Systematic analysis of tumor-infiltrating immune cells in human endometrial cancer: a retrospective study

Xi Zhou, Zhengjiang Ling, Bing Yang

Department of Gynaecology, The First Affiliated Hospital of Zunyi Medical University, Zunyi, Guizou 563000, P.R. China.

First author: Xi Zhou, Department of Gynaecology, The First Affiliated Hospital of Zunyi Medical University.

Zhengjiang Ling, Department of Gynaecology, The First Affiliated Hospital of Zunyi Medical University.

Corresponding Author: Prof. Bing Yang, Department of Gynaecology, The First Affiliated Hospital of Zunyi Medical University

Abstract

Objective

The prognostic effect of tumor-infiltrating immune cells (TIICs) on endometrial cancer (EMC) has not been extensively investigated. In the present study, we systematically analyzed the role of TIICs in EMC development.

Methods

Patient data were downloaded from The Cancer Genome Atlas (TCGA). We comprehensively analyzed TIIC population in EMC tissue and their role in EMC progression and prognosis by using a deconvolution algorithm (CIBERSORT) and clinically annotated expression profiles.

Results

The proportions of gamma delta T cells, resting NK cells, M1 macrophages, and resting mast cells were significantly different in normal endometrium and EMC tissue. The proportion of CD8+ T cells, resting memory CD4 T cells, and M0 macrophages was reversed middle correlated. The proportion of resting dendritic cells, resting memory CD4 T cells, and T regulatory cells (Tregs) decreased in accordance with the cancer cell differentiation grade (G); the lower proportion of activated dendritic cells and gamma delta T cells and higher proportion of Tregs predicted longer EMC survival time and vice versa. The low proportion of gamma delta T cells indicated better response to therapy.

Conclusion

Collectively, our data suggested subtle differences in the cellular composition of TIICs in EMC, and
these differences were likely to be important determinants of both prognosis and therapy of EMC.

Keywords: tumor-infiltrating immune cells, CIBERSORT, endometrial cancer

Introduction

Endometrial cancer (EMC) is the most common gynecological malignancy, and approximately 12,160 deaths due to uterine cancer were estimated to occur in the United States in 2019. EMC is the second most common female malignancy in China next to cervical cancer. An advanced stage (III or IV) of EMC at the time of diagnosis is lethal, the percentage of five-years survival time is 43–67% for stage III disease and only 13–25% for stage IV disease. In addition to standard care, targeted therapies specific to individualized tumors, such as immunotherapy, are needed for patients in advanced stages.

This prompted researchers to assess the use of tumor-infiltrating immune cells (TIICs) for immunotherapy. Svetlana et al demonstrated that infiltration of CD8+ T cells in the tumor epithelium at the invasive border is a favorable prognostic factor for patients with EMC. Pater et al reported a decrease in intraepithelial CD3+ tumor-infiltrating lymphocyte (TIL) counts was associated with advanced stage and high risk in patients with EMC. A high proportion of CD8+ PD-1+ lymphocytes was associated with improved prognosis in patients with high-risk EMC. Yamagami et al found a high level of regulatory T cells (Tregs) was associated with poorer disease-free survival. These findings suggest that molecular modifiers of the local tumor immune response may be tumor type-specific.

Because there is a lack of comprehensive analysis of immune cells in EMC, we systematically analyzed the expression of 22 types of immune cells in EMC and its association with tumor cell grade, clinical stage, and their effects on patient survival time by using data from The Cancer Genome Atlas (TCGA).

MATERIALS AND METHODS

Data acquisition

The data for this study were downloaded from TCGA on July 10, 2019. Patients with any missing or insufficient data regarding tumor cell grade, clinical stages (FIGO stage), survival time, and disease-free survival time were excluded from the subsequent analysis. Preprocessing and aggregation of raw data were normalized using the “limma” package of R software. Details of the study design and the samples included at each stage of analysis are illustrated as a flowchart in Figure 1.

