Incorporation of Indoylated Phenylalanine Yields a Sub-Micromolar Selective Melanocortin-4 Receptor Antagonist Tetrapeptide

Mark D. Ericson, Courtney M. Larson, Katie T. Freeman, Lennart Nicke, Armin Geyer, and Carrie Haskell-Luevano*

ABSTRACT: The melanocortin family is involved in many physiological functions, including pigmentation, steroidogenesis, and appetite. The centrally expressed melanocortin-3 and melanocortin-4 receptors (MC3R and MC4R) possess overlapping but distinct roles in energy homeostasis. Herein, the third and fourth positions of a tetrapeptide lead compound [Ac-Arg-Arg-(pI)DPhe-Tic-NH$_2$], previously reported to possess MC3R agonist and MC4R antagonist activities, were substituted with indoylated phenylalanine (Wsf/Wrf) residues in an attempt to generate receptor subtype selective compounds. At the third position, D-amino acids were required for melanocortin agonist activity, while both L- and D-residues resulted in MC4R antagonist activity. These results indicate that L-indoylated phenylalanine residues at the third position of the scaffold can generate MC4R over MC3R selective antagonist ligands, resulting in a substitution pattern that may be exploited for novel MC4R ligands that can be used to probe the in vivo activity of the MC4R without involvement of the MC3R.

INTRODUCTION

The five known melanocortin receptors are involved in numerous biological pathways, including skin and hair pigmentation, steroidogenesis, and exocrine gland function in rodents. These receptors are stimulated by endogenous agonists derived from the proopiomelanocortin gene transcript and are inhibited by two naturally occurring agonists, agouti and agouti-related protein. The centrally expressed melanocortin-3 and melanocortin-4 receptors (MC3R and MC4R, respectively) are both involved in energy homeostasis, with agonist ligands to these receptors suppressing appetite, while administration of antagonist compounds increases food intake. Due to the increased food consumption and body weight observed following insufficient MC4R signaling in rodents and humans, potent and selective MC4R compounds have been developed, including IMCIVREE, an MC4R agonist peptide approved to treat obesity resulting from select genetic signaling deficiencies upstream of the MC4R. The role of the MC3R is less clear. Whereas MC4R knockout (KO) mice were shown to be hyperphagic and possessed increased weight compared to littermate controls, MC3R KO mice possess similar body weight to littermate controls. Although of similar weight, MC3R KO mice possess higher fat mass and lower lean mass, compared to wildtype littermates, the MC3R also plays a role in appetite.

Administration of the MC3R/MC4R antagonist AGRP into wildtype (intact MC3R/MC4R), MC4R KO (intact MC3R), and MC3R KO (intact MC4R) mice resulted in a dose-dependent increase in food intake, with significant differences compared to saline injection out to at least 7 days post-administration. Thus, although much research focus has been on the MC4R, the MC3R remains a viable target for altering appetite and fat storage as a potential treatment strategy to assist in weight-loss treatments. As the MC3R has also been postulated to be involved in growth and onset of puberty, developing selective ligands for the melanocortin receptors will help to probe the contributions of the different receptor subtypes to a variety of physiological effects.

An unbiased method for identifying novel MC3R agonist ligands via a mixture-based positional scan observed that compared to the canonical melanocortin agonist tetrapeptide sequence Ac-His-DPhe-Arg-Trp-NH$_2$, inverting DPhe and Arg resulted in MC3R agonist ligands with MC4R antagonist pharmacology. Among the most potent of these tetrapeptide
agonist compounds (TACO) was Ac-Arg-Arg-(pL)DPhe-Tic-NH₂27, possessing 16 nM agonist potency at the MC3R and an antagonist pA₂ value of 7.8 (corresponding to an antagonist Kᵢ value of 16 nM) at the MC4R.27 Another group found that intracerebroventricular (icv) administration of this compound (5 μg) in male mice resulted in a statistically significant increase in food intake at 4, 6, and 24 h compared to the artificial cerebrospinal fluid vehicle control.25 Administration of this compound in MC3R KO mice resulted in no significant difference in food intake at 1, 2, 4, and 24 h compared to the vehicle.25 As MC3R KO mice have intact MC4R, these data may suggest that the MC3R agonism is responsible for the increase in food intake compared to the MC4R antagonism. However, administration of the melanocortin agonist ligands Ac-His-DPhe-Arg-Trp-NH₂ and MTII in MC4R KO mice (with intact MC3R) resulted in a decrease in food intake, implying that administration of MC3R agonists decreases food intake. As compensatory mechanisms for feeding develop in mice, the development of selective ligands that modulate one receptor member within a closely related family such as the melanocortin receptors would help elucidate the contributions of the individual receptors.

