significant down-regulation (0.63-fold) of CHSI might indicate that the reduced temperatures negatively affect phenylpropanoid biosynthesis. If this effect is directly connected to the up-regulation of the Hyp biosynthetic pathway via redirecting the pool of 4-coumaroyl-CoA and malonyl-CoA precursors remains to be established. This will require quantitative phenolic profiling by LC-MS combined with flux analysis, but is beyond the scope of this manuscript.

4 Conclusions

In Hypericum perforatum, low temperature changes cell structure (e.g. dark gland, secretory cell and hemispherical droplet) associated with regulating plant growth and gene expression (e.g. BBE, POCP and TER1) associated with Hyp biosynthesis in leaf green tissue and dark gland. These findings not only further confirm that low temperature enhances plant growth and Hyp biosynthesis (Yao et al., 2019; Tavakoli et al., 2020), but also complement previous transcriptomic analysis (Su et al., 2021). Moreover, these findings will provide useful references for guiding H. perforatum cultivation in field or green house, cell and tissue culture, and revealing the mechanism of Hyp biosynthesis to increase Hyp accumulation.

Data availability statement

The datasets presented in this study can be found in online repositories. The names of the repository/repositories and accession number(s) can be found in the article/Supplementary Material.

Author contributions

HS: data curation and investigation. LJ: Resources. ML: conceptualization, project administration and writing—original draft. PP: writing—review and editing. All authors contributed to the article and approved the submitted version.
Funding

This research was funded by State Key Laboratory of Aridland Crop Science/Gansu Agricultural University (GSCS-2021-203), Assurance Project of Ecological Planting and Quality of Daodi Herbs (202103003).

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Supplementary material

The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fpls.2022.1020857/full#supplementary-material

