AN EXPLICIT VOLUME FORMULA FOR THE LINK $7_2^3(\alpha, \alpha)$ CONE-MANIFOLDS

JI-YOUNG HAM, JOONGUL LEE, ALEXANDER MEDNYKH*, AND ALEKSEY RASSKAZOV

ABSTRACT. We calculate the volume of the 7_2^3 link cone-manifolds using the Schl"afli formula. As an application, we give the volume of the cyclic coverings branched over the link.

1. Introduction

Let us denote the link complement of 7_2^3 in Rolfsen’s link table by X. Note that it is a hyperbolic knot. Hence by Mostow-Prasad rigidity theorem, X has a unique hyperbolic structure. Let ρ_∞ be the holonomy representation from $\pi_1(X)$ to PSL$(2,\mathbb{C})$ and denote $\rho_\infty(\pi_1(X))$ by Γ, a Kleinian group. X is a (PSL$(2,\mathbb{C})$, H^3)-manifold and can be identified with H^3/Γ. Thurston’s orbifold theorem guarantees an orbifold, $X(\alpha) = X(\alpha, \alpha)$, with underlying space S^3 and with the link 7_2^3 as the singular locus of the cone-angle $\alpha = 2\pi/k$ for some nonzero integer k, can be identified with H^3/Γ' for some $\Gamma' \in \text{PSL}(2,\mathbb{C})$; the hyperbolic structure of X is deformed to the hyperbolic structure of $X(\alpha)$. For the intermediate angles whose multiples are not 2π and not bigger than π, Kojima [10] showed that the hyperbolic structure of $X(\alpha)$ can be obtained uniquely by deforming nearby orbifold structures. Note that there exists an angle $\alpha_0 \in \left[\frac{2\pi}{3}, \pi\right)$ for the link 7_2^3 such that $X(\alpha)$ is hyperbolic for $\alpha \in (0, \alpha_0)$, Euclidean for $\alpha = \alpha_0$, and spherical for $\alpha \in (\alpha_0, \pi]$ [19, 8, 10, 20]. For further knowledge of cone-manifolds a reader can consult [1, 7].

Even though we have wide discussions on orbifolds, it seems to us we have a little in regard to cone-manifolds. Explicit volume formulae for hyperbolic cone-manifolds of knots and links are known a little. The volume formulae for hyperbolic cone-manifolds of the knot 4_1 [8, 10, 11, 13], the knot 5_2 [13], the link 5_2^1 [14], the link 6_2^3 [17], and the link 6_2^5 [2] have been computed. In [9] a method of calculating the volumes of two-bridge knot cone-manifolds was introduced but without explicit formulae. In [7, 8], explicit volume formulae of cone-manifolds for the hyperbolic twist knot and for the knot with Conway notation $C(2n, 3)$ are computed. Similar methods are used for computing Chern-Simons invariants of orbifolds for the twist knot and $C(2n, 3)$ knot in [5, 4].

The main purpose of the paper is to find an explicit and efficient volume formula of hyperbolic cone-manifolds for the link 7_2^3. The following theorem gives the volume formula for $X(\alpha)$.

Theorem 1.1. Let $X(\alpha)$, $0 \leq \alpha < \alpha_0$ be the hyperbolic cone-manifold with underlying space S^3 and with singular set the link 7_2^3 of cone-angle α. $X(0)$ denotes X. Then the volume of $X(\alpha)$ is given by the following formula

*The author was funded by the Russian Science Foundation (grant 16-41-02006).
\[
\text{Vol}(X(\alpha)) = \int_{\alpha}^{\pi} 2 \log \left| \frac{A - iV}{A + iV} \right| d\alpha,
\]

where for \(A = \cot \frac{\alpha}{2}, V (\text{Re}(V) \leq 0 \text{ and } \text{Im}(V) \geq 0 \text{ is the largest})\) is a zero of the Riley-Mednykh polynomial \(P = P(V, A)\) for the link \(7^2_3\) given below.

\[
P = 8V^5 + 8A^2V^4 + (8A^4 + 16A^2 - 8)V^3 + (4A^6 + 8A^4 - 12A^2)V^2
+ (A^8 + 4A^6 - 2A^4 - 12A^2 + 1)V - 4A^6 - 8A^4 + 4A^2.
\]

The following corollary gives the hyperbolic volume of the \(k\)-fold strictly-cyclic covering \([12, 18]\) over the link \(7^2_3, M_k(X)\), for \(k \geq 3\).