One way to improve the pharmacological activity and/or selectivity of a peptide is to restrict the rotational flexibility of the amino acid side chains.30 Exploring χ-space may indicate the orientation of a sidechain required for receptor interaction. While this can be done by adding methyl groups to the β-carbon of amino acid side chains, recent advancements have installed indole moieties on the side chain of aromatic phenyl groups, which both restricts the rotational flexibility of both aromatic groups and adds steric bulk that may generate new interactions with the receptors.33–35 The Fmoc-protected versions of these amino acids (Fmoc-Wsf-OH, Fmoc-Wrf-OH, Fmoc-wsf-OH, and Fmoc-wrf-OH) were obtained on a gram scale, according to published protocols.33 For these amino acids, the first letter denotes L- or D-tryptophan (W or w, respectively), the second denotes either R- or S-stereochemistry of Cβ, and the third letter denotes phenylalanine, as previously published.33,35 The lead TACO compound, previously identified to have pharmacologically relevant in vivo results, has two phenyl-derived groups [(pL)DPhe and Tic]. Due to the different interactions of this compound with the MC3R (agonist) and MC4R (antagonist), it was hypothesized that introduction of rotationally restricted Phe derivatives at the (pL)DPhe and Tic positions may lead to ligands with enhanced selectivity for one receptor over the other due to the side-chain orientation and added bulk of the indole group.

Herein, eight peptides derived from the TACO scaffold [Ac-Arg-Arg-(pL)DPhe-Tic-NH₂] were synthesized, individually substituting indoylated Phe amino acids (Figure 1 and Table 1) at the third and fourth positions. Compounds were synthesized with standard Fmoc chemistries,30,35 purified to greater than 95% purity, and characterized by mass spectral analysis (Table 1, University of Minnesota’s Mass Spectrometry Lab). Purified peptides were pharmacologically characterized at the mouse (m)MC1R, mMC3R, mMC4R, and mMC5R, utilizing the commercially available AlphaScreen cAMP assay. Since the MC2R is only stimulated by ACTH,38 it was excluded from this study. Ligands that did not stimulate the receptors to at least 20% of the maximal NDP-MSH signal were considered inactive. Compounds that did not stimulate the receptor to greater than 50% activity of NDP-MSH were then assayed as antagonists, utilizing NDP-MSH as the agonist in a Schild antagonist paradigm.39 Since the AlphaScreen kit is a loss-of-signal assay, the pharmacology curves were normalized for illustrative purposes.

RESULTS AND DISCUSSION

The parent compound in this series (1) was a full agonist at the mMC1R, mMC3R, and mMC5R (EC₅₀ = 0.18, 10, and 7 nM, respectively; Table 2 and Figure 2) and was a nanomolar potent mMC4R antagonist (pA₂ = 8.1). These values are similar to the original pharmacological characterization values for this peptide, where agonist EC₅₀ values of 0.51, 16, and 8.8 nM were reported for the mMC1R, mMC3R, and mMC5R, respectively.27 This compound was also reported to be an mMC4R antagonist, with a pA₂ value 7.8,21 similar to the 8.1 value reported herein.

Ligands possessing an indoylated L-phenylalanine stereochemistry at the fourth position were partial (2) or full (3, Figure 2) agonists at the mMC1R, mMC3R, and mMC5R and were micromolar to sub-micromolar potent antagonists at the mMC4R. Compound 2, with 50% efficacy at the mMC3R, was also a sub-micromolar potent antagonist at this receptor (pA₂ = 6.2). Tetrapeptides with an indoylated D-phenylalanine substitution at the fourth position (4 and 5) possessed functional activities similar to the L derivatives, with full to partial agonist activity at the mMC1R and mMC3R. While compound 4 was a full agonist at the mMC5R, tetrapeptide 5 partially activated the receptor at the highest concentration assayed (60% maximal NDP-MSH signal at 100 μM concentrations, Figure 2). Both 4 and 5 also possessed micromolar mMC4R antagonist potency (pA₂ = 5.5 and 5.2, respectively). Previous studies examining similar tetrapeptides reported similar pharmacological activities at the mMC1R,
mMC3R, mMC4R, and mMC5R when the aminos Tic or DTic were substituted at the fourth position. Another study showed that substitution of the α-amino acids NaI(2’) or DNal(2’) at the fourth position of the Ac-Arg-Arg-(pI)DPhe-XXX scaffold resulted in similar agonist potencies at the mMC1R and mMC5R and similar antagonist potencies at the mMC4R, and both could interact with MC3R, although a DNal(2’) substitution resulted in agonist activity and NaI(2’) substitution possessed antagonist activity. The results support the present study that indicates that the fourth position within the scaffold can tolerate both L and D isomers, although the decreased potencies without corresponding gains in selectivity suggest that additional stereochemical bulk was not beneficial in ligand design.

Compared to the fourth position, the stereochemistry of the third substitution was critical for agonist activity. Tetrapeptide 6, possessing the indolyated L-phenylalanine Wsf, possessed minimal partial agonism at the mMC1R (20% maximal NDP-MSH signal), did not stimulate the mMC3R, mMC4R, and mMC5R at concentrations up to 100 μM, and was a micromolar potent mMC1R and mMC4R antagonist (pA2 = 5.9 and 5.2, respectively). The other indolyated L-phenylalanine derivative at the third position (7) did not stimulate the melanocortin receptors assayed at the concentrations assayed (Figure 2), possessed micromolar to sub-micromolar antagonist potencies at the mMC1R (pA2 = 5.4 and mMC4R (pA2 = 6.1), and did not antagonize the mMC3R and mMC5R (Figure 3). Compounds substituted with indolyated L-phenylalanine at the third position (8 and 9) possessed partial agonist activity at the mMC1R, mMC3R, and mMC5R (with compound 8 possessing full agonist efficacy at the mMC5R), and both were micromolar potent antagonists at the mMC4R (pA2 = 5.7 and 5.5 for 8 and 9, respectively). The stereochemistry at this position within the scaffold has not previously been explored, with prior reports always utilizing a D-amino acid. The original mixture-based positional scan identified (pCl)DPhe and (pI)DPhe as the substitutions at the third position with the highest percentage activity in the initial screening (20 and 26%, respectively) for mMC3R activity, with minimal MC3R activity reported for the (pCl)Phe and (pI)Phe L-isomers (2 and −1%, respectively). The data herein supports the mixture-based positional scan results of the importance of D-stereochemistry at the third position for melanocortin agonism within this scaffold.