References

Allen, K. N., and Whitman, C. P. (2021). The birth of genomic enzyrnology: discovery of the mechanistically diverse enolase superfamily. Biochemistry 60, 3535–3528. doi: 10.1021/acs.biochem.0c00494
Armbruster, U., Labs, M., Pribil, M., Viola, S., Xu, W., Scharfenberg, M., et al. (2013). Arabidopsis CURVATURE THYLAKOID1 proteins modify thylakoid architecture by inducing membrane curvature. Plant Cell 25, 2661–2678. doi: 10.1016/j.prc.113.13118
Bagdonaité, E., Märtön, P., Repčik, M., and Labokas, J. (2010). Variation in the contents of pseudohypericin and hypericin in Hypericum perforatum L. Plant Cell 35, 403–409. doi: 10.1111/j.1365-313X.2010.02580.x
Bombardelli, E., and Morazzone, P. (1995). Hypericum perforatum. Fitoterapia 66, 43–68.
Brukn, D. P., and Gawienen, M. C. (2001). Differential effects of light and nitrogen on production of hypericins and leaf glands in Arabidopsis. Plant Physiol. 126, 43–52. doi: 10.1104/pp.126.1.00336
Cirak, C., Raduleni, J., Karabik, B., and Janulis, V. (2007). Variation of bioactive substances and morphological traits in Hypericum perforatum populations from northern Turkey. Biochem. Syst. Ecol. 35, 403–409. doi: 10.1016/j.bse.2007.01.009
Couceiro, M. A., Afren, F., Zohayed, S. M. A., and Kozai, T. (2006). Variation in concentrations of major bioactive compounds of St. John’s wort: Effects of harvesting time, temperature and germination. Plant Sci. 170, 128–134. doi: 10.1016/j.plantsci.2006.01.001
Daneil, B., Parkov-Keller, T., Steiner, B., Dordic, A., Gutmann, A., Nidetzky, B., et al. (2015). Oxidation of monogalols by members of the berberine bridge enzyme family suggests a role in plant cell wall metabolism. J. Bio. Chem. 290, 18770–18781. doi: 10.1074/jbc.M115.659631
Dong, H., Li, M. L., Jin, L., Xie, X. R., Li, M. F., and Wei, J. H. (2022). Cool temperature enhances growth, fertility and flavonoid biosynthesis while inhibiting polysaccharide biosynthesis in Angelica sinensis. Molecules 27, 320. doi: 10.3390/molecules27010320
Duchesneau, A. L., Wantoldy, R., Elowsky, C. G., Mackenzie, S. A., Schuurink, R. C., and Bassett, G. J. (2012). Gene network reconstruction identifies the authentic trans-prenyl diphasphate synthase that makes the solanesyl moiety of ubiquinone-9 in Arabidopsis. Plant J. 69, 366–375. doi: 10.1111/j.1365-313X.2011.04796.x
Erdelmere, C. (1998). Hyperforin, possibly the major non-nitrogenous secondary metabolite of Hypericum perforatum L. Pharmacopsychiatry 31, 2–6. doi: 10.1055/s-2007-979339
Ferraz, J. L., Jez, M. J., Bowman, M. E., Dixon, R. A., and Noel, J. P. (1999). Structure of chalcone synthase and the molecular basis of plant polyketide biosynthesis. Nat. Struct. Biol. 6, 775. doi: 10.1038/11553
Feibig, A., Mayfield, J. A., Miley, N. L., Chau, S., Fischer, R. L., and Preuss, D. (2000). Alterations in CER6, a gene identical to CUT1, differentially affect long- chain lipid content on the surface of pollen and stems. Plant Cell 12, 2001–2008. 10.2307/3871209
Flores-Sanchez, J. D., Lithorot, H. I., and Verpoorte, R. (2010). In silico expression analysis of DKS genes isolated from cannabis sativa L. Genet. Mol. Biol. 33, 703–713. doi: 10.1590/S1415-4757201000000088
Germ, M., Stibilj, V., Kreft, S., Gaberčik, A., and Kreft, I. (2010). Flavonoids, tannin and hypericin concentrations in the leaves of St. John’s wort (Hypericum perforatum L.) are affected by UV-R radiation levels. Food Chem. 122, 471–474. doi: 10.1016/j.foodchem.2010.03.008
Giese, J. O., Herbers, K., Hoffmann, M., Kleesgen, R. B., and Sonnewald, U. (2005). Isolation and functional characterization of a novel plastidic hexokinase from nicotiana tabacum. FEBS Lett. 579, 827–831. doi: 10.1016/j.febslet.2004.12.071
Glauser, D. A., Bourquin, F., Manieri, W., and Schurmann, P. (2004). Characterization of ferredoxin: Thioredoxin reductase modified by site-directed mutagenesis. J. Bio. Chem. 279, 16662–16669. doi: 10.1074/jbc.M313851200
Gotor, C., Alvarez, C., Bérroz, M. A., Moreno, I., Garcia, J., and Romero, L. C. (2010). Low abundance does not mean less importance in cysteine metabolism. Plant Signal Behav. 5, 1028–1030. doi: 10.4161/psb.5.10.22926
Gray, D. E., Pallardy, S. G., Garrett, H. E., and Rottinghaus, G. E. (2003). Effect of acute drought stress and time of harvest on phytochemistry and dry weight of St. John’s wort leaves and flowers. Planta 219, 1024–1030. doi: 10.1007/s00425-003-1380-8
Hertle, A. P., Bland, T., Wunder, T., Pesaresi, P., Pribil, M., Armbruster, U., et al. (2013). PGRL1 is the elusive ferredoxin-plastoquinone reductase in photosynthetic eukaryotic cell. Mol. Cell 49, 511–523. doi: 10.1016/j.molcel.2012.11.030
Rizzo, P., Altschmied, L., Ravindran, B. M., Rutten, T., and D’Auria, J. C. (2020). The biochemical and genetic basis for the biosynthesis of bioactive compounds in Hypericum perforatum L., one of the largest medicinal crops in Europe. Genes 11, 1210. doi: 10.3390/genes11121210

Rizzo, P., Altschmied, L., Stark, P., Rutten, T., Guesdel, A., Scharenberg, S., et al. (2019). Discovery of key regulators of dark gland development and hypericin biosynthesis in st. john’s wort (Hypericum perforatum). Plant Biotechnol. J. 17, 2299–2312. doi: 10.1111/pbi.13141

Robinson, M. D., McCarthy, D. J., and Smyth, G. K. (2009). EdgeR: A bioconductor package for differential expression analysis of digital gene expression data. Brief Bioinform. 10, 134–145. doi: 10.1093/bib/bbn016

Schneider, A., Steinberger, I., Strisel, H., Kunz, H. H., Manovskii, N., Meurer, J., et al. (2014). The Arabidopsis thaliana resistance complex with ALB3 is involved in photosystem II protein synthesis. Plant J. 78, 344–356. doi: 10.1111/pj.12474