Corollary 1.2. The volume of \(M_k(X)\) is given by the following formula

\[
\text{Vol}(M_k(X))) = k \int_{\frac{\pi}{2\pi}}^{\pi} 2 \log \left| \frac{A - iV}{A + iV} \right| d\alpha,
\]

where for \(A = \cot \frac{\alpha}{2}, V (\text{Re}(V) \leq 0 \text{ and } \text{Im}(V) \geq 0 \text{ is the largest})\) is a zero of the Riley-Mednykh polynomial \(P = P(V, A)\) for the link \(7^2_3\).

In Section 2, we present the fundamental group \(\pi_1(X)\) of \(X\) with slope \(9/16\). In Section 3, we give the defining equation of the representation variety of \(\pi_1(X)\). In Section 4, we compute the longitude of the link \(7^2_3\) using the Pythagorean theorem. And in Section 5, we give the proof of Theorem 1.1 using the Schlafli formula.

2. **Link 7^2_3**

Link \(7^2_3\) is presented in Figure 1. It is the same as \(W_3\) from [2]. The slope of this link is \(7/16\). The link with slope \(9/16\) is the mirror of the link \(7^2_3\). Since the volume of the link with slope \(7/16\) is the same as the volume of link with slope \(9/16\), in the rest of the paper, the link with slope \(9/16\) is used.

The following fundamental group of \(X\) is stated in [2] with slope \(7/16\).

Proposition 2.1.

\[
\pi_1(X) = \langle s, t \mid s\ w s^{-1} w^{-1} = 1 \rangle,
\]

where \(w = s^{-1}[s, t]^2[s, t^{-1}]^2\).
3. \((\text{PSL}(2, \mathbb{C}), \mathbb{H}^3)\) Structure of \(X(\alpha)\)

Let \(R = \text{Hom}(\pi_1(X), \text{SL}(2, \mathbb{C}))\). Given a set of generators, \(s, t, \) of the fundamental group for \(\pi_1(X)\), we define a set \(R(\pi_1(X)) \subset \text{SL}(2, \mathbb{C})^2 \subset \mathbb{C}^8\) to be the set of all points \((h(s), h(t))\), where \(h\) is a representation of \(\pi_1(X)\) into \(\text{SL}(2, \mathbb{C})\). Since the defining relation of \(\pi_1(X)\) gives the defining equation of \(R(\pi_1(X))\) \([21]\), \(R(\pi_1(X))\) is an affine algebraic set in \(\mathbb{C}^8\). \(R(\pi_1(X))\) is well-defined up to isomorphisms which arise from changing the set of generators. We say elements in \(R\) which differ by conjugations in \(\text{SL}(2, \mathbb{C})\) are equivalent. A point on the variety gives the \((\text{PSL}(2, \mathbb{C}), \mathbb{H}^3)\) structure of \(X(\alpha)\).

Let

\[
 h(s) = \begin{bmatrix}
 \cos \frac{\alpha}{2} & i e^{\frac{\alpha}{2}} \sin \frac{\alpha}{2} \\
 i e^{-\frac{\alpha}{2}} \sin \frac{\alpha}{2} & \cos \frac{\alpha}{2}
 \end{bmatrix}, \quad h(t) = \begin{bmatrix}
 \cos \frac{\alpha}{2} & i e^{-\frac{\alpha}{2}} \sin \frac{\alpha}{2} \\
 i e^{\frac{\alpha}{2}} \sin \frac{\alpha}{2} & \cos \frac{\alpha}{2}
 \end{bmatrix}.
\]

Then \(h\) becomes a representation if and only if \(A = \cot \frac{\alpha}{2}\) and \(V = \cosh \rho\) satisfies a polynomial equation \([21] [14]\). We call the defining polynomial of the algebraic set \(\{ (V, A) \}\) as the Riley-Mednykh polynomial for the link \(7_6^3\). Throughout the paper, \(h\) can be sometimes any representation and sometimes the unique hyperbolic representation.