Evaluation of TIICs

The normalized gene expression data were used to infer the relative proportions of 22 types of TIICs by
using the CIBERSORT algorithm as previously reported9-12. Briefly, gene expression datasets were prepared using standard annotation files, and the data uploaded to the CIBERSORT web portal (http://cibersort.stanford.edu/), with the algorithm run using the default signature matrix at 1000 permutations10. CIBERSORT calculates a P-value for the deconvolution of each sample by using Monte Carlo sampling, thus providing a measure of confidence in the results.

Statistical analyses

Cases with a CIBERSORT P value of <0.05 were included in the main survival analysis. Associations regarding tumor cell differentiation grade, clinical stage, patient survival time, and the estimated proportions of immune cell types were tested using the Cox regression analysis. Immune cell subsets that were significantly associated with outcome in unadjusted analyses were included in the multivariate models. Multivariate analyses were adjusted for survival time, tumor cell differentiation grades, and clinical stage. The association between infiltrated immune cells and the corresponding disease-free survival time was analyzed by Kaplan-Meier survival curves and evaluated using the log-rank test.

All analyses were conducted using R version 3.5. All statistical tests performed were two-sided, and P values of <0.05 were considered to be statistically significant.

Results

Performance of CIBERSORT for characterizing TIIC composition in normal endometrium and EMC tissue

The CIBERSORT analysis result showed that one lymphocyte population (CD4 naïve T cells) was not observed in EMC tissue and four lymphocyte populations (memory B cells, CD4 naïve T cells, activated mast cells, and eosinophils) (Figure 1B) were observed in EMC tissue. The proportions of gamma delta T cells, resting NK cells, M1 macrophages, and resting mast cells were significantly different in normal endometrium and EMC tissue (Figure 1C).

The correlation of TIICs in EMC

We analyzed the correction of TIICs in CCs. Cytolytic activity was middle reversed correlated with the proportion of CD8+ T cells and resting memory CD4 T cells (Pearson’s correlation = -0.51), CD8+ T cells, and M0 macrophages (Pearson’s correlation = -0.59) in the TCGA cohort at a CIBERSORT P value of <0.05 (Figure 2). Several studies have confirmed that CD8+ T cells are an important target for cancer therapy13-15. Resting memory CD4 T cells16 17 and M0 macrophages are usually recognized as
nonactive cells. CD8+ T cells were middle correlation with the two cells; this indicated the activation of the two cells were associated with CD8+ T cells.

Association of TIICs with EMC cell differentiation grade and EMC invasion and metastasis

An interesting result was that the proportion of resting dendritic cells, resting memory CD4 T cells, and Tregs decreased according to the cancer cell differentiation (G); in contrast, the proportion of memory-activated CD4 T cells and M1 and M2 macrophages increased according to the cancer cell differentiation grade (Figure 3). Resting dendritic cells and resting memory CD4 T cells are usually considered as nonactive immune cells, while Tregs were found to inhibit endogenous immune responses against tumors. These immune cells might be involved in EMC carcinogenesis; these cells involved in other cancer development was also reported previously. Memory-activated T cells and M1 and M2 macrophages are usually recognized as active immune cells, and our results showed that these cells also play a role in tumor cell differentiation.

We also analyzed the correlation between TIICs and regional lymph node (N) involved, and did not find significant TIICs differences in EMC N0, N1, and N2 (Table S1).

Identification of prognostic subsets of TIICs in different clinical stages of EMC

We assessed whether there was a potential correlation between TIICs and patients’ clinical stage (FIGO). It was found that the proportion of Tregs decreased during EMC development (Figure 4A), while the proportion of gamma delta T cells increased in advanced EMC (Figure 4B). A diverse monocyte population was observed according to the clinical stages (Figure 4C). Tregs, a subpopulation of suppressive T cells, are potent mediators of self-tolerance and are essential for the suppression of triggered immune responses; a decrease in Tregs during EMC development indicates an increase in anticancer activity. T cells gamma delta are a positive immune activity indication for cancer therapy, and also a positive factor in EMC. Monocytes and monocyte-derived macrophages play key roles in tumor progression. Hanna et al reported that patrolling monocytes blocked tumor access to the lung. A diverse range of monocytes in the different EMC stages indicated their multifunctionality in EMC metastasis, but further investigations are required to confirm this speculation.

