EDGE RINGS SATISFYING SERRE’S CONDITION \((R_1)\)

TAKAYUKI HIBI AND LUKAS KATTHÄN

(Communicated by Irena Peeva)

Abstract. A combinatorial criterion for the edge ring of a finite connected graph satisfying Serre’s condition \((R_1)\) is studied.

Introduction

The edge polytopes and edge rings of finite connected graphs have been studied from the viewpoints of both combinatorics and computational commutative algebra ([3], [4]). Especially, a combinatorial characterization for the edge ring to be normal is obtained by both [3] and [6] independently. It follows immediately from [2, Theorem 6.4.2] that a normal edge ring is Cohen–Macaulay. However, in general it seems unclear when the edge ring is Cohen–Macaulay. Recall that a noetherian ring is normal if and only if it satisfies Serre’s conditions \((R_1)\) and \((S_2)\). Thus in particular an edge ring satisfying Serre’s condition \((R_1)\) is normal if and only if it is Cohen–Macaulay. In the present paper the problem when a given edge ring satisfies Serre’s condition \((R_1)\) is investigated.

1. Edge rings and edge polytopes of finite connected graphs

First, we recall from [3] the definitions of edge rings and edge polytopes of finite connected graphs. Let \(G\) be a finite connected graph on the vertex set \([d] = \{1, \ldots, d\}\) with \(E(G) = \{e_1, \ldots, e_n\}\) its edge set. We always assume that \(G\) is simple, i.e., \(G\) has no loop and no multiple edge. Let \(e_1, \ldots, e_d\) denote the \(i\)th unit coordinate vectors of \(\mathbb{R}^d\). We associate each edge \(e = \{i, j\} \in E(G)\) with the vector \(\rho(e) = e_i + e_j \in \mathbb{R}^d\). The edge polytope is the convex polytope \(P_G \subset \mathbb{R}^d\) which is the convex hull of the finite set \(\{\rho(e_1), \ldots, \rho(e_n)\}\). Let \(K[t] = K[t_1, \ldots, t_d]\) be the polynomial ring in \(d\) variables over a field \(K\). We associate each edge \(e = \{i, j\} \in E(G)\) with the quadratic monomial \(t^e = t_it_j \in K[t]\). The edge ring is the affine semigroup ring \(K[G] = K[t^{e_1}, \ldots, t^{e_n}]\).

Let, in general, \(P \subset \mathbb{R}^d\) be an integral convex polytope, i.e., a convex polytope all of whose vertices have integer coordinates, which lies on a hyperplane \(H \subset \mathbb{R}^d\) with \(0 \notin H\), where \(0\) is the origin of \(\mathbb{R}^d\). We assume that \(P \subset \mathbb{R}^d_{\geq 0}\), where \(\mathbb{R}^d_{\geq 0}\) is...
the set of nonnegative real numbers. Then for each integer point \(\mathbf{a} = (a_1, \ldots, a_d) \) belonging to \(\mathcal{P} \), we associate the monomial \(t^{a} = t_1^{a_1} \cdots t_d^{a_d} \in K[t] \). The toric ring of \(\mathcal{P} \) is the affine semigroup ring \(K[\mathcal{P}] = K[\{t^a : \mathbf{a} \in \mathcal{P} \cap \mathbb{Z}^d\}] \). Thus in particular the edge ring \(K[G] \) of a finite connected graph \(G \) is the toric ring of the edge polytope \(\mathcal{P}_G \) of \(G \).

We say that an integral convex polytope \(\mathcal{P} \) is normal if its toric ring \(K[\mathcal{P}] \) is normal. It is shown in [3] and [6] that the edge ring of a finite connected graph \(G \) is normal if and only if it is Cohen–Macaulay. In the present paper the problem of when an edge ring satisfies Serre’s condition \((R_1)\) is investigated.

2. When does an edge ring satisfy Serre’s condition \((R_1)\)?

Let \(G \) be a finite connected graph on the vertex set \([d] = \{1, \ldots, d\} \). If \(G \) is bipartite, then \(K[G] \) is normal and satisfies Serre’s condition \((R_1)\). Thus in what follows we assume that \(G \) is nonbipartite, i.e., \(G \) possesses at least one odd cycle.

