The Fe–V Cofactor of Vanadium Nitrogenase Contains an Interstitial Carbon Atom

Julian A. Rees, Ragnar Bjornsson, Julia Schlesier, Daniel Sippel, Oliver Einsle, and Serena DeBeer*

Abstract: The first direct evidence is provided for the presence of an interstitial carbide in the Fe–V cofactor of Azotobacter vinelandii vanadium nitrogenase. As for our identification of the central carbide in the Fe–Mo cofactor, we employed Fe K\textsubscript{β} valence-to-core X-ray emission spectroscopy and density functional theory calculations, and herein report the highly similar spectra of both variants of the cofactor-containing protein. The identification of an analogous carbide, and thus an atomically homologous active site in vanadium nitrogenase, highlights the importance and influence of both the interstitial carbide and the identity of the heteroatom on the electronic structure and catalytic activity of the enzyme.

The biological fixation of atmospheric dinitrogen (N\textsubscript{2}) to ammonium ions is exclusively promoted by nitrogenases (N\textsubscript{2}ases), multicomponent metalloenzymes that occur in diazotrophic bacteria and archaea.[1–2] These enzymes utilize highly complex Fe–S clusters to effect N\textsubscript{2} reduction, and in the case of the more widely studied Mo-dependent N\textsubscript{2}ase, the redox centers of the protein have been characterized by X-ray crystallography.[3] The active-site-containing MoFe protein, an αβ\textsubscript{2} heterotetramer, uses an [8Fe–7S] cluster (P-cluster) as an electron-transfer relay, and the [Mo–7Fe–9S–C] Fe–Mo cofactor (FeMoco) as the catalytic site of N\textsubscript{2} reduction (Figure 1). Despite the identification of an interstitial light atom at the center of FeMoco in 2002,[4] it was not until 2011 that the identity of the so-called “X” atom was definitively shown to be carbon by a combination of high-resolution X-ray crystallography, pulsed electron paramagnetic resonance (EPR) spectroscopy,[5] and Fe K\textsubscript{β} valence-to-core (VIC) X-ray emission spectroscopy (XES).[5]

This fully valent carbide, ligated by six Fe atoms, is unprecedented and unique in biology. Genetic, spectroscopic, and isotopic radiolabeling experiments have determined the source of this carbon atom to be a radical S-adenosylmethionine (SAM), and have shown that the C atom is inserted into the cofactor through methyl group transfer in the cofactor assembly protein NifB.[6,7] The effect of this carbide ion on the electronic structure of the cofactor, and its role in promoting N\textsubscript{2} reduction, is still unknown.

Vanadium was first discovered as a promoter of nitrogen fixation in 1933,[8] and subsequently a V-dependent N\textsubscript{2}ase was identified in 1986.[9] In contrast to the well-characterized Mo N\textsubscript{2}ase, relatively little is known about the V N\textsubscript{2}ase despite nearly 30 years of research. At ambient conditions the enzyme is a much poorer nitrogen fixation catalyst than the Mo analogue, capable of N\textsubscript{2} reduction at a rate of only 660 nmol mg-1 N\textsubscript{2}ase min-1 compared to 1040 nmol mg-1 N\textsubscript{2}ase min-1 for the Mo N\textsubscript{2}ase in the A. vinelandii system.[10]

Furthermore, the V N\textsubscript{2}ase requires 4 more reducing equivalents, an additional 24 adenosine triphosphate (ATP) molecules per turnover, and has a significantly lower turnover number (112) than Mo N\textsubscript{2}ase (2230).[11]

Supporting information for this article is available on the WWW under http://dx.doi.org/10.1002/anie.201505930.

© 2015 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA. This is an open access article under the terms of the Creative Commons Attribution Non-Commercial NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.
In 2010 it was shown that in addition to N₂ reduction, the V N₄ase can perform reductive C–C bond coupling using CO and protons.[12] Intriguingly, it also does so at roughly 700 times the activity of the native Mo N₄ase.[13] Engineered Mo N₄ases have been shown to catalyze CO reduction as well, and at rates comparable to V N₄ase, albeit with the loss of N₂ reduction ability.[14,15] The dramatic differences in the reactivity of these enzymes, and the ability of the vanadium enzyme to promote Haber–Bosch and Fischer–Tropsch chemistry at ambient conditions, has led to renewed interest in understanding the differences between the active-site cofactors in the Mo and V N₄ases.