Although D-stereochemistry is critical for agonism, both L- and D-isomers are tolerated at the third position for MC4R antagonism. Compound 7, containing the Wsf substitution at the third position, possessed sub-micromolar potent mMC4R antagonism (pA2 = 6.1) and was inactive at the mMC3R, at the assayed agonist and antagonist concentrations, resulting in at least a 10-fold mMC4R over mMC3R selective ligand. Compared to the lead compound 1, 7 was 100-fold less potent as an mMC4R antagonist and more than 10,000-fold less potent as an agonist at the mMC3R, suggesting that this substitution may be useful in the development of MC4R antagonists from this scaffold that lacks MC3R activity. Increased MC4R antagonist potency may be gained by additional structure–activity studies, potentially resulting in useful in vivo probe compounds.

While the indolyated phenylalanine amino acids were incorporated to fix the axis of rotation of the phenylalanine side-chain, the incorporation of the indoyl group also added additional stereochemical bulk. Further studies are needed to explore if the resulting potency decreases were the result of the fixed side-chain rotation or the incorporation of the bulky indole group. Incorporating amino acids with methyl groups added to the β-carbon of Phe and Trp could be used to address this question.

CONCLUSIONS

In conclusion, L- and D-indolyated phenylalanine amino acids were substituted at the third and fourth positions of a previously identified tetrapeptide scaffold [Ac-Arg-Arg-(pI)DPhe-Tic-NH2] possessing mMC3R agonism and mMC4R antagonism in an attempt to generate ligands with receptor sub-type selectivity. In agreement with prior reports, both L- and D-amino acids were tolerated at the fourth position, albeit with decreased potency relative to the parent ligand. At the third position, D-amino acids were required for agonist activity at the mMC1R, mMC3R, and mMC5R. In contrast, both L- and D-indolyated phenylalanine resulted in mMC4R antagonism, indicating a potential motif that can generate mMC4R antagonist ligands within the parent scaffold. Such MC4R-selective ligands may be useful as in vivo probe ligands to investigate the physiological functions of the different melanocortin receptors.

METHODS

Peptide Synthesis. Peptides were synthesized by standard Fmoc chemistry. Unless otherwise specified, amino acids, 4-(2′,4′-dimethoxyphenyl)-Fmoc-aminoethyl) phenoxyacetyl MBHA (Rink Amide MBHA) resin, and coupling reagent 2-

Table 1. Analytical Characterization Data for the Tetrapeptides Synthesized in This Study

Peptide	Compound ID	Sequence	k’ (MeCN)	k’ (MeOH)	M (Calc)	M + H (Obs)	Purity
DMD-40	Ac-Arg-Arg-(pI)DPhe-Tic-NH2	7.0	11.4	803.3	804.3	>98%	
COR7-11	Ac-Arg-Arg-(pI)DPhe-Wsf-NH2	7.7	11.4	906.3	907.7	>97%	
COR7-25	Ac-Arg-Arg-(pI)DPhe-Wrf-NH2	8.5	12.4	906.3	907.7	>98%	
COR7-18	Ac-Arg-Arg-(pI)DPhe-wsf-NH2	6.9	11.1	906.3	907.7	>96%	
COR7-32	Ac-Arg-Arg-(pI)DPhe-wrf-NH2	6.9	11.3	906.3	907.7	>96%	
COR7-39	Ac-Arg-Arg-Wsf-Tic-NH2	6.5	10.3	792.4	793.5	>95%	
COR7-119	Ac-Arg-Arg-Wsf-Tic-NH2	6.7	10.6	792.4	793.5	>96%	
COR7-126	Ac-Arg-Arg-wsf-Tic-NH2	7.0	10.6	792.4	793.5	>96%	
COR7-133	Ac-Arg-Arg-wrf-Tic-NH2	7.9	12.7	792.4	793.5	>95%	

“HPLC k’ = [(peptide retention time—solvent retention time)/solvent retention time] in MeCN (10% acetonitrile in 0.1% trifluoroacetic acid and a gradient to 90% acetonitrile over 35 min) or MeOH (10% methanol in 0.1% trifluoroacetic acid/water and a gradient to 90% methanol over 35 min). An analytical Vydac C18 column (Vydac 218TP104) was used with a flow rate of 1.5 mL/min. The peptide purity was determined by HPLC at a wavelength of 214 nm.”

http://pubs.acs.org/journal/acsodf
Table 2. Tetrapeptide Pharmacology at the Mouse Melanocortin Receptors

