Objective: To elucidate whether the genetic platforms of \(\text{bla}_{\text{CTX-M}} \) contribute to the phenotypes of multi-drug-resistance (MDR) in the first carbapenemase-producing \(\text{K. pneumoniae} \) strains isolated in Chile.

Method: Twenty-two carbapenemase-producing \(\text{K. pneumoniae} \) strains isolated from different Chilean patients and hospitals were studied. Their genetic relatedness was assessed by PFGE and MLST. The levels of antibiotic resistance were evaluated by determining the minimum inhibitory concentration of various antimicrobials. In addition, several antibiotic resistance genes of clinical relevance in Chile were investigated. The prevalence, allelic variants, and genetic platforms of \(\text{bla}_{\text{CTX-M}} \) were determined by PCR and sequencing.

Results: Out of the 22 strains studied, 20 carry KPC, one carries NDM-1, and one carries OXA-370. The PFGE analysis showed three clades with a genetic relatedness >85%, two formed by four strains and one by eight strains. The other strains are not genetically related, and a total of 17 different pulse types were detected. Ten different STs were identified, the main ones being ST258 (five strains) and ST1161 (seven strains). The isolates presented different percentages of resistance, and 82% were resistant to all the \(\beta \)-lactams tested, 91% to ciprofloxacin, 73% to colistin, 59% to gentamicin, 50% to amikacin, and only 9% to tigecycline. All isolates carried \(\text{bla}_{\text{TEM}} \) and \(\text{bla}_{\text{SHV}} \), whereas 71% carried \(\text{aac}^{(6)\prime}\text{lb-cr} \), and 57% one \(\text{qnr} \) gene (A, B, C, or D). The \(\text{bla}_{\text{CTX-M}} \) gene was found in 10 of the isolates (4 \(\text{bla}_{\text{CTX-M-15}} \) and 6 \(\text{bla}_{\text{CTX-M-2}} \)). The characterization of the platform, in seven selected strains, revealed that the gene is associated with unusual class 1 integrons and insertion sequences such as \(\text{ISCR1}, \text{ISECp1} \), and \(\text{IS26} \).

Conclusion: In the first carbapenemase-producing \(\text{K. pneumoniae} \) strains isolated in Chile the genetic platform of \(\text{bla}_{\text{CTX-M-2}} \) corresponds to an unusual class 1 integron that can be responsible for the MDR phenotype, whereas the genetic platforms of \(\text{bla}_{\text{CTX-M-15}} \) are associated with different IS and do not contribute to multi-drug resistance.

Keywords: genetic platforms, \(\text{bla}_{\text{CTX-M}} \), \text{Klebsiella pneumoniae}, KPC, OXA-370, NDM-1, MDR
INTRODUCTION

Enterobacteriaceae resistant to third-generation cephalosporins, carbapenems, or both, are one of the critical priorities and represent one of the greatest challenges in the epidemiology of antibiotic resistance (Guzmán-Blanco et al., 2014; Barría-Loaiza et al., 2016; Liu et al., 2016; WHO, 2017). According to reports, some countries in the Americas, such as Argentina, Brazil, Colombia, Puerto Rico, and the United States have endemic strains of carbapenemase-producing Enterobacteriaceae (Cifuentes et al., 2012).

A surveillance program on carbapenemase-producing Enterobacteriaceae has been implemented in Chile and the first isolation occurred in 2012 (Cifuentes et al., 2012). Since then, and up to 2015, only 34 isolates were reported (ISP Chile, 2015), which would suggest good healthcare infection control practices. However in the same period, the incidence of K. pneumoniae strains resistant to third generation cephalosporins was around 70% (ISP Chile, 2015), and in up to 60% of the isolates such resistance was mediated by extended-spectrum β-lactamases (ESBLs) (Guzmán-Blanco et al., 2014).

CTX-M enzymes are among the most important ESBLs in the world, with a clear higher prevalence than other ESBLs, such as TEM-, SHV-, GES-, and PER-type (Bello et al., 2005; García et al., 2011; Cantón et al., 2012b; Worznik et al., 2012). The successful spread of CTX-M is determined by multiple factors, including the genetic platforms of the blaCTX-M gene. Different architectures have been identified in such platforms, and roughly two fundamental elements are recognized. On one hand, the platforms can be composed of integrons, which promote multi-drug-resistance (MDR) phenotypes, namely non-susceptibility to at least one agent in three or more antimicrobial categories (Magiorakos et al., 2012). On the other hand, the presence of insertion sequences, such as ISCR1 or ISEcp1, act as promoters for the expression of various resistance genes and influence the mobilization of the blaCTX-M genes (Power et al., 2005; Cantón et al., 2012b).