Given the fundamental group of \(X\),

\[\pi_1(X) = \langle s, t \mid sws^{-1}w^{-1} = 1 \rangle,\]

where \(w = s^{-1}[s, t]s[t, s^{-1}]\), let \(S = h(s), \ T = h(t)\) and \(W = h(w)\). Then the trace of \(S\) and the trace of \(T\) are both \(2 \cos \frac{\alpha}{2}\).

Lemma 3.1. For \(n \in \text{SL}(2, \mathbb{C})\) which satisfies \(nS = S^{-1}n, nT = T^{-1}n,\) and \(n^2 = -I\),

\[SWS^{-1}W^{-1} = -(SWn)^2.\]

Proof.

\[
 (SWn)^2 = SWnSWn = SWS^{-1}n(S^{-1}(STS^{-1}T^{-1})^2(ST^{-1}S^{-1}T)^2)n
 = SWS^{-1}(S(S^{-1}T^{-1}ST)^2(S^{-1}TST^{-1})^2)n^2 = -SWS^{-1}W^{-1}.
\]

\[
\]

From the structure of the algebraic set of \(R(\pi_1(X))\) with coordinates \(h(s)\) and \(h(t)\) we have the defining equation of \(R(\pi_1(X))\). The following theorem is stated in \([2]\) Proposition 4] with slope 7/16.

Theorem 3.2. \(h\) is a representation of \(\pi_1(X)\) if \(V\) is a root of the following Riley-Mednykh polynomial \(P = P(V, A)\) which is given below.

\[
P = 8V^5 + 8A^2V^4 + (8A^4 + 16A^2 - 8)V^3 + (4A^6 + 8A^4 - 12A^2)V^2
 + (A^8 + 4A^6 - 2A^4 - 12A^2 + 1)V - 4A^6 - 8A^4 + 4A^2.
\]

Proof. Note that \(SWS^{-1}W^{-1} = I\), which gives the defining equations of \(R(\pi_1(X))\), is equivalent to \((SWn)^2 = -I\) in \(\text{SL}(2, \mathbb{C})\) by Lemma 3.1 and \((SWn)^2 = -I\) in \(\text{SL}(2, \mathbb{C})\) is equivalent to \(\text{tr}(SWn) = 0\).
We can find two \(n \)'s in \(\text{SL}(2, \mathbb{C}) \) which satisfies \(nS = S^{-1}n \) and \(n^2 = -I \) by direct computations. The existence and the uniqueness of the isometry (the involution) which is represented by \(n \) are shown in [3, p. 46]. Since two \(n \)'s give the same element in \(\text{PSL}(2, \mathbb{C}) \), we use one of them. Hence, we may assume

\[
n = \begin{bmatrix} i & 0 \\ 0 & -i \end{bmatrix},
\]

\[
S = \begin{bmatrix} \cos \frac{\alpha}{2} & i e^{\frac{\alpha}{2}} \sin \frac{\alpha}{2} \\ i e^{-\frac{\alpha}{2}} \sin \frac{\alpha}{2} & \cos \frac{\alpha}{2} \end{bmatrix},
\]

\[
T = \begin{bmatrix} \cos \frac{\alpha}{2} & i e^{-\frac{\alpha}{2}} \sin \frac{\alpha}{2} \\ i e^{\frac{\alpha}{2}} \sin \frac{\alpha}{2} & \cos \frac{\alpha}{2} \end{bmatrix}.
\]