If \(T \) is a nonempty subset of \([d]\), then the induced subgraph of \(G \) on \(T \) is denoted by \(G_T \). A nonempty subset \(T \) of \([d]\) is called independent if \(\{i, j\} \notin E(G) \) for all \(i, j \in T \) with \(i \neq j \). If \(T \) is independent and if \(N(G ; T) \) is the set of vertices \(j \in [d] \) with \(\{i, j\} \in E(G) \) for some \(i \in T \), then the bipartite graph induced by \(T \) is defined to be the bipartite graph having the vertex set \(T \cup N(G ; T) \) and consisting of all edges \(\{i, j\} \in E(G) \) with \(i \in T \) and \(j \in N(G ; T) \). We say that a nonempty subset \(T \subset [d] \) is fundamental if

- \(T \) is independent;
- the bipartite graph induced by \(T \) is connected;
- either \(T \cup N(G ; T) = [d] \) or every connected component of the induced subgraph \(G_{[d]\setminus(T \cup N(G ; T))} \) has at least one odd cycle.

Moreover, we call a vertex \(i \in [d] \) regular if every connected component of \(G_{[d]\setminus i} \) has at least one odd cycle. Note that a regular vertex is not the same as a fundamental set with one element.

We are now in the position to state our criterion for an edge ring to satisfy Serre’s condition \((R_1)\).

Theorem 2.1. Let \(G \) be a finite connected nonbipartite graph on \([d]\). Then the edge ring \(K[G] \) of \(G \) satisfies Serre’s condition \((R_1)\) if and only if the following conditions are satisfied:

(i) For every regular vertex \(i \in [d] \), the induced subgraph \(G_{[d]\setminus i} \) is connected.

(ii) For every fundamental set \(T \subset [d] \), one has either \(T \cup N(G ; T) = [d] \) or the induced subgraph \(G_{[d]\setminus(T \cup N(G ; T))} \) is connected.

Example 2.2. Let \(G \) be the finite connected graph on \(\{1, \ldots, 8\} \) depicted in Figure 1. The graph \(G \) clearly violates the odd cycle condition, hence the edge ring \(K[G] \) is not normal. The only vertices whose removal makes \(G \) disconnected are 3 and 4, but both are not regular. If \(T \subset [8] \) is a set such that \(G_{[d]\setminus(T \cup N(G ; T))} \) is disconnected, then either 3 or 4 are contained in \(T \cup N(G ; T) \). But then \(G_{[d]\setminus(T \cup N(G ; T))} \)
Figure 1. The graph G of Example 1

has only one odd cycle left, so T cannot be fundamental. Hence $K[G]$ satisfies Serre’s condition (R_1). More generally, the same argument shows that the graphs G_{k+6} constructed in [5] satisfy (R_1) if and only if $k \geq 2$.

3. Proof of Theorem 2.1

First recall the description of the facets of P_G. To every regular vertex i we associate the linear form $\sigma_i : \mathbb{R}^d \to \mathbb{R}$ which projects onto the ith component. Moreover, we set $H_i = \{ x \in \mathbb{R}^d : \sigma_i(x) = 0 \}$ and $F_i = P_G \cap H_i$. Similarly, to every fundamental set T we associate the linear form

$$
\sigma_T : \mathbb{R}^d \ni (x_1, \ldots, x_d) \mapsto \sum_{j \in N(G;T)} x_j - \sum_{i \in T} x_i
$$

and we set $H_T = \{ x \in \mathbb{R}^d : \sigma_T(x) = 0 \}$ and $F_T = P_G \cap H_T$.

Lemma 3.1 ([3]). The facets of P_G are exactly the sets F_i and F_T for all regular vertices i and all fundamental sets T.

A combinatorial condition for a semigroup ring to satisfy Serre’s condition (R_1) is explicitly stated in [7, Theorem 2.7]. In fact, in [7] a characterization of (R_l) for all l is given, but for our purposes we only need the case $l = 1$.

Proposition 3.2 ([7]). Let M be an affine monoid, K a field and $K[M]$ its semigroup ring. Then $K[M]$ satisfies Serre’s condition (R_1) if and only if every facet F of M satisfies the following two conditions:

(i) There exists $x \in M$ such that $\sigma_F(x) = 1$, where σ_F is a support form of F taking integer values on $gp(M)$.

(ii) $gp(M \cap F) = gp(M) \cap H$, where H is the supporting hyperplane of F.

Here $gp(M)$ denotes the additive group generated by M.

We apply Proposition 3.2 to the affine monoid

$$
M_G = \mathbb{N}(P_G \cap \mathbb{Z}^d)
$$

generated by the integer points in P_G. Note that the support hyperplanes H_i and H_T of P_G are also the support hyperplanes of M_G. We start proving Theorem 2.1 by the following.