Peptide	Compound ID	Sequence	mMC1R	pA2	mMC3R	pA2	mMC4R	pA2	mMC5R	pA2
NDP-MSH			EC₅₀ (nM)	pA₂						
1	MDE7-40	Ac-Arg-Arg-(pI)DPhe-Tic-NH₂	0.013 ± 0.002	0.16 ± 0.02	0.68 ± 0.06	0.26 ± 0.06				
2	COR7-11	Ac-Arg-Arg-(pI)DPhe-Wsf-NH₂	0.18 ± 0.04	10 ± 2	25% @ 100 μM	8.1 ± 0.1	7 ± 1			
3	COR7-25	Ac-Arg-Arg-(pI)DPhe-Wrf-NH₂	380 ± 90	partial agonist 260 ± 50 80% NDP-MSH	partial agonist 2400 ± 500 50% NDP-MSH	6.2 ± 0.1				
4	COR7-18	Ac-Arg-Arg-(pI)DPhe-wsf-NH₂	210 ± 40	570 ± 80	partial agonist 900 ± 100 75% NDP-MSH	40% @ 100 μM	6.0 ± 0.1	240 ± 60		
5	COR7-32	Ac-Arg-Arg-(pI)DPhe-wrf-NH₂	partial agonist 1400 ± 200 65% NDP-MSH	partial agonist 5700 ± 200 70% NDP-MSH	>100,000	5.2 ± 0.2	60% @ 100 μM			
6	COR7-39	Ac-Arg-Arg-Wsf-Tic-NH₂	partial agonist 6700 ± 1500 20% NDP-MSH	5.9 ± 0.2	>100,000	<5.0	>100,000	5.2 ± 0.1	>100,000	<5.0
7	COR7-119	Ac-Arg-Arg-Wrf-Tic-NH₂	>100,000	5.4 ± 0.1	>100,000	<5.0	>100,000	6.1 ± 0.1	>100,000	<5.0
8	COR7-126	Ac-Arg-Arg-wsf-Tic-NH₂	partial agonist 900 ± 200 60% NDP-MSH	partial agonist 800 ± 100 80% NDP-MSH	>100,000	5.7 ± 0.2	350 ± 40			
9	COR7-133	Ac-Arg-Arg-wrf-Tic-NH₂	partial agonist 210 ± 30 80% NDP-MSH	partial agonist 2700 ± 500 60% NDP-MSH	30% @ 100 μM	5.5 ± 0.1	partial agonist 3200 ± 400 55% NDP-MSH			

The indicated errors represent the standard error of the mean determined from at least three independent experiments. The percentage denotes the percentage maximal stimulatory response (compared to NDP-MSH) observed at 100 μM, but not enough stimulation was observed to determine an EC₅₀ value. The use of >100,000 indicates that the compound was examined but lacked agonist activity at concentrations up to 100 μM in at least two independent experiments. Antagonist pA₂ values were determined using a Schild analysis and the agonist NDP-MSH. The use of <5.0 indicates that no antagonist potency was observed in the highest concentration range assayed (10,000, 5,000, 1,000, and 500 nM). Tetrapeptides-labeled partial agonists were observed to possess partial agonist activity (an observable sigmoidal dose–response curve that plateaus at an efficacy below that of the NDP-MSH standard), with the apparent EC₅₀ values and percentage of receptor activation relative to NDP-MSH.
(1-H-benzotriazol-1-yl)-1,1,3,3-tetramethyluronium hexafluorophosphate (HBTU) were purchased from Peptides International (Louisville, KY). The indoylated amino acids were synthesized as previously described.33,35 The Fmoc-Tic-OH amino acid was purchased from Synthetech (Albany, OR), and the Fmoc-(pI)DPhe-OH residue was purchased from Alfa Aesar (Tewksbury, MA). Dichloromethane (DCM), methanol (MeOH), acetonitrile, dimethylformamide (DMF), and anhydrous ethyl ether were obtained from Fisher (Fair Lawn, NJ). Trifluoroacetic acid (TFA), dimethyl sulfoxide (DMSO), triisopropylsilane (TIS), N,N-diisopropylethylamine (DIEA), and 1-[bis(dimethylamino)methylene]1H-1,2,3-triazol[4,5-b]pyridinium 3-oxide hexafluorophosphate piperidine (HATU) were purchased from Sigma-Aldrich (St. Louis, MO). All reagents and chemicals were ACS grade or better and were used without further purification.

The syntheses of Fmoc-Wsf-OH and Fmoc-Wrf-OH have previously been described.33 Fmoc-wrf-OH was obtained as described in Scheme 4 in ref 33. Fmoc-wsf-OH was obtained as described in Scheme 5 in ref 33.

\((2R,3R)-2-(((9H-Fluoren-9-yl)methoxy)carbonyl)amino)-3-(1-(tert-butoxycarbonyl)-1H-indol-3-yl)-3-phenylpropanoic Acid (Fmoc-wrf-OH).\) 1H-NMR (250 MHz, DMSO-\(d_6\)) : \(\delta\) 12.52 (s, 1H), 8.14 (d, \(J = 8.6\) Hz, 1H), 7.97 (d, \(J = 7.8\) Hz, 1H), 7.85 (dd, \(J = 7.2, 2.9\) Hz, 2H), 7.75 (s, 1H), 7.56 (d, \(J = 7.2\) Hz, 1H), 7.47–7.13 (m, 13H), 7.04 (t, \(J = 7.5\) Hz, 1H), 4.89 (t, \(J = 9.9\) Hz, 1H), 4.67 (d, \(J = 10.5\) Hz, 1H), 4.48–4.34 (m, 1H), 4.23 (t, \(J = 6.9\) Hz, 1H), 1.44 (s, 9H) ppm.