The atomic structure of the V N₄ase protein is not known. Instead, the available structural information on the protein and its redox centers has come from spectroscopic and genetic studies. The latter have shown that while the two N₄ases share common precursors in their biosynthetic pathways, including the nifB gene responsible for radical SAM-dependent carbon insertion, distinct genetic factors promote final cofactor maturation.[16] Additionally, the V N₄ase protein contains additional δ subunits, where n = 2 or 4 depending on the species.[17,18]

Much of the spectroscopic data collected on V N₄ase has also indicated substantial differences from Mo N₄ase. As early as 1987, Arber et al. and George et al. independently reported vanadium extended X-ray absorption fine structure (EXAFS) data indicating that the V atom, in contrast to expected changes based on periodic trends, was more displaced from the remainder of the cofactor than the Mo atom.[19,20] More recent studies employing Fe X-ray absorption spectroscopy (XAS), EXAFS, and EPR spectroscopy have also shown marked differences in the electronic structures of the V N₄ase metallocofactors. These differences are significant enough to prompt the authors to interpret their data as indicating the presence of a cubically symmetric Fe–V cofactor (FeVco) and two separated [4Fe–4S] clusters in place of the trigonal FeMo cofactor and fused P-cluster shown in Figure 1.[18,21–23] Despite this, some recent reports have shown graphical models of the redox centers of the V N₄ase as being structurally analogous to those of Mo N₄ase known from X-ray crystallography, in contradiction to the published data.[24,25] No direct evidence for an analogous cofactor structure has been presented in support of such models. This has led to the somewhat widespread belief that the structure of FeVco is identical to FeMoco, and that similarities in atomic composition and geometry are a foregone conclusion.

In an effort to provide more definitive evidence for the structure of FeVco, we report herein the Fe Kβ VtC XES spectrum of the VFe protein of A. vinelandii N₄ase (Figure 2). We have also concomitantly re-measured the analogous spectrum of the MoFe protein, and note that the Kβ’ feature at approximately 7100 eV, previously shown to be indicative of fluorescent emission from the 2s atomic orbital of the central carbide in FeMoco, is identically placed in the spectrum of VFe. Additionally, the difference spectrum shows only minute deviations in the intensities and energies in all spectral regions.

We have previously shown that the energy of the distinctive Kβ’ peak in FeMoco is inconsistent with any interstitial light atom besides carbon, and that in the absence of such a carbon atom, for example in the P-cluster, the intensity of the Kβ’ feature is significantly diminished.[5] Given the virtually identical VtC spectra of the MoFe and VFe proteins, we believe these data strongly indicate the presence of an analogous interstitial carbide in FeVco, thereby providing, to our knowledge, the first direct evidence for a structurally homologous cofactor in the V N₄ase.

To provide additional support for this conclusion, we have performed density functional theory (DFT) calculations on large, 225-atom models of both cofactors, based on the published crystal structure of MoFe. The FeMoco model was previously utilized in our report on the determination of the Mo(IV) oxidation state in FeMoco,[20] and the FeVco model was calculated as being isostructural and valence isoelectronic (see the Experimental Section for details). Our optimized structure of the FeVco active-site model results in a Fe–Fe distance that is 0.11 Å longer than the Mo–Fe distances in the optimized structure of FeMoco, in reasonably good agreement with experimental metrical parameters from EXAFS (0.08 Å longer).[20] VtC XES spectra were calculated within a one-electron approximation, and the averages of the spectral contributions from all cofactor Fe atoms are presented in Figure 3.

The calculations, like the experimental results, show strikingly similar spectra in both the Kβ(3,4) and Kβ’ regions, where the latter is dominated by S 3s and C 2s contributions and the former by S 3p contributions. The subtle differences in the calculated spectra are highlighted by a difference spectrum, which again agrees well with experiment. In particular, the derivative shape under the Kβ(3,4) peak is reproduced by the calculations and may be attributed to the sulfur 3p orbitals being shifted to slightly higher energy in FeVco than in FeMoco. We caution, however, that because of
the limited experimental resolution, a more quantitative analysis is not possible. Nonetheless, these spectra clearly establish the presence of a carbide in FeVco. A more detailed study of the electronic structural differences will likely require higher resolution spectroscopies (such as high-resolution (HERFD) XAS)\(^\text{[28]}\) and will be the topic of future studies in our laboratories.