Lemma 3.3. Let G be a finite connected nonbipartite graph on the vertex set $[d]$. Then the facets of M_G satisfy the first condition of Proposition 3.2.
Proof. First, let \(i \in [d] \) be a regular vertex. Since \(G \) is connected, there exists an edge \(e = \{i, j\} \in E(G) \) to another vertex \(j \). Then \(\sigma_{i}(\rho(e)) = 1 \).

Second, let \(T \subset [d] \) be a fundamental set. If \(T \cup N(G; T) \subset [d] \), then there exists an edge \(e = \{i, j\} \in E(G) \) such that \(i \in N(G; T) \) and \(j \in [d] \setminus (T \cup N(G; T)) \). This edge satisfies \(\sigma_{T}(\rho(e)) = 1 \). If instead \(T \cup N(G; T) = [d] \), then every edge of \(G \) has either both endpoints in \(N(G; T) \), or one in \(N(G; T) \) and one in \(T \). Hence \(\sigma_{T}(e) \in \{0, 2\} \) for every edge \(e \) of \(G \). It then follows that \(\frac{1}{2}\sigma_{T} \) satisfies the condition of Proposition 3.2. \qed

To check the second condition of Proposition 3.2, we need to compute the lattice generated by \(M_{G} \). The following Lemma 3.4 appears in [3, p. 426] without an explicit proof. However, for the sake of completeness, we give its detailed proof.

Lemma 3.4. Let \(G \) be a finite connected nonbipartite graph on the vertex set \([d]\). Then the lattice \(gp(M_{G}) \) is the set of all integer vectors in \(\mathbb{Z}^{d} \) with an even coordinate sum.

Proof. Since every generator of \(M_{G} \) has an even coordinate sum, it follows that the lattice \(gp(M_{G}) \) is contained in the set of all integer vectors in \(\mathbb{Z}^{d} \) with an even coordinate sum.

To prove the converse, assume the edges \(e_{1}, \ldots, e_{\ell} \) form an odd cycle of \(G \) and let \(i \) be the common vertex of \(e_{1} \) and \(e_{\ell} \). Then

\[
2e_{i} = \sum_{j=1}^{\ell} (-1)^{j+1} \rho(e_{j}) \in gp(M_{G}).
\]

Now consider a spanning tree \(G' \) of \(G \). The set \(\{ \rho(e) \mid e \in E(G') \} \) together with \(2e_{i} \) forms a \(\mathbb{Z} \)-basis for the space of all integer vectors in \(\mathbb{Z}^{d} \) with an even coordinate sum. \qed

Now, we can prove two propositions which complete our proof of Theorem 2.1.

Proposition 3.5. Let \(G \) be a finite connected nonbipartite graph on the vertex set \([d]\) and let \(i \in [d] \) be a regular vertex of \(G \). Then \(\mathcal{F}_{i} \) satisfies the second condition of Proposition 3.2 if and only if \(G_{[d]\setminus i} \) is connected.

Proof. We denote the connected components of \(G_{[d]\setminus i} \) with \(G'_{j} \). Then it is easy to see that \(M_{G_{[d]\setminus i}} = \bigoplus_{j} M_{G'_{j}} \); and hence \(gp(M_{G} \cap \mathcal{F}_{i}) = gp(M_{G_{[d]\setminus i}}) = \bigoplus_{j} gp(M_{G'_{j}}) \). Since every \(G'_{j} \) is connected and contains an odd cycle, we can use Lemma 3.4 to describe \(gp(M_{G'_{j}}) \). If \(G_{[d]\setminus i} \) is connected, then \(gp(G_{[d]\setminus i}) \) and \(gp(M_{G}) \cap \mathcal{H}_{i} \) are both the set of integer vectors in \(\mathbb{Z}^{d} \) with even coordinate sum and ith coordinate equal to zero; thus these sets coincide.

We consider the case that \(G_{[d]\setminus i} \) has at least two different connected components \(G'_{1}, G'_{2} \). Then we can choose a vector \(x \in \mathbb{Z}^{d} \) such that (i) its coordinate sum is even, (ii) \(\sigma_{i}(x) = 0 \), and (iii) the restricted coordinate sum over the vertices in \(G'_{1} \) is odd. This \(x \) is contained in \(gp(M_{G}) \cap \mathcal{H}_{i} \) but not in \(gp(G_{[d]\setminus i}) \); thus \(\mathcal{F}_{i} \) violates the condition. \qed

Proposition 3.6. Let \(G \) be a finite connected nonbipartite graph on the vertex set \([d]\) and let \(T \subset [d] \) be a fundamental set of \(G \). Then \(\mathcal{F}_{T} \) satisfies the second condition of Proposition 3.2 if and only if one has either \(T \cup N(G; T) = [d] \) or the induced subgraph \(G_{[d]\setminus (T \cup N(G; T))} \) is connected.
Proof. Again, we denote the connected components of $G_{[d]} \setminus (T \cup N(G; T))$ with G'_j.