\((2R,3S)-2-(((9H-Fluoren-9-yl)methoxy)carbonyl)amino)-3-(1-(tert-butoxycarbonyl)-1H-indol-3-yl)-3-phenylpropanoic Acid (Fmoc-wsf-OH).\) 1H-NMR (250

Figure 2. Illustration of the agonist pharmacology of NDP-MSH, 1, 3, 5, and 7 at the mMC1R, mMC3R, mMC4R, and mMC5R.

Figure 3. Illustration of the antagonist pharmacology of 7 at the mMC1R, mMC3R, mMC4R, and mMC5R.
MHz, DMSO-d$_6$): δ 12.69 (s, 1H), 7.99 (d, J = 8.2 Hz, 1H), 7.87 (d, J = 7.1 Hz, 3H), 7.79 (s, 1H), 7.57 (d, J = 7.6 Hz, 2H), 7.48–7.08 (m, 11H), 4.91 (t, J = 9.7, 1H), 4.65 (d, J = 10.4 Hz, 1H), 4.29–4.01 (m, 3H), 1.63 (s, 9H) ppm.

Peptides were synthesized on a Rink Amide MBHA resin (0.51 meq/g) with a manual microwave synthesizer (CEM Discover SPS). The syntheses consisted of two repeated steps: (i) removal of the resin-bound Fmoc group by a solution of 20% piperidine in DMF (1 × 2 min, rt and 1 × 4 min, 75 °C, 30 W for microwave) and (ii) coupling of the desired Fmoc-protected amino acid (3.1 equiv) using HBTU (3 equiv) and DIEA (5.1 equiv) in DMF (1 × 5 min, 75 °C, 30 W for microwave). A longer irradiation time (10 min) with increased eq of Arg (5.1), HBTU (5), and DIEA (7.1) was utilized for Arg coupling. Coupling of indoylated amino acids was performed with lower eq of the amino acid (2.1 equiv) and the coupling reagent HATU (2.0 equiv) for longer periods (1 h) at room temperature. Deprotection and coupling reactions were monitored by the ninhydrin and chloranil colorometric assays44,44 and repeated if necessary. Following the removal of the terminal Fmoc group, the N-terminal amine was capped using a 3:1 acetic anhydride/pyridine solution at room temperature for 30 min. Tetrapeptides were side-chain deprotected and cleaved from resin with a solution of 91:3:3:3 (TFA/TIPS/H$_2$O/thioanisole) for 2 h. The peptides were precipitated with ice-cold ethyl ether.

Crude peptides were purified using a Shimadzu RP-HPLC system with a UV detector and a semi-preparative RP-HPLC C18-bonded silica column (Vydac 218TP1010, 1.0 × 25 cm). Analytical RP-HPLC using a Shimadzu system equipped with a photodiode array detector and C18 silica column (Vydac 218TP104, 0.46 × 25 cm) in two unique solvent systems (acetonitrile and methanol) was used to assess peptide purity (≥95% pure). The correct average molecular mass was verified by ESI-TOF MS (Bruker BioTOF II, University of Minnesota Mass Spectrometry Lab).

cAMP AlphaScreen Bioassay. Peptide ligands were dissolved in DMSO at a stock concentration of 10$^{-2}$ M and were characterized pharmacologically using HEK293 cells stably expressing the mouse MC1R, MC3R, MC4R, and MC5R by the cAMP AlphaScreen assay (PerkinElmer), according to the manufacturer’s instructions and as previously described.46,48

Briefly, cells 70–90% confluent were dislodged with Versene (Gibco) at 37 °C and plated 10,000 cells/well in a 384-well plate (Optiplate) with 10 μL freshly prepared stimulation buffer (1X HBSS, 5 mM HEPES, 0.5 mM IBMX, 0.1% BSA, pH = 7.4) with 0.5 μg anti-cAMP acceptor beads per well. The cells were stimulated with the addition of 5 μL stimulation buffer containing peptide (a seven-point dose–response curve was used, starting at 10$^{-4}$ to 10$^{-7}$ M, determined by ligand potency) or forskolin (10$^{-4}$ M) and incubated in the dark at room temperature for 2 h.

Following stimulation, streptavidin donor beads (0.5 μg) and biotinylated-cAMP (0.62 μmol) were added to the wells in a subdued light environment with 10 μL lysis buffer (5 mM HEPES, 0.3% Tween-20, 0.1% BSA, pH = 7.4), and the plates were incubated in the dark at room temperature for an additional 2 h. Plates were read on an Enspire (PerkinElmer) Alpha-plate reader using a pre-normalized assay protocol (set by the manufacturer).

Data Analysis. The EC$_{50}$ values represent the mean of duplicate replicates obtained in three independent experiments. The EC$_{50}$ estimates and the associated standard errors (SEM) were determined by fitting the data to a nonlinear least-squares analysis using the PRISM program (version 4.0, GraphPad Inc.). The peptides were assayed as TFA salts and not corrected for the peptide content.