In general, the production of CTX-M enzymes is associated with MDR profiles, involving mainly resistance to third-generation cephalosporins, quinolones, aminoglycosides, and trimethoprim (Cantón et al., 2012b). In turn, the frequent association of other resistance genes, such as aac(6′)-Ib-cr and qnr genes, with the successful dissemination of CTX-M enzymes in K. pneumoniae strains has been reported (Sabtcheva et al., 2009; Elgorriaga-Islas et al., 2012; Bado et al., 2016). This has led to an increase in the clinical usage of carbapenems, creating a selective pressure on resistant strains (Cantón et al., 2012a; Falagas et al., 2014; Cifuentes et al., 2015).

In Chile the production of CTX-M is the main mechanism of resistance to third-generation cephalosporins in K. pneumoniae (Cifuentes et al., 2012, 2015), even in carbapenemase-producers. Nevertheless, there is no information about the genetic surroundings of blaCTX-M and its contribution to the MDR phenotype in carbapenemase-producing isolates. Thus, the aim of this study was to determine the genetic platforms associated with blaCTX-M, and their contribution to the MDR phenotype observed in the first carbapenemase-producing K. pneumoniae strains isolated during a period of 3 years in Chilean hospitals.

MATERIALS AND METHODS

Strains
All first 22 carbapenemase-producing K. pneumoniae strains isolated from public (PH) and private (PC) Chilean hospitals between 2012 and 2014 were included. Eighteen strains were isolated in Santiago (the capital of Chile), one in San Felipe (90 Km north of Santiago), two in Arauco (570 Km south of Santiago), and one in Temuco (680 Km south of Santiago), and were isolated from different patients. The Chilean Public Health Institute [Instituto de Salud Pública (ISP), Santiago, Chile] provided the strains as part of the surveillance program of carbapenemases in Enterobacteriaceae. The origin and molecular characteristics of the isolates are shown in Figure 1.

Pulsed-Field Gel Electrophoresis (PFGE)
Bacterial DNA was prepared and digested with 50 U of SpeI endonuclease (Thermo Fisher Scientific Inc., Waltham, MA) as previously described (Woodford et al., 2004). The PFGE patterns were analyzed with BioNumerics software v6.6 (Applied Maths) by using the Dice coefficient. The dendogram was constructed according to the unweighted pair group method arithmetic mean (UPGMA). Tolerance and optimization parameters were set to 1.5% each. Isolates with ≥ 85% similarity were considered genetically related (Giakkoupi et al., 2011).

Multilocus Sequence Typing (MLST)
For MLST, seven housekeeping genes (gapA, infB, mdh, pgi, phoE, rpoB, and tonB) were amplified and sequenced according to the protocol described for K. pneumoniae on the Institut Pasteur MLST databases.

Antimicrobial Susceptibility Testing
Minimum inhibitory concentrations (MICs) were determined by the agar dilution method according to recommendations and breakpoints proposed by the CLSI (CLSI, 2017). The antibiotics assayed were imipenem (IPM), ertapenem (ETP) (Merck Sharp & Dohme Corp., Kenilworth, NJ, USA), meropenem (MER) (Sigma-Aldrich, St Louis, MO, USA), ceftazidime (CAZ), cefotaxime (CTX), ciprofloxacin (CIP), gentamicin (GEN), and amikacin (AMK) (Merck Sharp & Dohme Corp., Kenilworth, NJ, USA). MICs of colistin (COL) (Sigma-Aldrich, St Louis, MO, USA), meropenem (MER) (Sigma-Aldrich, St Louis, MO, USA), ceftazidime (CAZ), cefotaxime (CTX), ciprofloxacin (CIP), gentamicin (GEN), and amikacin (AMK) (Merck Sharp & Dohme Corp., Kenilworth, NJ, USA). MICs of colistin (COL) (Sigma-Aldrich) and tigecycline (TIG) (Pfizer, Philadelphia, PA, USA) were determined by the broth microdilution method, using the European Committee on Antimicrobial Susceptibility Testing (EUCAST, 2017) guidelines and break-points since breakpoints for these two antibiotics are not supplied by the CLSI.