Recall that \(P \) is the defining polynomial of the algebraic set \(\{(V, A)\} \) and the defining polynomial of \(R(\pi_1(X)) \) corresponding to our choice of \(h(s) \) and \(h(t) \). By direct computation \(P \) is a factor of \(\text{tr}(SWn) = -4i \sinh \rho(2V^2 + A^4 + 2A^2 - 1)P \). As in [2], \(P \) can not be \(\sinh \rho \) or have only real roots. Also, \(P \) can not have only purely imaginary roots similarly. \(P \) in the theorem is the only factor of \(\text{tr}(SWn) \) which is different from \(\sinh \rho \) and has roots which are not real or purely imaginary. \(P \) is the Riley-Mednykh polynomial. \(\square \)

4. Longitude

Let \(l_s = ws \) and \(l_t = (t^2 - [t, s]s^2[t, s^{-1}]s^2)t \). Then \(l_s \) and \(l_t \) are the longitudes which are null-homologous in \(X \). Let \(L_S = h(l_s) \) and Let \(L_T = h(l_t) \).

Lemma 4.1. \(\text{tr}(S^{-1}L_T) = \text{tr}(S) \) and \(\text{tr}(T^{-1}L_S) = \text{tr}(T) \).

Proof. Since

\[
S^{-1}L_T = S^{-1}(T^{-1}(TST^{-1}S^{-1}TST^{-1}S^{-1} \cdot TS^{-1}TST^{-1}S^{-1}T^{-1}S)T)
\]

\[
= (T^{-1}S^{-1}TST^{-1}S^{-1}T)(S^{-1})(T^{-1}S^{-1}TST^{-1}S^{-1}T^{-1}S^{-1}T)\text{,}
\]

\[
\text{tr}(S^{-1}L_T) = \text{tr}(S^{-1}) = \text{tr}(S).
\]

The second statement can be obtained in a similar way. \(\square \)

Definition. The *complex length* of the longitude \(l \) (\(l_s \) or \(l_t \)) of the link \(\pi_3^{\alpha} \) is the complex number \(\gamma_\alpha \) modulo \(4\pi \mathbb{Z} \) satisfying

\[
\text{tr}(h(l)) = 2 \cosh \frac{\gamma_\alpha}{2}.
\]

Note that \(l_\alpha = |\text{Re}(\gamma_\alpha)| \) is the real length of the longitude of the cone-manifold \(X(\alpha) \).

By sending common fixed points of \(T \) and \(L_T = h(l_t) \) to 0 and \(\infty \), we have

\[
T = \begin{bmatrix} e^{\frac{i\alpha}{2}} & 0 \\ 0 & e^{-\frac{i\alpha}{2}} \end{bmatrix}, \quad L_T = \begin{bmatrix} e^{\frac{2\pi}{4}} & 0 \\ 0 & e^{-\frac{2\pi}{4}} \end{bmatrix},
\]
and the following normalized line matrices of T (resp. L_T) which share the fixed points with T (resp. L_T).

$$l(T) \equiv \frac{T - T^{-1}}{2i \sinh \frac{i\alpha}{2}}$$

$$= \frac{1}{i(e^{\frac{i\alpha}{2}} - e^{-\frac{i\alpha}{2}})} \left[e^{\frac{i\alpha}{2}} - e^{-\frac{i\alpha}{2}} 0 e^{-\frac{i\alpha}{2}} - e^{\frac{i\alpha}{2}} \right]$$

$$= \begin{bmatrix} -i & 0 \\ 0 & i \end{bmatrix},$$

$$l(L_T) \equiv \frac{L_T - L_T^{-1}}{2i \sinh \frac{i\alpha}{2}}$$

$$= \frac{1}{i(e^{\frac{i\alpha}{2}} - e^{-\frac{i\alpha}{2}})} \left[e^{\frac{i\alpha}{2}} - e^{-\frac{i\alpha}{2}} 0 e^{-\frac{i\alpha}{2}} - e^{\frac{i\alpha}{2}} \right]$$

$$= \begin{bmatrix} -i & 0 \\ 0 & i \end{bmatrix},$$

which give the orientations of axes of T and L_T.

Now, we are ready to prove the following theorem which gives Theorem 4.3. Recall that γ_α modulo $4\pi\mathbb{Z}$ is the complex length of the longitude l_s or l_t of $X(\alpha)$. The following theorem is a particular case of Proposition 5 from [2].