We claim that
\begin{equation}
gp(M_G \cap \mathcal{F}_T) = \bigoplus_j gp(M_{G'_j}) \oplus \{ x \in \mathbb{Z}^d \mid \text{supp}(x) \subset T \cup N(G; T), \sigma_T(x) = 0 \}.
\end{equation}

Here, supp(.) denotes the support of a vector. The sum is direct because the supports of the summands are disjoint. $M_G \cap \mathcal{F}_T$ (and thus $gp(M_G \cap \mathcal{F}_T)$) is generated by the set $\{ \rho(e) \mid e \in E(G), \sigma_T(\rho(e)) = 0 \}$. For an edge $e \in E(G)$, it holds that $\sigma_T(\rho(e)) = 0$ if and only if either both endpoints lie in $T \cup N(G; T)$ or both are not contained in this set. Thus, a set of generators on the left side of (1) is contained in the right side of the equation, and hence one inclusion follows.

Furthermore $\bigoplus_j gp(M_{G'_j}) \subset gp(M_G \cap \mathcal{F}_T)$. Thus it remains to show that
\begin{equation}
\{ x \in \mathbb{Z}^d \mid \text{supp}(x) \subset T \cup N(G; T), \sigma_T(x) = 0 \} \subset gp(M_G \cap \mathcal{F}_T).
\end{equation}

For this we consider a spanning tree of the induced bipartite graph on $T \cup N(G; T)$. Its edges form a \mathbb{Z}-basis for the left set, hence it is contained in $gp(M_G \cap \mathcal{F}_T)$. Next, we note that
\begin{equation}
gp(M_G) \cap \mathcal{H}_T = \left\{ x \in \mathbb{Z}^d \mid \text{supp}(x) \cap (T \cup N(G; T)) = \emptyset, \sum x_i \text{ even} \right\} \oplus \left\{ x \in \mathbb{Z}^d \mid \text{supp}(x) \subset (T \cup N(G; T)), \sigma_T(x) = 0 \right\}.
\end{equation}

Now the reasoning is completely analogous to the proof of Proposition 3.5. \qed

References

[1] Winfried Bruns and Joseph Gubeladze, *Polytopes, rings, and K-theory*, Springer Monographs in Mathematics, Springer, Dordrecht, 2009. MR2508056 (2010d:19001)
[2] Winfried Bruns and Jürgen Herzog, *Cohen-Macaulay rings*, Cambridge Studies in Advanced Mathematics, vol. 39, Cambridge University Press, Cambridge, 1993. MR1251956 (95h:13020)
[3] Hidefumi Ohsugi and Takayuki Hibi, *Normal polytopes arising from finite graphs*, J. Algebra 207 (1998), no. 2, 409–426, DOI 10.1006/jabr.1998.7476. MR1644250 (2000a:13010)
[4] Hidefumi Ohsugi and Takayuki Hibi, *Toric ideals generated by quadratic binomials*, J. Algebra 218 (1999), no. 2, 509–527, DOI 10.1006/jabr.1999.7918. MR1705794 (2000f:13055)
[5] Takayuki Hibi, Akihiro Higashitani, Kyouko Kimura, and Augustine B. O’Keefe, *Depth of edge rings arising from finite graphs*, Proc. Amer. Math. Soc. 139 (2011), no. 11, 3807–3813, DOI 10.1090/S0002-9939-2011-11083-9. MR2823027 (2012j:13033)
[6] Aron Simis, Wolmer V. Vasconcelos, and Rafael H. Villarreal, *The integral closure of subrings associated to graphs*, J. Algebra 199 (1998), no. 1, 281–289, DOI 10.1006/jabr.1997.7171. MR1489364 (99e:13004)
[7] Marie A. Vitulli, *Serre’s condition R_1 for affine semigroup rings*, Comm. Algebra 37 (2009), no. 3, 743–756, DOI 10.1080/00927870802231262. MR2503176 (2010c:13002)