AUTHOR INFORMATION

Corresponding Author

Carrie Haskell-Luevano — Department of Medicinal Chemistry and Institute for Translational Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455, United States; orcid.org/0000-0002-6783-5972; Phone: 612-626-9262; Email: chaskell@umn.edu; Fax: 612-626-3114

Authors

Mark D. Ericson — Department of Medicinal Chemistry and Institute for Translational Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455, United States; orcid.org/0000-0002-8715-6010

Courtney M. Larson — Department of Medicinal Chemistry and Institute for Translational Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455, United States

Katie T. Freeman — Department of Medicinal Chemistry and Institute for Translational Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455, United States

Lennart Nicke — Faculty of Chemistry, Philipps-University Marburg, Marburg 35032, Germany

Armin Geyer — Faculty of Chemistry, Philipps-University Marburg, Marburg 35032, Germany

Complete contact information is available at: https://pubs.acs.org/10.1021/acsomega.2c03307

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

The work was supported by the National Institutes of Health grant R01DK123504 (C.H.-L.) and the Helmholtz Institut für Metabolismus, Adipositas und Gefäßforschung (HIMAG111) (A.G.). A.G. thanks the DFG for continuous support.

REFERENCES

1. Chhajlani, V.; Muceniece, R.; Wikberg, J. E. Molecular cloning of a novel human melanocortin receptor. Biochem. Biophys. Res. Commun. 1993, 195, 866–873.

2. Chhajlani, V.; Wikberg, J. E. Molecular cloning and expression of the human melanocyte stimulating hormone receptor cDNA. FEBS Lett. 1992, 309, 417–420.

3. Gantz, I.; Konda, Y.; Tashiro, T.; Shimoto, Y.; Miwa, H.; Munzert, G.; Watson, S. J.; DelValle, J.; Yamada, T. Molecular cloning of a novel melanocortin receptor. J. Biol. Chem. 1993, 268, 8246–8250.

4. Gantz, I.; Miwa, H.; Konda, Y.; Shimoto, Y.; Tashiro, T.; Watson, S. J.; DelValle, J.; Yamada, T. Molecular cloning, expression, and gene localization of a fourth melanocortin receptor. J. Biol. Chem. 1993, 268, 15174–15179.

5. Gantz, I.; Shimoto, Y.; Konda, Y.; Miwa, H.; Dickinson, C. J.; Yamada, T. Molecular cloning, expression, and characterization of a fifth melanocortin receptor. Biochem. Biophys. Res. Commun. 1994, 200, 1214–1220.

6. Griffon, N.; Mignon, V.; Facchinetti, P.; Diaz, J.; Schwartz, J. C.; Sokoloff, P. Molecular Cloning and Characterisation of the Rat Fifth
Melanocortin Receptor. Biochem. Biophys. Res. Commun. 1994, 200, 1007–1014.

(7) Mountjoy, K. G.; Robbins, L. S.; Mortrud, M. T.; Cone, R. D. The cloning of a family of genes that encode the melanocortin receptors. Science 1992, 257, 1248–1251.

(8) Roselli-Rehfuess, L.; Mountjoy, K. G.; Robbins, L. S.; Mortrud, M. T.; Low, M. J.; Tatro, J. B.; Entwistle, M. L.; Simerly, R. B.; Cone, R. D. Identification of a receptor for γ melanotropin and other proopiomelanocortin peptides in the hypothalamus and limbic system. Proc. Natl. Acad. Sci. U.S.A. 1993, 90, 8856–8860.

(9) Robbins, L. S.; Nadeau, J. H.; Johnson, K. R.; Kelly, M. A.; Roselli-Rehfuess, L.; Baack, E.; Mountjoy, K. G.; Cone, R. D. Pigmentation phenotypes of variant extension locus alleles result from point mutations that alter MSH receptor function. Cell 1993, 72, 827–834.

(10) Chi, D.; Nakagawa, S.; Nagei, S.; Sagara, H.; Katsumata, H.; Imaki, T.; Suzuki, H.; Mitani, F.; Ogishima, T.; Shimizu, C.; Kotaki, H.; Kukuta, S.; Sudo, K.; Koike, T.; Kubo, M.; Iwakura, Y. Melanocortin 2 receptor is required for adrenal gland development, steroidogenesis, and neonatal gluconeogenesis. Proc. Natl. Acad. Sci. U.S.A. 2007, 104, 18205–18210.

(11) Chen, W.; Kelly, M. A.; Opitiz-Araya, X.; Thomas, R. E.; Low, M. J.; Cone, R. D. Exocrine gland dysfunction in MC5-R-deficient mice: Evidence for coordinated regulation of exocrine gland function by melanocortin peptides. Cell 1997, 91, 789–798.

(12) Nakashii, S.; Inoue, A.; Kita, T.; Inoue, M.; Nakamura, A. C.; Chang, S. N.; Cohen, S.; Numa, S. Nucleotide sequence of cloned cDNA for bovine corticotropin-β-lipotropin precursor. Nature 1979, 278, 423–427.

(13) Bultman, S. J.; Michaud, E. J.; Woychik, R. P. Molecular characterization of the mouse agouti locus. Cell 1992, 71, 1195–1204.