Detection of Resistance Genes
Total DNA was extracted using the commercial kit Instagene Matrix™ (BIO-RAD, Hercules, CA, USA) according to manufacturer recommendations. PCR assays were used to detect the β-lactamase-encoding genes blaTEM, blaSHV, blaCTX-M

1http://bigodb.pasteur.fr/
FIGURE 1 | Genetic relatedness origin and molecular characteristics of carbapenemase-producing Klebsiella pneumoniae isolated in Chilean hospitals. PC, private clinic; PH, public hospital; MLST, multilocus sequence typing; ST, sequence type; CC, clonal complexes. (Sánchez et al., 2006; Woodford et al., 2006; Geser et al., 2012). The PCR products were sequenced (Macrogen, Seoul, Korea) and the nucleotide sequences and their derived amino acid sequences were compared to the existing sequences in the GenBank database (National Center for Biotechnology Information, NCBI) and in the Lahey β-lactamase classification database using the BLAST tool. Sequences were aligned using Clustal-Omega software. Additional genes of antibiotic resistance, such as plasmid-mediated quinolone resistance (PMQR) genes [qnrA, qnrB, qnrS, qnrC, qnrD, aac(6’)-Ib-cr; (Chen et al., 2012)], were included in order to further characterize the strains. In all strains, the carbapenemase gene was confirmed by PCR. All the primers are listed in Table S1.

RESULTS

Molecular Typing

Molecular typing by PFGE showed 17 pulse types arranged in three clades with >85% genetic similarity. Two clades contain four strains each, and the other eight strains and the remaining strains were not genetically related. Four clonal pulse types were found to be associated with more than one isolate each: CL-Kpn-Spe-026 (UC326/UC328), CL-Kpn-Spe-052 (UC335/UC336), CL-Kpn-Spe-056 (UC333/UC334/UC341), and CL-Kpn-Spe-053 (UC338/UC339) (Figure 1). Ten different STs were identified; the most common were ST1161 with seven isolates and ST258 with five isolates. Seven clonal complexes (CC) were identified, and CC258 and CC29 were the most prevalent with eight isolates each (Figure 1).

Antimicrobial Resistance

All isolates were found to be resistant to CTX, CAZ, and ETP and only four were susceptible to at least one of the carbapenems assayed (Table 1). Furthermore, 20 isolates were highly resistant to CIP (MIC_{50}: 64 mg/L, MIC_{90}: 128 mg/L), and 11 and 13 isolates were found to be resistant to AMK and GEN, respectively. Regarding TIG, two isolates were found to be resistant to this antibiotic. The MIC of colistin was >2 mg/L for 16 isolates, thus classified as resistant according to EUCAST guidelines (EUCAST, 2017).

Identification of Antibiotic Resistance Genes

The {bla}_{KPC} gene was identified in 20 K. pneumoniae strains (19 {bla}_{KPC−2}, and one {bla}_{KPC−24}), {bla}_{NDM−1} in one strain, and {bla}_{OXA−370} in another. The gene {bla}_{CTX-M} was detected in 10 isolates, in four it corresponds to the allele {bla}_{CTX-M−15} and in six to {bla}_{CTX-M−2} (Table 1). All isolates carry the gene {bla}_{SHV}, and in four it corresponds to an ESBL variant of the enzyme. All
isolates also carry \textit{bla}_{TEM}, 19 of which have the \textit{bla}_{TEM}−1 allele, and the variant was not elucidate in the other three isolates. The resistance genes for other antibiotics included three isolates with \textit{aac(6')-Ib} and 15 with \textit{aac(6')-Ib-cr} variant. Regarding the \textit{qnr} gene, 13 isolates carry \textit{qnrB}, and five carry other variants such as \textit{qnrD}, \textit{qnrS}, or \textit{qnrC} (Table 1).

Characterization of the \textit{bla}_{CTX-M} Genetic Context

Seven isolates were selected for characterization of the \textit{bla}_{CTX-M} genetic context: UC332, UC334, UC338, UC341, UC342, UC358, and UC361. In the isolates carrying the \textit{bla}_{CTX-M}−2 variant (UC332, UC334, UC338), the gene was found immediately next to the IS\textit{CR1} genetic element, forming part of a complex class 1 integron (Figure 2). The genetic platforms of the isolates UC332/UC334 shared 100% amino acid similarity (Genbank: KY315992). Also, the variable region (1,912 bp) of the complex class 1 integron was composed by the gene cassettes \textit{dfrA12}, \textit{gcuF} and \textit{aadA2} in both of these strains (Figure 2); while, the variable zone of isolate UC338 (1,099 bp) comprised the cassette \textit{aadA1}. Unlike in UC332/UC334, the \textit{sul1} gene was not observed in the duplication of the extreme 3'CS of the complex class 1 integron of strain UC338 (Figure 2).