Subsets of TIICs in pre- and postmenopause patients with EMC

Because female sex hormones are present in different levels in pre- (Pre) and postmenopause (Post) women, we assessed whether TIICs were affected by hormones. We found that the proportion of naive B cells (Figure 5A) and resting memory CD4 T cells (Figure 5B) decreased in the Post group.
Because both these cell populations are recognized as nonactive immune cells in cancer20-31, the decrease in their proportion might be influenced by hormone levels; this aspect requires further investigation.

Identification of prognostic subsets of TIICs in EMC patients’ survival time

We found that a lower proportion of activated dendritic cells (Figure 6A) and gamma delta T cells (Figure 6B), and higher T regulatory cells (Tregs) (Figure 6C) predicted a longer EMC survival time than their opposites. Dendritic cells have the potential to overcome tumor tolerance and induce antitumor immunity when loaded with tumor antigens32. Despite high potential in promoting antitumor responses, tumor-associated DCs are largely defective in their functional activity and can contribute to immune suppression in cancer32. Our present results showed that a high proportion of activated dendritic cells was associated with poor prognoses of patients with EMC. This finding implied that an effective approach to treat EMC was to decrease the activation of dendritic cells. Because gamma delta T cells have potent cytotoxicity and can produce interferon-\(\gamma\), they are considered to play a protective role in cancer33. Furthermore, these cells were reported to be poor prognostic biomarkers in human breast cancer34, and we found a similar property of these cells in EMC. Interestingly, Tregs have been shown to exhibit antitumor properties in the tumor microenvironment35. We found that a higher proportion of Tregs could improve EMC prognosis, especially in the first 10 years of follow-up.

Identification of subsets of TIICs in therapy-responding EMC patients

Based on the TCGA patients’ clinical data, we found that patients with low gamma delta T cells had more effective responses than the patients with high gamma delta T cells (Figure 7).

Discussion

Recently, CIBERSORT, a computational method for analyzing cell populations, has been used to define the proportion of 22 types of TIICs in tissues36. This method is based on the genome transcripts of the 22 types of TIICs, and the results of TIICs were combined with patients’ clinical data to systematically analyze the association between the proportion of TIICs and patient characteristics36. Thus, this approach could overcome the limitation of traditional immunohistochemistry (IH)-based methods because IH defines cell type mainly on the basis of one or two cell markers.

EMC is a hormone-related cancer37. The most common lesions (type 1) are typically hormone sensitive and low stage, and they have an excellent prognosis37. Hormones can significantly affect the immune system36. Our present study revealed that the proportion of naïve B cells and resting memory CD4 T
cells were different in pre- and postmenopause women. Thus, the association between TIICs and hormone levels needs further investigation.

Interestingly, the EMC patients with high gamma delta T cells shown low responders to therapy, and with low gamma delta T cells had longer survival times. This result indicated gamma delta T cells might be a key factor for EMC treatment.

The immunotherapy of cancer has made some significant advances in the past few years, with some favorable results39. A recent study showed that a combination of immunomodulation, CARs, and immunotherapy might be the next direction for cancer immunotherapy40. In the present study, we indicated potential immune cells as targets for the therapy of EMC on the basis of TCGA datasets. CIBERSORT was used only to estimate the proportions of TIICs. Each TIIC has multi-subsets, and each of the TIIC subsets has wide functions. The position of TIICs and their interaction with different microenvironments would have different effects41. Thus, more studies are needed to completely understand their roles.