(14) Miller, M. W.; Duhl, D. M.; Vrieling, H.; Cordes, S. P.; Ollmann, M. M.; Winkes, B. M.; Barsh, G. S. Cloning of the mouse agouti gene predicts a secreted protein ubiquitously expressed in mice carrying the lethal yellow mutation. Genes Dev. 1993, 7, 454–467.

(15) Fong, T. M.; Mao, C.; MacNeil, T.; Kalyani, R.; Smith, T.; Weinberg, D.; Tota, M. R.; Van der Ploeg, L. H. T. ART (protein product of agouti-related transcript) as an antagonist of MC3 and MC4 receptors. Biochem. Biophys. Res. Commun. 1997, 237, 629–631.

(16) Ollmann, M. M.; Wilson, B. D.; Yang, Y. K.; Kerns, J. A.; Chen, Y. R.; Gantz, I.; Barsh, G. S. Antagonism of central melanocortin receptors in vitro and in vivo by agouti-related protein. Science 1997, 278, 135–138.

(17) Shutter, J. R.; Graham, M.; Kinsey, A. C.; Scully, A. C.; Lüthy, R.; Stark, K. L. Hypothalamic expression of ART, a novel gene related to receptors in vitro and in vivo by agouti-related protein. Y. R.; Gantz, I.; Barsh, G. S. Antagonism of central melanocortin receptors in vitro and in vivo by agouti-related protein. Science 1997, 276, 631–634.

(18) Chambers, J. B.; Benoit, S. C.; Clegg, D. J.; Haskell-Luevano, C. Implication of the melanocortin-3 receptor in the regulation of food intake. Eur. J. Pharmacol. 2011, 660, 80–87.

(19) Farooqi, I. S.; Keogh, J. M.; Yeo, G. S.; Lank, E. J.; Cheetham, T.; O’Rahilly, S. Clinical spectrum of obesity and mutations in the melanocortin 4 receptor gene. N. Engl. J. Med. 2003, 348, 1085–1095.

(20) Yeo, G. S.; Farooqi, I. S.; Aminian, S.; Halsall, D. J.; Stanhope, R. G.; O’Rahilly, S. A frameshift mutation in MC4R associated with dominantly inherited human obesity. Nat. Genet. 1998, 20, 111–112.

(21) Vaisse, C.; Clement, K.; Guy-Grand, B.; Frouget, P. A frameshift mutation in human MC4R is associated with a dominant form of obesity. Nat. Genet. 1998, 20, 113–114.

(22) Lam, B. Y. H.; Williamson, A.; Finer, S.; Day, F. R.; Tadross, J. A.; Gonçalves Soares, A.; Wade, K.; Sweeney, P.; Bedenbaugh, M. N.; Porter, D. T.; Melvin, A.; Ellicott, K. L. J.; Lippert, R. N.; Buller, S.; Rossmannino-Salgado, J.; Dowsett, G. K. C.; Ridley, K. E.; Xu, Z.; Cimino, I.; Rimington, D.; Rainbow, K.; Duckett, K.; Holmqvist, S.; Khan, A.; Dau, X.; Bochukova, E. G.; Trembath, R. C.; Martin, T.; Coll, R. C.; Rowitch, H. C.; Wareham, A. P.; van Heel, D. H.; Timpson, N. J.; Simerly, D. A.; Ong, N.; Cone, R. B.; Langenberg, K. C.; Perry, R. D.; Yeo, C.; O’Rahilly, J. R. B.; Yeo, G. S.; O’Rahilly, S. MC3R links nutritional status to childhood growth and the timing of puberty. Nature 2021, 599, 436–441.

(23) Doering, S. R.; Freeman, K. T.; Schnell, S. M.; Haslach, E. M.; Dirain, M.; Debevec, G.; Geer, P.; Santos, R. G.; Giuliani, M. A.; Pinilla, C.; Appel, J. R.; Speth, R. C.; Houghten, R. A.; Haskell-Luevano, C. Discovery of mixed pharmacology melanocortin-3 agonists and melanocortin-4 receptor tetrapeptide antagonist compounds (TACOs) based on the sequence Ac-Xaa1-Arg(-p1)-DPhe-Xaa2-NH2. J. Med. Chem. 2017, 60, 4342–4357.

(24) Sweeney, P.; Bedenbaugh, M. N.; Maldonado, J.; Pan, P.; Fowler, K.; Williams, S. Y.; Gimenez, L. E.; Ghrami-Langroudi, M.; Downing, G.; Gü, Y.; Hadley, C. K.; Joy, S. T.; Mupp, A. K.; Simerly, R. B.; Cone, R. D. The melanocortin-3 receptor is a pharmacological target for the regulation of anorexia. Sci. Transl. Med. 2021, 13, No. eabd6434.

(25) Rowland, N. E.; Schaub, J. W.; Robertson, K. L.; Andreassen, A.; Haskell-Luevano, C. Effect of MTII on food intake and brain c-Fos in melanocortin-3, melanocortin-4, and double MC3 and MC4 receptor knockout mice. Peptides 2010, 31, 2314–2317.