In addition, the isolate UC332 carried another class 1 integron (not associated with \textit{bla}_{CTX-M}−2), and its variable zone of 4,100 bp consisted of the gene cassettes \textit{arr-2}, \textit{cmlA5}, \textit{bla}_{OXA}−10, and \textit{aadA1} (Genbank accession number: MF113045).

In isolates bearing the \textit{bla}_{CTX-M}−15 variant (UC341, UC342, UC358, and UC361) three platforms were found (Figure 2). In all of them the gene was found to be flanked upstream by the \textit{ISEp1} insertion sequence, and downstream by the open reading frame of the hypothetical protein \textit{Aorf477}. The genetic platforms of the isolates UC341/UC342 shared 100% of DNA similarity (Genbank: MG792791), but none was amplified upstream of \textit{ISEp1} with primers used, as occurred with the platform of isolate UC358 and UC361. The platform of UC358 (Genbank: MG792791),...
accession number: KY551566) corresponds to a nucleotide sequence similar to a section of transposon Tn3, previously named Tn3-like (Genbank accession number: AB976579). This region preserves the 3’–5’ sense-coding regions of the resolvase (tnpR) and the 5’–3’ sense-coding portion of the transposase (tnpA) found in the Tn3 family. However, both genes are truncated: tnpR by the IS26 insertion sequence and tnpA by ISEcp1 (Figure 2).

On the other hand, in strain UC361 (Genbank accession number: MF797950), ISEcp1 was truncated by the IS1 insertion sequence; it retained the promoter region of the blaCTX-M-15 gene, but the tnpA promoter region of ISEcp1 was absent. The insertion of IS1 resulted in the displacement of part of nucleotide sequence ISEcp1 toward the 5’ end of the platform (Figure 2).

DISCUSSION

The MDR phenotype reported in all studied isolates is frequently associated with CTX-M and carbapenemase-producing strains (Cantón et al., 2012b; Geser et al., 2012; Guzmán-Blanco et al., 2014). Like elsewhere in the world (Woodford et al., 2004; Falagas et al., 2014; Pereira et al., 2015), KPC is the most prevalent carbapenemase present in *K. pneumoniae* in Chile (Vera-Leiva et al., 2017). Nevertheless, the description of NDM-1 and OXA-370 in two isolates included in this study is epidemiologically of note, because they represent the first report of these carbapenemases in Chile. The pulse types of these two strains have a genetic identity <85% with respect to the KPC producing strains, as shown in Figure 1. Also, their STs have only been previously described in Brazil, in strains producing the same carbapenemases; furthermore the OXA-370 variant had been only reported previously in Brazil (Pereira et al., 2015; Aires et al., 2017). This leads us to hypothesize that both isolates could represent cases imported from Brazil.

The characterization of the blaCTX-M genetic platforms in the present work is one of the few reports in the literature in South America, complementing previously reported work in Argentina and Uruguay regarding blaCTX-M-2 where the gene was also found to be associated with ISCR1 forming part of complex or unusual class 1 integrons (Power et al., 2005; Vignoli et al., 2006). Nucleotide sequences similar to the complete blaCTX-M-2

TABLE 1 | Resistance features of carbapenemase-producing *K. pneumoniae* spp. isolated in Chilean hospitals.