The present work takes an initial step toward directly defining the structure of FeVco. The presence of a second biological cofactor with an interstitial carbide has now been experimentally established. With this finding, we have laid the groundwork for more focused studies aimed at understanding how perturbations to electronic structure, likely engendered by the heterometal, differentially tune these remarkable enzymes, enabling reactions as diverse as N\(_2\) activation and C–C bond coupling under ambient conditions.

Experimental Section

Cell growth and protein purification: MoFe protein of N\(_\text{ase}\) was produced and isolated following established procedures\(^\text{[26]}\). To obtain the VFe protein, *Azotobacter vinelandii* (Lipmann 1903, ATCC 478) was cultured in molybdenum-free Burke medium\(^\text{[28]}\) under nitrogen-limited conditions. The production of vanadium N\(_\text{ase}\) was monitored by activity assays.\(^\text{[29]}\) All purification steps were performed under strict exclusion of dioxygen, using an anaerobic chamber or modified Schlenk techniques. Cells were disrupted using an Avonest Emulsiflex at a pressure of 1000–1500 bar, and cell debris was separated by centrifugation. The supernatant was loaded onto a 5 mL HiTrap Q HP column equilibrated with 50 mM Tris/HCl buffer at pH 7.4. VFe protein eluted in a linear gradient of 0 to 500 mM NaCl. Pure protein was obtained after an additional size-exclusion step on a 26/60 Superdex 200 gel filtration column (GE Healthcare).

X-ray spectroscopy: Fe K\(\beta\) X-ray emission spectroscopy (XES) experiments were performed at beamline ID-26 at the European Synchrotron Radiation Facility (ESRF) in Grenoble, France. Incident photon energy was 7800 eV, selected using a Si(111) double crystal monochromator. Photon flux at the sample was approximately 1 × 10\(^3\) photons sec\(^{-1}\), with a maximum ring current of 200 mA and a ring energy of 6.03 GeV. The beam spot size on the sample was 0.1 mm × 1 mm. Protein samples were in aqueous solution at approximately 100 mg/mL, loaded in Delrin cells sealed with 38 μm Kapton tape and maintained at 10 K during measurements using a liquid He cryostat. Fe K\(\beta\) X-ray emission was analyzed with a Johann-type spectrometer, using five spherically bent Ge(620) crystals in a Rowland geometry, as described previously\(^\text{[30]}\) and detected using a dead-time-corrected Ketek Si drift diode detector. To determine the acceptable dwell time per sample spot, rapid Fe K\(\beta\) high-energy resolution fluorescence detected (HERFD) X-ray absorption spectra were recorded on the same sample spot, and the data examined for evidence of change during the course of sample dosing. For all XES measurements, the photon dose was well below the acceptable limit. Multiple scans on the same sample were normalized to incident flux and averaged using MATLAB. Data were referenced to the K\(\beta\)\(_\ell\) and K\(\beta\)\(_s\) features of Fe\(_{2O}\)\(_3\)\(^\text{[27]}\) and normalized to a total integrated spectral intensity of 100 by numerical integration.

Density functional theory calculations: All calculations were performed using the ORCA program package developed by Neese and co-workers.\(^\text{[31]}\) 225 atom model clusters of FeMoco and FeVco active sites were based on the X-ray structure of MoFe protein\(^\text{[18]}\) and were TPSSh-optimized using our previously reported procedure.\(^\text{[26]}\) Charges on the metal clusters were –1 for FeMoco ([MoFe\(_3\)S\(_3\)C\(_3\)])\(^–\) and –2 for FeVco ([VFe\(_3\)S\(_2\)C\(_2\)])\(^–\), to maintain a valence isoelectronic configuration and a spin of S = 3/2. We note that other cofactor charges are conceivable, however our previous studies have shown that V\(_2\)C spectra are relatively insensitive to changes in cofactor charge\(^\text{[32]}\) and thus we have not considered them here. Analogous broken-symmetry solutions were found. Valence-to-core XES spectra were calculated within a one-electron approximation implemented in ORCA as described in Ref.\(^\text{[27]}\). These calculations used the BP86 functional\(^\text{[33,34]}\) and the DKH relativistic approximation\(^\text{[35–37]}\) with DKH-recontracted def2-TZVP triple-zeta basis sets\(^\text{[38,39]}\) and the COSMO dielectric model (\(\varepsilon = 4\))\(^\text{[40]}\).