Soták, M., Czernaková, O., Klein, D., Jurčáková, Z., Li, L., and Cerálová, E. (2016). Comparative transcriptome reconstruction of four Hypericum species focused on hypericin biosynthesis. Front. Plant Sci. 7. doi: 10.3389/fpls.2016.01039

Stoyanova-Koleva, D., Stefanova, M., Ganeva, T. S., and Cerálová, E. (2015). Structural modifications in the mesophyll associated with cryopreservation of seven Hypericum species. Biol. Plantarum. 59, 214–220. doi: 10.1007/s10535-015-0528-8

Su, H. Y., Li, J., Chen, S. J., Sun, P., Xing, Y., Yang, D. L., et al. (2021). Physiological and transcriptomic analysis provide insight into low temperature enhancing hypericin biosynthesis in Hypericum perforatum. Molecules 26, 2294. doi: 10.3390/molecules26082294

Taiz, L., and Zeiger, E. (2010). “The control of flowering,” in Plant Physiology, 5th Edition. Eds. D. E. Fosket and R. Amasino (Sunderland, MA, USA: Sinauer Associates, Inc), 559–590.

Tavakoli, F., Rafiekhosssiani, M., Ravash, R., and Ebrahimi, M. (2020). UV-B radiation and low temperature promoted hypericin biosynthesis in adventitious root culture of Hypericum perforatum. Plant Signal. Behav. 15, 1764184. doi: 10.1892/0378-1119(94)00646-A

Walker, L., Sirvent, T., Gibson, D., and Vance, N. (2001). Regional differences in hypericin and pseudohypericin concentrations and five morphological traits among Hypericum perforatum plants in the northwestern united states. Can. J. Bot. 79, 1248–1255. doi: 10.1139/b79-1248

Wang, S. H., Liang, W. X., Yao, L., Wang, J., and Gao, W. Y. (2019). Effect of temperature on morphology, ginsenosides biosynthesis, functional genes, and transcriptional factors expression in Panax ginseng adventitious roots. J. Food Biochem. 43, e12794. doi: 10.1111/j.1744-7909.2005.00109.x

Wang, Q., Sullivan, R. W., Kight, A., Henry, R. L., Huang, J., Jones, A. M., et al. (2004). Deletion of the chloroplast-localized thylakoid formation I gene product in Arabidopsis leads to deficient thylakoid formation and variegated leaves. Plant Physiol. 136, 3594–3604. doi: 10.1104/pp.104.049841

Willems, E., Leyns, L., and Vandewoestyne, J. (2008). Standardization of real-time PCR gene expression data from independent biological replicates. Anal. Biochem. 379, 127–129. doi: 10.1016/j.ab.2008.04.036

Yang, J. J., Yu, Q., and Cui, X. M. (2014). Determination of chlorophyll and carotenoid in the aerial part of Panax Notoginseng. J. Food Biochem. 38, 262–272. doi: 10.1111/j.1744-7909.2012.00391.x

Yao, Y. Y., Kang, T. L., Jin, L., Liu, Z. H., Zhang, X., Xing, H., et al. (2019). Temperature-dependent growth and hypericin biosynthesis in Hypericum perforatum. Plant Physiol. Biochem. 139, 613–619. doi: 10.1016/j.plaphy.2019.04.012

Zhang, J. H., Huang, W. D., Liu, Y. P., and Pan, Q. H. (2005). Effects of temperature acclimation pretreatment on the ultrastructure of mesophyll cells in young grape plants (Vitis vinifera L.) under cross-temperature stresses. J. Integr. Plant Biol. 47, 959–970. doi: 10.1111/j.1744-7909.2005.00194.x

Zhang, R. F., Ji, Y. Y., Morocl, T., Lin, F. K., Gu, R. H., Kennedy, E. J., et al. (2021). UPLC-QToF-MS chemical profiling and characterization of antiproliferative and anti-inflammatories compounds from seven Hypericum species in China. Ind. Crop Prod. 175, 114156. doi: 10.1016/j.indcrop.2021.114156

Zhou, Z., Li, M. Y., Jia, R. Z., Zhao, H., He, P. P., Zhang, Y. L., et al. (2020). Genes encoding light-harvesting chlorophyll a/b-binding proteins in papaya (Carica papaya L.) and insight into lineage-specific evolution in Brassicaceae. Gene 748, 144685. doi: 10.1016/j.gene.2020.144685