Strain	Resistance genes	MIC (mg/L)	CTX	CAZ	ETP	IPM	MER	AMK	GEN	CIP	COL	TIG	
UC318	blakPC1, blishV1, blatem1	>512	128	512	64	64	512	128	128	4	1		
UC326	blakPC1, blishV1, blatem1, aac(6’)-Ib-cr, qnrB	>512	64	64	32	16	8	16	64	4	4		
UC328	blakPC1, blishV1, blatem1, aac(6’)-Ib-cr, qnrB	64	32	512	128	64	64	64	64	4	4		
UC329	blakPC1, blishV1, blatem1, aac(6’)-Ib-cr, qnrB	64	128	32	8	4	32	2	128	4	1		
UC330	blakPC1, blishV1, blatem1, aac(6’)-Ib-cr, qnrB	32	128	64	8	16	32	2	128	2	1		
UC331	blakPC1, blishV1, blatem1	64	64	32	4	4	32	1	128	8	1		
UC332	blakPC1, blishV1, blatem1, blaCTX-M-2, aac(6’)-Ib-cr, qnrB	>512	64	128	8	32	>512	>512	64	32	≤0.5		
UC333	blakPC1, blishV1, blatem1, blaCTX-M-2, aac(6’)-Ib-cr, qnrB, qnrD	>512	256	512	16	32	>512	>512	64	16	1		
UC334	blakPC1, blishV1, blatem1, blaCTX-M-2, aac(6’)-Ib-cr, qnrB, qnrD	>512	32	256	64	64	>512	>512	64	16	0.5		
UC335	blakPC1, blishV1, blatem1, blaCTX-M-2, aac(6’)-Ib-cr, qnrB, qnrS	512	512	32	4	4	64	64	128	4	1		
UC336	blakPC1, blishV1, blatem1, blaCTX-M-2, aac(6’)-Ib-cr, qnrB, qnrS	128	>512	64	8	4	64	64	128	4	1		
UC337	blakPC1, blishV1, blatem1, blaCTX-M-2, aac(6’)-Ib-cr, qnrB, qnrS	64	128	32	8	4	64	64	128	4	1		
UC338	blakPC1, blishV1, blatem1, blaCTX-M-2, aac(6’)-Ib-cr, qnrB, qnrS	>512	128	128	16	32	>512	64	32	≤0.5			
UC339	blakPC1, blishV1, blatem1, blaCTX-M-2, aac(6’)-Ib-cr, qnrB, qnrS	64	32	256	8	32	2	1	64	32	≤0.5		
UC340	blakPC1, blishV1, blatem1, blaCTX-M-2, aac(6’)-Ib-cr, qnrB, qnrS	64	32	256	8	32	2	1	64	32	≤0.5		
UC341	blakPC1, blishV1, blatem1, blaCTX-M-15, aac(6’)-Ib-cr, qnrB, qnrS	>512	512	128	2	4	4	1	64	4	0.5		
UC342	blakPC1, blishV1, blatem1, blaCTX-M-15, aac(6’)-Ib-cr, qnrB, qnrS	32	64	128	8	32	32	16	64	32	≤0.5		
UC357	blakPC1, blishV1, blatem1, blaCTX-M-15, aac(6’)-Ib-cr, qnrB, qnrS	64	32	8	2	4	4	32	≤0.5	≥0.5			
UC358	blakPC1, blishV1, blatem1, blaCTX-M-15, aac(6’)-Ib-cr, qnrB, qnrS	>512	512	8	2	4	≤2	1	128	0.5	≥0.5		
UC359	blakPC1, blishV1, blatem1, blaCTX-M-15, aac(6’)-Ib-cr, qnrB, qnrS	8	32	2	≤0.5	≤0.5	8	1	2	≤0.5	≤0.5		
UC361	blakPC1, blishV1, blatem1, blaCTX-M-15, aac(6’)-Ib-cr, qnrB, qnrS	>512	512	8	16	16	≤2	64	2	≤0.5	≤0.5		
UC362	blakPC1, blishV1, blatem1, blaCTX-M-15, aac(6’)-Ib-cr, qnrB, qnrS	256	256	64	16	64	64	64	64	≤0.5	2		

*SHV BLEE-type by RFLP.
†Variant not elucidated.
platforms in the isolates UC332 and UC334 have been previously reported elsewhere, such as in French Guiana in 2004 (Genbank: EF592571), Uruguay in 2005 (Genbank: EU780013) and in the United States in 2012 (Genbank: KU254578). This suggests the platform may be widely disseminated globally. No arrangement similar to the complete genetic platform found in strain UC338 (Genbank: KY286109) has been previously reported in the NCBI nucleotide database.

The diversity of the characterized genetic platforms of blaCTX-M−15 was greater than for the blaCTX-M−2, reflecting a complex scenario associated with insertion sequences that can act as mobilization and expression tools for various β-lactamase genes (Eckert et al., 2006). In strains UC341 and UC342 (Figure 2), the blaCTX-M−15 platform corresponds to the most frequently described structure in several geographical areas of the world (Eckert et al., 2006; Cantón et al., 2012b). ISEcp1 has been described as the insertion sequence responsible for the capture, mobilization and expression of the blaCTX-M gene (Poirel et al., 2005); likewise, orf477, which is found downstream of blaCTX-M, has also been frequently described associated with the blaCTX-M genes (Cantón et al., 2012b).