(26) Luquet, S.; Perez, F. A.; Hnasko, T. S.; Palmeter, R. D. NPY/AgRP neurons are essential for feeding in adult mice but can be ablated in neonates. Science 2005, 310, 683–685.

(27) Hruby, V. J.; Li, G.; Haskell-Luevano, C.; Shenderovich, M. Design of peptides, proteins, and peptidomimetics in chio space. Biopolymers 2017, 43, 219–266.

(28) Haskell-Luevano, C.; Toth, K.; Boteju, L.; Job, C.; Castrucci, A. M.; Hadley, M. E.; Hruby, V. J. β-Methylation of the Phe7 and Trp9 melanotropin side chain pharmacophores affects ligand-receptor interactions and prolonged biological activity. J. Med. Chem. 1997, 40, 2740–2749.

(29) Nicke, L.; Horx, P.; Harms, K.; Geyer, A. Directed C(sp3)-H arylation of tryptophan: Transformation of the directing group into an activated NH. Chem. Sci. 2019, 10, 8634–8641.

(30) Nicke, L.; Müller, R.; Geyer, A.; Els-Heindl, S.; Heindl, S. Side chain orientation of tryptophan analogues determines agonism and inverse agonism in short ghrelin peptides. ChemMedChem 2019, 14, 1849–1855.

(31) Nicke, L.; Horx, P.; Müller, R.; Els-Heindl, S.; Geyer, A. Tryptophan analogues with fixed side chain orientation - Expanding the scope. ChemBioChem 2021, 22, 330.

(32) Carpino, L. A.; Han, G. Y. 9-Fluorenlymethoxycarbonyl function, a new base-sensitive amino-protecting group. J. Am. Chem. Soc. 1970, 92, 5748–5749.

(33) Carpino, L. A.; Han, G. Y. The 9-fluorenlymethoxycarbonyl amino-protecting group. J. Org. Chem. 1972, 37, 3404–3409.

(34) Schiöth, H. B.; Chahfani, V.; Muceniece, R.; Klusa, V.; Wilkberg, J. E. Major pharmacological distinction of the ACTH
receptor from other melanocortin receptors. *Life Sci.* 1996, 59, 797–801.

(39) Schild, H. O. pA, a new scale for the measurement of drug antagonism. *Br. J. Pharmacol.* 1947, 2, 189–206.

(40) Kazmierski, W.; Hruby, V. J. A new approach to receptor ligand design: Synthesis and conformation of a new class of potent and highly selective \(\mu\) opioid antagonists utilizing tetrahydroisoquinoline carboxylic acid. *Tetrahedron* 1988, 44, 697–710.

(41) Ericson, M. D.; Shaikh, R.; Larson, C. M.; Freeman, K. T.; Haskell-Luevano, C. Multiresidue tetrapeptide substitutions yield a 140-fold selective melanocortin-3 over melanocortin-4 receptor agonist. *ACS Med. Chem. Lett.* 2021, 12, 115–120.

(42) Fleming, K. A.; Freeman, K. T.; Powers, M. D.; Santos, R. G.; Debevec, G.; Giulianotti, M. A.; Houghten, R. A.; Doering, S. R.; Pinilla, C.; Haskell-Luevano, C. Discovery of polypharmacological melanocortin-3 and -4 receptor probes and identification of a 100-fold selective nM MC3R agonist versus a \(\mu\)M MC4R partial agonist. *J. Med. Chem.* 2019, 62, 2738–2749.

(43) Schlasner, K. N.; Ericson, M. D.; Doering, S. R.; Freeman, K. T.; Weinrich, M.; Haskell-Luevano, C. Structure-activity relationships of the tetrapeptide Ac-His-Arg-(pI)DPhe-Tic-NH\(_2\) at the mouse melanocortin receptors: Modification at the (pI)DPhe position leads to mM MC3R versus mM MC4R selective ligands. *Molecules* 2019, 24, 1463.

(44) Kaiser, E.; Colescott, R. L.; Bossinger, C. D.; Cook, P. I. Color test for detection of free terminal amino groups in the solid-phase synthesis of peptides. *Anal. Biochem.* 1970, 34, 595–598.

(45) Christensen, T.; Eriksson, A.; Thornell, L.-E. Qualitative test for monitoring coupling completeness in solid-phase peptide-synthesis using chloranil. *Acta Chem. Scand., Ser. B* 1979, 33, 763–766.

(46) Ericson, M. D.; Schnell, S. M.; Freeman, K. T.; Haskell-Luevano, C. A fragment of the Escherichia coli ClpB heat-shock protein is a micromolar melanocortin 1 receptor agonist. *Bioorg. Med. Chem. Lett.* 2015, 25, 5306–5308.

(47) Tala, S. R.; Schnell, S. M.; Haskell-Luevano, C. Microwave-assisted solid-phase synthesis of side-chain to side-chain lactam-bridge cyclic peptides. *Bioorg. Med. Chem. Lett.* 2015, 25, 5708–5711.

(48) Singh, A.; Tala, S. R.; Flores, V.; Freeman, K.; Haskell-Luevano, C. Synthesis and pharmacology of \(\alpha/\beta\)-peptides based on the melanocortin agonist Ac-His-DPhe-Arg-Trp-NH\(_2\) sequence. *ACS Med. Chem. Lett.* 2015, 6, 568–572.