Conflicts of interest

There are no any ethical/legal conflicts involved in the article

ACKNOWLEDGMENTS

We thank Dr. Jianfeng Li for the help in Statistical analyse

References

1. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2019. *CA Cancer J Clin* 2019;69(1):7-34. doi: 10.3322/caac.21551
2. Chen W, Zheng R, Baade PD, et al. Cancer statistics in China, 2015. *CA Cancer J Clin* 2016;66(2):115-32. doi: 10.3322/caac.21338
3. Liu Y. Immune response characterization of endometrial cancer. *Oncotarget* 2019;10(9):S82-92. doi: 10.18632/oncotarget.26630
4. Kondratiev S, Sabo E, Yakirevich E, et al. Intratumoral CD8+ T lymphocytes as a prognostic factor of survival in endometrial carcinoma. *Clin Cancer Res* 2004;10(13):4450-6. doi: 10.1158/1078-0432.CCR-0732-3
5. Cermakova P, Melchior B, Tomsova M, et al. Prognostic significance of CD3+ tumor-infiltrating lymphocytes in patients with endometrial carcinoma. *Anticancer Res* 2014;34(10):5555-61.
6. Worikel HH, Komdeur FL, Wouters MC, et al. CD103 defines intraepithelial CD8+ PD1+ tumour-infiltrating lymphocytes of prognostic significance in endometrial adenocarcinoma. *Eur J Cancer* 2016;62:1-11. doi: 10.1016/j.ejca.2016.02.026
7. Yamagami W, Susumu N, Tanaka H, et al. Immunofluorescence-detected infiltration of CD4+FOXP3+ regulatory T cells is relevant to the prognosis of patients with endometrial cancer. *Int J Gynecol Cancer* 2011;21(9):1628-34. doi: 10.1097/IGC.0b013e31822c271f
8. Crumley S, Kurnit K, Hudgens C, et al. Identification of a subset of microsatellite-stable endometrial carcinoma with high PD-L1 and CD8+ lymphocytes. *Mod Pathol* 2019;32(3):396-404. doi:
9. Chen B, Khodadoust MS, Liu CL, et al. Profiling tumor infiltrating immune cells with CIBERSORT. Cancer Systems Biology: Springer 2018:243-59.

10. Newman AM, Liu CL, Green MR, et al. Robust enumeration of cell subsets from tissue expression profiles. Nat Methods 2015;12(5):453-7. doi: 10.1038/nmeth.3337

11. Ali HR, Chlon L, Pharoah PD, et al. Patterns of Immune Infiltration in Breast Cancer and Their Clinical Implications: A Gene-Expression-Based Retrospective Study. PLoS Med 2016;13(12):e1002194. doi: 10.1371/journal.pmed.1002194

12. Xiong Y, Wang K, Zhou H, et al. Profiles of immune infiltration in colorectal cancer and their clinical significant: A gene expression-based study. Cancer Med 2018;7(9):4496-508. doi: 10.1002/cam4.1745

13. Maimela NR, Liu S, Zhang Y. Fates of CD8+ T cells in Tumor Microenvironment. Comput Struct Biotechnol J 2019;17:1-13. doi: 10.1016/j.csbj.2018.11.004

14. Farhood B, Najafi M, Mortazaei K. CD8(+) cytotoxic T lymphocytes in cancer immunotherapy: A review. J Cell Physiol 2019;234(6):8509-21. doi: 10.1002/jcp.27782

15. Ostroumov D, Feleke-Drimusz N, Saborowski M, et al. CD4 and CD8 T lymphocyte interplay in controlling tumor growth. Cell Mol Life Sci 2018;75(4):689-713. doi: 10.1007/s00018-017-2686-7

16. McKinstry KK, Strutt TM, Swain SL. The potential of CD4 T-cell memory. Immunology 2010;130(1):1-9. doi: 10.1111/j.1365-2567.2010.03259.x

17. Okhrimenko A, Grun JR, Westendorf K, et al. Human memory T cells from the bone marrow are resting and maintain long-lasting systemic memory. Proc Natl Acad Sci U S A 2014;111(25):9229-34. doi: 10.1073/pnas.1318731111