Theorem 4.2. (Pythagorean Theorem) [2] Let $X(\alpha)$ be a hyperbolic cone-manifold and let ρ be the complex distance between the oriented axes S and T. Then we have

$$i \cosh \rho = \cot \frac{\alpha}{2} \coth \left(\frac{\gamma_\alpha}{4} \right).$$
Proof.

\[
\cosh \rho = -\frac{\text{tr}(l(S)l(T))}{2} = -\frac{\text{tr}(l(S)l(L_T))}{2} = \frac{\text{tr}((S - S^{-1})(L_T - L_T^{-1}))}{8 \sinh \frac{i \alpha}{2} \sinh \frac{\gamma}{2}} = \frac{\text{tr}(SL_T - S^{-1}L_T - SL_T^{-1} + (L_TS)^{-1})}{8 \sinh \frac{i \alpha}{2} \sinh \frac{\gamma}{2}} = \frac{2(\text{tr}(SL_T) - \text{tr}(S^{-1}L_T))}{8 \sinh \frac{i \alpha}{2} \sinh \frac{\gamma}{2}} = \frac{\text{tr}(S)\text{tr}(L_T) - 2\text{tr}(S^{-1}L_T)}{4 \sinh \frac{i \alpha}{2} \sinh \frac{\gamma}{2}} = \frac{\text{tr}(S)\text{tr}(L_T) - 2\text{tr}(S)}{4 \sinh \frac{i \alpha}{2} \sinh \frac{\gamma}{2}} = \frac{\text{tr}(S)(\text{tr}(L_T) - 2)}{4 \sinh \frac{i \alpha}{2} \sinh \frac{\gamma}{2}} = \frac{2 \cos \frac{\alpha}{2}(2 \cosh \frac{\gamma}{2} - 2)}{4i \sin \frac{\gamma}{4}} = -i \cot \frac{\alpha}{2} \tanh \left(\frac{\gamma}{4}\right).
\]

where the first equality comes from [3, p. 68], the sixth equality comes from the Cayley-Hamilton theorem, and the seventh equality comes from Lemma 4.1. Therefore, we have

\[
i \cosh \rho = \cot \frac{\alpha}{2} \coth \left(\frac{\gamma}{4}\right).
\]

\[\square\]

Pythagorean theorem 4.2 gives the following theorem which relates the eigenvalues of \(h(l)\) and \(V = \cosh \rho\) for \(A = \cot \frac{\alpha}{2}\).

Theorem 4.3. Recall that \(l\) is the longitude. By conjugating if necessary, we may assume \(h(l)\) is upper triangular. Let \(L = h(l)_{11}\). Let \(A = \cot \frac{\alpha}{2}\). Then the following formulae show that there is a one to one correspondence between the the eigenvalues of \(h(l)\) and \(V = \cosh \rho\):

\[
iV = A \frac{L - 1}{L + 1} \quad \text{and} \quad L = \frac{A - iV}{A + iV}.
\]
Proof. By Theorem 4.2

\[iV = i \cosh \rho \]
\[= \cot \frac{\alpha}{2} \tanh(\frac{\gamma \alpha}{4}) \]
\[= \cot \frac{\alpha}{2} \sinh(\frac{\gamma \alpha}{4}) \]
\[= \cot \frac{\alpha}{2} \left(\frac{e^{\frac{\gamma \alpha}{2}} - e^{-\frac{\gamma \alpha}{2}}}{2} \right) \]
\[= \cot \frac{\alpha}{2} \left(\frac{e^{\frac{\gamma \alpha}{2}} - 1}{2} \right) \]
\[= \frac{\alpha}{2} \left(e^{\frac{\gamma \alpha}{2}} - 1 \right) \]
\[= \frac{A}{L} - 1 \]

If we solve the above equation,

\[iV = A \frac{L - 1}{L + 1} \]

for \(L \), we have

\[L = \frac{A - iV}{A + iV} \]

\[\square \]

5. Proof of Theorem 1.1

According to [19, 8, 10, 20], there exists an angle \(\alpha_0 \in [\frac{2\pi}{3}, \pi) \) such that \(X(\alpha) \) is hyperbolic for \(\alpha \in (0, \alpha_0) \), Euclidean for \(\alpha = \alpha_0 \), and spherical for \(\alpha \in (\alpha_0, \pi] \). Denote by \(D(X(\alpha)) \) the discriminant of \(P(V, A) \) over \(V \). Then \(\alpha_0 \) is the only zero of \(D(X(\alpha)) \) in \([\frac{2\pi}{3}, \pi) \).