The presence of other insertion sequences such as IS26 or IS1 upstream of blaCTX-M could provide high mobility to this platform and the ability to integrate into the bacterial chromosome, favoring the stability and dissemination of blaCTX-M genes (Cantón et al., 2012b).

Using BLAST, two nucleotide sequences with 100% similarity to the blaCTX-M−15 platform present in the UC358 isolate were found, both associated with E. coli ST131, one from Japan in 2011 (Genbank: AB976579) and another from Saudi Arabia 2014 (Genbank: CP015086; Matsumura et al., 2015). The only previous description of a platform with a similar architecture to that of blaCTX-M−15 present in the UC361 isolate was in E. coli isolated in Japan in 2011, but associated with the blaCTX-M−3 allele instead (Matsumura et al., 2015). This suggests this is a rare genetic platform, unlike those associated with blaCTX-M−2, and that may be present in different bacterial genera.

This illustrates the high variability among the genetic platforms found. It should be noted that no additional antibiotic resistance genes were found adjacent to blaCTX-M in the platform, and as such the platform itself would not be contributing further to the observed multi-resistance phenotypes. However it is interesting to note that blaOXA−370, which has evolved from blaOXA−48, results in high levels of resistance to imipenem, but does not affect the susceptibility to broad-spectrum cephalosporins (Poirel et al., 2010). As such, the resistance to this antibiotic class would be due to blaCTX-M−15 in the UC358 strain, in addition to blatem and blashv.

On the other hand, although the expression of the qnr and aac(6′)Ib-cr genes would directly contribute to the multiresistance phenotypes of studied strains, and are often present in CTX-M producing Enterobacteriaceae, they are not associated with the genetic platforms where blaCTX-M is located. However as these platforms are based on unusual class 1 integrons, they most likely contribute to resistance to other non-assayed antimicrobials, as they encode determinants for resistance to quaternary ammonium compounds (qacEΔ1), sulphonamides (SulI), trimethoprim (dfrA12), and other aminoglycosides (aadA1, aadA2).

The high percentage (73%) of resistance to colistin found differs from that described in other geographical areas of the world (Guzmán-Blanco et al., 2014; Pereira et al., 2015; Aires et al., 2017). As such the presence of mcr-1 and mcr-2 was assessed by PCR, using primers listed in Tables S2, since these genes were described as the first transferable mechanism of colistin associated (Liu et al., 2016); none of the isolates was found to carry them. This may be explained by the high genetic identity shared among most strains, suggesting the resistance to colistin may be mediated by chromosomal-encoded mechanisms instead (Liu et al., 2016); it also warrants reconsidering of the use of colistin in the treatment of carbapenemase-producing strains of K. pneumoniae in Chile.

The ability of the bacteria to acquire and disseminate exogenous genes across different genetic platforms and mobile genetic elements is one of the major factors involved in the development of multi-drug resistance in the past 50 years (Cantón et al., 2012b). The present work reports the existence of complex or unusual class 1 integrons and IS associated with blaCTX-M, which may grant these platforms the capacity of horizontal mobilization between bacteria of the same or different species, and the dissemination of this ESBL (Cantón et al., 2012b). Additionally we provide the first epidemiological and molecular data on the prevalence of genes of clinical importance associated with resistance to other antimicrobials in strains producing carbapenemases, isolated in Chilean hospitals.

AUTHOR CONTRIBUTIONS

HB-T: Management of financial support, overall study design, critical revision of manuscript. SC-A: Acquisition of data, analysis and interpretation of data and drafting of manuscript. AV-L, MQ-A, and MM-R: Experimental work and critical revision of manuscript. CL: Acquisition of data and critical revision of manuscript. JF: Performing and Analysis of MLST sequences. SU: Performing and analysis of PFEG. MD: Collection of bacterial isolates and critical revision of manuscript. GG-R: Design of molecular experiment and critical revision of manuscript.

FUNDING

This study was financed by the FONDECYT 1130838 project grant, and the CONICYT 2014-22141175 National Masters scholarship to SC-A.