18. Tarique AA, Logan J, Thomas E, et al. Phenotypic, functional, and plasticity features of classical and alternatively activated human macrophages. Am J Respir Cell Mol Biol 2015;53(5):676-88. doi: 10.1165/rcmb.2015-0012OC

19. Gentles AJ, Newman AM, Liu CL, et al. The prognostic landscape of genes and infiltrating immune cells across human cancers. Nat Med 2015;21(8):938-45. doi: 10.1038/nm.3909

20. Tran Janoc JM, Lamichhane P, Karyampudi L, et al. Tumor-infiltrating dendritic cells in cancer pathogenesis. J Immunol 2015;194(7):2985-91. doi: 10.4049/jimmunol.1403134

21. Joshi NS, Akama-Garren EH, Lu Y, et al. Regulatory T Cells in Tumor-Associated Tertiary Lymphoid Structures Suppress Anti-tumor T Cell Responses. Immunity 2015;43(3):579-90. doi: 10.1016/j.immuni.2015.08.006

22. Deng G. Tumor-infiltrating regulatory T cells: origins and features. Am J Clin Exp Immunol 2018;7(5):81.

23. Jorgensen N, Persson G, Hvid TVF. The Tolerogenic Function of Regulatory T Cells in Pregnancy and Cancer. Front Immunol 2019;10:911. doi: 10.3389/fimmu.2019.00911

24. Pauza CD, Liou ML, Lahusen T, et al. Gamma Delta T Cell Therapy for Cancer: It Is Good to be Local. Front Immunol 2018;9:305. doi: 10.3389/fimmu.2018.01305

25. Zhao Y, Niu C, Cui J. Gamma-delta (gammadelta) T cells: friend or foe in cancer development? J Transl Med 2018;16(1):3. doi: 10.1186/s12967-017-1378-2

26. Biswas SK, Mantovani A. Macrophage plasticity and interaction with lymphocyte subsets: cancer as a paradigm. Nat Immunol 2010;11(10):889-96. doi: 10.1038/ni.1937

27. Hanna RN, Cekic C, Sag D, et al. Patrolling monocytes control tumor metastasis to the lung. Science
28. Grimaldi CM, Jeganathan V, Diamond B. Hormonal regulation of B cell development: 17 beta-estradiol impairs negative selection of high-affinity DNA-reactive B cells at more than one developmental checkpoint. J Immunol 2006;176(5):2703-10. doi: 10.4049/jimmunol.176.5.2703
29. Swain S, Clise-Dwyer K, Haynes L. Homeostasis and the age-associated defect of CD4 T cells. Semin Immunol 2005;17(5):370-7. doi: 10.1016/j.smim.2005.05.007
30. Lundberg U. Stress hormones in health and illness: the roles of work and gender. Psychoneuroendocrinology 2005;30(10):1017-21.
31. Takeuchi Y, Nishikawa H. Roles of regulatory T cells in cancer immunity. Int Immunol 2016;28(8):401-9. doi: 10.1093/intimm/dxw025
32. Veglia F, Gabriovich DI. Dendritic cells in cancer: the role revisited. Curr Opin Immunol 2017;45:43-51. doi: 10.1016/j.coi.2017.01.002
33. Silva-Santos B, Strid J. gammadelta T cells get adaptive. Nat Immunol 2017;18(4):370-72. doi: 10.1038/ni.3705
34. Ma C, Zhang Q, Ye J, et al. Tumor-infiltrating γδ T lymphocytes predict clinical outcome in human breast cancer. J Immunol 2012;189(10):5029-36. doi: 10.4049/jimmunol.1201892
35. Wang HY, Wang RF. Regulatory T cells and cancer. Curr Opin Immunol 2007;19(2):217-23. doi: 10.1016/j.coi.2007.02.004
36. Gentles AJ, Newman AM, Liu CL, et al. The prognostic landscape of genes and infiltrating immune cells across human cancers. Nat Med 2015;21(8):938. doi: 10.1038/nm.3909
37. Onstad MA, Schmandt RT, Lu KH. Addressing the Role of Obesity in Endometrial Cancer Risk, Prevention, and Treatment. J Clin Oncol 2016;34(35):4225-30. doi: 10.1200/JCO.2016.69.4638
38. Taneja V. Sex Hormones Determine Immune Response. Front Immunol 2018;9:1931. doi: 10.3389/fimmu.2018.01931
39. Kirkwood JM, Butterfield LH, Tarhini AA, et al. Immunotherapy of cancer in 2012. CA Cancer J Clin 2012;62(5):309-35. doi: 10.3322/caac.20132
40. Khalil DN, Smith EL, Brentjens RJ, et al. The future of cancer treatment: immunomodulation, CARs and combination immunotherapy. Nat Rev Clin Oncol 2016;13(6):394. doi: 10.1038/nrclinonc.2016.65
41. Gajewski TF, Schreiber H, Fu YX. Innate and adaptive immune cells in the tumor microenvironment. Nat Immunol 2013;14(10):1014-22. doi: 10.1038/ni.2703