Acknowledgements

This work was supported by the European Research Council (ERC) under the European Union’s Seventh Framework Programme (FP/2007–2013) ERC Grant Agreement number 615414 (S.D.) and the ERC N-ABLE project (O.E.). Funding was also provided by the Deutsche Forschungsgemeinschaft grants EI-520/7 and RTG1976 (O.E.). J.A.R. is supported by a graduate fellowship of the Max-Planck-Gesellschaft (S.D.). J.A.R. is supported by a graduate study scholarship from the Deutscher Akademischer Aus tauschdienst. The ESRF is also acknowledged for providing beamtime, and Dr. Sara Lafuerza and Dr. Pieter Glatzel at beamline ID-26 are thanked for technical assistance with measurements.

Keywords: cofactors · nitrogen fixation · nitrogenases · vanadium · X-ray spectroscopy

How to cite: Angew. Chem. Int. Ed. 2015, 54, 13249–13252
Angew. Chem. 2015, 127, 13447–13450

1. B. K. Burgess, Chem. Rev. 1990, 90, 1377.
2. L. C. Seeffeldt, B. M. Hoffman, D. R. Dean, Annu. Rev. Biochem. 2009, 78, 701.
3. T. Spatzal, M. Aksoyoglu, L. Zhang, S. L. A. Andrade, E. Schleicher, S. Weber, D. C. Rees, O. Einsle, Science 2011, 334, 940.
[4] O. Einsle, F. A. Tezcan, S. L. A. Andrade, D. C. Rees, *Science* 2002, 297, 1696.

[5] K. M. Lancaster, M. Roemelt, P. Ettenhuber, Y. Hu, M. W. Ribbe, F. Neese, U. Bergmann, S. DeBeer, *Science* 2011, 334, 974.

[6] J. A. Wig, Y. Hu, C. C. Lee, M. W. Ribbe, *Science* 2012, 337, 1672.

[7] K. M. Lancaster, Y. Hu, U. Bergmann, M. W. Ribbe, S. DeBeer, *J. Am. Chem. Soc.* 2013, 135, 610.

[8] H. Bortels, *Zentralbl. Bakteriol. Abt. II* 1933, 87, 476.

[9] R. L. Robson, R. R. Eady, T. H. Richardson, R. W. Miller, M. Hawkins, J. R. Postgate, *Nature* 1986, 322, 388.

[10] B. J. Hales, E. E. Case, J. E. Morningstar, M. F. Dzeda, L. A. Mauterer, *Biochemistry* 1986, 25, 7251.

[11] G. S. Stacey, R. H. Burris, H. J. Evans, *Biological Nitrogen Fixation*, Chapman & Hall, New York, 1992.

[12] J. A. Wiig, Y. Hu, C. C. Lee, M. W. Ribbe, *Science* 2012, 337, 1672.

[13] K. M. Lancaster, Y. Hu, U. Bergmann, M. W. Ribbe, S. DeBeer, *J. Am. Chem. Soc.* 2013, 135, 610.

[14] H. Bortels, *Zentralbl. Bakteriol. Abt. II* 1933, 87, 476.

[15] R. L. Robson, R. R. Eady, T. H. Richardson, R. W. Miller, M. Hawkins, J. R. Postgate, *Nature* 1986, 322, 388.

[16] B. J. Hales, E. E. Case, J. E. Morningstar, M. F. Dzeda, L. A. Mauterer, *Biochemistry* 1986, 25, 7251.

[17] G. S. Stacey, R. H. Burris, H. J. Evans, *Biological Nitrogen Fixation*, Chapman & Hall, New York, 1992.

[18] J. A. Wiig, Y. Hu, C. C. Lee, M. W. Ribbe, *Science* 2012, 337, 1672.