ACKNOWLEDGMENTS

The authors thank the microbiologist of the hospitals and medical centers, Hospital Clínico Universidad de Chile, Hospital
San Borja Arriaran, Hospital Salvador, Hospital San Juan de Dios, Hospital Temuco, Clinica Alemana, Clinica Dávila, Bionet-Clinica Indisa, Bionet-ACHS-Arauco, Bionet-ACHS-Santiago and Mutual de Seguridad for kindly providing the isolates.

REFERENCES

Aires, C. A., Pereira, P. S., de Araujo, C. F., Chagas, T. P. G., Oliveira, J. C., Buonora, S. N., et al. (2017). Multiclonal expansion of Klebsiella pneumoniae isolates producing NDM-1 in Rio de Janeiro, Brazil. Antimicrob. Agents Chemother. 61:e01048-16. doi: 10.1128/AAC.01048-16

Bado, I., Gutiérrez, C., García-Fulgueiras, V., Cordeiro, N. F., Araújo Pirez, L., Seija, V., et al. (2016). CTX-M-15 in combination with aac(6′)-Ib-cr is the most prevalent mechanism of resistance both in Escherichia coli and Klebsiella pneumoniae, including K. pneumoniae ST258, in an ICU in Uruguay. J. Glob. Antimicrob. Resist. 6, 5–9. doi: 10.1016/j.jgar.2016.02.001

Barria-Loaiza, C., Pincheira, A., Quezada, M., Vera, A., Valenzuela, P., Domínguez, M., et al. (2016). Molecular typing and genetic environment of the blaCTX-M gene in Chilean isolates of Klebsiella pneumoniae. J. Glob. Antimicrob. Resist. 4, 28–34. doi: 10.1016/j.jgar.2016.01.001

Bello, H., Trabal, N., Ibáñez, D., Reyes, A., Domínguez, M., Mella, S., et al. (2005). β-Lactamases other than TEM and SHV among strains of Klebsiella pneumoniae subsp pneumoniae isolated from Chilean hospitals. Rev. Med. Chile 133, 737–739. doi: 10.0409/0034-9887200500600018

Cantón, R., Akóva, M., Carmeli, Y., Giske, C. G., Glupczynski, Y., Livermore, D. M., et al. (2012a). Rapid evolution and spread of carbapenemases among Enterobacteriaceae in Europe. Clin. Microbiol. Infect. 18, 413–31. doi: 10.1111/j.1469-0691.2012.03821.x

Cantón, R., González-Alba, J. M., and Galán, J. C. (2012b). CTX-M enzymes: origin, distribution and diffusion. Front. Microbiol. 3:110. doi: 10.3389/fmicb.2012.00110

Chen, X., Zhang, W., Pan, W., Yin, J., Pan, Z., Gao, S., et al. (2012). Prevalence of qnr, aac(6′)-Ib-cr, qepA, and oqxAB in Escherichia coli isolates from humans, animals, and the environment. Antimicrob. Agents Chemother. 56, 3423–3427. doi: 10.1128/AAC.00169-11

Cifuentes, M., García, P., San Martín, P., Silva, F., Zú-iga, J., Reyes, S., et al. (2012). First isolation of blbKPC in Chile: from Italy to a public hospital in Santiago. Rev. Chilena Infectol. 6, 5–9. doi: 10.1016/j.jgar.2016.02.001

Cifuentes, M., García, P., San Martín, P., Silva, F., Zú-iga, J., Reyes, S., et al. (2015). BlaKPC-producing enterobacteria isolates from Chilean hospitals. Front. Microbiol. 6, 563–571. doi: 10.3389/fmicb.2015.00700

Cifuentes, M., García, P., San Martín, P., Silva, F., Zú-iga, J., Reyes, S., et al. (2015). Emergence of colistin resistance mechanism MCR-1 in animals and human beings in China: a microbiological and molecular biological study. Lancet Infect. Dis. 16, 161–168. doi: 10.1016/S1473-3099(15)00424-7

Magiorakos, A. P., Srinivasan, A., Carey, R. B., Carmeli, Y., Falagas, M. E., Giske, C. G., et al. (2012). Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin. Microbiol. Infect. 18, 268–281. doi: 10.1111/j.1469-0691.2011.03570.x

Matsunura, Y., Johnson, J. R., Yamamoto, M., Nagao, M., Tanaka, M., Takakura, S., et al. (2015). CTX-M-27- and CTX-M-14-producing, ciprofloxacin-resistant Escherichia coli of the H30 subclonal group within ST131 drive a Japanese regional ESBL epidemic. J. Antimicrob. Chemother. 70, 1639–1649. doi: 10.1093/jac/dkv017