Figure Legends

Figure 1. Study flow chart and the proportion of TIICs in normal endometrium and endometrial cancer (EMC) tissue. A, Study flowchart detailing the flow of samples at each stage of analysis. TGCA, The Cancer Genome Atlas. B, The proportion of TIICs in normal endometrium and EMC tissue as determined by a heat map. C, The difference in TIICs between normal endometrium and EMC tissue.

Figure 2. The correlation of cytolytic activity in TCGA.

Figure 3. The proportion of TIICs according to the cell differentiation grade of EMC.

Figure 4. The proportion of TIICs according to the clinical stages of EMC.
Figure 5. Subsets of TIICs in pre (Pre) and postmenopause (Post) patients with EMC.

Figure 6. Effect of subsets of TIICs on the survival time of patients with EMC.

Figure 7. Gamma delta T cells were associated with response to therapy in patients with EMC.
A

TCGA cohort (patient=556, 12 normal samples)

CIBERSORT<0.05

Pooled together 299 patients and 8 normal endometrium with eligible CIBERSORT data

Pooled together 281 patients with eligible CIBERSORT data and clinical information

Cancer degree
Cell grades
Regional lymph node (N)
Tumor therapy response
Survival time

Comparative analysis of the differently infiltrated immune cells and related clinical information

B

C

Endometrium

EMC

P<0.001

P<0.001

P<0.001

P=0.05

P=0.025

T cells gamma delta

NK cells resting

Macrophages M1

Most cells resting

Fraction

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Type

Macrophages M0

T cells CD4 memory activated

B cells naive

Genetic cells activated

NK cells resting

Dendritic cells resting

T cells gamma delta

Neutrophils

Most cells activated

Monocytes

B cells memory

T cells CD4 naive

Eosinophils

Plasma cells

T cells follicular helper

Macrophages M1

NK cells activated

Most cells resting

T cells regulatory (Treg)