From Theorem 4.3, we have the following equality,

\[|L|^2 = \left| \frac{A - iV}{A + iV} \right|^2 = \frac{|A|^2 + |V|^2 + 2AImV}{|A|^2 + |V|^2 - 2AImV}. \]

For the volume, we choose \(L \) with \(|L| \geq 1 \) and hence we have \(\text{Im}(V) \geq 0 \) by Equality (1). The component of \(V \) with \(\text{Im}(V) \geq 0 \) which becomes real at \(\alpha_0 \) has negative real part. On the geometric component which gives the unique hyperbolic structure, we have the
volume of a hyperbolic cone-manifold $X(\alpha)$ for $0 \leq \alpha < \alpha_0$:

$$\text{Vol}(X(\alpha)) = -\int_{\alpha_0}^{\alpha} 2 \left(\frac{l_\alpha}{2} \right) \, d\alpha$$

$$= -\int_{\alpha_0}^{\alpha} 2 \log |L| \, d\alpha$$

$$= -\int_{\alpha}^{\pi} 2 \log |L| \, d\alpha$$

$$= \int_{\alpha}^{\pi} 2 \log \left| \frac{A-iV}{A+iV} \right| \, d\alpha,$$

where the first equality comes from the Schl"afli formula for cone-manifolds (Theorem 3.20 of \cite{1}), the second equality comes from the fact that $l_\alpha = \left| \text{Re}(\gamma_\alpha) \right|$ is the real length of the one longitude of $X(\alpha)$, the third equality comes from the fact that $\log |L| = 0$ for $\alpha_0 < \alpha \leq \pi$ by Equality (1) since all V’s are real for $\alpha_0 < \alpha \leq \pi$, and $\alpha_0 \in \left[\frac{2\pi}{3}, \pi \right)$ is the zero of the discriminant $D(X(\alpha))$. Numerical calculations give us the following value for $\alpha_0 : \alpha_0 \approx 2.83003$.

REFERENCES

[1] Daryl Cooper, Craig D. Hodgson, and Steven P. Kerckhoff. *Three-dimensional orbifolds and cone-manifolds*, volume 5 of *MSJ Memoirs*. Mathematical Society of Japan, Tokyo, 2000. With a postface by Sadayoshi Kojima.

[2] D. Derevnin, A. Mednykh, and M. Mulazzani. Volumes for twist link cone-manifolds. *Bol. Soc. Mat. Mexicana (3)*, 10(Special Issue):129–145, 2004.

[3] Werner Fenchel. *Elementary geometry in hyperbolic space*, volume 11 of *de Gruyter Studies in Mathematics*. Walter de Gruyter & Co., Berlin, 1989. With an editorial by Heinz Bauer.

[4] Ji-Young Ham and Joongul Lee. Explicit formulae for Chern-Simons invariants of the hyperbolic orbifolds of the knot with Conway’s notation $C(2n, 3)$. www.math.snu.ac.kr/~jyham. Preprint.

[5] Ji-Young Ham and Joongul Lee. Explicit formulae for Chern-Simons invariants of the twist knot orbifolds and edge polynomials of twist knots. *Matematicheskii Sbornik*, 207 (9), 2016.

[6] Ji-Young Ham and Joongul Lee. The volume of hyperbolic cone-manifolds of the knot with Conway’s notation $C(2n, 3)$. *J. Knot Theory Ramifications*, 25(6):1650030, 9, 2016.