Pereira, P. S., Boiraghi, M., Araújo, C. F., Aires, C. A., Oliveira, J. C., Asensi, M. D., et al. (2015). Clonal dissemination of OXA-37-producing Klebsiella pneumoniae in Rio de Janeiro, Brazil. Antimicrob. Agents Chemother. 59, 4453–4456. doi: 10.1128/AAC.04243-14

Poirel, L., Lartigue, M. F., Decousser, J. W., and Nordmann, P. (2005). ISEcp1B-mediated transposition of blbCTX-M-1 in Escherichia coli. Antimicrob. Agents Chemother. 49, 447–450. doi: 10.1128/AAC.49.1.447-450.2005

Poirel, L., Naas, T., and Nordmann, P. (2010). Diversity, epidemiology, and genetics of class D β-Lactamases. Antimicrob. Agents Chemother. 54, 24–38. doi: 10.1128/AAC.01512-08

Power, P., Gallen, M., Di Conza, J., Ayala, J. G., and Gutkind, G. (2005). Description of In116, the first blbCTX-M-2 containing complex class 1 integron found in Morganella morganii isolates from Buenos Aires, Argentina. J. Antimicrob. Chemother. 55, 461–465. doi: 10.1093/jac/dkl356

Sabtcheva, S., Kaku, M., Saga, T., Ishii, Y., and Kantardjiev, T. (2009). High prevalence of the aac(6′)-Ib-cr gene and its dissemination among Enterobacteriaceae isolates by CTX-M-15 plasmids in Bulgaria. Antimicrob. Agents Chemother. 53, 335–336. doi: 10.1128/AAC.00584-08

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fmicb.2018.00324/full#supplementary-material
Sánchez, M., Bello, H., Domínguez, M., Mella, S., Zemelman, R., and González, G. (2006). Transference of extended-spectrum β-lactamases from nosocomial strains of *Klebsiella pneumoniae* to other species of Enterobacteriaceae. *Rev. Méd. Chile* 134, 415–420. doi: 10.4067/S0034-98872006000400002

Vera-Leiva, A., Barriá-Loaiza, C., Carrasco-Anabalón, S., Lima, C., Aguayo-Reyes, A., Domínguez, M., et al. (2017). KPC: *Klebsiella pneumoniae* carbapenemase, principal carbapenemase en enterobacterias. *Rev. Chilena Infectol.* 34, 476–484. doi: 10.1128/AAC.00025-17

Vignoli, R., Cordeiro, N., Seija, V., Schelotto, F., Radice, M., Ayala, J., et al. (2006). Genetic environment of CTX-M-2 in *Klebsiella pneumoniae* isolates from hospitalized patients in Uruguay. *Rev. Argentina Microbiol.* 38, 84–88.

WHO (2017). Global Priority List of Antibiotic-Resistant Bacteria to Guide Research, Discovery, and Development of New Antibiotics. World Health Organization Available online at: http://www.who.int/medicines/publications/global-priority-list-antibiotic-resistant-bacteria/en (Accessed July 09, 2017).

Woodford, N., Fagan, E. J., and Ellington, M. J. (2006). Multiplex PCR for rapid detection of genes encoding CTX-M extended-spectrum β-lactamases. *J. Antimicrob. Chemother.* 57, 154–155. doi: 10.1093/jac/dki412

Woodford, N., Tierno, P. M., Young, K., Tysall, L., Palepou, M. F., Ward, E., et al. (2004). Outbreak of *Klebsiella pneumoniae* producing a new carbapenem-hydrolyzing class A β-lactamase, KPC-3, in a New York medical center. *Antimicrob. Agents Chemother.* 48, 4793–4799. doi: 10.1128/AAC.48.12.4793-4799.2004

Wozniak, A., Villagra, N. A., Undabarrena, A., Gallardo, N., Keller, N., Moraga, M., et al. (2012). Porin alterations present in non-carbapenemase-producing Enterobacteriaceae with high and intermediate levels of carbapenem resistance in Chile. *J. Med. Microbiol.* 61(Pt 9), 1270–1279. doi: 10.1099/jmm.0.045799-0

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2018 Carrasco-Anabalón, Vera-Leiva, Quezada-Aguiluz, Morales-Rivera, Lima, Fernández, Ulloa, Domínguez, González-Rocha and Bello-Toledo. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.