Macrophages M2

T cells CD8

T cells CD8 memory resting

P<0.001

P=0.025

P<0.001

P<0.001
	NK cells activated	Mast cells resting	Macrophages M2	Dendritic cells resting	T cells CD8	T cells CD4 memory activated	T cells follicular helper	Macrophages M1	Plasma cells	T cells gamma delta	Eosinophils	T cells regulatory (Tregs)	Monocytes	B cells naive	T cells CD4 memory resting	Dendritic cells activated	Neutrophils	B cells memory	Macrophages M0	Mast cells activated
NK cells activated	1	0.36	-0.04	0.03	0.09	-0.02	-0.08	-0.1	-0.1	-0.07	-0.14	-0.17	-0.09	-0.02	-0.11	-0.19	-0.14			
Mast cells resting	0.36	1	0.1	-0.05	0	0.03	-0.09	0.11	0.04	0.07	0.17	0.02	0	0.05	0.02	-0.08	0.18			
Macrophages M2	-0.04	0.1	1	0.08	-0.18	-0.04	-0.09	0.13	-0.12	-0.08	0.07	-0.02	-0.18	0.1	-0.24	-0.09	-0.12			
Dendritic cells resting	0.03	-0.05	0.08	1	-0.07	-0.06	-0.09	-0.1	-0.01	-0.03	-0.08	0.3	0.05	0.05	0.07	-0.03	0.05			
T cells CD8	0.09	0	-0.18	-0.07	1	0.52	0.25	0.19	0.11	-0.05	0.07	0.19	0.16	-0.1	-0.51	-0.25	-0.17			
T cells CD4 memory activated	-0.02	0.03	-0.04	-0.06	0.52	1	0.18	0.13	0.14	0.06	0.17	-0.3	-0.12	0	-0.44	-0.15	-0.09			
T cells follicular helper	-0.08	-0.09	-0.09	0.25	0.18	1	0.31	0.04	0.07	-0.01	-0.04	-0.19	-0.05	0.26	-0.14	0	-0.14			
Macrophages M1	-0.1	0.11	0.13	-0.1	0.19	0.13	0.31	1	0.05	0.15	-0.1	-0.02	-0.12	-0.03	0.05	-0.13	-0.22			
Plasma cells	-0.1	0.04	-0.12	-0.01	0.11	0.14	0.04	0.05	1	0.09	-0.06	-0.02	-0.12	-0.05	-0.17	-0.13	-0.09			
T cells gamma delta	-0.07	0.07	0.08	-0.03	0.06	0.07	0.15	0.09	1	-0.1	-0.03	-0.11	-0.15	-0.07	-0.01	-0.09	-0.04			
NK cells resting	-0.16	-0.17	-0.07	-0.06	0.07	0.17	-0.01	-0.06	-0.1	1	-0.04	0	0.03	-0.02	0	-0.07	0.04			
Eosinophils	-0.01	0.02	-0.02	-0.08	0.06	0.02	0.04	-0.02	0.03	-0.04	1	0.04	0.11	-0.05	0.05	-0.04	0.01			
T cells regulatory (Tregs)	0.01	-0.1	-0.18	0.03	0.19	-0.3	-0.19	-0.12	-0.02	-0.11	0	0.04	1	0.12	-0.1	-0.25	-0.05			
Monocytes	0.06	0.05	0.1	0.01	0.06	-0.12	-0.05	-0.03	-0.12	-0.15	0.03	0.11	0.12	1	0.11	-0.04	-0.19			
B cells naive	-0.17	0.02	-0.24	-0.12	-0.1	0	0.26	0.05	-0.05	-0.07	-0.02	-0.05	-0.11	1	0.14	0.13	-0.02			
T cells CD4 memory resting	-0.09	0.05	-0.09	0.08	-0.51	-0.44	-0.14	-0.13	-0.17	-0.05	-0.07	-0.09	0.1	0.14	1	0.18	0.06			
Dendritic cells activated	-0.02	0.05	-0.04	-0.18	-0.25	-0.15	0	-0.22	-0.13	-0.01	0	0.05	-0.25	0.13	0.18	1	0.14			
Neutrophils	0.11	-0.18	-0.12	0.05	-0.17	-0.09	-0.14	-0.14	0.02	-0.09	-0.03	-0.04	-0.05	-0.06	0.06	0.14	1			
B cells memory	-0.08	-0.11	0.13	0.05	-0.15	-0.1	-0.1	-0.09	0.04	0	-0.03	0.01	0	-0.19	-0.05	0.07	0.01			
Macrophages M0	-0.19	-0.3	-0.05	-0.07	-0.59	-0.32	-0.38	-0.37	-0.29	-0.09	-0.04	0.01	-0.09	-0.19	-0.09	0	0.04			
Mast cells activated	-0.14	-0.29	-0.12	0.03	-0.17	-0.1	-0.18	-0.23	-0.14	-0.07	0.11	-0.01	0	-0.02	-0.08	-0.01	0.18			

This is a heat map showing the correlation coefficients between different cell types in a biological system. The values range from -1 to 1, with red indicating a positive correlation and blue indicating a negative correlation.