[7] Ji-Young Ham, Alexander Mednykh, and Vladimir Petrov. Trigonometric identities and volumes of the hyperbolic twist knot cone-manifolds. *J. Knot Theory Ramifications*, 23(12):1450064, 16, 2014.

[8] Hugh Hilden, María Teresa Lozano, and José María Montesinos-Amilibia. On a remarkable polyhedron geometrizing the figure eight knot cone manifolds. *J. Math. Sci. Univ. Tokyo*, 2(3):501–561, 1995.

[9] Hugh M. Hilden, María Teresa Lozano, and José María Montesinos-Amilibia. Volumes and Chern-Simons invariants of cyclic coverings over rational knots. In *Topology and Teichmüller spaces (Katinkulta, 1995)*, pages 31–55. World Sci. Publ., River Edge, NJ, 1996.

[10] Sadayoshi Kojima. Deformations of hyperbolic 3-cone-manifolds. *J. Differential Geom.*, 49(3):469–516, 1998.

[11] Sadayoshi Kojima. Hyperbolic 3-manifolds singular along knots. *Chaos Solitons Fractals*, 9(4-5):765–777, 1998. Knot theory and its applications.

[12] John P. Mayberry and Kunio Murasugi. Torsion-groups of abelian coverings of links. *Trans. Amer. Math. Soc.*, 271(1):143–173, 1982.
[13] Alexander Mednykh. The volumes of cone-manifolds and polyhedra. [http://mathlab.snu.ac.kr/-top/workshop01.pdf], 2007. Lecture Notes, Seoul National University.

[14] Alexander Mednykh and Aleksey Rasskazov. On the structure of the canonical fundamental set for the 2-bridge link orbifolds. [www.mathematik.uni-bielefeld.de/sfb343/preprints/pr98062.ps.gz], 1998. Universit"{a}t Bielefeld, Sonderforschungsbereich 343, Discrete Structures in der Mathematik, Preprint, 98062.

[15] Alexander Mednykh and Alexey Rasskazov. Volumes and degeneration of cone-structures on the figure-eight knot. *Tokyo J. Math.*, 29(2):445–464, 2006.

[16] Alexander Mednykh and Andrei Vesnin. On the volume of hyperbolic Whitehead link cone-manifolds. *SCIENTIA, Series A: Sci. Ser. A Math. Sci. (N.S.)*, 8:1–11, 2002.

[17] Alexander D. Mednykh. Trigonometric identities and geometrical inequalities for links and knots. In *Proceedings of the Third Asian Mathematical Conference, 2000 (Diliman)*, pages 352–368. World Sci. Publ., River Edge, NJ, 2002.

[18] Michele Mulazzani and Andrei Vesnin. The many faces of cyclic branched coverings of 2-bridge knots and links. *Atti Sem. Mat. Fis. Univ. Modena*, 49(suppl.):177–215, 2001. Dedicated to the memory of Professor M. Pezzana (Italian).

[19] Joan Porti. Spherical cone structures on 2-bridge knots and links. *Kobe J. Math.*, 21(1-2):61–70, 2004.

[20] Joan Porti and Hartmut Weiss. Deforming Euclidean cone 3-manifolds. *Geom. Topol.*, 11:1507–1538, 2007.

[21] Robert Riley. Nonabelian representations of 2-bridge knot groups. *Quart. J. Math. Oxford Ser. (2)*, 35(138):191–208, 1984.

Department of Science, Hongik University, 94 Wausan-ro, Mapo-gu, Seoul, 04066, Korea.

E-mail address: jiyoungham1@gmail.com

Department of Mathematics Education, Hongik University, 94 Wausan-ro, Mapo-gu, Seoul, 04066, Korea.

E-mail address: jglee@hongik.ac.kr

Sobolev Institute of Mathematics, pr. Kotyuga 4, Novosibirsk 630090, Novosibirsk State University, Pirogova 2, Novosibirsk 630090, Russia.

E-mail address: mednykh@math.nsc.ru

Webster International University, 146 Moo 5, Tambon Sam Phraya, Cha-am, Phetchaburi 76120, Thailand

E-mail address: arasskazov69@webster.edu